

1 Définition et propriétés immédiates

$\stackrel{\wedge}{\Box}$

Définition

On appelle logarithme népérien d'un réel strictement positif x, l'unique solution y de l'équation $e^y = x$. On la note $y = \ln(x)$. La fonction logarithme népérien, notée ln, est la fonction :

$$\ln :]0; +\infty[\to \mathbb{R}$$

 $x \mapsto \ln(x)$

Remarque 1 \implies Les fonctions $\exp(x) = e^x$ et $\ln(x)$ sont des fonctions réciproques l'un de l'autre : cela signifie, entre autres, que les courbes représentatives de ces deux fonctions sont symétriques par rapport à la droite d'équation y = x.

Dans le domaine scientifique, on utilise la fonction logarithme décimale, notée log, et définie par :

$$\log(x) = \frac{\ln(x)}{\ln(10)}$$

Cette fonction vérifie :

$$10^y = x \Leftrightarrow y = \log(x) \ pour \ x > 0$$

2 Propriétés de la fonction logarithme népérien

2.1 Relation fonctionnelle

Remarque 2 Cette formule permet de transformer un produit en somme.

2.2 Conséquences

Exemple 1 Simplifier les expresions suivantes :

$$A = \ln(3 - \sqrt{5}) + \ln(3 + \sqrt{5})$$

$$B = 3\ln(2) + \ln(5) - 2\ln(3)$$

$$C = \ln(e^2) - \ln\left(\frac{2}{e}\right)$$

$$A = \ln((3 - \sqrt{5}) \times (3 + \sqrt{5})) = \ln(3^2 - \sqrt{5}^2) = \ln(9 - 5) = \ln(4)$$

$$B = \ln((2^3) + \ln(5) - \ln(3^2) = \ln\left(\frac{2^3 \times 5}{3^2}\right) = \ln\left(\frac{40}{9}\right)$$

$$C = 2\ln(e) - \ln(2) - (-\ln(e)) = 2 - \ln(2) + 1 = 3 - \ln(2)$$

2.3 Équations et inéquations

Propriétés

Pour tous réels x et y strictement positifs, on a :

$$log ln(x) = ln(y) \Leftrightarrow x = y.$$

$$\implies \ln(x) < \ln(y) \Leftrightarrow x < y.$$

Exemple 2 1. Résoudre dans I les équations suivantes et inéquations suivantes :

$$\ln(x) = 2 \quad I =]0; +\infty[$$

$$e^{x+1} = 5 \quad I = \mathbb{R}$$

$$3\ln(x) - 4 = 8 \quad I =]0; +\infty[$$

$$\ln(6x - 1) \le 2 \quad I = \left] \frac{1}{6}; +\infty \right[$$

$$e^{x} + 5 > 4e^{x} \quad I = \mathbb{R}$$

$$\begin{split} &\ln(x) = 2 \Leftrightarrow \ln(x) = \ln(e^2) \Leftrightarrow x = e^2 \in]0; +\infty[\\ &e^{x+1} = 5 \Leftrightarrow e^{x+1} = e^{\ln(5)} \Leftrightarrow x + 1 = \ln(5) \Leftrightarrow x = \ln(5) - 1 \in \mathbb{R} \\ &3\ln(x) - 4 = 8 \Leftrightarrow 3\ln(x) = 12 \Leftrightarrow \ln(x) = 4 = \ln(e^4) \Leftrightarrow x = e^4 \in \mathbb{R} \\ &\ln(6x - 1) \le 2 \Leftrightarrow 6x - 1 > 0 \ et \ln(6x - 1) \le \ln(e^2) \Leftrightarrow x > \frac{1}{6} \ et \ 6x - 1 \le e^2 \Leftrightarrow \frac{1}{6} < x \le \frac{e^2 + 1}{6} \\ &e^x + 5 > 4e^x \Leftrightarrow 5 > 3e^x \Leftrightarrow e^x < \frac{5}{3} = e^{\ln(\frac{5}{3})} \Leftrightarrow x < \ln\left(\frac{5}{3}\right) \end{split}$$

2. Résoudre dans \mathbb{R} l'équation et l'inéquation suivante :

$$\ln(x - 3) + \ln(9 - x) = 0$$

$$\ln(3-x) - \ln(x+1) \le 0$$

$$\ln(x-3) + \ln(9-x) = 0 \Leftrightarrow \ln((x-3)(9-x)) = 0 = \ln(1) \Leftrightarrow (x-3)(9-x) = 1 \Leftrightarrow -x^2 + 12x - 27 = 1$$
$$\Leftrightarrow -x^2 + 12x - 28 = 0$$

