Problem 1. Use the linear-time dynamic-programming algorithm to compute the shortest-path distance from $v_{0,0}$ to each node in the grid below, using the given edge weights. For your answer, give a 4×6 matrix where the entry in row i and column j is the distance from $v_{0,0}$ to $v_{i,j}$.

Problem 1 answer Here's the matrix of distances from $v_{0,0}$:

	j = 0	1	2	3	4	
i = 3	9 5 3 0	9	10	8	8	11
2	5	4	4	6	7	10
1	3	3	7	9	11	12
0	0	2	3	8	15	18

Problem 2. Consider making change for total T = 10 using denominations $D = \{1, 3, 4\}$.

- (a) Simulate the iterative makeChange algorithm. What are the values in the array m[0..T] computed by the algorithm?
- (b) Following Section 3.1, the corresponding DAG G = (V, E) is shown below. What path in this DAG corresponds to making change with coins 4, 3, 1, 1, 1 (in that order)? List the six nodes on the path.

Problem 2 answer

(a) Here's the matrix m[0..10] computed by makeChange $(D = \{1, 3, 4\}, T = 10)$:

(b) Here are the six nodes on the path corresponding to making change with 4, 3, 1, 1, 1:

Problem 3. Consider the following problem, Counting Ways to Make Change:

input: A pair I = (D, T) where $D = \{d_1, d_2, \dots, d_k\}$ is a set of *denominations*, and T is a target (all non-negative integers, with $1 \in D$).

output: The number of sequences $C = (c_1, \ldots, c_\ell)$ s.t. $c_i \in D$ for all i and $\sum_i c_i = T$.

For example, with $D = \{1,3\}$ and T = 4, there are three: (1,1,1,1), (1,3), and (3,1). Adapt the algorithm for Making Change to solve this problem.

- (a) Define the subproblems.
- (b) State the recurrence relation.
- (c) Give pseudo-code for an iterative implementation of the algorithm.

(continued)

Problem 3 answer

(a) Here is a definition of all the subproblems the algorithm will solve: For $t \in \{0, 1, \dots, T\}$, define N(t) to be the number of sequences that can be used to make change for t. The final answer is N(T).

(b) Here's the recurrence relation:

$$N(t) = \begin{cases} 1 & \text{if } t = 0\\ \sum_{i} N(t - d_i) : d_i \in D, d_i \le t & \text{otherwise.} \end{cases}$$

(c) Here is pseudo-code for an iterative implementation (don't forget the return statement):

 $\mathsf{waysToMakeChange}(D = \{d_1, d_2, \dots, d_k\}, T) \colon$

- 1. For $t = 0, 1, \dots, T$:
- For $t = 0, 1, \dots, T$: $N[t] = \begin{cases} 1 & \text{if } t = 0 \\ \sum_{i} N(t d_i) : d_i \in D, d_i \le t & \text{otherwise.} \end{cases}$
- 3. return N[T]

Problem 4. Is the following conjecture true or false? Either give a long-form proof of the conjecture (as a theorem), or prove that it is false by giving a counter-example, and explaining clearly how the algorithm fails on your counter-example.

Conjecture 1. Let G = (V, E) be any edge-weighted digraph, and $s \in V$ any vertex. Suppose that every edge that doesn't touch s has non-negative weight. (That is, for every edge $(u, w) \in E$, if $s \notin \{u, w\}$, then $\mathsf{wt}(u, w) \geq 0$. Edges entering or leaving s can have negative weight.) Suppose also that G has no negative-weight cycles. Then Dijkstra's algorithm, if run on input (G, s), correctly computes the shortest-path distance from s to each vertex $v \in V$.

If you try to prove it, your proof should be as similar as possible to the proof of correctness for Dijkstra's algorithm. We'll provide that proof as a template. Please color all text that you add to it blue.

