

AuE 8200: Machine Perception and Intelligence

Lecture: Signal, spectrum, and vehicle sensors

Instructor: Bing Li, Ph.D. bli4@clemson.edu

Assistant Professor
Department of Automotive Engineering
Clemson University International Center for
Automotive Research (CU-ICAR)

Outline

- Introduction
- Signal and Sensor Perception
- 1D Signal and A/D
- 1D Signal Time-domain Analysis
- 1D Signal Frequency Analysis
- 1D Signal Noise Analysis
- 1D Signal Processing and Filter Design
- Electromagnetic Spectrum
- Vehicle Sensors (Perception)

1D Signal: Wave

Time domain

Frequency domain

Noise filter

Patterns

. . .

2D Signal: Image

Time domain

Frequency domain

Noise filter

Multi-view

Features

Patterns

Understanding

. . .

3D Signal: Point Cloud

Time domain

Frequency domain

Noise filter

Geometry analysis, mapping

Features

Patterns

Understanding

. . .

Fuse with 2D vision

Signal and Sensor Data Analysis

Applications

Vehicle perception
ADAS (Advanced driver-assistance systems)
Autonomy

Areas

Space

- -Space photograph enhancement
- -Data compression
- -Intelligent sensory analysis by remote space probes

Medical

- -Diagnostic imaging (CT, MRI, ultrasound, and others)
- -Electrocardiogram analysis
- -Medical image storage/retrieval

Commercial

- Image and sound compression for multimedia presentation
- -Movie special effects
- -Video conference calling

Telephone

- Voice and data compression
- -Echo reduction
- -Signal multiplexing
- -Filtering

Military

- -Radar
- -Sonar
- -Ordnance guidance
- -Secure communication

Industrial

- -Oil and mineral prospecting
- -Process monitoring & control
- Nondestructive testing
- -CAD and design tools

Scientific

- -Earthquake recording & analysis
- -Data acquisition
- -Spectral analysis
- -Simulation and modeling

Signal and Sensor Perception

- Perception for physical quantities
 Transduction principle conversion of energy from one form to another
- Proprioception:
 Position, speed, acceleration, torque, battery level ...
- Exteroceptive:
 Scene, geometry, object, ...
- Analog signal Continuity in
 - Time domain
 - Amplitude

Signal and Sensor Perception

Sensor perception → vehicle actuator control

Signal and Sensor Perception

Analog signal VS. Digital signal

A/D (Analog-to-Digital)

Affected by noise or EMI (Electromagnetic interference)

Signal A/D (Analog-to-Digital)

- Sampling
 - From continuous signal to discrete signal
- PCM (Pulse Code Modulation)
 - Sampling → Quantization → Encoding

Uniform quantization

Binary encoding

Signal A/D (Analog-to-Digital)

- Sampling
- Nyquist—Shannon sampling theorem (Harry Nyquist and Claude Shannon)
- Sufficient no-loss condition for sampling
 - Nyquist sampling rate: 2B

The frequency of human voice is mostly less than 5kHz, ...

- Signal analysis
 - Time domain analysis
 - Frequency domain analysis
 - Time-Frequency domain analysis

• The expectation (μ_x) of a signal (or called mean)

$$\mu_{x} = E[x(t)] = \frac{1}{T} \lim_{t \to \infty} \int_{0}^{T} x(t)dt$$

• Mean square (A_{RMS}^2) and root mean square (RMS) (A_{RMS}) of a signal

$$A_{RMS}^2 = E[x^2(t)] = \frac{1}{T} \lim_{t \to \infty} \int_0^T x^2(t) dt$$

• Variance (σ^2) and standard deviation (σ) of a signal

$$\sigma^2 = E[(x(t) - \mu_x)^2] = \frac{1}{T} \lim_{t \to \infty} \int_0^T (x(t) - \mu_x)^2 dt$$

Covariance

$$cov(x,y) (= E[(x(t) - \mu_x)(y(t) - \mu_y)]$$

Statistical correlation

$$\rho_{xy} = \frac{cov(x,y)}{\sigma_x \sigma_y} = \frac{E[(x(i) - \mu_x)(y(i) - \mu_y)]}{\sqrt[2]{E[(x(i) - \mu_x)^2]E[(y(i) - \mu_y)^2]}}$$

 $0 \le \rho_{xy} \le 1$ $\rho_{xy} = 0$

Relationship?

