Learning from Answer Sets via ASP Encodings

LAUREA MAGISTRALE IN INFORMATICA

CANDIDATE Roberto Borelli SUPERVISOR

Prof. Agostino Dovier

July 17, 2025

Motivations

- Learning plays a central role in modern AI
- Machine Learning and Deep Learning achieve impressive performance, but often lack interpretability
- Symbolic methods, such as Inductive Logic Programming (ILP), aim to provide Explainable AI
- Learning from Answer Sets (LAS) is a state-of-the-art ILP framework successfully applied in domains like:
 - Explainable weather predictions
 - Explainable legal decisions
 - Explainable neural networks
 - Learning LTL formulas

Objective

- ILASP is a state-of-the-art ILP system based on the LAS framework
- In this work, we explore a new approach to LAS based on ASP encodings, offering competitive performance on several benchmarks
- The main idea is that a mature ASP solver can compute the solution of an encoded task more efficiently than ILASP can directly solve the corresponding LAS task

Outline

- Introduction
- ② Encodings
 - 2.1 Exponential encoding
 - 2.2 Polynomial encoding
- 3 Grounding
- 4 Implementation and Experiments
- 6 Conclusions

INTRODUCTION

$$\underbrace{H_1 \vee \ldots \vee H_k}_{head} \leftarrow \underbrace{A_1 \wedge \cdots \wedge A_n \wedge \text{not } B_1 \wedge \cdots \wedge \text{not } B_m}_{body}$$

"if the body holds, then the head must also hold"

$$\underbrace{H_1 \vee \ldots \vee H_k}_{head} \leftarrow \underbrace{A_1 \wedge \cdots \wedge A_n \wedge \text{not } B_1 \wedge \cdots \wedge \text{not } B_m}_{body}$$

"if the body holds, then the head must also hold"

Class of ASP programs with disjunctive heads

 ASP^{N} Class of programs with |head| = 1

$$\underbrace{H_1 \lor \ldots \lor H_k}_{head} \leftarrow \underbrace{A_1 \land \cdots \land A_n \land \text{not } B_1 \land \cdots \land \text{not } B_m}_{body}$$

"if the body holds, then the head must also hold"

Class of ASP programs with disjunctive heads

 ASP^{N} Class of programs with |head| = 1

An *answer set* is a solution of an ASP program.

$$\underbrace{H_1 \vee \ldots \vee H_k}_{head} \leftarrow \underbrace{A_1 \wedge \cdots \wedge A_n \wedge \text{not } B_1 \wedge \cdots \wedge \text{not } B_m}_{body}$$

"if the body holds, then the head must also hold"

Class of ASP programs with disjunctive heads

ASP^N Class of programs with |head| = 1

An *answer set* is a solution of an ASP program.

Theorem

Deciding if a program P admits an answer set is:

NP-complete if
$$P \in \mathsf{ASP}^\mathsf{N}$$
 Σ_2^P -complete if $P \in \mathsf{ASP}^\mathsf{D}$

Inductive Logic Programming (ILP)

Learning Task T : $\langle B, S, E \rangle$

- B Background Knowledge
- S Hypothesis Space
- *E* Examples

Inductive Logic Programming (ILP)

Learning Task T : $\langle B, S, E \rangle$

- B Background Knowledge
- S Hypothesis Space
- E Examples

Solution

 $H \subseteq S$ such that $B \cup H$ satisfies every example in E

Learning from Answer Sets (LAS)

Learning Task T : $\langle B, S, E^+, E^- \rangle$

• B, S are ASP^N programs

Learning from Answer Sets (LAS)

Learning Task T :
$$\langle B, S, E^+, E^- \rangle$$

• B, S are ASP^N programs

A solution $H \subseteq S$ must satisfy:

- $\forall e \in E^+ \exists A \in AS(B \cup H) A \text{ covers } e$
- $\forall e \in E^- \forall A \in AS(B \cup H) A \text{ does not cover } e$

brave

cautious

Learning from Answer Sets (LAS)

