

Paula Sheppard

SEARCH REQUEST FORM

Requestor's Name: Altair Pryor Serial Number: 08/459,748
 Date: 8/27/98 Phone: 306-4691 Art Unit: 1616

Search Topic:

Please write a detailed statement of search topic. Describe specifically as possible the subject matter to be searched. Define any terms that may have a special meaning. Give examples or relevant citations, authors, keywords, etc., if known. For sequences, please attach a copy of the sequence. You may include a copy of the broadest and/or most relevant claim(s).

BEST AVAILABLE COPY

STAFF USE ONLYDate completed: 8/27/98Searcher: Sheppard

Terminal time: _____

Elapsed time: _____

CPU time: _____

Total time: _____

Number of Searches: _____

Number of Databases: _____

Search Site STIC CM-1 Pre-S**Type** A. Sequence Sequence Structure Bibliographic**Vendors** IG STN Dialog APS Geninfo SDC DARC/Questel Other

=> fil hcaplus

FILE 'HCAPLUS' ENTERED AT 16:21:43 ON 27 AUG 1998
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 1998 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 27 Aug 1998 VOL 129 ISS 9
FILE LAST UPDATED: 27 Aug 1998 (980827/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REGISTRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

=>

=>

=> d stat que 111

L1 30 SEA FILE=REGISTRY ABB=ON PLU=ON CH2CL2/MF
L3 11 SEA FILE=REGISTRY ABB=ON PLU=ON CH2F2/MF
L4 10 SEA FILE=REGISTRY ABB=ON PLU=ON FH/MF
L5 24252 SEA FILE=HCAPLUS ABB=ON PLU=ON L1 OR ?DICHLORO?(5A)?MET
 HANE? OR ?DICHLOROMETHANE?
L7 5936 SEA FILE=HCAPLUS ABB=ON PLU=ON L3 OR ?DIFLUORO?(5A)?MET
 HANE? OR ?DIFLUOROMETHANE?
L9 42093 SEA FILE=HCAPLUS ABB=ON PLU=ON L4 OR ?HYDROFLUORO? OR
 HYDRO?(A)?FLUOR?
L11 40 SEA FILE=HCAPLUS ABB=ON PLU=ON L5(L)L9(L)L7

=>

=>

=> d .caabs 111 1-40

L11 ANSWER 1 OF 40 HCAPLUS COPYRIGHT 1998 ACS
AN 1998:183906 HCAPLUS
DN 128:206163
TI Process and catalysts for the continuous preparation of
difluoromethane by the fluorination of
dichloromethane with hydrogen fluoride
SO Eur. Pat. Appl., 5 pp.
CODEN: EPXXDW
IN Wilmet, Vincent; Janssens, Francine
PI EP 829462 A1 980318
AI EP 97-202745 970904
PY 1998
AB Difluoromethane is prep'd. in a continuous process by the
fluorination of dichloromethane with hydrogen
fluoride in a liq. reaction mixt. contg. org. and inorg.
(e.g., the catalyst SNC14) fractions. The org. fraction in the liq.
medium is ltoreq.25% of the sum of wt. of the org. and inorg.
fractions and the wt. of the dichloromethane in the liq.
medium is ltoreq.10% of the sum of the org. and inorg. fractions.

IT 75-10-5P, **Difluoromethane**
 RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)
 (process and catalysts for the continuous prepn. of
difluoromethane by the fluorination of
dichloromethane with **hydrogen fluoride**
)

IT 75-09-2, **Dichloromethane**, reactions
 7664-39-3, **Hydrogen fluoride**, reactions
 RL: RCT (Reactant)
 (process and catalysts for the continuous prepn. of
difluoromethane by the fluorination of
dichloromethane with **hydrogen fluoride**
)

L11 ANSWER 2 OF 40 HCAPLUS COPYRIGHT 1998 ACS

AN 1998:134442 HCAPLUS

DN 128:171431

TI Hydrolytic decomposition of dichlorodifluoromethane on modified zirconium oxide surfaces

SO Catal. Lett. (1998), Volume Date 1997, 49(3,4), 199-205
 CODEN: CALEER; ISSN: 1011-372X

AU Hess, A.; Kemnitz, E.

PY 1998

AB The hydrolytic decompn. of dichlorodifluoromethane (CFC-12) on various modified Zr oxide surfaces was studied. The reaction was carried out under flow conditions at 500.degree.. Complete CFC-12 conversion and long-time stability of the catalysts were achieved accompanied by a limitation of the undesired CFC-13 formation. The max. CFC-12 conversion was obsd. on catalysts of sulfated zirconia or zirconia obtained from temp.-controlled calcination of Zr oxide hydrate. The reaction depends on the presence or in situ formation of Bronsted acid sites. FTIR-photoacoustic measurements were performed on pyridine complexes chemisorbed on the catalyst surface in order to analyze the changes in the catalyst acidity. The effects of the temp. and water in the reaction gas on the catalyzed compon. of CFC-12 are examd.

L11 ANSWER 3 OF 40 HCAPLUS COPYRIGHT 1998 ACS

AN 1998:7029 HCAPLUS

DN 128:61200

TI Hydrodehalogenation of dichlorodifluoromethane (CFC-12) on supported metal catalysts

SO Arch. Ochr. Srodowiska (1997), 23(3-4), 47-57
 CODEN: AOSRD6; ISSN: 0324-8461

AU Czajka, Bogdan; Kirszensztein, Piotr; Wachowski, Leszek; Lopatka, Renata; Bell, Tom N.; Becalski, Adam

PY 1997

AB The reaction of CC12F2 (CFC-12) with dihydrogen has been studied on a Me/.gamma.-Al₂O₃ catalysts (where Me = Ru, Fe or Ni) contg. 0.26, 0.52 and 1.56 mol% of an appropriate metal. The product (distribution) and the extent of conversion was shown to be highly dependent both on the kind and coverage of certain metals, and on the temp.

L11 ANSWER 4 OF 40 HCAPLUS COPYRIGHT 1998 ACS

AN 1997:798580 HCAPLUS

DN 128:16653

TI Vapor-Liquid Equilibria for the Systems Difluoromethane + Hydrogen Fluoride, Dichlorodifluoromethane + Hydrogen Fluoride, and Chlorine + Hydrogen Fluoride

SO J. Chem. Eng. Data (1998), 43(1), 13-16
 CODEN: JCEAAZ; ISSN: 0021-9568

AU Kang, Yun Whan

PY 1998

AB Isothermal vapor-liq. equil. for **difluoromethane** + **hydrogen fluoride**, **dichlorodifluoromethane** + **hydrogen fluoride**, and chlorine + **hydrogen fluoride** have been measured. The exptl. data for the binary systems are correlated with the NRTL equation with the vapor-phase assocn. model for the mixts. contg. **hydrogen fluoride**, and the relevant parameters are presented. The binary system **difluoromethane** + **hydrogen fluoride** forms a homogeneous liq. phase, and the others form min. boiling heterogeneous azeotropes at the exptl. conditions.

IT 75-10-5, **Difluoromethane** 7664-39-3,
Hydrogen fluoride, properties
RL: PRP (Properties)
(systems; vapor-liq. equil. for systems **difluoromethane** + **hydrogen fluoride**,
dichlorodifluoromethane + **hydrogen fluoride**, and chlorine + **hydrogen fluoride**)

L11 ANSWER 5 OF 40 HCAPLUS COPYRIGHT 1998 ACS
AN 1997:776136 HCAPLUS
DN 128:36364
TI Azeotropic distillation process for separating difluoromethane from dichlorodifluoromethane
SO PCT Int. Appl., 14 pp.
CODEN: PIXXD2
IN Cerri, Gustavo; Kong, Kin Ching; Swain, Charles Frances; Basu, Rajat Subhra
PI WO 9744301 A1 971127
AI WO 97-US8674 970522
PY 1997
AB Dichlorodifluoromethane is sepd. from difluoromethane by making use of the azeotrope formed by these 2 compds. and removing the difluoromethane as a distn. bottoms product.
IT 7664-39-3, **Hydrogen fluoride**, reactions
RL: RCT (Reactant)
(azeotropic distn. process for sepg.
dichlorodifluoromethane from **difluoromethane**)

L11 ANSWER 6 OF 40 HCAPLUS COPYRIGHT 1998 ACS
AN 1997:732129 HCAPLUS
DN 127:347906
TI Fluorination process for the preparation of **difluoromethane** from **dichloromethane** and **hydrogen fluoride**
SO Eur. Pat. Appl., 9 pp.
CODEN: EPXXDW
IN Garrait, Dominique; Guiraud, Emmanuel
PI EP 805136 A1 971105
AI EP 97-400754 970402
PY 1997
AB **Difluoromethane** is prep'd. by the fluorination of **dichloromethane** and **hydrogen fluoride** in the presence of chlorine and a fluorination catalyst. The reaction mixt. is distd. to produce a head product, contg. HCl and **difluoromethane**, and a bottoms product, contg. 90% of the nonreacted **dichloromethane**, **hydrogen fluoride**, and **chlorodifluoromethane**, which bottoms product is recycled to the fluorination reactor. A process flow diagram is presented.
IT 75-10-5P, **Difluoromethane**
RL: IMF (Industrial manufacture); PREP (Preparation)
(fluorination process for the prepn. of **difluoromethane** from **dichloromethane** and **hydrogen fluoride**)

- IT 75-09-2, Dichloromethane, reactions
 7664-39-3, Hydrogen fluoride, reactions
 RL: RCT (Reactant)
 (fluorination process for the prepn. of difluoromethane
 from dichloromethane and hydrogen
 fluoride)
- L11 ANSWER 7 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1997:281849 HCAPLUS
 DN 126:263837
- TI Vapor-phase process and catalysts for the production of
 difluoromethane from hydrogen fluoride
 and dichloromethane
- SO PCT Int. Appl., 14 pp.
 CODEN: PIXXD2
- IN Clemmer, Paul Gene; Smith, Addison Miles; Tung, Hsueh Sung; Bass,
 John Stephen
- PI WO 9711043 A1 970327
 AI WO 96-US14734 960913
 PY 1997
- AB Difluoromethane (i.e., HFC-32; I) is prep'd. in high yield and
 selectivity by: (A) preheating a mixt. of HF (II) and Cl₂CH₂ (III)
 to form a vaporized and superheater compn.; (B) reacting this
 superheated compn. in the presence of a fluorination catalyst (e.g.,
 Cr₂O₃/Al₂O₃) to form a product stream contg. F₂CH₂, ClFCH₂ (IV), HCl
 (V), Cl₂CH₂, and HF; (C) distg. the product stream to produce a
 high-boiling stream comprising II, III, and IV, and a low-boiling
 stream comprising I, II, and V; and (D) recovering substantially
 pure I from the low-boiling distn. fraction.
- IT 75-10-5P, Difluoromethane
 RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP
 (Preparation)
 (vapor-phase process and catalysts for the prodn. of
 difluoromethane from hydrogen fluoride
 and dichloromethane)
- IT 75-09-2, Dichloromethane, reactions
 7664-39-3, Hydrogen fluoride, reactions
 RL: RCT (Reactant)
 (vapor-phase process and catalysts for the prodn. of
 difluoromethane from hydrogen fluoride
 and dichloromethane)
- L11 ANSWER 8 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1997:145152 HCAPLUS
 DN 126:143889
- TI Catalytic gas-phase fluorination synthesis of
 difluoromethane from dichloromethane and
 hydrogen fluoride
- SO Eur. Pat. Appl., 8 pp.
 CODEN: EPXXDW
- IN Requieme, Benoit; Lacroix, Eric; Lantz, Andre
 PI EP 751107 A1 970102
 AI EP 96-401150 960529
 PY 1997
- AB CH₂F₂ is prep'd. by the reaction of CH₂Cl₂ (I) with anhyd. HF in the
 presence of 0.1-5 mol O₂ per 100 mol of I at 330-450.degree. in the
 presence of an optionally supported Cr catalyst.
- IT 75-10-5P, Difluoromethane
 RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP
 (Preparation)
 (catalytic gas-phase fluorination synthesis of
 difluoromethane from dichloromethane and
 hydrogen fluoride)
- IT 75-09-2, Dichloromethane, reactions
 7664-39-3, Hydrofluoric acid, reactions
 RL: RCT (Reactant)

(catalytic gas-phase fluorination synthesis of
difluoromethane from dichloromethane and
hydrogen fluoride)

L11 ANSWER 9 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1997:140671 HCAPLUS
 DN 126:136256
 TI Isothermal Vapor-Liquid Equilibria for the Systems 1-Chloro-1,1-difluoroethane + Hydrogen Fluoride, 1,1-Dichloro-1-fluoroethane + Hydrogen Fluoride, and Chlorodifluoromethane + Hydrogen Fluoride
 SO J. Chem. Eng. Data (1997), 42(2), 324-327
 CODEN: JCEAAX; ISSN: 0021-9568
 AU Kang, Yun Whan; Lee, Young Yong
 PY 1997
 AB Isothermal vapor-liq. equil. for the three binary systems 1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride were measured. The exptl. data for the binary systems are correlated with the NRTL equation with the vapor-phase assocn. model for the mixts. contg. hydrogen fluoride, and the relevant parameters are presented. All of the systems form min. boiling heterogeneous azeotropes.

L11 ANSWER 10 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1997:124390 HCAPLUS
 DN 126:131180
 TI Gas-phase process for the manufacture of **difluoromethane** from **dichloromethane** and **hydrogen fluoride** in the presence of chlorine
 SO Eur. Pat. Appl., 8 pp.
 CODEN: EPXXDW
 IN Requieme, Benoit; Perdrieux, Sylvain; Cheminal, Bernard; Lacroix, Eric; Lantz, Andre
 PI EP 751108 A1 970102
 AI EP 96-401151 960529
 PY 1997
 AB CH₂F₂ is manufd. from CH₂C₁₂ by a catalytic gas-phase fluorination using anhyd. HF in the presence of Cl₂. AlF₃ on a Cr-Ni support is used as the fluorination catalyst and the presence of Cl₂ in the reaction mixt. serves to increase the catalyst's fluorination lifetime.
 IT 75-10-5P, **Difluoromethane**
 RL: IMF (Industrial manufacture); PREP (Preparation)
 (gas-phase process for the manuf. of **difluoromethane** from **dichloromethane** and **hydrogen fluoride** in the presence of chlorine)
 IT 75-09-2, **Dichloromethane**, reactions
 7664-39-3, **Hydrogen fluoride**, reactions
 RL: RCT (Reactant)
 (gas-phase process for the manuf. of **difluoromethane** from **dichloromethane** and **hydrogen fluoride** in the presence of chlorine)

L11 ANSWER 11 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1997:35573 HCAPLUS
 DN 126:76464
 TI Mechanistic study of the selective hydrogenolysis of CC₁₂F₂ (CFC-12) to CH₂F₂ (HCF-32) over palladium on activated carbon
 SO Recl. Trav. Chim. Pays-Bas (1996), 115(11/12), 505-510
 CODEN: RTCPA3; ISSN: 0165-0513
 AU van de Sandt, Emile J. A. X.; Wiersma, Andre; Makkee, Michiel; van Bekkum, Hermann; Moulijn, Jacob A.

PY 1996
 AB The influence of temp. (400-560K), H₂/CCl₂F₂ ratio (2.2-20), and wt. hourly space velocity (0.3-1.0 g/g.h) on the hydrogenolysis of CCl₂F₂ to CH₂F₂ over Pd/C was investigated. The catalyst shows a remarkably high selectivity to CH₂F₂ (70-90 mol%) at all conversion levels in a broad range of process conditions. A mechanism is proposed in which the reaction proceeds mainly via parallel reaction pathways. The postulated mechanism is supported by thermodyn. data.

