Коллоквиум по математическому анализу

Лектор: Плотников М. Г. • Автор: Пшеничный Никита, группа 109

1 курс • Весенний семестр 2024 г.

Аннотация

Обо всех ошибках и опечатках пишите мне, исправлю.

Программа коллоквиума

1	Первообразная, обобщённая первообразная, неопределённый интеграл. Теоремы о множестве вех первообразных и обобщённых первообразных. Дифференцирование и интегрирование — обратные операции. Интегрирование — линейная операция	3
2	Вычисление первообразных непосредственным интегрированием, интегрированием по частям и заменой переменной. Примеры	3
3	Интегральные суммы Римана. Интеграл Римана. Интегрируемость по Риману и ограниченность	4
4	Суммы Дарбу. Интеграл Дарбу	6
5	Колебания функции на множестве	9
6	Теорема Дарбу. Критерий Дарбу интегрируемости по Риману	10
7	Интегрируемость по Риману непрерывных и монотонных функций. Геометрический смысл интегралов Дарбу и Римана	12
8	Свойства интеграла Римана (единственность, линейность, интеграл от постоянной функции, интегрирование неравенств, интегрируемость модуля функции и произведения функций)	13
9	Свойства интеграла Римана (достаточное условие интегрируемости композиции функций, интегрируемость на подотрезках и аддитивность интеграла Римана)	15
10	Свойства интеграла Римана (интегрируемость изменённой функции, достаточное условие положительности интеграла, интеграл по симметричному отрезку от чётных и нечётных функций, интегрируемость кусочно-непрерывных функций)	17
11	Интеграл Римана с переменным верхним пределом, его непрерывность и достаточное условие дифференцируемости. Теоремы о существование первообразной/обобщённой первообразной на отрезке. Формула Ньютона — Лейбница	19
12	Замена переменной и интегрирование по частям в интеграле Римана. Формула Тейлора с остаточным членом в интегральной форме	20

^{*}Telegram: @pshenikita. Последняя компиляция: 14 апреля 2024 г.

13	Формула Валлиса	22
14	Первая теорема о среднем для интеграла Римана. Преобразование Абеля	23
15	Преобразование Абеля. Вторая теорема о среднем для интеграла Римана	24
16	Вариация функции и функции ограниченной вариации (VB -функции). О связи ограниченности вариации с монотонностью и ограниченностью функции. Аддитивность вариации и структура VB -функции	26
17	Вариация непрерывно дифференцируемых функций. Спрямляемые кривые, критерий спрямляемости	28
18	Teopeма о длине гладкой кривой. Длина гладкой кривой, описывающейся явно заданной функцией	29
19	Вычисление длин кривых и площадей в полярных координатах	31
20	Площади плоских фигур в прямоугольных координатах. Объёмы тел вращения	33
21	Интеграл Римана — Стилтьеса: определение, линейнойсть, достаточное условие существования, оценка абсолютной величины	34
22	Аддитивность интеграла Римана — Стилтьеса от непрерывных функций. Связь интегралов Римана — Стилтьеса и Римана	36
23	Метрические и нормированные пространства. Примеры метрических пространств. Пространство \mathbb{R}^n , метрики и нормы в нём	37

1. Первообразная, обобщённая первообразная, неопределённый интеграл. Теоремы о множестве вех первообразных и обобщённых первообразных. Дифференцирование и интегрирование — обратные операции. Интегрирование — линейная операция

Определение 1. Пусть функция f определена на промежутке X. (Непрерывная) функция F на X называется первообразной (обобщённой первообразной) функции f, если F'(x) = f(x) для всех $x \in X$ (для всех $x \in X$, кроме конечного числа).

Примечание. Если функция f непрерывна на промежутке X, то на этом промежутке для неё существует первообразная. Если f кусочно-непрерывна на промежутке X, то на X для неё существует обобщённая первообразная. Доказано это будет позднее.

Утверждение 1. $F' \equiv 0$ на $X \iff F = const.$

Доказательство. ← Очевидно. ⇒ По теореме Лагранжа

$$\forall x_1, x_2 \in X \ F(x_1) - F(x_2) = \underbrace{F'(c)}_{=0} (x_1 - x_2) = 0$$

для некоторого $c \in X$, значит, F = const.

Аналогичное утверждение верно и для обобщённой первообразной, достаточно провести вышеописанное доказательство для отрезков между выкинутыми точками. Оно всё ещё корректно, т.к. в теореме Лагранжа требуется дифференцируемость только во внутренних точках отрезка.

Теорема 1 (О множестве (обобщённых) первообразных). Если F_1 и F_2 — (обобщённые) первообразные f на X, то $F_1 - F_2 = const$.

Доказательство.
$$(F_1 - F_2)' = f - f = 0.$$

Произвольная первообразная функции f на промежутке X обозначается через $\int f(x)dx$. Если F — первообразная f, то пишут $\int f(x)dx = F(x) + C$. Первообразную $\int f(x)dx$ называют неопределённым интегралом.

Нетрудно заметить, что выполняется следующее:

$$\int dF = \int F'(x)dx = F(x) + C, \qquad d\left(\int f(x)dx\right) = f(x)dx.$$

Поэтому говорят, что дифференцирвание и интегрирование — обратные операции. Известно, что дифференцирование — линейная операция, т.е.

$$d(\alpha F + \beta G) = \alpha \cdot dF + \beta \cdot dG.$$

Возьмём первообразную обеих частей, получим

$$\int (\alpha dF + \beta dG) = \int (\alpha f + \beta g) dx = \alpha \int f(x) dx + \beta \int g(x) dx.$$

Поэтому говорят, что интегрирование — линейная операция.

2. Вычисление первообразных непосредственным интегрированием, интегрированием по частям и заменой переменной. Примеры

Указанные ниже равенства верны на соответствующих областях определения (промежутках):

1.
$$\int 0dx = const.$$
2.
$$\int x^{\alpha}dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$$
3.
$$\int \frac{dx}{x} = \ln|x| + C$$
4.
$$\int e^{x}dx = e^{x} + C$$
5.
$$\int cos x dx = \sin x + C$$

$$\int \frac{dx}{\sin^{2}x} = -\operatorname{ctg} x + C$$
7.
$$\int \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x + C$$

$$\int \frac{dx}{1+x^{2}} = \operatorname{arctg} x + C$$

8. Длинный логарифм:

$$\left(\ln\left|x + \sqrt{x^2 \pm 1}\right|\right)' = \frac{1 + \frac{2x}{2\sqrt{x^2 \pm 1}}}{x + \sqrt{x^2 \pm 1}} = \frac{1}{\sqrt{x^2 \pm 1}}, \quad \int \frac{dx}{\sqrt{x^2 \pm 1}} = \ln\left|x + \sqrt{x^2 + 1}\right| + C$$

Высокий логарифм:

$$\begin{split} \int \frac{dx}{x^2 - 1} &= \int \frac{dx}{(x - 1)(x + 1)} = \int \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right) dx = \\ &= \frac{1}{2} \int \frac{dx}{x - 1} + \frac{1}{2} \int \frac{dx}{x + 1} = \frac{1}{2} \ln|x - 1| - \frac{1}{2} \ln|x + 1| + C = \frac{1}{2} \ln\left| \frac{x - 1}{x + 1} \right| + C \end{split}$$

По правилу Лейбница,

$$d(uv) = du \cdot v + u \cdot dv.$$

Найдём первообразную от обеих частей:

$$\int vdu + \int udv = uv + C \quad \text{или же} \quad \int u'vdx = uv - \int uv'dx.$$

Эта формула называется формулой интегрирования по частям.

По правилу дифференцированию сложной функции

$$(F(\varphi(t)))' = F'(\varphi(t))\varphi'(t).$$

Найдём первообразную от обеих частей:

$$\int f(\varphi(t))\varphi'(t)dt = \int f(x)dx \bigg|_{x=\varphi(t)}.$$

Читать последнее равенство также можно как $\int f(\varphi(t))\underbrace{\varphi'(t)dt}_{d\varphi} = \int f(\varphi)d\varphi$.

3. Интегральные суммы Римана. Интеграл Римана. Интегрируемость по Риману и ограниченность

Определение 1. Возьмём отрезок [a;b] и построим конечный набор точек

$$a = a_0 < a_1 < \ldots < a_{m-1} < a_m = b$$
,

тем самым разбив [a;b] на попарно неперекрывающиеся отрезки $\Delta_i := [a_{i-1};a_i], 1 \leqslant i \leqslant m$. Набор $T = \{\Delta_i\}_{i=1}^m$ этих отрезков — разбиение отрезка [a;b].

Определение 2. Добавим к T произвольный набор $\xi = \{\xi_i\}_{i=1}^m$ точек $\xi_i \in \Delta_i$ (меток разбиения T). Отмеченное разбиение $T\xi$ отрезка [a;b] — это множество пар $\{(\Delta_i,\xi_i)\}_{i=1}^m$.

Определение 3. Интегральная сумма (сумма Римана) функции $f:[a;b] \to \mathbb{R}$, соответствующая отмеченному разбиению $T\xi = \{(\Delta_i, \xi_i)\}_{i=1}^m$ отрезка [a;b], есть сумма

$$S(f, T\xi) := \sum_{i=1}^{m} f(\xi_i) |\Delta_i|.$$

Геометрический смысл сумм Римана. Рассмотрим определённую на [a;b] неотрицательную функцию f и криволинейную трапецию

$$A = A_{f,[a;b]} := \{(x,y) \in \mathbb{R}^2 \mid x \in [a;b] \land y \in [0;f(x)]\} \subset \mathbb{R}^2,$$

связанную с графиком функции f. Тогда интегральная сумма $\mathcal{S}(f, T\xi)$ совпадает с площадью объединения прямоугольников, построенных на отрезка разбиения T как на основаниях и имеющих высоту $f(\xi_i)$:

Определение 4. Диаметр разбиения $T = \{\Delta_i\}_{i=1}^m$ — число

$$d(T) := \max_{i=1,\dots,m} |\Delta_i|.$$

Определение 5. Если $d(T) < \delta$, то разбиение T назовём δ -разбиением.

Определение 6 (Интеграл Римана). Функция $f:[a;b]\to\mathbb{R}$ называется интегрируемой по Риману на отрезке [a;b] (пишем $f\in R[a;b]$), если существует число $I\in\mathbb{R}$ такое, что для любого $\varepsilon>0$ найдётся $\delta>0$ такое, что для любого δ -разбиения $T\xi=\{(\Delta_i,\xi_i)\}_{i=1}^m$ отрезка [a;b] выполнено неравенство

$$|\mathcal{S}(f, T\xi) - I| = \left| \sum_{i=1}^m f(\xi) |\Delta_i| - I \right| < \varepsilon.$$

Число I называют *интегралом Римана* функции f по отрезку [a;b], обозначается $\int\limits_a^b f(x)dx$.

Следующая задача даёт способ вычисления интеграла Римана:

Задача 1. (A) Пусть $f \in R[a;b], \{T^n \xi^n\}_{n=1}^{\infty}$ — последовательность отмеченных разбиений отрезка [a;b], причём $d(T^n) \to 0$ при $n \to \infty$. Докажите, что

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \mathcal{S}(f, T^{n}\xi^{n}).$$

(Б) Разобъём отрезок [a;b] на n равных отрезков $\Delta_j^{(n)}$, $1 \leqslant j \leqslant n$ длины (b-a)/n, а затем в каждом из них произвольным образом выберем метку $\xi_j^{(n)}$. Покажите, что

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \frac{b - a}{n} \sum_{j=1}^{n} f(\xi_{j}^{(n)}).$$

 \triangleright (A) По определению предела последовательности $d(T^n)$,

$$\forall \varepsilon > 0 \; \exists \mathcal{N}_{\varepsilon} : (n > \mathcal{N}_{\varepsilon}) \Rightarrow (|d(T^n)| < \varepsilon) \tag{*}$$

По определению интеграла Римана

$$\forall \varepsilon > 0 \; \exists \delta > 0 : (d(T) < \delta) \Rightarrow (|\mathcal{S}(f, T\xi) - I| < \varepsilon).$$

Перепишем последнее высказывание с учётом (*):

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} := \mathcal{N}_{\varepsilon} : (n > N_{\varepsilon}) \Rightarrow (|\mathcal{S}(f, T\xi) - I| < \varepsilon).$$

Значит, утверждение теоремы верно по опредлению предела последовательности.

(Б) По предыдущему пункту

$$\int\limits_a^b f(x)dx = \lim\limits_{n \to \infty} \mathcal{S}(f, T^n \xi^n) = \lim\limits_{n \to \infty} \left(\sum\limits_{j=1}^n f(\xi_j^{(n)}) |\Delta_j^{(n)}| \right) = \lim\limits_{n \to \infty} \frac{b-a}{n} \sum\limits_{j=1}^n f(\xi_j^{(n)}).$$

Предложение 1. Если f интегрируема по Риману на отрезке [a;b], то она ограничена на [a;b].

Доказательство. Допустим, $f \in R[a;b]$, но $f \notin B[a;b]$. Возьмём любые C>0 и разбиение $T=\{\Delta_i\}$. Тогда f не ограничена на Δ_i по крайней мере для одного i (=: i_0). При всех $i\neq i_0$ расставим метки $\xi_i\in\Delta_i$ произвольным образом, а метку $\xi_{i_0}\in\Delta_{i_0}$ выберем так, что

$$|\mathcal{S}(f, T\xi)| = \left| \sum_{i} f(\xi_i) |\Delta_i| \right| \geqslant |f(\xi_{i_0}) |\Delta_{i_0}|| - \left| \sum_{i \neq i_0} f(\xi_i) |\Delta_i| \right| > C.$$

Это возможно благодаря неограниченности f на отрезке Δ_{i_0} . Итак, для всех разбиений T имеем $\sup_{\xi} |\mathcal{S}(f,T\xi)| = \infty$, поэтому ни для какого $\varepsilon > 0$ мы не сможем найти $\delta > 0$ такое, что неравенство

$$\left| \mathcal{S}(f, T\xi) - \int_{a}^{b} f(x) dx \right| < \varepsilon$$

выполнялось бы для всех отмеченных δ -разбиений $T\xi$, что противоречит тому, что $f \in R[a;b]$.

4. Суммы Дарбу. Интеграл Дарбу

До конца пункта считаем, что задана функция $f:[a;b] \to \mathbb{R}$.

Определение 1. Пусть $T = \{\Delta_i\}_{i=1}^m$ — разбиение отрезка [a;b],

$$m_i := \inf_{x \in \Delta_i} f(x), \quad M_i := \sup_{x \in \Delta_i} f(x).$$

Величины

$$s(f,T) := \sum_{i=1}^m m_i |\Delta_i|$$
 и $S(f,T) := \sum_{i=1}^m M_i |\Delta_i|$

— нижняя и верхняя сумма Дарбу функции f для разбиения T (соответственно).

Геометрический смысл сумм Дарбу. Пусть функция $f:[a;b] \to \mathbb{R}$ положительна (не обязательно непрерывна), $A = A_{f,[a;b]}$ — криволинейная трапеция под её графиком. Тогда нижняя сумма Дарбу s(f,T) совпадает с точной верхней гранью площадей T-фигур, вписанных в A.

В свою очередь, верхняя сумма Дарбу S(f,T) совпадает с точной нижней гранью площадей T-фигур, описанных над A.

