Assignment

Practical Assignment #4

Felix Strobel und Gabriel Cevallos June 1, 2021

Examiner: Prof. Dr. Peter Krzystek

Contents

1	Inpu	Data	6		
	1.1	Problem 1: Simple network	6		
	1.2	Problem 2: Backpropagation	6		
	1.3	Problem 3: Artificial neural network	7		
	1.4	Problem 4: Gradient Descent	7		
2	Methods				
	2.1	Problem 1: Simple network	9		
	2.2	Problem 2: Backpropagation	9		
	2.3	Problem 3: Artificial neural network	9		
	2.4	Problem 4: Gradient Descent	9		
3	Results				
	3.1	Problem 1: Simple network	10		
	3.2	Problem 2: Backpropagation	10		
	3.3	Problem 3: Artificial neural network	10		
	3.4	Problem 4: Gradient Descent	10		
4	Discussion				
	4.1	Problem 1: Simple network	11		
	4.2	Problem 2: Backpropagation	11		
	4.3	Problem 3: Artificial neural network			
	4.4	Problem 4: Gradient Descent	11		
5	Sou	cecode	12		
6	Rih		12		

List of Figures

1.1	Simple neural network for problem 1	6
1.2	Data provided for problem 1	7
1.3	Single neuron for problem 2	8
1.4	Generated input data of problem 4	8

List of Tables

1 Input Data

1.1 Problem 1: Simple network

In the first problem a small neural network with 4 Layers was provided. In addition

Figure 1.1: Simple neural network for problem 1

the input values and the weights for the connections of the fully connected layers were provided.

1.2 Problem 2: Backpropagation

Similarly to the first problem a small neural network was provided, in this case the network consists only of a single neuron with two inputs and an activation function Z.

Input layer:

$$X_1 = 0.7$$
, $X_2 = 0.7$

Weights between Input layer – 1st hidden layer:

```
W_{11} = 0.9, W_{12} = 0.3, W_{13} = 0.9

W_{21} = 0.1, W_{22} = 0.2, W_{23} = 0.4
```

Weights between 1st hidden layer - 2nd hidden layer:

```
W_{11} = 0.1, W_{12} = 0.8, W_{13} = 0.4

W_{21} = 0.5, W_{22} = 0.1, W_{23} = 0.6

W_{31} = 0.6, W_{32} = 0.7, W_{33} = 0.3
```

Weights between 2nd hidden layer and output layer:

$$W_{11} = 0.5$$
, $W_{21} = 0.7$, $W_{31} = 0.3$

Figure 1.2: Data provided for problem 1

1.3 Problem 3: Artificial neural network

For the third problem a small neural network with 3 Layers was provided in form of a python script using the Pytorch library, in addition to the network a dataset called **One-hundred plant species leaves data set Data Set**. This dataset contains the leaves of 100 different plant species each represented with 16 examples of real leaves, which are themselves represented by a feature vector with 64 different elements representing different features.

1.4 Problem 4: Gradient Descent

The input data set consists of 1000 generated points with a X value between -5 and 5. The Y value is calculated with the formula y = mx + c where m and c are assumed by us. Applying a random noise leads to the dataset which is shown in Figure 1.4

Further a jupy ter notebook is provided which generate these data and provides a script which only need to be completed with the calculation of the gradient and updating and weight update for m and c.

Figure 1.3: Single neuron for problem 2

Figure 1.4: Generated input data of problem 4

2 Methods

2.1 Problem 1: Simple network

The task of problem 1 is to calculate the output of the given network using matrix operations. In order to execute the operations firstly the operation should be defined. It can be formulated as $x_j = f(x_i * w_{ij})$ with x_j being the output of layer j, x_i being the output of layer i, w_{ij} being the weight matrix for the connections between the layers i and j and f() being the activation function of layer j which in our case is always the sigmoid function.

The matrices for the steps are the following:

- The input vector $x_0 = \begin{bmatrix} 0.7 & 0.5 \end{bmatrix}$
- The weight matrix $w_0 1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- The weight matrix $w_1 2 = \begin{bmatrix} 0.9 & 0.3 & 0.9 \\ 0.1 & 0.2 & 0.4 \end{bmatrix}$
- The weight matrix $w_2 3 = \begin{bmatrix} 0.1 & 0.8 & 0.4 \\ 0.5 & 0.1 & 0.6 \\ 0.6 & 0.7 & 0.3 \end{bmatrix}$
- The weight matrix $w_34 = [0.5 \ 0.7 \ 0.3]$

The final equation can be summarized as: $f(f(f(x_0 * w_0 1) * w_1 2) * w_2 3) * w_3 4$

- 2.2 Problem 2: Backpropagation
- 2.3 Problem 3: Artificial neural network
- 2.4 Problem 4: Gradient Descent

3 Results

- 3.1 Problem 1: Simple network
- 3.2 Problem 2: Backpropagation
- 3.3 Problem 3: Artificial neural network
- 3.4 Problem 4: Gradient Descent

4 Discussion

- 4.1 Problem 1: Simple network
- 4.2 Problem 2: Backpropagation
- 4.3 Problem 3: Artificial neural network
- 4.4 Problem 4: Gradient Descent

Sourcecode

6 Bib

- the answer $\left[1\right]$

Bibliography

 $[1]\,$ Douglas Adams. The hitch hiker's guide to the galaxy. Pan Books, London, 2009.