Real Analysis

Daeyoung Lim*
Department of Statistics
Korea University

March 9, 2016

1 Lebesgue Measure

- (Stage 3) Let G be an open set such that $\lambda(G) = \sup \{\lambda(p) : p \in G\}$ where p is a special polygon.
- (State 4) Let K be a compact set such that $\lambda(K) = \inf \{\lambda(G) : K \subset G\}$ where G is an open set. If K is a special polygon, then we have 2 definitions of $\lambda(K)$. Let $K = \bigcup_{i=1}^{n} I_i$ where I_i are non-overlapping.

old
$$\lambda(K) \equiv \sum_{i=1}^{n} \lambda(I_i) = \alpha$$

new $\lambda(K) = \beta = \inf \{\lambda(G) : K \subset G\}$

 $\alpha \leq \beta \leftarrow \text{If } G \supset K, \lambda\left(G\right) \geq \lambda\left(K\right) = \alpha.$ To prove, $\beta \leq \alpha$, we will show $\forall \epsilon > 0$, $\exists \text{open } G \supset K$ such that $\lambda\left(G\right) \leq \alpha + \epsilon$. Choose I_k' such that $I_k \subset (I_k')^{\circ}$ and $\lambda\left(I_k'\right) < \lambda\left(I_k\right) + \epsilon/N$, then $K = \bigcup_{k=1}^N I_k \subset \bigcup_{k=1}^N (I_k')^{\circ}$. Then,

$$\beta \leq \lambda \left(\bigcup_{k=1}^{N} \left(I_{k}^{\prime} \right)^{\circ} \right) \leq \lambda \left(I_{k}^{\prime} \right)^{\circ} = \sum_{k=1}^{N} \lambda \left(I_{k}^{\prime} \right)$$

1.1 Properties

- (C1) $0 \le \lambda(K) < \infty$: A measure of a compact set is by definition the infimum of the open sets that contain the compact set. Therefore, if we can define a measure that is finite with respect to one of the open sets, then the measure of the compact set also has to be finite.
- (C2) $K_1 \subset K_2 \implies \lambda(K_1) \leq \lambda(K_2)$: $\{\lambda(G) : K_1 \subset G\} \supset \{\lambda(G) : K_2 \subset G\}$.
- (C3) $\lambda(K_1 \cup K_2) \leq \lambda(K_1) + \lambda(K_2)$: enough to show $\lambda(K_1 \cup K_2) \leq \lambda(G_1) + \lambda(G_2)$ where $\forall G \supset K_1$ and $\forall G \supset K_2$. Proof is as follows. $\lambda(K_1 \cup K_2) \leq \lambda(G_1 \cup G_2)$ since the measures of K_1 and K_2 are defined to be the infimum of the measures assigned on G_1, G_2 that contain them. Further, $\lambda(G_1 \cup G_2) \leq \lambda(G_1) + \lambda(G_2)$ by O5. (Q.E.D.)
- (C4) If K_1, K_2 are disjoint, $\lambda(K_1 \cup K_2) \geq \lambda(K_1) + \lambda(K_2)$: Recall that $\lambda(K_1 \cup K_2) = \inf \{\lambda(G) : K_1 \cup K_2 \subset G\}$. We need $\lambda(K_1) + \lambda(K_2) \leq \lambda(G)$ for any open G containing $K_1 \cup K_2$. Let $K_1 \cup K_2 \subset G$. Then $\exists G_1, G_2$ disjoint open sets such that $K_1 \subset G_1 \subset G \& K_2 \subset G_2 \subset G$.

^{*}Prof. Kyunghun Kim

1.2 Outer and Inner measures

Definition For $A \subset \mathbb{R}^n$, define

$$\lambda^{*}\left(A\right)=\inf\left\{ \lambda\left(G\right):A\subset G^{\mathrm{open}}\right\} :\text{ outer measure }\\ \lambda_{*}\left(A\right)=\sup\left\{ \lambda\left(K\right):A\supset K^{\mathrm{cpt}}\right\} :\text{ inner measure }$$

Properties

• ((*1)) $\lambda_*(A) \leq \lambda^*(A)$ if $K^{\text{cmp}} \subset A \subset G^{\text{open}}$ because $\lambda(K) \leq \lambda(G)$.

$$\left\{ \lambda \left(G \right) : A \subset G^{\mathrm{open}} \right\} \supseteq \left\{ \lambda \left(G \right) : B \subset G \right\}$$

$$\left\{ \lambda \left(K \right) : K^{\mathrm{cpt}} \subset A \right\} \subseteq \left\{ \lambda \left(K \right) : K^{\mathrm{cpt}} \subset B \right\}$$