Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2017-2018

Εργασία 3^η

Πρόβλημα 2

1. Έχουμε το πρόβλημα {X,D,C}:

μεταβλητές $X = \{X_1, X_2, X_3\}$ οι αλληλουχίες των πράξεων των τριών υπόπτων $(X_1$ αφορά τον Γιάννη, X_2 την Μαρία, και X_3 την Όλγα, βάσει της σειράς ανάγνωσης), πεδίο ορισμού (ίδιο για όλες τις μεταβλητές) $D = \{(A (ανάγνωση), X_α (χρόνος)), (Δ (μετακίνηση προς δωμάτιο), <math>X_δ), (M (μετακίνηση προς χρηματοκιβώτιο), X_μ), (Π (παραβίαση), X_π), (Ε (επιστροφή), X_ε), (Υ (ύπνος), X_υ), Ακ (ακρόαση), <math>X_{ακ}\}$ που αποτελούν πιθανές πράξεις τους, με τους εξής περιορισμούς $C = \{(A,30)$ για κάθε X_i , $S \le X_δ, X_ε \le 10, 20' \le X_μ \le 30', 45' \le X_π \le 90'\}$

Γνωρίζουμε επίσης ότι είναι X_1 = A στις 9:00, μετά X_2 = A στις 9:30, και τέλος X_3 = A στις 10:00.

2. Ο αστυνόμος Σιεσπής συνέλαβε τον Γιάννη.

Ο ελάχιστος χρόνος που χρειάζεται ένα άτομο για να πάει μέχρι το χρηματοκιβώτιο, να το παραβιάσει, και να επιστρέψει στην αίθουσα ισούται με 20+45+20 = 85 λεπτά της ώρας, και ο μέγιστος χρόνος ισούται με 30+90+30 = 150 λεπτά.

Εφ'όσον ο χρόνος παραβίασης X_{π} είναι ανάμεσα στα 45' και 90', η Όλγα δεν είχε τον χρόνο να παραβιάσει το χρηματοκιβώτιο, καθώς τέλειωσε την ανάγνωσή της στις 10:30, και δεν είχε αρκετό χρόνο. Συνεπώς η αλληλουχία των πράξεων της Όλγας είναι: $X_3 = \{$ (Aκ, 30), (Aκ, 30), (A, 30), (Δ, $X_{\delta 3}$), (Y, $X_{\cup 3}$), (E, $X_{\epsilon 3}$)} με $X_{\delta 3}$ + $X_{\cup 3}$ + $X_{\epsilon 3}$ = 30.

Αυτό σημαίνει ότι η Όλγα είναι αθώα, αφού μετά την ανάγνωσή της δεν είχε τουλάχιστον 85' για την παραβίαση του χρηματοκιβωτίου.

Η Μαρία αντίστοιχα θα είχε τις εξής πράξεις: X_2 = { (Aκ, 30), (A, 30), (Δ, $X_{\delta 2}$), (Y, $X_{\upsilon 2}$), (E, $X_{\varepsilon 2}$)} με $X_{\delta 2}$ + $X_{\upsilon 2}$ + $X_{\varepsilon 2}$ = 60, καθώς η Μαρία ολοκλήρωσε την ανάγνωσή της στις 10:00 και η τελετή απονομής ήταν στις 11:00.

Πάλι βλέπουμε ότι η Μαρία δεν είχε το ελάχιστο χρονικό διάστημα των 85' για την παραβίαση του χρηματοκιβωτίου, άρα είναι αθώα.

Τελικά ελέγχουμε τον Γιάννη, ο οποίος θα είχε τις εξής πράξεις (αν ήταν αθώος): X_1 = { (A, 30), (Δ, $X_{\delta 1}$), (Y, $X_{\upsilon 1}$), (E, $X_{\epsilon 1}$)} με $X_{\delta 1}$ + $X_{\upsilon 1}$ + $X_{\epsilon 1}$ = 90, καθώς ολοκλήρωσε την ανάγνωσή του στις 9:30 και η τελετή απονομής ήταν στις 11:00. Παρατηρούμε ότι ο Γιάννης είναι το μόνο άτομο που είχε το χρόνο να παραβιάσει το χρηματοκιβώτιο, κατ'ελάχιστον δηλαδή 85 λεπτά.

