Distribution-free robust linear regression

Jaouad Mourtada (CREST, ENSAE)

Joint work with:

Tomas Vaškevičius (University of Oxford) and Nikita Zhivotovskiy (ETH Zürich)

Séminaire Palaisien March 2nd, 2021

Contents

Setting

Overview of existing results

Distribution-free setting

Main results

Setting

Statistical learning (regression)

- **Prediction** problem: predict $y \in \mathbf{R}$ based on covariates $x \in \mathbf{R}^d$
- Random pair $(X, Y) \sim P$ on $\mathbf{R}^d \times \mathbf{R}$, distribution P unknown
- Risk $R(f) = \mathbf{E}[(f(X) Y)^2]$ of prediction function $f : \mathbf{R}^d \to \mathbf{R}$
- $\mathcal{F}_{lin} = \{x \mapsto \langle w, x \rangle : w \in \mathbf{R}^d\}$ class of linear functions
- Given $(X_1, Y_1), \dots, (X_n, Y_n) \in \mathbb{R}^d \times \mathbb{R}$ i.i.d. sample from P, find function $\widehat{f} : \mathbb{R}^d \to \mathbb{R}$ whose excess risk

$$\mathcal{E}(\widehat{f}) = R(\widehat{f}) - \inf_{f \in \mathcal{F}_{lin}} R(f)$$

is **small** with high probability. *I.e.*, prediction error $R(\hat{f})$ of \hat{f} is almost as small as that of the best linear function.

Basic facts

Let $f_w : x \mapsto \langle w, x \rangle$, and $\mathcal{F}_{lin} = \{ f_w : w \in \mathbf{R}^d \}$.

Assuming $\mathbf{E}Y^2 < \infty$, $\mathbf{E}||X||^2 < \infty$, the risk minimizer is f_{w^*} , with

$$w^* = \Sigma^{-1} \mathbf{E}[YX], \quad \text{where} \quad \Sigma = \mathbf{E}XX^{\mathsf{T}}.$$

Excess risk of a linear function f_w is

$$\mathcal{E}(f_{w}) = R(f_{w}) - R(f_{w^{*}}) = \mathbf{E}(f_{w}(X) - f_{w^{*}}(X))^{2}$$
$$= \|\Sigma^{1/2}(w - w^{*})\|^{2}.$$

4

Least squares estimator

Population risk is $R(f) = \mathbf{E}(f(X) - Y)^2$. Define empirical risk by

$$\widehat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Minimized in \mathcal{F}_{lin} by least squares/emp. risk minimizer \widehat{f}_{erm} :

$$\widehat{f}_{\mathsf{erm}} = \operatorname*{argmin}_{f \in \mathcal{F}_{\mathsf{lin}}} \widehat{R}_n(f) = f_{\widehat{w}_{\mathsf{erm}}}, \quad \mathsf{where} \quad \widehat{w}_{\mathsf{erm}} = \widehat{\Sigma}_n^{-1} \cdot \frac{1}{n} \sum_{i=1}^n Y_i X_i,$$

with $\widehat{\Sigma}_n := \frac{1}{n} \sum_{i=1}^n X_i X_i^\mathsf{T}$ the empirical covariance matrix

Overview of existing results

Performance of the least squares estimator

$$w^* = \operatorname{argmin}_{w \in \mathbf{R}^d} R(f_w)$$
 best parameter, error $\xi = Y - \langle w^*, X \rangle$

Excess risk of the least squares estimator $\widehat{f}_{\operatorname{erm}}$ is

$$R(\widehat{f}_{erm}) - R(f_{w^*}) = \left\| \Sigma^{1/2} \widehat{\Sigma}_n^{-1} \Sigma^{1/2} \cdot \frac{1}{n} \sum_{i=1}^n \xi_i \Sigma^{-1/2} X_i \right\|^2$$

$$\leq \underbrace{\lambda_{\min}(\Sigma^{-1/2} \widehat{\Sigma}_n \Sigma^{-1/2})^{-2}}_{\text{matrix fluctuations/random design}} \cdot \left\| \frac{1}{n} \sum_{i=1}^n \xi_i \Sigma^{-1/2} X_i \right\|^2$$

" noise"

Least squares under boundedness or light tails

Boundedness assumption: $\|\Sigma^{-1/2}X\| \leqslant C\sqrt{d}$ a.s.

Or sub-Gaussian tail: $\mathbf{P}(|\langle w, X \rangle| \geqslant t \|\Sigma^{1/2}w\|) \leqslant 2 \exp(-t^2/\kappa^2)$

Strong/restrictive assumptions on X, imply (two-sided) **matrix concentration**: $\frac{1}{2}\Sigma \preceq \widehat{\Sigma}_n \preceq 2\Sigma$ for $n \gtrsim d$.

