МОДУЛЬНАЯ АРИФМЕТИКА

В некоторых приложениях удобно выполнять арифметические операции над целыми числами, заданными в так называемом *модульном представлении*. Это представление предполагает, что целое число представлено вычетами (остатками) по модулям из множества попарно взаимно простых чисел. Вычет числа a по модулю m обозначают $a \mod m$. Например, $34 \mod 5 = 4$; $-8 \mod 3 = -2 \mod 3 = 1$.

В этом разделе под размерностью задачи мы будем понимать не количество чисел на входе алгоритма, как например, в задаче сортировки, а количество битов, использованных для записи числа. Алгоритм, получающий на вход целые числа $a_1, a_2, ..., a_k$ называется *полиномиальным*, если его время работы ограничено многочленом от $\log_2 a_1$, $\log_2 a_2$, ..., $\log_2 a_k$, т.е. многочленом от длин исходных данных (в двоичной системе счисления).

Если $p_0,\ p_1,\ ...,\ p_{k-1}$ — это k попарно взаимно простых чисел и $p=\prod_{i=0}^{k-1}p_i$, то любое целое число u, такое что $0\leq u\leq p-1$, можно однозначно представить множеством его вычетов $u_0,\ u_1,\ ...,\ u_{k-1}$, где $u_i=u \bmod p_i,\ 0\leq i\leq k-1$. Обычно пишут $u\leftrightarrow (u_0,u_1,...,u_{k-1})$.

Сложение, вычитание и умножение легко выполняются, если их результаты заключены между 0 и p – 1, т.е. если их можно рассматривать как вычисления по модулю p. Пусть два целых числа u и v заданы их множествами вычетов, т.е.

$$u \leftrightarrow (u_0, u_1, ..., u_{k-1}) \text{ if } v \leftrightarrow (v_0, v_1, ..., v_{k-1}).$$

Тогда операции сложения, умножения и вычитания определяются следующим образом:

$$u + v \leftrightarrow (w_0, w_1, ..., w_{k-1})$$
, где $w_i = (u_i + v_i) \bmod p_i$; (1)

$$u - v \leftrightarrow (x_0, x_1, ..., x_{k-1})$$
, где $x_i = (u_i - v_i) \bmod p_i$; (2)

$$uv \leftrightarrow (y_0, y_1, \dots, y_{k-1}),$$
 где $y_i = u_i v_i \bmod p_i$. (3)

Рассмотрим пример. Пусть $p_0=2$, $p_1=5$, $p_2=7$. Получаем $p=2\cdot 5\cdot 7=70$. Тогда $6\leftrightarrow (0,1,6)$, так как $6 \bmod 2=0$, $6 \bmod 5=1$, $6 \bmod 7=6$. Аналогично, $9\leftrightarrow (1,4,2)$, $54\leftrightarrow (0,4,3)$. В силу (1) $6+9\leftrightarrow (1,0,1)$, так как $(0+1)\bmod 2=1$, $(1+4)\bmod 5=0$, $(6+2)\bmod 7=1$ но нетрудно убедиться, что $15\leftrightarrow (1,0,1)$. Согласно (2) и (3) получаем :

 $6-9 \leftrightarrow (1,2,4)$ – это модульное представление числа -3.

 $6 \cdot 9 \leftrightarrow (0,4,5)$ – это модульное представление числа 54.

Операция деления в модульной арифметике не определена.

Преимущество модульного представления состоит в том, что арифметические операции могут быть реализованы с меньшими вычислительными затратами, чем при обычном представлении, так как вычисления выполняются независимо для каждого модуля. Следующая теорема доказывает, что соответствие $u \leftrightarrow (u_0, u_1, ..., u_{k-1})$ является взаимно однозначным.

