Presentación Curso 2021/2022

Tecnologías de los Sistemas de Información en la Red

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

Horarios y profesor

Grupo	Sesión I	Sesión 2	Profesor	e-mail
Α	× 8:30-10:00	V 13:00-14:30	Juan Salvador Sendra Roig	jsendra@dsic.upv.es
В	M 8:00-9:30	V 11:30-13:00	Juan Salvador Sendra Roig	
С	M 13:00-14:30	J 11:00-12:30	Tomás Ángel Pérez Hernández	taperez@dsic.upv.es
D	M 19:00-20:30	J 17:30-19:00	Pablo Galdámez Saiz	pgaldamez@dsic.upv.es
E	X 13:00-14:30	V 9:30-11:00	Francisco Daniel Muñoz Escoí	fmunyoz@dsic.upv.es
F	M 15:00-16:30	V 15:00-16:30	Tomás Ángel Pérez Hernández	
G	× 8:00-9:30	V 11:30-13:00	José Ramón García Escrivá	rgarcia@upv.es
GIA-4	L 8:00-9:30	X 9:30-11:00	José Ramón García Escrivá	

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

General:

Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

- 1. Entender las propiedades de sistemas distribuidos:
- Conocer algunas de las tecnologías y aproximaciones existentes más importantes
- 3. Capacitar para el diseño de la arquitectura idónea para la resolución de problemas específicos

General:

Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

- 1. Entender las propiedades de sistemas distribuidos:
 - Problemas que aparecen, y que hay que resolver
 - Propiedades obtenibles, ámbitos de aplicación
 - Influencia de la estructura de un sistema (arquitectura) para resolver/mitigar problemas y obtener propiedades deseables.

General:

Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

- Entender las propiedades de sistemas distribuidos:
- Conocer algunas de las tecnologías y aproximaciones existentes más importantes
 - Programación asíncrona para la implementación de componentes
 - Middleware para facilitar la interacción entre componentes

General:

Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

- Entender las propiedades de sistemas distribuidos:
- 2. Conocer algunas de las tecnologías y aproximaciones existentes más importantes
- 3. Capacitar para el diseño de la arquitectura idónea para la resolución de problemas específicos
 - Estudio de ejemplos de sistemas y su estructura
 - Uso de tecnologías relevantes para la resolución de problemas de laboratorio

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

2. Estructura

- Asignatura con 6 créditos
 - Teoría y seminarios se estructuran en una misma secuencia de temas
- ► Teoría (1.5 cr)
 - Principios generales
 - Propiedades
 - Problemas
- Seminarios (3 cr)
 - Tecnologías básicas
 - Ejemplos, estudio de casos y resolución de problemas
- Laboratorio (1.5 cr)
 - Implementación de soluciones a problemas sencillos

2. Estructura

Asignatura con 6 créditos

 Teoría y seminarios se estructuran en una misma secuencia de temas

- ► Teoría (1.5 cr)
 - Principios generales
 - Propiedades
 - Problemas
- Seminarios (3 cr)
 - Tecnologías básicas
 - Ejemplos, estudio de casos y resolución de problemas
- Laboratorio (1.5 cr)
 - Implementación de soluciones a problemas sencillos

Estas dos partes se imparten en el aula. Se considerarán conjuntamente como "teoría" en las próximas secciones.

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

3. Teoría. Temario

- I. Introducción
- 2. JavaScript y NodeJS
- 3. Middleware. ZeroMQ
- 4. Despliegue de servicios. Docker
- Gestión de fallos
- 6. Escalabilidad

3. Teoría. Temario

Considerando las 28 clases que habrá en el cuatrimestre, los temas se distribuirán como sigue:

Introducción			Despliegue. Docker		Escalabilidad
3	7	6	6	3	3

En cada tema:

- Hay vídeos (screencasts) que describen cada uno de sus apartados.
 - Disponibles en PoliformaT, en su sección de "Docencia Inversa"
 - Accesibles para todos los grupos
 - Complementados con boletines de ejercicios específicos
- Hay exámenes de autoevaluación para cada apartado.
 - Disponibles en PoliformaT, sección "Exámenes"

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

4. Laboratorios

- Las sesiones preparatorias comienzan la **próxima semana**.
 - Proyecto 0: JavaScript básico. Sin supervisión
 - Planificación del resto de proyectos en PoliformaT
 - lmagen con el calendario de prácticas
 - Ver también hoja siguiente
- ▶ Tecnologías a usar:
 - JavaScript + NodeJS
 - ØMQ (y su adaptación a NodeJS)
 - Docker
- Tres proyectos que hacen uso de las tecnologías anteriores:
 - Proxy inverso TCP/IP (3 sesiones)
 - Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
 - 3. Despliegue (3 sesiones)

