homework 9, version 1

Submission by: Neham Soni (neham@mit.edu)

Homework 9: Climate modeling I

18.S191, fall 2020

```
student = ▶ (name = "Neham Soni", kerberos_id = "neham")

    # edit the code below to set your name and kerberos ID (i.e. email without @mit.edu)

    student = (name = "Neham Soni", kerberos_id = "neham")

    # you might need to wait until all other cells in this notebook have completed running.

    # scroll around the page to see what's up
```

Let's create a package environment:

```
begin
import Pkg
Pkg.activate(mktempdir())
Pkg.add([
"Plots",
"PlutoUI",
"LaTeXStrings",
"Distributions",
"Random",
])
using LaTeXStrings
using Plots
using Plots
using PlutoUI
using Random, Distributions
end
```

Introduction to Climate Modelling | Week 11 | MIT...

Before working on the homework, make sure that you have watched the first lecture on climate modeling 🖢 . We have included the important functions from this lecture notebook in the next cell. Feel free to have a look!

```
Main.workspace1359.Model
```

```
    module Model

• const S = 1368; # solar insolation [W/m^2] (energy per unit time per unit area)
• const α = 0.3; # albedo, or planetary reflectivity [unitless]

    const B = -1.3; # climate feedback parameter [W/m^2/°C].

• const TO = 14.; # preindustrial temperature [°C]
• absorbed_solar_radiation(; \alpha=\alpha, S=S) = S*(1 - \alpha)/4; # [W/m^2]

    outgoing_thermal_radiation(T; A=A, B=B) = A - B*T;

• const A = S*(1. - \alpha)/4 + B*T0; \# \lceil W/m^2 \rceil.
 greenhouse_effect(CO2; a=a, CO2_PI=CO2_PI) = a*log(CO2/CO2_PI);
const a = 5.0; # CO2 forcing coefficient [W/m^2]
const CO2_PI = 280.; # preindustrial CO2 concentration [parts per million; ppm];
CO2_const(t) = CO2_PI; # constant CO2 concentrations
 const C = 51.; # atmosphere and upper-ocean heat capacity [J/m^2/^{\circ}C]
 function timestep!(ebm)
      append!(ebm.T, ebm.T[end] + ebm.∆t*tendency(ebm));
      append!(ebm.t, ebm.t[end] + ebm.∆t);
 tendency(ebm) = (1. /ebm.C) * (
      + absorbed_solar_radiation(α=ebm.α, S=ebm.S)
      - outgoing_thermal_radiation(ebm.T[end], A=ebm.A, B=ebm.B)
      + greenhouse_effect(ebm.CO2(ebm.t[end]), a=ebm.a, CO2_PI=ebm.CO2_PI)
 );
 begin
      mutable struct EBM
          T::Array{Float64, 1}
          t::Array{Float64, 1}
          Δt::Float64
          CO2::Function
          C::Float64
          a::Float64
          A::Float64
          B::Float64
          CO2_PI::Float64
          α::Float64
          S::Float64
      # Make constant parameters optional kwargs
      EBM(T::Array{Float64, 1}, t::Array{Float64, 1}, Δt::Real, CO2::Function;
          C=C, a=a, A=A, B=B, CO2_PI=CO2_PI, \alpha=\alpha, S=S) = (
          EBM(T, t, \Deltat, CO2, C, a, A, B, CO2_PI, \alpha, S)
      );
      # Construct from float inputs for convenience
      EBM(T0::Real, t0::Real, Δt::Real, C02::Function;
          C=C, a=a, A=A, B=B, CO2_PI=CO2_PI, \alpha=\alpha, S=S) = (
          EBM(Float64[T0], Float64[t0], Δt, CO2;
              C=C, a=a, A=A, B=B, CO2_PI=CO2_PI, \alpha=\alpha, S=S);
 end:
```

```
function run!(ebm::EBM, end_year::Real)
          while ebm.t[end] < end_year</pre>
              timestep!(ebm)
      end:
      run!(ebm) = run!(ebm, 200.) # run for 200 years by default
- CO2_hist(t) = CO2_PI * (1 .+ fractional_increase(t));
 fractional_increase(t) = ((t .- 1850.)/220).^3;
      CO2_RCP26(t) = CO2_PI * (1 .+ fractional_increase(t) .* min.(1., exp.(-((t
  .-1850.).-170)/100)));
      RCP26 = EBM(T0, 1850., 1., CO2\_RCP26)
      run!(RCP26, 2100.)
      CO2_RCP85(t) = CO2_PI * (1 .+ fractional_increase(t) .* max.(1., exp.(((t
  .-1850.).-170)/100)));
      RCP85 = EBM(T0, 1850., 1., CO2\_RCP85)
      run!(RCP85, 2100.)
 end
```

