MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

16. februar 2025

Vsebina

Realna števila

2/67

Jan Kastelic (GAA) MATEMATIKA

Section 1

Realna števila

Jan Kastelic (GAA)

3/67

- Realna števila
 - Realna števila
 - Kvadratni koren
 - Kubični koren
 - Interval
 - Reševanje enačb
 - Reševanje neenačb
 - Reševanje sistemov enačb
 - Obravnava enačb in neenačb
 - Sklepni račun
 - Odstotni račun
 - Absolutna vrednost
 - Zaokroževanje, približki, napake

4 / 67

16. februar 2025

Jan Kastelic (GAA)

Med poljubnima dvema racionalnima številoma $\frac{x}{y}, \frac{z}{w} \in \mathbb{Q}$ je vsaj še eno racionalno število

5 / 67

Med poljubnima dvema racionalnima številoma $\frac{x}{y}, \frac{z}{w} \in \mathbb{Q}$ je vsaj še eno racionalno število – aritmetična sredina teh dveh števil $\frac{1}{2}\left(\frac{x}{y}+\frac{z}{w}\right)$.

5 / 67

Med poljubnima dvema racionalnima številoma $\frac{x}{y}, \frac{z}{w} \in \mathbb{Q}$ je vsaj še eno racionalno število – aritmetična sredina teh dveh števil $\frac{1}{2}\left(\frac{x}{y} + \frac{z}{w}\right)$.

$$\frac{x}{y} < \frac{z}{w}, \ y, w \neq 0 \quad \Rightarrow \quad \frac{x}{y} < \frac{1}{2} \left(\frac{x}{y} + \frac{z}{w} \right) < \frac{z}{w}$$

5 / 67

Med poljubnima dvema racionalnima številoma $\frac{x}{y}, \frac{z}{w} \in \mathbb{Q}$ je vsaj še eno racionalno število – aritmetična sredina teh dveh števil $\frac{1}{2}\left(\frac{x}{y} + \frac{z}{w}\right)$.

$$\frac{x}{y} < \frac{z}{w}, \ y, w \neq 0 \quad \Rightarrow \quad \frac{x}{y} < \frac{1}{2} \left(\frac{x}{y} + \frac{z}{w} \right) < \frac{z}{w}$$

Med poljubnima racionalnima številoma je neskončno mnogo racionalnih števil in pravimo, da je množica \mathbb{Q} **povsod gosta**.

5 / 67

Med poljubnima dvema racionalnima številoma $\frac{x}{y}, \frac{z}{w} \in \mathbb{Q}$ je vsaj še eno racionalno število – aritmetična sredina teh dveh števil $\frac{1}{2}\left(\frac{x}{y} + \frac{z}{w}\right)$.

$$\frac{x}{y} < \frac{z}{w}, \ y, w \neq 0 \quad \Rightarrow \quad \frac{x}{y} < \frac{1}{2} \left(\frac{x}{y} + \frac{z}{w} \right) < \frac{z}{w}$$

Med poljubnima racionalnima številoma je neskončno mnogo racionalnih števil in pravimo, da je množica \mathbb{Q} **povsod gosta**.

Množici $\mathbb Q$ in $\mathbb Z$ imata enako moč – sta števno neskončni $(m(\mathbb Q)=m(\mathbb Z)=\aleph_0)$.

5 / 67

6 / 67

Jan Kastelic (GAA) MATEMATIKA

Iracionalna števila \mathbb{I} so vsi kvadratni koreni števil, ki niso popolni kvadrati, tretji koreni, ki niso popolni kubi, ..., število π , Eulerjevo število e ...

6 / 67

Iracionalna števila $\mathbb I$ so vsi kvadratni koreni števil, ki niso popolni kvadrati, tretji koreni, ki niso popolni kubi, ..., število π , Eulerjevo število e ...

Množici racionalnih in iracionalnih števil sta disjunktni: $\mathbb{Q} \cap \mathbb{I} = \emptyset$.

6 / 67

Iracionalna števila $\mathbb I$ so vsi kvadratni koreni števil, ki niso popolni kvadrati, tretji koreni, ki niso popolni kubi, ..., število π , Eulerjevo število e ...

Množici racionalnih in iracionalnih števil sta disjunktni: $\mathbb{Q} \cap \mathbb{I} = \emptyset$.

Realna števila

6 / 67

Iracionalna števila $\mathbb I$ so vsi kvadratni koreni števil, ki niso popolni kvadrati, tretji koreni, ki niso popolni kubi, ..., število π , Eulerjevo število e ...

Množici racionalnih in iracionalnih števil sta disjunktni: $\mathbb{Q} \cap \mathbb{I} = \emptyset$.

Realna števila

Realna števila so množica števil, ki jo dobimo kot unijo racionalnih in iracionalnih števil: $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$.

6 / 67

Iracionalna števila $\mathbb I$ so vsi kvadratni koreni števil, ki niso popolni kvadrati, tretji koreni, ki niso popolni kubi, ..., število π , Eulerjevo število e ...

Množici racionalnih in iracionalnih števil sta disjunktni: $\mathbb{Q} \cap \mathbb{I} = \emptyset$.

Realna števila

Realna števila so množica števil, ki jo dobimo kot unijo racionalnih in iracionalnih števil: $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$.

Množica realnih števil je močnejša od množice racionalnih števil. Pravimo, da je (neštevno) neskončna.

6 / 67

Jan Kastelic (GAA) MATEMATIKA 16. februar 2025 7 / 67

 $\mathbb{R} =$

 \mathbb{R}

0

7 / 67

ullet množico negativnih realnih števil \mathbb{R}^- ,

$$\mathbb{R} = \mathbb{R}^-$$

$$\mathbb{R}$$
 \mathbb{R}^- (

- množico negativnih realnih števil \mathbb{R}^- ,
- množico z elementom nič: $\{\mathbf{0}\}$ in

$$\mathbb{R} = \mathbb{R}^- \cup \{0\}$$

$$\mathbb{R}$$
 \mathbb{R}^- 0

16. februar 2025

- ullet množico negativnih realnih števil \mathbb{R}^- ,
- množico z elementom nič: $\{ \mathbf{0} \}$ in
- množico pozitivnih realnih števil: \mathbb{R}^+ .

$$\mathbb{R} = \mathbb{R}^- \cup \{0\} \cup \mathbb{R}^+$$

$$\mathbb{R}^-$$
 0 \mathbb{R}^+

Jan Kastelic (GAA)

7 / 67

- množico negativnih realnih števil \mathbb{R}^- ,
- množico z elementom nič: $\{\mathbf{0}\}$ in
- množico pozitivnih realnih števil: \mathbb{R}^+ .

$$\mathbb{R} = \mathbb{R}^- \cup \{0\} \cup \mathbb{R}^+$$

$$\mathbb{R}$$
 \mathbb{R}^- 0 \mathbb{R}^+

Vsaki točki na številski premici ustreza natanko eno realno število in obratno, vsakemu realnemu številu ustreza natanko ena točka na številski premici.

Jan Kastelic (GAA)

- ullet množico negativnih realnih števil \mathbb{R}^- ,
- množico z elementom nič: $\{\mathbf{0}\}$ in
- množico pozitivnih realnih števil: \mathbb{R}^+ .

$$\mathbb{R} = \mathbb{R}^- \cup \{0\} \cup \mathbb{R}^+$$

$$\mathbb{R}$$
 \mathbb{R}^- 0 \mathbb{R}^+

Vsaki točki na številski premici ustreza natanko eno realno število in obratno, vsakemu realnemu številu ustreza natanko ena točka na številski premici.

Številsko premico, ki upodablja realna števila, imenujemo tudi realna os.

refleksivnost:

8/67

• refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;

8 / 67

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost:

8 / 67

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leq y \land y \leq x \Rightarrow x = y$;

8 / 67

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leq y \land y \leq x \Rightarrow x = y$;
- tranzitivnost:

8 / 67

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leq y \land y \leq x \Rightarrow x = y$;
- tranzitivnost: $\forall x, y, z \in \mathbb{R} : x < y \land y < z \Rightarrow x < z$;

8 / 67

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leq y \land y \leq x \Rightarrow x = y$;
- tranzitivnost: $\forall x, y, z \in \mathbb{R} : x \leq y \land y \leq z \Rightarrow x \leq z$;
- stroga sovisnost:

8 / 67

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leq y \land y \leq x \Rightarrow x = y$;
- tranzitivnost: $\forall x, y, z \in \mathbb{R} : x \leq y \land y \leq z \Rightarrow x \leq z$;
- stroga sovisnost: $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$.

8 / 67

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leq y \land y \leq x \Rightarrow x = y$;
- tranzitivnost: $\forall x, y, z \in \mathbb{R} : x \leq y \land y \leq z \Rightarrow x \leq z$;
- stroga sovisnost: $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$.

