Análisis y Diseño de Algoritmos.

Sesión 14. 25 de Noviembre de 2015.

Maestría en Sistemas Computacionales.

Por: Hugo Iván Piza Dávila.

- El método de optimización por Hill-Climbing es muy usado por ser fácil de programar y eficiente en su ejecución.
- Sin embargo, su desventaja principal es que en muchos problemas suele caer en óptimos locales.

- Consideremos el problema del Agente Viajero.
- HC realiza intercambios de dos elementos aleatorios de la solución. Si el tiempo obtenido con el intercambio no mejoró al actual, la solución regresa como estaba.
- En el ejemplo que se trabajó (start = 0) el mínimo global es 10 y se obtiene con la solución [3, 2, 1].
- ¿Qué sucede si en algún momento de la ejecución del algoritmo obtenemos una de estas permutaciones?
 - [2, 1, 3] y [1, 3, 2]

- El siguiente árbol muestra las tres permutaciones que se pueden obtener a partir de [2, 1, 3].
- Ninguna mejora el tiempo.
- Por lo tanto, el algoritmo se quedará con [2, 1, 3] que es la mejor solución local (entre sus vecinos).

- Algo semejante sucede con la solución [1, 3, 2].
- Una forma de arreglar este problema es elegir la nueva permutación si no "empeoró" el tiempo. En este caso, se pueden elegir [2, 3, 1] y [1, 2, 3] que nos llevarán a la postre a la solución óptima [3, 2, 1].
- Sin embargo, esta solución no atiende el caso anterior.

- Para atender este problema, necesitamos métodos de optimización global.
- Una característica de estos métodos es que trabajan con varias soluciones a la vez que pueden influir entre sí.
- Dos métodos estocásticos de optimización global muy populares son:
 - Algoritmos Genéticos: es uno de los tres paradigmas de la Computación Evolutiva.
 - Particle Swarm Optimization: población de partículas que viajan por el espacio de búsqueda a una velocidad cambiante.

Computación Evolutiva

- La computación evolutiva comprende un conjunto de técnicas inspiradas en la teoría de la evolución natural:
 - Existe una población de individuos.
 - Un individuo encapsula una solución.
 - Esto disminuye las probabilidades de quedar en óptimos locales.
 - Los individuos sufren algún tipo de transformación
 - Cruza: operación entre dos individuos.
 - Mutación: semejante a lo que hace Hill-Climbing.
 - Se seleccionan los individuos más aptos, de acuerdo a una función de aptitud.

Computación Evolutiva

- Leclerc: el cuerpo sufre cambios orgánicos; el primero en especular en la existencia de un ancestro común entre el hombre y los simios.
- Lamarck: un cambio en el ambiente produce un cambio (hereditario) en el organismo, que conduce al mayor uso o desuso de ciertos órganos
- Darwin: los cambios en los individuos suceden de forma hereditaria, para hacer a los nuevos individuos más aptos para sobrevivir.
 - Teoría de la Combinación
 - Débil en explicar la ocurrencia de cambios repentinos en una especie
- Mendel: experimentó con chícharos y descubrió las leyes que rigen el paso de una característica de una especie a otra (herencia), incluyendo el concepto de gen dominante y recesivo.

Computación Evolutiva

- Sutton: determinó que los cromosomas eran el lugar donde se almacenaban las características hereditarias; los cromosomas contienen genes.
- Neo-Darwinismo: la historia de la gran mayoría de la vida en nuestro planeta puede ser explicada a través de muchos procesos estadísticos que actúan sobre y dentro de las poblaciones y especies: la reproducción, la mutación, la competencia y la selección.
- Paradigmas de la computación evolutiva:
 - Programación Evolutiva
 - Estrategias Evolutivas
 - Algoritmos genéticos

- John H. Holland. Años 6os. Aprendizaje de máquina.
- Método estocástico de búsqueda ciega de soluciones casi-óptimas.
- Genera mucha soluciones posibles a través de generaciones
- Solución = {genotipo, fenotipo}
- Permite la exploración y explotación
 - Menos vulnerable a caer en óptimos locales
- Cuándo conviene utilizarlos?
 - Funciones donde las buenas soluciones son adyacentes.

0

Objetivo: optimizar una función f ($x_1, x_2, ... x_n$)

Aspectos fundamentales:

- 1. Representación de la solución
- 2. Evaluación de una solución

1 11010100001011 2 10001010110101

00000101000001

0.35

0.87

0.78

1) La mejor solución es suficientemente buena?

