Wantum toti assoc. w. sequences x their application II.

· Quantum	group
-----------	-------

of KM alg
$$Q = \bigoplus Z \alpha_i$$
 $Q^+ = \sum \alpha_i$ $Q^- = \sum \alpha_i$

Ugloy) = gouintum group over Oright) good by e.f. (iEI) x gh

+ 2-Serre rel.
$$\sum_{r=0}^{|-C_{ij}|} (-C_{ij}^{r}-r) + \sum_{i} C_{i}^{(r)} = D$$
 where $C_{i}^{(n)} = C_{i}^{n} / [n]_{i}!$ $C_{i}^{(n)} = C_{i}^{n} / [n]_{i}!$

 $A := \mathbb{Z}[g^{\pm k}]$ $U_{\mu}^{+}(0) = A - \text{Subalg of } U_{g}(0) \text{ gend by}$

· Quantum unipotent coordinate ring. Agun)

Set
$$A_g(In) = \bigoplus_{\beta \in Q^-}$$
 where $\underline{\qquad} := Hom_{Q(gk)}(\underline{\qquad}, Q(gk)).$

Known · Az (In) has also _____.

The A-subalg $A_{A}(In) = \{ \gamma \in A_{g}(In) \mid \psi(II_{A}(0)) \subset A \}$ has a unique $-II_{g}(0) - acts$ on $A_{g}(In)$ as $e_{J}(x) = -\frac{1}{2} x \in II_{g}(0)$, $\gamma \in A_{g}(In)$.

Let us choose weW, take i= (2... 2) ER(w) (red. seg.

For
$$\beta = \sum_{i=1}^{n} n_i d_i \in \mathbb{Q}^+$$
 with $r = \sum_{i=1}^{n} n_i \cdot set \cdot \mathbb{T}^{\beta} = \mathbb{I}(\hat{n}_i \dots \hat{n}_n) \in \mathbb{T}^{\beta}$

$$= \mathbb{I}(\hat{n}_i \dots \hat{n}_n) \in \mathbb{T}^{\beta} = \mathbb{I}(\hat{n}_i \dots \hat{n}_n) \in \mathbb{I}(\hat{n}_n \dots \hat{n}_n) \in \mathbb{T}^{\beta} = \mathbb{I}(\hat{n}_i \dots \hat{n}_n) \in \mathbb{T}^{\beta} = \mathbb{I}(\hat{n}_$$

$= Span_{A} \left\{ \psi \in A_{A}(\ln) \mid \psi = 0 \forall \in \mathcal{L}_{(\bar{\lambda}_{1} \dots \bar{\lambda}_{r})} \in \mathcal{L}_{(\bar{\lambda}_{1} \dots \bar{\lambda}_{r})} \right\} \text{ has an}$
Thm [Kimura] := Bup n A (In(w)) is an
· i-boxes and unipotent quantum minors.
For $0 \le a \le b \le r$, we set $[a,b] = \{k \in \mathbb{Z} \mid a \le k \le b\}$ of call $+$
Setting We have chosen i=(i, ir) = R(w) for w=W.
· K = [1, r] K = Kex U Kfr.
- An interval [a,b] ⊆[0,r] is called anifor
· [a,b,] * [a,b] are soid to be of
or (kecall)
For an $i-box [aib] w/i=i$, we can associated an $ett _ = e B^{up}(w) \in A_q(ln(w))$
called a with $wt() = CG^{-}$.
In particular, rs an vector of wh $x + 3$ $1 \le x \le r$ generates $A_{A}(In(w))$.
For elts $x, y \in A_A(\ln)$, x, y are if $xy = g^2yx$ for some $\int e^{7Z}/2$
· Quantum tori of Am (In(w))
Thm [BZ] If i-boxes [a,,b,] x [az,b] commute, then D'[a,,b,] & D'[az,b]
s.t Dica,67 Dica;67 E 82 Bup(w) and
$\mathcal{L} = \left(w_{\leq a_i} \overline{w_{z_a}} - w_{\leq b_i} \overline{w_{z_b}} \right) \xrightarrow{W_{\leq a_b}} \overline{w_{z_{b_b}}} \xrightarrow{W_{\leq b_b}} \overrightarrow{w_{z_{b_b}}} \xrightarrow{A_a} \langle a_i \leq b_i < b_a^+ \rangle$
In particular Di=1 Di [0, k] 1 = k = r } forms a, with
$l_{s_{k}} = l_{\overline{w}_{\bar{s}}} - w_{\leq s} \overline{w}_{\bar{s}_{s}}, \overline{w}_{\bar{s}_{k}} + w_{\leq k} \overline{w}_{\bar{s}_{k}}) \bar{i} \neq s \leq k.$
we have a g. torus of Aglin(w)) and g. reed.
$\mathcal{F}^{i} := \left(\angle^{i}, \widetilde{\beta}^{i}, \left\{ \widetilde{Z}_{k} = D^{i} \left[0, k\right] \right\} \right)$
J = (L, O, lok Diriki)

