Dynamic Programming

Fibonacchi Numbers

$$fib(n) = fib(n-1) + fib(n-2)$$

Write a program to find the nth fibonacchi number.

```
def Fibonacci(n):
   if n == 0: return 0
   if n == 1: return 1
   return Fibonacci(n-1) + Fibonacci(n-2)
```

Runtime analysis

$$T(n) = T(n-1) + T(n-2) + O(1)$$
$$T(n) = \Omega(2^{n/2})$$

What's going on?

Consider Fib(8)

That's a lot of repeated computation!

Fibonacchi Numbers

- How to avoid repeated computations?
 - Store already computed results

```
global fib[n] initialized to -1/-∞/NIL

def Fibonacci(n):
    if n == 0: return 0
    if n == 1: return 1
    if fib[n] not computed:
        fib[n] = Fibonacci(n-1) + Fibonacci(n-2)
    return fib[n]
```

Fibonacchi Numbers

- How to avoid repeated computations?
 - Start from smaller problems and proceed towards bigger ones.

```
def Fibonacci(n):
    local fib[n+1]
    fib[0] = 0
    fib[1] = 1
    for i -> 2 to n:
        fib[i] = fib[i-1] + fib[i-2]
    return fib[n]
```

What did we do?

Dynamic Programming!!!

Dynamic Programming

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.
- Usually, it is for solving optimization problems
 - E.g., shortest path, minimum/maximum profit, longest sequences
 - (Fibonacci numbers aren't an optimization problem, but they are a good example of DP anyway...)

Elements of dynamic programming

- 1. Optimal Sub-structure Property
 - Big problems break up into sub-problems.
 - The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 - Fibonacci:

$$fib(n) = fib(n-1) + fib(n-2)$$

Elements of dynamic programming

- 2. Overlapping Sub-Problem Property
 - The sub-problems overlap.
 - Fibonacci:
 - Both fib[i+1] and fib[i+2] directly use fib[i].
 - And lots of different fib[i+x] indirectly use fib[i].
 - This means that we can save time by solving a sub-problem just once and storing the answer.

Elements of dynamic programming

- 1. Optimal substructure.
 - Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.
- 2. Overlapping subproblems.
 - The subproblems show up again and again
- Using these properties, we can design a dynamic programming algorithm:
 - Keep a table of solutions to the smaller problems.
 - Use the solutions in the table to solve bigger problems.
 - At the end we can use information we collected along the way to find the solution to the whole thing.

Two ways to think about and/or implement DP algorithms

 Top-down Approach with Memoization Bottom-up Approach

```
global fib[n] initialized to -
1/-∞/NIL

def Fibonacci(n):
    if n == 0: return 0
    if n == 1: return 1
    if fib[n] not computed:
        fib[n] = Fibonacci(n-1) +
        Fibonacci(n-2)
    return fib[n]
```

Top-down Approach

- Think of it like a recursive algorithm.
 - To solve the big problem:
 - Recurse to solve smaller problems
 - Those recurse to solve smaller problems
 - etc...
- The difference from divide and conquer:
 - Keep track of what small problems you've already solved to prevent re-solving the same problem twice.
 - Aka, "memo-ization"

Top-down Approach

Top-down Approach

Bottom-up Approach

- Solve the small problems first
 - fill in fib[0],fib[1]
- Then bigger problems
 - fill in fib[2]
- . . .
- Then bigger problems
 - fill in fib[n-1]
- Then finally solve the real problem.
 - fill in fib[n]

Given

- A rod of length n
- A table of prices p_i for i = 1, 2, ..., n,
- Determine the maximum revenue r_n obtainable by cutting up the rod and selling all the pieces.
- For example,

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

- An optimal solution involving k pieces,
 - Each piece has length $i_1, i_2, i_3, \dots, i_k$
 - $n = i_1 + i_2 + i_3 + \cdots + i_k$
 - The optimal revenue, $r_n = p_{i_1} + p_{i_2} + \cdots + p_{i_k}$

- Once an initial cut is made,
 - The two resulting smaller pieces will be cut independently
 - Smaller instance of the rod-cutting problem
 - Optimal Sub-structure Property
 - Different pieces can be cut into same length pieces (on not)
 - Overlapping Sub-structure Property

