МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ»

ТЕМА: ИЗУЧЕНИЕ РЕЖИМОВ АДРЕСАЦИИ И ФОРМИРОВАНИЯ ИСПОЛНИТЕЛЬНОГО АДРЕСА

Студентка гр. 0382	Андрющенко К.С
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Цель работы.

Изучение работы режимов адресации, используя программу на языке Ассемблера, выполнение которой производится под управлением отладчика в пошаговом режиме.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2 comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме. В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды прохождения трансляции. Необходимо составить закомментировать ДЛЯ протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.
- 4. Выполнить программу в пошаговом режиме под управлением

- отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Вариант №2:

```
vec1 5,6,7,8,12,11,10,9
vec2 -20,-30,20,30,-40,-50,40,50
matr -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4,8,7,6,5
```

Выполнение работы.

При первоначальной трансляции были обнаружены следующие ошибки см. Рисунок 1.

```
DOSBox 0.74-3, Cpu speed: 3000 cycles, Frameskip 0, Progra...
      2 Warning Errors
      3 Severe Errors
C:N>MASM_LB2.ASM
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.
Object filename [LB2.OBJ]:
Source listing [NUL.LST]:
Cross-reference [NUL.CRF]:
LB2.ASM(42): error A2052: Improper operand type
LB2.ASM(50): warning A4031: Operand types must match
LB2.ASM(54): warning A4031: Operand types must match
LB2.ASM(55): error A2055: Illegal register value
LB2.ASM(74): error A2046: Multiple base registers
LB2.ASM(75): error A2047: Multiple index registers
LB2.ASM(82): error A2006: Phase error between passes
  49904 + 459406 Bytes symbol space free
      2 Warning Errors
      5 Severe Errors
```

Рисунок 1 – Ошибки при трансляции

```
💥 DOSBox 0.74-3, Cpu speed: 3000 cycles, Frameskip 0, Progra...
Libraries [.LIB]:
C:\>AFDPRO_LB2.EXE
AFD-Pro is done
C:N>MASM_LB2.ASM
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.
Object filename [LB2.OBJ]:
Source listing [NUL.LST]: LB2_ERROR.LST
Cross-reference [NUL.CRF]:
LB2.ASM(50): warning A4031: Operand types must match
LB2.ASM(54): warning A4031: Operand types must match
LB2.ASM(55): error A2055: Illegal register value
LB2.ASM(74): error A2046: Multiple base registers
LB2.ASM(75): error A2047: Multiple index registers
  47830 + 459430 Bytes symbol space free
      2 Warning Errors
      3 Severe Errors
```

Описание ошибок, обнаруженных при первоначальной трансляции:

- 1. mov mem3,[bx] lb2.asm(42): error A2052: Improper operand type (неправильный тип операнда);
 - Одновременное чтение и запись из памяти. Поскольку прямой операции память-память не существует, данная операция выполняется через регистр.
- mov cx,vec2[di] lb2.asm(50): warning A4031: Operand types must match (Предупреждение: типы операндов должны совпадать);
 Размер регистра СХ 16 бит, а элемент массива vec2 имеет размер в байт (8 бит).
- 3. mov cx,matr[bx][di] lb2.asm(54): warning A4031: Operand types must match (Предупреждение: типы операндов должны совпадать); Размер регистра СХ 16 бит, а элемент матрицы matr имеет размер в байт (8 бит).
- 4. mov ax,matr[bx*4][di] lb2.asm(55): error A2055: Illegal register value (Недопустимое значение регистра);

- Попытка умножить регистр на какое-либо число недопустимая операция (исключение: определение масштабного индексного операнда для процессора 80386).
- mov ax,matr[bp+bx] lb2.asm(74): error A2046: Multiple base registers (Использование нескольких базовых регистров);
 Недопустимое использование более одного базового регистра для адресации.
- 6. mov ax,matr[bp+di+si] lb2.asm(75): error A2047: Multiple index registers (Использование нескольких индексных регистров); Недопустимое использование более одного индексного регистра.

Вывод.

В результате работы была изучена работа режимов адресации с использованием программы на языке Ассемблера.