Za realcijo urejenosti na množici $\mathbb R$ veljajo še naslednje lastnosti:

8 / 67

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leq y \land y \leq x \Rightarrow x = y$;
- tranzitivnost: $\forall x, y, z \in \mathbb{R} : x \leq y \land y \leq z \Rightarrow x \leq z$;
- stroga sovisnost: $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$.

Za realcijo urejenosti na množici $\mathbb R$ veljajo še naslednje lastnosti:

monotonost vsote:

8 / 67

Z relacijo biti manjši ali enak je množica \mathbb{R} linearno urejena, to pomeni, da veljajo:

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leq y \land y \leq x \Rightarrow x = y$;
- tranzitivnost: $\forall x, y, z \in \mathbb{R} : x \leq y \land y \leq z \Rightarrow x \leq z$;
- stroga sovisnost: $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$.

Za realcijo urejenosti na množici ${\mathbb R}$ veljajo še naslednje lastnosti:

• monotonost vsote: $x < y \Rightarrow x + z < y + z$ oziroma $x \le y \Rightarrow x + z \le y + z$;

8 / 67

Z relacijo biti manjši ali enak je množica \mathbb{R} linearno urejena, to pomeni, da veljajo:

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leq y \land y \leq x \Rightarrow x = y$;
- tranzitivnost: $\forall x, y, z \in \mathbb{R} : x \leq y \land y \leq z \Rightarrow x \leq z$;
- stroga sovisnost: $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$.

Za realcijo urejenosti na množici ${\mathbb R}$ veljajo še naslednje lastnosti:

- monotonost vsote: $x < y \Rightarrow x + z < y + z$ oziroma $x \le y \Rightarrow x + z \le y + z$;
- $x < y \land z > 0 \Rightarrow xz < yz \text{ in } x \le y \land z > 0 \Rightarrow xz \le yz$;

8 / 67

Z relacijo biti manjši ali enak je množica $\mathbb R$ linearno urejena, to pomeni, da veljajo:

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leq y \land y \leq x \Rightarrow x = y$;
- tranzitivnost: $\forall x, y, z \in \mathbb{R} : x \leq y \land y \leq z \Rightarrow x \leq z$;
- stroga sovisnost: $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$.

Za realcijo urejenosti na množici $\mathbb R$ veljajo še naslednje lastnosti:

- monotonost vsote: $x < y \Rightarrow x + z < y + z$ oziroma $x \le y \Rightarrow x + z \le y + z$;
- $x < y \land z > 0 \Rightarrow xz < yz$ in $x \le y \land z > 0 \Rightarrow xz \le yz$;
- $x < y \land z < 0 \Rightarrow xz > yz$ in $x \le y \land z < 0 \Rightarrow xz \ge yz$.

8 / 67

9 / 67

Jan Kastelic (GAA) MATEMATIKA

Kvadratni koren \sqrt{a} realnega števila $a \ge 0$ je tisto nenegativno realno število x, katerega kvadrat je enak a.

9/67

Kvadratni koren \sqrt{a} realnega števila $a \ge 0$ je tisto nenegativno realno število x, katerega kvadrat je enak a.

$$\sqrt{a} = x \Leftrightarrow a = x^2; \quad a, x \in \mathbb{R}^+$$

9 / 67

Kvadratni koren \sqrt{a} realnega števila $a \ge 0$ je tisto nenegativno realno število x, katerega kvadrat je enak a.

$$\sqrt{a} = x \Leftrightarrow a = x^2; \quad a, x \in \mathbb{R}^+$$

Število a imenujemo **korenjenec**, simbol $\sqrt{}$ pa **korenski znak**.

9 / 67

Kvadratni koren \sqrt{a} realnega števila $a \ge 0$ je tisto nenegativno realno število x, katerega kvadrat je enak a.

$$\sqrt{a} = x \Leftrightarrow a = x^2; \quad a, x \in \mathbb{R}^+$$

Število a imenujemo korenjenec, simbol $\sqrt{\ }$ pa korenski znak.

Pravila za računanje s kvadratnimi koreni

9 / 67

Kvadratni koren \sqrt{a} realnega števila $a \ge 0$ je tisto nenegativno realno število x, katerega kvadrat je enak a.

$$\sqrt{a} = x \Leftrightarrow a = x^2; \quad a, x \in \mathbb{R}^+$$

Število a imenujemo **korenjenec**, simbol $\sqrt{}$ pa **korenski znak**.

Pravila za računanje s kvadratnimi koreni

•
$$(\sqrt{a})^2 = a; \ a \ge 0$$

Kvadratni koren \sqrt{a} realnega števila $a \ge 0$ je tisto nenegativno realno število x, katerega kvadrat je enak a.

$$\sqrt{a} = x \Leftrightarrow a = x^2; \quad a, x \in \mathbb{R}^+$$

Število a imenujemo **korenjenec**, simbol $\sqrt{}$ pa **korenski znak**.

Pravila za računanje s kvadratnimi koreni

•
$$(\sqrt{a})^2 = a; \ a \ge 0$$

$$\bullet \sqrt{a^2} = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

Kvadratni koren \sqrt{a} realnega števila $a \ge 0$ je tisto nenegativno realno število x, katerega kvadrat je enak a.

$$\sqrt{a} = x \Leftrightarrow a = x^2; \quad a, x \in \mathbb{R}^+$$

Število a imenujemo **korenjenec**, simbol $\sqrt{}$ pa **korenski znak**.

Pravila za računanje s kvadratnimi koreni

•
$$(\sqrt{a})^2 = a; \ a \ge 0$$

•
$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
; $a, b \ge 0$

9 / 67

$$\bullet \sqrt{a^2} = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

Kvadratni koren \sqrt{a} realnega števila $a \ge 0$ je tisto nenegativno realno število x, katerega kvadrat je enak a.

$$\sqrt{a} = x \Leftrightarrow a = x^2; \quad a, x \in \mathbb{R}^+$$

Število a imenujemo **korenjenec**, simbol $\sqrt{}$ pa **korenski znak**.

Pravila za računanje s kvadratnimi koreni

•
$$(\sqrt{a})^2 = a; \ a > 0$$

$$\bullet \sqrt{a^2} = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

•
$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
; $a, b > 0$

Jan Kastelic (GAA) MATEMATIKA

Delno korenjenje poteka tako, da korenjenec zapišemo kot produkt dveh ali več faktorjev, od katerih je vsaj en popoln kvadrat (ga lahko korenimo). Nato koren zapišemo kot produkt korenov in korenimo kar lahko.

10 / 67

Delno korenjenje poteka tako, da korenjenec zapišemo kot produkt dveh ali več faktorjev, od katerih je vsaj en popoln kvadrat (ga lahko korenimo). Nato koren zapišemo kot produkt korenov in korenimo kar lahko.

$$\sqrt{a^2b} = \sqrt{a^2}\sqrt{b} = a\sqrt{b}$$

10 / 67

Delno korenjenje poteka tako, da korenjenec zapišemo kot produkt dveh ali več faktorjev, od katerih je vsaj en popoln kvadrat (ga lahko korenimo). Nato koren zapišemo kot produkt korenov in korenimo kar lahko.

$$\sqrt{a^2b} = \sqrt{a^2}\sqrt{b} = a\sqrt{b}$$

Racionalizacija imenovalca

10 / 67

Delno korenjenje poteka tako, da korenjenec zapišemo kot produkt dveh ali več faktorjev, od katerih je vsaj en popoln kvadrat (ga lahko korenimo). Nato koren zapišemo kot produkt korenov in korenimo kar lahko.

$$\sqrt{a^2b} = \sqrt{a^2}\sqrt{b} = a\sqrt{b}$$

Racionalizacija imenovalca

Racionalizacija imenovalca pomeni, da ulomek zapišemo z enakovrednim ulomkom, ki v imenovalcu nima korena. To naredimo z razširjanjem ulomka.

10 / 67

Delno korenjenje poteka tako, da korenjenec zapišemo kot produkt dveh ali več faktorjev, od katerih je vsaj en popoln kvadrat (ga lahko korenimo). Nato koren zapišemo kot produkt korenov in korenimo kar lahko.

$$\sqrt{a^2b} = \sqrt{a^2}\sqrt{b} = a\sqrt{b}$$

Racionalizacija imenovalca

Racionalizacija imenovalca pomeni, da ulomek zapišemo z enakovrednim ulomkom, ki v imenovalcu nima korena. To naredimo z razširjanjem ulomka.

Izraze s kvadratnimi koreni poenostavimo tako, da uporabimo že znane obrazce, delno korenimo in racionaliziramo imenovalce.

10 / 67

11 / 67

Izračunajte.

