IEEE 802.11 Wireless LAN

Dr. A Krishna Chaitanya, Indian Institute of Information Technology Sri City

IEEE 802.11 Wireless LAN

- Also known as Wifi
- Several wireless standards: 802.11a, 802.11b, 802.11g, 802.11n, 802.11i

Standard	Frequency Range (United States)	Data Rate		
802.11b	2.4-2.485 GHz	up to 11 Mbps		
802.11a	5.1–5.8 GHz	up to 54 Mbps		
802.11g	2.4–2.485 GHz	up to 54 Mbps		

Architecture

• Basic service set (BSS) also known as infrastructure LAN

Channels and Association

- Administrator assigns a Service Set Identifier (SSID) to the AP
- The 85MHz band (2.4GHz 2.485GHz) is divided into 11 partially overlapped channels
- Any two non-overlapping channels are separated by at least four channels
- Administrator assigns a channel number to the AP
- How does a wireless station associate with an AP?
 - passive scanning
 - active scanning

Association

a. Passive scanning

- 1. Beacon frames sent from APs
- 2. Association Request frame sent: H1 to selected AP
- 3. Association Response frame sent: Selected AP to H1

a. Active scanning

- 1. Probe Request frame broadcast from H1
- 2. Probes Response frame sent from APs
- 3. Association Request frame sent: H1 to selected AP
- 4. Association Response frame sent: Selected AP to H1

IEEE 802.11 MAC Protocol

- 802.11 uses CSMA with collision avoidance (CSMA/CA) rather than collision detection
- Why not CSMA/CD?
 - To detect collisions, APs should be able to receive while transmitting. costly!
 - All collisions are not detectable!
- If a wireless station starts transmitting a frame, it completes the transmission even if there is a collision
- Wireless stations will about a collision via acknowledgments

CSMA/CA Protocol

- If the channel is sensed idle for a short period of time Distributed Inter-frame Space (DIFS), then the station transmits a frame.
- If the channel is sensed busy, the wireless station chooses a random backoff using binary exponential backoff
 - counts down this value when the channel is sensed idle
 - the counter value remains frozen when the channel is sensed busy
- When the counter reaches zero, the station transmits entire frame and waits for an acknowledgment
- Receiver sends an acknowledgment after Short Inter-frame Spacing (SIFS) if the frame passes CRC
- If acknowledgment is received, the transmitter mark the frame as transmitted and transmit subsequent frames if any
- If the acknowledgment is not received, the transmitting station reenters backoff phase with larger interval

CSMA/CA

Hidden Node

• H1 hidden from H2

RTS and CTS

- When a sender wants to send a frame, it can first send a Request to Send (RTS) control frame.
- In RTS frame, sender indicates the total time required for to transmit frame and receive acknowledgment frame
- When AP receives RTS frame, it responds by broadcasting a Clear to Send (CTS) frame.
- CTS frame gives permission for the sender and also alerts other nodes not to send during the reserved time.

Collision Avoidance with RTS and CTS

IEEE 802.11 Frame

Frame control field expanded (numbers indicate field length in bits):

2	2	4	1	1	1	1	- 1	1	1	1	
Protocol version	Туре	Subtype	To AP	From AP	More frag	Retry	Power mgt	More data	WEP	Rsvd	

- Address 1 : Receiver's MAC address
- Address 2 : Transmitter's MAC address
- Address 3: MAC address of router

Use of Three Address Fields

