TELEMAC-3D Reference Manual

Version v8p3
December 6, 2021

Contents

1	Detail list of keywords	14
1.1	2D CONTINUATION	14
1.2	2D RESULT FILE	14
1.3	2D RESULT FILE FORMAT	14
1.4	3D RESULT FILE	15
1.5	3D RESULT FILE FORMAT	15
1.6	ABSCISSAE OF SOURCES	15
1.7	ACCURACY FOR DIFFUSION OF K-EPSILON	15
1.8	ACCURACY FOR DIFFUSION OF SEDIMENT	15
1.9	ACCURACY FOR DIFFUSION OF TRACERS	16
1.10	ACCURACY FOR DIFFUSION OF VELOCITIES	16
1.11	ACCURACY FOR PPE	16
1.12	ACCURACY FOR PROPAGATION	16
1.13	AD LINEAR SOLVER DERIVATIVE CONVERGENCE	16
1.14	AD LINEAR SOLVER RESET DERIVATIVES	17
1.15	AD NAMES OF DERIVATIVES	17
1.16	AD NUMBER OF DERIVATIVES	17
1.17	AD NUMBER OF DIRECTIONS	17
1.18	AD SYMBOLIC LINEAR SOLVER	17
1.19	ADVECTION STEP	17
1.20	ADVECTION-DIFFUSION SCHEME WITH SETTLING VELOCITY	18
1.21	AIR PRESSURE	18
1.22	AIR TEMPERATURE	18
1.23	ASCII ATMOSPHERIC DATA FILE	18
1.24	ASCII DATABASE FOR TIDE	18
1.25	ASCII DROGUES FILE	19

1.26	AVERAGE WATER DENSITY	19
1.27	BED LAYERS THICKNESS	19
1.28	BETA EXPANSION COEFFICIENT FOR TRACERS	19
1.29	BINARY ATMOSPHERIC DATA FILE	19
1.30	BINARY ATMOSPHERIC DATA FILE FORMAT	20
1.31	BINARY BOUNDARY DATA FILE	20
1.32	BINARY BOUNDARY DATA FILE FORMAT	20
1.33	BINARY DATA FILE 1	20
1.34	BINARY DATA FILE 1 FORMAT	20
1.35	BINARY DATA FILE 2	21
1.36	BINARY DATABASE 1 FOR TIDE	21
1.37	BINARY DATABASE 2 FOR TIDE	21
1.38	BINARY DROGUES FILE	21
1.39	BINARY RESULTS FILE	21
1.40	BOTTOM FRICTION DUE TO WAVES	22
1.41	BOTTOM SMOOTHINGS AFTER USER MODIFICATIONS	22
1.42	BOTTOM SURFACES DELWAQ FILE	22
1.43	BOTTOM TOPOGRAPHY FILE	22
1.44	BOUNDARY CONDITION ON THE BOTTOM	22
1.45	BOUNDARY CONDITIONS FILE	23
1.46	BYPASS VOID VOLUMES	23
1.47	CHECKING THE MESH	23
1.48	CLOUD COVER	23
1.49	COEFFICIENT FOR HORIZONTAL DIFFUSION OF TRACERS	23
1.50	COEFFICIENT FOR HORIZONTAL DIFFUSION OF VELOCITIES	24
1.51	COEFFICIENT FOR VERTICAL DIFFUSION OF TRACERS	24
1.52	COEFFICIENT FOR VERTICAL DIFFUSION OF VELOCITIES	24
1.53	COEFFICIENT OF WIND INFLUENCE	24
1.54	COEFFICIENT OF WIND INFLUENCE VARYING WITH WIND SPEED	24
1.55	COEFFICIENT RELATIVE TO FLOC DESTRUCTION	25
1.56	COEFFICIENT TO CALIBRATE SEA LEVEL	25
1.57	COEFFICIENT TO CALIBRATE TIDAL RANGE	25
1.58	COEFFICIENT TO CALIBRATE TIDAL VELOCITIES	25
1.59	COHESIVE SEDIMENT	25
1.60	COMPUTATION CONTINUED	26
1.61	CONCATENATE PARTEL OUTPUT	26

1.62	CONSOLIDATION	26
1.63	CONSOLIDATION MODEL	26
1.64	CONSTANT SEDIMENT SETTLING VELOCITY	27
1.65	CONTINUITY CORRECTION ON OPEN BOUNDARIES	27
1.66	CORIOLIS	27
1.67	CORIOLIS COEFFICIENT	27
1.68	COUPLING PERIOD FOR SISYPHE	28
1.69	COUPLING PERIOD FOR TOMAWAC	28
1.70	COUPLING WITH	28
1.71	CRITICAL EROSION SHEAR STRESS OF THE MUD LAYERS	28
1.72	CRITICAL SHEAR STRESS FOR DEPOSITION	29
1.73	CULVERTS DATA FILE	29
1.74	DAMPING FUNCTION	29
1.75	DEBUGGER	29
1.76	DELWAQ PRINTOUT PERIOD	29
1.77	DELWAQ STEERING FILE	30
1.78	DENSITY LAW	30
1.79	DENSITY OF THE SEDIMENT	30
1.80	DICTIONARY	30
1.81	DIFFUSION FOR DELWAQ	31
1.82	DIFFUSIVITY DELWAQ FILE	31
1.83	DROGUES FILE FORMAT	31
1.84	DURATION	31
1.85	DYNAMIC BOUNDARY CONDITION	31
1.86	DYNAMIC PRESSURE IN WAVE EQUATION	32
1.87	ELEMENT	32
1.88	ELEMENTS MASKED BY USER	32
1.89	ELEVATIONS OF SOURCES	32
1.90	EROSION COEFFICIENT	32
1.91	EXCHANGE AREAS DELWAQ FILE	33
1.92	EXCHANGES BETWEEN NODES DELWAQ FILE	33
1.93	FICTITIOUS BED LEVEL	33
1.94	FILE FOR 2D CONTINUATION	33
1.95	FILE FOR 2D CONTINUATION FORMAT	33
1.96	FLOCCULATION	34
1.97	FLOCCULATION COEFFICIENT	34

1.98	FLOCCULATION FORMULA	34
1.99	FORMATTED DATA FILE 1	34
1.100	FORMATTED DATA FILE 2	34
1.101	FORMATTED RESULTS FILE	35
1.102	FORMATTED RESULTS FILE 1	35
1.103	FORMATTED RESULTS FILE 2	35
1.104	FORMATTED RESULTS FILE 3	35
1.105	FORMATTED RESULTS FILE 4	35
1.106	FORMATTED RESULTS FILE 5	35
1.107	FORMATTED RESULTS FILE 6	36
1.108	FORTRAN FILE	36
1.109	FREE FORMAT FOR ATMOSPHERIC DATA FILE	36
1.110	FREE SURFACE GRADIENT COMPATIBILITY	36
1.111	FRICTION COEFFICIENT FOR LATERAL SOLID BOUNDARIES	36
1.112	FRICTION COEFFICIENT FOR THE BOTTOM	37
1.113	GAIA STEERING FILE	37
1.114	GEOGRAPHIC SYSTEM	37
1.115	GEOMETRY FILE	37
1.116	GEOMETRY FILE FORMAT	38
1.117	GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER	38
1.118	GLOBAL NUMBERS OF SOURCE NODES	38
1.119	GOTM STEERING FILE	38
1.120	GRAPHIC PRINTOUT PERIOD	38
1.121	GRAVITY ACCELERATION	39
1.122	HARMONIC CONSTANTS FILE	39
1.123	HINDERED SETTLING	39
1.124	HINDERED SETTLING FORMULA	39
1.125	HORIZONTAL TURBULENCE MODEL	39
1.126	HYDROSTATIC INCONSISTENCY FILTER	40
1.127	IMPLICITATION FOR DEPTH	40
1.128	IMPLICITATION FOR DIFFUSION	40
1.129	IMPLICITATION FOR VELOCITIES	40
1.130	INFORMATION ABOUT MASS-BALANCE FOR EACH LISTING PRINTOUT	41
1.131	INITIAL CONDITIONS	41
1.132	INITIAL DEPTH	41
1.133	INITIAL ELEVATION	41

1.134	INITIAL GUESS FOR DEPTH	42
1.135	INITIAL PERCENTAGE OF NON COHESIVE SEDIMENT	42
1.136	INITIAL THICKNESS OF SEDIMENT LAYERS	42
1.137	INITIAL TIME SET TO ZERO	42
1.138	INITIAL VALUES OF TRACERS	43
1.139	INITIAL VELOCITIES COMPUTED BY TPXO	43
1.140	KARMAN CONSTANT	43
1.141	KHIONE STEERING FILE	43
1.142	LAMBERT 93 CONVERSION FILE	43
1.143	LATITUDE OF ORIGIN POINT	44
1.144	LAW OF BOTTOM FRICTION	44
1.145	LAW OF FRICTION ON LATERAL BOUNDARIES	44
1.146	LINEARIZED PROPAGATION	44
1.147	LIQUID BOUNDARIES FILE	45
1.148	LISTING PRINTOUT	45
1.149	LISTING PRINTOUT PERIOD	45
1.150	LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER	45
1.151	LONGITUDE OF ORIGIN POINT	45
1.152	MASS-BALANCE	46
1.153	MASS-LUMPING FOR DEPTH	46
1.154	MASS-LUMPING FOR DIFFUSION	46
1.155	MASS-LUMPING FOR VELOCITIES	46
1.156	MASS-LUMPING FOR WEAK CHARACTERISTICS	47
1.157	MATRIX STORAGE	47
1.158	MAXIMUM CONCENTRATION OF THE CONSOLIDATED MUD	47
1.159	MAXIMUM NUMBER OF BOUNDARIES	47
1.160	MAXIMUM NUMBER OF BOUNDARIES ON THE BED	47
1.161	MAXIMUM NUMBER OF DROGUES	48
1.162	MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES	48
1.163	MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF K-EPSILON	48
1.164	MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF SEDIMENT	48
1.165	MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS	48
1.166	MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF VELOCITIES	49
1.167	MAXIMUM NUMBER OF ITERATIONS FOR PPE	49
1.168	MAXIMUM NUMBER OF ITERATIONS FOR PROPAGATION	49
1.169	MAXIMUM NUMBER OF SOURCES	49

1.170	MAXIMUM NUMBER OF TRACERS	49
1.171	MEAN DEPTH FOR LINEARIZATION	50
1.172	MEAN DIAMETER OF THE SEDIMENT	50
1.173	MESH TRANSFORMATION	50
1.174	MINIMAL VALUE FOR DEPTH	50
1.175	MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES BOUNDARY CONDITIONS 1	ONS
1.176	MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES INITIAL CONDITIONS	51
1.177	MINIMUM DISTANCE BETWEEN PLANES CLOSE TO THE BOTTOM	51
1.178	MINIMUM DISTANCE BETWEEN PLANES CLOSE TO THE FREE SURFACE	51
1.179	MINIMUM VOLUME OF 3D ELEMENTS	51
1.180	MINOR CONSTITUENTS INFERENCE	52
1.181	MIXED SEDIMENT	52
1.182	MIXING LENGTH MODEL	52
1.183	MUD CONCENTRATIONS PER LAYER	52
1.184	NAMES OF 2D PRIVATE VARIABLES	53
1.185	NAMES OF TRACERS	53
1.186	NODES DISTANCES DELWAQ FILE	53
1.187	NON COHESIVE BED POROSITY	53
1.188	NON-HYDROSTATIC VERSION	53
1.189	NORTH	54
1.190	NUMBER OF 2D PRIVATE ARRAYS	54
1.191	NUMBER OF BOTTOM SMOOTHINGS	54
1.192	NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES	54
1.193	NUMBER OF CULVERTS	54
1.194	NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS	55
1.195	NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS	55
1.196	NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS	55
1.197	NUMBER OF HORIZONTAL LEVELS	55
1.198	NUMBER OF PRIVATE ARRAYS	55
1.199	NUMBER OF SEDIMENT BED LAYERS	56
1.200	NUMBER OF SUB ITERATIONS FOR NON LINEARITIES	56
1.201	NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES	56
1.202	NUMBER OF TIME STEPS	56
1.203	NUMBER OF TRACER FOR AMR	56
1.204	NUMBER OF TRACERS	57

1.205	OIL SPILL MODEL	57
1.206	OIL SPILL STEERING FILE	57
1.207	OPEN BOUNDARY CONDITIONS ON THE BED	57
1.208	OPTION FOR CHARACTERISTICS	57
1.209	OPTION FOR CULVERTS	58
1.210	OPTION FOR LIQUID BOUNDARIES	58
1.211	OPTION FOR THE BOUNDARY CONDITIONS OF K-EPSILON	58
1.212	OPTION FOR THE TREATMENT OF TIDAL FLATS	58
1.213	OPTION FOR TIDAL BOUNDARY CONDITIONS	59
1.214	OPTION FOR WIND	59
1.215	OPTION OF SOLVER FOR DIFFUSION OF K-EPSILON	59
1.216	OPTION OF SOLVER FOR DIFFUSION OF THE SEDIMENT	60
1.217	OPTION OF SOLVER FOR DIFFUSION OF TRACERS	60
1.218	OPTION OF SOLVER FOR DIFFUSION OF VELOCITIES	60
1.219	OPTION OF SOLVER FOR PPE	60
1.220	OPTION OF SOLVER FOR PROPAGATION	60
1.221	ORDINATES OF SOURCES	61
1.222	ORIGINAL DATE OF TIME	61
1.223	ORIGINAL HOUR OF TIME	61
1.224	PARALLEL PROCESSORS	61
1.225	PARTITIONING TOOL	61
1.226	PRANDTL NUMBER	62
1.227	PRECONDITIONING FOR DIFFUSION OF K-EPSILON	62
1.228	PRECONDITIONING FOR DIFFUSION OF THE SEDIMENT	62
1.229	PRECONDITIONING FOR DIFFUSION OF TRACERS	63
1.230	PRECONDITIONING FOR DIFFUSION OF VELOCITIES	64
1.231	PRECONDITIONING FOR PPE	64
1.232	PRECONDITIONING FOR PROPAGATION	65
1.233	PRESCRIBED ELEVATIONS	65
1.234	PRESCRIBED FLOWRATES	65
1.235	PRESCRIBED FLOWRATES ON THE BED	66
1.236	PRESCRIBED TRACERS VALUES	66
1.237	PRESCRIBED VELOCITIES	66
1.238	PREVIOUS COMPUTATION FILE	66
1.239	PREVIOUS COMPUTATION FILE FORMAT	66
1.240	PREVIOUS COMPUTATION SEDIMENTOLOGICAL FILE	67

1.241	PRINTOUT PERIOD FOR DROGUES	67
1.242	RAIN OR EVAPORATION	67
1.243	RAIN OR EVAPORATION IN MM PER DAY	67
1.244	RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER	67
1.245	READ CRITICAL BED SHEAR STRESS PER LAYER	68
1.246	RECORD NUMBER FOR RESTART	68
1.247	RECORD NUMBER IN WAVE FILE	68
1.248	REFERENCE CONCENTRATION FORMULA	68
1.249	REFERENCE FILE	68
1.250	REFERENCE FILE FORMAT	69
1.251	RELATIVE HUMIDITY	69
1.252	RESIDENCE TIME FOR MUD	69
1.253	RESTART FILE	69
1.254	RESTART FILE FORMAT	70
1.255	RESTART MODE	70
1.256	RESULT FILE IN LONGITUDE-LATITUDE	70
1.257	SALINITY DELWAQ FILE	70
1.258	SALINITY FOR DELWAQ	70
1.259	SCHEME FOR ADVECTION OF DEPTH	71
1.260	SCHEME FOR ADVECTION OF K-EPSILON	71
1.261	SCHEME FOR ADVECTION OF TRACERS	72
1.262	SCHEME FOR ADVECTION OF VELOCITIES	72
1.263	SCHEME FOR DIFFUSION OF K-EPSILON	73
1.264	SCHEME FOR DIFFUSION OF TRACERS	73
1.265	SCHEME FOR DIFFUSION OF VELOCITIES	73
1.266	SCHEME OPTION FOR ADVECTION OF K-EPSILON	73
1.267	SCHEME OPTION FOR ADVECTION OF TRACERS	74
1.268	SCHEME OPTION FOR ADVECTION OF VELOCITIES	74
1.269	SEDIMENT	74
1.270	SEDIMENTOLOGICAL RESULT FILE	75
1.271	SEDIMENTOLOGICAL RESULT FILE BINARY	75
1.272	SETTLING VELOCITY OF SANDS	75
1.273	SHIELDS PARAMETER	75
1.274	SISYPHE STEERING FILE	75
1.275	SKIN FRICTION CORRECTION	76
1.276	SOLAR RADIATION	76

1.277	SOLVER FOR DIFFUSION OF K-EPSILON	76
1.278	SOLVER FOR DIFFUSION OF THE SEDIMENT	77
1.279	SOLVER FOR DIFFUSION OF TRACERS	77
1.280	SOLVER FOR DIFFUSION OF VELOCITIES	77
1.281	SOLVER FOR PPE	78
1.282	SOLVER FOR PROPAGATION	78
1.283	SOURCES FILE	79
1.284	SPATIAL PROJECTION TYPE	79
1.285	SPHERICAL COORDINATES	79
1.286	STAGE-DISCHARGE CURVES	80
1.287	STAGE-DISCHARGE CURVES FILE	80
1.288	STAGE-DISCHARGE CURVES RELAXATION COEFFICIENT	80
1.289	STANDARD VALUES FOR TRACERS	80
1.290	STEERING FILE	81
1.291	SUPG OPTION	81
1.292	TEMPERATURE DELWAQ FILE	81
1.293	TEMPERATURE FOR DELWAQ	81
1.294	THRESHOLD CONCENTRATION FOR HINDERED SETTLING	81
1.295	THRESHOLD DEPTH FOR WIND	82
1.296	THRESHOLD FOR SEDIMENT FLUX CORRECTION ON TIDAL FLATS	82
1.297	THRESHOLD FOR VISCOSITY CORRECTION ON TIDAL FLATS	82
1.298	THRESHOLD HEIGHT BEFORE CRUSHED ELEMENTS	82
1.299	TIDAL DATA BASE	82
1.300	TIDAL FLATS	83
1.301	TIDAL MODEL FILE	83
1.302	TIDAL MODEL FILE FORMAT	83
1.303	TIDE GENERATING FORCE	83
1.304	TIME STEP	83
1.305	TIME STEP FOR CONSOLIDATION	84
1.306	TITLE	84
1.307	TOMAWAC STEERING FILE	84
1.308	TRACERS VERTICAL PROFILES	84
1.309	TREATMENT OF FLUXES AT THE BOUNDARIES	85
1.310	TREATMENT OF NEGATIVE DEPTHS	85
1.311	TREATMENT ON TIDAL FLATS FOR K-EPSILON	85
1.312	TREATMENT ON TIDAL FLATS FOR TRACERS	85

1.313	TREATMENT ON TIDAL FLATS FOR VELOCITIES	86
1.314	TURBULENCE REGIME FOR LATERAL SOLID BOUNDARIES	86
1.315	TURBULENCE REGIME FOR THE BOTTOM	86
1.316	TYPE OF SOURCES	86
1.317	VALIDATION	87
1.318	VALUE OF ATMOSPHERIC PRESSURE	87
1.319	VALUE OF THE TRACERS AT THE SOURCES	87
1.320	VALUES OF TRACERS IN THE RAIN	87
1.321	VARIABLES FOR 2D GRAPHIC PRINTOUTS	87
1.322	VARIABLES FOR 3D GRAPHIC PRINTOUTS	89
1.323	VECTOR LENGTH	90
1.324	VELOCITIES OF THE SOURCES ALONG X	90
1.325	VELOCITIES OF THE SOURCES ALONG Y	90
1.326	VELOCITIES OF THE SOURCES ALONG Z	91
1.327	VELOCITY DELWAQ FILE	91
1.328	VELOCITY FOR DELWAQ	91
1.329	VELOCITY PROFILES	91
1.330	VELOCITY PROJECTED ON BOTTOM	91
1.331	VELOCITY PROJECTED ON SOLID LATERAL BOUNDARIES	92
1.332	VELOCITY VERTICAL PROFILES	92
1.333	VERTICAL FLUXES DELWAQ FILE	92
1.334	VERTICAL TURBULENCE MODEL	92
1.335	VERTICAL VELOCITY DERIVATIVES	93
1.336	VOLUMES DELWAQ FILE	93
1.337	WAQTEL STEERING FILE	93
1.338	WATER DISCHARGE OF SOURCES	93
1.339	WATER QUALITY PROCESS	94
1.340	WAVE DRIVEN CURRENTS	94
1.341	WEAK SOIL CONCENTRATION FOR MUD	94
1.342	WIND	95
1.343	WIND VELOCITY ALONG X	95
1.344	WIND VELOCITY ALONG Y	95
1.345	ZERO	95
1.346	ZONE NUMBER IN GEOGRAPHIC SYSTEM	95

2	List of keywords classified according to type	97
2.1	AUTOMATIC DIFFERENTIATION	97
2.2 2.2.1 2.2.2 2.2.3 2.2.4	COMPUTATION ENVIRONMENT GLOBAL INPUT OUTPUT RESTART	97 98
2.3	COUPLING	99
2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6	DELWAQ GAIA KHIONE SISYPHE TOMAWAC WAQTEL	99 99 99 99
2.4	GENERAL PARAMETERS	100
2.4.1 2.4.2	LOCATION	
2.5 2.5.1	HYDRO PHYSICAL PARAMETERS HYDRO	1 00 100
2.6	HYDRODYNAMICS	100
2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7 2.6.8	BOUNDARY CONDITIONS HYDRAULIC STRUCTURES INITIALIZATION NUMERICAL PARAMETERS PARTICLES TRANSPORT PHYSICAL PARAMETERS TIDAL FLATS INFO TIDES	101 101 101 102 102 104
2.7	INTERNAL	104
2.8 2.8.1 2.8.2	NUMERICAL PARAMETERS ADVECTION DIFFUSION	
2.9	SEDIMENT INFO	105
2.9.1 2.9.2 2.9.3 2.9.4 2.9.5 2.9.6	DEPOSITION DEPRECATED EROSION FLOCCULATION INFO INITIALIZATION INPUT	105 105 106 106
2.9.7 2.9.8 2.9.9	NUMERICAL PARAMETERS OUTPUT PHYSICAL PARAMETERS RESTART	106 106 106
2.9.11 2.9.12	SETTLING VELOCITY SUSPENSION TIDAL FLATS INFO	107 107

2.10	TRACERS	107
2.10.1	BOUNDARY CONDITIONS	107
2.10.2	INITIALIZATION	107
2.10.3	NUMERICAL PARAMETERS	107
	PHYSICAL PARAMETERS	
	TIDAL FLATS INFO	
2.10.6	TURBULENCE	108
2.11	TURBULENCE	108
2.11.1	BOUNDARY CONDITIONS	108
2.11.2	NUMERICAL PARAMETERS	108
2.11.3	PHYSICAL PARAMETERS	109
2.11.4	TIDAL FLATS INFO	109
2.12	VERTICAL	109
3	Glossary	110
3.1	English/French glossary	110
3.2	French/English glossary	121
	Bibliography	133

1. Detail list of keywords

1.1 2D CONTINUATION

Type: Logical
Dimension: 1
Mnemo SUIT2
DEFAULT VALUE: NO

French keyword: SUITE 2D

Enables to use a 2D RESULT FILE in FILE FOR 2D CONTINUATION as initial condi-

tions file.

1.2 2D RESULT FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DHYD)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS 2D

Name of the file into which the 2D results of the computation are written with a periodicity given by the keyword GRAPHIC PRINTOUT PERIOD.

1.3 2D RESULT FILE FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DHYD)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES RESULTATS 2D

Format of the 2D RESULT FILE. Possible choices are:

- SERAFIN: classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.4 3D RESULT FILE 15

1.4 3D RESULT FILE

Type: String

Dimension: 1

Mnemo T3D_FILES(T3DRES)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS 3D

Name of the file into which the 3D results of the computation are written with a periodicity given by the keyword GRAPHIC PRINTOUT PERIOD.

1.5 3D RESULT FILE FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DRES)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES RESULTATS 3D

Format of the 3D RESULT FILE. Possible choices are:

- SERAFIN: classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED : MED double precision format based on HDF5.

1.6 ABSCISSAE OF SOURCES

Type: Real
Dimension: 2
Mnemo XSCE

DEFAULT VALUE: MANDATORY

French keyword: ABSCISSES DES SOURCES

Floats giving the abscissae of potential sources of flow rates (in meters). The source will be located at the nearest node in the mesh.

1.7 ACCURACY FOR DIFFUSION OF K-EPSILON

Type: Real Dimension: 1

Mnemo SLVDKE%EPS

DEFAULT VALUE: 1.E-8

French keyword: PRECISION POUR LA DIFFUSION DU K-EPSILON

Sets the accuracy needed for the computation of the diffusion of the k- ε or Spalart-Allmaras models. Old default value = 1.E-6 until version V8P0.

1.8 ACCURACY FOR DIFFUSION OF SEDIMENT

Type: Real Dimension: 1

Mnemo S3D_SLVDSE%EPS

DEFAULT VALUE: 1.E-8

French keyword: PRECISION POUR LA DIFFUSION DU SEDIMENT

Sets the accuracy needed for the computation of the diffusion of sediments. Old default value = 1.E-6 until version V8P0.

1.9 ACCURACY FOR DIFFUSION OF TRACERS

Type: Real Dimension: 1

Mnemo SLVDTA(ITRAC)%EPS

DEFAULT VALUE: 1.E-8

French keyword: PRECISION POUR LA DIFFUSION DES TRACEURS

Sets the accuracy needed for the computation of the diffusion of the tracers. One single value for every tracer. Old default value = 1.E-6 until version V7P3.

1.10 ACCURACY FOR DIFFUSION OF VELOCITIES

Type: Real Dimension: 1

Mnemo SLVDVI%EPS

DEFAULT VALUE: 1.E-8

French keyword: PRECISION POUR LA DIFFUSION DES VITESSES

Sets the accuracy needed for the computation of the diffusion of the velocities. Old default value = 1.E-5 until version V8P0.

1.11 ACCURACY FOR PPE

Type: Real Dimension: 1

Mnemo SLVPOI%EPS

DEFAULT VALUE: 1.E-8

French keyword: PRECISION POUR PPE

Sets the precision needed for the computation of the Poisson Pressure Equation. Old default value = 1.E-4 until version V8P0.

1.12 ACCURACY FOR PROPAGATION

Type: Real Dimension: 1

Mnemo SLVPRO%EPS

DEFAULT VALUE: 1.E-8

French keyword: PRECISION POUR LA PROPAGATION

Sets the accuracy needed for the computation of the propagation step. Old default value = 1.E-6 until version V8P0.

1.13 AD LINEAR SOLVER DERIVATIVE CONVERGENCE

Type: Logical Dimension: 1

Mnemo AD_LINSOLV_DERIVATIVE_CONVERGENCE

DEFAULT VALUE: YES

French keyword: AD CONVERGENCE DES DERIVEES POUR LE SOLVEUR LINEAIRE

Iterative linear solvers: derivative convergence test for AD.

1.14 AD LINEAR SOLVER RESET DERIVATIVES

Type: Logical

Dimension: 1

Mnemo AD_LINSOLV_RESETDERIV

DEFAULT VALUE: YES

French keyword: AD REMISE A ZERO DES DERIVEES DU SOLVEUR LINEAIRE

Resets the derivatives for AD.

1.15 AD NAMES OF DERIVATIVES

Type: String Dimension: 2

Mnemo NAME_ADVAR
DEFAULT VALUE: 'MANDATORY'

French keyword: AD NOMS DES DERIVEES

Name of user derivatives in 32 characters, 16 for the name, 16 for the unit.

1.16 AD NUMBER OF DERIVATIVES

Type: Integer

Dimension: 1

Mnemo NADVAR

DEFAULT VALUE: 0

French keyword: AD NOMBRE DES DERIVEES

Defines the number of user derivatives, within the framework of the algorithmic differentiation.

1.17 AD NUMBER OF DIRECTIONS

Type: Integer

Dimension: 1

Mnemo AD_NUMOFDIR

DEFAULT VALUE:

French keyword: AD NOMBRE DE DIRECTIONS Defines the number of directions for the differentiators.

1.18 AD SYMBOLIC LINEAR SOLVER

Type: Logical

Dimension: 1

Mnemo AD_SYMBLINSOLV

DEFAULT VALUE: NO

French keyword: AD SOLVEUR LINEAIRE SYMBOLIQUE

Enables the symbolic linear solver for AD.

1.19 ADVECTION STEP

Type: Logical

Dimension: 1

Mnemo CONVEC DEFAULT VALUE: YES

French keyword: ETAPE DE CONVECTION

Takes into account the advection terms or not. If YES, some advection terms can still be ignored

with the keywords SCHEME FOR ADVECTION OF...

1.20 ADVECTION-DIFFUSION SCHEME WITH SETTLING VELOCITY

Type: Integer Dimension: 1

Mnemo S3D SETDEP

DEFAULT VALUE: 0

French keyword: SCHEMA DE CONVECTION DIFFUSION AVEC VITESSE DE CHUTE

Choice of the vertical scheme for diffusion and settling of sediment:

• 0: Implicit-diffusion scheme,

• 1: Implicit-convection scheme (Tridiagonal matrix solver),

• 2: set_fall.f

1.21 AIR PRESSURE

Type: Logical
Dimension: 1
Mnemo ATMOS
DEFAULT VALUE: NO

French keyword: PRESSION ATMOSPHERIQUE

Sets whether the influence of an atmosphere pressure field is taken into account or not.