On calcule maintenant le discriminant Δ :

$$\Delta = b^2 - 4ac = 12^2 - 4 \times (-1) \times (-28) = 32$$

Comme le discriminant est strictement positif, il y a deux solutions réelles distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-12 + \sqrt{32}}{-2} = \frac{-12 + 4\sqrt{2}}{-2} = 6 - 2\sqrt{2}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-12 + \sqrt{32}}{-2} = \frac{-12 - 4\sqrt{2}}{2a} = 6 + 2\sqrt{2}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-12 + \sqrt{32}}{-2} = \frac{-12 - 4\sqrt{2}}{-2} = 6 + 2\sqrt{2}$$

On avait deux conditions pour l'égalité existe, elles viennent de l'ensemble de définition de la fonction logarithme :

$$x-3>0$$
 et $9-x>0 \Leftrightarrow x>3$ et $x<9$

Il reste à vérifier si $6-2\sqrt{2}$ et $6+2\sqrt{2}$ sont dans l'intervalle]3;9[. Comme on retire un nombre positif, $6-2\sqrt{2} < 6 < 9$ et il nous reste à comparer $6-2\sqrt{2}$ à 3:

$$6 - 2\sqrt{2} - 3 = 3 - \sqrt{8} = \sqrt{9} - \sqrt{8} > 0 \Leftrightarrow 6 - 2\sqrt{2} > 3$$

Comme on ajoute un nombre positif, $6 + 2\sqrt{2} > 6 > 3$ et il nous reste à comparer $6 + 2\sqrt{2}$ à 9 :

$$9 - (6 + 2\sqrt{2}) = 3 - 2\sqrt{2} = \sqrt{9} - \sqrt{8} > 0$$

On a bien montré l'appartenance des deux solutions à l'ensemble [3;9[.

3 Étude de la fonction logarithme népérien

3.1 Continuité et dérivabilité

Propriétés

- La fonction logarithme népérien est continue sur $]0; +\infty[$.
- ⇒ La fonction logarithme népérien est dérivable sur]0; +∞[et $(\ln(x))' = \frac{1}{x}$.

Preuve

On applique la formule de dérivation d'une composée de fonction à :

$$e^{\ln(x)}$$
 en posant $u(x) = \ln(x)$ et $e^{u(x)}$
 $\left(e^{\ln(x)}\right)' = u(x)' \times e^{u(x)} = u'(x)e^{\ln(x)}$

Or, cette fonction $e^{\ln(x)}$ est égale à x et la dérivée de x est 1, par conséquent :

$$u'(x)e^{\ln(x)} = 1 \Leftrightarrow u'(x)x = 1 \Leftrightarrow u'(x) = \frac{1}{x}$$

La dérivée de la fonction $x \mapsto \ln(x)$ est donc la fonction $x \mapsto \frac{1}{x}$.

Exemple 3 Dériver la fonction suivante sur l'intervalle $]0; +\infty[$ par :

$$f(x) = \frac{(\ln(x))^2}{x}$$

On utilise dans un premier temps la formule de dérivation d'un quotient :

$$f'(x) = \frac{\left((\ln(x))^{2}\right)' \times x - (\ln(x))^{2} \times x'}{x^{2}}$$

$$= \frac{\left((\ln(x))^{2}\right)' \times x - (\ln(x))^{2} \times x'}{x^{2}}$$

$$= \frac{2 \times (\ln(x))' \times \ln(x) \times x - (\ln(x))^{2} \times 1}{x^{2}} \text{ formule de dérivation d'une composée pour } (\ln(x))^{2}$$

$$= \frac{2 \times \frac{1}{x} \times \ln(x) \times x - (\ln(x))^{2}}{x^{2}}$$

$$= \frac{2\ln(x) - (\ln(x))^{2}}{x^{2}}$$

$$= \frac{\ln(x)(2 - \ln(x))}{x^{2}}$$

Le fait de factoriser par ln(x) va nous permettre de pouvoir donner le signe de cette derivée en faisant un tableau de signe.

3.2 Variations

TG TG

Propriétés

La fonction logarithme népérien est strictement croissante sur $]0; +\infty[$.

Convexité 3.3

Propriétés

La fonction logarithme népérien est concave sur $]0; +\infty[$.

