Sensor Fusion for Irregularly Sampled Systems

Taiguara Tupinambás

Orientador por: Prof. Dr. Bruno Teixeira e Prof. Dr. Leonardo Tôrres

Laboratório de Modelagem, Análise e Controle de Sistemas Não-Lineares (MACSIN) Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) Universidade Federal de Minas Gerais (UFMG)

21 de Fevereiro, 2019

Sumário

- 🕕 Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Sumário

- 🕕 Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Crescimento do Mercado Global de Sensores

- Taxa Composta Anual de Crescimento de 11.3% a.a., de 2016-2022
- USD 241 bilhões em 2022

Fonte: Allied Market Research, 2016

Fonte: Postscape, 2015

Tendências

Internet das Coisas

Fonte: Business Insider

Redes Complexas de Sensores

Fonte: Libelium

Exemplo de Aplicação: Reconhecimento de Atividades Humanas

Taiguara Tupinambás

Exemplo de Aplicação: Rastreamento de um Robô

Taiguara Tupinambás

Aplicações de fusão sensorial clássicas assumem que:

- Informações são recebidas de forma regular
- Medições possuem carimbo de tempo correta

Aplicações de fusão sensorial clássicas assumem que:

- Informações são recebidas de forma regular
- Medições possuem carimbo de tempo correta

Falta de sincronização entre os múltiplos sensores da rede pode levar a amostragem irregular sem informação confiável de carimbo de tempo

Aplicações de fusão sensorial clássicas assumem que:

- Informações são recebidas de forma regular
- Medições possuem carimbo de tempo correta

Falta de sincronização entre os múltiplos sensores da rede pode levar a amostragem irregular sem informação confiável de carimbo de tempo

Possíveis soluções:

Investir em sincronização e em capacidade computacional

Aplicações de fusão sensorial clássicas assumem que:

- Informações são recebidas de forma regular
- Medições possuem carimbo de tempo correta

Falta de sincronização entre os múltiplos sensores da rede pode levar a amostragem irregular sem informação confiável de carimbo de tempo

Possíveis soluções:

- Investir em sincronização e em capacidade computacional
- Deslocar os instantes de tempo

Efeitos de se deslocar os instantes de tempo

Vale a pena investir em sincronização e capacidade computacional?

- Qual a relevância do erro para os objetivos da fusão sensorial?
- Quais são os fatores que influenciam o desempenho?

Vale a pena investir em sincronização e capacidade computacional?

- Qual a relevância do erro para os objetivos da fusão sensorial?
- Quais são os fatores que influenciam o desempenho?

Fusão sensorial o estimação de estados de sistemas amostrados Amostragem irregular o amostragem aperiódica

Sumário

- 🕕 Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

1. Revisar os métodos de fusão sensorial e o problema de amostragem irregular;

- 1. Revisar os métodos de **fusão sensorial** e o problema de **amostragem irregular**;
- 2. Discutir os algoritmos e suas **adaptações** ao modelo de amostragem aperiódica;

- 1. Revisar os métodos de **fusão sensorial** e o problema de **amostragem irregular**;
- 2. Discutir os algoritmos e suas **adaptações** ao modelo de amostragem aperiódica;
- 3. Desenvolver uma **metodologia** para estudar os efeitos de desconsiderar os carimbos de tempo;

- 1. Revisar os métodos de **fusão sensorial** e o problema de **amostragem irregular**;
- 2. Discutir os algoritmos e suas **adaptações** ao modelo de amostragem aperiódica;
- Desenvolver uma metodologia para estudar os efeitos de desconsiderar os carimbos de tempo;
- 4. Aplicar a metodologia em um sistema linear e outro não-linear, utilizando testes numéricos para **avaliar precisão e consistência** das estimativas;

Sumário

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Taiguara Tupinambás Defesa de Mestrado Fevereiro 2019 8 / 54

