

面包板电子实践

——均匀方波发生器

复旦大学 芯创讲师团 2025年4月

- 均匀方波发生器:在本实验中,555电路被配置为方波发生器,产生振荡波形驱动一个发光二极管,实现均匀时间的明暗交替效果。
- 实验目标:依据装配图在面包板上完成电路搭建,实现小灯泡均匀时间的明暗交替效果。

装配图

实物图

小灯泡电路制作

■ 面包板

- 面包板是一种多用途的万能实验板,可以将小功率的常规电子元器件直接插入,搭接出各式各样的实验电路。
- 元器件可以反复插接、重复使用,便于电路调试、 元件调换,非常适合初学电子技术的用户使用。

130线面包板

130线面包板背面

X通常接电源正极, Y通常接地

■ 电阻器

 色环电阻:在电阻封装上(即电阻表面)涂上一定颜色的色环,来代表这个电阻的阻值, 常见类型为四色环和五色环。

四色环: 前两环分别代表阻值的两位有效数, 第三环代表10的幂数, 第四环代表误差。

五色环: 前三环分别代表阻值的三位有效数, 第四环代表10的幂数, 第五环代表误差。

以五色环表示法为例, "棕、黑、黑、黑、棕" = 100Ω电阻, 误差±1%

原理图

装配图

请挑出一个1K电阻

实物图

小灯泡发光电路制作

小灯泡电路装配图

小灯泡电路实物图

■二极管

二极管是由导电能力介于导体和绝缘体之间的物质制成的器件,故而称之为半导体二极管。半导体二极管由1个PN结构成,具有单向导电的特性。

请挑出一个发光二极管

小灯泡发光电路制作

红色小灯泡 第二列 长引脚为正极 短引脚为负极 正极在上

小灯泡电路实物图

小灯泡电路装配图

元器件基础

■ 导线

导线实物图

小灯泡电路装配图

导线 第二列

小灯泡电路实物图

■电源

• 电池盒+1.5V电池4节

原理图

装配图

实物图

小灯泡发光电路制作

红线 (正极) 在上, 黑线 (负极) 在下

小灯泡电路装配图

小灯泡电路实物图

■ 面包板

- 面包板是一种多用途的万能实验板,可以将小功率 的常规电子元器件直接插入,搭接出各式各样的实 验电路。
- 元器件可以反复插接、重复使用,便于电路调试、 元件调换,非常适合初学电子技术的用户使用。

130线面包板

130线面包板背面

X通常接电源正极, Y通常接地

请挑出标有"NE555P"的芯片

■ 555集成电路(芯片)

• 引脚的识别顺序是将芯片正面摆放,有缺口的一端在左边,左下端的引脚为第1脚,按逆时针方向依次编号,最终左上端的是最后一个引脚,该引脚也是集成电路的电源正极。右下端的引脚是集成电路的电源负极。

555集成电路引脚排列图

- 21个三极管
- 4个二极管
- 16个电阻

■ 装配图

■ 电阻

请挑出阻值为 1K, 10K的电阻

色环电阻:在电阻封装上(即电阻表面)涂上一定颜色的色环,来代表这个电阻的阻值,常见类型为四色环和五色环。

四色环: 前两环分别代表阻值的两位有效数, 第三环代表10的幂数, 第四环代表误差。

五色环: 前三环分别代表阻值的三位有效数, 第四环代表10的幂数, 第五环代表误差。

以五色环表示法为例,"棕、黑、黑、黑、棕" = 100Ω电阻,误差±1%

原理图

装配图

实物图

元器件基础

表 1-3-2 五色环电阻的表示方法

色环颜色	第一道色环 (第一有效位)	第二道色环 (第二有效位)	第三道色环 (第三有效位)	第四道色环 (乘以10的N次方)	第五道色环 (误差范围)
黑	0	0	0	10°	
棕	1	1	1	10¹	±1%
红	2	2	2	10 ²	±2%
橙	3	3	3	10³	_
黄	4	4	4	10⁴	_
绿	5	5	5	105	±0.5%
蓝	6	6	6	10 ⁶	±0.25%
紫	7	7	7	107	±0.1%
灰	8	8	8	10 ⁸	_
白	9	9	9	10°	_
金	=	=	-	10-1	-
银	_	_	_	10-2	_

前三环:有效数位

第四环: 10的幂数

第五环: 误差

请思考以下五色环 电阻阻值为多少:

