IFT2105 - Introduction à l'informatique théorique Brins de complexité du calcul (Sipser chap. 7)

Pierre McKenzie et Alizée Gagnon (pour Geňa Hahn)

DIRO, Université de Montréal

Avril 2018

Alizée jeudi 29 mars

Définition (Sipser 7.1)

Le temps de calcul de M est une fonction

$$f: \mathbb{N} \to \mathbb{N}$$

 $n \mapsto \max_{|w|=n} [temps de calcul de M sur w].$

Définition (Sipser 7.7)

$$\mathsf{TIME}(t(n)) = \{ \ L \mid \ \textit{une mT déterministe décide L en temps } O(t(n)) \}.$$

Définition (Sipser 7.12)

La classe de complexité P est

$$\mathsf{P} \ = \ \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k).$$

Alizée jeudi 29 mars : suite

Exemple

```
Le langage PATH, soit \Big\{\;\langle G,s,t\rangle\;|\; \text{un chemin de $s$ à $t$ existe dans le graphe} \\ \qquad \qquad \text{orient\'e $G$ encod\'e sous forme de matrice d'adjacence}\;\Big\} \\ \in \mathsf{P}.
```

Précisément,

$$\langle \textit{G}, \textit{s}, \textit{t} \rangle = \underbrace{001010001 \cdots 0010111010101010101}_{\text{matrice d'adjacence de }\textit{G}} \# \underbrace{0110100}_{\text{binaire de }\textit{s}} \# \underbrace{11000101}_{\text{binaire de }\textit{t}}$$

et PATH est le langage des $\langle G, s, t \rangle \in \{0, 1, \#\}^*$ satisfaisant la condition.

Alizée jeudi 29 mars : fin

Exemple

```
Le langage 3-COL, soit \Big\{ \text{ matrice d'adjacence } \langle G \rangle \mid G \text{ est 3-coloriable } \Big\} \in \mathsf{TIME}(\simeq n \cdot 2^{\sqrt{n}}).
```

Exemple

```
Le langage SAT, soit \left\{ \begin{array}{l} \langle \varphi \rangle \mid \varphi \text{ est une expression booléenne satisfaisable } \right\} \\ \in \mathsf{TIME}(\simeq \mathsf{poly}(n) \cdot 2^n). \end{array}
```

Qu'ont de spécial les polynômes?

• P est robuste : une bande, k bandes, k têtes, et plusieurs autres modèles engendrent la même classe P.

Qu'ont de spécial les polynômes?

 P est robuste : une bande, k bandes, k têtes, et plusieurs autres modèles engendrent la même classe P.

• Si p(n) et q(n) sont des polynômes alors p(n) + q(n), p(n)q(n) et p(q(n)) sont aussi des polynômes.

Qu'ont de spécial les polynômes?

• P est robuste : une bande, k bandes, k têtes, et plusieurs autres modèles engendrent la même classe P.

• Si p(n) et q(n) sont des polynômes alors p(n) + q(n), p(n)q(n) et p(q(n)) sont aussi des polynômes.

 P correspond aux langages décidables en pratique en un temps réalisable.

t(n)	taille 25	taille 50	taille 100	taille 200
n	$0,025~\mu s$	$0,05~\mu s$	$0,1~\mu$ s	$0, 2 \mu s$
n^2	I			

t(n)	taille 25	taille 50	taille 100	taille 200
n	$0,025~\mu { m s}$	$0,05~\mu \mathrm{s}$	$0,1~\mu$ s	$0, 2 \mu s$
n^2	$0,625~\mu { m s}$	$2,5~\mu \mathrm{s}$	10 μ s	40 μ s
n^5				

t(n)	taille 25	taille 50	taille 100	taille 200
n	$0,025~\mu { m s}$	$0,05~\mu \mathrm{s}$	$0,1~\mu$ s	$0,2~\mu s$
0				
n^2	$0,625~\mu { m s}$	$2,5~\mu$ s	$10~\mu$ s	40 μ s
5	0.5	0.0	10	- .
n°	9,5 <i>m</i> s	0, 3 sec	10 sec	5 min
$2^{n/3}$				
Z '				

t(n)	taille 25	taille 50	taille 100	taille 200
	$0,025~\mu s$		$0,1~\mu$ s	$0,2~\mu$ s
n^2	$0,625~\mu { m s}$	$2,5~\mu \mathrm{s}$	10 μ s	40 μ s
n ⁵	9,5 <i>m</i> s	$0,3\mathrm{sec}$	10 sec	5 min
$2^{n/3}$	$0,3~\mu$ s			

t(n)	taille 25	taille 50	taille 100	taille 200
n	$0,025~\mu { m s}$	$0,05~\mu$ s	$0,1~\mu$ s	$0,2~\mu$ s
n^2	$0,625~\mu \mathrm{s}$	$2,5~\mu \mathrm{s}$	10 μ s	40 μ s
n ⁵	9,5 <i>m</i> s	0,3 sec	10 sec	5 min
$2^{n/3}$	0,025 μ s 0,625 μ s 9,5 m s 0,3 μ s	0,1 <i>m</i> s		

t(n)	taille 25	taille 50	taille 100	taille 200
n	$0,025~\mu { m s}$	$0,05~\mu$ s	$0,1~\mu$ s	$0,2~\mu$ s
n^2	$0,625~\mu { m s}$	$2,5~\mu \mathrm{s}$	10 μ s	40 μ s
n ⁵	9,5 <i>m</i> s	0,3 sec	10 sec	5 min
$2^{n/3}$	$0,3~\mu$ s	0,1 <i>m</i> s	10 sec	

t(n)	taille 25	taille 50	taille 100	taille 200
n	$0,025~\mu \mathrm{s}$	$0,05~\mu$ s	$0,1~\mu$ s	$0,2~\mu$ s
n ²	$0,625~\mu$ s	$2,5~\mu \mathrm{s}$	10 μ s	40 μ s
n ⁵	9,5 <i>m</i> s	0,3 sec	10 sec	5 min
$2^{n/3}$	$0,3~\mu$ s	0,1 <i>m</i> s	10 sec	37

t(n)	taille 25	taille 50	taille 100	taille 200
	$0,025~\mu { m s}$		$0,1~\mu$ s	$0,2~\mu$ s
n ²	$0,625~\mu { m s}$	$2,5~\mu \mathrm{s}$	10 μ s	40 μ s
n ⁵	9,5 <i>m</i> s	$0,3\mathrm{sec}$	10 sec	5 min
$2^{n/3}$	$0,3~\mu$ s	0,1 <i>m</i> s	10 sec	37 siècles
2 ⁿ	$33~\mu s$	13		

