会津合宿 2017 Day3 F - 掛け算は楽しい -

原案:鈴木

問題文:栗田

解答:鈴木、栗田、杉江

解説:鈴木

2017/09/20

問題概要

問題

- 長さ N の実数列 $S=(s_1,s_2,\ldots,s_N)$ と実数 K が与えられる
- 連続する部分列 $P=(s_\ell,s_{\ell+1},\ldots,s_r)$ $(l\leq r)$ で, $\Pi_{i=\ell}^r s_i\leq K$ を満たすものの中で.最長のものを求めよ
- 無い場合は0を出力

制約

- $1 \le N \le 100,000$
- $1 \le K \le 1,048,576$
- $0.0 \le s_i \le 2.0$

まず、やらなければならないこと

自明なケース

 $s_i=0$ なる i $(1 \le i \le N)$ があるならば、答えは N

log を取る

- 純粋に掛け算をしてしまうとオーバーフローする
- そこで,各 s_i $(1 \leq i \leq N)$ について, $s_i' = \log s_i$ とした数列 $S' = (s_1', s_2', \ldots, s_N')$ 上で問題を考える
 - 自明なケースで $s_i = 0$ なる i はないので log を取れる
- $t, K' = \log K$ とする
- すると, $\Pi_{i=\ell}^r s_i \leq K$ の代わりに $\sum_{i=\ell}^r s_i' \leq K'$ で考えることができ,オーバーフローしない

誤解法例1

- 全探索
 - $\ell \leq r$ であるインデックスの組 (ℓ,r) をすべて試す
 - ullet $O(N^2)$ $ilde{ t c}$, ${ t C}$ ${ t R}$ ${ t L}$ ${ t E}$

誤解法例2

- しゃくとり法
 - $\ell=0, r=0, ans=0$ から初めて $l\leq r$ であるように管理
 - $\sum_{i=\ell}^{r} s_i' \leq \log K'$ である間 $r \leftarrow r+1$
 - $ans \leftarrow \max\{ans, r-\ell+1\}$ としたのち $\ell \leftarrow \ell+1$ とする
- O(N) なので TLE はしない
- 目的値に単調性 (今回は広義単調増加) がないと正しくない
 - $0.0 \le s_i \le 2.0$ という制約から s_i' は正にも負にもなりうる
 - よって、足し算が広義単調増加でないため WA

とりあえずやること

累積和

- $imos[x] = \sum_{i=1}^{x} s_i'$ となるような配列 imos を作る
 - $imos[0] \leftarrow 0$
 - $imos[i] \leftarrow imos[i-1] + s'_i \ (i=1,\ldots,N)$
- O(N) で生成可能
- $\sum_{i=\ell}^r s_i' = imos[r] imos[l-1]$ となる性質を持つ
- ※親しみやすく (?) するために imos を使っています

方針

- 各 ℓ $(1 \le \ell \le N)$ について, $\sum_{i=\ell}^r s_i' \le K'$ を満たす最大の $r(\ge \ell)$ を高速に見つける
 - imos の性質を用いて $\sum_{i=\ell}^r s_i' \leq K'$ を変形すると

$$imos[r] \le K' + imos[l-1]$$
 (1)

- そこで、imos を用いて (1) を満たす最大の r を求める
- ところで、imos は単調性を満たさないので二分探索は使えない
- ullet かといって,線形探索をすると $O(N^2)$ 解となり,これは TLE

解決策

二分探索を使えるように imos を変形

- $i < j \ (1 \le i, j \le N)$ について,imos[i] > imos[j] ならば i が r として選ばれることはない
- つまり、以下のような配列 imos' 上で考えても答えは同じ
 - $imos'[i] \leftarrow \min\{imos[i], imos[i+1], \dots, imos[N]\}$
 - *imos'* は単調性を満たす
- imos' は累積和と似たように計算可能
 - $imos'[i] \leftarrow min\{imos[i], imos'[i+1]\} \ (i = N-1, N-2, ..., 0)$
 - 計算量は O(N)

想定解法まとめ

- imos を計算: O(N)
- imos'を計算: O(N)
- 各 ℓ $(1 \le \ell \le N)$ について, $imos'[r] \le K' + imos[l-1]$ となる最大の r を計算
 - C++での例
 - upper_bound $(imos'.begin(),imos'.end(),K'+imos[l-1])-\ell-1$
 - 計算量は O(log N)
- 全体で O(N log N)

Writer 解

- 栗田 (C++, 32 行)
- 鈴木 (C++, 38 行) (python, 42 行)
- 杉江 (C++, 79 行) ※ imos' を作る代わりに Segment Tree を使用した別解

提出状況

First AC

- Onsite: acpc_ufk (171 min)
- Online: pekempey (57 min)

正答率

7 / 35 (20.00%)