

Introdução à Multimídia

Fundamentos de Multimídia

Judith Kelner
Arthur Callado
Anderson Costa

Roteiro

- Motivação
- Texto
- Hipertexto
- Multimídia
- Hipermídia
- Cores
- Gráficos
- Animação
- Vídeo

Motivação

Disseminação do uso do computador

 Mudanças nos paradigmas e métodos de ensino

 Adoção de padrões para troca de documentos multimídia

Gasto com treinamento (USA)
 \$50bi

Aprendizagem I

 Estímulos que o ser humano recebe

- 1% através do gosto

- 1,5% através do tato

- 3,5% através do olfato

– 11% através da audição

- 83% através da visão

Aprendizagem II

- Dados retidos pelos estudantes:
 - 10% do que lêem
 - 20% do que escutam
 - 30% do que vêem
 - 50% do que vêem e escutam
 - 70% do que dizem e discutem
 - 90% do que dizem e logo realizam

Aprendizagem III

- Dados retidos após 3 horas:
 - Somente oral 70%
 - Somente visual 72%
 - Oral e visual 85%

Aprendizagem IV

- Dados retidos após 3 dias:
 - Somente oral 10%
 - Somente visual 22%
 - Oral e visual 65%

Real - Realidade

"Tudo aquilo que <u>existe</u> no mundo."

"Qualidade do que é real."

Virtual - Virtualidade

"Tudo aquilo que é <u>possível</u> de existir."

"Qualidade do que é virtual."

Realidade Virtual

Multimídia

"É o ato de apresentar uma dada informação através de várias formas diferentes."

Multimídia

- Tipos de Mídia são os elementos principais para a construção de um projeto multimídia.
- São cinco elementos básicos: texto, som, imagem, animação e vídeo.
- A integração destes elementos num projeto multimídia coeso é um dos principais objetivos dos sistemas de autoria.

Conceitos Computacionais

 Realidade virtual é uma técnica avançada de interface, onde o usuário pode realizar imersão, navegação e interação em um ambiente 3D gerado por computador, utilizando canais multi-sensoriais.

Conceitos Computacionais

 Multimídia é uma forma de apresentação de informações ao usuário que se utiliza de várias mídias para que a compreensão seja facilitada.

Vantagens da Multimídia

 Tornar o computador e os aplicativos mais amigáveis

 Facilitar o entendimento de situação complexas

Facilitar a criação do "escritório sem papéis"

Permitir a utilização de ambientes de simulação

Diminuição dos custos de treinamento

 Aumento da taxa de retenção de informação

Tipos de Mídia

- Texto
- Hipertexto

- Som
- Gráfico

- Vídeo Digital
- Multimídia

Hipermídia

Texto

- Não Estruturado Texto ASCII
- Estruturado hipertexto
 - SGML
 - HTML
 - XML

Texto

- Com a explosão da Internet e da WWW foi adotada a HTML (Hypertext Markup Language) e o futuro é o XML (eXtended Markup Language)
- Atualmente, artigos científicos, artigos de revistas, manuais de instruções, livros completos, jornais de notícias podem ser acessados através de um browser

Usando Texto na Multimídia

- Texto no design
- Escolha da fonte

- Menus para navegação
- Botões para interação

- Texto para leitura
- Documentos HTML
- Símbolos e ícones

Texto animado

Hipertexto

- É uma tecnologia que permite organizar uma base de informações em blocos discretos de conteúdo chamados nós.
- Os nós são conectados por uma série de enlaces ou links cuja seleção provoca a imediata recuperação da informação destino.
- Visto no espaço tridimensional, é formado por uma série de planos que se interceptam em todos os pontos que representam uma relação entre seus conteúdos.

Brevíssima história do hipertexto

- 1945 MEMEX (Vannevar Bush)
- 1965 XANADU (Ted Nelson)

- 1987 GUIDE (Peter Brown)
- 1989 Hypercard (Apple)
- 1990 Toolbook (Hipertexto para Windows)

- 1991 WWW (W3C Consortium)
- 1993 MOSAIC (Primeiro browser gráfico para a WWW)

1994 Consolidação do mercado

Sistemas de Hipertexto

 Possuem uma estrutura não seqüencial, onde diferentes caminhos podem ser percorridos em diferentes ordens.

