Ve203 Discrete Mathematics

Runze Cai

University of Michigan - Shanghai Jiao Tong University Joint Institute

Spring 2022

Part IV

Counting and Algorithms

Table of Contents

1. Binomial Coefficients

- 2. Multichoosing
- 3. Inclusion-Exclusion Principle

- 4. Asymptotic Notations
- 5. Master Method

Overview

- ► The On-Line Encyclopedia of Integer Sequences® (OEIS®)

 https://oeis.org/
- ► Enumerative Combinatorics by Richard P. Stanley

Twelvefold Way

Distribute k balls into n urns. $(f: B \rightarrow U, |B| = k, |U| = n)$

Balls (domain)	Urns (codomain)	unrestricted (any function)	$\leq 1 \\ (injective)$	≥ 1 (surjective)
labeled	labeled	n^k	n <u>k</u>	$n! {k \choose n}$
unlabeled	labeled	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$
labeled	unlabeled	$\sum_{i=1}^{n} \begin{Bmatrix} k \\ i \end{Bmatrix}$	$[k \le n]$	${k \choose n}$
unlabeled	unlabeled	$\sum_{i=1}^n p_i(k)$	$[k \leq n]$	$p_n(k)$
_				

- ▶ $n^{\underline{k}} = (n)_k = P(n, k) = P_k^n$ ▶ $\binom{k}{n} = \#$ partition of [k] into n parts.
- $(\binom{n}{k}) = \binom{n+k-1}{k}$ \([k \le n]: \text{ Iverson bracket} \)

Physics Digression

Maxwell-Boltzmann statistics (applicable to no known particles)

- \triangleright k distinguishable particles, n distinguishable cells.
- ▶ Different arrangements with equal probability $1/n^k$.

Bose-Einstein statistics (bosons, e.g., photons, nuclei, atoms, spin-1 particles)

- k indistinguishable particles, n distinguishable cells.
- ▶ Different arrangements with equal probability $1/\binom{n}{k}$.

Fermi-Dirac statistics (fermions, e.g., electrons, neutrons, protons, spin- $\frac{1}{2}$ particles)

- k indistinguishable particles, n distinguishable cells.
- No two or more particles can be in the same cell.
- ▶ Different arrangements with equal probability $1/\binom{n}{k}$.

Permutations

k-permutation of n

Number of ways of arranging k elements from a set of size n (order matters) is given by

$$n^{\underline{k}} = P(n, k) = P_k^n = \frac{n!}{(n-k)!}$$

$$= \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)}_{k \text{ terms}}$$

which is obviously an integer. Note: 0! = 1.

Combinations

Definition

The number of ways to choose k elements from a set of n (order does NOT matter) is denoted

$$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{P(n,k)}{k!} = \frac{n^{\underline{k}}}{k!}$$

Reads "n choose k".

Basic Properties

- $\qquad \qquad \binom{n}{k} = \binom{n}{n-k}$

Combinations

Why is $\binom{n}{k}$ an integer?

Method I: Counting Prime Factors.

Note that $\binom{n}{k}=\frac{n!}{(n-k)!k!}$, it is sufficient to show that all factors of the denominator are cancelled by factors in the numerator. Let $\mu_p(x)$ be the the number of the prime factor p in x. According to Legendre's theorem, for $N\in\mathbb{N}$, we have

$$\mu_p(N!) = \sum_{k>1} \left\lfloor \frac{N}{p^k} \right\rfloor$$

We want to show that $\mu_p(n!) \ge \mu_p(k!) + \mu_p((n-k)!)$ for all $p \in \mathbb{P}$. Indeed,

$$\mu_p(n!) - \mu_p(k!) - \mu_p((n-k)!) = \sum_{k>1} \left(\left\lfloor \frac{n}{p^k} \right\rfloor - \left\lfloor \frac{k}{p^k} \right\rfloor - \left\lfloor \frac{n-k}{p^k} \right\rfloor \right)$$

The rest follows by noticing that for $x, y \in \mathbb{R}$, either $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$, or $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor + 1$.

Combinations

Method II: Using Lagrange's Theorem.

