Morphological alterations of language regions in ASD children

```
library(here)
here::set_here(path = ".")
detach("package:here", unload = TRUE)
```

Set up

Load data

head(all data)

```
data_behavior <- read.xlsx("./Raw/subj_info_final.xlsx")</pre>
eTIV <- read.csv("./Raw/TIV_allsubj.txt", sep="")</pre>
colnames(eTIV)[1] <- "Name" #</pre>
data_behavior$Gender <- recode(data_behavior$Gender, "'F' = 0;'M' = 1")
all_data <- merge(data_behavior,eTIV,by="Name")</pre>
# View(all_data)
# divide the ASD group into two subgroups
median_value <- median(all_data$Gesell_Lang[all_data$Dx == "ASD"])</pre>
all_data$subgroup[all_data$Dx == "ASD" & all_data$Gesell_Lang > median_value] <- "ASDMLD"
all_data$subgroup[all_data$Dx == "ASD" & all_data$Gesell_Lang < median_value] <- "ASDSLD"
all_data$subgroup[all_data$Dx == "TD"] <- "TD"</pre>
print(unique(all_data$subgroup))
## [1] "TD"
                 "ASDMLD" "ASDSLD"
# Adjust cols
all_data <- all_data[,c(1:4,17,5:16)]</pre>
all_data[, c(3,6:16)] <- lapply(all_data[, c(3,6:16)], function(x) as.numeric(gsub("[^0-9.-]", NA, x)))
```

write.xlsx(all_data, "./Table/Data/datafile_beh.xlsx", colnames = T)

```
##
             Name Gender Age Dx subgroup Gesell_Adpt Gesell_GrMot Gesell_FineMot
## 1
         Caidian
                       1 4.07
                                TD
                                                     98.0
                                                                  104.0
                                                                                   98.0
                                          TD
## 2
                                                                                   98.0
         Caiziyi
                       1 2.17
                               TD
                                          TD
                                                     97.0
                                                                  103.0
                                                     70.0
                                                                   76.3
                                                                                   78.9
## 3
       {\tt Caozimiao}
                       1 1.52 ASD
                                     ASDMLD
## 4
      Chenboyang
                       1 3.50 ASD
                                     ASDSLD
                                                     39.0
                                                                   64.1
                                                                                   58.5
## 5
       Chenhaiqi
                       1 2.83 ASD
                                     ASDMLD
                                                                   78.5
                                                     73.7
                                                                                   82.6
## 6 Chentianman
                       1 2.83 TD
                                                     95.0
                                                                   99.0
                                          TD
                                                                                  103.0
     Gesell_Lang Gesell_Social Gesell_Total ADOS_SA ADOS_RRB ADOS_Total CARS ABC
##
## 1
             96.0
                            96.0
                                          98.4
                                                    NA
                                                              NA
                                                                          NA
                                                                                NA
                                                                                    17
## 2
             94.0
                            94.0
                                          97.2
                                                              NA
                                                                                    28
                                                    NA
                                                                          NA
                                                                                NA
## 3
             61.0
                            67.3
                                          69.7
                                                     10
                                                               1
                                                                          11
                                                                                NA
                                                                                    56
                                          43.5
                                                               3
                                                                                45 87
## 4
             23.6
                            32.4
                                                     15
                                                                          18
                                                               2
## 5
             44.6
                            66.7
                                          71.2
                                                     16
                                                                          18
                                                                                34
                                                                                    78
## 6
                            95.0
                                          97.4
                                                                                    25
             95.0
                                                     NA
                                                              NA
                                                                          NA
                                                                                15
##
        eTIV
## 1 1062922
## 2 1249739
## 3 768175
## 4 1299138
## 5 1161733
## 6 1160498
```

Demographic information

```
## TD, ASDMLD, and ASDSLD groups
## Age, subgroup, Gesell, ADOS, CARS, ABC
print(colnames(datafile[,c(3,5,6:16)]))
```

```
## [1] "Age"
                          "subgroup"
                                           "Gesell Adpt"
                                                             "Gesell GrMot"
   [5] "Gesell FineMot" "Gesell Lang"
                                           "Gesell Social"
                                                            "Gesell_Total"
                         "ADOS RRB"
                                           "ADOS Total"
                                                             "CARS"
  [9] "ADOS SA"
## [13] "ABC"
mean_all <- describeBy(datafile[,c(3,5,6:16)], group ="subgroup")</pre>
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
# Mean±SD, Range
demo all[1:12, 1:6] <-
    cbind(paste0(round(mean_all[[1]]$mean[c(1,3:13)],2),"±",
             round(mean_all[[1]]$sd[c(1,3:13)],2)),
          paste0(round(mean_all[[1]]$min[c(1,3:13)],2),"-",
                 round(mean_all[[1]]$max[c(1,3:13)],2)),
          paste0(round(mean all[[2]] mean[c(1,3:13)],2),"\pm",
                 round(mean_all[[2]]$sd[c(1,3:13)],2)),
          paste0(round(mean_all[[2]]$min[c(1,3:13)],2),"-",
                 round(mean_all[[2]]$max[c(1,3:13)],2)),
          paste0(round(mean_all[[3]]$mean[c(1,3:13)],3),"±",
                 round(mean_all[[3]]$sd[c(1,3:13)],3)),
          paste0(round(mean_all[[3]]$min[c(1,3:13)],3),"-",
                 round(mean_all[[3]]$max[c(1,3:13)],3)))
rownames(demo_all) <- colnames(datafile[,c(3,6:16)])</pre>
colnames(demo_all)[1:6] <- c("TD_mean","TD_range",</pre>
            "ASDMLD_mean", "ASDMLD_range",
            "ASDSLD_mean", "ASDSLD_range")
knitr::kable(demo all)
```

