Session 10. Survival analysis

Alex Sanchez, Miriam Mota, Ricardo Gonzalo and Santiago Perez-Hoyos

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca 29/10/2020

Outline

- Introduction to Survival analysis
- Data structure
- Survival & hazard functions
- Kaplan-Meier Estimation
- Plotting survival curves
- Comparing survival curves

What do we need in survival analysis?

Group of individuals followed from a time point(origin) up to an event in time T

Birth or entry time Remission HIV Infection Disease diagnosis

Event

Death
Recurrence
Aids
Healing

Objectives of survival analysis

- Calculate probability of event free at time T (ESTIMATION)
- Compare survival experiences among groups (HYPOTHESIS TEST)
- Analyse risk factors related to survival (REGRESSION)

Required Data

Origin

Infection, Hospital Admission, Randomized time, Diagnosis, Surgery etc.

Time Scale

Years, Months, Days, Seconds

Event

AIDS, Cancer onset, Cure, Recurrence, Death

Problem with Data

Censoring

Truncating

Survival Function

 $S(t)=Prob(Survive\ t)=P\{T>t\}=1-P(die\ before\ t)$

f(t)= instantaneous probability of death (density)

Hazard Rate $\lambda(t) = h(t)$

Instantaneous probability of death in an infinitesimal interval knowing to be alive at the beginning

$$\lambda(t) = Prob(rac{ ext{die between } t, t + \triangle t)}{ ext{Alive at } t} = f(t)/S(t)$$

Cumulative Hazard Rate

$$\Lambda(t) = H(t) = \int \lambda(u)d(u) = -\log(S(t)) S(t) = e^{\Lambda(t)}$$

Interpretation of Survival and Hazard

Hazard = Speed of ocorrence of events

Survival= Percentage of alive at a time

Brown Data

Example data with 10 cases in 2 groups

Required libraries

```
library(readxl)
library(dplyr)
library(ggplot2)
library(plotly)

library(survival)
library(survminer)
library(gtsummary)
```

Create data

Graph the Data in R

Kaplan-Meier Estimator

Probability to pass t / alive at t-

Kaplan-Meier Estimator

- No censoring
 S(t)= N° survivors after t/individuals at the beginning of follow-up
- Censoring. Kaplan-Meier Estimator

$$S_{K-M}(t) = \prod_{t_i < t} (1 - \frac{I_i}{R_i})^{\delta_i}$$

Time	At Risk at t R _i	P(event t/ alive t) q _i	P(alive after t/ alive t) p;=1-q;	Kaplan Meierat t KM
3	10	1/10	9/10	9/10
5	9	1/9	8/9	9/10*8/9
7	8	1/8	7/8	9/10*8/9*7/8
12	6	1/7	6/7	9/10*8/9*7/8*6/7
18	5	1/5	4/5	9/10*8/9*7/8*6/7*4/5
19	4	1/4	4/3	9/10*8/9*7/8*6/7*4/5*4/3
20	3	1/3	2/3	9/10*8/9*7/8*6/7*4/5*4/3*2/3

Define Survival data

```
KM fit <- survfit(Surv(time, exitus=="Death") ~ 1, data =dat)
KM_fit
## Call: survfit(formula = Surv(time, exitus == "Death") ~ 1. data = dat)
##
        n events median 0.95LCL 0.95UCL
##
                      18
##
       10
summary(KM_fit)
## Call: survfit(formula = Surv(time, exitus == "Death") ~ 1, data = dat)
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
                       0.900 0.0949
                                           0.7320
                                                        1.000
##
            10
                    1 0.800 0.1265
                                           0.5868
                                                        1.000
##
                    1 0.700 0.1449
##
     7
                                           0.4665
                                                        1.000
                    1 0.583 0.1610
     12
                                           0.3396
                                                        1.000
##
     18
                   1 0.467 0.1658
                                          0.2326
                                                     0.936
##
##
     19
                    1 0.350 0.1602
                                           0.1427
                                                     0.858
             3
##
     20
                    1 0.233 0.1431
                                           0.0701
                                                        0.776
```

Plot Kaplan-Meier curve

Plot Kaplan-Meier curve (Cumulative events)

Plot Kaplan-Meier curve (Cumulative hazard)

