Сверточные нейронные сети

СКЛЯРЕНКО АННА АНАТОЛЬЕВНА

- MLP: взвесим каждый пиксель
- Не учитывается "пространственная" информация

Не учитывается специфика изображений

Зрительная кора головного мозга

Экспериментируя на животных, David Hubel и Torsten Wiesel выяснили, что одинаковые фрагменты изображения, простейшие формы, активируют одинаковые участки мозга. Другими словами, когда котик видит кружочек, то у него активируется зона "А", когда квадратик, то "Б".

В мозгу животных существует область нейронов, которая реагирует на наличие определенной особенности у изображения. Т.е. перед тем как изображение попадает в глубины мозга, оно проходит так называемый фича-экстрактор.

Структура изображения

Фильтр Собеля

Примеры фильтров

Детектирование краев

Исходная фотография

Суммируется в 0 (черный цвет), если в блоке однородный цвет

Примеры фильтров

	0	-1	0
*	-1	5	-1
	0	-1	0

Увеличение резкости

Размытие

Матрица Kernel

Фичаэкстрактор

Подбор Kernel в процессе обучения

Сверточные нейронные сети

Сверточные нейронные сети (convolutional neural networks, CNN) — переиспользование одних и тех же частей нейронной сети для работы с разными маленькими, локальными участками входов (1988). Прототип коры головного мозга.

Основная задача: обработка изображений, автоматизация извлечения признаков

Стандартная нейронная сеть Свёрточная нейронная сеть глубина высота выходной входной скрытые

Свёртка ч/б изображения с фильтром FxF

Свёртка цветного изображения с фильтром FxF

Свёртка цветного изображения с фильтром

Ядро свертки 1 на 1

1	2	3	6	5	8
3	5	5	1	3	4
2	1	3	4	9	3
4	7	8	5	7	9
1	5	3	7	4	8
5	4	9	8	3	5

* 2 =

https://blog.csdn.net/Tomxiaodai

Сжатие модели

 $1 \times 1 \times 32$

https://blog6 x 6 x # filters

Ядро свертки 1 на 1

(1x1x16 + 1) x192 + (5x5x32 + 1) x16 = 16080

Принципы работы CNN

Принципы работы CNN

2. Формирование карты признаков

Принцип работы CNN

Фрагмент исходного изображения —

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Пиксельное представлени

Изображение фильтра

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Пиксельное представление фильтра

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pesyльтат = (50*30)+(50*30)+(50*30)+(20*30)+(50*30) = 6600

Результат = 0

Принципы работы CNN

Несколько карт признаков

Фильтр 5х5

$$X \quad \left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{array} \right]$$

Принципы работы CNN

3. Уплотнение (объединение, pooling) карты признаков сверточного слоя => уплотненная карта

Принцип работы CNN

Несколько карт признаков

Общая архитектура сверточной НС

Convolutional layer 1

Пример работы CNN

Упрощенная архитектура сети Яна Лекуна для MNIST

Архитектура сверточной нейронной сети Яна Лекуна

Архитектура сверточной нейронной сети

INPUT -> [[CONV -> RELU]*N -> POOL?] * M -> [FC -> RELU]*K -> FC

Дополнительные слои

Слой пакетной нормализации - это приём, который помогает упростить обучение очень глубоких нейронных сетей путём стандартизации входов в слой для каждого мини-пакета. Стандартизация входов стабилизирует процесс обучения и таким образом уменьшает количество эпох обучения глубоких нейросетей.

Слой исключения (Dropout) - это приём регуляризации, который справляется с переобучением и чрезмерным обобщением.

Примеры признаков

Низкоуровневые признаки

Линии и границы

Признаки средних уровней

Глаза, носы, уши

Высокоуровневые признаки

Строение лица

Примеры признаков

Ключевые вопросы

Какие фильтры использовать?

 фильтры со случайными значениями на основе нормального или какоголибо другого распределения. При достаточном обучении и объёме данных нейросеть сама создаёт подходящие фильтры для извлечения наиболее значимых признаков

Сколько фильтров в каждой свертке?

 универсальное правило — использовать фильтры с нечётными размерами (3×3, 5×5, 7×7). Также крупным фильтрам обычно предпочитают маленькие, но возможны и компромиссные соотношения, которые надо вычислять эмпирически.

Известные сверточные НС

AlexNet

60 000 000 параметров

VGG

ResNet (остаточные сети)

2015 – 2016 года

Распознавание изображений

Исчезающий градиент

Добавление входных данных к выходным, чтобы градиенты не исчезали так быстро.

Широкое использование пакетной нормализации

ResNet

Более 100 слоев

ResNet

Пример сверточной HC: Inception V3 для ImageNet

Ошибка: 5,6% (одна модель), 3.6% (ансамбль), 25000000 параметров, учится 1 неделю на GPU

Convolution
AvgPool
MaxPool
Concat
Dropout
Fully connected
Softmax

GoogLeNet

Трансферное обучение (Transfer Learning)

мощный метод обучения глубоких нейронных сетей, который позволяет использовать знания, полученные об одной проблеме глубокого обучения, и применять их к другой, но со схожей задачей.

CNN B Keras

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), ...)

```
model = keras.Sequential([
    Conv2D(32, (3,3), padding='same', activation='relu', input_shape=(28, 28, 1)),
    MaxPooling2D((2, 2), strides=2),
    Conv2D(64, (3,3), padding='same', activation='relu'),
    MaxPooling2D((2, 2), strides=2),
    Flatten(),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
])
```

Задачи, решаемые сверточными НС

Классификация

Детекция

Сегментация

Распознавание рукописного текста	Точность человека — 97.5% CNN – 99.8%		
Компьютерное зрение	CNN распознает не только простые объекты на фото, но и эмоции, действия, а еще анализирует виде для автопилотов (семантическая сегментация).	0	\/
	сстионтации).	Фото	Улучшение качества, оцветнение
3D реконструкция	Создание 3D моделей по видео	Медицина	
Развлечение Стилизация и генерация картинок		Безопасность	Обнаружение аномального поведения (Свертка + Реккурентрость)
		Игры	В итоге сеть играет круче профессионала, выбивая дырку и специально загоняя туда шар.

Благодарю за внимание

HTTPS://CS.STANFORD.EDU/PEOPLE/KARPATHY/CONVNETJS/DEMO/CIFAR10.HTML