Sequence Listing

- <110> Ashkenazi, Avi J. Chuntharapai, Anan Kim, K. Jin
- <120> METHOD FOR MAKING MONOCLONAL ANTIBODIES AND CROSS-REACTIVE ANTIBODIES OBTAINABLE BY THE METHOD
- <130> P1468R1 (REVISED)
- <140> US 09/329,633
- <141> 1999-06-10
- <150> US 60/089,253
- <151> 1998-06-12
- <160> 2
- <210> 1
- <211> 1799
- <212> DNA
- <213> human
- <400> 1
- cccacgcgtc cgcataaatc agcacggc cggagaaccc cgcaatctct 50 gcgcccacaa aatacaccga cgatgcccga tctactttaa gggctgaaacc 100 ccacgggcct gagagactat aagagcgttc cctaccgcca tggaacaacg 150 gggacagaac gccccggccg cttcgggggc ccggaaaagg cacggcccag 200 gacccaggga ggcgcggga gccaggcctg ggctccgggt ccccaagacc 250 cttgtgctcg ttgtcgccgc ggtcctgctg ttggtctcag ctgagtctgc caacaagacc tagctccca gcagagagag gcccacaac 350 aaaagaggtc caacaagacc tagctccca gcagagagag gcccacaacc 350 cactcactgg gtagagattg catctcctgc aaatatggac aggactatat 400 cactcactgg aatgacctc ttttctgctt gcgctgcacc aggtgtgatt 500 caggtgaag ggagctaagt ccctgcacca cgaccagaaa cacagtgtgt 550 cagtgcgaag aaggcacctt ccgggaagaa gattctcctg agatgtcgc 600 gaagtgccgc acaggggttc ccaagaggat ggtcaaggtc ggtgattgta 650

caccetggag tgacategaa tgtgtecaca aagaateagg cateateata 700 ggagtcacag ttgcagccgt agtcttgatt gtggctgtgt ttgtttgcaa 750 gtctttactg tggaagaaag tccttcctta cctgaaaggc atctgctcag 800 gtggtggtgg ggaccctgag cgtgtggaca gaagctcaca acgacctggg 850 gctgaggaca atgtcctcaa tgagatcgtg agtatcttgc agcccaccca 900 ggtccctgag caggaaatgg aagtccagga gccagcagag ccaacaggtg 950 tcaacatgtt gtcccccggg gagtcagagc atctgctgga accggcagaa 1000 gctgaaaggt ctcagaggag gaggctgctg gttccagcaa atgaaggtga 1050 teccaetgag aetetgagae agtgettega tgaetttgea gaettggtge 1100 cctttgactc ctgggagccg ctcatgagga agttgggcct catggacaat 1150 gagataaagg tggctaaagc tgaggcagcg ggccacaggg acaccttgta 1200 cacgatgctg ataaagtggg tcaacaaaac cgggcgagat gcctctgtcc 1250 acaccctgct ggatgccttg gagacgctgg gagagagact tgccaagcag 1300 aagattgagg accacttgtt gagctctgga aagttcatgt atctagaagg 1350 taatgcagac tctgccwtgt cctaagtgtg attctcttca ggaagtgaga 1400 ccttccctgg tttacctttt ttctggaaaa agcccaactg gactccagtc 1450 agtaggaaag tgccacaatt gtcacatgac cggtactgga agaaactctc 1500 ccatccaaca tcacccagtg gatggaacat cctgtaactt ttcactgcac 1550 ttggcattat ttttataagc tgaatgtgat aataaggaca ctatggaaat 1600 gtctggatca ttccgtttgt gcgtactttg agatttggtt tgggatgtca 1650 ttgttttcac agcacttttt tatcctaatg taaatgcttt atttatttat 1700 ggcggccgcg actctagagt cgacctgcag aagcttggcc gccatggcc 1799