L11 ANSWER 12 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1996:616394 HCAPLUS
 DN 125:247197
 TI Process and catalysts for the preparation of **difluoromethane**
hydrogen fluoride and **dichloromethane**
 SO Eur. Pat. Appl., 5 pp.
 CODEN: EPXXDW
 IN Wilmet, Vincent; Janssens, Francine
 PI EP 732314 A1 960918
 AI EP 96-200591 960305
 PY 1996
 AB **Difluoromethane** is prep'd. in high yield and purity by the reaction of **hydrogen fluoride** and **dichloromethane** in the presence of a metal halide catalyst (e.g., SnCl₄).
 IT 75-10-5P, **Difluoromethane**
 RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)
 (process and catalysts for the prepn. of **difluoromethane**
hydrogen fluoride and **dichloromethane**
)
 IT 75-09-2, **Dichloromethane**, reactions
 7664-39-3, **Hydrogen fluoride**, reactions
 RL: RCT (Reactant)
 (process and catalysts for the prepn. of **difluoromethane**
hydrogen fluoride and **dichloromethane**
)

L11 ANSWER 13 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1996:611391 HCAPLUS
 DN 125:279125
 TI Process development for the selective hydrogenolysis of CCl₂F₂ (CFC-12) into CH₂F₂ (HFC-32)
 SO Stud. Surf. Sci. Catal. (1996), 101(Pt. A, 11th International Congress on Catalysis--40th Anniversary, 1996, Pt. A), 369-378
 CODEN: SSCTDM; ISSN: 0167-2991
 AU Wiersma, A.; Van de Sandt, E. J. A. X.; Makkee, M.; Van Bekkum, H.; Moulijn, J. A.
 PY 1996
 AB Pd on activated carbon is an efficient and stable catalyst for hydrogenolysis of CCl₂F₂ to CH₂F₂. The performance and stability of the catalyst strongly depend on the H₂ to CCl₂F₂ feed ratio. At low feed ratios coke deposition causes deactivation, but at high ratios sintering of Pd causes deactivation. The reaction follows parallel pathways. An ideal process for the hydrogenolysis includes a multi-tube fixed bed reactor with hydrogen recycle in which a limited amt. of methane is allowed.

L11 ANSWER 14 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1996:483534 HCAPLUS
 DN 125:118017
 TI Supported palladium-platinum hydrogenation catalyst and its use in the manufacture of hydrofluorocarbons
 SO PCT Int. Appl., 16 pp.
 CODEN: PIXXD2
 IN Scott, John David; Goodyear, Gary; McCarthy, John Charles
 PI WO 9617683 A1 960613

AI WO 95-GB2837 951206
 PY 1996
 AB Title catalyst having improved activity and selectivity comprises Pd and Pt at 2:1 to 500:1 wt. ratio carried on a support such as carbon and is used in the prodn. of a **hydrofluorocarbon** such as **difluoromethane** (I) by contacting a (hydro)
halofluorocarbon such as **chlorodifluoromethane** (II) or **dichlorodifluoromethane**, preferably in a vapor phase, with hydrogen at elevated temp. in the presence of the catalysts. Thus, mixed metal chlorides in HCl were supported on carbon (surface area 800 m²/g, particle size 1.0-1.2 mm, 10% Pd, 1.8% Pt) giving a Pt-promoted Pd catalyst which showed II conversion 99.9% and I selectivity 91.3% at 380.degree..

L11 ANSWER 15 OF 40 HCPLUS COPYRIGHT 1998 ACS
 AN 1996:431554 HCPLUS
 DN 125:86173
 TI Method for production of difluoromethane
 SO Russ.
 From: Izobreteniya 1995, (36), 209.
 CODEN: RUXXE7
 IN Vinogradov, Dmitrij V.; Khomutov, Vladimir A.; Barabanov, Valerij G.
 PI RU 2051140 C1 951227
 AI RU 93-93028401 930525
 PY 1995
 AB CH₂F₂ is prep'd. by fluorination of CH₂Cl₂ with HF at 70-150.degree., using a catalyst contg. 79-96 wt.% SbCl₅, and the remainder KF, KF.HF, NaF, NaF.HF, NH₄F, NH₄F.HF, and/or CsF.HF, at a catalyst concn. of 40-85 wt.% (esp. 54.75 wt.%) vs. the mixt. of catalyst and CH₂Cl₂.
 IT 7664-39-3, **Hydrogen fluoride**, reactions
 RL: RCT (Reactant)
 (manuf. of **difluoromethane** by fluorination of **dichloromethane**)

L11 ANSWER 16 OF 40 HCPLUS COPYRIGHT 1998 ACS
 AN 1996:256085 HCPLUS
 DN 124:288753
 TI Process for producing difluoromethane
 SO PCT Int. Appl., 16 pp.
 CODEN: PIXXD2
 IN Yamada, Yasufu; Shibanuma, Takashi; Tsuda, Takehide
 PI WO 9601241 A1 960118
 AI WO 95-JP1320 950703
 PY 1996
 AB This patent application describes a process for producing **difluoromethane** by the reaction of **dichloromethane** with **hydrogen fluoride** in the presence of a catalyst in a liq. phase economically and safely, wherein the reaction is conducted by using antimony pentafluoride or a mixt. thereof with antimony trifluoride as the catalyst at a temp. of 80-150.degree.C under a pressure of 8-80 kg/cm².

L11 ANSWER 17 OF 40 HCPLUS COPYRIGHT 1998 ACS
 AN 1996:214765 HCPLUS
 DN 124:260354
 TI Method of converting dichlorodifluoromethane into chlorodifluoromethane and other chlorofluoromethanes
 SO U.S.S.R.
 From: Izobreteniya 1993, (24), 54.
 CODEN: URXXAF
 IN Barabanov, Valerij G.; Datsevich, Leonid B.; Eremeeva, Elena L.; Kalinin, Andrej Yu.; Kramerova, Galina E.; Lyubimova, Marina V.; Nagrodskij, Mikhail I.; Orlov, Georgij D.; Ryleev, Gennadij I.
 PI SU 1824386 A1 930630
 AI SU 91-4939388 910527

PY 1993
 AB CF₂C₁₂ is converted into CHF₂C₁ and other chlorofluoromethanes by reaction with H₂ [resp. mol ratio 4:(1-20)] in the gas phase at 220-250.degree. and 20-40 atm, using a 0.05-1% Pt/C catalyst.

L11 ANSWER 18 OF 40 HCPLUS COPYRIGHT 1998 ACS
 AN 1996:201270 HCPLUS
 DN 124:342345
 TI A study on the hydrodechlorination reaction of dichlorodifluoromethane over Pd/AlF₃ catalyst
 SO J. Mol. Catal. A: Chem. (1996), 106(1-2), 83-91
 CODEN: JMCCF2; ISSN: 1381-1169
 AU Ahn, Byoung Sung; Lee, Sang Cheol; Moon, Dong Ju; Lee, Byung Gwon
 PY 1996
 AB The hydrodechlorination reaction of dichlorodifluoromethane (CF₂C₁₂) has been studied under an atm. pressure at 130-210.degree. over Pd/AlF₃ catalyst. The effects of various reaction conditions on the catalyst performance in terms of the reaction rate and product distributions were extensively investigated and the adsorption behaviors of H₂, CF₂C₁₂, CHF₂C₁, CH₂F₂ and CH₃F on the catalyst surface are compared. In addn., the plausible reaction scheme has been proposed based on the exptl. observations. Under the assumption that the formation of two main products, CH₂F₂ and CH₄, proceeds through the hydrogenation of intermediate species, CF₂, the reaction rate consts. have been calcd. by fitting the exptl. data with the reaction rate expression.

IT 75-10-5P, Difluoromethane
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (hydrodechlorination of dichlorodifluoromethane over Pd/AlF₃ catalyst)

L11 ANSWER 19 OF 40 HCPLUS COPYRIGHT 1998 ACS
 AN 1996:194711 HCPLUS
 DN 124:231839
 TI Process for producing difluoromethane
 SO PCT Int. Appl., 15 pp.
 CODEN: PIXXD2
 IN Tsuda, Takehide; Yamada, Yasufu; Shibanuma, Takashi
 PI WO 9535271 A1 951228
 AI WO 95-JP1122 950607
 PY 1995
 AB This patent application describes a process for producing difluoromethane by fluorinating dichloromethane with hydrogen fluoride in a liq. phase in the presence of a fluorination catalyst under such conditions that the reaction is conducted under an abs. pressure of 1-10 kg/cm² at a temp. in the range of 50 to 150.degree.C and the selected reaction temp. is a temp. at which hydrogen fluoride is not liquefied under the above-specified pressure. The above conditions serve to attain an extremely high conversion of dichloromethane and hydrogen fluoride and to minimize the amts. of byproducts other than R30 by recycling unreacted starting materials, typically at most 0.1% based on difluoromethane. Furthermore, the corrosion of the reactor scarcely occurs in the reaction of a highly corrosive antimony chloride fluoride with hydrogen fluoride, as long as the above conditions are kept.

L11 ANSWER 20 OF 40 HCPLUS COPYRIGHT 1998 ACS
 AN 1996:191614 HCPLUS
 DN 124:342628
 TI Method for the preparation of difluoromethane
 SO U.S., 6 pp.
 CODEN: USXXAM
 IN Nam, Kyung H.; Na, Doo C.; Kim, Dae S.
 PI US 5495057 A 960227

AI US 95-398965 950302

PY 1996

AB A method for the prepn. of CH₂F₂ is disclosed, wherein CH₂Cl₂ reacts with HF in the liq. phase, at 70.degree.-90.degree. and approx. 11-12 kg/cm²G, in the presence of SbCl₅ catalyst. It is important that the concn. of pentavalent Sb is maintained at a level of 85% or more, with the feed mole ratio of HF to CH₂Cl₂ ranging from about 2.0 to 2.3. Applicable to industrial scale, the method is operated in a batch or continuous system. In addn., it exhibits superior conversion and prodn. yield. In an example with a mol ratio SbCl₅/CH₂Cl₂ of 0.17/1 and HF/CH₂Cl₂ of 2.0/1, the conversion rates of CH₂Cl₂ and HF were 93.6% and 86.92% by wt., and the product contained 93.52% CH₂F₂ and 6.48% CH₂ClF.

IT 75-09-2, Methylene chloride, reactions

RL: RCT (Reactant)

(prep. difluoromethane by fluorination of methylene chloride using hydrogen fluoride and antimony pentachloride catalyst)

L11 ANSWER 21 OF 40 HCPLUS COPYRIGHT 1998 ACS

AN 1996:42622 HCPLUS

DN 124:120721

TI Performance of a rectification column on the reactor in the liquid-phase synthesis of difluoromethane

SO Zh. Prikl. Khim. (S.-Peterburg) (1995), 68(8), 1395-7
CODEN: ZPKHAB; ISSN: 0044-4618

AU Vinogradov, D. V.; Barabanov, V. G.; Khomutov, V. A.

PY 1995

AB The NRTL correlation equil. parameters for binary systems are derived to calc. the performance of a distn. column installed in the reactor for a liq.-phase CH₂F₂ synthesis. Vapor-liq. equil. for CH₂F₂-HF and ClFCH₂-HF systems was studied exptl. at 10.degree.. The exptl. data were used to calc. the parameters of the column installed in the reactor.

L11 ANSWER 22 OF 40 HCPLUS COPYRIGHT 1998 ACS

AN 1995:994879 HCPLUS

DN 124:86351

TI Process for converting chlorodifluoromethane and dichlorodifluoromethane

SO PCT Int. Appl., 24 pp.

CODEN: PIXXD2

IN Manogue, William H.; Noelke, Charles J.; Swearingen, Steven H.

PI WO 9524369 A1 950914

AI WO 95-US1518 950216

PY 1995

AB A process is disclosed for the conversion of halogenated methanes of the formula: CCl_yH_{2-y}F₂ (wherein y is 1 or 2) to a mixt. of conversion products. The process involves reacting certain halogenated hydrocarbon feeds and hydrogen (wherein said halogenated methanes are at least one mole percent of the halogenated hydrocarbon feed) in a reaction vessel of alumina, silicon carbide or at least one metal selected from gold, chromium, aluminum, molybdenum, titanium, nickel, iron, cobalt, and their alloys at a temp. of from about 500.degree.C to 800.degree.C and a pressure from about 101 kPa to 7000 kPa to produce a mixt. of conversion products of said halogenated methanes which comprises at least 5 mol percent C₂H₂F₄, wherein the mole ratio of CH₂FCF₃ to CH₂CHF₂ in said C₂H₂F₄ is at least about 1:9.

L11 ANSWER 23 OF 40 HCPLUS COPYRIGHT 1998 ACS

AN 1995:713958 HCPLUS

DN 123:86591

TI Hydrogen fluoride-fluorination process and trivalent chromium catalysts for the production of difluoromethane and azeotropes of dihalomethanes

containing chlorine from **dichloromethane**
 SO PCT Int. Appl., 26 pp.
 CODEN: PIXXD2
 IN Furmanek, Paul S.; Glasscock, David A.; Keane, Michael, Jr.; Mahler,
 Barry A.; Rao, Velliyur Nott Mallikarjuna
 PI WO 9512563 A1 950511
 AI WO 94-US12473 941031
 PY 1995
 AB Difluoromethane is prepd. by contacting a gaseous mixt. contg. CH₂Cl₂ and HF with a catalyst contg. a trivalent chromium compd. (e.g., CrCl₃, fluorided CrCl₃, etc.) supported on C (having an ash content of <0.5 %) at 180-375.degree.. The catalyst and temp. conditions of this process allow the concurrent reaction CC₁₃CF₃ with HF to form CC₁₂FCF₃. CH₂ClF and unreacted CH₂Cl₂, each of which may be recovered as an azeotrope with HF, may be recycled.

IT 75-10-5P, **Difluoromethane**
 RL: IMF (Industrial manufacture); PREP (Preparation)
 (hydrogen fluoride-fluorination process and
 trivalent chromium catalysts for the prodn. of
difluoromethane and azeotropes of **dihalomethanes**
 contg. chlorine from **dichloromethane**)
 IT 75-09-2, **Dichloromethane**, reactions
 7664-39-3, **Hydrogen fluoride**, reactions
 RL: RCT (Reactant)
 (hydrogen fluoride-fluorination process and
 trivalent chromium catalysts for the prodn. of
difluoromethane and azeotropes of **dihalomethanes**
 contg. chlorine from **dichloromethane**)

L11 ANSWER 24 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1995:667043 HCAPLUS
 DN 123:35762
 TI Effect of the Metal-Support Interaction on the Catalytic Properties of Palladium for the Conversion of Difluorodichloromethane with Hydrogen: Comparison of Oxides and Fluorides as Supports
 SO J. Phys. Chem. (1995), 99(28), 11159-66
 CODEN: JPCHAX; ISSN: 0022-3654
 AU Coq, Bernard; Figueras, Francois; Hub, Serge; Tournigant, Didier
 PY 1995
 AB The reaction of CF₂Cl₂ with hydrogen has been studied between 433 and 523 K and atm. pressure, over Pd catalysts supported on graphite and oxides or fluorides of Al, Ti, and Zr. In CF₂Cl₂ hydrogenation, CH₂F₂ and CH₄ represented >95% of the products. The catalytic properties of fluoride supported catalysts did not undergo any change as a function of time. In contrast, Pd supported on oxides showed changes in selectivity during the first hours on stream. This was ascribed to the reaction of the oxide support with HF released during the reaction. Alumina and titania were nearly completely converted to the corresponding fluorides, but not zirconia. The selectivity to the desired product CH₂F₂ was 56% for Pd/graphite and reached 90% for Pd/ZrF₄. The kinetic study suggested that the selectivity was controlled by the bond strength between a carbene-like species CF₂ and the surface. The strength of this interaction is supposed to vary with electron availability at the Pd surface, and this hypothesis was then investigated by IR spectroscopy using the adsorption of CO on Pd/Al₂O₃ and Pd/AlF₃. The morphol. of the Pd particles was little affected by the support and that AlF₃-supported Pd becomes electron deficient, due to the strong Lewis acidity of the support. This effect is mainly a short-range effect which is better induced by supports made up of a mixt. of fluorides, oxyfluorides, and hydroxyfluorides, rather than pure fluorides. Catalytic properties similar to those of Pd/AlF₃ and ZrF₄ can be simulated with Pd/graphite samples promoted with small amts. of aluminum or zirconium.
 IT 75-10-5P, **Difluoromethane**
 RL: IMF (Industrial manufacture); PREP (Preparation)

(metal-support interaction in **difluorodichloromethane**
hydrogenation catalyzed by oxide or fluoride-supported
 palladium)

L11 ANSWER 25 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1995:453483 HCAPLUS
 DN 122:293893
 TI Manufacture of difluoromethane from dichloromethane
 SO Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF
 IN Tanaka, Kunitada; Shibanuma, Takashi
 PI JP 07017882 A2 950120 Heisei
 AI JP 93-191942 930705
 PY 1995
 AB CH₂F₂ (I) is manufd. by reaction of CH₂Cl₂ (II) with HF in liq. phase in the presence of SbCl_xF_y ($x + y = 5$; $y = 1-3$) catalysts and treating the resulted CH₂FCl (III) with catalysts in liq. or gas phases or treating with HF in the presence of catalysts in gas phases. Thus, II was treated with HF in the presence of SbCl₂F₃ (prepd. from SbCl₅ and HF) at 80.degree. under 10 kG pressure. I and HCl followed by HF were removed from the product, and the residual III was passed through Cr oxide at 150.degree. and 80 mL/min to give 35.6 mL/min I.