Часто приходится рассматривать разность Дарбу $\omega(f,T):=S(f,T)-s(f,T)$. Геометрически величина $\omega(f,T)$ для непрерывной функции есть площадь «зазора» между наименьшей описанной над A и наибольшей вписанной в A фигурами.

Выразим разность Дарбу $\omega(f,T)$ через колебания функции f на отрезках разбиения $T=\{\Delta_i\}$:

$$\omega(f,T) = S(f,T) - s(f,T) = \sum_{i} \left(\sup_{\Delta_i} f - \inf_{\Delta_i} f \right) |\Delta_i| = \sum_{i} \omega(f,T) |\Delta_i|.$$

Установим связь между суммами Дарбу и Римана.

Лемма 1. Для любого разбиения T имеем

$$s(f,T) = \inf_{\xi} S(f,T\xi), \quad S(f,T) = \sup_{\xi} S(f,T\xi)$$

(точные грани берутся по всем наборам ξ меток разбиения T).

Доказательство. Пусть $T = \{\Delta_i\}_{i=1}^m$. Поскольку $m_i \leqslant f(\xi_i)$ для любых $\xi_i \in \Delta_i$, то

$$s(f,T) = \sum_{i} m_i |\Delta_i| \leqslant \mathcal{S}(f,T\xi)$$

для каждого набора $\xi = \{\xi_i\}_{i=1}^m$ меток разбиения T. С другой стороны, для любого $\varepsilon > 0$ найдутся такие $\xi_i \in \Delta_i$, что $f(\xi_i) |\Delta_i| < m_i |\Delta_i| + \frac{\varepsilon}{m}$. Тогда соответствующая интегральная сумма

$$S(f, T\xi) = \sum_{i=1}^{m} f(\xi_i) |\Delta_i| < \sum_{i=1}^{m} \left(m_i |\Delta_i| + \frac{\varepsilon}{m} \right) = s(f, T) + \varepsilon.$$

Отсюда следует, что $s(f,T) = \sup_{\xi} \mathcal{S}(f,T\xi)$. Вторая формула доказывается аналогично.

Определение 2. Пусть даны разбиения T_1 и T_2 . Тогда говорят, что T_1 мельче T_2 (и пишут $T_1 \leqslant T_2$), если для любого $\Delta \in T_1$ найдётся $\Theta \in T_2$ такой, что $\Delta \subseteq \Theta$. Иными словами, T_1 получено из T_2 добавлением ещё нескольких точек разбиения.

Введённое выше отношение транзитивно. В самом делем, пусть $T_1\leqslant T_2$ и $T_2\leqslant T_3$, пусть также $T_1,\,T_2$ и T_3 определяются наборами точек соответственно $A_1,\,A_2$ и A_3 . Тогда $A_1\supseteq A_2\supseteq A_3$, откуда $A_1\supseteq A_3$, т. е. $T_1\leqslant T_3$.

Лемма 2. Если $T_1 \leqslant T_2$, то

$$s(f,T_1) \geqslant s(f,T_2), \quad S(f,T_1) \leqslant S(f,T_2), \quad \omega(f,T_1) \leqslant \omega(f,T_2).$$

Иными словами, при измельчении разбиения нижние суммы Дарбу не убывают, а верхние суммы Дарбу и разности Дарбу не возрастают.

Доказательство. Достаточно показать утверждение в случае, когда T_1 получается из $T_2 = \{\Delta_i\}_{i=1}^m$ путём разбиения одного из отрезков Δ_i (=: Δ_{i_0}) на два неперекрывающихся отрезка (=: Δ' и =: Δ''). Имеем:

$$S(f, T_2) = \sum_{i=1}^{m} \sup_{\Delta_i} f \cdot |\Delta_i| = \sum_{i \neq i_0} \sup_{\Delta_i} f \cdot |\Delta_i| + \sup_{\Delta_{i_0}} f \cdot |\Delta_{i_0}| =$$

$$= \sum_{i \neq i_0} \sup_{\Delta_i} f \cdot |\Delta_i| + \sup_{\Delta_{i_0}} f \cdot |\Delta'| + \sup_{\Delta_{i_0}} f \cdot |\Delta''| \geqslant$$

$$\geqslant \sum_{i \neq i_0} \sup_{\Delta_i} f \cdot |\Delta_i| + \sup_{\Delta'} f \cdot |\Delta'| + \sup_{\Delta''} f \cdot |\Delta''| = S(f, T_1).$$

Второе равенство доказывается аналогично, а третье есть прямое следствие первых двух.

Определение 3. Пусть даны разбиения $T_1 = \{\Delta_i\}$ и $T_2 = \{\Theta_i\}$. Разбиение

$$T_1 \cap T_2 := \{\Delta_i \cap \Theta_j \text{ с непустой внутренностью}\}$$

называется nepeceuehuem разбиений T_1 и T_2 .

Очевидно, $T_1 \cap T_2 \leqslant T_1$ и $T_1 \cap T_2 \leqslant T_2$.

Лемма 3. Для любых разбиений T_1 и T_2 выполнено $s(f,T_1) \leqslant S(f,T_2)$.

Доказательство. Лемма 2 даёт
$$s(f, T_1) \leqslant s(f, T_1 \cap T_2) \leqslant S(f, T_1 \cap T_2) \leqslant S(f, T_2)$$
.

Определение 4 (Интеграл Дарбу). Величины

$$(D) \int_{a}^{b} f(x) dx := \sup_{T} s(f, T) \quad \text{и} \quad (D) \int_{a}^{b} f(x) dx := \inf_{T} S(f, T)$$

называются соответственно нижним и верхним интегралами Дарбу функции f (по отрезку [a;b]). Если нижний и верхний интегралы Дарбу совпадают, то их общее значение назовём интегралом

 \mathcal{A} арбу функции f по отрезку [a;b] и обозначим $(D)\int\limits_{-}^{b}f(x)dx.$

Из леммы 3 видно, что
$$(D)$$
 $\int_{a}^{b} f(x)dx \leqslant (D) \int_{a}^{b} f(x)dx$.

5. Колебания функции на множестве

Определение 1. Колебание функции $f:X \to \mathbb{R}$ на множестве $A \subset X$ — величина

$$\omega(f, A) := \sup_{x_1, x_2 \in A} |f(x_1) - f(x_2)|.$$

Если f ограничена на A, то величина $\omega(f,A)$ конечна. В самом деле, ограниченность означает существование C>0 такого, что $|f(x)|\leqslant C$ для любого $x\in A$. В этом случае

$$\forall x_1, x_2 \in A \ |f(x_1) - f(x_2)| \le |f(x_1)| + |f(x_2)| \le 2C \Rightarrow \omega(f, A) \le 2C.$$

Напротив, если f не ограничена на A, то $\omega(f,A) = +\infty$, т. к. можно, фиксировав x_2 , за счёт выбора x_1 сделать величину $|f(x_1) - f(x_2)|$ больше любого наперёд заданного C.

Предложение 1. Если f ограничена на множестве A, то

$$\omega(f,A) = \sup_{x \in A} f(x) - \inf_{x \in A} f(x). \tag{*}$$

Доказательство. Возьмём произвольное $\varepsilon > 0$. Согласно определению sup и inf найдутся такие $x_1, x_2 \in A$, что

$$\sup_{x \in A} f(x) - \varepsilon < f(x_1), \quad f(x_2) < \inf_{x \in A} f(x) + \varepsilon.$$

Из определения колебания функции на множестве вытекает существование $x_3, x_4 \in A$, для которых $\omega(f, A) - \varepsilon < |f(x_3) - f(x_4)|$. Не ограничивая общности, считаем $f(x_3) \geqslant f(x_4)$, так что

$$\omega(f, A) - \varepsilon < f(x_3) - f(x_4).$$

Получаем:

$$\omega(f, A) - \varepsilon < f(x_3) - f(x_4) \leqslant \sup_{x \in X} f(x) - \inf_{x \in X} f(x) < f(x_1) - f(x_2) + 2\varepsilon \leqslant \omega(f, A) + 2\varepsilon,$$

откуда $\omega(f,A)-\varepsilon<\sup_{x\in X}f(x)-\inf_{x\in X}f(x)<\omega(f,A)+2\varepsilon.$ Т. к. $\varepsilon>0$ выбиралось произвольно, то имеет место (*).

Предложение 2 (Свойства колебания). Пусть $|f(x)| \leq M$ и $|g(x)| \leq M$ для некоторого M > 0 и всех $x \in [a;b]$, а $\alpha, \beta \in \mathbb{R}$. Тогда

1. $\omega(|f|, A) \leq \omega(f, A)$;

- 4. $\omega(f+q,A) \leq \omega(f,A) + \omega(q,A)$;
- 2. $\omega(fg, A) \leq M(\omega(f, A) + \omega(g, A));$
- 5. $\omega(\alpha f + \beta g) \leq |\alpha| \omega(f, A) + |\beta| \omega(g, A)$.

3. $\omega(\alpha f, A) = |\alpha| \omega(f, A)$;

Доказательство.

1. Проверяем:

$$||f(x_1)| - |f(x_2)|| \le |f(x_1) - f(x_2)| \le \omega(f, A), \quad x_1, x_2 \in A;$$

 $\omega(|f|, A) = \sup_{x_1, x_2 \in A} ||f(x_1)| - |f(x_2)|| \le \omega(f, A).$

2. Проверяем:

$$|f(x_1)g(x_1) - f(x_2)g(x_2)| = |f(x_1)(g(x_1) - g(x_2)) + g(x_2)(f(x_1) - f(x_2))| \le M|g(x_1) - g(x_2)| + M|f(x_1) - f(x_2)| \le M(\omega(f, A) + \omega(g, A)), \quad x_1, x_2 \in A;$$

$$\omega(fg, A) = \sup_{x_1, x_2 \in A} |f(x_1)g(x_1) - f(x_2)g(x_2)| \le M(\omega(f, A) + \omega(g, A)).$$

3. Если $\alpha = 0$, обе части неравенства равны нулю, и всё доказано. Если $\alpha \neq 0$,

$$|\alpha f(x_1) - \alpha f(x_2)| = |\alpha| |f(x_1) - f(x_2)| \leq |\alpha| \omega(f, A), \quad x_1, x_2 \in A$$
$$\omega(\alpha f, A) = \sup_{x_1, x_2 \in A} |\alpha f(x_1) - \alpha f(x_2)| \leq |\alpha| \omega(f, A)$$

Теперь возьмём любое $\varepsilon > 0$ и отыщем $x_1, x_2 \in A$ такие, что

$$\omega(f,A) < |f(x_1) - f(x_2)| + \frac{\varepsilon}{|\alpha|}.$$

Тогда

$$|\alpha|\,\omega(f,A) < |\alpha f(x_1) - \alpha f(x_2)| + \varepsilon \leqslant \omega(\alpha f,A) + \varepsilon. \tag{*}$$

Из (*) и (\star) вытекает, с учётом произвольности $\varepsilon > 0$, требуемое равенство.

4. Проверяем:

$$|(f+g)(x_1) - (f+g)(x_2)| \leq |f(x_1) - f(x_2)| + |g(x_1) - g(x_2)| \leq \leq \omega(f,A) + \omega(g,A), \quad x_1, x_2 \in A$$

$$\omega(f+g,A) = \sup_{x_1, x_2 \in A} |(f+g)(x_1) - (f+g)(x_2)| \leq \omega(f,A) + \omega(g,A).$$

5. Следствие п. 3 и 4

6. Теорема Дарбу. Критерий Дарбу интегрируемости по Риману

Теорема 1 (Дарбу). Пусть функция $f:[a;b] \to \mathbb{R}$ ограничена. Тогда следующие условия эквивалентны:

1. Существует
$$(R)$$
 $\int_{a}^{b} f(x)dx = I$.

2. Cymectryet (D)
$$\int_{a}^{b} f(x)dx = I.$$

3. Для всякого $\varepsilon>0$ найдётся разбиение \widetilde{T} отрезка [a;b] такое, что $\omega(f,\widetilde{T})<\varepsilon.$

Доказательство. (1) \Rightarrow (2). Допустим, существует $(R)\int\limits_a^b f(x)dx=I$, т.е. для любого $\varepsilon>0$ найдётся $\delta>0$ такое, что соотношение

$$I - \varepsilon < \mathcal{S}(f, T\xi) < I + \varepsilon$$

выполнено для каждого δ -разбиения и набора ξ меток к нему. Тогда

$$I - \varepsilon \leqslant \inf_{\xi} \mathcal{S}(f, T\xi) = s(f, T) \leqslant S(f, T) = \sup_{\xi} \mathcal{S}(f, T\xi) \leqslant I + \varepsilon,$$

$$I - \varepsilon \leqslant s(f, T) \leqslant S(f, T) \leqslant I + \varepsilon; \quad I - \varepsilon \leqslant (D) \int_{a}^{b} f(x) dx \leqslant (D) \int_{a}^{b} f(x) dx \leqslant I + \varepsilon.$$

Т. к. $\varepsilon > 0$ выбиралось произвольно, то $I = (D) \int_a^b f(x) dx = (D) \int_a^b f(x) dx = (D) \int_a^b f(x) dx$.

$$(2)\Rightarrow (3)$$
. Допустим, то существует $(D)\int_a^bf(x)dx=I$, т. е. $(D)\underbrace{\int\limits_a^bf(x)dx}=(D)\underbrace{\int\limits_a^bf(x)dx}$. Тогда

для любого $\varepsilon > 0$ найдутся разбиения T_1 и T_2 такие, что

$$S(f, T_2) - \frac{\varepsilon}{2} < I < s(f, T_1) + \frac{\varepsilon}{2}.$$

Если $\widetilde{T}:=T_1\cap T_2$, то $\widetilde{T}\leqslant T_1,T_2$ и (по лемме 2)

$$\omega(f, \widetilde{T}) = S(f, \widetilde{T}) - s(f, \widetilde{T}) \leqslant S(f, T_2) - s(f, T_1) < \varepsilon.$$

 $(3)\Rightarrow (1).$ Т. к. функция $f:[a;b]\to\mathbb{R}$ ограничена, найдётся M>0 такое, что $|f(x)|\leqslant M$ для всех $x\in[a;b].$ Выберем любое $\varepsilon>0$ и найдём разбиение $\widetilde{T}=\{[a_{i-1},a_i]\}_{i=1}^m$ отрезка [a;b] такое, что $\omega(f,\widetilde{T})<\varepsilon$. Положим $\delta:=\varepsilon/m$ и рассмотрим все концы, исключая крайние, отрезков из \widetilde{T} , т.е. точки $a_1,\ldots,a_{m-1}.$ Окружим каждую из них δ -окрестностью и 2δ -окрестностью и возьмём объединения

$$A := \bigcup_{i=1}^{m-1} (a_i - \delta, a_i + \delta), \quad B := \bigcup_{i=1}^{m-1} (a_i - 2\delta, a_i + 2\delta),$$

Пусть $T\xi = \{(\Delta_j, \xi_j)\}$ — произвольное отмеченное δ -разбиение отрезка [a;b]. Если $\xi_j \in A$, то $\Delta_j \subset B$. Если же $\xi_j \in [a;b] \setminus A$, то $\Delta_j \subset [a_{i-1},a_i]$ для некоторого i. Имеем:

$$\omega(f,T) = \sum_{j} \omega(f,\Delta_{j}) |\Delta_{j}| = \sum_{\xi_{j} \in A} \omega(f,\Delta_{j}) |\Delta_{j}| + \sum_{\xi_{j} \notin A} \omega(f,\Delta_{j}) |\Delta_{j}| \leqslant$$

$$\leqslant 2M \cdot 4\delta m + \sum_{i=1}^{m} \sum_{\Delta_{j} \subset [a_{i-1},a_{i}]} \omega(f,\Delta_{j}) |\Delta_{j}| \leqslant 8M\varepsilon + \sum_{i=1}^{m} \omega(f,[a_{i-1},a_{i}]) \sum_{\Delta_{j} \subset [a_{i-1},a_{i}]} |\Delta_{j}| \leqslant$$

$$\leqslant 8M\varepsilon + \sum_{i=1}^{m} \omega(f,[a_{i-1},a_{i}]) (a_{i} - a_{i-1}) \leqslant 8M\varepsilon + \omega(f,\widetilde{T}) < \varepsilon C, \quad C := 8M + 1.$$

Таким образом, $\omega(f,T)<\varepsilon C.$ Положим $I:=(D)\int\limits_{a}^{b}f(x)dx$ (можно взять и верхний). Имеем:

$$s(f,T) \leqslant \mathcal{S}(f,T\xi) \leqslant S(f,T), \quad s(f,T) \leqslant I \leqslant (D) \int_{a}^{b} f(x)dx \leqslant S(f,T).$$

Отсюда $|\mathcal{S}(f,T\xi)-I| < S(f,T)-s(f,T) = \omega(f,T) < \varepsilon C$. Т. к. $\varepsilon > 0$ и отмеченное δ -разбиение $T\xi$ произвольные, а C>0 от них не зависит, то $f\in R[a;b]$ и $(R)\int\limits_a^b f(x)dx = I$.

