L07: Cryptography

 Cryptography is the study of methods for sending and receiving secret messages through insecure channels

- Outline:
 - Secret Key Cryptography
 - Key Exchange
 - Public Key Cryptography and RSA

Reading: Rosen 4.6

Secret Key Cryptography

 In secret key cryptography, the sender (Bob) and the receiver (Alice) first agree on a common secret key in advance

Caesar Cipher (Shift Cypher)

- Encryption
 - The secret key k is a number from \mathbf{Z}_{26}
 - Replace each letter by an integer from \mathbf{Z}_{26}
 - The encryption function is $f(p) = (p + k) \mod 26$. It replaces each integer p by f(p).
 - Replace each integer by the corresponding letter
- Decryption
 - Just replace f(p) with $f^{-1}(p) = (p k) \mod 26$ in the procedure above.

Caesar Cipher: Example

Example

Encrypt the message "MEET YOU IN THE PARK" using k=3

Solution

- Replace letters by numbers:
 12 4 4 19 24 14 20 8 13 19 7 4 15 0 17 10.
- Replace each of these numbers p by f(p):
 15 7 7 22 1 17 23 11 16 22 10 7 18 3 20 13.
- Translating the numbers back to letters "PHHW BRX LQ WKH SDUN."

Affine Ciphers

- The shift cipher is easy to break:
 - Just try all 26 possible keys!
- Affine ciphers make it (a little bit) safer by using both additions and multiplications
- Use the function $f(p) = (ap + b) \mod 26$
 - The (a, b) pair is the secret key
 - Now there are $26^2 = 676$ possible secret keys
- However, suppose a = 13, b = 1
 - $f(1) = f(3) = f(5) = f(7) = \dots = 14$
 - If we receive a 14, which number does it decrypt to?
- How to fix?
 - Choose a such that gcd(a, 26) = 1, e.g., a = 7
 - Then $ax + b \equiv y \pmod{p}$ has a unique solution

Block Ciphers

- Each character is a number between 0 and 255
 - A byte = 8 bits
- Partition the message into blocks of k characters
 - Treat each block as a big number of 8k bits
 - Use arithmetic modulo 2^{8k}
- Example
 - Choose k = 10
 - Encryption: $f(x) = (ax + b) \mod 2^{80}$
 - Decryption: $f^{-1}(y) = a^{-1}(y b) \mod 2^{80}$
 - Now there are $\frac{2^{80}}{2} \times 2^{80} = 2^{159}$ different keys
- There are libraries on arbitrary-precision arithmetic
- But affine ciphers are subject to known-plaintext attacks!

Advanced Encryption Standard (AES)

- Used in Transport Layer Security (TLS)
 - Previously known as Secure Sockets Layer (SSL)
 - Provides security for https, email, etc.
- A block cipher
 - Block size 128 bits
 - Key lengths: 128, 192, 256 bits
- Complicated operations that make it very difficult to break

Outline

- Secret Key Cryptography
- Key Exchange
- Public Key Cryptography and RSA

Problems with secret-key cryptography

- How to send the secret key?
 - Keys had to be transmitted in physical form in World War II
- Electronic keys in modern days, but still have to be delivered physically for maximum security