- Assuming an initial cut is made,
 - $r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots r_{n-1} + r_1)$
- Further assuming the initial cut is always the leftmost cut,
 - A first piece followed by some decomposition of the remainder
 - First piece is not further divided only the remaining is decomposed
 - $r_n = \max(p_i + r_{n-i} : 1 \le i \le n)$

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max\{q, p[i] + \text{CUT-ROD}(p, n - i)\}

6 return q
```

Runtime $O(2^{n-1})$

Rod-cutting Problem (Top-down

```
Annroach
MEMOIZED-CUT-ROD(p, n)
1 let r[0:n] be a new array // will remember solution values in r
2 for i = 0 to n
  r[i] = -\infty
4 return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
1 if r[n] \geq 0
             // already have a solution for length n?
  return r[n]
3 if n == 0
  q = 0
  else q = -\infty
   for i = 1 to n // i is the position of the first cut
          q = \max\{q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r)\}
```

// remember the solution value for length n

r[n] = q

return q

```
BOTTOM-UP-CUT-ROD(p, n)

1 let r[0:n] be a new array // will remember solution values in r

2 r[0] = 0

3 for j = 1 to n // for increasing rod length j

4 q = -\infty

5 for i = 1 to j // i is the position of the first cut

6 q = \max\{q, p[i] + r[j-i]\}

7 r[j] = q // remember the solution value for length j

8 return r[n]
```


Reconstruct the choices that led to the optimal solution

- Store the choices that lead to the optimal solution
 - Store the optimal size i of the first piece to cut off when solving a subproblem of size j

```
EXTENDED-BOTTOM-UP-CUT-ROD(p,n)
1 let r[0:n] and s[1:n] be new arrays
r[0] = 0
3 for j = 1 to n
                 // for increasing rod length j
4 q = -\infty
for i = 1 to j // i is the position of the first cut
          if q < p[i] + r[j-i]
              q = p[i] + r[j-i]
           s[j] = i // best cut location so far for length j
8
       r[j] = q
                // remember the solution value for length j
9
   return r and s
10
```

```
PRINT-CUT-ROD-SOLUTION(p, n)

1 (r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)

2 while n > 0

3 print s[n] // cut location for length n

4 n = n - s[n] // length of the remainder of the rod
```

- $^{\circ}$ Given a chain of $^{\circ}$ matrices, $A_1, A_2, ..., A_n$
- Compute the product with standard multiplication algorithm
- Goal: Minimize the number of scalar multiplications
- · Example,
 - A_1, A_2, A_3 with dimensions 10 * 100, 100 * 5, 5 * 50
 - $((A_1, A_2), A_3)$ performs a total of 7500 scalar multiplication
 - $(A_1, (A_2, A_3))$ performs a total of 75000 scalar multiplication

- Parenthesizing resolves ambiguity in multiplication order
- Fully parenthesized chain of matrices
 - Either a single matrix
 - Or the product of two fully parenthesized matrix products, surrounded by parentheses
- Example,
 - $< A_1, A_2, A_3, A_4 >$ can be parenthesized in 5 distinct ways.
 - $(A_1, (A_2, (A_3, A_4))), (A_1, ((A_2, A_3), A_4)), ((A_1, A_2), (A_3, A_4)), ((A_1, (A_2, A_3)), A_4), (((A_1, A_2), A_3), A_4)$

- Given a chain of n matrices, $A_1, A_2, ..., A_n$
- Matrix A_i has dimensions $p_{i-1} * p_i$
- Goal: Fully parenthesize the product to minimize the number of scalar multiplications

Note: determine the order of multiplication not the product itself.

- Fully parenthesized product
 - Split the product into fully parenthesized subproducts
- Let, the first split occurs between kth and (k+1) st matrices

$$P(n) = \begin{cases} 1 & \text{if } n = 1\\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2 \end{cases}$$

How many possible ways?

 $\Omega(2^n)$

Let, m[i,j] = The minimum number of scalar multiplications needed to compute the matrix $A_{i:j}$

• We need to find m[1, n]

- The optimal parenthesization
 - Split the product $A_{i:j}$ between A_k and A_{k+1} for some value of $i \le k < j$

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1} * p_k * p_j$$

• We need to consider all such splits, i.e., all values of ${\bf k}$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j : i \le k < j\} & \text{if } i < j \end{cases}$$

- The optimal parenthesization
 - Split the product $A_{i:j}$ between A_k and A_{k+1} for some value of $i \le k < j$

$$m[i,j] = m[i,k] + m[k,+1 j] + p_{i-1} * p_k * p_j$$

• We need to consider all such splits, i.e., all values of ${\bf k}$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j : i \le k < j\} & \text{if } i < j \end{cases}$$

• How many such $A_{i:j}$ subproblems? $\Theta(n^2)$

