PROBABILITY & STATISICS

Lecture 1 – Intro & Combinatorics review

PLAN FOR TODAY

- 1. Quick intro
- 2. Course overview + Entry test
- 3. Combinatorics review
 - Basic counting principles
 - Inclusion-Exclusion
 - Permutations and combinations

Intro & Logistics

ABOUT THE COURSE

- January 9 January 27
- 17:00 20:20 Barcelona time
 - slight changes are possible, I will let you know in advance
- On-campus and online

ABOUT ME

 EVGENIYA Korneva evgeniakorneva@gmail.com

Prague, Czech Republic

- Education:
 - 2015 Bachelor of Applied Mathematics (Moscow, Russia)
 - 2016 Master of Artificial Intelligence (Leuven, Belgium)

ABOUT YOU

- 7 students from 5 different countries
- Bachelor's and master's students
- CS, Cybersecurity and Data Science tracks

ABOUT THE COURSE

- January 9 January 27
- 17:00 20:20 Barcelona time
 - slight changes are possible, I will let you know in advance
- On-campus and online

- Main topics covered:
 - Probability:
 - basic combinatorics and probability review
 - discrete and continuous random variables and their properties
 - Statistics:
 - estimators
 - confidence intervals
 - hypothesis testing

ABOUT THE COURSE

- January 9 January 27
- 17:00 20:20 Barcelona time
 - slight changes are possible, I will let you know in advance
- On-campus and online
- Final grade:
 - 40% graded assignments
 - 30% interim exam (Probability)
 - 30% final exam (Statistics)

- Main topics covered:
 - Probability:
 - basic combinatorics and probability review
 - discrete and continuous random variables and their properties
 - Statistics:
 - estimators
 - confidence intervals
 - hypothesis testing

JOIN OUR GOOGLE CLASSROOM!

- Class materials and graded assignments will be posted there.
- Invites has been sent out, check your inbox.

PLEASE TAKE THE ENTRY TEST

- NOT graded
- Would help me adapt the materials
- Link also in Google classroom

Intro to Probability

Combinatorics review

MOTIVATION

- Some things in the world are random
 - flipping a coin;
 - roll of a die;
 - picking a random card from a shuffled deck of cards.
- Probability theory: explain the unpredictable.

IT ALL STARTED WITH GAMBLING...

IT ALL STARTED WITH GAMBLING...

If a die is rolled four times, it's more likely that 6 would occur at least once than not at all

IT ALL STARTED WITH GAMBLING...

If a die is rolled four times, it's more likely that 6 would occur at least once than not at all

I should talk to mathematicians about that!

... AND WAS FORMALIZED RECENTLY

MID 17th CENTURY

Fermat

Pascal

... AND WAS FORMALIZED RECENTLY

MID 17th CENTURY

Pascal

Kolmogorov

PROBABILITY IS EVERYWHERE

"Novak Djokovic will probably win Australian Open 2023"

"There is a 70% chance of rain"

"This test gives correct result with 99.9% accuracy"

"I will probably never become a US president"

INTERPRETATION DIFFERS

PROBABILITY AS LIMITING FREQUENCY

PROBABILITY AS DEGREE OF BELIEF

If the same experiment is repeated infinitely many times, how often doest the event happen?

How much are you certain in something?

- This test gives correct result with 99.9% accuracy
- There is a 70% chance of rain

- Novak Djokovic will probably win Australian Open 2023
- I will probably never become a US president

INTERPRETATION DIFFERS

PROBABILITY AS LIMITING FREQUENCY

PROBABILITY AS DEGREE OF BELIEF

If the same experiment is repeated infinitely many times, how often doest the event happen?

- This test gives correct result with 99.9% accuracy
- There is a 70% chance of rain

How much are you *certain* in something?

- Novak Djokovic will probably win Australian Open 2023
- I will probably never become a US president

INTERPRETATION DIFFERS

PROBABILITY AS LIMITING FREQUENCY

PROBABILITY
AS DEGREE OF BELIEF

If the same experiment is repeated infinitely many times, how often doest the event happen?

- This test gives correct result with 99.9% accuracy
- There is a 70% chance of rain

How much are you *certain* in something?

- Novak Djokovic will probably win Australian Open 2023
- I will probably never become a US president

LET'S FORMALIZE IT

• A random experiment is a process by which we observe something uncertain.

LET'S FORMALIZE IT

• A random experiment is a process by which we observe something uncertain.

• The result of a random experiment is called the outcome.

LET'S FORMALIZE IT

• A random experiment is a process by which we observe something uncertain.

