

nRF51822

Product Anomaly Notice v3.3

This Product Anomaly Notice contains anomalies for the following package variants and builds of the nRF51822 chip:

Package and Variant	Build code
QFAA	HA0
QFAA	Hx0*
OFAR	CB0
QFAB	Cx0*
OFAC	AA0
QFAC	Ax0*
CDAR	AA0
CDAB	Ax0*
CEAA	EA0
CEAA	Ex0*
CEAC	AA0
CFAC	Ax0*
CTAC	AA0
CIAC	Ax0*

Table 1 Package, Variants, and Build codes covered in this document * The 'x' in the build code can be any digit between 0 and 9.

uthorization	for No	ordic Sei	micond	lucto
--------------	--------	-----------	--------	-------

Product Manager: Date: Signed:

Thomas Embla Bonnerud 2018-08-08

Theze

1. Chip Marking

2. Change log

Version	Date	Change
nRF51822-PAN v3.3	2018-08-08	Added No. 78: "Software reset does not operate properly when 32 MHz is used as a clock source"
Version	Date	Change
nRF51822-PAN v3.2	2017-06-19	Updated No. 75: "LFCLK: 32.768 kHz RC oscillator specification not met after reset"
Version	Date	Change
nRF51822-PAN v3.1	2016-02-10	Added reference to nRF51822 CTAC variant. Added No. 75: "LFCLK: RC oscillator is not calibrated when first started"
Version	Date	Change
nRF51822-PAN v3.0	2014-10-10	Added: No. 69. "MPU: MPU Protect All (PALL) does not protect RAM above 8 kB from debugger access." Added: No. 71. "MPU: The register MPU.RLENR0 will not give runtime protection of RAM locations above 8 kB." Updated: No. 61. "RADIO: Designs based on nRF51822 QFN packets using balun BAL-NRF01D3 are likely to fail Korean teleregulatory requirements." Added: No. 74. "SPIS: ORC character is not clocked out on MISO when MAXTX = 0." Added: No. 73. "TIMER: Use of an EVENT from any TIMER module to trigger a TASK in GPIOTE or RTC using the PPI could fail under certain conditions."

Version	Date	Change
nRF51822-PAN v2.3	2014-08-12	Added: No. 70. "LPCOMP: READY event is given before LPCOMP is ready" Added: No. 68. "MPU: Emulated system OFF mode makes MPU.DISABLEINDEBUG register inaccessible" Added: No. 72. "RTC: Writing to RTC registers without starting the LFCLK could lead to increased current consumption" Added: No. 67. "SYSTEM: Emulated system OFF mode makes POWER.RESET register inaccessible"

3. Overview

3.1 New and inherited anomalies

PAN ID	Module	Description	QFAA QFAB CDAB CEAA	QFAC CFAC CTAC	New/ Inherited ¹
78.	HFCLK	Software reset does not operate properly when 32 MHz is used as a clock source.	Х	Х	New
75.	LFCLK	32.768 kHz RC oscillator specification not met after reset.	Х	Х	Inherited
70.	LPCOMP	READY event is sent before LPCOMP is ready.	Х	Х	Inherited
71.	MPU	The register MPU.RLENR0 will not give runtime protection of RAM locations above 8 kB.	Х		New
69.	MPU	MPU Protect All (PALL) does not protect RAM above 8 kB from debugger access.	Х		New
61.	RADIO	Designs based on nRF51822 QFN packets using balun BAL-NRF01D3 are likely to fail Korean teleregulatory requirements.	х	х	Inherited
72.	RTC	Writing to RTC registers without starting the LFCLK could lead to increased current consumption.	Х	X	Inherited
74.	SPIS	ORC character is not clocked out on MISO when MAXTX = 0.	Х	Х	New and inherited
67.	SYSTEM	ORC character is not clocked out on MISO when $MAXTX = 0$.	Х	Х	Inherited
73.	TIMER	Use of an EVENT from any TIMER module to trigger a TASK in GPIOTE or RTC using the PPI could fail under certain conditions.	х	х	New
38.	WDT	Use of an EVENT from any TIMER module to trigger a TASK in GPIOTE or RTC using the PPI could fail under certain conditions.	Х	X	Inherited

¹ 'New' is anomalies introduced in the current chip version listed in Table **1**, while 'Inherited' is anomalies already present in the previous chip version.

3.2 Fixed anomalies

The anomalies listed in this table are no longer present in the current chip versions listed in Table 1.

