$\int f\left(x\right)dx$	$f\left(x\right)$	$f'\left(x\right)$
kx + c	k	0
$\frac{x^{n+1}}{n+1} + c$	x^n	nx^{n-1}
$\frac{x^{n+1} + c}{\frac{x^{n+1}}{n+1} + c}$ $\frac{x^{\frac{n}{n}+1}}{\frac{1}{n}+1}$ $a \int f(x) dx + b \int g(x) dx$	$\sqrt[n]{x}$	1
$\frac{1}{n}+1$	·	$\frac{1}{n\sqrt[n]{x^{n-1}}}$
$a \int f(x) dx + b \int g(x) dx$	$\frac{af(x) + bg(x)}{f(x) + g(x)}$	af'(x) + bg'(x)
	$\frac{\int (x) g(x)}{f(x)}$	$\frac{\int (x) g(x) + g(x) f(x)}{f'(x)g(x) - g'(x)f(x)}$
	$\frac{f(x)g(x)}{\frac{f(x)}{g(x)}}$	$\frac{f(x)g'(x) + g(x)f'(x)}{\frac{f'(x)g(x) - g'(x)f(x)}{g(x)^{2}}}$
$\ln\left(x \right) + c$	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{x x }{2} + c$	x	$\frac{x}{ x }$
x + c	$sgn\left(x\right)$	0
$\frac{ x + c}{\frac{a^x}{\ln(a)} + c}$	a^x	$a^x \ln(a)$
$xf^{-1}(x) - \int f(u) du$	$f^{-1}\left(x\right)$	$\frac{1}{f'[f^{-1}(x)]}$
$donde u = f^{-1}(x)$	• ()	$J^*[J^{-*}(x)]$
$\frac{\text{donde } u = f^{-1}(x)}{\frac{x \ln(x) - x}{\ln(a)} + c}$	$\log_a(x)$	$\frac{1}{x \ln(a)}$
m(a)	$f\left[g\left(x\right)\right]$	f'[g(x)]g'(x)
$\frac{b^{ax}}{a\ln(b)} + c$	b^{ax}	$b^{ax} \ln(b) a$
# III(0)	x^x	$x^{x}\left[1+\ln\left(x\right)\right]$
$-\cos\left(x\right) + c$	$\sin(x)$	$\cos(x)$
$\sin\left(x\right) + c$	$\cos(x)$	$-\sin(x)$
$\frac{x+\sin(x)\cos(x)}{2}+c$	$\cos^2(x)$	$-2\cos(x)\sin(x)$
$\frac{x-\sin(x)\cos(x)}{2}+c$	$\sin^2(x)$	$\cos(x)\sin(x)$
$-\ln\left[\left \cos\left(x\right)\right \right] + c$	$\tan(x)$	$\sec^2(x)$
$-\ln\left[\left \csc\left(x\right) + \cot\left(x\right)\right \right] + c$	$\csc(x)$	$-\csc(x)\cot(x)$
$\ln\left[\left \tan\left(x\right) + \sec\left(x\right)\right \right] + c$	$\sec(x)$	$\sec(x)\tan(x)$
$\frac{\ln\left(\left \sin\left(x\right)\right \right) + c}{\ln\left(\left \sin\left(x\right)\right \right)}$	$\cot(x)$	$-\csc^2(x)$
$x\sin^{-1}(x) + \sqrt{1-x^2} + c$	$\sin^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$
$x\cos^{-1}(x) - \sqrt{1 - x^2} + c$	$\cos^{-1}(x)$	
$x \tan^{-1}(x) - \frac{\ln(x^2+1)}{2} + c$	$\tan^{-1}(x)$	$\frac{1}{1+x^2}$
$x \csc^{-1}(x) + \ln(\sqrt{x^2 - 1} + x) + c$	$\csc^{-1}(x)$	$-\frac{1}{x\sqrt{x^2-1}}$
$x \sec^{-1}(x) - \ln(\sqrt{x^2 - 1} + x) + c$	$\sec^{-1}(x)$	$ \begin{array}{r} \frac{1}{1+x^2} \\ -\frac{1}{x\sqrt{x^2-1}} \\ \frac{1}{x\sqrt{x^2-1}} \end{array} $
$x \cot^{-1}(x) + \frac{\ln(x^2+1)}{2} + c$	$\cot^{-1}(x)$	$-\frac{1}{1+m^2}$
· ' ' <u> </u>	$\sinh(x)$	$\frac{-\frac{1}{1+x^2}}{\cosh(x)}$
	$\cosh(x)$	$\sinh(x)$
$\ln\left[\cosh\left(x\right)\right] + c$	$\tanh(x)$	$\sinh^2(x)$
$-\ln\left[\left csch\left(x\right) + \cot\left(x\right)\right \right] + c$	$\operatorname{csch}\left(x\right)$	$-\operatorname{csch}\left(x\right)\operatorname{coth}\left(x\right)$
