# STATISTICAL CONSULTING HW1

# Data Analysis of titanic

# ${\rm Jen~Wei, Lee}({\rm RE}6131024)$

## 2025-02-27

# Table of contents

| Exploratory Data Analysis(EDA)               | 2    |
|----------------------------------------------|------|
| How many Survived??                          | . 2  |
| The Age, Cabin and Embarked have null values | . 3  |
| Analysing The Features                       | 3    |
| Sex-> Categorical Feature                    | . 3  |
| Pclass -> Ordinal Feature                    | . 4  |
| Age-> Continous Feature                      | . 6  |
| name—> Filling NaN Ages                      | . 7  |
| Embarked-> Categorical Value                 | . 8  |
| Filling Embarked NaN                         | . 10 |
| SibSip->Discrete Feature                     | . 11 |
| Parch                                        |      |
| Fare-> Continous Feature                     |      |
| Observations in a Nutshell for all features: |      |
| Correlation Between The Features             | . 14 |
| Feature Engineering and Data Cleaning        | 14   |
| Age_band                                     |      |
| Family_Size and Alone                        |      |
| Fare_Range                                   |      |
| Converting String Values into Numeric        |      |
| Predictive Modeling                          | 18   |
| Radial Support Vector Machines(rbf-SVM)      |      |
| Linear Support Vector Machine(linear-SVM)    |      |
| Logistic Regression                          |      |
| Decision Tree                                |      |
| K-Nearest Neighbours(KNN)                    | . 19 |
| Gaussian Naive Bayes                         | . 20 |
| Random Forests                               |      |
| Cross Validation                             | . 21 |
| Confusion Matrix                             |      |
| Hyper-Parameters Tuning                      | . 23 |
| Voting Classifier                            |      |
| Bagging                                      |      |
| Boosting                                     | . 25 |
| Feature Importance                           | . 26 |

## Exploratory Data Analysis(EDA)

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('fivethirtyeight')
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
data=pd.read_csv('./train.csv')
data.head()
```

|   | PassengerId | Survived | Pclass | Name                                           | Sex                | Age  | SibSp | Parch |
|---|-------------|----------|--------|------------------------------------------------|--------------------|------|-------|-------|
| 0 | 1           | 0        | 3      | Braund, Mr. Owen Harris                        | male               | 22.0 | 1     | 0     |
| 1 | 2           | 1        | 1      | Cumings, Mrs. John Bradley (Florence Briggs Th | female             | 38.0 | 1     | 0     |
| 2 | 3           | 1        | 3      | Heikkinen, Miss. Laina                         | female             | 26.0 | 0     | 0     |
| 3 | 4           | 1        | 1      | Futrelle, Mrs. Jacques Heath (Lily May Peel)   | female             | 35.0 | 1     | 0     |
| 4 | 5           | 0        | 3      | Allen, Mr. William Henry                       | $_{\mathrm{male}}$ | 35.0 | 0     | 0     |

## How many Survived??

```
f,ax=plt.subplots(1,2,figsize=(18,8))
data['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=True)
ax[0].set_title('Survived')
ax[0].set_ylabel('')
sns.countplot(x='Survived', data=data, ax=ax[1])
ax[1].set_title('Survived')
plt.show()
```



## The Age, Cabin and Embarked have null values.

```
data.isnull().sum()
PassengerId
                 0
Survived
Pclass
                 0
                 0
Name
Sex
                 0
               177
Age
                 0
SibSp
Parch
                 0
Ticket
                 0
Fare
                 0
Cabin
               687
                 2
Embarked
dtype: int64
```

## **Analysing The Features**

## Sex-> Categorical Feature

```
data.groupby(['Sex','Survived'])['Survived'].count()
Sex
        Survived
female
                     81
        1
                    233
male
        0
                    468
                    109
        1
Name: Survived, dtype: int64
f,ax=plt.subplots(1,2,figsize=(18,8))
data[['Sex','Survived']].groupby(['Sex']).mean().plot.bar(ax=ax[0])
ax[0].set_title('Survived vs Sex')
sns.countplot(x = 'Sex',hue='Survived',data=data,ax=ax[1])
ax[1].set_title('Sex:Survived vs Dead')
plt.show()
```



### Pclass -> Ordinal Feature

pd.crosstab(data.Pclass,data.Survived,margins=True).style.background\_gradient(cmap='summer\_r')

Table 2

| Survived<br>Pclass | 0   | 1   | All |
|--------------------|-----|-----|-----|
| 1                  | 80  | 136 | 216 |
| 2                  | 97  | 87  | 184 |
| 3                  | 372 | 119 | 491 |
| All                | 549 | 342 | 891 |