КИТАЙСКАЯ ТЕОРЕМА ОБ ОСТАТКАХ

Пусть $p_0, p_1, ..., p_{k-1}$ попарно взаимно простые целые числа, $p = \prod_{i=0}^{k-1} p_i$ и $u_i = u \mod p_i$. Тогда соответствие $u \leftrightarrow (u_0, u_1, ..., u_{k-1})$ между целыми числами u в

интервале [0,p) и наборами вида $(u_0,u_1,...,u_{k-1})$, $0 \le u_i < p_i$ при $0 \le i < k$, взаимно однозначно.

Доказательство.

Очевидно, что для каждого числа u найдется соответствующий k – членный набор, так как в интервале [0,p) заключено ровно p значений переменной u и допустимых k – членных наборов также ровно p, так как $p = \prod_{i=0}^{k-1} p_i$. Достаточно показать, что каждый набор соответствует не более, чем одному числу u.

Допустим, что два числа u и v, $0 \le u < v < p$, соответствуют набору $(u_0,u_1,...,u_{k-1})$. Тогда разность u-v должна делиться на каждое из чисел p_i , так как все p_i взаимно простые, то разность u-v должна делиться и на p. Но $u \ne v$ и u-v делится на p, т.е. u и v должны отличаться не менее, чем на p, а значит не могут оба принадлежать интервалу [0,p).

Результаты аналогичные результатам для целых чисел, справедливы и для полиномов. Пусть $p_0(x),...,p_{k-1}(x)$ — это попарно взаимно простые полиномы, $p(x) = \prod_{i=0}^{k-1} p_i(x)$. Тогда любой полином u(x) такой, что $\deg(u(x)) < \deg(p(x))$ можно однозначно представить последовательностью $(u_0(x),u_1(x),...,u_{k-1}(x))$ остатков от деления u(x) на каждый полином $p_i(x)$. Полином $u_i(x)$ — это тот единственный полином, для которого $\deg(u_i(x)) < \deg(p_i(x))$ и $u(x) = q_i(x)p_i(x) + u_i(x)$ для некоторого полинома $q_i(x)$. Мы в этом случае будем использовать обозначение $u_i(x) = u(x) \mod p_i(x)$ аналогично модульной записи целых чисел.

По аналогии с целыми числами можно показать, что соответствие $u(x) \leftrightarrow (u_0(x), u_1(x), ..., u_{k-1}(x))$ — взаимно однозначное.

Пример. Пусть $p_0(x)=x-3$, $p_1(x)=x^2+x+1$, $p_2(x)=x^2-4$, $p_3(x)=2x+2$. Рассмотрим $u(x)=x^5+x^4+x^3+x^2+x+1$. Получаем

 $u(x) \bmod p_0(x) = 364,$

 $u(x) \bmod p_1(x) = 0,$

 $u(x) \mod p_2(x) = 21x + 21$,

 $u(x) \operatorname{mod} p_3(x) = 0$,

таким образом, $u(x) \leftrightarrow (364,0,21x+21,0)$.

Для того, чтобы можно было пользоваться модульной арифметикой, нужны алгоритмы, осуществляющие переход от позиционного представления к модульному и обратно. Один из методов перехода от позиционного представления к модульному состоит в том, чтобы разделить число u на каждый из модулей p_i , $0 \le i < k$.

Допустим, что каждое из чисел p_i содержит b разрядов в двоичном представлении. Тогда произведение модулей

$$p = \prod_{i=0}^{k-1} p_i$$

требует порядка bk двоичных разрядов для записи двоичного представления, а деление u на каждое из чисел p_i , где $0 \le u < p$, могло бы потребовать k делений kb-битового числа на b-битовое число. Разбив каждое деление на k делений 2b-битовых чисел на b-битовые, можно перейти к модульному представлению за время $O(k^2D(b))$, где D(n) —

время деления 2n-разрядного двоичного целого числа на n-разрядное, как показано в А. Ахо, Дж. Хопкрафт, Дж. Ульман "Построение и анализ вычислительных алгоритмов" $D(n) = O(n\log_2 n\log_2\log_2 n)$.