```
RECURSIVE-MATRIX-CHAIN(p, i, j)
  if i == j
       return ()
  m[i,j] = \infty
4 for k = i to j - 1
       q = \text{RECURSIVE-MATRIX-CHAIN}(p, i, k)
            + RECURSIVE-MATRIX-CHAIN(p, k + 1, j)
            + p_{i-1} p_k p_j
     if q < m[i, j]
           m[i,j]=q
   return m[i, j]
```

```
MATRIX-CHAIN-ORDER (p, n)
   let m[1:n, 1:n] and s[1:n-1, 2:n] be new tables
2 for i = 1 to n
                                    // chain length 1
   m[i,i]=0
  for l = 2 to n
                                   # l is the chain length
       for i = 1 to n - l + 1 // chain begins at A_i
           j = i + l - 1 // chain ends at A_i
6
           m[i,j] = \infty
           for k = i to j - 1 // try A_{i:k}A_{k+1:j}
8
               q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
9
               if q < m[i, j]
10
                   m[i, j] = q // remember this cost
11
                   s[i, j] = k // remember this index
12
```

13 **return** m and s

Matrix Chain Multiplication

L	A ₁	A_2	A_3	A_4	A_5	A_6	A_1	Az	A_3	Å ₄	A_5	A ₆	A_1	A ₂	A_3	A_4	A;	A ₆	A ₁	A ₂	A_3	A_4	A_5	A_6	A_1	Az	A_3	A ₄	A_5	A ₆	A ₁	A ₂	A_3	A_4	A;	A_6
3)†35	35*15	15*5	5*10	10 * 20	20 * 25	30 * 35	35 * 15	15+5	5*10	10 * 20	20*25	30 + 35	35*15	15*5	5*10	10 * 20	20 * 25	30 * 35	35 * 15	15*5	5*10	10 * 20	20 * 25	30 * 35	35 * 15	15+5	5*10	10 * 20	20*25	30 † 35	35 * 15	15*5	5*10	10 * 20	20 * 25
		30) ,	* 3	5			3	5	* 1	15			•	15	*	5			ļ	5 *	10)			1	0 ;	* 2	0			2	0 '	' 2	5	
		4)			2				1				_				6														

		ļ		ļ		
j\i	1	2	3	4	5	6
1	0					
2	15750	0				
3	7875	2625	0			
4	9375	4375	750	0		
5	11875	7125	2500	1000	0	
6	15125	10500	5375	3500	5000	0

