Exercice 1:

1) $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \ln(1+x^2) = +\infty \text{ car } \lim_{x \to +\infty} (1+x^2) = +\infty \text{ et } \lim_{x \to +\infty} \ln(x) = +\infty$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\ln(1+x^2)}{x} = \lim_{x \to +\infty} \frac{\ln\left(x^2\left(1+\frac{1}{x^2}\right)\right)}{x} = \lim_{x \to +\infty} \frac{\ln(x^2)}{x} + \frac{\ln\left(1+\frac{1}{x^2}\right)}{x}$$

$$= \lim_{x \to +\infty} 2\frac{\ln(x)}{x} + \frac{\ln\left(1+\frac{1}{x^2}\right)}{x} = 0$$

Donc (C) admet une branche parabolique de direction l'axe des abscisses au voisinage de $+\infty$

2) a) Pour tout réel
$$x \ge 0$$
; $f'(x) = \frac{2x}{1+x^2}$

b) Pour tout réel
$$x \ge 0$$
; $f''(x) = \frac{2(1+x^2)-2x(2x)}{(1+x^2)^2} = \frac{2+2x^2-4x^2}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2}$

c) Pour tout réel $x \ge 0$ on a : f''(x) = 0 sig $2(1-x^2) = 0$ sig $1-x^2 = 0$ sig x = 1.

Х	0	1		+∞	
Signe de f''(x)			+	0 -	

f" s'annule en 1 enchangeantde signe donc $I(1, \ln 2)$ est un point d'inflexion de (C).

3) a) La tangente à (C) au point I a pour équation : T: y = f'(1)(x-1) + f(1) donc T: y = l(x-1) + ln 2 donc T: y = x - 1 + ln 2

 $\text{b)M(x,y)} \in (0,\vec{t}) \cap \mathsf{T} \ \text{\'eq} \begin{cases} y=0 \\ y=x-1+\ln 2 \end{cases} \ \text{\'eq} \begin{cases} y=0 \\ x=1-\ln 2 \end{cases} \text{\'eq} \ \text{\'eq} \begin{cases} x=0 \\ x=1-\ln 2 \end{cases}$ Tet l'axe des abscisses.

 $M(x,y) \in (0,\vec{j}) \cap T \neq 0$ $\begin{cases} x = 0 \\ y = x - 1 + \ln 2 \end{cases} \neq 0 \begin{cases} x = 0 \\ y = -1 + \ln 2 \end{cases} \neq 0$ de T et l'axe des ordonnées.

4) a) le triangle OHE est rectangle en O donc
$$L = \frac{OE \times OK}{2} = \frac{(1 - \ln 2) \left| \ln 2 - 1 \right|}{2} = \frac{(1 - \ln 2)^2}{2}$$

b) Pour tout
$$x \in [0,1]$$
, $0 \le x^2 \le x$ donc $0 < 1 + x^2 \le 1 + x$

D'où $\ln(1+x^2) \le \ln(1+x)$ (car la fonction In est croissante)

c) Pour tout réel
$$x \ge 0$$
, $\frac{x}{1+x} = \frac{x+1-1}{1+x} = \frac{x+1}{1+x} - \frac{1}{1+x} = 1 - \frac{1}{1+x}$

d) On pose
$$u(x) = \ln(1+x)$$
 $u'(x) = \frac{1}{1+x}$

$$v'(x) = 1 \qquad v(x) = x$$

Donc
$$\int_0^1 \ln(1+x) dx = \left[x \ln(1+x) \right]_0^1 - \int_0^1 \frac{x}{1+x} dx = \ln 2 - \int_0^1 (1 - \frac{1}{1+x}) dx$$

$$= \ln 2 - \left[x - \ln(1+x) \right]_0^1$$

$$= 2 \ln 2 - 1$$

e) La courbe C étant au dessus de T sur l'intervalle $\begin{bmatrix} 0,1 \end{bmatrix}$

