Generative Adversarial Networks

Davi Barreira

FGV - Escola de Matemtica Aplicada

Table of contents

- 1. Introduction
- 2. Original ABC Algorithm
- 3. Moving Average
- 4. Calibration of ABC
- 5. ABC Variations
- 6. Post-processing of ABC
- 7. Model Choice

Introduction

Generative Adversarial Networks were originally introduced by Goodfellow et al. (2014).

Objective & Motivation

ABC methods are known as likelihood-free techniques, thus are a useful approach in problems that the likelihood is intractable, e.g., likelihood not available in closed form, or likelihood too expensive to calculate.

- Coalescent models in population genetics (?);
- Species dynamics (?);
- Real-world model of HIV transmission (?).

Objective & Motivation

In some settings where we have latent variables, the likelihood is expressed as:

$$\ell(\boldsymbol{\theta} \mid \boldsymbol{y}) = \int \ell^*(\boldsymbol{\theta} \mid \boldsymbol{y}, \boldsymbol{u}) d\boldsymbol{u}$$

Hence, ${\it y}$ is observed and ${\it u}$ is latent and ${\it \theta}$ is the parameter of interest.

4

? described the ABC algorithm as a thought experiment to explain how to sample from a posterior distribution. ? is usually considered the paper responsible for the proposing ABC for infering the posterior distribution.

Algorithm 1: Original ABC method

Below we have an schematic drawing with an example of the ABC method for Beta/Binomial model.

Figure 1: Schematic drawing of ABC method for Beta/Binomial model

The proof that the algorithm indeed results in an iid sample from the posterior is shown below. Let y be the observed, θ the parameter of interest and z the generated samples.

$$f(\boldsymbol{\theta}_i) \propto \sum_{\mathbf{z} \in \mathbb{D}} \pi(\boldsymbol{\theta}_i) p(\mathbf{z} \mid \boldsymbol{\theta}_i) \mathbb{I}_{\mathbf{y}}(\mathbf{z}) = \pi(\boldsymbol{\theta}_i) p(\mathbf{y} \mid \boldsymbol{\theta}_i) \propto \pi(\boldsymbol{\theta}_i \mid \mathbf{y})$$

? extended the original algorithm to the case of continuos sample spaces.

Algorithm 2: ABC method for discrete and continuous distributions

```
\begin{tabular}{l|l} \textbf{for } i = 1 \ to \ N \ \textbf{do} \\ \hline & \textbf{repeat} \\ & | \  \  \, \text{Sample } \theta' \sim \pi(\cdot) \\ & | \  \  \, \text{Generate } \textbf{z} \sim p(\cdot \mid \theta') \\ & | \  \  \, \text{until } \rho[\eta(\textbf{y}), \eta(\textbf{z})] \leq \epsilon; \\ \hline \end \end{tabular}
```

- $-\eta$: function defining a statistic (e.g. the mean),
- ρ : a distance function,
- ϵ : acceptance tolerance.

For this ABC algorithm, instead of the actual posterior, we get

$$\pi_{\epsilon}(\theta, \mathbf{z} \mid \mathbf{y}) = \frac{\pi(\theta)p(\mathbf{z} \mid \theta)\mathbb{I}_{A_{\epsilon, \mathbf{y}}}(\mathbf{z})}{\int_{A_{\epsilon, \mathbf{y}} \times \theta} \pi(\theta)p(\mathbf{z} \mid \theta)d\mathbf{z}d\theta}$$

Where, $A_{\epsilon, y} = \{ z \in \mathcal{D} \mid \rho[\eta(z), \eta(y) \leq \epsilon]. \}$

Hence, for a tolerance (ϵ) "small enough", we expect a good approximation.

$$\pi_{\epsilon}(oldsymbol{ heta} \mid oldsymbol{y}) = \int \pi_{\epsilon}(oldsymbol{ heta}, oldsymbol{z} \mid oldsymbol{y}) doldsymbol{z} pprox \pi(oldsymbol{ heta} \mid oldsymbol{y})$$

We will use the Moving Average model, also denoted as MA(q), for assessing the performance of the ABC methods. The MA(q) process is a stochastic process defined by:

$$y_k = u_k + \sum_{i=1}^q \theta_i u_{k-i}$$

Where $(u_k)_{k\in\mathbb{Z}}\stackrel{iid}{\sim} N(0,1)$. For a q=2, imposing the standard identifiability condition we obtain the following conditions:

$$-2<\theta_1<2, \qquad \theta_1+\theta_2>-1, \qquad \theta_1-\theta_2<1.$$

Hence, we use an uniform distribution over this triangular region as prior for θ . The likelihood of $\mathbf{y} \mid \theta$ is more complex because of the need to integrate \mathbf{u} .

