Objective

This code focuses on preparing data for regression supervised learning for the price of diamonds. Feature selection and analysis will occur at a later stage.

Variables

Carat: The diamond's carat.

Cut: The type of diamond cut.

Color: The quality of the diamond's color.

Clarity: The clarity indicator for a diamond.

Depth: The distance from the table to the point of the diamond.

Table: The size of the flat edge of the diamonds.

x: Length of the diamond in millimeters.

y: Width of the diamond in millimeters.

z: Depth of the diamond in millimeters.

Price: The overall price of the diamond that we will be predicting.

Data Source: https://www.kaggle.com/datasets/nancyalaswad90/diamonds-prices?select=Diamonds+Prices2022.csv

```
In [3]: import pandas as pd
        import numpy as np
         # Load the data
         diamonds = pd.read_csv(
            filepath_or_buffer = "C:\\Users\\brink\\OneDrive\\Desktop\\UCF Notes\\STA 5703\
            dtype = {
                 'id': int,
                 'carat': float,
                 'cut': str,
                 'color': str,
                 'clarity': str,
                 'depth': float,
                 'table': float,
                 'price': float,
                 'x': float,
                 'y': float,
                 'z': float
```

```
)
```

In [4]: # copy data frame, data prep the copy
diamonds_prepared = diamonds.copy()

In [5]: diamonds_prepared.head()

Out[5]:		Unnamed: 0	carat	cut	color	clarity	depth	table	price	х	у	z
	0	1	0.23	Ideal	Е	SI2	61.5	55.0	326.0	3.95	3.98	2.43
· · · · · · · · · · · · · · · · · · ·	1	2	0.21	Premium	Е	SI1	59.8	61.0	326.0	3.89	3.84	2.31
	2	3	0.23	Good	Е	VS1	56.9	65.0	327.0	4.05	4.07	2.31
	3	4	0.29	Premium	1	VS2	62.4	58.0	334.0	4.20	4.23	2.63
	4	5	0.31	Good	J	SI2	63.3	58.0	335.0	4.34	4.35	2.75

```
In [6]: #Visualize Target Variable
diamonds['price'].hist()
```