donc
$$S = \int_0^1 ln(1+x^2) - (x-1+ln 2) dx$$

D'autre part : pour tout $x \in [0,1]$

$$ln(1+x^2) \le ln(1+x)$$
 donc $ln(1+x^2) - (x-1+ln 2) \le ln(1+x) - (x-1+ln 2)$

or les fonctions $x \mapsto \ln(1+x^2) - (x-1+\ln 2)$ et $x \mapsto \ln(1+x) - (x-1+\ln 2)$ sont continues sur

$$[0,1] \operatorname{donc} \int_0^1 \ln(1+x^2) - (x-1+\ln 2) \, dx \le \int_0^1 \ln(1+x) - (x-1+\ln 2) \, dx$$

donc
$$S \le \int_0^1 \ln(1+x) dx - \left[\frac{1}{2}x^2 - x + x \ln 2\right]_0^1$$

d'où
$$S \le (2 \ln 2 - 1) - (\frac{1}{2} - 1 + \ln 2)$$
 et par suite $S \le \ln 2 - \frac{1}{2}$

On remarque graphiquement que $L \le S$ donc $\frac{(1-\ln 2)^2}{2} \le S \le \ln 2 - \frac{1}{2}$

Exercice 2:

1) a)
$$\det(M_{\alpha}) = \alpha \begin{bmatrix} -4 & 0 \\ 1 & -1 \end{bmatrix} - (-2\alpha) \begin{vmatrix} 2 & 2 \\ 1 & -1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 2 \\ -4 & 0 \end{vmatrix} = \alpha(4-0) + 2\alpha(-2-2) + (0+8)$$

= $4\alpha - 8\alpha + 8 = -4\alpha + 8$

b) M_{α} n'est pas inversible si $d\acute{e}t(M_{\alpha})=0$ c'est-à-dire pour $\alpha=2$

2)

3)
$$C \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ -4 \\ -4 \end{pmatrix} \acute{e}q \begin{pmatrix} 2 & 2 & 2 \\ -4 & -4 & 0 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ -4 \\ -4 \end{pmatrix} \acute{e}q \begin{cases} 2x + 2y + 2z = 4 \\ -4x - 4y = -4 & \acute{e}q \begin{cases} x + y + z = 2 \\ x + y = 1 \\ x + y - z = -4 \end{cases}$$

D'après (1)-(2) on obtient z=1 et d'après (2)-(3) on obtient z=5 ce qui est impossible Donc $S_{10}^3 = \emptyset$

4) a

$$A \times B = \begin{pmatrix} -2 & 2 & 2 \\ 4 & -4 & 0 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -2x1 + 2x1 + 2x2 & -2x1 + 2x0 + 2x1 & (-2)x2 + 2x2 + 2x0 \\ 4x1 + (-4)x1 + 0x2 & 4x1 + (-4)x0 + 0x1 & 4x2 + (-4)x2 + 0x0 \\ 1x1 + 1x1 + (-1)x2 & 1x1 + 1x0 + (-1)x1 & 1x2 + 1x2 + (-1)x0 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = 4I$$

b)
$$A \times B = 4I$$
 donc $A \times \frac{1}{4}B = I$ et par suite $A^{-1} = \frac{1}{4}B = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} & 0 \end{bmatrix}$

$$c)A\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ -4 \\ -4 \end{pmatrix} \acute{e}q \cdot A^{-1}xA\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1}x\begin{pmatrix} 4 \\ -4 \\ -4 \end{pmatrix} \acute{e}q\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{4}B\begin{pmatrix} 4 \\ -4 \\ -4 \end{pmatrix}$$

$$\dot{e}q \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} & 0 \end{pmatrix} x \begin{pmatrix} 4 \\ -4 \\ -4 \end{pmatrix} \dot{e}q \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{4}x4 + \frac{1}{4}x(-4) + \frac{1}{2}x(-4) \\ \frac{1}{4}x4 + 0x(-4) + \frac{1}{2}x(-4) \\ \frac{1}{2}x4 + \frac{1}{4}x(-4) + 0x(-4) \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix} d'où S_{\mathbb{R}^3} = \left\{ \left(-2, -1, 1\right) \right\}$$

