Concours commun Mines-Ponts

PREMIÈRE EPREUVE. FILIÈRE MP

A. Équations algébriques réciproques

1) • Soit $P \in \mathbb{R}_n[X]$. Posons $P = \sum_{k=0}^n \alpha_k X^k$.

$$u_n(P)(X) = X^n \sum_{k=0}^n \frac{a_k}{X^k} = \sum_{k=0}^n a_k X^{n-k} = \sum_{k=0}^n a_{n-k} X^k.$$

 $u_n(P)(X)$ est effectivement un élément de $\mathbb{R}_n[X]$. On a montré que u_n est bien une application de $\mathbb{R}_n[X]$ dans lui-même.

• Soit $P \in \mathbb{R}_n[X]$.

$$u_n^2(P)(X) = X^n u_n(P) \left(\frac{1}{X}\right) = X^n \frac{1}{X^n} P\left(\frac{1}{1/X}\right) = P(X).$$

Donc $\mathfrak{u}_n^2=\mathrm{Id}_{\mathbb{R}_n[X]}$ et on a monté que \mathfrak{u}_n est une symétrie de $\mathbb{R}_n[X]$.

2) Soit $P \in \mathbb{R}[X] \setminus \{0\}$. Soit $n = \deg(P) \in \mathbb{N}$. Posons $P = \sum_{k=0}^{n} \alpha_k X^k$. Alors $u_n(P)(X) = \sum_{k=0}^{n} \alpha_{n-k} X^k$ puis par identification des coefficients

$$P\in\mathscr{P}\;(\mathrm{resp.}\;\mathscr{D})\Leftrightarrow u_n(P)=P\;(\mathrm{resp}\;u_n(P)=-P)\Leftrightarrow \forall k\in[\![0,n]\!],\;\alpha_{n-k}=\alpha_k\;(\mathrm{resp.}\;\forall k\in[\![0,n]\!],\;\alpha_{n-k}=-\alpha_k).$$

 $\textbf{3)} \bullet \mathrm{Soit} \ R \in \mathscr{P} \cup \mathscr{D}. \ \mathrm{Alors} \ R \neq 0 \ \mathrm{et} \ \mathrm{il} \ \mathrm{existe} \ \epsilon \in \{-1,1\} \ \mathrm{tel} \ \mathrm{que} \ \mathfrak{u}_{\mathfrak{n}}(R) = \epsilon R.$

Soit x un réel non nul.

$$R(x)=0 \Leftrightarrow \epsilon R(x)=0 \Leftrightarrow u_n(R)(x)=0 \Leftrightarrow x^nR\left(\frac{1}{x}\right)=0 \Leftrightarrow R\left(\frac{1}{x}\right)=0.$$

Donc x est racine de R si et seulement si est racine de de R.

• Soit $R \in \mathcal{D}$. Notons n le degré de R. Pour tout réel x non nul,

$$x^n R\left(\frac{1}{x}\right) = -R(x).$$

Pour x = 1, on obtient R(1) = -R(1) et donc R(1) = 0.

• Soit $R \in \mathcal{P}$. On suppose que le degré de R est impair. On note 2p + 1, $p \in \mathbb{N}$ ce degré. Pour tout réel x non nul,

$$x^{2p+1}R\left(\frac{1}{x}\right) = R(x).$$

Pour x = -1, on obtient $R(-1) = (-1)^{2p+1}R(-1)$ ou encore R(-1) = -R(-1) ou finalement R(-1) = 0.

- 4) Soient P, Q et R trois éléments de $\mathcal{P} \cup \mathcal{D}$ tels que P = QR. Notons p, q et r les degrés respectifs de P, Q et R. On a donc p = q + r.
- Supposons que Q et R soient réciproques. On a Q(X) = $\epsilon_Q X^q Q\left(\frac{1}{X}\right)$ et R(X) = $\epsilon_R X^r R\left(\frac{1}{X}\right)$ où ϵ_Q et ϵ_R sont deux éléments de $\{-1,1\}$.

$$X^pP\left(\frac{1}{X}\right)=X^pQ\left(\frac{1}{X}\right)R\left(\frac{1}{X}\right)=X^p\epsilon_Q\frac{1}{X^q}Q(X)\epsilon_R\frac{1}{X^r}R(X)=\epsilon_Q\epsilon_R\frac{X^p}{X^qX^r}Q(X)R(X)=\epsilon_Q\epsilon_RP(X).$$

Comme $\varepsilon_Q \varepsilon_R \in \{-1, 1\}$, le polynôme P est un polynôme réciproque. On note de plus que $\varepsilon_P = \varepsilon_Q \varepsilon_R$ et donc que « l'espèce obéit à la règle des signes » : si Q sont de même espèce, P est de première espèce et si Q et R sont d'espèces différentes, P est de deuxième espèce.

• Supposons que P et Q soient réciproques.

$$X^{r}R\left(\frac{1}{X}\right) = X^{r}\frac{P\left(\frac{1}{X}\right)}{Q\left(\frac{1}{X}\right)} = X^{r}\frac{\varepsilon_{P}X^{-p}P(X)}{\varepsilon_{Q}X^{-q}Q(X)} = \frac{\varepsilon_{P}}{\varepsilon_{Q}}X^{r-p+q}\frac{P(X)}{Q(X)} = \varepsilon_{P}\varepsilon_{Q}R(X),$$

et donc, R est réciproque. De même, si P et R sont réciproques, alors Q est réciproque en échangeant les rôles de Q et R. Ainsi, dans l'égalité P = QR, dès que deux des trois polynômes sont réciproques, le troisième l'est encore.