Definição de Conklin (1987)

Sistemas de hipertexto possuem 3 componentes:

 Uma base de dados com um novo método de acesso através de links;

 Um esquema de representação similar ao das redes semânticas;

 Uma modalidade de interface caracterizada por elementos que permitem conectar os dados.

Definição de Parsaye (1989)

Um sistema de hipertexto ou hiperdocumento pode ser definido como a criação e representação de links entre porções discretas de informação, permitindo que os usuários naveguem através delas.

Navegar é preciso...

Estruturação de sistemas de hipertexto

 Podem coexistir em sistemas de hipertextos cinco tipos de estruturas:

- Hierárquica
- Redes
- Tabelas Indexadas
- Regras

Multimídia

- Aplicações em computador que incluem textos, gráficos, som, vídeo, animação, ...
- Ênfase na tecnologia de suporte a diversos tipos de mídia.
- O conceito original de hipertexto inclui a noção de multimídia.

Hipermídia (Halasz, 1991)

 É um estilo de desenvolvimento de sistemas para a criação, manipulação, recuperação e apresentação de informação, onde:

1. A informação é armazenada em uma coleção de nós multimídia.

2. Os nós são organizados implícita ou explicitamente em uma ou mais estruturas.

3. Os usuários acessam a informação navegando através das estruturas de informação disponíveis

Hipertexto, Multimídia, Hipermídia ...

Hipermídia1 = Hipertexto +
 Multimídia

 Hipermídia3 = Hipermídia2 + Adaptação

Hipermídia4 = Hipermídia3 +Colaboração

Hipermídia5 = Hipermídia4 + RV

Hipermídia6 = Hipermídia5 + RA

• Hipermídia7 =

Navegação

- Movimento efetuado por usuários ao longo das estruturas do hipertexto enquanto acessa a informação desejada.
- Tipos:
 - 1. Sequencial
 - 2. Busca
 - 3. Folheio ou browsing

Conflitos de navegação

- Tours
- Backtracking
- Histórico de nós acessados
- Bookmarks
- Overviews
- Mapas locais e globais
- •

Fundamentos Tecnológicos

Modelo relacional Modelo E-R

Redes semânticas

UML

Agentes

Software interativo
Ambientes de programação
Datawarehousing
Gestão do conhecimento

Processadores de texto Linguagens de markup Desktop publishing Sistemas de gestão

Hipermídia

Computadores pessoais DVD, CD-RW,

Data cards

Internet

Mercado
Consórcios
Alianças estratégicas
Padrões

Redes de alta velocidade Arquiteturas cliente-servidor

Chips DSP Dispositivos móveis Miniaturização

Sistemas de hipermídia adaptativa

- Sistemas de hipermídia altamente configuráveis.
- Envolvem obrigatoriamente a modelagem do usuário.
- Necessitam representar e suportar a dinâmica do ambiente, do usuário e da interação entre ambos.
- Servidor com suporte a bases de modelos de usuários e de descrição de conteúdos na web.
- Agente de busca em background.
- Melhores resultados a longo prazo.

Som

O poder do som pode fazer a diferença

 Projeto multimídia não necessita do conhecimento de teoria da música

 Três pontos indispensáveis num projeto: como criar o som; como gravar e editar o som; e como incorporar o som no projeto

O que é o Som?

- A percepção do som ocorre quando as variações de pressão atmosférica faz vibrar as estruturas internas dos ouvidos
 - O som é, pois, a percepção da compressão dinâmica e rarefação da pressão atmosférica nos ouvidos.
 - O som é uma onda contínua que se propaga no ar

O que é o Som?

 O som tem as propriedades usuais das ondas (reflexão, refração, difração, etc.)

 Em geral, o ser humano pode ouvir variações de pressão atmosférica no intervalo]20Hz,20KHz[

 O áudio é a reprodução eletrônica do som.

