Contents

Series preface vii						
Pr	Preface ix					
Pa	rt I	Model	ing of mechanical systems			
1	Inti	roduct	ory examples and problems	3		
	1.1		body systems			
	1.2	Manip	pulators and multi-body systems			
	1.3	Const	rained mechanical systems	8		
	1.4	Biblio	graphical notes	10		
2	Lin	ear an	d multilinear algebra	15		
	2.1	Basic	concepts and notation	15		
		2.1.1	Sets and set notation	16		
		2.1.2	Number systems and their properties	16		
		2.1.3	Maps	17		
		2.1.4	Relations	19		
		2.1.5	Sequences and permutations	19		
		2.1.6	Zorn's Lemma	20		
	2.2	Vecto	r spaces	21		
		2.2.1	Basic definitions and concepts	21		
		2.2.2	Linear maps	24		
		2.2.3	Linear maps and matrices	26		
		2.2.4	Invariant subspaces, eigenvalues, and eigenvectors	29		
		2.2.5	Dual spaces			
	2.3	Inner	products and bilinear maps			
		2.3.1	Inner products and norms			
		2.3.2	Linear maps on inner product spaces	35		
		2.3.3	Bilinear maps	36		

		2.3.4	Linear maps associated with bilinear maps	39
	2.4	Tenso	rs	40
		2.4.1	Basic definitions	41
		2.4.2	Representations of tensors in bases	42
		2.4.3	Behavior of tensors under linear maps	43
	2.5	Conve	exity	44
3	Diff	erenti	al geometry	49
U	3.1		orelude to differential geometry	
	0.1	3.1.1	Topology	
		3.1.2	Calculus in \mathbb{R}^n	
		3.1.3		
	3.2		folds, maps, and submanifolds	
	0.2	3.2.1	Charts, atlases, and differentiable structures	
		3.2.1	Maps between manifolds	
		3.2.2	Submanifolds	
	3.3		ent bundles and more about maps	
	5.5	3.3.1	The tangent bundle	
		3.3.2	More about maps	
	3.4		r bundles	
	5.4	3.4.1		
		3.4.2	Tensor bundles	
	3.5		r fields	
	5.5	3.5.1		
		3.5.1	Vector fields and ordinary differential equations	
		3.5.2	Lifts of vector fields to the tangent bundle	
	3.6		r fields	
	5.0	3.6.1	Covector fields	
		3.6.2	General tensor fields	
	3.7		butions and codistributions	
	5.7	3.7.1		
		3.7.1 $3.7.2$	Definitions and basic properties	
		3.7.2 $3.7.3$	The Orbit Theorem for distributions	
		3.7.4	Codistributions	
	3.8		e differential geometry	
	3.0	3.8.1	Definitions and general concepts	
		3.8.2	The Levi-Civita affine connection	
		3.8.3		
	2.0	3.8.4	The symmetric product	
	3.9		aced topics in differential geometry	
		3.9.1	The differentiable structure of an immersed submanifo	
		3.9.2	Comments on smoothness, in particular analyticity	
		3.9.3	Properties of generalized subbundles	
		3.9.4	An alternative notion of distribution	
		3.9.5	Fiber bundles	130

		3.9.6	Additional topics in affine differential geometry $\ldots\ldots131$
4	Sim	ıple m	echanical control systems141
	4.1	The c	onfiguration manifold
		4.1.1	Interconnected mechanical systems
		4.1.2	· ·
		4.1.3	Choosing coordinates
		4.1.4	The forward kinematic map
		4.1.5	The tangent bundle of the configuration manifold157
	4.2	The k	inetic energy metric
		4.2.1	Rigid bodies
		4.2.2	The kinetic energy of a single rigid body166
		4.2.3	From kinetic energy to a Riemannian metric 168
	4.3	The E	Euler-Lagrange equations
		4.3.1	A problem in the calculus of variations
		4.3.2	Necessary conditions for minimization—the
			Euler-Lagrange equations
		4.3.3	The Euler–Lagrange equations and changes of coordinate 176
		4.3.4	The Euler-Lagrange equations on a Riemannian
			manifold
		4.3.5	Physical interpretations
	4.4	Forces	s187
		4.4.1	From rigid body forces and torques to Lagrangian forces 188
		4.4.2	Definitions and examples of forces in Lagrangian
			mechanics
		4.4.3	The Lagrange–d'Alembert Principle
		4.4.4	Potential forces
		4.4.5	Dissipative forces
	4.5	Nonh	olonomic constraints
		4.5.1	From rigid body constraints to a distribution on $Q \ \dots \ 199$
		4.5.2	Definitions and basic properties
		4.5.3	The Euler–Lagrange equations in the presence of
			constraints
		4.5.4	Simple mechanical systems with constraints207
		4.5.5	The constrained connection
		4.5.6	The Poincaré representation of the equations of motion 213
		4.5.7	Special features of holonomic constraints
	4.6	Simpl	e mechanical control systems and their representations $\dots 218$
		4.6.1	Control-affine systems
		4.6.2	Classes of simple mechanical control systems
		4.6.3	Global representations of equations of motion
		4.6.4	Local representations of equations of motion
		4.6.5	Linear mechanical control systems
		4.6.6	Alternative formulations