5) Soit $P \in \mathcal{P}$. Le polynôme X-1 est dans \mathcal{D} d'après la question 2) et donc le polynôme (X-1)P est dans \mathcal{D} d'après la question précédente.

Réciproquement, soit $D \in \mathcal{D}$. D est un polynôme non nul admettant 1 pour racine d'après la question 3). Donc, il existe un unique polynôme P tel que D = (X-1)P: P est le quotient de la division euclidienne de D par X-1. De plus, $P = \frac{D}{X-1}$ est dans \mathcal{P} d'après la question précédente.

6) Soit $P \in \mathcal{P}$ de degré impair. Le polynôme X+1 est dans \mathcal{P} d'après la question 2) et donc le polynôme (X+1)P est dans \mathcal{P} d'après la question précédente.

Réciproquement, soit $Q \in \mathcal{P}$ de degré impair. Q est un polynôme non nul admettant -1 pour racine d'après la question 3). Donc, il existe un unique polynôme P tel que Q = (X+1)P. Enfin, $P = \frac{Q}{X+1}$ est dans \mathcal{P} .

En résumé, un polynôme Q de degré impair est dans $\mathcal P$ si et seulement si il existe un unique polynôme P dans $\mathcal P$ tel que Q=(X+1)P.

7) Unicité. Soit $p \in \mathbb{N}$. Soient P_1 et P_2 deux polynômes tel que $P_1\left(X+\frac{1}{X}\right)=P_2\left(X+\frac{1}{X}\right)=X^p+\frac{1}{X^p}$. En particulier, pour tout réel $x \in [1,+\infty[$, $P_1\left(x+\frac{1}{x}\right)=P_2\left(x+\frac{1}{x}\right)$. Maintenant, quand x décrit $[1,+\infty[$, $x+\frac{1}{x}$ décrit au moins $\left[1+\frac{1}{1},\lim_{x\to+\infty}x+\frac{1}{x}\right]=[2,+\infty[$ d'après le théorème des valeurs intermédiaires. Ainsi, pour tout $y\in[2,+\infty[$, $P_1(y)=P_2(y)$ et donc les polynômes P_1 et P_2 coïncident en une infinité de valeurs. On en déduit que $P_1=P_2$.

Existence. Soient $p \in \mathbb{N}$ puis T_p le p-ème polynôme de TCHEBICHEV de première espèce. On sait que T_p est un polynôme de degré p tel que pour tout réel θ , $T_p(\cos\theta) = \cos(p\theta)$. Soit $P(X) = 2T_p\left(\frac{X}{2}\right)$. P est un polynôme de degré p. Pour tout réel θ ,

$$P\left(e^{\mathrm{i}\theta}+e^{-\mathrm{i}\theta}\right)=P(2\cos\theta)=2T_p(\cos\theta)=2\cos(p\theta)=e^{\mathrm{i}p\theta}+e^{-\mathrm{i}p\theta}.$$

Ainsi, les fractions rationnelles $P\left(X+\frac{1}{X}\right)$ et $X^p+\frac{1}{X^p}$ coïncident en une infinité de valeurs et donc $P\left(X+\frac{1}{X}\right)=X^p+\frac{1}{X^p}$.

 $\mathbf{Autre\ solution.}\ \mathrm{Montrons\ par\ r\'ecurrence\ que}\ \forall p\in\mathbb{N}, \exists P_p\in\mathbb{R}[X]\ \mathrm{tel\ que}\ X^p+\frac{1}{X^p}=P_p\left(X+\frac{1}{X}\right)\ \mathrm{et\ de\ plus}, \deg(P_p)=p.$

- $P_0(Y) = 1$ et $P_1(Y) = Y$ conviennent.
- Soit $p \in \mathbb{N}$. Supposons qu'il existe P_p et P_{p+1} deux polynômes tels que $P_p\left(X+\frac{1}{X}\right)=X^p+\frac{1}{X^p}$ et $P_{p+1}\left(X+\frac{1}{X}\right)=X^{p+1}+\frac{1}{X^{p+1}}$ et de plus $\deg(P_p)=p$ et $\deg(P_{p+1})=p+1$.

$$\begin{split} X^{p+2} + \frac{1}{X^{p+2}} &= \left(X + \frac{1}{X}\right) \left(X^{p+1} + \frac{1}{X^{p+1}}\right) - \left(X^p + \frac{1}{X^p}\right) \\ &= \left(X + \frac{1}{X}\right) P_{p+1} \left(X + \frac{1}{X}\right) - P_p \left(X + \frac{1}{X}\right) = P_{p+2} \left(X + \frac{1}{X}\right), \end{split}$$

où $P_{p+2}(Y) = YP_{p+1}(Y) - P_p(Y)$ est un polynôme. De plus, $\deg(P_{p+2}) = \deg(YP_{p+1} - P_p) = \deg(YP_{p+1}) = p+1+1 = p+2$. Le résultat est démontré par récurrence.

