Python: Manipulation de fichiers

Fichiers CSV et TXT

(1)

K. Boudjelaba k.boudjelaba@carnus.fr

7 mars 2021

1 Fichiers CSV

1.1 Enregistrement des données dans un fichier CSV

L'exemple ci-dessous montre comment tracer des signaux sinusoïdaux sur une période et sauvegarder les résultats dans un même fichier CSV.

```
Python
   Exemple:
 1 import numpy as np
2 import matplotlib.pyplot as plt
3 %matplotlib inline
5 * sin et cos sur une période
 6 * Sauvegarde dans un même fichier CSV
            # Amplitude des signaux
9 a = 2.
10 f = 5.
              # Fréquence des signaux
11 fe = 500. # Fréquence d'échantillonnage
13 t = np.arange(start=0, stop=1/f, step=1/fe)
14 \text{ S1} = a*np. \sin(2.0*np. pi*f*t)
15 \text{ S2} = a*np.\cos(2.0*np.pi*f*t)
_{17} # Courbes
18 plt.figure(figsize=(8,4))
19 plt.plot(t,S1,label='sin')
20 plt.plot(t,S2,label='cos')
21 plt.xlabel('t [s]')
22 plt.ylabel('S(t)')
23 plt.legend()
plt.title('Signaux sinusoïdaux')
25 plt.grid()
26 plt.show()
28 # Données
data = np.zeros((len(t),3))
a_2 data[:,2] = S2
35 name="csv/SinCos.csv"
36 np.savetxt (name, data, delimiter=",", header="t, sinus, cosinus", comments="")
```

Signaux sinusoïdaux

FIGURE 1 – Résultats : Courbes

t	sinus	cosinus
0.000000000000000000000000000000000000	0.000000000000000000000e+00	2.000000000000000000000000e+00
2.0000000000000000042e-03	1.255810390586267478e-01	1.996053456856543118e+00
4.000000000000000083e-03	$2.506664671286085166\mathrm{e}\text{-}01$	1.984229402628955752e+00
6.000000000000000125e-03	3.747626291714492575e-01	1.964574501457377442e+00
8.000000000000000167e-03	$4.973797743297095897\mathrm{e}\text{-}01$	1.937166322257262152e+00
$1.0000000000000000021\mathrm{e}\text{-}02$	6.180339887498947915 e-01	$1.902113032590307062\mathrm{e}{+00}$
1.2000000000000000025e-02	$7.362491053693559495 \mathrm{e}\text{-}01$	1.859552971776502694e+00
1.400000000000000029e-02	$8.515585831301453190 \mathrm{e}\text{-}01$	1.809654104932039154e + 00
$1.600000000000000033 \mathrm{e}\text{-}02$	$9.635073482034306469\mathrm{e}\text{-}01$	1.752613360087727168e + 00
$1.800000000000000211 \mathrm{e}\text{-}02$	1.071653589957993313e+00	1.688655851004030151e+00
$2.0000000000000000042\mathrm{e}\text{-}02$	1.175570504584946274e + 00	1.618033988749894903e+00
$2.19999999999999872 \mathrm{e}\text{-}02$	1.274847979497379269e+00	1.541026485551578507e + 00
$2.400000000000000050\mathrm{e}\text{-}02$	1.369094211857377452e + 00	1.457937254842823105e+00
$2.600000000000000228\mathrm{e}\text{-}02$	1.457937254842823105e+00	1.369094211857377452e + 00
$2.800000000000000058\mathrm{e}\text{-}02$	1.541026485551578284e + 00	1.274847979497379491e+00
$2.99999999999999889\mathrm{e}\text{-}02$	1.618033988749894680e + 00	1.175570504584946496e + 00
3.2000000000000000067e-02	1.688655851004030151e + 00	1.071653589957993313e+00
3.400000000000000244e-02	1.752613360087727390e+00	$9.635073482034304249\mathrm{e}\text{-}01$
3.600000000000000422e-02	1.809654104932039154e + 00	$8.515585831301453190 \mathrm{e}\text{-}01$
3.7999999999999996e-02	1.859552971776502694e + 00	$7.362491053693561716\mathrm{e}\text{-}01$
$4.0000000000000000083 \mathrm{e}\hbox{-}02$	1.902113032590307062e+00	$6.180339887498949025 \mathrm{e}\text{-}01$
$4.2000000000000000261 \mathrm{e}\text{-}02$	1.937166322257262152e + 00	4.973797743297094787e-01
$4.3999999999999745 \mathrm{e}\text{-}02$	1.964574501457377220e+00	3.747626291714494240e-01
$4.59999999999999922 \mathrm{e}\text{-}02$	1.984229402628955752e + 00	$2.506664671286085166\mathrm{e}\text{-}01$
$4.800000000000000100 \mathrm{e}\text{-}02$	1.996053456856543118e + 00	$1.255810390586265812\mathrm{e}\text{-}01$
$5.0000000000000000278\mathrm{e}\text{-}02$	2.000000000000000000000000000000000000	$1.224646799147353207 \mathrm{e}\text{-}16$
$5.200000000000000455\mathrm{e}\text{-}02$	1.996053456856543118e+00	$-1.255810390586268033\mathrm{e}\text{-}01$
5.3999999999999999999999999999999999999	$1.984229402628955752\mathrm{e}{+00}$	$-2.506664671286082946\mathrm{e}\text{-}01$
$5.600000000000000117\mathrm{e}\text{-}02$	1.964574501457377442e + 00	$-3.747626291714492019\mathrm{e}\text{-}01$
5.800000000000000294e-02	1.937166322257262152e+00	-4.973797743297097007e-01

