0.1 Definitions

0.1 Bisector

Given $\angle BAC$. For a point P that lies on the **bisector** of the angle (blue line in the figure), it is

$$\angle BAP = PAC = \frac{1}{2} \angle BAC \tag{1}$$

0.2 Midpoint

The **midpoint** C of AB is the point on the line segment such that AC = CB.

0.3 Perpendicular bisector

The **perpendicular bisector** of AB (blue line in the figure) stands perpendicular to, and passes through the midpoint of, AB.

0.4 sin, cos and tan

Given a right triangle with legs a and b, hypotenuse c, and angle v, as shown in the figure below.

Then we have

$$\sin v = \frac{a}{c} \tag{2}$$

$$\cos v = \frac{b}{c} \tag{3}$$

$$\tan v = \frac{a}{b} \tag{4}$$

The language box

In the figure above, a is called the **opposite** leg to angle v, and bith cooling tangent are abbreviations for respectively sine, cosine, and tangent.

Exact values

Most values of sine, cosine, and tangent are irrational numbers, therefore in practical applications of these values, it is common to use digital tools. The most important values for theoretical purposes are given in Appendix ??.

Example

$$\sin v = \frac{3}{5} \quad , \quad \cos v = \frac{4}{5} \quad , \quad \tan v = \frac{3}{4}$$

0.5 Sine, cosine, and tangent I

Given $\triangle ABC$, where $v=\angle BAC>90^\circ,$ as shown in the figure below.

Then we have

$$\sin v = \frac{CD}{AC} \tag{5}$$

$$\cos v = -\frac{AD}{AC} \tag{6}$$

$$\tan v = -\frac{CD}{AD} \tag{7}$$

Example

In the figure above, $CD = \sqrt{3}$, AD = 1, and AC = 2. Thus,

$$\sin 120^{\circ} = \frac{\sqrt{3}}{2}$$
 , $\cos 120^{\circ} = -\frac{1}{2}$, $\tan 120^{\circ} = -\sqrt{3}$

0.2 Egenskaper til sirkler

0.6 The Tangent

En linje som skjærer en sirkel i bare ett punkt, kalles en tangent til sirkelen.

La S være sentrum i en sirkel, og la A være skjæringspunktet til denne sirkelen og en linje. Da har vi at

linja er en tangent til sirkelen $\Longleftrightarrow \overrightarrow{AS}$ står vinkelrett på linja

The language box

Når to geometriske former skjærer hverandre i bare ett punkt, sier vi at de "tangerer hverandre".

0.7 Central Angles and Inscribed Angles

Både periferi- og sentralvinkler har vinkelbein som ligger (delvis) inni en sirkel.

En sentralvinkel har toppunkt i sentrum av en sirkel.

En **periferivinke**l har toppunkt på sirkelbuen.

Gitt en periferivinkel u og en sentralvinkel v, som er innskrevet i samme sirkel og som spenner over samme sirkelbue. Da er

0.3 Egenskaper til trekanter

0.8 The Law of Sines

Arealet T til $\triangle ABC$ er

$$T = \frac{1}{2}AB \cdot AC \cdot \sin \angle A \tag{9}$$

Example

Da $\sin 60^\circ = \frac{\sqrt{3}}{2}$ Arealet Ttil $\triangle ABC$ er

$$T = \frac{1}{2} \cdot 5 \cdot 2 \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2}$$

0.9 Sinussetningen

$$\frac{\sin 2A}{BC} = \frac{\sin 2B}{AC} = \frac{\sin 2C}{AB} \tag{10}$$

Example

$$BC = \sqrt{2}$$
, $\angle A = 135^{\circ}$, og $\angle B = 30^{\circ}$. Finn lengden til AC .

Answer

Vi har at

$$AC = \frac{\sin \angle B}{\sin \angle A}BC$$

Da $\sin 135^\circ = \frac{\sqrt{2}}{2}$ og $\sin 30^\circ = \frac{1}{2},$ har vi at

$$AC = \frac{1}{2} \cdot \frac{2}{\sqrt{2}} \cdot \sqrt{2} = 1$$

0.10 The Cosine Rule

Gitt en trekant med sidelengder $a,\,b$ og c, og vinkel v, som vist i figurene under.

Da er

$$a^2 = b^2 + c^2 - 2bc\cos v \tag{11}$$

Example

Finn verdien til x.

Answer

Vi har at

$$x^2 = 2^2 + (1 + \sqrt{3})^2 - 2 \cdot 2(1 + \sqrt{3})\cos 60^\circ$$

Da $\cos 60 = \frac{1}{2}$, har vi at

$$x^{2} = 2^{2} + (1 + \sqrt{3})^{2} - 2(1 + \sqrt{3})$$

$$= 6$$

Altså er $x = \sqrt{6}$.

$0.11~{ m The~Perpendicular~Bisector~of~An~Equilateral~Triangle}$

Gitt en likebeint trekant $\triangle ABC,$ hvor AC=BC,som vist i figuren under.