Compare Curves

```
KM_fit2 <- survfit(Surv(time, exitus=="Death") ~ group, data =dat)</pre>
KM fit2
## Call: survfit(formula = Surv(time, exitus == "Death") ~ group, data = dat)
##
##
          n events median 0.95LCL 0.95UCL
                                     NA
## group=A 5
## group=B 5 3 20 19
                                     NA
summary(KM fit2)
## Call: survfit(formula = Surv(time, exitus == "Death") ~ group, data = dat)
##
##
                 group=A
  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
      3
                    1
                          0.8 0.179
                                            0.516
                        0.6 0.219 0.293
##
                    1
##
                    1
                        0.4 0.219 0.137
     18
                          0.0
                                  NaN
                                               NΑ
                                                           NA
##
##
##
                 group=B
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
     12
             5
                    1
                          0.8 0.179
                                            0.516
                         0.6 0.219
##
     19
                                            0.293
           3
                    1
##
     20
                          0.4 0.219
                                            0.137
```

Plot Kaplan-Meier curves and compare

```
ggsurvplot(KM_fit2, data = dat,
    pval = TRUE, conf.int = TRUE,
    risk.table = TRUE, # Add risk table)
    risk.table.col = "strata", # Change risk table color by groups
    linetype = "strata", # Change line type by groups
    surv.median.line = "hv") # Specify median survival
```


Exercise 1

- Read Diabetes data
- Calculate global survival curve (time=tempsviu, death=mort)
- Plot Kaplan Meier curve
- Are differences between ecg and chd?
- Calculate tables and plots

Read Diabetes Data

```
diabetes <- read excel("datasets/diabetes.xls")
sapply(diabetes, class)
                                          edat
                                                      bmi
   numpacie mort tempsviu
                                                           edatdiag
  "numeric" "character" "numeric" "numeric" "numeric"
                                                            "numeric"
##
        tabac
                     sbp
                                dbp
                                           ecg
                                                      chd
## "character" "numeric" "numeric" "character" "character"
diabetes factor <- diabetes %>%
 mutate if(sapply(diabetes, is.character), as.factor) %>%
 select (-numpacie)
sapply(diabetes_factor, class)
       mort tempsviu
                         edat
                                    bmi edatdiag
                                                    tabac
## "factor" "numeric" "numeric" "numeric" "numeric" "factor" "numeric" "numeric"
                 chd
        ecg
  "factor" "factor"
dat2<-diabetes factor
```

Define Survival data

```
KM fit <- survfit(Surv(tempsviu, mort=="Muerto") ~ 1, data =dat2)</pre>
KM fit
## Call: survfit(formula = Surv(tempsviu, mort == "Muerto") ~ 1, data = dat2)
##
##
                   median 0.95LCL 0.95UCL
##
       149
               25
                       NA
                               NA
                                       NA
summarv(KM fit.times=c(0.2.4.6.8.10))
## Call: survfit(formula = Surv(tempsviu, mort == "Muerto") ~ 1, data = dat2)
##
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
           149
                          1.000 0.00000
                                               1.000
                                                            1.000
          142
                        0.993 0.00702
                                               0.979
                                                            1.000
##
          133
                     3 0.972 0.01404
                                               0.944
                                                            0.999
##
##
         123
                     3 0.949 0.01880
                                               0.913
                                                            0.987
##
      8
         110
                     6 0.901 0.02609
                                               0.851
                                                            0.954
     10
         102
                     2 0.884 0.02837
                                               0.830
                                                            0.941
##
```

Plot Kaplan-Meier curve

Compare Curves

```
KM_fit2 <- survfit(Surv(tempsviu, mort=="Muerto") ~ ecg, data =dat2)
KM_fit2
## Call: survfit(formula = Surv(tempsviu, mort == "Muerto") ~ ecg. data = dat2)
##
##
                 n events median 0.95LCL 0.95UCL
## ecg=Anormal
               11
                             7.2
                                     5.5
                                              NΑ
## ecg=Frontera 27
                        4
                              NΑ
                                      NA
                                              NA
## ecg=Normal 111
                              NΑ
                                             NΑ
                       14
                                      NA
summarv(KM fit2, times=c(0.5.10))
## Call: survfit(formula = Surv(tempsviu, mort == "Muerto") ~ ecg. data = dat2)
##
##
                  ecg=Anormal
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
      0
            11
                     0 1.000
                                0.000
                                               1.000
##
                                                                1
                     2 0.762
                                               0.521
##
      5
             6
                                0.148
##
      10
             1
                     5 0.000
                                    NaN
                                                  NΑ
                                                              NΑ
##
                  ecg=Frontera
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
                     0 1.000 0.0000
                                               1.000
##
      0
      5
            21
                     2 0.916 0.0567
                                               0.812
##
            14
##
      10
                     1 0.873 0.0688
                                               0.748
##
##
                  ecg=Normal
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
      0
           111
                     0 1 000 0 00000
                                              1.000
                                                           1.000
      5
           102
                     1 0.991 0.00922
                                               0.973
                                                           1.000
##
     10
            87
                     4 0.949 0.02212
                                              0.907
                                                           0.994
##
```

