Mo Tu We Th Fr Sa Su		1o	
	Date	1	
UEC 27)	2511.23		
Veetor Fields in	space	work	and flux
F= <x, +="" y,=""></x,>			
Example: force field	(gravita tisn	al at	traction
of asolid mass at 10	0,0,0) on a m	ass m	at
(X, y, \frac{2}{2})			
/		c+ 10	5
Fdirect towards o	rigin, mugnitu	Male	63
$F = -C \xrightarrow{(X,Y,\frac{1}{2})}$			
(3	<u></u>		
Electric field,			
b) Velocity Field			
c) gradient fields	M=U(X, y, Z)	qui=	= LUx, Uy, 1
	7		
	-5		
Flux: Y1	CA	10	Mdy-Ndx)
		_	
recall, in 20	7X Th	ux = Scl	n'ds
V		(= //i	2 (Mxt dy) de
			//

In 3D, flux through a surface

4

'			✓ *			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	1	1	

Ex: \vec{F} a vector field, S curface in space \vec{F} $\vec{n} = u\vec{n} t \text{ normal vector}$

the two sides of surface (often is up)

[Flux =]/s F', n.ds,

Surface area element

Notation: ds = A.ds

Example: (1) Flux of $\vec{F} = \langle X, Y, \pm \rangle$ through sphere of radius a at origin

$$\iint_{\mathbf{S}} \vec{F} d\vec{s}^2 = \iint_{\mathbf{S}} \vec{F} \cdot \hat{n} ds$$

$$\hat{n} = \langle x, y, \pm \rangle \qquad \vec{F} / / \vec{n}$$

$$\alpha \qquad (Jxyyz+z) = \alpha \text{ on sphere}$$

 $F'\hat{n} = |F| = Jx^2 + y^2 + x^2 = \alpha$ $= \iint_S adS = \alpha \iint_S dS = \alpha \cdot 4\pi \alpha^2 = 4\pi \alpha^2$

2) Same sphere, $\vec{H} = \pm \hat{k}$ $\vec{H} \cdot \vec{R} = \langle 0, 0, \pm \rangle$, $\frac{\langle x_i y_i \pm \rangle}{\alpha} = \langle 0, 0, \frac{\pm^2}{\alpha} \rangle$

シリらH·nds=リsinds ds= asmy dpdo luse

spheroical coordinates)

\(\frac{1}{2}\)	Y		R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	1	1	

	2= a	025¢		***************************************		
=) \$\$\$\$	८ व व		SSara	25th	atsin & c	
,		= (a^3 .	- ±0	ως ² φ], ^π .). ZT
		=	3/10	3	, , , ,	

Condusions

1) use geometry or need to set up/ Ands

9 S = Horizantal plane z = a $\hat{n} = \hat{k}$, dS = dxdy

 $X=\alpha = \hat{n} = \frac{1}{2} \hat{n} = \frac{1}{2$

1) sphere of radius a centreel origin

 $n = \langle x, y, \pm \rangle / \alpha$ ($z = \alpha \cos \phi$ spherical $ds = \alpha^2 \sin \phi d\phi d\phi$) $\begin{cases} z = \alpha \cos \phi \\ z = \alpha \cos \phi \end{cases}$ spherical

2) cylinder of radius a / 2-axis coordinates

9	X	7		R			
	Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	1	1	

To set up bounds So-clady, look at shoulow of S in xy-plane

Geometric interpretation:

If Fisa velocity field, Flux = amount of mutter through 5 per unit time.

AS IV=F.