EE4415 Lab 2: Signal Processing and Fourier Transform

GA: Ruiyuan YANG

Lecture(s): Prof. Massimo Alioto, Prof. Xuanyao Fong

National University of Singapore (NUS) ECE Department **Green IC** group

Content

- Introduction
- Working principle of (I)FFT and real application
- Implementation (RTL)
- Lab report
- Quick start

- The Fourier Transform is a mathematical technique that transforms a function of time, x(t), to a function of frequency, $X(\omega)$. Inverse Fourier Transform is the reverse operation of Fourier Transform
 - one of the most important tools in signal processing
 - ♦ a tool to analyze signals in another dimension

- ♦ Applications:
 - ♦ Wireless communication (e.g., OFDM)

- ♦ Applications:
 - ♦ Audio processing

- ♦ Applications:
 - ♦ image analysis

- Applications:
 - data compression (e.g., JPEG)

(Inverse) Discrete Fourier Transform

- ◆ Discrete Fourier Transform (DFT) X_k of an N-point discrete-time signal x_n
 - $N_k = \sum_{n=0}^{N-1} x_n W_N^{nk}$, $0 \le k \le N-1$
 - where W_N^{nk} is a factor equals to $e^{-j2\pi nk/N}$
- Inverse Discrete Fourier Transform (IDFT) x_n of an N discrete-frequency points X_k
 - $x_n = \frac{1}{N} \sum_{n=0}^{N-1} X_k W_N^{-nk}$, $0 \le n \le N-1$

(Inverse) Discrete Fourier Transform

- ◆ Discrete Fourier Transform (DFT) X_k of an N-point discrete-time signal x_n
 - - where W_N^{nk} is a factor equals to $e^{-j2\pi nk/N}$
- Inverse Discrete Fourier Transform (IDFT) x_n of an N discrete-frequency points X_k
 - $x_n = \frac{1}{N} \sum_{n=0}^{N-1} X_k W_N^{-nk}, \quad 0 \le n \le N-1$
- => IDFT can be easily implemented by reusing the hardware core/architecture (e.g. complex MAC) of DFT
 - w/ a time complexity of $O(N^2)$

(Inverse) Fast Fourier Transform

- ♦ (I)FFT decreases the time complex of the algorithm to O(Nlog₂(N)) through data flow represented by a butterfly diagram
 - sharing and reusing MAC results among outputs

- Example: FFT (N=8)
 - \bullet radix = 2
 - #interleaved DFTs a DFT is divided into every stage
 - ♦ #stage = 3
 - #stages of DFT interleaves
 - \bullet radix^{#stage} = N
 - ♦ #complex MAC operations
 - 8*3(#stage) = 24
- $O(N\log_2(N)) < O(N^2)$

Basic element of a butterfly diagram: Butterfly unit

- ♦ Radix-2 butterfly unit: 2I/2O
 - \bullet Y0 = A + B
 - $Y1 = (A B) \times W$
 - => 2 complex adder, 1 complex multiplier

- ♦ Radix-4 butterfly unit: 4I/4O
 - \bullet Y0 = A + B + C + D
 - $Y1 = (A + i \times B C i \times D) \times W1$
 - $Y2 = (A B + C D) \times W2$
 - $Y3 = (A i \times B C + i \times D) \times W3$
 - => 3 complex adder, 8 complex multiplier
 - => 25% less multiplier than Radix-2

(W are called twiddle factors)

Two types of Butterfly diagram for (I)FFT

- ◆ Decimation In Time (DIT)
 - start 2-point DFT from the time-domain side
 - time indices are in bit-reversed order
- ◆ Decimation In Frequency (DIF)
 - start 2-point DFT from the frequency-domain side
 - frequency indices are in bit-reversed order

DIT radix-2 BF diagram for 64-IFFT

♦ In this lab, you need to design a circuit for 64-IFFT calculation based on DIT radix-2 butterfly (BF) diagram (see DIT_radix2_BF_64IFFT.pdf).