Exercice 3:

1) a) Pour $n=0,\ 0\le u_0=1\le 1$ vrai $\text{Soit } n\ge 0 \text{ supposons que } 0\le u_n\le 1 \text{ et montrons que } 0\le u_{n+1}\le 1 \ .$

On a $0 \le u_n \le 1$ donc $1 \le 1 + u_n \le 2$ d'où $1 \le \sqrt{1 + u_n} \le \sqrt{2}$ et par suite $1 - 1 \le \sqrt{1 + u_n} - 1 \le \sqrt{2} - 1$ d'où $0 \le u_{n+1} \le \sqrt{2} - 1 \le 1$

Conclusion : Pour tout entier naturel n : $0 \le u_n \le 1$

b) Pour tout entier naturel n : $u_{_{n+1}}-u_{_n}=\sqrt{1+u_{_n}}\,-1-u_{_n}=\sqrt{1+u_{_n}}\left(1-\sqrt{1+u_{_n}}\,\right)$

On a : $u_n \geq 0$ donc $\sqrt{1+u_n} \geq 1$ d'où $1-\sqrt{1+u_n} \leq 0$ et par suite $u_{n+1} \leq u_n$

Ainsi la suite (u_n) est décroissante.

c) (u_n) est décroissante et minorée par 0 donc elle converge vers un réel $l \in [0,1]$

On a:
$$u_{n+1} = f(u_n)$$
 avec $f(x) = \sqrt{1+x}$ -1

 (u_n) converge vers $l \in [0,1]$

f est continue sur $[-1,+\infty[$ et en particulier en l

donc l est solution de l'équation f(1) = 1

$$\mathsf{f(I)} = \mathsf{I} \, \, \operatorname{\acute{e}q} \, \sqrt{1+l} \, -1 = l \, \, \, \, \operatorname{\acute{e}q} \, \sqrt{1+l} = l+1 \, \, \, \operatorname{\acute{e}q} \, \sqrt{1+l} \, (1-\sqrt{1+l}) = 0 \, \, \operatorname{\acute{e}q} \, \sqrt{1+l} = 1 \, \operatorname{\acute{e}q} \, \, 1 + \mathsf{I} = 0 \, \operatorname{\acute{e}q} \, l = 0 \, \operatorname{\acute{e}q} \, 1 + l = 0 \, \operatorname{\acute{e}q} \, l = 0 \, \operatorname{\acute$$

2) a) Pour tout entier naturel n, $v_{n+1} = \ln(1 + u_{n+1}) = \ln(\sqrt{1 + u_n}) = \frac{1}{2}\ln(1 + u_n) = \frac{1}{2}v_n$

Donc (v_n) est géométrique de raison $\frac{1}{2}$ et de premier terme $v_0 = \ln(1 + u_0) = \ln 2$ b) Pour tout

entier naturel n,
$$v_n = \left(\frac{1}{2}\right)^n \ln 2 = \frac{\ln 2}{2^n}$$

On a
$$v_n = \ln(1+u_n)$$
 éq $1+u_n = e^{Vn}$ éq $u_n = e^{\frac{\ln 2}{2^n}} - 1$

Exercice 4:

1) a)
$$(2-2i)^2 = 4-4-8i = -8i$$

b)
$$\Delta = (2+8i)^2 + 60 - 40i = -8i = (2-2i)^2$$

donc
$$z' = \frac{2+8i-2+2i}{2} = 5i$$
 et $z'' = \frac{2+8i+2-2i}{2} = 2+3i$

$$S_{\mathbb{C}} = \left\{5i, 2+3i\right\}$$

2) a)
$$(z_B - z_A)(\overline{z_C - z_A}) = (-3 - 3i)(-2 - 2i) = 6 + 6i + 6i - 6 = 12i$$

b) $(z_B - z_A)(\overline{z_C - z_A})$ est imaginaire pur donc les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont orthogonauxpar suite le triangle ABC est rectangle en A.

