1

0.1 Theory of Curves

Our main tool to understand curves will be vector methods. When we consider \mathbb{R}^3 , we cannot use equations to describe curves since we obtain surfaces.

How to Describe Curves:

• Solutions to (x, y) to eqn f(x, y) = 0.

$$x^2 + y^2 - 1 = 0$$

• Image of vector valued function, a parameterization.

$$\gamma: I \to \mathbb{R}^2 \text{ (or } \mathbb{R}^n)$$

 $t \mapsto (x(t), y(t))$

e.g.
$$\gamma(t) = (\cos t, \sin t), \ 0 \le t \le 2\pi$$

 $\gamma: [0, 2\pi] \to \mathbb{R}^2$

Example (Parameterization):

<u>Line</u>: Euclid said there exists a unique line between any two points $p, q \in \mathbb{R}^n$ $(p \neq q)$. Parameterize by $\lambda(t)$: p + t(q - p), $t \in \mathbb{R}$

Helix:
$$\gamma(t) = (\cos t, \sin t, -t)$$

<u>Basic Fact:</u> Every parameterized curve, $\gamma(t): I \to \mathbb{R}^n$ has a **velocity**, $\gamma'(t)$. $\gamma'(t)$ is the vector tangent to (the trace of) $\gamma(t)$ pointing in the traveling direction.

In
$$\mathbb{R}^3$$
, $\gamma'(t) = (x'(t), y'(t), z'(t))$.

 $|\gamma'(t)|$ is the speed.

The distance along $\gamma(t)$ is computed using:

$$s = \int_{t_1}^{t_2} |\gamma'(t)| dt$$

Another basic fact is that we can apply derivatives to the different (vector) products. We begin by examining how we can use the dot product.

$$(\gamma(t)\cdot\gamma(t))'=\gamma'(t)\cdot\gamma(t)+\gamma(t)\cdot\gamma'(t)=2\gamma'(t)\cdot\gamma(t)$$