Homework 3

Elliott Pryor

24 October 2021

Problem 2

By hand, build an FM-index for S=gacgacgac\$. You may report the BW[], C[] and occ[,] data structures as simple tables.

For our reference, we give the suffix array so it is easier for us to build the FM-index by hand. We list all the suffixes:

gacgaacgac\$, acgaacgac\$, acgaacgac\$, gaacgac\$, aacgac\$, acgac\$, acgac\$, gac\$, ac\$, c\$, \$

i	SA	Suffix	BW[i]
1	11	\$	С
2	5	aacgac\$	g
3	9	ac\$	g
4	2	acgaacgac\$	g
5	6	acgac\$	a
6	10	c\$	a
7	3	cgaacgac\$	a
8	7	cgac\$	a
9	4	gaacgac\$	c
10	8	gac\$	c
11	1	gacgaacgac\$	\$

Table 1: The last column is the BW[] for the FM-Index

Letter	Count
\$	0
a	1
\mathbf{c}	5
g	8

Table 2: C[] for the FM-Index

i	\$	a	\mathbf{c}	g
1	0	0	1	9 0
2	0	0	1	1
3	0	0	1	2
4	0	0	1	3
1 2 3 4 5 6 7 8	0	1	1	3
6	0	1 2 3	1	3
7	0	3	1	3
8	0	4	1	3
9	0	4	2	3
1	0	4	1 2 3 3	1 2 3 3 3 3 3 3 3 3
1	1	4	3	3

Table 3: occ table for the FM-Index

Problem 3 Trace the backwards search algorithm to determine if the pattern Q = gac belongs to S = gacgaacgac\$.

Iteration 1: st = 1, ed = 11, i = 3

$$x = c$$
, st' = $C[c] + occ(c, 0) + 1 = 6$, ed' = $C[c] + occ(c, 11) = 8$

Iteration 2:
$$st = 6$$
, $ed = 8$, $i = 2$
 $x = a$, $st' = C[a] + occ(a, 5) + 1 = 3$, $ed' = C[a] + occ(a, 8) = 5$

Iteration 3: st = 3, ed = 5, i = 1

$$x = g \text{ st'} = C[g] + occ(g, 2) + 1 = 10, ed' = C[g] + occ(g, 5) = 11$$

Iteration 4: Output 2 matches at 10, 11

Problem 1 Write a program to compute the suffix array for a given input string. You can either prompt the user for a string, or use a command-line argument to specify the string. Demonstrate it works on a few strings.

Then, use your program to find the suffix array for the string S = gacgaacgac.

```
PS D:\pryor\Documents\GitHubProjects\CompBio\HW3> python .\suffix_array.py banana$ an
Computing suffix array for: banana$
Finding the pattern: an
Found a match at 1
PS D:\pryor\Documents\GitHubProjects\CompBio\HW3> python .\suffix_array.py elliottpryor$ l
Computing suffix array for: elliottpryor$
Finding the pattern: l
Found a match at 1
PS D:\pryor\Documents\GitHubProjects\CompBio\HW3> python .\suffix_array.py atcggatcatgtattg$ cat
Computing suffix array for: atcggatcatgtattg$
Finding the pattern: cat
Found a match at 7
PS D:\pryor\Documents\GitHubProjects\CompBio\HW3> python .\suffix_array.py gacgaacgac$ cat
Computing suffix array for: gacgaacgac$
Finding the pattern: cat
Pattern not found in string
```

Figure 1: Examples showing that my program works. I also implemented the bonus and a query string is provided for all examples. Also note the last example is the one that we were asked to provide. Please note that I use 0-indexing.

```
1 import sys
4 def suffix_array(S):
      suffix = [(i, S[i:]) for i in range(len(S))] # generate list of tuples
      suffix.sort(key=lambda tup: tup[1]) # sort by suffixes
      return [fix[0] for fix in suffix]
10 def pattern_search(pattern, S):
      suffix = suffix_array(S)
11
      1, r = 0, len(S)-1
12
      found = False
13
      while 1 <= r:
          m = int((1 + r) / 2)
          st = S[suffix[m]:] # string version of the suffix
16
          if pattern == st[:len(pattern)]:
17
              print(f'Found a match at {suffix[m]}')
18
              found = True
19
              break
20
          elif pattern > st:
22
              1 = m + 1
```

```
else:
              r = m - 1
24
25
      if not found:
26
          print("Pattern not found in string")
27
30 if __name__ == '__main__':
      pattern = None
31
32
      if len(sys.argv) == 2:
33
          input_str = sys.argv[1]
34
      elif len(sys.argv) == 3:
          input_str = sys.argv[1]
          pattern = sys.argv[2]
37
      else:
38
          input_str = input("Input the string to compute a suffix array for: ")
39
40
      if pattern is None:
          pattern = input("Input the pattern to search for: ")
      print(f"Computing suffix array for: {input_str}")
44
      print(suffix_array(input_str))
45
      print(f"Finding the pattern: {pattern}")
46
      pattern_search(pattern, input_str)
```