```
f,ax=plt.subplots(1,2,figsize=(18,8))
data['Pclass'].value_counts().plot.bar(color=['#CD7F32','#FFDF00','#D3D3D3'],ax=ax[0])
ax[0].set_title('Number Of Passengers By Pclass')
ax[0].set_ylabel('Count')
sns.countplot(x = 'Pclass',hue='Survived',data=data,ax=ax[1])
ax[1].set_title('Pclass:Survived vs Dead')
plt.show()
```



pd.crosstab([data.Sex,data.Survived],data.Pclass,margins=True).style.background\_gradient(cmap='summer\_r

Table 3

| Sex    | Pclass<br>Survived | 1        |
|--------|--------------------|----------|
| female | 0<br>1             | 3<br>91  |
| male   | 0                  | 77<br>45 |
| All    | 1                  | 21       |

```
sns.catplot(x='Pclass', y='Survived', hue='Sex', data=data, kind='point')
plt.show()
```



```
Age-> Continous Feature

print('Oldest Passenger was of:',data['Age'].max(),'Years')
print('Youngest Passenger was of:',data['Age'].min(),'Years')
print('Average Age on the ship:',data['Age'].mean(),'Years')

Oldest Passenger was of: 80.0 Years
Youngest Passenger was of: 0.42 Years
Average Age on the ship: 29.69911764705882 Years

f, ax = plt.subplots(1, 2, figsize=(18, 8))
sns.violinplot(x="Pclass", y="Age", hue="Survived", data=data, split=True, ax=ax[0])
ax[0].set_title('Pclass and Age vs Survived')
ax[0].set_yticks(range(0, 110, 10))
sns.violinplot(x="Sex", y="Age", hue="Survived", data=data, split=True, ax=ax[1])
ax[1].set_title('Sex and Age vs Survived')
ax[1].set_yticks(range(0, 110, 10))
plt.show()
```



#### name-> Filling NaN Ages

```
data['Initial']=0
for i in data:
    data['Initial']=data.Name.str.extract('([A-Za-z]+)\.')
```

pd.crosstab(data.Initial,data.Sex).T.style.background\_gradient(cmap='summer\_r')

Table 4

| Initial<br>Sex | Capt | Col | Countess | Don | Dr | Jonkheer | Lady | Major | Master | Miss | Mlle | Mme | Mr  | Mrs | Ms |
|----------------|------|-----|----------|-----|----|----------|------|-------|--------|------|------|-----|-----|-----|----|
| female         | 0    | 0   | 1        | 0   | 1  | 0        | 1    | 0     | 0      | 182  | 2    | 1   | 0   | 125 | 1  |
| male           | 1    | 2   | 0        | 1   | 6  | 1        | 0    | 2     | 40     | 0    | 0    | 0   | 517 | 0   | 0  |

#### data.groupby('Initial')['Age'].mean()

#### Initial

Master 4.574167 Miss 21.860000 Mr 32.739609 Mrs 35.981818 Other 45.888889

Name: Age, dtype: float64

```
data.loc[(data.Age.isnull())&(data.Initial=='Mr'),'Age']=33
data.loc[(data.Age.isnull())&(data.Initial=='Mrs'),'Age']=36
data.loc[(data.Age.isnull())&(data.Initial=='Master'),'Age']=5
data.loc[(data.Age.isnull())&(data.Initial=='Miss'),'Age']=22
data.loc[(data.Age.isnull())&(data.Initial=='Other'),'Age']=46
```

