Ex 13.1 /Pg 442/ Xm 13-D1 MI -D DIRECT PURCHASED FUNDS D BROKER PURCHASED FUNDS FIRST STEP : CAN WE ASSUME ? EQUAL VARIANCES ? H,: $\sigma_{1/2}^{2} \neq 1$ => UNEQ. VAR

2-tailed test F Test for 2 Sample Variances Data Analysic p-val ~ 0.60 p val > alpha } Do NOT REJECT NULL Assume Equal Variances

Second Step M, -D DIRECT M2 - BROKER $H_0: M_1 - M_2 = 0$ $H_1: \mu_1 - \mu_2 > 0$ Assume Eq. Var, $\propto = 5\%$. No, i. Do WE KNOW of The the distrib. I test, 2 Means, Eq. Vav. t test: 2 samples: Eg. Var Rej. Null; A stat = 2.29 Critical t = 1.66 Direct p val = 0.012 Outperforms Broker

CH. 13 - Sec. 5 Difference Between 2 Proportions Ex 13.9 /Pg. 491/ Xm 13-09 P, -> proportion of soap sales coded 9077 at Store 1 P2 -2 proportion of soap sales Coded 9077 at Store 2 $H_0: \rho_1 - \rho_2 = 0 \quad \propto = 52$ $H_1: \rho_1 - \rho_2 > 0$ p val=,0019 Ten Stat - 2.9 Critical Val-0 1.65 Rej. Null

CH.14- ANOVA
Assumptions
1911 A.
1. Observations are independent 2. Normally distributed data
3. Populations have equal variances.
· · · · · · · · · · · · · · · · · · ·
Response Variable - Variable & Interest
ANDVA - SONE WAY ONE FACTOR SAME
SINGLE FACTOR)
TESTING FOR DIFFERENCES
Ho: ALL MEANS EQUAL
H: AT LEAST 2 MEAN "DIFFER

ANOVA -> 2 SOURCES
OF VARIATION
SSTI) VARIATION BETWEEN SAMPLES
55 (2) VARIATION WITHIN SAMPLES
TEST PERFORMANCE
OF 2 BRANDS OF BATTERIES
BRAND - DONE FACTOR
WALMART? LEVELS COSTCO DR TREATMENTS
MOST CD OR
TREATMENTS
ANOVA -D Determine if BRAND
has a significant effect on
has a significant effect on Variable being measured
CD LI Fetime.
of Battlery.

If BRAND 15 Significant, Mean lifetimes for different brands WILL NOT BE EQUAL.
SST -D Sum of Squares for Treatment SSE-D" for Erron
55 Total
SSE - Damount of Variation in response variable Not Caused by Treatments.

VARIATION IN RESPONSE VARIABLE
(around its mean)

Explained Variation FACTOR

Herplained Variation Expon

Ex 14.2/Xm 14-02

REVIEW THIS EXAMPLE AS WE WORKED IT THE SAME WAY IN CLASS.

PROBLEM 14.7/Pg. 534

NULL: ALL MEANS EQUAL

ALTERNATIVE: AT LEAST TWO MEANS DIFFER

ANOVA: SINGLE FACTOR

F TEST STATISTIC = 0.87

CRITICAL VALUE = 5.09 P VALUE = 0.445

DO NOT REJECT NULL

WHAT ARE THE VALUES OF: SUM OF SQUARES FOR TREATMENT? SUM OF SQUARES FOR ERROR? SUM OF SQUARES TOTAL? USE TUKEY'S OMEGA TO FIND DIFFERENCES WITHIN AN ANOVA SINGLE FACTOR TEST.

KNOW HOW TO USE TUKEY'S OMEGA.
WHAT IS TUKEY'S OMEGA?
WHERE ARE THE DIFFERENCES?
HOW DO YOU FIND THE DIFFERENCES ON A TUKEY'S OMEGA PRINTOUT?