Genetic Algorithms: part I

The basic fundamentals of a simple genetic algorithm

Contents

- > GA and other evolutionary techniques
- ➤ The basic principle How does it work?
- Representation of optimization variables
- > <u>Selection</u> of parents
- Reproduction creation of children
- Replacement insertion of children into the population

Evolutionary Computation

- ➤ Genetic Algorithms
- > Evolutionary strategies
- > Evolutionary programming
- Genetic programming
- Simulated annealing
- > Ant colonies
- ➤ Particle swarm optimization
- **>**

Method efficiency

GA – the idea behind

- ➤ Mimic the evolution of nature
 - Creative and innovative
 - Complexity
- ➤ Code the optimization variables into a chromosome.
- Create a population of individuals and let them evolve over time.
- > Survival of the fittest

What is a GA

The *genetic algorithm* is a probabilistic search algorithm that iteratively transforms a set (called a *population*) of individuals (i.e. mathematical objects, typically fixed-length binary character strings), each with an associated fitness value, into a new population of offspring objects using the Darwinian principle of natural selection and using operations that are patterned after naturally occurring genetic operations, such as *crossover* (sexual recombination) and *mutation*.

From problem to solution

GA – working principle

Hamburger restaurant problem

The price for a meal

1 = \$2.00 / burger

0 = \$20.00 / burger

The drinks

1 = Coca Cola

0 = Wine

Ambiance

1 = Fast sloppy service

0 = luxurious service with tuxedoed waiter

The search space

1	000
2	001
3	010
4	011
5	100
6	101
7	110
8	111

- \triangleright Alphabet size K=2, Length L=3
- > Size of search space: $K^{L}=2^{L}=2^{3}=8$

Chromosome (genome) for two different 'designs'

McDONALD's

1 1 1

Frensh resturant

0 0

GA – working principle

2019

Generation 0

Chromosome

Score

	Generation 0				
1	011	3			
2	001	1			
3	110	6			
4	010	2			
Total					
Worst					
Averag	ge				
Best					

GA – working principle

Generation 0

Generation 0 001 .08 110 .50 010 .17 **Total** 12 Worst 3.00 Average Best

Selection probability

Probabilistic selection based on fitness

- > Better individuals are preferred
- Best is not always picked
- Worst is not necessarily excluded
- Nothing is guaranteed
- Mixture of greedy exploitation and adventurous exploration

Roulette Wheel Selection

Creation of mating pool

	Generation 0			Mating	pool
1	011	3	.25	011	3
2	001	1	.08	110	6
3	110	6	.50	110	6
4	010	2	.17	010	2
Total	Total				17
Worst		1			2
Average		3.00			4.5
Best		6			6

GA – working principle

Crossover operation

2 parents chosen probabilistically

Parent 1	Parent 2
011	110

One point crossover

crossover point picked at random

Fragment 1	Fragment 2
01-	11-

≥2 remainders

Remainder 1	Remainder 2
1	0

➤ 2 offspring produced by crossover

Offspring 1	Offspring 2
010	111

After crossover operation

	Generation 0		Mating 1	pool	Generat	ion 1	
1	011	3	.25	011	3	111	7
2	001	1	.08	110	6	010	2
3	110	6	.50	110	6		
4	010	2	.17	010	2		
Total		12			17		
Worst		1			2		
Averag	e	3.00			4.5		
Best		6			6		

Crossover probability might lead to no crossover

	Generation 0		Generation 0 Mating pool		pool	Generat	ion 1
1	011	3	.25	011	3	111	7
2	001	1	.08	110	6	010	2
3	110	6	.50	110	6	110	6
4	010	2	.17	010	2	010	2
Total		12			17		
Worst		1			2		
Averag	e	3.00			4.5		
Best		6			6		

2019 Design Optimization Johan Ölvander

Mutation operation

➤ Individual chosen randomly

Individual

010

➤ Mutation point chosen at random

Individual

--0

≻One offspring

Offspring

)11

After mutation operation

	Gene	Generation 0		Mating pool		Generation 1	
1	011	3	.25	011	3	111	7
2	001	1	.08	110	6	010	2
3	110	6	.50	110	6	110	6
4	010	2	.17	010	2	011	3
Total	•	12			17		
Worst		1			2		
Averag	ge	3.00			4.5		
Best		6			6		

Generation 1

	Gene	Generation 0		Mating pool		Generation 1	
1	011	3	.25	011	3	111	7
2	001	1	.08	110	6	010	2
3	110	6	.50	110	6	110	6
4	010	2	.17	010	2	011	3
Total		12			17		18
Worst		1			2		2
Averag	ge	3.00			4.5		4.5
Best		6			6		7

GA – working principle


```
13 -
      clc;
14 -
     NIND = 4; % Number of individuals per subpopulations
15 -
     MAXGEN = 5; % maximum Number of generations
16
      % Reset counters
17 -
         Best = NaN*ones(MAXGEN,1); % best in current population
18 -
        Aver = NaN*ones(MAXGEN,1); % average of the current population
19 -
         gen = 0; % generational counter
20
21
         % Initialise population
22 -
        NBITS = 3:
23 -
         Chrom = initbp(NIND,NBITS); %initbp (InitBinearyPopulation(Size=nuber
24
25
         % Evaluate initial population
26 -
      for i = 1:NIND,
27 -
         temp = 0;
28 -
          for j=1:NBITS,
29 -
              temp = temp + 2^(NBITS-j) *Chrom(i,j);
30 -
          end
31 -
          ObjV(i,:) = -temp;
32 -
      end
33 -
     popini = Chrom;
34
      % Display Data for generation O
35 -
      fprintf('** Generation %g. **\n\n', gen)
36 -
      Chrom
37 -
      ObiV
38
39
      % Track best individual and display convergence
40 -
         Aver(gen+1) = mean(ObjV);
41 -
         Best(gen+1) = min(ObjV);
42 -
         plot((Best), 'ro'); xlabel('generation'); ylabel('f(x)');
43 -
         text(0.5,0.95,['Best = ', num2str(Best(gen+1))],'Units','normalized');
44 -
         drawnow;
                                                                                 n Ölvander
45
```