Consider the symmetric group $G = S_n$, then |G| = n!. Next consider the subgroup $H \leq G$ given by

$$H := \left\{ f \in S_n \,\middle|\, \begin{array}{c} f(\{1,\ldots,k\}) = \{1,\ldots,k\} \\ f(\{k+1,\ldots,n\}) = \{k+1,\ldots,n\} \end{array} \right\}$$

then $H \cong S_k \times S_{n-k}$, and |H| = k!(n-k)!. It follows by Lagrange's theorem that |H| divides |G|.

Method III: Using Induction.

The induction procedure follows by the recursive identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Recursive Identity for Binomial Coefficients Theorem

For all
$$n > 0$$
 and $0 < k < n$, $k, n \in \mathbb{N}$, $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Lattice Paths

Pascal Triangle

Recursive Identity for Binomial Coefficients

$$\sum_{k=0}^{n} \binom{r+k}{k} = \binom{r}{0} + \binom{r+1}{1} + \dots + \binom{r+n}{n} = \binom{r+n+1}{n}$$

How to calculate $\binom{n}{k}$ if n, k are really large?

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

It works extremely good even for small integers.

The continuous version of the factorial is given by the Gamma function

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

we can approximate the integrand using a bell-shaped curve (Gaussian normal distribution).

Consider the Gamma integral representation of factorial, then

$$n! = \int_0^\infty x^n e^{-x} dx = \int_0^\infty e^{-(x-n \ln x)} dx$$

Let the exponent be $f(x) := x - n \ln x$, which we will approximate using a quadratic function. This is also known as Laplace's method. Since

$$f'(x) = 1 - \frac{n}{x} = 0 \Rightarrow x = n$$
 and $f''(x) = \frac{n}{x^2} \Big|_{x=n} = \frac{1}{n}$

thus -f attains minimum at x = n, thus by Taylor expansion, approximately near x = n,

$$f(x) \sim n - n \ln n + \frac{1}{2n}(x - n)^2$$

therefore

$$\int_0^\infty e^{-(x-n\ln x)} dx \sim \int_0^\infty e^{-(n-n\ln n)} e^{-(x-n)^2/(2n)} dx$$
$$\sim e^{-(n-n\ln n)} \int_{\mathbb{R}} e^{-(x-n)^2/(2n)} dx = n^n e^{-n} \sqrt{2\pi n}$$

By stirling approximation, we have

$$\binom{n}{k} \sim \sqrt{\frac{n}{2\pi k(n-k)}} \cdot \frac{n^n}{k^k(n-k)^{n-k}}$$

In particular, $\binom{2n}{n} \sim \frac{2^{2n}}{\sqrt{\pi n}}$.

Example

Consider flipping 2n fair coins, what is the probability that exactly half are heads and the other half are tails?

Let X be a random variable following a binomial distribution, i.e., $X \sim \text{Binomial}(2n, \frac{1}{2})$, then

$$\Pr(X = n) = {2n \choose n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^n \sim \frac{1}{\sqrt{\pi n}}$$

If 2n=100, then probability is approximately $\frac{1}{\sqrt{50\pi}}=\frac{1}{5\sqrt{2\pi}}\approx 0.08$. Note that $\sqrt{2\pi}\approx e\approx 2.5$, (recall $1!\sim \sqrt{2\pi\cdot 1}(1/e)^1$).

How many lattice paths from (0,0) to (n,n) that never go above the diagonal? $C_n = \binom{2n}{n} - \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}$.

Mountain Range/Dyck Paths

Noncrossing Handshakes

Paired Parentheses

Polygon Triangulation

Full Binary Trees

Matrix Chain Multiplication

- \blacksquare ((AB)C)D \blacksquare (A(BC))D \blacksquare (AB)(CD) \blacksquare A((BC)D)

- $\blacksquare A(B(CD))$

Segner's recurrence relation

We can establish the following recurrence relation starting with $\mathit{C}_0=1$, and

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k} \text{ for } n \ge 0,$$

We recognize the RHS is a convolution. Now consider the following generating function

$$c(x) := \sum_{n=0}^{\infty} C_n x^n$$

then $c(x) = 1 + xc(x)^2$, and

$$c(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x} = \frac{1 \pm (1 - 2x - 2x^2 + \cdots)}{2x}$$

We want the solution to be a (formal) power series, take the minus sign.

Segner's recurrence relation (Cont.)