Som no Computador

 Arquivos do tipo .WAV (originalmente, para som sem compressão).

- Atualmente, é possível uso de algoritmos de compressão em arquivos .WAV

Outros formatos:

- .au (voz no unix)
- .MP3
- -.OGG

Áudio Digital

- Som digital pode ser representado como pedaços de som (samples), onde a cada fração de segundo um pedaço do som é armazenado no formato digital, ou seja, a informação é representada na forma de bits e bytes.
- As três freqüências mais utilizadas na multimídia para os samples são: 44.1 kHz (qualidade do CD), 22.05 kHz e 11.025 kHz.

Vantagens do Áudio Digital

 A maior qualidade dos digitais é a sua consistência na qualidade do playback

 maior utilização deste tipo de arquivo nos projetos multimídia, porque garante a qualidade do som do início até o fim

 Uma quantidade maior de aplicações que suportam arquivos de som digital

 Não requer conhecimento de teoria musical

Áudio Digital x MIDI

 MIDI (Musical Instrument Digital Interface) é um padrão de comunicação criado no início dos anos 80s para instrumentos musicais eletrônicos e computadores.

 Áudio digital é uma gravação enquanto MIDI é um escore

 Áudio Digital depende da qualidade do sistema de som

MIDI depende da qualidade do instrumento musical e da capacidade do sistema de som.

Vantagens do MIDI

- São arquivos mais compactos de 200 a 1000 vezes menores que os digitais.
- Na carga e execução quando embutidos (embedded) nas páginas da Web;
- Se a fonte do MIDI é de boa qualidade o som produzido é melhor do que o digital;
- Dados são editáveis: pode-se modificar tamanho sem modificar a música ou a qualidade, isto é, só modificando o tempo.

Desvantagens do MIDI

- Os dados de um arquivo MIDI representam o instrumento musical, o playback só funciona adequadamente se o dispositivo for idêntico ao dispositivo de origem;
- Os arquivos MIDI não podem ser usados facilmente para reproduzirem diálogos (voz)

Tamanho vs. Sampling Rate

Sampling Rate	Resolução	Estéreo/ Mono	Bytes por Minuto	Comentários	
44.1 kHz	16-bit	Estéreo	10.5 MB	Qualidade de gravação de CD, o reconhecido padrão para áudio	
44.1 kHz	16-bit	Mono	5.25 MB	Boa qualidade para gravações do tipo mono como voz	
44.1 kHz	8-bit	Mono	2.6 MB	Apropriada para gravações de uma fonte mono	
22.05 kHz	16-bit	Estéreo	5.25MB	Não possui a qualidade do CD, têm dois fatores importantes: estéreo e a resolução de 16-bit	
22.05 kHz	16-bit	Mono	2.5 MB	É uma boa escolha para discursos, porém pode se baixar para 8-bit e economizar espaço em disco	
22.05 kHz	8-bit	Estéreo	2.6MB	É a escolha popular para gravações em estéreo quando não é possível toda a largura de banda no playback	
22.05 kHz	8-bit	Mono	1.3 MB	Muito usado porque qualquer MPC pode tocar, a qualidade é tão boa como a da televisão	
11 kHz	8-bit	Estéreo	1.3 MB	Como a sampling rate é muito baixa não existe vantagem em ser estéreo	
11 kHz	8-bit	Mono	650 K	Na prática ainda se consegue alguns resultados razoáveis	
5.5 kHz	8-bit	Estéreo	650 K	O estéreo não tem sentido	
5.5 kHz	8-bit	Mono	325 K	Tão bom como uma péssima conexão telefônica	