Høgda DC ligger da på midtnormalen til AB.

0.12 The Median

En **median** er et linjestykke som går fra et hjørne i en trekant til midtpunktet på den motstående siden i trekanten.

De tre medianene i en trekant skjærer hverandre i ett og samme punkt.

Gitt $\triangle ABC$ med medianer $CD,\,BF$ og $AE,\,$ som skjærer hverandre i G. Da er

$$\frac{CG}{GD} = \frac{BG}{GF} = \frac{AG}{GE} = 2$$

0.13 Perpendicular Bisector (in a triangle)

Midtnormalene i en trekant møtes i ett og samme punkt. Dette punktet er sentrum i den **omskrevne sirkelen** til trekanten, som har hjørnene til trekanten på sin bue.

0.14 The Inscribed Circle

Halveringslinjene til vinklene i en trekant møtes i ett og samme punkt. Dette punktet er sentrum i trekantens **innskrevne** sirkel, som tangerer hver av sidene til trekanten.

0.4 Forklaringer

0.11 The Perpendicular Bisector of An Equilateral Triangle (explanation)

Da både $\triangle ADC$ og $\triangle DBC$ er rettvinklede og har CD som korteste katet, og AC=BC, følger det av Pytagoras' setning at AD=BD.

0.12 The Median (explanation)

Vi vil her skrive arealet til en trekant $\triangle ABC$ som ABC.

Vi lar G være skjæringspunktet til BF og AE, og tar det for gitt at dette ligger inne i $\triangle ABC$. Da $AF = \frac{1}{2}AC$ og $BE = \frac{1}{2}BC$, er $ABF = BAE = \frac{1}{2}ABC$. Dermed har F og E lik avstand til AB, som betyr at $FE \parallel AB$. Videre har vi også at

$$ABG + AFG = ABG + BGE$$

 $AFG = BGE$

G har lik avstand til AF og FC, og AF = FC. Dermed er AFG = GFC. Tilsvarende er BGE = GEC. Altså har disse fire trekantene likt areal. Videre er

$$AFG + GFC + GEC = AEC$$

$$GEC = \frac{1}{6}ABC$$

La H være skjæringspunktet til AE og CD. Med samme framgangsmåte som over kan det vises at

$$HEC = \frac{1}{6}ABC$$

Da både $\triangle GEC$ og $\triangle HEC$ har CE som side, likt areal, og både G og H ligger på AE, må G = H. Altså skjærer medianene hverandre i ett og samme punkt.

 $\triangle ABC \sim \triangle FEC$ fordi de har parvis parallelle sider. Dermed er

$$\frac{AB}{FE} = \frac{BC}{CE} = 2$$

 $\triangle ABG \sim \triangle EFG$ fordi $\angle EGF$ og $\angle AGB$ er toppvinkler og $AB \parallel FE.$ Dermed er

$$\frac{GB}{FG} = \frac{AB}{FE} = 2$$

Tilsvarende kan det vises at

$$\frac{CG}{GD} = \frac{AG}{GE} = 2$$

0.13 Perpendicular Bisector (in a triangle) (explanation)

Gitt $\triangle ABC$ med midtpunktene D, E og F. Vi lar S være skjæringspunktet til de respektive midtnormalene til AC og AB. $\triangle AFS \sim \triangle CFS$ fordi begge er rettvinklede, begge har FS som korteste katet, og AF = FC. Tilsvarende er $\triangle ADS \sim \triangle BDS$. Følgelig er CS = AS = BS. Dette betyr at

- $\triangle BSC$ er likebeint, og da går midtnormalen til BC gjennom S.
- A, B og C må nødvendigvis ligge på sirkelen med sentrum S og radius AS = BS = CS

0.14 The Inscribed Circle (explanation)

Gitt $\triangle ABC$. Vi lar S være skjæringspunktet til de respective halveringslinjene til $\angle BAC$ og $\angle CBA$. Videre plasserer vi D, E og F slik at $DS \perp AB$, $ES \perp BC$ og $FS \perp AC$. $\triangle ASD \cong \triangle ASF$ fordi begge er rettvinklede og har hypotenus AS, og $\angle DAS = \angle SAF$. Tilsvarende er $\triangle BSD \cong \triangle BSE$. Dermed er SE = SD = SF. Følgelig er F, C og E de respektive tangeringspunktene til AB, BC og AC og sirkelen med sentrum S og radius SE.

Videre har vi at $\triangle CSE \cong \triangle CSF$, fordi begge er rettvinklede og har hypotenus CS, og SF = SE. Altså er $\angle FCS = \angle ECS$, som betyr at CS ligger på halveringslinja til $\angle ACB$.

