Eigenschaften

- herkömmliches [[Array]]
 - Die effizienten Operationen auf einer Liste L sind:
 - L[i].....Zugriff auf Index i (Lesen oder Schreiben)
 - L.append(x)...Element x am Ende der Liste anhängen
 - L.pop().....Letztes Element zurückgeben und löschen
 - hat jedoch fixe Größe
- · dynamische Größe
- gleich effiziente Operationen
 - amortisierter konstanter Zeit

Ein dynamisches Array ist ein Tupel DA = (A, n)

- A ...Array der Größe n_{cap} (d.h. $len(A)=n_{cap}$)
- nAnzahl der gespeicherten Elemente

Grundprinzip

- ersten n Elemente sind befüllt
 - restlichen können befüllt werden
- Größe wird verdoppelt, wenn $n_{cap}+1$ Elemente notwendig
 - Array mit doppelter Größe anlegen
 - Elemente hinüberkopieren
- analog beim Löschen

Wenn man löscht und weniger als $\frac{n_{cap}}{4}$ Elemente hat, wird

_ die Größe halbiert (um Speicher zu sparen).

Operationen

Einfügen

```
Algorithmus 19: add(\mathcal{DA}, x)
```

```
Input: A dynamic array \mathcal{D}\mathcal{A} and the element x to be added
     Output: \mathcal{D}\mathcal{A} with x appended at the end
[1] if n < n_{\text{cap}} then
         A[n] \leftarrow x
          return (A, n+1)
[3]
[4] else
          A_{\mathrm{old}} \leftarrow A
[5]
          A = \text{new Array of size } 2n_{\text{cap}}
[6]
         \mathcal{A}[0,\cdots,n-1] \leftarrow \mathcal{A}_{\text{old}}[0,\cdots,n-1]
[7]
[8]
         free(A_{old})
         return add((A, n), x)
```

Löschen

```
\mathbf{Algorithmus}\ 20: \mathtt{delete}(\mathcal{DA})
```

```
Input: A dynamic array \mathcal{D}\mathcal{A}

Output: \mathcal{D}\mathcal{A} without the last element

[1] if n > \frac{n_{\text{cal}}}{4} then

[2] return (\mathcal{A}, n-1)

[3] else

[4] \mathcal{A}_{\text{old}} \leftarrow \mathcal{A}

[5] \mathcal{A} = \text{new Array of size } \frac{n_{\text{cap}}}{2}

[6] \mathcal{A}[0, \cdots, n-1] \leftarrow \mathcal{A}_{\text{old}}[0, \cdots, n-1]

[7] free(\mathcal{A}_{\text{old}})

[8] return delete((\mathcal{A}, n))
```

Speicherverbrauch und Laufzeit

Der Speicherverbrauch ist durch n_{cap} gegeben.

Durch die add-delete-Konstruktion haben wir jederzeit

$$n \le n_{cap} \le 4n$$

Also: $S(n) \in \Theta(n)$

- Einfügen und Löschen haben potentiell schlechte Laufzeit $\Omega(n)$
 - wenn erweitert/geschrumpft wird

Amortisiere Laufzeit:

Man betrachte k aufeinanderfolgende add oder delete-Operationen in beliebiger Reihenfolge auf einem anfangs leeren dynamischen Array.

Dann ist die Laufzeit für diese k Operationen T(k) = O(k).

[[Amortisierte Analyse]]