Course Work Assignment #1

(Do all 4 questions)

For a set, X, \overline{X} is the complement of X.

1. [10 marks]

Which of the following is equal to $A \cap \overline{B}$. Justify the answer.

- (a) $A \cup B$
- (b) $A \cup \overline{B}$
- (c) $\overline{A} \cup B$
- (d) $\overline{A} \cup \overline{B}$
- 2. [30 marks]

Let the set operator, \gg , be defined so that

$$X \gg Y = \overline{X} \cup Y$$

Determine by Karnaugh Map whether:

- (a) $A \gg B = \overline{A \cap \overline{B}}$
- (b) $(A \cap B) \gg C = A \gg (B \gg C)$
- (c) $A \gg (B \gg C) = (A \gg B) \gg C$
- 3. [24 Marks]

Each student in a group of 139 speaks either French, German or Spanish.

- 63 speak French, 91 speak German, 44 speak Spanish.
- 25 speak French and German.
- 23 speak French and Spanish.
- 21 speak German and Spanish.

How many students speak all 3 languages?

4. [36 marks]

Let the Universal set, $U = \{0, 1, 2, 3, 4, 5, 6, 7\}.$

The Universal set is represented as the 8-bit array, 11111111

and the empty set is represented as 00000000

For example, the set $S = \{1, 3, 5, 7\}$ is represented by the 8-bit array s = 01010101

For a set, $S \subseteq U$, if $(k \in S)$ then s[k] = 1 else s[k] = 0.

where the bit array, s, is the representation of the set, S.

Example: Let $S = \{1, 2, 3\}$ and let the bit array, s, represent the set S,

$$s[0]=0,\,s[1]=1,\,s[2]=1,\,s[3]=1,\,s[4]=0 \text{ etc.}$$

Writing this in 'table form'

i.e. s = 01110000.

Let
$$A = \{3, 4, 5\}$$
 , $B = \{1, 3, 6\}$.

- (a) Express the sets A and B as bit arrays, a and b respectively.
- (b) Express the set $A \cap B$ and $A \cup B$ as bit arrays.
- (c) Express the set $A \oplus B$ as a bit array where $A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$