Teorie systémů [MI-TES]

Souhrn látky

leden 2014

Obsah

1	Základní pojmy	2
2	Základy matematické logiky2.1 Ekvivalence a De Morganovy zákony2.2 Volné a vázané proměnné	2 2 2
3	Automatové modely3.1Synchronizovaná paralelní kompozice systémů3.2Kaskádní kompozice systémů $S_1 \leadsto S_2$ 3.3Delay	3 4 4 4
4	Linear temporal logic (LTL) 4.1 Vlastnosti a cesty	5 5
5	Testování a ověřování modelů 5.1 Bounded Model Checking 5.2 Satisfiability (SAT) 5.2.1 Základní pravidla při vyšetřování formule 5.3 Davis-Putnam-Logemann-Loveland algoritmus (DPLL) 5.4 Neomezené testování modelů 5.4.1 Induktivní podmínky	7 7 7 7
6	Petriho sítě6.1 Základní vlastnosti6.2 Převod do automatu	8 8 9
7	Časované automaty 7.1 Základní pojmy	
8	Probabilistické modely	10

1 Základní pojmy

Interpretace Definice nějaké vlastnosti, značí se $\mathcal{I}()$.

Arita Počet argumentů nebo operandů matematické funkce nebo operace.

Potenční množina Množina všech podmnožin, značí se $\mathcal{P}(x)$ a počet jejích prvků je $2^{|M|}$.

Uppaal Software.

2 Základy matematické logiky

2.1 Ekvivalence a De Morganovy zákony

- $A \wedge [B \vee C]$ je ekvivalentní s $[A \wedge B] \vee [A \wedge C]$
- $A \vee [B \wedge C]$ je ekvivalentní s $[A \vee B] \wedge [A \vee C]$
- $\neg [A \land B]$ je ekvivalentní s $\neg A \lor \neg B$
- $\neg [A \lor B]$ je ekvivalentní s $\neg A \land \neg B$
- $A \Rightarrow B$ je ekvivalentní s $\neg A \lor B$
- $A \Leftrightarrow B$ je ekvivalentní s $(A \Rightarrow B) \land (B \Rightarrow A)$

2.2 Volné a vázané proměnné

Definice

Výskyt standardní proměnné x ve formuli nazýváme vázaným, pokud při cestě od tohoto listu ke kořeni syntaktického stromu narazíme na vrchol označkovaný buď $\forall x$ nebo $\exists x$. V opačném případě nazveme tento výskyt volným. Kvantifikátor $\forall x$ nebo $\exists x$ váže všechny výskyty proměnné x, které jsou v syntaktickém stromu pod tímto kvantifikátorem.

– J. Velebil

Příklad

Najděte volné a vázané proměnné ve výrazu

$$\forall x. \left[P\left(y, z \right) \land \exists y. \left[\neg Q\left(y, x \right) \lor P\left(y, z \right) \right] \right].$$

Sestavíme syntaktický strom:

3 Automatové modely

Formální definice

$$A = (S, S_0, I, O, R)$$

- \bullet S množina stavů
- S_0 počáteční stav
- $\bullet~I$ množina vstupů
- O množina výstupů
- R přechodová funkce

Základní vlastnosti, které po automatovém modelu požadujeme.

- Deterministický
- Receptivní pro každý vstup existuje výstup
- S pamětí

Struktura přechodové funkce

$$\left(\underbrace{\underbrace{A}}_{\text{Input}}, \underbrace{B}_{\text{odkud}}, \underbrace{C}_{\text{kam}}, \underbrace{D}_{\text{Output}}\right)$$

3.1 Synchronizovaná paralelní kompozice systémů

- "Hodiny" jdou na každý přechod do každého z automatů, automat se tedy nachází vždy ve více stavech najednou.
- Pokud chceme výsledný systém zakreslit jako jeden automat, sestrojíme kartézský součin vstupů a výstupů.