ПРОТОКОЛ

Таблица 1 - Результат выполнения программы в пошаговом режиме

Адрес	Символический код	16-ричный	Содержимое	
коман	команды	код команды	регистров и	
ды			ячеек памяти	
			до выполнения	После
				выполнения
1A0A	PUSH DS	1E	(SP) = 0018	(SP) = 0016
			(DS) = 19F5	(DS) = 19F5
			(CS) = 1A0A	(CS) = 1A0A
			(IP) = 0000	(IP) = 0001
			(SP) = 0018	(SP) = 0016
			Stack:+0 0000	Stack: +0 19F5
1A0B	SUB AX, AX	2BC0	(AX) = 0000	(AX) = 0000
			(SP) = 0016	(SP) = 0016
			(IP) = 0001	(IP) = 0003
1A0D	PUSH AX	50	(SP) = 0016	(SP) = 0014
			(AX) = 0000	(AX) = 0000
			(IP) = 0003	(IP) = 0004
			Stack: +0 19F5	Stack: +0 0000
				+2 19F5
1A0E	MOV AX, 1A07	B8071A	(AX) = 0000	(AX) = 1A07
			(IP) = 0004	(IP) = 0007
1A11	MOV DS, AX	8ED8	(DS) = 19F5	(DS) = 1A07
			(IP) = 0007	(IP) = 0009
1A13	MOV AX, 01F4	B8F401	(AX) = 1A07	(AX) = 01F4
			(IP) = 0009	(IP) = 000C
1A16	MOV CX, AX	8BC8	(CX) = 00B0	(CX) = 01F4
			(IP) = 000C	(IP) = 000E
L	1	I	1	1

			Продол	жение таблицы 1
1A18	MOV BL, 24	B324	(BX) = 0000	(BX) = 0024
			(IP) = 000E	(IP) = 0010
1A1A	MOV BH, CE	B7CE	(BX) = 0024	(BX) = CE24
			(IP) = 0010	(IP) = 0012
1A1C	MOV [0002], FFCE	C7060200CE	(IP) = 0012	(IP) = 0018
		FF		
1A22	MOV BX, 0006	BB0600	(BX) = CE24	(BX) = 0006
			(IP) = 0018	(IP) = 001B
1A25	MOV [0000], AX	A30000	(IP) = 001B	(IP) = 001E
1A28	MOV AL, [BX]	8A07	(AX) = 01F4	(AX) = 0101
			(IP) = 001E	(IP) = 0020
1A2A	MOV AL, [BX+03]	8A4703	(AX) = 0101	(AX) = 0104
			(IP) = 0020	(IP) = 0023
1A2D	MOV CX, [BX+03]	8B4F03	(CX) = 01F4	(CX) = 0804
			(IP) = 0023	(IP) = 0026
1A30	MOV DI, 0002	BF0200	(DI) = 0000	(DI) = 0002
			(IP) = 0026	(IP) = 0029
1A33	MOV AL, [000E+DI]	8A850E00	(AX) = 0104	(AX) = 010A
			(IP) = 0029	(IP) = 002D
1A37	MOV BX, 0003	BB0300	(BX) = 0006	(BX) = 0003
			(IP) = 002D	(IP) = 0030
1A3A	MOV AL,	8A811600	(AX) = 010A	(AX) = 01FD
	[0016+BX+DI]		(IP) = 0030	(IP) = 0034
1A3E	MOV AX, 1A07	B8071A	(AX) = 01FD	(AX) = 1A07
			(IP) = 0034	(IP) = 0037
1A41	MOV ES, AX	8EC0	(ES) = 19F5	(ES) = 1A07
			(IP) = 0037	(IP) = 0039
1A43	MOV AX, ES:[BX]	268B07	(AX) = 1A07	(AX) = 00FF

