

Goal

What do we have now

- classifier completed
- design open to new impurity measures

Next step is to do random forest *regression*:

One of the nice properties of random forests is that they also are well suited to regression and we only need to perform a few small changes to convert our classifier into a regressor. This implies to identify what a random forest classifier and a regressor have in common and move it somewhere to avoid, of course, redundancy (the "don't repeat yourself" principle).

Regression 1d

But decision trees and random forests not constrained by number of dimensions.

Decision tree for classification

Decision tree for regression

same kind of rules, different impurity measure and value

Design for classification

What's different in regression

- 1. Gini, Entropy \rightarrow SSE = sum of square errors
- 2. predict() of class Leaf most frequent class in y
 ightarrow mean y
- 3. majority voting of trees predictions \rightarrow average

1. Sum of square errors

```
best_k = None, best_v = Inf, min_cost = Inf
for all features k:
    for all different v in X[:,k]:
        cost = J(k,v) # CART_cost()
        if cost < min_cost:
            best_k = k, best_v = v, min_cost = cost
:
:
:
:
idx_left = X[:,k] < v # array of booleans
y_left = y[idx_left] # select coordinates where True
y_right = y[np.logical_not(idx_left)]</pre>
```

$$egin{aligned} J(k,v) &= rac{m_{ ext{left}}}{m} ext{SSE}_{ ext{left}} + rac{m_{ ext{right}}}{m} ext{SSE}_{ ext{right}} \ ext{SSE}_{ ext{left}} &= \sum_{i \in ext{left}} (y_i - ar{y}_{ ext{left}})^2 \;\;, \;\; ar{y}_{ ext{left}} = rac{1}{m_{ ext{left}}} \sum_{i \in ext{left}} y_i \end{aligned}$$

RF classifier: Gini, Entropy

```
rf = RandomForestClassifier(..., GiniIndex(), ...)

class RandomForestClassifier():
    def __init__(..., impurity_measure, ):
        :
        self.impurity_measure = impurity_measure
    :
    def __CART_cost(...)
        :
        score = self.impurity_measure.compute(dataset)
```

RF regressor: SumSquareError

```
class Impurity(ABC):
    @abstractmethod
    def compute(self, dataset):
        pass
class GiniIndex(Impurity):
    def compute(self, dataset):
        probs = dataset.distribution()
        return 1.0 - np.sum(probs ** 2)
class SumSquareError(Impurity):
    #TODO
```

And now

```
rf = RandomForestRegressor(..., SumSquareError(), ...)
```

Thanks to the *Strategy* design pattern

If you have done like

```
rf = RandomForestClassifier(..., 'gini', ...)
class RandomForestClassifier():
    def ___init___(..., name_impurity, ):
        if name_impurity=='gini':
            self.impurity_measure = Gini()
        elif: ... # other impurities for regression
```

then you can introduce a _make_impurity method:

```
class RandomForestClassifier():
    def ___init___(..., name_impurity, ...):
        self.impurity_measure = self._make_impurity(name_impurity)
    def _make_impurity(self, name):
        if name=='gini':
            return Gini()
        elif ... # other impurities for classification
```

```
class RandomForestRegressor():
    def __init__(..., name_impurity, ...):
        :
        self.impurity_measure = self._make_impurity(name_impurity)

def __make_impurity(self, name):
        if name=='sum square error':
            return SumSquareError()
        elif ... # other impurities for regression
```

In any case, do not repeat code in the RF classifier and RF regressor *constructors*, make an abstract class with a common constructor and use super

