Citation network project

MADE'22 fall

Команда № 15 Тьютор: Игорь Иткин

Команда проекта: Екатерина Потапова Ирина Пугаева Артем Ткаченко Николай Шаманков Евгений Шаров

Научное сообщество

Помощь в поиске статей и соавторов

Студент

Научный сотрудник

Артефакты

- EDA
- Кластеризация
- Рекомендации статей
- Репозиторий
- Веб-приложение

Технологии и архитектура

Технологии

- Python
- sklearn
- Uvicorn
- dash
- FastAPI
- Faiss
- pyvis.network, networkx, plotly
- git
- PostgreSQL

Модели и метрики

- sentence-transformer
- all-mpnet-base-v2

Демонстрация проекта

Citation network project

We will recommend some articles for you based on your search.

Write the title you are looking for:

Search: Gene

title	abstract	id	volume	year	n_citation	lang	index
Generalized Veronesean	We classify all embeddings θ : PG(n, q) \rightarrow PG(d, q), with \$\$d \\geqslant \\tfrac{{n(n + 3)}} {2}\$\$, such that θ maps the set of points of each line to a set of coplanar points		31	2011	8	en	35
Genetic Algorithm		53e99d65b7602d970261f9de		2005	0	en	49

These article might be interesting for you:

title	abstract	id	volume	year	n_citation l	ang	index
Performance study of	This paper proposes five bandwidth reallocation algorithms (BRAs) that can be applied to the quantitative provisioning in a differentiated services (DS) network supporting		24	2001	4	en	1
Source level debugging of	We describe a method for providing source level debugging for programs that have been automatically parallelized for distributed memory, MIMD machines. We call this method a		26	1991	7	en	2

EDA. Выводы по данным. Очистка данных

Модель кластеризации. Используемые технологии

• all-MinilM-L6-v2 <u>sentence-transformers</u> model с относительно небольшим размером + высокой скоростью

лоdel Name	Performance Sentence Embeddings (14 Datasets)	Performance Semantic Search (6 Datasets) (1)	↑ F Avg. Performance ①	Speed	Model Size 1
II-mpnet-base-v2	69.57	57.02	63.30	2800	420 MB
nulti-qa-mpnet-base-dot-v1	66.76	57.60	62.18	2800	420 MB
ll-distilroberta-v1 ①	68.73	50.94	59.84	4000	290 MB
III-MiniLM-L12-v2 🕕	68.70	50.82	59.76	7500	120 MB
nulti-qa-distilbert-cos-v1	65.98	52.83	59.41	4000	250 MB
II-MiniLM-L6-v2	68.06	49.54	58.80	14200	80 MB

• k-means + подбор оптимального количества кластеров по методу локтя - 25 кластеров

Модель Классификации

- Общая схема построения классификатора
- Используется тот же эмбеддер, что и на этапе
- Кластеризации
- В качестве финального решения была выбрана модель логистической регрессии, обладающей максимальной метрикой F1score

Модель рекомендации статей. Используемые технологии, дизайн эксперимента

• all-MinilM-L6-v2 <u>sentence-transformers</u> model с относительно небольшим размером + высокой скоростью

	Performance Sentence	Performance Semantic Search	↑₹ Avg.	Speed	Model
Model Name	Embeddings (14 Datasets) 🕕	(6 Datasets) 🕕	Performance ①	•	Size 1
III-mpnet-base-v2	69.57	57.02	63.30	2800	420 MB
nulti-qa-mpnet-base-dot-v1	66.76	57.60	62.18	2800	420 MB
ll-distilroberta-v1 🕕	68.73	50.94	59.84	4000	290 MB
II-MiniLM-L12-v2	68.70	50.82	59.76	7500	120 MB
nulti-qa-distilbert-cos-v1	65.98	52.83	59.41	4000	250 MB
ll-MiniLM-L6-v2	68.06	49.54	58.80	14200	80 MB

FAISS

Facebook AI Research Similarity Search – разработка команды Facebook AI Research для быстрого поиска ближайших соседей и кластеризации в векторном пространстве. Высокая скорость поиска позволяет работать с очень большими данными – до нескольких миллиардов векторов.

