

Electromechanical braking system for a motor vehicle

Patent number: DE19826130

Publication date: 1999-12-16

Inventor: WEIBERLE REINHARD (DE); BLESSING PETER (DE)

Applicant: BOSCH GMBH ROBERT (DE)

Classification:

- **international:** B60T13/74; B60T13/66; B60T8/32; B60T8/60; B60T7/12;
B60K28/16

- **european:** B60T8/88B

Application number: DE19981026130 19980612

Priority number(s): DE19981026130 19980612

Also published as:

JP2000016262 (J)

GB2338274 (A)

Abstract of DE19826130

The system comprises control units (12a,14a,16a,18a) for controlling brake actuators (12b,14b,16b,18b) each including an electric motor (M1H) and a locking arrangement (KU1). The locking arrangement is first released for actuating a wheel brake. It is closed again after the actuation has been terminated. The control units are supplied with power from independent sources (E1,E2). The system is self diagnostic and in the event of a fault in actuator. A resetting module M1R in the actuator is activated by a signal i1R from a control unit. The actuators are on the same axle.

Data supplied from the **esp@cenet** database - Worldwide

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Offenlegungsschrift ⑯ DE 198 26 130 A 1

⑯ Int. Cl. 6:
B 60 T 13/74

B 60 T 13/66
B 60 T 8/32
B 60 T 8/60
B 60 T 7/12
B 60 K 28/16

⑯ Aktenzeichen: 198 26 130.6
⑯ Anmeldetag: 12. 6. 98
⑯ Offenlegungstag: 16. 12. 99

⑯ Anmelder:
Robert Bosch GmbH, 70469 Stuttgart, DE

⑯ Erfinder:
Weiberle, Reinhard, 71665 Vaihingen, DE; Blessing, Peter, Prof., 74078 Heilbronn, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

⑯ Elektromechanisches Bremssystem für ein Kraftfahrzeug

⑯ Es wird ein elektromechanisches Bremssystem für ein Kraftfahrzeug vorgeschlagen, welches wenigstens eine Steuereinheit (12a, 14a, 16a, 18a) umfaßt, die wenigstens einer Radbremse zugeordnet ist. Diese steuert auf der Basis eines Vorgabewertes einen Aktuator zum Betätigen der Radbremse (12b, 14b, 16b, 18b). Der Aktuator weist einen Elektromotor (M1H) und eine Verriegelungseinrichtung, insbesondere eine Ausrückvorrichtung (Ku1), auf. Zur Betätigung der Radbremse über den Elektromotor wird zunächst die Verriegelungseinrichtung gelöst. Nach Beendigung der Betätigung wird die Verriegelungseinrichtung wieder geschlossen.

Eine weitere Steuereinheit (12a, 14a, 16a, 18a) für eine andere Radbremse wird von einem anderen Energieversorgungssystem mit Energie versorgt. Dieser steuert eine zusätzliche Rückstellmöglichkeit (M1R) im Aktuator im Fehlerfall an.

DE 198 26 130 A 1

DE 198 26 130 A 1

Beschreibung

Stand der Technik

5 Es wird ein dezentrales elektromechanisches Bremssystem (brake by wire) für ein Kraftfahrzeug beschrieben, das durch seinen dezentralen Aufbau insbesondere den hohen technischen Anforderungen bezüglich Sicherheit und Verfügbarkeit gerecht wird.

10 Ein derartiges Bremssystem ist z. B. aus der DE-A 196 34 567 bekannt. Das dort gezeigte Bremssystem weist eine dezentrale Struktur auf, bei der eine Pedaleinheit zur Bildung der fahrerwunschabhängigen Führungsgrößen, gegebenenfalls eine Verarbeitungseinheit zur Berücksichtigung von Zusatzfunktionen sowie Radpaareinheiten zur Steuerung bzw. Regelung der Stellglieder der Radbremsen über ein oder mehrere Kommunikationssysteme verbunden ist. Ferner wird das Bremssystem aus wenigstens zwei Bordnetzen mit Energie versorgt. Dadurch wird eine zufriedenstellende Sicherheit und Verfügbarkeit des Bremssystems gewährleistet. Nähere Ausführungen zum Bremsensteller und zur Berücksichtigung von Besonderheiten dieses Stellers bei der Regelung und/oder in Verbindung mit der Sicherheit und Verfügbarkeit des Systems werden dort nicht beschrieben.

15 Es ist daher Aufgabe der Erfindung, Maßnahmen zur Berücksichtigung von Besonderheiten eines Bremsenstellers, welcher eine Feststellbremsfunktion und/oder zusätzliche Rückstellmöglichkeiten umfaßt, bei der Regelung und/oder in Verbindung mit der Sicherheit und Verfügbarkeit des Systems anzugeben.

20 Dies wird durch die kennzeichnenden Merkmale der unabhängigen Patentansprüche erreicht.

Vorteile der Erfindung

25 Die Betriebseigenschaften des Bremssystems werden durch das Zusammenspiel von Elektromotor und Feststellbremse (z. B. einer elektromagnetischen Ausrückvorrichtung) zur Realisierung einer Verstellbewegung der Bremsbeläge einer Scheiben- oder Trommelbremse erheblich verbessert.

30 Besonders vorteilhaft ist, daß das Bremsemoment durch dieses Zusammenwirken bei geringem Energieaufwand aufgebaut und gehalten werden kann. Dabei ist der Einsatz einer Ausrückvorrichtung vorteilhaft, weil eine eingelagerte Bremskraft dauerhaft ohne Energieaufwand gehalten werden kann. Eine Feststellbremsfunktion läßt sich dadurch einfach realisieren.

35 Durch eine zusätzliche Rückstellmöglichkeit kann ein böser der Bremse auch bei Ausfall der Energieversorgung erreicht werden, die aus einer von einem anderen Versorgungssystem versorgten Steuereinheit angesteuert wird.

Zeichnung

40 Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen näher erläutert. Fig. 1 zeigt ein erstes Ausführungsbeispiel der Struktur eines elektromechanischen Bremssystems. Fig. 2 beschreibt die Struktur der Pedaleinheit, Fig. 3 die der Verarbeitungseinheit und die Fig. 4 und 5 die Strukturen von Radeinheiten dieses Bremssystems. Fig. 6 und 7 zeigen die Strukturen eines zweiten und eines dritten Ausführungsbeispiels eines elektromechanischen Bremssystems, während in Fig. 8 die Struktur einer Radeinheit des dritten Ausführungsbeispiel dargestellt ist.

Beschreibung von Ausführungsbeispielen

45 Es wird eine Steuerung bzw. Regelung der Betriebs- und Feststellbremsfunktion der Bremsanlage eines Kraftfahrzeuges vorgestellt. Durch die dezentrale Aufteilung des Bremssystems und die im System vorgesehenen Redundanzen wird bei Auftreten von statischen und dynamischen Fehlern die Bremsfunktionalität in hohem Maß aufrechterhalten und die Betriebssicherheit der Bremsanlage sichergestellt. Zudem werden Fehlerzustände für Servicezwecke abgespeichert und gegebenenfalls signalisiert. Die im Text und in den Figuren eingeführten Kurzbezeichnungen für Komponenten und Signale sind dabei im Anhang zusammengestellt.

50 Fig. 1 zeigt ein erstes Ausführungsbeispiel für die Struktur eines elektromechanischen Bremssystems und die jeweils ausgetauschten Signale. Das System ist durch eine dezentrale Struktur charakterisiert, die sich aus den Systemkomponenten Pedaleinheit 10, vier Radeinheiten 12, 14, 16 und 18, Energiediagnoseeinheit 20 und Verarbeitungseinheit 22 ergibt.

55 Das Pedalmodul 10 des elektromechanischen Bremssystems übernimmt primär die Erfassung des Bremswunsches des Fahrers, die Analyse des Gesamtsystemzustandes und die Einleitung von Rückfallstrategien im Fehlerfalle.

Jede Radeinheit (12, 14, 16, 18) ist aus einem Radmodul (12a, 14a, 16a, 18a), der Radsensorik (vgl. z. B. n1, F1i, s1H, etc.) und einem Aktuator (12b, 14b, 16b, 18b) aufgebaut. Ein Radmodul (12a, 14a, 16a, 18a) umfaßt jeweils ein Mikrorechnersystem, eine Überwachungskomponente und die Leistungselektronik zur Ansteuerung des Aktuators.