8) Puisque R n'admet pas 1 pour racine, R n'est pas dans \mathscr{D} d'après la question 3) et donc R est dans \mathscr{P} . Puisque R n'admet pas -1 pour racine, R n'est pas de degré impair d'après la question 3) et donc R est de degré pair. Finalement, R est un élément de \mathscr{P} de degré pair. Posons $\deg(R) = 2p$ où $p \in \mathbb{N}$.

Si p=0, le polynôme P=1 convient. On suppose dorénavant $p\geqslant 1$. On pose $R=\sum_{k=0}^{2p}\alpha_kX^k$ où α_{2p} est un réel non nul et les α_k sont des réels tels que $\forall k\in [\![0,p]\!],\ \alpha_{p+k}=\alpha_{p-k}.$

$$\begin{split} \frac{1}{X^{p}}R(X) &= \sum_{k=0}^{p-1} \alpha_{k}X^{k-p} + \alpha_{p} + \sum_{k=p+1}^{2p} \alpha_{k}X^{k-p} = \sum_{k=1}^{p} \alpha_{p-k}X^{-k} + \alpha_{p} + \sum_{k=1}^{p} \alpha_{k+p}X^{k} \\ &= \alpha_{p} + \sum_{k=1}^{p} \alpha_{p-k} \left(X^{k} + \frac{1}{X^{k}}\right) = \alpha_{p} + \sum_{k=1}^{p} \alpha_{p-k}P_{p}\left(X + \frac{1}{X}\right). \end{split}$$

Soit $P_0 = a_p + \sum_{k=1}^p a_{p-k} P_p$. Alors, pour tout réel non nul x, $R(x) = x^p P_0 \left(x + \frac{1}{x} \right)$. Par suite, P est un polynôme tel que pour tout réel non nul x, $R(x) = 0 \Leftrightarrow P_0 \left(x + \frac{1}{x} \right) = 0$.

Soit $P_1 = 2P_0$. P_1 est un polynôme distinct de P_0 vérifiant : $\forall x \in \mathbb{R}^*$, $R(x) = 0 \Leftrightarrow P_1\left(x + \frac{1}{x}\right) = 0$. Il n'y a donc pas unicité du polynôme P.

Soit $P_2 = XP_0$. P_2 est un polynôme de degré distinct du degré de P_0 . De plus, pour tout réel $x \neq 0$,

$$P_2\left(x+\frac{1}{x}\right)=0 \Leftrightarrow \left(x+\frac{1}{x}\right)P_0\left(x+\frac{1}{x}\right)=0 \Leftrightarrow \frac{x^2+1}{x}P_0\left(x+\frac{1}{x}\right)=0 \Leftrightarrow P_0\left(x+\frac{1}{x}\right)=0 \Leftrightarrow R(x)=0.$$

Il n'y a donc pas unicité du degré de P.

B. Un problème de dénombrement

 $\mathbf{9)} \text{ Soit } \mathbf{u} \in \mathcal{S}_{i,j}. \text{ Alors } \mathbf{u}_0 = 1 \text{ et } \mathbf{u}_0 + \mathbf{u}_1 + \ldots + \mathbf{u}_j = \mathbf{j} - \mathbf{u}_{j+1} \leqslant \mathbf{j}. \text{ Donc, } \mathbf{u}|_{\{0,1,\ldots,i\}} \in \mathcal{S}'_{i,j}. \text{ Ainsi, } \begin{array}{c} \mathcal{S}_{i,j} & \to & \mathcal{S}'_{i,j} \\ \mathbf{u} & \mapsto & \mathbf{u}|_{\{0,1,\ldots,i\}} \end{array}$ est bien définie.

Soit $(u, v) \in \mathcal{S}_{i+1,j} \times \mathcal{S}'_{i,j}$.

$$\begin{split} u|_{\{0,1,\ldots,i\}} &= \nu \Leftrightarrow u_0 = 1 \text{ et } \forall k \in \llbracket 0,i+1 \rrbracket, \ u_k \in \mathbb{N} \text{ et } u_0 + u_1 + \ldots + u_{i+1} = j \text{ et } \forall k \in \llbracket 0,i \rrbracket, \ u_k = \nu_k \\ & \Leftrightarrow \forall k \in \llbracket 0,i \rrbracket, \ u_k = \nu_k \text{ et } u_{i+1} \in \mathbb{N} \text{ et } u_{i+1} = j - (\nu_0 + \nu_1 + \ldots + \nu_i) \\ & \Leftrightarrow \forall k \in \llbracket 0,i \rrbracket, \ u_k = \nu_k \text{ et } u_{i+1} = j - (\nu_0 + \nu_1 + \ldots + \nu_i) \text{ (car } \nu_0 + \nu_1 + \ldots + \nu_i \leqslant j). \end{split}$$

 $\begin{aligned} \text{Ainsi, pour tout } \nu \operatorname{de} \mathcal{S}'_{i,j}, & \text{il existe un et un seul } u \in \mathcal{S}_{i+1,j} \text{ tel que } u|_{\{0,1,\ldots,i\}} = \nu \operatorname{et donc l'application} & \mathcal{S}_{i,j} & \to & \mathcal{S}'_{i,j} \\ & u & \mapsto & u|_{\{0,1,\ldots,i\}} \end{aligned}$ est bijective.

