# **Hierarchical Bayesian Models**

2022 CMMC Summer School
Laura Fontanesi
Chris Donkin
Michael Nunez

#### The Rate Problem

- Assume you are given a test that consist of 10 factual questions of equal difficulty. We want to estimate your ability, which we define as the rate θ with which you answer questions correctly
- Suppose you answer 9 out of 10 questions correctly.

# **Graphical Models**

#### **Graphical Model for the Rate Problem**



$$heta \sim \mathrm{Beta}(1,1)$$

$$k \sim \text{Binomial}(\theta, n)$$

# **Graphical Model Notation**

Table 9.1 Notation for nodes used in graphical models

|                    | Type of Variable |            |  |  |
|--------------------|------------------|------------|--|--|
| Status of Variable | Discrete         | Continuous |  |  |
| Observed           |                  |            |  |  |
| Unobserved         |                  |            |  |  |
| Stochastic         |                  |            |  |  |
| Deterministic      |                  |            |  |  |

#### Individuals

- Now say there is a class of 30 students, all doing the same 10 question test.
- For each individual, get a score out of 10
  - So we have k=[5, 6, 8, 7, ...]

#### **Your Options**

- No individual differences
  - assume participants have identical knowledge, θ
- Full individual differences
  - assume participants have their own knowledge,  $\theta_i$
- Structured individual differences
  - assume participants knowledge has some consistent structure,  $\theta_i \sim Dist$

# **Hierarchical Modeling**



#### **Hierarchical Models**

- Share information
- Better at predicting new data
- Protect against outliers

- Standard method is 'no individual differences'
  - Each individual treated as equally informative
  - Hierarchical models underweight outliers

#### **JAGS** code for Simple Regression

```
model {
   ## Priors ##
   alpha \sim dnorm(0, 1)
   beta \sim dnorm(0, 1)
   sigma \sim dnorm(0, pow(5, -2)) T(0,) # Half-normal
   ## Likelihood ##
   for (t in 1:trials) {
       RT hat[t] <- x[t]*beta + alpha
       RT[t] ~ dnorm(RT hat[t], pow(sigma, -2))
          What is the graphical model?
```

### **Graphical Model for Simple Regression**



# What is the graphical model for a hierarchical linear regression over participants?

# Graphical Model for Hierarchical Regression



$$\mu_{\alpha} \sim \mathcal{N}(0,5); \sigma_{\alpha} \sim \mathcal{H}\mathcal{N}(0,5)$$

$$\mu_{\beta} \sim \mathcal{N}(0,5); \sigma_{\beta} \sim \mathcal{H}\mathcal{N}(0,5)$$

$$\sigma \sim \mathcal{HN}(0,5)$$

$$\alpha_s \sim \mathcal{N}(\mu_\alpha, \sigma_\alpha); \beta_s \sim \mathcal{N}(\mu_\beta, \sigma_\beta)$$

$$\hat{RT}_{t,s} = \mathbf{X}_{t,s} \boldsymbol{\beta}_s + \alpha_s; RT_{t,s} \sim \mathcal{N}(\hat{RT}_{t,s}, \sigma)$$

#### JAGS code for Hierarchical Regression

```
model {
     ## Hyperpriors ##
      mu alpha \sim dnorm(0, pow(5, -2))
     sigma_alpha ~ dnorm(0, pow(5, -2)) T(0,) # Half-normal
      mu beta \sim dnorm(0, pow(5, -2))
      sigma beta ~ dnorm(0, pow(5, -2)) T(0,) # Half-normal
     ## Priors ##
     sigma \sim dnorm(0, pow(5, -2)) T(0,) # Half-normal
     for (s in 1:nparticipants) {
            alpha[s] ~ dnorm(mu alpha, pow(sigma alpha, -2))
            beta[s] ~ dnorm(mu beta, pow(sigma beta, -2))
            ## Likelihood ##
           for (t in 1:ntrials) {
                  RT hat[t,s] <- x[t,s]*beta[s] + alpha[s]
                  RT[t,s] \sim dnorm(RT hat[t,s], pow(sigma, -2))
```

# **Signal Detection Theory**

# **Recognition Memory**



## **Signal Detection Theory**

- Applicable to 2AFC experiments or any situation that can be conceived as a 2 x 2 table of counts
- There are 'signal' trials and 'noise' trials, and 'yes' responses and 'no' responses

|              | Signal Trial | Noise Trial       |
|--------------|--------------|-------------------|
| Yes Response | Hit          | False Alarm       |
| No Response  | Miss         | Correct Rejection |

