Investigación

Tipos de medios de transmisión: guiados y no guiados Categorías de cableado UTP Tipos de Fibra Óptica Tipos de cable coaxial

Instituto Tecnológico de Cancún.

Kanxoc Ek Felix Gerardo.

Ingeniería en Sistemas Computacionales.

Ismael Jiménez Sánchez.

Fundamentos de Telecomunicaciones.

Noviembre 2020.

Medios de Transmisión.

Medios de transmisión guiados.

Se conoce como medios guiados a aquellos que utilizan unos componentes físicos y sólidos para la transmisión de datos. También conocidos como medios de transmisión por cable.

Ejemplos de los medios de transmisión guiados.

CABLE DE PAR TRENZADO

Está formado por dos conductores por lo general de cobre y cada uno con su aislante de las cuales uno es el que envía la señal de receptor y el otro es tierra. El trenzado se utiliza para bloquear la interferencia producida por el exterior, el trenzado por unidad de longitud determina la calidad de transmisión. IBM implementa un cable blindado, que recorre el trenzado aumentando la calidad de señal enviada a través de él.

Tipos de cables de par trenzado.

Cable UTP

Son siglas de "Unshielded Twisted Pair" o cable de par trenzado sin blindaje. Este tipo de cables contienen sus pares trenzados sin blindar, es decir, entre cada una de las parejas de cables no existe un medio de separación que los aísle de las otras parejas.

Casi siempre es utilizado en redes locales de corta distancia, ya que, al estar más expuestos, la señal se irá degradando si no se introduce un repetidor de señal cada poco. Estos cables son de bajo coste y normalmente tienen una impedancia característica de 100Ω .

Cable FTP

Siglas de "Foiled Twisted Pair" o cable de par trenzado apantallado. En este caso tenemos un cable cuyos pares trenzados están separados entre ellos por un sistema básico basado en plástico o material no conductor. En este caso el apantallamiento no es individual, sino global que envuelve a todo el grupo de pares trenzados, y está construido de aluminio.

No cuenta con tan buenas prestaciones como los cables STP, pero si mejoran a los UTP en cuanto a distancia y aislamiento. Son muy utilizados y utilizan el conector RJ45, Y su impedancia característica es de $120~\Omega$.

Cable STP

"Shielded twisted pair" o en español, par trenzado blindado individual. En este caso ya sí que tenemos cada uno de los pares trenzados rodeados de una cubierta de protección normalmente hecha de aluminio.

Estos cables se utilizan en redes que requieren más altas prestaciones como los nuevos estándares Ethernet, en donde se necesita un alto ancho de banda, latencias muy bajas y bajísimas tasas de error de bit. Son cables más caros que los anteriores y permiten trazar mayores distancias sin necesidad de repetidor. Su impedancia característica es de 150 Ω . (Castillo J. A., 2019)

Categorías del cable de par trenzado.

	Uso	Características	
Ancho de banda			
Categoría 1	_	Telefonía y modem	Cable UTP
Categoría 2	4 Mbps	Antiguos terminales (en desuso)	Cable UTP
Categoría 3	10-16 Mbps 16 MHz	10 BASE-T / 100 BASE-T4 Ethernet	Cable UTP
Categoría 4	16 Mbps 20 MHz	Token Ring	Cable UTP
Categoría 5	100 Mbps 100 MHz	10 BASE-T / 100 BASE-TX Ethernet	Cable UTP
Categoría 5e	1 Gbps 100 MHz	100 BASE-TX / 1000 BASE-T Ethernet	Cable UTP/FTP
Categoría 6	1 Gbps 250 MHz	1000 BASE-T Ethernet	Cable FTP/STP/SFTP/SSTP
Categoría 6e	10 Gbps 500 MHz	10GBASE-T Ethernet	Cable FTP/STP/SFTP/SSTP
Categoría 7	Multitrasferencia 600 MHZ	Telefonía + televisión + 1000BASE-T Ethernet	Cable FTP/STP/SFTP/SSTP

Categoría 7a	Multitrasferencia	Telefonía +	Cable SFTP/SSTP
	1000 MHz	televisión +	
	1000 1011 12	1000BASE-T	
		Ethernet	

Fibra óptica

es un medio físico de transmisión de información, usual en redes de datos y telecomunicaciones, que consiste en un filamento delgado de vidrio o de plástico, a través del cual viajan pulsos de luz láser o led, en la cual se contienen los datos a transmitir.

