

사물인터넷

3주차 GPIO와 브레드보드 이해.

01. 아두이노 GPIO

디지털 입/출력, 아날로그 입/출력, 통신 포트

아두이노 보드 핀맵

■ 아날로그 핀: A0~A6

■ 디지털 핀: 0~19 핀

■ UART, SPI, I2C

Alternative Function

- 하나의 GPIO는 여러 기능을 가지고 있다 ◆ D9 = A6 = SCL 같은 포트에서 3가지 기능 제공.
- 포트(핀) 내부에는 기능을 선택하는 회로가 있다
- 선택된 한 가지 기능으로만 사용이 가능하다

■ 동작 중에 동적으로 변경할 수 있다

■ IO 를 이용하여 외부의 디바이스를 제어할 수 있다

디지털 포트의 구조

■ GPIO MCU 내부 구조

아두이노 특수 포트

■ 일반적인 디지털 입출력 외의 다른 용도를 위한 핀

상수	핀 번호	상수	핀 번호
A0	아날로그 입력0 (디지털 14)	LED_BUILTIN	온보드 LED(디지털 13)
A1	아날로그 입력1 (디지털 15)	SDA	I2C 데이터(디지털 18)
A2	아날로그 입력2 (디지털 16)	DCL	I2C 클럭(디지털 19)
A3	아날로그 입력3 (디지털 17)	SS	SPI 선택 (디지털 10)
A4	아날로그 입력4 (디지털 18)	MOSI	SPI 입력 (디지털 11)
A5	아날로그 입력5 (디지털 19)	MISO	SPI 출력 (디지털 12)
RXD	UART(디지털 0)	SCL	SPI 클럭 (디지털 13)
TXD	UART(디지털 1)		

아날로그 포트

- 아날로그 출력 포트는 디지털 3, 5, 6, 10, 11, 12 핀을 사용하고 아날로그 입력은 디지털 14~19핀을 사용한다
- 아날로그 입력과 출력은 동일한 핀이 아니다
- 아날로그 출력은 PWM 기능을 이용하며, 아날로그 입력은 ADC를 사용한다

하드웨어 통신 포트

- 아두이노는 디지털 포트를 이용하여 다른 하드웨어와 통신을 할 수 있다.
- 아두이노 우노가 <u>UART, SPI, I2C</u> 통신 방법을 지원한다.
- HIGH 와 LOW 를 이용하여 데이터를 표현하는 하드웨어 통신 방법이다.

Breadboard 란?

- '브레드보드'라고 부르며 단어의 의미를 따서 '빵판'으로 부르기 도 한다
- 0.25cm간격의 홀이 뚫려있어 간단한 회로나 교육용으로 사용한다
- 일반적으로 DIP타입이라는 리드가 달린 제품 전부를 사용할 수 있다
- 또 한 빵판으로 불리는 이유는 초기의 전자회로를 개발 할 때 빵을 자르는 나무 판에 제작하였기 때문이다

Breadboard 장점

- 납땜이 필요 없다
 - ❖ 간단한 회로의 경우 굳이 **납땜을 하지 않고 구현이 가능**하다
- 부품 재활용이 가능하다
 - ❖ 납땜을 하더라도 재활용이 가능하지만 선을 잘라내는 등의 불편함이 있다 하지만 브레드보드의 경우 전원을 차단하고 부품을 빼내는 것만으로도 재활용할 수 있다
- 선을 따라 확인이 가능하다
 - ❖ <u>회로가 작동하지 않을 경우</u> 어디를 어떻게 연결했는지 <u>확인이 가능</u>
 <u>하다</u> PCB나 납땜의 경우는 확인하기가 힘들다 이에 비해서 브레드 보드는 직접 연결된 선을 따라 확인이 가능하다

