

Inteligência Artificial

Técnicas de Agrupamento de Dados (Clustering)

Paulo Moura Oliveira

Departamento de Engenharias Gabinete F2.15, ECT-1 UTAD

email: <u>oliveira@utad.pt</u>

v: 2024

Em que consiste o *clustering*?

Clustering, consiste na organização (ou classificação) de um conjunto de dados em vários grupos a que se chamam *clusters*.

Como se faz o clustering?

Utiliza-se um dado **critério de similaridade** para agrupar os dados similares no mesmo grupo (ou de **critério de dissemelhança** para os distinguir dos outros grupos).

Medidas de Proximidade

Há muitas formas de determinar a distância entre dois pontos. Das mais conhecidas temos:

Distância Euclidiana

d: dimensão

Exemplo:

d=2
$$x_1 = (1,1)$$
; $x_2 = (3,3)$
dist= 2.83

Distância Euclidiana

Medidas de Proximidade

Distância Pombalina (conhecida como Manhattan ou CityBlock)

$$dist(x_i, x_j) = \sum_{k=1}^{d} |x_{ik} - x_{jk}|$$

Exemplo:

$$x_1 = (1,1)$$
; $x_2 = (3,3)$
d= 4

Medidas de Proximidade

Distância Chebychev

$$dist(x_i, x_j) = max_d |x_{id} - x_{jd}|$$

Exemplo:

$$x_1 = (1,1)$$
; $x_2 = (3,3)$
d= 2

Distância Minkowski

$$dist(x_i, x_j) = \sqrt[p]{\sum_{k=1}^d (x_{ik} - x_{jk})^p}$$

Exemplo:

$$x_1 = (1,1)$$
; $x_2 = (3,3)$
d= 2.83

p=2, Igual à Euclidiana

Exemplo:

$$x_1 = (1,1) ; x_2 = (3,3)$$

$$d = 2.297$$

Como Avaliar os Clusters (Agrupamentos)?

✓ Coesão Intra-cluster: avalia a proximidade dos seus pontos ao centróide do cluster

Uma medida muito utilizada é o Somatório do Erro Quadrático (SSE):

$$SSE = \sum_{r=1}^{d} dist^{2}(x_{ir} - x_{cr})$$

c: centróide do cluster

✓ Separação Inter-cluster: avalia a separação dos centroides dos vários clusters.

Introdução

Qual o número de Clusters?

✓ Consideremos o mesmo exemplo do diapositivo anterior utilizando o k-means. Em vez de 2 clusters vamos agora considerar 3:

Qual o número de Clusters?

- ✓ Um procedimento possível é o seguinte:
 - 1. Definir um **número fixo** de clusters
 - 2. Executar o método de *clustering* e obter o melhor resultado para uma dada função de custo (função objetivo).
 - 3. Voltar a 1 e aumentar (ou diminuir) o número de clusters

Quais as técnicas de Clustering?

✓ Existem várias taxonomias de técnicas de *clustering* que podem ser encontradas na literatura. Uma classificação comum usa três grupos:

✓ Como o algoritmo k-means é um dos mais utilizados vamos começar por esta técnica.

k-Means

- O que é?
- Técnica de *clustering* que particiona um conjunto de dados em k clusters.
- ✓ Cada cluster tem um centro (centroide)
- ✓ O número de clusters, k, é especificado pelo utilizador.

Algoritmo k-means

Selecionar (ou Gerar) k-centros (centroides iniciais)

while(!(critério de paragem))

Atribuir cada amostra de dados ao cluster cujo centroide está mais próximo.

Recalcular os centroides utilizando os clusters atuais

end while

k-Means

Critério de Paragem

- ✓ Alguns critérios que podem ser utilizados para parar o ciclo do k-means:
 - 1. Um número pré-definido de iterações;
 - 2. Variação dos centroides abaixo de um limiar mínimo;
 - Variação dos pontos nos clusters menor que um valor baixo prédefinido;
 - 4. Soma do erro quadrático abaixo que um valor baixo pré-definido.

k-Means

Exemplo 1

✓ Configuração inicial de um conjunto com 20 pontos.