Learning Task T : $\langle B, S, E^+, E^- \rangle$

• B, S are ASP^N programs

A solution $H \subseteq S$ must satisfy:

• $\forall e \in E^+ \exists A \in AS(B \cup H) A \text{ covers } e$

- brave
- $\forall e \in E^- \forall A \in AS(B \cup H) \ A \ does \ not \ cover \ e$ cautious

Theorem

Deciding if a task T admits a solution is Σ_2^P -complete

- State-of-the art algorithm for ILP_{LAS}
- Iterative algorithm: at each step, an ASP^N program is solved
- Many versions of ILASP: 1,2,2i,3,4

Our Contributions

- For ground tasks, we introduce single-shot ASP encodings P_{exp} Exponential ASP^N encoding P_{dis} Linear ASP^D encoding (if $B \cup S$ has no loops)
- We introduce a notion of grounding for LAS tasks
- We introduce LASCO, a LAS solver based on these ideas

ILASP: multiple calls to an ASP solver LASCO: single call to an ASP solver

ENCODINGS

Exponential ASP^N encoding (P_{exp})

- Almost "direct" encoding of B and S
- Choice rule to encode the choice of $H \subseteq S$
- Enumeration of all the possible interpretations of $B \cup S$
- For a given H, we have rules that check if an interpretation I is also an answer set of $B \cup H$
- We force brave covering for E⁺ and cautious covering for E⁻

Exponential ASP^N encoding (P_{exp})

- Almost "direct" encoding of B and S
- Choice rule to encode the choice of $H \subseteq S$
- Enumeration of all the possible interpretations of $B \cup S$
- For a given H, we have rules that check if an interpretation I is also an answer set of $B \cup H$
- We force brave covering for E^+ and cautious covering for E^-

Problem

The number of interpretation of $B \cup S$ is exponential in the number of atoms

Polynomial ASP^D encoding (P_{dis})

$$P_{dis}(T) ::= P_{dis}^+(T) \cup P_{dis}^-(T)$$

- $P_{dis}^+(T)$ ensures brave covering of positive examples
- $P_{dis}^{-}(T)$ ensures cautious covering of negative examples

The program P_{dis}^{-} is built into two stages:

- **①** *T* is translated into a Q.B.F. formula $\phi(T)$

From the task *T* we build the following Q.B.F. formula:

$$\phi(T) \coloneqq \exists H \ \forall I \ \underbrace{\mathsf{NNF}(\phi_{\mathit{as}}^*(P'(T)) \to \phi_{\mathit{neg}}(E^-))}_{\psi(T)}$$

From the task *T* we build the following Q.B.F. formula:

$$\phi(T) := \boxed{\exists H \, \forall I} \underbrace{\mathsf{NNF}(\phi_{as}^*(P'(T)) \to \phi_{neg}(E^-))}_{\psi(T)}$$

 $\phi(T)$ is satisfied if:

There exists $H \subseteq S$ s.t. for every I interpretation of $B \cup H$ s.t.

From the task *T* we build the following Q.B.F. formula:

$$\phi(T) := \exists H \, \forall I \, \underbrace{\mathsf{NNF}(\underbrace{\phi_{\mathit{as}}^*(P'(T))}_{\psi(T)} \to \phi_{\mathit{neg}}(E^-))}_{\psi(T)}$$

 $\phi(T)$ is satisfied if:

There exists $H \subseteq S$ s.t. for every I interpretation of $B \cup H$ s.t. If I is an answer set of $B \cup H$

From the task *T* we build the following Q.B.F. formula:

$$\phi(T) := \exists H \ \forall I \ \underbrace{\mathsf{NNF}(\phi_{as}^*(P'(T)) \to \underbrace{\phi_{neg}(E^-)}_{\psi(T)})}_{\psi(T)}$$

 $\phi(T)$ is satisfied if:

There exists $H \subseteq S$ s.t. for every I interpretation of $B \cup H$ s.t. If I is an answer set of $B \cup H$, it must satisfy negative examples

