模型修改日志

模型修改日志

Faster Rcnn overview

Cascade overview

20200303

20200304

20200305

20200306

20200307

20200308对照试验

20200309

20200310

Faster Rcnn overview

date	МАР	MAP50	MAP75	s	m	1	score	loss
3/10_3	0.499	0.853	0.533	0.253	0.463	0.553	0.45975257	0.39
3/10_1	0.500	0.851	0.536	0.248	0.470	0.553	0.46365661	0.24
3/9_2	0.490	0.842	0.524	0.242	0.463	0.540	0.44945764	0.21
3/8_3	0.474	0.839	0.486	0.232	0.446	0.527	0.43323416	0.2
3/8_2	0.462	0.832	0.463	0.223	0.441	0.508	0.42316451	0.2
3/8_1	0.467	0.834	0.475	0.218	0.446	0.516	0.42315355	0.21
3/6	0.465	0.833	0.465	0.229	0.44	0.513	0.42745937	0.22

data	bb	lr	ер	anchro_ratio	多尺度训练	nms_thr	ОНЕМ
3/10_3	r50	0.02	12	[.2, .5, 1, 2, 5]	(4096, 800), (4096, 1200)	0.001(soft_nms)	√
3/10_1	r50	0.02	12	[.2, .5, 1, 2, 5]	(4096, 800), (4096, 1200)	0.001(soft_nms)	×
3/9_2	r50	0.02	12	[.2, .5, 1, 2, 5]	(1333, 800) (1333, 1200)	0.001(soft_nms)	×
3/8_3	r50	0.02	12	[.2, .5, 1, 2, 5]	(1333, 800) (1333, 1200)	0.05	×
3/8_2	r50	0.02	12	[.5, 1, 2]	(1080, 920)	0.05	×
3/8_1	r50	0.02	12	[.2, .5, 1, 2, 5]	(1080, 920)改 为dcn权 重	0.05	×
3/6	r50	0.02	12	[.2, .5, 1, 2, 5]	(1080, 920)	0.05	×

Cascade overview

date	MAP	MAP50	MAP75	S	m	I	score	loss
3/10_2	0.498	0.836	0.540	0.242	0.464	0.553	0.45107298	0.65
3/9_1	0.481	0.821	0.518	0.237	0.457	0.528	0.43794168	0.68
3/7	0.413	0.722	0.425	0.179	0.395	0.452	0.36510317	0.66
3/5	0.401	0.689	0.433	0.149	0.367	0.462	0.34733043	0.89
3/4	0.405	0.702	0.429	0.157	0.372	0.468	0.35986083	1.0
3/3	0.475	0.832	0.497	0.224	0.448	0.528	0.39238524	0.6

data	bb	lr	ер	anchro_ratio	多尺度训练	nms_thr	dcn	ОНЕМ
3/10_2	r50	0.02	12	[.5, 1, 2]	(4096, 800), (4096,1200)	.001(soft_nms)	×	×
3/9_1	r50	0.02	12	[.2, .5, 1, 2, 5]	(4096, 800), (4096,1200)	.001(soft_nms)	√	×
3/7	r50	0.02	12	[.2, .5, 1, 2, 5]	(1920, 1080), (720, 405)	0.5	√	×
3/5	r101	0.04	22	[.2, .5, 1, 2, 5]	(1080, 920)	0.5	√	√
3/4	r50	0.02	12	[.2, .5, 1, 2, 5]	(1080, 920)	0.5	√	√
3/3	r50	0.02	12	[.2, .5, 1, 2, 5]	(1080, 920)	0.5	√	×

- 前期受到了nms的影响,提高了预测的nms的阈值,导致coco方法计算map时普遍降低
- 确实尺度越大准确率越高

20200303

Config

baseline	Ir	step	anchor_ratios	ima_scale
cascade_rcnn_dcn_r50_fpn	0.02	[8, 11]	[0.2, 0.5, 1.0, 2.0, 5.0]	(1080, 920)

- 观测数据,发现数据集多呈序列分布,若用随机抽样可能会因场景分布产生误差,故采用间隔抽样,按照0.85: 0.15的比例切分训练集和验证集
- 验证序列抽样后,训练集、验证集、原始数据集各目标分布基本保持不变

dataset	holothurian	echinus	scallop	starfish
org	5537	22343	6720	6814
train	4574	18676	5554	5704
val	963	3667	1166	1137