Modelo de Amostragem: Aperiódica

Instantes de amostragem modelados por um processo de Poisson:

$$\rho_{h_k}(t) = \lambda e^{-\lambda t}$$

 $\lambda
ightarrow {
m frequência}$ média de amostragem

Taiguara Tupinambás

Sumário

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Estimação de Estados

Sistemas Amostrados Lineares

$$\dot{x}(t) = Ax(t) + Bu(t) + Gw(t)$$

$$y(t_k) = Cx(t_k) + v(t_k)$$

Discretizado por:

$$x(t_{k+1}) = A_{d}(t_{k}, t_{k+1})x(t_{k}) + B_{d}(t_{k}, t_{k+1})u(t_{k}) + w_{d}(t_{k}, t_{k+1})$$

Sistemas Amostrados Lineares

$$\dot{x}(t) = Ax(t) + Bu(t) + Gw(t)$$

$$y(t_k) = Cx(t_k) + v(t_k)$$

Discretizado por:

$$x(t_{k+1}) = A_{d}(t_{k}, t_{k+1})x(t_{k}) + B_{d}(t_{k}, t_{k+1})u(t_{k}) + w_{d}(t_{k}, t_{k+1})$$

Método de estimação: Filtro de Kalman

Sistemas Amostrados Não Lineares

$$\dot{x}(t) = f(x(t), u(t), w(t), t)$$
$$y(t_k) = g(x(t_k), v(t_k), t_k)$$

Discretizado por Runge-Kutta:

$$x(t_{k+1}) = x(t_k) + \frac{1}{6} (k_1 + 2k_2 + 3k_3 + k_4),$$

$$t_{k+1} = t_k + h_k,$$

12 / 54

Sistemas Amostrados Não Lineares

$$\dot{x}(t) = f(x(t), u(t), w(t), t)$$
$$y(t_k) = g(x(t_k), v(t_k), t_k)$$

Discretizado por Runge-Kutta:

$$x(t_{k+1}) = x(t_k) + \frac{1}{6} (k_1 + 2k_2 + 3k_3 + k_4),$$

$$t_{k+1} = t_k + h_k,$$

Método de estimação: Filtro de Kalman Unscented

Formulação do Problema

Queremos estimar o vetor de estados x(iT) e sua covariância de forma recursiva, em intervalos igualmente espaçados T, considerando:

- Instantes de tempo das observações t_k é definido pelo intervalo:
 - $\rightarrow h_k \triangleq t_k t_{k-1}$ $\rightarrow h_k \sim \mathcal{E}(\lambda)$
- Entrada u(t) é atualizada em intervalos de tempo constantes T:
 - $\rightarrow u(t) = u(iT)$, para $iT \le t < (i+1)T$
 - $\rightarrow i = 0, 1, 2, ... \in \mathbb{N}$

Sumário

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Com carimbo:

Sem carimbo:

- Com carimbo:
 - 1. predição, de T a 2T;

- Sem carimbo:
 - 1. predição, de T a 2T;

Com carimbo:

- 1. completo, de 3T a t_1 ;
- 2. predição, de t_1 a 4T;

Sem carimbo:

1. completo, de 3T a 4T, com $t_1 = 4T$;

Com carimbo:

- 1. completo, de 8T a t_2 ;
- 2. completo, de t_2 a t_3 ;
- 3. predição, de t_3 a 9T;

Sem carimbo:

1. completo, de 8T a 9T, com $t_3 = 9T$;

Sumário

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Diretamente proporcional à derivada do sinal

- Modelo de medição $o y(t_k) = g(x(t_k), v(t_k), t_k)$
- Deslocamento de tempo $\rightarrow \delta_k \triangleq nT t_k$,

$$e_k = g(t_k) - g(t_k + \delta_k),$$
 $e_k = \left[\frac{g(t_k) - g(t_k + \delta_k)}{\delta_k}\right] \delta_k$
 $e_k \approx -\frac{dy}{dt} \delta_k.$

Erro introduzido pelos deslocamentos

- Sinal verdadeiro $\rightarrow y(t)$
- Medições $\rightarrow \hat{y}(t_k)$
- Medições deslocadas $o ilde{y}(t_k + \delta_k) = \hat{y}(t_k)$