3. Για να πάρει την απόφασή του ο αστυνόμος, θα μπορούσε όπως μάθαμε να χρησιμοποιήσει την εξής μέθοδο διάδοσης περιορισμών: αρχικά, οφείλει να ελέξγει τον ύποπτο με το λιγότερο

δυνατό χρόνο δράσης, όπως εξηγείται παραπάνω. Έπειτα, οφείλει να υπολογίσει τον χρόνο που απαιτείται για να πραγματοποιηθεί η κλοπή, και να συγκρίνει τους χρόνους ανάγνωσης και του χρόνου "ύπνου" ή "κλοπής" του κάθε υπόπτου, όπως έγινε παραπάνω. Τελικά παρατηρείται ότι οι περιορισμοί διαδίδονται πιο αποδοτικά από τον 3ο ύποπτο προς τον 1ο.

	Λήξη ανάγνωσης	Άφιξη στο δωμάτιο	Άφιξη στο χρηματοκιβώτιο	Παραβίαση
Γιάννης	9:30	9:35-9:40	9:50-10:00	10:35-10:20
Μαρία	10:00	10:05-10:10	10:20-10:30	11:05-11:50
Όλγα	10:30	10:35-10:40	10:50-11:00	11:35-12:20

Πρόβλημα 3

1. Έχουμε η διεργασίες που αποτελούνται από m ενέργειες, διάρκειας d_i έκαστος, με αρχή $S_i \geq 0$ και deadline D > 0. Ορίζεται το CSP πρόβλημα $\{X,D,C\}$ με τις μεταβλητές $X = \{X_{11},...,X_{1m}, X_{21},...,X_{nm}\}$ οι ενέργειες X_{ij} με i: τις διεργασίες και j: την θέση της ενέργειας αυτής στην διεργασία. Το πεδίο ορισμού D (ίδιο για κάθε ενέργεια-μεταβλητή) = $\{m_i, d_i, \alpha\}$ όπου m_i ο αριθμός της μηχανής που χρησιμοποιείται και d_i η διάρκεια της κάθε εργασίας, $i = \{0,1,...\}$, και α το σε ποια θέση πραγματοποιείται η διεργασία

Ίσχύουν οι εξής περιορισμοί: Εφόσον δεν γίνεται να πάψει κάποια διεργασία να πραγματοποιείται, άρα για d_i η μηχανή m_i είναι "κλεισμένη", δηλαδή $m_i \neq m_j$, επίσης για να γίνει η διεργασία X_{ij} πρέπει να έχουν ολοκληρωθεί οι ενέργειες X_{i1} ως X_{ij-1} , να λήξουν όλες πριν το D, άρα $d_1 + d_2 + ... + d_k \leq D$ αν έχουμε k το σύνολο ενέργειες.

2. Για n = 3 και m = 4, έχουμε ότι η λύση είναι η εξής: Θα πρέπει να γίνουν οι διεργασίες X_{11} , X_{12} , X_{13} , X_{14} , ..., X_{34} ., k = 12. Μία λύση είναι να πραγματοποιηθούν γραμμικά.

Πρόβλημα 4

 α) (A^B^C \Rightarrow D) \Leftrightarrow (A \Rightarrow (B \Rightarrow (C \Rightarrow D)))

Ο πίνακας αλήθειας της πρότασης είναι:

 $*E = (A \land B \land C \Rightarrow D), G = (A \Rightarrow (B \Rightarrow (C \Rightarrow D)))$

Α	В	С	D	A^B	A^B^C	A^B^C⇒D	C⇒D	B⇒(C⇒D)	A⇒(B⇒(C⇒D))	E⇒G*	G⇒E*	E⇔G*
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	F	Т	Т	F	F	F	F	Т	Т	Т
Т	Т	F	Т	Т	F	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	Т	F	F	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	F	F	F	Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	F	F	Т	Т	Т	Т	Т	Т	Т

Χειμερινό Εξάμηνο 2017-2018

Τεχνητή Νοημοσύνη

Т	F	F	F	F	F	Т	Т	Т	Т	Т	Т	Т
F	Т	Т	Т	F	F	Т	Т	Т	Т	Т	Т	Т
F	Т	Т	F	F	F	Т	F	F	Т	Т	Т	Т
F	Т	F	Т	F	F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	F	Т	Т	Т	Т	Т	Т	Т
F	F	Т	Т	F	F	Т	Т	Т	Т	Т	Т	Т
F	F	Т	F	F	F	Т	F	Т	Т	Т	Т	Т
F	F	F	Т	F	F	Т	Т	Т	Т	Т	Т	Т
F	F	F	F	F	F	Т	Т	Т	Т	Т	Т	Т

β) A^(A⇒B)^(A⇒¬B)

