Problem 5

Figure 1.1: Setup of experiment

We have given:

$$U^{\mu} = (c, \mathbf{0}) \tag{1.1}$$

$$V^{\mu} = (\gamma_v c, \gamma_v v) \tag{1.2}$$

$$P^{\mu} = \left(\frac{h\nu}{c}, \mathbf{p}\right) \tag{1.3}$$

We use following relation in this problem:

$$E = -P^{\mu}V_{\mu} \tag{1.4}$$

This expression is Lorentz invariant and can be calculated in non-moving frame. So we plug in Eq. 1.2 in this expression to obtain

$$E = -P^{\mu}V_{\mu} = \frac{h\nu}{c}\gamma_{v}c - \gamma_{v}\boldsymbol{p} = \gamma_{v}\left(h\nu - |\boldsymbol{v}||\boldsymbol{p}|\cos(\theta)\right) = \left\{|\boldsymbol{p}| = \frac{h\nu}{c}\right\} = \frac{h\nu}{c}$$

$$\gamma_v h v \left(1 - \frac{|v|}{c} \cos(\theta) \right) \quad (1.5)$$

But it is still photon, but with different energy (for moving observer) So

$$\gamma_v h v \left(1 - \frac{|v|}{c} \cos(\theta) \right) = h v' \tag{1.6}$$

So ratio of those two frequencies is

$$\frac{v'}{v} = \gamma_v \left(1 - \frac{|v|}{c} \cos(\theta) \right) \tag{1.7}$$

If $\theta=0$ and $\frac{v}{c}\ll 1 \Rightarrow \gamma_v \simeq 1$ then we obtain:

$$v' = v \left(1 - \frac{v}{c} \right) \tag{1.8}$$

Problem 1

Problem 1a

Figure 2.1: Mass falling in graitational field $(1\rightarrow 2)$, converting to photon $(2\rightarrow 3)$, photon traveling up $(3\rightarrow 4)$ and converting back to mass $(4\rightarrow 1)$

Let's take a look at energy changes in above diagram:

$$\bigcirc$$
 $E_1 = mc^2$

$$(2)$$
 $E_2 = mc^2 + mgh$

$$(3) E_3 = hv = mc^2 + mgh$$

$$(4) E_4 = hv = mc^2 + mgh$$

but $E_4 = E_1$ because of energy conservation. It means that photon has to have different frequency at the height h than it has at the ground. So $E_4 = hv' = mc^2$. From it follows

$$\frac{v}{v'} = \frac{mc^2 + mgh}{mc^2} = 1 + \frac{gh}{c^2}$$
 (2.1)

and it is easy to calculate redshift

$$z = \frac{v - v'}{v'} = \frac{gh}{c^2}$$
 (2.2)

Problem 1b

Let's calculate time which light needs to reach observer (2)

$$t = \frac{s}{c} = \frac{h - \frac{gt^2}{2}}{c} \tag{2.3}$$

From this expression we get quadratic equation

$$\frac{g}{2}t^2 + ct - h = 0 (2.4)$$

for which solution is given by

$$t = \frac{-c + \sqrt{c^2 + 2gh}}{g} \tag{2.5}$$

Velocity of observer (2) after this time is equal

Figure 2.2: Two observers in a rocket sending photon

$$v(t) = \frac{-c + \sqrt{c^2 + 2gh}}{g} \cdot g = -c + \sqrt{c^2 + 2gh} \ \ (2.6)$$

Then redshift formula is given in following way

$$\frac{v'}{v} = 1 - \frac{v}{c} = 1 - \frac{-c + \sqrt{c^2 + 2gh}}{c} = 2 - \sqrt{1 - \frac{2gh}{c^2}}$$
 (2.7)

We can use Taylor expansion $\sqrt{1-x} = 1 - \frac{x}{2}$ we get

$$\frac{v'}{v} = 2 - 1 + \frac{gh}{c^2} = 1 + \frac{gh}{c^2}$$
 (2.8)

It is exactly the same result as Eq. 2.2.

Problem 2

Observer O is traveling with acceleration g in direction x_1 . To calculate his worldline we will use following three conditions

$$U^{\mu}U_{\mu} = -1 \qquad \qquad U^{\mu}A_{\mu} = 0 \qquad \qquad A^{\mu}A_{\mu} = g^2 \tag{2.9}$$

where U^{μ} is four-velocity and A^{μ} is four-acceleration. First of them can be obtained by straightforward calculation, second by applying derivative to first equation i.e.

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(U^{\mu} U_{\mu} \right) = 0 \quad \Rightarrow \quad \left(A^{\mu} U_{\mu} \right) = 0 \tag{2.10}$$

Third is Lorentz invariant and it can be calculated in the moment of launch namely when $A^{\mu} = (0, g, 0, 0)$. Knowing those three we can write them in explicite form

$$-U_0^2 + U^2 = -1 UA = U_0 A_0 -A_0^2 + A^2 = g^2 (2.11)$$

where bolded letters mean three-vectors.

We square middle equation and plug in left and right equation to obtained

$$(U_0^2 - 1)A^2 = U_0^2(A^2 - g^2)$$
(2.12)

Eventually we obtain:

$$A^2 = g^2 U_0^2 (2.13)$$

and plugin this expression to other equation we also obtain:1

$$A_0^2 = g^2 U^2 (2.14)$$

We can simplify those equation using the fact that this motion is one dimensional namely $x_2 = x_3 = 0$ and then

$$A_1 = gU_0 A_0 = gU_1 (2.15)$$

But $U^{\mu} = \dot{X}^{\mu}$ and $A^{\mu} = \ddot{X}^{\mu}$ ². Substituting

$$\ddot{X}_1 = g\dot{X}_0 (2.16)$$

Taking a derivative of left equation and substituting right equation into it we get

$$\ddot{X}_1 = g^2 \dot{X}_1 \stackrel{\text{after integration}}{\Rightarrow} \ddot{X}_1 = g^2 X_1$$
 (2.17)

Solution is

$$X_1 = A\sinh(g\tau) + B\cosh(g\tau) \tag{2.18}$$

Let's choose initial conditions such as $X_1(0) = g^{-1}$ and $\dot{X}_1 = 0$. Then

$$X_1 = g^{-1}\cosh(g\tau) \tag{2.19}$$

And finally we have

$$X_0 = g^{-1} \sinh(g\tau)$$
 $X_1 = g^{-1} \cosh(g\tau)$ $X_2 = 0$ $X_3 = 0$ (2.20)

¹plug it into right equation and then use left equation

²dot means derivation with respect to proper time

Figure 2.3: Trajectory of *O*

Problem 3

As a first basis vector we can choose four-velocity namely

$$\mathbf{e}_0 = (\dot{X}_0, \dot{X}_1, \dot{X}_2, \dot{X}_3) = (\cosh(g\tau), \sinh(g\tau), 0, 0)$$
(2.21)

As a basis vectors in directions x_2 and x_3 we simply choose

$$\mathbf{e}_2 = (0, 0, 1, 0) \tag{2.22}$$

$$\mathbf{e}_3 = (0, 0, 0, 1) \tag{2.23}$$

And finally we choose vector \mathbf{e}_1 in a form $\mathbf{e}_1 = (e_1^0, e_1^1, 0, 0)$ where e_1^0 and e_1^1 are chosen in order to satisfy $\mathbf{e}_0\mathbf{e}_1 = 0$ and $(\mathbf{e}_0)^2 = 1$ i.e.

$$-e_1^0 \cosh(g\tau) + e_1^1 \sinh(g\tau) = 0$$
 (2.24)

$$-(e_1^0)^2 + (e_1^1)^2 = 1 (2.25)$$

We square first equation and substitute second equation

$$(e_1^0)^2 \cosh^2(g\tau) = (1 + (e_1^0)^2) \sinh^2(g\tau)$$
(2.26)

From this we obtain

$$(e_1^0)^2 = \sinh^2(g\tau)$$
 $(e_1^1)^2 = \cosh^2(g\tau)$ (2.27)

We can choose positive solution and eventually we get

$$\mathbf{e}_1 = (\sinh(g\tau), \cosh(g\tau), 0, 0) \tag{2.28}$$

All vectors

$$\mathbf{e}_0(\tau) = (\cosh(g\tau), \sinh(g\tau), 0, 0) \tag{2.29}$$

$$\mathbf{e}_1(\tau) = (\sinh(g\tau), \cosh(g\tau), 0, 0) \tag{2.30}$$

$$\mathbf{e}_2(\tau) = (0, 0, 1, 0) \tag{2.31}$$

$$\mathbf{e}_3(\tau) = (0, 0, 0, 1) \tag{2.32}$$

Last thing to do is to check whether those are vectors which were obtain without any rotation. For this I will find a Lorentz boost which transforms initial basis into this one. Namely consider a boost of time-basis vector

$$\begin{pmatrix} \gamma & \beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \gamma \\ -\beta \gamma \\ 0 \\ 0 \end{pmatrix}$$
 (2.33)

So γ and β have to satisfy:

$$\gamma = \frac{1}{\sqrt{1 - v^2}} = \cosh(g\tau) \quad \Rightarrow \quad v = \tanh(g\tau)$$
(2.34)

Knowing that it is easy to calculate

$$\beta \gamma = \frac{v}{\sqrt{1 - v^2}} = \sinh(g\tau) \tag{2.35}$$

So indeed we obtain vector $\mathbf{e}_0(\tau)$ only via boost (at $v = \tanh(g\tau)$). The same can be done with vector $\mathbf{e}_1(\tau)$

Problem 4

We define new coordinate system ($\xi_0 \equiv \tau, \xi_1, \xi_2, \xi_3$) where basis vectors are those defined in problem before. We can write

$$\mathbf{x} = \xi^{1} \mathbf{e}_{1}(\tau) + \xi^{2} \mathbf{e}_{2}(\tau) + \xi^{3} \mathbf{e}_{3}(\tau) + \mathbf{x}_{O}(\tau)$$
(2.36)

where $x_O(\tau)$ is trajectory of moving frame.

