

Correction to Analysis of the Molecular Weight Distribution of Petroleum Asphaltenes Using Laser Desorption—Mass Spectrometry [Energy Fuels 2004, 18, 1405. DOI: ef034083r]. Ryuzo Tanaka,*,* Shinya Sato,* Toshimasa Takanohashi,* Jerry E. Hunt,* and Randall E. Winans*

[†]Central Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura 299-0293, Japan, [‡]Institute for Energy Utilization, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba 305-8569, Japan, and [§]Chemistry Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

Page 1406. Table 1 should be and not as originally published.

Table 1. Properties of Intact Asphaltenes and Their Sub-fractions' Yields

sample	MY	KF	IL
yields in VR (wt %)	24.9	14.2	6.3
elemental analysis (wt %)			
C	82.0	82.2	83.2
Н	7.5	7.6	6.8
N	1.3	0.9	1.4
S	7.1	7.6	5.9
O	1.2	1.1	1.5
metals (wt ppm)			
Ni	390	200	390
V	1800	550	1200
atomic ratio			
H/C	1.09	1.10	0.97
N/C	0.01	0.00	0.01
S/C	0.07	0.08	0.06
O/C	0.01	0.01	0.01
$M_{\rm n}$ (VPO)	4000	4000	2400
$f_{\rm a}$ (13C NMR)	0.53	0.51	0.54
subfraction yields (wt %)			
Fr-1	17.5	16.7	16.9
Fr-2	12.7	10.8	17.2
Fr-3	13.1	10.4	17.3
Fr-4	13.4	10.3	16.2
Fr-5	12.3	12.9	14.5
Fr-6	31.0	38.8	18.0

DOI: 10.1021/ef9015679 Published on Web 01/25/2010