

## Deep Learning Presentation Slides

# Chest X-Ray Classification Using Convolutional Neural Networks

George Pappy - 26 January 2022

### Introduction

#### <u>Tinytown, Pennsylvania</u>:

- Approximately 5000 residents
- Elderly-skewing Population
- Nearest hospital 100 miles away





### Introduction (con't.)

#### **Tinytown Health Clinic:**

- Run by a single Doctor
- One Registered Nurse





### Introduction (con't.)

- Tinytown residents suffer inordinately from:
  - Atelectasis
  - Cardiomegaly
  - Edema
  - Pleural Effusion
- Tinytown Health can take chest X-rays:
  - → But the staff lacks diagnostic expertise













### Introduction (con't.)

**Goal**: Tinytown Health wants a chest X-ray classifier

- To identify "Potentially Positive" diagnoses
- Would prompt the staff to electronically transmit such X-rays to a Scranton radiologist







### Methodology



#### **Dataset:** Compiled by Stanford University School of Medicine

- 53,528 frontal chest X-rays
- Taken October 2002 July 2017 at inpatient & outpatient centers
- Each X-ray labeled for all 4 diagnoses of interest
  - → 4 non-mutually-exclusive targets:
    - Atelectasis, Cardiomegaly, Edema, Pleural Effusion
    - Various degrees of imbalance (16%: 84% worst; 47%: 53% best)



70%/15%/15% Train/Validation/Test Set splits

### Results

#### **Baseline (Traditional ML) Classifiers:**

| Model                             | Target(s)                          | AUROC (Test Set)           |
|-----------------------------------|------------------------------------|----------------------------|
| Random Forest (n_trees=500)       | All 4                              | 0.494, 0.500, 0.538, 0.636 |
| Logistic Regression (12=0.0005)   | 1 <sup>st</sup> (Atelectasis)      | 0.557                      |
| Logistic Regression (I2=0.025)    | 2 <sup>nd</sup> (Cardiomegaly)     | 0.576                      |
| Logistic Regression (I2=0.000075) | 3 <sup>rd</sup> (Edema)            | 0.573                      |
| Logistic Regression (I2=0.00005)  | 4 <sup>th</sup> (Pleural Effusion) | 0.604                      |

#### **Multi-Label CNN Model:**

- VGG-16 pre-trained on ImageNet dataset
- Final (top) layers replaced with several Dense layers

Vast majority of total weights non-trainable



| Layer (type)         | Output Shape          | Param #  |
|----------------------|-----------------------|----------|
| input_9 (InputLayer) | [(None, 224, 273, 1)] | 0        |
| conv2d_29 (Conv2D)   | (None, 224, 273, 3)   | 30       |
| vgg16 (Functional)   | (None, 7, 8, 512)     | 14714688 |
| flatten_7 (Flatten)  | (None, 28672)         | 0        |
| dense_21 (Dense)     | (None, 128)           | 3670144  |
| dense_22 (Dense)     | (None, 64)            | 8256     |
| dense_23 (Dense)     | (None, 4)             | 260      |
|                      |                       |          |

Total params: 18,393,378

Trainable params: 3,678,690 Non-trainable params: 14,714,688

#### **CNN Compared to Baseline Classifiers:**

| Model                              | Target(s)                          | AUROC (Test Set)           |
|------------------------------------|------------------------------------|----------------------------|
| Random Forest (n_trees=500)        | All 4                              | 0.494, 0.500, 0.538, 0.636 |
| Logistic Regression (I2=0.0005)    | 1 <sup>st</sup> (Atelectasis)      | 0.557                      |
| Logistic Regression (I2=0.025)     | 2 <sup>nd</sup> (Cardiomegaly)     | 0.576                      |
| Logistic Regression (I2=0.000075)  | 3 <sup>rd</sup> (Edema)            | 0.573                      |
| Logistic Regression (I2=0.00005)   | 4 <sup>th</sup> (Pleural Effusion) | 0.604                      |
| CNN (no dropout or regularization) | All 4                              | 0.652, 0.725, 0.725, 0.764 |