t	sinus	cosinus
5.9999999999999778e-02	1.902113032590307284e+00	-6.180339887498946805e-01
6.1999999999999956e-02	1.859552971776502694e + 00	-7.362491053693559495e-01
6.400000000000000133e- 02	1.809654104932038932e+00	-8.515585831301455411e-01
$6.600000000000000311\mathrm{e}\text{-}02$	1.752613360087726946e + 00	$-9.635073482034307579\mathrm{e}\text{-}01$
6.800000000000000488e-02	1.688655851004029929e+00	-1.071653589957993535e+00
$7.0000000000000000666\mathrm{e}\text{-}02$	1.618033988749894903e+00	-1.175570504584946052e+00
$7.2000000000000000844 \mathrm{e}\text{-}02$	$1.541026485551578507\mathrm{e}{+00}$	-1.274847979497379269e+00
$7.39999999999999634 \mathrm{e}\text{-}02$	$1.457937254842823549\mathrm{e}{+00}$	-1.369094211857376786e+00
7.59999999999999811 e- 02	1.369094211857377674e + 00	-1.457937254842822661e+00
7.799999999999999999999999999999999999	1.274847979497379713e+00	-1.541026485551578284e+00
8.000000000000000167e-02	1.175570504584946496e + 00	-1.618033988749894680e+00
8.200000000000000344e-02	1.071653589957993313e+00	-1.688655851004030151e+00
8.40000000000000522e-02	9.635073482034304249e-01	-1.752613360087727390e+00
8.600000000000000699e-02	8.515585831301449860e-01	-1.809654104932039154e+00
8.7999999999999489e-02	7.362491053693562826e-01	-1.859552971776502694e+00
8.9999999999999667e-02	6.180339887498950135e-01	-1.902113032590307062e+00
9.1999999999999845e-02	4.973797743297095897e-01	-1.937166322257262152e+00
9.400000000000000022e-02	3.747626291714490909e-01	-1.964574501457377442e+00
9.6000000000000000200e-02	2.506664671286081836e-01	-1.984229402628955752e+00
9.80000000000000377e-02	1.255810390586271641e-01	-1.996053456856543118e+00
1.000000000000000056e-01	2.449293598294706414e-16	-2.000000000000000000e+00
1.020000000000000073e-01	-1.255810390586266645e-01	-1.996053456856543118e+00
1.040000000000000091e-01	-2.506664671286086277e-01	-1.984229402628955752e+00
1.05999999999999970e-01	-3.747626291714487023e-01	-1.964574501457377442e+00
1.0799999999999988e-01	-4.973797743297091456e-01	-1.937166322257262374e+00
1.1000000000000000006e-01	-6.180339887498945695e-01	-1.902113032590307284e+00
1.1200000000000000023e-01	-7.362491053693558385e-01	-1.859552971776502917e+00
1.1400000000000000041e-01 1.160000000000000059e-01	-8.515585831301454300e-01	-1.809654104932038932e+00 -1.752613360087726946e+00
1.18000000000000000039e-01 1.18000000000000000077e-01	-9.635073482034307579e-01 -1.071653589957993535e+00	-1.688655851004029929e+00
1.19999999999999956e-01	-1.0710333899379933336+00 -1.175570504584946052e+00	-1.618033988749894903e+00
1.219999999999999973e-01	-1.274847979497379269e+00	-1.541026485551578507e+00
1.2399999999999991e-01	-1.369094211857377452e+00	-1.457937254842823105e+00
1.2600000000000000009e-01	-1.457937254842822661e+00	-1.369094211857377896e+00
1.28000000000000000000000000000000000000	-1.541026485551578729e+00	-1.274847979497379269e+00
1.30000000000000044e-01	-1.618033988749894680e+00	-1.175570504584946496e+00
1.320000000000000062e-01	-1.688655851004030595e+00	-1.071653589957992647e+00
1.340000000000000080e-01	-1.752613360087727168e+00	-9.635073482034306469e-01
1.360000000000000098e-01	-1.809654104932039598e+00	-8.515585831301443198e-01
1.380000000000000115e- 01	-1.859552971776502917e+00	-7.362491053693555054e-01
1.400000000000000133e-01	-1.902113032590307062e+00	-6.180339887498951246e-01
1.420000000000000151e-01	-1.937166322257262374e+00	-4.973797743297088680e-01
1.440000000000000169e-01	-1.964574501457377442e+00	-3.747626291714492575e-01
1.45999999999999999999999999999999999999	-1.984229402628955530e+00	-2.506664671286092383e-01
1.47999999999999927e-01	-1.996053456856543118e+00	$-1.255810390586281633\mathrm{e}\text{-}01$
1.4999999999999944e-01	-2.000000000000000000000000000000000000	-3.673940397442059375e-16
$1.51999999999999962 \mathrm{e}\text{-}01$	-1.996053456856543118e+00	$1.255810390586256653\mathrm{e}\text{-}01$
1.53999999999999980e-01	-1.984229402628955752e+00	$2.506664671286084611\mathrm{e}\text{-}01$
1.55999999999999998e-01	-1.964574501457377442e+00	$3.747626291714485358\mathrm{e}\text{-}01$
1.580000000000000016e-01	-1.937166322257262152e+00	4.973797743297099228 e-01
1.600000000000000033e-01	-1.902113032590307284e+00	$6.180339887498944584 \mathrm{e}\text{-}01$
1.620000000000000051e-01	-1.859552971776502472e+00	7.362491053693566156e-01
1.6400000000000000069e-01	-1.809654104932039154e+00	8.515585831301453190e-01

