CSC165 - Problem Set 3

Junaid Arshad, Sadeed Ahmed, & Frederick Meneses

March 18, 2022

1 Number Representation

(a) Let $(b_{k-1} ldots b_0)_2$ be a binary representation of a natural number, and a be a single bit. The following is a proof that $(b_{k-1} ldots b_0)_2 = 2(b_{k-1} ldots b_0)_2 + a$:

Proof. Want to prove: $(b_{k-1} \dots b_0 a)_2 = 2(b_{k-1} \dots b_0)_2 + a$. Let $(b_{k-1} \dots b_0)_2 = \sum_{i=0}^{k-1} b_i 2^i$. We will show the RHS = LHS. Let k' = k+1 and $b'_0 = a$ and $\forall i \in \{1, 2, \dots, k\}, b'_i = b_{i-1}$

$$2(b_{k-1} \dots b_0)_2 + a = \sum_{i=0}^{k-1} b_i 2^{i+1} + a$$

$$= \sum_{i=1}^k b_{i-1} 2^i + a$$

$$= \sum_{i=1}^{k'-1} b_i' 2^i + a 2^0$$

$$= \sum_{i=1}^{k'-1} b_i' 2^i + b_0' 2^0$$

$$= \sum_{i=0}^{k'-1} b_i' 2^i$$

$$= (b_{k'-1}' \dots b_0')_2$$

$$= (b_k' \dots b_1' b_0')_2 = (b_{k-1} \dots b_0 a)_2$$

$$(2^0 = 1)$$

$$(b_0' = a)$$

(b) Let $n \in \mathbb{N}$ and let $(b_{2n-1} \dots b_0)_2$ be the binary representation of a natural number. The following is a proof by induction that $(b_{2n-1} \dots b_0)_2 - (b_1b_0)_2 - (b_3b_2)_2 - \dots - (b_{2n-1}b_{2n-2})_2$ is a multiple of 3:

Proof. Let $n \in \mathbb{N}$ and $(b_{2n-1}b_{2n-2}\dots b_0)_2 = \sum_{i=0}^{2n-1} b_i 2^i$ be the binary representation of n. Let

$$P(n): \exists k \in \mathbb{Z}, (b_{2n-1}b_{2n-2}\dots b_0)_2 - (b_1b_0)_2 - (b_3b_2)_2 - \dots - (b_{2n-1}b_{2n-2})_2 = 3k$$

Base Case. (n = 0) In this case, the binary representation of n is

$$\sum_{i=0}^{-1} b_i 2^i = 0 = ()_2$$

We want to show, $P(0): \exists k_0 \in \mathbb{Z}, ()_2 - ()_2 - \ldots - ()_2 = 3k_0$

Let $k_0 = 0$

$$()_2 - ()_2 - \ldots - ()_2 = 0 = 3(0) = 3k_0$$

Inductive Step. WTS: $\forall m \in \mathbb{N}, P(m) \Rightarrow P(m+1)$

Inductive Hypothesis: Assume

$$P(m): \exists d \in \mathbb{Z}, (b_{2m-1}b_{2m-2}\dots b_0)_2 - (b_1b_0)_2 - (b_3b_2)_2 - \dots - (b_{2m-1}b_{2m-2})_2 = 3d$$

Explicitly, we want to show:

$$P(m+1): \exists d_2 \in \mathbb{Z}, (b_{2m+1}b_{2m}\dots b_0)_2 - (b_1b_0)_2 - (b_3b_2)_2 - \dots - (b_{2m-1}b_{2m-2})_2 - (b_{2m+1}b_{2m})_2 = 3d_2$$

We also know from the given hint that

$$\forall m \in \mathbb{N}, \exists y \in \mathbb{Z}, 4^m - 1 = 3y$$

Let $d_2 = 2y \cdot b_{2m+1} + y \cdot b_{2m} + d$

We will show that the LHS = RHS.

