

선형회귀분석

1조 정해성 이지현 박소연 박병후

선형회귀분석

회귀분석이란?

한 변수에 대하여 영향을 끼치는 다른 변수들의 관계를 함수로 나타내어 분석하는 통계적기법

C 단순회귀분석(Simple Regression Analysis) 다중회귀분석(Multiple Regression Analysis)

특히 회귀모형에서 함수의 형태가 선형(일차식)인 경우 선형회귀분석이라고 한다.

회귀분석의 목적

- 1. 종속변수와 독립변수들 사이의 함수관계가 어떠한 형태를 가지고 있는지 파악
- 2. 종속변수에 영향을 미치는 중요한 독립변수들을 추정·검정
- 추정된 회귀함수를 이용하여 주어진 독립변수의 값에서 종속변수의 변화를 예측하는 것

+^{©,+} 단순선형회귀

1. 모형의 설정

2. 모혐의 적합

3. 톰계적 추론

♣ 4. 회귀 진단 — 다음조!

단순회귀 분석이란?

위와 같이 두 변수의 관계를 가장 잘 설명해주는 선형의 관계를 찾고 싶다. 단순회귀 분석: 하나의 독립변수 X로 양적 종속변수 Y를 예측

1. 모형의 설정

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
,
 $i = 1, 2, ..., n$, $\varepsilon_i \sim iid N(0, \sigma^2)$

모형의 설점

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

$$i = 1, 2, ..., n, \ \varepsilon_i \sim iid \ N(0, \sigma^2)$$

 x_i : 설명변수, 독립변수 \rightarrow 상수 취급 y_i : 반응변수, 종속변수 \rightarrow 확률변수 (오차항을 포함하고 있기 때문) β_0 , β_1 : 모회귀계수 \rightarrow 미지의 모수 ϵ_i : 서로 독립인 $N(0,\sigma^2)$ 를 따르는 오차 \rightarrow 등분산성, 정규성, 독립성을 만족

실제 데이터가 생성된 시스템은 위와 같은 모형을 따른다고 가정

모형의 설점

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

$$i = 1, 2, ..., n, \ \varepsilon_i \sim iid \ N(0, \sigma^2)$$

O+1*M =1*

오차함의 가점 $\varepsilon_i \sim iid N(0, \sigma^2)$

- 1) $E(\varepsilon_i) = 0$, $Var(\varepsilon_i) = \sigma^2$ (등분산성)
- 2) 오차항은 서로 독립이다. (독립성)
- 3) 오차항은 정규분포를 따른다. (정규성)

회귀분석의 1차적인 목표는 표본으로부터

모회귀계수 β_0, β_1 을 추정하여 추정된 회귀식을 만드는 것

모형의 설점

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
,
 $i = 1, 2, ..., n$, $\varepsilon_i \sim iid N(0, \sigma^2)$

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \longrightarrow \widehat{y}_i = b_0 + b_1 x_i$$

회귀 모형

추정된 회귀선

2. 모형의 적합

오차제곱합 $\sum_{i=1}^n \varepsilon_i^2$ 을 최소로 하는 직선을 찾는 방법

모형의 적합

두 개의 추정된 회귀 직선이 다음과 같을 때, 어느 직선이 더 데이터를 잘 설명하는 직선이라고 할 수 있을까?

최소제곱법

오차제곱합 $\sum_{i=1}^n \varepsilon_i^2$ 을 최소로 하는 직선을 찾는 방법

46

Data $(x_1, y_1) \cdots (x_n, y_n)$ 을 이용하여 β_0, β_1 을 추정해보자 (각각의 추정값 b_0, b_1)

최소제곱법 (Least Square Method) \rightarrow min{ $\sum_{i=1}^{n} \varepsilon^2$ } = min{ $\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$

최소제곱법 (Least Square Method) \rightarrow min $\{\sum_{i=1}^n \varepsilon^2\}$ = min $\{\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2\}$

Let
$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial S(\beta_0, \beta_1)}{\partial \beta_0} = 2(-1) \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\sum_{i=1}^{n} y_i - nb_0 - b_1 \sum_{i=1}^{n} x_i = 0$$

$$\therefore nb_0 + b_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$

$$\frac{\partial S(\beta_0, \beta_1)}{\partial \beta_0} = 2(-1) \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0 \qquad \frac{\partial S(\beta_0, \beta_1)}{\partial \beta_1} = 2(-1) \sum_{i=1}^{n} x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\sum_{i=1}^{n} x_{i} y_{i} - b_{0} \sum_{i=1}^{n} x_{i} - b_{1} \sum_{i=1}^{n} x_{i}^{2} = 0$$

$$\therefore b_0 \sum_{i=1}^n x_i + b_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i$$

정규방정식
$$\begin{cases} nb_0 + b_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i \\ b_0 \sum_{i=1}^n x_i + b_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i \end{cases}$$

최소제곱법

최소제곱법 (Least Square Method) \rightarrow min $\{\sum_{i=1}^n \varepsilon^2\}$ = min $\{\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2\}$

정규방정식 (normal equation)

$$\begin{cases} nb_0 + b_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i \\ b_0 \sum_{i=1}^n x_i + b_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i \end{cases}$$

$$\therefore b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{S(xy)}{S(xx)}$$

$$\sum (x_i - \bar{x})^2 = S(xx)$$

$$\sum (y_i - \bar{y})^2 = S(yy)$$

$$\sum (x_i - \bar{x}) (y_i - \bar{y}) = S(xy)$$

추정된 회귀직선(by LSM): $\widehat{y}_i = b_0 + b_1 x_i$

회귀계수의 의미 - 절편 b_0

회귀계수 b_0, b_1 은 추정된 회귀식에서의 절편과 기울기

절편 b_0 의 의미

→ 독립변수의 값이 0 일 때의 종속변수의 값

speed

```
추정된 회귀선 \hat{Y} = -17.579 + 3.932X
```

```
> lm(cars$dist ~ cars$speed)
Call:
lm(formula = cars$dist ~ cars$speed)
Coefficients:
(Intercept) cars$speed
    -17.579 3.932
```

회귀계수의 의미 - 절편 b_1

회귀계수 b_0, b_1 은 추정된 회귀식에서의 절편과 기울기 **기울기** b_1 의 **의미**

speed

→ 독립변수 X의 값이 1단위 증가할 때 늘어나는 종속변수 Y의 값

회귀계수의 의미 - 절편 없는 모형

독립변수 값이 0일 때 종속변수의 값이 반드시 0 이어야하는 자료분석에서는

모형을 설정할 때 절편이 존재하지 않는 **'절편이 없는 회귀 모형**'

예) 키와 몸무게의 관계 → 키가 0이면 몸무게도 0이므로 절편이 없는 회귀모형 고려 그러나, 소득과 지출의 관계 → 소득이 없어도 지출이 있을 수 있으므로 절편이 포함된 모형

잔차

$$e_i = 실제값(y_i) - 추정값(\hat{y_i})$$

잔차의 성질

- 1) $\sum_{i=1}^{n} e_i = 0$
- 2) $\sum_{i=1}^{n} x_i e_i = 0$
- 3) $\sum_{i=1}^{n} \hat{y}_i e_i = 0$
- cf) (\bar{x}, \bar{y}) 는 추정된 회귀직선 위에 있다.

