Занятие от 12.11. Геометрия и топология. 1 курс. Решения.

Глеб Минаев @ 102 (20.Б02-мкн)

12 ноября 2020 г.

Задача 14.

1. Покажем, что $|\mathcal{B}| \geqslant n$. Поскольку \mathcal{B} конечно, обозначим его элементы как \mathcal{B}_i , где $i \in [1; |\mathcal{B}|]$. Теперь давайте для каждого элемента m из M определим последовательность

$$A_m := \{ [m \in \mathcal{B}_i] \}_{i=1}^{|\mathcal{B}|}$$

т.е. для всякого i

$$A_m(i) := egin{cases} 1 & ext{если } m \in \mathcal{B}_i \ 0 & ext{иначе} \end{cases}$$

Вместе с этим рассмотрим частично упорядоченное множество $\mathfrak{M}_{\mathcal{B}} = \langle 2^{|\mathcal{B}|}, \preccurlyeq \rangle$, где

$$A \preccurlyeq B : \iff \forall i \in [1; |\mathcal{B}|] \ A(i) \leqslant B(i)$$

Очевидно, что для всякого $m \in M$ последовательность A_m является членом \mathfrak{B} .

Пусть для некоторых $m, n \in M$ верно сравнение $A_m \succcurlyeq A_n$. Это значит, что для всякого $U \in \mathcal{B}$ верно, что $n \in U \to m \in U$. Тогда можно рассмотреть множество

$$\Omega' := \{ U \in \Omega \mid n \in U \to m \in U \}$$

где Ω — первоначальная (дискретная) топология на M. Несложно видеть, что Ω' является топологией, и причём более слабой, чем Ω , так как, например, не содержит $\{n\}$. С другой стороны $\mathcal{B} \subseteq \Omega'$, поэтому \mathcal{B} не является предбазой Ω — противоречие. Это значит, что никакие две последовательности, соответствующие элементам M, несравнимы в \mathfrak{B} .

С другой стороны, если для некоторого $m \in M$ верно, что нет $n \in M$, что последовательность $A_n \succcurlyeq A_m$, можно рассмотреть

$$S_m := \bigcap_{\substack{i \in [1; |\mathcal{B}|] \\ A_m(i) = 1}} \mathcal{B}_i$$

Очевидно, что $m \in S_m$. При этом для всякого $n \in M$, отличного от m, будет такое $j \in [1; |\mathcal{B}|]$, что $A_m(j) > A_n(j)$, а значит $n \notin \mathcal{B}_J$, и следовательно $n \notin S$. Поэтому $S = \{m\}$, что значит, что для всякой топологии Ω' , что $\mathcal{B} \subseteq \Omega'$, то Ω' содержит $\{m\}$. Поэтому если никакие две последовательности, соответствующие элементам из M, несравнимы, то всякая топология, содержащая как подмножество \mathcal{B} , содержит как подмножество и $\{m\}$ для всякого $m \in M$, а значит совпадает с дискретной топологией на M.

Таким образом \mathcal{B} является предбазой дискретной топологией на M тогда и только тогда, когда \mathcal{B} — семейство подмножеств M и последовательности, соответствующие элементам из M, образуют антицепь в \mathfrak{B} . Поэтому мощность M равна размеру какой-то антицепи в \mathfrak{B} .

Заметим, что по теореме Дилуорса максимальный размер антицепи в $\mathfrak B$ равен размеру минимального разбиения на цепи $\mathfrak B$. Покажем, что минимальное разбиение $\mathfrak B$ на цепи равно

$$\binom{|\mathcal{B}|}{\left|\frac{|\mathcal{B}|}{2}\right|}$$
.

Обозначим \mathcal{B} наконец за N. Определим для всякого $k \in [0; N]$

$$B_k := \left\{ S \in 2^N \mid \sum_{i \in [1;N]} S(i) = k \right\}$$

Понятно, что каждое S_k является антицепью, поэтому количество цепей будет не менее $|S_k|$, т.е. не менее $\binom{N}{k}$, а значит не менее $\binom{N}{|N/2|}$.

Также очевидно, что для всяких k и l верно, что если k < l, то всякий элемент из S_k меньше или несравним со всяким элементом из S_l . При этом заметим, что для всякого k у каждого элемента из S_k есть ровно k меньших элементов из S_{k-1} и N-k больших элементов из S_{k+1} . Поэтому по лемме Холла для всякого $k \le (N+1)/2$ есть паросочетание из S_k в S_{k-1} и паросочетание из S_{N-k} в S_{N-k+1} .