After plugging in all basis vectors explicitly we get

$$x = \begin{pmatrix} t \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \xi^1 \sinh(g\tau) \\ \xi^1 \cosh(g\tau) \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \xi^2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \xi^3 \end{pmatrix} + \begin{pmatrix} g^{-1} \sinh(g\tau) \\ g^{-1} \cosh(g\tau) \\ 0 \\ 0 \end{pmatrix} =$$

$$\begin{pmatrix} g^{-1}\sinh(g\tau) + \xi^{1}\sinh(g\tau) \\ g^{-1}\cosh(g\tau) + \xi^{1}\cosh(g\tau) \\ \xi^{2} \\ \xi^{3} \end{pmatrix} = \begin{pmatrix} (g^{-1} + \xi^{1})\sinh(g\xi^{0}) \\ (g^{-1} + \xi^{1})\cosh(g\xi^{0}) \\ \xi^{2} \\ \xi^{3} \end{pmatrix} \quad (2.37)$$

Line element $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$ is then equal (we use chain rule i.e. $dx^{\mu} = \frac{\partial x^{\mu}}{\partial \xi^{\nu}} d\xi^{\nu}$)

$$ds^2 = -dt^2 + dx_1^2 + dx_2^2 + dx_3^2$$
 (2.38)

$$dt = \frac{\partial t}{\partial \xi^{\nu}} d\xi^{\nu} = (1 + g\xi_1) \cosh(g\xi_0) d\xi_0 + \sinh(g\xi_0) d\xi_1$$
(2.39)

$$dx_1 = (1 + g\xi_1)\sinh(g\xi_0)d\xi_0 + \cosh(g\xi_0)d\xi_1$$
 (2.40)

$$\mathrm{d}x_2 = \mathrm{d}\xi_2 \tag{2.41}$$

$$\mathrm{d}x_3 = \mathrm{d}\xi_3 \tag{2.42}$$

After squaring and adding them up we get

$$ds^{2} = -(1 + g\xi_{1})^{2} \cosh^{2}(g\xi_{0}) d\xi_{0}^{2} - \sinh^{2}(g\xi_{0}) d\xi_{1}^{2} +$$

$$(1 + g\xi_{1})^{2} \sinh^{2}(g\xi_{0}) d\xi_{0}^{2} + \cosh^{2}(g\xi_{0}) d\xi_{1}^{2} +$$

$$d\xi_{2}^{2} +$$

$$d\xi_{3}^{2}$$

$$(2.43)$$

After simplification

$$ds^{2} = -(1 + g\xi_{1})^{2}d\xi_{0}^{2} + d\xi_{1}^{2} + d\xi_{2}^{2} + d\xi_{3}^{2}$$
(2.44)

Problem 5

For $\xi^1 \equiv {
m const}$ we can easily derive equation of motion from Eq. 2.37 namely

$$x_1^2 - t^2 = (g^{-1} + \xi^1)^2 (2.45)$$

which leads to

$$x_1(t) = \sqrt{(g^{-1} + \xi^1)^2 + t^2}$$
 (2.46)

We take derivative twice

$$\dot{x}_1(t) = \frac{2t}{2\sqrt{(g^{-1} + \xi^1)^2 + t^2}} \tag{2.47}$$

$$\ddot{x_1}(t) = \frac{\sqrt{(g^{-1} + \xi^1)^2 + t^2} - t \frac{2t}{2\sqrt{(g^{-1} + \xi^1)^2 + t^2}}}{(g^{-1} + \xi^1)^2 + t^2} = \frac{1}{\sqrt{(g^{-1} + \xi^1)^2 + t^2}} - \frac{2t^2}{((g^{-1} + \xi^1)^2 + t^2)^{\frac{3}{2}}}$$
(2.48)

So when t = 0

$$\left| \ddot{x_1}(t) \right|_{t=0} = \frac{1}{g^{-1} + \xi^1} = \frac{g}{1 + g\xi^1}$$
 (2.49)

Figure 2.4: Red line is worldline of Eq. 2.20 and blue is worldline of Eq. 2.46

Problem 6

We start with equation Eq. 2.44. We can simplify it and neglect other spatial dimensions than ξ^1 namely

$$ds^{2} = -(1 + g\xi^{1})^{2}(d\xi^{0})^{2} + (d\xi^{1})^{2}$$
(2.50)

We can change the form to

$$d\tau = ds = d\xi^{0} \sqrt{-(1 + g\xi^{1})^{2} + \left(\frac{d\xi^{1}}{d\xi^{0}}\right)^{2}}$$
 (2.51)

We can now plug in $\xi^1 = \xi_{em}^1$ and since emiter does not move in this frame we can set $\frac{d\xi^1}{d\xi^0} = 0$:

$$d\tau_{\rm em} = d\xi_{\rm em}^0 (1 + g\xi_{\rm em}^1)$$
 (2.52)

We can integrate both sides and obtain equation for finite differences

$$\Delta \tau_{\rm em} = \Delta \xi_{\rm em}^0 (1 + g \xi_{\rm em}^1) \tag{2.53}$$

We can do similar thing with ξ_{rec}^1 :

$$\Delta \tau_{\rm rec} = \Delta \xi_{\rm rec}^0 (1 + g \xi_{\rm rec}^1) \tag{2.54}$$

But left sides of above equations are equal (since line element is invariant under changing of coordinates) and we can compare them:

$$\frac{\Delta \xi_{\text{rec}}^0}{\Delta \xi_{\text{em}}^0} = \frac{1 + g \xi_{\text{em}}^1}{1 + g \xi_{\text{rec}}^1} = 1 + \frac{g \xi_{\text{em}}^1 - g \xi_{\text{rec}}^1}{1 + g \xi_{\text{rec}}^1} = 1 - \frac{gh}{1 + gh + g \xi_{\text{em}}^1}$$
(2.55)

where I put $h = \xi_{\rm rec}^1 - \xi_{\rm em}^1$. After rearranging terms and substituting $\Delta \xi_{\rm rec}^1 = \frac{1}{\nu'}$ and $\Delta \xi_{\rm em}^1 = \frac{1}{\nu}$

$$\frac{\Delta \xi_{\text{em}}^0 - \Delta \xi_{\text{rec}}^0}{\Delta \xi_{\text{em}}^0} = \frac{gh}{1 + gh + g\xi_{\text{em}}^1}$$
(2.56)

$$\frac{\frac{1}{\nu} - \frac{1}{\nu'}}{\frac{1}{\nu}} = \frac{gh}{1 + gh + g\xi_{\text{em}}^{1}} \implies \left[z = \frac{\nu' - \nu}{\nu'} = \frac{gh}{1 + gh + g\xi_{\text{em}}^{1}}\right]$$
(2.57)

We can now assume that g is small and using Taylor expansion $\frac{1}{1+x} \simeq 1-x$

$$z = gh(1 - gh - g\xi_{\text{em}}^{1}) = gh - (gh)^{2} - g^{2}h\xi_{\text{em}}^{1} \simeq gh$$

$$z = gh \qquad (2.58)$$

so the same result as photon in gravitational field.

Problem 1

Calculate EOM given the Lagrangian

$$\mathcal{L}_{\text{dyn}}(x^{\mu}, \dot{x}^{\mu}) = \frac{1}{2} g_{\mu\nu} [x^{\mu}(\lambda)] \dot{x}^{\mu} \dot{x}^{\nu}, \quad \dot{x}^{\mu} \equiv \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}$$
(3.1)

I calculate first variation of Lagrangian

$$\delta \int_{\lambda_1}^{\lambda_2} \mathcal{L}(x^{\mu}, \dot{x}^{\mu}) d\lambda = \int_{\lambda_1}^{\lambda_2} \left(\frac{\partial \mathcal{L}(x^{\mu}, \dot{x}^{\mu})}{\partial x^{\sigma}} \delta x^{\sigma} + \frac{\partial \mathcal{L}(x^{\mu}, \dot{x}^{\mu})}{\partial \dot{x}^{\sigma}} \delta \dot{x}^{\sigma} \right) d\lambda =$$

$$\int_{\lambda_1}^{\lambda_2} \left(\frac{1}{2} \dot{x}^{\mu} \dot{x}^{\nu} \partial_{\sigma} g_{\mu\nu} \delta x^{\sigma} + \frac{1}{2} g_{\mu\nu} (\delta_{\mu\sigma} \dot{x}^{\nu} + \delta_{\nu\sigma} \dot{x}^{\mu}) \delta \dot{x}^{\sigma} \right) d\lambda \quad (3.2)$$

Let's take a look at second part of the integral:

$$\frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \left\{ g_{\mu\nu} (\delta_{\mu\sigma} \dot{x}^{\nu} + \delta_{\nu\sigma} \dot{x}^{\mu}) \delta \dot{x}^{\sigma} \right\} d\lambda = \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta \dot{x}^{\sigma} d\lambda = \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\partial}{\partial \lambda} \left(\left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} \right) d\lambda - \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\partial}{\partial \lambda} \left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} d\lambda = \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\partial}{\partial \lambda} \left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} d\lambda = \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\partial}{\partial \lambda} \left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} d\lambda = \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\partial}{\partial \lambda} \left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} d\lambda = \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\partial}{\partial \lambda} \left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} d\lambda = \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\partial}{\partial \lambda} \left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} d\lambda = \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\partial}{\partial \lambda} \left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} d\lambda = \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\partial}{\partial \lambda} \left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} d\lambda = \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \frac{\partial}{\partial \lambda} \left\{ g_{\sigma\nu} \dot{x}^{\nu} + g_{\mu\sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} d\lambda$$

$$\frac{1}{2} \underbrace{\left\{ g_{\sigma \nu} \dot{x}^{\nu} + g_{\mu \sigma} \dot{x}^{\mu} \right\} \delta x^{\sigma} \bigg|_{\lambda_{1}}^{\lambda_{2}}}_{\lambda_{1}} - \frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \left\{ \partial_{\mu} g_{\sigma \nu} \dot{x}^{\mu} \dot{x}^{\nu} + g_{\sigma \nu} \ddot{x}^{\nu} + \partial_{\nu} g_{\sigma \mu} \dot{x}^{\nu} \dot{x}^{\mu} + g_{\sigma \mu} \ddot{x}^{\mu} \right\} \delta x^{\sigma} d\lambda$$

(3.3)

Plugging result back into Eq. 3.2 yields

$$\delta \int_{\lambda_1}^{\lambda_2} \mathcal{L}(x^{\mu}, \dot{x}^{\mu}) d\lambda = \frac{1}{2} \int_{\lambda_1}^{\lambda_2} \left(\partial_{\sigma} g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} - \partial_{\mu} g_{\sigma\nu} \dot{x}^{\mu} \dot{x}^{\nu} - g_{\sigma\nu} \ddot{x}^{\nu} - \partial_{\nu} g_{\sigma\mu} \dot{x}^{\nu} \dot{x}^{\mu} - g_{\sigma\mu} \ddot{x}^{\mu} \right) \delta x^{\sigma} d\lambda \qquad (3.4)$$

We want

$$\delta \int_{\lambda_1}^{\lambda_2} \mathcal{L}(x^{\mu}, \dot{x}^{\mu}) d\lambda = 0$$
 (3.5)

but since δx^{σ} can be arbitrary the rest has to be equal 0, namely

$$\partial_{\sigma}g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} - \partial_{\mu}g_{\sigma\nu}\dot{x}^{\mu}\dot{x}^{\nu} - g_{\sigma\nu}\ddot{x}^{\nu} - \partial_{\nu}g_{\sigma\mu}\dot{x}^{\nu}\dot{x}^{\mu} - g_{\sigma\mu}\ddot{x}^{\mu} = 0$$
(3.6)

or after rearranging elements

$$\left| 2g_{\sigma\mu}\ddot{x}^{\mu} + \left(\partial_{\nu}g_{\sigma\mu} + \partial_{\mu}g_{\sigma\nu} - \partial_{\sigma}g_{\mu\nu} \right) \dot{x}^{\mu}\dot{x}^{\nu} = 0 \right| \tag{3.7}$$

Problem 2

Calculate the EOM given Lagrangian:

$$\mathcal{L}_{\text{geo}}(x^{\mu}, \dot{x}^{\mu}) = \sqrt{-g_{\mu\nu}[x^{\mu}(\lambda)]\dot{x}^{\mu}\dot{x}^{\nu}}, \quad \dot{x}^{\mu} \equiv \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}$$
(3.8)

First we calculate variation of Lagrangian

$$\delta \int_{\lambda_{1}}^{\lambda_{2}} \mathcal{L}(x^{\mu}, \dot{x}^{\mu}) d\lambda = \int_{\lambda_{1}}^{\lambda_{2}} \left(\frac{\partial \mathcal{L}(x^{\mu}, \dot{x}^{\mu})}{\partial x^{\sigma}} \delta x^{\sigma} + \frac{\partial \mathcal{L}(x^{\mu}, \dot{x}^{\mu})}{\partial \dot{x}^{\sigma}} \delta \dot{x}^{\sigma} \right) d\lambda =$$

$$- \int_{\lambda_{1}}^{\lambda_{2}} \left(\frac{\dot{x}^{\mu} \dot{x}^{\nu} \partial_{\sigma} g_{\mu\nu}}{2\sqrt{-g_{\mu\nu} [x^{\mu}(\lambda)] \dot{x}^{\mu} \dot{x}^{\nu}}} \delta x^{\sigma} + \frac{g_{\mu\nu} \dot{x}^{\mu} \delta_{\nu\sigma}}{2\sqrt{-g_{\mu\nu} [x^{\mu}(\lambda)] \dot{x}^{\mu} \dot{x}^{\nu}}} \dot{x}^{\sigma} + \frac{g_{\mu\nu} \delta_{\mu\sigma} \dot{x}^{\nu}}{2\sqrt{-g_{\mu\nu} [x^{\mu}(\lambda)] \dot{x}^{\mu} \dot{x}^{\nu}}} \dot{x}^{\sigma} \right) d\lambda =$$

$$- \int_{\lambda_{1}}^{\lambda_{2}} \frac{1}{2\sqrt{-g_{\mu\nu} [x^{\mu}(\lambda)] \dot{x}^{\mu} \dot{x}^{\nu}}} \left(\dot{x}^{\mu} \dot{x}^{\nu} \partial_{\sigma} g_{\mu\nu} \delta x^{\sigma} + g_{\mu\sigma} \dot{x}^{\mu} \delta \dot{x}^{\sigma} + g_{\sigma\nu} \dot{x}^{\nu} \delta \dot{x}^{\sigma} \right) d\lambda \quad (3.9)$$

I change variable of differentiating and integration from $d\lambda$ to $d\tau = \sqrt{-g_{\mu\nu}[x^{\mu}(\lambda)]\dot{x}^{\mu}\dot{x}^{\nu}}d\lambda$. Derivatives changing as following

$$\dot{x}^{\mu} \equiv \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}\tau}{\mathrm{d}\lambda} = \sqrt{-g_{\mu\nu}[x^{\mu}(\lambda)]\dot{x}^{\mu}\dot{x}^{\nu}} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau}$$
(3.10)

and integral as following

$$\int d\lambda = \int \frac{d\tau}{\sqrt{-q_{\mu\nu}[x^{\mu}(\lambda)]\dot{x}^{\mu}\dot{x}^{\nu}}}$$
(3.11)

After plugging in those transformations into Eq. 3.9 we obtain

$$-\frac{1}{2}\int_{\lambda 1}^{\lambda 2} \left(\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \partial_{\sigma} g_{\mu\nu} \delta x^{\sigma} + \left\{ g_{\mu\sigma} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} + g_{\sigma\nu} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \right\} \delta \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\tau} \right) \mathrm{d}\tau \tag{3.12}$$

Now let's look at the second part of this integral and transform it (using Leibniz rule)

$$\left\{g_{\mu\sigma}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} + g_{\sigma\nu}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}\right\}\delta\frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\tau} = \frac{\mathrm{d}}{\mathrm{d}\tau}\left(\left\{g_{\mu\sigma}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} + g_{\sigma\nu}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}\right\}\delta x^{\sigma}\right) - \frac{\mathrm{d}}{\mathrm{d}\tau}\left\{g_{\mu\sigma}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} + g_{\sigma\nu}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}\right\}\delta x^{\sigma} = \frac{\mathrm{d}}{\mathrm{d}\tau}\left(\left\{g_{\mu\sigma}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} + g_{\sigma\nu}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}\right\}\delta x^{\sigma}\right) - \left\{\frac{\mathrm{d}g_{\mu\sigma}}{\mathrm{d}x^{\nu}}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} + g_{\mu\sigma}\frac{\mathrm{d}^{2}x^{\mu}}{\mathrm{d}\tau^{2}} + \frac{\mathrm{d}g_{\sigma\nu}}{\mathrm{d}x^{\mu}}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} + g_{\sigma\nu}\frac{\mathrm{d}^{2}x^{\nu}}{\mathrm{d}\tau^{2}}\right\}\delta x^{\sigma} = \frac{\mathrm{d}}{\mathrm{d}\tau}\left(\left\{g_{\mu\sigma}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} + g_{\sigma\nu}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}\right\}\delta x^{\sigma}\right) - \left[g_{\mu\sigma}\frac{\mathrm{d}^{2}x^{\mu}}{\mathrm{d}\tau^{2}} + g_{\sigma\nu}\frac{\mathrm{d}^{2}x^{\nu}}{\mathrm{d}\tau^{2}} + \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}\left\{\partial_{\nu}g_{\mu\sigma} + \partial_{\mu}g_{\sigma\nu}\right\}\right]\delta x^{\sigma} \quad (3.13)$$

After plugging it into Eq. 3.12 we obtain

$$-\frac{1}{2}\int_{\lambda_{1}}^{\lambda_{2}} \left(\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \partial_{\sigma} g_{\mu\nu} \delta x^{\sigma} + \frac{\mathrm{d}}{\mathrm{d}\tau} \left[\left\{ g_{\mu\sigma} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} + g_{\sigma\nu} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \right\} \delta x^{\sigma} \right] - \left[g_{\mu\sigma} \frac{\mathrm{d}^{2}x^{\mu}}{\mathrm{d}\tau^{2}} + g_{\sigma\nu} \frac{\mathrm{d}^{2}x^{\nu}}{\mathrm{d}\tau^{2}} + \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \left\{ \partial_{\nu} g_{\mu\sigma} + \partial_{\mu} g_{\sigma\nu} \right\} \right] \delta x^{\sigma} \right] \mathrm{d}\tau =$$

$$-\frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \left[-2g_{\sigma\nu} \frac{\mathrm{d}^{2}x^{\nu}}{\mathrm{d}\tau^{2}} + \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \left(\partial_{\sigma} g_{\mu\nu} - \partial_{\nu} g_{\mu\sigma} - \partial_{\mu} g_{\sigma\nu} \right) \right] \delta x^{\sigma} \mathrm{d}\tau - \underbrace{\left\{ g_{\mu\sigma} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} + g_{\sigma\nu} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \right\} \delta x^{\sigma}}_{=0} \right]_{\lambda_{1}}^{\lambda_{2}} =$$

 $-\frac{1}{2}\int_{\lambda_1}^{\infty} \left[-2g_{\sigma\nu}\frac{\mathrm{d}^2x^{\nu}}{\mathrm{d}\tau^2} + \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \left(\partial_{\sigma}g_{\mu\nu} - \partial_{\nu}g_{\mu\sigma} - \partial_{\mu}g_{\sigma\nu} \right) \right] \delta x^{\sigma} \mathrm{d}\tau \quad (3.14)$

But this variation has to be equal zero no matter what the value of δx^{σ} is. Namely

$$-g_{\sigma\nu}\frac{\mathrm{d}^2x^{\nu}}{\mathrm{d}\tau^2} + \frac{1}{2}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}\left(\partial_{\sigma}g_{\mu\nu} - \partial_{\nu}g_{\mu\sigma} - \partial_{\mu}g_{\sigma\nu}\right) = 0 \tag{3.15}$$

Changing sign

$$\left| g_{\sigma\nu} \frac{\mathrm{d}^2 x^{\nu}}{\mathrm{d}\tau^2} + \frac{1}{2} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \left(\partial_{\nu} g_{\mu\sigma} + \partial_{\mu} g_{\sigma\nu} - \partial_{\sigma} g_{\mu\nu} \right) = 0 \right|$$
(3.16)

Problem 3

Following metric is given

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -\left[1 + 2\frac{\phi(\mathbf{x})}{c^2}\right] d(ct)^2 + (dx^1)^2 + (dx^2)^2 + (dx^3)^2, \quad \mathbf{x} \equiv (x^1, x^2, x^3)$$
(3.17)

Dividing both sides by dt^2 yields

$$g_{\mu\nu} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}t} = -\left[1 + 2\frac{\phi(\mathbf{x})}{c^{2}}\right] \frac{\mathrm{d}(ct)^{2}}{\mathrm{d}t^{2}} + \frac{(\mathrm{d}x^{1})^{2}}{\mathrm{d}t^{2}} + \frac{(\mathrm{d}x^{2})^{2}}{\mathrm{d}t^{2}} + \frac{(\mathrm{d}x^{3})^{2}}{\mathrm{d}t^{2}} = -\left[1 + 2\frac{\phi(\mathbf{x})}{c^{2}}\right] c^{2} + \left(\frac{\mathrm{d}x^{1}}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}x^{2}}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}x^{3}}{\mathrm{d}t}\right)^{2} = -\left[1 + 2\frac{\phi(\mathbf{x})}{c^{2}}\right] c^{2} + \mathbf{v} \cdot \mathbf{v} = -c^{2}\left[1 + 2\frac{\phi(\mathbf{x})}{c^{2}} - \frac{\mathbf{v}^{2}}{c^{2}}\right] \quad (3.18)$$

Substituting this into lagrangian

$$\mathcal{L} = -mc\sqrt{-g_{\mu\nu}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}t}}$$
(3.19)

gives us

$$\mathcal{L} = -mc\sqrt{c^2 \left[1 + 2\frac{\phi(x)}{c^2} - \frac{v^2}{c^2} \right]} = -mc^2 \sqrt{1 + 2\frac{\phi(x)}{c^2} - \frac{v^2}{c^2}}$$
(3.20)