t	sinus	cosinus
1.660000000000000087e-01	-1.752613360087726724e+00	9.635073482034314241e-01
1.68000000000000104 e-01	-1.688655851004030151e+00	1.071653589957993313e+00
1.700000000000000122 e-01	-1.618033988749895125e+00	1.175570504584945830e + 00
1.720000000000000140e-01	-1.541026485551578062e+00	1.274847979497379935e+00
1.740000000000000158e-01	-1.457937254842823105e+00	1.369094211857377230e+00
1.759999999999999898e-01	-1.369094211857377896e+00	1.457937254842822661e+00
1.77999999999999916e-01	-1.274847979497380601e+00	1.541026485551577618e + 00
1.7999999999999933e-01	-1.175570504584946496e+00	1.618033988749894680e+00
1.81999999999999951e-01	-1.071653589957994201e+00	1.688655851004029484e+00
1.83999999999999999999999999999999999999	-9.635073482034306469e-01	1.752613360087727168e + 00
1.85999999999999987e-01	-8.515585831301459852e-01	1.809654104932038710e+00
1.880000000000000004e-01	-7.362491053693556164e-01	1.859552971776502917e+00
1.900000000000000022e-01	-6.180339887498952356e-01	1.902113032590307062e+00
1.9200000000000000040e-01	-4.973797743297089791e-01	1.937166322257262374e + 00
1.940000000000000058e-01	-3.747626291714493685e-01	1.964574501457377442e + 00
1.960000000000000075e-01	-2.506664671286093493e-01	1.984229402628955530e+00
1.980000000000000093e-01	-1.255810390586265257e-01	1.996053456856543118e+00;
Table 1: Résultats : Fichier CS	V	,

