Sujet 1

I | Question de cours

Tracé du diagramme de BODE du circuit RC avec R en sortie.

II Filtre passe-haut d'ordre 2

On considère le filtre suivant :

- 1. Justifier que ce filtre est un filtre passe-haut.
- 2. Déterminer sa fonction de transfert et l'écrire sous la forme :

$$\underline{H} = \frac{jQx}{1 + jQ\left(x - \frac{1}{x}\right)}$$
 avec $x = \frac{\omega}{\omega_0}$.

On donnera l'expression de la pulsation caractéristique ω_0 et celle du facteur de qualité Q.

- 3. Déterminer la pente des asymptotes du diagramme de Bode en gain. Tracer qualitativement son allure en supposant que le facteur de qualité est tel que le circuit n'est pas résonant.
- 4. Tracer qualitativement l'allure du diagramme de Bode en phase en supposant toujours que le facteur de qualité est tel que le circuit n'est pas résonant.
- 5. Ce filtre peut-il avoir un comportement dérivateur? intégrateur?

Sujet 2

I | Question de cours

Domaines intégrateur et dérivateur des filtres du 1er ordre.

II | Diagrammes de Bode

- 1. Sans calculs, prévoir le comportement du filtre à basse fréquence.
- 2. Faire le circuit équivalent à haute fréquence. Que peut-on dire ?
- 3. Déterminer l'expression de la fonction de transfert que l'on mettra sous la forme :

$$\underline{H}(j\omega) = H_0 \frac{1 + j\frac{\omega}{\omega_2}}{1 + j\frac{\omega}{\omega_1}}$$

Exprimer H_0 , ω_1 et ω_2 en fonction de R et C.

- 4. On pose $\underline{H_1}(j\omega) = 1 + j\frac{\omega}{\omega_1}$ et $\underline{H_2}(j\omega) = 1 + j\frac{\omega}{\omega_2}$. Tracer les diagrammes de Bode en gain et en phase en fonction de $\log(\omega)$ pour les deux fonctions $\underline{H_1}(j\omega)$ et $\underline{H_2}(j\omega)$.
- 5. En déduire les diagrammes de Bode en gain et en phase de la fonction de transfert $\underline{H}(j\omega)$ en fonction de $\log(\omega)$.

Sujet 3

I | Question de cours

Exercice d'application sur le filtrage de sinaux avec un passe-bas du 1er ordre.

II Étude d'un filtre

On considère le circuit suivant avec $R = 100 \Omega$ et L = 1 H.

- 1. Pour le circuit ci-dessus,
 - étudier le comportement du filtre à très basses et à très hautes fréquences,
 - exprimer la fonction de transfert \underline{H} en fonction de la résistance R, de l'inductance L et de la pulsation ω ,
 - exprimer la pulsation de coupure ω_c en fonction de R et L,
 - exprimer le gain en décibel ainsi que la phase de la fonction de transfert en fonction de $x = \omega/\omega_c$,
 - faire l'étude asymptotique du gain et de la phase,
 - tracer les diagrammes de Bode,
 - préciser si le circuit présente un caractère dérivateur ou intégrateur.
- 2. Calculer la fréquence de coupure.
- 3. On alimente le circuit avec la tension

 $e_1(t) = 2.0 + 5.0\cos(2\pi \cdot 8t + \pi/4) + 5.0\cos(2\pi \cdot 800t)$ avec t en seconde et e_1 en volt. Exprimer la tension $s_1(t)$.

III Circuit RLC en RSF

On dispose de deux circuits A et B ci-dessous, qui sont alimentés par un GBF de f.e.m. $e(t) = E_0 \cos(\omega t)$ (avec E_0 une constante positive) et de résistance interne R_g .

Figure 3.1 – Montage A

Figure 3.2 – Montage B

On donne les graphiques de l'évolution de l'amplitude I_0 en ampère de l'intensité i(t), ainsi que celle de l'amplitude U_0 en volt de la tension u(t) en fonction de la fréquence f.

1. Pour chaque graphique, déterminer quelle est la courbe correspondant au montage A et celle au montage B. Déterminer les valeurs de E_0 , R, R_g , L et C.