- 1.棕绿黑红紫
- 2.黄紫黑黑绿

■ 二极管

二极管是由导电能力介于导体和绝缘体之间的物质制成的器件,故而称之为半导体二极管。半导体二极管由1个PN结构成,具有单向导电的特性。

请挑出一个普通二极管、 一个红色发光二极管和 一个绿色发光二极管

普通二极管 在管身的一端印有黑色圆环,表明该端引脚是负极,另一端是正极。最大工作电流为75mA。正向压降0.7V,反向压降100V。

■ 装配图

1个普通二极管 有黑环侧为负极

2个小灯泡 长引脚为正极 短引脚为负极

■电容

请挑出一个标有 "103"的瓷片电容

- 能够储存电荷和电能。其储存的电荷量与电容两端的电压成正比,即Q=CV。
 电容越大,在相同电压下储存的电荷量越多,储存的电能也越多。
- "通交流、隔直流",能随交流信号的不同频率而改变容抗大小。
- 电容的标准单位是F(法拉), 1F=10⁶μF(微法)=10¹²pF (皮法)

瓷片电容:

瓷片电容不区分正负极,目前多采用3位数字表示其容量。其中前两位表示为有效数字,第3位表示10的幂数,单位为pF(皮法),如"103"代表10⁴(10×10³)pF。一般瓷片电容耐压值为50V

原理图

装配图

实物图

■ 装配图

■电容

请挑出一个标有 "100uF"的电解电容

电解电容:

电解电容是有**极性**的,带"+"的一端是正极,另一端是负极。 新的电解电容的引脚是1长1短,**长引脚的是正极,短引脚的是负极。** 同时在外壳上印有"-"标记的引脚是负极。 实验中电解电容耐压值为16V或以上。

■ 装配图

1个电解电容 长引脚为正极 短引脚为负极

100uF 长引脚 (正极) 在上

请挑出一个标有 "9013"的三极管:

■ 三极管 (晶体管)

- 三极管是构成集成电路的基石,它有3个引脚,分别为基极(用字母b或B表示)、集电极(用字母c或C表示)、发射极(用字母e或E表示)。
- 基极电流的大小可以控制集电极和发射极电流的大小,且基极电流远小于集电极和发射极。因此,三极管的其中一个主要功能就是**放大电信号**。

装配图

实物图

装配图

9013

半圆弧向下

芯创讲师团

请挑出一个标有"103"的滑动变阻器

■ 滑动变阻器

• 可变电阻器也称可调电阻器,这种电阻器的阻值 可以在一定范围内调整,在一些要求电阻阻值可 以调整的电路中,经常会使用到这种电阻器。

卧式可变电阻

有3个引脚,左、右两个引脚之间的阻值是 固定不变的,中间的引脚,它可以左右转动, 当用一字型改锥伸入十字槽中转动时,动片 上的触点在可变电阻内部的膜式电阻片上进 行滑动。当动片沿顺时针方向旋转时,相当 于上图中的动片向下滑动, 定片1与动片之 间的电阻增大, 动片与定片2之间的电阻值 减少。当动片沿逆时针方向旋转时,阻值的 变化与上述情形相反。标称阻值是其两个固 定引脚之间的阻值,用 3 位数字来表示, 前两位表示为有效位, 第三位是10 的 幂次。

■电源

• 电池盒+1.5V电池4节

原理图

注:单节电池有凸起侧为正极,平整侧为负极。 装入电池盒时负极与弹簧相连。

装配图

实物图

■ 装配图

电池 红线在上 黑线在下

13

电路原理讲解

555集成电路实物图

555集成电路引脚排列图

555集成电路内部原理图

555集成电路

555集成电路内部原理图

注:本实验中,0表示低电平,约为0V;1表示高电平,约为6V。

555集成电路

555集成电路内部原理图

■ 装配图

施密特触发器

施密特触发器原理图

施密特触发器增加内容(相较于555集成电路):

- 1. ①引脚接地
- 2. ②⑥引脚相连
- 3. ④⑧引脚接高电压
- 4. ⑤引脚通过电容接地

注:⑤引脚接电容后再接地是为了防止引脚悬空 (即芯片的某个引脚不接入电路中的任何位置,这种"悬空"的引脚通常不符合芯片的使用规范)。接电容可以保证不改变该节点的直流电压值。

