

ENGG1000

Electrical Stream 2018
Lecture Week 4 – Power Sources and Regulators

Never Stand Still

Faculty of Engineering

School of Electrical Engineering and Telecommunications

Advice from Students from Previous Years

- Start early and test as much as possible. When you find a flaw, fix it to the maximum extent possible. None of this "It probably won't be a problem.." stuff.
- The internet is a great source of info
- Learnt that organisation is very necessary in all activities
- It is always better to begin early rather than regret later
- Learnt to rely on and trust my team members
- Do not expect your design to work every time
- Use components that will actually work properly with each other
- Building this was fun :P
- Working as a team is vital
- COMMUNICATION......something there wasn't enough of
- an initial plan would have been helpful
- Testing is paramount to success.....test that ***** as many times as you can!
- construction should start asap to allow sufficient testing
- be prepared to modify ur design during the construction stage, you are bound to run into small complications that you didn't foresee
- everyone needs to get involved, many hands make light work
- keep everything as simple as possible
- if things can go wrong, they usually happen at the worst time

Fundamental Laws - KVL

- Conservation of energy
- The sum of voltages around any closed loop in a circuit must be zero

$$V_1 + V_2 + V_3 + \dots = 0$$

Fundamental Laws - KCL

- Conservation of Electrical charge
- The net current flowing into any junction is always equal to the net current flowing out

Voltage, Current and Resistance

 The simplest is for current and voltage to be linearly related

Ohm's Law

 Current I is the flow of positive charge through the circuit in Amps (A)

Resistive Circuits

 Resistors connected in series increase the total equivalent resistance

$$R = R_1 + R_2 + ... + R_N$$

Resistive Circuits

 Resistors connected in parallel decrease the total equivalent resistance

$$R = R_1 // R_2 // ... // R_N = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + ... + \frac{1}{R_N}}$$

A Problem

What is the resistance between A and B?

The Voltage Divider

• Assume there is no $R_L (R_L = \infty)$

$$V = IR_2$$
 and $I = \frac{V_{in}}{R_1 + R_2}$

SO

$$V = \frac{R_2}{R_1 + R_2} V_{in}$$

The Voltage Divider

- Can use this circuit to step down voltages by a constant factor $\frac{R_2}{R_1 + R_2}$
- Take care: in practice $R_L \neq \infty$ $V = \frac{R_2 // R_L}{R_1 + R_2 // R_L} V_{in}$
 - Small $R_I \Rightarrow$ affects the voltage division
 - Large $R_L \Rightarrow$ most power dissipated in divider
- Voltage divider good as reference voltage

Voltage Sources

- Real voltage sources have internal resistance
- When a load is connected, the supplied voltage is really

$$V_O = \frac{R_L}{R_S + R_L} V_S$$

- The ideal is $R_L >> R_S$
- Important to realise this when you drive one circuit by another – may not always be possible!

Voltage Sources

- Practical Solutions for Buffers:
 - Zener Diodes
 - Transistors
 - Operational Amplifiers
- Aim of a 'Buffer':
 - From the view of the Load, make the source impedance → 0
 - Source provides same voltage, regardless of how much current is drawn
 - From the view of the Source, make the load impedance very large

Current Sources

- By analogy, can also construct current sources
 - Will use transistors and op-amps (later)
- An ideal current source can supply the same current, regardless of the load that is attached

 Non-ideal current source offers some level of shunt(parallel) resistance

 $i_s(t)$

Diodes

- $V_D < V_{on}$
 - Diode is reverse-biased
 - i.e. "off" or acts as an open circuit
- $V_D > V_{on}$
 - Diode is forward-biased
 - i.e. "on" or acts as a short circuit
- Summary: a diode conducts current in one direction
 - Good for protecting sensitive components
- Caveat: $V_{on} \approx 0.6$ to 0.7V

How?