Следствие 1 (Критерий Дарбу интегрируемости по Риману). Если функция $f:[a;b] \to \mathbb{R}$ ограничена, то $\exists (R) \int\limits_a^b f(x) dx = I \Leftrightarrow \exists (D) \int\limits_a^b f(x) dx = I.$

Утверждение 1. Функция Дирихле

$$Dir(x) = \begin{cases} 1, & \text{если } x \in \mathbb{Q}, \\ 0, & \text{если } x \notin \mathbb{Q} \end{cases}$$

не интегрируема по Риману ни на каком отрезке [a;b].

Доказательство. В самом деле, возьмём произвольное разбиение $T=\{\Delta_i\}$ отрезка [a;b]. В каждом отрезке Δ_i есть точки как из $\mathbb Q$, так и не из $\mathbb Q$. Следовательно,

$$s(\mathrm{Dir},T) = \sum_{i} \inf_{\Delta_i} \mathrm{Dir} \cdot |\Delta_i| = 0, \quad S(\mathrm{Dir},T) = \sum_{i} \sup_{\Delta_i} \mathrm{Dir} \cdot |\Delta_i| = \sum_{i} 1 \cdot |\Delta_i| = b - a.$$

Значит,
$$(D)$$
 $\int_a^b \text{Dir} = 0$ и (D) $\int_a^b \text{Dir} = b - a$. Несовпадение интегралов даёт $f \notin R[a;b]$.

Задача 2. Докажите, что функция Римана

$$\mathrm{Riem}(x) = egin{cases} rac{1}{n}, & \mathrm{если} \ x = rac{m}{n}, rac{m}{n} & \mathrm{--} \ \mathrm{несократимая} \ \mathrm{дробь}, \\ 0, & \mathrm{если} \ x
otin \mathbb{Q} \end{cases}$$

интегрируема по Риману на каждом отрезке [a;b] и вычислите $(R)\int\limits_a^b {
m Riem}(x)dx.$

ightharpoonup Пока не решил, но знаю правильный ответ — интеграл функции Римана равен 0 на любом отрезке.

7. Интегрируемость по Риману непрерывных и монотонных функций. Геометрический смысл интегралов Дарбу и Римана

Утверждение 1. Если функция $f:[a;b] \to \mathbb{R}$ имеет конечное число точек разрыва и ограничена, она интегрируема по Риману на этом отрезке.

Доказательство. Возьмём $\varepsilon > 0$ и такое C > 0, что $|f(x)| \leqslant C$ для всех $x \in [a;b]$ (существует из ограниченности f). Пользуясь тем, что функция f имеет конечное число точек разрыва, построим разбиение $T = T^1 \sqcup T^2$ отрезка [a;b] так, что сумма длин отрезков $\Delta_i \in T^1$ меньше $\frac{\varepsilon}{4C}$, а на всех отрезках $\Delta_i \in T^2$ функция f непрерывна. Последнее означает, что f равномерно непрерывна на Δ_i , поэтому найдётся $\delta > 0$ такое, что $(|x-z| < \delta) \land (x,z \in \Delta_i) \Rightarrow |f(x)-f(z)| < \frac{\varepsilon}{2(b-a)}$.

Т. к. набор T^2 конечен, $\delta>0$ можно выбрать общим для всех $\Delta_i\in T^2$ (взяв $\delta:=\min_i \Delta_i$). Имеем:

$$\begin{split} S(f,T)-s(f,T) &= S(f,T^1)-s(f,T^1)+S(f,T^2)-s(f,T^2) = \sum_{\Delta_i \in T^1} \left(\sup_{\Delta_i} f - \inf_{\Delta_i} f\right) |\Delta_i| + \\ &+ \sum_{\Delta_i \in T^2} \left(\sup_{\Delta_i} f - \inf_{\Delta_i} f\right) |\Delta_i| < 2C \sum_{\Delta_i \in T^1} |\Delta_i| + \frac{\varepsilon}{b-a} \sum_{\Delta_i \in T^2} |\Delta_i| < \varepsilon. \end{split}$$

Следствие 1. Если функция f непрерывна на отрезке [a;b] функция f интегрируема по Риману на этом отрезке.

Утверждение 2. Любая монотонная функция на отрезке [a;b] функция f интегрируема по Риману на этом [a;b].

Доказательство. Без ограничения общности считаем, что f не постоянна и не убывает на [a;b]. Очевидно, что f ограничена на [a;b]. Далее, возьмём любое $\varepsilon>0$, положим $\delta:=\frac{\varepsilon}{f(b)-f(a)}$ и рассмотрим произвольное δ -разбиение $T=\{\Delta_i=[a_{i-1};a_i]\}_{i=1}^m$ отрезка [a;b]. Пользуясь неубыванием

f, оценим величину $\omega(f,T)$:

$$\omega(f,T) = \sum_{i=1}^{m} \left(\sup_{\Delta_{i}} f - \inf_{\Delta_{i}} f \right) |\Delta_{i}|^{f \text{ He } \underline{\underline{y}}\underline{6}\underline{b}\underline{B}\underline{B}\underline{a}\underline{e}\underline{T}} \sum_{i=1}^{m} \left(f(a_{i}) - f(a_{i-1}) \right) |\Delta_{i}| < \frac{\varepsilon}{f(b) - f(a)} \sum_{i=1}^{m} \left(f(a_{i}) - f(a_{i-1}) \right) = \frac{\varepsilon}{f(b) - f(a)} \left(f(b) - f(a) \right) = \varepsilon.$$

Геометрический смысл интегралов Дарбу и Римана. Пусть функция $f:[a;b] \to \mathbb{R}$ положительна, A — криволинейная трапеция под её графиком. Тогда нижний интеграл Дарбу совпадает с точной верхней гранью T-фигур, вписанных в A, а верхний интеграл Дарбу — с точной нижней гранью T-фигур, описанных над A. Пусть функция $f \in R[a;b]$ положительна, A = A(f,[a;b]) — криволинейная трапеция под её графиком, S(A) — площадь этой трапеции. Тогда

$$s(f,T) \leqslant S(A) \leqslant S(f,T)$$

для любого разбиения T, следовательно,

$$(D) \int_{\underline{a}}^{\underline{b}} f \leqslant S(A) \leqslant (D) \int_{\underline{a}}^{\underline{b}} f.$$

Т. к. (критерий Дарбу) верхний и нижний интегралы равны, то $S(A) = \int\limits_a^b f(x) dx$.

8. Свойства интеграла Римана (единственность, линейность, интеграл от постоянной функции, интегрирование неравенств, интегрируемость модуля функции и произведения функций)

Теорема 1 (Единственность интеграла). Если (R) $\int_{a}^{b} f(x)dx$ существует, то он единственен.

Доказательство. Если $(R) \int\limits_a^b f(x) dx$ существует, он совпадает с интегралом Дарбу $(D) \int\limits_a^b f(x) dx$, а последний определяется однозначно.

Теорема 2 (О линейности интеграла). Если $f,g\in R[a;b]$ и $\alpha,\beta\in\mathbb{R},$ то $\alpha f+\beta g\in R[a;b]$ и

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Доказательство. Для каждого разбиения $T\xi = \{(\Delta_i, \xi_i)\}$ отрезка [a; b] имеем:

$$S(\alpha f + \beta g, T\xi) = \sum_{i} (\alpha f(\xi_i) + \beta g(\xi_i)) |\Delta_i| = \alpha \sum_{i} f(\xi_i) |\Delta_i| + \beta \sum_{i} g(\xi_i) |\Delta_i| =$$

$$= \alpha S(f, T\xi) + \beta S(g, T\xi).$$

Пусть $\varepsilon > 0$, $I_f := \int\limits_a^b f$, $I_g := \int\limits_a^b g$. По определению, существует $\delta > 0$ такое, что

$$|\mathcal{S}(f,T\xi)-I_f| и $|\mathcal{S}(g,T\xi)-I_g|$$$

для всех отмеченных δ -разбиений $T\xi$ отрезка [a;b]. Для тех же $T\xi$

$$|\mathcal{S}(\alpha f + \beta g, T\xi) - (\alpha I_f + \beta I_g)| = |\alpha \mathcal{S}(f, T\xi) + \beta \mathcal{S}(g, T\xi) - (\alpha I_f + \beta I_g)| \le$$

$$\leq |\alpha| |\mathcal{S}(f, T\xi) - I_f| + |\beta| |\mathcal{S}(g, T\xi) - I_q| < (|\alpha| + |\beta|) \varepsilon.$$

Это и значит, что утверждение теоремы верно.

Утверждение 1 (Интеграл константы). $\int_{a}^{b} C dx = C(b-a)$.

Доказательство. Если $F(x) \equiv C$ на [a;b], то $\mathcal{S}(f,T\xi) = \sum_{T\xi} C |\Delta_i| = C(b-a)$ для каждого отмеченного разбиения $T\xi = \{(\Delta_i,\xi_i)\}.$

Теорема 3 (Об интегрировании неравенств). Если $f,g \in R[a;b]$ и $f(x) \leqslant g(x)$ для всех $x \in [a;b]$, то $\int\limits_a^b f(x) dx \leqslant \int\limits_a^b g(x) dx$.

Доказательство. Если $f\leqslant g$ на [a;b], на каждом отмеченном разбиении $T\xi=\{(\Delta_i,\xi_i)\}$ выполнено

$$\mathcal{S}(f, T\xi) = \sum_{T\xi} f(\xi_i) |\Delta_i| \leqslant \sum_{T\xi} g(\xi_i) |\Delta_i| = \mathcal{S}(g, T\xi).$$

Отсюда $s(f,T)\leqslant s(g,T)$, что влечёт $(D)\int\limits_a^b f\leqslant (D)\int\limits_a^b g$. По теореме Дарбу нижние интегралы Дарбу можно заменить на интегралы Римана. Это даёт нужное равенство.

Теорема 4 (Об интегрируемости модуля функции). Если $f \in R[a;b]$, то $|f| \in R[a;b]$ и

$$\left| \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f(x)| dx.$$

Доказательство. Если $f \in R[a;b]$, то f ограничена на [a;b], |f| тоже. По теореме Дарбу для любого $\varepsilon > 0$ найдётся такое разбиение $T = \{\Delta_i\}$ такое, что $\omega(f,T) < \varepsilon$. Тогда

$$\omega(|f|,T) = \sum_{i} \omega(|f|,\Delta_{i}) |\Delta_{i}| \leqslant \sum_{i} \omega(f,\Delta_{i}) |\Delta_{i}| = \omega(f,T) < \varepsilon.$$

Неравенство выполнено в силу свойств колебаний функции. Применяя в обратную сторону теорему Дарбу, получаем $|f| \in R[a;b]$. Линейность даёт $-|f| \in R[a;b]$. Интегрируя неравенство $-|f(x)| \le f(x) \le |f(x)|$, получим

$$-\int_{a}^{b}|f|\leqslant \int_{a}^{b}f\leqslant \int_{a}^{b}|f|,$$

что и есть утверждение теоремы.

Теорема 5 (Об интегрируемости произведения). Пусть $f, g \in R[a; b]$, тогда $fg \in R[a; b]$.

Доказательство. Интегрируемость влечёт ограниченность: $|f(x)| \leq M$ и $|g(x)| \leq M$ для некоторого M>0 и всех $x\in [a;b]$. Из интегрируемости также вытекает (теорема Дарбу), что для любого $\varepsilon>0$ найдутся разбиения T_1 и T_2 отрезка [a;b] такие, что $\omega(f,T_1)<\varepsilon$ и $\omega(g,T_2)<\varepsilon$. Разбиение $T=\{\Delta_i\}:=T_1\cap T_2$ мельче T_1 и T_2 , отсюда

$$\omega(f,T) \leqslant \omega(f,T_1) < \varepsilon, \quad \omega(g,T) \leqslant \omega(g,T_1) < \varepsilon;$$

$$\omega(fg,T) = \sum_i \omega(fg,\Delta_i) |\Delta_i| \leqslant M \sum_i (\omega(f,\Delta_i) + \omega(g,\Delta_i)) |\Delta_i| = M (\omega(f,T) + \omega(g,T)) < 2M\varepsilon.$$

Применяя в обратную сторону теорему Дарбу, получаем $fg \in R[a;b]$.

9. Свойства интеграла Римана (достаточное условие интегрируемости композиции функций, интегрируемость на подотрезках и аддитивность интеграла Римана)

Теорема 1 (Достаточное условие интегрируемости композиции). Пусть $f \in R[a;b]$, а функция φ ограничена и непрерывна на f([a;b]). Тогда $\varphi \circ f \in R[a;b]$.

Доказательство. Здесь применим (пока не доказанный) критерий Лебега. Согласно нему, f ограничена, а множество её точек разрыва имеет меру нуль по Лебегу.

Из ограниченности f и φ следует ограниченность $\varphi \circ f$. Из непрерывности φ на f([a;b]) следует, что в тех точках, где f непрерывна, $\varphi \circ f$ тоже (теорема о непрерывности композиции функций). Следовательно, множество точек разрыва $\varphi \circ f$ тоже имеет меру нуль по Лебегу. Снова применяя критерий Лебега, получаем $\varphi \circ f \in R[a;b]$.

Пример 1. Возьмём функции

$$\varphi(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0, \end{cases} \quad f(x) = \mathrm{Riem}(x) = \begin{cases} \frac{1}{n}, & \text{если } x = \frac{m}{n}, \frac{m}{n} \text{— несократимая дробь,} \\ 0, & \text{если } x \notin \mathbb{Q}. \end{cases}$$

Функия f интегрируема по Риману на любом отрезке [a;b], а $\varphi(x)$ ограничена на $\mathbb R$ и разрывна только при x=0. Композиция $\varphi \circ f$ есть функция Дирихле, которая не интегрируема по Риману ни на каком отрезке [a;b]. Таким образом, последняя теорема может не выполняться, если функция φ разрывна хотя бы в одной точке.

