. A-527.ST25.txt SEQUENCE LISTING

					254	20 1110		.0111	• • •							
<110>	FEIGE LIU, CHEET BOONE	CHUA , CHAM	N-FA	A IET (;										
<120>	MODIE	FIED	PEPT	TIDES	S AS	THEF	RAPEU	TIC	AGEN	ITS						
<130>	A-527	7														
<140> <141>	09/42 1999-															
<150> <151>	60/10 1998-															
<160>	1133															
<170>	Pater	ntIn	vers	sion	3.1											
	1 684 DNA HUMAN	1														
<220><221><222><223>	CDS (1).	. (684	1)													
<400> atg gad Met Asy 1	c aaa														•	48
ggg gg																96
atg at Met Il																144
cac ga His Gl	u Asp															192
gtg ca Val Hi 65																240
tac cg Tyr Ar	t gtg g Val	gtc Val	agc Ser 85	gtc Val	ctc Leu	acc Thr	gtc Val	ctg Leu 90	cac His	cag Gln	gac Asp	tgg Trp	ctg Leu 95	aat Asn		288
ggc aa Gly Ly																336
atc ga Ile Gl																384
gtg ta Val Ty 13	r Thr	ctg Leu	ccc Pro	cca Pro	tcc Ser 135	cgg Arg	gat Asp	Glu	ctg Leu ige 1	Thr 140	aag Lys	aac Asn	cag Gln	gtc Val		432

agc Ser 145	ctg Leu	acc Thr	tg c Cys	ctg Leu	gtc Val 150	aaa Lys	Gly	ttc Phe	tat Tyr	ccc Pro 155	agc Ser	gac Asp	atc Ile	gcc Ala	gtg Val 160	480
gag Glu	tgg Trp	gag Glu	agc Ser	aat Asn 165	Gly aaa	cag Gln	ccg Pro	gag Glu	aac Asn 170	aac Asn	tac Tyr	aag Lys	acc Thr	acg Thr 175	cct Pro	528
ccc Pro	gtg Val	ctg Leu	gac Asp 180	tcc Ser	gac Asp	ggc Gly	tcc Ser	ttc Phe 185	ttc Phe	ctc Leu	tac Tyr	agc Ser	aag Lys 190	ctc Leu	acc Thr	576
gtg Val	gac Asp	aag Lys 195	agc Ser	agg Arg	tgg Trp	cag Gln	cag Gln 200	ggg Gly	aac Asn	gtc Val	ttc Phe	tca Ser 205	tgc Cys	tcc Ser	gtg Val	624
atg Met	cat His 210	gag Glu	gct Ala	ctg Leu	cac His	aac Asn 215	cac His	tac Tyr	acg Thr	cag Gln	aag Lys 220	agc Ser	ctc Leu	tcc Ser	ctg Leu	672
	ccg Pro															684
<21 <21 <21 <21	1> 2 2> 1	2 228 PRT HUMAI	Ŋ													
<40	0> :	2														
Met 1	Asp	Lys	Thr	His 5	Thr	Сув	Pro	Pro	Cys 10	Pro	Ala	Pro	Glu	Leu 15	Leu	
Gly	Gly	Pro	Ser 20	Val	Phe	Leu	Phe	Pro 25	Pro	Lys	Pro	Lys	Asp 30	Thr	Leu	
Met	Ile	Ser 35	Arg	Thr	Pro	Glu	Val 40	Thr	Сув	Val	Val	Val 45	Asp	Val	Ser	
His	G1u 50	Asp	Pro	Glu	Val	Lys 55	Phe	Asn	Trp	Tyr	Val 60	Asp	Gly	Val	Glu	
Val 65	His	Asn	Ala	Lys	Thr 70	Lys	Pro	Arg	Glu	Glu 75	Gln	Tyr	Asn	Ser	Thr 80	
Tyr	Arg	Val	Val	Ser 85	Val	Leu	Thr	Val	Leu 90	His	Gln	Asp	Trp	Leu 95	Asn	
Gly	Lys	Glu	Tyr 100	-	Cys	Lys	Val	Ser 105	Asn	Lys	Ala	Leu	Pro 110	Ala	Pro	
Ile	Glu	Lys 115	Thr	Ile	Ser	Lys	Ala 120	Lys	Gly	Gln	Pro	Arg 125	Glu	Pro	Gln	
Val	Tyr 130		Leu	Pro	Pro	Ser 135	Arg	Asp	Glu	Leu	Thr 140	Lys	Asn	Gln	Val	

A-527.ST25.txt Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys <210> 3 <211> 36 <212> PRT <213> Artificial Sequence <220> <223> SYNTHETIC SCHEME FOR PREPARATION OF PEGYLATED PEPTIDE <220> <221> misc_feature <222> (18)..(18)Methoxy-polyethylene glycol (5000 Dalton)-sulfoacetyl group attac <223> hed to the sidechain. <400> 3 Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly Gly Lys Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 25 Ala Ala Arg Ala <210>

<211> 36

<212> PRT

<213> Artificial Sequence

<220>

<223> SYNTHETIC SCHEME FOR PREPARATION OF PEGYLATED PEPTIDE

<220>

<221> misc_feature

<222> (18)..(18)

Methoxy-polyethylene glycol (5000 Dalton)-succinimidyl group atta <223> ched to the sidechain.

<400> 4

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly 1 5 10 15	
Gly Cys Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 20 25 30	
Ala Ala Arg Ala 35	
<210> 5 <211> 794 <212> DNA <213> Artificial Sequence	
<220> <223> Fc-TMP	
<220> <221> CDS <222> (39)4779) <223>	
<400> 5 tctagatttg ttttaactaa ttaaaggagg aataacat atg gac aaa act cac aca 56 Met Asp Lys Thr His Thr 1 5	
tgt cca cct tgt cca gct ccg gaa ctc ctg ggg gga ccg tca gtc ttc Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 10 15 20	
ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tc tgg acc cct Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Sector Thr Pro 25 30 35	
gag gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 40 45 50	
aag ttc aac tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 55 60 65 70	
aag ccg cgg gag gag cag tac aac agc acg tac cgt gtg gtc agc gtc Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val 75 80 85	
ctc acc gtc ctg cac cag gac tgg ctg aat ggc aag gag tac aag tgc Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 90 95 100	
aag gtc tcc aac aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc 392 Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 105 110 115	
aaa gcc aaa ggg cag ccc cga gaa cca cag gtg tac acc ctg ccc cca Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 120 130	
tcc cgg gat gag ctg acc aag aac cag gtc agc ctg acc tgc ctg gtc Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Page 4	

150

_						230					143					130		
I	ys aa	ggc Gly	ttc Phe	tat Tyr	ccc Pro 155	agc Ser	gac Asp	atc Ile	gcc Ala	gtg Val 160	gag Glu	tgg Trp	gag Glu	agc Ser	aat Asn 165	ggg Gly	Ş	536
							aag Lys										Ċ	584
							agc Ser										(632
							tca Ser 205										(680
7							agc Ser											728
							ccg Pro											776
	gct Ala	taat	ctc	gag (gatco	3												794
•	<210 <211 <212 <213	L> 2 2> 1	5 247 PRT Arti:	Eicia	al Se	equei	nce										-	
	<220 <220		Fc-T	MP														
	<400)> (б															
	Met 1	Asp	Lys	Thr	His 5	Thr	Cys	Pro	Pro	Cys 10	Pro	Ala	Pro	Glu	Leu 15	Leu		
ı	Gly	Gly	Pro	Ser 20	Val	Phe	Leu	Phe	Pro 25	Pro	Lys	Pro	Lys	Asp 30	Thr	Leu		
	Met	Ile	Ser 35	Arg	Thr	Pro	Glu	Val 40	Thr	Cys	Val	Val	Val 45	Asp	Val	Ser		
	His	Glu 50	Asp	Pro	Glu	Val	Lys 55	Phe	Asn	Trp	Tyr	Val 60	Asp	Gly	Val	Glu		
	Val 65	His	Asn	Ala	Lys	Thr 70	Lys	Pro	Arg	Glu	Glu 75	Gln	Tyr	Asn	Ser	Thr 80		
	Tyr	Arg	Val	Val	Ser 85	Val	Leu	Thr	Val	Leu 90	His	Gln	Asp	Trp	Leu 95	Asn		
	Gly	Lys	Glu	Tyr 100		Cys	Lys	Val	Ser 105		Lys	Ala	Leu	Pro 110	Ala	Pro		

Ile	Glu	Lys 115	Thr	Ile	Ser	Lys	Ala 120	Lys	Gly	Gln	Pro	Arg 125	Glu	Pro	Gln	
Val	Tyr 130	Thr	Leu	Pro	Pro	Ser 135	Arg	Asp	Glu	Leu	Thr 140	Lys	Asn	Gln	Val	
Ser 145	Leu	Thr	Cys	Leu	Val 150	Lys	Gly	Phe	Tyr	Pro 155	Ser	Asp	Ile	Ala	Val 160	
Glu	Trp	Glu	Ser	Asn 165	Gly	Gln	Pro	Glu	Asn 170	Asn	Tyr	Lys	Thr	Thr 175	Pro	
Pro	Val	Leu	Asp 180	Ser	Asp	Gly	Ser	Phe 185	Phe	Leu	Tyr	Ser	Lys 190	Leu	Thr	
Val	Asp	Lys 195	Ser	Arg	Trp	Gln	Gln 200	Gly	Asn	Val	Phe	Ser 205	Суз	Ser	Val	
Met	His 210	Glu	Ala	Leu	His	Asn 215	His	Tyr	Thr	Gln	Lys 220	Ser	Leu	Ser	Leu	
Ser 225	Pro	Gly	Lys	Gly	Gly 230	Gly	Gly	Gly	Ile	Glu 235	Gly	Pro	Thr	Leu	Arg 240 ·	
Gln	Trp	Leu	Ala	Ala 245	Arg	Ala										
<210 <211 <211 <211	l <5	7 861 DNA Artii	Eicia	al Se	equer	nce										
<220 <223		FC-TI	IP-TI	1P												
<220 <221 <221 <223	L> (2>	CDS (39)	(84	12)												
<400		7														56
teta	agacı	ccg (LLLL	acta	aa ct	caaa	ggagg	g aat	Laaca						ac aca is Thr	36
tgt Cys	cca Pro	cct Pro	tgt Cys 10	cca Pro	gct Ala	ccg Pro	gaa Glu	ctc Leu 15	ctg Leu	ggg Gly	gga Gly	ccg Pro	tca Ser 20	gtc Val	ttc Phe	104
ctc Leu	ttc Phe	ccc Pro 25	cca Pro	aaa Lys	ccc Pro	aag Lys	gac Asp 30	acc Thr	ctc Leu	atg Met	atc Ile	tcc Ser 35	cgg Arg	acc Thr	cct Pro	152
gag Glu	gtc Val 40	aca Thr	tgc Cys	gtg Val	gtg Val	gtg Val 45	gac Asp	gtg Val	agc Ser	cac His	gaa Glu 50	gac Asp	cct Pro	gag Glu	gtc Val	200
				*					_							

								Α-	527.	ST25	.txt					
aag t Lys F 55	ttc Phe	aac Asn	tgg Trp	tac Tyr	gtg Val 60	gac Asp	ggc Gly	ata	gag	ata	cat	aat	gcc Ala	aag Lys	aca Thr 70	248
aag c Lys F	ecg Pro	cgg Arg	gag Glu	gag Glu 75	cag Gln	tac Tyr	aac Asn	agc Ser	acg Thr 80	tac Tyr	cgt Arg	gtg Val	gtc Val	agc Ser 85	gtc Val	296
ctc a Leu T	acc Thr	gtc Val	ctg Leu 90	cac His	cag Gln	gac Asp	tgg Trp	ctg Leu 95	aat Asn	ggc Gly	aag Lys	gag Glu	tac Tyr 100	aag Lys	tgc Cys	344
aag g Lys V	gtc /al	tcc Ser 105	aac Asn	aaa Lys	gcc Ala	ctc Leu	cca Pro 110	gcc Ala	ccc Pro	atc Ile	gag Glu	aaa Lys 115	acc Thr	atc Ile	tcc Ser	392
aaa g Lys A	gcc Ala 120	aaa Lys	G]À aaa	cag Gln	ccc Pro	cga Arg 125	gaa Glu	cca Pro	cag Gln	gtg Val	tac Tyr 130	acc Thr	ctg Leu	ccc Pro	cca Pro	440
tcc c Ser A 135	egg Arg	gat Asp	gag Glu	ctg Leu	acc Thr 140	aag Lys	aac Asn	cag Gln	gtc Val	agc Ser 145	ctg Leu	acc Thr	tgc Cys	ctg Leu	gtc Val 150	488
aaa g Lys G	ggc	ttc Phe	tat Tyr	ccc Pro 155	agc Ser	gac Asp	atc Ile	gcc Ala	gtg Val 160	g ag Glu	tgg Trp	gag Glu	agc Ser	aat Asn 165	GJA aaa	536
cag c Gln F	ccg Pro	gag Glu	aac Asn 170	aac Asn	tac Tyr	aag Lys	acc Thr	acg Thr 175	cct Pro	ccc Pro	gtg Val	ctg Leu	gac Asp 180	tcc Ser	gac Asp	584
ggc t Gly S	tcc Ser	ttc Phe 185	ttc Phe	ctc Leu	tac Tyr	agc Ser	aag Lys 190	ctc Leu	acc Thr	gtg Val	gac Asp	aag Lys 195	agc Ser	agg Arg	tgg Trp	632
cag o Gln o	cag Gln 200	ggg Gly	aac Asn	gtc Val	ttc Phe	tca Ser 205	tgc Cys	tcc Ser	gtg Val	atg Met	cat His 210	g ag Glu	gct Ala	ctg Leu	cac His	680
aac o Asn H 215																728
ggt g Gly G	ggt Gly	ggt Gly	atc Ile	gaa Glu 235	ggt Gly	ccg Pro	act Thr	ctg Leu	cgt Arg 240	cag Gln	tgg Trp	ctg Leu	gct Ala	gct Ala 245	cgt Arg	776
gct g Ala (824
caa t Gln 1						gca	taato	ctc (gagga	atcc	J					861
<210: <211: <212: <213:	> 2 > 1	3 268 PRT Arti:	ficia	al So	equei	nce										
<220: <223:		Fc-Ti	MP-TI	MP												
<400	> 8	3														

Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Page $7\,$

Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 20 25 30

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser 35 40 45

His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 50 60

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 65 70 75 80

Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 85 90 95

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100 105 110

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 115 120 125

Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 130 135 140

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 160

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220

Ser Pro Gly Lys Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg 240

Gln Trp Leu Ala Ala Arg Ala Gly Gly Gly Gly Gly Gly Gly Ile 245 250 250

Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg 260 265

<210> 9

							A-	527.	ST25	.txt					
<211><212><213>	855 D NA Arti	ficia	al Se	equer	nce										
<220> <223>	TMP-	TMP=I	Fc												
<220><221><222><222><223>	CDS (39)	(84	15)												
<400> tctaga	9 ittta	tttta	aacta	aa ti	aaac	aaaa	r aat	aaca	ar at	orat	יר מו	a cc	tt co	ra act	56
3						,,,,,,	,		Me 1	et Il	e G	lu Gl	y Pr 5	o Thr	30
ctg co	gt cag g Gln	tgg Trp 10	ctg Leu	gct Ala	gct Ala	cgt Arg	gct Ala 15	ggc Gly	ggt Gly	ggt Gly	ggc Gly	gga Gly 20	GJA aaa	ggt Gly	104
ggc at Gly Il	t gag e Glu 25	ggc Gly	cca Pro	acc Thr	ctt Leu	cgc Arg 30	caà Gln	tgg Trp	ctt Leu	gca Ala	gca Ala 35	cgc Arg	gca Ala	gjà aaa	152
gga gg Gly Gl 40	y Gly														200
gaa ct Glu Le 55															248
gac ac Asp Th															296
gac gi Asp Va	g agc al Ser														344
ggc gt Gly Va															392
aac ag Asn Se 1	gc acg er Thr 20	tac Tyr	cgt Arg	gtg Val	gtc Val 125	agc Ser	gtc Val	ctc Leu	acc Thr	gtc Val 130	ctg Leu	cac His	cag Gln	gac Asp	440
tgg c Trp Lo 135	tg aat eu Asn	ggc Gly	aag Lys	gag Glu 140	tac Tyr	aag Lys	tgc Cys	aag Lys	gtc Val 145	tcc Ser	aac Asn	aaa Lys	gcc Ala	ctc Leu 150	488
	cc ccc la Pro														536
gaa c Glu P	ca cag ro Gln	gtg Val 170	tac Tyr	acc Thr	ctg Leu	ccc Pro	cca Pro 175	tcc Ser	cgg Arg	gat Asp	gag Glu	ctg Leu 180	acc Thr	aag Lys	584
aac c Asn G	ag gtc ln Val 185	Ser	ctg Leu	acc Thr	tgc Cys	ctg Leu 190	gtc Val	aaa Lys	ggc Gly	ttc Phe	tat Tyr 195	ccc Pro	agc Ser	gac Asp	632
atc go Ile A	cc gtg la Val	gag Glu	tgg Trp	gag Glu	agc Ser	aat Asn	ggg Gly	Gln	ccg Pro age	Glu	aac Asn	aac Asn	tac Tyr	aag Lys	680

acc acg cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 215 220 225	agc 728 Ser 230
aag ctc acc gtg gac aag agc agg tgg cag cag ggg aac gtc ttc Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 235 240 245	Ser
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 250 255 260	agc 824 Ser
ctc tcc ctg tct ccg ggt aaa taatggatcc Leu Ser Leu Ser Pro Gly Lys 265	855
<210> 10 <211> 269 <212> PRT <213> Artificial Sequence	
<220> <223> TMP-TMP-Fc	
<400> 10	
Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala 1 5 10 15	Gly
Gly Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln 20 25 30	Trp
Leu Ala Ala Arg Ala Gly Gly Gly Gly Gly Asp Lys Thr His Thr 35 40 45	СЛа
Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 50 55 60	Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 65 70 75	Glu 80
Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 85 90 95	
Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 100 105 110	Lys
Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val 115 120 125	Leu
Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 130 135 140	Lys
Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 145 150 155	Lys 160