 $\textbf{10)} \bullet \mathrm{Soit} \ (i,j) \in (\mathbb{N}^*)^2. \ s_{i,j+1}' \ \mathrm{est} \ \mathrm{le} \ \mathrm{nombre} \ \mathrm{de} \ i+1 \ \mathrm{uplets} \ (u_0,u_1,\ldots,u_i) \ \mathrm{d'entiers} \ \mathrm{naturels} \ \mathrm{tels} \ \mathrm{que} \ u_0=1 \ \mathrm{et} \ u_0+u_1+\ldots+u_i \leqslant j+1. \ \mathrm{Ces} \ i+1 \ \mathrm{uplets} \ \mathrm{sont} \ \mathrm{de} \ \mathrm{l'un} \ \mathrm{des} \ \mathrm{deux} \ \mathrm{types} \ \mathrm{disjoints} \ \mathrm{suivants} :$

1 er type : les i+1 uplets tels que $u_0+u_1+\ldots+u_i=j+1$ au nombre de $s_{i,j+1},$

2 ème type : les i+1 uplets tels que $\mathfrak{u}_0+\mathfrak{u}_1+\ldots+\mathfrak{u}_j\leqslant j$ au nombre de $\mathfrak{s}'_{i,j}$.

Ceci montre que $s'_{i+1,j+1} = s_{i+1,j+1} + s'_{i+1,j}$.

• Soit $(i,j) \in \mathbb{N}^*$. D'après la question 9), les deux ensembles $\mathcal{S}_{i+1,j+1}$ et $\mathcal{S}'_{i,j+1}$ sont équipotents et donc $s_{i+1,j+1} = s'_{i,j+1}$ puis

$$s'_{i+1,j+1} = s_{i+1,j+1} + s'_{i+1,j} = s'_{i,j+1} + s'_{i+1,j}.$$

On a montré que

$$\forall (i,j) \in (\mathbb{N}^*)^2, \ s'_{i+1,j+1} = s'_{i,j+1} + s'_{i+1,j}.$$

11) Montrons par récurrence que pour tout $n \ge 2$, $\forall (i,j) \in [\![1,n]\!]^2$, si i+j=n alors $s'_{i,j}=\binom{i+j-1}{i}$.

 $\bullet \text{ Pour } n=2, \text{ soit } (i,j) \in \llbracket 1,2 \rrbracket^2 \text{ tel que } i+j=2. \text{ Alors } i=j=1 \text{ puis } s'_{1,1}=1 \text{ (il y a un et un seul couple tel que } u_0+u_1\leqslant 1 \text{ avec } u_0=1 \text{ à savoir } (1,0)). \text{ Comme d'autre part } \binom{1+1-1}{1}=1, \text{ on a bien } s'_{1,1}=\binom{1+1-1}{1}.$

• Soit $n \ge 2$. Supposons que $\forall (i,j) \in [\![1,n]\!]^2$, si i+j=n alors $s'_{i,j}=\binom{i+j-1}{i}$. Soit $(i,j)\in [\![1,n+1]\!]$ tel que i+j=n+1. Si $j\ge 2$, d'après la question précédente,

$$\begin{split} s_{i,j}' &= s_{i-1,j}' + s_{i,j-1}' \\ &= \binom{(i-1)+j-1}{i-1} + \binom{i+(j-1)-1}{i} \text{ (par hypothèse de récurrence car } i-1+j=i+j-1=n) \\ &= \frac{(i+j-2)!}{(i-1)!(j-1)!} + \frac{(i+j-2)!}{i!(j-2)!} = \frac{(i+j-2)!(i+j-1)}{i!(j-1)!} = \frac{(i+j-1)!}{i!(j-1)!} \\ &= \binom{i+j-1}{i}. \end{split}$$

Si j=1, il y a exactement un i+1 uplet (u_0,\ldots,u_i) tel que $u_0=1$ et $u_0+\ldots+u_j\leqslant 1$ à savoir $(1,0,\ldots,0)$. Donc $s_{i,1}'=1=\binom{i+1-1}{i}$.

Le résultat est démontré par récurrence.

$$\forall (i,j) \in \mathbb{N}^*, \ s'_{i,j} = {i+j-1 \choose i}.$$

Soit $i \geqslant 2$. Pour $j \geqslant 1$, $s_{i,j} = s'_{i-1,j} = \binom{i+j-2}{i-1}$. D'autre part, pour $j \geqslant 1$, $s_{1,j}$ est le nombre de couples $(1,u_1)$ tels que $1+u_1=j$. Il y en a 1 à savoir le couple (1,j-1). Comme $\binom{1+j-2}{1-1} = \binom{j-1}{0} = 1$, on a montré que

$$\forall (i,j) \in \mathbb{N}^*, \ s_{i,j} = \binom{i+j-2}{i-1}.$$

C. Polynôme caractéristique d'un produit de matrices

12) Soit $(A, B) \in M_n(\mathbb{R})$. On suppose que A est inversible.

$$\Phi_{AB} = \det(AB - XI_n) = \det\left(A(BA - XI_n)A^{-1}\right) = \det(A) \times \det(BA - XI_n) \times \frac{1}{\det(A)} = \Phi_{BA}.$$

13) On suppose maintenant que A n'est pas inversible. A admet un nombre fini de valeurs propres dans \mathbb{C} . Soit $r = \min\{|\lambda|, \lambda \in \operatorname{Sp}(A) \setminus \{0\}$. r est un réel strictement positif.