Теорема 2 (Об интегрируемости на подотрезках). Если $f \in R[a;b]$ и $[c;d] \subset [a;b]$, то $f \in R[c;d]$.

Доказательство. Из интегрируемости f вытекает (теорема Дарбу) существование разбиения T такого, что $\omega(f,T)<\varepsilon$. Добавим к набору точек, порождающих T, точки c и d. Получим более мелкое разбиение \widetilde{T} отрезка [a;b] (для него $\omega(f,\widetilde{T})\leqslant\omega(f,T)<\varepsilon$), содержащее в себе разбиение \widetilde{T}^0 отрезка [c;d]. Получаем

$$\varepsilon > \omega(f, \widetilde{T}) = \sum_{\Delta \in \widetilde{T}^0} \left(\sup_{\Delta} f - \inf_{\Delta} \right) |\Delta| + \sum_{\Delta \notin \widetilde{T}^0} \left(\sup_{\Delta} f - \inf_{\Delta} f \right) |\Delta| \geqslant \sum_{\Delta \in \widetilde{T}^0} \left(\sup_{\Delta} f - \inf_{\Delta} \right) |\Delta| = \omega(f, \widetilde{T}^0).$$

Согласно теореме Дарбу, $f \in R[c;d]$.

Теорема 3 (Об аддитивности интеграла Римана). Допустим, a < c < b и $f \in R[a;c] \cap R[c;b]$. Тогда $f \in R[a;b]$ и

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Для доказательства этой теоремы нам понадобится лемма:

Лемма 1. Если f ограничена на отрезке [a;b] и a < c < b, то

$$(D)\int_{a}^{b} f = (D)\int_{a}^{c} f + (D)\int_{c}^{b} f,$$
 (*)

и аналогичное равенство справедливо для верхних интегралов Дарбу.

Доказательство. Возьмём любое $\varepsilon > 0$. Определение нижнего интеграла Дарбу даёт существование разбиений T^1 отрезка [a;c] и T^2 отрезка [c;b] таких, что

$$s(f, T^2) > (D) \int_{a}^{c} f - \varepsilon, \quad s(f, T^2) > (D) \int_{c}^{b} f - \varepsilon.$$

Для разбиений $T=T^1\sqcup T^2$ отрезка [a;b] имеем:

$$(D) \int_{a}^{b} f \geqslant s(f,T) = \sum_{\Delta_{i} \in T} \inf_{\Delta_{i}} f \cdot |\Delta_{i}| = \sum_{\Delta_{i} \in T^{1}} \inf_{\Delta_{i}} f \cdot |\Delta_{i}| + \sum_{\Delta_{i} \in T^{2}} \inf_{\Delta_{i}} f \cdot |\Delta_{i}| =$$

$$= s(f,T^{1}) + s(f,T^{2}) > (D) \int_{a}^{c} f + (D) \int_{a}^{b} f - 2\varepsilon.$$

Т. к. $\varepsilon > 0$ произвольно, левая часть (*) не меньше правой.

Снова возьмём произвольное $\varepsilon > 0$ и найдём разбиение T отрезка [a;b] такое, что

$$s(f,T) > (D) \int_{a}^{b} f - \varepsilon.$$

Если в набор точек, порождающих T, не входила точка c, добавим её и получим новое, более мелкое разбиение (оставим ему старое название T), для которого тем более верно последнее неравенство (при измельчении разбиения нижние суммы Дарбу могут только возрасти). Разбиение T есть $T^1 \sqcup T^2$, где T^1 — разбиение отрезка [a;c], а T^2 — разбиение отрезка [c;b]. Имеем:

$$(D)\int_{a}^{b} f < s(f,T) + \varepsilon = s(f,T^{1}) + s(f,T^{2}) + \varepsilon \leqslant (D)\int_{a}^{c} f + (D)\int_{c}^{b} f + \varepsilon.$$

Т. к. $\varepsilon > 0$ произвольно, левая часть (*) не больше правой.

Таким образом, имеет место равенство (*), а его аналог для верхних интегралов Дарбу доказывается аналогично.

А теперь докажем теорему об аддитивности интеграла:

Доказательство. Из интегрируемости вытекает ограниченность f и на [a;c], и на [c;b], значит, и на [a;b] тоже. Далее,

$$(D) \int_{\underline{a}}^{b} = (D) \int_{\underline{a}}^{c} f + (D) \int_{\underline{a}}^{b} f \xrightarrow{\text{критерий Дарбу}} (D) \int_{\underline{a}}^{\underline{c}} f + (D) \int_{\underline{c}}^{\underline{b}} f = (D) \int_{\underline{a}}^{b} f.$$

Согласно, критерию Дарбу, $f \in R[a;b]$ и каждый верхний или нижний интеграл Дарбу в последнем выражении можно заменить на интеграл Римана.

Примечание. До сих пор предполагалось, что верхний предел интегрирования больше нижнего. Ситуацию можно расширить, положив по определению

$$\int_{b}^{a} f(x)dx := -\int_{a}^{b} f(x)dx.$$

Можно показать, что последняя теорема верна для всех $a,\ b$ и c с учётом дополненного нами определения.

10. Свойства интеграла Римана (интегрируемость изменённой функции, достаточное условие положительности интеграла, интеграл по симметричному отрезку от чётных и нечётных функций, интегрируемость кусочно-непрерывных функций)

Теорема 1 (Об интегрируемости изменённой функции). Если функцию $f \in R[a;b]$ изменить на конечном множестве, то изменённая функция $\widetilde{f} \in R[a;b]$ и $\int\limits_a^b f = \int\limits_a^b \widetilde{f}$.

Нам понадобится лемма:

Лемма 1. Допустим, $E\subset [a;b]$ — конечное множество, и функция g равна нулю вне E. Тогда $g\in R[a;b]$ и $\int\limits_{-b}^{b}g(x)dx=0.$

Доказательство. Пусть $E = \{a_1, \ldots, a_n\}, C := \max\{f(a_1), \ldots, f(a_n)\}$. Выберем любое $\varepsilon > 0$, положим $\delta := \varepsilon/(Cn)$ и возьмём произвольное δ -разбиение $T\xi = \{(\Delta_i, \xi_i)\}$ отрезка [a; b]. Тогда

$$|\mathcal{S}(f, T\xi)| < \left| \sum_{\xi_i \in E} g(\xi_i) |\Delta_i| \right| + \left| \sum_{\xi_i \neq E} g(\xi_i) |\Delta_i| \right| \leqslant Cn\delta + 0 = \varepsilon.$$

Согласно определению интеграла Римана, $g \in R[a;b]$ и $\int\limits_a^b g = 0.$

Доказательство. Разность $\widetilde{f} - f =: g$ равна нулю вне конечного множества $E \subset [a;b]$. Тогда $g \in R[a;b]$ и $\int\limits_a^b g = 0$. Значит, $\widetilde{f} = f + g \in R[a;b]$ и $\int\limits_a^b \widetilde{f} = \int\limits_a^b f + \int\limits_a^b g = \int\limits_a^b f$.

Теорема 2 (Достаточное условие положительности интеграла). Допустим, функция f интегрируема по Риману и неотрицательна на отрезке [a;b], а также непрерывна в точке $x_0 \in [a;b]$, в которой b

$$f(x_0) > 0$$
. Тогда $\int_a^b f(x) dx > 0$.

Доказательство. Т. к. $f \in C(x_0)$ и $f(x_0) > 0$, найдётся отрезок $I \subset [a;b]$ такой, что $f(x) \geqslant \frac{f(x_0)}{2} > 0$ на I. Положим

$$g(x) := \begin{cases} \frac{f(x_0)}{2}, & x \in I, \\ 0, & x \in [a; b] \setminus I. \end{cases}$$

Тогда $f \geqslant g$ на [a;b], отрезок [a;b] есть объединение двух или трёх неперекрывающихся отрезков, один из которых есть I,

$$\int_{a}^{b} f \geqslant \int_{a}^{b} g = \int_{I} g = \frac{f(x_0)}{2} |I| > 0.$$

Теорема 3 (Об интеграле по симметричному отрезку от чётных и нечётных функций). Пусть $f \in R[-a;a]$. Если функция f чётна, то

$$\int_{-a}^{a} f = \int_{0}^{a} f, \quad \int_{-a}^{a} f = 2 \int_{0}^{a} f,$$

а если нечётна, то

$$\int_{-a}^{0} f = -\int_{0}^{a} f, \quad \int_{-a}^{a} f = 0.$$

Доказательство. Каждому отмеченному разбиению $T\xi = \{(\Delta_i, \xi_i)\}_i$ отрезка [0; a] однозначно соответствует «симметричное» отмеченное разбиение \widetilde{T} (того же диаметра), отрезки и метки в котором симметричны Δ_i и ξ_i относительно нуля. Для чётной функции f

$$S(f, T\xi) = \sum_{i=1}^{m} f(\xi) |\Delta_i| = \sum_{i=1}^{m} f(-\xi) |\Delta_i| = S(f, \widetilde{T}\widetilde{\xi}),$$

и определение интеграла Римана даёт $\int\limits_0^a f = \int\limits_{-a}^0 f$. Далее,

$$\int_{-a}^{a} f = \int_{-a}^{0} f + \int_{0}^{a} f = 2 \int_{0}^{a} f.$$

Если f нечётна, то

$$S(f, T\xi) = \sum_{i=1}^{m} f(\xi) |\Delta_i| = \sum_{i=1}^{m} -f(-\xi) |\Delta_i| = -S(f, \widetilde{T}\widetilde{\xi}),$$

$$\int_{-a}^{0} f = -\int_{0}^{a} f, \quad \int_{-a}^{a} f = \int_{-a}^{0} f + \int_{0}^{a} f = -\int_{0}^{a} f + \int_{0}^{a} f = 0.$$

Теорема 4 (Об интегрируемости кусочно-непрерывных функций). Если функция f кусочно-непрерывна на отрезке [a;b], то $f \in R[a;b]$.

Доказательство. См. утверждение 1 в вопросе 7.

11. Интеграл Римана с переменным верхним пределом, его непрерывность и достаточное условие дифференцируемости. Теоремы о существование первообразной/обобщённой первообразной на отрезке. Формула Ньютона — Лейбница

Определение 1. Если задана функция $f \in R[a;b]$, то функцию $F : [a;b] \to \mathbb{R}$,

$$F(x) := \int_{a}^{x} f(t)dt, \quad F(a) := 0,$$

называют интегралом (Римана) с переменным верхним пределом.

Теорема 1. $F \in C[a;b]$.

Доказательство. Т. к. $f \in R[a;b], f \in B[a;b],$ то $|f(x)| \le C$ для некоторого C > 0 и всех $x \in [a;b].$ Имеем:

$$F(x+h) - F(x) = \int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt = \int_{a}^{x} f(t)dt + \int_{x}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt = \int_{x}^{x+h} f(t)dt;$$

$$|F(x+h) - F(x)| = \left| \int_{x}^{x+h} f(t)dt \right| \le \left| \int_{x}^{x+h} |f(t)| dt \right| \le C|h|.$$

При $h \to 0$ имеем $C|h| \to 0$, поэтому и $|F(x+h) - F(x)| \to 0$, т. е. $F \in C(x)$. Точка $x \in [a;b]$ могла быть любой, следовательно, $F \in C[a;b]$.

Теорема 2. Если $f \in C(x)$, то $F \in D(x)$ и F'(x) = f(x).

Доказательство. Воспользуемся тем, что $f \in C(x)$ и для каждого $\varepsilon > 0$ найдём $\delta > 0$ такое, что

$$|t - x| < \delta \Rightarrow |f(t) - f(x)| < \varepsilon.$$

При $0 < h < \delta$ имеем:

$$\left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = \frac{1}{h} \left| F(x+h) - F(x) - f(x)h \right| = \frac{1}{h} \left| \int_{x}^{x+h} f(t)dt - f(x)h \right| =$$

$$= \frac{1}{h} \left| \int_{x}^{x+h} (f(t) - f(x)) dt \right| \leqslant \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| dt \leqslant \frac{1}{h} \cdot \varepsilon h = \varepsilon.$$

При $-\delta < h < 0$ оценка тоже верна. Т. к. $\varepsilon > 0$ выбиралось произвольным,

$$\exists F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x).$$

Теорема 3 (О существовании первообразной/обобщёной первообразной на отрезке). Если $f \in C[a;b]$ (или f ограничена и имеет конечное число точек разрыва либо кусочно-непрерывна на [a;b]), то всякая функция вида $F(x) = \int\limits_a^x f(t)dt + C$ является (обобщённой) первообразной для функции f(x) на отрезке [a;b] и верна формула Ньютона — Лейбница:

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Доказательство. Если $f \in C[a;b]$, то $f \in R[a;b]$ и F'(x) = f(x) для всех $x \in [a;b]$ (по предыдущей теореме), т. е. F — первообразная для f на [a;b]. Из определения функции F следует

$$F(b) - F(a) = \int_{a}^{b} f(t)dt + C - C = \int_{a}^{b} f(t)dt.$$

Если f ограничена и имеет конечное число точек разрыва, то $f \in R[a;b]$ (см. утверждение 1 в вопросе 7). Далее, пусть a_1, \ldots, a_n — точки разрыва функции f. Из предыдущих теорем в этом вопросе вытекает, что $F \in C[a;b]$ и F'(x) = f(x) для всех $x \in [a;b] \setminus \{a_1, \ldots, a_n\}$, т. е. F — обобщённая первообразная для f на [a;b]. Доказательство формулы Ньютона — Лейбница такое же.

Примечание. Случай кусочно-непрерывной функции включается в уже доказанный во втором абзаце.

Теорема 4. Если $f \in C[a;b]$ (или ограничена и имеет конечное число точек разрыва), а F — (обобщённая) первообразная для f на [a;b], то верна формула Ньютона — Лейбница.

Доказательство. Докажем первое утверждение, а второе доказывается по той же схеме. По предыдущей теореме все функции вида $\int\limits_a^x f(t)dt + C$ есть первообразные для f(x) на [a;b] и других

первообразных нет (по теореме о множестве всех первообразных). Поэтому $F(x) = \int\limits_a^x f(t)dt + C$ при некотором C. Остаётся применить предыдущую теорему.

12. Замена переменной и интегрирование по частям в интеграле Римана. Формула Тейлора с остаточным членом в интегральной форме

Теорема 1 (О замене переменной в интеграле Римана). Пусть заданы функции $f \in C[a;b]$ и $\varphi: [\alpha;\beta] \to [a;b]$, причём $\varphi \in C^1[\alpha;\beta], \ \varphi(\alpha) = a$ и $\varphi(\beta) = b$. Тогда

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} (f \circ \varphi)(t)\varphi'(t)dt.$$

Доказательство. По условию теоремы все функции f, φ и φ' непрерывны, поэтому подынтегральная функция в интеграле справа непрерывна.