Ο πίνακας αλήθειας της πρότασης είναι:

Α	В	A⇒B	A^(A⇒B)	¬в	А⇒¬В	A^(A⇒B)^(A⇒¬B)
Т	Т	Т	Т	F	F	F
Т	F	F	F	Т	Т	F
F	Т	Т	F	F	Т	F
F	F	Т	F	Т	Т	F

γ) (AvB)^(¬AvB)^¬B^¬C

Ο πίνακας αλήθειας της πρότασης είναι:

Α	В	С	¬A	¬В	¬C	AvB	¬AvB	(AvB)^(¬AvB)	(AvB)^(¬AvB)^¬B	(AvB)^(¬AvB)^¬B^¬C
Т	Т	Т	F	F	F	Т	Т	Т	F	F
Т	Т	F	F	F	Т	Т	Т	Т	F	F
Т	F	Т	F	Т	F	Т	F	F	F	F
Т	F	F	F	Т	Т	Т	F	F	F	F
F	Т	Т	Т	F	F	Т	Т	Т	F	F
F	Т	F	Т	F	Т	Т	Т	Т	F	F
F	F	Т	Т	Т	F	F	Т	F	F	F
F	F	F	Т	Т	Т	F	Т	F	F	F

 δ) (AvB)^(\neg AvC)^(BvC)

Ο πίνακας αλήθειας της πρότασης είναι:

Α	В	С	¬А	AvB	¬AvC	(AvB)^(¬AvC)	BvC	(AvB)^(¬AvC)^(BvC)
Т	Т	Т	F	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F	F	Т	F
Т	F	Т	F	Т	Т	Т	Т	Т
Т	F	F	F	Т	F	F	F	F
F	Т	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т	Т	Т
F	F	Т	Т	F	Т	F	Т	F
F	F	F	Т	F	Т	F	F	F

Τελικά:

- 1. Έγκυρες: 1, καθώς για όλες τις δυνατές ερμηνείες της πρότασης, το αποτέλεσμα αληθεύει.
- 2. Ικανοποιήσιμες: 1, 4, καθώς για τουλάχιστον μία ερμηνεία της πρότασης, το αποτέλεσμα αληθεύει.
- 3. Μη ικανοποιήσιμες: 2,3, όσες δεν είναι ικανοποιήσιμες.
- 4. Έχουν τουλάχιστον ένα μοντέλο: -
- 5. Ταυτολογίες: 1, γιατί είναι έγκυρες, και γνωρίζουμε ότι οι έγκυρες προτάσεις ονομάζονται και ταυτολογίες.
- 6. Σε μορφή Horn: 2, 3,4 (δηλαδή να αποτελούν διάζευξη προτάσεων με το πολύ ένα θετικό λεκτικό

Πρόβλημα 5

1. "Αν πας στο γήπεδο σήμερα, θα έρθω μαζί σου αν δε βρέχει." Κωδικοποιείται ως εξής:

 \neg Βρέχει ^ ΠαειΓήπεδοΣήμερα(εσύ) \Rightarrow ΠαειΓήπεδοΣήμερα(εγώ)

Η σχέση *ΠαειΓήπεδοΣήμερα(X)* χρησιμοποιήθηκε για να δηλώσει αν κάποιο άτομο θα πάει στο γήπεδο σήμερα.

2. "Αν ο καιρός είναι κακός ή είμαι άρρωστος, δε θα έρθω στο σχολείο." Κωδικοποιείται ως εξής:

ΚακόςΚαιρός ν Άρρωστος(εγώ) ⇒ ¬ΠάειΣχολείο(εγώ)

Η σχέση Άρρωστος(Χ) δηλώνει αν ο Χ είναι ασθενής και η σχέση *ΠάειΣχολείο(Χ)* αν ο Χ θα πάει σχολείο σήμερα.

3. "Ανεξάρτητα με το αν θα έρθει η Μαρία ή όχι, η Ελένη θα έρθει στο πάρτυ." Κωδικοποιείται ως εξής:

ΠάειΣτοΠάρτυ(Μαρία) $v \neg$ ΠάειΣτοΠάρτυ(Μαρία) \Rightarrow ΠάειΣτοΠάρτυ(Ελένη)

Η σχέση ΠάειΣτοΠάρτυ(Χ) δηλώνει ότι ο Χ θα πάει στο πάρτυ.