Pipelined (I)FFT architectures

- ♦ Taking Radix-2 32-(I)FFT as an example
 - ♦ multi-path delay commutator (R2MDC)
 - ♦ the most classical approach for pipeline implementation of radix-2 (I)FFT
 - Input sequence broken into two parallel data streams flowing forward with correct "distance" between data elements entering the butterfly scheduled by proper delays

single-path delay feedback (R2SDF)

Pipelined (I)FFT architectures

- ♦ Taking Radix-2 32-(I)FFT as an example
 - multi-path delay commutator (R2MDC) for this lab
 - ♦ the most classical approach for pipeline implementation of radix-2 (I)FFT
 - Input sequence broken into two parallel data streams flowing forward with correct "distance" between data elements entering the butterfly scheduled by proper delays

single-path delay feedback (R2SDF)

R2MDC pipeline architecture in 64-IFFT

- ♦ R2MDC pipeline architecture in 64-IFFT: 6 layers
 - buffers: to delay the data flow with certain cycles
 - radix-2 butterfly unit: to perform complex multiplication and accumulation
 - commutator: to re-order data between two paths

• input of the 1st BF unit:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 pipeline

• output of the 1st BF unit:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

♦ delay the 2nd path by 16 cycles (input of the 1st commutator)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

• output of the 1st commutator

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

• delay the 1st path by 16 cycles (input of the 2nd BF unit)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

• output of the 2nd BF unit:

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

♦ delay the 2nd path by 8 cycles (input of the 2nd commutator)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

• output of the 2nd commutator

55 54 53 52 51 50 49 48 39 38 37 36 35 34 33 32 23 22 21 20 19 18 17 16 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 47 46 45 44 43 42 41 40 31 30 29 28 27 26 25 24 15 14 13 12 11 10 9 8

♦ delay the 1st path by 8 cycles (input of the 3rd BF unit)

55 54 53 52 51 50 49 48 39 38 37 36 35 34 33 32 23 22 21 20 19 18 17 16 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 47 46 45 44 43 42 41 40 31 30 29 28 27 26 25 24 15 14 13 12 11 10 9 8

• output of the 3rd BF unit:

55 54 53 52 51 50 49 48 39 38 37 36 35 34 33 32 23 22 21 20 19 18 17 16 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 47 46 45 44 43 42 41 40 31 30 29 28 27 26 25 24 15 14 13 12 11 10 9 8

♦ delay the 2nd path by 4 cycles (input of the 3rd commutator)

55 54 53 52 51 50 49 48 39 38 37 36 35 34 33 32 23 22 21 20 19 18 17 16 7 6 5 4 3 2 1 0 63 62 61 60 59 58 57 56 47 46 45 44 43 42 41 40 31 30 29 28 27 26 25 24 15 14 13 12 11 10 9 8

• output of the 3rd commutator

59 58 57 56 51 50 49 48 43 42 41 40 35 34 33 32 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 63 62 61 60 55 54 53 52 47 46 45 44 39 38 37 36 31 30 29 28 23 22 21 20 15 14 13 12 7 6 5 4

♦ delay the 1st path by 4 cycles (input of the 4th BF unit)

59 58 57 56 51 50 49 48 43 42 41 40 35 34 33 32 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 63 62 61 60 55 54 53 52 47 46 45 44 39 38 37 36 31 30 29 28 23 22 21 20 15 14 13 12 7 6 5 4

• output of the 4th BF unit:

59 58 57 56 51 50 49 48 43 42 41 40 35 34 33 32 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 63 62 61 60 55 54 53 52 47 46 45 44 39 38 37 36 31 30 29 28 23 22 21 20 15 14 13 12 7 6 5 4

♦ delay the 2nd path by 2 cycles (input of the 4th commutator)

59 58 57 56 51 50 49 48 43 42 41 40 35 34 33 32 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 63 62 61 60 55 54 53 52 47 46 45 44 39 38 37 36 31 30 29 28 23 22 21 20 15 14 13 12 7 6 5 4

• output of the 4th commutator

61 60 57 56 53 52 49 48 45 44 41 40 37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 1 0 63 62 59 58 55 54 51 50 47 46 43 42 39 38 35 34 31 30 27 26 23 22 19 18 15 14 11 10 7 6 3 2

