МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

КОМБИНАТОРНАЯ ТЕОРИЯ ПОЛУГРУПП

ЛАБОРАТОРНАЯ РАБОТА

студента 3 курса 331 группы	
направления 10.05.01 — Компьютерная безопасность	
факультета КНиИТ	
Токарева Никиты Сергеевича	
Проверил	
аспирант В.]	Н. Кутин

1 Постановка задачи

Цель работы: изучение основных понятий теории полугрупп.

Порядок выполнения работы:

- 1. Рассмотреть понятия полугруппы, подполугруппы и порождающего множества. Разработать алгоритм построения подполугрупп по по таблице Кэли.
- 2. Разработать алгоритм построения полугруппы бинарных отношений по заданному порождающему множеству.
- 3. Рассмотреть понятия подгруппы, порождающего множества и определяющих соотношений. Разработать алгоритм построения полугруппы по порождающему множеству и определяющим соотношениям.

2 Теоретические сведения по рассмотренным темам с их обоснованием

Определение 1. Полугруппа – это алгебра $S = (S, \cdot)$ с одной ассоциативной бинарной операцией \cdot , т.е. выполняется

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

для любых $x, y, z \in S$.

Определение 2. Подмножество X полугруппы S называется подполугруппой, если X устойчиво относительно операции умножения, т.е. $\forall x,y \in X$ выполняется свойство: $x \cdot y \in X$. В этом случае множество X с ограничением на нем операции умножения исходной полугруппы S образует полугруппу.

В силу общего свойства подалгебр пересечение любого семейства X_i $(i \in I)$ подполугрупп полугруппы S является подполугруппой S и, значит, множество Sub(S) всех подполугрупп полугруппы S является системой замыканий. множество X. Такая полугруппа обозначается символом $\langle X \rangle$ и называется подполугруппой S, порождённой множеством X. При этом множество X называется также **порождающим множеством** подполугруппы $\langle X \rangle$. В частности, если $\langle X \rangle = S$, то X называется порождающим множеством полугруппы S и говорят, что множество X порождает полугруппу S.

Для любой конечной полугруппы S найдется такой конечный алфавит A, что для некоторого отображения $\phi:A\to S$ выполняется равенство $\langle\phi(A)\rangle=S$ и, значит, $S\cong A^+/ker\phi$ этом случае множество A называется множеством порождающих символов полугруппы S (относительно отображения $\phi:A\to S$). Если при этом для слов $w_1,w_2\in A$ выполняется равенство $\phi(w_1)=\phi(w_2)$, т.е. $w_1\equiv w_2(ker\phi)$, то говорят, что на S выполняется соотношение $w_1=w_2$ (относительно отображения $\phi:A\to S$).

Очевидно, что в общем случае множество таких соотношений $w_1=w_2$ для всех пар $(w_1,w_2)\in ker\phi$ будет бесконечным и не представляется возможности эффективно описать полугруппу S в виде полугруппы классов конгруэнции $ker\phi$. Однако в некоторых случаях можно выбрать такое сравнительно простое подмножество $\rho\subset ker\phi$, которое однозначно определяет конгруэнцию $ker\phi$ как наименьшую конгруэнцию полугруппы A^+ , содержащую отношение ρ , т.е. $ker\phi=f_{con}(\rho)=f_{eq}(f_{reg}(\rho)).$

Так как в случае $(w_1, w_2) \in \rho$ по-прежнему выполняется равенство $\phi(w_1) = \phi(w_2)$, то будем писать $w_1 = w_2$ и называть такие выражения **определяющими**

соотношениями. Из таких соотношений конгруэнция $ker\phi$ строится с помощью применения следующих процедур к словам $u,v\in A^+$:

- 1. слово v непосредственно выводится из слова u, если v получается из u заменой некоторого подслова w_1 на слово w_2 , удовлетворяющее определяющему соотношению $w_1=w_2$, т.е. $(u,v)=(xw_1y,xw_2y)$ для некоторых $x,y\in A^*$;
- 2. слово v выводится из слова u, если v получается из u с помощью конечного числа применения процедуры 1.

Если все выполняющиеся на S соотношения выводятся из определяющих соотношений совокупности ρ , то конгруэнция $ker\phi$ полностью определяется отношением ρ и выражение $< A : w_1 = w_2 : (w_1, w_2) \in \rho >$ называется копредставлением полугруппы S.

3 Результаты работы

3.1 Алгоритм 1 - Построение подполугруппы по заданному порождающему множеству

 Bxod : Полугруппа S с таблицей Кэли $A=(a_{ij})$ размерности $n\times n$ и подмножество $X\subset S$.

