Национальный исследовательский университет "Высшая школа экономики" Факультет Физики

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ "ПОЛЯРИЗАЦИЯ"

по курсу "Оптика"

Выполнила:

Фазлиахметова Олеся Камилевна БФЗ193 2 курс

Проверила:

Готовко С. К.

Москва 26 апреля 2021 г.

Поляризация

Содержание

1.	1. Цель работы		
2.	Оборудование	2	
3.	Теоретическое описание 3.1. Поляризация	2 2 3	
4.	Выполнение работы	4	
		4 4 5	
	$4.3.1.$ Пластинка $\lambda/2$:	5 5	
	$4.4.1$. Пластинка $\lambda/2$:	5 5	
	4.4.2. Пластинка λ/4: 4.5. Опеределение типа пластинок 4.5.1. Пластинка №1 4.5.2. Пластинка №2	6 6	
	 4.5.2. Пластинка №2 4.6. Опеределение положения разрешенного направления в поляризаторе и угла Брюстера 4.7. Проверка справедливости формул Френеля 	6 6 7	
5.	Вывод	8	

1. Цель работы

Перед началом выполнения работы были поставлены следующие цели:

- 1) Поляризация
 - а) Определить поляризацию света от источника.
 - б) Проверить справедливость закона Малюса.
 - в) Определить главные направления пластинок $\lambda/2$ и $\lambda/4$ по отношению к входному поляризатору.
 - г) Определить степень поляризации света после прохождения пластинок $\lambda/2$ и $\lambda/4$, одна из осей которых повернута под углом 45° по отношению ко входному поляризатору. Для линейно поляризованного света определить также направление поляризации по отношению к разрешенному направлению входного поляризатора. Повторить для нескольких углов поворота пластинок.
 - д) Определить тип ($\lambda/2$ или $\lambda/4$) для неизвестной пластинки.
- 2) Угол Брюстера и формулы Френеля
 - а) C помощью черного зеркала (зеркала Ллойда) или стеклянной пластины определить положение разрешенного направления в поляризаторе.
 - б) Определить величину угла Брюстера для черного зеркала или стеклянной пластинки и коэффициент преломления.
 - в) Измерить интенсивность отраженного излучения для черного зеркала или стеклянной пластинки для различных углов падения и двух поляризаций (s и р). Проверить справедливость формул Френеля.

2. Оборудование

- 1) Лазер;
- 2) Поляризатор;
- 3) Пластинки ($\lambda/2$ и $\lambda/4$);
- 4) Подставки и крепления для элементов оптической схемы;
- 5) Линейки.
- 6) Черное зеркало

3. Теоретическое описание

3.1. Поляризация

Свет — это электромагнитная волна. Такие волны - поперечные, в них направления векторов Е и Н взаимно перпендикулярны и располагаются в плоскости, перпендикулярной направлению распространения волны. При этом положение векторов Е и Н в световой волне в пространстве может различным

образом меняться со временем. Характер этого изменения говорит о поляризации света. Далее, для простоты будем следить только за вектором электрического поля E.

В простейшем случае направление вектора Е в пространстве может меняться со временем случайным образом. Это справедливо для большинства обычных источников света, в которых излучение создается большим количеством некогерентно испускающих свет атомов. В таком случае говорят об естественном или неполяризованном свете.

Возможен также случай, когда ориентация вектора E не меняется со временем. Такой свет называется **линейно поляризованным** или, иначе, плоско поляризованным. В линейно поляризованной волне плоскость, в которой находятся вектор E и вектор направления распространения волны, называется плоскостью колебаний.

Колебания электрического поля в плоско поляризованной волне можно разложить на две взаимно перпендикулярных компоненты. В этом случае сдвиг фаз между колебаниями каждой из компонент равен нулю (или целому кратному π). Однако, в самом общем случае, сдвиг фаз между ними может быть произвольным, тогда вектор E со временем будет описывать эллипс в пространстве. В этом случае говорят об эллиптически поляризованном свете. Если разность фаз колебаний составляет $\pi/2$ (или кратен $\pi/2$), вектор E описывает окружность и в этом случае говорят о **круговой поляризации света**.

Важно отметить отличие между эллиптически поляризованного и неполяризованного света. Несмотря на то, что в обоих случаях наблюдаются колебания электрического поля в любых взаимно перпендикулярных направлениях, в первом случае эти колебания происходят согласованно, с фиксированной разностью фаз. Во втором же случае эти колебания не согласованы.

