

Advances of Media Technology in Modern Computing

Dr. Hong Jiang, Intel Fellow, Intel Corporation ICME 2013 Keynote San Jose, California, USA, July 16, 2013

Legal

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF
SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel's current plan of record product roadmaps.

Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.Intel.com/performance

Intel, Intel Inside, the Intel logo, Centrino, Intel Core, Intel Atom, Pentium, and Ultrabook are trademarks of Intel Corporation in the United States and other countries

Contents

- History
- Heterogeneous Computing Architecture
- Video Codec
- Video Processing
- Perceptual Computing Initiatives
- Summary

Contents

- History
- Heterogeneous Computing Architecture
- Video Codec
- Video Processing
- Perceptual Computing Initiatives
- Summary

Two decades ...

Two decades ... Video Coding

MPEG2:

- Block motion comp
- Block DCT

AVC/H.264:

- More complex block coding
- Loop filter & CABAC

HEVC/H.265:

- More complex block coding
- More complex loop filter

1993 2003 2013

2X coding efficiency every 10 years

Two decades ... Video Coding

MPEG2:

- Standard Definition (SD)
- DVD, Broadcast

AVC/H.264:

- High Definition (HD=6xSD)
- Blu-ray, Internet Streaming

HEVC/H.265 (promises):

- Ultra HD (4K = 24xSD)
- Cellular Wireless Streaming

From Big Screen to Mobile

- HD media becomes ubiquitous
 - Optical media led the digital conversion (2006: Blu-ray)
 - Internet streaming is catching up (2009: 720p, 2012: 1080p)
 - All devices are HD capable (2008: DTV/PC, 2010: Smart Phone)
- Beyond HD 4K Video is coming (2-3 years to reach consumers)

Today, video file >50% internet traffic In 2016, sum of all video >86% traffic

Two decades ... Personal Computing

Intel[®] Pentium™:

- Performance spiral
- MMX/SSE extensions
 (Desktop PC Era)

Intel[®] Centrino™:

- Low power
- Wi-Fi

(Mobile Computing Era)

Haswell (4th Gen Intel[®] Core[™]):

- Breakthrough battery life
- Leading Graphics/Media (Ultra mobility)

Two decades ... Personal Computing

Intel[®] Pentium™:

- 0.8 um process
- 3.1 millions transistors
 (Desktop PC Era)

Intel[®] Centrino™:

- 0.13 um process
- 77 millions transistors
 (Mobile Computing Era)

Haswell (4th Gen Intel[®] Core[™])

- 22 nm process
- ~1.4 billions transistors
 (Ultra Mobility)

Two decades ... Personal Computing

1993:

Barely getting thumbnail video on PC

2003: Can play DVD; Limited quality.

2013:

Multiple HD, 4K playback and encode; High quality HD video processing

Contents

- History
- Heterogeneous Computing Architecture
- Video Processing
- Video Codec
- Perceptual Computing Initiatives
- Summary

Demands and Challenges

Two-Prone Solutions

Process Technology – Moore's Law

Architecture Innovation

Intel Tick/Tock Development Model

Haswell, 4th Generation Intel[®] Core[™] Processors, builds upon innovations in the previous Core[™] generations

Max

Flexibility

Architecture Concept

- Trends: Higher capability in a lower power budget
- Power considerations drive a Fixed Function solution
- Flexibility considerations requires a <u>Programmable</u> solution

Max Power

Efficiency

GPU Architecture Playbook for Media Computing

INNOVATIVE FORM FACTORS

Intel is building Media solutions with Great Power and Scalable Performance for Innovative Form Factors and New Experiences

Increasing Graphics Performance

Source: Intel. 3DMark06

Haswell: Processor Graphics Architecture

A Scalable Graphics Architecture

- Some GT3 sku's come with an 128MB eDRAM, as cache shared with CPU
- Significant generational EU count growth (Top line from 8, 16 to 40 EU's)

Contents

- History
- Heterogeneous Computing Architecture
- Video Codec
- Video Processing
- Perceptual Computing Initiatives
- Summary

Intel® Quick Sync Video

Video Conversion

Record and Upload

Stereo 3D Creation

HD Video Chat

Intel® Quick Sync Video is HW-based video codec capability:

- Break-through performance & quality → new User Experiences
- Many more applications: Wireless Display, Game recording...

Haswell: Quick Sync Video Performance and Power

- 4x-12x real-time transcode at various quality modes
- 10-hour video playback time on latest Apple MacBook Air
- Multi-stream 4K decode

> real-time 4K Encode

HD Mosaic

4K Mosaic

Deployment as Media Servers

Example:

- QuickFire Network 1U
 uServer contains 11 3rd Gen
 Intel® Core™ mobile
 processors
- Transcoding over 88
 1080p30 HD streams per blade!

