5.1.2. Find the minimizer of the function  $f(x,y) = (3x - 2y + 1)^2 + (2x + y + 2)^2$ 

$$\frac{\partial f}{\partial x} = \frac{2(3x - 2y + 1)(3)}{2(2x + y + 2)(2)} \qquad \qquad \begin{array}{c} (13|4)(-8x + 10y) + (26x - 8y + 14) = 0 \\ -26x + 32y + 13x - 10y + 14 = 0 \end{array} \qquad \begin{array}{c} -8x + 10(-39/34) = 0 \\ -26x + 32y + 13x - 10y + 14 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 = 0 \\ -8x - 390/34 = 0 \end{array} \qquad \begin{array}{c} -8x - 390/34 =$$

5.2.1. Find the minimum value of the function  $f(x, y, z) = x^2 + 2xy + 3y^2 + 2yz + z^2 - 2x + 3z + 2$ . How do you know that your answer is really the global minimum?

$$f(x) = 2x + 2y - 2$$
  $f(y) = 2x + 6y + 2z$   $f(z) = 2y + 2z + 3$   
 $= 0$   $= 0$   $= 7 + 2y + 2z = -3$   
 $= 7 + 3y + z = 0$ 

$$|-y+3y+z=0$$
 =7  $2y+z=-1$   
 $2y+2z=-3$   
 $-2=2$ 

$$\begin{vmatrix} 2 & 2 \\ 2 & 6 & 2 \\ 0 & 2 & 2 \end{vmatrix} = 2[12-4] - [24-0] + 0 \qquad \int [4]_{2}, 4]_{2}, -2 \rangle = 4|4+3/4+2/4| - 2+3-4$$

$$= 4/4 - 4/2 - 2$$

$$= 8/70 \qquad = -4/2 - 2$$

$$= -4/2 - 2 - 3/2$$

5.3.4. Let  $\mathbf{b} = (3, 1, 2, 1)^T$ . Find the closest point and the distance from  $\mathbf{b}$  to the following subspaces: (a) the line in the direction  $(1, 1, 1, 1)^T$ ;

$$b = \begin{bmatrix} 3,1,2,1 \end{bmatrix}^{\mathsf{T}} \qquad b = \begin{bmatrix} 3\\1\\2\\1 \end{bmatrix} \qquad \alpha = \begin{bmatrix} 1,1,1,1 \end{bmatrix}^{\mathsf{T}} \qquad \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

$$|y_{1}| = \frac{A \cdot b}{|A|^{2}} |A| = \frac{|\cdot| |+|x_{1}| + |+|x_{2}| + |+|x_{1}|}{2^{2}} \cdot 2$$

$$= \frac{3 + |+|z| + |}{4} \cdot 2$$

$$= \frac{1}{4} ||x_{1}||$$

$$= \frac{7}{2}$$

$$= \frac{3.5}{||b|^{2} - |b_{1}|^{2}} = \frac{|5 - (7/2)^{V}|}{|5 - 4^{0}|^{4}}$$

$$= \frac{|9|}{2.75}$$

5.3.1. Find the closest point in the plane spanned by  $(1,2,-1)^T$ ,  $(0,-1,3)^T$  to the point  $(1,1,1)^T$ . What is the distance between the point and the plane?

$$V_1 = 1, 2, -1$$
  $N = V_1 \cdot V_2$   
 $V_2 = 0, -1, 3$   $N = (1, 2, -1) \cdot (0, -1, 3)$   
 $P = 1, 1, 1$   $N = (7, 3 - 1)$ 

$$\frac{r \cdot n}{r \cdot r \cdot r \cdot r \cdot r} \cdot n$$

$$= (1,1,1) \cdot (0,0,0) = (1,1,1) \cdot (7,3,-1) ||7 3 -1||^2 \cdot (7,3,-1)$$

$$= (1,1,1) \cdot (7,3,-1) ||7 3 -1||^2 \cdot (7,3,-1)$$

distance = 
$$\| P - \left[ \frac{63}{59}, \frac{27}{59}, -\frac{9}{59} \right] \|$$
  
=  $\left\| \frac{59}{59}, -\frac{63}{59}, \frac{59}{59}, -\frac{27}{59}, \frac{59}{59}, +\frac{29}{59} \right\|$   
=  $\left\| -\frac{4}{59}, \frac{32}{59}, \frac{88}{59} \right\|$ 

$$\sqrt{(-4/59)^2 + (3^2/59)^2 + (6^8/59)^2}$$

Note: Unless otherwise indicated, use the Euclidean norm to measure the least squares error.

5.4.1. Find the least squares solution to the linear system  $A \mathbf{x} = \mathbf{b}$  when

$$(b) A = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 5 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 5 \end{bmatrix} \qquad X = (A^{T} A)^{-1} A^{T} b$$

$$= \begin{bmatrix} 2/15 & 1/3 & 1/15 \\ -1/15 & -8/15 & 3/195 \end{bmatrix} \cdot \begin{bmatrix} 1/3 \\ 3/5 \\ 28/65 \end{bmatrix}$$

$$[N^{T} A)^{-1} = \begin{bmatrix} 14 & 13 \\ 13 & 26 \end{bmatrix}$$

$$[N^{T} A)^{-1} = \begin{bmatrix} 2/15 & -1/15 \end{bmatrix}$$

5.4.4. Find the least squares solution to the linear system 
$$A\mathbf{x} = \mathbf{b}$$
 when
$$(b) \ A = \begin{pmatrix} 2 & 1 & 4 \\ 1 & -2 & 1 \\ 1 & 0 & -3 \\ 5 & 2 & -2 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

5.5.1. Find the straight line  $y = \alpha + \beta t$  that best fits the following data in the least squares sense: (a)  $\frac{t_i -2 \quad 0 \quad 1 \quad 3}{t_i -2 \quad 0 \quad 1 \quad 3}$ 

| t   | 1 | ty | + z | $\sum Y = \beta \sum t + n\alpha$      |
|-----|---|----|-----|----------------------------------------|
| - 2 | 0 | 0  | 4   |                                        |
| 0   |   | 0  | 0   | $\sum t_1 = \beta \sum t^2 + a \sum t$ |
|     | 2 | 2  | )   |                                        |
| 3   | 5 | 15 | q   | 8 = 2 β † 4α<br>17 = 14β † 8α          |
| 2   | 8 | 17 | 14  | 17 = 14β + 8a                          |
|     |   |    |     |                                        |

5.5.2. The proprietor of an internet travel company compiled the following data relating the annual profit of the firm to its annual advertising expenditure (both measured in thousands of dollars):

| Annual advertising expenditure | 12 | 14 | 17 | 21  | 26  | 30  |
|--------------------------------|----|----|----|-----|-----|-----|
| Annual profit                  | 60 | 70 | 90 | 100 | 100 | 120 |

(a) Determine the equation of the least squares line. (b) Plot the data and the least squares line. (c) Estimate the profit when the annual advertising budget is \$50,000. (d) What about a \$100,000 budget?

|    | χ  | Y   | χz   | ΧУ    |     |
|----|----|-----|------|-------|-----|
|    | 12 | 60  | 144  | 720   |     |
|    | 14 | 70  | 196  | 980   |     |
|    | 17 | 90  | 289  | 1530  |     |
| 2  | 21 | 100 | 441  | 2100  |     |
|    | 26 | 100 | 676  | 2600  |     |
|    | 30 | 120 | 900  | 3000  |     |
| 17 | 20 | 540 | 2646 | 11530 | N = |

6

Y = 30.65 + 2.96t



Y = 30.05 + 2.96 (50) = 179 \$ 179,000