We can now assume that both $\frac{\phi(x)}{c^2}$ and $\frac{v^2}{c^2}$ are small. We can taylor expand square root $(\sqrt{1+x} \simeq 1 + \frac{1}{2x})$ and leave only linear terms:

$$\mathcal{L} = -mc^2 \left(1 + \frac{\phi(x)}{c^2} - \frac{v^2}{2c^2} \right) = -mc^2 - m\phi(x) + m\frac{v^2}{2}$$
(3.21)

But adding constants (in this case mc^2) to Lagrangian doesn't change equation of motions, so effective Lagrangian can be written as

$$\mathcal{L} = \frac{mv^2}{2} - m\phi(x)$$
 (3.22)

which is exactly the Lagrangian for classical mechanics, which leads to Newton's law of motion, namely

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\nabla \phi(x) \tag{3.23}$$

Problem 1

Parallel transport of a vector $V = v^{\mu} \partial_{\mu}$ along the curve s $\gamma : \lambda \mapsto [x^{1}(\lambda), \dots, x^{n}(\lambda)]$:

$$\frac{\mathrm{d}v^{\mu}}{\mathrm{d}\lambda} + \Gamma^{\mu}_{\nu\sigma} \left[x(\lambda) \right] v^{\nu} \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\lambda} = 0 \tag{4.1}$$

We change coordinates, namely $V=v^{\mu}\partial_{\mu}=v^{\mu}\frac{\partial}{\partial x^{\mu}}=u^{\nu}\frac{\partial}{\partial y^{\nu}}$ and $\gamma:\lambda'\mapsto \left[y^{1}(\lambda'),\ldots,y^{n}(\lambda')\right]$ First we want to obtain transormation rule for vectors namely

$$v^{\nu} \frac{\partial y^{k}}{\partial x^{\nu}} = V(y^{k}) = u^{\mu} \frac{\partial y^{k}}{\partial y^{\mu}} = u^{k}$$
(4.2)

and for $\Gamma^{\rho}_{\mu\sigma} = \frac{\partial^2 \xi^{\mu}}{\partial x^{\nu} \partial x^{\sigma}} \frac{\partial x^{\rho}}{\partial \xi^{\mu}}$

$$\Gamma_{\nu\sigma}^{\prime\rho} = \frac{\partial}{\partial y^{\sigma}} \left(\frac{\partial \xi^{\mu}}{\partial y^{\nu}} \right) \frac{\partial y^{\rho}}{\partial \xi^{\mu}} = \frac{\partial}{\partial y^{\sigma}} \left(\frac{\partial \xi^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\alpha}}{\partial y^{\nu}} \right) \frac{\partial y^{\rho}}{\partial x^{\beta}} \frac{\partial x^{\beta}}{\partial \xi^{\mu}} = \underbrace{\left[\frac{\partial^{2} \xi^{\mu}}{\partial x^{\alpha} \partial x^{\kappa}} \frac{\partial x^{\alpha}}{\partial y^{\nu}} \frac{\partial x^{\kappa}}{\partial y^{\sigma}} + \frac{\partial^{2} \xi^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \right] \frac{\partial y^{\rho}}{\partial x^{\beta}} \frac{\partial x^{\beta}}{\partial \xi^{\mu}} = \underbrace{\left[\frac{\partial^{2} \xi^{\mu}}{\partial x^{\alpha} \partial x^{\kappa}} \frac{\partial x^{\alpha}}{\partial y^{\nu}} \frac{\partial x^{\kappa}}{\partial y^{\sigma}} + \frac{\partial^{2} x^{\alpha}}{\partial x^{\beta}} \frac{\partial x^{\beta}}{\partial y^{\nu}} \frac{\partial x^{\beta}}{\partial x^{\alpha}} + \frac{\partial^{2} x^{\alpha}}{\partial y^{\nu}} \frac{\partial x^{\beta}}{\partial y^{\nu}} + \frac{\partial^{2} x^{\alpha}}{\partial y^{\nu}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\alpha}} + \frac{\partial^{2} x^{\alpha}}{\partial y^{\nu}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\alpha}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu}} \frac{\partial x^{\beta}}{\partial y^{\nu}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial y^{\rho}}{\partial x^{\alpha}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial y^{\nu}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial y^{\rho}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial y^{\rho}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial y^{\rho}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial y^{\rho}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\beta}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\beta}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\beta}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial y^{\alpha}} \frac{\partial x^{\beta}}{\partial y^{\nu}} \frac{\partial x^{\beta}}{\partial x^{\beta}} + \underbrace{\frac{\partial^{2} x^{\alpha}}{\partial$$

Plugging those things into

$$\frac{\mathrm{d}u^{\mu}}{\mathrm{d}\lambda'} + \Gamma_{\nu\sigma}^{\prime\mu} \left[y(\lambda') \right] u^{\nu} \frac{\mathrm{d}y^{\sigma}}{\mathrm{d}\lambda'} = 0 \tag{4.4}$$

we obtain

$$\frac{\partial v^{\beta}}{\partial \lambda} \frac{\partial \lambda}{\partial \lambda'} \frac{\partial y^{\mu}}{\partial x^{\beta}} + v^{\beta} \frac{\partial^{2} y^{\mu}}{\partial x^{\beta} \partial x^{\alpha}} \frac{\partial x^{\alpha}}{\partial \lambda} \frac{\partial \lambda}{\partial \lambda'} + \left\{ \Gamma^{\beta}_{\alpha\kappa} \left[x(\lambda) \right] \frac{\partial x^{\kappa}}{\partial y^{\sigma}} \frac{\partial x^{\alpha}}{\partial y^{\nu}} \frac{\partial y^{\mu}}{\partial x^{\beta}} + \frac{\partial^{2} x^{\alpha}}{\partial y^{\nu} \partial y^{\sigma}} \frac{\partial y^{\mu}}{\partial x^{\alpha}} \right\} v^{\eta} \frac{\partial y^{\nu}}{\partial x^{\eta}} \frac{\partial y^{\sigma}}{\partial \lambda'} = 0 \tag{4.5}$$

Let's take a look at third term of this sum

$$\left\{\Gamma^{\beta}_{\alpha\kappa}\left[x(\lambda)\right]\frac{\partial x^{\kappa}}{\partial y^{\sigma}}\frac{\partial x^{\alpha}}{\partial y^{\nu}}\frac{\partial y^{\mu}}{\partial x^{\beta}} + \frac{\partial^{2}x^{\alpha}}{\partial y^{\nu}\partial y^{\sigma}}\frac{\partial y^{\mu}}{\partial x^{\alpha}}\right\}v^{\eta}\frac{\partial y^{\nu}}{\partial x^{\eta}}\underbrace{\frac{\partial y^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial \lambda}\frac{\partial \lambda}{\partial \lambda'}}_{\underbrace{\frac{\partial y^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial \lambda}\frac{\partial \lambda}{\partial \lambda'}}_{\underbrace{\frac{\partial y^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial \lambda}\frac{\partial x^{\tau}}{\partial \lambda'}}_{\underbrace{\frac{\partial y^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial \lambda'}\frac{\partial x^{\tau}}{\partial \lambda'}}_{\underbrace{\frac{\partial y^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial \lambda'}\frac{\partial x^{\tau}}{\partial \lambda'}\frac{\partial x^{\tau}}{\partial \lambda'}}_{\underbrace{\frac{\partial y^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial \lambda'}\frac{\partial x^{\tau}}{\partial \lambda'}}_{\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial x^{\tau}}}_{\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial x^{\tau}}}_{\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial x^{\tau}}}_{\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau$$

$$v^{\eta}\Gamma^{\beta}_{\alpha\kappa}\left[x(\lambda)\right]\underbrace{\frac{\partial x^{\kappa}}{\partial y^{\sigma}}\frac{\partial y^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial \lambda}\frac{\partial \lambda}{\partial \lambda'}}_{=\frac{\partial x^{\kappa}}{\partial \lambda}\frac{\partial \lambda}{\partial \lambda'}}\underbrace{\frac{\partial x^{\alpha}}{\partial y^{\nu}}\frac{\partial y^{\nu}}{\partial x^{\eta}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial \lambda}{\partial x^{\tau}}\frac{\partial \lambda}{\partial \lambda'}}_{=\frac{\partial x^{\kappa}}{\partial \lambda}\frac{\partial \lambda}{\partial \lambda'}}\underbrace{\frac{\partial x^{\alpha}}{\partial y^{\nu}}\frac{\partial y^{\nu}}{\partial x^{\eta}}\frac{\partial y^{\mu}}{\partial x^{\eta}}}_{=\frac{\partial x^{\alpha}}{\partial x^{\eta}}\frac{\partial x^{\nu}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\eta}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\eta}}\frac{\partial x^{\nu}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial \lambda}{\partial x^{\tau}}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\eta}}\frac{\partial x^{\nu}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial \lambda}{\partial x^{\tau}}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\eta}}\frac{\partial x^{\nu}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial \lambda}{\partial x^{\tau}}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\eta}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}}_{=\frac{\partial x^{\kappa}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\sigma}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\underbrace{\frac{\partial x^{\sigma}}{\partial x^{\tau}}\frac{\partial x^{\sigma}}{\partial x^{\tau}}\underbrace{\frac{\partial x^{$$

$$\Gamma^{\beta}_{\alpha\kappa}\left[x(\lambda)\right]v^{\alpha}\frac{\partial x^{\kappa}}{\partial \lambda}\frac{\partial \lambda}{\partial \lambda'}\frac{\partial y^{\mu}}{\partial x^{\beta}}-v^{\eta}\frac{\partial^{2}y^{\nu}}{\partial x^{\eta}\partial x^{\tau}}\underbrace{\frac{\partial x^{\alpha}}{\partial y^{\nu}}\frac{\partial y^{\mu}}{\partial x^{\alpha}}}_{=\delta^{\mu}_{\nu}}\underbrace{\frac{\partial x^{\tau}}{\partial \lambda}\frac{\partial \lambda}{\partial \lambda'}}_{=\delta^{\mu}_{\nu}}\left[x(\lambda)\right]v^{\alpha}\frac{\partial x^{\kappa}}{\partial \lambda}\frac{\partial \lambda}{\partial \lambda'}\frac{\partial y^{\mu}}{\partial x^{\beta}}-v^{\eta}\frac{\partial^{2}y^{\mu}}{\partial x^{\eta}\partial x^{\tau}}\frac{\partial x^{\tau}}{\partial \lambda}\frac{\partial \lambda}{\partial \lambda'}$$

(4.6)

So at the end of the day we have

$$\frac{\partial v^{\beta}}{\partial \lambda} \frac{\partial \lambda}{\partial \lambda'} \frac{\partial y^{\mu}}{\partial x^{\beta}} + v^{\beta} \frac{\partial^{2} y^{\mu}}{\partial x^{\beta} \partial x^{\alpha}} \frac{\partial x^{\alpha}}{\partial \lambda} \frac{\partial \lambda}{\partial \lambda'} + \Gamma^{\beta}_{\alpha \kappa} \left[x(\lambda) \right] v^{\alpha} \frac{\partial x^{\kappa}}{\partial \lambda} \frac{\partial \lambda}{\partial \lambda'} \frac{\partial y^{\mu}}{\partial x^{\beta}} - v^{\eta} \frac{\partial^{2} y^{\mu}}{\partial x^{\eta} \partial x^{\tau}} \frac{\partial x^{\tau}}{\partial \lambda} \frac{\partial \lambda}{\partial \lambda'} = 0$$

$$(4.7)$$

Which simplifies to

$$\left(\frac{\partial v^{\beta}}{\partial \lambda} + \Gamma^{\beta}_{\alpha\kappa} \left[x(\lambda)\right] v^{\alpha} \frac{\partial x^{\kappa}}{\partial \lambda}\right) \frac{\partial \lambda}{\partial \lambda'} \frac{\partial y^{\mu}}{\partial x^{\beta}} = 0 \tag{4.8}$$

We can divide by $\frac{\partial \lambda}{\partial \lambda'}$

$$\left[\left(\frac{\partial v^{\beta}}{\partial \lambda} + \Gamma^{\beta}_{\alpha\kappa} \left[x(\lambda) \right] v^{\alpha} \frac{\partial x^{\kappa}}{\partial \lambda} \right) \frac{\partial y^{\mu}}{\partial x^{\beta}} = 0 \right]$$
(4.9)

So indeed this equation is coordinate-covariant.

