10

15

20

25

30

Mehrstufengetriebe

Die vorliegende Erfindung betrifft ein Mehrstufengetriebe in Planetenbauweise, insbesondere ein Automatgetriebe für ein Kraftfahrzeug gemäß dem Oberbegriff des Patentanspruchs 1.

Automatgetriebe, insbesondere für Kraftfahrzeuge, umfassen nach dem Stand der Technik Planetensätze, die mittels Reibungs- bzw. Schaltelementen wie etwa Kupplungen und Bremsen geschaltet werden und üblicherweise mit einem einer Schlupfwirkung unterliegenden und wahlweise mit einer Überbrückungskupplung versehenen Anlaufelement wie etwa einem hydrodynamischen Drehmomentwandler oder einer Strömungskupplung verbunden sind.

Ein derartiges Getriebe geht aus der EP 0 434 525 Al hervor. Es umfasst im wesentlichen eine Antriebswelle und eine Abtriebswelle, die parallel zueinander angeordnet sind, einen konzentrisch zur Abtriebswelle angeordneten Doppelplanetenradsatz und fünf Schaltelemente in der Form von drei Kupplungen und zwei Bremsen, deren wahlweise Sperrung jeweils paarweise die verschiedenen Gangübersetzungen zwischen der Antriebswelle und der Abtriebswelle bestimmen.

Des weiteren ist aus der DE 199 495 07 Al der Anmelderin ein Mehrstufengetriebe bekannt, bei dem an der Antriebswelle zwei nicht schaltbare Vorschaltradsätze vorgesehen sind, die ausgangsseitig zwei Drehzahlen erzeugen, die neben der Drehzahl der Antriebswelle wahlweise auf einen auf die Abtriebswelle wirkenden, schaltbaren Doppelplanetenradsatz durch selektives Schließen der verwendeten

Schaltelemente derart schaltbar sind, dass zum Umschalten von einem Gang in den jeweils nächst folgenden höheren oder niedrigeren Gang von den beiden gerade betätigten Schaltelementen jeweils nur ein Schaltelement zu- oder abgeschaltet werden muss.

Außerdem wird im Rahmen der EP 0 434 525 Al ein Mehrstufengetriebe offenbart, welches eine Antriebswelle und eine Abtriebswelle, die in einem Gehäuse angeordnet sind, einen mit der Abtriebswelle konzentrischen Planetensatz aus vier von einem ersten bis zu einem vierten in Drehzahlordnung bezeichneten Elementen, d. h. einem sogenannten doppelten Planetensatz sowie fünf Schaltelemente, nämlich drei Kupplungen und zwei Bremsen enthält, deren selektives paarweises Eingreifen verschiedene Übersetzungsverhältnisse zwischen Antriebswelle und der Abtriebswelle bestimmt, wobei das Getriebe zwei Leistungswege aufweist, so dass durch das selektive paarweise Eingreifen der fünf Schaltelemente sechs Vorwärtsgänge erzielt werden.

20

25

30

5

10

15

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Mehrstufengetriebe der eingangs genannten Art vorzuschlagen, bei dem der Bauaufwand optimiert wird und zudem der Wirkungsgrad in den Hauptfahrgängen hinsichtlich der Schlepp- und Verzahnungsverluste verbessert wird.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale der unabhängigen Patentansprüche 1, 2 und 3 gelöst. Vorteile und weitere vorteilhafte Ausgestaltungen gehen aus den Unteransprüchen hervor.

Demnach umfasst das erfindungsgemäße Mehrstufengetriebe in Planetenbauweise eine Antriebswelle und eine Abtriebswelle, welche in einem Gehäuse angeordnet sind, mindestens drei Einsteg-Planetensätze, mindestens sechs drehbare Wellen sowie mindestens fünf Schaltelemente, vorzugsweise zwei Bremsen und drei Kupplungen oder drei Bremsen und zwei Kupplungen, deren selektives paarweises Eingreifen verschiedene Übersetzungsverhältnisse zwischen der Antriebswelle und der Abtriebswelle bewirkt, sodass vorzugsweise sechs Vorwärtsgänge und ein Rückwärtsgang realisierbar sind.