	Act	nt ur	ng!	Luf	tw	aff	en	-IT	la[erfel	ert in	Jeini	rshn	nd fo	llen.	Bei (irfah	rreft		nd fe	ühzeit	tig veru	Nr Irliten.	. '	01:
1	Deljeniege			Dingletting			5 1 P			A F F B F F B I N C U N G F N am Southerbook						henngenopen									
080		1	V	111	14	16	- 1			-		52	07	DV.	KU	FO	MY	EW	JN	13.	LQ	wny	dgy	exb	rz)
	31			n			02					15	EV	MX	RW	DT	UZ	10	AO	CH	NY	kti	acw	251	wa
046	30	IV	111	1	12			KH	AX.	PZ	00	DJ	47	CV	10	ER	05	LW	PZ	PN	BH	ioc	acn	OVW	WW
649	20	111		v			16	DI	CH	BB	PV	CR	FV	AI	DK	07	MQ	EU	BX	LP	GJ	110	cld	ude	rz
049	28	11	111				07	LT	EQ	HS	UW	DY	18	BV	OR	AM	LO	PP	нт	EX	UW	LOW	fbh	vet	uis
049	27	111	1	IV				41	EN		- H	VZ	AL	RT	ко	co	EI	BJ	DU	P5	HP	xle	gbo	uev	FX
945	26		1A	V			19					OR	PV	AD	IT	PK	нл	1.2	NS	EQ	CW	oue	uhq	uew	ui
049	25	IV	111	1	08		12	_	-	-	-	TY	AS	OW	EV	IM	DR	HX	OL	CZ	NU	kpl	rwl	vei	11
049	24	V	1	IV.	05		14					QV	No.	AK	EO	DH	CJ	MZ	5X	ON	LT	ebn	rwm	udf	t1:
649	23.	16,	11	1	24		04					PJ	ES	IM	BX	LV	AY	ou	во	WZ	CN	190	acx	mwe	WV
649	22	11	IV	V	01		21	10	AS	DV	OL	RU	Rt.	PY	05	oz	DM	AW	CE	TV	NX	Jpw	del	nwf	WY:
640	21	1	V	11	13	05	19	PT	OX	E2	CH	DP	20	OI	DA	BY	SV	JL	OX	DE	TW	Jgd	cef	nvo	yst
649	20	111	IV	٧	24	01	10	MR	KN	BQ	PW	OX	PR	PH	WY	DL	CM	AB	TZ	15	GI	idf	fpx	JWE.	116
649	19	V	111	1	17	25	20					EJ	OY	TV	AO	XV	FX	MT	PS	LU	BD	152	Abw	Acl	TXI
649	18	IV	11	V	15	23	26					IR	1.2	LS	EM.	ov	or	QX	AF	JP	BU	mze	hai '	sog	ysi
649	17	1	IV	H	21	10	05	-	-	-		ни	10	DI	NR	BY	XZ	05	PU	FQ	CT	tdp	dhb	fkb	uiv
849	16	V	11	111	08	16	13					DS	HY	MR	QW	LX	AJ	BQ	co	IP	NT	1 dw	haj	soh	MAS
649	15	11	IV	1	01	03	07	0.5				1 0 M	JR	KS	IY	HZ	PL	AX	BT	CQ	NV	imt	nea	tjv	ztk
649	14	IV	1	V	15	11	05	IA	87	MV	HU	LY	AQ.	KM	BR	19	30	HV	SW	ET	CX	rgr	dgs	EJO	ryq
649		1	H	II	13	10	03	PW	EL	DG	KN	MU	BP	CY	RZ	KX	AN	JT	DO	IL	PW	zdy	rkf		xtl
649		. v	I's	IV		26	15	RZ	00	CF	SX	EN	UY	HB	PW	FM	80	EZ	QT	DX	JV	203	rjy	soi	MAH
649		11	IV	111	02		01					LR	18	NS	QU	HW	FT	00	YX	PZ	EN	1rc	rbx	vbm	TXO
649		IH	Y	111	16	04	08					QY	BS	LN	KT	AP	10	DW	но	RV	JZ	edj	eyr	vby	tih
649		V	. 1	- W	13		25	-	-	-	-	PI	NQ	SY	CU	BZ	HA	EL	TX	DO	KP	yiz	dha	ekc	tli
649		īV	II	11	09			1				. ux	11	HN	BK	QQ	CP	FT	JY	MA	AR	lan	dgb	253	wbi
641		1	IV	V	11							. DQ	GU	BW	NP	HK	A2	CI	PO	JX	VY	120	cft	rsk	wbj
649			11	IV	2			IL	AP	EU		MV	CL	GK	0.0	BI	FU	HS	PX	NW	EY	lju	cdr	190	waj
641			IV	1	0				WZ	KV	OM	. AC	BL	01	EK	QW	90	SU	DH	JM	TX	lsb	2 by	iwu	wak
641			14	11	10				NB	DI	CS	KR	MP	CN	BP	EH	DI	IM	AV	63	LO	lap	owd		xtd
64	9 3	V	v	- 11	11							BN	RU	EQ	PY	KO	CP	05	JW	AI	V2	agd	bdy	iyf	MAA