♦ delay the 1st path by 2 cycles (input of the 5th BF unit)

61 60 57 56 53 52 49 48 45 44 41 40 37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 1 0 63 62 59 58 55 54 51 50 47 46 43 42 39 38 35 34 31 30 27 26 23 22 19 18 15 14 11 10 7 6 3 2

• output of the 5th BF unit:

61 60 57 56 53 52 49 48 45 44 41 40 37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 1 0 63 62 59 58 55 54 51 50 47 46 43 42 39 38 35 34 31 30 27 26 23 22 19 18 15 14 11 10 7 6 3 2

♦ delay the 2nd path by 1 cycles (input of the 5th commutator)

61 60 57 56 53 52 49 48 45 44 41 40 37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 1 0 63 62 59 58 55 54 51 50 47 46 43 42 39 38 35 34 31 30 27 26 23 22 19 18 15 14 11 10 7 6 3 2

• output of the 5th commutator

62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

♦ delay the 1st path by 1 cycles (input of the 6th BF unit)

62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

• output of the 6th BF unit:

62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 63 61 59 57 55 53 51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

- ♦ Recall: time indices are in bit-reversed order at DIT BF diagram output
 - in this lab assignment, we can ignore the step of re-ordering outputs
 - reference outputs given in /ref are not re-ordered
- files in /ref: including 1000 test cases
 - ♦ test_twiddle_lut_re: real part of twiddle factors from W₆₄⁻⁰ to W₆₄⁻³¹
 - ♦ test_twiddle_lut_im: imaginary part of twiddle factors from W₆₄⁻⁰ to W₆₄⁻³¹
 - ♦ test_ifft_in0_re: real part of the inputs to the 1st path of the pipeline
 - ♦ test_ifft_in0_im: imaginary part of the inputs to the 1st path of the pipeline
 - ♦ test ifft in 1 re: real part of the inputs to the 2nd path of the pipeline
 - ♦ test_ifft_in1_im: imaginary part of the inputs to the 2nd path of the pipeline
 - test_ifft_out0_reference_re: expected real part of the outputs from the 1st path
 - ♦ test_ifft_out0_reference_im: expected imaginary part of the outputs from the 1st path
 - ♦ test_ifft_out1_reference_re: expected real part of the outputs from the 2nd path
 - ♦ test_ifft_out1_reference_im: expected imaginary part of the outputs from the 2nd path

(files with _bin as suffix are read by testbench, files with _dec_nofrac as suffix are readable for debugging)

Complex adder and multiplier

- ♦ Numerical format in this lab assignment: signed fixed-point numbers
 - ♦ 16 bits for both real part and imaginary part
 - ♦ 1 bit (MSB) for sign: using 2's complement
 - ♦ 7 bits for integer part
 - ♦ 8 bits for fractional part
- ♦ Hints:
 - ♦ There is no need to differentiate integer part and fractional part when writing RTL codes, simply assuming all numbers are multiplied by 2⁸
 - ♦ all data in files with _dec_nofract as suffix are decimal multiplied by 2⁸ for easier reading and debugging.
 - however, you need to differentiate and be careful about integer and fractional bits when designing the multiplier for signed fixed-point numbers
 - ◆ Try to build a BF unit hierarchically (e.g., building a signed adder and a signed multiplier first, and then, build complex adder multiplier)

Architecture of the whole system

- ♦ ifft64_radix2_top
 - ifft64_ctrl: FSM + cnt_cal + cnt_bank
 - ifft64_ifft: 6 layers + input MUX + twiddle MUX

Controller design

♦ Finite State Machine (FSM):

Controller design

♦ Finite State Machine (FSM):

Example: waveform (control signals)

Example: waveform (IFFT64 output)

