In [1]: pip install mlxtend

Requirement already satisfied: mlxtend in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (0.18.0)

Requirement already satisfied: joblib>=0.13.2 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from mlxtend) (0.17.0)

Requirement already satisfied: scipy>=1.2.1 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from mlxtend) (1.5.2)

Requirement already satisfied: setuptools in ./opt/anaconda3/envs/learn-e nv/lib/python3.8/site-packages (from mlxtend) (50.3.0.post20201103)

Requirement already satisfied: numpy>=1.16.2 in ./opt/anaconda3/envs/lear n-env/lib/python3.8/site-packages (from mlxtend) (1.18.5)

Requirement already satisfied: scikit-learn>=0.20.3 in ./opt/anaconda3/en vs/learn-env/lib/python3.8/site-packages (from mlxtend) (0.23.2)

Requirement already satisfied: matplotlib>=3.0.0 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from mlxtend) (3.3.1)

Requirement already satisfied: pandas>=0.24.2 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from mlxtend) (1.1.3)

Requirement already satisfied: threadpoolctl>=2.0.0 in ./opt/anaconda3/en vs/learn-env/lib/python3.8/site-packages (from scikit-learn>=0.20.3->mlxt end) (2.1.0)

Requirement already satisfied: python-dateutil>=2.1 in ./opt/anaconda3/en vs/learn-env/lib/python3.8/site-packages (from matplotlib>=3.0.0->mlxten d) (2.8.1)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 i n ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from matplo tlib>=3.0.0->mlxtend) (2.4.7)

Requirement already satisfied: certifi>=2020.06.20 in ./opt/anaconda3/env s/learn-env/lib/python3.8/site-packages (from matplotlib>=3.0.0->mlxtend) (2020.12.5)

Requirement already satisfied: kiwisolver>=1.0.1 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from matplotlib>=3.0.0->mlxtend) (1.2.0)

Requirement already satisfied: cycler>=0.10 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from matplotlib>=3.0.0->mlxtend) (0.10.0)

Requirement already satisfied: pillow>=6.2.0 in ./opt/anaconda3/envs/lear n-env/lib/python3.8/site-packages (from matplotlib>=3.0.0->mlxtend) (7.2.0)

Requirement already satisfied: pytz>=2017.2 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from pandas>=0.24.2->mlxtend) (2020.1) Requirement already satisfied: six>=1.5 in ./opt/anaconda3/envs/learn-en v/lib/python3.8/site-packages (from python-dateutil>=2.1->matplotlib>=3.0.0->mlxtend) (1.15.0)

Note: you may need to restart the kernel to use updated packages.

```
In [2]: #Import relevant libraries here, more will be added later on, so we can see import numpy as np import pandas as pd %matplotlib inline import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.metrics import accuracy_score, classification_report from sklearn.linear_model import LogisticRegression from mlxtend.plotting import plot_decision_regions import warnings from sklearn.metrics import recall_score from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning)
```

OSEMN-Obtain

Here we will be using pandas to convert our data for readability

```
In [3]: #Let's import and assign the data using pandas
    sample = pd.read_csv('SubmissionFormat.csv')
    df_test = pd.read_csv('702ddfc5-68cd-4d1d-a0de-f5f566f76d91.csv')
    df_train_labels = pd.read_csv('0bf8bc6e-30d0-4c50-956a-603fc693d966.csv')
    df_train_features = pd.read_csv('4910797b-ee55-40a7-8668-10efd5c1b960.csv')

In [4]: #explore the data rows and column sizes
    df_train_features.shape, df_test.shape, df_train_labels.shape

Out[4]: ((59400, 40), (14850, 40), (59400, 2))

In [5]: df_test.sample()
Out[5]:
```

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	,
13039	19984	0.0	2013-03-23	Government Of Tanzania	1616	DWE	36.645105	-3.137549	

1 rows × 40 columns

In [6]: df_test.head()

Out[6]:

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	wp
0	50785	0.0	2013-02-04	Dmdd	1996	DMDD	35.290799	-4.059696	Se
1	51630	0.0	2013-02-04	Government Of Tanzania	1569	DWE	36.656709	-3.309214	ŀ
2	17168	0.0	2013-02-01	NaN	1567	NaN	34.767863	-5.004344	Se
3	45559	0.0	2013-01-22	Finn Water	267	FINN WATER	38.058046	-9.418672	Kν
4	49871	500.0	2013-03-27	Bruder	1260	BRUDER	35.006123	-10.950412	Κw

5 rows × 40 columns

In [7]: df_train_features.head()

Out[7]:

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	wpt_na
0	69572	6000.0	2011-03-14	Roman	1390	Roman	34.938093	-9.856322	r
1	8776	0.0	2013-03-06	Grumeti	1399	GRUMETI	34.698766	-2.147466	Zaha
2	34310	25.0	2013-02-25	Lottery Club	686	World vision	37.460664	-3.821329	Mah
3	67743	0.0	2013-01-28	Unicef	263	UNICEF	38.486161	-11.155298	Zaha Nanyui
4	19728	0.0	2011-07-13	Action In A	0	Artisan	31.130847	-1.825359	Shı

5 rows × 40 columns

```
In [8]: #this list will become important later on in the notebook, to calculate fea
        list(df train features)
Out[8]: ['id',
          'amount_tsh',
          'date_recorded',
          'funder',
          'gps height',
          'installer',
          'longitude',
          'latitude',
          'wpt_name',
          'num private',
          'basin',
          'subvillage',
          'region',
          'region_code',
          'district_code',
          'lga',
          'ward',
          'population',
          'public meeting',
          'recorded_by',
          'scheme_management',
          'scheme name',
          'permit',
          'construction year',
          'extraction type',
          'extraction type group',
          'extraction_type_class',
          'management',
          'management group',
          'payment',
          'payment type',
          'water quality',
          'quality group',
          'quantity',
          'quantity group',
          'source',
          'source_type',
          'source class',
          'waterpoint type',
          'waterpoint_type_group']
In [9]: #Here we can see the number of wells recorded and their operational status
        df train labels.status group.value counts()
Out[9]: functional
                                     32259
        non functional
                                     22824
        functional needs repair
                                      4317
        Name: status group, dtype: int64
```

```
In [10]: #converting this data to percentages
df_train_labels.status_group.value_counts(normalize=True)
```

```
Out[10]: functional 0.543081
non functional 0.384242
functional needs repair 0.072677
Name: status group, dtype: float64
```

```
In [11]: #Let's use seaborn to graph out the first and simplest aspect of our data!
import seaborn as sns
plt.figure(figsize=(18,12))
plt.title("Water Pumps Working Status",fontsize=20, fontweight='bold')
sns.countplot(x = df_train_labels['status_group'], data = df_train_labels,
```



```
In [14]: #Let's combine our test and train features
full_df = pd.concat([df_train_features, df_test])
```

```
In [15]: full_df.shape
```

Out[15]: (74250, 40)

In [16]: #A closer look att our merged data to see what type of data we will be work full_df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 74250 entries, 0 to 14849 Data columns (total 40 columns):

#	Column	Non-Null Count						
0	id	74250 non-null	 int64					
1	amount_tsh	74250 non-null	float64					
2	date_recorded	74250 non-null	object					
3	funder	69746 non-null	object					
4	gps height	74250 non-null	int64					
5	installer	69718 non-null	object					
6	longitude	74250 non-null	float64					
7	latitude	74250 non-null	float64					
8	wpt_name	74250 non-null	object					
9	num private	74250 non-null	int64					
10	basin	74250 non-null	object					
11	subvillage	73780 non-null	object					
12	region	74250 non-null	object					
13	region_code	74250 non-null	int64					
14	district code	74250 non-null	int64					
15	_ lga	74250 non-null	object					
16	ward	74250 non-null	object					
17	population	74250 non-null	int64					
18	public_meeting	70095 non-null	object					
19	recorded by	74250 non-null	object					
20	scheme_management	69404 non-null	object					
21	scheme name	38992 non-null	object					
22	permit	70457 non-null	object					
23	construction_year	74250 non-null	int64					
24	extraction_type	74250 non-null	object					
25	extraction_type_group	74250 non-null	object					
26	extraction type class	74250 non-null	object					
27	management	74250 non-null	object					
28	management_group	74250 non-null	object					
29	payment	74250 non-null	object					
30	payment_type	74250 non-null	object					
31	water_quality	74250 non-null	object					
32	quality_group	74250 non-null	object					
33	quantity	74250 non-null	object					
34	quantity_group	74250 non-null	object					
35	source	74250 non-null	object					
36	source_type	74250 non-null	object					
37	source_class	74250 non-null	object					
38	waterpoint_type	74250 non-null	object					
39	waterpoint_type_group	74250 non-null	object					
dtyp	es: $float64(3)$, $int64(7)$), object(30)						
memo	memory usage: 23.2+ MB							

```
In [17]: full_df.head()
```

