VLSI SYSTEM DESIGN LAB(ECE3001)

(BY PROF.JAGANNADHA NAIDU K)

TASK-1 NMOS AND PMOS V-I CHARACTERISTICS

SLOT-L23+L24

NAME:SIDDHANT AGARWAL

REGISTER NO:-17BEC0431

AIM:TO Plot the V-I characteristics of NMOS and PMOS transistors. Determine the region of operation for the MOSFET .Also calculate the threshhold voltage and the pinch off voltage.

CIRCUIT DESIGNS:

TRANSFER CHARACTERISTICS CIRCUIT

PLOTS:

OUTPUT CHARACTERSTICS

AT Vgs=1V OUTPUT TO CALCULATE LAMBDA

TRANSFER CHARACTERISTICS AT 1.1uA

OBSERVATION AND TABLE:

OUTPUT CHARACTERSTICS

VDS(SAT)(mV)	VGS(V)
-169.266	0
31	0.2
231	0.4
431	0.6

TRANSFER CHARACTERISTICS: At Vgs=1.1uA

V(t)(mV)	Vsb(V)
169.79	0
178.9	0.25
185.73	0.5
191.04	0.75
194.7	1

Calculation of (λ_n)

$$\begin{split} I_{ds1} = 78.545 uA & I_{ds2} = 79.81 uA \\ I_{ds1} = I_{ds} (1 + \lambda_n V_{ds1}) \\ I_{ds2} = I_{ds} (1 + \lambda_n V_{ds2}) \\ I_{ds1} / I_{ds2} = ((1 + \lambda_n V_{ds1})) / (1 + \lambda_n V_{ds2}) \\ & \text{We get} \\ \lambda_n = 0.6 \end{split}$$

PMOS CHARACTERSTICS:

CIRCUIT DESIGNS:

TRANFER CHARACTERISTICS CIRCUIT

PLOTS:

OUTPUT CHARACTERISTICS

OUTUT CHARACTERISTIC AT V_{GS}=-1V TO CALCULATE LAMBDA

TRANSFER CHARACTERISTICS

OBSERVATION AND TABLE:

OUTPUT CHARACTERSTICS

VDS(SAT)(mV)	VGS(V)
135	-0
-65	-0.2
-265	-0.4
-465	-0.6
-665	-0.8
-865	-1

TRANSFER CHARACTERSTICS:

V(t)(mV)	Vsb(V)
-136.08	0
-158.98	-0.25
-181.21	-0.5
-203.18	-0.75
-225.25	-1

Calculation of (λ_n)

$$\begin{split} I_{ds1} = -33.076uA & I_{ds2} = -33.588uA \\ & I_{ds1} = I_{ds} \big(1 + \lambda_n V_{ds1} \big) \\ & I_{ds2} = I_{ds} \big(1 + \lambda_n V_{ds2} \big) \\ & I_{ds1} \big/ \ I_{ds2} = \big(\big(1 + \lambda_n V_{ds1} \big) \big) \big/ \ \big(1 + \lambda_n V_{ds2} \big) \\ & \text{We get} \\ & \lambda_p = 0.6 \end{split}$$

INFERENCE

PMOS

In linear region the I_{DS} will increase linearly with increase in drain to source voltage (V_{DS}) whereas in saturation region the I_{DS} is constant and it is independent of V_{DS} .

ID, VGS, VDS, and VTH(P) are all negative for PMOS are positive for NMOS.

NMOS

ID, VGS, VDS, and VTH(P) are positive for NMOS.

V_{GS} increases, even the saturation current flowing through the device also increases.

 I_{DS1} as $V_{GS2} > V_{GS1}$, I_{DS3} is greater than I_{DSS2} as $V_{GS3} > V_{GS2}$, so on

RESULT

THRESHOLD VOLTAGE

PMOS:-135.951mV

NMOS:169.266mV

PINCH-OFF VOLTAGE

NMOS: AT V_{GS}=0.6v pinch off voltage =231mV

PMOS: At V_{gs}=-1V pinch off voltage=865mV