Effect of Vitamin C on Tooth Growth in Guinea Pigs

Himank Jain

March 17, 2019

Overview

- We use 'ToothGrowth' dataset and perform exploratory analysis on it.
- Then we use confidence intervals and hypothesis tests to compare tooth growth.

Exploratory Analysis:

```
library(datasets)
library(ggplot2)
head (ToothGrowth)
      len supp dose
## 1 4.2
            VC 0.5
## 2 11.5
            VC 0.5
## 3 7.3
            VC 0.5
## 4 5.8
            VC 0.5
## 5 6.4
            VC 0.5
## 6 10.0
            VC 0.5
tail(ToothGrowth)
##
       len supp dose
## 55 24.8
             OJ
## 56 30.9
             OJ
                   2
## 57 26.4
## 58 27.3
                   2
             OJ
## 59 29.4
## 60 23.0
summary(ToothGrowth)
##
                                 dose
         len
                    supp
##
   Min. : 4.20
                    OJ:30
                            Min.
                                   :0.500
  1st Qu.:13.07
                    VC:30
                            1st Qu.:0.500
## Median :19.25
                            Median :1.000
## Mean
          :18.81
                            Mean
                                   :1.167
   3rd Qu.:25.27
                            3rd Qu.:2.000
## Max.
           :33.90
                                   :2.000
                            Max.
str(ToothGrowth)
## 'data.frame':
                    60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
   $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
   $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
Plotting boxplot of toothlength per dosages & supplement:
data <- ToothGrowth
levels(data$supp) <- c("OrangeJuice", "AscorbicAcid")</pre>
g <- ggplot(data, aes(x = factor(dose), y = len))
```

```
g <- g + facet_grid(.~supp)
g <- g + geom_boxplot(aes(fill = supp))
g <- g + labs(title = "Tooth Length")
g <- g + labs(x = "Dose (mg/day)", y = "Tooth Length")
print(g)</pre>
```

Tooth Length

We observe Orange juice shows better results for 0.5 and $1~\mathrm{mg/day}$ dosages however $2~\mathrm{mg/day}$ results are quite similar

Assumptions

We assume from here, ToothGrowth data follows normal distribution.

Hypothesis Tests

- Testing three different hypothesis
- 1) For x = 0.5 mg/day

```
h0.5 <- t.test(len ~ supp, data = subset(data, dose == 0.5))
h0.5$conf.int

## [1] 1.719057 8.780943
## attr(,"conf.level")
## [1] 0.95
h0.5$p.value
```

[1] 0.006358607

We reject null hypothesis as the p-value is smaller than significant level of 0.05. Therefore orange juice results in more tooth growth than absorbic acid.

```
2) For x = 1 mg/day
h1 <- t.test(len ~ supp, data = subset(data, dose == 1))
h1$conf.int

## [1] 2.802148 9.057852
## attr(,"conf.level")
## [1] 0.95
h1$p.value</pre>
```

[1] 0.001038376

We again reject null hypothesis as the p-value is smaller than significant level of 0.05. Therefore orange juice results in more tooth growth than absorbic acid.

```
3) For x = 2 mg/day
h2 <- t.test(len ~ supp, data = subset(data, dose == 2))
h2$conf.int
## [1] -3.79807  3.63807
## attr(,"conf.level")
## [1] 0.95
h2$p.value</pre>
```

[1] 0.9638516

Now, p-value is larger than the significance level of 0.05. therefore we cannot reject null hypothesis. Therefor orange juice and absorbic acid have same effect now.

Conclusions

We conducted three hypothesis tests. We inferred that Orange juice is better for tooth growth in guinea pigs in doses of 0.5 and 1 mg/day. however no difference between orange juice and absorbic acid for 2 mg/day dosage.