Physik Übung – Einheitengleichungen

Das griechische Alphabet:

Klein	Groß	Name/Aussprache	Anschrieb
α	A	alpha	$\propto A$
β	B	beta	BB
$\frac{\gamma}{\delta}$	Γ	gamma	VP
	Δ	delta	°S D
ε	E	epsilon	E E
ζ	Z	zeta	YZ
$\frac{\eta}{\vartheta}$	H	äta	nH
ϑ	Θ	theta	\$ 0
ι	I	iota	LI
κ	K	kappa	JK K
λ	Λ	lambda	E E Z H B L K A M N E O TT P W
μ	M	mü	N M
ν	N	nü	VN
ξ	E 0	xi	¥ =
0		omikron	= 0
π	П	pi	TIT
PQ	P	rho	e P
σ	$\frac{\Sigma}{T}$	sigma	φ Σ
au		tau	TT
v	Υ	ypsilon	TT T P S S T T U Y
φ	Φ	phi	wo
	X	chi	XX
$\frac{\chi}{\psi}$	Ψ	psi	XX ΨΨ
ω	Ω	omega	ws

(Quelle: https://www.math.uni-trier.de/~schulz/galphabet.jpg)

1. Gegeben ist die Gleichung für einen idealen Schwingkreis:

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \quad = \quad \frac{1}{2\pi\sqrt{\sqrt{s_s}}} = \frac{1}{2\pi\sqrt{\sqrt{s_s}}}$$

$$= \frac{1}{2\pi\sqrt{s_s}}$$

Ist der Faktor \sqrt{LC} korrekt?

2. Für ein homogenes, isotropes Universum ergibt sich aus den Einsteinschen Feldgleichungen:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2} \right) + \frac{\Lambda c^2}{3}$$

- G = Newtonsche Gravitationskonstante
- c = Lichtgeschwindigkeit
- $\rho = Massendichte$
- p = Druck
- $\Lambda =$ kosmologische Konstante mit der Einheit m^{-2}
- Welche physikalische Einheit hat $\frac{\ddot{a}}{a}$?
- 3. Die Leistung P wird berechnet mit der Gleichung

$$P = \frac{W}{t}$$
.

- Leiten Sie die physikalische Einheit für P her.
- 4. Welche physikalische Einheit ergibt sich? Welcher physikalischen Größe entspricht das?
 - a) $\frac{\text{kg} \cdot \text{Hz}}{\text{C}}$
 - $b) \; \frac{ms^{-1}}{Hz}$
 - $c)\;\frac{\mathrm{kg}\;(m\cdot s^{-1})^2}{JK^{-1}}$
 - d) $\frac{\text{m}}{\text{m}s^{-1}} \sqrt{\frac{m^2 kg \, s^{-2} K^{-1} \cdot K}{kg}}$
 - $e) \frac{T}{\sqrt{\frac{N}{A^2} \frac{kg}{m^3}}}$
 - $f) \frac{\underline{kg \cdot m^2}}{s \cdot \text{Hz} \cdot \text{m}^2}$ (Beispiel für verschiedene Lösungswege Es ergibt keine SI Einheit)

2

2. Für ein homogenes, isotropes Universum ergibt sich aus den Einsteinschen Feldgleichungen:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2} \right) + \frac{\Lambda c^2}{3}$$

G. (P + P) + 1c2

G = Newtonsche Gravitationskonstante

c = Lichtgeschwindigkeit

 $\rho = Massendichte$

p = Druck

 $\Lambda = {
m kosmologische} \ {
m Konstante} \ {
m mit} \ {
m der} \ {
m Einheit} \ m^{-2}$

Landla

Welche physikalische Einheit hat $\frac{\ddot{a}}{2}$?

$$G = \frac{1}{m^3} \cdot \frac{1}{k} \cdot \frac{1}{k}$$