Key ID: 015

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 7$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1:	91	118	144	104	118	141	
sample 2:	97	120	81	87	97	91	112

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 90% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.1? (yes or no)

1.	(a)					5	$\rfloor \cdot $	0	0	0	
	(b)					2] .[0	2	0	
	(c)					9] . [8	9	6	
	(d)			-	4	1] . [0	9	0	
	(e)				-	1] . [1	1	0	
	(f)					2] . [1	3	2	
	(g)					0] .[0	5	0	
	(h)					0] . [1	0	0	
	(i)	ye	S								

Key ID: 015

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 119$$

$$\overline{X_2} = 97.9$$

$$s_1 = 20.6$$

$$s_2 = 13.8$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 7) - 1 = 5$$

We use the *t* table to find t^* such that $P(|T| < t^*) = 0.9$

$$t^* = 2.02$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(20.6)^2}{6} + \frac{(13.8)^2}{7}} = 9.896$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-41.09, -1.11)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{X_2} - \overline{X_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(97.9 - 119) - 0}{9.896} = -2.13$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 2.13$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.05 < p$$
-value < 0.1

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

Thus, we reject the null hypothesis. Also notice the confidence interval does not contain 0.

- (a) 5
- (b) 2.02
- (c) 9.896
- (d) -41.09
- (e) -1.11
- (f) 2.132
- (g) 0.05
- (h) 0.1
- (i) yes