Нижняя и верхняя грани числового множества и их свойства.

Лемма о существовании sup и inf множества:

- 1) Любое непустое ограниченное сверху множество имеет верхнюю грань $\forall (\emptyset \neq X \subset \mathbb{R} \text{ и } X \text{ огр. сверху}) = > (\exists \sup X \in \mathbb{R})$
- **2)** Любое непустое ограниченное снизу множество имеет нижнюю грань $\forall (\emptyset \neq X \subset \mathbb{R} \text{ и X огр. снизу}) = > (\exists \inf X \in \mathbb{R})$

Определение (inf):

Точной нижней границей множества X называется наибольшее из чисел, ограничивающих множество X снизу:

```
Inf X \stackrel{\text{def}}{=} \max \{ d \in \mathbb{R} : (\forall x \in X) x \geqslant d \}
```

Замечание (inf):

- **1)** Если множество X не ограничено снизу, то inf X = ∞
- **2)** По определению считается, что inf $\emptyset = -\infty$
- 3) (inf $X = -\infty$) \Leftrightarrow (X Heorp. chu3y, τ .e. $\forall d \in \mathbb{R} \exists x \in X : d > x$)

Свойства inf:

- **1)** Если множество X не пусто, то inf $X \leq \sup X$
- **2)** Если множество X ограничено снизу (т.е. \forall x \in X: x \geqslant d) то inf X \geqslant d
- 3) $\exists \min X \Rightarrow \exists \inf X = \min X$
- **4)** $\emptyset \neq A \subset B \subset \mathbb{R}$: inf $A \geqslant \inf B$

Определение (sup):

Точной верхней границей множества X называется наименьшее из чисел, ограничивающих множество X сверху:

```
\sup X \stackrel{\text{def}}{=} \min \{ c \in \mathbb{R} : (\forall x \in X) c \leq d \}
```

Замечание (sup):

- **5)** Если множество X не ограничено сверху, то $x = +\infty$
- **6)** По определению считается, что inf $\emptyset = +\infty$
- 7) (sup $X = +\infty$) \Leftrightarrow (X Heorp. cBepxy, T.e. \forall c $\in \mathbb{R}$ \exists x \in X: x>c)

Свойства sup:

- **4)** Если множество X не пусто, то inf $X \leq \sup X$
- **5)** Если множество X ограничено сверху (т.е. \forall x \in X: x \leqslant c) то sup X \leqslant c
- 6) $\exists \max X \Rightarrow \exists \sup X = \max X$
- 7) $\emptyset \neq A \subset B \subset \mathbb{R}$: sup $A \leq \sup B$