Out[17]:

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	wpt_na
0	69572	6000.0	2011-03-14	Roman	1390	Roman	34.938093	-9.856322	r
1	8776	0.0	2013-03-06	Grumeti	1399	GRUMETI	34.698766	-2.147466	Zaha
2	34310	25.0	2013-02-25	Lottery Club	686	World vision	37.460664	-3.821329	Mah
3	67743	0.0	2013-01-28	Unicef	263	UNICEF	38.486161	-11.155298	Zaha Nanyui
4	19728	0.0	2011-07-13	Action In A	0	Artisan	31.130847	-1.825359	Shı

5 rows × 40 columns

OSEMN- Scrubbing our data

Dates are especially tricky and can throw wrenches into our algorithm later on, let's fix that before going any further

```
In [18]: full_df['date_recorded_months'] = [(pd.to_datetime(date)-pd.to_datetime('20
```

Next we begin he very important task of dropping superfluous columns, and replacing missing data

```
In [20]: #use the .mask() function to replace values that satisfy the conditions
full_df = full_df.apply(lambda x: x.mask(x.map(x.value_counts())<250, 'NaN'</pre>
```

```
In [22]: #Our mask fucntion worked pretty well, let's do the same for our other colu
full_df = full_df.apply(lambda x: x.mask(x.map(x.value_counts())<250, 'NaN'
full_df = full_df.apply(lambda x: x.mask(x.map(x.value_counts())<250, 'NaN'
full_df = full_df.apply(lambda x: x.mask(x.map(x.value_counts())<150, 'NaN'
full_df = full_df.apply(lambda x: x.mask(x.map(x.value_counts())<100, 'NaN'
full_df = full_df.apply(lambda x: x.mask(x.map(x.value_counts())<150, 'NaN'</pre>
```

In [40]: full_df.head()

Out[40]:

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	wpt_nam
0	69572	6000.0	2011-03-14	Roman	1390	NaN	34.938093	-9.856322	nor
1	8776	0.0	2013-03-06	NaN	1399	NaN	34.698766	-2.147466	Zahana
2	34310	25.0	2013-02-25	NaN	686	World vision	37.460664	-3.821329	Na
3	67743	0.0	2013-01-28	Unicef	263	UNICEF	38.486161	-11.155298	Na
4	19728	0.0	2011-07-13	NaN	0	NaN	31.130847	-1.825359	Shule

5 rows × 41 columns

```
In [41]: df_main = pd.get_dummies(full_df_columns)
```

In [42]: df main.head()

Out[42]:

	id	amount_tsh	gps_height	longitude	latitude	num_private	region_code	district_code
0	69572	6000.0	1390	34.938093	-9.856322	0	11	5
1	8776	0.0	1399	34.698766	-2.147466	0	20	2
2	34310	25.0	686	37.460664	-3.821329	0	21	4
3	67743	0.0	263	38.486161	-11.155298	0	90	63
4	19728	0.0	0	31.130847	-1.825359	0	18	1

5 rows × 275 columns

```
In [43]: df_main.shape
```

Out[43]: (74250, 275)