	TD_mean	TD_range	ASDMLD_m	eaAnSDMLD_	rang A SDSLD_mear	n ASDSLD_range
Age	$3.39{\pm}1.49$	1.5-5.87	3.31±1.33	1.52-6.53	3.039 ± 0.98	2-5.57
$Gesell_Adpt$	93.79 ± 5.39	80-107	66.18 ± 8.76	40.9 - 82	55.068 ± 13.334	31.6 - 93.7
$Gesell_GrMot$	$97.42 {\pm} 6.1$	81.1-107	77.76 ± 8.7	47.8-91	71.791 ± 8.342	52-87.5
$Gesell_FineMot$	96.73 ± 5.34	86-108	73.31 ± 9.39	54.1 - 90.4	$64.247{\pm}10.212$	45.9-84.1
Gesell_Lang	91.47 ± 5.55	75.7 - 101	55.07 ± 7.76	44.6 - 70.7	37.112 ± 5.908	23.6-44.2
$Gesell_Social$	93.76 ± 4.52	80-103	60.46 ± 7.4	31-70.2	48.156 ± 7.779	30.2 - 64.2
$Gesell_Total$	$94.34{\pm}4.22$	85.1-100.8	66.72 ± 5.61	49.1 - 79.4	55.254 ± 7.112	39.3 - 68.74
$ADOS_SA$	$NaN\pm NA$	Inf-Inf	12.41 ± 3.6	7-20	13.04 ± 3.259	8-22
$ADOS_RRB$	$NaN\pm NA$	Inf-Inf	$1.24 {\pm} 0.91$	0-4	1.52 ± 1.046	0-4
ADOS_Total	$NaN\pm NA$	Inf-Inf	$13.2 {\pm} 4.72$	0-23	14.56 ± 3.906	9-24
CARS	14.33 ± 1.15	13-15	31.92 ± 2.02	30-38	35 ± 4.967	25-45
ABC	25.3 ± 8.56	8-43	$66.65{\pm}14.26$	53-107	74.971 ± 19.806	54-130

```
## Group comparison
# Age, subgroup, Gesell, ADOS, CARS, ABC: t-test between each two groups
for(tt in colnames(datafile)[c(3,6:16)]) {
  # TD with no ADOS
    if (all(is.na(datafile[datafile$subgroup == "TD", tt]))) {
        myt3 <- t.test(datafile[datafile$subgroup == "ASDMLD", tt],</pre>
              datafile[datafile$subgroup == "ASDSLD", tt],na.action = T)
        demo_all[tt, 7:12] <- c(NA,NA,NA,NA,round(myt3$statistic,2),</pre>
                     round(myt3$p.value,3))
    } else {
        myt1 <- t.test(datafile[datafile$subgroup == "TD", tt],</pre>
              datafile[datafile$subgroup == "ASDMLD", tt],na.action = T)
        myt2 <- t.test(datafile[datafile$subgroup == "TD", tt],</pre>
              datafile[datafile$subgroup == "ASDSLD", tt],na.action = T)
        myt3 <- t.test(datafile[datafile$subgroup == "ASDMLD", tt],</pre>
              datafile[datafile$subgroup == "ASDSLD", tt],na.action = T)
        demo_all[tt, 7:12] <- c(round(myt1\statistic,2),round(myt1\sp.value,3),</pre>
                                 round(myt2$statistic,2),round(myt2$p.value,3),
                                 round(myt3$statistic,2),round(myt3$p.value,3))
    }
colnames(demo_all)[7:12] <- c("TDvsASDMLD_t","TDvsASDMLD_p",</pre>
                              "TDvsASDSLD t", "TDvsASDSLD p",
                               "ASDmodvsASDsev_t", "ASDmodvsASDsev_p")
#View(demo_all)
## gender: Chi-square Test
median(datafile$Gesell_Lang[datafile$Dx == "ASD"])
## [1] 44.4
k <- table(datafile$subgroup, datafile$Gender)</pre>
tk <- chisq.test(k) # comparison across three groups
t.k
##
   Pearson's Chi-squared test
##
## data: k
## X-squared = 5.7106, df = 2, p-value = 0.05754
datafile$subgroup <- as.character(datafile$subgroup)</pre>
# comparsion between each two groups
k1 <- table(datafile$subgroup[datafile$subgroup !="ASDSLD"],</pre>
       datafile$Gender[datafile$subgroup !="ASDSLD"])
tk1 <- chisq.test(k1)</pre>
```

Warning in chisq.test(k1): Chi-squared approximation may be incorrect

TD_mE	Dn_ra A &DML I A	<u>SDAMADASIASBAASDA</u>	alaD <u>T</u> DanseA	eSDM4dA	StDIM vsD	A <u>S</u> posija <u>A</u>	SIASIDDo	opolvs AlSIDis eovo	<u>lv</u> tsASDsev_p
Sex 5/32	2/32	9/25	0.461	0.497	1.15	0.284	3.904	0.048	

	TDvsA	SD MD xB <u>A</u> \$I	D MJ JB <u>A</u> SD	MIIDV <u>s</u> A	SjipTSDD s <u>A</u> tS	D SD D <u>s</u> ApSD	SABD and j	pvs ASSDem odtv	s ASSIDMILI DVsASDSLD
Age	0.25	0.807	0.807	1.19	0.238	0.5115	0.96	0.341	0.5115
Sex	0.461	0.497	0.497	1.15	0.284	0.4260	3.904	0.048	0.1440
Gesell_A	4d p5 .82	0	0.000	15.79	0	0.0000	4.06	0	0.0000
Gesell_C	3r M 0₀94	0	0.000	14.67	0	0.0000	2.88	0.005	0.0050
Gesell_F	in e247 57t	0	0.000	16.58	0	0.0000	3.81	0	0.0000
Gesell_L	an 22.55	0	0.000	39.86	0	0.0000	10.73	0	0.0000
$Gesell_S$	oc 22 165	0	0.000	29.86	0	0.0000	6.68	0	0.0000
Gesell_T	Tot ≥3 .27	0	0.000	27.85	0	0.0000	7.38	0	0.0000

```
TDvsASDM<u>hJa</u>$DM<u>hJa</u>$DMIIDv<u>s</u>A$DDDb<u>s</u>A$D$DDb<u>s</u>A$D$DDb<u>sA</u>$DSADDmbjøvsA$DDmodtvsA$DDMLDvsASDSLD_adjp
ADOS SANA
                   NA
                                 NA
                                                NA
                                                              NA
                                                                                0.505
                                                                                               0.5050
ADOS RRYBA
                   NA
                                      NA
                                 NA
                                                NA
                                                              NA
                                                                    -1.04
                                                                                0.306
                                                                                               0.3060
ADOS TONA
                   NA
                                 NA
                                      NA
                                                NA
                                                              NA
                                                                    -1.17
                                                                                               0.2480
                                                                                0.248
CARS
          -22.69
                   0
                                0.000
                                      -19.11
                                                0
                                                            0.0000 - 3.28
                                                                                0.002
                                                                                               0.0020
ABC
          -14.66
                                0.000 - 13.51
                                                            0.0000 - 1.99
                                                                                0.051
                                                                                               0.0510
## ADOS and CARS
subj_info_ASD <- datafile[datafile$Dx == "ASD", ]</pre>
dim(subj_info_ASD)
## [1] 68 17
```

```
k <- sum(!is.na(datafile$ADOS_Total[datafile$Dx == "ASD"]))
kk <- sum(!is.na(datafile$CARS[datafile$Dx == "ASD"]))
kkk <- sum(!is.na(datafile$CARS[datafile$Dx == "TD"]))
print(paste0("n = ", k, " children with ASD had ADOS"))</pre>
```

```
## [1] "n = 55 children with ASD had ADOS"

print(paste0("n = ", kk, " children with ASD had CARS"))

## [1] "n = 60 children with ASD had CARS"

print(paste0("n = ", kkk, " TD children had CARS"))
```

