## 程序代写代做 CS编程辅导





Foundations of Computer Science

WeChat: cstutorcs

Lecture 6: Equivalence Relations and Partial Orders Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

## Outline

## 程序代写代做 CS编程辅导

on La Carte

Equivalence Relation

Partial Orders

Feedback

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

## Outline

## 程序代写代做 CS编程辅导



Equivalence Relation

Partial Orders

Feedback

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

## Equivalence relations

## 程序代写代做 CS编程辅导

Equivalence relations general notion of "equality". They are relations which a general notion of "equality".

- Reflexive (R): E tshould be "equal" to itself
- Symmetric (S): If x is "equal" to y, then y should be "equal" to x
   WeChat: cstutorcs
- Transitive (T): If x is "equal" Project Lyain "equal" to z, then x should be "equal" to z.

Email: tutorcs@163.com

#### **Definition**

A binary relation  $R = \frac{9.7593894776}{1000}$  lence relation if it satisfies (R), (S), (T). https://tutorcs.com

#### Example

## 程序代写代做 CS编程辅导

Partition of  $\mathbb Z$  into classes of numbers with the same remainder on division by p; it is partition of  $\mathbb Z$  important for p prime

$$\mathbb{Z}(\mathbf{n}, \mathbf{n}) = \{0, 1, \dots, p-1\}$$

One can define all four arithmetic operations (with the usual properties) on  $\mathbb{Z}_p$  for a prime p; division has to be restricted when p is not prime. Assignment Project Exam Help

#### NB

## Email: tutorcs@163.com

 $(\mathbb{Z}_p,+,\cdot,0,1)$  are furding and the structures known as rings. These structures are very important in coding theory and cryptography.

## Equivalence Classes and Partitions

## 程序代写代做 CS编程辅导

Suppose  $R \subseteq S \times S$  valence relation The **equivalence**  $\operatorname{cla}_{\blacksquare}$   $\operatorname{cla}_{\square}$   $\operatorname{cla}_{\square}$ 

Weekat: Estubored sRt}

Assignment Project Exam Help

Fact Email: tutorcs@163.com

s R t if and only if [s] = [t].

## Equivalence classes: Proof example

## 程序代写代做 CS编程辅导

#### Proof

Suppose [s] = [t]. Representation  $\{x \in S : (s, x) \in R\}$ . We will show that  $(s, t) \in R$ .

WeChat: cstutores

Because R is reflexive,  $(t, t) \in R$ .

Assignment Project Exam Help

Therefore  $t \in [t]$ .

Because [t] = [s], it follows: theorem 4.63.com

But then  $(s,t) \in R$  by the 400 and find find [s].

## Equivalence classes: Proof example

## 程序代写代做 CS编程辅导

#### **Proof**

Now suppose  $(s,t) \in \mathbb{R}^2$  sill show [s] = [t] by showing  $[s] \subseteq [t]$  and  $[t] \subseteq [s]$ 

Take any  $x \in [s]$ .

By the definition of [s],  $(s,x) \in R$ .

Since R is symmetric Assignment Project Exam Help

Since R is transitive  $\frac{1}{2}$  inda( $\frac{1}{2}$ ,  $\frac{1}{2}$ ) to  $\frac{1}{2}$  is  $\frac{1}{2}$  in  $\frac{1}{2$ 

Since R is symmetric (6.2749389476)

Therefore,  $x \in [t]$ . https://tutorcs.com

Therefore  $[s] \subseteq [t]$ .

## Equivalence classes: Proof example

## 程序代写代做 CS编程辅导

#### **Proof**

Now suppose  $(s, t) \in [s] \subseteq [t]$  and  $[t] \subseteq [s]$ .

Take any  $x \in [t]$ .

WeChat: cstutorcs

By the definition of Assignment Project Exam Help

Since R is transitive and (s, t) for  $R_s$  we have that  $(s, x) \in R$ .

Therefore  $x \in [s]$ .

QQ: 749389476

Therefore  $[t] \subseteq [s]$ .

#### **Partitions**

## 程序代写代做 CS编程辅导

#### **Definition**

A **partition** of a set  $S_1, \ldots, S_k$  such that

- $S_i$  and  $S_j$  are differential  $i \neq j$
- $S = S_1 \cup S_2 \cup \cdots \cup S_k = \bigcup_{i=1}^k S_i$

The collection of all equivalence classes  $\{[s]: s \in S\}$  forms a partition of S. Assignment Project Exam Help In the opposite direction, a partition of a set defines the equivalence relation of the set of S. Using S as: OO: 749389476

 $s \sim t$  exactly two for the same  $S_i$ .

8

#### Exercises

## 程序代写代做 CS编程辅导

#### **Exercises**

RW: 3.6.6 (supp)

(d) Show that m  $\{1, \ldots, 7\}$ .