Note that

$$c(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

which we expand as

$$c(x) = \frac{1}{2x} (1 - \sqrt{1 - 4x}) = \frac{1}{2x} \cdot 2 \sum_{n=1}^{\infty} \frac{(-1)^n}{4^n} {2n - 2 \choose n - 1} \frac{(-4x)^n}{n}$$
$$= \sum_{n=1}^{\infty} {2n - 2 \choose n - 1} \frac{x^{n-1}}{n}$$
$$= \sum_{n=0}^{\infty} {2n \choose n} \frac{x^n}{n+1} = \sum_{n=0}^{\infty} C_n x^n.$$

Top 10 Binomial Coefficient Identities

factorial expansion
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad \qquad \text{integers,} \\ n \geq k \geq 0.$$
 symmetry
$$\binom{n}{k} = \binom{n}{n-k} \qquad \qquad \text{integer } n \geq 0, \\ \text{integer } k.$$
 absorption/extraction
$$\binom{r}{k} = \frac{r}{k} \binom{r-1}{k-1} \qquad \qquad \text{integer } k \neq 0.$$
 addition/induction
$$\binom{r}{k} = \binom{r-1}{k} + \binom{r-1}{k-1} \qquad \qquad \text{integer } k.$$
 upper negation
$$\binom{r}{k} = (-1)^k \binom{k-r-1}{k} \qquad \qquad \text{integer } k.$$

Top 10 Binomial Coefficient Identities (Cont.)

trinomial revision
$$\binom{r}{m}\binom{m}{k} = \binom{r}{k}\binom{r-k}{m-k} \quad \text{integers } m,k.$$
 binomial theorem
$$\sum_{k}\binom{r}{k}x^{k}y^{r-k} = (x+y)^{r} \quad \text{integers } r \geq 0,$$
 or $|x/y| < 1.$ parallel summation
$$\sum_{k \leq n}\binom{r+k}{k} = \binom{r+n+1}{n} \quad \text{integer } n.$$
 upper summation
$$\sum_{0 \leq k \leq n}\binom{k}{m} = \binom{n+1}{m+1} \quad \text{integers } m,n \geq 0.$$
 Vandermonde convolution
$$\sum_{k \leq n}\binom{r}{k}\binom{s}{n-k} = \binom{r+s}{n} \quad \text{integer } n.$$

Sperner's Theorem

Theorem

The width of the poset $(2^{[n]}, \subset)$, aka subset/boolean lattice, is $\binom{n}{\lfloor n/2 \rfloor}$.

Proof (Lubell-Meshalkin-Yamamoto, aka LYM).

First of all, note that as k ranges over 0 to n, the binomial coefficients $\binom{n}{k}$ increase until the middle then decrease by symmetry (recall rows of Pascal's triangle). For example, if n is odd, then

$$\binom{n}{0} < \binom{n}{1} < \dots < \binom{n}{\frac{n-1}{2}} = \binom{n}{\frac{n+1}{2}} > \dots > \binom{n}{n-1} > \binom{n}{n}$$

If n is even, then

$$\binom{n}{0} < \binom{n}{1} < \dots < \binom{n}{\frac{n}{2}} > \dots > \binom{n}{n-1} > \binom{n}{n}$$

Note that
$$\binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil}$$
.

Sperner's Theorem

Proof (Cont.)

We count the number of maximal chains. Note that

- ▶ The total number of maximal chain is *n*!.
- ▶ If $S \subset [n]$ with |S| = k, then the number of maximal chains containing S is k!(n-k)!.

Let $\{A_1,A_2,\ldots,A_w\}$ be a maximum antichain. Note that a maximal chain cannot contain A_i and A_j with $i\neq j$, thus

$$\sum_{i=1}^{w} |A_i|!(n-|A_i|!) \leq n!$$

that is

$$\sum_{i=1}^{w} \frac{|A_i|!(n-|A_i|!)}{n!} \leq 1$$

Sperner's Theorem

Proof (Cont.)

which is

$$\sum_{i=1}^{w} \frac{1}{\binom{n}{|A_i|}} \le 1$$

but $\binom{n}{|A_i|} \le \binom{n}{\lfloor n/2 \rfloor}$ for all $i \in \{1, \ldots, w\}$, thus we have $w / \binom{n}{\lfloor n/2 \rfloor} \le 1$, so $w \le \binom{n}{\lfloor n/2 \rfloor}$. Lastly, note that this upper bound can be achieved by the antichain formed by subset of size $\binom{n}{\lfloor n/2 \rfloor}$ (in the middle).

