Numerical Computing Homework 2

Shaosen Hou 18340055

March 25, 2020

Page 50

- 1. Determine rigorously if each function has a unique fixed point on the given interval (follow Example 2.3).
- (a) $g(x) = 1 x^2/4$ on [0, 1]
- (b) $g(x) = 2^{-x}$ on [0, 1]
- (c) g(x) = 1/x on [0.5, 5.2]

Solution:

(a) Clearly, $g \in C[0,1]$. Also, because g'(x) = -x/2 < 0 on [0, 1], g(x) is a decreasing function on [0, 1]; thus its range on [0, 1] is $[\frac{3}{4}, 1] \subseteq [0, 1]$. Thus condition(3) of the Theorem 2.2 is satisfied and g has a fixed point on [0, 1].

Finally, if $x \in (0,1)$, then $|g'(x)| = |-x/2| = x/2 \le 1/2 < 1$. Thus condition(4) of Theorem 2.2 is satisfied, and g has a unique fixed point in [0, 1].

(b) Clearly, $g \in C[0,1]$. Also, because $g'(x) = -2^{-x}\ln 2 < 0$ on [0, 1], g(x) is a decreasing function on [0, 1]; thus its range on [0, 1] is $[\frac{1}{2}, 1] \subseteq [0, 1]$. Thus condition(3) of the Theorem 2.2 is satisfied and g has a fixed point on [0, 1].

Finally, if $x \in (0,1)$, then $|g'(x)| = |-2^{-x}\ln 2| = 2^{-x}\ln 2 \le \ln 2 < 1$. Thus condition(4) of Theorem 2.2 is satisfied, and g has a unique fixed point in [0, 1].

(c) Clearly, $g \in C[0.5, 5.2]$. Also, because $g'(x) = -x^{-2} < 0$ on [0.5, 5.2], g(x) is a decreasing function on [0.5, 5.2]; thus its range on [0.5, 5.2] is $\left[\frac{5}{26}, 2\right] \not\subseteq [0.5, 5.2]$. Thus condition(3) of the Theorem 2.2 is not satisfied and g doesn't have a fixed point on [0.5, 5.2].

Finally, g doesn't have a unique fixed point in [0.5, 5.2].

4. Let $g(x) = x^2 + x - 4$. Can fixed-point iteration be used to find the solution(s) to the equation x = g(x)? Why?

Solution:

Solve the equation $x = x^2 + x - 4$, we can conclude that the fixed points of g(x) are $P_1 = 2$ and $P_2 = -2$. While |g'(2)| = 5 > 1 and |g'(-2)| = 3 > 1, fixed-point iteration will not converge to P_1 and P_2 .

Thus fixed-point iteration cannot be used to find the solution(s) to the equation x = g(x).

5. Let $g(x) = x \cos x$. Solve x = g(x) and find all the fixed points of g (there are infinitely many). Can fixed-point iteration be used to find the solution(s) to the equation x = g(x)? Why?

Solution:

Solve the equation $x = x \cos x$, we can conclude that the fixed points of g(x) are $P = 2k\pi, k \in \mathbb{Z}$. While $|g'(P)| = |\cos(2k\pi) - 2k\pi\sin(2k\pi)| = |1 - 0| = 1$

Thus Theorem 2.3 might not be used to find the solution(s) to the equation x = g(x).

Page 61

4. Start with $[a_0, b_0]$, and use the false position method to compute c_0, c_1, c_2 and c_3 .

$$e^x - 2 - x = 0, [a_0, b_0] = [-2.4, -1.6]$$

Solution:

We can use equation (22) to compute c_0, c_1, c_2, c_3 .

$$c_n = b_n - \frac{f(b_n)(b_n - a_n)}{f(b_n) - f(a_n)}$$

The procedure of false position method is as follows.