Soit $k_0 = E\left(\frac{1}{r}\right) + 1$. k_0 est un entier naturel tel que $k_0 > \frac{1}{r}$ ou encore tel que $\frac{1}{k_0} < r$. Soit $k \geqslant k_0$. Alors, $0 < \frac{1}{k} \leqslant \frac{1}{k_0} < r$.

Par définition de r, $\frac{1}{k}$ n'est pas valeur propre de A et donc la matrice $A - \frac{1}{k}I_n$ est inversible. D'après la question précédente, $\Phi_{\left(A - \frac{1}{k}I_n\right)B} = \Phi_{B\left(A - \frac{1}{k}I_n\right)}$.

Ainsi, pour tout $k \geqslant k_0$, $\Phi_{\left(A-\frac{1}{k}I_n\right)B} = \Phi_{B\left(A-\frac{1}{k}I_n\right)}$. Soit $x \in \mathbb{R}$. Les deux applications $y \mapsto \det((A-yI_n)B-xI_n)$ et $y \mapsto \det(B(A-yI_n)-xI_n)$ sont deux polynômes en y qui coïncident en une infinité de valeurs de y. On en déduit que ces polynômes sont égaux et en particulier qu'ils prennent la même valeur en 0. On obtient alors $\det(AB-xI_n) = \det(BA-xI_n)$. Cette égalité est vraie pour tout réel x et on a donc montré que $\det(AB-xI_n) = \det(BA-xI_n)$ ou encore $\Phi_{AB} = \Phi_{BA}$.

$$\forall (A,B) \in M_n(\mathbb{R}), \, \Phi_{AB} = \Phi_{BA}.$$

D. Étude spectrale de certaines matrices matrices

14) • Soit $(i, j) \in [1, n + 1]^2$. D'après la question 11),

$$s_{j,i} = {j+i-2 \choose j-1} = {j+i-2 \choose (i+j-2)-(j-1)} = {i+j-2 \choose i-1} = s_{i,j}.$$

Ainsi, la matrice S est symétrique réelle et en particulier, la matrice S est diagonalisable d'après le théorème spectral.

$$\bullet \ S_0 = (1), \ S_1 = \left(\begin{array}{cc} \binom{0}{0} & \binom{1}{0} \\ \binom{1}{1} & \binom{2}{1} \\ 1 \end{array} \right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right) \ \mathrm{et} \ S_2 = \left(\begin{array}{cc} \binom{0}{0} & \binom{1}{0} & \binom{2}{0} \\ \binom{1}{0} & \binom{2}{0} & \binom{3}{0} \\ \binom{1}{1} & \binom{2}{1} & \binom{3}{1} \\ \binom{2}{2} & \binom{3}{3} & \binom{4}{2} \\ \binom{2}{2} & \binom{3}{2} & \binom{4}{2} \end{array} \right) = \left(\begin{array}{cc} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{array} \right).$$

• $\Phi_{S_0} = 1 - X$, $\Phi_{S_1} = X^2 - 3X + 1$ et

$$\Phi_{S_2} = \begin{vmatrix} 1 - X & 1 & 1 \\ 1 & 2 - X & 3 \\ 1 & 3 & 6 - X \end{vmatrix} = (1 - X)(X^2 - 8X + 3) - (-X + 3) + (X + 1) = -X^3 + 9X^2 - 9X + 1.$$

• S₀ est diagonale.

•
$$S_1 = PDP^{-1}$$
 où $D = \operatorname{diag}\left(\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right), P = \begin{pmatrix} 1 & 1 \\ \frac{-1+\sqrt{5}}{2} & \frac{-1-\sqrt{5}}{2} \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} \frac{1+\sqrt{5}}{2\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{-1+\sqrt{5}}{2\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}.$

15) Soit $(P,Q) \in (\mathbb{R}_n[X])^2$. La fonction $t \mapsto P(t)Q(t)e^{-t}$ est continue sur $[0,+\infty[$ et est négligeable devant $\frac{1}{t^2}$ en $+\infty$. On en déduit que la fonction $t \mapsto P(t)Q(t)e^{-t}$ est intégrable sur $[0,+\infty[$. Ainsi, pour tout $(P,Q) \in (\mathbb{R}_n[X])^2$, $\psi(P,Q)$ existe. La bilinéarité, la symétrie et la positivité de ψ sont claires et de plus, pour $P \in \mathbb{R}_n[X]$,

$$\begin{split} \psi(P,P) &= 0 \Rightarrow \int_0^{+\infty} P^2(t) e^{-t} \ dt = 0 \\ &\Rightarrow \forall t \geqslant P(t) e^{-t} = 0 \ (\text{fonction continue, positive, d'intégrale nulle}) \\ &\Rightarrow \forall t \geqslant 0, \ P(t) = 0 \\ &\Rightarrow P = 0 \ (\text{polynôme ayant une infinité de racines}). \end{split}$$

En résumé, ψ est une forme bilinéaire, symétrique, définie, positive sur $\mathbb{R}_n[X]$ ou encore

ψ est un produit scalaire sur $\mathbb{R}_n[X]$.

