Амплитудная дифракционная решетка.

Батарин Егор

10 апреля 2021 г.

Аннотация

Знакомство с работой и настройка гониометра Γ 5, определение спектральных характеристик амлитудной решетки.

1 Теория

1.1 Общие понятия

Оптические приборы, в которых осуществялется физическое разложение электромагнитного излучения намонохроматические составляющие, называются спектральными. По характеру распределения интенсивности вспектральном разложении спектры могут быть разделены на линейчатые и непрерывные.

Принципиальная установка изображена на рис. 5. Свет от источника 8 попадает на экран 6 щелью. Коллиматор формирует близкие 8 параллельному пучок лучей. После, свет попадает надиспергирующий элемент. Наблюдей производится через трубу, установленну на 8

Рис. 1: Схема прибора: источник-коллиматор – диспергирующий элемент – зрительная труба

Каждой монохроматической компоненте с λ соответствует один или несколько углов $\varphi(\lambda)$ на выходе изприбора, в направлении которых интенсивность прибора максимальна. При известной зависимости $\varphi(\lambda)$ поизмеряемому углу поворота φ зрительной трубы можно определить длинну волны спектральной линии.

Наиболее важными характеристиками спектральных приборов являютсяугловая дисперсия, разрешающая способность и дисперсионная область.

1.2 Амплитудная дифракционная решетка

Амплитадная решетка представляет собой N паралельных щелей (рис.2), период решетки равен d, ширинаштриха - b. Наблюдение ведем на бесконечности (дифракция Фраунгофера). Амплитуда и интенсивность поля световой волны определяются углом φ . Полагаем, что амплитуда падающих лучей одинкова. Интенсивность дифрагированного света максимальная для углов φ_m , при которых волны, приходящие в точку наблюдения оказываются в фазе:

$$d\sin\varphi_m = m\lambda\tag{1}$$

Рис. 2: Дифракция световой волны на амплитудной решетке

Рис. 3: Изображение спектра двух линий

Рассмотрим пример с двумя спектральными линиями красной и фиолетовой ($\lambda_{red} > \lambda_{purp}$) рис.3. Для малых углов дифракции угловое расстояние между порядками $\varphi_{m+1} - \varphi \approx \lambda/d$ пропорционально длине волны, поэтому фиолетовые линии следуют чаще чем красные. При m=5 для красной и m=6 для фиолетовой они совпадут. Некоторые формулы:

• Разрешающая способность характеризует возможность прибора различать две близкие спектральные линии с длинами волн λ и $\lambda + \delta \lambda$.

$$R = \frac{\lambda}{\delta \lambda} \tag{2}$$

• Угловая дисперсия - производная зависимости угла отклонения $\varphi(\lambda)$ волны диспергирующим элементом по λ . По величине угловой дисперсии можно определить угловое расстояние между двумя близкими спектральными линиями: $\delta \varphi \approx D \delta \lambda$:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d \cdot \cos \varphi_m} = \frac{m}{\sqrt{d^2 - m^2 \lambda^2}}$$
 (3)

• Угловое расстояние между линиями определяется:

$$\Delta \varphi \approx D\delta \lambda \tag{4}$$

• Полуширина линии:

$$\delta\varphi = \frac{\lambda}{Nd\cos\varphi_m} \tag{5}$$

• Дисперсионная область — предельная ширина спектального интервала $\Delta\lambda$ прибора, для которой дифракционные максимумы соседних порядков не перекрываются. Она определяет диапазон длин волн, при которых прибор может быть использован для анализа спектра.

2 Ход работы

- 1. Настроим гониометр
- 2. Установим решетку, откалибруем наклон столика.

- 3. Подберем ширину входной щели так, чтобы ширина желктого дуплета была чуть больше промежутка между линиями двойного штриха окуляра.
- 4. Измерим угловые координаты спектральных линий ртути в ± 1 порядке и занесем в таблицу 1

Цвет	Угол	Длина волны, λ ,	Порядок	
Синий	192 ° 33'	435.80	1	
Зеленый	194 ° 10'	546.07	1	
Желтый	196 ° 41'	576.96	1	
Красный	197 ° 35'	623.40	1	
Синий	167 ° 24'	435.80	-1	
Зеленый	164 ° 09'	546.07	-1	
Желтый	163 ° 12'	576.96	-1	
Красный	161 ° 50'	623.40	-1	

Таблица 1:

5. Построим зависимость $\sin \varphi_m$ от длины волны:

Рис. 4: Зависимость $\lambda(\sin\varphi_m)$

- 6. Найдем период дифракционной решетки с помощью формулы $d\sin\varphi_m=m\lambda$ и МНК: $d=1{,}98\pm0{,}35$ мкм
- 7. Для оценки угловой дисперсии решетки измерим угловые координаты линий желтого дуплета на всех видимых порядках, результат занесем в таблицу 2.

Порядок	-1	-1	1	1	2	2	-2	-2
λ , nm	576.96	579.09	576.96	579.07	579.96	576.09	576.96	579.07
$\Delta\lambda, nm$	-2.13		-2.11		-2.13		-2.11	
$\varphi_m,^{\circ}$	196.68	196.75	163.17	163.24	144.60	144.64	215.09	215.15
$\Delta \varphi_m,^{\circ}$	-0.0641		-0.066		-0.036		-0.036	
D, рад/мкм	0,31635	0,31645-	0,31658	-0,31647	-0,74348	-0,74314	0,74076	0,74109

Таблица 2:

8. Рассчитаем по линиям желтого дуплета угловую дисперсию в спектрах разного порядка по формуле $D(\lambda) = \frac{d\varphi}{d\lambda}$, результат занесем в таблицу 2. Построим график зависимости угловой дисперсии от порядка спектра и сравним с рассчитанной по формуле $D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cdot\cos\varphi_m} = \frac{m}{\sqrt{d^2-m^2\lambda^2}}$.

Рис. 5: Зависимость угловой дисперсии от порядка

- 9. Оценим разрешимый спеткральный интервал $\delta\lambda$, результат занесем в таблицу 2. По формуле $\Delta\varphi\approx D\delta\lambda=\frac{m}{d\cos\varphi_m}\delta\lambda$ определим угловую ширину желтой линии.
- 10. По формуле $R=\frac{\lambda}{\delta\lambda}=978\pm163$ оценим разрешающую способность для средней длины волны.
- 11. По формуле R=Nm определим число эффективно работающих штрихов $N=488\pm81.$
- 12. Рассчитаем порядок спектра при котором фиолетовая линия накладывается на желтую. $m_{\rm фиол}/m_{\rm желт} \approx 6/5$.

13.

3 Вывод

В работе проведена настройка гониометра, исследован спектр ртутной лампы, определен период и спектральные характеристики решетки: угловая дисперсия, разрешающая способность.