

Teoría de números

Criptología y Seguridad de los Datos (CSD)

©Damián López

September 27, 2022

Índice

Teoría de grupos Aritmética modular Grupos finitos módulo *n* Curvas elípticas Cuerpos
Funciones unidireccionales
Logaritmo discreto
Factorización de enteros

Bibliografía

- → Handbook of applied crytography. A. J. Menezes, P. C. van Oorshot and S. A. Vanstone, CRC Press, 1996.
 - (Capítulo 9)
- → Introduction to algorithms. C. E. Leiserson, C. Stein, R. Rivest and T. H. Cormen. The MIT Press (3rd edition) 2009.
- → Understanding Cryptography. C. Paar and J. Pelzl. Springer. 2010.

Máster Oficial Universitario en Ciberseguridad v Ciberinteligencia

vo'cc'

Teoría de grupos

Dado un conjunto finito G, el par $\langle G, \oplus \rangle$ es un grupo si se cumple que:

- \longrightarrow La operación \oplus es cerrada en G
- ullet El elemento neutro para la operación \oplus está incluido en G
- \rightarrow Para todo valor a en G se cumple que G contiene su inverso.

Habitualmente, utilizaremos la notación $\langle G, + \rangle$ o $\langle G, \cdot \rangle$.

Teoría de grupos

Dado un grupo $\langle G, + \rangle$ (o alternativamente $\langle G, \cdot \rangle$) y cualquier elemento $a \in G$, con ka (o alt. a^k) denotamos la composición de la operación k veces.

Con < a > denotaremos el SUBGRUPO GENERADO POR a, esto es:

$$< a >= \{a^i : i \ge 1\}$$

Dado un elemento a en G y denotando con e el elemento neutro, diremos que el ORDEN DE a es el valor r tal que ra = e (alt. $a^r = e$).

Teoría de grupos

El tamaño de cualquier subgrupo de un grupo es divisor del tamaño del grupo (TEOREMA DE LAGRANGE).

Un grupo es cíclico si existe un elemento a del grupo capaz de generarlo, en ese caso, a es un generador del grupo (sólo consideraremos grupos cíclicos).

etsinf

Para cualquier grupo finito $\langle G, \oplus \rangle$ se cumple que si $a \in G$, entonces ord(a) = card(< a >)

- $\longrightarrow \mathbb{Z}_n = \{0, 1, \dots, n-1\}$
- → Congruencia módulo n:

$$a \equiv b \pmod{n} \iff a - b = kn, \ k \in \mathbb{Z}$$

 \longrightarrow Reducción módulo n (valor equivalente a uno dado en \mathbb{Z}_n):

 $a \bmod n$

Relación de equivalencia.

Grupos finitos módulo n. Operativa

Dados $a \equiv a' \pmod{n}$ y $b \equiv b' \pmod{n}$:

- \rightarrow $a + b \equiv a' + b' \pmod{n}$
- \rightarrow $ab \equiv a'b' \pmod{n}$

Por lo que, operando en \mathbb{Z}_n :

- \longrightarrow $[a]_{\equiv_n} + [b]_{\equiv_n} = [a+b]_{\equiv_n}$
- $\bullet \rightarrow [a]_{=_n}[b]_{=_n} = [ab]_{=_n}$

Grupos finitos módulo n. Operativa

Si $\langle G, \odot \rangle$ es un grupo finito con identidad e, entonces:

 \rightarrow Dado $a \in G$ con ord(a) = r, se cumple que:

$$a^i \equiv a^j$$
 si y sólo si $i \equiv j \pmod{r}$

Es consistente con el resultado anterior definir $a^0 = e$ y $a^i = a^{i \bmod r}$, para todo $i \ge 0$

ullet COROLARIO para todo $a \in G$ se cumple que $a^{card(G)} = e$

$$\langle \mathbb{Z}_n, + \rangle$$

- \rightarrow La operación + módulo n es cerrada en \mathbb{Z}_n
- → Existe un elemento neutro para la operación +
- \longrightarrow Para todo valor a en \mathbb{Z}_n existe su inverso.
- $\langle \mathbb{Z}_n, + \rangle$ tiene estructura de grupo.

