

VISHNU INSTITUTE OF TECHNOLOGY (AUTONOMOUS) DEPARTMENT OF CIVIL ENGINEERING

CONCRETO (A NATIONAL LEVEL CUBE TEST COMPETITION)

Name of the Team : KARUNAKAR & TEAM

Team Size : 3

Name of the Institute: SAGI RAMAKRISHNAMRAJU ENGINEERING COLLEGE

Team Member 1

Name : KASA LAVANYA

Mobile Number : 6302723142

Registered Number : 20B91A01A3

Email id : kasalavanya046@gmail.com

Team Member 2

Name :GUNNAM JNANASRI

Mobile Number :7659049669

Registered Number :20B91A0180

Email id :jnanasrigunnam17@gmail.com

Team Member 3

Name :LINGAMSETTI KARUNAKAR

Mobile Number :7997801820

Registered Number :20B91A01D4

Email id :lingamsettikarunakark@gmail.com

Faculty Mentor

Name : M.SUNEEL

Mobile Number : Suneel.m@srkrec.ac.in

Email id : 9963401312

MIX DESIGN [AS PET IS: 10262-2019]

- 125mm, slump

- Sever

- Good

For cube Testing

characteristic compressive strength (PCK) - 30N/mm2

Maximum size of coarse aggregate - 20mm

Degree of workability

Type of Exposure

Degree of Quality control

proposed mixing of coarse aggregate

20mm - 70%

18.5 mm - 30%

Material Data

cement used - opc 53 grade

specific gravity of fine aggregate - 2.65 (from Is 383-2016)
specific gravity of coarse aggregate - 2.72

Zone of sand-I

step-1: Target Mean strength

fck = fck + 1.65xs (or) fck = fck + x

From Table-1 of IS: 10262-2019

For M30 grade; S = 5.0 N/mm2

PCK = 30+1.65 X5

PCK = 38.25 N/mm2

PCK = 30+X

x- Pactor based on grade of concrete as per table-1

X-6.5 N/mm2

PCK = 30+X

Pck = 30+6.5

Pck = 36.5 N/mm2

We taking the higher value, PCK = 38.25 N/mm2.

.. PCK=38.25 N/mm2

Step-2: Selection of Water cement ratio

Exposure severe

IS: 456-2000; Table -3 &5 19-20

Maximum water cement ratio - 0.45

Minimum cement content - 320 kg/m3

Based on trial Mixes water cement ratio adopted - 0:45<0.5 IS:10262-2019

step-3: Selection of water content

Maximum water cement - 186 kg/m3 {Table 4 of Is 10262-2019

Estimated water content - 186+(186x3x0.03) Scl 5:3 of

= 202.74 kg/m3

As superplasticizer is used, the coater content may be greduced.

The water content may be reduction of 20% is considered while using superplasticiter at the rate of 0.8% by weight of cement,

water content = 202.74 kg/m3

Superplasticiter reduction @20% = 202.74x0.80 = 162.192 kg/3

```
Step-4: Calculation of cement content
   Minimum coment content - 320 kg/m3
                       -0.45 - W/C
   water-cement ratio
         cement content = \frac{162.192}{0.45} = 360.426 \text{ kg/m}^3
   Required coment content = 360.426 x 1.1
                            = 396.468 kg/m3
   water content
                            = 162.192 kg/m3
  so, water-cementitious ratio = 162.192 = 0.409
                               396.468
                            E 0.41
 Fly ash @20% of total cementitious material content
                           = 396.468 XO.20
                           = 79.294 Kg/m3
  cement (OPC) = 396.468-79.294
                  = 317.174 kg/m3
           : 396.468 > 320 Kg/m3
     :. Hence, ok
step-5: proportion of volume of coarse aggregates
             and fine aggregates
 volume of coarse aggregate - 0.62 { From IS: 10262-2019
 Por W/c as 0.5 = 0.62 m3
     W/c 0.5-0.45 = 0.05
: volume of coarse aggregate is increased by 0.01
```

correction in volume of coarse aggregate = 0.62+0.01 Due to pumping it is reduced by 10% correction in Aggregate = 0.63×0.9 = 0.567m3 volume of fine aggregate = (1-0.567) = 0.433m3 step-6:- Mix calculations a) volume of concrete = 1m3 b) volume of entrapped air in coet concrete = 0.01m3 (from Table-3) c) volume of cement = Mass of cement x 1 1000 = 317.175 x 1 = 0.10069047m3 d) volume of water = Mass of water x 1 specific gravity of water 1000 = 162.192 x 1 = 0.162192 m3 e) volume of fly ash = Mass of fly ash x 1 1000 specific gravity of fly ash 1000 = 79.294 × 1 2.2 × 1000 = 0.0360427m3

f)volume of admixtures (superplastizier) @0.8% by mass of comentitious material = specific gravity of admixtures 1 admixture