10

15

5

Hierbei ist die Antriebswelle direkt oder über eine Kupplung mit dem Sonnenrad des ersten Planetensatzes verbunden. Des weiteren ist die Abtriebswelle mit dem Hohlrad des zweiten Planetensatzes und dem Steg des dritten Planetensatzes verbunden, wobei eine weitere Welle ständig mit dem Steg des zweiten Planetensatzes und dem Hohlrad des dritten Planetensatzes verbunden ist.

20

Im Rahmen einer ersten Ausführungsform ist das Hohlrad des ersten Planetensatzes drehfest mit dem Gehäuse verbunden. Ferner ist vorgesehen, dass eine weitere Welle ständig mit dem Sonnenrad des zweiten Planetensatzes verbunden ist, dass eine weitere Welle ständig mit dem Steg des ersten Planetensatzes verbunden ist, und dass eine weitere Welle ständig mit dem Sonnenrad des dritten Planetensatzes verbunden ist.

30

Im Rahmen einer zweiten vorteilhaften Ausführungsform ist eine Welle ständig mit dem Sonnenrad des zweiten Planetensatzes und dem Steg des ersten Planetensatzes verbunden und eine weitere Welle ist ständig mit dem Sonnenrad des ersten Planetensatzes verbunden. Zudem ist vorgesehen, dass eine weitere Welle ständig mit dem Sonnenrad des dritten

Planetensatzes (P3) verbunden ist. Sowohl die erste als auch die zweite Ausführungsform enthalten als Schaltelemente zwei Bremsen und drei Kupplungen.

Des weiteren wird eine dritte bevorzugte Ausführungsform vorgeschlagen, welche drei Bremsen und zwei Kupplungen enthält. Hierbei ist das Hohlrad des ersten Planetensatzes über eine Bremse lösbar drehfest mit dem Gehäuse verbindbar; eine Welle ist ständig mit dem Sonnenrad des zweiten Planetensatzes und dem Steg des ersten Planetensatzes ver-10 bunden und eine weitere Welle ist ständig mit dem Hohlrad des ersten Planetensatzes verbunden, wobei eine sechste Welle ständig mit dem Sonnenrad des dritten Planetensatzes verbunden ist.

15

5

Bei sämtlichen Ausführungsformen sind die vorzugsweise als Minus-Planetensätze ausgebildeten Planetensätze mittels Schaltelementen und/oder Wellen gekoppelt.

20

Durch die erfindungsgemäße Konstruktion ergeben sich geeignete Übersetzungen sowie eine erhebliche Erhöhung der Gesamtspreizung des Mehrstufengetriebes, was in erhöhtem Fahrkomfort und signifikanter Verbrauchsabsenkung resultiert.

25

Das erfindungsgemäße Mehrstufengetriebe eignet sich für jedes Kraftfahrzeug, insbesondere für Personenkraftfahrzeuge und für Nutzkraftfahrzeuge, wie z. B. Lastkraftwagen, Busse, Baufahrzeuge, Schienenfahrzeuge, Gleiskettenfahrzeuge und dergleichen.

30

Darüber hinaus wird mit dem erfindungsgemäßen Mehrstufengetriebe durch eine geringe Anzahl an Schaltelemen-

10

15

20

25

ten, nämlich vorzugsweise durch nur drei Kupplungen und zwei Bremsen, oder zwei Kupplungen und drei Bremsen der Bauaufwand erheblich reduziert.

In vorteilhafter Weise ist es mit dem erfindungsgemäßen Mehrstufengetriebe möglich, ein Anfahren mit einem hydrodynamischen Wandler, einer externen Anfahrkupplung oder auch einem sonstige geeigneten externen Anfahrelement durchzuführen. Es ist auch denkbar, einen Anfahrvorgang mit einem im Getriebe integrierten Anfahrelement zu ermöglichen. Darüber hinaus ergibt sich bei dem erfindungsgemäßen Mehrstufengetriebe ein guter Wirkungsgrad hinsichtlich der Schlepp- und Verzahnungsverluste.

