

Universidade de Aveiro

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

DESEMPENHO E DIMENSIONAMENTO DE REDES

Network Simulation

8240 - MESTRADO INTEGRADO EM ENGENHARIA DE COMPUTADORES E TELEMÁTICA

Bernardo Ferreira Bruno Silva NMec: 67413 | P4G1 NMec: 68535 | P4G1

Docente: Susana Sargento

Maio de 2016 2015-2016

Conteúdos

1	Introdução	2
2	Exercício 1 e 2	3
3	Exercício 3	10
4	Exercício 4 e 5	12
5	Exercício 6 e 7	14
6	Exercício 9 e 10	15
7	Exercício 11	16
8	Exercício 12	17
9	Exercício 13	18
10	Exercício 14	22
11	Conclusão	25

1 Introdução

Este relatório vem explicar as conclusões retiradas da observação e compreensão de diferentes simulações de redes de comutação de circuitos virtuais e de comutação de pacotes.

Este relatório vai ser estruturado da mesma forma que o guião, seguindo a mesma numeração dos exercícios.

P4G1
Bernardo Ferreira nmec: 67413

2 Exercício 1 e 2

Neste primeiro exercício era pedido que se obtivesse os valores simulados e teóricos, da probabilidade de bloqueio e de ocupação da ligação para diferentes valores de λ (pedidos por minuto), $1/\mu$ (duração de cada pedido, em minutos) e B (largura de banda). Nas seguintes imagens encontram-se os resultados das experiências realizadas.

Figura 1: Variação da largura de banda com 1 pedidos por minuto, com 10 minutos de duração

P4G1
Bernardo Ferreira nmec: 67413

DDR-2015/2016

4

Figura 2: Variação da largura de banda com 3 pedidos por minuto, com 10 minutos de duração cada

Figura 3: Variação da largura de banda com 1 pedidos por minuto, com 2 minutos de duração

P4G1
Bernardo Ferreira nmec: 67413

Figura 4: Variação da largura de banda com 3 pedidos por minuto, com 2 minutos de duração cada

Como é possível verificar nas imagens acima, independentemente do número de pedidos por minuto e a duração dos mesmos, a probabilidade de bloqueio e a ocupação da ligação tendem a diminuir com o aumento da largura de banda.

P4G1
Bernardo Ferreira nmec: 67413

6

Figura 5: Variação dos pedidos por minuto com largura de banda de 16 Mbits/sec e com pedidos de 10 minutos de duração

Figura 6: Variação dos pedidos por minuto com largura de banda de 16 Mbits/sec e com pedidos de 2 minutos de duração

P4G1 Bernardo Ferreira nmec: 67413

DDR-2015/2016

7

Figura 7: Variação dos pedidos por minuto com largura de banda de 32Mbits/sec e com pedidos de 10 minutos de duração

Figura 8: Variação dos pedidos por minuto com largura de banda de 32 Mbits/sec e com pedidos de 2 minutos de duração

Observando as imagens acima, é possível concluir que independentemente

P4G1
Bernardo Ferreira nmec: 67413

da duração dos pedidos e da largura de banda, a probabilidade de bloqueio e a ocupação da ligação tendem a diminuir com o aumento dos pedidos por minuto.

Figura 9: Variação da duração dos pedidos com largura de banda de 16 Mbits/sec e com 1 pedidos por minuto

P4G1

Figura 10: Variação da duração dos pedidos com largura de banda de 16 Mbits/sec e com 3 pedidos por minuto

Figura 11: Variação da duração dos pedidos com largura de banda de 32 Mbits/sec e com 1 pedidos por minuto

P4G1
Bernardo Ferreira nmec: 67413

DDR-2015/2016

Figura 12: Variação da duração dos pedidos com largura de banda de 32Mbits/sec e com 3 pedidos por minuto

Como é possível verificar nas imagens acima, independentemente do número de pedidos por minuto e a largura de banda disponível, a probabilidade de bloqueio e a ocupação da ligação tendem a aumentar quanto maior a duração dos pedidos realizados.

