Flat modules.

it way be that

N=M PH N & K & M & K

 $\mathbb{Z} \subseteq \mathbb{Q}$ but $\mathbb{Z} \otimes_{2} \mathbb{Z}_{1} = \mathbb{Z}_{2}$ and $\mathbb{Q} \otimes_{2} \mathbb{Z}_{2} = 0$.

The module K is called flat if

 $0 \longrightarrow N \otimes k \longrightarrow M \otimes k$ is exact whenver $0 \longrightarrow N \longrightarrow M$ is exact.

1): R is a flat module since

0 -> N®R -> M®R

112 113

U -> N -> M

@: If Ki, Kz weflat them K. & Kz is flat.

Proof: let 0 -> N -> M be exact. Then

0 -> N \otimes K_1 -> M \otimes K_2 -> M \otimes K_2

ne exact. Then

 $0 \longrightarrow N \otimes (K_1 \oplus K_2) \longrightarrow N \otimes (K_1 \otimes K_2)$ $(N \otimes K_1) \oplus (N \otimes K_2) \qquad (M \otimes K_1) \oplus (M \otimes K_2)$ $(M \otimes K_1) \oplus (M \otimes K_2) \qquad (M \otimes K_1) \oplus (M \otimes K_2)$

3 conversely, if K, OKz is flat then K, , Kz areflat.

4) Yn, R" is flut. Also, any direct summand of R is flut.

(5) if K1, K2 are flat than K1 & K2 is flat.

B ~ C ~ O exact

B&K 401k C & K - O leact ?

Yes. proof: $\forall u \otimes v \in C \otimes K$, $u = \Psi(w)$ for some w, So $\Psi \otimes I_K(w \otimes v) = u \otimes v$.

So haveing of Yelk so Yalk is suj.

Thuring: Let $O \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow O$ be exact.

Thur $A \otimes K \xrightarrow{\psi_{\emptyset}|_{K}} B \otimes K \xrightarrow{\psi_{\emptyset}|_{K}} C \longrightarrow O$ is exact $\forall K$.

Proof Juch, $v \in K$, $\Psi \otimes I_k (\Psi \otimes I_k (u \otimes v)) = \Psi (\Psi (u)) \otimes V = 0$ So Im $(\Psi \otimes I_k) \subseteq \text{Ker} (\Psi \otimes I_k)$.

So we have a surj. homism $(B \otimes K) / \Psi_{\text{old}}(A \otimes K) \longrightarrow C \otimes K$

Construct an inverse: Let us ve cox.

Find weB s.t. $\Psi(\omega) = u$.

define $\gamma(u \otimes v) = u \otimes v$ mod $\operatorname{Im}(\varphi_{\otimes |_{\mathbf{k}}}) \in (B \otimes \mathsf{K}) / \operatorname{Im}(\varphi_{\otimes |_{\mathbf{k}}})$ $\gamma(\mathsf{k}) = \mathsf{k}$ is well-defined. If $\gamma(\mathsf{k}) = \gamma(\mathsf{k}) = \mathsf{k}$ then $\gamma(\mathsf{k}) = \mathsf{k}$ and $\gamma(\mathsf{k}) = \mathsf{k}$. $\gamma(\mathsf{k}) = \mathsf{k}$ and $\gamma(\mathsf{k}) = \mathsf{k}$ then $\gamma(\mathsf{k}) = \mathsf{k}$ and $\gamma(\mathsf{k}) = \mathsf{k}$. let X, X2 be two certegories.

 $Tor_{o}(\cdot, k): R-Mod \longrightarrow R-Mod$ function. $A \longmapsto A \otimes K$ $p \longmapsto \Psi \otimes 1_{k}$ $A \otimes K \longrightarrow B \otimes K.$

Det: A functor's called right exact if $\forall \text{ exact } O \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow O$ the sequence $F(A) \longrightarrow F(B) \longrightarrow F(C) \longrightarrow O$ is exact.

(toro(:,K) is right exact.)

F is left exact i'f

$$0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(c)$$
 is exact.

Fis exact if

$$0 \rightarrow F(A) \longrightarrow F(B) \longrightarrow F(C) \rightarrow 0$$
 is exact.

K is flat (Toro(1,K) is an exact functor.

K: module: Functors:
$$\text{Hom}(K, \cdot)$$
: $A \longmapsto \text{Hom}(K, A)$.
 $(\Psi: A \rightarrow B) \longmapsto ((\Psi: K \rightarrow A) \longmapsto (\Psi \circ \Psi: K \rightarrow B))$

Left-exact.

Functor
$$Hom(\cdot, K): A \longmapsto Hom(A, K)$$

$$(\Psi:A \rightarrow B) \longmapsto ((\Psi:B \rightarrow K) \longmapsto (\Psi \circ \Psi:A \longrightarrow K))$$

$$\mathsf{Bad!}$$

A -> B goes to Hom(B,K) -> Hom(A,k)!

Missis a Contravariant functor

(the earlier ones were covariant).

for contravariant F:

Page 5

 $F(\Psi \circ \Psi) = F(\Psi) \circ F(\Psi).$

Hom (·, K) is contravoriant functor.

Let R be an Integral domain.

This if K is flat then K is torsion-free.

Posof Let vek be a torsion ett: av=0, a#0.

Let F = (R\\\03) R (field of fractions of R).

Consider $O \rightarrow R \rightarrow F \text{ and } O \rightarrow R \otimes K \rightarrow F \otimes K$.

This is not injection since $1 \otimes V \mapsto 1 \otimes V = \frac{1}{\alpha} \otimes \alpha V = 0$

Criterion: Kisflut iff Videal I in R,

I⊗K → R⊗K≅K i's an injection.

 ψ

If R is PID then K is flat \ K is torsion free.

Theorem if R is an integral domain Then its field of fractions is flat.