Minimax Estimator & empirical Bayes estimator

- 1. Define: (i) Admissible estimator, (ii) Descision function, (iii) Loss function, (iv) Risk function. [Saleh & Rohatgi: Page-424]
- 2. Explain the way of obtaining minimax estimator along with example.
- 3. Let $X \sim b(1, p)$, $p \in \theta = \left(\frac{1}{4}, \frac{1}{2}\right) and A = (a_1, a_2)$. Let the loss function be defined as follows.

	a_1	a_2
$p_1 = \frac{1}{4}$	1	4
$p_2 = \frac{1}{2}$	3	2

Find the minimax solution. [Saleh & Rohatgi: Example 04: Page-425]

- 4. Define bayesian risk. [Saleh & Rohatgi: Definition 05: Page-426]
- 5. Let $X \sim b(n, p)$ and $L(p, \delta(x)) = [p \delta(x)]^2$. Let $\pi(p) = 1$ for 0 be the a priori PDF of p. Then check whether the bayes estimator is the minimax estimator. [Saleh & Rohatgi: Example 05: Page-428]
- 6. Let $X \sim N(\mu, 1)$, and let the a priori PDF of μ be N(0,1). Also let $L(p, \delta(x)) = [p \delta(x)]^2$. Then check whether the bayes estimator is the minimax estimator. [Saleh & Rohatgi: Example 06: Page-428]
- 7. Let $\{f_{\theta}: \theta \in \theta\}$ be a family of PDFs (PMFs), and suppose that an estimator δ^* of θ is a Bayes estimator corresponding to an a priori distribution π on θ . If the risk function $R(\theta, \delta^*)$ is constant on θ ,

Minimax Estimator & empirical Bayes estimator

then δ^* is a minimax estimator for θ . [Saleh & Rohatgi: Theorem 02: Page-435]

8. Let $X \sim b(n, p)$, $0 . We seek a minimax estimator of p of the form <math>\alpha X + \beta$, using the squared-error loss function. [Saleh &

Rohatgi: Example 15: Page-436]

EMPIRICAL BAYES ESTIMATOR

9. What do u mean by empirical Bayes estimator? Explain with an example . [lehmann-and-george-casella .Page 262]

10.Let
$$X_k \sim binomial(p_k, n)$$
 and $p_k \sim beta(a, b)$

Find emperical bayes estimator of p_k . [lehmann-and-george-casella. Page 263.Example 6.2]

11. If
$$X_1$$
, X_2 ,.... X_p has the density $p_{\eta}|x|=e^{\frac{\hat{\Sigma}_{\eta,k}-\lambda_{\eta}}{h}}|x|$ and η has prior density $\pi(\eta,\lambda)$, Suppose $\hat{\lambda}(x)$ is the

MLE of λ based on $m(x,\lambda)$. Then the emperical bayes estimator is

$$E\left(\eta_{i},x,\hat{\lambda}\right) = \frac{\delta}{\delta,x_{i}}\log m\left(x,\hat{\lambda}(x)\right) \qquad \frac{\delta}{\delta,x_{i}}\log \left(h(x)\right) \text{ [lehmann-and-model]}$$

george-casella. Page 265. Theorem: 6.3]

- 12.Calculate an Empirical Bayes Estimator for the model $X_i|\theta \sim N(\theta,\sigma^2)$, $\Omega \sim N(\theta,\tau^2)$ [lehmann-and-george-casella. Page 266. Example : 6.4]
 - 13. What is James Stein estimator? Write down its properties .[lehmann-and-george-casella. Page 272.]

Minimax Estimator & empirical Bayes estimator

- 14. Find the Bayes risk of the James Stein estimator .[lehmann-and-george-casella . Page 273. Example 7.3]
- **15**. Find the poisson hierarchical Bayes estimator using the following model

```
X_i \sim Poisson[\lambda_i]  i=1,2,3.....p independent.
```

 $\lambda_i \sim Gamma(a,b)$, i=1,2,3.....p, independent, a known [lehmann -and-george-casella .Page : 268, Example: 6.6]