

计算机网络实验(二) 计算机网络-路由器配置

清华大学电机系实验教学中心 2025.05

实验目的

- ▶掌握搭建计算机网络时,无线路由器基本参数配置方法
- ▶掌握网络模拟工具Packet Tracer的使用,实现不同局域网络中计算机的连通

本部分实验网络拓扑结构如上图所示。实验用学生机(WS)、个人电脑先通过无线的方式连接上FWR200或FWR325无线路由器,再连接到局域网交换机上。最后实现学生机(WS)或个人电脑通过路由器上网。

- 1) 启用无线路由器(Fast FWR200,或FWR325)
 - (1) 打开路由器包装盒,保留所有物件,待实验结束后恢复原状。
- (2)阅读路由器"快速安装指南",了解路由器基本信息和使用方法。
- (3)将原来插在WS学生机上的网线拔下,插在无线路由器的彩色网口(蓝色或橙色),也就是WLAN口上。
- (4)插上路由器电源,启动路由器;在通电状态下,按住路由器后面板的"RESET"按键,直到所有指示灯同时亮起后松开。

注意:出于平时使用时防止误按下RESET键的考虑,FWR200路由器的复位按键是凹进去的,可以使用一个稍尖一点的物品,例如针-孔杜邦线的针进行操作。

2) 配置无线路由器

- (1) 查看路由器装置背面的无线名称(例如: FAST_5598),用个人电脑连接该 ID的无线网络热点。
- (2) 在浏览器中访问以下网址: "falogin.cn"或者 "192.168.1.1",按路由器配置界面的提示,依次进行以下操作:
 - [1] 设置任意密码。
- [2] 按照上一次实验配置实验学生机网卡的参数,设置路由器"上网设置"。

2) 配置无线路由器

设置"上网方式"为"固定IP地址"。

设置"IP地址"为"192.168.20.**"(最后一段**设置为自己学号的后两位数字,如果出现IP冲突的报错,则将IP地址设为1**或2**)。

设置"子网掩码"为"255.255.255.0"。

设置"网关"设置为"192.168.20.199"。

设置"首选"和"备用"DNS服务器分别为 "166.111.8.28"和"166.111.8.29"。

2) 配置无线路由器

- [3] 在"无线设置"界面,可以任意设置自己想用的"无线名称"和"无线密码"。
 - (3) 完成设置后等待路由器重启。
- (4) 待路由器对应的无线网络热点恢复后,重新连接该无线网络,并重新访问路由器管理网址: "falogin.cn"或者"192.168.1.1"。

3)测试无线路由器网络可用性

- (1) 在浏览器中访问清华主页"www.tsinghua.edu.cn",确认无线网络可以正常访问外部互联网。
- (2) 在 "cmd" 命令行窗口中,执行ipconfig、tracert 166.111.4.100 命令,查看并记录使用当前无线网络后,个人计算机的网卡参数配置,以及访问清华主页的路由节点路径。

3) 了解无线路由器高级设置功能

- (1)在路由器管理页面,点击右上角的"高级设置",浏览并了解路由器可以设置的其它各项功能模块。
- (2) <u>查看并记录"高级设置""高级用户""路由功能"中"系统</u>路由表"的各条记录信息,思考并说明这些路由信息的作用。

任务1: Packet Tracer使用入门,学习软件的基本操作。

任务1: Packet Tracer使用入门,使用集线器连接2台PC,设置PC的网络参数

任务1: Packet Tracer使用入门

物理 配置 桌面	属性 自定义界面			
P配置				Х
IP配置				
○ DHCP	● 静态			
IP地址				
子网掩码				
默认网关				
DNS服务器				
IPv6配置				
○ DHCP	○ 自动配置	● 静态		
IPv6地址			/	
本地链路地址	FE80::20	3:E4FF:FE3D:EB73		
IPv6网关				
IPv6 DNS服务器				

任务1: Packet Tracer使用入门

任务1: Packet Tracer使用入门

设备上的PDU信息: PCO

OSI模型 出站PDU详细信息 本设备: PCO 源: PCO 目的: 192.168.1.3 内层		14.0	
源: PC0 目的: 192.168.1.3 内层 外层 第7层 第7层 第6层 第6层 第5层 第5层 第4层 第4层 第3层: IP报头 源IP:	SI模型	出站PDU详细信息	
第7层 第6层 第5层 第4层 第3层: IP报头 源IP:	原: PCO	0	
第6层 第5层 第4层 第3层: IP报头 源IP:]层		外层
第5层 第4层 第3层: IP报头 源IP:	第7层		第7层
第4层 第3层: IP报头 源IP:	第6层		第6层
第3层: IP报头 源IP:	第5层		第5层
	第4层		第4层
是 (E	第3层		192.168.1.2, 目的IP: 192.168.1.3 ICMP Message 类
第2层: Ethernet II报头 0003.E43D.EB73 >> 00D0.97D1.385A	第2层		0003.E43D.EB73 >>
第1层: (端口):FastEthernet0	第1层		第1层: (端口):FastEthernet0

- 1. The Ping process starts the next ping request.
- 2. The Ping process creates an ICMP Echo Request message and sends it to the lower process.
- 3. The source IP address is not specified. The device sets it to the port's IP address.
- 4. The destination IP address is in the same subnet. The device sets the next-hop to destination.

向我提问 下一层 >> 13 << 上一层

任务2: 在下图所示的拓扑结构中,通过配置4台PC机和一台路由器,实现任意两台PC机之间的互联。

- 互相可以ping通
- 在仿真模式下选取一条报文截取其PDU,并进行分析。

实验内容3-两台路由器实现三个子网段互联

任务3. 在下图所示的拓扑结构中,通过配置6台PC机和两台路由器,实现任意两台PC机之间的互联。

- 互相均可以ping通
- 在仿真模式下选取一条报文截取其PDU,并进行分析
- 记录你所配置的静态路由表并思考为什么需要这样配置

谢谢!