```
data.Age.isnull().any()
```

#### False

```
f,ax=plt.subplots(1,2,figsize=(20,10))
data[data['Survived']==0].Age.plot.hist(ax=ax[0],bins=20,edgecolor='black',color='red')
ax[0].set_title('Survived= 0')
x1=list(range(0,85,5))
ax[0].set_xticks(x1)
data[data['Survived']==1].Age.plot.hist(ax=ax[1],color='green',bins=20,edgecolor='black')
ax[1].set_title('Survived= 1')
x2=list(range(0,85,5))
ax[1].set_xticks(x2)
plt.show()
```



sns.catplot(x='Pclass', y='Survived', col='Initial', data=data, kind='point')
plt.show()



#### Embarked-> Categorical Value

Table 5

| Embarked     | Sex for Survived 0 Pclass |
|--------------|---------------------------|
|              | 1 1                       |
| $\mathbf{C}$ | 2 	 0                     |
|              | 3 8                       |
|              | 1 0                       |
| Q            | 2 	 0                     |
|              | 3 9                       |
|              | 1 2                       |
| S            | 2 6                       |
|              | 3 5                       |
| All          | 8                         |

## Chances for Survival by Port Of Embarkation

```
sns.catplot(x='Embarked', y='Survived', data=data, kind='point')
fig=plt.gcf()
fig.set_size_inches(5,3)
plt.show()
```



```
f,ax=plt.subplots(2,2,figsize=(20,15))
sns.countplot(x ='Embarked',data=data,ax=ax[0,0])
ax[0,0].set_title('No. Of Passengers Boarded')
sns.countplot(x ='Embarked',hue='Sex',data=data,ax=ax[0,1])
ax[0,1].set_title('Male-Female Split for Embarked')
sns.countplot(x ='Embarked',hue='Survived',data=data,ax=ax[1,0])
ax[1,0].set_title('Embarked vs Survived')
sns.countplot(x ='Embarked',hue='Pclass',data=data,ax=ax[1,1])
ax[1,1].set_title('Embarked vs Pclass')
plt.subplots_adjust(wspace=0.2,hspace=0.5)
plt.show()
```



sns.catplot(x='Pclass', y='Survived', hue='Sex', col='Embarked', data=data, kind='point')
plt.show()



## Filling Embarked NaN

As we saw that maximum passengers boarded from Port S, we replace NaN with S.

data['Embarked'].fillna('S',inplace=True)
data.Embarked.isnull().any()

False

### SibSip->Discrete Feature

Table 6

| Survived<br>SibSp | 0   | 1   |
|-------------------|-----|-----|
|                   |     |     |
| 0                 | 398 | 210 |
| 1                 | 97  | 112 |
| 2                 | 15  | 13  |
| 3                 | 12  | 4   |
| 4                 | 15  | 3   |
| 5                 | 5   | 0   |
| 8                 | 7   | 0   |
|                   |     |     |

```
f, ax = plt.subplots(1, 2, figsize=(15, 5))

# First subplot - barplot
sns.barplot(x='SibSp', y='Survived', data=data, ax=ax[0])
ax[0].set_title('SibSp vs Survived')

# Second subplot - using catplot instead of factorplot
sns.pointplot(x='SibSp', y='Survived', data=data, ax=ax[1])
ax[1].set_title('SibSp vs Survived')

plt.show()
```



Table 7

| Pclass<br>SibSp | 1   | 2   | 3   |
|-----------------|-----|-----|-----|
| 0               | 137 | 120 | 351 |

| Pclass                 | 1  | 2  | 3  |
|------------------------|----|----|----|
| $\operatorname{SibSp}$ |    |    |    |
| 1                      | 71 | 55 | 83 |
| 2                      | 5  | 8  | 15 |
| 3                      | 3  | 1  | 12 |
| 4                      | 0  | 0  | 18 |
| 5                      | 0  | 0  | 5  |
| 8                      | 0  | 0  | 7  |
|                        |    |    |    |

### Parch

Table 8

| Pclass | 1   | 2   | 3   |
|--------|-----|-----|-----|
| Parch  |     |     |     |
| 0      | 163 | 134 | 381 |
| 1      | 31  | 32  | 55  |
| 2      | 21  | 16  | 43  |
| 3      | 0   | 2   | 3   |
| 4      | 1   | 0   | 3   |
| 5      | 0   | 0   | 5   |
| 6      | 0   | 0   | 1   |
|        |     |     |     |

```
f,ax=plt.subplots(1,2,figsize=(20,8))
sns.barplot(x='Parch',y='Survived',data=data,ax=ax[0])
ax[0].set_title('Parch vs Survived')
sns.pointplot(x='Parch',y='Survived',data=data,ax=ax[1])
ax[1].set_title('Parch vs Survived')
plt.close(2)
plt.show()
```



#### Fare-> Continous Feature

