

Capítulo 1: Introducción

Fundamentos de Bases de datos, 5ª Edición.

©Silberschatz, Korth y Sudarshan
Consulte www.db-book.com sobre condiciones de uso

Capítulo 1: Introducción

- Objetivo principal de los sistemas de bases de datos
- Visión de los datos
- Lenguajes de bases de datos
- Bases de datos relacionales
- Diseño de bases de datos
- Bases de datos basadas en objetos y semiestructuradas
- Almacenamiento de datos y consultas
- Gestión de transacciones
- Arquitectura de las bases de datos
- Usuarios y administradores de bases de datos
- Estructura general de un sistema
- Historia de los sistemas de bases de datos

Sistema de gestión de bases de datos (SGBD)

- SGBD contiene información sobre una empresa en particular
 - Colección de datos relacionados
 - Conjunto de programas de acceso a los datos
 - Entorno que resulta conveniente y eficiente en su uso
- Objetivo: gestionar gran cantidad de información
 - Definición de estructuras para almacenar la información.
 - Provisión de mecanismos para su manipulación
 - Garantizar la fiabilidad de la información almacenada
 - Soportar caidas del sistema
 - Controlar intentos de accesos no autorizados
 - Administrar el uso del SGBD compartido entre usuarios evitando resultados anómalos

Sistema de gestión de bases de datos (SGBD)

- Aplicaciones de los sistemas de bases de datos:
 - Banca: cualquier tipo de transacción
 - Líneas aéreas: reservas, información de planificación, etc.
 - Universidades: registros, cursos
 - Ventas: información de clientes, productos y compras
 - Minoristas en línea: seguimiento de órdenes, recomendaciones personalizadas
 - Producción: producción, inventarios, pedidos, cadena de producción
 - Recursos humanos: información sobre los empleados, salarios, impuestos y beneficios
- Las bases de datos tocan todos los aspectos de nuestras vidas

Objetivo principal de los sistemas de bases de datos

- Inicialmente, las aplicaciones de los sistemas de bases de datos se construyeron encima de los sistemas de archivos
- Inconvenientes de utilizar sistemas de archivos para almacenar datos:
 - Redundancia e inconsistencia de datos
 - Diversos formatos de archivos, duplicación de la información en archivos diferentes
 - Dificultad en el acceso a los datos
 - Necesidad de escribir un programa nuevo por cada tarea nueva
 - Aislamiento de datos diversos archivos con diferentes formatos
 - Problemas de integridad
 - Restricciones de consistencia (p. e. el saldo de una cuenta bancaria
 > 0) pasan a formar parte del código del programa
 - Dificultad para añadir restricciones nuevas o modificar las existentes

Objetivo principal de los sistemas de bases de datos (cont.)

- Inconvenientes de utilizar sistemas de archivos (cont.)
 - Problemas de atomicidad
 - Los fallos pueden dejar a las bases de datos en un estado de inconsistencia si se han llevado a cabo actualizaciones parciales
 - Por ejemplo, la transferencia de fondos de una cuenta bancaria a otra debe ser completa o no llevarse a cabo
 - Anomalías en el acceso concurrente
 - Se necesita el acceso concurrente para obtener un buen rendimiento
 - El acceso concurrente sin control puede conducir a tener datos inconsistentes
 - P. e. dos personas leyendo y actualizando un saldo al mismo tiempo
 - Problemas de seguridad
 - Dificultad de proporcionar acceso a parte de los datos pero no a todos
- Los sistemas de bases de datos ofrecen soluciones para todos los problemas anteriores

Niveles de abstración

OBJETIVO: ofrecer a los usuarios una visión abstracta de los datos

- Nivel físico: describe cómo se almacenan realmente los datos (p. e., nombre del cliente).
- Nivel lógico: describe qué datos se almacenan en la base de datos y las relaciones existentes entre ellos.

```
type cliente = record

id_cliente : string;

nombre_cliente : string;
```

calle_cliente : string;

ciudad_cliente : integer;

end;

Nivel de vistas: los programas de aplicación ocultan detalles de los tipos de datos. Las vistas también pueden ocultar información (p. e., salarios) por razones de seguridad.

