Если идет дождь, земля мокрая Сейчас идет дождь

∴ Сейчас земля мокрая

Если идет дождь, земля мокрая Сейчас идет дождь

.. Сейчас земля мокрая

Если идет дождь, земля мокрая Земля не мокрая

∴ Дождь не идет

Если идет дождь, земля мокрая Сейчас идет дождь

∴ Сейчас земля мокрая

Если идет дождь, земля мокрая Земля не мокрая

∴ Дождь не идет

Если идет дождь, земля мокрая Дождь не идет

∴ Земля не мокрая

Если идет дождь, земля мокрая Сейчас идет дождь

∴ Сейчас земля мокрая

Если идет дождь, земля мокрая Земля не мокрая

∴ Дождь не идет

Если идет дождь, земля мокрая. Дождь не идет

∴ Земля не мокрая

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

II Лучше выбрать другую комнату. Если в первой комнате тигр, то утверждение I ложно. Тогда во второй тоже тигр. Тогда утверждение II истинно. Приходим к противоречию. Если в первой комнате принцессе, то утверждение I истинно. Тогда во второй комнате тигр. Тогда утверждение II

истинно. Противоречий нет.

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

I II Лучше выбрать большая разница! комнату.

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

І Что выбрать большая разница!

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

I Что выбрать большая разница!

В первой комнате принцесс	ca $ P_1 $
В первой комнате тигр	$\neg P_1$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно А. или В. или оба	$A \vee B$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно А. или В. или оба	$A \vee B$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр — ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

II Лучше выбрать другую комнату.

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$

 $P_1 o$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр — ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$

$$P_1
ightarrow (P_1 \wedge
eg P_2) ee (
eg P_1 \wedge P_2)$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$

$$P_1
ightarrow (P_1 \wedge
eg P_2) ee (
eg P_1 \wedge P_2)$$

$$\neg P_1
ightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 \rightarrow (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$	

$$P_1 \rightarrow (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$

$$\neg P_1 \rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$

$$P_1 o (P_1 \wedge
eg P_2) \vee (
eg P_1 \wedge P_2)$$

$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_2 \rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_{\bullet} \rightarrow (P_{\bullet} \land \neg P_{\circ}) \lor (\neg P_{\bullet} \land \neg P_{\circ})$	P_{α}

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$

$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_2 \rightarrow P_1 \land \neg P_2$$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и А, и В	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 ightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$	
$ eg P_1 o (P_1 \wedge P_2) \vee (eg P_1 \wedge eg P_2)$	
$-P_{-} \rightarrow P_{-} \wedge -P_{-}$	

 $P_2 \rightarrow$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	

$$eg P_1 o (P_1 \wedge P_2) \vee (
eg P_1 \wedge
eg P_2)$$

$$P_2 \rightarrow \neg P_1 \vee P_2$$
)

 $\neg P_2 \rightarrow P_1 \land \neg P_2$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	
$\neg P_2 o P_1 \wedge \neg P_2$	
$P_2 ightarrow eg P_1 \lor P_2$	

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	
$\neg P_1 o (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	

 $P_2 \rightarrow \neg P_1 \vee P_2$

$$A, A \rightarrow B \Rightarrow B$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и А, и В	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) \vee (eg P_1 \wedge P_2)$	
$\neg P_1 \rightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	

 $\neg P_2 \to P_1 \land \neg P_2$ $P_2 \to \neg P_1 \lor P_2$

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) \vee (eg P_1 \wedge P_2)$	
$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \rightarrow \neg P_1 \lor P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) \vee (eg P_1 \wedge P_2)$	
$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \rightarrow \neg P_1 \lor P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 o (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$	
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 o (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	
$ eg P_1 o (P_1 \wedge P_2) \lor (eg P_1 \wedge eg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

 $\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$

$$\neg P_1, P_1 \wedge P_2 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 ightarrow (P_1 \wedge eg P_2) \lor (eg P_1 \wedge eg P_2)$	P_2)
$\neg P_1 o (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \rightarrow \neg P_1 \lor P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow E$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \vee B$
$P_1 o (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge \neg P_2) \vee (\neg P_$	P_2)
$\neg P_1 \rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$$

