Tutorial Stats Inference 2 - Solutions

1. Primary School

A random sample of 25 ten year olds were taken from primary schools in each of Scotland, England, Northern Ireland and Wales, and their height was then measured in inches. Choose the appropriate method of analysis to determine if there were significant differences between the heights of 10 year olds in each country, and if so which countries were significantly different from which?

Let μ_i be the mean height of 10 year olds from country i.

Let s= Scotland, e=England, n=Northern Ireland and w=Wales.

Then

$$H_0$$
: $\mu_s = \mu_e = \mu_n = \mu_w$

 H_1 : at least one μ_i not equal

First we need to check the assumptions which are:

- The subjects have been selected at random from the m groups.
- The dependent variable/response is normally distributed in each group.
- The dependent variable has the same variance in each group (denoted as σ^2).

We are told that the subjects have been randomly selected therefore this assumption has been met. We therefore need to now check that height is normally distributed in each school, the null and alternative hypotheses being that:

 H_0 : samples x_s , x_e , x_n , x_w came from a normally distributed population

 H_1 : at least one sample did not come from a normally distributed population

This is the output table obtained for the school in England along with the corresponding histogram:

Goodness-of-Fit Tests for Normal Distribution					
Test	Statist	ic	p Value		
Kolmogorov-Smirnov	D	0.10685969	Pr > D	>0.150	
Cramer-von Mises	W-Sq	0.03659763	Pr > W-Sq	>0.250	
Anderson-Darling	A-Sq	0.22372461	Pr > A-Sq	>0.250	

Looking at the p-values for all tests for normality, no significant difference is found. Therefore we do not reject the null hypothesis, so there is no evidence to suggest that the distribution is not a normally distributed.

Carrying out this procedure for all other countries yields the same result, therefore we can conclude that we meet the assumption for normality, hence do not reject the null hypothesis.

The final assumption is that of equal variances, with the null and alternative hypothesis being:

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \dots = \sigma_m^2$
 H_1 : σ_i^2 are not all equal.

Examining Bartlett's test for Homogeneity of variances, we can see that a p-value of 0.0701 is not significant at the 5% level, therefore we do not reject the null hypothesis and we can conclude that there is no evidence to suggest that the variances are not equal.

Bartlett's Test for Homogeneity of Height Variance			
Source	DF	Chi-Square	Pr > ChiSq
Country	3	7.0580	0.0701

Results of the ANOVA show no significant difference at 5% (p-value =0.3242), therefore we do not reject the null hypothesis, and conclude that there is no evidence to suggest that the heights of 10 year olds differ by country.

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	31.3784751	10.4594917	1.17	0.3242
Error	96	856.0528874	8.9172176		
Corrected Total	99	887.4313625			

The box and whisker plot further supports this conclusion as we can see the means are similar.

2. Counselling Therapy

In counselling and psychotherapy of subjects, the beneficial effects of pre-therapy training have been discussed. Four different approaches to pre-therapy training are (a) control (no training), (b) therapeutic reading (TR), which involves indirect learning, (c) vicarious therapy pre-training (VTP), which involves videotaped vicarious learning, and (d) group, role induction interview (RII), which involves direct learning. It is useful to compare the effectiveness of these approaches on the response variable, psychotherapeutic attraction, which is assigned a score between 0 and 40. Are there significant differences in the level effectiveness of approach? If so, which approach is the best and which is the worst?

It is stated in the question that the response variable is a score, therefore we need to perform a non-parametric one-way ANOVA, and interpret the output of the Kruskal-Wallis test.

The null and alternative hypotheses for this test are:

 H_0 : The m distributions are identical;

 H_1 : Not all of the distributions are the same.

Kruskal-Wallis Test				
Chi-Square	DF	Pr > ChiSq		
22.9452	3	<.0001		

By examining the results of the Kruskal-Wallis (p-value < 0.0001) we can see that a significant result has been obtained at the 5% level, even at the 0.1% level. Therefore we reject the null hypothesis and conclude that there is a difference between the effectiveness of the approaches.

The next step is to determine where the significant differences are, therefore, post-hoc comparisons need to be performed.

With the result using the Pairwise Two-Sided Multiple Comparison Analysis as follows.

Pairwise Two-Sided Multiple Comparison Analysis				
Dwass, Steel, Critchlow-Fligner Method				
Variable: Score				
Group	Wilcoxon Z	DSCF Value	Pr > DSCF	
Control vs. RII	-2.7887	3.9438	0.0272	
Control vs. TR	-3.0559	4.3217	0.0120	
Control vs. VTP	-3.5836	5.0680	0.0019	
RII vs. TR	-1.7264	2.4414	0.3099	
RII vs. VTP	-3.1855	4.5049	0.0079	
TR vs. VTP	-2.0870	2.9514	0.1573	

Using this table is can be seen that there is a significant difference between all pairs of groups except for TR against both RII and VTP. Therefore the Control group has significantly the lowest scores, which is what would be expected as no training has been provided and VTP along with TR have the highest scores (these two are not significantly different, hence you cannot determine which is higher, although VTP has the higher mean).

This result is further supported by examining the box plots. Note that there is one outlier in the data which should be investigated further.

3. Mercury Pollution

An ecologist wishes to assess the level of mercury contamination in five different rivers. To achieve this he catches thirty fish from each river, and measures their level of mercury concentration. Are there significant differences in the level of pollution? If so, which rivers are the worst and least effected?

Let μ_i be the mean mercury level in fish from river i.

Let p= Porthead, r= Reasbury, s= Swinford and w= Whitethorpe.

Then

$$H_0$$
: $\mu_p = \mu_r = \mu_s = \mu_w$

 H_1 : at least one μ_i not equal

We therefore need to now check that mercury level is normally distributed in fish from each river, the null and alternative hypotheses being that:

 H_0 : samples x_p , x_r , x_s , x_w came from a normally distributed population

 H_1 : at least one sample did not come from a normally distributed population

Looking at the p-values for all tests for normality, no significant difference is found. Therefore we do not reject the null hypothesis, so there is no evidence to suggest that the distribution is not a normally distributed.

The final assumption is that of equal variances, with the null and alternative hypothesis being:

$$H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \dots = \sigma_m^2$$

 H_1 : σ_i^2 are not all equal.

Examining Bartlett's test for Homogeneity of variances, we can see that a p-value of 0.0701 is not significant at the 5% level, therefore we do not reject the null hypothesis and we can conclude that there is no evidence to suggest that the variances are not equal.

Bartlett's test provides a p-value of 0.6185, which is not significant at the 5% level, therefore we do not reject the null hypothesis (as stated previously) and we can conclude that the variances of each group are equal.

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	3990.968920	997.742230	56.15	<.0001
Error	142	2523.145393	17.768630		
Corrected Total	146	6514.114312			

Examining the result of the ANOVA we can see that a p-value of <0.0001 is significant at the 5% level, therefore we can reject the null hypothesis (as stated above) and conclude that there is a significant difference between the levels of pollution in the rivers.

The next step is to perform post-hoc comparisons to determine where the significant differences can be found, again the Bonferoni test will be used.

By examining the significances for each pair of rivers, it can be seen that a significant difference can be found between all rivers except for 'Reasbury and Swindford' and 'Kelee and Whitethorpe'.

This is further supported by the boxplot which shows that Reasbury and Swinford gave the highest readings (not significantly different from each other), so were worst effected and Porthead significantly gave the lowest readings, so was least effected.

