Medical/Bio Research Topics II: Week 09 (02.11.2023)

Brain age estimation artificial intelligence models (1): data and prediction problem (뇌나이 예측 인공지능 모델 개발 연습 (1): 데이터 및 예측 문제)

Ageing

- Process of becoming older
 - Refers mainly to humans
- Biological basis [Jin, 2010]
 - Neither theory appears to be fully satisfactory
 - Two main theoretical categories:
 - Genetically programmed
 - Biological timetable, perhaps a continuation of childhood growth and development
 - Damage or error-related
 - Environmental assaults to living organisms

- Hallmarks of ageing [Guo et al., 2022]
 - Genomic instability
 - Telomere dysfunction
 - Epigenetic alterations
 - Loss of proteostasis
 - Compromise of autophagy
 - Mitochondrial dysfunction
 - Cellular senescence
 - Stem cell exhaustion
 - Altered intercellular communication
 - Deregulated nutrient sensing

[Guo et al., 2022]

Ten hallmarks of ageing subdivided into three categories

Changes by ageing

- Accumulation of a wide variety of molecular and cellular damage over time
 - → gradual decrease in physical and mental capacity
 - → growing risk of disease
 - \rightarrow death
- Neither linear nor consistent
- Only loosely associated with an individual's age in years
- Often associated with other life transitions such as retirement, relocation to more appropriate housing, and the death of friends and partners

Population ageing

- Shift in distribution of a country's population towards older ages
 - Increasing median age in a population
 - By 2030, 1 in 6 people in the world will be aged 60 years or over [https://www.who.int/news-room/fact-sheets/detail/ageing-and-health]
- Because of declining fertility rates and rising life expectancy
- Started in high-income countries and now extended to low- and middle-income countries

[http://study-aids.co.uk/dissertation-blog/population-ageing/]

Size and proportion of the global population as related to age over time

- Healthy ageing [https://www.who.int/news-room/fact-sheets/detail/ageing-and-health]
 - Proposed by the World Health Organization
 - Importance of an individual's healthspan (years lived in good health) in their lifespan (total years lived) with longevity
 - Related to non-random diversity seen in older age
 - Operationalises health as functional ability, which results from the interactions of intrinsic capacity and the environments
 - Although some of the variations in older people's health are genetic, most is due to their physical and social environments as well as their personal characteristics

Biological Age

- Two types of age
 - Chronological age
 - Number of years an individual has been alive
 - Unchangeable
 - Biological age
 - How old an individual's cells and tissues appear to be based on their current condition
 - May be reversed

CHRONOLOGICAL AGE

- The number of years that have passed since our birth.
- Cannot be influenced by lifestyle and eating habits.
- Has little relevance to how you feel and function.

BIOLOGICAL AGE

- How old our cells really are, therefore, our real age
- Can be reversed by attending to your health
- The most important component to the aging process

[https://reyouvenate.com/truage/]

- Departure of biological age from chronological age
 - May exhibit greatly different susceptibilities to age-related diseases and death for individuals of the same chronological age
 - Likely reflective of differences in underlying biological ageing processes
- Biological age as a biomarker of ageing
 - Individual-level measure of ageing that captures inter-individual differences in the timing of disease onset, functional decline, and death over the life course
 - Ccrucial to enable evaluation of interventions aimed at promoting healthier aging, by providing a measurable outcome

Chronological Age

[Haupt et al., 2022]

Factors that have the potential to both delay and accelerate ageing processes

- How biological age is determined
 - Often by assessing an individual's genetic material
 - Telomeres (repeats of a hexametric DNA sequence capping the end of chromosomes)
 - Shorter telomeres → older biological age
 - DNA methylation (DNAm, hypo- and hyper-methylation changes at many regions across the genome)

- A combination of numerous potential markers that specifically measures all important aspects of ageing processes may be the key to a valid composite biomarker of ageing [Hartmann et al., 2021]
 - Routine laboratory
 - Epigenetic
 - Non-epigenetic
 - Physical capability
 - Organ function
 - Cellular senescence

