UCCD2063 ARTIFICIAL INTELLIGENCE TECHNIQUES

Classification of Red Wine Quality using NeuralNetwork

Group ID: 36

Team members:

- 1. Leong Khei Sheng, 1403785, CS
- 2. Wan Kar Hou, ID, CS
- 3. Leong Khai Siang, 1803387, CS

Data Exploration

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

wine = pd.read_csv("./redwinequality.csv")
```

In [2]:

```
wine.head()
```

Out[2]:

	WineID	FixedAcidity	VolatileAcidity	CitricAcid	ResidualSugar	Chlorides	FreeSulfurDioxi
0	1	7.4	0.70	0.00	1.9	0.076	11
1	2	7.8	0.88	0.00	2.6	0.098	25
2	3	7.8	0.76	0.04	2.3	0.092	15
3	4	11.2	0.28	0.56	1.9	0.075	17
4	5	7.4	0.70	0.00	1.9	0.076	11
4							>

As per observed from above, 'WineID' is not part of the features and must not included in the model. There are total of 11 features and 'Quality' is the output values.

The features for input matrix have different scales. Standardization on the features is needed to get standard deviation of 1.

In [3]:

```
wine.drop("WineID", axis =1 , inplace = True)
```

In [4]:

wine.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

FixedAcidity 1599 non-null float64 VolatileAcidity 1599 non-null float64 CitricAcid 1599 non-null float64 ResidualSugar 1599 non-null float64 1599 non-null float64 Chlorides FreeSulfurDioxide 1599 non-null float64 TotalSulfurDioxide 1599 non-null float64 1599 non-null float64 Density 1599 non-null float64 PΗ Sulphates 1599 non-null float64 Alcohol 1599 non-null float64 Quality 1599 non-null int64

dtypes: float64(11), int64(1)

memory usage: 149.9 KB

No empty or null values found in this dataset

In [5]:

wine.describe()

Out[5]:

	FixedAcidity	VolatileAcidity	CitricAcid	ResidualSugar	Chlorides	FreeSulfurDioxi
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.8749
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.4601
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.0000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.0000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.0000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.0000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.0000
4						>

In [6]:

wine.corr()

Out[6]:

	FixedAcidity	VolatileAcidity	CitricAcid	ResidualSugar	Chlorides	FreeSul
FixedAcidity	1.000000	-0.256131	0.671703	0.114777	0.093705	
VolatileAcidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	
CitricAcid	0.671703	-0.552496	1.000000	0.143577	0.203823	
ResidualSugar	0.114777	0.001918	0.143577	1.000000	0.055610	
Chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	
FreeSulfurDioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	
TotalSulfurDioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	
Density	0.668047	0.022026	0.364947	0.355283	0.200632	
PH	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	
Sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	
Alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	
Quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	

In [7]:

wine.hist(bins=50,figsize=(20,15))
plt.show()

In [8]:

```
wine.isnull().sum()
```

Out[8]:

0 FixedAcidity VolatileAcidity 0 CitricAcid 0 ResidualSugar Chlorides 0 FreeSulfurDioxide 0 TotalSulfurDioxide 0 Density 0 PΗ 0 Sulphates 0 0 Alcohol 0 Quality dtype: int64

In [9]:

```
print(wine.Quality.value_counts())
```

Name: Quality, dtype: int64

In [10]:

```
sns.countplot(x="Quality", data=wine)
plt.show()
```


The output values is skewed(right).

Preprocessing

To obtained a more accurate data, the output value is divided into 2 categories which 3-5 are categorized as 0(Low Quality), and 1(High Quality)

In [11]:

```
wine['Quality'] = pd.cut(wine['Quality'], bins=2, labels=False)
```

In [12]:

```
X = wine.drop('Quality', axis = 1)
y = wine["Quality"]
```

In [13]:

```
y.value_counts()
```

Out[13]:

855
 744

Name: Quality, dtype: int64

In [14]:

```
sns.countplot(y)
```

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0xbc90a30>

The output values are more balance after converted to 0 and 1

In [15]:

```
print ('X: shape=', X.shape)
print ('y: shape=', y.shape)
```

```
X: shape= (1599, 11)
y: shape= (1599,)
```

The datasets are splited into 80% training set and 20% test set.

