Universidade do Minho	11 de Julho de 2014
Exame	de
Lógica	EI
Lic. Eng. Informática	Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas.

- 1. Considere o conjunto $\Delta \subseteq \mathcal{F}^{CP}$, definido indutivamente pelas seguintes regras:
 - 1. $\neg \bot \in \Delta$.
 - 2. Para todo $i \in \mathbb{N}_0$, $p_i \land \neg p_{i+1} \in \Delta$.
 - 3. Para todo $\varphi, \psi \in \mathcal{F}^{CP}$, se $\varphi \in \Delta$ e $\psi \in \Delta$, então $\neg \varphi \rightarrow \neg \psi \in \Delta$.
 - (a) Diga, justificando, se a fórmula $\neg\neg \bot \rightarrow \neg(p_3 \land \neg p_4)$ pertence ao conjunto Δ .
 - (b) Indique $\varphi, \psi \in \Delta$ tais que $\{\varphi, \psi\}$ seja semanticamente inconsistente. Justifique.
 - (c) Enuncie o Princípio de Indução Estrutural para Δ.
 - (d) Prove por indução estrutural que: para todo $\varphi \in \Delta$, existe uma valoração v que satisfaz φ .
- 2. Apresente uma forma normal disjuntiva logicamente equivalente à fórmula do Cálculo Proposicional $(p_1 \to p_2) \wedge (\neg p_1 \to (p_2 \to \bot))$. Justifique.
- $(p_1 \to p_2) \wedge (\neg p_1 \to (p_2 \to \bot))$. Justinque. 3. Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que: se $\Gamma \models \varphi \to \psi$ e $\Gamma \cup \{\varphi\}$ é consistente, então ψ não é contradição.
- 4. Seja $\varphi = p_0 \leftrightarrow p_1$.
 - (a) Construa uma derivação em DNP demostrando que $\varphi \vdash \neg p_0 \rightarrow \neg p_1$.
 - (b) Demonstre que φ ∀ p₀ ∨ p₁.
- 5. Seja L o tipo de linguagem $(\{c,f,+\},\{P,<\},\mathcal{N})$ em que $\mathcal{N}(c)=0,\,\mathcal{N}(f)=\mathcal{N}(P)=1,\,\mathcal{N}(+)=\mathcal{N}(<)=2.$
 - (a) Dê exemplo de um L-termo que use os símbolos c, f e +. Justifique.
 - (b) Defina por recursão estrutural a função $s: \mathcal{T}_L \to \mathcal{P}(\{c,f,+\})$ que a cada L-termo t faz corresponder o conjunto dos símbolos de função que ocorrem em t.
 - (c) Seja E = (N₀, ¯) a L-estrutura tal que;

$$\begin{split} \overline{\mathsf{c}} &= 2 & \overline{\mathsf{P}} = \big\{ n \in \mathbb{N}_0 : \ n \not\in \mathrm{par} \big\} \\ \overline{\mathsf{f}} &: \mathbb{N}_0 \to \mathbb{N}_0 \text{ tal que } \overline{\mathsf{f}}(n) = 5n & \overline{\mathbf{c}} &= \big\{ (m,n) \in \mathbb{N}_0^2 : m < n \big\} \\ \overline{\mathbf{c}} &: \mathbb{N}_0^2 \to \mathbb{N}_0 \text{ tal que } \overline{\mathbf{c}}(m,n) = m + n \end{split}$$

Seja φ a L-fórmula $\forall x_0 (P(x_0) \rightarrow P(c + f(x_0)))$. Mostre que

$$\mathbf{i},\ E\models\varphi.$$

φ não é universalmente válida.

(d) Indique, sem justificar, uma L-fórmula válida em E que represente a afirmação "A soma de quaisquer dois pares é menor que algum impar".

Cotações	12	2.	3.	4.	5.
	1.75+1.75+1+1.5	1.75	1.5	1.75+1.5	1.5+1.5+3+1.5