Sieci Komputerowe

Wykład 13 Dynamiczne protokoły rutowania

System Autonomiczny

- AS (ang. Autonomous System) to sieć lub zbiór sieci zarządzanych przez jedną organizację (np. UW) i realizujący spójną politykę rutingu
- AS jest identyfikowany za pomocą numeru 16 bitowego ASN (ang. Autonomous System Number)
 - 1-64511 numery publiczne przydzielane przez RIR
 - 64512-65534 prywatne, nieprzydzielane
 - 0 oraz 65535 zarezerwowane
- Numery AS są przydzielane przez RIR (dla Europy RIPE: http://www.ripe.net.)

Rutowanie dynamiczne

- Zachodzi wtedy, gdy rutery informują się wzajemnie o dostępnych sieciach
 - komunikacja następuje za pomocą protokołów rutowania
- Rutowanie dynamiczne nie zmienia obsługi procesu rutowania w warstwie IP przez jądro sytemu operacyjnego
 - Na ruterze jest uruchamiany proces, który wprowadza wpisy do tablicy FIB automatycznie

Protokoły rutowania

- IGP (Interior Gateway Protocol)
 - używany wewnątrz AS
 - OSPF (Open Shortest Path First) obecnie szeroko stosowany
 - RIP (stary protokół...)
- EGP (Exterior Gateway Protocol)
 - zwykle używany do komunikacji ruterów z różnych AS
 - BGPv4 (Border Gateway Protocol) RFC 4271
 - TCP, port 179
 - Internet, to BGP:)

IBGP i EBGP

- External i Interior BGP
 - sesje połączeń między ruterami w ramach tego samego AS i różnych AS

Sesja BGP

- BGP wymaga utrzymywania połączenia, rutery z różnych AS powinny być połączone bezpośrednio tzw. sesja między peerami - peering
 - komunikat BGP typu open
 - wersja protokołu
 - lokalny ASN
 - tzw. hold-time
 - identyfikator BGP adres IP interfejsu

Sesja BGP

- komunikat update
 - dzięki niemu rutery wysyłają informacje o dostępności podsieci (tzw. prefiksów) wraz z atrybutami
 - komunikat zawiera:
 - długość pola opisującego prefiksy niedostępne
 - niedostępne prefiksy
 - rozmiar pola opisującego atrybuty ścieżek
 - ścieżki (sekwencje numerów AS) wraz z atrybutami
 - dostępne prefiksy
- komunikat notification
 - informacja dla peera o błędzie
 - zawiera kod błędu, oznacza koniec sesji BGP
- komunikat keep-alive
 - podtrzymanie sesji, częstotliwość > hold-time

Wymiana Informacji między AS

- Aby sieci w dwóch różnych AS mogły się komunikować:
 - Pierwszy AS musi rozgłosić swoje prefiksy do drugiego
 - Drugi musi zaakceptować rozgłaszane prefiksy
 - Drugi AS musi rozgłosić swoje prefiksy do pierwszego
 - Pierwszy musi zaakceptować rozgłaszane prefiksy
 - rozgłaszany prefiks to np. 193.0.96.0/24

BGP - atrybuty

- Atrybuty opisują charakterystykę podsieci (prefiksu) otrzymanego lub rozgłaszanego za pośrednictwem BGP.
 - Pozwalają na wybór optymalnej trasy, kontrolę rozgłaszanych informacji i mogą być określane przez administratora, tak aby realizować określoną politykę rutowania

Waga

- Atrybut lokalny dla rutera, nierozgłaszany nawet w ramach tego samego AS
 - wybierana jest trasa o większej wadze

Local Preference

- Podobnie jak waga, służy do określenia "punktu wyjścia" dla ruchu wychodzącego poza AS (jeśli jest więcej niż 1 peering)
- Wartość local preference jest rozgłaszana w ramach tego samego AS

Local Preference c.d.

 Preferowana jest wyższa wartość więc ruch do 172.16.1.0/24 opuści AS 100 przez ruter B

MED

- Multi-Exit Discriminator (metric attribute)
 - sugestia wyboru trasy do nas dla zewnętrznego AS, do którego rozgłaszamy MED dla danego prefiksu
 - możemy wpływać na ruch przychodzący, o ile zewnętrzny AS nie korzysta z innych – własnych atrybutów dla danego prefiksu wpływających na trasę do naszego AS

MED c.d.

