

Badge de sécurité pour les travailleurs isolés

Un dispositif adapté à la sécurité de vos employés

SOMMAIRE

Introduction	01	LoRaWan	02
Présentation du produit, diagram (Gantt, architecture)	mmes	Explications du dispositif d'envoi du signal d'alerte	
Accéléromètre et GPS	03	Batterie Description de l'alimentation	04
Caractéristiques et utilisation des capteurs		générale	
Le PCB	06	Conclusion	07

Choix des composants, PCB

En quoi consiste notre produit?

Le cahier des charges

	Fonction	Sous-fonction	Critères	Niveaux	
X	Localiser le travailleur (GPS)		Précision	À 5 mètre près	
/			Adapter au badge	Inférieur à feuille A5	
	(3. 3)		Alimentation	3,3V	
V		Mesurer l'accélération	Précision	10 cm/s² mini suivant l'axe z	
X		Mesurer la position	Précision	5 cm mini suivant l'axe z	
1	Déterminer si le travailleur tombe (Accéléromètre)	Détecter une pression sur le bouton d'urgence	Durée pression	3 s mini Bouton d'urgence	
		Détecter une pression sur le bouton de fausse urgence			
			Alimentation	3,3V	
			Bonus « Haut parleur ou LED»		

Le cahier des charges

	Fonction	Sous-fonction	Critères	Niveaux	
A			Rapidité		
1	Envoyer signal d'urgence (LoRaWan)	Envoyer signal à l'accueil (+ bonus « hôpital »)	Contenu	Pas trop lourd Localisation	
			Alimentation	5V	
A			Autonomie	Entre 10h et 12h	
A			Adapter au badge	Inférieur à feuille A5	
<	Alimenter le système (Batterie)		Tension délivrée	5V	
	(Butterie)	Sorochargor	Temps de recharge	3h mini	
		Se recharger	Doit résister à la recharge		
			Nombre d'entrées suffisantes		
	Traitement de données (Carte STM32)		Recevoir les données		
	(Carte 3114132)		Envoyer signal au LoraWan	Si chute détectée	

Le diagramme d'architecture

Beyond Engineering

Le diagramme de Gantt

LoRa ou LoRaWan?
Qu'est-ce que LoRa?

❖ LoRa ou LoRaWan?

Qu'est-ce que LoRaWAN?

Notre choix : pourquoi LoRa?

Le module

Module LoRa-E5 Grove 113020091

Code article : 37298

Module Grove comprenant un transceiver LoRa-E5 prévu pour la réalisation d'un projet avec connexion sans fil LoRa 868 MHz compatible avec le protocole LoRaWAN.

> <u>Description complète</u>

Quantité :

14,71 € HT

17,65 € TTC

dont 0,02 € d'éco-part

Comment cela fonctionne-t-il?

P2P connection:

Notre montage

L'accéléromètre

Adafruit LSM9DS1

L'accéléromètre : le câblage

L'accéléromètre : mode de fonctionnement

PCB

L'accéléromètre : les résultats attendus

L'accéléromètre : l'exploitation des données

- Une alarme transmise par le LoraWan prévient un gardien que l'employé est tombé si Accel X > 10 cm/s
- Possibilité pour la personne de ne pas envoyer d'alerte si il est indemne via un bouton (si la deadline le permet)
- Possibilité de déclencher manuellement une alarme même sans chute si la personne ne se sent pas bien (si la deadline le permet)

Le module GPS

SKU:TEL0132

Module de Navigation

Antenne

Le module GPS : le câblage

Name	Function
VCC	Power Input(5V)
GND	Ground
TX	Transmit
RX	Receive
PPS	Pulse Output Per Second

Le module GPS : le fonctionnement

Module GPS

'7': Nombre de

satellites utilisés

Le module GPS : le résultat

Données de Latitude

Données de

Longitude

Le module GPS : traitement des données

Étapes du traitement de données :

- Synchroniser les Trames
- Récupérer les données de Latitudes et de Longitudes
- Convertir ces données pour les rendre lisible par un utilisateur

Le module GPS : l'exploitation des données

Le gardien reçoit grâce au LoraWan les coordonnées GPS de la personne qui a chuté.

Objectifs de l'alimentation

Retour sur le cahier des charges

Beyond Engineering

Le PCB

05

Connecteurs

Beyond Engineering

MCU

Alimentation

Le PCB 05

Choix des composants

Prix	Microprocesseur	Cortex	Nombre dispo	Fréquence	Package	Flash	RAM	UART	I2C	SPI	TIM
1,096\$	STM 32 F031 K6T6	M0	30	48 MHz	LQFP32	32 Kb	4	1	1	1	6
1,282\$	STM 32 L021 K4T6	M0+	1	32 MHz	2QFP32	16 Kb	2	2	1	1	3
3,361\$	STM 32 F103 RCT6	M3 (usb)	7	72 MHz	LQFP64	256 Kb	48	5	2	3	8
1,741\$	STM 32 L412 KBT6	M4 (usb)	13(-1)	80 MHz	LQFP32	(128 Kb)	40	(3)	(2)	1	7

Le PCB

05

Le coût total

			Travailleur isolé		
	Composant	Quantité	Prix unitaire(€)	Prix total (€)	à l'ENSEA
	Porte piles	1	2,32	2,32	
	Piles	4	-	2,25	OUI
	Régulateur	1	63 • 3 30 × 4 × 537	1,21	00.
	Régulateur	1		0,762	
Alimentation	Condensateur 470μF	1	022342704024	0,802	
	Condensateur 100µF	1	0,184	0,184	
	Résistance 0,330hm	1	0,292	0,292	
	Résistance 1,2kOhm	1	0,001	0,001	
	Résistance 3,6kOhm	1	0,001	0,001	
	Résistance 0 Ohm	2	0,01	0,02	OUI
	Diode VS_15M0Q40	1	0,48	0,48	OUI
	Condensateur 470pF	1	0,066	0,066	OUI
	Bobine 220UH	1	2,15	2,15	OUI
300,000 220011		Coût alim	10,538		
	Accéléromètre	1	20,21	20,21	
Capteur GPS		1	15,05	15,05	
			Coût total indusctrialisation	56,336	

