Comprobar la distribución de una característica

A veces es bueno conocer qué distribución siguen los valores de una característica. Nos puede ayudar para saber qué modelos son más adecuados o para aplicar transformaciones que faciliten el aprendizaje.

Como primer ejemplo vamos a ver si las características del conjunto de datos 'delta_elevators' del repositorio de OpenML se ajustan a <u>distribuciones normales (https://es.wikipedia.org/wiki/Distribuci %C3%B3n_normal)</u>.

In [12]: import pandas as pd
import numpy as np
from sklearn import datasets

In [13]: dataset = datasets.fetch_openml(name='delta_elevators', version=1,
 as_frame=True)
 tabla = dataset.frame
 tabla

Out[13]:

	climbRate	Altitude	RollRate	curRoll	diffClb	diffDiffClb	Se
0	2.0	-50.0	-0.0048	-0.001	0.2	0.00	-0.001
1	6.5	-40.0	-0.0010	-0.009	0.2	0.00	0.003
2	-5.9	-10.0	-0.0033	-0.004	-0.1	0.00	-0.001
3	-6.2	-30.0	-0.0022	-0.011	0.1	0.00	-0.002
4	-0.2	-40.0	0.0059	-0.005	0.1	0.00	0.001
						•••	
9512	5.0	-30.0	0.0013	-0.004	0.2	0.00	0.004
9513	1.4	0.0	0.0024	0.019	-0.2	-0.01	-0.001
9514	-3.5	-10.0	-0.0082	0.004	-0.1	0.00	-0.003
9515	-2.4	-10.0	-0.0065	-0.012	0.2	-0.02	-0.001
9516	4.7	-10.0	0.0018	-0.020	0.3	0.00	0.001

9517 rows × 7 columns

Una visión rápida de los histogramas de las características de la tabla nos dará una primera impresión de como están distribuidos los datos.

In [14]: import matplotlib.pyplot as plt
tabla.hist(bins=50)
plt.show()

En este conjunto de datos, casi todas las características parecen asemejarse algo a la distribución normal pero hay algunas que son claramente discretas (tienen huecos sin valores) y otras con cosas que no parecen ajustarse a la curva Gausiana (doble pico, asimetría). Podemos hacer un test estadístico para ver cuales son significativamente diferentes de la normal o si esas anormalidades que vemos pueden ser causa de la aleatoriedad.

En este test estadístico la hipotesis nula H_0 es que la distribución sea una normal. Por tanto, si sale un valor de p-value pequeño, podemos descartar que sea una Normal pues sólo hay esa p-value probabilidad de descartarla por error. Sin embargo, si no es así, no sabemos la probabilidad de que realmente los datos se hayan generado a partir de un proceso con una distribución Normal.

```
In [15]: from scipy.stats import normaltest
         for columna in tabla:
             stat, p = normaltest(tabla[columna])
             print('{col:>11} stat={stat:7.3f}, p={p:.3f}'.format(stat=sta
         t, p=p, col=columna), end='')
             if p > 0.01:
                 print(' -> quizá Normal')
             else:
                 print(' -> muy probablemente no Normal')
           climbRate stat=271.687, p=0.000 -> muy probablemente no Normal
            Altitude stat= 82.602, p=0.000 -> muy probablemente no Normal
            RollRate stat=121.291, p=0.000 -> muy probablemente no Normal
             curRoll stat= 1.793, p=0.408 -> quizá Normal
             diffClb stat= 30.876, p=0.000 -> muy probablemente no Normal
         diffDiffClb stat=890.530, p=0.000 -> muy probablemente no Normal
                  Se stat=158.118, p=0.000 -> muy probablemente no Normal
```

En este caso, de todas las características, la única que podría estar distribuida con una distribución Normal es 'curRoll'. Las demás queda descartado que puedan considerarse valores normalmente distribuidos.

Ejercicio: Escoge otro conjunto de datos de <u>OpenML (https://www.openml.org/search?type=data)</u> que tenga características con números reales y analiza la distribución del mismo.

Referencias: https://machinelearningmastery.com/statistical-hypothesis-tests-in-python-cheat-sheet/ (https://machinelearningmastery.com/statistical-hypothesis-tests-in-python-cheat-sheet/)