

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

INTEGRATION OF TWO DIFFERENTIAL FORMS.

BY FERDINAND SHACK, ESQ., NEW YORK CITY.

To integrate $x^m \sin x \, dx$ and $x^m \cos x \, dx$. Because $\int u \, dv = uv - \int v \, du$; let $u = \cos x$ and $dv = x^n dx$, then

$$\int x^{n} \cos x \, dx = \frac{1}{n+1} x^{n+1} \cos x + \frac{1}{n+1} \int x^{n+1} \sin x \, dx;$$

$$\therefore \int x^{n+1} \sin x \, dx = -x^{n+1} \cos x + (n+1) \int x^{n} \cos x \, dx. \tag{1}$$

Again, let $u = \sin x$ and $dv = x^n dx$,

$$\int x^{n+1} \cos x \, dx = x^{n+1} \sin x - (n+1) \int x^n \sin x \, dx. \tag{2}$$

Let n = 0 and substitute in (1) and (2),

$$\int x \sin x \, dx = -x \cos x - \sin x,$$
$$\int x \cos x \, dx = x \sin x - \cos x.$$

Let n = 1 and substitute in (1) and (2),

$$\int x^{2} \sin x \, dx = -x^{2} \cos x + 2 \int x \cos x \, dx
= -x^{2} \cos x + 2x \sin x - 2 \cos x,
\int x^{2} \cos x \, dx = x^{2} \sin x - 2 \int x \sin x \, dx
= x^{2} \sin x + 2x \cos x - 2 \sin x.$$

Let n = 2 and substitute in (1) and (2),

$$\int x^3 \sin x \, dx = -x^3 \cos x + 3 \int x^2 \cos x \, dx
= -x^3 \cos x + 3x^2 \sin x + 3.2x \cos x - 3.2 \sin x
\int x^3 \cos x \, dx = x^3 \sin x - 3 \int x^2 \sin x \, dx
= x^3 \sin x + 3x^2 \cos x - 3.2x \sin x - 3.2 \cos x.$$

Let n = 3 and substitute in (1) and (2), &c.

The laws of the series are thus determined, and may be expressed:

[These integrals may be found at p. 265 of Hirsch's Integral Tables, but they were computed by Mr. Shack without suspecting that they were known forms.—Ed.]

Note on the Solution of Prob. 373.—We have received from Prof. H. T. Eddy, a brief and elegant solution of (373), in which several errors which occur in the published solution are pointed out and corrected. We have also received from Mr. Adcock the following corrections of his solution of that problem (see p. 55):