Пусть F — первообразная для непрерывной функции f на отрезке [a;b]. Имеем

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Далее, $F'(x) = f(x) \ \forall x \in [a;b]$. Поэтому (теорема о производной композиции функций)

$$(F \circ \varphi)'(t) = (f \circ \varphi)(t)\varphi'(t) \quad \forall t \in [\alpha; \beta],$$

т. е. $F \circ \varphi$ — первообразная для непрерывной функции $(f \circ \varphi) \cdot \varphi'$ на отрезке $[\alpha; \beta]$. Отсюда

$$\int_{\alpha}^{\beta} (f \circ \varphi)(t)\varphi'(t)dt = (F \circ \varphi)(\beta) - (F \circ \varphi)(\alpha) = F(b) - F(a) = \int_{a}^{b} f(x)dx.$$

Теорема 2 (Об интегрировании по частям в интеграле Римана). Если $u, v \in C^1[a; b]$, то

$$\int_a^b u(x)v'(x)dx = u(x)v(x)\Big|_a^b - \int_a^b u'(x)v(x)dx, \int_a^b udv = uv\Big|_a^b - \int_a^b vdu.$$

Доказательство. Второе из равенств в условии — лишь другая форма записи первого равенства, поэтому будем доказывать лишь первое равенство. Т. к. $u, v, \in C^1[a; b]$, то $uv \in C^1[a; b]$. Значит, (uv)' непрерывна, и uv служит для неё первообразной на отрезке [a; b]. Тогда

$$\int_{a}^{b} (u(x)v(x))' dx = u(x)v(x) \Big|_{a}^{b}.$$

Отсюда, применяя правило Лейбница, и получаем требуемое.

Теорема 3. Пусть $n \in \mathbb{N} \cup \{0\}$, $f \in C^{n+1}(a;b)$ и $x_0 \in (a;b)$. Тогда для всех $x \in (a;b)$ имеет место формула Тейлора с остаточным членом в интегральной форме

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt.$$

Доказательство. Докажем индукцией по n. Если n=0, то $f\in C^1(a;b)$, а $f'\in C(a;b)$. Значит, f — первообразная для функции f' на интервале $(a;b)\supset [x_0;x]$, и верна формула Ньютона — Лейбница:

$$f(x) - f(x_0) = \int_{x_0}^x f'(t)dt.$$

После переноса $f(x_0)$ в правую часть получается формула из условия при n=0.

Допустим, что утверждение верно для n-1:

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{(n-1)!} \int_{x_0}^x (x - t)^{n-1} f^{(n)}(t) dt.$$
 (*)

Покажем, что утверждение верно и для n. Вычислим интеграл в (*) по частям:

$$\frac{1}{(n-1)!} \int_{x_0}^x (x-t)^{n-1} f^{(n)}(t) dt = \begin{cases} u = f^{(n)}(t), & du = f^{(n+1)}(t) dt, \\ dv = (x-t)^{n-1} dt, & v = -\frac{1}{n} (x-t)^n \end{cases} =$$

$$= \frac{1}{(n-1)!} \left(-f^{(n)}(t) \frac{1}{n} (x-t)^n \Big|_{x_0}^x + \int_{x_0}^x \frac{1}{n} (x-t)^n f^{(n+1)}(t) dt \right) =$$

$$= \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n + \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt.$$

Функции $u(t) = f^{(n)}(t)$ и $v(t) = -\frac{1}{n}(x-t)^n$ непрерывно дифференцируемы на $(a;b) \supset [x_0;x]$, поэтому можно применять интегрирование по частям. Подставив найденный интеграл в (*), получим формулу из формулировки теоремы.

13. Формула Валлиса

Положим
$$I_n:=\int\limits_0^{\pi/2}\sin^nxdx,\,n\in\mathbb{N}\cup\{0\}.$$
 Если $n\geqslant 2,$ то

$$I_n = \int_0^{\pi/2} \sin^{n-1} x \sin x dx = -\int_0^{\pi/2} \sin^{n-1} x d\cos x =$$

$$= -\sin^{n-1} x \cos x \Big|_0^{\pi/2} + \int_0^{\pi/2} \cos x d\sin^{n-1} x = 0 + (n-1) \int_0^{\pi/2} \cos^2 x \sin^{n-2} x dx =$$

$$= (n-1) \int_0^{\pi/2} \left(\sin^{n-2} x - \sin^n x\right) dx = (n-1)(I_{n-2} - I_n).$$

Отсюда $I_n = \frac{n-1}{n}I_{n-2}$ — рекуррентная формула для последовательности I_n . Рассмотрим её отдельно для чётных и нечётных n.

$$I_{0} = \frac{\pi}{2},$$

$$I_{1} = 1,$$

$$I_{2} = \frac{1}{2} \cdot I_{0} = \frac{1}{2} \cdot \frac{\pi}{2},$$

$$I_{3} = \frac{2}{3} \cdot I_{1} = \frac{2}{3},$$

$$I_{4} = \frac{3}{4} \cdot I_{2} = \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2},$$

$$\vdots$$

$$I_{2k} = \dots = \frac{(2k-1) \cdot (2k-3) \cdot \dots \cdot 1}{2k \cdot (2k-2) \cdot \dots \cdot 2} \cdot \frac{\pi}{2},$$

$$\vdots$$

$$I_{2k+1} = \dots = \frac{2k \cdot (2k-2) \cdot \dots \cdot 2}{(2k+1) \cdot (2k-1) \cdot \dots \cdot 1}$$

$$\vdots$$

Отсюда

$$I_{2k} = \frac{2k \cdot (2k-1) \cdot (2k-2) \cdot \dots \cdot 2 \cdot 1}{(2k \cdot (2k-2) \cdot \dots \cdot 2)^2} \cdot \frac{\pi}{2} = \frac{(2k)!}{4^k \cdot (k!)^2} \cdot \frac{\pi}{2} = \frac{C_{2k}^k}{4^k} \cdot \frac{\pi}{2},$$

$$I_{2k+1} = \frac{(2k \cdot (2k-2) \cdot \dots \cdot 2)^2}{(2k+1) \cdot 2k \cdot (2k-1) \cdot \dots \cdot 2 \cdot 1} = \frac{4^k (k!)^2}{(2k+1)!} = \frac{4^k}{2k+1} \cdot \frac{1}{C_{2k}^k}.$$

Рассмотрим последовательность $\{I_k\}_{k=0}^{\infty}$. Т. к. $\sin^n x \geqslant \sin^{n+1} x$ для всех $x \in [0; \pi/2]$, причём неравенство строгое при $x \in (0; \pi/2)$, то (достаточное условие положительности интеграла) $I_k > I_{k+1}$, т. е. последовательность $\{I_k\}$ убывает. Итак,

$$I_{2k+1} < I_{2k} < I_{2k-1},$$

$$\frac{4^k}{2k+1} \cdot \frac{1}{C_{2k}^k} < \frac{C_{2k}^k}{4^k} \cdot \frac{\pi}{2} < \frac{4^{k-1}}{2k-1} \cdot \frac{1}{C_{2k-2}^{k-1}},$$

$$\frac{4^{2k}}{2k+1} \cdot \frac{1}{\left(C_{2k}^k\right)^2} < \frac{\pi}{2} < \frac{4^{2k-1}}{2k-1} \cdot \frac{1}{C_{2k-2}^{k-1} \cdot C_{2k}^k},$$

$$\underbrace{\frac{4^{2k}}{2k+1} \cdot \frac{1}{\left(C_{2k}^k\right)^2}}_{A_k} < \frac{\pi}{2} < \underbrace{\frac{4^{2k}}{2k} \cdot \frac{1}{\left(C_{2k}^k\right)^2}}_{B_k = \frac{2k+1}{2k} A_k}.$$

Последовательность $\{A_k\}_{k=0}^\infty$ возрастает:

$$A_{k+1} = \frac{4^{2k+2}}{2k+3} \cdot \frac{1}{\left(C_{2k+2}^{k+1}\right)^2} = \underbrace{\frac{4^{2k}}{2k+1} \cdot \frac{1}{\left(C_{2k}^{k}\right)^2}}_{A_k} \cdot \frac{2k+1}{2k+3} \cdot 16 \cdot \frac{(k+1)^4}{(2k+1)^2(2k+2)^2} = A_k \cdot \frac{(2k+2)^2}{(2k+1)(2k+3)} > A_k.$$

Т. к. $\{A_k\}$ возрастает и ограничена сверху (числом $\pi/2$), $\exists \lim_{k \to \infty} A_k = A$. Далее,

$$B_k = A_k \cdot \frac{2k+1}{2k}, \quad \lim_{k \to \infty} B_k = \lim_{k \to \infty} A_k \cdot \lim_{k \to \infty} \frac{2k+1}{2k} = A.$$

По теореме о трёх последовательностях, $A\leqslant \frac{\pi}{2}\leqslant A,$ откуда $A=\frac{\pi}{2}.$ В итоге

$$\frac{\pi}{2} = \lim_{k \to \infty} \frac{4^{2k}}{2k+1} \cdot \frac{1}{\left(C_{2k}^k\right)^2}.$$

— формула Валлиса.

14. ПЕРВАЯ ТЕОРЕМА О СРЕДНЕМ ДЛЯ ИНТЕГРАЛА РИМАНА. ПРЕОБРАЗОВАНИЕ АБЕЛЯ

Теорема 1 (Первая теорема о среднем для интеграла Римана). Пусть:

- 1. $f \in B[a;b], m \leqslant f(x) \leqslant M$ для всех $x \in [a;b];$
- 2. $g \in R[a;b]$ и $g(x) \geqslant 0$ для каждого $x \in [a;b];$
- 3. $fg \in R[a;b]$.

Тогда

$$m\int_{a}^{b} g(x)dx \leqslant \int_{a}^{b} f(x)g(x)dx \leqslant M\int_{a}^{b} g(x)dx. \tag{*}$$

Если, дополнительно, $f \in C[a;b]$, то существует $c \in [a;b]$ такое, что

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx. \tag{*}$$

Доказательство. Если $g(x) \geqslant 0$, то $mg(x) \leqslant f(x)g(x) \leqslant Mg(x)$. Интегрируя, получаем (*).

Докажем второе утверждение теоремы. Если интеграл $\int_{a}^{b} g$ равен нулю, то из (*) видно, что

 $\int_{a}^{b} fg = 0$, и равенство (*) верно при любом $c \in [a; b]$; если не равен, поделим на него (*):

$$m \leqslant \int_{a}^{b} f(x)g(x)dx / \int_{a}^{b} g(x)dx \leqslant M.$$

По теореме о промежуточном значении для непрерывной функции, заключаем, что найдётся $c \in [a;b]$ такое, что

$$f(c) = \int_{a}^{b} f(x)g(x)dx / \int_{a}^{b} g(x)dx.$$

Взяв $q \equiv 1$, получаем

Следствие 1. Если $f \in C[a;b]$, то для некоторого $c \in [a;b]$ справедливо равенство

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Примечание. Формула (\star) даёт следующую оценку для интеграла в её левой части:

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leqslant \max_{x \in [a;b]} |f(x)| \int_{a}^{b} g(x)dx.$$

Теорема 2 (Преобразование Абеля). Пусть $A_k := \sum_{i=1}^k a_i, \ k=0,1,\ldots,n$ (при k=0 пустая сумма). Тогда

$$\sum_{i=1}^{n} a_i b_i = A_n b_n + \sum_{i=1}^{n-1} A_i (b_i - b_{i+1}).$$

Доказательство. В самом деле,

$$\sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n} (A_i - A_{i-1}) b_i = \sum_{i=1}^{n} A_i b_i - \sum_{i=1}^{n} A_i b_i = \sum_{i=1}^{n} A_i b_i - \sum_{i=0}^{n-1} A_i b_{i+1} =$$

$$= A_n b_n - A_0 b_1 + \sum_{i=1}^{n-1} A_i (b_i - b_{i+1}) = A_n b_n + \sum_{i=1}^{n-1} A_i (b_i - b_{i+1}).$$

15. Преобразование Абеля. Вторая теорема о среднем для интеграла Римана

Лемма 1. Пусть числа $A_k := \sum_{i=1}^k a_i, \ k=1,2,\ldots,n,$ удовлетворяют неравенствам $m\leqslant A_k\leqslant M,$ а $b_i\geqslant b_{i+1}\geqslant 0$ при $i=1,2,\ldots,n-1.$ Тогда

$$mb_i \leqslant \sum_{i=1}^n a_i b_i \leqslant Mb_1.$$

Доказательство. Докажем правое из неравенств (левое аналогично):

$$\sum_{i=1}^{n} a_i b_i = A_n b_n + \sum_{i=1}^{n-1} A_i (b_i - b_{i+1}) \leqslant M b_n + \sum_{i=1}^{n-1} M(b_i b_{i+1}) = M b_n + M b_1 - M b_n = M b_1.$$

Теорема 1 (Вторая теорема о среднем для интеграла Римана). Допустим, $f, g \in R[a; b]$ и функция f монотонна на [a; b]. Тогда $\exists \xi \in [a; b]$ такое, что

$$\int_{a}^{b} f(x)g(x)dx = f(a)\int_{a}^{\xi} g(x)dx + f(b)\int_{\xi}^{b} g(x)dx.$$

Нам понадобится лемма:

Лемма 2. Допустим, $f, g \in R[a; b]$, причём функция f неотрицательна и не возрастает на отрезке [a; b]. Тогда $\exists \xi \in [a; b]$ такое, что

$$\int_{a}^{b} f(x)g(x)dx = f(a)\int_{a}^{\xi} g(x)dx.$$

Доказательство. Функия $G(x):=\int\limits_a^xg(t)dt$ непрерывна на [a;b]. Поэтому она ограничена на [a;b], обозначим $m:=\min_{x\in [a;b]}G(x),$ $M:=\max_{x\in [a;b]}G(x).$ Сначала установим формулу

$$mf(a) \leqslant \int_{a}^{b} f(x)g(x)dx \leqslant Mf(a).$$
 (*)

Возьмём любое $\varepsilon > 0$. Т. к. $g \in R[a;b]$, то $|g(x)| \leq C < +\infty$ на [a;b], а т. к. $f \in R[a;b]$, согласно теореме Дарбу найдётся разбиение $T = \{\Delta_i = [x_{i-1};x_i]\}_{i=1}^n$ отрезка [a;b], для которого $\omega(f,T) < \varepsilon/C$. Имеем

$$\int_{a}^{b} f(x)g(x)dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(x)g(x)dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} (f(x_{i-1}) + f(x) - f(x_{i-1})) g(x)dx =$$

$$= \sum_{i=1}^{n} f(x_{i-1}) \int_{x_{i-1}}^{x_i} g(x)dx + E, \qquad E := \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} (f(x) - f(x_{i-1})) g(x)dx,$$

причём E мало по абсолютной величине:

$$|E| \leqslant \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} |f(x) - f(x_{i-1})| |g(x)| dx \leqslant C \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} \omega(g, \Delta_i) dx = C \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} \omega(f, \Delta_i) dx = C \sum_{i=1}^{n} \sum_{i=1}^{n} \omega(f, \Delta_i) dx = C \sum_{i=1}^{n} \omega(f, \Delta_i) dx = C \sum_{i=1}^{n} \sum_{i=1}^{n} \omega(f, \Delta_i) dx =$$

Учтём неотрицательность и невозрастание функции f на [a;b] и применим лемму 1 с

$$a_i := G(x_i) - G(x_{i-1}), \quad b_i := f(x_{i-1}),$$

$$A_k = \sum_{i=1}^k a_i = \sum_{i=1}^k (G(x_i) - G(x_{i-1})) = G(x_k) - G(x_0) = G(x_k);$$

$$m \le A_k = G(x_k) \le M.$$

Получим

$$mf(a) \leqslant \sum_{i=1}^{n} f(x_{i-1}) \left(G(x_i - G(x_{i-1})) \right) \leqslant Mf(a);$$

$$mf(a) \leqslant \sum_{i=1}^{n} f(x_{i-1}) \int_{x_{i-1}}^{x_i} g(x) dx \leqslant Mf(a);$$

$$mf(a) \leqslant \int_{a}^{b} f(x)g(x) dx - E \leqslant Mf(a), \quad |E| < \varepsilon.$$

Т. к. $\varepsilon > 0$ произвольно, то из последнего неравенства вытекает (*).

