Bonus 01 - MATH 722

Boren(Wells) Guan

Date: February 11, 2024

Problem

Prove that there is a constant C, independent of n such that if $\{z_i\}$ are complex numbers and if

$$\sum_{j=1}^{n} |z_j| \ge 1$$

then there is a subcollection $\{z_{j_1},\cdots,z_{j_k}\}\subset\{z_1,\cdots,z_n\}$ such that

$$|\sum_{m=1}^k z_{j_m}| \ge C$$

Can you find the best constant C?

Sol.

Here we consider $v_{\theta} = e^{i\theta}$ and for any z_j , $1 \le j \le n$ such that

$$\sum_{j=1}^{n} |z_j| \ge 1$$

assume $Argz_j = \phi_j, 1 \le j \le n$ and denote $f(\theta) = \sum_{i=1}^n |z_j|(\cos(\theta - \phi_j) \lor 0)$ which is the sum of projections of z_j on v_θ for $1 \le j \le n$, then notice

$$\int_{0}^{2\pi} f(\theta)d\theta = \sum_{i=1}^{n} |z_{i}| \int_{0}^{2\pi} (\cos(\theta - \phi_{i}) \vee 0)d\theta = \int_{0}^{2\pi} (\cos(\theta) \vee 0)d\theta = 2$$

and hence there have to be $\theta \in [0, 2\pi)$ such that $f(\theta) \geq \frac{1}{\pi}$, since for any $n \geq 0$, there has to be θ_n such that $f(\theta) > \frac{1}{\pi} - n^{-1}$ and notice f is continuous on $[0, 2\pi]$. Then we consider all $\{z_{j_m}\}$ such that $cos(\theta - \phi_{j_m}) \geq 0$ and then we know

$$|\sum_{m=1}^{k} z_{j_m}| \ge f(\theta) \ge \frac{1}{\pi}$$

Then we will show that $C = \frac{1}{\pi}$ is the best bound.

Consider $z_j = (4n)^{-1}e^{i\frac{j\pi}{2n}} \le j \le 4n$ and for any subcollection $\{z_{j_m}\}$ let $v = (\sum_{m=1}^k z_{j_m})/|(\sum_{m=1}^k z_{j_m})|$

and then we know that $f(Arg_v) \ge |\sum_{m=1}^k z_{j_m}|$. And then for any $\theta \in [0, 2\pi)$, we know

$$f(\theta) = (4n)^{-1} \sum_{j=1}^{4n} (\cos(\theta - \frac{j\pi}{2n}) \vee 0) = (4n)^{-1} (\sum_{j=0}^{n-1} \Theta_1 + \frac{j\pi}{2n}) + (\sum_{j=0}^{n-1} \Theta_2 + \frac{j\pi}{2n}) \le (2n)^{-1} \sum_{j=0}^{n-1} \cos(j\frac{j\pi}{2n})$$

1

where $\Theta_1 = \theta \pmod{\frac{\pi}{2n}}$ and $\Theta_2 = \frac{\pi}{2n} - \Theta_1$, then notice that

$$\lim_{n \to \infty} (2n)^{-1} \sum_{j=0}^{n-1} \cos(\frac{j\pi}{2n}) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \cos t dt = \frac{1}{\pi}$$

since $\cos(x)$ is Riemann-integrable on $[0,\frac{\pi}{2}]$, which means $\limsup |\sum_{m=1}^k z_{j_m}| \leq \lim_{n \to \infty} \sup(f(\theta,n)) = \frac{1}{\pi}$ and hence $\frac{1}{\pi}$ is the best C.