[1] "n = 3 TD children had CARS"

Load cortical volume/thickness/surface data

```
colnames(ASD_all)[1] <- "Name"</pre>
dim(ASD_all)
# TD group
TD_ROIL <- read.table(paste0("Raw/ROI_aparc_aseg/TD/aparc_stats2table/lh.aparc_stats.",
                 feature,".txt"), header = T)
TD ROIR <- read.table(paste0("Raw/ROI aparc aseg/TD/aparc stats2table/rh.aparc stats.",
                 feature,".txt"), header = T)
TD_all <- cbind(TD_ROIL[1], TD_ROIL[,paste0("lh_",ROIs,"_", feature )],</pre>
         TD_ROIR[,paste0("rh_",ROIs,"_", feature )])
colnames(TD all)[1] <- "Name"</pre>
dim(TD_all)
ROI_all <- rbind.data.frame(ASD_all, TD_all)</pre>
datafile_new <- merge(datafile, ROI_all, by = "Name")</pre>
dim(datafile_new)
addWorksheet(wb,feature)
writeData(wb,feature,datafile_new)
}
# saveWorkbook(wb, pasteO("./Table/Data/datafile_features.xlsx"))
print(colnames(datafile_new))
## [1] "Name"
                                       "Gender"
                                       "Dx"
## [3] "Age"
## [5] "subgroup"
                                       "Gesell_Adpt"
## [7] "Gesell_GrMot"
                                       "Gesell_FineMot"
## [9] "Gesell_Lang"
                                       "Gesell_Social"
## [11] "Gesell_Total"
                                       "ADOS_SA"
## [13] "ADOS_RRB"
                                       "ADOS_Total"
                                       "ABC"
## [15] "CARS"
## [17] "eTIV"
                                       "lh_parsorbitalis_area"
## [19] "lh_parstriangularis_area"
                                       "lh_parsopercularis_area"
## [21] "lh_caudalmiddlefrontal_area" "lh_supramarginal_area"
## [23] "lh_inferiorparietal_area"
                                       "lh_transversetemporal_area"
## [25] "lh_superiortemporal_area"
                                       "lh_middletemporal_area"
## [27] "lh_lingual_area"
                                       "rh parsorbitalis area"
## [29] "rh_parstriangularis_area"
                                       "rh_parsopercularis_area"
## [31] "rh_caudalmiddlefrontal_area" "rh_supramarginal_area"
## [33] "rh_inferiorparietal_area"
                                       "rh_transversetemporal_area"
## [35] "rh_superiortemporal_area"
                                       "rh_middletemporal_area"
## [37] "rh lingual area"
```

Descriptive analysis on cortical volume/thickness/surface

```
wb <- createWorkbook()</pre>
for (feature in c("volume", "thickness", "area")) {
    ROIs_all <- as.data.frame(as.matrix(0, 30,7))</pre>
    datafile_feature <- read.xlsx("./Table/Data/datafile_features.xlsx",sheet = feature)</pre>
    datafile_feature$subgroup <- factor(datafile_feature$subgroup,</pre>
                         levels = c("TD", "ASDMLD", "ASDSLD"))
    mean_ROIs <- describeBy(datafile_feature[,c(5,18:37)], group ="subgroup")
ROIs all[1:30, 1:7] <-
    rbind(cbind(group = rep("TD",10),
            colnames(datafile feature)[18:27],
            paste0(round(mean_ROIs[[1]]$mean[c(2:11)],2),"±",
                   round(mean_ROIs[[1]]$sd[c(2:11)],2)),
            paste0(round(mean_ROIs[[1]]$min[c(2:11)],2),"-",
                round(mean_ROIs[[1]]$max[c(2:11)],2)),
            colnames(datafile_feature)[28:37],
            paste0(round(mean_ROIs[[1]]\$mean[c(12:21)],2),"±",
            round(mean_ROIs[[1]]$sd[c(12:21)],2)),
            paste0(round(mean_ROIs[[1]]$min[c(12:21)],2),"-",
                round(mean_ROIs[[1]] $max[c(12:21)],2))),
        cbind(group = rep("ASDMLD",10),
            colnames(datafile_feature)[18:27],
            paste0(round(mean_ROIs[[2]]$mean[c(2:11)],2),"±",
                   round(mean_ROIs[[2]]$sd[c(2:11)],2)),
            paste0(round(mean_ROIs[[2]]$min[c(2:11)],2),"-",
                round(mean_ROIs[[2]] $max[c(2:11)],2)),
            colnames(datafile_feature)[28:37],
            paste0(round(mean_ROIs[[2]]\$mean[c(12:21)],2),"±",
            round(mean_ROIs[[2]]$sd[c(12:21)],2)),
            paste0(round(mean_ROIs[[2]]$min[c(12:21)],2),"-",
                round(mean_ROIs[[2]] $max[c(12:21)],2))),
        cbind(group = rep("ASDSLD",10),
            colnames(datafile_feature)[18:27],
            paste0(round(mean_ROIs[[3]]$mean[c(2:11)],2),"±",
                   round(mean_ROIs[[3]]$sd[c(2:11)],2)),
            paste0(round(mean_ROIs[[3]]$min[c(2:11)],2),"-",
                round(mean_ROIs[[3]]$max[c(2:11)],2)),
            colnames(datafile_feature)[28:37],
            paste0(round(mean_ROIs[[3]]$mean[c(12:21)],2),"±",
            round(mean_ROIs[[3]]$sd[c(12:21)],2)),
            paste0(round(mean_ROIs[[3]]$min[c(12:21)],2),"-",
                round(mean_ROIs[[3]]$max[c(12:21)],2))))
    colnames(ROIs_all) <- c("group","LHROI", "mean±sd", "range","RHROI",</pre>
                "mean±sd", "range")
```

```
addWorksheet(wb,feature)
  writeData(wb,feature,ROIs_all)

# saveWorkbook(wb, pasteO("./Table/Data/all_ROI_features.xlsx"))

# combine tables
volume <- read.xlsx("./Table/Data/all_ROI_features.xlsx", sheet = "volume")
thickness <- read.xlsx("./Table/Data/all_ROI_features.xlsx", sheet = "thickness")
area <- read.xlsx("./Table/Data/all_ROI_features.xlsx", sheet = "area")

#View(all_feature_info)
all_feature_info <- cbind(volume, thickness[,-1], area[,-1])</pre>
```