Potential biomarkers	Material	Age linked processes#	e-score	rc-score*	c-score
Lymphocytes/WBC [CDC] [PA]	blood/EDTA	Inflammation autoimmune disorders		202	2240
Insulin	blood/serum	Diabetic state		148	1143
Glucose/glucose fastened [PA]	blood/glucose monovette	Diabetic state	3.5	111	1175
C-reactive protein (CRP/hsCRP) [IA] [PA]	blood/plasma	Inflammation, cancer, cardiovascular disease	-	71	1146
Cholesterol	blood/plasma	Cardiovascular disease	-	67	896
Albumin [PA]	blood/plasma	Kidney and liver dysfunction	-	65	1062
IL6 [IA]	blood/plasma	Inflammation	-	58	979
Tumor necrosis factor alpha (TNFα) [IA]	blood/serum	Inflammation, cancer		51	751
Hemoglobin [CDC]	blood/EDTA	Anemia, other hematopoietic disorders	-	39	471
Insulin-like growth factor 1 (IGF-1)	blood/serum	Metabolic disease		29	263
LDL-cholesterol	blood/plasma	Cardiovascular disease	-	24	280
Triglycerides	blood/plasma	Cardiovascular disease	-	23	498
HDL-cholesterol	blood/plasma	Cardiovascular disease	-	23	349
Creatinine [PA]	blood/plasma	Kidney dysfunction	-	19	479
Monocytes	blood/EDTA	Inflammation	-	16	378
Glycated hemoglobin (Hba1c)	blood/EDTA	Diabetic state	-	13	220
Cystatin C	blood/plasma	Kidney dysfunction	-	12	142
N-terminal prohormone of brain natriuretic peptide (NT-proBNP)	blood/EDTA	Heart failure	-	10	119
Alkaline phosphatase [PA]	blood/plasma	Liver damage, bone disorder	-	9	252
Hematocrit/RBC [CDC]	blood/EDTA	Anemia	-	8	159
D-dimer D-dimer	blood/citrate monovette	Hypercoagulable state	-	8	91
L8 [IA]	blood/plasma	Inflammation		7	164
Plasminogen activator inhibitor-1 (PAI1)	blood/EDTA	Prothrombotic state in cancer and other acute phases		6	72
Bilirubin	blood/plasma	Liver dysfunction	-	5	46
Urea	blood/plasma	Renal dysfunction	-	3	137
IL15	blood/plasma	Inflammation		3	55
Mean corpuscular volume/MCV [CDC] [PA]	blood/EDTA	Anemia, other hematopoietic disorders	-	2	42
Mean corpuscular hemoglobin concentration/MCHC [CDC]	blood/EDTA	Anemia, other hematopoietic disorders	-	2	32
CD4/CD8 ratio	blood/EDTA	Immune deficiency, autoimmunity		1	103
C-peptide (preferable to insulin)	blood/serum	Diabetic state	-	1	32
IL1-β [IA]	blood/plasma	inflammation		1	5

^{*} rows are sorted by rc-score.

[IA] = inflammaging

[PA] = Phenotypic Age

[CDC] = complete blood count

[#] frequently mentioned general or disease-linked processes.