 $\mathbf{16)} \ \mathscr{B}_0 = (X^i)_{0 \leqslant i \leqslant n} \ \mathrm{est} \ \mathrm{la} \ \mathrm{base} \ \mathrm{canonique} \ \mathrm{de} \ \mathbb{R}_n[X] \ \mathrm{et} \ \mathrm{donc} \ \mathscr{B} = \left(\frac{X^i}{i!}\right)_{0 \leqslant i \leqslant n} \ \mathrm{est} \ \mathrm{une} \ \mathrm{base} \ \mathrm{de} \ \mathbb{R}_n[X].$

On siat que pour tout entier naturel n $\Gamma(n+1) = \int_0^{+\infty} t^n e^{-t} dt = n!$. Soit $(i,j) \in [0,n]^2$.

$$\psi(B_{i},B_{j}) = \frac{1}{i!j!} \int_{0}^{+\infty} t^{i+j} e^{-t} \ dt = \frac{1}{i!j!} \Gamma(i+j+1) = \frac{(i+j)!}{i!} j! = \binom{i+j}{i} = s_{i+1,j+1}.$$

Ainsi, $S = (\psi(B_{i-1}, B_{j-1})_{1 \le i,j \le n+1}$. Donc S est la matrice d'un produit scalaire dans une base ou encore S est une matrice symétrique définie positive.

En particulier, S n'admet pas 0 pour valeur propre et donc S est une matrice inversible. Ceci montre que rg(S) = n + 1.

Notons C_1,\ldots,C_{n+1} (resp. C_1',\ldots,C_{n+1}') les colonnes de S (resp. S'). D'après la question 10), pour tout $(i,j)\in [\![1,n+1]\!]\times [\![1,n]\!],$ $s_{i,j+1}'-s_{i,j}'=s_{i,j+1}$ ou encore pour tout $j\in [\![1,n+1]\!],$ $C_{j+1}'-C_j'=C_{j+1}$. En tenant compte de $C_1'=(1)=C_1,$

$$\operatorname{rg}(S') = \operatorname{rg}(C_1', C_2', \dots, C_{n+1}') = \operatorname{rg}(C_1', C_2' - C_1', \dots, C_{n+1}' - C_n') = \operatorname{rg}(C_1, C_2, \dots, C_{n+1}) = \operatorname{rg}(S) = n+1.$$

17) Pour tous i et j, il existe un polynôme P tel que $\forall t \in \mathbb{R}, \ f_i^{(j)}(t) = P(t)e^{-t}$. D'après un théorème de croissances comparées, $\forall (i,j,k) \in [\![0,n]\!] \times \mathbb{N} \times \mathbb{N}, \ f_i^{(j)}(t) \underset{t \to +\infty}{=} o \left(t^{-k}\right)$.

Soit $i \in [0, n]$. La formule de Leibniz fournit :

$$\begin{split} (-1)^i \frac{f_i^{(i)}(t)}{i!} e^t &= \frac{(-1)^i}{i!} e^t \sum_{k=0}^i \binom{i}{k} (t^i)^{(k)} (e^{-t})^{(i-k)} = \sum_{k=0}^i \frac{1}{i!} \times \frac{i!}{k!(i-k)!} \frac{i!}{(i-k)!} t^{i-k} e^t (-1)^i (-1)^{i-k} e^{-t} \\ &= \sum_{k=0}^i (-1)^k \frac{i!}{k!((i-k)!)^2} t^{i-k} = \sum_{k=0}^i (-1)^{i-k} \frac{i!}{(i-k)!(k!)^2} t^k = L_i(t) \end{split}$$

où $L_i = \sum_{k=0}^i (-1)^{i-k} \frac{i!}{(i-k)!(k!)^2} X^k$ est bien un polynôme.

18) On rappelle que d'après la question 17), $\forall (i,j,k) \in [0,n] \times \mathbb{N} \times \mathbb{N}, \lim_{t \to +\infty} f_i^{(j)}(t)t^k = 0.$ (*)

D'autre part, pour tout réel t, $f_i(t) = t^i \sum_{k=0}^{+\infty} \frac{t^k}{k!} = \sum_{k=i}^{+\infty} \frac{t^k}{(k-i)!}$. Ceci montre que pour tous i et k tels que $0 \le k < i$, $f_i^{(k)}(0) = 0$ et $f_i^{(i)}(0) = i! \times \frac{1}{(i-i)!} = i!$. (**)

$$\bullet \ \psi(L_0,B_0) = \int_0^{+\infty} f_0(t) e^t B_0(t) e^{-t} \ dt = \int_0^{+\infty} e^{-t} \ dt = 1.$$

$$\text{Si } i \geqslant 1, \ \psi(L_i, B_0) = \frac{(-1)^i}{i!} \int_0^{+\infty} f_i^{(i)}(t) \ dt = \frac{(-1)^i}{i!} \left[f^{(i-1)}(t) \right]_0^{+\infty} = \frac{(-1)^i}{i!} \left(\lim_{t \to +\infty} f^{(i-1)}(t) - f_i^{(i-1)}(0) \right) = 0 \ \text{d'après (*)}$$
 et (**).

Finalement, pour $i \ge 0$, $\psi(L_i, B_0) = \delta_{i,0}$.