Действительно, в двудольном графе, порождённом S_k и S_{K-1} (где элементы соединены ребром только если сравнимы) степень каждой вершины доли S_k равна k, а в доли S_{k-1} — N-k+1. Поэтому если взять любые p вершин из S_{k-1} и смежные с ними q вершин из S_k , то будет верно

 $p\cdot (N-k+1)=$ "количество рёбер между p-компонентой и q-компонентой" $\leqslant q\cdot k$

следовательно

$$\frac{q}{p} \geqslant \frac{N-k+1}{k} = 1 + \frac{N+1-2k}{k} \geqslant 1$$

т.е. $q \geqslant p$, что значит, что условие леммы Холла выполнено, а тогда данные паросочетания строятся.

Построив эти паросочетания, можно посмотреть на бамбуки, которые они образуют в графе, образованном всем \mathcal{B} : это будут цепи, на которое распалось \mathcal{B} . При этом они все будут содержать по элементу из $S_{\lfloor N/2 \rfloor}$, поэтому цепей $\binom{N}{\lfloor N/2 \rfloor}$. Таким образом $S_{\lfloor N/2 \rfloor}$ максимальная цепь.

Итого

$$|M| \leqslant \binom{|\mathcal{B}|}{\left\lfloor \frac{|\mathcal{B}|}{2} \right\rfloor}$$

При этом из решения следует, что для всяких M и N, что

$$|M| \leqslant \binom{N}{\left|\frac{N}{2}\right|}$$

можно точно так же построить \mathfrak{B} (оно зависит, не от \mathcal{B} , а от его мощности, поэтому можно вместо неё подставить N), в нём взять антицепь размера |M| сопоставить их элементам M (для каждого m данную последовательность так же назовём A_m), затем определить

$$\mathcal{B}_i := \{ m \in M \mid A_m(i) = 1 \}$$

И тогда $\mathcal{B} := \{\mathcal{B}_i \mid i \in [1; N]\}$ будет предбазой в Ω .

В частности, из неравенства и следует, что

$$|M| \leqslant {|\mathcal{B}| \choose \left| \frac{|\mathcal{B}|}{2} \right|} \leqslant 2^{|\mathcal{B}|}$$

Поэтому $|\mathcal{B}| \geqslant n$.

2. Давайте построим интересный пример \mathcal{B} на 2n. Сопоставим каждому элементу $m \in M$ индивидуальную бинарную последовательность s_m длины n. Далее определим для всякого $i \in [1; n]$

$$A_i := \{ m \in M \mid s_m(i) = 1 \}$$

 $B_i := \{ m \in M \mid s_m(i) = 0 \}$

Рассмотрим $\mathcal{B} := \{A_i \mid i \in [1; n]\} \cup \{B_i \mid i \in [1; n]\}$. Заметим, что для всякого $m \in M$

$$\{m\} = \left(\bigcap_{\substack{i \in [1;n] \\ s_m(i)=1}} A_i\right) \cap \left(\bigcap_{\substack{i \in [1;n] \\ s_m(i)=0}} B_i\right)$$

что значит, что в любой топологии, в которой лежит как подмножество \mathcal{B} , лежат как элементы все $\{m\}$, где $m\in M$, а значит любая такая топология совпадает с дискретной топологией на M. Следовательно \mathcal{B} — предбаза дискретной топологии на |M| мощности 2n.

Задача 18. Пусть рассматривается множество X с топологией Ω .

Лемма 1. $Cl \circ Int \circ Cl \circ Int = Cl \circ Int$.

Доказательство. Пусть дано некоторое $S \subseteq X$. Тогда определим $T := \mathrm{Cl}(\mathrm{Int}(S)), I := \mathrm{Int}(T),$ $F := \mathrm{Fr}(T) = \mathrm{Cl}(T) \setminus \mathrm{Int}(T) = T \setminus I, \ J := X \setminus T.$ Очевидно, что T замкнуто, следственно J открыто. Также очевидно, что I открыто. Заметим ещё, что $\mathrm{Int}(S)$ — открытое подмножество $\mathrm{Cl}(\mathrm{Int}(S)) = T$, поэтому $\mathrm{Int}(S) \subseteq I$.

Покажем, что в любой окрестности любой точки F есть как точки I, так и точки J.

Пусть дана некоторая точка $f \in F$ и у неё окрестность U, что $U \cap I = \emptyset$. Тогда $U \cap \operatorname{Int}(S) = \emptyset$, а в таком случае $X \setminus U$ — замкнутое множество, содержащее как подмножество S. Значит $f \notin \operatorname{Cl}(\operatorname{Int}(S)) = T$, а следовательно $f \notin F$ — противоречие. Получаем, что $U \cap I \neq \emptyset$.