 $S^2 = _{(5)} n^2$  is an equivalence on  $S = _{(5)}$ 

WeChat: cstutorcs

Assignment Project Exam Help

Find all the equivalence crasses. 163.com

QQ: 749389476

#### **Exercises**

## 程序代写代做 CS编程辅导

#### **Exercises**

RW: 3.6.6 (supp)

(d) Show that m  $\{1,\ldots,7\}.$ 



 $S_{=(5)}$   $n^2$  is an equivalence on S=

It just means that  $C_{0}$  in  $C_{0}$  in C

e.g. 1 = (5) -4.

This satisfies (R) Project Exam Help

Find all the equivalent teres @ 163.com

We have

QQ: 749389476

[1] =  $\{1, 4, 6\}$  https://tutorcs.com [2] =  $\{2, 3, 7\}$ 

 $[5] = \{5\}$ 

#### Outline

## 程序代写代做 CS编程辅导

Equivalence Relation

Partial Orders

Feedback

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

## Partial Order

程序代写代做 CS编程辅导 A partial order  $\leq$  on S satisfies (R), (AS), (T).

We call  $(S, \preceq)$  a **pos** ially ordered set



#### **Examples**

Posets: WeChat: cstutorcs

 $\bullet$   $(\mathbb{Z},\leq)$ 

• (Pow(X),  $\subseteq$ ) for some set X Project Exam Help

Email: tutorcs@163.com (N, |)

Not posets:

QQ: 749389476

 $\bullet$   $(\mathbb{Z},<)$ 

https://tutorcs.com

 $\bullet$   $(\mathbb{Z}, |)$ 

## Hasse diagram

Every finite poset  $(S, \stackrel{\cancel{\ }}{\le})$  can be represented with a **Hasse** diagram:

- Nodes are element as
- An edge is draw from x to y if  $x \prec y$  and there is no z such that  $x \prec z \prec y$

WeChat: cstutorcs

#### **Example**

Hasse diagram for positive divisors of 24 ordered by

Email: tutorcs@163.com

QQ: 749389476 8

https://tutorcs.com

1

## **Ordering Concepts**

## Definition 程序代写代做 CS编程辅导

Let  $(S, \preceq)$  be a pose

- **Minimal** elemer that there is no y with  $y \leq x$
- Maximal eleme that there is no y with  $x \leq y$
- Minimum (least) element: x such that  $x \leq y$  for all  $y \in S$
- Maximum (greatest) afterstantor x such that  $y \le x$  for all  $y \in S$  Assignment Project Exam Help

#### NB Email: tutorcs@163.com

- There may be multiple minimal maximal elements.
- Minimum/maximum elements are the unique minimal/maximal perments if they exist.
- Minimal/maximal elements always exist in finite posets, but not necessarily in infinite posets.

## Examples

## 程序代写代做 CS编程辅导



## **Examples**

- Pow( $\{a, b, c\}$ ) with the order  $\subseteq$   $\emptyset$  is minimum;  $\{3, 6, c\}$  is minimum.
- Pow( $\{a,b,c\}$ ) \A\signmen(Projecs Desta Pfe $\{a,b,c\}$ )
  Each two-element subset  $\{a,b\},\{a,c\},\{b,c\}$  is maximal.
  - But there is Family; that orcs @ 163.com

QQ: 749389476

## **Ordering Concepts**

## 程序代写代做 CS编程辅导

#### **Definition**

Let  $(S, \preceq)$  be a pose

- x is a **lower bound** for A if  $x \prec a$  for all  $a \in A$
- The **set of upper dominds fort** drist defined as
- $ub(A) = \{x : a \leq x \text{ for all } a \in A\}$ Assignment Project Exam Help
  The set of lower bounds for A is defined as  $lb(A) = \{x : x \pm \mathbf{m} \text{ for } \mathbf{s} = \mathbf{s}$
- The **least upper bound** of  $A_1$  ub(A), is the minimum of ub(A) (if it exists)
- The greatest lowers bound of A is the maximum of Ib(A) (if it exists)

## glb and lub

## 程序代写代做 CS编程辅导

To show x is glb(A)

- x is a lower bound for all  $a \in A$ .
- x is the greatest or all lower bounds: If  $y \leq a$  for all  $a \in A$  then  $y \leq x$ . We Chat: estutores

## **Example** Assignment Project Exam Help

Pow(X) ordered by Email: tutorcs@163.com

- $glb(A, B) = A \cap B$
- $lub(A, B) = A \cup QQ$ : 749389476

## **Ordering Concepts**

#### 程序代写代做 CS编程辅导

#### **Definition**

Let  $(S, \leq)$  be a pose

- $(S, \preceq)$  is a **lattice** if lub(x, y) and glb(x, y) exist for every pair of elements W.e.Chab: cstutorcs
- $(S, \preceq)$  is a **complete lattice** if lub(A) and glb(A) every subset  $A \subseteq S$ . exist for

Email: tutorcs@163.com

NB

QQ: 749389476
A finite lattice is always a complete lattice.