В первой комнате принцесса	P_1	
В первой комнате тигр	$\neg P_1$	
Во второй комнате принцесса	P_2	
Во второй комнате тигр	$\neg P_2$	
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$	
Верно и А, и В	$A \wedge B$	
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$	
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$		
$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$		
$\neg P_2 \to P_1 \land \neg P_2$		

 $P_2 \rightarrow \neg P_1 \vee P_2$

$$A, A \to B \Rightarrow B$$
 $A \land B \Rightarrow A, A \land B \Rightarrow B$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$$

$$\neg P_1, \neg P_1 \land \neg P_2 \Rightarrow$$

В первой комнате принцесса	P_1	
В первой комнате тигр	$\neg P_1$	
Во второй комнате принцесса	P_2	
Во второй комнате тигр	$\neg P_2$	
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$	
Верно и А, и В	$A \wedge B$	
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$	
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$		
$ eg P_1 o (P_1 \wedge P_2) \lor (eg P_1 \wedge eg P_2)$		
$\neg P_2 o P_1 \wedge \neg P_2$		

 $P_2 \rightarrow \neg P_1 \vee P_2$

$$A, A \rightarrow B \Rightarrow B$$
 $A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$$

$$\neg P_1, \neg P_1 \land \neg P_2 \Rightarrow \neg P_2 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	

 $\neg P_1 \rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$

 $\neg P_2 \to P_1 \land \neg P_2$ $P_2 \to \neg P_1 \lor P_2$

$$\neg P_1, \neg P_1 \land \neg P_2 \Rightarrow \neg P_2 \Rightarrow$$
$$\Rightarrow P_1 \land \neg P_2 \Rightarrow$$

 $A. A \rightarrow B \Rightarrow B$

 $A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$

 $\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$

 $\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$

В первой комнате принцесса	P_1	
В первой комнате тигр	$\neg P_1$	
Во второй комнате принцесса	P_2	
Во второй комнате тигр	$\neg P_2$	
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$	
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$	
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$	
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$		

 $\neg P_1 \rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$

 $\neg P_2 \to P_1 \land \neg P_2$ $P_2 \to \neg P_1 \lor P_2$

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$P_1 \Rightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2) \vee (\neg P_2 \wedge \neg P_2 \wedge \neg P_2) \vee (\neg P_2 \wedge \neg P_2 \wedge \neg P_2) \vee (\neg P_2 \wedge \neg P_2 \wedge \neg P_2 \wedge \neg P_2) \vee (\neg P_2 \wedge \neg P_2 \wedge \neg P_2 \wedge \neg P_2) \vee (\neg P_2 \wedge \neg P_2 \wedge \neg P_2 \wedge \neg P_2 \wedge \neg P_2) \vee (\neg P_2 \wedge \neg P_2 \wedge \neg P_2 \wedge \neg P_2 \wedge \neg P_2) \vee$$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$
$$\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$$

$$\neg P_1, \neg P_1 \land \neg P_2 \Rightarrow \neg P_2 \Rightarrow$$

$$\Rightarrow P_1 \land \neg P_2 \Rightarrow P_1 \Rightarrow$$

В первой комнате принцесса	P_1	
В первой комнате тигр	$\neg P_1$	
Во второй комнате принцесса	P_2	
Во второй комнате тигр	$\neg P_2$	
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$	
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$	
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$	
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$		

 $\neg P_1 \rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$

 $\neg P_2 \to P_1 \land \neg P_2$ $P_2 \to \neg P_1 \lor P_2$

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$$

 $\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$

 $\neg P_1, \neg P_1 \land \neg P_2 \Rightarrow \neg P_2 \Rightarrow$

 $\Rightarrow P_1 \land \neg P_2 \Rightarrow P_1 \Rightarrow \times$

З первой комнате принцесса	P_1	
3 первой комнате тигр	$\neg P_1$	
Зо второй комнате принцесса	P_2	
Зо второй комнате тигр	$\neg P_2$	
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$	
Зерно и <i>А</i> , и <i>В</i>	$A \wedge B$	
Зерно A , или B , или оба	$A \lor B$	
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$		
$ eg P_1 o (P_1 \wedge P_2) \lor (eg P_1 \wedge eg P_2)$		
$\neg P_2 \rightarrow P_1 \wedge \neg P_2$		
$P_2 ightarrow eg P_1 ee P_2$		