1.1.1 Exercice 1

Écrire un programme pour enregistrer les données suivantes dans un fichier CSV.

	$x 2x x^2$	
0.00000000000000000000000000000000000	0.00000000000000000000000000000000000	0.00000000000000000000000000000000000
1.000000000000000000000000000000000000	2.000000000000000000000000000000000000	1.000000000000000000000000000000000000
2.000000000000000000000000000000000000	4.000000000000000000000000000000000000	4.000000000000000000000000000000000000
3.000000000000000000000000000000000000	6.000000000000000000000000000000000000	9.000000000000000000000000000000000000
4.000000000000000000000000000000000000	8.000000000000000000000000000000000000	1.6000000000000000000000000000000000000
5.000000000000000000000000000000000000	1.000000000000000000000000000000000000	2.5000000000000000000000000000000000000

Table 2: Exercice 1

1.1.2 Exercice 2

Écrire un programme pour enregistrer les données suivantes dans un fichier CSV.

x	e^x
0.00000000000000000000000000000000000	1.000000000000000000000000000000000000
$1.000000000000000056\mathrm{e}\text{-}01$	1.105170918075647712e + 00
$2.000000000000000111\mathrm{e}\text{-}01$	1.221402758160169855e + 00
3.000000000000000444e-01	1.349858807576003183e+00
$4.000000000000000222 \mathrm{e}\text{-}01$	1.491824697641270348e + 00
5.000000000000000000000000000000000000	1.648721270700128194e + 00
$6.0000000000000000888\mathrm{e}\text{-}01$	1.822118800390509108e + 00
$7.000000000000000666\mathrm{e}\text{-}01$	2.013752707470476633e + 00
$8.000000000000000444\mathrm{e}\text{-}01$	2.225540928492467874e + 00
$9.000000000000000222\mathrm{e}\text{-}01$	2.459603111156949851e + 00
1.000000000000000000000000000000000000	2.718281828459045091e+00
1.100000000000000089e+00	3.004166023946433395e+00
1.200000000000000178e+00	3.320116922736548126e+00
$1.300000000000000044\mathrm{e}{+00}$	3.669296667619244445e+00
1.400000000000000133e+00	4.055199966844675430e + 00
1.5000000000000000000000000000000000000	$4.481689070338064518\mathrm{e}{+00}$
$1.6000000000000000089\mathrm{e}{+00}$	$4.953032424395114930\mathrm{e}{+00}$
1.700000000000000178e + 00	5.473947391727200795e+00
$1.800000000000000044\mathrm{e}{+00}$	6.049647464412946540e + 00
2.000000000000000000000000000000000000	7.389056098930650407e+00;