Within-group analysis

```
wb <- createWorkbook()</pre>
withinGroup results <- data.frame(group=character(),roi=character(),</pre>
                   F_value = numeric(), p_value=numeric(),
                   adjusted_p_value=numeric())
for (feature in c("volume", "thickness", "area")) {
    datafile_feature <- read.xlsx("./Table/Data/datafile_features.xlsx",sheet=feature)</pre>
    #View(datafile_feature)
    for (igroup in c("TD","ASDMLD","ASDSLD")){
    # slect data of one group
        tmp <- datafile_feature[datafile_feature$subgroup==igroup,]</pre>
        # standardize eTIV to z-score
        tmp$eTIV_z <- scale(tmp$eTIV)</pre>
        # Add a col (Hemisphere)
        lh list <- grep("lh", colnames(tmp))</pre>
        rh_list <- grep("rh", colnames(tmp))</pre>
        colnames(tmp)[lh_list] <- ROIs</pre>
        colnames(tmp)[rh_list] <- ROIs</pre>
        11 <- setdiff(1:length(tmp), c(lh_list, rh_list))</pre>
        tmp1 <- rbind.data.frame(cbind(tmp[, ll], tmp[, lh_list], LR = "LH"),</pre>
                  cbind(tmp[, 11], tmp[, rh_list], LR = "RH"))
        for (iregion in ROIs){
             i <- i + 1
            fl <- as.formula(paste0(iregion, "~ LR + Age + Gender + eTIV_z +
                          (1|Name)"))
```

```
model_withingroup <- lmer(fl, data = tmp1)</pre>
            res <- anova(model_withingroup)</pre>
         #print(pasteO(igroup, " ", iregion, feature))
            withinGroup_results[i,1:2] <- c(igroup, pasteO(iregion, "_",feature))</pre>
            withinGroup_results[i,3:4] <- c(round(res$`F value`[1],3),</pre>
                                              round(res$`Pr(>F)`[1],3))
            } # end for 10 ROI
        } # end for 3 groups
   View(withinGroup_results)
    dim(withinGroup_results)
# adjust p value
j <- 0
for (igroup in c("TD","ASDMLD","ASDSLD")){
  withinGroup_results[(10*j+1):(10*(j+1)),5] <- round(
    p.adjust(withinGroup_results$p_value[withinGroup_results$group==igroup],method="fdr"),3)
  j <- j+1
\#View(withinGroup\_results)
addWorksheet(wb,feature)
writeData(wb,feature,withinGroup_results)
} # end for 3 features
# saveWorkbook(wb,"./Table/withingroup_results.xlsx")
knitr::kable(filter(withinGroup_results, adjusted_p_value < 0.05))</pre>
```

group	roi	F_value	p_value	$adjusted_p_value$
TD	parsorbitalis_area	64.331	0.000	0.000
TD	parstriangularis_area	22.989	0.000	0.000
TD	parsopercularis_area	17.889	0.000	0.000
TD	supramarginal_area	24.156	0.000	0.000
TD	inferiorparietal_area	98.087	0.000	0.000
TD	transversetemporal_area	168.909	0.000	0.000
TD	superiortemporal_area	33.297	0.000	0.000
TD	middletemporal_area	116.380	0.000	0.000
ASDMLD	parsorbitalis_area	81.334	0.000	0.000
ASDMLD	parstriangularis_area	39.847	0.000	0.000
ASDMLD	parsopercularis_area	25.441	0.000	0.000
ASDMLD	caudalmiddlefrontal_area	20.241	0.000	0.000
ASDMLD	supramarginal_area	34.866	0.000	0.000
ASDMLD	inferiorparietal_area	85.990	0.000	0.000
ASDMLD	$transversetemporal_area$	157.432	0.000	0.000
ASDMLD	superiortemporal_area	37.193	0.000	0.000
ASDMLD	middletemporal_area	38.497	0.000	0.000
ASDMLD	lingual_area	9.228	0.005	0.005
ASDSLD	parsorbitalis_area	38.979	0.000	0.000

group	roi	F_value	p_value	adjusted_p_value
ASDSLD	parstriangularis_area	30.927	0.000	0.000
ASDSLD	parsopercularis_area	32.848	0.000	0.000
ASDSLD	supramarginal_area	15.647	0.000	0.000
ASDSLD	inferiorparietal_area	60.781	0.000	0.000
ASDSLD	transversetemporal_area	163.491	0.000	0.000
ASDSLD	superiortemporal_area	35.412	0.000	0.000
ASDSLD	$middletemporal_area$	29.011	0.000	0.000

Sup: Within-group analysis (without females)

```
withinGroup_results_new <- data.frame(group=character(),roi=character(),</pre>
                   F_value = numeric(), p_value=numeric(),
                   adjusted_p_value=numeric())
for (feature in c("volume", "thickness", "area")) {
    i <- 0
    datafile_feature <- read.xlsx("./Table/Data/datafile_features.xlsx",sheet=feature)</pre>
    datafile_feature_new <- datafile_feature[datafile_feature$Gender==1,]</pre>
    #View(datafile_feature_new)
    for (igroup in c("TD","ASDMLD","ASDSLD")){
        tmp <- datafile_feature_new[datafile_feature_new$subgroup==igroup,]</pre>
        tmp$eTIV_z <- scale(tmp$eTIV)</pre>
        lh_list <- grep("lh", colnames(tmp))</pre>
        rh_list <- grep("rh", colnames(tmp))</pre>
        colnames(tmp)[lh_list] <- ROIs</pre>
        colnames(tmp)[rh_list] <- ROIs</pre>
        11 <- setdiff(1:length(tmp), c(lh_list, rh_list))</pre>
        tmp1 <- rbind.data.frame(cbind(tmp[, ll], tmp[, lh_list], LR = "LH"),</pre>
                  cbind(tmp[, 11], tmp[, rh_list], LR = "RH"))
        for (ivolume in ROIs){
             i <- i + 1
            fl <- as.formula(paste0(ivolume, "~ LR + Age + eTIV_z +
                          (1|Name)"))
            model_withingroup <- lmer(fl, data = tmp1)</pre>
```

```
res <- anova(model_withingroup)</pre>
        #print(pasteO(igroup," ",ivolume, feature))
            withinGroup_results_new[i,1:2] <- c(igroup, paste0(ivolume, "_",feature))
            withinGroup_results_new[i,3:4] <- c(res$`F value`[1],res$`Pr(>F)`[1])
  }
    }
  View(withinGroup_results_new)
    dim(withinGroup_results_new)
p.adjTD <- p.adjust(withinGroup_results_new$p_value[withinGroup_results_new$group=="TD"],</pre>
            method="fdr")
p.adjASDHL <- p.adjust(withinGroup_results_new$p_value[withinGroup_results_new$group=="ASDMLD"],
               method="fdr")
p.adjASDLL <- p.adjust(withinGroup_results_new$p_value[withinGroup_results_new$group=="ASDSLD"],
               method="fdr")
withinGroup_results_new[,5] <- round(c(p.adjTD,p.adjASDHL,p.adjASDLL),3)</pre>
#View(withinGroup_results_new)
     write.xlsx(withinGroup_results_new, paste0("./Table/Males_withingroup_",feature,".xlsx"))
    }
knitr::kable(filter(withinGroup_results_new, adjusted_p_value < 0.05 ))</pre>
```

