

CSC 212 Data Structures & Algorithms

Fall 2022 | Jonathan Schrader

Quick Sort

Housekeeping

Assignment 3 Due

Review Project [MEC]

• Due October 28, 11:59pm

Quick Sort

Divide the array into two partitions (subarrays)

need to pick a pivot and rearrange the elements into two partitions

Conquer Recursively each half

• call Quick Sort on each partition (i.e. solve 2 smaller problems)

Combine Solutions

there is no need to combine the solutions

```
// pseudocode

if (hi <= lo)
    return;

int p = partition(A, lo, hi);

quicksort(A, lo, p - 1);

quicksort(A, p + 1, hi);</pre>
```

Partition

Partition: algorithm

Partition: do it yourself

- ► Step 1 | Set the pivot...
- ► Step 2 | Find and evaluate i and j initial values
- ► Step 3 | Evaluate all i and j values, until...
- ► Step 4 | i and j cross pathes...

Implementation

```
int partition (int *A, int lo, int hi)
  int i = lo;
                                                                   void r quicksort(int *A,int lo, int hi)
  int j = hi + 1;
  while (1) {
   // while A[i] < pivot, increase i</pre>
                                                                     if (hi <= lo)
   while (A[++i] < A[lo])
                                                                       return;
                                                                     int p = partition(A, lo, hi);
      if (i == hi)
        break;
                                                                     r \text{ quicksort}(A, lo, p - 1);
    // while A[i] > pivot, decrease j
                                                                     r \text{ quicksort}(A, p + 1, hi);
    while (A[lo] < A[--j])
      if (j == lo)
       break;
      // if i and j cross exit theloop
                                                                   void quicksort(int *A, int n, int m)
      if(i >= j)
      break;
      // swap A[i] and A[j]
                                                                     // shuffle the array
      std::swap(A[i], A[j]);
                                                                     std::random shuffle(A, A + n);
                                                                     // call recursive quicksort
  // swap the pivot with A[j]
                                                                     r \text{ quicksort}(A, 0, n - 1);
  std::swap(A[lo], A[j]);
  //return pivot's position
  return j;
```

Sorting Visualizer

Analysis of Quick Sort

Worst-Case

• input sorted, reverse order, equal elements

$$egin{aligned} T(n) &= T(n-1) + T(0) + \Theta(n) \ &= T(n-1) + \Theta(1) + \Theta(n) \ &= T(n-1) + \Theta(n) \ &= \dots \ &= \Theta(n^2) \end{aligned}$$

can shuffle or randomized the array (to avoid the worst-case)

Analysis of Quick Sort

Best-Case

pivot partitions array evenly (almost never happens)

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$= \dots$$

$$= \Theta(n \log n)$$

Analysis of Quick Sort

Average-Case

- analysis is more complex
- Consider a 9-to-1 proportional split
- Even a 99-to-1 split yields same running time
- Faster than merge sort in practice (less data movement)

$$T(n) = T(\frac{n}{10}) + T(\frac{9n}{10}) + \Theta(n)$$

$$= \dots$$

$$= \Theta(n \log n)$$

Comments on Quick Sort

Properties

- it is **in-place** but not **stable**
- benefits substantially from code tuning

Improvements

- use insertion sort for small arrays
 - avoid overhead on small instances (~10 elements)
- · median of 3 elements
 - estimate true median by inspecting 3 random elements
- three-way partitioning
 - create three partitions < pivot, == pivot,>pivot

DL 1263	Atlanta	6:00 am	Departed
DL 2225	Atlanta	12:48 pm	On time
WN 1138	Baltimore	6:05 am	Departed
WN 846	Baltimore	9:20 am	Departed
WN 3020	Baltimore	11:20 am	On time
WN 6296	Baltimore	12:35 pm	On time
AA 1703	Charlotte	6:17 am	Departed
AA 632	Charlotte	8:07 am	At 9:45 am
AA 1981	Charlotte	11:01 am	On time
AA 5550	Charlotte	11:54 am	On time
WN 6240	Chicago - MDW	5:55 am	Departed
WN 3420	Chicago - MDW	8:45 am	Departed
AA 3410	Chicago - ORD	7:02 am	Departed
UA 3615	Chicago - ORD	7:30 am	Departed
DL 2273	Detroit	5:30 am	Departed
DL 305	Detroit	10:40 am	On time
DL 5090	Detroit	12:32 pm	On time
WN 6247	Fort Lauderdale	8:30 am	Departed
UA 4894	New York/Newark	6:15 am	Departed
B6 475	Orlando	6:15 am	Departed
WN 28	Orlando	6:55 am	Departed
AA 489	Philadelphia	6:00 am	Departed
AA 1735	Philadelphia	8:02 am	Departed
AA 774	Philadelphia	10:51 am	On time
WN 6235	Tampa	7:05 am	Departed
AC 7379	Toronto	11:50 am	On time
AA 5202	Washington - DCA	6:14 am	Departed
WN 2640	Washington - DCA	8:45 am	Departed
AA 4280	Washington - DCA	8:49 am	At 10:20 am
AA 5524	Washington - DCA	11:46 am	At 2:35 pm
AA 4424	Washington - DCA	1:38 pm	On time
UA 6208	Washington - IAD	6:00 am	Departed

Sorting Algorithms

	Best-Case	Average-Case	Worst-Case	Stable	In-place
Selection Sort	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	No	Yes
Insertion Sort	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n^2)$	Yes	Yes
Merge Sort	$\Theta(n \ log \ n)$	$\Theta(n \ log \ n)$	$\Theta(n \ log \ n)$	Yes	No
Quick Sort	$\Theta(n \ log \ n)$	$\Theta(n \ log \ n)$	$\Theta(n^2)$	No	Yes

Empirical Analysis

Running time estimates:

- Home PC executes 108 compares/second.
- Supercomputer executes 1012 compares/second.

	insertion sort (N²)			mergesort (N log N)			quicksort (N log N)		
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.6 sec	12 min
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

https://www.cs.princeton.edu/courses/archive/spring18/cos226/lectures/23Quicksort.