Задача. Показать, что для случая ТМ-волны, падающей на плоскую границу раздела двух сред (с параметрами ε_1 , μ_1 и ε_2 , μ_2 соответственно) граничные условия $\Delta H_{\tau}=0$ и $\Delta D_n=0$ эквивалентны.

Решение.

Граничное условие для тангенциальных компонент Н:

$$\Delta H_{\tau} = 0.$$

В любой из двух сред для отдельной плоской монохроматической волны имеем соотношение

$$\mathbf{H} = \frac{c}{\omega \mu} [\mathbf{k} \times \mathbf{E}]. \tag{1}$$

$$\mathbf{k} \times \mathbf{H} = \frac{c}{\omega \mu} \mathbf{k} \times [\mathbf{k} \times \mathbf{E}] = \frac{c}{\omega \mu} \mathbf{k} (\mathbf{k} \cdot \mathbf{E}) - \frac{c}{\omega \mu} \mathbf{E} (\mathbf{k} \cdot \mathbf{k}) = -\frac{ck^2}{\omega \mu} \mathbf{E}$$
(2)

(мы занулили скалярное произведение $(\mathbf{k} \cdot \mathbf{E})$ в силу поперечности плоской волны).

Далее учтем, что $k = \frac{\omega}{c} \sqrt{\varepsilon \mu}$, и выразим **E**:

$$\mathbf{E} = -\frac{\omega\mu c^2}{c\omega^2 \varepsilon \mu} [\mathbf{k} \times \mathbf{H}] = -\frac{c}{\omega \varepsilon} [\mathbf{k} \times \mathbf{H}]. \tag{3}$$

Отсюда z-компонента вектора $\mathbf D$ равна

$$D_z = \varepsilon E_z = -\frac{c}{\omega} (k_x H_y - k_y H_x) = -\frac{c}{\omega} k_x H_y. \tag{4}$$

Соотношение (4) справедливо не только для отдельной плоской монохроматической волны, но и для произвольной суперпозиции таких волн при условии равенства их ω и k_x . В частности, оно выполняется для полей \mathbf{H}_I , \mathbf{D}_I , образованных в первой среде в результате суперпозиции падающей и отраженной волн.

Тогда получаем граничное условие на нормальную компоненту **D** в виде

$$\Delta D_n = \Delta D_z = -\frac{c}{\omega} \Delta (k_x H_y). \tag{5}$$

C учетом $k_{1x} = k_{2x}$ имеем

$$\Delta D_n = -\frac{ck_x}{\omega} \Delta H_{\tau},\tag{6}$$

откуда видна эквивалентность двух граничных условий.