Potential biomarkers	Material	Methods	Age linked processes#	e-score	rc-score*	c-score
Telomere length (TL):			Morbidity, mortality, cell stress		191	932
Average TL	DNA	Q-PCR, TRF, TCA				**
TL structure	DNA	Q-FISH, Flow-FISH				**
Shortest TL	DNA	STELA, TeSLA				**
DNA damage	DNA	Various methods	Morbidity, mortality		174	713
Reactive oxygen species (ROS)	Tissue mitochondria	Various methods	Morbidity, cell stress, DNA/protein damage		168	712
Mitochondrial dysfunction	living cells, mitochondrial DNA	Various methods	Morbidity, mortality, neurodegenerative diseases		86	289
EVs (extracellular vesicles)	blood/plasma, liquor, cell culture supernatant	Immuno-histochemistry Western Blot, FACS	Cellular senescence, cancer	***	65	194
Autophagy	cells, cell extract	Electron microscopy immunoblotting flow cytometry	Morbidity, cancer, Parkinson's and Alzheimer's disease		46	207
Transforming growth factor beta (TGF-β)	blood/serum	ELISA	Inflammation, fibrosis, cellular senescence, cancer	***	45	315
Telomerase activity	cell extract, DNA	PCR-ELIDA, TRAP	Morbidity, mortality, tumor progression		41	169
Gut microbiome	fecal specimen	Next generation sequencing	Morbidity, mortality		29	101
α-Klotho	blood/plasma tissue	Immuno-histochemistry ELISA	Morbidity, mortality, renal function		20	107
Adiponectin	blood/plasma blood/EDTA	ELISA	Morbidity, mortality, frailty, metabolic syndrome, liver cirrhosis, diabetes type 2	(m)	14	217
Sirtuin 1 (SIRT1)	blood/serum	ELISA immuno-histochemistry PCR	Morbidity, mortality, inflammation, cancer		12	112
Growth differentiation factor 15 (GDF15)	blood/plasma	Proteomics immunoassays	Morbidity, organ damage (liver, heart, kidney)		12	63
Sirtuin 6 (SIRT6)	blood/serum	ELISA immuno-histochemistry PCR	Morbidity, mortality, diabetic risk, arthritis		4	50
Growth differentiation factor 11 (GDF11)	blood/plasma	Proteomics immunoassays	Morbidity		3	22
CXCL1	blood/plasma	Immunoassays, ELISA	Immune response, inflammation, cancer, Alzheimer's disease	-	0	15
Skin microbiome	skin swab	Next generation sequencing	Morbidity, mortality		0	4

^{*} rows are sorted by rc-score.

^{**} included in the c-score of TL.

[#] frequently mentioned general or disease-linked processes.

Potential biomarkers	Material	Methods	Prediction	e-score	rc-score	c-score*
DNA methylation and aging clocks:					n.a.	2158
Horvath's clock	DNA (broad spectrum of tissues)	DNA methylation analysis	Chronological age		n.a.	214
Hannum's clock	DNA (blood)		Chronological age		n.a.	190
DNAm GrimAge	DNA (blood)		Biological age		n.a.	31
DNAm PhenoAge	DNA (blood)		Biological age		n.a.	26
Weidner clock	DNA (blood)		Chronological age		n.a.	8
EpiTOC	DNA (blood)		Biological age		n.a.	2
miRNA (microRNA)	RNA (blood/plasma PBMCs)	Next generation sequencing microarrays	Morbidity, mortality		198	635
Non-coding RNA expression profiles	RNA	RNA sequencing	Chronological age		167	602
exRNA (extracellular RNA)	blood/plasma	Next generation sequencing	Morbidity, mortality		25	119
Histone modifications:					36	73
H4K20 methylation		DNA methylation analysis mass spectrometry, HPLC, ChIP Immunohisto-chemistry	Cell stress		n.a.	n.a.
H4K16 acetylation					n.a.	n.a.
H3K4 methylation	protein extract				n.a.	n.a.
H3K9 methylation	from tissue DNA				n.a.	n.a.
H3K27 methylation					n.a.	n.a.
Chromatin remodeling	DNA	Chromatin remodeling assays	Chronological age		13	26

^{*} rows are sorted by c-score.

n.a.: not assigned due to high variation of terminology in literature.