Limites aux bornes 3.4

Croissance comparée des fonctions logarithme et puissances 3.5

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \text{ et pour } n \ge 1, \quad \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$

$$\lim_{x \to +\infty} x \ln(x) = 0 \text{ et pour } n \ge 1, \quad \lim_{x \to +\infty} x^n \ln(x) = 0$$

$$\lim_{x \to 0} x \ln(x) = 0$$
 et pour $n \ge 1$, $\lim_{x \to 0} x^n \ln(x) = 0$

Preuve du cas n = 1

On va poser $X = \ln(x)$, on peut donc écrire :

$$X = \ln(x) \Leftrightarrow x = e^X$$

$$\lim_{x \to +\infty} \ln(x) \Leftrightarrow \lim_{X \to +\infty} \operatorname{car} \lim_{x \to +\infty} \ln(x) = +\infty$$

 $\lim_{x \to +\infty} \frac{\ln(x)}{x} = \lim_{X \to +\infty} \frac{X}{e^X} = 0 \text{ d'après les croissances comparées de la fonction } x \mapsto e^x$

$$\lim_{x \to 0^+} \ln(x) \Leftrightarrow \lim_{X \to -\infty} \operatorname{car} \lim_{x \to 0^+} \ln(x) = -\infty$$

 $\lim_{x\to 0^+} x \ln(x) = \lim_{X\to -\infty} X e^X = 0 \text{ d'après les croissances comparées de la fonction } x\mapsto e^X$

Exemple 4 Déterminer les limites suivantes :

$$\lim_{x \to +\infty} x - \ln(x)$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x - 1}$$

On sait que:

$$\lim_{x \to +\infty} x = +\infty$$
$$\lim_{x \to +\infty} \ln(x) = +\infty$$

la limite $\lim_{x \to +\infty} x - \ln(x)$ est une forme indéterminée du type $+\infty - \infty$. On va donc factoriser par x:

$$x - \ln(x) = x \left(1 - \frac{\ln(x)}{x} \right)$$

$$\lim_{x \to +\infty} 1 - \frac{\ln(x)}{x} = 1$$

$$\lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \to +\infty} x \left(1 - \frac{\ln(x)}{x} \right) = +\infty \times 1 = +\infty \text{ par produit de limites}$$

La limite cherchée est donc $+\infty$.

On sait que:

$$\lim_{x \to +\infty} \ln(x)$$
$$\lim_{x \to +\infty} x - 1$$

la limite $\lim_{x\to +\infty}\frac{\ln(x)}{x-1}$ est une forme indéterminée du type $\frac{+\infty}{+\infty}$. On va factoriser par x:

$$\frac{\ln(x)}{x-1} = \frac{\ln(x)}{x\left(1-\frac{1}{x}\right)} = \frac{\ln(x)}{x} \times \frac{1}{1+\frac{1}{x}}$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

$$\lim_{x \to +\infty} \frac{1}{1-\frac{1}{x}} = 1 \text{ par quotient de limites} \quad \lim_{x \to +\infty} \frac{\ln(x)}{x} \times \frac{1}{1-\frac{1}{x}} = 0 \times 1 = 0$$

La limite cherchée est donc 0.

4 Études de fonctions

4.1 Cas de fonctions contenant la fonction ln(x)

Exemple 5 1. Déterminer les variations de la fonction f définie sur $]0; +\infty[$ $par f(x) = 3 - x + 2\ln(x).$

La fonction est dérivable par somme de fonctions dérivables, on peut donc calculer sa dérivée pour ensuite obtenir son signe, qui nous donnera accès aux variations de f:

$$f'(x) = -1 + 2 \times \frac{1}{x}$$
$$= \frac{-x+2}{x}$$

On en déduit le tableau de signes de f'(x) puis le tableau de variations de f:

X	0		2		+∞
-x+2		_	0	+	
х			+		
f'(x)		_	0	+	
f(x)	-∞		1+2ln(2		

Pour la valeur de f en 2 :

$$f(2) = 3 - 2 + 2\ln(2) = 1 + 2\ln(2)$$

De plus:

$$\lim_{x \to 0^{+}} 3 - x + 2\ln(x) = 3 - 0 - \infty = -\infty$$

$$\lim_{x \to +\infty} 3 - x + 2\ln(x) = \lim_{x \to +\infty} 3 - x \left(1 + 2 \times \frac{\ln(x)}{x}\right) = 3 - \infty \times (1 + 0)$$

$$= -\infty \text{ par produit de limites}$$

2. Etudier la convexité de la fonction f.

On doit calculer le signe de la fonction f''; cette fonction existe car la fonction f' est dérivable par quotient de fonctions dérivables pour x > 0:

$$f''(x) = (f'(x))' = (-1 + 2 \times \frac{1}{x})' = -\frac{2}{x^2} < 0 \text{ pour tout } x > 0$$

La fonction f est donc concave.

Exemple 6 Étudier la position relative de la courbe de la fonction logarithme et de la droite d'équation y = x.