For detailed description of the fixed anomalies, see nRF51822-PAN v2.3.

PAN ID	Module	Description
45.	AAR	AAR may exceed real time requirements.
63.	ADC	STOP task through PPI is not functional.
44.	CCM	CCM may exceed real time requirements.
39.	GPIOTE	1V2 + HFCLK are requested always when the GPIOTE task is configured.
65.	HFCLK	A HFCLKSTOP task followed shortly by a HFCLKSTART task will disable HFCLK for up to 5 clock cycles.
59.	MPU	Reset value of the DISABLEINDEBUG register is incorrect.
60.	MPU	Device may become unrecoverable when the MPU function NVM protect blocks is used in combination with UICR Protect all.
68.	MPU	Emulated system OFF mode makes MPU.DISABLEINDEBUG register inaccessible.
41.	POWER	RESETREAS register may erroneously indicate LOCKUP.
57.	PPI	Concurrent operations on the PPI peripheral will fail.
42.	SYSTEM	Writing to RAM right after reset or turning it ON fails.
43.	TEMP	Using PPI between DATARDY event and START task is not functional.
62.	TIMER	Accessing the TIMER's SHUTDOWN task through PPI does not give the expected result.
35.	TWI	Consumes too much current when it is enabled and the STOP task is triggered.
56.	TWI	TWI module lock-up.
40.	UART	CONFIG register read value is wrong.
58.	UART	RTS line indicates ready to receive data for one clock cycle when the UART reception is off.
48.	WDT	Reset value of the CRV register is incorrect.

4. New and inherited anomalies

78. HFCLK: Software reset does not operate properly when 32 MHz is used as a clock source.

Symptoms:

Software reset does not operate properly when 32 MHz is used as a clock source.

Conditions:

When 32 MHz generated from a crystal or provided externally is used as a clock source. A SW reset is performed.

Consequences:

The device experiences a hard fault. The device needs to be reset to return to a normal state.

Workaround:

Before issuing a SW reset, perform the following steps:

- 1. Turn off the 32 MHz clock.
- 2. Wait for the 16 MHz RC to start.
- 3. Perform a SW reset.

The following code can be executed to issue a SW reset:

```
NRF_CLOCK->TASKS_HFCLKSTOP = 1;
while (NRF_CLOCK->HFCLKSTAT & (CLOCK_HFCLKSTAT_SRC_Xtal <<
CLOCK_HFCLKSTAT_SRC_Pos));
NVIC SystemReset();</pre>
```

75. LFCLK: 32.768 kHz RC oscillator specification not met after reset

Symptoms:

Timings measured using the LFCLK RC oscillator are off.

Conditions:

The LFCLK RC oscillator has not been calibrated after the last reset.

Consequences:

The LFCLK RC oscillator frequency (fTOL_LFRC) can show -25% to +40 % offset.

Workaround:

Calibrate the LFCLK RC oscillator after a reset. First time calibration may take a longer time than subsequent calibrations.

70. LPCOMP: READY event is sent before LPCOMP is ready.

Symptoms:

May receive unexpected events and wakeups from LPCOMP.

Conditions:

LPCOMP is configured to send an event or to wake up the chip. LPCOMP.TASKS_START task is set and LPCOMP.EVENTS_READY event has been received.

Consequences:

Unpredictable system behavior caused by false triggered events and wakeups.

Workaround:

Use the following configuration sequence:

- 1. Configure the LPCOMP to send an event or wake up the chip, but do not enable any PPI channels or IRQ to be triggered from the LPCOMP events.
- 2. Trigger the LPCOMP.TASKS_START task and wait for the LPCOMP.EVENTS_READY event.
- 3. After receiving the LPCOMP.EVENTS_READY event wait for 36 µs.
- 4. After 36 µs, clear the LPCOMP.EVENTS DOWN, LPCOMP.EVENTS UP and LPCOMP.EVENTS CROSS events.

LPCOMP is now ready to be used.

71. MPU: The register MPU.RLENRO will not give runtime protection of RAM locations above 8 kB.

Symptoms:

Code running from region 1 accessing RAM in region 0 that is located above the first 8 kB does not give a hard fault exception as specified in the nRF51 Series Reference manual.

Conditions:

Always when the RAM is divided into two regions.

Consequences:

Missing runtime protection of addresses above 8 kB will make it harder to detect unintended write operations to RAM region 0 from code region 1.

