Fourth Quiz, November 10, 2018

CS345: Algorithms II

Time minutes 45 Max Marks 35

Instructions: Please write legibly and to the point. Be precise in your answer.

Question 1. [Marks 10].

Prove or disprove.

- (a) A system of linear equations can have no solution,
- (b) A system of linear equations can have exactly one solution.
- (c) A system of linear equations can have exactly two solutions.
- (d) A system of linear equations can have countably infinite solutions but not uncountable infinite solutions.

Solution

Let us assume that the system has n variables and m equations. If a system of linear equations A.x = b has two equations, explicitly or implicitly (i.e., two equations can be created by linearly combining the given equations, corresponding to two parallel hyperplanes), then their intersection is empty. Such a system is called *inconsistent*.

Otherwise if rank(A) = r, then any linearly independent r hyperplanes intersect in to an n-r dimensional plane, called *solution plane*. A point in \mathbb{R}^n is a solution of this system if and only if that point is in the solution plane.

- (a) If the system is inconsistent, then it has no solution.True.
- (b) If the system is consistent and the solution plane is n r = 0 dimensional, then there will be exactly one solution because a zero-dimensional plane has one point.True.
- (c) No plane in \mathbb{R}^n can have finite number of points except the 0-dimensional plane, which has exactly one point.False.
- (d) No plane in \mathbb{R}^n can have countable number of points, except zero-dimensional plane, because all other planes contain at least one (infinite) line which is isomorphic to the real line.False.

Question 2. [Marks 10].

Let

$$A(x_1, \dots, x_n) = \begin{bmatrix} x_1 & x_1^2 & x_1^3 & \dots & x_1^n \\ x_2 & x_2^2 & x_2^3 & \dots & x_2^n \\ \dots & \dots & \dots & \dots \\ x_n & x_n^2 & x_n^3 & \dots & x_n^n \end{bmatrix}$$

Let
$$f_n(x_1, x_2, ..., x_n) = det(A(x_1, ..., x_n)).$$

Determine a recurrence relation for f_n .

Solution Using explicit formula for the determinant we get.

$$|A| = x_1 \cdot \begin{bmatrix} x_2^2 & x_2^3 & \dots & x_2^n \\ x_3^2 & x_3^3 & \dots & x_n^n \\ \dots & \dots & \dots & \dots \\ x_n^2 & x_n^3 & \dots & x_n^n \end{bmatrix} - x_2 \cdot \begin{bmatrix} x_1^2 & x_1^3 & \dots & x_1^n \\ x_2^3 & x_3^3 & \dots & x_n^n \\ \dots & \dots & \dots & \dots \\ x_n^2 & x_n^3 & \dots & x_n^n \end{bmatrix} + \dots + (-1)^{n-1} x_n \cdot \begin{bmatrix} x_1^2 & x_1^3 & \dots & x_1^n \\ x_2^2 & x_2^3 & \dots & x_2^n \\ \dots & \dots & \dots & \dots \\ x_{n-1}^2 & x_{n-1}^3 & \dots & x_{n-1}^n \end{bmatrix}$$

Next use the fact that if

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ \lambda . a_{j1} & \lambda . a_{j2} & \dots & \lambda . a_{jn} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \text{ and } B = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

then $|A| = \lambda . |B|$. So we have

$$|A| = \prod_{i} x_{i} \cdot \begin{bmatrix} x_{2} & x_{2}^{2} & \dots & x_{2}^{n-1} \\ x_{3} & x_{3}^{2} & \dots & x_{3}^{n-1} \\ \dots & \dots & \dots & \dots \\ x_{n} & x_{n}^{2} & \dots & x_{n}^{n-1} \end{bmatrix} - \prod_{i} x_{i} \cdot \begin{bmatrix} x_{1} & x_{1}^{2} & \dots & x_{1}^{n-1} \\ x_{3} & x_{3}^{2} & \dots & x_{3}^{n-1} \\ \dots & \dots & \dots & \dots \\ x_{n} & x_{n}^{2} & \dots & x_{n}^{n-1} \end{bmatrix} + \dots + (-1)^{n-1} \prod_{i} x_{i} \cdot \begin{bmatrix} x_{1} & x_{1}^{2} & \dots & x_{1}^{n-1} \\ x_{2} & x_{2}^{2} & \dots & x_{2}^{n-1} \\ \dots & \dots & \dots & \dots \\ x_{n-1} & x_{n-1}^{2} & \dots & x_{n-1}^{n-1} \end{bmatrix}$$

So we get
$$f_n(x_1, \dots, x_n) = \prod_i x_i \cdot (f_{n-1}(x_2, x_3, \dots, x_{n-1}) - f_{n-1}(x_1, x_3, \dots, x_{n-1}) + \dots + (-1)^{n-1} f_{n-1}(x_1, x_2, \dots, x_{n-2})).$$

Question 3. [Marks 15].

