Reinforcement Learning

Overview of RL and Deep RL

J.R. Carneiro - Advanced Projects in Deep Learning

R, feedback at time t

SEQUENTIAL PARTIALLY OBSERVABLE ENVIRONMENT

Agent Goal: select actions to maximise total future reward

At each step t:

the agent:

Executes action A_t
Receives observation O_t
Receives scalar reward R_t

The environment:

Receives action A_t Emits observation O_{t+1} Emits scalar reward R_{t+1}

t increments at env. step

$$H_{t} = O_{1}, R_{1}, A_{1}, ..., A_{t-1}, O_{t}, R_{t}$$

$$S_t = f(H_t)$$

environment state S, e - real state

agent state S, a - the agent's representation of state

TOOLS USED TO CHOOSE ACTIONS

Policy π function mapping state to action

Deterministic: $a = \pi(s)$

Stochastic: $\pi(a|s) = P[At = a|St = s]$

Value $v_{\pi}(s)$ a prediction of future reward

$$v_{\pi}(s) = E_{\pi}[R_t + 1 + \gamma R_t + 2 + \gamma^2 R_t + 3 + ... | St = s]$$

Model predicts what the next state *P* and the next reward *R*

$$P^{a}_{ss'} = \mathbf{p}[S_{t+1} = s' | S_{t} = s, A_{t} = a]$$

 $R^{a}_{s} = \mathbf{E}[R_{t+1} | S_{t} = s, A_{t} = a]$

DIFFERENT TYPES OF RL

EXPLORATION VS EXPLOITATION

J.R. Carneiro - Advanced Projects in Deep Learning

Q learning to AlphaZero

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) Q_{\pi}(s, a)$$

$$Q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V_{\pi}(s')$$

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} V_{\pi}(s') \right)$$

$$Q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} \sum_{a' \in \mathcal{A}} \pi(a'|s') Q_{\pi}(s', a')$$

```
Q-learning: Learn function Q: \mathcal{X} \times \mathcal{A} \to \mathbb{R}
Require:
   Sates \mathcal{X} = \{1, \dots, n_x\}
   Actions A = \{1, ..., n_a\}, A : X \Rightarrow A
   Reward function R: \mathcal{X} \times \mathcal{A} \to \mathbb{R}
   Black-box (probabilistic) transition function T: \mathcal{X} \times \mathcal{A} \to \mathcal{X}
   Learning rate \alpha \in [0,1], typically \alpha = 0.1
   Discounting factor \gamma \in [0,1]
   procedure QLEARNING(X, A, R, T, \alpha, \gamma)
        Initialize Q: \mathcal{X} \times \mathcal{A} \to \mathbb{R} arbitrarily
        while Q is not converged do
             Start in state s \in \mathcal{X}
             while s is not terminal do
                  Calculate \pi according to Q and exploration strategy (e.g. \pi(x) \leftarrow
   \operatorname{arg\,max}_a Q(x,a)
                 a \leftarrow \pi(s)
                 r \leftarrow R(s, a)
                                                                                   ▷ Receive the reward
                 s' \leftarrow T(s, a)
                                                              ▷ Receive the new state
                 Q(s', a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \cdot (r + \gamma \cdot \max_{a'} Q(s', a'))
       \operatorname{return}^s \overleftarrow{Q}^{s'}
```


J.R. Carneiro - Advanced Projects in Deep Learning

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

EXPERIENCE REPLAY

SAMPLE TARGET NETWORK

ALPHA GO

User Player knowledge and learning to play

Knows the model of GO

Not generalizable

ALPHA GO Zero

learns to play from scratch

Knows the model of GO

Not generalizable

ALPHA Zero

learns to play from scratch

Learns the model for any game

Generalizable to minimax games

The training pipeline for AlphaGo Zero consists of three stages, executed in parallel

J.R. Carneiro - Advanced Projects in Deep Learning

APPLICATIONS

Artificial General Intelligence

How Much Information is the Machine Given during Learning?

Pure" Reinforcement Learning (cherry)
The machine predicts a scalar reward given once in a while.

A few bits for some samples

Supervised Learning (icing)
The machine predicts a category or a few numbers for each input
Predicting human-supplied data
10→10,000 bits per sample

Self-Supervised Learning (cake génoise)
The machine predicts any part of its input for any observed part.

Predicts future frames in videos

Millions of bits per sample

