

METHOD FOR REDUCING THE CONTENT OF N2O AND NOX IN GASES

Patent number:

WO02087733

Publication date:

2002-11-07

Inventor:

SCHWEFER MEINHARD (DE); MOTZ JOACHIM (DE);

SIEFERT ROLF (DE)

Applicant:

SCHWEFER MEINHARD (DE); KRUPP UHDE GMBH

(DE); MOTZ JOACHIM (DE); SIEFERT ROLF (DE)

Classification:

- international:

B01D53/86

- european:

B01D53/86F2, B01D53/86F2C, B01J29/28R, B01J29/34,

B01J29/46

Application number: WO2002EP02438 20020306 Priority number(s): DE20011012444 20010313

Also published as:

EP1370342 (A1) US2004109805 (A1) DE10112444 (A1)

Cited documents:

WO0048715 WO0151181 US4571329 EP0756891

US5482692

more >>

Abstract of WO02087733

A method for reducing the content of N2O and NOX in gases is disclosed, with addition of a gaseous reduction agent, in amounts necessary for the reduction of the NOx, in the presence of one or several zeolites loaded with iron, with no pores or channels in the crystal structure larger than 7 Angstrom, at temperatures less than 450 DEG C in the reaction zone. The flow rate of the gas mixture and/or the catalyst amount is thus selected that the required decomposition rate for N2O is achieved. The method is particularly suitable for application in production of saltpetre, in power stations and gas turbines.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO) (OLAGN/XINATE BLANK)

202 KU05.US

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 7. November 2002 (07.11.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/087733 A1

(51) Internationale Patentklassifikation7:

B01D 53/86

(21) Internationales Aktenzeichen: PCT/EP02/02438

(22) Internationales Anmeldedatum:

6. März 2002 (06.03.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 12 444.9

13. März 2001 (13.03.2001) DI:

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): KRUPP UHDE GMBH [DE/DE]; Friedrich-Uhde-Strasse 15, 44141 Dortmund (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für. US): SCHWEFER, Meinhard [DE/DE]; Frensdorffstrasse 8, 44141 Dortmund (DE). MOTZ, Joachim [DE/DE]; Taunusstrasse 80, 65779 Kelkheim (DE). SIEFERT, Rolf [DE/DE]; Wartenbergstrasse 18, 33378 Rheda-Wiedenbrück (DE).
- (74) Anwalt: ACKERMANN, Joachim; Postfach 11 13 26, 60048 Frankfurt (DE).

- (81) Bestimmungsstaaten (national): A.E., A.G., A.L., A.M., A.T., A.U., A.Z., B.A., B.B., B.G., B.R., B.Y., B.Z., C.A., C.H., C.N., C.O., C.R., C.U., C.Z., D.E., D.K., D.M., D.Z., E.C., E.E., E.S., F.I., G.B., G.D., G.E., G.H., G.M., H.R., H.U., H.D., H.L., H.N., I.S., J.P., K.E., K.G., K.P., K.R., K.Z., L.C., L.K., L.R., L.S., L.T., L.U., L.V., M.A., M.D., M.G., M.K., M.N., M.W., M.X., M.Z., N.O., N.Z., O.M., P.H., P.L., P.T., R.O., R.U., S.D., S.E., S.G., S.I., S.K., S.L., T.J., T.M., T.N., T.R., T.T., T.Z., U.A., U.G., U.S., U.Z., V.N., Y.U., Z.A., Z.M., Z.W.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GII, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR REDUCING THE CONTENT OF N_2O AND NO_N IN GASES

(54) Bezeichnung: VERFAHREN ZUR VERRINGERUNG DES GEHALTS VON N₂O UND NO_X IN GASEN

(57) Abstract: A method for reducing the content of N_2O and NO_X in gases is disclosed, with addition of a gaseous reduction agent, in amounts necessary for the reduction of the NO_X , in the presence of one or several zeolites loaded with iron, with no pores or channels in the crystal structure larger than 7 Angstrom, at temperatures less than 450 °C in the reaction zone. The flow rate of the gas mixture and/or the catalyst amount is thus selected that the required decomposition rate for N_2O is achieved. The method is particularly suitable for application in production of saltpetre, in power stations and gas turbines.

(57) Zusammenfassung: Beschrieben wird ein Verfahren zur Minderung des Gehalts von NO₃ und N₂O in Gasen unter Einsatz eines gasförmigen Reduktionsmittels, das in einer Menge, die zur Reduktion des NO₃ benötigt wird, eingesetzt wird, in Gegenwart eines oder mehrerer mit Eisen beladener Zeolithe, die keine Poren oder Kanäle von grösser gleich 7 Angström in der Kristallstruktur aufweisen, und bei Temperaturen von weniger als 450 °C in der Reaktionszone. Dabei wird die Strömungsgeschwindigkeit des Gasgemisches und/oder die Katalysatormenge so ausgewählt, dass sich der gewünschte Zersetzungsgrad an N₂O ergibt. Das Verfahren lässt sich insbesondere in der Salpetersäureproduktion, in Kraftwerken und in Gasturbinen einsetzen.

Beschreibung

5

10

15

20

Verfahren zur Verringerung des Gehalts von N₂O und NOx in Gasen

Die vorliegende Erfindung betrifft ein Verfahren, womit der Gehalt von N₂O und NO_x in Gasen, insbesondere in Prozeßgasen oder in Abgasen reduziert oder ganz abgebaut werden kann.

Bei vielen Prozessen, wie z.B. Verbrennungsprozessen oder auch bei der industriellen Herstellung von Salpetersäure resultiert ein mit Stickstoffmonoxid NO, Stickstoffdioxid NO₂ (hier zusammen bezeichnet als NO_x) sowie Lachgas N₂O beladenes Abgas. Während NO und NO₂ seit langem als Verbindungen mit ökotoxischer Relevanz bekannt sind (Saurer Regen, Smog-Bildung) und weltweit Grenzwerte für deren maximal zulässige Emissionen festgelegt sind, rückt in den letzten Jahren in zunehmenden Maße auch Lachgas in den Fokus des Umweltschutzes, da dieses in nicht unerheblichem Maße zum Abbau von stratosphärischem Ozon und zum Treibhauseffekt beiträgt. Es besteht daher aus Gründen des Umweltschutzes ein dringender Bedarf an technischen Lösungen, die Lachgasemissionen zusammen mit den NO_x-Emissionen zu verringern oder falls möglich ganz zu beseitigen.