Breadboard 단점

- 회로가 <u>복잡할수록 크기가 커진다</u>
 - ❖ 회로가 복잡해지는 경우 브레드보드에 올린 회로의 부피가 상당히 커진다 이는 PCB나 납땜에 비하여 정리가 덜 되기 때문에 크기가 커지게 된다
- 소형화가 힘들다
 - ❖ 선을 정리하여 패턴을 그리는 것이 아니기 때문에 소형화하기 힘들 다 그런 이유에서 실험용으로만 쓰이며, 실제 상품화에는 적용되지 않는다.
- DIP타입 외의 제품을 사용할 수 없다
 - ❖ 부품을 얹어서 사용하는(실장) 타입의 제품은 변환용 기판 없이는 불가능하다.

Breadboard 연결 방식

- 브레드보드 결선방식
 - ❖ 브레드보드는 하나의 행이나 열이 모두 연결되어있다. 이는 다른 부품과 연결에 있어 편의를 제공하기 위함이다.
 - ❖ 연결할 때는 Line 단위로 생각한다!!

결선 시 주의 사항

- 주의사항 브레드보드 결선방식
 - ❖ 잘 못 된 결선에 의해 손상된 브레드보드

다른 극성을 서로 붙인 뒤 전원을 연 결할 경우 손상될 수 있다

결선 시 주의 사항

- 가급적 **다른 색상의 점퍼선을 이용**할 것
 - ❖ 같은 색상의 선을 이용하는 것은 일관성을 주지만 결선이 잘 되어 있는지 판단하기 어렵게 만든다. 물론 선을 쭉 따라가면 되지만 중 간에 같은 색상의 다른 선으로 혼동하여 넘어가는 경우가 있으니 주의하도록 한다.
- <u>**빨간색 선은 +단자**</u>, <u>검정색 선은 -단자</u>로 연결한다
 - ❖ 관습적으로 빨강과 검정색을 전원으로 사용하며 만약 바꿀 경우 혼 돈의 여지가 있다.

부품 고정 시 주의 사항

- 접착 물을 닦아낸다
 - ❖ 리드(다리)가 달린 부품(DIP 저항, 캐패시터)은 다리의 끝부분을 접착시켜 떨어지지 않게 고정하였기 때문에 올바른 연결이라도 연 결이 되지 않는 경우가 생긴다. 이 경우는 전원을 차단하고 다리 부 분에 접착제가 묻어있는지 확인 후 닦아내어 연결 후 다시 결선해 본다.

테이프 접작된 상태

부품 고정 시 주의 사항

- 브레드보드의 같은 행과 열에 놓지 않는다
 - ❖ 부품을 장착할 때 다리를 모두 같은 행이나 열에 놓게 되면 부품을 같은 위치에 놓게 되는 것이므로 이를 조심하여야 한다.

부품 연결 예시

■올바른 부품 장착 및 연결

전원 연결 방법

■ 전원 연결 시 위쪽을 +로 하면 아래쪽을 -로 한다.

이곳에 "+"를 연결 하였으면 바로 아래의 "-"는 가급적 사용하 지 않는다

"-" 를 이곳에 연결 한다

예제 1 - 아두이노와 연결

- ■실험 브레드보드 연결
 - ❖아두이노의 5V, GND와 브레드보드를 통하여 LED를 켜보도록 한다.

필요 부품: 330음 저항, LED, 점퍼선, 아두이노

주의사항: LED 다리가 긴 쪽을 +에 연결한다

예제 1 - 주의 사항

예제 1 – 회로도로 확인하는 방법

■LED 연결회로도

예제 2 - LED 결선하기

- 회로를 브레드보드에 결선하시오.
 - ❖ 아두이노 13번 핀을 브레드보드 LED 에 연결하기
 - ❖ Blink 예제 구동

복습 – 브레드보드를 사용하여 LED를 연결해 보자

- 회로를 브레드보드에 결선하시오.
 - ❖ LED 3개 켜기.

복습 - 아래의 그림을 이용하여 그려도 됩니다

