

$< 0.5 \Omega$ CMOS, 1.65 V to 3.6 V, **Quad SPST Switches**

Data Sheet

ADG811/ADG812

FEATURES

 0.5Ω typical on resistance 0.8 Ω maximum on resistance at 125°C 1.65 V to 3.6 V operation

Automotive temperature range: -40°C to +125°C High current carrying capability: 300 mA continuous Rail-to-rail switching operation

Fast switching times: <25 ns Typical power consumption <0.1 μW

APPLICATIONS

Cellular phones MP3 players Power routing Battery-powered systems PCMCIA cards **Modems** Audio and video signal routing **Communications systems**

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC 1 INPUT

Figure 1.

Figure 2.

GENERAL DESCRIPTION

The ADG811/ADG812 are low voltage complementary metal-oxide semiconductor (CMOS) devices containing four independently selectable switches. These switches offer an ultralow on resistance of less than 0.8 Ω over the full temperature range. The digital inputs can handle 1.8 V logic with a 2.7 V to 3.6 V supply.

These devices contain four independent single-pole/single-throw (SPST) switches. The ADG811 and ADG812 differ only in that the digital control logic is inverted. The ADG811 switches are turned on with a logic low on the appropriate control input, while a logic high is required to turn on the switches of the ADG812. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies.

The ADG811/ADG812 are fully specified for 3.3 V, 2.5 V, and 1.8 V supply operation. The ADG811 is available in a 16-lead LFCSP, and the ADG812 is available in a 16-lead TSSOP.

PRODUCT HIGHLIGHTS

- 1. $< 0.8 \Omega$ on resistance over the full temperature range of -40° C to $+125^{\circ}$ C.
- Single 1.65 V to 3.6 V operation.
- Operational with 1.8 V CMOS logic.
- High current handling capability (300 mA continuous current at 3.3 V).
- Low total harmonic distortion plus noise (THD + N)(0.02% typical).
- Small, 3 mm × 3 mm, 16-lead LFCSP and 16-lead TSSOP.

TABLE OF CONTENTS

reatures	1
Applications	1
Functional Block Diagrams	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	
ESD Caution	

Pin Configurations and Function Descriptions	7
Typical Performance Characteristics	9
Test Circuits	12
Terminology	14
Outline Dimensions	15
Ordering Guide	15

REVISION HISTORY

7/2016—Rev. B to Rev. C	
Deleted ADG813	Universal
Changed CP-16-2 to CP-16-21	Throughout
Changes to Figure 1	1
Added Figure 2; Renumbered Sequentially	1
Deleted Table 6; Renumbered Sequentially	6
Changes to Figure 3 and Table 6	7
Changes to Figure 4 and Table 7	8
Change to Figure 16 Caption	10
Deleted Figure 23; Renumbered Sequentially	11
Updated Outline Dimensions	14
Changes to Ordering Guide	14

11/2009—Rev. A to Rev. B	
Added 16-Lead LFCSP	Universal
01 (77.11 (

Changes to Table 46
Changes to Pin Configurations and Function Descriptions
Section
Moved Terminology Section
Updated Outline Dimensions
Changes to Ordering Guide
•

11/2003—Revision 0: Initial Version

SPECIFICATIONS

 V_{DD} = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted. The temperature range for the Y version is -40° C to $+125^{\circ}$ C.

Table 1.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	٧	
On Resistance, R _{ON}	0.5			Ωtyp	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA};$ see Figure 20
	0.65	0.75	0.8	Ω max	
On-Resistance Match Between	0.04			Ωtyp	$V_{DD} = 2.7 \text{ V, } V_S = 0.5 \text{ V, } I_S = 10 \text{ mA}$
Channels, ΔR _{ON}	0.01			12 () [VDD = 2.7 V, V3 = 0.5 V, I3 = 10 III/V
,		0.075	0.08	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	0.1			Ωtyp	$V_{DD} = 2.7 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
		0.15	0.16	Ω max	100 20 1, 10 0 1 10 100, 10 100
LEAKAGE CURRENTS					VDD = 3.6 V
Source Off Leakage, I _s (Off)	±0.2			nA typ	$V_S = 0.6 \text{ V}/3.3 \text{ V}, V_D = 3.3 \text{ V}/0.6 \text{ V};$
					see Figure 21
D : 000 1 1 1000	±1	±8	±80	nA max	
Drain Off Leakage, I _D (Off)	±0.2			nA typ	$V_S = 0.6 \text{ V}/3.3 \text{ V}, V_D = 3.3 \text{ V}/0.6 \text{ V};$ see Figure 21
	±1	±8	±80	nA max	
Channel On Leakage, ID, IS (On)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 3.3 \text{ V; see Figure } 22$
	±1	±15	±90	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
,			±0.1	μA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹				' ''	
ton	21			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
CON	25	26	28	ns max	$V_s = 1.5 \text{ V/0 V}$; see Figure 23
toff	4	20		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
COFF	5	6	7	ns max	$V_s = 1.5 \text{ V}$; see Figure 23
Charge Injection	30		,	pC typ	$V_S = 1.5 \text{ V}$, see Figure 25
	30			рстур	see Figure 24
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 25
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
Total Harmonic Distortion Plus Noise (THD + N)	0.02			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 2 V p-p$
Insertion Loss	-0.05			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
–3 dB Bandwidth	90			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
C _s (Off)	30			pF typ	
C _D (Off)	35			pF typ	
C _D , C _s (On)	60			pF typ	
POWER REQUIREMENTS	- 55			אין אין	VDD = 3.6 V
	0.003			μA typ	Digital inputs = 0 V or 3.6 V
I_{DD}	0.003	1.0			
		1.0	4	μA max	

