H_{∞} Control

J Treurnicht

May 15, 2007

1 Formulation of the H_{∞} Problem

1.1 Uncertainty Review

Consider the plant model with feedback as shown in Figure 1.

Figure 1: Standard Presentation of Model with Uncertainty

In this case $\Delta(s)$ represents plant parameter uncertainty, P(s) represents the plant nominal transfer function and K(s) represents feedback control.

1.1.1 Sensitivity Reduction

The first mission of the design is to make the system insensitive to external disturbances. This is equivalent to make z as independent of w as possible.

If we ignore the plant perturbation $\Delta(s)$, then the Model simplifies to that shown in Figure 2.

Figure 2: Standard Presentation of Model without Plant perturbation $\Delta(s)$

Suppose P(s) can be partitioned as follows

$$P(s) = \begin{bmatrix} P_{11}(s) & P_{12}(s) \\ P_{21}(s) & P_{22}(s) \end{bmatrix}$$

so that

$$z = P_{11}w + P_{12}u \qquad y = P_{21}w + P_{22}u$$

then with the feedback law u = K(s)y we can eliminate u and y

$$z = \left[P_{11} + P_{12}K \left(I - P_{22}K \right)^{-1} P_{21} \right] w$$

$$= \mathbf{F}_1(P, K) w$$
(1)

To minimize the error z due to the external inputs w, we must minimize the function $\mathbf{F}_l(P, K)$.

1.1.2 Mixed Performance and Robustness Objective

The following set of characteristics are possible:

- We want to achieve good disturbance rejection from external signals in the low-frequency region. This can be achieved by making the sensitivity $S = (I + PK)^{-1}$ small as $\omega \to 0$.
- Make the closed loop transfer function small at high frequencies limit excitation by noise. This can be achieved by making $T = I S = I (I + PK)^{-1}$ small as $\omega \to \infty$.

• Guard against instability from parameter variations. This is achieved by minimizing $K(I + PK)^{-1}$.

We can then formulate the H_{∞} problem as the minimization of the function

$$\mathbf{F}_1(P,K) = \left[\begin{array}{c} W_1 S \\ W_3 (I - S) \end{array} \right]$$

where W_1 and W_3 are frequency-dependent matrices.

2 Solution of the H_{∞} Problem

It is possible to formulate the problem in many ways. In the literature a difference is made between the **1-block**, **2-block** and the **4-block** formulations

2.1 Glover-Doyle Algorithm

2.1.1 Formulation

The Glover-Doyle algorithm is the classic formulation on which the Matlab Robust Control Toolbox concentrates. This toolbox solves the basic mixed performance and robustness objective.

This algorithm solves a family of stabilising controllers such that

$$\mathbf{F}_l(P,K) \leq \gamma$$

Our search is to find the lowest value of γ for which the above equation has a solution. One possibility is to start with the **LQG** solution and then to reduce it using a binary search.

The plant equations in state space form is

$$\dot{x} = Ax + B_1 w + B_2 u
z = C_1 x + D_{11} w + D_{12} u
y = C_2 x + D_{21} w + D_{22} u$$

and can be represented in the packed matrix form

$$G(s) = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix}$$

The following assumptions must be satisfied to ensure a solution:

- The pair (A, B_2) must be stabilizable and the pair (C_2, A) detectable.
- With the dimensions of $\dim x = n$, $\dim w = m_1$, $\dim u = m_2$, $\dim z = p_1$ and $\dim y = p_2$, then the Rank $D_{12} = m_2$ and Rank $D_{21} = p_2$ to ensure that they controllers are proper and the transfer function from w to y is non-zero at high frequencies (i.e. all-pass).
- Rank $\begin{bmatrix} A j\omega I & B_2 \\ C_1 & D_{12} \end{bmatrix} = n + m_2$ for all frequencies.
- Rank $\begin{bmatrix} A j\omega I & B_1 \\ C_2 & D_{21} \end{bmatrix} = n + p_2$ for all frequencies.
- $D_{11} = 0$ and $D_{22} = 0$ will simplify the equations and implies that the transfer functions from u to y and from w to z rolls off at high frequency.

So our simplified problem is

$$G(s) = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & 0 & D_{12} \\ C_2 & D_{21} & 0 \end{bmatrix}$$

2.1.2 Solution

The solution of this problem requires the solving of two Ricatti equations, one for the controller and one for the observer.

