Special examples

Yashas.N

yn37git.github.io/blog/2025/Short-Notes

1 Sequences and Series

1. Riemann-Zeta function $\zeta: \mathbb{C} \to \mathbb{C} + \infty$ defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

- (a) if $1 < Re(s) < \infty$ then the series converges uniformly and absolutely
- (b) clearly ζ is analytic for Re(s) > 1
- (c) Euler's Product formula:

$$\zeta(z) = \prod \left(1 - \frac{1}{p^s}\right)^{-1}$$

where the product ranges over all primes p which implies $\zeta(s) \neq 0$ if Re(s) > 1. More generally we have

$$\zeta(s)(1-2^{-s})(1-3^{-s})\dots(1-p_N^{-s})=\sum m^s=1+p_{N+1}^{-s}\dots$$

where the R.H.S ranges for all +ve integers that contain none of prime factors $2, 3, \ldots, p_N$

(d) now if $1 < s < \infty$ (i.e. s is real > 1) then

$$\zeta(s) = s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} dx$$

where [x] is greatest integer $\leq x$

(e) more generally if Re(s) > 1 then

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{x^s - 1}{e^x - 1} dx$$

where $\Gamma(z)$ is defined by product representation for complex numbers.

1

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

- (a) is convergent to ln(2)
- (b) does not converge absolutely.

2 Functions in \mathbb{R}

1. Dirichlet Function $\delta(x)$

$$\delta(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

- (a) δ is not Riemann Integrable in any interval [a,b]
- (b) δ is Lebesgue Intergrable in $\mathbb R$ and has 0 integral value with usual lebesgue measure as the set for which δ is not zero is countable.
- 2. $f: \mathbb{R} \to \mathbb{R}$ such that for every rational r = m/n where n > 0 and $m, n \in \mathbb{Z}$ with out any common divisors then f(r) = f(m/n) = 1/n, x = 0 take n = 1 i.e. f(0) = 1 and f(x) = 0 if x is irrational i.e.

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ \frac{1}{n} & \text{if } x = \frac{m}{n} \end{cases}$$

- (a) f(x) is continuous at every irrational number
- (b) f(x) is discontinuous at rational with simple discontinuities
- $3. \sin(x)$
 - (a) can be defined without geometric interpretation as $\sin x = (e^{ix} e^{-ix})/2$ for real x
 - (b) sin is continuous one-one function in domain $[-\pi, \pi]$ onto [-1, 1] hence inverse \sin^{-1} is defined in this area.
 - (c) we see that $\frac{2}{\pi}x \le \sin x \le x$ holds $\forall x \in [0, \pi/2]$

- 4. Distance to a closed set function
 - (a) if A is any closed set in \mathbb{R} define $D_A(x) = \inf(d(x,a))$ for $a \in A$ and a metric d on \mathbb{R} (usually the Euclidean metric).
 - (b) for $x,y \in \mathbb{R}$ say $\inf(d(a,x))$ for $a \in A$ occurs at $p \in A$ and $\inf(d(a,y))$ for $a \in A$ occurs at $q \in A$ i.e. $|D_A(x) D_A(y)| = |d(p,x) d(q,y)|$ (this is possible since A is closed in \mathbb{R}) now as $d(q,y) \le d(p,y)$ we have $|D_A(x) D_A(y)| \le |d(p,x) d(p,y)| \le |d(x,y)|$ as $d(p,x) \le d(p,y) + d(x,y)$ so we get if $d(x,y) < \epsilon$ then $|D_A(x) D_A(y)| < \epsilon$ thus D_A is uniformly continuous.
 - (c) Thus there exist a uniformly continuous function of \mathbb{R} that has zeroes exactly equal to a given closed set in \mathbb{R} (namely D_A for a given closed set $A \subset \mathbb{R}$).

2