Problems

- 2.1 Compute the transfer function of the depicted block diagram
 - a. By reduction

Solution

SEE BELOW

a. By applying transformation 7 (Table F2.1), the branch point at the left of the block with transfer function $G_4(s)$ is moved at the right of $G_4(s)$. The equivalent block diagram is:

The next block diagram emerges when transformations 1 and 3 are applied to the loop that contains the blocks with transfer functions $G_3(s)$, $G_4(s)$, and $H_1(s)$.

Next we apply transformations 1 and 3 to the loop that contains the transfer function $H_2(s)/G_4(s)$ as feedback and get the following block diagram:

Similarly, by applying transforms 1 and 3 we obtain the simplified block diagram that represents the system's transfer function.

TABLE F2.1 (continued)
Block Diagram Transformations

ontinued)

TABLE F2.1 (continued) Block Diagram Transformations

ECE311

Homework 1

Problem:

Compute the transfer function of the depicted block diagram.

ADDED SIGNAL NAMES E, , E, AND E, TO ABOVE DIAGRAM
$$\Rightarrow$$
 $E_1 = X - H_3 Y$ (1)

 $E_2 = G_1 E_1 - H_2 G_3 E_3$ (2)

 $E_3 = G_2 E_2 + H_1 Y$ (3)

 $Y = G_3 G_4 E_3$ (4)

(2) \Rightarrow (3) \Rightarrow
 $E_3 = G_2 \left(G_1 E_1 - H_2 G_3 E_3 \right) + H_1 Y$
 $= G_2 G_1 E_1 - G_2 H_2 G_3 E_3 + H_1 Y$ (5)

(1) \Rightarrow (5) $=$)

 $E_3 = G_2 G_1 X - G_2 G_1 H_3 Y - G_2 H_2 G_3 E_3 + H_1 Y$
 \Rightarrow $G_2 G_1 X - G_2 G_1 H_3 Y - G_2 H_2 G_3 E_3 + H_1 Y$
 \Rightarrow $G_3 G_4 G_5 G_5 G_7 X - G_2 G_1 H_3 Y - G_2 H_2 G_3 E_3 + H_1 Y$
 \Rightarrow $G_3 G_4 G_5 G_5 G_7 X - G_2 G_1 H_3 Y - G_2 H_2 G_3 E_3 + H_1 Y$
 \Rightarrow $G_3 G_4 G_5 G_7 X - G_2 G_1 H_3 Y - G_2 H_2 G_3 E_3 + H_1 Y$
 \Rightarrow $G_4 G_5 G_7 X - G_5 G_$