Consider

maximize
$$x_1+2x_2$$
 subject to $x_1 \leq 20$ $x_2 \leq 30$ $x_1+x_2 \leq 40$ $x_1,x_2 \geq 0$

Consider

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$
 $x_2 \le 30$
 $x_1 + x_2 \le 40$
 $x_1, x_2 \ge 0$

Can we show the optimal solution is at least 60?

Mar 3, 2022

Consider

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$
 $x_2 \le 30$
 $x_1 + x_2 \le 40$
 $x_1, x_2 \ge 0$

Can we show the optimal solution is at least 60? Check (0, 30)

15/19

Consider

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$
 $x_2 \le 30$
 $x_1 + x_2 \le 40$
 $x_1, x_2 \ge 0$

Can we show the optimal solution is at least 60? Check (0, 30)

Can we show that optimal solution is at most 90?

Mar 3, 2022

Consider

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$
 $x_2 \le 30$
 $x_1 + x_2 \le 40$
 $x_1, x_2 \ge 0$

Can we show the optimal solution is at least 60? Check (0, 30)

Can we show that optimal solution is at most 90? Use linear combinations constraints

Define a variable for each constraint

Define a variable for each constraint

maximize
$$x_1 + 2x_2$$

subject to $y_1 x_1 \le 20 y_1$
 $y_2 x_2 \le 30 y_2$
 $y_3 x_1 + y_3 x_2 \le 40 y_3$
 $x_1, x_2 \ge 0$

$$y_1 > 0$$

Define a variable for each constraint

maximize
$$x_1 + 2x_2$$

subject to $y_1 x_1 \le 20 y_1$ $y_1 \ge 0$
 $y_2 x_2 \le 30 y_2$ $y_2 \ge 0$
 $y_3 x_1 + x_2 \le 40 y_3$ $y_3 \ge 0$
 $x_1, x_2 \ge 0$

Adding them together: $\underbrace{y_1 x_1 + y_2 x_2 + \underbrace{y_3 x_1}_{13} + y_3}_{(y_1 + y_3) x_1 + (y_2 + y_3)}_{15} x_2 \le 20 y_1 + 30 y_2 + 40 y_3}_{15}$

Define a variable for each constraint

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$ y_1
 $x_2 \le 30$ y_2
 $x_1 + x_2 \le 40$ y_3
 $x_1, x_2 > 0$

Adding them together:

$$\underbrace{(y_1 + y_3)}_{=1} x_1 + \underbrace{(y_2 + y_3)}_{=2} x_2 \le 20y_1 + 30y_2 + 40y_3$$

$$\underbrace{(y_1 + y_3)}_{=2} x_1 + 2x_2 \le (y_1 + y_3) x_1 + (y_2 + y_3) x_2 \le 20y_1 + 30y_2 + 40y_3$$

Define a variable for each constraint

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$ y_1
 $x_2 \le 30$ y_2
 $x_1 + x_2 \le 40$ y_3
 $x_1, x_2 > 0$

Adding them together:

$$(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 20y_1 + 30y_2 + 40y_3$$

We let $y_1 + y_3 \ge 1$ and $y_2 + y_3 \ge 2$ to get an upper bound on $x_1 + 2x_2$:

Define a variable for each constraint

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$ y_1
 $x_2 \le 30$ y_2
 $x_1 + x_2 \le 40$ y_3
 $x_1, x_2 \ge 0$

Adding them together:

$$(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 20y_1 + 30y_2 + 40y_3$$

We let $y_1 + y_3 \ge 1$ and $y_2 + y_3 \ge 2$ to get an upper bound on $x_1 + 2x_2$:

$$(x_1 + 2x_2) \le (y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 20y_1 + 30y_2 + 40y_3$$

Primal LP

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$
 $x_2 \le 30$
 $x_1 + x_2 \le 40$
 $x_1, x_2 \ge 0$

Primal LP

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$
 $x_2 \le 30$
 $x_1 + x_2 \le 40$
 $x_1, x_2 \ge 0$

Dual LP

minimize
$$20y_1 + 30y_2 + 40y_3$$

subject to $y_1 + y_3 \ge 1$
 $y_2 + y_3 \ge 2$
 $y_1, y_2, y_3 \ge 0$

Primal LP

maximize
$$x_1 + 2x_2$$
 subject to $x_1 \le 20$ $x_2 \le 30$ $x_1 + x_2 \le 40$ $x_1, x_2 \ge 0$

Optimal solution:
$$(x_1, x_2) = (10, 30) \implies x_1 + 2x_2 = 70$$

Dual LP

minimize
$$20y_1 + 30y_2 + 40y_3$$

subject to $y_1 + y_3 \ge 1$
 $y_2 + y_3 \ge 2$
 $y_1, y_2, y_3 \ge 0$

Primal LP

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$
 $x_2 \le 30$
 $x_1 + x_2 \le 40$
 $x_1, x_2 \ge 0$

Optimal solution:
$$(x_1, x_2) = (10, 30) \implies x_1 + 2x_2 = 70$$

Dual LP

minimize
$$20y_1+30y_2+40y_3$$
 subject to
$$y_1+y_3\geq 1$$

$$y_2+y_3\geq 2$$

$$y_1,y_2,y_3\geq 0$$

Optimal solution:

$$(y_1, y_2, y_3) = (0, 1, 1) \Longrightarrow$$

 $20y_1 + 30y_2 + 40y_3 = 70$

More generally

Primal LP

max
$$c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

s.t. $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \le b_m$
 $x_1, x_2, \dots, x_n \ge 0$

More generally

Primal LP

max
$$c_1x_1 + c_2x_2 + \dots + c_nx_n$$

s.t. $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$
 $x_1, x_2, \dots, x_n \ge 0$
 $A_{11} \quad 0_{12} - \dots \cdot 0_{1n}$
 \vdots

Dual LP

Duality of flow and cut

Duality of flow and cut

For LP we have:

Theorem (Weak Duality)

A feasible solution to the dual LP is an upper bound on any feasible solution to the primal LP

Mar 3, 2022

Duality of flow and cut

For LP we have:

Theorem (Weak Duality)

A feasible solution to the dual LP is an upper bound on any feasible solution to the primal LP

Theorem (Strong Duality)

The optimal solution to the dual LP is equal to the optimal solution to the primal LP

Duality of flow and cut

For LP we have:

Theorem (Weak Duality)

A feasible solution to the dual LP is an upper bound on any feasible solution to the primal LP

Theorem (Strong Duality)

The optimal solution to the dual LP is equal to the optimal solution to the primal LP

Mar 3, 2022