4. Laboratorios

Planificación

PRÁCTICA	SESIÓN	L	M	Х	J	V
1	1	27 sep	28 sep	6 oct	7 oct	8 oct
	2	4 oct	5 oct	13 oct	14 oct	15 oct
	3	11 oct	19 oct	20 oct	21 oct	22 oct
2	4	18 oct	26 oct	27 oct	28 oct	29 oct
	5	25 oct	9 nov	10 nov	11 nov	12 nov
	6	15 nov	16 nov	17 nov	18 nov	19 nov
	7	22 nov	23 nov	24 nov	25 nov	26 nov
3	8	29 nov	30 nov	1 dic	2 dic	3 dic
	9	13 dic	14 dic	15 dic	9 dic	10 dic
	10	20 dic	21 dic	22 dic	16 dic	17 dic

ATENCIÓN: El grupo L2-3G tendrá sus dos primeras sesiones de la práctica 1 los días 1 y 8 de octubre, en lugar de los mostrados en la tabla.

- Proxy inverso TCP/IP (3 sesiones)
- Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
- 3. Despliegue (3 sesiones)

- Proxy inverso TCP/IP (3 sesiones)
 - Tecnología: JavaScript, NodeJS
 - Objetivos: Iniciación al desarrollo con JS+NodeJS, programación asincrónica en el servidor, callbacks, desarrollo de aplicaciones
 - Evaluación: junto al primer parcial
- 2. Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
- 3. Despliegue (3 sesiones)

- Proxy inverso TCP/IP (3 sesiones)
- Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
 - Tecnología: ØMQ, JSON
 - Objetivos: Desarrollar aplicaciones distribuidas en las que los componentes son procesos que se comunican mediante un sistema de mensajería (ØMQ) adoptando roles específicos
 - Evaluación:
 - Examen específico
 - Su fecha y tipo de examen se publicará en PoliformaT.
- 3. Despliegue (3 sesiones)

- Proxy inverso TCP/IP (3 sesiones)
- Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
- 3. Despliegue (3 sesiones)
 - ▶ Tecnología puntera: Docker
 - Objetivos: Entender y preparar el despliegue de un servicio distribuido multi-componente, incluyendo tecnologías actuales de contenerización y de configuración del despliegue
 - Evaluación: mediante test junto al segundo parcial

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

- Deben considerarse dos partes:
 - I. Teoría (60%)
 - 2. Laboratorio (40%)
- Esas dos partes se estructuran en tres exámenes:
 - I. Primer parcial:
 - Teoría: Temas 1, 2 y (parte del) 3 (30%)
 - Práctica I (10%)
 - 2. Práctica 2 (20%)
 - 3. Segundo parcial:
 - Teoría: Temas (fin del 3,) 4, 5 y 6 (30%)
 - Práctica 3 (10%)

- Dos exámenes parciales, recuperables (80%)
 - Exámenes tipo test individuales
 - Cuestiones de opción múltiple
 - Nota mínima: 3 puntos
 - Estas pruebas incluirán este contenido:
 - ► Teoría (60% de la nota global)
 - Prácticas I y 3 (20% de la nota global)
 - Fechas:
 - Todavía pendientes.

- Dos exámenes parciales, recuperables (80%)
- Examen de la segunda práctica, recuperable (20%)
 - Ejercicio individual
 - Se requiere una calificación mínima de 3 puntos.

- Dos exámenes parciales, recuperables (80%)
- Examen de la segunda práctica, recuperable (20%)
- Examen de recuperación
 - Permite recuperar los exámenes anteriores.
 - Fecha por determinar.
 - ▶ Todas las fechas se comunicarán en un anuncio vía PoliformaT.
 - Su nota prevalece sobre la del examen a recuperar.

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Bibliografía

6. Bibliografía

- No existe un texto que se adecúe a los contenidos del curso.
 - Para cada unidad se ha elaborado una guía del estudiante
 - También se dispone de pequeñas presentaciones que explican varios conceptos importantes
- Existe mucho material disperso
 - Gran parte del material está en inglés, con algún texto traducido al español.
- Textos generales de consulta y sitios web para profundizar en los materiales presentados en clase

6. Bibliografía

Consulta general

- Distributed Systems: Principles and Paradigms (2nd Edition).
 Andrew S. Tanenbaum and Maarten van Steen. Prentice Hall International, 2006. (Existe traducción al español)
- Distributed Systems: Concepts and Design (5th Edition). George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair. Addison-Wesley, 2011. (Existe traducción al español)
- http://zguide.zeromq.org. Buena fuente de discusiones y ejemplos sobre estructuras de componentes distribuidos.

6. Bibliografía

Tecnología

- > Se presenta una bibliografía básica.
 - http://nodejs.org
 - http://zguide.zeromq.org
 - http://mongodb.org
 - http://docker.com/

Estudio de casos

Las referencias serán suministradas en su caso por cada profesor.