Now let's split the data once again so we can run a train test split, and model our data effectively

```
In [44]: X_cleaned = df_main[:-14850]
    X_test_main_cleaned = df_main[-14358:]
    y = df_train_labels['status_group']
```

	id	amount_tsh	gps_height	longitude	latitude	num_private	region_code	district
24947	33935	20.0	330	38.123839	-6.087137e+00	0	6	
22630	49654	0.0	0	0.000000	-2.000000e-08	0	17	
13789	39287	0.0	0	33.312321	-2.814100e+00	0	19	
15697	60510	0.0	1542	34.783049	-4.842093e+00	0	13	
22613	24259	0.0	523	34.660944	-1.070733e+01	0	10	

5 rows × 275 columns

OSEMN-Model

Now that our data is cleaned and organized, we can start modeling our dataset using Logistic Regression, Random Forests, and Gradient Boosting to check for feature importance. We can also create a heatmap of our data set, set on top of a map of Tanzania

```
In [49]: from sklearn import tree

dtf = tree.DecisionTreeClassifier()
dtf.fit(X = X_train, y = y_train)
dtf.feature_importances_
dtf.score(X = X_test, y = y_test)

Out[49]: 0.74464646464647

In [50]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score
    from scipy.cluster import hierarchy as hc
```

```
In [51]: AS = RandomForestClassifier(n_estimators=250,min_samples_leaf=3 ,n_jobs=-1,
%time AS.fit(X_train, y_train)
y_pred= AS.predict(X_test)
accuracy_score(y_test, y_pred)

CPU times: user 1min 58s, sys: 990 ms, total: 1min 59s
Wall time: 37.5 s
Out[51]: 0.8104377104377104
```

Not too bad! Let's install some extra packages that can show us the geographical distribution of the wells, so we can see how that relates to feature importance, as well as findings problematic area that may require additional attention

```
In [52]: !pip install descartes
    from pylab import rcParams
    rcParams['figure.figsize'] = 30, 20
    !pip install category_encoders
    !pip install geopandas
    import geopandas
```

Requirement already satisfied: descartes in ./opt/anaconda3/envs/learn-en v/lib/python3.8/site-packages (1.1.0)

Requirement already satisfied: matplotlib in ./opt/anaconda3/envs/learn-e nv/lib/python3.8/site-packages (from descartes) (3.3.1)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 i n ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from matplo tlib->descartes) (2.4.7)

Requirement already satisfied: cycler>=0.10 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from matplotlib->descartes) (0.10.0)
Requirement already satisfied: certifi>=2020.06.20 in ./opt/anaconda3/env s/learn-env/lib/python3.8/site-packages (from matplotlib->descartes) (202 0.12.5)

Requirement already satisfied: pillow>=6.2.0 in ./opt/anaconda3/envs/lear n-env/lib/python3.8/site-packages (from matplotlib->descartes) (7.2.0)
Requirement already satisfied: python-dateutil>=2.1 in ./opt/anaconda3/en vs/learn-env/lib/python3.8/site-packages (from matplotlib->descartes) (2.8.1)

Requirement already satisfied: numpy>=1.15 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from matplotlib->descartes) (1.18.5)
Requirement already satisfied: kiwisolver>=1.0.1 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from matplotlib->descartes) (1.2.0)

Requirement already satisfied: six in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from cycler>=0.10->matplotlib->descartes) (1.15.0)

Requirement already satisfied: category_encoders in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (2.2.2)

Requirement already satisfied: scipy>=1.0.0 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from category encoders) (1.5.2)

Requirement already satisfied: patsy>=0.5.1 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from category encoders) (0.5.1)

Requirement already satisfied: scikit-learn>=0.20.0 in ./opt/anaconda3/en vs/learn-env/lib/python3.8/site-packages (from category_encoders) (0.23.2)

Requirement already satisfied: numpy>=1.14.0 in ./opt/anaconda3/envs/lear n-env/lib/python3.8/site-packages (from category_encoders) (1.18.5)
Requirement already satisfied: statsmodels>=0.9.0 in ./opt/anaconda3/env s/learn-env/lib/python3.8/site-packages (from category_encoders) (0.12.0)
Requirement already satisfied: pandas>=0.21.1 in ./opt/anaconda3/envs/lea rn-env/lib/python3.8/site-packages (from category_encoders) (1.1.3)
Requirement already satisfied: six in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from patsy>=0.5.1->category_encoders) (1.15.0)
Requirement already satisfied: joblib>=0.11 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from scikit-learn>=0.20.0->category_encoders) (0.17.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in ./opt/anaconda3/en vs/learn-env/lib/python3.8/site-packages (from scikit-learn>=0.20.0->cate gory encoders) (2.1.0)

