6d. Lineare Programmierung

Sensitivitätsanalyse

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Sensitivitätsanalyse

Minimiere
$$c^Tx$$
 über $x \in \mathbb{R}^n$ u.d.N. $a_i^Tx \le b_i$ $i=1,...,m$

Minimiere c^Tx über $x \in \mathbb{R}^n$ u.d.N. $a_i^Tx \le b_i + \Delta_i$ $i=1,...,m$

Wie ändert sich die optimale Lösung unter diesen Transformation?

Plan

- Zweidimensionales Beispiel
- Theorie
- Beispiel aus Operations Research

Beispiel

Minimiere
$$z = -x - y$$

u.d.N. $x + 2y \le 2$
 $2x + y \le 2$
 $x, y \ge 0$

$$\bar{x} = \frac{2}{3}, \, \bar{y} = \frac{2}{3}$$
$$\bar{z} = -\frac{4}{3}$$

Beispiel

Minimiere
$$z=-x-y$$

u.d.N. $x+2y \le 2+\Delta_1$
 $2x+y \le 2$
 $x,y \ge 0$

Gültigkeitsbereich

$$\bar{x} = \frac{2}{3} - \frac{1}{3}\Delta_1 \qquad \bar{y} = \frac{2}{3} + \frac{2}{3}\Delta_1$$

$$\bar{z} = -\frac{4}{3}\left(-\frac{1}{3}\right)\Delta_1 \qquad \text{Shattenpreis der 1.}$$

$$\Delta_1 \in [-1,2] \qquad \text{Nebenbedingung}$$

Störungen in der zweiten UNB

Minimiere
$$z=-x-y$$

u.d.N. $x+2y\leq 2$
 $2x+y\leq 2+\Delta_2$
 $x,y\geq 0$
 $x^*=\frac{2}{3}+\frac{2}{3}\Delta_2$ $y^*=\frac{2}{3}-\frac{1}{3}\Delta_2$
 $z^*=-\frac{4}{3}\left(-\frac{1}{3}\right)\Delta_2$ Shattenpreis der 2. Nebenbedingung $\Delta_2\in[-1,2]$ Gültigkeitsbereich

Gleichzeitige Störungen

Minimiere
$$z = -x - y$$
 $\bar{x} = \frac{2}{3} - \frac{1}{3}\Delta_1 + \frac{2}{3}\Delta_2$, u.d.N. $x + 2y \le 2 + \Delta_1$ $\bar{y} = \frac{2}{3} + \frac{2}{3}\Delta_1 - \frac{1}{3}\Delta_2$ $\bar{z} = -\frac{4}{3} - \frac{1}{3}\Delta_1 - \frac{1}{3}\Delta_2$

• Gültigkeitsbereich:
$$\frac{2}{3}-\frac{1}{3}\Delta_1+\frac{2}{3}\Delta_2\geq 0, \frac{2}{3}+\frac{2}{3}\Delta_1-\frac{1}{3}\Delta_2\geq 0$$

$$\Delta_1-2\Delta_2\leq 2, 2\Delta_1-\Delta_2\geq -2$$

100%-Regel

$$P = \{\Delta_1, \Delta_2 : \Delta_1 - 2\Delta_2 \le 2, 2\Delta_1 - \Delta_2 \ge -2\}$$

- Gültigkeitsbereich *P* ist konvex
- Seien $\Delta_1, \Delta_2 \in [-1,2]$ und $\alpha \in [0,1]$ Dann $(\alpha \Delta_1, (1-\alpha)\Delta_2) \in P$

100%-Regel

Plan

- Zweidimensionales Beispiel
- Theorie
- Beispiel aus Operations Research

Mathematisches Programm

Minimiere
$$\mathbf{z}=c_1x_1+c_2x_2$$
 u.d.N. $a_{11}x_1+a_{12}x_2\leq b_1+\Delta$ $b_1,b_2\geq 0$ $a_{21}x_1+a_{22}x_2\leq b_2$ $x_1,x_2\geq 0$

- Angenommen, $\bar{x}_1(\Delta)$, $\bar{x}_2(\Delta)$ ist eine optimale Basislösung, die stetig von Δ abhängt. Sei $z(\Delta)$ der zugehörige optimale Wert
- Ist das optimale Simplex-Tableau für $\Delta = 0$ bekannt, so kann man $\bar{x}_1(\Delta), \bar{x}_2(\Delta), z(\Delta)$ auch für kleine Δ einfach bestimmen

Anfangstableau

Minimiere
$$z = c_1 x_1 + c_2 x_2$$
 u.d.N. $a_{11} x_1 + a_{12} x_2 \le b_1$ $a_{21} x_1 + a_{22} x_2 \le b_2$ $x_1, x_2 \ge 0$