3 Exercício 3

No terceiro exercício, os pedidos passaram a ser de dois tipos, um standard, com largura de banda de 2 Mbits/sec, e um especial, com largura de banda de 4 Mbits/sec. No caso dos especiais, os nós possuem ainda uma quantidade R de Mbit/s reservados para os pedidos especiais. Os resultados obtidos para diferentes valores de λ standard e especial, $1/\mu$, largura de banda e largura de banda reservada foram os seguintes:

P4G1
Bernardo Ferreira nmec: 67413

		PBN	PBS	Link Load
$1/\mu \text{ (min)}$ B (Mbits/sec) R (Mbits/sec)	2 16	0%	8.9%	69.24%
$\frac{1/\mu \text{ (min)}}{\text{B (Mbits/sec)}}$ $\frac{\text{B (Mbits/sec)}}{\text{R (Mbits/sec)}}$	10 32 16	36.7%	34.2%	166.5%

Tabela 1: Valores para λ normal e especial a 1 Req/min

		PBN	PBS	Link Load
$1/\mu \text{ (min)}$	2	22 007	45 507	1.01.907
B (Mbits/sec) R (Mbits/sec)	16	33.0%	45.5%	161.3%
$1/\mu \text{ (min)}$	10			
B (Mbits/sec)	32	84.0%	73.9%	193.5%
R (Mbits/sec)	16			

Tabela 2: Valores para λ normal a 5 Req/min e especial a 3 Req/min

Com os resultados das tabelas acima e com o conhecimento adquirido durante as aulas, é possível observar-se que, no geral, quanto maior for a capacidade do link os pedidos começam a bloquear com uma menor probabilidade. Quanto aos valores de bloqueio dos pedidos especiais podemos ver que sempre que existe uma reserva de largura de banda estritamente para estes pedidos a sua probabilidade de bloqueio é inferior aos pedidos normais. No caso em que não existe uma reserva de largura de banda para os pedidos especiais estes tem uma maior probabilidade de bloqueio o que é normal uma vez que estes necessitam de maior largura de banda.

O valor do *link load* embora que seja apresentado como superior a 100%, sabemos que isso não é possível. Ainda assim decidimos apresentar assim o valor por forma a mostrar a percentagem acima dos 100% a que o link está a ser colocado.

P4G1Bernardo Ferreira nmec: 67413

4 Exercício 4 e 5

No exercício 4 e 5 era pedido para realizar uma simulação com 1 nó com alta capacidade de processamento ligado a um link com 2Mbps, onde existia uma fila de saída do nó. Para esta simulação era pedido que se varia-se o λ e o tamanho da fila. Nas tabelas em baixo são mostrados os resultados obtidos no exercício 4 experimentalmente assim como para cada um dos modelos teóricos M/M/1, M/M/1/K, M/D/1 e M/G/1.

					Pkts Received						
			150			300			450		
		%Loss	msec	%Queue	%Loss	msec	%Queue	%Loss	msec	%Queue	
	64	0	5.741	0	0.03	36.328	20	28.21	194.4	100	
Queue	96	0	5.615	0	0	60.234	20	28.77	292.9	100	
Size	128	0	5.691	0	0	51.703	10	28.01	392.1	100	
	10000	0	5.753	0	0	39.498	0	7.19	14700	40	

Tabela 3: Valores obtidos a partir da simulação

					Pkts Received						
		150				300			450		
		%Loss	msec	%Queue	%Loss	msec	%Queue	%Loss	msec	%Queue	
	64	0	5.893	0	0	50.779	20	0	~	0	
Queue	Queue 96 0 5.893 0			0	0	50.779	10	0	~	0	
Size	Size 128 0 5.893 0			0	50.779	10	0	~	0		
	10000	0	5.893	0	0	50.779	0	0	~	0	

Tabela 4: Valores obtidos a partir da aproximação teórica M/M/1

					Pkts Received						
		150				300			450		
		%Loss	msec	%Queue	%Loss	msec	%Queue	%Loss	msec	%Queue	
	64	0	5.893	0	0.11	47.298	20	28.96	192.5	90	
Queue	96	0	5.893	0	0.01	50.107	10	28.96	292.6	100	
Size	128	0	5.893	0	0	50.662	10	28.96	392.7	100	
	10000	0	5.893	0	0	50.779	0	28.96	31272	100	

