Heat Exchangers

Process Control (Exercise 1)

Contents

1 Introduction to Heat Exchangers

2	Control Schemes of Heat Exchangers	5
3	Assignment	6
т.	ent of Council ala	

3

List of Symbols

$Cp_{ m c}$	Heat capacity of a cold medium
$Cp_{ m h}$	Heat capacity of a hot medium
$F_{ m c}$	Flow rate of a cold medium
$F_{ m h}$	Flow rate of a hot medium
$T_{\mathrm{c,1}}$	Temperature of a cold medium entering the heat exchange
$T_{\mathrm{c,2}}$	Temperature of a cold medium leaving the heat exchanger
$T_{ m h,1}$	Temperature of a hot medium entering the heat exchanger
$T_{ m h,2}$	Temperature of a hot medium leaving the heat exchanger

List of Figures

1	Scheme of a heat exchanger
2	Basic control strategy of the heat exchanger
3	Control scheme of heat exchanger with three-way valve
4	Control scheme of heat exchanger with two-way valve
5	Control schemes of a steam heat exchanger
${f List}$	of Tables
1	Process (controlled) variables
2	Output (manipulated) variables

(a) Process scheme.

(b) Mathematical model (UniSim Design).

Figure 1: Scheme of a heat exchanger.

1 Introduction to Heat Exchangers

Fundamentals about heat exchangers [1, 2]:

- + Gain: $\frac{dT_{h,2}}{dF_c} = \frac{Cp_c}{F_hCp_h}$.
- + Time delay: $T_d = \frac{V}{F_h}$.
- + Reduced load large gain, fast and effective exchanger. More sensitive to disturbances and prone to cycling.
- + Large load small gain, undersized, sluggish control.
- + In general, controller tuned for smaller loads.
- + Gain variation compensation equal-percentage valve. Good solution if $\Delta T_{\rm h}$ is constant. Otherwise feedforward gain compensation is required.
- + P controller (PB 100%), I (set-point tracking) and D as well (for slower processes).
- + Sensors at representative locations, small time constants.
- + Flow control is recommended.

Energy balance equation:

$$Q = F_{\rm h}Cp_{\rm h}(T_{\rm h,1} - T_{\rm h,2}) = F_{\rm c}Cp_{\rm c}(T_{\rm c,2} - T_{\rm c,1})$$
(1)

Table 1: Process (controlled) variables.

$N_{\overline{0}}$	Stream	Variable
1	shell_in	Temperature
2	shell_out	Temperature
3	tube_in	Temperature
4	tube_out	Temperature

Table 2: Output (manipulated) variables.

$N_{\overline{0}}$	Stream	Variable
1	val_shell_in	Actuator Desired Position
2	val_shell_out	Actuator Desired Position
3	val_tube_in	Actuator Desired Position
4	val_tube_out	Actuator Desired Position

2 Control Schemes of Heat Exchangers

Figure 2: Basic control strategy of the heat exchanger.

Figure 3: Control scheme of heat exchanger with three-way valve.

Figure 4: Control scheme of heat exchanger with two-way valve.

Figure 5: Control schemes of a steam heat exchanger.

3 Assignment

Analyzed model: example_air_cooled_heat_exchanger_ss.usc (UniSim Design R481)

Task 1

Compare the mathematical model with Figure 2. Try to indicate the heat medium and coolant.

Task 2

Design the controller as it is illustrated in Figure 2.

Task 3

Create suitable monitoring of significant variables within the model of studied process. Analyze the performance of designed controller.

References

- [1] H. L. Hoffman, D. E. Lupfer, L. A. Kane, Bruce A Jensen, and B. G. Lipták. 19 distillation: Basic controls. In *Semantic Scholar*, 2008.
- [2] M. King. Process Control: A Practical Approach. Wiley, 2016.