$$= (b_{2m+1}b_{2m} \dots b_0)_2 - (b_1b_0)_2 - (b_3b_2)_2 - \dots - (b_{2m-1}b_{2m-2})_2 - (b_{2m+1}b_{2m})_2$$

$$= \sum_{i=0}^{2m+1} b_i 2^i - (b_1b_0)_2 - (b_3b_2)_2 - \dots - (b_{2m-1}b_{2m-2})_2 - (b_{2m+1}b_{2m})_2$$

$$= \sum_{i=0}^{2m-1} b_i 2^i + \sum_{i=2m}^{2m+1} b_i 2^i - (b_1b_0)_2 - (b_3b_2)_2 - \dots - (b_{2m-1}b_{2m-2})_2 - (b_{2m+1}b_{2m})_2$$

$$= \left(\sum_{i=0}^{2m-1} b_i 2^i - (b_1b_0)_2 - \dots - (b_{2m-1}b_{2m-2})_2\right) + \left(\sum_{i=2m}^{2m+1} b_i 2^i - (b_{2m+1}b_{2m})_2\right)$$

$$= \left((b_{2m-1}b_{2m-2} \dots b_0)_2 - (b_1b_0)_2 - \dots - (b_{2m-1}b_{2m-2})_2\right) + \left(b_{2m+1}2^{2m+1} + b_{2m}2^{2m} - b_{2m+1}2^1 - b_{2m}2^0\right)$$

$$= 3d + (b_{2m+1}2^{2m+1} - b_{2m+1}2) + (b_{2m}2^{2m} - b_{2m}2^0)$$
 (by Inductive Hypothesis)
$$= 3d + 2b_{2m+1}(4^m - 1) + b_{2m}(4^m - 1)$$

$$= 3d + 2b_{2m+1}(3y) + b_{2m}(3y)$$
 (using the given hint)
$$= 3(d + 2y \cdot b_{2m+1} + y \cdot b_{2m})$$
 (Factoring out 3)
$$= 3d_2$$

(c) Let x be a natural number with a binary representation where the difference between the number of 1 bits with an even index and the number of 1 bits with an odd index is a multiple of 3. The following is a proof that x is a multiple of 3:

Proof. Let $x \in \mathbb{N}$. The binary representation of x can have an even or odd number of bits. If x has an even number of bits, then its binary representation is of the form $(b_{2n-1} \dots b_0)_2$. If x has an odd number of bits, then we can add a leading zero, in which case its binary representation is also $(0b_{2n-2} \dots b_0)_2$, which can be similarly be re-written as $(b_{2n-1} \dots b_0)_2$.

Given that the binary representation of x is $(b_{2n-1} \dots b_0)$, assume that the difference between the number of 1 bits with an even index and the number of 1 bits with an odd index is a multiple of 3, i.e.:

$$3 \mid \left(\sum_{i=0}^{n-1} b_{2i} - \sum_{i=0}^{n-1} b_{2i+1}\right),$$

or that:

$$\exists d_1 \in \mathbb{Z}, \ \sum_{i=0}^{n-1} b_{2i} - \sum_{i=0}^{n-1} b_{2i+1} = 3d_1.$$

From **Part B**, we know that:

$$\exists d_3 \in \mathbb{Z}, (b_{2n-1} \dots b_0)_2 - (b_1 b_0)_2 - (b_3 b_2)_2 - \dots (b_{2n-1} b_{2n-2})_2 = 3d_3$$

Want to prove: $(b_{2n-1} \dots b_0)_2$ is divisible by 3, or that, $3 \mid \sum_{i=0}^{2n-1} b_i 2^i$, i.e.:

$$\exists d_2 \in \mathbb{Z}, \sum_{i=0}^{2n-1} b_i 2^i = 3d_2$$

Let
$$d_2 = d_1 + d_3 + \sum_{i=0}^{n-1} b_{2i+1}$$
.