Теперь выведем из (*) утверждение теоремы. Отметим, что если f(a)=0, то из (*) следует, что $\int_a^b f(x)g(x)dx=0$, а значит, обе части равенства из формулировки леммы равны нулю, значит, утверждение выполнено. Пусть теперь f(a)>0. Функция G(x), как было отмечено ранее, непрерывна, причём найдутся такие точки $c,d\in[a;b]$, что

$$G(c) \leqslant \int_{a}^{b} f(x)g(x)dx / f(a) \leqslant G(d).$$

Таким образом, по теореме о промежуточных значения непрерывной функции, найдётся точка $\xi \in [a;b]$ такая, что $G(\xi) = \int\limits_{-b}^{b} f(x)g(x)dx$, а это и есть утверждение леммы.

Теперь докажем теорему, ради которой тут собрались:

Доказательство. Если f не убывает на [a;b], то функция h(x) := f(b) - f(x) неотрицательна, невозрастает и интегрируема на [a;b]. Применим лемму и проведём преобразования:

$$\int_{a}^{b} h(x)g(x)dx = h(a) \int_{a}^{\xi} g(x)dx; \quad \int_{a}^{b} (f(b) - f(x)) g(x)dx = (f(b) - f(a)) \int_{a}^{\xi} g(x)dx;$$
$$f(b) \left(\int_{a}^{b} f(x)dx - \int_{a}^{\xi} f(x)dx \right) + f(a) \int_{a}^{\xi} g(x)dx = \int_{a}^{b} f(x)g(x)dx.$$

Если f не возрастает на [a;b], функция h(x) := f(x) - f(b) неотрицательна, не возрастает и интегрируема на [a;b]. Повторяя выкладки выше, снова получим требуемое.

16. Вариация функции и функции ограниченной вариации (VB-функции). О связи ограниченности вариации с монотонностью и ограниченностью функции. Аддитивность вариации и структура VB-функции

Определение 1. Вариация функции $f:[a;b] \to \mathbb{R}$ (на отрезке [a;b]) — величина

$$\bigvee_{a}^{b} f := \sup_{T} \sum_{i=1}^{m} |f(a_i) - f(a_{i-1})|,$$

где sup берётся по всем разбиениям $T = \{[a_{i-1}, a_i]\}_{i=1}^m$ отрезка [a; b].

Если $\bigvee_a^b f < +\infty,$ то f — функция ограниченной вариации на [a;b]. Запись: $f \in BV[a;b].$

Для разбиения $T = \{[a_{i-1}, a_i]\}_{i=1}^m$ отрезка [a; b] введём обозначение

$$V(f,T) := \sum_{i=1}^{m} |f(a_i) - f(a_{i-1})|.$$

Предложение 1. Любая монотонная на отрезке функция имеет ограниченную вариацию. При этом $\bigvee_a^b f$ равна f(b) - f(a), если f не убывает и f(a) - f(b), если f не возрастает.

Доказательство. Пусть $T = \{[a_{i-1}, a_i]\}_{i=1}^m$ — произвольное разбиение отрезка [a; b]. Если f не убывает, то

$$V(f,T) = \sum_{i=1}^{m} |f(a_i) - f(a_{i-1})| = \sum_{i=1}^{m} (f(a_i) - f(a_{i-1})) = f(b) - f(a),$$

$$\bigvee_{i=1}^{b} f = \sup_{T} V(f,T) = f(b) - f(a).$$

Другой случай рассматривается аналогично.

Предложение 2. Любая функция ограниченной вариации ограничена.

Доказательство. Для каждого $x \in [a; b]$ имеем

$$2|f(x)| \le |f(x) - f(a)| + |f(b) - f(x)| + |f(a)| + |f(b)|.$$

Набор из двух отрезков [a;x] и [x;b] есть разбиение [a;b], поэтому

$$|f(x) - f(a)| + |f(b) - f(x)| \le \bigvee_{a=0}^{b} f.$$

В итоге,

$$|f(x)| \leqslant \frac{1}{2} \left(\bigvee_a^b f + |f(a)| + |f(b)| \right)$$
 для всех $x \in [a;b]$.

Отсюда следует требуемое.

Теорема 1 (Об аддитивности вариации). Если $f \in BV[a;b]$ и a < c < b, то $\bigvee_{a}^{b} f = \bigvee_{a}^{c} f + \bigvee_{c}^{b} f$.

Доказательство. Возьмём произвольное $\varepsilon > 0$. Найдём разбиения T_1 и T_2 отрезков [a;c] и [c;b], соотвественное, такие, что

$$V(f,T_1) > \bigvee_a^c f - \varepsilon$$
 и $V(f,T_2) > \bigvee_c^b f - \varepsilon$.

Тогда $T_1 \sqcup T_2$ — разбиение отрезка [a;b] и

$$\bigvee_{a}^{b} f \geqslant V(f, T_{1} \cup T_{2}) = V(f, T_{1}) + V(f, T_{2}) > \bigvee_{a}^{c} f + \bigvee_{c}^{b} f - 2\varepsilon.$$

Т. к. $\varepsilon > 0$ выбиралось произвольно,

$$\bigvee_{a}^{b} f \geqslant \bigvee_{a}^{c} f + \bigvee_{c}^{b} f.$$

Докажем обратное неравенство. Для каждого $\varepsilon > 0$ отыщем разбиение T отрезка [a;b], для которого

$$V(f,T) > \bigvee_{a}^{b} f - \varepsilon.$$

Если порождающий разбиение T набор точек не содержит c, добавим её в этот набор и получим новое разбиение (оставим ему старое обозначение T), для которого тем более выполнено последнее. При этом $T = T_1 \sqcup T_2$ — разбиения отрезков [a;c] и [c;b]. Получаем

$$\bigvee_{a}^{c} f + \bigvee_{c}^{b} f \geqslant V(f, T_1) + V(f, T_2) = V(f, T) > \bigvee_{a}^{b} f - \varepsilon,$$

откуда

$$\bigvee_{a}^{b} f \leqslant \bigvee_{a}^{c} f + \bigvee_{c}^{b} f.$$

17. Вариация непрерывно дифференцируемых функций. Спрямляемые кривые, критерий спрямляемости

Теорема 1. Допустим, $f \in C^{(1)}[a;b]$. Тогда $f \in BV[a;b]$ и $\bigvee_{a}^{b} f = \int_{a}^{b} \left| f'(x) \right| dx$.

Доказательство. По условию, $f' \in C[a;b]$, значит, $|f'| \in R[a;b]$ и $\int\limits_a^b \left|f'(x)\right| dx =: I$ определён.

Докажем, что $\bigvee_a^b f = I$.

Сначала установим неравенство $\bigvee_{a}^{b} f < +\infty$. Возьмём любое разбиение $T = \{[a_{i-1}; a_i]\}_{i=1}^{m}$ отрезка [a; b] и оценим V(f, T):

$$V(f,T) = \sum_{i=1}^{m} |f(a_i) - f(a_{i-1})| \stackrel{\text{т. Лагранжа}}{=} \sum_{i=1}^{m} \left| f'(\xi_i) \right| (a_i - a_{i-1}) \leqslant$$

$$\leqslant \max_{x \in [a;b]} \left| f'(x) \right| \sum_{i=1}^{m} (a_i - a_{i-1}) = \max_{x \in [a;b]} \left| f'(x) \right| (b - a).$$

Мы воспользовались тем, что функция |f'| непрерывна, а потому ограничена на [a;b]. Из последнего неравенства мы видим, что $\bigvee_{a}^{b} \leqslant \max_{x \in [a;b]} |f'(x)| \, (b-a) < +\infty.$

Далее, возьмём произвольное $\varepsilon > 0$. Найдётся $\delta > 0$ такое, что для всякого отмеченного δ -разбиения $T\xi$ отрезка [a;b] верно $|\mathcal{S}(|f'|,T\xi)-I|<\varepsilon$. Найдём разбиение $T=\{[a_{i-1};a_i]\}_{i=1}^m$, для которого

$$\bigvee_{a}^{b} f - \varepsilon < V(f, T) \leqslant \bigvee_{a}^{b} f.$$

Размельчая T так, чтобы диаметр стал меньше δ , мы не уменьшим V(f,T) и сохраним последнее неравенство. Поэтому сразу считаем $d(T) < \delta$. Получаем: $V(f,T) = \mathcal{S}(|f'|, T\xi)$.

$$\left|\bigvee_{a}^{b}f-I\right|\leqslant\left|\bigvee_{a}^{b}f-V(f,T)\right|+\left|V(f,T)-\mathcal{S}(\left|f'\right|,T\xi)\right|+\left|\mathcal{S}(\left|f'\right|,T\xi)-I\right|\leqslant2\varepsilon.$$

Т. к. $\varepsilon > 0$ выбиралось произвольным, $\bigvee_{a}^{b} f = I$.

Определение 1. Плоская кривая $\gamma \subset \mathbb{R}^2$ задаётся параметрически заданной функцией (*nymём*)

$$\begin{cases} x = x(t), \\ y = y(t) \end{cases} \quad t \in [a; b].$$

Формально, γ есть образ отрезка [a;b] при отображении

$$t \in [a; b] \mapsto (x(t), y(t)) \in \mathbb{R}^2.$$

Примечание. Считаем $x(t), y(t) \in C[a;b]$; в этом случае как сама кривая, так и задающий её путь называется *непрерывными*. Также предполагаем, что γ — простая кривая без кратных точек, что означает следующее. Если $P_1 = (x(t_1), y(t_1))$ и $P_2 = (x(t_2), y(t_2))$ и $t_1 \neq t_2$, то $P_1 \neq P_2$.

Разобъём кривую точками P_i $(i=0,\ldots,m)$ на m дуг. Т. к. кривая не имеет самопересечений, такому разбиению на дуги однозначно соответствует некоторое разбиение $T=\{\Delta_i=[a_{i-1};a_i]\}_{i=1}^m$

отрезка [a;b]. А именно, если (x_i,y_i) — координаты точек P_i , то $x_i=x(a_i)$ и $y_i-y(a_i)$ для $i=0,\ldots,m$.

Длина хорды, стягивающей дугу $P_{i-1}P_i$ есть $|P_{i-1}P_i|$. Длина $\ell(P_0P_1\dots P_m)$ всей ломаной равна $\sum\limits_{i=1}^m |P_{i-1}P_i|$.

Определение 2. Если $\ell(\gamma) < +\infty$,

$$\ell(\gamma) := \sup_{P_0 P_1 \dots P_m} \sum_{i=1}^m |P_{i-1} P_i| = \sup_T \sum_{i=1}^m |P_{i-1} P_i|,$$

то кривая γ называется *спрямляемой*, а $\ell(\gamma)$ — её *длиной*.

Теорема 2 (Критерий спрямляемости кривой). Плоская непрерывная кривая

$$\gamma: \begin{cases} x = x(t), \\ y = y(t) \end{cases} \quad t \in [a; b]$$

без кратных точек спрямляема тогда и только тогда, когда x(t) и y(t) — функции ограниченной вариации.

Доказательство. \Rightarrow . Допустим, γ — спрямляемая кривая, т. е.

$$\sup_{T} \sum_{i=1}^{m} |P_{i-1}P_i| = \ell(\gamma) < +\infty.$$

Тогда имеем

$$\sum_{i=1}^{m} |x(a_i) - x(a_{i-1})| \leqslant \sum_{i=1}^{m} |P_{i-1}P_i| \leqslant \sup_{T} \sum_{i=1}^{m} |P_{i-1}P_i| = \ell(\gamma).$$

Значит, $\bigvee_a^b x(t) \leqslant \ell(\gamma) < +\infty$, т. е. $x(t) \in BV[a;b]$. Аналогично, $y(t) \in BV[a;b]$.

$$\Leftarrow$$
. Пусть $\bigvee_a^b x(t) < +\infty$ и $\bigvee_a^b y(t) < +\infty$. Тогда

$$\sum_{i=1}^{m} |P_{i-1}P_i| \leqslant \sum_{i=1}^{m} |x(a_i) - x(a_{i-1})| + \sum_{i=1}^{m} |y(a_i) - y(a_{i-1})| \leqslant \bigvee_{i=1}^{b} x + \bigvee_{i=1}^{b} y.$$

Значит,
$$\ell(\gamma) = \sup_{T} \sum_{i=1}^{m} |P_{i-1}P_i| \leqslant \bigvee_{a}^{b} + \bigvee_{a}^{b} y < +\infty.$$

Примечание. Все неравенства выше — это просто следствия из неравенства треугольника.

18. Теорема о длине гладкой кривой. Длина гладкой кривой, описывающейся явно заданной функцией

Теорема 1 (О длине гладкой кривой). Пусть задана плоская простая кривая

$$\gamma: \begin{cases} x = x(t), \\ y = y(t) \end{cases} \quad t \in [a; b],$$

причём $x(t), y(t) \in C^{(1)}[a;b]$. Тогда γ спрямляема и

$$\ell(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$
 (*)

Доказательство. Т. к. $x(t), y(t) \in C^{(1)}[a;b]$, то x(t) и y(t) — функции ограниченной вариации. Тогда (критерий спрямляемости кривой) кривая γ спрямляема.

Докажем формулу (*). По условию, $x(t), y(t) \in C^{(1)}[a;b]$, поэтому $x'(t), y'(t) \in C[a;b]$. Значит, функция $f(t) := \sqrt{(x'(t))^2 + (y'(t))^2}$ непрерывна, и интеграл в (*) определён.

Возьмём какое-нибудь $\varepsilon > 0$. Т. к. $f \in R[a;b]$, найдётся $\delta_1 > 0$ такое, что для каждого отмеченного δ_i -разбиения $T\xi$ отрезка [a;b] верно

$$\left| \mathcal{S}(f, T\xi) - \int_{a}^{b} f(t)dt \right| < \varepsilon.$$

Т. к. y'(t) непрерывна на [a;b], то она равномерно непрерывна на [a;b], т. е. существует $\delta_2>0$ такое, что

$$(\varphi - \psi) < \delta_2 \Rightarrow |y'(\varphi) - y'(\psi)| < \varepsilon.$$

Положим $\delta := \min\{\delta_1, \delta_2\}$. Далее, найдём разбиение $T = \{\Delta_i = [a_{i-1}, a_i]\}_{i=1}^m$, для которого длина вписанной ломаной ε -ближка к длине кривой:

$$\ell(\gamma) - \varepsilon < \sum_{i=1}^{m} |P_{i-1}P_i| \le \ell(\gamma).$$

При размельчении T сумма $\sum_{i=1}^{m} |P_{i-1}P_i|$ не уменьшается, а последнее неравенство сохраняется. Размельчим T так, чтобы $d(T) < \delta$. Оценим длину вписанной ломаной:

$$\sum_{i=1}^{m} |P_{i-1}P_i| = \sum_{i=1}^{m} \sqrt{(x(a_i) - x(a_{i-1}))^2 + (y(a_i) - y(a_{i-1}))^2} \xrightarrow{\text{т. Лагранжа}}$$

$$= \sum_{i=1}^{m} \sqrt{(x'(\varphi_i))^2 + (y'(\psi_i))^2} |\Delta_i| = \sum_{i=1}^{m} \sqrt{(x'(\varphi_i))^2 + (y'(\varphi_i))^2} |\Delta_i| + E = \mathcal{S}(f, T\xi) + E,$$

где $E:=\sum_{i=1}^m \left(\sqrt{(x'(\varphi_i))^2+(y'(\psi_i))^2}\right)-\sqrt{(x'(\varphi_i))^2+(y'(\varphi_i))^2}\,|\Delta_i|$, а отмеченное разбиение $T\xi$ получилось добавлением меток ξ_i к имеющемуся разбиению T.