Erro introduzido pelos deslocamentos

- Sinal verdadeiro $\rightarrow y(t)$
- Medições $\rightarrow \hat{y}(t_k)$
- Medições deslocadas $\rightarrow \tilde{y}(t_k + \delta_k) = \hat{y}(t_k)$

$$\begin{aligned} \mathsf{RMSE}_{\hat{y}} &\triangleq \sqrt{\frac{\sum_{k=1}^{N} (\hat{y}(t_k) - y(t_k))}{N}} \\ \mathsf{RMSE}_{\tilde{y}} &\triangleq \sqrt{\frac{\sum_{k=1}^{N} (\tilde{y}(t_k + \delta_k) - y(t_k + \delta_k))}{N}} \end{aligned}$$

Erro introduzido pelos deslocamentos

- Sinal verdadeiro $\rightarrow y(t)$
- Medições $\rightarrow \hat{y}(t_k)$
- Medições deslocadas $\rightarrow \tilde{y}(t_k + \delta_k) = \hat{y}(t_k)$

$$\begin{aligned} \mathsf{RMSE}_{\hat{y}} &\triangleq \sqrt{\frac{\sum_{k=1}^{N} (\hat{y}(t_k) - y(t_k))}{N}} \\ \mathsf{RMSE}_{\tilde{y}} &\triangleq \sqrt{\frac{\sum_{k=1}^{N} (\tilde{y}(t_k + \delta_k) - y(t_k + \delta_k))}{N}} \end{aligned}$$

Contribuição dos deslocamentos para o RMSE total

 $RMSE_e \triangleq RMSE_{\tilde{v}} - RMSE_{\hat{v}}$

Taiguara Tupinambás

Em função do ruído e da frequência média de amostragem

Sumário

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Parâmetros variados

Símbolo	Definição	Objetivo
SNR	$\mathit{SNR}_{ ext{dB}} riangleq 10 \log_{10} rac{P_{ ext{signal}}}{P_{ ext{noise}}}$	Influência do nível de ruído no sistema
λ	$h_k \sim \mathcal{E}(\lambda)$	Influência da taxa de amostragem média da saída
α	$\frac{1}{\lambda} \triangleq \alpha T$	Influência da relação entre as amostragens da saída e da entrada

Abordagem proposta

Sumário

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Resultado da Estimação de Estados

Média do vetor de estados $ightarrow \hat{x}_{k|k}$

Covariância do vetor de estados $ightarrow \hat{P}_{k|k}^{ ext{xx}}$

Resultado da Estimação de Estados

Média do vetor de estados $ightarrow \hat{x}_{k|k}$

Covariância do vetor de estados $ightarrow \hat{P}_{k|k}^{ ext{xx}}$

Deseja-se que as estimativas sejam precisas e consistentes

Precisão

Raiz do Erro Quadrático Médio:

$$RMSE = \sqrt{\frac{\sum_{k=1}^{N} (\hat{x}_{k|k} - x_k)^2}{N}}$$

Testes estatísticos

$$\begin{split} \mu_{\mathrm{D}} &= \mathit{RMSE}_{\mathrm{w/o}} - \mathit{RMSE}_{\mathrm{w}} \\ \begin{cases} \mathit{H}_0 : \mu_{\mathrm{D}} &= 0, \\ \mathit{H}_1 : \mu_{\mathrm{D}} &\neq 0, \end{cases} \end{split}$$

Tamanho de efeito:

$$d = \frac{\overline{RMSE}_{w} - \overline{RMSE}_{w/o}}{s_{D}}$$

Consistência

Um estimador é dito consistente se:

$$E\left[x_{k} - \hat{x}_{k|k}\right] \triangleq E\left[\tilde{x}_{k|k}\right] = 0$$

$$E\left[\left(x_{k} - \hat{x}_{k|k}\right)\left(x_{k} - \hat{x}_{k|k}\right)^{T}\right] \triangleq E\left[\tilde{x}_{k|k}\tilde{x}_{k|k}^{t}\right] = P_{k|k}^{xx}$$

Uma forma de testar é definindo:

$$\begin{split} \textit{NEES}_k &\triangleq \tilde{x}_{k|k}^T (\hat{P}_{k|k}^{xx})^{-1} \tilde{x}_{k|k} \\ \textit{NIS}_k &\triangleq \eta_{k|k-1}^T (P_{k|k-1}^{yy})^{-1} \eta_{k|k-1} \end{split}$$