Exercise I - policy goals under uncertainty

A recent ground-breaking **review paper** produced the most comprehensive and up-to-date estimate of the *climate feedback parameter*, which they find to be

$$B pprox \mathcal{N}(-1.3, 0.4),$$

i.e. our knowledge of the real value is normally distributed with a mean value $\overline{B}=-1.3$ W/m²/K and a standard deviation $\sigma=0.4$ W/m²/K. These values are not very intuitive, so let us convert them into more policy-relevant numbers.

Definition: Equilibrium climate sensitivity (ECS) is defined as the amount of warming ΔT caused by a doubling of ${\rm CO_2}$ (e.g. from the pre-industrial value 280 ppm to 560 ppm), at equilibrium.

At equilibrium, the energy balance model equation is:

$$0 = rac{S(1-lpha)}{4} - (A-BT_{eq}) + a \ln \left(rac{2 ext{ CO}_{ ext{2PI}}}{ ext{CO}_{ ext{2PI}}}
ight)$$

From this, we subtract the preindustrial energy balance, which is given by:

$$0=\frac{S(1-\alpha)}{4}-(A-BT_0),$$

The result of this subtraction, after rearranging, is our definition of ECS:

$$ext{ECS} \equiv T_{eq} - T_0 = -rac{a \ln(2)}{B}$$

• ECS(;
$$B=\bar{B}$$
, $a=Model.a$) = $-a*log(2.)./B$;

The plot below provides an example of an "abrupt $2xCO_2$ " experiment, a classic experimental treatment method in climate modelling which is used in practice to estimate ECS for a particular model. (Note: in complicated climate models the values of the parameters a and b are not specified a priori, but emerge as outputs of the simulation.)

The simulation begins at the preindustrial equilibrium, i.e. a temperature $T_0=14^{\circ}\mathrm{C}$ is in balance with the pre-industrial $\mathrm{CO_2}$ concentration of 280 ppm until $\mathrm{CO_2}$ is abruptly doubled from 280 ppm to 560 ppm. The climate responds by warming rapidly, and after a few hundred years approaches the equilibrium climate sensitivity value, by definition.

Exercise 1.1 - Develop understanding for feedbacks and climate sensitivity

 \leftarrow Change the value of B using the slider above. What does it mean for a climate system to have a more negative value of B? Explain why we call B the climate feedback parameter.

observations_from_changing_B =

B the climate feedback parameter can be thouth of a self correcting parameter in a model, i.e rate of cange of tem depends upon the feedback, while the opposite sign implies its tendency to return at a stable point. Smaller the Value that is larger the negitive slope making it more easier and faster to stabelize.

rightharpoonup What happens when B is greater than or equal to zero?

observations_from_nonnegative_B =

As soon as B goes beyong 0, the whole model turns into a unstable point, with positive feedback making it grow more if it tries to.

observations_from_nonnegative_B = md"""

• As soon as B goes beyong O , the whole model turns into a unstable point, with positive feedback making it grow more if it tries to.