Requirement already satisfied: python-dateutil>=2.7.3 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from pandas>=0.21.1->category

encoders) (2.8.1)

Requirement already satisfied: pytz>=2017.2 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from pandas>=0.21.1->category_encoders) (2020.1)

Requirement already satisfied: geopandas in ./opt/anaconda3/envs/learn-en v/lib/python3.8/site-packages (0.8.2)

Requirement already satisfied: pandas>=0.23.0 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from geopandas) (1.1.3)

Requirement already satisfied: pyproj>=2.2.0 in ./opt/anaconda3/envs/lear n-env/lib/python3.8/site-packages (from geopandas) (3.0.0.post1)

Requirement already satisfied: fiona in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from geopandas) (1.8.18)

Requirement already satisfied: shapely in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from geopandas) (1.7.1)

Requirement already satisfied: python-dateutil>=2.7.3 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from pandas>=0.23.0->geopandas) (2.8.1)

Requirement already satisfied: pytz>=2017.2 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from pandas>=0.23.0->geopandas) (2020. 1)

Requirement already satisfied: numpy>=1.15.4 in ./opt/anaconda3/envs/lear n-env/lib/python3.8/site-packages (from pandas>=0.23.0->geopandas) (1.18.5)

Requirement already satisfied: certifi in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from pyproj>=2.2.0->geopandas) (2020.12.5)
Requirement already satisfied: munch in ./opt/anaconda3/envs/learn-env/li

b/python3.8/site-packages (from fiona->geopandas) (2.5.0)

Requirement already satisfied: cligj>=0.5 in ./opt/anaconda3/envs/learn-e nv/lib/python3.8/site-packages (from fiona->geopandas) (0.7.1)

Requirement already satisfied: click-plugins>=1.0 in ./opt/anaconda3/env s/learn-env/lib/python3.8/site-packages (from fiona->geopandas) (1.1.1)
Requirement already satisfied: click<8,>=4.0 in ./opt/anaconda3/envs/lear

n-env/lib/python3.8/site-packages (from fiona->geopandas) (7.1.2)
Requirement already satisfied: attrs>=17 in ./opt/anaconda3/envs/learn-en

v/lib/python3.8/site-packages (from fiona->geopandas) (20.2.0)

Requirement already satisfied: six>=1.7 in ./opt/anaconda3/envs/learn-en v/lib/python3.8/site-packages (from fiona->geopandas) (1.15.0)

```
In [53]: |gdf = geopandas.GeoDataFrame(
             df main, geometry=geopandas.points_from_xy(df_main.longitude, df_main.l
         functional = gdf.where(df_train_labels['status_group'] == 'functional')
         repair = gdf.where(df_train_labels['status_group'] == 'functional needs rep
         broken = gdf.where(df_train_labels['status_group'] == 'non functional')
         world = geopandas.read file(geopandas.datasets.get path('naturalearth lowre
         ax = world[world.continent == 'Africa'].plot(
             color='grey', edgecolor='black')
         ax.scatter(functional['longitude'], functional['latitude'],
                    c='blue',alpha=.75, s=10)
         ax.scatter(repair['longitude'], repair['latitude'],
                    c='yellow', alpha=1, s=10)
         ax.scatter(broken['longitude'], broken['latitude'],
                    c='red', alpha=.5, s=10)
         plt.ylim(-12, 0)
         plt.xlim(28,41)
         plt.show()
         #blue is functional, yellow needs repair, red is broken
```


Next, we will create dummy variables for our y_train, this will allow us to test for feature importance across the X-train axis, since object datatypes stopped our model from working the first time

```
In [54]: y_train
Out[54]: 24947
                  non functional
         22630
                       functional
         13789
                       functional
         15697
                       functional
         22613
                  non functional
         54343
                       functional
         38158
                       functional
         860
                  non functional
         15795
                       functional
         56422
                  non functional
         Name: status_group, Length: 44550, dtype: object
In [55]: dummy_y = pd.get_dummies(y_train)
```

```
In [56]: dummy_y.head()
```

