Intro to Econometrics: Recitation 2

Gustavo Pereira

September 16, 2019

Random variables - univariate case

$$(\Omega,\mathcal{F},\textbf{P})$$

- $\triangleright X: \Omega \rightarrow \mathbf{R}$
- ► CDF:

$$F_X(x) = P(\{\omega : X(\omega) \le x\})$$

- ▶ Completely characterizes $P{X \in B}$ for $B \subset R$
- Absolutely continuous:

$$F_X(x) = \int_{-\infty}^x f_X(x) dx$$

Random variables - multivariate case

$$(\Omega,\mathcal{F},\textbf{P})$$

- $ightharpoonup X: \Omega
 ightharpoonup \mathbb{R}^S$ where $X(\omega) = (X_1(\omega), \dots, X_S(\omega))'$
- ► CDF:

$$F_X(x_1,\ldots,x_S) = \mathbf{P}(\{\omega: X_1(\omega) \leq x_1,\ldots,X_S(\omega) \leq x_S\})$$

- ▶ Completely characterizes $P{X \in B}$ for $B \subset \mathbb{R}^S$
- Absolutely continuous:

$$F_X(x_1,\ldots,x_S)=\int_{-\infty}^{x_1}\cdots\int_{-\infty}^{x_S}f_X(x_1,\ldots,x_S)dx_S\cdots dx_1$$

Random variables - multivariate case

- ightharpoonup Result: if $F: \mathbf{R} \rightarrow [0,1]$ is
 - 1. Increasing
 - 2. Right-continuous
 - 3. Satisfies $\lim_{x\to\infty} F(x) = 1 \lim_{x\to-\infty} F(x) = 1$

Then it is the CDF of some random variable $X: \Omega \to \mathbf{R}$

Random variables - multivariate case

- ▶ Result: if $F : \mathbf{R} \rightarrow [0, 1]$ is
 - 1. Increasing
 - 2. Right-continuous
 - 3. Satisfies $\lim_{x\to\infty} F(x) = 1 \lim_{x\to-\infty} F(x) = 1$

Then it is the CDF of some random variable $X : \Omega \to \mathbf{R}$

► Can you think of (or prove?) an S-dimensional analog of the statement above?

Random variables - multivariate case

- $\blacktriangleright \text{ If } F: \mathbf{R}^2 \to [0,1] \text{ is }$
 - 1. Increasing
 - 2. "Continuous from above"
 - 3. Has the following limits:
 - 3.1 $\lim_{x_1 \to -\infty} F(x_1, x_2) = 0$ for all x_2
 - 3.2 $\lim_{x_2\to-\infty} F(x_1,x_2)=0$ for all x_1
 - 3.3 $\lim_{x_1 \to \infty} \lim_{x_2 \to \infty} F(x_1, x_2) = 1$

Then F is the CDF of a random variable $X:\Omega \to \mathsf{R}^2$ (Durrett, sec 2.9)

Random variables - multivariate case

- $\blacktriangleright \ \text{ If } F: \mathbf{R}^2 \to [0,1] \text{ is }$
 - 1. Increasing
 - 2. "Continuous from above"
 - 3. Has the following limits:
 - 3.1 $\lim_{x_1 \to -\infty} F(x_1, x_2) = 0$ for all x_2
 - 3.2 $\lim_{x_2 \to -\infty} F(x_1, x_2) = 0$ for all x_1
 - 3.3 $\lim_{x_1 \to \infty} \lim_{x_2 \to \infty} F(x_1, x_2) = 1$
 - 4. Satisfies, for $x_1^* \ge x_1$ and $x_2^* \ge x_2$,

$$F(x_1^*, x_2^*) - F(x_1^*, x_2) - F(x_1, x_2^*) + F(x_1, x_2) \ge 0$$

Then F is the CDF of a random variable $X:\Omega\to \mathsf{R}^2$ (Durrett, sec 2.9)

▶ Marginal with respect to coordinate s, F_s : $R \rightarrow [0,1]$

$$F_s(x) = P(\{\omega : X_s(\omega) \le x\})$$

▶ Marginal with respect to coordinate s, F_s : $R \rightarrow [0,1]$

$$F_s(x) = P(\{\omega : X_s(\omega) \le x\})$$

► How do you obtain it?

