Vorlesung 17 – 13.12.2023

• Satz von Fischer-Riesz: Sei $f \in L^2([0,2\pi];\mathbb{C})$. Definiere Fourier-Koeffizienten $\hat{f}_k := \frac{1}{2\pi} \int_0^{2\pi} e^{-ikx} f(x) \, dx$. Dann ist

$$f = \lim_{N \to \infty} \sum_{k=-N}^{N} \hat{f}_k e^{ikx} \text{ in } L^2 \text{ und } \int_0^{2\pi} |f(x)|^2 dx = 2\pi \sum_{k=-\infty}^{\infty} |\hat{f}_k|^2.$$

- Falls $f \in C^1([0,2\pi];\mathbb{C})$ $2\pi\text{-periodisch}$ ist, ist $\hat{f'}_k = ik\hat{f}_k.$
- Falls $f \in L^2([0,2\pi];\mathbb{C})$ und $\sum_{k=-\infty}^{\infty} |\hat{f}_k| < \infty$, ist f stetig und $f = \lim_{N \to infty} \sum_{k=-N}^{N} \hat{f}_k e^{ikx}$ gleichmässig.