Foundations of Programming: Discrete Mathematics

Challenge

- 1. What are the possible values of n given this set notation: $\{n \in Z \mid n \text{ is a factor of 8}\}$?
- 2. Identify each of the following as true or false:
 - a. $\{3\} \in \{1,3,5,7\}$
 - b. $\{3\} \subseteq \{1,3,5,7\}$
 - c. $\{3\} \in \{\{1\}, \{3\}, \{5\}, \{7\}\}$
 - d. $\{3\} \subseteq \{\{1\}, \{3\}, \{5\}, \{7\}\}$
- 3. For all sets A, B, and C, prove: $A (A \cap B) = A B$. Identify the name of each law used.
- 4. Let set A be a set of all the NASA employees and B is the set of all astronauts. Describe the following sets:
 - a. $A \cap B$
 - b. AUB
 - c. *A B*
 - d. B A
- 5. Illustrate the following using Venn Diagrams:
 - a. $(A \cap B) A$
 - b. $(A B) \cup (B A)$
- 6. What is the power set of {a, b, c}?
- 7. Interest rates are an example of a geometric sequence. In this example, you deposit \$1,000 in a CD at your local bank, it earns 6% annual interest compounded monthly. What is the balance at the end of 12 months? (hint: don't forget to find the monthly interest rate)
- 8. Find the value for the given summation:

$$\sum_{j=2}^{5} (2j-1)$$

9. Rewrite the summation notation after separating out the last term:

$$\sum_{j=0}^{n} 2^{j}$$

10. Rewrite the summation by changing the summation index using j = i+2

$$\sum_{i=3}^{21} \frac{1}{i+3} = \sum_{j=5}^{23} \frac{1}{j+1}$$

11. Given the recursive definition for a function g:

$$g(0) = 0$$

$$g(n) = g(n-1) + n^3$$