Digital Image Processing

Digital Halftoning

Ming-Sui (Amy) Lee Lecture 06

- Goal
 - Render the illusion of a continuous-tone image based on two-tone (half-tone) display

- Applications
 - Computer hardcopies
 - Laser printers/dot-matrix printers/color printers
 - Fax machine
- Implementation
 - Thresholding at 1/2 ?

Gray-level image

Half-toned images

Color Printer

Continuous Image

Binary Image

- Basic idea
 - Spatial modulation
 - Three approaches
 - Patterning
 - Dithering
 - Error Diffusion

Patterning p If p=4 \rightarrow 16 binary pixels → 17 levels (0~16) → 256 gray levels **→** Quantization 1 Gray-level pixel 1 Dot pattern Rylander's recursive

Rylander's recursive patterning matrices

- Patterning
 - Four steps
 - Read in the given grey-level image
 - Quantization
 - Design the patterning table
 - Map each pixel to its corresponding pattern
 - Simplest way
 - Generates image with higher spatial resolution than the source image

Patterning

Original gray-level image

Half-toned image: patterning

- Dithering
 - Create an image with the same number of dots as the number of pixels in the source image
 - Idea

$$N(j,k) o Why??$$

$$F(j,k) o H(j,k) o G(j,k)$$

- Dithering
 - Why adding noise?
 - Under fixed thresholding → taking MSB
 - E.g. before and after adding noise

$$\geq$$
 128 \Rightarrow 1; $<$ 127 \Rightarrow 0

- To break the monotonicity of accumulated error in the area of constant (nearly constant) gray level
- Noise type
 - White noise, pink noise, blue noise and green noise

- Dithering
 - Noise Type
 - Power spectral density

- Robert Ulichney, "Digital Halftoning"
 - http://www.hpl.hp.com/people/u/

Dithering

- Adaptive thresholding
 - Generate a threshold matrix according to a dither matrix
 - Whenever the pixel value of the image is greater than the value in the threshold matrix, the pixel is turned on

Notes

- No randomness
- Region-to-region mapping
- Recursive definition allowed

Dithering

Dither matrix

$$I_2(i,j) = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}; \quad I_2(i,j) = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

- 0 → lowest threshold
- 3 → highest threshold

Dithering

- The general form of the NxN dither matrix
 - $2x2 \rightarrow 4x4 \rightarrow 8x8 \rightarrow 16x16...$

$$I_{2n}(i,j) = \begin{bmatrix} 4I_n(i,j) + 1 & 4I_n(i,j) + 2 \\ 4I_n(i,j) + 3 & 4I_n(i,j) + 0 \end{bmatrix}$$

Eg. What is $I_4(i,j)$ if $I_2(i,j) = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$?

Dithering

Determine the threshold matrix

$$T(i,j) = 255 \cdot \frac{I(i,j) + 0.5}{N^2}$$

■ Eg. N=4

$$I_4(i,j) = \begin{bmatrix} 5 & 9 & 6 & 10 \\ 13 & 1 & 14 & 2 \\ 7 & 11 & 4 & 8 \\ 15 & 3 & 12 & 0 \end{bmatrix}, \qquad T_4(i,j) = ?$$

Dithering

Input image

12	51	34	121
78	254	10	97
45	113	110	16
90	200	206	34

Repeated threshold matrix

0	60	0	60
110	110	110	45
0	60	0	60
110	45	110	45

Output image

Another repeated threshold matrix

128	128	128	128
128	128	128	128
128	128	128	128
128	128	128	128

Experimental results

Original Image

Dithering

Experimental results

Original Image

Dithering

- Error diffusion
 - 1975 Floyd & Steinberg
 - A practical algorithm to implement blue noise dithering
 - Framework

- Error diffusion
 - Normalize F(j,k) to lie between [0,1]
 - Set threshold=0.5
 - Output image: 0 or 1

$$F(j,k) \xrightarrow{\widetilde{F}(j,k)} \text{Threshold} G(j,k)$$

$$Error$$

$$Diffusion$$

if
$$\widetilde{F}(j,k) \ge 0.5 \rightarrow G(j,k) = 1$$

if $\widetilde{F}(j,k) < 0.5 \rightarrow G(j,k) = 0$
Define $E(j,k) = \widetilde{F}(j,k) - G(j,k)$