<210> 2

<211> 411

<212> PRT

<213> human

<220>
<221> xaa
<222> 410
<223> xaa = leu or met

<400> 2

Met Glu Gln Arg Gly Gln Asn Ala Pro Ala Ala Ser Gly Ala Arg
1 5 10 15

Lys Arg His Gly Pro Gly Pro Arg Glu Ala Arg Gly Ala Arg Pro
20 25 30

Gly Leu Arg Val Pro Lys Thr Leu Val Leu Val Val Ala Ala Val
35 40 45

Leu Leu Val Ser Ala Glu Ser Ala Leu Ile Thr Gln Gln Asp
50 55 60

Leu Ala Pro Gln Gln Arg Ala Ala Pro Gln Gln Lys Arg Ser Ser 65 70 75

Pro Ser Glu Gly Leu Cys Pro Pro Gly His His Ile Ser Glu Asp 80 85 90

Gly Arg Asp Cys Ile Ser Cys Lys Tyr Gly Gln Asp Tyr Ser Thr 95 100 105

His Trp Asn Asp Leu Leu Phe Cys Leu Arg Cys Thr Arg Cys Asp 110 115 120

Ser Gly Glu Val Glu Leu Ser Pro Cys Thr Thr Thr Arg Asn Thr
125 130 135

Val Cys Gln Cys Glu Glu Gly Thr Phe Arg Glu Glu Asp Ser Pro 140 145 150

Glu Met Cys Arg Lys Cys Arg Thr Gly Cys Pro Arg Gly Met Val 155 160 165

Lys Val Gly Asp Cys Thr Pro Trp Ser Asp Ile Glu Cys Val His

Lys Glu Ser Gly Ile Ile Ile Gly Val Thr Val Ala Ala Val Val 185 190 195

Leu Ile Val Ala Val Phe Val Cys Lys Ser Leu Leu Trp Lys Lys 200 205 210

Val Leu Pro Tyr Leu Lys Gly Ile Cys Ser Gly Gly Gly Asp 215 220 225

Pro	Glu	Arg	Val	Asp 230	Arg	Ser	Ser	Gln	Arg 235	Pro	Gly	Ala	Glu	Asp 240
Asn	Val	Leu	Asn	Glu 245	Ile	Val	Ser	Ile	Leu 250	Gln	Pro	Thr	Gln	Val 255
Pro	Glu	Gln	Glu	Met 260	Glu	Val	Gln	Glu	Pro 265	Ala	Glu	Pro	Thr	Gly 270
Val	Asn	Met	Leu	Ser 275	Pro	Gly	Glu	Ser	Glu 280	His	Leu	Leu	Glu	Pro 285
Ala	Glu	Ala	Glu	Arg 290	Ser	Gln	Arg	Arg	Arg 295	Leu	Leu	Val	Pro	Ala 300
Asn	Glu	Gly	Asp	Pro 305	Thr	Glu	Thr	Leu	Arg 310	Gln	Cys	Phe	Asp	Asp 315
Phe	Ala	Asp	Leu	Val 320	Pro	Phe	Asp	Ser	Trp 325	Glu	Pro	Leu	Met	Arg 330
Lys	Leu	Gly	Leu	Met 335	Asp	Asn	Glu	Ile	Lys 340	Val	Ala	Lys	Ala	Glu 345
Ala	Ala	Gly	His	Arg 350	Asp	Thr	Leu	Tyr	Thr 355	Met	Leu	Ile	Lys	Trp 360
Val	Asn	Lys	Thr	Gly 365	Arg	Asp	Ala	Ser	Val 370	His	Thr	Leu	Leu	Asp 375
Ala	Leu	Glu	Thr	Leu 380	Gly	Glu	Arg	Leu	Ala 385	Lys	Gln	Lys	Ile	Glu 390
Asp	His	Leu	Leu	Ser 395	Ser	Gly	Lys	Phe	Met 400	Tyr	Leu	Glu	Gly	Asn 405
Ala	Asp	Ser	Ala	Xaa 410	Ser									

Page 4