Выход: Подполугруппа $\langle X \rangle \subset S$.

Шаг 1. Положим i = 0, $X_0 = X$.

<u>Шаг 2.</u> Для X_i вычислим $\overline{X}_l = \{x \cdot y : x \in X_i \land y \in X\}$ и положим $X_{i+1} = X_i \cup \overline{X}_l$ (выражение $x \cdot y$ означает a_{xy} в таблице Кэли A).

Шаг 3. Вычисляем

$$\langle X \rangle = \bigcup_{i=0}^{\infty} X_i$$

. В качестве ∞ было взято фиксированное большое число – 100000.

Оценка сложности алгоритма $O(n^2 \cdot 100000)$.

3.2 Алгоритм 2 - Построение полугруппы бинарных отношений по заданному порождающему множеству

 Bxod : Конечное множество X бинарных отношений, заданное булевыми матрицами размерности $n \times n$.

Bыход: Полугруппа $\langle X \rangle$.

Шаг 1. Необходимо инициализировать список matrices = []. Известно, что каждому элементу $x_i \in X$ $(0 \le i < n)$ соответствует матрица $A_i \in M$, где M – множество матриц A_i $(0 \le i < n)$, тогда элементы списка matrices будут заданы следующим образом: $matrices[i] = A_i$ $(0 \le i < n)$. Стоит отметить, что список matrices есть полугруппа $\langle X \rangle$.

Шаг 2. Необходимо создать список combinations, элементы которого будут $c_k \in combinations$, где $0 \le k < (n^1 + n^2 + ... + n^n)$. Т.е. этот список является суммой размещений с повторениями.

<u>Шаг 3.</u> Далее возьмем матрицу A_i ($0 \le i < n$) и умножим ее на матрицы $B_0,...,B_l$ согласно текущей комбинации c_k ($0 \le k < (n^1 + n^2 + ... + n^n)$), где матрицы $B_1,...,B_l \in M$ составляют текущую комбинацию c_k (l – количество элементов в c_k). Таким образом получаем матрицу $C = A_i \odot B_1 \odot \cdots \odot B_l$,

где \odot – операция поэлементного умножения. Добавляем C в список matrices в качестве нового элемента полугруппы $\langle X \rangle$.

<u>Шаг 4.</u> Повторять шаг 3 k раз $(0 \le k < (n^1 + n^2 + ... + n^n)).$

Оценка сложности алгоритма $O((m^1+m^2+...+m^n)\cdot l)$, где l – количество элементов в $c_k\in combinations$.

3.3 Алгоритм 3 - Построение полугруппы по порождающему множеству и определяющим соотношениям

 Bxod : Конечное множество символов A мощности n и конечное множество R определяющих соотношений мощности m.

Выход: Полугруппа $\langle A|R\rangle$.

<u>Шаг 1.</u> Необходимо инициализировать список translation = []. Известно, что каждому элементу $r_i \in R$ $(0 \le i < m)$ соответствует список элементов $[a_0,...,a_j,..a_{n-1}]$, где $a_j \in A$ $(0 \le j < n)$, тогда список translation будет состоять из элементов $translation[i] = [a_0,...,a_i,..a_{n-1}]$ $(0 \le i < n)$.

Шаг 2. Необходимо создать список combinations, элементы которого будут $c_k \in combinations$, где $0 \le k < (m^1 + m^2 + ... + m^n)$. Т.е. этот список является суммой размещений с повторениями.

<u>Шаг 3.</u> Инициализировать словарь ans =, где ключом будет являться комбинация $c_k \in combinations$ $(0 \le k < (m^1 + m^2 + ... + m^n))$, а значением список $[b_0, ..., b_j, ..b_{n-1}]$. Стоит отметить, что ans есть полугруппа $\langle A|R\rangle$. Каждый элемент b_j находится по списку translation, т.е. $b_j = translation[i][j]$, где i — индекс элемента $r_i \in R$ $(0 \le i < m)$, j — индекс элемента $a_j \in A$ $(0 \le j < n)$. Далее добавить в словарь по ключу c_k список $[b_0, ..., b_j, ..b_{n-1}]$, т.е. $ans[c_k] = [b_0, ..., b_j, ..b_{n-1}]$, где $0 \le j < n$, $0 \le k < (m^1 + m^2 + ... + m^n)$.

Оценка сложности алгоритма $O((m^1 + m^2 + ... + m^n) \cdot n^2 \cdot m)$.