$$\langle \mathbb{Z}_n, \cdot \rangle$$

- \longrightarrow La operación · módulo n es cerrada en \mathbb{Z}_n
- -> Existe un elemento neutro para la operación ·
- \longrightarrow Para todo valor a en \mathbb{Z}_n ... ¿existe su inverso?


```
\langle \mathbb{Z}_n, \cdot \rangle
```

- \longrightarrow La operación · módulo n es cerrada en \mathbb{Z}_n
- → Existe un elemento neutro para la operación ·
- \longrightarrow Para todo valor a en \mathbb{Z}_n ... ¿existe su inverso?
 - No... sólo para aquellos relativamente primos con n

Grupos finitos módulo n: MCD

El mcd(a,b) es el menor entero estrictamente positivo del conjunto $\{xa+yb: x,y\in\mathbb{Z}\}$ (combinaciones lineales de a y b)

$$mcd(a, b) = mcd(b, a \mod b)$$


```
EuclidesExt(a, b):

if b = 0 then

Return(a, 1, 0)

else

(d', x', y') = EuclidesExt(b, a \mod b))

(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')

Return(d, x, y)

end if
```


$$(d, x, y) = (d', y', x' - |a/b|y')$$

$$\langle \mathbb{Z}_n, \cdot \rangle$$

- \longrightarrow Si denotamos con \mathbb{Z}_n^* el conjunto de valores invertibles de \mathbb{Z}_n , entonces $\langle \mathbb{Z}_n^*, \cdot \rangle$ tiene estructura de grupo.
- \rightarrow El número de elementos invertibles en \mathbb{Z}_n^* puede calcularse conociendo la descomposición de n en factores primos, siendo $n = p_1^{e_1} p_2^{e_2} \dots p_{\nu}^{e_k}$:

$$\phi(n) = \prod_{i=1}^{k} (p_i^{e_i} - p_i^{e_i-1})$$

Grupos finitos módulo n. Operativa

Dado $\langle \mathbb{Z}_n^*, +, \cdot \rangle$

- \longrightarrow El inverso de *a* para la operación + es $-a \equiv n a \pmod{n}$
- ullet El inverso de a para la operación \cdot es b tal que $ab \equiv 1 \mod n$ (necesario recurrir al cálculo del mcd(a, n))
- ullet El inverso de a para la potencia es b tal que $ab \equiv 1 \mod \phi(n)$ (necesario conocer la descomposición en factores de n para después calcular $mcd(a,\phi(n))$.

Grupos finitos módulo n. Operativa

El CÁLCULO EFICIENTE de la composición de la operación + o \cdot puede hacerse teniendo en cuenta:

$$\begin{cases} a^{2c} \bmod n = (a^c)^2 \bmod n \\ a^{2c+1} \bmod n = (a^c)^2 a \bmod n \end{cases}$$

Grupos finitos módulo n. Operativa

El CÁLCULO EFICIENTE de la composición de la operación + o \cdot puede hacerse teniendo en cuenta:

$$\begin{cases} a^{2c} \mod n = (a^c)^2 \mod n \\ a^{2c+1} \mod n = (a^c)^2 a \mod n \end{cases}$$
$$\begin{cases} (2c)a \mod n = 2(ca) \mod n \\ (2c+1)a \mod n = 2(ca) + a \mod n \end{cases}$$

etsinf

Grupos finitos módulo n. Operativa: Exponenciación por cuadrados sucesivos

```
Require: Enteros a, b y n
Ensure: a^b \mod n
 1: sol = 1
 2: \langle b_1, b_2, \dots, b_k \rangle representación binaria de b
                                                 //bit más representativo b_1
 3: for i=1 to k do
    sol = sol \cdot sol \bmod n
 4.
 5: if b_i = 1 then
 6.
          sol = sol \cdot a \mod n
      end if
 7:
 8: end for
```

