ANÁLISIS DE DATOS MASIVOS

MUESTREO Y FILTRADO

Blanca Vázquez 8 de octubre de 2024

MUESTREO DE FLUJOS DE DATOS (1)

- En muchos casos no es posible almacenar todos los datos de un flujo, por lo que es necesario realizar muestreo
- Objetivo: seleccionar un subconjunto de datos del flujo de tal manera que se puedan realizar que sean representativas de todo el flujo de datos.

MUESTREO EN FLUTOS DE DATOS (2)

- · Ventaja
 - Costo computacional más bajo debido a que estamos usando solo una porción del flujo.
- · Retos
 - · ¿Cómo sabemos qué tan largo es el flujo de datos?
 - · ¿Cada cuánto tiempo debemos muestrear?
 - · ¿Cómo hacemos el muestreo?

ESTRATEGIAS DE MUESTREO

- · Ventanas deslizantes
- · Muestreo aleatorio
- · Muestreo de tamaño fijo

VENTANAS DESLIZANTES

- · Las consultas se realizan sobre una ventana de tamaño w.
- Si un elemento llega en el tiempo t, expira en el tiempo t + w.

Imagen tomada de Azure Stream Analytics

VENTANAS DESLIZANTES: EJEMPLO

 En este ejemplo el tamaño de la ventana deslizante es 6, observamos el traslape entre datos.

Imagen tomada de J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

PROMEDIO DE VENTANA DESLIZANTE (1)

Calificaciones

10.0	7.8	6.8	8.0	9.2	9.0

Definir:

• Tamaño de la ventana: 3

PROMEDIO DE VENTANA DESLIZANTE (2)

PROMEDIO DE VENTANA DESLIZANTE (3)

PROMEDIO DE VENTANA DESLIZANTE (4)

PROMEDIO DE VENTANA DESLIZANTE (5)

VENTANAS DE SALTOS DE TAMAÑO CONSTANTE

 Se divide el flujo de datos en segmentos de tiempo sin traslape.

Imagen tomada de Azure Stream Analytics

VENTANAS DE SESIÓN

- Agrupan eventos que llegan en tiempos similares, filtrando los periodos en los que no se recibe ningún dato.
- Los parámetros de este tipo de ventana son el tiempo de espera y duración máxima.

Imagen tomada de Azure Stream Analytics

MUESTREO ALEATORIO

- Los elementos tienen la misma probabilidad de ser seleccionados.
- Ejemplo: Cobertura de la vacuna anti-sarampión entre 1,200 niños de la escuela 'Juan Escutia':
 - · Muestra: 60 niños
 - · Hacer una lista de todos los niños
 - · Numerarlos del 1 al 1,200
 - · Selección aleatoria de 60 números (probabilidad igual)

MUESTREO DETERMINISTA

- Los elementos se seleccionan en base a criterios o reglas específicas.
- Ejemplo: únicamente se registraran a los pacientes que acudan a la clínica en cierto día u horario particular.
 - Es posible que los elementos seleccionados sean poco representativos de todos los conjuntos generados

MUESTREO DE TAMAÑO FIJO

Consiste en muestrear un porción fija de los elementos recibidos (digamos 1 de cada 10 recibidos)

MUESTREO DE TAMAÑO FIJO: EJEMPLO (1)

- · Flujo de datos: consultas de usuarios
- · Entrada: flujos de datos en forma de tupla

 ¿Qué fracción de las consultas de un usuario son duplicadas? (operaciones sobre el tiempo)

MUESTREO DE TAMAÑO FIJO: EJEMPLO (2)

- Supongamos que cada usuario realiza x número de consultas únicas y d número de consultas repetidas
- El total de consultas que el usuario hace es x + 2d
- Si realizamos un muestreo fijo con 1 de 10, mantendríamos $\frac{1}{10}$ de todas las consultas
 - $\frac{x}{10}$ (de todas las consultas únicas)
 - $\frac{2d}{10}$ (de las consultas duplicadas)

MUESTREO DE TAMAÑO FIJO: EJEMPLO (3)