3) a)
$$(z_M - z_A)(\overline{z_N - z_A}) = (x - 2 - 3i)(-iy - 2 + 3i) = (-2x - 3y + 13) + i(-xy + 3x + 2y)$$

b) Les points A ,M et N sont deux à deux distincts donc $(-2x-3y+13)+i(-xy+3x+2y) \neq 0$ Deuxième méthode :

Supposons qu'il existe un couple de réels (x, y) tel que

$$(-2x-3y+13)+i(-xy+3x+2y)=0$$

$$(-2x-3y+13)+i(-xy+3x+2y)=0\cdot \acute{e}q \begin{cases} -2x-3y+13=0\\ -xy+3x+2y=0 \end{cases} \acute{e}q \begin{cases} y=\frac{13-2x}{3}\\ 3x+y(2-x)=0 \end{cases} (**)$$

L'équation (**) devient $3x + \frac{13-2x}{3}(2-x) = 0$ ou encore $2x^2 - 8x + 26 = 0$ qui a pour discriminant

 Δ < 0, donc x n'existe pas.

Conclusion :
$$(-2x-3y+13)+i(-xy+3x+2y) \neq 0$$

c) AMN est rectangle en A si et seulement si $(z_{\rm M}-z_{\rm A})(\overline{z_{\rm N}-z_{\rm A}})$ est imaginaire pur

ce qui équivaut à -2x-3y+13=0 (on a : $-xy+3x+2y\neq 0$ d'après b))

- 4) a) Le triangle ABC est rectangle en A donc pour x=-1 et y= 5 le couple (-1,5) est une solution de (E).
 - b) On a $2x + 3y = 13 \text{\'eq} \ 2x + 3y = 2 \times (-1) + 3 \times 5 \ \text{\'eq} \ 2(x+1) = 3(5-y)$ (*) donc 2 divise 3(5-y) or $2 \wedge 3 = 1$ donc d'après le lemme de Gauss, 2 divise (5-y) donc 5-y=2k; $k \in \mathbb{Z}$ d'où y=5-2k. D'après (*) on a 2(x+1)=3(2k) sig x=3k-1; $k \in \mathbb{Z}$ Réciproquement, pour (x,y)=(-1+3k), 5-2k on a 2(-1+3k)+3(5-2k)=13 Donc $S_{\mathbb{Z}^2}=\left\{\left(-1+3k\right), 5-2k\right)$; avec $k \in \mathbb{Z}$.
- Ou bien directement: comme (-1,5) est une solution particulière de (E) alors l'ensemble des solutions de (E) est : $S_{\mathbb{Z}^2} = \{(-3k-1, 5+2k) \text{ avec } k \in \mathbb{Z}\}$
- c) AMN est rectangle en A si et seulement si 2x + 3y = 13 éq (x,y) = (-1+3k, 5-2k); $(k \in \mathbb{Z})$ si de plus $-4 \le x \le 4$ alors $-4 \le -1 + 3k \le 4 \cdot \text{sig} 1 \le k \le \frac{5}{3}$, donc $k \in \{-1,0,1\}$ Par suite $(x,y) \in \{(-4,7),(-1,5),(2,3)\}$ Ainsi AMN est rectangle en A $\{(x,y) \in \{(-4,7),(-1,5),(2,3)\}$ pour $\{(x,y) \in \{(-4,7),(-1,5),(2,3)\}\}$ pour $\{(x,y) \in \{(-4,7),(-1,5),(2,3)\}\}$