

Continuous Time Models

SYS-611: Simulation and Modeling

Paul T. Grogan, Ph.D.
Assistant Professor
School of Systems and Enterprises

Agenda

- Continuous Time Simulation
- 2. Differential Equation Models
- System Dynamics Models

Reading: B.P. Zeigler, H. Praehofer, and T.G. Kim, "Modeling Formalisms and Their Simulators," Ch. 3 in *Theory of Modeling and Simulation*, Academic Press, 2000, pp. 37-49.

H. Sayama, "Discrete-Time Models I: Modeling" Ch. 4 and "Cellular Automata I: Modeling," Ch. 11 in *Introduction to Modeling and Analysis of Complex Systems*, Open SUNY Textbooks, 2015. (Free eBook online)

Continuous Time Simulation

Continuous Time Models

- Discrete or continuous state spaces (variables)
- Dynamic: time advances in continuous steps
 - Floating point/decimal units of some base
 - Step size can be refined with higher accuracy
- Applications:
 - Physical (electricalmechanical) systems
 - Abstract systems

Continuous Time Notation

- q(t): state trajectory, time history of states
- x(t): input trajectory, time history of inputs
- y(t): output trajectory, time history of outputs
- Next state determined by state transition function

$$\delta(q, \frac{dq}{dt}, \Delta t) = q(t+1)$$

 Outputs determined by output function

$$\lambda(q, x) = y(t)$$

Continuous Time Simulation

 Initialize time and state variables

$$t=0, \qquad q(0)=q_0$$

- While terminal conditions not met:
 - Record output values

$$y(t) = \lambda(y, x)$$

Compute next state

$$q(t + \Delta t) = \delta(q, \frac{dq}{dt}, \Delta t)$$

Increment time

$$t = t + \Delta t$$

Differential Equation Models

Continuous Time Simulation

Differential equations:

- Volume: y(t) = q(t)
- Flow: $\frac{dq}{dt} = x(t)$

$$y(t) = q(0) + \int_0^t x(i) \cdot di$$

Constant flow rate:

$$x(t) = 1 \text{ m}^3/\text{min}$$

$$q(0) = 5 \text{ m}^3$$

$$q(t) = 5 + \int_0^t 1 \cdot di = 5 + t$$

Linear flow rate:

$$x(t) = t \text{ m}^3/\text{min}$$

$$q(0) = 5 \text{ m}^3$$

$$q(t) = 5 + \int_0^t i \cdot di = 5 + \frac{t^2}{2}$$

Integration Methods

- Need a non-symbolic method to compute state transitions
- Approximate state transition function:

$$\delta(q, \frac{dq}{dt}, \Delta t)$$
, where
$$\frac{dq}{dt} = f(q, x)$$

 Fundamental Theorem of Calculus:

$$\frac{dq}{dt} = \lim_{\Delta t \to 0} \frac{q(t + \Delta t) - q(t)}{\Delta t}$$

Euler integration method:

$$q(t + \Delta t) = q(t) + \Delta t \frac{dq}{dt}$$

Euler Integration Example

$$q(0) = 5 \text{ m}^3$$

$$y(t) = q(t)$$

$$\frac{dq}{dt} = x(t) = t$$

$$\Delta t = 1 \text{ min}$$

$$q(t + \Delta t) = q(t) + \Delta t \frac{dq}{dt}$$

$$q(0) = 5$$

$$q(0+1) = 5 + 1 * 0 = 5$$

$$q(1+1) = 5 + 1 * 1 = 6$$

$$q(2+1) = 6 + 1 * 2 = 8$$

Analytical solution:

$$q(t) = 5 + \frac{t^2}{2}$$

Euler Method Errors

Euler method has error from two sources:

- 1. Approximation of linear behavior
- 2. Mutual dependence of states and derivatives: $\frac{dq}{dt} = f(q, x)$

Euler Integration in Software

$$q(t + \Delta t) = q(t) + \Delta t \frac{dq}{dt}$$
$$= q(t) + \Delta t \cdot x(t)$$

```
def x(t):
  return t
delta t = 0.1
num steps = int(5.0/delta t)
q = np.zeros(num steps + 1)
t = np.zeros(num steps + 1)
q[0] = 5.0
t[0] = 0.0
for i in range (num steps):
  q[i+1] = q[i] + delta t*x(t[i])
  t[i+1] = t[i] + delta t
```

In Excel:

Numerical Integration in Python

- scipy.integrate.quad:
 - Computes a definite integral for a callable function
- scipy.integrate.ode and scipy.integrate.odeint:
 - Computes integral for an ordinary differential equation with callable function and derivative (Jacobian)
 - Multiple integrators available
- numpy.trapz:
 - Evaluates integral for known discrete (y,x) points using a trapezoidal rule

Numerical Integration in Python

$$q(0) = 5 \text{ m}^3$$

$$y(t) = q(t)$$

$$\frac{dq}{dt} = x(t) = t$$


```
def dq_dt(q, t):
    return t
t = np.linspace(0.0, 5.0)
q = integrate.odeint(dq dt, 5.0, t)
```


System Dynamics Models

System Dynamics Models

- System Dynamics (SD) models the dynamic behavior of complex systems over time
- Decomposes systems into components:
 - Stocks and flows
 - Feedback loops
 - Time delays
- Defines a system of differential equations in continuous-time simulation

Origins of System Dynamics

- 1940s-1950s: J.W. Forrester at MIT
 - Trained in electrical engineering
 - Dynamical systems and control theory
 - Developed Whirlwind digital computer
- 1958: Forrester left engineering for management

- OR too limited in scope (operations, not strategy)
- Dynamics and Controllability of Managed Systems

Evolution of SD Applications

- 1961: Industrial Dynamics
 - Application of SD to management (not so controversial)
- 1969: Urban Dynamics
 - Application of SD to urban planning (controversial)
- 1971: World Dynamics
 - Application of SD to societal planning (very controversial)

Causal Loop Diagrams

- Causal Loop Diagrams (CLDs) are graphical models of interrelationships between variables
 - Cause-and-effect linkages, first step to SD models

System Dynamics: Stock

- A stock is a simulation state variable
 - Accumulates information over time (has memory)

System Dynamics: Flow

- A flow is a derived (dependent) variable
 - Does not accumulate information (memoryless)
 - Function of other stocks, flows, and constants

$$x_{in}(t) = f(y_1(t), y_2(t))$$

System Dynamics: Simulator

- A SD simulator runs continuous-time simulation
- Numerical integration of each stock variable
- For example, Euler integration:

$$q(t + \Delta t) = q(t) + \Delta t \frac{dq}{dt}$$
$$q(t + \Delta t) = q(t) + \Delta t (x_{in}(t) - x_{out}(t))$$

Example: Savings Account

Causal Link Diagram

System Dynamics Model:

Example: Coffee Cooling

Newton's Law of Cooling:

$$x(q_R, q_C) = k \cdot (q_C - q_R)$$

$$q_C(t + \Delta t) = q_C(t) - \Delta t \left(k \cdot (q_C(t) - q_R(t))\right)$$

$$q_R(t + \Delta t) = q_R(t)$$

Example: Water Basin

$$q(0) = 5 \,\mathrm{m}^3$$

$$y(t) = q(t)$$

$$\frac{dq}{dt} = x(t) = t$$

$$\Delta t = 1 \min$$

Causal Link Diagram

System Dynamics Model:

