חלוקה הוגנת של שכר דירה Fair Rent Division

אראל סגל-הלוי

חלוקת שכר דירה

נתונים:

- R דירה עם n חדרים ודמי-שכירות נתונים \bullet
- שותפים n שרוצים לשכור יחד את הדירה. \bullet
 - :האתגר להחליט לגבי כל שותף
 - R כמה כסף ישלם? הסכום צריך להיות \bullet
- איזה חדר יקבל? צריך שלא תהיה קנאה
 - אף שותף לא מעדיף את החבילה (חדר+מחיר) של שותף אחר.

חלוקת שכר דירה – שני שותפים

n=2 פתרון עבור

- אחד מחלק את שכר-הדירה; השני בוחר חדר.
 - בדיוק כמו חלוקת עוגה לשני ילדים!
 - ?האם אפשר להכליל לשלושה או יותר

חלוקת שכר דירה: מודל אורדינלי

הנחות:

- "חדרים סבירים" בכל חלוקה של שכר-הדירה – כל שוכר מוכן לקבל חדר כלשהו.
- דיירים עניים" כל שוכר מעדיף חדר בחינם על-פני חדר בתשלום.

(Su, 1999) אלגוריתם סוּ

בונים סימפלקס חלוקות שבו הנקודה (x,y,z) מקבילה לשכ"ד (R x, R y, R z)

(3000 בדוגמה: R – שכר הדירה הכולל (בדוגמה: 3000).

(Su, 1999) אלגוריתם סוּ

לפי הנחת "הדיירים העניים", כל דייר מעדיף בכל חלוקה את אחת הפרוסות הריקות.

הבעיה במודל האורדינלי

הנחת "הדיירים העניים" לא תמיד מתקיימת: אם המרתף בחינם, והסלון עולה שקל אחד -

אם המרתף בחינם, והסכון עוכה שקכ אחד -מה תעדיפו?

חלוקת שכר דירה: מודל קרדינלי

הנחות:

- "חדרים סבירים" כל דייר מייחס ערך כספי לכל חדר, סכום הערכים ≥ מחיר הדירה.
- "קוואזי-ליניאריות" התועלת של דייר שמקבל חדר = ערך החדר פחות המחיר שלו.
 - י הגדרת חלוקה ללא קנאה: לכל (i,j •

$$V_i(X_i) - P(X_i) \ge V_i(X_i) - P(X_i)$$

חלוקת שכר דירה: מודל קרדינלי

הנחות:

- "חדרים סבירים" כל דייר מייחס ערך כספי לכל חדר, סכום הערכים ≥ מחיר הדירה.
- "קוואזי-ליניאריות" התועלת של דייר שמקבל חדר = ערך החדר פחות המחיר שלו.
 - הנחת "הדיירים העניים" בדרך-כלל לא
 מתקיימת: אם חדר א = 100 וחדר ב = 50,
 נעדיף חדר א במחיר 5 מחדר ב בחינם.
 - בסימפלקס החלוקות מהשקף הקודם, לא מתקיים התנאי של ספרנר!

קיום חלוקה ללא קנאה

נסמן בT חסם עליון על ערך של חדר. נבנה ימפלקס שבו הנקודה (x,y,z) מקבילה לשכ"ד:

(T-(3T-R)x, T-(3T-R)y, T-(3T-R)z)

התנאי של ספרנר מתקיים עבור דיירים קוואזי-ליניאריים.

(בדוגמה: T=4000,R=3000)

חלוקת שכר דירה: חישוב מהיר

עכשיו כשאנחנו יודעים שקיימת חלוקת חדרים ושכ"ד ללא קנאה, נראה אלגוריתם יעיל שמוצא אותה במדוייק (לא בקירוב).

הקלט: מטריצה *n* x *n* המתארת את ערכי החדרים לכל אחד מהדיירים:

1	2	3	חדר →
v11	v12	v13	דייר 1
v21	v22	v23	דייר 2
v31	v32	v33	דייר 3

. מחירים n מחירים הפלט: השמת דיירים לחדרים; וקטור

האלגוריתם: אלגוריתם סונג-ולאך (Sung-Vlach 2004).

חלוקת שכר דירה: חישוב מהיר משפט 1: בכל השמה ללא קנאה, סכום הערכים של

הדיירים בחדרים שהם גרים בהם הוא מקסימלי.