If errors are also light-tailed (sub-Gaussian), then least squares achieves the optimal bound

$$R(\widehat{f}_{\mathsf{erm}}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \lesssim \frac{d}{n}.$$

Intuition: empirical risk is close to population risk over $\mathcal{F}_{\mathsf{lin}}$

Some references: Caponnetto, De Vito, 2007; Catoni, 2004; Hsu et al., 2014

Linear regression under weaker tail assumptions

Weakened assumptions: finite **moment equivalence** for *X*:

$$\forall w \in \mathbf{R}^d, \quad (\mathbf{E}\langle w, X \rangle^4)^{1/4} \leqslant \kappa (\mathbf{E}\langle w, X \rangle^2)^{1/2}$$

(Oliveira, 2016). Related "small-ball" assumption (Koltchinskii & Mendelson, 2015; Lecué & Mendelson, 2016). Weaker assumption on X, implies (one-sided) lower isometry $\widehat{\Sigma}_n \succcurlyeq \frac{1}{2}\Sigma$.

- If error is light-tailed, least squares has O(d/n) excess risk.

 Intuition: functions with large excess risk have large empirical risk.
- If error ξ is heavy-tailed, least squares \widehat{f}_{erm} is suboptimal, but some robust estimators achieve O(d/n) bound (Audibert & Catoni 2010, Lugosi & Mendelson 2019, Catoni 2016)

Assumptions on the distribution of covariates

• Strong assumptions on X, e.g., subgaussian

$$\forall w \in \mathbf{R}^d$$
, $\mathbf{P}(|\langle w, X \rangle| \geqslant t \|\Sigma^{1/2} w\|) \leqslant 2 \exp(-t^2/\kappa^2)$

• Weaker moment equivalence conditions:

$$\forall w \in \mathbf{R}^d, \quad (\mathbf{E}\langle w, X \rangle^4)^{1/4} \leqslant \kappa (\mathbf{E}\langle w, X \rangle^2)^{1/2}$$

Still **non-trivial** restriction. In some simple cases, κ depends on d, leading to suboptimal bounds.

• Can we **remove any assumption** on the distribution of *X*?

Distribution-free setting

"Distribution-free" setting

Joint distribution $P = P_{(X,Y)}$ of (X,Y) is characterized by:

- Distribution P_X of X, probability distribution on \mathbf{R}^d
- Conditional distribution P_{Y|X} = (P_{Y|X=x})_{x∈R^d} (family of distributions on R indexed by x ∈ R^d).
 Remark: Risk R(f) is minimized (among all functions) by the regression function

$$f_{\text{reg}}(x) = \mathbf{E}[Y|X=x].$$

A guarantee is distribution-free if it holds for all distributions P_X .

- 1. Is it possible to obtain distribution-free guarantees?
- 2. If so, what are the **minimal conditions** on $P_{Y|X}$?

Minimal assumption on the conditional distribution

Assumption (on $P_{Y|X}$)

There exists a constant m > 0 such that

$$\sup_{x \in \mathbf{R}^d} \mathbf{E}[Y^2 | X = x] \leqslant m^2.$$

This condition holds if Y is **bounded**: $|Y| \leq m$ a.s.

But much weaker: compatible with heavy tails of Y, only (conditional) second moment bound.

(For instance, one may have $\mathbf{E}Y^{2+\varepsilon}=+\infty$ for any $\varepsilon>0$.)

Minimal assumption to obtain P_X -free guarantees (lower bounds)

Limitations of proper estimators

A procedure \widehat{f}_n is called **proper** (or: **linear**) if it always returns a linear function $\widehat{f}_n \in \mathcal{F}_{\text{lin}}$.

Remark: includes least squares \widehat{f}_{erm} , but also most procedures in the literature (including in robust regression).

Proposition (Shamir, 2015)

For all $n, d \geqslant 1$ and any proper procedure \widehat{f}_n , there exists a distribution P with $|Y| \leqslant 1$ such that

$$\mathbf{E}R(\widehat{f}_n) - \inf_{f \in \mathcal{F}_{\text{lin}}} R(f) \gtrsim 1.$$

(Upper bound of 1 trivially achieved by zero function $\hat{f_n} \equiv 0$.)

No nontrivial distribution-free guarantee for proper procedures

Classical bound for truncated least squares

Truncated least squares: thresholds predictions to [-m, m]

$$\widehat{f}_{\mathsf{trunc}}(x) = \mathsf{max}(-m, \mathsf{min}(m, \langle \widehat{w}_{\mathsf{erm}}, x \rangle)).$$

Improper/nonlinear (due to truncation).

Theorem (Györfi et. al, 2002)

If $\mathbf{E}[Y^2|X] \leqslant m^2$, then truncated least squares satisfies:

$$\mathbf{E}R(\widehat{f}_{\mathsf{trunc}}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \leqslant c \, \frac{m^2 d \log n}{n} + 7 \Big(\inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) - R(f_{\mathsf{reg}}) \Big)$$

Distribution-free result (no assumption on P_X !)