Reveal answer:

Create a graph to visualize ECS as a function of B.

Exercise 1.2 - Doubling CO₂

To compute ECS, we doubled the CO_2 in our atmosphere. This factor 2 is not entirely arbitrary: without substantial effort to reduce CO_2 emissions, we are expected to **at least** double the CO_2 in our atmosphere by 2100.

Right now, our CO_2 concentration is 415 ppm – 1.482 times the pre-industrial value of 280 ppm from 1850.

The ${\rm CO_2}$ concentrations in the *future* depend on human action. There are several models for future concentrations, which are formed by assuming different *policy scenarios*. A baseline model is RCP8.5 - a "worst-case" high-emissions scenario. In our notebook, this model is given as a function of t.

In what year are we expected to have doubled the CO₂ concentration, under policy scenario RCP8.5?

```
expected_double_CO2_year = 2050

expected_double_CO2_year = let

t[findfirst(x-> x>2*Model.CO2_PI,Model.CO2_RCP85.(t))]
end
```

```
Hint
```

Exercise 1.3 - *Uncertainty in B*

The climate feedback parameter B is not something that we can control—it is an emergent property of the global climate system. Unfortunately, B is also difficult to quantify empirically (the relevant processes are difficult or impossible to observe directly), so there remains uncertainty as to its exact value.

A value of B close to zero means that an increase in CO_2 concentrations will have a larger impact on global warming, and that more action is needed to stay below a maximum temperature. In answering such policy-related question, we need to take the uncertainty in B into account. In this exercise, we will do so using a Monte Carlo simulation: we generate a sample of values for B, and use these values in our analysis.

0.4• $\bar{B} = -1.3$; $\sigma = 0.4$

B_samples =

▶Float64[-1.45001, -2.39315, -0.991171, -1.16214, -1.35234, -1.44575, -1.72008, -1.6

Generate a probability distribution for the ECS based on the probability distribution function for *B* above. Plot a histogram.

```
ECS_samples =
    ▶Float64[2.39014, 1.44819, 3.49661, 2.98221, 2.56276, 2.39719, 2.01487, 3.22547, 2.
    • ECS_samples = ECS.(;B=B_samples,a=Model.a)
```

Answer:

3.0351895924011676

mean(ECS_samples)

It looks like the ECS distribution is **not normally distributed**, even though B is.

How does $\overline{\mathrm{ECS}(B)}$ compare to $\overline{\mathrm{ECS}(\overline{B})}$? What is the probability that $\overline{\mathrm{ECS}(B)}$ lies above $\overline{\mathrm{ECS}(\overline{B})}$?

```
mean_ECS = 3.0351895924011676
    mean_ECS=mean(ECS_samples)
```

```
probability = 0.49799919967987194
    probability= count(x->x>ECS_of_mean_B,ECS_samples)/length(ECS_samples)
```

ANSWER = We can cleary see mean of all ECS values is much more than ECS value of mean B, even though probability of of getting ECS value of a certain B more than ECS value of mean B is 1/2, which suggest ECS(B) function is a increasing func as seen by exercise 1.2

Does accounting for uncertainty in feedbacks make our expectation of global warming better (less implied warming) or worse (more implied warming)?

observations_from_the_order_of_averaging =
It made more worse (implied warming) since,

$$\overline{\mathrm{ECS}(B)} > \mathrm{ECS}(\overline{B})$$

but getting a value above $\mathrm{ECS}(\overline{B})$ is as probable as getting below. but accounting for the extream large values of ECS when B touches -> 0, made it somewhat neither better nor worse.

Exercise 1.5 - Running the model

In the lecture notebook we introduced a mutable struct EBM (energy balance model), which contains:

- the parameters of our climate simulation (C, a, A, B, CO2_PI, α, S, see details below)
- a function CO2, which maps a time t to the concentrations at that year. For example, we use the function t -> 280 to simulate a model with concentrations fixed at 280 ppm.

