$$\vec{y}(t) = F(\vec{x}, \vec{v}, \vec{h}, t)$$

 $ec{\chi}$ – совокупность входных воздействий на систему,

 $ec{\mathcal{V}}$ – совокупность воздействий внешней среды,

 \vec{h} - совокупность внутренних параметров системы,

 \vec{y} – совокупность выходных характеристик системы,

F – закон функционирования системы.

Процесс функционирования системы рассматривают как последовательную смену состояний

$$z_1(t), z_2(t), \dots, z_k(t)$$

$$\vec{z}(t) = G(\vec{z}^0, \vec{x}, \vec{v}, \vec{h}, t)$$

где \vec{z}^0 – совокупность начальных состояний

В общем случае время в модели системы может рассматриваться на интервале моделирования (0, T) как непрерывное, так и дискретное, т.е. квантованное на отрезки

длиной Δt временных единиц каждый. Если математическое описание объекта моделирования не содержит элементов случайности или они не учитываются, то модель называется детерминированной и определяется: y(t) = f(x,t).

КОМБИНИРОВАННЫЕ МОДЕЛИ (А-СХЕМЫ)

Для описания поведения непрерывных и дискретных, детерминированных и стохастических систем применяется обобщенный (универсальный) подход, предложенный Н.П. Бусленко. Он базируется на понятии агрегативной системы (англ. aggregate system), называемой А-схемой.

агрегативном описании сложный объект При (система) расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивающие взаимодействие частей. такой декомпозиции сложная результате система многоуровневой конструкции представляется В виде И3 взаимосвязанных элементов, объединенных в подсистемы различных уровней.

В качестве элемента А-схемы выступает агрегат, а связь между агрегатами (внутри системы S и с внешней средой E) осуществляется с помощью оператора сопряжения R. Очевидно, что агрегат сам может рассматриваться как А-схема, т.е. может разбиваться на элементы (агрегаты) следующего уровня.

Для однозначного определения динамики получившейся системы. Вводят 2 следующих предположения:

- 1. Каналы связи в агрегативной системе (каналы между выходом и входом, определенные в операторе сопряжения) являются идеальными, т.е. передающими сигналы мгновенно и без искажений.
- 2. При обработке выходные сигналы упорядочивают по номерам агрегатов и номерам выходных контактов. В пределах одного агрегата нумерация сигналов соответствует нумерации контактов. И далее последовательно находят реакции на них.

Пример: структура агрегативной системы

Оператор сопряжения R для данной A-схемы можно задать в виде таблицы, в которой на пересечении строк с номерами элементов (агрегатов) n и столбцов с номерами контактов і располагаются пары чисел k, j, указывающие номер элемента k и номер контакта j, с которым соединен контакт Xi(n).

Оператор сопряжения, заданный в виде таблицы (для примера)

п (входной агрегат)	і (входной контакт)				
	1	2	3	4	5
0	1,1	3,1	4,1	5,1	6,1
1	0,1				
2	1,3	0,2	0,3		
3	1,2	2,1			
4	3,2	2,1	2,2		k, j (вых.
5	2,2				агрегат, вых.
6	5,2	0,4			контакт)

Агрегативные системы служат определенным обобщением различных моделей, используемых при изучении сложных систем: • автоматы; • модели массового обслуживания; • сети Петри; • практически любые численные методы решений дифференциальных уравнений