1.22 AIR TEMPERATURE

Type: Real Dimension: 1

Mnemo CST TAIR

DEFAULT VALUE: 20.

French keyword: TEMPERATURE DE L'AIR

Gives the value of air temperature when it is constant in time and space. In °C.

1.23 ASCII ATMOSPHERIC DATA FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3ATMA)%NAME

DEFAULT VALUE: "

French keyword: FICHIER ASCII DE DONNEES ATMOSPHERIQUES

ASCII data file containing the atmospheric data varying in time.

1.24 ASCII DATABASE FOR TIDE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DBDD)

DEFAULT VALUE:

French keyword: BASE ASCII DE DONNEES DE MAREE

File name for the tide data base of harmonic constituents extracted from the ${\tt TIDAL}$ ${\tt MODEL}$

FILE.

1.25 ASCII DROGUES FILE

Type: String Dimension: 1

Mnemo T3D FILES(T3DFLO)%NAME

DEFAULT VALUE: '

French keyword: FICHIER ASCII DES FLOTTEURS

ASCII results file with positions of drogues.

1.26 AVERAGE WATER DENSITY

Type: Real
Dimension: 1
Mnemo RHO0
DEFAULT VALUE: 1025.

French keyword: MASSE VOLUMIQUE MOYENNE DE L'EAU

Average water density in the domain, see subroutine **DRSURR**.

1.27 BED LAYERS THICKNESS

Type: Real Dimension: 1

Mnemo S3D_EPAI0

DEFAULT VALUE: 5.E-3

French keyword: EPAISSEUR DES COUCHES DU FOND VASEUX

Reference thickness considered for the creation of new bed layers. This parameter is used if CONSOLIDATION MODEL = 2 (Gibson model (Lenormant)). With this model, the sediment which settles on the bottom arrives at first in the fresh deposit layer. When the thickness of this layer is equal to the BED LAYERS THICKNESS, a new mud layer is added to the mud bed.

1.28 BETA EXPANSION COEFFICIENT FOR TRACERS

Type: Real
Dimension: 2
Mnemo BETAC

DEFAULT VALUE: MANDATORY

French keyword: COEFFICIENT DE DILATATION BETA POUR LES TRACEURS Unit: K^{-1} . This coefficient is used to define the evolution of the water density with respect to the tracer concentration when using DENSITY LAW = 4 (one value per tracer).

1.29 BINARY ATMOSPHERIC DATA FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3ATMB)%NAME

DEFAULT VALUE: '

French keyword: FICHIER BINAIRE DE DONNEES ATMOSPHERIOUES

Binary-coded data file containing the atmospheric data varying in time and space on the mesh.

1.30 BINARY ATMOSPHERIC DATA FILE FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3ATMB)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER BINAIRE DE DONNEES ATMOSPHERIQUES

Format of the BINARY ATMOSPHERIC DATA FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED: MED double precision format based on HDF5.

1.31 BINARY BOUNDARY DATA FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DBND)%NAME

DEFAULT VALUE:

French keyword: FICHIER BINAIRE DE DONNEES DE FRONTIERE Binary-coded data file containing the boundary conditions data varying in time and space.

1.32 BINARY BOUNDARY DATA FILE FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DBND)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER BINAIRE DE DONNEES DE FRONTIERE

Format of the BINARY BOUNDARY DATA FILE. Possible values are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED: MED format based on HDF5.

1.33 BINARY DATA FILE 1

Type: String Dimension: 1

Mnemo T3D_FILES(T3DBI1)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES BINAIRE 1

Data file in binary mode available to the user.

1.34 BINARY DATA FILE 1 FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DBI1)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE DONNEES BINAIRE 1

Format of the BINARY DATA FILE 1. Possible choices are:

- SERAFIN: classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.35 BINARY DATA FILE 2

Type: String Dimension: 1

Mnemo T3D_FILES(T3DBI2)%NAME

DEFAULT VALUE: "

French keyword: FICHIER DE DONNEES BINAIRE 2

Data file in binary mode available to the user.

1.36 BINARY DATABASE 1 FOR TIDE

Type: String Dimension: 1

Mnemo T3D FILES(T3DBB1)

DEFAULT VALUE: "

French keyword: BASE BINAIRE 1 DE DONNEES DE MAREE

File name for the binary database 1 of tidal harmonic constants. In the case of the OSU satellite altimetry model (TPXO type), this file should be for free surface level, for instance h tpxo7.2.

1.37 BINARY DATABASE 2 FOR TIDE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DBB2)

DEFAULT VALUE:

French keyword: BASE BINAIRE 2 DE DONNEES DE MAREE

File name for the binary database 2 of tidal harmonic constants. In the case of the OSU satellite altimetry model (TPXO type), this file should be for tidal velocities, for instance u_tpxo7.2.

1.38 BINARY DROGUES FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DBLO)%NAME

DEFAULT VALUE:

French keyword: FICHIER BINAIRE DES FLOTTEURS

Binary results file with positions of drogues.

1.39 BINARY RESULTS FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DRBI)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS BINAIRE

Additional binary-coded result file available to the user.

1.40 BOTTOM FRICTION DUE TO WAVES

Type: Logical

Dimension: 1

Mnemo BOT_MOMENT

DEFAULT VALUE: NO

French keyword: FROTTEMENT SUR LE FOND DU AUX VAGUES

Allows to take into account the momentum lost by waves due to bottom friction. You need a fine mesh around the bottom to be precise.

1.41 BOTTOM SMOOTHINGS AFTER USER MODIFICATIONS

Type: Logical

Dimension: 1

Mnemo LISFON_AFTER

DEFAULT VALUE: YES

French keyword: LISSAGES DU FOND APRES MODIFICATIONS UTILISATEUR Indicates if the number of potential smoothings on bottom topography is done after (or before otherwise) the topography modifications implemented by the user.

1.42 BOTTOM SURFACES DELWAQ FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DDL5)%NAME

DEFAULT VALUE: "

French keyword: FICHIER DELWAQ DES SURFACES DU FOND

Results file for chaining with DELWAQ.

1.43 BOTTOM TOPOGRAPHY FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DFON)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES FONDS

Name of the possible file containing the bathymetric data. Where this keyword is used, these bathymetric data shall be used in the computation.

1.44 BOUNDARY CONDITION ON THE BOTTOM

Type: Integer Dimension: 1

Mnemo BC BOTTOM

DEFAULT VALUE: 1

French keyword: CONDITION A LA LIMITE AU FOND

Specifies the type of boundary conditions on the bottom layer. Possible choices are:

- 1: Neumann conditions on velocity on bottom,
- 2: velocities will be set to 0. Should be linked to a refined mesh near the bottom.

1.45 BOUNDARY CONDITIONS FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DCLI)%NAME

DEFAULT VALUE: 'MANDATORY'

French keyword: FICHIER DES CONDITIONS AUX LIMITES

Name of the file containing the types of boundary conditions. This file is filled automatically by the mesh generator through colours that are assigned to the boundary nodes.

1.46 BYPASS VOID VOLUMES

Type: Logical

Dimension: 1

Mnemo BYPASS DEFAULT VALUE: NO

French keyword: CONTOURNEMENT DES VOLUMES NULS

Will speed-up distributive and finite volumes advection schemes in case of tidal flats or generalised sigma transformation.

1.47 CHECKING THE MESH

Type: Logical

Dimension: 1

Mnemo CHECK MESH

DEFAULT VALUE: NO

French keyword: VERIFICATION DU MAILLAGE

If this keyword is equal to YES, a call to subroutine **CHECKMESH** will look for errors in the mesh, superimposed points, etc.

1.48 CLOUD COVER

Type: Real Dimension: 1

Mnemo CST_CLDC

DEFAULT VALUE: 5.

French keyword: NEBULOSITE

Gives the value of cloud cover when it is constant in time and space. In Octas or tenth.

1.49 COEFFICIENT FOR HORIZONTAL DIFFUSION OF TRACERS

Type: Real Dimension: 2

Mnemo DNUTAH
DEFAULT VALUE: MANDATORY

French keyword: COEFFICIENT DE DIFFUSION HORIZONTAL DES TRACEURS Sets the values of the horizontal diffusion of tracers. These values may have a significant effect on the evolution of tracers in time. Since version 7.1, it has been an array, with one value per tracer, separated by semicolons.

1.50 COEFFICIENT FOR HORIZONTAL DIFFUSION OF VELOCITIES

Type: Real Dimension: 1

Mnemo DNUVIH
DEFAULT VALUE: 1.E-6

French keyword: COEFFICIENT DE DIFFUSION HORIZONTAL DES VITESSES Sets, in an even way for the whole domain, the value of the coefficient of global (dynamic+turbulent) viscosity for the horizontal direction. This value may have a significant effect both on the shapes and sizes of recirculation zones.

1.51 COEFFICIENT FOR VERTICAL DIFFUSION OF TRACERS

Type: Real Dimension: 2

Mnemo DNUTAV
DEFAULT VALUE: MANDATORY

French keyword: COEFFICIENT DE DIFFUSION VERTICAL DES TRACEURS Sets the values of the vertical diffusion of tracers. These values may have a significant effect on the evolution of tracers in time. Since version 7.1, it has been an array, with one value per tracer, separated by semicolons.

1.52 COEFFICIENT FOR VERTICAL DIFFUSION OF VELOCITIES

Type: Real Dimension: 1

Mnemo DNUVIV DEFAULT VALUE: 1.E-6

French keyword: COEFFICIENT DE DIFFUSION VERTICAL DES VITESSES Sets, in an even way for the whole domain, the value of the coefficient of global (dynamic+turbulent) viscosity for the horizontal direction. This value may have a significant effect both on the shapes and sizes of recirculation zones.

1.53 COEFFICIENT OF WIND INFLUENCE

Type: Real
Dimension: 1
Mnemo FAIR
DEFAULT VALUE: 1.55E-6

French keyword: COEFFICIENT D'INFLUENCE DU VENT

Sets the value of the wind driving coefficient. See the User Manual for the value to give.

1.54 COEFFICIENT OF WIND INFLUENCE VARYING WITH WIND SPEED

Type: Logical Dimension: 1

Mnemo FAIRACCU

DEFAULT VALUE: YES

French keyword: COEFFICIENT D'INFLUENCE DU VENT DEPENDANT DE LA VITESSE DU VIIYES, the value of the wind driving coefficient is computed with respect to the wind velocity.

The value of COEFFICIENT OF WIND INFLUENCE is overwritten. Old default value =

NO until V8P1.

1.55 COEFFICIENT RELATIVE TO FLOC DESTRUCTION

Type: Real Dimension: 1

Mnemo S3D_TURBB

DEFAULT VALUE: 0.09

French keyword: COEFFICIENT TRADUISANT LA DESTRUCTION DES FLOCS When the influence of turbulence on the settling velocity is modelled, this coefficient traduces the breaking of flocs by turbulence (coefficient b of Van Leussen formula). Value to be imposed if INFLUENCE OF TURBULENCE ON SETTLING VELOCITY = YES.

1.56 COEFFICIENT TO CALIBRATE SEA LEVEL

Type: Real
Dimension: 1
Mnemo MSL
DEFAULT VALUE: 0.

French keyword: COEFFICIENT DE CALAGE DU NIVEAU DE MER

Coefficient to calibrate the sea level. This coefficient usually corresponds to the mean sea level or a close value.

1.57 COEFFICIENT TO CALIBRATE TIDAL RANGE

Type: Real
Dimension: 1
Mnemo CTIDE
DEFAULT VALUE: 1.

French keyword: COEFFICIENT DE CALAGE DU MARNAGE

Coefficient to calibrate the tidal range of tidal wave at tidal open boundary conditions.

1.58 COEFFICIENT TO CALIBRATE TIDAL VELOCITIES

Type: Real
Dimension: 1
Mnemo CTIDEV
DEFAULT VALUE: 999999.

French keyword: COEFFICIENT DE CALAGE DES VITESSES DE COURANT Coefficient to calibrate the tidal velocities of tidal wave at tidal open boundary conditions. Default value 999999. means that the square root of COEFFICIENT TO CALIBRATE TIDAL RANGE is taken.

1.59 COHESIVE SEDIMENT

Type: Logical

Dimension: 1

Mnemo S3D_SEDCO

DEFAULT VALUE: NO

French keyword: SEDIMENT COHESIF

Tells if the sediment is cohesive or not.

1.60 COMPUTATION CONTINUED

Type: Logical Dimension: 1

Mnemo DEBU
DEFAULT VALUE: NO

French keyword: SUITE DE CALCUL

Determines whether the computation under way is independent or is following an earlier result.

- NO: It is the first run for this computation and a whole set of initial conditions should be defined,
- YES: It follows a former computation: the initial conditions consist in the last time step of the PREVIOUS COMPUTATION FILE defined in the steering file used for submitting the computation.

All the data from the steering file may be defined once again, which provides an opportunity to change, for example, the time step, the turbulence model, the friction, to add or remove a tracer...

It is also possible to define new boundary conditions (in the subroutine **BORD3D** or values defined in the steering file).

In order to get a perfect continued computation, the user has to activate the RESTART MODE in a previous computation to generate the file from which the following computation starts (RESTART FILE).

1.61 CONCATENATE PARTEL OUTPUT

Type: Logical

Dimension: 1

Mnemo CONCAT_PARTEL

DEFAULT VALUE: NO

French keyword: CONCATENATION SORTIE PARTEL

With this option partel no more generates a file (GEO/CLI/PAR) per process but a single concatenate file of them, associated to an index file. Then instead of having partel generating 3P files, it only generates 6 files.

1.62 CONSOLIDATION

Type: Logical

Dimension: 1

Mnemo S3D TASSE

DEFAULT VALUE: NO

French keyword: TASSEMENT DE LA VASE

If this key word is equal to YES, consolidation is simulated thanks to a multi-layers model: the bed layers are characterized by their residence time which is the time after which the quantity of mud which remains in a layer goes into a more consolidated layer.

1.63 CONSOLIDATION MODEL

Type: Integer Dimension: 1

Mnemo S3D_ITASS

DEFAULT VALUE: 1

French keyword: OPTION DU MODELE DE TASSEMENT

Choice of the consolidation model:

- 1: Empirical multilayer model,
- 2: Gibson model (Lenormant).

1.64 CONSTANT SEDIMENT SETTLING VELOCITY

Type: Real Dimension: 1

Mnemo S3D_WCHU0

DEFAULT VALUE: 0.01

French keyword: VITESSE DE CHUTE CONSTANTE

Constant sediment settling velocity in m/s (>0 since v6.3). Prescribed value if INFLUENCE

OF TURBULENCE ON SETTLING VELOCITY = NO.

1.65 CONTINUITY CORRECTION ON OPEN BOUNDARIES

Type: Logical Dimension: 1

Mnemo CONCOR DEFAULT VALUE: NO

French keyword: CORRECTION DE CONTINUITE SUR FRONTIERES OUVERTES

Changes the free velocities on open boundaries to get a better divergence-free field.

1.66 CORIOLIS

Type: Logical Dimension: 1

Mnemo CORIOL DEFAULT VALUE: NO

French keyword: CORIOLIS

The Coriolis force is taken into account or ignored.

1.67 CORIOLIS COEFFICIENT

Type: Real
Dimension: 1
Mnemo FCOR
DEFAULT VALUE: 0.

French keyword: COEFFICIENT DE CORIOLIS

Sets the value of the Coriolis force coefficient, in cartesian coordinates. This coefficient, denoted **FCOR** in the code, should be equal to $2\omega \sin(l)$ where ω denotes the earth angular speed of rotation and l the latitude. $\omega = 7.29$ 10-5 rad/s.

The Coriolis force components are then:

 $FU = FCOR \times V,$ $FV = -FCOR \times U.$

When using the spherical coordinates, the Coriolis coefficient is automatically computed.

1.68 COUPLING PERIOD FOR SISYPHE

Type: Integer

Dimension: 1

Mnemo PERCOU_SIS

DEFAULT VALUE: 1

French keyword: PERIODE DE COUPLAGE POUR SISYPHE

Sets the coupling period with the SISYPHE module, in number of time steps. By default, it is coupled at every time step.

1.69 COUPLING PERIOD FOR TOMAWAC

Type: Integer Dimension: 1

Mnemo PERCOU_WAC

DEFAULT VALUE: 1

French keyword: PERIODE DE COUPLAGE POUR TOMAWAC

Sets the coupling period with the TOMAWAC module, in number of time steps. By default, it is coupled at every time step.

1.70 COUPLING WITH

Type: String Dimension: 1

Mnemo COUPLING, IN BIEF

DEFAULT VALUE: '

French keyword: COUPLAGE AVEC List of codes to be coupled with TELEMAC-3D:

- SISYPHE: internal coupling with SISYPHE,
- TOMAWAC: internal coupling with TOMAWAC, forces are constant along the depth,
- TOMAWACT3D: internal coupling with TOMAWAC, forces are 3D,
- WAQTEL: internal coupling with WAQTEL,
- DELWAQ: will yield results file for DELWAQ,
- GAIA: internal coupling with GAIA,
- KHIONE: internal coupling with KHIONE.

1.71 CRITICAL EROSION SHEAR STRESS OF THE MUD LAYERS

Type: Real Dimension: 2

Mnemo S3D_TOCE_LAYER DEFAULT VALUE: MANDATORY

French keyword: CONTRAINTE CRITIQUE D'EROSION DES COUCHES DE VASE Critical erosion shear stress of the mud per layer (N/m^2) . Needs to be defined for each layer (N/m^2) , starting from the condolidated bottom layer upwards.

1.72 CRITICAL SHEAR STRESS FOR DEPOSITION

Type: Real Dimension: 1

Mnemo S3D_TOCD

DEFAULT VALUE: 0.2

French keyword: CONTRAINTE CRITIQUE DE DEPOT

Value of the critical bottom shear stress under which deposition of cohesive sediments occurs.

1.73 CULVERTS DATA FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DBUS)%NAME

DEFAULT VALUE: "

French keyword: FICHIER DE DONNEES DES BUSES

Description of culverts/bridges existing in the model.

1.74 DAMPING FUNCTION

Type: Integer

Dimension:

Mnemo DAMPING

DEFAULT VALUE: 0

French keyword: FONCTION D'AMORTISSEMENT

Specifies the type of damping function used (when using mixing length turbulence model). The possible choices are:

- 0: nothing,
- 1: user programmed (in USER_DRIUTI),
- 2: Viollet,
- 3: Munk and Anderson.

1.75 DEBUGGER

Type: Integer Dimension: 1

Mnemo DEBUG

DEFAULT VALUE: 0

French keyword: DEBUGGER

If 1, additional writings will be printed in the listing, in particular the calls of subroutines.

1.76 DELWAQ PRINTOUT PERIOD

Type: Integer Dimension: 1

Mnemo WAQPRD

DEFAULT VALUE:

French keyword: PERIODE DE SORTIE POUR DELWAQ

Printout period for DELWAQ files.

1.77 DELWAQ STEERING FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DL11)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE COMMANDE DELWAQ

Steering file for chaining with DELWAQ.

1.78 DENSITY LAW

Type: Integer Dimension: 1

Mnemo DENLAW

DEFAULT VALUE: 0

French keyword: LOI DE DENSITE

Gives the type of the law of density used in the case of active tracers. The sediment is considered active with its own law by default. The possible choices are:

- 0: nothing (and sediment if present),
- 1: function of the temperature (and sediment if present),
- 2: function of the salinity (and sediment if present),
- 3: function of the temperature and salinity (and sediment if present),
- 4: user-defined BETA coefficients (and effect of the sediment with its own behaviour if present),
- 5: the sediment and other tracers are forced to be passive,
- 6: Jackett et al. 2006.

1.79 DENSITY OF THE SEDIMENT

Type: Real Dimension: 1

Mnemo S3D_RHOS

DEFAULT VALUE: 2650.

French keyword: MASSE VOLUMIQUE DU SEDIMENT

Value of the sediment density (kg/m³).

1.80 DICTIONARY

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: 'telemac3d.dico' French keyword: DICTIONNAIRE

Key word dictionary.

1.81 DIFFUSION FOR DELWAQ

Type: Logical

Dimension:

Mnemo DIFF_DEL

DEFAULT VALUE: NO

French keyword: DIFFUSION POUR DELWAQ

Triggers the output of diffusion for DELWAQ.

1.82 DIFFUSIVITY DELWAQ FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DL10)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DE LA DIFFUSION

Results file for chaining with DELWAQ.

1.83 DROGUES FILE FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DBLO)%FMT

DEFAULT VALUE: 'TECPLOT'

French keyword: FORMAT DU FICHIER DES FLOTTEURS Format of the BINARY DROGUES FILE. Possible choices are:

- BKBINPCL: binary PCL format native to Blue Kenue,
- TECPLOT: original TecPlot format (ASCII).

1.84 DURATION

Type: Real Dimension: 1

Mnemo DUREE DEFAULT VALUE: 0.

French keyword: DUREE DU CALCUL

Sets the duration of the simulation in seconds. May be used instead of the parameter NUMBER OF TIME STEPS. The nearest integer to (duration/time step) is taken. If NUMBER OF TIME STEPS is also given, the greater value is taken.

1.85 DYNAMIC BOUNDARY CONDITION

Type: Logical

Dimension: 1

Mnemo CLDYN DEFAULT VALUE: NO

French keyword: CONDITION LIMITE DYNAMIQUE

If YES, it enables to prescribe a velocity at the free surface coherent with the dynamic boundary condition.

1.86 DYNAMIC PRESSURE IN WAVE EQUATION

Type: Logical

Dimension: 1

Mnemo DPWAVEQ

DEFAULT VALUE: NO

French keyword: PRESSION DYNAMIQUE DANS L'EQUATION D'ONDE Defines if an estimated pressure gradient is taken into account in the wave equation.

1.87 ELEMENT

Type: String Dimension: 1

Mnemo ELEMENT
DEFAULT VALUE: 'PRISM'
French keyword: ELEMENT

Specifies the type of elements used in the computation. The possible choices are:

- PRISM: superimposed meshes of triangles,
- TETRAHEDRON: the same but prisms are split into tetrahedrons.

1.88 ELEMENTS MASKED BY USER

Type: Logical

Dimension:

Mnemo MSKUSE DEFAULT VALUE: NO

French keyword: ELEMENTS MASQUES PAR L'UTILISATEUR

If YES, fill in the subroutine MASKOB.

1.89 ELEVATIONS OF SOURCES

Type: Real
Dimension: 2
Mnemo ZSCE

DEFAULT VALUE: MANDATORY

French keyword: COTES DES SOURCES

Sets the height of the sources. The source will be located at the nearest plane in the mesh. The use of a fixed plane is then recommended to avoid the change of the nearest plane in case of variation of local water height.

1.90 EROSION COEFFICIENT

Type: Real Dimension: 1

Mnemo S3D_MPART

DEFAULT VALUE: 2.E-3

French keyword: COEFFICIENT D'EROSION

Value of the erosion coefficient used in Partheniades formula in kg/m²/s.

1.91 EXCHANGE AREAS DELWAQ FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DDL2)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DES SURFACES DE FLUX

Results file for chaining with DELWAQ.

1.92 EXCHANGES BETWEEN NODES DELWAQ FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DDL6)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DES ECHANGES ENTRE NOEUDS

Results file for chaining with DELWAQ.

1.93 FICTITIOUS BED LEVEL

Type: Real
Dimension: 1
Mnemo FICT
DEFAULT VALUE: 2.0

French keyword: HAUTEUR DU LIT FICTIF
Ratio between the fictitious bed and the grid size above the bed.

1.94 FILE FOR 2D CONTINUATION

Type: String Dimension: 1

Mnemo T3D_FILES(T3DS2D)%NAME

DEFAULT VALUE: "

French keyword: FICHIER POUR SUITE 2D

File to be used in case of 2D continuation.

1.95 FILE FOR 2D CONTINUATION FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DS2D)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER POUR SUITE 2D Format of the FILE FOR 2D CONTINUATION. Possible choices are:

- SERAFIN : classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED : MED double precision format based on HDF5.

1.96 FLOCCULATION

Type: Logical Dimension: 1

Mnemo S3D FLOC

DEFAULT VALUE: NO

French keyword: FLOCULATION

Decides if hindered formulation is to be used to compute settling velocity for mud.

1.97 FLOCCULATION COEFFICIENT

Type: Real Dimension: 1

Mnemo S3D_TURBA

DEFAULT VALUE: 0.3

French keyword: COEFFICIENT TRADUISANT LA FORMATION DES FLOCS When the influence of turbulence on the settling velocity is modelled, this coefficient traduces the formation of flocs by turbulence (coefficient a of Van Leussen formula). Value to be imposed if INFLUENCE OF TURBULENCE ON SETTLING VELOCITY = YES.

1.98 FLOCCULATION FORMULA

Type: Integer

Dimension: 1

Mnemo S3D_FLOC_TYPE

DEFAULT VALUE:

French keyword: FORMULE POUR FLOCULATION

Type of flocculation formula:

• 1: Van Leussen,

• 2: Soulsby et al. (2013).

1.99 FORMATTED DATA FILE 1

Type: String Dimension: 1

Mnemo T3D_FILES(T3DFO1)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES FORMATE 1

Formatted data file available to the user.

1.100 FORMATTED DATA FILE 2

Type: String Dimension: 1

Mnemo T3D_FILES(T3DFO2)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES FORMATE 2

Formatted data file available to the user.

1.101 FORMATTED RESULTS FILE

Type: String

Dimension:

Mnemo T3D_FILES(T3DRFO)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE RESULTATS FORMATE

Formatted file of results available to the user.

1.102 FORMATTED RESULTS FILE 1

Type: String Dimension:

Mnemo T3D_FILES(T3DRF1)%NAME

DEFAULT VALUE:

FICHIER DE RESULTATS FORMATE 1 French keyword:

Formatted file of results 1 available to the user.

1.103 FORMATTED RESULTS FILE 2

Type: String Dimension:

Mnemo T3D FILES(T3DRF2)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE RESULTATS FORMATE 2

Formatted file of results 2 available to the user.

1.104 FORMATTED RESULTS FILE 3

Type: String Dimension:

Mnemo T3D_FILES(T3DRF3)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE RESULTATS FORMATE 3

Formatted file of results 3 available to the user.

1.105 FORMATTED RESULTS FILE 4

Type: String Dimension:

Mnemo T3D_FILES(T3DRF4)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE RESULTATS FORMATE 4

Formatted file of results 4 available to the user.

1.106 FORMATTED RESULTS FILE 5

Type: String Dimension: 1

Mnemo T3D_FILES(T3DRF5)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE RESULTATS FORMATE 5

Formatted file of results 5 available to the user.

1.107 FORMATTED RESULTS FILE 6

Type: String Dimension: 1

Mnemo T3D_FILES(T3DRF6)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS FORMATE 6

Formatted file of results 6 available to the user.

1.108 FORTRAN FILE

Type: String Dimension: 1

Mnemo T3D FILES(T3DFORT)%NAME

DEFAULT VALUE: '

French keyword: FICHIER FORTRAN

Name of the FORTRAN file or directory to be submitted, including specific subroutines of the

model.

1.109 FREE FORMAT FOR ATMOSPHERIC DATA FILE

Type: Logical

Dimension: 1

Mnemo FREE_ATMO

DEFAULT VALUE: NO

French keyword: FORMAT LIBRE POUR FICHIER DE DONNEES ATMOSPHERIQUES

Indicates if the atmospheric data file (ASCII or binary) has to follow the format expected by the **METEO_TELEMAC** module or if it can be handled outside this module. If a special treatment has to be implemented for this file, e.g. with option OPTION FOR WIND = 3, set to YES.

1.110 FREE SURFACE GRADIENT COMPATIBILITY

Type: Real Dimension: 1

Mnemo TETAZCOMP

DEFAULT VALUE: 1.

French keyword: COMPATIBILITE DU GRADIENT DE SURFACE LIBRE

Values between 0 and 1 may suppress spurious oscillations.

1.111 FRICTION COEFFICIENT FOR LATERAL SOLID BOUNDARIES

Type: Real Dimension: 1

Mnemo RUGOL0
DEFAULT VALUE: 0.01

French keyword: COEFFICIENT DE FROTTEMENT POUR LES PAROIS LATERALES

Friction coefficient on the lateral boundaries, if constant. Old default value = 60. until version

V8P0.

1.112 FRICTION COEFFICIENT FOR THE BOTTOM

Type: Real Dimension: 1

Mnemo RUGOF0
DEFAULT VALUE: 0.01

French keyword: COEFFICIENT DE FROTTEMENT POUR LE FOND

Friction coefficient on the bottom, if constant. Old default value = 60. until version V8P0.

1.113 GAIA STEERING FILE

Type: String Dimension: 1

Mnemo PAS DE MNEMO

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES DE GAIA

GAIA parameter file in case of internal coupling.

1.114 GEOGRAPHIC SYSTEM

Type: Integer

Dimension: 1

Mnemo GEOSYST

DEFAULT VALUE: -1

French keyword: SYSTEME GEOGRAPHIQUE

Geographic coordinates system in which the numerical model is built. Indicate the corresponding zone with the keyword. The possible choices are:

- 0: defined by the user,
- 1: WGS84 longitude/latitude in real degrees,
- 2: WGS84 Northern UTM,
- 3: WGS84 Southern UTM,
- 4: Lambert,
- 5: Mercator projection.

1.115 GEOMETRY FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DGEO)%NAME

DEFAULT VALUE: 'MANDATORY'

French keyword: FICHIER DE GEOMETRIE

Name of the file containing the mesh. This file may also contain the topography and the friction coefficients.

