EXERCISES ON LIMITS & COLIMITS

PETER J. HAINE

Exercise 1. Prove that pullbacks of epimorphisms in **Set** are epimorphisms and pushouts of monomorphisms in **Set** are monomorphisms. Note that these statements cannot be deduced from each other using duality. Now conclude that the same statements hold in **Top**.

Exercise 2. Let *X* be a set and $A, B \subset X$. Prove that the square

is both a pullback and pushout in Set.

Exercise 3. Let *R* be a commutative ring. Prove that every *R*-module can be written as a filtered colimit of its finitely generated submodules.

Exercise 4. Let X be a set. Give a categorical definition of a topology on X as a subposet of the power set of X (regarded as a poset under inclusion) that is stable under certain categorical constructions.

Exercise 5. Let X be a space. Give a categorical description of what it means for a set of open subsets of X to form a basis for the topology on X.

Exercise 6. Let C be a category. Prove that if the identity functor $id_C : C \to C$ has a limit, then $\lim_C id_C$ is an initial object of C.

Definition. Let C be a category and $X \in C$. If the coproduct $X \sqcup X$ exists, the *codiagonal* or *fold morphism* is the morphism $\nabla_X \colon X \sqcup X \to X$ induced by the identities on X via the universal property of the coproduct.

If the product $X \times X$ exists, the *diagonal* morphism $\Delta_X \colon X \to X \times X$ is defined dually.

Exercise 7. In **Set**, show that the diagonal $\Delta_X : X \to X \times X$ is given by $\Delta_X(x) = (x, x)$ for all $x \in X$, so Δ_X embeds X as the diagonal in $X \times X$, hence the name.

The codiagonal $\nabla_X \colon X \sqcup X \to X$ is a bit more mysterious. Give a description of ∇_X (still in the category Set).

Exercise 8. Let *C* be a category and $X, Y \in C$. Suppose that the coproducts $X \sqcup X$ and $Y \sqcup Y$ exist, and let $\nabla_X \colon X \sqcup X \to X$ and $\nabla_Y \colon Y \sqcup Y \to Y$ denote the codiagonals. Show that for any morphism $f \colon X \to Y$ we have $f \circ \nabla_X = \nabla_Y \circ (f \sqcup f)$.

What is the dual statement?

Date: January 28, 2018.

1

PETER J. HAINE

2

Exercise 9. Let *C* be a category with pullbacks and

$$X_{1} \longrightarrow X_{0} \longleftarrow X_{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Z_{1} \longrightarrow Z_{0} \longleftarrow Z_{2}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$Y_{1} \longrightarrow Y_{0} \longleftarrow Y_{2}$$

a commutative diagram in C. Prove that we have a natural isomorphism

$$(X_1 \times_{Z_1} Y_1) \times_{X_0 \times_{Z_0} Y_0} (X_2 \times_{Z_2} Y_2) \cong (X_1 \times_{X_0} X_2) \times_{Z_1 \times_{Z_0} Z_2} (Y_1 \times_{Y_0} Y_2).$$

Definition. Let C be a category with pullbacks and $f: X \to Y$ a morphism in C. The *diagonal* of f is the morphism $\Delta_f: X \to X \times_Y X$ induced via the universal property of the pullback by the square

$$X = X$$

$$\downarrow f$$

$$X \xrightarrow{f} Y.$$

Remark. Note that $\Delta_{id_X} = \Delta_X$.

Exercise 10 (magic square). Let C be a category and let $f_1: X_1 \to Y$, $f_2: X_2 \to Y$, and $g: Y \to Z$ morphisms in C. Assuming that C has pullbacks, prove that the square

$$\begin{array}{ccc} X_1 \times_Y X_2 & \longrightarrow & X_1 \times_Z X_2 \\ \downarrow & & \downarrow & \\ Y & \xrightarrow{\Delta_d} & Y \times_Z Y \end{array}$$

is a pullback square in C (where the unlabeled morphisms are the morphisms naturally induced by the universal property of the pullback).

Definition. Let C be a category with pullbacks, $Z \in C$, and $f: X \to Y$ a morphism in the slice category $C_{/Z}$. The *graph morphism* of f is the morphism $f: X \to X \times_Z Y$ induced via the universal property of the pullback by the square

$$X \xrightarrow{f} Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow Z.$$

Exercise 11. Show that if $f: X \to Y$ is a map of sets, then the graph $\Gamma_f: X \to X \times Y$ is given by $x \mapsto (x, f(x))$.

Exercise 12. Let C be a category with pullbacks, $Z \in C$, and $f: X \to Y$ a morphism in the slice category C_{IZ} . Write $g: Y \to Z$ for the structure morphism. Prove that the square

$$\begin{array}{ccc} X & \xrightarrow{\Gamma_f} & X \times_Z Y \\ f \downarrow & & \downarrow f \times_Z \mathrm{id}_Y \\ Y & \xrightarrow{\Delta_g} & Y \times_Z Y \end{array}$$

is a pullback in *C*.