group	roi	F_value	p_value	adjusted_p_value
$\overline{ ext{TD}}$	parsorbitalis_area	45.736332	0.0000001	0.000
TD	parstriangularis_area	18.564580	0.0001539	0.000
TD	parsopercularis_area	14.751240	0.0005676	0.001
TD	supramarginal_area	26.927796	0.0000125	0.000
TD	inferiorparietal_area	87.033835	0.0000000	0.000
TD	transversetemporal_area	147.326954	0.0000000	0.000
TD	superiortemporal_area	31.335903	0.0000039	0.000
TD	middletemporal_area	105.579020	0.0000000	0.000
ASDMLD	parsorbitalis_area	70.147083	0.0000000	0.000
ASDMLD	parstriangularis_area	39.255228	0.0000006	0.000
ASDMLD	parsopercularis_area	24.288857	0.0000264	0.000
ASDMLD	caudalmiddlefrontal_area	22.828204	0.0000406	0.000
ASDMLD	supramarginal_area	32.637707	0.0000028	0.000
ASDMLD	inferiorparietal_area	74.555208	0.0000000	0.000
ASDMLD	transversetemporal_area	172.481788	0.0000000	0.000
ASDMLD	superiortemporal_area	38.491607	0.0000007	0.000
ASDMLD	middletemporal_area	32.456902	0.0000029	0.000
ASDMLD	lingual_area	8.108087	0.0077531	0.008

group	roi	F_value	p_value	adjusted_p_value
ASDSLD	parsorbitalis_area	26.089808	0.0000316	0.000
ASDSLD	parstriangularis_area	18.187460	0.0002694	0.000
ASDSLD	parsopercularis_area	29.009588	0.0000157	0.000
ASDSLD	supramarginal_area	9.533484	0.0050346	0.006
ASDSLD	inferiorparietal_area	42.790306	0.0000009	0.000
ASDSLD	$transversetemporal_area$	117.415773	0.0000000	0.000
ASDSLD	$superiortemporal_area$	27.316938	0.0000234	0.000
ASDSLD	$middletemporal_area$	17.028815	0.0003825	0.001

Plots for laterality of 10 ROIs in three groups

```
mapping <- list("parsorbitalis" = "Pars orbitalis",</pre>
                 "parstriangularis" = "Pars triangularis",
                 "parsopercularis" = "Pars opercularis",
                 "caudalmiddlefrontal" = "Caudal middle frontal gyrus",
                 "supramarginal" = "Supramarginal gyrus",
                 "inferiorparietal" = "Inferior parietal gyrus",
                 "transversetemporal" = "Transverse temporal gyrus",
                 "superiortemporal" = "Superior temporal gyrus",
                 "middletemporal" = "Middle temporal gyrus",
                 "lingual" = "Lingual gyrus")
Label <- c("Pars orbitalis", "Pars triangularis", "Pars opercularis",
           "Caudal middle frontal gyrus", "Supramarginal gyrus",
       "Inferior parietal gyrus", "Transverse temporal gyrus",
       "Superior temporal gyrus", "Middle temporal gyrus", "Lingual gyrus")
for (feature in c("volume", "thickness", "area")) {
    tmp <- read.xlsx("./Table/Data/datafile_features.xlsx",sheet = feature)</pre>
    lh_list <- grep("lh", colnames(tmp))</pre>
    rh_list <- grep("rh", colnames(tmp))</pre>
    colnames(tmp)[lh list] <- ROIs</pre>
    colnames(tmp)[rh_list] <- ROIs</pre>
    11 <- setdiff(1:length(tmp), c(lh_list, rh_list))</pre>
    tmp1 <- rbind.data.frame(cbind(tmp[, 11], tmp[, 1h_list], LR = "LH"),</pre>
                 cbind(tmp[, 11], tmp[, rh_list], LR = "RH"))
    #View(tmp1)
    # transform to long format
    tmp1_long <- gather(tmp1, ROI, value, ROIs[1]:ROIs[10],</pre>
                factor key=TRUE)
  for (igroup in c("TD", "ASDMLD", "ASDSLD")){
```

```
tmp2 <- tmp1_long[tmp1_long$subgroup == igroup,]</pre>
  tmp2$LR <- factor(tmp2$LR)</pre>
  tmp2$ROI <- factor(tmp2$ROI, levels = ROIs)</pre>
  #View(tmp2)
  summary_data <- tmp2 %>% group_by(ROI, LR) %>%
      summarise(mean = mean(value,na.rm = TRUE),
            N = sum(!is.na(value)),
            SE = sd(value, na.rm = TRUE)/sqrt(N))
  summary_data$xlabel_name <- mapping[summary_data$ROI]</pre>
  summary_data$xlabel_name <- factor(summary_data$xlabel_name,</pre>
                     levels = Label)
 p <- ggplot(summary_data, aes(x = xlabel_name, y = mean, fill=LR)) +</pre>
      geom_bar(stat = "identity", position = "dodge", width = 0.8,
           alpha = 0.9) +
      geom_errorbar(aes(ymin = mean - SE, ymax = mean + SE),
                position = position_dodge(width = 0.8), width = 0.4,
                alpha = 0.8) +
      scale_fill_manual(values = c("LH" = "#E69F00", "RH" = "#56B4E9")) +
      labs(fill = "Hemisphere", title=paste0(igroup, "_", feature)) +
      # scale_x_discrete(labels = function(x) str_wrap(x, width = 10)) + #
      theme bw() + #
      theme(axis.text.x = element_text(size = 8, face = 'bold', angle = 45, hjust = 1),
          axis.text.y = element_text(size = 14, face = "bold"),
          axis.title.x = element blank(),
          axis.title.y = element_blank(),
            plot.title = element_text( size = 25, face = "bold", hjust = 0.5),
          panel.grid.major = element_blank(), #
          panel.grid.minor = element_blank(), #
          panel.background = element_rect(colour = "black", linewidth=1))+
    guides(fill = guide_legend(keywidth = 2, keyheight = 2))+
    theme(legend.text = element_text(size = 8, face = "bold"),
          legend.title = element_text(size = 8, face = "bold"))
  if (feature == "volume") {
      p <- p + scale_y_continuous(limits = c(0,21000),</pre>
                      breaks = seq(0,21000, 4000))
 } else if (feature == "thickness") {
      p <- p + scale_y_continuous(limits = c(0,3.5),</pre>
                      breaks = seq(0, 3.5, 0.25)) +
          coord cartesian(ylim = c(2.5, 3.5))
 } else if (feature == "area") {
      p <- p + scale_y_continuous(limits = c(0,6000),</pre>
                      breaks = seq(0, 6000, 1000))
 }
 print(p)
ggsave(paste0("Plot/Lat/", paste0(igroup,"_", feature), ".png"),
        dpi=200, width=10, height=5)
```

} }

```
## `summarise()` has grouped output by 'ROI'. You can override using the `.groups`
## argument.
## `summarise()` has grouped output by 'ROI'. You can override using the `.groups`
## argument.
```


`summarise()` has grouped output by 'ROI'. You can override using the `.groups` ## argument.

