Path Tracer Denoising

Milestone 1

Motivation

There's an academic arms race to produce the best real-time denoised image from 1 sample per pixel (spp) path traced images. Every new paper like this brings us closer to an ideal solution that can be baked into silicon (mobile raytracing for the masses!)

Dimitri Diakopoulos (@ddiakopoulos)

Machine Learning Techniques

Spatial-temporal Techniques

MS1 Progress

✓ Read papers!

Path Tracing Front

- ✓ Set-up project framework (based on HW3)
- ✓ New features: MIS, KD-Tree

Spatiotemporal Front

✓ Implemented À-Trous spatial filtering

Machine Learning Front

✓ Set up training environment

Interactive Spatial Filtering

À-Trous Wavelet Transform

Denoising Network

Work In Progress

Bako S, Vogels T, McWilliams B, et al. **Kernel-predicting convolutional networks for denoising Monte Carlo renderings**[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 97.

•Milestone 1(done!)

- Revised codes from hw3 to generate data for next milestone
- Write machine learning framework code
- Write basic spatial filter

Milestone 2

- Add texture to the path tracer and generate image data from path tracer
- Build and train denoising neural network on PyTorch first for proof of concept
- Deploy network in C++ API
- Finish SVGF(maybe in general, some details still need to change)

Milestone 3

- Unfinished part from milestone 2
- Achieve real-time denoising for static scenes

Final Presentation

- Build more scenes
- Optimize performance