- 1. G is a group and H is a subgroup of G. G acts on the set of left cosets G/Hby q.xH = (qx)H.
 - (i). Prove this is a well-defined group action.
 - (ii). Is this action transitive? Why or Why not?
 - (iii). Give a proof of the Lagrange Theorem using Counting Formula.

Solution:

- (i). If xH = yH, then $x^{-1}y \in H$. For any $g \in G$, $(gx)^{-1}(gy) = x^{-1}g^{-1}gy =$ $x^{-1}y \in H$, so (gx)H = (gy)H, i.e. g(xH) = g(yH).
- (ii). It is transitive: for any $xH \in G/H$, x.H = xH, so $xH \in O_H$, we see there is a single orbit, so the action is transitive.
- (iii). $O_H = G/H$, and the stabiliser $G_H = H$, by the Counting Formula:

$$|G/H| = |O_H| = \frac{|G|}{|G_H|} = \frac{|G|}{|H|}$$

2. G is a group with $|G| = p^2$ for some prime p. Prove either $G \cong \mathbb{Z}/p^2\mathbb{Z}$ or $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$

Solution: $|G| = p^2$ and p is a prime, so G is an abelian group.

If G is a cyclic group of order p^2 , then $G \cong \mathbb{Z}/p^2\mathbb{Z}$.

If G is not a cyclic group, then all the non-identity elements of G have order p. Choose $x \in G \setminus \{1\}$, and choose $y \in G \setminus \{x\}$. In particular, |x| = |y| = p. G is an abelian group, so < x > and < y > are normal subgroups of G. $y \notin < x >$ implies $< x > \cap < y > = \{1\}$ since p is a prime. $|< x > < y > | = \frac{|< x > | \times | \times | < y > |}{|< x > \cap < y > |} =$ p^2 , so $\langle x \rangle \langle y \rangle = G$. We conclude

$$G = \langle x \rangle \times \langle y \rangle \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$$

3. Prove any group of order 77 is cyclic.

Solution: If G is a group of order $77 = 7 \times 11$, it will have Sylow 7-subgroups and Sylow 11-subgroups, i.e. subgroups of order 7 and order 11. The number of Sylow 7-subgroups divides 11 and is congruent to 1 modulo 7, so it has to be 1, which then implies this unique Sylow 7-subgroup is a normal subgroup of G, and call it H. Similarly, we can show that there is a unique Sylow 5-subgroup of G that is a normal subgroup, and call it K. Since 7 and 11 are primes, we know $H \cong \mathbb{Z}/7\mathbb{Z}$ and $K \cong \mathbb{Z}/11\mathbb{Z}$.

$$|H| = 7$$
 and $|K| = 11$ implies $|H \cap K| = 1$, so $H \cap K = \{1\}$.

$$|HK| = \frac{|H| \times |K|}{|H \cap K|} = \frac{7 \times 11}{1} = 77 = |G|,$$
 so $HK = G$

and together with the fact H, K are normal subgroups of G, we conclude

$$G \cong H \times K \cong \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/11\mathbb{Z} \cong \mathbb{Z}/77\mathbb{Z}$$

4. Prove a group of order 90 is not simple.

Solution:

 $|G| = 90 = 2 \times 3^2 \times 5$. The number of Sylow 5-subgroups divides $2 \times 3^2 = 18$ and is congruent to 1 modulo 5, so it is 1 or 6. The number of Sylow 3-subgroups divides $2 \times 5 = 10$ and is congruent to 1 modulo 3, so it is 1 or 10.

Suppose G is a simple group, then the number of Sylow 5-groups has to be 6, and the number of Sylow 3-subgroups has to be 10.

If any pair of the 10 Sylow 3-subgroups intersect only at 1, then the union of all Sylow 5-subgroups and Sylow 3-subgroups have $(5-1) \times 6 + (9-1) \times 10 = 104 > 90 = |G|$ elements, so there exists Sylow 3-subgroups H and K such that $H \cap K \neq \{1\}$, and |H| = |K| = 9, H, K are distinct, so $|H \cap K| = 3$.

Consider the normalizer of $H \cap K$, $N(H \cap K) = \{g \in G | g(H \cap K)g^{-1} = H \cap K\}$. Since $|H| = |K| = 9 = 3^2$, H and K are abelian, so $H \cup K \subseteq N(H \cap K)$

$$|N(H \cap K)| \ge |H \cup K| = 9 + 9 - 3 = 15$$

and $|N(H \cap K)|$ divides |G| = 90, |H| = 9 divides $N(H \cap K)$, so $|N(H \cap K)|$ may be 18, 45, 90.

