

partially ordered algebraic system

Canonical name PartiallyOrderedAlgebraicSystem

Date of creation 2013-03-22 19:03:19 Last modified on 2013-03-22 19:03:19

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 06F99
Classification msc 08C99
Classification msc 08A99

Related topic AlgebraicSystem

Let A be a poset. Recall a function f on A is said to be

- order-preserving (or isotone) provided that $f(a) \leq f(b)$, or
- order-reversing (or antitone) provided that $f(a) \geq f(b)$, or

whenever $a \leq b$. Furthermore, f is called monotone if f is either isotone or antitone.

For every function f on A, we denote it to be \uparrow , \downarrow , or \updownarrow according to whether it is isotone, antitone, or both. The following are some easy consequences:

- $\uparrow \circ \downarrow = \downarrow \circ \uparrow = \downarrow$ (meaning that the composition of an isotone and an antitone maps is antitone),
- $\uparrow \circ \uparrow = \downarrow \circ \downarrow = \uparrow$ (meaning that the composition of two isotone or two antitone maps is isotone),
- f is \updownarrow iff it is a constant on any chain in A, and if this is the case, for every $a \in A$, $f^{-1}(a)$ is a maximal chain in A.

The notion above can be generalized to n-ary operations on a poset A. An n-ary operation f on a poset A is said to be isotone, antitone, or monotone iff when f is isotone, antitone, or monotone with respect to each of its n variables. We continue to use to arrow notations above to denote n-ary monotone functions. For example, a ternary function that is $(\uparrow, \downarrow, \uparrow)$ is isotone with respect to its first and third variables, and antitone with respect to its second variable.

Definition. A partially ordered algebraic system is an algebraic system $\mathcal{A} = (A, O)$ such that A is a poset, and every operation $f \in O$ on A is monotone. A partially ordered algebraic system is also called a partially ordered algebra, or a po-algebra for short.

Examples of po-algebras are po-groups, po-rings, and po-semigroups. In all three cases, the multiplication operations are (\uparrow, \uparrow) , as well as the addition operation in a po-ring. In the case of a po-group, the multiplicative inverse operation is \downarrow , as well as the additive inverse operation in a po-ring.

Another example is an ordered vector space V over a field k. The underlying universe is V (not k). Addition over V is, like the other examples above, isotone. Each element $r \in k$ acts as a unary operator on V, given by r(v) = rv, the scalar multiplication of r and v. As k is itself a poset, it can

be partitioned into three sets: the positive cone P(k) of k, the negative cone -P(k), and $\{0\}$. Then $r \in P(k)$ iff it is \uparrow as a unary operator, $r \in -P(k)$ iff it is \downarrow , and r = 0 iff it is \updownarrow .

Remarks

- A homomorphism from one po-algebra \mathcal{A} to another \mathcal{B} is an isotone map ϕ from posets A to B that is at the same time a homomorphism from the algebraic systems \mathcal{A} to \mathcal{B} .
- A partially ordered subalgebra of a po-algebra \mathcal{A} is just a subalgebra of \mathcal{A} viewed as an algebra, where the partial ordering on the universe of the subalgebra is inherited from the partial ordering on A.

References

[1] L. Fuchs, Partially Ordered Algebraic Systems, Addison-Wesley, (1963).