No common dropout/regularization parameters could be found to optimize all targets simultaneously

#### **Single-Target CNN Models:**

- VGG-16 pre-trained on ImageNet dataset
- Final (5<sup>th</sup>) block of VGG-16
   Convolutional layers not frozen
- Now only ≈41.5% of total weights non-trainable
- Dropout, l1 and l2 regularization



| Layer (type)         | Output Shape          | Param #  |
|----------------------|-----------------------|----------|
| input_1 (InputLayer) | [(None, 224, 273, 1)] | 0        |
| conv2d (Conv2D)      | (None, 224, 273, 3)   | 30       |
| vgg16 (Functional)   | (None, 7, 8, 512)     | 14714688 |
| flatten (Flatten)    | (None, 28672)         | 0        |
| dense (Dense)        | (None, 128)           | 3670144  |
| dropout (Dropout)    | (None, 128)           | 0        |
| dense_1 (Dense)      | (None, 64)            | 8256     |
| dropout_1 (Dropout)  | (None, 64)            | 0        |
| dense_2 (Dense)      | (None, 1)             | 65       |

Trainable params: 10,757,919

Non-trainable params: 7,635,264



| Model                                     | Target(s)                          | AUROC (Test Set)           |
|-------------------------------------------|------------------------------------|----------------------------|
| CNN (no dropout or regularization)        | All 4                              | 0.652, 0.725, 0.725, 0.764 |
| CNN (dropout=0.30, l1=0.00001, l2=0.0001) | 1 <sup>st</sup> (Atelectasis)      | 0.688                      |
| CNN (dropout=0.35, l1=0.00001, l2=0.0001) | 2 <sup>nd</sup> (Cardiomegaly)     | 0.788                      |
| CNN (dropout=0.35, l1=0.00025, l2=0.0025) | 3 <sup>rd</sup> (Edema)            | 0.753                      |
| CNN (dropout=0.40, l1=0.00001, l2=0.0001) | 4 <sup>th</sup> (Pleural Effusion) | 0.818                      |





### Conclusions



#### **Recommendations**

- Clinicians must establish acceptable False Positive Rates for all 4 conditions
  - → Sets thresholds for when to declare "Potentially Positive" for each target
- Deploy the overall model and track its performance metrics over time



# Appendix

### Future Work



- 1) Try training the models entirely from scratch (including all VGG-16 blocks)
- 2) Include additional diagnoses in the overall model
  - Dataset has labels for other conditions
  - Examples: Enlarged Cardiomediastinum, Lung Lesion, Consolidation, Pneumothorax
- 3) Consider using higher-resolution images (at cost of much longer training time)
  - Images used for this project were low-resolution: 273 x 224 x 1
  - Many researchers have used 390 x 320 x 1 resolution (and 2828 x 2320 x 1 is available)

### More Results





### More Results (con't.)





### More Results (con't.)





### Methods & Tools



• Pandas: clean, explore, engineer features and generate final modeling data



• scikit-learn: build ML classification models as well as to perform data splitting for model development and measure model performance

• Keras/TensorFlow 2: build Deep learning classification models



Matplotlib/Seaborn: visualizing data exploration, modeling and final results





• **Python 3.8**: to run all of the above



### **CNN** Hyperparameter Tuning



- Full training dataset requires ≈2.5 hours per epoch
  - → Too time-consuming to perform practical hyperparameter tuning
- Used "baby" training & validation datasets for tuning
  - 2.3% of full dataset
  - Used scikit-learn stratified split to maintain consistent relative class distributions
- Saved best models (w/ hyperparameters tuned using "baby" datasets)
  - Loaded these into final (full dataset) model training pipelines as starting points
  - Converged quickly to optimal, well-fit models (within 2-3 epochs)