A través de la transmisión de estos impulsos de luz se puede enviar y recibir información a importantes velocidades a través de un tendido de cable, a salvo de interferencias electromagnéticas y con velocidades similares a las de la radio. Esto hace de la fibra óptica el medio de transmisión por cable más avanzado que existe.

Cómo funciona la fibra óptica.

El principio de funcionamiento de la fibra óptica es el de la Ley de Snell, que permite calcular el ángulo de refracción de la luz al pasar de un medio a otro con distinto índice de refracción.

Así, dentro de la fibra, los haces de luz quedan atrapados y propagándose en el núcleo, dadas las propiedades físicas del revestimiento y del ángulo de reflexión adecuado, transportando hasta el destino la información enviada. En esto último opera de manera similar al telégrafo.

Tipos de fibra óptica.

Fibra óptica monomodo

Esta es la forma más sencilla de un cable de fibra óptica. En él, todas las señales viajan por el centro de la fibra sin reflejo. La fibra óptica monomodo es apta para la transmisión de datos a largas distancias (>100 km) y se suele utilizar para señales de televisión por cable, Internet y teléfono. Las fibras monomodo tienen un núcleo muy fino de aprox. 8-10 micrones y están agrupadas en haces.

Fibra óptica multimodo.

Las fibras ópticas multimodo son unas 10 veces mayores que las monomodo, lo que permite a los haces de luz viajar siguiendo una variedad de caminos (o modos múltiples). Son aptas para la transmisión de datos en distancias relativamente cortas (máximo 2 km) y se suelen utilizar en redes informáticas.

Las fibras ópticas se clasifican en función del tipo de modo y su velocidad de transmisión:

OM1	Multimodo 62,5/125
OM2	Multimodo 50/125 1 Gigabit
OM3	Multimodo 50/125 10 Gigabit
OM4	Multimodo 50/125 40 Gigabit
OS2	Monomodo 9/125 (también conocida como 8/125 y 10/125)

Tipos de construcción de cables de fibra óptica estándares disponibles:

LTU	Cable de fibra óptica sin armadura de tubo holgado
LTT	Cable de fibra óptica armado con cinta de acero y tubo
	holgado
LTW	Cable de fibra óptica con armadura de alambre de acero y
	tubo holgado
TBU	Cable de fibra óptica sin armadura con tubo ajustado
MTU	Cable de fibra óptica sin armadura de multitubo holgado
MTT	Cable de fibra óptica armado con cinta de acero y multitubo
	holgado
MTW	Cable de fibra óptica con armadura de alambre de acero y
	multitubo holgado

CABLE COAXIAL.

Este cable transporta señales de alta frecuencia, más que el cable Par Trenzado. Gracias a su diseño constituido por un hilo interno, recubierto con una malla metálica conductora exterior y este a su vez igual al hilo central, recubierta con metal aislante y este también recubierto de un plástico.

- Estándares de un Cable Coaxial: son clasificados por especificaciones de RG (Radio de Gobierno), que dan las condiciones físicas como grosor del cable interior, grosor y tipo de aislante interior, blindaje, tamaño y cubierta exterior del cable.
 - Conectores de los Cables Coaxiales: Para los Cables Coaxiales se necesitan conectores coaxiales como son de red o bayoneta (BNC, Bayonet network conector). En general se especifica como el conector BNC, BNET y terminador BNC. El BNC se conecta a televisores, BCN T Se usa en la Ethernet y el terminador BNC se usa al final del cable para prevenir el reflejo de la señal.