Ala	Lys	Gly	Gln	Pro 165	Arg	Glu	Pro	Gln	Val 170	Tyr	Thr	Leu	Pro	Pro 175	Ser	
Arg	Asp	Glu	Leu 180	Thr	Lys	Asn	Gln	Val 185	Ser	Leu	Thr	Cys	Leu 190	Val	Lys	
Gly	Phe	Tyr 195	Pro	Ser	Asp	Ile	Ala 200	Val	Glu	Trp	Glu	Ser 205	Asn	Gly	Gln	
Pro	Glu 210	Asn	Asn	Tyr	Lys	Thr 215	Thr	Pro	Pro	Val	Leu 220	Asp	Ser	Asp	Gly	
Ser 225	Phe	Phe	Leu	Tyr	Ser 230	Lys	Leu	Thr	Val	Asp 235	Lys	Ser	Arg	Trp	Gln 240	
Gln	Gly	Asn	Val	Phe 245	Ser	Cys	Ser	Val	Met 250	His	Glu	Ala	Leu	His 255	Asn	
His	Tyr	Thr	Gln 260	Lys	Ser	Leu	Ser	Leu 265	Ser	Pro	Gly	Lys				
<21 <21 <21 <21	1> 2> 1	11 789 DNA Arti:	ficia	al Se	equei	nce										
<22 <22		rmp-:	Fc													
<22 <22 <22 <22	1> (2>	CDS (39)	(7	79)												
<40 tct		11 ttg	tttt	aact	aa t	taaag	ggag	g aa	taac	at a M 1	tg a et I	tc g le G	aa g lu G	gt c ly P 5	cg act ro Thr	56
ctg Leu	cgt Arg	cag Gln	tgg Trp 10	ctg Leu	gct Ala	gct Ala	cgt Arg	gct Ala 15	ggt Gly	gga Gly	ggc Gly	ggt Gly	ggg Gly 20	gac Asp	aaa Lys	104
act Thr	cac His	aca Thr 25	tgt Cys	cca Pro	cct Pro	tgc Cys	cca Pro 30	gca Ala	cct Pro	gaa Glu	ctc Leu	ctg Leu 35	ggg	gga Gly	ccg Pro	152
tca Ser	gtt Val 40	ttc Phe	ctc Leu	ttc Phe	ccc Pro	cca Pro 45	aaa Lys	ccc Pro	aag Lys	gac Asp	acc Thr 50	ctc Leu	atg Met	atc Ile	tcc Ser	200
cgg Arg 55	acc Thr	cct Pro	gag Glu	gtc Val	aca Thr 60	tgc Cys	gtg Val	gtg Val	gtg Val	gac Asp 65	gtg Val	agc Ser	cac His	gaa Glu	gac Asp 70	248
cct	gag Glu	gtc Val	aag Lys	ttc Phe	aac Asn	tgg Trp	tac Tyr	gtg Val	gac Asp 80	ggc Gly	gtg Val	gag Glu	gtg Val	cat His	aat Asn	296

								A –	527.	ST25	.txt						
								cag Gln 95	tac	aac	agc	acg					344
gtc Val	agc Ser	gtc Val 105	ctc Leu	acc Thr	gtc Val	ctg Leu	cac His 110	cag Gln	gac Asp	tgg Trp	ctg Leu	aat Asn 115	ggc Gly	aag Lys	gag Glu		392
tac Tyr	aag Lys 120	tgc Cys	aag Lys	gtc Val	tcc Ser	aac Asn 125	aaa Lys	gcc Ala	ctc Leu	cca Pro	gcc Ala 130	ccc Pro	atc Ile	gag Glu	aaa Lys		440
acc Thr 135	atc Ile	tcc Ser	aaa Lys	gcc Ala	aaa Lys 140	ggg Gly	cag Gln	ccc Pro	cga Arg	gaa Glu 145	cca Pro	cag Gln	gtg Val	tac Tyr	acc Thr 150		488
								acc Thr									536
								agc Ser 175									584
agc Ser	aat Asn	ggg Gly 185	cag Gln	ccg Pro	gag Glu	aac Asn	aac Asn 190	tac Tyr	aag Lys	acc Thr	acg Thr	cct Pro 195	ccc Pro	gtg Val	ctg Leu		632
								tac Tyr				Thr			aag Lys	,	680
agc Ser 215	Arg	tgg Trp	cag Gln	cag Gln	ggg Gly 220	aac Asn	gtc Val	ttc Phe	tca Ser	tgc Cys 225	tcc Ser	gtg Val	atg Met	cat His	gag Glu 230		728
								aag Lys									776
aaa Lys	taa	tgga	tcc														789

<210> 12 <211> 247 <212> PRT <213> Artificial Sequence

<220>

<223> TMP-Fc

<400> 12

Met Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly 1 5 10 15

Gly Gly Gly Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Page 12

Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 85 90 95

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys

Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 230

Leu Ser Leu Ser Pro Gly Lys

<210> 13

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> TMP

<400> 13

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala

<210> 14 <211> 36 <212> PRT

<213> Artificial Sequence	
<220><223> TMP-TMP	
<400> 14 _	
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly 1 5 10 15	
Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 20 25 30	
Ala Ala Arg Ala 35	
<210> 15 <211> 812 <212> DNA <213> Artificial Sequence	
<220> <223> Fc-EMP-	
<220> <221> CDS <222> (39)(797) <223>	
<400> 15	_
tctagatttg ttttaactaa ttaaaggagg aataacat atg gac aaa act cac aca 5 Met Asp Lys Thr His Thr 1 5	6
Met Asp Lys Thr His Thr	
Met Asp Lys Thr His Thr 1 5 tgt cca cct tgt cca gct ccg gaa ctc ctg ggg gga ccg tca gtc ttc 10 Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe	4
Met Asp Lys Thr His Thr 1 5 tgt cca cct tgt cca gct ccg gaa ctc ctg ggg gga ccg tca gtc ttc Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 10 15 20 ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro	2
Met Asp Lys Thr His Thr 1 5 tgt cca cct tgt cca gct ccg gaa ctc ctg ggg gga ccg tca gtc ttc Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 10 15 20 ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 25 30 35 gag gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val	4 2
Met Asp Lys Thr His Thr 1 5 tgt cca cct tgt cca gct ccg gaa ctc ctg ggg gga ccg tca gtc ttc Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 10 15 20 ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 25 30 35 gag gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 40 45 50 aag ttc aac tgg tac gtg gac gtg gag gtg cat aat gcc aag aca Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr	4 2 0 8
Met Asp Lys Thr His Thr 1 5 tgt cca cct tgt cca gct ccg gaa ctc ctg ggg gga ccg tca gtc ttc Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 10 15 20 ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 25 30 35 gag gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 40 45 50 aag ttc aac tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 55 60 65 70 aag ccg cgg gag gag cag tac aac agc acg tac cgt gtg gtc agc gtc Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val	4 2 0 8
tgt cca cct tgt cca gct ccg gaa ctc ctg ggg gga ccg tca gtc ttc Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 10 ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 25 gag gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 40 aag ttc aac tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 55 aag ccg cgg gag gag cag tac aac agc acg tac cgt gtg gtc agc gtc Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val 85 ctc acc gtc ctg cac cag gac tgg ctg aat ggc aag gag tac aag tgc Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys	4 2 0 8 6

					acc Thr 140											488
					agc Ser											536
					tac Tyr											584
					tac Tyr											632
cag Gln	cag Gln 200	ggg Gly	aac Asn	gtc Val	ttc Phe	tca Ser 205	tgc Cys	tcc Ser	gtg Val	atg Met	cat His 210	gag Glu	gct Ala	ctg Leu	cac His	680
aac Asn 215	cac His	tac Tyr	acg Thr	cag Gln	aag Lys 220	agc Ser	ctc Leu	tcc Ser	ctg Leu	tct Ser 225	ccg Pro	ggt Gly	aaa Lys	ggt Gly	gga Gly 230	728
ggt Gly	ggt Gly	ggt Gly	gga Gly	ggt Gly 235	act Thr	tac Tyr	tct Ser	tgc Cys	cac His 240	ttc Phe	ggc Gly	ccg Pro	ctg Leu	act Thr 245	tgg Trp	776
					ggt Gly		taa	tete	gtg (gatco	.					. 812
<21 <21 <21 <21	1 > 2 >	16 253 PRT Arti	fici	al S	equei	nce										
<21 <21	1 > 2 > 3 > 0 >	253 PRT		al S	eque	nce										
<21 <21 <21 <22	1 > 2 > 3 > 0 > 3 >	253 PRT Arti		al S	eque	nce										
<21 <21 <21 <22 <22 <40	1 > 2 > 3 > 0 > 3 > 0 >	253 PRT Arti Fc-E	MP		eque:		Pro	Pro	Cys 10	Pro	Ala	Pro	Glu	Leu 15	Leu	
<21 <21 <21 <22 <22 <40 Met 1	1 > 2 > 3 > 0 > 3 > 0 > Asp	253 PRT Arti Fc-E 16	MP Thr	His 5 Val		Cys	Phe	Pro	10 Pro	Lys	Pro	Lys		15		
<21 <21 <22 <22 <40 Met 1 Gly	1 > 2 > 3 > 0 > 3 > 0 >	253 PRT Arti Fc-E 16 Lys	MP Thr Ser 20	His 5 Val	Thr	Cys	Phe	Pro 25	10 Pro	Lys	Pro	Lys	Asp 30	15 Thr	Leu	
<21 <21 <22 <22 <40 Met 1 Gly Met	1> 2> 3> 0> 3> 0> Asp Gly	253 PRT Arti Fc-E 16 Lys Pro	Thr Ser 20	His 5 Val	Thr Phe Pro	Cys Leu Glu	Phe Val 40	Pro 25 Thr	10 Pro Cys	Lys Val	Pro Val	Lys Val 45	Asp 30	Thr	Leu	
<21 <21 <22 <22 <40 Met 1 Gly Met	1 > 2 > 3 > 0 > 3 > 0 > 6 1	253 PRT Arti Fc-E 16 Lys Pro	MP Thr Ser 20 Arg	His 5 Val Thr	Thr Phe Pro	Cys Leu Glu Lys 55	Phe Val 40	Pro 25 Thr	Pro Cys	Lys Val Tyr	Pro Val Val 60	Lys Val 45	Asp 30 Asp Gly	Thr Val	Leu	·

Gly	Lys	Glu	Tyr 100	Lys	Суѕ	Lys	Val	Ser 105	Asn	Lys	Ala	Leu	Pro 110	Ala	Pro		
Ile	Glu	Lys 115	Thṛ	Ile	Ser	Lys	Ala 120	Lys	Gly	Gln	Pro	Arg 125	Glu	Pro	Gln		
Val	Tyr 130	Thr	Leu	Pro	Pro	Ser 135	Arg	Asp	Glu	Leu	Thr 140	Lys	Asn	Gln	Val		
Ser 145	Leu	Thr	Cys	Leu	Val 150	Lys	Gly	Phe	Tyr	Pro 155	Ser	Asp	Ile	Ala	Val 160		
Glu	Trp	Glu	Ser	Asn 165	Gly	Gln	Pro	Glu	Asn 170	Asn	Tyr	Lys	Thr	Thr 175	Pro		
Pro	Val	Leu	Asp 180	Ser	Asp	Gly	Ser	Phe 185	Phe	Leu	Tyr	Ser	Lys 190	Leu	Thr		
Val	Asp	Lys 195	Ser	Arg	Trp	Gln	Gln 200	Gly	Asn	Val	Phe	Ser 205	Cys	Ser	Val		
Met	His 210	Glu	Ala	Leu	His	Asn 215	His	Tyr	Thr	Gln	Lys 220	Ser	Leu	Ser	Leu		
Ser 225	Pro	Gly	Lys	Gly	Gly 230	Gly	Gly	Gly	Gly	Gly 235	Thr	Tyr	Ser	Cys	His 240		
Phe	Gly	Pro	Leu	Thr 245	Trp	Val	Cys	Lys	Pro 250	Gln	Gly	Gly					
<210> 17 <211> 807 <212> DNA <213> Artificial Sequence																	
<220 <223		EMP-1	Fc														
<220 <221 <221 <221	L> (2>	CDS (39)	(7	97)													
<400 tcta		17 ttg 1	tttta	aacta	aa ti	taaaq	ggag	g aat	taac						ac tct yr Ser	5	6
					ctg Leu											10	4
					aaa Lys											15	2

											.txt					
ga a Glu	ctc Leu 40	ctg Leu	Gly gag	gga Gly	ccg Pro	tca Ser 45	gtt Val	ttc Phe	ctc Leu	ttc Phe	ccc Pro 50	cca Pro	aaa Lys	ccc Pro	aag Lys	200
gac Asp 55	acc Thr	ctc Leu	atg Met	atc Ile	tcc Ser 60	cgg Arg	acc Thr	cct Pro	gag Glu	gtc Val 65	aca Thr	tgc Cys	gtg Val	gtg Val	gtg Val 70	248
gac Asp	gtg Val	agc Ser	cac His	gaa Glu 75	gac Asp	cct Pro	gag Glu	gtc Val	aag Lys 80	ttc Phe	aac Asn	tgg Trp	tac Tyr	gtg Val 85	gac Asp	296
ggc Gly	gtg Val	gag Glu	gtg Val 90	cat His	aat Asn	gcc Ala	aag Lys	aca Thr 95	aag Lys	ccg Pro	cgg Arg	gag Glu	gag Glu 100	cag Gln	tac Tyr	344
aac Asn	agc Ser	acg Thr 105	tac Tyr	cgt Arg	gtg Val	gtc Val	agc Ser 110	gtc Val	ctc Leu	acc Thr	gtc Val	ctg Leu 115	cac His	cag Gln	gac Asp	392
					gag Glu											440
					aaa Lys 140											488
					acc Thr											536
					acc Thr											584
					gag Glu											632
acc Thr	acg Thr 200	cct Pro	ccc Pro	gtg Val	ctg Leu	gac Asp 205	tcc Ser	gac Asp	ggc Gly	tcc Ser	ttc Ph. 210	ttc Phe	ctc Leu	tac Tyr	agc Ser	680
				Asp	aag Lys 220											728
					gag Glu											776
					ggt Gly		taa	tgga	tcc							807
<21 <21 <21 <21	1> 2>	18 253 PRT Arti	fici	al S	eque:	nce										
<22	0>															
<22 <40		EMP- 18	FC													
-30	J-															

Met Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Page 17 $\,$

.

Lys Pro Gln Gly Gly Gly Gly Gly Gly Asp Lys Thr His Thr Cys 20 25 30

Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 35 40 45

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 50 55 60

Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 65 70 75 80

Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
85 90 95

Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 100 105 110

Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
115 120 125

Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 130 135 140

Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 145 150 155 160

Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
165 170 175

Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
180 185 190

Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 195 200 205

Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 210 215 220

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 225 230 235 240

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 245

<210> 19

<211> 881

<212> DNA

<213> Artificial Sequence

<220> <223> EM	IP-EMP-Fc		Α-	·527.ST25	.txt							
<220> <221> CDS <222> (41)(871) <223>												
<400> 19		act tttag	aagga gga	aataaaat	atg gga Met Gly 1			55				
tct tgc c Ser Cys H	ac ttc gg (is Phe Gl 10	c cca ctg y Pro Leu	act tgg Thr Trp	gtt tgc Val Cys 15	aaa ccg Lys Pro	cag gg Gln Gl 20	y Gly	103				
		t ggt acc y Gly Thr						151				
Trp Val C		a caa ggg o Gln Gly						199				
cac aca t His Thr C 55	gt cca cc ys Pro Pr	t tgc cca o Cys Pro 60	gca cct Ala Pro	gaa ctc Glu Leu	ctg ggg Leu Gly 65	gga cc Gly Pr	g tca o Ser	247				
		c cca aaa o Pro Lys 75						. 295				
		a tgc gtg r Cys Val					p Pro	343				
		c tgg tac n Trp Tyr						391				
Lys Thr I		g gag gag g Glu Glu				Arg Va		439				
agc gtc o Ser Val I 135	etc acc gt Leu Thr Va	c ctg cac l Leu His 140	Gln Asp	tgg ctg Trp Leu	aat ggc Asn Gly 145	aag ga Lys Gl	g tac u Tyr	487				
		c aac aaa r Asn Lys 155						535				
		a ggg cag s Gly Gln					r Leu	583				
ccc cca t Pro Pro S	cc cgg ga Ser Arg As 185	it gag ctg sp Glu Leu	acc aag Thr Lys 190	Asn Gln	gtc agc Val Ser	ctg ac Leu Th 195	c tgc r Cys	631				
Leu Val I		c tat ccc ne Tyr Pro				Trp Gl		679				
		ig aac aac .u Asn Asn			Pro Pro			727				

	213					220					223					
tcc Ser 230	gac Asp	ggc Gly	tcc Ser	ttc Phe	ttc Phe 235	ctc Leu	tac Tyr	agc Ser	aag Lys	ctc Leu 240	acc Thr	gtg Val	gac Asp	aag Lys	agc Ser 245	775
agg Arg	tgg Trp	cag Gln	cag Gln	ggg Gly 250	aac Asn	gtc Val	ttc Phe	tca Ser	tgc Cys 255	tcc Ser	gtg Val	atg Met	cat His	gag Glu 260	gct Ala	823
ctg Leu	cac His	aac Asn	cac His 265	tac Tyr	acg Thr	cag Gln	aag Lys	agc Ser 270	ctc Leu	tcc Ser	ctg Leu	tct Ser	ccg Pro 275	ggt Gly	aaa Lys	871
taatggatcc 881																
<210 <211 <212 <213	L> 2 2> E	0 177 PRT	ficia	al Se	equer	ıce										
<220> <223> EMP-EMP-FC																
<400)> 2	0 :0														
Met 1	Gly	Gly	Thr	Tyr 5	Ser	Суз	His	Phe	Gly 10	Pro	Leu	Thr	Trp	Val 15	Cys	
Lys	Pro	Gln	Gly 20	Gly	Gly	Gly	Gly	Gly 25	Gly	Gly	Thr	Tyr	Ser 30	Суз	His	
Phe	Gly	Pro 35	Leu	Thr	Trp	Val	Cys 40	Lys	Pro	Gln	Gly	Gly 45	Gly	Gly	Gly	
Gly	Gly 50	Asp	Lys	Thr	His	Thr 55	Cys	Pro	Pro	Cys	Pro 60	Ala	Pro	Glu	Leu	
Leu 65	Gly	Gly	Pro	Ser	Val 70	Phe	Leu	Phe	Pro	Pro 75	Lys	Pro	Lys	Asp	Thr 80	
Leu	Met	Ile	Ser		Thr						Val			Asp 95	Val	-
Ser	His	Glu	Asp 100		Glu	Val	Lys	Phe 105	Asn	Trp	Tyr	Val	Asp 110	Gly	Val	
Glu	Val	His 115		Ala	ГÀã	Thr	Lys 120	Pro	Arg	Glu	Glu	Gln 125	Tyr	Asn	Ser	
Thr	Tyr 130	Arg	Val	Val	Ser	Val 135	Leu	Thr	Val	Leu	His 140	Gln	Asp	Trp	Leu	
Asn 145	Gly	Lys	Glu	Tyr	Lys 150	Суз	Lys	Val	Ser	Asn 155	Lys	Ala	Leu	Pro	Ala 160	
Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala		Gly ge 2		Pro	Arg	Glu	Pro	

Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 180 185 190	
Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 195 200 205	
Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 210 220	
Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 235 240	
Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 245 250 255	
Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 260 265 270	
Leu Ser Pro Gly Lys 275	
<210> 21 <211> 885 <212> DNA <213> Artificial Sequence	
<220> <223> Fc-EMP-EMP	
<220> <221> CDS <222> (39)(869) <223>	
<pre><400> 21 tctagatttg ttttaactaa ttaaaggagg aataacat atg gac aaa act cac aca</pre>	56
tgt cca cct tgc cca gca cct gaa ctc ctg ggg gga ccg tca gtt ttc Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe 10 15 20	104
ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 25 30 35	152
Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 25 30 35	152 200
Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 25 30 35 gag gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 40 45 50	