Команда проекта

Ирина Пугаева _{DS}

Николай Шаманков DS

Евгений Шаров Дэшборд и микросервис для рекомендаций

Екатерина Потапова

Engeneering

Артем Ткаченко Инфраструктура, база данных

Спасибо за внимание!

Итоговый отчет по проекту

Команда № 15

Дэшборд описание

Дэшборд разработан с помощью библиотеки dash. Данные о статьях выгружаются из базы данных. Пользователям доступен поиск по названию статей. На основании найденных статей пользователям рекомендуются другие статьи.

RecSys модель развернута в отдельном микросервисе, на которые отправляются запросы из дэшборда.

Реализовать авторизацию не получилось, поскольку нативная реализация dash_auth блокировала поиск по данным после 5-10 поисковых запросов. Проблему устранить не получилось.

Дэшборд для просмотра статей и рекомендаций

Citation network project

We will recommend some articles for you based on your search.

Write the title you are looking for:

Search: Gene

title	abstract	id	volume	year	n_citation 1	ang	index
Generalized Veronesean	We classify all embeddings θ : PG(n, q) \rightarrow PG(d, q), with \$\$d \geqslant \tfrac{{n(n + 3)}} {2}\$\$, such that θ maps the set of points of each line to a set of coplanar points		31	2011	8	en	35
Genetic Algorithm		53e99d65b7602d970261f9de		2005	0	en	49

<<

>

These article might be interesting for you:

title	abstract	volume	year	n_citation	lang	index
Performance study of	This paper proposes five bandwidth reallocation algorithms (BRAs) that can be applied to the quantitative provisioning in a differentiated services (DS) network supporting	24	2001	4	en	1
Source level debugging of	We describe a method for providing source level debugging for programs that have been automatically parallelized for distributed memory, MIMD machines. We call this method a	26	1991	7	en	2

Модель рекомендации соавторов. Используемые технологии

- Для построения рекомендаций используется алгоритмический подход: рекомендуем тех соавторов, с которыми ранее автор имел наибольшее число публикаций
- Данное решение легко ложится на реальное поведение людей в научных коллективах
- Итоговый результат на текущий момент представлен в виде локального вебсервиса, позволяюсь рекомендовать соавторов по id автора публикации

Микросервис для прогнозирования

Микросервис разработан с помощью fastapi.

При запуск загружает модель и данные из БД. Принимает на вход данные о статьях и возвращает id рекомендованных статей.

Сервер не поддерживает асинхронные вызовы, поскольку ожидает запросов только от дэшборда.

EDA. Выводы по данным. Очистка данных

EDA. Выводы по данным. Очистка данных

- Учёный имеет индекс h, если h из его N статей цитируются как минимум h раз каждая, в то время как оставшиеся (N — h) статей цитируются не более чем h раз каждая
- Мы написали функция для вычисления индекса Хирша и применили ее к массиву из числа цитирований каждой статьи автора

Инфраструктура

- Virtual private server (VPS) гарантирует гибкость и доступность
- Centos 7
- 1 Gb RAM
- 20 Gb HDD
- СУБД PostgreSQL свободное ПО (as in freedom), большое сообщество
- Ограничения
- Загружено примерно 40% от данных Citation Network Dataset (не хватило места на сервере)
- Не использовался docker (больше ручной работы при установке Python и прочего ПО, меньше гибкости)

DB Scheme

- Virtual private server (VPS) гарантирует гибкость и доступность
- Centos 7
- 1 Gb RAM
- 20 Gb HDD
- СУБД PostgreSQL свободное ПО (as in freedom), большое сообщество
- Ограничения
- Загружено примерно 40% от данных Citation Network Dataset (не хватило места на сервере)
- Не использовался docker (больше ручной работы при установке Python и прочего ПО, меньше гибкости)