Probing Quark Gluon Plasma using B Mesons

- Measurement of B+ and Bs meson production in pp collisions at 5 TeV with CMS at the LHC -

Jean Luo, Simao Costa

Supervision: N. Leonardo, H. Legoinha

Undergraduate Colloquia, 7th December 2022

The Standard Model and Hadrons

Table of elementary particles of the Standard model (source: wikipedia)

- Describe known elementary particles and the fundamental forces governing them
- Quarks are **normally** bound by **gluons** in the form of **hadrons**, like baryons (e.g. proton (uud))

Simple illustration of the structure of a proton (source: wikipedia)

Quark-Gluon Plasma (QGP)

- A state of matter that only exists under extreme conditions (very high temperature/density)
- Quarks and gluons become 'free' instead of being bound together into hadrons
- Believed to have existed just after the Big Bang ($\lesssim 1~\mu s$) and inside neutron stars

- Can be reproduced in **heavy ion collisions** at LHC

Phase diagram of QGP (Source: CEA)

Heavy ion collisions

Aim to study the **hadronisation process** of quarks & **the effect of presence of QGP** on the process

Compact Muon Solenoid (CMS)

- A general-purpose particle physics detector at the LHC
- designed to study pp collisions and also with unique capabilities to study heavy ion collisions
- heavy ion collisions normally take place towards the end of the year, upcoming this November! should have just taken place

The analysis is based on the pp 5 TeV dataset collected by CMS in 2017

B mesons, probe of QGP

- Meson: Hadrons made of a quark and an antiquark
- B mesons formed from **hadronisation of b quarks**
- We explore the following B^o_s and B⁺ decay channels:

$$B_S^0 \rightarrow J/\psi \phi \rightarrow \mu^+\mu^-K^+K^-$$

 $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+\mu^-K^+$

Detect and measure particles at the end of the decay chain

Why B mesons?

-	Longer life time □	larger displacement	can be
	distinguished		

-	Massive enough	Negligible	thermal	production
---	----------------	------------------------------	---------	------------

Particle	Symbol	Composition	Charge
Charged B meson	B ⁺	ub	+1
Neutral B meson	$\mathbf{B_0}$	db	0
Strange B meson	\mathbf{B}_{S}^{O}	sb	0
Charmed B meson	$\mathbf{B}_{\mathcal{C}}^{+}$	cb	+1

Differential Cross Section

$$\frac{d\sigma}{dy} = \frac{1}{\epsilon LB} \frac{dN_S}{dy}$$

 σ : Cross section

 ϵ : Efficiency x Acceptance of the detector (obtained from MC simulation)

L: luminosity ($L = 302.3 \text{ pb}^{-1}$)

B: Branching fraction of B meson decay (from PDG)

 N_S : Signal Yield (number of signal events obtained from fit to data)

Nuclear Modification Factor (R_{AA})

$$R_{AA} \propto rac{\left(rac{d\sigma}{dp_T}
ight)_{PbPb}}{\left(rac{d\sigma}{dp_T}
ight)_{pp}}$$

- PbPb: lead-lead collision producing QGP
 pp: proton-proton collision not producing QGP

Fitting the data: B°s

(Fit using Extended Unbinned Maximum Likelihood method)

Fit to Monte Carlo (MC)

Nominal Model = Signal (Double gaussian)

$$l(m) = N_s(\alpha \cdot \text{gauss}_1(m; \mu, \sigma_1) + (1 - \alpha) \cdot \text{gauss}_2(m; \mu, \sigma_2))$$

Parameters:

nsig (N_S): number of signal events

mean (μ): the centre position of the peak

sigma# (σ): the width of each gaussian

sig1frac (α): the weight of the first gaussian

- L. Fit signal-only MC sample to extract signal shape parameters
- Fit the data sample constraining the signal shape parameters from MC (next slide)

Fit to data

$$\frac{d\sigma}{d(p_T, y, Mult)} = \frac{1}{\epsilon LB} \frac{dN_S}{d(p_T, y, Mult)}$$

Nominal Model = Signal (Double gaussian) + Background (Exponential):

$$l(m) = N_s(\alpha \cdot \text{gauss}_1(m; \mu, s \cdot \sigma_1) + (1 - \alpha) \cdot \text{gauss}_2(m; \mu, s \cdot \sigma_2)) + N_B \exp(\lambda m)$$

lambda: exponential decay constant of the background (λ)

mean: the position of the peak (μ)

nsig: number of signal events in data (N_S)

nbkg: number of background events in data Scale: The ratio of the width of the peak compared to that of the Monte Carlo simulation (N_B)

scale: the factor before the width of the peak (s)

χ² Value (normalised): Quality of the fit test result

Binning of Rapidity and Multiplicity

Boundaries of bins: {-2.4, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.4}

