EDA - Aula 4 Prof.

Aulas Passadas

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da

Método da Análise

Aula 5 Tabela de Dispersão (Hash)

Estruturas de Dados Avançadas

Professor Eurinardo Rodrigues Costa Universidade Federal do Ceará Campus Russas

2021.1

Sumário

Prof.

Aulas Passada

> abela de Dispersão Hash) ^{Acesso Direto}

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobra Método da Multiplicação Método da Análise

- Aulas Passadas
- Tabela de Dispersão (Hash)
 - Acesso Direto
- Funções de Dispersão (Hash)
 - Condições Ideias
 - Método da Divisão
 - Método da Dobra
 - Método da Multiplicação
 - Método da Análise dos Dígitos

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Funções d Dispersão

Dispersão (Hash)

Método da Divisã

Método da Dobr

Método da Análise

FDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Dispersão (Hash)

Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da Dobra Método da

Multiplicação Método da Análise

Prof.

Aulas Passadas

- Complexidade de Tempo/Espaço
 - Pior caso,

Prof.

Aulas Passadas

- Complexidade de Tempo/Espaço
 - Pior caso,
 - Melhor caso e

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Dispersão (Hash)

Funções de Dispersão

Condições Ideias Método da Divisão

Método da Dobra Método da

Multiplicação Método da Anális

- Pior caso,
- Melhor caso e
- Caso médio.

EDA - Aula 4 Prof.

Aulas Passadas

Tabela de Dispersão (Hash)

Funções de Dispersão

Condições Ideias Método da Divisão Método da Dobra

Método da Bobra Multiplicação

Método da Anális dos Dígitos

- Complexidade de Tempo/Espaço
 - Pior caso,
 - Melhor caso e
 - Caso médio.
- Exemplo: Insertion-Sort

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Dispersão (Hash)

Funções de Dispersão

Condições Ideias Método da Divisão Método da Dobra

Multiplicação
Método da Anális

- Pior caso,
- Melhor caso e
- Caso médio.
- Exemplo: Insertion-Sort
 - Melhor caso = an b.

EDA - Aula 4 Prof.

Aulas Passadas

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobra Método da Multiplicação

- Pior caso,
- Melhor caso e
- Caso médio.
- Exemplo: Insertion-Sort
 - Melhor caso = an b.
 - Pior caso = $an^2 + bn c$.
- Crescimento de Funções

Prof.

Aulas Passadas

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Método da Divisão Método da Dobra Método da Multiplicação

- Pior caso,
- Melhor caso e
- · Caso médio.
- Exemplo: Insertion-Sort
 - Melhor caso = an b.
 - Pior caso = $an^2 + bn c$.
- Crescimento de Funções
 - Notação Assintótica

EDA - Aula 4 Prof. Eurinardo

Aulas Passadas

Dispersão (Hash)

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobra Método da Multiplicação Método da Análise

- Pior caso,
- Melhor caso e
- · Caso médio.
- Exemplo: Insertion-Sort
 - Melhor caso = an b.
 - Pior caso = $an^2 + bn c$.
- Crescimento de Funções
 - Notação Assintótica
 - Notações: Ω, O e Θ.

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobra Método da Multiplicação Método da Análise

- Complexidade de Tempo/Espaço
 - Pior caso,
 - Melhor caso e
 - Caso médio.
- Exemplo: Insertion-Sort
 - Melhor caso = an b.
 - Pior caso = $an^2 + bn c$.
- Crescimento de Funções
 - Notação Assintótica
 - Notações: Ω, O e Θ.
- Listas de Prioridade (Heap e Heap-Sort)

FDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Acesso Diret

Funções de Dispersão (Hash)

Condições Ideias

Método da Divisão

Método da Dob

Multiplicação

4□ > 4□ > 4 = > 4 = > = 990

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Acesso Diret

Funções de Dispersão (Hash)

Condições Ideias

Método da Divisã

Método da

Multiplicação Método da Anális

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Acesso Direti

Funções de Dispersão (Hash)

Condições Ideias

Método da Divisá

Método da Multiplicação

Método da Anál dos Dígitos

Acesso Direto

• m = tamanho da tabela e n = número de Chaves.