t(n)	taille 25	taille 50	taille 100	taille 200
n	$0,025~\mu { m s}$		$0,1~\mu$ s	$0,2~\mu$ s
n^2	$0,625~\mu { m s}$	$2,5~\mu \mathrm{s}$	10 μ s	40 μ s
n ⁵	9,5 <i>m</i> s	0,3 sec	10 sec	5 min
$2^{n/3}$	$0,3~\mu$ s	0,1 <i>m</i> s	10 sec	37 siècles
2 ⁿ	$33~\mu s$	13 jrs	10 ¹¹ siècles	

t(n)	taille 25	taille 50	taille 100	taille 200
n	$0,025~\mu { m s}$	$0,05~\mu \mathrm{s}$	$0,1~\mu$ s	$0,2~\mu$ s
n ²	$0,625~\mu { m s}$	$2,5~\mu \mathrm{s}$	10 μ s	40 μ s
n ⁵	9,5 <i>m</i> s	0,3 sec	10 sec	5 min
$2^{n/3}$	$0,3~\mu$ s	0,1 <i>m</i> s	10 sec	37 siècles
2 ⁿ	$33~\mu s$	13 jrs	10 ¹¹ siècles	10 ⁴¹ siècles

La morale

L'ordinateur est démuni, voire peu utile, face à un problème dont les seuls algorithmes connus nécessitent un temps exponentiel!

Rechercher le temps polynomial!

NB : polynomial en fonction de quoi?

Toujours en fonction de la longueur de l'entrée, que l'on appelle habituellement *n*.

NB : polynomial en fonction de quoi?

Toujours en fonction de la longueur de l'entrée, que l'on appelle habituellement *n*.

Ex : $a \ge 0$ entier : longueur de $\langle a \rangle$ est $n \simeq \log_2 a$.

Ainsi un temps de calcul de l'ordre de a sur entrée un nombre naturel a est exponentiel car $n = |\langle a \rangle| \simeq \log_2 a$ et ainsi $a \simeq 2^n$.

Dans P ou pas?

Est-ce que 3-COL
$$\in$$
 TIME $(n \cdot 2^{\sqrt{n}})$ implique 3-COL \notin P?

Est-ce que $SAT \in P$?

Un outil inspiré de l'indécidabilité

Rappel : La réduction " \leq " nous permettait de comparer la "difficulté" de langages comme L_d , $A_{\rm TM}$, $VIDE_{\rm GHC}$, etc.

On avait : $A \leq B$ et B décidable $\Longrightarrow A$ décidable.

On aimerait : $A \leq B$ et $B \in P \Longrightarrow A \in P$.

Comment définir "≤"?

En limitant le temps pris par Dji Dieng :

Définition (Sipser 7.29)

Le langage A se réduit polynomialement au langage B, noté $A \leq_m^p B$ si

$$A \leq B$$

à l'aide d'une fonction

$$f: \Sigma^* \to \Sigma^*$$

calculable en temps polynomial.

Théorème (Sipser 7.31, qu'on pourrait appeler "du Klingon")

Si $A \leq_m^p B$ et $B \in P$ alors $A \in P$.

NB : Ici A \leq_m^p B essentiel car A \leq B ne suffirait pas.

Justification du théorème : au tableau.

Exemple de réduction polynomiale

On ne sait pas si 3-COL est dans P. On peut quand même démontrer :

Proposition

$$3$$
-COL \leq_m^p 4-COL.

Au tableau.

Usage typique de la réductibilité polynomiale

Proposition

Si 4-COL est dans P alors 3-COL est dans P.

Preuve:

Usage typique de la réductibilité polynomiale

Proposition

Si 4-COL est dans P alors 3-COL est dans P.

Preuve:

Appliquer le théorème du Klingon à la réduction 3-COL \leq_m^p 4-COL.

Incidemment, est-ce que 4-COL \leq_m^p 3-COL?

En route vers NP

Définition (Sipser 7.18)

Un vérificateur polynomial pour un langage A est une machine de Turing déterministe $\mathcal V$ telle que

il existe un polynôme p ayant la propriété que pour tout $w \in \Sigma^*$:

 \bullet si $w \in A$ alors

il existe c tel que $\langle w, c \rangle \in L(\mathcal{V})$

En route vers NP

Définition (Sipser 7.18)

Un vérificateur polynomial pour un langage A est une machine de Turing déterministe $\mathcal V$ telle que

il existe un polynôme p ayant la propriété que pour tout $w \in \Sigma^*$:

 \bullet si $w \in A$ alors

il existe
$$c$$
 tel que $\langle w, c \rangle \in L(\mathcal{V})$

2 si $w \notin A$ alors

pour tout
$$c$$
, $\langle w, c \rangle \notin L(\mathcal{V})$

En route vers NP

Définition (Sipser 7.18)

Un vérificateur polynomial pour un langage A est une machine de Turing déterministe $\mathcal V$ telle que

il existe un polynôme p ayant la propriété que pour tout $w \in \Sigma^*$:

 \bullet si $w \in A$ alors

il existe c tel que $\langle w, c \rangle \in L(\mathcal{V})$

2 si $w \notin A$ alors

pour tout
$$c$$
, $\langle w, c \rangle \notin L(\mathcal{V})$

1 Ie temps de calcul de \mathcal{V} sur $\langle w, c \rangle$ est au plus p(|w|).

Note. Un c tel que $\langle w, c \rangle \in L(\mathcal{V})$ est appelé certificat ou preuve ou témoin de l'appartenance de w au langage A.

Remarques:

• Pas nécessaire de calculer le certificat, il suffit que celui-ci existe!

Remarques:

- Pas nécessaire de calculer le certificat, il suffit que celui-ci existe!
- Le temps polynomial du vérificateur est en fonction de $|\langle w \rangle|$ et non pas de $|\langle w, c \rangle|$.

Définition (Sipser 7.19)

La classe de complexité NP est

{ langage L : L possède un vérificateur polynomial }

Exemple

Théorème

Le langage 4-COL est dans NP.

Exemple

Théorème

Le langage 4-COL est dans NP.

Au tableau.

Alizée lundi 9 avril

Définition

Le langage B est NP-ardu ("ardu" = "difficile") si

• pour tout langage $A \in NP$, $A \leq_m^p B$.