Zur separaten Beseitigung von N₂O einerseits und NO_X andererseits sind bereits zahlreiche Möglichkeiten bekannt.

So finden sich zur NO_X-Minderung vornehmlich Verfahren zur katalytischen Reduktion von NO_X, die unter Verwendung verschiedenster Reduktionsmittel ablaufen, wobei vielfach Zeolith-Katalysatoren beschrieben werden. Neben Cuausgetauschten Zeolithen sind vor allem eisenhaltige Zeolithe für praktische Anwendungen von Interesse. Als Reduktionsmittel werden beispielsweise

PCT/EP02/02438

Ammoniak (vergl. US-A-5,451,387) oder auch Kohlenwasserstoffe (vergl. Feng, K. und W.K. Hall in Journal of Catalysis 166, S. 368-376 (1997)) eingesetzt.

Im Unterschied zur NO_X- Minderung in Abgasen, die seit vielen Jahren in der Technik etabliert ist, existieren zur N₂O-Beseitigung nur wenige technische Prozesse, die zumeist auf einen thermischen oder katalytischen Abbau des N₂O abzielen. Eine Übersicht über die Katalysatoren, deren prinzipielle Eignung zum Abbau und zur Reduktion von Lachgas nachgewiesen wurde, gibt Kapteijn et al. (F. Kapteijn, et al., Appl. Cat. B: Environmental 9 (1996) 25-64).

10

5

Als besonders geeignet erscheinen wiederum Fe- und Cu-Zeolith-Katalysatoren, die entweder eine reine Zersetzung des N_2O in N_2 und O_2 bewirken (US-A-5,171,553), oder auch zur katalytischen Reduktion des N_2O mit Hilfe von z.B. NH_3 zu N_2 und H_2O dienen.

15

20

25

30

So wird in JP-A-07 060 126 ein Katalysator zur Reduktion von N_2O mit NH_3 in Gegenwart von eisenhaltigen Zeolithen vom Pentasil-Typ (MFI) beschrieben. Da technisch verwertbare Abbauraten erst bei Temperaturen >450°C erreicht werden, sind besondere Anforderungen an die thermische Stabilität des Katalysators gestellt.

Mauvezin et al. geben in Catal. Lett. 62 (1999) 41-44 eine Übersicht über die Eignung verschiedener, eisenausgetauschter Zeolithe vom Typ MOR, MFI, BEA, FER, FAU, MAZ und OFF zur Reduktion von N₂O mit NH₃. Danach kann durch NH₃-Zugabe bei 450°C nur im Falle von Fe-BEA eine N₂O-Reduktion >70% erreicht werden.

Zur simultanen Beseitigung von NO_x und N₂O, welche aus Gründen der Einfachheit und Wirtschaftlichkeit besonders erstrebenswert ist, finden sich in der Literatur ebenfalls verschiedene Verfahrensvarianten. Diese beschreiben immer die gemeinsame Reduktion von NO_x und N₂O.

So beansprucht US-A-4,571,329 ein Verfahren zur Reduktion von NO_X und N₂O mittels Ammoniak in Gegenwart von Fe-substituierten Zeolith-Katalysatoren, die einerseits die Reaktion von NH₃ mit NO_X zu H₂O und N₂ und anderseits ebenfalls die Reaktion von NH₃ mit N₂O zu H₂O und N₂ katalysieren. Als geeignete Katalysatoren werden eisensubstituierte Zeolithe aus der Gruppe Mordenit, Clinoptilolit, Faujasit und Zeolith Y benannt. Das Verhältnis von NH₃ zu NO₂ beträgt mindestens 1,3.

WO-A-00/48715 beschreibt ein Verfahren, bei dem ein Abgas, welches NO_x und N₂O enthält, bei Temperaturen zwischen 200 und 600°C über einen Eisen-Zeolith-Katalysator vom Type Beta (=BEA) geleitet wird, wobei das Abgas außerdem NH₃ in einem Mengenverhältnis zwischen 0,7 und 1,4 bezogen auf die Gesamtmenge an NO_x und N₂O enthält. NH₃ dient hier ebenfalls als
 Reduktionsmittel sowohl für NO_x als auch für N₂O. Das Verfahren arbeitet zwar als einstufiges Verfahren bei Temperaturen von kleiner als 450°C, besitzt aber wie die vorgenannten Verfahren den prinzipiellen Nachteil, dass zur Beseitigung des N₂O-Gehaltes eine zur Menge an N₂O in etwa äquimolare Menge des Reduktionsmittels NH₃ benötigt wird.

20

25

30

In JP-A-51/03953 wird ein Verfahren zur Beseitigung von Stickoxiden, umfassend N_2O und NO_x beschrieben, bei welchem N_2O und NO_x gleichzeitig mit Kohlenwasserstoffen reduziert werden. Als Katalysator dient ein γ -Al $_2O_3$ -oder Zeolith-Träger, auf welchem ein Metall aus der Gruppe Cu, Ag, Cr, Fe, Co, Ni, Ru, Rh oder Ir aufgetragen worden ist. Auch dieses Verfahren bedingt die Zugabe von Reduktionsmittel entsprechend der Gesamtmenge an N_2O und NO_x .

Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines einfachen, wirtschaftlichen Verfahren zum gleichzeitigen Abbau von N₂O und NO_x in Gegenwart eines einzigen Katalysatortyps, das sich durch eine möglichst

niedrige Betriebstemperatur und durch einen minimalen Verbrauch an Reduktionsmittel auszeichnet.

Die Aufgabe wird durch das erfindungsgemäße Verfahren gelöst.

