GATE-All BRANCHES Engineering Mathematics

Vector Calculus

Lecture No.- 03

Recap of Previous Lecture

Topic

Concept of curl

Topic

Greens theorem and Stokes theorem

(2d) Lue integrals

3d line

Topics to be Covered

Topic

Concept of curl

Topic

Greens theorem and Stokes theorem

Topic

Problems based on Green's theorem and stokes theorem

If $\vec{A} = xy \hat{a}_x + x^2 \hat{a}_y$ then $\vec{A} \cdot d\vec{r}$ over the path shown in the figure is #Q.

$$M = \chi y$$
 $\frac{\partial M}{\partial y} = \chi$

$$N = \chi^2 \frac{\partial M}{\partial \chi} = \chi$$

$$M = \chi y$$
 $\frac{\partial M}{\partial y} = \chi$ $\frac{\partial M}{\partial x} = \chi$

$$2/\sqrt{3} = \left(\frac{2}{\sqrt{3}}\right)$$

$$\frac{2/\sqrt{3}}{1} = \int_{1}^{2} \int_{3}^{3} x \, dy \, dx = 1$$

$$=\int_{\sqrt{3}}^{2} \sqrt{3} dx \int_{1}^{3} dy$$

$$=2\int_{1}^{\sqrt{3}} \sqrt{3} dx = 1$$

Ca I culate & ₹ dr

3 dimensional work done - 8 tokes Theorem

#Q. Calculate $\iint \vec{F} \cdot dl$ where $\vec{F} = 2y^2\hat{i} + 3x^2\hat{j} - (2x + z)\hat{k}$, C is the Boundary

of the triangle whose vertices (0, 0, 0) (2, 0, 0) (2, 2, 0)

 (x, y, z_1) A(0,0,0) B(2,0,0) Z=0 C(2,2,0) Xy Plane: $y = \sqrt{2}, \sqrt{2}, \sqrt{2}$ $y = \sqrt{2}, \sqrt{2}, \sqrt{2}$ (0,0,0) (2,0,0)

$$= \int_{0}^{2} dx \left[\int_{0}^{x} (6x - 4y) dy \right]$$

$$= \int_{0}^{2} dx \left[6xy - 4y^{2} \right]_{0}^{x}$$

$$= \int_{0}^{2} dx \left[6x^{2} - 2x^{2} \right]$$

$$= \int_{0}^{2} dx \left[6x^{2} - 2x^{2} \right]$$

$$= \int_{0}^{2} 4x^{2} dx$$

$$= \left(4x^{3} \right)_{0}^{2} \left(\frac{32}{3} \right)$$

Find $\int (2xy - x^2)dx - (x^2 + y^2)dy$ where C is the closed curve of the #Q. Region Bounded by $y = x^2$, $y^2 = x$

$$\oint (2\pi y - \pi^2) dx - (\pi^2 + y^2) dy = (2 dimensional)$$

Green's Theorem

$$\int f_1 dx + F_2 dy = \iint \left\{ \frac{5F_2 - 3F_1}{3x} \right\} dy dx \frac{3F_1}{3x} = 2x$$

$$\frac{3F_1}{3x} = 2x$$

alphy green's Theosem green's Theorem (2 d) (x,y) $= \oint F_1 dx + F_2 dy = \left\{ \left(-2x - 2x \right) dy dx = \int \left(-4x dy dx \right) \right\}$ Plot The Corve: $y=x^2$, $y^2=x$ $=\int_{x=0}^{1}\int_{y=x^2}^{\sqrt{x}}dy\,dx=-\frac{3}{5}$ $=\int_{x=0}^{1}\int_{y=x^2}^{\sqrt{x}}\frac{1}{x^2}dy\,dx=-\frac{3}{5}$ region $=\int_{x=0}^{1}\int_{y=x^2}^{\sqrt{x}}\frac{1}{x^2}dy\,dx=-\frac{3}{5}$ Volume Via (1,1) Y=x

$$\left(\frac{\partial M}{\partial M}\right) = -2 \gamma$$

Value of the integral $\oint_C xydy - y^2dx$ where, c is the square cut #Q. from the first quadrant by the line x = 1 and y = 1 will be (Use Green's theorem to change the line integral into double integral)