5	${f Lie}$	group	s, systems on groups, and symmetries
			body kinematics
		5.1.1	Rigid body transformations
		5.1.2	Infinitesimal rigid body transformations
		5.1.3	Rigid body transformations as exponentials of twists254
		5.1.4	Coordinate systems on the group of rigid displacements 255
	5.2	Lie gr	oups and Lie algebras
		5.2.1	Groups
		5.2.2	From one-parameter subgroups to matrix Lie algebras . 261
		5.2.3	Lie algebras
		5.2.4	The Lie algebra of a Lie group
		5.2.5	The Lie algebra of a matrix Lie group
	5.3	Metri	cs, connections, and systems on Lie groups271
		5.3.1	Invariant metrics and connections
		5.3.2	Simple mechanical control systems on Lie groups 275
		5.3.3	Planar and three-dimensional rigid bodies as systems
			on Lie groups
	5.4	Group	p actions, isometries, and symmetries
		5.4.1	Group actions and infinitesimal generators 283
		5.4.2	Isometries
		5.4.3	Symmetries and conservation laws
		5.4.4	Examples of mechanical systems with symmetries 293
	5.5	Princ	ipal bundles and reduction
		5.5.1	Principal fiber bundles
		5.5.2	Reduction by an infinitesimal isometry
— Pa	rt II	Analy	vsis of mechanical control systems
			•
6	\mathbf{Sta}	\mathbf{bility}	
	6.1	An ov	verview of stability theory for dynamical systems
		6.1.1	Stability notions
		6.1.2	Linearization and linear stability analysis 317
		6.1.3	Lyapunov Stability Criteria and LaSalle Invariance
			Principle
		6.1.4	Elements of Morse theory
		6.1.5	Exponential convergence
		6.1.6	Quadratic functions
	6.2	Stabil	ity analysis for equilibrium configurations of mechanical
		syster	ns
		6.2.1	Linearization of simple mechanical systems
		6.2.2	Linear stability analysis for unforced systems
		6.2.3	Linear stability analysis for systems subject to
			Rayleigh dissipation
		6.2.4	Lyapunov stability analysis

		Contents xxi
		6.2.5 Global stability analysis
		6.2.6 Examples illustrating configuration stability results 345
	6.3	Relative equilibria and their stability
	0.0	6.3.1 Existence and stability definitions
		6.3.2 Lyapunov stability analysis
		6.3.3 Examples illustrating existence and stability of
		relative equilibria
		6.3.4 Relative equilibria for simple mechanical systems on
		Lie groups
		Lie groups
7	Cor	ntrollability 367
	7.1	An overview of controllability for control-affine systems 368
		7.1.1 Reachable sets
		7.1.2 Notions of controllability
		7.1.3 The Sussmann and Jurdjevic theory of attainability372
		7.1.4 From attainability to accessibility
		7.1.5 Some results on small-time local controllability 377
	7.2	Controllability definitions for mechanical control systems 387
	7.3	Controllability results for mechanical control systems
		7.3.1 Linearization results
		7.3.2 Accessibility of affine connection control systems 392
		7.3.3 Controllability of affine connection control systems 394
	7.4	Examples illustrating controllability results
		7.4.1 Robotic leg
		7.4.2 Planar body with variable-direction thruster 400
		7.4.3 Rolling disk
8	Low	v-order controllability and kinematic reduction411
	8.1	Vector-valued quadratic forms
		8.1.1 Basic definitions and properties
		8.1.2 Vector-valued quadratic forms and affine connection
	0.0	control systems
	8.2	Low-order controllability results
		8.2.1 Constructions concerning vanishing input vector fields . 416
		8.2.2 First-order controllability results
		8.2.3 Examples and discussion
	8.3	Reductions of affine connection control systems
		8.3.1 Inputs for dynamic and kinematic systems
		8.3.2 Kinematic reductions
		8.3.3 Maximally reducible systems
	8.4	The relationship between controllability and kinematic
		controllability
		8.4.1 Implications
		8.4.2 Counterexamples