5

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Minderung des Gehalts von NO_x und N₂O in Gasen, insbesondere in Prozeßgasen und Abgasen, umfassend die Maßnahmen:

10

 a) Zugabe eines unter Reaktionsbedingungen gasförmigen Reduktionsmittels für NO_x zu dem NO_x und N₂O enthaltenden Gas in einer solchen-Menge, wie zur Reduktion des NO_x benötigt wird,

15

 b) Einleiten des Gasgemisches in eine Vorrichtung mit einer Reaktionszone, die einen oder mehrere mit Eisen beladene Zeolithe enthält, deren Kristallstruktur keine Poren oder Kanäle von größer gleich 7 Angström aufweisen,

c) Einstellen einer Temperatur von bis zu 450°C in der Reaktionszone und Auswahl der Strömungsgeschwindigkeit des Gasgemisches und/oder der Katalysatormenge, so dass sich der gewünschte Zersetzungsgrad an N₂O ergibt.

20

 \bar{Z} ur Durchführung des erfindungsgemäßen Verfahrens wird das N_2O und NO_X enthaltende Gas zunächst mit einem gasförmigen Reduktionsmittel, vorzugsweise mit NH_3 , gemischt und anschließend zum gleichzeitigen Abbau von N_2O (durch Zersetzung) und NO_X (durch Reduktion) bei einer Temperatur von weniger als $450^{\circ}C$ mit der oben ausgewählten Raumgeschwindigkeit über den Katalysator geleitet.

25

30

Nach Merkmal a) des erfindungsgemäßen Verfahrens ist das Reduktionsmittel in einer solchen Menge zuzusetzen, wie zur Reduktion des NO_x benötigt wird. Darunter wird im Rahmen dieser Beschreibung diejenige Menge an Reduktionsmittel verstanden, die notwendig ist, um den Anteil des NO_x im

10

15

20

Gasgemisch vollständig oder bis zur gewünschten Endkonzentration zu reduzieren, ohne dass eine merkliche Reduktion des N₂O stattfindet. Für die Berechnung der Menge an Reduktionsmittel spielt der N₂O-Gehalt des Gasgemisches keine Rolle, da das Reduktionsmittel nahezu selektiv auf NO_x wirkt.

Unter dem Begriff Raumgeschwindigkeit ist dabei der Quotient aus Volumenanteilen Gasgemisch pro Stunde bezogen auf einen Volumenanteil Katalysator zu verstehen. Die Raumgeschwindigkeit kann somit über die Strömungsgeschwindigkeit des Gases und/oder über die Katalysatormenge eingestellt werden.

Im allgemeinen beträgt die Temperatur des Gasgemisches in der Reaktionszone 250 bis 450°C, vorzugsweise 300 bis 450°C, insbesondere 350 bis 450°C.

Vorzugsweise erfolgen die Auswahl von Temperatur, Strömungsgeschwindigkeit und Katalysatormenge in Schritt c) derart, dass in der Reaktionszone mindestens 50 %, vorzugsweise mindestens 70% und ganz besonders bevorzugt mindestens 80% des N₂O zersetzt werden.

Die Minderung des Gehalts von NO_X und N₂O erfolgt in Gegenwart eines einzigen Katalysatortyps, vorzugsweise eines einzigen Katalysators, welcher im wesentlichen einen oder mehrere mit Eisen beladene Zeolithe enthält.

Als Reduktionsmittel im Sinne der Erfindung können solche Stoffe eingesetzt werden, die eine hohe Aktivität und Selektivität zur Reduktion von NO_2 aufweisen und deren Selektivität und Aktivität unter den gewählten Reaktionsbedingungen größer ist als zur möglichen Reduktion von N_2O .

30

Als Reduktionsmittel im Sinne der Erfindung sind beispielsweise Kohlenwasserstoffe, Wasserstoff, Kohlenmonoxid, Ammoniak oder deren Gemische, wie z.B. Synthesegas, einsetzbar. Besonders bevorzugt wird Ammoniak.

5

10

15

Die zugesetzte Menge an Reduktionsmittel darf dabei nicht nennenswert größer sein, als zur Reduktion von NO_x erforderlich ist. Im Falle von Ammoniak als Reduktionsmittel verwendet man – je nach dem gewünschten Grad des Abbaus des NO_x-Gehaltes – bis zu 1,33 (8/6) molare Anteile an Ammoniak, bezogen auf einen molaren Anteil an NO_x. Ist ein geringerer Abbaugrad von NO_x gewünscht, so beträgt die Menge an molaren Anteilen von Ammoniak 1,33*y, bezogen auf einen molaren Anteil an NO_x; dabei ist y der prozentuale Anteil des NO_x der in der Reduktion verbraucht werden soll. Das erforderliche molare Verhältnis von Reduktionsmittel zu NO_x kann von den Reaktionsbedingungen abhängen. Es hat sich herausgestellt, dass bei steigendem Druck bzw. bei sinkenden Reaktionstemperaturen die für einen vollständigen Abbau des NO_x erforderliche Menge an Reduktionsmittel sinkt. Im Fall von Ammoniak sinkt der molare Anteil von den oben erwähnten 1,33 molaren Anteilen auf 1,0 molare Anteile.

20

Äls Katalysatoren finden eisenbeladene Zeolithe oder Mischungen von eisenbeladenen Zeolithen Verwendung, deren Kristallstruktur keine Poren bzw. Kanäle mit kristallographischen Durchmessern größer gleich 7,0 Ångstrom aufweist.

25

Es wurde überraschenderweise gefunden, daß über derartigen Katalysatoren in Gegenwart von NO_x und einer entsprechenden Menge an Reduktionsmittel, die nicht größer ist als zur NO_x-Reduktion verbraucht wird, eine N₂O-Zersetzung schon bei Temperaturen <450° herbeigeführt werden kann.

Unter den vorliegenden Verfahrensbedingungen wirkt NH₃ nicht als Reduktionsmittel für N₂O, sondern reduziert selektiv das im Abgas enthaltene NO_x.

