Università di Pisa

DIPARTIMENTO DI INFORMATICA

Laurea Magistrale in Data Science and Business Informatics

Logistics

Compagnia Wireless

Autori

Lia Trapanese 628153 Davide Di Virgilio 641917 Giovanni Battista D'Orsi 639186

1 Introduzione

La compagnia in oggetto vorrebbe progettare la diffusione del servizio wireless di internet in alcune città dell'Iowa. In paticolare l'azienda vorebbe determinare il numero e la posizione ottimale delle torri-wireless, per massimizzare i profitti annui.

Le torri dovranno essere costruite nella città di Ames, essa suddivisa dalla compagnia in 25 blocchi. Per ogni torre wireless da costruire in un blocco è richiesto un costo di 150000 \$. Sono state fornite le seguenti entrate annuali previste per area (in migliaia di dollari):

34 \$	43 \$	62 \$	42 \$	34 \$
64 \$	43 \$	71 \$	48 \$	65 \$
57 \$	57 \$	51 \$	61 \$	30 \$
32 \$	38 \$	70 \$	56 \$	40 \$
68 \$	73 \$	30 \$	56 \$	44 \$

Tabella 1: entrate annuali previste per area

Nelle prossime sezioni verranno presentati i modelli che rispondono ai quesiti richiesti dalla consegna.

2 Analisi del problema proposto

Avendo come Input Data costi e ricavi dell'erogazione del servizio, il problema ci chiede di determinare la posizione e il numero ottimale di torri in modo da massimizzare i profitti annui della compagnia in questione. Il problema si presenta come un "Covering Location Problem", ed analizzato come tale.

Consideriamo i blocchi come le aree nelle quali costruire le torri wireless oppure, eventualmente, le zone nelle quali viene erogato il servizio.

2.1 Definizione degli Input Data e delle variabili decisionali

Denotiamo con I l'insieme dei 25 blocchi, che rappresentano i nodi di domanda, e J l'insieme delle torri wireless da costruire eventualmente. Così istanziamo le seguenti variabili decisionali binarie:

•
$$x_i$$
:
$$\begin{cases} 1, & \text{se decidiamo di costruire la torre presso } i \\ 0, & \text{altrimenti} \end{cases} \forall i \in I$$

•
$$y_i$$
:
$$\begin{cases} 1, & \text{se il blocco } i \text{ è coperto dal servizio} \\ 0, & \text{altrimenti} \end{cases} \forall i \in I$$

Definiamo con R_i il ricavo che la compagnia otterrebbe se il blocco i venisse servito dalla torre w ses j. I costi fissi che la compagnia ha da pagare per costruire le torri wireless vengono indicati con f_i . Ogni torre fornisce il servizio al blocco nel quale è costruita e a quelli adiacenti, con i quali condivide i lati. Per garantire questa proprietà,

definiamo A_i l'insieme che include i (blocco nel quale è costruita una torre) e tutti i suoi blocchi adiacenti. A_i rappresenta le aree che usufruirebbero della copertura wireless se la torre venisse costruita in i o nelle sue aree adiacenti.

 Y_i assume valore 1 se e solo se almeno uno degli x_j (per j che appartiene ad A_i) è uguale a 1.

2.2 Spiegazione del modello matematico - Modello 1

Questo modello ha come funzione obiettivo la massimizzazione del profitto, quindi la massimizzazione della differenza tra ricavi e costi fissi. I dati relativi ai ricavi che la compagnia otterrebbe se il servizio fosse erogato al blocco *i*, sono stati indicati nella matrice 5x5 presenti nella *Tabella 1*. In aggiunta sono stati forniti i dati sui costi fissi che l'azienda sosterrebbe nel caso in cui dovesse aprire una torre wireless (150.000 \$).