EDA - Aula 4

Prof. Eurinardo

Aulas Passada

Dispersão (Hash)

Funções de Dispersão (Hash)

Condições Ideias

Método da Divisa Método da Dobra

Método da Multiplicação Método da Análise

- m = tamanho da tabela e n = número de Chaves.
- Qual o problema do acesso direto?

Condições Ideias

- m = tamanho da tabela e n = número de Chaves.
- Qual o problema do acesso direto?
 - Se n = 2 com as chaves 0 e 999.999.

Condições Ideias

- m = tamanho da tabela e n = número de Chaves.
- Qual o problema do acesso direto?
 - Se n = 2 com as chaves 0 e 999.999. Teremos 1.000.000 de espaços onde apenas dois são utilizados.

EDA - Aula 4

Prof. Eurinardo

Aulas Passada

Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias

Método da Dobra Método da Multiplicação

- m = tamanho da tabela e n = número de Chaves.
- Qual o problema do acesso direto?
 - Se n = 2 com as chaves 0 e 999.999. Teremos
 1.000.000 de espaços onde apenas dois são utilizados.
- Como resolver esse problema?

EDA - Aula 4

Prof. Eurinardo

Aulas Passada

Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias

Método da Dobra Método da Multiplicação Método da Análise

Acesso Direto

- m = tamanho da tabela e n = número de Chaves.
- Qual o problema do acesso direto?
 - Se n = 2 com as chaves 0 e 999.999. Teremos
 1.000.000 de espaços onde apenas dois são utilizados.
- Como resolver esse problema?

ideia: transformar cada chave x num valor do intervalo [0, 1, ..., m-1] através de uma **Função de Dispersão**

EDA - Aula 4 Prof.

Aulas Passadas

> Dispersão Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da Dobra Método da Multiplicação Método da Análise

Acesso Direto

- m = tamanho da tabela e n = número de Chaves.
- Qual o problema do acesso direto?
 - Se n = 2 com as chaves 0 e 999.999. Teremos
 1.000.000 de espaços onde apenas dois são utilizados.
- Como resolver esse problema?

ideia: transformar cada chave x num valor do intervalo [0, 1, ..., m-1] através de uma **Função de Dispersão**

Função de Dispersão (Hash)

Prof.

Aulas Passada:

> ābela de Dispersão Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias

Método da Dobra Método da Multiplicação Método da Análise

Acesso Direto

- m = tamanho da tabela e n = número de Chaves.
- Qual o problema do acesso direto?
 - Se n = 2 com as chaves 0 e 999.999. Teremos
 1.000.000 de espaços onde apenas dois são utilizados.
- Como resolver esse problema?

ideia: transformar cada chave x num valor do intervalo [0, 1, ..., m-1] através de uma **Função de Dispersão**

Função de Dispersão (Hash)

Condições ideais:

Prof.

Aulas Passada:

> labela de Dispersão Hash) ^{Acesso Direto}

Funções de Dispersão (Hash)

(Hash)
Condições Ideias

Método da Dobra Método da Multiplicação Método da Análise dos Dígitos

Acesso Direto

- m = tamanho da tabela e n = número de Chaves.
- Qual o problema do acesso direto?
 - Se n = 2 com as chaves 0 e 999.999. Teremos
 1.000.000 de espaços onde apenas dois são utilizados.
- Como resolver esse problema?

ideia: transformar cada chave x num valor do intervalo [0, 1, ..., m-1] através de uma **Função de Dispersão**

Função de Dispersão (Hash)

Condições ideais:

produzir número baixo de colisões

Prof.