Ohne an theoretische Überlegungen gebunden zu sein, könnte folgende mechanistische Vorstellung den physikalisch-chemischen Hintergrund der Erfindung erklären:

Im ersten Schritt der N₂O-Zersetzung erfolgt die Abgabe eines Sauerstoffatoms
an ein aktives Zentrum (symbolisiert durch *) des Eisen-Zeolith-Katalysators
gemäß

$$N_2O + * \rightarrow N_2 + O*$$
 GI. 1

Unter der Voraussetzung eines unbelegten aktiven Zentrums am Katalysator erfolgt diese Zersetzung von N₂O schnell. Die zur Bildung von molekularem O₂ notwendige Entfernung des aktiven Sauerstoffatom ist gemäß

$$2 O^* \rightarrow O_2 + 2^*$$
 Gl. 2

20

jedoch vergleichsweise langsam. Das heißt, wird die Reaktion nach Gl.2 beschleunigt, erfolgt auch ein schnellerer Abbau von N₂O.

Hierzu dient nun NO, welches nach

25

$$NO + O^* \leftrightarrow NO_2 + *$$
 Gl. 3

mit dem sorbierten O* reagiert.

Bei ausreichend hohen Temperaturen erfolgt in Gegenwart der erfindungsgemäß verwendeten Katalysatoren eine hinreichend schnelle Rückbildung des NO gemäß

5
$$2 \text{ NO}_2 \leftrightarrow 2 \text{ NO} + \text{O}_2 + {}^{\bullet}$$
 Gl. 4

Bei niederen Betriebstemperaturen, die im Sinne der Erfindung besonders bevorzugt sind, erfolgt die Einstellung des NO/NO₂ Gleichgewichts entsprechend langsam.

Eine Abreaktion der O* -Spezies ist durch einen Mangel an NO begrenzt.

Da es sich bei Gl. 3 um ein chemisches Gleichgewicht handelt, kann die Abreaktion von O* aber nicht nur durch Zufuhr von NO sondern auch durch Entfernen von NO₂ bewirkt werden. Dies wird erreicht durch Zugabe des gasförmigen Reduktionsmittels, wie NH₃, welches nach

$$6 \text{ NO}_2 + 8 \text{ NH}_3 \rightarrow 7 \text{ N}_2 + 12 \text{ H}_2\text{O}$$
 GI. 5

20 selektiv auch bei niederen Temperaturen mit NO2 zu N2 und H2O reagiert.

Das heißt, die Gegenwart von NO_x und Zugabe eines gasförmigen Reduktionsmittels, wie Ammoniak, beschleunigen den Abbau von N₂O, ohne daß hierfür Reduktionsäquivalente an NH₃ verbraucht werden. Die notwendige Menge an NH₃ ergibt sich in Gegenwart der erfindungsgemäß verwendeten Katalysatoren aus dem gewünschten Abbau an NO_x. Sie sollte jedoch dabei nicht nennenswert größer sein als zur Reduktion von NO_x erforderlich, da überschüssiges NH₃ die Zersetzung von N₂O blockiert und ggfs. bei erhöhten Temperaturen zur unerwünschten Reduktion des N₂O mit NH₃ führt. Letzteres ist insbesondere dann der Fall, wenn Eisen-Zeolithe mit Poren oder Kanälen

10

15

25

15

oberhalb von 7 Angström nicht erfindungsgemäß eingesetzt werden. Beispiele dafür sind Zeolithe vom Typ BEA.

Das erfindungsgemäße Verfahren ermöglicht es damit, sowohl die Zersetzung von N₂O als auch die Reduktion von NO_X bei einer einheitlich niedrigen Betriebstemperatur in einem einfachen Katalysatorbett mit geringem Verbrauch an gasförmigen Reduktionsmittel wie NH₃ durchzuführen, was mit den im Stand der Technik beschriebenen Verfahren bis dahin nicht möglich war.

Dieses ist insbesondere dann von großem Vorteil, wenn große Mengen an N₂O beseitigt werden sollen.

Durch Verwendung von eisenhaltigen Zeolithen, vorzugsweise solchen vom FER-, MEL- und MFI-Typ, insbesondere Fe-ZSM-5, erfolgt der Abbau von N₂O gemäß dem obigen Verfahren in Gegenwart von NO_X bereits bei solchen Temperaturen bei denen eine Zersetzung von N₂O ohne NO_X und NH₃ überhaupt nicht stattfinden würde.

Die Ausführung des Katalysatorbettes ist im Sinne der Erfindung frei gestaltbar.

Sie kann beispielsweise in Form eines Röhrenreaktors oder Radialkorbreaktors erfolgen. Auch die Art der Einbringung des gasförmigen Reduktionsmittels in den zu behandelnden Gasstrom ist im Sinne der Erfindung frei gestaltbar, solange dieses in Stromrichtung vor der Reaktionszone erfolgt. Sie kann zum Beispiel in der Eintrittsleitung vor dem Behälter für das Katalysatorbett oder unmittelbar vor dem Bett erfolgen. Das Reduktionsmittel kann in Form eines Gases oder auch einer Flüssigkeit bzw. wässrigen Lösung eingebracht werden, die im zu behandelnden Gasstrom verdampft.

Erfindungsgemäß verwendete Katalysatoren enthalten im wesentlichen,
vorzugsweise > 50 Gew%, insbesondere > 70 Gew.% eines oder mehrerer mit
Eisen beladener Zeolithe. So kann beispielsweise neben einem Fe-ZSM-5

Zeolith ein weiterer Eisen enthaltender Zeolith, wie z.B. ein eisenhaltiger Zeolith des MFI-, oder FER-Typs, in dem erfindungsgemäß verwendeten Katalysator enthalten sein.

Darüber hinaus kann der erfindungsgemäß verwendete Katalysator weitere dem Fachmann bekannte Zusatzstoffe, wie z.B. Bindemittel enthalten.