The control law is given by

$$u = -K_c \hat{x}$$

and the state estimator equation by

$$\dot{\hat{x}} = Ax + B_2 u + B_1 \hat{w} + Z_\infty K_e(y - \hat{y})$$

where

$$\hat{w} = \gamma^{-2} B_1^T X_{\infty} \hat{x}$$

$$\hat{y} = C_2 \hat{x} + \gamma^{-2} D_{21} B_1^T X_{\infty} \hat{x}$$

The controller gain is K_c as for the **LQG** case, and the estimator gain is $Z_{\infty}K_e$ instead of K_e as for the **LQG** case, with

$$K_c = \tilde{D}_{12}(B_2^T X_{\infty} + D_{12}^T C_1), \quad \tilde{D}_{12} = (D_{12}^T D_{12})^{-1}$$

 $K_e = (Y_{\infty} C_2^T + B_1 D_{21}^T) \tilde{D}_{21}, \quad \tilde{D}_{21} = (D_{21} D_{21}^T)^{-1}$

and

$$Z_{\infty} = (I - \gamma^{-2} Y_{\infty} X_{\infty})^{-1}$$

The terms X_{∞} and Y_{∞} are solutions to the controller and estimator Ricatti equations

$$X_{\infty} = \text{Ric} \begin{bmatrix} A - B_2 \tilde{D}_{12} D_{12}^T C_1 & -\gamma^{-2} B_1 B_1^T - B_2 \tilde{D}_{12} B_2^T \\ -\tilde{C}_1^T \tilde{C}_1 & -(A - B_2 \tilde{D}_{12} D_{12}^T C_1 \end{bmatrix}$$

$$Y_{\infty} = \text{Ric} \begin{bmatrix} (A - B_1 D_{21}^T \tilde{D}_{21} C_2)^T & -\gamma^{-2} C_1^T C_1 - C_2^T \tilde{D}_{21} C_2 \\ -\tilde{B}_1 \tilde{B}_1^T & -(A - B_1 D_{21}^T \tilde{D}_{21} C_2 \end{bmatrix}$$

with
$$\tilde{B}_1 = B_1(I - D_{21}\tilde{D}_{21}D_{21}^T)$$
 and $\tilde{C}_1 = B_1(I - D_{12}\tilde{D}_{12}D_{12}^T)$.

We do not carry out these calculations by hand — the tools supplied by the Matlab Robust Control Toolbox does just that.

3 Properties of H_{∞} Controllers

The following important properties for H_{∞} controllers exist:

• The stabilising feedback law $u_2(s) = K(s)y_2(s)$ minimizes the norm of the closed loop transfer function

$$T_{yu} = G_{11}(s) + G_{12}(s)[I - K(s)G_{22}(s)]^{-1}K(s)G_{21}(s)$$

The problems we can solve is

- Optimal H_2 control: $\min ||T_{vu}||_2$
- Optimal H_{∞} control: $\min ||T_{vu}||_{\infty}$
- Standard H_{∞} control: $\min(||T_{yu}||_{\infty} \leq 1)$
- The H_{∞} cost function T_{yu} is all-pass i.e. $\overline{\sigma}(T_{yu}) = 1$ for all values of ω .
- The H_{∞} optimal controller (use hinfopt.m in Matlab) for an n-state augmented plant have at most n-1 states.

- The H_{∞} sub-optimal controller (use hinf.m or the newer hinfsyn.m in Matlab) for an n-state augmented plant have exactly n states.
- In the weighted mixed sensitivity problem formulation, the H_{∞} controller always cancels the stable poles of the plant with its transmission zeroes.
- In the weighted mixed sensitivity problem formulation, the unstable poles of the plant inside the specified bandwidth will be shifted to its mirror image once a H_{∞} or H_2 feedback loop is closed.

The implications are that this technique allows very precise frequency-domain loop shaping via suitable weighting strategies. If you augment the plant with frequency dependent weights W_1 to W_3 , then the Matlab script hinf or newer hinfsyn or mixsyn will find a controller that "shapes" the signals to the inverse of these weights, if it exists. The Matlab function augw.m forms the augmented plant

$$G(s) = \begin{bmatrix} W_1 & -W_1 P \\ 0 & W_2 \\ 0 & W_3 P \\ \hline I & -P \end{bmatrix}$$

4 Examples

4.1 Example 1

Consider the case of the double integrator

$$G(s) = \frac{1}{s^2}$$

This plant violates the rules for a solution (poles on imaginary axis). Now we must set up the equations carefully. The equation set, in state space form, with the addition of a "disturbance" term representing uncertainty d, is

$$\dot{x}_1 = d + u
\dot{x}_2 = x_1$$

with the regulated output (note the inclusion of the control signal to bound it) given by

$$z = \left[\begin{array}{c} x_2 \\ u \end{array} \right]$$

with the measurement equation

$$y = x_2 + n$$

The "noise" term n may include measurement errors or unmodelled high-frequency dynamics — we also need it to ensure the rank condition of D_{21} is met.

