Uniform Continuity
vs. Continuity

Examples:

(i)
$$f(x) = \frac{1}{x}$$
 continuous $\forall x \neq 0$
 $|x-\alpha| < \min(\frac{|\alpha|}{z}, \frac{z |\alpha|^p}{2}) = \delta \implies |f(x) - f(\alpha)| < \epsilon$

(2)
$$f(x) = \chi^2$$
 continuous $\forall \chi$
 $|x-a| < min(1, \frac{\epsilon}{2|a|+1}) = \epsilon \Rightarrow |f(x) - f(a)| < \epsilon$

S depuds on a.

Non-Examples!

(i)
$$f(x) = \frac{1}{x}$$
 is not uniformly cts on $(0,1)$.

Proof: take
$$e=1$$
. Suppose that there is a $5 - 0.5$.t. $|x-a| < 5 \times x$, $a \in (6,1) \Rightarrow |\frac{1}{n} - \frac{1}{a}| < 1$

Pick reciprocals of integers: $x = \frac{1}{m}$ $a = \frac{1}{n} \in (0, \delta)$, $m \neq n$
 $|\frac{1}{k} - \frac{1}{a}| = |m-n| \geq 1$. Contradiction.

(2)
$$f(x) = x^2$$
 is not uniformly cts on $[1, \infty)$.

Proof: take $q=1$. Suppose that $\exists s > 0$ s.t.

 $|x-a| < s + x, a + (1, \infty) \Rightarrow |x^2-a^2| < 1$

Pick
$$a7\frac{1}{8}$$
 and $x = a+\frac{8}{2}$

$$|x-a|=\frac{8}{2} \times 8, \quad x^2-a^2=(x+a)(x-a)=(2a+\frac{8}{2})\frac{5}{2}$$

$$=a8+\frac{5^2}{4}>a8>1.$$

Example Suppose
$$f'$$
 continuous on (c_1d)

(like $f'(x)$, line $f(x)$ exist).

Then f is uniformly continuous on $[c,d]$

Proof: By EUT, $|f'|$ has a maximum M over $[c_1d]$

given \$\in \int_0, \text{ Let } \delta = \frac{\infty}{M+1}

Suppose $|x-a| < \delta = \frac{\infty}{M+1}$. Then $|f(x)-f(a)| = |f'(b)| |x-a|$

Theorem If f is continuous on a closed finite interval [a,b], then
f is uniformly continuous on [a,b].

so |f(x)-f(a) | < M & K < 2.

Proof By contradiction. Suppose that f is not uniformly continuous on [a,b]. Then for some \$70, no \$70 will work.

In particular, for any integer n, \$ = \frac{1}{n}\$ does not work.

So \(\frac{1}{2} \times_{n,1} y_n \in [a_10] \) so that \(|x_n - y_n| < \frac{1}{n}\$ but \(|f(x_n) - f(y_n)| \rightarrow \) \(\frac{1}{n}\$.

By BWP, We can find a subsequence \$\frac{1}{2} \times_{n_k} \rightarrow which converges to \$\frac{1}{2} \times_{n_k} \frac{1}{2} \times_{n_k} \t

$$\lim_{k\to\infty} f(x_{n_k}) = f(\lim_{k\to\infty} x_{n_k}) = f(c)$$

$$\lim_{k\to\infty} f(y_{n_k}) = f(\lim_{k\to\infty} y_{n_k}) = f(c)$$

Then
$$|Y(X_{n_k}) - f(Y_{n_k})| = 0$$

This is a contradiction.

Integration

We can define for highly discontinuous functions,

Why? multiple integration.

If A = [a16] x [c])

Cobinité théorem: SS flaggraphy = S [Stay) dy]dx for a continuous function f

for A not a rectangle, we have some options:

for this, need to define

Sf(y) dy where $S \subseteq \mathbb{R}$, not necessarily an interval.

⇒ Lebesgue Integral (better approach)

Other approach: enclose A in some rectangle [a,b] x[c,d] extend f to [a,b] x [c,d]:

$$\widetilde{f}(x_{1}y) = \begin{cases}
f(x_{1}y) & (x_{1}y) \in A \\
O & (x_{1}y) \notin A
\end{cases}$$

So \tilde{f} may be very discontinuous. \rightarrow this is why. $\iint_{A} f(x,y) \, dx \, dy = \iint_{C} \left[\int_{C}^{\tilde{f}} (x,y) \, dy \right] dx$

This approach (Riemann integral)
requires Sof where f is highly his continuous.