Correlation function for continuous signals

$$R_{xy}(\tau) = \lim_{T \to \infty} \int_{-T/2}^{T} x(t)y(t-\tau)$$

• Auto-correlation function $R_{\chi\chi}(\tau)$

Similarity between two signals, or one signal with time shift

- Time-domain operations for digital signals
 - Amplitude modifications $y[k] = a \sum x_m[k] + b$
 - Time modifications y[k] = x[k m]
 - Down-sampling $y[k] = x[\lambda k]$
 - Up-sampling or interpolation
 - Cross-correlation (\otimes): y[k] = $\sum_{n=-\infty}^{\infty} x_1[n]x_2[n-k]$
 - Auto-correlation $y[k] = \sum_{n=-\infty}^{\infty} x[n]x[n-k]$
 - Convolution (*): $y[k] = \sum_{n=-\infty}^{\infty} x_1[n]x_2[k-n]$

Frequency domain

A typical signal: sin wave

$$x(t) = A\cos(\omega t + \varphi)$$

Aptitude: A

Frequency: $f = \omega/2\pi$

Phase: φ

Frequency of a signal

Constant-amplitude signal?

Step signal?

 Fourier transform and inverse transform (under Dirichlet condition of convergence)

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
$$x(t) = \int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega$$

Fourier series expansion
 DFT (Discrete-time Fourier Transform)

$$x(t) = \sum_{k=-\infty}^{\infty} A_k \cos(k\omega_0 t + \varphi_k)$$
 , $\omega_0 = 2\pi/T$

Decomposes periodic complex signal to a (possibly infinite) set of simple sine waves;

Applicable for aperiodic signal, considering $T \to \infty$

Given Euler's formula

$$e^{j\theta} = \cos(\theta) + j\sin(\theta), \theta = \omega t, \cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2}$$
Then: $A\cos(\omega t + \varphi) = \frac{A}{2}e^{j(\omega t + \varphi)} + \frac{A}{2}e^{-j(\omega t + \varphi)}$

Exponential form of Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t}$$

where X_k are complex numbers:

$$X_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$$

• For each frequency components: Frequencies $k\omega_0$; Amplitude $|X_k|$; Phase $\arctan\frac{Im(X_k)}{Re(X_k)}$, atan2

 DFT difference for periodic and aperiodic signal in Trigonometric series

First/Second/... harmonic components

- Fourier transformation: F
 - Time, Frequency
- Power Spectral
 - F(y[k]), where Auto-correlation $y[k] = \sum_{n=-\infty}^{\infty} x[n]x[n-k]$
 - Power Spectral Density (PSD): $|X(f)|^2$, X is the F of x(k)
- White noise refers to "uniform power across the frequency".

Gaussian noise refers to "normal distribution in the frequency domain"

> Aptitude in FT domain

A Gaussian random variable W with mean μ and variance σ^2 has a PDF described by

$$f_W(w) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(w-\mu)^2}{2\sigma^2}}$$

- White Gaussian noise (random sampling from Gaussian process)
 - Good approximation of many real-world situations;
 - Mathematically tractable models [2];

Signal-to-noise ratio (SNR)

$$SNR = \frac{P_{signal}}{P_{noise}} = (\frac{A_{RMS,s}}{A_{RMS,n}})^2$$

Logarithmic decibel (dB) scale

$$P_{dB} = 10 \log_{10} P$$

$$SNR_{dB} = 10 \log_{10} \frac{P_{signal}}{P_{noise}} = 20 \log_{10} \frac{A_{RMS,s}}{A_{RMS,n}}$$

- Naturally, sensor data is noisy.
 - Hardware filters
 - Algorithm filters

Noise

- A general term for all unwanted (probably immeasurable) modifications during signal capturing to processing process.
- Wrong measurement doesn't belong to noise.

