Pb-FREE COPPER ALLOY SLIDING MATERIAL

Publication number: JP2005200703 (A)

Publication date:

2005-07-28

Inventor(s):

YOKOTA HIROMI; YOSHITOME DAISUKE; KOBAYASHI

HIROAKI; KAWAGUCHI HIROYUKI

Applicant(s):

TAIHO KOGYO CO LTD

Classification:
- international:

C22C1/05; C22C9/00; C22C32/00; F16C33/12; C22C1/05;

C22C9/00; C22C32/00; F16C33/04; (IPC1-7): C22C9/00;

C22C1/05

- European:

C22C32/00D6; C22C32/00G; F16C33/12

Application number: JP20040008205 20040115 **Priority number(s):** JP20040008205 20040115

Abstract of JP 2005200703 (A)

PROBLEM TO BE SOLVED: To allow the respective properties of Bi and a hard material to be exhibited in a Cu-Bi-hard material based sintered alloy.; SOLUTION: In the Pb-free copper based sintered alloy, 1 to 30% Bi and 0.1 to 10% hard material particles with a mean particle diameter of 10 to 50 [mu]m are contained, and (1) a Bi phase having a mean particle diameter smaller than that of the hard material particles is dispersed into a Cu matrix, or, regarding the Bi phase in contact with the hard material particles, the abundance ratio of the hard material particles in which the contact length ratio to all the periphery of the Bi phase is <=50% is >=70% to the whole piece of the hard material particles.; COPYRIGHT: (C)2005,JPO&NCIPI

Data supplied from the esp@cenet database — Worldwide

EP1717325 (A1)

EP1717325 (A4)

US2008095658 (A1)

KR20060121942 (A)

W02005068671 (A1)

more >>

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2005-200703

(43) 公開日 平成17年7月28日(2005.7.28)

(51) Int.C1.7

C22C 9/00 C22C 1/05 FI

C22C 9/00 C22C 1/05 テーマコード (参考)

4K018

Е

審査請求 未請求 請求項の数 5 OL (全8頁)

(21) 出願番号 (22) 出願日

特願2004-8205 (P2004-8205) 平成16年1月15日 (2004.1.15)

(71) 出願人 000207791

大豐工業株式会社

愛知県豊田市緑ヶ丘3丁目65番地

(74)代理人 100077528

弁理士 村井 卓雄

(72) 発明者 横田 裕美

愛知県豊田市緑ヶ丘3丁目65番地 大豊

工業株式会社内

(72) 発明者 吉留 大輔

愛知県豊田市緑ヶ丘3丁目65番地 大豊

工業株式会社内

(72)発明者 小林 弘明

愛知県豊田市緑ヶ丘3丁目65番地 大豊

工業株式会社内

最終頁に続く

(54) 【発明の名称】 Pbフリー鋼合金摺動材料

(57)【要約】

【課題】 Cu-Bi-硬質物系焼結合金においてBi及び硬質 物のそれぞれの性質が十分に発揮できるようにする。

【解決手段】 Bi1~30%及び平均粒径が10~50μmの 硬質物粒子0.1~10%を含有し、(1)硬質物粒子より平均 粒径が小さいBi相がCuマトリックス中に分散しているか、あるいは硬質物粒子と接しているBi相に関して、該Bi 相全周に対する硬質物粒子の接触長さ割合が50%以下である硬質物粒子の存在割合が硬質物粒子個数の全体に対して70%以上であるPbフリー銅基焼結合金。

【選択図】 図1

【特許請求の範囲】

【請求項1】

Bil~30質量%及び平均粒径が10~50μmの硬質物粒子0.1~10質量%を含有し、残部がCu 及び不可避的不純物からなる組成を有し、前記硬質物粒子より平均粒径が小さいBi相がCu マトリックス中に分散していることを特徴とするPbフリー銅基焼結合金。 【請求項2】

Bi1~30質量%と、Sn1~15質量%、Ni0.1~5質量%及びP0.5質量%以下からなる群の少な くとも1種と、平均粒径が10~50μmの硬質物粒子0.1~10質量%とを含有し、残部がCu及 び不可避的不純物からなる組成を有し、前記硬質物粒子より平均粒径が小さいBi相が銅合 金マトリックス中に分散していることを特徴とするPbフリー銅基焼結合金。

【請求項3】

Bi1~30質量%及び平均粒径が10~50μmの硬質物粒子0.1~10質量%を含有し、残部がCu 及び不可避的不純物からなる組成を有し、前記硬質物粒子と接しているBi相に関して、該 Bi相全周に対する硬質物粒子の接触長さ割合が50%以下である硬質物粒子の存在割合 が硬質物粒子個数の全体に対して70%以上であることを特徴とするPbフリー銅基焼結合

