

Learning to Reduce Dual-level Discrepancy for Infrared-Visible Person Re-identification

Zhixiang Wang¹ Zheng Wang^{2(🖾)} Yinqiang Zheng² Yung-Yu Chuang¹ Shin'ichi Satoh^{2,3}
¹National Taiwan University ²National Institute of Informatics ³The University of Tokyo

LONG BEACH CALIFORNIA June 16-20, 2019

Problem and Difficulty

Problem

• Given a visible (or infrared) image of a specific person, the goal is to find the corresponding infrared (or visible) images of the person captured by other spectrum cameras. This cross-modality image matching task is named Infrared-Visible person RE-IDentification (IV-REID).

Contributions and Motivations

Contributions

- A novel dual-level discrepancy reduction learning scheme, which decompose the mixed discrepancies and handling them separately.
- Our end-to-end scheme enforces these two sub-networks benefit each other.
- Extensive experiments on two datasets demonstrate the superior performance.

 $\mathcal{L}_{\mathcal{I}} = \mathcal{L}_{\text{VAE}_v} + \mathcal{L}_{\text{VAE}_i} + \mathcal{L}_{\text{GAN}_v} + \mathcal{L}_{\text{GAN}_i} + \mathcal{L}_{\text{CC}_v} + \mathcal{L}_{\text{CC}_i}$

• \mathcal{L}_{VAE_i} , \mathcal{L}_{VAE_i} : Style Disentanglement Loss

• $\mathcal{L}_{\text{GAN}_v}$, $\mathcal{L}_{\text{GAN}_i}$: Image Generation Loss

• \mathcal{L}_{CC_v} , \mathcal{L}_{CC_i} : Cycle-consistency Loss

• $\mathcal{L}_{\mathcal{I}}$: Objective for $\mathcal{T}_{\mathcal{I}}$

 $\mathcal{L}_{\mathcal{F}} = \lambda_4 \mathcal{L}_{\mathcal{F}}^C + \lambda_5 \mathcal{L}_{\mathcal{F}}^T$

• $\mathcal{L}_{\mathcal{F}}^T$: Triplet Loss

• $\mathcal{L}_{\mathcal{F}}^{C}$: Cross-entropy Loss

• $\mathcal{L}_{\mathcal{F}}$: Objective for $\mathcal{T}_{\mathcal{F}}$

Experiments & Results Why separately reduce discrepancy?

Which modality to unify?

	Re	egDB	SYSU-MM01		
Metrics (%)	mAP	CMC-1	mAP	CMC-1	
$D^2RL(v)$	36.4	39.1	28.4	28.1	
$D^2RL(i)$	43.6	42.9	27.8	27.4	
D^2RL	44.1	43.4	29.2	28.9	

Why joint training?

	Re	egDB	SYSU-MM01		
Metrics (%)	mAP	CMC-1	mAP	CMC-1	
Separate	40.7	39.9	25.7	26.1	
Joint	44.1	43.4	29.2	28.9	

Comparison with the state-of-the-art methods

Approach	Constraints		RegDB			SYSU-MM01				
	Feature-level	Image-level	CMC-1	CMC-10	CMC-20	mAP	CMC-1	CMC-10	CMC-20	mAP
LOMO [1]	X	X	0.85	2.47	4.10	2.28	1.75	14.14	26.63	3.48
MLBP [2]	X	X	2.02	7.33	10.90	6.77	2.12	16.23	28.32	3.86
HOG [3]	X	X	13.49	33.22	43.66	10.31	2.76	18.25	31.91	4.24
GSM [4]	X	X	17.28	34.47	45.26	15.06	5.29	33.71	52.95	8.00
One-stream [5]		X	13.11	32.98	42.51	14.02	12.04	49.68	66.74	13.67
Two-stream [5]		X	12.43	30.36	40.96	13.42	11.65	47.99	65.50	12.85
Zero-Padding [5]		X	17.75	34.21	44.35	18.90	14.80	54.12	71.33	15.95
TONE [6]		X	16.87	34.03	44.10	14.92	12.52	50.72	68.60	14.42
HCML [6]		X	24.44	47.53	56.78	20.80	14.32	53.16	69.17	16.16
BDTR [7]		X	33.47	58.42	67.52	31.83	17.01	55.43	71.96	19.66
<i>cm</i> GAN [8]		X	_	_	_	_	26.97	67.51	80.56	27.80
Proposed D ² RL			43.4	66.1	76.3	44.1	28.9	70.6	82.4	29.2

Visualization results

(a) RegDB

(b) SYSU-MM01

Ablation study

Method	Components				RegDB		
	VAE	CC	CE	triplet	CMC-1 (%)	mAP (%)	
Baseline	√	√	X	X	28.5	23.8	
D^2RL (no VAE)	X	\checkmark	\checkmark	\checkmark	34.8	31.3	
D^2RL (no CC)	\checkmark	X	\checkmark	\checkmark	33.7	29.9	
D^2RL (no CE)	\checkmark	\checkmark	X	\checkmark	41.7	40.6	
D ² RL (no triplet)	\checkmark	\checkmark	\checkmark	X	39.5	37.4	
D^2RL				\checkmark	43.4	44.1	

How to balance sub-networks $\mathcal{T}_{\mathcal{T}}$ and $\mathcal{T}_{\mathcal{F}}$?

References

Failure cases

- [1] LOMO [Liao et al., CVPR15]
- [2] MLBP [Liao et al., ICCV15]
- [3] HOG [Dalal et al., CVPR05]
- [4] GSM [Lin *et al.*, TPAMI17]
- [5] Zero-Padding [Wu et al., ICCV17]

Top-10 Ranking

- [6] TONE+HCML [Ye et al., AAAI18]
- [7] BDTR [Ye et al., IJCAI18]
- [8] cmGAN [Dai et al., IJCAI18]