Minimiere
$$z = c_1x_1 + c_2x_2$$

u.d.N. $a_{11}x_1 + a_{12}x_2 + s_1 = b_1$
 $a_{21}x_1 + a_{22}x_2 + s_2 = b_2$
 $x_1, x_2, s_1, s_2 \ge 0$

-z	x_1	x_2	s_1	s_2	RS
1	c_1	c_2	0	0	0
0	a_{11}	a_{12}	1	0	b_1
0	a_{21}	a_{22}	0	1	b_2

Füge Schlupfvariablen

 s_1, s_2 hinzu

Optimale kanonische Form

Minimiere
$$c_1x_1 + c_2x_2$$

u.d.N. $a_{11}x_1 + a_{12}x_2 + s_1$ $-b_1 = 0$ Z_1
 $a_{21}x_1 + a_{22}x_2$ $+s_2 - b_2 = 0$ Z_2
 $x_1, x_2, s_1, s_2 \ge 0$ Das Simplex-Verfahren

Minimiere
$$\bar{c_1}x_1 + \bar{c_2}x_2 + y_1s_1 + y_2s_2 + \bar{z}$$
 $|Z_0 + y_1Z_1 + y_2Z_2|$ u.d.N. $\bar{a}_{11}x_1 + \bar{a}_{12}x_2 + \beta_{11}s_1 + \beta_{12}s_2 - \bar{b}_1 = 0$ $|\beta_{11}Z_1 + \beta_{12}Z_2|$ $\bar{a}_{21}x_1 + \bar{a}_{22}x_2 + \beta_{21}s_1 + \beta_{22}s_2 - \bar{b}_2 = 0$ $|\beta_{21}Z_1 + \beta_{22}Z_2|$ $|\beta_{21}Z_1 + \beta_{22}Z_2|$ $|\beta_{21}Z_1 + \beta_{22}Z_2|$

-z	x_1	x_2	s_1	s_2	RS
1	$\bar{c}_1 \ge 0$	$\bar{c}_2 \ge 0$	$y_1 \ge 0$	$y_2 \ge 0$	$-\bar{z}$
0	\bar{a}_{11}	\bar{a}_{12}	eta_{11}	eta_{12}	$\bar{b}_1 \ge 0$
0	\bar{a}_{21}	\bar{a}_{22}	eta_{21}	eta_{22}	$\bar{b}_2 \ge 0$

Transformationen, die das Problem in die optimale kanonische Form bringen

Störungen in der rechten Seite

Minimiere
$$c_1x_1 + c_2x_2$$

u.d.N. $a_{11}x_1 + a_{12}x_2 + s_1 = b_1 + \Delta$

$$a_{21}x_1 + a_{22}x_2 + s_2 = b_2$$

$$x_1, x_2, s_1, s_2 \ge 0$$
Minimiere $c_1x_1 + c_2x_2$

$$u.d.N. \ a_{11}x_1 + a_{12}x_2 + (s_1 - \Delta) = b_1 \quad |Z_1|$$

$$a_{21}x_1 + a_{22}x_2 + s_2 = b_2 \quad |Z_2|$$

$$x_1, x_2, s_1, s_2 \ge 0$$

Minimiere
$$\bar{c_1}x_1 + \bar{c_2}x_2 + y_1(s_1 - \Delta) + y_2s_2 + \bar{z}$$
 $|Z_0 + y_1Z_1 + y_2Z_2|$ u.d.N. $\bar{a}_{11}x_1 + \bar{a}_{12}x_2 + \beta_{11}(s_1 - \Delta) + \beta_{12}s_2 = \bar{b}_1$ $|\beta_{11}Z_1 + \beta_{12}Z_2|$ $|\beta_{21}Z_1 + \bar{a}_{22}Z_2 + \beta_{21}(s_1 - \Delta) + \beta_{22}s_2 = \bar{b}_2$ $|\beta_{21}Z_1 + \beta_{22}Z_2|$ $|\beta_{21}Z_1 + \beta_{22}Z_2|$ $|\beta_{21}Z_1 + \beta_{22}Z_2|$ $|\beta_{21}Z_1 + \beta_{22}Z_2|$

Optimale Kanonische Form

Minimiere
$$\overline{c_1}x_1 + \overline{c_2}x_2 + y_1s_1 + y_2s_2 + \overline{z} - y_1\Delta$$

u.d.N. $\overline{a}_{11}x_1 + \overline{a}_{12}x_2 + \beta_{11}s_1 + \beta_{12}s_2 = \overline{b}_1 + \beta_{11}\Delta$
 $\overline{a}_{21}x_1 + \overline{a}_{22}x_2 + \beta_{21}s_1 + \beta_{22}s_2 = \overline{b}_2 + \beta_{12}\Delta$
 $x_1, x_2, s_1, s_2 \ge 0$