Example: timing&area report for ifft64_radix2_top.v

```
ifft64 radix2/BF 5/COM MUL0/U16/Y (INVX1 RVT)
ifft64 radix2/BF 5/COM MUL0/U34/Y (XOR2X1 RVT)
                                                        0.09
                                                                   7.94 r
ifft64 radix2/BF 5/COM MUL0/ADD0/B[7] (signed fixed point add 6)
                                                                   7.94 r
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/B[7] (signed fixed point add 6 DW01 add 0)
                                                                   7.94 r
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/U1 7/CO (FADDX1 RVT)
                                                                   8.03 r
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/U1 8/CO (FADDX1 RVT)
                                                                   8.12 r
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/U1 9/CO (FADDX1 RVT)
                                                                   8.20 r
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/U1 10/CO (FADDX1 RVT)
                                                                   8.29 r
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/U1 11/CO (FADDX1 RVT)
                                                                   8.38 r
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/U1 12/CO (FADDX1 RVT)
                                                                   8.46 r
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/U1 13/CO (FADDX1 RVT)
                                                                   8.55 r
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/U1 14/CO (FADDX1 RVT)
                                                                   8.64 r
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/U1 15/S (FADDX1 RVT)
                                                         0.11
ifft64 radix2/BF 5/COM MUL0/ADD0/add 10/SUM[15] (signed fixed point add 6 DW01 add 0)
ifft64 radix2/BF 5/COM MUL0/ADD0/Y[15] (signed fixed point add 6)
                                                                   8.75 f
ifft64 radix2/BF 5/COM MUL0/Y re[15] (complex mul 1)
                                                                   8.75 f
                                                        0.00
ifft64 radix2/BF 5/Y1 re[15] (bf radix2 1)
                                                        0.00
                                                                   8.75 f
ifft64 radix2/BUFF 6 be re/buf in[15] (Nbuffer buffer depth1 buffer width1 0)
                                                                   8.75 f
ifft64 radix2/BUFF 6 be re/generate block 2 0 STAGE0/stage in[15] (one reg stage 4)
ifft64 radix2/BUFF 6 be re/generate block 2 0 STAGE0/generate block 1 15 REG 0/reg in (one reg 49)
ifft64 radix2/BUFF 6 be re/generate block 2 0 STAGE0/generate block 1 15 REG 0/reg out reg/D (DFFARX1 RVT)
                                                                   8.85 f
data arrival time
                                                                   8.85
clock clk (rise edge)
                                                       10.00
                                                                   10.00
clock network delay (ideal)
                                                        0.00
                                                                   10.00
clock uncertainty
                                                        -0.10
ifft64 radix2/BUFF 6 be re/generate block 2 0 STAGE0/generate block 1 15 REG 0/reg out reg/CLK (DFFARX1 RVT)
library setup time
                                                                   9.88
data required time
                                                                   9.88
                                                                   9.88
data required time
                                                                   -8.85
```

```
****************
Report : area
Design : ifft64 radix2 top
Version: J-2014.09-SP2
       : Mon Mar 4 22:42:04 2024
***************
Library(s) Used:
    saed32rvt tt1p05v125c (File: /app11/saed 32
Number of ports:
                                       3150
Number of nets:
                                       3185
Number of cells:
Number of combinational cells:
Number of sequential cells:
Number of macros/black boxes:
Number of buf/inv:
Number of references:
Combinational area:
                                61436.770226
Buf/Inv area:
                                3755.994263
Noncombinational area:
                                14239.180279
Macro/Black Box area:
                                   0.000000
Net Interconnect area:
                                17952.303348
Total cell area:
                               75675.950505
Total area:
                               93628.253853
```


