Statistical Methods for Genome Wide Regional Analysis with Next Generation Sequencing Data

Hao Wu, Emory University and

Rafael A Irizarry, DFCI/Harvard

Outline

- Introduction to Next Generation Sequencing (NGS)
- Motivation for region finding
- ChIPSeq
- Whole genome bisulfite sequencing (WGBS)
- Computer Lab

D. melanogaster, Science, 2000

H. sapiens, Nature, 2000

Science, 2000

M. musculus, Nature, 2002

- Back then: millions of clones (thousand bps) in 9 months for billions of dollars
- Today: billion of short reads (35-100 bps) in a week for thousands of dollars
- Claim: Assemble a genome in weeks for less than \$100,000

Sequence first 35-400 bps: call them "reads"

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTTGCGTTTTTTGGT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG TCTCGTGCTCGCTGCGTTGAGGCTTGCGTTTA TGCTCGTCGCTTGCGTTGAGGCTTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTTG CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

Available platforms

- Major player:
 - Illumina: HiSeq, MiSeq.
 - LifeTech: SOLiD, IonTorrent.
 - Roche 454.
- Others:
 - Complete Genomics
 - Pacific Bioscience
 - Helicos

~7 cm

Illumina "flow cell"

- Eight lanes
- ~160M short reads (~50-70 bp) per lane

Bridge amplification

Sequencing all bases at once

Images from sequencing machine

Raw sequence reads from NGS

- Large text file (millions of lines) with simple format.
 - Most frequently used: fasta/fa format for storing the sequences, or fastq format storing both the sequence and corresponding quality scores.
- fasta format:

```
read name >5_143_428_832
GATATTGTAGCATAACGCAACTTGGGAGGTGAGCTT
>5_143_984_487
GTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATG
>5_143_963_690
GGTATATGCACAAAATGAGATGCTTGCTTATCAACA
>5_143_957_461
GGAGGGTGTCAATCCTGACGGTTATTTCCTAGACAA
>5_143_808_403
GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTCT
```

fastq format

read name read sequence separator quality scores

Single-end vs. paired-end sequencing

- Sequence one or both ends of the DNA segments.
- Single-end sequencing: sequence one end of the DNA segment.
- Paired-end sequencing: sequence both ends of a DNA segments.
 - Result reads are "paired", separated by certain length (the length of the DNA segments, usually a few hundred bps).
 - Paired-end data can be used as single-end, but contain extra information which is useful in some cases, e.g., detecting structural variations in the genome.
 - Modeling technique is more complicated.

Segment 2 – Applications of NGS in Genomics (do not include this slide in video)

Not just Assembly

- Resequencing
- SNP discovery and genotyping
- Variant discovery and quantification
- TF binding sites: ChIP-Seq
- •Gene expression: RNA-Seq
- Measuring methylation

What to do with all these sequences?

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTTGCGTTTTTTGGT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG TCTCGTGCTCGCTGCGTTGAGGCTTGCGTTTA TGCTCGTCGCTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTTGCGTTTATGGTAC TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TCGTGCTCGTCGCTTGCGTTTGAGGCTTTGCGTTTTTG CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

Most apps: Start by matching to reference

GTTGAGGCTTGCGTTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTTGCGTTGAGGCTTTGCGTTTTTTGGT

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC

TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT

GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG

GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG

TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA

TGCTCGTCGCTTGAGGCTTGCGTTTATGGTA

GCTCGTCGCTTGAGGCTTGCGTTTATGGTAC

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT

TCGTGCTCGTCGCTTGCGTTTTTG

CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT

GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT

TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

 $\overline{\mathtt{CTCTCGTGCTCGTCGCTTGCGTTTGAGGCTTTGCGTTTATGGTACGCTTGGACTTTGTAGGATACCCTCGCTTTC}$

rttggtattttcgtctggggggtatgcacgcgatagcattgcgagacgctggagcaccctatgtcgcagtatctgtctttgattcctgcctcatcctattatt Reference

rttggtattttcgtctggggggtatgcacgcgatagcattgcgagacgctggagcaccctatgtcgcagtatctgtctttgattcctgcctcatcctattatt Reference

"Pileup" or "Coverage plot"

rttggtattttcgtctggggggtatgcacgcgatagcattgcgagacgctggagccggagcaccctatgtcgcagtatctgtctttgattcctgcctcatcctattatt Reference

TTGGTATTTTCGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCGGGAGCTCTCCA

Reference

TTGGTATTTTCGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCGGGAGCTCTCCA

Reference

GATAGCATTGCGAGAC TATGCACGCGATAGCA

GATTCCTGCCTC

'TTGGTATTTTCGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCGGGAGCTCTCCA

Reference