Des weiteren liegen geringe Momente in den Schaltelementen und auch in den Planetensätzen vor. Dadurch wird der
Verschleiß des Mehrstufengetriebes in besonders vorteilhafter Weise reduziert. Aufgrund der geringen Momente in den
Schaltelementen und den Planetensätzen kann das Getriebe
kleiner dimensioniert werden, was zu einer Bauraumoptimierung und zu einer Reduzierung der Kosten führt.

Außerdem ist das erfindungsgemäße Getriebe derart konzipiert, dass eine Anpassbarkeit an unterschiedliche Triebstrangausgestaltungen sowohl in Kraftflussrichtung als auch in räumlicher Hinsicht ermöglicht wird.

Die Erfindung wird im folgenden anhand der Zeichnungen weiter erläutert.

In diesen stellen dar:

5

10

- Fig. 1 eine schematische Ansicht eines Ausführungsbeispiels eines erfindungsgemäßen Mehrstufengetriebes;
- Fig. 2 eine schematische Ansicht eines zweiten Ausführungsbeispiels des erfindungsgemäßen Mehrstufengetriebes;
- Fig. 3 eine schematische Ansicht eines dritten Ausführungsbeispiels des erfindungsgemäßen Mehrstufengetriebes; und
- 15 Fig. 4 ein Schaltschema für das erfindungsgemäße Mehrstufengetriebe gemäß den Figuren 1, 2 und 3.

Gemäß Fig. 1 weist das erfindungsgemäße Mehrstufenge-20 triebe in Planetenbauweise eine Antriebswelle 1 (An) und eine Abtriebswelle 2 (Ab) auf, welche in einem Gehäuse angeordnet sind, sowie drei Einsteg-Planetensätze P1, P2 und P3. Die Planetensätze P1, P2 und P3 sind vorzugsweise als Minus-Planetensätze ausgebildet. Des weiteren sind 25 sechs drehbare Wellen 1, 2, 3, 4, 5 und 6 sowie fünf Schaltelemente, nämlich zwei Bremsen 03, 04 und drei Kupplungen 13, 16, 45 vorgesehen, deren selektives paarweises Eingreifen verschiedene Übersetzungsverhältnisse zwischen der Antriebswelle und der Abtriebswelle bewirkt, sodass 30 sechs Vorwärtsgänge und ein Rückwärtsgang realisierbar sind.

Wie aus der Fig. 1 ersichtlich, ist die Antriebswelle 1 direkt mit dem Sonnenrad des ersten Planetensatzes P1 verbunden und das Hohlrad des ersten Planetensatzes P1 ist ständig drehfest mit dem Gehäuse verbunden (Welle 0). Die Abtriebswelle 2 ist mit dem Hohlrad des zweiten Planetensatzes P2 und dem Steg des dritten Planetensatzes P3 und die Welle 3 ständig mit dem Steg des zweiten Planetensatzes P2 und dem Hohlrad des dritten Planetensatzes P3 verbunden. Ferner ist die Welle 4 ständig mit dem Sonnenrad des zweiten Planetensatzes P2 verbunden, wobei die Welle 5 ständig mit dem Steg des ersten Planetensatzes P1 verbunden ist und die Welle 6 ständig mit dem Sonnenrad des dritten Planetensatzes P3 verbunden ist.

15

10

5

Erfindungsgemäß sind die Wellen 3 und 4 durch die Bremsen 03 bzw. 04 an das Gehäuse ankoppelbar; die Kupplung 13 verbindet die Wellen 1 und 3 lösbar und die Kupplung 16 die Wellen 1 und 6 lösbar, wobei die Kupplung 45 die Wellen 4 und 5 lösbar verbindet.