Teste de hipóteses: H_0 : $NEES_k \sim \chi^2(n_x)$, $NIS_k \sim \chi^2(n_y)$

Consistência

$$P\{NEES_k, NIS_k \in [r_1, r_2] | H_0\} = 1 - \alpha$$

Exemplo (
$$\alpha = 5\%$$
):

$$\begin{bmatrix} \chi_2^2(0.025), \ \chi_2^2(0.975) \end{bmatrix} = [0.051, \ 7.38]$$
$$\begin{bmatrix} \chi_4^2(0.025), \ \chi_4^2(0.975) \end{bmatrix} = [0.484, \ 11.1]$$

Sumário

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Descrição do Sistema

Dois modos subamortecidos, um passa-altas e outro passa-baixas:

$$G_{hp}(s) = \frac{s^2 - 0.001s}{s^2 + 200s + 10^6} \longrightarrow G_{lp}(s) = \frac{100}{s^2 + 2s + 100}$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

$$A = \begin{bmatrix} -100 & 994.99 & 0 & 0 \\ -994.99 & -100 & 0 & 0 \\ 0 & 0 & -1 & 9.949 \\ 0 & 0 & -9.949 & -1 \end{bmatrix}$$

Descrição do Sistema

Estimativas para uma Realização: modo passa-alta

Estimativas para uma Realização: modo passa-baixa

Resultados - Variação do Nível de Ruído do Sistema (SNR)

Cenário	s	Estado 1 (diferença RMSE) Estado 4 (diferença RM			ıça RMSE)
		$\mu_{ m D}$	Cohen's d	$\mu_{\rm D}$	Cohen's d
	60	9.21 [8.3, 10] × 10 ⁻⁴	1.98 [1.6, 2.3]	19.3 [18, 21] × 10 ⁻³	3.00 [2.6, 3.4]
	50	9.70 [8.8, 10] × 10 ⁻⁴	2.22 [1.9, 2.6]	19.3 [18, 21] \times 10 ⁻³	3.25 [2.8, 3.7]
SNR (dB)	40	8.23 [7.4, 9.1] \times 10 ⁻⁴	1.96 [1.6, 2.3]	19.6 [18, 21] \times 10 ⁻³	2.72 [2.3, 3.1]
	20	5.95 [5.0, 6.9] \times 10 ⁻⁴	1.27 [0.97, 1.6]	12.4 [11, 14] \times 10 ⁻³	1.96 [1.6, 2.3]
	10	3.87 [2.7, 5.0] \times 10 ⁻⁴	0.680 [0.39, 0.97]	3.07 [2.3, 3.8] \times 10 ⁻³	0.809 [0.52, 1.1]

Resultados - Variação do Nível de Ruído do Sistema (SNR)

Cenário	s	Estado 1 (diferença RMSE) Estado 4 (diferença RM			ıça RMSE)
		$\mu_{ m D}$	Cohen's d	μ_{D}	Cohen's d
	60	9.21 [8.3, 10] × 10 ⁻⁴	1.98 [1.6, 2.3]	19.3 [18, 21] × 10 ⁻³	3.00 [2.6, 3.4]
	50	9.70 [8.8, 10] × 10 ⁻⁴	2.22 [1.9, 2.6]	19.3 [18, 21] \times 10 ⁻³	3.25 [2.8, 3.7]
SNR (dB)	40	8.23 [7.4, 9.1] \times 10 ⁻⁴	1.96 [1.6, 2.3]	19.6 [18, 21] \times 10 ⁻³	2.72 [2.3, 3.1]
	20	5.95 [5.0, 6.9] \times 10 ⁻⁴	1.27 [0.97, 1.6]	12.4 [11, 14] \times 10 ⁻³	1.96 [1.6, 2.3]
	10	3.87 [2.7, 5.0] \times 10 ⁻⁴	0.680 [0.39, 0.97]	3.07 [2.3, 3.8] \times 10 ⁻³	0.809 [0.52, 1.1]

Resultados - Variação da Frequência Média da Saída (λ)

