UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA MAT02219 - PROBABILIDADE E ESTATÍSTICA

ÁREA 3

FORMULÁRIO

Variáveis aleatórias

Se X é $\mathbf{v.a.}$ contínua, então o valor esperado (média) e a variância de X, são, respectivamente:

$$\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx$$
 e $\sigma^2 = Var[X] = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = E[X^2] - \mu^2$,

em que f(x) é a função densidade de probabilidade (fdp) de X e $\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f(x) dx$.

★ Se X assumir apenas valores em um intervalo $S_X \subset \mathbb{R}$, as expressões acima tornam-se $\mathrm{E}[X] = \int_{S_X} x f(x) dx$, $\mathrm{Var}[X] = \int_{S_X} (x - \mu)^2 f(x) dx$ e $\mathrm{E}[X^2] = \int_{S_X} x^2 f(x) dx$.

Seja X uma variável aleatória, então $F(x) = \Pr(X \le x)$ é a **função de distribuição acumulada** (fda) de X.

$$\star$$
 $F(x) = \int_{-\infty}^{x} f(u) du$, se X é v.a. contínua.

Distribuições de probabilidade

Na Tabela 1 considere:

- Para as distribuições Normal e t-Student, π representa o valor 3, 14....
- Para as distribuições Qui-quadrado e t-Student, $\Gamma(u) = \int_0^\infty x^{u-1} e^{-x} dx$.

Tabela 1: Distribuição de probabilidade, média e variância.

Variáveis aleatórias contínuas			
Uniforme(α , β)	$\frac{1}{\beta - \alpha}, \alpha \le x \le \beta.$	$\frac{\alpha+\beta}{2}$	$\frac{(\beta-\alpha)^2}{12}$
Exponencial(λ)	$\lambda e^{-\lambda x}, x > 0, \lambda > 0.$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normal (μ, σ^2)	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty, -\infty < \mu < \infty, \sigma^2 > 0.$	μ	σ^2
Normal(0, 1)	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, -\infty < x < \infty.$	0	1
Qui – quadrado(v)	$\frac{1}{2^{\nu/2}\Gamma(\nu/2)}x^{\frac{\nu}{x}-1}e^{\frac{x}{2}}, x \ge 0, \nu > 0.$	ν	2ν
t-Student(v)	$\frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)\sqrt{\pi\nu}} \left(1 + \frac{x^2}{\nu} \right)^{-(\nu+1)/2}, -\infty < x < \infty, \nu > 0.$	$0 \ (v > 1)$	$\frac{v}{v-2} \ (v > 2)$

Correlação e regressão linear

• O coeficiente de correlação linear amostral entre X e Y é dado por $r = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}}$, em que

$$S_{XX} = \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2} / n, \qquad S_{YY} = \sum_{i} y_{i}^{2} - (\sum_{i} y_{i})^{2} / n \qquad \text{e} \qquad S_{XY} = \sum_{i} x_{i} y_{i} - [(\sum_{i} x_{i})(\sum_{i} y_{i})] / n.$$

★ Seja ρ o coeficiente de correlação linear populacional, para testar $H_0: \rho = 0 \times H_A: \rho \neq 0$, é usada a estatística de teste $T = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$, que tem distribuição t_{n-2} .

• Considere o modelo de regressão linear $Y = \beta_0 + \beta_1 X + \varepsilon$. Os estimadores de β_0 e β_1 , denotados por b_0 e b_1 , são dados por

$$b_1 = \frac{\sum_i x_i y_i - [(\sum_i x_i)(\sum_i y_i)]/n}{\sum_i x_i^2 - (\sum_i x_i)^2/n} \text{ e } b_0 = \bar{Y} - b_1 \bar{X}.$$

 \bigstar Para testar $H_0: \beta_1 = 0 \times H_A: \beta_1 \neq 0$, é usada a estatística de teste $T = \frac{b_1}{S_{b1}}$, em que $S_{b1} = \sqrt{\frac{S^2}{S_{XX}}}$ e $S^2 = \frac{S_{YY} - b_1 S_{XY}}{n-2}$; T tem distribuição t_{n-2} .