Tabela 5: Valores obtidos a partir da aproximação teórica $\mathrm{M}/\mathrm{M}/\mathrm{1}/\mathrm{K}$

P4G1 Bernardo Ferreira nmec: 67413

					P	kts Recei	ved			
		150			300			450		
		%Loss	msec	%Queue	%Loss	msec	%Queue	%Loss	msec	%Queue
	64	0	4.510	0	0	26.954	20	0	~	0
Queue	96	0	4.510	0	0	26.954	10	0	~	0
Size	128	0	4.510	0	0	26.954	10	0	~	0
	10000	0	4.510	0	0	26.954	0	0	~	0

Tabela 6: Valores obtidos a partir da aproximação teórica $\mathrm{M}/\mathrm{D}/\mathrm{1}$

					P	kts Recei	ved			
			150		300			450		
		%Loss	msec	%Queue	%Loss msec %Queue			%Loss	msec	%Queue
	64	0	4.402	0	0	25.083	0	0	~	0
Queue	96	0	4.402	0	0	25.083	0	0	~	0
Size	128	0	4.402	0	0	25.083	0	0	\sim	0
	10000	0	4.402	0	0	25.083	0	0	~	0

Tabela 7: Valores obtidos a partir da aproximação teórica M/G/1

Antes de passarmos a explicar os resultados de notar que a formula que está a ser usada para calcular a % da fila ocupada nos modelos M/M/1, M/D/1 e M/G/1 é a formula do modelo M/M/1 pois é a que se encontra nos slides e não nos foi possível encontrar outra. Para o modelo M/M/1/K está a ser usada uma própria conforme se encontra nos slides da cadeira. É importante realçar ainda que nas tabelas as células que contém o símbolo \sim significa que o valor não tem significado naquela formula pois é impossível de calcular para aqueles valores uma vez a fila ia enchendo infinitamente.

Passando agora à explicação dos resultados obtidos, temos que os modelos que mais se aproximam da simulação são os do M/M/1 quando o lambda é pequeno e não existem perdas e o M/M/1/K quando existem perdas no sistema. De notar também que em todos os modelos teóricos exceto o M/M/1/K os valores de % de perdas são 0 uma vez que estes modelos consideram filas infinitas. A ocupação da fila não é 0 pois nós uma vez que sabemos o tamanho da fila que estamos a usar na simulação calculamos a sua ocupação usando a formula que dá o numero de pacotes na fila e dividimos pelo tamanho total da fila.

Podemos ver então que para o λ de 150 os primeiros dos modelos aproximamse sem problema sendo até bastante precisos. Quando passamos para o λ de 300 ainda conseguimos aproximações viáveis com ambos os modelos embora que o M/M/1/K já considera algumas perdas de pacotes e tempos diferentes para os diferentes tamanhos de filas. Com o λ a 450 o modelo M/M/1 deixa

P4G1

de ser viável uma vez que o μ do sistema é inferior ao λ e o resultado da formula dá negativa o que significa que não é possível modelar o sistema através desse modelo. Por outro lado o M/M/1/K consegue modelar o atraso com bastante precisão tirando com a fila de tamanho 10000.

Os modelos M/D/1 e M/G/1 não conseguem modelar este sistema com tanta precisão pois a sua aplicação não é sistemas deste tipo, mais a frente no relatório vão ser apresentadas situações em que estes modelos são mais fiáveis do que o M/M/1, ainda assim os valores conseguidos podem ser observados nas tabelas acima.

5 Exercício 6 e 7

Nos exercícios 6 e 7 era pedido para realizar uma simulação usando 1 nó com uma fila finita de entrada e velocidade de processamento de 100 pacotes/segundo ligado a um link com 10Gbps. Para esta simulação e à semelhança do que foi feito no exercício anterior, variou-se o λ e o tamanho de fila. Nas tabelas seguintes estão representados os resultados obtidos experimentalmente assi como para os modelos teóricos M/M/1, M/M/1/K, M/D/1 e M/G/1.

