TP4: Dinámica Molecular regida por el paso temporal

Grupo 5 Tomás Álvarez Escalante (60127) Lucas Agustín Ferreiro (61595) Román Gómez Kiss (61003)

Oscilador amortiquado

Error cuadrático medio

Δt[s]	Verlet Original [m²]	Beeman [m ²]	Gear Predictor-Corrector de orden 5 [m²]
10 ⁻²	3.91x10 ⁻⁵	3.48x10 ⁻⁶	4.05x10 ⁻¹²
10 ⁻³	3.82x10 ⁻⁹	3.31x10 ⁻¹⁰	2.99x10 ⁻²²
10 ⁻⁴	3.79×10 ⁻¹³	3.29x10 ⁻¹⁴	1.44x10 ⁻²⁴
10 ⁻⁵	1.73×10 ⁻¹⁶	3.28×10 ⁻¹⁸	5.57x10 ⁻²³
10 ⁻⁶	9.01x10 ⁻¹⁷	6.78x10 ⁻¹⁹	6.25x10 ⁻²¹

ECM en función de Δt

Introducción

Sistema real y fundamentos

Sistema real

Simular el movimiento de partículas autopropulsadas unidimensionales con interacciones de colisión elástica

Simulaciones dirigidas por paso temporal Δt

Fundamentos

- Partículas interactúan mediante fuerzas.
- Integración numérica con <u>Gear Predictor-Corrector de orden 5</u>.

- 1. Predecir $r_i(t+\Delta t)$ y $v_i(t+\Delta t)$
- 2. Evaluar $F_i(t+\Delta t)$ y obtener a_i
- 3. Corregir variables

Fundamentos

$$F_{x} = F_{N} \cdot e_{x}^{n}$$
 $e_{x}^{n} = (x_{j} - x_{i}) / |r_{j} - r_{i}|$
 $F_{y} = F_{N} \cdot e_{y}^{n}$ $e_{y}^{n} = (y_{j} - y_{i}) / |r_{j} - r_{i}|$

Ecuación de movimiento

- m → Masa de la partícula i
- u_i ∈ [9-12] cm/s → Velocidad límite de la partícula i
- T = 1 s → Tiempo de reacción característico
- sign[·] → Función signo
- $k = 2500 \text{ g/s}^2$

Implementación

Arquitectura y algoritmo

Arquitectura

<u>Algoritmo</u>

Algorithm 1: Algoritmo del modelo de sistema de partículas unidimensional

Generar partículas con (x,y) y v aleatorias sin superposición;

Calcular el 1.er paso de integración;

while $dt < t_f$ do

for particle do

Predecir $r_i^p(t + \Delta t)$ y $v_i^p(t + \Delta t)$;

Evaluar $F(t + \Delta t)$ con las variables predichas y obtener $a(t + \Delta t)$;

Corregir las variables r_q^c ;

Actualizar la particula con la nueva posicion y velocidad;

Guardar el estado del sistema;

Simulaciones

Parámetros fijos, observable y variables a estudiar

<u>Parámetros</u>

- Cantidad de partículas N
- Paso temporal Δt

N
$$\in$$
 {5, 10, 15, 20, 25, 30}
 $\Delta t \in$ {10⁻¹, 10⁻², 10⁻³, 10⁻⁴, 10⁻⁵}[s]

Variables fijas

- Masa = 25 g
- Radio = 2.25 cm
- L = 135 cm
- $T_f = 180 s$
- \bullet $\Delta t_2 = 0.1 s$

Consideraciones

Generación de partículas

- Sin superposición
- Posiciones aleatorias
- Velocidades iniciales v_i(t=0)=u_i aleatorias

 $u_i \in [9-12]$ cm/s \rightarrow Cte. para cada partícula durante toda la simulación

Observables

Velocidad promedio

 Φ^{k}

$$v^k(t) = \frac{1}{N} \sum_{i=1}^{N} v_i$$

$$v^{k}(t) = \frac{1}{N} \sum_{i=1}^{N} v_{i} \qquad \phi^{k}(t) = \sum_{i=1}^{N} \left\| r_{i}^{k+1}(t) - r_{i}^{k}(t) \right\|$$

Densidad individual

$$\rho = \frac{1}{d_{ij} + d_{ik}}$$

Variables a estudiar

1. Φ^k en función del tiempo para $\Delta t = 10^{-k}$ (k = 1, 2, 3 y 4)

$$N \in \{5, 10, 15, 20, 25, 30\}$$

- 2. Velocidad promedio en función del tiempo
- 3. Velocidad promedio en el estacionario como función de N
- 4. Nube de datos $(v_i(t), \rho_i(t)) \rightarrow \text{velocidad vs. } \rho$

$$N \in \{10, 20, 30\}$$

5. Distribución de probabilidades de velocidades

Resultados

Animaciones y gráficos

Animaciones

$$\Delta t = 10^{-3}$$

https://youtu.be/xoNCYVG4Hz8

N=5 Agregado aleatório https://youtu.be/yvMCKqZfUAE

N=10 Agregado aleatório https://youtu.be/tMRBXrY-xfc

N=30 Agregado aleatório

Animaciones

$$\Delta t = 10^{-3}$$

https://youtu.be/sy9q9jyKb0Y

N=20 Agregado aleatório https://youtu.be/LaSFzx9ZBZU

N=20 Agregado ascendente https://youtu.be/5KRjbNByNOw

N=20 Agregado descendente

<u>Φ^k en función del tiempo</u>

N = 25

Velocidad en función del tiempo

<u>Velocidad promedio en función de N</u>

 $\Delta t = 10^{-3}$

Agregado aleatorio de partículas

<u>Distribución de probabilidades de velocidades</u>

Velocidad en función del tiempo

<u>Velocidad promedio en función de N</u>

<u>Distribución de probabilidades de velocidades</u>

$$\Delta t = 10^{-3}$$

Velocidad en función del tiempo

<u>Velocidad promedio en función de N</u>

<u>Distribución de probabilidades de velocidades</u>

 $\Delta t = 10^{-3}$

Agregado descendente de partículas según u

Velocidad vs. Densidad

$$\Delta t = 10^{-3}$$

Conclusiones

- El sistema estudiado no es conservativo, pues la fuerza de autopropulsión agrega energía al sistema.
- 2. A menor Δt , menor Φ^k
- 3. A mayor N, menor velocidad promedio.
- 4. A mayor N, mayor fluctuación de velocidad en el estacionario.
- 5. Agregado ascendente de partículas \rightarrow converge más lento.
- 6. Agregado descendente de partículas → converge más rápido.
- 7. A mayor densidad, menor velocidad.

¡Muchas gracias!