Новосибирский Государственный Университет

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

Курс "ЭВМ и переферийные устройства"

Лабораторная работа №2

«ИЗУЧЕНИЕ ОПТИМИЗИРУЕЩЕГО КОМПИЛЯТОРА»

Выполнил: Пятаев Егор, гр. 15206 Преподаватель: Городничев Максим Александрович

Цели работы

- 1. Изучение основных функций оптимизирующего компилятора, и некоторых примеров оптимизирующих преобразований и уровней оптимизации.
- 2. Получение базовых навыков работы с компилятором GCC.
- 3. Исследование влияния оптимизационных настроек компилятора GCC на время исполнения программы.

Вариант задания

Алгоритм вычисления функции e^{x} с помощью разложения в ряд Маклорена по первым N членам этого ряда.

Таблица зависимости времени выполнения программы с различными уровнями оптимизации

Время, сек	N
0.0002814040	50000
0.0043513880	1000000
0.2047690470	50000000
4.0528589620	1000000000
40.8347387140	1000000000
0.0002834700	50000
0.0042388900	1000000
0.2034364010	50000000
4.0632819700	100000000
40.7227969360	1000000000
0.0002832220	50000
0.0042903630	1000000
0.2039566750	50000000
4.0650748900	1000000000
40.7270321770	1000000000
	50000
	1000000
	50000000
	1000000000
	1000000000
	0.0002814040 0.0043513880 0.2047690470 4.0528589620 40.8347387140 0.0002834700 0.0042388900 0.2034364010 4.0632819700 40.7227969360 0.0002832220 0.0042903630 0.2039566750 4.0650748900

Таблица зависимости времени выполнения программы с различными уровнями оптимизации

-O*	Время, сек	N
S	0.0002819850	50000
	0.0042807640	1000000
	0.2021854730	50000000
	4.0306666810	100000000
	40.4808239020	1000000000
fast	0.0002827250	50000
	0.0042777450	1000000
	0.2034549610	50000000
	4.0687560770	100000000
	40.7685852050	1000000000
g	0.0002813930	50000
	0.0042691690	1000000
	0.2028085350	5000000
	4.0374056030	100000000
	40.5295140140	1000000000

Листинг реализованной программы

header.h:

```
#ifndef H_1
#define H_1
#define BAD_ARGS 1
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
double calc_ex(double, double);
#endif
calc_ex.c:
#include "header.h"
double calc_ex(double n, double x) {
 double ex = 1;
 double i;
 double j = 1;
 /*Calculate ex*/
 if (x != 0) {
  for (i = 1; i < n; i++)
   j*=(x/i);
   ex+=j;
 } else return ex;
 return ex;
```

```
main.c:
#include "header.h"
int main(int argc, char *argv[]) {
 double ex;
 double n;
 double x;
 struct timespec start, end;
if (argc == 3) {
 n = atof(argv[1]);
 x = atof(argv[2]);
 if(n \le 0)
  printf("Enter N > 0");
  return BAD_ARGS;
 clock_gettime(CLOCK_MONOTONIC_RAW, &start);
 ex = calc_ex(n, x);
 clock_gettime(CLOCK_MONOTONIC_RAW, &end);
 printf("Time taken: %.10lf sec.\n",end.tv_sec-start.tv_sec+
0.00000001*(end.tv_nsec-start.tv_nsec));
 printf("e^x = \%.10f^n", ex);
} else printf("Bad arguments");
 return 0;
}
Команда компиляции: gcc [-O*] main.c calc.c -o calc [-lrt]
Команда запуска: ./calc [значение N] [значение X]
```

Выводы

Для выполнения замеров времени при разных уровнях оптимизации компилятора дсс была использована программа с алгоритмом вычисления функции e^x с помощью разложения в ряд Маклорена по первым N членам этого ряда.

Из приведенной таблицы зависимости времени работы программы от уровня компиляции видно, что для данной программы изменение времени работы с разных случаях незначительно.