1. Popravni Kolokvij iz Moderne Fizike II 29. 8. 2011

- 1. S pomočjo semi-empirične masne formule določi, kolikšna energija bi se sprostila pri razpadu jedra urana $^{238}_{92}$ U v dve enaki jedri.
- 2. Na berilijevo ploščico debeline $50 \,\mu\mathrm{m}$ vpada curek delcev α neznane energije. Presek curka je 2 cm², gostota toka v curku pa je $10^{13}/\mathrm{cm}^2\mathrm{s}$. Kolikšna je kinetična energija vpadnih delcev α , če v času 1 sekunde naštejemo 10^5 sipanih delcev med kotoma $\theta = 40^\circ$ in $\theta = 41^\circ$? Upoštevaj le coulombsko sipanje delcev α na jedrih berilija. Berilij ${}_{9}^{4}\mathrm{Al}$ ima gostoto $1850 \,\mathrm{kg/m}^3$.
- 3. Kateri od naštetih procesov so dovoljeni in kateri prepovedani? (Pri prepovedanih je možnih več razlogov; naštej vse, ki jih ugotoviš.)

$$\pi^{+} \rightarrow e^{+} + \nu_{e}$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$K^{+} \rightarrow \pi^{+} + \pi^{+} + \pi^{0}$$

$$p_{\text{(prost,miruje)}} \rightarrow e^{+} + n + \nu_{e}$$

$$p + p \rightarrow K^{+} + \Sigma^{+}(uus)$$

$$p + n \rightarrow \Xi^{0}(uss) + p$$

$$\Xi^{0}(uss) \rightarrow \Sigma^{0}(uds) + \Lambda^{0}(uds)$$

4. Folijo ⁷ Li z maso 0.05 g obsevamo s termičnimi nevtroni, presek za reakcijo je 37 mb. Nastali ⁸Li razpada z razpadom β^- in razpolovnim časom 0.85 s. Gostota nevtronskega fluksa je konstantna z 3 × 10¹² nevtronov/(s · cm²). Po kolikšnem času sistem doseže ravnovesje (kostantno število ⁸Li) ? Določi ravnovesno aktivnost vzorca!