			(IP) = 0039	(IP) = 003C
1A46	MOV AX, 0000	B80000	(AX) = 00FF	(AX) = 0000
			(IP) = 003C	(IP) = 003F
1A49	MOV ES, AX	8EC0	(ES) = 1A07	(ES) = 0000
			(IP) = 003F	(IP) = 0041
1A4B	PUSH DS	1E	(DS) = 1A07	(DS) = 1A07
			(SP) = 0014	(SP) = 0012
			(IP) = 0041	(IP) = 0042
			Stack: +0 0000	Stack: +0 1A07
			+2 19F5	+2 0000
				+4 19F5
1A4C	POP ES	07	(ES) = 0000	(ES) = 1A07
			(SP) = 0012	(SP) = 0014
			(IP) = 0042	(IP) = 0043
			Stack: +0 1A07	Stack: +0 0000
			+2 0000	+2 19F5
			+4 19F5	
1A4D	MOV CX, ES:[BX-01]	268B4FFF	(CX) = 0804	(CX) = FFCE
			(IP) = 0043	(IP) = 0047
1A51	XCHG AX, CX	91	(AX) = 0000	(AX) = FFCE
			(CX) = FFCE	(CX) = 0000
			(IP) = 0047	(IP) = 0048
1A52	MOV DI, 0002	BF0200	(DI) = 0002	(DI) = 0002
			(IP) = 0048	(IP) = 004B
1A55	MOV ES:[BX+DI],	268901	(IP) = 004B	(IP) = 004E
	AX		DS:[5]00 [6]01	DS:[5]CE [6]FF
1A58	MOV BP, SP	8BEC	(BP) = 0000	(BP) = 0014
			(IP) = 004E	(IP) = 0050
1A5A	PUSH 01F4	FF360000	(SP) = 0014	(SP) = 0012

			(IP) = 0050	(IP) = 0054
			Stack: +0 0000	Stack: +0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
1A5E	PUSH FFCE	FF360200	(SP) = 0012	(SP) = 0010
			(IP) = 0054	(IP) = 0058
			Stack: +0 01F4	Stack: +0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
1A62	MOV BP, SP	8BEC	(BP) = 0014	(BP) = 0010
			(IP) = 0058	(IP) = 005A
1A64	MOV DX, [BP+02]	8B5602	(DX) = 0000	(DX) = 01F4
			(IP) = 005A	(IP) = 005D
1A67	RET far 0002	CA0200	(CS) = 1A0A	(CS) = 01F4
			(SP) = 0010	(SP) = 0016
			(IP) = 005D	(IP) =
			Stack: +0 FFCE	Stack: +0 19F5
			+2 01F4	+2 0000
			+4 0000	+4 0000
			+6 19F5	+6 0000

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММ

Файл LB2 ERROR.ASM

```
; Программа изучения режимов адресации процессора IntelX86
EOL EOU '$'
ind EQU 2
n1 EQU 500
n2 EOU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0 ; определяет переменную размером в слово.
mem2 DW 0
mem3 DW 0
vec1 DB 5,6,7,8,12,11,10,9; определяет данные размером в байт
vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
matr DB -5, -6, -7, -8, 4, 3, 2, 1, -1, -2, -3, -4, 8, 7, 6, 5
DATA ENDS
; Код программы
CODE SEGMENT
 ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
 push DS
 sub AX, AX
 push AX
 mov AX, DATA
 mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
 mov cx, ax
 mov bl, EOL
 mov bh, n2
; Прямая адресация
mov mem2, n2
 mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
 mov al, [bx]
 mov mem3, [bx]
```

```
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
mov cx, vec2[di]
; Адресация с базированием и индексированием
mov bx, 3
mov al, matr[bx][di]
mov cx, matr[bx][di]
mov ax, matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ---- вариант 2
mov es, ax
push ds
pop es
mov cx, es: [bx-1]
xchg cx, ax
; ----- вариант 3
mov di, ind
mov es:[bx+di],ax
; ---- вариант 4
mov bp, sp
mov ax,matr[bp+bx]
mov ax, matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp, sp
mov dx, [bp] +2
 ret 2
Main ENDP
CODE ENDS
END Main
```

Файл LB2 READY.ASM

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EOU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 \ DW \ 0 ;определяет переменную размером в слово.
mem2 DW 0
mem3 DW 0
vec1 DB 5,6,7,8,12,11,10,9 ; определяет данные разме-ром в байт
vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
matr DB -5, -6, -7, -8, 4, 3, 2, 1, -1, -2, -3, -4, 8, 7, 6, 5
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS
sub AX, AX
 push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx,ax
mov bl, EOL
mov bh, n2
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al, [bx]
; mov mem3, [bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
; mov cx, vec2[di]
; Адресация с базированием и индексированием
mov bx, 3
mov al, matr[bx][di]
; mov cx, matr[bx][di]
```

