CSE551: Advanced Computer Security 2. Concepts in Security

Seongil Wi

Recap: Computer Security

The protection of computer systems from unauthorized access

Security Properties (Basic Concepts)

Q. Is Your Computer Secure?

Under what conditions can you say your computer is secure?

Secure Systems Satisfy the CIA Properties

Three most important properties of computer security

• CIA: Confidentiality, Integrity, and Availability

CIA

*

• **C**onfidentiality

• Integrity

• <u>A</u>vailability

CIA (1): Confidentiality (기밀성)

7

<u>C</u>onfidentiality: information <u>is not made available</u> to unauthorized parties

• Integrity

<u>A</u>vailability

CIA (1): Confidentiality

- Information is not made available to unauthorized parties
- Avoidance of the unauthorized disclosure of information
 - -Protection of data
 - -Provide access for those who are allowed to see the data
 - -Disallow others from learning anything about the data

CIA (1): Confidentiality – Compromise

Worst Hacking in Korean Telecom History: The SKT Hacking Incident

On Apr. 22, SK Telecom (SKT), one of the largest wireless carriers in South Korea, announced that it had detected a breach of its internal system on Apr. 18. It was confirmed the following day that a hacker had stolen USIM-related in formation using malicious code to attack the system. This is one of the worst hacking cases in telecom history, cau

CIA (1): Confidentiality

10

- Information is not made available to unauthorized parties
- Avoidance of the unauthorized disclosure of information
 - Protection of data
 - -Provide access for those who are allowed to see the data
 - -Disallow others from learning anything about the data
- How to achieve confidentiality?
 - -Encryption (암호화): transformation of information
 - -Authentication (인증): determination of identity
 - -Access control (접근제어): gatekeeper

CIA (1): Confidentiality – Encryption

- Transformation of information using an encryption key
- Only be read by another user who has the decryption key
- Schemes: symmetric-key encryption, public-key encryption, etc
- Example:

CIA (1): Confidentiality – Authentication

- Determination of the identity or role
- Typical method
 - Something you are (Fingerprint, iris pattern, ...)
 - Something you know (Password, PIN, ...)
 - Something you have (Smart card, key, ...)

CIA (1): Confidentiality – Access Control

- Rules and policies that limit access to confidential information
- Determine <u>what users have permission to do</u>
- Permission is determined by identity (e.g., name, serial) or role (e.g., professor, TA, student)
- Example: Linux file system

	/etc/passwd	/usr/bin	/home/prof/exam_problem/
root	rw	rwx	rwx
professor	r	rx	rwx
ta	r	rx	r
student1	r	rx	-
student2	r	rx	-

Students 1 and 2 are unable to read the exam problem!

CIA (1): Confidentiality – Encryption

- Transformation of information using an encryption key
- Only be read by another user who has the decryption key
- Schemes: symmetric-key encryption, public-key encryption, etc
- Example:

 To be secure: make it extremely difficult to decrypt the data without the decryption key

CIA (1): Confidentiality – Authentication

- Determination of the identity or role
- Typical method
 - Something you are (Fingerprint, iris pattern, ...)
 - Something you know (Password, PIN, ...)
 - Something you have (Smart card, key, ...)

CIA (1): Confidentiality – Access Control

- Rules and policies that limit access to confidential information
- Determine <u>what users have permission to do</u>
- Permission is determined by identity (e.g., name, serial) or role (e.g., professor, TA, student)
- Example: Linux file system

	/etc/passwd	/usr/bin	/home/prof/exam_problem/
root	rw	rwx	rwx
professor	r	rx	rwx
ta	r	rx	r
student1	r	rx	-
student2	r	rx	-

Students 1 and 2 are unable to read the exam problem!

CIA (1): Confidentiality

1

Exercise: Internet Banking

What mechanism is used to achieve confidentiality?