On étudie la fonction $f(x) = \ln(x) - x$. Cette fonction est dérivable pour x > 0 par différence de fonctions dérivables pour x > 0:

$$f'(x) = \frac{1}{x} - 1$$

On va étudier le signe de cette fonction :

$$x > 0$$
 et $\frac{1}{x} - 1 > 0 \Leftrightarrow x > 0$ et $\frac{1}{x} > 1 \Leftrightarrow x > 0$ et $x < 1$

On en déduit le tableau de variation suivant :

х	0	1 +∞
f'(x)		+ 0 -
f(x)		-1

On va justifier les valeurs du tableau:

$$\lim_{x \to 0^{+}} \ln(x) - x = -\infty + 0 = -\infty$$

$$\lim_{x \to +\infty} \ln(x) - x = \lim_{x \to +\infty} x \left(\frac{\ln(x)}{x} - 1 \right) = +\infty \times (0 - 1) = -\infty$$

$$f(1) = \ln(1) - 1 = -1$$

Par conséquent, on vient, entre autres, de montrer que :

$$\forall x > 0$$
, $f(x) \le -1 \Rightarrow \forall x > 0$, $\ln(x) - x < -1 \Rightarrow \forall x > 0$, $\ln(x) < x$

Pour x > 0, la fonction $x \mapsto \ln(x)$ est sous la droite d'équation y = x.

4.2 Cas de fonctions contenant la fonction composée ln(u(x))

V

Fonctions du type ln(u(x))

La dérivée de la fonction $x \mapsto \ln(u(x))$, définie pour u(x) > 0, est :

$$\frac{u'(x)}{u(x)}$$

Exemple 7 Dériver la fonction g définie $sur \,]0;2[$ $par \, g(x) = \ln(2x - x^2)$. On va déjà vérifier que la fonction $u(x) = 2x - x^2$ est strictement positive $sur \,]0;2[$. La fonction dérivée de u est u'(x) = 2 - 2x; elle s'annule en x = 1:

$$2-2x > 0 \Leftrightarrow x < 1$$

La fonction u est donc décroissante sur [0;1] puis décroissante sur [1;2] :

$$u(0) = 0$$

$$u(1) = 1$$

$$u(2) = 0$$

Finalement, on peut en conclure que pour $x \in]0;2[, 0 < u(x) < 1 : g est donc bien définie sur]0;2[. La fonction g peut s'écrire comme la composée de deux fonctions :$

$$g(x) = \ln(u(x))$$

$$u(x) = 2x - x^2$$
 $u'(x) = 2 - 2x$

$$g'(x) = \frac{u'(x)}{u(x)} = \frac{2 - 2x}{2x - x^2}$$

Exemple 8 On considère la fonction f définie $sur \,]-2;1[$ $par \, :$

$$f(x) = \ln\left(\frac{x+2}{1-x}\right)$$

1. Calculer les limites de f aux bornes de son ensemble de définition et en déduire les équations des asymptotes à la courbe.

On va faire le tableau de signe de la fonction $u(x) = \frac{x+2}{1-x}$ pour montrer que f est bien définie sur] -2;1[:

x	-∞		-2		1		+∞
<i>x</i> + 2		_	0		+		
1-x			+		0	_	
u(x)		_	0	+	0	-	

La fonction u est bien strictement positive sur] – 2;1[donc f est bien définie sur] – 2;1[.

$$\lim_{x \to 1^{-}} u(x) = \frac{3}{0^{+}} = +\infty$$

$$donc \lim_{x \to 1^{-}} \ln(u(x)) = \lim_{x \to +\infty} \ln(x) = +\infty$$

$$\lim_{x \to 2^{+}} u(x) = 0$$

$$donc \lim_{x \to 2^{+}} \ln(u(x)) = \lim_{x \to 0^{+}} \ln(x) = -\infty$$

La courbe possède donc deux asymptotes verticales d'équation x = -2 et x = 1 car on obtient une limite infinie en x = 1 et x = -2.

2. Déterminer le sens de variations de la fonction f.

La fonction u est dérivable sur]-2;1[par quotient de fonctions dérivables.

Comme la fonction u est strictement positive sur] -2; 1[et que la fonction $y \mapsto \ln(y)$ est dérivable pour y > 0, alors la fonction f est dérivable sur] -2; 1[par composée de fonctions dérivables :

$$f'(x) = \frac{u'(x)}{u(x)}$$

$$u'(x) = \left(\frac{x+2}{1-x}\right)' = \frac{(x+2)' \times (1-x) - (x+2) \times (1-x)'}{(1-x)^2} = \frac{(1-x) - (x+2) \times (-1)}{(1-x)^2}$$

$$= \frac{3}{(1-x)^2} > 0$$

 $La \, fonction \, est \, donc \, strictement \, croissante \, sur \,] - 2; 1[.$

3. Tracer la courbe représentative de f.