Formato de Arquivo

Extensão	Tipo do MIME	Plataforma	Uso
Aif	Áudio/x-aiff	Mac, SGI	Áudio
Aifc	Áudio/x-aiff	Mac, SGI	Áudio (comprimido)
AIFF	Áudio/x-aiff	Mac, SGI	Áudio
Aiff	Áudio/x-aiff	Mac, SGI	Áudio
Au	Audio/basic	Sun, NeXT	Dados audio do ULAW
Mov	Video/QuickTime	Mac, Win	Vídeo QuickTime
Мре	Video/mpeg	Todas	Vídeo Mpeg
Mpeg	Video/mpeg	Todas	Vídeo Mpeg
Мрд	Video/mpeg	Todas	Vídeo Mpeg
Qt	Video/QuickTime	Mac, Win	Vídeo QuickTime
Ra, ram	Áudio/x-pn-realaudio	Todas	Som RealAudio
Snd	Audio/basic	Sun, NeXT	Dados audio do ULAW
Vox	Audio/	Todas	Voz VoxWare
Wav	Audio/x-wav	Win	Áudio WAV

Quando usar Áudio Digital ou MIDI

Arquivos do tipo MIDI	Arquivos de áudio digital		
Quando não se tem memória (RAM)	Quando não se tem controle sobre o		
suficiente, ou espaço em disco, ou	hardware que será utilizado para o		
capacidade de processamento da	playback		
CPU, ou largura da banda			
Quando se tem um dispositivo MIDI	Quando se tem recursos		
de alta qualidade	computacionais e largura de banda		
	suficiente para manipular arquivos digitais		
Quando se tem um controle	Quando é necessário a utilização de		
completo sobre o dispositivo que será utilizado para playback			
Quando não é necessário a utilização de diálogos (voz)			

Quando adicionar Som

 Decidir qual tipo de som é necessário, como música de fundo (background music), efeitos especiais ou um discurso. Decidir onde o som irá ocorrer. Alocá-lo dentro do storyboard.

 Decidir onde e quando se deseja utlizar áudio digital ou dados MIDI.

Adquirir o material, criando ou comprando.

- Editar o som ajustando-o ao projeto.
- Testar o som para verificar a sincronização com a imagem. Isto pode envolver a repetição dos passos 1 até 4 e deverá ser realizado até se obter a sincronização.

MP3

• Nascido em 1987, no IIS (Institut Integriert Schaltungen), na Alemanha

 trabalho em uma codificação perceptual de áudio para Digital Audio Broadcasting (Transmissão Digital de Áudio)

 O mp3 é um tipo de codificação de MPEG-1 para áudio

- Abreviação de MPEG Layer-3 (mas não MPEG-3!)
- Patente: ISO-MPEG Audio Layer-3

MP3

 O formato mp3 compacta os dados, garantindo uma redução na memória necessária para armazenamento dos arquivos.

 Captura apenas as informações que são mais importantes para o ouvido humano, ignorando o que não pode ser percebido.

 Percepção visual do mundo baseada nas cores dos objetos

- alguns animais só enxergam em preto e branco
- outros conseguem ver cores para nós invisíveis

- Conseguimos distinguir algumas centenas de tons de cinza
- Discernimos milhões de cores diferentes

 Só percebemos as cores na presença da luz

Percepção Artística da Cor

- Fundamentação na fusão de branco e preto às cores puras

-Tinta ⇒ Cor pura + Branco

-Sombra ⇒ Cor pura + Preto

-Tom ⇒ Corpura + Preto + Branco

 Cor é a manifestação perceptual da luz

- A luz é um sinal eletromagnético
- Serão usados os seguintes universos e modelos

Modelos
Matemáticos
da cor

Representação
das
cores

Codificação
das
cores

Energia e cor percebida

 Diferentes comprimentos de onda podem estar associados a diferentes cores

 Nem todo comprimento de onda é capaz de gerar um estímulo visual

 Violeta
 380-440 mμ

 Azul
 440-490 mμ

 Verde
 490-565 mμ

 Amarelo
 565-590 mμ

 Laranja
 590-630 mμ

 Vermelho
 630-780 mμ

Processos de formação das cores

 Processo aditivo: combinação de feixes de cores puras, i.e., a energia dos fotons é somada na composição (iluminação)

 Processo subtrativo: transmissão da luz através de

- filtro, ou
- corante (sem reflexão)

