Einführung in die Algebra

BLATT 6

Jendrik Stelzner

22. November 2013

Aufgabe 5.1.

Es sei n > 1 so dass

$$a^n = a \text{ für alle } a \in R,$$
 (1)

und $\mathfrak p$ ein Primideal in R. Da $\mathfrak p$ ein Primideal ist, ist $R/\mathfrak p$ ein Integritätsring, sowie $R/\mathfrak p \neq 0$, da $\mathfrak p$ von R verschieden ist. Da R kommutativ ist, ist es auch $R/\mathfrak p$, und es ist offensichtlich, dass die Bedingung (1) auf $R/\mathfrak p$ vererbt wird. Da für alle $r \in R/\mathfrak p$ mit $r \neq 0$

$$r \cdot r^{n-1} = r^n = r = r \cdot 1,$$

folgt, wie bereits letzte Woche gezeigt, wegen der Nullteilerfreiheit von R/\mathfrak{p} , dass $r^{n-1}=1$ für alle $r\in R/\mathfrak{p}$. Als ist für alle $r\in R/\mathfrak{p}$ mit $r\neq 0$

$$rr^{n-2} = r^{n-1} = 1,$$

d.h. alle $r \in R/\mathfrak{p}$ mit $r \neq 0$ sind multiplikativ invertierbar. Zusammen mit der Kommutativität von R/\mathfrak{p} und $R/\mathfrak{p} \neq 0$ zeigt dies, dass R/\mathfrak{p} ein Körper ist. Dies ist äquivalent dazu, dass \mathfrak{p} ein maximales Ideal ist.

Aufgabe 5.2.

Für alle $a \in \ker \varphi$ ist 1-a multiplikativ invertierbar: Für $n \geq 1$ mit $a^n = 0$ ergibt sich, dass

$$(1+a+a^2+\ldots+a^{n-1})(1-a)=1-a^n=1$$
 und
 $(1-a)(1+a+a^2+\ldots+a^{n-1})=1-a^n=1.$

Folglich ist

$$1+\ker\varphi=1-\ker\varphi\subseteq R^*.$$

Wir bemerken auch, dass

$$x \in 1 + \ker \varphi \Leftrightarrow \varphi(x) = 1$$
,

denn da $1 \in \varphi^{-1}(\{1\})$ ist $1 + \ker \varphi$ als Nebenklasse von 1 bezüglich $\ker \varphi$ die Faser $\varphi^{-1}(\{1\})$ von $1 \in S$ unter φ .

Bekanntermaßen induziert φ einen Gruppenhomomorphismus $\varphi_{|R^*}: R^* \to S^*$ der entsprechenden Einheitengruppen. Die Surjektivität von φ vererbt sich dabei auf $\varphi_{|R^*}$: Für $s \in S^*$ gibt es $r, r' \in R$ mit $\varphi(r) = s$ und $\varphi(r') = s^{-1}$. Es ist

$$\varphi(rr') = \varphi(r)\varphi(r') = ss^{-1} = 1,$$

also wie oben bemerkt $rr' \in 1 + \ker \varphi \subseteq R^*$. Es ist nun nach den obigen Beobachtungen

$$\ker \varphi_{|R^*} = \{x \in R^* : \varphi(x) = 1\} = R^* \cap \varphi^{-1}(\{1\}) = R^* \cap (1 + \ker \varphi) = 1 + \ker \varphi.$$

Folglich ist $1+\ker\varphi$ ein Normalteiler von R^* und

$$R^*/(1 + \ker \varphi) \cong S^*$$
.

Bemerkung

Es sei R ein kommutativer Ring und $\mathfrak{a} \subseteq R$ ein Ideal mit $\mathfrak{a} \neq R$. Die Menge

$$\mathcal{I} := \{ I \subseteq R : I \text{ ist ein Ideal in } R \text{ mit } I \neq R \text{ und } \mathfrak{a} \subseteq I \} \subseteq \mathcal{P}(R).$$

ist bezüglich der Teilmengenrelation \subseteq partiell geordnet. Da $\mathfrak{a} \in \mathcal{I}$ ist \mathcal{I} nichtleer. Es sei $\mathcal{C} \subseteq \mathcal{I}$ eine nichtleere Kette. \mathcal{C} besitzt ein obere Schranke in \mathcal{I} . Um dies zu zeigen, nutzen wir die folgende Bemerkung:

Bemerkung 1. Sei G eine abelsche Gruppe, und $(G_i)_{i\in I}$ eine Kette von Untergruppen von G, d.h. für alle $i\in I$ ist G_i eine Untergruppe von G und für $i,j\in I$ ist $G_i\subseteq G_j$ oder $G_j\subseteq G_i$. Dann ist

$$\sum_{i \in I} G_i = \bigcup_{i \in I} G_i.$$

Beweis. Für alle $i \in I$ ist $G_i \subseteq \bigcup_{j \in I} G_j$, also ist auch $\sum_{i \in I} G_i \subseteq \bigcup_{i \in I} G_i$. Für $x \in \sum_{i \in I} G_i$ gibt es Indizes $i_1, \ldots, i_n \in I$ und Elemente $g_{i_1} \in G_{i_1}, \ldots, g_{i_n} \in G_{i_n}$ mit $x = \sum_{j=1}^n g_{i_j}$. Da die G_i bezüglich \subseteq total geordnet sind, gibt es ein $k \in \{1, \ldots, n\}$ mit $G_{i_j} \subseteq G_{i_k}$ für $j = 1, \ldots, n$. Insbesondere ist $g_{i_j} \in G_{i_k}$ für $j = 1, \ldots, n$, also auch $x \in G_{i_k}$. Damit ist $x \in \bigcup_{i \in I} G_i$, also $\sum_{i \in I} G_i \subseteq \bigcup_{i \in I} G_i$.

Aus der Bemerkung folgt, dass

$$C := \bigcup_{I \in \mathcal{C}} I = \sum_{I \in \mathcal{C}} I$$

ein Ideal in R ist. Für alle $I \in \mathcal{C}$ gilt, dass $I \neq R$, also $1 \notin I$, und daher auch $1 \notin C$, also $C \neq R$. Auch ist $\mathfrak{a} \subseteq I \subseteq C$ für $I \in C$. Es ist also $C \in \mathcal{I}$, und deshalb C eine obere Schrankte für \mathcal{C} in \mathcal{I} .

Mit dem Lemma von Zorn folgt, dass es ein $M \in \mathcal{I}$ gibt, dass bezüglich \subseteq maximal in \mathcal{I} ist. M ist ein maximales Ideal in R: Für jedes Ideal M' mit $M \subseteq M' \subsetneq R$ ist $\mathfrak{a} \subseteq M \subseteq M'$ und $M' \neq R$, also $M' \in \mathcal{I}$. Wegen der Maximalität von M in \mathcal{I} ist daher M' = M.