Теперь пусть также даны $f \in F$ и её окрестность U, но только $U \cap J = \varnothing$. Тогда U — открытое подмножество T, следовательно $U \subseteq \operatorname{Int}(T) = I$, а значит $f \in I$. Но в таком случае $f \notin F$ — противоречие. Получаем, что $U \cap J \neq \varnothing$.

Таким образом мы получаем, что X делится на три части:

• точки, у которых некоторая окрестность лежит полностью в I — элементы I;

- точки, у которых некоторая окрестность лежит полностью в J элементы J;
- ullet точки, у которых каждая окрестность непустым образом пересекается и с I, и с J элементы F.

Тогда
$$\operatorname{Cl}(I) = X \setminus \operatorname{Int}(J \cup F) = X \setminus \operatorname{Int}(J) = T$$
. Таким образом $\operatorname{Cl}(\operatorname{Int}(T)) = T$. А значит $(\operatorname{Cl} \circ \operatorname{Int} \circ \operatorname{Cl} \circ \operatorname{Int})(S) = (\operatorname{Cl} \circ \operatorname{Int})(S)$.

Следствие 1.1. $Int \circ Cl \circ Int \circ Cl = Int \circ Cl$.

Доказательство.

$$X \setminus \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(X \setminus S)))) = X \setminus \operatorname{Cl}(\operatorname{Int}(X \setminus S))$$

$$X \setminus \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(X \setminus \operatorname{Cl}(S)))) = X \setminus \operatorname{Cl}(X \setminus \operatorname{Cl}(S))$$

$$X \setminus \operatorname{Cl}(\operatorname{Int}(X \setminus \operatorname{Int}(\operatorname{Cl}(S)))) = X \setminus (X \setminus \operatorname{Int}(\operatorname{Cl}(S)))$$

$$X \setminus \operatorname{Cl}(X \setminus \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(S)))) = \operatorname{Int}(\operatorname{Cl}(S))$$

$$X \setminus (X \setminus \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(S))))) = \operatorname{Int}(\operatorname{Cl}(S))$$

$$\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(S)))) = \operatorname{Int}(\operatorname{Cl}(S))$$

Из этих двух утверждений (и ещё нескольких с лекции) следует, что:

• Минимальная последовательность операций Cl и Int, переводящая X в Y (если какая-то существует), не содержит двое Cl или двое Int подряд. Иначе можно заменить эти две подряд идущие операции на одну, укоротив последовательность.

- Если Y получается из X конечной последовательностью операцией Cl и Int, то минимальная последовательность чередующаяся.
- Минимальная последовательность операций Cl и Int, переводящая X в Y (если какая-то существует), не содержит подпоследовательностей Cl, Int, Cl, Int и Int, Cl, Int, Cl. Иначе можно заменить их на Cl, Int, Int, Cl соответственно, укоротив последовательность.
- Если Y получается из X конечной последовательностью операцией Cl и Int, то минимальная последовательность имеет длину не более трёх, так как иначе она (из-за чередования) начинает содержать либо Cl, Int, Cl, Int, Cl, Int, Cl.
- Если Y получается из X конечной последовательностью операцией Cl и Int, то получается и одной из следующих операций:

$$Id \qquad Cl \qquad Int \qquad Int \circ Cl \qquad Cl \circ Int \qquad Cl \circ Int \circ Cl \qquad Int \circ Cl \circ Int$$

Таким образом можно получить не более 7 различных множеств.

Приведём пример, когда получаются все 7. Для этого возьмём в качестве топологического пространства \mathbb{R} со стандартной топологией, а в качестве $X - \{0\} \cup (\mathbb{Q} \cap (1;2)) \cup [3;4) \cup (4;5)$.

Тогда данные операции, применённые к X, выдадут следующий результат.

Id	$\{0\} \cup (\mathbb{Q} \cap (1;2)) \cup [3;4) \cup (4;5)$
Cl	$\{0\} \cup (1;2) \cup [3;5]$
Int	$(3;4) \cup (4;5)$
$\mathrm{Int}\circ\mathrm{Cl}$	$(1;2)\cup(3;5)$
$\operatorname{Cl}\circ\operatorname{Int}$	[3; 5]
$\operatorname{Cl}\circ\operatorname{Int}\circ\operatorname{Cl}$	$[1;2] \cup [3;5]$
$\operatorname{Int} \circ \operatorname{Cl} \circ \operatorname{Int}$	(3;5)

Несложно видеть, что все множества попарно различны.

Итого, ответ -7.

Задача 20.

Лемма 2. $Y \cap Int(A) \subseteq Int_Y(A)$.