Модульное представление числа можно вычислить гораздо быстрее, если использовать следующий метод. Очевидно, что, если нужно найти вычеты, например числа 80 по модулям 3, 5, 7, 11, то можно сначала найти $80 \, \text{mod} \, 15 = 5 \,$ и $80 \, \text{mod} \, 77 = 3$, а затем $5 \, \text{mod} \, 3 = 2$, $5 \, \text{mod} \, 5 = 0$, $3 \, \text{mod} \, 7 = 3$ и $3 \, \text{mod} \, 11 = 3$ вместо вычисления $80 \, \text{mod} \, 3 = 2$, $80 \, \text{mod} \, 5 = 0$, $80 \, \text{mod} \, 7 = 3$ и $80 \, \text{mod} \, 11 = 3$.

Вместо того, чтобы делить число u на каждый из k модулей $p_0, p_1, \ldots, p_{k-1},$ сначала вычисляем произведения модулей: $p_0p_1, p_2p_3, \ldots, p_{k-2}p_{k-1},$ затем $p_0p_1p_2p_3,$ $p_4p_5p_6p_7, \ldots$ и т.д. Далее вычисляем вычеты u_1 и u_2 числа u по модулям $p_0p_1\ldots p_{k/2-1}$ и $p_{k/2}p_{k/2+1}\ldots p_{k-1},$ соответственно. Теперь задача вычисления $u \bmod p_i$, сведена к двум задачам половинного размера, а именно, $u \bmod p_i = u_1 \bmod p_i$ для $0 \le i < k/2$, и $u \bmod p_i = u_2 \bmod p_i$ для $k/2 \le i < k$. Далее вычисляем вычеты u_{11} и u_{12} числа u_1 по модулям $p_0p_1\ldots p_{k/4-1}$ и $p_{k/4}p_{k/4+1}\ldots p_{k/2-1}$ и вычеты u_{21},u_{22} числа u_2 по модулям $p_{k/2}p_{k/2+1}\ldots p_{3k/4-1}$ и $p_{3k/4}p_{3k/4+1}\ldots p_{k-1}$. Таким образом, в свою очередь каждая из подзадач может быть сведена к двум задачам половинного размера, а именно, $u_1 \bmod p_i = u_{11} \bmod p_i$ для $0 \le i < k/4$, и $u_1 \bmod p_i = u_{12} \bmod p_i$ для $k/4 \le i < k/2$, $u_2 \bmod p_i = u_{21} \bmod p_i$ для $k/2 \le i < 3k/4$ и $u_2 \bmod p_i = u_{22} \bmod p_i$ для $3k/4 \le i < k$. Время выполнения этого алгоритма можно оценить следующим образом:

$$2D(kb/2) + 4D(kb/4) + ... + kD(b) \approx$$

≈ $(2kb/2)\log_2(kb/2)\log_2\log_2(kb/2) + (4kb/4)\log_2(kb/4)\log_2\log_2(kb/4) + ... + +(kb)\log_2\log_2(kb/2)\log_2(kb) - kb(\log_2(kb) - kb(\log_2(kb)) + (2kb/2)\log_2(kb) \approx kb\log_2(kb) \approx kb\log_2(kb)$

Выигрыш по времени по сравнению с делением на каждый модуль приблизительно равен

$$\frac{k^2 b \log_2 b}{k b \log_2 k \log_2 b} \approx \frac{k}{\log_2 k} .$$

Блок-схема быстрого алгоритма нахождения модульного представления числа приведена на Рис. 1. Вход: Модули p(I), I=0,1,...,k-1 и целое число u, выход: вычеты UM(I), I=0,1,...,k-1 целого числа u по модулям p(I). Заметим, что $k=2^t$.

Пример работы алгоритма.

Пусть k=4 , т.е. t=2 . Заданы модули $p_0,\ p_1,\ p_2,\ p_3$.