20

25

Die in Figur 2 gezeigte Ausführungsform unterscheidet sich von der Ausführungsform gemäß Figur 1 darin, dass die Antriebswelle mit keinem Planetensatz direkt verbunden ist und dass die Welle 4 zusätzlich mit dem Steg des ersten Planetensatzes Pl verbunden ist. Ferner ist die Welle 5 ständig mit dem Sonnenrad des ersten Planetensatzes Pl verbunden. Anstelle der Kupplung 45 ist eine Bremse 05 vorgesehen, welche die Welle 5 mit dem Gehäuse lösbar verbindet.

30

Die feste Verbindung des Steges des ersten Planetensatzes Pl mit dem Gehäuse, wie es im Rahmen der beiden bereits erläuterten Ausführungsformen der Fall ist, kann

10

15

20

25

30

durch eine lösbare Verbindung z.B. mittels einer Bremse ersetzt werden.

Dadurch kann auf die mittels der Bremse gelöste Welle 0 eine E-Maschine oder eine andere geeignete zusätzliche Antriebsquelle angeordnet werden.

In Figur 3 ist ein weiteres Ausführungsbeispiel eines Mehrstufengetriebes in Planetenbauweise gemäß der vorliegenden Erfindung gezeigt, welches sich vom Ausführungsbeispiel gemäß Figur 1 darin unterscheidet, dass die Welle 4 zusätzlich mit dem Steg des ersten Planetensatzes Pl verbunden und die Welle 5 ständig mit dem Hohlrad des ersten Planetensatzes Pl verbunden ist. Wie aus der Figur ersichtlich, ist anstelle der Kupplung 45 eine Kupplung 15 vorgesehen, welche die Wellen 1 und 5 lösbar miteinander verbindet.

Das entsprechende Schaltschema der oben diskutierten Ausführungsbeispiele ist Gegenstand der Fig. 4, in der auch beispielhafte Übersetzungen i sowie die sich ergebenden Stufensprünge ϕ angegeben sind.

Demnach weist das erfindungsgemäße Mehrstufengetriebe eine progressive Gangabstufung auf. Zudem werden bei sequentieller Schaltweise Doppelschaltungen vermieden, da zwei benachbarte Gangstufen jeweils ein Schaltelement gemeinsam benutzen. Des weiteren wird bei jeder beliebigen Schaltung zwischen dem ersten und dem vierten Gang und zwischen dem vierten und dem sechsten Gang jeweils nur ein Schaltelement betätigt. Für die erste Ausführungsform nach Figur 1 ist für die Gänge 1 bis 4 die Kupplung 16 ständig aktiviert; diese Gänge ergeben sich durch die zusätzliche

15

20

25

30

Aktivierung der Bremse 03 (erster Gang), der Bremse 04 (zweiter Gang), der Kupplung 45 (dritter Gang), der Kupplung 13 (vierter Gang). Für die Gänge 4 bis 6 bleibt die Kupplung 13 geschlossen und die Gänge ergeben sich durch zusätzliche Aktivierung der Kupplung 45 (fünfter Gang) und der Bremse 04 (sechster Gang). Erfindungsgemäß erfordert die Schaltung des Rückwärtsganges die Aktivierung der Bremse 03 und der Kupplung 45.

Analog ist auch das Schaltschema für die Ausführungsformen gemäß den Figuren 2 und 3, mit dem Unterschied, dass anstelle der Kupplung 45 die Bremse 05 bzw. die Kupplung 15 aktiviert wird.

Gemäß der Erfindung ist es möglich, an jeder geeigneten Stelle des Mehrstufengetriebes zusätzliche Freiläufe vorzusehen, beispielsweise zwischen einer Welle und dem Gehäuse oder um eine Welle zu trennen bzw. zu verbinden.

Zudem ist es durch die erfindungsgemäße Bauweise möglich, Antrieb und Abtrieb sowohl auf der gleichen Seite des Getriebes bzw. des Gehäuses als auch entgegengesetzt anzuordnen. Auf der Antriebs- oder Abtriebsseite des Gehäuses kann zudem ein Achsdifferential oder ein Verteilerdifferential angeordnet werden.

