Design and Analysis of Algorithms (BHCS08)

Unit	Topic	Reference	Total Hours
1	Algorithm Design Techniques: Iterative technique: Applications to Sorting and Searching (review), their correctness and analysis. Divide and Conquer: Application to Sorting and Searching (review of binary search), merge sort, quick sort, their correctness and analysis.	Ch 2 [1] Ch 7 [1]	12
_			
	Dynamic Programming: Application to various problems, their correctness and analysis.	6.1 , 6.2, 6.4 [2]	8
	Greedy Algorithms: Application to various problems, their correctness and analysis.	4.1, 4.2, 4.4, 4.5(excluding reverse delete algorithm), 4.6 [2]	12
2	More on Sorting and Searching: Heapsort, Lower Bounds using decision trees, sorting in Linear Time - Bucket Sort, Radix Sort and Count Sort, Medians & Order Statistics, complexity analysis and their correctness.	Ch 6 [1] Ch 8 [1] 9.1, 9.2, 9.3 [1]	12
3	Advanced Analysis Technique: Amortized analysis	17.1, 17.2, 17.3 [1]	4
4	Graphs: Graph Algorithms - Breadth First Search, Depth First Search and its Applications.	Ch 3 [2]	12

References

- 1. Cormen, T.H., Leiserson, C.E. Rivest, R.L., & Stein, C.(2015). Introduction to Algorithms. 3rd edition. PHI.
- 2. Kleinberg, J., & Tardos, E. (2013). Algorithm Design. 1st edition. Pearson Education India. Additional Resources

Practical List

- 1. i. Implement Insertion Sort (The program should report the number of comparisons) ii. Implement Merge Sort (The program should report the number of comparisons)
- 2. Implement Heap Sort(The program should report the number of comparisons)
- 3. Implement Randomized Quick sort (The program should report the number of comparisons)
- 4. Implement Radix Sort
- 5. Implement Bucket Sort
- 6. Implement Randomized Select
- 7. Implement Breadth-First Search in a graph
- 8. Implement Depth-First Search in a graph
- 9. Write a program to determine the minimum spanning tree of a graph using both Prims and Kruskals algorithm
- 10. Write a program to solve the weighted interval scheduling problem
- 11. Write a program to solve the 0-1 knapsack problem

For the algorithms at S.No 1 to 3 test run the algorithm on 100 different inputs of sizes varying from 30 to 1000. Count the number of comparisons and draw the graph. Compare it with a graph of nlogn.