2) ¿La generación actual es mayor a MAX?

11010101010101

10001010110101

11001100110110

Generación k

Generación 1

- 1) Crear población inicial. Crear genotipos aleatorios
- 2) Convertir de genotipo a fenotipo.
- 3) Cálculo de la aptitud. Opera a nivel fenotipo
 - Obtiene el resultado de la función objetivo y lo normaliza al rango [0...1.0]
- 4) Selección. De acuerdo a la aptitud
 - Es posible que un individuo no se seleccione.
 - Es posible que un individuo se seleccione más de una vez.
 - Elitista: el mejor individuo se selecciona sin competir.

- 4) Cruza o recombinación. Opera a nivel genotipo
 - Sucede con una probabilidad alta (0.8). Elitista: no cruza al mejor individuo.
 - Los individuos k, k + 1 se combinan o aparean y dan lugar a nuevos individuos k', k' + 1 que los sustituyen.
- 5) Mutación. Opera a nivel genotipo
 - Sucede con una probabilidad baja (0.2). Elitista: no muta al mejor individuo.
 - El individuo k sufre un cambio y da lugar al nuevo individuo k' que lo sustituye.

- Existen muchas técnicas para representación, evaluación de aptitud, selección, cruza y mutación, apropiadas para cada tipo de problema.
- En esta sesión veremos dos de cada una, apropiadas para:
 - 1. Optimizar una función matemática de dos variables.
 - Atender el problema del Agente Viajero.

Representación del Genotipo

- Representación tradicional: binaria
 - Cada x_i del fenotipo está codificado en un segmento de la cadena de bits dada por el genotipo.
 - Cada segmento puede ser de diferente longitud en función del rango de valores que puede recibir cada x_i.
 - Ejemplo. Si el genotipo es de 8 bits y el rango es: [-5 .. 5], la cadena 1010 0101 codifica al fenotipo:
 - $x_1 = -5 + \frac{10}{15} \cdot (5 -5) = -5 + 6.667 = 1.667$
 - $x_2 = -5 + \frac{5}{15} \cdot (5 -5) = -5 + 3.333 = -1.667$

Representación del Genotipo

- De acuerdo a Holland, es preferible tener muchos genes con pocos alelos posibles (o, 1) que lo opuesto.
 - En genética es más común encontrar cromosomas largos y pocos alelos por posición.
 - Favorece la construcción de esquemas y con ello, la diversidad:
 - Por ejemplo, todos los individuos que siguen estos esquemas tienen aptitud alta: 0xx10x01, x11x00xx
- Una desventaja de la representación binaria es el *risco de Hamming*: dos valores adyacentes en el espacio de búsqueda difieren en su representación en más de un bit.
 - Por ejemplo, 5 y 6 difieren en dos bits: 101, 110.

Representación del Genotipo

- Si queremos codificar números reales con buena precisión, necesitamos una cadena binaria tan larga que producirá un desempeño pobre del AG.
 - Los teóricos afirman que los alfabetos pequeños (binario, digital) son más efectivos que los grandes (enteros, reales).
 - Los prácticos han mostrado con muchas aplicaciones reales que los alfabetos grandes son más eficientes.
- ¿Qué alfabeto usar para hacer eficiente el algoritmo pero no errático? Que no se pierda la diversidad.

- Recordando la función Styblinski & Tang:
 - $S(x) = 0.5(x_1^4 16x_1^2 + 5x_1 + x_2^4 16x_2^2 + 5x_2)$
 - Sujeto a: $-5.02 x_1, x_2 \le 5.0$
 - $\vec{x}^* = [-2.903535, -2.903534]$. $S(\vec{x}^*) = -78.3323314$
- Evaluación de aptitud:
 - Mientras menor sea el resultado de la función, mayor la aptitud.
 - Si se conocen el mínimo y máximo global (casi nunca), la fórmula puede seguir una regla de tres tomando esos valores.
 - En la siguiente fórmula se estima que los valores obtenidos oscilarán entre -100.0 y 1000.0: $Fitness(x_1, x_2) = 1.0 \frac{100 + S(x)}{1100}$

- La representación del genotipo será con 12 dígitos: los 6 dígitos más significativos para x₁ y los otros 6 para x₂.
 - Ejemplo. La cadena 123456 789012 codifica al fenotipo:

•
$$x_1 = -5 + \frac{123456}{999999} \cdot (5 - -5) = -5 + 1.2345 = -4.8765$$

•
$$x_2 = -5 + \frac{789012}{9999999} \cdot (5 - -5) = -5 + 7.8901 = 2.8901$$

- El tamaño de la población suele estar en función de la longitud del genotipo.
 - En esta práctica, será 20 veces el tamaño del genotipo.

