CPSC 313 (Winter 2014)

Midterm Sketch Solutions A two hours exam held on March 6, 2014

1. Short answers

1. Give a regular expression for the language $L = \{w \in \{a, b, c\}^* \mid |w|_a = 1 \text{ and } |w|_b = 1\}$. Briefly justify.

$$oldsymbol{r} = oldsymbol{c}^* oldsymbol{a} oldsymbol{c}^* oldsymbol{b} oldsymbol{c}^* + oldsymbol{c}^* oldsymbol{b} oldsymbol{c}^* oldsymbol{a} oldsymbol{c}^*$$

2. Give a grammar for the language $L = \{w \in \{a\}^* \mid |w| \not\equiv 1 \pmod{3}\}$. Briefly justify.

$$S \rightarrow aaaS \mid aa \mid \lambda$$

3. Give a **DFA** accepting the language $L = \{w \in \{c, d\}^* \mid cd \text{ is$ **not** $a substring of } w\}$. Briefly justify.

4. Give a regular expression for the language accepted by the following NFA. Briefly justify.

$$r = (a + bd)(cd)^*f$$

5. Give an **NFA** accepting the regular language $L = \{a^i b^j \mid i \neq 2 \text{ and } i, j \geq 0\}$. Briefly justify.

6. Give a smallest possible DFA for the language $L(\mathbf{r})$ generated by the following regular expression $\mathbf{r} = (\mathbf{a}^*\mathbf{b} + \mathbf{b}^*\mathbf{a})^*$. Briefly justify.

CPSC 313 Winter 2014 Midterm sketch solutions

7. Give a context-free grammar for the language $L = \{a^i b^j c^k \mid i > j \text{ or } i > k\}$. Briefly justify.

$$S \rightarrow AS_{ab}C \mid AS_{ac}$$

$$S_{ab} \rightarrow aS_{ab}b \mid \lambda$$

$$S_{ac} \rightarrow aS_{ac}c \mid B$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow bB \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

8. Give a regular expression for the language accepted by the following NFA. Briefly justify.

9. Give an infinite regular language L_{reg} and an infinite non-regular language L_{notreg} satisfying that $L_{\text{notreg}} \subseteq L_{\text{reg}}$. Briefly justify.

$$L_{\text{reg}} = \{a^{i}b^{j} \mid i, j \ge 0\}$$

 $L_{\text{notreg}} = \{a^{i}b^{j} \mid i = j \text{ and } i, j \ge 0\}$

10. Characterize the language accepted by the grammar containing the following 17 productions.

$$S \rightarrow PXRXTY$$

$$X \rightarrow KNN$$

$$Y \rightarrow NNNN$$

$$K \rightarrow 9 \mid 8 \mid 7 \mid 6 \mid 5 \mid 4 \mid 3 \mid 2 \mid 1$$

$$N \rightarrow K \mid 0$$

$$P \rightarrow ($$

$$R \rightarrow)$$

$$T \rightarrow -$$

The alphabet Σ is comprised of the following 32 printable ASCII characters,

Briefly justify.

North-American phone numbers on the form (ABB)ABB-BBBB, where each A is a nonzero digit, and each B is a digit, for instance (403)123-0987.

11. Consider the language L=L(G) generated by the grammar G containing the following 6 productions:

$$S \to ASB \mid AB; AB \to AAB; abb \to ab; A \to a; B \to b.$$

Give a grammar G' that contains **at most 3** productions, and that accepts the same language as G (i.e. L(G) = L(G')). Briefly justify.

$$S \to aSb \mid aS \mid ab$$

CPSC 313 Winter 2014 Midterm sketch solutions

12. Give two context-free languages L_1 and L_2 such that $L_1 \cap L_2 = \{a^i b^i c^i d^i e^i \mid i \geq 0\}$. Briefly justify.

$$L_{1} = \{a^{i}b^{j}c^{k}d^{m}e^{n} \mid i = j \text{ and } k = m, i, j, k, m, n \ge 0\}$$

$$L_{2} = \{a^{i}b^{j}c^{k}d^{m}e^{n} \mid j = k \text{ and } m = n, i, j, k, m, n \ge 0\}$$

2. True or False

Answer True or False. No justification required. The languages in questions 1, 2, 3, 8, and 11 are over the alphabet $\Sigma = \{a, b\}$. In question 12, \boldsymbol{r} and \boldsymbol{s} denote regular expressions.

(*Note:* There are 15 questions. One incorrect answer will be ignored.)

	Question	True	False
1	If L is context-free, then so is L^R		
2	If $L = L^*$ and $w \in L$, then $ww \in L$	✓	
3	If L is regular and L' is non-regular, then $L \cap L'$ is non-regular		×
4	The smallest DFA accepting a language consisting of exactly 3 strings contains exactly 5 states		X
5	The grammar $S \to aSb \mid bSa \mid \lambda$ generates a context-free language	✓	
6	$\{\lambda\}^* = \{\}$		X
7	$\{\}^* = \{\}$		×
8	If L is regular and $L' \subseteq L$, then L' is also regular		X
9	The grammar $S \to SaSaS \mid \lambda$ generates the language $\{w \in \{a\}^* \mid w = 2i \text{ for some } i \geq 0\}$	1	
10	There exists a finite language that is context-free	✓	
11	If L is regular, then so is $L' = \{w \in L \mid w \text{ is even}\}\$	✓	
12	$oxed{oldsymbol{r}(oldsymbol{s}oldsymbol{r})^* = (oldsymbol{r}oldsymbol{s})^*oldsymbol{r}}$	✓	
13	All finite languages are context-free	✓	
14	If $L = \{a^i b^i \mid i \ge 0\}$ then $L \setminus L^2 = \{\}$	✓	
15	The language $L = \{w \in \{a, b\}^* \mid w = w^R\}$ is non-regular	✓	

3. DFA construction (optional)

Consider the alphabet $\Sigma = \{0, 1\}$. We can interpret any string $w \in \Sigma^*$ as a non-negative integer written in binary, where we ignore possible leading zeroes. Any string $w \in \{0\}^*$ represents the integer zero. For instance, the string $w_1 = 010011$ represents the integer 16 + 2 + 1 = 19, $w_2 = 0000101010$ the integer 32 + 8 + 2 = 42, $w_3 = 00$ the integer 0, and $w_4 = \lambda$ the integer 0. In general, if $w = w_1 w_2 \cdots w_n$, then w represents the integer $\sum_{i=1}^n 2^{n-i} w_i$.

We say a string w is divisible by 3 if the integer w represents is divisible by 3.

Give a **DFA** that accepts exactly the strings in Σ^* that are divisible by 3. Briefly justify your answer.

Note: Full points to correct and justified solutions. No points to partial solutions.

