WE CLAIM:

1	1.	A met	hod for identifying a novel nucleic acid molecule encoding a
2	protein of interest c	omprisi	ng:
3		(i)	selecting a specific protein from a first species involved in a
4			regulatory network of interest;
5		(ii)	identifying known proteins that act upstream and
6			downstream in the regulatory network of interest with respect
7			to the specific protein selected;
8		(iii)	constructing the regulatory network of interest from the
9			proteins identified in step (ii);
10		(iv)	for each identified protein, select a domain or motif and
11			search by homology for related proteins in a second species,
12			wherein a related protein is defined as a protein having a
13			homologous domain or motif;
14		(v)	producing a regulatory network for the second species,
15			wherein said regulatory network incorporates the identified
16			related proteins;

17	(vi) comparing the regulatory network fr	om the first species to
18	18 the regulatory network of said secon	d species;
19	19 (v) identifying a protein present in a reg	ulatory network for one
20	species but absent in the regulatory is	network of the other
21	21 species; and	
22	22 (vi) isolating a nucleic acid molecule end	oding the protein
23	23 identified in step (v) in the species i	n which it is missing.
1	1 2. The method of Claim 1 wherein the nucleic a	cid molecule encodes
2	2 human protein.	
1	1 3. The method of claim 1 wherein the related prof	eins are orthologs.
1	1	
2	2 4. The method of claim 1 wherein the regulatory	pathway is involved in
3	3 apoptosis.	
1	1 5. The method of claim 1 wherein the specific p	rotein from the first
2	2 species is involved in tumor suppression.	

	1	6.	A meth	od for identifying the affect of a gene knockout on a regulatory
	2	pathway comprisi	ing the fo	llowing steps:
	3		(i)	identification of the shortest non-oriented pathway
	4			connecting two gene products;
	5		(ii)	assigning an initial sign value of "-" to the knockout since the
	6			knockout gene product is inactive;
	7		(iii)	moving along the shortest pathway between the two gene
	8			products multiplying the sign with the sign of the next gene
	9			product in the pathway, wherein "-" stands for inhibition, "+"
	10		·	stands for induction or activation, and "0" stands for the lack
	11			of interaction between two proteins in the specified direction;
	12			and
	13		(iv)	determining the final sign at the end of the pathway, wherein
	14			"-" indicates inhibition and "+" indicates induction or
	15			activation of the pathway.

7. A method for identifying a novel nucleic acid molecule encoding a protein of interest comprising:

[]
1,1
###
ŧ.;
įņ
ŗij
E
22 22
.
72
H CK
[]

4

5

(i)	selecting a gene of interest and searching a database fo	for
	•	
	homologous sequences;	

- (ii) aligning the homologous sequences identified in step (i);
- (iii) constructing a gene tree using the sequence alignment;
- (iv) constructing a species tree;
- (v) imputing the species tree and gene tree into an algorithm which integrates the species tree and the gene tree into a reconciled tree; and
- (vi) identifying orthologous genes present in one species but missing in another.
- 1 8. The method of claim 7 wherein the following algorithm is used to
 2 integrate the species tree and the gene tree into a reconciled tree:
 3 (i) computing the similarity σ(S, S) for each pair of interior
 - (i) computing the similarity $\sigma(S_{gi}, S_{sj})$ for each pair of interior nodes from trees T_g and T_s ,
 - (ii) finding the maximum $\sigma(S_{gi}, S_{sj})$;
- 6 (iii) saving S_{gi} as a new cluster of orthologs, save {S_{gi}} {S_{sj}} as
 7 a set of species that are likely to have gene of this kind (or
 8 lost it in evolution);

	9		(iv)	eliminating S_{gi} from T_{g} ; T_{g} : = $T_{g} \setminus S_{gi}$;
	10		(v)	repeating step (ii)-(iv) until $T_{\rm g}$ is non-empty.
	11	9.	A met	hod for identifying a novel gene comprising the following
	12	steps:		
	13		(i)	defining a motif or domain composition of a gene of interest
100 miles	14		(ii)	searching for sequences which correspond to nucleotide
	15			sequences in an expression sequence tag database or other
	16			cDNA databases using a program such as BLAST and
	17			retrieving the identified sequences;
	18		(iii)	searching additional databases for expressed sequence tags
is is a is	19			containing the domains and motifs characteristic for
LJ LJ	20			the gene of interest with Hidden Markov Model of domains
	21			and motifs identified in step (i);
	22		(iv)	identifying nucleotide sequences comprising the gene of
	23			interest.
				•
	24	10.	The n	nethod of claim 9 further comprising using each identified
	25		expre	ssion sequence tag to search sequence databases for

