DreamCoder: Bootstrapping Domain-Specific Languages for Neurally-Guided Bayesian Program Learning

Kevin Ellis, Lucas Morales, Mathias Sablé Meyer, Maxwell Nye, Armando Solar-Lezama, Joshua B. Tenenbaum Massachusetts Institute of Technology

Wake/Sleep DSL Induction

Domain Specific Language (DSL): A finely-tuned program representation, specialized to a domain of programming tasks. Prior work in program learning largely uses hand-engineered DSLs.

Contribution: the DREAM-CODER algorithm, which bootstraps a learned DSL while jointly training a neural net to search for programs in the learned DSL

Approach: given a few hundred programming tasks, alternatingly:

- Wake: synthesize programs
- Sleep-R: train neural net (Recognition model)
- Sleep-G: improve DSL (Generative model)

Program representation: Lisp-like; conditionals, variables, local functions

Bayesian framing

Observe N tasks, written $\{x_n\}_{n=1}^N$, each a program synthesis problem. Solve task x_n with latent program p_n Likelihood model $\mathbb{P}[x_n|p_n]$ scores program p_n on task x_n Latent **DSL** \mathcal{D} acts as generative

Latent **DSL** \mathcal{D} acts as generative model over programs: $\mathbb{P}[x|\mathcal{D}]$

$$\underbrace{p_n^* = \underset{p_n}{\operatorname{arg\,max}} \mathbb{P}[x_n|p_n]\mathbb{P}[p_n|\mathcal{D}^*]}_{\mathbf{Wake}} \\
\mathcal{D}^* = \underset{\mathcal{D}}{\operatorname{arg\,max}} \mathbb{P}[\mathcal{D}] \prod_{n} \sum_{p_n} \mathbb{P}[x_n|p_n]\mathbb{P}[p_n|\mathcal{D}] \\
\underline{\operatorname{Sleep-G}}$$

Neural recognition model

Neural network Q(p|x) predicts distribution over programs conditioned on tasks. Simple Q: just predicts probabilities of DSL productions. Goal: learn to invert generative model

$$\underbrace{\min_{Q} \operatorname{KL}\left(\mathbb{P}[p|x,\mathcal{D}]||Q(p|x)\right)}_{\mathbf{Sleep-R}}$$

Train on two sources of data:

• Samples ("Dreams") from DSL: Unlimited data, but only high-quality if generative model \mathcal{D} is good. Like Helmholtz Machine's recognition model training. Loss:

 $\mathbb{E}_{(p,x)\sim\mathcal{D}}\left[\log Q(p|x)\right]$

• Self-Supervised: (x_n, p_n) pairs discovered during waking. Loss:

$$\frac{\mathbb{P}\left[x_n, p_n | \mathcal{D}\right]}{\sum_{(x_n, p'_n)} \mathbb{P}\left[x_n, p_n | \mathcal{D}\right]} \log Q(p_n | x_n)$$

Model outputs for three different task domains

Top: Tasks from three domains we apply our algorithm to, each followed by the programs DREAMCODER discovers for them. Bottom: Several examples from learned DSL. Notice that learned DSL primitives can call each other, and that DREAMCODER rediscovers higher-order functions like **filter** (f_1 under List Functions)

Fragment Grammars: Inducing a DSL

Fragment grammars: introduced in computational linguistics (O'Donnell 2015)

Figure 1: **Left:** syntax trees of two programs sharing common structure, highlighted in orange, from which we extract a fragment and add it to the DSL (bottom). **Right:** actual programs, from which we extract fragments that perform character substitutions.

Ongoing work: Generative models

Learn probabilistic program (a regex) p_n from K strings $x_n = \{y_n^k\}_{k=1}^K$. Likelihood model:

$$\mathbb{P}[x_n|p_n] = \prod_{k=1}^K \mathbb{P}[y_n^k|p_n]$$

Tasks:			
cut	F	Moss Side	Learned DSL:
control	CL	Burnage	$f_1() = \mathbf{u}\mathbf{w}$
control	F	City Centre	$f_2(x) = (x f_1) * = (x uw*) *$
cut	PCFL	Brooklands	$\underline{f_3(x) = f_2(\text{space}) = (\u\w*)*}$
Learned generative models:			$f_4(x) = (x*x)$
\1*\1	((\u\u)*) F	(\u\w*)*	- (equivalent to regex 'plus')
Samples from synthesized generative models: f			$f_5() = f_4(\label{eq:f5}) = \label{f5}$
ya	DQDF	Vr DR	
glrwfdcnc	F	BeF lKQ	9 100
mgs	F	W	$\frac{80}{80}$
piljnl	KI	kqBfZ 0	ν
lzi	Γ	$\bigcap N$	$\frac{1}{\sqrt{5}}$ 40

Bttc

GL

ZC1

sxpm

%

Iteration

Why this works: Bootstrapping

Learning from Scratch

Start w/ McCarthy 1959 Lisp: recursion, conditionals, lists. Train on 22 programming exercises. After 93 hours on 64 CPUs, rediscovers 9 functional programming staples: map, fold, zip, unfold, index, length, range, incr, decr.