Erfindungsgemäß verwendete Katalysatoren basieren vorzugsweise auf Zeolithen, in die durch einen Festkörper-Ionenaustausch Eisen eingebracht wurde. Üblicherweise geht man hierfür von den kommerziell erhältlichen Ammonium-Zeolithen (z.B. NH₄-ZSM-5) und den entsprechenden Eisensalzen (z.B. FeSO₄ x 7 H₂0) aus und mischt diese auf mechanischem Wege intensiv miteinander in einer Kugelmühle bei Raumtemperatur. (Turek et al.; Appl. Catal. 184, (1999) 249-256; EP-A-0 955 080). Auf diese Literaturstellen wird hiermit ausdrücklich Bezug genommen. Die erhaltenen Katalysatorpulver werden anschließend in einem Kammerofen an der Luft bei Temperaturen im Bereich von 400 bis 600°C kalziniert. Nach dem Kalzinieren werden die eisenhaltigen Zeolithe in destilliertem Wasser intensiv gewaschen und nach Abfiltrieren des Zeolithen getrocknet. Abschließend werden die so erhaltenen eisenhaltigen Zeolithe mit den geeigneten Bindemitteln versetzt und gemischt und beispielsweise zu zylindrischen Katalysatorkörpern extrudiert. Als Bindemittel eignen sich alle üblicherweise verwendeten Binder, die gebräuchlichsten sind hierbei Aluminiumsilikate wie z.B. Kaolin.

Gemäß der vorliegenden Erfindung sind die verwendbaren Zeolithe mit Eisen beladen. Der Eisengehalt kann dabei bezogen auf die Masse an Zeolith bis zu 25% betragen, vorzugsweise jedoch 0,1 bis 10%. Die Kristallstruktur der Zeolithe weist keine Poren bzw. Kanäle mit kristallographischen Durchmessern größer gleich 7,0 Ångstrom auf.

10

15

Im erfindungsgemäßen Verfahren ist auch der Einsatz solcher Zeolithe eingeschlossen, in welchen das Gitteraluminium teilweise durch ein oder mehrere Elemente isomorph substituiert ist, beispielsweise durch ein oder mehrere Elemente ausgewählt aus B, Be, Ga, Fe, Cr, V, As, Sb und Bi ersetzt ist. Ebenso eingeschlossen ist der Einsatz von Zeolithen, bei denen das Gittersilicium durch ein oder mehrere Elemente isomorph substituiert ist, beispielsweise durch ein oder mehrere Elemente ausgewählt aus Ge, Ti, Zr und Hf ersetzt ist.

- Genaue Angaben zum Aufbau oder Struktur der erfindungsgemäß eingesetzten Zeolithe werden im Atlas of Zeolite Structure Types, Elsevier, 4th revised Edition 1996, gegeben, auf den hiermit ausdrücklich Bezug genommen wird.
- Erfindungsgemäß bevorzugte Zeolithe sind vom MFI (Pentasil)- oder FER (Ferrierit)-Typ. Insbesondere bevorzugt sind Zeolithe vom Fe-ZSM-5 Typ.
 - Ganz besonders bevorzugt kommen im erfindungsgemäßen Verfahren die weiter oben definierten Zeolith-Katalysatoren zum Einsatz, die mit Wasserdampf behandelt worden sind ("gesteamte" Katalysatoren). Durch eine derartige Behandlung wird das Gitter des Zeolithen dealuminiert; diese Behandlung ist dem Fachmann an sich bekannt. Überraschenderweise zeichnen sich diese hydrothermal behandelte Zeolith-Katalysatoren im erfindungsgemäßen Verfahren durch eine besonders hohe Aktivität aus.

Bevorzugt werden hydrothermal behandelte Zeolith-Katalysatoren eingesetzt, die mit Eisen beladen worden sind und bei denen das Verhältnis von Extra-Gitter-Aluminium zu Gitter-Aluminium mindestens 1:2 beträgt, vorzugsweise

1:2 bis 20:1 beträgt.

20

Die Betriebstemperatur des Katalysators, über welchem N₂O und NO_x beseitigt werden, liegt erfindungsgemäß <450°C, ganz besonders bevorzugt im Bereich von 350 bis 450°C.

Das mit Stickstoffoxiden beladene Gas wird üblicherweise mit einer Raumgeschwindigkeit von 200 bis 200.000 h⁻¹, vorzugsweise von 5.000 bis 100.000 h⁻¹, insbesondere von 5.000 bis 50.000 h⁻¹, und ganz besonders bevorzugt von 5.000 bis 30.000 h⁻¹, bezogen auf das Katalysatorvolumen, über den Katalysator geleitet.

10

Die Wahl der Betriebstemperatur ist dabei ebenso wie gewählte Raumgeschwindigkeit bestimmt durch den gewünschten Abbaugrad an N₂O.

Der gewünschte Abbau an NO_x wird eingestellt durch die zugesetzte Menge an gasförmigem Reduktionsmittel, wie NH₃. Gemäß Gl. 5 beträgt diese für Ammoniak vorzugsweise etwa 8/6 der abzubauenden Menge an NO_x, kann aber bei hohen Drucken bzw. niedrigen Temperaturen auch wie oben beschrieben kleinere Werte annehmen.

Das erfindungsgemäße Verfahren wird im allgemeinen bei einem Druck im Bereich von 1 bis 50 bar, vorzugsweise 1 bis 25 bar durchgeführt.

Die Einspeisung des Reduktionsmittels vor dem Katalysatorbett, erfolgt durch eine geeignete Vorrichtung, wie z.B. einem entsprechenden Druckventil oder entsprechend ausgestalteten Düsen.

Der Wassergehalt des Reaktionsgases liegt vorzugsweise im Bereich von <25 Vol.%, insbesondere im Bereich <15 Vol.%.

Im allgemeinen wird eine relativ niedrige Wasserkonzentration bevorzugt, da 30 höhere Wassergehalte höhere Betriebstemperaturen erforderlich machen würden. Diese könnte je nach eingesetztem Zeolithtyp und Betriebsdauer die

10

15

20

25

hydrothermalen Stabilitätsgrenzen des Katalysators überschreiten und ist somit dem jeweils gewählten Einzelfall anzupassen:

Auch die Anwesenheit von CO₂ sowie von anderen desaktivierenden Bestandteilen des Reaktionsgases, die dem Fachmann bekannt sind, sollten nach Möglichkeit minimiert werden, da sich diese negativ auf den N₂O-Abbau auswirken würden.

Das erfindungsgemäße Verfahren arbeitet auch in Gegenwart von O₂, da die erfindungsgemäß verwendeten Katalysatoren entsprechende Selektivitäten aufweisen, die bei Temperaturen <450°C eine Reaktion des gasförmigen Reduktionsmittels, wie NH₃, mit O₂ unterdrücken.

