As-rigid-as-possible (ARAP)

- Liu L, Zhang L, Xu Y, et al. A local/global approach to mesh parameterization
 [C]//Computer Graphics Forum. Oxford, UK: Blackwell Publishing Ltd, 2008,
 27(5): 1495-1504
- Homework #3, ARAP + ASAP, Deadline 2024.03.31

Formulation

- ho Variables: parameterization coordinate (u_i, v_i) and target transformations L_t
- > Energy: $E(u, v, L) = \sum_{t} A_{t} ||J_{t}(u, v) L_{t}||_{F}^{2}$
- \succ Target transformation L_t
 - Isometric mapping: rotation matrix
 - Conformal mapping: similar matrix

Local-global solver

$$E(u, v, L) = \sum_{t} A_{t} \|J_{t}(u, v) - L_{t}\|_{F}^{2}$$

Alternatively optimization

- > Local step: fix (u, v), optimize L_t .
- \triangleright Global step: fix L_t , optimize (u, v)

Local-global solver

$$E(u, v, L) = \sum_{t} A_{t} ||J_{t}(u, v) - L_{t}||_{F}^{2}$$

Alternatively optimization

- > Local step: fix (u, v), optimize L_t (SVD).
- \triangleright Global step: fix L_t , optimize (u, v) (quadratic energy)

Global solver

Figure 2: Parameterizing a mesh by aligning locally flattened triangles. (Left) Original 3D mesh; (middle) flattened triangles; (right) 2D parameterization.