# 머신러닝 리뷰

BOAZ 16기 분석 박은지 2021. 08. 19

### 지금까지 무얼 배웠죠?

1주차 - EDA를 위한 Pandas, numpy, 시각화

#### 2주차

- 머신러닝과 딥러닝? 회귀 vs분류
- 단순선형회귀 : 최소제곱법, OLSE, MSE, RMSE
- 다중선형회귀:다중공선성
- 로지스틱회귀: MLE, 가능도
- Bias vs Variance / 오버 vs 언더피팅 / 표준화와 정규화 (L1, L2)

#### 3주차

- Decision Tree
- 앙상블

#### 4주차

- 부스팅 (AdaBoost, Gradient Boost, XGBoost, LightGBM)
- 스태킹
- SVM

공동세션 : 웹 크롤링

# 그동안 배웠던 것을 리뷰해봅시다!



머신러닝 파이프라인으로 생각해보기



- 기업 : DataBase/SQL
- 학생:

- 크롤링

- 시간이 되면 SQL 공부도 해보세요!



탐색적 데이터분석 EDA

- 데이터를 씹고 뜯고...맛도?
- 시각화 활용
- 이상치, 결측치
- 데이터 정규화
  - Standardization (평균이0, 표준편차가1)
  - min-max normalization (상대적 크기로 0~1)
- 문제정의, 가설 수립

|           | 표준화(standardization)                  | 정규화(normalization)                                             |  |
|-----------|---------------------------------------|----------------------------------------------------------------|--|
| 공통점       | 데이터 rescaling                         |                                                                |  |
| 성의<br>&목적 | 타내는 값으로 특정 범위를 벗어난 데이터는               | 데이터의 <u>상대적 크기에 대한 영향을 줄이기</u><br>위 <u>해</u> 데이터범위를 0~1로 변환    |  |
| 값의 범위     | ±1.96(또는 ±2) 데이터만 선택                  | 0~1                                                            |  |
| 공식        | $z = \frac{x - x}{\sigma}$ (분모가 표준편차) | $X_{new} = rac{X - X_{min}}{X_{max} - X_{min}}$<br>(분모가 max값) |  |



- 제일 중요한데 제일 귀찮고 어려움
- 공모전의 수상여부가 걸려있음
- Garbage in, Garbage out
- 파생변수 생성 (도메인 지식 활용)
- 피쳐 스케일링
- 피쳐 선택 (다중공선성 고려)
- 정규표현식을 배워두면 유용함 (링크) 점투파 정규표현식

| 정규 표현식         | 의미                       | 축약표현 |
|----------------|--------------------------|------|
| [0-9]          | 숫자를 찿음                   | ₩d   |
| [^0-9]         | 숫자가 아닌 것을 찾음             | ₩D   |
| [₩t₩n₩r₩f₩v]   | 문자(텍스트, 특수문자, 숫자)인 것을 찾음 | ₩s   |
| [^ ₩t₩n₩r₩f₩v] | 문자가 아닌 것을 찾음             | ₩S   |
| [a-z]          | 소문자를 찾음                  |      |
| [^a-z]         | 소문자가 아닌 것을 찾음            |      |
| [A-Z]          | 대문자인 것을 찾음               |      |
| [^A-Z]         | 대문자가 아닌 것을 찾음            |      |
| [A-Za-z0-9]    | 영문자,숫자를 찿음               | ₩w   |
| [^A-Za-z0-9]   | 영문자,숫자가 아닌 것을 찾음         | ₩W   |



- 그동안 배웠던 모델들
- 앞으로 배울 DNN, CNN
- 우선 간단하게 만들고(Baseline) 그 뒤에 복잡한 것을 적용해보기



- 1. 모델 생성 model = DecisionTree()
- 2. 모델 학습 model.fit(X\_train,y\_train)
- 3. 모델 평가 model.score(X\_test, y\_test)
- 4. 모델 예측 model.predict(X\_unseen)

데이터수집 데이터 전처리 벤지니어링 모델링 하이퍼파라미 평가





피쳐 엔지니어링

모델링

하이퍼파라미 터 튜닝

평가



# Simplie Linear Regression 단순선형회귀





- 독립변수 X가 1개인 경우
- 예측값 실제값의 차이를 최소화하는 직선 찾기
- 회귀식의 정확도 평가방법
  - 1. MSE(Mean Squared Error) =  $\frac{SSE}{n-2}$
  - 2. RMSE(Mean Squared Error) =  $\sqrt{MSE}$