We generate a synthetic sample of length 100 using $(\theta_1, \theta_2) = (0.6, 0.2)$. For q = 2 we can also numerically calculate the real posterior and the marginal distributions.

$$\pi(\theta \mid \mathbf{y}) \propto \pi(\theta) p(\mathbf{y} \mid \theta), \qquad \mathbf{y} \mid \theta \sim MVN(0, \Sigma)$$

$$\Sigma = \begin{bmatrix} 1 + \theta_1^2 + \theta_2^2 & \theta_1 + \theta_2\theta_1 & \theta_2 & 0 & 0 & 0 & \dots & 0 \\ \theta_1 + \theta_2\theta_1 & 1 + \theta_1^2 + \theta_2^2 & \theta_1 + \theta_2\theta_1 & \theta_2 & 0 & 0 & \dots & 0 \\ \theta_2 & \theta_1 + \theta_2\theta_1 & 1 + \theta_1^2 + \theta_2^2 & \theta_1 + \theta_2\theta_1 & \theta_2 & 0 & \dots & 0 \\ 0 & \theta_2 & \theta_1 + \theta_2\theta_1 & 1 + \theta_1^2 + \theta_2^2 & \theta_1 + \theta_2\theta_1 & \theta_2 & \dots & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \theta_2 & \theta_1 + \theta_1\theta_2 & 1 + \theta_1^2 + \theta_2^2 \end{bmatrix}$$

For this model, the ABC algorithm consists of:

- ullet Sample $heta^*$ from the uniform triangular prior using rejection sampling;
- For each $k \in \{-1, 0, 1, ..., 100\}$, sample $u_k \stackrel{iid}{\sim} N(0, 1)$.
- For each $k \in \{1, 2, ..., 100\}$, calculate $z_k = u_k + \sum_{i=1}^2 \theta_i^* u_{k-i}$.

Two distance metrics are used. The raw distance between the series

$$\rho^{2}\{z,y\} = \sum_{k=1}^{n=100} (y_{k} - z_{k})^{2}$$

And the sum of the quadratic distances between the first q=2 autocovariances

$$\tau_j(\mathbf{x}) = \sum_{k=j+1}^{n=100} x_k x_{k-j}, \qquad \rho^2 = \sum_{j=0}^{q=2} (\tau_j(\mathbf{y}) - \tau_j(\mathbf{z}))^2$$

Below we present the results of running ABC for the MA(2) process.

Figure 2: Comparison between the true posterior (*line in black*), with the samples produced using the ABC . The number of simulations is $N=10^6$, and the threshold ϵ corresponds to the quantile of accepting 0.1%. The ρ used was the distance of the autocovariances.

Calibration of ABC

Summary Statistics(η). As the number of observations grow, using the raw distance between each observation becomes too prohibitive. The alternative is to try using summary statistics, if possible, sufficient statistics.

? created a way of constructing appropriate summary statistics for ABC in a semi-automatic manner.

Tolerance threshold. The standard practice is to use ϵ as a quantile of the simulated distances.

Calibration of ABC

Figure 3: Comparison of ABC method when using autocovariance distance 1 (*left*) versus raw distance (*right*). The number of simulations is $N=10^6$ and different thresholds ϵ are used.

¹in the rest of the slides we will only use the autocovariance distances

Calibration of ABC

Figure 4: Comparison of ABC samples with the true posterior marginal distribution for θ_1 (*left*) and θ_2 (*right*).

Using non-informative priors is usually very inefficient, because it leads to lots of rejections. To tackle this problem, ? came up with MCMC-ABC.