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

В первой комнате принцесса	P_1	
В первой комнате тигр	$\neg P_1$	
Во второй комнате принцесса	P_2	
Во второй комнате тигр	$\neg P_2$	
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$	
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$	
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$	
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$		
$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$		
$\neg P_2 \rightarrow P_1 \wedge \neg P_2$		
$P_2 ightarrow eg P_1 ee P_2$		

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

$$P_1 \Rightarrow$$

З первой комнате принцесса	P_1	
3 первой комнате тигр	$\neg P_1$	
Зо второй комнате принцесса	P_2	
Зо второй комнате тигр	$\neg P_2$	
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$	
Зерно и <i>А</i> , и <i>В</i>	$A \wedge B$	
Зерно <i>А</i> , или <i>В</i> , или оба	$A \lor B$	
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$		
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$		
$ eg P_2 o P_1 \wedge eg P_2$		
$P_2 ightarrow \neg P_1 \lor P_2$		

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

 $P_1 \Rightarrow (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \Rightarrow$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow$
Верно и <i>А</i> , и <i>В</i>	$A \wedge A$

В

Верно
$$A$$
, или B , или оба $A \lor P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$ $\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$

$$P_1
ightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$
 $\neg P_1
ightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$
 $\neg P_2
ightarrow P_1 \wedge \neg P_2$
 $P_2
ightarrow \neg P_1 \vee P_2$

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

 $\neg P_1 \Rightarrow \times$

$$P_1 \Rightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2) \Rightarrow$$

$$\Rightarrow P_1 \land \neg P_2 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$

Верно
$$A$$
, или B , или оба $A \lor P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$
$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_2 \to P_1 \land \neg P_2$$

$$P_2 \rightarrow P_1 \land \neg P_2$$

$$P_2 \rightarrow \neg P_1 \lor P_2$$

 $A. A \rightarrow B \Rightarrow B$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

$$\Rightarrow P_1 \land \neg P_2 \Rightarrow \neg P_2 \Rightarrow$$

$$P_2 \Rightarrow \neg P_2 =$$

 $P_1 \Rightarrow (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \Rightarrow$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
	_ 、

Верно и
$$A$$
, и B $A \wedge E$ Верно A , или B , или оба $A \vee E$ $P_1 \rightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$ $\neg P_1 \rightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$ $\neg P_2 \rightarrow P_1 \wedge \neg P_2$ $P_2 \rightarrow \neg P_1 \vee P_2$

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

$$\Rightarrow P_1 \land \neg P_2 \Rightarrow \neg P_2 \Rightarrow P_1 \land \neg P_2$$

 $P_1 \Rightarrow (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \Rightarrow$

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$

$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$
$$\neg P_2 \to P_1 \land \neg P_2$$

 $P_2 \rightarrow \neg P_1 \vee P_2$

$$1 \wedge \neg P_2$$

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$

$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$
$$\neg P_2 \to P_1 \land \neg P_2$$
$$P_2 \to \neg P_1 \lor P_2$$

$$P_1$$
 0 0 1 1 P_2 0 1 0 1

$$P_2$$
 0 1 0 1

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$
$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_2 \to P_1 \land \neg P_2$$

$$P_2 \to \neg P_1 \lor P_2$$

$$P_1$$
 0 0 1 1

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$
$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_2 \to P_1 \land \neg P_2$$

$$P_2 \to \neg P_1 \lor P_2$$

$$P_1
ightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$
 $eg P_1
ightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$

$$P_2 \rightarrow \neg P_1 \lor P_2$$

 $\neg P_2 \rightarrow P_1 \land \neg P_2$

 $P_1 \wedge P_2 = 0 \quad 0 \quad 0 \quad 1$

$$P_1
ightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$
 $\neg P_1
ightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$
 $\neg P_2
ightarrow P_1 \wedge \neg P_2$

