

WTM2101

Hal i2s 使用说明

版本号: V1.0.0.0 日期: 2023.01.31

声明

商标声明:

作为北京知存科技有限公司的商标,本文件中提到的所有其他

商标和商号均为其持有人的财产。

版权声明:

Copyright © 2021 北京知存科技有限公司. All rights reserved.

内容声明:

本文件中的信息如有更改, 恕不另行通知。为了确保内容的准确性, 文章会做出相关的确认, 但本文件中的所有声明、信息和建议不构成任何明示或暗示的保证。

北京知存科技有限公司

地址: 北京市海淀区北四环西路 56 号辉煌时代大厦西座 1502

网址: http://www.witintech.com

Page 2 of 12 WITMEM 保密文件

目录

– ,	文档功能说明	4
=,	函数功能介绍	5
	hal_i2s_instance_get()	5
	hal_i2s_init()	5
	hal_i2s_open()	6
	hal_i2s_ctl()	6
	hal_i2s_write()	6
	hal_i2s_read()	7
	hal_i2s_close()	7
三、	结构体介绍	
	Hal_I2s_InitTypeDef	
	Hal_I2s_Gpio_Typedef	9
	Hal_I2s_Cache_Typedef	
	Hal_I2s_Dma_Typedef	
四、	其他	
Ħ.	修订历史	. 12

一、 文档功能说明

该文档旨在说明 hal_i2s 的驱动库.包括接口功能以及结构体参数意义.

Page 4 of 12 WITMEM 保密文件

二、函数功能介绍

hal_i2s_instance_get()

Hal_l2s_InitTypeDef* hal_i2s_instance_get(Hal_l2s_Instance_Typedef number) 获取 hal i2s 实例对象

参数

number: hal i2s 实例对象编号

返回值

成功返回 Hal i2s 实例对象,否则是 NULL

hal_i2s_init()

int hal i2s init(Hal I2s InitTypeDef *i2s instance,

I2S_TypeDef *address,

Hal I2s Type Typedef type,

Hal I2s Work Mode Typedef mode,

Hal I2s Width Word Typedef width,

int Ir_channel_need_sizes_by_width)

初始化 hal i2s 实例对象

参数

i2s_instance: hal i2s 实例对象

address: i2s 硬件地址

type: i2s 工作类型

mode: i2s 工作模式

width: i2s 左右通道的位宽

lr_channel_need_sizes_by_width: 应用层处理 i2s 左右通道数据的大小,以数值 width 位宽单位.

返回值

大于 0 成功,否则失败

注意:

- 1. 默认左右通道速率是 16000
- 2. i2s 硬件地址 I2S0 时,gpio 可以使用 gpio0, gpio1, gpio2, gpio3. i2s 硬件地址 I2S1 时,gpio 可以使用 gpio10, gpio11, gpio12, gpio13

Page 5 of 12 WITMEM 保密文件

- 3. 默认发送及接收 buffer 缓存大小是 lr_channel_need_sizes_by_width 的 3 倍
- 4. 默认使用 dma,使用的 dma 的通道是 2

hal_i2s_open()

```
int hal_i2s_open(Hal_I2s_InitTypeDef *i2s_instance)
根据传入的 hal i2s 实例对象打开相应的硬件
参数
i2s_instance:hal i2s 实例对象
返回值
大于 0 成功,否则失败
```

hal_i2s_ctl()

```
int hal_i2s_ctl(Hal_l2s_InitTypeDef *i2s_instance,int command, ...)
控制 hal i2s 实例对象或硬件参数
参数
    command:命令参数
    ....:命令参数的附加参数
返回值
    大于 0 成功,否则失败
注意:
命令参数: HAL I2S_CHANNEL_ENABLE_COMMAND 表示开启或者关闭 i2s
```

hal_i2s_write()

```
int hal_i2s_write(Hal_I2s_InitTypeDef *i2s_instance, void *left_data, void *right_data, int size_by_data);
写数据到 hal i2s 实例对象的发送 buffer 参数
i2s_instance:hal i2s 实例对象
left_data:左通道数据
```

Page 6 of 12 WITMEM 保密文件

right_data:右通道数据 size_by_data:写单通道数据大小,以数值 width 位宽单位 返回值 大于 0 成功,否则失败

hal_i2s_read()

hal_i2s_close()

int hal_i2s_close(Hal_l2s_InitTypeDef *i2s_instance) 关闭 hal i2s 实例对象及关联的硬件 参数 i2s_instance:hal i2s 实例对象