Video Encode: A Balanced Approach

Encode Solutions	Performance	Power	Flexibility
GPGPU	Low	High	High
Traditional Fix Function HW	High †	Low	Low
Flexible Intel Quick Sync Video	High	Low	Balanced

[†] Subject to actual implementation

- Intel implements a flexible hardware design approach for encoding
 - Hybrid of fix function HW and programmable EU array.
 - Provides balance between performance, power and flexibility

Hybrid 2-Stage Video Encoder:

Encoder Parallelization and Scalability

Decoupled Encoding Operations

- ENC: Multi-threaded in wavefront order macroblocks
- PAK: Pipelined in raster order macroblocks

Multiple level of parallelization

- Decoding vs. Encoding
- ENC and PAK
- ENC: Multiple Macroblocks in Wavefronts
- ENC/VME HW: Integer vs. Fractional Search

Intel Quick Sync Video – Multi-year Improvements

- Performance: Over 50% hardware CAGR for three generations
- Quality: Hardware features and algorithm improvements
- Usability: Fine grained quality vs. performance tradeoff control

CQP Mode BD-PSNR

VBR Mode BD-PSNR

Intel HD Graphics 4000 vs. Intel Iris Pro Graphics 5200

HD Graphics 4000 (3rd Gen)

Enabled

Iris Pro Graphics 5200 (4th Gen)

•Frame 670 of Star Trek Into Darkness movie trailer transcoded in HandBrake QSV beta. Both set to VBR 2Mbps Best Quality setting under HandBrake High Profile preset •Same encode quality on Intel 4th Gen Core Processor with HD 4200/4400/4600, Iris, and Iris Pro. Performance varies on different SKUs

Intel HD Graphics 4000 vs. Intel Iris Pro Graphics 5200

HD Graphics 4000

Enabled

Iris Pro Graphics 5200

•Frame 670 of Star Trek Into Darkness movie trailer transcoded in HandBrake QSV beta. Both set to VBR 2Mbps Best Quality setting under HandBrake High Profile preset •Same encode quality on Intel 4th Gen Core Processor with HD 4200/4400/4600, Iris, and Iris Pro. Performance varies on different SKUs

Contents

- History
- Heterogeneous Computing Architecture
- Video Codec
- Video Processing
- Perceptual Computing Initiatives
- Summary

Video Processing Pipe

- Migrated to a dedicated VP pipe Video Quality Engine (VQE)
- Extensive suite of functions for higher quality video at lower power

De-noise

- Spatial and Temporal De-noise Filter
 - Global noise level measurement
 - Content-adaptive spatiotemporal filtering of noise
 - Motion history-based blending of spatial and temporal filter results

- Block Interface
 - Input: YCbCr 420/422
 - Output: YCbCr 420/422

Skin-tone Processing

- Per-pixel Enhancement of Skin-tone Pixels
 - Reproduce the natural skin colors on the display screen
 - Skin Tone Detection identifies pixels with skin-like colors with per-pixel indicator
 - Skin Tone Enhancement modifies the Saturation and Hue of the skin-tone pixels

- Block Interface
 - Input: YCbCr444
 - Output: YCbCr444 with modified CbCr components; Per-pixel skin tone indicator

Contrast Enhancement

- Automatic Contrast Enhancement: Per-pixel mapping of luma to enhance contrast
 - 1. Histogram of luma Y pixel values is generated for the input video frame
 - 2. Piece-Wise Linear Function (PWLF) is generated from luma histogram
 - 3. Pixel values are modified according to the PWLF

- Block Interface
 - Input: YCbCr 444
 - Output: YCbCr 444 with modified Y

Saturation Enhancement

- Per-Pixel Saturation Enhancement
 - Utilize 6 basic colors as primaries/anchors (Red, Green, Blue, Magenta, Yellow, Cyan)
 - Adjust colorfulness (saturation) of pixels while maintaining their color (hue)

- Block Interface
 - Input: YCbCr 444
 - Output: YCbCr 444 with modified CbCr components

Color Correction

- Display proper colors on display screen
 - 1. Inverse gamma correction via PWLF
 - 2. 3x3 matrix multiplication with input/output offset
 - 3. Forward gamma correction via PWLF

- Block Interface
 - Input: RGB
 - Output: RGB

Contents

- History
- Heterogeneous Computing Architecture
- Video Codec
- Video Processing
- Perceptual Computing Initiatives
- Summary

(intel®

Towards Natural, Intuitive and Immersive Human-Computer Interactions

Now

Near Future

The Vision

Perceptual Computing

Adding "Human-like Senses" to the Computing Devices

Intel® Perceptual Computing SDK (

Download the SDK and order the 3D Camera at intel.com/software/perceptual

Intel® Perceptual Computing SDK

Speech Recognition

Facial Analysis

Hand Tracking

3D Gestures

Object Tracking

Easily Implemented by Application Developers for:

- Games
- Entertainment
- Productivity
- Accessibility
- Immersive Teleconferencing

- Education
- Health
- Enterprises
- Retail
- Industrial

Contents

- History
- Heterogeneous Computing Architecture
- Video Processing
- Video Codec
- Perceptual Computing Initiatives
- Summary

Media Usage Outlook

Interaction

mage **Effects**

- Video and sensory inputs
- Gesture recognition
- Augmented reality

Consumption

Decode

- DVD/Blu-ray disc
- Stereoscopic 3D video

Quality

Recognition

Mining/ Analysis

Creation

facebook

- Photo, video, audio encoding/
- Video encode and transcode
- User generated contents

Synthesis

Perception

- Face & object detection
- Scene analysis
- Perceptual computation

Concluding Remarks

We are in the era of HD digital media

- Moore's Law inspires Innovations
- Heterogeneous computing addresses the HD media demands
- Media continues to be an exciting fields for years to come