New Security Device

The Key Exchange Puzzle

- Alice wants to send a valuable item to Bob, but the postman cannot be trusted
 - Alice can put an (unbreakable) lock on the box, but Bob cannot open it without the key
- Solution
 - Alice puts her lock on the box, and sends its to Bob.
 - Bob, after receiving the box, puts his lock on the box as well, and returns to Alice.
 - Alice, after receiving the box, takes off her lock, and sends it back to Bob.
 - Bob takes off his lock and opens the box.
- "Locks" in cryptography are one-way functions: easy to compute f(x) from x, but given y, it's hard to find an x such that f(x) = y

Modular exponentiation

Lemma:

For any $a \in \mathbf{Z}_n$ and any nonnegative integers i, j

- $\bullet \quad a^i \bmod n = \left(\underbrace{(a \bmod n)(a \bmod n)...(a \bmod n)}_{i \text{ factors}} \bmod n\right)$
- $a^{i+j} \bmod n = ((a^i \bmod n)(a^j \bmod n)) \bmod n$
- $a^{ij} \bmod n = \left(\left(a^i \bmod n \right)^j \right) \bmod n$

Proof: Directly from theorem in L05

Examples

$$13^4 \equiv 6^4 \pmod{7}$$

 $3^{2+4} \equiv 3^2 \cdot 3^4 \equiv 2 \cdot 4 \equiv 1 \pmod{7}$
 $3^{4(2)} \equiv (3^4)^2 \equiv 4^2 \equiv 2 \pmod{7}$

A One-Way Function: Modular Exponentiation and Logarithm

How to compute

 $a^n \mod m$ efficiently for large n?

- Repeated squaring method
 - Compute $a^2 \mod m$ $a^{2^2} \mod m = a^4 \mod m = (a^2 \mod m)^2 \mod m$ $a^{2^3} \mod m = a^8 \mod m = (a^4 \mod m)^2 \mod m$
 - Write n in binary $n = (b_k \dots b_1 b_0)_2$
 - $a^n \equiv a^{b_0 \cdot 1} \cdot a^{b_1 \cdot 2} \cdot a^{b_2 \cdot 2^2} \cdots \pmod{m}$
- Example: $n = 50 = (110010)_2$
 - $a^{50} \equiv a^{2^1} a^{2^4} a^{2^5} \pmod{m}$

A Hard Problem: Discrete Logarithm

- Discrete logarithm is one such problem
 - Inverse of modular exponentiation
 - Given a prime p (potentially very large) and $r, a \in \mathbf{Z}_p$, find x such that

$$a^x \equiv r \pmod{p}$$

- Modular exponential and discrete logarithm is believed to be a one-way function
 - Yes, if you can solve discrete logarithm, you can break current crypto systems
- In 2015, it was reported that for 512-bit primes, the problem can be solved with a few thousands of CPUs in a week
 - Estimated cost to break 1024 bits: US\$100 million.

Diffe-Hellman Key Exchange

- Fix p and a
 - E.g., hardcoded in the TLS library
- The protocol
 - 1) Alice chooses a secret integer k_1 and Bob chooses k_2
 - 2) Alice sends $a^{k_1} \mod p$ to Bob. Secure to eavesdropping: Even this value is known to attackers, they cannot compute k_1
 - 3) Bob computes $(a^{k_1})^{k_2} \mod p$.
 - 4) Bob sends $a^{k_2} \mod p$ to Alice.
 - 5) Alice computes $(a^{k_2})^{k_1} \mod p$.
- The shared key is

$$(a^{k_1})^{k_2} \mod p = (a^{k_2})^{k_1} \mod p = a^{k_1 k_2} \mod p$$

Man-in-the-middle Attack

- If attacker intercepts all traffic between two parties
- Diffe-Hellman protocol can be compromised
- Attacker
 - communicates with Alice pretending as Bob
 - communicates with Bob pretending as Alice

