# **PSALTer results panel**

 $S = \int \int \int \int \left(\frac{1}{6}\left(-4t_{3}\mathcal{A}^{\alpha_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i}}\mathcal{A}^{\beta_{i$ 

# **Wave operator**

|                                        | ${}^{0,^{+}}\mathcal{A}^{\parallel}$ | $0.^+f^{\parallel}$ | $0.^+f^{\perp}$ | ${}^{0}\mathcal{A}^{\parallel}$                                             |                                                               |                                                                               |                                   |                                                   |                                                      |                              |                                                        |                                                   |                                   |                                          |
|----------------------------------------|--------------------------------------|---------------------|-----------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------|--------------------------------------------------------|---------------------------------------------------|-----------------------------------|------------------------------------------|
| <sup>0,+</sup> <i>Я</i> <sup>∥</sup> † | <i>t</i> . 3                         | $-i \sqrt{2} kt$ .  | 0               | 0                                                                           |                                                               |                                                                               |                                   |                                                   |                                                      |                              |                                                        |                                                   |                                   |                                          |
| <sup>0,+</sup> f    †                  | $i\sqrt{2} kt$ .                     | $2k^2t$ .           | 0               | 0                                                                           |                                                               |                                                                               |                                   |                                                   |                                                      |                              |                                                        |                                                   |                                   |                                          |
| $^{0^{+}}f^{\perp}$ †                  | 0                                    | 0                   | 0               | 0                                                                           |                                                               |                                                                               |                                   |                                                   |                                                      |                              |                                                        |                                                   |                                   |                                          |
| <sup>0.</sup> 'Æ <sup>∥</sup> †        | 0                                    | 0                   | 0               | t.<br>2                                                                     | $\overset{1^+}{\cdot}\mathcal{A}^{\parallel}{}_{\alpha\beta}$ | $\overset{1^+}{\cdot} \mathcal{F}^{\scriptscriptstyle \perp}{}_{\alpha\beta}$ | $1.^+f^{\parallel}_{\alpha\beta}$ | $^{1}\mathcal{A}^{\parallel}{}_{lpha}$            | ${}^1\mathcal{H}^{\scriptscriptstyle\perp}{}_{lpha}$ | $^{1}f^{\parallel}_{\alpha}$ | $\frac{1}{f}f_{\alpha}^{\perp}$                        |                                                   |                                   |                                          |
|                                        |                                      |                     |                 | $^{1^{+}}\mathcal{H}^{\parallel}$ $\dagger^{lphaeta}$                       | $k^2 (2r. + r.) + \frac{2t.}{3}$                              | _                                                                             |                                   | 0                                                 | 0                                                    | 0                            | 0                                                      |                                                   |                                   |                                          |
|                                        |                                      |                     |                 | $^{1.}^{+}\mathcal{A}^{\scriptscriptstyle \perp}$ $\dagger^{^{lphaeta}}$    | $\frac{\sqrt{2} t_{\cdot}}{3}$                                | t.<br>2<br>3                                                                  | $\frac{ikt.}{\frac{2}{3}}$        | 0                                                 | 0                                                    | 0                            | 0                                                      |                                                   |                                   |                                          |
|                                        |                                      |                     |                 | $\overset{1}{\cdot}^{\dagger}f^{\parallel} \stackrel{\alpha\beta}{\dagger}$ |                                                               | $-\frac{1}{3}ikt$ .                                                           |                                   | 0                                                 | 0                                                    | 0                            | 0                                                      |                                                   |                                   |                                          |
|                                        |                                      |                     |                 | $^{1}\mathcal{A}^{\parallel}\dagger^{lpha}$                                 | 0                                                             | 0                                                                             | 0                                 | $k^2 \left(\frac{r}{3} + r\right) + \frac{2t}{3}$ | $-\frac{\sqrt{2}\ t}{3}$                             | 0                            | $-\frac{2}{3}ikt$                                      |                                                   |                                   |                                          |
|                                        |                                      |                     |                 | $^{1}\mathcal{H}^{\perp}\dagger^{\alpha}$                                   | 0                                                             | 0                                                                             | 0                                 | $-\frac{\sqrt{2} t_{3}}{3}$                       | t.<br>3<br>3                                         | 0                            | $\frac{1}{3} i \sqrt{2} kt.$                           |                                                   |                                   |                                          |
|                                        |                                      |                     |                 | $\frac{1}{2}f^{\parallel}\uparrow^{\alpha}$                                 | 0                                                             | 0                                                                             | 0                                 | 0                                                 | 0                                                    | 0                            | 0                                                      |                                                   |                                   |                                          |
|                                        |                                      |                     |                 | $\frac{1}{2}f^{\perp}\uparrow^{\alpha}$                                     | 0                                                             | 0                                                                             | 0                                 |                                                   | $-\frac{1}{3}i\sqrt{2}kt.$                           | 0                            | $\frac{2k^2t}{3}$                                      | $^{2^{+}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$ | $2^+ f^{\parallel}_{\alpha\beta}$ | <sup>2-</sup> <i>Α</i>    <sub>αβχ</sub> |
|                                        |                                      |                     |                 | •                                                                           |                                                               |                                                                               |                                   |                                                   |                                                      |                              | $^{2^{+}}\mathcal{H}^{\parallel}\dagger^{\alpha\beta}$ |                                                   | 0                                 | 0                                        |
|                                        |                                      |                     |                 |                                                                             |                                                               |                                                                               |                                   |                                                   |                                                      |                              | $2.^{+}f^{\parallel} \uparrow^{\alpha\beta}$           | 0                                                 | 0                                 | 0                                        |
|                                        |                                      |                     |                 |                                                                             |                                                               |                                                                               |                                   |                                                   |                                                      |                              | $^{2}\mathcal{F}^{\parallel}$ † $^{\alpha\beta\chi}$   | 0                                                 | 0                                 | 0                                        |
|                                        |                                      |                     |                 |                                                                             |                                                               |                                                                               |                                   |                                                   |                                                      |                              |                                                        |                                                   |                                   |                                          |

