```
In [1]: # Author : Amir Shokri
# github link : https://github.com/amirshnll/Wine
# dataset link : http://archive.ics.uci.edu/ml/datasets/Wine
# email : amirsh.nll@gmail.com
```

```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    from sklearn.model_selection import train_test_split
```

In [2]: col_names = ['class', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Ma
 gnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyan
 ins','Color intensity','Hue','OD280/OD315 of diluted wines','Proline']
 wine =pd.read_csv("wine.csv",header=None, names=col_names)

In [3]: wine.head()

Out[3]:

	class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proan
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	

In [4]: inputs =wine.drop('class',axis='columns')
target = wine['class']

```
In [5]: inputs
```

Out[5]:

		Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocy
	0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
	2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
	3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
	4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
1	73	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
1	74	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
1	75	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
1	76	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
1	77	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 13 columns

```
In [6]: X_train, X_test, y_train, y_test = train_test_split(inputs, target, test_size=
0.3)
```

```
In [15]: from sklearn.neighbors import KNeighborsClassifier
k=[1,3,5,7,9]
for i in range(len(k)):
    knn = KNeighborsClassifier(n_neighbors=k[i])
    knn.fit(X_train, y_train)

    y_pred = knn.predict(X_test)
    from sklearn import metrics
    print("Accuracy for k = ",k[i]," : ",metrics.accuracy_score(y_test, y_pred ))
```

```
Accuracy for k = 1 : 0.7407407407407407

Accuracy for k = 3 : 0.6296296296297

Accuracy for k = 5 : 0.6296296296297

Accuracy for k = 7 : 0.6296296296297

Accuracy for k = 9 : 0.6296296296297
```

In [64]:

In []:			