- ¿Qué fracción de las consultas de un usuario son duplicadas?
 - De las d consultas duplicadas, en la muestra solo tendríamos $\frac{d}{100}$

$$\cdot \ \tfrac{d}{100} = \tfrac{1}{10} \cdot \tfrac{1}{10} \cdot d$$

- De todo el conjunto de preguntas repetidas, ^{18.d}/₁₀₀ aparecerían realmente una vez.
 - $\frac{18}{100}$ = es la probabilidad de que una de las repeticiones esté en el $\frac{1}{10}$ seleccionado y el otro en el $\frac{9}{10}$ no seleccionado

$$\cdot \frac{18 \cdot d}{100} = (\frac{1}{10} \cdot \frac{9}{10} + \frac{9}{10} \cdot \frac{1}{10})) \cdot d$$

· La fracción de consultas sería

$$\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d}$$

OBTENCIÓN DE MUESTRAS REPRESENTATIVAS

- Como observamos hacer el muestreo tomando una muestra de cada usuario, puede arrojar resultados poco confiables.
- ¿Y si en lugar de tomar $\frac{1}{10}$ de las búsquedas de cada usuario, tomamos $\frac{1}{10}$ de todos los usuarios?
 - Es decir, vamos a almacenar todas las búsquedas, descartando las consultas del resto de usuarios
 - Tomando la IP del usuario como ID, muestreamos $\frac{a}{b}$ usuarios usando una función hash que almacena los IPs en b cubetas, agregando las consultas del usuario si su valor hash es menor a a
 - Como resultado, tendríamos una muestra más representativa.

MUESTREO DE PRESA (RESERVOIR SAMPLING)

- Consiste en muestrear los primeros k datos recibidos y los mantiene en memoria (presa)
- Cada nuevo elemento recibido tiene una probabilidad de $\frac{k}{n}$ de reemplazar un elemento actual
- Procedimiento general
 - 1. Toma los primeros k elementos del flujo como muestra
 - 2. Supongamos que hemos visto n-1 elementos, y ahora recibimos el n-ésimo elemento (n>k)
 - 3. Con probabilidad $\frac{k}{n}$, mantenemos el elemento n-ésimo, reemplazando uno de los k elementos en la muestra

FILTRADO EN FLUJOS DE DATOS

- Seleccionar elementos del flujo que cumplan cierto criterio y descartar el resto.
- Ejemplo: dado un flujo de números reales, filtrar los que sean mayores a 50.
 - Flujo: 33, 71, 58, 12, 41, 56, 3, 89
 - Elementos seleccionados: 71, 58, 56, 89
- Esta tarea se vuelve más difícil cuando el criterio requiere verificar si el elemento pertenece a un conjunto dado, especialmente si este conjunto es tan grande que no cabe en memoria

PERTENENCIA A UN CONJUNTO

 Ejemplo: ¿cómo podemos revisar rápidamente la disponibilidad de un nombre dentro de cientos de millones existentes?

BÚSQUEDA BINARIA

- Supongamos que almacenamos todos los nombres alfabéticamente y comparamos el nuevo nombre con el que aparece a mitad de la lista
- · Si el nombre coincide, devuelve intentar nuevamente
- En caso contrario, busca nuevamente en la mitad de los nombres restantes (arriba - abajo)
- Se repite el proceso, hasta que encuentre una coincidencia o hasta que termina la búsqueda y no encuentre nada.

FILTRO DE BLOOM

- Es una estructura de datos probabilista y se emplea para evaluar si un elemento pertenece a un conjunto¹.
- Elimina la mayoría de los elementos que no pertenecen al conjunto.
- Es muy eficiente en memoria, ya que no requiere mantener el conjunto en memoria
- Tiene falso positivos

¹Fue desarrollado por Burton Howard Bloom en 1970.

ALGORITMO DEL FILTRO DE BLOOM

- · Consiste en un arreglo de *m* bits inicializados con 0
- Construcción
 - 1. Para cada elemento s del conjunto, se calculan los valores hash con k funciones distintas $h_1(s), h_2(s), \ldots, h_k(s)$.
 - 2. Los *k* bits en las posiciones correspondientes a los *k* valores *hash* se ponen a 1.
- · Verificación de pertenencia de un nuevo elemento s
 - 1. Calcula los valores hash para \tilde{s} : $h_1(\tilde{s}), h_2(\tilde{s}), \dots, h_k(\tilde{s})$
 - Si todos los bits en las posiciones correspondientes a los k valores hash son 1, entonces es probable que el elemento s pertenezca al conjunto, en caso contrario definitivamente no pertenece

ESTRUCTURA

FILTRO DE BLOOM VACÍO

CONSTRUYENDO EL VECTOR S

¿Cómo construimos un filtro de Bloom?