L11 ANSWER 26 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1995:275367 HCAPLUS
 DN 122:105240
 TI Manufacture of difluoromethane
 SO Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF
 IN Muramaki, Kazuo; Oono, Hiromoto; Nagayasu, Toshio
 PI JP 06263658 A2 940920 Heisei
 AI JP 93-50954 930311
 PY 1994
 AB Title compd. (I) is manufd. from dichloromethane and HF by introducing the reaction products of dichloromethane and HF to the first distn. column for sepn. of HCl from the top and a fraction mainly consisting of I, chlorofluoromethane, dichloromethane, and HF from the bottom, introducing the bottom fraction to the second distn. column for withdrawal of a fraction mainly consisting of I from the top, forwarding the fraction to a sep. purifn. step to recover I, mixing the bottom from the second distn. column with dichloroethylene (sic) and HF to adjust the ratio and amt. of the reactants and feeding them to the reactor.

IT 7664-39-3, **Hydrogen fluoride**, reactions
 RL: RCT (Reactant)
 (fluorination of **dichloromethane** or
difluoromethane)
 IT 75-09-2, **Dichloromethane**, reactions
 RL: RCT (Reactant)
 (fluorination with **hydrogen fluoride** to
difluoromethane)

L11 ANSWER 27 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1995:275366 HCAPLUS
 DN 122:105239
 TI Manufacture of difluoromethane
 SO Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF
 IN Muramaki, Kazuo; Oono, Hiromoto; Nagayasu, Toshio
 PI JP 06263657 A2 940920 Heisei
 AI JP 93-50953 930311
 PY 1994
 AB Title compd. (I) is manufd. from dichloromethane and HF by introducing the reaction products of dichloromethane and HF to the first distn. column for sepn. of a main fraction contg. I and HCl

and a bottom fraction contg. dichloromethane, chlorofluoromethane, and HF, introducing the main fraction to the second distn. column for removal of HCl from the top and withdrawal of a fraction mainly consisting of I from the bottom, forwarding the fraction from the bottom to a sep. purifn. step to recover I, and adding dichloromethane and HF to the bottom fraction from the first distn. column. to adjust the ratio and amt. of the reactants and feeding them to the reactor.

- IT 7664-39-3, **Hydrogen fluoride**, reactions
 RL: RCT (Reactant)
 (fluorination of **dichloromethane** to
difluoromethane)
 IT 75-09-2, **Dichloromethane**, reactions
 RL: RCT (Reactant)
 (fluorination with **hydrogen fluoride** to
difluoromethane)

- L11 ANSWER 28 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1994:490741 HCAPLUS
 DN 121:90741
 TI The origin and fate of volatile trace components in municipal solid waste landfills
 SO Waste Manage. Res. (1994), 12(2), 129-39
 CODEN: WMARD8; ISSN: 0734-242X
 AU Deipser, Anna; Stegmann, Rainer
 PY 1994
 AB The content of readily volatile halogenated hydrocarbons (chlorinated as well as chlorinated/**fluorinated hydrocarbons** (VCCs/CFCs)) and the BTEX arom. substances (C6H6, PhMe, ethylbenzene, and xylene) in municipal solid waste (MSW) was detd. by 2 methods. The emission potential of these substances via the gas and leachate phase was studied during the different biol. degrdn. phases in the landfill.
Trichlorofluoromethane (R11),
dichlorodifluoromethane (R12) and **dichloromethane** (R30) were the dominating halogenated trace substances. In the acid phase, with some VCCs/CFCs the emittance may take place via the water phase. Hexane, C6H6, and PhMe could be detected in all tests. PhMe often occurred in relatively high concns. in MSW. It could be shown that R11 degraded into dichlorofluoromethane.

- L11 ANSWER 29 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1994:298054 HCAPLUS
 DN 120:298054
 TI Preparation of hydrogen-containing fluoromethanes
 SO Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF
 IN Yoshitake, Masaru; Tatematsu, Shin; Morikawa, Shinsuke
 PI JP 06001731 A2 940111 Heisei
 AI JP 92-183134 920617
 PY 1994
 AB The title compds. are prep'd. by H redn. of CC12F2 in gas phases in presence of redn. catalysts and .gtoreq.1 compds. chosen from H-contg. chlorofluorocarbons and H-contg. fluorocarbons. CC12F2, CHF2CH3, and H were passed through Pt/activated C at 250.degree. with 60 s contact time to give CHClF2 and CH2F2 with 51% and 20% selectivity, resp., at .apprx.80% conversion.

- L11 ANSWER 30 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1994:167282 HCAPLUS
 DN 120:167282
 TI Method for removing hydrogen fluoride from halocarbon mixtures
 SO PCT Int. Appl., 31 pp.
 CODEN: PIXXD2
 IN Tsuda, Takehide; Matsumoto, Takeo; Tanaka, Yoshinori; Komatsu, Satoshi; Koyama, Satoshi

PI WO 9321140 A1 931028
 AI WO 93-JP455 930409
 PY 1993
 AB The method comprises distg. the title mixt. to remove binary azeotropic mixts. composed of HF and R-30, HF and R-31, and HF and R-32 or sepg. the mixt. into an upper liq. rich in HF and a lower liq. poor in HF and distg. the resp. phase in a similar manner.

L11 ANSWER 31 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1993:427687 HCAPLUS
 DN 119:27687
 TI Process for production of difluoromethane
 SO Braz. Pedido PI, 28 pp.
 CODEN: BPXXDX
 IN Moore, Geoffrey James; O'Kell, Jenny
 PI BR 9201323 A 921201
 AI BR 92-1323 920410
 PY 1992
 AB CH₂F₂ (I) is produced by catalytic hydrogenation of halodifluoromethanes XYCF₂ (X, Y = H, Cl, Br; .gtoreq.1 of X and Y .noteq. H) at elevated temp. For example, H and CHClF₂ were passed over 10% Pd/C at 217.degree. and the product gases were dild. with N and scrubbed to remove acids, giving I and CH₄ as sole products in ratio (gas chromatog.) 8.74:1.65. Numerous addnl. runs explored various catalysts (Pd, Pt, Ru, Rh, NiO, Ni, and Pd-Ni) at various temps., plus the substrate CCl₂F₂.

L11 ANSWER 32 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1993:59278 HCAPLUS
 DN 118:59278
 TI Production of difluoromethane
 SO Eur. Pat. Appl., 16 pp.
 CODEN: EPXXDW
 IN Moore, Geoffrey James; O'Kell, Jenny
 PI EP 508660 A1 921014
AI EP 92-302785 920330
 PY 1992
 AB A process for prepn. of title compd. (I) comprises hydrogenation of XYCF₂ (X,Y = H, Cl, Br and at least 1 of X and Y .noteq. H) at elevated temp. in the presence of a hydrogenation catalyst. Thus, hydrogenation of ClF₂CH (II) at 260.degree. in a tube reactor contg. 8.2% Pd on Norit RX3 extrudate active C catalyst gave 76.6% conversion (by vol.) of II with 74.3% selectivity for I.

L11 ANSWER 33 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1987:578651 HCAPLUS
 DN 107:178651
 TI Fluorinated derivatives of tetrachloromethane
 SO Czech., 4 pp.
 CODEN: CZXXA9
 IN Vachta, Jaromir; Grunt, Miloslav; Roh, Zdenek; Mekota, Frantisek; Pacha, Jaroslav; Siler, Jaroslav; Krasl, Karel; Posta, Antonin; Barta, Milen
 PI CS 237613 B1 870216
 AI CS 83-1754 830315
 PY 1987
 AB Combining the traditional FeCl₃/C fluorination catalysts with Fe (I) and Cu (II) powders increases the HF conversion of the fluorination process while decreasing the formation of higher-fluorinated products. Passing a 2.1:1 mixt. of HF and CC₁₄ at 295.degree./0.2 MPa over 1.9 L of C impregnated with 20-30% FeCl₂ and mixed with 40 g Fe and 10 g Cu gave, after 300 h, 94.5% HF conversion and the product contg. CC₁₄ 0.4, FCCl₃ 4.3, F₂CCl₂ 94.2, and F₃CCl 1%, vs. 91.28, 1.4, 7, 90.1, and 1.5, resp., for a parallel fluorination conducted with a control catalyst not contg. I or II powder.

L11 ANSWER 34 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1987:485686 HCAPLUS
 DN 107:85686
 TI Highly selective carbon-13 separation by carbon dioxide-laser-induced IRMPD of **dichlorodifluoromethane/hydrogen iodide** and **bromochlorodifluoromethane/hydrogen iodide** mixtures
 SO Chem. Phys. Lett. (1987), 137(6), 590-5
 CODEN: CHPLBC; ISSN: 0009-2614
 AU Ma, Peihua; Sugita, Kyoko; Arai, Shigeyoshi
 PY 1987
 AB The CO₂ laser-induced IRMPD (IR multiphoton dissociation) of CF₂Cl₂/HI and CF₂ClBr/HI mixts. produced 13C-enriched CF₂HCl. In CF₂Cl₂/HI mixts., the CF₂HCl underwent secondary IRMPD in the continuing pulse irradn. at the same waveno. and fluence, yielding CF₂H₂ with a 13C content of 97%. Because of efficient decomprn. at relatively low fluences, CF₂ClBr seems to be a promising starting mol. in 2-step 13C enrichment.

L11 ANSWER 35 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1985:176308 HCAPLUS
 DN 102:176308
 TI Competition between hydrogen fluoride and hydrogen chloride molecular elimination channels in the infrared multiple-photon decomposition of 1,2-dichloro-1,1-difluoroethane. (II)
 SO Reza Kagaku Kenkyu (1984), 6, 60-3
 CODEN: RKAKDK; ISSN: 0558-471X
 AU Ishikawa, Yoichi; Arai, Shigeyoshi
 PY 1984
 AB Time-resolved IR emission study show that the HF and HCl mol. elimination channels compete with each other in the IR multiphoton decomprn. of 1,2-dichloro-1,1-difluoroethane. Theor. calcns. were carried out for the decomprn. using a stochastic trajectory method. The calcd. results described satisfactorily the obsd. fluence dependences of HF and HCl yields in the unimol. decomprn. of highly vibrationally excited parent mols.

L11 ANSWER 36 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1981:592761 HCAPLUS
 DN 95:192761
 TI Measurements of the surface tension of four halogenated hydrocarbons, **trichlorofluoromethane**, **dichlorodifluoromethane**, trichlorotrifluoroethane (C₂C₁₃F₃), and **dichlorotetrafluoroethane** (C₂C₁₂F₄)
 SO Int. J. Thermophys. (1981), 2(2), 163-76
 CODEN: IJTHDY; ISSN: 0195-928X
 AU Watanabe, K.; Okada, M.
 PY 1981
 AB A capillary rise method was used to det. the surface tension of four different kinds of halogenated hydrocarbons (CCl₃F, CCl₂F₂, C₂C₁₃F₃, C₂C₁₂F₄). The measurements were performed for coexisting liq. and satd. vapor with max. uncertainty 0.12 mN . m⁻¹ at temps. from 273 K up to near the crit. point of the resp. substances. Under the same exptl. conditions, two sets of surface tension data were obtained with two different Pyrex glass capillaries having inner radii 0.1536 .+- .0.0004 and 0.1724 .+- .0.0005 mm, resp.; the two sets of data are in agreement within 0.1 mN . m⁻¹. The data are represented by van der Waals-type correlations with a std. deviation of 0.10 mN . m⁻¹ for CC₁₃F, 0.04 mN . m⁻¹ for CC₁₂F₂, 0.08 mN . m⁻¹ for C₂C₁₃F₃, and 0.07 mN . m⁻¹ for C₂C₁₂F₄, resp.

L11 ANSWER 37 OF 40 HCAPLUS COPYRIGHT 1998 ACS
 AN 1979:491150 HCAPLUS
 DN 91:91150
 TI Fluorination of chlorinated hydrocarbons
 SO U.S., 4 pp.

CODEN: USXXAM
 IN Fiske, Tom R.; Baugh, Daniel W., Jr.
 PI US 4147733 790403
 AI US 78-908310 780522
 PY 1979
 AB Fluorinated lower aliph. chlorinated hydrocarbon were prep'd. in the vapor phase with HF in the presence of steam and a metal (particularly Al, Cr, or Ni) fluoride catalyst at 275-425.degree.. Thus, vaporized 38% aq. HF and CH₂Cl₂ (1.4:1 molar ratio) were passed through a catalyst bed of Cr-Al fluoride at 400.degree. with 8.8 s residence time to give 11% CH₂ClF, 47% CH₂F₂, and 24% MeCl with 30% CH₂Cl₂ conversion. CH₂:CHF and MeCHF₂ were similarly prep'd. from CH₂:CHCl.

IT 75-10-5P *SPN*
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prep'n. of, by fluorination of dichloromethane with hydrogen fluoride, catalyst for)

L11 ANSWER 38 OF 40 HCPLUS COPYRIGHT 1998 ACS
 AN 1975:3609 HCPLUS
 DN 82:3609
 TI The kinetics of the reaction of atomic hydrogen with difluorodichloromethane
 SO St. Rab. Khim. Kaz. Univ. (1973), No. 3, 631-6
 From: Ref. Zh., Khim. 1974, Abstr. 9B901
 AU Ksandopulo, G. I.; Mansurov, Z. A.
 PY 1973
 AB Unavailable

L11 ANSWER 39 OF 40 HCPLUS COPYRIGHT 1998 ACS
 AN 1972:103684 HCPLUS
 DN 76:103684
 TI Synthesis and formulation of several epinephrine salts as a aerosol dosage form
 SO J. Pharm. Sci. (1972), 61(2), 219-23
 CODEN: JPMSAE
 AU Sciarra, John J.; Patel, Jitendra M.; Kapoor, Amrit L.
 PY 1972
 AB Various salts of epinephrine (I) such as the maleate, malate, and fumarate were prep'd. Following the synthesis of these salts, a study of the partition coeff. of these salts in high mol. wt. alcs. such as octyl and hexadecyl alc. and water was carried out, and the results were compared to the partition coeff. of I bitartrate in these same vehicles. The solv. of these new salts in CHCl₃, CC₁₄, and fluorinated hydrocarbons was then detd. Several systems incorporating these new salts were prep'd. and subjected to a preliminary stability study. The partition coeff. of I maleate detd. between octyl alc.-water and hexadecyl alc.-water was higher than the value for I bitartrate, malate, and fumarate. The solv. of I maleate and fumarate in 4 propellants (*dichlorodifluoromethane*, *dichlorotetrafluoroethane*, monochlorodifluoroethane, and *difluoroethane*) was slightly higher than the I bitartrate and malate. As expected, difluoroethane dissolved the highest amt. of I salts as compared to the other propellants studied. I maleate and bitartrate had greater stability than the I malate and fumarate on the basis of the preliminary stability study.

