Lemma IR For all primes p, \sqrt{p} is irrational.

Proof. Suppose not. That is let $\sqrt{p} \in \mathbb{Q}$. By definition, $\sqrt{p} = \frac{a}{b}$ for $a, b \in \mathbb{Z}$. Suppose $\frac{a}{b}$ is irreducible such that (a, b) = 1. Squaring both sides,

$$p = \frac{a^2}{b^2},$$
$$pb^2 = a^2.$$

Since $p|a^2$, p must be a prime factor of a. Thus a=pk for some $k\in\mathbb{Z}$. Substituting,

$$pb^2 = (pk)^2,$$
$$b = pk^2.$$

Notice that both a and b share the prime factor p. Since primes are greater than 1, this contradictions the assumption that (a,b)=1. Thus, for all primes p, \sqrt{p} is irrational.