Institute for Theoretical Physics
Prof. Ulrich Schwarz

Theoretical Statistical Physics (MKTP1)

Heidelberg University
PD Falko Ziebert
Winter term 2020/21

Assignment 8

Handout 15.01.2020 - Return 21./22.01.2020 - Discussion 28./29.01.2020

Exercise 8.1 [7 points]: Electrons in a metal as an ideal Fermi gas

A metal contains conduction electrons in a volume V. The temperature is T=0 so that the chemical potential is $\mu=\epsilon_{\rm F}$. The magnetic moment of the electrons is $\mu_{\rm m}$. A magnetic field ${\bf B}$ is switched on, hence the energy of particles with spin parallel (+) and anti-parallel (-) to the magnetic field is

$$\epsilon_{\pm}(\mathbf{p}) = \frac{p^2}{2m} \mp \mu_{\rm m} B \,, \tag{1}$$

respectively. In the following the magnetic field is assumed so weak that only its first order effect should be considered.

- 1. Calculate the mean number $\langle N_{\pm} \rangle$ of electrons with spin parallel and anti-parallel to the magnetic field, respectively. (3 points)
- 2. Calculate the mean magnetization $M = \mu_{\rm m} (\langle N_+ \rangle \langle N_- \rangle)$ and the magnetic susceptibility $\chi = (\frac{\partial M}{\partial B})_{NVT=0}$. (2 points)
- 3. Express the chemical potential μ in terms of the mean total number of electrons $\langle N \rangle = \langle N_+ \rangle + \langle N_- \rangle$ and eliminate the chemical potential from the formula for the susceptibility. (2 points)

Exercise 8.2 [4 points]: Particle-hole symmetry for fermions

Consider a system of spin 1/2 fermions at temperature T, that occupy a finite number M of energy levels ϵ_i , i = 1, 2, ..., M.

- 1. Determine the grand canonical partition sum Z_G (1 point) HINT: Pay attention to the degeneracy.
- 2. Use the relation

$$F = -k_B T \ln Z_G + \mu \langle N \rangle \tag{2}$$

between the free energy, the grand canonical partition sum, the chemical potential and the mean particle number to show: the thermodynamic properties of the system stay the same if one, instead of considering the $\langle N \rangle$ particles, distributes $2M - \langle N \rangle$ "holes" with chemical potential $-\mu$ on the energy levels $-\epsilon_i$. (3 points)

Exercise 8.3 [4 points]: Ultra-relativistic ideal Fermi fluid

An ultra-relativistic ideal Fermi fluid is contained in a volume V. The chemical potential is μ . Consider only the special case T=0 in the following. Calculate the mean particle number $\langle N \rangle$ and the mean total energy $\langle E \rangle$. Express $\langle E \rangle$ in terms of $\langle N \rangle$ and μ .

HINT: Ultra-relativistic means that you can neglect the mass term in the relativistic formula for the energy of the particles: $\epsilon(\mathbf{p}) = \sqrt{m^2c^4 + \mathbf{p}^2c^2} \approx pc$.