Approved for Public Release Distribution Unlimited

Final Proceedings of The EOARD/IRC-sponsored International Workshop on Gamma Aluminide Alloy Technology

held from 1 to 3 May 1996 at The IRC in Materials for High Performance Applications The University of Birmingham

SECTION THREE

The organisers wish to thank the United States Air Force European Office of Aerospace Research and Development for its contributions to the success of this conference

20000223 173

in

Materials for High Performance Applications

Final Proceedings of The EOARD/IRC-sponsored International Workshop on Gamma Aluminide Alloy Technology

held from 1 to 3 May 1996 at The IRC in Materials for High Performance Applications The University of Birmingham

SECTION THREE

Reproduced From Best Available Copy

THE UNIVERSITY OF BIRMINGHAM AND UNIVERSITY OF WALES SWANSEA CONSORTIUM

Funded by the Engineering and Physical Sciences Research Council

AGF00-05-1328

collection of information, including suggestion	ns for reducing this burden to Washington He 202-4302, and to the Office of Management ar	adquarters Services, Directorate for	Information Operations and Reports, 1215 Jefferson
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND	
	18 Apriļ 1997	c	Conference Proceedings
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
International Workshop on Gamma Aluminide Alloy Technology			F6170896W0160
6. AUTHOR(S)			
Conference Committee			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
University of Birmingham Edgbaston		· ·	N/A
Birmingham B15 2TT United Kingdom			IVA
9. SPONSORING/MONITORING AGEN	NCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING
EOARD			AGENCY REPORT NUMBER
PSC 802 BOX 14 FPO 09499-0200			CSP 96-1032 -3
11. SUPPLEMENTARY NOTES		<u> </u>	
Proceedings are in four sections.			
12a. DISTRIBUTION/AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.			A
13. ABSTRACT (Maximum 200 words)			
,		a Alumainida Allau Taabaalaasu 1	May 1006 2 May 1006
	emational Workshop on Gamma Titanium : Fundamental research issues for u	-	ss of Gamma Titanium Aluminide Alloy
14. SUBJECT TERMS			15. NUMBER OF PAGES
			16. PRICE CODE N/A
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19, SECURITY CLASSIFICAT OF ABSTRACT	ION 20. LIMITATION OF ABSTRACT
HNOLASSIEIED	LINIOL ACCIPIED	LINCLASSIFIED	111

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Gamma Alloy Technology: Fundamentals and Development

Young-Won Kim

UES-Materials & Processes Dayton, OH, USA

Fundamentals
Processing
Microstructural Evolution
Structure/Property Relationships
Designing Microstructures
Component-Specific Alloy Design
Forming and Application
Summary and Future Direction

(April 1996)

Fundamentals

Phase Relations and Transformations

Microstructural Evolution

Deformation Mechanism

Alloying Effects

Deformation and Fracture Behavior

Environmental Resistance

Alpha Decomposition

At Very Slow Cooling Rate

At Intermediate Cooling Rates

Lamellar Structure Formation
Stacking Fault Mechanism
Gamma Precipitation and Growth

Ordering

No Compositional Changes Involved Compositional Changes Involved

Effects of Composition and Cooling Rate

At Fast Cooling Rates

Widmanstätten Structures Massively-Transformed Gamma Formation of α_2 Phase

Cooling Rate (CR)

Ti-43AI: Homogenized and DTA Cooled

Cooling Rate vs Lamellar Spacing

0.2 °C/min

50°C/min

Kim (94)

Cooling Rate (R) vs Lamellar Spacing (λ)

DTA SPECIMENS OF HOMOGENIZED ALLOYS

AST ALLOYS

Processing Routes for Gamma Alloys

1cim (90-95)

Microstructural Evolution and Control

Principle

Phase Relation and Transformation

In Practice

Formation/Growth Kinetics, Distribution and Morphology Depend on Starting Microstructural and Compositional Conditions.