Plot Kaplan-Meier curves and compare

```
ggsurvplot(KM_fit2, data = dat2,
    pval = TRUE, conf.int = TRUE,
    risk.table = TRUE, # Add risk table)
    risk.table.col = "strata", # Change risk table color by groups
    linetype = "strata", # Change line type by groups
    surv.median.line = "hv") # Specify median survival
```


Cox Regression Model

ullet Semiparametric model that fit hazard rate $\lambda(t)$

$$(t|X_i) = h_0(t) \exp(\beta_1 X_{i1} + \dots + \beta_p X_{ip})$$

- Assume non-informative censoring
- Assume proportional hazards

Cox Regression for Brown data

```
Coxfit <-coxph(Surv(time, exitus=="Death") ~ group, data = dat)
Coxfit
## Call:
## coxph(formula = Surv(time, exitus == "Death") ~ group, data = dat)
##
##
         coef exp(coef) se(coef) z
## groupB -2.254 0.105 1.155 -1.951 0.0511
##
## Likelihood ratio test=4.95 on 1 df, p=0.02608
## n= 10, number of events= 7
summary(Coxfit)
## Call:
## coxph(formula = Surv(time, exitus == "Death") ~ group, data = dat)
##
   n= 10. number of events= 7
##
##
##
         coef exp(coef) se(coef) z Pr(>|z|)
## groupB -2.254 0.105 1.155 -1.951 0.0511 .
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
         exp(coef) exp(-coef) lower .95 upper .95
## groupB
            0.105
                       9.524 0.01091
                                          1.01
##
## Concordance= 0.737 (se = 0.038)
## Likelihood ratio test= 4.95 on 1 df, p=0.03
## Wald test
                      = 3.81 on 1 df. p=0.05
## Score (logrank) test = 5.2 on 1 df, p=0.02
```

Cox Regression for Brown data (cont)

```
coxph(Surv(time, exitus=="Death") ~ group, data = dat)%>%
gtsummary::tbl_regression(exp = TRUE)
```

Characteristic	HR	95% CI	p-value
group A B	0.10	0.01, 1.01	0.051

```
ggforest(coxph(Surv(time, exitus=="Death") ~ group, data = dat),data=dat)
```


Exercise 1 (cont)

- Fit a Cox model for ECG in diabetes data
- Add age to this model
- Plot hazard ratios

Cox Regression Diabetes data

```
Coxfit<- coxph(Surv(tempsviu, mort=="Muerto") ~ ecg, data =dat2)
summary(Coxfit)
## Call:
## coxph(formula = Surv(tempsviu, mort == "Muerto") ~ ecg, data = dat2)
##
##
    n= 149, number of events= 25
##
##
                 coef exp(coef) se(coef) z Pr(>|z|)
## ecgFrontera -2.59348 0.07476 0.67609 -3.836 0.000125 ***
## ecgNormal -3.45046 0.03173 0.57787 -5.971 2.36e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
              exp(coef) exp(-coef) lower .95 upper .95
## ecgFrontera 0.07476 13.38 0.01987 0.28129
## ecgNormal 0.03173
                           31.52 0.01022 0.09848
##
## Concordance= 0.711 (se = 0.053)
## Likelihood ratio test= 28.29 on 2 df. p=7e-07
## Wald test
                      = 35.92 on 2 df. p=2e-08
## Score (logrank) test = 76.45 on 2 df, p=<2e-16
```

Cox Regression Diabetes data (cont)

```
coxph(Surv(tempsviu, mort=="Muerto") - ecg+edat, data =dat2)%>%
gtsummary::tbl_regression(exp = TRUE)
```

un	0E0/ CI	
пк	95% CI	p-value
0.25	0.06, 1.00	0.050
0.11	0.03, 0.33	< 0.001
1.09	1.05, 1.14	< 0.001
	0.11	0.25 0.06, 1.00 0.11 0.03, 0.33

Cox Regression Diabetes data (cont)

Some useful Web pages

- https://www.emilyzabor.com/tutorials/survival_analysis_in_r _tutorial.html
- http://www.sthda.com/english/wiki/survival-analysis-basics
- http://www.sthda.com/english/wiki/survminer-r-packagesurvival-data-analysis-and-visualization