Architektura přepínačů

Z FITwiki

Celé znění otázky: Základní architektury přepínačů, algoritmy pro plánování, řešení blokování, vícestupňové přepínací sítě.

Obsah

- 1 Obecná architektura přepínače
- 2 Požadavky na přepínače
- 3 Přepínače se sdílenou sběrnicí
- 4 Přepínaná propojovací deska
 - 4.1 Přepínače se sdílenou pamětí
 - 4.2 Křížový přepínač (crossbar)=
- 5 Plánovací algoritmy a blokování
 - 5.1 Algoritmus přidělování lístků
 - 5.2 Algoritmus PIM (Parallel Iterative Matching)
 - 5.3 Algoritmus iSLIP
- 6 Vícestupňové přepínání
 - 6.1 Přepínací síť Clos (m,n,r)
 - 6.2 Přepínací síť Beneš, BN_n
 - 6.3 Přepínací síť Torus

Obecná architektura přepínače

- Základní části přepínače:
 - Vstupní rozhraní (fabric input interface)
 - Vstupní buffer (fabric input buffers)
 - Přepínací logika (switch fabric)
 - Plánovač (scheduler)
 - Výstupní rozhraní (fabric output interface)
 - Výstupní buffer (fabric output buffers)
- Přepínací logika (switch fabric, též backplane)

- síťová topologie, kde uzly sítě jsou spojeny každý s každým pomocí jednoho či více přepínacích obvodů

Požadavky na přepínače

- Maximální přenos dat přepínací logikou
- Paralelní přenosy mezi různými rozhraními
- Spravedlivé přidělování šířky pásma
- Zachování pořadí paketů

Přepínače se sdílenou sběrnicí

- Sdílené přenosové médium řídící a datové linky
- Bus protocol řídí přenos po sběrnici
- Propustnost sběrnice R x N
 - Vhodné pro zařízení s propustností kolem 1 Gb/s
- Šířka sběrnice $w = R \times N/r$
 - R rychlost na portu
 - N počet portů
 - r taktovací frekvence sběrnice
- Nativní implementace přenosů broadcast/multicast
- Pouze jeden port může v daný okamžik komunikovat

Přepínaná propojovací deska

- Paralelní přenos paketů
- Buňky pevné délky
- Potřeba plánování přepínání plánovač (scheduler)
 - Přenos buněk ve fixních časových intervalech (time slots)
 - Detekce buněk na vstupu > Plánování přenosu -> Přenos buněk

Přepínače se sdílenou pamětí

- Centralizovaná paměť mezi vstupy a výstupy
- Pakety uloženy po příchodu do sdílené paměti
- Paměť (pevná vs proměnná velikost) rozdělena do front příslušejících k výstupům
- Rychlost při přístupu do paměti
 - Šířka pásma paměti
 - BW = 2 x N x R (simultánní čtení a zápis)
- Doba přístupu do paměti
 - t = C / (2xNxR),
 - C velikost buňky paměti
 - R rychlost na portu
 - N počet portů

Křížový přepínač (crossbar)=

- N^2 propojení (crosspoints)
- dvoustavové chování: on/off
- lze přepojit všechny vstupy a výstupy
- Nativní podpora multicastu

Přepínače se sdílenou pamětí

- Více propojení aktivních v daném časovém slotu
- Možnost kolizí
 - více vstupů požaduje jeden výstup
- Centrální plánovač
 - řídí propojení (crosspoints) pomocí řídící linky
 - nastavuje konfiguraci přepínače podle požadavků na vstupu
- Nevýhody
 - Rozšiřitelnost kvadratická složitost O(N2)
 - Obtížné garantovat kvalitu služby QoS
 - souběžné požadavky z více vstupů na jeden výstup
- Chybí redundance (pouze jedna cesta mezi vstupem a výstupem)

Plánovací algoritmy a blokování

- Největší párování (maximum matching)
 - Párování, které obsahuje největší možný počet hran
 - Globálně optimální, největší propustnost
- Maximální párování (maximal matching)
 - Párování, ke kterému nelze přiřadit další hrany, aniž bychom zvýšili stupeň některého z uzlů na 2.
 - Lokální maximum

Algoritmus přidělování lístků

- Žádost o lístek (Request)
 - Vstupní port P pošle po řídící sběrnici požadavek na výstupní port Q.
- Přidělení pořadí (Grant)
 - Port Q vrátí P lístek TQX s přiděleným pořadovým číslem X.
- Propojení a přenos (Connect & Transfer)
 - Výstupní port Q umístí na řídící sběrnici aktuální číslo TQX broadcast.
 - Q nastaví příslušný propojovací tranzistor do stavu zapnuto.
 - Vstupní port P zapíše data na datovou sběrnici.
- Výhody:
 - Umožňuje asynchronní zpracování
 - Přenos rámců variabilní velikosti
- Nevýhody:
 - Blokování na začátku fronty (HOL) menší propustnost
 - Nezávislé přidělování lístků problém s multicastem
- Virtuální výstupní fronty VOQ řešení HOL

- Rozdělení vstupní fronty na portu do více front (Pro každý výstupní port)

Algoritmus PIM (Parallel Iterative Matching)

- Žádost o port
 - Vstupní port P posílá žádosti na všechny žádané porty
- Udělení portu
 - Výstupní port Q přidělí port
 - V případě více žádostí o přístup, náhodně vybere jednu.
- Přijetí a přenos
 - Vstupní port P zpracuje došlé udělení portů.
 - V případě povolení více přenosů, náhodně vybere jeden

Algoritmus iSLIP

- Při soupeření o port používá rotující ukazatele
- Po každé iteraci se inkrementují ukazatele
 - Ii ukazatel na vstupním portu i
 - Oj ukazatel na výstupním portu j
- Žádost
 - každý port zašle žádost na každý výstupní port
- Přidělení
 - pokud výstupní port Y dostane více žádostí, vybere tu, která má číslo portu ≥ Oj;
 - pokud je jich více, vybere se ta s nejmenší hodnotou
- Přijetí
 - pokud vstupní port X obdrží více povolení, vybere ten port, který je ≥ Ii
 - pokud je jich více, vybere se ta s nejmenší hodnotou

Vícestupňové přepínání

Rozšiřitelné architektury pro velké množství portů

Přepínací síť Clos (m,n,r)

- Třístupňová přepínací síť využívá křížové přepínače
 - První stupeň rozdělí n-vstupů na menší skupiny
 - Prostřední stupeň propojí každý vstupní a výstupní přepínač.
 - m-různých cest mezi daným vstupním a výstupním portem

Přepínací síť Beneš, BN_n

- Modifikovaná síť Clos(2,2,1) s přeskládáním
- Hierarchicky rekurzivní konstrukce!!
 - Počet vstupů: N=2n

- Blok N/2 vstupních přepínačů 2x2
- Prostřední část rekurzivních bloků BN(n-1)
- Blok N/2 výstupních přepínačů 2x2
- Počet bloků (stupňů): 2 log2 N 1

Přepínací síť Torus

- Decentralizované přímé přepínání
 - Každý uzel slouží jako vstup, výstup i přepínací uzel (přímá síť)
 - n-dimenzionální síť uzlů ki s adresou (a1,a2, ..., an)
 - Každý uzel ki připojen dvěma cestami v každé dimenzi

Citováno z "http://wiki.fituska.eu/index.php?

title=Architektura_p%C5%99ep%C3%ADna%C4%8D%C5%AF&oldid=13844" Kategorie: Státnice PDS

Stránka byla naposledy editována 17. 6. 2017 v 19:02.