

CLAIMS

1. A piezoelectric element using a superhigh-oriented aluminum nitride thin film,

5 the piezoelectric element being free from hillocks, cracks, and peeling and including a stack structure in which a bottom electrode, a piezoelectric body thin film, and a top electrode are sequentially formed on a substrate,

10 the bottom electrode being made of an oriented W layer of which a (111) plane of W is parallel to a surface of the substrate, and

15 the piezoelectric body thin film being formed of a c-axis-oriented aluminum nitride thin film having a rocking curve full width half maximum (RCFWHM) not exceeding 2.5°.

20 2. The piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 1, wherein the substrate is a glass substrate.

25 3. A piezoelectric element using a superhigh-oriented aluminum nitride thin film,

 the piezoelectric element being free from hillocks, cracks, and peeling and including a stack structure in which a bottom electrode, a piezoelectric body thin film, and a top electrode are sequentially formed on a substrate, the bottom

electrode containing as a bottom layer an adhesive layer adhering to the substrate,

the bottom electrode being made of a stack body,

the stack body having a surface layer made of a metal
5 layer having an electronegativity of around 1.4 and such an orientation that a crystal plane of a metal having an identical atomic configuration to an atomic configuration on a (001) plane of aluminum nitride and an almost equal atomic distance to an atomic distance on the (001) plane is parallel
10 to a surface of the substrate, and

the piezoelectric body thin film being formed of a c-axis-oriented aluminum nitride thin film having a rocking curve full width half maximum (RCFWHM) not exceeding 2.5°.

15 4. The piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 3, wherein the substrate is a glass substrate.

20 5. A piezoelectric element using a superhigh-oriented aluminum nitride thin film,

the piezoelectric element being free from hillocks, cracks, and peeling and including a stack structure in which a bottom electrode, a piezoelectric body thin film, and a top electrode are sequentially formed on a substrate, the bottom
25 electrode containing as a bottom layer an adhesive layer

adhering to the substrate,

the bottom electrode being made a stack body containing as a surface layer such an oriented W, Pt, Au, or Ag layer that a (111) plane of W, Pt, Au, or Ag is parallel to a surface of the
5 substrate, and

the piezoelectric body thin film being formed of a c-axis-oriented aluminum nitride thin film having a rocking curve full width half maximum (RCFWHM) not exceeding 2.5°.

10 6. The piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 5, wherein the bottom electrode is made up of either two layers of Ti/Pt or Cr/Pt in accordance with a notation, "the first layer formed on the substrate/the second layer formed on the first layer" or three layers of Ti/Pt/Au, Ti/Ni/Au, or Cr/Ni/Au in accordance with a notation, "the first layer formed on the substrate/the second layer formed on the first layer/the third layer formed on the second layer."

15

20 7. The piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 5, wherein the substrate is a glass substrate.

25 8. A method of manufacturing a piezoelectric element using a superhigh-oriented aluminum nitride thin film,

the method comprising the sequential steps of:

5 forming a bottom electrode on a substrate from such an oriented W layer that a (111) plane of W is parallel to a surface of the substrate by sputtering at a temperature from room temperature to a low temperature at which no spaces develop between W particles; and

10 forming a piezoelectric body thin film of a c-axis-oriented aluminum nitride thin film having a rocking curve full width half maximum (RCFWHM) not exceeding 2.5° on the bottom electrode; and

forming a top electrode on the piezoelectric body thin film.

15 9. The method of manufacturing a piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 9, wherein the substrate is a glass substrate.

20 10. The method of manufacturing a piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 9, wherein the bottom electrode is deposited by r.f. plasma-assisted sputtering.