Izračunajte.

$$\sqrt{49 \cdot 64}$$

•
$$\sqrt{4 \cdot 324}$$

•
$$\sqrt{361 \cdot 16}$$

•
$$\sqrt{-16 \cdot 25}$$

•
$$\sqrt{3 \cdot 12}$$

•
$$\sqrt{\frac{225}{289}}$$

•
$$\sqrt{\frac{169}{256}}$$

•
$$\sqrt{\frac{49}{121}}$$

•
$$\sqrt{\frac{1}{3}}$$

16. februar 2025

Izračunajte.

16. februar 2025

Izračunajte.

•
$$\sqrt{\sqrt{16}}$$

•
$$\sqrt{\sqrt{81}}$$

•
$$\sqrt{\sqrt{256}}$$

•
$$\sqrt{\sqrt{1}}$$

•
$$\sqrt{\sqrt{256}}$$

Izračunajte.

13 / 67

Izračunajte.

•
$$\sqrt{e^{10}f^{26}}$$

•
$$\sqrt{a^{20}b^4}$$

•
$$\sqrt{(-x)^{20}y^4}$$

•
$$\sqrt{3a^6 + a^6}$$

16. februar 2025

14 / 67

Izračunajte.

Izračunajte.

•
$$\sqrt{16+36+12}$$

•
$$\sqrt{121} + \sqrt{81}$$

•
$$\sqrt{10+21+69}$$

•
$$\sqrt{10+11-21}$$

•
$$\sqrt{9+4-4}$$

•
$$\sqrt{3 \cdot 4 + 2 \cdot 2}$$

$$\bullet$$
 $\sqrt{5\cdot7+1}$

$$\bullet \ \sqrt{8 \cdot 7 - 5 \cdot 4}$$

$$\bullet \sqrt{10 \cdot 8 - 4 \cdot 4}$$

$$\sqrt{11 \cdot 5 + 2 \cdot 7 + 3 \cdot 4}$$

Izračunajte.

Naloga Izračunajte.

√20

•
$$\sqrt{125}$$

•
$$\sqrt{x^3}$$

•
$$\sqrt{128a^{13}b^9}$$

•
$$\sqrt{100x^2y^5 + 62x^2y^5}$$
; $x, y \ge 0$

•
$$\sqrt{8a^6b^5-12a^4b^6}$$
; $a,b\geq 0$

Izračunajte.

Izračunajte.

•
$$\sqrt{44} + \sqrt{99}$$

•
$$\sqrt{192} + \sqrt{147}$$

•
$$\sqrt{180} - \sqrt{245} + 2\sqrt{500}$$

•
$$\sqrt{243a^3b} + 2a\sqrt{48ab} - \sqrt{363a^2} \cdot \sqrt{ab}$$
; $a, b \ge 0$

•
$$\sqrt{3a^6 + a^6}$$

Jan Kastelic (GAA)

Kvadratni koren

Racionalizirajte imenovalec.

Jan Kastelic (GAA) MATEMATIKA

Racionalizirajte imenovalec.

$$\frac{2+\sqrt{2}}{\sqrt{2}}$$

•
$$\frac{2}{5\sqrt{3}}$$

$$\bullet \ \frac{\sqrt{2}}{1-\sqrt{2}}$$

•
$$\frac{1+\sqrt{5}}{2+\sqrt{5}}$$

•
$$\frac{2-\sqrt{3}}{3+\sqrt{2}}$$

16. februar 2025

Kvadratni koren

Izračunajte.

Izračunajte.

•
$$\frac{2}{\sqrt{3}} + \frac{3}{\sqrt{2}}$$

$$\bullet \ \frac{1-\sqrt{2}}{\sqrt{3}} - \frac{\sqrt{2}}{\sqrt{5}}$$

•
$$(2-\sqrt{3})^3$$

Kvadratni koren

Izračunajte.

Izračunajte.

•
$$(2-\sqrt{5})^3-(1+2\sqrt{5})^2$$

•
$$(2-\sqrt{3})^2+(2+\sqrt{3})^3$$

$$\bullet \left(1+\sqrt{5}\right)\sqrt{6-2\sqrt{5}}$$

•
$$(3-\sqrt{5})\sqrt{14+6\sqrt{5}}$$

•
$$(\sqrt{3} + \sqrt{5})\sqrt{8 - 2\sqrt{15}}$$

16. februar 2025

Jan Kastelic (GAA) MATEMATIKA

Kubični koren $\sqrt[3]{a}$ realnega števila a je tisto realno število x, katerega kub je enak a.

20 / 67

Kubični koren $\sqrt[3]{a}$ realnega števila a je tisto realno število x, katerega kub je enak a.

$$\sqrt[3]{a} = x \Leftrightarrow a = x^3; \quad a, x \in \mathbb{R}$$

20 / 67

Kubični koren $\sqrt[3]{a}$ realnega števila a je tisto realno število x, katerega kub je enak a.

$$\sqrt[3]{a} = x \Leftrightarrow a = x^3; \quad a, x \in \mathbb{R}$$

Število a imenujemo korenjenec, simbol $\sqrt{}$ korenski znak, število 3 pa korenski eksponent.

20 / 67

Kubični koren $\sqrt[3]{a}$ realnega števila a je tisto realno število x, katerega kub je enak a.

$$\sqrt[3]{a} = x \Leftrightarrow a = x^3; \quad a, x \in \mathbb{R}$$

Število a imenujemo korenjenec, simbol $\sqrt{}$ korenski znak, število 3 pa korenski eksponent.

Pravila za računanje s kubičnimi koreni

20 / 67

Kubični koren $\sqrt[3]{a}$ realnega števila a je tisto realno število x, katerega kub je enak a.

$$\sqrt[3]{a} = x \Leftrightarrow a = x^3; \quad a, x \in \mathbb{R}$$

Število a imenujemo korenjenec, simbol $\sqrt{}$ korenski znak, število 3 pa korenski eksponent.

Pravila za računanje s kubičnimi koreni

•
$$(\sqrt[3]{a})^3 = a$$

20 / 67

Kubični koren $\sqrt[3]{a}$ realnega števila a je tisto realno število x, katerega kub je enak a.

$$\sqrt[3]{a} = x \Leftrightarrow a = x^3; \quad a, x \in \mathbb{R}$$

Število a imenujemo korenjenec, simbol $\sqrt{}$ korenski znak, število 3 pa korenski eksponent.

Pravila za računanje s kubičnimi koreni

- $(\sqrt[3]{a})^3 = a$ $\sqrt[3]{a^3} = a$

20 / 67

16. februar 2025 Jan Kastelic (GAA) MATEMATIKA

Kubični koren $\sqrt[3]{a}$ realnega števila a je tisto realno število x, katerega kub je enak a.

$$\sqrt[3]{a} = x \Leftrightarrow a = x^3; \quad a, x \in \mathbb{R}$$

Število a imenujemo korenjenec, simbol $\sqrt{}$ korenski znak, število 3 pa korenski eksponent.

Pravila za računanje s kubičnimi koreni

- $(\sqrt[3]{a})^3 = a$
- $\sqrt[3]{a^3} = a$

 $\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$

20 / 67

Kubični koren $\sqrt[3]{a}$ realnega števila a je tisto realno število x, katerega kub je enak a.

$$\sqrt[3]{a} = x \Leftrightarrow a = x^3; \quad a, x \in \mathbb{R}$$

Število a imenujemo korenjenec, simbol $\sqrt{}$ korenski znak, število 3 pa korenski eksponent.

Pravila za računanje s kubičnimi koreni

•
$$(\sqrt[3]{a})^3 = a$$

• $\sqrt[3]{a^3} = a$

•
$$\sqrt[3]{a^3} = a$$

$$\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$$

•
$$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}; \ b \neq 0$$

MATEMATIKA 16 februar 2025 Jan Kastelic (GAA) 20 / 67

Izračunajte.

21 / 67

Izračunajte.

•
$$\sqrt[3]{-1}$$

•
$$\sqrt[3]{216}$$

•
$$\sqrt[3]{\frac{64}{125}}$$

•
$$\sqrt[3]{-\frac{27}{343}}$$

•
$$\sqrt[3]{1\frac{488}{512}}$$

16. februar 2025

Izračunajte.

Izračunajte.

•
$$\sqrt{\sqrt{256}} - \frac{3 - \sqrt{2}}{\sqrt{2} - 1} + \sqrt[3]{-8} + (2 - \sqrt{2})^2$$

$$\bullet \ \frac{\sqrt{3}+1}{\sqrt{3}} - \frac{\sqrt{3}-1}{\sqrt{3}+1} + \sqrt{0.16} + \sqrt{0.64} - \sqrt[3]{-27} + \sqrt{48} - \sqrt{27}$$

•
$$(1-\sqrt{5})^2-(1+\sqrt{5})^2+\frac{\sqrt{5}-2}{\sqrt{5}+2}-\sqrt{125}+\sqrt{245}$$

22 / 67

16. februar 2025

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, kjer je a < b. Števili a in b imenujemo **krajišči intervala**.