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design, but not subject to production test.

 V_{DD} = 2.5 V \pm 0.2 V, GND = 0 V, unless otherwise noted. The temperature range for the Y version is -40° C to $+125^{\circ}$ C.

Table 2.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	٧	
On Resistance, R _{ON}	0.65			Ωtyp	$V_{DD} = 2.3 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$ see Figure 20
	0.72	0.8	0.88	Ω max	
On-Resistance Match Between Channels, ΔR_{ON}	0.04			Ωtyp	$V_{DD} = 2.3 \text{ V}, V_S = 0.55 \text{ V}, I_S = 10 \text{ mA}$
		0.08	0.085	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	0.16			Ωtyp	$V_{DD} = 2.3 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ m/s}$
on nearest names, near (on)	01.0	0.23	0.24	Ω max	2.5 2.5 1, 13 6 1 16 155, 15 1.5
LEAKAGE CURRENTS					$V_{DD} = 2.7 \text{ V}$
Source Off Leakage, Is (Off)	±0.2			nA typ	$V_S = 0.6 \text{ V}/2.4 \text{ V}, V_D = 2.4 \text{ V}/0.6 \text{ V};$ see Figure 21
	±1	±6	±35	nA max	300.194.02.
Drain Off Leakage, I _D (Off)	±0.2			nA typ	$V_S = 0.6 \text{ V}/2.4 \text{ V}, V_D = 2.4 \text{ V}/0.6 \text{ V};$ see Figure 21
	±1	±6	±35	nA max	
Channel On Leakage, ID, Is (On)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 2.4 \text{ V; see Figure } 22$
, , , , , , , , , , , , , , , , , , ,	±1	±11	±70	nA max	, the second sec
DIGITAL INPUTS					
Input High Voltage, V _{INH}			1.7	V min	
Input Low Voltage, V _{INL}			0.7	V max	
Input Current, I _{INL} or I _{INH}	0.005		0.7	μA typ	$V_{IN} = V_{INL}$ or V_{INH}
input current, tine or tinh	0.003		±0.1	μA max	VIN — VINE OF VINH
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹	_			pi typ	
ton	22			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
ton	27	29	30	ns max	$V_S = 1.5 \text{ V/ } 0 \text{ V; see Figure 23}$
+	4	29	30	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
t off	6	7	8	ns max	$V_S = 1.5 \text{ V}$; see Figure 23
Charge Injection	25	/	8		$V_S = 1.25 \text{ V, Rs} = 0 \Omega, C_L = 1 \text{ nF;}$
				pC typ	see Figure 24
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 25
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
Total Harmonic Distortion Plus Noise (THD + N)	0.022			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 1.5 V p-p$
Insertion Loss	-0.06			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
–3 dB Bandwidth	90			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
Cs (Off)	32			pF typ	
C _D (Off)	37			pF typ	
C _D , C _S (On)	60			pF typ	
POWER REQUIREMENTS				. /	$V_{DD} = 2.7 \text{ V}$
I _{DD}	0.003			μA typ	Digital inputs = 0 V or 2.7 V
		1.0	4	μA max	J F

¹ Guaranteed by design, but not subject to production test.

 $V_{DD} = 1.65 \text{ V}$ to 1.95 V, GND = 0 V, unless otherwise noted. The temperature range for the Y version is -40°C to $+125^{\circ}\text{C}$.