Controlling Factors

Temperature and Time Heating Rate, Cooling Rate, and Scheme Aging Method and Condition

Starting Material

Cast Product Ingot Wrought-Processed Material PM Processed Material Material Processed by Other Processes

Processing

Ingot Preparation

Methods: ISM; PAM; VAR; VAR-Skull

Size Limitations (?)

Compositional/Microstructural Issues

NNS Casting

Investment vs. Permanent-Mold

Issues: Refinement; Porosity/Hip-Cycle

Thin-Section Casting

Wrought Processing

Primary: Conversion; Mill Production

Secondary: Forming, Rolling, etc.

Heat-Treatment Cycles

Joining; Machining

Other Processes

Processing Routes for Gamma Alloys

1cim (90-95)

Microstructure Control in Castings

Standard Alloys

Ti-47Al-(1-2)Cr-(2-4)(Nb,Ta,W)-(0-0.2)Si

As-Cast Microstructures

Non-uniform; Lamellar Base

Controlled Microstructures

Refining and Uniformization Practical: Casting Duplex

Desired: NL; Refined FL

Boride-Containing Alloys

XD Gamma Alloys

Ti-(45, 47)Al-4(Cr,Mn)-2Nb-0.8TiB2

TMT-Type Microstructures

Others: IHI; GKSS

Inoculation by Borides

Microstructures in Castings

Cast and HIP'ed

Casting Duplex

XD (HIP'ed)

GKSS, As Cast

Casting RFL

As-Cast

 $\mathsf{T}_{\alpha\text{-}}\Delta\mathsf{T}$ Treated

100 µm

and the state of t

Microstructure Control in Wrought Alloys

Standard Alloys

Ti-47Al-(0-3)(Cr,Mn,V)-(0-6)(Nb,Ta,Mo,W)

As-Processed Microstructures
Fine Mixture of Gamma and Alpha-2

Heat Treatments Yield
Standard Microstructures

Standard Microstructures

Types

Near-Gamma (NG) Duplex (DP) Nearly-Lamellar (NL) Fully-Lamellar (FL)

Inverse El/K1c Relationship
Difficulties in Designing
Effort on Fundamental Understanding

Designed Microstructures

TI-46AL ALLOY CIGAR

K5 (Ti-46.2AI-2Cr-3Nb-0.2W)

(5WSB (K5+0.3W+0.2Si+0.1B)

Alloy K5's: Isothermally-Forged (1150°C/70/70)

Isothermally forged(85%) microstructures

Alloy K5: Isothermally-Forged and Duplex-Treated

Lamellar Structures : Light-to-Gray Areas

Alloy G1 : Forged + $(\alpha+\gamma)$ Treated + Air Cooled

Microstructures of Gamma Alloys

Alloy K5 (Ti-46.5AI-2Cr-3Nb-0.2W)

