Мультипликативные функции

Функция $f \colon \mathbb{N} \to \mathbb{Z}$ называется мультипликативной функцией теории чисел, если из HOД(m,n)=1 следует $f(m\cdot n)=f(m)\cdot f(n)$. Исследование таких функций сводится к исследованию их значений для степеней простых чисел. Пусть $n=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$.

- 1. Выведите формулу для функция $\tau(n)$, которая вычисляет количество всех натуральных делителей числа n.
- 2. Выведите формулу для функция $\sigma(n)$, которая вычисляет сумму всех натуральных делителей числа n.

Функция Эйлера.

Функция Эйлера $\varphi(n)$ находит количество чисел от 1 до n, взаимно простых с n.

- 3. Найдите формулы для $\varphi(p)$ и $\varphi(p^k)$, где p простое число.
- 4. Докажите, мультипликативность функции φ пользуясь определением.
- 5. Выведите формулу для $\varphi(p_1^{a_1}p_2^{a_2}\dots p_k^{a_k})$, пользуясь мультипликативностью φ .
- 6. Пусть функция f мультипликативна. Докажите, что и $g(n) = \sum_{d|n} f(d)$ тоже.
- 7. Докажите равенство $\sum_{d|n} \varphi(d) = n$.

Теоремы Ферма, Эйлера и Вильсона

Как мы уже видели, если числа a и n взаимно просты, а числа $\{m_1, m_2, \ldots, m_{\varphi(n)}\}$ дают по одному разу все возможные взаимно простые с n остатки при делении на n, то числа $\{am_1, am_2, \ldots, am_{\varphi(n)}\}$ также дают по одному разу все возможные взаимно простые с n остатки. Из этого наблюдения легко получаются следующие три классические теоремы.

- 8. Докажите, что n является простым, если и только если $(n-1)! \equiv -1 \pmod{n}$.
- 92 Докажите, что $a^{n-1} \equiv 1 \pmod{n}$ для простого $n, n \not\mid a$.
- 10^3 Докажите, что $a^{\varphi(n)} \equiv 1 \pmod n$ при всех $a, n, \operatorname{HOД}(a, n) = 1$.

Порядки

Как мы знаем, если HOД(a,n)=1, то остатки при делении на n чисел a,a^2,a^3,\ldots повторяются, образуя цикл. Длина этого цикла равна наименьшему натуральному числу d такому, что $a^d \equiv 1 \pmod n$. Это число называется порядком числа a по модулю n и обозначается $\operatorname{ord}_n(a)$. Очевидно, что, если $a^d \equiv 1 \pmod n$, то d делится на порядок $\operatorname{ord}_n(a)$. В частности, из теоремы Эйлера следует, что показатель числа по модулю n является делителем числа $\varphi(n)$.

11. Найдите порядки a) $\operatorname{ord}_3(5)$; b) $\operatorname{ord}_2(7)$; c) $\operatorname{ord}_6(7)$; d) $\operatorname{ord}_5(8)$; e) $\operatorname{ord}_7(30)$.

LTE lemma (лемма об уточнении показателя).

Пусть p>2 — простое число, числа a и b таковы, что $p\mid a-b$, но p не делит ab, а n — произвольное натуральное число.

- 12. Пусть число k не кратно p. Докажите равенство $v_p(a^{kn}-b^{kn})=v_p(a^k-b^k)$.
- 13. Докажите равенство $v_p(a^{pn}-b^{pn})=v_p(a^n-b^n)+1$.
- 14. Докажите равенство $v_p(a^n b^n) = v_p(a b) + v_p(n)$.
- 15. Пусть числа a, b и n нечётны. Докажите, что $v_2(a^n-b^n)=v_2(a-b)$.
- 16. Пусть числа a и b нечётны, а n чётно. Докажите, что $v_2(a^n-b^n)=v_2(a^2-b^2)+v_2(n)-1$.

¹Теорема Вильсона.

 $^{^2}$ Малая теорема Ферма.

³Теорема Эйлера.

 $^{^4}$ LTE lemma случай нечётного p.

 $^{^{5}}$ LTE lemma случай p=2.

Упражнения

- 17. Докажите, что любое нечётное натуральное число n является делителем числа $2^{n!}-1$.
- 18. Для произвольного натурального n докажите двойное неравенство $\sqrt{n} \leqslant \frac{\sigma(n)}{\tau(n)} \leqslant \frac{n+1}{2}$.
- 19. Найдите наибольшее значение постоянной C такое, что неравенство $C\sqrt{n} \leqslant \frac{\sigma(n)}{\tau(n)}$ выполняется для всех натуральных n > 1.
- 20. Найдите все натуральные числа k для которых найдутся натуральные числа a и bтакие, что $k = \tau(a) = \tau(b) = \tau(2a + 3b)$.

Задачи

- 21. Найдите все натуральные числа n такие, которых найдутся простые p и q, p+2=q, такие, что числа $2^{n} + p$ и $2^{n} + q$ простые.
- 22. Аня и Боря играют в игру, делая ходы по очереди: за ход разрешается выбрать номер $i \in \{0, 1, 2, \dots, p-1\}$, не выбранный ранее никем, и цифру a_i (p > 2 -простое число). Игра заканчивается, когда все номера выбраны. Аня ходит первой и она хочет, чтобы число $M=a_0+10\cdot a_1+10^2\cdot a_2+\ldots+10^{p-1}a_{p-1}$ делилось на p, а Боря пытается ей помешать. Докажите, что Аня может добиться своего независимо от действий Бори. 23. Найдите все натуральные числа n, при которых дробь $\frac{n^{3n-2}-3n+1}{3n-2}$ — целое число.
- 24. Докажите, что не существует натурального числа n > 1 такого, что $n \mid 2^n 1$.
- 25. Число $n \in \mathbb{N}$ называется совершенным, если $\sigma(n) = 2n$. Докажите, что чётное число совершенно тогда и только тогда, когда оно представимо в виде $2^{p-1}(2^p-1)$, где числа p и $2^{p} - 1$ просты.
- 26. Найдите все пары $(k;n) \in \mathbb{N}^2$ такие, что $k! = (2^n-1)(2^n-2)(2^n-4)\dots(2^n-2^{n-1}).$
- 27. Найдите все тройки a, b, p натуральных чисел такие, что число p простое и $a^p = b! + p$.