◆ロト ◆個ト ◆差ト ◆差ト を めるの

23 / 67

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, kjer je a < b.

Števili a in b imenujemo **krajišči intervala**.

Vključenost krajišč

23 / 67

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, kjer je a < b.

Števili a in b imenujemo krajišči intervala.

Vključenost krajišč

• Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.

23 / 67

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, kjer je a < b.

Števili a in b imenujemo **krajišči intervala**.

Vključenost krajišč

- Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.
- Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

23 / 67

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, kjer je a < b.

Števili a in b imenujemo **krajišči intervala**.

Vključenost krajišč

- Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.
- Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

Pri zapisu intervalov moramo biti pozorni na zapis vrstnega reda števil, ki določata krajišči.

$$[a,b] \neq [b,a]$$

23 / 67

Jan Kastelic (GAA)

Zaprti interval

16. februar 2025

Zaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Jan Kastelic (GAA)

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

$$(\mathbf{a},\mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} < \mathbf{x} < \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vendar ne vsebuje krajišč a in b.

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣♀

24 / 67

Polodprti/polzaprti interval

Jan Kastelic (GAA) MATEMATIKA 16. februar 2025 25 / 67

Polodprti/polzaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

25 / 67

Polodprti/polzaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

Vsebuje vsa realna števila med a in b, vključno s krajiščem b, vendar ne vsebuje krajišča a.

25 / 67

26 / 67

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

Jan Kastelic (GAA) MATEMATIKA

- $\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$
- $\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \mathsf{x} > \mathsf{a}\}$

- $\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$
- $\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$
- $\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$$

$$\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$$

b

$$\bullet \ (-\infty, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b} \}$$

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$$

$$\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$$

$$\bullet \ (-\infty, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b} \}$$

$$ullet$$
 $(-\infty,\infty)=\{\mathbf{x};\mathbf{x}\in\mathbb{R}\}=\mathbb{R}$

16. februar 2025

b

Zapišite kot interval.

27 / 67

Zapišite kot interval.

•
$$\{x \in \mathbb{R}; -2 < x < 2\}$$

•
$$\{x \in \mathbb{R}; 4 \le x \le 2\}$$

•
$$\{x \in \mathbb{R}; -14 < x \le -9\}$$

16. februar 2025

Zapišite interval, ki je narisan na sliki.

Zapišite interval, ki je narisan na sliki.

0

•

Zapišite presek intervalov.

29 / 67

Zapišite presek intervalov.

•
$$[0,2) \cap (-1,1]$$

•
$$[-3,5] \cap (-3,5)$$

•
$$[2,5) \cap [5,7)$$

•
$$[-1,3) \cap (-4,-1]$$

•
$$[4,6] \cap [-1,4]$$

•
$$(-1,3) \cap [1,2)$$

Zapišite unijo intervalov.

Zapišite unijo intervalov.

• $[0,2) \cup (-1,1]$

• $[-3,5] \cup (-3,5)$

• $[2,5) \cup [5,7)$

• $[-1,3) \cup (-4,1]$

Zapišite razliko intervalov.

Zapišite razliko intervalov.

● [2, 3] \ [3, 4)

• $(1,3) \setminus (3,4)$

• $[2,5) \setminus (-1,2]$

• $(2,8) \setminus [5,6)$

Izračunajte.

Izračunajte.

•
$$([1,3) \setminus (1,4]) \cup (1,2)$$

•
$$[-2,4] \setminus ((-1,2] \cap [0,3))$$

•
$$((-2,3] \setminus [-3,2)) \cap [3,5)$$

16. februar 2025

16. februar 2025

Enačba

16. februar 2025

Enačba

Enačba je enakost dveh izrazov, pri čemer vsaj v enem nastopa **neznanka**, ki je ponavadi označena s črko x.

33 / 67

Enačba

Enačba je enakost dveh izrazov, pri čemer vsaj v enem nastopa **neznanka**, ki je ponavadi označena s črko x.

Rešitev enačbe je vsaka vrednost neznanke, za katero sta vrednosti leve in desne strani enačbe enaki.

33 / 67

Enačba

Enačba je enakost dveh izrazov, pri čemer vsaj v enem nastopa **neznanka**, ki je ponavadi označena s črko x.

Rešitev enačbe je vsaka vrednost neznanke, za katero sta vrednosti leve in desne strani enačbe enaki.

Reševanje enačbe

33 / 67

Enačba

Enačba je enakost dveh izrazov, pri čemer vsaj v enem nastopa **neznanka**, ki je ponavadi označena s črko x.

Rešitev enačbe je vsaka vrednost neznanke, za katero sta vrednosti leve in desne strani enačbe enaki.

Reševanje enačbe

Enačbo rešujemo tako, da jo preoblikujemo v ekvivalentno enačbo, iz katere preberemo rešitve.

33 / 67

Enačba

Enačba je enakost dveh izrazov, pri čemer vsaj v enem nastopa **neznanka**, ki je ponavadi označena s črko x.

Rešitev enačbe je vsaka vrednost neznanke, za katero sta vrednosti leve in desne strani enačbe enaki.

Reševanje enačbe

Enačbo rešujemo tako, da jo preoblikujemo v ekvivalentno enačbo, iz katere preberemo rešitve.

Ekvivalentno enačbo dobimo, če:

33 / 67

Enačba

Enačba je enakost dveh izrazov, pri čemer vsaj v enem nastopa **neznanka**, ki je ponavadi označena s črko x.

Rešitev enačbe je vsaka vrednost neznanke, za katero sta vrednosti leve in desne strani enačbe enaki.

Reševanje enačbe

Enačbo rešujemo tako, da jo preoblikujemo v ekvivalentno enačbo, iz katere preberemo rešitve.

Ekvivalentno enačbo dobimo, če:

na obeh straneh enačbe prištejemo isto število ali izraz;

Jan Kastelic (GAA) MATEMATIKA 16. februar 2025 33 / 67

Enačba

Enačba je enakost dveh izrazov, pri čemer vsaj v enem nastopa **neznanka**, ki je ponavadi označena s črko x.

Rešitev enačbe je vsaka vrednost neznanke, za katero sta vrednosti leve in desne strani enačbe enaki.

Reševanje enačbe

Enačbo rešujemo tako, da jo preoblikujemo v ekvivalentno enačbo, iz katere preberemo rešitve.

Ekvivalentno enačbo dobimo, če:

- na obeh straneh enačbe prištejemo isto število ali izraz;
- obe strani enačbe množimo z istim neničelnim številom ali izrazom.

Jan Kastelic (GAA) MATEMATIKA 16. februar 2025 33 / 67

Linearna enačba je enačba oblike ax + b = 0; $a, b \in \mathbb{R}$.

34 / 67

Linearna enačba je enačba oblike ax + b = 0; $a, b \in \mathbb{R}$.

Rešujemo jo tako, da jo preoblikujemo v ekvivalentno enačbo, ki ima na eni strani samo neznanko.

34 / 67

Linearna enačba je enačba oblike ax + b = 0; $a, b \in \mathbb{R}$.

Rešujemo jo tako, da jo preoblikujemo v ekvivalentno enačbo, ki ima na eni strani samo neznanko.

Razcepna enačba

34 / 67

Linearna enačba je enačba oblike ax + b = 0; $a, b \in \mathbb{R}$.

Rešujemo jo tako, da jo preoblikujemo v ekvivalentno enačbo, ki ima na eni strani samo neznanko.

Razcepna enačba

Razcepna enačba je enačba, v kateri nastopajo potence neznanke (na primer x^2 , x^3) in jo je mogoče zapisati kot produkt (linearnih) faktorjev.

34 / 67

Linearna enačba je enačba oblike ax + b = 0; $a, b \in \mathbb{R}$.

Rešujemo jo tako, da jo preoblikujemo v ekvivalentno enačbo, ki ima na eni strani samo neznanko.

Razcepna enačba

Razcepna enačba je enačba, v kateri nastopajo potence neznanke (na primer x^2 , x^3) in jo je mogoče zapisati kot produkt (linearnih) faktorjev.

Preoblikujemo jo v ekvivalentno enačbo, ki ima vse člene na eni strani neenačaja, na drugi pa 0. Izraz (neničelna stran) razstavimo, kolikor je mogoče, in preberemo rešitve.

34 / 67

Linearna enačba je enačba oblike ax + b = 0; $a, b \in \mathbb{R}$.

Rešujemo jo tako, da jo preoblikujemo v ekvivalentno enačbo, ki ima na eni strani samo neznanko.