 The data for SDT analysis are just counts of hits, false alarms, misses and correct rejections

# **Equal-variance Gaussian Signal Detection Theory Framework**



mean of noise = 0

d = discriminability (the distance between the means of the signal and noise distributions)

d/2 = criterion value at whichboth signal and noisedistributions are equally likely

k = actual criterion used for responding

c = distance between k and d/2

# **Graphical Model**



#### Code

```
# Signal Detection Theory
model{
 for (j in 1:k){
 # Observed counts
  h[j] ~ dbin(thetah[j],s[j])
                                Use hit and FA rates to model hit and
  f[j] ~ dbin(thetaf[j],n[j])
                                FA counts
  # Reparameterization Using Equal-Variance Gaussian SDT
  thetah[j] <- phi(d[j]/2-c[j])
                                  Hit and FA rates from SDT
  thetaf[j] <- phi(-d[j]/2-c[j])
  # These Priors over Discriminability and Bias Correspond
  # to Uniform Priors over the Hit and False Alarm Rates
  d[j] \sim dnorm(0,0.5)
                             Priors on SDT parameters
  c[j] \sim dnorm(0,2)
```

#### **Exercise**

 Consider the results from the following recognition memory experiment with odors:

Table 9.2: Recognition memory for odors reported by Lehrner et al. (1995).

|           | Control Group |          | $\operatorname{Gro}$ | Group I  |          | Group II |  |
|-----------|---------------|----------|----------------------|----------|----------|----------|--|
|           | Old Odor      | New Odor | Old Odor             | New Odor | Old Odor | New Odor |  |
| Old Resp. | 148           | 29       | 150                  | 40       | 150      | 51       |  |
| New Resp. | 32            | 151      | 30                   | 140      | 40       | 139      |  |

What conclusions can you draw?

#### **Individual Differences**

- The data from this recognition memory experiment with odors came from individuals
- We can estimate the parameters for these individuals separately

#### Exercise

- Open ind\_SDT.txt and edit it to estimate different parameters for each individual
- Use ind\_SDT\_jags.r to
  - make the data
  - edit the code so that it estimates parameters
  - look at parameters for individuals
  - Anything odd?

#### Code

```
# Signal Detection Theory
model{
 for (j in 1:k){
  for (i in 1:ns){
  # Observed counts
                                   Use hit and FA rates to model hit and
   h[i,j] \sim dbin(thetah[i,j],s[i,j])
                                   FA counts
   f[i,j] \sim dbin(thetaf[i,j],n[i,j])
   # Reparameterization Using Equal-Variance Gaussian SDT
   thetah[i,j] <- phi(d[i,j]/2-c[i,j])
                                      Hit and FA rates from SDT
   thetaf[i,j] <- phi(-d[i,j]/2-c[i,j])
   # These Priors over Discriminability and Bias Correspond
   # to Uniform Priors over the Hit and False Alarm Rates
   d[i,j] \sim dnorm(0,0.5)
                             Priors on SDT parameters
   c[i,j] \sim dnorm(0,2)
```

#### Exercise

- Open hier\_SDT.txt and edit it so that each individual's parameters come from population-level Normal distributions
- Use hier\_SDT\_jags.r to
  - What do the population-level parameters look like?

#### **Signal Detection Code**

```
model{
  for (j in 1:k){
   for (i in 1:ns){
      h[i,j] \sim dbin(thetah[i,j], s[i,j])
      f[i,j] ~ dbin(thetaf[i,j], n[i,j])
      thetah[i,j] <- phi(d[i,j]/2 - c[i,j])
      thetaf[i,i] \leftarrow phi(-d[i,i]/2 - c[i,i])
      d[i,j] \sim dnorm(D[j], precD[j])
      c[i,j] \sim dnorm(C[j], precC[j])
   D[j] \sim dnorm(2, 1)
    precD[j] \sim dgamma(0.001, 0.001)
   C[j] \sim dnorm(0, 2)
    precC[j] ~ dgamma(0.001, 0.001)
```

#### What about Participant 5?

- The weakness of the full individual differences model is evident in its predictions for Subject 5
- Because each subject is assumed to have their own parameters, the only information the model has about the new subject are the priors
- Intuitively, we might predict that Subject 5 will have parameters represented by some sort of average of Subjects 1-4