```
print('Highest Fare was:',data['Fare'].max())
print('Lowest Fare was:',data['Fare'].min())
print('Average Fare was:',data['Fare'].mean())
Highest Fare was: 512.3292
Lowest Fare was: 0.0
Average Fare was: 32.204207968574636
f, ax = plt.subplots(1, 3, figsize=(20, 8))
# Plot for Pclass 1
sns.histplot(data=data[data['Pclass']==1], x='Fare', kde=True, ax=ax[0])
ax[0].set_title('Fares in Pclass 1')
# Plot for Pclass 2
sns.histplot(data=data[data['Pclass']==2], x='Fare', kde=True, ax=ax[1])
ax[1].set title('Fares in Pclass 2')
# Plot for Pclass 3
sns.histplot(data=data[data['Pclass']==3], x='Fare', kde=True, ax=ax[2])
ax[2].set_title('Fares in Pclass 3')
plt.tight_layout()
plt.show()
```



#### Observations in a Nutshell for all features:

 $\mathbf{Sex} \colon$  The chance of survival for women is high as compared to men.

**Pclass**:There is a visible trend that being a 1st class passenger gives you better chances of survival. The survival rate for **Pclass3** is very low. For women, the chance of survival from Pclass1 is almost 1 and is high too for those from Pclass2. **Money Wins**!!!.

**Age**: Children less than 5-10 years do have a high chance of survival. Passengers between age group 15 to 35 died a lot.

**Embarked**: This is a very interesting feature. The chances of survival at C looks to be better than even though the majority of Pclass1 passengers got up at S. Passengers at Q were all from Pclass3.

**Parch+SibSp**: Having 1-2 siblings, spouse on board or 1-3 Parents shows a greater chance of probablity rather than being alone or having a large family travelling with you.

#### Correlation Between The Features

```
numeric_columns = data.select_dtypes(include=['float64', 'int64']).columns
correlation_matrix = data[numeric_columns].corr()
sns.heatmap(correlation_matrix,annot=True,cmap='RdYlGn',linewidths=0.2)
fig=plt.gcf()
fig.set_size_inches(10,8)
plt.show()
```



# Feature Engineering and Data Cleaning

## Age\_band

```
data['Age_band']=0
data.loc[data['Age']<=16,'Age_band']=0
data.loc[(data['Age']>16)&(data['Age']<=32),'Age_band']=1
data.loc[(data['Age']>32)&(data['Age']<=48),'Age_band']=2</pre>
```

```
data.loc[(data['Age']>48)&(data['Age']<=64),'Age_band']=3
data.loc[data['Age']>64,'Age_band']=4
data.head(2)
```

|   | PassengerId | Survived | Pclass | Name                                           | Sex    | Age  | $\operatorname{SibSp}$ | Parch |
|---|-------------|----------|--------|------------------------------------------------|--------|------|------------------------|-------|
| 0 | 1           | 0        | 3      | Braund, Mr. Owen Harris                        | male   | 22.0 | 1                      | 0     |
| 1 | 2           | 1        | 1      | Cumings, Mrs. John Bradley (Florence Briggs Th | female | 38.0 | 1                      | 0     |

data['Age\_band'].value\_counts().to\_frame().style.background\_gradient(cmap='summer')

Table 10

|          | count |
|----------|-------|
| Age_band |       |
| 1        | 382   |
| 2        | 325   |
| 0        | 104   |
| 3        | 69    |
| 4        | 11    |
|          |       |

sns.catplot(x='Age\_band',y='Survived',data=data,col='Pclass',kind='point')
plt.show()



## Family\_Size and Alone

```
data['Family_Size']=0
data['Family_Size']=data['Parch']+data['SibSp']#family size
data['Alone']=0
data.loc[data.Family_Size==0,'Alone']=1#Alone

f,ax=plt.subplots(1,2,figsize=(18,6))
sns.pointplot(x='Family_Size',y='Survived',data=data,ax=ax[0])
ax[0].set_title('Family_Size vs Survived')
sns.pointplot(x='Alone',y='Survived',data=data,ax=ax[1])
ax[1].set_title('Alone vs Survived')
plt.close(2)
plt.close(3)
plt.show()
```



sns.catplot(x='Alone', y='Survived', hue='Sex', col='Pclass', data=data, kind='point')
plt.show()



## Fare\_Range

