Surrogate Regret Bounds for Polyhedral Losses

Rafael Frongillo and Bo Waggoner

University of Colorado, Boulder

NeurIPS 2021

The short version

Surrogate risk minimization for supervised learning:

- lacksquare Goal: optimize discrete "target" loss $\ell(r,y)$ classification, structured prediction r= prediction, y= label
- Approach: optimize continuous "surrogate" loss L(u,y) then "link" to target prediction $r=\psi(u)$

Q: When does (quick) **surrogate** convergence imply (quick) **target** convergence? "Surrogate regret bounds" or "regret transfer rates"

$$\operatorname{Regret}_{\ell}(\psi \circ h) \leq \zeta \Big(\operatorname{Regret}_{L}(h) \Big)$$

Regret = "excess risk" over Bayes optimal

This paper: polyhedral surrogates

piecewise-linear and convex

discrete target loss

continuous surrogate loss

Theorem 1: All polyhedral surrogates have **linear** regret transfer rates! **Polyhedral:** surrogate regret $\leq \epsilon \implies$ target regret $\leq O(\epsilon)$.

Theorem 2: Sufficiently "non-polyhedral" transfers are quadratically slower. Non-polyhedral: Can have surrogate regret $\leq \epsilon$ yet target regret $\geq \Omega(\sqrt{\epsilon})$.

Background: surrogate risk, polyhedral losses

Data: $(x,y) \in \mathcal{X} \times \mathcal{Y}$

from distributions \mathcal{D}

Hypotheses: $g: \mathcal{X} \to \mathcal{R}$

example soon

Discrete target loss: $\ell : \mathcal{R} \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$.

Classification (0-1 loss), ranking, top-k

discrete: ${\cal R}$ is finite

Regret: Regret_{ℓ} $(g; \mathcal{D}) := \mathbb{E}_{x,y \sim \mathcal{D}} [\ell(g(x), y) - \ell(g^*(x), y)].$

 $g^* = Bayes optimal$

Continuous surrogate loss: $L: \mathbb{R}^d \times \mathcal{Y} \to \mathbb{R}_{>0}$.

for some d

Hinge loss for classification, BEP surrogate (Ramaswamy et al. 2018)

Polyhedral surrogate $L: \mathbb{R}^d \times \mathcal{Y} \to \mathbb{R}_{>0}$:

pointwise maximum of a finite set of affine functions.

Recent work: polyhedral surrogates are natural convexifications of discrete losses.

Finocchiaro, Frongillo, Waggoner 2019, 2020; applications e.g. Wang, Scott 2020.

Optimizable.

Convex, strongly convex, etc.

Desirable surrogates:

Generalization bound, convergence rate.

Connection to target...

Regret transfer function $\zeta: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$:

Continuous at 0, $\zeta(0) = 0$

$$\operatorname{Regret}_{\ell}(\psi \circ h; \mathcal{D}) \leq \zeta \Big(\operatorname{Regret}_{L}(h; \mathcal{D}) \Big).$$

If any such ζ exists, (L, ψ) is consistent for ℓ .

As $\operatorname{Regret}_L(h^{(n)}; \mathcal{D}) \to 0$, we have $\operatorname{Regret}_{\ell}^{(n)}(\psi \circ h^{(n)}; \mathcal{D}) \to 0$.

Ideally: **fast** convergence, e.g. $\zeta(\epsilon) = O(\sqrt{\epsilon})$ (good), $O(\epsilon^{3/4})$ (better), $O(\epsilon)$ (best).

Prior work: binary classification (Zhang et al. 2004, etc.); bipartite ranking (Agarwal 2014, etc.); multiclass classification (Duchi et al. 2018, etc.); hierarchical classification (Ramaswamy et al. 2015); strongly convex surrogates (Nowak-Vila et al. 2019, etc.).

Results

Theorem 1. Suppose L is polyhedral and (L,ψ) are consistent for the discrete target ℓ . Then there exists C>0 such that, for all $\mathcal D$ and h,

$$\operatorname{Regret}_{\ell}(\psi \circ h; \mathcal{D}) \leq C \cdot \operatorname{Regret}_{L}(h; \mathcal{D}).$$

Proof sketch. Fix x; let $p, q \in \Delta_{\mathcal{Y}}$ be distributions of y given x.

- Suffices to prove that for all p and u, $\operatorname{Regret}_{\ell}(\psi(u);p) \leq C \cdot \operatorname{Regret}_{L}(u;p)$.
- $\blacksquare \ \forall q, \ \exists \alpha_q > 0 \ \text{such that} \ \mathrm{Regret}_\ell(\psi(u);q) \leq \alpha_q \cdot \mathrm{Regret}_L(u;q).$
- Polyhedral losses have a finite structure: related to embeddings framework
 - \blacksquare There is a finite $U\subseteq \mathbb{R}^d$ such that, for all $p,\,U$ contains an optimal prediction.
 - These U partition $\Delta_{\mathcal{Y}}$ into finitely many polytopes.
- Regret is linear on each polytope.
- \blacksquare Therefore $\operatorname{Regret}_L(u;p)$ is a convex combination over the corners.
- $\blacksquare \ \ \text{So we can take} \ C = \max_{\text{corners } q} \alpha_q.$

Theorem 2. Let L be a locally strongly convex surrogate with locally Lipschitz gradient. Suppose (L,ψ) is consistent for ℓ with:

$$\operatorname{Regret}_{\ell}(\psi \circ h) \leq \zeta \Big(\operatorname{Regret}_{L}(h) \Big).$$

Then there exists c>0 such that, for all small enough $\epsilon>0$,

$$\zeta(\epsilon) \ge c\sqrt{\epsilon}$$
.

Proof idea:

- Fix a "boundary" prediction u_0 .
- Consider a conditional distributions $\{p_{\lambda}: 0 < \lambda < 1\}$
- Target regret shrinks linearly as $\lambda \to 0$, but surrogate regret shrinks with $\sqrt{\lambda}$.

Examples: exponential loss, Huber loss

via strengthenings

Investigating the constant in Theorem 1

 $C = \max_{\text{corners } q} \alpha_q$.

What is C?

Can bound $C \leq \beta_L \cdot \beta_\ell \cdot \beta_\psi$.

- minimum slope of polyhedral losses
- lacksquare eta_ℓ comes from a simple maximum possible regret.
- lacksquare $eta_{\psi}=rac{1}{\epsilon}$ where the link is ϵ -separated.

ullet β_L comes from **Hoffman constants**.

see embedding framework

Big picture

Polyhedral surrogate losses are nice:

- Consistent polyhedral surrogates always exist
- Embedding framework
- (This work) Always satisfy linear regret transfer

a.k.a. calibration functions

Next questions:

- Are they good for the whole pipeline? (optimization + generalization)
- Applications...
- e.g. low-dimensional or otherwise "nice" polyhedral surrogates