변동의 분해

분산분석표 ANOVA Table

자료의 변동을 회귀직선으로 설명가능한 변동과 설명 불가능한 변동으로 나누자.

$$(y_i - \bar{y}) = (y_i - \hat{y_i}) + (\hat{y_i} - \bar{y})$$

총편차 = 설명안되는 편차 + 설명가능편차
 $\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y_i})^2 + \sum_{i=1}^{n} (\hat{y_i} - \bar{y})^2$
총 편차 SST = SSE + SSR

변동의 분해

분산분석표 ANOVA Table 자료의 변동을 회귀직선으로 설명가능한 변동과 설명 불가능한 변동으로 나누자.

요인	변동	자유도	제곱평균	FH
회귀	SSR	1	MSR=SSR/1	MSR/MSE
잔차	SSE	n-2	MSE=SSE/n -2	
총합	SST	n-1		

SSE가 작을수록, 또 SSR이 클수록 회귀식의 정도가 좋다. 즉, 회귀모형이 자료들을 잘 설명해 주고 있다. 따라서 SSE, SSR/SSE등을 정도의 측도로 사용할 수 있다

분산분석표를 이용한 검정

분산분석표 **ANOVA Table** 자료의 변동을 회귀직선으로 설명가능한 변동과 설명 불가능한 변동으로 나누자.

요인	변동	자유도	제곱평균	FH
회귀	SSR	1	MSR=SSR/1	MSR/MSE
잔차	SSE	n-2	MSE=SSE/n -2	
총합	SST	n-1		

1. 결정계수 R-Squared → 모형의 설명력

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

 $0 \le R^2 \le 1$ \rightarrow 1에 가까울수록 설명력이 좋은 모형 단순선형회귀의 경우 결정계수는 상관계수의 제곱Copyright © D.sual 2017. All Rights Reserved

분산분석표를 이용한 검정

분산분석표 ANOVA Table 자료의 변동을 회귀직선으로 설명가능한 변동과 설명 불가능한 변동으로 나누자.

요인	변동	자유도	제곱평균	FH
회귀	SSR	1	MSR=SSR/1	MSR/MSE
잔차	SSE	n-2	MSE=SSE/n -2	
총합	SST	n-1		

결정계수의 값이 1에 가까울수록 추정된 회귀식 주위에 자료가 밀집 > 자료를 잘 대표

주의) 독립변수의 수가 증가하면 결정계수는 항상 증가 그러므로, 결정계수의 기준으로 하면 독립변수의 수가 무조건 많으면 좋다?

- → 독립변수가 증가할 시 다중공선성 등의 문제 발생
- → 수정결정계수 등 여러 측도를 복합적으로 사용해야 함

분산분석표를 이용한 검점

분산분석표 **ANOVA Table**

자료의 변동을 회귀직선으로 설명가능한 변동과 설명 불가능한 변동으로 나누자.

요인	변동	자유도	제곱평균	F비
회귀	SSR	1	MSR=SSR/1	MSR/MSE
잔차	SSE	n-2	MSE=SSE/n -2	
총합	SST	n-1		

2. 유의성 검정 🔰 회귀선의 유의성을 검정

$$H_0$$
: $\beta_1 = 0$ vs H_0 : $\beta_1 \neq 0$

검정통계량:
$$F_0 = \frac{MSR}{MSE} \sim F_{1,n-2}$$
 (under H_0) 기각역: $F_0 > F_{1,n-2,\alpha}$ (우측검정)

분산분석표를 이용한 검정

분산분석표 ANOVA Table

자료의 변동을 회귀직선으로 설명가능한 변동과 설명 불가능한 변동으로 나누자.

요인	변동	자유도	제곱평균	F비
회귀	SSR	1	MSR=SSR/1	MSR/MSE
잔차	SSE	n-2	MSE=SSE/n -2	
총합	SST	n-1		

3.
$$E(MSE) = \sigma^2$$

→ MSE는 σ^2 의 불편추정량(Unbiased estimator)

→ 후에 회귀계수의 검정 등에서 분산의 추정량으로 쓰인다.

3. 통계적 추론

통계적 추론

단순회귀 모형

OLS Mode

기억하기

 x_i : 설명변수, 독립변수 \rightarrow 상수 (측정오차가 없다)

y_i: 반응변수, 종속변수 → 확률변수 (오차항을 포함하고 있기 때문)

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, $i = 1, 2, ..., n$, $\varepsilon_i \sim iid N(0, \sigma^2)$

$$E(y_i) = E(\beta_0 + \beta_1 x_i + \varepsilon_i) = \beta_0 + \beta_1 x_i$$

$$Var(y_i) = Var(\beta_0 + \beta_1 x_i + \epsilon_i)$$

= $Var(\epsilon_i)$ (분산의 성질 - 상수x)
= σ^2

- + 정규분포의 성질
 - → 정규분포에 상수를 더해도 정규분포
 - $\rightarrow y_i$ 는 정규분포

$$\therefore y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

이를 바탕으로 통계적 추론 진행

복습

복습 Remind

모분산 σ^2 을 모를 때의 구간 추정

복습

복습 Remind

모분산 σ^2 을 모를 때의 구간 추정

$$\frac{\bar{X} - \mu}{s / \sqrt{n}} \sim t(n - 1)$$

 $(1-\alpha)$ %신뢰구간 C.I(confidence interval)

$$\therefore P\left[-t_{\frac{\alpha}{2},n-1} \leq \frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}} \leq t_{\frac{\alpha}{2},n-1}\right] = 1 - \alpha$$

$$ightharpoonup (\bar{X} \pm t_{\frac{\alpha}{2},n-1} \cdot \frac{s}{\sqrt{n}})$$

eta_1 에 대한 신뢰구간

 eta_1 에 대한 신뢰구간

 β_1 에 대한 불편추정량 b_1 를 사용하므로 b_1 의 분포를 알아야한다.