Using our result from **Part B**:

$$(b_{2n-1} \dots b_0)_2 - (b_1b_0)_2 - (b_3b_2)_2 - \dots (b_{2n-1}b_{2n-2})_2 = 3d_3$$

$$(b_{2n-1} \dots b_0)_2 - (b_1 \cdot 2^1 + b_0 \cdot 2^0) - (b_3 \cdot 2^1 + b_2 \cdot 2^0) - \dots - (b_{2n-1} \cdot 2^1 + b_{2n-2} \cdot 2^0) = 3d_3$$

$$(b_{2n-1} \dots b_0)_2 - (b_1 \cdot 2 + b_3 \cdot 2 + \dots + b_{2n-1} \cdot 2) - (b_0 \cdot 1 + b_2 \cdot 1 + \dots + b_{2n-2} \cdot 1) = 3d_3$$

$$(b_{2n-1} \dots b_0)_2 - 2(b_1 + b_3 + \dots + b_{2n-1}) - (b_0 + b_2 + \dots b_{2n-2}) = 3d_3$$

$$(b_{2n-1} \dots b_0)_2 + 2\sum_{i=0}^{n-1} b_{2i+1} + \sum_{i=0}^{n-1} b_{2i} = 3d_3$$

$$\sum_{i=0}^{2n-1} b_i 2^i = 3d_3 + 2\sum_{i=0}^{n-1} b_{2i+1} + \sum_{i=0}^{n-1} b_{2i}$$

From our assumption, we know that:

$$\sum_{i=0}^{n-1} b_{2i} - \sum_{i=0}^{n-1} b_{2i+1} = 3d_1 \Leftrightarrow \sum_{i=0}^{n-1} b_{2i} = 3d_1 + \sum_{i=0}^{n-1} b_{2i+1}$$

Plugging this value into our expression above:

$$\sum_{i=0}^{2n-1} b_i 2^i = 3d_3 + 2\sum_{i=0}^{n-1} b_{2i+1} + 3d_1 + \sum_{i=0}^{n-1} b_{2i+1}$$

$$= 3d_3 + 3d_1 + 3\sum_{i=0}^{n-1} b_{2i+1}$$

$$= 3\left(d_3 + d_1 + \sum_{i=0}^{n-1} b_{2i+1}\right)$$

$$= 3d_2$$

Thus, we have proven that $(b_{2n-1} ldots b_0)_2$ is divisible by 3, or that, $3 \mid \sum_{i=0}^{2n-1} b_i 2^i$ when the difference between the number of 1 bits with an even index and the number of 1 bits with an odd index is a multiple of 3.

2 Induction

For $m, n \in \mathbb{Z}^+$, define P(m, n) to be:

the number of ways to write $n = x_1 + \dots + x_m$ with $x_1, \dots x_m \in \mathbb{N}$ is $\frac{(n+m-1)!}{n!(m-1)!}$.

(a) We will prove the following statements:

i
$$\forall n \in \mathbb{Z}^+, P(1,n)$$

Proof. Let $n \in \mathbb{Z}^+$. WTS: P(1, n): The number of ways to write $n = x_1 + \ldots + x_m$ with $x_1, \ldots, x_m \in \mathbb{N}$ when m = 1 is 1

Let m = 1, n = n. In this case, $x_m = x_1 = n$. Thus, we can see that the number of ways to write n is 1. We can also confirm this using the formula:

$$\frac{(n+1-1)!}{n!(1-1)!} = \frac{n!}{n!} = 1$$

ii $\forall m \in \mathbb{Z}^+, P(m, 1)$

Proof. Let $m \in \mathbb{Z}^+$. WTS: P(m,1): The number of ways to write $1 = x_1 + \cdots + x_m$ with $x_1, \ldots, x_m \in \mathbb{N}$ is m

Since n = 1 here, one of $x_1, \ldots, x_m \in \mathbb{N}$ must be 1 whereas every other digit must = 0, thus there are m ways to represent 1 this way since any one of the m digits can take on the value 1 and all others must be = 0. Conversely, if one of the m digits is 1 and all the others are 0, they must add up to n = 1. We can also show this using the given formula,

$$\frac{(1+m-1)!}{1!(m-1)!} = \frac{m!}{(m-1)!} = m$$

iii $\forall m, n \in \mathbb{Z}^+, P(m+1, n) \land P(m, n+1) \Rightarrow P(m+1, n+1)$

Proof. Assume P(m+1,n): The number of ways to write $n=x_1+x_2+\cdots+x_{m+1}$ with $x_1,\ldots x_{m+1}\in\mathbb{N}$ using m+1 terms is

$$\frac{(n+m)!}{n!m!}$$

and assume P(m, n+1): The number of ways to write $n+1=x_1+x_2+\cdots+x_m$ with $x_1, \ldots x_m \in \mathbb{N}$ with m terms is

$$\frac{(n+m)!}{(n+1)!(m-1)!}$$

We want to show:

P(m+1, n+1): the number of ways to write $n+1=x_1+x_2+\cdots+x_{m+1}$

for some
$$x_1, x_2, \dots, x_{m+1} \in \mathbb{N}$$
 is $= \frac{(n+1+m)!}{(n+1)!m!}$

Since x_1 is a natural number, we know $x_1 \ge 0 \leftrightarrow x_1 = 0 \lor x_1 \ge 1$. Using this we can split up our domain of x_1 into two independent parts.

When $x_1 = 0$:

Starting with the LHS of WTS:

$$n+1 = x_1 + x_2 + \dots + x_{m+1}$$

Define x_i' such that $x_i' = x_{i+1}$ for $1 \le i \le m$.

$$n+1=0+x_2+\cdots+x_{m+1}=x_1'+x_2'+\cdots+x_m'$$

Since there are m terms in this equation, by our assumption that P(m, n+1) is True the number of ways to write n+1 with m terms is

$$\frac{(n+m)!}{(n+1)!(m-1)!}$$

When $x_1 \geq 1$:

In this situation, we consider what we want to prove:

$$n+1 = x_1 + x_2 + \dots + x_{m+1}$$

 $n = x_1 - 1 + x_2 + \dots + x_{m+1}$ (subtracting 1 from both sides)
 $n = (x_1 - 1) + x_2 + \dots + x_{m+1}$

We know: $x_1 \ge 1 \leftrightarrow x_1 - 1 \ge 0 \ (\in \mathbb{N})$

We then define $x_1'' = x_1 - 1$ and x_i'' such that $x_i'' = x_i$ for $2 \le i \le m + 1$. Then, we have the equation

$$n = x_1' + x_2' + \dots + x_{m+1}'$$

Since there are m+1 terms in this equation, by our assumption that P(m+1, n) is True, the number of ways to write n using m+1 terms is:

$$\frac{(n+m)!}{n!m!}$$

Therefore, the total number of solutions we have for the equation $n+1=x_1+x_2+\cdots+x_{m+1}$ when $x_1\geq 0$ will be the sum of the solutions to the same equation when $x_1=0$ and when $x_1\geq 1$

$$P(m, n + 1) + P(m + 1, n) = \frac{(n + m)!}{(n + 1)!(m - 1)!} + \frac{(n + m)!}{n!m!}$$

$$= \frac{(n + 1)(n + m)! + m(n + m)!}{(n + 1)n!m(m - 1)!}$$

$$= \frac{(n + 1 + m)(n + m)!}{(n + 1)!m!}$$

$$= \frac{(n + 1 + m)!}{(n + 1)!m!}$$

$$= P(m + 1, n + 1)$$

Which is exactly what we wanted to show.

(b) We will use the results from part (a) to prove $P(2,2) \wedge P(3,3)$.

Proof. From part a we know that $\forall n \in \mathbb{Z}^+, P(1,n)$ and $\forall n \in \mathbb{Z}^+, P(m,1)$ are True. Using these two facts, we know that the following are true:

- P(1,2)
- P(1,3)
- P(2,1)

From iii) we know that $\forall m, n \in \mathbb{Z}^+, P(m+1, n) \land P(m, n+1) \Rightarrow P(m+1, n+1)$. Using this and the true statements from above we can conclude the following:

$$P(1,2) \land P(2,1) \Rightarrow P(2,2)$$

$$P(3,1) \land P(2,2) \Rightarrow P(3,2)$$

$$P(2,2) \wedge P(1,3) \Rightarrow P(2,3)$$

$$P(3,2) \wedge P(2,3) \Rightarrow P(3,3)$$

Thus, P(3,3) is also True. This completes the proof.