Cor Refletida e Emitida

Visão do mundo ⇒ Cor refletida

Cor Refletida e Emitida

Visão do mundo ⇒ Cor emitida

 Emissão da luz (por superfícies geradoras de radiação luminosa) diretamente para os sensores visuais segundo propriedades da superfície emissora

Exemplo: Imagem visualizada em um terminal de vídeo (CRT ou LCD) ⇒ Uso do modelo cromático aditivo RGB (Primárias Red, Green e Blue)

Ciências associadas

 Fotometria: estudo dos aspectos psicofísicos (perceptuais) da energia radiante

 Colorimetria: estudo da percepção das cores, usando como paradigma o processo de formação aditiva

 Ambas se apoiam em técnicas psicométricas e estatísticas

Distribuição espectral

Luz lilás sobre pano amarelo

As nossas limitações

 O que interessa é poder reconstruir uma cor metamérica da cor objetivo.

Descrição de cores

Características para a Discriminação da Cor

- Matiz (Hue)
 - Cor dominante conforme percepção do observador

- Saturação (Saturation)
 - Pureza relativa da cor
 - Cores puras ⇒ Saturação de 100%

Modelo Cromático HSV I

HSV (Hue Saturation Value)

 Uso comum em aplicações de computação gráfica

 Seleção de cores por um usuário para aplicação a elementos gráficos

Uso do disco de cores HSV

Modelo Cromático HSV II

- HSV (Hue Saturation Value) ou
 HSB (Hue Saturation Brightness)
- Disco de Cores
 - Matiz ⇒ Região circular
 - Saturação e Valor ⇒ Região triangular separada (Triângulo retângulo)
 - Saturação ⇒ Eixo horizontal do triângulo
 - Valor ⇒ Eixo vertical do triângulo

Modelo Cromático HSVIII

- Método cônico (ou hexacônico) de visualização ⇒ Uso de uma formação cônica (ou hexacônica) do disco de cores
 - Saturação ⇒ Distância do centro de uma seção circular do cone
 - Valor ⇒ Distância da ponta do cone ao ponto de interesse, sobre o eixo vertical

Modelo Cromático **HSV**

Método cilíndrico de visualização

 Modelo matematicamente mais preciso do espaço cromático **HSV**

Limitações de caráter prático

Decréscimo do número de níveis de saturação e matizes visualmente distinguíveis à medida que o valor tende para 0 (Preto)

Limitação da faixa de precisão no processo típico de armazenamento de valores RGB em sistemas computacionais

Modelo Cromático **HSV** V

 Método cilíndrico (ou hexacilíndrico) de visualização

Modelo Cromático **HSV** V

 Método cilíndrico (ou hexacilíndrico) de visualização

120° Verde

60° Amarelo

Modelo Cromático **HSV** VI

- Tintas ⇒ Adição de pigmento BRANCO
 - Redução de S com V constante

- Sombras ⇒ Adição de pigmento PRETO
 - Redução de V com S constante
- Tons ⇒ Redução de Se V

- Exemplo
 - VERMELHO (Puro)

Ferramentas típicas para a seleção de cores

Mapinfo Professional v. 7

Corel Photopaint 12

Gráfico

 Imagens Estáticas: mapas de bits, desenhos

Animações de Imagens

Imagem

- As imagens são geradas pelos computadores de dois modos:
 - Bitmap (raster graphics) matriz de informações que descrevem os pontos, que é o menor elemento da resolução de um tela de computador ou de outro dispositivo
 - Vector Drawing representam objetos através de de figuras geométricas, tais como: linhas, retângulos, ovais, polígonos e texto

Bitmap

- Existem três maneiras diferentes de produzir um bitmap:
 - Fazer um bitmap → software para desenho ou pintura;
 - Capturar bitmap da tela do computador → programa para captura de tela
 - Capturar um bitmap → de fotografia / da televisão (scanner / programa para vídeo)

Bitmap

- Clip-art imagens digitalizadas e gravadas em CD-ROMs
- Os MPC's não fornecem recursos adequados para criar e editar bitmap,
- Morphing é um efeito que pode ser usado para a manipulação de imagens e criar transformações bizarras.