```
data['Fare_Range']=pd.qcut(data['Fare'],4)
data.groupby(['Fare_Range'])['Survived'].mean().to_frame().style.background_gradient(cmap='summer_r')
```

Table 11

|                 | Survived |
|-----------------|----------|
| $Fare\_Range$   |          |
| (-0.001, 7.91]  | 0.197309 |
| (7.91, 14.454]  | 0.303571 |
| (14.454, 31.0]  | 0.454955 |
| (31.0, 512.329] | 0.581081 |

```
data['Fare_cat']=0
data.loc[data['Fare']<=7.91,'Fare_cat']=0
data.loc[(data['Fare']>7.91)&(data['Fare']<=14.454),'Fare_cat']=1
data.loc[(data['Fare']>14.454)&(data['Fare']<=31),'Fare_cat']=2
data.loc[(data['Fare']>31)&(data['Fare']<=513),'Fare_cat']=3
sns.catplot(x='Fare_cat', y='Survived', data=data, hue='Sex', kind='point')
plt.show()</pre>
```



## Converting String Values into Numeric

```
data['Sex'].replace(['male','female'],[0,1],inplace=True)
data['Embarked'].replace(['S','C','Q'],[0,1,2],inplace=True)
data['Initial'].replace(['Mr','Mrs','Miss','Master','Other'],[0,1,2,3,4],inplace=True)

data.drop(['Name','Age','Ticket','Fare','Cabin','Fare_Range','PassengerId'],axis=1,inplace=True)
sns.heatmap(data.corr(),annot=True,cmap='RdYlGn',linewidths=0.2,annot_kws={'size':20})
fig=plt.gcf()
fig.set_size_inches(18,15)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.show()
```

|             |          |        |       |        |        |          |         |          |             |       |          | 1.0  |
|-------------|----------|--------|-------|--------|--------|----------|---------|----------|-------------|-------|----------|------|
| Survived    | 1        | -0.34  | 0.54  | -0.035 | 0.082  | 0.11     | 0.43    | -0.11    | 0.017       | -0.2  | 0.3      |      |
| Pclass      | -0.34    | 1      | -0.13 | 0.083  | 0.018  | 0.046    | -0.047  | -0.31    | 0.066       | 0.14  | -0.63    | 0.8  |
| Sex         | 0.54     | -0.13  | 1     | 0.11   | 0.25   | 0.12     | 0.63    | -0.15    | 0.2         | -0.3  | 0.25     | 0.6  |
| SibSp       | -0.035   | 0.083  | 0.11  | 1      | 0.41   | -0.06    | 0.29    | -0.26    | 0.89        | -0.58 | 0.39     | 0.4  |
| Parch       | 0.082    | 0.018  | 0.25  | 0.41   | 1      | -0.079   | 0.31    | -0.2     | 0.78        | -0.58 | 0.39     |      |
| Embarked    | 0.11     | 0.046  | 0.12  | -0.06  | -0.079 | 1        | 0.12    | 0.024    | -0.08       | 0.018 | -0.091   | 0.2  |
| Initial     | 0.43     | -0.047 | 0.63  | 0.29   | 0.31   | 0.12     | 1       | -0.39    | 0.35        | -0.32 | 0.24     | 0.0  |
| Age_band    | -0.11    | -0.31  | -0.15 | -0.26  | -0.2   | 0.024    | -0.39   | 1        | -0.27       | 0.2   | 0.025    | -0.2 |
| Family_Size | 0.017    | 0.066  | 0.2   | 0.89   | 0.78   | -0.08    | 0.35    | -0.27    | 1           | -0.69 | 0.47     |      |
| Alone       | -0.2     | 0.14   | -0.3  | -0.58  | -0.58  | 0.018    | -0.32   | 0.2      | -0.69       | 1     | -0.57    | -0.4 |
| Fare_cat    | 0.3      | -0.63  | 0.25  | 0.39   | 0.39   | -0.091   | 0.24    | 0.025    | 0.47        | -0.57 | 1        | -0.6 |
|             | Survived | Pclass | Sex   | SibSp  | Parch  | Embarked | Initial | Age_band | Family_Size | Alone | Fare_cat |      |

# **Predictive Modeling**