Such unintended write operations could lead to malfunction of the firmware.

Workaround:

None. (Debugging of the code could be done using the xxAC version of nRF51822/nRF51422 where this PAN is fixed).

59.	MPU: MPU Protect All (PALL) does not protect RAM above 8 kB	from debugger access.
------------	---	-----------------------

Symptoms:

Reading RAM using Serial Wire Debug (SWD) returns the actual RAM content, and not 0x00 as specified in the nRF51 Series Reference manual.

Conditions:

Always when UICR.RBPCONF.PALL is set to 0x00.

Consequences:

RAM addresses above 8 kB will be accessible using the SWD interface.

Workaround:

None.

61. RADIO: Designs based on nRF51822 QFN packets using balun BAL-NRF01D3 are likely to fail Korean teleregulatory requirements.

Symptoms:

LO leakage is too high.

Conditions:

Designs based on the QFN packets nRF51822-QFAA/nRF51822-QFAB combined with ST Microelectronics balun, BAL-NRF01D3 (as described in the reference layout nRF51822-DF-ST v1.0).

Consequences:

The designs are likely to fail Korean teleregulatory spurious emission limits due to LO leakage.

Workaround:

There are several alternative baluns to BAL-NRF01D3, please refer to www.nordicsemi.com for details.

72. RTC: Writing to RTC registers without starting the LFCLK could lead to increased current consumption.

Symptoms:

Increased current consumption.

Conditions:

Setting up the RTC by writing to its registers without starting the LFCLK.

Consequences:

The user will experience an increase in the current consumption of ~1 mA.

Workaround:

Always run the LFCLK for a minimum of one LFCLK clock cycle after writing to the RTC registers.

74. SPIS: ORC character is not clocked out on MISO when MAXTX = 0.

Symptoms:

The SPIS does not send the ORC character as expected.

Conditions:

SPIS is configured with MAXTX = 0.

Consequences:

Data sent on the MISO line is not the ORC character but the data pointed to by the TXDPTR.

Workaround:

In the case where the SPI slave does not have any data to be sent (MAXTX = 0). Set MAXTX = 1, with the first byte in the TX buffer set equal to the ORC character.

67. System: Emulated system OFF mode makes POWER.RESET register inaccessible.

Symptoms:

Pin reset using the debugger does not work.

Conditions:

Device is in emulated System OFF mode.

Consequences:

Pin reset using the debugger does not work.

Workaround:

Before pin reset, halt the core and generate a soft reset. This will take the device out of Emulated System Off, making the POWER.RESET register accessible.

Note: Latest Nordic Semiconductor tools already perform this action automatically.

73. TIMER: Use of an EVENT from any TIMER module to trigger a TASK in GPIOTE or RTC using the PPI could fail under certain conditions.

Symptoms:

One or more EVENTs from the TIMER module are lost.

Conditions:

Routing TASK's from the TIMERx module to GPIOTE or RTCx using the PPI and at the same time going into sleep mode.

Consequences:

One or more TASKS triggering are lost.

Workaround:

Use the following code when using any Timer in those conditions:

```
*(uint32_t *)0x40008C0C = 1; //for Timer 0 *(uint32_t *)0x40009C0C = 1; //for Timer 1 *(uint32_t *)0x4000AC0C = 1; //for Timer 2
```

When the conditions are no longer met, use the following code:

```
*(uint32_t *)0x40008C0C = 0; //for Timer 0
*(uint32_t *)0x40009C0C = 0; //for Timer 1
*(uint32_t *)0x4000AC0C = 0; //for Timer 2
```

A typical code workaround for an application that use TIMER2 to route TASKS to a GPIOTE can be:

```
/* Add workaround when starting timer2 */
*(uint32_t *)0x4000ACOC = 1; //for Timer 2
NRF_TIMER2->TASKS_START = 1;

/* Add workaround when stopping timer2 */
NRF_TIMER2->TASKS_STOP = 1;
*(uint32_t *)0x4000ACOC = 0; //for Timer 2
```


38. WDT: The watchdog config option "RUN while paused by the debugger" does not work

Symptoms:

The debugger and micro-controller do not communicate. The micro-controller does not run any code.

Conditions:

The watchdog is configured to "run while halted by the debugger", and the watchdog timer expires with the debugger connected.

Consequences:

The debugger and micro-controller do not communicate. The micro-controller does not run any code.

Workaround:

Do not configure the watchdog timer to run while paused by the debugger.