1hm LGeiß-Lecterc-Schröer, Goodreal-Yakimov,)
$\mathcal{A}_{\mathcal{A}}(In(\omega)) \simeq \mathcal{A}_{\mathcal{A}}(\mathcal{J}^{i})$
· Elements in 18 ^{up} x Conjectures
b ∈ 1B ^u P 75 7f ∈ 9 ^{27/2} 1B ^u P
if b does not have $b = \frac{\omega}{b_1, b_2} \in 1B^{up}$.
Conjecture ? cluster monomials in Aprillius) } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= } cluster variables in Ag(In(w)) { => } eff in IBUP}
Honorde Cottegorification
(proposed by Hernandez-Leclerc for Conjectures)
(1 has by manage haster a lot animals)
C: monoidel category with &, auto-functor & (grading shift"ftor")
E provide a m. coll of a g. cluster alg Ag if
Axtoms for m. Cat 1 Ag ~ Categoritying
@ G. cluster monomials = simple objs in & = cluster vorzables mutations
3 // vars -> simple obje in E
In this talk. E denotes a module Category.
Consequence. X: q. cluster var -> M = stmple
$[M] = x = \frac{\sum_{\alpha} P_{\alpha}[}{\sum_{\beta} P_{\alpha}[]} = \frac{\sum_{\alpha} P_{\alpha}[]}{\sum_{\beta} P_{\alpha}[]}$
8. Laurent phenomena.
>> Pa : a " # of [] in [].
<u>→</u>
Quiver Hecke algebra. (Khovanov-Lauda, Rouzwier)

Take $\beta = \sum n_i d_i \in Q^+ w/ \sum n_i = r$ A recall $\mathbb{T}^{\beta} \subset \mathbb{T}^r$.

Fix symmetrizable KM-alg. &

KL and R introduce a	alg R(B) gon'd by
2k (Isker) to (Isser)	e(v) (v=(v,vr) &Ib)
Subj to certain relations assow of	
Here $e(\beta) = \sum_{\nu \in \Gamma^{\beta}}$ is a unit	
>eT. ——	
R(B)-gmod := the collegory	R(B)-modules
R-gmod = PR(p)-gmod (block-o	Jecomposition)
	$S. + \left(\frac{g}{g} M \right)_n = \underbrace{\qquad \text{for } M = \bigoplus M_k \in R - g \text{mod.}}_{\text{RGZ}}$
<u>E</u>	
· Convolution product (Mon	ordal structure)
For MER(B)-gmod. NER(B)-9	gmod.
M = N: = ———— R(D) ® R	(M⊗N)
•	Hal homo $R(\beta) \otimes R(r) \longrightarrow R(\beta+r)$.
WeIt	$e(\beta)$, $e(\beta)$ $e(\beta, f)$
uss (R-gmod, o) Cates	$puy \Rightarrow K(R-gmsd)$ has
Thm [D Khovana - Lauda, Rougurer,]
D = A-alg iso	
$\Omega: \mathbb{A} \otimes_{\mathbb{A}^{d+1}} \longrightarrow \mathbb{A}_{\mathbb{A}}$	
0)
@ For each = (i, i,) & R(w) for we	
simple module ER	
	(> Initial cluster variables)
In particular we set =	for 1≤k≤r.
Def (Subcategory Cw of R-gmod)	
Cw is the	6f R-gmod
1) Stable under taking	_
② containing } ≤ x ≤ r }.	

