Sequence and Series

Sequence and Series Definition

A sequence is an arrangement of any objects or a set of numbers in a particular order followed by some rule. If a_1 , a_2 , a_3 , a_4 ,.......... etc. denote the terms of a sequence, then 1,2,3,4,.....denotes the position of the term.

A sequence can be defined based on the number of terms i.e. either finite sequence or infinite sequence.

If a_1 , a_2 , a_3 , $a_{4,}$ is a sequence, then the corresponding series is given by

$$S_N = a_1 + a_2 + a_3 + ... + a_N$$

Note: The series is finite or infinite depending if the sequence is finite or infinite.

	Arithmetic Progression	Geometric Progression
Sequence	a, a+d, a+2d,,a+(n-1)d,	a, ar, ar ² ,,ar ⁽ⁿ⁻¹⁾ ,
Common Difference or Ratio	Successive term – Preceding term	Successive term/Preceding term
	Common difference = d = $a_2 - a_1$	Common ratio = r = ar ⁽ⁿ⁻¹⁾ /ar ⁽ⁿ⁻²⁾
General Term (nth Term)	$a_n = a + (n-1)d$	$a_n = ar^{(n-1)}$
nth term from the last term	$a_n = I - (n-1)d$	$a_n = I/r^{(n-1)}$
Sum of first n terms	$s_n = n/2(2a + (n-1)d)$	$s_n = a(1 - r^n)/(1 - r)$ if $ r < 1$
	$S_n = \frac{n}{2}(a+l)$	$s_n = a(r^n - 1)/(r - 1) \text{ if } r > 1$

^{*}Here, a = first term, d = common difference, r = common ratio, n = position of term, I = last term

Sequences	Series
Set of elements that follow a pattern	Sum of elements of the sequence
Order of elements is important	Order of elements is not so important
Finite sequence: 1,2,3,4,5	Finite series: 1+2+3+4+5
Infinite sequence: 1,2,3,4,	Infinite Series: 1+2+3+4+

$$1+2+3+4....\infty = \frac{n(n+1)}{2}$$

$$2+4+6+8....\infty = n(n+1)$$

$$1+3+5+7....\infty = (n)^2$$

$$(1)^{2}+(2)^{2}+(3)^{2}+(3)^{2}+(4)^{2}....\infty=\frac{n(n+1)(2n+1)}{6}$$

$$(1)^{3}+(2)^{3}+(3)^{3}+(4)^{3}.....\infty = \left[\frac{n(n+1)}{2}\right]^{2}$$

How many natural numbers are there between 23 and 100 which are exactly divisible by 6?

Required numbers are 24, 30, 36, 40,96

This is an A.P. in which a = 24, d = 6, l = 96

Let the number of terms in it be n.

Then
$$t_n = 96 \Rightarrow a + (n - 1)d = 96$$

$$\Rightarrow$$
 24 + (n - 1) × 6 = 96

$$\Rightarrow$$
 (n - 1) = 12

$$\Rightarrow$$
 n = 13

Required number of numbers = 13

How many natural numbers between 17 and 80 are divisible by 6

The sum of all even natural numbers between 1 and 31 is:

Required sum =
$$(2 + 4 + 6 + + 30)$$

This is an A.P in which a = 2, d = (4 - 2) = 2 and l = 30.

Let the number of terms be n. Then,

$$t_n = 30 \Rightarrow a + (n - 1)d = 30$$

$$\Rightarrow$$
 2 + (n - 1) \times 2 = 30

$$\Rightarrow$$
 n - 1 = 14

$$\Rightarrow$$
 n = 15

$$\therefore S_n = \frac{n}{2}(a+1) = \frac{15}{2} \times (2+30) = 240$$

Find the sum of all even natural numbers less than 75

Find the sum (6 + 15 + 24 +33 + +105)

The given series is:

$$6 + 15 + 24 + 33 + \dots + 105$$

First term is a = 6

Common difference d=9

It is an AP.

The last term is l = 105

Mathematically

$$l = a + (n-1)d$$

Using values

$$105 = 6 + (n-1)9$$

$$105 = 6 + 9n - 6 = 9n - 3$$

$$n = 108/9 = 12$$

Number of terms are 12

Sum of twelve terms are:

$$S = \frac{n}{2}(a+l)$$

$$S = \frac{12}{2}(6 + 105)$$

$$S = 111 * 6 = 666$$

How many terms are there in 3, 6, 12, 24, ..., 384 ?

Let n be the numbers in this G.P where a=3 & r=6/3 = 2

Last term,tn = 384

$$\Rightarrow$$
 a*r^(n-1) = 384

$$(n-1) = 7$$

Hence number of terms = 7+1=8

$$2^1 + 2^2 + 2^3 + 2^4 + \cdots + 2^{10}$$

$$a = 2, r = 2, n = 10$$
 $S_n = \frac{a(r^n - 1)}{r - 1} = \frac{2(2^{10} - 1)}{2 - 1} = 2(1024 - 1)$
= 1023 × 2 = 2046

Find the wrong term(s) in the given series 9, 11, 15, 23, 39, 70, 135

The series was in the following form:

Hence 70 is wrong term and 71 should be in its place.

2, 6, 12, 20, 30, 42, 56,____

The sequence is 1 * 2, 2 * 3, 3 * 4, 4 * 5, 5 * 6, 6 * 7, 7 * 8. $\therefore \text{ Missing number} = 8 * 9 = 72.$ 5, 10, 13, 26, 29, 58, 61, (....)

The logic here is to do the above operation on the alternate terms: Doubling the number and Add 3 to it.

Ans: 122

15, 31, 63, 127, 255, (....)

(1) Each number is double the preceding one plus

$$1(255 \times 2) + 1 = 511$$