Quotient Groups, continued

- Video: If G = group G

- Another perspective on quotient groups:

The group table for G/H is like the group table for G, arranged into "blocks".

Quotient Groups, continued (Example)

Math 335

Consider the group $G = \mathbb{Z}_9$, under addition modulo 9, and the subgroup $H = \{0, 3, 6\}$. There are three left cosets of H in G:

$$0 + H = \{0, 3, 6\}$$
$$1 + H = \{1, 4, 7\}$$
$$2 + H = \{2, 5, 8\},$$

so

$$G/H = \{0 + H, 1 + H, 2 + H\}.$$

Here is the group table for G/H:

	0+H	1+H	2+H
0+H	0+H	1+H	2+H
1 + H	1+H	2+H	0+H
2+H	2+H	0+H	1+H

And here is the group table for G, arranged so that elements of the same coset are adjacent:

	0	3	6	1	4	7	2	5	8
0	0	3	6	1	4	7	2	5	8
3	3	6	0	4	7	1	5	8	2
6	6	0	3	7	1	4	8	2	5
1	1	4	7	2	5	8	3	6	0
4	4	7	1	5	8	2	6	0	3
7	7	1	4	8	2	5	0	•3	% 6
2	2	5	8	3	6	0	4	7	1
5	5	8	2	6	0	3	7	1	4
8	8	2	5	0	3	6	1	4	7

Each block of the big table corresponds to one entry of the small table!

Worksheet 30: Quotient Groups, continued (Version 1)

Math 335

Recorder:

Equity Manager:

1. Consider the group D_4 of symmetries of a square, whose elements are

$$D_4 = \{e, r_{90}, r_{180}, r_{270}, h, v, d, d'\},\$$

and consider the subgroup

$$H = \{e, r_{180}\} \subseteq D_4.$$

Here's a group table for D_4 , for your reference:

	e	r_{90}	r_{180}	r_{270}	h	v	d	d'
e	e	r_{90}	r_{180}	r_{270}	h	v	d	d'
r_{90}	r_{90}	r_{180}	r_{270}	e	d'	d	h	v
r_{180}	r_{180}	r_{270}	e	r_{90}	v	h	d'	d
r_{270}	r_{270}	e	r_{90}	r_{180}	d	d'	v	h
h	h	d	v	d'	e	r_{180}	r_{90}	r_{270}
v	v	d'	h	d	r_{180}	e	r_{270}	r_{90}
d	d	v	d'	h	r_{270}	r_{90}	e	r_{180}
d'	d'	h	d	v	r_{90}	r_{270}	r_{180}	e

(a) I claim that H is a normal subgroup of D_4 . Check this in an example by seeing whether $aba^{-1} \in H$ for $a \in D_4$ and $b \in H$. For example:

$$h \circ r_{180} \circ h^{-1} = h \circ r_{180} \circ h$$

$$= h \circ v$$

$$= r_{180} \in H$$

(b) Here are the left cosets of H in D_4 :

$$eH = \{e, r_{180}\}$$
 $r_{90}H = \{r_{90}, r_{270}\}$
 $hH = \{h, v\}$
 $dH = \{d, d'\}.$

In the blank table below, re-write the group table for D_4 , but this time arrange it so that elements of the same coset are adjacent.

	e	r ₁₈₀	rqo	r ₂₇₀	h	r	d	ď
e	e	150	rqo	r 270	h	4	9	9
riso	r ₁₈₀	e	F22	190	r	h	q'	d
190	90	r ₂₇₀	r ₁₈₀	e	ď	d	6	5
	7270							
h	h	4	d	ď	e	r, 50	T.	C 77.
	V							
d	•	ď	6	k	r ₂₇ .	190	•	780
4	ď	d	4	r	r ₁₀	r ₂₇₀	1180	C

(c) Look at the Limnu Board of a group of classmates who has Version 2 of the worksheet, and compare their table with yours.