Доказательство. Заметим, что если $U \in \Omega$ и $U \subseteq A$, то $U \cap Y \in \Omega_Y$ и $U \cap Y \subseteq A$. Следовательно

$$Y\cap \operatorname{Int}(A) = Y\cap \bigcup_{\substack{U\in\Omega\\U\subseteq A}} U = \bigcup_{\substack{U\in\Omega\\U\subseteq A}} U\cap Y \subseteq \bigcup_{\substack{U\in\Omega\\U\cap Y\subseteq A}} U\cap Y = \bigcup_{\substack{U\cap Y\in\Omega_Y\\U\cap Y\subseteq A}} U\cap Y = \bigcup_{\substack{U\in\Omega_Y\\U\subseteq A}} U = \operatorname{Int}_Y(A)$$

T.e.
$$Y \cap \operatorname{Int}(A) \subseteq \operatorname{Int}_Y(A)$$
.

Несложно понять, почему в обратную сторону это утверждение не (всегда) верно. Для этого рассмотрим $X = \mathbb{R}$, $Y = A = \mathbb{Q}$. Тогда $Y \cap \operatorname{Int}(A) = \mathbb{Q} \cap \operatorname{Int}(\mathbb{Q}) = \mathbb{Q} \cap \emptyset = \emptyset$, а $\operatorname{Int}_Y(A) = \operatorname{Int}_\mathbb{Q}(\mathbb{Q}) = \mathbb{Q}$. Очевидно, что $\mathbb{Q} \nsubseteq \emptyset$.

Лемма 3. $Cl_Y(A) = Y \cap Cl(A)$.

Доказательство. Немного перепишем утверждение, определив $B := X \setminus A$:

$$\operatorname{Cl}_{Y}(A) = Y \cap \operatorname{Cl}(A) \qquad \longleftrightarrow \qquad Y \setminus \operatorname{Cl}_{Y}(A) = Y \setminus (Y \cap \operatorname{Cl}(A))$$

$$\longleftrightarrow \qquad \operatorname{Int}_{Y}(Y \setminus A) = Y \setminus \operatorname{Cl}(A)$$

$$\longleftrightarrow \qquad \operatorname{Int}_{Y}(Y \cap B) = Y \setminus \operatorname{Cl}(Y \setminus B)$$

$$\longleftrightarrow \qquad \operatorname{Int}_{Y}(Y \cap B) = Y \setminus (X \setminus \operatorname{Int}(X \setminus (Y \setminus B)))$$

$$\longleftrightarrow \qquad \operatorname{Int}_{Y}(Y \cap B) = Y \cap \operatorname{Int}(X \setminus (Y \setminus B))$$

$$\longleftrightarrow \qquad \operatorname{Int}_{Y}(Y \cap B) = Y \cap \operatorname{Int}((X \setminus Y) \cup B)$$

Докажем последнее утверждение для абсолютно любого $B \subseteq X$. Заметим, что

$$y \in \operatorname{Int}_{Y}(Y \cap B) \qquad \longleftrightarrow \qquad \begin{cases} y \in Y \cap B \\ \exists U \in \Omega_{Y} : \ y \in U \land U \subseteq Y \cap B \end{cases}$$

$$\longleftrightarrow \qquad \begin{cases} y \in Y \land y \in B \\ \exists V \in \Omega : \ y \in V \land V \cap Y \subseteq B \end{cases}$$

а с другой стороны

$$y \in Y \cap \operatorname{Int}((X \setminus Y) \cup B) \qquad \longleftrightarrow \qquad \begin{cases} y \in Y \\ y \in \operatorname{Int}((X \setminus Y) \cup B) \end{cases}$$

$$\longleftrightarrow \qquad \begin{cases} y \in Y \\ y \in (X \setminus Y) \cup B \\ \exists U \in \Omega : \ y \in U \land U \subseteq (X \setminus Y) \cup B \end{cases}$$

$$\longleftrightarrow \qquad \begin{cases} y \in Y \land y \in B \\ \exists U \in \Omega : \ y \in U \land U \subseteq (X \setminus Y) \cup B \end{cases}$$

$$\longleftrightarrow \qquad \begin{cases} y \in Y \land y \in B \\ \exists U \in \Omega : \ y \in U \land U \cap Y \subseteq B \end{cases}$$

Тем самым для абсолютно любого у

$$y \in \operatorname{Int}_Y(Y \cap B) \longleftrightarrow y \in Y \cap \operatorname{Int}((X \setminus Y) \cup B)$$

а следовательно

$$Int_Y(Y \cap B) = Y \cap Int((X \setminus Y) \cup B)$$

И как следствие мы получаем требование леммы:

$$Cl_Y(A) = Y \cap Cl(A)$$

6