MACHINE LEARNING REVIEW AND REFLECT

MOD1: REVIEW

Artificial Intelligence

Intelligence Essential — Extract Knowledge from Data

Independent Variables

Data

Extract

Knowledge

Labels

W1

A complete table of all possible hypotheses

	X1	L	L	L	М	М	М	Н	Н	н
Y X	X2	L	М	Н	L	М	Н	L	М	Н
q0		0	0	0	0	0	0	0	0	0
q1		0	0	0	0	0	0	0	0	1
q2		0	0	0	0	0	0	0	1	0
q3		0	0	0	0	0	0	0	1	1
q4		0	0	0	0	0	0	1	0	0
q5		0	0	0	0	0	0	1	0	1
q6		0	0	0	0	0	0	1	1	0
q7		0	0	0	0	0	0	1	1	1

Н

Preference of hypotheses of "regular" data-target relationship

22500

W2

RISK EXPLOSION FOR LEARNED h FROM A LARGE ${\mathcal H}$

 $P(\sup_{h \in \mathcal{H}} |E_{in}[h] - E_{out}[h]| > \epsilon)$ $\leq 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^{2}N}$

W5

- Array Data Op's
- Real-world Arrays

W8 DEEP ARCHITECTURES

- Convolutional Neural Networks
 ResNet | Dropout | etc.
 - Linear Op: conv. is linear

W9: GAN FRAMEWORK

- **GAN Framework**
 - G generates samples in ${\mathscr X}$ by mapping random noises G(z)
 - Train D to distinguish G(z) from training samples (Remove the density estimation step)

true

Train G so that D can NOT distinguish G(z)from training samples

Q: G-LOSS?

to minimise

A. Derive separately.

B. Same expression as D-Loss, min/max flips.

 $\mathbf{E}_{x \sim p_{data}}[\log D(x)] + E_z[\log(1 - D(G(z)))]$ to maximise

G-LOSS

Q: What are the fake samples?

Q: 1-D(G(z)) ?

Q: z-distribution?

- A. z
- B. x

C. G(z)

- A. D maximises it, which minimises D(G(z)), which A. Random. expresses "G(z) is a not true sample"
- B. G minimises it, which maximises D(G(z)), which expresses "hey D, this IS a true sample"
- B. Depends on data.

MOD2: RESOURCES — CONTINUE LEARNING

ADVANCED FORUMS

- Machine Learning
 - NeurIPS, ICML, ICLR, UAI, AISTATS, IJCAI, AAAI
 - JMLR, T-PAMI, T-NNLS
- Computer Vision
 - Conferences CVPR / ICCV / ECCV / BMVC
 - IJCV, T-IP
- Natural Language Processing
 - ACL

POPULAR FORUMS

QUALITY CONTROL

- reddit
- medium
- youtube channels (two minute paper, etc.)
- trick
 - \$paper-name + github

MOD3: RESOURCES — BECOME PROFESSIONALS AND RESEARCHERS

INTERNSHIP AND SCHOLARSHIP

- APR Intern
 - https://aprintern.org.au
- CSIRO
 - https://jobs.csiro.au/go/Students/990500/
- Google IBM Microsoft (+Research)
- Email Lists
 - Connectionist
 - UAI

- 1. PhD and Postdoc positions in Frankfurt, Germany (Martin Vinck)
- Re: Registration is open and 2nd CFP: 2nd Symposium on Advances in Approximate Bayesian Inference (AABI 2019) (Thang Bui)
- Postdoctoral positions at the University of Trento, Italy (Nicu Sebe)
- 4. PhD Studentships and the University of Edinburgh (Frank Keller)
- 5. Seeking two phd students (Serafim Rodrigues)
- 6. PhD position in Cognitive Robotics (navigation in crowded environments) at Aarhus University, Denmark (Nicol?s Navarro-Guerrero)
- 7. PhD and Postdoc positions in Frankfurt, Germany (Martin Vinck)
- 8. [Topic] Algorithms for Personalization Techniques and Recommender Systems (M Elahi)
- 9. 2 Postdocs and 1 Project Manager on H2020 grant (Michele Giugliano)
- 10. Data Scientist (KTP Associate), CSEE, University of Essex, UK (Alba Garc?a)

PORTFOLIO BUILDING

- Github Account
- LinkedIn
- Stackoverflow Account
- Kaggle (you must know what you are doing)

MOD4: MOVIES

READY FOR REAL-WORLD

CAPSTONE PROJECTS

RESEARCH PREPARATION

41004, 41029, ...

ADVANCED SKILLS

MACHINE LEARNING

DATA EXPLORATION

DEEP NEURAL NETWORKS

APPLICATIONS

31005, 32146, 31256, 42913, ...

MATH THEORY

LINEAR ALGEBRA

STATISTICS

37151, 37131, ...

COMPUTER TOOLS

DATA MANAGEMENT

31253, 48024, ...

PRODUCT DESIGN

BUSINESS MODELLING

DECISION MAKING

31250, ...

THE END OF THE BEGINNING