

ITI108 Assignment 1 (Total: 100 marks)

Designing and implement a Deep Learning Model for Human-Instruction Controlled Autonomous Robot(Total marks 100)

1. Instructions

- 1. Complete all the tasks in this assignment.
- 2. Submission date: 31 Jan 2024 23:59
- 3. This is an individual assignment.

2. How to submit the answer

Your final submission should contain the following.

- The jupyter notebook ITI108(2023S2) assg1 123456A.ipynb or ITI108(2023S2) assg1 123456A.py with the python code
- A short video clips to demonstrate how your code interact with the robot in the simulator
- Submit the files to BrightSpace.

Submission Guidelines:

Submit a code (Python scripts) with comments and explanations.

Provide clear documentation on how to run your code and reproduce your results.

Video of the demo should not be more than 5mins.

Important Note: Plagiarism will not be tolerated. Ensure proper citation and references for all sources used in your assignment.

3. Objective

The objective of this assignment is to create a deep learning model in Python that allows an autonomous robot to be controlled using human instructions. You need to demonstrate the human interaction with the robot in the simulator with the deep learning model.

4. <u>Task</u>

Data Collection and Preprocessing

Define the types of data you'll need for training the model, such as sensor data from the robot, audio input for human instructions, and any other relevant data sources. Describe how you plan to collect and preprocess this data to make it suitable for training.

Model Architecture

Design a deep learning architecture for the robot's control system. This architecture should take in human instructions and sensor data, and output control commands for the robot. Explain the rationale behind your design and any pre-trained models you plan to use.

Data Collection and Training

Implement data collection and training procedures for the deep learning model. Describe the data pipeline and data augmentation techniques used, and provide details on model training, including hyperparameters and training strategies.

Human-Instruction Interface

Develop an interface for human instructions. This could be in the form of voice commands, text input, or other modalities. Discuss the techniques used to understand and process human instructions.

Robot Control and Evaluation

Integrate the trained model with the robot and evaluate its performance. Test the robot's ability to understand and follow human instructions in various scenarios. Use the simulation environment (Webot) to demonstrate the human control of the robot through the use of the trained model.

The following illustrates the image of the simulation environment. It consists of the autonomous robot that can be controlled via human instruction using the trained model. Use the human instruction to navigate the robot to move from the entrance of the maze to exit.

5. Assessment Rubric

Assignment Rubric: Designing a Deep Learning Model for Human-Instruction Controlled Autonomous Robot

				Needs
Task	Excellent	Good	Satisfactory	Improvement
			(4.9 - 2.5)	
	(10.0 - 7.5 marks)	(7.4 - 5.0 marks)	marks)	(2.4 - 0.0 marks)
Data Collection and Preprocessing (10marks)	Thoroughly defined data types, well-structured data collection plan, and effective preprocessing strategies.	Clearly defined data types and collection plan, but preprocessing may have some	Data types and collection plan are defined, but some preprocessing details are missing.	Incomplete or unclear data collection and preprocessing strategies.
(Tomarks)	(20.0 -15.0 marks)	gaps. (14.9 – 10.0 marks)	(9 - 5.0 marks)	(4.9 – 0.0 marks)
Model Architecture(20 marks)	A well-justified and innovative deep learning architecture that effectively	A well-designed architecture with	A good architecture is	(1) Old marks)

				Needs
Task	Excellent	Good	Satisfactory	Improvement
	combines human	clear justification,	presented with	Architecture is not
	instructions and	but may lack	some	well-justified or
	sensor data.	innovation.	justification.	lacks essential
				components.
	(20.0 -15.0	(14.9 - 10.0)		
	marks)	marks)	(9 - 5.0 marks)	(4.9 - 0.0 marks)
	Detailed			
	implementation			
	of data collection			
	and training			
	procedures with			
	effective data	Clear		Incomplete or
	augmentation	implementation of	Implementation	unclear
Data Collection	and well-	data collection	is present but	implementation of
and	documented	and training, but	lacks details and	data collection and
Training(20mark	training	some details may	thorough	training
s)	strategies.	be lacking.	documentation.	procedures.
	(20.0 -15.0	(14.9 - 10.0)		
	marks)	marks)	(9 - 5.0 marks)	(4.9 - 0.0 marks)
	Innovative and			
	effective	A well-	A functional	
	interface design	implemented	interface is	
	for human	interface with	implemented	Interface design
Human-	instructions with	effective human	with human	and human sensory
Instruction	robust with	sensory, but it	sensory but may	implementation are
Interface(20	human interface	may lack	have some	incomplete or
marks)	sensory.	innovation.	limitations.	ineffective.
	(20.0 -15.0	(14.9 - 10.0)	(0. 7.0. 1.)	(40,00,1)
	marks)	marks)	(9 - 5.0 marks)	(4.9 – 0.0 marks)
	The robot's			
	control and			
	evaluation		Into anoti1	
	process are well-	Into anotic	Integration and	
Dobot Control	integrated and	Integration and	evaluation are	Integration and
Robot Control	effectively demonstrate the	evaluation are well-executed but	present, but there may be	Integration and evaluation are
and Evaluation(20	model's		significant	incomplete or
marks)	performance.	may have minor shortcomings.	issues or gaps.	ineffective.
mai KS)	perrormance.	snorwonnings.	(4.9 – 2.5	mentective.
	(10.0 -7.5 marks)	(7.4 - 5.0 marks)	(4.9 – 2.3 marks)	(2.4 - 0.0 marks)
	Proper	(1.4 – 3.0 marks)	marks)	(2.4 – 0.0 marks)
	documentation		Documentation	
	of code and	Documentation of	of code and	
Code	methodologies	code and citations	citations are	
Documentation	with	are mostly proper	basic but may	Poor or inadequate
and Citations(10	comprehensive	but may have	have significant	documentation of
marks)	citations.	some omissions.	omissions.	code and citations.
man noj	chanons.	some omissions.	omnosions.	code and chanons.

6. Simulation Environment-Webot

Install the webot simulator(refer to Autonomous System Practical for more detail). Use the given project world for the simulation and integrate your Human interface deep learning model into the python robot controller code.

```
"""my_controller controller."""
# You may need to import some classes of the controller module. Ex:
# from controller import Robot, Motor, DistanceSensor
from controller import Robot
from controller import Keyboard
CRUISING_SPEED= 5.0
TURN SPEED = CRUISING SPEED/2.0
TIME_STEP = 64
# create the Robot instance.
robot = Robot()
left wheel = robot.getDevice('left wheel')
right_wheel = robot.getDevice('right wheel')
left wheel.setPosition(float('inf'))
right wheel.setPosition(float('inf'))
left wheel.setVelocity(0.0)
right_wheel.setVelocity(0.0)
keyboard = Keyboard()
keyboard.enable(TIME_STEP)
def command motor(cmd):
       left wheel.setVelocity(cmd[0])
        right_wheel.setVelocity(cmd[1])
while robot.step(TIME_STEP) != -1:
        key = keyboard.getKey()
        if(key == ord('W')):
               left_wheel.setVelocity(CRUISING_SPEED)
               right_wheel.setVelocity(CRUISING_SPEED)
        elif key == ord('S'):
               left_wheel.setVelocity(-CRUISING_SPEED)
               right_wheel.setVelocity(-CRUISING_SPEED)
```