Im Rahmen einer vorteilhaften Weiterbildung kann die Antriebswelle durch ein Kupplungselement von einem Antriebsmotor nach Bedarf getrennt werden, wobei als Kupplungselement ein hydrodynamischer Wandler, eine hydraulische Kupplung, eine trockene Anfahrkupplung, eine nasse Anfahrkupplung, eine Magnetpulverkupplung oder eine Fliehkraftkupplung einsetzbar sind.

15

20

25

30

Es ist auch möglich, ein derartiges Anfahrelement hinter dem Getriebe anzuordnen, wobei in diesem Fall die Antriebswelle fest mit der Kurbelwelle des Motors verbunden ist. Das Anfahren kann gemäß der Erfindung auch mittels eines Schaltelementes des Getriebes erfolgen, vorzugsweise mittels der Bremse 04, der Bremse 03 oder der Kupplung 16.

Das erfindungsgemäße Mehrstufengetriebe ermöglicht außerdem die Anordnung eines Torsionsschwingungsdämpfers zwischen Motor und Getriebe.

Im Rahmen einer weiteren, nicht dargestellten Ausführungsform der Erfindung kann auf jeder Welle, vorzugsweise auf der Antriebswelle oder der Abtriebswelle, eine verschleißfreie Bremse angeordnet sein, was insbesondere für den Einsatz in Nutzkraftfahrzeugen von besonderer Bedeutung ist. Auch kann zum Antrieb von zusätzlichen Aggregaten auf jeder Welle ein Nebenabtrieb vorgesehen sein.

Die eingesetzten Schaltelemente können als lastschaltende Kupplungen oder Bremsen ausgebildet sein; Lamellen-kupplungen, Bandbremsen und/oder Konuskupplungen sind aber ebenfalls einsetzbar. Des weiteren können auch formschlüssige Bremsen und/oder Kupplungen, wie z.B. Synchronisierungen oder Klauenkupplungen eingesetzt werden.

Ein weiterer Vorteil des hier vorgestellten Mehrstufengetriebes besteht darin, dass auf jeder Welle als Generator und/oder als zusätzliche Antriebsmaschine eine elektrische Maschine anbringbar ist.

Selbstverständlich fällt auch jede konstruktive Ausbildung, insbesondere jede räumliche Anordnung der Plane-

tensätze und der Schaltelemente an sich sowie zueinander und soweit technisch sinnvoll, unter den Schutzumfang der vorliegenden Ansprüche ohne die Funktion des Getriebes, wie sie in den Ansprüchen angegeben ist, zu beeinflussen, auch wenn diese Ausbildungen nicht explizit in den Figuren oder in der Beschreibung dargestellt sind.

Bezugszeichen

•	0 .	Welle
5 .	1	Welle
	2	Welle
	3 -	Welle
- 52 -	4	Welle
	5	Welle
10	6	Welle
	03	Bremse
	4	Bremse
	5	Bremse
	6	Kupplung
15	15	Kupplung
	16	Kupplung
	45	Kupplung
	P1	Planetensatz
20	P2	Planetensatz
	Р3	Planetensatz
	An	Antrieb
	Ab	Abtrieb
	i	Übersetzung
25	φ	Stufensprung

5.

