Exp No: 1 Date: 02-DEC-2019

IMPLEMENTATION OF AMPLITUDE SHIFT KEYING

By SPARSH ARYA(17BEC0656)

Aim:

To construct and study Amplitude Shift Keying Modulation circuit and to absorve the waveforms

Components Required:

IC 741	1
Transistor BC 107	1
Resistors	1KΩ - 3
Resistors	10KΩ - 1
DC Power Supply	1
Digital Storage Oscilloscope (DSO)	1
Bread Board & Connecting Wires Set	1
Function / Waveform Generator	1

Circuit Diagram:

Pin Configuration for Transistor BC 107 & IC 714:

Procedure:

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Adjust the input message amplitude and frequency to 1V& 1 KHz respectively.
- 3. Observe the output in DSO at pin 6 of the Op-amp.
- 4. Tabulate the readings and write the observations.

Model graph:

Theory:

Amplitude shift keying (ASK) is the simplest digital modulation technique. In this modulation method there is only one carrier which is switched ON/OFF depending upon the input binary sequence to transmit symbol 0 and 1. The binary ASK system was one of the earliest form of digital modulation used in wireless telegraphy. In an binary ASK system binary symbol 1 is represented by transmitting a sinusoidal carrier wave of fixed amplitude Ac and fixed frequency fc for the bit duration Tb where as binary symbol 0 is represented by switching of the carrier for Tb seconds. This signal can be generated simply by turning the carrier of a sinusoidal oscillator ON and OFF for the prescribed periods indicated by the modulating pulse train. For this reason the scheme is also known as on-off shift testing. The ASK signal can be generated by applying the incoming binary data and the sinusoidal carrier to the two inputs of a product modulator. The resulting output is the ASK wave.

PreLab Questions:

- 1. What is op-amp?
- 2. What is on-off keying?

Tabular Column:

Signals Amplitude (volts)		Frequency (Hz) or
Olgitals	Ampiliade (voits)	Time Period (s)
Modulating Input signal	2.00V	500 Hz,2ms
Carrier Signal	4.00V	4 KHz,0.25ms
Modulated ASK output signal	28.00V	500 Hz,2ms

<u>Inference:</u> The ASK modulator circuits were set up and the observation was noted down and output waveform were observed.

Exp No: 1b Date: 02-DEC 2019

IMPLEMENTATION OF AMPLITUDE SHIFT KEYING (ASK) DEMODULATION

Aim:

To implement generation and demodulation circuit for Amplitude Shift Keyed (ASK) signal

Components Required:

IC 741	1
Transistor BC 107	1
Diode	0A 79 - 1
TUTEO	1K - 3
Resistors	10KΩ - 1
S VIT	100Ω - 2
Capacitors	1μ - 2
DC Power Supply	1
Digital Storage Oscilloscope (DSO)	1
Bread Board & Connecting Wires Set	1
Function / Waveform Generator	1

Circuit Diagram:

◆ ASK Modulation/Generation → ASK Demodulation →

Pin Configuration for Transistor BC 107 & IC 714:

Procedure:

1. Connect ASK Modulation/Generation part of the circuit as shown in the circuit diagram.

TUTE OF

- 2. Adjust the input message signal as **400Hz & 2V**_{p-p}, and Carrier signal **as 4Vp-p & 7 KHz** respectively.
- 3. Observe the output in DSO at pin 6 of the Op-amp and check the generation of ASK.
- 4. Complete the connections of the Demodulation part as shown in the diagram and observe the output in DSO.
- 5. Tabulate the readings and write the observations.

Model graph:

Semester: Winter2019-20

ECE4001 - Digital Communication Systems Lab Manual

THEORY:- Amplitude shift keying (ASK) is the simplest digital modulation technique. In this modulation method there is only one carrier which is switched ON/OFF depending upon the input binary sequence to transmit symbol 0 and 1. The binary ASK system was one of the earliest form of digital modulation used in wireless telegraphy. In an binary ASK system binary symbol 1 is represented by transmitting a sinusoidal carrier wave of fixed amplitude Ac and fixed frequency fc for the bit duration Tb where as binary symbol 0 is represented by switching of the carrier for Tb seconds. This signal can be generated simply by turning the carrier of a sinusoidal oscillator ON and OFF for the prescribed periods indicated by the modulating pulse train. For this reason the scheme is also known as on-off shift testing. The ASK signal can be generated by applying the incoming binary data and the sinusoidal carrier to the two inputs of a product modulator. The resulting output is the ASK wave.

- 1. What is op-amp?
- 2. What is on-off keying?
- 3. What are the design considerations for a Low Pass Filter?

Tabular Column:

Signals	Amplitude (volts)	Frequency (Hz) or Time Period (s)
Modulating Input signal	5Vp-p	10ms
Carrier Signal	5Vp-p	1us
Modulated ASK output signal	23.4 Vp-p	Ton=5.6 ms Toff=4.4 ms
Demodulated ASK output signal	5Vp-p	10ms

Semester: Winter2019-20

ECE4001 - Digital Communication Systems Lab Manual

	Inference: The ASK demodulator circuits were set up and the observation waveform were observed.	vas noted down and output
ECE40	001 - Digital Communication Systems Lab Manual	Semester: Winter2019-20

ECE4001 - Digital Communication Systems Lab Manual	Semester: Winter2019-20