Razcepna enačba

Razcepna enačba je enačba, v kateri nastopajo potence neznanke (na primer x^2 , x^3) in jo je mogoče zapisati kot produkt (linearnih) faktorjev.

Preoblikujemo jo v ekvivalentno enačbo, ki ima vse člene na eni strani neenačaja, na drugi pa 0. Izraz (neničelna stran) razstavimo, kolikor je mogoče, in preberemo rešitve.

Racionalna enačba

34 / 67

Linearna enačba je enačba oblike ax + b = 0; $a, b \in \mathbb{R}$.

Rešujemo jo tako, da jo preoblikujemo v ekvivalentno enačbo, ki ima na eni strani samo neznanko.

Razcepna enačba

Razcepna enačba je enačba, v kateri nastopajo potence neznanke (na primer x^2 , x^3) in jo je mogoče zapisati kot produkt (linearnih) faktorjev.

Preoblikujemo jo v ekvivalentno enačbo, ki ima vse člene na eni strani neenačaja, na drugi pa 0. Izraz (neničelna stran) razstavimo, kolikor je mogoče, in preberemo rešitve.

Racionalna enačba

Racionalna enačba je enačba, v kateri nastopajo neznake (tudi) v imenovalcu, pri tem smo pozorni na obstoj ulomkov. Nato enačbo preoblikujemo v ekvivalentno enačbo.

Jan Kastelic (GAA) MATEMATIKA 16. februar 2025 34 / 67

35 / 67

Rešite enačbe.

Rešite enačbe.

•
$$3(2a-1)-5(a-2)=9$$

•
$$2(y-2)+3(1-y)=7$$

•
$$3(3-2(t-1))=3(5-t)$$

$$-(2-x) + 3(x+1) = x-5$$

Rešite enačbe.

16. februar 2025

Rešite enačbe.

$$\bullet \ \frac{1}{5} - \frac{x-1}{2} = \frac{7}{10}$$

$$a-1 \over 3 + a+2 \over 6 = \frac{1}{2}$$

$$2\frac{2}{3} - \frac{3t+1}{6} = 0$$

Jan Kastelic (GAA) MATEMATIKA 16. februar 2025 37 / 67

Rešite razcepne enačbe.

37 / 67

Rešite razcepne enačbe.

•
$$x^2 - 3x = -2$$

•
$$(x+2)^3 - (x-1)^3 = 8x^2 + x + 2$$

•
$$x^4 = 16x^2$$

•
$$(x^2 - 4x + 5)^2 - (x^2 + 4x + 1)^2 - 78 = 2x^2(x + 30) - 18(x + 1)^3$$

•
$$x^3 - 4x^2 + 4 = x$$

•
$$x^5 = 3x^4 - 2x^3$$

37 / 67

Rešite enačbe.

Rešite enačbe.

$$\bullet \ \frac{x-1}{x+2} = \frac{x+1}{x-3}$$

$$\bullet \ \frac{1}{a-1} - \frac{3}{a} = \frac{2}{a-1}$$

$$\bullet \ \frac{1}{3a-1} + \frac{1}{3a+1} = \frac{a-1}{9a^2-1}$$

39 / 67

Neznano število smo delili s 4 in dobljenemu količniku prišteli 1. Dobili smo enako, kot če bi istemu številu prišteli 10. Izračunajte neznano število.

39 / 67

Neznano število smo delili s 4 in dobljenemu količniku prišteli 1. Dobili smo enako, kot če bi istemu številu prišteli 10. Izračunajte neznano število.

Naloga

Kvadrat neznanega števila je za 4 manjši od njegovega štirikratnika. Izračunajte neznano število.

39 / 67

Avtomobil vozi s povprečno hitrostjo 50 $\frac{km}{h}$, kolesar s povprečno hitrostjo 20 $\frac{km}{h}$. Avtomobil gre iz Lendave v Ormož (približno 50 km), kolesar vozi v obratno smer. Koliko časa pred avtomobilom mora na pot kolesar, da se bosta srečala na polovici poti?

40 / 67

Avtomobil vozi s povprečno hitrostjo 50 $\frac{km}{h}$, kolesar s povprečno hitrostjo 20 $\frac{km}{h}$. Avtomobil gre iz Lendave v Ormož (približno 50 km), kolesar vozi v obratno smer. Koliko časa pred avtomobilom mora na pot kolesar, da se bosta srečala na polovici poti?

Naloga

Vsota števk dvomestnega števila je 3. Če zamenjamo njegovi števki, dobimo za 9 manjše število. Katero število je to?

40 / 67

Andreja je bila ob rojstvu hčere Eve stara 38 let. Čez koliko let bo Andreja stara trikrat toliko kot Eva?

41 / 67

Andreja je bila ob rojstvu hčere Eve stara 38 let. Čez koliko let bo Andreja stara trikrat toliko kot Eva?

Realna števila

Naloga

Prvi delavec sam pozida steno v 10 urah, drugi v 12 urah, tretji v 8 urah. Delavci skupaj začnejo zidati steno. Po dveh urah tretji delavec odide, pridruži pa se četrti delavec. Skupaj s prvim in drugim delavcem nato končajo steno v eni uri. V kolikšnem času četrti delayec pozida steno?

41 / 67

16 februar 2025 Jan Kastelic (GAA) MATEMATIKA

16. februar 2025

Jan Kastelic (GAA)

Neenačba

16. februar 2025

Jan Kastelic (GAA)

Neenačba

Neenačba je neenakost dveh izrazov, pri čemer vsaj v enem nastopa neznanka. Med levo in desno stranjo je postavljen eden od neenačajev: <, >, < ali >.

42 / 67

Neenačba

Neenačba je neenakost dveh izrazov, pri čemer vsaj v enem nastopa neznanka. Med levo in desno stranjo je postavljen eden od neenačajev: <, >, \le ali \ge .

Reševanje neenačbe

42 / 67

Neenačba

Neenačba je neenakost dveh izrazov, pri čemer vsaj v enem nastopa neznanka. Med levo in desno stranjo je postavljen eden od neenačajev: <, >, \le ali \ge .

Reševanje neenačbe

Neenačbo rešujemo tako, da jo preoblikujemo v ekvivalentno neenačbo. To dobimo, če:

42 / 67

Neenačba

Neenačba je neenakost dveh izrazov, pri čemer vsaj v enem nastopa neznanka. Med levo in desno stranjo je postavljen eden od neenačajev: <, >, \le ali \ge .

Reševanje neenačbe

Neenačbo rešujemo tako, da jo preoblikujemo v ekvivalentno neenačbo. To dobimo, če:

• prištejemo isto število ali izraz na obeh straneh neenačbe;

(ロト 4回 ト 4 E ト 4 E ト 9 Q C・

42 / 67

Neenačba

Neenačba je neenakost dveh izrazov, pri čemer vsaj v enem nastopa neznanka. Med levo in desno stranjo je postavljen eden od neenačajev: <, >, \le ali \ge .

Reševanje neenačbe

Neenačbo rešujemo tako, da jo preoblikujemo v ekvivalentno neenačbo. To dobimo, če:

- prištejemo isto število ali izraz na obeh straneh neenačbe;
- množimo obe strani neenačbe z istim pozitivnim številom ali izrazom;

42 / 67

Neenačba

Neenačba je neenakost dveh izrazov, pri čemer vsaj v enem nastopa neznanka. Med levo in desno stranjo je postavljen eden od neenačajev: <, >, \le ali \ge .

Reševanje neenačbe

Neenačbo rešujemo tako, da jo preoblikujemo v ekvivalentno neenačbo. To dobimo, če:

- prištejemo isto število ali izraz na obeh straneh neenačbe;
- množimo obe strani neenačbe z istim pozitivnim številom ali izrazom;
- množimo obe strani neenačbe z istim negativnim številom ali izrazom in se pri tem neenačaj obrne.

42 / 67

Neenačba

Neenačba je neenakost dveh izrazov, pri čemer vsaj v enem nastopa neznanka. Med levo in desno stranjo je postavljen eden od neenačajev: <, >, \le ali \ge .

Reševanje neenačbe

Neenačbo rešujemo tako, da jo preoblikujemo v ekvivalentno neenačbo. To dobimo, če:

- prištejemo isto število ali izraz na obeh straneh neenačbe;
- množimo obe strani neenačbe z istim pozitivnim številom ali izrazom;
- množimo obe strani neenačbe z istim negativnim številom ali izrazom in se pri tem neenačaj obrne.

Linearna neenačba je oblike ax + b < 0, ali pa nastopa drug neenačaj: >, \leq , \geq .

Poiščite vsa realna števila, ki ustrezajo pogoju.

43 / 67

Poiščite vsa realna števila, ki ustrezajo pogoju.