Définition

Le langage B est NP-complet si en plus d'être NP-ardu,

B ∈ NP.

Faits:

- Si B est NP-ardu et B \in P, alors P = NP
 - ▶ a fortiori, si B est NP-complet et B ∈ P, alors P = NP.
- Si A \leq_m^p B et B \in NP alors A \in NP.

Alizée lundi 9 avril : fin

• La "magie" est que si l'on résout un seul problème NP-complet (ou NP-ardu) efficacement (en temps polynomial), alors on aura résolu efficacement tous les problèmes de NP.

Le langage

$$\{\ \langle M,w,\underbrace{1^n}_{n\text{ en unaire}}\ \rangle : \text{ la MT non déterministe }M\text{ accepte }w\text{ et}$$
 il existe une branche de calcul qui mène à

l'acceptation en au plus *n* transitions}

est NP-ardu. Est-il NP-complet? (Cf. votre devoir)

P = NP?

Intuitivement parlant :

- P \approx l'ensemble des langages décidables efficacement.
- NP ≈ l'ensemble des langages dont un témoin de l'appartenance est vérifiable efficacement.

P = NP?

Intuitivement parlant :

- P \approx l'ensemble des langages décidables efficacement.
- NP ≈ l'ensemble des langages dont un témoin de l'appartenance est vérifiable efficacement.

"P = NP?" est l'un sept "problèmes mathématiques du millénaire"; passez réclamer votre prix de $1\,000\,000\,\$$ US si vous résolvez cette question : Millenium prizes

Qu'apprend-on d'utile si l'on apprend que $A \in NP$?

Qu'apprend-on d'utile si l'on apprend que $A \in NP$?

Théorème

$$NP \subseteq EXPTIME$$

οù

$$\mathsf{EXPTIME} = \bigcup_{k>0} \mathsf{TIME}(2^{n^k}).$$

Au tableau.

Et qu'apprend-on d'utile si l'on apprend que A est NP-ardu?

Et qu'apprend-on d'utile si l'on apprend que A est NP-ardu?

Que tous les langages de NP se réduisent à A, donc, intuitivement, que A est aussi difficile à décider que les pires langages de NP.

Pourquoi NP s'appelle NP

On peut définir une notion de temps de calcul d'une MT non déterministe (comme dans Sipser 7.9).

La classe NP fut d'abord définie en ces termes et le nom est resté :

NP = Nondeterministic Polynomial Time.

Intuition à retenir

Si B est NP-complet alors

- B n'est pas trop difficile (il est dans NP, donc dans EXPTIME, alors que ça aurait pu être pire, par exemple doublement exponentiel),
- **B** est au moins aussi difficile que n'importe quel langage de NP (tout autre langage de NP se réduit à lui).

Théorème de Cook et Levin

Belle théorie, mais existe-t-il des langages NP-complets?

Théorème de Cook et Levin

Belle théorie, mais existe-t-il des langages NP-complets?

Possiblement (selon votre devoir) le langage

$$\{\langle M, w, \underbrace{1^n}_{n \text{ en unaire}} \rangle : \text{ la MT non déterministe } M \text{ accepte } w \text{ et}$$

$$\text{il existe une branche de calcul qui mène à}$$

$$\text{l'acceptation en au plus } n \text{ transitions.} \}$$

Mais existe-t-il des langages NP-complets naturels?

Théorème (Sipser 7.37, théorème de Cook-Levin)

Le langage SAT est NP-complet.

François lundi 9 avril

- SATFNC
- 3-SAT
- HAMPATH= $\{ \langle G, s, t \rangle \mid \text{ un chemin existe de } s \text{ à } t \text{ dans le graphe orienté } G \text{ rencontrant une et une seule fois chaque sommet } \}.$
- CLIQUE = $\{ \langle G, k \rangle \mid G \text{ contient un sous-graphe complet de taille } k \}$.
- SUBSET-SUM = $\left\{ \langle \{x_1, \cdots, x_m\}, t \rangle \mid \text{ les } x_i \text{ et } t \text{ sont des entiers, et } \exists \{y_1, \cdots, y_l\} \subseteq \{x_1, \cdots, x_m\} \text{ tel que } \sum_{i=1}^l y_i = t \right\}$
- STABLE = $\{ \langle G, k \rangle \mid \text{ le graphe non orienté } G \text{ possède au moins } k \text{ sommets qu'aucune arête ne relie entre eux } \}$
- COUVERTURE = $\{ \langle G, s \rangle \mid \text{ il existe un ensemble de } s \text{ sommets qui "couvre" le graphe non orienté } G \}.$

Preuve de Cook-Levin

Nous savons que $SAT \in NP$.

Reste à montrer : SAT est NP-ardu.

Soit donc A un langage quelconque de la classe NP.

À montrer : $A \leq_m^p SAT$

(20 prochains transparents)

Supposons momentanément que $A \in P$, accepté par

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$$

en temps p(n).

Assertion

On peut construire, sur entrée w, une expression booléenne ϕ dont la satisfaisabilité (le cas échéant) exprime

que le tableau des configurations successives de la machine M sur entrée w mène M à son état acceptant.

Comment faire cela?

	1	2	3	4		j	• • •		p(n) + 3
1	#	q 0	W ₁	W ₂	 Ш	П	 	Ш	#

	1	2	3	4		j	• • •	• • •	p(n) + 3
1	#	q 0	w_1	<i>W</i> ₂	 Ц	Ш	 	Ш	#
2	#	d	q_4	W ₂	 \sqcup	Ш	 	Ш	#

									p(n) + 3
1	#	q 0	w_1	<i>W</i> ₂	 Ш	Ш	 	Ш	#
2	#	d	q 4	<i>W</i> 2	 \sqcup	\sqcup	 • • •	\sqcup	#
3	#	d	С	9 67	 \sqcup	\sqcup	 	\sqcup	#

	1	2	3	4		j			p(n) + 3
1	#	q 0	w_1	<i>W</i> ₂	 Ш	Ш	 	Ш	#
2	#	d	q 4	W_2	 \sqcup	\sqcup	 		#
3	#	d	94 C	9 67	 \sqcup	\sqcup	 	\sqcup	#
4	#	d	q ₃₁	С	 Ц	Ш	 	\sqcup	#