Table 3.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, R _{ON}	1			Ωtyp	$V_{DD} = 1.8 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA};$ see Figure 20
	1.4	2.2	2.2	Ω max	
	2.5	4	4	Ω max	$V_{DD} = 1.65 \text{ V}, V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
On-Resistance Match Between Channels, ΔR_{ON}	0.1			Ωtyp	$V_{DD} = 1.65 \text{ V}, V_S = 0.7 \text{ V}, I_S = 10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 1.95 \text{ V}$
Source Off Leakage Is (Off)	±0.2			nA typ	$V_S = 0.6 \text{ V}/1.65 \text{ V}, V_D = 1.65 \text{ V}/0.6 \text{ V};$ see Figure 21
	±1	±5	±30	nA max	
Drain Off Leakage I _D (Off)	±0.2			nA typ	$V_S = 0.6 \text{ V}/1.65 \text{ V}, V_D = 1.65 \text{ V}/0.6 \text{ V};$ see Figure 21
	±1	±5	±30	nA max	
Channel On Leakage ID, Is (On)	±0.2			nA typ	$V_S = V_D = 0.6 \text{ V or } 1.65 \text{ V; see Figure } 22$
	±1	±9	±60	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			0.65V _{DD}	V min	
Input Low Voltage, V _{INL}			0.35V _{DD}	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	27			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	35	36	37	ns max	$V_s = 1.5 \text{ V/ } 0 \text{ V}; \text{ see Figure 23}$
t off	6			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	8	9	10	ns max	V _s = 1.5 V; see Figure 23
Charge Injection	15			pC typ	$V_S = 1 \text{ V, } R_S = 0 \Omega, C_L = 1 \text{ nF;}$ see Figure 24
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 25
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
Total Harmonic Distortion Plus Noise (THD + N)	0.14			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_S = 1.2 V p-p$
Insertion Loss	-0.08			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
–3 dB Bandwidth	90			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
C _S (Off)	32			pF typ	
C _D (Off)	38			pF typ	
C_D , C_S (On)	60			pF typ	
POWER REQUIREMENTS					V _{DD} = 1.95 V
I_{DD}	0.003			μA typ	Digital inputs = 0 V or 1.95 V
		1.0	4	μA max	

 $^{^{\}mbox{\tiny 1}}$ Guaranteed by design, but not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

Parameter	Pating
	Rating
V _{DD} to GND	−0.3 V to +4.6 V
Analog Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Digital Inputs ¹	GND – 0.3 V to 4.6 V or
	10 mA, whichever occurs
	first
Peak Current, S or D	(Pulsed at 1 ms, 10%
	duty-cycle maximum)
3.3 V Operation	500 mA
2.5 V Operation	460 mA
1.8 V Operation	420 mA
Continuous Current, S or D	
3.3 V Operation	300 mA
2.5 V Operation	275 mA
1.8 V Operation	250 mA
Operating Temperature Range, Automotive (Y Version)	-40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance	
TSSOP	
Θ_{JA}	150°C/W
θ_{JC}	27°C/W
LFCSP	
Θ_{JA}	70°C/W
IR Reflow, Peak Temperature < 20 sec	235°C

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

Table 5. ADG811/ADG812 Truth Table

ADG811 IN	ADG812 IN	Switch Condition
0	1	On
1	0	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. ADG811/ADG812 Pin Configuration (16-Lead TSSOP)

Table 6. ADG811/ADG812 Pin Function Descriptions (16-Lead TSSOP)

Pin No.						
TSSOP	LFCSP	Mnemonic	Description			
1	15	IN1	Logic control input.			
2	16	D1	Drain Terminal. This pin may be an input or output.			
3	1	S1	Source Terminal. This pin may be an input or output.			
4, 12	2, 10	NIC	No Internal Connection.			
5	3	GND	Ground (0 V) reference.			
6	4	S4	Source Terminal. This pin may be an input or output.			
7	5	D4				
8	6	IN4	Logic Control Input.			
9	7	IN3	Logic Control Input.			
10	8	D3	Drain Terminal. This pin may be an input or output.			
11	9	S3	Source Terminal. This pin may be an input or output.			
13	11	VDD	Most Positive Power Supply Potential.			
14	12	S2	Source Terminal. This pin may be an input or output.			
15	13	D2	Drain Terminal. This pin may be an input or output.			
16	14	IN2	Logic Control Input.			
Not applicable	17	EPAD	Exposed Pad. Connect exposed pad to GND.			