Aulas Passada

> Tabela de Dispersão Hash) ^{Acesso Direto}

Funções de Dispersão (Hash)

Condições Ideias Método da Divisã

Método da Dobra Método da Multiplicação Método da Análise dos Dígitos

Acesso Direto

- m = tamanho da tabela e n = número de Chaves.
- Qual o problema do acesso direto?
 - Se n = 2 com as chaves 0 e 999.999. Teremos
 1.000.000 de espaços onde apenas dois são utilizados.
- Como resolver esse problema?

ideia: transformar cada chave x num valor do intervalo [0, 1, ..., m-1] através de uma **Função de Dispersão**

Função de Dispersão (Hash)

Condições ideais:

- produzir número baixo de colisões
- ser facilmente computável

Prof. Eurinardo

Aulas Passada:

Dispersão Hash) Acesso Diret

Funções de Dispersão (Hash)

Método da Divisão Método da Dobra Método da Multiplicação

Acesso Direto

- m = tamanho da tabela e n = número de Chaves.
- Qual o problema do acesso direto?
 - Se n = 2 com as chaves 0 e 999.999. Teremos
 1.000.000 de espaços onde apenas dois são utilizados.
- Como resolver esse problema?

ideia: transformar cada chave x num valor do intervalo [0, 1, ..., m-1] através de uma **Função de Dispersão**

Função de Dispersão (Hash)

Condições ideais:

- produzir número baixo de colisões
- ser facilmente computável
- ser uniforme (probabilidade igual para cada espaço)

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Acesso Direte

Funções d Dispersão (Hash)

Condições Ideias

Método da Divisão

Método da Doi

Multiplicação

Método da Apálic

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Acesso Diret

Funções de Dispersão (Hash)

(Hasn) Condições Ideias

Método da Divisão Método da Dobra

Método da Multiplicaçã

Método da Análise dos Dígitos

Método da Divisão

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da

Multiplicação Método da Aná

Método da Divisão

$$h(x) = x \mod m$$

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Dispersão (Hash)

Funções de

Dispersão (Hash)

Método da Divisão

Método da Multiplicação

dos Dígitos

Método da Divisão

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Funções de

Dispersão (Hash)

Método da Divisão

Método da Dobr

Metodo da Multiplicação

Método da Anál dos Dígitos

Método da Divisão

 $h(x) = x \mod m$ m's ruins

m par

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Funções de Dispersão (Hash)

(Hash)
Condições Ideia

Método da Divisão Método da Dobra

Método da Multiplicação

Método da An dos Dígitos

Método da Divisão

- *m* par
 - x é par

Prof.

Método da Divisão

Método da Divisão

- *m* par
 - x é par →

Prof.

Método da Divisão

Método da Divisão

- *m* par
 - $x \in par \rightarrow h(x) \in par$

EDA - Aula 4

Prof. Eurinardo

Aulas Passada

Dispersão (Hash)

Funções de

Dispersão (Hash)

Método da Divisão

Método da

dos Dígitos

Método da Divisão

- *m* par
 - $x \in par \rightarrow h(x) \in par$ Exemplo:

Prof.

Método da Divisão

Método da Divisão

- m par
 - $x \in par \rightarrow h(x) \in par$ Exemplo: $\left\{ \begin{array}{l} x=6 \\ m=4 \end{array} \right\}$

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Funções de Dispersão (Hash)

(Hash) Condições Ideia

Método da Divisão Método da Dobra

Método da Multiplicação

metodo da An dos Dígitos

Método da Divisão

 $h(x) = x \mod m$ m's ruins

- m par
 - $x \in par \rightarrow h(x) \in par$ Exemplo: $\begin{cases} x=6 \\ m=4 \end{cases} \rightarrow h(6) = 6 \mod 4 = 2$

Método da Divisão

Método da Divisão

 $h(x) = x \mod m$ m's ruins

- m par
 - $x \in par \rightarrow h(x) \in par$ Exemplo: $\{ {\substack{x=6 \ m-4}} \} \to h(6) = 6 \mod 4 = 2$
 - x é ímpar

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

(Hash)
Condições Ideias
Método da Divisão

Método da Dobi Método da

Método da Aná

Método da Divisão

 $h(x) = x \mod m$ m's ruins

- *m* par
 - $x \in par \rightarrow h(x) \in par$ Exemplo: $\begin{cases} x=6 \\ m=4 \end{cases} \rightarrow h(6) = 6 \mod 4 = 2$
 - *x* é ímpar →

