Truth Table to Boolean Expression

- Read off of table
 - For 1, write variable name
 - For 0, write complement of variable
- Sum of Products (SoP)
 - Take rows with 1's in output column, sum products of inputs
 - $C = \overline{A}B + \overline{B}A \leftarrow$ We can show that these are equivalent!
- Product of Sums (PoS)
 - Take rows with 0's in output column, product the sum of the complements of the inputs

•
$$C = (A + B) \cdot (\overline{A} + \overline{B})$$

Basic Boolean Identities

$$* X + 0 = X$$

$$*X + 1 = 1$$

$$\star X + X = X$$

$$*X + \overline{X} = 1$$

$$*\overline{\overline{X}} = X$$

$$*X \cdot 1 = X$$

$$*X \cdot 0 = 0$$

$$* X \cdot X = X$$

$$* X \cdot \overline{X} = 0$$

Basic Boolean Algebra Laws

Commutative Law:

$$X + Y = Y + X$$

$$X \cdot Y = Y \cdot X$$

Associative Law:

$$X+(Y+Z) = (X+Y)+Z$$

$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$$

Distributive Law:

$$X \cdot (Y+Z) = X \cdot Y + X \cdot Z$$

$$X+YZ = (X+Y) \cdot (X+Z)$$

Advanced Laws (Absorption)

$$* X + XY = X$$

$$\star XY + X\overline{Y} = X$$

$$* X + \overline{X}Y = X + Y$$

$$* X(X + Y) = X$$

$$(X + Y)(X + \overline{Y}) = X$$

$$* X(\overline{X} + Y) = XY$$

Practice Problem

* Boolean Function: $F = \overline{X}YZ + XZ$

Truth Table: Simplification:

Χ	Υ	Z	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Lecture Outline

- Course Logistics
- Course Motivation
- Combinational Logic Review
- Combinational Logic in the Lab

Why Is This Useful?

- Logic minimization: reduce complexity at gate level
 - Allows us to build smaller and faster hardware
 - Care about both # of gates, # of literals (gate inputs), # of gate levels, and types of logic gates

Why Is This Useful?

- Faster hardware?
 - Fewer inputs implies faster gates in some technologies
 - Fan-ins (# of gate inputs) are limited in some technologies
 - Fewer levels of gates implies reduced signal propagation delays
 - # of gates (or gate packages) influences manufacturing costs
 - Simpler Boolean expressions → smaller transistor networks
 → smaller circuit delays → faster hardware
 - Does the type of gate matter?

Does the Type of Gate Matter?

Yes!

2-Input Gate Type	# of transistors		
NOT	2		
AND	6		
OR	6		
NAND	4		
NOR	4		
XOR	8		
XNOR	8		

- Can recreate all other gates using only NAND or only NOR gates
 - Called "universal" gates
 - e.g. A NAND A = \overline{A} , B NOR B = \overline{B}
 - DeMorgan's Law helps us here!

DeMorgan's Law

				NOR		NAND	
X	Y	\overline{X}	$\overline{\mathbf{Y}}$	$\overline{X + Y}$	$\overline{X} \cdot \overline{Y}$	$\overline{X \cdot Y}$	$\overline{X} + \overline{Y}$
0	0	1	1	1		1	_
0	1	1	0	0		1	
1	0	0	1	0		1	
1	1	0	0	0		0	

- In Boolean Algebra, converts between NAND/NOR and OR/AND expressions
 - $Z = \overline{(A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C})}$
 - $Z = \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C$
 - At gate level, can convert from NAND/NOR to OR/AND gates
 - "Flip" all input/output bubbles and "switch" gate

DeMorgan's Law Practice Problem

Simplify the following diagram:

Then implement with only NAND gates:

Transistor-Transistor Logic (TTL) Packages

- Diagrams like these and other useful/helpful information can be found on part data sheets
 - It's really useful to learn how to read these

Mapping truth tables to logic gates

- Given a truth table:
 - 1) Write the Boolean expression
 - Minimize the Boolean expression
 - 3) Draw circuit diagram with gates
 - 4) Map to available gates
 - 5) Determine # of packages and their connections

Breadboarding circuits

Summary

 Digital systems are constructed from Combinational and Sequential Logic

 Logic minimization to create smaller and faster hardware

Gates come in TTL
 packages that require
 careful wiring