1.116 GEOMETRY FILE FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DGEO)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE GEOMETRIE

Format of the GEOMETRY FILE. Possible choices are:

• SERAFIN : classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED : MED double precision format based on HDF5.

1.117 GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

Type: Integer Dimension: 1

Mnemo ICALHWG

DEFAULT VALUE: 0

French keyword: NUMERO GLOBAL DU POINT POUR CALER LA PLEINE MER Global number of the point (between 1 and the number of boundary nodes in the 2D mesh) with respect to which the tidal constituents have their phase shifted to start the calculation with a high water (for schematic tides only). This point has to be a maritime boundary node. Only harmonic constants databases like TPXO are concerned.

1.118 GLOBAL NUMBERS OF SOURCE NODES

Type: Integer
Dimension: 2
Mnemo ISCE

DEFAULT VALUE: MANDATORY

French keyword: NUMEROS GLOBAUX DES NOEUDS DES SOURCES Global numbers of nodes in the 2D mesh that correspond to source point locations.

1.119 GOTM STEERING FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DGTM)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES GOTM

File containing parameters of GOTM. Use in combination with VERTICAL TURBULENCE

MODEL = 6.

1.120 GRAPHIC PRINTOUT PERIOD

Type: Integer Dimension: 1

Mnemo GRAPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES GRAPHIQUES

Determines, in number of time steps, the printout period for the VARIABLES FOR 2D (or 3D) GRAPHIC PRINTOUTS in the 2D or 3D RESULT FILE.

1.121 GRAVITY ACCELERATION

Type: Real
Dimension: 1
Mnemo GRAV
DEFAULT VALUE: 9.81

French keyword: ACCELERATION DE LA PESANTEUR

Sets the value of the acceleration due to gravity in m/s².

1.122 HARMONIC CONSTANTS FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DHAR)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES CONSTANTES HARMONIQUES

Name of the file containing the harmonic constants extracted from the tidal model file (JMJ) or other atlases (FES, NEA, PREVIMER).

1.123 HINDERED SETTLING

Type: Logical

Dimension: 1

Mnemo S3D_HINDER

DEFAULT VALUE: NO

French keyword: VITESSE DE CHUTE ENTRAVEE

Decides if hindered formulation is to be used to compute settling velocity for mud.

1.124 HINDERED SETTLING FORMULA

Type: Integer

Dimension: 1

Mnemo S3D HIND TYPE

DEFAULT VALUE: 1

French keyword: FORMULE POUR VITESSE DE CHUTE ENTRAVEE

Type of hindered settling:

• 1: Whitehouse et al. (2000) - working,

• 2: Winterwerp (1999) - not currently working.

1.125 HORIZONTAL TURBULENCE MODEL

Type: Integer Dimension: 1

Mnemo ITURBH

DEFAULT VALUE:

French keyword: MODELE DE TURBULENCE HORIZONTAL Specifies the horizontal turbulence model. The available choices are:

- 1: constant viscosity,
- 3: k- ε model,
- 4: Smagorinski,
- 5: Spalart-Allmaras,
- 7: $k-\omega$ model,
- 9: DES model (Detached Eddy Simulation).

Caution: if option 1 is chosen, give the right COEFFICIENT FOR... DIFFUSION OF VELOCITIES... If option 3 ou 7 is chosen, this parameter must get its real physical value of molecular diffusivity, generally about 10^{-6} because it is used as well in the turbulence model.

1.126 HYDROSTATIC INCONSISTENCY FILTER

Type: Logical

Dimension: 1

Mnemo INCHYD DEFAULT VALUE: NO

French keyword: FILTRE LES INCONSISTANCES HYDROSTATIQUES

Allows to filter hydrostatic inconsistencies.

1.127 IMPLICITATION FOR DEPTH

Type: Real
Dimension: 1
Mnemo TETAH
DEFAULT VALUE: 0.55

French keyword: IMPLICITATION POUR LA HAUTEUR

Sets the value of the implicitation coefficient for water depth in the propagation step (cf. Principe note). The values lower than 0.5 give an instable scheme.

1.128 IMPLICITATION FOR DIFFUSION

Type: Real Dimension: 1

Mnemo TETADI

DEFAULT VALUE: 1.

French keyword: IMPLICITATION POUR LA DIFFUSION

Sets the value of the implicitation coefficient for the diffusion step. When OPTION FOR THE DIFFUSION = 2, this value is changed at 0 and a specific treatment is done for the diffusion.

1.129 IMPLICITATION FOR VELOCITIES

Type: Real
Dimension: 1
Mnemo TETAU
DEFAULT VALUE: 0.55

French keyword: IMPLICITATION POUR LES VITESSES

Sets the value of the implicitation coefficient for the velocity in the propagation step (cf. Principe note). The values lower than 0.5 give an instable scheme. Old default value = 1. until V8P0.

1.130 INFORMATION ABOUT MASS-BALANCE FOR EACH LISTING PRINTOUT

Type: Logical

Dimension: 1

Mnemo INFMAS DEFAULT VALUE: YES

French keyword: INFORMATION SUR LE BILAN DE MASSE A CHAQUE SORTIE LISTING

Gives the information about mass-balance at every LISTING PRINTOUT PERIOD.

1.131 INITIAL CONDITIONS

Type: String
Dimension: 1
Mnemo CDTINI

DEFAULT VALUE: 'ZERO ELEVATION'

French keyword: CONDITIONS INITIALES

Makes it possible to define the initial conditions of the water depth. The possible values are as follows:

- ZERO ELEVATION: Initializes the free surface elevation to 0. The initial water depths are then found by computing the difference between the free surface and the bottom,
- CONSTANT ELEVATION: Initializes the water elevation to the value given by the keyword INITIAL ELEVATION. The initial water depths are computed as in the previous case,
- ZERO DEPTH: Initializes the water depths to 0.
- CONSTANT DEPTH: Initializes the water depths to the value given by the keyword INITIAL DEPTH,
- TPXO SATELITE ALTIMETRY: The initial conditions on the free surface and velocities are established from the satellite program data given by the harmonic constants database coming from OSU (e.g. TPXO) and stored in the BINARY DATABASE 1/2 FOR TIDE,
- SPECIAL or PARTICULAR: The initial conditions with the water depth should be stated in the **USER_CONDI3D_H** subroutine.

1.132 INITIAL DEPTH

Type: Real Dimension: 1

Mnemo HAUTIN

DEFAULT VALUE: 0.

French keyword: HAUTEUR INITIALE

Value to be used along with the option: INITIAL CONDITIONS: "CONSTANT DEPTH".

1.133 INITIAL ELEVATION

Type: Real Dimension: 1

Mnemo COTINI DEFAULT VALUE: 0.

French keyword: COTE INITIALE

Value to be used with the option: INITIAL CONDITIONS: "CONSTANT ELEVATION".

1.134 INITIAL GUESS FOR DEPTH

Type: Integer Dimension: 1

Mnemo IORDRH

DEFAULT VALUE:

French keyword: ORDRE DU TIR INITIAL POUR LA HAUTEUR

Initial guess for the solver in the propagation step. Makes it possible to modify the initial value of δh , upon each iteration in the propagation step, by using the ultimate values this variable had in the earlier time steps. Thus, the convergence can be speeded up when the system is being solved. 3 options are available:

- 0: $\delta h = 0$,
- 1: $\delta h = \delta h_n$ (ultimate δh value in the next previous time step),
- 2: $\delta h = 2 \delta h_n \delta h_{n-1}$ (extrapolation).

If option 2 with the non-hydrostatic version, INITIAL GUESS FOR DEPTH is automatically set to 1.

1.135 INITIAL PERCENTAGE OF NON COHESIVE SEDIMENT

Type: Real Dimension: 1

Mnemo S3D_PVSNCO0

DEFAULT VALUE: 0.

French keyword: POURCENTAGE INITIAL DE SEDIMENT NON COHESIF

Initial percentage of non cohesive sediment (mixed sediments).

1.136 INITIAL THICKNESS OF SEDIMENT LAYERS

Type: Real Dimension: 2

Mnemo S3D_ES_LAYER
DEFAULT VALUE: MANDATORY

French keyword: EPAISSEURS INITIALES DES COUCHES

Sediment layers thickness (m) for initialisation.

1.137 INITIAL TIME SET TO ZERO

Type: Logical Dimension: 1

Mnemo RAZTIM DEFAULT VALUE: NO

French keyword: REMISE A ZERO DU TEMPS

Initial time set to zero in case of restart.

1.138 INITIAL VALUES OF TRACERS

Type: Real
Dimension: 2
Mnemo TRAC0

DEFAULT VALUE: MANDATORY

French keyword: VALEURS INITIALES DES TRACEURS

Sets the initial values of tracer(s). Required value(s) separated with a semicolumn; if more than one. The number of supplied values must be equal to the number of declared tracers.

1.139 INITIAL VELOCITIES COMPUTED BY TPXO

Type: Logical

Dimension: 1

Mnemo VITINI_TPXO

DEFAULT VALUE: OUI

French keyword: VITESSES INITIALES CALCULEES PAR TPXO

Initial velocity components computed from a tidal solution from OSU (e.g. TPXO). NO to prevent from an initialisation with too big tidal velocities. For tidal solutions coming from OSU only (e.g. TPXO).

1.140 KARMAN CONSTANT

Type: Real Dimension: 1

Mnemo KARMAN

DEFAULT VALUE: 0.4

French keyword: CONSTANTE DE KARMAN

Value of Von Karman constant.

1.141 KHIONE STEERING FILE

Type: String Dimension: 1

Mnemo PAS DE MNEMO

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES DE KHIONE

KHIONE parameter file in case of internal coupling.

1.142 LAMBERT 93 CONVERSION FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DL93)

DEFAULT VALUE:

French keyword: FICHIER DE CONVERSION LAMBERT 93

Name of file gr3df97a.txt, conversion grid for Lambert 93.

1.143 LATITUDE OF ORIGIN POINT

Type: Real
Dimension: 1
Mnemo LATIT
DEFAULT VALUE: 0.

French keyword: LATITUDE DU POINT ORIGINE

Gives the value of the latitude of the origin point of the mesh (for the Mercator projection, see the keyword GEOGRAPHIC SYSTEM). Also used for heat exchange with atmosphere.

1.144 LAW OF BOTTOM FRICTION

Type: Integer
Dimension: 1
Mnemo KFROT

DEFAULT VALUE: 5

French keyword: LOI DE FROTTEMENT SUR LE FOND

Selects the type of formulation used for the bottom friction. The possible laws are as follows (refer to the Principle note):

- 0: no friction against bottom,
- 1: Haaland"s formula,
- 2: Chezy"s formula,
- 3: Strickler"s formula,
- 4: Manning"s formula,
- 5: Nikuradse"s formula.

Old default value = 2 (Chezy) until version V7P3 and 0 (no friction) in V8P0.

1.145 LAW OF FRICTION ON LATERAL BOUNDARIES

Type: Integer
Dimension: 1
Mnemo KFROTL

DEFAULT VALUE: 0

French keyword: LOI DE FROTTEMENT SUR LES PAROIS LATERALES

Selects the type of formulation used for the friction on lateral boundaries. The possible laws are as follows (refer to the Principle note):

- 0: no friction, or AUBOR given by the BOUNDARY CONDITION FILE,
- 5: Nikuradse"s formula.

1.146 LINEARIZED PROPAGATION

Type: Logical Dimension: 1

Mnemo PROLIN
DEFAULT VALUE: NO

French keyword: PROPAGATION LINEARISEE

Provided for linearizing the propagation step, e.g. when performing test-cases for which an

analytical solution in the linearized case is available. Thus, the value of MEAN DEPTH FOR LINEARIZATION has to be given.

1.147 LIQUID BOUNDARIES FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DIMP)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES FRONTIERES LIQUIDES

File containing the variations in time of boundary conditions.

1.148 LISTING PRINTOUT

Type: Logical
Dimension: 1
Mnemo LISTIN
DEFAULT VALUE: YES

French keyword: SORTIE LISTING

Result printout on hard copy. When NO is selected, the listing only includes the heading and the phrase "NORMAL END OF PROGRAM". In addition, the options MASS-BALANCE and VALIDATION are inhibited. Not recommended for use.

1.149 LISTING PRINTOUT PERIOD

Type: Integer

Dimension: 1

Mnemo LISPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES LISTING

Determines, in number of time steps, the printout period of the VARIABLES TO BE PRINTED. The results are systematically printed out on the listing file.

1.150 LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

Type: Integer Dimension: 1

Mnemo ICALHWB

DEFAULT VALUE: 0

French keyword: NUMERO LOCAL DU POINT POUR CALER LA PLEINE MER Local number between 1 and the number of tidal boundary points (of the HARMONIC CONSTANTS FILE) where the tidal boundary conditions are computed with JMJ, NEA, FES, PREVIMER databases (except TPXO-type databases). The tidal constituents have their phase shifted with respect to this point to start the simulation with a high water (for schematic tides only).

1.151 LONGITUDE OF ORIGIN POINT

Type: Real Dimension: 1

Mnemo LONGIT

DEFAULT VALUE: 0.

French keyword: LONGITUDE DU POINT ORIGINE

Gives the value of the longitude of the origin point of the mesh (for the Mercator projection, see the keyword <code>GEOGRAPHIC SYSTEM</code>). Also used for tide generating force, heat exchange with atmosphere.

1.152 MASS-BALANCE

Type: Logical

Dimension:

Mnemo BILMAS DEFAULT VALUE: NO

French keyword: BILAN DE MASSE

Determines whether a check of the mass-balance over the domain is done or not. This procedures computes the following at each time step:

- the domain inflows and outflows,
- the overall flow across all the boundaries,
- the relative error in the mass for that time step.

The relative error in the mass over the whole computation can be found at the end of the listing.

1.153 MASS-LUMPING FOR DEPTH

Type: Real Dimension: 1

Mnemo AGGLOH

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING POUR LA HAUTEUR

TELEMAC-3D offers the possibility to perform mass-lumping on H. This gathers all or part (given the value of the coefficient) of the **AM1(H)** matrices on their diagonal. This technique can speed-up the code a lot and also render it more stable. Yet, the solutions are smoothened. This parameter sets the mass-lumping amount done for H.

1.154 MASS-LUMPING FOR DIFFUSION

Type: Real Dimension: 1

Mnemo AGGLOD

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING POUR LA DIFFUSION

Mass-lumping of the mass-matrix in the diffusion step. If diffusion is explicit (IMPLICITATION FOR DIFFUSION < 0.001) or if the advection scheme is of type 3, 4, 5, 13 or 14, it is automatically set to 1. in **DIFF3D**.

1.155 MASS-LUMPING FOR VELOCITIES

Type: Real Dimension: 1

Mnemo AGGLOU

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING POUR LES VITESSES

Sets the amount of mass-lumping that is performed on the velocity. Read but not used.

1.156 MASS-LUMPING FOR WEAK CHARACTERISTICS

Type: Real Dimension: 1

Mnemo AGGLOW

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING POUR LES CARACTERISTIQUES FAIBLES Sets the amount of mass-lumping that is applied to the mass matrix when using weak characteristics.

1.157 MATRIX STORAGE

Type: Integer

Dimension: 1

Mnemo OPTASS

DEFAULT VALUE: 3

French keyword: STOCKAGE DES MATRICES

Defines the method to store matrices. The possible choices are:

• 1: classical EBE,

• 3: edge-based storage.

1.158 MAXIMUM CONCENTRATION OF THE CONSOLIDATED MUD

Type: Real Dimension: 1

Mnemo S3D CFMAX

DEFAULT VALUE: 500.

French keyword: CONCENTRATION MAXIMUM DE LA VASE TASSEE

Maximum concentration which may be reached by a mud layer during consolidation. This value is used if CONSOLIDATION MODEL = 2 (Gibson model (Lenormant)).

1.159 MAXIMUM NUMBER OF BOUNDARIES

Type: Integer Dimension: 1

Mnemo MAXFRO

DEFAULT VALUE: 30

French keyword: NOMBRE MAXIMUM DE FRONTIERES

Maximal number of boundaries in the mesh. Used for dimensioning arrays. Can be increased if needed.

1.160 MAXIMUM NUMBER OF BOUNDARIES ON THE BED

Type: Integer Dimension: 1

Mnemo MAXBLB

DEFAULT VALUE: 30

French keyword: NOMBRE MAXIMUM DE FRONTIERES SUR LE FOND

Maximal number of liquid boundaries on the bed. Used for dimensioning arrays. Can be increased if needed.

1.161 MAXIMUM NUMBER OF DROGUES

Type: Integer Dimension: 1

Mnemo NFLOT MAX

DEFAULT VALUE: 0

French keyword: NOMBRE MAXIMAL DE FLOTTEURS

Maximum number of drogues in the computation. The user must then fill the subroutine USER_FLOT3D specifying the coordinates of the starting points, their departure and arrival times. The trajectory of drogues is recorded in the ASCII DROGUES FILE or the BINARY DROGUES FILE that must be given in the steering file.

1.162 MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES

Type: Integer

Dimension: 1

Mnemo MAXADV

DEFAULT VALUE: 50

French keyword: MAXIMUM D'ITERATIONS POUR LES SCHEMAS DE CONVECTION

Limits the number of solver iterations for the advection schemes, only for schemes 13 and 14.

Old default value = 10 until release 8.1.

1.163 MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF K-EPSILON

Type: Integer

Dimension: 1

Mnemo SLVDKE%NITMAX

DEFAULT VALUE: 200

French keyword: MAXIMUM D'ITERATIONS POUR LA DIFFUSION DU K-EPSILON

Limits the number of solver iterations for the diffusion of k- ε or \tilde{v} .

1.164 MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF SEDIMENT

Type: Integer Dimension: 1

Mnemo S3D SLVDSE%NITMAX

DEFAULT VALUE: 60

French keyword: MAXIMUM D'ITERATIONS POUR LA DIFFUSION DU SEDIMENT

Limits the number of solver iterations for the diffusion of sediment.

1.165 MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS

Type: Integer Dimension: 1

Mnemo SLVDTA(ITRAC)%NITMAX

DEFAULT VALUE: 60

French keyword: MAXIMUM D'ITERATIONS POUR LA DIFFUSION DES TRACEURS

Limits the number of solver iterations for the diffusion of tracer(s).

1.166 MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF VELOCITIES

Type: Integer

Dimension:

Mnemo SLVDVI%NITMAX

DEFAULT VALUE: 60

French keyword: MAXIMUM D'ITERATIONS POUR LA DIFFUSION DES VITESSES

Limits the number of solver iterations for the diffusion of velocities.

1.167 MAXIMUM NUMBER OF ITERATIONS FOR PPE

Type: Integer Dimension: 1

Mnemo SLVPOI%NITMAX

DEFAULT VALUE: 100

French keyword: MAXIMUM D'ITERATIONS POUR PPE Limits the number of solver iterations for the Poisson Pressure Equation.

1.168 MAXIMUM NUMBER OF ITERATIONS FOR PROPAGATION

Type: Integer

Dimension: 1

Mnemo SLVPRO%NITMAX

DEFAULT VALUE: 200

French keyword: MAXIMUM D'ITERATIONS POUR LA PROPAGATION

Since the algorithms used for solving the propagation step are iterative, the allowed number of iterations should be limited. NOTE: a maximum number of 40 iterations per time step seems to be reasonable.

1.169 MAXIMUM NUMBER OF SOURCES

Type: Integer Dimension: 1

Mnemo MAXSCE

DEFAULT VALUE: 20

French keyword: NOMBRE MAXIMUM DE SOURCES

Maximal number of source points in the mesh, including punctual sources and twice the number of culverts. Used for dimensioning arrays. Can be increased if needed.

1.170 MAXIMUM NUMBER OF TRACERS

Type: Integer Dimension: 1

Mnemo MAXTRA

DEFAULT VALUE: 20

French keyword: NOMBRE MAXIMUM DE TRACEURS

Maximal number of tracers. Used for dimensioning arrays. Can be increased if needed.

1.171 MEAN DEPTH FOR LINEARIZATION

Type: Real Dimension: 1

Mnemo HAULIN

DEFAULT VALUE: 0.

French keyword: PROFONDEUR MOYENNE POUR LA LINEARISATION

Sets the water depth about which the linearization is done when the LINEARIZED PROPAGATION

option is selected.

1.172 MEAN DIAMETER OF THE SEDIMENT

Type: Real Dimension: 1

Mnemo S3D_D50 DEFAULT VALUE: .01

French keyword: DIAMETRE MOYEN DES GRAINS Sets the value of the diameter D50 for non cohesive sediments.

1.173 MESH TRANSFORMATION

Type: Integer Dimension: 1

Mnemo TRANSF

DEFAULT VALUE:

French keyword: TRANSFORMATION DU MAILLAGE

Specifies the distribution of vertical planes of the mesh. Possible choices are:

- 0: user defined (then subroutine **CALCOT** to be implemented),
- 1: sigma,
- 2: zstar,
- 3: horizontal fixed planes,
- 5: adaptive mesh.

This keyword must comply with what is done in CONDIM subroutine.

1.174 MINIMAL VALUE FOR DEPTH

Type: Real
Dimension: 1
Mnemo HMIN
DEFAULT VALUE: -1000.

French keyword: VALEUR MINIMALE POUR LA HAUTEUR

Sets the minimum water depth value H.

1.175 MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES BOUNDARY CONDITIONS

1.175 MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES BOUNDARY CONDITIONS

Type: Real Dimension: 1

Mnemo HMIN_VIT_BC

DEFAULT VALUE: 0.1

French keyword: HAUTEUR MINIMALE POUR LES CONDITIONS AUX LIMITES DE COURANTS

Minimum value of water depth used to compute tidal boundary conditions for velocities if the

water depths are too small. For tidal solutions coming from OSU only (e.g. TPXO).

1.176 MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES INITIAL CONDITIONS

Type: Real Dimension: 1

Mnemo HMIN_VIT_IC

DEFAULT VALUE: 0.1

French keyword: HAUTEUR MINIMALE POUR LES CONDITIONS INITIALES DE COURANTS

Minimum value of water depth above which initial conditions for tidal velocities are computed. Otherwise, the velocity components are equal to 0. For tidal solutions coming from OSU only

(e.g. TPXO).

1.177 MINIMUM DISTANCE BETWEEN PLANES CLOSE TO THE BOTTOM

Type: Real Dimension: 1

Mnemo DISMIN_BOT

DEFAULT VALUE: 0.2

French keyword: DISTANCE MINIMALE ENTRE PLANS PRES DU FOND

Minimum distance between planes close to the bottom. Only for planes of type TRANSF_PLANE%I(...)

= 3.

1.178 MINIMUM DISTANCE BETWEEN PLANES CLOSE TO THE FREE SURFACE

Type: Real Dimension: 1

Mnemo DISMIN_SUR

DEFAULT VALUE: 0.2

 $\label{eq:french_resolvent} French \ keyword: \qquad \mbox{DISTANCE MINIMALE ENTRE PLANS PRES DE LA SURFACE LIBRE \\ Minimum \ distance \ between planes close to the free surface. Only for planes of type $TRANSF_PLANE\%I(...)$$

= 3.

1.179 MINIMUM VOLUME OF 3D ELEMENTS

Type: Real Dimension: 1

Mnemo MINIMUM_VOLUME

DEFAULT VALUE: 1.E-6

French keyword: VOLUME MINIMAL DES ELEMENTS 3D

Minimum volume of 3D elements in m³.

1.180 MINOR CONSTITUENTS INFERENCE

Type: Logical

Dimension: 1

Mnemo INTMICON

DEFAULT VALUE: NO

French keyword: INTERPOLATION DE COMPOSANTES MINEURES

For tidal solutions developed by OSU (e.g. TPXO) only. Inference of minor constituents from the ones read in input files linked to keywords BINARY DATABASE 1 FOR TIDE and

BINARY DATABASE 2 FOR TIDE.

1.181 MIXED SEDIMENT

Type: Logical

Dimension: 1

Mnemo S3D_MIXTE

DEFAULT VALUE: NO

French keyword: SEDIMENT MIXTE

If YES, calculation of mixed sediment transport, there will be one cohesive sediment and one non cohesive sediment.

1.182 MIXING LENGTH MODEL

Type: Integer Dimension: 1

Mnemo MIXING

DEFAULT VALUE: 1

French keyword: MODELE DE LONGUEUR DE MELANGE

Specifies the mixing length model used for vertical turbulence. Possible choices are:

- 1: Prandtl (suits such flows with a strong barotropic component as tidal flows),
- 3: Nezu and Nakagawa,
- 5: Quetin (better representation of wind drift),
- 6: Tsanis (better representation of wind drift).

4 (jet) has been suppressed.

1.183 MUD CONCENTRATIONS PER LAYER

Type: Real Dimension: 2

Mnemo S3D_CONC_LAYER

DEFAULT VALUE: MANDATORY

French keyword: CONCENTRATIONS DES COUCHES DE VASE Dry density of the mud-bed layers in g/L starting form the bottom upwards.

1.184 NAMES OF 2D PRIVATE VARIABLES

Type: String Dimension: 4

Mnemo NAMES_PRIVE2D DEFAULT VALUE: 'MANDATORY'

French keyword: NOMS DES VARIABLES PRIVEES 2D

Name of variables in 2D private arrays in 32 characters, 16 for the name, 16 for the unit. If present, will be read in the GEOMETRY FILE. Maximum number of 4 names.

1.185 NAMES OF TRACERS

Type: String Dimension: 2

Mnemo NAMETRAC
DEFAULT VALUE: 'MANDATORY'

French keyword: NOMS DES TRACEURS

Name of tracers in 32 characters, 16 for the name, 16 for the unit.

1.186 NODES DISTANCES DELWAQ FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DDL7)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DES DISTANCES ENTRE NOEUDS

Results file for chaining with DELWAQ.

1.187 NON COHESIVE BED POROSITY

Type: Real Dimension: 1

Mnemo S3D_XKV

DEFAULT VALUE: 0.4

French keyword: POROSITE DU LIT NON COHESIF

The bed volume concentration $S3D_CFDEP = (1-S3D_XKV) \times S3D_RHOS$ is used to calculate the bed evolution of non-cohesive sand transport.

1.188 NON-HYDROSTATIC VERSION

Type: Logical Dimension: 1

Mnemo NONHYD

DEFAULT VALUE: YES

French keyword: VERSION NON-HYDROSTATIQUE Specifies the use of the non-hydrostatic code version or not.

1.189 NORTH

Type: Real
Dimension: 1
Mnemo NORD
DEFAULT VALUE: 0.
French keyword: NORD

Angle of North, counted counter-clockwise, with Oy. Read but not used.

1.190 NUMBER OF 2D PRIVATE ARRAYS

Type: Integer Dimension: 1

Mnemo NPRIV2D

DEFAULT VALUE: 0

French keyword: NOMBRE DE TABLEAUX PRIVES 2D

Number of 2D arrays for own user programming in block **PRIVE2D**. It has to be lower or equal to 4.

1.191 NUMBER OF BOTTOM SMOOTHINGS

Type: Integer Dimension: 1

Mnemo LISFON

DEFAULT VALUE: 0

French keyword: NOMBRE DE LISSAGES DU FOND

Number of smoothings on bottom topography. Each smoothing is mass conservative. To be used when interpolation of bathymetry on the mesh gives very rough results.

1.192 NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

Type: Integer Dimension: 1

Mnemo NCO_DIST

DEFAULT VALUE:

French keyword: NOMBRE DE CORRECTIONS DES SCHEMAS DISTRIBUTIFS For predictor-corrector options with advection scheme of type 3, 4, 5, LIPS or not). Number of iterations for every time step (or sub-time step) to converge to the solution. It is useful for unsteady cases. For quasi-steady flows, this keyword does not have a large impact on the solution, so it can be set to 0. On the other hand, for unsteady flows, it is suggested to set this keyword to 2 (at least), which is a good compromise between accuracy and computational time. Indeed, increasing the number of corrections the scheme is more accurate but the CPU time rapidly increases.

1.193 NUMBER OF CULVERTS

Type: Integer Dimension: 1

Mnemo NBUSE

DEFAULT VALUE: 0

French keyword: NOMBRE DE BUSES

Number of culverts, tubes or bridges treated as source terms. They must be described as sources

in the domain and their features are given in the CULVERTS DATA FILE (see written documentation).

1.194 NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS

Type: Integer

Dimension: 1

Mnemo GRADEB

DEFAULT VALUE: 0

French keyword: NUMERO DU PREMIER PAS DE TEMPS POUR LES SORTIES GRAPHIQUES

Determines the number of time steps after which the results are first written into the 2D or 3D

RESULT FILE.

1.195 NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS

Type: Integer

Dimension: 1

Mnemo LISDEB

DEFAULT VALUE: 0

French keyword: NUMERO DU PREMIER PAS DE TEMPS POUR LES SORTIES LISTING

Determines the number of time steps after which the results are first written into the listing.

1.196 NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS

Type: Integer

Dimension: 1

Mnemo NGAUSS

DEFAULT VALUE: 6

French keyword: NOMBRE DE POINTS DE GAUSS POUR LES CARACTERISTIQUES FAIBLES

See release notes v6.3. Number of Gauss points used to compute the weak characteristics. 6

(points) is the only choice for TELEMAC-3D.

1.197 NUMBER OF HORIZONTAL LEVELS

Type: Integer

Dimension: 1

Mnemo NPLAN

DEFAULT VALUE: 2

French keyword: NOMBRE DE PLANS HORIZONTAUX

Gives the number of planes from bottom to free surface. Must be at least 2.