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da

dos Dígitos

Método da Divisão

 $h(x) = x \mod m$ m's ruins

- m par
 - $x \in par \rightarrow h(x) \in par$

Exemplo: $\{ \stackrel{\hat{x}=6}{m=4} \} \rightarrow h(6) = 6 \mod 4 = 2$

• $x \in \text{impar} \to h(x) \in \text{impar}$

EDA - Aula 4

Prof. Eurinardo

Aulas Passada:

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Método da Divisão

Método da Dobra

Método da Multiplicação

Método da An dos Dígitos

Método da Divisão

 $h(x) = x \mod m$ m's ruins

- m par
 - $x \in par \rightarrow h(x) \in par$

Exemplo:
$$\{ \substack{\hat{x}=6 \\ m=4} \} \to h(6) = 6 \mod 4 = 2$$

• $x \in \text{impar} \to h(x) \in \text{impar}$ Exemplo:

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da Multiplicação

metodo da An dos Dígitos

Método da Divisão

 $h(x) = x \mod m$ m's ruins

- m par
 - $x \in par \rightarrow h(x) \in par$

Exemplo:
$$\{ \substack{\hat{x}=6 \\ m=4} \} \to h(6) = 6 \mod 4 = 2$$

• $x \in \text{impar} \rightarrow h(x) \in \text{impar}$ Exemplo: $\begin{cases} x=7 \\ m=4 \end{cases}$

EDA - Aula 4

Prof. Eurinardo

Aulas Passada:

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da Multiplicação

Método da Ani dos Dígitos

Método da Divisão

 $h(x) = x \mod m$ m's ruins

- m par
 - $x \in par \rightarrow h(x) \in par$

Exemplo:
$$\{ \substack{\hat{x}=6 \\ m=4} \} \to h(6) = 6 \mod 4 = 2$$

• $x ext{ \'e impar} o h(x) ext{ \'e impar}$ Exemplo: $\begin{cases} x=7 \\ m=4 \end{cases} o h(7) = 7 \mod 4 = 3$

EDA - Aula 4

Prof. Eurinardo

Aulas Passada

Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Método da Divisão Método da Dobra Método da

multiplicação Método da Análise dos Dígitos

Método da Divisão

 $h(x) = x \mod m$ m's ruins

- m par
 - $x \in par \rightarrow h(x) \in par$

Exemplo:
$$\{ \stackrel{\hat{x}=6}{m=4} \} \rightarrow h(6) = 6 \mod 4 = 2$$

• $x \in \text{impar} \rightarrow h(x) \in \text{impar}$ Example: $\begin{cases} x=7 \\ x = 7 \end{cases} \rightarrow h(7) = 1$

Exemplo:
$$\{ {\substack{x=7 \ m=4}} \} \to h(7) = 7 \mod 4 = 3$$

• m potência de 2 ($m = 2^{j}$)

```
Prof.
```

Aulas Passadas

Tabela de Dispersão Hash) ^{Acesso Direto}

Funções de Dispersão (Hash)

Método da Divisão Método da Dobra Método da Multiplicação Método da Análise

Método da Divisão

$$h(x) = x \mod m$$
m's ruins

- *m* par
 - $x \in par \rightarrow h(x) \in par$ Exemplo: $\begin{cases} x=6 \\ m=4 \end{cases} \rightarrow h(6) = 6 \mod 4 = 2$
 - $x ext{ \'e impar} o h(x) ext{ \'e impar}$ Exemplo: $\begin{cases} x=7 \\ m=4 \end{cases} o h(7) = 7 \mod 4 = 3$
- m potência de 2 ($m = 2^{j}$)

m's bons

Prof.

Aulas Passadas

Tabela de Dispersão (Hash) ^{Acesso Direto}

Funções de Dispersão (Hash)

Método da Divisão Método da Dobra Método da Multiplicação Método da Análise

Método da Divisão

 $h(x) = x \mod m$ m's ruins

- m par
 - $x \in par \rightarrow h(x) \in par$ Exemplo: $\begin{cases} x=6 \\ m=4 \end{cases} \rightarrow h(6) = 6 \mod 4 = 2$
 - $x ext{ \'e impar} o h(x) ext{ \'e impar}$ $\text{Exemplo: } \{ \substack{x=7 \\ m=4} \} o h(7) = 7 \mod 4 = 3$
- m potência de 2 ($m = 2^j$)

m's bons

primo não próximo de uma potência de 2.