lambda	queueSize	Loss probability	Average delay	M/M/1 Loss	M/M/1 Delay
150	64	32.21481	0.63246	0	-0.02
150	96	33.28265	0.94647	0	-0.02
150	128	32.89604	1.25789	0	-0.02
150	10000	0	17.23423	0	-0.02
300	64	66.61137	0.64304	0	-0.005
300	96	66.24766	0.95987	0	-0.005
300	128	65.99517	1.27478	0	-0.005
300	10000	33.37886	33.18838	0	-0.005
450	64	77.97474	0.64514	0	-0.00286
450	96	77.62808	0.9618	0	-0.00286
450	128	77.6058	1.27734	0	-0.00286
450	10000	55.74046	38.91887	0	-0.00286

P4G1

lambda	queueSize	M/M/1/K Loss	M/M/1/K Delay	M/D/1 Loss	M/D/1 Delay	M/G/1 Loss	M/G/1 Delay
150	64	33.33333	0.62	0	-0.005	0	0
150	96	33.33333	0.94	0	-0.005	0	0
150	128	33.33333	1.26	0	-0.005	0	0
150	10000	33.33333	99.98	0	-0.005	0	0
300	64	66.66667	0.635	0	0.0025	0	0
300	96	66.66667	0.955	0	0.0025	0	0
300	128	66.66667	1.275	0	0.0025	0	0
300	10000	66.66667	99.995	0	0.0025	0	0
450	64	77.77778	0.63714	0	0.00357	0	0
450	96	77.77778	0.95714	0	0.00357	0	0
450	128	77.77778	1.27714	0	0.00357	0	0
450	10000	77.77778	99.99714	0	0.00357	0	0

Tabela 8: Valores obtidos a partir da simulação e das aproximações teóricas M/M/1, M/M/1/K, M/D/1 e M/G/1

Como é possível verificar, os valores simulados aproximam-se bastante dos resultados obtidos na aproximação teórica M/M/1/K. Este facto já não se verifica quando olhamos para as outras aproximações.

6 Exercício 9 e 10

No exercício 9 era pedido para modelar um sistema em que tínhamos dois nós colocados em série. Cada nó tem uma alta capacidade de processamento e está ligado a um link de 2Mbps. Era depois pedido para inferir os valores estatísticos da simulação e comparar com os calculados teoricamente usando a aproximação de Kleinrock.

		Pkts Received							
		150		300		450			
		Avg. Delay	% Loss	Avg. Delay	% Loss	Avg. Delay	% Loss		
	64	11.786	0	101.558	0.11	~	28.96		
Queue	96	11.786	0	101.558	0.01	~	28.96		
Size	128	11.786	0	101.558	0	~	28.96		
	10000	11.786	0	101.558	0	~	28.96		

Tabela 9: Valores obtidos teoricamente. Valores de atraso em mseg.

P4G1
Bernardo Ferreira nmec: 67413

						Pkts Received								
			15	0			300)		450				
		Avg.		% Lo	SS	Avg.		% Los	SS	Avg.	9/	% Loss		
		Delay	N1	N2	Total	Delay	N1	N2	Total	Delay	N1	N2	Total	
Queue	64	10.434	0	0	0	65.041	0.13	0	0.13	199.799	28.55	0	28.55	
Queue	96	10.462	0	0	0	44.514	0	0	0	298.8	28.57	0	28.57	
Size	128	10.369	0	0	0	45.377	0	0	0	396.873	27.92	0	27.92	
Size	10000	10.602	0	0	0	42.675	0	0	0	14588	6.6	0	6.6	

Tabela 10: Valores obtidos a partir da simulação. Valores de atraso em mseg.

Neste exercício tínhamos um router com o mesmo cenário do exercício 4 mas desta vez encontravam-se dois em série. Pela aproximação de Kleinrock temos que cada ligação é vista como um sistema $\rm M/M/1$ e o atraso total do sistema vai ser dado pela soma dos atrasos dos dois routers.

Olhando agora para os resultados obtidos vimos que a aproximação é bastante exata enquanto não existem perdas no sistema, isto é quando o λ é 150. A partir do momento que existem perdas no sistema o modelo M/M/1 não contempla essas situações. Com o λ a 450 vimos que já nem é possível modelar o sistema através deste modelo.

7 Exercício 11

Neste exercício era pedido para realizar também uma simulação com dois routers em série mas desta vez a limitação não se encontrava nos links mas sim nos routers, com um cenário semelhante ao exercício 5.

