

Fig. 1a

Fig. 1b

Fig. 3

Fig. 4b

Fig. 5

			K 204											
202		HEALTHY PUMP	PUMP FAULT 1	PUMP FAULT 2	PUMP FAULT 3	PUMP FAULT 4	PUMP FAULT 5	PUMP FAULT 6	PUMP FAULT 7	PUMP FAULT 8	PUMP FAULT 9	PUMP FAULT N-1	PUMP FAULT N	
	f.	Ą	Ą	Ą	Az	Ax	Ac	A	A _B	A _M	Αı	A _E	Α	
	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	
	1 4	Ag	A ₄₅	A ₇₈	A ₁₂	A47	A ₃₇	A ₁₂₇	A ₁₂₈	A ₂₃₄	A ₃₄	A ₃₃	A ₄₄	
	45	A ₇₈	A	A ₅₆	A ₃₀	A ₄₅	A ₆₇	A ₂	A ₁₂	A _{S6}	A _{S6}	A ₇₈	A ₆₉	
	- 2	A ₈₇	┼	1	Ł	ځ	A ₁₂	A ₄₇₈	A ₂₆	A ₈₃	A ₁₈₇	A ₇₃	A ₄₅	
	4 -7-	Ą.	1	1	T	A	Α,			Ą	A ₃₂	A ₁₆	A ₁₇	
	"	ح م	, A	A _{S6}	+		Ą	A ₂₃₄	A 98	۸ گ	ď	&	A ₇ s	

200

128

130

```
Divide the collected data into equal sets. Perform Hanning Windowing, FFT on each set to obtain 'Smoothed Periodogram' by averaging all the sets.
```

Identify the fundamental supply component by locating the component having maximum amplitude in the stator current spectrum. Record its frequency (F_s) and amplitude (FsAmp). Locate multiples of F_s (supply related components)

Calculate synchronous speed of the motor, $F_{\rm sync} = F_{\rm s}$ /polepairs. Locate the *slip frequency related* components by searching between $(mF_{\rm s} - 2F_{\rm slmin})$ and $(mF_{\rm s} - 10F_{\rm slmax})$ for m = 3,5 and 7. $F_{\rm slmax} = F_{\rm sync} * maximum slip$

 $F_{\text{slmin}} = F_{\text{sync}} * \text{maximum slip}$ $F_{\text{slmin}} = F_{\text{sync}} * \text{minimum slip}$

Calculate the *slip* from the above components. Locate $F_s + F_r$ and record its amplitude FrAmpwhere $F_r = F_{sync} * (1-slip)$

Search and locate the remaining 'slip frequency related' harmonics adjacent to other supply related components.

Eliminate all the 'slip frequency related' harmonics between F_s /2 and $3F_s$ /2 and measure the noise in the region.

noise_1 = [sum of noise between $\{(F_s - L - J) \text{ and } (F_s - L)\} + \{(F_s + L) \text{ and } (F_s + L + J)\}$]

noise_i = [sum of noise between $\{(F_s - L - J(i+1)) \text{ and } (F_s - L - Ji)\} + \{(F_s + L + Ji)\}$ and $(F_s + L + J(i+1))\}$] for i = 2 to 5, L=6*resolution, and J= F_s /10

Preprocess the attributes slip, FsAmp, SigAmp, Noise_1, Noise_2, Noise_3, Noise_4 and Noise_5 to make them acceptable by the Neural Network

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

IF all the attributes are NORWAL THEN condition is normal
IF slip is SLLO and noise 2 is H THEN condition is low cav
IF noise 4 and noise 5 are VEHH THEN condition is several
IF FSAmp is SLLO and noise 5 are SLH THEN condition is several
IF FSAmp is VERLO and noise 5 is SLH THEN condition is several
IF FSAmp is VERLO and noise 5 is SLH THEN condition is several
IF FSAmp is SLLO and noise 4 are H THEN condition is several
IF FSAmp is LO and noise 4 is H THEN condition is several
IF FSAmp is LO and noise 4 is H THEN condition is several
IF FSAmp is LO and noise 4 is NORWAL and noise 5 is NORWAL THEN condition is low block

IF FsAmpis LOand noise 4 is NORWAL and noise 5 is NORWAL THEN condition is sev-block
IF slip and FsAmpare VERLO THEN condition is sev-block
IF FrAmpis H THEN condition is impel-fault
IF frampis VERH THEN condition is impel-fault

Fig. 15