- Für $\Delta = 0$ ist das Problem in optimaler kanonischer Form
- Seien $\bar{b}_1+\beta_{11}\Delta\geq 0$, $\bar{b}_2+\beta_{12}\Delta\geq 0$, so ist das gestörte Problem ebenfalls in optimaler kanonischer Form

Zulässige Zunahme und Abnahme

$$\bar{b}_1 + \beta_{11}\Delta \geq 0, \ \bar{b} + \beta_{21}\Delta \geq 0$$

$$\beta_{i1} > 0 \Rightarrow \Delta \geq -\bar{b}_i/\beta_{i1}$$

$$\beta_{i1} < 0 \Rightarrow \Delta \leq -\bar{b}_i/\beta_{i1}$$

$$zul \ddot{a}ssige \ Zunahme$$

$$\max\left\{-\frac{\bar{b}_i}{\beta_{i1}}:\beta_{i1}>0\right\} \leq \Delta \leq \min\left\{-\frac{\bar{b}_i}{\beta_{i1}}:\beta_{i1}<0\right\}$$

$$G \ddot{u}l tigke its be reich$$

• Liegt Δ im Gültigkeitsbereich, so lässt sich eine optimale Lösung des Δ -gestörten Problems aus dem optimalen Tableau für $\Delta=0$ berechnen

Zusammenfassung

Minimiere
$$z(\Delta) = c_1x_1 + c_2x_2$$
 u.d.N. $a_{11}x_1 + a_{12}x_2 \le b_1 + \Delta$
$$a_{21}x_1 + a_{22}x_2 \le b_2$$

$$x_1, x_2 \ge 0$$

Optimales Simplex-Tableau für $\Delta = 0$

-z	x_1	x_2	s_1	s_2	RS
1	$\bar{c}_1 \ge 0$	$\bar{c}_2 \ge 0$	$y_1 \ge 0$	$y_2 \ge 0$	$-\bar{z}$
0	\bar{a}_{11}	\bar{a}_{12}	eta_{11}	eta_{12}	$\bar{b}_1 \ge 0$
0	\bar{a}_{21}	\bar{a}_{22}	eta_{21}	eta_{22}	$\bar{b}_2 \ge 0$

Angenommen,
$$\max\left\{-\frac{\bar{b}_i}{\beta_{i1}}:\beta_{i1}>0\right\} \leq \Delta \leq \min\left\{-\frac{\bar{b}_i}{\beta_{i1}}:\beta_{i1}<0\right\}$$

Dann ist eine optimale Basislösung gegeben durch:

$$\bar{x}_1(\Delta) = \bar{b}_1 + \beta_{11}\Delta$$
$$\bar{x}_2(\Delta) = \bar{b}_2 + \beta_{21}\Delta$$
$$z(\Delta) = \bar{z} - y_1\Delta$$

Die Spalte von s_1 enthält die zugehörigen Sentivitiätsdaten

Satz 6.14. Sensitivitätsanalyse

Minimiere
$$z(\Delta) = c_1x_1 + c_2x_2$$
 u.d.N. $a_{11}x_1 + a_{12}x_2 \le b_1 + \Delta_1$
$$a_{21}x_1 + a_{22}x_2 \le b_2 + \Delta_2$$

$$x_1, x_2 \ge 0$$

Optimales Simplex-Tableau für $\Delta_1 = \Delta_2 = 0$

-z	x_1	x_2	s_1	s_2	RS
1	$\bar{c}_1 \ge 0$	$\bar{c}_2 \ge 0$	$y_1 \ge 0$	$y_2 \ge 0$	$ar{Z}$
0	\bar{a}_{11}	\overline{a}_{12}	eta_{11}	eta_{12}	$\bar{b}_1 \ge 0$
0	\bar{a}_{21}	\overline{a}_{22}	eta_{21}	eta_{22}	$\bar{b}_2 \ge 0$

Angenommen,
$$\bar{b}_1 + \beta_{11}\Delta_1 + \beta_{12}\Delta_2 \ge 0$$
, $\bar{b} + \beta_{21}\Delta_1 + \beta_{22}\Delta_2 \ge 0$

Dann ist eine optimale Basislösung gegeben durch:

$$\bar{x}_1(\Delta) = \bar{b}_1 + \beta_{11}\Delta_1 + \beta_{12}\Delta_2$$
$$\bar{x}_2(\Delta) = \bar{b}_2 + \beta_{21}\Delta_1 + \beta_{22}\Delta_2$$

$$z(\Delta) = \bar{z} + \underbrace{(-y_1)}\Delta_1 + \underbrace{(-y_2)}\Delta_2$$
Schattenpreise