26		overlapping sequences for the purpose of assembling longer
27		overlapping stretches of DNA.
28	(
29	<u>(4.5.5)</u> 11.	A method for extracting information on interactions between
30	3 /	from natural-language text data, comprising:
31	(i)	parsing the text data to determine the grammatical structure of the
32		text data and
33	(ii)	regularizing the parsed text data to form structured word terms.
1	12.	The method according to claim 11, further comprising preprocessing
2	the data prior to pa	arsing, with preprocessing comprising the step of identifying biological
1	entities.	
1	13.	The method according to claim 11, further comprising referring to ar
2	additional paramet	ter which is indicative of the degree to which subphrase parsing is to be
1	carried out.	
1	14.	The method according to claim 11, wherein said parsing step further
2	comprises segmen	ting the text data by sentences.

	1		15.	The method according to claim 11, wherein said parsing step further
	2	comprises:		
	3		segme	enting the text data by sentences; and
	4		segme	enting each of the sentences at identified words or phrases.
4114 4114 4114 4114 4114 4114 4114 411	1		16.	The method according to claim 11, wherein said parsing step further
प्रमार प्राप्त प्रमार प्राप्त । स व्यापी प्रमार प्राप्ति	2	comprises:		
44 444 444 444 444 444 444 444 444 444	3		segme	enting the text data by sentences; and
	4		segme	enting each of the sentences at a prefix.
= = = =				
Host teat is in the the Holman	1		17.	The method according to claim 11, wherein said parsing step further
14. Will.	2	comprises s	kipping	undefined words.
	1		18.	The method according to claim 11, wherein said parsing step further
	2	comprises:		
	3		identi	fying one or more binary actions and their relationships; and
			identi	fying one or more arguments associated with the actions.

1	SUBOB	19.	The method according to claim 11, further comprising performing
2	error recove	ery whe	The method according to claim 11, further comprising performing n parsing of the text data is unsuccessful.
1		20.	The method according to claim 19, wherein said error recovery step
2	comprises:		•
3		segme	enting the text data; and
4		analyz	zing the segmented text data to achieve at least a partial parsing of the
5	unsuccessfu	lly pars	ed text data.
1	sub 7	21.	The method according to claim 11, wherein said tagging step
2	comprises p	rovidin	g the structured data component in a Standard Generalized Markup
1	Language (S	SGML)	compatible format.
1		22.	A computer system for extracting information on biological entities
2	from natura	l-langua	age text data, comprising:
3		(i)	means for parsing the natural-language text data; and
4		(ii)	means for regularizing the parsed text data to form structured word
5			terms.

1	23.	The system according to claim 22, further comprising means for
2	preprocessing the	lata prior to parsing, with the preprocessing means comprising
3	identifying biolog	cal entities.
1	24.	The system according to claim 22, further comprising means for
2	referring to an add	tional parameter which is indicative of the degree to which subphrase
1	parsing is to be ca	ried out.
1	25.	The system according to claim 22, wherein said parsing means
2	further comprises	neans for segmenting the text data by sentences.
1	26.	The system according to claim 22, wherein said parsing means
2	further comprises:	
3	mea	ns for segmenting the text data by sentences; and
4	mea	ns for segmenting each of the sentences at identified words or phrases
1	27.	The system according to claim 22, wherein said parsing means
2	further comprises:	
3	mea	as for segmenting the text data by sentences: and

7		means	for segmenting each of the semences at a prefix.
1		28.	The system according to claim 22, wherein said parsing means
2	further compr	rises me	eans for skipping undefined words.
1		29.	The system according to claim 22, wherein said parsing means
2	further comp	rises:	
3		means	for identifying one or more binary actions and their relationships; and
4		means	for identifying one or more arguments associated with the actions.
1		30.	The system according to claim 22, further comprising means for
2	performing en	ror reco	overy when parsing of the text data is unsuccessful.
1		31.	The system according to claim 22, wherein said error recovery
2	means compr	ises:	
3		means	for segmenting the text data; and
4		means	for analyzing the segmented text data to achieve at least a partial
5	parsing of the	unsucc	cessfully parsed text data.

- 1 32. The system according to claim 22, wherein said tagging means
- 2 comprises means for providing the structured data component in a Standard Generalized
- 3 Markup Language (SGML) compatible format.

1

-85-