```
In [16]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=4
2)
print ('train shape=', X_train.shape)
print ('test shape=', X_test.shape)

train shape= (1279, 11)
test shape= (320, 11)
```

Standardization on the features needed to be performed as the features have different scales.

In [17]:

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler(copy = False)
scaler.fit(X_train)
X_train_tr = scaler.transform(X_train)
y_train = y_train.values
```

Training

Neural Network

Create the model using MLPClassifier in Neural Network.

In [18]:

```
from sklearn.neural_network import MLPClassifier

mlp = MLPClassifier(random_state=42)
mlp.fit(X_train_tr, y_train)
y_pred = mlp.predict(X_train_tr)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay
er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it
erations (200) reached and the optimization hasn't converged yet.
 % self.max_iter, ConvergenceWarning)

In [19]:

```
def peek_results(actual, predicted, num = 20):
    print('Actual | Predicted')
    print('-----')
    for i in range(num):
        sel = np.random.randint(0, len(y_train))
        print(actual[sel], ' | ', predicted[sel])
peek_results(y_train, y_pred)
```

Actual	Predicted
0	0
1	1
0	0
1	1
1	1
0	0
1	0
0	1
1	1
1	1
1	1
1	1
0	0
1	1
0	0
1	1
0	0
0	0
1	1
1	1

Validation

Import all the libraries that required later.

In [20]:

```
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.model_selection import cross_validate
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
```

PCA

Principal Component Analysis (PCA) is used to reduce the number of features of the data. Some output of the dataset is affected by only few main features, thus PCA is applied in this datasets to test whether reducing number of fetures will increase the accuracy of data.

In [21]:

```
from sklearn.decomposition import PCA

pca = PCA(n_components=3)
pca.fit(X_train_tr, y_train)
X_train_tr_pca = pca.transform(X_train_tr)

mlp.fit(X_train_tr_pca, y_train)
pca_pred = mlp.predict(X_train_tr_pca)
print('Training Accuracy with PCA = ', accuracy_score(y_train, pca_pred))
```

Training Accuracy with PCA = 0.7498045347928068

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay
er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it
erations (200) reached and the optimization hasn't converged yet.
 % self.max_iter, ConvergenceWarning)

The training accuracy is around 75% after reducing to 3 features for the data.

Accuracy

In [22]:

```
train_acc = accuracy_score(y_train, y_pred)
print("Training accuracy without PCA: {:.4f}".format(train_acc))
```

Training accuracy without PCA: 0.8139

The training accuracy without applying PCA is around 81%. Thus all features in this datasets are important and contribute much to the output values.

The model is fitted again with the original dataset.

In [23]:

The training accuracy is measured with cross-validation to evaluate the model. 4-folds is set for this model.

In [24]:

```
kfold_result = cross_validate (mlp, X_train_tr, y_train, cv=4, scoring='accuracy', retu
rn_train_score=True)

print('Average training accuracy = {:.4f}'.format(kfold_result['train_score'].mean()))
print('Average validation accuracy = {:.4f}'.format(kfold_result['test_score'].mean()))
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it erations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it erations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it erations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

Average training accuracy = 0.8108 Average validation accuracy = 0.7577

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it erations (200) reached and the optimization hasn't converged yet.

% self.max iter, ConvergenceWarning)

Confusion Matrix

In [25]:

```
y_pred_cv = cross_val_predict (mlp, X_train_tr, y_train, cv=4)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix (y_train, y_pred_cv)
print(cm)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it erations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it erations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it erations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

[[456 147] [163 513]]

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it erations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

Precision, Recall, F1 Score

In [26]:

print(classification_report(y_train, y_pred_cv))

		precision	recall	f1-score	support
	0	0.74	0.76	0.75	603
	1	0.78	0.76	0.77	676
micro	avg	0.76	0.76	0.76	1279
macro	avg	0.76	0.76	0.76	1279
weighted	avg	0.76	0.76	0.76	1279

In [27]:

