IS606 Bayesian (Homework 9)

Daniel Dittenhafer
December 6, 2015

2.1 (p31)

Model A The following code defines a function for the Model A probabilities.

```
xSeq <- seq(1, 4)
modelA <- function(x)
{
   return (1 / 4)
}

dfModelA <- data.frame(x=xSeq, Px=modelA(xSeq))
kable(dfModelA, caption="Model A Probabilities")</pre>
```

Table 1: Model A Probabilities

X	Px
1	0.25
2	0.25
3	0.25
4	0.25

We don't see any bias in the Model A probabilities. They are all equal.

Model B The following code defines a function for the Model B probabilities.

```
modelB <- function(x)
{
   return (x / 10)
}

dfModelB <- data.frame(x=xSeq, Px=modelB(xSeq))
kable(dfModelB, caption="Model B Probabilities")</pre>
```

Table 2: Model B Probabilities

x	Px
1	0.1
2	0.2
3	0.3
4	0.4

Model B is biased toward the higher numbers.

Model C The following code defines a function for the Model C probabilities.

```
modelC <- function(x)
{
   return (12 / (25 * x))
}

dfModelC <- data.frame(x=xSeq, Px=modelC(xSeq))
kable(dfModelC, caption="Model C Probabilities")</pre>
```

Table 3: Model C Probabilities

x	Px
1	0.48
2	0.24
3	0.16
4	0.12

Model C is biased toward the lower numbers, slightly more so than Model B was toward the higher numbers.

5.1 (p118)

The following code works throught the test for a disease and retest scenario for an individual.

```
# Define marginal probabilities
marginalProbDiseasePresent <- 0.001
marginalProbDiseaseAbsent <- 1 - marginalProbDiseasePresent
# Define composite probabilities
probTestPosGivenDisPresent <- 0.99
probTestPosGivenDisAbsent <- 0.05
# Func of Bayes rule
bayesRule <- function(likelihood, prior, evidence)
{
    return ((likelihood * prior) / sum(evidence))
}</pre>
```

First we compute the probability of having the disease given the test is positive.

[1] 0.01943463

Now, after a re-test and a negative result, what is the probability of having the disease?

a) Table

```
## ThetaSad ThetaHappy Col3
## 1 99 4995 5094
## 2 1 94905 94906
## 3 100 99900 100000
```

b) Proportion of people who have the disease given their test result is positive It looks like about 2%. Computing:

```
b <- 99 / 5094
b
```

[1] 0.01943463

c) The following code computes the "Markov" natural frequencies and displays the table.

ThetaSad	ThetaHappy
10000	9990000
9900	499500
99	474525

d) What proportion of people who test positive at first and then negative on retest, actually have the disease?

```
numerator <- ((nDisPresent * (0.99)) * ((1-0.99)))
denom <- ((nDisPresent * (0.99)) * (1-0.99)) + (nDisAbsent * (0.05) * (1-0.05))
nActuallyHaveDisease <- numerator / denom</pre>
nActuallyHaveDisease
```

[1] 0.0002085862