$$b_{1} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}} = \frac{\sum (x_{i} - \bar{x})y_{i} - \bar{y}}{S(xx)} = \frac{\sum (x_{i} - \bar{x})y_{i}}{S(xx)} = \frac{\sum (x_{i} - \bar{x})y_{i}}{S(xx)} = \sum a_{i}y_{i} \quad (Let \frac{x_{i} - \bar{x}}{S(xx)} = a_{i})$$
(편차 합 = 0)

cf) a_i 의 성질

$$\sum a_i = \sum \frac{(x_i - \bar{x})}{S(xx)} = 0 \quad (\text{Ell} \, \bar{x} \text{Ell} = 0)$$

$$\sum a_i^2 = \sum \frac{(x_i - \bar{x})^2}{S(xx)^2} = \frac{1}{S(xx)}$$

$$\sum a_i x_i = \frac{\sum (x_i - \bar{x})(x_i - \bar{x})}{S(xx)} = \frac{S(xx)}{S(xx)} = 1$$

$$(:: (\sum (x_i - \bar{x})(x_i - \bar{x}) = \sum (x_i - \bar{x})(x_i) - \bar{x} \sum (x_i - \bar{x})$$
$$= \sum (x_i - \bar{x})(x_i))$$

$$a_i$$
는 x 들의 결합

 $b_1 = \sum a_i y_i \sim 정규분포$ (정규분포의 선형결합은 정규분포 by 수리통계)

1) b_1 은 정규분포를 따른다.

eta_1 에 대한 신뢰구간

 β_1 에 대한 신뢰구간

 β_1 에 대한 불편추정량 b_1 를 사용하므로 b_1 의 분포를 알아야한다.

$$b_{1} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}} = \frac{\sum (x_{i} - \bar{x})y_{i} - \bar{y}\sum (x_{i} - \bar{x})}{S(xx)} = \frac{\sum (x_{i} - \bar{x})y_{i}}{S(xx)} = \sum a_{i}y_{i} \quad (Let \frac{x_{i} - \bar{x}}{S(xx)} = a_{i})$$
(편차 합 = 0)

cf) a_i 의 성질

$$\sum a_i = \sum \frac{(x_i - \bar{x})}{S(xx)} = 0 \quad (\exists \bar{x} \mid \bar{x} \mid \bar{x} \mid = 0)$$

$$\sum a_i^2 = \sum \frac{(x_i - \bar{x})^2}{S(xx)^2} = \frac{1}{S(xx)}$$

$$\sum a_i x_i = \frac{\sum (x_i - \bar{x})(x_i - \bar{x})}{S(xx)} = \frac{S(xx)}{S(xx)} = 1$$

2)
$$E(b_1) = E(\sum a_i y_i) = \sum a_i \cdot E(y_i)$$

= $\sum a_i (B_0 + B_1 x_i) = b_0 \sum a_i + b_1 \sum a_i x_i$
= B_1

3)
$$Var(b_1) = Var(\sum a_i y_i) = \sum a_i^2 \cdot Var(y_i)$$
 $(y_i \text{서로 독립})$

$$= \sum a_i^2 \cdot \sigma^2$$

$$(: (\sum (x_i - \bar{x})(x_i - \bar{x}) = \sum (x_i - \bar{x})(x_i) - \bar{x} \sum (x_i - \bar{x})$$

$$= \sum (x_i - \bar{x})(x_i))$$

eta_1 에 대한 신뢰구간

 eta_1 에 대한 신뢰구간 eta_1 에 대한 불편추정량 b_1 를 사용하므로 b_1 의 분포를 알아야한다.

$$b_1 \sim N(B_1, \frac{\sigma^2}{S(xx)})$$
 cf) E(MSE) = σ^2

cf)
$$E(MSE) = \sigma^2$$

$$\therefore \frac{b_1 - B_1}{\sqrt{\frac{\sigma^2}{S(xx)}}} \sim N(0,1)$$

$$\therefore \frac{b_1 - B_1}{\sqrt{\frac{\sigma^2}{S(xx)}}} \sim N(0,1) \xrightarrow{\qquad \qquad } \frac{\sigma^2}{\text{unknown}} \xrightarrow{\qquad } \frac{b_1 - B_1}{\sqrt{\frac{MSE}{S(xx)}}} \sim t_{(n-2)}$$

$$\therefore P\left[-t_{\frac{\alpha}{2},n-2} \le \frac{b_1 - B_1}{\sqrt{\frac{MSE}{S(xx)}}} \le t_{\frac{\alpha}{2},n-2}\right] = 1 - \alpha$$

→ β₁의 (1-α) % 신뢰구간

$$\rightarrow (b_1 \pm t_{\frac{\alpha}{2},n-2} \cdot \sqrt{\frac{MSE}{S(xx)}})$$

eta_0 에 대한 신뢰구간

 β_0 에 대한 신뢰구간

뢰구간
$$eta_0$$
에 대한 불편추정량 b_0 를 사용하므로 b_0 의 분포를 알아야한다.

$$b_0 = \bar{y} - b_1 \bar{x}$$

1)
$$b_0$$
 은 정규분포를 따른다. (역시 b_1 (정규분포)의 선형결합)

$$\bar{y} = \frac{1}{n}y_1 + \frac{1}{n}y_2 + \dots + \frac{1}{n}y_n$$

$$b_1 = a_1y_1 + a_2y_2 + \dots + a_ny_n$$

$$\sum a_i = 0$$

2)
$$E(b_0) = E(\bar{y} - b_1 \bar{x}) = E(\bar{y}) - \bar{x}E(b_1)$$

= $B_0 + B_1 \bar{x} - B_1 \bar{x} = B_0$

 y_i 들은 독립(오차항이 독립이므로)

참고) y_i 들이 독립일 때,

3) $\operatorname{Var}(b_0) = \operatorname{Var}(\bar{y} - b_1 \bar{x}) = \operatorname{Var}(\bar{y}) + \bar{x}^2 \operatorname{Var}(b_1) + 2\operatorname{Cov}(\bar{y}, b_1 \bar{x})$