`summarise()` has grouped output by 'ROI'. You can override using the `.groups` ## argument.

ASDSLD_volume 200000 160000 120000 40000 ABDSLD_volume Hemisphere LH RH

 $\mbox{\tt \#\# `summarise()` has grouped output by 'ROI'. You can override using the `.groups` <math display="inline">\mbox{\tt \#\# argument.}$

`summarise()` has grouped output by 'ROI'. You can override using the `.groups`
argument.

ASDMLD_thickness 3.50 3.25 3.00 2.75 2.50 The state of the state

`summarise()` has grouped output by 'ROI'. You can override using the `.groups` ## argument.

`summarise()` has grouped output by 'ROI'. You can override using the `.groups` ## argument.

`summarise()` has grouped output by 'ROI'. You can override using the `.groups`
argument.

Group differences in cortical volume/thickness/surface

```
wb <- createWorkbook()
for (feature in c("volume", "thickness", "area")) {
    datafile_feature <- read.xlsx("./Table/Data/datafile_features.xlsx",sheet=feature)
    datafile_feature$eTIV_z <- scale(datafile_feature$eTIV)

datafile_TDvsASDMLD <- datafile_feature[datafile_feature$subgroup != "ASDSLD",]
    datafile_TDvsASDSLD <- datafile_feature[datafile_feature$subgroup != "ASDMLD",]</pre>
```

```
datafile_ASD <- datafile_feature[datafile_feature$subgroup != "TD",]</pre>
i <- 0
bet_group_results <- data.frame(LR = character(), roi = character(),</pre>
                                       diff1 = character(), Fvalue1=numeric(),
                                       pvalue1=numeric(),pvalue.adj1=numeric(),
                                       diff2 = character(), Fvalue2=numeric(),
                                       pvalue2=numeric(),pvalue.adj2=numeric(),
                                       diff3 = character(), Fvalue3=numeric(),
                                       pvalue3=numeric(),pvalue.adj3=numeric())
for (LR in c("lh", "rh")) {
         for (iregion in ROIs) {
                    i <- i + 1
         iroi <- paste0(LR,"_",iregion, "_", feature)</pre>
         model_1 <- lm(as.formula(paste0(iroi, "~subgroup+Age+Gender+eTIV_z")),</pre>
                                                 data = datafile_TDvsASDMLD)
         model_2 <- lm(as.formula(paste0(iroi, "~subgroup+Age+Gender+eTIV_z")),</pre>
                                                 data = datafile_TDvsASDSLD)
         model_3 <- lm(as.formula(pasteO(iroi, "~subgroup+Age+Gender+eTIV_z")),</pre>
                                                 data = datafile ASD)
         model_result_1 <- anova(model_1)</pre>
         model_result_2 <- anova(model_2)</pre>
         model_result_3 <- anova(model_3)</pre>
         bet_group_results[i, 1:2] <- c(LR, paste0(iregion, "_", feature))</pre>
         bet_group_results[i, c(3,7,11)] <- c("TDvsASDMLD",</pre>
                                                                                                       "TDvsASDSLD",
                                                                                                       "ASDMLDvsASDSLD")
         bet_group_results[i, c(4:5,8:9,12:13)] <- cbind(round(c(model_result_1$^F value)[1],</pre>
                                                                                                                                                   model_result_1$`Pr(>F)`[1]),3),
                                                                                                                               round(c(model_result_2$`F value`[1],
                                                                                                                                                   model_result_2\(^\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\righ
                                                                                                                                round(c(model_result_3$`F value`[1],
                                                                                                                                                   model_result_3$`Pr(>F)`[1]),3)
         )
} # end for 10 regions
} # end for 2 hemispheres
# adjust p value
colnames(bet_group_results[,c(6,10,14)])
bet_group_results[bet_group_results$LR == "lh",][,c(6,10,14)] <- round(cbind(
```

```
p.adjust(bet_group_results$pvalue1[bet_group_results$LR == "lh"],method="fdr"),
    p.adjust(bet_group_results$pvalue2[bet_group_results$LR == "lh"],method="fdr"),
    p.adjust(bet_group_results$pvalue3[bet_group_results$LR == "lh"],method="fdr")
),3)

bet_group_results[bet_group_results$LR == "rh",][,c(6,10,14)] <- round(cbind(
    p.adjust(bet_group_results$pvalue1[bet_group_results$LR == "rh"],method="fdr"),
    p.adjust(bet_group_results$pvalue2[bet_group_results$LR == "rh"],method="fdr"),
    p.adjust(bet_group_results$pvalue3[bet_group_results$LR == "rh"],method="fdr")
),3)

#View(bet_group_results)
addWorksheet(wb,feature)
writeData(wb,feature,bet_group_results)

# saveWorkbook(wb,"./Table/betwgroup_results.xlsx")

knitr::kable(filter(bet_group_results, pvalue1 < 0.05 | pvalue2 < 0.05 | pvalue3 < 0.05))</pre>
```

LR	roi diff	1 Fvaluepvalu	eþvalue.a	adjiff2 Fvalue≱value	2xalue.adji2f3	Fvalue 3 value	andia
lh	parsorbitalis_aFda	vsAS4D2M40L10.042	0.105	$TDvsAS\!$	0.135 ASD	MLD0s349D\$562	0.771
lh	$inferior parietal \underline{T} \underline{A}$	resaASEDSMIOLED.041	0.105	TDvsASDSI2D0.020	0.135 ASD	MLD 0 s A0S D \$.174 D9	0.771
lh	superiortempor ED	varASEOMILID.016	0.080	TDvsASD\$30D0.540	0.900 ASD	MLD2s6A0SD(\$.1LD2	0.373
lh	$\operatorname{middletempora}\overline{\Gamma}\underline{D}$	weaSIDM3350.002	0.020	TDvsAS2D820D0.150	0.375 ASD	MLD 2 s A5DS1L0 8	0.373
$^{\mathrm{rh}}$	caudalmiddlefr aid	ads <u>A</u> SEDANILID.489	0.489	TDvsAS2D98II0D0.093	0.413 ASD	MLD4s7ASDS.D333	0.223
$^{\mathrm{rh}}$	$inferior parietal \underline{T} \underline{\mathbf{A}}$	resaASD5VILD0.021	0.143	TDvsAS 2D\$3 6D0.124	0.413 ASD	MLD 0s84SDSB6 3	0.570
$^{\mathrm{rh}}$	transversetemp T	d <u>s</u> ASE20N ILI 0 .029	0.143	TDvsASD\$15D0.576	0.736 ASD	MLD 3 54468D 3.D67	0.223
$^{\mathrm{rh}}$	$\operatorname{middletempora}\overline{\Gamma}\underline{D}$	wreASD2M3LD0.043	0.143	TDvsASD9916D0.322	0.712 ASD	MLD 0 s 729 D \$ B 9 9	0.570