85

ctc acc gtc c Leu Thr Val L 9	etg cac cag Leu His Gln	gac tgg Asp Trp	ctg aat Leu Asn 95	ggc aag Gly Lys	gag tac Glu Tyr 100	aag tgc Lys Cys	344
aag gtc tcc a Lys Val Ser A 105	ac aaa gcc Asn Lys Ala	ctc cca Leu Pro 110	gcc ccc Ala Pro	atc gag Ile Glu	aaa acc Lys Thr 115	atc tcc Ile Ser	392
aaa gcc aaa g Lys Ala Lys G 120	ggg cag ccc Sly Gln Pro	cga gaa Arg Glu 125	cca cag Pro Gln	gtg tac Val Tyr 130	acc ctg Thr Leu	cct cca Pro Pro	440
tcc cgg gat g Ser Arg Asp G 135							•
aaa ggc ttc t Lys Gly Phe T							
cag ccg gag a Gln Pro Glu A 1	aac aac tac Asn Asn Tyr L70	aag acc Lys Thr	acg cct Thr Pro 175	ccc gtg Pro Val	ctg gac Leu Asp 180	Ser Asp	584
ggc tcc ttc t Gly Ser Phe P 185							
cag cag ggg a Gln Gln Gly A 200							
aac cac tac a Asn His Tyr T 215							7
ggt ggt ggc g Gly Gly Gly G	gga ggt act Gly Gly Thr 235	tac tct Tyr Ser	tgc cac Cys His 240	ttc ggc Phe Gly	cca ctg Pro Leu	act tgg Thr Trp 245	776
gtt tgc aaa c Val Cys Lys P 2						Tyr Ser	
tgt cat ttt g Cys His Phe G 265							869
taatctcgag ga	atcca						885
<210> 22 <211> 277 <212> PRT <213> Artifi	icial Seque	nce					
<220> <223> Fc-EME	P-EMP						•
<400> 22							
Met Asp Lys 1 1	Thr His Thr 5	Cys Pro	Pro Cys 10	Pro Ala	Pro Glu	Leu Leu 15	1

Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Page 22 Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 35 40 45

His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 50 55 60

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 65 70 75 80

Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 85 90 95

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100 105 110

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 115 120 125

Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 130 135 140

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 155 160

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220

Ser Pro Gly Lys Gly Gly Gly Gly Gly Gly Thr Tyr Ser Cys His 225 230 235 240

Phe Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Gly Gly 245 250 255

Gly Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys 260 265 270

Lys Pro Gln Gly Gly 275

<210> 23

```
A-527.ST25.txt
<211> 1546
<212> DNA
<213> Artificial Sequence
<220>
<223> pAMG21 _
<400> 23
gcgtaacgta tgcatggtct ccccatgcga gagtagggaa ctgccaggca tcaaataaaa
                                                                       60
cgaaaggctc agtcgaaaga ctgggccttt cgttttatct gttgtttgtc ggtgaacgct
                                                                      120
ctcctgagta ggacaaatcc gccgggagcg gatttgaacg ttgcgaagca acggcccgga
                                                                      180
gggtggcggg caggacgccc gccataaact gccaggcatc aaattaagca gaaggccatc
                                                                       240
ctgacggatg gcctttttgc gtttctacaa actcttttgt ttatttttct aaatacattc
                                                                       300
aaatatggac qtcqtactta acttttaaag tatqggcaat caattgctcc tqttaaaatt
                                                                       360
gctttagaaa tactttggca gcggtttgtt gtattgagtt tcatttgcgc attggttaaa
                                                                       420
tggaaagtga ccgtgcgctt actacagcct aatatttttg aaatatccca agagcttttt
                                                                       480
ccttcgcatg cccacgctaa acattctttt tctcttttgg ttaaatcgtt gtttgattta
                                                                       540
                                                                       600
ttatttgcta tatttatttt tcgataatta tcaactagag aaggaacaat taatggtatg
ttcatacacg catgtaaaaa taaactatct atatagttgt ctttctctga atgtgcaaaa
                                                                       660
ctaagcattc cgaagccatt attagcagta tgaataggga aactaaaccc agtgataaga
                                                                       720
cctgatgatt tcgcttcttt aattacattt ggagattttt tatttacagc attgtttca
                                                                       780
                                                                       840
aatatattcc aattaatcqq tqaatqattg gagttagaat aatctactat aggatcatat
                                                                       900
tttattaaat tagcgtcatc ataatattgc ctccattttt tagggtaatt atccagaatt
                                                                       960
gaaatatcag atttaaccat agaatgagga taaatgatcg cgagtaaata atattcacaa
                                                                      1020
tgtaccattt tagtcatatc agataagcat tgattaatat cattattgct tctacaggct
                                                                      1080
ttaattttat taattattct gtaagtgtcg tcggcattta tgtctttcat acccatctct
                                                                      1140
ttatccttac ctattgtttg tcgcaagttt tgcgtgttat atatcattaa aacggtaata
                                                                      1200
qattgacatt tgattctaat aaattggatt tttgtcacac tattatatcg cttgaaatac
                                                                      1260
aattqtttaa cataaqtacc tgtaggatcg tacaggttta cgcaagaaaa tggtttgtta
tagtcgatta atcgatttga ttctagattt gttttaacta attaaaggag gaataacata
                                                                      1320
                                                                      1380
tggttaacgc gttggaattc gagctcacta gtgtcgacct gcagggtacc atggaagctt
                                                                      1440
actogaggat cogoggaaag aagaagaaga agaagaaagc cogaaaggaa gotgagttgg
ctgctgccac cgctgagcaa taactagcat aaccccttgg ggcctctaaa cgggtcttga
                                                                      1500
                                                                      1546
ggggtttttt gctgaaagga ggaaccgctc ttcacgctct tcacgc
```

²⁴ <210> 14 <211>

<212> PRT

<213> Artificial Sequence

<220>

<223> TPO-MIMETIC PEPTIDE

```
<400> 24
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Lys Ala
             5
<210> 25
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 25
Ile Glu Gly Pro Thr Leu Arg Glu Trp Leu Ala Ala Arg Ala
<210> 26
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222>
      (14)..(14)
<223> At position 14, amino acid linker to an identical sequence
<400> 26
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
<210> 27
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature <222> (14)..(14)
<223> At position 14, amino acid linker to an identical sequence
<400> 27
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Lys Ala
<210> 28
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
```

```
<220>
<221> misc_feature
<222> (9)..(9)
<223> At position 9 disulfide linkage to position 9 of an identical seq
       uence -
<220>
<221> misc_feature
<222>
      (14)..(14)
<223> At position 14, amino acid linker to an identical sequence
<400> 28
Ile Glu Gly Pro Thr Leu Arg Gln Cys Leu Ala Ala Arg Ala
<210> 29
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222>
      (16)..(16)
<223> Position 16 bromoacetyl group linked to sidechain
<220>
<221> misc_feature
<222>
      (14)..(14)
       At position 14, amino acid linker attached N-to-C to Lys and to a
<223>
       nother linker and an identical sequence
<400> 29
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
<210> 30
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
      (16)...(16)
<222>
<223> Position 16 polyethylene glycol linked to sidechain
<220>
<221>
      misc_feature
<222>
       (14)..(14)
<223> At position 14, amino acid linker attached N-to-C to Lys and to a
       nother linker and an identical sequence
```

```
A-527.ST25.txt
<400> 30
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
<210>
      31
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221>
      misc_feature
      (9)..(9)
<222>
<223> Position 9 disulfide bond to residue 9 of a separate identical se
       quence
<220>
<221> misc_feature
<222>
      (14)..(14)
<223> At position 14, amino acid linker to an identical sequence
<400> 31
Ile Glu Gly Pro Thr Leu Arg Gln Cys Leu Ala Ala Arg Ala
<210> 32
      14
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222>
      (14)..(14)
<223> At position 14, amino acid linker attachment site
<400> 32
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
<210>
      33
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO MIMETIC PEPTIDE
<220>
      misc_feature (6, 7 and)..(8)
<221>
<222>
<223> Xaa = any amino acid
```

<400> 33

```
Val Arg Asp Gln Ile Xaa Xaa Xaa Leu
<210> 34
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 34
Thr Leu Arg Glu Trp Leu
<210> 35
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 35
Gly Arg Val Arg Asp Gln Val Ala Gly Trp
<210> 36
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 36
Gly Arg Val Lys Asp Gln Ile Ala Gln Leu
<210> 37
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 37
Gly Val Arg Asp Gln Val Ser Trp Ala Leu
<210> 38
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
```

```
<400> 38
Glu Ser Val Arg Glu Gln Val Met Lys Tyr 5 10
<210> 39
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 39
Ser Val Arg Ser Gln Ile Ser Ala Ser Leu
<210> 40
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 40
Gly Val Arg Glu Thr Val Tyr Arg His Met
<210> 41
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
Gly Val Arg Glu Val Ile Val Met His Met Leu
         . 5
<210> 42
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
Gly Arg Val Arg Asp Gln Ile Trp Ala Ala Leu
                   5
<210> 43
<211> 11
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 43
Ala Gly Val Arg Asp Gln Ile Leu Ile Trp Leu
<210> 44
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
 <400> 44
 Gly Arg Val Arg Asp Gln Ile Met Leu Ser Leu
 <210> 45
<211> 11
<212> PRT
<213> Artificial Sequence
 <220>
 <223> TPO-MIMETIC PEPTIDE
  <220>
  <221> misc_feature
<222> (8)..(10)
<223> Xaa = any amino acid
  <400> 45
  Gly Arg Val Arg Asp Gln Ile Xaa Xaa Xaa Leu
  <210> 46
<211> 10
<212> PRT
<213> Artificial Sequence
   <220>
   <223> TPO-MIMETIC PEPTIDE
   <400> 46
   Cys Thr Leu Arg Gln Trp Leu Gln Gly Cys
   <210> 47
<211> 10
<212> PRT
<213> Artificial Sequence
    <220>
    <223> TPO-MIMETIC PEPTIDE
    <400> 47
    Cys Thr Leu Gln Glu Phe Leu Glu Gly Cys
```

```
A-527.ST25.txt
<210> 48
<211> 10
<211> 10
<212> PRT -
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 48
Cys Thr Arg Thr Glu Trp Leu His Gly Cys
<210> 49
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 49
Cys Thr Leu Arg Glu Trp Leu His Gly Gly Phe Cys 1 	 5 	 10
<210> 50
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 50
Cys Thr Leu Arg Glu Trp Val Phe Ala Gly Leu Cys
<210> 51
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 51
Cys Thr Leu Arg Gln Trp Leu Ile Leu Leu Gly Met Cys
<210> 52
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 52
```

```
Cys Thr Leu Ala Glu Phe Leu Ala Ser Gly Val Glu Gln Cys
<210> 53 -
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 53
Cys Ser Leu Gln Glu Phe Leu Ser His Gly Gly Tyr Val Cys
<210> 54
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 54
Cys Thr Leu Arg Glu Phe Leu Asp Pro Thr Thr Ala Val Cys
<210> 55
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 55
Cys Thr Leu Lys Glu Trp Leu Val Ser His Glu Val Trp Cys
<210> 56
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature <222> (8)..(9)
<223> Xaa = any amino acid
<400> 56
Cys Thr Leu Arg Glu Trp Leu Xaa Xaa Cys
<210> 57
```

```
A-527.ST25.txt
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222> (8)..(10)
<223> Xaa = any amino acid
<400> 57
Cys Thr Leu Arg Glu Trp Leu Xaa Xaa Xaa Cys
<210> 58
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature <222> (8)..(11)
       (8)..(11)
<223> Xaa = any amino acid
<400> 58
Cys Thr Leu Arg Glu Trp Leu Xaa Xaa Xaa Cys
<210> 59
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222> (8)..(12)
<223> Xaa = any amino acid
<400> 59
Cys Thr Leu Arg Glu Trp Leu Xaa Xaa Xaa Xaa Cys
<210> 60
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
```

Page 33

```
A-527.ST25.txt
```

```
<221> misc_feature
<222> (8)..(13)
<223> Xaa = any amino acid
<400> 60
Cys Thr Leu Arg Glu Trp Leu Xaa Xaa Xaa Xaa Xaa Cys
<210>
       61
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 61
Arg Glu Gly Pro Thr Leu Arg Gln Trp Met
<210> 62
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 62
Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
<210> 63
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 63
Glu Arg Gly Pro Phe Trp Ala Lys Ala Cys
<210> 64
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 64
Arg Glu Gly Pro Arg Cys Val Met Trp Met
```

<210> 65

```
A-527.ST25.txt
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 65
Cys Gly Thr Glu Gly Pro Thr Leu Ser Thr Trp Leu Asp Cys
<210> 66
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 66
Cys Glu Gln Asp Gly Pro Thr Leu Leu Glu Trp Leu Lys Cys
<210> 67
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 67
Cys Glu Leu Val Gly Pro Ser Leu Met Ser Trp Leu Thr Cys
<210> 68
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 68
Cys Leu Thr Gly Pro Phe Val Thr Gln Trp Leu Tyr Glu Cys
<210> 69
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 69
Cys Arg Ala Gly Pro Thr Leu Leu Glu Trp Leu Thr Leu Cys
```

```
<210>
       70
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 70
Cys Ala Asp Gly Pro Thr Leu Arg Glu Trp Ile Ser Phe Cys
<210> 71
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222>
       (2)..(12)
<223> Xaa = any amino acid
<400> 71
Cys Xaa Glu Gly Pro Thr Leu Arg Glu Trp Leu Xaa Cys
                                         10
<210> 72
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature <222> (2, 3)..(13)
<223> Xaa = any amino acid
<400> 72
Cys Xaa Xaa Glu Gly Pro Thr Leu Arg Glu Trp Leu Xaa Cys
<210>
       73
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222> (2, 12)..(13)
<223> Xaa = any amino acid
```

```
<400> 73
Cys Xaa Glu Gly Pro Thr Leu Arg Glu Trp Leu Xaa Xaa Cys
<210> 74
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222> (2, 3, 13)..(14)
<223> Xaa = any amino acid
<400> 74
Cys Xaa Xaa Glu Gly Pro Thr Leu Arg Glu Trp Leu Xaa Xaa Cys
<210> 75
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 75
Gly Gly Cys Thr Leu Arg Glu Trp Leu His Gly Gly Phe Cys Gly Gly
<210> 76
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 76
Gly Gly Cys Ala Asp Gly Pro Thr Leu Arg Glu Trp Ile Ser Phe Cys
Gly Gly
<210> 77
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 77
```

Gly Asn Ala Asp Gly Pro Thr Leu Arg Gln Trp Leu Glu Gly Arg Arg

Pro Lys Asn -

<210> 78 <211> 19

<212> PRT

<213> Artificial Sequence

<220>

<223> TPO-MIMETIC PEPTIDE

<400> 78

Leu Ala Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu His Gly Asn Gly

Arg Asp Thr

<210> 79 <211> 19

<212> PRT

<213> Artificial Sequence

<220>

<223> TPO-MIMETIC PEPTIDE

<400> 79

His Gly Arg Val Gly Pro Thr Leu Arg Glu Trp Lys Thr Gln Val Ala 1 5 10 15

Thr Lys Lys

<210> 80

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> TPO-MIMETIC PEPTIDE

<400> 80

Thr Ile Lys Gly Pro Thr Leu Arg Gln Trp Leu Lys Ser Arg Glu His

Thr Ser

<210> 81

<211> 18

<212> PRT <213> Artificial Sequence

```
A-527.ST25.txt
<220>
<223> TPO-MIMETIC PEPTIDE
<400> 81
Ile Ser Asp Gly Pro Thr Leu Lys Glu Trp Leu Ser Val Thr Arg Gly
Ala Ser
<210> 82
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO MIMETIC PEPTIDE
<400> 82
Ser Ile Glu Gly Pro Thr Leu Arg Glu Trp Leu Thr Ser Arg Thr Pro
His Ser
<210> 83
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222> (2, 4, 5, 8, 11 )..(13)
<223> Xaa = any amino acid
<400> 83
```

Tyr Xaa Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro

```
<210> 84
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature <222> (2, 4, 5, 8,
<222> (2, 4, 5, 8, 11, 13, 16, 18, 19, 22, 25)..(27)
<223> Xaa = any amino acid
<400> 84
```

Tyr Xaa Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro Tyr Xaa Page 39

```
A-527.ST25.txt
1
                                                              15
Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro
             20
<210>
       85
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature <222> (14)..(14)
<223> At position 14, amino acid linker to an identical sequence
<220>
<221> misc_feature
<222> (2, 4, 5, 8, 11)..(13)
<223> Xaa = any amino acid
<400> 85
Tyr Xaa Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro
<210> 86
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222> (2, 4, 5, 8, 11)..(13)
<223> Xaa = any amino acid
<400> 86
Tyr Xaa Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Pro
<210> 87
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
```

Pro Gln Gly Gly

<400> 87

<223> EPO-MIMETIC PEPTIDE

Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys

20

```
<210> 88
<211>
       20
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 88
Gly Gly Asp Tyr His Cys Arg Met Gly Pro Leu Thr Trp Val Cys Lys
Pro Leu Gly Gly
<210> 89
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 89
Gly Gly Val Tyr Ala Cys Arg Met Gly Pro Ile Thr Trp Val Cys Ser
Pro Leu Gly Gly
<210>
       90
<211>
       20
     PRT
<212>
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 90
Val Gly Asn Tyr Met Cys His Phe Gly Pro Ile Thr Trp Val Cys Arg
Pro Gly Gly Gly
<210>
       91
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 91
Gly Gly Leu Tyr Leu Cys Arg Phe Gly Pro Val Thr Trp Asp Cys Gly
```

```
A-527.ST25.txt
                                     10
                                                         15
Tyr Lys Gly Gly
<210> 92
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 92
Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
Pro Gln Gly Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr
Trp Val Cys Lys Pro Gln Gly Gly
<210>
       93
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222>
      (20)..(20)
<223> Position 20, amino acid linker to an identical sequence
<400> 93
Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
1 10 15
Pro Gln Gly Gly
<210> 94
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 94
Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
```