3. R-Squared = 
$$\frac{SSR}{SST}$$

데이터수집 데이터 전처리 에지니어링 모델링 하이퍼파라미 평가



# Multiple Linear Regression 다중선형회귀, 다항선형회귀



- 독립변수 X가 여러개인 경우
- 가정 : 추정치가 선형관계, 등분산, 자기상관X, 다중공선성X
- 다중공선성에 유의 (ex 월평균음주량,혈중알코올농도→성적)
- VIF를 이용 10이상인 경우 다<del>중공</del>선성 판단

$$VIF_1 = \frac{1}{1 - R_1^2}$$
  $VIF_i > 10 \Leftrightarrow \frac{1}{1 - r_i} > 10$   $1 > 10 - 10r_i$   $r_i > 0.9$ 

데이터수집

데이터 전처리

피쳐 엔지니어링

모델링

하이퍼파라미 터 튜닝

평가



#### 앙상블

Voting

Bagging

Boosting

Stacking

### Losistic Regression 로지스틱회귀



- 종속변수 Y가 범주형일 경우, 확률값을 계산하여 분류에 적용
- 범주에 속하면1, 속하지 않으면 0으로 (이진분류) 예측

- Odds 
$$\operatorname{odds} = \frac{p(y=1|x)}{1-p(y=1|x)}$$

- Losit 변환 (오즈에 로그취함) 
$$\log it(p) = \log \frac{p}{1-p}$$

- 로지스틱함수 
$$\operatorname{logistic function} = \frac{e^{\beta \cdot X_i}}{1 + e^{\beta \cdot X_i}}$$

데이터수집 이데이터 전처리 에지니어링 모델링 하이퍼파라미 평가



#### **Support Vector Machine**



- 결정경계(분류를 위한 선) 를 정의하는 방식의 분류모델
- 마진(결정경계와 서포트백터의 사이거리) 최대화
- 서포트벡터(결정경계 가까운 데이터들)만 정의해도 됨 → 속도가 매우 빠름

| 하드마진                        | 소프트마진               |
|-----------------------------|---------------------|
| 서포트벡터-결정경계 사이 <del>좁음</del> | 서포트벡터-결정경계 사이 멀음    |
| 마진이 작아짐                     | 마진이 커짐              |
| 오버피팅 문제 발생 (오류 허용X)         | 언더피팅 문제 발생 (오류 허용O) |
| 파라미터 C값을 크게                 | 파라미터 C값을 작게         |

데이터수집 데이터 전처리

피쳐 엔지니어링

모델링

하이퍼파라미 터 튜닝

평가



앙상블

#### Decision Tree 의사결정나무



- 분류와 회귀 모두 사용 가능
- 적절한 '분리규칙'과 '정지규칙'으로 예측값을 할당하며 학습
- 장점: 직관적, 이상치와 노이즈 영향 적음, 모델 해석력 등
- 단점 : 일반화 어려움, **오버피팅 가능성 높음**
- 분리규칙
  - 1) 지니계수  $G(S) = 1 \sum_{i=1}^{c} p_i^2$
  - 2)  $\underline{\mathbf{UE}}\mathbf{II}$   $Entropy(S) = \sum_{i=1}^{c} p_i * I(x_i)$  IG(S,A) = E(S) E(S|A)
- 정지규칙 : 불순도가 줄지 않음 / Sample 수 부족 / 규제매개변수 도달
- 규제매개변수 : max\_depth, min\_samples\_split 등 → 오버피팅 막기
- 가치치기 : 마디를 잘라내어 단순화하고, 오버피팅 막기 (merge)

데이터수집 이미터 전처리 에지니어링 모델링 하이퍼파라미 평가



#### Ensemble

- 여러 모델을 바탕으로 새로운 모델을 만드는 방식 (*집단지성*)
- 보팅: 1개의 데이터셋에 여러 모델의 예측결과로 투표하는 방식
- **배깅** : 여러 Subset에 같은 모델의 **예측결과를 결합**하는 방식
- **부스팅**: 앞선 모델의 틀린 예측에 가중치를 더하며 여러 모델 학습
- **스태킹**: 여러모델의 학습결과를 메타모델의 학습데이터로 재학습

데이터수집 데이터 전처리 엔지니어링 모델링 하이퍼파라미 평가



#### Voting

- **보팅** : 1개의 데이터셋에 여러 모델의 예측결과로 투표하는 방식
- 편향-분산 Trand-off의 효과를 극대화함
- 하드포팅 : 다수결의 방식
- 소프트보팅 : 결정확률을 더하는 예측값 방식 (일반적으로 더 나음)





