Notes

CFA Notes

Yu Chen

 $The\ Chinese\ University\ of\ HongKong,\ Department\ of\ Mechanical\ and\ Automation\ Engineering$

 $E ext{-}mail: anschen@link.cuhk.edu.hk}$

Contents

1	Den	nand and Production	1
	1.1	Demand	
	1.2	Product	4

1 Demand and Production

1.1 Demand

Demand function: $Q_x^d = f(p_x, p_y, I, \dots)$, where p_x, p_y are price of products x, y, I is income. Demand Curve: $Q_x^d = f(p_x)$

Figure 1. Demand curve

There are three kinds of Elasticity of Demand

- Own-Price: $E_{p_x}^d = \frac{\Delta Q_x^d/Q_x^d}{\Delta p_x/p_x}$
 - when $|E_{p_x}^d| > 1$, elastic, if $|E_{p_x}^d| = \infty$, perfect elastic
 - when $|E_{p_x}^d| = 1$, unit elastic
 - when $|E^d_{p_x}| < 1$, inelastic, if $|E^d_{p_x}| = 0$, perfect inelastic
- Cross-Price: $E_{p_y}^d = \frac{\Delta Q_x^d/Q_x^d}{\Delta p_y/p_y}$
 - when $E_{p_y}^d > 0$, (X, Y) substitutes
 - when $E_{p_y}^d < 0$, (X, Y) complements
- Income: $E_I^d = \frac{\Delta Q_x^d/Q_x^d}{\Delta I/I}$
 - when $E_I^d > 0$, normal goods
 - when $E_I^d < 0$, inferior goods

elastic \Rightarrow price $p \downarrow$, total revenue \uparrow inelastic \Rightarrow price $p \downarrow$, total revenue \uparrow

Two famous effects – Substitution Effect and Income Effect

- Substitution Effect: There are two products A and B, when p_A decreases, people are willing to buy more A
- Income Effect: (a) positive: for normal goods, when price decreases, demand increases; (b) for inferior goods, when price decreases, demand decreases.

There are two kinds of products violating law of demand:

- **Giffen Goods**: Giffen goods must be inferior goods, since it caused by that substitution effect is weaker than income effect
- Veblen Goods: luxury goods, which not only violates law of demand, but also violates economic principle

1.2 Product

Production function: Q = f(K, L)Total revenue: $TR = \sum_t P_t Q_t$. Average revenue: $AR = \frac{TR}{Q}$.

Marginal revenue: $MR = \frac{\Delta TR}{\Delta Q}$, with relation,

$$MR = P(1 - |\frac{1}{E_{p_r}^d}|) \tag{1.1}$$

Opportunity Cost(Economic cost): 1) explicit cost(accounting cost), 2) implicit cost. Hence, profit can be divided into two classes:

$$\begin{aligned} & Accounting Profit = & TR - Accounting Cost \\ & Economic Profit = & TR - Economic Cost \\ & = & Accounting Profit - implicit profit \end{aligned} \tag{1.2}$$

Besides, total revenue can be divided to TFC(total fixed cost) and TVC(total variable cost) shown in Fig.2 Also, we can consider average quantity, such as AFC = $\frac{\text{TFC}}{Q}$, AVC = $\frac{\text{TVC}}{Q}$, even, marginal cost, MC = $\frac{\Delta \text{TC}}{\Delta Q}$.

Figure 2. Cost curve

