CLAIMS

1. A compound of the formula

wherein, independently at each location:

R¹ is selected from hydrogen and lower alkyl;

R² is selected from hydrogen and lower alkyl;

R³ is lower alkyl;

 R^4 is selected from lower alkyl, aryl, and -CH₂-C₅₋₇carbocycle when R^5 is selected from H and methyl, or R^4 and R^5 together form a carbocycle of the partial formula -(CR^aR^b)_n-wherein R^a and R^b are independently selected from hydrogen and lower alkyl and n is selected from 2, 3, 4, 5 and 6;

 R^6 is selected from hydrogen and lower alkyl;

R⁷ is sec-butyl or iso-butyl;

R8 is selected from hydrogen and lower alkyl; and

R⁹ is selected from

$$R^{10}$$
 R^{11}
 R^{11}
 R^{11}
 R^{10}
 R^{10}

$$R^{17}$$
— R^{16}
 N
 R^{11}
 R^{12}
 R^{11}
 R^{11}
 R^{12}
 R^{11}
 R^{11}

wherein:

$$R^{10}$$
 is R^{10} is R^{1

R¹¹ is selected from hydrogen and lower alkyl;

R¹² is selected from lower alkyl, halogen, and methoxy, and m is 0-5

where R12 is independently selected at each occurrence; and

$$R^{13}$$
 is $\{ \begin{array}{c} R^{15} \text{ O} \\ N-N \\ H \end{array} \}$

wherein:

R¹⁴ is selected from a direct bond, divalent lower alkyl and

divalent aryl;

R¹⁵ is selected from hydrogen, lower alkyl and aryl;

 $$R^{16}$$ is selected from divalent lower alkyl, divalent aryl, and -(CH2OCH2)pCH2- where p is 1-5; and

- 2. A compound of claim 1 wherein R¹ is hydrogen.
- 3. A compound of claim 1 wherein \mathbb{R}^{1} and \mathbb{R}^{2} are methyl.
- 4. A compound of claim 1 where h R³ is isopropyl.
- 5. A compound of claim 1 wherein R^4 is selected from lower alkyl, aryl, and -CH₂-C₅₋₇carbocycle and R^5 is selected from H and methyl.
- 6. A compound of claim 1 wherein R⁴ is selected from lower alkyl, and R⁵ is selected from H and methyl.
- 7. A compound of claim 1 wherein R^4 and R^5 together form a carbocycle of the partial formula $-(CR^aR^b)_n$ wherein R^a and R^b are independently selected from hydrogen and lower alkyl and n is selected from 2, 3,4, 5 and 6.
 - 8. A compound of claim 1 wherein R⁶ is lower alkyl.
 - 9. A compound of claim 1 wherein R⁸ is hydrogen.

10. A compound of claim 1 wherein
$$R^{10}$$
 is R^{10} and R^{10} is R^{10} R^{11} R^{10} is R^{10} R^{11} R^{10} R^{10} is R^{10} R^{10} is R^{10} $R^$

11. A compound of claim 10 wherein R¹⁴ is selected from divalent aryl and divalent alkyl; R¹⁵ is selected from lower alkyl and aryl; and R¹⁶ is divalent lower alkyl.

12. A compound of claim 1 wherein R^9 is R^{11} and R^{10} is R^{10} R^{16} R^{16} .

13. A compound of claim 12 wherein R¹⁴ is selected from divalent aryl and divalent lower alkyl; R¹⁵ is selected from lower alkyl and aryl; and R¹⁶ is divalent lower alkyl.

- 14. A compound of claim 1 wherein R⁹ is
- $\frac{1}{|I|}R^{13}$ and R^{13} is

lower alkyl.

- 15. A compound of claim/14 wherein R^{15} is lower alkyl; and R^{16} is divalent
- 16. A compound of claim 1 wherein R⁹ is

17. A compound of claim 16 wherein R¹⁶ is selected from divalent lower alkyl and divalent aryl.

19. A compound of claim 18 wherein R¹⁶ is selected from divalent lower alkyl and divalent aryl.

 R^9

is

21. A compound of claim 1 wherein R¹⁷ is
$$\{-N\}$$
 O

23. A compound of claim 1 wherein R^{17} is $\{H, H^{17}, H^$

24. A compound of claim 1 having the structure

H
N
N
O
O
CH₃
O
O
CH₄

25. A compound of claim having the structure

26. A compound of claim 1 having the structure

wherein R⁴ is selected from iso-propyl and sec-butyl.

