

ADS AD TO AT P CA CO SOUN

www.aduni.edu.pe

PROPIEDADES PERIÓDICAS Semana 9

www.aduni.edu.pe

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- 1. Definir las propiedades periódicas atómicas de los elementos químicos
- 2. Analizar la relación que hay entre las propiedades periódicas y las propiedades físicas y químicas de los elementos químicos.
- 3. Conocer como comparar la tendencia general de la variación de las propiedades periódicas en la tabla periódica moderna.

II. INTRODUCCIÓN

La ubicación de los elementos en la tabla periódica mediante su número atómico, (Z), establece una variación secuencial de propiedades, y estas dependen de las configuraciones electrónicas.

¿Puedes reconocer alguna variación secuencial cuando el litio, sodio y potasio reaccionan con el agua?

III. RADIO ATÓMICO (RA)

- No es posible establecer el radio o volumen atómico exacto de un átomo porque éste no es una esfera dura con límites definidos.
- La probabilidad de encontrar un electrón disminuye a medida que nos alejamos del núcleo atómico.
- En general, para determinar el radio atómico, se considera la mitad de la distancia internuclear entre dos átomos idénticos adyacentes.

d: distancia internuclear

RA: radio atómico

Las unidades del SI para el RA son nanómetros (1nm = 10^{-9} m) o picómetros (1pm = 10^{-12} m)

EJEMPLO: Para el calcio se ha determinado que d = 394 pm

$$RA(Ca) = \frac{394 \ pm}{2} = 197 \ pm$$

... Ahora analizaremos la variación o tendencia del RA a largo de un grupo y periodo.

✓ En un mismo grupo

Periodo: 2

 $_{Z=11}Na$: $1s^2 2s^2 2p^6 3s^1$

Periodo: 3

Vemos que:

periodo (Li) < periodo (Na)

Entonces

RA(Li) < RA(Na)

EJEMPLO: Para elementos del grupo IA.

CONCLUIMOS: Para
elementos de un mismo
grupo, a mayor periodo
mayor será el radio
atómico (RA).

Elemento	Z	RA (pm)
Н	1	37
Li	3	152
Na	11	186
K	19	227

En un mismo periodo

$$_{Z=3}Li:1s^2 \ 2s^1$$

Periodo: 2

Periodo: 2

Observamos que:

$$Z(Li) < Z(N)$$
 \longrightarrow $F_E (Li) < F_E (N)$

Por ello: RA(Li) > RA(N)

CONCLUIMOS: Para elementos de un mismo periodo, a mayor número atómico (Z) menor será el radio atómico (RA).

... de forma gráfica puedes recordar esto:

EJEMPLO: Para elementos del segundo periodo:

ELEMENTO	Li	Be	В	С	N	0
Z	3	4	5	6	7	8
RA (pm)	152	111	88	77	75	73

RADIO IÓNICO (RI)

El concepto es similar al del radio atómico, pero para iones. Es decir; nos proporciona un tamaño relativo.

A. PARA UN MISMO ELEMENTO QUÍMICO

EJEMPLOS:

Para el calcio

$$Ca (RA = 197 pm)$$

$$Ca^{2+}(RI = 99 pm)$$

Para el oxígeno

$$O(RA = 73 pm)$$

 $O^{2-}(RI = 140 pm)$

... Experimentalmente los radios atómicos y iónicos se miden de forma indirecta por técnicas de difracción de rayos X.

B. PARA ESPECIES ISOELECTREÓNICAS:

A menor número atómico, mayor será el RI.

EJEMPLO:

Ordenar de menor a mayor RI para las siguientes especies.

$$_{11}Na^{1+}$$
 $_{7}N^{3}$ $_{13}Al^{3+}$

RESOLUCIÓN:

$$13Al^{3+}$$
 $11Na^{1+}$
 $7N^{3-}$

RI

$e^{-} = 10$
$e^{-} = 10$
$p^{+} = 13$
$p^{+} = 11$
$p^{+} = 7$

Comparación de radios atómicos e iónicos en picómetros (pm):

IV. ENERGIA DE IONIZACIÓN O POTENCIAL DE IONIZACIÓN (EI)

Es la mínima energía necesaria que se requiere para sustraer o remover un electrón del último nivel de energía de un átomo gaseoso en su estado basal o fundamental.

$$Li_{(g)} + 520 \, kJ/mol \longrightarrow Li_{(g)}^{1+} + 1e^-$$

Primera energía de ionización ($EI_1 = + 520 \text{ KJ/mol}$)

- La energía para quitar el primero electrón del átomo en su estado fundamental se denomina primera energía de ionización (EI_1).
- Así, la energía para quitar el segundo electrón del átomo se denomina segunda energía de ionización (EI_2) .

$$Li_{(g)}^{1+} + 7300 \, kJ/mol \rightarrow Li_{(g)}^{2+} + 1e^{-}$$
(EI₂)

La energía de ionización siempre aumenta en el siguiente orden

$$EI_1 < EI_2 < EI_3 < \dots$$

La El es una medida de cuán estrechamente están unidos los electrones externos a los átomos.