Problem 2

Let γ_V denote the geodesic with tangent vector V_p at point p. $\{e_\mu\}$ is arbitrary basis chosen at the point p and normal coordinates are defined as $x(q)=(x^1,\ldots,x^n) \Leftrightarrow q=\gamma_{x^\mu e_\mu}$ where $p=\gamma(\lambda=0), q=\gamma(\lambda=1)$ and $\{x^i\}_{i=1}^n \in \mathbb{R}$.

First we let $V_p = v^{\mu} \mathbf{e}_{\mu}$. But we know, since we consider geodesic, that $v^{\mu} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}$. On the other hand we can write normal coordinates of point q as $x(q) = (v^1, \ldots, v^n)$. So we have two conditions

$$\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}\Big|_{\lambda=0} = v^{\mu} \qquad x^{\mu}\Big|_{\lambda=1} = v^{\mu} \tag{4.10}$$

It is easy to solve this

$$x^{\mu}(\lambda) = v^{\mu}\lambda + x_{\mu}(0) \tag{4.11}$$

Eq. 4.11 describes straight line, because it is linear with respect to λ ¹. Substituting this expression into geodesic equation

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\lambda^2} + \Gamma^{\mu}_{\sigma\rho} \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\rho}}{\mathrm{d}\lambda} = 0 \tag{4.12}$$

gives

$$\Gamma^{\mu}_{\sigma\rho}v^{\sigma}v^{\rho} = 0 \tag{4.13}$$

But Eq. 4.13 has to be satisfied for arbitrary v^{σ} and v^{ρ} which implies

$$\boxed{\Gamma^{\mu}_{\sigma\rho} = 0} \tag{4.14}$$

Problem 3

 $\mathbf{A} \quad \partial g = 0$

We know that metric transforms as follow:

$$g'_{\alpha\beta} = \frac{\partial x^{\mu}}{\partial x'^{\alpha}} \frac{\partial x^{\nu}}{\partial x'^{\beta}} g_{\mu\nu} \tag{4.15}$$

¹or equivalently $\frac{d^2x^i}{d\lambda^2} = 0$

Now we choose transformation $x^{\mu} = x'^{\mu} - \frac{1}{2} M^{\mu}_{\alpha\beta} x'^{\alpha} x'^{\beta}$ with condition $x^{\mu}(p) = 0$. In point p we have $x'^{\mu} = \frac{1}{2} M^{\mu}_{\alpha\beta} x'^{\alpha} x'^{\beta}$. We see that $x'^{\mu} = 0$ is (one of the) solution to this equation. We choose this solution. This transformation will give us (M is taken in point p so it derivative is equal to zero)

$$g'_{\alpha\beta} = \frac{\partial(x'^{\mu} - \frac{1}{2}M^{\mu}_{\lambda\sigma}x'^{\lambda}x'^{\sigma})}{\partial x'^{\alpha}} \frac{\partial(x'^{\nu} - \frac{1}{2}M^{\nu}_{\kappa\eta}x'^{\kappa}x'^{\eta})}{\partial x'^{\beta}} g_{\mu\nu} = \left(\delta^{\mu}_{\alpha} - \frac{1}{2}M^{\mu}_{\lambda\sigma}(\delta^{\lambda}_{\alpha}x'^{\sigma} + x'^{\lambda}\delta^{\sigma}_{\alpha})\right) \left(\delta^{\nu}_{\beta} - \frac{1}{2}M^{\nu}_{\kappa\eta}(\delta^{\kappa}_{\beta}x'^{\eta} + x'^{\kappa}\delta^{\eta}_{\beta})\right) g_{\mu\nu} = \left(\delta^{\mu}_{\alpha} - \frac{1}{2}M^{\mu}_{\alpha\sigma}x'^{\sigma} - \frac{1}{2}M^{\mu}_{\lambda\alpha}x'^{\lambda}\right) \left(\delta^{\nu}_{\beta} - \frac{1}{2}M^{\nu}_{\beta\eta}x'^{\eta} - \frac{1}{2}M^{\nu}_{\kappa\beta}x'^{\kappa}\right) g_{\mu\nu} = \left(\delta^{\mu}_{\alpha} - \frac{1}{2}x'^{\sigma}(M^{\mu}_{\alpha\sigma} + M^{\mu}_{\sigma\alpha})\right) \left(\delta^{\nu}_{\beta} - \frac{1}{2}x'^{\eta}(M^{\nu}_{\beta\eta} + M^{\nu}_{\eta\beta})\right) g_{\mu\nu} \quad (4.16)$$

We take $\tilde{M}^{\nu}_{\beta\eta} = \frac{1}{2}(M^{\nu}_{\beta\eta} + M^{\nu}_{\eta\beta})$ and write

$$g'_{\alpha\beta} = \left(\delta^{\mu}_{\alpha} - x'^{\sigma}\tilde{M}^{\mu}_{\alpha\sigma}\right)\left(\delta^{\nu}_{\beta} - x'^{\eta}\tilde{M}^{\nu}_{\beta\eta}\right)g_{\mu\nu} = g_{\alpha\beta} - g_{\alpha\nu}x'^{\eta}\tilde{M}^{\nu}_{\beta\eta} - g_{\mu\beta}x'^{\sigma}\tilde{M}^{\mu}_{\alpha\sigma} + x'^{\sigma}x'^{\eta}\tilde{M}^{\mu}_{\alpha\sigma}\tilde{M}^{\nu}_{\beta\eta}$$
(4.17)

Now we take derivative of both sides in point p (remember that x(p) = x'(p) = 0)

$$\partial_{\lambda}' g_{\alpha\beta}' = \partial_{\lambda}' g_{\alpha\beta} - \partial_{\lambda}' (g_{\alpha\nu} x'^{\eta} \tilde{M}_{\beta\eta}^{\nu}) - \partial_{\lambda}' (g_{\mu\beta} x'^{\sigma} \tilde{M}_{\alpha\sigma}^{\mu}) =$$

$$\left(\delta_{\lambda}^{\tau} - x'^{\sigma} \tilde{M}_{\lambda\sigma}^{\tau} \right) \partial_{\tau} g_{\alpha\beta} - \partial_{\lambda}' g_{\alpha\nu} x'^{\eta} \tilde{M}_{\beta\eta}^{\nu} - g_{\alpha\nu} \delta_{\lambda}^{\eta} \tilde{M}_{\beta\eta}^{\nu} - \partial_{\lambda}' g_{\mu\beta} x'^{\sigma} \tilde{M}_{\alpha\sigma}^{\mu} - g_{\mu\beta} \delta_{\lambda}^{\sigma} \tilde{M}_{\alpha\sigma}^{\mu} =$$

$$\partial_{\lambda} g_{\alpha\beta} - g_{\alpha\nu} \delta_{\lambda}^{\eta} \tilde{M}_{\beta\eta}^{\nu} - g_{\mu\beta} \delta_{\lambda}^{\sigma} \tilde{M}_{\alpha\sigma}^{\mu} = \partial_{\lambda} g_{\alpha\beta} - g_{\alpha\nu} \tilde{M}_{\beta\lambda}^{\nu} - g_{\mu\beta} \tilde{M}_{\alpha\lambda}^{\mu} \quad (4.18)$$

Now let's substitute Chrisroffel symbol in place of \tilde{M} namely

$$\tilde{M}_{\alpha\beta}^{\gamma} = \frac{1}{2} g^{\gamma\sigma} (\partial_{\alpha} g_{\sigma\beta} + \partial_{\beta} g_{\sigma\alpha} - \partial_{\sigma} g_{\alpha\beta}) \tag{4.19}$$

We obtain (using $g_{\alpha\beta} = g_{\beta\alpha}$)

$$2\partial_{\lambda}'g_{\alpha\beta}' = 2\partial_{\lambda}g_{\alpha\beta} - \underbrace{g_{\alpha\nu}g^{\nu\sigma}}_{=\delta_{\alpha}'}(\partial_{\beta}g_{\sigma\lambda} + \partial_{\lambda}g_{\sigma\beta} - \partial_{\sigma}g_{\beta\lambda}) - \underbrace{g_{\mu\beta}g^{\mu\sigma}}_{=\delta_{\beta}'}(\partial_{\alpha}g_{\sigma\lambda} + \partial_{\lambda}g_{\sigma\alpha} - \partial_{\sigma}g_{\alpha\lambda}) = \underbrace{g_{\alpha\nu}g^{\nu\sigma}}_{=\delta_{\beta}'}(\partial_{\beta}g_{\sigma\lambda} - \partial_{\sigma}g_{\sigma\lambda}) = \underbrace{g_{\alpha\nu}g^{\nu\sigma}}$$

$$2\partial_{\lambda}g_{\alpha\beta} - \partial_{\beta}g_{\alpha\lambda} - \partial_{\lambda}g_{\alpha\beta} + \partial_{\alpha}g_{\beta\lambda} - \partial_{\alpha}g_{\beta\lambda} - \partial_{\lambda}g_{\beta\alpha} + \partial_{\beta}g_{\alpha\lambda} = 2\partial_{\lambda}g_{\alpha\beta} - 2\partial_{\lambda}g_{\alpha\beta} = 0 \quad (4.20)$$

So eventually

$$\left[\partial_{\lambda}^{\prime} g_{\alpha\beta}^{\prime} = 0 \right] \tag{4.21}$$

