

Q搜索

首页

软件库

问答

博客

专区

动弹

Stanley 技术主管

♡关注

搜索中的权重度量利器: TF-IDF和BM25

StanleySun 推荐 2018/02/02 21:13 阅读数 5.1W 原创

进入专区参与更多专题讨论 >

Linux基金会Kubernetes安全专家认证上线,预约享早鸟折扣,最后三天! >>> 💷

我们在网上搜东西时,搜索引擎总是会把相关性高的内容显示在前面,相关性低的内容显示在后面。那么,搜 索引擎是如何计算关键字和内容的相关性呢?这里介绍2种重要的权重度量方法:TF-IDF和BM25。

在进入理论探讨之前,我们先举个例子。假如,我们想找和"Lucence"相关的文章。可以想一下,那些内容里 只出现过一次"Lucence"的文章,有可能是在讲某种技术,顺便提到了Lucence这个工具。而那些出现了两三次 "Lucence"的文章,很可能是专门讨论Lucence的。通过直觉,我们可以得出判断:关键字出现的次数越多,文 档与关键字的匹配度越高。

TF的定义

有一个专门的术语来表示关键字出现的次数,叫"词频"(Term Frequency), 简写为TF。TF越大,通常相关性越 高。

但是,你可能会发现一个问题。 如果一篇小短文里出现了一次"Lucence",而一部好几百页的书里提到两次 "Lucence",我们不会认为那部书与Lucence相关性更高。为了消除文档本身大小的影响,一般使用TF时会把文 本长度考虑上:

TF Score = 某个词在文档中出现的次数 / 文档的长度

举例:某文档D,长度为200,其中"Lucence"出现了2次,"的"出现了20次,"原理"出现了3次,那么:

TF(Lucence|D) = 2/200 = 0.01TF(的|D) = 20/200 = 0.1 TF(原理|D) = 3/200 = 0.015

"Lucence的原理"这个短语与文档D的相关性就是三个词的相关性之和。

TF(Lucence的原理|D) = 0.01 + 0.1 + 0.015 = 0.125

我们发现一个问题,就是"的"这个词占了很大权重,而它对文档主题的几乎没什么贡献。这种词叫停用词, 在度量相关性时不考虑它们的词频。去掉这个词后,上面的相关性变为0.025。其中"Lucence"贡献了0.01, "原 理" 贡献了0.015.

细心的人还会发现,"原理"是个很通用的词,而"Lucence"是个专业词。直觉告诉我们,"Lucence"这个词对 我们的搜索比"原理"更重要。抽象一下,可以理解为 一个词预测主题的能力越强,就越重要,权重也应该越 大。反之,权重越小。

假设我们把世界上所有的文档的总和看成一个文档库。如果一个词,很少在文档库里出现过,那通过它就容 易找到目标,它的权重也应该大。反之,如果一个词在文档库中大量出现,看到它仍然不清楚在讲什么内容, 它的权重就应该小。"的、地、得"这些虚词出现的频率太高,以至于权重设为零也不影响搜素,这也是它们成 为停用词的原因之一。

关于作者

文章 经验值 41 136

作者的专辑

- 管理(2)
- 自适应学习 (1)
- matplotlib (6)
- 推荐(11)

源创计划

自媒体入驻开源社区, 获百万流量, 打造个人

推荐关注

文章 23 访问

文章 23 访问

木子晴 文章 12 访问

落魄实习生 开源软件作者

八音弦 文章 956 访问

Q搜索

首页

软件库

问答

博客

专区

动弹

Dcument Frequency, 缩写为IDF)。一般的:

```
IDF = log(N/n)
```

注意: 这里的log是指以2为底的对数,不是以10为底的对数。

N表示全部文档数。假如世界上文档总数位100亿,"Lucence"在1万个文档中出现过,"原理"在2亿个文档中出现过,那么它们的IDF值分别为:

```
IDF(Lucence) = log(100亿/1万) = 19.93 IDF(原理) = log(100亿/2亿) = 5.64
```

"Lucence"重要性相当于"原理"的3.5倍。停用词"的"在所有的文档里出现过,它的IDF=log(1)=0。短语与文档的最终相关性就是TF和IDF的加权求和:

```
simlarity = TF1*IDF1 + TF2*IDF2 + ... + TFn*IDFn
```

