A COMPARARTIVE STUDY OF TRANSFORMER-BASED LANGUAGE MODELS' PERFORMANCE FOR ENGLISH & HINDI QUESTION ANSWER SYSTEMS

Final Dissertation Presentation

INDEX

BACKGROUND	3
EVOLUTION OF QA SYSTEM	4
AIM & OBJECTIVES	5
LITERATURE REVIEW	6
PROBLEM STATEMENT	7
METHODOLOGY	8
ENGLISH →HINDI TRANSLATION-RESULTS	9
ANSWER PREDICTION-RESULTS	10
CONCLUSIONS	11
FUTURE WORKS & RECOMMENDATIONS	12

BACKGROUND (QA SYSTEM)

What

- ✓ An information retrieval NLP task
- ✓ Generates selective information specific to the question input.
- ✓ Open-domain QA & Closed-domain QA systems

Why

- ✓ For efficient information retrieval
- ✓ For automated and intelligent query response mechanisms

The 4 questions for a Question Answering(QA) system

Where

- ✓Online customer service systems
- **✓** Chatbots
- ✓ Virtual assistance systems
- ✓ Automated query response mechanisms

How

- ✓ Input feed to the model
- ✓ Query or question processing
- ✓ Document or passage retrieval
- ✓ Computing similarity index and answer extraction

EVOLUTION OF QA SYSTEM

2. RNNs, CNNs & LSTMs (2014-present)

- The sequential nature results parallelization limitations
- RNNs yet to resolve long-range dependencies

1. Manual QA systems (Till 2014)

- Built by humans, it cannot account for large datasets.
- Developing manual datasets is time consuming and excessive proof-reading required

- Able to resolve the challenge of parallelization
- Able to resolve long-range dependencies
- Can handle transduction with attention instead of sequential framework

AIM & OBJECTIVES

Aim

To promote transformer-based approaches to build QA systems for low-resource languages.

Compare RoBERTa & m-BERT for answer prediction of comprehension dataset ReClor in English & Hindi languages.

Evaluate effectiveness of transformer model for an English-Hindi translation of the context-question pair for a comprehension dataset.

Evaluate the effectiveness of transfer learning on the scale of fine-tunings required by the transformer model.

LITERATURE REVIEW

Created by: Suchitra A Gupta December'21

PROBLEM STATEMENT

• Scarcity of training data for low-resource languages.

Challenge 1

• Most of the QA systems generate short or one-word answers and lack in predicting long sentences or subjective answers.

Challenge 2

• More quality work needed to address reasoning questions for complex text like reading comprehension.

Challenge 3

METHODOLOGY A TWO-PARTS APPROACH

Created by: Suchitra A Gupta

December'21

ENGLISH→**HINDI TRANSLATION-RESULTS**

Metrics for English-Hindi translation	High	Average	Low	Inference/Example
Able to generated long sequence sentences	V			English Question: Those whose view is described above hold inconsistent beliefs if they also believe that Hindi Question: जिनके विचार ऊपर वर्णित हैं, वे असंगत विश्वास रखते हैं यदि वे यह भी मानते हैं कि
Translated sentences' proximity to ground truth		V		Translation result from Google Translate: जिन लोगों के विचार ऊपर वर्णित है असंगत विश्वासों पकड़ अगर वे भी विश्वास है कि
# of parameter fine-tuning			$\overline{\checkmark}$	Most parameters unchanged from the pretrained model
Transliteration & Code-switching	$\overline{\checkmark}$			English word: 'gray' Transliterated Hindi version: 'ग्रे'
Computational time			$\overline{\checkmark}$	Perhaps due to the transfer learning approach
POS tagging for superlatives*			V	English superlative adjective: "and the smartest people" Hindi translation: "और स्मार्ट लोग" Ground Truth: "और सबसे स्मार्ट लोग"

^{*} The metric result icon displayed in red font infers poor results

ANSWER PREDICTION-RESULTS

Comparison Metrics	Results for Prediction i		Results for Answer Prediction in Hindi	
	RoBERTabase	m-BERT	xlmRoBERTa	m-BERT
Able to generated long sequence answers	•	•	☆	•
Predicted answers proximity to ground truth	•	•	☆	•
# of parameter fine-tuning	•	•	1	•
Transliteration			1	•
Code-switching			☆	•
Computational time	•	•	•	•
Virtual Environment	GPU	TPU v3-8	GPU	TPU v3-8

Good results

Average Results

Below Average

CONCLUSIONS & CONTRIBUTIONS

Both RoBERTa _{BASE} and m-BERT models are able to predict answers mostly in the form of short phrases or one-word answers.
RoBERTa _{BASE} is a better model to be used for answer prediction in English.
xlmRoBERTa is an easier model to than m-BERT for answer prediction in Hindi.
Transfer learning approach reduces computational time and can fetch better results with optimum fine-tuning.
The transformer-based pretrained En-Hin parallel corpus contributed by the University of Helsinki supports transliteration but needs further pretraining to support POS for superlative adjective.
m-BERT model demonstrates limited results for code-switching texts and phrases.
m-BERT requires more fine-tuning than xlmRoBERTa.
Both the models need further training to be able to generate subjective answers.

FUTURE WORKS AND RECOMMENDATIONS

RECOMMENDATIONS

- ✓ Transformer models like m-BERT that are trained using the Devanagari script need to be further trained with code-switching examples.
- Enhanced application of transformer models to be able to generate intelligent plausible distractors for comprehension passages.
- ✓ Answer label classification tasks for multiple answer options to be explored for ReClor dataset for Hindi and other languages

FUTURE WORKS

- ✓ RoBERTa and m-BERT need to be pretrained with more training examples to increase learning.
- ✓ Evaluate RoBERTa and m-BERT towards predicting 'no answer available' for a context-question pair.
- ✓ Further model training required to learn tokenization for long sequences to predict answers beyond one-word or short texts.
- Explore if there is any impact of the question-type on the answer predictability of the transformer model.

THANK YOU