```
; mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1 mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
 push ds
 pop es
mov cx, es: [bx-1]
xchg cx, ax
; ----- вариант 3
mov di, ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
; mov ax,matr[bp+bx]
; mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx, [bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```

приложение в

ДИАГНОСТИЧЕСКИЕ СООБЩЕНИЯ

Файл LB2 ERROR.LST

Microsoft (R) Macro Assembler Version 5.10

10/3/21 23:32:23 Page

1-1

```
; Программа изучения режи
                           • фов адресации процессора І
                           ntelX86
      = 0024
                                 EOL EQU '$'
      = 0002
                                 ind EQU 2
      = 01F4
                                 n1 EQU 500
      =-0032
                                 n2 EQU -50
                           ; Стек программы
      0000
                           AStack SEGMENT STACK
      0000
            000C[
                                  DW 12 DUP(?)
              ????
                       1
      0018
                           AStack ENDS
                           ; Данные программы
      0000
                           DATA SEGMENT
                           ; Директивы описания данн�
                           ♠x
      0000
                                 mem1 DW 0 ; определяет перемен�
            0000
                            Фую размером в слово.
      0002
           0000
                                 mem2 DW 0
      0004
           0000
                                 mem3 DW 0
      0006 05 06 07 08 0C 0B
                                 vec1 DB 5,6,7,8,12,11,10,9 ;определяе�
                           данные разме-ром в байт
            0A 09
            EC E2 14 1E D8 CE
                                 vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
      000E
            28 32
                                       DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-
      0016
           FB FA F9 F8 04 03
                                 matr
4,8,7,6,5
            02 01 FF FE FD FC
            08 07 06 05
      0026
                           DATA ENDS
                           ; Код программы
      0000
                           CODE SEGMENT
                            ASSUME CS:CODE, DS:DATA, SS:AStack
                           ; Головная процедура
      0000
                           Main PROC FAR
      0000
           1E
                            push DS
      0001
           2B C0
                                  sub AX, AX
      0003
           50
                            push AX
      0004 B8 ---- R
                            mov AX, DATA
      0007 8E D8
                                  mov DS, AX
                           ; ПРОВЕРКА РЕЖИМОВ АДРЕСА�
                           ФИИ НА УРОВНЕ СМЕЩЕНИЙ
                           ; Регистровая адресация
      0009 B8 01F4
                                  mov ax, n1
```

```
000C 8B C8
                              mov cx,ax
      000E B3 24
                              mov bl, EOL
      0010 B7 CE
                               mov bh, n2
                         ; Прямая адресация
      0012 C7 06 0002 R FFCE mov mem2, n2
      0018 BB 0006 R mov bx, OFFSET vec1
      001B A3 0000 R
                         mov mem1,ax
                         ; Косвенная адресация
      001E 8A 07
                              mov al, [bx]
                                                       10/3/21 23:32:23
Microsoft (R) Macro Assembler Version 5.10
                                                                Page
1-2
                          ; mov mem3, [bx]
                          ; Базированная адресация
      0020 8A 47 03
                              mov al, [bx]+3
      0023 8B 4F 03
                              mov cx, 3[bx]
                          ; Индексная адресация
      0026 BF 0002
                            mov di,ind
                         mov al, vec2[di]
      0029 8A 85 000E R
      002D 8B 8D 000E R
                              mov cx, vec2[di]
     LB2.ASM(50): warning A4031: Operand types must match
                          ; Адресация с базирование�
                          • и индексированием
      0031 BB 0003
                             mov bx,3
      0034 8A 81 0016 R mov al, matr[bx][di]
0038 8B 89 0016 R mov cx, matr[bx][di]
     LB2.ASM(54): warning A4031: Operand types must match
      003C 8B 85 0022 R mov ax, matr[bx*4][di]
     LB2.ASM(55): error A2055: Illegal register value
                          ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                          ФИИ С УЧЕТОМ СЕГМЕНТОВ
                          ; Переопределение сегмент
                         ; ----- вариант 1
      0040 B8 ---- R mov ax, SEG vec2 0043 8E C0 mov es, ax
      0045 26: 8B 07
                        mov ax, es:[bx]
      0048 B8 0000
                          mov ax, 0
                          ; ----- вариант 2
                            mov es, ax
      004B 8E CO
      004D 1E
                         push ds
      004E 07
                         pop es
      004F 26: 8B 4F FF
                          mov cx, es:[bx-1]
                         xchg cx,ax
      0053 91
                          ; ----- вариант 3
      0054 BF 0002
                         mov di, ind
      0057 26: 89 01
                         mov es:[bx+di],ax
                          ; ---- вариант 4
      005A 8B EC mov bp,sp
005C 3E: 8B 86 0016 R mov ax,matr[bp+bx]
     LB2.ASM(74): error A2046: Multiple base registers
      0061 3E: 8B 83 0016 R mov ax, matr[bp+di+si]
     LB2.ASM(75): error A2047: Multiple index registers
```