• The result of a random experiment is called the **outcome**.

• The set of all possible outcomes is called the **sample space** (denoted by *S*).

RANDOM EXPERIMENTS: EXAMPLES

• Random experiment: flipping a coin once

Sample space: {H, T}

Outcome: H (we've got heads)

RANDOM EXPERIMENTS: EXAMPLES

• Random experiment: flipping a coin once

Sample space:

Outcome:

{H, T}

H (we've got heads)

Random experiment:

Sample space:

Outcome:

flipping a coin twice.

{HH, HT, TH, TT}

HT (we've got heads and tails)

RANDOM EXPERIMENTS: EXAMPLES

Random experiment:

Sample space:

Outcome:

flipping a coin once

H (we've got heads)

Random experiment:

Sample space:

Outcome:

flipping a coin twice.

{HH, HT, TH, TT}

HT (we've got heads and tails)

Random experiment:

Sample space:

Outcome:

rolling a die

{1, 2, 3, 4, 5, 6} 5

• Each subset of a sampling space is called an **event** (denoted by E).

Example: rolling a die

$$S = \{1, 2, 3, 4, 5, 6\}$$

• Each subset of a sampling space is called an **event** (denoted by E).

Example: rolling a die

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $E_1 = \{1\}$ — we've got number 1.

• Each subset of a sampling space is called an **event** (denoted by E).

Example: rolling a die

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $E_1 = \{1\}$ — we've got number 1.

 $E_2 = \{2, 4, 6\}$ — we've got an even number.

• Each subset of a sampling space is called an **event** (denoted by E).

Example: rolling a die

$$S = \{1, 2, 3, 4, 5, 6\}$$

 $E_1 = \{1\}$ — we've got number 1.

 $E_2 = \{2, 4, 6\}$ — we've got an even number.

$$E_3 = \{3, 5\}$$
 – we've got 3 or 5.

What is probability

RELATIVE FREQUENCY

• Pascal and Fermat defined probability when a game is repeated a large number of times under the same conditions.

RELATIVE FREQUENCY

- Pascal and Fermat defined probability when a game is repeated a large number of times under the same conditions.
- Probability of an event is defined by the **limiting frequency** with which this event appears in a long series of similar experiments.

RELATIVE FREQUENCY

- Pascal and Fermat defined probability when a game is repeated a large number of times under the same conditions.
- Probability of an event is defined by the **limiting frequency** with which this event appears in a long series of similar experiments.
- Example:
 If we flip a fair coin infinitely many times, it will come up heads half of the times.

COMPUTING PROBABILITY

• If a sample space S is finite, and each outcome is equally likely, then probability of an event E can be computed as

$$P(E) = \frac{\text{# ways } E \text{ can occur}}{\text{# possible outcomes}} = \frac{|E|}{|S|}$$

• If a sample space S is finite, and each outcome is equally likely, then probability of an event E can be computed as

$$P(E) = \frac{\text{# ways } E \text{ can occur}}{\text{# possible outcomes}} = \frac{|E|}{|S|}$$

$$S = \{1, 2, 3, 4, 5, 6\}, |S| = 6$$

• If a sample space S is finite, and each outcome is equally likely, then probability of an event E can be computed as

$$P(E) = \frac{\text{# ways } E \text{ can occur}}{\text{# possible outcomes}} = \frac{|E|}{|S|}$$

$$S = \{1, 2, 3, 4, 5, 6\},$$
 $|S| = 6$
 $E_1 = \{1\},$ $|E_1| = 1,$ $P(E_1) =$

• If a sample space S is finite, and each outcome is equally likely, then probability of an event E can be computed as

$$P(E) = \frac{\text{# ways } E \text{ can occur}}{\text{# possible outcomes}} = \frac{|E|}{|S|}$$

$$S = \{1, 2, 3, 4, 5, 6\},$$
 $|S| = 6$
 $E_1 = \{1\},$ $|E_1| = 1,$ $P(E_1) = 1/6$

• If a sample space S is finite, and each outcome is equally likely, then probability of an event E can be computed as

$$P(E) = \frac{\text{# ways } E \text{ can occur}}{\text{# possible outcomes}} = \frac{|E|}{|S|}$$

$$S = \{1, 2, 3, 4, 5, 6\},$$
 $|S| = 6$
 $E_1 = \{1\},$ $|E_1| = 1,$ $P(E_1) = 1/6$
 $E_2 = \{1, 3, 5\},$ $|E_2| = 3,$ $P(E_2) =$

