# Naïve Bayes – Spam Detection

CS385 – Machine Learning - Classification

### Outline

- Probability a quick review
- Spam Detection
  - Maximum Likelihood Estimate
  - Maximum A Posterior
  - (Overfitting and MLE) vs. (Laplace Smoothing and MAP)
- Naïve Bayes Conclusion
- Gaussian Naïve Bayes

# Probability - Review

CS385 – Machine Learning

### Independent Event

- Coin flip
  - Head P(H) = 0.5
  - P(T) = 0.5Tail
  - P(H)=0.25 P(T)=0.75 } magic Head
  - Tail
  - P(H)=0.5 P(H H H)=?
  - Xi: result of the i-th flipping, P(H) = 0.5
  - P(X1=X2=X3=X4)=? P(HH1-1H) +

PIHHHH P(H HH T) + P(H H T ) +  $\int (A + 17 + 14) + 1$   $\int (A + 14 + 14) + 1$ 

complementary eventP(A)=p P(~A)=1-p

$$P(A)=p$$
  $P(\sim A)=1-p$ 

- Independent event
- X and Y are independent P(X)P(Y)=P(XY)



## Dependence

- First flip a fair coin,
  - P(X1=H)=0.5
- If X1=H, then flip a loaded coin
  - P(X2=H|X1=H) = 0.9
- If X1=T, then flip another loaded coin,
  - P(X2=T|X1=T) = 0.8

$$P(X2=H)=?$$

$$P(X_{2}=H)$$

$$= P(X_{2}=H|X_{1}=H) - P(X_{1}=H)$$

$$= P(X_{2}=H|X_{1}=T) \cdot P(X_{1}=T)$$

$$= P(X_{2}=H|X_{1}=T) \cdot P(X_{1}=T)$$

$$= P(X_{2}=H|X_{1}=T) \cdot P(X_{1}=T)$$

Total probability

$$P(Y) = \sum_{i} P(Y \mid X = i) P(X = i)$$

- $P(\sim X|Y) = 1 P(X|Y)$
- $P(X|\sim Y) ?= 1-P(X|Y)$



### Cancer Test

- P(C)=0.01
- $P(\sim C) = ?$

- P(+|C)=0.9
- P(-|C)=?

- $P(+|\sim C)=0.2$
- $P(-|\sim C)=0.8$

- P(+,C)=? P(+(c).P(c)
- P(-,C)=? P(-|c)-|2(c)
- P(+,~C)=?
- P(-,~C)=?







$$P(c|+) = \frac{P(+|c) - P(c)}{P(+|c) \cdot P(c) + P(+|c) \cdot P(-|c|)}$$

- A: Not observable
- B: Observable

- Diagnose Reasoning:
  - P(A|B)
  - $P(A|\sim B)$
  - How many parameters?

# Spam Detection

CS385 – Machine Learning

### Bag of Words

Hello I will say hello!

Dictionary

```
• Hello 2
```

- | 1
- Will 1
- Say 1

### Spam Detection – Training Data

#### **Spam**

- Offer is secret
- Click secret link
- Secret sports link

```
1 Size of vocabulary?/2
2 P(Spam) = ? 3/2
```

#### Ham

- Play sports today
- Went play sports
- Secret sports event
- Sport is today
- Sport costs money

Maximum Likelihood Estimate (1)

P(SSS HHHHHH) = P(S) P(S) P(S) P(S) P(S)

#### SSSHHHHH

$$-P(S)=\Pi$$

-IID Z: Independent ID: Identical distribution

• 11100000

$$P(y_i) = \begin{cases} \Pi & \text{if } y_i = S \\ 1 - \Pi & \text{if } y_i = H \end{cases}$$

$$P(y_i) = \Pi^{y_i} \cdot (1 - \Pi)^{1 - y_i} \qquad \boxed{1} \qquad \boxed{1}$$

$$P(data) = \Pi^{count(y_i=1)} \cdot (1 - \Pi)^{count(y_i=0)} = \Pi^3 (1 - \Pi)^5$$

$$\log P(data) = 3 \log \Pi + 5 \log (1 - \Pi)$$

## Maximum Likelihood Estimate (2)

$$P(data) = \Pi^{count(y_i=1)} \cdot (1 - \Pi)^{count(y_i=0)} = \Pi^3 (1 - \Pi)^5$$

$$\log P(data) = 3 \log \Pi + 5 \log (1 - \Pi)$$

$$\arg \max_{\pi} \log P(data)$$

$$\frac{\delta \log P(data)}{\delta \pi} = 0 = \frac{3}{\pi} - \frac{5}{1 - \pi} = \frac{\rho(data)}{\rho(data)}$$

$$\pi = \frac{3}{9}$$

## MLE Solutions for conditional probability

#### **Spam**

- Offer is secret
- Click secret link
- Secret sports link

```
MLE
  1 P( "Secret" | Spam) = 1/3 \frac{1}{3}/9 \frac{1}{5}
  2 P( "Secret" | Ham) = 1/15
```

#### Ham

- Play sports today
- Went play sports
- Secret sports event
- Sport is today
- Sport costs money

### Spam Detection

 How do we get the probability for each node?

 To learn from the training data by using Maximum Likelihood



Naïve Bayes

### MLE Solutions for detection

#### **Spam**

- Offer is secret
- Click secret link
- Secret sports link

#### Ham

- Play sports today
- Went play sports
- Secret sports event
- Sport is today
- Sport costs money

```
1 P(Spam| "Sports" ) = 1/6
2 P(Spam| "Secret is secret" ) = 25/26
```

#### Spam

- Offer is secret
- Click secret link
- Secret sports link

```
P(Spam| "Secret is secret" ) = 25/26

P(Spam) = 3/8

P("Secret" | Spam) = 1/3

P("Secret" | Ham) = 1/15

P("is" | Spam) = P("is" | Ham) =
```

#### Ham

- Play sports today
- Went play sports
- Secret sports event
- Sport is today

Sport costs money

1/3 · 1/q · 1/3 · 3/8

1/3 · 1/q · 1/3 · 3/8

pr''Secret is secret span

conditional independent

## Multiple classes

| symptom  | occupation          | diagnosis  |
|----------|---------------------|------------|
| Sneeze   | Nurse               | Cold       |
| Sneeze   | Farmer              | Allergy    |
| Headache | Construction worker | Concussion |
| Headache | Construction worker | Cold       |
| Sneeze   | Lecturer            | Cold       |
| Headache | Lecturer            | Concussion |

# (Sneeze, Construction worker)

#### Diagnosis?

### (Sneeze, Construction worker) Diagnosis?

1