Tutorial 3: N-gram and Language Model

Q1. Given the following three word sequences (i.e., the corpus).

very good tennis player in US open tennis player US Open tennis player qualify play US Open

- (i) Build a table of bigram counts from the word sequences.
- (ii) Compute the bigram probabilities using Laplace smoothing.
- Q2. Write out the equation for trigram probability estimation, and use the equation to compute the trigram probability for P(US | tennis player) and P(player | good tennis) according to the corpus given in Q1.
- Q3. Given the bigram probability in the following table, compute the probability of "I eat Chinese food". Explain how you compute the probability.

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

- Q4. Why do we need to do smoothing for language model?
- Q5. Given some text, what are the general steps to collect all counts needed for building an *n*-gram language model?