Obrázek 1: Synchronizovaná paralelní kompozice systémů

3.2 Kaskádní kompozice systémů $S_1 \leadsto S_2$

Kaskádní kompozici dvou automatů vytvoříme následovně:

- Vytvoříme kartézský součin všech stavů.
- Výstup jednoho automatu (S1) je vstupem automatu druhého (S2).

Obrázek 2: Kaskádní kompozice systémů

3.3 Delay

- laicky zpožďuje vstup
- Delay D_{S_0} pro množinu S_0 , $(i, 0) \in D_{S_0} \Leftrightarrow$
 - $o(0) \in S_0,$
 - $\ \forall k \in N, \ o(k) = i(k-1)$
 - pro libovolné vstupní množiny I a O tak, že $I \subseteq O$, $S_0 \subseteq O$.

Obrázek 3: Ukázka delay

4 Linear temporal logic (LTL)

 Pokud chceme nějakou vlastnost dokazovat, snažíme se najít protipříklad. V případě automatového modelu např. hledáme cykly.

4.1 Vlastnosti a cesty

• První element cesty

$$\pi(0) \vDash p$$

• Další element cesty ("ne**X**t")

$$\pi^1 \vDash p$$

• Časem ("Future")

$$\exists k \geq 0, \, \pi^k \vDash p$$

• Vždy ("Globally")

$$\forall k \geq 0, \, \pi^k \vDash p$$

• • • • • . . .

• Do té doby ("Until")

$$\exists i,\, \pi^i \vDash q \text{ a } \forall j < i,\, \pi^j \vDash p$$

$$p: \bullet \bullet \bullet \circ \circ \circ \circ \ldots$$

$$q:\circ\circ\circ\bullet\circ\circ\circ\ldots$$

• Pokud ještě ("Release")

$$p: \bullet \bullet \bullet \bullet \circ \circ \circ \circ \ldots$$
 $q: \bullet \bullet \bullet \bullet \circ \circ \circ \circ \ldots$

Speciální případy:

- FGg: Časem bude nějaká vlastnost platit navždy, tzn. jakmile začne platit, nikdy už neskončí.
- ullet GFg: Vždy se lze časem vlastnosti g dočkat. Tento případ se od "samotného časem" liší tak, že "samotné časem" může a nemusí nastat pouze jednou.

Upozornění

Styl zápisu

$$red \rightarrow G$$
green

říká, že v prvním stavu musí platit vlastnost "red".

4.2 Převod do predikátové logiky

$$\neg (\mathbf{F}p) = \mathbf{G} \neg p$$

$$\neg (\mathbf{G}p) = \mathbf{F} \neg p$$

$$\neg (\mathbf{X}p) = \mathbf{X} \neg p$$

$$\mathbf{F}p \Leftrightarrow \mathbf{T}\mathbf{U}p$$

$$\mathbf{G}p \Leftrightarrow \mathbf{F}\mathbf{R}p$$

$$\neg [p\mathbf{U}q] = \neg p\mathbf{R} \neg q$$

$$\neg [p\mathbf{R}q] = \neg p\mathbf{U} \neg q$$

Příklad

Převedte LTL formuli do výrazu predikátové logiky (bez temporálních operátorů):

$$p \Rightarrow \mathbf{G}p \Leftrightarrow \neg [p \land (\mathbf{F} \neg g)].$$

$$\underbrace{\frac{\neg p \vee \mathbf{G}p}{\neg p \vee \mathbf{G}p}}_{p} \Leftrightarrow \underbrace{\neg p \vee \neg \mathbf{F} \neg g}_{\neg p \vee \mathbf{G}g}$$

$$\underbrace{\pi (0) \nvDash p}_{p} \vee \underbrace{(\forall k \geq 0) (\pi^{k} \vDash g)}_{\mathbf{G}} \Leftrightarrow \pi (0) \nvDash p \vee \underbrace{[(\forall k \geq 0) (\pi^{k} \vDash g)]}_{\mathbf{G}g}$$