Gültigkeitsbereich

Sensitivitätsbericht für Nebenbedingungen

NB	Rechte Seite	Schattenpreis	Schlupf	Zulässige Zunahme	Zulässige Abnahme
1	b_1	-y ₁	s_1	$\min\left\{-\frac{\bar{b}_i}{\beta_{i1}}:\beta_{i1}<0\right\}$	$\min\left\{\frac{\bar{b}_i}{\beta_{i1}}:\beta_{i1}>0\right\}$
2	b_2	$-y_2$	s_2	$\min\left\{-\frac{\bar{b}_i}{\beta_{i2}}:\beta_{i2}<0\right\}$	$\min\left\{\frac{\bar{b}_i}{\beta_{i1}}:\beta_{i2}>0\right\}$

Satz 6.15. 100%-Regel

Seien
$$\Delta_i \in \left[\max\left\{\frac{\overline{b}_i}{\beta_{i1}}:\beta_{i1}<0\right\},\min\left\{\frac{\overline{b}_i}{\beta_{i1}}:\beta_{i1}>0\right\}\right]$$
 für $i=1,2$

Sei $\alpha \in [0,1]$. Dann gehört $(\alpha \Delta_1, (1-\alpha)\Delta_2)$ zum Gültigkeitsbereich für die gleichzeitigen Störungen der Nebenbedingungen, d.h.:

$$\bar{b}_1 + \beta_{11} \alpha \Delta_1 + \beta_{12} (1 - \alpha) \Delta_2 \ge 0$$

$$\bar{b}_2 + \beta_{21} \alpha \Delta_1 + \beta_{22} (1 - \alpha) \Delta_2 \ge 0$$

Beweis

 Der Gültigkeitsbereich für die gleichzeitigen Störungen in den beiden Nebenbedingungen:

$$P = \{\delta_1, \delta_2 \colon \overline{b}_1 + \beta_{11}\delta_1 + \beta_{12}\delta_2 \ge 0, \overline{b}_2 + \beta_{21}\delta_1 + \beta_{22}\delta_2 \ge 0\}$$

• $P_i=\{\delta_i: \overline{b}_1+\beta_{1i}\delta_i\geq 0, \overline{b}_2+\beta_{2i}\delta_i\geq 0\}$ ist der Gültigkeitsbereich für die Störungen in der i-ten Nebenbedingung

$$\Rightarrow P_1 \subseteq P, P_2 \subseteq P$$

$$P \text{ ist konvex}$$

$$conv(P_1 \cup P_2) \subseteq P$$

Plan

- Zweidimensionales Beispiel
- Theorie
- Beispiel aus Operations Research

Glasherstellung

Zwei Gläserarten werden produziert:

Saftgläser und Cocktailgläser

- Der Gewinn ist gleich Verkaufspreis minus Herstellkosten
- Arbeitskraft und Lagerkapazität sind beschränkt

Mathematisches Programm

	Gewinn	Herstellungszeit	Lagerkapazität
Saftgläser	€450	6 Std.	28.3 m ³
Cocktailgläser	€400	5 Std.	56.6 m ³
Vorhandene Menge		60 Std.	430 m ³

Maximiere
$$Gewinn=450x_1+400x_2$$

u.d.N. $6x_1+5x_2\leq 60$ Herstellungszeit
 $28.3x_1+56.6x_2\leq 430$ Lagerkapazität
 $x_1\geq 0, x_2\geq 0$

$$\bar{x}_1 = 6.29, \ \bar{x}_2 = 4.45, \ \bar{z} = 4610.5$$

Sensitivitätsbericht

Nebenbedingung	Rechte Seite	Schattenpreis	Schlupf	Zulässige Zunahme	Zulässige Abnahme
Herstellungszeit	60	71.43	0	6	22
Lagerkapazität	430	0.76	0	294.2	67.76

- Wir erwägen eine Möglichkeit, das Lager um 100 m³ zu erweitern
- Wäre es profitabel sein, €60 in dieses Projekt zu investieren?

Sensitivitätsanalyse

Nebenbedingung	Rechte Seite	Schattenpreis	Schlupf	Zulässige Zunahme	Zulässige Abnahme
Lagerkapazität	430	0.76	0	294.2	67.76

- Der Schattenpreis für die Lagerkapazität ist €0.76 pro m³
- Zunahme um 100 m³ gehört zum Gültigkeitsbereich des Schattenpreises
- ⇒ Es wäre profitabel, bis €76 ins Projekt zu investieren

Zusammenfassung

- Zweidimensionales Beispiel
- Theorie
- Beispiel aus Operations Research

Nächstes Video

• 6e. Lineare Programmierung: Das duale Simplex-Verfahren