(1) There are 50 samples.

Using the thumb's nule, the no. of intervals D

 $k = 1 + log_2 50 = 6.64$ So, we take a intervals for this distribution.

The table for histogram is

. Interval	s Tally	Frequency	
[70,80)	11	2	-
[80,90)	IN ID	6	
[90,100)	भा भा भा॥	18	
[100,110)	III III III	17	
[110 120)	LM I	6	
[120,130]	1	1	

histogram .

From the distributions we can see a symmetrical course that is highlest in the middle.

We can by potherize that it Ats the Normal Distribution.

2

We assume the re are N IID, reandom variables. Here N=50. We know. He likelihood of a distribution fitting the data is P (distribution) data)

The Normal distribution has two parameters.

$$\hat{\mu} = \frac{\sum X}{n} = \frac{92.3 + 92.8 - - 95.9}{50} = \frac{4961.1}{50} = 99.22$$

$$\hat{\sigma} = \sqrt{\frac{m-1}{n}} s^2(n)$$

$$S(n) = \frac{\sum (x_i - \bar{x})^2}{n - 1} = \frac{47.881}{127.1}$$

$$\frac{1}{50} = \sqrt{\frac{49}{50} \times 127.1} = 11.16 (Ans.)$$

We know, in Chi-Test we find $\chi^2 = \frac{\sum (N_i - nP_i)}{nP_i}$

	Nj	P;	mP;
Į	92.3		
2	92.8		
3	106.8		
4	108.9		
57	106.6		

Ho: Data At distribution

Ho: Data obern't fit

X2 1-0/2, K-m-1