EBM also contains the simulation results, in two arrays:

- T is the array of tempartures (°C, Float64).
- t is the array of timestamps (years, Float64), of the same size as T.

Properties of an EBM obect:

Name	Description
Α	Linearized outgoing thermal radiation: offset [W/m²]
В	Linearized outgoing thermal radiation: slope. or: climate feedback parameter [W/m²/°C]
α	Planet albedo, 0.0-1.0 [unitless]

Name	Description
S	Solar insulation [W/m²]
C	Atmosphere and upper-ocean heat capacity [J/m²/°C]
а	CO ₂ forcing effect [W/m ²]
CO2_PI	Pre-industrial CO ₂ concentration [ppm]

You can set up an instance of EBM like so:

Have look inside this object. We see that T and t are initialized to a 1-element array.

Let's run our model:

Again, look inside simulated_model and notice that T and t have accumulated the simulation results.

In this simulation, we used T0 = 14 and $C02 = t \rightarrow 280$, which is why T is constant during our simulation. These parameters are the default, pre-industrial values, and our model is based on this equilibrium.

Run a simulation with policy scenario RCP8.5, and plot the computed temperature graph. What is the global temperature at 2100?

```
simulated_rcp85_model =
```



```
ebm = Model.EBM(14.0,1850,1,Model.CO2_RCP85)
Model.run!(ebm,2120)
p=plot(ebm.t,ebm.T,xlabel="Year",ylabel="Temp [°C]",label="Temp Vs Year")
scatter!(p,[(ebm.t[end-20],ebm.T[end-20])],label="Global Temp at 2100",legend=:topleft)
end
```

Additional parameters can be set using keyword arguments. For example:

```
Model.EBM(14, 1850, 1, t -> 280.0; B=-2.0)
```

Creates the same model as before, but with B = -2.0.

Write a function temperature_response that takes a function CO2 and an optional value B as parameters, and returns the temperature at 2100 according to our model.

temperature_response (generic function with 2 methods)

```
function temperature_response(CO2::Function, B::Float64=-1.3)
    ebm = Model.EBM(14, 1850, 1, CO2; B=B)
    Model.run!(ebm,2100)
    return ebm.T[end]
    end
```

```
14.0
```

```
• temperature_response(t -> 280)
```

17.567568380496546

```
temperature_response(Model.CO2_RCP85)
```

```
temperature_response(Model.CO2_RCP85, -1.0)
```

Exercise 1.6 - Application to policy relevant questions

We talked about two *emissions scenarios*: RCP2.6 (strong mitigation - controlled CO2 concentrations) and RCP8.5 (no mitigation - high CO2 concentrations). These are given by the following functions:

```
▶ (280.0, 280.0)

• Model.CO2_RCP26(t_scenario_test), Model.CO2_RCP85(t_scenario_test)
```

```
1850
• @bind t_scenario_test Slider(t; show_value=true, default=1850)
```

```
t = 1850:2100
```

We are interested in how the **uncertainty in our input** B (the climate feedback paramter) propagates through our model to determine the **uncertainty in our output** T(t), for a given emissions scenario. The goal of this exercise is to answer the following by using Monte Carlo Simulation for uncertainty propagation:

What is the probability that we see more than 2°C of warming by 2100 under the lowemissions scenario RCP2.6? What about under the high-emissions scenario RCP8.5?

```
prob_RCP26 = 0.4737895158063225

prob_RCP26=count(x->x>16.0,temperature_response.
   (Model.CO2_RCP26,B_samples))/length(B_samples)
```

```
prob_RCP85 = 0.6332533013205283

• prob_RCP85=count(x->x>16.0,temperature_response.
    (Model.CO2_RCP85,B_samples))/length(B_samples)
```

Exercise 2 - How did Snowball Earth melt?

In lecture 21 (see below), we discovered that increases in the brightness of the Sun are not sufficient to explain how Snowball Earth eventually melted.