27. A compound of the formula

wherein, independently at each location:

R² is selected from hydrogen and lower alkyl;

R³ is lower alkyl;

R⁴ is selected from lower alkyl, aryl, and -CH₂-C₅₋₇carbocycle when R⁵ is selected from H and methyl, or R⁴ and R⁵ together form a carbocycle of the partial formula -(CR^aR^b)_n-wherein R^a and R^b are independently selected from hydrogen and lower alkyl and n is selected from 2, 3, 4, 5 and 6;

R⁶ is selected/from hydrogen and lower alkyl;

R⁷ is sec-butyl or iso-butyl;

R⁸ is selected from hydrogen and lower alkyl;

formula

R¹¹ is selected from hydrogen and lower alkyl

R¹² is selected from lower alkyl, halogen, and methoxy, and m is 0-5 where R¹² is independently selected at each occurrence; and

 R^{20} is a reactive linker group having a reactive site that allows R^{20} to be reacted with a targeting moiety, where R^{20} can be bonded to the darbon labeled "x" by either a single or double bond.

- 28. A compound of claim 27 wherein the reactive site is selected from *N*-hydroxysuccinimide ester, *p*-nitrophenyl ester, pentafluorophenyl ester, isothiocyanate, isocyanate, anhydride, acid chloride, and sulfonyl chloride.
 - 29. A compound of claim $2\frac{1}{2}$ wherein R^{20} comprises a hydrazone of the

wherein:

R¹⁴ is selected from a direct/bond, divalent lower alkyl and divalent aryl;

R¹⁵ is selected from hydrogen, lower alkyl and aryl;

R¹⁶ is selected from divalent lower alkyl, divalent aryl, and -(CH₂OCH₂)_DCH₂-

where p is 1-5; and

$$\mathbb{R}^{17}$$
 is selected from $\{X, X, X\}$ $\{X, Y\}$ $\{X, Y$

wherein X is a leaving group.

31. A compound of claim 29 having the formula

wherein R⁴ is selected from iso-propyl and sec-butyl, and R⁵ is hydrogen.

32. A compound of claim 29 having the formula

33. A compound of claim $\frac{27}{100}$ wherein R^{20} comprises a hydrazone of the

formula:

wherein R^{16} is selected from divalent lower alkyl, divalent aryl, and -(CH₂OCH₂)_pCH₂- where p is 1-5, and x identifies the carbon also marked x in claim 27; and R^{17}

is selected from
$$\{X, X, X\}$$
 wherein $\{X, X\}$ is a leaving group.

34. A compound of claim 32 having the formula

35. A compound of the formula

$$R^{1}$$
 R^{2}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{10}
 R^{10}

wherein, independently at each location:

R¹ is selected from hydrogen and lower alkyl;

R² is selected from hydrogen and lower alkyl;

R³ is lower alkyl;

 R^4 is selected from lower alkyl, aryl, and -CH₂-C₅₋₇carbocycle when R^5 is selected from H and methyl, or R^4 and R^5 together form a carbocycle of the partial formula -(CR^aR^b)_n-wherein R^a and R^b are independently selected from hydrogen and lower alkyl and n is selected from 2, 3, 4, 5 and 6;

R⁶ is selected from hydrogen and lower alkyl;

 R^7 is sec-butyl or iso-butyl;

R⁸ is selected from hydrogen and lower alkyl;

R¹¹ is selected from hydrogen and lower alkyl;

R¹² is selected from lower alkyl, halogen, and methoxy, and m is 0-5 where R¹² is independently selected at each occurrence; and

 R^{20} is a reactive linker group having a reactive site that allows R^{20} to be reacted with a targeting moiety, where R^{20} can be bonded to the carbon labeled "x" by either a single or double bond.