60 Die elektrische Energieversorgung des elektrischen Systems erfolgt über die beiden unabhängigen Bordnetze E₁ und E₂. Je zwei Radeinheiten werden von derselben Energiequelle versorgt. Bei der in Fig. 1 betrachteten Systemstruktur wird von einer Diagonalaufteilung ausgegangen, d. h. die Radeinheiten (12, 14) für die Räder vorne links und hinten rechts werden von einer gemeinsamen Energiequelle E₁ gespeist. Das gleiche gilt für die Radeinheiten (16, 18) für die Räder vorne rechts und hinten links, die von der Energiequelle E₂ versorgt werden. Eine Ausführungsvariante, in der die beiden Radeinheiten einer Achse jeweils einer Energiequelle zugeordnet werden, ist ebenfalls möglich. Sie wird im folgenden nicht weiter betrachtet. Die nachfolgend beschriebenen Vorgehensweisen werden bei dieser Aufteilung mit den entsprechenden Vorteilen ebenfalls eingesetzt. Die Radeinheiten sind in der Nähe der jeweiligen Radbremse angeordnet, während Pedaleinheit und Verarbeitungseinheit gemeinsam oder getrennt an einer zentraleren Stelle angebracht sind.

65 Der Datenaustausch zwischen den einzelnen Komponenten des Bremssystems geschieht mittels zweier unabhängiger

DE 198 26 130 A 1

Kommunikationseinrichtungen K₁ und K₂, die vorzugsweise als serielle Bussysteme, z. B. CAN, realisiert sind. Die Kommunikationseinrichtungen K₁ und K₂ werden von den unterschiedlichen Bordnetzen gespeist. Zudem wird mittels eines Kommunikationssystems K₃ die Verbindung zu der Steuereinheit des Motormanagements realisiert.

In jedem Radmodul wird die Ansteuerung des zugehörigen Aktuators zur Ausregelung der gewünschten Zuspannkraft oder des gewünschten Bremsmomentes realisiert. Hierzu wird in jedem Aktuator alternativ die Radzuspannkraft bzw. das Radbremsmoment durch Sensoren erfaßt. Der elektromechanische Aktuator wirkt über eine Getriebestufe auf die Zuspannwege von Scheiben- bzw. Trommelbremsen ohne hydraulische Zwischenstufe. Die Radeinheit regelt hierzu die radindividuelle Zuspannkraft bzw. das radindividuelle Bremsmoment. Die notwendige Führungsgröße wird über das zugeordnete Bussystem vorgegeben.

In einem bevorzugten Ausführungsbeispiel enthält der Aktuator (12b, 14b, 16b, 18b) einer Radeinheit zusätzlich eine elektromagnetisch gelüftete Ausrückvorrichtung (Ansteuerung über i1K, i2K, i3K, i4K), die einerseits die Feststellbremsfunktion ausübt und zudem in stationären Bremsphasen das Bremssystem ohne Energieverbrauch in der aktuellen Position arretiert. Im Aktuator (12b, 14b, 16b, 18b) eines jeden Rades ist zudem eine Rückstelleinrichtung integriert (Ansteuerung über i1R, i2R, i3R, i4R), die bei allen Fehlertypen, die ein Lösen der Bremsen eines Rades verhindern würden, das betroffene Rad freischaltet. Um diese Fehlertypen auch bei Ausfall einer Energiediagnoseeinheit (20) beherrschen zu können, erfolgt die Ansteuerung der Rückstelleinrichtung durch die benachbarte Radeinheit derselben Achse (z. B. für 10 12b aus 18a). Bei der betrachteten diagonalen Aufteilung der Energiekreise werden die beiden Radeinheiten einer Achse stets aus unterschiedlichen Energiequellen gespeist. Dadurch kann bei Ausfall einer Energiequelle in jedem beliebigen Zustand zumindest ein Lösen des betroffenen Aktuators mittels der Rückstelleinrichtung erreicht werden.

Das Energiediagnosemodul (20) ermittelt den Ladezustand der Energieversorgungseinheiten und übergibt diese Information (c₁, c₂) dem Pedalmodul (10).

Eine detaillierte Beschreibung der Funktionen und der Struktur der Systemkomponenten des elektromechanischen Bremssystems wird in den folgenden Abschnitten anhand der Fig. 2 bis 5 gegeben.

Fig. 2 zeigt den prinzipiellen Aufbau des Pedalmoduls (10).

Die Aufgaben dieser Systemkomponente sind die Erfassung des Bremswunsches des Fahrers und zwar bezüglich der Betriebs- und Feststellbremsen und die Bildung der hierfür erforderlichen Führungsgrößen für die Räder der Vorder- und Hinterachsen; die Erfassung und Auswertung der Statusbotschaften aller Systemkomponenten des elektromechanischen Bremssystems; die Analyse des aktuellen Gesamtzustandes des Bremssystems, gegebenenfalls die Einleitung von Rückfallmaßnahmen und die Signalisierung des Fehlerzustandes an den Fahrer bzw. Abspeicherung innerhalb eines Fehlerspeichers; die Initialisierung aller Komponenten des Bremssystems nach Einschalten der Zündung bzw. bei Betätigen der Bremse bei ausgeschalteter Zündung; das Abschalten des Bremssystems nach Beendigung einer Fahrt; und die Ansteuerung des Bremslichtes.

Die Fahrerwunscherfassung für eine Betriebsbremsung geschieht durch die unabhängigen Sensoren b₁, b₂ und b₃, die vorzugsweise in einer diversitären Realisierung den analogen Fahrerwunsch (Bremspedalwinkel und/oder die Kraft der Betätigung) am Bremspedal erfassen. Die Sensoren werden durch die unterschiedlichen Energieversorgungen E₁ bzw. E₂ gespeist, z. B. die Sensoren b₁ und b₂ durch die Energieversorgung E₁ und die Sensoren b₂ und b₃ durch die Energieversorgung E₂. Der Fahrerwunsch einer Feststellbremsbetätigung wird über die Sensoren b₄ und b₅ erfaßt (ebenfalls z. B. durch Erfassung der Auslenkung des Feststellbremshebels), die von den unterschiedlichen Energieversorgungen gespeist werden. Je ein analoger Sensor für die Erfassung des Betriebsbremswunsches wie auch des Feststellbremswunsches könnte auch durch einen binären Geber ersetzt werden.

Das Pedalmodul 10 selbst ist fehlertolerant aufgebaut, z. B. durch eine Realisierung mittels eines redundanten Mikrorechnersystems bestehend aus den Mikrorechnern P₁ und P₂, das zudem die erforderlichen Peripherie-, Speicher- und Watchdogbaugruppen enthält, und einer Überwachungskomponente P₃. Die Mikrorechner P₁ und P₂ sowie die Überwachungskomponente P₃ kommunizieren über den internen Kommunikationskanal C, der z. B. durch ein serielles Bussystem oder mit seriellen Schnittstellen realisiert ist. Innerhalb der Mikrorechnersysteme P₁ und P₂ sind die unabhängigen Programme Pr1 und Pr2 implementiert. Mittels des Rechnerprogrammes Pr1 werden über die Eingangsschnittstelle U₁ die Sensorsignale b₁ bis b₅ erfaßt, gespeichert und über den Kommunikationskanal C dem Mikrorechner P₂ zur Verfügung gestellt. In entsprechender Weise werden mittels des Rechnerprogrammes Pr2 über die Eingangsschnittstelle U₂ die Sensorsignale b₁ bis b₅ erfaßt, gespeichert und zum Mikrorechner P₁ übertragen. Innerhalb beider Rechner stehen somit 40 6 Meßwerte des Fahrerwunsches für Betriebsbremsung und 4 Meßwerte des Fahrerwunsches für eine Feststellbremsbe-tätigung zur Verfügung.

Aus den Meßwerten für die Betriebsbremsung wird in den Mikrorechnern P₁ und P₂ jeweils durch Majoritätsauswahl jeweils ein repräsentativer Signalwert für den Betriebsbremswunsch b_{B,rep} ermittelt. Dies erfolgt unter Gewichtung von möglichen Einzelfehlern, indem die Einzelmeßwerte, die über ein bestimmtes Maß hinaus von den anderen abliegen, nicht zur Bildung der Referenzwerte herangezogen werden. Die in den Mikrorechnern P₁ und P₂ berechneten Referenzwerte werden mit b_{B,rep,1} bzw. b_{B,rep,2} bezeichnet. Überschreitet der Referenzwert b_{B,rep,1} einen vorgebbaren Grenzwert, so erfolgt die Ansteuerung des Bremslichtes mittels des Signales u_{BL}.

Aus den Meßwerten des Fahrerwunsches für Feststellbremsbetätigung werden in beiden Mikrorechnern ebenfalls repräsentative Signalwerte berechnet. Die in den Mikrorechnern P₁ und P₂ ermittelten repräsentativen Signalwerte werden mit b_{F,rep,1} bzw. b_{F,rep,2} bezeichnet. Diese repräsentativen Signalwerte sind bei Stillstand des PKWs (der z. B. durch Auswertung eines oder mehrerer Radgeschwindigkeitssignale ermittelt wird) die Maximalwerte der gemessenen Sensorsignale b₄ und b₅ und im Bewegungszustand des PKWs, d. h. außerhalb des Stillstandes, die Minimalwerte dieser beiden Sensorsignale.

