

planetmath.org

Math for the people, by the people.

Clifford algebra

Canonical name CliffordAlgebra

Date of creation 2013-03-22 13:18:05 Last modified on 2013-03-22 13:18:05

Owner rmilson (146) Last modified by rmilson (146)

Numerical id 9

Author rmilson (146)
Entry type Definition
Classification msc 15A66
Classification msc 11E88

Let V be a vector space over a field k, and $Q: V \times V \to k$ a symmetric bilinear form. Then the Clifford algebra Cliff(Q, V) is the quotient of the tensor algebra $\mathcal{T}(V)$ by the relations

$$v \otimes w + w \otimes v = -2Q(v, w) \quad \forall v, w \in V.$$

Since the above relationship is not homogeneous in the usual \mathbb{Z} -grading on $\mathcal{T}(V)$, $\operatorname{Cliff}(Q, V)$ does not inherit a \mathbb{Z} -grading. However, by reducing mod 2, we also have a \mathbb{Z}_2 -grading on $\mathcal{T}(V)$, and the relations above are homogeneous with respect to this, so $\operatorname{Cliff}(Q, V)$ has a natural \mathbb{Z}_2 -grading, which makes it into a superalgebra.

In addition, we do have a filtration on $\mathrm{Cliff}(Q,V)$ (making it a filtered algebra), and the associated graded algebra $\mathrm{Gr}\,\mathrm{Cliff}(Q,V)$ is simply Λ^*V , the exterior algebra of V. In particular,

$$\dim \operatorname{Cliff}(Q, V) = \dim \Lambda^* V = 2^{\dim V}.$$

The most commonly used Clifford algebra is the case $V = \mathbb{R}^n$, and Q is the standard inner product with orthonormal basis e_1, \ldots, e_n . In this case, the algebra is generated by e_1, \ldots, e_n and the identity of the algebra 1, with the relations

$$e_i^2 = -1$$

$$e_i e_j = -e_j e_i \quad (i \neq j)$$

Trivially, $\text{Cliff}(\mathbb{R}^0) = \mathbb{R}$, and it can be seen from the relations above that $\text{Cliff}(\mathbb{R}) \cong \mathbb{C}$, the complex numbers, and $\text{Cliff}(\mathbb{R}^2) \cong \mathbb{H}$, the quaternions.

On the other hand, for $V = \mathbb{C}^n$ we get the particularly answer of

$$\operatorname{Cliff}(\mathbb{C}^{2k}) \cong \operatorname{M}_{2^k}(\mathbb{C}) \qquad \operatorname{Cliff}(\mathbb{C}^{2k+1}) = \operatorname{M}_{2^k}(\mathbb{C}) \oplus \mathbf{M}_{2^k}(\mathbb{C}).$$