Tipos de cable coaxial.

Para transmisión en banda ancha

Utilizado en transmisión de señales de televisión por cable (CATV, "Cable Televisión").

Esta categoría tiene una impedancia característica de 75 ohmios. El término banda ancha proviene del medio telefónico, y se refiere a frecuencias mayores a 4 kHz. Se nutren de la la tecnología patrón para envío de señales de televisión por cable y por ello pueden llegar a alcanzar los 450 MHz de ancho de banda para longitudes de 100 m. Como peculiaridad comentar que un cable típico de 300 MHz puede, por lo general, mantener velocidades de hasta 150 Mbps. Los cables para banda ancha se dividen en varios canales, por ejemplo en canales de 6 MHz para el envío de señales de televisión. Cada canal puede emplearse de forma independiente, por lo que en un mismo cable pueden coexistir señales de vídeo, voz y datos.

Para transmisión en banda base.

Son usados en redes de trabajo locales (LAN's). Tienen una impedancia característica de 50 ohmios. En esta categoría se emplean dos tipos de cable: coaxial grueso ("thick") y coaxial fino ("thin").

- Coaxial grueso ("thick"): Inicialmente fue el cable más utilizado en las redes de área local (LAN). Incluso a día de hoy aún se sigue usando en determinadas circunstancias (alto grado de interferencias). Los diámetros de su alma/malla son 2,6/9,5 mm. y el diámetro total del cable es de 1 cm. aprox.
- Coaxial fino ("thin"): Surgió como alternativa al cable anterior, al ser más económico flexible y sencillo de instalar. Los diámetros de su alma/malla son 1,2/4,4 mm. y el diámetro total del cable es de 0,5 cm. aprox. Sin embargo, sus propiedades de transmisión son sensiblemente peores que las del coaxial grueso.

RG59: es el más delgado, y por ello el más maleable. Es ideal para circuitos cerrados de TV (CCTV), pero su ancho de banda no permite transmisión de vídeo en alta definición. Solo soporta unas decenas de metros antes de que la señal se comience a degradar.

RG6: es el más conocido y extendido, pues es el tipo que se utiliza para la televisión en alta definición. Soporta una distancia de hasta 600 metros sin pérdida de señal.

RG11: es el mejor de todos y también el más caro, y soporta longitudes de hasta 1.100 metros.

Mas tipos de cables.

Tipo de RG	Conductor Interno Ø mm. Tipo	Dieléctrico Ø mm.	Pantalla	Cubierta Color Ø mm	Peso kg/km	Impedancia (Ohm)	Capacidad (pF/m)	Velocidad de propaga- ción %
RG - 62	CW 0,64 hilo	PEA 3,70	trenza Cu	PVC negro 6,15 ± 0,20	55	93 ± 5	43	84
RG - 71	CW 0,64 hilo	PEA 3,70	1º trenza Cu 2ª trenza Cu Sn	PE negro 6,2 ± 0,15	65	93 ± 5	43	84
RG - 62 A/U	CW 0,64 hilo	PE 3,70	trenza CU	PVC negro 6,15 ± 0,20	51	93 ± 5	43	84
RG - 71 B/U	CW 0,64 hilo	PEA 3,70	1º trenza Cu 2ª trenza Cu Sn	PVC negro 6,2 ± 0,15	60	93 ± 5	43	84
RG - 108	Cu Sn 2/7 x 0,32 0,96 cuerda	PEA 2	trenza Cu Sn	PVC negro 6 ± 0,25	51	78 ± 7	68	66
Mini Coax	Cu Sn 0,40 hilo	PE 1,75	1° AL / PET 2° Trenza Cu Sn	PVC 3 ± 0,10	12	75+3	54	84