Table 3: Exercice 2

1.2 Enregistrement des données dans plusieurs fichiers CSV

Le programme exporte les données vers trois fichiers CSV (AM_O.csv, AM_1.csv et Am_2.csv).

```
Exemple:
                                                                           Python
 1 import numpy as np
2 import matplotlib.pyplot as plt
з %matplotlib inline
 6 Modulation d'amplitude pour différentes valeur de
7 l'indice de modulation m
_{10} m = [0.5, 1, 2] # Indice de modulation
_{11} \text{ fm} = 10
                      # Fréquence du message (signal modulant)
_{12}\ fp\ =\ 200
                      # Fréquence de la porteuse
                      # Période d'échantillonnage
_{13} Te = 0.0002
t = np.arange(start = -.1, stop = .1, step = Te)
17 for i in range(len(m)):
       S = 2*(1+m[i]*np.cos(2.0*np.pi*fm*t))*np.cos(2.0*np.pi*fp*t)
18
19
20
        plt.figure(figsize=(8,4))
21
22
        plt.plot(t,S)
       plt.xlabel('t [s]')
plt.ylabel('S(t)')
plt.title('Signal AM pour m = {}'.format(m[i]))
23
24
26
        plt.grid()
27
28
       \# Donné es
        \begin{array}{l} \text{data} = \text{np.zeros} ((\text{len}(t), 2)) \\ \text{data} [:, 0] = t \end{array}
29
30
        data[:,1] = S
31
33
        # Sauvegarde
       name="csv/AM_{} . csv". format(i)
34
        np.savetxt(name, data, delimiter=",", header="t,S", comments="")
35
37 plt.show()
```

1.2.1 Exercice 3

Écrire un programme pour créer les fichiers CSV suivants :

x	2x
0.00000000000000000000000000000000000	0.00000000000000000000000000000000000
1.000000000000000000000000000000000000	2.000000000000000000000000000000000000
2.000000000000000000000000000000000000	4.000000000000000000000000000000000000
3.000000000000000000000000000000000000	6.000000000000000000000000000000000000
4.000000000000000000000000000000000000	8.000000000000000000000000000000000000
5.000000000000000000000000000000000000	1.00000000000000000000000e+01;

Table 4: Exercice 3: Table_1.csv

	x	x^2
0.00000000000000000000000e+	-00	0.00000000000000000000000000000000000
1.00000000000000000000000e+	-00	1.000000000000000000000000000000000000
2.000000000000000000000000000000000000	-00	4.000000000000000000000000000000000000
3.000000000000000000000000000000000000	-00	9.000000000000000000000000000000000000
4.000000000000000000000000e+	-00	1.6000000000000000000000000000000000000
5.000000000000000000000e+	-00	2.5000000000000000000000000000000000000

Table 5: Exercice 3: Table 2.csv

1.3 Importation des données à partir d'un fichier CSV

```
Exemple:
                                                  Python
 1 import csv
 _3 def lectureColCSV(fichier, sep, n) :
      fichier <str> : Le nom du fichier -> "SinCos.csv"
      sep < str > : Le séparateur de colonnes -> ","
              <int> : Le numéro de la colonne à lire
      file = open( fichier, "r")
10
      reader = csv.reader(file, delimiter = sep)
      col = []
11
      for row in reader:
13
          try:
              sep\_decimal = row [n]. \, replace (",",".")
14
              col.append(float(sep_decimal))
          except:
16
17
              pass
      file.close()
18
      return col
19
20
24
25 # Courbes
26 plt. figure (figsize = (8,4))
plt.plot(temps,x,label='sin')
28 plt.plot(temps,y,label='cos')
29 plt.xlabel('t [s]')
30 plt.ylabel('S(t)')
31 plt.legend()
32 plt.title('Signaux sinusoïdaux')
33 plt.grid()
34 plt.show()
```


Figure 2 – Résultats : Courbes

1.3.1 Exercice 4

- Écrire un programme pour importer et tracer les données du fichier Table_1.csv
- Écrire un programme pour importer et tracer les données du fichier Table_2.csv

1.3.2 Exercice 5

- Écrire un programme pour importer les données du fichier Exercice5.csv
- Dans des graphes différents, tracer les données de chaque colonne en fonction de la première colonne.

2 Lecture d'un fichier TXT

FIGURE 3 – Courbes des données