Out[6]: <Axes: >


```
'carat', 'depth', 'x', 'y', 'z', 'table'
In [8]:
        #Categorical Smoothing
        for j in list categorical:
            df_mean = diamonds_prepared.loc[~diamonds['price'].isna()][[j,'price']].groupby
            df_mean['proportion'] = diamonds_prepared.loc[~diamonds['price'].isna()][j].val
            df_mean = df_mean.sort_values('price',ascending = False)
            df_mean['cumulative_descending'] = 1 - np.cumsum(df_mean['proportion'])
            df mean = df mean.iloc[::-1]
            df_mean['cumulative_ascending'] = np.cumsum(df_mean['proportion'])
            df_mean['cumulative'] = (df_mean['cumulative_ascending'] + df_mean['cumulative_
            df mean['bin'] = ''
            df_mean['bin'] = np.where(df_mean['cumulative'] <= 1/3,'1_low',df_mean['bin'])</pre>
            df_mean['bin'] = np.where((1/3 <= df_mean['cumulative']) & (df_mean['cumulative'])</pre>
            df_mean['bin'] = np.where(2/3 <= df_mean['cumulative'],'3_high',df_mean['bin'])</pre>
            print(df_mean[['price','proportion','bin']])
            diamonds_prepared[j][~diamonds_prepared[j].isin(df_mean.index)] = df_mean.index
            diamonds_prepared[j] = df_mean['bin'].loc[diamonds_prepared[j]].to_list()
                                                   bin
                        price proportion
       cut
       Ideal
                  3457.541970
                                 0.399514
                                                1 low
       Good
                                 0.090948 2_moderate
                  3928.864452
       Very Good 3981.658529
                                 0.223996 2 moderate
       Fair
                  4358.757764
                                 0.029846
                                               3_high
       Premium
                  4583.992605
                                 0.255696
                                               3_high
                                              bin
                    price proportion
       color
       Ε
              3076.687111
                             0.181655
                                            1 low
       D
              3169.954096
                             0.125596
                                            1 low
       F
                             0.176909 2_moderate
              3724.784868
       G
              3999.135671
                             0.209332 2 moderate
       Н
              4486.669196
                             0.153940
                                           3_high
       Ι
              5091.874954
                             0.100514
                                           3_high
              5323.818020
                             0.052055
                                           3 high
                                                bin
                      price proportion
       clarity
       VVS1
                2523.114637
                               0.067757
                                              1 low
       ΙF
                2864.839106
                               0.033183
                                              1 low
       VVS2
                3283.737071
                               0.093914
                                              1 low
       VS1
                3839.455391
                               0.151475
                                              1_low
       I1
                3924.168691
                               0.013737 2 moderate
       VS2
                3924.894119
                               0.227258 2_moderate
       SI1
                3995.811357
                               0.242237
                                             3_high
       SI2
                5063.028606
                               0.170439
                                             3_high
```

```
C:\Users\brink\AppData\Local\Temp\ipykernel 6192\2998296141.py:16: FutureWarning: Ch
ainedAssignmentError: behaviour will change in pandas 3.0!
You are setting values through chained assignment. Currently this works in certain c
ases, but when using Copy-on-Write (which will become the default behaviour in panda
s 3.0) this will never work to update the original DataFrame or Series, because the
intermediate object on which we are setting values will behave as a copy.
A typical example is when you are setting values in a column of a DataFrame, like:
df["col"][row_indexer] = value
Use `df.loc[row indexer, "col"] = values` instead, to perform the assignment in a si
ngle step and ensure this keeps updating the original `df`.
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser_guide/indexing.html#returning-a-view-versus-a-copy
  diamonds_prepared[j][~diamonds_prepared[j].isin(df_mean.index)] = df_mean.index[n
p.argmin(abs(df_mean['cumulative'] - 0.5))]
C:\Users\brink\AppData\Local\Temp\ipykernel_6192\2998296141.py:16: SettingWithCopyWa
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser_guide/indexing.html#returning-a-view-versus-a-copy
  diamonds_prepared[j][~diamonds_prepared[j].isin(df_mean.index)] = df_mean.index[n
p.argmin(abs(df_mean['cumulative'] - 0.5))]
C:\Users\brink\AppData\Local\Temp\ipykernel_6192\2998296141.py:16: FutureWarning: Ch
ainedAssignmentError: behaviour will change in pandas 3.0!
You are setting values through chained assignment. Currently this works in certain c
ases, but when using Copy-on-Write (which will become the default behaviour in panda
s 3.0) this will never work to update the original DataFrame or Series, because the
intermediate object on which we are setting values will behave as a copy.
A typical example is when you are setting values in a column of a DataFrame, like:
df["col"][row indexer] = value
Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a si
ngle step and ensure this keeps updating the original `df`.
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser_guide/indexing.html#returning-a-view-versus-a-copy
  diamonds_prepared[j][~diamonds_prepared[j].isin(df_mean.index)] = df_mean.index[n
p.argmin(abs(df_mean['cumulative'] - 0.5))]
C:\Users\brink\AppData\Local\Temp\ipykernel_6192\2998296141.py:16: SettingWithCopyWa
rning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser_guide/indexing.html#returning-a-view-versus-a-copy
  diamonds_prepared[j][~diamonds_prepared[j].isin(df_mean.index)] = df_mean.index[n
p.argmin(abs(df_mean['cumulative'] - 0.5))]
C:\Users\brink\AppData\Local\Temp\ipykernel_6192\2998296141.py:16: FutureWarning: Ch
ainedAssignmentError: behaviour will change in pandas 3.0!
You are setting values through chained assignment. Currently this works in certain c
ases, but when using Copy-on-Write (which will become the default behaviour in panda
```

```
Brinker, Kyle Preparing Data for Regression
       s 3.0) this will never work to update the original DataFrame or Series, because the
       intermediate object on which we are setting values will behave as a copy.
       A typical example is when you are setting values in a column of a DataFrame, like:
       df["col"][row_indexer] = value
       Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a si
       ngle step and ensure this keeps updating the original `df`.
       See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
       ser_guide/indexing.html#returning-a-view-versus-a-copy
         diamonds_prepared[j][~diamonds_prepared[j].isin(df_mean.index)] = df_mean.index[n
       p.argmin(abs(df_mean['cumulative'] - 0.5))]
       C:\Users\brink\AppData\Local\Temp\ipykernel 6192\2998296141.py:16: SettingWithCopyWa
       rning:
       A value is trying to be set on a copy of a slice from a DataFrame
       See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
       ser_guide/indexing.html#returning-a-view-versus-a-copy
         diamonds_prepared[j][~diamonds_prepared[j].isin(df_mean.index)] = df_mean.index[n
       p.argmin(abs(df_mean['cumulative'] - 0.5))]
In [9]: #Create dummy variables
        diamonds prepared[list categorical]
        diamonds_prepared = pd.get_dummies(
            data = diamonds_prepared,
            columns = list_categorical,
            dtype = float
```