Potential biomarkers	Method	Age linked processes#	Domain	e-score	rc-score*	c-score
Physical capability						
Grip strength	Physical exam	Mortality, morbidity	Strength		11	229
Walking speed	Physical exam	Mortality, morbidity	Locomotor function		3	106
Standing balance	Physical exam	Mortality, morbidity	Balance		1	26
Timed up and go test	Physical exam	Mortality, morbidity	Locomotor function		0	11
Organ function						
Atherosclerotic lesions	IMT, ultrasound	Mortality, CAD	Cardiovascular system		158	680
Muscle mass	MRI	Mortality, cardiovascular risk	Body composition		81	495
Systolic blood pressure	Auscultatory method	Mortality, cardiovascular risk	Cardiovascular system		65	844
Cognitive function	Various	Mortality, morbidity	Brain function		56	581
Body mass index	Calculated	Mortality CAD	Body composition		24	1280
Bone density	Bone density test	Mortality, morbidity	Body composition		17	84
Lung function	Spirometry	Mortality, morbidity	Respiratory system		16	84
Waist circumference	Tape measure	Mortality, cardiovascular risk	Body composition		3	202
General well being						
Health assessments	Questionnaire	Mortality, morbidity	General		n.a.	n.a.

^{*} rows are sorted by c-score.

[#] frequently mentioned general or disease-linked.

n.a.: not assigned due to high variation of terminology in literature.

Potential biomarker		Material and Methods	e-score	rc-score*	c-score
SASP				442	2646
	Cytokines (e.g., IL-6, IL-7, IL-15)	ELISA from Serum or EDTA plasma	0	n.a.	n.a.
	, , , , , , , , , , , , , , , , , , , ,	samples proteomics	0		
		Control • 1000 • • 1000 5 700 1000 500	0		
	Chemokines (e.g., IL-8, CCL3, CCL4)			n.a.	n.a.
	Growth factors (e.g., GDF-15, activin A)			n.a.	n.a.
Cell cycle arrest	p53	qPCR from blood samples/staining of		66	561
		cultured cells/flow cytometry			
		NGS/microarray			
	p16			27	422
	p21			21	435
SA-βGal		Microscopy/flow cytometry		9	359
SAHF	Histone fragments (H3K9Me2, HP1γ)	DAPI/heterochromatin staining	0	3	19
Lamin B1	100,000 0004-001	Immunohistochemistr Western Blot	555	0	12
Cell morphology (e.g., progerin)	Cell shape	Microscopy of cultured cells		n.a.	n.a.

^{*} rows are sorted by rc-score.

[°] on average (detailed in Supplementary Table 1, 5).

n.a.: not assigned due to high variation of terminology in literature.

Brain Age

- Biological age usually estimated with information derived from brain MRI data
- Sums up the progression of ageing processes in the brain
 - Reflects relatively advanced or delayed brain maturation, while all individuals' brains undergo the general progression such as the thinning of grey matter

[https://www.brainkey.ai/blog/brain-age-how-we-calculate-it-and-what-it-means]

Representative brain images for young (22 years) and old (83 years) individuals

- Brain age gap (BAG, also called brain-predicted age difference, delta, etc.)
 - Difference between brain age and chronological age
 - Indicates whether an individual's brain appears to have aged more or less than the population average for their actual chronological age
 - Brain age gap > 0: accelerated ageing
 - Related to functional impairment [Liem et al., 2017], brain diseases such as Alzheimer's disease [Yin et al., 2023], Parkinson's disease [Eickhoff et al., 2021], schizophrenia [Nenadic et al., 2017], stroke [Egorova et al., 2019], epilepsy [Sone et al., 2021], and diabetes mellitus [Franke et al., 2013], and mortality [Cole et al., 2017]
 - Brain age gap < 0: resilience to ageing

[Cole et al., 2017]

Larger proportion of survival in individuals with lower BAG than those with higher BAG

[Cole et al., 2017]

Estimation of brain age

- Modelling chronological age as a function of various information from brain MRI data by using a supervised-learning algorithm
- Input data
 - Brain MRI data of one or more modalities, for example, T1-weighted structural MRI data for individuals
- Supervised-learning algorithm
 - Regression
 - Conventional machine learning
 - Deep learning