여기서
$$Cov(\bar{y}, b_1\bar{x}) = \bar{x} Cov(\bar{y}, b_1)$$
 이고, (공분산의 성질)

$$Cov(\bar{y}, b_1) = (\frac{1}{n}a_1 + \frac{1}{n}a_2 + \dots + \frac{1}{n}a_n) \cdot \sum Var(y_i)$$
$$= (\frac{1}{n}a_1 + \frac{1}{n}a_2 + \dots + \frac{1}{n}a_n) \cdot \sigma^2 = \frac{\sum a_i \sigma^2}{n} = 0$$

$$\therefore Var(\boldsymbol{b_0}) = Var(\bar{y}) - \bar{x}^2 Var(b_1)$$

Let,
$$Z_1 = c_1 y_1 + c_2 y_2 + \dots + c_n y_n$$

 $Z_2 = d_1 y_1 + d_2 y_2 + \dots + d_n y_n$
 $Cov(Z_1, Z_2) = (c_1 d_1 + c_1 d_2 + \dots + c_n d_n) Var(y_1)$

$$= \frac{\sigma^2}{n} + \frac{\overline{x}^2 \sigma^2}{S(xx)}$$

eta_0 에 대한 신뢰구간

 eta_0 에 대한 신뢰구간 eta_0 에 대한 불편추정량 b_0 를 사용하므로 b_0 의 분포를 알아야한다.

$$b_0 \sim N(\beta_0, \left(\frac{1}{n} + \frac{\overline{x}^2}{S(xx)}\right)\sigma^2)$$
 cf) $E(MSE) = \sigma^2$

$$\therefore \frac{b_0 - B_0}{\sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{S(xx)}\right)\sigma^2}} \sim N(0,1) \xrightarrow{\sigma^2} \frac{b_0 - B_0}{\sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{S(xx)}\right)MSE}} \sim t_{(n-2)}$$

$$P\left[-t_{\frac{\alpha}{2},n-2} \leq \frac{b_0 - B_0}{\sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{S(xx)}\right)MSE}} \leq t_{\frac{\alpha}{2},n-2}\right] = 1 - \alpha$$

 β_0 의 (1- α) % 신뢰구간

$$\rightarrow (b_0 \pm t_{\frac{\alpha}{2},n-2} \cdot \sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{S(xx)}\right)} MSE)$$

점리 eta_1 과 eta_0 에 대한 신뢰구간과 b_1 , b_0 의 분포

$$b_1 \sim N(B_1, \frac{\sigma^2}{S(xx)})$$

$$b_0 \sim N(\beta_0, \left(\frac{1}{n} + \frac{\overline{x}^2}{S(xx)}\right)\sigma^2)$$

cf)
$$E(MSE) = \sigma^2$$

$$eta_1$$
의 (1- $lpha$) % 신뢰구간 $igodap (b_1 \pm t_{rac{lpha}{2},n-2} \cdot \sqrt{rac{MSE}{S(xx)}})$

의
$$(1-\alpha)$$
 % 신뢰구간 β_0 의 $(1-\alpha)$ % 신뢰구간 $\Rightarrow (b_1 \pm t_{\frac{\alpha}{2},n-2} \cdot \sqrt{\frac{MSE}{S(xx)}})$ $\Rightarrow (b_0 \pm t_{\frac{\alpha}{2},n-2} \cdot \sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{S(xx)}\right)MSE})$

eta_1 의 검정

 eta_1 의 검점 eta_1 에 대한 불편추정량 b_1 를 사용하므로 b_1 의 분포를 알아야한다. $eta_1 \sim N(B_1, rac{\sigma^2}{S(xx)})$

$$H_0: B_1 = B_{10}$$
(상수) $vs\ H_1: B_1 \neq B_{10}$

$$B_{10}($$
주어진 상수)

$$t_0 = \frac{b_1 - B_{10}}{\sqrt{\frac{MSE}{S(xx)}}} \quad (\sim t_{(n-2)} \quad \text{under } H_0)$$

$$|t_0| > t_{\frac{\alpha}{2}, n-2}$$

$$P[T > |t_0|]$$
 , where $T \sim t_{(n-2)}$

eta_0 의 검정

 eta_0 의 검정

 eta_0 에 대한 불편추정량 b_0 를 사용하므로 b_0 의 분포를 알아야한다. $eta_0 \sim N(oldsymbol{eta}_0, \left(rac{1}{n} + rac{\overline{x}^2}{S(xx)}
ight)\sigma^2)$

$$H_0: B_0 = B_{00}$$
(상수) $vs\ H_1: B_0 \neq B_{00}$

$$B_{00}($$
주어진 상수)

$$t_0 = \frac{b_0 - B_{00}}{\sqrt{\left(\frac{1}{n} + \frac{\bar{x}^2}{S(xx)}\right)} MSE}} (\sim t_{(n-2)} \text{ under } H_0)$$

$$|t_0| > t_{\frac{\alpha}{2}, n-2}$$

$$P[T > |t_0|]$$
 , where $T \sim t_{(n-2)}$

데이터 소개

BOSTON

MASS::Boston

변수	설명
medv	중간 수준의 주택 가격(median house value)
rm	주택당 평균 방의 수(average number of rooms per house)
age	주택평균연령(average age of houses)
lstat	낮은 사회경제적 지위를 가진 가구의 비율(percent of households with low socioeconomic status)
•••	이하 생략

데이터 소개


```
> library(MASS)
> Boston <- MASS::Boston
> head(Boston)
    crim zn indus chas
                                          dis rad tax ptratio black lstat medv
                         nox
                                rm age
1 0.00632 18 2.31
                     0 0.538 6.575 65.2 4.0900
                                                1 296
                                                         15.3 396.90 4.98 24.0
2 0.02731 0 7.07
                     0 0.469 6.421 78.9 4.9671 2 242
                                                        17.8 396.90 9.14 21.6
3 0.02729 0 7.07
                     0 0.469 7.185 61.1 4.9671 2 242
                                                        17.8 392.83 4.03 34.7
                    0 0.458 6.998 45.8 6.0622 3 222
4 0.03237 0 2.18
                                                       18.7 394.63 2.94 33.4
5 0.06905 0 2.18
                  0 0.458 7.147 54.2 6.0622 3 222
                                                        18.7 396.90 5.33 36.2
6 0.02985 0 2.18
                     0 0.458 6.430 58.7 6.0622
                                                3 222
                                                         18.7 394.12 5.21 28.7
> str(Boston)
               506 obs. of 14 variables:
'data.frame':
 $ crim
         : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
 $ zn
         : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
 $ indus
         : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 ...
 $ chas
         : int 0000000000...
         : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
 $ nox
 $ rm
         : num 6.58 6.42 7.18 7 7.15 ...
         : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
 $ age
 $ dis
         : num 4.09 4.97 4.97 6.06 6.06 ...
         : int 1 2 2 3 3 3 5 5 5 5 ...
 $ rad
 $ tax
         : num 296 242 242 222 222 222 311 311 311 311 ...
 $ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
 $ black
         : num 397 397 393 395 397 ...
 $ 1stat : num 4.98 9.14 4.03 2.94 5.33 ...
 $ medv
         : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
```

