STAT 5630, Fall 2019

Kernel Methods

Xiwei Tang, Ph.D. <xt4yj@virginia.edu>

University of Virginia November 12, 2019

Outline

- Kernel Methods
- · Density Estimation

k-Nearest Neighbor Smoother

k-Nearest Neighbor averaging

$$\widehat{f}(x) = \sum_{i=1}^{n} w(x, x_i) y_i$$

where

$$w(x,x_i) = \begin{cases} \frac{1}{k} & \text{if } x_i \in N_k(x) \\ 0 & \text{o.w.} \end{cases}$$

- The weights $w(x,x_i)$ drop off abruptly to zero outside the neighborhood of x.
- Rather than giving all the points in $N_k(x)$ equal weights, we can assign weights decaying smoothly according to the distance to x.

Epanechnikov vs. Rectangular Kernels

Epanechnikov vs. Rectangular Kernels

Kernel Smoother (Univariate)

- We can still use the local averaging idea: Fit a simple model locally at each point x using only those observations close to it.
- Localization via the weighting function $K(x,x_i)$, the weight of x_i is based on its distance from x
- For any point $x \in \mathcal{X}$,

$$\widehat{f}(x) = \frac{\sum_{i} K_{\lambda}(x, x_{i}) y_{i}}{\sum_{i} K_{\lambda}(x, x_{i})}$$

where

$$K_{\lambda}(x, x_i) = K(|x - x_i|/\lambda)/\lambda$$

Kernel Smoother

- K is a kernel function (we have seen this in SVM)
- The kernel is indexed by λ, the "bandwidth", which defined the width of the neighborhood
- The estimator is called Nadaraya-Watson kernel estimator
- Requires little or no training time; all the work gets done at evaluation time (same as kNN).

Popular Kernels

- $\int K(u)du = 1$; K is symmetric around 0; $\int u^2K(u)du \leq \infty$
- · Symmetric Beta family kernel

$$K(u,d) = \frac{(1-u^2)^d}{2^{2d+1}B(d+1,d+1)\mathbf{1}\{|u|<1\}}$$

- Uniform kernel d=0
- Epanechnikov kernel d=1
- Bi/Tri weight d=2,3
- Tri-cube kernel: $K(u) = (1 u^3)^3 \mathbf{1}\{|u| < 1\}$
- Gaussian kernel: $K(u) = \phi(u) = 1/\sqrt{2\pi} \exp(-u^2/2)$

Choice of λ

• The bandwidth λ controls how "local" the estimator is

$$K_{\lambda}(u) = K(u/\lambda)/\lambda$$

- In many kernels (except Gaussian), only points within $[x-\lambda,x+\lambda]$ receive positive weights
- Small λ: rougher estimate, bias ↓, variance ↑
- Large λ: smoother estimate, bias ↑, variance ↓
- Besides choosing λ using CV, many works in the literature discuss the choice of λ theoretically, e.g., Fan and Gijbels (1992, 1995).

Local Modeling

- Drawbacks: The kernel averaging formulation can be badly biased on the boundaries of the domain due to the asymmetry of the kernel in that region (we already seen this)
- Locally weighted linear regression can make a first order correction (straight lines vs. constants)
- · Minimizing the objective function

$$\underset{\beta_0(x),\beta_1(x)}{\text{minimize}} \ \sum_{i=1}^n K_{\lambda}(x,x_i) \big[y_i - \beta_0(x) - \beta_1(x) x_i \big]^2$$

- · The estimation is extremely simple
- The solution $\widehat{f}(x_0) = \widehat{\beta}_0(x_0) + \widehat{\beta}_1(x_0)x_0$ is evaluated only at x_0
- Correct the boundary bias of the kernel estimator

Kernel Boundary Bias

Kernel Boundary Bias

Local Polynomial Regression

- Locally weighted d polynomial regression
- · Minimizing the objective function

$$\underset{\beta_0(x),\beta_r(x)}{\text{minimize}} \ \sum_{i=1}^n K_{\lambda}(x,x_i) \Big[y_i - \beta_0(x) - \sum_{r=1}^d \beta_j(x) x_i^r \Big]^2$$

- Still a weighed linear regression problem at each x
- $\widehat{f}(x_0) = \widehat{\beta}_0(x_0) + \sum_{r=1}^d \widehat{\beta}_j(x_0) x_0^r$
- Correct the boundary bias of the kernel estimator
- Reduce bias in regions of curvature, however, at a price of higher variance

Kernel Boundary Bias

R implementation

- R function loess provides fitting of the local polynomial regressions
- The most important parameter span = α controls the degree of smoothing: only αn number of closest points are used based on the distance $|x x_i|$, forming the neighborhood "N(x)"
- A weighted least-square linear regression is fit within the neighborhood
- The weights uses tri-cube kernel: $w_{x,i} = (1 u^3)^3$ with

$$u_i = \frac{|x_i - x|}{\max_{N(x)} |x_j - x|}$$

- · degree specifies the degree of the polynomial
- Other implementations such as locfit and locpoly (use Gaussian kernel)

Kernel Density Estimation

Kernel Density Estimation

- Another area where we often use the kernel methods is for estimating the density
- Given some observations from an unknown distribution, we want to estimate the pdf of that distribution (unsupervised)

$$X_1, \dots, X_n \stackrel{\mathsf{i.i.d}}{\sim} f(\cdot)$$

- · Some density estimation methods
 - · Histograms
 - Assume a family of distributions and estimate parameters
 - · Kernel density estimator

Histogram Estimator of Density Functions

- If $X \sim f(\cdot)$ the following are some facts:
 - f(u) > 0 and $\int f(u)du = 1$

•
$$P(x - \lambda/2 \le X \le x + \lambda/2) = \int_{x-\lambda/2}^{x+\lambda/2} f(u) du$$

•
$$f(x) = \lim_{\lambda \to 0} \frac{1}{\lambda} \mathsf{P}(x - \lambda/2 \le X \le x + \lambda/2)$$

· A natural estimator is

$$\widehat{f}(x) = \frac{1}{hn} \#\{x : x \in [x - h/2, x + h/2]\}$$

However, this estimation is bumpy and non-smooth

Kernel Density Estimation

· Parzen estimate

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_{\lambda}(x, x_i)$$

- Usually $K_{\lambda}(x,x_i) = K(\frac{|x-x_i|}{\lambda})/\lambda$, and $K(u) \geq 0$.
- K(u) = K(-u), and $\int K(u)du = 1$
- Popular choice: Gaussian kernel $K_{\lambda}(x-x_i) = \phi(|x-x_i|/\lambda)/\lambda$

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \phi_{\lambda}(|x - x_i|)$$

where ϕ_{λ} is the Gaussian density with mean zero and standard deviation λ

Popular Kernels

- Performance of a kernel is measured by MISE (mean integrated squared error) or AMISE (asymptotic MISE).
- Epanechnikov kernel minimizes AMISE and is therefore optimal.
- Kernel efficiency is measured in comparison to Epanechnikov kernel:
 - Biweight 0.994; Triangular 0.986; Normal 0.951; Uniform 0.930
- However, choosing kernel is not as important as choosing the bandwidth!
- The rule of thumb (Silverman 1986) for the bandwidth λ in univariate case is

$$\widehat{\lambda} = 1.06\widehat{\sigma}n^{-1/5}$$

R implementations

- · hist makes histograms
- · density for kernel density estimator
- bw.nrd and a set of related functions for bandwidth selection
- Library locfit: function locfit can perform both local polynomial regressions and density estimation