▶ Marginal with respect to coordinate s, F_s : $R \rightarrow [0,1]$

$$F_s(x) = P(\{\omega : X_s(\omega) \le x\})$$

- How do you obtain it?
- ▶ Just take limits. Suppose S = 2 and we want to recover first coordinate:

$$F_1(x_1) = \lim_{x_2 \to \infty} F(x_1, x_2)$$

Proof?

▶ How do you recover a marginal pdf? Suppose $X : \Omega \to \mathbb{R}^2$ has pdf $f(x_1, x_2)$:

$$f_1(x_1) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2$$

► Proof?

Digression: marginals don't determine joints

- ► A very useful counterexample:
 - $\blacktriangleright \text{ Let } X \sim N(0,1)$

Digression: marginals don't determine joints

- A very useful counterexample:
 - $\blacktriangleright \text{ Let } X \sim N(0,1)$
 - ▶ Let W be independent of X;

$$P(W = 1) = P(W = -1) = \frac{1}{2}$$

Digression: marginals don't determine joints

- A very useful counterexample:
 - ▶ Let $X \sim N(0,1)$
 - Let W be independent of X;

$$P(W = 1) = P(W = -1) = \frac{1}{2}$$

▶ Define Y = WX. The marginal is the same as X:

$$F_Y(y) = \mathbf{P}(WX \le y) = \frac{1}{2}\mathbf{P}(X \le y) + \frac{1}{2}\mathbf{P}(-X \le y)$$
$$= F_X(y)$$

Digression: marginals don't determine joints

- A very useful counterexample:
 - ▶ Let $X \sim N(0,1)$
 - Let W be independent of X;

$$P(W = 1) = P(W = -1) = \frac{1}{2}$$

▶ Define Y = WX. The marginal is the same as X:

$$F_Y(y) = \mathbf{P}(WX \le y) = \frac{1}{2}\mathbf{P}(X \le y) + \frac{1}{2}\mathbf{P}(-X \le y)$$
$$= F_X(y)$$

 \triangleright (X, Y) is not multivariate normal. Why?

Digression: marginals don't determine joints

- A very useful counterexample:
 - $\blacktriangleright \text{ Let } X \sim N(0,1)$
 - Let W be independent of X;

$$P(W = 1) = P(W = -1) = \frac{1}{2}$$

▶ Define Y = WX. The marginal is the same as X:

$$F_Y(y) = \mathbf{P}(WX \le y) = \frac{1}{2}\mathbf{P}(X \le y) + \frac{1}{2}\mathbf{P}(-X \le y)$$
$$= F_X(y)$$

- \triangleright (X, Y) is not multivariate normal. Why?
- \triangleright X + Y has a mass at zero!

Digression: marginals don't determine joints

Moments of multivariate RVs

- ► Focus on the case when there is a pdf
- "Definition"

$$\mathsf{E} g(X) = \int_{\mathbf{R}^S} g(x) f_X(x) dx$$

Moments of multivariate RVs

- Focus on the case when there is a pdf
- "Definition"

$$\mathsf{E} g(X) = \int_{\mathbf{R}^S} g(x) f_X(x) dx$$

First moment:

$$\mu_{X}=\mathbf{E}X$$

Moments of multivariate RVs

- Focus on the case when there is a pdf
- "Definition"

$$\mathsf{E} g(X) = \int_{\mathbf{R}^S} g(x) f_X(x) dx$$

First moment:

$$\mu_X = \mathbf{E}X$$

Second moment:

$$V(X) = \mathsf{E}\left[(X - \mu_X)(X - \mu_X)'\right]$$

▶ When is V(X) finite?