Algorithm 3: MCMC-ABC

```
Use Algorithm 2 to get (\theta^{(0)}, z^{(0)}) from the target \pi_{\epsilon}(\theta, z \mid y).
for i=1 to N do
        repeat
                 Sample \theta' from the Markov kernel q(\cdot \mid \theta^{(i-1)})
                 Generate z \sim p(\cdot \mid \theta')
                 Sample u \sim U[0,1]
                \text{if} \quad u \leq \frac{\pi(\theta')q(\theta^{(i-1)}|)}{\pi(\theta^{(i-1)})q(\theta^{(i-1)}|)} \text{ and } \rho\{\eta(\mathbf{z}'),\eta(\mathbf{y})\} \leq \epsilon \text{ then}
                        Set (\theta^{(i)}, \mathbf{z}^{(i)}) = (\theta', \mathbf{z}')
                 end
                 else
                         Set (\theta^{(i)}, \mathbf{z}^{(i)}) = (\theta^{(i-1)}, \mathbf{z}^{(i-1)})
                 end
        until \rho[\eta(\mathbf{y}), \eta(\mathbf{z})] < \epsilon;
end
```


Figure 5: Comparison of ABC-MCMC samples with the true posterior marginal distribution for θ_1 (*left*) and θ_2 (*right*) using $\epsilon=0.1\%$.

Another variation of ABC is called **Noisy ABC**, that was proposed by ?. The original ABC algorithm can be thought as a rejection algorithm using a uniform kernel $(\mathbb{I}_{A_{\epsilon,y}(z)})$. The *Noisy* version generalizes this, allowing the use of different kernels, hence:

$$\pi_{\epsilon}(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{y}) = \frac{\pi(\boldsymbol{\theta})p(\mathbf{z} \mid \boldsymbol{\theta})K_{\epsilon}(\mathbf{y} - \mathbf{z})}{\int \pi(\boldsymbol{\theta})p(\mathbf{z} \mid \boldsymbol{\theta})K_{\epsilon}(\mathbf{y} - \mathbf{z})d\mathbf{z}d\boldsymbol{\theta}}$$

Now, instead of accepting if $\rho\{\eta(\mathbf{y}), \eta(\mathbf{z})\} \leq \epsilon$, we accept with probability $\frac{K_{\epsilon}(\mathbf{y}-\mathbf{z})}{\max\{K_{\epsilon}(\mathbf{y}-\mathbf{z}\})}$.

Figure 6: Illustration of *Noisy* ABC rejection kernels, where s is the statistic from the ABC sampler and s_{obs} is the observed value from the data. Figure from ?.

Sequential techniques are also used with ABC to enhance the efficiency of the algorithms. A popular method in this regard is the **ABC-PMC** (ABC population Monte Carlo) by ?. It estimates the scale of the random walk step from the previous simulations and uses a sequence of tolerance thresholds $(\epsilon_1 \geq ... \geq \epsilon_T)$ to approximate the distribution.

A recent work by ? proposed a method for adaptively selecting this sequence of tolerances in a way that improves the computationl efficiency and defines a stopping rule, thus assisting in automating the termination of the sampling procedure.

The estimation of the posterior using ABC is straightfoward.

Algorithm 4: ABC-PMC

```
At iteration t=1, \begin{array}{c|c} \text{for } i=1 \text{ to } N \text{ do} \\ \hline & \text{repeat} \\ & \text{ Generate } z \sim p(\cdot \mid \theta_i^{(1)}) \\ & \text{ until } \rho[\eta(\mathbf{y}), \eta(z)] \leq \epsilon; \\ & \text{ Set } w_i^{(1)} = 1/N. \\ \\ \text{end} \\ \end{array} Set \Sigma_1 as twice the empirical variance of the \theta_i^{(1)}'s
```