La funzione obiettivo descritta precedentemente può essere espressa con la seguente funzione matematica:

$$\max \sum_{i \in I} R_i \cdot |y_i| - (f_i \cdot |x_i|)$$

Poichè l'obiettivo è massimizzare i profitti, il solver tenderà ad assegnare il valore 0 a quanti più x_i possibili in modo da minimizzare i costi fissi. D'altro canto lo stesso cercherà di assegnare il valore 1 a molte y_i in modo tale da massimizzare i ricavi. La massimizzazione del profitto è soggetta al seguente vincolo (linking constraint):

$$\sum_{j \in Ai} x_j \geq y_i, \qquad orall i \in I$$

Questo vincolo garantisce che solo le torri aperte x_i , appartenenti a A_i , possono fornire il servizio a y_i . A questo punto, non ci rimane che imporre le variabili del modello come binarie.

2.2.1 Formulazione matematica generale - Modello 1

$$egin{aligned} \max \sum_{i \in I} (R_i \cdot \ y_i) - (f_i \cdot \ x_i) \ & \sum_{j \in Ai} x_j \geq y_i, \quad orall i \in I \ & x_i \in (0,1), orall i \in I \ & y_i \in (0,1), orall i \in I \end{aligned}$$

2.3 Seconda richiesta - Modello 2

Oltre al modello proposto precedentemente, l'azienda è tenuta a fornire il servizio wireless a tutti i blocchi, con l'obiettivo di ridurre al minimo il costo totale per la costruzione delle torri. La funzione obiettivo verrà dunque modificata come segue:

$$\min \sum_{i \in I} (f_i \cdot |x_i)$$

In questo caso, per garantire il servizio a tutti i blocchi, bisogna imporre un vincolo in cui la somma dei blocchi coperti dal servizio deve essere uguale a 25, ovvero quanti sono i blocchi presenti nell'area da coprire :

$$\sum_{j \in Ai} y_i = 25, ~~orall i \in I$$

2.3.1 Formulazione matematica generale - Modello 2

$$egin{aligned} \min \sum_{i \in I} (f_i \cdot \ x_i) \ & \sum_{i \in I} y_i = 25, \quad orall_i & I \ & x_i \in (0,1), orall_i \in I \ & y_i \in (0,1), orall_i \in I \end{aligned}$$

2.4 Risoluzione del problema

Il problema è stato risolto in AMPL e CPLEX. Per ogni modello descritto, è stato calcolato il profitto atteso e sono stati rappresentati i blocchi nei quali vanno costruite le torri.

La soluzione ottimale del primo modello (Modello 1) è quella di costruire le torri nei blocchi (8, 11, 19, 22), che assicurano copertura a 18 blocchi (inclusi quelli in cui sono costruite le torri). Il profitto risultante è di 377.000 \$.

La soluzione ottimale per il secondo modello (Modello 2) è quella di costruire torri nei blocchi (2, 5, 7, 14, 16, 20, 23). Il solver ha trovato una soluzione ottimale in modo da garantire copertura a tutti i 25 blocchi dell'area e, contemporaneamente, minimizzare quelli che sono i costi fissi per l'apertura delle 7 torri necessarie. I costi fissi risultanti sono di 1.050.000 \$, con un profitto di 219.000 \$.

Poiché la prima consegna richiede di massimizzare i profitti non considerando il vincolo di copertura di tutti i blocchi, mentre la seconda impone che tutti questi vengano coperti, il profitto della compagnia subirà un impatto negativo dovuto ai maggiori costi. Ciò perché, dovendo garantire il servizio a tutti i blocchi dell'area, il solver dovrà aumentare il numero delle torri da aprire e di conseguenza la compagnia sosterrà costi fissi maggiori. Notiamo che dal primo al secondo modello si passa da un profitto iniziale di 377.000 \$ a uno di 219.000 \$, con una riduzione del circa 40 %. Quindi, in conclusione, possiamo affermare che il Modello 1 performa meglio del Modello 2 in termini di profitto dell'azienda.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

-		V2 III	96 20	
1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Modello 1 Modello 2

In rosa sono indicati i blocchi in cui dovranno essere costruite le torri, quelli azzurri indicano le aree che dovranno ricevere copertura.