Following is an incomplete algorithm to compute the reciprocal of an *n*-bit number P, $\lfloor 2^{2n-1}/P \rfloor$, modified to handle arbitrary n.

- (i) Complete the algorithm
- (ii) Complete the error analysis

```
Input: A positive integer P = \langle p_1 p_2 \dots p_n \rangle where n is positive integer.
Output: A = |2^{2n-1}/P|
if n = 1 then
    return \langle 10 \rangle;
else
    n_1 := \lceil n/2 \rceil;
    n_2 := |n/2|;
    P_1 := \langle p_1 p_2 \dots p_{n_1} \rangle ;
    C := Reciprocal\_General(n_1, P_1);
    D := 2^{+n_1}.C - P.C^2;
    /* What should be \Box?
                                                                                                               */
    A := |D/2^{2n_1-1}|;
    /* fix the error in A
                                                                                                               */
    return A;
end
```

Algorithm 1: $Reciprocal_General(n, P)$

Error Analysis

Complete the following analysis by determining α , β , and k. Show all steps of the deduction.

- 1. Fact 1: $2^{2n_1} 1 < P_1 \cdot C \le 2^{2n_1}$.
- 2. Fact 2: $D/2^{2n_1-1} 1 < A \le D/2^{2n_1-1}$. So $PD/2^{2n_1-1} - P < PA \le PD/2^{2n_1-1}$.
- 3. Using $D = 2^{\square}.C PC^2$, determine bounds for $PD/2^{2n_1-1}$: $2^{2n-1} \alpha \le PD/2^{2n_1-1} \le 2^{2n-1}$.
- 4. Combine (2) and (3) to find bounds for P.A: $2^{2n-1} \beta \le P.A \le 2^{2n-1}$
- 5. Find an upperbound in terms of P for β : $\beta \leq k.P$.

Therefore error in A can be at most k.

Solution

(3) $PD = 2^{n+n_1}PC - P^2C^2 = 2^{n+n_1}PC - P^2C^2 - 2^{2n+2n_1-2} + 2^{2n+2n_1-2} = 2^{2n+2n_1-2} - (2^{n+n_1-1} - PC)^2$. So $PD/2^{2n_1} = 2^{2n-1} - (1/2^{2n_1-1}(2^{n+n_1-1} - PC)^2$

$$2^{2n-1} - \alpha < PD/2^{2n-1} < 2^{2n-1}$$

where $\alpha = (2^{n+n_1-1} - PC)^2/2^{2n_1-1}$.

(4) Next let us use fact 2 to get bounds for P.A. The fact is that

 $PD/2^{2n_1-1} - P < PA \le PD/2^{2n_1-1}$ so combining it with bounds for $PD/2^{2n_1-1}$ we get $2^{2n-1} - \alpha - P \le PD/2^{2n_1-1} - P \le PA \le PD/2^{2n_1-1} \le 2^{2n-1}$ so

$$2^{2n-1} - (\alpha + P) \le PA \le 2^{2n-1}.$$

(5) Now we will find an upper bound for $\beta=\alpha+P$ in the form k.P for some integer k. $\alpha+P=(2^{n+n_1-1}-PC)^2/2^{2n_1-1}+P=P+(2^{n+n_1-1}-2^{n_2}P_1C-P_2C)^2=P+(2^{n_2}(2^{2n_1-1}-P_1C)-P_2C)^2/2^{2n_1-1}$ because $P=2^{n_2}.P_1+P_2$.

Simplify it to get $\alpha + P \le P + \max\{2^{2n_2}(2^{2n_1-1} - P_1C) - P_2C\}$. $(1/2^{2n_1-1}) \le P + \max\{2^{2n_2}P_1^2, P^2C^2\}$. $(1/2^{2n_1-1})$ from the Fact 1.

Since $2^{n-1} \le P < 2^n$, $P_1 < 2^{n_1}$, $C < 2^n$, and $P_2 < 2^{n_2}$, $\max\{2^{2n_2}P_1^2, P^2C^2\} \le 2^{2n_1+2n_2} = 2^{2n}$. This gives

$$\alpha + P \le P + 2^{2n}/2^{2n_1 - 1} = P + 2^{2n_2 + 1} \le P + 2^{n+1} \le 4 \cdot 2^{n-1} \le P + 4P = 5P$$

So k = 5.