

Modèles et Protocoles de Réseaux - MPR RESIR2

Année 2020-2021 PMA

Mars 2021

4. La couche physique

- Généralités
- La transmission de données
- La modulation numérique
- Les supports de transmission
- Le multiplexage
- Le réseau téléphonique

Table des matières du cours ITR

- 1. Introduction
- 2. L'information et sa représentation
- 3. Les supports de transmission
- 4. Éléments de base de la transmission
- 5. Les techniques de transmission
- ---6.----Notions-de-protocoles--
- --7.--La mutualisation des ressources
 - 8. Le concept de réseau
 - 9. Les architectures protocolaires
 - 10. L'architecture TCP/IP

La couche physique du modèle OSI

- Couche 0 : les supports de transmission
 - le canal de transmission brut et ses propriétés physiques
- Couche 1 : La couche Physique
 - La plus basse du modèle de protocoles
 - Définit les interfaces et les canaux de transmission pour transmettre des bits sous forme de signaux
 - Offre ses services à la couche liaison : horloge, train de bits
- Couche 2 : La couche Liaison
 - ─ 👝 délimite des trames d'information

Le canal de transmission élémentaire

- Les propriétés physiques particulières à chaque support déterminent les performances : débit, latence, taux d'erreur
- Il est possible de transmettre des informations sur un support en faisant varier un signal selon un code numérique
- Le canal de transmission et son environnement imposent des limites : la bande passante du support et le bruit.

Organisation des échanges sur un canal de transmission

- Sens de propagation
 - simplex, duplex, half duplex
- Modes de communication
 - Point à point ou diffusion
- Modes de transmission des bits
 - Série ou parallèle
 - Synchrone ou asynchrone
 - Dérive des horloges et problème du « bit perdu »

Analyse de Fourier

- Analyse théorique de la transmission de données
- Analyse de Fourrier d'un signal

$u(t) = A0 + \sum_{i=1}^{i=\infty} Ui \cos(i\omega t + \varphi i)$

Notion de bande passante

- Déformation du signal durant sa transmission sur le canal
- Atténuation différente pour chaque composante (distorsion)
- BP (analogique) = plage de fréquences où l'atténuation est < 50%
- BP (numérique) = débit max exprimé en bps

Signaux sur une BP étroite

- BP
 - caractéristique physique du support qui dépend de sa fabrication et de sa longueur
 - Filtrage du bruit et fréquence de coupure pour limiter le signal dans la bande de fréquence attribuée au canal
 - Possibilité de diviser la BP d'un support en plusieurs canaux
- 2 types de modulation des signaux
 - Bande de Base ou signal impulsionnel
 - le signal s'étale de 0 à fmax (signal impulsionnel)
 - Passe-bande ou signal sinusoïdal modulé
 - le signal est contraint à occuper une gamme de fréquence plus élevée ex. réseaux sans fils

La BP d'un canal limite le débit binaire de l'information émise.

Exemple

- Signal d'envoi du caractère ASCII "b" et son spectre de Fourier équivalent
- Approximations successives du signal sur des canaux de bandes passantes limitées aux fréquences basses
- Le débit est limité par la vitesse max de signalisation ...

Débit binaire maximal d'un canal

- Critère de Nyquist (1924)
 - Canal parfait de bande passante B et signal comportant V niveaux significatifs

$$D_{max} = 2B log_2 V (bps)$$

ex. signal binaire (V=2) sur 1 canal de 4 KHz \Box $D_{max} = 8$ Kbps

- Théorème de Shannon (1948)
 - Canal non parfait soumis au bruit thermique représenté par le rapport de puissance Signal sur Bruit (Noise)

$$Dmax = B. log2 (1+S/N)$$

ex. pour 1 canal ADSL de 1 MHz et un rapport S/N de 40 dB

$$_{\square}$$
 D_{max} = 13 Mbps

Adaptation du signal codé au canal

- 2 familles de techniques de transmission
 - Transmission en bande de base (signal impulsionnel)
 - Transmission en passe-bande (signal sinusoïdal modulé)

Exemple de codages en bande de base

- (a) Bits, (b) NRZ, (c) NRZI, (d) Manchester, (e) Bipolar or AMI.
- Efficacité spectrale, récupération d'horloge, équilibrage des signaux

Transmission passe-bande

Modulation d'un signal sinusoïdal

Transfert du spectre du signal autour d'une fréquence porteuse et modulation numérique de cette porteuse

Types de modulations d'un signal sinusoïdal

- ASK : Amplitude Shift Keying
- FSK : Frequency Shift Keying
- PSK: Phase Shift Keying
- mixtes

$$u = A_0 \sin(\omega_0 t + \varphi_0)$$
 avec $\omega_0 = 2\pi f_0$

- (a) Signal binaire
- (b) ASK
- (c) FSK
- (d) PSK

Modulations plus complexes et diagramme de constellation de symboles

- (a) QPSK.
- (b) QAM-16.
- (c) QAM-64.

Différents types de support

- Supports guidés
 - Fil de cuivre (UTP, câble coaxial)
 - Fibre optique
- Supports non guidés
 - Ondes radio et lumière
 - Faisceaux lasers
 - Satellites

Paires torsadées

(a) Category 3 UTP. (b) Category 5 UTP.

Câbles de paires torsadées

- Réseaux de Téléphonie et accès ADSL à Internet
- LAN Ethernet

Câble coaxial

- BP plus large et immunisation contre le bruit
- Plusieurs GHz
- Réseaux deTV distribution
- Accès à Internet

Courant porteur en ligne

- Réseaux de distribution de l'énergie électrique
- Signal de données superposé au signal électrique
- Accès à Internet et réseaux LAN domestiques
- 100 Mbps

Câbles de fibres optiques

- (a) Vue d'une seule fibre
- (b) Vue de bout d'un câble de 3 fibres
- Longue distance
- Réseaux fédérateurs, LAN, accès Internet Haut debit
- Multimode et monomode (1 Tbps sur 100 Km !)

