CE

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT& ENGINEERING

Academic Year: 2023-2024

Program: B.Tech (Computer Engineering/Computer Science),

Year: II Semester: IV

MBATech(Computer)

Subject: Complex Variables and Transforms

Time: 3 hrs (10:00auto 1:00pm)

Date: 6 / 7 / 24.

No. of Pages:02

Marks: 100

Re-Examination (2022-23)

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

- 1) Question No. _1__ is compulsory.
- 2) Out of remaining questions, attempt any __4__ questions.
- 3) In all ___5_ questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 7) Assume Suitable data if necessary.

Q1			
CO-1; SO-1; BL-1	a.	Find the constants a, b, c, d if $f(z) = (x^2 + 2axy + by^2) + i(cx^2 + 2dxy + y^2)$ is analytic.	4
CO-1; SO-1; BL-2	b.	Evaluate the integral $\int_{1-i}^{2+i} (2x-iy+1) dz$ along the straight line joining $1-i$ and $2+i$.	4
CO-1; SO- 1; BL-1	c.	Write Laplace transform of $L[(1+2t-3t^2+4t^3)H(t-2)]$.	4
CO-1; SO- 1; BL-3	d.	Express $f(x) = x x $ as Fourier series in $(-1,1)$.	4
CO-1; SO-1; BL-2	e.	Find the Fourier transform of $f(x) = \begin{cases} k & for x \le a \\ 0 & for x > a \end{cases}$	4
Q2 CO-2; SO-1; BL-3	a.	Check whether the function $f(z) = ze^z$ is analytic or not. If yes find its derivative.	6
CO-2; SO-1; BL-2	b.	Find $L\left\{\frac{e^{-2t}\sin^2 3t}{t}\right\}$.	6
CO-3; SO-2; BL-3	C.	Using Cauchy residue theorem evaluate $\int_{c} \frac{z^{2} + 2z + 3}{z(z-1)(z+3)} dz$, where C is $ z-1+i = 4$.	8
Q3 CO-2; SO-1; BL-3	a.	Find the analytic function whose real part is $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$, also find its imaginary part.	6

CO-2; SO-1; BL-3	b.	Construct the complex form of Fourier series for $f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & 1 < x < 2 \end{cases}$	6
CO-2; SO-2; BL-4	c.	Obtain Laurent's expansion of $f(z) = \frac{4z+3}{z(z-3)(z+2)}$ about $z=0$ for (i) $2 < z < 3$, (ii) $ z > 3$.	8
Q4 CO-2; SO-1; BL-2	a.	Find the bilinear transformation, which maps the points $z = 1, i, -1$ into the points $w = i, 0, -i$ respectively.	6
CO-2; SO-1; BL-4	b.	Prove that the functions $f_1(x) = 1$ and $f_2(x) = x$ are orthogonal over $(-1,1)$. Determine the constants a and b such that the function $f_3(x) = -1 + ax + bx^2$ is orthogonal to both $f_1(x)$ and $f_2(x)$ on that interval.	6
CO-3; SO-2; BL-3	c.	Using Laplace transform, solve the following differential equation $(D^2 - 3D + 2)y = 4e^{2t}$, given that $y(0) = -3$ and $y'(0) = 5$.	8
Q5 CO-2; SO-1; BL-3	a.	Apply method of partial fraction to find $L^{-1}\left\{\frac{s}{(s-3)(s^2+9)}\right\}$.	6
CO-2; SO-1; BL-3	b.	Analyze Fourier series of $f(x) = (2\pi - x) in[0, 2\pi]$.	6
CO-2; SO-1; BL-2	c.	Find the finite Fourier cosine and sine transform of $f(x) = e^{-x}$, $0 < x < \pi$.	8
Q6 CO-2; SO-2; BL-5	a.	Evaluate the infinite integral using Laplace transform $\int_{0}^{\infty} e^{-2t} \left(\int_{0}^{t} u^{2} \sin 3u du \right) dt .$	6
CO-3; SO-2; BL-3	b.	Use Cauchy's Integral formula to evaluate $\int_{c}^{c} \frac{e^{2z}}{(z-1)(z-2)} dz$, where c is the circle $ z =3$.	6
CO-3; SO-2; BL-3	c.	Using Fourier Series, solve the heat flow equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ with respect to the boundary conditions: $u(0,t) = 0$, $u(\pi,t) = 0$ and $u(x,0) = (\pi x - x^2)$.	8
Q7 CO-2; SO-1; BL-3	a.	Evaluate the Laplace transform of the piecewise function $f(t) = \begin{cases} (t-1)^2 & 1 < t < 2 \\ 0 & \text{otherwise} \end{cases}$	6
CO-2; SO-1; BL-3	b.	Estimate the Fourier transform of the function $f(x) = \begin{cases} x^2, & x < a \\ 0, & x \ge a \end{cases}$	6
CO-3; SO-2; BL-5	C.	Expand the function $f(x) = x \sin x$ as Fourier series in the interval $-\pi \le x \le \pi$. Hence, deduce that $\frac{\pi - 2}{4} = \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \frac{1}{7 \cdot 9} + \cdots$.	8