Cryptography 2/10

Reagan Shirk February 10, 2020

Chinese Remainder Theorem

- Let m_1, \dots, m_n be integers such that they are pair wise relative prime - Basically, $\forall i, j \text{ where } i \neq j, \gcd(m_i, m_j) = 1$
- Then the below congruence system has a unique mod M where $M = \Pi m_i$, there is always a solution, and every solution can be found efficiently

$$x \equiv a_1 \bmod m_1$$

$$x \equiv a_1 \bmod m_2$$

$$\cdots$$

$$x \equiv a_n \bmod m_n$$

- Algorithm for this I guess? More like steps

 - $M_i = \frac{M}{m_i}$ $y_i = M_i^{-1} \mod m_i$ $x = \Sigma_i y_i M_i$
- How do we prove the last point above?
 - Calculate $x \mod m_i$
 - We need to remember from the formula that we have M_i , and if the i in M_i is different than m_i ... something happens? Everything else is gone... for some reason
 - * M_i is every single one of the m's except for m_i because you divide by it
 - * Therefore we can say that $x \mod m_i = a_i y_i M_i = a_i$
 - This is also somehow relevant

$$x_1, x_2$$

$$x_1 - x_2 \mod m_i = 0$$

$$\forall i, \ m_i | x_1 - x_2$$

$$\Rightarrow \Pi \ m_i | x_1 - x_2$$

• What is this? I don't know $-\frac{\mathbb{Z}}{m\mathbb{Z}} = \frac{\mathbb{Z}}{m_i\mathbb{Z}} \bigoplus \frac{\mathbb{Z}}{m_r\mathbb{Z}} \bigoplus \cdots \bigoplus \frac{\mathbb{Z}}{m_n\mathbb{Z}}$