Individual treatment effect estimation in the presence of unobserved confounding using proxies

a cohort study in stage III non-small cell lung cancer

Scientific Reports, 2022

Wouter A.C. van Amsterdam, MD, PhD March 1, 2023

Affiliations & Collaborators

- University Medical Center Utrecht
 - Joost Verhoeff, MD PhD*
 - Netanja Harlianto
 - Gijs Bartholomeus
 - Pim de Jong, MD PhD*
 - Tim Leiner, MD PhD*
 - Anne van Lindert, MD
 - Rene Eijkemenas, PhD
- New York University
 - Aahlad Puli
 - Rajesh Ranganath, PhD*
- Me
 - Then: PhD student at UMCU
 - Now: Sr. research scientist at Babylon Health
 - 2023: Assistent Prof. at UMCU

Introduction

• important decision in cancer care: how to treat?

- important decision in cancer care: how to treat?
- weigh probability of benefit versus probability of harm for available treatments

- important decision in cancer care: how to treat?
- weigh probability of benefit versus probability of harm for available treatments
- (relative) efficacy of treatments determined in RCTs for a certain population (average treatment effect: ATE)

- important decision in cancer care: how to treat?
- weigh probability of benefit versus probability of harm for available treatments
- (relative) efficacy of treatments determined in RCTs for a certain population (average treatment effect: ATE)
- for personalized treatment decision making, want to known treatment effect conditional on patient characteristics X (conditional average treatment effect: CATE)

Ideal scenario: CATE known

RCT estimates average treatment effect, which is average CATE

Why estimate CATE in observational data

CATE estimation requires too many randomized participants to have sufficient power

Potential benefits of observational data:

• Bigger sample size

Why estimate CATE in observational data

CATE estimation requires too many randomized participants to have sufficient power

Potential benefits of observational data:

- Bigger sample size
- New 'biomarkers'

RCT gives us ATE in selected population

Why estimate CATE in observational data

CATE estimation requires too many randomized participants to have sufficient power

Potential benefits of observational data:

- Bigger sample size
- New 'biomarkers'

Wider population than RCT

 Surgical treatment is preferred for patients who are fit for surgery

- Surgical treatment is preferred for patients who are fit for surgery
- Patients who are fit for surgery have better cancer survival, regardless of treatment

- Surgical treatment is preferred for patients who are fit for surgery
- Patients who are fit for surgery have better cancer survival, regardless of treatment
- survival(surgery=1)

- Surgical treatment is preferred for patients who are fit for surgery
- Patients who are fit for surgery have better cancer survival, regardless of treatment
- survival(surgery=1)
- \neq survival(do(surgery=1))

- Surgical treatment is preferred for patients who are fit for surgery
- Patients who are fit for surgery have better cancer survival, regardless of treatment
- survival(surgery=1)
- ≠ survival(do(surgery=1))
- Per-fitness group survival estimation resolves confounding bias (stratified / standardized / conditional / adjusted / back-door / point-treatment g-formula)

- Per-fitness group survival estimation resolves confounding bias (stratified / standardized / conditional / adjusted / back-door / point-treatment g-formula)
- Requires measurement of overall fitness

CATE estimation from observational data when some confounders are unknown

Causal inference from observational data requires (additional) assumptions

- Confounders known and measured (conditional ignorability)
- Positivity: 0 < p(t|x) < 1

Randomization ensures this

RCTs:

• time

Observational:

RCTs:

- time
- money

Observational:

RCTs:

- time
- money
- non-random patient selection

Observational:

RCTs:

- time
- money
- non-random patient selection

Observational:

• identifying assumptions (no unobserved confoundin

RCTs:

- time
- money
- non-random patient selection

Observational:

• identifying assumptions (no unobserved confoundin

Always:

• causal inference in practice is costly,

RCTs:

- time
- money
- non-random patient selection

Observational:

identifying assumptions (no unobserved confoundin

- causal inference in practice is costly,
- but it's because we're acquiring something of value

PROTECT

DAG: unobserved confounder Fitness

Can't do adjustment because of unobserved confounder fitness, only have proxy variables (performance score)

PROTECT: PROxy based individual Treatment EffeCT modeling in cancer

DAG: unobserved confounder Fitness

Can't do adjustment because of unobserved confounder fitness, only have proxy variables (performance score)

- PROTECT: PROxy based individual Treatment EffeCT modeling in cancer
- Estimate latent variable model $Pr(Y|do(T), X) = E_{F|X} Pr(Y|do(T), X, F) = E_{F|X} Pr(Y|T, X, F)$

DAG: unobserved confounder Fitness

Can't do adjustment because of unobserved confounder fitness, only have proxy variables (performance score)

- PROTECT: PROxy based individual Treatment EffeCT modeling in cancer
- Estimate latent variable model $Pr(Y|do(T), X) = E_{F|X} Pr(Y|do(T), X, F) = E_{F|X} Pr(Y|T, X, F)$
- Question 1: is treatment effect identified?

