Методы оптимизации. Семинар 3. Проекция точки на множество, отделимость, опорная гиперплоскость.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

19 сентября 2016 г.

Напоминание

- Аффинная оболочка и аффинное множество
- Выпуклая оболочка и выпуклое множество
- Коническая оболочка и выпуклый конус
- Операции, сохраняющие выпуклость

Внутренности множества

Внутренность множества

Внутренность множества G состоит из точек из G, таких что:

$$\mathsf{int} G = \{ \mathbf{x} \in G \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \subset G \},\$$

где
$$B(\mathbf{x}, \varepsilon) = \{\mathbf{y} \mid ||\mathbf{x} - \mathbf{y}|| \le \varepsilon\}$$

Относительная внутренность

Относительной внутреностью множества G называют следующее множество:

$$\mathsf{relint}\,G = \{ \mathsf{x} \in G \mid \exists \varepsilon > 0, B(\mathsf{x}, \varepsilon) \cap \mathsf{aff}\,G \subseteq G \}$$

Вопрос: зачем нужна концепция относительной внутренности?

Проекция точки на множество

Расстояние между точкой и множеством

Расстоянием d от точки $\mathbf{a} \in \mathbb{R}^n$ до замкнутого множества $X \subset \mathbb{R}^n$ по норме $\|\cdot\|$ является $d(\mathbf{a},X,\|\cdot\|) = \inf\{\|\mathbf{a}-\mathbf{y}\| \mid \mathbf{y} \in X\}$

Проекция точки на множество

Проекцией точки $\mathbf{a}\in\mathbb{R}^n$ на множество $X\subset\mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_X(\mathbf{a})\in X$, что $\pi_X(\mathbf{a})=\arg\min_{\mathbf{y}\in X}\|\mathbf{a}-\mathbf{y}\|$

Вопросы: единственна ли проекция? Если нет, то в каких случаях единственна? Какая связь между единственностью проекции и выпуклостью множества?

Факты о проекциях

Критерий проекции

Точка $\pi_X(\mathbf{a}) \in X$ является проекцией точки \mathbf{a} на множество $X \Leftrightarrow \|\mathbf{a} - \mathbf{x}\| \geq \|\mathbf{a} - \pi_X(\mathbf{a})\|, \ \forall \mathbf{x} \in X.$

Критерий проекции для нормы ℓ_2

Точка $\pi_X(\mathbf{a}) \in X$ является проекцией точки \mathbf{a} на множество $X \Leftrightarrow \langle \pi_X(\mathbf{a}) - \mathbf{a}, \mathbf{x} - \pi_X(\mathbf{a}) \rangle \geq 0, \ \forall \mathbf{x} \in X.$

- ullet Проекция на шар $\{\mathbf{x} \in \mathbb{R}^2 | \|\mathbf{x}\|_* \leq 1$ в различных нормах
- ullet Проекция на аффинное множество $\{\mathbf{x}\in\mathbb{R}^n|\mathbf{A}\mathbf{x}=\mathbf{b},\;\mathbf{A}\in\mathbb{R}^{m imes n},\mathit{rank}(\mathbf{A})=m\}$
- Проекция на аффинное множество $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{x} = \mathbf{x}_0 + \mathsf{S}\mathbf{y}, \ \mathsf{S} \in \mathbb{R}^{n \times m}, \ \mathbf{y} \in \mathbb{R}^m, \mathit{rank}(\mathsf{S}) = m\}$

Отделимость выпуклых множеств

Опорная гиперплоскость

Опорная гиперплоскость

Теорема об опорной гиперплоскости

В любой граничной (относительно граничной) точке выпуклого множества существует опорная (собственно опорная) гиперплоскость.

Резюме

- Внутренность и относительная внутренность выпуклого множества
- Проекция точки на множство
- Отделимость выпуклых множеств
- Опорная гиперплоскость