STOR634 - Lecture Notes

Lecture 1

CBasic oncepts

- 1, $\Pi class$ closed under finite intersections. i.e. $A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$
- $2, \sigma \cap closed$ closed under countable intersections. i.e. $A_1, A_2, \dots \in \mathcal{A}, \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$
- $3, \cup -closed$ closed under finite unions. i.e. $A, B \in A, \implies A \cup B \in A$
- $4, \sigma \cup closed$ closed under countable unions. i.e. $A_1, A_2, \dots \in \mathcal{A}, \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- $5, \setminus -closed$ closed under set differences i.e. $A, B \in A, \implies A \setminus B \in A$
- 6, closed under complements i.e. $A \in \mathcal{A}$, $\Longrightarrow A^c \in \mathcal{A}$

Important Concepts

 $\sigma - field / \sigma - algebra$ A collection of sets $\mathcal{F} \subseteq 2^{\Omega}$ is called a σ -field if the following 3 conditions are satisfied: (i) $\Omega \in \mathcal{F}$;

- (i) $\Sigma \in \mathcal{I}$, (ii) \mathcal{F} is closed under complements;
- (iii) \mathcal{F} is closed under countable union.

field / **algebra** A class of subsets $A \subseteq 2^{\Omega}$ is called a field or algebra if the following 3 conditions are satisfied:

- (i) $\Omega \in \mathcal{A}$;
- (ii) A is closed under complements;
- (iii) A is closed under finite unions.

Theorem

In the definition of σ -field we can replace (iii) with (iii)' \mathcal{F} is closed under countable intersections. Similarly, in the definition of field, we can replace (iii) with (iii)' \mathcal{A} is closed under finite intersections.

More Concepts

\mathcal{A} is called a **ring** if :

- (i) $\emptyset \in \mathcal{A}$
- (ii) A is closed under set difference
- (iii) A is closed under finite unions

Remarks

If we replace "finite union" in definition of ring to "countable union" we get a σ -ring. \mathcal{A} is a field $\implies \mathcal{A}$ is a ring.

A is called a **semi-ring** if:

- (i) $\emptyset \in \mathcal{A}$
- (ii) $A, B \in \mathcal{A} \implies B \setminus A$ is a finite union of disjoint sets from \mathcal{A}
- (iii) A is closed under finite intersections

\mathcal{A} is called a $\lambda - class$ if :

- (i) $\Omega \in \mathcal{A}$
- (ii) For any 2 sets $A, B \in \mathcal{A}$ with $A \subseteq B \implies B \setminus A \in \mathcal{A}$ is closed under set difference
- (iii) Suppose $A_1, A_2, \dots \in \mathcal{A}$ and further for all $i \neq j$, $A_i \cap A_j = \emptyset \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

Theorem

- 1, \mathcal{A} is $\sigma field \implies \mathcal{A}$ is a $\lambda class$, algebra, $\sigma ring$, ring, semi-ring.
- $2, \sigma ring \implies ring \implies semi-ring.$
- 3, Field \implies ring; field on a finite set $\implies \sigma field$.

Theorem

Let I be an arbitrary index set and suppose A_i is a $\sigma - field$ for all $i \in I$. Then $A_I := \{A \subset \Omega : A \in A_i \text{ for every } i \in I\} = \bigcap_{i \in I} A_i$ is also a $\sigma - field$. Similar statement is true for rings, sigma-rings, fields, lambda-systems but NOT semi-rings.

Let $\varepsilon \subset 2^{\Omega}$ be an arbitrary collection of sets. Then there exists a smallest sigma-field containing ε . Writing $\sigma(\varepsilon)$ for this sigma-field, this can be obtained via $\sigma(\varepsilon) = \bigcap_{\mathcal{A} \subset 2^{\Omega}, \ \mathcal{A} \ is \ a \ \sigma-field, \ \mathcal{A} \supseteq \varepsilon} \mathcal{A}$. This will be called the sigma-field generated by ε . Similarly for lambda-system generated by ε .

Lecture 2