9: return sol

Grupos finitos módulo n. Operativa: Exponenciación por cuadrados sucesivos

Ejemplo:

Para obtener $5^{11} \bmod 16$ tenemos en cuenta que $11_{10} = 1011_2$

i	bi	exp_2	sol
		0	1
1	1	1	$(1 \cdot 1 \bmod 16) \cdot 5 \bmod 16 = 5$
2	0	10	$(5 \cdot 5 \bmod 16) = 9$
3	1	101	$(9 \cdot 9 \bmod 16) \cdot 5 \bmod 16 = 5$
4	1	1011	$(5 \cdot 5 \bmod 16) \cdot 5 \bmod 16 = 13$

Curvas elípticas

Una CURVA ELÍPTICA es el conjunto de puntos definido por una ecuación de la forma

Curvas elípticas

Para uso criptográfico, es interesante que la curva no tenga discontinuidades, para ello los valores de a y b deben cumplir la ecuación:

$$4a^3 + 27b^2 \neq 0.$$

Curvas elípticas

Puede definirse un grupo a partir del conjunto de los puntos de una curva elíptica *C*:

- → Añadiendo un punto adicional 0 ubicado en el infinito como elemento neutro.
- → Definiendo una operación ⊕ (suma) de puntos a partir de la consideración que la suma de tres puntos alineados de la curva da siempre el elemento neutro.

etsinf

Curvas elípticas

Curvas elípticas. Operativa

Dados dos puntos $P = (x_P, y_P)$ y $Q = (x_Q, y_Q)$:

$$\begin{cases} m = \frac{y_P - y_Q}{x_P - x_Q} & \text{si la recta es secante a dos puntos} \\ m = \frac{3x_P^2 + a}{2y_P} & \text{si la recta es tangente a un punto} \end{cases}$$

$$x_R = m^2 - x_P - x_Q$$

 $y_R = y_P + m(x_R - x_P)$
(alternativamente, $y_R = y_Q + m(x_R - x_Q)$)

Por lo tanto, para obtener las coordenadas de $P \oplus Q$, basta considerar el punto $(x_R, -y_R)$.

Curvas elípticas. Operativa

Es posible trabajar en un dominio finito considerando aritmética módulo n. Dados dos puntos $P = (x_P, y_P)$ y $Q = (x_Q, y_Q)$:

$$\begin{cases} m = (y_P - y_Q)(x_P - x_Q)^{-1} \bmod n & //\text{si la recta es secante} \\ m = (3x_P^2 + a)(2y_P)^{-1} \bmod n & //\text{si la recta es tangente} \end{cases}$$

$$x_R = m^2 - x_P - x_Q \mod n$$

 $y_R = y_P + m(x_R - x_P) \mod n$
(alternativamente, $y_R = y_Q + m(x_R - x_Q) \mod n$)

y, de nuevo, obtener las coordenadas de $P \oplus Q$ como las del punto $(x_R, -y_R).$

Cuerpos

La terna $\langle G, +, \times \rangle$ tiene estructura de *cuerpo* (o campo, por el témino en inglés field) si:

- \rightarrow El par $\langle G, + \rangle$ tiene estructura de grupo donde $0 \in G$ es el elemento neutro.
- \rightarrow El par $\langle G \{0\}, \times \rangle$ tiene estructura de grupo donde $1 \in G$ es el elemento neutro.
- → Las operaciones cumplen la propiedad distributiva respecto +, esto es:

$$a \times (b + c) = (a \times b) + (a \times c).$$

El orden de un cuerpo es siempre potencia de un primo.