Aus den Referenzwerten b_{B,rep,1} und b_{B,rep,2} wird in beiden Mikrorechnern mittels einer abgespeicherten Pedalcharakteristik jeweils die Führungsgröße für die gewünschte mittlere Zuspannkraft bzw. das gewünschte mittlere Bremsmoment eines Rades bei einer Betriebsbremsung berechnet. Diese Führungsgröße wird im Mikrorechner P₁ mit F_{B,res,1} und im Mikrorechner P₂ mit F_{B,res,2} bezeichnet.

Aus den Sensorsignalen b_{F,rep,1} und b_{F,rep,2} werden in den Mikrorechnern P₁ und P₂ ebenfalls jeweils unter Nutzung ei-

DE 198 26 130 A 1

ner vorgebbaren abgespeicherten Kennlinie der Fahrerwunsch für die mittlere Zuspannkraft bzw. das mittlere Bremsmoment eines Rades bei einer Feststellbremse ermittelt. Diese Führungsgröße wird im Mikrorechner P₁ mit F_{F,res,1} bzw. im Mikrorechner P₂ mit F_{F,res,2} bezeichnet.

Die in einem Mikrorechner berechneten Führungsgrößen für den Betriebsbremswunsch und den Feststellbremswunsch werden dem jeweiligen anderen Mikrorechner über den internen Kommunikationskanal C zur Verfügung gestellt. In beiden Mikrorechnern wird F_{B,res,1} mit F_{B,res,2} und F_{F,res,1} mit F_{F,res,2} verglichen. Stimmen die Vergleichswerte jeweils innerhalb einer vorgebbaren Toleranzgrenze überein, so wird eine resultierende Größe für den Betriebsbremswunsch F_{B,res} durch arithmetische Mittelung aus den Größen F_{B,res,1} und F_{B,res,2}, die resultierende Größe für den Feststellbremswunsch F_{F,res} durch arithmetische Mittelung der Größen F_{F,res,1} und F_{F,res,2} gebildet.

Stimmen die Vergleichswerte nicht überein, werden mittels der Überwachungskomponente P₃ aufgrund der unten beschriebenen Rechnerüberwachung die fehlerfreien Signalwerte sowohl für den Betriebsbremswunsch wie auch für den Feststellbremswunsch eindeutig detektiert. In beiden Mikrorechnern werden die fehlerfreien Signalwerte den Größen F_{B,res} bzw. F_{F,res} zugewiesen.

Aus den Signalen F_{B,res} und F_{F,res} entsteht die resultierende mittlere Zuspannkraft eines Rades F_{res} durch die Beziehung F_{res} = Maximum(F_{B,res}, F_{F,res}). F_{res} könnte in einer alternativen Ausführung auch dem resultierenden mittleren Bremsmoment eines Rades entsprechen, das durch eine Betätigung der Betriebs- bzw. Feststellbremse gefordert wird. Aus F_{res} werden im Sinne einer geeigneten Aufteilung die gewünschten Zuspannkräfte bzw. Bremsmomente für die Räder der Vorderachse F_V bzw. für die Räder der Hinterachse F_H berechnet.

Mittels der Kommunikationssysteme K₁ und K₂ überträgt das Pedalmodul die Sollwerte für die Zuspannkräfte bzw. Bremsmomente F_V und F_H an die angeschlossenen Komponenten des elektromechanischen Bremssystems.

Durch die diversitäre Erfassung und Berechnung werden Fehler, die zu unbeabsichtigter Bremsung oder einer falschen Führungsgröße für die Radzuspannkraft bzw. das Radbremsmoment führen würden, erkannt. Auch verfälschte Speicherinhalte, die zu einer gleichen Fehlerwirkung führen würden, werden erkannt. Die Überwachungskomponente P₃ kommuniziert mit den Mikrorechnern P₁ bzw. P₂ mittels des internen Bussystems C. Sie dient zur Überwachung der Programmabläufe in den Programmen Pr1 und Pr2 und zudem zur Überprüfung der Rechenfähigkeit der Mikrorechner P₁ und P₂. Um die Sicherheit im Falle eines Rechnerfehlers in P₁ oder P₂ zu gewährleisten, müssen in diesem Fehlerfall die Programme Pr1 und Pr2 trotzdem noch ordnungsgemäß ablaufen, oder der nicht ordnungsgemäß Ablauf muß sicher erkannt werden. Bei nicht ordnungsgemäßem Ablauf wird der zugehörige Rechnerkanal abgeschaltet und es erfolgt eine Fehlersignalisierung über die Signale d₁ bzw. d₂. Die Kontrolle der Funktionsfähigkeit erfolgt in der dargestellten Ausführungsvariante durch eine Frage-Antwort-Kommunikation. Die Mikrorechner P₁ und P₂ holen aus der Überwachungskomponente eine Frage ab und beantworten diese jeweils unter Berücksichtigung aller sicherheitsrelevanten Programmteile innerhalb eines vorgegebenen Zeitintervall. Die Fragen sind so vorzugeben, daß eine richtige Antwort nur bei einem fehlerfreien Ablauf dieser Programmteile, insbesondere des Rechnerfunktionstests (RAM-, ROM-Test, etc.) und des Befehlstests (bzgl. Addition, Subtraktion, etc.), gegeben ist. Die aus den Teilprogrammen gebildeten Teilantworten werden in jedem Mikrorechner zu einer Gesamtantwort zusammengefaßt. In der Überwachungskomponente werden die von den Mikrorechnern P₁ und P₂ jeweils bereitgestellten Gesamtantworten hinsichtlich des Zeitintervall des Eintreffens und auf bitgenaue Übereinstimmung mit der zur Frage passenden richtigen Antwort überprüft und gegebenenfalls Fehlerbehandlungsstrategien, z. B. Signalisierung und Kanalabschaltung, eingeleitet. Die Funktionsfähigkeit der Überwachungskomponente wird von den Mikrorechnern P₁ und P₂ durch geeignete Testfragen überprüft. Diese Testfragen können von der Überwachungskomponente nur bei vollständig korrekter Funktion richtig beantwortet werden.

Im Pedalmodul werden zudem die internen Fehlerzustände und die Fehlerbotschaften d₁, d₂, d₃ und d₄ der angeschlossenen Radeinheiten bzw. die Fehlerbotschaft d_V der Verarbeitungseinheit erfaßt und in einem Fehlerspeicher abgespeichert. Zudem erfolgt die Erfassung der Statussignale c₁ und c₂ der Energiediagnoseeinheit. Diese Erfassung geschieht sowohl während einer Testphase vor Fahrtbeginn wie auch in allen Betriebsphasen einer Fahrt. Alle Fehler- und Statussignale werden innerhalb des Pedalmoduls mittels vorgegebener Tabellen, in denen für jede Fehlerart und für jeden Status eine durchzuführende Aktion abgelegt ist, ausgewertet. Als Ergebnis der Auswertung werden in der Fahrphase entsprechend des Gefährdungspotentials der Fehlerzustände Botschaften für Rückfallstrategien in den verschiedenen Komponenten des Bremssystems eingeleitet, die an die Verarbeitungseinheit und die Radeinheiten mittels der Signale r₁, r₂, r₃, r₄ und r_V übertragen werden. Bei sicherheitsrelevanten Fehlern erfolgt eine Signalisierung für den Fahrer mittels der Fehlersignale d_{P1} bzw. d_{P2}. Bei Fehlerzuständen, die in der Testphase vor Fahrtbeginn detektiert werden, erfolgt ebenfalls eine Fahrersignalisierung. Bei sicherheitskritischen Fehlern wird die Bremssysteminitialisierung abgebrochen und das Lösen der Feststellbremse verhindert. Bei sicherheitskritischen Betriebszuständen während einer Fahrt ist zudem ein Eingriff in das Motormanagement zur Reduzierung des verfügbaren Antriebsmomentes realisierbar.

Mittels der Signalleitungen z₁ bzw. z₂ werden durch das Pedalmodul die weiteren Komponenten des elektromechanischen Bremssystems nach Einschalten der Zündung bzw. auch bei Betätigung der Bremse bei ausgeschalteter Zündung initialisiert. Zudem erfolgt mittels dieser Signale ein gezieltes Abschalten der Systemkomponenten bei Beendigung der Fahrt.

Mittels der Serviceschnittstelle d_S wird dem Servicepersonal der Zugang zum Bremssystem und das Auslesen des Fehlerspeichers für das Gesamtsystem ermöglicht.

