1.15 1) La fonction réciproque s'obtient en résolvant l'équation

$$f(x) = 2x + 3 = y.$$

$$2 \, x = y - 3$$

$$x = \frac{y-3}{2}$$

On a ainsi trouvé ${}^r f(y) = \frac{y-3}{2}$.

Comme le domaine de définition de la fonction f est \mathbb{R} , la fonction f est surjective si son ensemble d'arrivée est \mathbb{R} .

Étant donné que la résolution de l'équation f(x) = y a conduit à une solution unique, la fonction f est injective sur son ensemble de définition $D_f = \mathbb{R}$.

En conclusion on a trouvé :
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 et ${}^r\!f: \mathbb{R} \longrightarrow \mathbb{R}$ $y \longmapsto \frac{y-3}{2}$

2) Pour découvrir la fonction réciproque, résolvons l'équation

$$f(x) = x^2 + 3 = y$$

$$x^2 = y - 3$$

$$x_1 = \sqrt{y-3}$$
 ou $x_2 = -\sqrt{y-3}$

Il y a donc deux fonctions réciproques possibles :

$${}^{r}f_{1}(y) = \sqrt{y-3}$$
 ou ${}^{r}f_{2}(y) = -\sqrt{y-3}$.

Comme les fonctions réciproques rf_1 et rf_2 admettent pour ensemble de définition $[3; +\infty[$, la fonction f doit avoir pour ensemble d'arrivée $[3; +\infty[$ pour être surjective.

Vu que ${}^rf_1(y) \in \mathbb{R}_+$ pour tout $y \in [3; +\infty[$ et que ${}^rf_2(y) \in \mathbb{R}_-$ pour tout $y \in [3; +\infty[$, l'ensemble de départ de la fonction f peut être ou bien \mathbb{R}_+ ou bien \mathbb{R}_- .

En résumé, on a obtenu deux fonctions réciproques possibles, selon le choix de l'ensemble de départ de la fonction f:

$$f: \mathbb{R}_+ \longrightarrow [3; +\infty[$$
 et ${}^r f_1: [3; +\infty[\longrightarrow \mathbb{R}_+$
 $x \longmapsto x^2 + 3$ $y \longmapsto \sqrt{y-3}$

$$f: \mathbb{R}_{-} \longrightarrow [3; +\infty[$$
 et ${}^{r}f_{2}: [3; +\infty[\longrightarrow \mathbb{R}_{-}$
 $x \longmapsto x^{2} + 3$ $y \longmapsto -\sqrt{y-3}$

3) Trouvons la fonction réciproque grâce à la résolution de l'équation

$$f(x) = \frac{2x+1}{x-1} = y$$

$$2x+1 = y(x-1) = xy = 0$$

$$2x + 1 = y(x - 1) = xy - y$$

$$2x - xy = -y - 1$$

$$x\left(2-y\right) = -y - 1$$

$$x = \frac{-y-1}{2-y} = \frac{y+1}{y-2}$$

Puisque la fonction réciproque est définie sur $\mathbb{R} - \{2\}$, la fonction f est surjective si son ensemble d'arrivée est $\mathbb{R} - \{2\}$.

Attendu que l'équation f(x) = y admet une solution unique, la fonction f est injective sur son ensemble de définition $\mathbb{R} - \{1\}$.

On a obtenu
$$f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{2\}$$
 et ${}^r f: \mathbb{R} - \{2\} \longrightarrow \mathbb{R} - \{1\}$

$$x \longmapsto \frac{2x+1}{x-1} \qquad y \longmapsto \frac{y+1}{y-2}$$

4) La fonction réciproque résulte de la résolution de l'équation

$$f(x) = \frac{x+1}{x-1} = y$$

$$x+1 = y(x-1) = xy - y$$

$$x - xy = -y - 1$$

$$x(1-y) = -y - 1$$

$$x = \frac{-y-1}{1-y} = \frac{y+1}{y-1}$$

Vu que le domaine de définition de la fonction réciproque est $\mathbb{R} - \{1\}$, l'ensemble d'arrivée de la fonction f doit être $\mathbb{R} - \{1\}$ pour assurer sa surjectivité.

La résolution de l'équation f(x) = y n'ayant délivré qu'une unique solution, la fonction f est injective sur son ensemble de définition $\mathbb{R} - \{1\}$.

On a ainsi
$$f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{1\}$$
 et ${}^r f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{1\}$

$$x \longmapsto \frac{x+1}{x-1} \qquad y \longmapsto \frac{y+1}{y-1}$$

On remarque au passage que f = f.