3.4 Коды программ, реализующей рассмотренные алгоритмы

```
import numpy as np
import math
from itertools import product
```

```
INF = 100000
```

```
def create_subsemigroup():
    print('Enter set values:')
    s = input()
    set_list = [i for i in s.split(' ')]
    print('Enter Cayley table values:')
    c_{tbl} = []
    for i in range(len(set_list)):
      c_tbl.append([j for j in input().split()])
    print('Enter subset values:')
    s = input()
    subset = [i for i in s.split(' ')]
    subset_copy = subset.copy()
    for k in range(0, INF):
        tmp_sub = []
        for i in subset_copy:
            for j in subset:
                tmp_sub.append(c_tbl[subset_copy.index(i)][subset.index(j)])
        subsemigroup = set(subset_copy).union(set(tmp_sub))
    subsemigroup = list(subsemigroup)
    subsemigroup.sort()
    print('Your subsemigroup:', subsemigroup)
    choose_mode()
def find_correlation(ans):
    result = {}
    correlations = {}
    for key, value in ans.items():
        if not any(np.array_equal(value, i) for i in result.values()):
            result[key] = value
        else:
            for k, v in result.items():
                if np.array_equal(v, value):
                    correlations[key] = k
    print("Your presentations: ")
    for key, value in result.items():
```

```
print(key, ":\n", value)
    print("Your corelations: ")
    for key, value in correlations.items():
        print(key, "->", value)
def create_bin_rel_semigroup():
    print('Enter number of binary relations:')
    n = int(input())
    print('Enter matrices dimension')
    d = int(input())
    matrices_list = {}
    for i in range(1, n + 1):
        print(f'Enter matrix values for binary relation №{i}:')
        matrix = [list(map(int, input().split())) for i in range(d)]
        matrix = np.array(matrix).reshape(d, d)
        matrices_list[str(i)] = matrix
    combinations = []
    for i in range(1, n + 1):
        comb = list(product(''.join([str(elem) for elem in range(1, n + 1)]), repeat=
        combinations += comb
    for comb in combinations:
        cur_matrix = matrices_list[comb[0]].copy()
        word = comb[0]
        for comb_i in range(1, len(comb)):
            cur_matrix *= matrices_list[comb[comb_i]]
            word += comb[comb_i]
        matrices_list[word] = cur_matrix
    find_correlation(matrices_list)
    choose_mode()
def create_semigroup_via_set():
    print('Enter semigroup values')
    s = input()
    semigroup = [i for i in s.split(' ')]
    n = len(semigroup)
    print('Enter transformation set values:')
```

```
s = input()
    set_list = [i for i in s.split(' ')]
    m = len(set_list)
    translation_list = []
    for i in range(m):
        print(f"Enter transformation values '{set_list[i]}' via elements of semigroup
        translation = input().split()
        translation_list.append(translation)
    combinations = []
    for i in range(1, m + 1):
        comb = list(product(''.join([str(elem) for elem in set_list]), repeat=i))
        combinations += comb
    ans = \{\}
    for comb in combinations:
        correlation_list = []
        for i in semigroup:
            semigroup_elem = i
            for generator in comb:
                if semigroup_elem not in semigroup:
                    semigroup_elem = "*"
                else:
                    semigroup_elem = translation_list[set_list.index(generator)] \
                                                      [semigroup.index(semigroup_elem)]
            correlation_list.append(semigroup_elem)
        ans[comb] = correlation_list
    find_correlation(ans)
    choose_mode()
# Главное меню
def choose_mode():
    print('Choose mode:')
    print('Press 1 to create subsemigroup')
    print('Press 2 to create binary relation semigroup')
    print('Press 3 to create semigroup via set')
    print('Press 4 to exit')
    bl = input()
    if bl == '1':
        create_subsemigroup()
```

```
elif bl == '2':
    create_bin_rel_semigroup()
elif bl == '3':
    create_semigroup_via_set()
elif bl == '4':
    return
else:
    print('Incorrect output')
    return choose_mode()
```

3.5 Результаты тестирования программ

На рисунке 1 показана работа алгоритма построения подполугруппы.

```
Press 1 to create subsemigroup
Press 2 to create binary relation semigroup
Press 3 to create semigroup via set
Press 4 to exit
a b c d
Enter Cayley table values:
abab
abab
abcd
a\ b\ c\ d
Enter subset values:
a b c
Your subsemigroup: ['a', 'b', 'c']
Choose mode:
Press 1 to create subsemigroup
Press 2 to create binary relation semigroup
Press 3 to create semigroup via set
Press 4 to exit
```

