本节主题

加法器的优化

北京大学。嘉课

计算机组成

制作人:连续旅

4-bit加法器示例

两个4-bit二进制数相加

由四个全加器 构成的4-bit加法器

行波进位加法器(Ripple-Carry Adder, RCA)

- ❷ 结构特点
 - 。低位全加器的Cout连接到高一位全加器Cin
- ❷ 优点
 - 。 电路布局简单,设计方便
- ② 缺点
 - 。高位的运算必须等待低位的运算完成,延迟时间长

4-bit RCA的门电路实现

4-bit RCA的关键路径(延迟最长的路径)

32-bit RCA的性能分析

总延迟时间:

 $(2n+1)T = (2\times32+1)\times T = 65T$

参考值

水果智能手机5s的A7 SoC

采用28nm制造工艺

主频1.3GHz (0.66ns)

	延迟时间	时钟频率
4-bit RCA	0.18ns	5.56GHz
32-bit RCA	1.3ns	769MHz

注:参照28nm制造工艺,门延迟T设为0.02ns

加法器的优化思路

- 主要问题
 - 。高位的运算必须等待低位的"进位输出信号"
- ⊙ 优化思路
 - 。能否提前计算出"进位输出信号" ?

进位输出信号的分析

$$C_{i+1} = (A_i \cdot B_i) + (A_i \cdot C_i) + (B_i \cdot C_i)$$
$$= (A_i \cdot B_i) + (A_i + B_i) \cdot C_i$$

设:

- 。 生成 (Generate) 信号: G_i=A_i·B_i
- 。传播 (Propagate) 信号:Pi=Ai+Bi

则:
$$C_{i+1}=G_i+P_i\cdot C_i$$

如何提前计算"进位输出信号"

$$\mathbf{C_2} = \mathbf{G_1} + \mathbf{P_1} \cdot \mathbf{C_1}$$

$$= \mathbf{G_1} + \mathbf{P_1} \cdot (\mathbf{G_0} + \mathbf{P_0} \cdot \mathbf{C_0})$$

$$= \mathbf{G_1} + \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}$$

$$C_{i+1} = G_i + P_i \cdot C_i$$

$$\mathbf{C_3} = \mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{C_2}$$

$$= \mathbf{G_2} + \mathbf{P_2} \cdot (\mathbf{G_1} + \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0})$$

$$= \mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}$$

$$\begin{array}{l} \bullet \quad \mathbf{C_4} = \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{C_3} \\ = \mathbf{G_3} + \mathbf{P_3} \cdot (\mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ = \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{G_2} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{array}$$

提前计算C4的电路实现 优点:计算C_{i+1}的延迟时 间固定为三级门延迟,与 加法器的位数无关 缺点:如果进一步拓 宽加法器的位数,则 电路变得非常复杂 $P_3 \cdot P_2 \cdot P_1 \cdot G_0$ $P_3 \cdot P_2 \cdot P_1 \cdot P_0 \cdot C_0$

超前进位加法器 (Carry-Lookahead Adder, CLA)

Аз Вз

最后一级全加器 还需要1级门延迟

1-bit 1-bit 1-bit 1-bit C₀ Full Full Full Full Adder Adder Adder Adder S_2 S_1 S_0 рз дз p2 g2 p1 g1 C₂ po go 4-bit Carry Look Ahead PG GG

A2 B2

参考值:4-bit行波进位加法器的总延迟时间为9级门延迟

总延迟时间 为4级门延迟

计算C3需要3级门延迟

A1 B1

Ao

Bo

32-bit加法器的实现

❷ 如果采用行波进位

。总延迟时间为65级门延迟

❷ 如果采用完全的超前进位

- 。理想的总延迟时间为4级门延迟
- 。实际上电路过于复杂,难以实现

	延迟时间	时钟频率
32-bit RCA	1.3ns	769MHz
单个CLA	0.08ns	/
4级CLA	0.26ns	3.84GHz

注:参照28nm制造工艺,门延迟设为0.02ns

$$C_{31}=G_{30}+P_{30}\cdot G_{29}+P_{30}\cdot P_{29}\cdot G_{28}+...$$

+ $P_{30}\cdot P_{29}\cdot P_{28}\cdot ...\cdot P_{2}\cdot P_{1}\cdot P_{0}\cdot C_{0}$
需要32输入的与门和或门?!

❷ 通常的实现方法

- 。采用多个小规模的超前进位加法器拼接而成
- 。例如,用4个8-bit的超前进位加法器连接成32-bit加法器

本节小结

加法器的优化

北京大学。嘉课

计算机组成

制作人。陈俊称