Moments of multivariate RVs

- Focus on the case when there is a pdf
- "Definition"

$$\mathsf{E}g(X) = \int_{\mathbf{R}^S} g(x) f_X(x) dx$$

First moment:

$$\mu_X = \mathbf{E}X$$

Second moment:

$$V(X) = \mathsf{E}\left[(X - \mu_X)(X - \mu_X)'\right]$$

- \blacktriangleright When is V(X) finite?
- Covariance btw X and Y:

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)']$$

Moment generating functions of multivariate RVs

MGF:

$$\mathit{m}_{X}(t) = \mathsf{E}\left[\mathrm{e}^{t'X}\right] = \mathsf{E}\left[\mathrm{e}^{\sum_{i=1}^{S}t_{i}X_{i}}\right]$$

Moment generating functions of multivariate RVs

MGF:

$$\mathit{m}_X(t) = \mathsf{E}\left[e^{t'X}\right] = \mathsf{E}\left[e^{\sum_{i=1}^S \mathit{t}_i X_i}\right]$$

► Result: suppose X and Y have a moment generating function, and

$$m_X(\mathbf{t}) = m_Y(\mathbf{t})$$

for all t. Then $F_X(t) = F_Y(t)$ for all t.

Moment generating functions of multivariate RVs

MGF:

$$\mathit{m}_{X}(\mathbf{t}) = \mathsf{E}\left[e^{\mathbf{t}'X}\right] = \mathsf{E}\left[e^{\sum_{i=1}^{S}t_{i}X_{i}}\right]$$

Result: suppose X and Y have a moment generating function, and

$$m_X(\mathbf{t}) = m_Y(\mathbf{t})$$

for all t. Then $F_X(t) = F_Y(t)$ for all t.

▶ Result (stronger): suppose that, for all $t \in R^S$, $\alpha \in R$,

$$P\{t'X \le \alpha\} = P\{t'Y \le \alpha\}$$

then
$$F_X(z) = F_Y(z)$$
 for all $z \in \mathbb{R}^S$

Let $(V, \langle \cdot, \cdot \rangle)$ be a vector space with an inner product.

Let $(V, \langle \cdot, \cdot \rangle)$ be a vector space with an inner product.

▶ Orthogonal projection of v into (closed) $W \subseteq V$:

$$v - \mathsf{Proj}_{W}(v) \perp w$$

for all $w \in W$

Let $(V, \langle \cdot, \cdot \rangle)$ be a vector space with an inner product.

▶ Orthogonal projection of v into (closed) $W \subseteq V$:

$$v - \mathsf{Proj}_{W}(v) \perp w$$

for all $w \in W$

Theorem (Projection in a Hilbert Space)

Let $W \subset V$ be a closed vector subspace of V. For any $v \in V$, the distance minimization problem

$$\min_{w \in W} \|v - w\|$$

has a unique solution $w^* \in W$. Moreover, $w^* = Proj_W(v)$.

What if W has a finite basis?

$$W = \operatorname{span}\{w_1, \ldots, w_K\}$$

Orthogonal projection of v into W is

$$\mathsf{Proj}_{W}(v) = \sum_{i=1}^{K} rac{\langle w_i, v
angle}{\langle w_i, w_i
angle} w_i$$

Using this result in the pset is fair game

Space
$$V=\{X:\Omega \to {\sf R}^S: {\sf E}\|X\|^2<\infty\}$$
 is a Hilbert space with
$$\langle X,Y\rangle={\sf E}XY$$

Space
$$V=\{X:\Omega \to {\sf R}^S: {\sf E}\|X\|^2<\infty\}$$
 is a Hilbert space with
$$\langle X,Y\rangle={\sf E}XY$$

► Fix variables X, Y in V and consider the subspace

$$W = \{Z : \Omega \to \mathbf{R} : Z = \alpha + \beta(X - \mu_X)\}\$$

(Is there a finite basis for W?)

The problem

$$\min_{(\alpha,\beta)} \left[Y - \alpha - \beta (X - \mu_X) \right]^2$$

is equivalent to some norm minimization problem involving Y,X and W.

What is it?