Visión de los datos

Una arquitectura para un sistema de bases de datos

Instancias y esquemas

- Similar a los tipos y variables en los lenguajes de programación
- Esquema— la estructura lógica de la base de datos
 - Ejemplo: La base de datos se compone de información acerca de un grupo de clientes y cuentas, y de las relaciones entre ellos
 - Análogo a la información del tipo de una variable en un programa
 - Esquema físico: diseño de la base de datos a nivel físico
 - Esquema lógico: diseño de la base de datos a nivel lógico
- Instancia el contenido real de la base de datos en un instante de tiempo determinado
 - Análogo al valor de una variable
- Independencia física de los datos la capacidad de modificar el esquema físico sin cambiar el esquema lógico
 - Las aplicaciones dependen del esquema lógico
 - En general, las interfaces entre los diferentes niveles y componentes deben definirse adecuadamente de modo que los cambios en algunas partes no influencien otras seriamente.

Modelos de datos

- Colección de herramientas conceptuales para describir
 - los datos
 - las relaciones de datos
 - la semántica de los datos
 - consistencia entre los datos
- Modelo relacional
 - Colección de tablas para representar los datos y sus relaciones
 - Cada tabla tiene columnas, y las columnas un nombre único
 - Modelo basado en registros
 - Es el modelo de datos más ampliamente usado
- Modelo entidad-relación (principalmente para el diseño de bases de datos)
 - Se basa en una percepción del mundo real
 - Consiste en una colección de objetos básicos, entidades y relaciones

Modelos de datos

...continua

- Modelo de datos orientado a objetos
 - Parece una extensión del modelo Entidad-Relacion
 - Incluye los conceptos de encapsulación, métodos y la identidad de los objetos
- Modelo de datos semiestructurados (XML)
 - Permite la especificación de datos donde los elementos de datos individuales del mismo tipo pueden tener diferentes conjuntos de atributos
- Modelos anteriores:
 - Modelo de red
 - Modelo jerárquico

Lenguaje de manipulación de datos (LMD)

- Lenguaje para acceder o manipular los datos organizados mediante el modelo de datos apropiado
 - El LMD también se conoce como lenguaje de consultas
- Existen dos clases de lenguajes
 - Procedimentales el usuario especifica que datos se necesitan y cómo han de obtenerse dichos datos
 - Declarativos (no procedimentales) el usuario especifica qué datos se necesitan sin espcificar cómo se han de obtener
- SQL es el lenguaje de consultas utilizado más ampliamente
- SQL es un lenguaje NO PROCEDIMENTAL

Lenguaje de definición de datos (LDD)

Notación de especificación para definir el esquema de la base de datos Ejemplo: create table cuenta (

```
Ejemplo: create table cuenta (

número_cuenta char(10),

saldo integer)
```

- El compilador LDD genera un conjunto especial de tablas denominado diccionario de datos
- El diccionario de datos contiene metadatos (i.e., datos acerca de los datos)
 - Esquema de base de datos
 - Lenguaje de almacenamiento y definición de datos
 - Especifica la estructura de almacenamiento y los métodos de acceso utilizados
 - Restricciones de integridad
 - Restricciones de dominio
 - Integridad referencial (restricción references en SQL)
 - Asertos
 - Autorización

Modelo relacional

Ejemplo de tabla de datos en el modelo relacional

id_cliente	nombre_cliente	calle_cliente	ciudad <u>c</u> liente	número_cuenta
19.283.746	González	Arenal, 12	La Granja	C-101
19.283.746	González	Arenal, 12	La Granja	C-201
67.789.901	López	Mayor, 3	Peguerinos	C-102
18.273.609	Abril	Preciados, 123	Valsaín	C-305
32.112.312	Santos	Mayor, 100	Peguerinos	C-217
33.666.999	Rupérez	Ramblas, 175	León	C-222
01.928.374	Gómez	Carretas, 72	Cerceda	C-201