Boundaries of bins: {0, 20, 30, 40, 50, 60, 70, 100}

Next, we perform the fits in each of these bins

Nominal B_S⁰ Mass Fit Results versus Rapidity

Nominal B_S⁰ Mass Fit Results versus Multiplicity

Differential results

Fitting the data: B⁺

(Fit using Extended Unbinned Maximum Likelihood method)

$$\frac{d\sigma}{d(p_T, y, Mult)} = \frac{1}{\epsilon LB} \frac{d\overline{N_S}}{d(p_T, y, Mult)}$$

Yield Extraction (B⁺)

lambda: exponential decay constant of the background (λ)

mean: the position of the peak

nsig: number of signal events in data (N_S)

nbkg: number of background events in data Scale: The ratio of the width of the peak compared to that of the Monte Carlo simulation (N_B)

Npeakbg: number of events in partially reconstructed decays

χ² Value: Quality of the fit test result

Nominal B⁺Mass Fit Results versus Rapidity

Nominal B⁺Mass Fit Results versus Multiplicity

Differential results

pp->B+X production cross section versus B mesons rapidity and event multiplicity

Systematic uncertainties

Systematic variations

Signal

Nominal signal model: Double Gaussian

Variations:

- Triple Gaussian
- Fixed mean
- CB + Gaussian
- Double CB (for testing)

Background

Nominal signal model: Exponential

Variations:

- Linear
- Second order polynomial
- Mass range

Background modeling variations

Linear

Second Order Polynomial

Mass range

(Examples from rapidity fits)

Signal modeling variations

Triple Gaussian

Fixed mean

Crystal Ball + Gaussian

Double Crystal Ball

(Examples from rapidity fits)

Systematics

Rapidity

Multiplicity

 $\mathrm{B}^{0}_{\mathrm{S}}$

B⁺

Quality of fits

Signal Variations Fit Quality test

Rapidity

Multiplicity

Background Variations Fit Quality test

Rapidity

Multiplicity

Stability analysis

Mass Resolution (versus Rapidity)

The detector resolution is optimal in the central region (small |y|) and degrades towards the forward region (large |y|), as expected

Cross section Results

Computation of cross section

Cross section

Summary

Summary

- We have analysed the pp data collected by CMS at 5 TeV
- We have measured the differential production cross sections for B^o_s and B⁺ mesons
- As function of meson (y) and collision (mult) observables that had not been studied before
- Including detailed study of systematic uncertainties

The work also involved

- Implementing and carrying out a large number (~600) of fits to MC and data
- Verify their quality, via chi2 and pull calculations
- Verify parameter and resolution stability across bins

Next steps

- Finalize measurement of the cross sections for B_s and B⁺ mesons
- Compare our results with the theory prediction
- Use obtained results to determine:

$$R_{AA} \propto \sigma_{PbPb}/\sigma_{pp}$$

- Ratio of cross sections in pp collisions B⁰_s/B⁺ (quark hadronisation process)
- Ratio of cross sections in **pp and PbPb collisions**, (properties of QGP)

Thank you for your attention!

Backup

Unbinned Extended Maximum likelihood

$$\mathcal{L}(m_i, \vec{\lambda}) = \prod_{i=1}^{N} \ell(m_i) \times \frac{e^{-N_i N_{obs}}}{N_{obs}!}$$

₱: model, a probability distribution function (pdf), (weighted) sum of a signal pdf (double gaussian) and a background (exponential) pdf

N: actual total number of total events

 N_{obs} : estimated total number

 $\vec{\lambda}$: array of parameters

Fit quality test (normalised χ^2)

Rapidity

Multiplicity

Background systematics

Signal Systematics

Rapidity

Multiplicity

Fit Quality test (Rapidity)

Fit Quality test (Multiplicity)

Resolution scale

Rapidity

Multiplicity

Resolution scale (Rapidity)

 $\mathrm{B}^0_{\mathsf{S}}$

B⁺

Resolution scale (Multiplicity)

Mass Resolution (Multiplicity)

Mass Resolution

Rapidity

Multiplicity

Summary

y: 64 data fits + 40 MC fits

mult: 56 data fits + 36 MC fits

pt: 56 data fits + 36 MC fits

Now a total number of 288 fits for B_S⁰

y: 64 data fits + 40 MC fits

mult: 56 data fits + 36 MC fits

pt: 56 data fits + 36 MC fits

Gave 12 talks:

6 in CMS Spectra and Heavy Flavour meeting: 21st July. 28th July, 4th August, 18th August, 25th August, 1st September 6 in LIP CMS meetings: 27th July, 3rd August, 10th August, 17th August, 23rd August, 31th August