• Soient i et j deux entiers naturels tels que $0 < j \le i$.

$$\psi(L_i,B_j) = \int_0^{+\infty} (-1)^i \frac{f_i^{(i)}(t)}{i!} e^t \frac{t^j}{i!} e^{-t} \ dt = \frac{(-1)^i}{i!j!} \int_0^{+\infty} f_i^{(i)}(t) t^j \ dt.$$

 $\mathrm{Montrons\ par\ r\'{e}currence\ finie\ que\ }\forall k\in \llbracket 0,j\rrbracket,\ \psi(L_i,B_j)=\frac{(-1)^{i-k}}{i!(j-k)!}\int_0^{+\infty}f_i^{(i-k)}(t)t^{j-k}\ dt.$

- Le résultat est vrai pour k = 0.
- $\text{- Soit } k \in [\![0,j-1]\!]. \text{ Supposons que } \psi(L_i,B_j) = \frac{(-1)^{i-k}}{i!(j-k)!} \int_0^{+\infty} f_i^{(i-k)}(t) t^{j-k} \ dt.$

Soit A>0. Les deux fonctions $t\mapsto f_i^{(i-k)}(t)$ et $t\mapsto t^j$ sont de classe C^1 sur le segment [0,A]. On peut donc effectuer une intégration par parties qui fournit

$$\int_0^A f_i^{(i-k)}(t)t^{j-k}\ dt = \left[f_i^{(i-k-1)}(t)t^{j-k}\right]_0^A - (j-k)\int_0^A f_i^{(i-k-1)}(t)t^{j-k-1}\ dt.$$

Le crochet est nul en 0 d'après (*) car $0 \leqslant i-k-1 \leqslant i-1 < i$ et le crochet tend vers 0 quand A tend vers $+\infty$ d'après (**). Quand A tend vers $+\infty$, on obtient $\int_0^{+\infty} f_i^{(i-k)}(t) t^{j-k} \ dt = -(j-k) \int_0^{+\infty} f_i^{(i-k-1)}(t) t^{j-k-1} \ dt$ puis

$$\psi(L_i,B_j) = \frac{(-1)^{i-k}}{i!(j-k)!} \times -(j-k) \int_0^{+\infty} f_i^{(i-k-1)}(t) t^{j-k-1} \ dt = \frac{(-1)^{i-(k+1)}}{i!(j-(k+1))!} \int_0^{+\infty} f_i^{(i-k-1)}(t) t^{j-k-1} \ dt.$$

Le résultat est démontré par récurrence.

Pour k=j, on obtient en particulier $\psi(L_i,B_j)=\frac{(-1)^{i-j}}{i!}\int_0^{+\infty}f_i^{(i-j)}(t)\ dt$.

Si
$$j < i$$
, on obtient $\psi(L_i, B_j) = \frac{(-1)^{i-j}}{i!} \left[f_i^{(i-j-1)}(t) \right]_0^{+\infty} = 0$ d'après (*) et (**).

$$\mathrm{Si}\; j=i, \; \psi(L_i,B_i)=\frac{1}{i!}\int_0^{+\infty}f_i(t)\; dt=\frac{1}{i!}\int_0^{+\infty}t^ie^{-t}\; dt=1\; \mathrm{et}\; \mathrm{de}\; \mathrm{nouveau}\; \psi(L_i,B_i)=\delta_{i,j}.$$

• $\psi(L_0, L_0) = \psi(L_0, B_0) = 1$.

$$\mathrm{Soit}\ i\geqslant 1.\ \mathrm{D'après}\ \mathrm{la}\ \mathrm{question}\ 17),\ L_{i}=\sum_{l=0}^{i}(-1)^{i-j}\frac{i!}{(i-j)!(j!)^{2}}X^{j}=B_{i}+\sum_{i=0}^{i-1}-1)^{i-j}\frac{i!}{(i-j)!j!}B_{j}.$$

Si $k < i, L_i$ est orthogonal à $\text{Vect}(B_0, \dots, B_k)$ et L_k appartient à $\text{Vect}(B_0, \dots, B_k)$. Donc $\psi(L_i, L_k) = 0$

Si
$$k = i$$
, $\psi(L_i, L_i) = \psi(L_i, B_i) + \sum_{j=0}^{i-1} -1)^{i-j} \frac{i!}{(i-j)!j!} \psi(L_i, B_j) = 1$.

En résumé, pour tous i et j, $\psi(L_i, L_i) = 1$ et si $i \neq j$, $\psi(L_i, L_j) = 0$. Ceci montre que

 (L_0,L_1,\dots,L_n) est une base orthonormée de l'espace euclidien $(\mathbb{R}_n[X],\psi).$

19) • T est la matrice de la famille de polynômes $(1, X-1, (X-1)^2, \dots, (X-1)^n)$ dans la base canonique de $\mathbb{R}_n[X]$. Donc

$$T = \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & -\begin{pmatrix} 1 \\ 0 \end{pmatrix} & \dots & \dots & (-1)^{n-1} \begin{pmatrix} n-1 \\ 0 \end{pmatrix} & (-1)^n \begin{pmatrix} n \\ 0 \end{pmatrix} \\ \vdots & \ddots & \ddots & & & & \\ \vdots & & \ddots & \ddots & & & \\ \vdots & & & \ddots & \begin{pmatrix} n-1 \\ n-1 \end{pmatrix} & -\begin{pmatrix} n \\ n-1 \end{pmatrix} \\ 0 & \dots & 0 & \begin{pmatrix} n \\ n \end{pmatrix} \end{pmatrix}.$$

L'endomorphisme τ est un automorphisme de $\mathbb{R}_n[X]$ de réciproque $\tau^{-1}: P \to P(X+1)$. Par suite,

$$U = T^{-1} = \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \cdots & \cdots & \begin{pmatrix} n-1 \\ 0 \end{pmatrix} & \begin{pmatrix} n \\ 0 \end{pmatrix} \\ \vdots & \ddots & \ddots & & & \\ \vdots & & \ddots & \ddots & & \\ \vdots & & & \ddots & \begin{pmatrix} n-1 \\ n-1 \end{pmatrix} & \begin{pmatrix} n \\ n-1 \end{pmatrix} \\ 0 & \cdots & 0 & \begin{pmatrix} n \\ n \end{pmatrix} \end{pmatrix}.$$

De manière générale, Pour tout $(i,j) \in [1,n+1]$, le coefficient ligne i, colonne j de T est $(-1)^{j-i} \binom{j-1}{i-1}$ (avec la convention usuelle $\binom{j-1}{i-1} = 0$ si i > j) et celui de U est $\binom{j-1}{i-1}$.