Nyní převedeme pravou stranu do výrokové logiky bez symbolu "⊨"

$$\pi\left(0\right) \nvDash p \vee \left[\left(\forall k \geq 0\right)\left(\pi^{k} \vDash g\right)\right] \Leftrightarrow \boxed{\pi\left(0\right) \notin \mathcal{I}\left(p\right) \vee \left(\forall k \geq 0\right)\left(\pi\left(k\right) \in \mathcal{I}\left(p\right)\right)}$$

5 Testování a ověřování modelů

Pozor v této kapitole se používá namísto "automatového modelu" nový termín "*přechodový systém*", který se skládá z

- Množiny stavů S (stavový prostor),
- Neprázdné množiny $S_0 \subseteq S$ počátečních stavů,
- Přechodové relace $R \subseteq S \times S$ tak, že pro každé $s \in S$ existuje $s' \in S$ tak, že $(s, s') \in R$.

tl;
dr: Přechodový systém je zjednodušený konečný automat – neřeší vstup
y ${\cal I}$ ani výstupy ${\cal O}.$

5.1 Bounded Model Checking

- Ověřujeme pro cestu určité délky
- Pro cesty délky 0 (ještě jsme nevstoupili do cyklu) platí všechny vlastnosti triviálně.
- Při dokazování "F" pomocí metody BNC je vlastnost pravdivá do té doby, než narazíme na cyklus (viz obrázky níže). Důvodem je, že "nevidíme" do budoucnosti a dokud žádný cyklus nepotkáme, předpokládáme, že ho ani nepotkáme. Pozor stav, ve ze kterého cyklus začíná se stále považuje za pravdivý.

Obrázek 4: BNC a dokazování "Future"

Obrázek 5: BNC a dokazování "Future"

5.2 Satisfiability (SAT)

• Ověřování splnitelnosti Booleovské formule.

5.2.1 Základní pravidla při vyšetřování formule

- Simplifikace pokud je proměnná TRUE, můžeme škrtnou celou závorku (klauzuli).
- Eliminace pokud je proměnná FALSE, můžeme ji vyjmout.

5.3 Davis-Putnam-Logemann-Loveland algoritmus (DPLL)

Rozšíření SAT modelu o:

- Unit Propagation pokud nějaká klauzule obsahuje jen jeden literál, ihned do tohoto literálu dosadíme hodnotu.
- Pure Literal Elimination pokud se proměnná v celém výrazu vyskytuje buď jen pozitivně nebo jen negativně, dosadíme do této proměnné hned hodnotu, aby vyšla TRUE.

5.4 Neomezené testování modelů

Invariant Podmínka, která musí být splněna před a po každém průchodu. Musí tedy platit na cestě libovolné délky nebo-li musí platit na všech dosažitelných stavech.

Induktivní invariant Invariant, který splňuje induktivní podmínky.

Triviální invariant Invariant je triviální, pokud obsahuje všechny stavy přechodového systému.

Existují dvě metody dokazování invariantu:

- 1. postupným průchod automatem,
- 2. důkaz sporem.

5.4.1 Induktivní podmínky

1. Každý počáteční stav splňuje p, tj.

$$S_0 \subseteq \mathcal{I}(p) \Longleftrightarrow \forall x. S_0(x) \Rightarrow V(x)$$

2. Důkaz, že pokud x splňuje p, a x' je výsledkem přechodu z x, pak x' také splňuje p, tj.

$$\{x'|x \in \mathcal{I}(p), (x, x') \in T\} \subseteq \mathcal{I}(p) \iff \forall x \forall x'. [V(x) \land T(x, x')] \Rightarrow V(x')$$

Negované induktivní podmínky pro využití v důkazu sporem:

- $\neg [\forall x. S_0(x) \Rightarrow V(x)] \Leftrightarrow \exists x. S_0(x) \land \neg V(x)$
- $\bullet \ \neg \left[\forall x \forall x'. \ \left[V(x) \wedge T\left(x, \, x' \right) \right] \Rightarrow V\left(x' \right) \right] \Leftrightarrow \boxed{\exists x \exists x' \left[V\left(x \right) \wedge T\left(x, \, x' \right) \right] \wedge \neg V\left(x' \right)}$

6 Petriho sítě

6.1 Základní vlastnosti

Definice:

$$(P, T, F, w, M_0)$$
.