1.198 NUMBER OF PRIVATE ARRAYS

Type: Integer

Dimension: 1

Mnemo NPRIV

DEFAULT VALUE: 0

French keyword: NOMBRE DE TABLEAUX PRIVES

Number of arrays for own user programming.

1.199 NUMBER OF SEDIMENT BED LAYERS

Type: Integer Dimension: 1

Mnemo S3D NCOUCH

DEFAULT VALUE: 1

French keyword: NOMBRE DE COUCHES DU LIT COHESIF

Number of cohesive sediment bed layers, should be less than 20.

1.200 NUMBER OF SUB ITERATIONS FOR NON LINEARITIES

Type: Integer

Dimension: 1

Mnemo NSOUSI

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS ITERATIONS POUR LES NON LINEARITES Used for updating, within one time step, the advection and propagation fields. Upon the first sub-iteration, these fields are given by C and the velocity field in the previous time step. At subsequent iterations, the results of the previous sub-iteration is used to update the advection and propagation field. The non-linearities can be taken into account through this technique.

1.201 NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

Type: Integer Dimension: 1

Mnemo NSP DIST

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS-PAS DES SCHEMAS DISTRIBUTIFS Only for implicit scheme with predictor-corrector (4 or 5). This keyword allows to subdivide the time step given by the user in the STEERING FILE, into several sub-steps. Again, it produces an effect on the precision of the scheme and it is convenient to set this keyword in order to have Courant numbers not too large (around 1).

1.202 NUMBER OF TIME STEPS

Type: Integer
Dimension: 1
Mnemo NIT
DEFAULT VALUE: 1

French keyword: NOMBRE DE PAS DE TEMPS

Specifies the number of time steps performed when running the code.

1.203 NUMBER OF TRACER FOR AMR

Type: Integer

Dimension:

Mnemo ITRAC_AMR

DEFAULT VALUE:

French keyword: NUMERO DE TRACEUR POUR AMR

Specifies the number of tracer used by the adaptive mesh algorithm (MESH TRANSFORMATION

= 5).

1.204 NUMBER OF TRACERS

Type: Integer
Dimension: 1
Mnemo NTRAC
DEFAULT VALUE: 0

French keyword: NOMBRE DE TRACEURS

Defines the number of tracers.

1.205 OIL SPILL MODEL

Type: Logical

Dimension:

Mnemo SPILL_MODEL

DEFAULT VALUE: NO

French keyword: MODELE DE NAPPES D'HYDROCARBURES

Will trigger the oil spill model, in this case the OIL SPILL STEERING FILE is needed.

1.206 OIL SPILL STEERING FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DMIG)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE COMMANDES HYDROCARBURES

Contains data for the oil spill model.

1.207 OPEN BOUNDARY CONDITIONS ON THE BED

Type: Logical

Dimension: 1

Mnemo BEDBOU DEFAULT VALUE: NO

French keyword: CONDITIONS OUVERTES SUR LE FOND

Defines if there are open boundary conditions on the bed.

1.208 OPTION FOR CHARACTERISTICS

Type: Integer

Dimension: 1
Mnemo OPTCHA

DEFAULT VALUE: 1

French keyword: OPTION POUR LES CARACTERISTIQUES

Possible choices are:

• 1: strong form,

• 2: weak form.

If SCHEME FOR ADVECTION OF... = 1 and also the corresponding keyword SCHEME OPTION FOR ADVECTION OF... = 2, OPTION FOR CHARACTERISTICS is automatically set to 2.

1.209 OPTION FOR CULVERTS

Type: Integer Dimension: 1

Mnemo OPTBUSE

DEFAULT VALUE: 1

French keyword: OPTION POUR LES BUSES

Option for the treatment of culverts. There are two options in TELEMAC-3D based on Bodhaine (1968) and Carlier (1976) formulae. Read the TELEMAC-3D theory guide for more informations.

1.210 OPTION FOR LIQUID BOUNDARIES

Type: Integer Dimension: 2

Mnemo FRTYPE
DEFAULT VALUE: MANDATORY

French keyword: OPTION POUR LES FRONTIERES LIQUIDES

One integer per liquid boundary is given. Possible choices are:

- 1: classical boundary conditions,
- 2: Thompson method based on characteristics.

1.211 OPTION FOR THE BOUNDARY CONDITIONS OF K-EPSILON

Type: Integer Dimension: 1

Mnemo OPTBCKE

DEFAULT VALUE: 1

French keyword: OPTION POUR LES CONDITIONS AUX LIMITES DU K-EPSILON

Computation of the lateral boundary conditions of k and ε . Possible choices are:

- 1: no turbulence = the minimum values **KMIN** and **EMIN** defined in **CSTKEP**,
- 2: Hans Burchard formula.

1.212 OPTION FOR THE TREATMENT OF TIDAL FLATS

Type: Integer Dimension: 1

Mnemo OPTBAN

DEFAULT VALUE:

French keyword: OPTION DE TRAITEMENT DES BANCS DECOUVRANTS

Used if TIDAL FLATS is YES. Possible choices are:

- 1: equations solved everywhere with correction on tidal flats (corrected free surface gradient),
- 2: dry elements are frozen (tidal flats area are masked). Warning: mass-conservation may be altered. Only works in serial computation.

1.213 OPTION FOR TIDAL BOUNDARY CONDITIONS

Type: Integer Dimension: 2

Mnemo BND_TIDE

DEFAULT VALUE: MANDATORY

French keyword: OPTION POUR LES CONDITIONS AUX LIMITES DE MAREE Option for tidal boundary conditions. For real tides, option 1 is recommended. This keyword has been an array with a value given per liquid boundary, separated by semicolons, since version 7.1. This enables to have tidal conditions (or not) computed on liquid boundaries with prescribed velocities or depths, avoiding a clash when using weirs in the domain. 0 codes for conditions other than tidal. BEWARE since version 7.1! Old models must be changed if their tidal boundary is not number 1. In that case this keyword must be changed and more values given.

Possible calibration with the keywords COEFFICIENT TO CALIBRATE TIDAL RANGE, COEFFICIENT TO CALIBRATE TIDAL VELOCITIES, and COEFFICIENT TO CALIBRATE SEA LEVEL. Possible choices are:

- 0: No tide,
- 1: Real tide (recommended methodology),
- 2: Astronomical tide,
- 3: Mean spring tide,
- 4: Mean tide,
- 5: Mean neap tide,
- 6: Astronomical neap tide,
- 7: Real tide (methodology before 2010).

1.214 OPTION FOR WIND

Type: Integer

Dimension: 1

Mnemo OPTWIND

DEFAULT VALUE: 1

French keyword: OPTION DU VENT Gives the option for managing the wind:

- 1: constant in time and space, given by the keywords WIND VELOCITY ALONG X and WIND VELOCITY ALONG Y,
- 2: variable in time and constant in space, given by formatted file,
- 3: variable in time and space, given by formatted file or by a binary file.

1.215 OPTION OF SOLVER FOR DIFFUSION OF K-EPSILON

Type: Integer

Dimension: 1

Mnemo SLVDKE%KRYLOV

DEFAULT VALUE: 5

French keyword: OPTION DU SOLVEUR POUR LA DIFFUSION DU K-EPSILON

Dimension of Krylov space for the GMRES method (7). Old default value = 3 until version V8P0.

1.216 OPTION OF SOLVER FOR DIFFUSION OF THE SEDIMENT

Type: Integer

Dimension:

Mnemo S3D SLVDSE%KRYLOV

DEFAULT VALUE:

OPTION DU SOLVEUR POUR LA DIFFUSION DU SEDIMENT French keyword: Dimension of Krylov space for the GMRES method (7). Old default value = 3 until version V8P0.

1.217 **OPTION OF SOLVER FOR DIFFUSION OF TRACERS**

Integer Type: Dimension:

SLVDTA(ITRAC)%KRYLOV Mnemo

DEFAULT VALUE:

French keyword: OPTION DU SOLVEUR POUR LA DIFFUSION DES TRACEURS Dimension of Krylov space for the GMRES method (7). Old default value = 3 until version V8P0.

1.218 OPTION OF SOLVER FOR DIFFUSION OF VELOCITIES

Type: Integer

Dimension:

Mnemo SLVDVI%KRYLOV

DEFAULT VALUE:

OPTION DU SOLVEUR POUR LA DIFFUSION DES VITESSES French keyword: Dimension of Krylov space for the GMRES method (7). Old default value = 3 until version V8P0.

OPTION OF SOLVER FOR PPE 1.219

Type: Integer Dimension:

Mnemo SLVPOI%KRYLOV

DEFAULT VALUE:

OPTION DU SOLVEUR POUR PPE French keyword:

Dimension of Krylov space for the GMRES method (7). Old default value = 3 until version V8P0.

OPTION OF SOLVER FOR PROPAGATION 1.220

Type: Integer

Dimension:

SLVPRO%KRYLOV Mnemo

DEFAULT VALUE:

OPTION DU SOLVEUR POUR LA PROPAGATION French keyword:

Dimension of Krylov space for the GMRES method (7). Old default value = 3 until version

V8P0.

1.221 ORDINATES OF SOURCES

Type: Real
Dimension: 2
Mnemo YSCE

DEFAULT VALUE: MANDATORY

French keyword: ORDONNEES DES SOURCES

Floats giving the ordinates of potential sources of flow rates (in meters). The source will be located at the nearest node in the mesh.

1.222 ORIGINAL DATE OF TIME

Type: Integer Dimension: 3

Mnemo MARDAT DEFAULT VALUE: 1900;1;1

French keyword: DATE DE L'ORIGINE DES TEMPS

Enables to set the date of the time origin of the model when taking into account of the tide (tide generator force and/or the tidal boundary conditions). Also used with drogues, heat exchange with atmosphere, chaining with DELWAQ.

1.223 ORIGINAL HOUR OF TIME

Type: Integer Dimension: 3

Mnemo MARTIM DEFAULT VALUE: 0:0:0

French keyword: HEURE DE L'ORIGINE DES TEMPS

Enables to set the time of the time origin of the model when taking into account of the tide (tide generator force and/or the tidal boundary conditions). Also used with drogues, heat exchange with atmosphere, chaining with DELWAQ.

1.224 PARALLEL PROCESSORS

Type: Integer Dimension: 1

Mnemo NCSIZE

DEFAULT VALUE: 0

French keyword: PROCESSEURS PARALLELES

Number of processors for domain partition. Value 0 corresponds to a scalar computation.

1.225 PARTITIONING TOOL

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: 'METIS'

French keyword: PARTITIONNEUR

Partitioning tool selection:

• 1: METIS,

• 2: SCOTCH,

- 3: PARMETIS,
- 4: PTSCOTCH.

1.226 PRANDTL NUMBER

Type: Real Dimension: 1

Mnemo PRANDTL

DEFAULT VALUE: 1.0

French keyword: NOMBRE DE PRANDTL Ratio between eddy viscosity and eddy diffusivity.

1.227 PRECONDITIONING FOR DIFFUSION OF K-EPSILON

Type: Integer

Dimension: 1

Mnemo SLVDKE%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA DIFFUSION DU K-EPSILON Choice of preconditioning for the diffusion of the k- ε model or Spalart-Allmaras model. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

1.228 PRECONDITIONING FOR DIFFUSION OF THE SEDIMENT

Type: Integer

Dimension: 1

Mnemo S3D_SLVDSE%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA DIFFUSION DU SEDIMENT Choice of the preconditioning in the sediment diffusion system that the convergence is speeded up when it is being solved. Possible choices are:

• 0: no preconditioning,

- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

Some operations (either 2 or 3 diagonal preconditioning) can be performed concurrently with the others. Only prime numbers are therefore kept to denote the preconditioning operations. When several of them are to be performed concurrently, the product of relevant options shall be done.

1.229 PRECONDITIONING FOR DIFFUSION OF TRACERS

Type: Integer

Dimension: 2

Mnemo SLVDTA(ITRAC)%PRECON

DEFAULT VALUE: MANDATORY

French keyword: PRECONDITIONNEMENT POUR LA DIFFUSION DES TRACEURS

Choice of preconditioning for the diffusion of tracers. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

1.230 PRECONDITIONING FOR DIFFUSION OF VELOCITIES

Type: Integer

Dimension: 1

Mnemo SLVDVI%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA DIFFUSION DES VITESSES

Choice of preconditioning for the diffusion of velocities. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

1.231 PRECONDITIONING FOR PPE

Type: Integer

Dimension: 1

Mnemo SLVPOI%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR PPE

Preconditioning for the Poisson Pressure Equation. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

1.232 PRECONDITIONING FOR PROPAGATION

Type: Integer

Dimension: 1

Mnemo SLVPRO%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA PROPAGATION

Choice of the preconditioning in the propagation step linear system that the convergence is speeded up when it is being solved. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

Some operations (either 2 or 3 diagonal preconditioning) can be performed concurrently with the others. Only prime numbers are therefore kept to denote the preconditioning operations. When several of them are to be performed concurrently, the product of relevant options shall be done.

1.233 PRESCRIBED ELEVATIONS

Type: Real Dimension: 10

Mnemo COTIMP

DEFAULT VALUE: MANDATORY

French keyword: COTES IMPOSEES

Values of the elevations prescribed at open boundaries.

1.234 PRESCRIBED FLOWRATES

Type: Real
Dimension: 10
Mnemo DEBIMP
DEFAULT VALUE: MANDATORY

French keyword: DEBITS IMPOSES

Values of the flowrates prescribed at open boundaries.

1.235 PRESCRIBED FLOWRATES ON THE BED

Real Type: Dimension: 10 Mnemo **BEDFLO**

DEFAULT VALUE: 0.:0.:0.:0.:0.:0.:0.:0.:0.:0.

French keyword: DEBITS IMPOSES SUR LE FOND Sets the value for flow rate on flow rate-imposed bed boundaries.

1.236 PRESCRIBED TRACERS VALUES

Type: Real Dimension:

Mnemo **TRACER DEFAULT VALUE: MANDATORY**

French keyword: VALEURS IMPOSEES DES TRACEURS

Determines the imposed value of tracers at the first boundary, then at the second, and so on, with the same logic as VALUE OF THE TRACERS AT THE SOURCES.

1.237 PRESCRIBED VELOCITIES

Type: Real Dimension: 10 Mnemo **VITIMP**

DEFAULT VALUE: MANDATORY

French keyword: VITESSES IMPOSEES

Values of the magnitudes of velocity prescribed at open boundaries.

1.238 PREVIOUS COMPUTATION FILE

Type: String Dimension:

Mnemo T3D_FILES(T3DPRE)%NAME

DEFAULT VALUE:

FICHIER DU CALCUL PRECEDENT French keyword:

Name of a file containing the results of an earlier computation which was made on the same mesh. The last recorded time step will provide the initial conditions for the new computation. In case of a perfect continued computation, the PREVIOUS COMPUTATION FILE has to be the RESTART FILE of the last computation. This last file is then an output file of the last computation. The PREVIOUS COMPUTATION FILE FORMAT and the RESTART FILE FORMAT have to be set with "SERAFIND" or "MED".

1.239 PREVIOUS COMPUTATION FILE FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DPRE)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DU CALCUL PRECEDENT Format of the PREVIOUS COMPUTATION FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.240 PREVIOUS COMPUTATION SEDIMENTOLOGICAL FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DSUS)%NAME

DEFAULT VALUE: '

French keyword: FICHIER SEDIMENTOLOGIQUE DU CALCUL PRECEDENT Name of a file containing the sedimentological parameters (thickness and concentration of the bed...), results of an earlier computation which was made on the same mesh. The last recorded time step will provide the initial conditions for the new computation.

1.241 PRINTOUT PERIOD FOR DROGUES

Type: Integer Dimension: 1

Mnemo FLOPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES DE FLOTTEURS

Number of time steps between 2 outputs of drogues positions in the binary file. It does not disturb the quality of the computation of the trajectory.

1.242 RAIN OR EVAPORATION

Type: Logical Dimension: 1
Mnemo RAIN
DEFAULT VALUE: NO

French keyword: PLUIE OU EVAPORATION

Enables to add or remove water at the free surface. See the keyword RAIN OR EVAPORATION IN MM PER DAY.

1.243 RAIN OR EVAPORATION IN MM PER DAY

Type: Real Dimension: 1

Mnemo CST_RAIN

DEFAULT VALUE: 0

French keyword: PLUIE OU EVAPORATION EN MM PAR JOUR

Specifies the amount of water to add or remove at the free surface.

1.244 RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER

Type: Real Dimension: 1

Mnemo S3D_KSPRATIO

DEFAULT VALUE: 3.0

French keyword: RATIO ENTRE LA RUGOSITE DE PEAU ET LE DIAMETRE MOYEN

Ratio for the computation of skin friction. skin roughness = ratio \times mean diameter.

1.245 READ CRITICAL BED SHEAR STRESS PER LAYER

Type: Logical

Dimension: 1

Mnemo S3D_READ_TOCE

DEFAULT VALUE: NO

French keyword: LECTURE CONTRAINTE CRITIQUE POUR CHAQUE COUCHE

Decides if erosion shear stress at each layer is read from GEOMETRY FILE.

1.246 RECORD NUMBER FOR RESTART

Type: Integer

Dimension: 1

Mnemo START RECORD

DEFAULT VALUE: 0

French keyword: ENREGISTREMENT POUR SUITE DE CALCUL

In case of COMPUTATION CONTINUED = YES, record number to start from in the PREVIOUS

COMPUTATION FILE. 0 means that the last record is taken.

1.247 RECORD NUMBER IN WAVE FILE

Type: Integer
Dimension: 1
Mnemo NPTH
DEFAULT VALUE: 1

French keyword: NUMERO DE L'ENREGISTREMENT DANS LE FICHIER DE HOULE

Record number to be read by TELEMAC-3D in the wave driven currents file.

1.248 REFERENCE CONCENTRATION FORMULA

Type: Integer Dimension: 1

Mnemo S3D_ICQ

DEFAULT VALUE: 1

French keyword: FORMULE POUR LA CONCENTRATION DE REFERENCE

- 1: Zyserman and Fredsoe, equilibrium formula,
- 3: Van Rijn formula (1987).

1.249 REFERENCE FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DREF)%NAME

DEFAULT VALUE: "

French keyword: FICHIER DE REFERENCE

Binary-coded result file for validation.

1.250 REFERENCE FILE FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DREF)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE REFERENCE

Format of the REFERENCE FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED: MED double precision format based on HDF5.

1.251 RELATIVE HUMIDITY

Type: Real Dimension: 1

Mnemo CST_HREL

DEFAULT VALUE: 50.

French keyword: HUMIDITE RELATIVE

Gives the value of relative humidity when it is constant in time and space. In %.

1.252 RESIDENCE TIME FOR MUD

Type: Real Dimension: 30

Mnemo S3D_TREST(S3D_NCOUCH)

DEFAULT VALUE: MANDATORY

French keyword: TEMPS DE SEJOUR DE LA VASE

Array which contains the residence times of the mud bed layers (the first value is related to the bottom layer and the last one to the top layer). These values are needed when CONSOLIDATION MODEL = 1 (Empirical multilayer model).

1.253 RESTART FILE

Type: String Dimension: 1

Mnemo T3D FILES(T3DRST)%NAME

DEFAULT VALUE: '

French keyword: FICHIER POUR SUITE

Name of the file into which the last computation results shall be written in order to get a perfect continued computation. It is then an output file for the current computation, which will be used as an input file when a continued computation is expected to be perfect (the keyword PREVIOUS COMPUTATION FILE is then used). The RESTART FILE FORMAT and the PREVIOUS COMPUTATION FILE FORMAT have to be set with "SERAFIND" or "MED".

1.254 RESTART FILE FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DRST)%FMT

DEFAULT VALUE: 'SERAFIND'

French keyword: FORMAT DU FICHIER POUR SUITE

Format of the RESTART FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED: MED double precision format based on HDF5.

Only double precision formats ensure a perfect restart.

1.255 RESTART MODE

Type: Logical

Dimension: 1

Mnemo RESTART_MODE

DEFAULT VALUE: NO

French keyword: MODE SUITE

Triggers the filling of the RESTART FILE, which ensures a perfect restart of a computation, unlike using the 3D RESULT FILE.

1.256 RESULT FILE IN LONGITUDE-LATITUDE

Type: Logical

Dimension: 1

Mnemo KEEP_LONLAT

DEFAULT VALUE: YES

French keyword: FICHIER RESULTAT EN LONGITUDE-LATITUDE

Gives the coordinates of the result file in longitude-latitude if the geometry file is also given in longitude-latitude.

1.257 SALINITY DELWAQ FILE

Type: String
Dimension: 1

Mnemo T3D_FILES(T3DDL4)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DE LA SALINITE

Results file for chaining with DELWAQ.

1.258 SALINITY FOR DELWAQ

Type: Logical Dimension: 1

Dimension: 1
Mnemo SALI_DEL

DEFAULT VALUE: NO

French keyword: SALINITE POUR DELWAO

Triggers the output of salinity for DELWAQ.

1.259 SCHEME FOR ADVECTION OF DEPTH

Type: Integer

Dimension: 1

Mnemo SCHCH

DEFAULT VALUE: 5

French keyword: SCHEMA POUR LA CONVECTION DE LA HAUTEUR

The conservative scheme (5) is now mandatory.

1.260 SCHEME FOR ADVECTION OF K-EPSILON

Type: Integer

Dimension: 1

Mnemo SCHCKE

DEFAULT VALUE: 5

French keyword: SCHEMA POUR LA CONVECTION DU K-EPSILON

Sets the advection scheme for the k- ε model or Spalart-Allmaras model. Possible choices are:

- 0: no convection,
- 1: characteristics,
- 2: SUPG,
- 3: Leo Postma scheme,
- 4: MURD scheme N,
 - SCHEME OPTION FOR ADVECTION OF VELOCITIES/TRACERS/K-EPSILON):
 - * 1: classical explicit scheme;
 - * 2: 1st order predictor-corrector;
 - * 3: 2nd order predictor-corrector;
 - * 4: implicit scheme compatible with tidal flats;
 - NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES: sets the number of sub-iterations for the 1st and 2nd order predictor-corrector schemes (a value around 4 is recommended).
- 5: MURD scheme PSI,
 - SCHEME OPTION FOR ADVECTION OF VELOCITIES/TRACERS/K-EPSILON):
 - * 1: classical explicit scheme;
 - * 2: 1st order predictor-corrector;
 - * 3: 2nd order predictor-corrector;
 - * 4: implicit scheme compatible with tidal flats;
 - NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES: sets the number of sub-iterations for the 1st and 2nd order predictor-corrector schemes (a value around 4 is recommended).
- 13: Leo Postma for tidal flats,
- 14: explicit N-scheme for tidal flats.

Default values for SCHEME FOR ADVECTION OF K-EPSILON = 5 + SCHEME OPTION FOR ADVECTION OF K-EPSILON = 4 give LIPS scheme. Old default value = 1 (characteristics) until version V8P0.

1.261 SCHEME FOR ADVECTION OF TRACERS

Type: Integer Dimension: 2

Mnemo SCHCTA
DEFAULT VALUE: MANDATORY

French keyword: SCHEMA POUR LA CONVECTION DES TRACEURS Sets the advection scheme for the tracers (one integer per tracer). Possible choices are:

- 0: no convection,
- 1: characteristics,
- 2: explicit + SUPG,
- 3: explicit Leo Postma,
- 4: explicit + MURD scheme N,
- 5: explicit + MURD scheme PSI,
- 13: Leo Postma for tidal flats,
- 14: N-scheme for tidal flats.

Default values for SCHEME FOR ADVECTION OF TRACERS = 5 + SCHEME OPTION FOR ADVECTION OF TRACERS = 4 give LIPS scheme.

1.262 SCHEME FOR ADVECTION OF VELOCITIES

Type: Integer Dimension: 1

Mnemo SCHCVI

DEFAULT VALUE: 5

French keyword: SCHEMA POUR LA CONVECTION DES VITESSES

Sets the advection scheme for the velocities. Possible choices are:

- 0: no convection,
- 1: characteristics,
- 2: explicit + SUPG,
- 3: explicit Leo Postma,
- 4: explicit + MURD scheme N,
- 5: explicit + MURD scheme PSI,
- 13: Leo Postma for tidal flats,
- 14: N-scheme for tidal flats.

Default values for SCHEME FOR ADVECTION OF VELOCITIES = 5 + SCHEME OPTION FOR ADVECTION OF VELOCITIES = 4 give LIPS scheme. Old default value = 1 (characteristics) until version V8P0.

1.263 SCHEME FOR DIFFUSION OF K-EPSILON

Type: Integer

Dimension: 1

Mnemo SCHDKE

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA DIFFUSION DU K-EPSILON Monitors the choice of the diffusion scheme for k and ε . Possible choices are:

• 0: no diffusion,

• 1: implicit.

1.264 SCHEME FOR DIFFUSION OF TRACERS

Type: Integer

Dimension: 1

Mnemo SCHDTA

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA DIFFUSION DES TRACEURS Monitors the choice of the diffusion scheme for tracers. Possible choices are:

• 0: no diffusion,

• 1: implicit,

• 2: vertical diffusion only.

1.265 SCHEME FOR DIFFUSION OF VELOCITIES

Type: Integer

Dimension: 1

Mnemo SCHDVI

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA DIFFUSION DES VITESSES Monitors the choice of the diffusion scheme for velocities. Possible choices are:

• 0: no diffusion,

• 1: implicit.

1.266 SCHEME OPTION FOR ADVECTION OF K-EPSILON

Type: Integer

Dimension: 1

Mnemo OPTADV_KE

DEFAULT VALUE: 4

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DU K-EPSILON If present replaces and has priority over: OPTION FOR CHARACTERISTICS and SUPG OPTION. If N or PSI scheme:

• 1: explicit,

• 2: predictor-corrector,

• 3: predictor-corrector second-order in time,

• 4: implicit (compatible with tidal flats).

If no tidal flats, option 2 is faster. Old default value = 1 (explicit) until version V8P0.

1.267 SCHEME OPTION FOR ADVECTION OF TRACERS

Type: Integer Dimension: 2

Mnemo OPTADV_TR
DEFAULT VALUE: MANDATORY

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DES TRACEURS If present replaces and has priority over: OPTION FOR CHARACTERISTICS and SUPG OPTION. If N or PSI scheme:

- 1: explicit,
- 2: predictor-corrector,
- 3: predictor-corrector second-order in time,
- 4: implicit (compatible with tidal flats).

Default value = 4. If no tidal flats, option 2 is faster. Old default value = 1 (explicit) until version V8P0.

1.268 SCHEME OPTION FOR ADVECTION OF VELOCITIES

Type: Integer

Dimension: 1

Mnemo OPTADV_VI

DEFAULT VALUE: 4

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DES VITESSES If present replaces and has priority over: OPTION FOR CHARACTERISTICS and SUPG OPTION. If N or PSI scheme:

- 1: explicit,
- 2: predictor-corrector,
- 3: predictor-corrector second-order in time,
- 4: implicit (compatible with tidal flats).

If no tidal flats, option 2 is faster. Old default value = 1 (explicit) until version V8P0.

1.269 SEDIMENT

Type: Logical Dimension: 1

Mnemo S3D_SEDI

DEFAULT VALUE: NO

French keyword: SEDIMENT If YES, sediment transport is modelled.

1.270 SEDIMENTOLOGICAL RESULT FILE

Type: String

Dimension: 1

Mnemo T3D_FILES(S3D_T3DSED)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS SEDIMENTOLOGIQUES

Name of the file into which the sedimentological computation results (thickness and concentration of the mud bed...) shall be written, the periodicity being given by the keyword GRAPHIC PRINTOUT PERIOD.

1.271 SEDIMENTOLOGICAL RESULT FILE BINARY

Type: String Dimension: 1

Mnemo S3D_BIRSED

DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DES RESULTATS SEDIMENTOLOGIQUES Binary file type used for writing the results file. This type depends on the machine on which the file was generated. The possible values are as follows:

- IBM, for a file on an IBM (from a CRAY),
- I3E, for a file on an HP (from a CRAY),
- STD, binary type of the machine on which the user is working.

In that case, normal READ and WRITE commands are used.

1.272 SETTLING VELOCITY OF SANDS

Type: Real Dimension: 1

Mnemo S3D WCS0

DEFAULT VALUE: 0.

French keyword: VITESSE DE CHUTE DES SABLES

Non cohesive sediment settling velocity.

1.273 SHIELDS PARAMETER

Type: Real
Dimension: 1
Mnemo S3D_AC

DEFAULT VALUE: 0.047

French keyword: PARAMETRE DE SHIELDS Used to determine the critical bed shear stress value.

1.274 SISYPHE STEERING FILE

Type: String Dimension: 1

Mnemo PAS DE MNEMO

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES DE SISYPHE

SISYPHE parameter file in case of internal coupling.

1.275 SKIN FRICTION CORRECTION

Type: Integer

Dimension: 1

Mnemo S3D_ICR

DEFAULT VALUE: 0

French keyword: CORRECTION FROTTEMENT DE PEAU

Formula to predict the skin bed roughness:

- 0: No correction (TAUP = TOB) see also RATIO ENTRE LA RUGOSITE DE PEAU ET LE DIAMETRE MOYEN S3D_KSPRATIO,
- 1: Flat bed (KSP = $S3D_KSPRATIO \times S3D_D50$),
- 2: Ripple correction factor (not yet implemented).

1.276 SOLAR RADIATION

Type: Real Dimension: 1

Mnemo CST_RAY3

DEFAULT VALUE: 160.

French keyword: RAYONNEMENT SOLAIRE

Gives the value of solar radiation when it is constant in time and space. In W/m².