11. A method of manufacturing a piezoelectric element using a superhigh-oriented aluminum nitride thin film,

25 the method comprising the sequential steps of:

in forming, on a substrate, a bottom electrode of a two-
or more-layered stack structure including an adhesive layer
adhering to the substrate, firstly depositing the adhesive
layer by sputtering at a temperature from room temperature
5 to a low temperature at which no spaces develop between
particles and then depositing as a surface layer of the bottom
electrode a metal layer by sputtering at a temperature from
room temperature to a low temperature at which no spaces
develop between particles so that the metal layer exhibits
10 such orientation that a crystal plane of a metal is parallel to
a surface of the substrate, by using such a metal having an
electronegativity of around 1.4 that a crystal plane of the
metal has an identical atomic configuration to an atomic
configuration on a (001) plane of aluminum nitride and an
almost equal atomic distance to an atomic distance on the
15 (001) plane;

forming a piezoelectric body thin film of a
c-axis-oriented aluminum nitride thin film having a rocking
curve full width half maximum (RCFWHM) not exceeding 2.5°
20 on the bottom electrode; and

forming a top electrode on the piezoelectric body thin
film.

25 12. The method of manufacturing a piezoelectric element
using a superhigh-oriented aluminum nitride thin film as set

forth in claim 11, wherein the substrate is a glass substrate.

13. The method of manufacturing a piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 11, wherein the bottom electrode is deposited by r.f. plasma-assisted sputtering.

14. A method of manufacturing a piezoelectric element using a superhigh-oriented aluminum nitride thin film,

10 the method comprising the sequential steps of:

 in forming, on a substrate, a bottom electrode of a two- or more-layered stack structure including an adhesive layer adhering to the substrate, firstly depositing the adhesive layer by sputtering at a temperature from room temperature to a low temperature at which no spaces develop between particles and then depositing as a surface layer an oriented W, Pt, Au, or Ag layer that a (111) plane of W, Pt, Au, or Ag is parallel to a surface of the substrate by sputtering at a temperature from room temperature to a low temperature at 15 which no spaces develop between particles;

 forming a piezoelectric body thin film of a c-axis-oriented aluminum nitride thin film having a rocking curve full width half maximum (RCFWHM) not exceeding 2.5° on the bottom electrode; and

25 forming a top electrode on the piezoelectric body thin

film.

15. The method of manufacturing a piezoelectric element
using a superhigh-oriented aluminum nitride thin film as set
forth in claim 14, wherein the substrate is a glass substrate.
5

16. The method of manufacturing a piezoelectric element
using a superhigh-oriented aluminum nitride thin film as set
forth in claim 14, wherein the bottom electrode is deposited
10 by r.f. plasma-assisted sputtering.

17. A piezoelectric element using a superhigh-oriented
aluminum nitride thin film,

the piezoelectric element including a bottom electrode, a
15 piezoelectric body thin film of aluminum nitride, and a top
electrode stacked in this order on a substrate; and

the aluminum nitride having a rocking curve (RCFWHM)
not exceeding 2.5°.

20 18. The piezoelectric element using a superhigh-oriented
aluminum nitride thin film as set forth in claim 17, wherein
the bottom electrode is either a single, metal layer or a stack
body including an adhesive layer adhering to the substrate
and one or more metal layers on the adhesive layer.

19. The piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 18, wherein the stack body has a surface layer made of a metal having an electronegativity between 1.3 and 1.5 inclusive.

5

20. The piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 18, wherein the stack body has a surface layer made of a metal having a crystal plane having an identical atomic configuration to an atomic configuration on a (001) plane of aluminum nitride and an almost equal atomic distance to an atomic distance on the (001) plane.

10

21. The piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 18, wherein the stack body has as a surface layer an oriented W, Pt, Au, or Ag layer that a (111) plane of W, Pt, Au, or Ag is parallel to a surface of the substrate.

15

20. The piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 18, wherein the stack body is made up of either two layers of Ti/Pt or Cr/Pt in accordance with a notation, "the first layer formed on the substrate/the second layer formed on the first layer" or three layers of Ti/Pt/Au, Ti/Ni/Au, or Cr/Ni/Au in

25

accordance with a notation, "the first layer formed on the substrate/the second layer formed on the first layer/the third layer formed on the second layer."

5 23. The piezoelectric element using a superhigh-oriented aluminum nitride thin film as set forth in claim 17, wherein the substrate is a glass substrate.