CIS 3223 Homework 1

Name: Solutions

Dr Anthony Hughes

Temple ID (last 4 digits:

(32 pts) Complete the following table by writing "T"for true or "F "for false in each box. No justification required.

r		f = O(1)	f = O(1)	f = O(1)
f	g	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$\log 2n$	$= \log 10n$		T	7
$n \log n$	$\frac{1}{2} 2n \log 2n$	て	一	T
$n^{1/2}$	$n^{2/3}$	T	F	F
$n^{1.01}$	$n \log^2 n$	F	7	F
$n2^n$			F	F
$2^{\log n^2}$	$(\log n)^{\log n}$	T	=	F
\sqrt{n}	$> (\log n)^5$	F	て	F
$\sum_{i=1}^{n} i^k >$	\rightarrow n^k	F	T	F

$$n^{\circ,\prime} > (\log n)^2$$

$$n^{0.1} > (\log n)^{2}$$

$$2^{\log n^{2}} = 2^{2\log n} = 4^{\log n}$$

$$\sqrt{n} = n^{\frac{1}{2}}$$

$$\int_{1}^{\infty} x^{k} dx = \frac{x^{k+1}}{k+1} \Big|_{1}^{\infty} \Theta(n^{kn})$$

(6 pts) Give as good big- Θ estimate for each of the following functions.

(a)
$$f(n) = (n^2 + (\log (n^5 + 1)(n! + n3^n))$$

$$\Theta(n! \log n)$$

(b)
$$f(n) = (n + (\log n)^5)(n^4 + 4n^2)(n\sqrt{n} + 1000)$$

$$\Theta(n^{13/2})$$

3 (4 pts) Evaluate
$$\begin{bmatrix} F_{n-1} & F_{n} \\ F_{n} & F_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^{12} = \begin{bmatrix} F_{11} & F_{12} \\ F_{12} & F_{13} \end{bmatrix} = \begin{bmatrix} 44 & 233 \end{bmatrix}$$
[44 233]

Note
$$\begin{cases} 0 & 1 \\ 1 & 0 \end{cases} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} c & d \\ c & b \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} d & c \\ b & a \end{bmatrix}$$

4 (8 pts) Use strong induction to prove the following:

$$F_n \le 1.7F_{n-1}, \quad n \ge 4$$

Base cases: Show true for n = 4 and 5:

$$n=4$$
:
$$lhs = F_4 = 3$$

$$lhs = F_5 = 5$$

$$rhs = 1.7F_3 = 1.7*2 = 3.4$$

$$rhs = 1.7F_4 = 1.7*3 = 5.1$$
 So $lhs \leq rhs$. True for $n=4$ So $lhs \leq rhs$. True for $n=5$

Inductive case: Assume true for n = s, $4 \le s \le k$, $k \ge 5$

Show true for n = k + 1:

$$lhs = F_{k+1} = F_k + F_{k-1}$$

$$\leq 1.7 F_{k-1} + 1.7 F_{k-2} \qquad (induction)$$

$$= 1.7 (F_{k-1} + F_{k-2})$$

$$= 1.7 F_b$$

ths = 1.7
$$F(k+1-1) = 1.7 t_k$$
 [Note ths $\leq 1.7 F_{ik} = +hs$]
So this $\leq +hs$. True for $h = k+1$

(Bonus 2 pts) Why do we need to start with n = 4 (table useful)?

$$n = 3$$
 $|h_s = F_3 = 3$ $|h_s = 1.7F_2 = 1.7*2 = 3.4$ $|h_s > +h_s$ not true for $n = 3$.