모형의 설정

가설검정을 위한 모형 가정

$$medv = \beta_0 + \beta_1 \cdot lstat + \epsilon_1$$

모혐의 적합


```
> names (Boston)
[1] "crim" "zn" "indus" "chas" "nox" "rm" "age" "dis" "rad"
[10] "tax" "ptratio" "black" "lstat" "medv"

단순선형회귀모형에 적합시켜 Im.fit에 저장 후 출력
(코드 2줄 또는 3줄)
```

Coefficients: (Intercept) lstat 34.55 -0.95

 \Rightarrow medv = 34.55 - 0.95 Istat

통계적 추론


```
> summary(1m.fit) # p값, 표준오차, R^2, F값 등 제공
call:
lm(formula = medv ~ lstat)
Residuals:
   Min 1Q Median 3Q
                                 Max
-15.168 -3.990 -1.318 2.034 24.500
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.55384   0.56263   61.41   <2e-16 ***
lstat -0.95005 0.03873 -24.53 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6.216 on 504 degrees of freedom
Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
```

F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

통계적 추론

$medv = \beta_0 + \beta_1 \cdot lstat + \epsilon_1$

귀무가설 : 회귀선은 유의하지 못하다. (β1 = 0) 대립가설 : 회귀선은 유의하다. (β1 =/= 0)

Residual standard error: 6.216 on 504 degrees of freedom Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432 F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

결정계수 R^2 은 0.5441로서 종속변수(medv) 분산의 54.4%가 독립변수(lstat)에 의해 설명됨을 알 수 있다. 유의수준 $100*(1-\alpha)$ % 하에서 F-statistic〉 $F_{1,n-2,\alpha}$ 일 때 귀무가설을 기각할 수 있다.

그래프로 회귀직선 그려보기

다음과 같이 그래프를 그리고 추정된 회귀직선을 그리세요(코드 두줄)

다양한 옵션 사용

> abline(lm.fit, lwd=3)

> plot(lstat, medv, col="red")

> abline(lm.fit, lwd=3, col="red")

> plot(lstat, medv, pch=20)

R의 plot함수

R의 plot 함수가 그린 4개의 도표는 회귀모델의 유용한 정보를 제공한다.

- 1. Fitted값에 대한 잔차 도표 2. 척도 위치 도표
- 3. 정규 Q-Q(quantile-quantile) 도표
- 4. 잔차와 지렛대(leverage)에 대한 도표

```
> plot(lm.fit)
Hit <Return> to see next plot:
Fit <Return> to see next plot:
> par(mfrow = c(2,2))
> plot(lm.fit)
```

R의 plot함수

+ 다중선형회귀

🖒 1. 가설검점

2. 질적예측변수

3. INTERACTIONS

다중선형회귀란?

다중 선형 회귀란, 설명변수 X가 여러 개인 선형회귀를 말한다. 이 때, 다변량 선형회귀(multivariate linear Regression) 과 헷갈리지 않도록 주의한다. 다변량 선형회귀는 종속변수 Y가 여러 개인 회귀로 여기서는 다루지 않는다.

다중선형회귀란?

다중 선형 회귀란, 설명변수 X가 여러 개인 선형회귀를 말한다. 이 때, 다변량 선형회귀(multivariate linear Regression) 과 헷갈리지 않도록 주의한다. 다변량 선형회귀는 종속변수 Y가 여러 개인 회귀로 여기서는 다루지 않는다.

$$Y_{i} = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \beta_{3} X_{i3} + ... + \beta_{p} X_{ip} + \epsilon_{i}$$

데이터 소개

감독자 직무수행능력 데이터

출처: http://www1.aucegypt.edu/faculty/hadi/RABE5/

변수	설명
Evaluation	상사의 직무수행에 대한 전반 적인 평가
handling	피고용인의 불만 처리
privilege	특권을 허용하지 않음
opportunity	새로운 것을 배울 기회
ppro	업무 성과에 따른 승진
criticism	과실에 대한 지나친 비판
pbc	더 나은 일로의 진급

모형 가정하기

가설검정을 위한 모형 가정

Evaluation= $\beta_0 + \beta_1 \cdot \text{handling} + \beta_2 \cdot \text{privilege}$ $+ \beta_3 \cdot \text{opportunity} + \beta_4 \cdot \text{ppro}$ $+ \beta_5 \cdot \text{criticism} + \beta_6 \cdot \text{pbc} + \epsilon_1$

삼관계수의 추정

단순회귀와 마찬가지로 최소제곱추정법 (LSE; 오차 제곱의 합이 최소가 되는 추정치를 찾는 방법)을 통해 상관계수를 추정한다. 우리는 어차피 R이 해줄 것이기 때문에 생략한다.

```
> super.lm = lm(Evaluation ~ handling + privilege + opportunity + ppro + criticism + pbc , data=super)
> super.lm
Call:
lm(formula = Evaluation ~ handling + privilege + opportunity +
   ppro + criticism + pbc, data = super)
Coefficients:
                        privilege opportunity
(Intercept) handling
                        -0.07305
                                        0.32033
   10.78708
             0.61319
      ppro criticism
                               pbc
   0.08173
            0.03838
                        -0.21706
  Beta0
```

삼관계수의 추정


```
> summary(super.lm)
Call:
lm(formula = Evaluation ~ handling + privilege + opportunity +
    ppro + criticism + pbc, data = super)
          잔차의 분포를 보여준다. 우리는 앞선 가정( 잔차는 표준정규분포를 따른다.)을 통해 이 모형이 적합한지 평가할 수 있다.
Residuals: 여기서는 Median이 0에 가깝고, 1Q,3Q의 절댓값이 비슷하고, min, max의 절댓값 또한 비슷하므로 적절하다고 판단한다.
     Min
                 Median
-10.9418 -4.3555 0.3158 5.5425 11.5990
Coefficients: 베타추정치 s.e.(beta.hat)
                                 가설검정부분
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.78708 11.58926 0.931 0.361634
handling 0.61319 0.16098 3.809 0.000903 ***
privilege -0.07305 0.13572 -0.538 0.595594
opportunity 0.32033 0.16852 1.901 0.069925 .
            0.08173 0.22148 0.369 0.715480
ppro
criticism 0.03838 0.14700 0.261 0.796334
pbc
           -0.21706 0.17821 -1.218 0.235577
Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1
                    Sgrt(MSE)
Residual standard error: 7.068 on 23 degrees of freedom SSE의자유도는 n-p-1
Multiple R-squared: 0.7326, Adjusted R-squared: 0.6628
F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05
```

1. 가설검정

가설검정시에 행렬을 통해 가설을 검정하는 경우도 있지만, 그건 시간이 부족하기때문에 생략하고, 다양한 가설에 대해서 소개합니다. 다중선형회귀의 가설검정은 주로 어떤 회귀모형을 적합할지를 결정할 때 사용합니다.

