Machine Learning

Permution importance with RandomForestClassifier and DecisionTreeClassifier

Kunal Khurana

2024 - 01 - 13

Table of contents

```
· Process-
   get a trained model
   calculate the loss function
   return the data into orignal orde
  #import eli5
  #from eli5.sklearn import PermutationImportance
 from sklearn.datasets import load_iris
  import numpy as np
  import pandas as pd
  from sklearn.model_selection import train_test_split
  from sklearn.ensemble import RandomForestClassifier
  data = pd.read_csv('FIFA 2018 Statistics.csv')
  data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 128 entries, 0 to 127
Data columns (total 27 columns):
   Column
                      Non-Null Count Dtype
                      _____
   _____
0
   Date
                      128 non-null
                                  object
                      128 non-null
1
   Team
                                  object
2
                     128 non-null
   Opponent
                                  object
3
   Goal Scored
                      128 non-null
                                  int64
   Ball Possession %
                     128 non-null
                                  int64
```

5	Attempts	128 non-null	int64
6	On-Target	128 non-null	int64
7	Off-Target	128 non-null	int64
8	Blocked	128 non-null	int64
9	Corners	128 non-null	int64
10	Offsides	128 non-null	int64
11	Free Kicks	128 non-null	int64
12	Saves	128 non-null	int64
13	Pass Accuracy %	128 non-null	int64
14	Passes	128 non-null	int64
15	Distance Covered (Kms)	128 non-null	int64
16	Fouls Committed	128 non-null	int64
17	Yellow Card	128 non-null	int64
18	Yellow & Red	128 non-null	int64
19	Red	128 non-null	int64
20	Man of the Match	128 non-null	object
21	1st Goal	94 non-null	float64
22	Round	128 non-null	object
23	PS0	128 non-null	object
24	Goals in PSO	128 non-null	int64
25	Own goals	12 non-null	float64
26	Own goal Time	12 non-null	float64

dtypes: float64(3), int64(18), object(6)

memory usage: 27.1+ KB

data.head()

	Date	Team	Opponent	Goal Scored	Ball Possession %	Attempts	On-Target	Of
0	14-06-2018	Russia	Saudi Arabia	5	40	13	7	3
1	14-06-2018	Saudi Arabia	Russia	0	60	6	0	3
2	15-06-2018	Egypt	Uruguay	0	43	8	3	3
3	15-06-2018	Uruguay	Egypt	1	57	14	4	6
4	15-06-2018	Morocco	Iran	0	64	13	3	6

```
#
y = (data['Man of the Match'] == 'Yes')
feature_names = [i for i in data.columns if data[i].dtype in [np.int64]] #choosing intege
X = data[feature_names]
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state = 1)
```

eli5 library for permutation importance

Practice

```
import pandas as pd
  from sklearn.ensemble import RandomForestRegressor
  from sklearn.linear_model import LinearRegression
  from sklearn.model_selection import train_test_split
  import seaborn as sns
  import matplotlib.pyplot as plt
  data2= pd.read_csv('train.csv')
  data2.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 8 columns):
    Column
                       Non-Null Count Dtype
    _____
                       -----
 0
                      50000 non-null object
    key
                  50000 non-null float64
 1
    fare_amount
 2 pickup_datetime 50000 non-null object
 3 pickup_longitude 50000 non-null float64
 4
    pickup_latitude
                       50000 non-null float64
 5
    dropoff_longitude 50000 non-null float64
    dropoff_latitude
                       50000 non-null float64
 6
    passenger_count
                       50000 non-null int64
dtypes: float64(5), int64(1), object(2)
memory usage: 3.1+ MB
  data2.columns
```

data2.head()

	key	fare_amount	pickup_datetime	pickup_longitude	pickup_lat
0	2009-06-15 17:26:21.0000001	4.5	2009-06-15 17:26:21 UTC	-73.844311	40.721319
1	2010-01-05 16:52:16.0000002	16.9	2010-01-05 16:52:16 UTC	-74.016048	40.711303
2	2011-08-18 00:35:00.00000049	5.7	2011-08-18 00:35:00 UTC	-73.982738	40.761270
3	2012-04-21 04:30:42.0000001	7.7	2012-04-21 04:30:42 UTC	-73.987130	40.733143
4	2010-03-09 07:51:00.000000135	5.3	2010-03-09 07:51:00 UTC	-73.968095	40.768008

```
# Remove data with extreme outlier coordinates or negative fares
data2 = data2.query('pickup_latitude > 40.7 and pickup_latitude < 40.8 and ' +
                  'dropoff_latitude > 40.7 and dropoff_latitude < 40.8 and ' +
                  'pickup_longitude > -74 and pickup_longitude < -73.9 and ' +
                  'dropoff_longitude > -74 and dropoff_longitude < -73.9 and ' +
                  'fare_amount > 0'
                  )
# assigning prediction target
y = data2.fare_amount
base_features = ['pickup_longitude',
                'pickup_latitude',
                 'dropoff_longitude',
                'dropoff_latitude',
                'passenger_count']
X = data2[base_features]
# train the model
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state = 1)
first_model = RandomForestRegressor(n_estimators = 50, random_state = 1).fit(train_X, trai
train_X.describe()
```