• If a sample space S is finite, and each outcome is equally likely, then probability of an event E can be computed as

$$P(E) = \frac{\text{# ways } E \text{ can occur}}{\text{# possible outcomes}} = \frac{|E|}{|S|}$$

$$S = \{1, 2, 3, 4, 5, 6\},$$
 $|S| = 6$
 $E_1 = \{1\},$ $|E_1| = 1,$ $P(E_1) = 1/6$
 $E_2 = \{1, 3, 5\},$ $|E_2| = 3,$ $P(E_2) = 1/2$

- American roulette: 38 sectors
 - 18 red
 - 18 black
 - 2 green (0 and 00)
- What is the probability to win if you
 - Bet on red
 - Bet on black
 - Bet on green

- American roulette: 38 sectors
 - 18 red
 - 18 black
 - 2 green (0 and 00)
- What is the probability to win if you
 - Bet on red $P(win) = 18/38 \approx 0.474$
 - Bet on black
 - Bet on green

- American roulette: 38 sectors
 - 18 red
 - 18 black
 - 2 green (0 and 00)
- What is the probability to win if you
 - Bet on red $P(win) = 18/38 \approx 0.474$
 - Bet on black $P(win) = 18/38 \approx 0.474$
 - Bet on green

- American roulette: 38 sectors
 - 18 red
 - 18 black
 - 2 green (0 and 00)
- What is the probability to win if you
 - Bet on red $P(win) = 18/38 \approx 0.474$
 - Bet on black $P(win) = 18/38 \approx 0.474$
 - Bet on green $P(win) = 2/38 \approx 0.05$

Combinatorics review

COMBINATORICS: WHAT FOR?

• Combinatorics: the art of counting without enumerating.

- Computer science: determine time and space complexity of an algorithm.
- Counting number of elements in a set –
 basis for probability theory.

Fundamental counting principles

TWO FUNDAMENTAL RULES

Sum Rule

• If there are **a** ways of doing A and **b** ways of doing B and we can not do both at the same time, then there are **a** + **b** ways to choose one of the actions.

TWO FUNDAMENTAL RULES

Sum Rule

• If there are **a** ways of doing A and **b** ways of doing B and we can not do both at the same time, then there are **a** + **b** ways to choose one of the actions.

$$|A \cup B| = |A| + |B|$$

when $A \cap B = \emptyset$

- We want to order dinner for tonight:
 - Pizza:

Dominos, Pizza Hut or King Slice (3 restaurants)

• Sushi:

Wabi Sabi or Sakura (2 restaurants)

- We want to order dinner for tonight:
 - Pizza:

Dominos, Pizza Hut or King Slice (3 restaurants)

• Sushi:

Wabi Sabi or Sakura (2 restaurants)

How many options are there in total?

- We want to order dinner for tonight:
 - Pizza:

Dominos, Pizza Hut or King Slice (3 restaurants)

• Sushi:

Wabi Sabi or Sakura (2 restaurants)

- How many options are there in total?
 - 3 pizza places + 2 sushi places =

- We want to order dinner for tonight:
 - Pizza:

Dominos, Pizza Hut or King Slice (3 restaurants)

• Sushi:

Wabi Sabi or Sakura (2 restaurants)

• How many options are there in total?

3 pizza places + 2 sushi places = 3 + 2 = 5 options in total

- We want to order dinner for tonight:
 - Pizza:

Dominos, Pizza Hut or King Slice (3 restaurants)

• Sushi:

Wabi Sabi or Sakura (2 restaurants)

- How many options are there in total?
 - 3 pizza places + 2 sushi places = 3 + 2 = 5 options in total

$$|P| = 3, |S| = 2,$$
 $|P \cup S| = |P| + |S| = 3 + 2 = 5$

TWO FUNDAMENTAL RULES

Sum Rule

• If there are **a** ways of doing A and **b** ways of doing B and we can not do both at the same time, then there are **a** + **b** ways to choose one of the actions.

Product rule

If there are a ways of doing A and b ways of doing B, then there are a · b ways of performing both actions.

$$|A \cup B| = |A| + |B|$$

when $A \cap B = \emptyset$

TWO FUNDAMENTAL RULES

Sum Rule

• If there are **a** ways of doing A and **b** ways of doing B and we can not do both at the same time, then there are **a** + **b** ways to choose one of the actions.

$$|A \cup B| = |A| + |B|$$

when $A \cap B = \emptyset$

Product rule

If there are a ways of doing A and b ways of doing B, then there are a · b ways of performing both actions.

$$|A \times B| = |A| \cdot |B|$$

- You want to order pizza:
 - first, choose the type of crust: thin or thick (2 choices);
 - second, choose one topping: cheese, pepperoni, or sausage (3 choices).
- How many different pizzas are there?