Cuerpos

→ Si el cuerpo tiene orden primo p, entonces el grupo se denota como \mathcal{F}_p (o GF(p)) y:

$$G = \{0, 1, 2, \dots p - 1\}$$

- Cuando el tamaño del cuerpo no es un número primo hablamos de cuerpos extendidos, en estos casos:
 - El conjunto de elementos del cuerpo no pueden representarse como enteros.
 - Las operaciones suma y producto no son las operaciones de aritmética módulo

etsinf

Cuerpos: Operativa

→ Los elementos se pueden representar como polinomios:

$$a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \ldots + a_2x^2 + a_1x + a_0$$

donde los coeficientes toman valores en GF(p).

→ Las operaciones suma y producto no son las operaciones de aritmética módulo

Ciberseguridad v Ciberinteligencia

Cuerpos: Operativa

- \rightarrow La suma de dos elementos a y b en $GF(p^m)$ consiste en sumar coeficientes en a y b del mismo grado y reducir esta suma módulo p.
- \rightarrow El producto de dos elementos a y b en $GF(p^m)$ se basa en el producto de polinomios estándar, considerando aritmética módulo p en la operación con coeficientes.

etsinf

Es necesario un polinomio *módulo* para reducir el resultado.

Cuerpos: Ejemplos

En el cuerpo $GF(2^8)$:

$$x^7$$
 $+x^5+x^3+x^2+1$
+ x^6+x^5 $+x^2+x+1$

Cuerpos: Ejemplos

En el cuerpo $GF(2^8)$:

$$+ \frac{x^7 + x^5 + x^3 + x^2 + 1}{x^6 + x^5 + x^2 + x + 1}$$

Cuerpos: Ejemplos

En el cuerpo $GF(2^8)$, trabajando módulo el polinomio irreducible

$$x^8 + x^4 + x^3 + 1$$
:

$$\times$$
 $+x^3+1$

 $x^6 + x^2 + 1$

Cuerpos: Ejemplos

En el cuerpo $\mathit{GF}(2^8)$, trabajando módulo el polinomio irreducible

$$x^8 + x^4 + x^3 + 1$$
:

$$\begin{array}{r}
x^{6}+x^{2}+1 \\
+x^{3}+1 \\
\hline
x^{6} + x^{2}+1 \\
\underline{x^{9} + x^{5}+x^{3}} \\
\hline
x^{9}+x^{6}+x^{5}+x^{3}+x^{2}+1
\end{array}$$

Cuerpos: Ejemplos

En el cuerpo $GF(2^8)$, trabajando módulo el polinomio irreducible

$$x^8 + x^4 + x^3 + 1$$
:

$$\begin{array}{r}
x^{6} + x^{2} + 1 \\
+ x^{3} + 1 \\
\hline
x^{6} + x^{2} + 1 \\
\underline{x^{9} + x^{5} + x^{3}} \\
\hline
x^{9} + x^{5} + x^{5} + x^{3} + x^{2} + 1
\end{array}$$

Funciones unidireccionales

Logaritmo discreto

Dado un grupo cíclico $\langle G,\cdot \rangle$ de orden t y α un generador de G

Para cualquier $\beta \in G$, el cálculo del *logaritmo discreto* de β en base α (que denotaremos con $log_{\alpha}\beta$) el el problema de encontrar el único entero $x \in \mathbb{Z}_t$ tal que $\alpha^x = \beta$.

NO SE CONOCE SOLUCIÓN EFICIENTE AL PROBLEMA PARA EL CASO GENERAL.

Funciones unidireccionales

Factorización de enteros

Si consideramos el grupo $\langle \mathbb{Z}_n^*, \cdot \rangle$ donde n = pq con $p \setminus q$ primos, entonces, para un valor $x \in \mathbb{Z}_n^*$ cualquiera, a partir de:

$$y = x^e \mod n$$

considerando el valor e como público, el problema de obtener x a partir de y implica obtener primero los factores de n, problema para el que no se conoce solución eficiente para el caso GENERAL