Approximation term $7(\inf_{f \in \mathcal{F}_{lin}} R(f) - R(f_{reg}))$

Main results

Improved bound in expectation for truncated least squares

Truncated least squares: $\widehat{f}_{trunc}(x) = max(-m, min(m, \langle \widehat{w}_{erm}, x \rangle))$

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

If $\mathbf{E}[Y^2|X] \leqslant m^2$, then truncated least squares satisfies:

$$\mathbf{E}R(\widehat{f}_{\mathsf{trunc}}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \leqslant \frac{8m^2d}{n+1}.$$

Distribution-free guarantee (as before), O(d/n) rate.

Removes approximation term $7(\inf_{f \in \mathcal{F}_{lin}} R(f) - R(f_{reg}))$ from previous bound (and extra $\log n$; gives explicit constant c = 8). Simpler proof (leave-one-out argument)!

Similar bound for another procedure (Forster & Warmuth, 2002)

In-expectation vs. high-probability guarantees

Previous results (for e.g. truncated least squares) in expectation:

$$\mathbf{E}R(\widehat{f}_n) - \inf_{f \in \mathcal{F}_{lin}} R(f) \lesssim \frac{m^2 d}{n}.$$

What about **high-probability** guarantees? Given **confidence** parameter δ , bound of the form

$$\mathbf{P}\Big(R(\widehat{f}_n)-\inf_{f\in\mathcal{F}_{lin}}R(f)\geqslant\varepsilon(n,d,\underline{\delta})\Big)\leqslant\underline{\delta}.$$

Under assumption $\mathbf{E}[Y^2|X] \leqslant m^2$, **ideal accuracy** (lower bounds):

$$\varepsilon(n,d,\frac{\delta}{\delta}) \simeq \frac{m^2(d+\log(1/\delta))}{n}.$$

("Exponential" bound)

Truncated least squares fails with constant probability

Truncated least squares: $\widehat{f}_{trunc}(x) = \max(-m, \min(m, \langle \widehat{w}_{erm}, x \rangle))$, with in-expectation bound $\mathbf{E}R(\widehat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f) \lesssim m^2 d/n$.

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For any $n, d \geqslant 1$, there exists a distribution P of (X, Y) with $|Y| \leqslant m$ such that (same lower bound for Forster-Warmuth)

$$\mathbf{P}\Big(R(\widehat{f}_{\mathsf{trunc}}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \geqslant c \ m^2\Big) \geqslant c.$$

With constant probability, \hat{f}_{trunc} has trivial/constant excess risk.

Contradiction (?) with m^2d/n bound in expectation? **No**, since $R(\widehat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f)$ can take **negative values** as \widehat{f}_{trunc} is **improper/nonlinear** (compensates in expectation).

Deviation-optimal estimator

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For every $n, d \geqslant 1$, m > 0 and $\delta \geqslant 1$, there exists a procedure \widehat{f}_n (depending on δ and m) such that, for any distribution satisfying $\mathbf{E}[Y^2|X] \leqslant m^2$, with probability $1 - \delta$,

$$R(\widehat{f_n}) - \inf_{f \in \mathcal{F}_{\text{lin}}} R(f) \leqslant c \, \frac{m^2 \left(d \log(n/d) + \log(1/\delta)\right)}{n}.$$

Deviation-optimal procedure, **distribution-free** w.r.t. P_X and only $\mathbf{E}[Y^2|X] \leq m^2$ (robustness to heavy tails).

Depends on confidence δ (unavoidable).

Explicit, though involved, procedure. Computationally expensive.

Some ideas behind the procedure

Two difficulties: no assumption on X, and heavy-tailed Y.

- First step: truncate linear functions to m, class \mathcal{F}_{trunc} . Only reduces risk, gives bounded functions, but non-convex class!
- Second step: form some random/empirical finite discretization of the class \mathcal{F}_{trunc} . Needed for technical reasons (heavy tails).
- Third step: use ideas from **model aggregation** theory (Star-type algorithm, Audibert 2008) to handle **non-convexity** of the class.
- Fourth step: extend above from bounded to heavy-tailed setting through robust mean estimators and min-max procedures.
 (Audibert, Catoni 2010; Lugosi, Mendelson 2019; Lecué, Lerasle 2020)

Note: the resulting procedure is **hard to compute** for large *d*!

Conclusion

Distribution-free linear regression, **no restriction** on P_X ; minimal assumption (on Y|X) $\mathbf{E}[Y^2|X] \leq m^2$

No proper/linear procedure (least squares or robust alternatives) gives any useful bound in this distribution-free setting

Truncated least squares achieves m^2d/n excess risk in expectation (improving 'classical' bound)...

... but fails $(m^2 \text{ risk})$ with **constant probability**.

Robust procedure **optimal with high probability** (extends to nonlinear VC-subgraph classes).

<u>Future directions</u>: Practical procedure? Adapting to *m*?

Thank you!