9	Per	turbat	tion analysis	. 441
	9.1	An ov	verview of averaging theory for oscillatory control systems	s 442
		9.1.1	Iterated integrals and their averages	. 443
		9.1.2	Norms for objects defined on complex neighborhoods .	. 446
		9.1.3	The variation of constants formula	. 447
		9.1.4	First-order averaging	. 451
		9.1.5	Averaging of systems subject to oscillatory inputs	. 454
		9.1.6	Series expansion results for averaging	. 459
	9.2		iging of affine connection systems subject to oscillatory	
		contro	ols	. 463
		9.2.1	The homogeneity properties of affine connection	
			control systems	
		9.2.2	Flows for homogeneous vector fields	
		9.2.3		. 466
		9.2.4	Simple mechanical control systems with potential	
			control forces	
	9.3	A seri	ies expansion for a controlled trajectory from rest	. 473
Pa	rt II	[A sa	mpling of design methodologies	
10			d nonlinear potential shaping for stabilization	
	10.1		verview of stabilization	
			Defining the problem	
			Stabilization using linearization	
			The gaps in linear stabilization theory	
			Control-Lyapunov functions	
	10.0		Lyapunov-based dissipative control	
			lization problems for mechanical systems	
	10.3		lization using linear potential shaping	
			Linear PD control	
			Stabilization using linear PD control	
			Implementing linear control laws on nonlinear systems	
	10.4		Application to the two-link manipulator	
	10.4		lization using nonlinear potential shaping Nonlinear PD control and potential energy shaping	
			Stabilization using nonlinear PD control	
			A mathematical example	
	10.5			
	10.5		on stabilization of mechanical systems	
			Feedback linearization and partial feedback linearization	
			Backstepping	
			Passivity-based methods	
			Sliding mode control	
			Total energy shaping methods	
		10.5.0	total energy snaping methods	. 519

		10.5.7 When stabilization by smooth feedback is not possible $.520$
11	Stab	ilization and tracking for fully actuated systems 529
		Configuration stabilization for fully actuated systems 530
		11.1.1 Stabilization via configuration error functions 530
		11.1.2 PD control for a point mass in three-dimensional
		Euclidean space
		11.1.3 PD control for the spherical pendulum
		Trajectory tracking for fully actuated systems
		11.2.1 Time-dependent feedback control and the tracking
		problem
		11.2.2 Tracking error functions
		11.2.3 Transport maps
		11.2.4 Velocity error curves
		11.2.5 Proportional-derivative and feedforward control $\dots 540$
	11.3	Examples illustrating trajectory tracking results
		11.3.1 PD and feedforward control for a point mass in
		three-dimensional Euclidean space
		$11.3.2~\mathrm{PD}$ and feedforward control for the spherical pendulum $~543$
		Stabilization and tracking on Lie groups
		11.4.1 PD control on Lie groups
		11.4.2 PD and feedforward control on Lie groups 548
		11.4.3 The attitude tracking problem for a fully actuated
		rigid body fixed at a point
12	Stab	ilization and tracking using oscillatory controls559
		The design of oscillatory controls
		12.1.1 The averaging operator
		12.1.2 Inverting the averaging operator
		Stabilization via oscillatory controls
		12.2.1 Stabilization with the controllability assumption 568
		12.2.2 Stabilization without the controllability assumption571
		Tracking via oscillatory controls
13		ion planning for underactuated systems 583
		Motion planning for driftless systems
		13.1.1 Definitions
		13.1.2 A brief literature survey of synthesis methods 587
		Motion planning for mechanical systems
		13.2.1 Definitions
		13.2.2 Kinematically controllable systems
		13.2.3 Maximally reducible systems
		Motion planning for two simple systems
		13.3.1 Motion planning for the planar rigid body593
		13.3.2 Motion planning for the robotic leg 596

	13.4	Motion planning for the snakeboard
${f A}$	Tim	-dependent vector fields
		Measure and integration
		A.1.1 General measure theory
		A.1.2 Lebesgue measure
		A.1.3 Lebesgue integration
	A.2	Vector fields with measurable time-dependence 624
		A.2.1 Carathéodory sections of vector bundles and bundle
		maps
В	Som	e proofs
	B.1	Proof of Theorem 4.38
	B.2	Proof of Theorem 7.36
	В.3	Proof of Lemma 8.4
	B.4	Proof of Theorem 9.38
	B.5	Proof of Theorem 11.19
	B.6	Proof of Theorem 11.29
	B.7	Proof of Proposition 12.9
Refe	eren	es657
Syn	ıbol	ndex
Sub	ject	ndex