Плоско-поляризованный свет обычно получают с помощью специальных устройств — поляризаторов. После прохождения естественного света через поляризатор, получается линейно поляризованный свет. Направление колебаний электрического вектора в полученном линейно поляризованном свете называется разрешенным направлением поляризатора. Также поляризатор можно использовать не только для получения света определенной поляризации, но и для определения его поляризации. В этом случае поляризатор могут называть анализатором.

3.2. Получение плоско-поляризованного света

Существует несколько способов получения плоско-поляризованного света.

На практике часто используются поляризаторы, чей принцип действия основан на явлении дихроизма, состоящее в различном поглощении света веществом в зависимости от поляризации. У некоторых кристаллов (например, у турмалина) различие коэффициента поглощения для света с перпендикулярными направлениями поляризации может быть настолько сильным, что даже при небольшой толщине кристалла при прохождении поглощается полностью одна из компонент. В итоге, на выходе получается линейно поляризованный свет.

Рассмотрим пластинку, изготовленную из материала, обладающего свойством двулучепреломления, стороны которой параллельной оптической оси материала. Из-за различия коэффициентов преломления свет с поляризацией вдоль оси и перпендикулярной ей проходит сквозь пластинку за разное время. Поэтому после прохождения пластинки появится разность фаз между по-разному поляризованными волнами. Если разность фаз после прохождения пластинки меняется на $\pi/2$, то ее называют четвертьволновой пластинкой или пластинкой $\lambda/4$. Если же изменение составляет π , то это полуволновая пластинка или пластинка $\lambda/2$. Важно отметить, что подобное справедливо только для определенной длины волны падающего света. Для других длин волн разность фаз будет отличаться: для больших длин волн разность фаз будет меньше, и наоборот, для меньших длин волн разность фаз будет больше.

4. Выполнение работы

4.1. Определение поляризации света от источника.

Если свет является суммой неполяризованного и линейно поляризованного, то его можно охарактеризовать степенью поляризации Р, которой называется величина:

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \tag{1}$$

где I_{max} и I_{min} — максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором. Для естественного света она равна 0, для плоско поляризованного 1. Эллиптически поляризованный свет этой величиной характеризовать не принято.

Значения I_{min} и I_{max} для нашего лазера: $I_{min}=73\pm0.4$ мкВт, $I_{max}=638\pm3$ мкВт. Тогда $P=0.79\pm0.01$. Вывод: наш свет не является ествественным или плоско-поляризованным, он смешанный.

4.2. Проверка справедливости закона Малюса.

Интенсивность линейно поляризованного света I_0 , после прохождения через анализатор, разрешенное направление которого составляет угол α к плоскости колебаний, задается законом Малюса:

$$I = I_0 \cos^2 \alpha \tag{2}$$

Рис. 1. Закон Малюса.

4.3. Определение главных направлений пластинки по отношению к входному поляризатору

4.3.1. Пластинка $\lambda/2$:

Направление максимума:

Угол, o Мощность, мкВт 195 ± 5 476 ± 2 285 ± 5 476 ± 2

Направление минимума:

Угол, o Мощность, мкВт 330 ± 5 8.8 ± 0.01 60 ± 5 6.6 ± 0.01

4.3.2. Пластинка $\lambda/4$:

Четверть волновая пластина создает фазовый сдвиг величиной в четверть длины волны. Если входной пучок линейно поляризован, и плоскость поляризации расположена под углом 45° к быстрой или медленной оси волновой пластины, то выходное излучение будет поляризовано циркулярно.

Направление максимума:

Угол, o Мощность, мкВт 260 ± 5 533 ± 3 350 ± 5 530 ± 2

Направление минимума (круговая поляризация):

Угол, o Мощность, мкВт 305 ± 5 380 ± 2 215 ± 5 354 ± 2

4.4. Опеределение степени поляризации после прохождения пластинок

4.4.1. Пластинка $\lambda/2$:

Для линейно поляризованного света определим направление поляризации по отношению к разрешенному направлению входного поляризатора:

Угол пластинки, ^о	Угол анализатора, ^о
15 ± 5	30 ± 5
30 ± 5	60 ± 5
45 ± 5	90 ± 5

Вывод: угол поляризации после прохождения пластинки в два раза больше угла поляризации после прохождения поляризатора.