1.277 SOLVER FOR DIFFUSION OF K-EPSILON

Type: Integer

Dimension: 1

Mnemo SLVDKE%SLV

DEFAULT VALUE: 1

French keyword: SOLVEUR POUR LA DIFFUSION DU K-EPSILON Choice of the solver for the diffusion of k and ε . but also \tilde{v} . Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.278 SOLVER FOR DIFFUSION OF THE SEDIMENT

Type: Integer

Dimension: 1

Mnemo S3D_SLVDSE%SLV

DEFAULT VALUE: 3

French keyword: SOLVEUR POUR LA DIFFUSION DU SEDIMENT

Choice of the solver for the sediment equation. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.279 SOLVER FOR DIFFUSION OF TRACERS

Type: Integer

Dimension: 2

Mnemo SLVDTA(ITRAC)%SLV

DEFAULT VALUE: MANDATORY

French keyword: SOLVEUR POUR LA DIFFUSION DES TRACEURS

Choice of the solver for the diffusion of tracers (one integer per tracer). Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.280 SOLVER FOR DIFFUSION OF VELOCITIES

Type: Integer

Dimension: 1

Mnemo SLVDVI%SLV

DEFAULT VALUE: 1

French keyword: SOLVEUR POUR LA DIFFUSION DES VITESSES Choice of the solver for the diffusion of velocities *U* and *V*. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.281 SOLVER FOR PPE

Type: Integer

Dimension: 1

Mnemo SLVPOI%SLV

DEFAULT VALUE: 7

French keyword: SOLVEUR POUR PPE

Choice of the solver for the Poisson Pressure Equation. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

Old default value = 1 (conjugate gradient) until version V8P0.

1.282 SOLVER FOR PROPAGATION

Type: Integer

Dimension: 1

Mnemo SLVPRO%SLV

DEFAULT VALUE: 7

French keyword: SOLVEUR POUR LA PROPAGATION Choice of the solver for the propagation equation. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,

1.283 SOURCES FILE 79

- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

Old default value = 1 (conjugate gradient) until version V8P0.

1.283 SOURCES FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DVEF)%NAME

DEFAULT VALUE: "

French keyword: FICHIER DES SOURCES

Name of the file containing time-dependent information on sources.

1.284 SPATIAL PROJECTION TYPE

Type: Integer Dimension: 1

Mnemo PROTYP

DEFAULT VALUE: 2

French keyword: TYPE DE PROJECTION SPATIALE

Specifies the type of spatial projection used (for example when using spherical coordinates). Possible choices are:

- 1: Cartesian, not georeferenced,
- 2: Mercator,
- 3: latitude/longitude (in degrees).

Option 2 or 3 mandatory for spherical coordinates. Option 3: latitude and longitude in degrees! When using option 3, the coordinates are automatically treated by TELEMAC-3D using Mercator projection.

1.285 SPHERICAL COORDINATES

Type: Logical Dimension: 1

Mnemo SPHERI DEFAULT VALUE: NO

French keyword: COORDONNEES SPHERIQUES

Selection of spherical coordinates to perform the computation (for large computation domains). Warning: this option is closely related to the mesh that should have been entered onto a nautical chart drawn as per Mercator projection The LATITUDE OF ORIGIN POINT, which corresponds to ordinate y = 0 in the mesh, must moreover be given.

1.286 STAGE-DISCHARGE CURVES

Type: Integer Dimension: 10

Mnemo STA_DIS_CURVES
DEFAULT VALUE: MANDATORY

French keyword: COURBES DE TARAGE

Specifies if a discharge-elevation curve must be used for a given boundary (one value per open boundary):

- 0: no,
- 1: Z(Q),
- 2: Q(Z). Not yet implemented.

1.287 STAGE-DISCHARGE CURVES FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DPAR)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES COURBES DE TARAGE

Name of the file containing stage-discharge curves.

1.288 STAGE-DISCHARGE CURVES RELAXATION COEFFICIENT

Type: Real Dimension: 1

Mnemo RELAX_STA_DIS

DEFAULT VALUE: 0.02

French keyword: COEFFICIENT DE RELAXATION DES COURBES DE TARAGE Relaxation coefficient used to interpolate free surface elevation with respect to flowrate from the stage-discharge curve (for STAGE-DISCHARGE CURVES = 1). If set to 1., the elevation is instantaneously prescribed corresponding to the stage-discharge curve, but this may lead to instabilities. Setting a value between 0. and 1., a delay is introduced to prescribe this stage-discharge curve, that is a compromise between the goal of the stage-discharge curve and possible instabilities. Read the Telemac-3D user manual for more details.

1.289 STANDARD VALUES FOR TRACERS

Type: Real
Dimension: 2
Mnemo TOAC

DEFAULT VALUE: MANDATORY

French keyword: VALEURS DE REFERENCE DES TRACEURS

Reference value of tracers corresponding to the given density when using DENSITY LAW = 4 (one value per tracer).

1.290 STEERING FILE 81

1.290 STEERING FILE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: "

French keyword: FICHIER DES PARAMETRES

Name of the file containing the parameters of the computation. Written by the user.

1.291 SUPG OPTION

Type: Integer
Dimension: 4
Mnemo OPTSUP

Mnemo OPTSU.
DEFAULT VALUE: 1;0;1;1

French keyword: OPTION DE SUPG

Specifies the type of upwinding used. Possible choices are:

• 0: no upwinding,

• 1: classical SUPG,

• 2: modified SUPG.

Only the 1st coefficient is used (and applied to U, V and W). It is also this coefficient which is applied to tracer(s), k and ε if needed.

1.292 TEMPERATURE DELWAQ FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DDL8)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DE LA TEMPERATURE

Results file for chaining with DELWAQ.

1.293 TEMPERATURE FOR DELWAQ

Type: Logical

Dimension:

Mnemo TEMP_DEL

DEFAULT VALUE: NO

French keyword: TEMPERATURE POUR DELWAQ

Triggers the output of temperature for DELWAQ.

1.294 THRESHOLD CONCENTRATION FOR HINDERED SETTLING

Type: Real Dimension: 1

Mnemo S3D_CINI

DEFAULT VALUE: 0.0

French keyword: CONCENTRATION LIMITE POUR VITESSE DE CHUTE ENTRAVEE

The sediment concentration at which hindered settling is initiated. These values are needed

when HINDERED SETTLING = YES.

1.295 THRESHOLD DEPTH FOR WIND

Type: Real
Dimension: 1
Mnemo HWIND

DEFAULT VALUE: 1.

French keyword: PROFONDEUR LIMITE POUR LE VENT Wind is not taken into account for depths smaller than this value.

1.296 THRESHOLD FOR SEDIMENT FLUX CORRECTION ON TIDAL FLATS

Type: Real Dimension: 1

Mnemo S3D_HSED

DEFAULT VALUE: 0.2

French keyword: SEUIL LIMITE POUR EROSION SUR BANCS DECOUVRANTS Below this limiting depth, all sediment erosion rates are set to zero. See subroutine **FLUSED**.

1.297 THRESHOLD FOR VISCOSITY CORRECTION ON TIDAL FLATS

Type: Real
Dimension: 1
Mnemo HLIM
DEFAULT VALUE: 0.2

French keyword: SEUIL POUR CORRECTION DE VISCOSITE SUR BANCS DECOUVRANTS

Below the threshold, viscosity will be progressively cancelled. See **CLIP** subroutine.

1.298 THRESHOLD HEIGHT BEFORE CRUSHED ELEMENTS

Type: Real Dimension: 1

Mnemo MIN_DZ

DEFAULT VALUE: 0.

French keyword: HAUTEUR SEUIL AVANT ELEMENTS ECRASES

Minimum height below which 3D elements are treated as crushed. This is not done for the free

surface plane.

1.299 TIDAL DATA BASE

Type: Integer Dimension: 1

Mnemo TIDALDB

DEFAULT VALUE: -1

French keyword: BASE DE DONNEES DE MAREE

Gives the name of the data base used to automatically generate the boundary conditions. Possi-

ble choices are:

- 1: JMJ,
- 2: TPXO,
- 3: MISCELLANEOUS (LEGOS-NEA, FES20XX, PREVIMER...).

1.300 TIDAL FLATS 83

FOR TIDE and TIDAL MODEL FILE. For TPXO, LEGOS-NEA, FES20XX and PREVIMER, the user has to download files of harmonic constituents on the internet.

1.300 TIDAL FLATS

Type: Logical

Dimension: 1

Mnemo BANDEC
DEFAULT VALUE: YES

French keyword: BANCS DECOUVRANTS

When NO, the specific treatments for tidal flats are by-passed. This spares time, but of course you must be sure that you have no tidal flats.

1.301 TIDAL MODEL FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DTID)

DEFAULT VALUE:

French keyword: FICHIER DU MODELE DE MAREE

Geometry file of the model from which harmonic constituents are extracted (JMJ only).

1.302 TIDAL MODEL FILE FORMAT

Type: String Dimension: 1

Mnemo T3D_FILES(T3DTID)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DU MODELE DE MAREE

Format of the TIDAL MODEL FILE. Possible choices are:

- SERAFIN: classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.303 TIDE GENERATING FORCE

Type: Logical

Dimension:

Mnemo MAREE DEFAULT VALUE: NO

French keyword: FORCE GENERATRICE DE LA MAREE

The tide generating force is taken into account.

1.304 TIME STEP

Type: Real Dimension: 1 Mnemo DT DEFAULT VALUE: 1.

French keyword: PAS DE TEMPS

Specifies the time step in seconds.

1.305 TIME STEP FOR CONSOLIDATION

Type: Real Dimension: 1

Mnemo S3D DTC DEFAULT VALUE: 1200.

French keyword: PAS DE TEMPS DE LA CONSOLIDATION

Time step for the modelling consolidation, which can be greater than the hydrodynamic time step. This parameter is used if CONSOLIDATION MODEL = 1 (Empirical multilayer model) or 2 (Gibson model (Lenormant)).

1.306 TITLE

Type: String Dimension: 1

Mnemo **TITCAS**

DEFAULT VALUE:

French keyword: TITRE Title of the case being considered.

1.307 **TOMAWAC STEERING FILE**

Type: String Dimension:

Mnemo PAS DE MNEMO

DEFAULT VALUE:

French keyword: FICHIER DES PARAMETRES DE TOMAWAC

TOMAWAC parameter file in case of internal coupling.

1.308 TRACERS VERTICAL PROFILES

Type: Integer Dimension: 2

Mnemo

VERPROTRA DEFAULT VALUE: **MANDATORY**

French keyword: PROFILS DES TRACEURS SUR LA VERTICALE

Specifies the type of profiles of tracer concentration on the vertical. There are as many values to be given as the product of the number of tracers and the number of open boundaries. Possible choices are:

- 0: user defined,
- 1: constant,
- 2: Rouse equilibrium, constant (diluted tracer) or Rouse (sediment),
- 3: Rouse (normalized) and imposed concentration.
- 4: Rouse modified with molecular viscosity.

1.309 TREATMENT OF FLUXES AT THE BOUNDARIES

Type: Integer Dimension: 2

Mnemo DIRFLU
DEFAULT VALUE: MANDATORY

French keyword: TRAITEMENT DES FLUX AUX FRONTIERES

Used so far only with the SUPG, PSI and N schemes (one integer per open boundary). Possible choices are:

• 1: priority to prescribed values,

• 2: priority to fluxes.

With option 2, Dirichlet prescribed values are not obeyed, but the fluxes are correct.

1.310 TREATMENT OF NEGATIVE DEPTHS

Type: Integer

Dimension: 1

Mnemo OPT_HNEG

DEFAULT VALUE: 1

French keyword: TRAITEMENT DES HAUTEURS NEGATIVES

Only with OPTION FOR THE TREATMENT OF TIDAL FLATS = 1. Possible choices are:

• 0: no treatment,

• 1: smoothing,

• 2: flux control.

If using option 2 with tidal flats, it is mandatory to set MASS-LUMPING FOR DEPTH = 1.

1.311 TREATMENT ON TIDAL FLATS FOR K-EPSILON

Type: Integer

Dimension: 1

Mnemo TRBAKE

DEFAULT VALUE: 0

French keyword: TRAITEMENT SUR LES BANCS DECOUVRANTS POUR LE K-EPSILON

Treatment of tidal flats at the diffusion step for k and ε .

• 0: forced to zero,

• 1: value before masked.

1.312 TREATMENT ON TIDAL FLATS FOR TRACERS

Type: Integer Dimension: 1

Mnemo TRBATA

DEFAULT VALUE: 0

French keyword: TRAITEMENT SUR LES BANCS DECOUVRANTS POUR LES TRACEURS Treatment of tidal flats at the diffusion step for tracers.

• 0: forced to zero,

• 1: value before masked.

Use choice 1 to ensure conservation of tracer(s).

1.313 TREATMENT ON TIDAL FLATS FOR VELOCITIES

Type: Integer

Dimension: 1

Mnemo TRBAVI

DEFAULT VALUE: (

French keyword: TRAITEMENT SUR LES BANCS DECOUVRANTS POUR LES VITESSES

Treatment of tidal flats at the diffusion step for velocities.

• 0: forced to zero,

• 1: value before masked.

1.314 TURBULENCE REGIME FOR LATERAL SOLID BOUNDARIES

Type: Integer

Dimension: 1

Mnemo LISRUL

DEFAULT VALUE: 2

French keyword: REGIME DE TURBULENCE POUR LES PAROIS LATERALES

Defines the turbulence regime for the lateral boundaries:

• 1: smooth,

• 2: rough.

1.315 TURBULENCE REGIME FOR THE BOTTOM

Type: Integer

Dimension: 1

Mnemo LISRUF

DEFAULT VALUE: 2

French keyword: REGIME DE TURBULENCE POUR LE FOND

Defines the turbulence regime for the bottom in the case of a k- ε or mixing-length model:

- 1: smooth,
- 2: rough,
- 3: rough also (for compatibility with old versions).

1.316 TYPE OF SOURCES

Type: Integer

Dimension: 1

Mnemo OPTSOU

DEFAULT VALUE: 1

French keyword: TYPE DES SOURCES

Defines how the sources are computed:

- 1: Source term multiplied by a finite element basis,
- 2: Source term multiplied by a Dirac function (recommended with high numbers of sources).

1.317 VALIDATION 87

1.317 VALIDATION

Type: Logical

Dimension: 1
Mnemo VALID
DEFAULT VALUE: NO

French keyword: VALIDATION

This option is primarily used for the validation documents. The REFERENCE FILE is then considered as a reference which the computation is going to be compared with. The comparison is done by the subroutine **BIEF_VALIDA**, which can be modified so as to include, for example, a comparison with an exact solution.

1.318 VALUE OF ATMOSPHERIC PRESSURE

Type: Real Dimension: 1

Mnemo CST_PATMOS

DEFAULT VALUE: 100000.

French keyword: VALEUR DE LA PRESSION ATMOSPHERIQUE Gives the value of atmospheric pressure when it is constant in time and space. In Pa.

1.319 VALUE OF THE TRACERS AT THE SOURCES

Type: Real
Dimension: 2
Mnemo TASCE

DEFAULT VALUE: MANDATORY

French keyword: VALEURS DES TRACEURS DES SOURCES

Sets the value of the tracers at the sources. All tracers for the first source, then all tracers for the second source, etc. (see user manual). For example, if there are 3 tracers (T1, T2 and T3) and 2 sources (S1 and S2), the following syntax is used:

S1_T1;S1_T2;S1_T3;S2_T1;S2_T2;S2_T3

10.0; 10.0; 0.0; 0.0; 10.0; 10.0

1.320 VALUES OF TRACERS IN THE RAIN

Type: Real
Dimension: 2
Mnemo TRAIN

DEFAULT VALUE: MANDATORY

French keyword: VALEURS DES TRACEURS DANS LA PLUIE

Sets the value of the tracers in the rain.

1.321 VARIABLES FOR 2D GRAPHIC PRINTOUTS

Type: String Dimension: 1

Mnemo SORT2D DEFAULT VALUE: 'U,V,H,B'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES 2D

Names of variables that may be written in the 2D RESULT FILE. Every variable is represented by a group of letters with any separator between them , ; or blank possibilities are the following:

- U: depth averaged velocity along x axis (m/s),
- V: depth averaged velocity along y axis (m/s),
- C: celerity (m/s),
- H: water depth (m),
- S: free surface elevation (m),
- B: bottom elevation (m),
- TAi: TAi concentrations for tracers, i is the tracer number,
- TA*: TA concentrations for tracers from 1 to 9,
- TA**: TA concentrations for tracers from 10 to 99,
- F: Froude number,
- Q: scalar discharge (m²/s),
- I: discharge along x (m²/s),
- J: discharge along y (m²/s),
- M: norm of velocity (m/s),
- X: wind along x axis (m/s),
- Y: wind along y axis (m/s),
- P: atmospheric pressure (Pa),
- W: friction coefficient,
- RB: non erodible bottom elevation (m),
- HD: thickness of the fresh deposits (m),
- EF: erosion rate (kg/m²/s),
- DF: probability of deposition (kg/m²/s),
- DZF : bed evolution,
- PRIVE1: work array PRIVE 1,
- PRIVE2: work array PRIVE 2,
- PRIVE3: work array PRIVE 3,
- PRIVE4: work array PRIVE 4,
- QS: solid discharge (m²/s),
- QSX: solid discharge along x (m²/s),
- QSY: solid discharge along y (m²/s),

- US: friction velocity (m/s),
- MAXZ: maximum value of the free surface elevation during the computation (m),
- TMXZ: time corresponding to this maximum elevation (s),
- TAIR: air temperature (°C),
- USURF: velocity along x axis at the surface (m/s),
- VSURF: velocity along y axis at the surface (m/s),
- WSURF: velocity along z axis at the surface (m/s),
- MSURF: magnitude of velocity at the surface (m/s),
- TASURFi: TAi conc for tracers at the surface, i is the tracer number,
- TASURF*: TA conc for tracers at the surface from 1 to 9,
- TASURF**: TA conc for tracers at the surface from 10 to 99.

1.322 VARIABLES FOR 3D GRAPHIC PRINTOUTS

Type: String

Dimension: 1

Mnemo SORT3D DEFAULT VALUE: 'Z,U,V,W'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES 3D

Names of variables to be written in the 3D RESULT FILE. Free choice of separator. You can ask for:

- U : velocity along x (m/s),
- V : velocity along y (m/s),
- W : velocity along z (m/s),
- Z: elevation z (m),
- TAx: concentration of tracers,
- NUX: viscosity for U and V along x (m²/s),
- NUY: viscosity for U and V along y (m^2/s) ,
- NUZ: viscosity for U and V along z (m²/s),
- NAX: viscosity for tracers along x (m²/s),
- NAY: viscosity for tracers along $y (m^2/s)$,
- NAZ: viscosity for tracers along z (m²/s),
- RI: Richardson number for mixing length model,
- K : turbulent kinetic energy for k- ε model (J/kg),
- EPS: dissipation of turbulent kinetic energy (W/kg),

- DP: dynamic pressure (multiplied by DT/RHO),
- PH: hydrostatic pressure (Pa),
- RHO: relative density,
- P1 : private variable 1,
- P2 : private variable 2,
- P3 : private variable 3,
- P4: private variable 4,
- US: Stokes velocity along x axis (m/s),
- VS : Stokes velocity along y axis (m/s),
- WS : Stokes velocity along z axis (m/s).

1.323 VECTOR LENGTH

Type: Integer Dimension: 1

Mnemo LVMAC

DEFAULT VALUE:

French keyword: LONGUEUR DU VECTEUR

Vector length on vector machines.

1.324 VELOCITIES OF THE SOURCES ALONG X

Type: Real
Dimension: 2
Mnemo USCE

DEFAULT VALUE: MANDATORY

French keyword: VITESSES DES SOURCES SELON X

Specifies the component along x of the velocities of the sources. If nothing is specified, the sources diffuse without any velocity in every direction (cf. validation case source).

1.325 VELOCITIES OF THE SOURCES ALONG Y

Type: Real
Dimension: 2
Mnemo VSCE

DEFAULT VALUE: MANDATORY

French keyword: VITESSES DES SOURCES SELON Y

Specifies the component along y of the velocities of the sources. If nothing is specified, the sources diffuse without any velocity in every direction (cf. validation case source).

1.326 VELOCITIES OF THE SOURCES ALONG Z

Type: Real
Dimension: 2
Mnemo WSCE

DEFAULT VALUE: MANDATORY

French keyword: VITESSES DES SOURCES SELON Z

Specifies the component along z of the velocities of the sources. If nothing is specified, the sources diffuse without any velocity in every direction (cf. validation case source).

1.327 VELOCITY DELWAQ FILE

Type: String Dimension: 1

Mnemo T3D_FILES(T3DDL9)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DE LA VITESSE

Results file for chaining with DELWAQ.

1.328 VELOCITY FOR DELWAQ

Type: Logical

Dimension: 1

Mnemo VELO_DEL

DEFAULT VALUE: NO

French keyword: VITESSE POUR DELWAQ

Triggers the output of velocity for DELWAQ.

1.329 VELOCITY PROFILES

Type: Integer

Dimension: 2

Mnemo PROFVEL
DEFAULT VALUE: MANDATORY

French keyword: PROFILS DE VITESSE

Specifies the type of horizontal profile of velocities (one integer per open boundary). Possible choices are:

- 1: constant normal profile,
- 2: *u* and *v* given in the BOUNDARY CONDITION FILE,
- 3: normal velocity given in **UBOR** in the BOUNDARY CONDITION FILE,
- 4: normal velocity in \sqrt{h} ,
- 5: like 4 but virtual depth based on the lowest elevation of the boundary.

1.330 VELOCITY PROJECTED ON BOTTOM

Type: Logical

Dimension: 1

Mnemo VELPROBOT

DEFAULT VALUE: YES

French keyword: VITESSE PROJETEE SUR LE FOND

Will ensure $\boldsymbol{U}.\boldsymbol{n} = 0$ on bottom by a projection at the end of time loop.

1.331 VELOCITY PROJECTED ON SOLID LATERAL BOUNDARIES

Type: Logical

Dimension:

Mnemo VELPROLAT

DEFAULT VALUE: YES

French keyword: VITESSE PROJETEE SUR LES PAROIS LATERALES SOLIDES

Will ensure $\boldsymbol{U}.\boldsymbol{n}=0$ on solid lateral boundaries by a projection at the end of time loop.

1.332 VELOCITY VERTICAL PROFILES

Type: Integer

Dimension: 2

Mnemo VERPROVEL
DEFAULT VALUE: MANDATORY

French keyword: PROFILS DE VITESSE SUR LA VERTICALE

Specifies the type of vertical profile of velocity (one integer per open boundary). Possible choices are:

• 0: defined by user,

• 1: constant,

• 2: logarithmic.

1.333 VERTICAL FLUXES DELWAQ FILE

Type: String

Dimension: 1

Mnemo T3D_FILES(T3DDL3)%NAME

DEFAULT VALUE: "

French keyword: FICHIER DELWAQ DES FLUX VERTICAUX

Results file for chaining with DELWAQ.

1.334 VERTICAL TURBULENCE MODEL

Type: Integer Dimension: 1

Mnemo ITURBV

DEFAULT VALUE: 1

French keyword: MODELE DE TURBULENCE VERTICAL Specifies the vertical turbulence model. The available choices are:

- 1: constant viscosity,
- 2: mixing length,
- 3: k- ε model,
- 4: Smagorinski,
- 5: Spalart-Allmaras,

- 6: GOTM,
- 7: k- ω model,
- 9: DES model (Detached Eddy Simulation).

Caution: if option 1 is chosen, give the right COEFFICIENT FOR... DIFFUSION OF VELOCITIES... If option 3 ou 7 is chosen, this parameter must get its real physical value of molecular diffusivity, generally about 10^{-6} because it is used as well in the turbulence model.

1.335 VERTICAL VELOCITY DERIVATIVES

Type: Integer

Dimension: 1

Mnemo LINLOG

DEFAULT VALUE: 1

French keyword: DERIVEES VERTICALES DES VITESSES

Way of computing the velocity derivatives along z only for a mixing length model over the vertical:

- 1: linear derivative (classic),
- 2: logarithmic derivative (better for logarithmic profiles) between the bottom and 0.2 times the water depth.

Option 2 allows getting better results when modelling the velocity profile near the bottom.

1.336 VOLUMES DELWAQ FILE

Type: String Dimension: 1

Mnemo T3D FILES(T3DDL1)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DES VOLUMES

Results file for chaining with DELWAQ.

1.337 WAQTEL STEERING FILE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: "

French keyword: FICHIER DES PARAMETRES DE WAQTEL

File for physical parameters of water quality processes (local ones of TELEMAC-3D-WAQTEL not those of DELWAQ).

1.338 WATER DISCHARGE OF SOURCES

Type: Real
Dimension: 2
Mnemo QSCE

DEFAULT VALUE: MANDATORY

French keyword: DEBITS DES SOURCES

Specifies the discharge for every source. A positive discharge means that fluid is added.

1.339 WATER QUALITY PROCESS

Type: Integer Dimension: 1

Mnemo WAQPROCESS

DEFAULT VALUE: 1

French keyword: PROCESSUS DE QUALITE D'EAU

Gives the water quality process number, defined as a multiplicative combination of prime numbers (2, 3, 5, 7, 11, 13, 17 and 19) with 0 and 1 having a special role:

- 0: all,
- 1: none,
- 2: O2,
- 3: BIOMASS,
- 5: EUTRO,
- 7: MICROPOL,
- 11: THERMIC,
- 13: AED2,
- 17: Degradation law,
- 19: Ghost process for ice modelling.

Example: 110 = 2x5x11 activates O2, EUTRO and THERMIC together. It is noted that AED2 should be used on its own, for the time being, without possible combination with other processes.

1.340 WAVE DRIVEN CURRENTS

Type: Logical

Dimension: 1

Mnemo COUROU DEFAULT VALUE: NO

French keyword: COURANTS DE HOULE

Wave driven currents are taken into account, see subroutine TRISOU.

1.341 WEAK SOIL CONCENTRATION FOR MUD

Type: Real Dimension: 1

Mnemo S3D_CGEL

DEFAULT VALUE: 0.0

French keyword: CONCENTRATION LIMITE FLUIDE-SOLIDE

The sediment concentration at which sediment forms a weak soil in kg/m^3 . These values are needed when HINDERED SETTLING = YES.

1.342 WIND 95

1.342 WIND

Type: Logical

Dimension: 1

Mnemo VENT DEFAULT VALUE: NO French keyword: VENT

Determines whether the wind effects are to be taken into account or not.

1.343 WIND VELOCITY ALONG X

Type: Real Dimension: 1

Mnemo CST_WINDX

DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT X Wind velocity, component along x axis (m/s), if constant.

1.344 WIND VELOCITY ALONG Y

Type: Real Dimension: 1

Mnemo CST_WINDY

DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT Y Wind velocity, component along y axis (m/s), if constant.

1.345 **ZERO**

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 1.E-10 French keyword: ZERO

Not used so far.

1.346 ZONE NUMBER IN GEOGRAPHIC SYSTEM

Type: Integer

Dimension: 1

Mnemo NUMZONE

DEFAULT VALUE: -1

French keyword: NUMERO DE FUSEAU OU PROJECTION DANS LE SYSTEME GEOGRAPHIQUE Number of zone when using a plane projection. Indicate the geographic system in which the numerical model is built with the keyword GEOGRAPHIC SYSTEM. Possible choices are:

- 1: Lambert 1 north,
- 2: Lambert 2 center,
- 3: Lambert 3 south,
- 4: Lambert 4 Corsica,

- 22: Lambert 22 extended,
- 93: Lambert 93,
- X: UTM zone with WGS84 (X is the number of the zone).