Duplex

HW + $(\alpha+\gamma)$ -Treated

HW + α-Treated

Lamellar Grain Size Control in Wrought Alloy K5

Cooling Condition Effect on RFL of Alloy K5

Alley 13: Truck & AR - 216-316-03 W

Wrought Alloy K5 after High Temperature Treatments

FORGED (88%) AND HEAT TREATED (1200°C/2 HR/AC + 1000°C/24 HR/AC) ALLOY 616

RT Tensile Curves in Duplex/NL Microstructures

Directly Aged

Indirectly Aged

Duplex Microstructures in Alloy G1

Structure/Property Relationships

General Mechanical Behavior

Tensile Fracture Toughness Creep Fatigue; FCG,

Inverse Ductility/FT Relationship

Deformation and Fracture Behavior

Tensile Loading
Cyclic Loading
Creep Loading

Damage Tolerance and Life Prediction

Microstructure Optimization

Alloy K5 Duplex

1270°C/4h/AC/RT

1270°C/4h/FC/900°C/AC + 900°C/48h/AC

Weak Yield Point

K5 Duplex: Et=0.5%

Weak Yield Point

Strong Yield Point

1270°C/4h/FC/900°C/AC + 900°C/48h/AC

1270°C/4h/AC/RT

Duplex (+) Treatment and Cooling

Tensile Fracture Surfaces of Alloy G1 in Various Microstructural Conditions

Tensile Curves of Fully-Lamellar Gamma Materials

 $\varepsilon_1/\sigma_1 = 0.3 \% / 427 \text{ MPa}$

 $\epsilon_3/\sigma_3 = 0.55 \% / 493 \text{ MPa}$

Alloy K5 RFL Flat Gage Tensile Specimen Surface Deformed at RT $(\sigma_o/\sigma_v=328/474~{\rm MPa}\ ; \lambda_L=0.3~\mu m)$

RT Tensile Deformation/Strain-Accomodation Observed on Electropolished Surfaces of Alloy K5 RFL Specimens at σ/ϵ =528 MPa/1.21% (σ_o/ϵ_o =328/0.19)

BSE Image of RT Tensile Deformation/Strain-Accomodation near GB's on Surfaces of Alloy K5 RFL Specimens at σ/ϵ =528 MPa/1.21% (ϵ 0=0.19)

Deformed Microstructure of Alloy G1 at 1.9% Tensile Strain

Alloy K5 RFL Tensile Specimen Flat Gage Surface Deformed at RT σ_{5/ϵ_5} =524 MPa/0.78% (σ_0/ϵ_0 =328/0.19)

RT Tensile Transgranular Fracture of FL Gamma Alloys: (a) Overall, (b) Interlamellar and Translamellar, (c, d) Translamellar Cleavage with Interlamellar Deformation

RT Tensile Fracture Features of TiAl alloys in FL and Duplex Microstructural Conditions

Grain-Size//Yield-Stress Relations in TiAl

Specimen/Grain Size Effect on Tensile Properties

Specimen-Diameter/Grain-Size = 8.2:1

SD/GS=1.5:1

Corrected Hall-Petch Relation in FL TiAl

Hall-Petch Relations in TiAl Alloys

Hall-Petch Relations in TiAl Alloys

Duplex Material

$$\begin{split} \sigma_y = \sigma'_o = k_d d^{-1/2} \\ k_d ~^{-1} \; \text{MPa} \text{Vm} \\ \text{Relatively isotropic} \end{split}$$

Fully-Lamellar Material

$$G_y = G_o + K_{d\lambda} d^{-1/2}$$

$$K_{d\lambda} = 2.5 \text{ MPa}/\text{m (for } \lambda = 1 \text{ } \mu\text{m)}$$
 Combined Effect of d and λ

 $k_{dy} = k_d (\tau^*_{avg} / \tau^*_s) = ftn(\lambda)$

Orientation vs. Yield-Stress in the ($y+\phi_2$) Lath Structure

Yielding of the (\(\pi+\alpha\) Lath Structure

Ti-(46.5-47)AI- (4-6)(Cr,V,Nb,M)

Tensile Fracture of FL Alloy G5 at 750°C

Tensile Properties of Alloy K5

(Dependence on Microstructure, Temperature and Strain Rate)

CI Site
Tensile Fracture of Alloy K5 (Duplex) in Air at 600°C
[YS/UTS/EI: 396/545/3.6]

Tensile Deformation and Fracture of a Duplex Alloy K5 at 800°C in Air

la

Temperature Effect on Fracture Mode

Tensile Properties of Alloy K5

(Dependence on Microstructure, Temperature and Strain-Rate)

Effect of Strain Rate on BDT in Alloy K5

Dependence of Flow Stress on Strain-Rate and Temperature

Factors Controlling Tensile Properties

Microstructure

Types: Duplex vs. FL

Features

Grain Size and Morphology GB Morphology Lamellar Spacing (LS) α2/γ Ratio (α2 vol%)

Uniformity

Composition

α2/γ Ratio; LS

Cleavage Strength

Interfacial Bond Strength

Fracture Resistance and Near-Tip Plasticity at RT

General Tensile Yielding vs. Near-Crack-Tip Plasticity at KIc

Plastic Deformation and Microcking Around the Advancing Crack Tip in a FL Alloy G1 CT Specimen under a Monotonic Tension Loading at RT

Interlamellar and Translamellar Deformation in Crack-Tip and Ligament Regions

Fracture Toughness

T-Cracks Involving Delamination, and Both Inter- and Trans-lamellar Slip/Twinning

Effect of displacement rate on the K-resistance curves of the G1L alloy at 800°C.