B $q = \eta$

We try following change of coordinates

$$x'^{\mu} = N^{\mu}_{\ \alpha} y^{\alpha} \tag{4.22}$$

In those coordinates metric looks like

$$g_{\alpha\beta}^{\prime\prime} = \frac{\partial x^{\prime\mu}}{\partial y^{\alpha}} \frac{\partial x^{\prime\nu}}{\partial y^{\beta}} g_{\mu\nu}^{\prime} = N^{\mu}_{\alpha} N^{\nu}_{\beta} g_{\mu\nu}^{\prime} = (N^{-1})_{\alpha}^{\mu} g_{\mu\nu}^{\prime} N^{\nu}_{\beta} = (N^{-1} g^{\prime} N)_{\alpha\beta}$$
(4.23)

We can now diagonalize metric g'. We can write

$$g' = C \eta C^{-1} (4.24)$$

where η is diagonal and C is a matrix which consists of eigenvectors of g'. If we will choose N=C then Eq. 4.23 simplifies to

$$g_{\alpha\beta}^{\prime\prime} = \eta_{\alpha\beta} \tag{4.25}$$

Problem 1

Problem 1a

We have given metric

$$g = d\theta \otimes d\theta + \sin^2 \theta \, d\phi \otimes d\phi \tag{5.1}$$

Only non-zero elements are:

$$g_{11} = 1 g_{22} = \sin^2 \theta (5.2)$$

Also rmeber that $g^{\alpha\beta}=g^{-1}_{\alpha\beta}$ Let's calculate connection for that metric:

$$\Gamma^{\mu}_{\nu\sigma} = \frac{1}{2} g^{\mu\rho} \left(\partial_{\nu} g_{\rho\sigma} + \partial_{\sigma} g_{\rho\nu} - \partial_{\rho} g_{\nu\sigma} \right) \tag{5.3}$$

It is easy to see that

$$\partial_{\nu}g_{\rho\sigma} = \delta_{1\nu}\delta_{2\rho}\delta_{2\sigma} \, 2\sin\theta\cos\theta \tag{5.4}$$

where $\partial_1 \equiv \partial_\theta$ and $\partial_2 \equiv \partial_\phi$. Substituting Eq. (5.4) into connection yields

$$\Gamma^{\mu}_{\nu\sigma} = \frac{1}{2} g^{\mu\rho} \left(\delta_{1\nu} \delta_{2\rho} \delta_{2\sigma} \ 2 \sin\theta \cos\theta + \delta_{1\sigma} \delta_{2\rho} \delta_{2\nu} \ 2 \sin\theta \cos\theta - \delta_{1\rho} \delta_{2\nu} \delta_{2\sigma} \ 2 \sin\theta \cos\theta \right) = 0$$

$$\sin\theta\cos\theta\left(g^{2\mu}\delta_{1\nu}\delta_{2\sigma} + g^{2\mu}\delta_{1\sigma}\delta_{2\nu} - g^{1\mu}\delta_{2\nu}\delta_{2\sigma}\right) \quad (5.5)$$

The only non-zero coefficients

$$\Gamma_{22}^{1} = -\sin\theta\cos\theta \qquad \qquad \Gamma_{12}^{2} = \Gamma_{21}^{2} = \frac{\cos\theta}{\sin\theta} \qquad (5.6)$$

Problem 1b

Geodesic equation is given by

$$\frac{\partial^2 x^{\sigma}}{\partial \lambda^2} + \Gamma^{\sigma}_{\mu\nu} \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\nu}}{\partial \lambda} = 0 \tag{5.7}$$

Writing explicitly

$$\frac{\partial^2 x^1}{\partial \lambda^2} + \Gamma^1_{\mu\nu} \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\nu}}{\partial \lambda} = 0$$
 (5.8a)

$$\frac{\partial^2 x^2}{\partial \lambda^2} + \Gamma^2_{\mu\nu} \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\nu}}{\partial \lambda} = 0$$
 (5.8b)

After plugging in Eq. (5.6) we obtain

$$\frac{\partial^2 \theta}{\partial \lambda^2} - \sin \theta \cos \theta \frac{\partial \phi}{\partial \lambda} \frac{\partial \phi}{\partial \lambda} = 0$$
 (5.9a)

$$\frac{\partial^2 \phi}{\partial \lambda^2} + 2 \frac{\cos \theta}{\sin \theta} \frac{\partial \theta}{\partial \lambda} \frac{\partial \phi}{\partial \lambda} = 0$$
 (5.9b)

Now we can set θ and ϕ as affine parameters

 $\lambda \to \theta$

$$-\sin\theta\cos\theta\frac{\partial\phi}{\partial\theta}\frac{\partial\phi}{\partial\theta} = 0 \tag{5.10a}$$

$$\frac{\partial^2 \phi}{\partial \theta^2} + 2 \frac{\cos \theta}{\sin \theta} \frac{\partial \phi}{\partial \theta} = 0 \tag{5.10b}$$

Solution to this set of equations is trivial namely

$$\frac{\partial \phi}{\partial \theta} = 0 \quad \Rightarrow \quad \phi = \text{const} \tag{5.11}$$

It means that longitudinal lines are geodesics in this metric.

 $\lambda \to \phi$

$$\frac{\partial^2 \theta}{\partial \phi^2} - \sin \theta \cos \theta = 0 \tag{5.12a}$$

$$2\frac{\cos\theta}{\sin\theta}\frac{\partial\theta}{\partial\phi} = 0\tag{5.12b}$$

From second equation we have that

$$\frac{\partial \theta}{\partial \phi} = 0 \tag{5.13}$$

but it does not solve first equation for every θ . This system of equations has solutions only when

$$\sin \theta \cos \theta = 0 \implies \theta = 0 \lor \theta = \frac{\pi}{2} \lor \theta = \pi$$
 (5.14)

since $\theta \in [0, \pi]$. But for $\theta = 0$ or $\theta = \pi$ geodesic line is just one point, because those are poles. Only $\theta = \frac{\pi}{2}$ gives non-trivial geodesic. This line is called equator.

Problem 1c

$$\theta = \frac{\pi}{2}$$
, $\phi = 0 \rightarrow \theta = 0$, $\phi = 0$

We use equation of parallel transport of vector v along curve γ with $\frac{\mathrm{d}\gamma^{\mu}}{\mathrm{d}\lambda} = w^{\mu}$

$$\nabla_{\mathbf{w}} \mathbf{v} = 0 \tag{5.15}$$

We can write it explicitly

$$w^{\nu}\partial_{\nu}v^{\mu} + w^{\nu}\Gamma^{\mu}_{\nu\sigma}v^{\sigma} = 0 \tag{5.16}$$

or substituting connections I've calculated before

$$w^{1}\partial_{1}v^{1} + w^{2}\partial_{2}v^{1} + w^{2}\Gamma_{22}^{1}v^{2} = 0$$
 (5.17a)

$$w^{1}\partial_{1}v^{2} + w^{2}\partial_{2}v^{2} + w^{1}\Gamma_{12}^{2}v^{2} + w^{2}\Gamma_{21}^{2}v^{1} = 0$$
(5.17b)

If we move along meridian then we can take $\lambda \to \theta$. From this we get coefficients w namely $w^1 = \frac{d\theta}{d\theta} = 1$ and $w^2 = \frac{d\phi}{d\theta} = 0$. Putting this and connection coefficients into equations we obtain

$$\partial_1 v^1 = 0 \tag{5.18a}$$

Figure 5.1: Visualization of geodesics – red line is equator, blue lines are two possible meridians, P_1 and P_2 are poles.

$$\partial_1 v^2 + \frac{\cos \theta}{\sin \theta} v^2 = 0 \tag{5.18b}$$

Second equation we multiply by $\sin \theta$ and simplify

$$\partial_1 v^1 = 0 \tag{5.19a}$$

$$\partial_1 \left(v^2 \sin \theta \right) = 0 \tag{5.19b}$$

This gives use

$$v^1 = C_1 \tag{5.20a}$$

$$v^2 = \frac{C_2}{\sin \theta} \tag{5.20b}$$

Constants C_1 and C_2 depends on the vector we transport:

• for $\frac{\partial}{\partial \theta}$ we have at the beginning $(\theta = \frac{\pi}{2}) v = (1,0)$ so $C_1 = 1$ and $C_2 = 0$ so the transport

$$v = (1,0) \to (1,0) = v'$$
 (5.21)

does not change this vector.

• for $\frac{\partial}{\partial \phi}$ we have at the beginning v=(0,1) so $C_1=0$ and $C_2=1$ so the transport

$$v = (0,1) \to (0, \frac{1}{\sin \theta}) = v'$$
 (5.22)

is undefined at point $\theta = 0$

$$\theta = \frac{\pi}{2}$$
, $\phi = 0 \rightarrow \theta = \frac{\pi}{2}$, $\phi = \frac{\pi}{4}$

If we move along equator then we can take $\lambda \to \phi$. From this we get coefficients w namely $w^1 = \frac{\mathrm{d}\theta}{\mathrm{d}\phi} = 0$ and $w^2 = \frac{\mathrm{d}\phi}{\mathrm{d}\phi} = 1$. Putting this and connection coefficients into equations we obtain

$$\partial_2 v^1 - \sin\theta \cos\theta v^2 = 0 \tag{5.23a}$$

$$\partial_2 v^2 + \frac{\cos \theta}{\sin \theta} v^1 = 0 \tag{5.23b}$$

which simplifies to

$$\partial_2 v^1 = 0 \tag{5.24a}$$

$$\partial_2 v^2 = 0 \tag{5.24b}$$

because $\cos \theta \Big|_{\theta = \frac{\pi}{2}} = 0$

$$v^1 = C_1 (5.25a)$$

$$v^2 = C_2 (5.25b)$$

Constants C_1 and C_2 depends on the vector we transport:

• for $\frac{\partial}{\partial \theta}$ we have at the beginning $(\phi = 0)$ v = (1,0) so $C_1 = 1$ and $C_2 = 0$ so the transport

$$v = (1,0) \to (1,0) = v'$$
 (5.26)

does not change this vector.

• for $\frac{\partial}{\partial \phi}$ we have at the beginning v=(0,1) so $C_1=0$ and $C_2=1$ so the transport

$$v = (0,1) \to (0,1) = v'$$
 (5.27)

does not change this vector.

Figure 5.2: Visualization of parallel transport – red is transport along equator, blue is transport along meridians.