(c) For $t \in \mathbb{Z}^+$ with $t \geq 2$, define Q(t) to be: $\forall m, n \in \mathbb{Z}^+, m+n=t \Rightarrow P(m,n)$. We will prove the following by induction: $\forall t \in \mathbb{Z}^+, t \geq 2 \Rightarrow Q(t)$.

Proof. Base Case. (t = 2)

The only possible values that m and n can have in this case are m = 1 and n = 1. We know that P(1,1) is True using our results from (1.a.i)

Inductive Step. Let $t_1 \in \mathbb{N}$. Assume $t_1 \geq 2$ and also assume $Q(t_1)$: $\forall m_1, n_1 \in \mathbb{Z}^+, m_1 + n_1 = t_1 \Rightarrow P(m_1, n_1)$

WTS: $Q(t_1+1)$: $\forall m_2, n_2 \in \mathbb{Z}^+, m_2+n_2=t_1+1 \Rightarrow P(m_2, n_2)$

- Let $m_2, n_2 \in \mathbb{Z}^+$
- Assume $m_2 + n_2 = t_1 \leftrightarrow m_2 + n_2 1 = t_1$.
- Since by our assumption, $t_1 \geq 2$, the values that m_2 and n_2 can take on can be split up into 3 cases

Case 1. $m_2 = 1 (\in \mathbb{Z}^+)$

Since this is the smallest value that m_2 can have, in this case for the expression m_2+n_2-1 to be equal to t_1 , it must stand that $n_2 \ge 2$.

Since $m_2 = 1$ and $n_2 \in \mathbb{Z}^+$, we know from (2.a.i) that $P(m_2, n_2) = P(1, n_2)$ is True.

Case 2. $n_2 = 1 (\in \mathbb{Z}^+)$

Since this is the smallest value that n_2 can have, in this case for the expression m_2+n_2-1 to be equal to t_1 , it must stand that $m_2 \geq 2$. Thus, we have that $n_2 = 1$ and $m_2 \geq 2$ in this case.

Since $n_2 = 1$ and $m_2 \in \mathbb{Z}^+$, we know from (2.a.ii) that $P(m_2, n_2) = P(m_2, 1)$ is True.

Case 3. $n_2 > 1 \land m_2 > 1$ In this case, the following statements are True using the induction hypothesis:

$$m_2 + (n_2 - 1) = t_1 \Rightarrow P(m_1, n_1 - 1)$$
 $(m_2, (n_2 - 1) \in \mathbb{Z}^+)$
 $(m_2 - 1) + n_2 = t_1 \Rightarrow P(m_2, n_2 - 1)$ $((m_2 - 1), n_2 \in \mathbb{Z}^+)$

Since both of these expressions are True in this case, by (2.a.iii), we can conclude that:

$$P(m_2-1,n_2) \wedge P(m_2,n_2-1) \Rightarrow P(m_2,n_2)$$

(d) We will use the results from previous parts to prove $\forall m, n \in \mathbb{Z}^+, P(m, n)$.

Proof. Let $m, n \in \mathbb{Z}^+$. We know that $m + n \ge 2$, and from (2.c), we know that this implies Q(m + n), i.e.:

$$\forall m', n' \in \mathbb{Z}^+, m' + n' = m + n \Rightarrow P(m', n')$$

Consider the instance when $m' = n \wedge n' = n$. In this case, P(m', n') = P(m, n), which is what we wanted to prove.

