

GRAIN SIZE ANALYSIS OF SOILS

Jorge L. Macedo, Ph.D., P.E. Georgia Institute of Technology

Lecture Topics

- Introduction
- Grain size distribution
- Characterization methods
 - Coarse grains: sieve analysis
 - Fine grain: Hydrometer
 - Stokes' law
 - Drag
- Grain size distribution curves
- Grain size coefficients

Grain Size Distribution of Soils

- One of the first things we want to characterize about a soil is the range of particle sizes that are present
- Grain sizes can vary over approximately eight orders of magnitude

Soil	Size (mm)	Size (nm)	Size (in)
Boulder	750 mm	7.5 x 10 ⁸ nm	30 in
Gravel	75 mm	7.5 x 10 ⁷ nm	3 in
Sand	0.75 mm	7.5 x 10 ⁵ nm	0.03 in
Silt	0.075 mm	7.5 x 10 ⁴ nm	0.003 in
Clay	0.0000075 mm	7.5 nm	3 x 10 ⁻⁷ in

 $1 \text{ nm} = 0.000000001 \text{ m} = 1 \times 10^{-9} \text{ m} = 1 \text{ billionth of a meter}$

Characterization

- Range of sizes and mass of particles in each size range
- We use two different methods to mechanically characterize the soils:
 - Sieve analysis
 - Coarse grained particles
 - > 0.075 mm
 - Hydrometer
 - Fine grained particles
 - < 0.075 mm

Characterization: Sieve Analysis

- Sieve Analysis
 - Shake the soil samples through series of screens {sieves}
 - progressively smaller openings
 - Measure the amount of soil retained
 - Convert to a plot of % passing versus particle size
 - Plot on log scale because range of particle sizes is so large}
 - Assumes that the particles are discrete
 - Reports number as an "equivalent" diameter
 - Particles are not perfect spheres

U.S. Standard Sieve Sizes		U.S. Standard Sieve Sizes			
	Sieve No.	Opening (mm)	Sieve No.	Opening (mm)	
	4	4.75	45	0.355	
	5	4.00	50	0.355	
	6	3.35	60	0.250	Gravel – larger than #4 sieve
	7	2.80	70	0.212	#4 Sieve
	8	2.36	80	0.180	Sand
	10	2.00	100	0.150	Silt and clay – finer
	12	1.70	120	0.125	than #200
	14	1.40	140	0.106	
	16	1.18	170	0.090	
	18	1.00	200	0.075	
	20	0.850	270	0.053	
	25	0.710	400	0.038	
	30	0.600		0.000	
	35	0.500			
	40	0.425			

Sieve Analysis

Characterization: Hydrometer Analysis

- Used when the particle sizes are too small to separate by shaking
- Clay sized particles have significant attractive forces when dry, so:
 - Use sedimentation through water for analysis
 - Particles are placed in water settle as a function of shape,
 size, weight, and the viscosity of the water
 - Assume the soil particles are all spheres and they settle according to Stokes' Law

Hydrometer

Stokes' Law

- Two major forces acting on a particle suspended in water
 - Gravitational $f_g = \rho_s g V_p$
 - where ρ_s = the density of the particle
 - g = the gravitational constant
 - V_p = the volume of the particle
 - Buoyancy $f_b = \rho_w g V_p$
 - where $\rho_{\rm W}$ = the density of water
- Forces of buoyancy and gravity act in opposite directions:
 - if the density of the particle is equal to the density of water, the particle will not move relative to the water
 - If the particle is more dense than water, then the net force is greater than zero, and the particle will start to accelerate