 $\text{D'après la question 17), pour tout } i \in [\![0,n]\!], \ L_j = \sum_{i=0}^j (-1)^{j-i} \frac{j!}{(j-i)!(i!)^2} \\ X^i = \sum_{i=0}^j (-1)^{j-i} \frac{j!}{(j-i)!i!} \\ B_i = \sum_{i=0}^j (-1)^{j-i} \binom{j}{i} \\ B_i = \sum_{i=0}^j (-1)^{j-i} \binom{j}{i}$

On en déduit que la matrice T est aussi la matrice de passage de la base $\mathscr B$ à la base $\mathscr L$ puis que U est la matrice de passage de $\mathscr L$ à $\mathscr B$.

$$T = \mathscr{P}^{\mathscr{L}}_{\mathscr{B}}$$
 et $U = \mathscr{P}^{\mathscr{B}}_{\mathscr{L}}$.

D'après la question 16), S est la matrice du produit scalaire ψ dans la base \mathscr{B} et d'après la question 18), la matrice de ψ dans \mathscr{L} est I_n . Les formules de changement de bases fournissent alors

$$S=\mathrm{Mat}_{\mathscr{B}}(\psi)={}^{\mathrm{t}}\left(\mathscr{P}_{\mathscr{L}}^{\mathscr{B}}\right)\times\mathrm{Mat}_{\mathscr{L}}(\psi)\times\mathscr{P}_{\mathscr{L}}^{\mathscr{B}}={}^{\mathrm{t}}UI_{\mathfrak{n}}U={}^{\mathrm{t}}UU.$$

$$S = {}^{t}UU$$
.

On en déduit que $\det(S) = (\det(U))^2 = \left(\prod_{k=0}^n \binom{k}{k}\right)^2 = 1.$

$$\det(S) = 1.$$

Ensuite, avec les notations de la question 16),

$$\det(S') = \det(C_1', C_2', \dots, C_{n+1}') = \det(C_1', C_2' - C_1', \dots, C_{n+1}' - C_n') = \det(C_1, C_2, \dots, C_{n+1}) = \det(S) = 1.$$

20) Soit δ l'endormorphisme de matrice D dans la base canonique de $\mathbb{R}_n[X]$. δ est défini par : $\forall i \in [0,n]$, $\delta(X^k) = (-1)^k X^k = (-X)^k$. δ coïncide avec l'endomorphisme $P \mapsto P(-X)$ sur la base canonique de $\mathbb{R}_n[X]$ et donc δ est cet endomorphisme.

 $(DU)^2 \text{ est la matrice de } (\delta\tau)^2 \text{ dans la base canonique. Or, pour tout } P \in \mathbb{R}_n[X], \ \delta\tau(P) = \delta(P(X-1)) = P(1-X) \text{ puis } (\delta\tau)^2(P) = P(1-(1-X)) = P. \text{ Donc } (\delta\tau)^2 = Id_{\mathbb{R}_n[X]} \text{ ou encore}$

$$(DU)^2 = I_{n+1}.$$

 $S={}^{\rm t}UU \ {\rm et \ donc} \ S^{-1}=U^{-1\,{\rm t}}(U^{-1}). \ {\rm Mais} \ (DU)^2=I_{n+1} \Rightarrow U^{-1}=DUD=D^{-1}UD \ ({\rm car} \ D^2=I_{n+1}) \ {\rm puis}$

$$S^{-1} = U^{-1\,t}(U^{-1}) = (D^{-1}UD)^t(D^{-1}UD) = D^{-1}UD^tD^tU^tD^{-1} = D^{-1}(U^tU)D,$$

 $(\operatorname{car}\ ^t D = D = D^{-1})$. Donc S^{-1} est semblable à $U^t U$.

21) En particulier, S^{-1} a même polynôme caractéristique de $U^{\dagger}U$ ou aussi que ${}^{\dagger}UU = S$ d'après la question 13). Par suite,

$$\begin{split} \Phi_S &= \Phi_{S^{-1}} = \det(S^{-1} - XI_{n+1}) = \det(S^{-1})(-X)^{n+1} \det\left(S - \frac{1}{X}I_{n+1}\right) \\ &= \frac{1}{1}(-1)^{n+1}X^{n+1}\Phi_S\left(\frac{1}{X}\right) \text{ (d'après la question 18))} \\ &= (-1)^{n+1}X^{n+1}\Phi_S\left(\frac{1}{X}\right). \end{split}$$

Donc Ψ_S est un polynôme réciproque, de première espèce si $\mathfrak n$ est impair et de deuxième espèce si $\mathfrak n$ est pair.