•
$$3a + 2 < 2a - 1$$

•
$$7t + 8 \ge 8(t - 2)$$

•
$$5x - 2 > 2(x + 1) - 3$$

•
$$x-1 \le 2(x-3)-x$$

43 / 67

44 / 67

Rešite neenačbe.

44 / 67

Rešite neenačbe.

•
$$\frac{x}{2} + \frac{2}{3} < \frac{8}{3}$$

$$\bullet \ \frac{4+5a}{34} - \frac{4}{51} \ge 2 + \frac{2-a}{51}$$

$$x + \frac{x-2}{3} < \frac{x-3}{4} + \frac{x-1}{2}$$

Rešite sisteme neenačb.

Rešite sisteme neenačb.

•
$$-2 < y - 2 < 1$$

•
$$-4 \le 5a - 9 \le 1$$

•
$$(x+1>3) \land (2x \le 3(x-1))$$

•
$$(3x - 5 < x + 3) \lor (2x \ge x + 6)$$

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥ ♀○

46 / 67

Sistem dveh linearnih enačb z dvema neznankama

46 / 67

16. februar 2025

Jan Kastelic (GAA) MATEMATIKA

Sistem dveh linearnih enačb z dvema neznankama

Sistem dveh linearnih enačb z dvema neznankama ali sistem 2×2 je v splošnem oblike:

$$a_1x+b_1y=c_1$$

$$a_2x+b_2y=c_2$$

46 / 67

Sistem dveh linearnih enačb z dvema neznankama

Sistem dveh linearnih enačb z dvema neznankama ali sistem 2×2 je v splošnem oblike:

$$a_1x+b_1y=c_1$$

$$a_2x+b_2y=c_2$$

x in y sta **neznanki**, $a_i, b_i, c_i \in \mathbb{R}$ so **koeficienti**.

46 / 67

Sistem dveh linearnih enačb z dvema neznankama

Sistem dveh linearnih enačb z dvema neznankama ali sistem 2×2 je v splošnem oblike:

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

x in y sta **neznanki**, $a_i, b_i, c_i \in \mathbb{R}$ so **koeficienti**.

Rešitev sistema je **urejen par** števil (x, y), ki zadoščajo obema enačbama.

46 / 67

Sistem dveh linearnih enačb z dvema neznankama

Sistem dveh linearnih enačb z dvema neznankama ali sistem 2×2 je v splošnem oblike:

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

x in y sta **neznanki**, $a_i, b_i, c_i \in \mathbb{R}$ so **koeficienti**.

Rešitev sistema je **urejen par** števil (x, y), ki zadoščajo obema enačbama.

Sistem 2×2 ima lahko eno rešitev, nima rešitve ali ima neskončno rešitev.

4□ > 4□ > 4□ > 4□ > 4□ > 900

46 / 67

Sistem lahko rešujemo s primerjalnim načinom, zamenjalnim načinom ali z metodo nasprotnih koeficientov.

47 / 67

Sistem lahko rešujemo s primerjalnim načinom, zamenjalnim načinom ali z metodo nasprotnih koeficientov.

Primerjalni način

Iz obeh enačb izrazimo isto neznanko, nato njuni vrednosti enačimo.

47 / 67

Sistem lahko rešujemo s primerjalnim načinom, zamenjalnim načinom ali z metodo nasprotnih koeficientov.

Primerjalni način

Iz obeh enačb izrazimo isto neznanko, nato njuni vrednosti enačimo.

Zamenjalni način

Iz ene enačbe izrazimo eno izmed neznank (preverimo, če je kateri od koeficientov pri neznankah enak 1 – takšno neznanko hitro izrazimo) in izraženo vrednost vstavimo v drugo enačbo.

47 / 67

Sistem lahko rešujemo s primerjalnim načinom, zamenjalnim načinom ali z metodo nasprotnih koeficientov.

Primerjalni način

Iz obeh enačb izrazimo isto neznanko, nato njuni vrednosti enačimo.

Zamenjalni način

Iz ene enačbe izrazimo eno izmed neznank (preverimo, če je kateri od koeficientov pri neznankah enak 1 – takšno neznanko hitro izrazimo) in izraženo vrednost vstavimo v drugo enačbo.

Metoda nasprotnih koeficientov

Eno ali obe enačbi pomnožimo s takimi števili, da bosta pri eni izmed neznank koeficienta nasprotni števili, nato enačbi seštejemo. Ostane ena enačba z eno neznanko.

Rešite sisteme enačb.

Rešite sisteme enačb.

$$\begin{array}{c}
2x + y = 9 \\
x - 3y = 8
\end{array}$$

$$x - y = 5$$

$$y - x = 3$$

$$2x - 3y = 5$$
$$-4x + 6y = -10$$

$$3x - y = 5$$
$$6x - 10 = 2y$$

16. februar 2025

Z zamenjalnim načinom rešite sisteme enačb.

49 / 67

Z zamenjalnim načinom rešite sisteme enačb.

$$2x + 5y = -2$$
$$x - 3y = -1$$

$$3x - 2y = 1$$

$$x + y = \frac{7}{6}$$

$$0.5x + 0.2y = 2$$

$$\frac{3}{2}x - \frac{2}{5}y = 1$$

Z metodo nasprotnih koeficientov rešite sisteme enačb.

50 / 67

Z metodo nasprotnih koeficientov rešite sisteme enačb.

$$\begin{array}{c}
2x + 3y = 3 \\
-4x + 3y = 0
\end{array}$$

$$4x - 3y = -2$$
$$-8x + y = -1$$

$$3x - 2y = 2$$
$$2x - 3y = -2$$

$$x - y = -5$$

$$0.6x + 0.4y = 7$$

51 / 67

V bloku je 26 stanovanj. Vsako stanovanje ima 2 ali 3 sobe. Koliko je posameznih vrst stanovanj, če je v bloku 61 sob?

51 / 67

V bloku je 26 stanovanj. Vsako stanovanje ima 2 ali 3 sobe. Koliko je posameznih vrst stanovanj, če je v bloku 61 sob?

Naloga

Kmet ima v ogradi 20 živali. Če so v ogradi le race in koze, koliko je posameznih živali, če smo našteli 50 nog?

51 / 67

Reševanje sistemov enačb

52 / 67

Razredničarka na sladoled pelje svojih 30 dijakov. Naročili so lahko 2 ali 3 kepice sladoleda. Koliko dijakov je naročilo dve in koliko tri kepice sladoleda, če razredničarka ni jedla sladoleda, plačala pa je 79 kepic sladoleda?

52 / 67

Razredničarka na sladoled pelje svojih 30 dijakov. Naročili so lahko 2 ali 3 kepice sladoleda. Koliko dijakov je naročilo dve in koliko tri kepice sladoleda, če razredničarka ni jedla sladoleda, plačala pa je 79 kepic sladoleda?

Naloga

Babica ima dvakrat toliko vnukinj kot vnukov. Vnukinjam je podarila po tri bombone, vnukom pa po štiri bombone. Koliko vnukinj in vnukov ima, če je podarila 70 bombonov?

Reševanje sistemov enačb

Jan Kastelic (GAA)

Sistem treh linearnih enačb z tremi neznankami ali sistem 3×3 je v splošnem oblike:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

53 / 67

Sistem treh linearnih enačb z tremi neznankami ali sistem 3×3 je v splošnem oblike:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

x, y in z so **neznanke**, $a_i, b_i, c_i \in \mathbb{R}$ so **koeficienti**.

53 / 67

Sistem treh linearnih enačb z tremi neznankami ali sistem 3×3 je v splošnem oblike:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

x, y in z so **neznanke**, $a_i, b_i, c_i \in \mathbb{R}$ so **koeficienti**.

Rešitev sistema je **urejena trojka** števil (x, y, z), ki zadoščajo vsem trem enačbam.

53 / 67

Sistem treh linearnih enačb z tremi neznankami ali sistem 3×3 je v splošnem oblike:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

x, y in z so **neznanke**, $a_i, b_i, c_i \in \mathbb{R}$ so **koeficienti**.

Rešitev sistema je **urejena trojka** števil (x, y, z), ki zadoščajo vsem trem enačbam.

Sistem 3×3 rečujemo z istimi postopki kot sisteme 2×2 , le da postopek ponovimo večkrat.

53 / 67

Reševanje sistemov enačb

Rešite sisteme enačb.