							Pkts Received						
			150		300			450					
Avg.		% Loss		Avg.	% Loss		Avg.	% Loss		S			
		Delay	N1	N2	Total	Delay	N1	N2	Total	Delay	N1	N2	Total
	64	8.326	0	0	0	126.047	1.42	0	1.42	215.575	33.58	0	33.58
Queue	96	8.349	0	0	0	178.064	1.05	0	1.05	321.564	33.31	0	33.31
Size	128	8.357	0	0	0	256.328	0.73	0	0.73	426.747	32.88	0	32.88
	10000	8.412	0	0	0	328.143	0	0	0	16989	10.99	0	10.99

Tabela 11: Valores obtidos a partir da simulação. Valores de atraso em mseg.

P4G1Bernardo Ferreira nmec: 67413

		Pkts Received				
		150	300	450		
		Avg. Delay	Avg. Delay	Avg. Delay		
	64	8.333	\sim	\sim		
Queue Size	96	8.333	~	~		
Queue bize	128	8.333	~	2		
	10000	8.333	~	~		

Tabela 12: Valores obtidos a partir da aproximação teórica. Valores de atraso em mseg.

Para calcular os resultados teóricos desta simulação foi usada mais uma vez a aproximação de Kleinrock, mas desta vez para o calculo do atraso foi somado o atraso na fila de entrada com o tempo de processamento dos dois routers. Não foi somado o atraso da fila de entrada do segundo router pois este era desprezável uma vez que como os routers tem a mesma capacidade de processamento o fluxo de pacotes que sai do primeiro router coincide com o ritmo de pacotes que o segundo consegue processar. Por forma a ser possível realizar o cálculo o λ considerado foi 301 e não 300 pelo facto do μ do router ser 300.

Olhando agora para os resultados temos que esta aproximação só funciona para o caso em que o λ é 150 pois os outros estão fora do conjunto de condições que a formula exige para os valores serem válidos. No entanto a aproximação é bastante precisa no tempo de atraso como se pode verificar.

8 Exercício 12

No exercício 5 era pedido para realizar uma simulação com apenas um router mas com uma fila de entrada e uma de saída. Era dada a capacidade de processamento do router (300 Pkts/seg) e a largura de banda do link (2 Mbps).

P4G1 Bernardo Ferreira nmec: 67413

		Pkts Received						
		150		300		450		
		Avg. Delay	% Loss	Avg. Delay	% Loss	Avg. Delay	% Loss	
		Delay	/(LOSS	Delay	/(LOSS	Delay	/0 LOSS	
	64	9.930	0	130.430	0.54	234.405	33.30	
Queue	96	9.745	0	203.122	0.88	338.655	33.13	
Size	128	9.720	0	225.531	0.22	444.517	32.77	
	10000	9.947	0	220.900	0	16620	10.94	

Tabela 13: Valores obtidos a partir da simulação. Valores de atraso em mseg.

		Pkts Received				
		150	300	450		
		Avg. Delay	Avg. Delay	Avg. Delay		
	64	10.893	\sim	\sim		
Queue Size	96	10.893	~	~		
Queue Size	128	10.893	~	2		
	10000	10.893	~	~		

Tabela 14: Valores obtidos a partir da simulação. Valores de atraso em mseg.

Para realizar o calculo deste atraso foi considerado o atraso da fila de entrada, o atraso no processamento do router e o atraso na fila de saída. Para isto foi necessário calcular dois μ um usado no calculo do atraso na fila de entrada e no processamento do router foi a velocidade de processamento do router (300) e outro que dependia dos tamanhos dos pacotes para calcular o atraso na fila de saída usando um modelo M/M/1. Por forma a ser possível realizar o cálculo o λ considerado foi 301 e não 300 pelo facto do μ do router ser 300.

Embora a formula apenas tenha valores válidos para o $\lambda=150$ vimos que é semelhante o valor podendo assim afirmar que este modelo proporciona uma boa aproximação.