- 36. A compound of claim 35 wherein the reactive site is selected from *N*-hydroxysuccinimide ester, *p*-nitrophenyl ester, pentafluorophenyl ester, isothiocyanate, isocyanate, anhydride, acid chloride, and sulfonyl chloride.
- 37. A compound of claim 35 wherein R²⁰ comprises a hydrazone of the formula

$$\begin{cases} O & R^{15} \\ & R^{15} \\ & & R^{16} - R^{17} \\ & & H \end{cases}$$

wherein:

R¹⁴ is selected from a direct bond, divalent lower alkyl and divalent aryl;

R¹⁵ is selected from hydrogen, lower alkyl and aryl;

R¹⁶ is selected from divalent lower alkyl, divalent aryl, and -(CH₂OCH₂)_pCH₂-

where p is 1-5; and

wherein X is a leaving group.

wherein R¹⁶ is selected from divalent lower alkyl, divalent aryl, and (CH₂OCH₂)_pCH₂- where p

is 1-5; and R^{17} is selected from $\{X, X, X\}$ where X

X is a leaving group.

39. A compound of the formula

wherein, independently at each location:

R1 is selected from hydrogen and lower alkyl;

R² is selected from hydrogen and lower alkyl;

R³ is lower alkyl;

 R^4 is selected from lower alkyl, aryl, and -CH₂-C₅₋₇carbocycle when R^5 is selected from H and methyl, or R^4 and R^5 together form a carbocycle of the partial formula -(CR^aR^b)_n-wherein R^a and R^b are independently selected from hydrogen and lower alkyl and n is selected from 2, 3, 4, 5 and 6;

R⁶ is selected from hydrogen and lower alkyl;

R⁷ is sec-butyl or iso-butyl;

- R⁸ is selected from hydrogen and lower alkyl; and
- R^{20} is a reactive linker group comprising a reactive site that allows R^{20} to be reacted with a targeting moiety.
- 40. A compound of claim 39 wherein the reactive site is selected from *N*-hydroxysuccinimide ester, *p*-nitrophenyl ester, pentafluorophenyl ester, isothiocyanate, isocyanate, anhydride, acid chloride, and sulfonyl chloride.
- 41. A compound of claim 39 wherein R²⁰ comprises a hydrazone of the formula

wherein:

R¹⁴ is selected from a direct bond, divalent lower alkyl and divalent aryl;

R¹⁵ is selected from hydrogen, lower alkyl and aryl;

R¹⁶ is selected from divalent lower alkyl, divalent aryl, and -(CH₂OCH₂)_pCH₂-

where p is 1-5; and

 R^{17} is selected from $\{X, X, X\}$ $\{X, X\}$

where X is a leaving group.

$$\begin{array}{c|cccc}
R^{15} & O \\
& & & \\
N - N & & \\
& & & \\
H
\end{array}$$

wherein, R¹⁵ is selected from hydrogen, and lower alkyl, R¹⁶ is selected from divalent lower alkyl, divalent aryl, and -(CH₂OCH₂)_pCH₂- where p is 1-5 and R¹⁷ is selected

from
$$\begin{picture}(20,0) \put(0,0){\line(1,0){150}} \put(0,0){\line(1,0$$

43. A compound of the formula

formula:

44. A compound of the formula

wherein, independently at each location:

R1 is selected from hydrogen and lower alkyl;

R² is selected from hydrogen and lower alkyl;

R³ is lower alkyl;

R⁴ is selected from lower alkyl, aryl, and -CH₂-C₅₋₇carbocycle when R⁵ is selected from H and methyl, or R⁴ and R⁵ together form a carbocycle of the partial formula -(CR^aR^b)_n-wherein R^a and R^b are independently selected from hydrogen and lower alkyl and n is selected from 2, 3, 4, 5 and 6;

R⁶ is selected from hydrogen and lower alkyl;

R⁷ is *sec*-butyl or *iso*-butyl;

R⁸ is selected from hydrogen and lower alkyl;

R¹¹ is selected from hydrogen and lower alkyl/and

 R^{18} is selected from hydrogen, a hydroxyl/protecting group, and a direct bond where OR^{18} represents =0.