- Error diffusion
 - Error diffusion filter masks
- F(j,k) $\widetilde{F}(j,k)$ Threshold G(j,k) error Diffusion

1976 Jarvis et al:

1975 Floyd Steinberg:

- Other diffusion matrices
 - http://www.tannerhelland.com/4660/dithering-elevenalgorithms-source-code/

- **Error diffusion**
 - **Error diffusion + serpentine scanning**

$$\frac{1}{16} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 7 \\ 3 & 5 & 1 \end{pmatrix}$$

Left to Right

$$\frac{1}{16} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 7 \\ 3 & 5 & 1 \end{pmatrix} \qquad \frac{1}{16} \begin{pmatrix} 0 & 0 & 0 \\ 7 & 0 & 0 \\ 1 & 5 & 3 \end{pmatrix}$$

Right to Left

Experimental results

Original Image

Error Diffusion

Experimental results

Original Image

Floyd-Steinberg

Jarvis

- Multi-scale Error diffusion
 - Several issues
 - Region-to-region mapping
 - Multi-resolution
 - Time series/causal error diffusion process
 - Easy to implement
 - Causality appears to be artificial in images
 - Is non-causal error diffusion possible?
 - Quality metrics of half-toned images

Multi-scale Error diffusion

"A multiscale error diffusion technique for digital halftoning" loannis Katsavounidis and C. –C. Jay Kuo

Problem set-up

- Input image \rightarrow $X(i,j) \in [0,1]$
- Output image $\rightarrow B(i, j) \in \{0,1\}$
- Error image \rightarrow E(i,j) = X(i,j) B(i,j)
- Intermediate stage →

$$X_k(i_k, j_k), \quad 0 \le k \le r, \quad r = \log_2 N$$

$$X_k(i_k, j_k) = \sum_{i=0}^{1} \sum_{j=0}^{1} X_{k+1}(2i_k + i, 2j_k + j)$$

 $r = \log_2$

Multi-scale Error diffusion

$$X_{k}(i_{k}, j_{k}) = \sum_{i=0}^{1} \sum_{j=0}^{1} X_{k+1}(2i_{k} + i, 2j_{k} + j), \quad 0 \le k \le r$$

$$E_{k}(i_{k}, j_{k}) = X_{k}(i_{k}, j_{k}) - B_{k}(i_{k}, j_{k}), \quad 0 \le k \le r$$

Goal: minimize the error pyramid in a certain way!

Multi-scale Error diffusion

- //Step 1// Initialization
 - Set the entire output image pyramid to "0"
- //Step 2// Dot assignment
 - Find the largest error from top to bottom level
 - 1 parent node distributes its dots (integer numbers) to 4 children
- //Step 3// Error diffusion process

$$\frac{1}{12} \begin{pmatrix} 1 & 2 & 1 \\ 2 & -12 & 2 \\ 1 & 2 & 1 \end{pmatrix} \qquad \frac{1}{8} \begin{pmatrix} 0 & 0 & 0 \\ 2 & -8 & 2 \\ 1 & 2 & 1 \end{pmatrix} \qquad \frac{1}{5} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -5 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

$$\frac{1}{5} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -5 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

28

- Multi-scale Error diffusion
 - Quality management
 - MSE vector

$$MSEV = \begin{pmatrix} MSE_0 \\ MSE_1 \\ \vdots \\ MSE_r \end{pmatrix} \qquad MSE_k = \frac{1}{N^2} \sum_{i=0}^{2^k - 1} \sum_{j=0}^{2^k - 1} E_k^2(i, j)$$

- Notes
 - Preserve contrast of the original image
 - Does not over-smooth the image

Experimental results

Multi-Scale Error Diffusion

Experimental results

Error Diffusion

Multi-Scale Error Diffusion

Color image

Examples

Dithering

Error Diffusion

Application

Visual cryptography

"visual cryptography based on void-and-cluster halftoning technique" E. Myodo, S. Sakazawa and Y. Takishima