$\int f(x) dx$	$f\left(x\right)$	$f'\left(x\right)$

$\int f(x) dx$	$f\left(x\right)$	$f'\left(x\right)$
$\tan^{-1}\left[\sinh\left(x\right)\right] + c$	$sech\left(x\right)$	$-sech(x) \tanh(x)$
$\ln\left[\sinh\left(x \right)\right] + c$	$\coth(x)$	$-csch^{2}\left(x\right)$
$\frac{\ln\left[\sinh\left(x \right)\right] + c}{x\sinh^{-1}(x) - \sqrt{x^2 + 1} + c}$	$\sinh^{-1}(x)$	$\frac{1}{\sqrt{1+x^2}}$
$x\cosh^{-1}(x) - \sqrt{x^2 - 1} + c$	$ \cosh^{-1}(x) $	$\frac{1}{\sqrt{x^2-1}}$
$x \tanh^{-1}(x) + \frac{\ln(x^2-1)}{2} + c$	$\tanh^{-1}(x)$	$\frac{1}{1-x^2}$
$x \operatorname{csch}^{-1}(x) + \ln(\sqrt{x^2 + 1} + x) + c$	$csch^{-1}(x)$	$-\frac{1}{ x \sqrt{1+x^2}}$
$xsech^{-1}(x) + \sin^{-1}(x) + c$	$sech^{-1}\left(x\right)$	$-\frac{1}{x\sqrt{1-x^2}}$
$x \coth^{-1}(x) + \frac{\ln(x^2-1)}{2} + c$	$\coth^{-1}(x)$	$ \begin{array}{r} \frac{1}{1-x^2} \\ \underline{x} \end{array} $
$\sin^{-1}\left(\frac{x}{a}\right) + c$	$\frac{1}{\sqrt{a^2 - x^2}}$	$\frac{x}{(a^2-x^2)^{\frac{3}{2}}}$
$\int f(u) du \text{ donde } u = g(x)$	$f\left[g\left(x\right)\right]g'\left(x\right)$	$f'\left[g\left(x\right)\right]\left[g'\left(x\right)\right]^{2} + g''\left(x\right)f\left[g\left(x\right)\right]$
$\frac{f(x)g(x) - \int f'(x)g(x) dx}{\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + c}$	f(x)g'(x)	$f'(x) g'(x) + g''(x) f(x)$ $- \frac{2x}{2}$
	$\frac{f(x)g'(x)}{\frac{1}{a^2+x^2}}$	$-\frac{2x}{(x^2+a^2)^2}$
$\frac{1}{2a}\ln\left(\left \frac{x+a}{x-a}\right \right) + c$	$ \frac{\frac{1}{a^2 - x^2}}{\frac{1}{x^2 - a^2}} $	$ \frac{-\frac{2x}{(x^2+a^2)^2}}{-\frac{2x}{(a^2-x^2)^2}} \\ -\frac{2x}{(a^2-x^2)^2} \\ -\frac{2x}{a^2} $
$\frac{1}{2a}\ln\left(\left \frac{x-a}{x+a}\right \right) + c$	$\frac{1}{x^2 - a^2}$	$-\frac{2x}{(x^2-a^2)^2}$
$\frac{\ln(mx+h)}{m} + c$	$\frac{1}{mx+h}$	$-\frac{m}{(mx+h)^2}$
$\frac{2\tan^{-1}\left(\frac{2ax+b}{\sqrt{-\Delta}}\right)}{\sqrt{-\Delta}} + C'$ $\frac{\tan^{-1}(x)}{2} + \frac{x}{2x^2+2} + c$	$\frac{1}{ax^2+bx+c}$ donde $\Delta < 0$	$-\frac{2ax+b}{\left(ax^2+bx+c\right)^2}$
$\frac{\tan^{-1}(x)}{2} + \frac{x}{2x^2+2} + c$	$\frac{1}{(x^2+1)^2}$	$-\frac{4x}{(x^2+1)^3}$
$\int \left(\frac{2u}{u^2+1}\right) \left(\frac{2}{u^2+1}du\right) \text{ donde } u = \tan\left(\frac{x}{2}\right)$	$\sin(x)$	$\frac{(ax^2+bx+c)^2}{-\frac{4x}{(x^2+1)^3}}$ $\frac{2}{\tan^2(\frac{x}{2})+1} - 1$ $-\frac{2\tan(\frac{x}{2})}{\tan^2(\frac{x}{2})+1}$
$\int \left(\frac{1-u^2}{u^2+1}\right) \left(\frac{2}{u^2+1}du\right) \text{ donde } u = \tan\left(\frac{x}{2}\right)$	$\cos\left(x\right)$	$-rac{2 an\left(rac{x}{2} ight)}{ an^2\left(rac{x}{2} ight)+1}$
$\int f(x) dx$	$f\left(x\right)$	$f'\left(x\right)$