12 -

clear;

```
47 -
         while gen < MAXGEN,
48 -
          fprintf('** Generation %g. **\n\n', gen+1)
49
          % Calculate fitness values
50 -
             FitV=ranking(ObjV);
51
          % Select individuals for breeding
52 -
             SelCh = selection('selrws', Chrom, FitV);
53
          % Recombine selected individuals (crossover)
54 -
             SelCh = recombin('recsp', SelCh, 0.6);
55
          % Perform mutation on offspring
56
57 -
          SelCh = mutate('mutbin', SelCh, 0.);
                                                           % Binary mutation
58
          % Evaluate offspring, call objective function
59 -
            for i = 1:length(SelCh),
60 -
                  temp = 0;
61 -
                  for j=1:NBITS,
62 -
                      temp = temp + 2^(NBITS-j) *SelCh(i,j);
63 -
                  end
64 -
                  ObjVSel(i,:) =-temp;
65 -
            end
66
          % Reinsert offspring into current population
67 -
             [Chrom ObjV] = reins(Chrom, SelCh, NaN, NaN, NaN, ObjV, ObjVSel)
68
          % Increment generational counter
69 -
             gen = gen+1;
70
          % Update display and record current best individual
71 -
             Aver(gen+1) = mean(ObjV);
72 -
             Best(gen+1) = min(ObjV);
73 -
             plot((Best),'ro'); xlabel('generation'); ylabel('f(x)');
74 -
             text(0.5,0.95,['Best = ', num2str(Best(gen+1))],'Units','normalized');
75 -
             drawnow:
76 -
         end
                                                                                      ıder
77
      % End of GA
```

GA – working principle

Representation

- ➤ How the optimization variables are represented in the GA.
- Each parameter is coded into a gene
- The genes for each parameter forms a chromosome or genome.
- The original GA used a binary encoding.
- ➤ We will also look at real coded GA:s

Binary representation

- > Three optimization variables:
 - gene 1 coded by 6-bits
 - gene 2 coded by 8-bits
 - gene 2 coded by 5-bits

The chromosome represents one individual solution

Selection

How to select the parents that shall be used to create offspring

> Roulette wheel

A roulette wheel where the size of the slots are proportional to the fitness value.

> Tournament selection

Parents compete against each other

Uniform selection

Select parents randomly

Roulette wheel selection

Example population

Number of individual	1	2	3	4
fitness value	6	3	2	1
selection probability	0.50	0.25	0.17	0.08

Roulette wheel selection: implementation

Example population

Number of individual	1	2	3	4
fitness value	6	3	2	1
selection probability	0.50	0.25	0.17	0.08

Sample 4 random numbers in order to selects parents: 0.81, 0.32, 0.65, 0.05

Uniform selection

Example population

Number of individual	1	2	3	4
fitness value	6	3	2	1
selection probability	0.25	0.25	0.25	0.25

Sample 4 random numbers in order to selects parents: 0.81, 0.32, 0.65, 0.05

Tournament selection selection

Example population

Number of individual	1	2	3	4
fitness value	6	3	2	1

Select 2 parents randomly from the population, e. g. no 2 and 3 Pick the best of the two as one parent, i.e. 2.

Again Pick 2 parents randomly from the population, e.g. 1 and 3 Select the best of the two as one parent, i.e. no1

Reproduction – crossover

To combine genes from different parents to create a child

- The crossover operator is the main operator for a GA
- There are a countless of ways to combines genes to create new offspring.
- ➤ Different representations implies different type crossover.
- ➤ Usually there is a probability (*pcross*) for which to cross the parents. Otherwise the children are exact copies of their parents.

One point crossover

One point binary crossover

Reproduction – mutation

- > To include an extra amount of randomness
 - > encourage exploration
 - > avoid premature convergence, and genetic drift
- ➤ Mutation is a subordinate operator in a GA
- There are different mutation operators depending on the representation.
- ➤ Usually there is a probability (*pmut*) for which to mutate the children.

Binary flip mutation

- ➤ Change each bit in the newly created child with a probability equal to *pmut*.
- > pmut is a small number typically 0.01.

Flip mutation

Replacement strategies

How the children are inserted into the population

- ➤ In a <u>simple</u> genetic algorithm all newly created children replace the old population.
- ➤ Alternative methods
 - ➤ Children replace the worst individuals.
 - ➤ Children replace their parents.
 - ➤ Children replaces individuals like them selves.

Elitism

- Make sure that the fittest individual always survive to the next generation.
- > Sure why not? Most modern GA's uses elitism.

GA – the principle revisited

Genetic Algorithms available

- There are many publicly available genetic algorithm packages
- We will be using the genetic and evolutionary algorithm toolbox for Matlab:

 http://www.geatbx.com
- In my research I have used GAlib: http://lancet.mit.edu/ga/
- Other resources: Illinois Genetic Algorithms Laboratory (IlliGAL) http://www-illigal.ge.uiuc.edu/index.php3