Multinomial Coefficients

Multinomial Coefficients

For all $n, m, k_1, \ldots, k_m \in \mathbb{N}$, with $k_1 + \cdots + k_m = n$ and $m \ge 2$, we have the *multinomial coefficients*

$$\binom{n}{k_1, k_2, \dots, k_m} = \frac{n!}{k_1! k_2! \cdots k_m!} = \frac{\left(\sum_{i=1}^m k_i\right)!}{\prod_{i=1}^k k_i!}$$

which counts the number of ways of splitting a set of n elements into an ordered sequence of m disjoint subsets. Relating to binomial coefficients

$$\binom{n}{k_1, k_2, \dots, k_m} = \binom{n}{k_1} \binom{n - k_1}{k_2} \binom{n - k_1 - k_2}{k_3} \cdots \binom{n - \sum_{i=1}^{m-1} k_i}{k_m}$$

Example

Count distinct permutations of the word MISSISSIPPI.

 $\frac{11!}{1!4!4!2!}$

Multinomial Formula

Theorem (Gallier, Prop. 4.10, p.216-7)

For all $m, n \in \mathbb{N}$ with $m \ge 2$, for all pairwise commuting variables a_1, \ldots, a_m , we have

$$(a_1 + \dots + a_m)^n = \sum_{\substack{k_1, \dots, k_m \ge 0 \\ k_1 + \dots + k_m = n}} {n \choose k_1, k_2, \dots, k_m} a_1^{k_1} a_2^{k_2} \cdots a_m^{k_m}$$

Question: How many terms occur on the RHS of the multinomial formula?

Table of Contents

1. Binomial Coefficients

2. Multichoosing

3. Inclusion-Exclusion Principle

4. Asymptotic Notations

5. Master Method

Notation

Definition

Let $\binom{n}{k}$ be the number of k-element multisets on an n-element set. Reads "n multichoose k".

Remark

If $k > n \ge 0$, $n, k \in \mathbb{N}$

- $(n \choose k) = 0$. (pigeionhole principle.)
- $\qquad \qquad (\binom{n}{k}) \neq 0.$

Remark

 $\binom{n}{k}$ counts the ways to select k objects from a set of n elements, where order is not important, but repetition is allowed.

Counting Multisets

Proposition

The number of k-element multisets on an n-element set is

$$\binom{\binom{n}{k}}{} = \binom{n+k-1}{k} = \binom{n+k-1}{n-1}$$

Proof by double counting.

- Definition.
- We want to divide k identical *stars* by n-1 *bars*. We arrange everything in n+k-1 posititions. Choose k positions for the stars, and the rest for bars, or vice versa.

Example: 10-element multisets from a 4-element set

A Multisets Identity

Theorem

Given $n, k \geq 1$, $n, k \in \mathbb{N}$,

$$\left(\binom{n}{k} \right) = \left(\binom{k+1}{n-1} \right)$$

Proof by double counting.

- ▶ Number of ways to arrange k stars and n-1 bars.
- Number of ways to arrange n-1 stars and k bars.

The above two maps to each other by switching bars and stars.

What Multiset Counts

Example

The quantity $\binom{n}{k}$ counts,

- ▶ the number of ways to put k identical balls into urns B_1, \ldots, B_n .
- ▶ the number of ways to distribute *k* candy bars to *n* people.
- ▶ the number of ways to buy *k* drinks from a vending machine with *n* varieties.
- ▶ The number of nonnegative integer solutions to $x_1 + x_2 + \cdots + x_n = k$.
- ► The number of positive integer sequences $a_1, a_2, ..., a_k$ where $1 \le a_1 \le a_2 \le \cdots \le a_k \le n$.

Counting Integer Solutions

Example

Consider

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 538$$

What are the number of integer solutions if

- 1. $x_i > 0$ and = holds;
- 2. $x_i \ge 0$ and = holds;
- 3. $x_i > 0$ and < holds;
- 4. $x_i \ge 0$ and < holds;
- 5. $x_i \geq 0$.

Remark

Counting Integer Solutions

Example

How many nonnegative integer solutions to the equation

$$x_1 + x_2 + x_3 + x_4 = 63$$

such that $x_1, x_2 \ge 0$, $2 \le x_3 \le 5$, $x_4 > 0$.