X,P : (Sung and Vlach, 2004) הוכחה ישנה השמת-חדרים ללא קנאה. תהיY השמה אחרת כלשהי. לפי :i הגדרת קנאה, לכל

$$V_i(X_i) - P(X_i) \ge V_i(Y_i) - P(Y_i)$$

i בין 1 ל-i נסכום על כל הדיירים, i בין 1

$$\sum (V_i(X_i) - P(X_i)) \ge \sum (V_i(Y_i) - P(Y_i))$$

$$\sum V_i(X_i) - \sum P(X_i) \ge \sum V_i(Y_i) - \sum P(Y_i)$$

בשני הצדדים, סכום המחירים שווה למחיר הדירה:

$$\sum V_i(X_i) \geq \sum V_i(Y_i)$$

מיקסום סכום הערכים משפט 1: *בכל* השמה ללא קנאה, *סכום הערכים* של הדיירים בחדרים שהם גרים בהם הוא מקסימלי.

1	2	3	←חדר
v11-p1	v12-p2	v13-p3	דייר 1
v21-p1	v22-p2	v23-p3	דייר 2
v31-p1	v32-p3	v33-p3	דייר 3

הוכחה: נניח בה"כ שההשמה ללא קנאה היא בדגש.

אין קנאה = כל מספר מודגש הוא הגדול ביותר בשורה שלו.

לכן, ההשמה המודגשת ממקסמת את סכום הערכים במטריצה הכחולה.

המשך →

מיקסום סכום הערכים משפט 1: בכל השמה ללא קנאה, *סכום הערכים* של הדיירים בחדרים שהם גרים בהם הוא מקסימלי.

1	2	3	←חדר
v11	v12	v13	דייר 1
v21	v 22	v23	דייר 2
v31	v32	v33	דייר 3

המשך: הוספת מספר קבוע לכל הערכים בעמודה מסוימת, לא משנה את ההשמה הממקסמת את סכום הערכים.

לכן, ההשמה המודגשת ממקסמת את סכום *** הערכים גם במטריצה הירוקה (מטריצת הקלט).

משפט 2: כל וקטור-מחיר ללא קנאה, יישאר ללא-קנאה לכל השמה ממקסמת-סכום-ערכים.

X,P תהי (Sung and Vlach, 2004): תהי X,P השמת-חדרים ללא קנאה. לפי המשפט הקודם, X ממקסמת סכום ערכים: ערכים. תהי Y השמה אחרת הממקסמת סכום ערכים:

$$\sum V_i(X_i) = \sum V_i(Y_i)$$

$$\sum [V_i(X_i) - P(X_i)] = \sum [V_i(Y_i) - P(Y_i)]$$

:i נתון ש-X ללא קנאה. לכן לפי הגדרת קנאה, לכל

$$V_i(X_i) - P(X_i) \ge V_i(Y_i) - P(Y_i)$$

i בין 1 ל-i נסכום על כל הדיירים, i בין 1

$$\sum [V_i(X_i) - P(X_i)] \geq \sum [V_i(Y_i) - P(Y_i)]$$

משפט 2: כל וקטור-מחיר ללא קנאה, יישאר ללא-קנאה לכל השמה ממקסמת-סכום-ערכים.

:המשך הוכחה

$$\sum [V_{i}(X_{i})-P(X_{i})] = \sum [V_{i}(Y_{i})-P(Y_{i})]$$

$$V_{i}(X_{i})-P(X_{i}) \ge V_{i}(Y_{i})-P(Y_{i})$$

$$\sum [V_{i}(X_{i})-P(X_{i})] \ge \sum [V_{i}(Y_{i})-P(Y_{i})]$$

: *i* אפשרי רק אם מתקיים שיוויון בכל איבר, לכל

$$V_i(X_i) - P(X_i) = V_i(Y_i) - P(Y_i)$$

לכן xם Y,P ללא קנאה.

משפט 2: כל וקטור-מחיר ללא קנאה, יישאר ללא-קנאה לכל השמה ממקסמת-סכום-ערכים.

