TÖL309G Tölvutækni og forritun

Heimadæmi 11

Hjörvar Sigurðsson

1.

Mynd 1. Ferlarit fyrir dæmi 1.

- a. Það munu prentast út sjö 0-tákn, og átta 1-tákn, eins og sjá má á mynd 1.
- b. Fjöldi 1-tákna sem prentast út verður 2^k þar sem í hverri lykkju tvöfaldast fjöldi ferla sem munu prenta 1-tákn.

Fjöldi 0-tákna sem prentast út verður 2^k-1 þar sem í hverri lykkju tvöfaldast fjöldi ferla en sökum þess að 0-táknið er prentað fyrir fork()-skipunina þá verður 0-tákn ekki prentað í einu ferli (má sjá á mynd 1).

a.

b.

i. 4, 2, 0, 5, 3, 1

ii. 5, 3, 1, 4, 2, 0

iii. 5, 4, 1, 0, 3, 2

c. Já, það er hægt. Sjá röðina sem sýnd er með grænum lit á eftirfarandi mynd.

3.

- a. Síðutöf (e. page fault). Þegar búið er að færa gögning úr geymslu (disk t.d.) yfir á RAM, þá er skipunin framkvæmd aftur þar sem gögnin eru núna á réttum stað.
- b. Ólögleg minnisnotkun. Þegar slíkt kemur upp er ekki hægt að átta sig á hvað skipunin á að gera og því er keyrsla ferlisins hætt.

- c. Það þarf að geyma i) gistu. Það er vegna þess að í gistum eru geymd mikilvæg minnisvistföng fyrir hvert ferli.
- d. Það afritar vistfangsrými og alla opna skráarbenda foreldrisins.

4.

a.

				TL	ВТ			TL	BI						
				0x′	7			0x0							
Bit	Bit position 13 12 11 10 9 8						8	7	6	5	4	3	2	1	0
VA =							1	0	0	1	1	1	0	1	1
					VI	PN						VF	20		
					0x	1C						0x	3B		

MMU ber saman VPN (0x1C) sýndarvistfangsins við TLB til að athuga hvort afrit af VPN sé í skyndiminninu. Það notar TLBI til að ákvarða Set, og TLBT til að ákvarða Tag.

	Set	Tag	PPN	Valid										
\rightarrow	0	03	-	0	09	0D	1	00	_	0	07	02	1	
	1	03	2D	1	02	-	0	04	_	0	0A	_	0	
	2	02	_	0	08	_	0	06	_	0	03	-	0	
	3	07	_	0	03	0D	1	0A	34	1	02	_	0	

(a) TLB: 4 sets, 16 entries, 4-way set associative

Í TLB er færsla þar sem Set = TLBI = 0, Tag = TLBT = 07, og Valid = 1, þannig að það er smellur og við tökum raunsíðunúmerið PPN = 02. Raunsíðunúmerið er sett saman við VPO til að mynda raunvistfangið PA (m.ö.o., VPO færist beint yfir).

				С	Т				C	Я		С	0
				0x	02			02	κE		0x03	3	
Bit p	osition	11	10	9	8	7	6	5	4	3	2	1	0
PA =	0xBB	0	0	0	O	1	0	1	1	7	D	1	4)
				PF	N					PF	°0		
		·		0x	02					0x	3B		

MMU ber saman CT (tag), CI (idx), og CO (blk 0-3) við skyndiminnið:

ı	dx	Tag	Valid	Blk 0	Blk 1	Blk 2	Blk 3
	0	19	1	99	-11	23	11
	1	15	0	_	_	_	_
	2	1B	1	00	02	04	08
	3	36	0	_	_	_	_
	4	32	1	43	6D	8F	09
	5	0D	1	36	72	F0	1D
	6	31	0	_	_	_	_
	7	16	1	11	C2	DF	03
	8	24	1	3A	00	51	89
	9	2D	0	_	_	_	_
	Α	2D	1	93	15	DA	3B
	В	0B	0	_	_	_	_
	С	12	0	_	_	_	_
	D	16	1	04	96	34	15
\rightarrow	Е	13	1	83	77	1B	D3
	F	14	0	_	_	_	_

(c) Cache: 16 sets, 4-byte blocks, direct mapped

CT okkar er 0x02 en í skyndiminninu er tagið fyrir index E 0xC, eða 13. Því er skyndiminnisskellur.

b. Þar sem VPO ræður PPO sem svo ræður CI og CO, þá bý ég til VA sem hefur VPO sem leiðir til CI og CO sem ekki eru í skyndiminninu – t.d. VPO = 011000, en þá er CI 6 og CO 0, en það leiðir til skyndiminnisskells.
Þar sem VPN ræður TLBT og TLBI, þá læt ég VPN hluta VA vera þannig að TLBT og TLBI leiði til TLB smells – t.d. VPN = 00001101, en þá er TLBT 3 og TLBI 1, en það leiðir til TLB smells.

