STAT 525 FALL 2011

Chapter 9 Model Selection

Professor Dabao Zhang

Example: Patients Survival Time (p.350)

- Surgical unit wants to predict survival in patients undergoing a specific liver operation
- Random sample of 54 patients studied
- ullet Y is post-operation survival time
- Four predictor variables:

 X_1 — blood clotting score

 X_2 — prognostic index (age)

 X_3 — enzyme function score

 X_4 — liver function score

Survival Time as Response

- Often skewed with a few long-lived times
- In this case, we observe all survival times
- Times can be censored if the study were prior to some subjects' deaths
 - Survival analysis techniques could be used
- Transformation of survival times will be investigated using Box-Cox transformation

```
/* CH09TA01.TXT is a tab-delimited file */
data a1 (drop=age gender alcmod alcheavy);
   infile 'D:\nobackup\tmp\CH09TA01.TXT' delimiter='09'x;
   input blood prog enz liver age gender alcmod alcheavy surv logsurv;
run;
```

proc transreg;
 model boxcox(surv/lambda=-1 to 1 by .1) = identity(blood)
 identity(prog) identity(enz) identity(liver);
run; quit;

Lambda	R-Square	Log Like	
-1.0	0.64	-293.077	
-0.9	0.66	-289.803	
-0.8	0.68	-286.714	
-0.7	0.69	-283.837	
-0.6	0.70	-281.203	
-0.5	0.72	-278.846	
-0.4	0.73	-276.805	
-0.3	0.74	-275.119	
-0.2	0.75	-273.828 *	
-0.1	0.75	-272.971 *	
0.0 +	0.76	-272.579 <	
0.1	0.76	-272.675 *	
0.2	0.76	-273.269 *	
0.3	0.76	-274.360 *	
0.4	0.75	-275.933	
0.5	0.75	-277.961	
0.6	0.74	-280.409	
0.7	0.73	-283.238	
0.8	0.72	-286.406	
0.9	0.71	-289.869	
1.0	0.69	-293.591	

< - Best Lambda

^{* -} Confidence Interval

^{+ -} Convenient Lambda

Scatterplot Matrix

Predictor Summary Statistics

```
/* logsurv = log(surv) */
proc corr;
   var logsurv blood prog enz liver;
run; quit;
```

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
logsurv	54	6.43048	0.49158	347.24600	5.19800	7.75900
blood	54	5.78333	1.60303	312.30000	2.60000	11.20000
prog	54	63.24074	16.90253	3415	8.00000	96.00000
enz	54	77.11111	21.25378	4164	23.00000	119.00000
liver	54	2.74426	1.07036	148.19000	0.74000	6.40000

Pearson Correlation Coefficients, N = 54Prob > |r| under H0: Rho=0

	logsurv	blood	prog	enz	liver
logsurv	1.00000	0.24619	0.46994	0.65389	0.64926
		0.0727	0.0003	<.0001	<.0001
blood	0.24619	1.00000	0.09012	-0.14963	0.50242
	0.0727		0.5169	0.2802	0.0001
prog	0.46994	0.09012	1.00000	-0.02361	0.36903
	0.0003	0.5169		0.8655	0.0060
enz	0.65389	-0.14963	-0.02361	1.00000	0.41642
	<.0001	0.2802	0.8655		0.0017
liver	0.64926	0.50242	0.36903	0.41642	1.00000
	<.0001	0.0001	0.0060	0.0017	

Variable Selection

- Two distinct questions
 - What is the appropriate subset size? adjusted \mathbb{R}^2 , \mathbb{C}_p , MSE, PRESS, AIC, SBC
 - What is the best model for a fixed size?

 R^2

- * May result in several worthy models
- * Use subject matter to make final decision

Mallows' C_p Criterion

- ullet Compares total mean squared error with σ^2
- Squared error

$$(\hat{Y}_{i} - \mu_{i})^{2} = (\hat{Y}_{i} - \mathsf{E}(\hat{Y}_{i}) + \mathsf{E}(\hat{Y}_{i}) - \mu_{i})^{2}$$

$$= (\mathsf{E}(\hat{Y}_{i}) - \mu_{i})^{2} + (\hat{Y}_{i} - \mathsf{E}(\hat{Y}_{i}))^{2}$$

$$= \mathsf{Bias}^{2} + (\hat{Y}_{i} - \mathsf{E}(\hat{Y}_{i}))^{2}$$

- Mean value is $(E(\hat{Y}_i) \mu_i)^2 + \sigma^2(\hat{Y}_i)$
- Total mean value is $\sum (E(\hat{Y}_i) \mu_i)^2 + \sum \sigma^2(\hat{Y}_i)$
- Criterion measure

$$\Gamma_p = \frac{\sum (\mathsf{E}(\hat{Y}_i) - \mu_i)^2 + \sum \sigma^2(\hat{Y}_i)}{\sigma^2}$$
$$= \frac{\sum \mathsf{Bias}^2 + \sum \mathsf{Var}(\mathsf{prediction})}{\mathsf{Var}(\mathsf{error})}$$