0.6 The Tangent (explanation)

Linja er en tangent til sirkelen $\Longrightarrow \overrightarrow{AS}$ står vinkelrett på linja

Vi antar at vinkelen mellom linja og \overrightarrow{AS} er ulik 90°. Da må det finnes et punkt B på linja slik at $\angle BAS = \angle SBA$, som betyr at $\triangle ASB$ er likebeint. Følgelig er AS = BS, og da AS er lik radien i sirkelen, må dette bety at B også ligger på sirkelen. Dette motsier det faktum at A er det eneste skjæringspunktet til sirkelen og linja, og dermed må vinkelen mellom linja og \overrightarrow{AS} være 90°.

Linja er en tangent til sirkelen $\Longleftarrow \overrightarrow{AS}$ står vinkelrett på linja

Gitt et vilkårlig punkt B, som ikke samsvarer med A, på linja. Da er BS hypotenusen i $\triangle ABC$. Dette innebærer at BS er større enn radien til sirkelen (BS > AS), og da kan B umulig ligge på sirkelen. Altså er A det eneste punktet som ligger på både linja og sirkelen, og dermed er linja en tangent til sirkelen.

0.8 The Law of Sines (explanation)

Gitt to tilfeller av $\triangle ABC$, som vist i figuren under. Det éne hvor $\angle BAC \in (0^{\circ}, 90^{\circ}]$, det andre hvor $\angle BAC \in (90^{\circ}, 0^{\circ})$ og la h være høyden med grunnlinje AB.

Arealet T til $\triangle ABC$ er i begge tilfeller

$$T = \frac{1}{2}AB \cdot h \tag{12}$$

Av henholdsvis (2) og (5) har vi at $h = AC \cdot \sin \angle BAC$, og da er

$$T = \frac{1}{2}AB \cdot h = \frac{1}{2}AB \cdot AC \sin \angle BAC$$

0.10 The Cosine Rule (explanation)

Tilfellet hvor $v \in (90^{\circ}, 180^{\circ}]$

Av Pytagoras' setning har vi at

$$x^2 = b^2 - h^2 (13)$$

og at

$$a^2 = (x+c)^2 + h^2 (14)$$

$$a^2 = x^2 + 2xc + c^2 + h^2 (15)$$

Ved å sette uttrykket for x^2 fra (13) inn i (15), får vi at

$$a^2 = b^2 - h^2 + 2xc + c^2 + h^2 (16)$$

$$a^2 = b^2 + c^2 + 2xc (17)$$

Av (6) har vi at $x = -b\cos v$, og da er

$$a^2 = b^2 + c^2 - 2bc\cos v$$

Tilfellet hvor $v \in [0^{\circ}, 90^{\circ}]$

Dette tilfellet skiller seg ut fra tilfellet hvor $v \in (90^{\circ}, 180^{\circ}]$ på to måter:

- (i) I (14) får vi $(c-x)^2$ i steden for $(x+c)^2$. I (17) får vi da -2xc i steden for +2xc.
- (ii) Av (3) er $x = b \cos v$. Av punkt (i) følger det da at

$$a^2 = b^2 + c^2 - 2bc\cos v$$

0.7 Central Angles and Inscribed Angles (explanation)

Tilhørende periferi- og sentralvinkler kan deles inn i tre tilfeller.

(i) En diameter i sirkelen er høyre eller venstre vinkelbein i begge vinklene

I figuren under er S sentrum i sirkelen, $\angle BAC = u$ en periferivinkel og $\angle BSC = v$ den tilhørende sentralvinkelen. Vi setter $\angle SCB = a$. $\angle ACS = \angle SAC = u$ og $\angle CBS = \angle SCB = a$ fordi både $\triangle ASC$ og $\triangle SBC$ er likebeinte.

Vi har at

$$2a = 180^{\circ} - v \tag{18}$$

$$2u + 2a = 180^{\circ} \tag{19}$$

Vi setter uttrykket for 2a fra (18) inn i (19):

$$2u + 180^{\circ} - v = 180^{\circ}$$
$$2u = v$$

(ii) Vinklene ligger innenfor samme halvdel av sirkelen

I figuren under er u en periferivinkel og v den tilhørende sentralvinkelen. I tillegg har vi tegnet inn en diameter, som er med på å danne vinklene a og b. Både u og v ligger i sin helhet på samme side av denne diameteren.

Ettersom u+a er en periferivinkel, og v+b den tilhørende sentralvinkelen, vet vi av tilfelle 1 at

$$2(u+a) = v+b$$

Men ettersom a og b også er samhørende periferi- og sentralvinkler, er 2a = b. Det betyr at

$$2u + b = v + b$$
$$2u = v$$

(iii) Vinklene ligger ikke innenfor samme halvdel av sirkelen

I figuren under er u en periferivinkel og v den tilhørende sentralvinkelen. I figuren til høyre har vi tegnet inn en diameter. Den deler u inn i vinklene a og c, og v inn i b og d.

a og c er begge periferivinkler, med henholdsvis b og d som tilhørende sentralvinkler. Av tilfelle i) har vi da at

$$2a = b$$

$$2c = d$$

Dermed er

$$2a + 2c = b + d$$
$$2(a + c) = v$$
$$2u = v$$