Задача 1. Да се построи минимален детерминиран тотален краен автомат за:

- а) езика $L = \Sigma^* \setminus (\{ab, ba\}^* \cdot \{c\})$ над азбуката $\Sigma = \{a, b, c\}$;
- b) езика $L=\{a,b\}^+\cdot\{a\}\cdot\{b\}^+\cdot\{a\}^*$ над азбуката $\Sigma=\{a,b\};$
- c) езика $L = \{abc\} \cdot \Sigma^* \cup \{ab, ba\}^*$ над азбуката $\Sigma = \{a, b, c\}$;
- d) езика $L = \{ w \mid w \not \in \{a\}^+ \cdot \{b\}^+ \}$ над азбуката $\Sigma = \{a,b\};$
- е) езика $L=\{w \mid w$ не съдържа ab като подниз $\}$ над азбуката $\Sigma=\{a,b\};$
- f) езика $L=\{w \mid w$ не съдържа нито ab, нито ba като подниз $\}$ над азбуката $\Sigma=\{a,b\};$
- g) езика $L=\{w \mid \text{ ако } \#_a(w) \geq 2, \text{ то } \#_b(w) \text{ е четно} \}$ над азбуката $\Sigma=\{a,b\}.$

Задача 2. Да се докаже, че езикът

$$L = \{\alpha\beta\gamma\beta \mid \alpha, \beta, \gamma \in \Sigma^+\}$$

е регулярен, където $\Sigma = \{a, b\}$.

Задача 3. Да се докаже, че ако L е регулярен език, то и

$$L' = \{ w \in \Sigma^* \mid (w \in L) \Rightarrow ((\forall \beta \in \Sigma^* \setminus L)(\forall \gamma \in \Sigma^*)[w \neq \beta ba\gamma bb]) \}$$

също е регулярен.

Задача 4. За дума $w = a_1 a_2 \dots a_n$ с even(w) означаваме думата:

$$even(w) = a_2 a_4 \dots a_{2 \mid \frac{n}{2} \mid}$$

Нека L е произволен регулярен език над азбука Σ . Да се докаже, че:

- а) $L_1 = \{even(w) \mid w \in L\}$ е регулярен език;
- b) $L_2 = \{ w \mid even(w) \in L \}$ е регулярен език.

Задача 5. Дефинираме релацията $\prec \subseteq \Sigma^* \times \Sigma^*$ по следния начин:

$$\beta \prec \alpha \iff (\exists \gamma \in \Sigma^+) [\alpha = \beta \cdot \gamma].$$

Да се докаже, че ако L е регулярен език, то

$$\operatorname{Ext}(L) = \{ \alpha \in L \mid (\exists \beta \in L) [\beta \prec \alpha] \}$$

също е регулярен.

Задача 6. Нека L е произволен регулярен език над азбука Σ . Да се докаже, че езикът

$$L_{-\frac{1}{3}-}=\{\beta\mid\alpha\beta\gamma\in L\ \&\ |\alpha|=|\beta|=|\gamma|\}$$

е регулярен.

Задача 7. Да се докаже, че не са регулярни езиците:

- а) $L=\{w\in\Sigma^*\mid w$ не е палиндром $\}$, където $\Sigma=\{0,1\};$
- b) $L = \{a^n b a^n \mid n \in \mathbb{N}\};$

с)
$$L=\{w\mid w\in\{1,\#\}^*$$
 и $w=x_1\#x_2\#x_3\dots\#x_k$, където $k\geq 0,\,x_i\in\{1\}^*$ и $x_i\neq x_j$ за $i\neq j\};$

 ${f 3}$ адача ${f 8}$. Да се докаже, че съществува регулярен език L, такъв че езикът

$$Ord(L) = \{a_1 a_2 \dots a_n b_1 b_2 \dots b_n \mid a_1 b_1 a_2 b_2 \dots a_n b_n \in L\}$$

не е регулярен.

Задача 9. Да се докаже, че съществува регулярен език L, такъв че езикът

$$L_{\frac{1}{3}-\frac{1}{3}}=\{\alpha\gamma\mid\alpha\beta\gamma\in L\ \&\ |\alpha|=|\beta|=|\gamma|\}$$

не е регулярен.