Consider the following solution sets, where $A \supset B$. Answer: |A| - |B|.

► A: such that $x_1, x_2 \ge 0$, $x_3 \ge 2$, $x_4 > 0$, i.e., $x_3 - 2 \ge 0$, $x_4 - 1 \ge 0$, and

$$x_1 + x_2 + (x_3 - 2) + (x_4 - 1) = 60$$

We have $|A| = {60+3 \choose 3}$.

▶ *B*: such that $x_1, x_2 \ge 0$, $x_3 > 5$, $x_4 > 0$, i.e., $x_3 - 6 \ge 0$, $x_4 - 1 \ge 0$, and

$$x_1 + x_2 + (x_3 - 6) + (x_4 - 1) = 56$$

We have
$$|B| = {56+3 \choose 3}$$
.

Table of Contents

1. Binomial Coefficients

2. Multichoosing

3. Inclusion-Exclusion Principle

4. Asymptotic Notations

5. Master Method

Example

▶ 2 sets:
$$|A \cup B| = |A| + |B| - |A \cap B|$$

▶ 3 sets:
$$|A \cup B \cup C| = |A| + |B| + |C|$$

$$-|A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|$$

Applications

- Sieve of Eratosthenes
- Euler's totient function
- **.** . . .

Notation

Given $I \subset \{1, \ldots, n\}$, we let

$$A_I := \bigcap_{i \in I} A_i,$$

where $A_i \subset X$ for all $i \in I$. For example, $A_{\{1,2,4\}} = A_1 \cap A_2 \cap A_4$. In particular, $A_\varnothing = X$.

Theorem (Inclusion-Exclusion Principle)

Let A_1, \ldots, A_n be subsets of X. Then the number of elements of X which lie in none of the subsets A_i is

$$\sum_{I\subset \{1,...,n\}} (-1)^{|I|} |A_I|$$

Proof (Not by induction).

Re-wirte the sum as

$$\sum_{I \subset [n]} (-1)^{|I|} |A_I| = \sum_{I \subset [n]} \sum_{x \in A_I} (-1)^{|I|} = \sum_{x \in X} \sum_{I: x \in A_I} (-1)^{|I|}$$

- ▶ If $x \in X \bigcup_{i=1}^n A_i$, then $J = \{i \in [n] \mid x \in A_i\} = \emptyset$. Since x is fixed, thus $\sum_{I \subset I} (-1)^{|I|} = \sum_{I = \emptyset} (-1)^0 = 1$.
- ▶ Otherwise, the set $J = \{i \in [n] \mid x \in A_i\} \neq \emptyset$. Note that $x \in A_I$ iff $I \subset J$, thus

$$\sum_{I \subset J} (-1)^{|I|} = \sum_{i=0}^{|J|} {|J| \choose i} (-1)^i = (1-1)^{|J|} = 0$$

Sum the terms and we are done.

Corollary

Let A_1, \ldots, A_n be a sequence of (not necessarily distinct) sets, then

$$|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum_{\emptyset \neq I \subset \{1, \dots, n\}} (-1)^{|I|+1} |A_I|.$$

Proof.

Take the complement of both sides of previous therem within the set $X = A_{\varnothing}$, that is,

$$|A_1 \cup \dots \cup A_n| = |A_{\varnothing}| - \sum_{I \subset \{1,\dots,n\}} (-1)^{|I|+1} |A_I|$$

= $\sum_{\varnothing \neq I \subset \{1,\dots,n\}} (-1)^{|I|+1} |A_I|$

Special Case

The formula is a lot simpler when

$$|I|=|J|\Rightarrow |A_I|=|A_J|,$$

that is, $|A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}|$ depends only on k, where $I = \{i_1, i_2, \dots, i_k\}$. Now the formula becomes

$$|A_1 \cup \cdots \cup A_n| = \sum_{|I|=1}^n (-1)^{|I|+1} \binom{n}{|I|} |A_I|$$

Derangement

Definition

A permutation $\sigma \in S_n$ over the set $\{1, 2, \dots, n\}$ is called a derangement if $\sigma(i) \neq i$ for all $i = 1, \dots, n$.