Noise types

- Additive noise (White noise, Gaussian noise, Cauchy noise ...)
- Multiplicative noise (multiplies or modulates the intended signal)
- Quantization error (due to conversion from continuous to discrete values)
- Phase noise (random time shifts in a signal)
- et al.

From signal to systems

examples

- Linear VS. Non-linear systems
- Characteristics of linear system
 - Homogeneity
 - Additivity
- Linear Time-invariant (LTI): y(t) for $x(t) \rightarrow y(t-T)$ for x(t-T)

Homogeneity of linear systems

Additivity of linear systems

Time-invariant systems

Important!

The characteristics of the system do not change with time.

System analysis

- How to mathematically describe a system?
- How to design such a system?

System response

Response:

$$x(n\Delta t)\Delta t h(t - n\Delta t)$$

$$y(t) = \sum_{n=0}^{\infty} x(n\Delta t)\Delta t \ h(t - n\Delta t)$$

Signal convolution:

$$y(t) = x(t) * h(t)$$
$$= \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

(Unit) Delta function (impulse signal, Paul Dirac)

$$\delta(t - \tau_0) = 0, x \neq 0$$

$$\int_0^{\tau_0 + \varepsilon} \delta(t - \tau_0) dt = 1$$

Characteristic

$$x(\tau_0) = \int_{-\infty}^{\infty} x(t)\delta(t - \tau_0)dt$$
$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta(n - k)$$

 $\delta(t)$

h(t) is defined as impulse response, which is the system response when input signal is $\delta(t)$

- We have seen signal can be characterized by frequency content (pros?)
- LTI system analysis
 - Time-domain impulse response h(t)
 - Frequency response --- $H(\omega)$?
- For system analysis, introduce dampening factor, and Laplace transform and z transform:

$$L(\omega) = \int_{-\infty}^{\infty} x(t)e^{-(\sigma+j\omega)t}dt \rightarrow L(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt, where s = \sigma + j\omega$$

For discrete signal:
$$X(z) = \sum_{-\infty}^{\infty} x[n]z^{-n}$$
, where $z = e^{sT} = r e^{j\omega}$

 All three transforms convert time-domain convolutions to polynomial equations

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

$$Y(\omega) = H(\omega)X(\omega), Y(s) = H(s)X(s), Y(z) = H(z)X(z)$$

- Why Laplace transform and z transform?
 - Complex frequency-domain for Stability and Causality analysis

Digital Filter Design

State-space filter

Using dynamic model e.g.: Kalman filter

$$\overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}u_{t}$$

$$\overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$$

$$K_{t} = \overline{\Sigma}_{t}C_{t}^{T}(C_{t}\overline{\Sigma}_{t}C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \mu_{t} + K_{t}(z_{t} - C_{t}\overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t}C_{t})\overline{\Sigma}_{t}$$

Conventional digital filters
 Finite Impulse Response (FIR) filters:

$$y[k] = \sum_{n=0}^{N} b_n x[k-n]$$
System
$$x[k] \qquad y[k]$$

Infinite Impulse Response (IIR) filters:

$$y[k] = \sum_{n=0}^{N} b_n x[k-n] + \sum_{m=0}^{M} a_m y[k-m]$$
System
$$x[k]$$

$$y[k]$$

Digital Filter Design

FIR Filters

- Pros:
 - Inherently stable
 - Linear phase characteristics

Design approaches:

Frequency sampling design Fourier transform design

- Cons:
 - Need lots of memory and math terms required
- IIR Filters
 - Pros:
 - Very efficient in term of resources
 - Cons:
 - Inherently less stable

Bilinear transformation Pole zero placement

Example: low pass filter design

• 1st example: A simple average digital filter:

$$y[k] = \frac{1}{4}(x[k] + 2x[k-1] + x[k-2])$$

2nd example: (ideal) FIR low pass filter (LPF) design [1]

$$y[k] = \sum_{n=0}^{N} b_n x[k-n]$$

 b_n : filter coefficients (aka: kernel)

$$H(e^{j\Omega})$$

$$-\pi \quad -\Omega_c$$

$$\Omega_c \quad \pi \quad \Omega$$

$$H(e^{j\Omega}) = egin{cases} 1, & 0 \leq |\Omega| \leq \Omega_c \\ 0, & \Omega_c \leq |\Omega| \leq \pi \end{cases}$$
 Inverse FFT