In [10]: diamonds_prepared.head()

Out[10]:	l	Jnnamed: 0	carat	depth	table	price	x	у	z	cut_1_low	cut_2_moderate	cut_
	0	1	0.23	61.5	55.0	326.0	3.95	3.98	2.43	1.0	0.0	
	1	2	0.21	59.8	61.0	326.0	3.89	3.84	2.31	0.0	0.0	
	2	3	0.23	56.9	65.0	327.0	4.05	4.07	2.31	0.0	1.0	
	3	4	0.29	62.4	58.0	334.0	4.20	4.23	2.63	0.0	0.0	
	4	5	0.31	63.3	58.0	335.0	4.34	4.35	2.75	0.0	1.0	

```
In [11]: from sklearn.preprocessing import PowerTransformer, StandardScaler
         # Initialize the PowerTransformer for Yeo-Johnson transformation
         PowerTransformer_yeo_johnson = PowerTransformer(method='yeo-johnson').fit(
             X = diamonds_prepared[list_numeric]
         # transform the data
```

```
diamonds_prepared[list_numeric] = PowerTransformer_yeo_johnson.transform(
             X = diamonds_prepared[list_numeric]
         # Initialize the StandardScaler for centering and scaling
         StandardScaler_mean_with_std = StandardScaler().fit(
             X = diamonds_prepared[list_numeric],
             y = diamonds_prepared['price']
         # Fit and scale the transformed data
         diamonds_prepared[list_numeric] = StandardScaler_mean_with_std.transform(
             X = diamonds_prepared[list_numeric]
In [12]: #Check transformation
         diamonds_prepared[list_numeric].describe().loc[['mean','std']].round(1)
Out[12]:
                carat depth
                                         z table
                              Х
                                    у
                  0.0
                        -0.0 0.0 -0.0 -0.0
                                             -0.0
         mean
            std
                  1.0
                         1.0 1.0
                                  1.0
                                      1.0
                                             1.0
In [13]: #Given the skewed nature of the target variable, we will transform the target varia
         PowerTransformer_Price = PowerTransformer(method='yeo-johnson').fit(
             X = diamonds_prepared.loc[:, ['price']]
         print(PowerTransformer_Price.lambdas_)
        [-0.067386]
In [14]: | diamonds_prepared['price'] = PowerTransformer_Price.transform(
             X = diamonds_prepared.loc[:, ['price']]
In [15]: diamonds_prepared['price'].hist()
Out[15]: <Axes: >
```


Out[16]: 3.5965288343262033e-12