【請求項4】

BiI~30質量%と、平均粒径が10~50μmの硬質物粒子0.1~10質量%と、Sn1~15質量%、 Ni0.1~5質量%、及び0.5質量%以下のPからなる群の少なくとも1種とを含有し、残部がC u及び不可避的不純物からなる組成を有し、前記硬質物粒子と接しているBi相に関して、 該 Bi相全周に対する硬質物粒子の接触長さ割合が 50%以下である硬質物粒子の存在割 合が硬質物粒子個数の全体に対して70%以上であることを特徴とするPbフリー銅基焼結

【請求項5】

前記硬質物粒子はFe2P、Fe3P、FeB、Fe2B、Fe3BなどのFe化合物である請求項1から4まで の何れか1項記載のPbフリー銅基焼結合金。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は銅基焼結合金に関するものであり、さらに詳しく述べるならば、Pbを含有しな くとも摺動特性が優れた銅基焼結合金に関するものである。 【背景技術】

[0002]

摺動用銅合金に通常添加されているPbは摺動時の温度上昇によって摺動面において膨張 ・展伸する結果、Pbは摺動面を冷却すると同時に、その優れた自己潤滑作用により焼付き を防止する。さらに、Pbは軟質分散相であるから、なじみ性及び異物埋収性を有している

しかしながら、Pbは硫酸以外の酸に腐食され易く、Cu合金中に粗大粒子として存在する と、軸受の負荷能力が低下するために、特許文献1(特公平8-19945号公報)では 特定の計算式で表わされる微細粒子として分散させることを提案する。その式の意味は、 0. 1mm² (10⁵ μ m²) の視野で観察される全Pb粒子の平均面積率が1個当たり 0. 1%以下 であると解釈できる。この公報の実施例では、Cu-Pb-Snプレアロイ粉末が使用されており 、焼結温度が低い方が微細Pb組織が得られると説明されているから、低温焼結によりPbの 析出・成長を押さえる手法が採用されていると考えられる。

[0003]

焼結銅合金の耐摩耗性を高めるために、Cr2C3, Mo2C, WC, VC, NbCなどの炭化物を硬質物と して添加することは特許文献 2 (特公平7-9046号公報) より公知である。この公報 によると、平均粒径が10~100μmの銅合金粉末及び平均粒径が5~150μmの硬質物粉末をV 型混合機で混合し、次に圧粉と焼結を行なっている。Pbは銅粒子の粒界に存在するとの説 明(第4欄第21~22行)は、PbはCuにほとんど固溶しないとの平衡状態図から導かれる知

10

見と矛盾はしていない。

[0004]

Cu-Pb系焼結合金と同等の摺動特性を達成するPbフリー合金は特許文献 3 (特開平 1 0 - 3 3 0 8 6 8 号公報)より公知であり、この公報の図から、Bi (合金)相の存在箇所は粒界 3 重点及びこの近傍の粒界であることが分かる。

[0005]

焼結銅合金において、硬質物がPb、Bi相中に混在すると、Pb、Biの流出を防ぎ、Pb、Bi 相がクッションになって、硬質物の相手軸攻撃性を緩和する;脱落した硬質物をPb、Bi相 が再度捕捉し、アブレシブ摩耗を緩和することが特許文献 4 (特許第 3 4 2 1 7 2 4 号) にて提案されている。この特許では、硬質物はBi相中に包み込まれたような状態で存在す ので、Bi相は硬質物よりも寸法が大きくなる。

[0006]

特許文献 5 (特開 2001 - 220630号公報)は、Cu-Bi (Pb) 系焼結合金において、耐摩耗性向上のために添加された金属間化合物がBi 又はPb相の周りに存在する組織とすることにより、摺動中に金属間化合物が銅合金表面から突出し、Bi、Pb相及びCuマトリックスは凹んでオイル溜まりとなり、耐焼付性及び耐疲労性に優れた摺動材料が得られることが開示されている。焼結条件の例としては、800~920℃で約15分が挙げられている。

【特許文献1】特公平8-19945号公報

【特許文献2】特公平7-9046号公報

【特許文献3】特開平10-330868号公報

【特許文献4】特許第3421724号

【特許文献5】特開2001-220630号公報

【特許文献6】特開2000-220631号公報

【発明の開示】

【発明が解決しようとする課題】

[00.07]