Impulse response h_n

• (ideal) FIR low pass filter design [1]

• $h_n \rightarrow z$ transformation H(z) Impulse response

$$H(z) = h(M)z^{M} + \dots + h(1)z^{1} + h(0) + h(1)z^{-1} + \dots + h(M)z^{-M}$$
Symmetric

By After truncating 2M+1 major components using the coefficient symmetry, where h_n is just a shift of b_n for causal design.

Filter Type Ideal Impulse Response h(n) (noncausal FIR coefficients) $h(n) = \begin{cases} \frac{\frac{n \cdot n}{\pi}}{\pi} & \text{for } n = 0\\ \frac{\sin(\Omega_c n)}{n \pi} & \text{for } n \neq 0 \end{cases}$ Lowpass: $h(n) = \begin{cases} \frac{\pi - \Omega_{c}}{\pi} & \text{for } n = 0 \\ -\frac{\sin(\Omega_{c}n)}{n\pi} & \text{for } n \neq 0 \end{cases}$ $h(n) = \begin{cases} \frac{\Omega_H - \Omega_L}{\pi} & \text{for } n = 0\\ \frac{\sin(\Omega_H n)}{n\pi} - \frac{\sin(\Omega_L n)}{n\pi} & \text{for } n \neq 0 \end{cases}$ Bandpass: $h(n) = \begin{cases} \frac{\pi - \Omega_H + \Omega_L}{\pi} & \text{for } n = 0 \\ -\frac{\sin(\Omega_H n)}{\pi} + \frac{\sin(\Omega_L n)}{\pi} & \text{for } n \neq 0 \end{cases} - M \le n \le M$ Bandstop:

- (ideal) FIR low pass filter design [1]
- Example: Design a 3-tap FIR LPF with cut-off frequency of 800 Hz and a sampling rate of 8,000 Hz using the Fourier transform method.

Normalized cut-off frequency

$$\Omega_c = 2\pi f_c T_s = 2\pi \times 800/8,000 = 0.2\pi \text{ radians}$$

3-tap filter $\implies 2M + 1 = 3 \implies M = 1$

 \Rightarrow h(n) for n from -M to M \Rightarrow n = -1, 0, 1,

(ideal) FIR low pass filter design [1]

filter coefficients
$$h(0) = \frac{\Omega_c}{\pi}$$
 for $n = 0$
From previous slide table

and
$$h(n) = \frac{\sin(\Omega_c n)}{n\pi} = \frac{\sin(0.2\pi n)}{n\pi}$$
 for $n \neq 1$

compute coefficients
$$\Rightarrow h(0) = \frac{0.2\pi}{\pi} = 0.2$$

and
$$h(1) = \frac{\sin[0.2\pi \times 1]}{1 \times \pi} = 0.1871$$

Using symmetry h(-1) = h(1) = 0.1871

(ideal) FIR low pass filter design [1]

$$b_n = h(n - M)$$

for $n = 0, 1, \dots, 2M$.

$$b_0 = h(0-1) = h(-1) = 0.1871$$

$$b_1 = h(1-1) = h(0) = 0.2$$

$$b_2 = h(2-1) = h(1) = 0.1871$$

FIR low pass filter: transfer function

$$H(z) = 0.1871 + 0.2z^{-1} + 0.1871z^{-2}$$
 $\longrightarrow \frac{Y(z)}{X(z)} = H(z) = 0.1871 + 0.2z^{-1} + 0.1871z^{-2}$

$$Y(z) = 0.1871X(z) + 0.2z^{-1}X(z) + 0.1871z^{-2}X(z)$$

(ideal) FIR low pass filter design [1]

