Algorithm: 17 ollard's

Factorbout group, a e 12, har order b ten plab-1.

How it moks: me choose a, to production smill prims.

and me find god (a'-1, n).

Lenstrais algorithm

(Fp) PG ((a) Phosintinite ordin

LeP = (me me). $le P = \left(\frac{m_e}{de}, \frac{n_e}{de}\right).$

what happens when PGC(F) is of order b?

P & C(Q). P, 2P, 2P, 5P.

V? J J J J J

P & C((Fp)) P, 2P, 3P ... 6P

 $bP = \left(\frac{m_b}{3c^2}, \frac{h_b}{3b^2}\right)$ $\Rightarrow p \mid db$

So P base C(Ep) has order b P | db.

Given n

Step 1: We will choose an Curve C and point PEC(Q). Pick K = L(M[1, ..., K]

Sty 1- ① gcl (n, 6)
$$\neq 1$$

②. Choose $P = (x_1, y_1)$, choose b
C: $y^2 = x^3 + bx + c$ s.t. $P \in C$.
② clear $d(27c^3 + 4b^2, n) = 1$.
② $b = L(M(1, --)K)$.

Compute P, 2P, 4P, 8P, --- (doubling formula.

blow do me all points?

$$P = (x_1, y_1)$$

 $(2P) = \frac{(x_1^2 - b)^2 - 8cx}{4y_1^2}$ mod n.

inverse
$$4y_1^2$$
 (mod n)
 $9cd (4y_1^2, n) = \alpha_1 (4y_1^2 + b_1 n)$
 $9cd = 1 \implies \alpha_1 \text{ inverse } 4y_1^2 \text{ mod } n$
 $x(2p) = \alpha_1 \cdot ((x_1^2 - b)^2 - 4cx) \text{ mod } n$
if not $9cd (4y_1^2, n) \mid n$.

Example
$$h = 35$$
 $P = (2,6) \in C: y^2 = x^3 + 14x$
 $k = L(M(1,2,3,4) = 12$
 $12 = 8 + 4$
 $12 = 8 + 4$
 $12 = 8 + 4$

$$P = (2/7)$$

$$\times (2P) = (2^{2} - 14)^{2} = \frac{(00)}{4 \cdot 36} \pmod{35}$$

$$= \frac{(00)}{4} = 25 \pmod{35}.$$

$$Y(4P) = (25^{2}-14)$$

$$Y(25^{3}+14.25)$$

$$Y(25^{$$