Die Energiediagnoseeinheit (20) übernimmt die Überwachung der Energieversorgungseinheiten (Batterien) bezüglich einer ausreichenden Kapazität für die bei Bremsvorgängen erforderliche Leistung und Energie. Hierzu muß zumindest die zur Erzielung der vom Gesetzgeber vorgeschriebenen Mindestbremswirkung benötigte Energie gesichert sein. Die Überwachung erfolgt mittels geeigneter Sensoren L₁ und L₂, z. B. zur Messung der Lade- und Verbraucherströme, und eines mathematischen Modells. Dieses Modell berücksichtigt die elektrochemischen und physikalischen Eigenschaften wie auch die Vorgeschichte, z. B. die Anzahl der Tiefentladungen, der Energieversorgungseinheiten. Die Energiediagnoseeinheit ist vorzugsweise in Form eines redundanten Mikrorechnersystems realisiert, das über beide Energiequellen gespeist wird und dessen Teilsysteme über ein internes Bussystem Daten austauschen können.

In der Verarbeitungseinheit (22) werden die übergeordneten Funktionen des Bremssystems realisiert. Hierzu gehören

DE 198 26 130 A 1

insbesondere die Berechnungen der radindividuellen Führungsgrößen F_1 , F_2 , F_3 und F_4 für die Zuspannkräfte bzw. Bremsmomente eines Rades. Die Berechnungen erfolgen unter Einbeziehung bekannter Prinzipien wie die Berücksichtigung der radspezifischen Drehzahlen bei Vollbremsungen im Sinne eines Anublockierschutzes, die Berücksichtigung einer Antriebsschlupfregelungsfunktion, die Realisierung einer Fahrdynamikregelung zur Vermeidung von Schleuderzuständen unter Einbeziehung weiterer Sensoren, z. B. für Lenkradwinkel δ_L , Querbeschleunigung a_y und Gierwinkelgeschwindigkeit ψ , die Berücksichtigung der radindividuellen Bremsbelagstärke bei Teilbremsungen mit dem Ziel einen gleichmäßigen Verschleiß der Bremsbeläge zu erzielen, die Realisierung einer Hillholder-Funktion, die Berücksichtigung des Beladungszustandes zur Erzielung einer optimalen Bremskraftaufteilung auf die Räder der Vorder- und Hinterachse, die Erzielung einer adaptiven Bremskraftverteilung zwischen dem kurveninneren und kurvenäußeren Rad einer Achse in Abhängigkeit vom gemessenen Lenkwinkel, um eine verbesserte Fahrdynamik zu erreichen, die Korrekturen der Einzelbrennkräfte bei Ausfall einer Radeinheit, die gezielten Eingriffe in das Motormanagement bei einem Bremswunsch über das Kommunikationssystem K_3 , und den Eingriff in das Motormanagement im Falle eines sicherheitskritischen Fehlers des Bremsystems. Zusätzlich stehen der Verarbeitungseinheit noch die gemessenen Istwerte der Regelgrößen F_{1i} , F_{2i} , F_{3i} und F_{4i} zur Berechnung der radindividuellen Führungsgrößen F_1 bis F_4 zur Verfügung. Ferner kann optional die Bestimmung von fahrdynamischen Referenzgrößen zur Unterstützung der Überwachungsfunktionen innerhalb der Radeinheiten ermittelt werden. Details werden bei der Beschreibung der Funktionen der Radeinheit ausgeführt.

Die Verarbeitungseinheit (22) ist gemäß Fig. 3 redundant durch zwei Mikrorechnersysteme RV1 und RV2 aufgebaut, die über einen internen Kommunikationskanal C1 die berechneten Daten austauschen. Über die beiden Kommunikationssysteme K_1 und K_2 empfängt die Verarbeitungseinheit (22) von den Radeinheiten (12 bis 18) die radindividuellen Drehzahlen (n1 bis n4), die Istwerte der Zuspannkraft bzw. des Bremsmoments (F_{1i} bis F_{4i}) und von der Pedaleinheit (10) die Führungsgrößen für die Zuspannkraft bzw. das Bremsmoment für die Räder der Vorderachse F_V bzw. für die Räder der Hinterachse F_H .

Bei Ausfall eines Rechnerkanals in der Pedaleinheit (10) wird der Datentransport über das angeschlossene Kommunikationssystem unterbrochen. Die Verarbeitungseinheit (22) übermittelt bei dieser Fehlerkonstellation die vom anderen Rechnerkanal des Pedalmoduls (10) empfangenen achsindividuellen Führungsgrößen F_V und F_H wie auch Botschaften (r1 bis r4) für die Rückfallstrategien an die angeschlossenen Radeinheiten (12 bis 18). Zudem können bei diesem Fehler die Diagnosebotschaften (d1 bis d4) der Radmoduln an den funktionsfähigen Rechnerkanal des Pedalmoduls weitergeleitet werden. Beispielsweise hierzu der Ausfall des Mikrorechners P_2 im Pedalmodul betrachtet. Bei diesem Fehlerfall können die Botschaften vom Pedalmodul über das Kommunikationssystem K_1 und die Verarbeitungseinheit den Radmodulen 2 und 4 übermittelt werden. Den umgekehrten Weg nehmen die Diagnosebotschaften aus den Radmodulen 2 und 4. Zur Berechnung der für eine FDR-Funktion erforderlichen radindividuellen Führungsgrößen werden zusätzlich in der Verarbeitungseinheit (22) die hierfür notwendigen Größen (Lenkwinkel, Querbeschleunigung und Drehrate) erfasst.

Die o.a. Berechnungen werden unabhängig in den beiden Rechnersystemen RV1 und RV2 durchgeführt und miteinander verglichen. Bei inkonsistenten Ergebnissen wird die Verarbeitungseinheit abgeschaltet und eine Fehlerstatusbotschaft dV über das Kommunikationssystem abgesandt.

Innerhalb der Radeinheiten werden die Regelungen der radindividuellen Zuspannkräfte bzw. Bremsmomente realisiert. Die Kommunikationssysteme K_1 und K_2 stellen hierzu die Führungsgrößen bereit.

Die Radeinheiten werden von verschiedenen elektrischen Energiequellen gespeist, die Radeinheiten 12 und 14 von der Energiequelle E_1 bzw. die Radeinheiten 16 und 18 von der Energiequelle E_2 . Die Verbindung der Radeinheiten zu den weiteren Systemmodulen wird zudem mit unterschiedlichen Kommunikationssystemen realisiert. Die Radeinheiten 12 und 14 kommunizieren über K_1 , Radeinheiten 16 und 18 über K_2 .

Betrachtet werde im folgenden die Radeinheit 12 gemäß Fig. 4. Die anderen Radeinheiten sind entsprechend aufgebaut. Die Radeinheit 12 dient zur Regelung der Zuspannkraft bzw. des Bremsmomentes eines Rades und zur Einleitung einer Rückzugs-Strategie bei einer Störung im Aktuator 18b der Radeinheit 18. Die Radeinheit 12 kommuniziert mit den anderen Systemkomponenten mittels des Kommunikationssystems K_1 . Über dieses System erhält die Radeinheit folgende Größen:

F_1 : Radindividuelle Führungsgröße für die Regelung der Zuspannkraft oder des Bremsmomentes des Rades. Diese Größe wird zum Zeitpunkt eines ABS-, ASR oder FDR-Eingriffes von der Verarbeitungseinheit (22) bereitgestellt. Diese Führungsgröße könnte in einer weiteren Ausführungsvariante zusätzlich von der Verarbeitungseinheit spezifisch für folgende Aufgaben berechnet werden:

- a) zur Erzielung eines gleichmäßigen Verschleißes aller Bremsbeläge eines Fahrzeugs
- b) zur Adaption der Verteilung des Gesamtbremsmomentwunsches des Fahrers auf die Räder der Vorder- bzw. Hinterachse in Abhängigkeit von der momentanen Achslastverteilung
- c) zur Erzielung einer adaptiven Bremskraftverteilung zwischen dem kurveninneren und kurvenäußeren Rad einer Achse in Abhängigkeit vom gemessenen Lenkwinkel, um eine verbesserte Fahrdynamik zu erreichen.

F_V : Ersatzführungsgröße Vorderachse für die Zuspannkraft bzw. das Bremsmoment eines Rades der Vorderachse. (Für die der Hinterachse zugeordneten Radeinheiten wird in entsprechender Weise die Ersatzführungsgröße F_H verwendet.) Die Führungsgröße F_V wird aus dem Betriebs- und Feststellbremswunsch des Fahrers gebildet und den beiden Radeinheiten der Vorderachse sowie der Verarbeitungseinheit bereitgestellt. Die achsspezifische Führungsgröße wird innerhalb einer Radeinheit zur Regelung der Zuspannkraft bzw. des Bremsmomentes verwendet, sofern keine abweichende radindividuelle Führungsgröße in der Verarbeitungseinheit gebildet wurde oder auch bei Ausfall der Verarbeitungseinheit.

r₁: Steuerbotschaft zur Einleitung eines veränderten Verarbeitungsablauf in der Radeinheit. Diese Botschaft wird von der Pedaleinheit oder der Verarbeitungseinheit aus den eintreffenden Fehlersignalbotschaften der angeschlossenen Systemmodule gebildet.