Outline

- Secret Key Cryptography
- Key Exchange
- Public Key Cryptography and RSA

Public Key Cryptography

- All previous ciphers need a common secret key
- Encryption and decryption are symmetric
- The key has to be
 - communicated physically in secret
 - using the DH protocol (secure to eavesdropping but not man-in-the-middle)
- Public key cryptography
 - Encryption and decryption are asymmetric
 - Everyone has
 - a public key: shared with everyone else
 - a private key: kept secret

The RSA Cryptosystem

Ronald Rivest (Born 1948)

Adi Shamir (Born 1952)

Leonard Adelman (Born 1945)

Clifford Cocks (Born 1950)

- RSA was introduced in 1976 by RSA.
- In fact, Clifford Cocks, working secretly for the UK government, discovered it 3 years earlier.
 - Made known to public in 1997.

Another one-way function: Multiplication and factoring

- Let n = pq, where p and q are large primes (e.g. 1024 bits or longer)
- The factoring problem: Given n, find p and q
- On the other hand, it is known how to find random large primes efficiently
- Public key in RSA: n and e, such that e is relatively prime to (p-1)(q-1)
 - In practice: Pick e randomly and check
- Private key in RSA: p and q
 - Actually, only d (defined later) is needed
- Everyone uses a different set of keys

Key Generator

This is My Public Key

```
---- BEGIN SSH2 PUBLIC KEY ----

Comment: "rsa-key-20161118"

AAAAB3NzaC1yc2EAAAABJQAAAQEAkrwKeUwwz0jThhh2NSS8EJhED18VDzyCh8Rw
y2NJ6nHymOwyCWicUhjiY7wPOMljt6XFlmnAHACz0JhAg/hAHHYF8bdJJZ4slZrM
kNRQ0ZUDVDvacygKjeXDjneCvFrS+78ancE7gGGkZMaxWf4NsQVCoX3wRMuk6cHs
mrwGINYWGCHshjLAnzYwPvLegvlPszh1zhgzziMGNU08wf/q8WOrZmrtHB4epWhI
aSEjNIZmDlbkyy8SwW4y/7GjVKNLpnObUHh7qqBDnmWd5HnMWAEuHxbAhMXqIWIS
UKe8cwnFBWHpHCXMCyoCI1uJNhfjtj2hq7QKkejH/jCJ5U26pQ==
---- END SSH2 PUBLIC KEY ----
```

RSA Encryption

- Let x < n be the message to be encrypted
- Alice encrypts it as

$$C = x^e \mod n$$

- (n, e) is Bob's public key
- Sends C to Bob
- C may be eavesdropped
- Security
 - Exponentiation can be computed efficiently
 - Proportional to the length of the key
 - Computing x from C, n, e is believed to be difficult
 - Known as the RSA problem

RSA Decryption

- Bob receives C
- Bob decrypts x from C using his private key (p,q)
 - Find d, the inverse of e modulo (p-1)(q-1), i.e., $de \equiv 1 \pmod{(p-1)(q-1)}$
 - Compute

$$C^d \mod n$$

- Will show later that $C^d \equiv (x^e)^d \equiv x^{de} \equiv x \pmod{n}$
- Security:
 - It's hard to find d without knowing (p, q)

RSA in Use

- Sending secrete keys (e.g., for use in AES)
 - Alice encodes the secret key using Bob's public key
 - Bob decodes the secret key using his private key
- Digital signatures (authentication)
 - Alice encodes her message using her private key d and her public key n
 - Computes $C = x^d \mod n$
 - Sends (C, x) to Bob
 - Bob decodes the message using Alice's public key (n, e)
 - Computes $C^e \mod n = x^{de} \mod n$
 - He will know the message indeed came from Alice if $C^e \mod n = x$
 - The scheme above transmits x in plaintext. How to also keep it secret? (See textbook for the answer.)

RSA in Use

- How to prevent man-in-the-middle attacks?
- How to make sure that Alice's public key indeed belongs Alice?
- Certificate authority (CA)
 - A small number of trusted third parties: Comodo, Symantex, GoDaddy, GlobalSign, ...
- How to make sure that a CA's public key indeed belongs to that CA?
- Built into Internet browsers
- How can I trust my browser and the CAs?
- Well, you have to ...