 $= \frac{2.537}{4.145} \times \frac{4}{1000}$

= 0.0022157m3

9) volume of all aggregates = ((a-b)-(c+d+c+f))

= ((1-0.01)-(0.10069047+0.162192 + 0.0360427+0.0022157))

= 0.68885913m3

h) Mass of coarse aggregate = volume of all aggregates x volume of coarse aggregates x specific gravity of coarse aggregate x 1000

= 0.68885913x 0.567 x 272 x1000. = 1062.3861 kg/m3

i) Mass of fine aggregates = volume of all aggregates x
volume of eva fine aggregate
x specific gravity of fine
aggregate x 1000

= 0.68885913×0.433 ×2.65 ×1000

= 790.431 kg/m3

step-7; Mix proportion: 1:0.511:2.49:3.349:0.25

cement: water: sand: coarse: fly ash

Cement . 317.175 kg/m3

Fly Ash - 79.294 kg/m3

fine aggregate - 790.431 kg/m³ (sand)

coarse aggregate - 1062.3861 kg/m3

20 mm - 743.670 kg/m3

12.5mm - 318.715 Kg/m3

Actual water - 168. 192 Lit/m3

SP - 2,537 kg/m3

step-8: Quantity Estimation for 3 cubes 150 x 150 x 150 (mm) volume of 3 cubes = 1.25[3x0.15x0.15x0.15] = 0.01266 m³. Cement - 4.01424 kgs

Ply Ash - 1.0035 kgs

fine aggregate - 10,006 kgs

coarse aggregates - 13.4498 kgs

20mm - 9.414 kgs

12.5mm - 4.034 kgs

Actual water - 2.053 lit

SP - 0.0321 kgs

: Mix Design is submitted on the purpose of concreto (A National level cube test competition)

Department consider the English Englis

SIEVING OF COARSE AGGREGATES

SIEVING OF FINE AGGREGATES (SAND)

SPECIFIC GRAVITY OF FINE AGGREGATES

SIEVING OF FLY ASH

SPECIFIC GRAVITY OF COARSE AGGREGATES

WEIGHING OF AGGREGATES

WEIGHING OF CEMENT

CLEANING & TIGHTING THE MOULDS

SLUMP TEST

CASTING OF CUBES

REMOVING CONCRETE CUBES OUT OF MOULDS

WEIGHING THE CONCRETE CUBES

Materials used as replacement of coment, Fine Aggregate and coarse Aggregate

→ Fly Ash is used @ 20% as replacement of cement, for fine Aggregate and coarse Aggregate we do not take any replacement.

properties of fly ash:-

- > Flyash possesses almost little or no cementitious properties but becomes reactive in presence of time
- -> specific gravity of flyash is 2.2.
- → Flyashis pozzolanic and develops self hardening characteristics.

properties of cement:

- -> stiffens and hardens early.
- -> possesses good plasticity.
- > Easily workable
- -> Good moisture resistant.

properties of sand:

- -> Texture: sharp, angular, coarse and durable grains
- It should chemically inert.
- -> It free from any organic matter.

properties of coarse aggregates:

- -> shape: Rounded, irregular, elongated (long) and Plaky (flat).
- -> specific gravity of coarse aggregate is 2.72.

Admixtures used:

we used chemical admixtures i.e; [SP430]

→ It is a chloride free, superplasticising admixture based on selected sulphonated napthalene polymers.

VIDEO LINKS:
https://photos.app.goo.gl/mzgQAEWy6qEVHoXa7
https://photos.app.goo.gl/iS7GaHuouUUga4QA6
https://photos.app.goo.gl/jZK6xH86pm6YAxoM8
https://photos.app.goo.gl/fQYGDN3YYDdhMe5Q6
https://photos.app.goo.gl/WU2D5XgCL6fyj2jX6

