HERRAMIENTA PARA LA VISUALIZACIÓN DE LA MOVILIDAD URBANA DE VILANOVA I LA GELTRÚ

Andrés Prieto González

ÍNDICE

- Introducción
- Especificaciones
- Modelos
- Diseño
- Planificación
- Demo
- Trabajo futuro y conclusiones

SMARTCITY

- Uso de la tecnología para crear nuevos servicios en una ciudad cualquiera
- Mejora la calidad de vida de sus habitantes
- · Posibilidad de ofrecer nuevos servicios en cualquier ámbito

"Self-driving cars are the natural extension of active safety and obviously something we should do" – Elon Musk

¿QUÉ ES FOG COMPUTING?

NECESIDAD

- Herramienta para la visualización del estado en cada momento de la ciudad
- Fog Computing es un paradigma ideal para las smarcities
- Conocer la disposición de los dispositivos

OBJETIVOS

- Modelo básico para la simulación de grandes masas de habitantes
- Mostrar visualmente las zonas de congestión y las transiciones del flujo de habitantes
- Herramienta de soporte para el estudio de Fog Computing

ESTADO DEL ARTE

PROYECTO	CAPACIDAD DE AGENTES	VISUALIZACIÓN DE LA CONGESTIÓN	SENTIDO DE LA HORA DEL DÍA	BONITA INTERFAZ	CÓDIGO ABIERTO	SOPORTE AL SOFTWARE
Unity3D	-	✓	×	~	V	~
Via	~	✓	✓	~	X	~
SUMO	×	×	~	~	✓	×
NYC Taxi	×	×	~	~	✓	~

ÍNDICE

- Introducción
- Especificaciones
- Modelos
- Diseño
- Planificación
- Demo
- Trabajo futuro y conclusiones

ESPECIFICACIONES

- · Incluir toda la población de Vilanova i la Geltrú
- Mostrar concentraciones y flujo
- Simulación cronológica
- Fluidez en la visualización
- · Interacción con la herramienta
- Código abierto

ÍNDICE

- Introducción
- Especificaciones
- Modelos
- Diseño
- Planificación
- Demo
- Trabajo futuro y conclusiones

MODELOS

Aleatorio

Se computa de forma totalmente aleatoria

Lévy flight

· Se computa de forma aleatoria con tendencia a lugares de interés

Agent Based Modelling (ABM)

· Se computa en base al conocimiento de cada agente

ÍNDICE

- Introducción
- Especificaciones
- Modelos
- Diseño
- Planificación
- Demo
- Trabajo futuro y conclusiones

DISEÑO

INFORMACIÓN DE VILANOVA I LA GELTRÚ

CLASIFICACIÓN DE LA INFORMACIÓN

- Por zonas de Vilanova i la Geltrú
 - Donde viven sus habitantes
 - Donde se encuentran los colegios
 - Donde se encuentran los lugares de trabajo
 - Donde se encuentran los lugares de ocio
- Clasificación por edad
 - Escolar
 - Trabajador
 - Otros

RUTINAS

ESTRUCTURA DE LA INFORMACIÓN

COLEGIOS CONSIDERADOS

TRABAJOS CONSIDERADOS

INFORMACIÓN DISPONIBLE

NÚMERO DE	DENSIDAD DE	COORDENADAS	TOTALIDAD
HABITANTES DEL	POBLACIÓN	LIMÍTROFES	DE LOS
BARRIO			BARRIOS
REAL	REAL	REAL	SÍ

BARRIOS

COORDENAD	RANGO DE	HORARIO	TOTALIDAD DE	NÚMERO
AS DEL LUGAR	EDADES		LOS CENTROS	DE
	ADMITIDO		EDUCATIVOS	PERSONAS
				POR
				EDAD*
REAL	REAL	REAL	SÍ	IDEAL

CENTROS ESCOLARES

HORARIO	COORDENADAS	TOTALIDAD DE	NÚMERO DE
	DEL LUGAR	LOS LUGARES DE	PERSONAS
		TRABAJO	CONTRATADA
			S POR EDAD*
ESTIMADO	REAL	NO	IDEAL

LUGARES DE TRABAJO

COORDENADAS	NÚMERO DE	ESTANCIA	TOTALIDAD
DEL LUGAR	PERSONAS QUE	MEDIA (TIEMPO)	DE LAS
	LO FRECUENTAN		ZONAS DE
	POR EDAD		OCIO
REAL	IDEAL	IDEAL	NO
			20

ZONAS DE OCIO

MÓDULO DE GENERACIÓN

GENERACIÓN DE HORARIOS Y RUTAS GPS

- Generamos mediante un enrutador las rutinas de todos sus habitantes
- Apuntamos los horarios de sus rutinas
- Tecnologías: C + OpenMP + Bash + cURL + Python + OSRM

GENERACIÓN DE PUNTOS INTEMEDIOS

- Traducción de coordenadas GPS a coordenadas más detalladas de nuestro marco de simulación
- Generación de puntos intermedios
- Tecnologías: JavaScript + D3.js + StreamSaver.js

REGISTRO DE EJECUCIÓN

- Registramos todas las posiciones en cada instante de todos los habitantes respetando los horarios
- Cambiamos la estructura de la traza para optimizar su lectura
- Los análisis matemáticos se realizarán en esta traza
- A partir de este paso es donde podemos generar suplementos para la visualización
- Tecnologías: JavaScript + StreamSaver.js

MAPA DE CALOR DINÁMICO

GENERACIÓN DE TAMAÑOS POR LÍNEA

 Calculamos el tamaño de cada línea de la traza para ayudar a la visualización

MÓDULO DE VISUALIZACIÓN

VISUALIZACIÓN

- · Obtenemos las trazas generadas en el módulo de generación
- Ofrecemos la posibilidad de modificar el tamaño de los habitantes
- Mostramos la hora de cada instante
- Posibilidad de elegir la traza a visualizar
- Recordar que la visualización se hará encima del mapa con un marco donde proyectaremos la vista

MARCO DE VISUALIZACIÓN

 Recordar que la visualización se proyectará por encima del mapa mediante un marco

ÍNDICE

- Introducción
- Especificaciones
- Modelos
- Diseño
- · Planificación
- Demo
- Trabajo futuro y conclusiones

PLANIFICACIÓN

FECHA INICIO: 26/07/2017

FECHA FIN: 17/06/2018

TOTAL HORAS: 705

ÍNDICE

- Introducción
- Especificaciones
- Modelos
- Diseño
- Planificación
- Demo
- Trabajo futuro y conclusiones

Vilanova actual

• Vilanova modificada

DEMO

ÍNDICE

- Introducción
- Especificaciones
- Modelos
- Diseño
- Planificación
- Demo
- Trabajo futuro y conclusiones

TRABAJO FUTURO

- Crear un hilo de investigación para mejorar la información de Vilanova i la Geltrú
- Validar los resultados obtenidos
- Ofrecer más interacción con la simulación
- Crear más variabilidad en las rutinas existentes

CONCLUSIONES

- No existen proyectos a esta escala, por tanto, este debe servir de base
- En caso de querer escalar a ciudades mayores se requerirá de una mejor clasificación de la información
- El diseño a modo de bloques nos da una gran versatilidad a la hora de añadir suplementos a nuestro proyecto en un futuro

GRACIAS POR SU ATENCIÓN