- Forward biased
 - conductor

N: has 'spare' electrons

P: has 'missing' electrons

- Conventional current flow
- Holes P N

 Depletion region

Reverse biased

- insulator

Diode properties can be *electrically* controlled

source: Scherz, 2000

Analysis of Diode Circuits

- Split into two cases:
- $V_{in} < V_{on}$
 - No current flows through diode $\Rightarrow V = 0$
- $V_{in} > V_{on}$
 - Diode has voltage $V_D = V_{on}$, so $V = V_{in} V_{on}$

and
$$I = \frac{V}{R} = \frac{V_{in} - V_{on}}{R}$$

$$V_{in} \uparrow \qquad \qquad \qquad \downarrow$$

Real Diodes

- True I-V relationship:
- The forward current does
 Increase slightly as the
 voltage increases

- There is a reverse leakage current
 - Due to the thermal creation of electron-hole pairs
- As previously stated, it can break down if the reverse voltage is very large
 - A normal diode will not recover

Zener Diodes

- Zener diodes are similar to diodes, but have another property known as reverse breakdown
 - Seen from current-voltage relationship

Zener Applications

- Used in voltage regulation
 - e.g. if V_{in} = 6V, V_Z = 5V then the circuit below steps the input voltage down to $V = V_Z$

Better still for voltage regulation: Regulator integrated circuits like the LM7805 or the LM317

Zener Diode Regulation

Handles changes in load supply

Which power supply?

- Bench-top
 - Use if system "mains powered"
- Batteries
 - Portable system
 - Alkaline, NiMH, Li-Ion?
 - In-circuit charger?

- Linear Regulators
 - Easy to design
 - Available for fixed and variable voltages
- Switch-mode
 - Much better efficiency than linear regulators
 - Harder to design
 - Some ICs available

Voltage Regulators

- Aim
 - Maintain a stable output voltage, given variations in output load and fluctuations in the input voltage
- Regulated Supply Contain a reference voltage
 - Zener diode?
 - Output voltage compared to reference voltage
 - Feedback then used
- Two main types
 - Linear Voltage Regulators
 - Switch-mode Voltage Regulators

Voltage Reference

Typically use Zener diodes These are quite noisy

- avalanche noise
- use capacitors to remove high-frequency noise
- Tantalum capacitor in series with the output removes noise spikes

Linear Voltage Regulator

Series Topology

Design Considerations

- Consider max and min load currents
- Zener will require a certain current to remain RBD
- Max power that Zener can dissipate

Linear Voltage Regulator

Shunt Topology

- Maximum current is drawn from the source regardless of load
- Hence, inefficient

Simplest Shunt
 Linear Voltage Regulator

Switch-mode Regulator

- Buck or Boost
- Here is a Boost-mode Regulator

- Efficiencies of up to 90% are common

The Bipolar Junction Transistor (BJT)

Nonlinear device with three terminals:

- Has several operating modes
 - $V_{BF} > 0.7 \text{V}$, $V_{CF} > 0.3 \text{ V} \Rightarrow \text{forward active mode}$

Transistor as Two Diodes

- Two types NPN and PNP
- Effectively a diode as C-B and B-E (two back to back PN junctions)
- PNP transistor has the N and P regions reversed
- Work the same way, but all polarities are the opposite for a PNP (versus an NPN)

 $source: http://www.mobileelectronics.com. au/forums/index.php?/topic/58571-blown-jay-car-amp-help/page_st__15$

Transistor – Forward Active Mode

Most circuits aim to bias the transistor so it is in forward-active mode -> straight-forward to analyse

- VC > VE, and BE junction forward-biased (CE junction reverse-biased)
- When conducting, VB VE ≈ 0.6-0.8V (forward-bias voltage)
- If the above is true, the current CE will be proportional to the BE current...