Вычисляем произведения модулей и запоминаем их в массиве q . Индекс I – номер произведения, индекс J – номер шага.

$$q_{00} = p_0$$

$$q_{10} = p_1$$

$$q_{20} = p_2$$

$$q_{30} = p_3$$

$$q_{01} = q_{00} \cdot q_{10} = p_0 p_1$$

$$q_{21} = q_{20} \cdot q_{30} = p_2 p_3$$

$$U_{02} = u$$

$$U_{01} = U_{02} \mod q_{01} = u \mod q_{01}$$

$$U_{21} = U_{02} \bmod q_{21} = u \bmod q_{21}$$

 $U_{\mathrm{00}} = U_{\mathrm{01}} \, \mathrm{mod} \, q_{\mathrm{00}}$

 $U_{\rm 10} = U_{\rm 01}\,{\rm mod}\,q_{\rm 10}$

 $U_{\rm 20} = U_{\rm 21} \, {\rm mod} \, q_{\rm 20}$

 $U_{\rm 30} = U_{\rm 21}\,{\rm mod}\,q_{\rm 30}$

 $UM_0 = U_{00}$

 $U\!M_{\rm 1}=U_{\rm 10}$

 $UM_2 = U_{20}$

 $UM_3 = U_{30}$

Рис.1 Быстрый алгоритм нахождения модульного представления числа

ПРИМЕНЕНИЕ КИТАЙСКОЙ ТЕОРЕМЫ ОБ ОСТАТКАХ

Рассмотрим задачу преобразования модульного представления целого числа в его позиционное представление. Процесс восстановления числа по его остаткам был известен китайцам более 2000 лет назад, и потому соответствующую теорему называют китайской теоремой об остатках. Пусть даны попарно взаимно простые модули $p_0, p_1, ..., p_{k-1}$ и вычеты $u_0, u_1, ..., u_{k-1}$, где $k = 2^t$, надо найти такое целое число u, что $u \leftrightarrow (u_0, u_1, ..., u_{k-1})$.

Лемма. Пусть c_i – произведение всех p_j , кроме p_i , т.е. $c_i = p \, / \, p_i$, где $p = \prod_{i=0}^{k-1} p_j$.

Пусть $d_i = c_i^{-1} \bmod p_i$, т.е. $d_i c_i = 1 \mod p_i$ и $0 \le d_i < p_i$. Тогда

$$u = \sum_{i=0}^{k-1} c_i d_i u_i \bmod p.$$

Доказательство

Число c_i делится на p_j при $i \neq j$, так что $c_i d_i u_i = 0 \bmod p_j$, $i \neq j$. Следовательно,

$$\sum_{i=0}^{k-1} c_i d_i u_i = c_j d_j u_j \mod p_j.$$

Так как $c_j d_j = 1 \mod p_j$, то

$$\sum_{i=0}^{k-1} c_i d_i u_i = u_j \mod p_j.$$

Так как p_i делит p, то эти соотношения выполняются и тогда, когда все арифметические операции производятся по модулю p. Таким образом, Лемма доказана.

Пример. Пусть $p_0=3$, $p_1=5$, $p_2=7$, $p=\prod_{i=0}^2 p_i=105$ и модульное представление числа имеет вид (2.4.1).

Восстановим число по его модульному представлению. Для этого вычислим $c_0=35$, $c_1=21$ и $c_2=15$. Нетрудно проверить, что $d_0=2$ так как $35 \cdot 2 \, \mathrm{mod} \, 3=1$, $d_1=1$ так как $21 \, \mathrm{mod} \, 5=1$ и $d_2=1$, $15 \, \mathrm{mod} \, 7=1$. Тогда по теореме получаем

$$u = \sum_{i=0}^{2} c_i d_i u_i \mod p = 35 \cdot 2 \cdot 2 + 21 \cdot 1 \cdot 4 + 15 \cdot 1 \cdot 1 = 239 \mod 105 = 29.$$

Задача состоит в эффективном вычислении $\sum_{i=0}^{k-1} c_i d_i u_i \mod p$. В рассмотренном примере d_i мы вычисляли перебором. Ниже будет показано, как это можно сделать непереборным методом.