HKUST - Central Authentication

Special authenticati services of a secure

- For Students ple Access Code
- For Faculty/Staff as the Access Cod

To further

RSA: Correctness

Proof plan

We want to show

$$C^d = x^{de} \equiv x \pmod{n}$$
.

Step 1: Show that

$$x^{de} \equiv x \pmod{p}$$

$$x^{de} \equiv x \pmod{q}$$

Step 2: Show that

$$x^{de} \equiv x \pmod{pq}$$

Fermat Little Theorem

Lemma: Let p be a prime number. For any non-zero $a \in \mathbf{Z}_p$, $1 \cdot_p a$, $2 \cdot_p a$, ..., $(p-1) \cdot_p a$ are a permutation of the set $\{1, 2, ..., p-1\}$

Proof sketch

- None of them is 0
- If $x \cdot a \equiv y \cdot a \pmod{p}$, then $x \cdot a \cdot a^{-1} \equiv y \cdot a \cdot a^{-1}$, $x \equiv y$
- Example

	ı	2		4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	4 6 1 3	1	6	4	2
6	6	5	4	3	2	1

Fermat Little Theorem

Theorem

Let p be a prime number. Then for any non-zero $a \in \mathbf{Z}_p$ $a^{p-1} \equiv 1 \pmod{p}$

Proof

From the lemma,

$$x = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1) \equiv (1 \cdot_p a) (2 \cdot_p a) \cdots ((p-1) \cdot_p a) \pmod{p}$$
$$\equiv 1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1) \cdot a^{p-1} \pmod{p}$$

 x^{-1} exists in \mathbb{Z}_p , multiplying both sides by x^{-1} gives: $1 \equiv a^{p-1} \pmod{p}$

Fermat Little Theorem

• Example: **Z**₇

а	a^0	a^1	a^2	a^3	a^4	a^5	a^6
1	1	1	1	1	1	1	1
2	1	2	4	1	2	4	1
3	1	3	2	6	4	5	1
4	1	4	2	1	4	2	1
5	1	5	4	6	2	3	1
6	1	6	1	6	1	6	1

The sequence in each row cycles

Fermat's Little Theorem

Pierre de Fermat (1601-1665)

Corollary

If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

• Examples:

$$9^6 \equiv 2^6 \equiv 1 \pmod{7}$$
 $14^6 \equiv 0 \pmod{7}$

Useful in computing the remainders of large powers

• Example:

Find 7²²² mod 11.

By the theorem, we know that $7^{10} \equiv 1 \pmod{11}$, and so $(7^{10})^k \equiv 1 \pmod{11}$, for any positive integer k.

Therefore,

$$7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} \cdot 7^2 \equiv 1^{22} \cdot 49 \equiv 5 \pmod{11}$$

RSA Correctness Step 1

Proof

We know d is the inverse of e modulo (p-1)(q-1), so de = 1 + k(p-1)(q-1).

It follows that

$$C^{d} \equiv (x^{e})^{d}$$

$$\equiv x^{de}$$

$$\equiv x^{1+k(p-1)(q-1)} \pmod{p}$$

Case 1: x is not a multiple of p.

Applying Fermat's Little Theorem:

$$x^{k(p-1)(q-1)} \equiv 1 \pmod{p},$$

SO

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{p},$$

RSA Correctness Step 1 (cnt'd)

Case 2: x is a multiple of p.
 Then

$$x \equiv 0 \pmod{p}$$

Thus in this case, we have

$$x^{1+k(p-1)(q-1)} \equiv x \equiv 0 \pmod{p}.$$

■ The proof for $x^{de} \equiv x \pmod{q}$ is symmetric.

RSA Correctness Step 2

- Proof of Step 2:
 - We already have

$$x^{de} \equiv x \pmod{p}$$
$$x^{de} \equiv x \pmod{q}$$

■ Because gcd(p,q) = 1, by the Chinese Remainder Theorem (treating x^{de} as the unknown and x as given), x^{de} has a unique solution in \mathbf{Z}_{pq} :

$$x^{de} \equiv x \pmod{pq}$$