L11 ANSWER 40 OF 40 HCPLUS COPYRIGHT 1998 ACS
 AN 1970:525651 HCPLUS
 DN 73:125651
 TI Pulsed-discharge-initiated chemical lasers. I. Hydrogen fluoride laser emission from *chlorodifluoromethane*, *dichlorofluoromethane*, *trifluoromethane*, and *dichlorodifluoromethane--hydrogen* systems
 SO J. Chem. Phys. (1970), 53(8), 3383-4

CODEN: JCPSA6
AU Lin, Ming Chang; Green, William H.
PY 1970
AB HF laser emission from CHF₂Cl, CHFCl₂, CHF₃, and CF₂Cl₂-H₂ systems was obtained by using a transverse, multiple-arc discharge. Both P21 and P10 transitions lase. The addn. of He enhanced emission from all lines. Addn. of H₂ caused a redn. in P10 transition intensities and an increase in P21 transition intensities. A time delay between P21 and P10 emission suggests that a cascading mechanism is operative. The ready availability of the P10 transitions of HF and narrow pulse widths should make ir fluorescence studies practical.

=> select hit rn 111 1-40

E1 THROUGH E3 ASSIGNED

=> fil reg

FILE 'REGISTRY' ENTERED AT 16:24:59 ON 27 AUG 1998
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 1998 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 21 AUG 98 HIGHEST RN 210281-59-7
DICTIONARY FILE UPDATES: 26 AUG 98 HIGHEST RN 210281-59-7

TSCA INFORMATION NOW CURRENT THROUGH JUNE 29, 1998

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Stereochemical name changes have been adopted and appear in CN's beginning 6/29/98. See the online news message for details.

** Notice ** If you recently ran a CSS search involving an AK-carbon connection, please enter NEWS at an arrow prompt for a message containing important details.

=>

=>

=> s e1-e3

1 7664-39-3/B1
(7664-39-3/RN)
1 75-10-5/B1
(75-10-5/RN)
1 75-09-2/B1
(75-09-2/RN)
L12 3 (7664-39-3/B1 OR 75-10-5/B1 OR 75-09-2/B1)

=>

=>

=> d ide can 112 1-3

L12 ANSWER 1 OF 3 REGISTRY COPYRIGHT 1998 ACS
RN 7664-39-3 REGISTRY
CN Hydrofluoric acid (8CI, 9CI) (CA INDEX NAME)
OTHER NAMES:
CN Alsurf 45

CN Anhydrous hydrofluoric acid
 CN Antisal 2b
 CN Fluorhydric acid
 CN Fluoric acid
 CN Fluorine hydride (FH)
 CN Fluorine monohydride
 CN Hydrofluoric acid gas
 CN Hydrogen fluoride
 CN Hydrogen fluoride (HF)
 CN Hydrogen monofluoride
 DR 32057-09-3
 MF F H
 CI COM
 LC STN Files: AGRICOLA, ANABSTR, APIPLIT, APIPAT, APIPAT2,
 BIOBUSINESS, BIOSIS, CA, CABA, CANCERLIT, CAPLUS, CASREACT, CEN,
 CHEMCATS, CHEMINFORMRX, CHEMLIST, CBNB, CHEMSAFE, CIN, CJACS,
 CSCHEM, CSNB, DETHERM*, DIPPR*, EMBASE, GMELIN*, HSDB*, IFICDB,
 IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS, NIOSHTIC, PDLCOM*,
 PIRA, PNI, PROMT, RTECS*, TOXLINE, TOXLIT, TRCTHERMO*, TULSA,
 ULIDAT, USPATFULL, VTB
 (*File contains numerically searchable property data)
 Other Sources: DSL**, EINECS**, TSCA**
 (**Enter CHEMLIST File for up-to-date regulatory information)

HF

23255 REFERENCES IN FILE CA (1967 TO DATE)
 170 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 23287 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 129:117264
 REFERENCE 2: 129:116778
 REFERENCE 3: 129:116722
 REFERENCE 4: 129:116721
 REFERENCE 5: 129:116246
 REFERENCE 6: 129:116157
 REFERENCE 7: 129:116154
 REFERENCE 8: 129:115039
 REFERENCE 9: 129:115004
 REFERENCE 10: 129:114939

L12 ANSWER 2 OF 3 REGISTRY COPYRIGHT 1998 ACS
 RN 75-10-5 REGISTRY
 CN Methane, difluoro- (8CI, 9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN Difluoromethane
 CN Ecolo Ace 32
 CN FC 32
 CN Freon 32
 CN Genetron 32
 CN HFC 32
 CN Methylene difluoride
 CN R 32
 CN R 32 (refrigerant)
 FS 3D CONCORD

MF C H2 F2

CI COM

LC STN Files: ANABSTR, BEILSTEIN*, BIOBUSINESS, BIOSIS, CA,
 CANCERLIT, CAOLD, CAPLUS, CASREACT, CEN, CHEMCATS, CHEMINFORMRX,
 CHEMLIST, CBNB, CIN, CJACS, CSCHEM, CSNB, DETHERM*, DIPPR*,
 GMELIN*, HODOC*, IFICDB, IFIPAT, IFIUDB, MEDLINE, MSDS-OHS,
 NIOSHTIC, PDLCOM*, PROMT, RTECS*, SPECINFO, TOXLINE, TOXLIT,
 TRCTHERMO*, ULIDAT, USPATFULL, VTB

(*File contains numerically searchable property data)

Other Sources: EINECS**, NDSL**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

F-CH₂-F

1643 REFERENCES IN FILE CA (1967 TO DATE)
 5 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 1649 REFERENCES IN FILE CAPLUS (1967 TO DATE)
 127 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 129:114146

REFERENCE 2: 129:113771

REFERENCE 3: 129:110676

REFERENCE 4: 129:110399

REFERENCE 5: 129:108794

REFERENCE 6: 129:100554

REFERENCE 7: 129:97107

REFERENCE 8: 129:97069

REFERENCE 9: 129:97068

REFERENCE 10: 129:97067

L12 ANSWER 3 OF 3 REGISTRY COPYRIGHT 1998 ACS

RN 75-09-2 REGISTRY

CN Methane, dichloro- (8CI, 9CI) (CA INDEX NAME)

OTHER NAMES:

CN Aerothene MM

CN Dichloromethane

CN F 30

CN F 30 (chlorocarbon)

CN Freon 30

CN HCC 30

CN Khladon 30

CN Metaclen

CN Methane dichloride

CN Methylene chloride

CN Methylene dichloride

CN Narkotil

CN R 30

CN R 30 (refrigerant)

CN Solaesthin

CN Soleana VDA

CN Solmethine

FS 3D CONCORD

MF C H2 Cl2

CI COM

LC STN Files: AGRICOLA, ANABSTR, APILIT, APILIT2, APIPAT, APIPAT2,

BEILSTEIN*, BIOBUSINESS, BIOSIS, CA, CABA, CANCERLIT, CAOLD,
 CAPLUS, CASREACT, CEN, CHEMCATS, CHEMINFORMRX, CHEMLIST, CBNB,
 CHEMSAFE, CIN, CJACS, CSCHEM, CSNB, DETHERM*, DDFU, DIPPR*, DRUGU,
 EMBASE, GMELIN*, HODOC*, HSDB*, IFICDB, IFIPAT, IFIUDB, IPA,
 MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, NIOSHTIC, PDLCOM*, PIRA, PNI,
 PROMT, RTECS*, SPECINFO, TOXLINE, TOXLIT, TRCTHERMO*, TULSA,
 ULIDAT, USAN, USPATFULL, VTB

(*File contains numerically searchable property data)

Other Sources: DSL**, EINECS**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

Cl—CH₂—Cl

15326 REFERENCES IN FILE CA (1967 TO DATE)
 68 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 15353 REFERENCES IN FILE CAPLUS (1967 TO DATE)
 7 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 129:117214

REFERENCE 2: 129:115689

REFERENCE 3: 129:115589

REFERENCE 4: 129:114973

*

REFERENCE 5: 129:114733

REFERENCE 6: 129:114709

REFERENCE 7: 129:114704

REFERENCE 8: 129:113547

REFERENCE 9: 129:113147

REFERENCE 10: 129:112653

=> fil hcplus

FILE 'HCPLUS' ENTERED AT 16:32:04 ON 27 AUG 1998
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 1998 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 27 Aug 1998 VOL 129 ISS 9
 FILE LAST UPDATED: 27 Aug 1998 (980827/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REGISTRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

=>

=>

=> d stat que 115

```

L1      30 SEA FILE=REGISTRY ABB=ON   PLU=ON   CH2CL2/MF
L3      11 SEA FILE=REGISTRY ABB=ON   PLU=ON   CH2F2/MF
L4      10 SEA FILE=REGISTRY ABB=ON   PLU=ON   FH/MF
L5      24252 SEA FILE=HCAPLUS ABB=ON  PLU=ON   L1 OR ?DICHLORO?(5A)?MET
          HANE? OR ?DICHLOROMETHANE?
L6      66904 SEA FILE=HCAPLUS ABB=ON  PLU=ON   L4 OR ?HYDROFLUORO? OR
          HYDRO?(2A)?FLUOR?
L7      5936 SEA FILE=HCAPLUS ABB=ON  PLU=ON   L3 OR ?DIFLUORO?(5A)?MET
          HANE? OR ?DIFLUOROMETHANE?
L8      212 SEA FILE=HCAPLUS ABB=ON  PLU=ON   L5 AND L6 AND L7
L9      42093 SEA FILE=HCAPLUS ABB=ON  PLU=ON   L4 OR ?HYDROFLUORO? OR
          HYDRO?(A)?FLUOR?
L11     40 SEA FILE=HCAPLUS ABB=ON  PLU=ON   L5(L)L9(L)L7
L14     1325 SEA FILE=HCAPLUS ABB=ON  PLU=ON   ?FLUORINATION?(L)CATALYS
          T?
L15     24 SEA FILE=HCAPLUS ABB=ON  PLU=ON   (L14 AND L8) NOT L11

```

=>

=>

=> d .caabs 115 1-24

```

L15 ANSWER 1 OF 24 HCAPLUS COPYRIGHT 1998 ACS
AN 1998:42358 HCAPLUS
DN 128:101814
TI Fluorination of hydrohalomethanes using
hydrogen fluoride in the presence of Lewis acid
catalysts.
SO PCT Int. Appl., 23 pp.
CODEN: PIXXD2
IN Thenappan, Alagappan; Smith, Addison Miles; McKown, Jeffrey Warren;
Bell, Robert Louis
PI WO 9749655 A1 971231
AI WO 97-US10966 970624
PY 1997
AB Fluorination catalysts comprising Mo(V) halides,
Nb(V) halides, Ta(V) halides, Sn(IV) halides, Ti(IV) halides, and
mixts., are claimed. Thus, CH2Cl2 was autoclaved under 300-400 psig
HF at 120.degree. for 5 h in the presence of NbCl5/SnCl4 to give
CH2CF2 with 99.7% selectivity and 98.8% conversion.
IT 75-10-5P, HFC-32
RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP
(Preparation)
      (fluorination of hydrohalomethanes using
hydrogen fluoride in the presence of Lewis acid
catalysts)
IT 75-09-2, Dichloromethane, reactions
RL: RCT (Reactant)
      (fluorination of hydrohalomethanes using
hydrogen fluoride in the presence of Lewis acid
catalysts)

```

```

L15 ANSWER 2 OF 24 HCAPLUS COPYRIGHT 1998 ACS
AN 1997:496566 HCAPLUS
DN 127:96813
TI Shaped heterogeneous fluorination catalysts and
manufacture of halogenated hydrocarbons with high catalytic activity,
low pressure loss, and long catalyst life
SO Jpn. Kokai Tokkyo Koho, 8 pp.
CODEN: JKXXAF
IN Kanemura, Takashi; Kono, Satoshi; Kitano, Keisuke; Takahashi,

```

PI Kazuhiro; Shibanuma, Shun
 JP 09141105 A2 970603 Heisei
 AI JP 95-329853 951124
 PY 1997

AB The (un)supported title catalysts based mainly on Cr, Cr oxide, Cr fluoride, and/or Cr oxyfluoride are hollow cylindrical with outer diam. 2-20 mm, inner/outer diam. ratio 0.1-0.7, and length 0.2-2.0 times the outer diam. Cr hydroxide from Cr nitrate and ammonium hydroxide was mixed with 3% graphite, compression molded (outer diam. 5 mm, inner diam. 2 mm, length 5 mm) and treated with HF-N at 200-360.degree. for 2 h and used as catalyst for reaction of HCFC-133a with HF with HFC-134a yield 12.3%.

IT 75-10-5P, HFC-32

RL: IMF (Industrial manufacture); PREP (Preparation)
 (shaped heterogeneous **fluorination catalysts**
 and manuf. of halogenated hydrocabons with high catalytic activity, low pressure loss, and long **catalyst** life)

IT 75-09-2, Dichloromethane, reactions

7664-39-3, Hydrogen fluoride, reactions

RL: RCT (Reactant)
 (shaped heterogeneous **fluorination catalysts**
 and manuf. of halogenated hydrocabons with high catalytic activity, low pressure loss, and long **catalyst** life)

L15 ANSWER 3 OF 24 HCPLUS COPYRIGHT 1998 ACS

AN 1997:370767 HCPLUS

DN 127:54976

TI Catalytic **hydrolysis** of dichlorodifluoromethane
 (CFC-12) on sol-gel-derived titania unmodified and modified with H₂SO₄

SO J. Catal. (1997), 168(2), 482-490

CODEN: JCTLA5; ISSN: 0021-9517

AU Fu, Xianzhi; Zeltner, A.; Yang, Qing; Anderson, Marc A.

PY 1997

AB Catalytic **hydrolysis** of dichlorodifluoromethane
 (CFC-12) in a humid air stream was studied over pure and sulfate-promoted TiO₂ **catalysts** which were prepd. by sol-gel methods. The results showed that complete conversion of CFC-12 on unmodified TiO₂ was achieved at reaction temps. higher than 340.degree. under the reaction conditions employed. The selectivity to CO₂ ([CO₂]produced/[CFC-12]converted) varied from 0.5 to 0.88 over the range of 250-350.degree. and CC₁F₃ (CFC-13) was detected as the main byproduct. Surface **fluorination** of the TiO₂ **catalyst** during the reaction improved its activity, induced the formation of the fluorinated byproduct CFC-13, and changed such properties of the **catalyst** as its sp. surface area, pore size distribution, and crystal size. It was found that the catalytic and structural properties of TiO₂ were greatly improved by sulfation. The sulfated TiO₂ (TiO₂/SO₄²⁻) exhibited excellent reaction activity and selectivity for CFC-12 catalytic decomn. at low reaction temps. (190-250.degree.) while retaining a stable structure. Complete decomn. of CFC-12 with stoichiometric prodn. of CO₂ was obsd. over the TiO₂/SO₄²⁻ **catalyst** at 250.degree. under otherwise identical reaction conditions as used for pure TiO₂. Results of **catalyst** characterization by x-ray diffraction (XRD), XPS, Fourier transform IR spectroscopy (FTIR), and N₂ sorption anal. indicated that surface sulfate species formed on the sulfated TiO₂. When compared to unmodified TiO₂, the sulfated TiO₂ exhibited higher resistance to crystal phase transformation from anatase to rutile, higher resistance to the deleterious effects of **fluorination** of the **catalyst**, and higher sp. surface area. **Fluorination** of the **catalyst** did not improve the activity of sulfated TiO₂, and no CFC-13 was detected as a byproduct, indicating that fluorine was not involved in the formation of reaction sites over the sulfated TiO₂ **catalysts**

L15 ANSWER 4 OF 24 HCAPLUS COPYRIGHT 1998 ACS
 AN 1997:370438 HCAPLUS
 DN 127:8413
 TI Heterogeneous catalyzed decomposition reactions of **dichlorodifluoromethane** in the presence of water on .gamma.-alumina
 SO J. Fluorine Chem. (1997), Volume Date 1996-1997, 81(2), 197-204
 CODEN: JFLCAR; ISSN: 0022-1139
 AU Kemnitz, E.; Kohne, A.; Lieske, E.
 PY 1997
 AB The heterogeneous catalyzed decompn. of CC12F2 (CFC-12) in the presence of water was studied, using .gamma.-alumina as **catalyst**. The catalyzed hydrolysis reaction yields very high conversion degrees of CFC-12 in the 1st reaction stage. For a period of .apprx.3 h there is a remarkable lack of balance between the amt. of liberated HF and HCl owing to the uptake of HF by the oxide solid forming .alpha.-AlF₃. Only after .apprx.3 h does the heterogeneous solid/gas reaction come to an end and then the HCl and the HF balance is equal. With the increasing fluoride content of the solid phase, the decompn. degree of CFC-12 seems to be higher but this is owing to the formation of CC1F3 (CFC-13), which is nearly stable under the conditions used. Mechanistic explanations are given for the formation of CC1F3 whether by dismutation reactions or owing to **hydrofluorination** reactions of CFC-12. Arguments are given about which mechanism might be the most probable. Mechanistic hypotheses are concluded and discussed with respect to the processes at the **catalyst** surface on the basis of the results.

