Projet Analyse Numérique GM3

Attracteur de Lorentz

T. Schmoderer*

Nous considérerons le système dynamique suivant :

$$\begin{cases} \dot{x}(t) &= \sigma\left(y(t) - x(t)\right) \\ \dot{y}(t) &= \rho x(t) - y(t) - x(t)z(t) \\ \dot{z}(t) &= x(t)y(t) - \beta z(t) \end{cases}$$

où σ , ρ , et β sont trois paramètres réels strictement positifs fixés à $\sigma=10$, $\rho=28$ et $\beta=8/3$. Ce système considéré par Lorentz en 1963 est un modèle très simplifié de l'atmosphère, il permit à son créateur de mettre ne évidence le caractère chaotique des phénomènes météorologique. L'**objectif** du projet est d'implémenter une méthode numérique de calcul des trajectoires de ce système, et d'utiliser un outils de visualisation scientifique pour observer le comportement des trajectoires.

Travail attendu.

- 1. Implémenter une méthode d'intégration (RK1, RK2, ou RK4) du système de Lorentz (en C, C++, ou Fortran).
- 2. Organiser la sortie des trajectoires calculées dans un fichier.
- 3. Implémenter un code Python de visualisation des trajectoires générées.

Organisation du projet. Pour mener le projet à son terme, nous organiserons une rencontre au début pour clarifier et définir les objectifs du projet. Si besoin, nous pourrons organiser une seconde rencontre pour débloquer d'éventuels écueils.

Critères d'évaluation. Le travail sera évalué sur la base des rencontres effectuées pendant la réalisation du projet, sur un court rapport contenant les éléments suivants :

- 1. Présentation générale : présentation claire et concise du problème, justification des méthodes employées.
- 2. Programmation : Clarté et lisibilité du code, absence de calculs inutiles, rapidité d'exécution.
- 3. Résultats numériques : Qualité des figures et leur analyse.
- 4. Conclusion : Mise en perspective du projet et votre formation en analyse numérique.

^{*}timothee.schmoderer@insa-rouen.fr