Matière : Physique-Chimie Professeur : Zakaria HAOUZAN

Unité: Transformations lentes et rapides

d'un système chimique Établissement : Lycée SKHOR qualifiant Niveau : 2BAC-SM-X Heure : 11H

Leçon $N^{\circ}2.2$: Suivi temporel d'une transformation - Vitesse de réaction

I Techniques de suivi temporel d'une transformation :

Pour suivre temporellement l'évolution d'une transformation chimique on doit connaître sa composition à chaque instant. Il existe plusieurs méthodes qui permettent de suivre l'évolution d'une transformation chimique :

- Le dosage. - La conductimétrie. - La mesure de la pression. - La pH-métrie.

II suivi temporel d'une transformation:

II.1 Le Dosage:

II.1.1 Expérience:

Dans un bécher, verser 50 mL d'une solution incolore de peroxodisulfate de potassium, $(2K_{(aq)}^+ + S_2O_{8-(aq)}^{2-})$, à $0,10mol.L^{-1}$ puis 50 mL d'une solution, incolore elle aussi, d'iodure de potassium, $(K_{(aq)}^+ + I_{(aq)}^-)$. à $0.50mol.L^-$

II.1.2 Exploitation:

- L'apparition progressive de la coloration jaune, caractéristique des molécules $I_{2(aq)}$, montre que ces molécules sont formées par une réaction lente entre les ions peroxodisulfate $S_2O_8^{2-}$ et les ions iodure I^- .
- ullet Les ions peroxodisulfate $S_2O_8^{2-}$ oxydent les ions iodure I^- selon une réaction d'équation:

$$2I_{(ag)}^{-} + S_2 O_8^{2-}{}_{(aq)} = I_{2(aq)} + 2S O_4^{2-}{}_{(aq)} (1)$$

- Cete réaction nétant pas trop rapide, elle peut être suivie en dosant le diode formé.
- On peut également utiliser la spectrophotométrie puisque la réaction met en jeu une seule espèce colorée, le diiode.
- Les ions iodures I^- sont lentement oxydés par les ions peroxodisulfate ce qui entraine la formation progressive du diiode I_2 . Pour savoir la quantité du diiode qui s'est formée à un instant donné on réalise le dosage de la manière suivante:
- On recueille après chaque trois minutes $10cm^3$ du mélange réactionnel et on la trempe dans l'eau froide pour arrêter la réaction, Puis on dose le diiode I_2 formé par une solution de thiosulfate de sodium $(2Na^+ + S_2O_3^{2-})$ de concentration Cr = 0,02mol/L.

- Les deux couples mis en jeux durant le dosage sont : I_2/I^- ET $S_4O_6^{2-}/S_2O_3^{2-}$.
- \bullet Equation de la réaction du dosage: $2\,S_2O_3{}^{2-}+I_2 \longrightarrow S_4O_6{}^{2-}+2\,I^-$ c'est une réaction rapide
- à l'équivalence : $\frac{n(S_2O_3^{2-})}{2} = \frac{n(I_2)}{1}$
- Soit vr le volume de la solution de thiosulfate de sodium ajoutée à l'équivalence. $n(I_2) = \frac{C_r \cdot V_r}{2}$
- Tableau des mesures:

()		3									
$n(I_2mmol)$	0	0.5	1.0	1.4	1.7	2.1	2.3	2.8	3.1	3.2	3.3

III la prepatio

fdswlfmkjsfdlm