Teste de Álgebra Linear B

Guimarães, Novembro de 2007

Cursos de Mestrado Integrado em Engenharia

Nome			N ^o
Curso	Sala	Fila	Coluna

Instruções: Todas as suas respostas terão de ser dadas nesta folha.

Respostas erradas nas perguntas de verdadeiro/falso têm cotação negativa.

A duração da prova é de 1:30 hora sem tolerância. Antes de iniciar as suas respostas preencha o cabeçalho da prova e coloque o seu cartão de identificação sobre a mesa, a fim de se proceder à sua identificação.

- **1.** Considere as matrizes $A, B \in M_{4\times 4}$ e $C, D \in M_{3\times 4}$. Diga se são verdadeiras ou não as seguintes igualdades: (3 val.)
 - a) AD = DA

- V F **b)** $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$

- $\mathbf{c)} \ \mathbf{A} + \mathbf{C} = \mathbf{C} + \mathbf{A}$
- V F **d**) $(\mathbf{AC})^{\mathrm{T}} = \mathbf{C}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$
- V F
- e) $(B+D)^2 = B^2 + BD + DB + D^2$ V F f) $C^2C^3 = C^5$

- V F
- 2. Considere as matrizes $A, B \in M_{4x4}$ e $C, D \in M_{3x4}$. Diga se se podem verificar as seguintes igualdades. Justifique. (4 val.)
 - a) AB = BA
 - b) C(A+B)=CB+CA
 - $\overline{\mathbf{c}) \ (\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}}$
 - $\mathbf{d}) \ \left(\overline{\mathbf{D}\mathbf{A}}\right)^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}}\mathbf{D}^{\mathrm{T}}$

3. Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 & 1 \\ \mathbf{b} & \mathbf{c} \\ 3 & 1 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \mathbf{e} \ \mathbf{D} = \begin{bmatrix} 12 & 10 \\ -4 & -9 \end{bmatrix}$$

Determine os valores de a, b, c de modo que $\mathbf{AB - C}^2 = \mathbf{D} \cdot (2 \text{ val.})$

4. No espaço vectorial \Re^3 determine o valor do parâmetro real β que faz com que o vector $(1,\beta,6)$ não seja combinação linear dos vectores (1,0,3)e (2,-1,5). (2 val.)

5. No espaço vectorial \Re^3 verifique, através da definição, que, os vectores (1,0,1),(1,1,-2) e (2,1,-1)

5. No espaço vectorial \Re^3 verifique, através da definição, que, os vectores (1,0,1), (1,1,-2)e (2,1,-1) são linearmente dependentes. (2 val.)

7.	Considere o espaço vectorial \mathfrak{R}^3 . Diga se são verdadeiras as seguintes afirmações. (3 ve	 al.)	
a) O conjunto dos vectores $\{(1,0,0), (2,0,0), (4,5,3)\}$ é linearmente dependente.			
b) O conjunto dos vectores $\{(1,0,0), (2,0,0), (4,5,3)\}$ é gerador de \Re^3 .			F
c) O conjunto dos vectores $\{(1,0,0), (2,0,0), (4,5,3), (2,3,5)\}$ é linearmente dependente.			
d) O conjunto dos vectores $\{(1,0,0), (2,0,0), (4,5,3), (2,3,5)\}$ não é gerador de \Re^3 .			F
e) Quaisquer 4 vectores são geradores de \mathfrak{R}^3 .			F
	f) Quaisquer 3 vectores geradores são linearmente dependentes.	V	F
 8. Complete as seguintes frases de modo a obter asserções verdadeiras. (2 val.) a) Num espaço vectorial de dimensão 4 um conjunto de 3 vectores linearmente independe são 			
	b) Num espaço vectorial de dimensão 4, um conjunto de 6 vectores são	gera	dores
	c) Num espaço vectorial de dimensão 4 qualquer conjunto de vectores linearmente ind contêmvectores.	epend	lentes
	d) Num espaço vectorial de dimensão 4 qualquer conjunto de geradore vectores linearmente independentes.	es co	ontêm

6. No espaço vectorial \Re^3 verifique, se os vectores (1,0,1), (0,0,1), (2,0,2)e (1,1,1) são geradores de

 \Re^3 . Justifique. (2 val.)