## Examples

#### 程序代写代做 CS编程辅导

## **Examples**



- $\{1, 2, 3, 4, 6, 8, 1\}$  tially ordered by divisibility is a lattice
  - e.g.  $lub(\{4,6\}) = 12$ ;  $glb(\{4,6\}) = 2$
- {1, 2, 3} partially ordered by divisibility is not a lattice
  - {2,3} has no Aludignment Project Exam Help
- {2,3,6} partially ordered by divisibility {2,3} has no glb tutores@163.com
- {1, 2, 3, 12, 18, 36) (pa749) \$ 940 (red by divisibility
  - {2,3} has no lub (12,18 are minimal upper bounds)

#### NB

#### **Examples**

- $(\mathbb{Z}, \leq)$ : neither  $lub(\mathbb{Z})$  nor  $glb(\mathbb{Z})$  exist
- $(\mathcal{F}(\mathbb{N}),\subseteq)$  [all finite subsets of  $\mathbb{N}$ ]: lub exists for pairs of elements but not get elements. glb exists for any set of elements: intersection of a set of finite sets is finite.
- $(\mathcal{I}(\mathbb{N}),\subseteq)$  [all in the results of the same pairs of elements (e.g. odds and evens). lub exists for any set of elements: union of a set of infinte sets is always infinte.

#### **Exercises**

#### 程序代写代做 CS编程辅导

## **Exercises** RW: 11.1.5 | Consider 🛣 Is this a lattic Give an example of a non-empty $\frac{\text{WeChat: cstutorcs}}{\text{Subset of }\mathbb{R}}$ that has no upper bound. (b) Find lub({ x Assignment Project Exam Help (c) Find lub({ x Email: \(\pm\)2 @ 163.com (d) (e) Find lub( $\{x: 0^2 \le 749\} \$ 9476 Find glb( $\{x: x^2 < .73\}$ ) https://tutorcs.com (f)

## Exercises

## 程序代写代做 CS编程辅导

| Exercises                     |                                                                                                                               |                                  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| RW: 11.1.5 Consider (1) = (2) |                                                                                                                               |                                  |  |
| (a)                           | Is this a lattic                                                                                                              | Yes                              |  |
| (b)                           | Give an example of a non-empty $\frac{\mathbf{WeC}}{\mathbf{hat}}$ : cstutorcs subset of $\mathbb R$ that has no upper bound. | $\{ r \in \mathbb{R} : r > 0 \}$ |  |
|                               |                                                                                                                               | ` '                              |  |
| (c)                           | Find lub({ x Assignment Project Exa                                                                                           | m <sub>7</sub> Help              |  |
| (d)                           | Find lub({ x Email: 1076r})@163.com                                                                                           | n 73                             |  |
| (e)                           | Find lub({ x:@Q<749}}89476                                                                                                    | $\sqrt{73}$                      |  |
| (f)                           | Find glb( $\{x: x^2 < 73\}$ )<br>https://tutorcs.com                                                                          | $-\sqrt{73}$                     |  |

#### Total orders

#### 程序代写代做 CS编程辅导

#### **Definition**

A total order is a partial also satisfies:

(L) Linearity (any two elements are comparable):

For all 
$$x, y$$
 either:  $x \le y$  or  $y \le x$  (or both if  $x = y$ )

Assignment Project Exam Help

Email: tutorcs@163.com

#### NB

On a finite set all total orders are "isomorphic"

On an infinite set there is quite acyariety of possibilities.

## Examples

## 程序代写代做 CS编程辅导



## **Examples**

- Z with WeChat: cstutorcs
  - $\{(x,y): (xy \leq 0 \text{ Assignment Project Examples } |y|)\}: (no maximum element, minimum element is -1)$
- $\mathbb{Z}$  with  $\{(x,y): \underset{(x,y)=0}{\text{Email:}} \underset{(x,y)=0}{\text{Email:}$

## Ordering of a Poset — Topological Sort

## Definition 程序代写代做 CS编程辅导

For a poset  $(S, \preceq)$  are der  $\leq$  that is consistent with  $\leq$  (if  $a \leq b$  then  $a \leq b$ ) is copological sort.

# **Example** Consider

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

The following all are topological sorts:

$$a \le b \le e \le c \le f \le d^{4}$$
  
 $a \le e \le b \le f \le c \le d^{4}$ 

$$a \le e \le b \le r \le e \le d$$
  
 $a < e < f < b < c < d$ 

#### Well-Ordered Sets

#### **Definition**

程序代写代做 CS编程辅导
A well-ordered set is a poset where every subset has a least element.

