

Integrating microprocessor with interfacing chips

Abdus Salam Azad

Interfacing and Data Transfer

Methods of parallel Data Transfer

- Simple I/O
- Simple strobe I/O
- Single-handshake I/O
- Double-handshake I/O

Simple I/O

- I/O device is always ready
- Data is always present
- Data transfer is not time dependent

Simple Strobe I/O

- Valid data present on an external device only at a certain time
- Data transfer is time dependent
- Strobe signal is sent after data is ready
- Read data only after getting strobe signal
 - Polling
 - Interrupt

Simple Strobe I/O

- Works well for low rate data transfer
- No signal to know when it is safe to send the next data byte

Single-handshake I/O

- After reading data, an Acknowledge Signal is sent
- Also called "strobed input"

Double-handshake I/O

- Data is put after receiver is ready
- Double handshake

Why Handshake ???

Methods of parallel Data Transfer

- Simple I/O
- Simple strobe I/O
- Single-handshake I/O
- Double-handshake I/O

Programmable PeripheralInterface

Intel 8255

Intel 8255

- 24 input/output pins
 - 3 PORTS: A, B, C
 - Port A, B: I/O
 - Port C: I/O and handshake
- The three ports are further grouped as follows:
 - Group A: port A and upper part of port C
 - Group B : port B and lower part of port C.

Intel 8255

- 3 modes of operation
- MODE 0 Simple I/O
- MODE 1 Single-handshake
- MODE 2 bidirectional handshake I/O

MODE 0

- SIMPLE I/O
- A, B, and C(upper and lower) all can be used as I/O independently
- 16 possible configurations

MODE 1

- PORT A, B: I/O
- PORT C Lower
 - Handshake for PORT B
 - PIN PC0 PC2
- PORT C Upper
 - Handshake for PORT A
 - PIN PC3 PC5 for input
 - PIN PC3, PC6, PC7 for output

Input Mode 1 on PORT A

- 1. I/O device sends data to port's data line
- 2. I/O device sends strobe signal (\neg STB 1 -> 0)
- 3. 8255 raises Input Buffer Full (IBF 0 -> 1) (PC5)
- 4. ¬STB is high again
- 5. Interrupt Request Signal is generated (PC3)
- 6. After data is read IBF goes back to 0 again

PORT A - Input

PORT A - OUTPUT

PORT B

MODE 2

- Only PORT A for I/O
- PIN PC3 to PC7 for handshake

CONTROL WORD

"PAI8255" by Barkha dhamechai - Own work. Licensed under CC BY-SA

https://commons.wikimedia.org/wiki/File:PAI8255.png#/media/File:PAI8255.png

3.0 via Commons -

Accessing the ports

- Typically the PPI is connected to the microprocessor at some address
- For MTS- 88.c
 - it is 000100xx b

A1	A 0	SELECTED PORT
0	0	Α
0	1	В
1	0	С
1	1	Control

What will be the control bit ??

A – input , B – output and C(lower) input ??

Learning Objectives/ Practice

- Write a code for writing 10101010b to PORT B
- Learn timing diagrams for different mode of data transfer
- Write a code to read strobed input in PORT A and write its complement to PORT B
- Constructing the control-byte for different mode of operations
- And other topics covered in class

Resources

- https://en.wikipedia.org/wiki/Intel 8255
- Microprocessors And Interfacing 2E, Douglas
 V Hall