10

15

20 -

25

30

Patentansprüche

1. Mehrstufengetriebe in Planetenbauweise, insbesondere Automatgetriebe für ein Kraftfahrzeug, umfassend eine Antriebswelle und eine Abtriebswelle, welche in einem Gehäuse angeordnet sind, drei Einsteg-Planetensätze (P1, P2, P3), mindestens sechs drehbare Wellen (0, 1, 2, 3, 4, 5, 6) sowie mindestens fünf Schaltelemente (03, 04, 13, 16, 45), die Bremsen und/oder Kupplungen umfassen, deren selektives paarweises Eingreifen verschiedene Übersetzungsverhältnisse zwischen der Antriebswelle und der Abtriebswelle bewirkt, sodass sechs Vorwärtsgänge und ein Rückwärtsgang realisierbar sind, dadurch gekennzeichnet, dass die Antriebswelle (1) direkt mit dem Sonnenrad des ersten Planetensatzes (P1) verbunden ist, dass das Hohlrad des ersten Planetensatzes (P1) drehfest mit dem Gehäuse verbunden ist, dass der Abtrieb.über eine Welle (2) erfolgt, welche mit dem Hohlrad des zweiten Planetensatzes (P2) und dem Steg des dritten Planetensatzes (P3) verbunden ist, dass eine Welle (3) ständig mit dem Steg des zweiten Planetensatzes (P2) und dem Hohlrad des dritten Planetensatzes (P3) verbunden ist, dass eine Welle (4) ständig mit dem Sonnenrad des zweiten Planetensatzes (P2) verbunden ist, dass eine Welle (5) ständig mit dem Steg des ersten Planetensatzes (P1) verbunden ist, und dass eine Welle (6) ständig mit dem Sonnenrad des dritten Planetensatzes (P3) verbunden ist, wobei die Welle (3) durch eine Bremse (03) an das Gehäuse ankoppelbar ist, die Welle (4) durch eine Bremse (04) an das Gehäuse ankoppelbar ist, eine Kupplung (13) die Wellen (1) und (3) lösbar verbindet, eine Kupplung (16) die Wellen (1) und (6) lösbar verbindet und wobei eine Kupplung (45) die Wellen (4) und (5) lösbar verbindet.

15

20

25

30

2. Mehrstufengetriebe in Planetenbauweise, insbesondere Automatgetriebe für ein Kraftfahrzeug, umfassend eine Antriebswelle und eine Abtriebswelle, welche in einem Gehäuse angeordnet sind, drei Einsteg-Planetensätze (P1, P2, P3), mindestens sechs drehbare Wellen (0, 1, 2, 3, 4, 5, 6) sowie mindestens fünf Schaltelemente (03, 04, 13, 15, 16), die Bremsen und/oder Kupplungen umfassen, deren selektives paarweises Eingreifen verschiedene Übersetzungsverhältnisse zwischen der Antriebswelle und der Abtriebswelle bewirkt, sodass sechs Vorwärtsgänge und ein Rückwärtsgang realisierbar sind, dadurch gekennzeichnet, die Antriebswelle (1) über die Kupplung (15) mit dem Sonnenrad des ersten Planetensatzes (P1) verbunden ist, dass das Hohlrad des ersten Planetensatzes (P1) drehfest mit dem Gehäuse verbunden ist, dass der Abtrieb über eine Welle (2) erfolgt, welche mit dem Hohlrad des zweiten Planetensatzes (P2) und dem Steg des dritten Planetensatzes (P3) verbunden ist, dass eine Welle (3) ständig mit dem Steg des zweiten Planetensatzes (P2) und dem Hohlrad des dritten Planetensatzes (P3) verbunden ist, dass eine Welle (4) ständig mit dem Sonnenrad des zweiten Planetensatzes (P2) und dem Steg des ersten Planetensatzes (P1) verbunden ist, dass eine Welle (5) ständig mit dem Sonnenrad des ersten Planetensatzes (P1) verbunden ist, und dass eine Welle (6) ständig mit dem Sonnenrad des dritten Planetensatzes (P3) verbunden ist, wobei die Welle (3) durch eine Bremse (03) an das Gehäuse ankoppelbar ist, die Welle (4) durch eine Bremse (04) an das Gehäuse ankoppelbar ist, eine Kupplung (13) die Wellen (1) und (3) lösbar verbindet, eine Kupplung (16) die Wellen (1) und (6) lösbar verbindet und wobei eine Kupplung (15) die Wellen (1) und (5) lösbar verbindet.

