Papaya Pi Hardware Introduction

CREATED BY GEMINI 2000 LTD NIK

Version	Author Date		Change	
1.0 Nikola Manolov 25/04/2019 Docum		25/04/2019	Document created	

Contents

1.	Intro	oduction	3
2.	Bloc	ck Diagram	3
		aya Pi Layout and Connectors	
	3.1.	Papaya Pi Header Pinouts	5
	3.1.1.	P6 - UARTO Header Pinout	5
	3.1.2.	P5 - GPIO Header for Port G (Shared with Data SD Card)	5
	3.1.3.	P7 - GPIO Header for Port B and Port C Pinout	6
	3.1.4.	P8 - GPIO Header for Port E (also used for OV5640 camera module)	7
4.	Pow	vering The Papaya Pi	8
5.	Воо	ting the Papaya Pi	8

1. Introduction

The Papaya Pi is a development kit for the Allwinner V3S SoC. All of the V3S interfaces are routed to connectors, headers and sockets for easy use and development.

2. Block Diagram

Figure 1 Papaya Pi Block Diagram

3. Papaya Pi Layout and Connectors

Figure 2 Connector Placement

- 1. USB Micro Jack (Power only 5V, 0.5A)
- 2. Barrel Jack 7V to 12V
- 3. USB A USB Host Connector
- 4. Ethernet Connector with PoE
- 5. P6 UARTO Header (By default it is the debug console)
- 6. P7 GPIO Header for Port B and Port C
- 7. P8 GPIO Header for Port E (also used for OV5640 camera module)
- 8. Parallel LCD Connector
- 9. Battery Connector for CR2032 Battery
- 10. Activity and Power LEDs
- 11. Differential Microphone Header
- 12. 3.5mm Connector for audio
- 13. P6 GPIO Header for Port G (Shared with Data SD Card)
- 14. Data SD Card
- 15. Boot SD Card
- 16. Reset Header
- 17. MIPI CSI Connector For OV5640 camera module. MIPI CSI is currently not supported by the kernel

3.1. Papaya Pi Header Pinouts

3.1.1. P6 - UARTO Header Pinout.

This header is designed to provide easy access to UARTO, without needing to change the cabling on P7.

Pin	Name	Alternative Functions	Notes	
1	GND			
2	PB9	TWI1_SDA/UARTO_RX/PB_EINT9	Dy default debuging HARTO	
3	PB8	TWI1_SCK/UARTO_TX/PB_EINT8	By default - debuging UARTO.	

Table 1 P6 Pinout

3.1.2. P5 - GPIO Header for Port G (Shared with Data SD Card)

Pin	Name	Alternative Functions	Notes
1	GND		
2	GND		
3	3V3		
4	3V3		
5	PG2	SDC1_D0/PG_EINT2	
6	PG3	SDC1_D1/PG_EINT3	
7	PG1	SDC1_CMD/PG_EINT1	B. dafa li and faces Cond 4 (CDC4)
8	PG0	SDC1_CLK/PG_EINTO	By default used for SD Card 1 (SDC1
9	PG4	SDC1_D2/PG_EINT4	
10	PG5	SDC1_D3/PG_EINT5	

Table 2 P5 Pinout

3.1.3. P7 - GPIO Header for Port B and Port C Pinout

Pin	Name	Alternative Functions	Notes
1	GND		
2	GND		
3	3V3		
4	3V3		
5	5V		
6	5V		
7	PC3	SDC2_D0/SPI0_MOSI	
8	PC2	SDC2_RST/SPI0_CS	
9	PC1	SDC2_CMD/SPI0_CLK	
10	PC0	SDC2_CLK/SPI0_MISO	
11	PB9	TWI1_SDA/UART0_RX/PB_EINT9	By default - debuging UARTO.
12	PB8	TWI1_SCK/UARTO_TX/PB_EINT8	by default - debugilig OAKTO.
13	PB7	TWIO_SDA/PB_EINT7	
14	PB6	TWIO_SCK/PB_EINT6	
15	PB5	PWM1/PB_EINT5	
16	PB4	PWM0/PB_EINT4	
17	PB3	UART2_CTS//PB_EINT3	
18	PB2	UART2_RTS/PB_EINT2	By default used for activity LED.
19	PB1	UART2_RX/PB_EINT1	
20	PB0	UART2_TX/PB_EINT0	
21	PF6		By default - USB ID Pin for OTG.
22	LRADC0		

Table 3 P7 Pinout

3.1.4. P8 - GPIO Header for Port E (also used for OV5640 camera module)

Pin	Name	Alternative Functions	Notes	
1	PE4	CSI_D0/LCD_D2		
2	PE5	CSI_D1/LCD_D3		
3	PE6	CSI_D2/LCD_D4		
4	PE7	CSI_D3/LCD_D5		
5	Reset	for OV5640 camera module (not fitted)		
6	Power	Down OV5640 camera module (not fitted)		
7	PE8	CSI_D4/LCD_D6		
8	PE9	CSI_D5/LCD_D7		
9	PE10	CSI_D6/LCD_D10		
10	PE11	CSI_D7/LCD_D11		
11	PE12	CSI_D8/LCD_D12		
12	PE13	CSI_D9/LCD_D13		
13	PE14	CSI_D10/LCD_D14	OV5640 Can be mounted here (in	
14	PE15	CSI_D11/LCD_D15	parallel mode)	
15	PE1	CSI_MCLK/LCD_DE		
16	PE0	CSI_PCLK/LCD_CLK		
17	PE2	CSI_HSYNC/LCD_HSYNC		
18	PE3	CSI_VSYNC/LCD_VSYNC		
19	PE22	CSI_SDA/TWI1_SDA/UART1_RX		
20	PE21	CSI_SCK/TWI1_SCK/UART1_TX		
21	GND			
22	3V3			
23	PE17	CSI_D13/LCD_D19		
24	PE16	CSI_D12/LCD_D18		
25	PE19	CSI_D15/LCD_D21		
26	PE18	CSI_D14/LCD_D20		
27	PE24	LCD_D23/UART1_CTS		
	PE23	LCD_D22/UART1_RTS		
29		Empty		
30	PE20	CSI_FIELD/CSI_MIPI_M CLK		

Table 4 P8 Pinout

4. Powering the Papaya Pi

The Papaya Pi can be powered from:

- 1. USB Micro Jack (power only 5V/0.5A)
- 2. Barrel Jack 7V to 12V
- 3. Power over Ethernet (PoE)

It's not recommended to use more than one power source at a time. Using more than one power source at a time will not damage the Papaya Pi.

Battery for RTC:

In order to power the RTC of the V3S, a battery connector for a CR2032 battery is provided on the Papaya PI. The RTC battery is optional and not needed for the normal operation of the device.

5. Booting the Papaya Pi

The Allwinner V3S SoC can boot from SDC0 (SD Card 0) by default. The boot SD Card can be located on (15) on the Papaya Pi. For more information about the booting process and the OS for the V3S, please refer to the Allwinner V3S Datasheet and to the README file in the software folder of the Papaya Pi Github.