DE 198 26 130 A 1

Die über das Kommunikationssystem eintreffenden Signale werden redundant in den Speicherzellen S_i des Mikrorechnersystems R_{1A} abgelegt. Zur Funktionsüberwachung der Radeinheit können in Ausführungsvarianten zusätzlich noch die folgenden über das Kommunikationssystem K_1 eintreffenden Signale verarbeitet werden:

- 5 a_{R2}, a_{R3}, a_{R4} : Verzögerungen der anderen Räder
 $a_{V,ref}$: Referenzwert für die Verzögerungsdifferenz der Räder der Vorderachse
 s_{R2}, s_{R3}, s_{R4} : Schlupf der anderen Räder
 $\Delta s_{V,ref}$: Referenzwert für die Schlupfdifferenz zwischen den Rädern der Vorderachse
 v_F : Schätzwert für Fahrzeuggeschwindigkeit.

10 Als Ausgabegrößen der Radeinheit werden den angeschlossenen Systemmodulen die folgenden Signale über das Kommunikationssystem K_1 zugeführt:

- n₁: Aufbereitetes Drehzahlsignal des zugeordneten Rades
- 15 d₁: Zyklische Fehlersignalbotschaft der Radeinheit
Fli: gemessener Istwert der Regelgröße.

Zur Funktionsüberwachung in den anderen Radeinheiten werden in Ausführungsvarianten zusätzlich noch die folgenden Größen von der Radeinheit **12** benötigt:

- 20 a_{R1}: Verzögerung des zugeordneten Rades
s_{R1}: Schlupf des zugeordneten Rades.

Diese Signale werden über das Kommunikationssystem K_1 den anderen Systemmodulen bereitgestellt.
25 Die Radeinheit **12** umfaßt folgende Komponenten

- a) Mikrorechnersystem R_{1A} mit den zugehörigen Peripherie-, Speicher- und Watchdogbaugruppen
- b) Überwachungskomponente R_{1B}
- 30 c) Elektromotor M_{1H} einschließlich der erforderlichen Getriebestufe zur Umsetzung der Drehbewegung in eine Zuggleichbewegung des Bremsbelages einer Scheiben- oder Trommelbremse
- d) Elektromagnetisch gelüftete Ausrückvorrichtung K_{11} , die Eingriff auf eine innerhalb des Momentenflusses zwischen Elektromotor und Bremsbelag liegende Welle hat, die im stromlosen Zustand mittels eines Federelementes geschlossen wird und in diesem Zustand für die Aufrechterhaltung der aktuellen Winkelposition der Welle sorgt. Die Auslegung dieser Ausrückvorrichtung muß sicherstellen, daß damit jede eingesteuerte Zuspannkraft auf die Bremsscheibe eingehalten werden kann.
- e) Rückstellmodul M_{1R} , realisiert in Form einer elektromagnetisch betätigbaren Ausrückvorrichtung oder als Elektromotor. Dieses Modul wird von der Energiequelle E_2 gespeist und wird von der Radeinheit **18** angesteuert.
- f) Leistungselektronik LE_{1H} zur Ansteuerung des Elektromotors M_{1H}
- 35 g) Leistungselektronik LE_{1K} zur Ansteuerung der elektromagnetisch betätigten Ausrückvorrichtung K_{11}
- h) Leistungselektronik LE_{2R} zur Ansteuerung des Rückstellmoduls M_{2R} , das in der Radeinheit **18** integriert ist.

Die Positionen c), d) und e) werden im folgenden als Aktuator **12b** der Radeinheit **12** bezeichnet.

Dem Mikrorechnersystem R_{1A} werden die folgenden vom zugeordneten Rad stammenden Eingangssignale über peripherie Eingangsbaugruppen zugeführt und redundant in den Speicherzellen S_i abgelegt: Raddrehzahl n_1 , Istwert für die Radzuspannkraft bzw. für das Radbremsmoment F_{1i} , Zuspannweg bzw. Drehwinkel der Getriebestufe oder des Elektromotors s_{1H} und gegebenenfalls Motorstrom des Aktuators i_{1H} .

Innerhalb des Mikrorechners R_{1A} wird zunächst aus den über den Kommunikationskanal zyklisch empfangenen Größen F_1 bzw. F_V die Führungsgröße F_{1F} ausgewählt. Mittels des aktuell gemessenen Istwertes F_{1i} für die Radzuspannkraft bzw. für das Radbremsmoment wird daraus die Regeldifferenz x_{d1} gemäß

$$50 \quad x_{d1}(t) = F_{1F}(t) - F_{1i}(t) \quad (1)$$

gebildet. Mit vorzugebenden Grenzwerten ε und μ und Zeitintervallen T_ε und T_μ können dann die Vergleiche gemäß

$$55 \quad |x_{d1}(t)| \leq \varepsilon \text{ für } 0 < t < T_\varepsilon \quad (2)$$

$$|dx_{d1}(t)/dt| \leq \mu \text{ für } 0 < t < T_\mu \quad (3)$$

durchgeführt werden. Falls die Bedingungen (2) und (3) erfüllt sind, werden keinerlei Stelleingriffe am Aktuator ausgeführt. Ist diese Bedingung nicht erfüllt, so wird mittels eines digitalen Regelalgorithmen unter Berücksichtigung der zuletzt ausgegebenen Stellgröße (z. B. eines Proportional-/Integral-Reglers oder eines Proportional-/Integral-/Differential-Reglers) die erforderliche aktuelle Stellgröße für die Ausregelung der Radzuspannkraft bzw. des Radbremsmoments berechnet. Diese Stellgröße wird in Form des PWM-Signals u_{1H} an die Leistungselektronik LE_{1H} ausgegeben. Zudem wird die elektromagnetisch gelüftete Ausrückvorrichtung K_{11} über das Steuersignal f_1 und die Leistungselektronik LE_{1K} angesteuert, wodurch eine Drehbewegung des Motors zur Erzielung einer veränderten Radzuspannkraft erst ermöglicht wird. Sind während des Ausregelns der Zuspannkraft bzw. des Radbremsmoments die Bedingungen (2) und (3) erfüllt, so wird die Ansteuerung der elektromagnetisch betätigten Ausrückvorrichtung K_{11} beendet und anschließend der Elektromotor M_{1H} stromlos geschaltet. Um aufgrund einer Fehlfunktion des Mikrorechnersystems R_{1A} eine ungewollte Ver-

DE 198 26 130 A 1

änderung der Radzuspannkraft zu vermeiden, wird eine Ansteuerung des Elektromotors mittels des Stromes i_{1H} erst ermöglicht, falls das Freigabesignal g_{1H} und zusätzlich das Freigabesignal e_{1H} von der Überwachungskomponente R_{1B} am Ansteuerteil der Leistungselektronik LE_{1H} anstehen (vgl. &-Verknüpfung in LE_{1H}).

Um auch eine ungewollte Verminderung der durch die Ausrückvorrichtung aufrechterhaltenen Radzuspannkraft vermeiden zu können, ist die Ansteuerung der Ausrückvorrichtung Ku_1 mittels des Stromes i_{1K} erst möglich, wenn sowohl das Freigabesignal g_{1H} und das Freigabesignal e_{1H} von der Überwachungskomponente R_{1B} bereitgestellt werden (vgl. &-Verknüpfung in LE_{1K}). Durch die Einbeziehung der elektromagnetischen Ausrückvorrichtung in den Regelvorgang kann bei einem annähernd stationären Bremswunsch des Fahrers die erforderliche Zuspannkraft zunächst über den Elektromotor aufgebracht und anschließend ohne Verbrauch von elektrischer Energie allein durch die Federkräfte innerhalb der elektromagnetisch betätigten Ausrückvorrichtung aufrechterhalten werden. Damit sind auf einfache Weise die beim Betätigen der Feststellbremse eines Kfz erforderlichen Zuspannkräfte einzuleiten und energielos beizubehalten. Zum Lösen der Bremse an einem Rad wird zunächst die Ausrückvorrichtung mittels des Ansteuersignales f_1 geöffnet und danach der Elektromotor M_{1H} mit negativer Spannung angesteuert. Wird dieses Lösen durch einen Fehler in der Aktorik verhindert, z. B. durch ein Festklemmen der Getriebestufe in der Aktorik, so kann dieser Fehler an der gemessenen Radzuspannkraft bzw. am Radbremsmoment eindeutig erkannt werden. Dies erfolgt z. B. durch Vergleich der Ansteuerung und der Radzahl, gegebenenfalls des Drehwinkels. Eine Verklemmung wird erkannt, wenn z. B. trotz Ansteuerung keine Drehwinkeländerung des Elektromotors erkannt wird und/oder bei Nicht-Ansteuerung ein Bremsschlupf des zugeordneten Rades vorliegt. Die Regelung wird daraufhin abgebrochen und über das Kommunikationssystem wird eine Fehlerbotschaft d_1 abgesandt. Diese Botschaft wird in der Pedaleinheit (10) ausgewertet und daraus resultierend wird eine Fehlerbehebungmaßnahme eingeleitet. Mittels einer Rückfallbotschaft r_2 , die über das Kommunikationssystem K_2 geschickt wird, erhält die in Fig. 5 dargestellte Radeinheit 18 die Information, die Rückstelleinrichtung M_{1R} in der Aktorik 12b über die Leistungselektronik LE_{1R} und das Signal i_{1R} anzusteuern. Da die Rückstelleinrichtung M_{1R} mittels der Energiequelle E_2 angesteuert wird, kann ein Lösen der Bremsfunktion des der Radeinheit 12 zugeordneten Rades selbst bei Ausfall der Energiequelle E_1 durchgeführt werden.