[Franke et al., 2010]

Estimation of brain age

Human Connectome Project (HCP)

- Launched in 2009 as a Blueprint Grand Challenge by the National Institutes of Health in the US
- Maps the neural pathways that underlie human brain function
 - To identify functionally distinct subdivisions of the human brain
 - To understand the relationships among the subdivisions
- Acquires and shares data about the structural and functional connectivity of the human brain

- HCP original study
 - HCP Young Adult (HCP-YA)
 - Age: 22-35 years
 - 1200 subjects data release (S1200)
 - Released on 1 March 2017
 - 1,206 healthy young adult participants collected in 2012-2015
 - Imaging and behavioural data
 - 3T MRI data for 1,113 participants
 - 3T HCP protocol (MRI and behaviour) retest data for 46 participants
 - Multimodal 7T MRI data for 184 participants
 - S1200 extensively processed functional MRI data
 - Released on 21 July 2017

- HCP lifespan studies
 - Lifespan developing human connectome project
 - Age: 20-44 weeks post-conception
 - Lifespan baby connectome project
 - Age: 0-5 years
 - HCP Development (HCP-D)
 - Age: 5-21 years
 - HCP Aging (HCP-A)
 - Age: 36-100 years

- Lifespan 2.0 release
 - Released on 26 February 2021
 - HCP-A & HCP-D
 - HCP-A: 725 healthy participants
 - HCP-D: 652 healthy participants
 - 22+ TB of data per project
 - Imaging and behavioural data at cross-sectional visit 1 (V1)
 - Unprocessed V1 imaging data for all included modalities
 - Preprocessed structural and functional imaging data
 - Non-imaging demographic and behavioral assessment data

Dataset

- Data from HCP-A (n = 725)
 - T1-weighted MRI scans
 - Demographic information including chronological age and sex

Distribution of age and sex for 725 individuals

36-year-old woman

100-year-old woman

T1-weighted MRI scan

Preprocessing

- Correction for intensity non-uniformity (bias field)
- Segmentation into grey matter, white matter, and cerebrospinal fluid
- Normalisation into the MNI standard brain space

36-year-old woman

100-year-old woman

Segmentation and normalisation

- Statistical inferences on processed maps: age-related changes in brain structure
 - − Grey matter volume ~ sex + total intracranial volume (TIV) + age
 - White matter volume ~ sex + TIV + age

Design matrix for age correlation

Positive correlation with age

Thresholded at FDR corrected p = 0.05 at the cluster level and FWE corrected p = 0.05 at the voxel level

Negative correlation with age

Thresholded at FDR corrected p = 0.05 at the cluster level and FWE corrected p = 0.05 at the voxel level

Negative correlation between grey matter volume and age

Negative correlation between white matter volume and age

Brain Age Estimation

Input data

- Brain image after skull-stripping, intensity non-uniformity correction, and normalisation
- Grey matter probability (partial volume fraction) image after segmentation and normalisation
- White matter probability (partial volume fraction) image after segmentation and normalisation

Brain image

Grey matter probability image

White matter probability image

Input data for brain age estimation

- Training and test datasets
 - Training dataset: n = 650
 - Brain image: Brain/train/001-650.nii.gz
 - Grey matter probability image: GM/train/001-650.nii.gz
 - White matter probability image: WM/train/001-650.nii.gz
 - Test dataset: n = 75
 - Brain image: Brain/test/001-075.nii.gz
 - Grey matter probability image: GM/test/001-075.nii.gz
 - White matter probability image: WM/test/001-075.nii.gz

Distribution of age and sex for training and test datasets

- Brain age estimation performance
 - Mean absolute error (MAE)
 - (sum of absolute errors)/(sample size)

[https://medium.com/@polanitzer/the-minimum-mean-absolute-error-mae-challenge-928dc081f031]