Preferowana jest trasa z mniejszą wartością metryki

Atrybut Origin

- Ten atrybut wskazuje, jak BGP uzyskał informacje o trasie:
 - IGP
 - trasa jest trasą wewnętrzną dla danego AS
 - EGP
 - trasa została uzyskana w wyniku ogłaszania przez zewnętrzny AS
 - Incomplete
 - nie jest znane pochodzenie informacji o trasie

Atrybut AS_path

- AS_path jest to sekwencja numerów AS.
 - Gdy ogłoszenie prefiksu przechodzi przez jakiś AS,
 ASN jest dodawany i powstaje lista ścieżka
 - Zapobiega pętlom

Next-Hop

 Next-hop to adres IP rutera przez który osiągalna jest rozgłaszana trasa

Community

- Umożliwiają znakowanie tras dla których mogą być podejmowane pewne decyzje, np. zmiana local preference u peera
 - definiujemy znaczenie za pomocą liczby 32 bit
 - ISP publikują listy honorowanych community i na tej podstawie mogą zmieniać politykę rutingu
- Są także predefiniowane communities:
 - no-export nie ogłaszaj tras do zewnętrznych AS
 - no-advertise nie ogłaszaj w ogóle, do żadnego peera
 - internet ogłaszaj wszystkim

Community c.d.

Trasa nie będzie wysłana poza AS 2

Bardzo ważne: filtrowanie

- ip as-path access-list 10 permit .*
 - .* cokolwiek
 - ^\$ trasy lokalne dla danego AS
 - _ 100\$ trasy stworzone w AS 100
 - ^100_ trasy otrzymane z AS 100
 - _ 100_ trasy przez AS 100
 - _ 200_100_ trasy przez AS100, następnie przez AS
 200
- ip prefix-list cisco seq 10 permit 0.0.0.0/0 le 19
 - Dopuszcza trasy z maską co najmniej (less or equal)
 19 bitów

Podejmowanie decyzji o wyborze ścieżki

- BGP wybiera tylko jedną trasę, umieszcza ją w tablicy rutowania IP i (ewentualnie) rozgłasza
- Uwzględniane kryteria wyboru trasy w następującej kolejności:
 - Nie uwzględniaj ścieżki, dla której next-hop jest nieosiagalny
 - Preferuj trasę z większą wagą
 - Jeśli wagi są takie same, uwzględnij większą wartość local preference
 - Preferuj trasę z krótszym AS_path
 - Jeśli wszystkie ścieżki mają taki sam AS_path, uwzględnij tę z mniejszym atrybutem origin
 - IGP<EGP<incomplete

Podejmowanie decyzji o wyborze ścieżki c.d.

- Jeśli atrybuty origin są takie same, uwzględnij najmniejszą wartość MED
- Jeśli wartość MED jest taka sama, preferuj ścieżkę zewnętrzną
- Jeśli ścieżki są takie same wybierz ścieżkę przez ruter bliższy w sensie IGP
- W końcu uwzględnij najmniejszą wartość adresu IP, odczytaną z komunikatu BGP

Kiedy *nie* potrzebujemy BGP

- Jeden provider i jedno łącze
 - wystarczy default route...
- Jeden provider, dwa łącza z inną adresacją
 - wystarczy skonfigurować policy routing

Kiedy BGP jest potrzebne

- 2 ISP
 - redundancja
 - możliwość stosowania własnej polityki routingu, rozkładanie obciążenia
- Tranzyt przez nasz AS do innych AS

Problemy z BGP

- Rozgłaszanie prefiksów nieprzydzielonych lub należących do klas prywatnych: 1/8, 2/8, 10/8
 - stosowanie filtrowania (tzw. bogon filters)
 - spowodowały kiedyś problemy z neostradą 83/11
 - ip prefix-list bogons seq 5 deny 1.0.0.0/8
 - należy uaktualniać filtrowaną listę prefiksów bogons:
 - http://www.team-cymru.org/Services/Bogons/

Liczba prefixów w tablicach FIB

BGP pod Linuksem

- Quagga (http://www.quagga.net)
 - wywodzi się z projektu zebra
 - implementuje bgp4, ospf, rip

Monitorowanie

- Za pomocą SNMP:
 - cacti, mrtg (np. obciążenie łącza)
- Na różne sposoby:
 - nagios