Spectre électromagnétique et réseaux à transmission Sans Fils

- Ondes Radio
- •Micro-ondes
- Infra-rouge
- Lumière visible

Le spectre électromagnétique

Média de transmission sans fil

- Principe de la transmission é.m. par antennes
- Relation fondamentale : $\lambda f = c$

Le spectre électromagnétique

Usage pour la communication

Les methodes de multiplexage permettent de partager un support entre plusieurs signaux :

- FDM: Frequency Division Multiplexing
- WDM: Wavelength Division Multiplexing
- TDM: Time Division Multiplexing
- CDM: Code Division Multiplexing
- OFDM: Orthogonal Frequency Division Multiplexing

Multiplexage fréquentiel - FDM

Superposition de plusieurs signaux sur le même canal de transmission

- (a) BP originales des canaux incidents
- (b) BP déplacées dans le spectre
- (c) BP totale du canal multiplexé

Multiplexage en longueurs d'ondes - WDM

Multiplexage TDM

- Chaque utilisateur émet à son tour et dispose de toute la BP durant un bref intervalle de temps
- Courts intervalles de temps de garde

Multiplexage CDMA - Principe

- Etalement du signal sur un spectre plus large pour resister au bruit ou pour pouvoir partager le canal entre plusieurs utilisateurs
- Schéma :
 - a. Mots-codes : Séquences de 8 chips assignés à 4 stations
 - b.Signaux correspondants

Multiplexage CDMA - Principe

- (c) Six exemples de transmission
- (d) Récupération du signal de la station C

Multiplexage OFDM

- Division efficace du spectre en sous-canaux sans utiliser de bandes de garde
- Envoi des symboles en parallèle et codage indépendant ex.
 QAM-16
- Utilisé de + en + : WiFi, cable TV, 4G, ...

- Structure du réseau téléphonique
- Politiques d'exploitation
- Boucle locale
 - modems, ADSL, et fibre
- Artères et multiplexage
- La commutation

Structure du réseau téléphonique

Complexité de l'interconnexion du système téléphonique

- (a) Interconnexion totale
- (b) Commutateur central
- (c) 2 niveaux de commutation

(c)

Composants principaux du RTC

Exemple : Etablissement d'un circuit de communication (BP prédéfinie) à moyenne distance entre 2 abonnés quelconques en 3 niveaux hiérarchiques (Tannenbaum)

- 1. Boucle locale analogique en paires torsadées chez les abonnés
- 2. Artères haut debit en fibre optique reliant les centres de commutation
- 3. Centres de commutation (aiguillage des communications)

Politique d'exploitation

- 1984 : le réseau du téléphone aux USA est réorganisé en sociétés indépendantes exploitant chacune une partie du réseau national
- Opérateurs LATA et IXC se partagent l'architecture globale du RTC

La boucle locale – Modems et codecs

- Liaison d'ordinateur à ordinateur en transmission digitale et analogique
- Usage de modems et de codecs sur les liaisons des abonnés
- Coeur de réseau en fibres optiques

La boucle locale - xDSL

Exemple de configuration d'un équipement ADSL

La boucle locale – xDSL

Graphiques de la bande passante en fonction de la distance du câble UTP en Cat. 3 en ADSL et modulation utilisée en ADSL

La boucle locale – Fibre optique FTTH

Réseau passif de distribution « Fiber To The Home »

Bande Passante la plus importante

Artères et multiplexage

Multiplexage temporel TDM

- Principe : identification de la voie via son IT
- Synchronisation temporelle des E/R
- Ex. Trame T1 (1.544 Mbps) aux USA

Artères et multiplexage

Multiplexage temporel TDM – Artères T1, T2, ...

 Multiplexage de flux T1 sur des porteuses de fréquences supérieures

La commutation

Deux coeurs de réseau

- (a) Commutation de circuits : téléphonie
- (b) Commutation de paquets : informatique

La commutation de circuits

- La commutation de message ne convient pas au service téléphonique interactif : flux de voix continu en temps-réel et full duplex
- Commutation de circuits analogiques puis numériques

La commutation de paquets

- * '50 : l'informatique exploite naturellement la commutation de messages par-dessus le service de commutation du RTC
- * '60 : exploration de la commutation de paquets
- Avantage : multiplexage de flux sans bloquer une liaison de transfert

Evolution des techniques de commutation

- Comparaison des 2 techniques
 - La commutation de circuits offre une garantie de service prédéfini mais avec une forte probabilité de gaspiller les ressources allouées
 - La commutation de paquet offre un service non garanti mais sans gaspillage
- Cumuler les avantages : émuler la commutation de circuits dans un système à commutation de paquet
 - Si Mode non connecté : datagramme
 - Si Mode orienté connexion : établissement d'un CV et ensuite commutation de paquet sur le CV

La commutation

Caractéristique	Commutation de circuits	Commutation de paquets
Etablissement d'appel	Requis	Non requis
Chemin physique dédié	Oui	Non
Chaque paquet suit la même route	Oui	Non
Paquets arrivent dans l'ordre	Oui	Non
La défaillance du commutateur est fatale	Oui	Non
BP disponible	Fixe	Dynamique
Congestion possible	A l'établissement du circuit	A chaque transmission de paquet
Gaspillage possible de BP	Oui	Non
Transmission en mode différé	Non	Oui
Facturation	/ minute	/ paquet