Интерференция лазерного излучения

Батарин Егор

22 апреля 2021 г.

Аннотация

Цель работы: исследовать зависимость видности интерференционной картины от разности хода интерферирующих лучей и от их поляризации. Точнее говоря, нужно исследовать: а) характер поляризации лучей в интерферометре; б) зависимость видности интерференционной картины от угла α между плоскостями поляризации интерферирующих волн при нулевой разности хода; в) зависимость видности интерференционной картины от разности хода интерферирующих лучей для угла $\alpha=0$. По результатам измерений следует оценить спектральные характеристики лазерного излучения.

1 Теория

1.1 Видность интерференционной картины

Для описания четкости интерференционной картины вводится видность:

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \tag{1}$$

Интенсивность для моды лазерного излучения с частотой f_m интерференционной картины двух волн с амплитудами A_m и B_m имеет вид:

$$I_m = A_m^2 + B_m^2 + 2A_m B_m \cos(k_m l)$$

где волновое число $k_m=\frac{2\pi}{\lambda_m}$. По формуле (1) можно опрелелить видность интерференционной картины, где положено $\delta=\frac{B_m^2}{A_m^2}$.:

$$\gamma_1 = \frac{2\sqrt{\delta}}{1+\delta}$$

Интесивность нескольких мод лазерного излучения имеет вид:

$$I = \sum_{m} I_{m} = \sum_{m} A_{m}^{2} \left[1 + \delta + 2\sqrt{\delta} \cos\left(\frac{2\pi f_{m}}{c}l\right) \right]$$
 (2)

Учтем теперь влияние спектрального состава света на видность интерференционной картины. Для упрощения выкладок мы предположим, что частота наиболее интенсивной моды совпадает с центром доплеровского контура f_0 , а симметричные относительно f_0 моды имеют одинаковую амплитуду. В этом случае можно записать:

$$f_m = f_0 + n\Delta\nu; \quad A_n^2 = A_{-n}^2; \quad n = 0, \pm 1, \pm 2, \dots$$
 (3)

Подставляя (3) в (2), получим:

$$I = \sum_{n} A_n^2 \left[1 + \delta + 2\sqrt{\delta} \cos\left(\frac{2\pi f_n}{c}l\right) \cos\left(\frac{2\pi \Delta \nu}{c}nl\right) \right]$$

Поэтому, видность равна $\gamma=\gamma_1\gamma_2$, где

$$\gamma_2(l) = \frac{\sum\limits_n A_n^2 \frac{2\pi\Delta\nu nl}{c}}{\sum\limits_n A_n^2} \tag{4}$$

Вблизи максимума, выражение (4) преобразуется к виду $\gamma_2 = e^{-\left(\frac{\pi\Delta Fl}{c}\right)^2}$.

При учете поляризации видность равна $\gamma=\gamma_1\gamma_2\gamma_3$, где $\gamma_3=\cos\alpha$, а α - угол между плоскостями поляризации.

1.2 Измерение коэффициента видности

Экспериментальное измерение видности производится по картинке на осциллографе:

Рис. 1: Осциллограмма сигналов фотодиода

Через указанные параметры можно выразить видность γ и параметр δ :

$$\delta = rac{h_1}{h_2} \ ($$
или $rac{h_2}{h_1}); \quad \gamma = rac{h_4 - h_3}{h_4 + h_3}$

Измерив величины h_1 , h_2 , h_3 и h_4 , можно рассчитать γ и γ_1 , а затем определить видность при данной разности хода l для угла между плоскостями поляризации лучей $\alpha=0$ ($\gamma_3=1$):

$$\gamma_2(l) = \frac{\gamma}{\gamma_1}$$

или при $l=0, (\gamma_2=1)$ для известного угла α :

$$\gamma_3\left(|\coslpha|\right) = rac{\gamma}{\gamma_1}$$

2 Выполнение

2.1 Зависимость видность интерференционной картины от угла поворота поляроида при нулевой разности хода

Будем сопоставлять две зависимости видности: экспериментальную - $\gamma_3=\frac{\gamma}{\gamma_1}=\frac{h_4-h_3}{h_4+h_3}\cdot\frac{2\sqrt{\delta}}{1+\delta}$, где $\delta=\frac{h_1}{h_2}$ и теоретическую - $\gamma_3=(|\cos\alpha|)$. Получим график:

Рис. 2: Сравнение теории и эксперимента

Как видим, экспериментальная видность, в отличие от теоретической, не обращается в нуль при определенном значении угла. Это связано с неидеальностью спектра лазера и рассеянием света.

2.2 Зависимость видности от перемещения зеркала

Как и в предыдущем пункте, вычисляем экспериментальное значение видности по формуле: $\gamma_2=\frac{h_4-h_3}{h_4+h_3}\cdot\frac{2\sqrt{\delta}}{1+\delta}.$ Мы получим следующую зависимость от расстояния L:

Рис. 3: Зависимость видность от перемещения зеркала

1. Наблюдаем максимумы по краям области $x_1\approx (16\pm 2)~x_2\approx (82\pm 2)$ и некоторые колебания в промежуточной области. Откуда $L=(x_2-x_1)=(64\pm 2)$. Межмодовое расстояние: $\varDelta\nu=\frac{c}{2L}\approx (4.5\pm 0.1)\cdot 10^8$.

2. Определим задержку $l_{1/2}$ на половине высоты главного максимума. $l_{1/2}\approx 6\pm 2.$

3. Рассчитаем диапазон частот, в котором происходит генерация продольных мод:

$$\Delta F = \frac{0.6 \cdot c}{l_{1/2}} \approx (28.4 \pm 9.7) \cdot 10^8$$

4. Оценим число одновременно генерируемых лазером продольных мод:

$$n \approx 1 + \frac{1,2L}{l_{1/2}} \approx 11 \pm 4.$$

3 Вывод

Была исследована видность интереференционной картины. Рассчитали размер резонатора лазера: $L=(64\pm2)$, межмодовое расстояние $\Delta\nu=(4.5\pm0.1)\cdot10^8$, диапазон частот, в котором происходит генерация продольных мод $\Delta F=(12.6\pm4.2)\cdot10^8$, а также оценили число генерируемых лазером продольных мод $N\approx=11\pm4$.