Pro Gln Gly Gly Ser Ser Lys

20

```
<210>
       95
<211>
       46
<212>
       PRT
<213>
      Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400>
       95
Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
Pro Gln Gly Gly Ser Ser Lys Gly Gly Thr Tyr Ser Cys His Phe Gly
Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Ser Ser Lys
<210>
       96
<211>
       23
<212> PRT
<213> Artificial Sequence
<220>
<223>
      EPO-MIMETIC PEPTIDE
<220>
<221>
      misc_feature
<222>
       (23)..(23)
<223>
      Position 23, amino acid linker to an identical sequence
<400> 96
Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
Pro Gln Gly Gly Ser Ser Lys
            20
<210>
       97
<211>
       22
<212> PRT
<213> Artificial Sequence
<220>
<223>
      EPO-MIMETIC PEPTIDE
<220>
<221>
      misc_feature
<222>
       (22)..(22)
       Position 22 linked through epsilon amine to lysyl, which is linke
<223>
       d to a separate identical sequence through that sequence's alpha
       amine
<400> 97
Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
```

```
A-527.ST25.txt
1
                 5
                                     10
                                                           15
Pro Gln Gly Gly Ser Ser
            20
<210> 98
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222>
       (23)..(23)
<223> At position 23 biotin linked to the sidechain through a linker
<400> 98
Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
Pro Gln Gly Gly Ser Ser Lys
            20
<210>
       99
<211>
      5
<212> PRT
<213> Artificial Sequence
<220>
<223> G-CSF-MIMETIC PEPTIDE
<220>
      misc_feature
<221>
<222>
      (4)..(4)
<223>
      At position 4 disulfide bond to residue 4 of a separate identical
        sequence
<400> 99
Glu Glu Asp Cys Lys
<210>
      100
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> G-CSF-MIMETIC PEPTIDE
<220>
<221>
      misc_feature
      (4)..(4)
<222>
<223>
       At position 4, Xaa is an isoteric ethylene spacer linked to a sep
       arate identical sequence
<400> 100
```

```
Glu Glu Asp Xaa Lys
<210> 101
<211> 6
<212>
      PRT
<213> Artificial Sequence
<220>
<223> G-CSF-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222>
      (1)..(1)
<223> Position 1, Xaa is a pyroglutamic acid residue
<220>
<221>
      misc_feature
<222>
      (5)..(5)
<223> Position 5, Xaa is an isoteric ethylene spacer linked to a separa
       te identical sequence.
<400> 101
Xaa Gly Glu Asp Xaa Lys
<210> 102
<211> 5
<212>
      PRT
<213> Artificial Sequence
<220>
<223> G-CSF-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222>
      (1)..(1)
<223> Position 1, Xaa is a picolinic acid residue
<220>
<221>
      misc_feature
<222>
      (4)..(4)
      Position 4, Xaa is an isoteric ethylene spacer linked to a separa
<223>
       te identical sequence.
<400> 102
Xaa Ser Asp Xaa Lys
<210>
       103
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223> G-CSF-MIMETIC PEPTIDE
<220>
```

```
A-527.ST25.txt
<221> misc_feature
<222> (5)..(5)
<223> At position 5, amino acid linker to an identical sequence
<400> 103
Glu Glu Asp Cys Lys
<210> 104
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> G-CSF-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222> (5)..(5)
<223> At position 5, amino acid linker to an identical sequence
<220>
<221> misc_feature
        (4)..(4)
<222>
<223> Xaa = any amino acid
<400> 104
Glu Glu Asp Xaa Lys
<210> 105
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIVIRAL (HBV)
<400> 105
Leu Leu Gly Arg Met Lys
<210> 106
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 106
Tyr Cys Phe Thr Ala Ser Glu Asn His Cys Tyr
<210> 107
<211> 11
<212> PRT
```

```
A-527.ST25.txt
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 107
Tyr Cys Phe Thr Asn Ser Glu Asn His Cys Tyr
<210> 108
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 108
Tyr Cys Phe Thr Arg Ser Glu Asn His Cys Tyr
<210> 109
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 109
Phe Cys Ala Ser Glu Asn His Cys Tyr
<210> 110
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 110
Tyr Cys Ala Ser Glu Asn His Cys Tyr
<210> 111
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 111
```

<210> 112

Phe Cys Asn Ser Glu Asn His Cys Tyr

```
A-527.ST25.txt
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 112
Phe Cys Asn Ser Glu Asn Arg Cys Tyr
<210> 113
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 113
Phe Cys Asn Ser Val Glu Asn Arg Cys Tyr
<210> 114
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 114
Tyr Cys Ser Gln Ser Val Ser Asn Asp Cys Phe
<210> 115
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 115
Phe Cys Val Ser Asn Asp Arg Cys Tyr
<210> 116
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 116
Tyr Cys Arg Lys Glu Leu Gly Gln Val Cys Tyr
```

```
<210> 117
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 117
Tyr Cys Lys Glu Pro Gly Gln Cys Tyr
<210> 118
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 118
Tyr Cys Arg Lys Glu Met Gly Cys Tyr
<210> 119
<211> 9
<211> PRT
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 119
Phe Cys Arg Lys Glu Met Gly Cys Tyr
<210> 120
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 120
Tyr Cys Trp Ser Gln Asn Leu Cys Tyr
<210> 121
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 121
Tyr Cys Glu Leu Ser Gln Tyr Leu Cys Tyr
                                          Page 49
```

```
A-527.ST25.txt
                5
                                        10
<210> 122
<211> 9
<212> PRT -
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 122
Tyr Cys Trp Ser Gln Asn Tyr Cys Tyr
<210> 123
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> TNF ANTAGONIST PEPTIDE
<400> 123
Tyr Cys Trp Ser Gln Tyr Leu Cys Tyr
<210> 124
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222>
       (1)..(1)
<223> Xaa (Pos1) can be C, A, a-amino-g-bromobutyric acid or Hoc.
<220>
<221> misc_feature <222> (2)..(2)
<223> Xaa can be R, H, L or W.
<220>
<221> misc_feature
<222> (3)..(3)
<223> Xaa can be M, F or I.
<220>
<221> misc_feature
<222>
       (6)..(6)
<223> Xaa can be any one of the 20 L-amino acids or the stereoisomeric
        D-amino acids.
<220>
<221> misc_feature
<222>
       (9)..(9)
<223> Xaa can be D, E, I, L or V.
                                          Page 50
```

```
<220>
<221> misc_feature
<222> (10)..(10) <223> Xaa can-be a-amino-g-bromobutyric acid or Hoc, provided that eith
        er Xaa (Pos1) or Xaa (Pos10) is C or Hoc.
<400> 124
Xaa Xaa Xaa Gly Pro Xaa Thr Trp Xaa Xaa
<210> 125
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> CTLA4-MIMETIC
<400> 125
Gly Phe Val Cys Ser Gly Ile Phe Ala Val Gly Val Gly Arg Cys
<210> 126
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> CTLA4-MIMETIC
<400> 126
Ala Pro Gly Val Arg Leu Gly Cys Ala Val Leu Gly Arg Tyr Cys
<210> 127
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> C3B ANTAGONIST
<400> 127
Ile Cys Val Val Gln Asp Trp Gly His His Arg Cys Thr Ala Gly His
Met Ala Asn Leu Thr Ser His Ala Ser Ala Ile
<210> 128
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> C3B ANTAGONIST
```

```
<400> 128
Ile Cys Val Val Gln Asp Trp Gly His His Arg Cys Thr
               5
<210> 129
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> C3B ANTAGONIST
<400> 129
Cys Val Val Gln Asp Trp Gly His His Ala Cys
<210> 130
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 130
Thr Phe Ser Asp Leu Trp
<210> 131
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 131
Gln Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro
<210> 132
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 132
Gln Pro Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro
<210> 133
<211> 12
<212> PRT
<213> Artificial Sequence
```

```
A-527.ST25.txt
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 133
Gln Glu Thr Phe Ser Asp Tyr Trp Lys Leu Leu Pro
<210> 134
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 134
Gln Pro Thr Phe Ser Asp Tyr Trp Lys Leu Leu Pro
<210> 135
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 135
Met Pro Arg Phe Met Asp Tyr Trp Glu Gly Leu Asn
                   5
                                          10
<210> 136
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 136
Val Gln Asn Phe Ile Asp Tyr Trp Thr Gln Gln Phe
<210> 137
<211> 12
<212> PRT
<213> Artificial Sequence
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 137
Thr Gly Pro Ala Phe Thr His Tyr Trp Ala Thr Phe
<210> 138
<211> 15
<212> PRT
```

```
A-527.ST25.txt
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 138
Ile Asp Arg Ala Pro Thr Phe Arg Asp His Trp Phe Ala Leu Val
                                        10
<210> 139
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
Pro Arg Pro Ala Leu Val Phe Ala Asp Tyr Trp Glu Thr Leu Tyr
<210> 140
<211> 15
<212> PRT
<213> Artificial Sequence
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 140
Pro Ala Phe Ser Arg Phe Trp Ser Asp Leu Ser Ala Gly Ala His
<210> 141
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
Pro Ala Phe Ser Arg Phe Trp Ser Lys Leu Ser Ala Gly Ala His
<210> 142
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (2, 4, 8)..(9)
<223> Xaa = any amino acid
<400> 142
```

```
Pro Xaa Phe Xaa Asp Tyr Trp Xaa Xaa Leu
<210> 143
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 143
Gln Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro
<210> 144
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 144
Gln Pro Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro
<210> 145
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 145
Gln Glu Thr Phe Ser Asp Tyr Trp Lys Leu Leu Pro
<210> 146
<211> 12
<212> PRT
<213> Artificial Sequence
<223> MDM/HDM ANTAGONIST PEPTIDE
<400> 146
Gln Pro Thr Phe Ser Asp Tyr Trp Lys Leu Leu Pro
<210> 147
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
```

```
<400> 147
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
<210> 148
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 148
Asp Ile Thr Trp Asp Glu Leu Trp Lys Ile Met Asn
<210> 149
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 149
Asp Tyr Thr Trp Phe Glu Leu Trp Asp Met Met Gln
<210> 150
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 150
Gln Ile Thr Trp Ala Gln Leu Trp Asn Met Met Lys
<210> 151
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 151
Asp Met Thr Trp His Asp Leu Trp Thr Leu Met Ser
<210> 152
<211> 12
<212> PRT
<213> Artificial Sequence
```

```
A-527.ST25.txt
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 152
Asp Tyr Ser Trp His Asp Leu Trp Glu Met Met Ser
<210> 153
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 153
Glu Ile Thr Trp Asp Gln Leu Trp Glu Val Met Asn
<210> 154
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 154
His Val Ser Trp Glu Gln Leu Trp Asp Ile Met Asn
                  5
<210> 155
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 155
His Ile Thr Trp Asp Gln Leu Trp Arg Ile Met Thr
<210> 156
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 156
Arg Asn Met Ser Trp Leu Glu Leu Trp Glu His Met Lys
<210> 157
<211> 18
<212> PRT
```

```
A-527.ST25.txt
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 157
Ala Glu Trp Thr Trp Asp Gln Leu Trp His Val Met Asn Pro Ala Glu
                                        10
Ser Gln
<210> 158
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 158
His Arg Ala Glu Trp Leu Ala Leu Trp Glu Gln Met Ser Pro
                                        10
<210> 159
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 159
Lys Lys Glu Asp Trp Leu Ala Leu Trp Arg Ile Met Ser Val
<210> 160
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 160
Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
<210> 161
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 161
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
```

```
A-527.ST25.txt
1
                5
<210> 162
<211> 12
<212> PRT -
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 162
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
<210> 163
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 163
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
<210> 164
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
<400> 164
Ser Cys Val Lys Trp Gly Lys Lys Glu Phe Cys Gl Ser
<210> 165
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
Ser Cys Trp Lys Tyr Trp Gly Lys Glu Cys Gly Ser
<210> 166
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
<400> 166
```

```
A-527.ST25.txt
```

```
Ser Cys Tyr Glu Trp Gly Lys Leu Arg Trp Cys Gly Ser 1 10
<210> 167 -
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
<400> 167
Ser Cys Leu Arg Trp Gly Lys Trp Ser Asn Cys Gly Ser
<210> 168
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
<400> 168
Ser Cys Trp Arg Trp Gly Lys Tyr Gln Ile Cys Gly Ser
<210> 169
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
<400> 169
Ser Cys Val Ser Trp Gly Ala Leu Lys Leu Cys Gly Ser
<210> 170
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
<400> 170
Ser Cys Ile Arg Trp Gly Gln Asn Thr Phe Cys Gly Ser
<210> 171
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
```

```
<400> 171
Ser Cys Trp Gln Trp Gly Asn Leu Lys Ile Cys Gly Ser
1 5
<210> 172
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
<400> 172
Ser Cys Val Arg Trp Gly Gln Leu Ser Ile Cys Gly Ser
<210> 173
<211> 21
<212> PRT
<213> Artificial Sequence
 <220>
 <223> CALMODULIN ANTAGONIST PEPTIDE
 <400> 173
 Leu Lys Lys Phe Asn Ala Arg Arg Lys Leu Lys Gly Ala Ile Leu Thr
                                          10
 Thr Met Leu Ala Lys
              2.0
 <210> 174
 <211> 18
<212> PRT
<213> Artificial Sequence
  <220>
 <223> CALMODULIN ANTAGONIST PEPTIDE
  <400> 174
  Arg Arg Trp Lys Lys Asn Phe Ile Ala Val Ser Ala Ala Asn Arg Phe
  Lys Lys
  <210> 175
<211> 18
<212> PRT
<213> Artificial Sequence
   <220>
   <223> CALMODULIN ANTAGONIST PEPTIDE
   <400> 175
   Arg Lys Trp Gln Lys Thr Gly His Ala Val Arg Ala Ile Gly Arg Leu
```

```
A-527.ST25.txt
                                         10
                                                                   15
Ser Ser
<210> 176
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
<400> 176
Ile Asn Leu Lys Ala Leu Ala Ala Leu Ala Lys Lys Ile Leu
<210> 177
<211> 18
<212> PRT
<213> Artificial Sequence
<223> CALMODULIN ANTAGONIST PEPTIDE
<400> 177
Lys Ile Trp Ser Ile Leu Ala Pro Leu Gly Thr Thr Leu Val Lys Leu
Val Ala
<210> 178
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
Leu Lys Lys Leu Lys Leu Lys Leu Lys Leu Lys Leu 10 10
<210> 179
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
Leu Lys Trp Lys Lys Leu Leu Lys Leu Leu Lys Lys Leu Leu Lys Lys 1 5 10 15
```

Leu Leu

```
<210> 180
<211> 17
<212> PRT -
<213> Artificial Sequence
<220>
<223> CALMODULIN ANTAGONIST PEPTIDE
<400> 180
Ala Glu Trp Pro Ser Leu Thr Glu Ile Lys Thr Leu Ser His Phe Ser
Val
<210> 181
<211> 17
<212> PRT
<213> Artificial Sequence
 <220>
 <223> CALMODULIN ANTAGONIST PEPTIDE
 <400> 181
 Ala Glu Trp Pro Ser Pro Thr Arg Val Ile Ser Thr Thr Tyr Phe Gly
 Ser
 <210> 182
<211> 17
<212> PRT
<213> Artificial Sequence
  <220>
  <223> CALMODULIN ANTAGONIST PEPTIDE
  <400> 182
  Ala Glu Leu Ala His Trp Pro Pro Val Lys Thr Val Leu Arg Ser Phe
                                            10
  Thr
  <210> 183
<211> 17
<212> PRT
<213> Artificial Sequence
   <220>
  <223> CALMODULIN ANTAGONIST PEPTIDE
   <400> 183
   Ala Glu Gly Ser Trp Leu Gln Leu Leu Asn Leu Met Lys Gln Met Asn
                                               Page 63
```

Asn

<210> 184 <211> 10 <212> PRT <213> Artificial Sequence

<220>

<223> CALMODULIN ANTAGONIST PEPTIDE

<400> 184

Ala Glu Trp Pro Ser Leu Thr Glu Ile Lys

<210> 185 <211> 27 <212> PRT <213> Artificial Sequence

<220>

<223> VINCULIN-BINDING

<400> 185

Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Gly Val Ser

Ser Ala Leu Thr Thr Leu Val Ala Thr Arg

<210> 186 <211> 27 <212> PRT <213> Artificial Sequence

<220>

<223> VINCULIN-BINDING

<400> 186

Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Arg Val Ser

Ser Ala Leu Thr Thr Leu Val Ala Thr Arg

<210> 187 <211> 30 <212> PRT <213> Artificial Sequence

<220>

<223> VINCULIN-BINDING

<400> 187

Ser Arg Gly Val Asn Phe Ser Glu Trp Leu Tyr Asp Met Ser Ala Ala Page 64

```
A-527.ST25.txt
```

15

```
Met Lys Glu Ala Ser Asn Val Phe Pro Ser Arg Arg Ser Arg
                                25
```

<210> 188 <211> 30 <212> PRT <213> Artificial Sequence

<220>

<223> VINCULIN-BINDING

<400> 188

Ser Ser Gln Asn Trp Asp Met Glu Ala Gly Val Glu Asp Leu Thr Ala

Ala Met Leu Gly Leu Leu Ser Thr Ile His Ser Ser Ser Arg

<220>

<223> VINCULIN-BINDING

<400> 189

Ser Ser Pro Ser Leu Tyr Thr Gln Phe Leu Val Asn Tyr Glu Ser Ala

Ala Thr Arg Ile Gln Asp Leu Leu Ile Ala Ser Arg Pro Ser Arg

<210> 190 <211> 31 <212> PRT <213> Artificial Sequence

<220>

<223> VINCULIN-BINDING

<400> 190

Ser Ser Thr Gly Trp Val Asp Leu Leu Gly Ala Leu Gln Arg Ala Ala 1 5 10 15

Asp Ala Thr Arg Thr Ser Ile Pro Pro Ser Leu Gln Asn Ser Arg 25

<210> 191 <211> 18 <212> PRT <213> Artificial Sequence

<220>

<223> VINCULIN-BINDING

<400> 191

Asp Val Tyr Thr Lys Lys Glu Leu Ile Glu Cys Ala Arg Arg Val Ser

Glu Lys

<210> 192

<211> 22 <212> PRT <213> Artificial Sequence

<220>

<223> C4BP-BINDING

<400> 192

Glu Lys Gly Ser Tyr Tyr Pro Gly Ser Gly Ile Ala Gln Phe His Ile 1 $51015151515151515101515151510151015101$

Asp Tyr Asn Asn Val Ser

<210> 193

<211> 22
<212> PRT
<213> Artificial Sequence

<220>

<223> C4BP-BINDING

<400> 193

Ser Gly Ile Ala Gln Phe His Ile Asp Tyr Asn Asn Val Ser Ser Ala

Glu Gly Trp His Val Asn 2.0

<210> 194 <211> 34 <212> PRT <213> Artificial Sequence

<220>

<223> C4BP-BINDING

<400> 194

Leu Val Thr Val Glu Lys Gly Ser Tyr Tyr Pro Gly Ser Gly Ile Ala 1 5 10 15

Gln Phe His Ile Asp Tyr Asn Asn Val Ser Ser Ala Glu Gly Trp His

Val Asn

```
<210> 195
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> C4BP-BINDING
<400> 195
Ser Gly Ile Ala Gln Phe His Ile Asp Tyr Asn Asn Val Ser
<210> 196
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 196
Ala Glu Pro Met Pro His Ser Leu Asn Phe Ser Gln Tyr Leu Trp Tyr
                                          10
Thr
<210> 197
<211> 17
<212> PRT
<213> Artificial Sequence
 <220>
 <223> UKR ANTAGONIST PEPTIDE
 <400> 197
 Ala Glu His Thr Tyr Ser Ser Leu Trp Asp Thr Tyr Ser Pro Leu Ala
 Phe
 <210> 198
<211> 17
<212> PRT
<213> Artificial Sequence
 <220>
 <223> UKR ANTAGONIST PEPTIDE
 <400> 198
 Ala Glu Leu Asp Leu Trp Met Arg His Tyr Pro Leu Ser Phe Ser Asn
                                           10
```

Arg

```
<210> 199
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 199
Ala Glu Ser Ser Leu Trp Thr Arg Tyr Ala Trp Pro Ser Met Pro Ser
                                         10
Tyr
<210> 200
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 200
Ala Glu Trp His Pro Gly Leu Ser Phe Gly Ser Tyr Leu Trp Ser Lys
                                         10
Thr
<210> 201
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 201
Ala Glu Pro Ala Leu Leu Asn Trp Ser Phe Phe Phe Asn Pro Gly Leu
His
<210> 202
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 202
Ala Glu Trp Ser Phe Tyr Asn Leu His Leu Pro Glu Pro Gln Thr Ile
                                         10
```