Для оценки величины E нам потребуется неравенство

$$\left|\sqrt{a^2+b^2}-\sqrt{a^2+c^2}\right|\leqslant \left|b-c\right|,\quad a,b,c\geqslant 0.$$

Это опять же просто неравенство для вот такого треугольника:

$$|E| = \left| \sum_{i=1}^{m} \left(\sqrt{(x'(\varphi_i))^2 + (y'(\psi_i))^2} \right) - \sqrt{(x'(\varphi_i))^2 + (y'(\varphi_i))^2} \left| \Delta_i \right| \right| \leqslant$$

$$\leqslant \sum_{i=1}^{m} \left| y'(\psi_i) - y'(\varphi_i) \right| \left| \Delta_i \right| < \varepsilon(b-a).$$

Наконец, оценим разность между длиной кривой и интегралом:

$$\left| \ell(\gamma) - \int_{a}^{b} f(t)dt \right| \leqslant \left| \ell(\gamma) - \sum_{i=1}^{m} |P_{i-1}P_{i}| \right| + \left| \sum_{i=1}^{m} |P_{i-1}P_{i}| - \mathcal{S}(f, T\xi) \right| + \left| \mathcal{S}(f, T\xi) - \int_{a}^{b} f(t)dt \right| \leqslant \varepsilon + \varepsilon(b-a) + \varepsilon = \varepsilon(2+b-a).$$

Т. к. $\varepsilon > 0$ выбиралось произвольным, верна формула (*).

О длине гладкой кривой, описывающейся явно заданной функцией. Пусть кривая γ задаётся уравнением $y = f(x), x \in [a;b]$. Считаем $f' \in C[a;b]$. Тогда

$$\ell(\gamma) = \int_{a}^{b} \sqrt{1 + (y'(x))^2} dx.$$

В самом деле, положим

$$x(t) = t$$
, $y(t) = (y \circ x)(t)$, $a \le t \le b$.

Тогда

$$x'(t) = 1$$
, $y'(t) = y'(x)x'(t) = y'(x)$, $dx = dt$.

Остаётся применить теорему о длине гладкой кривой.

19. Вычисление длин кривых и площадей в полярных координатах

Теорема 1 (О длине кривой в полярных координатах). Пусть кривая γ задана в полярных координатах функцией $r = r(\varphi), \ \varphi \in [\alpha; \beta]$. Считаем $r(\varphi) \in C^{(1)}[\alpha; \beta]$. Тогда

$$\ell(\gamma) = \int_{-\infty}^{\beta} \sqrt{(r'(\varphi))^2 + r^2(\varphi)} d\varphi.$$

Доказательство. Равенства $x = r \cos \varphi$ и $y = r \sin \varphi$ связывают декартовы координаты с полярными, поэтому можно считать, что γ параметризована параметром φ так:

$$\varphi: \begin{cases} x = x(\varphi) := r(\varphi) \cos \varphi, \\ y = y(\varphi) := r(\varphi) \sin \varphi \end{cases} \qquad \varphi \in [\alpha; \beta].$$

Т. к. $r(\varphi) \in C^{(1)}[\alpha;\beta]$, то $x(\varphi),y(\varphi) \in C^{(1)}[\alpha;\beta]$. По теореме о длине гладкой кривой γ спрямляема и

$$\ell(\gamma) = \int_{\alpha}^{\beta} \sqrt{(x'(\varphi))^2 + (y'(\varphi))^2} d\varphi.$$

Вычислим $x'(\varphi)$ и $y'(\varphi)$:

$$x'(\varphi) = (r(\varphi)\cos\varphi)' = r'(\varphi) - r(\varphi)\sin\varphi;$$

$$y'(\varphi) = (r(\varphi)\sin\varphi)' = r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi;$$

$$(x'(\varphi))^2 + (y'(\varphi))^2 = (r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi)^2 + (r'(\varphi)\sin\varphi - r(\varphi)\cos\varphi)^2 = (r'(\varphi))^2 + (r(\varphi))^2.$$

Подставив в формулу длины гладкой кривой, получаем требуемое.

Теорема 2 (О площади плоских фигур в полярных координатах). Пусть на отрезка $[\varphi_1; \varphi_2] \subset [0; 2\pi]$ задана непрерывная функция $r(\varphi) \in R[\varphi_1; \varphi_2]$. Рассмотрим в полярной системе кординат

криволинейный сектор OAB, ограниченный графиком функции $r(\varphi)$ и лучами $\varphi = \varphi_1$ и $\varphi = \varphi_2$. Тогда площадь этого сектора равна

$$S(OAB) = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} r^2(\varphi) d\varphi.$$

Доказательство. Рассмотрим произвольное разбиение $T = \{[a_{i-1}; a_i]\}_{i=1}^m$ отрезка $[\varphi_1; \varphi_2]$. Ему соответствуют точки $P_i(a_i, r(a_i))$ на кривой AB.

Тогда (аддитивность функции площади) $S(OAB) = \sum_{i=1}^m S(OP_{i-1}P_i)$. Каждый криволинейный сектор $OP_{i-1}P_i$ содержит сектор круга с вершиной O и двумя радиусами длины $\inf_{\varphi \in [a_{i-1};a_i]} r(\varphi)$, лежащими на лучах OP_{i-1} и OP_i . В то же время, $OP_{i-1}P_i$ лежит в секторе круга с вершиной O и двумя радиусами длины $\sup_{\varphi \in a_{i-1};a_i]} r(\varphi)$, лежащими на лучах OP_{i-1} и OP_i . Значит (монотонность функции площади) верна оценка

$$m_i(a_i - a_{i-1}) \leqslant S(OP_{i-1}P_i) \leqslant M_i(a_i - a_{i-1}),$$

 $m_i := \inf_{\varphi \in [a_{i-1}; a_i]} \frac{1}{2}r^2(\varphi), \quad M_i := \sup_{\varphi \in [a_{i-1}; a_i]} \frac{1}{2}r^2(\varphi).$

Складываем по i:

$$\sum_{i=1}^{m} m_i(a_i - a_{i-1}) \leqslant \sum_{i=1}^{m} S(OP_{i-1}P_i) \leqslant \sum_{i=1}^{m} M_i(a_i - a_{i-1});$$

$$s\left(\frac{r^2}{2}, T\right) \leqslant S(OAB) \leqslant S\left(\frac{r^2}{2}, T\right);$$

$$\sup_{T} s\left(\frac{r^2}{2}, T\right) \leqslant S(OAB) \leqslant \inf_{T} S\left(\frac{r^2}{2}, T\right);$$

$$(D) \int_{\varphi_1}^{\varphi_2} \frac{r^2(\varphi)}{2} d\varphi \leqslant S(OAB) \leqslant (D) \int_{\varphi_1}^{\varphi_2} \frac{r^2(\varphi)}{2} d\varphi.$$

Заметим, что (критерий Дарбу) (D) $\int_{\varphi_1}^{\varphi_2} \frac{r^2(\varphi)}{2} d\varphi = (D) \int_{\varphi_1}^{\varphi_2} \frac{r^2(\varphi)}{2} d\varphi = \int_{\varphi_1}^{\varphi_2} \frac{r^2(\varphi)}{2} d\varphi$, отсюда получаем требуемое.

20. Площади плоских фигур в прямоугольных координатах. Объёмы тел вращения

Пусть заданы функции $y(t) \in C[\alpha; \beta]$ и $x(t) \in C^{(1)}[\alpha; \beta]$, причём $y(t) \geqslant 0 \ \forall t \in [\alpha; \beta]$, а x(t) возрастает на $[\alpha; \beta]$. Рассмотрим плоскую кривую

$$\gamma: \begin{cases} x = x(t), \\ y = y(t) \end{cases} \quad t \in [\alpha; \beta].$$

Т. к. функция x(t) возрастает, то a < b, где $a := x(\alpha), b := x(\beta)$, а также

$$\forall (x,y) \in \gamma \ \exists ! t \in [\alpha; \beta] : (x = x(t) \land y = y(t)).$$

Отсюда вытекает, в частности, что γ — кривая без самопересечений.

Снова воспользуемся тем, что функция $x(t): [\alpha; \beta] \to [a; b]$ возрастает. Т. к. она ещё и непрерывна, то (теорема об обратной функции) найдётся непрерывная обратная функция $t = t(x): [a; b] \to [\alpha; \beta]$. Покажем, что γ — график функции $y = f(x): [a; b] \to \mathbb{R}$, где $f(x): [y \circ t)(x)$.

В самом деле,

$$(x,y) \in \gamma \Leftrightarrow \exists! t \in [\alpha; \beta] : (x = x(t) \land y = y(t)) \Leftrightarrow f(x) = (y \circ t)(x).$$

Теорема 1 (О площади плоских фигур в прямоугольных координатах). Площадь криволинейной трапеции с параметричеси заданной верхней границей равна

$$S(A(f, [a; b])) = \int_{\alpha}^{\beta} y(t)x'(t)dt.$$

Доказательство. Площадь этой криволинейной трапеции равна $S(A(f,[a;b])) = \int\limits_a^b f(x) dx$. Применим теорему о замене переменной в интеграле Римана

$$\int_{\alpha}^{b} f(x)dx = \int_{\alpha}^{\beta} (f \circ x)(t)x'(t)dt = \int_{\alpha}^{\beta} (y \circ t \circ x)(t)x'(t)dt = \int_{\alpha}^{\beta} y(t)x'(t)dt.$$

Теорема 2 (Об объёме тела вращения). Пусть $f \in C[a;b]$ и $f(x) \geqslant 0 \ \forall x \in [a;b]$. Рассмотрим криволинейную трапецию A(f,[a;b]); будем вращать её вокруг отрезка [a;b]. Тогда объём получающегося при этом тела равен

$$V_f(a,b) = \pi \int_a^b f^2(x) dx.$$

Доказательство. Обозначим за $V_f(c,d)$ объём тела, полученного вращением криволинейной трапеции A(f,[c;d]) вокруг отрезка $[c;d] \subseteq [a;b]$. Возьмём произвольное разбиение $T = \{[a_{i-1};a_i]\}_{i=1}^m$ отрезка [a;b]. Ему соответствуют точки $P_i(a_i,r(a_i))$ на кривой стороне AB. По свойству аддитивности объёма:

$$V_f(a,b) = \sum_{i=1}^{m} V_f(a_{i-1}, a_i).$$

33

Согласно свойству монотонности объёма, величины $V_f(a_{i-1}, a_i)$ оцениваются через объёмы вписанного и описанного цилиндров:

$$\sum_{i=1}^{m} \pi m_i^2(a_i - a_{i-1}) \leqslant \sum_{i=1}^{m} V_f(a_{i-1}, a_i) = V_f(a, b) \leqslant \sum_{i=1}^{m} \pi M_i^2(a_i - a_{i-1}),$$

$$m_i := \inf_{x \in [a_{i-1}; a_i]} f(x), \quad M_i := \sup_{x \in [a_{i-1}; a_i]} f(x).$$

Объём цилиндра есть произведение площади круга на высоту цилиндра. Перепишем неравенство выше, перейдя к суммам и интегралам Дарбу:

$$\pi \cdot s(f^2(x), T) \leqslant V(a, b) \leqslant \pi \cdot S(f^2(x), T),$$

откуда

$$\pi \cdot (D) \int_{a}^{b} f^{2}(x) dx \leqslant V(a,b) \leqslant \pi \cdot (D) \int_{a}^{b} f^{2}(x) dx.$$

Имеем (критерий Дарбу):

$$\pi \cdot (D) \underbrace{\int_{a}^{b} f^{2}(x)dx}_{a} = \pi \cdot (D) \underbrace{\int_{a}^{b} f^{2}(x)dx}_{a} = \pi \cdot \int_{a}^{b} f^{2}(x)dx.$$

В итоге,

$$V(a,b) = \pi \int_{a}^{b} f^{2}(x)dx.$$

21. Интеграл Римана — Стилтьеса: определение, линейнойсть, достаточное условие существования, оценка абсолютной величины

Чтобы определить интеграл Римана — Стилтьеса, сначала задаётся интегрирующая функция ограниченной вариации $G(x): [a;b] \to \mathbb{R}$.

Определение 1. Интегральной суммой Римана — Стилтьеса функции $f:[a;b] \to \mathbb{R}$ по функции $G \in BV[a;b]$, соответствующей отмеченному разбиению $T\xi = \{([a_{i-1};a_i],\xi_i)\}_{i=1}^m$ отрезка [a;b], называют сумму

$$S(fdG, T\xi) := \sum_{i=1}^{m} f(\xi_i)(G(a_i) - G(a_{i-1})).$$

Определение 2 (Интеграл Римана — Стилтьеса). Функция $f:[a;b] \to \mathbb{R}$ интегрируема в смысле Римана — Стилтьеса функции $f:[a;b] \to \mathbb{R}$ по функции $G \in BV[a;b]$ к значению $I \in \mathbb{R}$, если для каждого $\varepsilon > 0$ найдётся $\delta > 0$ такое, что всех отмеченных δ -разбиений $T\xi = \{([a_{i-1};a_i],\xi_i)\}_{i=1}^m$ отрезка [a;b] выполнено неравенство

$$|\mathcal{S}(fdG, T\xi) - I| = \left| \sum_{i=1}^{m} f(\xi_i)(G(a_i) - G(a_{i-1})) - I \right| < \varepsilon.$$

Запись: $(RS)\int\limits_a^b f(x)dG(x)=I.$ Число I есть интеграл Pимана — Cтилтьеca от функции f по функции G по отрезку [a;b].

Примечание. При G(x) = x интегральная сумма Римана — Стилтьеса превращается в обычную интегральную сумму Римана $\sum_{i=1}^m f(\xi_i)(a_i - a_{i-1})$, а интеграл Римана — Стилтьеса становится интегралом Римана.

Теорема 1 (Единственность интеграла). Если $(RS) \int_{a}^{b} f(x) dG(x)$ существует, то он единственен.

Доказательство. Допустим, $(RS)\int\limits_a^b f(x)dG(x)=I_1$ и $=I_2,\ I_1\neq I_2.$ Возьмём $\varepsilon:=|I_1-I_2|/2$ и найдём $\delta_1,\delta_2>0$ такие, что для всех отмеченных δ_1 - и δ_2 -разбиений $T\xi$ отрезка [a;b] выполнено соответственно

$$|\mathcal{S}(fdG, T\xi) - I_1| < \varepsilon$$
 и $|\mathcal{S}(fdG, T\xi) - I_2| < \varepsilon$.