	1	2	3	4			j				p(n) + 3
1	#	q 0	w_1	<i>W</i> 2		Ц	Ш			Ш	#
2	#	d	q 4	W_2	• • •	\sqcup	\sqcup		• • •	\sqcup	#
3	#	d	С	9 67		\sqcup	\sqcup			\sqcup	#
4	#	d	<i>q</i> ₃₁	С	• • •	Ш		• • •	• • •	\sqcup	#
:	#	:	÷	÷	:	:	:	:	÷	:	#
÷	#	С	a	• • •	Ь	b	q ₅₂	С		a	#
÷	#	С	а		b	q 8	b	d		a	#
t	#	С	a		b	f	q ₁₂	d		a	#
	#	С	a	• • •	b	f	g	q 7	• • •	a	#
:	#	÷	÷	:	÷	:	:	÷	÷	÷	#
÷	#				С	q 9	d				#
<i>p</i> (<i>n</i>)	#		• • •	• • •	q _a	С	а	• • •	• • •		#

$$\{ x_{t,j,\sigma} \mid 1 \leq t \leq p(n), 1 \leq j \leq p(n) + 3,$$

$$\sigma \in Q \cup \Gamma \cup \{\#\} \}.$$

$$\{ x_{t,j,\sigma} \mid 1 \le t \le p(n), 1 \le j \le p(n) + 3,$$

$$\sigma \in Q \cup \Gamma \cup \{\#\} \}.$$

• Signification de $x_{t,j,\sigma}$:

$$\{ x_{t,j,\sigma} \mid 1 \le t \le p(n), 1 \le j \le p(n) + 3,$$

$$\sigma \in Q \cup \Gamma \cup \{\#\} \}.$$

• Signification de $x_{t,j,\sigma}$:

une affectation satisfaisant ϕ où $x_{t,j,\sigma} = VRAI$ décrira un tableau dont la case (t,j) est σ

$$\{ x_{t,j,\sigma} \mid 1 \le t \le p(n), 1 \le j \le p(n) + 3,$$

$$\sigma \in Q \cup \Gamma \cup \{\#\} \}.$$

• Signification de $x_{t,j,\sigma}$:

une affectation satisfaisant ϕ où $x_{t,j,\sigma} = VRAI$ décrira un tableau dont la case (t,j) est σ

une affectation satisfaisant ϕ où $x_{t,j,\sigma}=\mathsf{FAUX}$ décrira un tableau dont la case (t,j) n'est pas σ

Construction:

$$\mathbf{w} \mapsto \phi = \phi_{\mathsf{case}} \wedge \phi_{\mathsf{initiale}} \wedge \phi_{\mathsf{accepte}} \wedge \phi_{\mathsf{légale}}$$

où la satisfaction de

- $oldsymbol{0}$... ϕ_{case} assure qu'à chaque case du tableau est affecté un unique σ
- ② . . . $\phi_{\rm initiale}$ assure que la ligne 1 du tableau est la configuration initiale de M sur ${\it w}$
- \bullet ... $\phi_{\rm accepte}$ assure que la dernière ligne est une configuration acceptante de M
- ... $\phi_{\text{légale}}$ assure que chaque ligne suit la précédente selon l'unique action légale de M.

 ϕ_{case} : un unique symbole par case

 ϕ_{case} : un unique symbole par case

Pour chaque $1 \le t \le p(n)$ et chaque $1 \le j \le p(n) + 3$ inclure dans ϕ_{case} :

 ϕ_{case} : un unique symbole par case

Pour chaque $1 \le t \le p(n)$ et chaque $1 \le j \le p(n) + 3$ inclure dans ϕ_{case} :

$$(x_{t,j,q_0} \lor x_{t,j,q_1} \lor \cdots \lor x_{t,j,a} \lor x_{t,j,b} \lor \cdots \lor x_{t,j,\#})$$

$$\neg [(x_{t,j,q_0} \land x_{t,j,q_1}) \lor (x_{t,j,q_0} \land x_{t,j,q_2}) \lor \vdots (x_{t,j,q_0} \land x_{t,j,a}) \lor \vdots (x_{t,j,q_0} \land x_{t,j,a}) \lor (x_{t,j,q_1} \land x_{t,j,q_2}) \lor (x_{t,j,q_1} \land x_{t,j,q_2}) \lor (x_{t,j,q_1} \land x_{t,j,q_3}) \lor (x_{t,j,q_1} \land x_{t,j,a}) \lor \vdots (x_{t,j,a} \land x_{t,j,b}) \lor \vdots$$

 $\phi_{
m initiale}$: première ligne = config initiale sur w

 ϕ_{initiale} : première ligne = config initiale sur \emph{w}

$$X_{1,1,\#} \land$$
 $X_{1,2,q_0} \land$
 $X_{1,3,\mathbf{w}_1} \land$
 $X_{1,4,\mathbf{w}_2} \land$
 \vdots
 $X_{1,n+2,\mathbf{w}_n} \land$
 $X_{1,n+3,\sqcup} \land$
 \vdots
 $X_{1,p(n)+2,\sqcup} \land$
 $X_{1,p(n)+3,\#}$

 ϕ_{accepte} : dernière ligne = config acceptante

$$\begin{array}{c} x_{p(n),2,q_a} \\ \vee \\ x_{p(n),3,q_a} \\ \vee \\ x_{p(n),4,q_a} \\ \vee \\ \vdots \\ \vee \\ x_{p(n),p(n)+2,q_a} \end{array}$$

 $\phi_{\text{légale}}$: suite légale de configurations

$$(x_{t,j-1,A} \land x_{t,j,B} \land x_{t,j+1,C} \land \land x_{t+1,i-1,\alpha} \land x_{t+1,i,\beta} \land x_{t+1,i+1,\gamma})$$

• $\mathbf{w} \mapsto \phi = \phi_{\mathsf{case}} \land \phi_{\mathsf{initiale}} \land \phi_{\mathsf{accepte}} \land \phi_{\mathsf{légale}}$ se construit en temps $\mathsf{poly}(p(n))$

• $w \in A \Rightarrow$ une suite de configs mène M sur entrée w à l'état $q_a \Rightarrow$

• $w \in A \Rightarrow$ une suite de configs mène M sur entrée w à l'état $q_a \Rightarrow$ le tableau résultant prescrit une affectation satisfaisant ϕ \Rightarrow

• $w \in A \Rightarrow$ une suite de configs mène M sur entrée w à l'état $q_a \Rightarrow$ le tableau résultant prescrit une affectation satisfaisant $\phi \Rightarrow \phi \in \mathsf{SAT}$.

• $w \in A \Rightarrow$ une suite de configs mène M sur entrée w à l'état $q_a \Rightarrow$ le tableau résultant prescrit une affectation satisfaisant $\phi \Rightarrow \phi \in SAT$.