施密特触发器原理图

GND

施密特触发器直流偏置电路等效图

施密特触发器原理图

输入		输出	
R	S	Q	ā
0	0	不变	不变
0	1	1	0
1	0	0	1
1	1	-	-

RS触发器输入输出关系

输入	中间量		输出
V _i	R S		V _o
0 → 2V	0	1	6V

施密特触发器输入输出关系(V_i: 0→6V)

施密特触发器原理图

输入		输出	
R	S	Q	ā
0	0	不变	不变
0	1	1	0
1	0	0	1
1	1	-	-

RS触发器输入输出关系

输入	中间量		输出
V _i	R	S	V _o
0 → 2V	0	1	6V
2→4V	0	0	6V

施密特触发器输入输出关系(V_i: 0→6V)

施密特触发器原理图

输入		输出	
R	S	Q	ā
0	0	不变	不变
0	1	1	0
1	0	0	1
1	1	-	-

RS触发器输入输出关系

输入	中间量		输出
V _i	R	S	V _o
0 → 2V	0	1	6V
2 → 4V	0	0	6V
4→6V	1	0	0V

施密特触发器输入输出关系(V_i: 0→6V)

施密特触发器原理图

施密特触发器输入输出关系(V_i: 0→6V)

输入		输出	
R	S	Q	ā
0	0	不变	不变
0	1	1	0
1	0	0	1
1	1	-	-

RS触发器输入输出关系

输入	中间量		输出
V _i	R S		V _o
6 → 4V	1	0	0V

施密特触发器输入输出关系(Vi: 6→0V)

施密特触发器原理图

输入		输出	
R	S	Q	ā
0	0	不变	不变
0	1	1	0
1	0	0	1
1	1	-	-

RS触发器输入输出关系

输入	中间量		输出
V _i	R S		V _o
6 → 4V	1	0	0V
4→2V	0	0	0V

施密特触发器输入输出关系(V_i: 6→0V)

施密特触发器原理图

输入		输出	
R	S	Q	ā
0	0	不变	不变
0	1	1	0
1	0	0	1
1	1	-	-

RS触发器输入输出关系

输入	中间量		输出
V _i	R	S	V _o
6 → 4V	1	0	0V
4 → 2V	0	0	0V
2 → 0V	0	1	6V

施密特触发器输入输出关系(V_i: 6→0V)

施密特触发器原理图

施密特触发器输入输出关系(V_i: 6→0V)

输入	中间量		输出
V _i	R	S	V _o
0 → 2V	0	1	6V
2 → 4V	0	0	6V
4→6V	1	0	0V
6 → 4V	1	0	0V
4 → 2V	0	0	0V
2 → 0V	0	1	6V

 V_o/V 6 V_{H} 0 2 6 4

施密特触发器输入输出关系

施密特触发器IO特性曲线

施密特触发器增加内容(相较于555集成电路):

- 1. ①引脚接地
- 2. ②⑥引脚相连
- 3. ④⑧引脚接高电压
- 4. ⑤引脚通过电容接地

多谐振荡器原理图

多谐振荡器增加内容(相较于施密特触发器):

- 1. ②引脚通过电容C₁接地
- 2. ②⑦引脚通过电阻R2相连
- 3. ⑦引脚通过电阻R₁接高电压

一切的一切,都是为了给Vi节点充电和放电······

多谐振荡器原理图

多谐振荡器原理图

多谐振荡器原理图

多谐振荡器原理图

多谐振荡器原理图

多谐振荡器输入输出随时间变化图

 V_i 在 V_L 到 V_H 之间震荡;

 V_o 为固定频率方波,且

 占空比始终大于50%。

多谐振荡器原理图

输入V _i	中间量			对输入影响
2/6	R	S	Q	7
$0 < V_i < V_L$	0	1	0	T关断,V _i ->V _L
$V_L < V_i < V_H$	0	0	0	T关断,V _i ->V _H
$V_H < V_i < V_{CC}$	1	0	1	T导通,V _i ->V _H
$V_L < V_i < V_H$	0	0	1	T导通,V _i ->V _L
$0 < V_i < V_L$	0	1	0	T关断,V _i ->V _L

Vi在VL到VH之间震荡; Vo为固定频率方波,且 占空比始终等于50%。

■ 装配图

Vo	LED1正极	LED1负极	LED1
0V	6V	0V	亮
6V	6V	6V	灭

Vo	LED2正极	LED2负极	LED2
0V	0V	0V	灭
6V	6V	0V	亮

Vo	LED1	LED2
0V	亮	灭
6V	灭	亮

■ 装配图