All diese Einflußfaktoren, sowie die gewählte Katalysatorbelastung d.h.
Raumgeschwindigkeit sind bei der Wahl der geeigneten Betriebstemperatur der
Reaktionszone zu berücksichtigen.

Die mit dem vorliegenden Verfahren erzielbaren Umsätze für N_2O und NO_x liegen bei > 80%, vorzugsweise bei > 90%. Das Verfahren ist damit hinsichtlich seiner Leistungsfähigkeit, d.h. der erzielbaren Umsatzgrade des N_2O und NO_x Abbaus, sowie hinsichtlich der Betriebs- und Investitionskosten dem Stand der Technik überlegen.

Das erfindungsgemäße Verfahren kann besonders bei der Salpetersäureproduktion, bei Kraftwerksabgasen oder bei Gasturbinen zum Einsatz kommen. In diesen Prozessen fallen stickoxidhaltige Prozeß- und Abgase an, die mit Hilfe des hier aufgezeigten Verfahrens kostengünstig entstickt werden können.

Die Erfindung wird durch das nachfolgende Beispiel erläutert.

10

15

20

Als Katalysator wird ein mit Eisen beladener Zeolith vom Typ ZSM-5 eingesetzt.

Die Herstellung des Fe-ZSM-5-Katalysators erfolgte durch FestkörperIonentausch ausgehend von einem kommerziell verfügbaren Zeolith in
Ammonium-Form (ALSI-PENTA, SM27). Detaillierte Angaben zur Präparation
können entnommen werden aus: M. Rauscher, K. Kesore, R. Mönnig, W.
Schwieger, A. Tißler, T. Turek: "Preparation of highly active Fe-ZSM-5 catalyst
through solid state ion exchange for the catalytic decomposition of N₂O", in
Appl. Catal. 184 (1999) 249-256.

Die Katalysatorpulver wurden an der Luft für 6h bei 823K kalziniert, gewaschen und über Nacht bei 383K getrocknet. Nach Zusatz entsprechender Binder folgte die Extrusion zu zylindrischen Katalysatorkörpern, welche zu einem Granulat mit einer Korngröße von 1-2 mm gebrochen wurden.

Als Vorrichtung zur Minderung des NO_x und N₂O-Gehaltes kam ein Rohrreaktor zum Einsatz, welcher mit einer solchen Menge an obigem Katalysator befüllt war, dass bezogen auf den eintretenden Gasstrom ein Raumgeschwindigkeit von 10.000 h⁻¹ resultierte. Vor dem Reaktoreintritt erfolgte die Zugabe von NH₃-Gas. Die Betriebstemperatur des Reaktors wurde durch Beheizung eingestellt. Die Analyse des in die Vorrichtung ein- und austretenden Gasstroms erfolgte mit Hilfe eines FTIR-Gasanalysators.

25 Bei nachstehenden Eingangskonzentrationen und Betriebstemperaturen wurden die in Tabelle 1 wiedergegebenen Abbauraten an N₂O und NO_x erzielt:

Beispiel 1: 375°C (1A), 400°C (1B), 425°C (1C)

Eingangskonzentrationen:

1000 ppm N_2O , 2500 ppm H_2O und 2,5 %vol O_2 in N_2

Beispiel 2: 375°C (2A), 400°C (2B), 425°C (2C)

Eingangskonzentrationen:

1000 ppm N_2O , 1000 ppm NO_X , 2500 ppm H_2O , 2,5 %vol O_2 und 1200ppm NH_3 in N_2

Tabelle 1:

5

10

15

Beispiel	Temperatur	N₂O-Abbau	NO _x -Abbau
1 A	375°C	4,5 %	-
2 A	375°C	56,2 %	89,9%
1 B	400°C	14,7 %	-
2 B	400°C	79,8 %	91,5%
1 C	425°C	33,7 %	-
2 C	425°C	93,2 %	91,9%

Wie in den Beispielen belegt wird, führt die Anwesenheit von NO_x und die Zugabe von Ammoniak zu einem drastischen Anstieg der N₂O-Zersetzung ohne dass NH₃ für die Reduktion von N₂O verbraucht würde. Die erreichte NO_x-Reduktion von ca. 90% (ausgehend von 1000 ppm NO_x) entspricht im Rahmen der Messgenauigkeit der zugegebenen Menge an NH₃ (1200 ppm) dividiert durch das stöchiometrische Reaktionsverhältnis von 8/6 gemäß Gleichung 5. Demgegenüber ist der Grad der N₂O-Zersetzung ist bei gegebener NO_x und NH₃-Konzentration nur abhängig von der Betriebstemperatur bzw. der eingestellten Raumgeschwindigkeit.

Patentansprüche

5

10

- Verfahren zur Minderung des Gehalts von NO_x und N₂O in Gasen, insbesondere in Prozeßgasen und Abgasen, umfassend die Maßnahmen:
 - a) Zugabe eines unter Reaktionsbedingungen gasförmigen Reduktionsmittels für NO_x zu dem NO_x und N₂O enthaltenden Gas in einer solchen Menge, wie zur Reduktion des NO_x benötigt wird,
 - b) Einleiten des Gasgemisches in eine Vorrichtung mit einer Reaktionszone, die einen oder mehrere mit Eisen beladene Zeolithe enthält, deren Kristallstruktur keine Poren oder Kanäle von größer gleich 7 Angström aufweisen,
 - c) Einstellen einer Temperatur von bis zu 450°C in der Reaktionszone und Auswahl der Strömungsgeschwindigkeit des Gasgemisches und/oder der Katalysatormenge, so dass sich der gewünschte Zersetzungsgrad an N₂O ergibt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Reduktionsmittel für NO_x Ammoniak verwendet wird.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Ammoniak
 in einer Menge von bis zu 1,33 (8/6) molaren Anteilen, bezogen auf die
 Menge an NO_x, eingesetzt wird.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Schritt c) eine solche Temperatur und eine Strömungsgeschwindigkeit des Gasgemisches eingestellt werden und/oder eine solche Katalysatormenge ausgewählt wird, dass in der Reaktionszone mindestens 50 %, vorzugsweise mindestens 70% und ganz besonders bevorzugt mindestens 80% des N₂O zersetzt werden.