- You want to order pizza:
 - first, choose the type of crust: thin or thick (2 choices);
 - second, choose one topping: cheese, pepperoni, or sausage (3 choices).
- How many different pizzas are there?
 - 2 ways of choosing crust x 3 ways of choosing topping =

- You want to order pizza:
 - first, choose the type of crust: thin or thick (2 choices);
 - second, choose one topping: cheese, pepperoni, or sausage (3 choices).
- How many different pizzas are there?
 - 2 ways of choosing crust \times 3 ways of choosing topping = $= 2 \times 3 = 6$ different pizzas

- You want to order pizza:
 - first, choose the type of crust:

thin or thick (2 choices);

- second, choose one topping: cheese, pepperoni, or sausage (3 choices).
- How many different pizzas are there?
 - 2 ways of choosing crust \times 3 ways of choosing topping = $2 \times 3 = 6$ different pizzas

$$|C \times T| = |C| \cdot |T| = 2 \cdot 3 = 6$$

- A valid password contains 6 to 8 symbols
 - first symbol is a letter (upper- or lowercase);
 - other symbols are letters (upper- or lowercase) or digits.
- How many different passwords are there?

- A valid password contains 6 to 8 symbols
 - first symbol is a letter (upper- or lowercase);
 - other symbols are letters (upper- or lowercase) or digits.
- How many different passwords are there?
- Solution:

- A valid password contains 6 to 8 symbols
 - first symbol is a letter (upper- or lowercase);
 - other symbols are letters (upper- or lowercase) or digits.
- How many different passwords are there?
- Solution:

Sum rule:

- A valid password contains 6 to 8 symbols
 - first symbol is a letter (upper- or lowercase);
 - other symbols are letters (upper- or lowercase) or digits.
- How many different passwords are there?
- Solution:

Sum rule:

$$N = P_6 + P_7 + P_8$$
 $P_i - \#$ passwords of length i

• Solution:

Sum rule: $N = P_6 + P_7 + P_8$

 P_i – # passwords of length i

• Solution:

Sum rule: $N = P_6 + P_7 + P_8$

 P_i – # passwords of length i

First symbol:

upper- or lowercase letter

Other symbols:

upper- or lowercase letter or digit

• Solution:

Sum rule: $N = P_6 + P_7 + P_8$

 P_i – # passwords of length i

First symbol:

upper- or lowercase letter $-2 \cdot 26 = 52$ options

Other symbols:

upper- or lowercase letter or digit

• Solution:

Sum rule: $N = P_6 + P_7 + P_8$

 P_i – # passwords of length i

First symbol:

upper- or lowercase letter $-2 \cdot 26 = 52$ options

Other symbols:

upper- or lowercase letter or digit -52 + 10 = 62 options

Solution:

Sum rule:
$$N = P_6 + P_7 + P_8$$

 P_i – # passwords of length i

First symbol:

upper- or lowercase letter $-2 \cdot 26 = 52$ options

Other symbols:

upper- or lowercase letter or digit -52 + 10 = 62 options

$$P_6 =$$

$$P_7 =$$

$$P_8 =$$

Solution:

Sum rule:
$$N = P_6 + P_7 + P_8$$

 P_i – # passwords of length i

First symbol:

upper- or lowercase letter $-2 \cdot 26 = 52$ options

Other symbols:

upper- or lowercase letter or digit -52 + 10 = 62 options

Product rule:

$$P_6 =$$

$$P_7 =$$

$$P_8 =$$

EXAMPLE: NUMBER OF PASSWORDS

Solution:

Sum rule:
$$N = P_6 + P_7 + P_8$$

 P_i – # passwords of length i

First symbol:

upper- or lowercase letter $-2 \cdot 26 = 52$ options

Other symbols:

upper- or lowercase letter or digit -52 + 10 = 62 options

Product rule:

$$P_6 = 52 \cdot 62^5$$

$$P_7 =$$

$$P_8 =$$

EXAMPLE: NUMBER OF PASSWORDS

Solution:

Sum rule:
$$N = P_6 + P_7 + P_8$$

 P_i – # passwords of length i

First symbol:

upper- or lowercase letter $-2 \cdot 26 = 52$ options

Other symbols:

upper- or lowercase letter or digit -52 + 10 = 62 options

Product rule:

$$P_6 = 52 \cdot 62^5$$

$$P_7 = 52 \cdot 62^6$$

$$P_8 = 52 \cdot 62^7$$

EXAMPLE: NUMBER OF PASSWORDS

Solution:

Sum rule: $N = P_6 + P_7 + P_8$

 P_i – # passwords of length i

First symbol:

upper- or lowercase letter $-2 \cdot 26 = 52$ options

Other symbols:

upper- or lowercase letter or digit -52 + 10 = 62 options

Product rule:

 $P_6 = 52 \cdot 62^5$ $P_7 = 52 \cdot 62^6$

 $P_8 = 52 \cdot 62^7$

$$N = 52 \cdot 62^5 + 52 \cdot 62^6 + 52 \cdot 62^7$$

• How many numbers between 1 and 100 are divisible by 3?

Every 3rd number is divisible by 3: 3, 6, 9, ..., 93, 96, 99.

• How many numbers between 1 and 100 are divisible by 3?

Every 3rd number is divisible by 3: 3, 6, 9, ..., 93, 96, 99.

Thus, there are [100 / 3] = 33 of them.

• How many numbers between 1 and 100 are divisible by 5?

Every 5th number is divisible by 5: 5, 10, 15, ..., 95, 95, 100.

• How many numbers between 1 and 100 are divisible by 5?

Every 5th number is divisible by 5: 5, 10, 15, ..., 95, 95, 100.

Thus, there are [100 / 5] = 20 of them.

- How many numbers between 1 and 100 are divisible by 3?
- How many numbers between 1 and 100 are divisible by 5?
- How many numbers between 1 and 100 are divisible by 3 or 5?

- How many numbers between 1 and 100 are divisible by 3?
- How many numbers between 1 and 100 are divisible by 5?
- How many numbers between 1 and 100 are divisible by 3 or 5? Sum rule:
 - 33 numbers divisible by 3 + 20 numbers divisible by 5 = 53 numbers divisible by 3 or 5.

- How many numbers between 1 and 100 are divisible by 3?
- How many numbers between 1 and 100 are divisible by 5?
- How many numbers between 1 and 100 are divisible by 3 or 5?

33 numbers divisible by 3 + 20 numbers divisible by 5 = = 53 numbers divisible by 3 or 5.

Exclusion-Inclusion Principle

ADDITION PRINCIPLE

• If A and B are disjoint sets $(A \cap B = \emptyset)$, then

$$|A \cup B| = |A| + |B|$$

INCLUSION-EXCLUSION (2 SETS)

• If A and B are **not** disjoint $(A \cap B = \emptyset)$, then

$$|A \cup B| = |A| + |B|$$

INCLUSION-EXCLUSION (2 SETS)

• If A and B are not disjoint (A \cap B = \emptyset), then

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|D_3 \cup D_5| =$$

$$|D_3 \cup D_5| =$$

$$|D_3 \cup D_5| = |D_3| + |D_5| - |D_{15}| =$$

$$|D_3 \cup D_5| = |D_3| + |D_5| - |D_{15}| =$$

= 33 + 20 - 6 = 47.

For every two finite sets A and B

$$|A \cup B| = |A| + |B| - |A \cap B|$$
.

• In particular, if A and B are disjoint, then $|A \cap B| = \emptyset$ and

$$|A \cup B| = |A| + |B|$$
.

• For any finite sets A, B and C

$$|A \cup B \cup C| =$$

• For any finite sets A, B and C

• For any finite sets A, B and C

$$|A \cup B \cup C| =$$

$$= |A| + |B| + |C| -$$

$$-|A \cap B| - |A \cap C| - |B \cap C| +$$

For any finite sets A, B and C

Practice problems

Google classroom -> Day 1

• A total of 36 students plan to take at least one of Discrete Mathematics, Algebra and Calculus during the coming semester:

Discrete Mathematics	23	
Algebra	19	
Calculus	18	
Discrete Mathematics &	& Algebra	7
Discrete Mathematics &	Calculus	9
Algebra & Calculus		11

How many students plan to take all three courses?