k-Means

Exemplo 1

✓ Iteração 1:

$$c_1 = [-2, 1]$$

 $c_2 = [4, 1]$

✓ Iteração 2:

$$c_1$$
=[-0.5950, -0.8475]
 c_2 =[2.4633, 1.9504]

k-Means

Exemplo 1

✓ Iteração 3:

 c_1 =[-0.4427, -0.8120] c_2 =[2.6175, 2.3338] ✓ Iteração 4:

 $c_1 = [-0.4427, -0.8120]$ $c_2 = [2.6175, 2.3338]$

k-Means

Exemplo 1

✓ Iteração 5:

 c_1 =[-0.4427, -0.8120] c_2 =[2.6175, 2.3338] ✓ Utilizando a função do Matlab (kmeans):

 c_1 =[-0.4427, -0.8120] c_2 =[2.6175, 2.3338]

Neste caso deu o mesmo resultado.

Silhueta- Silhouette

✓ Uma forma de avaliar a qualidade do *clustering* é utilizando o critério da **silhueta**, cujo valor pode ser determinado para o ponto i:

Mínimo das médias das distâncias do ponto i aos outros pontos dos <u>outros</u> clusters.

Média das distâncias do ponto i aos outros pontos do mesmo cluster.

$$s_i = \frac{b_i - a_i}{max(a_i, b_i)}$$

- Os valores de s_i podem variar entre [-1 e 1];
- Se a maioria valores de s_i estiverem próximos de 1, indica que o clustering é bom;
- Se a muitos valores de s_i forem baixos ou próximos de -1, indica que o *clustering* é mau (precisa de mais ou menos clusters)

Silhueta- Silhouette

✓ Considere-se a seguinte representação inicial de dados com o respetivo agrupamento com o k-means:

Silhueta- Silhouette

Exemplo:

Separação: Inter-cluster

$$d_{i1} = 25$$

$$d_{i2} = 17$$

$$d_{i3} = 26$$

$$d_{iA} = 9$$

$$b_{i3} = (d_{i1} + d_{i2} +$$

 $d_{i3} + d_{i4})/4 =$

19.25

$$b_i = \min(b_{i2}, b_{i3}) = 17.5$$

$$\max(a_i, b_i) = 17.5$$

$$s_i = \frac{b_i - a_i}{max(a_i, b_i)} = 0.933$$

Separação: Inter-cluster

$$d_{i1} = 10$$

$$d_{i2} = 26$$

$$d_{i3} = 9$$

$$d_{i4} = 25$$

$$b_{i2} = 17.5$$

Coesão:

Intra-cluster

$$d_{i1} = 1$$

$$d_{i2} = 2$$

$$d_{i3} = 0.5$$

$$a_i = 1.1667$$

Silhueta- Silhouette

Como o valor de Si está próximo de 1, indica que está bem classificado neste grupo.

Exemplo 1

✓ Podemos tentar vário números de clusters e ver qual deles dá a média dos valores da silhueta menores:

Nota:

As distâncias foram calculadas utilizando o quadrado da distância Euclidiana.

Silhueta- Silhouette

Silhueta- Silhouette

Exemplo 1

✓ Para o este caso o gráfico dos valores Silhueta é o seguinte:

k-Means

Clustering, Exemplo 1:

- ✓ Conjunto de dados relativos a flores (Iris).
- ✓ Vamos considerar dois dos atributos relativos às dimensões das pétalas (dum total de 4)

petal

✓ Configuração final:

'o'- Dados

'x'- centróide c1

'o'- centróide c2

Clustering

Clustering, Exemplo 2:

✓ Considere-se o seguinte exemplo didático (Adaptado de Peter Tryfus, 1997).

Amostra	x1	x2
а	2	4
b	8	2
С	9	3
d	1	5
е	8,5	1

Clustering, Exemplo 2:

✓ Vamos aplicar o algoritmo **k-means** com dois centroides iniciais em c1=(2,8) e c2=(8,8)

Amostra	x1	x2
а	2	4
b	8	2
С	9	3
d	1	5
е	8,5	1

Clustering, Exemplo 2:

✓ Na primeira iteração do **k-means** obtemos c1=(1.5,4.5) e c2=(8.5,2) e

o seguinte agrupamento:

Amostra	x1	x2
а	2	4
b	8	2
С	9	3
d	1	5
е	8,5	1

Big data: Solução ou Problema?