Fracture Process in Lamellar TiAl Alloys at 800°C

Crack-Tip Regions of Lamellar TiAl Fracture Specimens

Creep Resistance of Alloy K5

Alloy G1: Lamellar structure near the fracture surface of the specimen crept in vacuum at 207 MPa

Alloy K5 RFL Specimen Crept at 800°C to 18.7% in Air Under (138-173-207-242-285 MPa) Step Stress Conditions

Turbine Blade and Vane Operating Temperatures, Yield Stresses (YS), 1000-h RuptureStresses (RS) for Superalloys

Effect of Al₂O₃ Layer on Creep

Nemoto (94)

Figure 8 Dark field electron micrograph showing the bypassing dislocations in $(Ti_{0.49}Al_{0.51})_{99.5}$ $C_{0.5}$ aged at 1073 K for 3.6×10^5 s (100h/over aged) and deformed to 3% at 873 K. The dislocation loops surrounding needles can be seen.

Figure 2 Effects of the deviation from the stoichiometry on the variation of compressive yield strength of $(Ti_{0.51}Al_{0.49})_{99.5}C_{0.5}$, $(Ti_{0.50}Al_{0.50})_{99.5}C_{0.5}$ and $(Ti_{0.49}Al_{0.51})_{99.5}C_{0.5}$ during aging at 1073 K.

Figure 3 Temperature dependence of compressive yield strength of $(Ti_{0.51}Al_{0.49})_{99.5}C_{0.5}$ and $(Ti_{0.50}Al_{0.50})_{99.5}C_{0.5}$ aged at 1073 k for $3.6x10^4$ s (10 h), and $(Ti_{0.49}Al_{0.51})_{99.5}C_{0.5}$ aged at 1073 k for $3.6x10^3$ s (1 h). Data for binary and ternary TiAl are also included.

Fatigue Deformation and Fracture of FL Alloy K5 at 800°C and R=0.1 in Air (UTS = 500 MPa)

 $\sigma_m/UTS{=}430/505~MPa$; $c_f{=}10{,}700$

 $\sigma_m/\text{UTS}{=}280/505~\text{MPa}$; c_f =3.6x10 6

 $\sigma_m/UTS=430/500~MPa$; $~C_f$ =2,310 ~

 $\sigma_m/UTS=330/500~MPa$; Cf =7.2x10⁶

Fatigue Fracture of Alloy K5 in Various Conditions at 800°C and R = 0.1 in Air

Load-Controlled Fatigue Failure of FL Alloy K5

(R=0.1 / 870°C / Air)

G_{max}=350 MPa / Nf=9.6x10⁵

G_{max}=250 MPa / Nf=1.63x107

Fatigue Fracture of a Duplex Alloy K5 at 600°C in Air (R = 0.1; UTS = 583 MPa)

Specimen Geometry Effect at <BDTT

HCF of Alloy K5 in Duplex at 800°C (Effect of Frequency and Fatiguing Time)

Effect of Frequency on HCF (at 800°C)

High Stress Regime $(\sigma_{max} > \sigma_y)$

Frequency-dependent (need investigation)
High-rate deformation

Low Stress Regime $(\sigma_{max} > \sigma_y)$

Frequency-independent
Time-dependent
Creep deformation important

Creep Fatigue

Suggested at Low Stresses Mean Stress: $\sigma_{avg} = (\sigma_{max} + \sigma_{min})/2$

conditions.