Theorem

The number of derangements of the set $\{1, 2, ..., n\}$ is given by

$$d_n = \sum_{i=0}^n (-1)^i \binom{n}{i} (n-i)! = n! \sum_{i=0}^n \frac{(-1)^i}{i!}$$

Proof.

Take $A_i := \{ \sigma \in S_n \mid \sigma(i) = i \}$, thus $|A_i| = (n-1)!$. Note that for general set $I \subset \{1, 2, ..., n\}$, $|A_I| = (n-|I|)!$. The rest follows by inclusion-exclusion principle and

$$\binom{n}{i}(n-i)! = \frac{n!}{i!(n-i)!}(n-i)! = \frac{n!}{i!}$$

Derangement

Asymptotics

Assume that each $\sigma \in \mathcal{S}_n$ happens equally likely, what is the probability that σ is a derangement?

Note that $|S_n| = n!$, thus

$$\lim_{n \to \infty} \frac{d_n}{n!} = \lim_{n \to \infty} \sum_{i=0}^n \frac{(-1)^i}{i!} = e^{-1} = \frac{1}{e} \approx \frac{1}{3}$$

Counting Surjections

Theorem

Let $k \ge n$. The number of surjections $f: \{1, \dots, k\} \to \{1, \dots, n\}$ is given by

$$S_{k,n} = \sum_{i=0}^{n-1} (-1)^i \binom{n}{i} (n-i)^k$$

Proof.

Take
$$A_i = \{f \mid f(j) \neq i \text{ for all } j\} = \{f \mid i \not\in \text{im } f\}.$$

Counting Surjections

Example

What is $S_{5,3} = |\{f : \{1,2,3,4,5\} \rightarrow \{1,2,3\} \mid f \text{ surjective}\}|$?

Method I.

$$S_{5,3} = \binom{3}{0}(3-0)^5 - \binom{3}{1}(3-1)^5 + \binom{3}{2}(3-2)^5 - \underbrace{\binom{3}{3}(3-3)^5}_{=0}$$

Method II.

We first calculate that

thus
$$S_{5,3} = 3! {5 \brace 3} = 150.$$

Dimension of Vector Spaces

Given finite dimensional vector spaces U, V, and W, are the following identities correct?

- $\operatorname{dim}(U+V) = \operatorname{dim} U + \operatorname{dim} V \operatorname{dim}(U \cap V).$
- ightharpoonup dim(U+V+W)

$$= \dim U + \dim V + \dim W$$

$$-\dim(U\cap V)-\dim(U\cap W)-\dim(V\cap W)$$

$$+ \dim(U \cap V \cap W).$$

Table of Contents

1. Binomial Coefficients

2. Multichoosing

3. Inclusion-Exclusion Principle

4. Asymptotic Notations

5. Master Method

Overview

- Study a way to describe the growth of functions in the limit asymptotic efficiency
- Focus on what's important (leading factor) by abstracting lower-order terms and constant factors
- Indicate running times of algorithms
- A way to compare "sizes" of functions

$$O \approx \leq$$

$$\Omega\approx \, \geq$$

$$\Theta \approx =$$

In addition.

$$o \approx <$$

$$o \approx < \omega \approx >$$

Big "Oh" Notation

Definition

A function g(n) is an *asymptotic upper bound* for f(n), denoted by

$$f(n) = O(g(n))$$

if there exist positive constants c and n_0 such that

$$0 \le f(n) \le cg(n)$$
 for all $n \ge n_0$

i.e.,

$$\limsup_{n\to\infty}\frac{f(n)}{g(n)}<\infty$$

Example

Show that $2n + 10 = O(n^2)$.

Proof 1. Since $2n + 10 \le n^2$ for $n \ge 5$, we can choose c = 1 and $n_0 = 5$.

Proof 2. Observe that $2n + 10 \le 2n^2 + 10n^2 = 12n^2$ for $n \ge 1$, we can choose c = 12 and $n_0 = 1$.

Big "Oh" Notation

ightharpoonup O(g(n)) is a **set** of functions

$$O(g(n)) = \{f(n) \mid \exists c, n_0 > 0 \text{ s.t. } 0 \le f(n) \le cg(n) \text{ for } n \ge n_0\}$$

We write
$$f(n) = O(g(n))$$
 or $f(n) \in O(g(n))$.