Identification, definition

Definition 3.2.3 (Identifiability)

Let Q(M) be any computable quantity of a model M. We say that Q is identifiable in a class M of models if, for any pairs of models M_1 and M_2 from M, $Q(M_1) = Q(M_2)$ whenever $P_{M_1}(v) = P_{M_2}(v)$. If our observations are limited and permit only a partial set F_M of features (of $P_M(v)$) to be estimated, we define Q to be identifiable from F_M if $Q(M_1) = Q(M_2)$ whenever $F_{M_1} = F_{M_2}$.

Loosely:

Defined with respect to model family M

Identification, definition

Definition 3.2.3 (Identifiability)

Let Q(M) be any computable quantity of a model M. We say that Q is identifiable in a class M of models if, for any pairs of models M_1 and M_2 from M, $Q(M_1) = Q(M_2)$ whenever $P_{M_1}(v) = P_{M_2}(v)$. If our observations are limited and permit only a partial set F_M of features (of $P_M(v)$) to be estimated, we define Q to be identifiable from F_M if $Q(M_1) = Q(M_2)$ whenever $F_{M_1} = F_{M_2}$.

Loosely:

- Defined with respect to model family M
- If models $m_1, m_2 \in M$ fit the data equally well

Identification, definition

Definition 3.2.3 (Identifiability)

Let Q(M) be any computable quantity of a model M. We say that Q is identifiable in a class M of models if, for any pairs of models M_1 and M_2 from M, $Q(M_1) = Q(M_2)$ whenever $P_{M_1}(v) = P_{M_2}(v)$. If our observations are limited and permit only a partial set F_M of features (of $P_M(v)$) to be estimated, we define Q to be identifiable from F_M if $Q(M_1) = Q(M_2)$ whenever $F_{M_1} = F_{M_2}$.

Loosely:

- Defined with respect to model family M
- If models $m_1, m_2 \in M$ fit the data equally well
- m_1, m_2 agree on the treatment effect

Here:

• Not identified given data and DAG

Here:

- Not identified given data and DAG
- Need additional assumptions

Here:

- Not identified given data and DAG
- Need additional assumptions
- Should come from domain knowledge

Here:

- Not identified given data and DAG
- Need additional assumptions
- Should come from domain knowledge
- Naturally expressed as (parts-of) the data generating process

Assumption

expected WHO performance score always higher with higher fitness

Assumption

- expected WHO performance score always higher with higher fitness
- e.g. logistic regression, fix sign of Fitness

What happens

• model family M now smaller: M'; $m_2 \in M, m_2 \notin M'$

What happens

- model family M now smaller: M'; $m_2 \in M, m_2 \notin M'$
- treatment effect now potentially identified* in model family
 M' (* checks but no gaurantees)

What happens

- model family M now smaller: M'; $m_2 \in M, m_2 \notin M'$
- treatment effect now potentially identified* in model family
 M' (* checks but no gaurantees)
- can exclude m_2 that says higher fitness \implies worse performance score

What happens

- model family M now smaller: M'; $m_2 \in M, m_2 \notin M'$
- treatment effect now potentially identified* in model family
 M' (* checks but no gaurantees)
- can exclude m_2 that says higher fitness \implies worse performance score
- 'buying' identification with assumptions we're comfortable with making

• Parametric models for all observed variables and latent factors

- Parametric models for all observed variables and latent factors
- Latent factor model estimation

- Parametric models for all observed variables and latent factors
- Latent factor model estimation
- (Bayesian) (non-linear) structural equation modeling

- Parametric models for all observed variables and latent factors
- Latent factor model estimation
- (Bayesian) (non-linear) structural equation modeling
- Identification criterion: unimodal posterior over treatment effect (necessary, not sufficient)

• may have multiple parameterizations of model

- may have multiple parameterizations of model
- lead to different treatment effect estimates, which one is right?