Algorithm 5: ABC-PMC

```
\label{eq:continuous_problem} \begin{aligned} & \text{for } t{=}2 \text{ to } T \text{ do} \\ & & \text{ for } i{=}1 \text{ to } N \text{ do} \\ & & \text{ repeat} \\ & & \text{ Sample } \boldsymbol{\theta}_i^* \text{ from } \boldsymbol{\theta}_j^{(t-1)}\text{,s with probabilities } \boldsymbol{w}_j^{(t-1)} \\ & & \text{ Generate } \boldsymbol{\theta}_i^{(t)} \sim N(\boldsymbol{\theta}_i^*, \boldsymbol{\Sigma}_{(t-1)}) \text{ and } \boldsymbol{z} \sim p(\cdot \mid \boldsymbol{\theta}_i^{(t)}) \\ & & \text{ until } \rho[\eta(\boldsymbol{y}), \eta(\boldsymbol{z})] \leq \epsilon; \\ & \text{ Set } \boldsymbol{w}_i^{(t)} \propto \frac{\pi(\boldsymbol{\theta}_i^{(t)})}{\sum_{j=1}^N \boldsymbol{w}_j^{(t-1)} \boldsymbol{\phi}\{(\boldsymbol{\Sigma}_{t-1})^{-1/2}(\boldsymbol{\theta}_i^{(t)} - \boldsymbol{\theta}_j^{(t-1)})\}} \cdot \\ & \text{ end} \\ & \text{ Set } \boldsymbol{\Sigma}_t \text{ as twice the weighted variance of the } \boldsymbol{\theta}_i^{(t)}\text{,s} \\ & \text{end} \end{aligned}
```


Figure 7: Comparison of ABC-PMC samples with the true posterior marginal distribution for θ_1 (*left*) and θ_2 (*right*) using $\epsilon=0.1\%$.

Post-processing of ABC

Local linear regression was proposed by ? as a way improve the result of simulations without the need to use restrictively low threshold values. The idea is then to use a weighted least squares regression of θ on $(\eta(y) - \eta(z))$, with weights according to a chosen kernel.

$$\theta^* = \theta - (\eta(\mathbf{y}) - \eta(\mathbf{z}))^T \hat{\beta}$$

Post-processing of ABC

Figure 8: Scatter plots of simulated θ_1 and $(\eta(\mathbf{y}) - \eta(\mathbf{z}))$ for autocovariance with lag = 1. On the left there are all the $N = 10^6$ simulations, while in the right only the accepted samples for $\epsilon = 10\%$ with the regression line.

Post-processing of ABC

Figure 9: Comparison of ABC samples corrected through local linear regression versus the true marginal posterior distribution for θ_1 (*left*) and θ_2 (*right*) using $\epsilon=10\%$.

Model Choice

The estimation of the posterior using ABC is straightfoward.

Algorithm 6: ABC Model Choice

$$\begin{tabular}{ll} \textbf{for } i{=}1 \ to \ N \ \textbf{do} \\ \hline & \textbf{repeat} \\ & | \ \ \, \text{Sample } m \sim \pi(\mathcal{M}=m) \\ & | \ \ \, \text{Sample } \theta_m \sim \pi_m(\theta_m) \\ & | \ \ \, \text{Generate } \textbf{z} \sim p_m(\cdot \mid \theta_m) \\ & | \ \ \, \text{until } \rho[\eta(\textbf{y}), \eta(\textbf{z})] \leq \epsilon; \\ & | \ \ \, \text{Set } m^{(i)} = m \ \text{and } \theta^{(i)} = \theta_m \\ \hline \end \\ \hline \end \\ \e$$

The posterior probability $\pi(\mathcal{M} = m \mid \mathbf{y})$ if the acceptance frequency from model m.

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{m^{(i)}=m}$$

Model Choice

Figure 10: Barplots of evolution of Bayes factor approximations in terms of visits to models MA(1) and MA(2) using ABC using thresholds of 10, 1, 0.1, 0.01 % on autocovariance distance. The true model is MA(2) and the true Bayes factor is 0.952.

Model Choice

Figure 11: Barplots of evolution of Bayes factor approximations in terms of visits to models MA(1) and MA(2) using ABC using thresholds of 10, 1, 0.1, 0.01 % on autocovariance distance. The true model is MA(1) and the true Bayes factor is 0.943.

References i

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, *Advances in Neural Information Processing Systems* 27, pages 2672–2680. Curran Associates, Inc.