In der Radeinheit 12 wird in entsprechender Weise auf eine Rückfallbotschaft r_1 reagiert, die die Information zum Lösen des durch einen Fehlersfall gebremsten, der Radeinheit 18 zugeordneten Rades enthält. Dieser Botschaftstyp führt zur Ausgabe des Signales u_{2R} , mit dem die Leistungselektronik LE_{2R} aktiviert wird. Das Stuersignal i_{2R} zum Ansprechen der Rückstelleinrichtung im Aktuator 18b wird jedoch erst aktiviert, falls die Freigabesignale g_{2R} und e_{2R} bereitstehen (vgl. &-Verknüpfung in LE_{2R}).

Die Richtigkeit des gemessenen Istwertes der Radzuspannkraft bzw. des Radbremsmomentes kann durch eine analytische Redundanz sichergestellt werden. Bei einer erfahrungsgemäßen Realisierung dieser Redundanz kann eine oder mehrere der folgenden Maßnahmen durchgeführt werden:

Vergleich der Istwerte der Radzuspannkraft bzw. des Radbremsmomentes mit einer Referenzgröße $F_{r,a}$. Zur Bestimmung von $F_{r,a}$ wird zunächst die Änderung der Positions- bzw. Drehwinkelmeßgröße s_{1H} ab dem Zeitpunkt des Bremsbeginnes gemessen und anschließend mittels einer konstruktiv gegebenen Funktion auf die physikalische Dimension einer Kraft bzw. eines Momentes umgerechnet. Diese Funktion berücksichtigt alle Elastizitäten der im Kraftfluß des Aktuators angeordneten Komponenten. Im Falle der Regelung des Radbremsmomentes wird zusätzlich in die Funktion noch ein temperaturabhängiges Reibmodell der Bremsscheibe (z. B. Modellierung der Anwärmung und Abkühlung der Scheibe) implementiert.

Vergleich des Istwertes der Radzuspannkraft bzw. des Radbremsmomentes mit einer Referenzgröße $F_{r,b}$. Zur Bestimmung von $F_{r,b}$ wird der Strom des Elektromotors M_{1H} während einer stationären Bremsphase gemessen und anschließend mittels einer vorab bestimmten Funktion auf die physikalische Dimension einer Kraft bzw. eines Momentes umgerechnet. Diese Funktion berücksichtigt zunächst die Auslegungsdaten des Elektromotors und des Getriebes, gegebenenfalls unter Einbeziehung eines Temperatur- und Reibmodells. Zudem wird die aktuelle effektive Eingangsspannung wie auch die Drehrichtung vor Erreichen des stationären Arbeitspunktes berücksichtigt. Im Falle der Regelung des Radbremsmomentes kann zusätzlich in die Funktion noch ein temperaturabhängiges Reibmodell der Bremsscheibe implementiert werden.

Ein weiteres Verfahren beruht auf der vergleichenden Betrachtung der Verzögerung der Räder im Teilbremsbereich. Die Berechnung der Radverzögerungen in den einzelnen Radeinheiten wird mittels einer Botschaft der Verarbeitungseinheit zum Zeitpunkt T_x gestartet. Die Berechnung der Verzögerung des der Radeinheit 12 zugeordneten Rades erfolgt gemäß der Gleichung

$$a_{R1}(T_x) = C_1[n(T_x) - n(T_x - T_a)] \quad (4).$$

Hierin ist T_a die zyklische Abtastzeit, bei der an jeder Radeinheit die Drehzahlerfassung durchgeführt wird und C_1 ist eine Konstante, die durch die Radgeometrie und die Abtastzeit festgelegt ist.

Aus den Verzögerungswerten der Räder der Vorderachse $a_{R1}(T_x)$ und $a_{R2}(T_x)$ wird die Verzögerungsdifferenz $\Delta a_v(T_x)$ der Vorderachsräder gebildet:

$$\Delta a_v(T_x) = a_{R1}(T_x) - a_{R2}(T_x) \quad (5).$$

Der hierfür erforderliche Wert $a_{R2}(T_x)$ wird von der Radeinheit 18 über das Kommunikationssystem K_1 zugeführt. Für die Verzögerungsdifferenz $\Delta a_v(T_x)$ muß bei korrekter Funktion der Zuspannkraft- bzw. Bremsmomentregelung gelten:

$$|\Delta a_v(T_x) - \Delta a_{v,ref}(T_x)| < \varepsilon_a \quad (6).$$

Hierin ist $\Delta a_{v,ref}$ ein Referenzwert für die Verzögerungsdifferenz der Räder der Vorderachse. ε_a beschreibt einen parametrierbaren Fehlergrenzwert. Der Referenzwert $\Delta a_{v,ref}$ wird in der Verarbeitungseinheit mittels eines mathematischen

DE 198 26 130 A 1

Modelles unter Verwendung der zyklisch erfaßten fahrdynamischen Meßgrößen Lenkradwinkel δ_L , Querbeschleunigung a_y und Gierwinkelgeschwindigkeit $\dot{\psi}$ sowie unter Berücksichtigung eines Schätzwertes für die Fahrzeuggeschwindigkeit v_F berechnet. Ist die Bedingung (6) verletzt, so kann daraus auf einen Fehler im Zuspakkraft- bzw. Bremsmomentensensor eines der Räder geschlossen werden. Durch die Verwendung von beiden Rädern einer Achse zur Fehlererkennung, werden Störgrößeneinflüsse, die auf beide Räder wirken, eliminiert. Es wird bei diesem Verfahren davon ausgegangen, daß die Funktionalität des Regelalgorithmus und der Stellgrößenausgabe wie auch die fehlerfreie Erfassung der Drehzahlen an beiden Rädern der Vorderachse durch andere Überwachungsmethoden sichergestellt werden. Die Zuordnung eines erkannten Fehlers auf Radeinheit 12 oder Radeinheit 18 erfolgt durch Einbeziehung der beiden Radverzögerungswerte der Hinterachse $a_{R3}(T_x)$ und $a_{R4}(T_x)$ (z. B. durch Vergleich der einzelnen Größe mit der entsprechenden

Größe eines Hinterrades).

Ein weiteres Verfahren beruht auf der vergleichenden Betrachtung der Schlupfwerte der einzelnen Räder im Teilbereich. Die Berechnung des Schlupfes in den einzelnen Radeinheiten wird mittels einer Botschaft der Verarbeitungseinheit zum Zeitpunkt T_x gestartet. Innerhalb der Radeinheit 12 wird der Schlupf des zugeordneten Rades mit der Radzahl n_1 und dem Schätzwert der Fahrzeuggeschwindigkeit v_F gemäß der Gleichung

$$s_{R1}(T_x) = 1 - C_2 n_1(T_x)/v_F(T_x) \quad (7)$$

berechnet. Die Konstante C_2 wird durch die Radgeometrie bestimmt. Mittels des Radschlupfes $s_{R2}(T_x)$, der von der Radeinheit 18 über das Kommunikationssystem zugeführt wird, kann die Schlupfdifferenz der Räder der Vorderachse Δs_v gemäß

$$\Delta s_v(T_x) = s_{R1}(T_x) - s_{R2}(T_x) \quad (8)$$

berechnet werden. Für die Schlupfdifferenz $\Delta s_v(T_x)$ muß bei korrekter Funktion der Zuspakkraft- bzw. Bremsmomentenregelung gelten:

$$|\Delta s_v(T_x) - \Delta s_{v,ref}(T_x)| < \epsilon_s \quad (9).$$

Hierin ist $\Delta s_{v,ref}$ ein Referenzwert für die Schlupfdifferenz der Räder der Vorderachse. ϵ_s beschreibt einen parametrierbaren Fehlertoleranzwert. Der Referenzwert $\Delta s_{v,ref}$ wird in der Verarbeitungseinheit mittels eines mathematischen Modells der Fahrdynamik unter Verwendung der zyklisch erfaßten Meßgrößen Lenkradwinkel δ_L , Querbeschleunigung a_y und Gierwinkelgeschwindigkeit $\dot{\psi}$ sowie unter Berücksichtigung der radindividuellen Führungsgrößen für die Zuspakkräfte bzw. Radbremsmomente berechnet:

$$\Delta s_{v,ref}(T_x) = f_1 \{ \delta_L, a_y, \dot{\psi}, F_1, F_2, F_3, F_4 \} \quad (10).$$