```
m[2, 5] = min(
• m[2,2] + m[3, 5] + 35*15*20 = 13000,
• m[2,3] + m[4, 5] + 35*5*20 = 7125,
• m[2,4] + m[5, 5] + 35*10*20 = 11375
)
```

Elements of dynamic programming (Revisit)

- 1. Optimal substructure.
 - Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.

- 2. Overlapping subproblems.
 - The subproblems show up again and again

Optimal Substructure Property

- ^ Solution to sub-problems are included in the optimal solution
- Rod-cutting
 - Solution to smaller pieces are also part of the solution to the entire rod
- Matrix Chain Multiplication
 - Solution to $A_{i:k}$ and $A_{k+1:j}$ is exactly include in the solution to $A_{i:j}$
- How to prove this?
 - Cut-and-paste

- A strand of DNA consists of a string of molecules called bases
 - Adenine, Cytosine, Guanine, and Thymine
 - ACGT

- S1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
- S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA

- A strand of DNA consists of a string of molecules called bases
 - Adenine, Cytosine, Guanine, and Thymine
 - ACGT

- Given a sequence $X = \langle x_1, x_2, ..., x_n \rangle$
 - Another sequence $Z = \langle z_1, z_2, ..., z_n \rangle$ is a subsequence of X
 - If there exists a strictly increasing sequence $< i_1, i_2, \ldots, i_n >$ indices of X such that for all $j=1,2,\ldots,k,\ x_{i_j}=z_j$

- A strand of DNA consists of a string of molecules called bases
 - Adenine, Cytosine, Guanine, and Thymine
 - ACGT

- Given two sequences X and Y
 - A sequence Z is a common sub-sequence if Z is a subsequence of both X and Y

Goal: find a maximum-length common subsequence of X and Y.

Need to consider all subsequences

- How many subsequences of X?
 - 2ⁿ

- Given a sequence $X = \langle x_1, x_2, ..., x_n \rangle$
 - The *ith* prefix of *X* is $X_i = \langle x_1, x_2, ..., x_i \rangle$

Theorem 14.1 (Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$ and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$ and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1} .

Let c[i,j] = the length of an LCS of the sequences X_i and Y_j

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ \max\{c[i, j-1], c[i-1, j]\} & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

```
LCS-LENGTH(X, Y, m, n)
 1 let b[1:m,1:n] and c[0:m,0:n] be new tables
 2 for i = 1 to m
        c[i,0] = 0
 4 for j = 0 to n
    c[0, j] = 0
   for i = 1 to m // compute table entries in row-major order
        for j = 1 to n
 8
            if x_i == y_i
                 c[i, j] = c[i-1, j-1] + 1
 9
                 b[i, i] = "\\\"
10
            elseif c[i - 1, j] \ge c[i, j - 1]
11
                 c[i,j] = c[i-1,j]
12
                 b[i,j] = "\uparrow"
13
            else c[i, j] = c[i, j - 1]
14
                 b[i, i] = "\leftarrow"
15
    return c and b
```

	j	0	1	2	3	4	5	6
i	$x_i \setminus y_j$		В	D	С	Α	В	Α
0		0	0	0	0	0	0	0
1	Α	0	0	0	0	1		
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i	$x_i \setminus y_j$		В	D	С	Α	В	Α
0		0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	С	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

- How similar are two strings?
 - ocurrance vs occurrence

- Edit distance
 - Gap penalty and mismatch penalty
 - Cost is sum of all penalties

- Given two sequences
 - $x_1 x_2 ... x_n$ and $y_1 y_2 ... y_n$
 - An alignment is a set of ordered pairs (x_i, y_j) such that each character appears in at most one pair and there are no crossings.
 - Crossing: (x_i, y_j) and $(x_i, y_{j'})$ cross if i < i' but j > j'

- Given two sequences
 - $x_1 x_2 ... x_n$ and $y_1 y_2 ... y_n$
- The cost of an alignment M is,

$$= \sum_{(x_i, y_j) \in M} cost_{mismatch} + \sum_{\substack{x_i \\ unmatched}} cost_{gap} + \sum_{\substack{y_j \\ unmatched}} cost_{gap}$$

- Given two sequences
 - $x_1 x_2 ... x_n$ and $y_1 y_2 ... y_n$
 - Goal: Find minimum cost alignment of the two sequences

- Given two sequences
 - $x_1 x_2 ... x_n$ and $y_1 y_2 ... y_n$
 - $OPT(i,j) = minimum cost of aligning x_1x_2 ... x_i and y_1y_2 ... y_j$

- $\sim OPT(i,j) = \text{minimum cost of aligning } x_1x_2 \dots x_i \text{ and } y_1y_2 \dots y_j$
 - Case 1: OPT(i,j) matches (x_i,y_j)
 - Pay mismatch for (x_i, y_j) + min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{j-1}$
 - $cost_{mismatch}$ + OPT(i-1, j-1)

- $\sim OPT(i,j) = \text{minimum cost of aligning } x_1x_2 \dots x_i \text{ and } y_1y_2 \dots y_j$
 - Case 2: OPT(i, j) leaves x_i unmatched
 - Pay gap for x_i + min cost of aligning $x_1x_2 \dots x_{i-1}$ and $y_1y_2 \dots y_j$
 - $cost_{gap}$ + OPT(i-1, j)

- $\sim OPT(i,j) = \text{minimum cost of aligning } x_1x_2 \dots x_i \text{ and } y_1y_2 \dots y_j$
 - Case 3: OPT(i,j) leaves y_i unmatched
 - Pay gap for y_j + min cost of aligning $x_1x_2 \dots x_i$ and $y_1y_2 \dots y_{j-1}$
 - $cost_{mismatch}$ + OPT(i, j-1)

- $OPT(i,j) = minimum cost of aligning <math>x_1x_2 ... x_i$ and $y_1y_2 ... y_j$
 - Case 1: OPT(i,j) matches (x_i,y_i)
 - $cost_{mismatch}$ + OPT(i-1, j-1)
 - Case 2: OPT(i,j) leaves x_i unmatched
 - $cost_{mismatch}$ + OPT(i-1, j)
 - Case 3: OPT(i,j) leaves y_i unmatched
 - $cost_{mismatch}$ + OPT(i, j-1)

 $\circ OPT(i,j) = minimum cost of aligning <math>x_1x_2 \dots x_i$ and $y_1y_2 \dots y_j$

$$OPT(i,j) = \left\{ egin{array}{ll} j\delta & ext{if } i=0 \ i\delta & ext{if } j=0 \ \end{array}
ight. \ \left\{ egin{array}{ll} lpha_{x_iy_j} + OPT(i-1,j-1) \ \delta + OPT(i-1,j) \ \delta + OPT(i,j-1) \end{array}
ight. \end{array}
ight.$$
 otherwise

SEQUENCE-ALIGNMENT $(m, n, x_1, ..., x_m, y_1, ..., y_n, \delta, \alpha)$