 $P_2 \rightarrow \neg P_1 \vee P_2$

 $P_1 \wedge P_2 = 0 \quad 0 \quad 0 \quad 1$ $P_1 \vee P_2 = 0 \quad 1 \quad 1 \quad 1$

$$P_1
ightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$
 $\neg P_1
ightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$
 $\neg P_2
ightarrow P_1 \wedge \neg P_2$
 $P_2
ightarrow \neg P_1 \vee P_2$

 $P_1 \to P_2 \quad 1 \quad 1 \quad 0 \quad 1$

$$\begin{array}{c} P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \\ \neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2) \\ \neg P_2 \to P_1 \land \neg P_2 \\ P_2 \to \neg P_1 \lor P_2 \\ \hline P_1 & 0 & 0 & 1 & 1 \\ \hline P_2 & 0 & 1 & 0 & 1 \\ \hline \neg P_1 & 1 & 1 & 0 & 0 \\ \neg P_2 & 1 & 0 & 1 & 0 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land \neg P_2 & 1 & 1 & 1 & 0 \\ \hline P_1 \land \neg P_2 & 1 & 1 & 1 & 0 \\ \hline P_1 \land \neg P_2 & 1 & 0 & 1 & 0 \\ \hline P_2 & 0 & 1 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 1 & 1 & 1 \\ \hline P_1 \land P_2 & 0 & 1 & 1 & 1 \\ \hline P_1 \to P_2 & 1 & 1 & 0 & 1 \\ \hline \end{array}$$

$$\begin{array}{c} P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \\ \neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2) \\ \hline \neg P_2 \to P_1 \land \neg P_2 \\ \hline P_2 \to \neg P_1 \lor P_2 \\ \hline P_2 \to \neg P_1 \lor P_2 \\ \hline \hline P_1 & 0 & 0 & 1 & 1 \\ \hline P_2 & 0 & 1 & 0 & 1 \\ \hline \hline \neg P_1 & 1 & 1 & 0 & 0 \\ \neg P_2 & 1 & 0 & 1 & 0 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 1 & 1 & 1 \\ \hline \end{array}$$

 $P_1 \to P_2 \quad 1 \quad 1 \quad 0 \quad 1$

$$\begin{array}{c} P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \\ \neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2) \\ \neg P_2 \to P_1 \land \neg P_2 \\ P_2 \to \neg P_1 \lor P_2 \\ \hline P_1 & 0 & 0 & 1 & 1 \\ \hline P_2 & 0 & 1 & 0 & 1 \\ \hline \neg P_1 & 1 & 1 & 0 & 0 \\ \neg P_2 & 1 & 0 & 1 & 0 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 & 0 & 0 & 1 & 1 \\ \hline P_2 & 0 & 1 & 0 & 1 \\ \hline \hline P_1 & 1 & 1 & 0 & 0 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 1 & 1 & 1 \\ \hline P_1 \to P_2 & 1 & 1 & 0 & 1 \\ \hline \end{array}$$

$$\begin{array}{c} P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \\ \neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2) \\ \hline \neg P_2 \to P_1 \land \neg P_2 \\ \hline P_2 \to \neg P_1 \lor P_2 \\ \hline P_2 \to \neg P_1 \lor P_2 \\ \hline \hline P_1 & 0 & 0 & 1 & 1 \\ \hline P_2 & 0 & 1 & 0 & 1 \\ \hline \hline \neg P_1 & 1 & 1 & 0 & 0 \\ \hline \neg P_2 & 1 & 0 & 1 & 0 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 1 & 1 & 1 \\ \hline P_1 \land P_2 & 0 & 1 & 1 & 1 \\ \hline P_1 \to P_2 & 1 & 1 & 0 & 1 \\ \hline \end{array}$$