In einer weiteren Ausführungsvariante kann eine verbesserte Referenzgröße $\Delta s_{v,ref}$ unter Einbeziehung von Meßwerten bzw. Schätzwerten für die Radlasten F_{N1}, F_{N2}, F_{N3} und F_{N4} ermittelt werden. Über ein erweitertes dynamisches Modell wird dazu in der Verarbeitungseinheit $\Delta s_{v,ref}$ gebildet. Dadurch werden Einflüsse, die durch eine Radlastverlagerung verursacht werden, bei der Berechnung berücksichtigt. Ist die Bedingung (9) verletzt, so kann daraus auf einen Fehler im Zuspakkraft- bzw. Bremsmomentensensor eines der Räder geschlossen werden. Es wird dabei davon ausgegangen, daß die Funktionalität der Regelfunktionen wie auch die fehlerfreie Erfassung der Drehzahlen an beiden Rädern der Vorderachse durch andere Überwachungsmethoden sichergestellt werden. Die Zuordnung eines erkannten Fehlers auf Radeinheit 1 oder Radeinheit 2 erfolgt durch Einbeziehung der beiden Schlupfwerte für die Räder der Hinterachse $s_{R3}(T_x)$ und $s_{R4}(T_x)$ (z. B. durch Vergleich der einzelnen Größe mit der entsprechenden Größe eines Hinterrades).

Das Überwachungskonzept der Radmoduls ist mit den vier logischen Ebenen L_1, L_2, L_3 und L_4 und zwei Hardwareebenen strukturiert. In den Hardwareebenen wirken das Mikrorechnersystem R_{1A} und die Überwachungskomponente R_{1B} .

Die Überwachungskomponente R_{1B} kommuniziert mit dem Mikrorechnersystem R_{1A} mittels eines internen Bussystems. Sie dient zur Überprüfung der Rechenfähigkeit dieses Mikrorechnersystems und zur Überwachung der Programmabläufe innerhalb des Rechners. Durch die gewählte Art der Datenkommunikation zwischen dem Mikrorechnersystem R_{1A} und der Überwachungskomponente R_{1B} wird eine gegenseitige Überwachung dieser Komponenten ermöglicht. Dazu sind den logischen Ebenen folgende Aufgaben zugeordnet: Eine Ebene 1 ist im Mikrorechnersystem R_{1A} realisiert. Sie übernimmt folgende Aufgaben: Berechnung der Regelfunktion für die Ansteuerung des Elektromotors M_{1H} ; Ansteuerung der elektromagnetisch betätigten Ausrückvorrichtung K_{U1} ; Ansteuerung des Rückstellmoduls M_{2R} ; Berechnungen zur Überprüfung der Richtigkeit des geniesenen Istwertes der Radzuspakkraft bzw. des Radbremsmomentes F_{1i} durch die dargestellte analytische Redundanz.

Eine Ebene 2 ist ebenfalls im Mikrorechner R_{1A} eingebunden. Diese Ebene übernimmt die Prüfung der Korrektheit der in Ebene 1 durchgeföhrten Berechnungen mittels Algorithmen, die diversitär zu denen in Ebene 1 sind. Zur Durchführung der Berechnungen werden zudem die redundant in den Speicherzellen S_i abgelegten Eingangsdaten verwendet, wodurch Fehler durch verfälschte Speicherinhalte erkannt werden. Die Überprüfung der Reglerfunktion erfolgt mittels eines parallel geschalteten mathematischen Modells des Reglers, das mit den redundant abgelegten Daten für die alternativen Führungsgrößen F_1 bzw. F_v und dem Istwert der Radzuspakkraft bzw. des Radbremsmomentes F_{1i} berechnet wird. Bei signifikanten Abweichungen zwischen der Modellausgangsgröße und der in Ebene 1 durchgeföhrten Berechnungen wird ein Fehlerzustand erkannt. Zudem wird in Ebene 2 auch die korrekte Funktion der Regelstrecke überprüft. Hierzu dient ein mathematisches Modell der Regelstrecke, das den dynamischen Zusammenhang zwischen der Stellgröße und der Regelgröße F_{1i} auch unter Einbeziehung von Störgrößen beschreibt. Diesem Modell wird die im Regelalgorithmus in Ebene 1 berechnete Stellgröße zugeführt. Bei signifikanten Abweichungen zwischen der Modellausgangs-

DE 198 26 130 A 1

größe und dem gemessenen Istwert der Radzuspannkraft bzw. des Radbremsmomentes F_{1i} wird ein Fehlerzustand erkannt. Die Ansteuersignale f_i für die elektromagnetisch gelüftete Ausrückvorrichtung bzw. u_{2R} für das Rückstellmodul werden ebenfalls in Ebene 2 auf Korrektheit überprüft und gegebenenfalls werden Fehlerzustände erkannt. Die verwendeten Modelle werden aus den physikalischen Zusammenhängen abgeleitet.

Bei einem in Ebene 3 wie auch in Ebene 2 erkannten Fehler werden die zugehörigen Freigabesignale g_{1H} bzw. g_{2R} zurückgesetzt und eine Fehlerbotschaft d_1 wird über das Kommunikationssystem K_1 abgesetzt.

Die Ebene 3 ist im Mikrorechner R_{1A} realisiert. Um die sichere Funktion der Radeinheit im Falle eines Rechner- oder Programmfehlers zu gewährleisten, müssen im Fehlerfall die Programme in Ebene 1 und 2 trotzdem noch ordnungsgemäß ablaufen, oder der nicht ordnungsgemäße Ablauf muß sicher erkannt werden. Die Kontrolle erfolgt in der dargestellten Ausführungsvariante durch eine Frage-Antwort-Kommunikation der Ebenen 3 und 4. Das Mikrorechnersystem R_{1A} holt aus dem Überwachungsrechner eine Frage ab und beantwortet diese jeweils unter Berücksichtigung aller sicherheitsrelevanter Programmteile innerhalb eines vorgegebenen Zeitintervales. Eine Frage kann nur dann richtig beantwortet werden, wenn ein fehlerfreier Ablauf der Programme für den Rechnerfunktionstest und den Befehlstest gegeben ist. Die aus den Teilprogrammen gebildeten Teilanworten werden zu einer Gesamtantwort zusammengefaßt und der Ebene 4 in der Überwachungskomponente zugeführt.

Diese Ebene ist in der Überwachungskomponente realisiert. Hierin wird die vom Mikrorechner R_{1A} bereitgestellte Gesamtantwort hinsichtlich des Zeitintervales des Eintreffens und auf bitgenaue Übereinstimmung mit der zur Frage passenden richtigen Antwort überprüft. Bei einem nicht ordnungsgemäßen Ablauf der Frage-Antwort Kommunikation mit Ebene 3 werden in der Überwachungskomponente R_{1B} die Freigabesignale e_{1H} bzw. e_{2R} abgeschaltet.

In einer weiteren Ausführungsvariante (Variante 2) sind die Funktionen von zwei Radeinheiten einer Diagonale bzw. einer Achse entsprechend den vorherigen Ausführungen in einer Radpaareinheit integriert. Die Struktur dieser Ausführungsvariante des elektromechanischen Bremsystems ist in Fig. 6 dargestellt.

Bei den Varianten 1 und 2 des elektromechanischen Bremsystems sind bei Ausfall einer Energieversorgung oder eines der Kommunikationssysteme K_1 bzw. K_2 stets zwei Räder nicht mehr bremsbereit. Dieser Nachteil wird bei der Ausführungsvariante 3 vermieden. Die Struktur dieser Variante ist in Fig. 7 und deren Radeinheit in Fig. 8 dargestellt. Diese Variante unterscheidet sich von der vorgestellten Variante 1 insbesondere dadurch, daß die Radmodule der Vorderräder jeweils durch die redundanten Kommunikationssysteme K_1 und K_2 mit den anderen Systemmodulen verbunden werden und daß die Radmodule der Vorderräder mit beiden Energiequellen gespeist werden.

Die geschilderten Funktionen werden durch entsprechende Programme, die in den entsprechenden Rechner ablaufen, realisiert.