ms D(A®Z(g+1/s) K(Cw)) ~ Ay(In(w)) (note Ay(In(w)) has g.duter alg str).
Here the def of Co does not depend on the charce of i.
Note For the def of R(B), we need to choose ret of "polys".
But we skip it and take it in [KL].
From now on, we consider of of
R-matrix, 1-7nv For M, N & R-module homo
= ga MoN -> NoM.
We call the x denote by = a the of
prop [Brundan-Kleshchev-McNamara, Tingley-Webstor.]
For $1 \le k \le l \le r$, $(i, i) = -\delta(i, j)$
RMX The existence of R-matrix for 9 is guite
d-invariant For M, N & R-gmod, d(M,N) == (+).
100 191, 100 K Jilleon, 91, 110 9.
Thm (Kang-Kashiwara-Kim-O) M.N: Simple R-module s.t one of them is real.
<u> </u>
hd(NoN) hd (B)
(head)
Note For i-boxes [a,b] * [a,b], d(M[a,b], M[a,b]=_)*
$\Lambda(M^{\bullet}[a,b], M^{\bullet}[a',b']) = -(\omega_{\leq a} \overline{\omega_{\hat{\lambda}_{a}}} - \omega_{\leq b} \overline{\omega_{\hat{\lambda}_{b}}} \omega_{\leq a'} \overline{\omega_{\hat{\lambda}_{a'}}} + \omega_{\leq b'} \overline{\omega_{\hat{\lambda}_{b'}}})$
•
Comparison $A_{A}(\ln \omega) \longleftrightarrow C_{\omega}$
Cluster var are homo
are homo

DE012 DE-01/7
$DEa_1b_1 DEa_1b_1 \longrightarrow L = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
U .
• N* ←→ ^-7nv 1 ?.
● Exchange motrix ←> ?
Thm (KKKO) For the Kex, I real simple module s.l. d(MIEO, 1/6),)= x
$0 \rightarrow 0 \qquad \rightarrow M[0,k] \circ \longrightarrow 0 \qquad \longrightarrow 0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
where O. O are . (categorifying ex matrices and mutation rule)
and comm/with Mcoil (+*).
Thm (KKKO) Cw provides a of the g. cluster alg Agalinus).
In particular, every cluster monomial corresponds to a MECW,
⊼S ₹n ←→
Additional information (Maximal commuting family: Suggested by Kimura as
the notation (
(Kashiwara-Kim) Cor X Simple in R-grood and 1 Mys? a set of szeal simple module
(Kashiwara-Kim)
(kashiwara-kim) Cor X simple in R-gand and $1 M_{18}$ a set of szeal simple module
(kashiwara-kim) Cor \times simple in R-gmod and 1 My a set of szeal simple module $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(kashiwara-kim) Cor X simple in R-gand and $1 M_{18}$ a set of szeal simple module
(tashiwara-kim) Cor X simple in R-gmod and 1 My) a set of szeal simple module $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(tashiwara-kim) Cor X simple in R-gmod and 1 My) a set of szeal simple module $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(tashiwara-kim) Cor X simple in R-gmod and 1 My) a set of szeal simple module $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(tashiwara-kim) Cor X simple in R-gmod and 1 My) a set of szeal simple module $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(tashiwara-kim) Cor X simple in R-gmod and 1 My) a set of szeal simple module $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(tashiwara-kim) Cor X simple in R-gmod and 1 My) a set of szeal simple module $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(kashiwara-kim) Cor X simple in R-gned and $1 M_{b}$? a set of szeal simple medule $ \begin{array}{cccccccccccccccccccccccccccccccccc$
(tashiwara-kim) Cor X simple in R-gmod and 1 My) a set of szeal simple module $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

DEa,63 ->