For reference, here is the algorithm:

```
Dijkstra (G = (V, E), s): — Dijkstra's algorithm for Single-Source Shortest Paths —
```

- 1. initialize $K \leftarrow \{s\}$ and d[s] = 0
- 2. while some edge in E leaves K (that is, $\exists (u, w) \in E : u \in K, w \notin K$):
- 3.1. among edges leaving K, choose edge (u', w') that minimizes $d[u'] + \mathsf{wt}(u', w')$
- 3.2. set $d[w'] = d[u'] + \mathsf{wt}(u', w')$
- 3.3. add w' to K
- 4. set $d[w] = \infty$ for all $w \in V \setminus K$
- 5. return d

Note that in the proof of Lemma 1, in Step 3.12.5, it can happen that $\mathsf{wt}(P_y) < 0$. Consider the graph below, with $K = \{s, x, u\}$ and path P = (s, x, y, s, w). (And d[s] = 0, d[u] = d[x] = 1.)

Problem 4 answer

Lemma 1. In any execution on a graph as described in the problem statement, the loop maintains the invariant $d[v] = \mathsf{dist}(s, v) < \infty$ for all $v \in K$.

Proof (long form).

- 1. Consider any execution of the algorithm on some input (G = (V, E), s).
- 2. The invariant holds at the start of the first iteration, when $K = \{s\}$ and $d[s] = 0 = \mathsf{dist}(s, s)$. (Because G has no negative-weight cycles.)
- 3.1. Consider any iteration of the loop such that the invariant holds at the start of the iteration.
- 3.2. Let K and d denote the set K and the array d at the start of the iteration.
- 3.3. Let (u', w') be the edge chosen in the iteration.
- 3.4. To show that the iteration maintains the invariant, we'll show dist(s, w') = d[u'] + wt(u', w').
- 3.5. First we show $\operatorname{dist}(s, w') \leq d[u'] + \operatorname{wt}(u', w')$.
- 3.6. Since $u' \in K$, by the invariant, $\operatorname{dist}(s, u') = d[u'] < \infty$.
- 3.7. So there exists a path from s to u' of weight d[u'].
- 3.8. This path plus the edge (u', w') form a path from s to w' of weight $d[u'] + \mathsf{wt}(u', w')$.
- 3.9. So there exists a path from s to w' of weight $d[u'] + \mathsf{wt}(u', w')$.
- 3.10. So $\operatorname{dist}(s, w') \leq d[u'] + \operatorname{wt}(u', w')$, as desired.
- 3.11. To finish we'll show $dist(s, w') \ge d[u'] + wt(u', w')$.
- 3.12.1. Let P be any path from s to w'. We'll show $\operatorname{wt}(P) \geq d[u'] + \operatorname{wt}(u', w')$.
- 3.12.2. P starts in K, but ends outside of K, so some edge on P leaves K.
- 3.12.3. Let (x,y) be an edge on P that leaves K (so $x \in K$, $y \notin K$).
- 3.12.4. Separate the path P around the edge (x,y) into the part before, P_x , and the part after, P_y .
- 3.12.5. So $P = P_x \cup \{(x,y)\} \cup P_y$ and P_x is a path from s to x. Then
- 3.12.6. Case 1: P_y doesn't go through S.

 P_y has no edge incident to S, therefore, $\mathsf{wt}(P_y) \geq 0$, as only edges incident to S have negative edge weight.

```
 = \operatorname{wt}(P_x) + \operatorname{wt}(x,y) + \operatorname{wt}(P_y) \qquad (Since \ P = P_x \cup \{(x,y)\} \cup P_y.) 
\geq \operatorname{wt}(P_x) + \operatorname{wt}(x,y) \qquad (\operatorname{wt}(P_y) \geq 0.) 
\geq \operatorname{dist}(s,x) + \operatorname{wt}(x,y) \qquad (Since \ P_x \ is \ a \ path \ from \ s \ to \ x.) 
= d[x] + \operatorname{wt}(x,y) \qquad (Since \ x \in K \ so \ d[x] = \operatorname{dist}(s,x) \ by \ the \ invariant.) 
\geq d[u'] + \operatorname{wt}(u',w') \qquad (By \ the \ alg \ s \ choice \ of \ (u',w'), \ and \ x \in K, \ y \notin K)
```

