INFORMACIÓN GENERAL

MÓDULO: Big Data PROFESORES: Rubén Juárez

OBJETIVOS DEL MÓDULO

El alumno debe este módulo para afrontar con garantías las principales cuestiones asociadas a la implementación de Big Data en cualquier área de negocio, además de conocer en profundidad los diferentes paradigmas de procesamiento en sistemas Big Data y dominar las principales tecnologías y su utilización para el diseño de arquitecturas escalables adaptadas a cada proyecto.

Factores Clave para la Preparación en Big Data

HARD SKILLS

COMPETENCIAS DEL MÓDULO

1. Capacidad para analizar y diseñar proyectos de Big Data: El alumno podrá analizar

requerimientos, diseñar arquitecturas y planificar su implementación, tanto a nivel técnico como de negocio. Desarrollo de soluciones ETL y toma de decisiones basadas en datos: El alumno adquirirá competencias para diseñar, desarrollar y optimizar procesos de extracción, transformación y

carga de datos (ETL), así como para realizar análisis avanzados que permitan la toma de decisiones informadas en entornos reales. Competencias en Proyectos de Big Data

Diferencias y relaciones entre datos, información y conocimiento. • Tipos de datos y su importancia en Big Data.

INDICE DEL CONTENIDO

• Tema 2: Arquitecturas de analítica tradicional

Tema 1: Datos/Información/Conocimientos

- Enterprise Data Warehouse (EDW): Conceptos y estructura.
- Proceso ETL: Fases y herramientas. • Cubos OLAP: Modelos y aplicaciones.
 - Informes y reports: Técnicas y mejores prácticas.
 - Cuadros de mando: Diseño y uso.
 - Tema 3: Fundamentos de Big Data
 - Conceptos y características del Big Data. • Diferencias entre Big Data y analítica tradicional.

Master Data Management: Gestión de datos maestros y su importancia.

- Principales desafíos del Big Data.
- Tema 4: Herramientas y plataformas de Big Data
- Introducción a Hadoop: HDFS, MapReduce, YARN.
- Introducción a Spark: RDD, DataFrame, SparkSQL. Otras herramientas relevantes: NoSQL, Hive, Pig, HBase.
- Tema 5: Procesamiento y análisis de Big Data
- Procesamiento por lotes vs. procesamiento en tiempo real. Técnicas de análisis de Big Data: Clustering, clasificación, regresión.
- Machine Learning y Big Data.
- Tema 6: Aplicaciones y casos de uso de Big Data Aplicaciones en diferentes industrias: Salud, Finanzas, Retail, Telecomunicaciones.
- Casos de éxito y lecciones aprendidas. • Futuro y tendencias en Big Data.

n/Conocimientos

Componentes del Big Data

Tradicional

Arquitecturas de Datos/Informació Analítica

Validación y optimización de los procesos ETL. • Práctica 3: Desarrollo de un sistema de visualización de datos para la toma de

- decisiones empresariales. Selección de herramientas de visualización. • Diseño de dashboards e informes interactivos.
- Desarrollo de procesos ETL para la carga de datos en el Data Warehouse. • Creación de cubos OLAP y generación de informes. • **Práctica 5**: Análisis de grandes volúmenes de datos utilizando Hadoop.
- Análisis de datos utilizando herramientas del ecosistema Hadoop (Hive, Pig). • Práctica 6: Procesamiento de datos en tiempo real con Spark. • Configuración de Apache Spark.

Análisis de datos en tiempo real y visualización de resultados.

Implementación de un proceso de streaming de datos.

• Práctica 7: Desarrollo de un modelo de machine learning con datos masivos. Preparación y limpieza de grandes conjuntos de datos. • Desarrollo de modelos de machine learning utilizando Spark MLlib.

Evaluación y optimización de modelos.

Análisis de resultados y generación de insights.

• Diseño del esquema de un Data Warehouse.

Configuración de un cluster Hadoop.

Procesamiento de datos con MapReduce.

• Práctica 4: Implementación de un Data Warehouse.

• Práctica 8: Estudio de casos de éxito de Big Data en la industria. Selección y análisis de un caso de éxito de Big Data en una industria específica. Presentación de los resultados y lecciones aprendidas.

Propuestas de mejora y adaptación del caso a otro contexto empresarial.

Título del Caso Práctico: Implementación de un Sistema de Análisis Predictivo para la

con técnicas de análisis predictivo. Los estudiantes deberán aplicar los conceptos y

herramientas aprendidos en el módulo para crear un sistema que permita prever la demanda

y optimizar los niveles de inventario, reduciendo costos y mejorando la eficiencia operativa.

análisis predictivo que le permita anticipar la demanda de productos y ajustar sus niveles de

- TRABAJO FIN DE MÓDULO
- El objetivo del caso práctico es que los alumnos identifiquen, diseñan y desarrollen una solución de Big Data para optimizar la gestión de inventarios en una cadena de suministro

Optimización de Inventarios en una Cadena de Suministro

inventario en tiempo real.

HERRAMIENTAS

Descripción del Problema: Una empresa de retail con una amplia red de tiendas enfrenta problemas de sobrestock y desabastecimiento en sus almacenes, lo que genera altos costos de almacenamiento y pérdidas de ventas. La empresa busca implementar una solución de

Indica herramientas o plataformas digitales que trabajan los alumnos en la parte práctica: • Apache Hadoop: Framework para el almacenamiento y procesamiento distribuido de grandes volúmenes de datos. • Apache Spark: Motor de procesamiento rápido y general para grandes volúmenes de datos.

• Talend: Plataforma de integración de datos que facilita los procesos ETL.

• Tableau: Herramienta de visualización interactiva de datos.

análisis de datos y machine learning.

• Python (Pandas, NumPy, Scikit-learn): Lenguaje de programación y bibliotecas para