$$F_I = f_{net} = (\rho_s - \rho_w)gV_p$$
 Driving Force

Drag Force Generated by acceleration

- Once the particle starts to move, another force is generated:
 - Drag force $F_D = C_D A_C \rho_W \frac{V_S^2}{2}$
 - where C_D = the drag coefficient
 - A_c = the cross-sectional area of the particle
 - V_s = the particle settling velocity
- Note: the drag force:
 - Acts opposite to the driving force
 - Increases with the square of the velocity
- Eventually a steady "terminal" velocity will be reached
- For example, a human free fall in atmosphere
 - Roughly 200 km/hr or I 20 miles/hr (belly to earth)
 - = ~10% of that with parachute (20 km/hr or 12 mph)
 - Parachute increases drag and surface area resisting fall
- Terminal velocity occurs when the driving force = the drag force

$$(\rho_s - \rho_w)gV_p = C_D A_c \rho_w \frac{V_s^2}{2}$$

Hydrometer Analysis

 Assume clay particles are falling through water at terminal velocity

$$(\rho_s - \rho_w)gV_p = C_D A_c \rho_w \frac{V_s^2}{2}$$

And are spherically shaped:

$$\frac{V_p}{A_c} = \frac{4/3 \pi \left(\frac{d}{2}\right)^3}{\pi \left(\frac{d}{2}\right)^3} = \frac{2}{3} d$$

 Substitute to describe the terminal velocity of a sphere falling in a fluid

$$V_s^2 = \frac{4g(\rho_s - \rho_w)d}{3C_D \rho_w}$$

Drag Coefficient

 For particles falling in water, we define the drag coefficient as a function of the Reynolds Number:

$$N_{Re} = \frac{\Phi V_S \rho_w d}{\mu}$$

- For our purposes:
 - NRe<1 is laminar
 - NRe > 104 is turbulent
 - ϕ = shape factor for non-spheres (1.0 for spheres)
 - μ = dynamic viscosity
 - $\rho_w = \gamma/g$
- Assume laminar flow

$$C_D = \frac{24}{N_{\text{Re}}}$$

Derivation of Stokes' Law

 Assuming laminar flow, spherical, non-aggregating particles, combine:

$$V_S^2 = \frac{4g(\rho_S - \rho_W)d}{3C_D\rho_W}$$

$$C_D = \frac{24}{N_{\text{Re}}}$$

$$N_{Re} = \frac{\Phi V_S \rho_w d}{\mu}$$

Which yields Stokes' Law:

$$V_S = \frac{g(\rho_S - \rho_W)d^2}{18\mu}$$

Particle Settling Velocity

From Stokes' Law, we see particle settling velocity

is a function of:

- Particle density
- Fluid densities
- Particle diameter
- Fluid viscosity

- Suspend fine grain soil in water
- Add dispersant
- Measure density of suspension as a function of time
- Convert density to settling velocity
- Convert settling velocity to particle size

Grain Size Distribution

- Determine % retained on each screen in the sieve analysis test; convert to % finer
- Determine % finer from hydrometer test
- Plot the % finer versus the particle diameter on a log scale.
- Often plot sieve and hydrometer on the same graph

Grain Size Distribution Curves

- Poorly graded or uniform - most of the particles are one size
- Well graded wide range of particle sizes; no concentration of particles in one size; no gaps in the grain size
- Gap graded two predominant sizes – many large and small particles but few intermediate sizes

Characterization From Particle Size

- From the grain size distribution curve:
 - Effective size: D10 particle diameter at which 10 % of the soil is finer
 - important in fluid flow problems
 - D₅₀ median grain size (50% finer)
 - D₃₀ D₆₀ used to quantify distribution of sizes

GDS Coefficients

- Uniformity coefficient
 - $_{\circ}$ $C_{u} = D_{60}/D_{10}$
 - Measure of the spread in the range of grain sizes
 - o If C_u = 1, only one grain size
 - As Cu increases, range of particle sizes increases
- Coefficient of curvature
 - $_{\circ}$ $C_{c} = (D_{30})^{2}/(D_{60}xD_{10})$
 - Measure of the spread in the range of grain sizes
 - $_{\circ}$ C_c between 1 and 3 indicates a well graded soil if C_u > 4 for gravels and > 6 for sands
- Also, can determine the % of gravel, sand, silt, and clay from grain size distribution plots