НАИБОЛЬШИЕ ОБЩИЕ ДЕЛИТЕЛИ И АЛГОРИТМ ЕВКЛИДА

Пусть a_0 и a_1 — положительные целые числа. Положительное целое число g называется наибольшим общим делителем чисел a_0 и a_1 , обозначается $HOD(a_0,a_1)$, если: $1.\ g$ делит a_0 и a_1 ,

2. Всякий общий делитель a_0 и a_1 делит g .

Можно показать, что для положительных целых a_0 и a_1 такое число g единственно. Например, HOD(57,33)=3.

Алгоритм Евклида для вычисления $HOD(a_0,a_1)$ состоит в вычислении последовательности остатков $a_0,a_1,\ldots,$ a_k , где $a_i,$ $2 \le i \le k$ представляет собой ненулевой остаток от деления a_{i-2} на a_{i-1} и a_k нацело делит a_{k-1} , т.е. $a_{k+1}=0$. Тогда $HOD(a_0,a_1)=a_k$.

Другими словами этот алгоритм вычисляет

$$a_{i+1} = a_{i-1} - q_i a_i$$
для $1 \leq i < k$, где $q_i = \left\lfloor a_{i-1} \, / \, a_i \, \right\rfloor$.

Рассмотрим пример. Пусть $a_0 = 57$, а $a_1 = 33$

$$a_2 = 57 - 33 \cdot 1 = 24$$

$$a_3 = 33 - 24 \cdot 1 = 9$$

$$a_4 = 24 - 9 \cdot 2 = 6$$

$$a_5 = 9 - 6 \cdot 1 = 3$$

$$a_6 = 6 - 3 \cdot 2 = 0$$
,

следовательно HOD(57,33) = 3.

Блок-схема алгоритма Евклида приведена на Рис. 2.

ТЕОРЕМА. Алгоритм Евклида правильно находит значение $HOD(a_0, a_1)$.

Доказательство. Алгоритм вычисляет $a_{i+1}=a_{i-1}-q_ia_i$ для $1 \le i < k$, где $q_i=\left\lfloor a_{i-1}/a_i \right\rfloor$. Так как $a_{i+1} < a_i$ при $i \ge 1$, то алгоритм сходится, т.е. заканчивает работу. Из формулы $a_{i+1}=a_{i-1}-q_ia_i$ следует, что $HOD(a_{i-1},a_i)$ делит a_{i+1} , но так как $a_{i-1}=a_{i+1}+q_ia_i$, то $HOD(a_{i+1},a_i)$ делит a_{i-1} . Таким образом, получаем, что $HOD(a_0,a_1)=.$ $HOD(a_1,a_2)=...=HOD(a_{k-1},a_k)=a_k$.

Алгоритм Евклида можно расширить так, чтобы он находил не только $HOD(a_0,a_1)$, но и целые числа x и y , такие, что $a_0x+a_1y=HOD(a_0,a_1)$.

Блок-схема расширенного алгоритма Евклида показана на Рис. 3.

Рис. 2 Алгоритм Евклида

Рис. 3 Расширенный алгоритм Евклида

Пример. Для $a_0 = 57$ и $a_1 = 33$ получаем

$$a_2 = a_0 - a_1 q = 57 - 33 \cdot 1 = 24$$

$$x_2 = x_0 - x_1 q = 1 - 0 - 1 = 1$$

$$y_2 = y_0 - y_1 q = 0 - 1 \cdot 1 = -1$$

$$a_3 = 33 - 24 \cdot 1 = 9$$

$$x_3 = 0 - 1 \cdot 1 = -1$$

$$y_3 = 1 - (-1) \cdot 1 = 2$$

$$a_4 = 24 - 9 \cdot 2 = 6$$

$$x_4 = 1 - (-1) \cdot 2 = 3$$

$$v_4 = -1 - 2 - 2 = -5$$

$$a_5 = 9 - 6 \cdot 1 = 3$$

$$x_5 = -1 - 3 \cdot 1 = -4$$

$$y_5 = 2 - (-5) \cdot 1 = 7$$

$$a_6 = 6 - 3 \cdot 2 = 0$$
.

