- 3. Positive Semi-definiteness: Recall that a n-by-n real symmetric matrix K is called positive semi-definite $(p.s.d. \text{ or } K \succeq 0)$ iff for every $x \in \mathbb{R}^n$, $x^T K x \geq 0$.
 - (a) Show that $K \succeq 0$ if and only if its eigenvalues are all nonnegative.
 - (b) Show that $d_{ij} = K_{ii} + K_{jj} 2K_{ij}$ is a squared distance function, *i.e.* there exists vectors $u_i, v_j \in \mathbb{R}^n$ $(1 \le i, j \le n)$ such that $d_{ij} = ||u_i u_j||^2$.
 - (c) Let $\alpha \in \mathbb{R}^n$ be a signed measure s.t. $\sum_i \alpha_i = 1$ (or $e^T \alpha = 1$) and $H_\alpha = I e\alpha^T$ be the Householder centering matrix. Show that $B_\alpha = -\frac{1}{2}H_\alpha DH_\alpha^T \succeq 0$ for matrix $D = [d_{ij}]$.
 - (d) If $A \succeq 0$ and $B \succeq 0$ $(A, B \in \mathbb{R}^{n \times n})$, show that $A + B = [A_{ij} + B_{ij}]_{ij} \succeq 0$ (elementwise sum), and $A \circ B = [A_{ij}B_{ij}]_{ij} \succeq 0$ (Hadamard product or elementwise product).

Proof:

(1) Since λ is an eigenvalue and ν is the corresbounding eigenvector, we have

$$Kv = \lambda v$$

$$v^{\prime}Kv = v^{\prime}\lambda v$$

$$-\lambda v^{\tau} V \geq 0$$

Thus \≥0

Denote
$$7 = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}$$

$$\forall x \in \mathbb{R}^n$$
. $\pi^T | (\pi = (Q_\pi)^T T (Q_\pi))$ where $Q_\pi = (p_1 - p_n)^T$
 $\pi^T | (\pi = \sum_{i=1}^n \lambda_i p_i^2) = 0$

Thus. K≥0

12) Denote ui as the i-th nw of K

Vj as the n dimension vectors with only j-th element

to be 1

Then,

$$\begin{aligned} ||u_{i}-v_{j}||^{2} &= (u_{i}-v_{j})(u_{i}-v_{j}) \\ &= u_{i}^{T}v_{i}+u_{j}^{T}v_{j}^{T}-u_{i}^{T}v_{j}^{T}-u_{i}v_{j}^{T} \\ &= k_{i}v_{i}^{T}+k_{j}^{T}-2k_{i}^{T} \\ &= \alpha_{i}j \end{aligned}$$

(3) Denote
$$k = diag(K) E IR^n$$

$$HAKe^{7}HA^{7} = (2-ed^{7})Ke^{7}(2-de^{7})$$

Similarly.

Thus

$$\forall x \in \mathbb{R}^{7}$$
. $x^{T}B\lambda x = x^{T}H\lambda KH\lambda^{T}x$

Since KBp.s.d. BaBp.s.d.

$$\forall \pi \in \mathbb{R}^n$$
 $\pi^{7}(A \circ B)\pi = \pi^{7}(A \circ 77)\pi$

$$\geq \sum_{k=1}^{\infty} 0 = 0$$

where the 13 the 12th column of 7 Thus 12820

- 4. Distance: Suppose that $d: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ is a distance function.
 - (a) Is d^2 a distance function? Prove or give a counter example.
 - (b) Is \sqrt{d} a distance function? Prove or give a counter example.
 - 4) No.

Define diaib) = 1 b-al

Obviously. d is a abstance function.

Let 7=0. y=2. 2=4.

d= (d(a,b)) = [b-a]2

 $\alpha^{2}(\chi, z)^{2} = 4^{2} > \alpha^{2}(\chi, y) + \alpha^{2}(y, z) = 8$

Thus a' is not a distance function.

u) Yes.

From Schoenberg transform we have $d^{\frac{1}{2}}$ is a distance function.