Security of Information System

Basic Encryption and Decryption

Dr. Kasun De Zoysa

Department of Communication and Media Technologies
University of Colombo School of Computing
University of Colombo
Sri Lanka

Objectives:

Basic Encryption and Decryption

- Understand the concept of encryption/decryption
- Describe the different types of ciphers
- Identify the characteristics of good cipher

Basic Encryption and Decryption

1.1 Terminology and Background

- Encryption, Decryption and Cryptosystems
- Plain Text and Cipher Text
- Encryption Algorithms
- Cryptanalysis

Basic Concept

P clear (plain) text, message-readable (intelligible) information

C ciphertext-encrypted information

E encryption (enciphering)-transforming clear text into ciphertext

D decryption (deciphering)-transforming ciphertext back into plaintext

Cipher Algorithm

Encrypting algorithm: a mathematical function having the following form:

C = E (P, Ke) where Ke encryption key

Decryption algorithm: a mathematical function having the following form:

P = D(C, Kd) where Kd encryption key

Cryptanalysis

Attacker (cryptanalysis, intruder) - person that tries to discover C (compromise the encryption algorithm)

What the Cryptanalyst Has to Work With

- Ciphertext only
- •Full or partial plaintext
- •Ciphertext of any plain text
- •Algorithm of ciphertext

Types of Cryptanalytic Attacks

Ciphertext only

only knows encryption algorithm and ciphertext, goal is to identify plaintext

Known plaintext

know encryption algorithm and one or more plaintext & ciphertext pairs formed with the secret key

Chosen plaintext

know encryption algorithm and can select plaintext and obtain ciphertext to attack cipher

Types of Cryptanalytic Attacks

Chosen ciphertext

know encryption algorithm and can select ciphertext and obtain plaintext to attack cipher

Chosen text

know encryption algorithm and can select either plaintext or ciphertext to en/decrypt to attack cipher

Brute Force Search

- Always possible to simply try every key
- Most basic attack, proportional to key size
- Assume either know/recognize plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 10 ⁶ Decryption/µs
32	$2^{32} = 4.3 \times 10^9$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	10 hours
128	$2^{128} = 3.4 \times 10^{38}$	$5.4 \times 10^{18} \text{ years}$
168	$2^{168} = 3.7 \times 10^{50}$	$5.9 \times 10^{30} \text{ years}$

Basic Encryption and Decryption

1.2 Introduction to Ciphers

- Monoalphabetic Substitutions such as the
- Caesar Cipher
- Cryptanalysis of Monoalphabetic Ciphers
- •Polyalphabetic Ciphers such as Vigenere
- **Tableaux**
- Cryptanalysis of Polyalphabetic Ciphers
- •Perfect Substitution Cipher such as the Vernam
- Cipher
- Stream and Block Ciphers

Machine ciphers

• The Enigma Rotor Machine (WW2)

The Caesar Cipher

Plain Text : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cipher Text: DEFGHIJKLMNOPQRSTUVWXYZABC

Monoalphabetic Substitutions

Plain Text : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cipher Text: KEYGHIJKLMNOPQRSTUVWXYZABC

Letter Frequency

Polyalalphabetic Substitutions

Table for Odd Positions

Plain Text: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher Text: ADGJNOSVYBEHKNQTWZCFILORUX

Table for Even Positions

Plain Text : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cipher Text: NSXCHMRWBGIQVAFKPUZEJOTYDI

Plain Text : SSIBL

Cipher Text: czysh

The Perfect Substitution Cipher

One Time Pad

- Recipient need identical pad
- Pad position should be synchronized
- •Plain text length = Key length

The Vernam Cipher

Plain Text : V E R NA M C I P H E R

Numeric Equivalent: 21 4 17 13 0 12 2 8 15 7 4 17

+Random Number : 76 48 16 82 44 3 58 11 60 5 48 88

= Sum : 97 52 33 95 44 15 60 19 75 12 52 105

=Mod 26 : 19 0 7 17 18 15 8 19 23 12 0 1

Cipher text : t a h r s p l t x m a b

Binary Vernam Cipher

Plain Text : 101000111001101

+Bandom Stream: 010110101110101

Cipher text : 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0

The One-Time Pad

- •If a truly random key as long as the message is used, the cipher will be secure
- Called a One-Time pad
- •Has unconditional security:
- •ciphertext bears no statistical relationship to the plaintext since for **any plaintext** & **any ciphertext** there exists a key mapping one to other
- •Can only use the key **once**
- •Have problem of safe distribution of key

Transpositions (Permutation)

Columnar Transposition

c1	c2	c3	с4	с5
с6	с7	с8	с9	c10
c11	c12	etc.		

Cipher text formed by _____ c1 c6 c11 c2 c7 c12 c3 c8 ...

Block vs Stream Ciphers

- •Block ciphers process messages in blocks, each of which is then en/decrypted
- •Like a substitution on blocks of characters
 - •64-bits or more
- •Stream ciphers process messages a bit or byte at a time when en/decrypting
- •E.g. Vernam cipher, one time pad
- •Many current ciphers are block ciphers

Stream Cipher

Advantage

- Speed of transformation
- ·Low error propagation

Disadvantage

- Low diffusion
- •Susceptibility to malicious insertion and modifications

Cipher Cipher text(F) Plain text (A)

Block Cipher

Disadvantage

- •Slowness of encryption
- Error propagation

Advantage

- Diffusion
- •Immunity to insertion

 $All\ rights\ reserved.\ No\ part\ of\ this\ material\ may\ be\ reproduced\ and\ sold.$

Block Ciphers

- Substitution-Permutation Ciphers
 - Product cipher
 - S-P networks is the basis of modern symmetric cryptography
- Substitution box (S-Box)
 - We have an input as a n bits word
 - The output will be a n bit word that the input has been substituted for.

Basic Encryption and Decryption

1.3 Characteristics of 'Good' Ciphers

- Shannon Characteristics
- Confusion and Diffusion
- •Information Theoretic Tests
- Unicity Distance

Characteristic of "Good" Cipher

Shannon Characteristics - 1949

- The amount of secrecy needed should determine the amount of labor appropriate for encryption and decryption
- •The set of keys and the encryption algorithm should be free from complexity
- •The implementation of the process should be as simple as possible
- •Errors in the ciphering should not propagate and cause corruption of further information in the message
- •The size of enciphered text should be no larger than the text of the original message

Kerckhoff's Principle

The security of the encryption scheme must depend only on the secrecy of the key and not on the secrecy of the algorithms.

Reasons:

- •Algorithms are difficult to change
- •Cannot design an algorithm for every pair of users
- •Expert review
- •No security through obscurity!

Confusion and Diffusion

Goal: cipher needs to completely obscure statistical properties of original plaintext (like a one time pad)

Confusion

Confusion

The interceptor should not be able to predict what changing one character in the plaintext will do to the ciphertext

UCSC kasun@ucsc.cmb.ac.lk

28

Diffusion

Diffusion

The characteristics of distributing the information from single plaintext letter over the entire ciphertext