Liste der Bezeichnungen

$a_{R1}, a_{R2}, a_{R3}, a_{R4}$:	Verzögerungen der Räder	
$a_{V,ref}, a_{H,ref}$:	Referenzwert für die Verzögerungsdifferenz der Räder der Vorder- bzw. Hinterachse	35
a_y :	Querbeschleunigung	
b_1, b_2, b_3 :	Meßsignale des Fahrerwunsches (z. B. Bremspedalwinkel)	
b_4, b_5 :	Meßsignale des Feststellbremswunsches	
$b_{B,rep,1}, b_{B,rep,2}$:	Referenzwerte für Betriebsbremswunsch	
$b_{F,rep,1}, b_{F,rep,2}$:	Referenzwerte für Feststellbremswunsch	40
C:	Internes Kommunikationssystem	
c_1, c_2 :	Diagnosesignale des Ladezustandes der Energieversorgungseinrichtungen	
d:	Ansteuersignal einer Diagnoseeinheit	
d_{P1}, d_{P2} :	Statusbotschaften über den Zustand des elektromechanischen Bremsystems	
d_S :	Serviceschnittstelle im Pedalmodul	45
d_V :	Fehlersignale der Verarbeitungseinheit	
d_1, d_2, d_3, d_4 :	Fehlerbotschaften der Radeinheiten	
E ₁ , E ₂ :	Energieversorgung	
$e_{1H}, e_{2H}, e_{3H}, e_{4H}$:	Logisches Ansteuersignal für die Leistungselektronik einer Radeinheit	
$e_{1R}, e_{2R}, e_{3R}, e_{4R}$:	Logisches Ansteuersignal für die Leistungselektronik der Rückstelleinrichtung einer Radeinheit	50
$F_{B,res,1}, F_{B,res,2}$:	Führungsgröße für die Gesamtkraft der Betriebsbremse	
F_{res} :	Führungsgröße für Bremskraftwunsch	
F_H :	Führungsgröße für die Zuspannkraft (bzw. das Radbremsmoment) für die Räder der Hinterachse	
F_F :	Führungsgröße für Feststellbremskraft	
$F_{F,res,1}, F_{F,res,2}$:	Führungsgröße für die Gesamtkraft der Feststellbremse	55
F_H :	Führungsgröße für die Zuspannkraft (bzw. das Radbremsmoment) für die Räder der Hinterachse	
F_1, F_2, F_3, F_4 :	Radindividuelle Führunggröße für Radbremskraft oder Radbremsmoment	
$F_{1B}, F_{2B}, F_{3B}, F_{4B}$:	Ausgewählte radindividuelle Führunggröße für die Radzuspannkraft oder das Radbremsmoment	
$F_{1i}, F_{2i}, F_{3i}, F_{4i}$:	Istwert für Radbremskraft bzw. Radbremsmoment	
f_1, f_2, f_3, f_4 :	Ansteuersignal für die elektromagnetische Kupplung in einer Radeinheit	60
$g_{1H}, g_{2H}, g_{3H}, g_{4H}$:	Logisches Ansteuersignal für die Leistungselektronik in einer Radeinheit	
$g_{1R}, g_{2R}, g_{3R}, g_{4R}$:	Logisches Ansteuersignal für die Leistungselektronik der Rückstelleinrichtung in einer Radeinheit	
$i_{1K}, i_{2K}, i_{3K}, i_{4K}$:	Strom für die Ansteuerung einer elektromagnetischen Ausrückvorrichtung in einer Radeinheit	
$i_{1H}, i_{2H}, i_{3H}, i_{4H}$:	Strom für die Ansteuerung des Elektromotors in einer Radeinheit	
$i_{1R}, i_{2R}, i_{3R}, i_{4R}$:	Strom für die Ansteuerung der Rückstelleinrichtung in einer Radeinheit	65
K ₁ , K ₂ , K ₃ :	Kommunikationseinrichtungen	
LE _{1H} , LE _{2H} , LE _{3H} , LE _{4H} :	Leistungselektronik für die Ansteuerung des Elektromotors	
LE _{1K} , LE _{2K} , LE _{3K} , LE _{4K} :	Leistungselektronik für die Ansteuerung der elektromagnetisch betätigten Ausrückvorrichtung	

DE 198 26 130 A 1

- LE_{1R}, LE_{2R}, LE_{3R}, LE_{4R}: Leistungselektronik für die Ansteuerung der Rückstelleinrichtung
L₁, L₂: Sensorik zur Bestimmung des Ladezustandes einer Energieversorgung
n₁, n₂, n₃, n₄: Meßwerte für Raddrehzahlen
P₁, P₂: Mikrorechner im Pedalmodul
5 P₃: Überwachungskomponente im Pedalmodul
r₁, r₂, r₃, r₄: Steuersignale zur Einleitung eines veränderten Verarbeitungsablaufes in den Radeinheiten
S_{H1}, S_{H2}, S_{H3}, S_{H4}: Zuspannweg der Bremsscheibe oder Bremstrommel bzw. Drehwinkel des Elektromotors oder der Getriebestufe
s_{R1}, s_{R2}, s_{R3}, s_{R4}: Schlupf der Räder
10 S₁ bis S_n: Speicherzellen in den Radmodulen
U₁, U₂: Eingangsschnittstellen der Pedaleinheit
u_{BL}: Ansteuersignal für das Bremslicht
u_{1H}, u_{2H}, u_{3H}, u_{4H}: Ansteuersignal für die Leistungselektronik des Elektromotors in der Radeinheit
u_{1R}, u_{2R}, u_{3R}, u_{4R}: Ansteuersignal für die Leistungselektronik der Rückstelleinrichtung in der Radeinheit
15 v_F: Schätzwert der Fahrzeuggeschwindigkeit
x_{d1}, x_{d2}, x_{d3}, x_{d4}: Regeldifferenz in einer Radeinheit
z₁, z₂: Signal für die Initialisierung und das Abschalten der Komponenten des Bremssystems
δ_L: Lenkwinkel
ψ: Gierwinkelgeschwindigkeit
20 Δs_{V,ref}, Δs_{H,ref}: Referenzwert für die Schlupfdifferenz der Räder der Vorder- bzw. Hinterachse

Patentansprüche

1. Elektromechanisches Bremssystem für ein Kraftfahrzeug, mit wenigstens einer Steuereinheit (12a, 14a, 16a, 18a), die wenigstens einer Radbremse zugeordnet ist und die auf der Basis eines Vorgabewertes einen Aktuator zum Betätigen der Radbremse (12b, 14b, 16b, 18b) steuert, dadurch gekennzeichnet, daß der Aktuator einen Elektromotor (M1H) und eine Verriegelungseinrichtung, insbesondere eine Ausrückvorrichtung (Ku1) umfaßt, wobei zur Betätigung der Radbremse über den Elektromotor zunächst die Verriegelungseinrichtung gelöst wird und nach Beendigung der Betätigung die Verriegelungseinrichtung wieder geschlossen wird.
2. Elektromechanisches Bremssystem für ein Kraftfahrzeug, mit wenigstens zwei Steuereinheiten (12a, 14a, 16a, 18a), die wenigstens zwei Radbremsen zugeordnet sind und die von verschiedenen Energieversorgungssystemen mit Energie versorgt werden und die auf der Basis von Vorgabewerten Aktuatoren zum Betätigen der Radbremsen (12b, 14b, 16b, 18b) steuern, dadurch gekennzeichnet, daß der Aktuator eine zusätzliche Rückstellmöglichkeit (M1R) aufweist, die im Fehlerfall an einer Radbremse durch die Steuereinheit einer anderen Radbremse betätigt wird.
3. Bremssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jede Steuereinheit eine Regelung der Bremskraft oder des Bremsmoments durchführt, wobei ein Regeleingriff stattfindet, wenn die Abweichung zwischen Vorgabewert und Istwert einen bestimmten Grenzwert überschreitet oder wenn die Änderung der Abweichung einen Grenzwert überschreitet, wobei zunächst die Verriegelungseinrichtung gelöst wird und dann der Elektromotor nach Maßgabe der Abweichung angesteuert wird.
4. Bremssystem nach Anspruch 3, dadurch gekennzeichnet, daß wenn beide Bedingungen nicht erfüllt sind, die Ansteuerung der Verriegelungseinrichtung beendet und der Elektromotor stromlos geschaltet wird.
5. Bremssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Steuereinheit ein auf Fehler überprüftes Mikrorechnersystem enthält und eine Ansteuerung des Elektromotors und der Verriegelungseinrichtung nur bei einem fehlerfreien Betrieb möglich ist.
6. Bremssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei einem Fehler, der ein Lösen der Bremse verhindert, die Regelung abgebrochen wird und ein Lösen über die zusätzliche Rückstelleinrichtung erfolgt.
7. Bremssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Fehler, der ein Lösen der Bremse verhindert, auf der Basis des gemessenen Bremsmoments oder der gemessenen Bremskraft ermittelt wird.
8. Bremssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fehlerinformation in einer weiteren Einheit ausgewertet wird, die sowohl mit der Steuereinheit des fehlerbehafteten Aktuators als auch mit der Steuereinheit für die Rückstelleinrichtung in Verbindung steht und die der letzteren den Befehl zum Ansteuern vermittelt.
9. Bremssystem nach Anspruch 8, dadurch gekennzeichnet, daß Elektromotor und Rückstelleinrichtung von unterschiedlichen Energieversorgungssystemen mit Energie versorgt werden.

Hierzu 8 Seite(n) Zeichnungen

60

65

Fig. 2