Correlation analysis (for each group, Language)

```
data <- datafile_feature[datafile_feature$subgroup==igroup,]</pre>
      fl <- as.formula(paste(paste()LR, "_",iregion), "~ Gesell_Lang + Age + Gender + eTIV_z"))
      model_Langcorr <- lm(fl, data=data)</pre>
      model_result <- summary(model_Langcorr)</pre>
      # partial R correlation
       partial_correlation <- pcor.test(data[, paste0(LR, "_",iregion)],</pre>
                      data[, "Gesell Lang"],
                      data[, c("Age", "Gender", "eTIV_z")],
                      method = "pearson")
      pr <- round(partial_correlation$estimate,3)</pre>
      corr[i, 1:3] <- c(igroup,LR,iregion)</pre>
      corr[i, 4] <- pr
      corr[i, 5:6] <-c(round(model_result$coefficients[2,1],3),</pre>
                        round(model_result$coefficients[2,4],3))
    }
  }
}
i <- 1
for (igroup in c("TD", "ASDMLD", "ASDSLD")){
  s \leftarrow 20*(i-1)+1
  e <- 20*i
  corr[c(s:e),7] <- round(c(</pre>
    p.adjust(corr$p_value[corr$group==igroup & corr$lateral=="lh"],method="fdr"),
    p.adjust(corr$p_value[corr$group==igroup & corr$lateral=="rh"],method="fdr")),3)
  i <- i+1
#View(corr)
addWorksheet(wb,feature)
writeData(wb,feature,corr)
# saveWorkbook(wb,"./Table/corr_language_results.xlsx")
# check correlation results
feature <- "volume" # "thickness" "area"</pre>
corr_volume <- read_xlsx("./Table/corr_language_results.xlsx",sheet = feature)</pre>
#View(corr_volume)
knitr::kable(filter(corr_volume, p_value < 0.05))</pre>
```

group	lateral	roi	partialR	ß_value	p_value	adjusted_p_value
TD	$^{\mathrm{rh}}$	$superior temporal_volume$	-0.345	-94.121	0.046	0.285
ASDMLI) lh	parsopercularis_volume	-0.493	-51.582	0.005	0.050
ASDMLI) rh	$inferior parietal_volume$	0.396	134.116	0.028	0.280

```
feature <- "thickness"
corr_thickness <- read_xlsx("./Table/corr_language_results.xlsx",sheet = feature)
#View(corr_thickness)
knitr::kable(filter(corr_thickness, p_value < 0.05))</pre>
```

group	lateral	roi	partialR	ß_value	p_value	adjusted_p_value
$\overline{\mathrm{TD}}$	rh	$transverse temporal_thickness$	-0.414	-0.017	0.015	0.15

```
feature <- "area"
corr_area <- read_xlsx("./Table/corr_language_results.xlsx",sheet = feature)
#View(corr_area)
knitr::kable(filter(corr_area, p_value < 0.05))</pre>
```

group	lateral	roi	partialR	ß_value	p_value	adjusted_p_value
TD	rh	parsorbitalis_area	0.418	8.713	0.014	0.14
ASDMLE	O lh	parsopercularis_area	-0.461	-14.923	0.009	0.09

Sup: Correlation analysis (with group differences)

```
colnames(data)[c(6:10)]
## [1] "Gesell_Adpt"
                          "Gesell GrMot"
                                            "Gesell_FineMot" "Gesell_Lang"
## [5] "Gesell_Social"
# Beh <- c("Gesell_Adpt", "Gesell_GrMot", "Gesell_FineMot", "Gesell_Social", "Gesell_Lang")
Beh <- c("Gesell_Lang")</pre>
all_corr <- data.frame()</pre>
for (feature in c("volume", "thickness", "area")) {
    datafile_feature <- read.xlsx("./Table/Data/datafile_features.xlsx",sheet=feature)</pre>
    i <- 0
    corr <- data.frame()</pre>
      for (LR in c("lh","rh")){
        for (bb in Beh){
          pvalues1 <- numeric()</pre>
          pvalues2 <- numeric()</pre>
          pvalues3 <- numeric()</pre>
          for (ifeature in pasteO(ROIs,"_", feature)){
```

```
i <- i+1
             data <- datafile_feature</pre>
           data$eTIV_z <- scale(data$eTIV)</pre>
           fl <- as.formula(paste(pasteO(LR, "_",ifeature), "~",</pre>
                                bb, "* subgroup + Age + Gender + eTIV_z"))
           model<- lm(f1, data=data)</pre>
           model result <- anova(model)</pre>
          p value beh <- round(model result[1,5],3)</pre>
          p_value_group <- round(model_result[2,5],3)</pre>
          p_value_int <- round(model_result[6,5],3)</pre>
          pvalues1 <- c(pvalues1, p_value_beh)</pre>
          pvalues2 <- c(pvalues2, p_value_group)</pre>
          pvalues3 <- c(pvalues3, p_value_int)</pre>
        rr <- strsplit(ifeature,"_")[[1]][1]</pre>
        ff <- strsplit(ifeature,"_")[[1]][2]</pre>
        corr[i, 1:4] <- c(bb,LR,rr,ff)
        corr[i, 5:7] <- c(p_value_beh,p_value_group,p_value_int)</pre>
           }
            # adjust p values for each 10 regions
           adjusted.p_value1 <- p.adjust(pvalues1,method = "fdr")</pre>
           adjusted.p_value2 <- p.adjust(pvalues2,method = "fdr")</pre>
           adjusted.p_value3 <- p.adjust(pvalues3,method = "fdr")</pre>
           corr[(i-9):i,8] <- round(adjusted.p_value1,3)</pre>
           corr[(i-9):i,9] <- round(adjusted.p_value2,3)</pre>
           corr[(i-9):i,10] <- round(adjusted.p_value3,3)</pre>
      }
    }
    all_corr <- rbind(all_corr,corr)</pre>
}
colnames(all_corr) <- c("behavior","lateral","roi","feature",</pre>
                           "p value Beh", "p value group", "p value int",
                           "adj.p_value_Beh", "adj.p_value_group", "adj.p_value_int")
write.xlsx(all_corr, "./corr_beh_groupdiff.xlsx")
# View(all_corr)
knitr::kable(all_corr[all_corr$p_value_int<0.05,])</pre>
```

