Lógica para Computação Aula 13 - Lógica Proposicional¹

Sílvia M.W. Moraes

Escola Politécnica - PUCRS

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a estudar a Lógica Proposicional: dedução natural.
- Este material foi construído com base nos slides do prof.
 Rafael Bordini e dos livros do Mortari e do Huth & Ryan.

Sumário

1 Lógica Proposicional: Dedução Natural

2 Próxima Aula

Lógica Proposicional - Relembrando ...

- Argumento Lógico = premissas + conclusão
- $\varphi_1, \varphi_2, ..., \varphi_n \models \psi$ é igual a $\phi_1, \phi_2, ..., \varphi_n \vdash \psi$?
- Regras de Dedução Natural
 - $\wedge e_1$ e $\wedge e_2$; $\wedge i$
 - ¬¬e
 - $\rightarrow e \ e \rightarrow i$

Lógica Proposicional - Introdução da Disjunção

 Introdução da disjunção (Vi): Se já concluímos que um dos disjuntos é verdade, sua disjunção com qualquer coisa é necessariamente verdadeira também.

$$\frac{\varphi}{\varphi \vee \psi} \ (\forall i_1) \qquad \frac{\psi}{\varphi \vee \psi} \ (\forall i_2)$$

• Exemplo 1 - Prove que o sequente de $(p \land q) \vdash (p \lor r) \land (r \lor q)$ é válido, usando dedução natural:

1.	$p \wedge q$	premissa
2.	р	$\wedge e_1$ 1
3.	p∨r	$\forall i_1 \ 2$
4.	q	$\wedge e_2$ 1
5.	r∨q	$\vee i_2$ 4
6	$(n \vee r) \wedge (r \vee a)$	∧ <i>i</i> 3 4

• Exemplo 2 - Prove que o sequente de $p \lor q \to r, q \vdash r \land (q \lor t)$ é válido, usando dedução natural:

```
1. p \lor q \rightarrow r premissa

2. q premissa

3. p \lor q \lor i_2 2

4. r \rightarrow e 1,3

5. q \lor t \lor i_1 2

6. r \land (q \lor t) \land i 4.5
```

Lógica Proposicional - Exercícios

- Atividade I: Prove que os sequentes dos argumentos abaixo são válidos usando dedução natural.

Lógica Proposicional - Eliminação da Disjunção

- Eliminação da disjunção (∨e):
 - Sabemos que um dos disjuntos é verdadeiro, mas não podemos ter certeza qual deles, por isso precisamos de duas provas separadas.
 - ① Supomos que φ é verdadeira e temos que demonstrar que χ (uma terceira fórmula) é verdadeira.
 - Supomos que ψ é verdadeira e temos que demonstrar também que χ é verdadeira.
 - \odot A partir das duas demonstrações, podemos inferir que χ é verdadeira.

 Exemplo 1 - Prove que o sequente de p ∨ q ⊢ q ∨ p é válido, usando dedução natural:

1.	$p \lor q$	premissa
2.	q	hipótese
3.	$q \lor p$	∨ <i>i</i> ₁ 2
4.	р	hipótese
5.	$q \lor p$	∨ <i>i</i> ₂ 4
6	$a \vee p$	Ve 1 2-3 4-5

 Exemplo 2 - Prove que o sequente de q → r ⊢ p ∨ q → r ∨ p é válido, usando dedução natural:

1.	q ightarrow r	premissa
2.	$p \lor q$	hipótese
3.	q	hipótese
4.	r	ightarrow e 1,3
5.	$ r \lor p$	∨ <i>i</i> ₁ 4
6.	р	hipótese
7.	$ r \lor p$	∨ <i>i</i> ₂ 6
8.	$r \lor p$	<i>∨e</i> 2, 3-5, 6-7
9.	$p \lor q \rightarrow r \lor p$	→ <i>i</i> 2-8

Lógica Proposicional - Considerações sobre Ve

- Para que a demonstração seja correta, a fórmula deduzida nos dois casos deve ser exatamente a mesma;
- A regra ∨e é a combinação das demonstrações dos dois casos;
- Em cada um dos casos, não pode-se usar a hipótese do outro caso, a menos que seja algo demonstrado antes do início das caixas;

Lógica Proposicional - Exercícios

- Atividade II: Prove que os sequentes dos argumentos abaixo são válidos usando dedução natural.

Leitura

• Souza, J. N. Lógica para Computação. Cap. 6