9 Exercício 13

No exercício 13 era pedido que se simulasse o comportamento do transporte de pacotes de duas redes, LAN A e LAN B, para a Internet. Vão existir 4

P4G1 18

nós, cada um com duas filas de espera, pelo que para se calcular o atraso, terá de se somar os atrasos intermédios em cada nó. A largura de banda de banda considerada para os links foi de 10 Mbits/sec. Para a simulação que realizamos, testamos com todas as combinações possíveis de lambda, velocidade de processamento do router e tamanho das filas de espera, no entanto por motivos de apresentação, colocamos na tabela seguinte apenas os resultamos obtidos para lambdas iguais na LAN A e LAN B. Para uma análise mais aprofundada dos resultados obtidos, disponibizámos um ficheiro txt com todas simulações efetuadas. Para as conclusões que tirámos, consideramos todos os resultados e não apenas os apresentados na tabela.

Olhando para os resultados obtidos é possível observar que como era esperado, quando se aumenta o lambda e quanto mais baixa for a velocidade de processamento do router, maior será o número de pacotes perdidos. Observando agora o esquema da rede considerada, é possível observar que o ponto onde as perdas vão ser maiores será no Node 3, visto que recebe pacotes dos links dos Nodes 1 e 2. No caso do Node 4, neste já não haverá qualquer perda pois recebe apenas os pacotes processados do Node 3.

P4G1

LambdaA	LambdaB	Routing Speed	Queue Size	Loss	Delay
150	150	500	64	0	0.00977
150	150	750	64	0	0.00662
150	150	1000	64	0	0.00542
150	150	500	96	0	0.00978
150	150	750	96	0	0.00662
150	150	1000	96	0	0.0054
150	150	500	128	0	0.00974
150	150	750	128	0	0.00661
150	150	1000	128	0	0.00544
150	150	500	192	0	0.00983
150	150	750	192	0	0.00664
150	150	1000	192	0	0.0054
150	150	500	256	0	0.00975
150	150	750	256	0	0.00665
150	150	1000	256	0	0.0054
300	300	500	64	17.115	0.13311
300	300	750	64	0	0.00917
300	300	1000	64	0	0.0063
300	300	500	96	16.406	0.196
300	300	750	96	0	0.00926
300	300	1000	96	0	0.0063
300	300	500	128	16.13	0.25949
300	300	750	128	0	0.00909
300	300	1000	128	0	0.00633
300	300	500	192	16.573	0.38499
300	300	750	192	0	0.00911
300	300	1000	192	0	0.00632
300	300	500	256	16.701	0.51097
300	300	750	256	0	0.00932
300	300	1000	256	0	0.00634

P4G1 Bernardo Ferreira nmec: 67413

LambdaA	LambdaB	Routing Speed	Queue Size	Loss	Delay
450	450	500	64	44.228	0.14373
450	450	750	64	16.877	0.08949
450	450	1000	64	0	0.011
450	450	500	96	44.225	0.20805
450	450	750	96	16.371	0.13193
450	450	1000	96	0	0.0109
450	450	500	128	44.342	0.27138
450	450	750	128	17.028	0.17384
450	450	1000	128	0	0.01093
450	450	500	192	44.13	0.39865
450	450	750	192	16.067	0.25802
450	450	1000	192	0	0.01066
450	450	500	256	43.527	0.52428
450	450	750	256	16.345	0.34298
450	450	1000	256	0	0.0105
600	600	500	64	58.17	0.25839
600	600	750	64	37.572	0.0935
600	600	1000	64	16.285	0.07147
600	600	500	96	57.813	0.38515
600	600	750	96	37.359	0.13605
600	600	1000	96	16.138	0.10359
600	600	500	128	58.117	0.51122
600	600	750	128	37.358	0.17846
600	600	1000	128	16.412	0.13534
600	600	500	192	57.855	0.76288
600	600	750	192	37.285	0.26339
600	600	1000	192	16.248	0.19876
600	600	500	256	57.657	1.01346
600	600	750	256	37.225	0.34811
600	600	1000	256	16.46	0.26305

Tabela 15: Resultados da simulação efetuada para Lambdas iguais

P4G1Bernardo Ferreira nmec: 67413

10 Exercício 14

No exercício 14 era mais uma vez pedido que se simulasse o comportamento do transporte de pacotes de duas redes, LAN A e LAN B, para a Internet, no entanto, neste caso, existem dois links adicionais no sentido Internet->Node 1 e Internet->Node 2. Para o cálculo do atraso, foram novamente considerados todos os atrasos intermédios em cada Nó e cada Link. A largura de banda de banda considerada para os links foi de 10 Mbits/sec. Para a simulação que realizamos, testamos mais uma vez com todas as combinações possíveis de lambda, velocidade de processamento do router e tamanho das filas de espera. Disponibizámos novamente um ficheiro txt com todas simulações efetuadas. Para as conclusões que tirámos, consideramos todos os resultados e não apenas os apresentados na tabela.

