SUCESIONES DE FUNCIONES.

Convergencia.

Seu \overline{X} un conjunto no vacío Dadas dos Junciones $f,g:\overline{X} \to \mathbb{R}$ y $\lambda \in \mathbb{R}$, se definen las Junciones f+g, $\lambda f:\overline{X} \to \mathbb{R}$ puntualmente, es decir:

 $(f+g)(x) = f(x)+g(x), y(\lambda f)(x) = \lambda f(x), \forall \chi \in \overline{\chi}$

Se denota por $\mathcal{F}(\overline{X})$ a algán conjunto de Junciones de \overline{X} en \mathbb{R} que tenga propiedades de espacio vectorial sobre el campo \mathbb{R} con esas operaciones, como pueden ser \mathbb{A}_p , $\mathcal{B}(\overline{X})$ σ , σ : \overline{X} es un espacio métrico, $\mathcal{B}(\overline{X})$ ó alguno de sus subespacios.

Además, para cadu $C \in \mathbb{R}$, Se denotorá por $C : \overline{X} \rightarrow \mathbb{R}$ a: $C(x) = C, \forall x \in \overline{X}$. También, si $f(x) \leq g(x)$ é f(x) < g(x), $\forall x \in \overline{X}$, se denotorá $f \leq g$ ó $f \leq g$.

Def. Sea $\{f_n\}_{n=1}^{\infty}$ une sucesión de funciones en $\mathscr{S}(X)$, y sea $f: X \to \mathbb{R}$ una función.

i) Se dice que $\{f_n\}_{n=1}^{\infty}$ converge puntualmente a fen X, si para cada $x \in X$, se coumple:

$$\lim_{N\to\infty} J_N(x) = f(x)$$

es decir:

$$\frac{\lim_{n\to\infty}|f_n(x)-f(x)|=0$$

o seu, para cada $E > 0 \exists N \in \mathbb{N}$, N = N(E, x) tal que $n > N \Rightarrow |f_n(x) - f(x)| < E$

f es llamado el límite puntagl en \overline{X} de la sucesión de funciones $\{f_n\}_{n=1}^{\infty}$, y se escribe:

ii) Se dice que $\{f_n\}_{n=1}^{\infty}$ Converge uniformemente a fen X, Si $\{f_n\}_{n\to\infty}^{\infty}$ $x\in \mathbb{E}$ $|f_n(x)-f(x)|=0$ O Sea, para todo E > 0, existe $N \in \mathbb{N}$, N = N(E) tul que $n > N \Rightarrow \sup_{x \in X} |J_n(x) - J(x)| < E$

o, de manera equivalente,] N = IN tal que

 $\eta \geqslant N \Rightarrow |f_n(x) - f(x)| < \xi, \forall x \in X.$

Geométricumente, esto quiere decir que a partir de cierto india N, la grática de fin Se inscribe enteramente dentro de una banda de ancho 2E centrada en la grática de i ca de f

A se le llama el limite unitorme en X de la sucesión de funciones $\{f_n\}_{n=1}^{\infty}$ y se escribe

 $1:m \quad f_n = f$ uniformemente en X

Claramente, si $\{f_n\}_{n=1}^{\infty}$ converge uniformemente a f en X entonces $\{f_n\}_{n=1}^{\infty}$ converge puntualmente a f en X pues

 $|\int_{\eta} (f) - f(f)| \leq \underset{X \in \overline{X}}{\text{dip}} |f_{\eta}(x) - f(x)| \quad \forall \quad \nu \in \overline{X}$

EJEMPLOS.

1) Y nell, defina f,:]O, [> R como

Fn = (-1) n 1

Veumos que $\{f_n\}_{n=1}^{\infty}$, no converge puntualmente. En efecto, seu $\mathcal{E}_0 = 1$, entonces \forall ne \mathbb{N} y \forall $f \in [0,1]$:

- a) S: n = 2m + 1, $= 2N = 2n | n \in \mathbb{N}^3 \le 1N$ a lo sumo numerable tal que si $2k \in 2N$: $|J_n(t) f_{2k}(t)| = |(-1)^{2m+1} (-1)^{2k}| = |-1 1| = 2 \ge 1$
- 5) $S: n = 2m, \exists 2|N+1 = \{2n+1 \mid n \in N\} \subseteq |N| \text{ a lo sumo numer uble, } fall que <math>S: 2l+1 \in 2|N+1|$ $|f_n(f) - f_{2l+1}(f)| = |(-1)^{2n} - (-1)^{2l+1}| = |l+1| = 2 \ge 1$

por a) x b) {t, }=, no converge puntualmente en X.

9.e.d.

Def. Seu $A \subseteq \overline{X}$. Se desine la sunción característica de A como la sunción $X_A : \overline{X} \rightarrow \mathbb{R}$

dada por:

$$\forall x \in X, \chi(x) :=$$