Определим степень поляризации света после прохождения пластинки, ось которой повернута под углом 45° по отношению ко входному поляризатору:

$$I_{max}$$
 466 ± 3 мкВт I_{min} 6 ± 0.01 мкВт

$$P = 0.97$$

4.4.2. Пластинка $\lambda/4$:

Для линейно поляризованного света определим направление поляризации по отношению к разрешенному направлению входного поляризатора:

Угол пластинки, ^о	Угол анализатора, ^о
90 ± 5	180
90 ± 5	360
180 ± 5	0

Определим степень поляризации света после прохождения пластинки, ось которой повернута под углом 45° по отношению ко входному поляризатору:

$$I_{max} = 301 \pm 2 \text{ MKBT} I_{min} = 195 \pm 1 \text{ MKBT}$$

$$P = 0.21 \pm 0.01$$

4.5. Опеределение типа пластинок

4.5.1. Пластинка №1

Угол пластинки, о	Интенсивность, мкВт
325 ± 5	470 ± 3
10 ± 5	281 ± 1
55 ± 5	537 ± 3

4.5.2. Пластинка №2

Угол пластинки,	Интенсивность, мкВт
350 ± 5	510 ± 3
35 ± 5	325 ± 2
80 ± 5	498 ± 3

Обе пластинки $\lambda/4$

4.6. Опеределение положения разрешенного направления в поляризаторе и угла Брюстера

Определить направление разрешенных колебаний поляроида проще всего с помощью черного зеркала. При падении света на отражающую поверхность под углом Брюстера свет в отраженном луче полностью поляризован, а вектор **E** параллелен отражающей поверхности (р-поляризация). Луч света, прошедщий поляроид и отразившийся от черного зеркала, имеет минимальную интенсивность при выполнении двух условий: во-первых, свет падает на отражающую поверхность под углом Брюстера, во-вторых, в падающем пучке вектор **E** лежит в плоскости падения. Вращая поляроид вокруг направления луча и черное зеркало вокруг направления оси, перпендикулярной лучу, находим минимальную яркость луча, отраженного от зеркала, и таким образом определяем разрешенное направление поляроида и угол Брюстера.

Соответственно, величина угла Брюстера связана с показателем преломления материала:

$$tg \theta_i = n \tag{3}$$

Положение определенного направления в поляризаторе:

$$\alpha = 260 \pm 5^{\circ}$$

Угол Брюстера

$$\theta = 52 \pm 1^{\circ}$$

$$n = \text{tg} 52 \pm 1^{\circ} = 1.28 \pm 0.05$$

4.7. Проверка справедливости формул Френеля

В общем случае, прохождение и отражение света описывается формулами Френеля. Согласно этим соотношениям, коэффициент отражения зависит от поляризации падающей электромагнитной волны. Принято выделять s-поляризацию, когда вектор электрического поля перпендикулярен плоскости падения, и p-поляризацию, когда вектор электрического поля лежит в плоскости падения.

Рис. 1.7.1. Векторы E и H в падающей волне в некоторый момент времени: слева — s-поляризованная волна, справа — p-поляризованная волна. На рисунке кружок с точкой означает, что соответствующий вектор направлен «на нас»

Рис. 2.

Тогда, для случая падения электромагнитной волны из среды с показателем преломления n_1 на плоскую границу со средой с показателем преломления n_2 коэффициенты отражения равны:

$$R_s = \left| \frac{n_1 \cos \alpha - n_2 \cos \gamma}{n_1 \cos \alpha + n_2 \cos \gamma} \right|^2 \tag{4}$$

$$R_p = \left| \frac{n_1 \cos \gamma - n_2 \cos \alpha}{n_1 \cos \gamma + n_2 \cos \alpha} \right|^2 \tag{5}$$

где α , γ – соответственно угол падения и угол прохождения.

Среднеквадратичное отклонение:

$$\sigma_{s} = 0.06$$

$$\sigma_n = 0.03$$

Рис. 3. Уравнения Френеля

5. Вывод

В ходе работы мы

- 1) Поляризация
 - а) Определили поляризацию света от источника.
 - б) Проверили справедливость закона Малюса.
 - в) Определили главные направления пластинок $\lambda/2$ и $\lambda/4$ по отношению к входному поляризатору.
 - г) Определили степень поляризации света после прохождения пластинок $\lambda/2$ и $\lambda/4$, одна из осей которых повернута под углом $45^{\rm o}$ по отношению ко входному поляризатору. Для линейно поляризованного света определили также направление поляризации по отношению к разрешенному направлению входного поляризатора. Повторили для нескольких углов поворота пластинок.

Поляризация

- д) Определили тип ($\lambda/2$ или $\lambda/4$) для неизвестной пластинки.
- 2) Угол Брюстера и формулы Френеля
 - а) С помощью черного зеркала (зеркала Ллойда) определили положение разрешенного направления в поляризаторе.
 - б) Определили величину угла Брюстера для черного зеркала и коэффициент преломления.
 - в) Измерили интенсивность отраженного излучения для черного зеркала для различных углов падения и двух поляризаций (s и р). Проверили справедливость формул Френеля.