- may have multiple parameterizations of model
- lead to different treatment effect estimates, which one is right?
- want data-driven model selection procedure

- may have multiple parameterizations of model
- lead to different treatment effect estimates, which one is right?
- want data-driven model selection procedure
- derive criteria from existing assumptions

PROTECT DAG model selection assumed

PROTECT DAG model selection actual

• Much easier to predict treatment than survival

- Much easier to predict treatment than survival
- Latent factor F might copy treatment (i.e. be F_t)

- Much easier to predict treatment than survival
- Latent factor F might copy treatment (i.e. be F_t)
- Invalid treatment effect estimation as not estimating confounder F_{t,y}.

- Much easier to predict treatment than survival
- Latent factor F might copy treatment (i.e. be F_t)
- Invalid treatment effect estimation as not estimating confounder F_{t,y}.
- How to test?

- Much easier to predict treatment than survival
- Latent factor F might copy treatment (i.e. be F_t)
- Invalid treatment effect estimation as not estimating confounder F_{t,y}.
- How to test?
- On held out data:

- Much easier to predict treatment than survival
- Latent factor F might copy treatment (i.e. be F_t)
- Invalid treatment effect estimation as not estimating confounder F_{t,y}.
- How to test?
- On held out data:
 - Model with F|t,y should predict proxy W better than model with F|t

- Much easier to predict treatment than survival
- Latent factor F might copy treatment (i.e. be F_t)
- Invalid treatment effect estimation as not estimating confounder F_{t,y}.
- How to test?
- On held out data:
 - Model with F|t,y should predict proxy W better than model with F|t
 - Model with F|t,y should predict proxy W better than model with F|y

- Much easier to predict treatment than survival
- Latent factor F might copy treatment (i.e. be F_t)
- Invalid treatment effect estimation as not estimating confounder F_{t,y}.
- How to test?
- On held out data:
 - Model with F|t,y should predict proxy W better than model with F|t
 - Model with F|t, y should predict proxy W better than model with F|y
- (this is necessary but not sufficient test)

- Much easier to predict treatment than survival
- Latent factor F might copy treatment (i.e. be F_t)
- Invalid treatment effect estimation as not estimating confounder F_{t,y}.
- How to test?
- On held out data:
 - Model with F|t,y should predict proxy W better than model with F|t
 - Model with F|t, y should predict proxy W better than model with F|y
- (this is necessary but not sufficient test)
- final inference: Bayesian Model Average for all models that pass the tests

Final inference

Given models m_j , Bayesian Model Average for all models that pass the tests

PROTECT: proxy based individual treatment effect modeling in cancer

PROTECT has three steps:

1. complete a scaffold DAG for application

PROTECT: proxy based individual treatment effect modeling in cancer

PROTECT has three steps:

- 1. complete a scaffold DAG for application
- 2. provide additional domain knowledge to the DAG in the form of parametric assumptions

PROTECT: proxy based individual treatment effect modeling in cancer

PROTECT has three steps:

- 1. complete a scaffold DAG for application
- provide additional domain knowledge to the DAG in the form of parametric assumptions
- 3. follow model selection procedure

Application to state III non-small

cell lung cancer

• NSCLC Stage III: 'curate'

- NSCLC Stage III: 'curate'
 - Concurrent chemotherapy and radiotherapy

- NSCLC Stage III: 'curate'
 - Concurrent chemotherapy and radiotherapy
 - Sequential chemotherapy and radiotherapy

- NSCLC Stage III: 'curate'
 - Concurrent chemotherapy and radiotherapy
 - Sequential chemotherapy and radiotherapy
- Randomized controlled trials (RCT): Hazard ratio for concurrent vs sequential: HR = 0.84

- NSCLC Stage III: 'curate'
 - Concurrent chemotherapy and radiotherapy
 - Sequential chemotherapy and radiotherapy
- Randomized controlled trials (RCT): Hazard ratio for concurrent vs sequential: HR = 0.84
- Is concurrent better for all patients? Can we quantify effect based on pre-treatment characteristics?

