Lecture 06: Applications

Nikola Zlatanov

Innopolis University

Advanced Statistics

13-th of march to 20-th of March, 2023

- We started this course by observing that high dimensions could be a major problem, due to the curse of dimensionality.
- Why don't we then fix the problem due to high-dimensions as follows: Take the high-dimensional data and transform it into a low-dimensional data.
- Let there be N high-dimensional vectors $\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N$, where $\boldsymbol{x}_j^T = [x_1, x_2, ..., x_d]$, for j = 1, 2, ..., N, where d is very high.
- We would like to make a transformation of $x_1, x_2, ..., x_N$ into $y_1, y_2, ..., y_N$, where $y_j^T = [y_1, y_2, ..., y_n]$, for j = 1, 2, ..., N, where $n \ll d$, and yet the geometry of $x_1, x_2, ..., x_N$ are preserved in $y_1, y_2, ..., y_N$.

• First we have to define what do we mean by "the geometry of the data": By "the geometry of the data", we mean the pairwise distances between the original data.

Is this possible? It turns out it is possible if $n = O(\ln(N)) \ll d$.

• Thm (Johnson-Lindenstrauss Lemma): \forall vectors $\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N$, where $\boldsymbol{x}_j \in \mathbb{R}^d$, for j = 1, 2, ..., N, there exists a linear map $T: \boldsymbol{x}_j \to \boldsymbol{y}_j$, where $\boldsymbol{y}_j \in \mathbb{R}^n$ and $n \ll d$ such that the following holds

$$\operatorname{Pr}\left\{(1-\delta)||oldsymbol{x}_k-oldsymbol{x}_j||_2 \leq ||oldsymbol{y}_k-oldsymbol{y}_j||_2 \leq (1+\delta)||oldsymbol{x}_k-oldsymbol{x}_j||_2 \} \geq 1-\epsilon$$

for any $j \neq k$, where j = 1, 2, ..., N and k = 1, 2, ..., N, and small $\delta > 0$ and $\epsilon > 0$ if

$$n > \frac{1}{c} \left(\ln(N) + \frac{1}{2} \ln\left(\frac{1}{\epsilon}\right) + \frac{1}{2} \ln(2) \right)$$

holds where

$$c = \frac{\delta(2-\delta)}{k} \min\left\{\frac{\delta(2-\delta)}{k}, 1\right\} \tag{2}$$

Proof:

- The vectors $x_1, x_2, ..., x_N$ and $y_1, y_2, ..., y_N$ are all deterministic.
- However, we will use a probabilistic method to find the mapping $T: x_j \to y_j$.
- Specifically, we will choose a linear map $T(\cdot)$ at random, and then we will prove that the linear map $T(\cdot)$ satisfies the properties that we seek.
- Now, a linear map is simply a multiplication of $x_1, x_2, ..., x_N$ by a matrix T, of size $d \in \mathcal{T}$, to obtain $y_1, y_2, ..., y_N$.
- Hence, if we will choose a linear map $T(\cdot)$ at random, this means that we should choose a matrix T at random.
- ullet How is it possible that a randomly chosen matrix T would work?

- Let's have a random matrix G of size $n \times d$ populated by i.i.d. Gaussian entries, i.e., the (i, j)-th element of G, denoted by G_{ij} , is generated i.i.d. according to the Gaussian distribution N(0, 1) for i = 1, 2, ..., n and j = 1, 2, ..., d.
- Let us have a fixed vector $z \in \mathbb{R}^d$, with norm $||z||_2$.
- Now, let's investigate the distribution of Gz. The *i*-th element of Gz, denoted by $(Gz)_i$ is given by

$$(Gz)_{i} = \sum_{j=1}^{d} G_{ij}z_{j} \sim N\left(0, \sum_{j=1}^{d} z_{j}^{2}\right) = N\left(0, ||z||_{2}^{2}\right) \stackrel{(a)}{=} N(0, 1) \quad (3)$$

where (a) holds if and only if $||z||_2 = 1$.

On the other hand, let's fix two vectors, x_k and x_l . Then, the vector $Gx_k - Gx_l$, according to (3), has i.i.d. zero-mean Gaussian elements each with variance $||x_k - x_l||_2^2$.