Para añadir un elemento x al filtro S:

- x debe transformarse a un conjunto de bits a través de k funciones hash.
- El resultado de cada función indica el índice dentro del filtro (el valor 0 debe cambiarse a 1).

DEFINIENDO M, N Y K

IRONMAN!

- Añadir al filtro el nombre de usuario: 'ironman'
 - Calculamos las funciones hash, la salida será el índice que debemos cambiar a 1.

2.Colocamos '1' en cada bit, usando el resultado de la función hash.

SPIDERMAN!

- Añadir al filtro el nombre de usuario: 'spiderman'
 - 1. Calculamos las funciones hash, la salida será el índice que debemos cambiar a 1.

```
>>> mmh3.hash('spiderman',1) % 10 2 >>> mmh3.hash('spiderman',2) % 10 8 >>> mmh3.hash('spiderman',3) % 10 7 >>> П
```

2.Colocamos '1' en cada bit, usando el resultado de la función hash.

BUSCANDO EN EL FILTRO

Lo más importante de un filtro de Bloom es buscar un elemento dentro del vector S >> mmh3.hash('ironman',1) % 10 - Buscar si en S existe: 'ironman' >>> mmh3.hash('ironman',2) % 10 1. Calculamos las funciones hash, la salida >> mmh3.hash('ironman',3) % 10 será el índice que debemos cambiar a 1. 9 10 Si todos los índices (arrojados de la función hash) son 1s, entonces decimos que: 'ironman' probablemente están presente en S

THANOS!

Lo más importante de un filtro de Bloom es buscar un elemento dentro del vector S >>> mmh3.hash('thanos',1) % 10 >>> mmh3.hash('thanos',2) % 10 - Buscar si en S existe: 'thanos' 1. Calculamos las funciones hash, la salida >>> mmh3.hash('thanos',3) % 10 será el índice que debemos cambiar a 1. 2 3 5 1 10 Si todos los índices (arrojados de la función hash) son 1s, entonces decimos que: 'thanos' probablemente están presente en S

FALSOS POSITIVOS

FALSOS POSITIVOS

Dependiendo de la aplicación, un falso positivo puede representar un gran problema o simplemente mantenerse.

¿Cómo reducir los falsos positivos?

- · Más espacio (incrementar el tamaño del arreglo)
- · Incrementar el número de k (funciones hash)

FALSOS POSITIVOS (1)

 La probabilidad de que 1 bit no sea puesto a 1 durante el registro de un elemento es

$$1-\frac{1}{m}$$

· Para k funciones hash esto es

$$\left(1-\frac{1}{m}\right)^{kn}$$

• Usando la identidad de e^{-1}

$$\left(1 - \frac{1}{m}\right)^{kn} = \left(\left[1 - \frac{1}{m}\right]^m\right)^{\frac{kn}{m}} \approx e^{-\frac{kn}{m}}$$

FALSOS POSITIVOS (2)

 La probabilidad de que 1 bit sí sea puesto a 1 para m bits, n elementos y k funciones hash

$$1-\left(1-\frac{1}{m}\right)^{kn}$$

 La probabilidad de que todos los bits sean 1 y no pertenezcan al conjunto es

$$\left[1-\left(1-\frac{1}{m}\right)^{k\cdot n}\right]^{k}$$

SELECCIÓN DE FUNCIONES HASH

Propiedades de las funciones hash usadas en el filtrado de Bloom:

- Independientes
- Uniformemente distribuidas (dado un conjunto de valores, cada valor tiene la misma probabilidad de suceder).
- · Deben ser rápidas (para su cálculo)
- No criptográficas (las funciones criptográficas son más estables, pero costosas).

Cuando el número de funciones hash incrementa, el filtrado se vuelve lento.

SELECCIÓN DE FUNCIONES HASH

Ejemplos de funciones con bajas tasas de colisiones y no criptográficas:

- MURMUR: multiplicar (MU), rotar(R), multiplicar (MU), rotar(R).
- · FNV: Fowler, Noll y V es un indexador rápido
- Jenkins o HashMix

APLICACIONES DEL FILTRADO DE BLOOM

- Medium usa filtros de Bloom para recomendar publicaciones a los usuarios, filtrando las publicaciones que ya ha visto el usuario
- Quora filtra historias no vistas.
- Google Chrome usó filtros de Bloom para detectar URLs maliciosas.