MATH 618 Algebraic Topology

David Zhu

September 5, 2024

1 The Correct Category

Let T = compactly generated weakly Hausdorff. Let $T_2 =$ pairs of spaces $(X, A), A \subseteq X$, and

$$T_2((X, A), (Y, B)) = \{ f \in T(X, Y) : f(A) \subseteq B \}$$

We define $(X, A) \otimes (Y, B) = (X \times Y, X \times B \cup Y \times A)$. (Think about product of boundaries). We want tot understand the analogue of $T(X \times Y, Z) \cong T(X, T(Y, Z))$.

Theorem 1.1. Let $(X, A), (Y, B), (Z, C) \in T_2$, then

$$T_2((X,A) \otimes (Y,B),(Z,C)) \cong T_2((X,A),T_2(T_2((Y,B),(Z,C))),T(Y,C))$$

Let T_* be the full subcategory of T_2 consisting of pairs (X,*). There exists a pair of functors $T_2 \to T_*$ defined by $(X,A) \mapsto (X/A,A/A=*)$.

Proposition 1.1.1. $q: X \to X/A$, we get

$$q*: T_*(X/A, Y) \to T_2((X, A), (Y, *))$$

an isomorphism.

We want a producgt in T_* which works well with function spaces:

Definition 1.1.1. Given $X,Y \in T_*$, defined $X \wedge Y = (X \times Y/X \vee Y, * = X \vee Y)$ called the smash product.

Note that the smash product is not the categorical product here. (The categorical product is simply the cartesian product carring the canonical basepoint).

Definition 1.1.2. The reduced suspension $\Sigma X := S^1 \wedge X$.

Theorem 1.2. The category of based spaces T_* has the following properties

- 1. $T_*(X,Y) \in T_*$, with basedpoint the constant map to basepoint.
- 2. $T_*(X,Y) \wedge X \to Y$ is continuous.
- 3. $T_*(X,Y) \wedge T_*(Y,Z) \to T_*(X,Z)$ is continuous.
- 4. $T_*(X \wedge Y, Z) \cong T_*(X, T_*(Y, Z))$
- 5. Small limits and colimits exists in T_* .
- 6. The forgetful functor $T_* \to T$ preserves limits.

Definition 1.2.1. The <u>reduced cone</u> is a functor $C: T_* \to T_*$ defined by $X \mapsto IX$, with the basepoint of I being 1.

Proposition 1.2.1. There exists a pushout

$$\begin{matrix} X & \longrightarrow CX \\ \downarrow & & \downarrow \\ CX & \longrightarrow \Sigma X \end{matrix}$$

Definition 1.2.2. The **loop space** is defined to be $T_*(S^1, X)$.

Theorem 1.3. (Eckmann-Hilton duality)

$$T_*(X, \Omega Y) \cong T_*(\Sigma X, Y)$$

There exists a functor $T \to T_*$ given by $X \mapsto X \coprod \{x\}$, which is left adjoint to the forgetful functor. If $X \in T_*$, then $\Omega X \in T_*$, and note that $\pi_0(\Omega X) = [S^1, X]_* = \pi_1(X)$.

Definition 1.3.1. A functor $F: T_* \to C$ for some catgeory C is called a **homotopy functor** if F(f) = F(g) when $f \cong g$

Definition 1.3.2. Define $\pi_n(X) := [S^n, X]_*$. Then, π_n is a homotopy functor from T_* to set.

Proposition 1.3.1. π_n is a group for $n \geq 1$ and abelian when $n \geq 2$.

Proof. The group structure is given by: suppose we have $\varphi, \psi: I^n \to X$. Then, $\varphi + \psi: I^n \to X$ is explicitly given by

$$\varphi + \psi(t_1, ..., t_n) = \begin{cases} \varphi(2t_1, t_2, ..., t_n) & t \in [0, \frac{1}{2}] \\ \psi(2t_1 - 1, t_2, ..., t_n) & t \in [\frac{1}{2}, 1] \end{cases}$$

Definition 1.3.3. Define H-space be a topological space X with homotopy associative map

$$X \wedge X \to X$$

Proposition 1.3.2. If (Y, y_0) is an H-space, then $[X, Y]_*$ has a group structure.