PSALTer results panel

$$S = \iiint (\rho \varphi + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \frac{1}{2} \alpha_{.2} \partial_{\alpha} \varphi \partial^{\alpha} \varphi + \frac{1}{8} \alpha_{.1} (24 (1 + \varphi) \partial_{\alpha} \partial^{\alpha} \varphi - 8 \partial_{\alpha} h^{\beta}_{\ \beta} \partial^{\alpha} \varphi + 8 \partial^{\alpha} \varphi \partial_{\beta} h^{\beta}_{\ \alpha} - 4 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} + 4 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} + 2 \partial^{\beta} h^{\alpha}_{\ \alpha} - \partial_{\beta} h^{\chi}_{\ \chi} \partial^{\beta} h^{\alpha}_{\ \alpha} + 2 \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\chi} h^{\chi}_{\ \beta} - 2 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta}) - \alpha_{.6} (8 \partial_{\beta} \partial_{\alpha} h^{\chi}_{\ \chi} \partial^{\beta} \partial^{\alpha} \varphi + 16 \partial_{\beta} \partial_{\alpha} \varphi \partial^{\beta} \partial^{\alpha} \varphi - 8 \partial^{\beta} \partial^{\alpha} \varphi \partial_{\chi} \partial_{\alpha} h^{\chi}_{\ \beta} - 8 \partial^{\beta} \partial^{\alpha} \varphi \partial_{\chi} \partial_{\beta} h^{\chi}_{\ \alpha} + 8 \partial_{\alpha} \partial^{\alpha} \varphi (4 \partial_{\beta} \partial^{\beta} \varphi - \partial_{\chi} \partial_{\beta} h^{\beta\chi} + \partial_{\chi} \partial^{\chi} h^{\beta}_{\ \beta}) + \partial_{\chi} \partial_{\beta} h^{\delta}_{\ \delta} \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} + 2 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h^{\chi}_{\ \beta} + 2 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\beta}_{\ \beta} - 4 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\delta} \partial_{\chi} h^{\beta}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\alpha\beta} - 4 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\delta} \partial_{\chi} h^{\beta}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\alpha\beta} - 4 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\delta} \partial_{\chi} h^{\beta}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h^{\alpha}_{\ \alpha} + 2 \partial^{\chi} \partial_{\beta} h^{\alpha}_{\ \alpha} \partial_{\delta} \partial^{\delta} h^{\chi}_{\ \beta} - 4 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\delta} \partial_{\chi} h^{\beta}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h^{\alpha}_{\ \alpha} + 2 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\delta} \partial^{\delta} h^{\chi}_{\ \beta} - 4 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\delta} \partial_{\chi} h^{\beta}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h^{\alpha}_{\ \alpha} - 4 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\delta} \partial_{\chi} h^{\beta}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\beta}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\beta}_{\ \beta}) + \partial_{\chi} \partial^{\chi} h^{\beta}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\gamma}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\gamma}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\gamma}_{\ \beta} + \partial_{\chi} \partial^{\chi} \partial^{\gamma} h^{\gamma}_{\ \beta} + \partial_{\chi} \partial^{\chi} \partial^{\gamma} h^{\gamma}_{\ \beta} + \partial_{\chi} \partial^{\chi} \partial^{\gamma} h^{\gamma}_{\ \beta} + \partial_{\chi} \partial^{\chi} h^{\gamma}_{\ \beta} + \partial_{\chi} \partial^{\gamma} \partial^{\gamma} h^{\gamma}_{\ \beta$$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^+\mathcal{T}^\perp == 0$	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
$\frac{1}{2}\mathcal{T}^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected g	4	

Massive spectrum

Massive particle		Massive particle	
Pole residue:	$\left \frac{4}{\alpha_{\cdot}}\right > 0$	Pole residue:	$-\frac{8}{\alpha_{i}} > 0$
Square mass:	$\frac{\frac{\alpha_{1}}{1}}{4(3\alpha_{1}-4\alpha_{1}+\alpha_{1})} > 0$	Square mass:	$\frac{\alpha_{\cdot}}{8\alpha_{\cdot}-8\alpha_{\cdot}} > 0$
Spin:	0	Spin:	2
Parity:	Even	Parity:	Even

Massless spectrum

Massless particle

•	·
Pole residue: $\frac{p^2}{\alpha} > 0$	Pole residue: $\left \frac{1+8p^2}{6\alpha + \alpha} \right > 0$
Polarisations: 2	Polarisations: 1

Massless particle

Unitarity conditions

(Demonstrably impossible)