Computer Networks

Modulation (§2.5)

Topic

- We've talked about signals representing bits. How, exactly?
 - This is the topic of modulation

Computer Networks

2

A Simple Modulation

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

A Simple Modulation (2)

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

Many Other Schemes

 Can use more signal levels, e.g., 4 levels is 2 bits per <u>symbol</u>

- Practical schemes are driven by engineering considerations
 - E.g., clock recovery »

Clock Recovery

- Um, how many zeros was that?
 - Receiver needs frequent signal transitions to decode bits

1000000000...0

- Several possible designs
 - E.g., Manchester coding and scrambling (§2.5.1)

Clock Recovery – 4B/5B

- Map every 4 data bits into 5 code bits without long runs of zeros
 - $-0000 \rightarrow 11110,0001 \rightarrow 01001,$ $1110 \rightarrow 11100, ... 1111 \rightarrow 11101$
 - Has at most 3 zeros in a row
 - Also invert signal level on a 1 to break up long runs of 1s (called NRZI, §2.5.1)

Clock Recovery – 4B/5B (2)

4B/5B code for reference:

 \longrightarrow 0000 \rightarrow 11110, 0001 \rightarrow 01001, 1110 \rightarrow 11100, ... 1111 \rightarrow 11101

Message bits: 1111 0000 0001

Clock Recovery – 4B/5B (3)

- 4B/5B code for reference:
 - $-0000 \rightarrow 11110,0001 \rightarrow 01001,1110 \rightarrow 11100,...1111 \rightarrow 11101$

Message bits: 1111 0000 0001

Passband Modulation

- What we have seen so far is baseband modulation for wires
 - Signal is sent directly on a wire
- These signals do not propagate well on fiber / wireless
 - Need to send at higher frequencies
- <u>Passband</u> modulation carries a signal by modulating a carrier

Passband Modulation (2)

 Carrier is simply a signal oscillating at a desired frequency:

- We can modulate it by changing:
 - Amplitude, frequency, or phase

Passband Modulation (3)

NRZ signal of bits

Amplitude shift keying

Frequency shift keying

). Phase shift keying

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey