Extending Conformal Mappings Onto the Unit Disc

Aryaman Maithani

IIT Bombay

16th March 2022

Notations and Conventions

- **1** \mathbb{D} will denote the open unit disc. $S^1 := \partial \mathbb{D}$ is the unit circle.
- ${f 0}$ denotes the set of bounded holomorphic functions on ${\Bbb D}$.
- $\ \ \Omega$ will always denote a nonempty, open, bounded, and simply-connected subset of $\mathbb C.$
- **③** Recall that a conformal mapping of Ω onto $\mathbb D$ is simply a biholomorphism $\Omega \to \mathbb D$.
- **●** A curve shall mean a continuous function with domain [0,1]. Typically, γ will be a curve such that $\gamma([0,1)) \subseteq \Omega$ and $\gamma(1) \in \partial \Omega$. Similarly, Γ will be a curve such that $\Gamma([0,1)) \subseteq \mathbb{D}$ and $\Gamma(1) \in \partial \mathbb{D}$.

Introduction

Let Ω be a bounded simply-connected domain in $\mathbb C$. By the Riemann Mapping Theorem, we know that there exists a biholomorphism $f:\Omega\to\mathbb D$. The following is a natural question.

Question

Can f be continuously extended up to $\overline{\Omega}$?

The obvious way to extend f is via sequences. In fact, if an extension exists, this *is* how it must be obtained. In particular, this extension is unique and we must have $f(\overline{\Omega}) \subseteq \overline{\mathbb{D}}$. This must force $f(\overline{\Omega}) = \overline{\mathbb{D}}$. (Why?)

Thus, it also makes sense to ask whether *the* extension is a homeomorphism onto $\overline{\mathbb{D}}$.

Spoilers

What we shall see is the following: By imposing a simple topological restriction on Ω , one gets that any biholomorphism $\Omega \to \mathbb{D}$ can be extended to a continuous injective map $\overline{\Omega} \to \overline{\mathbb{D}}$. Moreover, this will be a homeomorphism.

Remark 1

The last line is not difficult to see. Indeed, once we have continuously extended f to $\widetilde{f}:\overline{\Omega}\to\overline{\mathbb{D}}$, we have

$$\mathbb{D}\subseteq\widetilde{f}(\overline{\Omega})\subseteq\overline{\mathbb{D}}.$$

As $\widetilde{f}(\overline{\Omega})$ is compact, we have $\widetilde{f}(\overline{\Omega}) = \overline{\mathbb{D}}$.

Furthermore, if \widetilde{f} is an injection, then compactness again tells us that \widetilde{f} is a homeomorphism (as \widetilde{f} is a bijection).

Simple Boundary Points

Definition 2

A boundary point β of Ω is called a simple boundary point if β has the following property:

For every sequence $(\alpha_n)_n$ in Ω such that $\alpha_n \to \beta$ as $n \to \infty$, there exists a curve γ and a strictly increasing sequence $(t_n)_n$ in (0,1) such that

$$t_n \to 1, \ \gamma(t_n) = \alpha_n \ (n = 1, 2, \ldots,), \ \gamma([0, 1)) \in \Omega.$$

 $\gamma(1) = \beta$ follows by continuity.

In words: there is a curve in Ω which passes through α_n and ends at β .

(Non-)Examples

- **1** Every boundary point of \mathbb{D} is a simple boundary point.

The boundary points of Ω lying on the real axis are not simple. Note that Ω is indeed bounded and simply-connected and thus, biholomorphic to \mathbb{D} . However, $\partial\Omega$ is clearly not homeomorphic to $\partial\mathbb{D}$ and thus, no biholomorphism can be extended to a homeomorphism $\overline{\Omega} \to \overline{\mathbb{D}}$.

Some constraints

Theorem 3 (Helper Theorem)

Let Ω be a bounded simply-connected domain, and let f be a conformal mapping of Ω onto \mathbb{D} .

- **1** If β is a simple boundary point of Ω , then f has a continuous extension to $\Omega \cup \{\beta\}$. If f is so extended, then $|f(\beta)| = 1$.
- ② If β_1 and β_2 are distinct simple boundary points of Ω and if f is continuously extended to $\Omega \cup \{\beta_1, \beta_2\}$, then $f(\beta_1) \neq f(\beta_2)$.

We give the proof after proving the main theorem assuming the above.

As remarked, the extension in $\ \ \ \$ is unique and would have to be attained as follows: given a sequence $(\alpha_n)_n$ in Ω converging to β , we have $f(\beta) := \lim f(\alpha_n)$. Once we show that this limit (exists and) is independent of the sequence (α_n) , we would have shown continuity.

The Main Extension Theorem

Theorem 4

If Ω is a bounded simply-connected domain and if every boundary point of Ω is simple, then every conformal mapping of Ω onto $\mathbb D$ extends to a homeomorphism of $\overline{\Omega}$ onto \overline{D} .