3 Asymptotic Notation

The following facts may be referenced in this section:

$$\forall n \in \mathbb{Z}, n \le 2^n \tag{Fact 1}$$

$$\forall x, y \in \mathbb{R}^+, x \le y \Leftrightarrow log_2(x) \le log_2(y)$$
 (Fact 2)

$$\forall x, y \in \mathbb{R}, x \le y \Leftrightarrow 2^x \le 2^y \tag{Fact 3}$$

(a) We will **prove** that $log_2(k+n) \in \mathcal{O}(log_2n)$, or that:

$$\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow \log_2(k+n) \le c \cdot \log_2(n)$$

Proof. Let k be an arbitrary \mathbb{R}^+ . Let c=2, where $c\in\mathbb{R}^+$. Let $n_0=\left\lceil\frac{1+\sqrt{1+4k}}{2}\right\rceil$, where $n_0\in\mathbb{R}^+$.

Assume that $n \ge n_0 \Leftrightarrow n \ge \left\lceil \frac{1 + \sqrt{1 + 4k}}{2} \right\rceil$

Want to prove: $\log_2(k+n) \leq \log_2(n^2)$.

Since k > 0,

$$k > 0$$

$$1 + 4k > 1$$

$$\sqrt{1 + 4k} > 1$$

$$1 - \sqrt{1 + 4k} < 0$$

$$\frac{1 - \sqrt{1 + 4k}}{2} < 0$$
(4)

We also know that:

$$\frac{1+\sqrt{1+4k}}{2} > \frac{1-\sqrt{1+4k}}{2}$$

Using our assumption and (4), we can conclude following:

$$n - \left(\frac{1 + \sqrt{1 + 4k}}{2}\right) > 0$$

$$n - \left(\frac{1 - \sqrt{1 + 4k}}{2}\right) > 0$$

Moreover, since the aforementioned terms are greater than 0, we can perform the following

arithmetic:

$$\left(n - \left(\frac{1 + \sqrt{1 + 4k}}{2} \right) \right) \cdot \left(n - \left(\frac{1 - \sqrt{1 + 4k}}{2} \right) \right) \ge 0$$

$$n^2 - n \cdot \left(\frac{1 - \sqrt{1 + 4k}}{2} \right) - n \cdot \left(\frac{1 + \sqrt{1 + 4k}}{2} \right) + \left(\frac{1 + \sqrt{1 + 4k}}{2} \right) \cdot \left(\frac{1 - \sqrt{1 + 4k}}{2} \right) \ge 0$$

$$n^2 + \frac{-n + n \cdot \sqrt{1 + 4k} - n - n \cdot \sqrt{1 + 4k}}{2} + \frac{1^2 - (\sqrt{1 + 4k})^2}{4} \ge 0$$

$$n^2 - \frac{2n}{2} + \frac{1 - 1 - 4k}{4} \ge 0$$

$$n^2 - n - k \ge 0$$

$$n^2 - n - k \ge 0$$

$$n^2 \ge n + k$$

Using Fact (2), we can also conclude that:

$$n^{2} \ge n + k \Leftrightarrow \log_{2}(n + k) \le \log_{2}(n^{2})$$
$$\Leftrightarrow \log_{2}(n + k) \le 2 \cdot \log_{2}(n)$$
$$\Leftrightarrow \log_{2}(n + k) \le c \cdot \log_{2}(n)$$

Thus, we have proven that: $\log_2(k+n) \leq \log_2(n^2)$.

(b) We will **disprove** that $n \in \Omega(n^{1+\epsilon})$, or that:

$$\forall c, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, n \ge n_0 \land n < c \cdot n^{1+\epsilon}$$

Proof. Let $\epsilon, c, n_0 \in \mathbb{R}^+$. Let $n = \left\lceil \frac{1}{c^{\frac{1}{\epsilon}}} + n_0 + 1 \right\rceil \in \mathbb{N}$.

Want to prove: $n \ge n_0$ and that $c < c \cdot n^{1+\epsilon}$.

Part 1: We will prove that $n \geq n_0$.

Since our choice of n depends on $\frac{1}{c_{\frac{1}{\ell}}}$, we will show that $\frac{1}{c_{\frac{1}{\ell}}} > 0$:

$$\begin{aligned} \epsilon &> 0 \\ \frac{1}{\epsilon} &> 0 \\ c^{\frac{1}{\epsilon}} &> 1 \\ 0 &< \frac{1}{c^{\frac{1}{\epsilon}}} &< 1 \end{aligned}$$

Thus, since n is the ceiling of the sum of positive real numbers (including n_0), we can conclude that $n \ge n_0$.