```
#importing all the required ML packages
from sklearn.linear_model import LogisticRegression #logistic regression
from sklearn import svm #support vector Machine
from sklearn.ensemble import RandomForestClassifier #Random Forest
from sklearn.neighbors import KNeighborsClassifier #KNN
from sklearn.naive_bayes import GaussianNB #Naive bayes
from sklearn.tree import DecisionTreeClassifier #Decision Tree
from sklearn.model_selection import train_test_split #training and testing data split
from sklearn import metrics #accuracy measure
from sklearn.metrics import confusion_matrix #for confusion matrix
```

## Radial Support Vector Machines(rbf-SVM)

```
train,test=train_test_split(data,test_size=0.3,random_state=0,stratify=data['Survived'])
train X=train[train.columns[1:]]
```

```
train_Y=train[train.columns[:1]]
test_X=test[test.columns[1:]]
test_Y=test[test.columns[:1]]
X=data[data.columns[1:]]
Y=data['Survived']

model=svm.SVC(kernel='rbf',C=1,gamma=0.1)
model.fit(train_X,train_Y)
prediction1=model.predict(test_X)
print('Accuracy for rbf SVM is ',metrics.accuracy_score(prediction1,test_Y))
```

Accuracy for rbf SVM is 0.835820895522388

#### Linear Support Vector Machine(linear-SVM)

```
model=svm.SVC(kernel='linear',C=0.1,gamma=0.1)
model.fit(train_X,train_Y)
prediction2=model.predict(test_X)
print('Accuracy for linear SVM is',metrics.accuracy_score(prediction2,test_Y))
```

Accuracy for linear SVM is 0.8171641791044776

## Logistic Regression

```
model = LogisticRegression()
model.fit(train_X,train_Y)
prediction3=model.predict(test_X)
print('The accuracy of the Logistic Regression is',metrics.accuracy_score(prediction3,test_Y))
```

The accuracy of the Logistic Regression is 0.8134328358208955

## **Decision Tree**

```
model=DecisionTreeClassifier()
model.fit(train_X,train_Y)
prediction4=model.predict(test_X)
print('The accuracy of the Decision Tree is',metrics.accuracy_score(prediction4,test_Y))
```

The accuracy of the Decision Tree is 0.8059701492537313

### K-Nearest Neighbours(KNN)

```
model=KNeighborsClassifier()
model.fit(train_X,train_Y)
prediction5=model.predict(test_X)
print('The accuracy of the KNN is',metrics.accuracy_score(prediction5,test_Y))
```

The accuracy of the KNN is 0.8134328358208955

```
a_index = list(range(1,11))
a = pd.Series(dtype=float) # Initialize with explicit dtype
x = [0,1,2,3,4,5,6,7,8,9,10]

for i in list(range(1,11)):
```

```
model = KNeighborsClassifier(n_neighbors=i)
  model.fit(train_X, train_Y)
  prediction = model.predict(test_X)
  # Use concat instead of append
  a = pd.concat([a, pd.Series([metrics.accuracy_score(prediction, test_Y)])])

plt.plot(a_index, a)
plt.xticks(x)
fig = plt.gcf()
fig.set_size_inches(12,6)
plt.show()
print('Accuracies for different values of n are:', a.values, 'with the max value as ', a.values.max())
```



Accuracies for different values of n are: [0.73134328 0.76119403 0.79477612 0.80597015 0.81343284 0.8022 0.82835821 0.83208955 0.84701493 0.82835821] with the max value as 0.8470149253731343

#### Gaussian Naive Bayes

```
model=GaussianNB()
model.fit(train_X,train_Y)
prediction6=model.predict(test_X)
print('The accuracy of the NaiveBayes is',metrics.accuracy_score(prediction6,test_Y))
```

The accuracy of the NaiveBayes is 0.8134328358208955

#### **Random Forests**

```
model=RandomForestClassifier(n_estimators=100)
model.fit(train_X,train_Y)
prediction7=model.predict(test_X)
print('The accuracy of the Random Forests is',metrics.accuracy_score(prediction7,test_Y))
```

The accuracy of the Random Forests is 0.8208955223880597

#### Cross Validation