Transistor Current Gain

In forward active mode

$$I_C = \beta I_B$$

- $-\beta$ (or H_{FE} or h_{FE}) is the current gain
 - Typically large, e.g. 50 to 200
- A small input current (I_B) can be used to control a large output current $(I_C \text{ or } I_E)$
- Also $I_E = I_B + I_C = (\beta + 1)I_B = \frac{(\beta + 1)}{\beta}I_C$
 - Most current is going from collector → emitter

Transistor – Limitations

Practical limitations of forward-active mode

- A transistor has maximum values of I_C, I_E, and V_CE that it can handle
- The power dissipation is limited (I_C*V_CE)
- The properties depend heavily on temperature
- The current gain, β, varies substantially within models -> don't build circuits that depend on this parameter
- Always limit the base current (since is a forwardbiased diode BE)

Transistor Switch

- When switch is open, I_B
 = 0, so I_CE = 0 -> lamp is off
- When switch is closed, how do we analyse this circuit?
- Assume the transistor is in forward-active mode
 - BE junction is conducting

Transistor Switch

- V_BE = 0.6V
- $I_B = 9.4 \text{mA}$
- If say, $\beta = 100$, then I_C = 940mA!
- But then V_C < 0 -> so
 transistor is not
 operating in the forward active region
- Transistor here saturates

Transistor Saturation

- Here, V_CE is forced as close to zero as it can go
 - Typical saturation voltages 0.05-0.2V
- Approx. 10V across the lamp, so I_C = 100mA
- Note here a small current (9.4mA) controls a large current (100mA)

Voltage Sources

- Real voltage sources have internal resistance
- When a load is connected, the supplied voltage is really

$$V_O = \frac{R_L}{R_S + R_L} V_S$$

- The ideal is $R_L >> R_S$
- Important to realise this when you drive one circuit by another – may not always be possible!

Emitter Follower

 A simple transistor buffer circuit to connect between circuits to overcome the voltagedivider problem

- For input voltage0.6V < V_in < 10V
- Transistor in the forwardactive region

$$V_{out} = V_{in} - 0.6 V$$

So, what's the point?

Emitter Follower

- The point is that the output impedance is significantly reduced -> R_L >> R_S
 - If you are going to connect something to the output, this external circuit sees a reduced source resistance
- Equivalently, the input impedance is significantly increased
 - If you think of V_out as the load, and you driving this with a circuit -> that external supply circuit sees a much larger R_L

Emitter Follower

- Input resistance is $R_{in} = \frac{\Delta V_B}{\Delta I_B}$
- Output resistance is

$$R_{out} = \frac{\Delta V_E}{\Delta I_E}$$

Analysis:

- Since $\Delta V_B = \Delta V_E$ and $R = \frac{\Delta V_E}{\Delta I_E}$
- For the transistor in the forward-active region:

$$\Delta I_E = (\beta + 1) \Delta I_B$$

- Therefore, $R_{in} = (\beta + 1)R_{out}$
- If we though the resistance seen by a load connected at V_out, when driven by a source of R_s at V_in

$$R_{out} = \frac{1}{(\beta + 1)} R_s$$

Transistor circuit analysis

Common-emitter configuration

in many applications, R_C is the load

Transistors as switches

Common-emitter configuration

 V_{in} large -> saturation

- $\Rightarrow I_B$ large
- $\Rightarrow I_C$ large
- $\Rightarrow R_C I_C$ large
- $\Rightarrow V_C \text{ small}$

 V_{in} small -> forward-active

- $\Rightarrow I_B \text{ small}$
- $\Rightarrow I_C \text{ small}$
- $\Rightarrow R_C I_C \text{ small}$
- $\Rightarrow V_C$ large

Transistors as switches

- If V_{in} is large and R_C is chosen large enough, then the output $V_C \approx 0$
 - "high" input → "low" output
- If V_{in} is so small that $V_{in} \leq V_{BE}$, then the output $V_C = V_{CC}$
 - "low" input → "high" output
 - Note: if $V_{in} < V_{BE}$, actually the transistor is no longer in the forward active mode, and no current flows

Transistor circuit analysis

Common-collector configuration

Announcements

- Labs Open
 - Every Monday 2-6pm and Thursday 2-6pm
 - EE labs EEG14 and EE214
- Lab Exercises
 - Lab 1 this week introduction
 - Labs 2, 3 & 4 available next week
 - Any one of them for 10%
 - Attend as convenient
- Lab Equipment
 - Breadboard would be ideal