2. List of keywords classified according to type

2.1 AUTOMATIC DIFFERENTIATION

AD LINEAR SOLVER DERIVATIVE CONVERGENCE

AD LINEAR SOLVER RESET DERIVATIVES

AD NAMES OF DERIVATIVES

AD NUMBER OF DERIVATIVES

AD NUMBER OF DIRECTIONS

AD SYMBOLIC LINEAR SOLVER

2.2 COMPUTATION ENVIRONMENT

2.2.1 GLOBAL

CHECKING THE MESH

MAXIMUM NUMBER OF BOUNDARIES

MAXIMUM NUMBER OF BOUNDARIES ON THE BED

MAXIMUM NUMBER OF SOURCES

MAXIMUM NUMBER OF TRACERS

PARALLEL PROCESSORS

TITLE

VECTOR LENGTH

2.2.2 INPUT

DATA

BINARY BOUNDARY DATA FILE

BINARY BOUNDARY DATA FILE FORMAT

BINARY DATA FILE 1

BINARY DATA FILE 1 FORMAT

BINARY DATA FILE 2

BOTTOM SMOOTHINGS AFTER USER MODIFICATIONS

BOTTOM TOPOGRAPHY FILE

BOUNDARY CONDITIONS FILE

FORMATTED DATA FILE 1

FORMATTED DATA FILE 2

FORTRAN FILE

GEOMETRY FILE

GEOMETRY FILE FORMAT

NUMBER OF BOTTOM SMOOTHINGS

REFERENCE FILE

REFERENCE FILE FORMAT

VALIDATION

2.2.3 OUTPUT

LISTING

INFORMATION ABOUT MASS-BALANCE FOR EACH LISTING PRINTOUT

LISTING PRINTOUT

LISTING PRINTOUT PERIOD

MASS-BALANCE

NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS

RESULTS

2D RESULT FILE

2D RESULT FILE FORMAT

3D RESULT FILE

3D RESULT FILE FORMAT

BINARY RESULTS FILE

FORMATTED RESULTS FILE

FORMATTED RESULTS FILE 1

FORMATTED RESULTS FILE 2

FORMATTED RESULTS FILE 3

FORMATTED RESULTS FILE 4

FORMATTED RESULTS FILE 5

FORMATTED RESULTS FILE 6

GRAPHIC PRINTOUT PERIOD
NAMES OF 2D PRIVATE VARIABLES

NUMBER OF 2D PRIVATE ARRAYS

NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS

NUMBER OF PRIVATE ARRAYS

RESULT FILE IN LONGITUDE-LATITUDE

VARIABLES FOR 2D GRAPHIC PRINTOUTS

VARIABLES FOR 3D GRAPHIC PRINTOUTS

2.2.4 RESTART

2D CONTINUATION

COMPUTATION CONTINUED

FILE FOR 2D CONTINUATION

FILE FOR 2D CONTINUATION FORMAT

INITIAL TIME SET TO ZERO

PREVIOUS COMPUTATION FILE

2.3 COUPLING 99

PREVIOUS COMPUTATION FILE FORMAT
RECORD NUMBER FOR RESTART
RESTART FILE
RESTART FILE FORMAT
RESTART MODE

2.3 COUPLING

COUPLING WITH

2.3.1 DELWAQ

BOTTOM SURFACES DELWAQ FILE DELWAQ PRINTOUT PERIOD DELWAQ STEERING FILE DIFFUSION FOR DELWAQ DIFFUSIVITY DELWAQ FILE EXCHANGE AREAS DELWAQ FILE EXCHANGES BETWEEN NODES DELWAQ FILE NODES DISTANCES DELWAQ FILE SALINITY DELWAO FILE SALINITY FOR DELWAQ TEMPERATURE DELWAQ FILE TEMPERATURE FOR DELWAQ VELOCITY DELWAQ FILE VELOCITY FOR DELWAQ VERTICAL FLUXES DELWAQ FILE VOLUMES DELWAQ FILE

2.3.2 GAIA

GAIA STEERING FILE

2.3.3 KHIONE

KHIONE STEERING FILE

2.3.4 SISYPHE

COUPLING PERIOD FOR SISYPHE SISYPHE STEERING FILE

2.3.5 TOMAWAC

BOTTOM FRICTION DUE TO WAVES COUPLING PERIOD FOR TOMAWAC TOMAWAC STEERING FILE

2.3.6 WAQTEL

WAQTEL STEERING FILE WATER QUALITY PROCESS

2.4 GENERAL PARAMETERS

DEBUGGER

2.4.1 LOCATION

LATITUDE OF ORIGIN POINT LONGITUDE OF ORIGIN POINT NORTH SPATIAL PROJECTION TYPE SPHERICAL COORDINATES

2.4.2 TIME

DURATION
NUMBER OF TIME STEPS
ORIGINAL DATE OF TIME
ORIGINAL HOUR OF TIME
TIME STEP

2.5 HYDRO

2.5.1 PHYSICAL PARAMETERS HYDRO METEOROLOGY

FREE FORMAT FOR ATMOSPHERIC DATA FILE

2.6 HYDRODYNAMICS

ELEMENTS MASKED BY USER NON-HYDROSTATIC VERSION

2.6.1 BOUNDARY CONDITIONS

BOUNDARY CONDITION ON THE BOTTOM
LIQUID BOUNDARIES FILE
OPEN BOUNDARY CONDITIONS ON THE BED
OPTION FOR LIQUID BOUNDARIES
PRESCRIBED ELEVATIONS
PRESCRIBED FLOWRATES
PRESCRIBED FLOWRATES ON THE BED
PRESCRIBED VELOCITIES
STAGE-DISCHARGE CURVES

STAGE-DISCHARGE CURVES FILE
STAGE-DISCHARGE CURVES RELAXATION COEFFICIENT
TURBULENCE REGIME FOR LATERAL SOLID BOUNDARIES
TURBULENCE REGIME FOR THE BOTTOM
VELOCITY PROFILES
VELOCITY PROJECTED ON BOTTOM
VELOCITY PROJECTED ON SOLID LATERAL BOUNDARIES
VELOCITY VERTICAL PROFILES

2.6.2 HYDRAULIC STRUCTURES CULVERTS

CULVERTS DATA FILE NUMBER OF CULVERTS OPTION FOR CULVERTS

2.6.3 INITIALIZATION

INITIAL CONDITIONS
INITIAL DEPTH
INITIAL ELEVATION

2.6.4 NUMERICAL PARAMETERS

HYDROSTATIC INCONSISTENCY FILTER MASS-LUMPING FOR DEPTH MATRIX STORAGE

ADVECTION

BYPASS VOID VOLUMES

FREE SURFACE GRADIENT COMPATIBILITY

MASS-LUMPING FOR VELOCITIES

MASS-LUMPING FOR WEAK CHARACTERISTICS

NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS

OPTION FOR CHARACTERISTICS

SCHEME FOR ADVECTION OF DEPTH

SCHEME FOR ADVECTION OF VELOCITIES

SCHEME OPTION FOR ADVECTION OF VELOCITIES

DIFFUSION

ACCURACY FOR DIFFUSION OF VELOCITIES
IMPLICITATION FOR DIFFUSION
MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF VELOCITIES
OPTION OF SOLVER FOR DIFFUSION OF VELOCITIES
PRECONDITIONING FOR DIFFUSION OF VELOCITIES
SCHEME FOR DIFFUSION OF VELOCITIES
SOLVER FOR DIFFUSION OF VELOCITIES

DISCRETISATION

ELEMENT

IMPLICITATION

IMPLICITATION FOR DEPTH
IMPLICITATION FOR VELOCITIES

NON HYDROSTATIC

ACCURACY FOR PPE
CONTINUITY CORRECTION ON OPEN BOUNDARIES
DYNAMIC BOUNDARY CONDITION
DYNAMIC PRESSURE IN WAVE EQUATION
MAXIMUM NUMBER OF ITERATIONS FOR PPE
OPTION OF SOLVER FOR PPE
PRECONDITIONING FOR PPE
SOLVER FOR PPE

PROPAGATION

ACCURACY FOR PROPAGATION
INITIAL GUESS FOR DEPTH
LINEARIZED PROPAGATION
MAXIMUM NUMBER OF ITERATIONS FOR PROPAGATION
MEAN DEPTH FOR LINEARIZATION
OPTION OF SOLVER FOR PROPAGATION
PRECONDITIONING FOR PROPAGATION
SOLVER FOR PROPAGATION

2.6.5 PARTICLES TRANSPORT DROGUES

ASCII DROGUES FILE BINARY DROGUES FILE DROGUES FILE FORMAT MAXIMUM NUMBER OF DROGUES PRINTOUT PERIOD FOR DROGUES

OIL SPILL

OIL SPILL MODEL
OIL SPILL STEERING FILE

2.6.6 PHYSICAL PARAMETERS

AVERAGE WATER DENSITY GRAVITY ACCELERATION

CORIOLIS EFFECT

CORIOLIS COEFFICIENT

FRICTION

FRICTION COEFFICIENT FOR LATERAL SOLID BOUNDARIES FRICTION COEFFICIENT FOR THE BOTTOM LAW OF BOTTOM FRICTION
LAW OF FRICTION ON LATERAL BOUNDARIES

METEOROLOGY

AIR PRESSURE

AIR TEMPERATURE

ASCII ATMOSPHERIC DATA FILE

BINARY ATMOSPHERIC DATA FILE

BINARY ATMOSPHERIC DATA FILE FORMAT

CLOUD COVER

COEFFICIENT OF WIND INFLUENCE

COEFFICIENT OF WIND INFLUENCE VARYING WITH WIND SPEED

OPTION FOR WIND

RAIN OR EVAPORATION

RAIN OR EVAPORATION IN MM PER DAY

RELATIVE HUMIDITY

SOLAR RADIATION

THRESHOLD DEPTH FOR WIND

VALUE OF ATMOSPHERIC PRESSURE

WIND

WIND VELOCITY ALONG X

WIND VELOCITY ALONG Y

SOURCES

ABSCISSAE OF SOURCES
ELEVATIONS OF SOURCES
GLOBAL NUMBERS OF SOURCE NODES
ORDINATES OF SOURCES
SOURCES FILE
TYPE OF SOURCES
VELOCITIES OF THE SOURCES ALONG X
VELOCITIES OF THE SOURCES ALONG Y
VELOCITIES OF THE SOURCES ALONG Z
WATER DISCHARGE OF SOURCES

WAVE

RECORD NUMBER IN WAVE FILE WAVE DRIVEN CURRENTS

2.6.7 TIDAL FLATS INFO

MINIMAL VALUE FOR DEPTH
OPTION FOR THE TREATMENT OF TIDAL FLATS
THRESHOLD FOR VISCOSITY CORRECTION ON TIDAL FLATS
TIDAL FLATS
TREATMENT OF NEGATIVE DEPTHS
TREATMENT ON TIDAL FLATS FOR VELOCITIES

2.6.8 TIDES

BINARY DATABASE 1 FOR TIDE
BINARY DATABASE 2 FOR TIDE
COEFFICIENT TO CALIBRATE SEA LEVEL
GEOGRAPHIC SYSTEM
GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER
INITIAL VELOCITIES COMPUTED BY TPXO
LAMBERT 93 CONVERSION FILE
MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES INITIAL CONDITIONS
MINOR CONSTITUENTS INFERENCE
ZONE NUMBER IN GEOGRAPHIC SYSTEM

BOUNDARY CONDITIONS

ASCII DATABASE FOR TIDE
COEFFICIENT TO CALIBRATE TIDAL RANGE
COEFFICIENT TO CALIBRATE TIDAL VELOCITIES
HARMONIC CONSTANTS FILE
LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER
MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES BOUNDARY CONDITIONS
OPTION FOR TIDAL BOUNDARY CONDITIONS
TIDAL DATA BASE
TIDAL MODEL FILE
TIDAL MODEL FILE

PHYSICAL PARAMETERS

TIDE GENERATING FORCE

2.7 INTERNAL

CONCATENATE PARTEL OUTPUT DICTIONARY PARTITIONING TOOL STEERING FILE

2.8 NUMERICAL PARAMETERS

NUMBER OF SUB ITERATIONS FOR NON LINEARITIES ZERO

2.8.1 ADVECTION

ADVECTION STEP

MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES

NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

SUPG OPTION

TREATMENT OF FLUXES AT THE BOUNDARIES

2.8.2 DIFFUSION

MASS-LUMPING FOR DIFFUSION

2.9 SEDIMENT INFO

COHESIVE SEDIMENT

DENSITY OF THE SEDIMENT

MIXED SEDIMENT

NUMBER OF SEDIMENT BED LAYERS

SEDIMENT

SHIELDS PARAMETER

TIME STEP FOR CONSOLIDATION

2.9.1 DEPOSITION

CRITICAL SHEAR STRESS FOR DEPOSITION NON COHESIVE BED POROSITY

2.9.2 DEPRECATED

CLEANING TO BE DONE

BED LAYERS THICKNESS
MAXIMUM CONCENTRATION OF THE CONSOLIDATED MUD
RESIDENCE TIME FOR MUD

TO BE CHECKED

CONSOLIDATION MODEL

2.9.3 EROSION

EROSION COEFFICIENT

2.9.4 FLOCCULATION INFO

COEFFICIENT RELATIVE TO FLOC DESTRUCTION FLOCCULATION COEFFICIENT FLOCCULATION FORMULA

2.9.5 INITIALIZATION

CRITICAL EROSION SHEAR STRESS OF THE MUD LAYERS INITIAL PERCENTAGE OF NON COHESIVE SEDIMENT INITIAL THICKNESS OF SEDIMENT LAYERS MUD CONCENTRATIONS PER LAYER

2.9.6 INPUT

DATA

READ CRITICAL BED SHEAR STRESS PER LAYER

2.9.7 NUMERICAL PARAMETERS

DIFFUSION

ACCURACY FOR DIFFUSION OF SEDIMENT
MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF SEDIMENT
OPTION OF SOLVER FOR DIFFUSION OF THE SEDIMENT
PRECONDITIONING FOR DIFFUSION OF THE SEDIMENT
SOLVER FOR DIFFUSION OF THE SEDIMENT

2.9.8 OUTPUT

RESULTS

SEDIMENTOLOGICAL RESULT FILE SEDIMENTOLOGICAL RESULT FILE BINARY

2.9.9 PHYSICAL PARAMETERS

MEAN DIAMETER OF THE SEDIMENT

FRICTION

RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER SKIN FRICTION CORRECTION

2.9.10 **RESTART**

PREVIOUS COMPUTATION SEDIMENTOLOGICAL FILE

2.10 TRACERS 107

2.9.11 SETTLING VELOCITY

ADVECTION-DIFFUSION SCHEME WITH SETTLING VELOCITY
CONSTANT SEDIMENT SETTLING VELOCITY
HINDERED SETTLING
HINDERED SETTLING FORMULA
SETTLING VELOCITY OF SANDS
THRESHOLD CONCENTRATION FOR HINDERED SETTLING
WEAK SOIL CONCENTRATION FOR MUD

2.9.12 SUSPENSION

REFERENCE CONCENTRATION FORMULA

2.9.13 TIDAL FLATS INFO

THRESHOLD FOR SEDIMENT FLUX CORRECTION ON TIDAL FLATS

2.10 TRACERS

NAMES OF TRACERS NUMBER OF TRACERS

2.10.1 BOUNDARY CONDITIONS

PRESCRIBED TRACERS VALUES TRACERS VERTICAL PROFILES

2.10.2 INITIALIZATION

INITIAL VALUES OF TRACERS

2.10.3 NUMERICAL PARAMETERS

ADVECTION

SCHEME FOR ADVECTION OF TRACERS
SCHEME OPTION FOR ADVECTION OF TRACERS

DIFFUSION

ACCURACY FOR DIFFUSION OF TRACERS

MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS

OPTION OF SOLVER FOR DIFFUSION OF TRACERS

PRECONDITIONING FOR DIFFUSION OF TRACERS

SCHEME FOR DIFFUSION OF TRACERS

SOLVER FOR DIFFUSION OF TRACERS

2.10.4 PHYSICAL PARAMETERS

DENSITY

BETA EXPANSION COEFFICIENT FOR TRACERS DENSITY LAW STANDARD VALUES FOR TRACERS

METEOROLOGY

VALUES OF TRACERS IN THE RAIN

SOURCES

VALUE OF THE TRACERS AT THE SOURCES

2.10.5 TIDAL FLATS INFO

TREATMENT ON TIDAL FLATS FOR TRACERS

2.10.6 TURBULENCE

COEFFICIENT FOR HORIZONTAL DIFFUSION OF TRACERS
COEFFICIENT FOR VERTICAL DIFFUSION OF TRACERS

2.11 TURBULENCE

2.11.1 BOUNDARY CONDITIONS

FICTITIOUS BED LEVEL
OPTION FOR THE BOUNDARY CONDITIONS OF K-EPSILON

2.11.2 NUMERICAL PARAMETERS

VERTICAL VELOCITY DERIVATIVES

ADVECTION

SCHEME FOR ADVECTION OF K-EPSILON SCHEME OPTION FOR ADVECTION OF K-EPSILON

DIFFUSION

ACCURACY FOR DIFFUSION OF K-EPSILON
MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF K-EPSILON
OPTION OF SOLVER FOR DIFFUSION OF K-EPSILON
PRECONDITIONING FOR DIFFUSION OF K-EPSILON
SCHEME FOR DIFFUSION OF K-EPSILON
SOLVER FOR DIFFUSION OF K-EPSILON

2.12 VERTICAL 109

2.11.3 PHYSICAL PARAMETERS

COEFFICIENT FOR HORIZONTAL DIFFUSION OF VELOCITIES
COEFFICIENT FOR VERTICAL DIFFUSION OF VELOCITIES
DAMPING FUNCTION
GOTM STEERING FILE
HORIZONTAL TURBULENCE MODEL
KARMAN CONSTANT
MIXING LENGTH MODEL
PRANDTL NUMBER
VERTICAL TURBULENCE MODEL

2.11.4 TIDAL FLATS INFO

TREATMENT ON TIDAL FLATS FOR K-EPSILON

2.12 VERTICAL

MESH TRANSFORMATION

MINIMUM DISTANCE BETWEEN PLANES CLOSE TO THE BOTTOM

MINIMUM DISTANCE BETWEEN PLANES CLOSE TO THE FREE SURFACE

MINIMUM VOLUME OF 3D ELEMENTS

NUMBER OF HORIZONTAL LEVELS

NUMBER OF TRACER FOR AMR

THRESHOLD HEIGHT BEFORE CRUSHED ELEMENTS

3. Glossary

3.1 English/French glossary

2D CONTINUATION	SUITE 2D
2D RESULT FILE	FICHIER DES RESULTATS 2D
2D RESULT FILE FORMAT	FORMAT DU FICHIER DES RESULTATS
	2D
3D RESULT FILE	FICHIER DES RESULTATS 3D
3D RESULT FILE FORMAT	FORMAT DU FICHIER DES RESULTATS
	3D
ABSCISSAE OF SOURCES	ABSCISSES DES SOURCES
ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DU
K-EPSILON	K-EPSILON
ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DU
SEDIMENT	SEDIMENT
ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DES
TRACERS	TRACEURS
ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DES
VELOCITIES	VITESSES
ACCURACY FOR PPE	PRECISION POUR PPE
ACCURACY FOR PROPAGATION	PRECISION POUR LA PROPAGATION
AD LINEAR SOLVER DERIVATIVE	AD CONVERGENCE DES DERIVEES
CONVERGENCE	POUR LE SOLVEUR LINEAIRE
AD LINEAR SOLVER RESET	AD REMISE A ZERO DES DERIVEES
DERIVATIVES	DU SOLVEUR LINEAIRE
AD NAMES OF DERIVATIVES	AD NOMS DES DERIVEES
AD NUMBER OF DERIVATIVES	AD NOMBRE DES DERIVEES
AD NUMBER OF DIRECTIONS	AD NOMBRE DE DIRECTIONS
AD SYMBOLIC LINEAR SOLVER	AD SOLVEUR LINEAIRE SYMBOLIQUE
ADVECTION STEP	ETAPE DE CONVECTION
ADVECTION-DIFFUSION SCHEME WITH	SCHEMA DE CONVECTION DIFFUSION
SETTLING VELOCITY	AVEC VITESSE DE CHUTE
AIR PRESSURE	PRESSION ATMOSPHERIQUE
AIR TEMPERATURE	TEMPERATURE DE L'AIR

ASCII ATMOSPHERIC DATA FILE	FICHIER ASCII DE DONNEES ATMOSPHERIQUES
ASCII DATABASE FOR TIDE	BASE ASCII DE DONNEES DE MAREE
ASCII DROGUES FILE	FICHIER ASCII DES FLOTTEURS
AVERAGE WATER DENSITY	MASSE VOLUMIQUE MOYENNE DE
	L'EAU
BED LAYERS THICKNESS	EPAISSEUR DES COUCHES DU FOND VASEUX
BETA EXPANSION COEFFICIENT FOR	COEFFICIENT DE DILATATION BETA
TRACERS	POUR LES TRACEURS
BINARY ATMOSPHERIC DATA FILE	FICHIER BINAIRE DE DONNEES ATMOSPHERIQUES
BINARY ATMOSPHERIC DATA FILE	FORMAT DU FICHIER BINAIRE DE
FORMAT	DONNEES ATMOSPHERIQUES
BINARY BOUNDARY DATA FILE	FICHIER BINAIRE DE DONNEES DE FRONTIERE
BINARY BOUNDARY DATA FILE	FORMAT DU FICHIER BINAIRE DE
FORMAT	DONNEES DE FRONTIERE
BINARY DATA FILE 1	FICHIER DE DONNEES BINAIRE 1
BINARY DATA FILE 1 FORMAT	FORMAT DU FICHIER DE DONNEES
	BINAIRE 1
BINARY DATA FILE 2	FICHIER DE DONNEES BINAIRE 2
BINARY DATABASE 1 FOR TIDE	BASE BINAIRE 1 DE DONNEES DE
	MAREE
BINARY DATABASE 2 FOR TIDE	BASE BINAIRE 2 DE DONNEES DE
	MAREE
BINARY DROGUES FILE	FICHIER BINAIRE DES FLOTTEURS
BINARY RESULTS FILE	FICHIER DE RESULTATS BINAIRE
BOTTOM FRICTION DUE TO WAVES	FROTTEMENT SUR LE FOND DU AUX
	VAGUES
BOTTOM SMOOTHINGS AFTER USER	LISSAGES DU FOND APRES
MODIFICATIONS	MODIFICATIONS UTILISATEUR
BOTTOM SURFACES DELWAQ FILE	FICHIER DELWAQ DES SURFACES DU FOND
BOTTOM TOPOGRAPHY FILE	FICHIER DES FONDS
BOUNDARY CONDITION ON THE	CONDITION A LA LIMITE AU FOND
BOTTOM	
BOUNDARY CONDITIONS FILE	FICHIER DES CONDITIONS AUX
DVDACC MOID MOINEC	LIMITES CONTOLIDNEMENT DEC VOLUMES NULS
BYPASS VOID VOLUMES	CONTOURNEMENT DES VOLUMES NULS
CHECKING THE MESH	VERIFICATION DU MAILLAGE
CLOUD COVER	NEBULOSITE
COEFFICIENT FOR HORIZONTAL	COEFFICIENT DE DIFFUSION
DIFFUSION OF TRACERS	HORIZONTAL DES TRACEURS
COEFFICIENT FOR HORIZONTAL	COEFFICIENT DE DIFFUSION
DIFFUSION OF VELOCITIES	HORIZONTAL DES VITESSES

COEFFICIENT FOR VERTICAL	COEFFICIENT DE DIFFUSION
DIFFUSION OF TRACERS	VERTICAL DES TRACEURS
COEFFICIENT FOR VERTICAL	COEFFICIENT DE DIFFUSION
DIFFUSION OF VELOCITIES	VERTICAL DES VITESSES
COEFFICIENT OF WIND INFLUENCE	COEFFICIENT D'INFLUENCE DU VENT
COEFFICIENT OF WIND INFLUENCE	COEFFICIENT D'INFLUENCE DU VENT
VARYING WITH WIND SPEED	DEPENDANT DE LA VITESSE DU VENT
COEFFICIENT RELATIVE TO FLOC	COEFFICIENT TRADUISANT LA
DESTRUCTION	DESTRUCTION DES FLOCS
COEFFICIENT TO CALIBRATE SEA	COEFFICIENT DE CALAGE DU NIVEAU
LEVEL	DE MER
COEFFICIENT TO CALIBRATE TIDAL	COEFFICIENT DE CALAGE DU
RANGE	MARNAGE
COEFFICIENT TO CALIBRATE TIDAL	COEFFICIENT DE CALAGE DES
VELOCITIES	VITESSES DE COURANT
COHESIVE SEDIMENT	SEDIMENT COHESIF
COMPUTATION CONTINUED	SUITE DE CALCUL
CONCATENATE PARTEL OUTPUT	CONCATENATION SORTIE PARTEL
CONSOLIDATION	TASSEMENT DE LA VASE
CONSOLIDATION MODEL	OPTION DU MODELE DE TASSEMENT
CONSTANT SEDIMENT SETTLING	VITESSE DE CHUTE CONSTANTE
VELOCITY	
CONTINUITY CORRECTION ON OPEN	CORRECTION DE CONTINUITE SUR
BOUNDARIES	FRONTIERES OUVERTES
CORIOLIS	CORIOLIS
CORIOLIS COEFFICIENT	COEFFICIENT DE CORIOLIS
COUPLING PERIOD FOR SISYPHE	PERIODE DE COUPLAGE POUR
	SISYPHE
COUPLING PERIOD FOR TOMAWAC	PERIODE DE COUPLAGE POUR
	TOMAWAC
COUPLING WITH	COUPLAGE AVEC
CRITICAL EROSION SHEAR STRESS	CONTRAINTE CRITIQUE D'EROSION
OF THE MUD LAYERS	DES COUCHES DE VASE
CRITICAL SHEAR STRESS FOR	CONTRAINTE CRITIQUE DE DEPOT
DEPOSITION	
CULVERTS DATA FILE	FICHIER DE DONNEES DES BUSES
DAMPING FUNCTION	FONCTION D'AMORTISSEMENT
DEBUGGER	DEBUGGER
DELWAQ PRINTOUT PERIOD	PERIODE DE SORTIE POUR DELWAQ
DELWAQ STEERING FILE	FICHIER DE COMMANDE DELWAQ
DENSITY LAW	LOI DE DENSITE
DENSITY OF THE SEDIMENT	MASSE VOLUMIQUE DU SEDIMENT
DICTIONARY	DICTIONNAIRE
DIFFUSION FOR DELWAQ	DIFFUSION POUR DELWAQ
DIFFUSIVITY DELWAQ FILE	FICHIER DELWAQ DE LA DIFFUSION
DROGUES FILE FORMAT	FORMAT DU FICHIER DES FLOTTEURS
DURATION	DUREE DU CALCUL
DOIVETTON	DOLUTE DO CUTCOT

DYNAMIC BOUNDARY CONDITION	CONDITION LIMITE DYNAMIQUE
DYNAMIC PRESSURE IN WAVE	PRESSION DYNAMIQUE DANS
EQUATION	L'EQUATION D'ONDE
ELEMENT	ELEMENT
ELEMENTS MASKED BY USER	ELEMENTS MASQUES PAR
	L'UTILISATEUR
ELEVATIONS OF SOURCES	COTES DES SOURCES
EROSION COEFFICIENT	COEFFICIENT D'EROSION
EXCHANGE AREAS DELWAQ FILE	FICHIER DELWAQ DES SURFACES DE
	FLUX
EXCHANGES BETWEEN NODES DELWAQ	FICHIER DELWAQ DES ECHANGES
FILE	ENTRE NOEUDS
FICTITIOUS BED LEVEL	HAUTEUR DU LIT FICTIF
FILE FOR 2D CONTINUATION	FICHIER POUR SUITE 2D
FILE FOR 2D CONTINUATION FORMAT	FORMAT DU FICHIER POUR SUITE 2D
FLOCCULATION	FLOCULATION
FLOCCULATION COEFFICIENT	COEFFICIENT TRADUISANT LA
	FORMATION DES FLOCS
FLOCCULATION FORMULA	FORMULE POUR FLOCULATION
FORMATTED DATA FILE 1	FICHIER DE DONNEES FORMATE 1
FORMATTED DATA FILE 2	FICHIER DE DONNEES FORMATE 2
FORMATTED RESULTS FILE	FICHIER DE RESULTATS FORMATE
FORMATTED RESULTS FILE 1	FICHIER DE RESULTATS FORMATE 1
FORMATTED RESULTS FILE 2	FICHIER DE RESULTATS FORMATE 2
FORMATTED RESULTS FILE 3	FICHIER DE RESULTATS FORMATE 3
FORMATTED RESULTS FILE 4	FICHIER DE RESULTATS FORMATE 4
FORMATTED RESULTS FILE 5	FICHIER DE RESULTATS FORMATE 5
FORMATTED RESULTS FILE 6	FICHIER DE RESULTATS FORMATE 6
FORTRAN FILE	FICHIER FORTRAN
FREE FORMAT FOR ATMOSPHERIC	FORMAT LIBRE POUR FICHIER DE
DATA FILE	DONNEES ATMOSPHERIQUES
FREE SURFACE GRADIENT	COMPATIBILITE DU GRADIENT DE
COMPATIBILITY	SURFACE LIBRE
FRICTION COEFFICIENT FOR	COEFFICIENT DE FROTTEMENT POUR
LATERAL SOLID BOUNDARIES	LES PAROIS LATERALES
	COEFFICIENT DE FROTTEMENT POUR
FRICTION COEFFICIENT FOR THE BOTTOM	
	LE FOND
GAIA STEERING FILE	FICHIER DES PARAMETRES DE GAIA
GEOGRAPHIC SYSTEM	SYSTEME GEOGRAPHIQUE
GEOMETRY FILE	FICHIER DE GEOMETRIE
GEOMETRY FILE FORMAT	FORMAT DU FICHIER DE GEOMETRIE
GLOBAL NUMBER OF THE POINT TO	NUMERO GLOBAL DU POINT POUR
CALIBRATE HIGH WATER	CALER LA PLEINE MER
GLOBAL NUMBERS OF SOURCE NODES	NUMEROS GLOBAUX DES NOEUDS DES SOURCES
GOTM STEERING FILE	FICHIER DES PARAMETRES GOTM
_	