- 3.12.7. Case 2: P_y goes through S.
- 3.12.8. Thus, there is a cycle from S through (x, y) back to S (the last time it loops around, if it loops around more than once to S), and the rest of path P is from S to w'.
- $3.12.9. P_y = P_{y->s} + P_{s->w'}$
- 3.12.10. $\operatorname{wt}(P_{v->s}) + \operatorname{wt}((x,y)) + \operatorname{wt}(P_x) \ge 0 because P_{v->s} + (x,y) + P_x$ is a cycle

$$= \operatorname{wt}(P_x) + \operatorname{wt}(x,y) + \operatorname{wt}(P_y)$$

$$= \operatorname{wt}(P_x) + \operatorname{wt}(x,y) + \operatorname{wt}(P_{y->s}) + \operatorname{wt}(P_{s->w'})$$

$$\operatorname{step } 3.12.9$$
 (cont.)

$$\geq \operatorname{wt}(P_{s->w'})$$

$$\operatorname{wt}(P_{y->s} + (x,y) + P_x) \ge 0$$

Case 2.1: the path from s to w' goes through u'

$$\geq \operatorname{wt}(P_{s->w'})$$

from above

$$\geq d[u'] + \mathsf{wt}(u', w')$$

since d[u'] + wt(u', w') is the least weight path from s to w' chosen by the algorithm

Case 2.2: the path s to w' goes through node z to reach w' and y is the node connected to w' in this path y is the node connected to w' in this path and the path leaves K through edge (i,j)

$$\geq \operatorname{wt}(P_{s->w'})$$

from above

$$= \operatorname{wt}(P_{s->z}) + \operatorname{wt}(P_{z->i}) + \operatorname{wt}((i,j)) + \operatorname{wt}(P_{j->y}) + \operatorname{wt}(P_{y->w'}) \\ > d[u'] + \operatorname{wt}(u',w')$$

for all a in K and (a,b) leaving K, the algorithm chooses the lowest result of d[a] + wt(a,b) leaving K, so it must have considered both (u',w') and (i,j), so d[i'] + wt(i',j') >= d[u'] + wt(u',w') and any other edges such as (y,w') are not incident to k, so their edge weight is positive and can only increase the weight of the path) so wt(P) >= d[u'] + wt(u',w')

Case 2.2.2: z is not in K

$$\geq \mathsf{wt}(P_{s->w'})$$

from above

$$= \mathsf{wt}(P_{s->i}) + \mathsf{wt}((i,j)) + \mathsf{wt}(P_{j->z}) + \mathsf{wt}(P_{z->y}) + \mathsf{wt}(P_{y->w'}) > d[u'] + \mathsf{wt}(u',w')$$

same reasoning as case 2.2.1

- 3.13. By Block 3.12, every path from s to w' has weight at least $d[u'] + \mathsf{wt}(u', w')$.
- 3.14. That is, $dist(s, w') \ge d[u'] + wt(u', w')$.
- 3.15. By this and Step 3.10, dist(s, w') = d[u'] + wt(u', w').
- 4. The invariant holds initially. By Block 3, each iteration maintains it, so it holds throughout.

Given that the invariant holds, correctness is easy to verify:

Theorem 1. Given any graph as described in the problem statement, the array d returned by Dijkstra's algorithm satisfies $d[v] = \mathsf{dist}(s,v)$ for all $v \in V$.

Proof (long form).

- 1. Consider the execution of the algorithm on an arbitrary input (G, s).
- 2. Consider the time just before Line 4 executes.
- 3. By Lemma 1, at that time, $d[v] = \mathsf{dist}(s, v)$ for each $v \in K$.
- 4. By the loop condition, no edges leave K, so vertices in $V \setminus K$ are not reachable from s.
- 5. So each remaining vertex $v \in V \setminus K$ has $\operatorname{dist}(s, v) = \infty$.
- 6. So, after Line 4 executes, each vertex $v \in V \setminus K$ also has $d[v] = \mathsf{dist}(s, v)$.
- 7. So the distances returned by the algorithm are correct.