- P = places
- T = transitions
- F = hrany
- w váhová funkce (implicitně je jedna jinak se ohodnocují hrany)
- \bullet M_0 počáteční značení

Petriho síť se skládá z míst, přechodů a hran.

- **Značení** = rozmístění tokenů.
- Dosažitelnost = značení M je dosažitelné právě když existuje posloupnost odpálení z M0 do M.
- (k-)Omezenost = maximální počet značek v jednom místě (globálně).
- Živost = Přechod je živý, pokud z každého dosažitelného značení je možné tento přechod odpálit.
 - Petriho síť je živá, právě když je každý přechod živý.

6.2 Převod do automatu

Obrázek 6: Petriho síť, značení míst dle hodinových ručiček: A, B, C, D

Obrázek 7: Petriho sít převedená do konečného automatu

7 Časované automaty

7.1 Základní pojmy

Lokace Místo v automatu (stav).

Invariant Časové omezení v lokaci. Pozor nejedná se o tentýž pojem jako v případě induktivního invariantu.

Stav Konkrétní stav definovaný stavem a jeho časem.

Guard Časové omezení na přechodech.

Časovaný přechod Zůstáváme na jednom místě, ale čas plyne (navyšuje se).

Akční přechod Přechod do jiného místa.

7.2 Definice

Formální definice časovaného automatu (pětice)

$$A = (S, S_0, X, \mathcal{I}, T)$$
.

 $\bullet \ S$ je konečná množina lokací

- $S_0 \subseteq S$ je množina počáteční lokace
- \bullet X je konečná množina hodin
- $\mathcal{I}: S \to \mathcal{C}(X)$ jsou invarianty lokací
- $\mathcal{T} \subset S \times \mathcal{C}(X) \times \mathcal{P}(X) \times S$ (přechody, guard, reset)
- Pokud nemá stav invariant, můžeme v něm setrvat neomezeně dlouho.
- 2 typy přechodů:
 - časovaný přechod ze stavu A do stavu A, značíme $(s,v) \stackrel{d}{\to} (s,v+d)$... čas ubíhá v určité lokaci
 - akční přechod ze stavu A do stavu B, značíme $(s,v) \stackrel{\wedge}{\to} (s^{,},v^{,})$... změna lokace

Struktura přechodové funkce

$$\left(\underbrace{A}_{\text{odkud guard resetuj hodiny x}}, \underbrace{B}_{\text{kam}}\right)$$

8 Probabilistické modely

- Přechody jsou ohodnoceny pravděpodobnostmi.
- Součet pravděpodobností v každém stavu (všech přechodů z toho stavu) se musí rovnat 1.
- Pokud chceme v probabilistickém modelu spočítat pravděpodobnost, že se dostaneme z místa A do místa B, musíme sestavit lineární soustavu rovnic.

Obrázek 8: Probabilistický model

Ve výše zobrazeném modelu chceme spočíst pravděpodobnost cesty z bodu A do bodu D. Sestavíme tedy pro každý stav rovnici s pravděpodobností cesty do cílového bodu D.

$$x_A = 1 * x_B \tag{1}$$

$$x_B = 0, 2 * x_A + 0, 1 * x_C + 0, 7 * x_D \tag{2}$$

$$x_C = 0 (3)$$

$$x_D = 1 (4)$$

- $\bullet~(1)$ Ze stavu vede jen jedna cesta.
- $\bullet~(2)$ Ze stavu vedou tři cesty.
- \bullet (3) Ze stavu C se do stavu Dnikdy nedostaneme, pravděpodobnost je tedy 0.
- $\bullet~(4)$ V Djiž j
sme, pravděpodobnost je tedy 1.