- Estimate σ^2 from the full model (P-1) predictors in total)
 - $\hat{\sigma}^2 = MSE(X_1, X_2, ..., X_{P-1}) = MSE_P$
- ullet Consider a model with p-1 predictors
 - Can show $E(SSE_p) = \sum (E(\hat{Y}_i) \mu_i)^2 + (n-p)\sigma^2$
 - * Estimate $\sum (E(\widehat{Y}_i) \mu_i)^2$ by SSE_p (n-p) MSE_P
 - Note $\sum \sigma^2(\hat{Y}_i) = \text{Trace}\{\sigma^2(\hat{\mathbf{Y}})\} = \sigma^2 \text{Trace}\{\mathbf{H}\} = p\sigma^2$
 - * Estimate $\sum \sigma^2(\hat{Y}_i)$ by $p\mathsf{MSE}_P$
- Putting it together, Γ_p is estimated by

$$C_p = \frac{(SSE_p - (n-p)MSE_P) + pMSE_P}{MSE_P}$$
$$= \frac{SSE_p}{MSE(X_1, X_2, ..., X_{P-1})} - (n-2p)$$

A good model has no bias

$$\Gamma_p = \frac{0 + p\sigma^2}{\sigma^2} = p; \quad E(C_p) \approx p;$$

A bad model is biased

$$\Gamma_p > \frac{0 + p\sigma^2}{\sigma^2} = p; \quad E(C_p) > p;$$

- When plotting models against p
 - Biased models will fall above $C_p = p$
 - Unbiased models will fall around the line $C_p=p$

Adjusted R^2 Criterion

- Takes into account the number of parameters in the model
- Switches from SS's to MS's

$$R_a^2 = 1 - \left(\frac{n-1}{n-p}\right) \frac{\mathsf{SSE}}{\mathsf{SSTO}} = 1 - \frac{\mathsf{MSE}}{\mathsf{MSTO}}$$

- ullet Choose model which maximizes R_a^2
- Same approach as choosing smallest MSE

PRESS_p Criterion

- Looks at the PREdiction Sum of Squares which quantifies how well the fitted values can predict the observed responses
 - For each case i, predict Y_i using model generated from other n-1 cases
 - PRESS = $\sum (Y_i \hat{Y}_{i(i)})^2$
- Want to select model with small PRESS
- Can calculate this in one fit (Chapter 10)

Other Approaches

- Criterion based on minimizing -2log(likelihood) plus a penalty for more complex model
- AIC Akaike's information criterion

$$n \log \left(\frac{\mathsf{SSE}_p}{n} \right) + 2p$$

• SBC - Schwarz Bayesian Criterion

$$n \log \left(\frac{\mathsf{SSE}_p}{n} \right) + p \log(n)$$

- It is also called BIC, i.e, Bayesian Information Criterion
- Can be used to compare non-nested models

SELECTION in SAS

- Helpful options in MODEL statement
 - SELECTION = to choose model selection procedure and criterion
 - * FORWARD (step up)
 - * BACKWARD (step down)
 - * STEPWISE (forward with backward glance)
 - * RSQUARE, ADJRSQ, CP (all subset selection using the specified criterion)
 - INCLUDE = n forces first n variables into all models
 - BEST = n limits output to the best n models
 - START = n limits output to models with $\geq n \ X$'s
 - B will include parameter estimates

Forward Selection

- Start with no variables
- Add one variable with best F-value (only if p-value < sle)
- Add the next variable with best F-value given the previous variables in the model (only if p-value < sle)
- Stop if no variables can be added with p-value < sle

Backward Elimination

- Start with all the variables
- Delete the variable that has the smallest extra SS (only if p-value > sls)
- Delete the next variable that has the smallest extra SS (only if p-value > sls)
- Stop when all variables have p-value < sls

Stepwise Search

```
/* Default: sle = 0.15, sls=0.15 */
model logsurv = blood prog enz liver/selection=stepwise;
```

- Start with no variables
- Add variables sequentially as in forward selection, using sle
- Once a variable is added, remove all insignificant variables as in backward elimination, using sls
- Stop when nothing can be added, and nothing non-significant can be removed
- Fix sle ≤ sls to void cycling.