FCG of Alloy K5

Fatigue Deformation and Failure

Fatigue behavior in gamma alloys consists of:

Deformation period (remarkably long),
Crack initiation and growth (to a critical size)
Rapid crack propagation (to failure)

Below BDTT, flat SN curves are observed. The fatigue strength is controlled by tensile properties.

Duplex microstructure (preferred)

Above BDTT, fatigue life depends on tensile deformation behavior under high applied stress (>YS). Under low stresses (<YS), fatigue strength appears related to creep resistance.

Fully-lamellar microstructure (preferred)

Fracture takes place transgranularly below BDTT and boundary fracture becomes predominant at higher temperatures.

Fatigue Behavior

Alloy K5 vs. Disk Superalloys

Alloy Design

Alloy Selection Microstructural Optimization

Considerations

Mechanical Data and Behavior
Damage-Tolerance & Life-Prediction
Microstructural Controllability
Derive Optimum Microstructures
Devise Process & Treatment Schemes

Chemistry Modification

Promote Desired Microstructures
Improve Mechanical Behavior
Enhance Environmental Resistance

Design of Microstructures

Property Requirements
Dimensional Considerations
Component-Specific Microstructures
Scaled-up Process Development

Designed Microstructures

Refined FL (RFL)

Alloy Modification Innovative Heat Treatments

TMT Lamellar (TMTL)

Boron Addition Heat Treatments

TMP Lamellar (TMPL)

Extrusion Forging Aging

Aligned Lamellar

Directionally Solidified (DS)
Directionally Worked : DELM; DFLM

Other Types: Under Exploration

Chemistry Modification

(Standard: NG, DP, NL and FL)

Optimized Microstructural Features

(Wrought Alloys)

Lamellar Structure Base

Grain Size: 50-400 μm

GB Morphology

Slip Transmission Bond Strength

Lamellar Spacing < 2μm

Strength; Strain-to-Failure Toughness; Creep

α_2 Volume Fraction: 5-30 %

Strength; Ductility; Toughness Anisotropy

Texture Consideration

Duplex Microstructures (?)

RFL vs. TMTL Microstructures

TMT Lamellar Microstructures

GS vs Boron Content in Gamma Alloys

Cooling-Rate and Boron -Content on Alpha Decomposition

Alloy K1: As-Forged; Near Gamma; Duplex; and TMTL microstructures

Ti-47Al-0.05B

Forged and TMT-Lamellar Treated (1370°C/1h/FC/1000°C/AC)

100 FIII

Alloy K7: Alpha-Treated (1390°C/30min) and Cooled Differently

FC/1300°C/AC

FC/900°C/AC

Alloy K6: Alpha-Treated (1370°C/1h) and Cooled Differently

Alloy K7: TMT-Treated (1390°C/1.5h/AC) and Annealed (1300°C/24h/AC)

TMP Lamellar Microstructures

K5SC Alloy TMPL Extrusion LT-Section

A TMP Microstructure in a 4822 Extrusion

Thermal Stability of TMP Lamellar Extrusions

Flow Curves of Lamellar Alloys

Strengths of RFL/TMPL Gamma Alloys

Microstructure on RT Tensile Properties

GS/LS/YS Relations in TiAl FL Alloys

Long-Transverse (LT)

Longitudinal (L)

Alloy K8 TMP-Lamellar Extrusion

Alloy K5S: Effect of Ram Speed on the Alpha-Forged Microstructure

K5S (Ti-46.2AI-2Cr-3Nb-0.2W-0.2Si): Directionally Alpha-Forged

A Discrete Lamellar Structure in Alloy K5

Cooling Rate vs Microstructure/Tensile-Properties in lpha-Treasted Alloy G8

Advances in Microstructural Control

Metals & Ceramics Division WL/ML

Gamma Microstructure/Property Relationships:

STRUCTURE	YEAR	YS (ksi)	UTS (ksi)	EL (%)	K (ksi√in)	CREEP (<950°C)
Duplex (G+L)	1988	65	80	3-4	12	Fair
Nearly Lamellar	1990	06	105	2-2.5	14	Fair
Fully Lamellar	1990	20	75	0.4-0.9	22-30	Very Good
Cast Nearly Lamellar*	1991	43	28	1.4-2.0	23-28	Gocd
TMP Lamellar	1991	85	100	2-2.5	25-30	Good