返回值 大于 0 成功,否则失败

Page 7 of 12 WITMEM 保密文件

三、 结构体介绍

Hal_I2s_InitTypeDef

```
Hal i2s 配置结构体
typedef struct Hal I2s InitTypeDef{
 FunctionalState enable;
 I2S TypeDef *instance;
 Hal I2s Gpio Typedefio;
 Hal I2s Type Typedef type;
 Hal I2s Work Mode Typedef mode;
 Hal I2s Width Word Typedef width word;
 int Irclk frequency;
 int Ir channel need sizes by width;
 Hal I2s Cache Typedef send buffer;
 Hal I2s Cache Typedef receive buffer;
 Data handle Data handle info;
 Hal I2s Dma Typedef dma;
}Hal I2s InitTypeDef;
参数
   enable:结构体初始化标志
   Instance:i2s 硬件地址
   lo:gpio 配置结构体
   type:i2s 工作类型
   mode:i2s 工作模式
   width word:i2s 左右通道位宽
   Irclk frequency:i2s 左右通道时钟速率
   Ir channel need sizes by width: 应用层处理 i2s 左右通道数据大小,以位宽单位.
   send buffer:hal i2s 发送 buffer 结构体
   receive buffer:hal i2s 接收 buffer 结构体
   Data handle info:hal i2s 内部数据处理接口
   dma:dma 配置结构体
```

Page 8 of 12 WITMEM 保密文件

Hal_I2s_Gpio_Typedef

```
Gpio 配置结构体

typedef struct{
    uint32_t sdo_io,sdi_io,bclk_io,lrclk_io;
    uint32_t sdo_io_af,sdi_io_af,bclk_io_af,lrclk_io_af;
}Hal_l2s_Gpio_Typedef;
参数
    sdo_io,sdi_io,bclk_io,lrclk_io:i2s 对应的 gpio
    sdo_io_af,sdi_io_af,bclk_io_af,lrclk_io_af:i2s 对应 gpio 的功能选择
```

Hal_I2s_Cache_Typedef

```
Hal i2s 缓存 buffer 结构体
typedef struct{
    int lr_channel_need_sizes_by_width_counts;
    uint8_t *buffer;
    int read_index;
    int write_index;
}Hal_l2s_Cache_Typedef;
参数
    lr_channel_need_sizes_by_width_counts:buffer 缓存大小,基于 hal i2s 配置结构体
中变量 lr_channel_need_sizes_by_width 的倍数
    buffer:数据 buffer
    read_index:数据 buffer 的读下标
    write_index:数据 buffer 的写下标
```

Hal_I2s_Dma_Typedef

```
Hal i2s 的 dma 配置结构体
typedef struct{
FunctionalState enable;
uint32_t dma_channel;
DMA_InitTypeDef config;
```

Page 9 of 12 WITMEM 保密文件


```
DMA_LlpTypeDef llp_cfg[2];
uint8_t cache_buffer[16 * 4 * 2];
uint32_t dma_cnt;
}Hal_l2s_Dma_Typedef;
参数
enable:dma 启动标志
dma_channel:dma 使用的通道
config:dma 参数配置结构体
```

llp_cfg:dma 链表模式对应的结构体
cache_buffer:dma 处理发送和接收数据时使用的 buffer.此 buffer 内部使用
dma_cnt:dma 处理发送和接收数据时的计数器.此计数器内部使用

Page 10 of 12 WITMEM 保密文件

四、 其他

1.i2s 数据存储 buffer 申请自 heap.c 文件中的数组 static uint8_t ucHeap[configTOTAL HEAP SIZE] attribute ((section(".audmem")));

在使用前需要自己在链接脚本中定义一块安全可用的地址,地址范围根据属性__attribute__ ((section(".audmem")))来指定.数组大小由宏 configTOTAL_HEAP_SIZE 定义

2.在 hal_i2s.c 中的中断子程序只是示例代码,实际使用时务必重写中断子程序,否则会重现严重的错误.

Page 11 of 12 WITMEM 保密文件

五、 修订历史

表 5-1 修订历史

版本	日期	修订人	说明			
V1.0.0.0	2023-01-31	李剑	初次编写			

Page 12 of 12 WITMEM 保密文件