Міністерство освіти і науки України Національний університет «Львівська політехніка»

Кафедра ЕОМ

до лабораторної роботи $N \hspace{-.08cm} \underline{\hspace{.08cm}} 1$

з дисципліни «Моделювання комп'ютерних систем» на тему:

«Інсталяція та ознайомлення з середовищем розробки Xilinx ISE. Ознайомлення зі стендом Elbert V2 – Spartan 3A FPGA»

Варіант №14

Виконав: ст. гр. КІ-201 Когут Д.А. Прийняв: ст. викладач каф. ЕОМ Козак Н. Б.

Етапи роботи:

- 1. Інсталяція Xilinx ISE та додавання ліцензії.
- 2. Побудова дешифратора (згідно варіанту) за допомогою ISE WebPACKTM Schematic Capture та моделювання його роботи за допомогою симулятора ISim.
- 3. Генерування Віт файала та тестування за допомогою стенда Elbert V2 Spartan 3A FPGA.

Виконання завдання

Згідно мого варіанту(14), я отримав таку таблицю істинності для дешифратора:

in_2	in_1	in_0	out_0	out_1	out_2	out_3
0	0	0	1	1	0	0
0	0	1	1	1	1	0
0	1	0	0	1	0	1
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	1	0	0	1
1	1	0	0	0	0	0
1	1	1	0	0	0	0

Мінімізуємо функції за допомогою карт Карно:

	/in_1	/in_1	in_1	in_1
	/in_0	in_0	in_0	/in_0
in_2	1	1	0	0
/in_2	0	1	0	0

	/in_1	/in_1	in_1	in_1
	/in_0	in_0	in_0	/in_0
in_2	1	1	1	1
/in_2	0	0	0	0

$$\overline{\text{out}_1 = /\text{in}_2}$$

	/in_1	/in_1	in_1	in_1
	/in_0	in_0	in_0	/in_0
in_2	0	1	0	0
/in_2	0	0	0	0

$$out_2 = /in_2 * /in_1 * in_0$$

/in_1	/in_1	in_1	in_1
/in_0	in_0	in_0	/in_0

in_2	0	0	0	1		
/in_2	0	1	0	0		
$out_3 = 1$	in_2 * /iı	n_1 * in_	0 v /in 2	2 * in_1	* /in_()

На основі отриманих даних, я вирішив що для out_1 і out_3 краще використовувати LUT3, для інших – елементи базової логіки.

Реалізована схема подана на рисунку 1.

Рисунок 1. Реалізована схема

Для LUT3 вихід якого пов'язаний з out_0 встановлений параметр INIT = 23 Оскільки 0010~0011 = 0x23

Для LUT3 вихід якого пов'язаний з out_3 встановлений параметр INIT = 24 Оскільки $0010\ 0100 = 0x24$

Часова діаграма, що відповідає даній схемі, представлена на рисунку 2

Name	Value	0 ps	1 ps	2 ps	3 ps	4 ps	5 ps	6 ps	7 ps 8 p
l™ IN_0	0								
l₁ IN_1	0								
l₁ IN_2	0								
l₀ out_o	1								
l₀ out_1	1								
1 OUT_2	0								
l₀ out_3	0								

Рисунок 2. Часова діаграма

Висновок

Виконуючи дану лабораторну роботу, я навчився використовувати ISE WebPACKTM Schematic Capture та моделювати його роботу за допомогою симулятора ISim, а також генерувати bit файл та тестувати його за допомогою стенда Elbert V2 – Spartan 3A FPGA.