

Human Hair Segmentation In The Wild Using Deep Shape Prior

Yongzhe Yan^{1,2}, Anthony Berthelier^{1,2}, Stefan Duffner³, Xavier Naturel², Christophe Garcia³, Thierry Chateau¹

¹Université Clermont Auvergne ²Wisimage ³LIRIS

Presented at the Third Workshop on CV4ARVR, CVPR 2019, Long Beach

Motivation:

- Virtual human hair dying is becoming a popular Augmented Reality (AR) application in recent years.
- Human Hair Segmentation In The Wild: Perform hair segmentation in an unconstrained view without any explicit prior face/head-shoulder detection.
- A problem in practical application: Cluttered **Background** disturbs deep CNN segmentation especially when the dataset is small, which brings spurious detections:

Proposition: Using Shape Prior

- We propose to construct a shape prior to constrain and guide the hair segmentation.
- In stage1, we propose to detect a hair shape prior.
- In stage2, we concatenate the shape prior and the image to find the exact boundary of the human hair.
- The construction of shape prior is based on distance transform with inverse boundary erosion:

$$dt_{mask}(p) = d_{max} - \min(d_{max}, \min_{p^+ \in I^+} ||p^+ - p||)$$

$$dt_{inv}(p) = e_{max} - \min(e_{max}, \min_{p^- \in I^-} ||p^- - p||)$$

 $dt = dt_{mask} - dt_{inv}$

Shape Prior Integrated Segmentation Pipeline:

Visualization of Shape Prior:

- [1]: Ronneberger et al. Unet: Convolutional networks for biomedical image segmentation. MICCAI 2015
- [2]: Chen et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. ECCV 2018
- [3]: Muhammad et al. Hair detection, segmentation and hairstyle classification in the wild. IVC 2018
- [4]: Liu et al. Face parsing via recurrent propagation. BMVC 2017
- [5]: Kae et al. Augmenting CRFs with Boltzmann machine shape priors for image labeling. CVPR 2013

Results:

Method	Precision(%)	F1 score(%)	mIoU(%)	Acc(%)
U-Net [1]	95.63	94.39	89.69	96.36
DeeplabV3+ [2]	96.86	95.05	91.11	97.07
Muhammad et al. [3]	-	84.90	-	91.50
Only Stage2	95.64	94.53	89.91	96.56
Stage1 + Stage2	97.25	95.09	91.15	97.20

Table 1: Hair Segmentation Results on Figaro1k [3].

Method	Precision-hair(%)	F1-hair(%)	
U-Net [1]	89.11	87.66	
DeeplabV3+ [2]	91.66	88.36	
Liu et al. [4]	-	83.43	
Only Stage 2	89.13	88.07	
Stage1* + Stage2*	98.24	88.94	

Table 2: Hair Segmentation Results on LFW-Part [5].