• $\phi \in SAT \Rightarrow$

• $w \in A \Rightarrow$ une suite de configs mène M sur entrée w à l'état $q_a \Rightarrow$ le tableau résultant prescrit une affectation satisfaisant ϕ $\Rightarrow \phi \in SAT$.

• $\phi \in \mathsf{SAT} \Rightarrow \phi$ décrit un tableau \Rightarrow

• $w \in A \Rightarrow$ une suite de configs mène M sur entrée w à l'état $q_a \Rightarrow$ le tableau résultant prescrit une affectation satisfaisant $\phi \Rightarrow \phi \in SAT$.

• $\phi \in \mathsf{SAT} \Rightarrow \phi$ décrit un tableau \Rightarrow ce tableau décrit un calcul acceptant à partir de la config initiale de M sur $w \Rightarrow$

• $w \in A \Rightarrow$ une suite de configs mène M sur entrée w à l'état $q_a \Rightarrow$ le tableau résultant prescrit une affectation satisfaisant $\phi \Rightarrow \phi \in SAT$.

• $\phi \in \mathsf{SAT} \Rightarrow \phi$ décrit un tableau \Rightarrow ce tableau décrit un calcul acceptant à partir de la config initiale de M sur $\mathbf{w} \Rightarrow \mathbf{w} \in \mathsf{A}$.

• $w \in A \Rightarrow$ une suite de configs mène M sur entrée w à l'état $q_a \Rightarrow$ le tableau résultant prescrit une affectation satisfaisant $\phi \Rightarrow \phi \in SAT$.

• $\phi \in \mathsf{SAT} \Rightarrow \phi$ décrit un tableau \Rightarrow ce tableau décrit un calcul acceptant à partir de la config initiale de M sur $w \Rightarrow w \in \mathsf{A}$.

Fin preuve de l'assertion.

Faisons le point. Nous avons produit ϕ dont la satisfaisabilité exprime que l'unique suite de configurations d'un M déterministe partant de

se termine par une configuration acceptante.

Que faire maintenant pour gérer la situation générale d'un A dans NP?

M =le vérificateur \mathcal{V} de A

p(n) = le temps d'exécution (polynomial) de V.

Désormais :

La satisfaction de ϕ doit impliquer l'initialisation de la première ligne du tableau à

où $c_1c_2\dots c_m$ est n'importe quelle suite de symboles susceptible de constituer un certificat

(note : m = p(n) - n sans perte de généralité).

 ϕ_{initiale} : ligne $1=\mathsf{config}$ initiale sur ${\color{red} w}$

devient donc

$$\phi_{\text{initiale}}: \text{ligne } 1 = \text{config initiale sur } {\color{red} \textit{w}} \$ c_1 \dots c_m$$

comme suit:

ϕ_{initiale} auparavant :

$$X_{1,1,\#} \land X_{1,2,q_0} \land X_{1,3,w_1} \land X_{1,4,w_2} \land \vdots X_{1,n+2,w_n} \land X_{1,n+3,\sqcup} \land X_{1,n+3,\sqcup} \land X_{1,p(n)+2,\sqcup} \land X_{1,p(n)+3,\#}$$

ϕ_{initiale} maintenant :

$$X_{1,1,\#} \wedge X_{1,2,q_0} \wedge X_{1,3,w_1} \wedge X_{1,4,w_2} \wedge X_{1,4,w_2} \wedge X_{1,n+2,w_n} \wedge$$

$$\begin{array}{c} x_{1,n+3,\$} & \wedge \\ \left(\bigvee_{\sigma \in \Sigma} x_{1,n+4,\sigma}\right) & \wedge \\ \left(\bigvee_{\sigma \in \Sigma} x_{1,n+5,\sigma}\right) & \wedge \\ \vdots \\ \left(\bigvee_{\sigma \in \Sigma} x_{1,p(n)+3,\sigma}\right) & \wedge \\ x_{1,n+p(n)+4,\#} \end{array}$$

où Σ est l'alphabet de \mathcal{V} .

La nouvelle $\phi_{\rm initiale}$ force donc le remplacement des \sqcup de la ligne 1 par des symboles de Σ .

Le reste est inchangé :

$$\mathbf{w} \mapsto \phi = \phi_{\mathsf{case}} \wedge \phi_{\mathsf{initiale}} \wedge \phi_{\mathsf{accepte}} \wedge \phi_{\mathsf{légale}}.$$

demeure calculable en temps polynomial.

• $w \in A \Rightarrow$

- $\mathbf{w} \in \mathsf{A} \Rightarrow$
 - ▶ pour un certain $c_1c_2...c_m$, V accepte wc_1c_2...c_m$ \Rightarrow

- $\mathbf{w} \in \mathsf{A} \Rightarrow$
 - ▶ pour un certain $c_1c_2...c_m$, V accepte wc_1c_2...c_m$ \Rightarrow
 - ▶ un tableau ayant $\#w\$c_1c_2...c_m\#$ à la ligne 1 dépeint le calcul de \mathcal{V} sur $w\$c_1c_2...c_m\Rightarrow$

- $\mathbf{w} \in \mathsf{A} \Rightarrow$
 - ▶ pour un certain $c_1c_2...c_m$, V accepte wc_1c_2...c_m$ \Rightarrow
 - ▶ un tableau ayant $\#w\$c_1c_2...c_m\#$ à la ligne 1 dépeint le calcul de \mathcal{V} sur $w\$c_1c_2...c_m\Rightarrow$
 - ightharpoonup ce tableau prescrit une affectation satisfaisant $\phi \Rightarrow$

- $\mathbf{w} \in \mathsf{A} \Rightarrow$
 - ▶ pour un certain $c_1c_2...c_m$, V accepte wc_1c_2...c_m$ \Rightarrow
 - ▶ un tableau ayant $\#w\$c_1c_2...c_m\#$ à la ligne 1 dépeint le calcul de \mathcal{V} sur $w\$c_1c_2...c_m\Rightarrow$
 - ightharpoonup ce tableau prescrit une affectation satisfaisant $\phi \Rightarrow$
 - $\phi \in \mathsf{SAT}$.

- $\mathbf{w} \in \mathsf{A} \Rightarrow$
 - ▶ pour un certain $c_1c_2...c_m$, V accepte wc_1c_2...c_m$ \Rightarrow
 - ▶ un tableau ayant $\#w\$c_1c_2...c_m\#$ à la ligne 1 dépeint le calcul de \mathcal{V} sur $w\$c_1c_2...c_m\Rightarrow$
 - ce tableau prescrit une affectation satisfaisant $\phi \Rightarrow$
 - ▶ $\phi \in SAT$.

