Dualitás - 12 Példa

Egy bútoripari kisvállalkozás kétféle bútort gyárt: komódot és tálalószekrényt. Egy tálalószekrény előállításához 2 egységnyi faanyagra, 2 egység üvegre és 3 óra szakmunkára van szükség, míg egy komód előállításához 4 egység faanyagra és 2 óra szakmunkára. A rendelkezésre álló kapacitások: 160 egység faanyag, 120 óra szakmunka és 60 egység üveg. Hogyan tudna maximalizálni a vállalkozás a bevételét, ha egy tálalószekrényt 60 Euróért, egy komódot 80 Euróért tudnak értékesíteni?

Modell:

$$P(x) = 80x_1 + 60x_2 \rightarrow MAX$$
1.) $4x_1 + 2x_2 \le 160$
2.) $2x_2 \le 60$
3.) $2x_1 + 3x_2 \le 120$
 $x_1, x_2 \ge 0$

Optimális bázishoz tartozó szimplex tábla:

B	P_B	X^*	80	60	0	0	0
A_1	80	30	1	0	$\frac{3}{8}$	0	$-\frac{1}{4}$
A_4	0	20	0	0	$\frac{1}{2}$	1	-1
A_2	60	20	0	1	$-\frac{1}{4}$	0	$\frac{1}{2}$
P(a	c) = 3	8600	0	0	15	0	10

Bázismátrix:

Inverz mátrix:

$$\begin{pmatrix}
4 & 0 & 2 \\
0 & 1 & 2 \\
2 & 0 & 3
\end{pmatrix}
\qquad
\begin{pmatrix}
\frac{3}{8} & 0 & -\frac{1}{4} \\
\frac{1}{2} & 1 & -1 \\
-\frac{1}{4} & 0 & \frac{1}{2}
\end{pmatrix}$$

Válaszolja meg az alábbi kérdéseket a feladat újbóli megoldása nélkül a dualitás összefüggések alkalmazásával:

- 1. Melyik nyersanyagból marad és mennyi ha az optimális termelési tervet követjük?
 - Csak az üvegből marad 20 egység. (segédváltozók közül a bázisban csak az x4 = 20 szerepel, ami az üveg feltétel slack változója.(x3=0, x5=0)
- 2. Ha az aktuális készletemet egy egység fával (szakmunkával) bővítem, hogyan változik a célfüggvény értéke, azaz a maximális profit?

A fa feltétel duális változója: 15, azaz 15-tel nő a profit. (A szakmunka feltétel duális változója 10, azaz 10-zel nőne a profit.)

3. A szakmunka milyen határai között marad a jelenlegi bázis az optimális? A végpontokon határozzuk meg az optimális megoldásokat is!

120-40=80< szakm < 120+20=140 között az optimális megoldást a jelenlegi optimális, azaz az A1,A2,A4 bázis adja.

Szakm=80 esetén az opt megoldás: $4x_1 + 2x_2 + 0 = 160$

 $2x_2 + x_4 = 60$

 $2x_1 + 3x_2 + 0 = 80 !!$

megoldása: x1=40, x2=0, P(x) = 3200 (3600-40*10)

Szakm=140 esetén az opt megoldás: $4x_1 + 2x_2 + 0 = 160$

 $2x_2 + x_4 = 60$

 $2x_1 + 3x_2 + 0 = 140!!$

megoldása: x1=25, x2=30, P(x) = 3800 (3600+20*10)

4. Mennyivel változhat a tálalószekrény ára, hogy az aktuális optimális megoldás optimális maradjon?

Jelenleg 60, 60-nal nőhet 20-szal csökkenhet, azaz 40 < p2 < 120