Graph Optimization Lab session 6 - exercise

Consider a network design problem defined over a directed graph G = (N, A). A set of unsplittable demands K must be routed on the graph. Each demand is described by three parameters, a source node $S_k \in N$, a destination node $D_k \in N$, and an amount of flow F_k that must be sent from the source node to the destination node. The subset of active arcs must be selected: if the arc (i, j) is activated it provides a capacity λ at a cost c_{ij} . The problem consists in deciding the routing of each demand and the subset of arcs to activate with the aim of minimizing the sum of the costs.

- 1. Write the arc-based formulation of the problem and its continuous relaxation.
- 2. Consider the instances described in files networkDesign_1.dat, networkDesign_2.dat and networkDesign_3.dat. Solve the integer problem and the continuous relaxation (LB), compute the percentage gap and fill the table assigning two different values to λ: 50 and 10 for networkDesign_1.dat and networkDesign_2.dat and 500 and 100 for the last instance.

instance	λ	integer optimum	LB	gap
networkDesign_1.dat	50			
networkDesign_1.dat	10			
networkDesign_2.dat	50			
networkDesign_2.dat	10			
networkDesign_3.dat	500			
networkDesign_3.dat	100			

Does the quality of the bound vary for the different values of λ ?

- 3. Add to the formulation all the *single-node* cutset based inequalities, i.e. the cutset based inequalities associated with a partition of the nodes where one subset contains a single node, and compute the corresponding continuous relaxation (SN LB).
- 4. Add to the formulation all the *two-nodes* cutset based inequalities, i.e. the cutset based inequalities associated with a partition of the nodes where one subset contains two nodes, and compute the corresponding continuous relaxation (TN LB).
- 5. Add to the formulation all the *single-node* and *two-nodes* cutset based inequalities and compute the corresponding continuous relaxation (STN LB). Fill the table, computing the percentage gaps.

instance	λ	SN LB	gap	TN LB	gap	STN LB	gap
networkDesign_1.dat	50						
networkDesign_1.dat	10						
networkDesign_2.dat	50						
networkDesign_2.dat	10						
networkDesign_3.dat	500						
networkDesign_3.dat	100						