Prof.

Aulas Passadas

> Tabela de Dispersão Hash) ^{Acesso Direto}

Funções de Dispersão (Hash)

Método da Divisão Método da Dobra Método da Multiplicação Método da Análise

Método da Divisão

 $h(x) = x \mod m$ m's ruins

- m par
 - $x \in par \rightarrow h(x) \in par$ Exemplo: $\begin{cases} x=6 \\ m=4 \end{cases} \rightarrow h(6) = 6 \mod 4 = 2$
 - $x ext{ \'e impar} o h(x) ext{ \'e impar}$ Exemplo: $\begin{cases} x=7 \\ m=4 \end{cases} o h(7) = 7 \mod 4 = 3$
- m potência de 2 ($m = 2^j$)

m's bons

- primo n\u00e3o pr\u00f3ximo de uma pot\u00e9ncia de 2.
- não possuir divisores primos menores que 20.

FDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Acesso Direte

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da Dobr

Método da Multiplicação

Método da Análise

EDA - Aula 4

Prof. Eurinardo

Aulas Passada:

Tabela de Dispersão (Hash)

Acesso Dire

Funções de Dispersão (Hash)

Condições Ideias Método da Divisã

Método da

Multiplicação

Método da Dobra

FDA - Aula 4

Prof. Eurinardo

Aulas Passada

Tabela de Dispersão (Hash)

Funções de Dispersão

Condições Ideias Método da Divisã

Método da

Multiplicação

Método da Dobra

Pode ser feito ainda com números binários e operações **e**, **ou** e **ou exclusivo**

FDA - Aula 4

Prof. Eurinardo

Aulas Passada

Tabela de Dispersão (Hash)

Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobro

Método da Multiplicação

Método da Anális dos Dígitos

Método da Dobra

Pode ser feito ainda com números binários e operações **e**, **ou** e **ou exclusivo**

Método da Multiplicação

EDA - Aula 4

Prof. Eurinardo

Aulas Passada

Tabela de Dispersão (Hash)

Funções de Dispersão

Condições Ideias Método da Divisã Método do Debro

Método da Multiplicaçã

Multiplicação Método da Análise dos Dígitos

Método da Dobra

Pode ser feito ainda com números binários e operações **e**, **ou** e **ou exclusivo**

Método da Multiplicação

 $h(x) = \text{dígitos centrais de } x^2$

EDA - Aula 4

Prof. Eurinardo

Aulas Passada

Tabela de Dispersão (Hash)

Funções de Dispersão

Condições Ideias Método da Divisã Método do Debro

Método da Multiplicaçã

Multiplicação Método da Análise dos Dígitos

Método da Dobra

Pode ser feito ainda com números binários e operações **e**, **ou** e **ou exclusivo**

Método da Multiplicação

 $h(x) = \text{dígitos centrais de } x^2$

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Acesso Direte

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da Dobr

Método da Análise dos Dígitos

<ロ > ← □

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Acesso Diret

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da Dob

Método da Análise dos Dígitos

Método da Análise dos Dígitos

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Dispersão (Hash)

Funções de Dispersão

Dispersão (Hash)

Método da Divisão

Método da Multiplicaçã

Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Dispersão (Hash)

Funções de Dispersão

Dispersão (Hash)

Método da Divisão Método da Dobra

Método da Multiplicaci

Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais. Método:

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da

Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o **primeiro** dígito

Prof.

Aulas Passadas

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão

Método da Dobra Método da

Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o **primeiro** dígito

 n_0

Prof.

Aulas Passadas

Tabela de Dispersão (Hash) ^{Acesso Direto}

Funções de Dispersão (Hash)

Método da Divisão Método da Dobra

Método da Bobi.