• $\phi \in \mathsf{SAT} \Rightarrow$

- $\mathbf{w} \in \mathsf{A} \Rightarrow$
 - ▶ pour un certain $c_1c_2...c_m$, V accepte wc_1c_2...c_m$ \Rightarrow
 - ▶ un tableau ayant $\#w\$c_1c_2...c_m\#$ à la ligne 1 dépeint le calcul de \mathcal{V} sur $w\$c_1c_2...c_m\Rightarrow$
 - ce tableau prescrit une affectation satisfaisant $\phi \Rightarrow$
 - ▶ $\phi \in SAT$.

- $\phi \in \mathsf{SAT} \Rightarrow$
 - ϕ prescrit un tableau ayant un certain $\#\mathbf{w}\$c_1c_2\ldots c_m\#$ à la ligne $1\Rightarrow$

- $w \in A \Rightarrow$
 - ▶ pour un certain $c_1c_2...c_m$, V accepte wc_1c_2...c_m$ \Rightarrow
 - ▶ un tableau ayant $\#w\$c_1c_2...c_m\#$ à la ligne 1 dépeint le calcul de \mathcal{V} sur $w\$c_1c_2...c_m\Rightarrow$
 - \blacktriangleright ce tableau prescrit une affectation satisfaisant $\phi \Rightarrow$
 - ▶ $\phi \in SAT$.

- $\phi \in \mathsf{SAT} \Rightarrow$
 - ϕ prescrit un tableau ayant un certain $\# {\it w}\$c_1c_2\dots c_m\#$ à la ligne $1\Rightarrow$
 - ▶ ce tableau dépeint un calcul acceptant de V sur wc_1c_2...c_m$ \Rightarrow

- $w \in A \Rightarrow$
 - ▶ pour un certain $c_1c_2...c_m$, V accepte wc_1c_2...c_m$ \Rightarrow
 - ▶ un tableau ayant $\#w\$c_1c_2...c_m\#$ à la ligne 1 dépeint le calcul de $\mathcal V$ sur $w\$c_1c_2...c_m\Rightarrow$
 - ce tableau prescrit une affectation satisfaisant $\phi \Rightarrow$
 - ▶ $\phi \in SAT$.

- $\phi \in \mathsf{SAT} \Rightarrow$
 - ϕ prescrit un tableau ayant un certain $\# {\it w}\$c_1c_2\dots c_m\#$ à la ligne $1\Rightarrow$
 - lacktriangle ce tableau dépeint un calcul acceptant de $\mathcal V$ sur $w\$c_1c_2\dots c_m\Rightarrow$
 - ▶ $c_1c_2...c_m$ témoigne de l'appartenance de w à A \Rightarrow
 - $\mathbf{w} \in \mathsf{A}$.

Donc A \leq_m^p SAT, et ceci conclut la preuve de Cook-Levin.

La morale

Aussi difficile de trouver un algorithme polynomial pour SAT que de trouver du coup un algo poly pour tous les langages de NP!!!

La morale

Aussi difficile de trouver un algorithme polynomial pour SAT que de trouver du coup un algo poly pour tous les langages de NP!!!

Un algorithme polynomial pour SAT fournirait :

- un algorithme polynomial pour 3-COL
- un algorithme polynomial pour HAMPATH
- un algorithme polynomial pour CLIQUE
- etc.

SAT-FNC

Définition (FNC, forme normale conjonctive)

Une expression booléenne est en forme normale conjonctive si elle ressemble à

$$(\ *\ \lor\ *\)\land (\ *\ \lor\ *\ \lor\ *\ \lor\ *\)\land (\cdots)\land\ldots$$

où * est une variable x ou sa négation \bar{x} .

SATFNC

 ${\sf SATFNC} = \{\ \langle \phi \rangle : \phi \text{ est une expression booléenne en FNC et } \phi \text{ est satisfaisable } \}.$

Théorème

SATFNC est NP-complet.

SATFNC

 ${\sf SATFNC} = \{\ \langle \phi \rangle : \phi \text{ est une expression booléenne en FNC et } \phi \text{ est satisfaisable } \}.$

Théorème

SATFNC est NP-complet.

Preuve:

- SATFNC ∈ NP (exercice)
- ② SATFNC est NP-ardu Suffit d'appliquer De Morgan à ϕ_{case} et de distribuer les \vee sur les \wedge dans $\phi_{\text{légale}}$ de la preuve de Cook-Levin.

Doit-on refaire la preuve de Cook-Levin à chaque fois qu'on veut démontrer qu'un problème est NP-complet ?

Doit-on refaire la preuve de Cook-Levin à chaque fois qu'on veut démontrer qu'un problème est NP-complet?

Non! (Alizée):

Pour prouver B NP-complet, il suffit de

Doit-on refaire la preuve de Cook-Levin à chaque fois qu'on veut démontrer qu'un problème est NP-complet ?

Non! (Alizée):

- Pour prouver B NP-complet, il suffit de
 - \bullet montrer que $\mathsf{B} \in \mathsf{NP}$
 - 2 identifier un langage A tel que
 - A est NP-ardu (ou NP-complet),
 - $\mathbf{Q} \quad \mathsf{A} \leq^p_m \mathsf{B}.$

Doit-on refaire la preuve de Cook-Levin à chaque fois qu'on veut démontrer qu'un problème est NP-complet ?

Non! (Alizée):

- Pour prouver B NP-complet, il suffit de
 - montrer que $B \in NP$
 - 2 identifier un langage A tel que
 - A est NP-ardu (ou NP-complet),
 - **2** A $<_m^p$ B.

Souvent, l'étape 2.2.1 requiert une bonne dose d'ingéniosité.

Autres problèmes NP-complets

Littéralement, des milliers de problèmes tirés de tous les domaines : combinatoire, VLSI, confection d'horaires, logique, etc. dont quelques centaines dans le classique :

M. Garey et D. Johnson, *Computers and intractability–A guide to the theory of* NP-completeness, Freeman, 1979.

Pour chacun des langages NP-complets A de cette liste :

$$A \in P \text{ ssi } P = NP.$$

Le jeu Minesweeper : préparatifs

Et maintenant un langage NP-complet très loin des expressions booléennes, mais d'abord, pause publicitaire...