Рисунок 1 – Тест алгоритма построения подполугруппы

На рисунках 2-3 изоражен результат работы алгоритма построения полугруппы с помощью булевых матриц.

```
Choose mode:
Press 1 to create subsemigroup
Press 2 to create binary relation semigroup
Press 3 to create semigroup via set
Press 4 to exit
Enter semigroup values
Enter transformation set values:
Enter transformation values 'a' via elements of semigroup:
2 2 2
Enter transformation values 'b' via elements of semigroup:
Enter transformation values 'c' via elements of semigroup:
* 2 3
Your presentations:
('a',) :
['2', '2', '2']
('b',) :
  ['1', '3', '3']
('c',):
['*', '2', '3']
('a', 'b'):
['3', '3', '3']
('b', 'c'):
('b', 'c'):
['*', '3', '3']
('c', 'a'):
['*', '2', '2']
Your corelations:
('a', 'a') -> ('a',)
('a', 'c') -> ('a',)
('b', 'a') -> ('a',)
('c', 'b') -> ('b', 'c')
('c', 'c') -> ('c',)
('a', 'a', 'a') -> ('a',)
('a', 'a', 'b') -> ('a', 'b')
('a', 'a', 'c') -> ('a',)
('a', 'b', 'a') -> ('a',)
       'b', 'b') -> ('a', 'b')
```

Рисунок 2 – Тест алгоритма построения полугруппы с помощью булевых матриц

```
'2', '3']
('a', 'b') :
       '3', '3']
       '3', '3']
      'a') :
 ['*', '2', '2']
Your corelations:
                      'a', 'b')
                      'a',
                      'a'
                      'a', 'b')
      'b',
      'b'
            'c') -> ('b',
            'b') -> ('b',
```

Рисунок 3 – Тест алгоритма построения полугруппы с помощью булевых матриц

На рисунках 4-6 изоражен результат работы алгоритма построения полугруппы с помощью множества преобразований.

```
Choose mode:
Press 1 to create subsemigroup
Press 2 to create binary relation semigroup
Press 3 to create semigroup via set
Press 4 to exit
Enter number of binary relations:
Enter matrices dimension
Enter matrix values for binary relation №1:
1 0 1
0 1 1
1 1 0
Enter matrix values for binary relation №2:
0 0 0
1 1 0
1 0 1
Enter matrix values for binary relation №3:
1 0 0
1 0 1
Your presentations:
[[1 0 1]
[0 1 1]
[1 1 0]]
2 :
 [[0 0 0]]
[1 1 0]
[1 0 1]]
 [[1 1 1]
[1 0 0]
[1 0 1]]
12 :
 [[0 0 0]]
```

Рисунок 4 – Тест алгоритма построения полугруппы с помощью множества преобразований

```
Your presentations:
 [[1 0 1]
 [0 1 1]
 [1 1 0]]
 [[0 0 0]]
[1 1 0]
 [1 0 1]]
 [[1 1 1]
 [1 0 0]
 [1 0 1]]
12 :
 [[0 0 0]]
 [0 1 0]
 [1 0 0]]
13 :
 [[1 0 1]
 [0 0 0]
 [1 0 0]]
23 :
 [[0 0 0]]
 [1 0 0]
[1 0 1]]
123 :
[[0 0 0]]
 [0 0 0]
[1 0 0]]
Your corelations:
11 -> 1
21 -> 12
22 -> 2
31 -> 13
32 -> 23
33 -> 3
```

Рисунок 5 – Тест алгоритма построения полугруппы с помощью множества преобразований

```
[1 0 1]]
123 :
 [[0 0 0]]
 [0 0 0]
 [1 0 0]]
Your corelations:
11 -> 1
21 -> 12
22 -> 2
31 -> 13
32 -> 23
33 -> 3
111 -> 1
112 -> 12
113 -> 13
121 -> 12
122 -> 12
131 -> 13
132 -> 123
133 -> 13
211 -> 12
212 -> 12
213 -> 123
221 -> 12
222 -> 2
223 -> 23
231 -> 123
232 -> 23
233 -> 23
311 -> 13
312 -> 123
313 -> 13
321 -> 123
322 -> 23
323 -> 23
331 -> 13
332 -> 23
333 -> 3
```

Рисунок 6 – Тест алгоритма построения полугруппы с помощью множества преобразований

3.6 Решение задач

Задание 1. Найдите полугруппу $S = \langle f, g \rangle$ преобразований множества X = 1, 2, 3, порожденную следующими преобразованиями f, g в симметрической полугруппе T(X) преобразований множества X:

$$f = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix}.$$

Известно, что множество преобразований f,g порождает полугруппу $S=\langle f,g\rangle$ преоб- разований множества X, которая состоит из элементов f,g,f^2,fg,gf,g^2,\ldots и является подполугруппой конечной полугруппы T(X).

$$f^{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ f & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 \end{pmatrix}$$

$$fg = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}$$

$$gf = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}$$

$$gg = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix}$$

$$g^{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix}$$

$$g^{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix}$$

Таким образом получаем полугруппу: $S=\langle f,g,fg,g^2,\dots \rangle$. Стоит отметить, что $gf \notin S$, так как gf=f.

