

Problem 1.15a

Through repeated application of Thévenin's theorem, find the Thévenin equivalent of the circuit in Fig. P1.15 between node 4 and ground, and hence find the current that flows through a load resistance of 3 k Ω connected between node 4 and ground.

Figure P1.15

At node 2 we have 5V with 10 k Ω series resistance.

At node 3 we have 5V in with 30 k Ω series and 20 k Ω shunt resistance which yields 2V with 12 k Ω series resistance

Problem 1.15b

Through repeated application of Thévenin's theorem, find the Thévenin equivalent of the circuit in Fig. P1.15 between node 4 and ground, and hence find the current that flows through a load resistance of 3 k Ω connected between node 4 and ground.

At node 4 we have 2V in with 32 k Ω series and 20 k Ω shunt resistance which yields 0.77V with 12.3 k Ω series resistance

Figure P1.15

When a 3 $k\Omega$ load resistance is added we get the following current

$$I = \frac{0.77\text{V}}{12.3\text{k}\Omega + 3\text{k}\Omega} = 0.050\text{mA}$$

Any given signal source provides an open-circuit voltage, v_{oc} , and a short-circuit current i_{sc} . For the following sources, calculate the internal resistance, R_s ; the Norton current, i_s ; and the Thevenin voltage, v_s .

(a)
$$v_{oc} = 1 \text{ V}$$
, $i_{sc} = 0.1 \text{ mA}$
 $v_s = v_{oc} = 1 \text{ V}$; $i_s = i_{sc} = 0.1 \text{ mA}$, $R_s = v_{oc}/i_{sc} = 10 \text{ k}\Omega$

(b)
$$v_{oc} = 0.1 \text{ V}$$
, $i_{sc} = 1 \text{ } \mu\text{A}$
 $v_s = v_{oc} = 0.1 \text{ V}$; $i_s = i_{sc} = 1 \text{ } \mu\text{A}$, $R_s = v_{oc}/i_{sc} = 100 \text{ } k\Omega$

A particular signal source produces an output of 40 mV when loaded by a 100-k Ω resistor and 10 mV when loaded by a 10-k Ω resistor. Calculate the Thevenin voltage, Norton current, and source resistance.

$$v_o = v_s \frac{R_L}{R_L + R_S} \Rightarrow v_s = v_o \frac{R_L + R_S}{R_L} = v_o \left(1 + \frac{R_S}{R_L} \right)$$

$$v_s = 40 \text{mV} \left(1 + \frac{R_S}{100 \text{k}\Omega} \right) = 10 \text{mV} \left(1 + \frac{R_S}{10 \text{k}\Omega} \right)$$

$$R_{\rm s} = 50 {\rm k}\Omega$$

$$v_s = 40 \text{mV} \left(1 + \frac{50 \text{k}\Omega}{100 \text{k}\Omega} \right) = 10 \text{mV} \left(1 + \frac{50 \text{k}\Omega}{10 \text{k}\Omega} \right) = 60.0 \text{mV}$$

$$i_s = \frac{v_s}{100 \text{k}\Omega} = \frac{60 \text{mV}}{100 \text{k}\Omega} = 1.2 \text{mA}$$

$$i_s = \frac{v_s}{R_s} = \frac{60\text{mV}}{50\text{k}\Omega} = 1.2\mu\text{A}$$

To familiarize yourself with typical values of angular frequency ω , conventional frequency f, and period T, complete the entries in the following table:

case	ω (rad/s)	f (Hz)	$T(\mathbf{s})$
a		$5x10^9$	
b	$2x10^9$		
c			1x10 ⁻¹⁰
c		60	
e	6.28×10^4		
f			$1x10^{-5}$

$$\omega = 2\pi f$$
 $f = \omega/2\pi$ $T = 1/f = 2\pi/\omega$

To familiarize yourself with typical values of angular frequency ω , conventional frequency f, and period T, complete the entries in the following table:

case	ω (rad/s)	f(Hz)	T(s)
a	3.14E+10	5.00E+09	2.00E-10
b	2.00E+09	3.18E+08	3.14E-09
c	6.28E+10	1.00E+10	1.00E-10
С	3.77E+02	60.00	1.67E-02
e	6.28E+04	9.99E+03	1.00E-04
f	6.28E+05	1.00E+05	1.00E-05

$$\omega = 2\pi f$$

$$f = \omega/2\pi$$

$$f = \omega/2\pi \qquad T = 1/f = 2\pi/\omega$$

$$v_a(t) = V_a sin(\omega t)$$

Give expressions for the sine-wave voltage signals having:

(a) 10-V peak amplitude and 1-kHz frequency

$$v_a(t) = 10\sin(2\pi 1000t)$$

(b) $120-V_{rms}$, and 60-Hz frequency

$$v_a(t) = 120\sqrt[2]{2}\sin(2\pi 60t)$$

(c) 0.2-V peak-to-peak and 2000-rad/s frequency

$$v_a(t) = 0.1 \sin(2000t)$$

(d) 100-mV peak and 1 ms period

$$v_a(t) = 0.1\sin(2\pi 1000t)$$