Adjusted R-squared

다중회귀에서는, SST, SSE, SSR을 대신해서 MST, MSE, MSR을 사용한다. SS- 가게곱합이기때문에, 결정계수 R squre 는 predictor가 많아질수록 커지기때문이다. 따라서 SS-를 그 값의 자유도로 나눠줘서 값을 보정해준다.

Adjusted R-squared: 0.6628

요인	제곱합	자유도	평균제곱	F - statistic	Adjusted R-squared
회귀	SSR	р	MSR	MSR MSE	1 SSE _ 1 MSE
잔차	SSE	n-p-1	MSE		$1 - \frac{SSL}{\frac{n-p-1}{SST}} = 1 - \frac{MSL}{MST}$
평균	SST	n-1	MST		$\overline{n-1}$

모형에 predictor가 많아질수록, SSE의 값은 작아진다. 따라서 R^2의 값이 1에 가까워진다. 즉 무조건 변수 X 를 많이 적합하면 적절한 모형이라는 잘못된 결과가 나올 수 있으므로, 자유도 n(관측값수) - p(predictor 개수) - 1 로 SSE를 나눠줘서 보정해 주는 것이다!

전체모형의 적합도 추정

이제 앞서 적합한 모형 (Full Model) 의 적합도를 판단해 볼 것이다. 이때는 F 분포값을 이용해서 검정하는데, 아까의 summary를 통해 판단할 수 있다.

이때,

귀무가설(H0): β0= β1=··· β6=0 대립가설: β 중 적어도 하나는 0이 아니다.

이고, 유의수준 100*(1-α) % 하에서

F-statistic > F (p,n-p-1, 1-α) 일 때 귀무가설을 기각할 수 있다.

(p = 6, n-p-1 = 23)

```
> summary(super.lm)
Call:
lm(formula = Evaluation ~ handling + privilege + opportunity +
    ppro + criticism + pbc, data = super)
Residuals:
    Min
              10 Median
                               30
                                       Max
-10.9418 -4.3555 0.3158 5.5425 11.5990
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.78708 11.58926 0.931 0.361634
handling
            0.61319
                      0.16098 3.809 0.000903 ***
privilege -0.07305
                      0.13572 -0.538 0.595594
opportunity 0.32033
                      0.16852 1.901 0.069925 .
ppro
            0.08173
                      0.22148 0.369 0.715480
criticism
            0.03838
                      0.14700 0.261 0.796334
pbc
           -0.21706
                      0.17821 -1.218 0.235577
Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1
Residual standard error: 7.068 on 23 degrees of freedom
Multiple R-squared: 0.7326, Adjusted R-squared: 0.6628
F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05
```

1개 혹은 그보다 더 많은 변수에 대한 가설검정

전체모형이 얼마나 적합한지 판단하는 것 외에도, 각각의 변수가 유의한지 아닌지를 검정할 수도 있다. 이때는 Full model 과 Reduced model 의 비교를 통해서 가설을 검정한다. 이 검정으로 적합한 모델을 고를 수 있다.

> 귀무가설 : β2 = β3 =0 대립가설 : β2 와 β3 둘 중 적어도 하나는 0이 아니다.

FM : Evaluation= $\beta 0 + \beta 1$ ·handling + $\beta 2$ ·privilege + $\beta 3$ ·opportunity + $\beta 4$ ·ppro + $\beta 5$ ·criticism + $\beta 6$ ·pbc + ϵ

RM : Evaluation = $\beta 0 + \beta 1 \cdot \text{handling} + \beta 4 \cdot \text{ppro} + \beta 5 \cdot \text{criticism} + \beta 6 \cdot \text{pbc} + \epsilon$

F STATISTIC =
$$\frac{SSE(RM) - SSE(FM)}{SSE(FM)/n-p-1} \sim F_{dfR-dfF, dfF}$$

K = DF(RM) - DF(FM)

1개 혹은 그보다 더 많은 변수에 대한 가설검정

이때 두 모델간의 비교는 F test를 통해 진행한다. 따라서 f test에 대한 함수를 만들어본다. 앞 슬라이드에서 설명한 F값을 계산하고, p,value를 내뱉는 함수를 만들어보자.

```
f.test.lm = function(R.lm, F.lm) {
   SSE.R = sum(resid(R.lm)^2)
   SSE.F = sum(resid(F.lm)^2)
   df.num = R.lm$df - F.lm$df
   df.den = F.lm$df
   F = ((SSE.R - SSE.F) / df.num) / (SSE.F / df.den)
   p.value = 1 - pf(F, df.num, df.den)
   return(data.frame(F, df.num, df.den, p.value))
}
```

1개 혹은 그보다 더 많은 변수에 대한 가설검정

귀무가설 : β2 = β3 =0 대립가설 : β2 와 β3 둘 중 적어도 하나는 0이 아니다.

FM : Evaluation= $\beta 0 + \beta 1$ ·handling + $\beta 2$ · privilege + $\beta 3$ · opportunity + $\beta 4$ ·ppro + $\beta 5$ ·criticism + $\beta 6$ ·pbc + ϵ

RM : Evaluation = $\beta 0 + \beta 1$ ·handling + $\beta 4$ ·ppro + $\beta 5$ ·criticism + $\beta 6$ ·pbc + ϵ

Reduced Model의 F 통계량은 1.846191 이고 p-value 는 0.1804745이다. 따라서 $\alpha = 0.05$ 일때 p-value가 α 보다 크므로 귀무가설을 기각하지 못한다. 즉, privilege 변수와 opportunity는 Evaluation에 유의한 영향을 주지 못하므로 이 두개를 빼고 모형을 적합하는게 좋다.