#### NB

## **Examples**

#### WeChat: cstutorcs

- $\mathbb{N} = \{0, 1, ...\}$  Assignment Project Exam Help
- Disjoint union of copies of N: Email: tutores@163.com

OO: ₹49389476 03 ····,

where each  $\mathbb{N}_i$  and thores  $\mathbb{N}_{2}$  and  $\mathbb{N}_{3}$  ...

#### NB

Well-ordered sets are an important mathematical tool to prove termination of programs.

## Orders for Cartesian products and languages

There are several practical ways of combining orders: **程序代写代故 CS编程 Product order**: Given posets  $(S, \preceq_S)$  and  $(T, \preceq_T)$ , define:

if  $s \prec_S s'$  and  $t \prec_T t'$ 

• Lexicographic or posets  $(S, \leq_S)$  and  $(T, \leq_T)$ , define:

$$(s,t) \leq_{\text{lex}} (s',t')$$
 if  $s \leq s s'$  or  $(s=s')$  and  $t \leq_T t'$ 

Extension to words:  $\lambda <_{lex} w$  for all words

• Lenlex order: Lexicographic ordering, but order by length first.

Email: tutorcs@163.com

#### **Notes**

00: 749389476

- No implicit weighting.
- No bias toward any component.
- In general, it is only a partial order, even if combining total orders.
- No implicit weighting.

## Example

#### 程序代写代做 CS编程辅导

## Example



RW: 11.2.5 Let  $\mathbb{B} = \mathbb{B}$  th the usual order 0 < 1. List the elements 101,010,11 010,11 010,100 of  $\mathbb{B}^*$  in the

(a) Lexicographic order

WeChat: cstutorcs

(b) Lenlex order

Assignment Project Exam Help

Email: tutorcs@163.com

RW: 11.2.8 When are the lexicographic order and lenlex on  $\Sigma^*$  the same?

## Example

## 程序代写代做 CS编程辅导

#### Example



RW: 11.2.5 Let  $\mathbb{B}=$  th the usual order 0<1. List the elements 101,010,11 010,11 010,100 of  $\mathbb{B}^*$  in the

- (a) Lexicographic order 000, 0010, 010, 10, 10 We Compata estutores
- (b) Lenlex order 10, 11, 000, 010, 101, 0010, 1000 Project Exam Help

Email: tutorcs@163.com

RW: 11.2.8 When are the lexicographic order and lenlex on  $\Sigma^*$  the same?

Only when  $|\Sigma| = 1$ . https://tutorcs.com

#### Exercises

## 程序代写代做 CS编程辅导

#### **Exercises**

## RW: 11.6.6 True or f

- If a set  $\Sigma$  is tother than the corresponding lexico-(a) graphic partial order on  $\mathcal{L}^*$  also must be totally ordered.
- (b) If a set  $\Sigma$  is totally Goldered stheorthe corresponding lenlex order on  $\Sigma^*$  also must be totally ordered. Assignment Project Exam Help Every finite poset has a Hasse diagram.
- (c)
- Every finite posetnail: atutores@al 63rting. (d)
- (e) Every finite poset na 493 in 1944 element.
- (f) Every finite totally ordered set has a maximum element. https://tutorcs.com
- (g) An infinite poset cannot have a maximum element.

## Exercises

## 程序代写代做 CS编程辅导

| Exercises            |                                                                                                                                    |       |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| RW: 11.6.6 True or f |                                                                                                                                    |       |  |
| (a)                  | If a set $\Sigma$ is total $\Sigma$ , then the corresponding lexicographic partial order on $\Sigma$ also must be totally ordered. | True  |  |
| (b)                  | If a set $\Sigma$ is totally Glatered stheorthe corresponding lenlex                                                               | True  |  |
|                      | order on $\Sigma^*$ also must be totally ordered.                                                                                  |       |  |
| (c)                  | Assignment Project Exam Help Every finite poset has a Hasse diagram.                                                               | True  |  |
| (d)                  | Every finite posemail: atuboros @al 63 rungn                                                                                       | True  |  |
| (e)                  | Every finite poset ( na 7 498 8 9 4 9 7 element.                                                                                   | False |  |
| (f)                  | Every finite totally ordered set has a maximum element. https://tutorcs.com                                                        | True  |  |
| (g)                  | An infinite poset cannot have a maximum element.                                                                                   | False |  |

#### Outline

## 程序代写代做 CS编程辅导

Equivalence Relation

Partial Orders

Feedback



WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

## Weekly Feedback

## 程序代写代做 CS编程辅导

I would appreciate ar tsnts/suggestions/requests you have on this week's lectur ect Exam Help https://forms.office.com/r/xKKrxYMRn9 https://tutorcs.com