Definition. Let C be a category. We say that a collection of morphisms $P \in Mor(C)$ is *stable under pullback* if for any pullback square

$$\begin{array}{c|c} X \times_Z Y & \stackrel{\bar{p}}{\longrightarrow} Y \\ \downarrow^{\bar{q}} & & \downarrow^{q} \\ X & \stackrel{p}{\longrightarrow} Z \end{array}$$

in *C*, if $p \in P$ then $\bar{p} \in P$.

Exercise 13. Let C be a category with pullbacks and $P \in Mor(C)$ a collection of morphisms in C stable under composition and pullback. Prove that given any commutative triangle

$$X \xrightarrow{f} Y$$
 $Z \xrightarrow{g} Z$

in C, if $p \in P$ and $\Delta_q \in P$, then $f \in P$.

Definition. A functor $F: C \to D$ is *left cofinal* if for all categories E and diagrams $G: D \to E$, the colimit $\operatorname{colim}_D G$ exists if and only if $\operatorname{colim}_C GF$ exists, in which case the natural morphism

$$\operatorname{colim}_C GF \to \operatorname{colim}_D G$$

is an isomorphism.

Dually, $F: C \to D$ is right cofinal if $F^{op}: C^{op} \to D^{op}$ is left cofinal.

Remark. The "co" in "cofinal" uses the non-mathematical English prefix meaning "jointly" — there's no duality involved here.

Exercise 14. Show that equivalences of categories are both left and right cofinal.

Exercise 15. Show that if a category C has a terminal object *, then the inclusion $\{*\} \hookrightarrow C$ of the full subcategory of C spanned by * is left cofinal.

Exercise 16. Let $F: C \to D$ be a functor. Show that F is left cofinal if and only if for all diagrams $G: D \to \mathbf{Set}$ the natural morphism

$$\operatorname{colim}_C GF \to \operatorname{colim}_D G$$

is an isomorphism.

Notation. For a positive integer n, write $\Delta_{\leq n}$ for the full subcategory of Δ spanned by those sets of cardinality at most n.

PETER J. HAINE

4

Exercise 17. Show that the inclusion $\Delta_{\leq 2} \hookrightarrow \Delta$ is right cofinal.

Notation. Write $\Delta^{inj} \subset \Delta$ for the wide subcategory, i.e., subcategory containing all of the objects, of Δ where the morphisms are injective maps of linearly ordered finite sets. For a positive integer n, write $\Delta^{inj}_{\leq n}$ for the full subcategory of Δ^{inj} spanned by those sets of cardinality at most n.

Exercise 18. Show that the inclusion $\Delta^{inj}_{\leq 2} \hookrightarrow \Delta^{inj}$ is right cofinal. Now deduce that the inclusion $\Delta^{inj}_{\leq 2} \hookrightarrow \Delta$ is right cofinal.

Exercise 19. Let C be a category with pullbacks and $f: X \to Y$ a morphism in C. Construct a functor $\check{C}(f): \Delta^{op} \to C$ whose value on $[n] = \{0 < \cdots < n\}$ is the (n+1)-fold iterated pullback $X \times_Y \cdots \times_Y X$ (so that the value on [0] is simply X). The simplicial object $\check{C}(f)$ is called the \check{C} each f is the f construction of f.

Exercise 20. Let X be a topological space, $U \in X$ an open set, $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ an open cover of U, and \mathcal{T} a presheaf on X. Choose a well-ordering of A (this does not really matter, but is necessary to make the next step well-defined.) Extend the usual "sheaf condition diagram"

$$\prod_{\alpha_0 \in A} \mathcal{F}(U_{\alpha_0}) \Longrightarrow \prod_{\alpha_0, \alpha_1 \in A} \mathcal{F}(U_{\alpha_0} \cap U_{\alpha_1})$$

to a diagram $\check{C}(U; \mathcal{T}) : \Delta^{inj} \to \mathbf{Set}$ of the form

$$\prod_{\alpha_0 \in A} \mathcal{T}(U_{\alpha_0}) \implies \prod_{\alpha_0, \alpha_1 \in A} \mathcal{T}(U_{\alpha_0} \cap U_{\alpha_1}) \implies \prod_{\alpha_0, \alpha_1, \alpha_2 \in A} \mathcal{T}(U_{\alpha_0} \cap U_{\alpha_1} \cap U_{\alpha_2}) \implies \cdots.$$

Now reformulate the sheaf condition for a presheaf \mathcal{F} in terms of the diagrams $\check{C}(\mathcal{U};\mathcal{F})$.