P4G1 22

23

LambdaA	LambdaB	Routing Speed	Queue Size	Loss	Delay
150	150	500	64	24.317	0.75799
150	150	750	64	0	0.04397
150	150	1000	64	0	0.02214
150	150	500	96	23.706	1.15255
150	150	750	96	0	0.04225
150	150	1000	96	0	0.02244
150	150	500	128	23.382	1.52697
150	150	750	128	0	0.04583
150	150	1000	128	0	0.02237
150	150	500	192	21.491	2.28622
150	150	750	192	0	0.04393
150	150	1000	192	0	0.02212
150	150	500	256	22.721	3.0199
150	150	750	256	0	0.04918
150	150	1000	256	0	0.02232
300	300	500	64	68.038	0.66844
300	300	750	64	44.055	0.4856
300	300	1000	64	24.331	0.38361
300	300	500	96	67.935	0.99263
300	300	750	96	44.42	0.73389
300	300	1000	96	25.011	0.57179
300	300	500	128	67.89	1.30127
300	300	750	128	46.291	0.95792
300	300	1000	128	24.256	0.76327
300	300	500	192	67.461	1.98745
300	300	750	192	44.356	1.45077
300	300	1000	192	24.386	1.1416
300	300	500	256	66.672	2.52135
300	300	750	256	44.475	1.93284
300	300	1000	256	22.125	1.54018

P4G1 Bernardo Ferreira nmec: 67413

LambdaA	LambdaB	Routing Speed	Queue Size	Loss	Delay
450	450	500	64	75.388	1.00025
450	450	750	64	66.273	0.45337
450	450	1000	64	54.876	0.35796
450	450	500	96	75.391	1.49392
450	450	750	96	65.731	0.62144
450	450	1000	96	51.993	0.54225
450	450	500	128	74.903	1.99142
450	450	750	128	64.593	0.92568
450	450	1000	128	54.508	0.70369
450	450	500	192	78.055	2.93274
450	450	750	192	65.874	1.31306
450	450	1000	192	49.046	1.08924
450	450	500	256	80.398	3.72554
450	450	750	256	66.376	1.79439
450	450	1000	256	52.919	1.39267
600	600	500	64	83.138	0.90681
600	600	750	64	74.042	0.51867
600	600	1000	64	69.132	0.33215
600	600	500	96	83.528	1.47743
600	600	750	96	73.696	0.98737
600	600	1000	96	69.276	0.49021
600	600	500	128	85.252	1.90377
600	600	750	128	72.598	0.68621
600	600	1000	128	62.616	0.69741
600	600	500	192	82.262	2.92032
600	600	750	192	74.47	1.68579
600	600	1000	192	69.325	0.97092
600	600	500	256	87.409	3.41212
600	600	750	256	76.032	2.37819
600	600	1000	256	68.51	1.25725

Tabela 16: Resultados da simulação efetuada para Lambdas iguais

Olhando para os resultados obtidos é possível observar que como era esperado, quando se aumenta o lambda e quanto mais baixa for a velocidade de processamento do router, maior será o número de pacotes perdidos. Observando agora o esquema da rede considerada, é possível observar que os nós mais afetados pelo tráfego serão os nós 3 e 4, visto que terão de processar pacotes de 3 links diferentes. Isto resulta obviamente num acrescido número

P4G1 24

de perdas comparando com o exercício anterior.

11 Conclusão

Com este trabalho prático, podemos conhecer e experimentar diferentes simulações de redes de comutação de circuitos virtuais e de comutação de pacotes, de forma a ganhar um conhecimento mais aprofundado sobre a forma com que os routers processam pacotes e as suas implicações aquando o planeamento de redes.

P4G1 25