• 针对图像大小分布情况, 当时选取了靠近(720,405), 且略大的分辨率, mmdet保持比例不变

长宽为(704.576)的图片数量为: 38 长宽为(1920.1080)的图片数量为: 596 长宽为(3840.2160)的图片数量为: 1712 长宽为(720.405)的图片数量为: 3153 长宽为(586.480)的图片数量为: 44

这里疑似会出问题,若图像大小为(3840,2160), resize到(1080,920), 图像缩小3.5倍,可能会删除较小标注框

结果图

结论:

1. 修改学习率意义不大,模型拟合较好,map和损失都较早趋于稳定

20200304

Config

baseline	Ir	step	anchor_ratios	ima_scale
cascade_rcnn_dcn_r50_fpn	0.02	[8, 11]	[0.2, 0.5, 1.0, 2.0, 5.0]	(1080, 920)

- 引入了OHEM,在线难样本挖掘,在cascade的三个阶段。本想使用focal loss,但focal loss的根本目的是解决one-stage中,正负样本分布不均衡,简单负样本过多,导致模型收敛更快,但却没有很好拟合困难正样本的知识。使用的cascade网络,本身是two-stage,已经解决了正负样本分布不均衡的问题
- 其他什么都没有改,模型在验证集下降了0.07个点,在平台得分下降了0.04个点,**OHEM不是直接改了就能用,需要读一下原文,了解适用环境**

结论:

- 1. 看loss曲线,模型欠拟合,且下降幅度较小,感觉可以略微提高学习率,增加训练epoch
- 2. 引入OHEM, 损失先上升, 后下降。map的起点精度均降低 (mAP: 0.34 ->0.22)

20200305

Config

baseline	lr	step	anchor_ratios	ima_scale
cascade rcnn dcn r50 fpn	0.04	[16, 19]	[0.2, 0.5, 1.0, 2.0, 5.0]	(1080, 920)

- backbone换成了 ResNet101
- 采样器依然是OHEMSampler
- 提高学习率0.02->0.04
- 增加了训练周期到22个epoch

总结:

- 1. 1-5个epoch,使用四个GPU,一个epoch迭代285次 6-22个epoch,使用两个GPU,一个epoch迭代570次
- 2. 增大学习率,算法在1-5个epoch损失下降于4日相比没有明显变化,均为1.2左右。提高了学习率网络并非收敛更快,反而更早的趋于稳定,感觉学习率给大了,学习率降低后,网络还是可以降到0.9的损失,**且mAP与4日差别不大**,**ResNet从50->101,没有发挥作用,OHEM没有配合默契,限制了模型表达**
- 3. mAP起点更低,在第16个epoch更新学习率,损失有明显下降,MAP有明显提升,但随后趋于稳定,在第19个epoch更新学习率,从损失上看略早,**还可以延后**,学习率降低后,网络趋于稳定,可能是train不动了

20200306

Config

baseline	lr	step	anchor_ratios	ima_scale
faster_rcnn_dcn_r50_fpn	0.02	[8, 11]	[0.2, 0.5, 1.0, 2.0, 5.0]	(1080, 920)

- 原基础上加了anchor_ratios = [0.2, 0.5, 1.0, 2.0, 5.0]
- 使用RandomSampler作为抽样器,未修改
- 训练尺度,使用当前最优尺度(1080,920)
- 预训练权重使用的faster_rcnn_r50_fpn_1x_cls_24.pth,并非dcn的权重

总结:

- 1. faster-rcnn损失起点更低,但是这与cascade的损失没有对比意义
- 2. 在第8个epoch调整学习率(4600次iter左右),损失有略微下降,第11次修改学习率,损失基本不变,模型拟合较好
- 3. 在第8个epoch调整学习率, map有略微升高, 后趋于稳定
- 4. 这是目前最优baseline,考虑在此基础上做两个试验
 - 使用dcn的预训练权重,其他参数不变 --1 基本曲线没变化
 - 使用原始ratio, 其他参数不变 --2
 - 使用多尺度训练,只修改短边,多尺度使用推荐尺度(1300, 1200) (1300, 800) 测试使用 (1300,1000) --3

20200307

Config

baseline	lr	step	anchor_ratios	ima_scale
cascade_rcnn_dcn_r50_fpn	0.02	[8, 11]	[0.2, 0.5, 1.0, 2.0, 5.0]	(1920, 1080), (720, 405)