Cu合金中のPb及びBiはCuマトリックスにほとんど固溶せず、また金属間化合物を生成しないため、Cuマトリックスとは別の相を形成する。摺動用銅合金のなじみ性はこの組織・性質を利用しているが、反面Pb、Bi相は低強度部分であるために、耐疲労性の低下を招いている。したがって、特許文献 1 が提案する低温焼結によるPb相の微細化はこの弊害を少なくするために有効である。しかしながら、Pbの成長を抑えるために必要な低温は、銅合金粒子どうしの結合力を低下させるという弊害もある。

[0008]

特許文献3,4,5で提案されているCu-Bi系合金中のBi相は高温中、あるいは劣化油中で使用した場合、Biの発汗や腐食が起きて、添加したBi量に対し、Bi量が減少してしまうため、摺動性能が低下する。また、Biは潤滑油に溶出することもある。しかし、Biが微細に分散していると、個々のBi相の体積が小さいため、発汗や腐食、流出によるBi量の減少を抑制できる。但し、Biの微細分散と銅合金の焼結性とは相反する関係にある。

[0009]

また、特許文献4及び特許文献5のBi含有Cu基合金では、焼結中にBi相が液相になるためCuマトリックス中の成分がBi相に拡散し易くなり、金属間化合物がそこで生成する。したがって、金属間化合物は常にBi相とCuマトリックスの境界に存在することになるために、Cuマトリックスによる金属間化合物の保持効果が少なくなる。特許文献5で提案された焼結銅合金では、通常の焼結では所望の組織状態が得られないので、所望組織を得るための長時間焼結を行っている。この結果、特許文献4の図2に示されているようにBi相がのと考えられる。また、特許文献5の図1においては、後述する硬質物接触率が高くなる。このようなBi相はCu-Bi系焼結合金の耐疲労性や耐食性を低下させる原因となる。

【課題を解決するための手段】

[0010]

10

20

30

上述したように、従来のCu-Bi系合金はなじみ性、耐疲労性及び耐食性を高いレベルで 両立させることができなかったので、本発明の第一は、Bi1~30質量%及び平均粒径が10 ~50 µ mの硬質物粒子0.1~10質量%を含有し、残部がCu及び不可避的不純物からなる組成 を有し、前記硬質物粒子より平均粒径が小さいBi相がCuマトリックス中に分散されている ことを特徴とするPbフリー銅基焼結合金を提供し、本発明の第二は、Bil~30質量%及び 平均粒径が10~50μmの硬質物粒子0.1~10質量%を含有し、残部がCu及び不可避的不純物 からなる組成を有し、前記硬質物粒子と接しているBi相に関して、該Bi相全周に対する 硬質物粒子の接触長さ割合が50%以下である硬質物粒子の存在割合が硬質物粒子個数の 全体に対して70%以上であることを特徴とするPbフリー銅基焼結合金を提供する。

以下、本発明を詳しく説明する。

[0011]

(1) 合金組成

本発明のCu-Bi系焼結合金において、Bi含有量が、1質量%未満であると耐焼付性が劣り 、一方、30質量%を超えると強度が低下し、耐疲労性が劣るために、Bi含有量は1~30質 虽%である。好ましいBi含有量は1~15質量%である。

本発明において硬質物粒子とは、特許文献2で提案されたものであってもよいが、銅合 金における焼結性が優れたFe₂P、Fe₃P、FeB、Fe₂B、Fe₃BなどのFe系化合物が好ましい。 さらに、Fe系化合物はBiとの濡れ性が低く、逆にCuとは濡れ性が高いので、Bi相と硬質粒 子が接する割合が小さく、Cuマトリックスに保持され易くなる。これにより、硬質物の脱 落や欠けが生じにくくなり、耐摩耗性、耐焼付き性が低下するのを抑えることができる。 硬質物の含有量が0.1質量%未満であると耐焼付性、耐摩耗性が劣り、一方、10質量%を 超えると強度が低下し、耐疲労性が劣るとともに、相手材を傷つけたり、焼結性を低下さ せる。好ましい硬質物粒子の含有量は1~5質量%である。

上記組成の残部は不可避的不純物とCuである。不純物は通常のものであるが、その中で もPbも不純物レベルとなっている。

必要により、銅合金への添加元素を添加してもよい。例えば、Cuの融点を下げ、焼結性 を高めるPを 0.5質量%以下添加することができる。P含有量が0.5質量%を超えると銅 合金が脆くなる。また、強度及び耐疲労性を高めるSnを1~15質量%添加することがで きる。Sn含有量が1質量%未満であると、強度向上の効果が少なく、一方15質量%を超 えると金属間化合物が生成し易くなり、合金が脆くなる。また、強度及び耐食性を高める ために、0.1~5%のNiを添加することもできる。Ni含有量が0.1%未満であると、強度向 上の効果が少なく、一方5質量%を超えると金属間化合物が生成し易くなり、合金が脆く なる。これら元素はCuに合金化されて銅合金マトリックスを構成する。

