Semaine 21

Matrices et E.V.

Sujet 1 : Nina Barougier

Ex. 21.1 Soit $\mathcal{B}_0 = (1, X, X^2)$, $\mathcal{B}_1 = (1, X, X(X-1))$ et $\mathcal{B}_2 = ((X+1)^2, (X+1)(X-1), (X-1)^2)$ trois bases de $E = \mathbb{R}_2[X]$. Soit f l'endomorphisme de E dont la matrice dans \mathcal{B}_1 est

$$M = \left(\begin{array}{rrr} 1 & 1 & 0 \\ -1 & -1 & 4 \\ 1 & -1 & 2 \end{array}\right)$$

Donner la matrice P de passage de \mathcal{B}_0 exprimée dans \mathcal{B}_1 puis la matrice Q de passage de \mathcal{B}_1 exprimée dans \mathcal{B}_2 .

En déduire la matrice de f de E rapporté à \mathcal{B}_0 dans E rapporté à \mathcal{B}_2 .

Sujet 2 : Raphaël Etaix

Ex. 21.2 On pose

$$S_j = X^j (1-X)^{n-j} \quad \text{pour} \quad 0 \leqslant j \leqslant n$$

Montrer que la famille $\mathcal{B} = (S_j)_{j \in [0:n]}$ est une base de $\mathbb{R}_n[X]$. Donner la matrice de passage de \mathcal{B} dans la base canonique puis inverser cette matrice.

Sujet 3: Amine Barouri

Soit ϕ : $\begin{cases} \mathbb{R}^2 & \to \mathbb{R}^2 \\ (x;y) & \mapsto (x+y;x-y) \end{cases}$.

Donner la matrice de ϕ dans la base $\mathcal{B} = ((2;1);(1;2))$.

Sujet 4 : Exos supplémentaires

Soit A une matrice carrée d'ordre n triangulaire supérieure. Montrer qu'il existe Pinversible telle que $P^{-1}AP$ soit triangulaire inférieure.

$$\underline{\mathbf{Ex. 21.5}} \quad \text{Calculer le rang de la matrice } M = \begin{pmatrix} a^2 & ab & ab & b^2 \\ ab & a^2 & b^2 & ab \\ ab & b^2 & a^2 & ab \\ b^2 & ab & ab & a^2 \end{pmatrix} \text{ suivant les valeurs de } a, b \in \mathbb{K}.$$

Lycée Lafayette Colles 2018/2019

Ex. 21.6 Soit A une matrice réelle d'ordre n et de rang 1.

- 1) Montrer qu'il existe X et Y dans $\mathcal{M}_{n,1}(\mathbb{R})$ tels que $A = X^{t}Y$.
- 2) En déduire A^k en fonction de A pour $k \geq 1$.
- 3) En déduire une condition nécessaire et suffisante pour que $A + I_n$ soit inversible et exprimer alors son inverse en fonction de A.

Ex. 21.7 Existence et calcul de l'inverse d'une matrice carrée dont les coefficients sont nuls à l'exception de la diagonale et de la surdiagonale dont les coefficients valent 1.