GRAPHIC PRINTOUT PERIOD	PERIODE POUR LES SORTIES
Oldi ii C Tidiwi oo T I IIdob	GRAPHIQUES
GRAVITY ACCELERATION	ACCELERATION DE LA PESANTEUR
HARMONIC CONSTANTS FILE	FICHIER DES CONSTANTES
	HARMONIQUES
HINDERED SETTLING	VITESSE DE CHUTE ENTRAVEE
HINDERED SETTLING FORMULA	FORMULE POUR VITESSE DE CHUTE
	ENTRAVEE
HORIZONTAL TURBULENCE MODEL	MODELE DE TURBULENCE HORIZONTAL
HYDROSTATIC INCONSISTENCY	FILTRE LES INCONSISTANCES
FILTER	HYDROSTATIQUES
IMPLICITATION FOR DEPTH	IMPLICITATION POUR LA HAUTEUR
IMPLICITATION FOR DIFFUSION	IMPLICITATION POUR LA DIFFUSION
IMPLICITATION FOR VELOCITIES	IMPLICITATION POUR LES VITESSES
INFORMATION ABOUT MASS-BALANCE FOR EACH LISTING PRINTOUT	INFORMATION SUR LE BILAN DE
INITIAL CONDITIONS	MASSE A CHAQUE SORTIE LISTING CONDITIONS INITIALES
INITIAL CONDITIONS INITIAL DEPTH	HAUTEUR INITIALE
INITIAL ELEVATION	COTE INITIALE
INITIAL GUESS FOR DEPTH	ORDRE DU TIR INITIAL POUR LA
	HAUTEUR
INITIAL PERCENTAGE OF NON	POURCENTAGE INITIAL DE SEDIMENT
COHESIVE SEDIMENT	NON COHESIF
INITIAL THICKNESS OF SEDIMENT	EPAISSEURS INITIALES DES
LAYERS	COUCHES
INITIAL TIME SET TO ZERO	REMISE A ZERO DU TEMPS
INITIAL VALUES OF TRACERS	VALEURS INITIALES DES TRACEURS
INITIAL VELOCITIES COMPUTED BY	VITESSES INITIALES CALCULEES
TPXO	PAR TPXO
KARMAN CONSTANT	CONSTANTE DE KARMAN
KHIONE STEERING FILE	FICHIER DES PARAMETRES DE
LAMBERT 93 CONVERSION FILE	KHIONE FICHIER DE CONVERSION LAMBERT
LAPIDERT 93 CONVERSION FILE	93
LATITUDE OF ORIGIN POINT	LATITUDE DU POINT ORIGINE
LAW OF BOTTOM FRICTION	LOI DE FROTTEMENT SUR LE FOND
LAW OF FRICTION ON LATERAL	LOI DE FROTTEMENT SUR LES
BOUNDARIES	PAROIS LATERALES
LINEARIZED PROPAGATION	PROPAGATION LINEARISEE
LIQUID BOUNDARIES FILE	FICHIER DES FRONTIERES LIQUIDES
LISTING PRINTOUT	SORTIE LISTING
LISTING PRINTOUT PERIOD	PERIODE POUR LES SORTIES
	LISTING
LOCAL NUMBER OF THE POINT TO	NUMERO LOCAL DU POINT POUR
CALIBRATE HIGH WATER	CALER LA PLEINE MER
LONGITUDE OF ORIGIN POINT	LONGITUDE DU POINT ORIGINE
MASS-BALANCE	BILAN DE MASSE