If $|N(H \cap K)| = 90$, then $N(H \cap K)$ is a normal subgroup, contradict to the assumption G is simple.

If $|N(H \cap K)| = 45$, then $[G : N(H \cap K)] = 2$, again $N(H \cap K)$ is normal, contradiction.

If $|N(H \cap K)| = 18$, let S be the set of subgroups of G of form $g(H \cap K)g^{-1}$, $g \in G$, then G acts on S by conjugation and this is a transitive action, with

the stabilizer for $H \cap K$ to be $N(H \cap K)$. By the Counting Formula, $|S| = \frac{|G|}{|N(H \cap K)|} = \frac{90}{18} = 5$, so this action corresponds to a homomorphism

$$\phi: G \longrightarrow S_5$$

 $\ker(\phi) \neq G$ since it is not the trivial action, and $\ker(\phi) \neq \{1\}$ since |G| = 90 does not divide $|S_5| = 120$. So $\ker(\phi)$ is a proper normal subgroup of G, contradiction.

We conclude G cannot be a simple group.

5. $\phi: \mathbb{Z}/2\mathbb{Z} \longrightarrow Aut(\mathbb{Z})$ is defined by

$$\phi(\bar{m}): \mathbb{Z} \longrightarrow \mathbb{Z}$$

$$k \mapsto (-1)^m k$$

Let $G = \mathbb{Z} \rtimes_{\phi} (\mathbb{Z}/2\mathbb{Z})$. Find all the elements of finite order in G.

Solution:

The elements of finite order are $(0,\bar{0})$ and $(k,\bar{1})$ for any $k \in \mathbb{Z}$.

Case 1. The identity element $(0, \bar{0})$ is of finite order.

Case 2. For any $n \in \mathbb{Z}$:

$$(n,\bar{1})(n,\bar{1}) = (n+\phi(\bar{1})n,\bar{1}+\bar{1}) = (n+(-1)^{-1}n,\bar{0}) = (0,\bar{0})$$

So $|(n, \bar{1})| = 2$.

Case 3: For any $n \in \mathbb{Z} \setminus \{0\}$, we will show by mathematical induction that $(n, \bar{0})^k = (kn, \bar{0}) \neq (0, \bar{0})$ for any positive integer k, which will imply $(n, \bar{0})$ is of infinite order:

- (1). when k = 1, $(n, \bar{0})^1 = (n, \bar{0}) \neq (0, \bar{0})$.
- (2). Assume $(n, \bar{0})^k = (kn, \bar{0})$, then

$$(n,\bar{0})^{k+1} = (n,\bar{0})^k(n,\bar{0}) = (kn,\bar{0})(n,\bar{0}) = (kn+(-1)^0n,\bar{0}+\bar{0}) = ((k+1)n,\bar{0}) \neq (0,\bar{0})$$

6. Prove
$$O_2(\mathbb{R}) = SO_2(\mathbb{R}) \times \langle r \rangle$$
, where $r = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Solution: $SO_2(\mathbb{R})$ is a normal subgroup of $O_2(\mathbb{R})$ and < r > is a subgroup of $O_2(\mathbb{R})$.

Denote the identity 2×2 matrix by I_2 . In $\langle r \rangle = \{I_2, r\}$, $\det(r) = -1$, so $SO_2(\mathbb{R}) \cap \langle r \rangle = \{I_2\}$.

$$[O_2(\mathbb{R}): SO_2(\mathbb{R})] = 2$$
 and $r \in O_2(\mathbb{R}) \setminus SO_2(\mathbb{R})$, so $O_2(\mathbb{R}) = SO_2(\mathbb{R}) \sqcup SO_2(\mathbb{R})r$, $O_2(\mathbb{R}) = SO_2(\mathbb{R}) < r >$

We conclude $O_2(\mathbb{R}) = SO_2(\mathbb{R}) \rtimes \langle r \rangle$.

7. If H and K are subgroups of G such that $G = H \times K$, prove

$$G/H \cong K$$

Solution:

Define $f:G=H\rtimes K\longrightarrow K$ by f(h,k)=k. We first show it is a homomorphism:

$$f((h_1, k_1)(h_2, k_2)) = f(h_1k_1h_2k_1^{-1}, k_1k_2) = k_1k_2 = f(h_1, k_1)f(h_2, k_2)$$

Next, $\ker(f) = \{(h, k) \in G = H \rtimes K | f(h, k) = 1\} = \{(h, 1) \in G = H \rtimes K | h \in H\} = H$, and f is surjective since for any $k \in K$, k = f(1, k).

By First Isomorphism Theorem, $G/H = H \rtimes K/\ker(f) \cong K$