4. "Εκτός αν βελτιώσεις τις γνώσεις σου στον προγραμματισμό, και αρχίσεις να διαβάζεις περισσότερο, δε θα μπορέσεις να πάρεις το πτυχίο σου." Κωδικοποιείται ως εξής:

 \neg ΒελτιώσειΓνώσειςΠρογραμματισμού(εσύ) $\land \neg$ ΔιάβαζειΠερισσότερο(εσύ) $\Rightarrow \neg$ ΠάρειΠτυχίο(εσύ)

Οι σχέσεις *ΒελτιώσειΓνώσειςΠρογραμματισμού(X), ΔιάβαζειΠερισσότερο(X)* και *ΠάρειΠτυχίο(X)* δηλώνουν την αντίστοιχη πράξη του X.

5. "Αν υπάρχουν εξωγήινοι τότε βρίσκονται ήδη στη Γη ή η Γη δεν είναι ενδιαφέρων τουριστικός προορισμός.

Κωδικοποιείται ως εξής:

```
((\exists εξωγήινοι) \Rightarrow Βρίσκεται(Εξωγήινοι,Γη)) ^ ((\exists εξωγήινοι) ν <math>\neg Ενδιαφέρον(Γη) \Rightarrow \neg Βρίσκεται(Εξωγήινοι,Γη))
```

Χρησιμοποιήθηκε ο υπαρξιακός ποσοδείκτης, οι μεταβλητές *Γη* και *εξωγήινοι*, και οι σχέσεις *Βρίσκεται(Χ,Υ)* που δηλώνει ότι ο Χ βρίσκεται στο Υ, και η σχέση *Ενδιαφέρον(Χ)* που δηλώνει το αν το Χ αποτελεί ενδιαφέροντα τουριστικό προορισμό.

Πρόβλημα 6

Nδο η "A $^{\prime}$ (B \Leftrightarrow C)" καλύπτει λογικά την "(A $^{\prime}$ B) \Leftrightarrow (A $^{\prime}$ C)"

Απόδειξη:

Α	В	С	B⇒C	C⇒B	B⇔C*	A^(B⇔C)	A^B	A^C	(A^B)⇒(A^C)	(A^C)⇒(A^B)	(A^C)⇔(A^B)*
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F	F	Т	F	F	Т	F
Т	F	Т	Т	F	F	F	F	Т	Т	F	F
Т	F	F	Т	Т	Т	Т	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т	F	F	F	Т	Т	F
F	Т	F	F	Т	F	F	F	F	Т	Т	F
F	F	Т	Т	F	F	F	F	F	Т	Т	F
F	F	F	Т	Т	Т	F	F	F	Т	Т	F

 $[*]X \Leftrightarrow Y \equiv (X \Rightarrow Y) \land (Y \Rightarrow X)$

Αφού, λοιπόν, οι στήλες των $A \wedge (B \Leftrightarrow C) \& (A \wedge B) \Leftrightarrow (A \wedge C)$ ταυτίζονται, η πρώτη καλύπτει λογικά την δεύτερη.

Πρόβλημα 7

Η παρακάτω γραμματική χωρίς συμφραζόμενα ορίζει τις καλά ορισμένες προτάσεις της προτασιακής λογικής:

```
Sentence \rightarrow AtomicSentence | ComplexSentence AtomicSentence \rightarrow True | False | Symbol Symbol \rightarrow P1 | P2 | ... ComplexSentence \rightarrow (Sentence) | ~Sentence | Sentence BinaryConnective \rightarrow ^ | v | \Rightarrow | \Leftrightarrow
```

Με βάση τους παραπάνω κανόνες, για τις δοθείσες προτάσεις ισχύουν τα εξής:

- (A): δεν είναι καλά ορισμένη πρόταση της προτασιακής λογικής καθώς δεν ανήκει σε κάποια από τις παραπάνω μορφές
- (A → B): το σύμβολο "→" δεν αποτελεί σύμβολο προτασιακής λογικής, άρα η πρόταση δεν είναι αποδεκτή
- A ≡ B: το σύμβολο "≡" δεν αποτελεί σύμβολο προτασιακής λογικής, άρα η πρόταση δεν είναι αποδεκτή
- Α = Β: εφ'όσον έχουμε μόνο τα στοιχεία Α και Β δεν απαιτούνται παρενθέσεις για να οριστεί η σειρά υλοποίησης των υπολογισμών, και η πρόταση πληροί τις προϋποθέσεις της προτασιακής λογικής, άρα είναι αποδεκτή
- (A^1): Το "1" δεν αποτελεί ούτε σύμβολο προτασιακής λογικής, ούτε σταθερά true/false, άρα δεν είναι αποδεκτή.