Ejemplo de base de datos relacional

id_cliente	nombre_cliente	calle_cliente	ciudad_cliente
19.283.746	González	Arenal, 12	La Granja
67.789.901	López	Mayor, 3	Peguerinos
18.273.609	Abril	Preciados, 123	Valsaín
32.112.312	Santos	Mayor, 100	Peguerinos
33.666.999	Rupérez	Ramblas, 175	León
01.928.374	Gómez	Carretas, 72	Cerceda

(a) La tabla cliente

número_cuenta	saldo
C-101	500
C-215	700
C-102	400
C-305	350
C-201	900
C-217	750
C-222	700

(b) La tabla cuenta

id_cliente	número_cuenta
19.283.746	C-101
19.283.746	C-201
01.928.374	C-215
67.789.901	C-102
18.273.609	C-305
32.112.312	C-217
33.666.999	C-222
01.928.374	C-201

(c) La tabla impositor

SQL

- SQL: lenguaje no procedimental ampliamente utilizado
 - Ejemplo: Encontrar el nombre de el cliente con id_cliente 192-83-7465
 select cliente.nombre_cliente
 from cliente
 where cliente.id_cliente = '192-83-7465'
 - Ejemplo: Encontrar el saldo de todas las cuentas del cliente cuyo id_cliente sea 192-83-7465

select cuenta.saldo

from impositor, cuenta

where impositor.id_cliente = '192-83-7465' and

impositor.número-cuenta = cuenta.número_cuenta

- Los programas de aplicación generalmente acceden a la base de datos a través de
 - Extensiones de lenguajes que premitan SQL empotrado
 - Interfaces de programas de aplicación (p. e. ODBC/JDBC) que permiten el envío de consultas SQL a una base de datos

Diseño de la base de datos

Proceso de diseño de la estructura general de una base de datos:

- Diseño lógico Decidir el esquema de la base de datos. El diseño de la base de datos requiere encontrar una "buena" colección de esquemas de relación.
 - Decisión de negocio ¿Qué atributos se deberían registrar en la base de datos?
 - Decisión informática ¿Qué relación de esquemas se deberían utilizar y cómo se deberían distribuir los atributos entre los distintos esquemas de relación?
- Diseño físico Decidir sobre las características físicas de la base de datos

Modelo entidad-relación

- Modela una empresa como una colección de entidades y relaciones
 - Entidad: una "cosa" o un "objeto" en la empresa distinguible de otros objetos
 - Se describe mediante un conjunto de atributos
 - Relación: una asociación entre varias entidades
- Se representa gráficamente mediante un diagrama entidad-relación:

Concepto de Normalización

Modelos de datos relacional orientado a objetos

- Extiende el modelo de datos relacional incluyendo orientación a objetos y construcciones que manejan otros tipos de datos adicionales.
- Permite atributos de tuplas con tipos complejos, incluyendo valores no atómicos como son las relaciones anidadas.
- Preserva los fundamentos relacionales, en particular el acceso declarativo a los datos, aunque extiende la capacidad de modelado.
- Proporciona compatibilidad hacia arriba con lenguajes relacionales preexistentes.

XML: Lenguaje de marcas extensible

- Definido por el consorcio WWW (W3C)
- Originariamente como lenguaje de marcado de documentos, no como lenguaje de base de datos.
- La posibilidad de especificar nuevas etiquetas y crear estructuras de etiquetas anidadas convierten a XML en un mecanismo perfecto para el intercambio de **datos**, no solo de documentos.
- XML se ha convertido en la base de una nueva generación de formatos de intercambio de datos.
- Existen una gran variedad de herramientas de análisis, presentación y consulta de documentos/datos en XML

Gestión de almacenamiento

- El gestor de almacenamiento es un módulo de programa que proporciona la interfaz entre los datos de bajo nivel en la base de datos y los programas de aplicación y consultas emitidas al sistema.
- El gestor de almacenamiento es responsable de las siguientes tareas:
 - La interacción con el gestor de ficheros
 - El almacenamiento, recuperación y actualización eficiente de los datos
- Temas:
 - Almacenamiento
 - Organización de archivos
 - Indexación y asociación

Procesamiento de consultas

- 1. Análisis y traducción
- 2. Optimización
- 3. Evaluación

Procesamiento de consultas (cont.)

