Analyse Mathématique

Cours n°3: Atelier

EPITA Cyber 1 2024-2025

Exercice 1:

Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N}, u_{n+1} = 2u_n - 3.$$

- 1. On suppose que $u_0 = 4$.
 - (a) Représenter la suite (u_n) dans le plan. Que remarquez-vous (variation, minorée, majorée?).
 - (b) Montrer que la suite (u_n) est strictement croissante. En déduire que la suite (u_n) est minorée.
 - (c) Montrer que:

$$\forall n \in \mathbb{N}, u_n = 2^n + 3.$$

En déduire que la suite (u_n) n'est pas majorée.

- 2. On suppose que $u_0 = 2$.
 - (a) Représenter la suite (u_n) dans le plan. Que remarquez-vous (variation, minorée, majorée?).
 - (b) Montrer que la suite (u_n) est strictement décroissante. En déduire que la suite (u_n) est majorée.
 - (c) Montrer que :

$$\forall n \in \mathbb{N}, u_n = -2^n + 3.$$

En déduire que la suite (u_n) n'est pas minorée.

Exercice 2:

Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + 2n + 1 \quad et \quad u_0 = 0.$$

Montrez que :

$$\forall n \in \mathbb{N} \quad , \quad u_n \ge n.$$

Exercice 3:

Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N}, u_{n+1} = \sqrt{3u_n + 7} \quad et \quad u_0 = 10.$$

Montrez que la suite (u_n) est strictement décroissante :

$$\forall n \in \mathbb{N} \quad , \quad u_n > u_{n+1}.$$

Exercice 4:

Montrez que :

$$\forall n \in \mathbb{N}^*$$
 , $1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}$,

en posant : P(n) : $1 + 2 + 3 + \cdots + (n-1) + n = \frac{n(n+1)}{2}$.

Exercice 5:

Montrez que:

$$\forall n \in \mathbb{N}^*$$
, $1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = \frac{n(n+1)(2n+1)}{6}$,

en posant : P(n) : $1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Exercice 6:

1. Calculer la somme finie:

$$1 + 2 + \cdots + 2025$$
.

2. Calculer la somme finie :

$$1936 + 1937 + \cdots + 2025$$
.

3. On pose

$$S = 1 + \frac{1}{3} + (\frac{1}{3})^2 + (\frac{1}{3})^3 + (\frac{1}{3})^4.$$

Déterminer $S - \frac{1}{3}S$. Puis, en déduire S.

4. Montrer que : 1/2 = 1 - 1/2 , 1/6 = 1/2 - 1/3 , 1/12 = 1/3 - 1/4 , 1/20 = 1/4 - 1/5.

En déduire la somme finie : 1/2 + 1/6 + 1/12 + 1/20

5. Calculer la somme finie:

$$\sum_{p=1}^{p=13} \ln\big(\frac{p+1}{p}\big).$$

Exercice 7: (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}$$
 , $u_n = 4 \times 3^n + 6n + 7$.

On pose

$$\forall n \in \mathbb{N} \quad , \quad S_n = \sum_{p=0}^{p=n} u_p.$$

Déterminer S_n .

Exercice 8:

Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N}$$
 , $u_n = 2n + 1$.

1. Montrer que (u_n) est une suite arithmétique (on précisera sa raison r et son premier terme u_0).

Répondre de deux manières différentes à chacune des deux questions suivantes :

- 2. On pose $S_{23} = \sum_{p=0}^{p=23} u_p$. Calculer S_{23} .
- 3. On pose $T_{14} = \sum_{p=5}^{p=14} u_p$. Calculer T_{14} .

Exercice 9:

Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N}$$
 , $u_{n+1} = u_n + 3$.

1. Montrer que (u_n) est une suite arithmétique (on précisera sa raison r.).

Répondre aux deux questions suivantes sachant que $u_3 = 9$:

- 2. On pose $S_{23} = \sum_{p=0}^{p=23} u_p$. Calculer S_{23} .
- 3. On pose $T_{14} = \sum_{p=5}^{p=14} u_p$. Calculer T_{14} .

Exercice 10:

Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N} \quad , \quad u_n = 5 \times 3^n.$$

1. Montrer que (u_n) est une suite géométrique (on précisera sa raison q et son premier terme u_0).

Répondre de deux manières différentes à chacune des deux questions suivantes :

- 2. On pose $S_{23} = \sum_{p=0}^{p=23} u_p$. Calculer S_{23} .
- 3. On pose $T_{14} = \sum_{p=5}^{p=14} u_p$. Calculer T_{14} .

Exercice 11:

Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N}$$
 , $u_{n+1} = 3u_n$.

1. Montrer que (u_n) est une suite géométrique (on précisera sa raison q).

Répondre aux deux questions suivantes sachant que $u_3=27$:

- 2. On pose $S_{23} = \sum_{p=0}^{p=23} u_p$. Calculer S_{23} .
- 3. On pose $T_{14} = \sum_{p=5}^{p=14} u_p$. Calculer T_{14} .

Exercice 12:

Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N}$$
 , $u_{n+1} = \frac{2u_n - 1}{u_n + 4}$ et $u_0 = 0$.

1. On pose $\forall n \in \mathbb{N}$, $v_n = \frac{1}{u_n+1}$.

Montrer que la suite (v_n) est une suite arithmétique (on précisera sa raison r et son premier terme v_0).

2. Déterminer l'expression du terme général v_n en fonction de n.

En déduire l'expression du terme général u_n .

Exercice 13:

Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N}$$
 , $u_{n+1} = 3u_n + 4$ et $u_0 = 0$.

1. On pose $\forall n \in \mathbb{N}$, $v_n = u_n + 2$.

Montrer que la suite (v_n) est une suite géométrique (on précisera sa raison q et son premier terme v_0).

2. Déterminer l'expression du terme général v_n en fonction de n.

En déduire l'expression du terme général u_n .

3. On pose

$$\forall n \in \mathbb{N} \quad , \quad S_n = \sum_{p=0}^{p=n} u_p.$$

Déterminer S_n .

Exercice 14:

Soit (u_n) une suite définie par :

$$\forall n \in \mathbb{N} \quad , \quad u_{n+1} = \frac{3u_n + 6}{u_n + 4} \quad et \quad u_0 = 0.$$

1. On pose $\forall n \in \mathbb{N}$, $v_n = \frac{u_n + 3}{u_n - 2}$.

Montrer que la suite (v_n) est une suite géométrique (on précisera sa raison q et son premier terme v_0).

2. Déterminer l'expression du terme général v_n en fonction de n.

En déduire l'expression du terme général u_n .