귀무가설 : β1 = β5 (= β*) 대립가설 : β1 =/= β5

FM : Evaluation = β 0 + β 1·handling + β 4·ppro + β 5·criticism + β 6·pbc + ϵ

RM : Evaluation= β 0 + β *·handling + β 4·ppro + β *·criticism + β 6·pbc + ϵ

즉,

RM: Evaluation= $\beta 0 + \beta * \cdot (handling+criticism) + \beta 4 \cdot ppro + \beta 6 \cdot pbc + \epsilon$

새로운 변수 handling + criticism = hdcri 를 형성한 후 F- test 해준다.

Reduced Model의 F 통계량은 12.54351 이고 p-value 는 0.001590039이다. 따라서 $\alpha = 0.05$ 일때 p-value가 α 보다 작으로 귀무가설을 기각한다. 즉, handling 과 criticis은 Evaluation에 같은 수준의 상관계수를 가지고 있지 않다.

귀무가설 : β1 = 2.5 · β5 대립가설 : β1 =/= 2.5 · β5

FM : Evaluation = β 0 + β 1·handling + β 4·ppro + β 5·criticism + β 6·pbc + ϵ

RM : I 해보세효 ^^

즉,

RM: 해보세효 ^^

귀무가설 : β1 = 2.5 · β5 대립가설 : β1 =/= 2.5 · β5

2. 질적예측변수

질적 예측 변수란, 성별, 거주지 처럼 카테고리화 할 수 있는 범주형 변수를 말한다. 이 변수들은 R에서는 factor 로 나타난다. 이 챕터에서는 이 factor 변수들을 어떻게 회귀모형에 적합할지 배워보자!

데이터 소개

SALARY

출처: http://www1.aucegypt.edu/faculty/hadi/RABE5/

변수	설명
S (=Y)	IT 직군 고용자의 월급
X	경력 (년)
E	교육수준 (1 =학사, 2=석사 , 3= 박사)
M	관리직 유무 1= 관리직임 , 0= 관리직아님

데이터 불러오기

우선, 데이터를 불러와서 검사해준다.

```
load("salary.Rdata")
str(salary.table)
salary.table$E <- factor(salary.table$E)</pre>
salary.table$M <- factor(salary.table$M)</pre>
head(salary.table$E)
> str(salary.table)
'data.frame': 46 obs. of 4 variables:
$ 5: int 13876 11608 18701 11283 11767 20872 11772 10535 12195 12313 ...
$ X: int 1 1 1 1 1 2 2 2 2 3 ...
$ E: Factor w/ 3 levels "1","2","3": 1 3 3 2 3 2 2 1 3 2 ...
$ M: Factor w/ 2 levels "0", "1": 2 1 2 1 1 2 1 1 1 1 ...
> head(salary.table$E)
[1] 1 3 3 2 3 2
Levels: 1 2 3
```

시각적 판단


```
plot(salary.table$X, salary.table$S, type='n', xlab='Experience', ylab='Salary')
colors <- c('red', 'green', 'blue')
symbols <- c(23,24)
for (i in 1:3) {
   for (j in 0:1) {
      subset <- as.logical((salary.table$E == i) * (salary.table$M == j))
      points(salary.table$X[subset], salary.table$S[subset], pch=symbols[j+1], bg=colors[i], cex=2)
   }
}</pre>
```

시각적 판단

모형 가정하기

가설검정을 위한 모형 가정

질적예측변수를 어떻게 모형에 적용할까?

질적예측변수를 어떻게 모형에 적용할까?

정말로 친절하게도, R은 자동으로 해줍니다 ^_^ ~!

salary.lm <- lm(S ~ E + M + X, salary.table)
summary(salary.lm)</pre>

```
> summary(salary.lm)
Call:
lm(formula = S \sim E + M + X, data = salary.table)
Residuals:
    Min 1Q Median
                               30
-1884.60 -653.60 22.23 844.85 1716.47
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 8035.60 386.69 20.781 < 2e-16 ***
          3144.04 361.97 8.686 7.73e-11 ***
E2
          2996.21 411.75 7.277 6.72e-09 ***
6883.53 313.92 21.928 < 2e-16 ***
E3
M1
            546.18 30.52 17.896 < 2e-16 ***
X
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1027 on 41 degrees of freedom
Multiple R-squared: 0.9568, Adjusted R-squared: 0.9525
F-statistic: 226.8 on 4 and 41 DF, p-value: < 2.2e-16
```

질적예측변수를 어떻게 모형에 적용할까?

그렇다면, R은 어떤 알고리즘으로 변수를 만드는걸까?

R은 변수가 Factor 형일 때, 그 변수의 level 수보다 1개 적은 수의 변수를 만든다. 그 이유는, E2, E3만 있으면 E1 그룹을 구별할 수 있기 때문!

E2=E3 =0 이면 학사(E=1) E2=1,E3=0 이면 석사(E=2) E2=0,E3=1 이면 석사(E=3)

회귀분석에서 변수가 너무 많아지면 과적합이 일어나기때문에 정확한 검정을 위해 변수를 최대한 적게 적합합니다. 이 때 다른 변수가 0일때의 그룹(학사)은 레퍼런스 그룹이라고 합니다.

```
> head(model.matrix(salary.lm))
  (Intercept) E2 E3 M1 X
1
                0
                0
                   1
                      0 1
3
                   1
                О
                     1 1
4
                   0 0 1
5
                0
                   1 0 1
                1
                   (A)
                      1 2
```

3. INTERACTIONS

상호작용 변수란, 설명변수들사이에 연관성이 존재할 경우를 의미한다. 하나의 변수가 다른 변수에 따라 달라지는 경우를 고려해 회귀모형을 적합할 수 있다. 따라서, 〈어떤 변수에 따라 어떤 변수가 달라진다〉라는 가설을 검정하고 싶을 때 상호작용 변수를 사용한다. (무조건사용 X)

삼호작용 변수가 필요할까?

삼호작용 변수가 필요할까?

E

더 확실히 하기 위해서 교육수준에 따른 평균 잔차의 분포를 관리직 유무에 따라서 그래프를 그려봤다.

두 그래프는 다른 양상을 보이는 것으로 확인된다.

