Chapter #7 Input/Output

Input/Output Issues

- Managing wide variety of peripherals w/
 - —varying data transfer amounts
 - —varying data transfer speeds
 - —varying data transfer formats & word lengths
- I/O is significantly slower than CPU & Memory
- Need I/O modules for interfacing
 - —to CPU and Memory via system bus
 - —among multiple I/O peripherals

Components: Top Level View

Generic Model of I/O Module

Peripheral Devices

- Human-oriented
 - —Monitor
 - Printer
 - —Keyboard
 - -- Mouse
 - —Scanner
 - —Graphics display
- Machine-oriented
 - —Floppy disk
 - —Hard disk
 - —Optical disk (CD-rom, DVD-rom)
- Communication-oriented
 - -Modem
 - —Ethernet card

Typical I/O Data Rates

I/O Module Diagram

Input/Output Control Techniques

	No interrupts	Use of interrupts
I/O-to-memory transfer through processor	Programmed I/O	Interrupt-driven I/O
Direct I/O-to- memory transfer		Direct memory access (DMA)

Method #1--Programmed I/O

- CPU has direct control over I/O
 - —Checking status
 - —Issuing read/write commands
 - —Transferring data
- Adv:
 - —Direct and simple
- Disadv:
 - —CPU waits for I/O module to complete operation
 - —Not efficient→wastes CPU time

Programmed I/O - details

Steps:

- —CPU requests I/O operation
- —I/O module performs operation
- —I/O module sets status bits
- —CPU checks status bits periodically
- —I/O module does not inform CPU directly
- —I/O module does not interrupt CPU
- —CPU may wait or come back later

I/O Commands

- CPU issues address
 - —Identifies unique module
 - —Identifies unique device if >1 per I/O module
- CPU issues command
 - —Control telling module what to do
 - —Test check status
 - —Read/Write
 - Module transfers data via buffer from/to device

I/O Mapping

- Memory mapped I/O
 - —Devices and memory share an address space
 - —I/O looks just like memory read/write
 - —No special commands for I/O
 - Large selection of memory access commands available
- Isolated I/O
 - —Separate address spaces
 - —Need I/O or memory select lines
 - —Special commands for I/O

Method #2--Interrupt Driven I/O

- Characteristics:
 - —Overcomes CPU waiting
 - —No repeated CPU checking of device
 - —I/O module interrupts when ready
- Basic operation:
 - —CPU issues read command
 - —I/O module gets data from peripheral while CPU does other work
 - —I/O module interrupts CPU
 - —CPU requests data
 - —I/O module transfers data

Method #3--Direct Memory Access

Motivation:

- —Interrupt driven and programmed I/O require active CPU intervention
- —Transfer rate is limited
- —CPU is tied up

Function:

- —DMA controller takes over from CPU for I/O
- —Interrupts CPU to report status

DMA Module Diagram

DMA Operation

- CPU tells DMA controller:
 - —Read/Write
 - —Device address
 - —Starting address of memory block for data
 - —Amount of data to be transferred
- CPU performs other tasks
- DMA controller deals with transfer
- DMA controller sends interrupt when finished

DMA Transfer: Cycle Stealing

- DMA controller takes over bus for a cycle
- Transfer of one word of data
- Not an interrupt
 - —CPU does not switch context
- CPU suspended just before it accesses bus
 - —i.e. before an operand or data fetch or a data write
- Slows down CPU but not as much as CPU doing transfer

DMA Configurations (1)

- Single Bus, Detached DMA controller
- Each transfer uses bus twice
 - —I/O to DMA then DMA to memory
- CPU is suspended twice

DMA Configurations (2)

(b) Single-bus, Integrated DMA-I/O

- Single Bus, Integrated DMA controller
- Controller may support >1 device
- Each transfer uses bus once
 - —DMA to memory
- CPU is suspended once

DMA Configurations (3)

- Separate I/O Bus
- Bus supports all DMA enabled devices
- Each transfer uses bus once
 - —DMA to memory
- CPU is suspended once