PROJETO FROST-SIDE

Grupo 9 - TechSide

Disciplina de Arquitetura computacional Professor Eduardo Verri

Participantes

	RA
Brenda Catharina Silva	01231145
Jonnas Kauan Santana de Oliveira	01231202
Kauã Leal Marcondes Dos Santos	01231114
Pedro Henrique Silva	01231124
Rian Neris	01231068
Sarah Vitória Silva	01231193

O Projeto Frost-Side monitora a temperatura de lotes de vacinas, com o objetivo de diminuir a taxa de deterioração de vacinas durante o transporte.Para garantir a potência das vacinas é necessário mantê-las em condições adequadas de conservação, com temperatura controlada, e em conformidade com as orientações do fabricante e aprovação pela Anvisa. A exposição acumulada da vacina a temperaturas fora das preconizadas, ou diretamente à luz, em qualquer etapa da cadeia, gera uma perda de potência que não pode ser restaurada".

Para isso é colocado um sensor no interior do caminhão, que envia a temperatura para o servidor na nuvem e cria um relatório de acompanhamento, inclusive em casos de deslocamentos. "Caso no trajeto ou armazenamento a temperatura saia fora do que é especificado, o responsável recebe um alerta visual e sonoro sobre os riscos para qualidade e segurança para que tome alguma providência".

Assim foi estabelecido ao projeto, uma faixa de temperatura ideal (4°C a 6°C) na cor verde para notificar, uma temperatura de alerta (3°C ou 7°C) na cor amarela , uma temperatura de emergência (2°C ou 8°C) e uma temperatura crítica (< 2°C ou > 8°C) na cor vermelha.

Como mostra o modelo a seguir:

	Posição	Desc. Alerta	Faixa Alerta	Cor alerta
Mínimo	2.0 C°	Critico Frio	<= 2.0 C°	
1º Quartil	3.2 C°	Alerta Frio	3.0 C° - 3.5 C°	
Mediana	5.08 C°	Ideal	4.0 C° - 6.0 C°	
3º quartil	7,16 C°	Alerta Quente	7.0 C° - 7.5 C°	
Máximo	8.0 C°	Critico Quente	>= 8.0 C°	

LM35 Dados ordenados				
2	5	4	7	4
2.5	5	4	6.5	4
3	5.5	7.5	6	4
3.5	6	8	6	3.5
4	6	8	6	3
4	6	8	5.5	3
4	6	8	5	2.5
4.5	6.5	7.5	5	2
5	7	7	5	4.5
5	6	7	4.5	5

Para isso, iremos utilizar um sensor LM35 que consegue medir a temperatura. Este sensor trabalha numa faixa de 2 a 150°C, como visto no diagrama abaixo:

No momento em que o sensor medir a temperatura do lote, teremos uma escala de 2°C a 8°C, e com base nesses dados, decidimos usar uma função linear com resultado de y=0.64x-15.83 sendo 0.64=A e -15.83 = B.

Temos como objetivo fazer alertas através da aplicação assim que a temperatura alcance a faixa de alerta ou emergência.

Referências:

Datasheet LM35

https://sensorweb.com.br/as-vacinas-e-a-importancia-do-armazenamento-correto/

Utilização do sensor LM35 https://autocorerobotica.blog.br/utilizando-sensor-lm35-com-arduino/