	Section 2:
Qą.	Let teur such functions be f_1, f_2 .
	6 if composition would be a binary operator, then f. of would be a continuous function from [0,1] to [2,3].
	But this is not true because for values in [0]] for would give a value in [1,8] but for these values for is not defined. Hence (0,1) is not the domain for for of 2, lus composition is not a binary operator here.
G ₂	For leing a binary operator, the function should satisfy $f: S \times S \to K$
	Here we see float all outputs and inputs are elements J. But as we are not given the outputs for b. a. a. c. c. b we can't comment whether this is a birary operator. This is due to the fact that binary operators aren't necessarily communicative.
	Section 3:
<u>Q</u> i	Eg.1: 9 clentity element: 0 9 nueve of an element $x: -x$ and for 0 , 0 . $x \neq 0$
	Eg. 2. : Deutity element : Inxn: nxn Deutity Maprin Dunerse fro modrin A: A

Hence, inverse of every dement is unique. Qy a b = a.c -Let a is innerse of a: => e.b=e.C where e'a the identity =) b = c, Hence proved. Section 4: For this question me show that identity of Let, instead identity of his f, then $f \cdot f = f = f \cdot e :: f \in G$ Now (f.f) f = f-1. f.e where f is inverse off =) f= e. Hence e f H. The Cet of integers is a Group under addition. But under addition odd numbers don't form a subgroup because on adding two odd integers we get an even integer. Hence odd integers arent closed under addition. The even integers from a subgroup over addition

Ď	They are closed under addition
	Acouatiuity holds
(3)	Dis the identity element.
	For x, -x is the hundred element.
	All subgroups of Z are of the form nZ for all nEN.
	n2 means mutiples of n.
	Proof: det n be the smallest positive element of a Subgroup of Z.
	of a Subgroup of Z.
	Let k be anottren element of that Subgroup.
	Now k= ng+r 19, r &Z and DS r < n
	As n, k & Subgusup, r = k-ng & Subgusup.
	But r <n, for="" o.<="" only="" possibility="" r's="" so="" th="" the=""></n,>
	Thus all elements of the subgroup are multiples of r.
	Hence hourd
gy.	Yes HAK is also a subgroup of G.
	We know that e the identity element of G is in H and K, So EEHNK.
<i>(</i> 5)	of a h f MAK Halas a LFH a last EK
	Sf a, b ∈ HNK, Hen a, b ∈ H and a, b ∈ K So a, b ∈ H and a, b ∈ K, So a, b ∈ HNK

Qu
$$\phi(a \cdot a^{-1}) = \phi(a) \cdot \phi(a^{-1})$$
 $\Rightarrow \phi(e_{ij}) = \phi(a) \cdot \phi(a^{-1})$
 $\Rightarrow (\phi(a))^{-1} \cdot \phi(a^{-1})$
 $\Rightarrow (\phi(a))^{-1} \cdot \phi(a^{-1})$
 $\Rightarrow (\phi(a))^{-1} = \phi(a^{-1})$

Hence proved that: a^{-1} is marginal to involve if imply of at a^{-1} in the proved that a^{-1} is a subgroup of a^{-1} .

Que know that $\phi(a) = a \cdot b \cdot \phi(a) = a \cdot b \cdot$

<u> </u>	Let show that I is a subgroup of V.
	p(eu) = ev
	So ev E H,
2	9f a_1 , $a_2 \in H$, then $\exists n_1$, n_2 s.t. $\phi(n_1) = a_1$ $\phi(n_2) = a_2$
	$\phi(x_1, x_2) = \phi(x_1) \cdot \phi(x_2)$
	$= a_1 \cdot v \cdot a_2$
	So a, va E H
3	Let a EH then In 8.t. $\phi(x) = a$
	$\phi(n^{-1}) = (\phi(n))^{-1} = a^{-1}$
	$S_0 \Phi(n^{-1}) = a^{-1}$
	Ilms a EH.
	Hence It is a subgroup of V.