## Saturated propagator



## **Source constraints**

| Spin-parity form                                                                                           | Covariant form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Multiplicities |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| $0^+_{\cdot} \tau^{\perp} == 0$                                                                            | $\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1              |  |  |  |
| $-2 i k^{0^{+}} \sigma^{\parallel} + {}^{0^{+}} \tau^{\parallel} == 0$                                     | $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1              |  |  |  |
| $\frac{1}{2ik} \frac{1}{1} \sigma^{\perp \alpha} + \frac{1}{1} \tau^{\perp \alpha} == 0$                   | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3              |  |  |  |
| 1- <sub>τ</sub>    <sup>α</sup> == 0                                                                       | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3              |  |  |  |
| $\overline{i} k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} = 0$ | $\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}$                                                                                               | 3              |  |  |  |
| $2 \sigma^{\parallel \alpha \beta \chi} == 0$                                                              | $3  \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta\beta\epsilon} + 3  \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta\beta}_{\delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi\alpha\delta} + 4  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\lambda\alpha\delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta\alpha\chi} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta\alpha\beta} + 4  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta\alpha\beta} + 2  \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \sigma^{\delta\alpha\beta} + 2  \partial_{\kappa} \partial^{\kappa} \partial^{\kappa}$ | 5              |  |  |  |
|                                                                                                            | $3  \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3  \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \partial^{$                                                                                                                                                                                                                                                                                                                                          |                |  |  |  |
| $2^+_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$                                                          | $4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\ \chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau(\Delta+\mathcal{K})^{\chi\delta} = 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\beta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta} = 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau(\Delta+$                                                                                                                                                                                                                                                                                                                                                    | 5              |  |  |  |
| Total expected gauge                                                                                       | Total expected gauge generators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |  |  |  |

## **Massive spectrum**

(No particles)

# **Massless spectrum**



### Massless particle

| Pole residue:  | I-— + | $\frac{57}{2r.+r.}$ | <br>> 0 |
|----------------|-------|---------------------|---------|
| Polarisations: | 2     |                     |         |

# **Unitarity conditions**

 $(r_{3} < 0 \&\& (r_{5} < -\frac{r_{3}}{2} || r_{5} > -2 r_{3})) || (r_{3} > 0 \&\& -2 r_{3} < r_{5} < -\frac{r_{3}}{2})$