Example: timing&area report for ifft64_radix2_top.v

Timing/Area trade-off curve with the same design

clock clk (rise edge) clock network delay (ideal) clock uncertainty ifft64_radix2/BUFF_6_be_re/generate_block_2_0STAG library setup time data required time	10.00 10.00 0.00 10.00 9.90 9.90 E0/generate_block_1_15 0.00 9.90 r -0.02 9.88 9.88	clock clk (rise edge) clock network delay (ideal) clock uncertainty ifft64_radix2/BUFF_6_be_im/generate_block_2_0STAG library setup time data required time	0.00 8.90 r -0.02 8.88 8.88		
data required time data arrival time	9.88 -8.85	data required time data arrival time	8.88 -8.72		
slack (MET)	1.02	slack (MET)	0.16		
***********	*****	**************	*****		
Report : area		Report : area			
Design : ifft64 radix2 top		Design : ifft64_radix2_top	Design : ifft64_radix2_top		
Version: J-2014.09-SP2			Version: J-2014.09-SP2		
Date : Mon Mar 4 22:42:04 2024	1	Date : Mon Mar 4 22:55:42 202			
***********	*****	***************************************	******		
Library(s) Used:		Library(s) Used:			
saed32rvt_tt1p05v125c (File: /app11/saed_32		saed32rvt_tt1p05v125c (File:	/app11/saed_3		
Number of ports:	3150	Number of ports:	3150		
Number of nets:	3185	Number of nets:	3185		
Number of cells:	2	Number of cells:	2		
Number of combinational cells:	0	Number of combinational cells:	0		
Number of sequential cells:	0	Number of sequential cells:	0		
Number of macros/black boxes:	0	Number of macros/black boxes:	0		
Number of buf/inv:	0	Number of buf/inv:	0		
Number of references:	2	Number of references:	2		
Combinational area:	61436.770226	 	61437.532652		
Buf/Inv area:	3755.994263	Buf/Inv area:	3761.585426		
Noncombinational area:	14239.180279	Noncombinational area:	14239.180279		
Macro/Black Box area:	0.000000	Macro/Black Box area:	0.000000		
Net Interconnect area:	17952.303348	Net Interconnect area:	18032.734120		
Total cell area:	75675.950505	Total cell area:	75676.712931		
Total area:	93628.253853	Total area:	93709.447051		

Example: timing&area report for ifft64_radix2_top.v

• before and after timing optimization (retiming, pipeline, etc.)

		<u> </u>		
lk (rise edge)	10.00 10.00	clock clk (rise edge)	10.00	
network delay (ideal)	0.00 10.00	clock network delay (ideal)	0.00	
uncertainty	-0.10 9.90	clock uncertainty	-0.10	
ifft64 radix2/BUFF 6 be re/generate block 2 0 STAGE0/generate block 1 15		ifft64 radix2/COMMUTATOR 6/clk r REG25 S17/CLK (DFFARX)	RVT)	
	0.00 9.90		0.00	
ary setup time	-0.02 9.88	library setup time	-0.03	
a required time	9.88	data required time		
		1		
a required time	9.88	data required time		
a arrival time	-8.85	data arrival time		-
ck (MET)	1.02	slack (MET)		

Report : area Design : ifft64 radix2 top Version: J-2014.09-SP2 Date : Mon Mar 4 22:42:04 2024 Library(s) Used: saed32rvt tt1p05v125c (File: /app11/saed 32 Number of ports: 3150 Number of nets: 3185 Number of cells: Number of combinational cells: Number of sequential cells: 0 Number of macros/black boxes: Number of buf/inv: 0 Number of references: Combinational area: 61436.770226 Buf/Inv area: 3755.994263 Noncombinational area: 14239.180279 Macro/Black Box area: 0.000000 Net Interconnect area: 17952.303348 Total cell area: 75675.950505 Total area: 93628.253853

************** Report : area Design : ifft64 radix2 top Version: J-2014.09-SP2 Date : Mon Mar 4 23:08:59 2024 ************** Library(s) Used: saed32rvt tt1p05v125c (File: /app11/saed 32 Number of ports: 3150 Number of nets: 3186 Number of cells: 13 Number of combinational cells: Number of sequential cells: 11 Number of macros/black boxes: Number of buf/inv: Number of references: Combinational area: 56243.845911 Buf/Inv area: 2875.385276 Noncombinational area: 19499.961172 Macro/Black Box area: 0.000000 Net Interconnect area: 23163.489646 75743.807082 Total cell area: Total area: 98907.296728

Synthesis Constraints

To be saved as constraint.tcl in your /syn folder

- Clock period of 10 ns.
- Clock uncertainty of 0.1 ns
- Input transition of (exclude clock) of 0.1 ns
- Input delay (exclude clock and reset) of 0.2 ns
- Output delay (all outputs) of 0.2 ns
- Load capacitance (all outputs) of 5 fF
- Driving gates: inverter gates with 4X strength
- Max area (no constraints): 0

To be completed in report

Step 1: RTL implementation (10%)

- Submit your RTL code for all the blocks (start with the given .v files).
- Describe this script (/vcs/makefile).
 - What are going to be performed by typing "make compile" and "make clean"?
- Pass all the 1000 test cases through VCS simulation.
- Show the waveforms in DVE.