Задание 2.

Найдите индекс и период следующих элементов a полугруппы преобразований множества X=1,2,3,4,5

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 2 & 1 \end{pmatrix}$$

Посчитаем:

$$aa = \begin{cases} 1 & 2 & 3 & 4 & 5 \\ a & \downarrow & \downarrow & \downarrow & \downarrow \\ a & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 4 & 2 & 2 & 4 & 2 \end{cases}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ a & \downarrow & \downarrow & \downarrow & \downarrow \\ 2 & 4 & 1 & 2 & 1 \end{vmatrix}$$

$$aaa = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 4 & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 4 & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 4 & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

Видно, что $aaaa \to aa$. Т.е. на 4 преобразовании наблюдается цикличность, тогда, если считать элементы полугруппы $\langle a, aa, aaa, aaaa, ... \rangle$, начиная с единицы, то каждый 2k-й элемент будет иметь преобразование $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 2 & 4 & 2 \end{pmatrix}$, а каждый (2k+1)-й элемент равен — $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 4 & 2 & 4 \end{pmatrix}$, где $k \in \mathbb{N}$. Получается, что период будет равен 2.

Задание 3.

Найдите полугруппу S по следующему ее копредставлению:

$$S = \langle x, y : xy = yx, x^2 = y, y^3 = x \rangle$$

Выделим полную систему представителей классов конгруэнции ϵ , которая определяется соотношениями данного копредставления. Для этого последовательно рассмотрим слова фиксированной длины и выделим те, которые не будут эквивалентны между собой относительно конгруэнции ϵ .

Рассмотрим слова длины 1: x, y — эти слова не эквивалентны между собой относительно конгруэнции ϵ .

Рассмотрим слова длины 2, которые получаются из слов длины 1 путем последовательного умножения их справа на буквы x и y: $x^2 = y, xy, yx = xy, y^2$ — из этих слов только слова xy, y^2 не эквивалентны относительно конгруэнции ϵ другим ранее выделенным словам.

Теперь рассмотрим слова длины 3, которые получаются из выделенных слов длины 2 путем последовательного умножения их справа на буквы x и y: $xyx = y^2$, xy^2 , $y^2x = x^2y$, $y^3 = x$ — из этих слов только слово xy^2 не эквивалентно относительно конгруэнции ε другим ранее выделенным словам.

Наконец рассмотрим слова длины 4, которые получаются из выделенного слова длины 3 путем последовательного умножения его справа на буквы x и y: $xy^2x=x^2y^2=y^3=x, xy^3=x^2=y$ - все эти слова эквивалентны относительно конгруэнции ε ранее выделенным словам.

Значит, $S=\{x,y,xy,y^2,xy^2\}$ — полная система представителей классов конгруэнции ε . Операция умножения \cdot таких слов определяется с точностью до конгруэнции ε по следующей таблице Кэли:

•	x	y	xy	y^2	xy^2
x	x	xy	xy	xy^2	y^2
y	xy	y^2	xy^2	y	xy
xy	xy	xy^2	xy^2	xy	xy
y^2	xy^2	y	xy	y^2	xy^2
xy^2	xy^2	xy	xy	xy^2	xy^2

ЗАКЛЮЧЕНИЕ

В результате лабораторной работы были рассмотрены теоретические сведения о полугруппах, подполугруппах и порождающих множествах. Опираясь на изложенную выше теорию, были разработаны алгоритмы проверки свойств операций: ассоциативность, коммутативность, идемпотентность, обратимость, дистрибутивность, алгоритмы построения подполугруппы по таблице Кэли, построения полугруппы бинарных отношений по заданному порождающему множеству, построения полугруппы по порождающему множеству и определяющим соотношениям. Была произведена оценка сложности каждого из построенных алгоритмов. Была реализована программа, написанная на языке Python с использованием библиотеки Numpy, Math, Itertools для работы с большими массивами данных.