CIA (2): Integrity (무결성)

<u>C</u>onfidentiality: information <u>is not made available</u> to unauthorized parties

• Integrity

• Availability

C<u>I</u>A (2): Integrity (무결성)

<u>C</u>onfidentiality: information <u>is not made available</u> to unauthorized parties

• Integrity: information is not modified in an unauthorized manner

<u>A</u>vailability

*

Information has not been altered in an unauthorized way

- Benign compromise: information altered by accident
 - E.g., bit flips in memory due to cosmic ray

C<u>I</u>A (2): Integrity – Benign Compromise

CIA (2): Integrity

Information has not been altered in an unauthorized way

- Benign compromise: information altered by accident
 - E.g., bit flips in memory due to cosmic ray

- Malicious compromise: information altered by attackers
 - E.g., malicious code that changes some files in a system

CIA (2): Integrity – Malicious Compromise³

수면위로 떠오른 UNIST(유니스트) '해킹 사건'

입력 2017-04-29 09:28

'룸메이트 바꾸려고' 전산망 뚫어…2013년부터 총 4건 유니스트 보안 정보 둔감 '지적'

지난 2014년 3월 유니스트 해킹동아리가 학교전산망에 침입, 자신들의 해커 모집광고를 종합전산망 홈피에 게재해 놓은 배너 모습.

CIA (2): Integrity

Ensuring Integrity

How to ensure the integrity of computer systems?

Backups: periodic archiving of data

· Checksums: computation of a function that maps the data to a

numerical value

U	Ubuntu 22.04.1 LTS (Jammy Jellyfish)								
A ful	A full list of available files, including BitTorrent files, can be found below.								
If yo	f you need help burning these images to disk, see the Image Burning Guide.								
	Name	Last modified	Size	Description					
۲	Parent Directory								
	SHA256SUMS	2022-08-11 11:07	202						
	SHA256SUMS.gpg	2022-08-11 11:07	833						
9	ubuntu-22.04.1-desktop-amd64.iso	2022-08-10 16:21	3.6G	Desktop image for 64-bit PC (AMD64) computers (standard download)					

<u>C</u>onfidentiality: information <u>is not made available</u> to unauthorized parties

• Integrity: information is not modified in an unauthorized manner

<u>A</u>vailability

<u>C</u>onfidentiality: information <u>is not made available</u> to unauthorized parties

• Integrity: information is not modified in an unauthorized manner

Availability: information is readily available when it is needed

CIA (3): Availability

- Information is accessible and modifiable in a timely fashion
- Imagine a unbreakable and unopenable vault. Is it useful?

CIA (3): Availability

- Information is accessible and modifiable in a timely fashion
- Imagine a unbreakable and unopenable vault. Is it useful?

Blue Screen of Death

503 Error

CIA (3): Availability

- Information is accessible and modifiable in a timely fashion
- Imagine a unbreakable and unopenable vault. Is it useful?

Kakao's meltdown raises big questions about its management

CIA (3): Availability

- Information is accessible and modifiable in a timely fashion
- Imagine a unbreakable and unopenable vault. Is it useful?

- How to achieve availability?
 - Physical protections: keep information available even in physical challenges (e.g., storms, earthquakes, or power outages)
 - Computational redundancies: computers that serve as fallbacks in the case of failure

Other properties?

- Confidentiality
- Integrity
- Availability

Other properties?

*

- Confidentiality
- Integrity
- Availability

- + **Authentication**: the ability of a computer system to *confirm the* sender's identity
- + Non-repudiation: the ability of a computer system to confirm that the sender can not deny about something sent

Authentication (인증)

- Determination of the identity or role
- Typical method
 - Something you are (Fingerprint, iris pattern, ...)
 - Something you know (Password, PIN, ...)
 - Something you have (Smart card, key, ...)

Non-repudiation (부인방지)

- A party cannot deny the authenticity of a message or transaction
- How to determine that statements, policies, and permissions are genuine?

- What happens if those can be faked?
 - "I did not make commitment. Maybe someone pretended to be me! (오리발 내밀기)"
- Non-repudiation by secure authentication: authentic statement cannot be denied
 - E.g., digital signature

Aspects of Security

Security Attacks

Note terms

- Threat: a potential for violation of security
- Attack: an assault on system security, a deliberate attempt to evade security services

Passive attacks

Observing the information from the system without affecting system resources

Active attacks

- Try to alter system resources or affect their operation

Passive Attacks

Passive Attacks

• Disclosure of message contents (e.g., eavesdropping)

Passive Attacks

39

Traffic analysis

Passive Attack Example

 Beauty and the Burst: Remote Identification of Encrypted Video Streams, USENIX SEC'17

Beauty and the Burst: Remote Identification of Encrypted Video Streams

Roei Schuster
Tel Aviv University, Cornell Tech
rs864@cornell.edu

Vitaly Shmatikov

Cornell Tech

shmat@cs.cornell.edu

Eran Tromer

Tel Aviv University, Columbia University

tromer@cs.tau.ac.il

Abstract

The MPEG-DASH streaming video standard contains an information leak: even if the stream is encrypted, the segmentation prescribed by the standard causes content-dependent packet bursts. We show that many video streams are uniquely characterized by their burst pat-

