<u>Pozn.:</u> výsledky a řešení příkladů budou dostupné později v samostatném dokumentu.

ProCvič.1.1:

- a) V zapojení podle obrázku je v základním stavu spínač S rozepnutý a přepínač Př. je v horní poloze. V čase $t_0 = 0$ dojde k sepnutí spínače S. Vypočítejte časový průběh proudu $i_L(t)$ procházejícího induktorem a časový průběh napětí $u_L(t)$ na induktoru.
- b) V čase $t_1 = 0.825$ ms dojde k přepnutí přepínače Př. z horní do dolní polohy (spínač S zůstává sepnutý). Vypočítejte časový průběh proudu $i_L(t)$ procházejícího induktorem a časový průběh napětí $u_L(t)$ na induktoru.

c) V čase $t_2 = 1,175$ ms dojde k přepnutí přepínače Př. z horní do dolní polohy (spínač S zůstává sepnutý). Vypočítejte časový průběh proudu $i_L(t)$ procházejícího induktorem a časový průběh napětí $u_L(t)$ na induktoru.

- d) V čase $t_3 = 1,325$ ms dojde k přepnutí přepínače Př. zpět z dolní do horní polohy (spínač S zůstává sepnutý). Vypočítejte časový průběh proudu $i_L(t)$ procházejícího induktorem a časový průběh napětí $u_L(t)$ na induktoru.
- e) Časové průběhy proudu $i_L(t)$ i napětí $u_L(t)$ zakreslete do dvou grafů pod sebe se shodnou stupnicí a nulou času t pro čas v rozmezí -0.1 až 1.4 ms.

ProCvič.1.2:

$$u(t) = U_{\rm m} \cdot \sin 2\pi f t$$
 [V, s]

 $U_{\rm m}$ (maximální hodnota), f = 50 Hz, U = 230 V (efektivní hodnota), C = 4 $\mu {
m F}$

- a) Kapacitor C je napájen z nezávislého zdroje napětí u(t) rozvodné sítě 230 V/50 Hz. Časový průběh napětí u(t) je harmonický a je vyjádřen matematickým předpisem (viz obrázek a údaje pod ním).
- b) Vypočítejte časový průběh proudu $i_C(t)$ tekoucího kapacitorem a časový průběh okamžitého výkonu p(t) dodávaného do obvodu napěťovým zdrojem. Vyjádřete oba průběhy pomocí matematického výrazu a načrtněte je v měřítku do grafu pro čas v rozmezí $t \in \langle -5 \text{ ms}, 25 \text{ ms} \rangle$. Určete maximální I_{Cmax} , P_{max} , a minimální I_{Cmin} , P_{min} , hodnoty obou průběhů během periody.
- c) Vypočítejte průměrnou (střední) hodnotu P okamžitého výkonu p(t) za dobu jedné periody (= činný výkon). Určete hodnoty energie $W_{\mathrm{T/4}}$, $W_{\mathrm{T/2}}$, W_{T} a W_{24} dodané zdrojem do kapacitoru za první čtvrtinu (T/4) a polovinu (T/2) periody, za periodu (T) a za 24 hodin. Určete maximální W_{Cmax} a minimální W_{Cmin} hodnotu energie akumulované (uložené) v kapacitoru v průběhu periody.

ProCvič.1.3:

- a) Zapojení podle obrázku obsahuje nezávislý zdroj časově proměnného proudu i(t) s periodickým časovým průběhem podle druhého obrázku ($I_{\min} = 0.09$ A, $I_{\max} = 0.11$ A, $\Delta t_1 = 35$ μ s, $\Delta t_2 = 15$ μ s) a nezávislý zdroj stejnosměrného napětí $U_0 = 3.6$ V.
- b) Vypočítejte velikosti el. náboje $Q(\Delta t_1)$ a $Q(\Delta t_2)$, který dodá zdroj proudu (např. nabíječka) do zdroje napětí (např. akumulátoru) v průběhu časového intervalu Δt_1 resp. Δt_2 . Jaký náboj dodá během jedné periody T?
- c) Vypočítejte střední hodnotu za periodu (stejnosměrnou složku) I_0 proudu i(t).
- d) Vypočítejte jak dlouho by trvalo úplné nabití akumulátoru s kapacitou 800 mAh (z plně vybitého stavu, zjednodušeně uvažujte 100% účinnost nabíjení) proudem s uvažovaným průběhem.

ProCvič.1.4:

$$U_0 = 12 \text{ V}, R = 120 \Omega$$

$$I_{\text{min}} = 0.09 \text{ A}, I_{\text{max}} = 0.11 \text{ A},$$

 $t_1 = 15 \text{ } \mu\text{s}, T = 50 \text{ } \mu\text{s}$

- a) Zapojení podle obrázku obsahuje nezávislý zdroj proudu i(t) s periodickým časovým průběhem proudu podle druhého obrázku ($I_{\min} = 0.09$ A, $I_{\max} = 0.11$ A, $t_1 = 15$ μ s, T = 50 μ s), nezávislý zdroj stejnosměrného napětí U_0 a lineární rezistor R.
- b) Vypočítejte efektivní hodnotu I proudu i(t). Vypočítejte průměrnou (střední) hodnotu P_R (okamžitého) výkonu spotřebovávaného rezistorem R za dobu jedné periody.
- c) Určete časový průběh okamžitého výkonu $p_0(t)$ dodávaného do obvodu napěťovým zdrojem U_0 . Načrtněte časový průběh $p_0(t)$ do grafu.
- d) Vypočítejte průměrnou (střední) hodnotu P_0 okamžitého výkonu zdroje $p_0(t)$ za dobu jedné periody.
- e) Určete časový průběh napětí $u_R(t)$ na rezistoru R, načrtněte tento časový průběh do grafu.
- f) Určete časový průběh napětí u(t) na proudovém zdroji a načrtněte tento časový průběh do grafu. Vypočítejte střední hodnotu za periodu (stejnosměrnou složku) U_{i0} napětí $u_i(t)$.