Phe

```
<210> 203
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 203
Ala Glu Pro Leu Asp Leu Trp Ser Leu Tyr Ser Leu Pro Pro Leu Ala
Met
<210> 204
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 204
Ala Glu Pro Thr Leu Trp Gln Leu Tyr Gln Phe Pro Leu Arg Leu Ser
Gly
<210> 205
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 205
Ala Glu Ile Ser Phe Ser Glu Leu Met Trp Leu Arg Ser Thr Pro Ala
                                     10
Phe
<210> 206
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 206
```

```
Ala Glu Leu Ser Glu Ala Asp Leu Trp Thr Trp Phe Gly Met Gly
                                         10
Ser
<210> 207
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 207
Ala Glu Ser Ser Leu Trp Arg Ile Phe Ser Pro Ser Ala Leu Met Met
Ser
<210> 208
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 208
Ala Glu Ser Leu Pro Thr Leu Thr Ser Ile Leu Trp Gly Lys Glu Ser
                                         10
Val
<210> 209
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 209
Ala Glu Thr Leu Phe Met Asp Leu Trp His Asp Lys His Ile Leu Leu
                                         10
Thr
<210> 210
<211> 17
<212> PRT
<213> Artificial Sequence
```

```
A-527.ST25.txt
<223> UKR ANTAGONIST PEPTIDE
<400> 210
Ala Glu Ile Leu Asn Phe Pro Leu Trp His Glu Pro Leu Trp Ser Thr
Glu
<210> 211
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 211
Ala Glu Ser Gln Thr Gly Thr Leu Asn Thr Leu Phe Trp Asn Thr Leu
                                         10
Arg
<210> 212
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature <222> (1)..(1)
       (1)..(1)
<223> Xaa is V, L, I, E, P, G, Y, M, T or D.
<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa is Y, W or F.
<220>
<221> misc_feature
<222> (3)..(3)
<223> Xaa is F, W or Y.
<220>
<221> misc_feature
<222> (5)..(5)
<223> Xaa is P or Azetidine.
<220>
<221> misc_feature
<222> (7)..(7)
<223> Xaa is S, A, V or L.
```

```
<220>
<221> misc_feature
<222> (8).-(8)
<223> Xaa is V, L, I or E.
<220>
<221> misc_feature
<222>
       (9)..(9)
<223> Xaa is Q or P.
<400> 212
Xaa Xaa Xaa Gln Xaa Tyr Xaa Xaa Xaa
<210> 213
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 213
Thr Ala Asn Val Ser Ser Phe Glu Trp Thr Pro Tyr Trp Gln Pro .
Tyr Ala Leu Pro Leu
              20
<210> 214
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 214
Ser Trp Thr Asp Tyr Gly Tyr Trp Gln Pro Tyr Ala Leu Pro Ile Ser
Gly Leu
<210> 215
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 215
Glu Thr Pro Phe Thr Trp Glu Glu Ser Asn Ala Tyr Tyr Trp Gln Pro
                                         10
Tyr Ala Leu Pro Leu
              20
```

```
<210> 216
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 216
Glu Asn Thr Tyr Ser Pro Asn Trp Ala Asp Ser Met Tyr Trp Gln Pro
Tyr Ala Leu Pro Leu
<210> 217
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 217
Ser Val Gly Glu Asp His Asn Phe Trp Thr Ser Glu Tyr Trp Gln Pro
                                           10
                                                                   15
Tyr Ala Leu Pro Leu
              20
<210> 218
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 218
Asp Gly Tyr Asp Arg Trp Arg Gln Ser Gly Glu Arg Tyr Trp Gln Pro
Tyr Ala Leu Pro Leu
              20
<210> 219
<210    217
<211>    11
<212>    PRT
<213>    Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 219
Phe Glu Trp Thr Pro Gly Tyr Trp Gln Pro Tyr
                                            Page 73
```

```
<210> 220
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 220
Phe Glu Trp Thr Pro Gly Tyr Trp Gln His Tyr
<210> 221
<211>
       11
      PRT
<212>
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 221
Phe Glu Trp Thr Pro Gly Trp Tyr Gln Xaa Tyr
<210> 222
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
       (1)..(1)
<223> Position 1, optionally acetlated at N terminus
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 222
Phe Glu Trp Thr Pro Gly Trp Tyr Gln Xaa Tyr
<210> 223
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
```

```
A-527.ST25.txt
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
       (11)..(11)
<223> Position 11, Xaa = azetidine
<400> 223
Phe Glu Trp Thr Pro Gly Trp Pro Tyr Gln Xaa Tyr
<210> 224
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature <222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 224
Phe Ala Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
                                         10
<210> 225
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 225
Phe Glu Trp Ala Pro Gly Tyr Trp Gln Xaa Tyr
<210> 226
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
```

```
A-527.ST25.txt
<400> 226
Phe Glu Trp Val Pro Gly Tyr Trp Gln Xaa Tyr
<210> 227
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 227
Phe Glu Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
<210> 228
<211> 11
<212> PRT
<213> Artificial Sequence
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (1)..(1) <223> Position 1, optionally acetylated at N terminus
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 228
Phe Glu Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
<210> 229
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature <222> (6)..(6)
```

<223> Position 6, Xaa products = "MeGly"

```
A-527.ST25.txt
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 229
Phe Glu Trp Thr Pro Xaa Trp Tyr Gln Xaa Tyr
<210> 230
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (6)..(6)
<223> Position 6, Xaa = MeGly
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 230
Phe Glu Trp Thr Pro Xaa Trp Tyr Gln Xaa Tyr
<210> 231
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 231
Phe Glu Trp Thr Pro Gly Tyr Tyr Gln Pro Tyr
<210> 232
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 232
Phe Glu Trp Thr Pro Gly Trp Trp Gln Pro Tyr
<210> 233
<211> 11
<212> PRT
```

```
A-527.ST25.txt
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 233
Phe Glu Trp Thr Pro Asn Tyr Trp Gln Pro Tyr
<210> 234
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (5)..(5)
<223> Position 5, Xaa = pipecolic acid
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 234
Phe Glu Trp Thr Xaa Val Tyr Trp Gln Xaa Tyr
<210> 235
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (5)..(5)
<223> Position 5, Xaa = pipecolic acid
<220>
<221> misc_feature <222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 235
Phe Glu Trp Thr Xaa Gly Tyr Trp Gln Xaa Tyr
<210> 236
<211> 11
<212> PRT
```

```
A-527.ST25.txt
```

```
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (6)..(6)
<223> Position 6, Xaa = Aib
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
 <400> 236
 Phe Glu Trp Thr Pro Xaa Tyr Trp Gln Xaa Tyr
 <210> 237
<211> 11
<212> PRT
<213> Artificial Sequence
 <220>
  <223> IL-1 ANTAGONIST PEPTIDE
  <220>
  <221> misc_feature
<222> (5)..(5)
<223> Position 5, Xaa = MeGly
  <220>
  <221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
   <400> 237
   Phe Glu Trp Thr Xaa Gly Tyr Trp Gln Xaa Tyr
                        5
   <210> 238
<211> 11
<212> PRT
<213> Artificial Sequence
    <220>
    <223> IL-1 ANTAGONIST PEPTIDE
    <220>
    <221> misc_feature
    <222> (11)..(11)
    <223> Position 11, amino group added at C terminus
    <400> 238
    Phe Glu Trp Thr Pro Gly Tyr Trp Gln Pro Tyr
                                                     Page 79
```

```
A~527.ST25.txt
                                         10
<210> 239
<211> 11
<212> PRT
<213> Artificial Sequence
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
        (11)..(11)
<223> Position 11, amino group added at C-terminus
<400> 239
Phe Glu Trp Thr Pro Gly Tyr Trp Gln His Tyr
<210> 240
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
    Position 11 amino group added at C-terminus
<220>
<221> misc_feature
<222> (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 240
Phe Glu Trp Thr Pro Gly Trp Tyr Gln Xaa Tyr
<210> 241
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
        (1)..(1)
<222>
<223> Position 1 optionally acetylated at N-terminus
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
                                            Page 80
```

```
<220>
<221>
      misc_feature
<222>
       (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 241
Phe Glu Trp Thr Pro Gly Trp Tyr Gln Xaa Tyr
<210> 242
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
       (8)..(8)
<223> Position 8, Xaa is a phyosphotyrosyl residue
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222> (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 242
Phe Glu Trp Thr Pro Gly Trp Xaa Gln Xaa Tyr
<210> 243
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222>
       (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 243
```

```
A-527.ST25.txt
Phe Ala Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
                                          10
<210> 244
<211> 11 - <212> PRT <213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (10)..(10) <223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222> (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 244
Phe Glu Trp Ala Pro Gly Tyr Trp Gln Xaa Tyr
<210> 245
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222> (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 245
Phe Glu Trp Val Pro Gly Tyr Trp Gln Xaa Tyr
<210> 246
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
```

```
<220>
<221> misc_feature <222> (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 246
Phe Glu Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
<210> 247
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (1)..(1)
<223> Position 1 acetylated at N-terminus
<220>
<221> misc_feature <222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222>
        (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 247
Phe Glu Trp Thr Pro Gly Tyr Trp Gln Xaa Tyr
<210> 248
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (6)..(6)
<223> Position 6, D amino acid residue
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
```

```
A-527.ST25.txt
<222> (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 248
Phe Glu Trp Thr Pro Ala Trp Tyr Gln Xaa Tyr
<210> 249
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (6)..(6)
<223> Position 6, Xaa is a sarcosine residue
<220>
<221> misc_feature <222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222>
       (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 249
Phe Glu Trp Thr Pro Xaa Trp Tyr Gln Xaa Tyr
<210> 250
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
       (11)...(11)
<223> Position 11 amino group added at C-terminus
<400> 250
Phe Glu Trp Thr Pro Gly Tyr Tyr Gln Pro Tyr
<210> 251
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
```

```
A-527.ST25,txt
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
       (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 251
Phe Glu Trp Thr Pro Gly Trp Trp Gln Pro Tyr
<210> 252
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
       (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 252
Phe Glu Trp Thr Pro Asn Tyr Trp Gln Pro Tyr
<210> 253
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (6)..(6)
<223> Position 6, D amino acid residue
<220>
<221> misc_feature <222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222>
       (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 253
Phe Glu Trp Thr Pro Val Tyr Trp Gln Xaa Tyr
<210> 254
<211> 11
```

```
A-527.ST25.txt
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
       (5)..(5)
<223> Position 5, Xaa is a pipecolic acid residue
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222>
      (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 254
Phe Glu Trp Thr Xaa Gly Tyr Trp Gln Xaa Tyr
                 5
<210> 255
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
      (6)..(6)
<223> Position 6, Xaa = pipecolic acid
<220>
<221> misc_feature
<222>
       (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 255
Phe Glu Trp Thr Pro Xaa Tyr Trp Gln Xaa Tyr
<210> 256
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature <222> (5)..(5)
<223> Position 5, Xaa = MeGly
```

```
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa = azetidine
<400> 256
Phe Glu Trp Thr Xaa Gly Tyr Trp Gln Xaa Tyr
<210> 257
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 257
Phe Glu Trp Thr Pro Gly Tyr Trp Gln Pro Tyr Ala Leu Pro Leu
<210> 258
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
       (1)..(1)
<223> Position 1, Xaa is a 1-naphthylalanine residue
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222>
       (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 258
Xaa Glu Trp Thr Pro Gly Tyr Tyr Gln Xaa Tyr
<210> 259
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
```

```
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222>
       (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 259
Tyr Glu Trp Thr Pro Gly Tyr Tyr Gln Xaa Tyr
<210> 260
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222>
       (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 260
Phe Glu Trp Val Pro Gly Tyr Tyr Gln Xaa Tyr
<210> 261
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (6)..(6)
<223> Position 6, D amino acid residue
<220>
<221> misc_feature
<222>
       (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222> (11)..(11)
<223> Position 11 amino group added at C-terminus
<400> 261
```

```
Phe Glu Trp Thr Pro Ser Tyr Tyr Gln Xaa Tyr
<210> 262
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (6)..(6)
<223> Position 6, D amino acid residue
<220>
<221> misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is an azetidine residue
<220>
<221> misc_feature
<222> (11)..(11)
<223> Position 11 amino group added at C-terminus.
<400> 262
Phe Glu Trp Thr Pro Asn Tyr Tyr Gln Xaa Tyr
                                          1.0
<210> 263
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 263
Thr Lys Pro Arg
<210> 264
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 264
Arg Lys Ser Ser Lys
<210> 265
<211> 5
<212> PRT
```

```
A-527.ST25.txt
```

```
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 265
Arg Lys Gln Asp Lys
<210> 266
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 266
Asn Arg Lys Gln Asp Lys
<210> 267
<211> 6
<212> PRT
<213> Artificial Sequence
<223> IL-1 ANTAGONIST PEPTIDE
<400> 267
Arg Lys Gln Asp Lys Arg
<210> 268
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 268
Glu Asn Arg Lys Gln Asp Lys Arg Phe
<210> 269
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 269
Val Thr Lys Phe Tyr Phe 1 5
```

<210> 270

```
A-527.ST25.txt
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 270
Val Thr Lys Phe Tyr
<210> 271
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> IL-1 ANTAGONIST PEPTIDE
<400> 271
Val Thr Asp Phe Tyr 1 5
<210> 272
<211> 17
<212> PRT
<213> Artificial Sequence
<223> MAST CELL ANTAGONISTS/ PROTEASE INHIBITOR PEPTIDE
Ser Gly Ser Gly Val Leu Lys Arg Pro Leu Pro Ile Leu Pro Val Thr
Arg
<210> 273
<211> 17
<212> PRT
<213> Artificial SEquence
<220>
<223> MAST CELL ANTAGONISTS/ PROTEASE INHIBITOR PEPTIDE
<400> 273
Arg Trp Leu Ser Ser Arg Pro Leu Pro Pro Leu Pro Leu Pro Pro Arg
                                                                    15
                                            10
Thr
<210> 274
<211> 20
<212> PRT
<213> Artificial Sequence
```

```
A-527.ST25.txt
<220>
<223> MAST CELL ANTAGONISTS/ PROTEASE INHIBITOR PEPTIDE
<400> 274
Gly Ser Gly Ser Tyr Asp Thr Leu Ala Leu Pro Ser Leu Pro Leu His
Pro Met Ser Ser
<210> 275
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> MAST CELL ANTAGONISTS/ PROTEASE INHIBITOR PEPTIDE
Gly Ser Gly Ser Tyr Asp Thr Arg Ala Leu Pro Ser Leu Pro Leu His
Pro Met Ser Ser
<210> 276
<211> 20
<212> PRT
<213> Artificial Sequence
<223> MAST CELL ANTAGONISTS/ PROTEASE INHIBITOR PEPTIDE
<400> 276
Gly Ser Gly Ser Ser Gly Val Thr Met Tyr Pro Lys Leu Pro Pro His
Trp Ser Met Ala
             20
<210> 277
<211> 20
<212> PRT
<213> Artificial Sequence
<223> MAST CELL ANTAGONISTS/ PROTEASE INHIBITOR PEPTIDE
<400> 277
Gly Ser Gly Ser Ser Gly Val Arg Met Tyr Pro Lys Leu Pro Pro His
Trp Ser Met Ala
             20
```

<210> 278

```
A-527.ST25.txt
<223> MAST CELL ANTAGONISTS/ PROTEASE INHIBITOR PEPTIDE
Gly Ser Gly Ser Ser Ser Met Arg Met Val Pro Thr Ile Pro Gly Ser
Ala Leu Leu Gly Arg Met Lys Gly
```

<210> 281 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> ANTI-HBV <400> 281 Leu Asp Pro Ala Phe Arg

<211> 20

<400> 278

<220>

Ala Lys His Gly

<223> ANTI-HBV

<400> 279

<210> 280

<400> 280

<223> ANTI-HBV

<220>

<212> PRT <213> Artificial Sequence

<210> 279 <211> 6 <212> PRT <213> Artificial Sequence

Leu Leu Gly Arg Met Lys

<211> 8
<212> PRT
<213> Artificial Sequence

<210> 282 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> SH3 ANTAGONIST PEPTIDE <400> 282

```
Arg Pro Leu Pro Pro Leu Pro
<210> 283 -
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 283
Arg Glu Leu Pro Pro Leu Pro
<210> 284
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 284
Ser Pro Leu Pro Pro Leu Pro
<210> 285
<211> 7
<212> PRT
<213> Artificial Sequence
<223> SH3 ANTAGONIST PEPTIDE
<400> 285
Gly Pro Leu Pro Pro Leu Pro
<210> 286
<211> 7
<212> PRT
<213> Artificial Sequence
<223> SH3 ANTAGONIST PEPTIDE
<400> 286
Arg Pro Leu Pro Ile Pro Pro
<210> 287
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
```

```
<400> 287
  Arg Pro Leu Pro Ile Pro Pro
  1 5
  <210> 288
<211> 7
<212> PRT
<213> Artificial Sequence
  <220>
  <223> SH3 ANTAGONIST PEPTIDE
  <400> 288
  Arg Arg Leu Pro Pro Thr Pro
  <210> 289
<211> 7
<212> PRT
<213> Artificial Sequence
  <220>
  <223> SH3 ANTAGONIST PEPTIDE
  <400> 289
Arg Gln Leu Pro Pro Thr Pro
  <210> 290
<211> 7
<212> PRT
<213> Artificial Sequence
  <220>
  <223> SH3 ANTAGONIST PEPTIDE
  <400> 290
  Arg Pro Leu Pro Ser Arg Pro
  <210> 291
<211> 7
<212> PRT
<213> Artificial Sequence
  <220>
  <223> SH3 ANTAGONIST PEPTIDE
  <400> 291
  Arg Pro Leu Pro Thr Arg Pro
  <210> 292
<211> 7
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 292
Ser Arg Leu Pro Pro Leu Pro
<210> 293
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 293
Arg Ala Leu Pro Ser Pro Pro
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 294
Arg Arg Leu Pro Arg Thr Pro
<210> 295
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 295
Arg Pro Val Pro Pro Ile Thr 1
<210> 296
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 296
Ile Leu Ala Pro Pro Val Pro
<210> 297
<211> 7
<212> PRT
```

```
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 297 -
Arg Pro Leu Pro Met Leu Pro
<210> 298
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 298
Arg Pro Leu Pro Ile Leu Pro
<210> 299
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
 <223> SH3 ANTAGONIST PEPTIDE
 <400> 299
 Arg Pro Leu Pro Ser Leu Pro
 <210> 300
<211> 7
<212> PRT
<213> Artificial Sequence
 <220>
 <223> SH3 ANTAGONIST PEPTIDE
 <400> 300
 Arg Pro Leu Pro Ser Leu Pro
 <210> 301
<211> 7
<212> PRT
<213> Artificial Sequence
 <220>
 <223> SH3 ANTAGONIST PEPTIDE
 <400> 301
  Arg Pro Leu Pro Met Ile Pro
```

```
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 302
Arg Pro Leu Pro Leu Ile Pro
<210> 303
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 303
Arg Pro Leu Pro Pro Thr Pro
<210> 304
<211> 7
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 304
Arg Ser Leu Pro Pro Leu Pro
<210> 305
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 305
Arg Pro Gln Pro Pro Pro Pro
<210> 306
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<400> 306
Arg Gln Leu Pro Ile Pro Pro
```