All Subset Selection

- Select from all the possible models
 - selection=rsquare
 - selection=adjrsq
 - selection=cp

Models of Same Subset Size

- Can also use \mathbb{R}^2 or SSE
- May result in several worthy models
- Use knowledge on subject matter to make final decision
- Decision not that important if goal is prediction

Example: All Subset Selection in SAS

```
/* ---- Variable Selection: Quality of Fit ---- */
proc reg data=a1;
  model logsurv = blood prog enz liver/
               selection = rsquare adjrsq cp b;
run;
Number in
                  Adjusted
        R-Square R-Square C(p)
 Model
          0.4276 0.4166 66.4889
     1
         0.4215 0.4104 67.7148
     1
       0.2208 0.2059 108.5558
       0.0606 0.0425 141.1639
       0.6633 0.6501 20.5197
           0.5995 0.5838
                            33.5041
          0.5486 0.5309 43.8517
     2
        0.4830 0.4627 57.2149
          0.4301 0.4078 67.9721
           0.2627 0.2338 102.0313
       0.7573 0.7427 3.3905
     3
           0.7178 0.7009
                            11.4237
           0.6121 0.5889
                            32.9320
           0.4870 0.4562 58.3917
     4
           0.7592 0.7396 5.0000
```

Number in			Par	ameter Estimates	;	
Model	R-Square	Intercept	blood	prog	enz	liver
1	0.4276	F 20420			0.01512	
1	0.4276	5.26426	•	•	0.01512	
1	0.4215	5.61218	•	•	•	0.29819
1	0.2208	5.56613	•	0.01367	•	•
1	0.0606	5.99386	0.07550	•	•	•
2	0.6633	4.35058	•	0.01412	0.01539	
2	0.5995	5.02818	•	•	0.01073	0.20945
2	0.5486	4.54623	0.10792	•	0.01634	
2	0.4830	5.24574		0.00776		0.25299
2	0.4301	5.73422	-0.03282	•	•	0.32288
2	0.2627	5.23573	0.06302	0.01313		•
3	0.7573	3.76618	0.09546	0.01334	0.01645	
3	0.7178	4.40582	•	0.01101	0.01261	0.12977
3	0.6121	4.78168	0.04482	•	0.01220	0.16360
3	0.4870	5.34144	-0.02272	0.00752		0.27147
4	0.7592	3.85195	0.08368	0.01266	0.01563	0.03216

```
/* ---- PRESS: Quality of Prediction ---- */
/* OUTEST: outputs estimates & model fit summary statistics
/* PRESS: outputs the PRESS statistic to the OUTEST= data set */
/* Model with Three Predictors */
proc reg data=a1 outest=sumstats1 press;
   model logsurv = blood prog enz;
run;
proc print data=sumstats1; run; quit;
Obs _MODEL_ ... _RMSE_ _PRESS_ Intercept blood prog enz
                                                                  logsurv
1 MODEL1 ... 0.24934 3.91424 3.76618 0.095458 0.013340 0.016452
/* Model with Four Predictors */
proc reg data=a1 outest=sumstats2 press;
   model logsurv = blood prog enz liver;
run;
proc print data=sumstats2; run; quit;
Obs ... _RMSE_ _PRESS_ Intercept blood prog enz
                                                            liver logsurv
1 ... 0.25087 4.06857 3.85195 0.083684 0.012665 0.015632 0.032161
                                                                       -1
```

Example: Stepwise Selection in SAS

data a1;

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

Summary of Stepwise Selection

	Variable	Variable	Number	Partial	Model			
Step	Entered	Removed	Vars In	R-Square	R-Square	C(p)	F Value	Pr > F
1	enz		1	0.4276	0.4276	117.409	38.84	<.0001
2	prog		2	0.2357	0.6633	50.4716	35.70	<.0001
3	alcheavy		3	0.1147	0.7780	18.9145	25.85	<.0001
4	blood		4	0.0519	0.8299	5.7508	14.93	0.0003
5	gender		5	0.0076	0.8374	5.5406	2.23	0.1418

Chapter Review

- Variable Selection Criteria
 - $-R^2$, Adjusted R^2
 - $-C_p$
 - PRESS
 - AIC, SBC (aka BIC)
- Automatic Search Procedures
 - Forward Selection
 - Backward Elimination
 - Stepwise Search
 - All Subset Selection