Part 2: We will prove that $n < c \cdot n^{1+\epsilon}$.

Before continuing with the proof, we will prove that $\frac{c}{n^{\epsilon}}$ is a positive real number. Since ϵ is a positive real number, we can perform the following arithmetic operations:

$$\epsilon > 0$$

$$n^{\epsilon} > 1$$

$$0 < \frac{1}{n^{\epsilon}} < 1$$
(6)

Moreover, since c is a positive real number and (6) is True, we can conclude that $\frac{c}{n^{\epsilon}} > 0$.

By our choice of n, and from our conclusion in **part 1** that n consists of positive terms (including $\frac{1}{c^{\frac{1}{\epsilon}}}$), we can perform the following arithmetic operations:

$$n > \frac{1}{c^{\frac{1}{\epsilon}}}$$

$$n^{\epsilon} > \frac{1}{c}$$
 (raise inequality to the power of ϵ)
$$c > \frac{1}{n^{\epsilon}}$$
 (multiply by $\frac{c}{n^{\epsilon}} > 0$)
$$c > n^{-\epsilon}$$

$$c > n^{1-1-\epsilon}$$

$$c > n^{1-(1+\epsilon)}$$

$$c > \frac{n}{n^{1+\epsilon}}$$
 (since $n^{1+\epsilon} > 0$)

Thus, we have proven that $n \ge n_0$ and that $n < c \cdot n^{1+\epsilon}$.

4 More Asymptotic Notations

(a) We will **prove** that if $f + g \in \mathcal{O}(h)$, then $f \in \mathcal{O}(h)$ and $g \in \mathcal{O}(h)$.

Proof. Let $f, g, h : \mathbb{N} \to \mathbb{R}^{\geq 0}$. Assume that $f + g \in \mathcal{O}(h)$, or that:

$$\exists c_0, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow (f+g)(n) \le c \cdot h(n)$$

We know that the definition of the sum of f and g is:

$$\forall n \in \mathbb{N}, (f+q)(n) = f(n) + q(n)$$

Want to prove:

$$f \in \mathcal{O}(h)$$
: $\exists c_1, n_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_1 \Rightarrow f(n) \leq c_1 \cdot h(n)$

and

$$g \in \mathcal{O}(h)$$
: $\exists c_2, n_2 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_2 \Rightarrow g(n) \le c_2 \cdot h(n)$

Proof that $f \in \mathcal{O}(h)$, i.e., $\exists c_1, n_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, f(n) \leq c_1 \cdot h(n)$.

From our assumption, we know that $f(n) + g(n) \le c_0 \cdot h(n)$.

Let $c_1 = c_0$. Let $n_1 = n_0$. Let $n \in \mathbb{N}$.

Since $n \ge n_1 = n_0$, using our assumption we know that $f(n) + g(n) \le c_0 \cdot h(n)$.

Since $g(n) \in \mathbb{R}^{\geq 0}$ (by the definition of the function), we know that if we subtract g(n) from the left side, it would become even smaller and the inequality would still hold, i.e.:

$$f(n) + g(n) \le c_0 \cdot h(n)$$

 $f(n) \le c_0 \cdot h(n)$ (subtract $g(n)$ from the left side)
 $f(n) \le c_1 \cdot h(n)$ (since $c_1 = c_0$)

Proof that $g \in \mathcal{O}(h)$, i.e., $\exists c_2, n_2 \in \mathbb{R}^+, \forall n \in \mathbb{N}, g(n) \leq c_2 \cdot h(n)$.

From our assumption, we know that $f(n) + g(n) \le c_0 \cdot h(n)$.

Let $c_2 = c_0$. Let $n_2 = n_0$. Let $n \in \mathbb{N}$.