	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	37500.000000	37500.000000	37500.000000	37500.000000	37500.000000
mean	-72.520688	39.931410	-72.514256	39.930631	1.670827
std	10.360818	6.010290	10.378988	6.014321	1.293083
\min	-75.414728	-74.006893	-84.654241	-74.006377	0.000000
25%	-73.992092	40.735008	-73.991196	40.734333	1.000000
50%	-73.981811	40.752825	-73.980012	40.753397	1.000000
75%	-73.967051	40.767428	-73.963292	40.768243	2.000000
max	40.783472	42.160275	40.802437	42.168717	6.000000

train_y.describe()

```
count
         37500.000000
            11.402322
mean
             9.715174
std
            -5.000000
min
25%
             6.000000
50%
             8.500000
75%
            12.500000
           180.000000
max
```

Name: fare_amount, dtype: float64

```
# visualize
sns.barplot(x = 'importance_mean', y = 'feature', data= importance_df)
plt.title('Feature Importances')
plt.xlabel('Mean Importance')
plt.ylabel('Feature')
plt.show()
```


Hypothesis testing

Why are latitudes have larger effect?

- 1. Travel might tend to have greater latitude distances than longitude distances.
- 2. Different parts of the city might have different pricing rules (e.g. price per mile), and pricing rules could vary more by latitude than longitude.
- 3. Tolls might be greater on roads going North<->South (changing latitude) than on roads going East <-> West (changing longitude). Thus latitude would have a larger effect on

the prediction because it captures the amount of the tolls.

```
# reducing length of X
X_trimmed = X.iloc[:len(y)]
# create new features
data2['abs_lon_change'] = abs(data2.dropoff_longitude - data2.pickup_longitude)
data2['abs_lat_change'] = abs(data2.dropoff_latitude - data2.pickup_latitude)
features_2 = ['pickup_longitude',
                 'pickup_latitude',
                 'dropoff_longitude',
                 'dropoff_latitude',
                'passenger_count',
              'abs_lon_change',
              'abs_lat_change']
X= data2[features_2]
\verb"new_train_X", \verb"new_val_X", \verb"new_train_y", \verb"new_val_y" = train_test_split(X", y", random_state = 1)
second_model = RandomForestRegressor(n_estimators = 50, random_state = 1).fit(new_train_X,
result2 = permutation_importance(second_model, new_train_X, new_train_y, n_repeats=30, ran
# resulting importances
importance_df2 = pd.DataFrame({'feature': features_2,
                          'importance_mean': result2.importances_mean,
                          'importance_std' : result2.importances_std})
importance_df2 = importance_df2.sort_values('feature',
                                           ascending = False)
# visualize
sns.barplot(x = 'importance_mean', y = 'feature', data= importance_df2)
plt.title('Feature Importances')
plt.xlabel('Mean Importance')
plt.ylabel('Feature')
plt.show()
```


X.describe()

	pickup_longitude	pickup_latitude	dropoff_longitude	${\rm dropoff_latitude}$	passenger_count	abs_
count	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000
mean	-72.509756	39.933759	-72.504616	39.926251	1.667840	0.151
std	10.393860	6.224857	10.407570	6.014737	1.289195	3.077
\min	-75.423848	-74.006893	-84.654241	-74.006377	0.000000	0.000
25%	-73.992062	40.734880	-73.991152	40.734372	1.000000	0.005
50%	-73.981840	40.752678	-73.980082	40.753372	1.000000	0.012
75%	-73.967148	40.767360	-73.963584	40.768167	2.000000	0.023
max	40.783472	401.083332	40.851027	43.415190	6.000000	74.01

print(X.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	pickup_longitude	50000 non-null	float64
1	<pre>pickup_latitude</pre>	50000 non-null	float64
2	<pre>dropoff_longitude</pre>	50000 non-null	float64
3	${\tt dropoff_latitude}$	50000 non-null	float64
4	passenger_count	50000 non-null	int64
5	abs_lon_change	50000 non-null	float64
6	abs_lat_change	50000 non-null	float64

dtypes: float64(6), int64(1)

memory usage: 2.7 MB

None

print(y.info())

<class 'pandas.core.series.Series'>
Index: 31289 entries, 2 to 49999

Series name: fare_amount Non-Null Count Dtype

31289 non-null float64

dtypes: float64(1)
memory usage: 488.9 KB

None