苏州大学 <u>物理化学(一)下</u> 课程期中试卷 共4页

考试形式 闭 卷 2020 年 4 月 30 日

院系: 材料与化学化	工学部 年	级: _		专业:		
学号:	姓	名:		成绩:		
温馨提示:						
无需抄题,请将答案	医写在作业本或	战白纸.	上,务必写清楚	题号!		
每页右上角都要写上	_序号、姓名和	『学号!	! 编好页码,如	3-1,表示一	共3页,	这
是第一页; 然后拍照	上传,不按要	要求提:	交试卷将视为无	效试卷!谢谢	拾作!	
) 4- 17 17 (+ - 1)	// >					
一、选择题(10*2分:1. 按物质导电方式的		一类导	休. 下述对它特占	的描述,哪一点	5是不正	确的
1. 以仍从1元/八八四/	1.1-1111111111111111111111111111111111	— <u></u> 次 1		111mxc, 3h V	"Æ/TIL) (
(A)其电阻随温度的	的升高而增大					
(B)其电阻随温度的						
(C)其导电的原因是		二六半,	<u> </u>			
(D)当电流通过时右	上电极工有化子》	义巡及生	Ŀ.			
2. 已知 Cu 的相对原子	量为 64,用 0.5 法	法拉第电	」量可从 CuSO₄溶液	中沉淀出多少。	Cu? ()
(A)16 g	(B) 32 g	(C) 64 g	(D) 127 g		
	** \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 1 44		せまして皮を変	4. 9 (
3. 在 298 K 时离子强度 (A) 0.7504		•			↓ 定:()
(11) 0.7304	(B) 1.133		(C) 0.7773	(D) 1.203		
4. 一个电池反应确定的	的电池,E 值的正	或负可	以用来说明:		()
(A) 电池是否可逆				平衡		
(C) 电池反应自发	进行的方向	(D) 目	且池反应的限度			
5. 在 298 K 将两个 Zn	(s)极分别浸入:	Zn ²⁺ 活	度为 0.01 和 0.1 的	溶液中, 这样纟	且成的浓	差电
池的电动势为:	,,				()
(A) 0.059 V		(B)	0.0295 V			
(C) -0.059 V		(D)	(0.059lg0.004) V			
6. 电解时, 在阳极上首	先发生氧化作用	而放申	上的是:		()
(A) 标准还原电势		, ma, oc c	,			,
(B) 标准还原电势						
(C) 考虑极化后,						
(D) 考虑极化后,	买 际上的个 可 逆	业原电	努 最小者			

7. 下列示意图描述了原电池和电解池中电极的极化规律, 其中表示电解池阳极的是: ()

(A) 曲线 1 (B) 曲线 2

(C) 曲线 3 (D) 曲线 4

8. 反应 A →产物 为一级反应,2B → 产物 为二级反应, $t_{\frac{1}{2}}(A)$ 和 $t_{\frac{1}{2}}(B)$ 分别表示两反 应的半衰期,设 A 和 B 的初始浓度相等,当两反应分别进行的时间为 $t=2t_{\frac{1}{2}}(A)$ 和 $t=2t_{\frac{1}{2}}(B)$ 时, A, B 物质的浓度 c_A , c_B 的大小关系为:

- (A) $c_A > c_B$

- (B) $c_A = c_B$ (C) $c_A < c_B$ (D) 两者无一定关系

9. 某反应物起始浓度相等的二级反应, $k=0.1~\mathrm{dm^3} \bullet \mathrm{mol^{-1}} \bullet \mathrm{s^{-1}},~c_0=0.1~\mathrm{mol} \bullet \mathrm{dm^{-3}},~$ 当反应 率降低 9 倍所需时间为:) (

- (A) 200 s (B) 100 s
- (C) 30 s
- (D) 3.3 s

10. 在温度 T 时,实验测得某化合物在溶液中分解的数据如下:

初浓度 $c_0/\text{mol} \cdot \text{dm}^{-3}$

- 0.50
- 1.10

885

- 半衰期 t₁/s⁻¹
- 4280
- 2.48 174

则该化合物分解反应的级数为:

)

- (A) 零级
- (B) 一级反应 (C) 二级反应
- (D) 三级反应

二、计算题 (共 5 题 60 分)

11.15 分

在 25°C时,0.01 mol dm⁻³ 浓度的醋酸水溶液的摩尔电导率是 16.20×10^{-4} S m² mol⁻¹,而无限稀释情况下的极限摩尔电导率是 390.7×10^{-4} S m² mol⁻¹。计算:

- (1) 0.01 mol dm⁻³ 的醋酸水溶液在 25℃时的 pH 值;
- (2) 25℃, 0.1 mol dm⁻³ 的醋酸水溶液的摩尔电导率和 pH。

12. 10 分

298 K 时,对反应 $3\text{Sn}^{4+} + 2\text{Al} = 3\text{Sn}^{2+} + 2\text{Al}^{3+}$, 已知标准电极电位 φ^\ominus (Al $^{3+}$ /Al) = -1.66 V, φ^\ominus (Sn $^{4+}$ /Sn) = 0.007 V, φ^\ominus (Sn $^{2+}$ /Sn) = -0.14 V

- (1) 请根据上述反应设计一电池, 当离子活度皆为 0.1 时, 求电池的电动势.
- (2) 通过计算说明上述正向反应在上面给定条件下能否自发进行,反应的标准平衡 常数多大?

13.15 分

298 K 时,有下列电池: Pt,Cl₂(p)|HCl(0.1 mol • kg⁻¹)|AgCl(s)|Ag(s), 试求:

- (1) 电池的电动势;
- (2) 电动势温度系数和有 1mol 电子电量可逆输出时的热效应;
- (3) AgCl(s)的分解压。

已知 $\Delta_i H_m$ (AgCl)= -1.2703×10⁵ J mol⁻¹, Ag(s), AgCl(s)和 Cl₂(g)的规定熵值 S_m 分别为: 42.70, 96.11 和 243.87 J • K⁻¹ • mol⁻¹。

14.10 分

298 K 时,以 Pt 为阳极, Fe 为阴极,电解浓度为 1 mol·kg⁻¹的 NaCl 水溶液(活度系数为 0.66)。 设电极表面有 $H_2(g)$ 不断逸出时的电流密度为 0.1A·cm⁻², Pt 上逸出 $Cl_2(g)$ 的超电势可近似看作零。 若 Tafel 公式为 $\eta = a + blg(j/1A$ ·cm⁻²),且 Tafel 常数 a = 0.73 V,

b = 0.11V, φ^{\ominus} (Cl₂/Cl⁻)=1.36 V,请计算实际的分解电压。

15. 10 分

二甲醚的气相分解反应是一级反应:

$$CH_3OCH_3(g) \longrightarrow CH_4(g) + H_2(g) + CO(g)$$

813 K 时,把二甲醚充入真空反应球内,测量球内压力的变化,数据如下:

$$t/s$$
 390 777 1587 3155 ∞ p/k Pa 40.8 48.8 62.4 77.9 93.1

请计算该反应在 $813 \, \mathrm{K}$ 时的反应速率常数 k 和半衰期 $t_{\frac{1}{2}}$ 。

三、问答题 (共 2 题 20 分)

16.10 分

为什么韦斯顿标准电池一般采用含 Cd 12.5%的 Cd-Hg 齐?请写出韦斯顿电池的表达式、电池反应和画出相应的相图来加以说明。

17.10 分

有一反应 $mA \rightarrow nB$ 是一基元反应,其动力学方程为 $-\frac{1}{m} \frac{\mathrm{d}c_{\mathrm{A}}}{\mathrm{d}t} = kc_{\mathrm{A}}^{m}$, c_{A} 单位是 $\mathrm{mol} \cdot \mathrm{dm}^{-3}$,

问:

- (1) k的单位是什么?
- (2) 写出 B 的生成速率方程 $\frac{\mathrm{d}c_{\mathrm{B}}}{\mathrm{d}t}$;
- (3) 分别写出当 m=1 和 $m\neq 1$ 时 k 的积分表达式。