Análisis Matemático II – Cuestionario del Final del 02/03/21

P1

Dada z = f(u,v) con $(u,v) = (2 \times y^3 - 1, y^2 - 3 \times^2 y)$, resulta z = h(x,y).

Si f queda definida implícitamente por $z^3 - 3 u + u z - 4 = 0$, la aproximación lineal de h(0.99,1.04) es:

Seleccione una:

a. -1.26b. -0.74c. Ninguna de las otras es correcta

d. -1.40e. -1.205

P2

Sea $y=\varphi_1(x)$ una solución de y'+a(x) $y=\operatorname{sen}(x)$ e $y=\varphi_2(x)$ una solución de y'+a(x) $y=x^2$. Entonces, una solución de y'+a(x) $y=2\operatorname{sen}(x)-3$ x^2 es:

Seleccione una:

O a. $y=\varphi_1(x)-\varphi_2(x)$ O b. y=-2 $\varphi_1(x)+3$ $\varphi_2(x)$ O c. y=2 $\varphi_1(x)-3$ $\varphi_2(x)$ O d. y=2 $\varphi_1(x)+3$ $\varphi_2(x)$ O e. Ninguna de las otras es correcta

P3

Sea S la superficie abierta de ecuación $z=1+\sqrt{x^2+y^2}$ con $1\leq z\leq 2$. Entonces, el área de S resulta igual a: Seleccione una:

o a. $\frac{28}{3}\pi\sqrt{2}$ o b. Ninguna de las otras es correcta

o c. $\pi\sqrt{2}$ o d. $\frac{4}{3}\pi\sqrt{2}$

P4

Sean $\overline{f}(x,y,z) = (y^2, x^2, y+z x^2)$ y el cuerpo H definido por $0 \le z \le 2 - \sqrt{x^2 + y^2}$. Entonces, el flujo de \overline{f} a través de la superficie frontera de H orientada en forma saliente del cuerpo resulta igual a:

Seleccione una:

o a. Ninguna de las otras es correcta

o b. $\frac{8}{5}\pi$ o c. $\frac{16}{5}\pi$ o d. 4π o e. 8π

Análisis Matemático II – Cuestionario del Final del 02/03/21

Considere $\overline{f}(x,y,z) = (z e^x \operatorname{sen}(y), z e^x \operatorname{cos}(y), -x^2 - y^2)$ y la superficie abierta Σ de ecuación $4x^2 + 4y^2 + z^2 = 17$ con $z \ge 1$. Entonces, el flujo de \overline{f} a través de Σ orientada hacia z^+ resulta igual a: Seleccione una:

a. Ninguna de las otras es correcta

b. -8π c. 8π d. 0e. 2π

P6

El campo escalar f es diferenciable en \mathbb{R}^2 , tiene derivada direccional máxima igual a $\sqrt{20}$ en el punto (1,1) y se produce según el versor ($1/\sqrt{5}$, $2/\sqrt{5}$). Sea π_0 el plano tangente a la superficie de ecuación z = f(x,y) en el punto (1,1,f(1,1)).

Entonces, el área del trozo de π_0 cuyos puntos cumplen con $4 x^2 + y^2 \le 4$ resulta igual a:

Seleccione una:

- a. $2\pi\sqrt{21}$
- b. $4\pi\sqrt{21}$
- O c. Ninguna de las otras es correcta
- O d. $2\pi\sqrt{20} = 4\pi\sqrt{5}$
- \bigcirc e. $\pi\sqrt{5}$

P7

Sea $f(x,y) = y x^2$. Analizando si f produce máximo absoluto cuando se la evalúa en puntos de la región plana D definida por $x^2 + y^2 \le 3$, se concluye que:

Seleccione una:

- O a. Ninguna de las otras es correcta
- \bigcirc b. Lo produce en un punto interior a D
- \bigcirc c. No lo produce en puntos de D
- \bigcirc d. Lo produce en un único punto de D
- \bigcirc e. Lo produce en dos puntos de la frontera de D

P8

Sea $\overline{f}(x,y) = (x \ y + y \ h(x), \ x \ h(x) + 2 \ y)$ con $\overline{f} \in C^1(\mathbb{R}^2)$. Sabiendo que \overline{f} admite función potencial en \mathbb{R}^2 y que $\overline{f}(1,0) = (0,2)$, la circulación de \overline{f} a lo largo de la curva de ecuación $\overline{X} = (u \ e^{u^2 - 1}, \ 2 \ u + 3)$ con $-1 \le u \le 1$ -respetando la orientación que impone esta parametrización- resulta igual a:

Seleccione una:

- O a. 34
- ъ. 28
- c. -34
- O d. Ninguna de las otras es correcta
- e. −28

Análisis Matemático II – Cuestionario del Final del 02/03/21

P9

Considere el campo $\overline{f} \in C^1(\mathbb{R}^3)$ tal que $\overline{f}(x,y,z) = (2 \ y \ z \ , \ g(x,y) \ , \ x \ y \)$ y la curva Γ definida por la intersección de los paraboloides de ecuaciones $y = x^2 + z^2 \ e \ y = 18 - x^2 - z^2$.

Entonces, la circulación de \overline{f} a lo largo de Γ en el sentido dado por $(0,9,3) \rightarrow (3,9,0) \rightarrow \cdots \rightarrow (0,9,3)$ resulta igual a:

Seleccione una:

- \odot a. -9π
- O b. 81π
- c. −81 π
- O d. 9π
- O e. Ninguna de las otras es correcta

P10

 $\text{Dada } f(x,y) = \frac{x \ y^2}{x^2 + y^2} \ \text{si} \ (x,y) \neq (0,0) \ \text{con} \ f(0,0) = 0.$

Analizando las propiedades de f en el punto (0,0) se puede afirmar que, en dicho punto ...

Seleccione una:

- O a. ... es continua pero no es derivable en toda dirección
- \bigcirc b. ... es continua, derivable en toda dirección y diferenciable
- \bigcirc c. Ninguna de las otras es correcta
- \bigcirc d. ... es derivable en toda dirección pero no es continua
- O e. ... es continua, derivable en toda dirección y no diferenciable