さらに、銅合金に対する複合成分として、MoS₂、黒鉛などの固体潤滑剤を5質量%以下 添加することができる。

[0012]

(2)合金組織

本発明の第一及び第二において、硬質物粒子の平均粒径は10~50μπである。平均粒径 が10μπ未満であると、耐摩耗性に対する硬質物の効果が小さく、50μπを超えると焼結銅 合金の強度が低下する。好ましい硬質物粒子の平均粒径は15~30μmである。

本発明の合金組織は、銅合金の焼結中に硬質物粒子とBi相が接するような後者の流動を できるだけ阻止することである。

[0013]

この結果を本発明の第一においては、Bi相の平均粒径(Bi相の円相当径)(D_{Bi})は添 加した硬質物の平均粒径(D_B)より小さい(D_{Bi}<D_H)ことである規定している。 [0014]

また、本発明の第二においては、硬質物粒子と接しているBi相に関して、該硬質物粒子 の全周に対するBi相の接触長さ割合が50%以下である硬質物粒子の存在割合が硬質物 粒子個数の全体に対して70%以上であると規定している。ここで、「硬質物粒子の全周 に対するBi相の接触長さ割合」を『硬質物接触比率』ということにする。硬質物接触比

10

30

率が100%であると、特定の1個のBi相と接している1又は2以上の硬質物粒子のそ れぞれが、全周でBi相と接していることであり、これはとりもなおさず、硬質物粒子が B i 相中に埋め込まれている状態である。一方硬質物接触比率が 1 0 0 %未満であり、 0 でないとすると、硬質物粒子はBi相外にはみ出した部分を必ず有しており、この部分は 銅合金と接していることになる。本発明において、硬質物接触比率を50%以下としたの は、硬質物粒子とBi相との接触をできるだけ少なくすることにより、それぞれの特性を 十分に発揮させるためである。次に、50%以下の硬質物接触比率の硬質粒子が硬質物全 体に対して存在する個数割合を『硬質物存在率』ということにする。硬質物存在率が10 0%であると、すべての硬質物接触比率が50%以下である。一方、硬質物存在比率が0 %であると、すべての硬質物粒子に関して硬質物接触比率が50%を超えることになる。 本発明においては硬質物存在比率を 7 0 %以上に限定したのは、接触が少ない B i 相と硬 質粒子を相対的に多くすることにより、それぞれの特性を十分に発揮させるためである。

10

このような焼結過程をもたらすためには、Cu-Biプレアロイアトマイズ粉末あるいはCu (合金)アトマイズ粉末をCu-Bi合金粉末を焼結温度での保持時間が2分以下の短時間焼 結を行なうことが好ましい。このような短時間焼結は特許文献 6 (特開 2 0 0 2 - 1 2 9 0 2 号公報)で本出願人が提案した高周波焼結により行なうことができる。 [0016]

(3) 合金の性質

本発明の銅基焼結合金は、一般的にいうと、Bi相はなじみ性を発揮し、硬質物粒子がCu マトリックスに強固に保持され、その脱落が起こりがたく、耐摩耗性及び耐焼付き性が向 上するとともに、強度や耐疲労性が良好になる。

- (イ) Bi相は焼結合金全体において微細に分散しているために、材料自体のバルク性質 が耐疲労性、耐食性及び強度の点で優れている。
- (ロ) 硬質物粒子は殆どがCuもしくは銅合金マトリックスに保持されているので、摺動 面における材料は耐摩耗性に優れている。
 - (ハ) 摺動面に存在するBi相によりPbフリーでも優れたなじみ性が達成される。
 - (二) 微細に分散された Bi相が優れた非疑着性と耐焼付性をもたらす。

以下、実施例により本発明をより詳しく説明する。

【発明を実施するための最良の形態】 [0017]

30

表1に組成を示すCu-Biプレアロイ合金粉末(粒径150μm以下、アトマイズ粉末)と 硬質物粉末 (平均粒径一表 1 に示す) を混合し、鋼板上に約1mmの厚さになるように散布 した後、750~1000℃、焼結時間20~1800秒、水素還元雰囲気中で1次焼結を行った。その 後圧延を行い、同じ条件で二次焼結を行って得られた焼結材を供試材とした。焼結時間範 囲内の長時間焼結はBi相の拡散を促進して本発明外の比較例を調製するための条件である