				TL	ВТ			TL	.BI						
				0:	x3			02	x 1						
Bit	position	13						7	6	5	4	3	2	1	0
VA :	0x358	0	0	0	0	1	1	0	1	0	1	1	0	0	0
					VF	N						VF	°O		
					0x	D		·				0x	18		

				С	Т				C	XI.		С	0
				0x2	2D				02	x6		02	0
Bit p	Bit position 11 10 9 8 7 6									3	2	1	0
PA =	0xB58	1	0	1	1	0	1	0	1	1	0	0	0
				PF	N					PF	O.		
				0x2	2D					0x	18		

c. Já, það er hægt.

Vistfang sem varpast á þann hátt að mengið er 0 og merkið 0x03:

				TL	вт			TL	BI						
				02	x3			02	κ0						
Bit p	osition	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VA =	0x318	0	0	0	0	1	1	0	0	0	1	1	0	0	0

Vistfang sem varpast á þann hátt að mengið er 1 og merkið er 0x03:

			TL	вт			TL	.BI						
			02	x3			0х	:1						
Bit position	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VA = 0x358	0	0	0	0	1	1	0	1	0	1	1	0	0	0

$$\begin{split} N &= 2^{16} \implies n = 16 \\ M &= 2^{10} \implies m = 10 \\ P &= 16 = 2^p \implies p = 4 \\ \end{split}$$

$$VPO &= log_2(P) = 4 \\ PPO &= VPO = 4 \\ \end{cases}$$

$$\#VPN \text{ Bits} = \#Virtual \text{ Address Bits - } \#Page \text{ Offset bits} \\ \#VPN \text{ Bits} = 16 - 4 = 12 \\ \end{cases}$$

$$\#PPN \text{ Bits} = \#Physical \text{ Address Bits - } \#Page \text{ Offset bits} \\ \#PPN \text{ Bits} = 10 - 4 = 6 \\ \end{cases}$$

$$TLB \text{ hefur 2 sets} = 2^t = 2^1 \implies t = 1.$$

$$\#TLBI \text{ Bits} = 1$$

#TLBT = #VPN Bits - #TLBI Bits = 12 - 1 = 11

					TLBT							TLBI				
Bit position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VA =																
					VP	N								VI	90	
														•	•	

Mynd 5.1. Skipting sýndarvistfangs.

Bit position	9	8	7	6	5	4	3	2	1	0
PA =										
			PF	PN				PF	90	

Mynd 5.2. Skipting raunvistfangs.

b.

					TLBT							TLBI				
				(0x137							0x0				
Bit position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VA = 0x26E7	0	0	1	0	0	1	1	0	1	1	1	0	0	1	1	1
					VP	N								VF	90	
					0x2	6E								0:	x7	

Mynd 5.3. Sýndarvistfangið 0x26E7.

TLB

Set	Tag	PPN	Valid									
0	137	37	1									
1												

Mynd 5.4. TLB sem inniheldur gildi fyrir sýndarvistfangið 0x26E7.

c.

- i. Sýndarvistföng þar sem bitinn í 4. sæti er 1, en þá er TLBI 0x1.
- ii. Það er pláss fyrir fjórar færslur í mengi 1 í þessu TLB.

Þar sem TLBI bitinn þarf að vera 1, en TLBT bitarnir geta í raun tekið hvaða gildi (þó það kemur aðeins smellur ef TLBT samsvarar tagi í færslu í TLB með valid-gildið 1) þá eru 2¹¹ mögulegar útgáfur af sýndarvistfanginu sem geta varpast í mengi 1 í þessu TLB.

d. Já, ef að PPN fyrir þetta sýndarvistfang breytist þá breytist raunvistfangið.