모형 가정하기

교육수준과 관리직 유무가 상호작용을 보이는지 알고 싶다.

$$S = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot E + \beta_3 \cdot M + \beta_4 \cdot \frac{1}{\beta_4} \cdot \frac{1}{\beta$$

삼호작용 변수의 적합


```
S = BO + B1X + B2E2 + B3E3 + B4M + B5E2M + B6E3M + \epsilon
model EM = lm(S \sim X + M + E + E:M, salary.table)
summary(model EM)
     Call:
     lm(formula = S \sim X + M + E + E:M, data = salary.table)
     Residuals:
                10 Median
        Min
                              3Q
                                    Max
     -928.13 -46.21 24.33 65.88 204.89
     Coefficients:
               Estimate Std. Error t value Pr(>|t|)
     (Intercept) 9472.685 80.344 117.90 <2e-16 ***
     Х
                496.987 5.566 89.28 <2e-16 ***
               3981.377 101.175 39.35 <2e-16 ***
     M1
             1381.671 77.319 17.87 <2e-16 ***
     E2
             1730.748 105.334 16.43 <2e-16 ***
     E3
            4902.523 131.359 37.32 <2e-16 ***
     M1:E2
     M1:E3
               3066.035 149.330
                                 20.53 <2e-16 ***
     Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
     Residual standard error: 173.8 on 39 degrees of freedom
     Multiple R-squared: 0.9988, Adjusted R-squared: 0.9986
     F-statistic: 5517 on 6 and 39 DF, p-value: < 2.2e-16
```

혹은, lm (S ~ X + E*M, salary.table) 이라고 해도 같은 결과를 반환해줌^^

모델간 F 검정

보통 2가지 모델을 비교할 때는 F test를 진행한다. ANOVA 는 두개 이상의 집단에 F test를 진행할 때 쓴다.

귀무가설 Η0 : β5 = β6 = 0

anova(salary.lm, model_EM)

여기서 p-value가 0에 가까우므로 , 어떤 유의수준을 쓰더라도 model2를 적합하는 것을 채택한다. 따라서 E와 M 사이에 상호작용이 존재한다고 볼 수 있다.

시각적 판단


```
U = salary.table$S - salary.table$X * model_EM$coef['X']
interaction.plot(salary.table$E, salary.table$M, U, type='b', col=c('red','blue'), lwd=2, pch=c(23,24))
```

U = S에서 X에 대한 효과를 모두 제거한 값

interaction.plot(salary.table\$E, salary.table\$M, U, type='b', col=c('red','blue'), lwd=2, pch=c(23,24))

우리가 잘 검정했다는 것을 알 수 있다.

이상치 제거

그럼 왜 상호작용 모델에서 잔차가 표준정규분포를 따르지 않을까? 혹시 이상치가 있는지 살펴보도록 하자.

```
r = rstandard(model_EM)
plot(salary.table$X, r, type='n')
for (i in 1:3) {
  for (j in 0:1) {
    subset <- as.logical((salary.table$E == i) * (salary.table$M == j))</pre>
    points(salary.table$X[subset], r[subset], pch=symbols[j+1], bg=colors[i], cex=2)
             ကု
             ųγ
                                        salary.table$X
```

이상치 제거

그래프에서 발견한 이상치를 제거하기 위해서 정확히 알아보자. 'car' 패키지의 outlierTest 함수는 이상치가 어디에서 존재하는지 검사해준다

> 33번째 관측치가 이상치라는 것을 보여준다. 표 해석은 진단파트에서 다룹니다 ^^! 여기선 그냥 outlier 유무만!

이삼치 제거

33번째 이상치를 정상적으로 제거해주고 다시 모델을 적합해보자.

```
subs33 = c(1:length(salary.table$S))[-33]
salary.lm33 = lm(S ~ E + X + M, data=salary.table, subset=subs33)
model EM33 = lm(S \sim E + X + E:M + M, data=salary.table, subset=subs33)
summary(model EM33)
               Call:
              lm(formula = S \sim E + X + E:M + M, data = salary.table, subset = subs33)
               Residuals:
                   Min 1Q Median 3Q
                                                Max
               -112.884 -43.636 -5.036 46.622 128.480
               Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
               (Intercept) 9458.378 31.041 304.71 <2e-16 ***
               E2
                        1384.294 29.858 46.36 <2e-16 ***
                      1741.336 40.683 42.80 <2e-16 ***
               E3
                        498.418 2.152 231.64 <2e-16 ***
                     3988.817 39.073 102.08 <2e-16 ***
              M1
              E2:M1 5049.294 51.668 97.73 <2e-16 ***
                       3051.763 57.674 52.91 <2e-16 ***
               E3:M1
              Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
               Residual standard error: 67.12 on 38 degrees of freedom
              Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998
               F-statistic: 3.543e+04 on 6 and 38 DF, p-value: < 2.2e-16
```

또.. 다시.. F TEST..

33번째 이상치를 정상적으로 제거해주고 다시 모델을 적합해보자.

귀무가설 H0: E와 M 사이에 상호작용이 존재하지 않는다.

여기서 p-value값이 0에 가까우므로 , 어떤 유의수준을 쓰더라도 귀무가설을 기각하고 model_EM을 적합하는 것을 채택한다. 따라서 E와 M 사이에 상호작용이 존재한다고 볼 수 있다.

또.. 잔차.. 플롯.. 확인..


```
r = rstandard(model_EM33)
mf = model.frame(model_EM33)
plot(mf$X, r, type='n')
for (i in 1:3) {
   for (j in 0:1) {
     subset <- as.logical((mf$E == i) * (mf$M == j))
     points(mf$X[subset], r[subset], pch=symbols[j+1], bg=colors[i], cex=2)
   }
}
abline(h=0, lty=3)   ~-</pre>
```

예쁘다.

그래프로 회귀직선 그려보기


```
plot(mf$X, mf$S, type='n', xlab='Experience', ylab='Salary')
colors <- c('red', 'green', 'blue')
ltys <- c(2,3)
symbols <- c(23,24)
for (i in 1:3) {
   for (j in 0:1) {
      subset <- as.logical((mf$E == i) * (mf$M == j))
      points(mf$X[subset], mf$S[subset], pch=symbols[j+1], bg=colors[i], cex=2)
      lines(mf$X[subset], fitted(model_EM33)[subset], lwd=2, lty=ltys[j], col=colors[i])
   }
}</pre>
```

그래프로 회귀직선 그려보기

여기서 잠깐!

만약에 interaction term 이 있는데 main effect를 테스트하려고 하면 어떻게 될까?

H1: S에 대한 M의 효과가 없다.

```
model_main = lm(S ~ X+E+E:M, salary.table)
anova(model_EM, model_main)
```

여기서 잠깐!

만약에 interaction term 이 있는데 main effect를 테스트하려고 하면 어떻게 될까?

H1: S에 대한 M의 효과가 없다.

아예 F값이 뜨지 않음. 즉 interaction term은 상호작용에 대해서 테스트를 할 때만 쓴다. 다르게 말해서, 우리는 우리가 원하는 가설에 따라 다른 모델을 적절히 적합할 필요가 있다.

질문?

저도 잘 모릅니다.