Multiplicação Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o primeiro dígito

 $n_0 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 0.

Prof.

Aulas Passadas

Tabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobra

Método da Multiplicação

Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o primeiro dígito

 $n_0 \leftarrow \text{qtd}$ de chaves com o **primeiro** dígito igual a 0.

 n_1

Prof.
Furinardo

Aulas Passada:

Iabela de Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobra

Multiplicação Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o primeiro dígito

 $n_0 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 0.

 $n_1 \leftarrow \text{qtd}$ de chaves com o **primeiro** dígito igual a 1.

Prof.

Aulas Passadas

Dispersão Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobra

Multiplicação Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o primeiro dígito

 $n_0 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 0.

 $n_1 \leftarrow \text{qtd}$ de chaves com o **primeiro** dígito igual a 1.

: :

Prof.

Aulas Passada:

> Dispersão Hash) Acesso Direto

Funções de Dispersão (Hash)

Método da Divisão Método da Dobra Método da

Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o primeiro dígito

 $n_0 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 0.

 $n_1 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 1.

: :

*n*₉

Prof.
Eurinardo

Aulas Passadas

> Dispersão Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobra Método da Multiplicação

Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o primeiro dígito

 $n_0 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 0.

 $n_1 \leftarrow \text{qtd}$ de chaves com o **primeiro** dígito igual a 1.

: :

 $n_9 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 9.

Método da Análise

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o **primeiro** dígito

 $n_0 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 0.

 $n_1 \leftarrow \text{qtd}$ de chaves com o **primeiro** dígito igual a 1.

 $n_9 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 9. Considere o desvio de distribuição

Método da Análise

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o **primeiro** dígito

 $n_0 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 0.

 $n_1 \leftarrow \text{qtd}$ de chaves com o **primeiro** dígito igual a 1.

 $n_9 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 9. Considere o desvio de distribuição

$$\sum_{i=0}^{9} \left(n_i - \frac{n}{10} \right)^2 \text{ ou } \sum_{i=0}^{9} \left| n_i - \frac{n}{10} \right|$$

Método da Análise

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o **primeiro** dígito

 $n_0 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 0.

 $n_1 \leftarrow \text{qtd}$ de chaves com o **primeiro** dígito igual a 1.

 $n_9 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 9. Considere o desvio de distribuição

$$\sum_{i=0}^{9} \left(n_i - \frac{n}{10} \right)^2 \text{ ou } \sum_{i=0}^{9} \left| n_i - \frac{n}{10} \right|$$

Faça o mesmo para os outros dígitos

EDA - Aula 4

Prof.
Eurinardo

Aulas Passada

Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash) Condições Ideia

Condições Ideias Método da Divisão Método da Dobra Método da Multiplicação Método da Análise dos Dígitos

Método da Análise dos Dígitos

Utilizado, em geral, em chaves decimais.

Método: Para o primeiro dígito

 $n_0 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 0.

 $n_1 \leftarrow$ qtd de chaves com o **primeiro** dígito igual a 1.

: :

n₉ ← qtd de chaves com o **primeiro** dígito igual a 9.
 Considere o desvio de distribuição

$$\sum_{i=0}^{9} \left(n_i - \frac{n}{10} \right)^2 \text{ ou } \sum_{i=0}^{9} \left| n_i - \frac{n}{10} \right|$$

Faça o mesmo para os outros dígitos h(x) = Escolha os k dígitos de x cujos desvios foram os menores.

Bibliografia

EDA - Aula 4

Prof.
Eurinardo

Aulas Passada

Dispersão (Hash) Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobra Método da Multiplicação

Método da Análise dos Dígitos SZWARCFITER, Jayme; MARKENZON, Lilian. Estruturas de Dados e Seus Algoritmos.3a edição. LTC, ano 2010. (ISBN 9788521617501).

EDA - Aula 4

Prof. Eurinardo

Aulas Passadas

Tabela de Dispersão (Hash)

Acesso Direto

Funções de Dispersão (Hash)

Condições Ideias Método da Divisão Método da Dobra

Método da

Método da Análise dos Dígitos

Obrigado!