Тогда для любого отмеченного δ -разбиения $T\xi$, $\delta:=\min\{\delta_1,\delta_2\}$, выполнены оба последних неравенства, что приводит к противоречивому неравенству $|I_1-I_2|<|I_1-I_2|$.

Теорема 2 (Линейность интеграла). Интеграл Римана — Стилтьеса является линейным как по интегрируемой функции, так и по интегрирующей.

Примечание. Теорема доказывается по той же схеме, что и для интеграла Римана. Сначала нужно установить линейность интегральных сумм по f и по G:

$$S((\alpha_1 f_1 + \alpha_2 f_2)dG, T\xi) = \alpha_1 S(f_1 dG, T\xi) + \alpha_2 S(f_2 dG, T\xi),$$

$$S(fd(\alpha_1 G_1 + \alpha_2 G_2), T\xi) = \alpha_1 S(fdG_1, T\xi) + \alpha_2 S(fdG_2, T\xi).$$

Теорема 3 (Достаточное условие существования интеграла Римана — Стилтьеса). Если $f \in C[a;b]$, то f интегрируема по Риману — Стилтьесу на отрезке [a;b] по любой функции $G \in BV[a;b]$.

Доказательство. Любая функция ограниченной вариации есть разность двух неубывающих функций, поэтому в силу линейности достаточно провести доказательство для неубывающих G.

Итак, пусть G не убывает. Для каждого разбиения $T = \{[a_{i-1}; a_i]\}$ отрезка [a; b] составим нижению и верхнюю суммы Дарбу для интеграла Римана — Стилтьеса $\int\limits_{b}^{b} f dG$:

$$s(fdG,T) = \sum_{i} m_i (G(a_i) - G(a_{i-1})), \quad m_i := \min_{[a_{i-1};a_i]} f;$$

$$S(fdG,T) = \sum_{i} M_i (G(a_i) - G(a_{i-1})), \quad M_i := \max_{[a_{i-1};a_i]} a_{i-1}; a_i]f.$$

Почти дословно повторяя рассуждения, изложенные выше, несложно доказать, что

$$s(fdG,T)\leqslant S(fdG,\widetilde{T})$$
для любых разбиений T и \widetilde{T} отрезка $[a;b]$

(здесь существенно, что G не убывает). Положим $I := \sup_T s(fdG,T)$ и покажем, что $\int\limits_a^b fdG = I.$

Берём любое $\varepsilon>0$. Пользуясь равномерной непрерывностью на [a;b] функции f, отыщем $\delta>0$ такое, что

$$|f(x_1) - f(x_2)| < \varepsilon$$
 как только $|x_1 - x_2| < \delta$.

Возьмём любое δ -разбиение $T = \{[a_{i-1}; a_i]\}$ отрезка [a; b] и любой набор ξ меток к нему. Имеем:

$$s(fdG,T) \leqslant S(fdG,T\xi) \leqslant S(fdG,T), \quad s(fdG,T) \leqslant I \leqslant S(fdG,T).$$
 (*)

Кроме того,

$$S(fdG,T) - s(fdG,T) = \sum_{i} (M_i - m_i)(G(a_i) - G(a_{i-1})) < \varepsilon \sum_{i} (G(a_i) - G(a_{i-1})) = \varepsilon (G(b) - g(a)).$$

Отсюда и из (*) получаем $|\mathcal{S}(fdG,T\xi)-I|<\varepsilon(G(b)-G(a))$. Следовательно, f интегрируема по G на отрезке [a;b] и $(RS)\int\limits_a^b fdG=I$.

Теорема 4 (Оценка абсолютной величины интеграла Римана — Стилтьеса). Если $f \in B[a;b],$ $G \in BV[a;b]$ и существует $(RS) \int\limits_a^b f dG$, то

$$(RS) \int_{a}^{b} f dG \leqslant \sup_{[a;b]} |f| \cdot \bigvee_{a}^{b} G.$$

Доказательство. Вытекает из цепочки

$$|\mathcal{S}(fdG, T\xi)| \le \left| \sum_{T\xi} f(\xi_i)(G(a_i) - G(a_{i-1})) \right| \le \sup_{[a;b]} |f| \cdot \sum_{T} |G(a_i) - G(a_{i-1})| \le \sup_{[a;b]} |f| \cdot \bigvee_{a}^{b} G.$$

22. Аддитивность интеграла Римана — Стилтьеса от непрерывных функций. Связь интегралов Римана — Стилтьеса и Римана

Теорема 1 (Об аддитивности интеграла Римана — Стилтьеса). Если $f \in C[a;b], G \in BV[a;b]$ и $c \in (a;b)$, то

$$(RS)\int_{a}^{b}fdG = (RS)\int_{a}^{c}fdG + (RS)\int_{a}^{b}fdG.$$

Примечание. Т. к. $G \in Bv[a;b]$ и a < c < b, то $G \in BV[a;c] \cap BV[c;b]$, все интегралы в последнем выражении существуют согласно достаточному условию интегрируемости по Риману — Стилтьесу.

Доказательство. Все интегралы в этом доказательстве понимаем как интегралы в смысле Римана — Стилтьеса от f по G. Возьмём любое $\varepsilon > 0$ и найдём $\delta > 0$ такое, что

$$\left|\mathcal{S}(fdG,T^1\xi^1) - \int\limits_a^c fdG\right| < \varepsilon, \quad \left|\mathcal{S}(fdG,T^2\xi^2) - \int\limits_c^b fdG\right| < \varepsilon, \quad \left|\mathcal{S}(fdG,T\xi) - \int\limits_a^b fdG\right| < \varepsilon$$

для любых отмеченных δ -разбиений $T^1\xi^1$, $T^2\xi^2$ и $T\xi$ отрезков [a;c], [c;b] и [a;b], соответственно. Возьмём какие-нибудь $T^1\xi^1$ и $T^2\xi^2$ указанного типа. Тогда $T\xi:=T^1\xi^1\sqcup T^2\xi^2$ — отмеченное δ -разбиение отрезка [a;b] и, очевидно,

$$\mathcal{S}(fdG, T\xi) = \mathcal{S}(fdG, T^1\xi^1) + \mathcal{S}(fdG, T^2\xi^2).$$

С учётом последнего равенства получаем следующее:

$$\begin{split} \left| \int\limits_a^b f dG - \int\limits_a^c f dG - \int\limits_c^b f dG \right| &= \\ &= \left| \left(\int\limits_a^b f dG - \int\limits_c^c f dG - \int\limits_c^b f dG \right) - \left(\mathcal{S}(f dG, T\xi) - \mathcal{S}(f dG, T^1 \xi^1) - \mathcal{S}(f dG, T^2 \xi^2) \right) \right| \leqslant \\ &\leqslant \left| \int\limits_a^b f dG - \mathcal{S}(f dG, T\xi) \right| + \left| \int\limits_a^c f dG - \mathcal{S}(f dG, T^1 \xi^1) \right| + \left| \int\limits_c^b f dG - \mathcal{S}(f dG, T^2 \xi^2) \right| < 3\varepsilon. \end{split}$$

В силу произвольности выбора $\varepsilon > 0$, последняя цепочка влечёт требуемое.

Теорема 2 (О сведении интеграла Римана — Стилтьеса к интегралу Римана). Допустим, $f \in R[a;b]$ и $G \in C^{(1)}[a;b]$. Тогда f интегрируема по G на отрезке [a;b] в смысле Римана — Стилтьеса и

$$(RS) \int_{a}^{b} f(x)dG(x) = (R) \int_{a}^{b} f(x)G'(x)dx.$$

Доказательство. Берём любое $\varepsilon > 0$. Пользуясь равномерной непрерывностью на отрезке [a;b] функции G', находим $\delta_1 > 0$, для которого $|G'(\varphi_i) - G'(\psi_i)| < \varepsilon$, как только $|\varphi_i - \psi_i| < \delta_1$. Обозначим за I интеграл справа в условии. Подберём $\delta_2 > 0$ так, чтобы $|\mathcal{S}(fG', T\xi) - I| < \varepsilon$, если $d(T) < \delta_2$.

Положим $\delta := \min\{\delta_1, \delta_2\}$ и возьмём произвольное отмеченное δ -разбиение $T\xi = \{([a_{i-1}; a_i], \xi_i)\}$ отрезка [a; b]. Для него

$$\left| \mathcal{S}(fdG, T\xi) - I \right| \le \left| \mathcal{S}(fdG, T\xi) - \mathcal{S}(fG', T\xi) \right| + \left| \mathcal{S}(fG', T\xi) - I \right|, \tag{*}$$

причём второе слагаемое справа меньше ε , а первое есть

$$\left| \sum_{i} f(\xi_{i}) \left(G(a_{i}) - G(a_{i-1}) \right) - \sum_{i} f(\xi_{i}) G'(\xi_{i}) (a_{i} - a_{i-1}) \right|^{\text{т. Лагранжа}} = \left| \sum_{i} f(\xi_{i}) G'(\eta_{i}) (a_{i} - a_{i-1}) - \sum_{i} f(\xi_{i}) G'(\xi_{i}) (a_{i} - a_{i-1}) \right| = \left| \sum_{i} f(\xi_{i}) \left(G'(\eta_{i}) - G'(\xi_{i}) \right) (a_{i} - a_{i-1}) \right| \leqslant \sup_{[a;b]} |f| \cdot \varepsilon(b - a), \quad \eta_{i} \in (a_{i-1}; a_{i}).$$

В итоге левая часть (*) меньше
$$\varepsilon \left(1+\sup_{[a;b]}|f|\left(b-a\right)\right)$$
, откуда вытекает требуемое.

23. МЕТРИЧЕСКИЕ И НОРМИРОВАННЫЕ ПРОСТРАНСТВА. ПРИМЕРЫ МЕТРИЧЕСКИХ ПРОСТРАНСТВ. ПРОСТРАНСТВО \mathbb{R}^n , МЕТРИКИ И НОРМЫ В НЁМ

Определение 1. *Метрическое пространство* — пара (X, ρ) , где X — некоторое непустое множество, а $\rho: X \times X \to \mathbb{R}$ (*метрика* на X), удовлетворяющая следующим аксиомам расстояния:

- 1. $\rho(x,y) \geqslant 0$, $\rho(x,y) = 0 \Leftrightarrow x = y \ \forall x,y \in X$;
- 2. $\rho(x,y) = \rho(y,x) \ \forall x,y \in X;$

3. $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y) \ \forall x,y,z \in X$.

Пример 1. Здесь приведены некоторые примеры метрик:

1. Пусть X — произвольное множество, а ρ — дискретная метрика,

$$\rho(x,y) := \begin{cases} 1, & x \neq y, \\ 0, & x = y \end{cases}.$$

2. Пусть X — произвольное множество, $c \in X$. Возьмём любую функцию $f: X \to \mathbb{R}$ такую, что f(c) = 0 и f(x) > 0 при $x \neq c$. Эта функция задаёт *париэнсскую метрику*

$$\rho(x,y) := \begin{cases} f(x) + f(y), & \text{если } x \neq y, \\ 0, & \text{если } x = y. \end{cases}$$

3. Пусть $X = \{0,1\}^n$. Рассмотрим метрику Хэмминга

$$\rho(x,y) := \sum_{i=1}^{n} |x_i - y_i|, \quad x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in X.$$

- 4. Пара $(C[a;b], \rho)$, где $\rho(f,g) := \max_{x \in [a;b]} |f(x) g(x)|$, является метрическим пространством.
- 5. Если $\rho(a,b)$ метрика на X, то и $\frac{\rho(a,b)}{1+\rho(a,b)}$ тоже метрика на X.

Примечание. Если (X, ρ) — метрическое пространство и $X \supset Y \neq \emptyset$, то и (Y, ρ) — метрическое пространство. При этом говорят, что метрика ρ на X индуцирует метрику ρ' на Y.

Определение 2. *Нормированное пространство* — пара $(V, \|\cdot\|)$, где V — линейное (векторное) пространство над полем \mathbb{F} , а $\|\cdot\|: V \to \mathbb{R}$ (*порма* в V), для которой выполнены следующие аксиомы:

- 1. $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = \mathbf{0} \ \forall x \in V$;
- 2. $\|\lambda x\| = |\lambda| \cdot \|x\| \ \forall \lambda \in \mathbb{F}, \ \forall x \in V;$
- 3. $||x + y|| \le ||x|| + ||y|| \ \forall x, y \in V$.

Любая норма индуцирует метрику. Положим $\rho(x,y) := \|x-y\|$. Проверим выполнение для функции ρ аксиом метрики. Аксиома 1 для ρ сразу вытекает из аксиомы 1 для $\|\cdot\|$. Далее,

$$\rho(x,y) = \|x - y\| = \|-(y - x)\| = |-1| \|y - x\| = \rho(y,x),$$

и выполнена аксиома 2. Неравенство треугольника для метрики вытекает из неравенства треугольника для нормы:

$$\rho(x,y) = \|x - y\| = \|x - z + z - y\| \leqslant \|x - z\| + \|z - y\| = \rho(x,z) + \rho(z,y).$$

Итак, каждое нормированное пространство можно рассматривать как метрическое.

Пространство \mathbb{R}^n , метрики и нормы на нём. Рассмотрим множество

$$\mathbb{R}^n = \left\{ (x_1, \dots, x_n)^t : x_j \in \mathbb{R} \text{ для всех } j = 1, \dots, n \right\}.$$

 \mathbb{R}^n является линейным пространством относительно операций умножения вектора на число и сложения двух векторов, которые выполняются покоординатно. Покажем, что \mathbb{R}^n является нормированным пространством, причём существуют разнообразные способы определить норму в \mathbb{R}^n (не только те, что приведены ниже).

Для $x = (x_1, \ldots, x_n)^t$ положим

$$||x||_1 := \sum_{i=1}^n |x_i|$$

— манхэттенская норма и

$$||x||_{\infty} := \max_{i=1,\dots,n} |x_i|$$

— тах-норма.

Пожалуй, наиболее распространённой нормой в \mathbb{R}^n является евклидова норма

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

Она является частным случае целой серии норм. А именно, для любого p>1 положим

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Проверим выполнение аксиом нормы для $\left\| \cdot \right\|_{n}$:

(1)
$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \begin{cases} > 0, & x \neq 0, \\ = 0, & x = 0; \end{cases}$$

(2)
$$\left(\sum_{i=1}^{n} |\lambda x_i|^p\right)^{1/p} = \left(|\lambda|^p \sum_{i=1}^{n} |x_i|^p\right)^{1/p} = |\lambda| \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} = |\lambda| \|x\|_p;$$

$$(3) \|x+y\|_p = \left(\sum_{i=1}^n |x_i+y_i|^p\right)^{1/p} \stackrel{\text{нер-во Минковского}}{\leqslant} \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^n |y_i|^p\right)^{1/p} = \|x\|_p + \|y\|_p.$$

Нормы $\left\|\cdot\right\|_1,\,\left\|\cdot\right\|_p$ и $\left\|\cdot\right\|_\infty$ порождают метрики

$$\rho_1(x,y) = \|x - y\|_1 = \sum_{i=1}^n |x_i - y_i|, \quad \rho_p(x,y) = \|x - y\|_p = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p},$$

$$\rho_\infty(x,y) = \|x - y\|_\infty = \max_{i=1,\dots,n} |x_i - y_i|.$$