Como la energía de ionización es una medida de que tan fuertemente está unido un electrón externo a un átomo, entonces su intensidad muestra relación inversa con el radio atómico.

- Los elementos de baja energía de ionización pierden con facilidad el electrón del ultimo nivel, por ello tiene mayor carácter metálico.
- Los metales alcalinos (IA) son los elementos que presentan los menores valores de energía de ionización.
- Los gases nobles (VIIIA) son los elementos que presentan los mayores valores de energía de ionización.

V. ELECTRONEGATIVIDAD (EN)

La electronegatividad es la fuerza relativa de atracción que generan los átomos sobre los electrones del enlace químico.

Según la escala de L. Pauling

Elemento	F	0	Cl	С	Н	
EN.	4,0	3,5	3,0	2,5	2,1	

La electronegatividad de los elementos se expresa según la escala de Linus C. Pauling (1932), quien demostró que esta propiedad depende en forma directa de la energía de enlace.

Tendencia general en la TPM de le electronegatividad

menor electronegatividad: Cs y Fr

mayor electronegatividad: F

ELECTRONEGATIVIDAD DE LOS ELEMENTOS

	1	1															
	H 2,1	2		M	lenos (de 1,0		2,0	0–2,4				13	14	15	16	17_
	Li 1,0	Be 1,5			0–1,4 5–1,9				5–2 <i>,</i> 9 0–4 <i>,</i> 0				B 2,0	C 2,5	N 3,0	O 3,5	F 4,0
	Na 0,9	Mg 1,2	3	4	5	6	7	8	9	10	11	12	Al 1,5	Si 1,8	P 2,1	S 2,5	Cl 3,0
	K 0,8	Ca 1,0	Sc 1,3	Ti 1,5	V 1,6	Cr 1,6	Mn 1,5	Fe 1,8	Co 1,8	Ni 1,8	Cu 1,9	Zn 1,6	Ga 1,6	Ge 1,8	As 2,0	Se 2,4	Br 2,8
	Rb 0,8	Sr 1,0	Y 1,2	Zr 1,4	Nb 1,6	Mo 1,8	Tc 1,9	Ru 2,2	Rh 2,2	Pd 2,2	Ag 1,9	Cd 1,7	In 1,7	Sn 1,8	Sb 1,9	Te 2,1	I 2,5
	Cs 0,8	Ba 0,9	La– Lu*	Hf 1,3	Ta 1,5	W 2,4	Re 1,9	Os 2,2	Ir 2,2	Pt 2,2	Au 2,4	Hg 1,9	Tl 1,8	Pb 1,8	Bi 1,9	Po 2,0	At 2,2
Fr Ra Ac- 0,7 0,9																	

A condiciones ambientales los gases nobles (VIIIA) son inertes y no se enlazan, por ese motivo no se consideran.

Electronegatividades de los elementos

Como regla general las electronegatividades disminuyen al descender en un grupo y aumentan de izquierda a derecha en un período de elementos. Los valores están tomados de L. Pauling, *The Nature of Chemical Bond*, 3ª edición, Cornell University, Ithaca, NY, 1960. Pueden diferir algo de valores basados en otras escalas.

VI. AFINIDAD ELECTRÓNICA (AE)

Es la variación de energía que se produce cuando el átomo de un elemento en fase gaseosa, en su estado basal o fundamental gana un electrón para convertirse en un anión. **EJEMPLO:**

 La A.E. es similar a la energía que libera un niño afiebrado, luego de ingerir una pastilla o cápsula.

Generalmente la AE es un proceso exotérmico, en el caso de aniones, elementos del IIA y VIIIA el proceso es endotérmico.

1^{era} afinidad electrónica del flúor (AE₁= - 328 $\frac{kJ}{mol}$)

La AE es una medida de la facilidad que tiene el átomo para ganar 1 e- adicional. Además:

ELECTRONEGATIVIDAD

Relación directa AFINIDAD ELECTRÓNICA

> Generalizando la variación de la afinidad electrónica:

✓ Tener presente:

Los gases nobles (VIIIA) tienen poca probabilidad de ganar 1e- debido a que todos los orbitales de los subniveles s y p se encuentran llenos. Es decir los aniones: He¹-, Ne¹-, Ar¹-,... son inestables.

VII. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición

www.aduni.edu.pe