Vector Drawing

- Representação de uma figura através de vetores
 - "Qualquer superfície pode ser modelada com triângulos"
- Requer ferramentas adequadas

Bitmap x Vector Drawing

- A descrição matemática ocupa pouco espaço. Não se compara com a mesma figura no formato bitmap
- Por outro lado quando é necessário apresentar um número grande de objetos que devem ser desenhados na tela o desempenho não é a mais adequado
- Os objetos do tipo vetor são facilmente modificados no seu tamanho sem perderem a resolução ou a qualidade da imagem

Formatos de Imagem

 Formatos para bitmap: DIB (RIFF),
 BMP, PCX e TIFF (projetado para ser o formato universal de imagem), GIF, PNG, JPEG.

 Existem alguns formatos usados por software como por exemplo
 .PSD criado pela Adobe para o Photoshop, .CDR criado pelo Corel, .Al pelo Illustrator e outros.

Animação

- Animação adiciona impacto visual num projeto multimídia.
- Pode se ter um projeto todo animado ou se pode ter animações em algumas partes do projeto onde se deseja salientar alguns pontos.
- Animação é possível por causa da existência de um fenômeno biológico conhecido como persistência da visão.
- Quando se cria uma animação, deve se organizar todos os passos a serem seguidos
 script

Técnicas de Animação

 Animação de células - técnica de animação pelo uso progressivo de diferentes desenhos gráficos em cada quadro de um filme (24 quadros/seg.)

 Cinemática - é o estudo do movimento de estruturas que tenham juntas, por exemplo, um homem caminhando.

 Morphing - Técnica de animação que usa transformação da imagem

Formatos de Animação

 Formatos criados especialmente para conter animações :

 Director (dir), Animator Pro (fli e flc), Studio Max (max), Windows Audio Video Interleaved (avi), Motion Video (mpeg ou mpg) CompuServe (gif) Shockwave (dcr), Flash (fla/swf).

 Tamanho do arquivo é um fator crucial para usar animação em páginas da Web, compressão de arquivos é uma solução.

Vídeo

- Desde os tempos do cinema mudo as pessoas são fascinadas por filmes.
- Vídeo digital é uma poderosa ferramenta para aproximar os usuários do computador com o mundo real.
- O uso do vídeo pode abrilhantar uma apresentação ou pode destruí-la se não for adequado ou bem produzido.

Formatos de Vídeo

 Padrões e formatos para texto, imagens e som estão bem estabelecidos e conhecidos.

 Vídeo é um importante elemento da multimídia. Necessita refinamentos para o transporte, armazenagem, compressão e técnicas de display. Requer desempenho e memória adequados.

• Padr. Analógicos: NTSC, PAL e SECAM

Padrões Digitais: ATSC, DVB e ISDB

Formatos de Vídeo

- Vídeo para televisão é analógico.
- Vídeo para computador é digital.
- Ainda por alguns anos, as duas tecnologias serão complementares com o uso do DVD a introdução e da HDTV, visualizados em aparelhos analógicos.
- QuickTime, MPEG e AVI podem usar placas de captura para transformar vídeo analógico em digital.

Algumas Dicas de Vídeo

 Tripé - para tornar o vídeo profissional (sem tremido)

Luz - a grande diferença

 Aplicações para edição - "blue screen"

 Composição - todas as regras usadas para televisão são válidas.

Referências Interessantes

 Effelsberg, Wolfgang e Steinmetz, Ralf, "Multimedia Technology", http://www.informatik.uni-mannheim.de/lib/lectures/ws0405/mmtechnik/folien/

 Osório, Fernando, "Multimídia & Internet", http://www.inf.unisinos.br/~osorio/mmidia/Midia.html

- Grupo de Pesquisa em Realidade Virtual e Multimídia do Cin/UFPE: http://www.cin.ufpe.br/~grvm
- Palazzo, Luiz A. M., "Sistemas de Hipermídia Adaptativa", JAI 2002.

Introdução à Multimídia

Fundamentos de Multimídia

Judith Kelner
Arthur Callado
Anderson Costa