無題-群論-001

itmz153

2018年3月17日

とある会話

K 氏「任意のアーベル群 G(S,**) に対して $a**b=abc(c\in S)$ としたとき (S,**) も群になるやんけ! *1 」

M氏「証明を*2」

:

群構造

群の定義

群とは、集合と<u>適切</u>な演算の対である。すなわち集合を G、演算を ϕ とすれば、 (G,ϕ) であり、演算について次の公理 γ_1,γ_2 を満たせば (G,ϕ) を群という。演算は 2 変数の写像、 $G\times G\to G$ である。

 $\gamma_1 : \forall x, y, z \in G[\phi(\phi(x, y), z) = \phi(x, \phi(y, z))]$

 γ_2 : $\exists e \in G[\forall g \in G[\phi(g,e) = \phi(e,g) = g] \land \forall g \in G, \exists u \in G[\phi(g,u) = \phi(u,g) = e]]$

 γ_1 は演算の結合性, γ_2 は、単位元の存在と逆元の存在性を述べている。今後、単位元は e と書き、 $x \in G$ の逆元は g^{-1} と書くことにする。今後毎回 ϕ を書くとややこしいので、代

わりに括弧を省き中置演算子 * を使うことにする。また,群 (G,*) のことを,ただ単に群G と書くことがある。その場合,先に述べた適切な演算が G に入っていると思えば良い。

とある会話について

(G,*) を群とする。ここで、 $c \in G$ を固定して、

$$Gc = \{g * c \mid g \in G\}$$

なる集合を考える. G は群なので Gc も群である(表示は違うが同じ演算が自然に入ると思えば良い). ここで、群 Gc に次のような演算 $\langle -, - \rangle_c$ を導入する.

$$\langle -, - \rangle_c : Gc \times Gc \longrightarrow Gc$$

$$\langle x, y \rangle_c \longmapsto (x * y) * c$$

実は,Gc = G(集合としても(元の演算を考えれば)群として等しい。)なので,次を考えることと等価である.

$$\langle -, - \rangle_c : G \times G \longrightarrow G$$

$$\langle x, y \rangle_c \longmapsto x * y * c$$

この演算が,群の演算の公理 γ_1, γ_2 を満たしているか確認していこう。演算が閉じていることは明らか。はじめに,結合法則がなりたつか見ていこう。

$$\langle \langle x, y \rangle_c, z \rangle_c = \langle (x * y) * c, z \rangle_c$$

= $x * y * c * z * c$
- ...

なんだかこのままだと何もできそうにないので、c を群の中心 Z(G) から取ってこよう。 群の中心とは、 $\{x \in G \mid \forall g[g*x=x*g]\}$ のことである。群の中心は G の正規部分群となるなど面白い性質がある(確認せよ)。

今後, $c \in Z(G)$ とする.

$$\langle \langle x, y \rangle_c, z \rangle_c = x * y * c * z * c$$

$$= x * y * z * c * c$$

$$= x * \langle y, z \rangle * c$$

$$= \langle x, \langle y, z \rangle_c \rangle_c$$

無事に新しく導入した演算は結合法則を満たすことがわかった。次に、単位元の存在性を 確認しよう。

$$\exists e, \forall g [\langle g, e, \rangle_c = \langle e, g \rangle_c = g]$$

いま、単位元の候補として $e' := c^{-1}$ と置こう。任意の g に対して、

$$\langle g, e' \rangle_c = \langle g, c^{-1} \rangle_c$$

= $g * c^{-1} * c = g$

$$\langle e', g \rangle_c = \langle c^{-1}, g \rangle_c$$

= $c^{-1} * g * c = g$

次に逆元について考察する.

$$\forall g, \exists u [\langle g, u \rangle_c = \langle u, g \rangle_c = e' = c^{-1}]$$

$$\langle g, u \rangle_c = \langle g, g^{-1} * c^{-2} \rangle_c$$
$$= g * g^{-1} * c^{-2} * c$$
$$= c^{-1} = e'$$

$$\langle u, g \rangle_c = \langle g^{-1} * c^{-2}, g \rangle_c$$
$$= g^{-1} * c^{-2} * g * c$$
$$= c^{-1} = e'$$

よって、 $e':=c^{-1}$ は単位元の公理を満たす。故に、新たな群の演算 \langle , \rangle_c は演算の公理 γ_1,γ_2 を満たしているので、 $c\in Z(G)$ なら (G,\langle ,\rangle_c) は群である。

さて, この群はなんであろうか?