- **Examples of functions in** $O(n^2)$:
 - $ightharpoonup n^2 + n$
 - $n^2 + 1000n$
 - \triangleright 1000 $n^2 + 1000n$
 - ► n/1000
 - $ightharpoonup n^2/\lg n$

Ω Notation

Definition

A function g(n) is an *asymptotic lower bound* for f(n), denoted by

$$f(n) = \Omega(g(n))$$

if there exist positive constants c and n_0 such that

$$0 \le cg(n) \le f(n)$$
 for all $n \ge n_0$

i.e.,

$$\liminf_{n\to\infty}\frac{f(n)}{g(n)}>0$$

Example

$$\sqrt{n} = \Omega(\lg n)$$
. We can choose $c = 1$ and $n_0 = 16$.

Ω Notation

 $ightharpoonup \Omega(g(n))$ is a **set** of functions

$$\Omega(g(n)) = \{ f(n) \mid \exists c, n_0 > 0 \text{ s.t. } 0 \le cg(n) \le f(n) \text{ for } n \ge n_0 \}$$

- **Examples** of functions in $O(n^2)$:
 - \rightarrow n^2
 - $ightharpoonup n^2 + n$
 - $ightharpoonup n^2 n$
 - \triangleright 1000 $n^2 + 1000n$
 - \triangleright 1000 $n^2 1000n$
 - $ightharpoonup n^{2+\varepsilon}, \ \varepsilon > 0$
 - $ightharpoonup n^2 \lg n$
 - ightharpoonup n^3

Definition

A function g(n) is an *asymptotic tight bound* for f(n), denoted by

$$f(n) = \Theta(g(n))$$

if there exist constants c_1 , c_2 , and n_0 such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
 for all $n \ge n_0$

Example

- $ightharpoonup rac{1}{2}n^2 2n = \Theta(n^2)$. We can choose $c_1 = \frac{1}{4}$, $c_2 = \frac{1}{2}$, and $n_0 = 8$.
- ▶ If $p(n) = \sum_{i=1}^{d} a_i n^i$ and $a_d > 0$, then $p(n) = \Theta(n^d)$.

 $ightharpoonup \Theta(g(n))$ is a **set** of functions

$$\Theta(g(n))$$

= $\{f(n) \mid \exists c_1, c_2, n_0 \text{ s.t. } 0 \le c_1 g(n) \le f(n) \le c_1 g(n) \text{ for } n \ge n_0\}$

- **Examples of functions in** $O(n^2)$:
 - $ightharpoonup n^2$
 - $ightharpoonup n^2 + n$
 - $ightharpoonup n^2 n$
 - \triangleright 1000 $n^2 + 1000n$
 - \triangleright 1000 $n^2 1000n$

Theorem

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)).$$

Asymptotic Notation

Example

The function grows faster as the list goes:

■
$$\log^* n$$
 ■ $\log \log \log n$ ■ $\log \log n$ ■ $\log n$

$$\blacksquare \log r$$

$$\sqrt{n}$$

$$n^{3/2}$$

$$\blacksquare n^{n/2}$$

Notation

The iterated logarithm, "log star", is given by

$$\log^* n := egin{cases} 0, & n \leq 1 \\ 1 + \log^*(\log n), & n > 1 \end{cases}$$

which is well defined if base is $> e^{1/e} \approx 1.444667$. We use \lg^* for binary iterated logarithm. 453 / 462

Using Limits for Comparing Orders of Growth

Let

$$L := \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

We have serval possibilities (given that f and g nonnegative.)

- ▶ If L = 0, then f(n) = O(g(n));
- ▶ If $L = \infty$, then $f(n) = \Omega(g(n))$;
- ▶ If $0 < L < \infty$, then $f(n) = \Theta(g(n))$;
- Limit does not exsit: inconclusive.

L'Hôpital's rule

Let f and g be differentiable. If $\lim_{x\to\infty}|f(x)|=\lim_{x\to\infty}|g(x)|=\infty$, and $\lim_{x\to\infty}g'(x)\neq 0$, then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

provided that the limit on the RHS exsits in $\overline{\mathbb{R}}$.

Lower Bound for Sorting

In a *comparison sort*, we use only comparisons between elements to gain order information about an input sequence $\langle a_1, a_2, \ldots, a_n \rangle$, and the output is given by permutation of the input as $\langle a_{\sigma(1)}, a_{\sigma(2)}, \ldots, a_{\sigma(n)} \rangle$, $\sigma \in S_n$.