Hence, if we normalize $Gx_k - Gx_l$ by $||x_k - x_l||_2$, the vector

$$\| \mathbf{x}_k - \mathbf{x}_l \|_2$$
 $\| \mathbf{x}_k - \mathbf{x}_l \|_2$ $\| \mathbf{x}_k - \mathbf{x}_l \|_2$

will have i.i.d. zero-mean Gaussian elements each with variance one. As a result, we can use the Thin-Shell Theorem, which states that

$$\Pr\left\{ \left| \frac{||Gx_k - Gx_l||_2}{||x_k - x_l||_2} - \sqrt{n} \right| \le \delta \sqrt{n} \right\}$$

$$\ge 1 - 2 \exp\left(-n \frac{\delta(2 - \delta)}{k} \min\left\{ \frac{\delta(2 - \delta)}{k}, 1 \right\} \right)$$
(4)

We will now prove the main theorem as follows. We will select a pair of vectors x_k and x_l . We will prove (1) for the selected x_k and x_l . Then, we will use the union bound to prove that the theorem holds for all pairs satisfying the given condition.

We start with the selected pair x_k and x_l :

We start with the selected pair
$$\mathbf{x}_{k}$$
 and \mathbf{x}_{l} :

$$\begin{aligned}
\mathbf{x}_{k} &= \mathbf{x}_{l} | \mathbf{x}_{k} - \mathbf{x}_{l} | \mathbf{x}_{l} - \mathbf{x}_{l} - \mathbf{x}_{l} | \mathbf{x}_{l} - \mathbf{x}_{l} -$$

Continuation of (5)

$$\stackrel{(a)}{=} \Pr\left\{ ||\boldsymbol{x}_k - \boldsymbol{x}_l||_2 (1 - \delta) \le ||\boldsymbol{T}\boldsymbol{x}_k - \boldsymbol{T}\boldsymbol{x}_l||_2 \le ||\boldsymbol{x}_k - \boldsymbol{x}_l||_2 (1 + \delta) \right\}$$

$$\stackrel{(b)}{\geq} 1 - 2 \exp\left(-n\frac{\delta(2 - \delta)}{k} \min\left\{\frac{\delta(2 - \delta)}{k}, 1\right\}\right) \stackrel{(c)}{=} 1 - 2e^{-nc}$$
(6)

where (a) comes by setting

$$T = \frac{1}{\sqrt{n}}G,$$

and (c) comes by setting

$$c = \frac{\delta(2-\delta)}{k} \min\left\{\frac{\delta(2-\delta)}{k}, 1\right\} \tag{7}$$

We now take the union bound over all pairs of N vectors

Pr
$$\left\{ \bigcap_{k=1}^{N} \bigcap_{l=k+1}^{N} \left| \frac{||Gx_k - Gx_l||_2}{||x_k - x_l||_2} - \sqrt{n} \right| \le \delta \sqrt{n} \right\}^{N}$$

$$= 1 - \Pr \left\{ \bigcup_{k=1}^{N} \bigcup_{\substack{l=k+1 \ e^{-1}}}^{N} \left| \frac{||Gx_k - Gx_l||_2}{||x_k - x_l||_2} - \sqrt{n} \right| \ge \delta \sqrt{n} \right\}$$

$$\geq 1 - \sum_{k=1}^{N} \sum_{l=1}^{N} \Pr \left\{ \left| \frac{||Gx_k - Gx_l||_2}{||x_k - x_l||_2} - \sqrt{n} \right| \ge \delta \sqrt{n} \right\}$$

$$= 1 - N^2 \Pr \left\{ \left| \frac{||Gx_k - Gx_l||_2}{||x_k - x_l||_2} - \sqrt{n} \right| \ge \delta \sqrt{n} \right\}$$

$$\geq 1 - 2N^2 e^{-nc}$$

$$= 1 - e^{\ln(2) + 2\ln(N) - nc}$$

Now, we want to set n, N, and c such that

$$\Pr\left\{\left|\frac{||Gx_k - Gx_l||_2}{||x_k - x_l||_2} - \sqrt{n}\right| \le \delta\sqrt{n}\right\} \ge 1 - e^{\ln(2) + 2\ln(N) - nc} \ge 1 - \epsilon$$
high occurs if

which occurs if

$$1 - e^{\ln(2) + 2\ln(N) - nc} \ge 1 - \epsilon$$

or equivalently if

$$\ln(2) + 2\ln(N) - nc < \ln(\epsilon)$$

or equivalently if

$$\ln(N) < nc - \frac{1}{2} \ln\left(\frac{1}{\epsilon}\right) - \frac{1}{2} \ln(2), \quad h = 1000600$$

where c is given in (7) as function of δ . Q.E.D.

Note! We have lost d. Where is d?