Numerical Stability

1. Example that is the basis of stability analysis: $\dot{\mathbf{X}} = \alpha \mathbf{x}$

$$f = \alpha x$$
, $\alpha = \alpha_r + i\alpha_i$, Let $x_0 = A$ be i.c.:

Exact: $f = Ae^{\alpha t}$

Numerical $x_{n+1} = (1+\alpha\Delta t) x_n$

$$x_0 = A$$

$$x_1 = (1 + \alpha \Delta t)x_0 = (1 + \alpha \Delta t)A$$

$$x_2 = (1 + \alpha \Delta t)x_1 = (1 + \alpha \Delta t)^2 A$$

$$x_n = (1 + \alpha \Delta t)^n A$$

depends only on a Δt

Stable example: $\alpha_i = 0$, $\alpha_r \Delta t = -0.1$, A = 1

 $x_1 = 0.90 \text{ exact } 0.904$

 $x_2 = 0.81 \text{ exact } 0.819$

etc.

Error over 1 interval $Error = Ae^{\alpha\Delta t} - A(1+\alpha\Delta t) \approx {}^1\!/_2 A(\alpha\Delta t)^2$

First order accurate: error per time step $^{1}\!/_{\!2}\,(\alpha\Delta t)^{2}=0.005$

exact 0.12

Unstable example: $\alpha_i = 0$, $\alpha_r \Delta t = -2.1$, A = 1

$$x_1 = -1.1$$

$$x_2 = 1.21$$
 exact 0.015

$$x_3 = -1.331 \dots$$

etc.

error amplifies

Exact amplification
$$\left| \frac{e^{\alpha(t+\Delta t)}}{e^{\alpha t}} \right| = e^{\alpha_r \Delta t} = e^{-2.1} < 1$$

Stable method should also give amplification < 1

2. Introduction to stability analysis

Stability is a question about the behavior of the **error** --- not of the **solution**

Let $\alpha = \alpha_r + i\alpha_i$ where $i = \sqrt{-1}$ Magnitude of complex number $|\alpha|^2 = \alpha_r^2 + \alpha_i^2 = (\alpha_r + i\alpha_i)(\alpha_r - i\alpha_i) = \alpha \times \alpha^*$ Hence $|e^{\alpha}|^2 = e^{\alpha} e^{\alpha^*} = e^{2\alpha}_r$

With $\alpha_r < 0$ the correct solution is damped. Numerics can cause spurious growth (e.g. Δt too large)

Computational

$$\left| \frac{x_{n+1}}{x_n} \right|^2 = |1 + \alpha \Delta t|^2 = (1 + \alpha_r \Delta t)^2 + (\alpha_i \Delta t)^2$$

Want this to be < 1

N.B.: $\alpha_r < 0$

$$\Rightarrow \Delta t < \frac{-2\alpha_r}{\alpha_r^2 + \alpha_i^2}$$

 $\alpha_r = 0$ is unconditionally unstable; need damping

Generally, explicit methods have time-step restriction

 α_i =0 is stable if $0 > \alpha_r \Delta t > -2$; time step restriction $\Delta t < -2/\alpha_r$

Geometric view: Stability criterion: $1 + \alpha \Delta t$ 1 < 1

The equation of a circle is $(x+x_0)^2+(y+y_0)^2=R^2$; $(1+\alpha_r \Delta t)^2+(\alpha_i \Delta t)^2=1$ is unit circle centered at (-1,0)

Sometimes called 'unstable for convection' because imaginary axis is in unstable region

3. Stability of RK and AB methods

Higher order cross imaginary axis, but need smaller time-step

Cross imaginary axis without reduced time-step

Boundary value problems

solve d.e. given T(0), T(1); say T_0 and T_1 . (Lead-in to implicit methods)

E.g., $d^2T/dx^2 - T = 0$: second order, need 2 data values.

Aside: Exact solution

 $T = A \cosh x + B \sinh x$;

NB: cosh(0)=1, sinh(0)=0 and cosh'(0)=0, sinh'(0)=1

 $T = T_0 \cosh(x) + [T_1 - T_0 \cosh(1)] \sinh(x) / \sinh(1)$

How do to this numerically?

Aside: For linear equations can solve with T(0)=1, T'(0)=0 ($\to \tilde{T}_1(x)$), then with T(0)=0, T'(0)=1 ($\to \tilde{T}_2(x)$) and take linear combination:

$$T = T_0 \tilde{T}_1(x) + (T_1 - T_0 \tilde{T}_1(1)) \tilde{T}_2(x) / \tilde{T}_2(1)$$

Not OK for non-linear equations: solution is not sum of two independent solutions

Shooting method -- OK for non-linear equations. Uses marching method for o.d.e.'s

$$T = T_0$$

 $TP = G$
 $PO = x = dx, 1, dx \text{ (or } i = 1, N)$
 $PO = x = dx, 1, dx$
 $PO = x = dx, 1, dx$
 $PO = x = dx, 1, dx$

 $T = T_1$ i.e., $||T - T_1||/T_1 < \varepsilon$? If no, then new quess; if yes, done.

How to guess: bi-section or Newton's method (root finding routine) form is $T(N \mid G)-T_1$ is of form x = 0, find x where x=G.

a. Bi-section: carry two estimates f(G1)<0 f(G2)>0 (or T(1;G1) and T (1;G2)).

DO WHILE
$$|G_1-G_2|>arepsilon$$

Let $ilde{G}=(G_1+G_2)/2$

IF
$$T(1; \tilde{G}) < 0$$

$$G_1 = \tilde{G}$$

$$G_2 = G_2$$

IF
$$T(1; \tilde{G}) > 0$$

$$G_1 = G_1$$

$$G_2 = \tilde{G}$$

ENDDO

Print solution T(x)

Slow but robust. (Guess and improve; bounding box).

b. Newton's method: (Gradient based) Let $f(G) = T(1;G)-T_1$

Near
$$f(G) = 0$$
, $f = 0$, $f(G_n) + f'(G_n) \delta G$

or $G^n = G^n - f(G^n)/f'(G^n)$

or $G^n = 0$
 $f(G) = 0$

Integrate o.d.e. with T(0) = T and T'(0) = G: let F = T - T 1. Then integrate with $G + \Delta G$; then with $G - \Delta G$

R-K2 call: find T(x) by solving with T(0)=0, T'(0)=G