$$\begin{array}{c} P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \\ \neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2) \\ \hline \neg P_2 \to P_1 \land \neg P_2 \\ \hline P_2 \to \neg P_1 \lor P_2 \\ \hline \\ P_2 \to \neg P_1 \lor P_2 \\ \hline \\ \hline P_1 & 0 & 0 & 1 & 1 \\ \hline P_2 & 0 & 1 & 0 & 1 \\ \hline \hline \neg P_1 & 1 & 1 & 0 & 0 \\ \hline \neg P_2 & 1 & 0 & 1 & 0 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \to P_2 & 1 & 1 & 1 & 0 \\ \hline \hline P_1 \to P_2 & 0 & 1 & 1 & 1 \\ \hline P_2 \to \neg P_1 \lor P_2 & 0 & 0 & 1 & 1 \\ \hline \hline P_1 \to P_2 & 1 & 1 & 0 & 1 \\ \hline \hline P_1 \to P_2 & 1 & 1 & 0 & 1 \\ \hline \hline P_1 \to P_2 & 0 & 1 & 1 & 1 \\ \hline P_2 \to P_1 \land \neg P_2 & 0 & 1 & 1 & 1 \\ \hline \hline P_1 \to P_2 \to P_1 \land \neg P_2 & 0 & 1 & 1 & 1 \\ \hline \hline P_1 \to P_2 \to P_1 \land \neg P_2 & 0 & 1 & 1 & 1 \\ \hline \hline P_2 \to P_1 \land \neg P_2 & 0 & 1 & 1 & 1 \\$$

$$\begin{array}{c} P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \\ \neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2) \\ \hline \neg P_2 \to P_1 \land \neg P_2 \\ \hline P_2 \to \neg P_1 \lor P_2 \\ \hline \\ P_1 & 0 & 0 & 1 & 1 \\ \hline P_2 \to 0 & 1 & 0 & 1 \\ \hline \hline \neg P_1 & 1 & 1 & 0 & 0 \\ \hline \neg P_2 & 1 & 0 & 1 & 0 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 & P_2 & 0 & 1 & 1 & 0 \\ \hline P_2 & 0 & 1 & 1 & 0 \\ \hline \hline P_1 & P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 1 & 1 & 1 \\ \hline P_1 \land P_2 & 0 & 1 & 1 & 1 \\ \hline P_1 \to P_2 & 1 & 1 & 0 & 1 \\ \hline \hline P_1 \to P_2 \to P_1 \land \neg P_2 & 0 & 1 & 1 & 1 \\ \hline P_2 \to \neg P_1 \lor P$$

$$\begin{array}{c} P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \\ \neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2) \\ \hline \neg P_2 \to P_1 \land \neg P_2 \\ \hline P_2 \to \neg P_1 \lor P_2 \\ \hline \\ P_1 & 0 & 0 & 1 & 1 \\ \hline P_2 & 0 & 1 & 0 & 1 \\ \hline \hline \neg P_1 & 1 & 1 & 0 & 0 \\ \hline \neg P_2 & 1 & 0 & 1 & 0 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 & 0 & 0 & 1 & 1 \\ \hline P_2 & 0 & 1 & 0 & 1 \\ \hline \hline \neg P_1 & 1 & 1 & 0 & 0 \\ \hline \neg P_2 & 1 & 0 & 1 & 0 \\ \hline P_1 \land P_2 & 0 & 0 & 0 & 1 \\ \hline P_1 \to P_2 & 1 & 1 & 1 & 0 \\ \hline P_1 \to P_2 & 1 & 1 & 0 & 1 \\ \hline \hline P_1 \to P_2 & 0 & 1 & 1 & 1 \\ \hline P_2 \to \neg P_1 \lor P_2 & 0 & 1 & 1 & 1 \\ \hline P_2 \to \neg P_1 \lor P_2 & 0 & 1 & 1 & 1 \\ \hline P_2 \to \neg P_1 \lor P_2 & 0 & 1 & 1 & 1 \\ \hline P_2 \to \neg P_1 \lor P_2 & 0 & 1 & 1 & 1 \\ \hline P_2 \to \neg P_1 \lor P_2 & 0 & 1 & 1 & 1 \\ \hline P_2 \to \neg P_1 \lor P_2 & 1 & 1 & 1 & 1 \\ \hline \end{array}$$