Problem 2

Materic is given by

$$g_{\nu\mu} = \begin{pmatrix} -B(r) & 0 & 0 & 0\\ 0 & A(r) & 0 & 0\\ 0 & 0 & r^2 & 0\\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$
 (5.28)

We can calculate connection coefficients using relation

$$\Gamma^{\mu}_{\nu\sigma} = \frac{1}{2} g^{\mu\rho} \left(\partial_{\nu} g_{\rho\sigma} + \partial_{\sigma} g_{\rho\nu} - \partial_{\rho} g_{\nu\sigma} \right) \tag{5.29}$$

Becasue metric is diagonal we can simplify this expression:

$$\Gamma^{\mu}_{\nu\sigma} = \frac{1}{2} g^{\mu\mu} \left(\partial_{\nu} g_{\mu\sigma} + \partial_{\sigma} g_{\mu\nu} - \partial_{\mu} g_{\nu\sigma} \right) \tag{5.30}$$

$$\Gamma^{1} = \frac{1}{2} \frac{1}{A(r)} \begin{pmatrix} \dot{B} & 0 & 0 & 0\\ 0 & \dot{A} & 0 & 0\\ 0 & 0 & -2r & 0\\ 0 & 0 & 0 & -2r\sin^{2}\theta \end{pmatrix}$$
 (5.31b)

$$\Gamma^{2} = \frac{1}{2} \frac{1}{r^{2}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 2r & 0 \\ 0 & 2r & 0 & 0 \\ 0 & 0 & 0 & -r^{2} 2 \sin \theta \cos \theta \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{r} & 0 \\ 0 & \frac{1}{r} & 0 & 0 \\ 0 & 0 & 0 & -\sin \theta \cos \theta \end{pmatrix}$$
(5.31c)

$$\Gamma^{3} = \frac{1}{2} \frac{1}{r^{2} \sin^{2} \theta} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2r \sin^{2} \theta \\ 0 & 0 & 0 & r^{2} 2 \sin \theta \cos \theta \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{r} \\ 0 & 0 & 0 & \frac{\cos \theta}{\sin \theta} \\ 0 & \frac{1}{r} & \frac{\cos \theta}{\sin \theta} & 0 \end{pmatrix}$$
(5.31d)

Geodesic equation

$$\frac{\partial^2 x^{\sigma}}{\partial \lambda^2} + \Gamma^{\sigma}_{\mu\nu} \frac{\partial x^{\mu}}{\partial \lambda} \frac{\partial x^{\nu}}{\partial \lambda} = 0 \tag{5.32}$$

 $\sigma = 0$

$$\frac{\partial^2 t}{\partial \lambda^2} - \frac{1}{2} \frac{1}{B(t)} \left(-2\dot{B} \frac{\partial t}{\partial \lambda} \frac{\partial r}{\partial \lambda} \right) = 0 \tag{5.34}$$

$$\frac{\partial^2 t}{\partial \lambda^2} + \frac{\dot{B}}{B} \frac{\partial t}{\partial \lambda} \frac{\partial r}{\partial \lambda} = 0 \tag{5.35}$$

 $\sigma = 1$

$$\frac{\partial^{2} r}{\partial \lambda^{2}} + \frac{1}{2} \frac{1}{A(r)} \begin{pmatrix} \frac{\partial t}{\partial \lambda} & \frac{\partial r}{\partial \lambda} & \frac{\partial \theta}{\partial \lambda} & \frac{\partial \phi}{\partial \lambda} \end{pmatrix} \begin{pmatrix} \dot{B} & 0 & 0 & 0 \\ 0 & \dot{A} & 0 & 0 \\ 0 & 0 & -2r & 0 \\ 0 & 0 & 0 & -2r \sin^{2} \theta \end{pmatrix} \begin{pmatrix} \frac{\partial t}{\partial \lambda} \\ \frac{\partial r}{\partial \lambda} \\ \frac{\partial \theta}{\partial \lambda} \\ \frac{\partial \phi}{\partial \lambda} \end{pmatrix} = 0$$
 (5.36)

$$\frac{\partial^2 r}{\partial \lambda^2} + \frac{\dot{B}}{2A} \left(\frac{\partial t}{\partial \lambda}\right)^2 + \frac{\dot{A}}{2A} \left(\frac{\partial r}{\partial \lambda}\right)^2 - \frac{r}{A} \left(\frac{\partial \theta}{\partial \lambda}\right)^2 - \frac{r \sin^2 \theta}{A} \left(\frac{\partial \phi}{\partial \lambda}\right)^2 = 0 \tag{5.37}$$

 $\sigma = 2$

$$\frac{\partial^{2} \theta}{\partial \lambda^{2}} + \begin{pmatrix} \frac{\partial t}{\partial \lambda} & \frac{\partial r}{\partial \lambda} & \frac{\partial \theta}{\partial \lambda} & \frac{\partial \phi}{\partial \lambda} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{r} & 0 \\ 0 & \frac{1}{r} & 0 & 0 \\ 0 & 0 & 0 & -\sin\theta\cos\theta \end{pmatrix} \begin{pmatrix} \frac{\partial t}{\partial \lambda} \\ \frac{\partial r}{\partial \lambda} \\ \frac{\partial \theta}{\partial \lambda} \\ \frac{\partial \phi}{\partial \lambda} \end{pmatrix} = 0$$
 (5.38)

$$\frac{\partial^2 \theta}{\partial \lambda^2} + \frac{2}{r} \frac{\partial r}{\partial \lambda} \frac{\partial \theta}{\partial \lambda} - \sin \theta \cos \theta \left(\frac{\partial \phi}{\partial \lambda} \right)^2 = 0 \tag{5.39}$$

 $\sigma = 2$

$$\frac{\partial^{2} \phi}{\partial \lambda^{2}} + \begin{pmatrix} \frac{\partial t}{\partial \lambda} & \frac{\partial r}{\partial \lambda} & \frac{\partial \theta}{\partial \lambda} & \frac{\partial \phi}{\partial \lambda} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{r} \\ 0 & 0 & 0 & \frac{\cos \theta}{\sin \theta} \\ 0 & \frac{1}{r} & \frac{\cos \theta}{\sin \theta} & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial t}{\partial \lambda} \\ \frac{\partial r}{\partial \lambda} \\ \frac{\partial \theta}{\partial \lambda} \\ \frac{\partial \phi}{\partial \lambda} \end{pmatrix} = 0$$
 (5.40)

$$\frac{\partial^2 \phi}{\partial \lambda^2} + \frac{2}{r} \frac{\partial r}{\partial \lambda} \frac{\partial \phi}{\partial \lambda} + 2 \frac{\cos \theta}{\sin \theta} \frac{\partial \theta}{\partial \lambda} \frac{\partial \phi}{\partial \lambda} = 0 \tag{5.41}$$

Gathering all equations

$$0 = \frac{\partial^2 t}{\partial \lambda^2} + \frac{\dot{B}}{B} \frac{\partial t}{\partial \lambda} \frac{\partial r}{\partial \lambda}$$
 (5.42a)

$$0 = \frac{\partial^2 r}{\partial \lambda^2} + \frac{\dot{B}}{2A} \left(\frac{\partial t}{\partial \lambda}\right)^2 + \frac{\dot{A}}{2A} \left(\frac{\partial r}{\partial \lambda}\right)^2 - \frac{r}{A} \left(\frac{\partial \theta}{\partial \lambda}\right)^2 - \frac{r \sin^2 \theta}{A} \left(\frac{\partial \phi}{\partial \lambda}\right)^2$$
 (5.42b)

$$0 = \frac{\partial^2 \theta}{\partial \lambda^2} + \frac{2}{r} \frac{\partial r}{\partial \lambda} \frac{\partial \theta}{\partial \lambda} - \sin \theta \cos \theta \left(\frac{\partial \phi}{\partial \lambda} \right)^2$$
 (5.42c)

$$0 = \frac{\partial^2 \phi}{\partial \lambda^2} + \frac{2}{r} \frac{\partial r}{\partial \lambda} \frac{\partial \phi}{\partial \lambda} + 2 \frac{\cos \theta}{\sin \theta} \frac{\partial \theta}{\partial \lambda} \frac{\partial \phi}{\partial \lambda}$$
 (5.42d)

Problem 3

Metric is given by

$$g = -c^2 \left(12 \frac{GM}{rc^2} \right) dt \otimes dt + dx \otimes dx$$
 (5.43)

We can calculate infinitesimal interval of two events in this metric

$$ds^{2} = -c^{2} \left(12 \frac{GM}{rc^{2}} \right) dt^{2} + dx^{2}$$
 (5.44)

Simplifying this and assuming that the person has not been moving for whole year we can write

$$ds^{2} = dt^{2} \left(-c^{2} \left(12 \frac{GM}{rc^{2}} \right) + \frac{dx^{2}}{dt^{2}} \right) = -dt^{2} c^{2} \left(12 \frac{GM}{rc^{2}} \right)$$
 (5.45)

We can now calculate the proper time

$$c^2 d\tau^2 = dt^2 c^2 \left(12 \frac{GM}{rc^2} \right) \quad \Rightarrow \quad d\tau = dt \sqrt{12 \frac{GM}{rc^2}}$$
 (5.46)

and finite version

$$\Delta \tau = \Delta t \sqrt{12 \frac{GM}{rc^2}} \tag{5.47}$$

Now I take $\Delta \tau_0$ to be proper time of person's feet and $\Delta \tau_H$ for head (in distance H from feet). Now I can calculate the difference

$$\Delta \tau_H - \Delta \tau_0 = \Delta t \left(\sqrt{12 \frac{GM}{(r+H)c^2}} - \sqrt{12 \frac{GM}{rc^2}} \right)$$
 (5.48)

Because expressions under square are small I can Taylor expand them (using $\sqrt{1-2x} \simeq 1-x$)

$$\Delta \tau_H - \Delta \tau_0 = \Delta t \left(-\frac{GM}{(r+H)c^2} + \frac{GM}{rc^2} \right) = \Delta t \frac{GM}{c^2} \left(\frac{1}{r} - \frac{1}{r+H} \right) = \Delta t \frac{GM}{c^2 r} \frac{H}{r+H}$$
 (5.49)

Plugging all the constants and assuming that person has height 1.8 m after 1 year time difference is

$$\Delta \tau_H - \Delta \tau_0 = 6.3 \times 10^{-9} \text{ s}$$
 (5.50)

Figure 5.3: Time difference between head and feet after one year with respect to height of a person