15

- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das NO_x und N₂O enthaltende Gas mit einer Raumgeschwindigkeit von 5.000 bis 50.000 h⁻¹, vorzugsweise von 5.000 bis 30.000 h⁻¹, bezogen auf das Katalysatorvolumen, über den Katalysator geleitet wird.
- 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur in der Reaktionszone zwischen 350 bis 450°C liegt.
- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Gas über einen einzigen Katalysator geleitet wird.
 - 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Katalysatoren mit Eisen beladene Zeolithe der Typen MFI, FER und MEL eingesetzt werden.
 - 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß als Katalysator ein mit Eisen beladener Zeolith des Typs MFI eingesetzt wird.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der mit Eisen beladene Zeolith des Typs MFI ein Katalysator des Typs Fe-ZSM-5 ist.
 - 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Katalysatoren Zeolithe eingesetzt werden, die mit Wasserdampf behandelt worden sind.
 - 12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Katalysatoren mit Eisen beladene Zeolithe eingesetzt werden, bei denen das Verhältnis von Extra-Gitter-Aluminium zu Gitter-Aluminium mindestens 0,5 beträgt.

- 13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dieses in den Prozeß der Salpetersäureproduktion integriert ist.
- 14. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dieses in den Prozeß des Betriebes einer Gasturbine integriert ist.
- 15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dieses in den Prozeß des Betriebes eines Kraftwerks integriert ist.

INTERNATIONAL SEARCH REPORT

Internations Application No

A. CLASSIFICATION OF SUBJECT NEEDS TO PER 1 PC 7 B01053/86

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 - B01D - B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	WO 00 48715 A (COQ BERNARD ;DELAHAY GERARD (FR); GRANDE PAROISSE SA (FR); MAUVEZI) 24 August 2000 (2000-08-24) cited in the application page 1, line 27-31; claims 1,4,5; figures 1,2A,2B1,2B2,3A,; examples 3,4,4BIS	1-15
Ρ,Χ	WO 01 51181 A (SCHWEFER MEINHARD ;SZONN ERICH (DE); KRUPP UHDE GMBH (DE); TUREK T) 19 July 2001 (2001-07-19) the whole document	1–15
X	US 4 571 329 A (KATO YASUYOSHI ET AL) 18 February 1986 (1986-02-18) cited in the application column 7, line 17 -column 8, line 31; claim 1; figures	1-7
	-/	
χ Furti	ner documents are listed in the continuation of box C. X Patent family members	are listed in annex.

X Patent family members are listed in annex.
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of mailing of the international search report $19/07/2002$
Authorized officer Gruber, M

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Internations pplication No PCT/EASS2/02438

- 10 · 11	TO THE PARTY OF THE PARTY.	PC1/E 2/02438
Category •	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Calegory	Charlott of document, with indication, where appropriate, or the relevant passages	
A	EP 0 756 891 A (CORNING INC) 5 February 1997 (1997-02-05) page 2, line 49-56 page 3, line 41-46	1-4,6-10
A	US 5 482 692 A (SHARMA SANJAY B ET AL) 9 January 1996 (1996-01-09) the whole document	11,12
A	EP 0 299 294 A (BASF AG) 18 January 1989 (1989-01-18) the whole document	
Α ,	US 5 516 497 A (BYRNE JOHN W ET AL) 14 May 1996 (1996-05-14) claims	
Α	US 4 046 888 A (MAESHIMA TSUGIO ET AL) 6 September 1977 (1977-09-06) claims	
A	DE 36 35 284 A (STEULER INDUSTRIEWERKE GMBH) 28 April 1988 (1988-04-28) the whole document	
A	DE 44 33 120 A (HONDA MOTOR CO LTD) 23 March 1995 (1995-03-23) the whole document	
	·	

INTERMATIONAL SEARCH REPORT Information on patent family members

Application No T/EP 02/02438

						
	tent document in search report		Publication date		Patent family member(s)	Publication date
WO	0048715	A	24-08-2000	FR AU CZ EP WO US	2789911 A1 2677100 A 20012992 A3 1150763 A1 0048715 A1 2002044902 A1	25-08-2000 04-09-2000 13-03-2002 07-11-2001 24-08-2000 18-04-2002
WO	0151181	Α	19-07-2001	DE AU WO	10001539 A1 3368801 A 0151181 A1	02-08-2001 24-07-2001 19-07-2001
us	4571329	A	18-02-1986	NONE		
EP	0756891	A	05-02-1997	EP JP	0756891 A1 9103653 A	05-02-1997 22-04-1997
us	5482692	A	09-01-1996	AU AU CA EP WO	687582 B2 2914995 A 2193951 A1 0935498 A1 9601689 A1	26-02-1998 09-02-1996 25-01-1996 18-08-1999 25-01-1996
EP	0299294	A	18-01-1989	DE DE EP	3723072 A1 3871447 D1 0299294 A2	19-01-1989 02-07-1992 18-01-1989
US	5516497	A	14-05-1996	US AT CA DE DE DK EP ES GR JP	5024981 A 125461 T 2012039 A1 69021115 D1 69021115 T2 393905 T3 0393905 A2 2075151 T3 3017607 T3 2293022 A	18-06-1991 15-08-1995 20-10-1990 31-08-1995 14-03-1996 11-12-1995 24-10-1990 01-10-1995 31-01-1996 04-12-1990
US	4046888	A	06-09-1977	JP JP JP	1154258 C 51147470 A 57046890 B	30-06-1983 17-12-1976 06-10-1982
DE	3635284	A	28-04-1988	DE AT DE WO EP JP	3635284 A1 76326 T 3779322 D1 8802659 A1 0329674 A1 2500822 T	28-04-1988 15-06-1992 25-06-1992 21-04-1988 30-08-1989 22-03-1990
DE	4433120	Α	23-03-1995	JP JP DE	7080291 A 7088379 A 4433120 A1	28-03-1995 04-04-1995 23-03-1995

