The Curse of Dimensionality

Guillaume Lozenguez

@imt-lille-douai.fr

IMT Lille Douai École Mines-Télécom IMT-Université de Lille

With a Classical 32-card game

Possible distribution $32! = 2.6 \times 10^{35}$

Human life: around 5×10^7 seconds

Probability to play 2 times the same distribution in a human life is very close to 0

Decision Making

Is about controlling linked variables:

- ▶ Learning correlation
- Optimize trajectories

Matematically:

- Manipulate Cartesian Product (Set Theory)
- Estimate functions
- Exploring large graph

Dealing with large State Space

Reduce the state space

Work locally

A combination of these 2 solutions

A Complete Decision Architecture

A Complete Decision Architecture

State reduction (or identification)

Approach:

Distance based approach:

- Principal Component Annalysis (PCA) (+ Discretization)
- Clustering: k-means, Simple Vector Machine (SVM)

Discrete approach:

Decision-Tree (ID3 algorithm family)

Goals:

Macro-States merge states with supposed similar values.

Deep-Learning-based Decision Architecture

Requirement:

Labeled data with valid *values*...

Action refinement at run time

Local computation of the Values and the policy from current state.

- Constrained Value Iteration (from the current state, with a limited horizon)
- ► Monte Carlo Approach (based on deep, but random trajectories)

Requirement:

Simulation: a model of the controlled system

Action refinement at run time

Local computation of the Values and the policy from current state.

- Constrained Value Iteration (from the current state, with a limited horizon)
- Monte Carlo Approach (based on deep, but random trajectories)

Requirement:

Simulation: a model of the controlled system