Our contributions. First, we analyze the root cause of the bursty, on-off patterns exhibited by encrypted video streams. The MPEG-DASH streaming standard (1) creates video segments whose size varies due to variable-rate encoding, and (2) prescribes that clients request content at segment granularity. We demonstrate that packet bursts in encrypted streams correspond to segment re-

Beauty and the Burst, USENIX SEC '17

 Observation: Many video streams are uniquely characterized by their <u>burst patterns</u> (Fingerprintable patterns)

 Even if packets are encrypted at the transport layer (e.g., using TLS), their sizes and times of arrival are visible to anyone watching the network

Iguana vs. Snakes bitrate

Beauty and the Burst, USENIX SEC '17

- 43
- Observation: Many video streams are uniquely characterized by their <u>burst patterns</u> (Fingerprintable patterns)
 - Even if packets are encrypted at the transport layer (e.g., using TLS),
 their sizes and times of arrival are visible to anyone watching the
 network
- Approach: ML-based video fingerprinting

Features

Downstream/upstream/total values of bps

- Packet per second
- Average packet length

•

Video I

Beauty and the Burst, USENIX SEC '17

- 44
- Observation: Many video streams are uniquely characterized by their <u>burst patterns</u> (Fingerprintable patterns)
 - Even if packets are encrypted at the transport layer (e.g., using TLS), their sizes and times of arrival are visible to anyone watching the network
- Approach: ML-based video fingerprinting
- Results:
 - Youtube: 0 false positives with 0.988 recall
 - Netflix: 0.0005 false positive rate with 0.93 recall

Passive Attacks – Lessons

- Difficult to detect (after they occurred)
 - -Because they do not involve any change of the data

Thus, they should be prevented rather than be detected

Active Attacks

- Creating illegitimate messages
 - -Masquerade (who)
 - -Replay (when)
 - Modification of messages (what)
- Denying legitimate messages
 - -Repudiation

Making system facilities unavailable

- Masquerade
 - -One entity pretends to be a different entity

Active Attacks

- Replay
 - A message is captured and retransmitted later

- Replay
 - A message is captured and retransmitted later

- Modification of messages
 - A message is captured, modified, and transmitted

- Repudiation
 - Denial of sending or receiving messages

- Denial of Service (DoS)
 - Making system facilities unavailable

Active Attacks – Lessons

- Difficult to prevent
 - -Because of new/unknown vulnerabilities

 So, the goal is to detect active attacks and to recover as soon as possible

Security Mechanism

*

 Feature designed to detect, prevent, or recover from a security attack

• E.g., Cryptography (encipherment, digital signatures)

Introduction to Cryptography

Cryptography – Overview

Cryptography is about confidentiality and integrity

What about availability?

Cryptographic Primitives

- Symmetric key encryption/decryption
- Asymmetric key encryption/decryption
- Digital signatures
- Hash functions
- Etc.

Symmetric Key Cryptography

The same key is used to encrypt/decrypt messages

Also known as secret key algorithm

Shared secret key

Symmetric Key Cryptography

59

The same key is used to encrypt/decrypt messages

Symmetric Key Cryptography

- Pros?
 - -Fast
 - Intuitive
- Cons?
 - Once the key is compromised, then the whole system becomes useless
 - Key sharing is difficult
 - Digital sign is difficult

Asymmetric Key Cryptography

Each party has two distinct keys: public key and private key

- Also known as public-key algorithm

Each party has two distinct keys: public key and private key

- Also known as public-key algorithm

Asymmetric Key Cryptography

63

Each party has two distinct keys: public key and private key

- Also known as public-key algorithm

Only Bob should have this key

Asymmetric Key Cryptography

Each party has two distinct keys: public key and private key

Ciphertext

Asymmetric Key Cryptography

• Pros?

• Cons?

Digital Signature

Digital Signature

Summary

- The goal of security: understanding possible threats in computer systems
- The CIA triad: fundamental security properties
 - Confidentiality, Integrity, Availability
 - + Authentication, Non-repudiation
- Aspects of security:
 - Security attack, Security service, Security mechanism
- What should you do now in order to make your software/information/computer secure?
 - Learn the basic cryptographic primitives (next lecture)

Question?