; Использование сегмента �

```
006A FF 36 0002 R
                   push mem2
   006E
      8B EC
                   mov bp, sp
      8B 56 02
   0070
                   mov dx, [bp]+2
   0073 CA 0002
                   ret 2
   0076
                Main ENDP
    0076
                CODE ENDS
                END Main
                            10/3/21 23:32:23
Microsoft (R) Macro Assembler Version 5.10
Symbols-1
   Segments and Groups:
            Name
                      Length
                             Align Combine Class
   0018 PARA STACK
                          0076 PARA NONE
   0026 PARA NONE
   DATA . . . . . . .
   Symbols:
                 Type Value
             Name
                                Attr
   EOL . . . . . . . . . . . . NUMBER
                                0024
   NUMBER
                                0002
                                0000 CODE Length =
   F PROC
0076
                                0016 DATA
                         L BYTE
   L WORD
   0000 DATA
                         L WORD
                                0002 DATA
   0004 DATA
   L WORD
   NUMBER
                                01F4
                                -0032
                         NUMBER
   L BYTE
                                0006 DATA
                                000E DATA
   L BYTE
                             0101h
   TEXT
   @FILENAME
                          TEXT
                             LB2
                          TEXT
   510
      84 Source Lines
      84 Total Lines
      19 Symbols
    47830 + 459430 Bytes symbol space free
      2 Warning Errors
      3 Severe Errors
```