Таким образом, $HOD(57,33) = 3 = 57 \cdot (-4) + 33 \cdot 7$.

ЛЕММА. В расширенном алгоритме Евклида

$$a_0 x_i + a_1 y_i = a_i \text{ при } i \ge 0. \tag{4}$$

Доказательство. При i=0

$$a_0 \cdot 1 + a_1 \cdot 0 = a_0$$

При i=1

$$a_0 \cdot 0 + a_1 \cdot 1 = a_1.$$

Пусть равенство (4) справедливо для i-1 и i. Покажем, что (4) справедливо для i+1 . В соответствии с расширенным алгоритмом Евклида

$$x_{i+1} = x_{i-1} - qx_i, \quad y_{i+1} = y_{i-1} - qy_i.$$

Отсюда следует, что

$$a_0 x_{i+1} + a_1 y_{i+1} = a_0 x_{i-1} + a_1 y_{i-1} - q(a_0 x_i + a_1 y_i)$$
(5)

По предположению $a_0x_{i+1}+a_1y_{i+1}=a_{i-1}-qa_i$, но в соответствии с алгоритмом Евклида $a_{i-1}-qa_i=a_{i+1}$, т.е. имеем $a_0x_{i+1}+a_1y_{i+1}=a_{i+1}$, лемма доказана.

Выше при рассмотрении вопроса о восстановлении числа по его модульному представлению мы находили числа $d_i = c_i^{-1} \bmod p_i$, i = 0,...,k-1. До сих пор мы делали это перебором. Рассмотрим, как расширенный алгоритм Евклида может быть применен для нахождения числа обратного к данному по некоторому модулю.

Уравнение вида $ax = b \mod p$, где a, b и p – целые числа называют линейным диофантовым уравнением. Очевидно, что в нашем случае это уравнение имеет вид

$$ax = 1 \mod p. \tag{6}$$

Известно, что в этом частном случае, если HOD(a,p)=1, то уравнение имеет единственное решение, и это решение представляет собой элемент обратный к a по модулю n. Уравнение (6) можно переписать в виде

$$ax + py = 1, (7)$$

где у - некоторое целое число.

Нетрудно видеть, что если HOD(a,p)=1, то (7) представляет собой разложение HOD(a,p)=1, которое может быть найдено с помощью расширенного алгоритма Евклида. Таким образом, элемент x обратный к a по модулю p может быть найден с помощью расширенного алгоритма Евклида.

Пример. Пусть $p_0=3$, $p_1=5$, $p_2=7$, $p=\prod_{i=0}^2 p_i=105$ и модульное представление числа имеет вид (1,1,2) .

Восстановим число по его модульному представлению. Для этого вычислим $c_0=35\,,\;c_1=21\,\mathrm{m}\;c_2=15\,.$

Обратные к c_0 элемент d_0 найдем с помощью расширенного алгоритма Евклида.

Положим $a_0 = c_0$ и $a_1 = p_0$ (примечание: всегда должно выполняться $a_0 > a_1$).

$$a_2 = 35 - 3 \cdot 11 = 2$$

$$x_2 = 1 - 11 \cdot 0 = 1$$

$$y_2 = 0 - 11 \cdot 1 = -11$$

$$a_3 = 3 - 2 \cdot 1 = 1$$

$$x_3 = 0 - 1 \cdot 1 = -1$$

$$y_3 = 1 - (-11) \cdot 1 = 12$$

$$a_4 = 2 - 1 \cdot 2 = 0$$

Отсюда получаем $35 \cdot (-1) + 11 \cdot 12 = 1$, а искомое $d_0 = -1 = 2 \mod 3$.

Аналогично находим, $d_1 = 1$ и $d_2 = 1$. Окончательно получаем,

$$u = \sum_{i=0}^{2} c_i d_i u_i \mod p = 35 \cdot 2 \cdot 1 + 21 \cdot 1 \cdot 1 + 15 \cdot 1 \cdot 2 = 121 \mod 105 = 16.$$