ProCvič.1.5:

a) Rezistor R je napájen z nezávislého zdroje napětí u(t). Časový průběh napětí u(t) je periodický a má tvar podle jednoho z následujících obrázků (popis průběhů matematickým výrazem viz níže).

Pro všechny tři možné průběhy:

- b) Určete časový průběh okamžitého výkonu p(t) dodávaného zdrojem, načrtněte časový průběh p(t) do grafu.
- c) Vypočítejte průměrnou (střední) hodnotu P okamžitého výkonu zdroje p(t) za dobu jedné periody.
- d) Vypočítejte efektivní hodnotu U napětí u(t).
- e) Vypočítejte střední hodnotu za periodu (stejnosměrnou složku) I_0 proudu i(t) procházejícího rezistorem R.

$$u(t) = U_{\rm m} \cdot \sin 2\pi f t \quad [V, s]$$

 $U_{\rm m}$ (maximální hodnota), f = 50 Hz, U = 230 V (efektivní hodnota)

$$u(t)=U_{\mathrm{m}}$$
. $sin\ 2\pi f\ t$ [V, s] pro $t\in\langle k\ T,(k+1/2)\ T\rangle,k...$ celé číslo $u(t)=0$ V pro $t\in\langle (k+1/2)\ T,(k+1)\ T\rangle,k...$ celé číslo

 $U_{\rm m}$ stejná jako pro 1. průběh, f=50 Hz, T=1/f

$$u(t) = U_{\rm m} \cdot |\sin 2\pi f_{\rm sin} t|$$
 [V, s]

U_m stejná jako pro 1. průběh

Pozor!: f = 100 Hz, T = 1/f, $f_{\sin} = f/2 = 50$ Hz ($T_{\sin} = 1/f_{\sin} = 2.T$)

ProCvič.1.6:

$$R_1 = 2 \text{ k}\Omega, R_2 = 6 \text{ k}\Omega$$

Vypočítejte hodnotu výsledného odporu kombinace rezistorů z pohledu vyznačené dvojice svorek (R = ?). Ostatní svorky obvodu zůstávají nepoužity (jsou naprázdno).

ProCvič.1.7:

$$R_1 = 5 \text{ k}\Omega$$
, $R_2 = 15 \text{ k}\Omega$

Vypočítejte hodnotu výsledného odporu kombinace rezistorů z pohledu vyznačené dvojice svorek (R = ?).

ProCvič.1.8:

$$R_1 = 1 \text{ k}\Omega$$
, $R_2 = 1 \text{ k}\Omega$

$$R_1 = 1 \text{ k}\Omega$$
, $R_2 = 2 \text{ k}\Omega$, $R_3 = 1 \text{ k}\Omega$, $R_4 = 1 \text{ k}\Omega$

Vypočítejte hodnotu výsledného odporu kombinace rezistorů z pohledu vyznačené dvojice svorek (R = ?).

ProCvič.1.9:

$$R_1 = 8 \text{ k}\Omega, R_2 = 16 \text{ k}\Omega, R_3 = 12 \text{ k}\Omega, R_4 = 4 \text{ k}\Omega$$

Vypočítejte hodnotu výsledného odporu kombinace rezistorů z pohledu vyznačené dvojice svorek (R_{AB} = ?). Ostatní svorky obvodu zůstávají nepoužity (jsou naprázdno).

ProCvič.1.10:

$$R_1 = 8 \text{ k}\Omega, R_2 = 16 \text{ k}\Omega,$$

 $R_3 = 12 \text{ k}\Omega, R_4 = 4 \text{ k}\Omega$

Vypočítejte hodnotu výsledného odporu kombinace rezistorů z pohledu vyznačené dvojice svorek (R_{CD} = ?). Ostatní svorky obvodu zůstávají nepoužity (jsou naprázdno).

ProCvič.1.11:

$$R_1 = 400 \ \Omega, R_3 = 1200 \ \Omega,$$

 $R_4 = 300 \ \Omega, R_5 = 960 \ \Omega$

Vypočítejte hodnotu výsledného odporu kombinace rezistorů z pohledu vyznačené dvojice svorek (R = ?).

ProCvič.1.12:

Vypočítejte hodnotu výsledného odporu kombinace rezistorů z pohledu vyznačené dvojice svorek (R = ?). Ostatní svorky obvodu zůstávají nepoužity (jsou naprázdno).

$$R_1 = 140 \ \Omega, R_2 = 240 \ \Omega,$$

 $R_3 = 320 \ \Omega, R_5 = 480 \ \Omega$

