1. Matrix norms

Definition: Matrix norm

A norm $||\cdot||$ on the vector space of matrices $V=Mat_{n\times n}(\mathbb{C})$ is called matrix norm iff

1. || · || defines a norm

- ||A|| > 0, $A \neq 0_{n \times n}$
 - $||\alpha A|| = |\alpha| \cdot ||A||$
- $||A + B|| \le ||A|| + ||B||$
- 2. Submultiplicative property holds

$$||AB|| \leq ||A|| \cdot ||B||.$$

Lemma: 1

For any matrix norm || · || following holds

$$||I|| \geqslant 1$$
.

Definition: Unit preserving matrix norm || · ||

A matrix norm $\|\cdot\|$ is called unit preserving matrix norm iff

$$||I|| = 1.$$

Definition: Matrix norm $\|\cdot\|$ compatible with a vector norm $\|\cdot\|$

A matrix norm $\|\cdot\|$ is called compatible with a vector norm $|\cdot|$ iff

$$||A\vec{x}|| \le ||A|| \cdot |\vec{x}|.$$

Lemma: 2

Any matrix norm $||\cdot||$ is compatible with some vector norm $|\cdot|$. In particular, a norm $||\cdot||_{\star,0}$ is compatible with

Lemma: 3

If $||\cdot||$ is a matrix norm compatible with $|\cdot|$, then $||A||' = \lambda ||A||$ (where $\lambda > 1$) is another matrix norm compatible with $|\cdot|$.

Definition: Frobenius norm

Following norm is called Frobenius norm

$$||A||_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$$

$$= \sqrt{\operatorname{tr}(A^*A)}$$

$$= \sqrt{\sigma_1^2 + \dots + \sigma_n^2},$$

where σ_i are singular values of A.

Frobenius norm is unitary invariant, that is,

$$||AW||_F = ||WA||_F = ||A||_F, \quad W^* = (W)^{-1}.$$

Definition: Induced matrix norm

Let $|\cdot|_{\bigstar}$ be a vector norm on \mathbb{C}^n , then

$$||A||_{\bigstar} = \max_{\vec{x} \neq \vec{0}} \frac{|A\vec{x}|_{\bigstar}}{|a|_{\bigstar}}$$

is called a matrix norm which is induced by norm $|\cdot|_{\star}$.

Theorem: Induced matrix norm

- The function || · ||_★ is well defined (max exists)
- 2. The function $\|\cdot\|_{\bigstar}$ is a matrix norm
- 3. The function $\|\cdot\|_{\star}$ is compatible with $|\cdot|_{\star}$
- 4. The function $||\cdot||_{\bigstar}$ is unit preserving
- 5. For any matrix norm $\|\cdot\|_{\star,?}$ compatible with norm $\|\cdot\|_{\star}$ following holds

$$||A||_{\star,?} \geqslant ||A||_{\star}, \quad \forall A.$$

Theorem: Main matrix norms

The following are induced matrix norms for main vector norms

Vector norm ⋅	Induced matrix norm $\ \cdot\ _1$
$ \vec{x} _1 = x_1 + \dots + x_n $	$ A _1 = \max_j A^j _1$
$ \vec{x} _2 = \sqrt{ x_1 ^2 + \dots + x_n ^2}$	$ A _2 = \sigma_1$
$ \vec{x} _{\infty} = \max_i x_i $	$ A _{\infty} = \max_{i} A_{i} _{\infty}$