Tipo de RG	Conductor Interno Ø mm. Tipo	Dieléctrico Ø mm.	Pantalia	Cubierta Color ø mm	Peso kg/km	Impedancia (Ohm)	Capacidad (pF/m)	Velocidad de propagación %
RG - 174 A/U	CW 7 x 0,16 0,48 cuerda	PE 1,52	trenza Cu Sn	PVC Negro 2,80 ± 0,15	12	50 ± 2	100	66
RG - 58 C/U	Cu Sn 19 x 0,18 0,90 cuerda	PE 2,95	trenza Cu Sn	PVC negro $4,95 \pm 0,10$	38	50 ± 2	100	66
RG - 223	Cu Ag 0,90 hilo	PE 3	1º trenza Cu Ag 2ª trenza Cu Ag	PVC negro 5,40 ± 0,10	55	50 ± 2	100	66
RG - 213	Cu 7 x 0,75 2,25 cuerda	PE 7,25	trenza Cu	PVC negro 10.3 ± 0.20	158	50 ± 2	100	66
RG - 214	Cu Ag 7 x 0,75 2,25 cuerda	PE 7,25	1º trenza Cu Ag 2ª trenza Cu Ag	PVC negro 10,8 ± 0,20	202	50 ± 2	100	66
RG - 58/U	Cu 0,80 hilo	PE 2,95	trenza Cu	PVC negro $4,95 \pm 0,10$	34	50 ± 2	100	66
RG - 58 type	Cu 0,80 hilo	PE 2,95	trenza Cu	PVC negro 4,95± 0,10	37	50 ± 2	100	66
RG - 58 A/U TRIAXIAL	Cu Sn 19 x 0,18 0,90 cuerda	PE 2,95	1º tren. Cu Sn + aisl. PVC 4,40 mm 2ª trenza Cu Sn	PVC negro 6,10 ± 0,20	58	50 ± 2	100	66
RG - 213/U	Cu 7 x 0,75 2,25 cuerda	PE 7,20	trenza Cu	PVC negro 10,3 ± 0,20	145	50 ± 2	100	66
RG - 59 type	Cu 0,60 hilo	PE 3,70	trenza Cu	PVC negro $6,15 \pm 0,10$	54	75 ± 3	67	66
RG - 6	CW 0,72 hilo	PE 4,70	1º trenza Cu Ag + 2º trenza Cu	PVC negro 8,40 ± 0,10	120	75 ± 3	67	66
RG - 11/U	Cu Sn 7 x 0,40 1,20 cuerda	PE 7,25	trenza Cu	PVC negro 10.3 ± 0.20	140	75 ± 3	67	66
RG - 216	Cu Sn 7 x 0,40 1,20 cuerda	PE 7,25	1º trenza Cu 2ª trenza Cu	PVC negro 10,8 ± 0,20	183	75 ± 3	67	66
RG - 59 B/U	CW 0,58 hilo	PE 3,70	trenza Cu	PVC negro 6,10 ± 0,20	50	75 ± 3	67	66
2 x RG - 59 B/U	CW 0,58 hilo	PE 3,70	trenza Cu	PVC negro 6,10 x 12,7	101	75 ± 3	67	66
RG - 59 B/U Triaxial	CW 0,58 hilo	PE 3,70	1º trenza Cu + aisl. PVC 6,10 mm 2ª trenza Cu	PVC negro 8,15 ± 0,20	102	75 ± 3	67	66
RG - 11 A/U	Cu Sn 7 x 0,40 1,20 cuerda	PE 7,20	trenza Cu	PVC negro 10,3 ± 0,20	127	75 ± 3	67	66

Tipos de aislamiento.

El Policloruro de vinilo (PVC).

Se trata de un tipo de plástico utilizado para construir el aislante y la cubierta protectora del cable en la mayoría de los tipos de cable coaxial. El cable coaxial de PVC es flexible y puede ser instalado fácilmente en cualquier lugar. No obstante, cuando se quema, desprende gases tóxicos.