From the formula $\phi(T)$ we build an ASP^D program:

$$\begin{array}{ll} \mathbf{h} \vee \mathbf{n} \mathbf{h}. & \forall h \in H \\ \mathbf{i} \vee \mathbf{n} \mathbf{i}. & \mathbf{i} \leftarrow \mathbf{w}. & \mathbf{n} \mathbf{i} \leftarrow \mathbf{w}. \\ \mathbf{w} \leftarrow \mathrm{formula}_{\psi(T)}. \\ expansion(\psi(T)) \\ \mathbf{w} \leftarrow \mathrm{not} \ \mathbf{w}. \end{array}$$

From the formula $\phi(T)$ we build an ASP^D program:

$$\begin{array}{ll} \mathbf{h} \vee \mathbf{n} \mathbf{h}. & \forall h \in H \\ \mathbf{i} \vee \mathbf{n} \mathbf{i}. & \mathbf{i} \leftarrow \mathbf{w}. & \mathbf{n} \mathbf{i} \leftarrow \mathbf{w}. \\ \mathbf{w} \leftarrow \mathbf{formula}_{\psi(T)}. \\ expansion(\psi(T)) \\ \hline \mathbf{w} \leftarrow \mathbf{not} \ \mathbf{w}. \end{array}$$

w must be included in a solution.

From the formula $\phi(T)$ we build an ASP^D program:

$$\begin{array}{ll} \mathbf{h} \vee \mathbf{n} \mathbf{h}. & \forall h \in H \\ \mathbf{i} \vee \mathbf{n} \mathbf{i}. & \mathbf{i} \leftarrow \mathbf{w}. & \forall i \in I \\ \hline \mathbf{w} \leftarrow \mathbf{formula}_{\psi(T)}. \\ \\ expansion(\psi(T)) \\ \mathbf{w} \leftarrow \mathbf{not} \ \mathbf{w}. \end{array}$$

To be included, w must be supported, hence $\psi(T)$ must be satisfied by the current interpretation.

From the formula $\phi(T)$ we build an ASP^D program:

$$\begin{array}{ll} \mathbf{h} \vee \mathbf{n} \mathbf{h}. & \forall h \in H \\ \mathbf{i} \vee \mathbf{n} \mathbf{i}. & \mathbf{i} \leftarrow \mathbf{w}. & \forall i \in I \\ \\ \mathbf{w} \leftarrow \mathbf{formula}_{\psi(T)}. \\ \\ \textit{expansion}(\psi(T)) \\ \\ \mathbf{w} \leftarrow \mathbf{not} \ \mathbf{w}. \end{array}$$

Since w is true, $\psi(T)$ must be satisfied for every *I*.

Polynomial ASP^D encoding (P_{dis}) Theoretical results

Theorem

The encoding $P_{dis}(T)$ is correct and complete w.r.t. solutions of T

Theorem

If $B \cup S$ *is tight,* $|P_{dis}(T)| \in \mathcal{O}(|T|)$

GROUNDING

Task grounding

- To deal with non-ground task, we define a notion of single-shot grounding
- Given a task $T = \langle B, S, E^+, E^- \rangle$, we define ground(T) as:

$$\langle \bigcup_{R_i \in B} ground_U(R_i), \{ground_U(h_i) \mid h_i \in S\}, E^+, E^- \rangle$$

• Technically, ground(T) is a task of the ILP_{LAS}^{agg} framework, where each element in the hypothesis space is an aggregation of rules.

Theorem

If T is safe, then T and ground(T) are equivalent.

IMPLEMENTATION AND EXPERIMENTS

LASCO Pipeline

Previous ideas have been implemented in a tool named LASCO, based on the following 6 steps.