INTERNATIONALER ECHERCHENBERICHT

Internation es Aktenzelchen PCT/EP **2**/02438

A. KLASSIFIZIERUNG DES ANMELDUNGSGEO IPK 7 B01D53/86 ANDES

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 B01D B01J

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
х	WO 00 48715 A (COQ BERNARD ;DELAHAY GERARD (FR); GRANDE PAROISSE SA (FR); MAUVEZI) 24. August 2000 (2000-08-24) in der Anmeldung erwähnt Seite 1, Zeile 27-31; Ansprüche 1,4,5; Abbildungen 1,2A,2B1,2B2,3A,; Beispiele 3,4,4BIS	1–15
P,X	WO 01 51181 A (SCHWEFER MEINHARD ;SZONN ERICH (DE); KRUPP UHDE GMBH (DE); TUREK T) 19. Juli 2001 (2001-07-19) das ganze Dokument	1–15
X 	US 4 571 329 A (KATO YASUYOSHI ET AL) 18. Februar 1986 (1986-02-18) in der Anmeldung erwähnt Spalte 7, Zeile 17 -Spalte 8, Zeile 31; Anspruch 1; Abbildungen	1-7

l	_ 		
-		-/	
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie	
"A" Veröffer aber n "E" älteres Anmel "L" Veröffer schein anderr soll od ausge "O" Veröffer eine B "P" Veröffe	e Kategorien von angegebenen Veröffentlichungen : ntlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen idedatum veröffentlicht worden ist ntlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- ten zu lassen, oder durch die das Veröffentlichungsdatum einer en im Recherchenbericht genannten Veröffentlichung belegt werden ter die aus einem anderen besonderen Grund angegeben ist (wie führt) intlichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht ntlichung, die vor dem internationalen Anmeldedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	kann nicht als auf erfinderischer Tätigk werden, wenn die Veröffentlichung mit Veröffentlichungen dieser Kategorie in diese Verbindung für einen Fachmann *&* Veröffentlichung, die Mitglied derselben	worden ist und mit der r zum Verständnis des der oder der ihr zugrundeliegenden stung; die beanspruchte Erfindung chung nicht als neu oder auf lichtet werden stung; die beanspruchte Erfindung eit berühend betrachtet einer oder mehreren anderen Verbindung gebracht wird und naheliegend ist
	Abschlusses der internationalen Recherche 2. Juli 2002	Absendedatum des internationalen Re	cherchenberichts
	Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter	<u> </u>
	Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Gruber, M	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
T/EP 02/02438

C./Fortsetz	ing) ALS WESENTLICH (ESEHENE UNTERLAGEN	•
Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Α	EP 0 756 891 A (CORNING INC) 5. Februar 1997 (1997-02-05) Seite 2, Zeile 49-56 Seite 3, Zeile 41-46	1-4,6-10
A	US 5 482 692 A (SHARMA SANJAY B ET AL) 9. Januar 1996 (1996-01-09) das ganze Dokument	11,12
A	EP 0 299 294 A (BASF AG) 18. Januar 1989 (1989-01-18) das ganze Dokument	
Α	US 5 516 497 A (BYRNE JOHN W ET AL) 14. Mai 1996 (1996-05-14) Ansprüche	
Α	US 4 046 888 A (MAESHIMA TSUGIO ET AL) 6. September 1977 (1977-09-06) Ansprüche	
Α	DE 36 35 284 A (STEULER INDUSTRIEWERKE GMBH) 28. April 1988 (1988-04-28) das ganze Dokument	
Α	DE 44 33 120 A (HONDA MOTOR CO LTD) 23. März 1995 (1995-03-23) das ganze Dokument	
	·	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

PCT/EP 2/02438

Îm Recherch	enbericht entdokument	Jatum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
			<u> </u>		۸1	
WO 0048	715 A	24-08-2000	FR	2789911		25-08-2000
			AU	2677100		04-09-2000
			CZ	20012992		13-03-2002
			EP	1150763		07-11-2001
			MO	0048715		24-08-2000
			US 	2002044902	A1	18-04-2002
WO 0151	181 A	19-07-2001	DE	10001539		02-08-2001
	•		AU	3368801		24-07-2001
			WO	0151181	A1	19-07-2001
US 4571	329 A	18-02-1986	KEINE			
EP 0756	891 A	05-02-1997	EP	0756891	A1	05-02-1997
			JP	9103653		22-04-1997
US 5482	:692 A	09-01-1996	 AU	687582	R2	26-02-1998
UJ 3482	.U3L A	03-01-1330	AU	2914995		09-02-1996
			CA	2193951		25-01-1996
	•		EP	0935498		18-08-1999
			WO	9601689		25-01-1996
EP 0299	294 A	18-01-1989	DE	3723072		19-01-1989
			DE	3871447		02-07-1992
			EP	0299294	A2	18-01-1989
US 5516	497 A	14-05-1996	US	5024981	Α	18-06-1991
			AT	125461	T	15-08-1995
			CA	2012039	A1	20-10-1990
			DE	69021115	D1	31-08-1995
			DE	69021115	T2	14-03-1996
			DK	393905		11-12-1995
			EP	0393905	A2	24-10-1990
			ES	2075151	T3	01-10-1995
			GR	3017607	T3	31-01-1996
			JP	2293022	Α	04-12-1990
US 4046	 888 A	06-09-1977	JP	1154258	С	30-06-1983
			ĴΡ	51147470		17-12-1976
			JP	57046890		06-10-1982
DE 3635		28-04-1988	DE	3635284	 A1	28-04-1988
JE 0000	,,	. 20 04 1900	AT	76326		15-06-1992
			DE	3779322		25-06-1992
			WO	8802659		21-04-1988
			EP	0329674		30-08-1989
			JP	2500822		22-03-1990
DE 4433	2120 ^	23-03-1995	 JР	7080291		28-03-1995
UL 4433)1ZU P	73-03-1335	JP	7088379		04-04-1995
			DE	4433120		23-03-1995
				7733120	U.T.	EO OO 1330

Formblatt PCT/ISA/210 (Anhang Patentfamille)(Juli 1992)

THE ISOM (BLANK (USPTO)

THIS PAGE BLANK (USPTO)