5

```
<210> 307
<211> 12
<212> PRT
<213> Artificial Sequence
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (1, 2, 3)..(11)
<223> Xaa = any amino acid
<400> 307
Xaa Xaa Xaa Arg Pro Leu Pro Pro Leu Pro Xaa Pro
<210> 308
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (1, 2, 3, 11)..(12)
<223> Xaa = any amino acid
<400> 308
Xaa Xaa Xaa Arg Pro Leu Pro Pro Ile Pro Xaa Xaa
<210> 309
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (1, 2, 3, 11,)..(12)
<223> Xaa = any amino acid
<400> 309
Xaa Xaa Xaa Arg Pro Leu Pro Pro Leu Pro Xaa Xaa
                                          10
<210> 310
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
```

```
<220>
<221> misc_feature
<222> (2, 3, 10)..(11)
<223> Xaa = any amino acid
<400> 310
Arg Xaa Xaa Arg Pro Leu Pro Pro Leu Pro Xaa Pro
<210> 311
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (2)..(3)
<223> Xaa = any amino acid
<400> 311
Arg Xaa Xaa Arg Pro Leu Pro Pro Leu Pro Pro
<210> 312
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
        (11)..(12)
<223> Xaa = any amino acid
<400> 312
Pro Pro Pro Tyr Pro Pro Pro Pro Ile Pro Xaa Xaa
                    5
<210> 313
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (11)..(12)
<223> Xaa = any amino acid
```

<400> 313

```
Pro Pro Pro Pro Pro Pro Pro Val Pro Xaa Xaa
<210> 314
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221>
       misc_feature
<222>
       (2, 3)..(8)
<223> Xaa (Pos2, 3, 8) is any amino acid
<220>
<221> misc_feature
<222>
       (9)..(9)
<223> Xaa (Pos 9) represents an aliphatic amino acid residue
<400> 314
Leu Xaa Xaa Arg Pro Leu Pro Xaa Xaa Pro
<210> 315
<211> 10
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (1)..(1)
<223> Position 1, Xaa is an aliphatic amino acid residue
<220>
<221>
       misc_feature
<222> (2, 3)..(8)
<223> Positions 2, 3 & 8, Xaa is any amino acid
<400> 315
Xaa Xaa Xaa Arg Pro Leu Pro Xaa Leu Pro
<210> 316
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
```

```
A-527.ST25.txt
<222> (3)..(3)
<223> Position 3, Xaa is any amino acid residue
<220>
<221> misc_feature
<222> (4)..(4)
<223> Position 4, Xaa is an aromatic amino acid residue
<220>
<221> misc_feature
<222>
       (9)..(9)
<223> Position 9, Xaa is an aliphatic amino acid residue
<400> 316
Pro Pro Xaa Xaa Tyr Pro Pro Pro Xaa Pro
<210> 317
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature <222> (1)..(1)
<223> Position 1, Xaa is a basic amino acid residue
<220>
<221> misc_feature
<222> (4)..(4)
<223> Position 4, Xaa is an aliphatic amino acid residue
<220>
<221>
      misc_feature
<222> (6)..(9)
<223> Positions 6 & 9, Xaa is any amino acid residue
<400> 317
Xaa Pro Pro Xaa Pro Xaa Lys Pro Xaa Trp Leu
<210> 318
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
      (3, \overline{4})..(6)
<222>
<223> Positions 3, 4 & 6, Xaa is an aliphatic amino acid residue
                                         Page 102
```

```
<220>
<221> misc_feature
<222>
       (8)..(8)
<223> Position 8, Xaa is a basic amino acid residue
<220>
<221>
      misc_feature
<222> (10)..(10)
<223> Position 10, Xaa is any amino acid residue
<400> 318
Arg Pro Xaa Xaa Pro Xaa Arg Xaa Ser Xaa Pro
<210> 319
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222>
       (8)..(9)
<223> Xaa = any amino acid
<400> 319
Pro Pro Val Pro Pro Arg Pro Xaa Xaa Thr Leu
<210> 320
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (1, 3)..(6)
<223> Positions 1, 3 and 6, Xaa is an aliphatic amino acid residue
<400> 320
Xaa Pro Xaa Leu Pro Xaa Lys
<210> 321
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> SH3 ANTAGONIST PEPTIDE
```

```
<220>
<221> misc_feature
<222> (1)..(1)
<223> Position 1, Xaa is a basic amino acid residue
<220>
<221> misc_feature <222> (2)..(2)
<223> Position 2, Xaa is an aromatic amino acid residue
<220>
<221>
        misc_feature
<222> (4)..(8)
<223> Positions 4 & 8, Xaa is any amino acid residue
<400> 321
Xaa Xaa Asp Xaa Pro Leu Pro Xaa Leu Pro
<210> 322
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> INHIBITION OF PLATELET AGGREGATION
<220>
<221> misc_feature <222> (2)..(3)
<223> Xaa = any amino acid
<400> 322
Cys Xaa Xaa Arg Gly Asp Cys
<210> 323
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> SRC ANTAGONIST
<400> 323
Arg Pro Leu Pro Pro Leu Pro
<210> 324
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> SRC ANTAGONIST
```

```
A-527.ST25.txt
```

```
<400> 324
Pro Pro Val Pro Pro Arg
<210> 325
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTI-CANCER (PARTICULARLY FOR SARCOMAS)
<220>
<221> misc_feature
<222> (1, 3, 5, 7, 8, 10)..(11)
<223> Xaa = any amino acid
<400> 325
Xaa Phe Xaa Asp Xaa Trp Xaa Xaa Leu Xaa Xaa
<210> 326
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> P16-MIMETIC
<400> 326
Lys Ala Cys Arg Arg Leu Phe Gly Pro Val Asp Ser Glu Gln Leu Ser
Arg Asp Cys Asp
<210> 327
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> P16-MIMETIC
<400> 327
Arg Glu Arg Trp Asn Phe Asp Phe Val Thr Glu Thr Pro Leu Glu Gly
Asp Phe Ala Trp
<210> 328
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
```

A-527.ST25.txt <223> P16-MIMETIC <400> 328 Lys Arg Arg Gln Thr Ser Met Thr Asp Phe Tyr His Ser Lys Arg Arg Leu Ile Phe Ser <210> 329 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> P16-MIMETIC <400> 329 Thr Ser Met Thr Asp Phe Tyr His Ser Lys Arg Arg Leu Ile Phe Ser Lys Arg Lys Pro <210> 330 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> P16-MIMETIC <400> 330 Arg Arg Leu Ile Phe <210> 331 <211> 36 <212> PRT <213> Artificial Sequence <220> <223> P16-MIMETIC <400> 331 Lys Arg Arg Gln Thr Ser Ala Thr Asp Phe Tyr His Ser Lys Arg Arg Leu Ile Phe Ser Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met

20 25 30

Lys Trp Lys Lys 35

<210> 332 <211> 24

```
A-527.ST25.txt
<212> PRT
<213> Artificial Sequence
<220>
<223> P16-MIMETIC
<400> 332
Lys Arg Arg Leu Ile Phe Ser Lys Arg Gln Ile Lys Ile Trp Phe Gln
Asn Arg Arg Met Lys Trp Lys Lys
              20
<210> 333
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> PREFERRED LINKER
<400> 333
Gly Gly Gly Lys Gly Gly Gly
<210> 334
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> PREFERRED LINKER
<400> 334
Gly Gly Gly Asn Gly Ser Gly Gly
<210> 335
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> PREFERRED LINKER
<400> 335
Gly Gly Gly Cys Gly Gly Gly Gly
<210> 336
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> PREFERRED LINKER
<400> 336
```

```
A-527.ST25.txt
Gly Pro Asn Gly Gly
<210> 337
<211> 41 -
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC
<220>
<221> misc_feature <222> (1)..(1)
<223> Fc domain attached at Position 1 of the N-terminus
<400> 337
Ala Arg Ala Gly Gly Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr 20 25 30
Leu Arg Gln Trp Leu Ala Ala Arg Ala
<210> 338
<211> 41
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC
<220>
<221> misc_feature <222> (41)..(41)
<223> Fc domain attached at Position 41 of the C-terminus
<400> 338
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 20 25 30
Ala Ala Arg Ala Gly Gly Gly Gly 35
<210> 339
<211> 49
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC
```

```
<220>
<221> misc_feature
<222>
      (1)..(1)
<223> Fc domain attached at Position 1 of the N-terminus
<400> 339
Gly Gly Gly Gly Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu
1 10 15
Thr Trp Val Cys Lys Pro Gln Gly Gly Gly Gly Gly Gly Gly Thr 20 25 30
Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly 35 40 45
Gly
<210> 340
<211> 49
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC
<220>
<221> misc_feature
<222> (49)..(49)
<223> Fc domain attached at Position 49 of the C-terminus
<400> 340
Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
Pro Gln Gly Gly Gly Gly Gly Gly Gly Thr Tyr Ser Cys His Phe 20 25 30
Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Gly Gly Gly
Gly
<210> 341
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<400> 341
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Ile Glu
                                      Page 109
```

```
Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
<210> 342
<211> 29
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<400> 342
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Ile
Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
<210> 343
<211> 30
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<400> 343
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
<210> 344
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<400> 344
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
              20
<210> 345
<211> 32
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
```

<400> 345

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly

Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala

<210> 346 <211> 33 <212> PRT <213> Artificial Sequence

<220>

<223> TPO-MIMETIC PEPTIDES

<400> 346

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly

Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg

Ala

<210> 347 <211> 34 <212> PRT <213> Artificial Sequence

<220>

<223> TPO-MIMETIC PEPTIDES

<400> 347

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly

Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala 20 25 30

Arg Ala

<210> 348 <211> 35 <212> PRT <213> Artificial Sequence

<220>

<223> TPO-MIMETIC PEPTIDES

<400> 348

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly 5

```
A-527.ST25.txt
Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala
Ala Arg Ala
        35
<210> 349
<211> 36
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<400> 349
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 20 25 30
Ala Ala Arg Ala
<210> 350
 <211> 37
<212> PRT
<213> Artificial Sequence
 <220>
 <223> TPO-MIMETIC PEPTIDES
 <400> 350
 Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
 Gly Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp 20 25 30
 Leu Ala Ala Arg Ala
          35
 <210> 351
<211> 38
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> TPO-MIMETIC PEPTIDES
 <400> 351
 Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
 Gly Gly Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln 20 25 30
```

```
Trp Leu Ala Ala Arg Ala
        35
<210> 352
<211> 42
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<400> 352
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
<210> 353
<211> 32
<212> PRT
<213> Artificial Sequence
 <220>
 <223> TPO-MIMETIC PEPTIDES
 <400> 353
 Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Pro
 Asn Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala
 <210> 354
<211> 36
<212> PRT
<213> Artificial Sequence
 <220>
 <223> TPO-MIMETIC PEPTIDES
 <400> 354
 Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
 Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 20 25 30
  Ala Ala Arg Ala
```

```
A-527.ST25.txt
```

<210> 355 <211> 36 <212> PRT <213> Artificial Sequence

<220>

<223> TPO-MIMETIC PEPTIDES

<400> 355

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly

Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 20 25 30

Ala Ala Arg Ala 35

<210> 356

<211> 36 <212> PRT <213> Artificial Sequence

<220>

<223> TPO-MIMETIC PEPTIDES

<400> 356

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly

Gly Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 20 25 30

Ala Ala Arg Ala 35

<210> 357

<211> 36 <212> PRT <213> Artificial Sequence

<220>

<223> TPO-MIMETIC PEPTIDES

<400> 357

Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly

Gly Lys Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu

Ala Ala Arg Ala

<210> 358 <211> 37

```
A-527.ST25.txt
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<220>
<221> misc_feature
<222> (19)..(19)
<223> Position 19, Xaa = bromoacetyl
<400> 358
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
Gly Lys Xaa Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp
Leu Ala Ala Arg Ala
<210> 359
<211> 36
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<400> 359
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
Gly Cys Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 20 \\ 25 \\ 30
Ala Ala Arg Ala
<210> 360
<211> 37
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<220>
<221> misc_feature
<222> (19)..(19)
<223> Position 19, Xaa = Poly(ethylene glycol)
<400> 360
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
```

```
A-527.ST25.txt
Gly Lys Xaa Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp
Leu Ala Ala Arg Ala
<210> 361
<211> 37
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<220>
<221> misc_feature 
<222> (19)..(19)
<223> Position 19, Xaa = Poly(ethylene glycol)
<400> 361
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly 1 5 10 15
Gly Cys Xaa Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp
Leu Ala Ala Arg Ala
         35
<210> 362
<211> 36
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<400> 362
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
Gly Asn Gly Ser Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 20 25 30
Ala Ala Arg Ala
<210> 363
<211> 36
<212> PRT
<213> Artificial Sequence
<220>
<223> TPO-MIMETIC PEPTIDES
<400> 363
```

```
A-527.ST25.txt
Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala Gly Gly
Gly Cys Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu
Ala Ala Arg Ala
<210> 364
<211> 57
<212> DNA
<213> Artificial Sequence
<220>
<223> FC-TMP
<400> 364
aaaaaaggat cctcgagatt aagcacgagc agccagccac tgacqcaqaq tcqqacc
                                                                            57
<210> 365
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Fc-TMP
<400> 365
aaaggtggag gtggtggtat cgaaggtccg actctgcgt
                                                                            39
<210> 366
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Fc-TMP
<400> 366
                                                                             42
cagtggctgg ctgctcgtgc ttaatctcga ggatcctttt tt
<210> 367
<211> 81
<212> DNA
<213> Artificial Sequence
<220>
<223> Fc-TMP
<220>
<221>
      CDS
<222>
       (1)..(60)
<223>
<400> 367
aaa ggt gga ggt ggt atc gaa ggt ccg act ctg cgt cag tgg ctg
Lys Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu
                                                                             48
                                                                             81
gct gct cgt gct taatctcgag gatccttttt t
                                        Page 117
```

A-527.ST25.txt Ala Ala Arg Ala <210> 368 <211> 20 -<212> PRT <213> Artificial Sequence <220> <223> Fc-TMP <400> 368 Lys Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala 20 <210> 369 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Fc-TMP <400> 369 aacataagta cctgtaggat cg 22 <210> 370 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Fc-TMP <400> 370 ttcgatacca ccacctccac ctttacccgg agacagggag aggctcttct gc 52 <210> 371 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> FC-TMP-TMP <400> 371 aaaggtggag gtggtggtat cgaaggtccg actctgcgtc agtggctggc tgctcgtgct 60

<210> 372 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Fc-TMP-TMP <400> 372

acctccacca ccagcacgag cagccagcca ctgacgcaga gtcggacc 48
Page 118

<210 <211 <212 <213	> >	373 66 DNA Artif	icia	l Se	quen	ce											
<220 <223		Fc-TM	IP-TM	IP													
<400> 373 ggtggtggag gtggcggcgg aggtattgag ggcccaaccc ttcgccaatg gcttgcagca 60											0						
cgcg	ca															6	6
<210> 374 <211> 76 <212> PRT <213> Artificial Sequence																	
<220 <223		Fc-TM	IP-TM	1P				,									
<400	>	374	_														
Ala 1	Ala	Ala	Ala	Ala 5	Ala	Ala	Gly	Gly	Ala 10	Thr	Cys	Сув	Thr	Cys 15	Gly		
Ala	Gly	Ala	Thr 20	Thr	Ala	Thr	Gly	Cys 25	Gly	Cys	Gly	Thr	Gly 30	Cys	Thr		
Gly	Суз	Ala 35	Ala	Gly	Cys	Сув	Ala 40	Thr	Thr	Gly	Gly	Cys 45	Gly	Ala	Ala		
Gly	Glչ 50	gly	Thr	Thr	Gly	Gly 55	Gly	Cys	Cys	Cys	Thr 60	Cys	Ala	Ala	Thr		
Ala 65	Суз	Cys	Thr	Cys	Cys 70	Gly	Cys	Cys	Gly	Cys 75	Cys						
<210 <211 <212 <213	L> ?>	375 126 DNA Arti:	ficia	al Se	equer	nce											
<220 <223		Fc-TI	MP-Ti	MP													
<220 <221 <222 <223	L> 2>	CDS (1).	. (12	ნ)													
aaa	aat	375 c gga y Gly	ggt Gly	ggt Gly 5	ggt Gly	atc Ile	gaa Glu	ggt Gly	ccg Pro 10	act Thr	ctg Leu	cgt Arg	cag Gln	tgg Trp 15	ctg Leu	4	18
gct Ala	gc: Ala	t cgt a Arg	gct Ala 20	ggt Gly	ggt Gly	gga Gly	ggt Gly	ggc Gly 25	ggc Gly	gga Gly	ggt Gly	att Ile	gag Glu 30	ggc Gly	cca Pro	9	96

acc ctt cgc caa tgg ctt gca gca cgc gca 126 Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala <210> 376 <211> 42 <212> PRT <213> Artificial Sequence <220> <223> FC-TMP-TMP <400> 376 Lys Gly Gly Gly Gly Ile Glu Gly Pro Thr Leu Arg Gln Trp Leu 1 5 10 15 Ala Ala Arg Ala Gly Gly Gly Gly Gly Gly Gly Ile Glu Gly Pro 20 25 30Thr Leu Arg Gln Trp Leu Ala Ala Arg Ala <210> 377 <211> 39 <212> PRT <213> Artificial Sequence <220> <223> TMP-TMP-Fc <400> 377 Thr Thr Thr Thr Thr Cys Ala Thr Ala Thr Gly Ala Thr Cys Gly Ala Ala Gly Gly Thr Cys Cys Gly Ala Cys Thr Cys Thr Gly Cys Gly 20 25 3025 Thr Cys Ala Gly Thr Gly Gly <210> 378 <211> 48 <212> PRT <213> Artificial Sequence <220> <223> TMP-TMP-Fc <400> 378

Cys Ala Cys Thr Gly Ala Cys Gly Cys Ala Gly Ala Gly Thr Cys Gly 20 25 30

Ala Gly Cys Ala Cys Gly Ala Gly Cys Ala Gly Cys Cys Ala Gly Cys 1 5 10 15

```
A-527.ST25.txt
Gly Ala Cys Cys Thr Thr Cys Gly Ala Thr Cys Ala Thr Ala Thr Gly
                            40
<210> 379
<211>
      45
<212> DNA
<213> Artificial Sequence
<220>
<223> TMP-TMP-Fc
<400> 379
ctggctgctc gtgctggtgg aggcggtggg gacaaaactc acaca
                                                                        45
<210> 380
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> TMP-TMP-Fc
<400> 380
ctggctgctc gtgctggcgg tggtggcgga gggggtggca ttgagggccc a
                                                                       51
<210> 381
<211>
      54
<212> DNA
<213> Artificial Sequence
<220>
<223> TMP-TMP-Fc
<400> 381
aagccattgg cgaagggttg ggccctcaat gccacccct ccgccaccac cgcc
                                                                        54
<210> 382
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> TMP-TMP-Fc
<400> 382
accettegee aatggettge ageaegegea gggggaggeg gtggggaeaa aact
                                                                       54
<210> 383
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> TMP-TMP-Fc
<400> 383
                                                                        27
cccaccgcct ccccctgcgc gtgctgc
<210> 384
<211> 189
<212> DNA
<213> Artificial Sequence
```

