

50.005 CSE

Natalie Agus Information Systems Technology and Design **SUTD**

https://websitename.com

THE DOMAIN NAME SYSTEM (DNS)

Application layer protocol, Distributed database

32-bit IP address

After IP address is obtained, then end hosts can communicate with one another

DNS SERVICES

- Hostname to IP translation
- Host aliasing
- Mail server aliasing
- Load distribution

DISTRIBUTED, HIERARCHICAL DNS DATABASE

DNS NAME RESOLUTION 1. ITERATIVE QUERY

DNS NAME RESOLUTION

2. RECURSIVE QUERY

DNS CACHING

Once local name servers learns hostname-ip mapping, it **caches** the mapping

- TLD servers are typically cached in DNS local name servers, hence faster resolution
- Cached entries may be **out of date**
- DNS authoritative name server (the one that hosted the website) decides the DNS record TTL
- DNS local name server re-queries when TTL expires

F

DNS RECORDS

The "data structure" of a DNS resource record (RR). RR is used by clients who query hostname-IP resolution

RR = (name, value, type, TTL)

Туре	Name	Value	TTL
A (Authoritative)	hostname, e.g en.wikipedia.com	IP address	TTL
NS (Name Server)	domain, e.g wikipedia.com	hostname of authoritative server of this domain, e.g: <u>en.wikipedia.com</u>	TTL
CNAME (Canonical Name)	alias name for some canonical (real) hostname	canonical hostname name	TTL
MX (Mail)	domain, e.g: example.com	mailserver name, e.g: mail.example.com	TTL

DNS PROTOCOL

This is the protocol to make a DNS query or reply.

Both query and reply has the same message format

2 bytes	2 bytes		
identification	flags		
#questions	#answer RRs		
#authority RRs	#additional RRs		
Questions			
Answers			
Authority			
Additional Information			

12 bytes

- Identification: 16bit # for query, reply uses the same #
- Flags:
 - Q/R
 - Recursion desired / available
 - Reply is authoritative?

Variable length

16 bits so you can have 2^16 questions in a single DNS query

INSERTING DNS RECORDS

How do you insert (register) DNS records so people in the internet can find your website?

- 1. Register <u>yournewwebsite.com</u> at **DNS registrar**, e.g: Verisign registry
- 2. You need to provide names, IP addresses of authoritative name server (primary and secondary server as backup)
- 3. Registrar inserts the RRs into .com TLD server, e.g.:
 - yournewwebsite.com, hostnameprimary.yournewwebsite.com, NS
 - yournewwebsite.com, hostnamesecondary.yournewwebiste.com NS
 - hostnameprimary.yournewwebsite.com, ZZZ.ZZZ.ZZZ.Z, A
 - hostnamesecondary.yournewwebsite.com, ZZZ.ZZZ.ZZZ.Z, A

ATTACKING DNS

- DDoS Attack
 - Bombard root server with traffic
 - Bombard TLD servers
- Redirect Attack
 - Man-in-the-middle
 - DNS poisoning
- Exploit DNS for DDoS