Benchmark 1: Learning the < relation

Configuration	$T_{comp}^{sat,tight}$	$T_{comp}^{unsat,tight}$	$T_{comp}^{sat,loop}$	$T_{comp}^{unsat,loop}$
lasco + clingo first	0.19	0.22	1.99	19.73
lasco + clingo opt	0.20	0.31	4.97	13.96
lasco + dlv first	0.44	0.61	42.62	46.77
lasco + dlv opt	e	0.49	e	58.26
ILASP2	0.43	4.72	1.29	85.63
ILASP2i	0.63	5.06	1.98	97.49
ILASP3	46.17	45.11	e	e
ILASP4	2.38	7.67	38.27	e

Benchmark 2: Learning logic puzzles

- LASCO is competitive on *nQueens*
- LASCO suffers from scalability issues on FlowLines, StarBattle, and 15Puzzle which have non-tight hypothesis spaces causing exponential blow-up in the encoding size

Benchmark 3: Learning automata

Configuration	$T_{(ab)^*}$	Tpattern
lasco + clingo first	1.26	0.88
lasco + clingo opt	1.43	28.17
lasco + dlv first	30.12	e
lasco + dlv opt	33.79	83.44
ILASP2	0.15	e
ILASP2i	0.55	e
ILASP3	e	e
ILASP4	e	e

CONCLUSIONS

Summary of the results and future works

Summary of the results:

 We proposed a new LAS solver based on a single-shot, linear, disjunctive ASP encoding

Open question:

 Can we design a polynomial-size disjunctive encoding for every ground LAS task? (Conjecture: no)

Future works:

- Investigate new encodings like Quantified ASP (QASP), Integer Linear Programming (ILP), Quadratic Programming (QP) and Constraint Programming (CP)
- Incorporate preprocessing stages into the LASCO pipeline to optimize the input task before encoding

THANK YOU!

REFERENCES

Bibliography I

- Michael Gelfond and Vladimir Lifschitz (1988). "The Stable Model Semantics for Logic Programming". In: Proceedings of International Logic Programming Conference and Symposium. Ed. by Robert Kowalski, Bowen, and Kenneth. MIT Press, pp. 1070–1080. URL: http://www.cs.utexas.edu/users/ai-lab?gel88.
- Stephen Muggleton (1991). "Inductive logic programming". In: *New generation computing* 8, pp. 295–318.
- Thomas Eiter and Georg Gottlob (1995). "On the computational cost of disjunctive logic programming: Propositional case". In: *Annals of Mathematics and Artificial Intelligence* 15, pp. 289–323.
- Fangzhen Lin and Yuting Zhao (2004). "ASSAT: Computing answer sets of a logic program by SAT solvers". In: *Artificial Intelligence* 157.1-2, pp. 115–137.

Bibliography II

- Martin Gebser, Benjamin Kaufmann, et al. (2011). "Potassco: The Potsdam answer set solving collection". In: *Ai Communications* 24.2, pp. 107–124.
- Mark Law, Alessandra Russo, and Krysia Broda (2020). "The ilasp system for inductive learning of answer set programs". In: *arXiv preprint arXiv:2005.00904*.
- Fredrik Heintz, Michela Milano, and Barry O'Sullivan (2021). *Trustworthy AI-integrating learning, optimization and reasoning*. Springer.
- Daniele Fossemò et al. (2022). "Using Inductive Logic Programming to globally approximate Neural Networks for preference learning: challenges and preliminary results". In: CEUR WORKSHOP PROCEEDINGS, pp. 67–83.
- Martin Gebser, Roland Kaminski, et al. (2022). *Answer set solving in practice*. Springer Nature.

Bibliography III

- Talissa Dreossi et al. (2023). "Exploring ILASP through logic puzzles modelling". In: CEUR Workshop Proceedings. Vol. 3428. CEUR-WS.
- Antonio Ielo et al. (2023). "Towards ILP-based LTL f passive learning". In: *International Conference on Inductive Logic Programming*. Springer, pp. 30–45.
- Agostino Dovier, Talissa Dreossi, Andrea Formisano, et al. (2024). "XAI-LAW Towards a logic programming tool for taking and explaining legal decisions". In: *CEUR WORKSHOP PROCEEDINGS*. Vol. 3733. CEUR-WS.
- Talissa Dreossi et al. (2024). "Towards Explainable Weather Forecasting Through FastLAS". In: *International Conference on Logic Programming and Nonmonotonic Reasoning*. Springer, pp. 262–275.