Danilo do Nascimento Leite

RA: 032109

UNIVERSIDADE ESTADUAL DE CAMPINAS EA-772 CIRCUITOS LÓGICOS

PROVA 1 (30/03/2004)

- 1. Dado X= abc, encontre X
- 2. Demonstre que (a+b) = a b
- 3. Converter para soma de produtos lógicos

ab @ a'b'

4. Preencha a tabela abaixo

Α	В	A∙B	A+B	A'	B'	A⊕B			
0	0	0	0	1	4	0			
0	4	0	1	1	0	1			
Ī	0	0	4	0	1	1			
1	1	4	1	0	0	.0			

5. Dados:

1⊕1=0

1⊕1⊕1=1

1010101=0

Generalize.

1) X = a b c

$$\frac{\vec{X} = \vec{a} + \vec{b} + \vec{c}}{\vec{X} = \vec{a} + \vec{b} + \vec{c}}$$

(a+b) = a' b'

Pode-se verificar a veracidade da expressão acima, por verificações pela tabela da verdade:

a	Ь	(a+ b)"	à.b'				
0	0	(0+0) = 1	0·0 = 1				
0	1	(0+1) = 0	ō·T=0				
1	0	(1+0) = 0	ī.ō=0				
1	1	(1+1) = D	1.1 = 0				

litraris de expressors, teremos:

$$(a+b) = \overline{a} \cdot \overline{b}$$

$$(a+b)' = (a \oplus b \oplus ab)$$

$$\overline{(ab+ab) \oplus ab}$$

$$(\overline{ab+ab}) \cdot ab + \overline{ab}(\overline{ab+ab})$$

$$\overline{(ab+ab) \cdot ab} + \overline{ab}(\overline{ab+ab})$$

$$\overline{(ab+ab) \cdot ab} + \overline{ab}(\overline{ab+ab})$$

7.0

(3)
$$ab \oplus a'b' = 1$$

A $b \oplus a'b' = 1$
 $(ab) \cdot a'b' + (ab)(a'b)'$
 $(ab) \cdot (ab)' + (ab)(a'b)'$
 $(ab) \cdot (ab) \cdot (ab) + (ab)(a'b)'$
 $(ab) \cdot (ab) \cdot (ab) \cdot (ab)(a'b)'$
 $(ab) \cdot (ab)(a'$

Temos que o operador XOR, com entrados em nível lógico 1, opresenta para um número "n" de entrados, sendo "n" um número po soldo com nível lógico equal a 0.

Já para un número "n+1" de lentrodos, sendo consequentemente "n+1" um número úmpor, o operador logico XOR, apresenta na soída, nível logico equal a 1.

Resumindo,

ENTRADA	SAÍDA	c/	N =D	número	par de	entrados.
n	0		n+1 =>	número	impor	de entradas
n+1	1					