MASS-LUMPING FOR DEPTH	MASS-LUMPING POUR LA HAUTEUR
MASS-LUMPING FOR DIFFUSION	MASS-LUMPING POUR LA DIFFUSION
MASS-LUMPING FOR VELOCITIES	MASS-LUMPING POUR LES VITESSES
MASS-LUMPING FOR WEAK	MASS-LUMPING POUR LES
CHARACTERISTICS	CARACTERISTIQUES FAIBLES
MATRIX STORAGE	STOCKAGE DES MATRICES
MAXIMUM CONCENTRATION OF THE	CONCENTRATION MAXIMUM DE LA
CONSOLIDATED MUD	VASE TASSEE
MAXIMUM NUMBER OF BOUNDARIES	NOMBRE MAXIMUM DE FRONTIERES
MAXIMUM NUMBER OF BOUNDARIES ON	NOMBRE MAXIMUM DE FRONTIERES
THE BED	SUR LE FOND
MAXIMUM NUMBER OF DROGUES	NOMBRE MAXIMAL DE FLOTTEURS
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LES
FOR ADVECTION SCHEMES	SCHEMAS DE CONVECTION
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR DIFFUSION OF K-EPSILON	DIFFUSION DU K-EPSILON
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR DIFFUSION OF SEDIMENT	DIFFUSION DU SEDIMENT
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR DIFFUSION OF TRACERS	DIFFUSION DES TRACEURS
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR DIFFUSION OF VELOCITIES	DIFFUSION DES VITESSES
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR PPE
FOR PPE	
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR PROPAGATION	PROPAGATION
MAXIMUM NUMBER OF SOURCES	NOMBRE MAXIMUM DE SOURCES
MAXIMUM NUMBER OF TRACERS	NOMBRE MAXIMUM DE TRACEURS
MEAN DEPTH FOR LINEARIZATION	PROFONDEUR MOYENNE POUR LA
	LINEARISATION
MEAN DIAMETER OF THE SEDIMENT	DIAMETRE MOYEN DES GRAINS
MESH TRANSFORMATION	TRANSFORMATION DU MAILLAGE
MINIMAL VALUE FOR DEPTH	VALEUR MINIMALE POUR LA HAUTEUR
MINIMUM DEPTH TO COMPUTE TIDAL	HAUTEUR MINIMALE POUR LES
VELOCITIES BOUNDARY CONDITIONS	CONDITIONS AUX LIMITES DE
	COURANTS
MINIMUM DEPTH TO COMPUTE TIDAL	HAUTEUR MINIMALE POUR LES
VELOCITIES INITIAL CONDITIONS	CONDITIONS INITIALES DE
	COURANTS
MINIMUM DISTANCE BETWEEN PLANES	DISTANCE MINIMALE ENTRE PLANS
CLOSE TO THE BOTTOM	PRES DU FOND
MINIMUM DISTANCE BETWEEN PLANES	DISTANCE MINIMALE ENTRE PLANS
CLOSE TO THE FREE SURFACE	PRES DE LA SURFACE LIBRE
MINIMUM VOLUME OF 3D ELEMENTS	VOLUME MINIMAL DES ELEMENTS 3D
MINOR CONSTITUENTS INFERENCE	INTERPOLATION DE COMPOSANTES
	MINEURES
MIXED SEDIMENT	SEDIMENT MIXTE
	~~~

	T
MIXING LENGTH MODEL	MODELE DE LONGUEUR DE MELANGE
MUD CONCENTRATIONS PER LAYER	CONCENTRATIONS DES COUCHES DE
	VASE
NAMES OF 2D PRIVATE VARIABLES	NOMS DES VARIABLES PRIVEES 2D
NAMES OF TRACERS	NOMS DES TRACEURS
NODES DISTANCES DELWAQ FILE	FICHIER DELWAQ DES DISTANCES
	ENTRE NOEUDS
NON COHESIVE BED POROSITY	POROSITE DU LIT NON COHESIF
NON-HYDROSTATIC VERSION	VERSION NON-HYDROSTATIQUE
NORTH	NORD
NUMBER OF 2D PRIVATE ARRAYS	NOMBRE DE TABLEAUX PRIVES 2D
NUMBER OF BOTTOM SMOOTHINGS	NOMBRE DE LISSAGES DU FOND
NUMBER OF CORRECTIONS OF	NOMBRE DE CORRECTIONS DES
DISTRIBUTIVE SCHEMES	SCHEMAS DISTRIBUTIFS
NUMBER OF CULVERTS	NOMBRE DE BUSES
NUMBER OF FIRST TIME STEP FOR	NUMERO DU PREMIER PAS DE TEMPS
GRAPHIC PRINTOUTS	POUR LES SORTIES GRAPHIQUES
NUMBER OF FIRST TIME STEP FOR	NUMERO DU PREMIER PAS DE TEMPS
LISTING PRINTOUTS	POUR LES SORTIES LISTING
NUMBER OF GAUSS POINTS FOR WEAK	NOMBRE DE POINTS DE GAUSS POUR
CHARACTERISTICS	LES CARACTERISTIQUES FAIBLES
NUMBER OF HORIZONTAL LEVELS	NOMBRE DE PLANS HORIZONTAUX
NUMBER OF PRIVATE ARRAYS	NOMBRE DE TABLEAUX PRIVES
NUMBER OF SEDIMENT BED LAYERS	NOMBRE DE COUCHES DU LIT
	COHESIF
NUMBER OF SUB ITERATIONS FOR	NOMBRE DE SOUS ITERATIONS POUR
NON LINEARITIES	LES NON LINEARITES
NUMBER OF SUB-STEPS OF	NOMBRE DE SOUS-PAS DES SCHEMAS
DISTRIBUTIVE SCHEMES	DISTRIBUTIFS
NUMBER OF TIME STEPS	NOMBRE DE PAS DE TEMPS
NUMBER OF TRACER FOR AMR	NUMERO DE TRACEUR POUR AMR
NUMBER OF TRACERS	NOMBRE DE TRACEURS
OIL SPILL MODEL	MODELE DE NAPPES
	D'HYDROCARBURES
OIL SPILL STEERING FILE	FICHIER DE COMMANDES
	HYDROCARBURES
OPEN BOUNDARY CONDITIONS ON THE	CONDITIONS OUVERTES SUR LE FOND
BED	
OPTION FOR CHARACTERISTICS	OPTION POUR LES
	CARACTERISTIQUES
OPTION FOR CULVERTS	OPTION POUR LES BUSES
OPTION FOR LIQUID BOUNDARIES	OPTION POUR LES FRONTIERES
	LIQUIDES
OPTION FOR THE BOUNDARY	OPTION POUR LES CONDITIONS AUX
CONDITIONS OF K-EPSILON	LIMITES DU K-EPSILON
OPTION FOR THE TREATMENT OF	OPTION DE TRAITEMENT DES BANCS
TIDAL FLATS	DECOUVRANTS

OPTION FOR TIDAL BOUNDARY	OPTION POUR LES CONDITIONS AUX
CONDITIONS	LIMITES DE MAREE
OPTION FOR WIND	OPTION DU VENT
OPTION OF SOLVER FOR DIFFUSION	OPTION DU SOLVEUR POUR LA
OF K-EPSILON	DIFFUSION DU K-EPSILON
OPTION OF SOLVER FOR DIFFUSION	OPTION DU SOLVEUR POUR LA
OF THE SEDIMENT	DIFFUSION DU SEDIMENT
OPTION OF SOLVER FOR DIFFUSION	OPTION DU SOLVEUR POUR LA
OF TRACERS	DIFFUSION DES TRACEURS
OPTION OF SOLVER FOR DIFFUSION	OPTION DU SOLVEUR POUR LA
OF VELOCITIES	DIFFUSION DES VITESSES
OPTION OF SOLVER FOR PPE	OPTION DU SOLVEUR POUR PPE
OPTION OF SOLVER FOR	OPTION DU SOLVEUR POUR LA
PROPAGATION	PROPAGATION
ORDINATES OF SOURCES	ORDONNEES DES SOURCES
ORIGINAL DATE OF TIME	DATE DE L'ORIGINE DES TEMPS
ORIGINAL HOUR OF TIME	HEURE DE L'ORIGINE DES TEMPS
PARALLEL PROCESSORS	PROCESSEURS PARALLELES
PARTITIONING TOOL	PARTITIONNEUR
PRANDTL NUMBER	NOMBRE DE PRANDTL
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF K-EPSILON	DIFFUSION DU K-EPSILON
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF THE SEDIMENT	DIFFUSION DU SEDIMENT
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF TRACERS	DIFFUSION DES TRACEURS
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF VELOCITIES	DIFFUSION DES VITESSES
PRECONDITIONING FOR PPE	PRECONDITIONNEMENT POUR PPE
PRECONDITIONING FOR PROPAGATION	PRECONDITIONNEMENT POUR LA
	PROPAGATION
PRESCRIBED ELEVATIONS	COTES IMPOSEES
PRESCRIBED FLOWRATES	DEBITS IMPOSES
PRESCRIBED FLOWRATES ON THE BED	DEBITS IMPOSES SUR LE FOND
PRESCRIBED TRACERS VALUES	VALEURS IMPOSEES DES TRACEURS
PRESCRIBED VELOCITIES	VITESSES IMPOSEES
PREVIOUS COMPUTATION FILE	FICHIER DU CALCUL PRECEDENT
PREVIOUS COMPUTATION FILE	FORMAT DU FICHIER DU CALCUL
FORMAT	PRECEDENT
PREVIOUS COMPUTATION	FICHIER SEDIMENTOLOGIQUE DU
SEDIMENTOLOGICAL FILE	CALCUL PRECEDENT
PRINTOUT PERIOD FOR DROGUES	PERIODE POUR LES SORTIES DE
	FLOTTEURS
RAIN OR EVAPORATION	PLUIE OU EVAPORATION
RAIN OR EVAPORATION IN MM PER	PLUIE OU EVAPORATION EN MM PAR
DAY	JOUR

RATIO BETWEEN SKIN FRICTION AND	RATIO ENTRE LA RUGOSITE DE PEAU
MEAN DIAMETER	ET LE DIAMETRE MOYEN
READ CRITICAL BED SHEAR STRESS	LECTURE CONTRAINTE CRITIQUE
PER LAYER	POUR CHAQUE COUCHE
RECORD NUMBER FOR RESTART	ENREGISTREMENT POUR SUITE DE
	CALCUL
RECORD NUMBER IN WAVE FILE	NUMERO DE L'ENREGISTREMENT DANS
	LE FICHIER DE HOULE
REFERENCE CONCENTRATION FORMULA	FORMULE POUR LA CONCENTRATION
200000000000000000000000000000000000000	DE REFERENCE
REFERENCE FILE	FICHIER DE REFERENCE
REFERENCE FILE FORMAT	FORMAT DU FICHIER DE REFERENCE
RELATIVE HUMIDITY	HUMIDITE RELATIVE
RESIDENCE TIME FOR MUD	TEMPS DE SEJOUR DE LA VASE
RESTART FILE	FICHIER POUR SUITE
RESTART FILE FORMAT	FORMAT DU FICHIER POUR SUITE
RESTART MODE	MODE SUITE
RESULT FILE IN	FICHIER RESULTAT EN
LONGITUDE-LATITUDE	LONGITUDE-LATITUDE
SALINITY DELWAQ FILE	FICHIER DELWAQ DE LA SALINITE
SALINITY FOR DELWAQ	SALINITE POUR DELWAQ
SCHEME FOR ADVECTION OF DEPTH	SCHEMA POUR LA CONVECTION DE LA
	HAUTEUR
SCHEME FOR ADVECTION OF	SCHEMA POUR LA CONVECTION DU
K-EPSILON	K-EPSILON
SCHEME FOR ADVECTION OF TRACERS	SCHEMA POUR LA CONVECTION DES
	TRACEURS
SCHEME FOR ADVECTION OF	SCHEMA POUR LA CONVECTION DES
VELOCITIES	VITESSES
SCHEME FOR DIFFUSION OF	SCHEMA POUR LA DIFFUSION DU
K-EPSILON	K-EPSILON
SCHEME FOR DIFFUSION OF TRACERS	SCHEMA POUR LA DIFFUSION DES
	TRACEURS
SCHEME FOR DIFFUSION OF	SCHEMA POUR LA DIFFUSION DES
VELOCITIES	VITESSES
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
K-EPSILON	CONVECTION DU K-EPSILON
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
TRACERS	CONVECTION DES TRACEURS
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
VELOCITIES	CONVECTION DES VITESSES
SEDIMENT	SEDIMENT
SEDIMENTOLOGICAL RESULT FILE	FICHIER DES RESULTATS
	SEDIMENTOLOGIQUES
SEDIMENTOLOGICAL RESULT FILE	BINAIRE DU FICHIER DES
BINARY	RESULTATS SEDIMENTOLOGIQUES
SETTLING VELOCITY OF SANDS	VITESSE DE CHUTE DES SABLES

SHIELDS PARAMETER	PARAMETRE DE SHIELDS
SISYPHE STEERING FILE	FICHIER DES PARAMETRES DE
	SISYPHE
SKIN FRICTION CORRECTION	CORRECTION FROTTEMENT DE PEAU
SOLAR RADIATION	RAYONNEMENT SOLAIRE
SOLVER FOR DIFFUSION OF	SOLVEUR POUR LA DIFFUSION DU
K-EPSILON	K-EPSILON
SOLVER FOR DIFFUSION OF THE	SOLVEUR POUR LA DIFFUSION DU
SEDIMENT	SEDIMENT
SOLVER FOR DIFFUSION OF TRACERS	SOLVEUR POUR LA DIFFUSION DES
	TRACEURS
SOLVER FOR DIFFUSION OF	SOLVEUR POUR LA DIFFUSION DES
VELOCITIES	VITESSES
SOLVER FOR PPE	SOLVEUR POUR PPE
SOLVER FOR PROPAGATION	SOLVEUR POUR LA PROPAGATION
SOURCES FILE	FICHIER DES SOURCES
SPATIAL PROJECTION TYPE	TYPE DE PROJECTION SPATIALE
SPHERICAL COORDINATES	COORDONNEES SPHERIQUES
STAGE-DISCHARGE CURVES	COURBES DE TARAGE
STAGE-DISCHARGE CURVES FILE	FICHIER DES COURBES DE TARAGE
STAGE-DISCHARGE CURVES	COUPDES DE TARACE
RELAXATION COEFFICIENT	COURBES DE TARAGE
STANDARD VALUES FOR TRACERS	VALEURS DE REFERENCE DES
STEERING FILE	FICHIER DES PARAMETRES
SUPG OPTION	OPTION DE SUPG
TEMPERATURE DELWAQ FILE	FICHIER DELWAQ DE LA
	TEMPERATURE
TEMPERATURE FOR DELWAQ	TEMPERATURE POUR DELWAQ
THRESHOLD CONCENTRATION FOR	CONCENTRATION LIMITE POUR
HINDERED SETTLING	VITESSE DE CHUTE ENTRAVEE
THRESHOLD DEPTH FOR WIND	PROFONDEUR LIMITE POUR LE VENT
THRESHOLD FOR SEDIMENT FLUX	SEUIL LIMITE POUR EROSION SUR
CORRECTION ON TIDAL FLATS	BANCS DECOUVRANTS
THRESHOLD FOR VISCOSITY	SEUIL POUR CORRECTION DE
CORRECTION ON TIDAL FLATS	VISCOSITE SUR BANCS DECOUVRANTS
THRESHOLD HEIGHT BEFORE CRUSHED	HAUTEUR SEUIL AVANT ELEMENTS
ELEMENTS	ECRASES
TIDAL DATA BASE	BASE DE DONNEES DE MAREE
TIDAL FLATS	BANCS DECOUVRANTS
TIDAL MODEL FILE	FICHIER DU MODELE DE MAREE
TIDAL MODEL FILE FORMAT	FORMAT DU FICHIER DU MODELE DE
	MAREE
TIDE GENERATING FORCE	FORCE GENERATRICE DE LA MAREE
TIME STEP	PAS DE TEMPS
TIME STEP FOR CONSOLIDATION	PAS DE TEMPS DE LA
	CONSOLIDATION

TITLE	TITRE
TOMAWAC STEERING FILE	FICHIER DES PARAMETRES DE
	TOMAWAC
TRACERS VERTICAL PROFILES	PROFILS DES TRACEURS SUR LA
	VERTICALE
TREATMENT OF FLUXES AT THE	TRAITEMENT DES FLUX AUX
BOUNDARIES	FRONTIERES
TREATMENT OF NEGATIVE DEPTHS	TRAITEMENT DES HAUTEURS
	NEGATIVES
TREATMENT ON TIDAL FLATS FOR	TRAITEMENT SUR LES BANCS
K-EPSILON	DECOUVRANTS POUR LE K-EPSILON
TREATMENT ON TIDAL FLATS FOR	TRAITEMENT SUR LES BANCS
TRACERS	DECOUVRANTS POUR LES TRACEURS
TREATMENT ON TIDAL FLATS FOR	TRAITEMENT SUR LES BANCS
VELOCITIES	DECOUVRANTS POUR LES VITESSES
TURBULENCE REGIME FOR LATERAL	REGIME DE TURBULENCE POUR LES
SOLID BOUNDARIES	PAROIS LATERALES
TURBULENCE REGIME FOR THE	REGIME DE TURBULENCE POUR LE
BOTTOM	FOND
TYPE OF SOURCES	TYPE DES SOURCES
VALIDATION	VALIDATION
VALUE OF ATMOSPHERIC PRESSURE	VALEUR DE LA PRESSION
	ATMOSPHERIQUE
VALUE OF THE TRACERS AT THE	VALEURS DES TRACEURS DES
SOURCES	SOURCES
VALUES OF TRACERS IN THE RAIN	VALEURS DES TRACEURS DANS LA
	PLUIE
VARIABLES FOR 2D GRAPHIC	VARIABLES POUR LES SORTIES
PRINTOUTS	GRAPHIQUES 2D
VARIABLES FOR 3D GRAPHIC	VARIABLES POUR LES SORTIES
PRINTOUTS	GRAPHIQUES 3D
VECTOR LENGTH	LONGUEUR DU VECTEUR
VELOCITIES OF THE SOURCES ALONG	VITESSES DES SOURCES SELON X
X	
VELOCITIES OF THE SOURCES ALONG	VITESSES DES SOURCES SELON Y
Y	
VELOCITIES OF THE SOURCES ALONG	VITESSES DES SOURCES SELON Z
Z	
VELOCITY DELWAQ FILE	FICHIER DELWAQ DE LA VITESSE
VELOCITY FOR DELWAQ	VITESSE POUR DELWAQ
VELOCITY PROFILES	PROFILS DE VITESSE
VELOCITY PROJECTED ON BOTTOM	VITESSE PROJETEE SUR LE FOND
VELOCITY PROJECTED ON SOLID	VITESSE PROJETEE SUR LES PAROIS
LATERAL BOUNDARIES	LATERALES SOLIDES
VELOCITY VERTICAL PROFILES	PROFILS DE VITESSE SUR LA
	VERTICALE
·	1

VERTICAL FLUXES DELWAQ FILE	FICHIER DELWAQ DES FLUX
	VERTICAUX
VERTICAL TURBULENCE MODEL	MODELE DE TURBULENCE VERTICAL
VERTICAL VELOCITY DERIVATIVES	DERIVEES VERTICALES DES
	VITESSES
VOLUMES DELWAQ FILE	FICHIER DELWAQ DES VOLUMES
WAQTEL STEERING FILE	FICHIER DES PARAMETRES DE
	WAQTEL
WATER DISCHARGE OF SOURCES	DEBITS DES SOURCES
WATER QUALITY PROCESS	PROCESSUS DE QUALITE D'EAU
WAVE DRIVEN CURRENTS	COURANTS DE HOULE
WEAK SOIL CONCENTRATION FOR MUD	CONCENTRATION LIMITE
	FLUIDE-SOLIDE
WIND	VENT
WIND VELOCITY ALONG X	VITESSE DU VENT SUIVANT X
WIND VELOCITY ALONG Y	VITESSE DU VENT SUIVANT Y
ZERO	ZERO
ZONE NUMBER IN GEOGRAPHIC	NUMERO DE FUSEAU OU PROJECTION
SYSTEM	DANS LE SYSTEME GEOGRAPHIQUE

### 3.2 French/English glossary

ABSCISSES DES SOURCES	ABSCISSAE OF SOURCES
ACCELERATION DE LA PESANTEUR	GRAVITY ACCELERATION
AD CONVERGENCE DES DERIVEES	AD LINEAR SOLVER DERIVATIVE
POUR LE SOLVEUR LINEAIRE	CONVERGENCE
AD NOMBRE DE DIRECTIONS	AD NUMBER OF DIRECTIONS
AD NOMBRE DES DERIVEES	AD NUMBER OF DERIVATIVES
AD NOMS DES DERIVEES	AD NAMES OF DERIVATIVES
AD REMISE A ZERO DES DERIVEES	AD LINEAR SOLVER RESET
DU SOLVEUR LINEAIRE	DERIVATIVES
AD SOLVEUR LINEAIRE SYMBOLIQUE	AD SYMBOLIC LINEAR SOLVER
BANCS DECOUVRANTS	TIDAL FLATS
BASE ASCII DE DONNEES DE MAREE	ASCII DATABASE FOR TIDE
BASE BINAIRE 1 DE DONNEES DE	BINARY DATABASE 1 FOR TIDE
MAREE	
BASE BINAIRE 2 DE DONNEES DE	BINARY DATABASE 2 FOR TIDE
MAREE	
BASE DE DONNEES DE MAREE	TIDAL DATA BASE
BILAN DE MASSE	MASS-BALANCE
BINAIRE DU FICHIER DES	SEDIMENTOLOGICAL RESULT FILE
RESULTATS SEDIMENTOLOGIQUES	BINARY
COEFFICIENT D'EROSION	EROSION COEFFICIENT
COEFFICIENT D'INFLUENCE DU VENT	COEFFICIENT OF WIND INFLUENCE
COEFFICIENT D'INFLUENCE DU VENT	COEFFICIENT OF WIND INFLUENCE
DEPENDANT DE LA VITESSE DU VENT	VARYING WITH WIND SPEED
COEFFICIENT DE CALAGE DES	COEFFICIENT TO CALIBRATE TIDAL
VITESSES DE COURANT	VELOCITIES

COEFFICIENT DE CALAGE DU	COEFFICIENT TO CALIBRATE TIDAL
MARNAGE	RANGE
COEFFICIENT DE CALAGE DU NIVEAU	COEFFICIENT TO CALIBRATE SEA
DE MER	LEVEL
COEFFICIENT DE CORIOLIS	CORIOLIS COEFFICIENT
COEFFICIENT DE DIFFUSION	COEFFICIENT FOR HORIZONTAL
HORIZONTAL DES TRACEURS	DIFFUSION OF TRACERS
COEFFICIENT DE DIFFUSION	COEFFICIENT FOR HORIZONTAL
HORIZONTAL DES VITESSES	DIFFUSION OF VELOCITIES
COEFFICIENT DE DIFFUSION	COEFFICIENT FOR VERTICAL
VERTICAL DES TRACEURS	DIFFUSION OF TRACERS
COEFFICIENT DE DIFFUSION	COEFFICIENT FOR VERTICAL
VERTICAL DES VITESSES	DIFFUSION OF VELOCITIES
COEFFICIENT DE DILATATION BETA	BETA EXPANSION COEFFICIENT FOR
POUR LES TRACEURS	TRACERS
COEFFICIENT DE FROTTEMENT POUR	FRICTION COEFFICIENT FOR THE
LE FOND	BOTTOM
COEFFICIENT DE FROTTEMENT POUR	FRICTION COEFFICIENT FOR
LES PAROIS LATERALES	LATERAL SOLID BOUNDARIES
COEFFICIENT DE RELAXATION DES	STAGE-DISCHARGE CURVES
COURBES DE TARAGE	RELAXATION COEFFICIENT
COEFFICIENT TRADUISANT LA	COEFFICIENT RELATIVE TO FLOC
DESTRUCTION DES FLOCS	DESTRUCTION
COEFFICIENT TRADUISANT LA	FLOCCULATION COEFFICIENT
FORMATION DES FLOCS	
COMPATIBILITE DU GRADIENT DE	FREE SURFACE GRADIENT
SURFACE LIBRE	COMPATIBILITY
CONCATENATION SORTIE PARTEL	CONCATENATE PARTEL OUTPUT
CONCENTRATION LIMITE	WEAK SOIL CONCENTRATION FOR MUD
FLUIDE-SOLIDE	
CONCENTRATION LIMITE POUR	THRESHOLD CONCENTRATION FOR
VITESSE DE CHUTE ENTRAVEE	HINDERED SETTLING
CONCENTRATION MAXIMUM DE LA	MAXIMUM CONCENTRATION OF THE
VASE TASSEE	CONSOLIDATED MUD
CONCENTRATIONS DES COUCHES DE	MUD CONCENTRATIONS PER LAYER
VASE	
CONDITION A LA LIMITE AU FOND	BOUNDARY CONDITION ON THE
	ВОТТОМ
CONDITION LIMITE DYNAMIQUE	DYNAMIC BOUNDARY CONDITION
CONDITIONS INITIALES	INITIAL CONDITIONS
CONDITIONS OUVERTES SUR LE FOND	OPEN BOUNDARY CONDITIONS ON THE
	BED
CONSTANTE DE KARMAN	KARMAN CONSTANT
CONTOURNEMENT DES VOLUMES NULS	BYPASS VOID VOLUMES
CONTRAINTE CRITIQUE D'EROSION	CRITICAL EROSION SHEAR STRESS
DES COUCHES DE VASE	OF THE MUD LAYERS

CONTRACTOR CREATER OF REPORT	
CONTRAINTE CRITIQUE DE DEPOT	CRITICAL SHEAR STRESS FOR
GOODDONNIERG GDUIDTOURG	DEPOSITION
COORDONNEES SPHERIQUES	SPHERICAL COORDINATES
CORIOLIS	CORIOLIS
CORRECTION DE CONTINUITE SUR	CONTINUITY CORRECTION ON OPEN
FRONTIERES OUVERTES	BOUNDARIES
CORRECTION FROTTEMENT DE PEAU	SKIN FRICTION CORRECTION
COTE INITIALE	INITIAL ELEVATION
COTES DES SOURCES	ELEVATIONS OF SOURCES
COTES IMPOSEES	PRESCRIBED ELEVATIONS
COUPLAGE AVEC	COUPLING WITH
COURANTS DE HOULE	WAVE DRIVEN CURRENTS
COURBES DE TARAGE	STAGE-DISCHARGE CURVES
DATE DE L'ORIGINE DES TEMPS	ORIGINAL DATE OF TIME
DEBITS DES SOURCES	WATER DISCHARGE OF SOURCES
DEBITS IMPOSES	PRESCRIBED FLOWRATES
DEBITS IMPOSES SUR LE FOND	PRESCRIBED FLOWRATES ON THE BED
DEBUGGER	DEBUGGER
DERIVEES VERTICALES DES	VERTICAL VELOCITY DERIVATIVES
VITESSES	\
DIAMETRE MOYEN DES GRAINS	MEAN DIAMETER OF THE SEDIMENT
DICTIONNAIRE	DICTIONARY
DIFFUSION POUR DELWAQ	DIFFUSION FOR DELWAQ
DISTANCE MINIMALE ENTRE PLANS	MINIMUM DISTANCE BETWEEN PLANES
PRES DE LA SURFACE LIBRE	CLOSE TO THE FREE SURFACE
DISTANCE MINIMALE ENTRE PLANS	MINIMUM DISTANCE BETWEEN PLANES
PRES DU FOND	CLOSE TO THE BOTTOM
DUREE DU CALCUL	
	DURATION
ELEMENT	ELEMENT BY HOLD BY HOLD
ELEMENTS MASQUES PAR	ELEMENTS MASKED BY USER
L'UTILISATEUR	DECORD NUMBER FOR DECEMBE
ENREGISTREMENT POUR SUITE DE	RECORD NUMBER FOR RESTART
CALCUL	
EPAISSEUR DES COUCHES DU FOND	BED LAYERS THICKNESS
VASEUX	
EPAISSEURS INITIALES DES	INITIAL THICKNESS OF SEDIMENT
COUCHES	LAYERS
ETAPE DE CONVECTION	ADVECTION STEP
FICHIER ASCII DE DONNEES	ASCII ATMOSPHERIC DATA FILE
ATMOSPHERIQUES	
FICHIER ASCII DES FLOTTEURS	ASCII DROGUES FILE
FICHIER BINAIRE DE DONNEES	BINARY ATMOSPHERIC DATA FILE
ATMOSPHERIQUES	
FICHIER BINAIRE DE DONNEES DE	BINARY BOUNDARY DATA FILE
FRONTIERE	
FICHIER BINAIRE DES FLOTTEURS	BINARY DROGUES FILE
FICHIER DE COMMANDE DELWAQ	DELWAQ STEERING FILE
~	

FICHIER DE COMMANDES	OIL SPILL STEERING FILE
HYDROCARBURES	
FICHIER DE CONVERSION LAMBERT	LAMBERT 93 CONVERSION FILE
93	
FICHIER DE DONNEES BINAIRE 1	BINARY DATA FILE 1
FICHIER DE DONNEES BINAIRE 2	BINARY DATA FILE 2
FICHIER DE DONNEES DES BUSES	CULVERTS DATA FILE
FICHIER DE DONNEES FORMATE 1	FORMATTED DATA FILE 1
FICHIER DE DONNEES FORMATE 2	FORMATTED DATA FILE 2
FICHIER DE GEOMETRIE	GEOMETRY FILE
FICHIER DE REFERENCE	REFERENCE FILE
FICHIER DE RESULTATS BINAIRE	BINARY RESULTS FILE
FICHIER DE RESULTATS FORMATE	FORMATTED RESULTS FILE
FICHIER DE RESULTATS FORMATE 1	FORMATTED RESULTS FILE 1
FICHIER DE RESULTATS FORMATE 2	FORMATTED RESULTS FILE 2
FICHIER DE RESULTATS FORMATE 3	FORMATTED RESULTS FILE 3
FICHIER DE RESULTATS FORMATE 4	FORMATTED RESULTS FILE 4
FICHIER DE RESULTATS FORMATE 5	FORMATTED RESULTS FILE 5
FICHIER DE RESULTATS FORMATE 6	FORMATTED RESULTS FILE 6
FICHIER DELWAQ DE LA DIFFUSION	DIFFUSIVITY DELWAQ FILE
FICHIER DELWAQ DE LA SALINITE	SALINITY DELWAQ FILE
FICHIER DELWAQ DE LA	TEMPERATURE DELWAQ FILE
TEMPERATURE	
FICHIER DELWAQ DE LA VITESSE	VELOCITY DELWAQ FILE
FICHIER DELWAQ DES DISTANCES	NODES DISTANCES DELWAQ FILE
ENTRE NOEUDS	
FICHIER DELWAQ DES ECHANGES	EXCHANGES BETWEEN NODES DELWAQ
ENTRE NOEUDS	FILE
FICHIER DELWAQ DES FLUX	VERTICAL FLUXES DELWAQ FILE
VERTICAUX	
FICHIER DELWAQ DES SURFACES DE	EXCHANGE AREAS DELWAQ FILE
FLUX	
FICHIER DELWAQ DES SURFACES DU	BOTTOM SURFACES DELWAQ FILE
FOND	
FICHIER DELWAQ DES VOLUMES	VOLUMES DELWAQ FILE
FICHIER DES CONDITIONS AUX	BOUNDARY CONDITIONS FILE
LIMITES	
FICHIER DES CONSTANTES	HARMONIC CONSTANTS FILE
HARMONIQUES	
FICHIER DES COURBES DE TARAGE	STAGE-DISCHARGE CURVES FILE
FICHIER DES FONDS	BOTTOM TOPOGRAPHY FILE
FICHIER DES FRONTIERES LIQUIDES	LIQUID BOUNDARIES FILE
FICHIER DES PARAMETRES	STEERING FILE
FICHIER DES PARAMETRES DE GAIA	GAIA STEERING FILE
FICHIER DES PARAMETRES DE	KHIONE STEERING FILE
KHIONE	
	I .

FICHIER DES PARAMETRES DE	SISYPHE STEERING FILE
SISYPHE	
FICHIER DES PARAMETRES DE	TOMAWAC STEERING FILE
TOMAWAC	
FICHIER DES PARAMETRES DE	WAQTEL STEERING FILE
WAQTEL	
FICHIER DES PARAMETRES GOTM	GOTM STEERING FILE
FICHIER DES RESULTATS 2D	2D RESULT FILE
FICHIER DES RESULTATS 3D FICHIER DES RESULTATS	3D RESULT FILE SEDIMENTOLOGICAL RESULT FILE
	SEDIMENIOLOGICAL RESULT FILE
SEDIMENTOLOGIQUES FICHIER DES SOURCES	SOURCES FILE
FICHIER DES SOURCES FICHIER DU CALCUL PRECEDENT	PREVIOUS COMPUTATION FILE
FICHIER DU CALCUL PRECEDENT FICHIER DU MODELE DE MAREE	TIDAL MODEL FILE
FICHIER FORTRAN	FORTRAN FILE RESTART FILE
FICHIER POUR SUITE	FILE FOR 2D CONTINUATION
FICHIER POUR SUITE 2D FICHIER RESULTAT EN	RESULT FILE IN
LONGITUDE-LATITUDE	RESULI FILE IN LONGITUDE-LATITUDE
FICHIER SEDIMENTOLOGIQUE DU	PREVIOUS COMPUTATION
CALCUL PRECEDENT	SEDIMENTOLOGICAL FILE
FILTRE LES INCONSISTANCES	HYDROSTATIC INCONSISTENCY
HYDROSTATIQUES	FILTER
FLOCULATION	FLOCCULATION
FONCTION D'AMORTISSEMENT	DAMPING FUNCTION
FORCE GENERATRICE DE LA MAREE	TIDE GENERATING FORCE
FORMAT DU FICHIER BINAIRE DE	BINARY ATMOSPHERIC DATA FILE
DONNEES ATMOSPHERIQUES	FORMAT
FORMAT DU FICHIER BINAIRE DE	BINARY BOUNDARY DATA FILE
DONNEES DE FRONTIERE	FORMAT
FORMAT DU FICHIER DE DONNEES	BINARY DATA FILE 1 FORMAT
BINAIRE 1	
FORMAT DU FICHIER DE GEOMETRIE	GEOMETRY FILE FORMAT
FORMAT DU FICHIER DE REFERENCE	REFERENCE FILE FORMAT
FORMAT DU FICHIER DES FLOTTEURS	DROGUES FILE FORMAT
FORMAT DU FICHIER DES RESULTATS	2D RESULT FILE FORMAT
2D	
FORMAT DU FICHIER DES RESULTATS	3D RESULT FILE FORMAT
3D	
FORMAT DU FICHIER DU CALCUL	PREVIOUS COMPUTATION FILE
PRECEDENT	FORMAT
FORMAT DU FICHIER DU MODELE DE	TIDAL MODEL FILE FORMAT
MAREE	
FORMAT DU FICHIER POUR SUITE	RESTART FILE FORMAT
FORMAT DU FICHIER POUR SUITE 2D	FILE FOR 2D CONTINUATION FORMAT
FORMAT LIBRE POUR FICHIER DE	FREE FORMAT FOR ATMOSPHERIC
DONNEES ATMOSPHERIQUES	DATA FILE

DODWILL DOUD DIOCULATION	DI OCCUI ARTON DODMILA
FORMULE POUR FLOCULATION	FLOCCULATION FORMULA
FORMULE POUR LA CONCENTRATION	REFERENCE CONCENTRATION FORMULA
DE REFERENCE	
FORMULE POUR VITESSE DE CHUTE	HINDERED SETTLING FORMULA
ENTRAVEE	
FROTTEMENT SUR LE FOND DU AUX	BOTTOM FRICTION DUE TO WAVES
VAGUES	
HAUTEUR DU LIT FICTIF	FICTITIOUS BED LEVEL
HAUTEUR INITIALE	INITIAL DEPTH
HAUTEUR MINIMALE POUR LES	MINIMUM DEPTH TO COMPUTE TIDAL
CONDITIONS AUX LIMITES DE	VELOCITIES BOUNDARY CONDITIONS
COURANTS	
HAUTEUR MINIMALE POUR LES	MINIMUM DEPTH TO COMPUTE TIDAL
CONDITIONS INITIALES DE	VELOCITIES INITIAL CONDITIONS
COURANTS	
HAUTEUR SEUIL AVANT ELEMENTS	THRESHOLD HEIGHT BEFORE CRUSHED
ECRASES	ELEMENTS
HEURE DE L'ORIGINE DES TEMPS	ORIGINAL HOUR OF TIME
HUMIDITE RELATIVE	RELATIVE HUMIDITY
IMPLICITATION POUR LA DIFFUSION	IMPLICITATION FOR DIFFUSION
IMPLICITATION POUR LA HAUTEUR	IMPLICITATION FOR DEPTH
IMPLICITATION POUR LES VITESSES	IMPLICITATION FOR VELOCITIES
INFORMATION SUR LE BILAN DE	INFORMATION ABOUT MASS-BALANCE
MASSE A CHAQUE SORTIE LISTING	FOR EACH LISTING PRINTOUT
INTERPOLATION DE COMPOSANTES	MINOR CONSTITUENTS INFERENCE
MINEURES	
LATITUDE DU POINT ORIGINE	LATITUDE OF ORIGIN POINT
LECTURE CONTRAINTE CRITIQUE	READ CRITICAL BED SHEAR STRESS
POUR CHAOUE COUCHE	PER LAYER
LISSAGES DU FOND APRES	BOTTOM SMOOTHINGS AFTER USER
MODIFICATIONS UTILISATEUR	MODIFICATIONS
LOI DE DENSITE	DENSITY LAW
LOI DE FROTTEMENT SUR LE FOND	LAW OF BOTTOM FRICTION
LOI DE FROTTEMENT SUR LES	LAW OF FRICTION ON LATERAL
PAROIS LATERALES	BOUNDARIES
LONGITUDE DU POINT ORIGINE	LONGITUDE OF ORIGIN POINT
LONGUEUR DU VECTEUR	VECTOR LENGTH
MASS-LUMPING POUR LA DIFFUSION	MASS-LUMPING FOR DIFFUSION
MASS-LUMPING POUR LA HAUTEUR	MASS-LUMPING FOR DEPTH
MASS-LUMPING POUR LES	MASS-LUMPING FOR WEAK
CARACTERISTIQUES FAIBLES	CHARACTERISTICS
MASS-LUMPING POUR LES VITESSES	MASS-LUMPING FOR VELOCITIES
MASSE VOLUMIQUE DU SEDIMENT	DENSITY OF THE SEDIMENT
MASSE VOLUMIQUE DO SEDIMENT MASSE VOLUMIQUE MOYENNE DE	AVERAGE WATER DENSITY
L'EAU	AATIVAT MUTTU DENSITI
	MAVIMIM NUMBED OF TREDATIONS
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
DIFFUSION DES TRACEURS	FOR DIFFUSION OF TRACERS

MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
DIFFUSION DES VITESSES	FOR DIFFUSION OF VELOCITIES
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
DIFFUSION DU K-EPSILON	FOR DIFFUSION OF K-EPSILON
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
DIFFUSION DU SEDIMENT	FOR DIFFUSION OF SEDIMENT
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
PROPAGATION	FOR PROPAGATION
MAXIMUM D'ITERATIONS POUR LES	MAXIMUM NUMBER OF ITERATIONS
SCHEMAS DE CONVECTION	FOR ADVECTION SCHEMES
MAXIMUM D'ITERATIONS POUR PPE	MAXIMUM NUMBER OF ITERATIONS
	FOR PPE
MODE SUITE	RESTART MODE
MODELE DE LONGUEUR DE MELANGE	MIXING LENGTH MODEL
MODELE DE NAPPES	OIL SPILL MODEL
D'HYDROCARBURES	
MODELE DE TURBULENCE HORIZONTAL	HORIZONTAL TURBULENCE MODEL
MODELE DE TURBULENCE VERTICAL	VERTICAL TURBULENCE MODEL
NEBULOSITE	CLOUD COVER
NOMBRE DE BUSES	NUMBER OF CULVERTS
NOMBRE DE CORRECTIONS DES	NUMBER OF CORRECTIONS OF
SCHEMAS DISTRIBUTIFS	DISTRIBUTIVE SCHEMES
NOMBRE DE COUCHES DU LIT	NUMBER OF SEDIMENT BED LAYERS
COHESIF	
NOMBRE DE LISSAGES DU FOND	NUMBER OF BOTTOM SMOOTHINGS
NOMBRE DE PAS DE TEMPS	NUMBER OF TIME STEPS
NOMBRE DE PLANS HORIZONTAUX	NUMBER OF HORIZONTAL LEVELS
NOMBRE DE POINTS DE GAUSS POUR	NUMBER OF GAUSS POINTS FOR WEAK
LES CARACTERISTIQUES FAIBLES	CHARACTERISTICS
NOMBRE DE PRANDTL	PRANDTL NUMBER
NOMBRE DE SOUS ITERATIONS POUR	NUMBER OF SUB ITERATIONS FOR
LES NON LINEARITES	NON LINEARITIES
NOMBRE DE SOUS-PAS DES SCHEMAS	NUMBER OF SUB-STEPS OF
DISTRIBUTIFS	DISTRIBUTIVE SCHEMES
NOMBRE DE TABLEAUX PRIVES	NUMBER OF PRIVATE ARRAYS
NOMBRE DE TABLEAUX PRIVES 2D	NUMBER OF 2D PRIVATE ARRAYS
NOMBRE DE TRACEURS	NUMBER OF TRACERS
NOMBRE MAXIMAL DE FLOTTEURS	MAXIMUM NUMBER OF DROGUES
NOMBRE MAXIMUM DE FRONTIERES	MAXIMUM NUMBER OF BOUNDARIES
NOMBRE MAXIMUM DE FRONTIERES	MAXIMUM NUMBER OF BOUNDARIES ON
SUR LE FOND	THE BED
NOMBRE MAXIMUM DE SOURCES	MAXIMUM NUMBER OF SOURCES
NOMBRE MAXIMUM DE TRACEURS	MAXIMUM NUMBER OF TRACERS
NOMS DES TRACEURS	NAMES OF TRACERS
NOMS DES VARIABLES PRIVEES 2D	NAMES OF 2D PRIVATE VARIABLES
NORD	NORTH

NUMERO DE FUSEAU OU PROJECTION	ZONE NUMBER IN GEOGRAPHIC
DANS LE SYSTEME GEOGRAPHIQUE	SYSTEM
NUMERO DE L'ENREGISTREMENT DANS	RECORD NUMBER IN WAVE FILE
LE FICHIER DE HOULE	
NUMERO DE TRACEUR POUR AMR	NUMBER OF TRACER FOR AMR
NUMERO DU PREMIER PAS DE TEMPS	NUMBER OF FIRST TIME STEP FOR
POUR LES SORTIES GRAPHIQUES	GRAPHIC PRINTOUTS
NUMERO DU PREMIER PAS DE TEMPS	NUMBER OF FIRST TIME STEP FOR
POUR LES SORTIES LISTING	LISTING PRINTOUTS
NUMERO GLOBAL DU POINT POUR	GLOBAL NUMBER OF THE POINT TO
CALER LA PLEINE MER	CALIBRATE HIGH WATER
NUMERO LOCAL DU POINT POUR	LOCAL NUMBER OF THE POINT TO
CALER LA PLEINE MER	CALIBRATE HIGH WATER
NUMEROS GLOBAUX DES NOEUDS DES	GLOBAL NUMBERS OF SOURCE NODES
SOURCES	
OPTION DE SUPG	SUPG OPTION
OPTION DE TRAITEMENT DES BANCS	OPTION FOR THE TREATMENT OF
DECOUVRANTS	TIDAL FLATS
OPTION DU MODELE DE TASSEMENT	CONSOLIDATION MODEL
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DES TRACEURS	TRACERS
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DES VITESSES	VELOCITIES
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DU K-EPSILON	K-EPSILON
OPTION DU SOLVEUR POUR LA	OPTION OF SOLVER FOR DIFFUSION
DIFFUSION DES TRACEURS	OF TRACERS
OPTION DU SOLVEUR POUR LA	OPTION OF SOLVER FOR DIFFUSION
DIFFUSION DES VITESSES	OF VELOCITIES
OPTION DU SOLVEUR POUR LA	OPTION OF SOLVER FOR DIFFUSION
DIFFUSION DU K-EPSILON	OF K-EPSILON
OPTION DU SOLVEUR POUR LA	OPTION OF SOLVER FOR DIFFUSION
DIFFUSION DU SEDIMENT	OF THE SEDIMENT
OPTION DU SOLVEUR POUR LA	OPTION OF SOLVER FOR
PROPAGATION	PROPAGATION
OPTION DU SOLVEUR POUR PPE	OPTION OF SOLVER FOR PPE
OPTION DU VENT	OPTION FOR WIND
OPTION POUR LES BUSES	OPTION FOR CULVERTS
OPTION POUR LES	OPTION FOR CHARACTERISTICS
CARACTERISTIQUES	
OPTION POUR LES CONDITIONS AUX	OPTION FOR TIDAL BOUNDARY
LIMITES DE MAREE	CONDITIONS
OPTION POUR LES CONDITIONS AUX	OPTION FOR THE BOUNDARY
LIMITES DU K-EPSILON	CONDITIONS OF K-EPSILON
OPTION POUR LES FRONTIERES	OPTION FOR LIQUID BOUNDARIES
LIQUIDES	2.
ORDONNEES DES SOURCES	ORDINATES OF SOURCES
01.201111110 210 200110110	01.0 11.11110 01 0001(010

ORDRE DU TIR INITIAL POUR LA	INITIAL GUESS FOR DEPTH
HAUTEUR	
PARAMETRE DE SHIELDS	SHIELDS PARAMETER
PARTITIONNEUR	PARTITIONING TOOL
PAS DE TEMPS	TIME STEP
PAS DE TEMPS DE LA	TIME STEP FOR CONSOLIDATION
CONSOLIDATION	
PERIODE DE COUPLAGE POUR	COUPLING PERIOD FOR SISYPHE
SISYPHE	
PERIODE DE COUPLAGE POUR	COUPLING PERIOD FOR TOMAWAC
TOMAWAC	
PERIODE DE SORTIE POUR DELWAQ	DELWAQ PRINTOUT PERIOD
PERIODE POUR LES SORTIES DE	PRINTOUT PERIOD FOR DROGUES
FLOTTEURS	
PERIODE POUR LES SORTIES	GRAPHIC PRINTOUT PERIOD
GRAPHIQUES	
PERIODE POUR LES SORTIES	LISTING PRINTOUT PERIOD
LISTING	
PLUIE OU EVAPORATION	RAIN OR EVAPORATION
PLUIE OU EVAPORATION EN MM PAR	RAIN OR EVAPORATION IN MM PER
JOUR	DAY
POROSITE DU LIT NON COHESIF	NON COHESIVE BED POROSITY
POURCENTAGE INITIAL DE SEDIMENT	INITIAL PERCENTAGE OF NON
NON COHESIF	COHESIVE SEDIMENT
PRECISION POUR LA DIFFUSION DES	ACCURACY FOR DIFFUSION OF
TRACEURS	TRACERS
PRECISION POUR LA DIFFUSION DES	ACCURACY FOR DIFFUSION OF
VITESSES	VELOCITIES
PRECISION POUR LA DIFFUSION DU	ACCURACY FOR DIFFUSION OF
K-EPSILON	K-EPSILON
PRECISION POUR LA DIFFUSION DU	ACCURACY FOR DIFFUSION OF
SEDIMENT	SEDIMENT
PRECISION POUR LA PROPAGATION	ACCURACY FOR PROPAGATION
PRECISION POUR PPE	ACCURACY FOR PPE
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DES TRACEURS	OF TRACERS
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DES VITESSES	OF VELOCITIES
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DU K-EPSILON	OF K-EPSILON
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DU SEDIMENT	OF THE SEDIMENT
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR PROPAGATION
PROPAGATION	
PRECONDITIONNEMENT POUR PPE	PRECONDITIONING FOR PPE
PRESSION ATMOSPHERIQUE	AIR PRESSURE
TIVEDOTOM WILLOOFHERTÃOE	1111/ 11/110001/11

PRESSION DYNAMIQUE DANS	DYNAMIC PRESSURE IN WAVE
L'EQUATION D'ONDE	EQUATION
PROCESSEURS PARALLELES	PARALLEL PROCESSORS
PROCESSUS DE QUALITE D'EAU	WATER QUALITY PROCESS
PROFILS DE VITESSE	VELOCITY PROFILES
PROFILS DE VITESSE SUR LA	VELOCITY VERTICAL PROFILES
VERTICALE	
PROFILS DES TRACEURS SUR LA	TRACERS VERTICAL PROFILES
VERTICALE	
PROFONDEUR LIMITE POUR LE VENT	THRESHOLD DEPTH FOR WIND
PROFONDEUR MOYENNE POUR LA	MEAN DEPTH FOR LINEARIZATION
LINEARISATION	
PROPAGATION LINEARISEE	LINEARIZED PROPAGATION
RATIO ENTRE LA RUGOSITE DE PEAU	RATIO BETWEEN SKIN FRICTION AND
ET LE DIAMETRE MOYEN	MEAN DIAMETER
RAYONNEMENT SOLAIRE	SOLAR RADIATION
REGIME DE TURBULENCE POUR LE	TURBULENCE REGIME FOR THE
FOND	BOTTOM
REGIME DE TURBULENCE POUR LES	TURBULENCE REGIME FOR LATERAL
PAROIS LATERALES	SOLID BOUNDARIES
REMISE A ZERO DU TEMPS	INITIAL TIME SET TO ZERO
SALINITE POUR DELWAQ	SALINITY FOR DELWAQ
SCHEMA DE CONVECTION DIFFUSION	ADVECTION-DIFFUSION SCHEME WITH
AVEC VITESSE DE CHUTE	SETTLING VELOCITY
SCHEMA POUR LA CONVECTION DE LA	SCHEME FOR ADVECTION OF DEPTH
HAUTEUR	
SCHEMA POUR LA CONVECTION DES	SCHEME FOR ADVECTION OF TRACERS
TRACEURS	
SCHEMA POUR LA CONVECTION DES	SCHEME FOR ADVECTION OF
VITESSES	VELOCITIES
SCHEMA POUR LA CONVECTION DU	SCHEME FOR ADVECTION OF
K-EPSILON	K-EPSILON
SCHEMA POUR LA DIFFUSION DES	SCHEME FOR DIFFUSION OF TRACERS
TRACEURS	
SCHEMA POUR LA DIFFUSION DES	SCHEME FOR DIFFUSION OF
VITESSES	VELOCITIES
SCHEMA POUR LA DIFFUSION DU	SCHEME FOR DIFFUSION OF
K-EPSILON	K-EPSILON
SEDIMENT	SEDIMENT
SEDIMENT COHESIF	COHESIVE SEDIMENT
SEDIMENT MIXTE	MIXED SEDIMENT
SEUIL LIMITE POUR EROSION SUR	THRESHOLD FOR SEDIMENT FLUX
BANCS DECOUVRANTS	CORRECTION ON TIDAL FLATS
SEUIL POUR CORRECTION DE	THRESHOLD FOR VISCOSITY
VISCOSITE SUR BANCS DECOUVRANTS	CORRECTION ON TIDAL FLATS
SOLVEUR POUR LA DIFFUSION DES	SOLVER FOR DIFFUSION OF TRACERS
TRACEURS	
	<u> </u>

SOLVEUR POUR LA DIFFUSION DES	SOLVER FOR DIFFUSION OF
VITESSES	VELOCITIES
SOLVEUR POUR LA DIFFUSION DU	SOLVER FOR DIFFUSION OF
K-EPSILON	K-EPSILON
SOLVEUR POUR LA DIFFUSION DU	SOLVER FOR DIFFUSION OF THE
SEDIMENT	SEDIMENT
SOLVEUR POUR LA PROPAGATION	SOLVER FOR PROPAGATION
SOLVEUR POUR PPE	SOLVER FOR PPE
SORTIE LISTING	
	LISTING PRINTOUT
STOCKAGE DES MATRICES	MATRIX STORAGE
SUITE 2D	2D CONTINUATION
SUITE DE CALCUL	COMPUTATION CONTINUED
SYSTEME GEOGRAPHIQUE	GEOGRAPHIC SYSTEM
TASSEMENT DE LA VASE	CONSOLIDATION
TEMPERATURE DE L'AIR	AIR TEMPERATURE
TEMPERATURE POUR DELWAQ	TEMPERATURE FOR DELWAQ
TEMPS DE SEJOUR DE LA VASE	RESIDENCE TIME FOR MUD
TITRE	TITLE
TRAITEMENT DES FLUX AUX	TREATMENT OF FLUXES AT THE
FRONTIERES	BOUNDARIES
TRAITEMENT DES HAUTEURS	TREATMENT OF NEGATIVE DEPTHS
	IREALMENT OF NEGATIVE DEPIRS
NEGATIVES	
TRAITEMENT SUR LES BANCS	TREATMENT ON TIDAL FLATS FOR
DECOUVRANTS POUR LE K-EPSILON	K-EPSILON
TRAITEMENT SUR LES BANCS	TREATMENT ON TIDAL FLATS FOR
DECOUVRANTS POUR LES TRACEURS	TRACERS
TRAITEMENT SUR LES BANCS	TREATMENT ON TIDAL FLATS FOR
DECOUVRANTS POUR LES VITESSES	VELOCITIES
TRANSFORMATION DU MAILLAGE	MESH TRANSFORMATION
TYPE DE PROJECTION SPATIALE	SPATIAL PROJECTION TYPE
TYPE DES SOURCES	TYPE OF SOURCES
VALEUR DE LA PRESSION	VALUE OF ATMOSPHERIC PRESSURE
ATMOSPHERIQUE	
VALEUR MINIMALE POUR LA HAUTEUR	MINIMAL VALUE FOR DEPTH
VALEURS DE REFERENCE DES	STANDARD VALUES FOR TRACERS
TRACEURS	
VALEURS DES TRACEURS DANS LA	VALUES OF TRACERS IN THE RAIN
PLUIE	VILLOUD OF THEODING THE THIRD INTERNAL
	VALUE OF THE TRACERS AT THE
VALEURS DES TRACEURS DES SOURCES	
	SOURCES
VALEURS IMPOSEES DES TRACEURS	PRESCRIBED TRACERS VALUES
VALEURS INITIALES DES TRACEURS	INITIAL VALUES OF TRACERS
VALIDATION	VALIDATION
VARIABLES POUR LES SORTIES	VARIABLES FOR 2D GRAPHIC
GRAPHIQUES 2D	PRINTOUTS
VARIABLES POUR LES SORTIES	VARIABLES FOR 3D GRAPHIC
GRAPHIQUES 3D	PRINTOUTS

132 Bibliography

VENT	WIND
VERIFICATION DU MAILLAGE	CHECKING THE MESH
VERSION NON-HYDROSTATIQUE	NON-HYDROSTATIC VERSION
VITESSE DE CHUTE CONSTANTE	CONSTANT SEDIMENT SETTLING
	VELOCITY
VITESSE DE CHUTE DES SABLES	SETTLING VELOCITY OF SANDS
VITESSE DE CHUTE ENTRAVEE	HINDERED SETTLING
VITESSE DU VENT SUIVANT X	WIND VELOCITY ALONG X
VITESSE DU VENT SUIVANT Y	WIND VELOCITY ALONG Y
VITESSE POUR DELWAQ	VELOCITY FOR DELWAQ
VITESSE PROJETEE SUR LE FOND	VELOCITY PROJECTED ON BOTTOM
VITESSE PROJETEE SUR LES PAROIS	VELOCITY PROJECTED ON SOLID
LATERALES SOLIDES	LATERAL BOUNDARIES
VITESSES DES SOURCES SELON X	VELOCITIES OF THE SOURCES ALONG
	X
VITESSES DES SOURCES SELON Y	VELOCITIES OF THE SOURCES ALONG
	Y
VITESSES DES SOURCES SELON Z	VELOCITIES OF THE SOURCES ALONG
	Z
VITESSES IMPOSEES	PRESCRIBED VELOCITIES
VITESSES INITIALES CALCULEES	INITIAL VELOCITIES COMPUTED BY
PAR TPXO	TPXO
VOLUME MINIMAL DES ELEMENTS 3D	MINIMUM VOLUME OF 3D ELEMENTS
ZERO	ZERO

[1] J-M. HERVOUET. Hydrodynamics of free surface flows. Modelling with the finite element method. John Wiley & Sons, Ltd, Paris, 2007.