NEKA, 2020/21

5. DN/5th HW: 18.12.2020

Rok za oddajo/ Due date: 23:59, 8. 1. 2021

- (1) Naj K/k končna Galoisova razširitev polja z Galoisovo grupo $G = \operatorname{Gal}(K/k)$ in $L_i/k, i = 1, \ldots, n$ končne razširitve polj. Naj bo $L = L_1 \times L_2 \times \cdots \times L_n$. Pokaži, da je $H^1(G, (L \otimes_k K)^{-1}) = 1$.
- (2.1) Dokaži: Če je ena kompozicijska serija modula N končna, potem so vse kompozicijske serije modula N končne.

Neskončna kompozicijska serija je navzgor ali navzdol neomejena veriga podmodulov

$$N_{i-1} \subsetneq N_i \subsetneq N_{i+1} \subsetneq N_{i+2}$$

kjer je N_i/N_{i-1} enostaven modul.

Za dokaz ni veljavno uporabiti »močnejših« izrekov.

- (2.2) Naj bo $M \subset N$ pravi podmodul. Pokaži, da je dolžina modula M strogo manjša od dolžine modula N.
 - (3) Naj bo R lokalen kolobar z maksimalnim idealom \mathfrak{m} in N netrivialen končno generiran R-modul. Pokaži, da obstaja netrivialen R-homomorfizem $\varphi \colon N \to R/\mathfrak{m}$.
 - (1) Let K/k be a finite Galois field extension with Galois group G = Gal(K/k) and $L_i/k, i = 1, ..., n$ finite field extensions. Denote $L = L_1 \times L_2 \times \cdots \times L_n$. Show that $H^1(G, (L \otimes_k K)^{-1}) = 1$.
- (2.1) Prove: If one composition series of a module N is finite, then all composition series of N are finite.

An infinite composition series is a unbounded (from above or below) chain of submodules

$$N_{i-1} \subsetneq N_i \subsetneq N_{i+1} \subsetneq N_{i+2}$$

with N_i/N_{i-1} being a simple module.

The proof should not use any »stronger« theorems.

- (2.2) Let $M \subset N$ be a proper submodule. Show that the length of M is stictly smaller than the length of N.
 - (3) Let R be a local ring with the maximal idel \mathfrak{m} and N be a nontrivial finitely generated R-module. Show that there exists a nontrivial R-homomorphism $\varphi \colon N \to R/\mathfrak{m}$.