- La selección será por Jerarquías.
 - Los individuos se guardan en una lista ordenada de menor a mayor de acuerdo a la aptitud.
 - En función de la posición de cada individuo en dicha lista, se calcula un valor esperado en un rango de valores positivos.
 Algunos autores sugieren el rango: [0.9...1.1].
 - Valor(i) = 0.9 + (1.1 0.9) * $i/_{N-1}$

- Se ejecuta la selección por Ruleta. Repetir N veces:
 - Generar un aleatorio entre 0 y el tamaño de la población.
 - 2. Elegir al individuo (de la lista original) que haga que la suma de los valores esperados supere al aleatorio.
 - 3. Si el número aleatorio es 1.7, el individuo elegido de la tabla es el segundo: 0.95 + 1.10 > 1.7.
 - Los más aptos tienen probabilidades de ser seleccionados más de una vez.

i	Aptitud	Valor
0	0.2	0.90
1	0.7	1.10
2	0.4	0.96
3	0.5	1.03

- La cruza será Uniforme de 2 puntos. La probabilidad será 0.8.
- Ejecutar lo siguiente por cada par de individuos adyacentes excepto el mejor individuo y su vecino (Elitista):
 - 1. Si un aleatorio en el rango [0..1] es mayor que 0.8, continuar con el siguiente par de individuos.
 - 2. Obtener dos índices aleatorios i_1 , i_2 , tal que $i_1 < i_2$:
 - 3. Desde $i = i_1$ hasta i_2 :
 - Si un aleatorio en el rango [0..1] es menor que 0.5, intercambiar los alelos en la posición i de los dos individuos.

- La mutación será Uniforme. La probabilidad será 0.2.
- Ejecutar lo siguiente por cada individuo excepto el mejor (Elitista):
 - 1. Si un aleatorio en el rango [0..1] es mayor que 0.2, continuar con el siguiente individuo.
 - 2. Seleccionar una posición aleatoria del genotipo.
 - Calcular un nuevo valor aleatorio en el rango permitido [0..9].

- Parámetros generales (ajustables posteriormente):
 - Probabilidad de cruza = 0.8
 - Probabilidad de mutación = 0.2
 - Generaciones: número de nodos x 10,000
 - Tamaño de la población: ½ número de nodos, garantizando que el resultado sea par.
 - Tamaño del genotipo: número de nodos 1.

- Representación:
 - Genotipo = Fenotipo: arreglo de enteros que guarda la ruta.
- Evaluación de aptitud:
 - Ejecutar el algoritmo que calcula la distancia de la ruta, normalizando el resultado al rango [o.o...1.o]:
 - A mayor distancia, menor aptitud: 1 Distancia/MAX
 - Asignar como distancia máxima de una ruta (MAX) el peso máximo que puede tener una arista multiplicado por el número de nodos del grafo.

- La selección será por Ruleta.
 - Cada individuo tendrá un atributo valor esperado que será la aptitud dividida entre la suma de todas las aptitudes, multiplicado por el tamaño de la población.

Aptitud	Valor
0.2	4(0.2/1.8) = 0.444
0.7	4(0.7/1.8) = 1.555
0.4	4(0.4/1.8) = 0.888
0.5	4(0.5/1.8) = 1.111

- Este valor se asigna cada vez que se actualiza la aptitud.
- Después se sigue el algoritmo explicado antes para seleccionar los individuos que pasan a la siguiente generación.
- Ruleta es más eficiente que Jerarquías porque no ordena. Sin embargo, los valores pueden ser tan contrastantes (o.4 y 1.5) que reduce la exploración en espacios de búsqueda donde hay individuos poco aptos pero que puedan llevarnos al óptimo global: convergencia prematura.

 La mutación será por Intercambio Recíproco seleccionando dos índices aleatorios (como se hizo con Hill-Climbing).

- La cruza será por Order Crossover con dos índices aleatorios.
 - Se copia la subcadena elegida en el individuo hijo
 - Los demás espacios se llenan con los valores que no están en la subcadena, y en el orden en que aparecen en el otro padre.