Out[56]:

	functional	functional needs repair	non functional
24947	0	0	1
22630	1	0	0
13789	1	0	0
15697	1	0	0
22613	0	0	1

```
In [57]: dummy_y.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 44550 entries, 24947 to 56422
Data columns (total 3 columns):
```

#	Column	Non-Null Count	Dtype						
0	functional	44550 non-null	uint8						
1	functional needs repair	44550 non-null	uint8						
2	non functional	44550 non-null	uint8						
dtyp	dtypes: uint8(3)								

memory usage: 478.6 KB

Now we can fit our model using RandoomForestRegressor, and use XGBClassifier to test for feature importance, then lastly use matplotlib and pyplot to graph that importance in respective order

```
In [58]: from sklearn.ensemble import RandomForestRegressor
    rfr = RandomForestRegressor(n_estimators=200)
    rfr.fit(X_train, dummy_y)
```

Out[58]: RandomForestRegressor(n estimators=200)

```
In [59]: y_train.shape
```

Out[59]: (44550,)

We created quite a few extra columns when cleaning and merging our data, let's use the original column list for the sake of simplicity, this is where the list of X_train columns from earlier comes in handy!

```
In [60]: X_train = X_train.filter(['id',
           'amount tsh',
           'date_recorded',
           'funder',
           'gps_height',
           'installer',
           'longitude',
           'latitude',
           'wpt_name',
           'num_private',
           'basin',
           'subvillage',
           'region',
           'region code',
           'district code',
           'lga',
           'ward',
           'population',
           'public_meeting',
           'recorded by',
           'scheme management',
           'scheme_name',
           'permit',
           'construction_year',
           'extraction_type',
           'extraction_type_group',
           'extraction type class',
           'management',
           'management_group',
           'payment',
           'payment_type',
           'water quality',
           'quality group',
           'quantity',
           'quantity_group',
           'source',
           'source_type',
           'source_class',
           'waterpoint type',
           'waterpoint_type_group'])
```

In [61]: !pip install xgboost

Requirement already satisfied: xgboost in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (1.2.0)
Requirement already satisfied: numpy in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from xgboost) (1.18.5)
Requirement already satisfied: scipy in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from xgboost) (1.5.2)

```
In [62]: from xgboost import XGBClassifier
    model = XGBClassifier()
    model.fit(X_train, y_train)
    print(model.feature_importances_)

[0.02843293 0.26004532 0.06390843 0.09617817 0.08044348 0.05354433
    0.14764658 0.07710723 0.08236461 0.11032893]
```

Neat! it worked, let's graph that out:

```
In [63]: from matplotlib import pyplot
```


Looks ok, let's organize the results by importance, and add our labels for visibility.

In [65]: from numpy import loadtxt
from xgboost import plot_importance
plot_importance(model)
pyplot.show()

Out[66]:

construction_year

status_group	functional	functional needs repair	non functional
basin			
Internal	4482	557	2746
Lake Nyasa	3324	250	1511
Lake Rukwa	1000	270	1184
Lake Tanganyika	3107	742	2583
Lake Victoria	5100	989	4159
Pangani	5372	477	3091
Rufiji	5068	437	2471
Ruvuma / Southern Coast	1670	326	2497
Wami / Ruvu	3136	269	2582

OSEMN-iNterpret

Our Feature importance model made it statistically clear what we saw in our geopandas model, and our pivot tables from earlier. The location of a well plays a very significant factor in it's funcitonality, and the further north we go, the more functional wells we will find. This is most likely due to the proximity to Lake Victoria, Africas largest body of water, and the largest basin for wells in the country. "id" being third is most likely a statistical anomaly, as it's bearing on functionality would be purely coincidental (the ids are not in order).

We can see that our tree model performed rather well, with just over 81% accuracy in identifying functional wells.

```
In [ ]:

In [ ]:
```