IT 7664-39-3, **Hydrogen fluoride**, formation (nonpreparative)
 RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative) (heterogeneous catalyzed decompn. reactions of **dichlorodifluoromethane** in presence of water on .gamma.-alumina)

L15 ANSWER 5 OF 24 HCAPLUS COPYRIGHT 1998 ACS
 AN 1996:605506 HCAPLUS
 DN 125:225078
 TI Process for producing **difluoromethane** and **difluorochloromethane**
 SO PCT Int. Appl., 18 pp.
 CODEN: PIXXD2
 IN Tsuda, Takehide; Shibanuma, Takashi
 PI WO 9624570 A1 960815
 AI WO 96-JP264 960208
 PY 1996
 AB The process comprises fluorinating **dichloromethane** and **trichloromethane** with HF in a liq. phase in the presence of a **fluorination catalyst** in a reactor at 1-20 kg/cm² and 50-150.degree.C, whereby **difluoromethane** and **difluorochloromethane** can be produced in the reactor simultaneously or alternatingly, safely and economically. Under the specified temp. and pressure, the HF exists mainly as a gas and imparts no corrosion to the reactor.

IT 75-10-5P, **Difluoromethane**
 RL: IMF (Industrial manufacture); PREP (Preparation) (fluorination process for producing **difluoromethane** and **difluorochloromethane**)

IT 75-09-2, **Dichloromethane**, reactions
 7664-39-3, **Hydrogen fluoride**, reactions
 RL: RCT (Reactant) (fluorination process for producing **difluoromethane** and **difluorochloromethane**)

L15 ANSWER 6 OF 24 HCAPLUS COPYRIGHT 1998 ACS
 AN 1996:409749 HCAPLUS
 DN 125:57895
 TI **Dehydrofluorination, fluorination, and**
decomposition of fluorohydrocarbons with phosphate catalysts
 SO Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF
 IN Takita, Jusaku; Ishihara, Tatsuki; Nakajo, Tetsuo
 PI JP 08104656 A2 960423 Heisei
 AI JP 94-243024 941006
 PY 1996
 AB Phosphate salt **catalysts** are used in (A)
dehydrofluorination of F-contg. halohydrocarbons, (B) prepn.
 of satd. fluorohydrocarbons from halohydrocarbons with HF, (C)
 formation of satd. fluorohydrocarbons from F-contg. halohydrocarbons
 contg. unsatd. halohydrocarbons and/or Cl- or Br-contg.
 halohydrocarbons with HF, and (D) decompn. of F-contg.
 halohydrocarbon with HF. CF₃Me/H/He were passed through 3 wt.%
 Ag-contg. Mg₃(PO₄)₂ (prepn. given) at 450.degree. to give CF₂:CH₂
 with 19.3% conversion and 73% selectivity.

IT 75-10-5P, **Difluoromethane**
 RL: IMF (Industrial manufacture); PREP (Preparation)
(dehydrofluorination, fluorination, and
decompn. of fluorohydrocarbons with phosphate catalysts
)
 IT 75-09-2, Methylene chloride, reactions 7664-39-3,
Hydrofluoric acid, reactions
 RL: RCT (Reactant)
(dehydrofluorination, fluorination, and
decompn. of fluorohydrocarbons with phosphate catalysts
)

L15 ANSWER 7 OF 24 HCAPLUS COPYRIGHT 1998 ACS
 AN 1995:947221 HCAPLUS
 DN 123:339132
 TI Liquid-phase fluorination of organic compounds in fluoropolymer
 reactors
 SO Jpn. Kokai Tokkyo Koho, 3 pp.
 CODEN: JKXXAF
 IN Kimura, Masumi; Yokoyama, Takaaki
 PI JP 07233102 A2 950905 Heisei
 AI JP 94-24419 940222
 PY 1995
 AB Org. compds. are fluorinated in liq. phase using HF by feeding HF
 and the org. compds. in their gaseous states to a reactor made of
 fluoropolymers. The reaction may be carried out in the presence of
Lewis acid catalysts. The method effectively gives products without
 corrosion of reactors. CH₂Cl₂, HF, and Cl were evapd. and fed to a
 SUS 304 reactor lined with perfluoroalkoxy polymer, where SbCl₅ was
 placed, at 100.degree. and 5 kg/cm²G to give CH₂F₂ and CH₂FCl with
 selectivity 92.9 and 7.1%, resp., at conversion 96.4%. A control
 reaction using an unlined reactor caused corrosion of 50 mm/yr after
 a 50 h operation.

IT 75-10-5P, **Difluoromethane**
 RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP
 (Preparation)
 (liq.-phase fluorination of org. compds. by feeding gaseous HF
 and materials to fluoropolymer reactors)

IT 75-09-2, **Dichloromethane, reactions**
7664-39-3, Hydrogen fluoride, reactions
 RL: RCT (Reactant)
 (liq.-phase fluorination of org. compds. by feeding gaseous HF
 and materials to fluoropolymer reactors)

L15 ANSWER 8 OF 24 HCAPLUS COPYRIGHT 1998 ACS
 AN 1995:787308 HCAPLUS

DN 123:169227
 TI Process for producing **difluoromethane** and
 tetrafluoroethane
 SO PCT Int. Appl., 32 pp.
 CODEN: PIXXD2
 IN Homoto, Yukio; Tanaka, Kunitada; Shibanuma, Takashi; Komatsu,
 Satoshi; Koyama, Satoshi
 PI WO 9515937 A1 950615
 AI WO 94-JP2070 941209
 PY 1995
 AB This patent application describes a process for producing
difluoromethane and tetrafluoroethane comprising the steps
 of: (1) reacting **methylene chloride** and 1,1,2-trichloroethylene with
hydrogen fluoride in a first reactor in a gas
 phase in the presence of a **fluorination catalyst**
 and 1,1,1,2-tetrafluoroethane, and (2) reacting 1,1,1-
trifluorochloroethane with **hydrogen**
fluoride in a second reactor in a gas phase in the presence
 of a **fluorination catalyst**, and supplying a
 reaction mixt. formed in the second reactor to the first reactor.
 This process makes it possible to obtain **difluoromethane**
 with high conversion and high selectivity by **fluorination**
 of methylene chloride using a large amt. of **hydrogen**
fluoride which is also necessary for producing
 1,1,1,2-tetrafluoroethane. *LQJW*
 IT 75-10-5P, **Difluoromethane**
 RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP
 (Preparation)
 (process for producing **difluoromethane** and
 tetrafluoroethane)
 IT 75-09-2, Methylene chloride, reactions 7664-39-3,
Hydrogen fluoride, reactions
 RL: RCT (Reactant)
 (process for producing **difluoromethane** and
 tetrafluoroethane)
 L15 ANSWER 9 OF 24 HCAPLUS COPYRIGHT 1998 ACS
 AN 1995:589470 HCAPLUS
 DN 122:323362
 TI Chromium-based **fluorination catalyst** for
 manufacture of **hydrofluorocarbons** from halogenated
hydrocarbons
 SO Eur. Pat. Appl., 17 pp.
 CODEN: EPXXDW
 IN Tsuji, Katsuyuki; Nakaji, Tetsuo
 PI EP 641598 A2 950308
 AI EP 94-113719 940901
 PY 1995
 AB The catalyst is prep'd. by firing a substance contg. Cr(OH)3 in the
 presence of H at a temp. of 350-500.degree. or by heat-treating the
 Cr(OH)3 in an inert gas stream at a temp. of 100-600.degree. and
 then firing the heat-treated compd. in the presence of H at the
 above temp. to grow cryst. Cr2O3. The catalyst is then fluorinated
 with HF at 300-500.degree.. Halogenated Cl-4 hydrocarbon are
 brought into contact with gaseous HF in the presence the catalyst to
 produce **hydrofluorocabons** (HFC) and
hydrochlorofluorocarbon (HCFC). High yields of HFC's and
 HCFC's are obtained at relatively low temps. *A yet*
 IT 7664-39-3, **Hydrogen fluoride**, reactions
 RL: RCT (Reactant)
 (chromium-based **fluorination catalyst** for
 manuf. of **hydrofluorocarbon** from halogenated
hydrocarbons)
 IT 75-09-2, **Dichloromethane**, reactions
 RL: RCT (Reactant)
 (chromium-based **fluorination catalyst** for

manuf. of hydrofluorocarbons from halogenated hydrocarbons)
 IT 75-10-5P, Difluoromethane
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (chromium-based fluorination catalyst for manuf. of hydrofluorocarbons from halogenated hydrocarbons)

L15 ANSWER 10 OF 24 HCPLUS COPYRIGHT 1998 ACS
 AN 1995:380352 HCPLUS
 DN 122:136766
 TI Fluorination catalyst and fluorination process
 SO Eur. Pat. Appl., 11 pp.
 CODEN: EPXXDW
 IN Tsuji, Katsuyuki; Oshiro, Kimitaka; Nakajo, Tetsuo
 PI EP 629440 A1 941221
 AI EP 94-109099 940614
 PY 1994

AB The catalyst, which is used for fluorination of halogenated hydrocarbons for producing hydrofluorocarbons with high yield, comprises indium, chromium, oxygen and fluorine as essential constituent elements. The catalyst is prep'd. by fluorinating a catalyst precursor comprising indium and chromium elements by bringing it into contact with hydrogen fluoride or a fluorine-contg. halogenated hydrocarbon at 300-500.degree..

IT 75-10-5P, HFC 32
 RL: IMF (Industrial manufacture); PREP (Preparation)
 (fluorination catalyst and fluorination process for prodn. of hydrofluorocarbons)

IT 75-09-2, reactions
 RL: RCT (Reactant)
 (fluorination catalyst and fluorination process for prodn. of hydrofluorocarbons)

L15 ANSWER 11 OF 24 HCPLUS COPYRIGHT 1998 ACS
 AN 1995:245129 HCPLUS
 DN 122:9439
 TI Room-temperature catalytic fluorination of C1 and C2 chlorocarbons and chlorohydrocarbons on fluorinated Fe₃O₄ and Co₃O₄
 SO J. Chem. Soc., Faraday Trans. (1994), 90(23), 3585-90
 CODEN: JCFTEV; ISSN: 0956-5000

AU Thomson, James
 PY 1994
 AB A study of the room-temp. reactions of a series of C1 and C2 chlorohydrocarbon and chlorocarbon substrate mols. with fluorinated iron(II,III) oxide and cobalt(II,III) oxide has been conducted. The results show that fluorinated iron(II,III) oxide exhibits an ability to incorporate fluorine into the following substrates in the order: C₁₂C:CC₁₂ > H₂C:CC₁₂ > CH₃CCl₃ > CHCl₃ > CH₂Cl₂ > CH₂ClCCl₃ > CCl₄ > CHCl₂CHCl₂. The fluorinated cobalt(II,III) oxide gave the reactivity series CHCl₃ > CCl₄ > H₂C:CC₁₂ > CHCl₂CHCl₂ > CH₂Cl₂ > CH₃CCl₃ > CC₁₂:CC₁₂ > CH₂ClCl₃. Reactions of C1 chlorohydrocarbon or chlorocarbon probe mols. with fluorinated Fe₃O₄ gave predominately C1 chlorofluorohydrocarbon and chlorofluorocarbon products, resp., whereas fluorinated cobalt(II,III) oxide produced predominantly C2 chlorofluorohydrocarbon and chlorofluorocarbons. For fluorinated Co₃O₄, the distribution of C2 products obtained from C1 chlorohydrocarbon precursor mols. is consistent with the formation of radical intermediates at strong Lewis acid surfaces. C2 chlorohydrocarbons exhibit a fluorine for chlorine (F-for-Cl) exchange reaction through the catalytic dehydrochlorination of the

substrate to the alkenic intermediate. The F-for-Cl exchange process was dependent upon the ability of the substrate material to undergo dehydrochlorination; the inability of a substrate to undergo dehydrochlorination results in the fluorination process proceeding through the formation of chlorocarbon or chlorohydrocarbon radical intermediates.

IT 75-09-2, **Dichloromethane**, reactions

RL: PEP (Physical, engineering or chemical process); RCT (Reactant); PROC (Process)

(room-temp. catalytic fluorination of C1 and C2 chlorocarbons and chlorohydrocarbons on fluorinated Fe₃O₄ and Co₃O₄)

L15 ANSWER 12 OF 24 HCPLUS COPYRIGHT 1998 ACS

AN 1995:128302 HCPLUS

DN 122:9477

TI Preparation of **difluoromethane** from **dichloromethane**

SO Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

IN Tsuji, Katsuyuki; Kaga, Kazuari; Tomota, Seiichi; Nakajo, Tetsuo; Nakayama, Hidetoshi

PI JP 06211707 A2 940802 Heisei

AI JP 93-5188 930114

PY 1994

AB CH₂F₂ (I) is prep'd. by **fluorination** of CH₂Cl₂ (II) by HF in gas phases in presence of **catalysts**, which contain Zn, Cr, O, and F and have 5-50% **fluorination** ratio expressed by [Y/(2X + 3)] .times. 100% (where X = Zn/Cr at. ratio, Y = F/Cr at. ratio) and 0.01-0.6 Zn/Cr at. ratio. A mixt. of Cr(NO₃)₃.9H₂O, Zn(NO₃)₂.6H₂O, and NH₃ in H₂O was stirred and the resulting slurry was dried, pelletized, heated at 400.degree. for 4 h, and treated with HF at 400.degree. to prep. a **catalyst** contg. Zn 11.8, Cr 52.5, O 23.2, and F 9.5 wt.%. II was fluorinated by HF with the **catalyst** at 180.degree. to give 57.0% I.

IT 75-10-5P, **Difluoromethane**

RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)

(prepn. of CH₂F₂ by **fluorination** of CH₂Cl₂ by HF with Cr-Zn-F **catalysts**)

IT 75-09-2, **Dichloromethane**, reactions

7664-39-3, **Hydrogen fluoride**, reactions

RL: RCT (Reactant)

(prepn. of CH₂F₂ by **fluorination** of CH₂Cl₂ by HF with Cr-Zn-F **catalysts**)

L15 ANSWER 13 OF 24 HCPLUS COPYRIGHT 1998 ACS

AN 1994:680250 HCPLUS

DN 121:280250

TI Preparation of **difluoromethane**

SO PCT Int. Appl., 15 pp.

CODEN: PIXXD2

IN Bonniface, David William; Scott, John David; Watson, Michael John

PI WO 9421579 A1 940929

AI WO 94-GB497 940314

PY 1994

AB CH₂F₂ was prep'd. by (a) contacting CH₂Cl₂ with HF in the presence of a **fluorination catalyst** to produce a product stream comprising CH₂F₂, CH₂ClF, and unreacted starting materials and (b) sepg. CH₂F₂ from the product stream from step (a); sufficient HF is employed in the process such that during step (b) the molar ratio of HF to CH₂ClF is > or = 100:1. The high ratio of HF to CH₂ClF mitigates toxicity problems assoc'd. with the latter compd. Thus, a tube reactor contg. Zn/Cr oxide **catalyst** was pretreated with HF at 300.degree. for 24 h; the reactor was cooled to 250.degree., pressurized with 10 bar N, and a 27.1:1 molar ratio of HF:CH₂Cl₂ was introduced. The product stream was scrubbed

with water to remove HF and HCl leaving a mixt. of CH₂Cl₂ 1.0, CH₂ClF 7.1, and CH₂F₂ 92.0 vol. %.

