

Miscarea oscilatorie. Miscarea oscilatorie armonică. Pendulul elastic.

Mișcarea oscilatorie. Mișcarea oscilatorie armonică. Pendulul elastic.

Mișcarea oscilatorie

Mișcarea oscilatorie este mișcarea unui sistem fizic care se repetă periodic și simetric față de o poziție de echilibru.

Mărimile ce caracterizează mișcarea oscilatorie sunt:

Perioada egală cu timpul necesar efectuării unei oscilații complete. Se notează cu T și se măsoară în secunde (s).

Frecvența egală numărul de oscilații efectuate în unitatea de timp. Se notează cu ν și se măsoară în Hertz (Hz).

$$v = \frac{1}{T}$$

Eleongația reprezintă distanța față de poziția de echilibru la un moment dat. Se notează cu y și se măsoară în metri (m)

Amplitudinea este elongația maximă. Se notează cu A și se măsoară în metri (m)

Mișcarea oscilatorie armonică

Mișcarea oscilatorie armonică este mișcarea oscilatorie efectuată sub acțiunea unei forțe de timp elastic:

$$\vec{F} = -k\vec{v}$$

Rezultă că:

$$a(t) = -\frac{k}{m}y(t)$$

Mișcarea oscilatorie poate fi descrisă matematic pornind de la proiecția pe o axă a mișcării circulare uniforme.

Legile ce descriu mișcarea oscilatorie armonică sunt:

$$y(t) = A\sin(\omega t + \varphi_0)$$
 - legea mişcării;

$$v(t) = \omega A \cos(\omega t + \varphi_0)$$
 - legea vitezei;

$$a(t) = -\omega^2 A \sin(\omega t + \varphi_0)$$
 - legea accelerației.

Pulsația mișcării oscilatorii armonice este dată de relația:

$$\omega = \sqrt{\frac{k}{m}}$$

Perioada miscării oscilatorii armonice este dată de relația:

$$T = 2 \pi \sqrt{\frac{m}{k}}$$

Pendulul elastic

Pendulul elastic este un ansamblu format dintr-un resort de care este atârnat un corp de masă m, scos din poziția de echilibru și lăsat să oscileze liber. Pendulul elastic se comportă ca un oscilator liniar armonic.