• Richard Kaye, Minesweeper is NP-complete, *The Mathematical Intelligencer*, Springer Verlag, vol. 22, no. 2, 2000, 9–15.

• Richard Kaye, Minesweeper is NP-complete, *The Mathematical Intelligencer*, Springer Verlag, vol. 22, no. 2, 2000, 9–15.

"...Finally, it is nice to know that to current knowledge, there may still be an efficient algorithm for Minesweeper, and finding it could solve one of mathematics's most important open problems."

• Ian Stewart, Million-Dollar Minesweeper, *Scientific American*, vol. 283, oct. 2000, 94–95.

"The Clay Mathematics Institute, a nonprofit educational foundation in Cambridge, Mass., is offering million-dollar prizes for the solutions to seven infamous unsolved problems. One of them is the P versus NP question. [...] A clever amateur may be able to solve it with the help of Minesweeper."

• Lisa Lipman,

http://news.excite.com/news/ap/001102/15/minesweeper-mystery

BOSTON (AP) - "Minesweeper, a seemingly simple game included on most personal computers, could help mathematicians crack one of the field's most intriguing problems."

Retour aux préparatifs

Rappel: 3SAT est NP-complet.

Remarques:

• On peut associer à un exemplaire de 3SAT un circuit booléen.

 On peut même supposer sans perte de généralité que ce circuit booléen ne contient pas de porte ∨.

Par exemple:

$(x_1 \vee \overline{x_2} \vee x_5) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_4}) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\overline{x_3} \vee x_4 \vee \overline{x_5})$

donne lieu à

et au $\{x_i, \neg, \wedge\}$ -circuit équivalent (De Morgan) : x_2 x_3 x_4 x_5 -

NEG-ET-SAT

NEG-ET-SAT = { $\langle C \rangle$: C est un $\{x_i, \neg, \land\}$ -circuit et il existe une affectation aux portes x_i qui rend VRAIE l'unique sortie de C}.

Théorème

NEG-ET-SAT est NP-complet.

Preuve:

- NEG-ET-SAT \in NP : exercice.
- NEG-ET-SAT est NP-ardu : exercice (facile si l'on choisit bien le langage NP-complet A dont on montrera ensuite que $A \leq_m^p NEG-ET-SAT$).

DÉMINEUR

Quel problème de décision pouvons-nous associer au jeu de démineur??

DÉMINEUR

Quel problème de décision pouvons-nous associer au jeu de démineur??

Problème considéré par Richard Kaye :

Donnée: tableau
$$m \times m$$
 de symboles de $\{ \bullet, \sqcup, 0, 1, 2, 3, 4, 5, 6, 7, 8 \}$

Question : est-il possible de remplir les cases ☐ de manière à obtenir un tableau légal? Le problème (plus intéressant :-)) que nous allons considérer :

DÉMINEUR:

Donnée : tableau $m \times m$ de symboles de $\{ \bullet, \sqcup, 0, 1, 2, 3, 4, 5, 6, 7, 8 \}$, et deux entiers $1 \le i, j \le m$

Question: est-il possible qu'une mine se trouve en position (i, j)?

Le problème (plus intéressant :-)) que nous allons considérer :

DÉMINEUR:

Donnée : tableau $m \times m$ de symboles de { •, □, 0, 1, 2, 3, 4, 5, 6, 7, 8 }, et deux entiers $1 \le i, j \le m$

Question: est-il possible qu'une mine se trouve en position (i,j)?

Le langage DÉMINEUR est l'ensemble des $\langle {\sf tableau},i,j \rangle$ pour lesquels la réponse à la question est oui.

Théorème (Kaye 2000)

DÉMINEUR est NP-complet.

Preuve:

- DÉMINEUR ∈ NP : exercice.
- NEG-ET-SAT \leq_m^p DÉMINEUR : pages suivantes.

Esquisse de NEG-ET-SAT \leq_m^p DÉMINEUR

L'idée : transformer le circuit C en un tableau de DÉMINEUR et se servir de fils propageant VRAI ou FAUX d'une porte du circuit à une autre :

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1			1			1			1			1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Un fil transportant la valeur VRAI :

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1			1			1			1			1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Un fil transportant la valeur FAUX :

Transformer dans le circuit

en un bloc de cases :

				1	1	1						
1	1	1	1	2		2	1	1	1	1	1	•••
	1			3		3			1			•••
1	1	1	1	2		2	1	1	1	1	1	•••
	•		•	1	1	1			•	•	•	•

Un fil VRAI devient FAUX:

Un fil FAUX devient VRAI:

Transformer dans le circuit

en un bloc de cases :

	:	:	:																			
	1	1	1			1	2	2	1		1	1	1		1	1	1					
	1		1			2	•	•	3	2	3	•	2	1	2	•	3	2	1			
	1		1	1	2	4	•						3			3	•	•	2			
1	2	2	1	1	•	•	4	•	3	2	3	•	2	1	1	2		•	2			
2	•		2	2	4		3	1	1	0	1	1	1	0	0	1	2	2	1			
2	•	•	3				2	1	1	1	1	1	1	1	1	1		1	1	1	1	1
2	4	5	•	4	•	4			1			1			1		2		1			1
2	•	•	3				2	1	1	1	1	1	1	1	1	1		1	1	1	1	1
2	•		2	2	4		3	1	1	0	1	1	1	0	0	1	2	2	1			
1	2	2	1	1	•		4		3	2	3	•	2	1	1	2		•	2			
	1		1	1	2	4	•						3			3	•	•	2			
	1		1			2		•	3	2	3		2	1	2	•	3	2	1			
	1	1	1			1	2	2	1		1	1	1		1	1	1					
	:	:	:																			

Que faire lorsque des fils se croisent dans le $\{x_i, \neg, \wedge\}$ -circuit de départ ?

S'en débarrasser avant de commencer!

En effet, un croisement

équivaut à un $\{\neg, \land\}$ -circuit planaire... (huh?)

On transforme donc d'abord le "layout" du circuit de départ pour éliminer tout croisement.

Que faire lorsqu'un fil tourne dans le "layout" rectangulaire du $\{x_i, \neg, \wedge\}$ -circuit planaire?

Remplacer

par l'amalgame de cases :

Comment se termine un fil?

Par une fort jolie "mailloche" ...

									1	1	1
•••	1	1	1	1	1	1	1	1	3	•	2
•••	1			1			1				3
•••	1	1	1	1	1	1	1	1	3	•	2
									1	1	1

Note : le fil qui correspond à la porte de sortie du $\{x_i, \neg, \wedge\}$ -circuit se termine de la même façon.