♠тека

push mem1

0066 FF 36 0000 R

Файл LB2 READY.LST

Microsoft (R) Macro Assembler Version 5.10

10/3/21 23:43:43 Page

1-1

```
; Программа изучения режи
                           • фов адресации процессора І
                           ntelX86
      = 0024
                                 EOL EQU '$'
      = 0002
                                 ind EQU 2
                                 n1 EQU 500
      = 01F4
      =-0032
                                 n2 EQU -50
                           ; Стек программы
      0000
                           AStack SEGMENT STACK
      0000
            000C[
                                  DW 12 DUP(?)
              3333
                       ]
      0018
                           AStack ENDS
                           ; Данные программы
      0000
                           DATA SEGMENT
                           ; Директивы описания данн�
                           ♦X
      0000
            0000
                                 mem1 DW 0 ; определяет перемен�
                            ую размером в слово.
      0002
           0000
                                 mem2 DW 0
                                 mem3 DW 0
      0004
           0000
      0006 05 06 07 08 0C 0B
                                 vec1 DB 5,6,7,8,12,11,10,9 ;определяе�
                           данные разме-ром в байт
            0A 09
      000E
            EC E2 14 1E D8 CE
                                 vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
            28 32
                                      DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-
           FB FA F9 F8 04 03
      0016
                                 matr
4,8,7,6,5
            02 01 FF FE FD FC
            08 07 06 05
      0026
                           DATA ENDS
                           ; Код программы
      0000
                           CODE SEGMENT
                            ASSUME CS:CODE, DS:DATA, SS:AStack
                           ; Головная процедура
      0000
                           Main PROC FAR
      0000
            1E
                            push DS
      0001
           2B C0
                                  sub AX, AX
      0003 50
                            push AX
      0004 B8 ---- R
                            mov AX, DATA
      0007 8E D8
                                  mov DS, AX
                           ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                           • ИИ НА УРОВНЕ СМЕЩЕНИЙ
                           ; Регистровая адресация
      0009 B8 01F4
                                  mov ax, n1
      000C 8B C8
                                  mov cx, ax
      000E B3 24
                                  mov bl, EOL
                                       17
```

```
0010 B7 CE
                                mov bh, n2
                          ; Прямая адресация
      0012 C7 06 0002 R FFCE mov mem2, n2
      0018 BB 0006 R mov bx, OFFSET vec1
      001B A3 0000 R
                          mov mem1,ax
                          ; Косвенная адресация
      001E 8A 07
                                mov al, [bx]
Microsoft (R) Macro Assembler Version 5.10
                                                        10/3/21 23:43:43
                                                                  Page
1 - 2
                          ; mov mem3, [bx]
                          ; Базированная адресация
      0020 8A 47 03
                                mov al, [bx]+3
      0023 8B 4F 03
                                mov cx, 3[bx]
                          ; Индексная адресация
      0026 BF 0002
                               mov di, ind
      0029 8A 85 000E R
                                mov al, vec2[di]
                          ; mov cx,vec2[di]
                          ; Адресация с базирование
                          • и индексированием
      002D BB 0003
                                mov bx, 3
      0030 8A 81 0016 R
                                mov al, matr[bx][di]
                          ; mov cx,matr[bx][di]
                          ; mov ax,matr[bx*4][di]
                          ; ПРОВЕРКА РЕЖИМОВ АДРЕСА�
                          ФИИ С УЧЕТОМ СЕГМЕНТОВ
                          ; Переопределение сегмент
                          ; ----- вариант 1
      0034 B8 ---- R
                           mov ax, SEG vec2
      0037 8E CO
                               mov es, ax
      0039 26: 8B 07
                           mov ax, es:[bx]
      003C B8 0000
                           mov ax, 0
                          ; ----- вариант 2
      003F 8E CO
                               mov es, ax
      0041 1E
                           push ds
      0042 07
                           pop es
      0043 26: 8B 4F FF
                           mov cx, es: [bx-1]
      0047 91
                           xchg cx, ax
                          ; ----- вариант 3
      0048 BF 0002
                               mov di, ind
      004B 26: 89 01
                           mov es:[bx+di],ax
                          ; ----- вариант 4
      004E 8B EC
                                mov bp, sp
                          ; mov ax,matr[bp+bx]
                          ; mov ax,matr[bp+di+si]
                          ; Использование сегмента �
                          ♠тека
      0050 FF 36 0000 R
                                push mem1
      0054 FF 36 0002 R
                                push mem2
      0058 8B EC
                                mov bp, sp
      005A 8B 56 02
                               mov dx, [bp] + 2
      005D CA 0002
                                ret 2
      0060
                          Main ENDP
```

0060 CODE ENDS END Main

Microsoft (R) Macro Assembler Version 5.10

Symbols-1

Segments and Groups:

	Name I									Lengt	Length Alig			Combi	ne	Clas	S					
	ASTAC CODE DATA			•	•	•		•				•		•	•	0060	PARA PARA PARA					
	Symbo	Symbols:																				
							1	Īδ	a n	n e)				Туре	Valu	ıe	Attr	•			
	EOL														•	NUMBE	2R	0024				
	IND														•	NUMBE	2R	0002				
0060	MAIN														•	F PRO)C	0000	CODE	Ler	ngth	=
	MATR MEM1 MEM2 MEM3	•	•													L BYT L WOF L WOF	RD RD	0016 0000 0002 0004	DATA DATA			
	N1 . N2 .									•	•				•	NUMBE NUMBE		01F4 -0032				
	VEC1 VEC2															L BYT		0006 000E				
	@CPU @FILI @VERS	ΞN		E		•				•	•					TEXT TEXT TEXT	0101 LB2 510	h				

10/3/21 23:43:43

47830 + 459430 Bytes symbol space free

⁸⁴ Source Lines

⁸⁴ Total Lines

¹⁹ Symbols

⁰ Warning Errors

O Severe Errors