• A total of 36 students plan to take at least one of Discrete Mathematics, Algebra and Calculus during the coming semester:

Discrete Mathematics 23	
Algebra 19	
Calculus 18	
Discrete Mathematics & Algebra	7
Discrete Mathematics & Calculus	9
Algebra & Calculus	11

How many students plan to take all three courses?

$$36 = 23 + 19 + 18 - 7 - 9 - 11 + N$$

$$N = 3$$
 students

• A total of 36 students plan to take at least one of Discrete Mathematics, Algebra and Calculus during the coming semester:

Discrete Mathematics	23	
Algebra	19	
Calculus	18	
Discrete Mathematics	& Algebra	7
Discrete Mathematics	& Calculus	9
Algebra & Calculus		11

• A total of 36 students plan to take at least one of Discrete Mathematics, Algebra and Calculus during the coming semester:

Discrete Mathematics	23	
Algebra	19	
Calculus	18	
Discrete Mathematics	& Algebra	7
Discrete Mathematics	& Calculus	9
Algebra & Calculus		11

• A total of 36 students plan to take at least one of Discrete Mathematics, Algebra and Calculus during the coming semester:

Discrete Mathematics	23	
Algebra	19	
Calculus	18	
Discrete Mathematics	& Algebra	7
Discrete Mathematics	& Calculus	9
Algebra & Calculus		11

• A total of 36 students plan to take at least one of Discrete Mathematics, Algebra and Calculus during the coming semester:

Discrete Mathematics	23	
Algebra	19	
Calculus	18	
Discrete Mathematics	& Algebra	
Discrete Mathematics	& Calculus	9
Algebra & Calculus		11

• A total of 36 students plan to take at least one of Discrete Mathematics, Algebra and Calculus during the coming semester:

Discrete Mathematics	23	
Algebra	19	
Calculus	18	
Discrete Mathematics &	Algebra	7
Discrete Mathematics &	Calculus	9
Algebra & Calculus		11

• A total of 36 students plan to take at least one of Discrete Mathematics, Algebra and Calculus during the coming semester:

Discrete Mathematics	23	
Algebra	19	
Calculus	18	
Discrete Mathematics &	& Algebra	7
Discrete Mathematics &	& Calculus	9
Algebra & Calculus		11

• A total of 36 students plan to take at least one of Discrete Mathematics, Algebra and Calculus during the coming semester:

Discrete Mathematics	23	
Algebra	19	
Calculus	18	
Discrete Mathematics	& Algebra	7
Discrete Mathematics	& Calculus	9
Algebra & Calculus		11

• A total of 36 students plan to take at least one of Discrete Mathematics, Algebra and Calculus during the coming semester:

Discrete Mathematics	23	
Algebra	19	
Calculus	18	
Discrete Mathematics	& Algebra	7
Discrete Mathematics	& Calculus	9
Algebra & Calculus		11

How many students plan to take exactly one of the courses? 10 + 4 + 1 = 15

$$|A \cup B \cup C \cup D| =$$

$$|A \cup B \cup C \cup D| =$$

= $|A| + |B| + |C| + |D|$

$$|A \cup B \cup C \cup D| =$$
 $= |A| + |B| + |C| + |D| -|A \cap B| - |A \cap C| - |A \cap D| -|B \cap C| - |B \cap D| - |C \cap D|$

$$|A \cup B \cup C \cup D| =$$

$$= |A| + |B| + |C| + |D| -$$

$$-|A \cap B| - |A \cap C| - |A \cap D| -$$

$$-|B \cap C| - |B \cap D| - |C \cap D| +$$

$$+|A \cap B \cap C| + |B \cap C \cap D| +$$

$$+|A \cap B \cap D| + |A \cap C \cap D|$$

$$|A \cup B \cup C \cup D| =$$

$$= |A| + |B| + |C| + |D| -$$

$$-|A \cap B| - |A \cap C| - |A \cap D| -$$

$$-|B \cap C| - |B \cap D| - |C \cap D| +$$

$$+|A \cap B \cap C| + |B \cap C \cap D| +$$

$$+|A \cap B \cap D| + |A \cap C \cap D| -$$

$$-|A \cap B \cap C \cap D|.$$

Permutations and combinations

POSSIBLE ARRANGEMENTS

- In how many ways can n people sit in a row?
- How many words of length n strings are there?

- We have n different candies. In how many ways can we chose $k \leq n$ out them?
- In how many ways can we distribute k identical candies among n kids?

POSSIBLE ARRANGEMENTS

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	In how many ways can n people sit in a row?	How many different n -bit strings are there?
NOT ORDERED	In how many ways can we chose k out of n different candies in a bag?	In how many ways can we distribute k identical candies among n kids?