Cenários	Estado 1 (diferen	Estado 1 (diferença RMSE) Estado 4 (diferença RMSE)		
	$\mu_{ m D}$	Cohen's d	$\mu_{ m D}$	Cohen's d
$\lambda \text{ (kHz)} \begin{vmatrix} 0.1\\0.3\\0.5\\1 \end{vmatrix}$	5.97 [4.6, 7.3] × 10 ⁻⁴ 7.40 [6.5, 8.2] × 10 ⁻⁴ 7.08 [6.1, 8.1] × 10 ⁻⁴ 2.80 [2.1, 3.5] × 10 ⁻⁴	0.869 [0.58, 1.2] 1.69 [1.4, 2.0] 1.39 [1.1, 1.7] 0.753 [0.46, 1.0]	4.06 [3.7, 4.4] × 10 ⁻² 3.42 [3.1, 3.7] × 10 ⁻² 1.73 [1.6, 1.9] × 10 ⁻² 0.720 [0.66, 0.78] × 10 ⁻²	2.33 [2.0, 2.7] 2.48 [2.1, 2.9] 2.73 [2.3, 3.1] 2.34 [2.0, 2.7]

Resultados - Variação da Frequência Média da Saída (λ)

Cenários	Estado 1 (diferer $\mu_{ m D}$	iça RMSE) Cohen's <i>d</i>	Estado 4 (diferença RMSE) $\mu_{ m D}$ Cohen's d	
λ (kHz) 0.1 0.3 0.5 1	5.97 [4.6, 7.3] × 10 ⁻⁴ 7.40 [6.5, 8.2] × 10 ⁻⁴ 7.08 [6.1, 8.1] × 10 ⁻⁴ 2.80 [2.1, 3.5] × 10 ⁻⁴	0.869 [0.58, 1.2] 1.69 [1.4, 2.0] 1.39 [1.1, 1.7] 0.753 [0.46, 1.0]	$ \begin{vmatrix} \textbf{4.06} \ [3.7, & 4.4] \times 10^{-2} \\ \textbf{3.42} \ [3.1, & 3.7] \times 10^{-2} \\ \textbf{1.73} \ [1.6, & 1.9] \times 10^{-2} \\ \textbf{0.720} \ [0.66, & 0.78] \times 10^{-2} \end{vmatrix} $	2.33 [2.0, 2.7] 2.48 [2.1, 2.9] 2.73 [2.3, 3.1] 2.34 [2.0, 2.7]

Cenários Estado		Estado 1 (difere	nça RMSE)	Estado 4 (diferenç	a RMSE)
		$\mu_{ m D}$	Cohen's d	$\mu_{ m D}$ Cohen's	
	1	6.83 [5.9, 7.8] × 10 ⁻⁴	1.44 [1.1, 1.8]	15.7 [15, 17] \times 10 ⁻³	2.85 [2.5, 3.2]
α	2	3.66 [3.1, 4.2] \times 10 ⁻⁴	1.26 [0.96, 1.6]	9.75 [8.9, 11] \times 10 ⁻³	2.25 [1.9, 2.6]
-	3	2.05 [1.6, 2.5] \times 10 ⁻⁴	0.851 [0.56, 1.1]	6.14 [5.6, 6.7] \times 10 ⁻³	2.02 [1.7, 2.4]
	5	1.00 [0.46, 1.5] \times 10 ⁻⁴	0.369 [0.088, 0.65]	4.36 [3.8, 4.9) \times 10 ⁻³	1.67 [1.3, 2.0]

Cenários Est		Estado 1 (difere	ado 1 (diferença RMSE) E		a RMSE)
		$\mu_{ m D}$	Cohen's d	$\mu_{ m D}$ Cohen	
α	1 2 3 5	6.83 [5.9, 7.8] × 10 ⁻⁴ 3.66 [3.1, 4.2] × 10 ⁻⁴ 2.05 [1.6, 2.5] × 10 ⁻⁴ 1.00 [0.46, 1.5] × 10 ⁻⁴	1.44 [1.1, 1.8] 1.26 [0.96, 1.6] 0.851 [0.56, 1.1] 0.369 [0.088, 0.65]	15.7 [15, 17] × 10 ⁻³ 9.75 [8.9, 11] × 10 ⁻³ 6.14 [5.6, 6.7] × 10 ⁻³ 4.36 [3.8, 4.9) × 10 ⁻³	2.85 [2.5, 3.2] 2.25 [1.9, 2.6] 2.02 [1.7, 2.4] 1.67 [1.3, 2.0]