1	2	3	ר →
v11-p1	<u>v12-p2</u>	v13-p3	דייר 1
v21-p1	v22-p2	<u>v23-p3</u>	דייר 2
<u>v31-p1</u>	v32-p3	v33-p3	דייר 3

הוכחה: [ההשמה ללא קנאה בדגש; ההשמה הממקסמת סכום ערכים בקו-תחתי].

שתי ההשמות ממקסמות סכום ערכים במטריצה הכחולה; לכן סכום הערכים בשתיהן זהה. הערכים המודגשים הם גדולים ביותר בשורה שלהם; לכן הערכים בקו-תחתי חייבים להיות זהים להם. לכן גם ההשמה בקו-תחתי היא ללא קנאה. ***

מסקנה: כדי למצוא חלוקת שכ"ד ללא קנאה, *הכרחי ומספיק* למצוא **השמה הממקסמת את סכום הערכים**. דוגמה:

סלון	חדר	מרתף	
35	40	25	X
35	60	40	_
25	40	20	λ

שידוך עם משקל מקסימלי

: גרף דו-צדדי עם משקלים על הקשתות •

שידוך עם משקל מקסימלי

• הפלט: שידוך מושלם שמשקלו גדול ביותר:

שידוך עם משקל מקסימלי

- הבעיה ידועה בשמות שונים:
- Assignment problem בעיית ההשמה
 - שידוך עם משקל מקסימלי Maximum-weight matching
- יש הרבה אלגוריתמים יעילים לפתרון הבעיה.
 - למשל: האלגוריתם ההונגרי algorithm
- ראו בקורס מתקדם לאלגוריתמים בגרפים.
 - . קיים מימוש בספריית מימוש בספריית •

חלוקת שכר-דירה – קביעת המחירים

- מצאנו השמה ממקסמת-ערכים. צריך לקבוע מחירים כך שההשמה תהיה ללא קנאה, וסכום המחירים יהיה שווה לשכר-הדירה. איך?
 - בעיית תיכנות ליניארי linear programming.

Minimize 1

- Such that For all i, j: $w[d[i], i] p[i] \ge w[d[i], j] p[j]$
- מקרה פרטי של אופטימיזציה קמורה cvxpy
 - . (ראו בתיקיית הקוד) scipy.linprog ספרייה ייחודית אובתיקיית הקוד).

חלוקת שכר-דירה – מימושים והדגמות

- (אלגוריתם הונגרי) rent-division.ods גליון אלקטרוני
 - http://tora.us.fm/fairness/home/ אתר לקבוצות רכישה •
 - http://tora.us.fm/fairness/home/ab.html אתר לחלוקת ירושות
 - אלג. גל-מש-פרוקצ'יה-זיק 2016 (דומה לאלגוריתם http://www.spliddit.org/apps/rent :

חלוקת שכר-דירה – בעיית הטרמפיסט

מרתף	סלון	
0	150	דייר א
10	140	דייר ב

משפט: במודל הקרדינלי, ייתכן שבכל חלוקה ללא קנאה, אחד הדיירים ישלם מחיר שלילי (צריך לשלם לו שיסכים לגור איתנו...)

הוכחה: נניח שיש שני דיירים ושני חדרים, הדירה עולה 100 והערכים הם כמו בטבלה למעלה. כל חלוקה ללא-קנאה ממקסמת סכום ערכים, לכן יש לתת את הסלון לדייר א ואת המרתף לדייר ב. כדי ש-ב לא יקנא, המחיר של הסלון חייב להיות גבוה יותר ב-130 (לפחות). הסכום הוא 100 ולכן: (price_martef + 130) + price martef = 100 price martef = -15

המחיר של המרתף חייב להיות שלילי! ***

חלוקת שכר-דירה – בעיית הטרמפיסט

אותו משפט

נכון גם חדר ג כשסכום הערכים של כל דייר שווה 34 30 דייר א 36 למחיר הכולל: 33 31 36 דייר ב $p_c \ge 35$ [d envies] דייך $\rho_b \ge 33$ [d envies] 34 30 36 $p_a \ge 33$ [c envies] 32 33 35

חלוקת שכר דירה – טרילמה

דיירים שמקבלים כסף	קנאה	עובד רק עם "דיירים עניים"	
לא	לא	J	אלגוריתם סוּ והמשולשים
J	לא	לא	אלגוריתם סונג-ולאך
לא	J	לא	אלגוריתם סונג-ולאך+ מחיר מינ. 0