*Howment Co, Cast Ti-48AI-2Mn-2Nb

TMP LAMELLAR STRUCTURE HAS BEST BALANCE OF PROPERTIES

Properties of Titanium-Base Alloys and Superalloys

Property	Ti-Base	Ti3Al-Base	TiAl-Base	Superalloys
Structure	hcp/bcc	DO19	L10	fcc/L12
Density (g/cm ₃)	4.5	4.1-4.7	3.7-3.9	7.9-8.5
Modulus (GPa)	95-115	110-145	160-180	206
Yield Strength (MPa)	380-1150	700-990	350-600	800-1200
Tensile Strength (MPa)	480-1200	800-1140	440-700	1250-1450
Ductility (%) at RT	10-25	2-10	1-4	10-25
Ductility (%) at HT(°C)	12-50 (550)	10-20 (660)	10-60 (870)	20-80 (870)
Fracture Toughness (MPa/m) at RT	30-60	13-30	12-35	30-90
Creep Limit (°C)	009	750	750a-950b	800-1090
Oxidation Limit (°C)	009	650	+056-,008	870*-1090**

a Duplex; b Fully-lamellar microstructures; * Uncoated; + ** Coated; + Expected

Component Forming

(Wrought Processing)

Turbine Engine Components Blades

Alloy/Microstructures
Mill product + Machining
Impression Forging to NNS
Isothermal
Hot-Die Forming
Heat Treatment

Disks

Mill Product + Machining
Impression Forging to NNS
Isothermal
Hot-Die Forming
Heat Treatment

Engine Valves

Automotive Engines
Aircraft Engines

 $\backslash \sim \backslash$

Automotive Valve Forming

Cast Valve

Casting

Hipping

Passenger Car

Wrought Valve

Isothermal Forging

Production Die Extrusion/Forging

Preconditioning: IM; PM High Rate Extrusion of Preforms High Rate Head Forging Microstructure Control

Head/Stem Joining

High Performance

1st Step: Partial Extrusion

Preform

Wrought Gamma Engine Valve

2 cm

Stem

Neck

Base

50 μm

G10 Valve Extrusion: Transverse Sections

High-Rate (80 cm/sec) Warm-Die (250°C)

Valve Extrusion Head Coining Commercial Steel Valve Production Press (TRW)

Wrought Gamma Exhaust Valves

Applications

Aircraft Gas Turbine Engines

Automotive Engines

Land-Based Gas Turbine Engines

Others

Cast 4822 Gamma Transition Duct Beam GE-90 Engine for Boeing 777

CAESAR

Program

COMPONENT AND ENGINE STRUCTURAL ASSESSMENT RESEARCH

Gamma Titanium HPC 6th Stage Blades

Participants:

8W	Cast "XD" Ti-47AI-2Nb-2Mn-0.8%TiB2
Rolls Royce	Cast "XD" Ti-45AI-2Nb-2Mn-0.8%TiB2
Ilison ADC	Wrought Alloy 7
洪	Wrought Ti-48AI-2Cr-2Nb

Design and fabrication	
Delivery to P&W	
Proof spin (P&W)	•
113 Coro toot 100 hrs (AEDO)	_
ingino toola - 2000 TAG ayoloo (PAM)	
Spin pit toot to failure (PRM, UK)	

Other gamma Ti components:

96**L**

- HPC inner shroud
 - combuctor ewirlors

16

4822 Cast Gamma LPT Blades for GE CF6-80C2

Cast and Chem-milled

Engine Tested for over 1000 cycles

Summary and Future

Continuous Alloy Exploration/Design

Casting vs Wrough Alloys

Continuous Search for Fundamentals

Process Development

Component-Specific Alloy Design

Search for Application Areas

Understand Practicality

Collaboration/Exchange