<220> <223>	TM	P-TMP	-Fc												
<220> <221> CDS - <222> (10)(180) <223>															
<400> ttttt	38 cat	atg									p Le			ct cgt La Arg	51
gct gg Ala Gi 15															99
caa to Gln Ti															147
gct gc Ala A			a Gly							acto	acad	a			189
<210><211><211><212><213>	57 PR	T	ial S	equei	nce										
<220> <223>		IP-TMP	-Fc												
<400>			10												
Met I 1	le G	lu Gl	y Pro 5	Thr	Leu	Arg	Gln	Trp 10	Leu	Ala	Ala	Arg	Ala 15	Gly	
Gly G	ly G	ly Gl 20		Gly	Gly	Ile	Glu 25	Gly	Pro	Thr	Leu	Arg 30	Gln	Trp	
Leu A		ala Ar 55	g Ala	Gly	Gly	Gly 40	Gly	Gly	Asp	Lys	Thr 45	Leu	Ala	Ala	
Arg A 5	la (Gly Gl	y Gly	Gly	Gly 55	Asp	Lys								
<210><211><211><212><213>	14 Di	I 1 VA	cial S	eque	nce										
<220> <223>		AMG21													
<400> ctaat	38 :tcc	36 gc tci	cacct	ac c	aaac	aatg	c cc	ccct	gcaa	aaa	ataa	att	cata	taaaaa	60
														taccac	120
tggco	tggcggtgat actgagcaca t														

<210> 38' <211> 55 <212> DN <213> Ar		ience				
<220> <223> pAI	MG21					
<400> 38° cgatttgat	7 t ctagaaggag	gaataacata	tggttaacgc	gttggaattc	ggtac	55
<210> 383 <211> 873 <212> DNA <213> Ar	2	ience				
<220> <223> GM	221					
<400> 38	8 t geggeegeae	cattatcacc	gccagaggta	aactagtcaa	cacgcacggt	60
gttagatat	t tatcccttgc	ggtgatagat	tgagcacatc	gatttgattc	tagaaggagg	120
gataatata	t gagcacaaaa	aagaaaccat	taacacaaga	gcagcttgag	gacgcacgtc	180
gccttaaag	c aatttatgaa	aaaaagaaaa	atgaacttgg	cttatcccag	gaatctgtcg	240
cagacaaga	t ggggatgggg	cagtcaggcg	ttggtgcttt	atttaatggc	atcaatgcat	300
taaatgctt	a taacgccgca	ttgcttacaa	aaattctcaa	agttagcgtt	gaagaattta	360
gcccttcaa	t cgccagagaa	tctacgagat	gtatgaagcg	gttagtatgc	agccgtcact	420
tagaagtga	g tatgagtacc	ctgtttttc	tcatgttcag	gcagggatgt	tctcacctaa	480
gcttagaac	c tttaccaaag	gtgatgcgga	gagatgggta	agcacaacca	aaaaagccag	540
tgattctgc	a ttctggcttg	aggttgaagg	taattccatg	a gcaccaa	caggctccaa	600
gccaagctt	t cctgacggaa	tgttaattct	cgttgaccct	gagcaggctg	ttgagccagg	660
tgatttctg	c atagccagac	ttgggggtga	tgagtttacc	ttcaagaaac	tgatcaggga	720
tagcggtca	g gtgttttac	aaccactaaa	cccacagtac	ccaatgatcc	catgcaatga	780
gagttgttc	c gttgtgggga	aagttatcgc	tagtcagtgg	cctgaagaga	cgtttggctg	840
atagactag	t ggatccacta	gtgtttctgc	cc			872
<210> 38 <211> 11 <212> DN <213> Ar	97	1ence				
<220> <223> GM	221					
<400> 38 ggcggaaac	9 c gacgtccatc	gaatggtgca	aaacctttcg	cggtatggca	tgatagcgcc	60
cggaagaga	g tcaattcagg	gtggtgaatg	tgaaaccagt	aacgttatac	gatgtcgcag	120
agtatgccg	g tgtctcttat	cagaccgttt	cccgcgtggt Page 12		agccacgttt	180

ctgcgaa	aac gcgggaaaaa	gtcgaagcgg	cgatggcgga	gctgaattac	attcccaacc	240	
gcgtggc	aca acaactggcg	ggcaaacagt	cgctcctgat	tggcgttgcc	acctccagtc	300	
tggccct	gca cgcgccgtcg	caaattgtcg	cggcgattaa	atctcgcgcc	gatcaactgg	360	
gtgccag	cgt ggtggtgtcg	atggtagaac	gaagcggcgt	cgaagcctgt	aaagcggcgg	420	
tgcacaa	tct tctcgcgcaa	cgcgtcagtg	ggctgatcat	taactatccg	ctggatgacc	480	
aggatgo	cat tgctgtggaa	gctgcctgca	ctaatgttcc	ggcgttattt	cttgatgtct	540	
ctgacca	gac acccatcaac	agtattattt	tctcccatga	agacggtacg	cgactgggcg	600	
tggagca	tct ggtcgcattg	ggtcaccagc	aaatcgcgct	gttagcgggc	ccattaagtt	660	
ctgtctc	ggc gcgtctgcgt	ctggctggct	ggcataaata	tctcactcgc	aatcaaattc	720	
agccgat	agc ggaacgggaa	ggcgactgga	gtgccatgtc	cggttttcaa	caaaccatgc	780	
aaatgct	gaa tgagggcatc	gttcccactg	cgatgctggt	tgccaacgat	cagatggcgc	840	
tgggcgc	aat gcgcgccatt	accgagtccg	ggctgcgcgt	tggtgcggat	atctcggtag	900	
tgggata	icga cgataccgaa	gacagctcat	gttatatccc	gccgttaacc	accatcaaac	960	
aggattt	tcg cctgctgggg	caaaccagcg	tggaccgctt	gctgcaactc	tctcagggcc	1020	
aggcggt	gaa gggcaatcag	ctgttgcccg	tctcactggt	gaaaagaaaa	accaccctgg	1080	
cgcccaa	itac gcaaaccgcc	tctccccgcg	cgttggccga	ttcattaatg	cagctggcac	1140	
gacaggt	ttc ccgactggaa	agcggacagt	aaggtaccat	aggatccagg	cacagga	1197	
<210><211><211><212><213><223>	390 61 DNA Artificial Seq Fc-EMP	uence	•				
<400> tatgaaa	390 aggt ggaggtggtg	gtggaggtac	ttactcttgc	cacttcggcc	cgctgacttg	60	
g		÷				61	
<210><211><211><212><213><223>	391 72 DNA Artificial Seq	quence					
<400>	391 gcaa acccaagtca	gegggeegaa	gtggcaagag	taagtacctc	caccaccacc	60	
	ttc at	-				72	
<210><211><212>	392 57	quence	Page 1	24			
			Luge I				

```
<220>
<223> Fc-EMP
<400> 392
gtttgcaaac cgcagggtgg cggcggcggc ggcggtggta cctattcctg tcatttt
                                                                          57
<210> 393
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Fc-EMP
<400> 393
ccaggtcagc gggccaaaat gacaggaata ggtaccaccg ccgccgccgc cgccaccctg 60
<210> 394
<211>
       118
<212> DNA
<213> Artificial Sequence
<220>
<223> FC-EMP
<220>
<221> CDS
<222>
       (2)..(118)
<223>
<400> 394
t atg aaa ggt gga ggt ggt gga ggt act tac tct tgc cac ttc ggc
Met Lys Gly Gly Gly Gly Gly Gly Thr Tyr Ser Cys His Phe Gly
                                                                                 49
ccg ctg act tgg gtt tgc aaa ccg cag ggt ggc ggc ggc ggc ggt Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Gly Gly Gly Gly Gly
                                                                                 97
              20
                                                                                118
ggt acc tat tcc tgt cat ttt
Gly Thr Tyr Ser Cys His Phe
<210>
        395
<211>
        39
<212> PRT
<213> Artificial Sequence
<220>
<223> Fc-EMP
<400> 395
Met Lys Gly Gly Gly Gly Gly Gly Thr Tyr Ser Cys His Phe Gly 1 10 15
Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Gly Gly Gly Gly
                                      25
Gly Thr Tyr Ser Cys His Phe
```

-- - -

```
<210> 396
<211>
       61
<212> DNA
<213> Artificial Sequence
<220>
<223> Fc-EMP
<400> 396
gcagaagagc ctctccctgt ctccgggtaa aggtggaggt ggtggtggag gtacttactc
                                                                         60
                                                                         61
<210> 397
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Fc-EMP
<400> 397
ctaattggat ccácgagatt aaccaccctg cggtttgcaa
                                                                        40
<210> 398
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Fc-EMP
<400> 398
Gly Glu Arg Trp Cys Phe Asp Gly Pro Leu Thr Trp Val Cys Gly Glu
Glu Ser
<210> 399
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> Fc-EMP
<400> 399
agagtaagta cotocacca cacotocacc tttaccogga gacagggaga ggotottotg
                                                                        60
                                                                         61
С
<210> 400
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> EMP-Fc
```

A-527.ST25.txt								
<400> 400 ggcccgctga cctgggtatg taagccacaa gggggtgggg gaggcggggg gtaatctcga	60							
g	61							
<pre><210> 401 <211> 50 <212> DNA <213> Artificial Sequence</pre>								
<220> <223> EMP-Fc								
<400> 401 gatectegag attaceceee geeteeeea eeceettgtg gettacatae	50							
<210> 402 <211> 118 <212> DNA <213> Artificial Sequence								
<220> <223> EMP-Fc								
<220> <221> CDS <222> (1)(108) <223>								
<400> 402 gtt tgc aaa ccg cag ggt ggc ggc ggc ggc ggt ggt acc tat tcc Val Cys Lys Pro Gln Gly Gly Gly Gly Gly Gly Gly Thr Tyr Ser 1 1 5 10 15	48							
tgt cat ttt ggc ccg ctg acc tgg gta tgt aag cca caa ggg ggt ggg Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly 20 25 30	96							
gga ggc ggg ggg taatctcgag Gly Gly Gly 35	118							
<210> 403 <211> 36 <212> PRT <213> Artificial Sequence								
<220> <223> EMP-Fc								
<400> 403								
Val Cys Lys Pro Gln Gly Gly Gly Gly Gly Gly Gly Thr Tyr Ser 1 5 10 15								
Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Gly 20 25 30								
Gly Gly Gly 35								

```
A-527.ST25.txt
<210> 404
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> EMP-Fc
<400> 404
ttatttcata tgaaaggtgg taactattcc tgtcatttt
                                                                           39
<210> 405
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> EMP-Fc
<400> 405
tggacatgtg tgagttttgt ccccccgcc tcccccaccc cct
                                                                           43
<210> 406
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> EMP-Fc
<400> 406
                                                                           43
agggggtggg ggagggggg gggacaaaac tcacacatgt cca
<210> 407
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> EMP-Fc
<400> 407
                                                                           20
gttattgctc agcggtggca
<210> 408
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> EMP-EMP-Fc
<400> 408
ttttttatcg atttgattct agatttgagt tttaactttt agaaggagga ataaaatatg
                                                                           60
<210> 409
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> EMP-EMP-FC
```

<400>	409	32	0.10		
taaaagt	taa aactcaaatc tagaatcaaa	tcgataaaaa a	a		41
<210> <211>	410 51 -				
<212>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	EMP-EMP-Fc				
<400>	410				
	actt actcttgcca cttcggcccg	ctgacttggg t	tttgcaaacc	g	51
<210>	411				
<211> <212>	55 DNA				
<213>	Artificial Sequence				
<220>	-				
<223>	EMP-EMP-Fc				
.400					
<400>	411 ggg ccgaagtggc aagagtaagt	acctcccata t	ttttattcct	ccttc	55
3 3 -					-
<210>	412				
<211>	60				
<212> <213>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	EMP-EMP-FC				
<400>	412				
cagggt	ggcg gcggcggcgg cggtggtacc	tattcctgtc a	attttggccc	gctgacctgg	60
<210> <211>	413 60				
<211>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	EMP-EMP-FC				
<400>	413				
	acag gaataggtac caccgccgcc	gccgccgcca	ccctgcggtt	tgcaaaccca	60
<210>	414				
<211>					
<212> <213>	DNA Artificial Sequence				
<220> <223>	EMP-EMP-FC				
<400>	414 aagc cacaaggggg tgggggaggc	aaaaaaaaaa	aaactcacac	atotoca	57
graryr	aage cacaayyyyy tyyyyyayyt	aaaaaaaaa	addecadacac		J,
-210-	415				
<210> <211>	415 60				
<212>	DNA				
<213>	Artificial Seguence				

```
<220>
<223> EMP-EMP-Fc
<400> 415
agttttgtcc cccccgcctc ccccaccccc ttgtggctta catacccagg tcagcqqqcc
                                                                                        60
<210>
        416
<211>
        228
<212>
        DNA
<213> Artificial Sequence
<220>
<223>
       EMP-EMP-Fc
<220>
<221>
        CDS
<222>
        (58)..(228)
<223>
<400> 416
ttttttatcg atttgattct agatttgagt tttaactttt agaaggagga ataaaat
                                                                                        57
atg gga ggt act tac tct tgc cac ttc ggc ccg ctg act tgg gtt tgc
Met Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys
                                                                                       105
aaa ccg cag ggt ggc ggc ggc ggc ggt ggt acc tat tcc tgt cat Lys Pro Gln Gly Gly Gly Gly Gly Gly Gly Gly Thr Tyr Ser Cys His
                                                                                       153
ttt ggc ccg ctg acc tgg gta tgt aag cca caa ggg ggt ggg gga ggc
Phe Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Gly Gly Gly
                                                                                       201
                                                                                       228
ggg ggg gac aaa act cac aca tgt cca
Gly Gly Asp Lys Thr His Thr Cys Pro
     50
<210> 417
<211> 57
<212> PRT
<213> Artificial Sequence
<220>
<223> EMP-EMP-FC
<400> 417
Met Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys 1 5 10 15
Lys Pro Gln Gly Gly Gly Gly Gly Gly Gly Thr Tyr Ser Cys His 20 \\ 25 \\ 30
Phe Gly Pro Leu Thr Trp Val Cys Lys Pro Gln Gly Gly Gly Gly
Gly Gly Asp Lys Thr His Thr Cys Pro
```

```
A-527.ST25.txt
<210> 418
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> FC-EMP-EMP
<400> 418
ctaattggat cctcgagatt aaccccttg tggcttacat
                                                                                  40
<210> 419
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature <222> (1, 3, 9, 14, 15)..(16)
<223> Xaa (Positions 1, 3, 9, 14, 15 & 16) can be any one of the 20 L-
        amino acids
<220>
<221> misc_feature <222> (5)..(5)
<223> Xaa can be R, H, L or W
<220>
<221> misc_feature
<222> (6)..(6)
<223> Xaa can be M, F or I
<220>
<221> misc_feature
<222> (12)..(12)
<223> Xaa can be D, E, I, L or V
<220>
<221> misc_feature <222> (13)..(13)
<223> Xaa can be C, A, a-amino-y-bromobutyric acid or Hoc
<400> 419
Xaa Tyr Xaa Xaa Xaa Xaa Gly Pro Xaa Thr Trp Xaa Xaa Xaa Xaa
                                           10
<210> 420
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222> (1, 3, 5, 6, 9, 12, 14, 15)..(16)
                                           Page 131
```

```
A-527.ST25.txt
<223> Xaa = any amino acid residue
<400> 420
Xaa Tyr Xaa Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys Xaa Xaa Xaa
<210> 421
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa can be R, H, L, or W
<220>
<221> misc_feature
<222> (3)..(3)
<223> Xaa can be M, F, or I
<220>
<221> misc_feature
<222> (6)..(6)
<223> Xaa is independently selected from any one of the 20 genetically
       coded L-amino acids or the steroisomeric D-amino acids
<220>
<221> misc_feature
<222> (9)..(9)
<223> Xaa can be D, E, I, L, or V.
<400> 421
Cys Xaa Xaa Gly Pro Xaa Thr Trp Xaa Cys
<210> 422
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 422
Gly Gly Thr Tyr Ser Cys His Gly Pro Leu Thr Trp Val Cys Lys Pro
Gln Gly Gly
```

<210> 423 <211> 19

```
A-527.ST25.txt
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 423
Pro Gly Gly
<210> 424
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 424
Gly Gly Pro His His Val Tyr Ala Cys Arg Met Gly Pro Leu Thr Trp
Ile Cys
<210> 425
<210> 425
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 425
Gly Gly Thr Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
Pro Gln
<210> 426
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 426
Gly Gly Leu Tyr Ala Cys His Met Gly Pro Met Thr Trp Val Cys Gln
Pro Leu Arg Gly
            20
```

```
<210> 427
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 427
Thr Ile Ala Gln Tyr Ile Cys Tyr Met Gly Pro Glu Thr Trp Glu Cys
Arg Pro Ser Pro Lys Ala
   20
<210> 428
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 428
Tyr Ser Cys His Phe Gly Pro Leu Thr Trp Val Cys Lys
<210> 429
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<400> 429
Tyr Cys His Phe Gly Pro Leu Thr Trp Val Cys
<210> 430
<211> 17
<212> PRT
<213> Artificial Sequence
<223> UKR ANTAGONIST PEPTIDE
<400> 430
Ala Glu Pro Val Tyr Gln Tyr Glu Leu Asp Ser Tyr Leu Arg Ser Tyr
Tyr
<210> 431
<211> 17
```

```
A-527.ST25.txt
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 431
Ala Glu Leu Asp Leu Ser Thr Phe Tyr Asp Ile Gln Tyr Leu Leu Arg
                                           10
Thr
<210> 432
<211> 17
<212> PRT
<213> Artificial Sequence
<223> UKR ANTAGONIST PEPTIDE
<400> 432
Ala Glu Phe Phe Lys Leu Gly Pro Asn Gly Tyr Val Tyr Leu His Ser
Ala
<210> 433
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (4, 5)..(6)
<223> Xaa = any amino acid
<400> 433
Phe Lys Leu Xaa Xaa Xaa Gly Tyr Val Tyr Leu
<210> 434
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<400> 434
Ala Glu Ser Thr Tyr His His Leu Ser Leu Gly Tyr Met Tyr Thr Leu 1 \hspace{1cm} 15
```