Note: position critique

Duplication d'un fil dans le circuit de départ :

Dernière technicalité : lorsque deux fils entrent dans un bloc simulant une porte \land , ils doivent être en phase, i.e. leurs 1s de référence doivent être à égale distance de la jonction du bloc.

Exemple de bidule modifiant la phase d'un fil :

Après tout ceci, il ne reste qu'à

- calculer $m \in O(|\langle C \rangle|^2)$ tel qu'un tableau T de dimension $m \times m$ englobe toute la construction,
- placer des 0 dans toutes les cases de ce tableau T qui sont à l'extérieur des fils,
- déterminer l'abscisse *i* et l'ordonnée *j* de la position critique (le long du fil de sortie).

Le résultat est $f(\langle C \rangle) = \langle T, i, j \rangle$.

Après tout ceci, il ne reste qu'à

- calculer $m \in O(|\langle C \rangle|^2)$ tel qu'un tableau T de dimension $m \times m$ englobe toute la construction,
- placer des 0 dans toutes les cases de ce tableau T qui sont à l'extérieur des fils,
- déterminer l'abscisse *i* et l'ordonnée *j* de la position critique (le long du fil de sortie).

Le résultat est $f(\langle C \rangle) = \langle T, i, j \rangle$.

On se convainc que f est calculable en temps polynomial.

Et pourquoi ça marche?

- $\langle C \rangle \in \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - ▶ \exists une affectation σ qui "satisfait" $C \Rightarrow$

- $\langle C \rangle \in \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - ▶ \exists une affectation σ qui "satisfait" $C \Rightarrow$
 - $ightharpoonup \sigma$ induit des mines aux positions réflétant le statut VRAI ou FAUX de chaque porte et de chaque fil \Rightarrow

- $\langle C \rangle \in \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - ▶ \exists une affectation σ qui "satisfait" $C \Rightarrow$
 - $ightharpoonup \sigma$ induit des mines aux positions réflétant le statut VRAI ou FAUX de chaque porte et de chaque fil \Rightarrow
 - $ightharpoonup \sigma$ induit une mine en position critique \Rightarrow

- $\langle C \rangle \in \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - ▶ \exists une affectation σ qui "satisfait" $C \Rightarrow$
 - lacktriangledown of induit des mines aux positions réflétant le statut VRAI ou FAUX de chaque porte et de chaque fil \Rightarrow
 - $ightharpoonup \sigma$ induit une mine en position critique \Rightarrow
 - ▶ la position critique peut contenir une mine ⇒

- $\langle C \rangle \in \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - ▶ \exists une affectation σ qui "satisfait" $C \Rightarrow$
 - $ightharpoonup \sigma$ induit des mines aux positions réflétant le statut VRAI ou FAUX de chaque porte et de chaque fil \Rightarrow
 - σ induit une mine en position critique \Rightarrow
 - ▶ la position critique peut contenir une mine ⇒
 - ▶ $f(|\langle C \rangle|) = \langle T, i, j \rangle \in DÉMINEUR.$
- $\langle C \rangle \notin \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$

- $\langle C \rangle \in \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - ▶ \exists une affectation σ qui "satisfait" $C \Rightarrow$
 - $ightharpoonup \sigma$ induit des mines aux positions réflétant le statut VRAI ou FAUX de chaque porte et de chaque fil \Rightarrow
 - $ightharpoonup \sigma$ induit une mine en position critique \Rightarrow
 - ▶ la position critique peut contenir une mine ⇒
 - ▶ $f(|\langle C \rangle|) = \langle T, i, j \rangle \in DÉMINEUR.$
- $\langle C \rangle \notin \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - ightharpoonup aucune affectation σ ne "satisfait" $C \Rightarrow$

- $\langle C \rangle \in \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - ▶ \exists une affectation σ qui "satisfait" $C \Rightarrow$
 - lacktriangledown of induit des mines aux positions réflétant le statut VRAI ou FAUX de chaque porte et de chaque fil \Rightarrow
 - σ induit une mine en position critique \Rightarrow
 - ▶ la position critique peut contenir une mine ⇒
 - ▶ $f(|\langle C \rangle|) = \langle T, i, j \rangle \in DÉMINEUR.$
- $\langle C \rangle \notin \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - aucune affectation σ ne "satisfait" $C \Rightarrow$
 - ▶ toutes les affectations laissent la position critique libre ⇒

- $\langle C \rangle \in \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - ▶ \exists une affectation σ qui "satisfait" $C \Rightarrow$
 - $ightharpoonup \sigma$ induit des mines aux positions réflétant le statut VRAI ou FAUX de chaque porte et de chaque fil \Rightarrow
 - σ induit une mine en position critique \Rightarrow
 - ▶ la position critique peut contenir une mine ⇒
 - ▶ $f(|\langle C \rangle|) = \langle T, i, j \rangle \in DÉMINEUR.$
- $\langle C \rangle \notin \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - aucune affectation σ ne "satisfait" $C \Rightarrow$
 - ▶ toutes les affectations laissent la position critique libre ⇒
 - ▶ T(i,j) ne peut contenir de mine \Rightarrow
 - ► $f(\langle C \rangle) = \langle T, i, j \rangle \notin DÉMINEUR.$

- $\langle C \rangle \in \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - ▶ \exists une affectation σ qui "satisfait" $C \Rightarrow$
 - $ightharpoonup \sigma$ induit des mines aux positions réflétant le statut VRAI ou FAUX de chaque porte et de chaque fil \Rightarrow
 - σ induit une mine en position critique \Rightarrow
 - ▶ la position critique peut contenir une mine ⇒
 - $f(|\langle C \rangle|) = \langle T, i, j \rangle \in \mathsf{DÉMINEUR}.$
- $\langle C \rangle \notin \mathsf{NEG}\text{-}\mathsf{ET}\text{-}\mathsf{SAT} \Rightarrow$
 - aucune affectation σ ne "satisfait" $C \Rightarrow$
 - ▶ toutes les affectations laissent la position critique libre ⇒
 - ▶ T(i,j) ne peut contenir de mine \Rightarrow
 - ▶ $f(\langle C \rangle) = \langle T, i, j \rangle \notin DÉMINEUR$.

Donc NEG-ET-SAT \leq_m^p DÉMINEUR.

Donc DÉMINEUR est NP-complet par le théorème de la contagion.