15

20

25

30

3. Mehrstufengetriebe in Planetenbauweise, insbesondere Automatgetriebe für ein Kraftfahrzeug, umfassend eine Antriebswelle und eine Abtriebswelle, welche in einem Gehäuse angeordnet sind, drei Einsteg-Planetensätze (P1, P2, P3), mindestens sechs drehbare Wellen (0, 1, 2, 3, 4, 5, 6) sowie mindestens fünf Schaltelemente (03, 04, 05, 13, 16), die Bremsen und/oder Kupplungen umfassen, deren selektives paarweises Eingreifen verschiedene Übersetzungsverhältnisse zwischen der Antriebswelle und der Abtriebswelle bewirkt, sodass sechs Vorwärtsgänge und ein Rückwärtsgang realisierbar sind, dadurch gekennzeichnet, die Antriebswelle (1) direkt mit dem Sonnenrad des ersten Planetensatzes (P1) verbunden ist, dass das Hohlrad des ersten Planetensatzes (P1) über eine Bremse (05) lösbar drehfest mit dem Gehäuse verbindbar ist, dass der Abtrieb über eine Welle (2) erfolgt, welche mit dem Hohlrad des zweiten Planetensatzes (P2) und dem Steg des dritten Planetensatzes (P3) verbunden ist, dass eine Welle (3) ständig mit dem Steg des zweiten Planetensatzes (P2) und dem Hohlrad des dritten Planetensatzes (P3) verbunden ist, dass eine Welle (4) ständig mit dem Sonnenrad des zweiten Planetensatzes (P2) und dem Steg des ersten Planetensatzes (P1) verbunden ist, dass eine Welle (5) ständig mit dem Hohlrad des ersten Planetensatzes (P1) verbunden ist, und dass eine Welle (6) ständig mit dem Sonnenrad des dritten Planetensatzes (P3) verbunden ist, wobei die Welle (3) durch eine Bremse (03) an das Gehäuse ankoppelbar ist, die Welle (4) durch eine Bremse (04) an das Gehäuse ankoppelbar ist, eine Kupplung (13) die Wellen (1) und (3) lösbar verbindet, eine Kupplung (16) die Wellen (1) und (6) lösbar verbindet und wobei die Bremse (05) die Welle (5) mit dem Gehäuse lösbar verbindet.

15

20

25

. 30.

- 4. Mehrstufengetriebe nach Anspruch 1, 2 oder 3, dadurch gekennzeich net, dass die Planetensätze (P1, P2, P3) als Minus-Planetensätze ausgebildet sind.
- 5. Mehrstufengetriebe nach Anspruch 1, 2 oder 4, dadurch gekennzeich net, dass die feste Verbindung des Hohlrades des ersten Planetensatzes (P1) mit dem Gehäuse durch eine lösbare Verbindung mittels einer Bremse ersetzbar ist.
 - 6. Mehrstufengetriebe nach Anspruch 5, dadurch ge-kennzeich net, dass auf der vom Gehäuse gelösten Welle (0) eine E-Maschine oder eine weitere geeignete zusätzliche Antriebsmaschine anordbar ist.
 - 7. Mehrstufengetriebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass an jeder geeigneten Stelle des Getriebes Freiläufe einsetzbar sind.
 - 8. Mehrstufengetriebe nach Anspruch 7, dadurch ge-kennzeich net, dass die Freiläufe zwischen den Wellen (0, 1, 2, 3, 4, 5, 6) und dem Gehäuse einsetzbar sind.
 - 9. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch gekennzeich net, dass Antrieb und Abtrieb auf der gleichen Seite des Gehäuses vorgesehen sind.
 - 10. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch g e k e n n z e i c h n e t , dass

Antrieb und Abtrieb auf entgegengesetzten Seiten des Gehäuses vorgesehen sind.

