# TRIGONOMETRY Chapter 12





Aplicaciones de las propiedades de las razones trigonométricas de un ángulo agudo



# **MOTIVATING STRATEGY**









# APLICACIONES DE LAS PROPIEDADES DE LAS RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

### Razones trigonométricas recíprocas

 $sen\alpha.csc\alpha = 1$ 

 $\cos\alpha$ .  $\sec\alpha = 1$ 

 $tan\alpha.cot\alpha = 1$ 

Los ángulos en ambas razones trigonométricas son iguales

## Razones trigonométricas de

ángulos complementarios Si  $\alpha + \beta = 90^{\circ}$  Se cumple que

 $sen\alpha = cos\beta$ 

 $sec\alpha = csc\beta$ 

 $tan\alpha = cot\beta$ 

La igualdad solo se da cuando los ángulos  $\alpha y \beta son$ 







### Indique la propiedad aplicada

- a. tan40°.cot40° =1
- b. sec2°= csc88°
- c. sen21°.csc21°=1

### Resolución:



# R.T. de ángulos complementarios

Si 
$$\alpha$$
 +  $\beta$  = 90°  $\sec \alpha = \csc \beta$ 

$$tan\alpha = cot\beta$$

 $sen\alpha = cos\beta$ 









$$B = \frac{3 \text{sen16}^{\circ}}{\cos 74^{\circ}} - \frac{\tan 19^{\circ}}{\cot 71^{\circ}}$$



Si 
$$\alpha + \beta = 90^{\circ}$$

$$sen\alpha = cos\beta$$
  $\Rightarrow$   $sen16^{\circ} = cos74^{\circ}$ 

$$\tan \alpha = \cot \beta$$
 |  $\Rightarrow \tan 19^\circ = \cot 71^\circ$ 

### Resolución:

$$A = 2(1) + 3(1)$$

$$A = 2 + 3 \implies A = 5$$

$$B = \frac{3 \text{sen} 16^{\circ}}{\cos 74^{\circ}} - \frac{\tan 19^{\circ}}{\cot 71^{\circ}}$$

$$B = \frac{3\cos 74^{\circ}}{\cos 74^{\circ}} - \frac{\cot 71^{\circ}}{\cot 71^{\circ}}$$

$$B = 3 - 1 \implies B = 2$$

Piden: 
$$A + B = 5 + 2$$

$$\therefore A + B = 7$$



Mi amiga María ha heredado un terreno, cerca a La Molina, dicho terreno tiene forma rectangular, como se muestra en el dibujo y sus dimensiones son las

siguientes:



Largo: (15<u>tanx.cotx</u>)m



Calcule el perímetro y área de dicho terreno.



Ancho = 
$$8(1) = 8m$$
  
largo =  $15(1) = 15m$ 

Piden:

$$2p = 8 + 8 + 15 + 15 = 46m$$

$$\text{Área} = 15\text{mx8m} = 120\text{m}^2$$



Reduzca la expresión: M = (5sen10° + 3cos80°)csc10°

### Resolución:

$$M = (5sen10^{\circ} + 3cos80^{\circ})csc10^{\circ}$$

$$M = (5sen10^{\circ} + 3sen10^{\circ})csc10^{\circ}$$

$$M = 8(1)$$

$$\therefore$$
 M = 8





Si 
$$\alpha + \beta = 90^{\circ}$$

$$sen\alpha = cos\beta$$



R.T.

senalesce 1



Calcule el valor de sen( $x+20^{\circ}$ ); si sen( $5x+20^{\circ}$ ).csc( $2x+50^{\circ}$ ) = 1

### Resolución:

# Del dato:

$$sen(5x+20^{\circ}).csc(2x+50^{\circ}) = 1$$

$$5x + 20^{\circ} = 2x + 50^{\circ}$$

$$5x - 2x = 50^{\circ} - 20^{\circ}$$

$$3x = 30^{\circ}$$

$$x = \frac{30^{\circ}}{3}$$

$$x = 10^{\circ}$$

### Piden:

Reemplazando x:

$$sen(x+20^{\circ}) = sen(10^{\circ}+20^{\circ})$$

$$sen(x+20^\circ) = sen(30^\circ)$$

$$\therefore \operatorname{sen}(x + 20^{\circ}) = \frac{1}{2}$$







Calcule el valor de tan( $4\beta$  -  $3^{\circ}$ ); si sec( $2\beta$ +12°) = csc( $3\beta$ +18°)

### Resolución:

### Del

$$\sec(2\beta+12^\circ) = \csc(3\beta+18^\circ)$$

$$2\beta + 12^{\circ} + 3\beta + 18^{\circ} = 90^{\circ}$$

$$5\beta + 30^{\circ} = 90^{\circ}$$

$$5\beta = 90^{\circ} - 30^{\circ}$$

$$5\beta = 60^{\circ}$$

$$\beta = \frac{60^{\circ}}{5}$$

$$\beta = 12^{\circ}$$

#### Piden:

 $tan(4\beta - 3^\circ)$ 

Reemplazando β:

$$tan(4\beta - 3^{\circ}) = tan(4(12^{\circ}) - 3^{\circ})$$

$$tan(4\beta - 3^{\circ}) = tan(48^{\circ} - 3^{\circ})$$

$$tan(4\beta - 3^{\circ}) = tan45^{\circ}$$

$$\therefore \tan(4\beta - 3^{\circ}) = 1$$



$$secx = cscy$$





Calcule el valor de cos(x + y), si  $tan(2x-10^\circ).cot(x+14^\circ) = 1$  y  $sec(3y+12^\circ) = csc(6^\circ-y)$ 

### Resolución:

#### Del dato:

tan(2x-10°).cot(x+14°) = 1  

$$2x - 10^\circ = x + 14^\circ$$
  
 $2x - x = 14^\circ + 10^\circ$ 

$$x = 24^{\circ}$$

sec(3y+12°) = csc(6°-y)  

$$3y + 12^{\circ} + 6^{\circ} - y = 90^{\circ}$$
  
 $2y + 18^{\circ} = 90^{\circ}$   
 $2y = 90^{\circ} - 18^{\circ}$   
 $2y = 72^{\circ}$   
 $y = \frac{72^{\circ}}{2}$   $y = 36^{\circ}$ 

### Piden:

$$cos(x + y) = cos(24^{\circ} + 36^{\circ})$$

$$\cos(x + y) = \cos(60^\circ)$$

$$\therefore \cos(x+y) = \frac{1}{2}$$



# R.T. de ángulos complementarios

$$Si x + y = 90^{\circ}$$

$$secx = cscy$$





Calcule el valor de x, si tan2x.tan $20^\circ = 1$ 

### Resolución:

#### Del dato:

 $tan2x.tan20^{\circ} = 1$ 

Reemplazando:

$$tan2x.cot70^{\circ} = 1$$

$$2x = 70^{\circ}$$

$$x = \frac{70^{\circ}}{2}$$

$$x = 35^{\circ}$$





R.T. de ángulos complementarios

$$Si x + y = 90^{\circ}$$

$$tanx = coty$$