	Left		Right	Function value,
k	endpoint, a_k	$Midpoint, c_k$	endpoint, b_k	$f(c_k)$
0	-2.40000000	-1.83007818	-1.60000000	-0.00952079
1	-2.40000000	-1.84092522	-1.83007818	-0.00040423
2	-2.40000000	-1.84138538	-1.84092522	-0.00001707
3	-2.40000000	-1.84140480	-1.84138538	-0.00000072

Thus,

$$\begin{split} c_0 &= -1.83007818,\\ c_1 &= -1.84092522,\\ c_2 &= -1.84138538,\\ c_3 &= -1.84140480. \end{split}$$

- **9.** What will happen if the bisection method is used with the function f(x) = 1/(x-2) and
- (a) the interval is [3, 7]?
- (b) the interval is [1, 7]?

Solution:

- (a) Since $f(3) \cdot f(7) > 0$, the initial condition is not satisfied.
- (b) After infinite iterations, c will be infinitely close to 2, but f(x) is undefined at 2.
- 11. Suppose that the bisection method is used to find a zero of f(x) in the interval [2, 7]. How many times must this interval be bisected to guarantee that the approximation c_N has an accuracy of 5×10^{-9} ?

Solution:

Use equation (15) to get the number N, where $a = 2, b = 7, \delta = 5 \times 10^{-9}$.

$$N = \operatorname{int} \left(\frac{\ln (b - a) - \ln (\delta)}{\ln (2)} \right)$$

$$= \operatorname{int} \left(\frac{\ln (7 - 2) - \ln (5 \times 10^{-9})}{\ln (2)} \right)$$

$$= \operatorname{int} (29.89735285)$$

$$= 29$$

Page 85

- 4. Let $f(x) = x^3 3x 2$.
- (a) Find the Newton-Raphson formula $p_k = g(p_{k-1})$.
- (b) Start with $p_0 = 2.1$ and find p_1, p_2, p_3 and p_4 .
- (c) Is the sequence converging quadratically or linearly?

Solution:

(a) According to Theorem 2.5,

$$g(x) = x - \frac{f(x)}{f'(x)}$$
$$= x - \frac{x^3 - 3x - 2}{3x^2 - 3}$$
$$= \frac{2x^3 + 2}{3x^2 - 3}$$

Thus,

$$p_k = g(p_{k-1}) = \frac{2p_{k-1}^3 + 2}{3p_{k-1}^2 - 3}$$

(b) We could use the formula above to calculate:

$$p_1 = g(p_0) = \frac{2 \times 2.1^3 + 2}{3 \times 2.1^2 - 3} = 2.0060606061$$

$$p_2 = g(p_1) = \frac{2 \times 2.0060606061^3 + 2}{3 \times 2.00606060601^2 - 3} = 2.0000243398$$

$$p_3 = g(p_2) = \frac{2 \times 2.0000243398^3 + 2}{3 \times 2.0000243398^2 - 3} = 2.00000000004$$

$$p_4 = g(p_3) = \frac{2 \times 2.00000000004^3 + 2}{3 \times 2.00000000004^2 - 3} = 2.00000000000$$

(c) Assume R=2 and use equation(19) to examine the quadratical convergence, We find that $A\approx \frac{2}{3}$.

Thus the sequence converging quadratically.

Page 86

8. Use the secant method and formula (27) and compute the next two iterations p_2 and p_3 . Let $f(x) = x^2 - 2x - 1$. Start with $p_0 = 2.6$ and $p_1 = 2.5$.

Solution:

$$p_2 = p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}$$

$$= 2.5 - \frac{(2.5^2 - 2 \times 2.5 - 1)(2.5 - 2.6)}{(2.5^2 - 2 \times 2.5 - 1)(2.6^2 - 2 \times 2.6 - 1)}$$

$$= 2.41935484$$

$$p_3 = p_2 - \frac{f(p_2)(p_2 - p_1)}{f(p_2) - f(p_1)}$$

$$= 2.41935484 - \frac{(2.41935484^2 - 2 \times 2.41935484 - 1)(2.41935484 - 2.5)}{(2.41935484^2 - 2 \times 2.41935484 - 1)(2.5^2 - 2 \times 2.5 - 1)}$$

$$= 2.41436464$$