Nonlinear Climate Dynamics and Snowball Earth | Week 11 | MIT 18.S19...

We talked about a second theory – a large increase in CO_2 (by volcanoes) could have caused a strong enough greenhouse effect to melt the Snowball. If we imagine that the CO_2 then decreased (e.g. by getting sequestered by the now liquid ocean), we might be able to explain how we transitioned from a hostile Snowball Earth to today's habitable "Waterball" Earth.

In this exercise, you will estimate how much CO₂ would be needed to melt the Snowball and visualize a possible trajectory for Earth's climate over the past 700 million years by making an interactive *bifurcation diagram*.

Exercise 2.1

In the <u>lecture notebook</u> (video above), we had a bifurcation diagram of S (solar insolation) vs T (temperature). We increased S, watched our point move right in the diagram until we found the tipping point. This time we will do the same, but we vary the CO_2 concentration, and keep S fixed at its default (present day) value.

Below we have an empty diagram, which is already set up with a $\mathrm{CO_2}$ vs T diagram, with a logirthmic horizontal axis. Now it's your turn! We have written some pointers below to help you, but feel free to do it your own way.

Earth's CO2 concentration bifurcation diagram

We used two helper functions:

add_cold_hot_areas! (generic function with 1 method)

add_reference_points! (generic function with 1 method)

Create a slider for CO2 between CO2min and CO2max. Just like the horizontal axis of our plot, we want the slider to be *logarithmic*.

C02 = 489778.81936844665

Write a function step_model! that takes an existing ebm and new_CO2, which performs a step of our interactive process:

- Reset the model by setting the ebm.t and ebm.T arrays to a single element. Which value?
- Assign a new function to ebm. CO2. What function?
- Run the model.

```
step_model! (generic function with 1 method)

function step_model!(ebm::Model.EBM, CO2::Real)

# your code here
ebm.t=[0.]
ebm.T=[ebm.T[end]]
ebm.CO2=x->CO2
Model.run!(ebm)

return ebm
end
```

Inside the plot cell, call the function step_model!.

Parameters

```
CO2min = 10
CO2max = 10000000
Tneo = -48
```

The albedo feedback is implemented by the methods below:

```
function Model.timestep!(ebm)
ebm.α = α(ebm.T[end]) # Added this line
append!(ebm.T, ebm.T[end] + ebm.Δt*Model.tendency(ebm));
append!(ebm.t, ebm.t[end] + ebm.Δt);
end
```

If you like, make the visualization more informative! Like in the lecture notebook, you could add a trail behind the black dot, or you could plot the stable and unstable branches. It's up to you!

Exercise 2.2

 \leftarrow Find the **lowest CO₂ concentration** necessary to melt the Snowball, programatically.

```
equi (generic function with 1 method)

• function equi(CO2::Int64)
• ebm = Model.EBM(Tneo, 0., 5., x -> CO2)
```

```
Model.run!(ebm,500)
ebm.T[end]
end
```

```
co2_to_melt_snowball = 478380
```

```
Hint
```

```
Hint
```

Exercise XX: Lecture transcript

(MIT students only)

Please see the link for hw 9 transcript document on **Canvas**. We want each of you to correct about 500 lines, but don't spend more than 20 minutes on it. See the the beginning of the document for more instructions. :point_right: Please mention the name of the video(s) and the line ranges you edited:

```
lines_i_edited =
```

Abstraction, lines 1-219; Array Basics, lines 1-137; Course Intro, lines 1-144 (for example)

```
    lines_i_edited = md"""
    Abstraction, lines 1-219; Array Basics, lines 1-137; Course Intro, lines 1-144 (_for example_)
    """
```

Function library

```
Just some helper functions used in the notebook.
```

```
hint (generic function with 1 method)

almost (generic function with 1 method)

still_missing (generic function with 2 methods)

keep_working (generic function with 2 methods)
```

TODO