16. februar 2025

Rešite sisteme enačb.

$$2x + y - 3z = 5$$
• $x + 2y + 2z = 1$
 $-x + y + z = -4$

$$x - 2y + 6z = 5$$

$$-x + 3z = -1$$

$$4y - 3z = -3$$

$$x + y - z = 0$$

$$x - y - 3z = 2$$

$$2x + y - 3z = 1$$

$$2x - 4y + z = 3$$
•
$$4x - y + 2z = 4$$

$$-8x + 2y - 4z = 7$$

16. februar 2025

Jan Kastelic (GAA)

Kadar v enačbi oziroma neenačbi poleg neznake x nastopajo tudi druge črke, na primer a,b,c,k,l..., le-te označujejo števila, ki imajo poljubno realno vrednost. Imenujemo jih parametri.

55 / 67

Kadar v enačbi oziroma neenačbi poleg neznake x nastopajo tudi druge črke, na primer a,b,c,k,l..., le-te označujejo števila, ki imajo poljubno realno vrednost. Imenujemo jih **parametri**.

Vrednost parametrov vpliva na rešitev enačbe oziroma neenačbe, zato moramo enačbo reševati glede na vrednosti parametrov. Temu postopku rečemo **obravnava enačbe** oziroma **obravnava neenačbe**.

55 / 67

Obravnavajte enačbe.

Obravnavajte enačbe.

•
$$2(ax - 3) + 3 = ax$$

$$-4x - b(x-2)^2 = 3 - bx^2 - 7b$$

•
$$3(a-2)(x-2) = a^2(x-1) - 4x + 7$$

•
$$(b-3)^2x-3=4x-3b$$

Obravnavajte neenačbe.

57 / 67

Obravnavajte neenačbe.

•
$$a(x-2) \le 4$$

•
$$mx + 4 > m^2 - 2x$$

•
$$a(a-3x+1) \ge a(x-4) + a^2x$$

•
$$(k-1)^2x \le kx + 2(k+1) + 5x$$

58 / 67

Jan Kastelic (GAA)

Pri sklepnem računu obravnavamo situacije, v katerih nastopata dve količini, ki sta premo sorazmerni ali obratno sorazmerni.

58 / 67

Pri sklepnem računu obravnavamo situacije, v katerih nastopata dve količini, ki sta premo sorazmerni ali obratno sorazmerni.

Premo sorazmerje

58 / 67

Pri sklepnem računu obravnavamo situacije, v katerih nastopata dve količini, ki sta premo sorazmerni ali obratno sorazmerni.

Premo sorazmerje

Količini x in y sta **premo sorazmerni**, če obstaja takšno število k, da je $x = k \cdot y$.

58 / 67

Pri sklepnem računu obravnavamo situacije, v katerih nastopata dve količini, ki sta premo sorazmerni ali obratno sorazmerni.

Premo sorazmerje

Količini x in y sta **premo sorazmerni**, če obstaja takšno število k, da je $x = k \cdot y$.

Obratno sorazmerje

58 / 67

Pri sklepnem računu obravnavamo situacije, v katerih nastopata dve količini, ki sta premo sorazmerni ali obratno sorazmerni.

Premo sorazmerje

Količini x in y sta **premo sorazmerni**, če obstaja takšno število k, da je $x = k \cdot y$.

Obratno sorazmerje

Količini x in y sta **obratno sorazmerni**, če obstaja takšno število k, da je $x = \frac{y}{k}$.

58 / 67

Delavec v štirih urah zasluži 10 £. Koliko zasluži v dvanajstih urah?

59 / 67

Delavec v štirih urah zasluži 10 £. Koliko zasluži v dvanajstih urah?

Naloga

Tiskalnik v sedmih minutah natisne 42 strani. Koliko časa potrebuje za 108 strani?

Delavec v štirih urah zasluži 10 £. Koliko zasluži v dvanajstih urah?

Naloga

Tiskalnik v sedmih minutah natisne 42 strani. Koliko časa potrebuje za 108 strani?

Naloga

Tri čebele v treh dneh oprašijo devetsto cvetov. Koliko cvetov v šestih dneh opraši šest čebel?

Kolesar od Ljubljane do Geometrijskega središča Slovenije potuje dve uri s hitrostjo $20 \ km/h$. Kako hitro bi moral peljati, da bi pot prevozil v eni uri in petnajstih minutah?

60 / 67

Kolesar od Ljubljane do Geometrijskega središča Slovenije potuje dve uri s hitrostjo $20 \ km/h$. Kako hitro bi moral peljati, da bi pot prevozil v eni uri in petnajstih minutah?

Naloga

En računalnik za pripravo posebnih efektov filma potrebuje 14 ur. Koliko časa bi potrebovali trije taki računalniki, za pripravo posebnih efektov za šest filmov?

60 / 67

Kolesar od Ljubljane do Geometrijskega središča Slovenije potuje dve uri s hitrostjo $20 \ km/h$. Kako hitro bi moral peljati, da bi pot prevozil v eni uri in petnajstih minutah?

Naloga

En računalnik za pripravo posebnih efektov filma potrebuje 14 ur. Koliko časa bi potrebovali trije taki računalniki, za pripravo posebnih efektov za šest filmov?

Naloga

Sedem pleskarjev pleska hišo 15 dni. Po petih dneh dva delavca premestijo na drugo delovišče. Koliko časa bodo preostali delavci pleskali hišo?

60 / 67

61/67

Jan Kastelic (GAA)

Količine pri odstotnem računu so povezane s sklepnim računim, in sicer so v premem sorazmerju.

61/67

Količine pri odstotnem računu so povezane s sklepnim računim, in sicer so v premem sorazmerju.

Odstotek (ali procent) % celote definiramo kot stotino celote,

$$1 \% = \frac{1}{100}$$

61 / 67

Količine pri odstotnem računu so povezane s sklepnim računim, in sicer so v premem sorazmerju.

Odstotek (ali procent) % celote definiramo kot stotino celote, **odtisoček** (ali promil) % kot tisočino celote.

$$1 \% = \frac{1}{100}$$
 $1 \% = \frac{1}{1000}$

61 / 67

Količine pri odstotnem računu so povezane s sklepnim računim, in sicer so v premem sorazmerju.

Odstotek (ali procent) % celote definiramo kot stotino celote, **odtisoček** (ali promil) % kot tisočino celote.

$$1 \% = \frac{1}{100}$$
 $1 \% = \frac{1}{1000}$

Relativni delež je kvocient med deležem in osnovo: $r = \frac{d}{o}$.

61 / 67

62 / 67

Zapišite z okrajšanim ulomkom oziroma odstotkom.

62 / 67

Zapišite z okrajšanim ulomkom oziroma odstotkom.

- 12 %
- 20 % a
- 250 %
- 0.5 % b
- 12 %₀

- \bullet $\frac{3}{4}a$
- $\bullet \ \frac{7}{20}x$
- $\frac{31}{10}y$
- 0.8z
- $\frac{25}{8}m$

63 / 67

Izračunajte.

Izračunajte.

- Koliko je 20 % od 10 kg?
- Koliko je 25 % od 20 £?
- Koliko je 10 % od 1 /?
- Koliko je 250 % od 12 *g*?
- Koliko je 1 ‰ od 2350 *kg*?
- Koliko je 17 ‰ od 100 *m*?

Jan Kastelic (GAA) MATEMATIKA

Absolutna vrednost |x| števila x geometrijsko predstavlja oddaljenost točke, ki predstavlja število x, od izhodišča na številski premici.

64 / 67

Absolutna vrednost |x| števila x geometrijsko predstavlja oddaljenost točke, ki predstavlja število x, od izhodišča na številski premici.

$$|x| = \begin{cases} x & x \ge 0; \\ -x & x < 0. \end{cases}$$

64 / 67

Absolutna vrednost |x| števila x geometrijsko predstavlja oddaljenost točke, ki predstavlja število x, od izhodišča na številski premici.

$$|x| = \begin{cases} x & x \ge 0; \\ -x & x < 0. \end{cases}$$

Lastnosti absolutne vrednosti

64 / 67

Realna števila

Absolutna vrednost

Absolutna vrednost |x| števila x geometrijsko predstavlja oddaljenost točke, ki predstavlja število x, od izhodišča na številski premici.

$$|x| = \begin{cases} x & x \ge 0; \\ -x & x < 0. \end{cases}$$

Lastnosti absolutne vrednosti

•
$$|x| \ge 0$$

64 / 67

Absolutna vrednost |x| števila x geometrijsko predstavlja oddaljenost točke, ki predstavlja število x, od izhodišča na številski premici.

$$|x| = \begin{cases} x & x \ge 0; \\ -x & x < 0. \end{cases}$$

Lastnosti absolutne vrednosti

•
$$|x| \ge 0$$

•
$$|x| = 0 \Leftrightarrow x = 0$$

64 / 67

Absolutna vrednost |x| števila x geometrijsko predstavlja oddaljenost točke, ki predstavlja število x, od izhodišča na številski premici.