Because any correct sorting algorithm must be able to produce each permutation of its input, each of the n! permutations on n elements must appear as one of the leaves of the decision tree for a comparison sort to be correct.

Lower Bound for Sorting

Theorem

Given n elements, any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Proof.

It suffices to determine the height of a decision tree in which each permutation appears as a reachable leaf. Consider a decision tree of height h with ℓ reachable leaves. Because each of the n! permutations of the input appears as some leaf, we have $n! < \ell$. Since a binary tree of height h has no more than 2^h leaves, we have

$$n! \le \ell \le 2^h$$

Take the logarithms, we have

$$h \ge \lg(n!) = \Omega(n \lg n)$$

where the last equality follows from Stirling's approximation formula.

Table of Contents

1. Binomial Coefficients

2. Multichoosing

3. Inclusion-Exclusion Principle

- 4. Asymptotic Notations
- 5. Master Method

Example

$$T(n) = 4T(n/2) + n$$
, which means

$$T(n) = \begin{cases} \Theta(1), & n = 1 \text{ (usually omit this part)} \\ 4(T/2) + n, & n > 1 \end{cases}$$

General Methods

- Substitution Method (guess, say, by trial and error, and prove, say, by induction).
- Recursion-tree Method.
- Master Method.

Example (Factorial)

Let T(n) denote the worst-case running time of fact, then

$$T(1) = d$$

$$T(n) = T(n-1) + c$$

where c is a constant denoting the work of the comparison—conditional—multiplication—return, and d is a constant denoting the work of the comparison—conditional—return.

```
1 Function fact(n):
2 | if n=1 then
3 | return 1
4 | else
5 | return n \cdot fact(n-1)
6 | end
7 end
```

Example (Merge Sort)

Let T(n) denote the worst-case running time of Merge Sort on an input array containing n elements. Then, for a constant c, we have:

$$T(1) = c$$

 $T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + cn$

which is a typical "divide-conquer-combine" process.

```
Function mergeSort(A[1 \dots n]):

| if n = 1 then
| return A
| else
| L \leftarrow \text{mergeSort}(1 \dots \lfloor \frac{n}{2} \rfloor)
| R \leftarrow \text{mergeSort}(\lfloor \frac{n}{2} \rfloor + 1 \dots n)
| return merge(L, R)
| end
| end
```

Example

Solve
$$T(n) = 4T(n/2) + n$$
.

It is sufficient to consider $n=2^m$, $m\in\mathbb{N}$. Thus $n/2=2^{m-1}$, and $m=\log_2 n=\lg n$. Now we have $T(2^m)=4T(2^{m-1})+2^m$. Let $\widetilde{T}(m):=T(2^m)$, then

$$\widetilde{T}(m) = 4\widetilde{T}(m-1) + 2^m$$

whose general solution is given by

$$\widetilde{T}(m) = c \cdot 4^m + d \cdot 2^m,$$
 c, d constants

thus

$$T(n) = c \cdot 4^{\log_2 n} + d \cdot 2^{\log_2 n} = c \cdot n^{\log_2 4} + d \cdot n^{\log_2 2}$$

= $c \cdot n^2 + d \cdot n = \Theta(n^2)$

Master Theorem/Method

Theorem (Master Thoerem, cf., Corman, Leiserson, Rivest, & Stein.) If T(n) = aT(n/b) + f(n) (for constants $a \ge 1$, b > 1, $d \ge 0$), then

- 1. $T(n) = \Theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
- 2. $T(n) = \Theta(n^{\log_b a} \lg n)$ if $f(n) = \Theta(n^{\log_b a})$.
- 3. $T(n) = \Theta(f(n))$, if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n (regularity condition).

Master Theorem/Method

Remark

1. $n^{\log_b a}$ is polynomially larger than f(n), e.g.,

$$T(n) = 7 \cdot T(n/2) + \Theta(n^2)$$

2. $n^{\log_b a}$ and f(n) are on the same order, e.g.,

$$T(n) = 2 \cdot T(n/2) + \Theta(n)$$

3. f(n) is polynomially larger than $n^{\log_b a}$, and satisfies the regularity condition, e.g.,

$$T(n) = 4 \cdot T(n/2) + n^3$$

Note that the master theorem does not cover all possible cases (e.g., quick sort).