Системный анализ процессов переработки нефти и газа

Лабораторная работа №2

Структуры данных. Функции

Задание 1

Уравнение Михаэлиса-Ментен - наиболее известная модель ферментативных кинетических реакций:

$$v = rac{d\left[P
ight]}{dt} = rac{V_{max} \cdot \left[S
ight]}{K_m + \left[S
ight]}$$

где v - скорость реакции, преобразующей субстрат S в продукт P и катализируемой фкрментом. V_{max} - максимальная скорость реакции (когда все ферменты связаны с субстратом S), а константа Михаэлиса K_m - это концентрация субстрата, при которой скорость реакции составляет половину от ее максимального значения.

Необходимо написать функцию для расчета скорости ферментативной реакции и рассчитать с ее помощью значение v при $S \in [0.01, 0.1]$ с шагом $0.01~\mathrm{M}$. Принять $K_m = 0.04~\mathrm{M}$; $V_{max} = 0.1~\mathrm{M/c}$.

Задание 2

Молекула A в ступает в реакцию образования продуктов B и C с константами скорости реакции первого порядка k_1 и k_2 соответственно. Таким образом:

$$rac{d\left[A
ight]}{dt}=-\left(k_{1}+k_{2}
ight)\cdot\left[A
ight]$$

следовательно:

$$[A] = [A]_0 \cdot e^{-(k_1 + k_2) \cdot t}$$

где $[A]_0$ - начальная концентрация A. Значения концентрации продуктов (начиная с 0) увеличиваются в соответствии с соотношением $[B]/[C]=k_1/k_2$, в то время как закон сохранения вещества требует соблюдения условия $[B]+[C]=[A]_0-[A]$. Таким образом:

$$[B] = rac{k_1}{(k_1 + k_2)} [A]_0 \left(1 - e^{-(k_1 + k_2) \cdot t}
ight)$$

$$[C] = rac{k_2}{(k_1 + k_2)} [A]_0 \left(1 - e^{-(k_1 + k_2) \cdot t}
ight)$$

Необходимо реализовать функцию для расчета значений концентрации компонентов A, B и C и найти с ее помощью значения концентраций данных веществ для $t \in [0,1]$ шагом $0.1\mathrm{c}$. Начальная концентрация реагента $[A]_0 = 2.0$ моль/дм 3 ; константы скорости реакций: $k_1 = 3, \, k_2 = 1.5 \, \mathrm{c}^{-1}$.

Задание 3

Определение концентрации ионов $[H^+]$ в растворе с учетом константы диссоциации кислоты K_a и концентрации кислоты c происходит посредством последовательного применения формулы:

$$\left[H^+
ight]_{n+1} = \sqrt{\left(K_a\cdot (c-[H^+]_n)
ight)}$$

при начальном значении $[H^+]_n=0.0$. Итерации продолжаются до тех пор, пока изменение значения $[H^+]$ не станет меньше, чем некоторая предварительно заданная малая пороговая величина допустимого отклонения. Величину допустимого отклонения принять $\varepsilon=1.0E$ -10.

Название	Формула	pK_a
Азотистая	HNO_2	3.35
Уксусная	CH_3COOH	4.76
Угольная	H_2CO_3	6.37
Сероводородная	H_2S	6.92
Хлорноватистая	HClO	7.25
Бромноватистая	HBrO	8.7
Ортотеллуровая	H_6TeO_6	8.8

pH раствора ($pH=-\lg{[H^+]}$); $pK_a=-\lg{(K_a)}$. Концентрацию кислоты принять $c=0.01~\mathrm{M}$.

Составьте функцию для расчета рН кислоты. Используя данную функцию, рассчитайте:

- 1. Зависимость pH от концентрации азотистой кислоты при значениях $c \in [0.01, 0.1]$ с шагом $0.01~\mathrm{M}.$
- 2. Зависимость pH от показателя константы диссоциации кислоты при постоянной концентрации $c=0.01~\mathrm{M}$. Значения показателей констант диссоциации взять из таблицы.

Задание 4

Реализуйте функцию, возвращающую словарь, в котором ключами будут имена C_1 - C_5 , а значениями другой словарь, содержащий молекулярную массу, температуру и плотность соответствующих алканов. Общая формула для алканов: C_nH_{2n+2} .

1. Температуру кипения можно определить по следующей формуле:

$$T_b = 1090 - \exp\left(6.9955 - 0.11193 \cdot N_C^{2/3}
ight)$$

где N_{C} - число атомов углерода в молекуле алкана.

2. Формула для вычисления плотности:

$$ho = 1.07 - \exp\left(3.56073 - 2.93886 \cdot MW^{0.1}
ight)$$

где MW - молекулярная масса алкана.