Proof.

Let $f:\Omega\to\mathbb{D}$ be a biholomorphism. By the Helper Theorem and the remark following it, we see that we may extend f to $\overline{\Omega}$ using sequences. By $\mathbf{2}$, it follows that f so extended is one-one. We now check that it is continuous on $\overline{\Omega}$. As remarked earlier, this would finish the proof.

To this end, let $(z_n)_n$ be an arbitrary sequence in $\overline{\Omega}$ that converges to z. We can pick a corresponding sequence $(\alpha_n)_n$ in Ω such that $|\alpha_n - z_n| < 1/n$ and $|f(\alpha_n) - f(z_n)| < 1/n$. Thus, $\alpha_n \to z$ and hence, $f(\alpha_n) \to f(z)$. In turn, $f(z_n) \to f(z)$, as desired.

A Purely Topological Corollary

Recall that a Jordan curve is the image of an injective map $S^1 o \mathbb{C}$.

Corollary 5

If every boundary point of a bounded simply-connected region Ω is simple, then the boundary of Ω is a Jordan curve, and $\overline{\Omega}$ is homeomorphic to $\overline{\mathbb{D}}$.

In fact, the converse is true too: If the boundary of Ω is a Jordan curve, then every boundary point of Ω is simple.

Blackboxes

Theorem 6 (Radial Limit Theorem)

To every $g \in \mathcal{O}^{\infty}$ corresponds a function $g^* \in L^{\infty}(S^1)$, defined almost everywhere by

$$g^*(e^{\iota\theta}) = \lim_{r\to 1} g(re^{\iota\theta}).$$

If $g^*(e^{i\theta})=0$ for almost all $e^{i\theta}$ on some arc $J\subseteq S^1$, then g(z)=0 for every $z\in\mathbb{D}$.

Theorem 7 (Lindelöf's Theorem)

Suppose Γ is a curve such that $\Gamma([0,1))\subseteq \mathbb{D}$ and $\Gamma(1)=1$. If $g\in \mathcal{O}^{\infty}$ and

$$\lim_{t\to 1^-}g(\Gamma(t))=L,$$

then g has radial limit L at 1.

Proof of Helper Theorem

Now, we prove the earlier Helper Theorem assuming the earlier two results.

1 Suppose that f cannot be extended to β . Then, there exists a sequence $(\alpha_n)_n$ in Ω and points $w_1, w_2 \in \overline{\mathbb{D}}$ such that

$$\alpha_n \to \beta, f(\alpha_{2n}) \to w_1, f(\alpha_{2n+1}) \to w_2, w_1 \neq w_2.$$

Choose γ as given by β being a simple boundary point, and put $\Gamma := f \circ \gamma$. Let $g = f^{-1}$ and put $\mathcal{K}_r := g(\overline{D}(0;r))$ for 0 < r < 1. Then \mathcal{K}_r is a compact subset of Ω . Since $\gamma(t) \to \beta$ as $t \to 1$, there exists $t^* < 1$ (depending on r) such that $\gamma(t) \notin \mathcal{K}_r$ if $t^* < t < 1$. Thus, $|\Gamma(t)| \to 1$ as $t \to 1$. In particular, $|w_1| = |w_2| = 1$.

Let J be one of the open arcs of $S^1 \setminus \{w_1, w_2\}$ such that every radius of $\mathbb D$ which ends at a point of J intersects the range of Γ in a set which has a limit point on S^1 . By the Radial Limit Theorem, g has radial limits a.e. on S^1 since $g \in \mathcal O^\infty$ (as Ω is bounded).

Continuing the Proof

We have that $g \circ \Gamma = \gamma$ and that g has radial limits a.e. on S^1 . Now, for whichever $e^{it} \in J$ the radial limit does exist, we must have

$$\lim_{r\to 1}g(re^{it})=\beta,$$

since $g(\Gamma(t)) = \gamma(t) \to \beta$ as $t \to 1$. Thus, by the Radial Limit Theorem again, applied to $g - \beta$, we see that $g \equiv \beta$ on \mathbb{D} , contradicting that g is an injection.

Thus, we have shown that $w_1 = w_2$ and $|w_1| = 1$.

Continuing the Proof

2 Now, we need to prove that an extension takes different values at different boundary points. Let β_1, β_2 be simple boundary points with $f(\beta_1) = f(\beta_2)$. We may assume $f(\beta_i) = 1$. Let γ_i be curves with $\gamma_i([0,1)) \subseteq \Omega$, and $\gamma_i(1) = \beta_i$, and let $\Gamma_i := f \circ \gamma_i$. Then, each Γ_i satisfies the condition of Lindelöf's Theorem with

$$\lim_{t\to 1}g(\Gamma_i(t))=\lim_{t\to 1}\gamma_i(t)=\beta_i.$$

Thus, the radial limit of g at 1 is both β_1 and β_2 and hence, $\beta_1 = \beta_2$.