Cenários Estado		Estado 1 (difere	nça RMSE)	Estado 4 (diferenç	a RMSE)
		$\mu_{ m D}$	Cohen's d	$\mu_{ m D}$ Cohen's	
	1	6.83 [5.9, 7.8] × 10 ⁻⁴	1.44 [1.1, 1.8]	15.7 [15, 17] \times 10 ⁻³	2.85 [2.5, 3.2]
α	2	3.66 [3.1, 4.2] \times 10 ⁻⁴	1.26 [0.96, 1.6]	9.75 [8.9, 11] \times 10 ⁻³	2.25 [1.9, 2.6]
-	3	2.05 [1.6, 2.5] \times 10 ⁻⁴	0.851 [0.56, 1.1]	6.14 [5.6, 6.7] \times 10 ⁻³	2.02 [1.7, 2.4]
	5	1.00 [0.46, 1.5] \times 10 ⁻⁴	0.369 [0.088, 0.65]	4.36 [3.8, 4.9) \times 10 ⁻³	1.67 [1.3, 2.0]

Sumário

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Abordagem para Auxílio à Tomada de Decisão
 - Métricas de Desempenho
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Descrição do sistema

Considere o sistema de um robô móvel não-holonômico:

$$\dot{p}_{\mathrm{x}} = v \cos(\theta),$$

 $\dot{p}_{\mathrm{y}} = v \sin(\theta),$
 $\dot{\theta} = u_{1}(t),$
 $\dot{v} = u_{2}(t),$

em que:

 p_{x} e p_{y} : coordenadas de posição,

 $\hat{\theta}$: orientação angular,

v: velocidade linear,

 u_1 : entrada: velocidade angular (ω) , u_2 : entrada: aceleração linear (a)

Robô Móvel não-Holonômico

Vetor de estados:

$$x_i \stackrel{\Delta}{=} [p_{x,i} \ p_{y,i} \ \theta_i \ v_i]^T.$$

Modelo de observações:

$$y(t_k) = egin{bmatrix} p_{\mathrm{x}}(t_k) \ p_{\mathrm{y}}(t_k) \end{bmatrix} + v(t_k), \quad v(t_k) \sim \mathcal{N}(0, R_{t_k}).$$

Vetor de entradas:

$$u_i = [\omega_i \ a_i]^T,$$
 $u_i = \tilde{u}_i - w_i, \ w \sim \mathcal{N}(0, Q_i).$

Entradas e Realização Única

Resultados - Variação do Nível de Ruído da Saída SNR_{obs}

Cenário	os	Position (diferença RMSE) μ_{D} (cm) Cohen's d	
SNR (dB)	100	16.8 [16, 18]	1.25 [1.2, 1.3]
	80	12.0 [11, 13]	1.31 [1.2, 1.4]
	60	10.3 [9.8, 11]	1.28 [1.2, 1.4]
	40	8.30 [7.8, 8.7]	1.14 [1.0, 1.2]
	20	4.54 [4.2, 4.8]	0.92 [0.83, 1.0]
	10	3.20 [3.0, 3.4]	0.85 [0.76, 0.94]

Taiguara Tupinambás

Resultados - Variação do Nível de Ruído da Saída SNR_{obs}

Cenário	s	Position (dif $\mu_{ m D}$ (cm)	erença RMSE) Cohen's <i>d</i>
SNR (dB)	100	16.8 [16, 18]	1.25 [1.2, 1.3]
	80	12.0 [11, 13]	1.31 [1.2, 1.4]
	60	10.3 [9.8, 11]	1.28 [1.2, 1.4]
	40	8.30 [7.8, 8.7]	1.14 [1.0, 1.2]
	20	4.54 [4.2, 4.8]	0.92 [0.83, 1.0]
	10	3.20 [3.0, 3.4]	0.85 [0.76, 0.94]

Resultados - Variação da Frequência Média da Saída (λ)