Asn

```
<210> 435
<211> 11 -
<212> PRT
<213> Artificial Sequence
<220>
<223> UKR ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (3, 5)..(6)
<223> Xaa = any amino acid
<400> 435
Tyr His Xaa Leu Xaa Xaa Gly Tyr Met Tyr Thr
<210> 436
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> MAST CELL ANTAGONISTS/PROTEASE INHIBITOR PEPTIDE
<400> 436
Arg Asn Arg Gln Lys Thr
<210> 437
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> MAST CELL ANTAGONISTS/PROTEASE INHIBITOR PEPTIDE
<400> 437
Arg Asn Arg Gln
<210> 438
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> MAST CELL ANTAGONISTS/PROTEASE INHIBITOR PEPTIDE
<400> 438
Arg Asn Arg Gln Lys
<210> 439
<211> 5
```

```
A-527.ST25.txt
<212> PRT
<213> Artificial Sequence
<220>
<223> MAST CELL ANTAGONISTS/PROTEASE INHIBITOR PEPTIDE
<400> 439
Asn Arg Gln Lys Thr
<210> 440
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> MAST CELL ANTAGONISTS/PROTEASE INHIBITOR PEPTIDE
<400> 440
Arg Gln Lys Thr
<210> 441
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<220>
<221> misc_feature <222> (2, 5)..(7)
<223> Xaa = any amino acid
<400> 441
Arg Xaa Glu Thr Xaa Trp Xaa
<210> 442
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<220>
<221> misc_feature
<222> (2, 5)..(7)
<223> Xaa = any amino acid
<400> 442
Arg Xaa Glu Thr Xaa Trp Xaa
<210> 443
<211> 5
```

```
A-527.ST25.txt
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<220>
<221> misc_feature <222> (5)..(6)
<223> Xaa = any amino acid
<400> 443
Arg Gly Asp Gly Xaa
<210> 444
<211> 7
<211> /
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<220>
<221> misc_feature
<222> (6)..(6)
<223> Xaa = any amino acid
<400> 444
Cys Arg Gly Asp Gly Xaa Cys
<210> 445
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<220>
<221> misc_feature
<222> (2, 3, 4, 8, 9, 10, 11, 12, 13)..(14)
<223> Xaa = any amino acid
<400> 445
Cys Xaa Xaa Xaa Arg Leu Asp Xaa Xaa Xaa Xaa Xaa Xaa Cys
<210> 446
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<400> 446
```

```
A-527.ST25.txt
Cys Ala Arg Arg Leu Asp Ala Pro Cys
<210> 447
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<400> 447
Cys Pro Ser Arg Leu Asp Ser Pro Cys
<210> 448
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<220>
<221> misc_feature
<222> (1, 2, 3, 7, 8)..(9)
<223> Xaa are capable of forming a cyclizing bond
<220>
<221> misc_feature
<222> (2)..(5)
<223> Feature at 1, 5 is an amino acid capable of forming a cyclying bo
       nd and attached to 1-5 amino acid linker
<400> 448
Xaa Xaa Xaa Arg Gly Asp Xaa Xaa Xaa
<210> 449
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<220>
<221> misc_feature <222> (2)..(8)
<223> Xaa = any amino acid
<400> 449
Cys Xaa Cys Arg Gly Asp Cys Xaa Cys
<210> 450
<211> 9
<212> PRT
```

```
A-527.ST25.txt
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<400> 450
Cys Asp Cys Arg Gly Asp Cys Phe Cys
<210> 451
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<400> 451
Cys Asp Cys Arg Gly Asp Cys Leu Cys
<210> 452
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<400> 452
Cys Leu Cys Arg Gly Asp Cys Ile Cys
<210> 453
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<220>
<221> misc_feature
<222> (1, 2, 5, 6, 7)..(8)
<223> Xaa = any amino acid
<400> 453
Xaa Xaa Asp Asp Xaa Xaa Xaa Xaa
<210> 454
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<220>
```

```
A-527.ST25.txt
<221> misc_feature
<222> (1, 2, 3, 6, 7, 8, 9)..(10)
<223> Xaa = any amino acid
<400> 454
Xaa Xaa Xaa Asp Asp Xaa Xaa Xaa Xaa
<210> 455
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<400> 455
Cys Trp Asp Asp Gly Trp Leu Cys
<210> 456
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<400> 456
Cys Trp Asp Asp Leu Trp Trp Leu Cys
<210> 457
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<400> 457
Cys Trp Asp Asp Gly Leu Met Cys
<210> 458
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<400> 458
Cys Trp Asp Asp Gly Trp Met Cys
```

```
A-527.ST25.txt
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> INTEGRIN-BINDING PEPTIDE
<400> 459
Cys Ser Trp Asp Asp Gly Trp Leu Cys
<210> 460
<211> 9
<212> PRT
<213> Artificial Sequence
<223> INTEGRIN-BINDING PEPTIDE
<400> 460
Cys Pro Asp Asp Leu Trp Trp Leu Cys
<210> 461
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> EPO-MIMETIC PEPTIDE
<220>
<221> misc_feature
<222> (2)..(8)
<223> Xaa can be any of the 20 L-amino acids
<220>
<221> misc_feature
<222> (3)..(3)
<223> Xaa can be C, A, a-amino-y-bromobutyric acid or Hoc
<220>
<221> misc_feature
<222> (4)..(4)
<223> Xaa can be R, H, L or W
<220>
<221> misc_feature <222> (5)..(5)
<223> Xaa can be M, F or I; Xaa
<220>
<221> misc_feature
<222> (11)..(11)
<223> Xaa can be D, E, I, L or V
<220>
<221> misc_feature <222> (12)..(12)
```

```
A-527.ST25.txt
<223> Xaa can be C, A, a-amino-y-bromobutyric acid or Hoc; provided tha
       t Xaa (Pos3 or 12) is C or Hoc.
<400> 461
Tyr Xaa Xaa Xaa Gly Pro Xaa Thr Trp Xaa Xaa
<210> 462
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 462
Cys Gln Asn Arg Tyr Thr Asp Leu Val Ala Ile Gln Asn Lys Asn Glu
<210> 463
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 463
Ala Glu Asn Trp Ala Asp Asn Glu Pro Asn Asn Lys Arg Asn Asn Glu
Asp
<210> 464
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<400> 464
Arg Lys Asn Asn Lys Thr Trp Thr Trp Val Gly Thr Lys Lys Ala Leu
Thr Asn Glu
<210> 465
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
```

A-527.ST25.txt <400> 465 Lys Lys Ala Leu Thr Asn Glu Ala Glu Asn Trp Ala Asp <210> 466 <211> 16 <212> PRT <213> Artificial Sequence <220> <223> SELECTIN ANTAGONIST PEPTIDE <220> <221> misc_feature <222> (3)..(15) <223> Xaa = any amino acid <400> 466 Cys Gln Xaa Arg Tyr Thr Asp Leu Val Ala Ile Gln Asn Lys Xaa Glu <210> 467 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> SELECTIN ANTAGONIST PEPTIDE <220> <221> misc_feature
<222> (3, 5, 6, 13)..(15)
<223> Xaa = any amino acid <400> 467 Arg Lys Xaa Asn Xaa Xaa Trp Thr Trp Val Gly Thr Xaa Lys Xaa Leu Thr Glu Glu <210> 468 <211> 17 <212> PRT <213> Artificial Sequence <220> <223> SELECTIN ANTAGONIST PEPTIDE <220> <221> misc_feature <222> (13)..(15) <223> Xaa = any amino acid

<400> 468

Ala Glu Asn Trp Ala Asp Gly Glu Pro Asn Asn Lys Xaa Asn Xaa Glu 1 5 10 15
Page 144

```
Asp
<210> 469
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<220>
<221> misc_feature 
<222> (2, 3, 4, 7)..(15)
<223> Xaa = any amino acid
<400> 469
Cys Xaa Xaa Xaa Tyr Thr Xaa Leu Val Ala Ile Gln Asn Lys Xaa Glu
<210> 470
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (3, 4, 5, 6, 8, 13, 15)..(18)
<223> Xaa = any amino acid
<400> 470
Arg Lys Xaa Xaa Xaa Xaa Trp Xaa Trp Val Gly Thr Xaa Lys Xaa Leu
Thr Xaa Glu
<210> 471
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<220>
<221> misc_feature
 <222> (2, 5, 6, 7, 12, 13)..(14)
 <223> Xaa = any amino acid
 <400> 471
 Ala Xaa Asn Trp Xaa Xaa Xaa Glu Pro Asn Asn Xaa Xaa Xaa Glu Asp
```

10

```
<210> 472
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> SELECTIN ANTAGONIST PEPTIDE
<220>
<221> misc_feature
<222> (1, 3, 6, 9, 12)..(13)
<223> Xaa = any amino acid
<400> 472
Xaa Lys Xaa Lys Thr Xaa Glu Ala Xaa Asn Trp Xaa Xaa
<210> 473
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<220>
<221> misc_feature
<222>
         (1)..(1)
<223> Xaa is Asp-Arg-Met-Pro-Cys, Arg-Met-Pro-Cys, Met-Pro-Cys, Pro-Cys
          or Cys
<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa is Arg or Lys
<220>
<221> misc_feature
<222> (10)..(10)
<223> Xaa is Ser or Thr
<220>
<221> misc_feature
<222> (12)..(12)
<223> Xaa is Cys-Lys or Cys
<400> 473
Xaa Xaa Asn Phe Phe Trp Lys Thr Phe Xaa Ser Xaa
<210> 474
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
                                                 Page 146
```

A-527.ST25.txt

```
<400> 474
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys
Lys
<210> 475
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 475
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys
<210> 476
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 476
Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys
<210> 477
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys
<210> 478
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 478
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys
```

```
A-527 ST25.txt
<211> 12
<212> PRT
<213> Artificial Sequence
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 479
Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys
<210> 480
<211> 16
<212> PRT
<213> Artificial Sequence
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 480
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys
<210> 481
<211> 15
<212> PRT
<213> Artificial Sequence
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 481
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys
<210> 482
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 482
Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys
<210> 483
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 483
```

Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys

A-527.ST25.txt

```
<210> 484
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 484
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys
<210> 485
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 485
Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys
<210>
      486
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 486
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
Lys
<210> 487
<211> 15
<212> PRT
<213> Artificial Sequence
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 487
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys
                                       10
<210> 488
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
```

```
A-527.ST25.txt
<400> 488
Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys
            5
<210> 489
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 489
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
                                          10
<210> 490
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 490
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
<210> 491
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
<210> 492
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys 1 \hspace{1cm} 10 \hspace{1cm} 15
```

Lys

```
A-527.ST25.txt
<211> 15
<212> PRT
<213> Artificial Sequence
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 493
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys
                                       10
<210> 494
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 494
Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys
<210> 495
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 495
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
<210> 496
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 496
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
<210> 497
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> SOMATOSTATIN OR CORTISTATIN MIMETIC PEPTIDE
<400> 497
Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
```

```
<210> 498
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223> CAP37 MIMETIC/LPS BINDING
<400> 498
Asn Gln Gly Arg His Phe Cys Gly Gly Ala Leu Ile His Ala Arg Phe
Val Met Thr Ala Ala Ser Cys Phe Gln
              20
<210> 499
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> CAP37 MIMETIC/LPS BINDING
<400> 499
Arg His Phe Cys Gly Gly Ala Leu Ile His Ala Arg Phe Val Met Thr
Ala Ala Ser Cys
20
<210> 500
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> CAP37 MIMETIC/LPS BINDING
<400> 500
Gly Thr Arg Cys Gln Val Ala Gly Trp Gly Ser Gln Arg Ser Gly Gly
Arg Leu Ser Arg Phe Pro Arg Phe Val Asn Val
<210> 501
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> VEGF- ANTAGONIST
<400> 501
Gly Glu Arg Trp Cys Phe Asp Gly Pro Arg Ala Trp Val Cys Gly Trp 1 5 10 15
```

Glu Ile

```
<210> 502
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> VEGF- ANTAGONIST
<400> 502
Glu Glu Leu Trp Cys Phe Asp Gly Pro Arg Ala Trp Val Cys Gly Tyr
Val Lys
<210> 503
<211> 33
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 503
Gly Phe Phe Ala Leu Ile Pro Lys Ile Ile Ser Ser Pro Leu Phe Lys
Thr Leu Leu Ser Ala Val Gly Ser Ala Leu Ser Ser Gly Gly Gln
Gln
<210> 504
<211> 33
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221>
      misc_feature
<222>
      (7, 18,)..(19)
<223> Positions 7, 18, and 19, D amino acid residue
<400> 504
```

Thr Leu Leu Ser Ala Val Gly Ser Ala Leu Ser Ser Gly Gly Gln 20 25 30

Gly Phe Phe Ala Leu Ile Pro Lys Ile Ile Ser Ser Pro Leu Phe Lys

Glu

```
<210> 505
<211>
      22
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature
<222>
      (18)..(19)
<223> Positions 18 and 19, D amino acid residues
<400> 505
Gly Phe Phe Ala Leu Ile Pro Lys Ile Ile Ser Ser Pro Leu Phe Lys
Thr Leu Leu Sef Ala Val
            20
<210> 506
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature
<222>
       (7, \overline{18})..(19)
<223>
       Positions 7, 18 and 19, D amino acid residues
<400> 506
Gly Phe Phe Ala Leu Ile Pro Lys Ile Ile Ser Ser Pro Leu Phe Lys
                                                          15
Thr Leu Leu Ser Ala Val
<210> 507
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature
      (8, \overline{1}9)..(20)
<222>
<223> Positions 8, 19 and 20, D amino acid residues
<400> 507
```

A-527.ST25.txt

```
Lys Gly Phe Phe Ala Leu Ile Pro Lys Ile Ile Ser Ser Pro Leu Phe
                                           10
Lys Thr Leu Leu Ser Ala Val
              20
<210> 508
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature <222> (9, 20)..(21)
<223> Positions 9, 20 and 21, D amino acid residues
<400> 508
Lys Lys Gly Phe Phe Ala Leu Ile Pro Lys Ile Ile Ser Ser Pro Leu
Phe Lys Thr Leu Leu Ser Ala Val
          20
<210> 509
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature
<222> (9, 20)..(21)
<223> Positions 9, 20 and 21, D amino acid residues
<400> 509
Lys Lys Gly Phe Phe Ala Leu Ile Pro Lys Ile Ile Ser Ser Pro Leu
Phe Lys Thr Leu Leu Ser Ala Val
              20
<210> 510
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature <222> (7)..(7)
```

```
A-527.ST25.txt
<223> Position 7, D amino acid residue
<400> 510
Gly Phe Phe Ala Leu Ile Pro Lys Ile Ile Ser
<210> 511
<211> 26
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 511
Gly Ile Gly Ala Val Leu Lys Val Leu Thr Thr Gly Leu Pro Ala Leu
                                      10
Ile Ser Trp Ile Lys Arg Lys Arg Gln Gln
            20
<210> 512
<211> 26
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature
<222> (5, 8, 17)..(23) <223> Positions 5, 8, 17 and 23, D amino acid residues
<400> 512
Gly Ile Gly Ala Val Leu Lys Val Leu Thr Thr Gly Leu Pro Ala Leu
Ile Ser Trp Ile Lys Arg Lys Arg Gln Gln
            20
<210> 513
<211> 26
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature
<222>
      (5, 18, 17)..(23)
<223> Positions 5, 18, 17 and 23, D amino acid residues
<400> 513
Gly Ile Gly Ala Val Leu Lys Val Leu Thr Thr Gly Leu Pro Ala Leu
                                      Page 156
```

1

```
Ile Ser Trp Ile Lys Arg Lys Arg Gln Gln
              20
<210> 514
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature
<222> (5, 8, 17)..(21)
<223> Positions 5, 8, 17 and 21, D amino acid residues
<400> 514
Gly Ile Gly Ala Val Leu Lys Val Leu Thr Thr Gly Leu Pro Ala Leu
Ile Ser Trp Ile Lys Arg
<210> 515
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature
 <222> (2, 5, 14)..(18)
<223> Positions 2, 5, 14 and 18, D amino acid residues
<400> 515
 Ala Val Leu Lys Val Leu Thr Thr Gly Leu Pro Ala Leu Ile Ser Trp
 Ile Lys Arg
 <210> 516
 <211> 12
<212> PRT
<213> Artificial Sequence
 <220>
 <223> ANTIPATHOGENIC PEPTIDE
 <220>
 <221> misc_feature
<222> (3, 4, 8)..(10)
<223> Positions 3, 4, 8 and 10, D amino acid residues
```

```
<400> 516
Lys Leu Leu Leu Leu Lys Leu Leu Leu Lys
              _ 5°
<210> 517
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature
<222> (3, \overline{4}, 8)..(10)
<223> Positions 3, 4, 8 and 10, D amino acid residues
<400> 517
Lys Leu Leu Lys Leu Leu Lys Leu Leu Lys
<210> 518
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<220>
<221> misc_feature
<222> (3, 4, 8)..(10)
<223> Positions 3, 4, 8 and 10, D amino acid residues
<400> 518
Lys Leu Leu Lys Leu Lys Leu Lys Leu Lys
<210> 519
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 519
Lys Lys Leu Lys Leu Lys Leu Lys Lys Lys
<210> 520
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
```

```
<400> 520
Lys Leu Leu Lys Leu Leu Lys Leu Lys
<210> 521
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 521
Lys Leu Leu Lys Leu Lys Leu Lys Leu Lys
<210> 522
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 522
Lys Leu Leu Leu Lys
<210> 523
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 523
Lys Leu Leu Lys Leu Leu Lys
<210> 524
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 524
Lys Leu Leu Lys Leu Lys Leu Lys Leu Lys
<210> 525
<211> 12
<212> PRT
<213> Artificial Sequence
```

```
A-527.ST25.txt
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 525
Lys Leu Leu Lys Leu Lys Leu Lys Leu Lys
<210> 526
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 526
Lys Leu Leu Lys Leu Lys Leu Lys Leu Lys
<210> 527
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 527
Lys Ala Ala Lys Ala Ala Lys Ala Ala Lys
<210> 528
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 528
Lys Val Val Lys Val Val Lys Val Lys
<210> 529
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 529
Lys Val Val Lys Val Lys Val Lys Val Val Lys
<210> 530
<211> 11
<212> PRT
```

```
A-527.ST25.txt
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 530
Lys Val Val Lys Val Lys Val Lys
<210> 531
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 531
Lys Val Val Lys Val Lys Val Lys Val Lys
<210> 532
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 532
Lys Leu Ile Leu Lys Leu
1 5
<210> 533
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 533
Lys Val Leu His Leu Leu
<210> 534
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 534
Leu Lys Leu Arg Leu Leu
<210> 535
```

```
A-527.ST25.txt
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 535
Lys Pro Leu His Leu Leu
<210> 536
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 536
Lys Leu Ile Leu Lys Leu Val Arg
<210> 537
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 537
Lys Val Phe His Leu Leu His Leu
<210> 538
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 538
His Lys Phe Arg Ile Leu Lys Leu
<210> 539
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
```

<400> 539

Lys Pro Phe His Ile Leu His Leu

```
<210> 540
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 540
Lys Ile Ile Ile Lys Ile Lys Ile Lys Ile Ile Lys
<210> 541
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 541
Lys Ile Ile Ile Lys Ile Lys Ile Lys
<210> 542
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 542
Lys Ile Ile Lys Ile Lys Ile Lys
<210> 543
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 543
Lys Ile Pro Ile Lys Ile Lys Ile Pro Lys
<210> 544
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> ANTIPATHOGENIC PEPTIDE
<400> 544
Lys Ile Pro Ile Lys Ile Lys Ile Lys Ile Val Lys
```