

UNIVERSIDADE FEDERAL DE SERGIPE

CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA – DMA

DISCIPLINA: Fundamentos Elementares da Matemática

TURMAS: 01 e 02

PROFESSOR: J. Anderson Valença Cardoso

PERÍODO: 2022-1 DATA: 03/10/2022

Lista de Exercícios 3

- 1. Escreva uma prova para cada uma das afirmações a seguir (reescreva as afirmações, quando necessário, para facilitar o entendimento):
 - (a) Sejam $x, y \in \mathbb{R}$. Se $x^4 + y^6 = 0$, então x = 0 e y = 0.
 - (b) Seja $n \in \mathbb{Z}$. Se $(n+1)^2 1$ é par, então n é par.
 - (c) Seja $m, n \in \mathbb{Z}$. Se mn é impar, então $n^2 + m^2$ é par.
 - (d) Sejam $x, y \in \mathbb{R}$. Se x é racional e y é irracional, então xy é irracional.
 - (e) Sejam $a, b, c \in \mathbb{Z}$. Se a não divide bc, então a não divide b.
 - (f) Sejam $a, b \in \mathbb{R}$. Então $ab \leq \frac{a^2 + b^2}{2}$.
 - (g) Sejam $a, b \in \mathbb{N}, a \neq 0$ e $b \neq 0$. Então $(a + b) \left(\frac{1}{a} + \frac{1}{b}\right) \geq 4$.
 - (h) Sejam $a,b\in\mathbb{R}.$ Se $a\neq 0$ e $b\neq 0,$ então $\frac{a}{b}+\frac{b}{a}\geq 2.$
 - (i) Sejam $a, b \in \mathbb{R}$. Se $a \ge 0$ e $b \ge 0$, então $\sqrt{ab} \le \frac{a+b}{2}$.
 - (j) Prove que $x^2 + \frac{1}{x^2} \ge 2$, para todo $x \in \mathbb{R}$ e $x \ne 0$.
 - (k) Prove que se $n \in \mathbb{Z}$, então $n^2 + 3n + 5$ é impar.
 - (l) Prove que para todos $x, y \in \mathbb{R}$ temos |xy| = |x||y|.
 - (m) Dados $x, y \in \mathbb{R}$, definimos

$$\min\{x,y\} = \left\{ \begin{array}{l} x, \text{ se } x \leq y \\ y, \text{ se } y \leq x \end{array} \right. \quad \text{e} \quad \max\{x,y\} = \left\{ \begin{array}{l} x, \text{ se } x \geq y \\ y, \text{ se } y \geq x \end{array} \right..$$

i. Prove que

$$\min\{x,y\} = \frac{x+y-|x-y|}{2}$$
 e $\max\{x,y\} = \frac{x+y+|x-y|}{2}$;

- ii. Prove que $\max\{x, y\} + \min\{x, y\} = x + y$.
- (n) Prove que m e n são números inteiros pares (ambos) se, e somente se, mn é par.
- (o) Prove que m e n são números inteiros ímpares (ambos) se, e somente se, mn é ímpar.
- (p) Para todo $n \in \mathbb{Z}$, as seguintes afirmações são equivalentes:
 - i. n é um número par;
 - ii. n-1 é um número ímpar;
 - iii. n^2 é um número par.
- (q) Seja $n \in \mathbb{N}$. n é par se, e somente se, 7n+4 é par.
- (r) Sejam $a, b, c \in \mathbb{R}$. Prove que se $a \neq 0$ então existe uma única solução para a equação na variável x: ax + b = c.

- (s) Sejam $a,b\in\mathbb{Z}$. Prove que se a e b são ímpares, então existe um único inteiro c tal que |a-c|=|b-c|.
- 2. Prove que cada uma das afirmações a seguir são válidas para todo $n \in \mathbb{N}$.

(a)
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
;

(b)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{(n+1)};$$

(c)
$$1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
.

- 3. Prove as seguintes afirmações:
 - (a) $2^n > n^2$ para todo $n \in \mathbb{N}$ tal que $n \ge 5$;
 - (b) $1 + 2n \le 3n$ para todo $n \in \mathbb{N}$;
 - (c) $1 + 3n < n^3$ para todo $n \in \mathbb{N}$ tal que $n \ge 2$;
 - (d) $\left(1 + \frac{1}{n}\right)^n < n$ para todo $n \in \mathbb{N}$ tal que $n \ge 3$;.
- 4. Encontre uma fórmula para $1+4+7+\cdots+(3n-2)$, onde n é número natural, e então verifique sua fórmula pelo método de indução matemática.
- 5. Prove que não existe inteiro positivo m tal que $2m < m^2 < 3m$.
- 6. Prove que não existem inteiros m e n tais que 2m + 4n = 7.
- 7. Prove que a igualdade $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$ não vale para números reais x>0 e y>0.
- 8. Prove a validade ou falsidade das sequintes afirmações:
 - (a) $\forall x \in \mathbb{R}, x > 0 \Rightarrow x^2 x > 0$;
 - (b) $n^2 n + 17$ é um número primo para todo n natural;
 - (c) Existem um número racional x e um número irracional y tais que x^y é um número irracional.
 - (d) Se x e y são números racionais, então x^y é um número racional.

Bons Estudos!