	behavior lateral	roi feature p	_value	<u>Be</u> lvalue_	gpouvpalue_	_indtj.p_value_ad	Bjepbi_value_ş	ջժ ջարը_valueint
16	Gesell_Lanning	inferiorpariet ad lume	0.044	0.178	0.045	0.088	0.297	0.247
46	Gesell_La h g	inferiorparietanlea	0.061	0.016	0.014	0.288	0.080	0.140
51	Gesell_Lanning	parsorbitalis area	0.966	0.012	0.016	0.966	0.120	0.160

Scatter plots for significant correlation results

```
# define variables
roi <- c("pars_orbitalis","pars_triangularis","pars_opercularis",</pre>
           "caudal_middle_frontal_gyrus", "supramarginal_gyrus", "inferior_parietal_gyrus",
           "transverse_temporal_gyrus", "superior_temporal_gyrus", "middle_temporal_gyrus",
           "lingual gyrus")
hem <- c("Left", "Right")</pre>
# loop for plots
for (feature in c("volume", "thickness", "area")) {
    datafile_feature <- read.xlsx("./Table/Data/datafile_features.xlsx",sheet = feature)</pre>
    corr_new <- read_xlsx("./Table/corr_language_results.xlsx", sheet = feature)</pre>
    nn <- which(corr_new$p_value < 0.05)</pre>
    for (i in nn) {
        data <- datafile_feature[datafile_feature$subgroup==corr_new$group[i],]</pre>
        data$eTIV_z <-scale(data$eTIV)</pre>
    # regression model
    f1 <- as.formula(paste(paste0(corr_new$lateral[i], "_",corr_new$roi[i]),</pre>
                    "~ Gesell_Lang + Age + Gender + eTIV_z"))
    model_Langcorr <- lm(fl, data=data)</pre>
    # set up title for plots
    y.title <- paste0(hem[which(corr_new$lateral[i] == c("lh", "rh"))]," ",
                         roi[grep(corr_new$roi[i], paste0(ROIs,"_", feature))]," ")
    x_limits <- if(corr_new$group[i] == "ASDMLD") {</pre>
        c(44, max(data$Gesell Lang))
        } else if (corr_new$group[i] == "ASDSLD") {
             c(20, max(data$Gesell_Lang))
             } else if (corr_new$group[i] == "TD"){
                 c(75, max(data$Gesell_Lang))
     breaks <- if(corr_new$group[i] == "ASDMLD") {</pre>
        seq(45, 70, by = 5)
        } else if (corr_new$group[i] == "ASDSLD") {
```

```
seq(25, 45, by = 5)
            } else if (corr_new$group[i] == "TD"){
                seq(75, 100, by = 5)
    # plot
   p <- ggplot(data, aes_string(x="Gesell_Lang", y=paste0(corr_new$lateral[i],</pre>
                                   " ",corr new$roi[i]))) +
        geom point(size=4) +
        geom_smooth(method = "lm", fullrange = T,
                mapping=aes(y=predict(model_Langcorr,data)),
                col = "red", lwd = 1.8) +
        labs(x="Language scores", y=y.title,
             title=corr_new$group[i]) +
        scale_x_continuous(limits = x_limits,breaks=breaks) +
        scale_y_continuous() +
        theme_classic()+
       coord_cartesian(ylim = c(min(data$value), max(data$value)*1.1))+
        theme(axis.text=element_text(size=16, face = "bold"),
              axis.title.x=element_text(size=18,face = "bold"),
              axis.title.y=element_text(size=18,face = "bold"),
              plot.title = element_text( size = 25, face = "bold", hjust = 0.5),
              panel.background = element_rect(colour = "black", size=1))
   print(p)
      #ggsave(paste0("Plot/Corr/corr_plots_", corr_new$group[i],".",corr_new$roi[i],
              ".png"), dpi=300, width=6, height=4)
}
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation ideoms with `aes()`
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_rect()` is deprecated as of ggplot2 3.4.0.
## i Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_smooth()` using formula = 'y ~ x'
```


`geom_smooth()` using formula = 'y ~ x'

Violin plot for ROIs showing significant correlations with language scores

```
datafile_feature <- read.xlsx("./Table/Data/datafile_features.xlsx",sheet = feature)</pre>
corr new <- readxl::read xlsx("./Table/corr language results.xlsx",sheet=feature)</pre>
nn <- which(corr_new$p_value < 0.05)</pre>
for (n in nn) {
    ROI <- paste0(corr_new$lateral[n],"_",corr_new$roi[n])</pre>
    datafile_feature$subgroup <- factor(datafile_feature$subgroup,</pre>
                           levels = c("TD", "ASDMLD",
                                "ASDSLD"))
p <- ggplot(datafile_feature, aes_string(x="subgroup", y=ROI, fill="subgroup")) +</pre>
    geom_violin(alpha=0.9, width=0.7, trim = TRUE, linewidth=1) + #
    geom_boxplot(notch = FALSE, outlier.size = -1, color="white",
             lwd=0.9, width=0.15) + #
    stat_summary(fun = "mean", geom = "point", shape = 4, size = 3,
               color = "black") + #
    scale_y_continuous() +
  labs(title=ROI)+
    coord_cartesian(ylim = c(min(datafile_feature[,ROI])*0.9,
                 max(datafile feature[,ROI])*1.25)) +
    scale_x_discrete(limits = c("TD", "ASDMLD", "ASDSLD")) +
    theme bw() + #
    theme(panel.grid.major = element_blank(), #
          panel.grid.minor = element_blank(), #
          axis.text.x=element_text(size=16,face = "bold",color="black",
                     margin=margin(t=18)),
          axis.text.y=element_text(size=16, face = "bold"),
          axis.title.x=element_blank(),
          axis.title.y=element_blank(),
          plot.title = element_text( size = 25, face = "bold", hjust = 0.5),
          panel.background = element_rect(colour = "black", linewidth=1),
          legend.position="none") +
    scale_fill_manual(values = c("TD" = "#ea9c9d", "ASDMLD" ="#93cc82",
                      "ASDsevere" = "#4d97cd"))
#qqsave(pasteO("Plot/Bet/violin_subgroup_", ROI, ".png"), dpi=200,
        width=6, height=4)
print(p)
```