Further discussion

- Undesirable Gibbs oscillations
- Solution: window functions

1. Rectangular window:

$$w_{rec}(n) = 1, -M \le n \le M$$

2. Triangular (Bartlett) window:

$$w_{tri}(n) = 1 - \frac{|n|}{M}, -M \le n \le M$$

3. Hanning window:

$$w_{han}(n) = 0.5 + 0.5 \cos\left(\frac{n\pi}{M}\right), -M \le n \le M$$

Applying the window sequence w(n) to the filter coefficients $h_w(n) = h(n) \cdot w(n)$

Spectrum in Frequency Domain

Frequency spectrum to bandwidth

Bandwidth

Effective bandwidth

$$dB = 10 \log_{10} \frac{P_{f_{L \sim H}}}{P_{S}}$$

Electromagnetic Spectrum

- GPS (Global Positioning System)
- A constellation of 24 satellites (+several spares)
- Broadcast time; identity; orbital parameters (latitude, longitude, altitude);

- Carriers there are two carrier radio waves:
 - L1, with frequency 1575.42 MHz
 - L2, with frequency 1227.6 MHz

Space Segment https://www.gps.gov

GPS (Global Positioning System)

- GPS (Global Positioning System)
- Spherical coordinates
 - latitude
 - longitude
 - altitude (above sea level)

- PPS Precise Positioning Service
 - uses multiple signals
 - for military use only
- DGPS Differential GPS
 - 2 receivers
 - 1 known fixed position

Expected errors:

ionospheric range error tropospheric range error satellite clock range error receiver clock range error multipath error noise

GPS (Global Positioning System)

- GNSS global geo-spatial positioning system
 - Global Navigation Satellite System (GNSS) with global coverage.
- GNSS systems:
 - GPS, GLONASS, Galileo, Beidou and other regional systems.
- GNSS+INS fusion
 - Example: NovAtel SPAN-CPT GNSS-INS

SPAN° SPAN-CPT™

SINGLE ENCLOSURE GNSS+INS RECEIVER DELIVERS 3D POSITION, VELOCITY AND ATTITUDE

Single point L1/L2

GNSS+INS

 NovAtel SPAN-CPT

SPAN SYSTEM PERFORMANCE

Horizontal Position Accuracy (RMS)

NovAtel CORRECT™

» SBAS²

» DGPS

» PPP³

» RTK

1 cm + 1 ppm

Data Rate

GPS measurement 20 Hz
GPS position 20 Hz
IMU measurement 100 Hz
INS solution Up to 100 Hz
Time Accuracy⁴ 20 ns RMS
Max Velocity⁵ 515 m/s

IMU PERFORMANCE⁶

Gyroscope Performance

Gyro technology FOG
Output range ±375°/s
Bias 20°/hr
Bias stability ±1°/hr
Scale factor 1500 ppm
Angular random walk
0.0667°/√hr (max)

Accelerometer Performance

 Range
 ±10 g

 Bias
 50 mg

 Bias stability
 ±0.75 mg

 Scale factor
 4000 ppm

PHYSICAL AND ELECTRICAL

Dimensions

152 x 168 x 89 mm Weight 2.28 kg

Power

1.2 m

Power consumption 16 W max Input voltage +9 to +18 VDC

Antenna Port Power Output

Output voltage +5 VDC Maximum current 100 mA

Connectors

Power and I/O

MIL-DTL-38999 Series 3 Antenna Input TNC Female

COMMUNICATION PORTS

RS-232 UART COM	2
USB Device	1
CAN	1
Event Input Trigger	1
Configurable PPS	1

ENVIRONMENTAL

Temperature

Operating -40°C to +65°C Storage -50°C to +80°C **Humidity** 95% non-condensing

Waterproof

MIL-STD-810F, 506.4, Procedure I

INCLUDED ACCESSORIES

Combined I/O and power cable

OPTIONAL ACCESSORIES

- GPS-700 series antennas (dual-frequency required)
- ANT series antennas (dualfrequency required)
- RF cables 5, 10 and 30 m lengths
- Inertial Explorer postprocessing software

Optional Dual Antenna7

Baseline	Accuracy
0.5 m	0.4°
1.0 m	0.2°
2.0 m	0.1°

Perception kit configuration example

- Delphi ESR 2.5 Radar
- DEL-ESR-2.5-24VDC+
- Delphi's multimode Electronically Scanning RADAR (ESR)