IT 75-10-5P, **Difluoromethane**

RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)

(prepn. of **difluoromethane**)

IT 75-09-2, **Dichloromethane**, reactions

7664-39-3, **Hydrogen fluoride**, reactions

RL: RCT (Reactant)

(prepn. of **difluoromethane**)

L15 ANSWER 14 OF 24 HCPLUS COPYRIGHT 1998 ACS

AN 1994:579090 HCPLUS

DN 121:179090

TI Process for reducing the **fluorine** content of **hydrofluorocarbons** and **hydrohalofluorocarbons**

SO PCT Int. Appl., 23 pp.

CODEN: PIXXD2

IN Manzer, Leo Ernest; Rao, Velliyyur Nott Mallikarjuna; Swearingen, Steven Henry

PI WO 9413609 A1 940623

AI WO 93-US11526 931202

PY 1994

AB The fluorine content of acyclic satd. compds. of formula C_nF_aX_bH_c [each X = (independently) Cl or Br; n = 1-6; a = 1-13; b = 0-12; c = 1-9; (a+b+c) = (2n+2)] is reduced by reaction with HCl in the vapor phase at an elevated temp. in the presence of a catalyst, the mole ratio of HCl to the acyclic satd. compd. being at least about 1:1. Catalysts include alumina, fluorided alumina, aluminum fluoride, chromium oxide, magnesium fluoride, zinc, others, and various combinations. The method is useful for converting **fluorinated halogenated hydrocarbons** to others in higher com. demand or more useful as precursors, and to avoid disposal problems. For example, a CoCl₂/Al₂O₃ catalyst was fluorided with HF at 200-450.degree., then used to treat CF₃CF₂H with a 2- to 20-fold molar excess of HCl at 200-450.degree. and contact time of 30-60 s. At 450.degree., 20-fold excess HCl, and 30-s contact time, the reaction gave an effluent contg. 5.2% FC₁C:CCl₂ and 81.9% Cl₂C:CCl₂. The latter is a precursor of CF₃CHCl₂ and/or CF₃CHClF, the preps. of which generate the above CF₃CF₂H as a byproduct.

IT 75-09-2P, HCC 30, preparation

RL: BYP (Byproduct); IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)

(redn. of F content of **hydro(halo)fluorocarbons**

by reaction with hydrogen chloride and catalysts)

L15 ANSWER 15 OF 24 HCPLUS COPYRIGHT 1998 ACS

AN 1994:216698 HCPLUS

DN 120:216698

TI Fluorination of dihalomethane

SO Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

IN Yoshitake, Masaru; Tatematsu, Shin; Morikawa, Shinsuke

PI JP 05339179 A2 931221 Heisei

AI JP 92-179323 920612

PY 1993

AB A dihalomethane and HF are reacted in gas phase under (normal) pressure at 150-550.degree. in the presence of a **fluorination catalyst** comprising at least one metal element selected from Mn and Fe group elements (0.01-20 wt.-%/alumina support) supported on an alumina, a part of its O being replaced by halogens. Besides Mn or Fe group elements, the **fluorination catalyst** addnl. contains at least one metal element selected from alk. earth metals and lanthanide elements. Halomethanes are preferably CH₂Cl₂, ClCH₂F, CH₂Br₂,

BrCH2F, and BrCH2Cl. The alumina support has micropore vol. .gt;0.6 mL/g and surface area .gt;150 m²/g, and .gt;50% of its micropores have micropore diam. 100-1,000 .ANG.. O is added in the **fluorination** system. This process uses new non-chrome **catalysts** which improve conversion ratio of starting materials and show high selectivity and long-lasting activity. Thus, 1,000 g alumina was dried, fluorinated at 300-450.degree. in a stream of HF/N mixed gas, and then chlorofluorinated at 250-300.degree. in a stream of FCCl₃/HF mixed gas to give an alumina contg. 12 wt.% F and 1.5 wt.% Cl. The latter alumina was immersed in a soln. of 60 g CoCl₂.6H₂O in 2L H₂O, dried, and activated by treatment with a stream of FCCl₃/HF/N mixed gas at 250-300.degree. to give a **catalyst**. This **catalyst** (200 mL) was packed in an U-shaped reactor (inner diam. 2.54 cm, length 100 cm) and thereto CH₂Cl₂, O, and HF were introduced at 100, 2, and 200 mL/min, resp., and 360.degree. to give ClCH₂F and CH₂F₂ with 26 and 73% selectivity, resp., and 72% conversion after 3 days, and 30 and 69% selectivity, resp., and 65% conversion after 65 days. CH₂F₂ is useful as a foaming agent and a refrigerant, a potential substitute for CFC-12, HCFC-22, and CFC-115.

- IT 7664-39-3, **Hydrogen fluoride**, reactions
 RL: RCT (Reactant)
 (**fluorination** by, of methylene chloride)
- IT 75-09-2, Methylene chloride, reactions
 RL: RCT (Reactant)
 (**fluorination** of, by **hydrogen fluoride, catalysts** for)
- IT 75-10-5P, **Difluoromethane**
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of, by **fluorination** of methylene chlorofluoromethane with **hydrogen fluoride, catalysts** for)

- L15 ANSWER 16 OF 24 HCAPLUS COPYRIGHT 1998 ACS
 AN 1994:163446 HCAPLUS
 DN 120:163446
 TI Preparation of **hydrofluoroalkanes**
 SO PCT Int. Appl., 40 pp.
 CODEN: PIXXD2
 IN Powell, Richard Llewellyn; Scott, John David; Shields, Charles John;
 Bonniface, David William
 PI WO 9325505 A1 931223
 AI WO 93-GB1207 930608
 PY 1993
 AB The title process comprises co-prodn. of two or more **hydrofluoroalkanes** by contacting an alkene or a halogenated alkane with HF at an elevated temp. in the presence of a **fluorination catalyst** to produce a first **hydrofluoroalkane** and wherein an org. precursor to a second **hydrofluoroalkane** is provided in the process whereby a second **hydrofluoroalkane** is produced in addn. to the first **hydrofluoroalkane**. Thus, CF₃CH₂Cl (I) contg. 0.43 vol.% C₂ClF₄ was supplied to a reactor contg. a chromia **catalyst** at 330.degree. to give a product comprising I 79.36, CF₃CFH₂ 17.86, and, e.g., C₂HF₅ 0.43 vol.%.
- IT 75-09-2, Methylene chloride, reactions
 RL: RCT (Reactant)
 (**fluorination** of)
- IT 75-10-5P, **Difluoromethane**
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of, method for)

- L15 ANSWER 17 OF 24 HCAPLUS COPYRIGHT 1998 ACS
 AN 1993:472238 HCAPLUS
 DN 119:72238
 TI Reactivation of chromium **catalysts** for

SO **fluorination** of halohydrocarbons
 Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF

IN Tsuji, Katsuyuki; Tomota, Seiichi; Ooshiro, Kimitaka; Hirayama,
 Hideji; Nakayama, Hidetoshi

PI JP 05092141 A2 930416 Heisei

AI JP 91-126196 910529

PY 1993

AB The title **catalysts** are reactivated by treatment with oxidizing gases at 150-500.degree. followed by reducing gases at 100-500.degree.. CrCl₃ was supported on activated Al₂O₃, calcined at 400.degree. for 3 h under air and at 350.degree. for 3^{1/2} h under H₂ and treated with HF to prep. a **catalyst**, which was used in **fluorination** of HCFC 133a by HF at 300.degree. for 300 h. The **catalyst** was reactivated by treatment with air-N mixt. at 350.degree. for 10 h, H-N mixt. at 350.degree. for 2 h, and HF at 330.degree. and used in the **fluorination** again to result in 19.8% HCFC 133a conversion and 98.7% selectivity to give HFC 134a after 5 h, vs. 19.9 and 98.6%, resp., in the 1st reaction.

IT 75-09-2, **Dichloromethane**, reactions
 RL: RCT (Reactant)
 (fluorination of, reactivation of chromium catalysts for)

IT 75-10-5P, **Difluoromethane**
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of, reactivation of chromium catalysts for)

L15 ANSWER 18 OF 24 HCPLUS COPYRIGHT 1998 ACS
 AN 1993:427696 HCPLUS
 DN 119:27696
 TI Manufacture of **hydrofluorocarbons**
 SO U.S., 3 pp.
 CODEN: USXXAM

IN Elsheikh, Maher Y.
 PI US 5208395 A 930504
 AI US 92-866772 920406
 PY 1993

AB The title process comprises the gas-phase reaction of 1,1-dichloroalkanes (e.g. **dichloromethane** or 1,1-dichloroethane) with **hydrogen fluoride** in the presence of a supported tin tetrachloride catalyst. A tubular reactor was charged with a tin tetrachloride/activated carbon catalyst (117 g contg. 0.0017 mol tin tetrachloride) and the catalyst was activated with hydrofluoric acid. This catalyst was used for the conversion of HFC 150a (1,1-dichloroethane) to HFC 152a (1,1-difluoroethane), a potential foam blowing agent.

IT 75-09-2, R 30, reactions
 RL: RCT (Reactant)
 (fluorination of, with **hydrofluoric** acid, tin tetrachloride as **catalyst** for)

IT 75-10-5P, Freon 32
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of, by **fluorination** of R 30 with hydrofluoric acid, tin tetrachloride as **catalyst** for)

L15 ANSWER 19 OF 24 HCPLUS COPYRIGHT 1998 ACS
 AN 1993:21935 HCPLUS
 DN 118:21935
 TI Fluorination of halogenated alkanes using transition metal fluorides
 SO Eur. Pat. Appl., 10 pp.
 CODEN: EPXXDW

IN Dukat, Wolfgang Willi; Holloway, John Henry; Hope, Eric George;
 Rieland, Matthias; Townson, Paul John; Powell, Richard Llewellyn
 PI EP 503792 A1 920916
 AI EP 92-301531 920224
 PY 1992

AB Fluorinated alkanes were prep'd. by fluorination of alkyl halides contg. at least one Cl, Br or iodine atom by F in the presence of a transition metal fluoride selected from OsF₆, IrF₆, ReF₆, RuF₅, etc. Thus, fluorination of CH₂Cl₂ at -78 to +20.degree. by F in the presence of UF₆ gave CHCl₂F with 99.9% selectivity.

IT 75-09-2, Methylene chloride, reactions

RL: RCT (Reactant)
(fluorination of)

IT 7664-39-3P, Hydrogen fluoride,

preparation

RL: FORM (Formation, nonpreparative); PREP (Preparation)
(formation of, by fluorination of methylene chloride)

IT 75-10-5P, Difluoromethane

RL: SPN (Synthetic preparation); PREP (Preparation)
(prepn. of, by fluorination of methylene chloride)

L15 ANSWER 20 OF 24 HCPLUS COPYRIGHT 1998 ACS

AN 1993:6616 HCPLUS

DN 118:6616

TI Fluorination of halogenated alkanes using transition metal oxide fluorides

SO Eur. Pat. Appl., 8 pp.

CODEN: EPXXDW

IN Holloway, John Henry; Hope, Eric George; Townson, Paul John; Powell, Richard Llewellyn

PI EP 503793 A1 920916

AI EP 92-301532 920224

PY 1992

AB Fluoroalkanes were prep'd. by fluorination of halogenated alkanes contg. at least one Cl, Br, or iodine atom by F in the presence of a transition metal oxide fluoride. Thus, fluorination of CH₂Cl₂ by F in the presence of ReOF₄ at -78 to +20.degree. gave CH₂ClF in 97.5% yield.

IT 75-09-2, Methylene chloride, reactions

RL: RCT (Reactant)
(fluorination of, by fluorine)

IT 75-10-5P, Difluoromethane

RL: SPN (Synthetic preparation); PREP (Preparation)
(prepn. of, by fluorination of methylene bromide)

L15 ANSWER 21 OF 24 HCPLUS COPYRIGHT 1998 ACS

AN 1990:615192 HCPLUS

DN 113:215192

TI Preparation of catalysts for synthesis of **fluorine**-containing halogenated **hydrocarbons**

SO Ger. (East), 3 pp.

CODEN: GEXXA8

IN Kemnitz, Erhard; Hass, Dieter; Roennebeck, Matthias; Schmidt, Udo; Kaden, Reinfried; Henke, Christian

PI DD 276431 A1 900228

AI DD 88-321224 881031

PY 1990

AB A method for prepn. of **catalysts** for synthesis of F-contg. halogenated hydrocarbons with Al₂O₃ as support and Al-F compds. as active components comprises adding .gamma.-Al₂O₃ to a soln. of ammonium- or alkylammonium fluoride at 290-370 K to ppt. ammonium- or alkylammonium fluoroaluminate. Suitable alkylammonium fluoride includes Me or Et ammonium fluoride. The **catalysts** are esp. useful for **fluorination** of chloroalkanes to low- and intermediately fluorinated compds. with high yields. The compds. obtained are useful as coolants, aerating gases, corrosive gases, and solvents.

L15 ANSWER 22 OF 24 HCPLUS COPYRIGHT 1998 ACS

AN 1990:615191 HCPLUS

DN 113:215191

TI Preparation of catalysts for synthesis of fluorine-containing halogenated hydrocarbons
 SO Ger. (East), 3 pp.
 CODEN: GEXXA8
 IN Kemnitz, Erhard; Hass, Dieter; Roennebeck, Matthias; Schmidt, Udo;
 Kaden, Reinfried; Henke, Christian
 PI DD 276430 A1 900228
 AI DD 88-321223 881031
 PY 1990
 AB Catalysts for the synthesis of F-contg. halogenated hydrocarbons with .alpha.-Al₂O₃ or activated C as support material and Al-F-compds. as active components are prep'd. by adding the support material to a soln. obtained by dissolving Al(OH)₃ in HF for impregnation, and adding NH₃ or alkylamine (e.g., methylamine or ethylamine) to ppt. ammonium- or alkylammonium fluoroaluminate. The catalysts are esp. useful for fluorination of chloroalkanes (e.g., tetrachloromethane) to obtain low- and intermediately fluorinated hydrocarbons which can be used as coolants, aerating gases, corrosive gases, and solvents.
 IT 7664-39-3, Hydrofluoric acid, uses and miscellaneous
 RL: USES (Uses)
 (catalyst prep'n. from, for fluorination of chloroalkanes)

L15 ANSWER 23 OF 24 HCAPLUS COPYRIGHT 1998 ACS
 AN 1990:101137 HCAPLUS
 DN 112:101137
 TI Preparation, characterization, and activity of fluorinated aluminas for halogen exchange
 SO J. Catal. (1989), 120(2), 387-400
 CODEN: JCTLA5; ISSN: 0021-9517
 AU Hegde, R. I.; Barreau, M. A.
 PY 1989
 AB Fluorinated aluminas with .alpha.-AlF₃ content $\leq 90\%$ were prep'd. by treatment with the fluoroalkanes CHF₃ or C₂HF₅ at 773 K. XPS results suggested that nearly complete fluorination of the surface occurs even at low extents of bulk fluorination. Neither .gamma.-Al₂O₃ nor .alpha.-AlF₃ exhibited significant activity for reaction of CHF₃ following adsorption at 300 K and subsequent temp.-programmed desorption. In contrast, partially fluorinated aluminas strongly adsorbed CHF₃, CHClF₂, and CHCl₂F. Temp.-programmed desorption expts. indicated that all three compds. desorb from partially fluorinated alumina at >500 K; all reacted to liberate HF and CO₂, and the chlorine-contg. species underwent fluorine-for-chlorine exchange to produce CHF₃. These results suggested that such halogen-exchange reactions could be carried out with materials resembling conventional fluorination catalysts.

L15 ANSWER 24 OF 24 HCAPLUS COPYRIGHT 1998 ACS
 AN 1982:491669 HCAPLUS
 DN 97:91669
 TI Catalyst for fluorination of organic chlorocompounds
 SO Chim. Ind. (Milan) (1982), 64(3), 135-40
 CODEN: CINMAB; ISSN: 0009-4315
 AU Marangoni, Luigi; Rasia, Giorgio; Gervasutti, Claudio; Colombo, Luigi
 PY 1982
 AB Cr(OH)₃ free of ionic impurities [from NH₄OH pptn. of dil. KCr(SO₄)₂.cndot.12H₂O] was dried and calcined at 450-550.degrees. to give a long lived fluorination catalyst. The gaseous fluorination of CC₁₄, CHCl₃, CH₂C₁₂, C₂C₁₆, C₂HC₁₅, ClCH:CCl₂, C₂C₁₄, C₂C₁₃F₃, C₂C₁₂F₄, (CC₁₃)₂CO, and CF₃CH₂Cl with HF over the catalyst is described.

IT 7664-39-3, reactions
 RL: RCT (Reactant)
 (catalytic fluorination of chlorocarbons with)
 IT 75-09-2, reactions
 RL: RCT (Reactant)
 (catalytic **fluorination** of, with **hydrogen fluoride**)
 IT 75-10-5P
 RL: SPN (Synthetic preparation); PREP (Preparation) ▲
 (prepn. of)

=> select hit rn 115 1-24

E1 THROUGH E3 ASSIGNED

=> fil reg

FILE 'REGISTRY' ENTERED AT 16:36:59 ON 27 AUG 1998
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 1998 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 21 AUG 98 HIGHEST RN 210281-59-7
 DICTIONARY FILE UPDATES: 26 AUG 98 HIGHEST RN 210281-59-7

TSCA INFORMATION NOW CURRENT THROUGH JUNE 29, 1998

Please note that search-term pricing does apply when
 conducting SmartSELECT searches.

Stereochemical name changes have been adopted and appear in CN's
 beginning 6/29/98. See the online news message for details.

** Notice ** If you recently ran a CSS search involving an ▲
 AK-carbon connection, please enter NEWS
 at an arrow prompt for a message containing
 important details.

=>

=>

=> s e1-e3

1 75-09-2/BI
 (75-09-2/RN)
 1 75-10-5/BI
 (75-10-5/RN)
 1 7664-39-3/BI
 (7664-39-3/RN)
 L16 3 (75-09-2/BI OR 75-10-5/BI OR 7664-39-3/BI)

=> d ide can 116 1-3

L16 ANSWER 1 OF 3 REGISTRY COPYRIGHT 1998 ACS
 RN 7664-39-3 REGISTRY
 CN Hydrofluoric acid (8CI, 9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN Alsurf 45
 CN Anhydrous hydrofluoric acid
 CN Antisal 2b
 CN Fluorhydric acid
 CN Fluoric acid
 CN Fluorine hydride (FH)
 CN Fluorine monohydride

CN Hydrofluoric acid gas
 CN Hydrogen fluoride
 CN Hydrogen fluoride (HF)
 CN Hydrogen monofluoride
 DR 32057-09-3
 MF F H
 CI COM
 LC STN Files: AGRICOLA, ANABSTR, APIAIT, APIAIT2, APIPAT, APIPAT2,
 BIOBUSINESS, BIOSIS, CA, CABA, CANCERLIT, CAPLUS, CASREACT, CEN,
 CHEMCATS, CHEMINFORMRX, CHEMLIST, CBNB, CHEMSAFE, CIN, CJACS,
 CSCHEM, CSNB, DETHERM*, DIPPR*, EMBASE, GMELIN*, HSDB*, IFICDB,
 IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS, NIOSHTIC, PDLCOM*,
 PIRA, PNI, PROMT, RTECS*, TOXLINE, TOXLIT, TRCTHERMO*, TULSA,
 ULIDAT, USPATFULL, VTB
 (*File contains numerically searchable property data)
 Other Sources: DSL**, EINECS**, TSCA**
 (**Enter CHEMLIST File for up-to-date regulatory information)

HF

23255 REFERENCES IN FILE CA (1967 TO DATE)
 170 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 23287 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 129:117264
 REFERENCE 2: 129:116778
 REFERENCE 3: 129:116722
 REFERENCE 4: 129:116721
 REFERENCE 5: 129:116246
 REFERENCE 6: 129:116157
 REFERENCE 7: 129:116154
 REFERENCE 8: 129:115039
 REFERENCE 9: 129:115004
 REFERENCE 10: 129:114939

L16 ANSWER 2 OF 3 REGISTRY COPYRIGHT 1998 ACS
 RN 75-10-5 REGISTRY
 CN Methane, difluoro- (8CI, 9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN Difluoromethane
 CN Ecolo Ace 32
 CN FC 32
 CN Freon 32
 CN Genetron 32
 CN HFC 32
 CN Methylene difluoride
 CN R 32
 CN R 32 (refrigerant)
 FS 3D CONCORD
 MF C H2 F2
 CI COM
 LC STN Files: ANABSTR, BEILSTEIN*, BIOBUSINESS, BIOSIS, CA,
 CANCERLIT, CAOLD, CAPLUS, CASREACT, CEN, CHEMCATS, CHEMINFORMRX,
 CHEMLIST, CBNB, CIN, CJACS, CSCHEM, CSNB, DETHERM*, DIPPR*,
 GMELIN*, HODOC*, IFICDB, IFIUDB, MEDLINE, MSDS-OHS,

NIOSHTIC, PDLCOM*, PROMT, RTECS*, SPECINFO, TOXLINE, TOXLIT,
TRCTHERMO*, ULIDAT, USPATFULL, VTB

(*File contains numerically searchable property data)

Other Sources: EINECS**, NDSL**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

F-CH₂-F

1643 REFERENCES IN FILE CA (1967 TO DATE)

5 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

1649 REFERENCES IN FILE CAPLUS (1967 TO DATE)

127 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 129:114146

REFERENCE 2: 129:113771

REFERENCE 3: 129:110676

REFERENCE 4: 129:110399

REFERENCE 5: 129:108794

REFERENCE 6: 129:100554

REFERENCE 7: 129:97107

REFERENCE 8: 129:97069

REFERENCE 9: 129:97068

REFERENCE 10: 129:97067

L16 ANSWER 3 OF 3 REGISTRY COPYRIGHT 1998 ACS

RN 75-09-2 REGISTRY

CN Methane, dichloro- (8CI, 9CI) (CA INDEX NAME)

OTHER NAMES:

CN Aerotherene MM

CN Dichloromethane

CN F 30

CN F 30 (chlorocarbon)

CN Freon 30

CN HCC 30

CN Khladon 30

CN Metaclen

CN Methane dichloride

CN Methylene chloride

CN Methylene dichloride

CN Narkotil

CN R 30

CN R 30 (refrigerant)

CN Solaesthin

CN Soleana VDA

CN Solmethine

FS 3D CONCORD

MF C H₂ Cl₂

CI COM

LC STN Files: AGRICOLA, ANABSTR, APIPLIT, APIPLIT2, APIPAT, APIPAT2,

BEILSTEIN*, BIOBUSINESS, BIOSIS, CA, CABA, CANCERLIT, CAOLD,

CAPLUS, CASREACT, CEN, CHEMCATS, CHEMINFORMRX, CHEMLIST, CBNB,

CHEMSAFE, CIN, CJACS, CSCHEM, CSNB, DETHERM*, DDFU, DIPPR*, DRUGU,

EMBASE, GMELIN*, HODOC*, HSDB*, IFICDB, IFIPAT, IFIUDB, IPA,

MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, NIOSHTIC, PDLCOM*, PIRA, PNI,

PROMT, RTECS*, SPECINFO, TOXLINE, TOXLIT, TRCTHERMO*, PULSA,

ULIDAT, USAN, USPATFULL, VTB
(*File contains numerically searchable property data)
Other Sources: DSL**, EINECS**, TSCA**
(**Enter CHEMLIST File for up-to-date regulatory information)

Cl-CH₂-Cl

15326 REFERENCES IN FILE CA (1967 TO DATE)
68 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
15353 REFERENCES IN FILE CAPLUS (1967 TO DATE)
7 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 129:117214

REFERENCE 2: 129:115689

REFERENCE 3: 129:115589

REFERENCE 4: 129:114973

REFERENCE 5: 129:114733

REFERENCE 6: 129:114709

REFERENCE 7: 129:114704

REFERENCE 8: 129:113547

REFERENCE 9: 129:113147

REFERENCE 10: 129:112653

=> fil casreact

FILE 'CASREACT' ENTERED AT 16:42:09 ON 27 AUG 1998
 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
 COPYRIGHT (C) 1998 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT:1985 - 23 Aug 1998 (VOL 102 ISS 1 - VOL 129 ISS 8

>>> Several important enhancements to CASREACT functional group <<<
 >>> searching were introduced. Enter HELP FGA or HELP FGC for more <<<
 >>> information. <<<

This file contains CAS Registry Numbers for easy and accurate substance identification.

=>

=>

=> d stat que 120

L1	30 SEA FILE=REGISTRY ABB=ON	PLU=ON	CH2CL2/MF
L3	11 SEA FILE=REGISTRY ABB=ON	PLU=ON	CH2F2/MF
L4	10 SEA FILE=REGISTRY ABB=ON	PLU=ON	FH/MF
L17	743 SEA FILE=CASREACT ABB=ON	PLU=ON	L1/RRT
L18	32 SEA FILE=CASREACT ABB=ON	PLU=ON	L3/PRO
L19	1480 SEA FILE=CASREACT ABB=ON	PLU=ON	L4/RRT
L20	10 SEA FILE=CASREACT ABB=ON	PLU=ON	L17 AND L18 AND L19

=>

=>

=> d bib abs crd 1-10

L20 ANSWER 1 OF 10 CASREACT COPYRIGHT 1998 ACS
 AN 128:101814 CASREACT
 TI Fluorination of hydrohalomethanes using hydrogen fluoride in the presence of Lewis acid catalysts.
 IN Thenappan, Alagappan; Smith, Addison Miles; McKown, Jeffrey Warren; Bell, Robert Louis
 PA Alliedsignal Inc., USA
 SO PCT Int. Appl., 23 pp.
 CODEN: PIXXD2
 PI WO 9749655 A1 971231
 DS W: JP, KR
 RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
 AI WO 97-US10966 970624
 PRAI US 96-672005 960624
 DT Patent
 LA English
 AB Fluorination catalysts comprising Mo(V) halides, Nb(V) halides, Ta(V) halides, Sn(IV) halides, Ti(IV) halides, and mixts., are claimed. Thus, CH₂Cl₂ was autoclaved under 300-400 psig HF at 120.degree. for 5 h in the presence of NbCl₅/SnCl₄ to give CH₂CF₂ with 99.7% selectivity and 98.8% conversion.

RX(1) OF 1

NOTE: 120.degree., 300-400 psig, 98.8% conversion, 99.7% selectivity

L20 ANSWER 2 OF 10 CASREACT COPYRIGHT 1998 ACS
 AN 126:263837 CASREACT
 TI Vapor-phase process and catalysts for the production of difluoromethane from hydrogen fluoride and dichloromethane
 IN Clemmer, Paul Gene; Smith, Addison Miles; Tung, Hsueh Sung; Bass, John Stephen
 PA Alliedsignal Inc., USA
 SO PCT Int. Appl., 14 pp.
 CODEN: PIXXD2
 PI WO 9711043 A1 970327
 DS W: AL, AU, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KP,
 KR, LK, LR, LT, LV, MG, MK, MN, MW, MX, NO, NZ, PL, RO, SD, SG,
 SI, SK, TR, TT, UA, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
 RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, DE, DK, ES, FI, FR, GA, GB,
 GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG
 AI WO 96-US14734 960913
 PRAI US 95-530649 950920
 DT Patent
 LA English
 AB Difluoromethane (i.e., HFC-32; I) is prep'd. in high yield and selectivity by: (A) preheating a mixt. of HF (II) and Cl₂CH₂ (III) to form a vaporized and superheater compn.; (B) reacting this superheated compn. in the presence of a fluorination catalyst (e.g., Cr₂O₃/Al₂O₃) to form a product stream contg. F₂CH₂, ClFCH₂ (IV), HCl (V), Cl₂CH₂, and HF; (C) distg. the product stream to produce a high-boiling stream comprising II, III, and IV, and a low-boiling stream comprising I, II, and V; and (D) recovering substantially pure I from the low-boiling distn. fraction.

RX(1) OF 1

NOTE: vapor-phase process; catalyst supported on alumina

L20 ANSWER 3 OF 10 CASREACT COPYRIGHT 1998 ACS
 AN 126:143889 CASREACT
 TI Catalytic gas-phase fluorination synthesis of difluoromethane from dichloromethane and hydrogen fluoride
 IN Requieme, Benoit; Lacroix, Eric; Lantz, Andre
 PA Elf Atochem S.A., Fr.
 SO Eur. Pat. Appl., 8 pp.
 CODEN: EPXXDW
 PI EP 751107 A1 970102
 DS R: BE, DE, ES, FR, GB, GR, IT, NL
 AI EP 96-401150 960529
 PRAI FR 95-7705 950627
 DT Patent
 LA French
 AB CH₂F₂ is prep'd. by the reaction of CH₂Cl₂ (I) with anhyd. HF in the presence of 0.1-5 mol O₂ per 100 mol of I at 330-450.degree. in the presence of an optionally supported Cr catalyst.

RX(1) OF 1

NOTE: gas-phase process

L20 ANSWER 4 OF 10 CASREACT COPYRIGHT 1998 ACS

AN 125:247197 CASREACT

TI Process and catalysts for the preparation of difluoromethane hydrogen fluoride and dichloromethane

IN Wilmet, Vincent; Janssens, Francine

PA Solvay et Cie., Belg.

SO Eur. Pat. Appl., 5 pp.

CODEN: EPXXDW

PI EP 732314 A1 960918

DS R: DE, ES, FR, GB, IT, NL

AI EP 96-200591 960305

PRAI FR 95-3185 950316

DT Patent

LA French

AB Difluoromethane is prepd. in high yield and purity by the reaction of hydrogen fluoride and dichloromethane in the presence of a metal halide catalyst (e.g., SnCl4).

RX(1) OF 1

L20 ANSWER 5 OF 10 CASREACT COPYRIGHT 1998 ACS

AN 124:342628 CASREACT

TI Method for the preparation of difluoromethane

IN Nam, Kyung H.; Na, Doo C.; Kim, Dae S.

PA Ulsan Chemical Co., Ltd., S. Korea

SO U.S., 6 pp.

CODEN: USXXAM

PI US 5495057 A 960227

AI US 95-398965 950302

PRAI KR 94-38154 941228

DT Patent

LA English

AB A method for the prepn. of CH2F2 is disclosed, wherein CH2Cl2 reacts with HF in the liq. phase, at 70.degree.-90.degree. and approx. 11-12 kg/cm²G, in the presence of SbCl5 catalyst. It is important that the concn. of pentavalent Sb is maintained at a level of 85% or more, with the feed mole ratio of HF to CH2Cl2 ranging from about 2.0 to 2.3. Applicable to industrial scale, the method is operated in a batch or continuous system. In addn., it exhibits superior conversion and prodn. yield. In an example with a mol ratio SbCl5/CH2Cl2 of 0.17/1 and HF/CH2Cl2 of 2.0/1, the conversion rates of CH2Cl2 and HF were 93.6% and 86.92% by wt., and the product contained 93.52% CH2F2 and 6.48% CH2ClF.

RX(1) OF 1

NOTE: 70-90.degree. and 11-12 kg/cm²G, mol ratio HF/CH2Cl2 = 2.0-2.3, 91.7-93.6% conversion of CH2Cl2, product ratio CH2F2/CH2FC1 = (93.52-86.35%)/(6.48-13.65%)

L20 ANSWER 6 OF 10 CASREACT COPYRIGHT 1998 ACS
 AN 124:288753 CASREACT
 TI Process for producing difluoromethane
 IN Yamada, Yasufu; Shibanuma, Takashi; Tsuda, Takehide
 PA Daikin Industries Ltd., Japan
 SO PCT Int. Appl., 16 pp.
 CODEN: PIXXD2
 PI WO 9601241 A1 960118
 DS W: AU, BR, CA, CN, JP, KR, RU, US
 RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
 AI WO 95-JP1320 950703
 PRAI JP 94-151151 940701
 DT Patent
 LA Japanese
 AB This patent application describes a process for producing difluoromethane by the reaction of dichloromethane with hydrogen fluoride in the presence of a catalyst in a liq. phase economically and safely, wherein the reaction is conducted by using antimony pentafluoride or a mixt. thereof with antimony trifluoride as the catalyst at a temp. of 80-150.degree.C under a pressure of 8-80 kg/cm².

