For
$$s = high$$
, $a = seach$, $s' = high$

A search: $(1) P(s', \pi-1|s,a)$
 $P(s'|s,a)$
 $P(s'|s,a) = \lambda n search$
 $P(s'|s,a) = \lambda (s',n=1|s,a) + p(s',n=o|s,a)$
 $P(s',n=o|s,a) = \lambda - \lambda n search$

• Similarly for
$$g = high$$
, $q = geach$, $g' = low$

$$p(g', n = 1|g,q) = (1-L) quench$$

$$p(g', n = 0|g,q) = (1-L) - (1-L) quench$$

• Similarly for selow, as sewith, s'slow
$$b(s', n=1|s,a) = b$$
 answers
$$p(s', n=0|s,a) = b - b$$
 answers

Table:

5	a	5′	91	P(5/57/5/4)
High	Sourch	high	0	L-d nocach
High	Search	High	, i	of Argentich
High	Senor	how	0	(1-d) - (1-d) nganh
Mig h	Seanch	Low	1	(1-d) ngewah
Low	Search	Low	0	B-B Ascanch
Low	Search	لـوت	1	Bryenous
Low	Seven	High	- 3	1-15
Low	Wait	Low	0	1- 9 wait
Lau	Wait	Low	1	quait

9	٩	5'	7	(2),n/9,a)
Migh Migh Low	Writ Writ Rechtage	High High	0 1	1- nunit nunit

Jues 3
(9) E-

(a) Exercise 3.15

The signs of the newards are not important but intownly between them are.

Gt= Rty+ YRtyz+ 2º Rt+8.. = ZYh Rt+k+1

IF we add congtant to all newards then,

GT - QQQQQ ZYhRt+k+1+c) = Gt + Zyhc

L=0

=) bt' = bt + xic = bt + de

 $V_{\pi}(9)' = E_{\pi} [6t' | 5t=9]$ $= E_{\pi} [6t + 4c | 5t=9]$ $= E_{\pi} [6t | 5t=9] + E_{\pi} [4c | 5t=9]$ $= V_{\pi}(9) + 4c$

> Ve= L 1-2 Thus only constant. Fe is added to va on?
incheasing newards to va

(b) Exencise 3.16 Adding a constant (c) to all newands in an episodic task will effect the tasks. (onsides the following episodic task: (0,0) and (3,3) are teaminal states greward for each action (-1) Optimal Policy would ensure shortest path to either of the terminal states. Now if the newands are -1+c (C>1) then optimal policy changes, also value functions will for any policy will be different as it would never try to go to teaminal States tormacilmizing neward

Des 5.
$$V_{x}(b) = \max_{q \in A(b)} q_{x^{q}}(q_{y}s)$$

= $\max_{q \in A(b)} E_{x^{q}}[G_{t} | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} G_{t+1} | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$

= $\max_{q \in A(b)} E_{x^{q}}[K_{t} + Y_{t} V_{t}(S_{t+1}) | A_{t=q}, S_{t=g}]$