

Accelerating Cost Volume Filtering

Using Salient Subvolumes and Robust Occlusion Handling

Mohamed A. Helala and Faisal Z. Qureshi {mohamed.helala,faisal.qureshi}@uoit.ca

http://www.vclab.ca

1.Introduction

Figure Given a set of images I with a set of pixels \mathcal{P} . A pixel labeling problem $f: \mathcal{P} \longrightarrow \mathcal{L}$ assigns every pixel $(x, y) \in \mathcal{P}$ to a label $l \in \mathcal{L}$.

- $\mathcal{L} = \{l_1, \dots, l_m\}$
- Solutions should be spatially smooth, obey label costs and preserve edge discontinuities.
- Traditionally solved using Markov Random Fields (MRF's), however, Cost Volume Filtering (CF) [2] is a fast alternative.
- > CF is slow for a large label space. So, our objective is to accelerate CF.

3. Accelerated Cost Volume Filtering (ACF)

- Main Idea: Identify salient subvolumes in the cost volume and restrict filtering to the selected subvolumes.
- Building salient subvolumes:
- 1. Find matched SIFT keypoints (x, y).
- 2. Identify locations (x, y, l') within the cost volume.
- 3. For each salient location (x, y, l'), define a window $b_l(x, y)$ centered on each disparity l for $||l l'|| \le u$.
- **Pros**: 2.2 times speedup on Middleburry benchmark dataset, and up to 4 times on high resolution datasets.
- ✓ Cons: For some scenes, there exist a marginal increase in occluded pixels.

Disparity = 24.9

Disparity = 24.9

2.Cost Volume Filtering (CF)

- ➤ We are interested in pixel labeling for stereo where CF solves using the following steps:
- 1. Construct a cost volume C(x, y, l).
- 2. Filter the cost volume.
- 3. Apply Winner-Takes-All.
- 4. Identify pixels with incorrect labels (gaps).
- 5. Post-process gaps using Row Filling (RF).
- 6. Refine using Weighted Median Filtering.

4.Occlusion Handling (OH)

- ➤ Main Idea: Gaps in filtering methods have a large impact on the output accuracy. A better OH method than the ubiquitous RF strategy will improve the accuracy.
- We fill gaps while preserving edge discontinuities by building a set of compact superpixels and propagating labels using an inspired simulated annealing method.

5. Experimental Results

Results on three Middleburry benchmark datasets.

high resolution datasets.

Run-time vs. accuracy comparison.

Algorithm	Error thrreshold = 1 Error thrreshold = 0.5					
Migorithini	Rank	% error	Rank	% error		
CF+OH	25	5.22	30	12.9		
CLMF+OH	38	5.14	66	16.9		
ACF+OH (r = .3)	30	5.26	33	13		
ACF+OH (r = .2)	39	5.45	37	13.3		
CF+RF [2]	42	5.55	27	12.8		
CLMF+RF [1]	37	5.13	64	16.7		
ACF+RF(r=.3)	64	5.99	45	13.4		
ACF+RF(r=.2)	60	5.92	42	13.6		
VARMSOH [3]	116	8.17	21	11.8		

Quantitative evaluation on Middlebury benchmark datasets.

Algorithm	Tsukuba		Venus		Teddy		Cones					
	nocc	all	disk	nocc	all	disk	nocc	all	disc	nocc	all	disk
CF+OH	1.45	1.75	7.37	0.19	0.37	2.24	5.85	10	16.1	2.6	7.41	7.31
CLMF+OH	2.39	2.69	6.53	0.26	0.37	2.23	5.49	10.7	14.2	2.46	7.22	7.10
ACF+OH (r = .3)	1.45	1.75	7.37	0.19	0.37	2.24	5.94	10.1	16.4	2.61	7.43	7.23
ACF+OH (r = .2)	1.45	1.75	7.37	0.19	0.37	2.24	6.64	10.7	16.3	2.82	7.79	7.74
CF+RF [2]	1.51	1.85	7.61	0.2	0.39	2.42	6.16	11.8	16	2.71	8.24	7.66
CLMF+RF [1]	2.46	2.78	6.26	0.27	0.38	2.15	5.50	10.6	14.2	2.34	7.82	6.80
ACF+RF (r = .3)	1.51	1.85	7.61	0.2	0.39	2.42	6.94	11.3	18.5	3.38	8.49	9.3
ACF+RF (r = .2)	1.51	1.85	7.61	0.2	0.39	2.42	6.96	11.1	17.1	3.66	9.06	9.8
VarMSOH [3]	3.97	5.23	14.9	0.28	0.76	3.78	9.34	14.3	20	4.14	9.91	11.4

Stereo Evaluation results on Middlebury benchmark using error threshold equals 1.

Algorithm		1	Run-time (seconds)			
	Standard	High Resolution	Standard	High Resolution		
ACF(r=0.2)	1	-	16.117	-		
ACF(r=0.3)	14.39	26.1	18.717	159.82		
CF	13.6	26.9	28.2	505		
RF	-	-	0.11	1.4		
ОН	-	-	0.131	0.2		

A comparison of ACF and CF without any post-processing steps on Middlebury standard and high-resolution datasets. Runtimes for RF and OH post-processing steps are also provided.

6.Conclusions and Future Work

- This work develops accelerated cost volume filtering with occlusion handling for stereo disparity estimation.
- Our method outperforms state-of-the-art techniques: CF, CLMF and VARMSOH, on Middleburry datasets.
- ➤ We hope to apply our method to other discrete labeling problems, such as optical flow computation, etc.

7.References

- 1. Lu, J., Shi, K., Min, D., Lin, L., Do, M.: Cross-based local multipoint filtering. In CVPR (2012).
- filtering. In CVPR (2012).

 2. Hosni, A., Rhemann, C., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-
- volume filtering for visual correspondence and beyond. PAMI 25 (2013).

 3. Ben-Ari, R., Sochen, N.: Stereo matching with mumford-shah regularization and occlusion handling. PAMI 32 (2010).