Figure 4. ADG811 Pin Configuration (16-Lead LFCSP)

Table 7. ADG811 Pin Function Descriptions (16-Lead LFCSP)

Pin No.	Mnemonic	Description			
1	S1	Source Terminal. This pin may be an input or output.			
2, 10	NIC	No Internal Connection.			
3	GND	Ground (0 V) reference.			
4	S4	Source Terminal. This pin may be an input or output.			
5	D4	Drain Terminal. This pin may be an input or output.			
6	IN4	Logic Control Input.			
7	IN3	Logic Control Input.			
8	D3	rain Terminal. This pin may be an input or output.			
9	S3	ource Terminal. This pin may be an input or output.			
11	VDD	Most Positive Power Supply Potential.			
12	S2	Source Terminal. This pin may be an input or output.			
13	D2	Drain Terminal. This pin may be an input or output.			
14	IN2	Logic Control Input.			
15	IN1	Logic control input.			
16	D1	Drain Terminal. This pin may be an input or output.			
17	EPAD	Exposed Pad. Connect exposed pad to GND.			

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. V_D (V_S), $V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$

Figure 6. On Resistance vs. V_D (V_S), V_{DD} = 2.5 $V \pm 0.2 V$

Figure 7. On Resistance vs. V_D (V_S), $V_{DD} = 1.8 V \pm 0.15 V$

Figure 8. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 3.3 \text{ V}$

Figure 9. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 2.5 \text{ V}$

Figure 10. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 1.8 \text{ V}$

Figure 11. Leakage Current vs. Temperature, $V_{DD} = 3.3 \text{ V}$

Figure 12. Leakage Current vs. Temperature, $V_{DD} = 2.5 V$

Figure 13. Leakage Current vs. Temperature, $V_{DD} = 1.8 \text{ V}$

Figure 14. Charge Injection (Q_{INJ}) vs. Source Voltage (V_S)

04306-A-012

Figure 15. t_{ON}/t_{OFF} Times vs. Temperature

Figure 16. Bandwidth vs. Frequency

Figure 17. Crosstalk vs. Frequency

Figure 18. Off Isolation vs. Frequency

Figure 19. Total Harmonic Distortion Plus Noise (THD + N) vs. Frequency

TEST CIRCUITS

Figure 20. On Resistance

Figure 22. On Leakage

Figure 23. Switching Times

Figure 24. Charge Injection

Figure 25. Off Isolation

Figure 26. Bandwidth

Figure 27. Channel-to-Channel Crosstalk

TERMINOLOGY

 I_{DD}

Positive supply current.

 V_D, V_S

Analog voltage on Terminal D and Terminal S.

RON

Ohmic resistance between Terminal D and Terminal S.

R_{FLAT} (ON)

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

 ΔR_{ON}

On-resistance match between any two channels, that is, $R_{\rm ON}$ maximum – $R_{\rm ON}$ minimum.

Is (Off)

Source leakage current with the switch off.

I_D (Off)

Drain leakage current with the switch off.

 I_D , I_S (On)

Channel leakage current with the switch on.

 V_{INL}

Maximum input voltage for Logic 0.

 $\mathbf{V}_{\mathrm{INH}}$

Minimum input voltage for Logic 1.

 $I_{INL}(I_{INH})$

Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.

C_D (Off)

Off switch drain capacitance. Measured with reference to ground.

C_D , C_S (On)

On switch capacitance. Measured with reference to ground.

 C_{IN}

Digital input capacitance.

ton

Delay time between the 50% and the 90% points of the digital input and switch on condition.

tori

Delay time between the 50% and the 90% points of the digital input and switch off condition.

t_{BBN}

On or off time measured between the 80% points of both switches, when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-to-off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another because of parasitic capacitance.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

Total Harmonic Distortion Plus Noise (THD + N)

The ratio of the harmonic amplitudes plus the noise of a signal to the fundamental.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 28. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WEED.

Figure 29. 16-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-16-21) Dimensions shown in millimeters

ORDERING GUIDE

**** = ····· = ·		
Temperature Range	Package Description	Package Option
−40°C to +125°C	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-21
-40°C to +125°C	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
-40°C to +125°C	16-Lead Thin Shrink Small Outline [TSSOP]	RU-16
	-40°C to +125°C -40°C to +125°C -40°C to +125°C	-40°C to +125°C 16-Lead Thin Shrink Small Outline [TSSOP] -40°C to +125°C 16-Lead Lead Frame Chip Scale Package [LFCSP] -40°C to +125°C 16-Lead Thin Shrink Small Outline [TSSOP]

¹ Z = RoHS Compliant Part.