- 11. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch gekennzeich net, dass auf der Antriebs- oder auf der Abtriebsseite des Gehäuses ein Achs- und/oder ein Verteilerdifferential angeordnet ist.
- 12. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch gekennzeich net, dass die Antriebswelle (1) durch ein Kupplungselement von einem Antriebsmotor trennbar ist.
- 13. Mehrstufengetriebe nach Anspruch 12, dadurch gekennzeich net, dass als Kupplungselement ein hydrodynamischer Wandler, eine hydraulische Kupplung, eine Trockenanfahrkupplung, eine nasse Anfahrkupplung, eine Magnetpulverkupplung oder eine Fliehkraftkupplung vorgesehen ist.
 - 14. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch gekennzeich net, dass in Kraftflussrichtung hinter dem Getriebe ein externes Anfahrelement, insbesondere nach Ansprüch 13 anordbar ist, wobei die Antriebswelle (1) fest mit der Kurbelwelle des Antriebsmotors verbunden ist.
- 15. Mehrstufengetriebe nach einem der vorstehenden
 30 Ansprüche, dadurch gekennzeichnet, dass
 das Anfahren mittels eines Schaltelementes des Getriebes
 erfolgt, wobei die Kurbelwelle des Motors ständig mit der
 Antriebswelle (1) verbunden ist.

16. Mehrstufengetriebe nach Anspruch 15, dadurch gekennzeich net, dass als Schaltelement die Bremse (04), die Bremse (03) oder die Kupplung (16) einsetzbar sind.

5

17. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch gekennzeich net, dass zwischen Motor und Getriebe ein Torsionsschwingungsdämpfer anordbar ist.

10

18. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch gekennzeich net, dass auf jeder Welle eine verschleißfreie Bremse anordbar ist.

15

19. Mehrstufengetriebe nach Anspruch 18, dadurch gekennzeich net, dass eine verschleißfreie Bremse auf der Antriebswelle (1) oder der Abtriebswelle (2) anordbar ist.

20

20. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zum Antrieb von zusätzlichen Aggregaten auf jeder Welle ein Nebenabtrieb anordbar ist.

25

21. Mehrstufengetriebe nach Anspruch 20, dadurch gekennzeich net, dass der Nebenabtrieb auf der Antriebswelle (1) oder der Abtriebswelle (2) anordbarist.

30

22. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch gekennzeich net, dass die Schaltelemente als lastschaltende Kupplungen oder Bremsen ausgebildet sind.

- 23. Mehrstufengetriebe nach Anspruch 22, dadurch gekennzeich net, dass Lamellenkupplungen, Bandbremsen und/oder Konuskupplungen einsetzbar sind.
- 24. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als Schaltelemente formschlüssige Bremsen und/oder Kupplungen vorgesehen sind.
- 25. Mehrstufengetriebe nach einem der vorstehenden Ansprüche, dadurch gekennzeich net, dass auf jeder Welle als Generator und/oder als zusätzliche Antriebsmaschine eine elektrische Maschine anbringbar ist.

Zusammenfassung

Mehrstufengetriebe

5

10

15

20

25

Das Mehrstufengetriebe umfasst eine Antriebswelle und eine Abtriebswelle, drei Einsteg-Planetensätze (P1, P2, P3), mindestens sechs drehbare Wellen (1, 2, 3, 4, 5, 6) sowie mindestens fünf Schaltelemente (03, 04, 13, 16, 45), sodass sechs Vorwärtsgänge und ein Rückwärtsgang realisierbar sind, wobei die Antriebswelle (1) mit dem Sonnenrad des ersten Planetensatzes (P1) verbunden ist, das Hohlrad des ersten Planetensatzes (P1) drehfest mit dem Gehäuse verbunden ist, die Abtriebswelle (2) mit dem Hohlrad des zweiten Planetensatzes (P2) und dem Steg des dritten Planetensatzes (P3) verbunden ist und wobei die Welle (3) ständig mit dem Steg des zweiten Planetensatzes (P2) und dem Hohlrad des dritten Planetensatzes (P3) verbunden ist. Die Welle (4) ist ständig mit dem Sonnenrad des zweiten Planetensatzes (P2) verbunden, wobei die Welle (5) ständig mit dem Steg des ersten Planetensatzes (P1) verbunden ist und wobei die Welle (6) ständig mit dem Sonnenrad des dritten Planetensatzes (P3) verbunden ist. Die Planetensätze (P1, P2, P3) sind mittels Wellen (0, 1, 2, 3, 4, 5, 6) und Schaltelementen (03, 04, 13, 16, 45) gekoppelt.

Fig. 1