随机过程期末试题 (mch 老师)

整理: lzk

- 1. 设 N(t) 为速率 λ 的 Possion 过程,求解 $\mathbb{E}[N(t) \cdot N(t+s)]$
- 2. 设 $X_1, \cdots X_n$ 是 iid 的,且满足 $\mathbb{P}(X_i > x) = e^{-x}$,并记 $M_n =$ $\max_{1 \leq m \leq n} X_m$, 求证:
 - $(1)\limsup_{n\to\infty} \frac{X_n}{\log n} = 1 \quad \text{a.s.}$ $(2)\lim_{n\to\infty} \frac{M_n}{\log n} = 1 \quad \text{a.s.}$
- 3. 设 $\xi_1, \dots \xi_n \stackrel{iid}{\sim} \xi$, 且满足 $\mathbb{P}(\xi = -1) = \mathbb{P}(\xi = 1) = \frac{1}{2}$, 记 $S_n = S_0 + \frac{1}{2}$ $\sum_{i=1}^n \xi_i$, 并设 $S_0=0$. 现在设 $T_1=\min\{n:S_n=1\}$, 求证 $\mathbb{E}[s^{T1}]=\frac{1-\sqrt{1-s^2}}{s}$
 - 4. 设 $N_1(t), N_2(t)$ 为独立的,速率分别为 λ_1, λ_2 的 Possion 过程. 求证:
 - $(1)N_1(t) + N_2(t)$ 是速率为 $\lambda_1 + \lambda_2$ 的 Possion 过程.
- (2) 对于 $N_1(t) + N_2(t)$ 而言, 第一次发生来自 $N_1(t)$ 的概率为 $\frac{\lambda_1}{\lambda_1 + \lambda_2}$ 并证明这一事件与时间无关.
- 5. 设 $X_1, \dots X_n \stackrel{iid}{\sim} X$, 并记 $S_n = \sum_{i=1}^n X_i, N(t) = \inf\{n : S_n > t\}$. 从而 N(t) 为一个更新过程.
 - (1) 求证: $\mathbb{P}(X_{N(t)} > x) \geq \mathbb{P}(X > x), \forall x \geq 0$
- (2) 若 X 的分布函数 $F(x) = 1 e^{-x}$, 试求出 $\mathbb{P}(X_{N(t)} > x)$ 的精确解 析式.
- (3) 利用关键更新定理求解 $\lim_{t\to\infty}\mathbb{E}X_{N(t)}$ 6. 设 $\{\xi_{i,m}\}$ 为一个分支过程, 且有 $\mu=\mathbb{E}\xi_{i,m}>1, \sigma^2=Var\xi_{i,m}<\infty$. 令 $Z_n = \sum_{k=1}^{Z_{n-1}} \xi_{n,k}$,如果 $Z_{n-1} \neq 0$. 设 $Z_0 = 0$,并设 $X_n = \frac{Z_n}{\mu^n}$,试证明 $X_n \to W$ a.s., 并且也是在 L^2 意义下收敛的. 最后证明 $\mathbb{E}W = 1$