```
FOR i = 0 TO m
    M[i,0] \leftarrow i \delta.
FOR j = 0 TO n
    M[0,j] \leftarrow j\delta.
FOR i = 1 TO m
    FOR j = 1 TO n
            M[i,j] \leftarrow \min \{ \alpha_{x_i y_j} + M[i-1,j-1], 

\delta + M[i-1,j],  already computed \delta + M[i,j-1] \}.
```

- Given,
 - n items where item i has value $v_i > 0$ and weighs $w_i > 0$
 - Value of a subset of items = sum of values of individual items.
 - Knapsack has weight limit of W
- Goal. Pack knapsack so as to maximize total value of items taken.
 - Example, {1, 2, 5} yields 35\$
 while {3, 4} yields 40\$.

i	v_i	w_i
1	\$ 1	1 kg
2	\$6	2 kg
3	\$18	5 kg
4	\$22	6 kg
5	\$28	7 kg

knapsack instance (weight limit W = 11)

- OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w
- Goal: Find OPT(n, W)

• OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w

- Case 1: Don't pick item i
 - OPT(i, w) selects best of $\{1, 2, ..., i-1\}$ subject to weight limit w
- Case 2: Pick item i
 - OPT(i, w) selects best of $\{1, 2, ..., i-1\}$ subject to weight limit $w-w_i$
 - Collect value v_i

• OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w

- Case 1: Don't pick item i
 - OPT(i, w) = OPT(i 1, w)
- Case 2: Pick item i
 - $OPT(i, w) = v_i + OPT(i 1, w)$

 \circ OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w

$$OPT(i, w) \ = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \big\{ \ OPT(i-1, w), \ v_i + OPT(i-1, w-w_i) \big\} & \text{otherwise} \end{cases}$$

 $KNAPSACK(n, W, w_1, ..., w_n, v_1, ..., v_n)$

FOR
$$w = 0$$
 TO W

$$M[0, w] \leftarrow 0.$$

FOR i = 1 TO n

For
$$w = 0$$
 to W

FOR
$$w = 0$$
 TO W

IF $(w_i > w)$ $M[i, w] \leftarrow M[i-1, w]$.

previously computed values

$$M[i, w] \leftarrow \max \{ M[i-1, w], v_i + M[i-1, w-w_i] \}.$$

RETURN M[n, W].

OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w

Reference

- Dynamic Programming
 - CLRS 4th Ed. Chapter 14 (14.1 14.4)
 - KT Sections 6.4 (The Knapsack Problem), 6.6