2. majority voting \rightarrow average of predicted values

```
class RandomForestClassifier():
    def predict(self, X):
       y_pred = []
        for x in X:
            predictions = [tree.predict(x) \
                           for tree in self.decision_trees]
            y_pred.append(self._combine_predictions(predictions))
        return np.array(y_pred)
    def _combine_predictions(self, predictions):
        return np.argmax(np.bincounts(predictions))
        # most frequent class = majority voting
        # also max(set(predictions), key=predictions.count)
```

```
class RandomForestRegressor():
    def predict(self, X):
        y_pred = []
        for x in X:
            predictions = [tree.predict(x) \
                           for tree in self.decision_trees]
            y_pred.append(self._combine_predictions(predictions))
        return np.array(y_pred)
    def _combine_predictions(self, predictions):
        return np.mean(predictions)
        # average of predicted values for an x
```

predict is the same, but of course *Don't repeat yourself*: move predict to an abstract super class

3. predict() of class Leaf

For a RF classifier, the value in a leaf is the most frequent class in the dataset y input to its constructor :

```
class RandomForestClassifier():
    def _make_leaf(self, dataset):
        return Leaf(dataset.most_frequent_label())
        # which is np.argmax(np.bincounts(y))

def _make_node(...)
    :
    node = self._make_leaf(dataset)
```

For a RF regressor instead, it's the mean of the y values

```
class RandomForestRegressor():
    def _make_leaf(self, dataset):
        return Leaf(dataset.mean_value())

    def _make_node(...)
    :
        node = self._make_leaf(dataset)
```

Again, _make_leaf is different but _make_node is the same, do not repeat yourself

Note:

- RandomForest has a constructor: what is common in constructors of RandomForestClassifier and RandomForestRegressor
- maybe also a third method # makeImpurity() if impurity passed as string, not
- composite + strategy + another design pattern we've studied, which one ?
- in RandomForest predict(X) : float[] for classification also

Regularization by hyperparameters: still the same

Test

```
import pandas as pd
def load_daily_min_temperatures():
    df = pd.read_csv('https://raw.githubusercontent.com/jbrownlee/'
                     'Datasets/master/daily-min-temperatures.csv')
   # Minimum Daily Temperatures Dataset over 10 years (1981-1990)
    # in Melbourne, Australia. The units are in degrees Celsius.
    # These are the features to regress:
    day = pd.DatetimeIndex(df.Date).day.to_numpy() # 1...31
    month = pd.DatetimeIndex(df.Date).month.to_numpy() # 1...12
    year = pd.DatetimeIndex(df.Date).year.to_numpy() # 1981...1999
    X = np.vstack([day, month, year]).T # np array of 3 columns
    y = df.Temp.to_numpy()
    return X, y
```

Download the .csv file to not depend on Internet connection.

```
def test_regression(last_years_test=1):
    X, y = load_daily_min_temperatures()
    plt.figure()
    plt.plot(range(len(day)), y,'.-')
    plt.xlabel('day in 10 years'), plt.ylabel('min. daily temperature')
    idx = last_years_test*365
    Xtrain = X[:-idx,:] # first years
    Xtest = X[-idx:]
    ytrain = y[:-idx] # last years
    vtest = v[-idx:]
    # TODO: your regression code here
    # for instance, max_depth=10, min_size=5,
    # ratio_samples=0.5, num_trees=50,
    # num_random_features=2
```

```
plt.figure()
x = range(idx)
for t, y1, y2 in zip(x, ytest, ypred):
    plt.plot([t, t], [y1, y2], 'k-')
plt.plot([x[0], x[0]], [ytest[0], ypred[0]], 'k-', label='error')
plt.plot(x, ytest, 'g.', label='test')
plt.plot(x, ypred, 'y.', label='prediction')
plt.xlabel('day in last {} years'.format(last_years_test))
plt.ylabel('min. daily temperature')
plt.legend()
errors = ytest - ypred
rmse = np.sqrt(np.mean(errors**2))
plt.title('root mean square error : {:.3f}'.format(rmse))
plt.show()
```


root mean square error : 2.716

How to assess the regression error

RMSE = root of mean square error, n = number of test samples

$$ext{RMSE}(y_{ ext{true}}, y_{ ext{pred}}) = \sqrt{rac{\sum_{i=1}^{n}(y_{ ext{pred},i} - y_{ ext{true},i})^2}{n}}$$