POSSIBLE ARRANGEMENTS

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	$\begin{array}{c} \textit{PERMUTATIONS} \\ \textit{Seating } n \; \textit{people in a row} \end{array}$	TUPLES How many different n -bit strings are there?
NOT ORDERED	COMBINATIONS Choosing k out of n different candies in a bag	COMBINATIONS with repetitions Distributing k identical candies among n kids

Permutations

Ordered, each element can be used only once (no repetitions)

• In how many ways can *n* distinct objects be ordered?

Example:

In how many orders can we put 10 books on the shelf?

• In how many ways can *n* distinct objects be ordered?

Example:

In how many orders can we put n books on the shelf?

10 ·

• In how many ways can *n* distinct objects be ordered?

Example:

In how many orders can we put n books on the shelf?

10 · 9 ·

• In how many ways can *n* distinct objects be ordered?

Example:

In how many orders can we put n books on the shelf?

• In how many ways can *n* distinct objects be ordered?

Example:

In how many orders can we put n books on the shelf?

$$10 \cdot 9 \cdot 8 \cdot \dots \cdot 3 \cdot 2 \cdot 1 = 10!$$

• In how many ways can n distinct objects be ordered? Answer: n!

Example:

In how many orders can we put n books on the shelf?

$$10 \cdot 9 \cdot 8 \cdot \dots \cdot 3 \cdot 2 \cdot 1 = 10!$$

 How many arrangement of the letters in the word SUCCESS are there?

 How many arrangement of the letters in the word SUCCESS are there?

7 letters → 7! different arrangements?

 How many arrangement of the letters in the word SUCCESS are there?

7 letters → 7! different arrangements?

SUCCESS is the same as SUCCESS

 How many arrangement of the letters in the word SUCCESS are there?

7 letters → 7! different arrangements?

SUCCESS is the same as SUCCESS

SUCCESS is the same as SUCCESS, SUCCESS,

• • •

 How many arrangement of the letters in the word SUCCESS are there?

7 letters → 7! different arrangements?

SUCCESS is the same as SUCCESS

SUCCESS is the same as SUCCESS, SUCCESS,

• •

 How many arrangement of the letters in the word SUCCESS are there?

7 letters → 7! different arrangements?

SUCCESS is the same as SUCCESS

SUCCESS is the same as SUCCESS, SUCCESS,

• • •

only
$$\frac{7!}{2! \cdot 3!}$$
 different arrangements

If among n elements $k \le n$ elements are not unique, with n_1, n_2, \ldots, n_k repetitions respectively, then the number of possible permutations is

$$\frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}$$

Tuples

Not ordered, each element can be used multiple times (repetitions are allowed)

• Example of a 6-bit string:

|--|

• How many such strings are there?

• Example of a 6-bit string:

- How many such strings are there?
- Solution:

• Example of a 6-bit string:

- How many such strings are there?
- Solution:

*	*	*	*	*	*

• Example of a 6-bit string:

- How many such strings are there?
- Solution:

*	*	*	*	*	*

Each position:

• Example of a 6-bit string:

- How many such strings are there?
- Solution:

Each position: 0 or 1 (2 choices)

• Example of a 6-bit string:

- How many such strings are there?
- Solution:

Each position: 0 or 1 (2 choices)

Product rule:

• Example of a 6-bit string:

- How many such strings are there?
- Solution:

|--|

Each position: 0 or 1 (2 choices)

Product rule:

$$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^6 = 64$$
 different 6-bit strings.

Combinations (without repetitions)

Not ordered, each element can be used only once (no repetitions)

COMBINATIONS

• How many committees of two people can be chosen from this group of four people:

Jones, Chan, Vello, Harris

COMBINATIONS

 How many committees of two people can be chosen from this group of four people:

Jones, Chan, Vello, Harris

• Number of 2-permutations:

COMBINATIONS

 How many committees of two people can be chosen from this group of four people:

Jones, Chan, Vello, Harris

• Number of 2-permutations: 4!/(4-2)! = 12

 How many committees of two people can be chosen from this group of four people:

Jones, Chan, Vello, Harris

• Number of 2-permutations: 4!/(4-2)! = 12

Chan, Jones	Jones, Harris	Harris, Vello	Vello, Chan
Chan, Harris	Jones, Vello	Harris, Chan	Vello, Jones
Chan, Vello	Jones, Chan	Harris, Jones	Vello, Harris.

 How many committees of two people can be chosen from this group of four people:

Jones, Chan, Vello, Harris

• Number of 2-permutations: 4!/(4-2)! = 12

Chan, Jones	Jones, Harris	Harris, Vello	Vello, Chan
Chan, Harris	Jones, Vello	Harris, Chan	Vello, Jones
Chan, Vello	Jones, Chan	Harris, Jones	Vello, Harris.