RX(1) OF 1

NOTE: 100.degree.

L20 ANSWER 7 OF 10 CASREACT COPYRIGHT 1998 ACS
 AN 122:9477 CASREACT
 TI Preparation of difluoromethane from dichloromethane
 IN Tsuji, Katsuyuki; Kaga, Kazuari; Tomota, Seiichi; Nakajo, Tetsuo;
 Nakayama, Hidetoshi
 PA Showa Denko Kk, Japan
 SO Jpn. Kokai Tokkyo Koho, 6 pp.
 CODEN: JKXXAF
 PI JP 06211707 A2 940802 Heisei
 AI JP 93-5188 930114
 DT Patent
 LA Japanese
 AB CH₂F₂ (I) is prep'd. by fluorination of CH₂Cl₂ (II) by HF in gas phases in presence of catalysts, which contain Zn, Cr, O, and F and have 5-50% fluorination ratio expressed by [Y/(2X + 3)] .times. 100% (where X = Zn/Cr at. ratio, Y = F/Cr at. ratio) and 0.01-0.6 Zn/Cr at. ratio. A mixt. of Cr(NO₃)₃.9H₂O, Zn(NO₃)₂.6H₂O, and NH₃ in H₂O was stirred and the resulting slurry was dried, pelletized, heated at 400.degree. for 4 h, and treated with HF at 400.degree. to prep. a catalyst contg. Zn 11.8, Cr 52.5, O 23.2, and F 9.5 wt.%. II was fluorinated by HF with the catalyst at 180.degree. to give 57.0% I.

RX(1) OF 1

L20 ANSWER 8 OF 10 CASREACT COPYRIGHT 1998 ACS
 AN 121:280250 CASREACT
 TI Preparation of difluoromethane
 IN Bonniface, David William; Scott, John David; Watson, Michael John

PA Imperial Chemical Industries PLC, UK
 SO PCT Int. Appl., 15 pp.
 CODEN: PIXXD2
 PI WO 9421579 A1 940929
 DS W: AU, BR, CA, CN, FI, JP, KR, NO, RU, UA, US
 RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
 AI WO 94-GB497 940314
 PRAI GB 93-6072 930324
 GB 93-6089 930324
 DT Patent
 LA English
 AB CH₂F₂ was prep'd. by (a) contacting CH₂Cl₂ with HF in the presence of a fluorination catalyst to produce a product stream comprising CH₂F₂, CH₂ClF, and unreacted starting materials and (b) sepg. CH₂F₂ from the product stream from step (a); sufficient HF is employed in the process such that during step (b) the molar ratio of HF to CH₂ClF is .gtoreq.100:1. The high ratio of HF to CH₂ClF mitigates toxicity problems assocd. with the latter compd. Thus, a tube reactor contg. Zn/Cr oxide catalyst was pretreated with HF at 300.degree. for 24 h; the reactor was cooled to 250.degree., pressurized with 10 bar N, and a 27.1:1 molar ratio of HF:CH₂Cl₂ was introduced. The product stream was scrubbed with water to remove HF and HCl leaving a mixt. of CH₂Cl₂ 1.0, CH₂ClF 7.1, and CH₂F₂ 92.0 vol. %.

RX(1) OF 1

NOTE: OXIDE CATALYSTS

L20 ANSWER 9 OF 10 CASREACT COPYRIGHT 1998 ACS
 AN 120:216698 CASREACT
 TI Fluorination of dihalomethane
 IN Yoshitake, Masaru; Tatematsu, Shin; Morikawa, Shinsuke
 PA Asahi Glass Co Ltd, Japan
 SO Jpn. Kokai Tokkyo Koho, 6 pp.
 CODEN: JKXXAF
 PI JP 05339179 A2 931221 Heisei
 AI JP 92-179323 920612
 DT Patent
 LA Japanese
 OS MARPAT 120:216698
 AB A dihalomethane and HF are reacted in gas phase under (normal) pressure at 150-550.degree. in the presence of a fluorination catalyst comprising at least one metal element selected from Mn and Fe group elements (0.01-20 wt.%/alumina support) supported on an alumina, a part of its O being replaced by halogens. Besides Mn or Fe group elements, the fluorination catalyst addnl. contains at least one metal element selected from alk. earth metals and lanthanide elements. Halomethanes are preferably CH₂Cl₂, ClCH₂F, CH₂Br₂, BrCH₂F, and BrCH₂Cl. The alumina support has micropore vol. .gtoreq.0.6 mL/g and surface area .gtoreq.150 m²/g, and .gtoreq.50% of its micropores have micropore diam. 100-1,000 .ANG.. O is added in the fluorination system. This process uses new non-chrome catalysts which improve conversion ratio of starting materials and show high selectivity and long-lasting activity. Thus, 1,000 g alumina was dried, fluorinated at 300-450.degree. in a stream of HF/N mixed gas, and then chlorofluorinated at 250-300.degree. in a stream of FCCl₃/HF mixed gas to give an alumina contg. 12 wt.% F and 1.5 wt.% Cl. The latter alumina was immersed in a soln. of 60 g CoCl₂.6H₂O in 2L H₂O, dried, and activated by treatment with a stream of FCCl₃/HF/N mixed gas at 250-300.degree. to give a catalyst. This catalyst (200 mL) was packed in an U-shaped reactor

(inner diam. 2.54 cm, length 100 cm) and thereto CH_2Cl_2 , O_2 , and HF were introduced at 100, 2, and 200 mL/min, resp., and 360 degree. to give ClCH_2F and CH_2F_2 with 26 and 73% selectivity, resp., and 72% conversion after 3 days, and 30 and 69% selectivity, resp., and 65% conversion after 65 days. CH_2F_2 is useful as a foaming agent and a refrigerant, a potential substitute for CFC-12, HCFC-22, and CFC-115.

RX(1) OF 5

NOTE: gas phase; cobalt chloride and cerium chloride on chlorofluorinated alumina; 75% reaction ratio; 26 and 74% selectivity for chlorofluoromethane and difluoromethane, resp.

RX(2) OF 5

NOTE: gas phase; nickel chloride on chlorofluorinated alumina; 68% reaction ratio; 28 and 71% selectivity for chlorofluoromethane and difluoromethane, resp.

A

RX(3) OF 5

NOTE: gas phase; manganese chloride on chlorofluorinated alumina; 64% reaction ratio; 25 and 73% selectivity for chlorofluoromethane and difluoromethane, resp.

RX(4) OF 5

NOTE: gas phase; magnesium chloride and cobalt chloride on chlorofluorinated alumina; 72% reaction ratio; 22 and 77% selectivity for chlorofluoromethane and difluoromethane, resp.

RX(5) OF 5

A

NOTE: gas phase; cobalt chloride on chlorofluorinated alumina; 72% reaction ratio; 26 and 73% selectivity for chlorofluoromethane and difluoromethane, resp.

L20 ANSWER 10 OF 10 CASREACT COPYRIGHT 1998 ACS

AN 120:163398 CASREACT

TI High oxidation state binary transition metal fluorides as selective fluorinating agents

AU Dukat, Wolfgang W.; Holloway, John H.; Hope, Eric G.; Rieland, Matthias R.; Townson, Paul J.; Powell, Richard L.

CS Dep. Chem., Univ. Leicester, Leicester, LE1 7RH, UK

SO J. Chem. Soc., Chem. Commun. (1993), (18), 1429-30
 CODEN: JCCCAT; ISSN: 0022-4936

DT Journal

LA English

AB High oxidn. state transition metal fluorides are selective fluorinating agents for CH₂Cl₂; those with d0 electronic configurations undergo H-F exchange and metal redn., while dn species undergo Cl-F exchange.

RX(1) OF 5

RX(2) OF 5

RX(3) OF 5

RX(4) OF 5

RX(5) OF 5

-1- (WPAT)

ACCESSION NUMBER 94-316864/39

CROSS REFERENCE 94-316863

SECONDARY ACCESSION C94-144362

XRPX N94-248843

TITLE Prodn. of difluoromethane - by contacting
di:chloromethane with hydrogen fluoride in presence
of zinc-contg. catalyst
E16 G04 J07 X27

DERWENT CLASSES (ICIL) IMPERIAL CHEM IND PLC

PATENT ASSIGNEE INVENTORS /
BONNIFACE DW, SCOTT JD, WATSON MJ

PRIORITY NUMBERS 93.03.24 93GB-006089, 93.03.24 93GB-006072,
12 patent(s) 29 country(s)

PUBLICATION DETAILS WO9421580 A1 94.09.29 * (9439) E 12p C07C-017/20
NW: *AU *BR *CA *CN *FI *JP *KR *NO *RU *UA *US
RW: AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT
SE
ZA9401826 A 94.11.30 (9503) 10p C07C-000/00
BR9406201 A 95.12.12 (9606) C07C-017/20
Based on W09421580
EP-690833 A1 96.01.10 (9607) E C07C-017/20
R: BE DE ES FR GB IE IT LU NL PT
Based on W09421580
JP08508029 W 96.08.27 (9702) 10p C07C-019/08
Based on W09421580
TW-290531 A 96.11.11 (9711) C07C-017/20
CN1119431 A 96.03.27 (9744) C07C-017/20
CN1119432 A 96.03.27 (9744) C07C-017/20
EP-690833 B1 98.05.20 (9824) E 4p C07C-017/20
R: BE DE ES FR GB IE IT LU NL PT
Based on W09421580
US5763704 A 98.06.09 (9830) C07C-017/08
Based on W09421580
DE69410456 E 98.06.25 (9831) C07C-017/20
Based on EP-690833
Based on W09421580
AU-691487 B 98.05.21 (9832) C07C-017/20
Previous Publ: AU9462134
Based on W09421580
CITATIONS EP-128510, EP-502605, W09216482
APPLICATION DETAILS 94WO-GB00498 94.03.14
94ZA-001826 94.03.15
94BR-006201 94.03.14 94WO-GB00498 94.03.14
94EP-909204 94.03.14 94WO-GB00498 94.03.14
94JP-520764 94.03.14 94WO-GB00498 94.03.14
94TW-102380 94.03.18
94CN-191525 94.03.14
94CN-191526 94.03.14
94EP-909204 94.03.14 94WO-GB00498 94.03.14
94WO-GB00498 94.03.14 95US-522241 95.09.06
94DE-610456 94.03.14 94EP-909204 94.03.14
94WO-GB00498 94.03.14
94AU-062134 94.03.14
MAIN INT 'L CLASS. C07C-000/00 C07C-017/08 C07C-017/20 C07C-019/08
SECONDARY INT 'L. CLASS. B01J-027/12
ADD 'L INT 'L CLASS. C07B-061/00
ABSTRACT WO9421580 A
Prodn. of difluoromethane comprises contacting

dichloromethane with HF over a n or Zn oxide, fluoride or oxyfluoride catalyst. The catalyst pref.. contains a cpd. of Zn and chromia, chromium fluoride or chromium oxyfluoride.

USE/ADVANTAGE - Difluoromethane (HFA-32) is useful as a replacement for ozone-layer damaging chlorofluorocarbons; for blending with other hydrofluoroalkanes, e.g. HFA-134a and HFA-125, as a replacement for R-22 and R-502 in refrigeration, air conditioning and other applications, e.g. foam expansion cleaning solvents and aerosol propellants. Selectivity to difluoromethane is increased and the amts. of highly toxic by-prod. monochloromonofluoromethane (HCFC-31) are substantially reduced e.g. from greater than 20% to e.g. 7%. The reaction may be run at lower temps. than prior art, resulting in longer catalyst lifetimes. Increased temps. do not result in higher levels of HCFC-31, as with prior catalysts.
(Dwg.0/0)

-2- (WPAT)
ACCESSION NUMBER 94-316863/43
CROSS REFERENCE 94-316864
SECONDARY ACCESSION C94-144361
XRPX N94-248842
TITLE Di,fluoro:methane prepn. process - by reacting di,chloro:methane with hydrogen fluoride in presence of catalyst with reduced prodn. of chloro:fluoro:methane
DERWENT CLASSES E16 G04 J07 X27
PATENT ASSIGNEE (ICIL) IMPERIAL CHEM IND PLC
INVENTORS BONNIFACE DW, SCOTT JD, WATSON MJ
PRIORITY 93.03.24 93GB-006072 93.03.24 93GB-0060391
NUMBERS 12 patent(s) 28 country(s)
PUBLICATION DETAILS W09421579 AI 94.09.29 * (9443) E 15p C07C-017/20
NW: *AU *BR *CA *CN *FI *JP *KR *NO *RU *UA *US
RW: AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT
SE
ZA9401818 A 94.11.30 (9503) 15p C07C-000/00
AU9462133 A 94.10.11 (9504) C07C-017/20
Based on W09421579
AU9462134 A 94.10.11 (9504) C07C-017/20
Based on W09421580
EP-690832 AI 96.01.10 (9607) E C07C-017/20
R: BE DE ES FR GB IE IT LU NL PT
Based on W09421579
BR9406236 A 96.01.09 (9610) C07C-017/20
Based on W09421579
JP08508028 W 96.08.27 (9702) 14p C07C-019/08
Based on W09421579
US5672786 A 97.09.30 (9745) 4p C07C-017/08
Based on W09421579
EP-690832 BI 98.05.20 (9824) E 7p C07C-017/20
R: BE DE ES FR GB IE IT LU NL PT
Based on W09421579
DE69410455 E 98.06.25 (9831) C07C-017/20
Based on EP-690832

Based on W09421579
ES2115940 T3 98.07.01 (9832) C07C-017/20
Based on EP-690832
AU-691486 B 98.05.21 (9832) C07C-017/20
Previous Publ. AU9462133
Based on W09421579

CITATIONS US2744148, US2745886
APPLICATION DETAILS 94WO-GB00497 94.03.14
94ZA-001818 94.03.15
94AU-062133 94.03.14
94AU-062134 94.03.14
94EP-909203 94.03.14 94WO-GB00497 94.03.14
94BR-006236 94.03.14 94WO-GB00497 94.03.14
94JP-520763 94.03.14 94WO-GB00497 94.03.14
94WO-GB00497 94.03.14 95US-507429 95.09.06
94EP-909203 94.03.14 94WO-GB00497 94.03.14
94DE-610455 94.03.14 94EP-909203 94.03.14
94WO-GB00497 94.03.14
94EP-909203 94.03.14
94AU-062133 94.03.14

MAIN INT'L CLASS. C07C-000/00 C07C-017/08 C07C-017/20 C07C-019/08
SECONDARY INT'L. CLASS. B01J-021/04 B01J-023/06 B01J-023/20 B01J-023/62
B01J-023/70 B01J-027/12

ADD'L INT'L CLASS. C07B-061/00
ABSTRACT W09421579 A

Process for the prodn. of difluoromethane (I) comprises: (a) contacting dichloromethane (II) with hydrogen fluoride (III) in the presence of a fluorination catalyst to produce a product stream (PS) comprising (I), monochloromonofluoromethane (IV) and unreacted starting materials; and (b) sepg. (I) from PS. A sufficient amt. of (III) used in the process such that during step (b) the molar ratio of (III) to (IV) is at least 100:1.

Also claimed is the above process further comprising, (c) recovering (I) and recycling (IV) to step (a).

USE/ADVANTAGE - (I) also known as HFA 32 can be used as a replacement for chlorofluorocarbons, esp. in a blend with other hydrofluoroalkanes (such as HFA 1342 and HFA 125) in refrigeration, air conditioning and other applications. Hydrofluorocarbon do not damage the ozone layer. The prodn. of HCFC 31 (IV) is reduced and the conversion of (IV) to (I) is increased. (Dwg.0/0)