```
print('Precision = {:.4f}'.format(precision_score(y_train, y_pred_cv)))
print('Recall = {:.4f}'.format(recall_score (y_train, y_pred_cv)))
print('F1 Score = {:.4f}'.format(f1_score(y_train, y_pred_cv)))
```

Precision = 0.7773 Recall = 0.7589 F1 Score = 0.7680

```
In [28]:
```

```
kfold_scores = cross_validate (mlp, X_train_tr, y_train, cv=4, scoring = ['precision',
'recall', 'f1'], return_train_score=False)
print('Average cross-validation recall = {:.4f}'.format(kfold_scores['test_recall'].mea
n()))
print('Average cross-validation precision = {:.4f}'.format(kfold_scores['test_precisio")
n'].mean()))
print('Average cross-validation f1 = {:.4f}'.format(kfold_scores['test_f1'].mean()))
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural network\multilay
er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it
erations (200) reached and the optimization hasn't converged yet.
  % self.max_iter, ConvergenceWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural network\multilay
er perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it
erations (200) reached and the optimization hasn't converged yet.
  % self.max_iter, ConvergenceWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay
er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it
erations (200) reached and the optimization hasn't converged yet.
  % self.max_iter, ConvergenceWarning)
Average cross-validation recall = 0.7589
Average cross-validation precision = 0.7775
Average cross-validation f1 = 0.7679
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay
er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it
erations (200) reached and the optimization hasn't converged yet.
 % self.max iter, ConvergenceWarning)
```

Precision-Recal Graph

In [29]:

```
y_scores_cv = cross_val_predict (mlp, X_train_tr, y_train, cv=4)
precisions, recalls, thresholds = precision_recall_curve (y_train, y_scores_cv)
```

er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it
erations (200) reached and the optimization hasn't converged yet.
 % self.max_iter, ConvergenceWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay
er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it
erations (200) reached and the optimization hasn't converged yet.
 % self.max_iter, ConvergenceWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural network\multilay

er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it erations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neural_network\multilay er_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum it erations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

In [30]:

```
def plot_precision_vs_recall(precisions, recalls):
   plt.plot(recalls, precisions, "b-", linewidth=3)
   plt.plot(np.linspace(0, 1, 20), np.linspace(1, 0, 20), 'k--')
   plt.xlabel("Recall", fontsize=16)
   plt.ylabel("Precision", fontsize=16)
   plt.axis([0, 1, 0, 1])

plt.figure(figsize=(8, 6))
   plot_precision_vs_recall(precisions, recalls)
   plt.title ('Precision-Recall Graph (Training Set)', fontsize = 20)
   plt.show()
```


In [31]:

```
fpr, tpr, thresholds = roc_curve(y_train, y_scores_cv)

def plot_roc_curve (fpr, tpr, style = 'b-', label = None):
    plt.plot(fpr, tpr, style, linewidth = 3, label = label)
    plt.plot([0,1], [0, 1], 'k--')
    plt.axis([0, 1, 0, 1])
    plt.xlabel ('False Positive Rate')
    plt.ylabel ('True Positive Rate')
    plt.title('TPR vs FPR', fontsize=20)

plot_roc_curve(fpr, tpr)
```


In [32]:

```
auc = roc_auc_score(y_train, y_scores_cv)
print('AUC = {:.4f}'.format(auc))
```

AUC = 0.7575

Fine Tune

GridSearchCV

To get the best hyperparameters, GridSearchCV is used.

```
In [33]:
```

```
import time
from sklearn.model_selection import GridSearchCV

start_time = time.time()
param = {'solver':['lbfgs'], 'max_iter':[500,1000,1500], 'alpha':10.0**-np.arange(1,10), 'hidden_layer_sizes':np.arange(10,15)}
grid_search = GridSearchCV(mlp, param, cv=4, scoring='accuracy')
print ('Performing grid search...', end = '')
grid_search.fit(X_train_tr, y_train)
print('Completed', end = ' ')
print('{:.2f}s'.format(time.time()-start_time))
```

Performing grid search...Completed 444.38s

In [34]:

```
best_model = grid_search.best_estimator_
best_model
```

Out[34]:

```
MLPClassifier(activation='relu', alpha=0.1, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=12, learning_rate='constant', learning_rate_init=0.001, max_iter=1000, momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5, random_state=42, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)
```

In [35]:

```
print('Accuracy of the best model =', grid_search.best_score_)
```

Accuracy of the best model = 0.7505863956215794

Testing

```
In [36]:
```

```
X_test_tr = scaler.transform(X_test)
y_test = y_test.values
```

Use the best model to predict test data.

In [37]:

```
y_pred_test = best_model.predict(X_test_tr)
print('Test data Accuracy= ', accuracy_score(y_test, y_pred_test))
```

Test data Accuracy= 0.778125

In [38]:

```
print('Test precision = {:.4f}'.format(precision_score(y_test, y_pred_test)))
print('Test recall = {:.4f}'.format(recall_score (y_test, y_pred_test)))
print('Test f1 score = {:.4f}'.format(f1_score(y_test, y_pred_test)))
```

```
Test precision = 0.8068
Test recall = 0.7933
Test f1 score = 0.8000
```

Compare with Other Classifiers

RandomForestClassifier

In [39]:

```
from sklearn.ensemble import RandomForestClassifier

forest = RandomForestClassifier(n_estimators=10, random_state=42)
forest.fit(X_train_tr, y_train)
y_pred_forest = forest.predict(X_train_tr)

print('Accuracy = ', accuracy_score(y_train, y_pred_forest))
```

Accuracy = 0.9929632525410477

The model fitted very well on the training set with accuracy 99%.

In [40]:

```
print(classification_report(y_train, y_pred_forest))
```

	precision	recall	f1-score	support
	·			
	0 0.99	1.00	0.99	603
	1.00	0.99	0.99	676
micro av	g 0.99	0.99	0.99	1279
macro av	g 0.99	0.99	0.99	1279
weighted av	g 0.99	0.99	0.99	1279

In [41]:

```
y_pred_test_forest = forest.predict(X_test_tr)
print('Test data Accuracy= ', accuracy_score(y_test, y_pred_test_forest))
```

Test data Accuracy= 0.778125

However, the model doesn't fitted so well on the test set. This may caused by the model is slightly overfitting.

In [42]:

```
kfold_result = cross_validate (forest, X_train_tr, y_train, cv=5, scoring='accuracy', r
eturn_train_score=True)
print('Average training accuracy = {:.4f}'.format(kfold_result['train_score'].mean()))
print('Average validation accuracy = {:.4f}'.format(kfold_result['test_score'].mean()))
```

```
Average training accuracy = 0.9893
Average validation accuracy = 0.7764
```

RandomForestClassifier seem like perform better than MLPClassifier. However, the model is slightly overfitting the datasets.

SVClassifier

In [43]:

```
from sklearn.svm import SVC

svc = SVC()
svc.fit(X_train_tr, y_train)
y_pred_svc = svc.predict(X_train_tr)

print('Accuracy = ', accuracy_score(y_train, y_pred))
```

Accuracy = 0.8139171227521501

In [44]:

```
print(classification_report(y_train, y_pred_svc))
```

		precision	recall	f1-score	support
	0	0.78	0.81	0.79	603
	1	0.82	0.80	0.81	676
micro	avg	0.80	0.80	0.80	1279
macro	avg	0.80	0.80	0.80	1279
weighted	avg	0.80	0.80	0.80	1279

In [45]:

```
y_pred_test_svc = svc.predict(X_test_tr)
print('Accuracy = ', accuracy_score(y_test, y_pred_test_svc))
```

Accuracy = 0.771875

```
kfold_result = cross_validate (svc, X_train_tr, y_train, cv=5, scoring='accuracy', retu
rn_train_score=True)
print('Average training accuracy = {:.4f}'.format(kfold_result['train_score'].mean()))
print('Average validation accuracy = {:.4f}'.format(kfold_result['test_score'].mean()))
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:196: Future Warning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:196: Future Warning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:196: Future Warning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

Average training accuracy = 0.8030 Average validation accuracy = 0.7546

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:196: Future Warning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:196: Future Warning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

The training accuracy of SVClassifier is quite same as MLPClassifier. MLPClassifier have slightly better performace during prediction of test data.