• Since the roles are the same, many of these are the same...

 How many committees of two people can be chosen from this group of four people:

- Number of 2-permutations: 4!/(4-2)! = 12
- Since the roles are the same, many of these are the same. How do we fix this?

 How many committees of two people can be chosen from this group of four people:

- Number of 2-permutations: 4!/(4-2)! = 12
- Since the roles are the same, many of these are the same. How do we fix this?
- People in the committee are indistinguishable and can be reordered in ways:

 How many committees of two people can be chosen from this group of four people:

- Number of 2-permutations: 4!/(4-2)! = 12
- Since the roles are the same, many of these are the same. How do we fix this?
- People in the committee are indistinguishable and can be reordered in 2! ways:

 How many committees of two people can be chosen from this group of four people:

- Number of 2-permutations: 4!/(4-2)! = 12
- Since the roles are the same, many of these are the same. How do we fix this?
- People in the committee are indistinguishable and can be reordered in 2! ways:

$$\frac{4!}{2!(4-2)!}$$
 different committees

COMBINATIONS: GENERAL CASE

• Suppose we want to choose k elements from a set with n elements, in no specific order.

In other words: select a subset of size k from a set of size n.

COMBINATIONS: GENERAL CASE

• Suppose we want to choose k elements from a set with n elements, in no specific order.

In other words: select a subset of size k from a set of size n.

• How many different ways to do so are there?

COMBINATIONS: GENERAL CASE

• Suppose we want to choose k elements from a set with n elements, in no specific order.

In other words: select a subset of size k from a set of size n.

• How many different ways to do so are there?

$$C(n,k) = \frac{n!}{k! (n-k)!}$$

NOTATION

$$C(n,k) = \binom{n}{k} = C_n^k = \frac{n!}{k! (n-k)!}$$

Combinations with repetitions

• In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves
- k = 20 books

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves
- k = 20 books

• In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.

- n = 5 bookshelves
- k = 20 books

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves
- k = 20 books

$$C(n-1) =$$

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves
- k = 20 books

$$C(k + n - 1, n - 1) =$$

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves
- k = 20 books

$$C(k + n - 1, n - 1) = C(24,4) =$$

- In how many ways can we place 20 books on 5 bookshelves? Each shelf can accommodate from 0 to 20 books.
- n = 5 bookshelves
- k = 20 books

$$C(k+n-1,n-1) = C(24,4) = \frac{24!}{4!20!} = 10626$$

To sum up

POSSIBLE ARRANGEMENTS

	WITHOUT REPETITIONS	WITH REPETITIONS
ORDERED	PERMUTATIONS Seating n people in a row $n!$	TUPLES Counting different n -bit strings are there? k^n
NOT ORDERED	Combinations Choosing k out of n different candies in a bag $C(n,k) = \frac{n!}{k! (n-k)!}$	COMBINATIONS with repetitions Distributing k identical candies among n kids $C(k+n-1,n-1)$

Practice problems

Google classroom -> Day 1

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

```
Inclusion-exclusion
```

- # strings beginning with 022:
- # string ending with 01:
- # strings beginning with 002 and ending with 01:

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

```
# strings beginning with 022: 3^3 = 27
```

string ending with 01:

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

strings beginning with 022: $3^3 = 27$

string ending with 01: $3^4 = 81$

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

strings beginning with 022:
$$3^3 = 27$$

string ending with
$$01$$
: $3^4 = 81$

• Each entry of a string is an element of the set $S = \{0, 1, 2\}$. How many such strings of length 6 are there that begin with 022 or end with 01?

Inclusion-exclusion

strings beginning with 022:
$$3^3 = 27$$

string ending with
$$01$$
: $3^4 = 81$

$$27 + 81 - 3 = 105$$
 sequences that start with 002 or end with 01

NUMBER OF SUBSETS OF A SET

• How many subsets does a set of *n* elements have?

NUMBER OF SUBSETS OF A SET

How many subsets does a set of n elements have?

Solution:

Each element can either be included in the subset (1) or not (0):

0	1	0	•••	0	0	1

NUMBER OF SUBSETS OF A SET

• How many subsets does a set of *n* elements have?

Solution:

Each element can either be included in the subset (1) or not (0):

0	1	0	•••	0	0	1

• 2 options per each of the *n* element (just like bit-strings!).

Product rule: $2 \cdot 2 \cdot \dots \cdot 2 = 2^n$ subsets