데이터수집 데이터 전처리 엔지니어링 모델링 하이퍼파라미 평가



#### Bagging

- **배깅** : 복원추출한 여러 Subset (= bootstrap 방식) 에 같은 모델의 예측결과 결합하는 방식
- RandomForest 모델: 결정트리기반 알고리즘
  과적합 확률이 큰 여러 트리 결과를 투표(혹은 평균)하는 방식
  학습시간이 빠르고, 과적합 방지가 가능하며, 정확도가 좋은편
  → 병렬처리를 지원해서, 일단 Baseline으로 짜기 적절함



데이터수집 데이터 전처리 벤지니어링 모델링 하이퍼파라미 평가



#### Boosing

- 부스팅 : 여러 모델을 <u>순차적으로</u> 학습-예측 해가면서 앞선 모델의 틀린 예측에 가중치를 부여해 오류를 개선하며 학습
- 장점 : 오류를 개선해가기에 정확도가 높음
- 단점: 순차적 진행으로 속도 느림, 오버피팅 가능성 높음

#### [알고리즘]

- Adaboost : 간단하고 약한 학습기간에 상호보완 순차적학습
- GBM: 잔차(Residual)를 줄여가는 방식으로 순차적학습
- XGBoost : GBM보다 성능/시간이 뛰어남, 조기중단가능,
- LGBM: 리프중심분할, XGBoot과 유사한성능, 빠른속도, 적은메모리



데이터수집 데이터 전처리 엔지니어링 모델링 하이퍼파라미 평가





데이터수집 데이터 전처리 엔지니어링 모델링 하이퍼파라미 평가



#### Stacking

- 스태킹: 여러모델의 학습결과를 메타모델의 학습데이터로 재학습
- 현실에서 적용하기보단, 캐글 성능향상 목적으로 유용함!



K-Fold CV를 이용하여
 데이터셋을 나누면서
 과적합 방지가능



데이터 전처리 데이터수집

피쳐 엔지니어링

모델링

하이퍼파라미 터 튜닝

차원축소

PCA

LDA

SVD

NFM

평가

| 지도학습 (supervised learning) |        |          |  |  |
|----------------------------|--------|----------|--|--|
| 수치형 - 회귀                   |        | 명목형 - 분류 |  |  |
| 변수                         | 단순선형회귀 | 로지스틱회귀   |  |  |
| 개수                         | 다중선형회귀 |          |  |  |
|                            | 의사결정나무 | 의사결정나무   |  |  |
|                            |        | SVM      |  |  |

앙상블

Voting

Bagging

Boosting

Stacking

| 비지도학습 (supervised learning) |     |  |  |  |
|-----------------------------|-----|--|--|--|
| 군집                          | 차원켶 |  |  |  |
| K-Means                     | PCA |  |  |  |
| DBSCAN                      | LDA |  |  |  |
| GMM(Gaussian Mixture Model) | SVD |  |  |  |
|                             | NFM |  |  |  |
|                             |     |  |  |  |
| 추천시                         | 스템  |  |  |  |
| NL                          | P   |  |  |  |
| 강화학                         | 학습  |  |  |  |
|                             |     |  |  |  |
|                             |     |  |  |  |

#### Machine Learning Algorithms Cheat Sheet **Unsupervised Learning: Clustering** Unsupervised Learning: Dimension Reduction **START** Dimension Latent Dirichlet Topic Prefer Probabilistic Categorical Modeling Reduction Probability Mixture Model Variables Need to Have Hierarchical Specify k Reponses Supervised Learning: Regression Supervised Learning: Classification. Linear SVM Decision Tree SPEED SPEED Data Is Speed or Speed or Predicting Explainable Too Large Accuracy Numeric Accuracy Linear Regression Naïve Bayes ACCURACY **ACCURACY** Random Forest Naive Bayes Kernel SVM Neural Network Logistic Regression Random Forest Neural Network **Boosting Tree**

**Boosting Tree** 

출처 : SAS 공식블로그 (링크)



#### ■ 그리드 서치 vs 랜덤서치



- **그리드 서치**: 모든 경우를 테이블로 만든뒤 격자로 탐색 연산비용 큼. 처음에는 넓은 간격으로 탐색하는 것이 좋음
- **랜덤 서치**: 하이퍼 파라미터 값을 **랜덤**하게 탐색

- 랜덤 서치 vs 그리드 서치
- 공모전에선 성능향상을 위한 시간 소요
- Colab GPU를 적절히 활용



#### ■ 교차검증





[언더피팅 해결] 피쳐 수 늘리기 학습을 더 반복하기

[오버피팅 해결] 피쳐 수 줄이기 데이터의 양 늘리기 교차검증 사용하기 L1, L2 규제 (정규화)

- 교차검증
- MSE, RMSE, MAE ...
- 오버피팅 / 언더피팅 해결

# 감사합니다!