[0018]

耐焼付性試験方法

上記方法により調製された鋼合金表面をペーパーでラップして表面粗さ(十点平均粗さ)を1.0μm以下にした供試材に鋼球をあて、荷重をかけて一方向に滑らせる。滑らせた後 の鋼球を観察し、鋼球に凝着しているCu合金の面積を測定する。凝着しやすい材料は耐焼 付き性に劣るため、凝着面積が小さいものが耐焼付性に優れる。

試験機:スティックスリップ試験機

荷重:500g 軸材質:SUT2 潤滑油:なし

温度:室温~200℃漸增

[0019]

耐食性

供試材の表面を粗さ1.0μmに仕上げ、油中に浸漬し、前後の重量変化を測定する。重量 減少量が少ないものが耐腐食性に優れる。

油種:劣化ATF

油温:180℃ 時間: 24h

[0020]

耐疲労性

疲労強度と引張強度はよい相関にあり、引張強度が高いものが耐疲労性に優れている ため、Cu-Bi合金の材料強度(引張強度)をJISに準拠した引張試験により行ない、これを 疲労強度の代替特性とした。

[0021]

硬質物存在率並びに上記特性の試験の結果を表1に示す。

[0022]

【表1】

		Bi 最	Bi相	硬質物量(質量%)			硬質物	硬質物	耐焼付き性	耐疲労性	耐腐食性
L	<u> </u>	(質量%)	円相当径 (μm)	Fc ₃ P	Fc ₂ P	FeB	平均 粒径 μm	存在 割合 %	凝着面積 // m²	材料強度 MPa	重量 減少量
実施例	$\frac{1}{2}$	3	5	2	1		15	89	12	264	mg/cm ²
		5	5	3	2	_	25	94	15	257	
	3	5	8	4		_	25	91	11	262	0.3
	4	10	7	2	1		15	92	12	252	0.2
	5	10	12	4		-	25	86	8	230	0.3
		10	14	4	1	-	25	89	8	225	0.2
		10	18	٠	_	5	24	84	6	220	0.2
	<u> </u>	15	8	2			15	93	0		0.2
	9	15	17	2	3		25	91	0	238	0.4
	10	15	14			4	24	92	0 !	214	0.3
	_11	15	13		3	_	25	91	0 1	228	0.3
	12	20	22	3	2		25	88	0	232	0.3
	13	20	28	7	3		32	86		198	0.3
比較例	1	0	0			+	- J		0	176	0.5
	2	5	31	5			25		100	348	0
	3	10	52	3	+			55	12	184	1.3
	4	10	105	3	2		25	32	25	175	1.6
	5	15	68	$\frac{3}{2}$	1		25	18	50	152	2.2
	6 i	20	127	5			25	25	50	145	3.4
				0			25	_12	50	128	5.3

[0023]

表1より本発明実施例は耐焼付性、耐疲労性及び耐食性を兼備していることが明らかで ある。

[0024]

図1及び2に本発明実施例No. 4 の 2 0 0 倍及び 5 0 0 倍の顕微鏡組織写真を示し、同様 に図3及び4に比較例No.3の200倍及び500倍の顕微鏡組織写真を示す。前者の図1 , 2 は硬質物とBi相の接触割合が少なく、後者の図3, 4 は硬質物とBi相の接触割合が大 きいことが分かる。

【産業上の利用可能性】

[0025]

本発明に係る焼結銅合金は、各種軸受、例えばAT(Automatic Transmission)用ブシュ、 ピストンピンブシュなどに使用することができる。これらの用途に対して本発明が達成し た高レベルのなじみ性、耐摩耗性、耐焼付性及び耐疲労性は有効に作用する。 【図面の簡単な説明】

10

20

30

[0026]

【図1】本発明の一実施例に係る焼結銅合金の顕微鏡組織を示す写真である(200倍)

【図2】本発明の一実施例に係る焼結銅合金の顕微鏡組織を示す写真である(500倍)

【図3】比較例に係る焼結銅合金の顕微鏡組織を示す写真である(200倍)。

【図4】比較例に係る焼結銅合金の顕微鏡組織を示す写真である(500倍)。

フロントページの続き

(72) 発明者 河口 弘之 愛知県豊田市緑ヶ丘3丁目65番地 大豊工業株式会社内 Fターム(参考) 4K018 AA04 AB10 AC01 BA02 DA31 KA02 KA03