```
from sklearn.model_selection import KFold #for K-fold cross validation
from sklearn.model_selection import cross_val_score #score evaluation
from sklearn.model_selection import cross_val_predict #prediction
kfold = KFold(n_splits=10,shuffle=True, random_state=22) # k=10, split the data into 10 equal parts
xyz=[]
accuracy=[]
std=[]
classifiers=['Linear Svm','Radial Svm','Logistic Regression','KNN','Decision Tree','Naive Bayes','Randon'
models=[svm.SVC(kernel='linear'),svm.SVC(kernel='rbf'),LogisticRegression(),KNeighborsClassifier(n neighborsClassifier(n neighborsCl
for i in models:
            model = i
             cv_result = cross_val_score(model,X,Y, cv = kfold,scoring = "accuracy")
             cv_result=cv_result
             xyz.append(cv_result.mean())
              std.append(cv_result.std())
              accuracy.append(cv_result)
new_models_dataframe2=pd.DataFrame({'CV Mean':xyz,'Std':std},index=classifiers)
new_models_dataframe2
```

| CV Mean  | Std                                                                  |
|----------|----------------------------------------------------------------------|
| 0.784607 | 0.057841                                                             |
| 0.828377 | 0.057096                                                             |
| 0.799176 | 0.040154                                                             |
| 0.808140 | 0.035630                                                             |
| 0.806991 | 0.045000                                                             |
| 0.795843 | 0.054861                                                             |
| 0.819351 | 0.045670                                                             |
|          | 0.784607<br>0.828377<br>0.799176<br>0.808140<br>0.806991<br>0.795843 |

```
plt.subplots(figsize=(12,6))
box=pd.DataFrame(accuracy,index=[classifiers])
box.T.boxplot()
```



```
new_models_dataframe2['CV Mean'].plot.barh(width=0.8)
plt.title('Average CV Mean Accuracy')
fig=plt.gcf()
fig.set_size_inches(8,5)
plt.show()
```



#### Confusion Matrix

```
f,ax=plt.subplots(3,3,figsize=(12,10))
y_pred = cross_val_predict(svm.SVC(kernel='rbf'),X,Y,cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[0,0],annot=True,fmt='2.0f')
ax[0,0].set title('Matrix for rbf-SVM',fontsize=9)
y_pred = cross_val_predict(svm.SVC(kernel='linear'), X, Y, cv=10)
sns.heatmap(confusion matrix(Y,y pred),ax=ax[0,1],annot=True,fmt='2.0f')
ax[0,1].set_title('Matrix for Linear-SVM',fontsize=9)
y_pred = cross_val_predict(KNeighborsClassifier(n_neighbors=9),X,Y,cv=10)
sns.heatmap(confusion matrix(Y,y pred),ax=ax[0,2],annot=True,fmt='2.0f')
ax[0,2].set title('Matrix for KNN',fontsize=9)
y pred = cross val predict(RandomForestClassifier(n estimators=100), X, Y, cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[1,0],annot=True,fmt='2.0f')
ax[1,0].set_title('Matrix for Random-Forests',fontsize=9)
y_pred = cross_val_predict(LogisticRegression(), X, Y, cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[1,1],annot=True,fmt='2.0f')
ax[1,1].set_title('Matrix for Logistic Regression',fontsize=9)
y_pred = cross_val_predict(DecisionTreeClassifier(),X,Y,cv=10)
sns.heatmap(confusion_matrix(Y,y_pred),ax=ax[1,2],annot=True,fmt='2.0f')
ax[1,2].set_title('Matrix for Decision Tree',fontsize=9)
y_pred = cross_val_predict(GaussianNB(),X,Y,cv=10)
sns.heatmap(confusion matrix(Y,y pred),ax=ax[2,0],annot=True,fmt='2.0f')
ax[2,0].set_title('Matrix for Naive Bayes',fontsize=9)
plt.subplots adjust(hspace=0.2, wspace=0.2)
plt.show()
```



#### **Hyper-Parameters Tuning**

SVM

```
from sklearn.model_selection import GridSearchCV
C=[0.05,0.1,0.2,0.3,0.25,0.4,0.5,0.6,0.7,0.8,0.9,1]
gamma=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]
kernel=['rbf','linear']
hyper={'kernel':kernel,'C':C,'gamma':gamma}
gd=GridSearchCV(estimator=svm.SVC(),param_grid=hyper,verbose=True)
gd.fit(X,Y)
print(gd.best_score_)
print(gd.best_estimator_)

Fitting 5 folds for each of 240 candidates, totalling 1200 fits
0.8282593685267716
SVC(C=0.4, gamma=0.3)
Random Forests
n_estimators=range(100,1000,100)
hyper={'n_estimators':n_estimators}
```