- NSCLC Stage III: 'curate'
 - Concurrent chemotherapy and radiotherapy
 - Sequential chemotherapy and radiotherapy
- Randomized controlled trials (RCT): Hazard ratio for concurrent vs sequential: HR = 0.84
- Is concurrent better for all patients? Can we quantify effect based on pre-treatment characteristics?
- Data overview

- NSCLC Stage III: 'curate'
 - Concurrent chemotherapy and radiotherapy
 - Sequential chemotherapy and radiotherapy
- Randomized controlled trials (RCT): Hazard ratio for concurrent vs sequential: HR = 0.84
- Is concurrent better for all patients? Can we quantify effect based on pre-treatment characteristics?
- Data overview
 - 504 patients (out of 743 stage III) from 8 hospitals

- NSCLC Stage III: 'curate'
 - Concurrent chemotherapy and radiotherapy
 - Sequential chemotherapy and radiotherapy
- Randomized controlled trials (RCT): Hazard ratio for concurrent vs sequential: HR = 0.84
- Is concurrent better for all patients? Can we quantify effect based on pre-treatment characteristics?
- Data overview
 - 504 patients (out of 743 stage III) from 8 hospitals
 - 'intention-to-treat' treatment

- NSCLC Stage III: 'curate'
 - Concurrent chemotherapy and radiotherapy
 - Sequential chemotherapy and radiotherapy
- Randomized controlled trials (RCT): Hazard ratio for concurrent vs sequential: HR = 0.84
- Is concurrent better for all patients? Can we quantify effect based on pre-treatment characteristics?
- Data overview
 - 504 patients (out of 743 stage III) from 8 hospitals
 - 'intention-to-treat' treatment
 - age, sex, eGFR, weight loss, performance score, stage IIIA/IIIB/IIIC, histology type

PROTECT step 1: add proxies / causes of fitness and aggressiveness

• 1-dimensional continuous fitness

- 1-dimensional continuous fitness
- GLMs, parametric survival model

- 1-dimensional continuous fitness
- GLMs, parametric survival model
- estimation details:

- 1-dimensional continuous fitness
- GLMs, parametric survival model
- estimation details:
 - dealing with missing data

- 1-dimensional continuous fitness
- GLMs, parametric survival model
- estimation details:
 - dealing with missing data
 - marginalized DAG (no latent factor for behavior)

Estimation details

- HMC (NUTS)
- 16 chains
- converged chains (Rhat)
- few divergent transitions (false positives)
- unimodal posterior

Results: Average Treatment Effects

Results: (Friedman) Treatment Effect Modification

Results: Should treat probabilities

Results: Individual treatment effect estimates

sensitivity to unobserved confounder

Conclusion

• PROTECT: treatment effect estimation with proxies

Conclusion

- PROTECT: treatment effect estimation with proxies
- for NSCLC: treatment effect estimates more credible than standard adjustment, but large confidence intervals

Conclusion

- PROTECT: treatment effect estimation with proxies
- for NSCLC: treatment effect estimates more credible than standard adjustment, but large confidence intervals
- point estimate smaller than RCT estimate, robust to unobserved confounders of reasonable strength

• cost of causal inference (CATEs, most valueable for treatment decision making):

- cost of causal inference (CATEs, most valueable for treatment decision making):
 - RCTs: time/money, selection

- cost of causal inference (CATEs, most valueable for treatment decision making):
 - RCTs: time/money, selection
 - observational: assumptions

- cost of causal inference (CATEs, most valueable for treatment decision making):
 - RCTs: time/money, selection
 - observational: assumptions
- PROTECT:

- cost of causal inference (CATEs, most valueable for treatment decision making):
 - RCTs: time/money, selection
 - observational: assumptions
- PROTECT:
 - can deal with unobserved confounding (if assumptions hold)

- cost of causal inference (CATEs, most valueable for treatment decision making):
 - RCTs: time/money, selection
 - observational: assumptions
- PROTECT:
 - can deal with unobserved confounding (if assumptions hold)
 - always need positivity (does it hold in this application?)

- cost of causal inference (CATEs, most valueable for treatment decision making):
 - RCTs: time/money, selection
 - observational: assumptions
- PROTECT:
 - can deal with unobserved confounding (if assumptions hold)
 - always need positivity (does it hold in this application?)
 - requires sufficient sample size

- cost of causal inference (CATEs, most valueable for treatment decision making):
 - RCTs: time/money, selection
 - observational: assumptions
- PROTECT:
 - can deal with unobserved confounding (if assumptions hold)
 - always need positivity (does it hold in this application?)
 - requires sufficient sample size
 - no: 'from protect import estimatecate; cate = estimatecate(mydata)'