

What happens
to the spike
(action
potential) when
it reaches the
end of an axon?

Enter...
the Synapse

What is a Synapse?

- → A Synapse is a "connection" or junction between two neurons
 - Electrical synapses use gap junctions

Chemical synapses use neurotransmitters customized (adjustable) amount of transmission: for memory/learning

by changing number of receptors Neuron A

Gap junction

(essentially **Neuron B** ionic channels)

> smooth coordination: to synchronise; to implement e.g. an escape reflex

Synapses can be **Excitatory** or **Inhibitory**

Increase or decrease postsynaptic membrane potential

An Excitatory Synapse

Input spike \rightarrow Neurotransmitter release (e.g., 글루탐산 Glutamate) → Binds to ion channel receptors \rightarrow Ion channels open \rightarrow Na+ influx \rightarrow Depolarization due to EPSP (excitatory postsynaptic potential)

The Synapse Doctrine

Synapses are the basis for memory and learning

How do Brains Learn? Synaptic Plasticity

Hebbian Plasticity

If neuron A repeatedly takes part in firing neuron B, then the synapse from A to B is strengthened

"Neurons that fire together wire together!"

observed most prominently in the hippocampus해마체 海馬體

Long Term Potentiation (LTP)

LTP = Experimentally observed *increase* in synaptic strength that lasts for hours or days

Long Term Depression (LTD)

LTD = Experimentally observed *decrease* in synaptic strength that lasts for hours or days

Synaptic Plasticity depends on Spike Timing!

LTP/LTD depends on relative timing of input and output spikes

Input Spike after Output Spike

EPSP Before before 15 ms 40 m√ **Input-Output** pairing 15 ms **Pairing** after **EPSP** After 15 ms LTP

Input Spike before Output Spike

Spike-Timing Dependent Plasticity (STDP)

We seem to know a lot about channels, neurons, and synapses...

What do we know about how networks of neurons give rise to perception, behavior, and consciousness?

Not as much

Next: Brain organization and information processing in networks of neurons