$$|x| = \begin{cases} x & x \ge 0; \\ -x & x < 0. \end{cases}$$

Lastnosti absolutne vrednosti

- $|x| \ge 0$
- $|x| = 0 \Leftrightarrow x = 0$
- |-x| = |x|

◆□ > ◆□ > ◆ = > ◆ = > 9 < ○</p>

64 / 67

Absolutna vrednost |x| števila x geometrijsko predstavlja oddaljenost točke, ki predstavlja število x, od izhodišča na številski premici.

$$|x| = \begin{cases} x & x \ge 0; \\ -x & x < 0. \end{cases}$$

Lastnosti absolutne vrednosti

•
$$|x| \ge 0$$

•
$$|x| = 0 \Leftrightarrow x = 0$$

•
$$|-x| = |x|$$

$$\bullet |x \cdot y| = |x| \cdot |y|$$

64 / 67

Realna števila

Absolutna vrednost

Absolutna vrednost |x| števila x geometrijsko predstavlja oddaljenost točke, ki predstavlja število x, od izhodišča na številski premici.

$$|x| = \begin{cases} x & x \ge 0; \\ -x & x < 0. \end{cases}$$

Lastnosti absolutne vrednosti

•
$$|x| > 0$$

•
$$|x| = 0 \Leftrightarrow x = 0$$

•
$$|-x| = |x|$$

$$|x \cdot y| = |x| \cdot |y|$$

•
$$|x + y| \le |x| + |y|$$
 - trikotniška neenakost

64 / 67

MATEMATIKA 16 februar 2025 Jan Kastelic (GAA)

Absolutna vrednost |x| števila x geometrijsko predstavlja oddaljenost točke, ki predstavlja število x, od izhodišča na številski premici.

$$|x| = \begin{cases} x & x \ge 0; \\ -x & x < 0. \end{cases}$$

Lastnosti absolutne vrednosti

•
$$|x| > 0$$

•
$$|x| = 0 \Leftrightarrow x = 0$$

•
$$|-x| = |x|$$

$$|x \cdot y| = |x| \cdot |y|$$

• $|x + y| \le |x| + |y|$ - trikotniška neenakost

Z absolutno vrednostjo izračunamo tudi razdaljo med x in y kot |x-y| ali |y-x|.

65 / 67

16. februar 2025

Jan Kastelic (GAA) MATEMATIKA

Pravila zaokroževanja

65 / 67

16. februar 2025

Jan Kastelic (GAA) MATEMATIKA

Pravila zaokroževanja

• Zadnjo števko pustimo enako, če je prva izbrisana števka manjša od 5;

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩@

65 / 67

Pravila zaokroževanja

- Zadnjo števko pustimo enako, če je prva izbrisana števka manjša od 5;
- zadnjo števko povečamo za 1, če je prva izbrisana števka 5 ali več.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩@

65 / 67

Pravila zaokroževanja

- Zadnjo števko pustimo enako, če je prva izbrisana števka manjša od 5;
- zadnjo števko povečamo za 1, če je prva izbrisana števka 5 ali več.

Zaokroževanje na *n* **decimalnih mest** pomeni:

65 / 67

Pravila zaokroževanja

- Zadnjo števko pustimo enako, če je prva izbrisana števka manjša od 5;
- zadnjo števko povečamo za 1, če je prva izbrisana števka 5 ali več.

Zaokroževanje na *n* **decimalnih mest** pomeni: opustiti vse decimalke od *n*-tega mesta dalje in zaokrožiti.

|ロト 4回 ト 4 m ト 4 m ト 9 m 9 q 0 c

65 / 67

Pravila zaokroževanja

- Zadnjo števko pustimo enako, če je prva izbrisana števka manjša od 5;
- zadnjo števko povečamo za 1, če je prva izbrisana števka 5 ali več.

Zaokroževanje na *n* **decimalnih mest** pomeni: opustiti vse decimalke od *n*-tega mesta dalje in zaokrožiti. Primer: $\sqrt{2} \doteq 1.41$ (na 2 decimalni mesti).

65 / 67

Pravila zaokroževanja

- Zadnjo števko pustimo enako, če je prva izbrisana števka manjša od 5;
- zadnjo števko povečamo za 1, če je prva izbrisana števka 5 ali več.

Zaokroževanje na *n* **decimalnih mest** pomeni: opustiti vse decimalke od *n*-tega mesta dalje in zaokrožiti. Primer: $\sqrt{2} \doteq 1.41$ (na 2 decimalni mesti).

Zaokroževanje na *n* **mest** pomeni,

65 / 67

Pravila zaokroževanja

- Zadnjo števko pustimo enako, če je prva izbrisana števka manjša od 5;
- zadnjo števko povečamo za 1, če je prva izbrisana števka 5 ali več.

Zaokroževanje na *n* **decimalnih mest** pomeni: opustiti vse decimalke od *n*-tega mesta dalje in zaokrožiti. Primer: $\sqrt{2} \doteq 1.41$ (na 2 decimalni mesti).

Zaokroževanje na n **mest** pomeni, da ima število v svojem zapisu n števk, pri pogoju, da ne štejemo ničel na začetku in na koncu.

65 / 67

Pravila zaokroževanja

- Zadnjo števko pustimo enako, če je prva izbrisana števka manjša od 5;
- zadnjo števko povečamo za 1, če je prva izbrisana števka 5 ali več.

Zaokroževanje na *n* **decimalnih mest** pomeni: opustiti vse decimalke od *n*-tega mesta dalje in zaokrožiti. Primer: $\sqrt{2} \doteq 1.41$ (na 2 decimalni mesti).

Zaokroževanje na n **mest** pomeni, da ima število v svojem zapisu n števk, pri pogoju, da ne štejemo ničel na začetku in na koncu. Primer: $\sqrt{2} \doteq 1.41$ (na 3 mesta).

65 / 67

Pravila zaokroževanja

- Zadnjo števko pustimo enako, če je prva izbrisana števka manjša od 5;
- zadnjo števko povečamo za 1, če je prva izbrisana števka 5 ali več.

Zaokroževanje na *n* **decimalnih mest** pomeni: opustiti vse decimalke od *n*-tega mesta dalje in zaokrožiti. Primer: $\sqrt{2} \doteq 1.41$ (na 2 decimalni mesti).

Zaokroževanje na n **mest** pomeni, da ima število v svojem zapisu n števk, pri pogoju, da ne štejemo ničel na začetku in na koncu. Primer: $\sqrt{2} \doteq 1.41$ (na 3 mesta).

Pri zapisu uporabimo ≐, kar označuje, da smo rezultat zapisali približno in ne natančno.

 Jan Kastelic (GAA)
 MATEMATIKA
 16. februar 2025
 65 / 67

Naj bo x točna vrednost in X njen **približek**.

66 / 67

Naj bo x točna vrednost in X njen **približek**.

Absolutna napaka približka je

$$|X-x|$$
;

66 / 67

Naj bo x točna vrednost in X njen **približek**.

Absolutna napaka približka je

$$|X-x|$$
;

relativna napaka je

$$\frac{X-x|}{x}$$
.

16. februar 2025

Naj bo x točna vrednost in X njen **približek**.

Absolutna napaka približka je

$$|X-x|$$
;

relativna napaka je

$$\frac{|X-x|}{x}$$
.

Absolutno napako zapišemo tudi $X=x\pm\epsilon$, kar pomeni, da se absolutna napaka približka X razlikuje od točne vrednosti x kvečjemu za ϵ .

66 / 67

Na kartonski škatli je oznaka velikosti 50 ± 3 cm. Koliko je največja in koliko najmanjša velikost škatle, ki ustreza tej oznaki? Ali je lahko relativna napaka velikosti 8 %?

67 / 67

Na kartonski škatli je oznaka velikosti 50 ± 3 cm. Koliko je največja in koliko najmanjša velikost škatle, ki ustreza tej oznaki? Ali je lahko relativna napaka velikosti 8 %?

Naloga

Pri 200 m vrvi smemo narediti 7 % napako. Ali je lahko takšna vrv dolga 230 m? Kako dolgi bosta najkrajša in najdaljša vrv, ki še ustrezata?

67 / 67

Na kartonski škatli je oznaka velikosti 50 ± 3 cm. Koliko je največja in koliko najmanjša velikost škatle, ki ustreza tej oznaki? Ali je lahko relativna napaka velikosti 8 %?

Naloga

Pri 200 m vrvi smemo narediti 7 % napako. Ali je lahko takšna vrv dolga 230 m? Kako dolgi bosta najkrajša in najdaljša vrv, ki še ustrezata?

Naloga

V EU morajo biti banane za prodajo dolge najmanj 14 cm. V trgovino dobijo novo pošiljko banan, ki jih izmerijo, da so dolžine 13.7 cm. Njihov meter ima 5 % odstopanje. Ali lahko prodajajo takšne banane?