Plenum

El plenum contiene materiales especiales en su aislamiento y en una clavija del cable. Se trata de materiales resistentes al fuego y que producen una mínima cantidad de humos tóxicos. Sin embargo, el cableado plenum es más caro y menos flexible que el PVC.

Medios de transmisión no guiados.

Los medios de transmisión no guiados son aquellos que su característica principal es no usar cables, es decir usan un medio no físico, y esta se transmite por medio de ondas electromagnéticas.

La configuración para las transmisiones no guiadas puede ser direccional y omnidireccional En la direccional, la antena transmisora emite la energía electromagnética concentrándola en un haz, por lo que las antenas emisora y receptora deben estar alineadas. En la omnidireccional, la radiación se hace de manera dispersa, emitiendo en todas direcciones, pudiendo la señal ser recibida por varias antenas. Generalmente, cuanto mayor es la frecuencia de la señal transmitida es más factible confinar la energía en un haz direccional.

Características.

- Los medios más importantes son el aire y el vacío.
- Son medios muy buenos para cubrir grandes distancias
- Se dan hacia cualquier dirección
- La transmisión y recepción se realizan por medio de antenas.

Ejemplos de medios de transmisión no guiados.

Ondas de radio.

Las ondas de radio utilizan cinco tipos de propagación: superficie, troposférica, ionosfera, línea de visión y espacio. Cada una de ellas se diferencia por la forma en que las ondas del emisor llegan al receptor, siguiendo la curvatura de la tierra (superficie), reflejo en la troposfera (troposférica), reflejo en la ionosfera (ionosfera), viéndose una antena a otra (línea de visión) o siendo retransmitidas por satélite (espacio).

Microondas:

En un sistema de microondas se usa el espacio aéreo como medio físico de transmisión. La información se transmite en forma digital a través de ondas de radio de muy corta longitud (unos pocos centímetros). Pueden direccionarse múltiples canales a múltiples estaciones dentro de un enlace dado, o pueden establecer enlaces punto a punto. Las estaciones consisten en una antena tipo plato y de circuitos que interconectan la antena con la terminal del usuario.

Infrarrojo:

Las redes por infrarrojos nos permiten la comunicación entre dos modos, usando una serie de leds infrarrojos para ello. Se trata de emisores/receptores de las ondas infrarrojas entre ambos dispositivos, cada dispositivo necesita al otro para realizar la comunicación por ello es escasa su utilización a gran escala.

Radio enlaces de VHF y UHF:

Estas bandas cubren aproximadamente desde 55 a 550 MHz. Son también omnidireccionales, pero a diferencia de las anteriores la ionosfera es transparente a ellas. Su alcance máximo es de un centenar de kilómetros, y las velocidades que permite del orden de los 9600 bps. Su aplicación suele estar relacionada con los radioaficionados y con equipos de comunicación militares, también la televisión y los aviones.

Espectro de frecuencias.

Banda de Frecuencia	Nombre	Modulación	Razón de Datos	Aplicaciones Principales
30-300 kHz	LF (low frequency)	ASK, FSK, MSK	0,1-100 bps	Navegación
300-3000 kHz	MF (medium frequency)	ASK, FSK, MSK	10-1000 bps	Radio AM Comercial
3-30 MHz	HF (high frequency)	ASK, FSK, MSK	10-3000 bps	Radio de onda corta
30-300 MHz	VHF (very high frequency)	FSK, PSK	Hasta 100 kbps	Television VHF, Radio FM
300-3000 MHz	UHF (ultra high frequency)	PSK	Hasta 10 Mbps	Television UHF, Microondas Terrestres
3-30 GHz	SHF (super high frequency)	PSK	Hasta 100Mbps	Microondas terrestres y por satélite
30-300 GHz	EHF (extremely high frequency)	PSK	Hasta 750 Mbps	Enlaces cercanos con punto a punto experimentales