现在可以计算出上文中提到的"Lucence的原理"与文档D的相关性:

```
simlarity(Lucence的原理|D) = 0.01*19.93 + 0 + 5.64*0.015 = 0.2839
```

其中, "Lucence"占了70%的权重, "原理"仅占30%的权重。

Lucence中的TF-IDF

早期的Lucence是直接把TF-IDF作为默认相似度来用的,只不过做了适当调整,它的相似度公式为:

```
simlarity = log(numDocs / (docFreq + 1)) * sqrt(tf) * (1/sqrt(length))
```

numDocs:索引中文档数量,对应前文中的N。lucence不是(也不可能)把整个互联网的文档作为基数,而是把索引中的文档总数作为基数。

- docFreq: 包含关键字的文档数量,对应前文中的n。
- tf: 关键字在文档中出现的次数。
- length: 文档的长度。

上面的公式在Lucence系统里做计算时会被拆分成三个部分:

```
IDF Score = log(numDocs / (docFreq + 1))
TF Score = sqrt(tf)
fieldNorms = 1/sqrt(length)

fieldNorms 是对文本长度的归一化(Normalization)。所以,上面公式也可以表示成:
simlarity = IDF score * TF score * fieldNorms
```


Q 搜索

首页

软件库

问答

博客

专区

动弹

BM25中的TF

传统的TF值理论上是可以无限大的。而BM25与之不同,它在TF计算方法中增加了一个常量k,用来限制TF值的增长极限。下面是两者的公式:

```
传统 TF Score = sqrt(tf)
BM25的 TF Score = ((k + 1) * tf) / (k + tf)
```

下面是两种计算方法中,词频对TF Score影响的走势图。从图中可以看到,当tf增加时,TF Score跟着增加,但是BM25的TF Score会被限制在0~k+1之间。它可以无限逼近k+1,但永远无法触达它。这在业务上可以理解为某一个因素的影响强度不能是无限的,而是有个最大值,这也符合我们对文本相关性逻辑的理解。在Lucence的默认设置里,k=1.2,使用者可以修改它。

BM25如何对待文档长度

BM25还引入了平均文档长度的概念,单个文档长度对相关性的影响力与它和平均长度的比值有关系。BM25的TF公式里,除了k外,引入另外两个参数:L和b。L是文档长度与平均长度的比值。如果文档长度是平均长度的2倍,则L=2。b是一个常数,它的作用是规定L对评分的影响有多大。加了L和b的公式变为:

```
TF Score = ((k + 1) * tf) / (k * (1.0 - b + b * L) + tf)
```

下面是不同L的条件下, 词频对TFScore影响的走势图:

从图上可以看到,文档越短,它逼近上限的速度越快,反之则越慢。这是可以理解的,对于只有几个词的内容,比如文章"标题",只需要匹配很少的几个词,就可以确定相关性。而对于大篇幅的内容,比如一本书的内容,需要匹配很多词才能知道它的重点是讲什么。

Q搜索

首页

软件库

问答

博客

专区

动弹

simlarity = IDF * ((k + 1) * tf) / (k * (1.0 - b + b * (|d|/avgDl)) + tf)

传统TF-IDF vs. BM25

传统的TF-IDF是自然语言搜索的一个基础理论,它符合信息论中的熵的计算原理,虽然作者在刚提出它时并不知道与信息熵有什么关系,但你观察IDF公式会发现,它与熵的公式是类似的。实际上IDF就是一个特定条件下关键词概率分布的交叉熵。

BM25在传统TF-IDF的基础上增加了几个可调节的参数,使得它在应用上更佳灵活和强大,具有较高的实用性。

读者思考

为什么BM25的TF Score计算要用 d/avgDl, 而不是用平方根、log或者其它计算方法?它背后是否有理论支持?

相关文章

Elasticsearch全文检索与余弦相似度

推荐引擎算法 - 猜你喜欢的东西

用逻辑回归对用户分类 (理论+实战)

IT课店,发现好课程:https://www.itkedian.com 一个致力于快速发现大数据、人工智能、区块链等新技术课程的站点。

TF IDF BM25 搜索 相似度

© 著作权归作者所有

▶ 举报

打赏

2

3 收藏

分享

作者的其它热门文章

推荐引擎算法 - 猜你喜欢的东西

Elasticsearch全文检索与余弦相似度

如何用遗传算法进化出一只聪明的小鹦鹉

人工智能算法通俗讲解系列(三): 决策树

