2. $x = \frac{1}{1 + \ln 3}$ et $y = \frac{3}{1 + \ln 2}$ 5. $x = \frac{\ln 3}{\ln 3 + \ln 2}$ et $y = \frac{\ln 3}{\ln 3 + \ln 2}$

(M. - 98)

1. 0 2. $+\infty$ 3. 1 4. $-\infty$ 5. -1 (M.-98)

3. 1/e 4. $1/e^2$ 5. $2e^2$ (M.-98)

131. $\lim_{m\to\infty} \left(\frac{m^2+1}{m^2-1}\right)^{m^2} =$

1. e² 2. e

3. $x = \frac{1}{\ln x}$ et $y = \frac{\ln x}{4}$

132. $\lim_{x \to 1} \ln \left(\frac{x^2 - x + 1}{x - 1} \right) =$

1.xy=0 2.xy=
$$\frac{243}{32}$$
 3.x+y=3 4.x+y=7/2 5.x+y=24/100 (M.-98)

138. Le système
$$\begin{cases} 2^{1/x} \cdot 2^{1/y} = 32 \\ 2^x \cdot 2^y = \sqrt[6]{32} \end{cases}$$
 a pour solution
$$1. \ (-1/2; -1/3) \qquad 3. \ (3; 2) \qquad 5. \ (1/3; 1/2)$$
 2. $(1/3; -1/2) \qquad 4. \ (1/2; 1/3) \qquad (M.)$

137. Le système $\begin{cases} x^y = y^x \\ y^2 = y^2 \end{cases}$ a une solution telle que