Since $n \ge n_2 = n_0$, using our assumption, we know that $f(n) + g(n) \le c_0 \cdot h(n)$. Since $f(n) \in \mathbb{R}^{\ge 0}$ (by the definition of the function), we know that if we subtract f(n) from the left side, it would become even smaller and the inequality would still hold, i.e.:

$$f(n) + g(n) \le c_0 \cdot h(n)$$

 $g(n) \le c_0 \cdot h(n)$ (subtract $f(n)$ from the left side)
 $g(n) \le c_1 \cdot h(n)$ (since $c_1 = c_0$)

Thus, we have proven that $f(n) \leq c_1 \cdot h(n)$ and $g(n) \leq c_2 \cdot h(n)$.

(b) For all functions $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$, we define the product function $f \cdot g : \mathbb{N} \to \mathbb{R}^{\geq 0}$ as follows:

$$\forall n \in \mathbb{N}, (f \cdot g)(n) = f(n) \cdot g(n).$$

Let $f, g, h : \mathbb{N} \to \mathbb{R}^{\geq 0}$. We will **disprove** that if $f \cdot g \in \mathcal{O}(h)$, then $f \in \mathcal{O}(h)$ and $g \in \mathcal{O}(h)$.

Want to prove: $\exists f, g, h : \mathbb{N} \to \mathbb{R}^{\geq 0}, f \cdot g \in \mathcal{O}(h) \land (f \notin \mathcal{O}(h) \lor g \notin \mathcal{O}(h))$

Proof. Let $n \in \mathbb{N}$. Let $g(n) = n^2$. Let h(n) = n. Let f(n) be the piece-wise function defined by:

$$\begin{cases} f(n) = 0 & \text{when } n = 0 \\ f(n) = \frac{1}{n} & \text{when } n \ge 1 \end{cases}$$

Want to prove: $f \cdot g \in \mathcal{O}(h) \land (f \notin \mathcal{O}(h) \lor g \notin \mathcal{O}(h))$

Proof that $f \cdot g \in \mathcal{O}(h)$, i.e., $\exists c_0, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow (f \cdot g)(n) \leq c_0 \cdot h(n)$.

By definition of product functions, we know $(f \cdot g)(n) = f(n) \cdot g(n)$.

Let $c_0 = 1$. Let $n_0 = 1$. Let $n \in \mathbb{N}$.

From our assumption that $n \geq n_0$, we can infer the following:

$$n \ge 1$$

$$\Leftrightarrow 0 < \frac{1}{n} \le 1 \tag{1}$$

Moreover, from our assumption:

$$n^2 \ge 1 > 0 \tag{2}$$

We can then conclude the following:

$$f(n) \cdot g(n) = \frac{1}{n} \cdot n^2 \ge 0$$
 (using (1) and (2))

Want to prove: $f(n) \cdot g(n) \le c_0 \cdot h(n)$.

We can perform arithmetic operations on the product functions to prove this:

$$f(n) \cdot g(n) = \frac{1}{n} \cdot n^{2}$$

$$= 1 \cdot n^{2-1}$$

$$= n$$

$$\leq 1 \cdot n$$

$$= c_{0} \cdot h(n)$$
 (from our choice of c_{0} and $h(n)$)

Proof that $f \notin \mathcal{O}(h) \vee g \notin \mathcal{O}(h)$:

Want to prove: $g \notin \mathcal{O}(h)$, i.e.,

$$\forall c_1, n_1 \in \mathbb{R}^+, \exists n \in \mathbb{N}, n \geq n_1 \land g(n) \geq c_1 \cdot h(n)$$

Let $c_1, n_1 \in \mathbb{R}^+$. Let $n = \lceil c_1 + n_1 + 1 \rceil$, where $n \in \mathbb{N}$.

Want to prove: $n \ge n_1 \land g(n) \ge c_1 \cdot h(n)$.

By our choice of n, we know that $n \geq n_1$ is True.

By our choice of n, we also know the following:

$$c_1 \le n$$

$$c_1 \cdot n \le n^2$$

$$c_1 \cdot h(n) \le g(n)$$

Thus, we have proven that $f \cdot g \in \mathcal{O}(h)$ and that $g \notin \mathcal{O}(h)$.