- Alternativas de evaluación de una consulta
 - Expresiones equivalentes
 - Algoritmos diferentes para cada operación
- La diferencia de coste entre una forma buena y una mala de evaluar una consulta puede ser enorme.
- Se necesita estimar el coste de las operaciones
 - Depende de forma crítica de la información estadística sobre las relaciones que debe mantener la base de datos.
 - Se necesita estimar las estadísticas para los resultados intermedios para estimar el coste de expresiones complejas.

Gestión de transaciones

- Una transacción es una colección de operaciones que se llevan a cabo como una única función lógica en una aplicación de base de datos.
- El componente de gestión de transacciones asegura que la base de datos permanezca en un estado consistente (correcto) a pesar de los fallos del sistema (p.e., fallos de energía y caídas del sistema operativo) y de los fallos en las transacciones.
- El gestor de control de concurrencia controla la interacción entre las transacciones concurrentes para asegurar la consistencia de la base de datos.

Arquitectura de la base de datos

La arquitectura de una base de datos se ve muy influenciada por el sistema informático subyacente sobre el que se está ejecutando:

- Centralizado
- Cliente-servidor
- Paralelo (multi-procesador)
- Distribuido

Cliente Servidor - capas

Usuarios de bases de datos

Los **usuarios** se diferencian por la forma en que esperan interactuar con el sistema

- Programadores de aplicaciones interactúan con el sistema por medio de llamadas LMD
- Usuarios sofisticados formulan sus peticiones en un lenguaje de consulta de bases de datos
- Usuarios especializados escriben aplicaciones de bases de datos especializadas que no cuadran con el marco de procesamiento de datos tradicional
- Usuarios normales invocan uno de los programas de aplicación permanentes que se han escrito con anterioridad
 - Ejemplos, las personas que acceden a bases de datos a través de la web, los cajeros automáticos, el personal de oficina

Administrador de la base de datos

- Coordina todas las actividades del sistema de la base de datos; posee buenos conocimientos de los recursos y necesidades de información de la empresa.
- Entre las funciones del ABD se incluyen:
 - Definición del esquema
 - Estructura de almacenamiento y definición del método de acceso
 - Modificación del esquema y organización física
 - Concesión de autorización para el acceso a los datos
 - Especificación de las restricciones de consistencia
 - Actuar como enlace con los usuarios.
 - Supervisión de rendimiento y respuesta a cambios de los requisitos

Estructura general del sistema

Historia de los sistemas de bases de datos

- Años 50 y primeros 60:
 - Procesamiento de datos con cintas magneticas como almacenamiento
 - Las cintas sólo proporcionan acceso secuencial
 - Tarjetas perforadas como entrada
- Finales de los 60 y años 70:
 - Los discos duros permiten acceso directo a los datos
 - Modelos de datos jerárquicos y en red en amplio uso
 - Ted Codd define el modelo de datos relacional
 - Obtuvo el premio Turing de la ACM por su contribución
 - IBM Research comienza el prototipo System R
 - UC Berkeley comienza el prototipo Ingres
 - Alto rendimiento en el procesamiento de transacciones (para su época)

Historia (cont.)

- Años 80:
 - Los prototipos relacionales de investigación evolucionan a sistemas comerciales
 - SQL se convierte en el estándar industrial
 - Sistemas de bases de datos paralelos y distribuidos
 - Sistemas de bases de datos orientados a objetos
- Años 90:
 - Grandes aplicaciones de ayuda a la toma de decisiones y minería de datos
 - Grandes almacenes de datos multi-terabyte
 - Emerge el comercio Web
- Años 2000:
 - Estándares XML XQuery
 - Administración automatizada de bases de datos

Fin capítulo 1

Fundamentos de Bases de datos, 5ª Edición.

©Silberschatz, Korth y Sudarshan
Consulte www.db-book.com sobre condiciones de uso