- 使用初始的cascade_r50训练
- 使用RandomSampler作为抽样器,未修改
- 添加了多尺度训练,使用两个尺度img_scale=[(1920, 1080), (720, 405)], 测试的是scale使用的 (1920, 1080)
- 加载的预训练文件出现问题,加载的r101的预训练文件cascade_rcnn_dconv_c3-c5_r101_fpn_1x

总结:

- 1. 经过eda, (720, 405)的图像更多,使用img_scale=[(1920, 1080), (720, 405)],会导致部分图像缩放
- 2. 与3月3日对比, 多尺度下, 网络的损失起点更低
- 3. 在第七次更新学习率时,网络的损失还在下降,网络还没稳定,应延后调整学习率
- 4. 但从map来看,网络最终趋于稳定

20200308对照试验

Config

baseline	lr	step	anchor_ratios	ima_scale
FasterRCNN	0.02	[8, 11]	[0.2, 0.5, 1.0, 2.0, 5.0]	(1080, 920)

• 20200306的对照组试验,使用了dcn训练权重faster_rcnn_dconv_c3-c5_r50_fpn_1x

总结:

- 与使用faster_rcnn_r50_fpn_1x_cls_24.pth对比,loss下降曲线基本完全一致
- 使用dcn, 更契合的权重后, Map起始有些下降, 其他曲线基本与之前一致
- 结果差距不大,解释: 其实有一个较好的权重初始就够了,后面有多轮的训练,都会让网络趋向于收敛

Config

baseline	lr	step	anchor_ratios	ima_scale
FasterRCNN	0.02	[8, 11]	[0.5, 1.0, 2.0]	(1080, 920)

• 使用原始ratio, 其他参数不变

总结:

- 改为初始ration[0.5, 1, 2], MAP,MAP50,MAP75,S,M,L, 六项指标均有所下降,总得分下降
- anchor多尺度还是有意义的

Config

baseline	lr	step	anchor_ratios	ima_scale
FasterRCNN	0.02	[8, 11]	[0.2, 0.5, 1.0, 2.0, 5.0]	(1333, 800)(1333, 1200)

使用官方标准多尺度训练,训练尺度(1333,1200)(1333,800),测试尺度取短边中值(1333,1000)其他参数不变

● MAP75 MAP_S(<32*32),MAP_M(32 * 32 < s< 96*96),MAP_I(<96 *96)均上升0.01-0.02个点,说明多尺度训练,让网络对不同尺度的目标检测效果更好

Case

20200309

Config

baseline	lr	step	anchor_ratios	ima_scale
cascade_rcnn_dcn_r50_fpn	0.02	[8, 11]	[0.2, 0.5, 1.0, 2.0, 5.0]	(4096, 800), (4096, 1200)

- 使用nms_soft修改预测阈值,提高对于遮挡的鲁棒性
- 提高尺度长边上限。选取样本集样本最大长宽比,将短边限制为800-1200,将长边按照样本集最大比例缩放。再GPU容量足够,且未达到速度容忍度时,短边可提高限制
- score_thr 从0.5改为0.001

Config

baseline	lr	step	anchor_ratios	ima_scale
faster	0.02	[8, 11]	[0.2, 0.5, 1.0, 2.0, 5.0]	(1333, 1200), (1333, 800)

• 使用nms_soft修改预测阈值,提高对于遮挡的鲁棒性

20200310

Config

baseline	lr	step	anchor_ratios	ima_scale
faster	0.02	[8, 11]	[0.2, 0.5, 1.0, 2.0, 5.0]	(4096, 800), (4096, 1200)

• 修改了多尺度训练的参数

Config

baseline	lr	step	anchor_ratios	ima_scale
CascadeRCNN	0.02	[8, 11]	[0.5, 1.0, 2.0]	(4096, 800), (4096, 1200)

- 复现群内大神结果
- 删除FCN
- anchor_ratios=[0.5, 1.0, 2.0]
- 测试配置中加入了随机旋转

Config

baseline	lr	step	anchor_ratios	ima_scale
faster	0.02	[8, 11]	[0.2, 0.5, 1.0, 2.0, 5.0]	(4096, 800), (4096, 1200)

• 在0310_1的基础上添加了OHEM