Our set of equations are

$$A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
$$D_{11} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad D_{12} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad D_{21} = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad D_{22} = 0$$

In standard format and H_{∞} format, the block diagrams of the double integrator is shown in Figure 3.

Figure 3: Double integrator example expressed into (a) Standard format and (b) H_{∞} format

Collecting the equations in packed matrix form

$$G(s) = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & \vdots & 1 \\ \hline 1 & 0 & 0 & 0 & \vdots & 0 \\ \hline 0 & 1 & 0 & 0 & \vdots & 0 \\ \hline 0 & 0 & 0 & 0 & \vdots & 1 \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline 0 & 0 & 1 & 0 & 1 & \vdots & 0 \end{bmatrix}$$

The solution to this problem by computer (pre-shifting the poles at the origin

and post-shifting the controller poles back) gives

$$\gamma = 2.62, \quad K_c = \begin{bmatrix} 1.59 & 1.08 \end{bmatrix}, \quad K_e = \begin{bmatrix} 1.08 \\ 1.59 \end{bmatrix}, \quad K(s) = \frac{-578.3(s + 0.39)}{(s + 2.33)(s + 220.7)}$$

with the closed loop poles at $\{-0.71, -0.81 \pm j0.91, -220.7\}$

4.2 Example 2

Consider the following plant

$$P(s) = \frac{s-1}{s+1}$$

This need quite agressive control to stabilize. Lets focus on the sensitivity S and choose a weight

$$W_1 = \frac{0.1(s+100)}{100s+1}$$

with bode plot (remember as $W_1S \approx 1$, therefore S will track W_1^{-1})

Choose a moderate weight $W_2 = 0.1$ and augment the plant with

s = zpk('s'); P = (s - 1)/(s + 1); % Plant is all-pass with zero in RHP

W1 = 0.1*(s + 100)/(100 * s + 1); % Control S

W2 = 0.1; % Moderate control on u

W3 = []; % Ignore T

G = augw(P, W1, W2, W3); % Augment the plant

The H_{∞} -controller can be found using

giving the controller, closed loop and $\gamma = 0.1844$ as

$$K = 0.0001 \frac{(s+1)(s-438900)}{(s+0.01)(s+69.53)}$$

$$T_{W_1S} = \frac{0.0009999 (s+100)(s+69.53)(s+1)(s+0.01)}{(s+0.01)(s+1)(s+1.876)(s+23.77)}$$

$$T_{W_2R} = \frac{0.000009999(s+1)^2(s-438900)}{(s+1)(s+1.876)(s+23.77)}$$

How well did the H_{∞} controller achieved the objectives? Generate the singular values using

```
L = K*P;  % Form loopgain
S = inv(1+L);  % Form S
T = 1-S;  % and T
```

gives the following singular value plot

4.3 Example 3

Consider the following plant

$$P(s) = \frac{1}{(s+1)(s+2)}$$

Now choose weights to make the bandwidth about $3 \,\mathrm{rad/s}$ and the sensitivity S as low as -40 dB at low frequencies. At the same time make the transmission T capable of robustly tolerating uncertainties of about $20 \,\mathrm{dB}$. Suitable weights would be (choose $M_s = M_t = 1.5$)

$$W_1(s) = \frac{s/M_s + \omega_s}{s + \omega_s \epsilon_s} = \frac{0.67(s + 4.5)}{s + 0.003}$$

$$W_3(s) = \frac{s + \omega_t/M_t}{\epsilon_t s + \omega_t} = \frac{100(s + 2)}{s + 300}$$

Using hinfsyn we obtain $\gamma = 1.1973$ and the controller

$$K = \frac{110918138.86(s+300)(s+2)(s+1)}{(s+0.003)(s+1701)(s^2+3636s+6495000)} \approx \frac{3.01(s+2)(s+1)}{s+0.003}$$

with matching

The controller operates as a lead-type of controller, cancels the plant poles and uses the pole in W_1 as its new controller pole. The match in S is very good but the first-order pole makes the match in T quite bad.

By stiffening the frequency requirement on T by using $W_3' = (W_3)^2$ as weight, reducing the overshoot to M = 1.2, we will arrive at $\gamma = 1.72$ and

$$K \approx \frac{13.51(s+2)(s+1)}{(s+0.003)(s+7.09)}$$

The controller can now tolerate 20 dB uncertainty from 10 rad/s and also provide almost -60 dB sensitivity at low frequencies.