```
gd=GridSearchCV(estimator=RandomForestClassifier(random_state=0),param_grid=hyper,verbose=True)
gd.fit(X,Y)
print(gd.best_score_)
print(gd.best_estimator_)

Fitting 5 folds for each of 9 candidates, totalling 45 fits
0.819327098110602
RandomForestClassifier(n_estimators=300, random_state=0)
```

#### Voting Classifier

The accuracy for ensembled model is: 0.8208955223880597 The cross validated score is 0.8249188514357053

#### **Bagging**

Bagged KNN

```
from sklearn.ensemble import BaggingClassifier
model = BaggingClassifier(
    estimator=KNeighborsClassifier(n_neighbors=3),
    random_state=0,
    n_estimators=700
model.fit(train_X,train_Y)
prediction=model.predict(test_X)
print('The accuracy for bagged KNN is:',metrics.accuracy_score(prediction,test_Y))
result=cross_val_score(model, X, Y, cv=10, scoring='accuracy')
print('The cross validated score for bagged KNN is:',result.mean())
The accuracy for bagged KNN is: 0.832089552238806
The cross validated score for bagged KNN is: 0.8104244694132333
Bagged DecisionTree
model=BaggingClassifier(estimator=DecisionTreeClassifier(),random_state=0,n_estimators=100)
model.fit(train_X,train_Y)
prediction=model.predict(test_X)
print('The accuracy for bagged Decision Tree is:',metrics.accuracy_score(prediction,test_Y))
result=cross_val_score(model, X, Y, cv=10, scoring='accuracy')
print('The cross validated score for bagged Decision Tree is:',result.mean())
```

The accuracy for bagged Decision Tree is: 0.8208955223880597
The cross validated score for bagged Decision Tree is: 0.8171410736579275

#### Boosting

AdaBoost(Adaptive Boosting)

```
from sklearn.ensemble import AdaBoostClassifier
ada=AdaBoostClassifier(n_estimators=200,random_state=0,learning_rate=0.1)
result=cross_val_score(ada,X,Y,cv=10,scoring='accuracy')
print('The cross validated score for AdaBoost is:',result.mean())
```

The cross validated score for AdaBoost is: 0.8249188514357055

Stochastic Gradient Boosting

```
from sklearn.ensemble import GradientBoostingClassifier
grad=GradientBoostingClassifier(n_estimators=500,random_state=0,learning_rate=0.1)
result=cross_val_score(grad,X,Y,cv=10,scoring='accuracy')
print('The cross validated score for Gradient Boosting is:',result.mean())
```

The cross validated score for Gradient Boosting is: 0.8115230961298376

#### XGBoost

```
import xgboost as xg
xgboost=xg.XGBClassifier(n_estimators=900,learning_rate=0.1)
result=cross_val_score(xgboost,X,Y,cv=10,scoring='accuracy')
print('The cross validated score for XGBoost is:',result.mean())
```

The cross validated score for XGBoost is: 0.8160299625468165

Confusion Matrix for the Best Model

```
ada=AdaBoostClassifier(n_estimators=200,random_state=0,learning_rate=0.05)
result=cross_val_predict(ada,X,Y,cv=10)
sns.heatmap(confusion_matrix(Y,result),cmap='winter',annot=True,fmt='2.0f')
plt.show()
```



## Feature Importance

```
f,ax=plt.subplots(2,2,figsize=(15,12))
model=RandomForestClassifier(n_estimators=500,random_state=0)
model.fit(X,Y)
pd.Series(model.feature_importances_,X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[0
ax[0,0].set_title('Feature Importance in Random Forests')
model=AdaBoostClassifier(n_estimators=200,learning_rate=0.05,random_state=0)
model.fit(X,Y)
pd.Series(model.feature_importances_,X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[0
ax[0,1].set_title('Feature Importance in AdaBoost')
model=GradientBoostingClassifier(n_estimators=500,learning_rate=0.1,random_state=0)
model.fit(X,Y)
pd.Series(model.feature_importances_,X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[1
ax[1,0].set_title('Feature Importance in Gradient Boosting')
model=xg.XGBClassifier(n_estimators=900,learning_rate=0.1)
model.fit(X,Y)
pd.Series(model.feature_importances_,X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[1
ax[1,1].set_title('Feature Importance in XgBoost')
plt.show()
```

