Effective slip lengths for Stokes flow over rough, mixed-slip surfaces PhD Defense Presentation

Nat Lund 300055048

Victoria University of Wellington

Friday 12th September 2014

- ► Elevator speech
- Regimes of Applicability, and What Next?
- Limitations of Homogenization

Motivation

Lab-on-a-chip

Very small pipe: friction dominates

How to reduce friction?

Slippery Surfaces

- ▶ Holes on the wall of the pipe
- Air bubbles trapped in holes
- Water slips over top of air bubble
- Friction reduced: How much?

Slip Length

Single parameter to express the friction of a surface.

Effective Slip Length

PHYSICAL SYSTEM

EFFECTIVE SYSTEM

Mathematical Model

Solving

Homogenization:

Thought experiment about what happens when the period L becomes infinitely small.

Perturbation:

Think of system as 'perturbed' slightly away from a well-known system (with known solution).

Homogenized Solution

$$b_{\text{eff}} = \left\langle \frac{\sqrt{1 + |\nabla h|^2}}{b} \right\rangle^{-1} \tag{1}$$

Harmonic mean of intrinsic slip lengths, weighted by area of contact:

Perturbative Solutions

Replicates homogenized solution for special case of flat surface:

$$b_{\text{eff}} = \left\langle \frac{1}{b} \right\rangle^{-1} \tag{2}$$

Where b is much smaller than other length scales, $b_{\rm eff}$ is simple average:

$$b_{\text{eff}} = \langle b \rangle \tag{3}$$

Regimes of Applicability

Harmonic mean b_{eff} is excellent approximation when period L is much smaller than other lengths, slip lengths b and domain size P.

$$b_{\rm eff} = \left\langle \frac{1}{b} \right\rangle^{-1}$$
 when $L \ll b, P$ (4)

(Still good approximation even if $L \sim b \ll P$.)

Simple mean good approximation when slip lengths *b* much smaller than other lengths:

$$b_{\mathrm{eff}} = \langle b \rangle$$
 when $b \ll L, P$ (5)

Regimes and Results

DERIVED RESULTS

	2-D Flow (1-D surface pattern)	3-D Flow (2-D surface pattern)	
No-slip/ Perfect-slip Binary Surface	J. R. Philip 1972 Lauga and Stone 2003		FLAT SURFACE
Other Surface	Hendy and Lund 2007	Lund and Hendy 2008	RFACE
No-slip/ Perfect-slip Binary Surface	Sbragaglia and Prosperetti 2007 Davis and Lauga 2009a		ROUGH SURFACE
Other Surface	Einzel, Panzer, Liu 1990 Lund <i>et al</i> 2012	This thesis?	URFACE

What next?

No exact results for case of rough surface with b=0 and $b\sim L$.

Can we apply homogenization? No.

Limitations of Homogenization 1

Multiply by test function g and integrate over Ω :

$$\int_{\Omega} g \nabla^2 u = \int_{\Omega} g f \tag{6}$$

Use vector identity and divergence theorem to get:

$$\int_{\Gamma} g \frac{\partial u}{\partial n} - \int_{\Omega} \nabla u \cdot \nabla g = \int_{\Omega} gf \tag{7}$$

Limitations of Homogenization 2

The slip condition on Γ_b implies:

$$\frac{\partial u}{\partial n} = \frac{1}{b}u\tag{8}$$

Substitute this, to get variational form:

$$\int_{\Gamma_b} g \frac{1}{b} u - \int_{\Omega} \nabla u \cdot \nabla g = \int_{\Omega} g f \tag{9}$$

 \therefore Require *b* in form $\frac{1}{b}$.

If b = 0 anywhere, $\frac{1}{b}$ is undefined.