Problem 1

Show that

$$R(\boldsymbol{u}, \boldsymbol{v})z = \nabla_{\boldsymbol{u}} \nabla_{\boldsymbol{v}} z - \nabla_{\boldsymbol{v}} \nabla_{\boldsymbol{u}} z - \nabla_{[\boldsymbol{u}, \boldsymbol{v}]} z \tag{6.1}$$

satisfies

$$R(\mathbf{u}, \mathbf{v})(f\mathbf{z}) = fR(\mathbf{u}, \mathbf{v})\mathbf{z} \tag{6.2}$$

$$R(u,v)(fz) = \nabla_{u} (\nabla_{v}(fz)) - \nabla_{v} (\nabla_{u}(fz)) - \nabla_{[u,v]}(fz) =$$

$$\nabla_{u} (\nabla_{v}f z + f\nabla_{v}z) - \nabla_{v} (\nabla_{u}f z + f\nabla_{u}z) - \nabla_{[u,v]}f z - f \nabla_{[u,v]}z =$$

$$\nabla_{u} (v(f) z + f\nabla_{v}z) - \nabla_{v} (u(f) z + f\nabla_{u}z) - [u,v](f) z - f \nabla_{[u,v]}z =$$

$$\nabla_{u}v(f) z + v(f)\nabla_{u}z + \nabla_{u}f\nabla_{v}z + f\nabla_{u}\nabla_{v}z -$$

$$\nabla_{v}u(f) z - u(f)\nabla_{v}z - \nabla_{v}f\nabla_{u}z - f\nabla_{v}\nabla_{u}z -$$

$$[u,v](f) z - f \nabla_{[u,v]}z =$$

$$u(v(f)) z + v(f)\nabla_{u}z + u(f)\nabla_{v}z + f\nabla_{u}\nabla_{v}z -$$

$$v(u(f)) z - u(f)\nabla_{v}z - v(f)\nabla_{u}z - f\nabla_{v}\nabla_{u}z -$$

$$[u,v](f) z - f \nabla_{[u,v]}z =$$

$$f (\nabla_{u}\nabla_{v}z - \nabla_{v}\nabla_{u}z - \nabla_{[u,v]}z)$$
 (6.3)

Problem 2

Show that

$$\delta \left(\ln \det \mathbf{M} \right) = \operatorname{Tr} \left(\mathbf{M}^{-1} \delta \mathbf{M} \right) \tag{6.4}$$

First we notice that

$$\delta\left(\ln\det\mathbf{M}\right) = \frac{\delta\det\mathbf{M}}{\det\mathbf{M}}\tag{6.5}$$

Now using following relation

$$\det(\mathbf{1} + \epsilon \mathbf{A}) = 1 + \epsilon \operatorname{Tr} \mathbf{A} + O(\epsilon^2)$$
(6.6)

We can calculate the expression we will use later

$$\det(M + \epsilon \delta M) = \det(1 + \epsilon \delta M M^{-1}) \det(M) = \det M + \epsilon \operatorname{Tr}(\delta M M^{-1}) \det M \tag{6.7}$$

We can calculate derivative using its definition

$$\delta(\det \mathbf{M}) = \lim_{\epsilon \to 0} \frac{\det(\mathbf{M} + \epsilon \delta \mathbf{M}) - \det \mathbf{M}}{\epsilon} =$$

$$\lim_{\epsilon \to 0} \frac{\det M + \epsilon \operatorname{Tr}(\delta M M^{-1}) \det M - \det M}{\epsilon} = \operatorname{Tr}(\delta M M^{-1}) \det M \quad (6.8)$$

If we plug this into Eq. (6.5) we obtain final result (because trace is cyclic).

Problem 3

Show that

$$\Gamma^{\nu}_{\nu\mu} = \partial_{\mu} \ln \sqrt{|g|} \tag{6.9}$$

We first calculate

$$\Gamma^{\nu}_{\nu\mu} = \frac{1}{2} g^{\nu\alpha} \left(\partial_{\mu} g_{\nu\alpha} + \partial_{\nu} g_{\mu\alpha} - \partial_{\alpha} g_{\nu\mu} \right) = \frac{1}{2} g^{\nu\alpha} \partial_{\mu} g_{\nu\alpha} + \frac{1}{2} g^{\nu\alpha} \partial_{\nu} g_{\mu\alpha} - \frac{1}{2} g^{\nu\alpha} \partial_{\alpha} g_{\nu\mu} = (\nu \leftrightarrow \alpha)$$

$$\frac{1}{2} g^{\nu\alpha} \partial_{\mu} g_{\nu\alpha} + \frac{1}{2} g^{\alpha\nu} \partial_{\alpha} g_{\mu\nu} - \frac{1}{2} g^{\nu\alpha} \partial_{\alpha} g_{\nu\mu} = \frac{1}{2} g^{\nu\alpha} \partial_{\mu} g_{\nu\alpha} = \frac{1}{2} \left(g^{-1} \right)_{\alpha\nu} \left(\partial_{\mu} g \right)_{\nu\alpha} = \frac{1}{2} \operatorname{Tr} \left(g^{-1} \partial_{\mu} g \right) \quad (6.10)$$

And now we calculate

$$\partial_{\mu} \ln \sqrt{|\boldsymbol{g}|} = \partial_{\mu} \ln |\sqrt{\boldsymbol{g}}| \stackrel{Eq. (6.4)}{=} \operatorname{Tr} \left(\sqrt{\boldsymbol{g}^{-1}} \partial_{\mu} \sqrt{\boldsymbol{g}} \right) = \operatorname{Tr} \left(\boldsymbol{g}^{-\frac{1}{2}} \boldsymbol{g}^{-\frac{1}{2}} \frac{1}{2} \partial_{\mu} \boldsymbol{g} \right) = \frac{1}{2} \operatorname{Tr} \left(\boldsymbol{g}^{-1} \partial_{\mu} \boldsymbol{g} \right)$$
(6.11)

So both sides of equation are equal

Problem 4

Show that

$$\nabla_{\mu}A^{\mu} = \frac{1}{\sqrt{|\boldsymbol{g}|}} \partial_{\mu} \left(\sqrt{|\boldsymbol{g}|} A^{\mu} \right) \tag{6.12}$$

We start with

$$\frac{1}{\sqrt{|g|}} \partial_{\mu} \left(\sqrt{|g|} A^{\mu} \right) = \frac{1}{\sqrt{|g|}} \partial_{\mu} \sqrt{|g|} A^{\mu} + \frac{1}{\sqrt{|g|}} \sqrt{|g|} \partial_{\mu} A^{\mu} = \partial_{\mu} \left(\ln \sqrt{|g|} \right) A^{\mu} + \frac{1}{\sqrt{|g|}} \sqrt{|g|} \partial_{\mu} A^{\mu} = \Gamma^{\nu}_{\nu\mu} A^{\mu} + \partial_{\mu} A^{\mu} \quad (6.13)$$

So

$$\nabla_{\mu}A^{\mu} = \Gamma^{\nu}_{\nu\mu}A^{\mu} + \partial_{\mu}A^{\mu} \tag{6.14}$$

which is true by definition of covariant derivative

Problem 5

We start with

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \left\{ \boldsymbol{g} \left(\partial_{\sigma^*}, \boldsymbol{v} \right) \right\} = 0 \tag{6.15}$$

Since we stay on geodesic we can write

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \left\{ g \left(\partial_{\sigma^*}, \boldsymbol{v} \right) \right\} = \nabla_{\boldsymbol{v}} \left\{ g \left(\partial_{\sigma^*}, \boldsymbol{v} \right) \right\} \tag{6.16}$$

We can now expand

$$\mathbf{g}\left(\partial_{\sigma^*}, \mathbf{v}\right) = \delta_{\sigma^*}^{\mathsf{v}} g_{\mathsf{v}\mu} v^{\mu} \tag{6.17}$$

So eventually

$$\nabla_{v} \left\{ \delta_{\sigma^{*}}^{v} g_{\nu\mu} v^{\mu} \right\} = g_{\nu\mu} \nabla_{v} \left\{ \delta_{\sigma^{*}}^{v} v^{\mu} \right\} = g_{\nu\mu} \nabla_{v} \delta_{\sigma^{*}}^{v} v^{\mu} + g_{\nu\mu} \delta_{\sigma^{*}}^{v} \nabla_{v} v^{\mu} =$$

$$g_{\nu\mu} \Gamma_{\rho\kappa}^{\nu} v^{\kappa} \delta_{\sigma^{*}}^{\rho} v^{\mu} + g_{\nu\mu} \delta_{\sigma^{*}}^{\nu} v^{\rho} \partial_{\rho} v^{\mu} + g_{\nu\mu} \delta_{\sigma^{*}}^{\nu} \Gamma_{\rho\kappa}^{\mu} v^{\rho} v^{\kappa} =$$

$$g_{\nu\mu} \Gamma_{\sigma^{*}\nu}^{\nu} v^{\kappa} v^{\mu} + g_{\sigma^{*}\mu} v^{\rho} \partial_{\rho} v^{\mu} + g_{\sigma^{*}\mu} \Gamma_{\rho\kappa}^{\mu} v^{\rho} v^{\kappa} =$$

$$(6.18)$$

Now I calculate

$$g_{\nu\mu}\Gamma^{\nu}_{\sigma^{*}\kappa} = \frac{1}{2}\underbrace{g_{\nu\mu}g^{\nu\alpha}}_{=\delta^{\alpha}_{\mu}} (\partial_{\kappa}g_{\sigma^{*}\alpha} + \underbrace{\partial_{\sigma^{*}}g_{\kappa\alpha}}_{=0} - \partial_{\alpha}g_{\kappa\sigma^{*}}) = \frac{1}{2} (\partial_{\kappa}g_{\sigma^{*}\mu} - \partial_{\mu}g_{\kappa\sigma^{*}})$$
(6.19)

and

$$g_{\sigma^*\mu}\Gamma^{\mu}_{\rho\kappa} = \frac{1}{2}\underbrace{g_{\sigma^*\mu}g^{\mu\alpha}}_{=\delta^{\alpha}_{\sigma^*}}(\partial_{\kappa}g_{\rho\alpha} + \partial_{\rho}g_{\kappa\alpha} - \partial_{\alpha}g_{\kappa\rho}) = \frac{1}{2}(\partial_{\kappa}g_{\rho\sigma^*} + \partial_{\rho}g_{\kappa\sigma^*} - \underbrace{\partial_{\sigma^*}g_{\kappa\rho}}_{=0}) = \frac{1}{2}(\partial_{\kappa}g_{\rho\sigma^*} + \partial_{\rho}g_{\kappa\sigma^*}) \quad (6.20)$$

Plugging down everything we have

$$g_{\nu\mu}\Gamma^{\nu}_{\sigma^{*}\kappa}v^{\kappa}v^{\mu} + g_{\sigma^{*}\mu}v^{\rho}\partial_{\rho}v^{\mu} + g_{\sigma^{*}\mu}\Gamma^{\mu}_{\rho\kappa}v^{\rho}v^{\kappa} =$$

$$\frac{1}{2}\underbrace{(\partial_{\kappa}g_{\sigma^{*}\mu} - \partial_{\mu}g_{\kappa\sigma^{*}})v^{\kappa}v^{\mu}}_{=0} + g_{\sigma^{*}\mu}v^{\rho}\partial_{\rho}v^{\mu} + \frac{1}{2}(\partial_{\kappa}g_{\rho\sigma^{*}} + \partial_{\rho}g_{\kappa\sigma^{*}})v^{\rho}v^{\kappa} =$$

$$g_{\sigma^{*}\mu}v^{\rho}\partial_{\rho}v^{\mu} + \partial_{\kappa}g_{\rho\sigma^{*}}v^{\rho}v^{\kappa} =$$

$$(6.21)$$