(b) Here are the left cosets of H in D_4 :

$$eH = \{e, r_{180}\}$$

$$r_{90}H = \{r_{90}, r_{270}\}$$

$$hH = \{h, v\}$$

$$dH = \{d, d'\}.$$

In the blanks below, make a group table for D_4/H ; in other words, your table should show how to compose any two of the above left cosets to get another one.

(c) Look at the Limnu Board of a group of classmates who has Version 1 of the worksheet, and compare their table with yours.

2. Now consider the group S_3 , and the subgroup

$$H = \{e, (1, 2)\},\$$

which we saw in the video for today's class is *not* normal. Here's a group table for S_3 :

	e	(1,2)	(1,3)	(2,3)	(1, 2, 3)	(1, 3, 2)
e	e	(1, 2)	(1,3)	(2,3)	(1, 2, 3)	(1, 3, 2)
(1, 2)	(1,2)	e	(1, 3, 2)	(1, 2, 3)	(2,3)	(1,3)
(1,3)	(1,3)	(1, 2, 3)	e	(1, 3, 2)	(1,2)	(2,3)
(2,3)	(2,3)	(1, 3, 2)	(1, 2, 3)	e	(1,3)	(1, 2)
(1, 2, 3)	(1, 2, 3)	(1,3)	(2,3)	(1, 2)	(1, 3, 2)	e
(1, 3, 2)	(1, 3, 2)	(2,3)	(1,2)	(1,3)	e	(1, 2, 3)

And here are the left cosets of H in S_3 :

$$eH = \{e, (1, 2)\}\$$

$$(1, 3)H = \{(1, 3), (1, 2, 3)\}\$$

$$(2, 3)H = \{(2, 3), (1, 3, 2)\}.$$

In the blank table below, re-write the group table for S_3 , but this time arrange it so that elements of the same coset are adjacent.

	•	(1,2)	(1,3)	(1,2,3)	(2,3)	(1,3,2)
و	e	(1,2)	(1,3)	(1,2,3)	(2,3)	(1,32)
(1,2)	(1,2)	•	(1,3,2)	(2,3)	(1,2,3)	(1,3)
(1,3)	(1,3)	(1,2,3)	e	(1,2)	(1,3,2)	(2,3)
(1,2,3)	(1,2,3)	(1,3)	(2,3)	(13,2)	(1,2)	e
(2,3)	(2,3)	(1,3,2)	(1,2,3)	(1,3)	e	(1,2)
(1,3,2)	(1,3,2)	(5)	(42)	e	(4,3)	(1,2,3)

Look at the Limnu Board of a group who has Version 2 of the worksheet, and discuss how the table you just made relates to their findings on Problem 2.

2. Now consider the group S_3 , and the subgroup

$$H = \{e, (1, 2)\},\$$

which we saw in the video for today's class is *not* normal. Here's a group table for S_3 , for your reference:

	e	(1,2)	(1,3)	(2,3)	(1, 2, 3)	(1, 3, 2)
e	e	(1, 2)	(1,3)	(2,3)	(1, 2, 3)	(1, 3, 2)
(1, 2)	(1,2)	e	(1, 3, 2)	(1, 2, 3)	(2,3)	(1,3)
(1,3)	(1,3)	(1, 2, 3)	e	(1, 3, 2)	(1,2)	(2,3)
(2,3)	(2,3)	(1, 3, 2)	(1, 2, 3)	e	(1,3)	(1,2)
(1, 2, 3)	(1, 2, 3)	(1,3)	(2,3)	(1, 2)	(1, 3, 2)	e
(1, 3, 2)	(1, 3, 2)	(2,3)	(1, 2)	(1,3)	e	(1, 2, 3)

(a) Here are the left cosets of H in S_3 :

$$eH = (1,2)H = \{e, (1,2)\}\$$

$$(1,3)H = (1,2,3)H = \{(1,3), (1,2,3)\}\$$

$$(2,3)H = (1,3,2)H = \{(2,3), (1,3,2)\}.$$

Look back at Worksheet 29 to discuss how we know that composition of left cosets is not well-defined.

(b) Turn to a group of your classmates who has Version 1 of the worksheet, and discuss how the table they made relates to your answer to part (a).