Delphi SRR2 Rear & Side Radar

- ibeo "IBE-1000003-LUX+" LiDAR
- Range up to 200m/650ft
- Object tracking (up to 65 objects)

LASER / OPTICAL	ibeo LUX 4L	ibeo LUX 8L	ibeo LUX HD
Laser class:	Class 1		
Wave length:	905 nm		
Technology:	Time of flight, Output of distance and echo pulse width		
Range:	50 m / 164 ft @ 10 % remission	50 m / 164 ft @ 10 % remission	30 m/98 ft @ 10% remission
Horizontal field of view:	110° (50° to -60°)		
Vertical field of view:	3.2°	6.4°	3.2°
Multi-layer:	4 parallel scanning layers	8 layers (2 pairs of 4 layers)	4 parallel scanning layers
Multi echo:	Up to 3 distance measurements per shot (allow measurements through atmospheric clutter like rain and dust)		
Data update rate:	25.0 Hz		

- Mobileye "MBL-630-CAM-KIT+"
- EyeQ2® Image Processing SOC
- EyeWatch® display
- 2 seconds ahead warning:
 - Forward Collision
 - Pedestrian & Cyclist Collision

Item	Description	Value
Signals Cables	Car inputs	BAT+, GND, Ignition, High Beam, CAN-Bus (High/Low)
Voltages	Input	12 - 36VDC
	Current Load (full operation)	12v > 360mA, 24v > 180mA**
	Stand-by Current Load (Ignition off)	12ν > 10μΑ, 24ν > 10μΑ
	Power consumption	Nominal 5.2W

(Lane Departure Warning

Headway Monitoring and Warning

Intelligent High-Beam Control *

100) Speed Limit Indication

- Allied Vision "AVT-MAKO-G-319C+" Camera
- Mono and Color modes
- Global Shutter

V.S. rolling shutter?

- Auto exposure
- Gamma correction

Interface	IEEE 802.3 1000BASE-T, IEEE 802.3af (PoE)
Resolution	2064 (H) × 1544 (V)
Sensor	Sony IMX265
Sensor type	CMOS
Sensor Size	Type 1/1.8
Cell size	3.45 μm x 3.45 μm
Lens mount	C-Mount
Frame rate	37.5 fps
ADC	12 Bit
Image buffer (RAM)	64

Vehicle Sensors - Perception

- Velodyne "VEL-VLP-16+" LiDAR
- 16 Channels
- Measurement Range: 100 m
- Range Accuracy: Up to ±3 cm (Typical) 1
- Field of View (Vertical): +15.0° to -15.0° (30°)
- Angular Resolution (Vertical): 2.0°
- Field-of-View (Horizontal): 360°
- Angular Resolution (Horizontal/Azimuth): 0.1° 0.4°
- Rotation Rate: 5 Hz 20 Hz
- 3D LiDAR Data Points Generated:
- Single Return Mode: ~300,000 points per second
- Dual Return Mode: ~600,000 points per second

Summary

- Signal
- Noise
- Time-domain Analysis
- Frequency-domain Analysis
- Signal processing filter design
- Electromagnetic spectrum
- Vehicle sensors (perception)

END, Thank you!

Reference

- Smith, Steven W. "The scientist and engineer's guide to digital signal processing." (1997): 35.
- Digital Signal Processing and Analysis, Lecture Notes, The University of Michigan, Jeffrey A. Fessler.
- Introduction to Electronics, Signals, and Measurement, Lecture Notes, Massachusetts Institute of Technology, Manos Chaniotakis and David Cory.

Appendix Related Resource

- The Scientist and Engineer's Guide to DSP
- Vehicle Environment Sensing (Perception)
- Signals & Systems Series (Video)
- Fourier Transform A visual introduction (Video)
- Signal Processing and Machine Learning Techniques for Sensor Data Analytics in Matlab (Video)
- Signal Processing create A Digital Filter in Python (Video)
- <u>Automotive Sensors</u> (Video)