Cenários Position (diferença RI $\mu_{ m D}$ (cm) Co		iferença RMSE) Cohen's <i>d</i>	
λ (kHz)	1.67	11.1 [10, 12]	1.23 [1.1, 1.3]
	2	9.63 [9.1, 10]	1.10 [1.0, 1.2]
	2.5	9.07 [8.4, 9.7]	0.910 [0.82, 1.0]
	3.33	7.40 [6.9, 7.9]	0.877 [0.79, 0.97]
	5	6.42 [6.0, 6.9]	0.865 [0.78, 0.96]
	10	8.20 [7.7, 8.7]	1.09 [1.0, 1.2]

Taiguara Tupinambás

Resultados - Variação da Frequência Média da Saída (λ)

Cenários μ_1		Position (d $\mu_{ m D}$ (cm)	iferença RMSE) Cohen's <i>d</i>
λ (kHz)	1.67	11.1 [10, 12]	1.23 [1.1, 1.3]
	2	9.63 [9.1, 10]	1.10 [1.0, 1.2]
	2.5	9.07 [8.4, 9.7]	0.910 [0.82, 1.0]
	3.33	7.40 [6.9, 7.9]	0.877 [0.79, 0.97]
	5	6.42 [6.0, 6.9]	0.865 [0.78, 0.96]
	10	8.20 [7.7, 8.7]	1.09 [1.0, 1.2]

Cenários		Posição (dife $\mu_{ m D}$ (cm)		erença RMSE) Cohen's d	
α	1 2 5 10	6.51 [6.2, 7.86 [7.4, 17.3 [17, 34.4 [33,	8.3] 18]	1.28 [1.2, 1 1.07 [1.0, 1 1.42 [1.3, 1 2.01 [1.9, 2	.2] .5]

Cenários		Posição (difer $\mu_{ m D}$ (cm)		rença RMSE) Cohen's <i>d</i>	
α	1 2 5 10	6.51 [6.2, 7.86 [7.4, 17.3 [17, 34.4 [33,	8.3] 18]	1.28 [1.2, 1.07 [1.0, 1.42 [1.3, 2.01 [1.9,	1.2] 1.5]

Taiguara Tupinambás Defesa de Mestrado Fevereiro 2019 50 / 54

Cenários		Posição (diferença RMSE)				
		$\mu_{ m D}$ (cm)		Cohen's d		
	1	6.51 [6.2,		1.28 [1.2,		
α	2	7.86 [7.4,		1.07 [1.0,	1.2]	
α	5	17.3 [17,	18]	1.42 [1.3,	1.5]	
	10	34.4 [33,	35]	2.01 [1.9,	2.1]	

Taiguara Tupinambás

Principais Resultados e Contribuições

Maioria dos resultados do algoritmo sem carimbo de tempo com **alta variabilidade**!

Cenários com maior influência no desempenho do estimador:

- Baixo nível de ruído nos sinais;
- Baixa frequência média da amostragem irregular;
- Em relação ao α , os resultados sugerem que depende da relação entre o nível de ruído dos modelos de processo e observação.

Abordagem útil para a tomada de decisão sobre investimento em sincronização e em capacidade computacional.

1. Investigação sobre algoritmos que **compensam o erro** de deslocar instantes de tempo;

- Investigação sobre algoritmos que compensam o erro de deslocar instantes de tempo;
- 2. Desenvolvimento de **rotinas de sintonia** do estimador *ad hoc*, com **filtragem adaptativa**;

- Investigação sobre algoritmos que compensam o erro de deslocar instantes de tempo;
- 2. Desenvolvimento de **rotinas de sintonia** do estimador *ad hoc*, com **filtragem adaptativa**;
- 3. Estudo dos efeitos de amostragem irregular com a **introdução de atraso de tempo**;

- Investigação sobre algoritmos que compensam o erro de deslocar instantes de tempo;
- 2. Desenvolvimento de **rotinas de sintonia** do estimador *ad hoc*, com **filtragem adaptativa**;
- 3. Estudo dos efeitos de amostragem irregular com a **introdução de atraso de tempo**;
- 4. Utilização de outros métodos de filtragem, como o **baseado em partículas**, com potencial de ser mais robustos a ruídos não gaussianos;

OBRIGADO

e-mail: tatatupi@gmail.com.br