1 Cartier Divisors

1.1 Regular Sections

Definition 1.1. A section $f \in \Gamma(U, \mathcal{O}_X)$ is regular if $\mathcal{O}_X|_U \xrightarrow{f} \mathcal{O}_X|_U$ is injective.

Lemma 1.2. A section $f \in \Gamma(U, \mathcal{O}_X)$ is regular iff $f_x \in \mathcal{O}_{X,x}$ is a nonzero divisor for each $x \in U$.

Proof. f is regular when for any open $V \subset U$ and $g \in \Gamma(V, \mathcal{O}_X)$ we have $f|_V g = 0 \implies g = 0$ which is exactly the condition that $f_x \in \mathcal{O}_{X,x}$ is a nonzero divisor for each $x \in U$ since $f_x \in \mathcal{O}_{X,x}$ is a zero divisor if there is some neighborhood $x \in V$ and nonzero $g \in \Gamma(V, \mathcal{O}_X)$ with $f|_V g = 0$.

Definition 1.3. Let (X, \mathcal{O}_X) be a ringed space. Then define the sheaf of regular sections S_X via,

$$S_X(U) = \{ f \in \Gamma(U, \mathcal{O}_X) \mid \text{regular} \}$$

Then S_X is a sheaf because a section is regular exactly if it is regular on a cover.

Definition 1.4. Let (X, \mathcal{O}_X) be a ringed space. The sheaf \mathcal{K}_X of meromorphic functions on X is the \mathcal{O}_X -module associated to the presheaf,

$$U \mapsto S_X(U)^{-1}\mathcal{O}_X(U)$$

Lemma 1.5. Let X be an integral scheme X with generic point $\xi \in X$. Then for any open $U \subset X$, the map $\mathcal{O}_X(U) \to \mathcal{O}_{X,\xi}$ is injective.

Proof. Choose an open cover $U_i = \operatorname{Spec}(A_i) \subset X$ where A_i is a domain then $K(X) = \mathcal{O}_{X,\xi} = \operatorname{Frac}(A_i)$ since $\xi \in \operatorname{Spec}(A_i)$ is the generic point. Thus, $\mathcal{O}_X(U) \to \mathcal{O}_{X,\xi}$ is an injection because, if $f_{\xi} = 0$ then consider $f|_{U \cap U_i} \in A_i$ but A_i is a domain so if $f_{\xi} \in \operatorname{Frac}(A_i)$ is zero then $f|_{U \cap U_i} = 0$ for each U_i so f = 0.

Remark. The above lemma allows us to view all functions on X as elements of K(X). In fact, the meromorphic functions on X are exactly K(X).

Proposition 1.6. Let X be a integral scheme. Then $\mathscr{K}_X = K(X)$.

Proof. Let $\xi \in X$ be the generic point and $U \subset X$ an open set. Consider the presheaf map $S_X(U)^{-1}\mathcal{O}_X(U) \to K(X)$ sending $f \mapsto f_\xi$ which is well-defined because regular sections have $f_\xi \neq 0$ and K(X) is a field so regular sections are invertible in K(X). Sheafifying, gives a map $\mathscr{K}_X \to \underline{K(X)}$. To show this map is an isomorphism it suffices to check on the stalks which can be computed from the above presheaves. By above, the map $S_X(U)^{-1}\mathcal{O}_{X,(U)} \to K(X)$ is always injective. Furthermore, for any $x \in X$ choose an affine open neighborhood $U = \operatorname{Spec}(A)$ with A a domain. Then $S_X(U) = A \setminus \{0\}$ since $A \to A_{\mathfrak{p}}$ is injective and $A_{\mathfrak{p}}$ is a domain for each prime \mathfrak{p} so every nonzero $f \in A$ is regular. Thus, $S_X(U)^{-1}\mathcal{O}_X(U) = \operatorname{Frac}(A)$ and the map $S_X(U)^{-1}\mathcal{O}_X(U) \to K(X) = A_{(0)} = \operatorname{Frac}(A)$ is an isomorphism.

1.2 Cartier Divisors

Definition 1.7. Let X be a ringed space. The *sheaf of Cartier divisors* on X is $\mathfrak{Div}_X = \mathscr{K}_X^{\times}/\mathcal{O}_X^{\times}$. The group of Cartier divisors is $\operatorname{Ca}(X) = H^0(X, \mathfrak{Div}_X)$ and the Cartier class group is,

$$\operatorname{CaCl}(X) = \operatorname{coker}(H^0(X, \mathscr{K}_X^\times) \to H^0(X, \mathfrak{Div}_X))$$

Proposition 1.8. There is a natural embedding $\operatorname{CaCl}(X) \hookrightarrow \operatorname{Pic}(X)$ which is an isomorphism when $H^1(X, \mathscr{K}_X^{\times}) = 0$.

Proof. Consider the exact sequence,

$$0 \longrightarrow \mathcal{O}_X^{\times} \longrightarrow \mathscr{K}_X^{\times} \longrightarrow \mathfrak{Div}_X \longrightarrow 0$$

Taking cohomology gives,

$$0 \longrightarrow H^0(X, \mathcal{O}_X^{\times}) \longrightarrow H^0(X, \mathscr{K}_X^{\times}) \longrightarrow H^0(X, \mathfrak{Div}_X) \longrightarrow H^1(X, \mathcal{O}_X^{\times}) \longrightarrow H^1(X, \mathscr{K}_X^{\times})$$

But $H^1(X, \mathcal{O}_X^{\times}) = \operatorname{Pic}(X)$ and by exactness, we get an exact sequence,

$$0 \longrightarrow \operatorname{CaCl}(X) \longrightarrow \operatorname{Pic}(X) \longrightarrow H^{1}(X, \mathscr{K}_{X}^{\times})$$

Remark. The condition $H^1(X, \mathscr{K}_X^{\times}) = 0$ occurs when X is an integral scheme. Then $\mathscr{K}_X^{\times} = \underline{K(X)^{\times}}$ is a constant sheaf and X is irreducible so its higher cohomology vanishes.

2 Effective Cartier Divisors

- 2.1 Closed Subschemes
- 2.2 Effective Cartier Divisors as Closed Subschemes
- 2.3 Relationship to the Previous Definition

3 Weil Divisors

We only consider Weil divisors for sufficiently nice schemes. (DEFINE)

- 3.1 The Sheaf Associated to a Weil Divisor
- 3.2 The Relationship between Weil Divisors and Cartier Divisors
- 4 Reflexive Sheaves
- 5 The Chow Ring