Step 2: Synthesis (5%)

- Please complete the constraint.tcl file
- Describe these scripts (/syn/makefile, /syn/dc-syn.tcl)
 - What are going to be performed by typing "make synthesis", "make plot", and "make clean"?
- Synthesize your ifft64 radix2 top module
 - Show the timing and area reports. Check is there any violation? Point out which part of circuits cause the critical path.
- In real design cases, you are going to use the synthesized files for next step (the .ddc, .sdc, sdf, .v files in the /syn/output folder). Compare the synthesized netlist (.v file) with your Verilog code and show your comments.

To be completed in report

Part 3: Timing and area optimization (8%)

- Make changes to your constraint files and plot the timing/area trade-off curve.
- Apply any design optimization method that you learnt from the lecture (retiming, pipeline, etc.)
 - For retiming, you may either do it manually or insert below command into your .tcl script in /syn/dc-syn.tcl. Design compiler will re-allocate the registers automatically with this command "optimize_registers -print_critical_loop minimum_period_only".
 - Will the whole system still work properly after register insertion, retiming, etc... and why?
 - Show your comments on the comparison between original design and your optimized design (in circuit, area, timing, etc.).

Part 4: Improvement (open ended) (2%)

- Can you further improve the whole design?
 - Explain your ideas and the corresponding design trade-offs
 - Please also show your timing and area reports after making any change.
 - e.g. remove the unnecessary registers, reduce the I/O bitwidth, ...

Quick start

Part 0: startup

- Make a new directory for your project
- Go to the new directory
- Copy the lab materials (/app11/lab_session/ee4415_part2_2324) into your new directory
- Make sure you have below folders: ref, syn, tb, src, vcs

Part 1: RTL implementation

- Implement your design in the /src folder or testbench in the /tb folder
- Check the contents in /vcs/makefile
- Run VCS simulation: type "make compile" in /vcs folder, you may have to modify the makefile script if you wish to run your own testbench.
- Check waveform: type "make plot" in /vcs folder
- Clean the simulation results: type "make clean" in /vcs folder

Part 2: Synthesis

- Complete your constraint.tcl
- Check the contents in /syn/dc-syn.tcl, /syn/makefile
- Synthesize your design: type "make synthesis" in /syn folder
- Clean the synthesis results: type "make clean" in /syn folder

Part 3: Timing and area optimization

- Backup your scripts
- Similar to part 2, but you may need to modify /syn/constraint.tcl and /syn/dc-syn.tcl

Part 4: Improvement (open ended)

• Similar to part 2 and part 3.

Helpsheet

Useful Linux commands

Create new folder	mkdir folder_name
Go to a directory	cd target path
Go to the upper directory	cd
Remove something (be careful)	rm target path –r
Move something	my source path target path
Copy something	cp source path target path -a
Open <u>a .v</u> file with vim	vim filename
Open a.v file with GUI	gedit filename
Open a .pdf file	evince filename
Show current path	pwd
Show all the files in current path	ls –a

Simulation with VCS

Compile design	ycs -full64 +lint=all -debug_all -timescale=1ns/10ps filenames
Run simulation	<u>./simv</u>
Exit	quit

Show waveform in DVE

Save .vpd	Insert below lines into your testbench's initial block:
	<pre>\$vcdplusfile("waveform.vpd");</pre>
	\$vcdpluson();
	// your code
	<pre>\$vcdplusoff();</pre>
Show waveform	dve -vpd waveform.vpd &