- 45. A compound of claim 44 wherein R¹ is hydrogen.
- 46. A compound of claim 44 wherein R¹ and R² are methyl.
- 47. A compound of claim 44 wherein R³ is isopropyl.
- 48. A compound of claim 44 wherein R⁴ is selected from lower alkyl, aryl, and -CH₂-C₅₋₇carbocycle and R⁵ is selected from H and methyl.
- 49. A compound of claim 44 wherein R⁴ is selected from lower alkyl, and R⁵ is selected from H and methyl.
- 50. A compound of claim 44 wherein R⁴ and R⁵ together form a carbocycle of the partial formula -(CR^aR^b)_n- wherein R^a and R^b are independently selected from hydrogen and lower alkyl and n is selected from 2, 3, 4, 5 and 6.
 - 51. A compound of claim 44 wherein R⁶ is lower alkyl.

- 53. A compound of claim 44 wherein R¹¹ is hydrogen.
- 54. A compound of claim 44 wherein $-OR^{18}/is = O$.
- 55. A compound of claim 44 wherein R¹⁸ is hydrogen.
- 56. A compound of claim 44 having the structure

57. A compound of the formula

wherein/independently at each location:

R¹ is selected from hydrogen and lower alkyl;

R² is/selected from hydrogen and lower alkyl;

R³ is lower alkyl;

 R^4 is selected from lower alkyl, aryl, and -CH₂-C₅₋₇carbo cycle when R^5 is selected from H and methyl, or R^4 and R^5 together form a carbocycle of the partial formula -(CR^aR^b)_n-wherein R^a and R^b are independently selected from hydrogen and lower alkyl and n is selected from 2, 3, 4, 5 and 6;

R⁶ is selected from hydrogen and lower alkyl;

R⁷ is sec-butyl or iso-butyl;

R8 is selected from hydrogen and lower alkyl; and

R¹⁹ is selected from hydroxy- and oxo-substituted lower alkyl.

- 58. A compound of claim 57 wherein k^1 is hydrogen.
- 59. A compound of claim 57 wherein R^1 and R^2 are methyl.
- 60. A compound of claim 57 wherein R³ is iso-propyl.
- 61. A compound of claim 77 wherein R⁴ is selected from lower alkyl, aryl, and -CH₂-C₅₋₇carbocycle and R⁵ is selected from H and methyl.
- 62. A compound of claim 57 wherein R⁴ is selected from lower alkyl, and R⁵ is selected from H and methyl.
- 63. A compound of claim 57 wherein R⁴ and R⁵ together form a carbocycle of the partial formula -(CR^aR^b)_n- wherein R^a and R^b are independently selected from hydrogen and lower alkyl and n is selected from 2, 3, 4, 5 and 6.
 - 64. A compound of claim 57 wherein R⁶ is lower alkyl.
 - 65. A compound of claim 57 wherein R⁸ is hydrogen.

- 66. A compound of claim 57 wherein R¹⁹ is oxo-substituted lower alkyl.
- 67. A compound of claim 57 having the structure

- 68. A composition comprising a compound of any one of claims 1-26 and a pharmaceutically acceptable carrier, diluent or excipient
- 69. A composition comprising a compound of any one of claims 40-64 and a pharmaceutically acceptable carrier, diluent or excipient.
- 70. A method for killing a cell, the method comprising contacting the cell with a lethal amount of the compound of claim 1-26
- 71. A method for killing a cell, the method comprising administering to the cell a lethal amount of the compound of any one of claims 43-67.
 - 72. A method of killing a cell comprising
- a. delivering a compound of any one of claims 1-26 to a cell, where the compound enters the cell;
 - b. cleaving/mAb from the remainder of the compound; and
 - c. killing the cell with the remainder of the compound.
 - 73. A method of killing a cell comprising

- a. delivering a compound of any one of claims 43-67 to a cell, where the compound enters the cell;
 - b. cleaving mAb from the remainder of the compound; and
 - c. killing the cell with the remainder of the compound.
- 74. A method of killing or inhibiting the multiplication of tumor cells or cancer cells in a human or other animal, the method comprising administering to the human or animal a therapeutically effective amount of a compound of any one of claims 1-26.
 - 75. A method of killing or inhibiting the multiplication of tumor cells or cancer cells in a human or other animal, the method comprising administering to the human or animal a therapeutically effective amount of a compound of any one of claims 43-67.