1

Control Systems

G V V Sharma*

CONTENTS

1	PID (Controller Introduction	1 1
2	Polar Plot		1
	2.1	Introduction	1
	2.2	Example	2
	2.3	Example	2

Abstract—The objective of this manual is to introduce control system design at an elementary level.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/ketan/codes

1 PID Controller

1.1 Introduction

2 Polar Plot

2.1 Introduction

2.1.1. Sketch the Polar Plot of

$$G(s) = \frac{1}{s(1+s^2)}$$
 (2.1.1.1)

Solution: From (2.1),

$$G(j\omega) = \frac{1}{j\omega(1-\omega^2)}$$
 (2.1.1.2)

$$\left|G(j\omega)\right| = \frac{1}{\left|\omega(1-\omega^2)\right|} \tag{2.1.1.3}$$

$$\angle G(j\omega) = \begin{cases} \frac{\pi}{2} & \omega > 1\\ -\frac{\pi}{2} & 0 < \omega < 1 \end{cases}$$
 (2.1.1.4)

The corresponding polar plot is generated in Fig. 2.1 using

codes/ee18btech11023.py

Fig. 2.1.1

In Fig. 2.1, (-1,0) is exactly on the polar plot. Hence, the system is marginally stable.

2.2 Example

2.2.1. Sketch the Polar Plot for

$$G(s) = \frac{1}{(1+s)(1+2s)}$$
 (2.2.1.1)

Solution: The following code generates

codes/ee18btech11012.py

The polar plot is to the right of (-1,0). Hence the closed loop system is stable.

2.3 Example

2.1. Sketch the direct polar plot for a unity feedback system with open loop transfer function

$$G(s) = \frac{1}{s(1+s)^2}$$
 (2.1.1)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 2.2.1

Solution: The polar plot is obtained by plotting (r, ϕ)

$$r = |H(j\omega)||G(j\omega)| \tag{2.1.2}$$

$$\phi = \angle H(j\omega)G(j\omega), 0 < \omega < \infty$$
 (2.1.3)

The following code plots the polar plot in Fig. 2.1

codes/ee18btech11002/polarplot.py

Fig. 2.1: Polar Plot

2.2. Sketch the inverse polar plot for (2.1.1) **Solution:** The above code plots the polar plot in Fig. 2.2 by plotting $\left(\frac{1}{r}r, -\phi\right)$

Fig. 2.2: Inverse Polar Plot