2023. november 30., csütörtök 23:49

Kapacitív szenzorok:

- Két fém felület között dielektromos szigetelő anyag
- $C = \varepsilon_0 \varepsilon \frac{s}{d}$ képlettel számolható a kapacitás
- Jó tulajdonságai:
 - a. Egyszerűség
 - b. Áttekinthetőség
 - c. Magas érzékenység
 - d. Alkalmazhatóság magasabb hőmérsékletnél
- Fajtái:
 - a. Változó felületű
 - b. Változó dielektrikumú (elektromágneses szigetelőképesség)

Elektromágneses szenzorok:

- Működése alapul:
 - a. Tekercs induktivitása
 - b. Mágneses kör mágneses ellenállásának változásán
 - c. Elektromágneses indukción
- Megkülönböztetjük az érzékelőket mint:
 - a. Öninduktivitás
 - b. Kölcsönös induktivitás
 - c. Indukciós
- Kölcsönös- és öninduktív változáson alapulók passzív, indukciósok pedig aktív
- Vasmag mágneses ellenállása kicsi --> vasmag veszteségei elhanyagolhatók
- $L = \frac{\mu_0 N^2 S_{\delta}}{2 \delta}$ képlettel kiszámolható az induktivitás

Kölcsönös induktivitású szenzorok:

- A szekunder tekercsben indukált feszültséget mérjük
- Nagy megbízhatóság
- Változó hossz/keresztmetszetű légréssel készülnek
- Alkalmas kicsi mechanikus elmozdulás mérésre

Indukciós szenzorok:

- Generátor -->aktív szenzorok csoportjába tartozik
- Mozgó vezető egy állandó mágnes erővonalait metszi --> abban feszültség indukálódik
- Mozgó tekercses / mozgó mágneses kivitel

Piezoelektromos szenzorok

- Bizonyos egykristály szerkezetű dielektromos anyagok mechanikai igénybevétel hatására elektromos potenciált produkálnak
- Legismertebb: SiO2 Szilícium-dioxid(Kvarc)
- Prizma, tárcsa, henger(cső) vagy hengerszelet alakban készül
- Nagyobb érzékenység szalag alak esetén, de ez kicsi és könnyen törik hosszanti terhelés esetén
- Legmegfelelőbb szilárdság szempontból: cilindirikus alak, nehéz előállítani

Transzformátoros piezoelektromos szenzorok:

- Két piezo-aktív szekcióból tevődnek össze
- Villamos nagyságok mérésére:
 - a. Áram
 - b. Feszültség
 - c. Frekvencia
- Két csoport:
 - a. Feszültségtranszformátorok
 - b. Áramtranszformátorok

Optikai transzformátorok:

- Három rész:
 - a. Fény(forrás)
 - b. Fényérzékelő
 - c. Szállítóközeg
- Fényenergia --> elektromos nagysággá (áram, feszültség, ellenállás, kapacitás, töltés) alakítja át
- Alkalmazásai:
 - a. Közelség mérés
 - b. Távolság mérés
 - c. Fényerősség
- Közelségi érzékelők:
 - a. Fényforrásként LED-et használnak
 - b. Vevőoldalon: fotodióda / fototranzisztor
- Optikai távolságmérő:
 - a. Vörös-/lézerfény
 - b. Háromszögelési módszer / Time-Of-Flight (TOF) technológián alapul

<u>Ultrahangos szenzorok:</u>

• Nagy frekvenciás hanghullámok visszaverődése alapján működik

Hőmérsékletmérő szenzorok:

- Típusai:
 - a. Expanziós hőmérők
 - b. Ellenállásos hőmérők
 - c. Termoelektromos érzékelők
 - d. Hősugárzás érzékelők
 - e. (léteznek más eljárások, és a jövőben lesznek újabbak is!)

Expanziós hőmérséklet szenzorok:

- Melegedésre tágul, hűtésre összehúzódik
- Példa: higanyos hőmérő
- Higany mellett egyéb anyag: toluol, etilalkohol, pentán
- Lehet még dilatációs hőmérő, pl. termosztát / bimetálos (ikerfémes) hőmérő

Ellenállás hőmérők:

- Fém ellenállás-hőmérők
- Tekercs alakúra gyártják
- Platina a legmegfelelőbb anyag:
 - a. 99,999% tisztaság
 - b. Kémiailag semleges
 - c. Nagy ellenállás
 - d. Lineáris hőmérséklet állandó

- e. $-200^{\circ}C$ $630^{\circ}C$ (max $1060^{\circ}C$) alkalmazható
- f. Lehet: nikkel / réz huzalból -->kevésbé hatékony

Félvezetős ellenállás hőmérők:

- A termisztorok hőmérsékletre érzékeny félvezető ellenállások
- Nehézfém oxidokból készült kerámiák
- -50°C 100°C
- NTC és PTC típus
- Gyors reakcióval rendelkeznek
- Öregedés folyamán növekvő stabilitás
- Kifejezetten **NEM** lineáris karakterisztika

Termoelemek:

- Feladatuk $500^{\circ}C$ $1000^{\circ}C$ hőmérsékletek mérése
- Alkalmazásuk kiterjedt a rendkívül alacsony hőmérsékletek (1K) és egészen magas $4000^{\circ}C$ -ig
- Szokványos elnevezése két különböző anyagú, egyik végükön összeforrasztott (hegeszt, csavart) huzalnak

Nyomásmérő szenzorok:

- Skaláris mennyiség, amit az egységnyi felületre ható erő értéke, nyomásnak nevezünk
- $P = F / S \left[\frac{N}{m^2} \right]$
- Három csoport:
 - a. Abszolút -
 - b. Lég-
 - c. Differenciális nyomásmérés
- Közvetlen vagy kompenzációs típus
- ullet Közös elem az elsődleges érzékelő mely P nyomást vagy ΔP nyomáskülönbséget erővé alakítja
- Általában elasztikus elem, F erő hatására deformálódik, vagy elmozdul Δx távra
- Közvetlen átalakítóknál erő vagy elmozdulás következő lépésben elektromos jellé alakul

Tipikus nyomásérzékelők:

- Deformáció villamos kimenetté alakul
- Többségük rendelkezik membrán típusú primer elemmel
- Primer elem karakterisztikáitól függ:
 - a. Méréstartomány
 - b. Rezonáló frekvencia
 - c. Szenzor érzékenysége
- Elem deformációja nyomás hatására jön létre, villamos jellé alakul
- Érzékelőket megkülönbözetünk:
 - a. Elektromágneses
 - b. Kapacitív
 - c. Ellenállásos
 - d. Piezoelektromos

<u>Szintmérő szenzorok:</u>

- Szint = folyékony vagy szemcsés anyag magassága egy edényben
- Nívóméternek is nevezzük
- Hosszúság mértékegységben történő kifejezés [m]
- Két csoport:
 - a. Diszkrét: minimum, maximum

b. Folytonos

Szintmérési technikák:

- Úszós szintérzékelők:
 - a. 80-200 mm átmérőjű gömb
 - b. Folyadék felszínén úszik
 - c. Úszó helyzete mechanikus úton mutatóra vagy szögelfordulás érzékelőre kerül
- Merülő szintérzékelők:
 - a. Általában cilindirikus keresztmetszetű rúd
 - b. Felső vége egy erő érzékelőre van erősítve
 - c. Sűrűsége >folyadék sűrűsége
 - d. Hossza közel egyezik a mérési tartománnyal
- Hidrosztatikus szintérzékelők:
 - a. Pascal törvényén alapul
 - b. Kiszámítható "P" nyomás "h" mélységben
- Ellenállásos szintmérők:
 - a. Kifeszített fémhuzalból és szalagból áll
 - b. Folyadék felszíne alatt a szalag és a huzal rövidre vannak zárva
 - c. Áramkör ellenállása arányos a felszín felett mért szinttel
- Kapacitív szintérzékelők:
 - a. Sík vagy cilindirikus kondenzátorok
 - b. Fegyverzetei között mért folyadék (vezető vagy szigetelő)
- Ultrahangos szintérzékelők:
 - a. Hanghullámok, ultrahanghullámok, mikrohullámú sugárzás visszaverődése 2 fluid határfelületről
 - b. Alkalmazható a szintmérés területén
 - c. A szint arányos az eltelt "t" idővel (forrástól érzékelőig megtett út)

<u>Inerciális szenzorok</u> - IMU:

- Szenzorok egysége
- Valamilyen mozgásból származó értékeket mérnek:
 - a. Gyorsulás (gyorsulásmérő)
 - b. Sebesség (gym)
 - c. Megtett út (gym)
 - d. Tájolás (giroszkóp)
 - e. Magasság (magnetométer)

Gyorsulásmérő szenzor:

- X Y Z irányba ható erőhatásokat méri
- Gravitáció miatt tudjuk használni az adatokat
- Mozdulatlan testnek csak a gravitáció miatt lesz gyorsulása, elhanyagolva minden más erőhatást

Giroszkóp:

- Szögsebességet mér
- Három tengely irányban
- Nem közvetlenül méri: pitch(dőlés), roll(perdülés), yaw(irányváltoztatás)
- Ha időben integráljuk a három tengely szögsebességét -->megkapjuk a szögekben kifejezett Elmozdulásokat a három tengelyre vetítve

Magnetométer:

Mágneses térerősség mérése

- Föld mágneses terét használja orientáció meghatározására
 Hasonlít az iránytű működésére
- Mért értékekből kiolvasható az irányváltozás