2013WS Praktika

Motivation

Given

- a set of objects = meshes / segmented volume data
- view point
- user indicates focus object(s)

Output

- show focus object(s)
- keep essential objects
- remove objects that clutter

Approach

 resolve essential/clutter by geometric rules motivated by work from expert illustrators

Manual solution

- Its manual → time consuming
- View point changes → repeat process

Simple automatic solution: remove all occluding parts

- Isolation → context lost
- Assumption: context loss → harder to understand
- Avoid!

Solutions by artists

- Nice results
- **Artists want**
 - money

Rules that we can adopt?

Spinal cord within

spinal canal

Intervertebral

Spinous process

Nerve root

disc

Superior view

Variation Through Symmetry

 Clearly(?) symmetric instances can show different information layers or can be cut away

Symmetry/occlusion guided cuts

- Cut to avoid occlusion of features, but
- Keep enough(?) to understand geometry
- →Viewer can interpolate
- →Remove occluding symmetric parts

Symmetry/occlusion guided cuts

- Cut to avoid occlusion of features, but
- Keep enough(?) to understand geometry
- →Viewer can interpolate
- →Remove occluding symmetric parts

Physically plausible cuts

- Layered cuts
- Different cuts for different materials
- Simulates material properties
- Simulates physical cutting process

1D structures - vessels

- Reduce clutter
- Aid understanding
- Not physical
- Able to guess form from visible parts
 - Show continuity
 - Check for curvature/topology changes at occluded position
 - → Allow occlusion for simple connections
 - → Allow transparency (as a last resort) for complex connections

Algorithm should be able to

- Adapt to view changes interactively (quick)
- Easy learning/exploration for any user (automatic)
- Algo. detects importance by contact, symmetry, ...
- Two main issues
 - what objects to keep/remove
 - for kept objects which parts to show for context (how and were to cut, use transparency)

Approach outline

- Assume: context reflected in
 - contact areas/points between meshes
 - inter-mesh symmetries
- Extract graph with these relations
- Extract 1d structures
- Use to show focus part in context
- Tools
 - cut: view dependent, contact aware
 - removal: unconnected/occluding components
 - transparency: curvature/occlusion

Further ideas

- Interaction of parts (animation):
 - flow in tubes: blood flow (SG asia 2011 paper for 2d)
 - deformations: swallow
- Physical simulation for cutting (respect gravity, material properties)
- Automatic splitting in multiple views if
 - occlusion not solvable
 - ...
- Other artistic methods...

Thank you for your attention!

2013WS Praktika

What Do We Want?

Light Transport

Light Transport

- Incident light arrives at x
- Calc outgoing radiance
- Arrives at the camera

Light Transport

Light Transport – Direct

Light Transport – Indirect

2013WS Praktika

Level-of-Detail Rendering

- Use different levels of detail at different distances from the viewer
- More triangles closer to the viewer

Discrete LOD Blending: Motivation

Discrete LOD Blending: Motivation