Vrong green's Theorem

$$= \int \left(\frac{3y}{4y} \right) dy dx$$

$$= 3 \left(\frac{1}{4x} \right) \left(\frac{1}{y} \right) dy$$

$$= \frac{3}{2}$$

$$[AS] = n'dS) (Fdr) = \int [TxF] dS$$

#Q. Given
$$\vec{F} = z\hat{a}_x + x\hat{a}_y + y\hat{a}_z$$
. If S represents the portion of the $x^2 + y^2 + z^2 = 1$ for $z \ge 0$, then $\int_{S} (\nabla \times \vec{F}) \cdot \vec{ds}$ is _____.

$$N = k$$
 $ds = dydx$

$$\frac{Z=0}{Z70}$$

$$\nabla x \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial x}{\partial x} & \frac{\partial y}{\partial x} & \frac{\partial z}{\partial z} \end{vmatrix} = (\hat{i} + \hat{j} + \hat{k})$$

Vrong stokes Theorem

$$\oint \vec{F} d\vec{r} = \iint (\nabla \times \vec{F}) d\vec{S}$$

$$= \int \int (\hat{i} + \hat{j} + \hat{k}) \hat{n} ds$$

$$= (((\hat{i} + \hat{i} + \hat{k}) + \hat{k}) dy dy dy$$

=
$$\iint (\hat{i} + \hat{j} + \hat{k}) \hat{k} dy dx = \iint dy dx = \iint cnele$$

$$=\pi\chi^2=\pi(1)^2=\pi$$

#Q. The integral $\int_C (ydx - xdy)$ is evaluated along the circle $x^2 + y^2 = \frac{1}{4}$ traversed in counter clockwise direction. The integral is equal to

$$-\frac{\pi}{4}$$

$$\left(\frac{c}{2}\right)$$

$$\int \frac{\pi}{2} \int M dx + N dy = \iint \frac{\partial N}{\partial x} \frac{\partial M}{\partial y} dy dx = \iint (-1-1) dy dx = \iint -2 dy dx$$

$$N = Y$$

$$N = -7$$

The value of $\int_C [(3x - 8y^2)dx + (4y - 6xy)dy]$, (where C is the

x, y - Green's Theorem region bounded by x = 0, y = 0 and x + y = 1) is _____.

$$M = 3x - 8y^2$$
 $N = 4y - 6xy$
 $\frac{\partial N}{\partial x} = -6y$
 $\frac{\partial M}{\partial y} = -16y$

So bounded by
$$x = 0$$
, $y = 0$ and $x + y = 1$) is ____.

 $M = 3x - 8y^2$
 $V = 4y - 6xy$
 $V = 4y - 6xy$
 $V = -6y$
 $V = -6y$

Vertical

$$x = 0$$
 $x = 0$
 $x + y = 1$
 $(0,0)$
 $x = 1$
 $(0,0)$
 $x = 1$
 $(0,0)$
 $x = 1$

$$\Rightarrow \int \int |0^{\gamma} dy dx$$

$$\forall 0 \text{ turne via toutsle integrals } \chi = 0$$

$$\Rightarrow |0| \int dx \int |-\chi| dy$$

$$= |0| \int dx \left(\frac{y^2}{2} \right)^{1-\chi}$$

$$= 10 \int_{0}^{1} \frac{(1-x)^{2}}{2} dx$$

$$\oint F dr = green's Theorem$$

- #Q. The value of the line integral $\oint_C \bar{F} \cdot \bar{r}' ds$, where C is a circle of radius
 - $\frac{4}{\sqrt{\pi}} \text{ unit is } \underline{\qquad} = \int \int (2-1) \, dy \, dx = \int \int dy \, dx = \pi x^2$ $= \pi \times \left(\frac{y}{\sqrt{\pi}}\right)^2 = (6)$ Here $(\bar{F}(x,y) = y\hat{\imath} + 2x\hat{\jmath})$ and \bar{r} is the UNIT tangent vector on the

Here, $\overline{F}(x,y) = y\hat{\imath} + 2x\hat{\jmath}$ and \overline{r} is the UNIT tangent vector on the curve C at an arc length s from a reference point on the curve, $\hat{\imath}$ and $\hat{\jmath}$ are the basis vectors in the

x-y Cartesian reference. In evaluating the line integral, the curve has to be traversed in the counter-clockwise direction.

#Q. Suppose C is the closed curve defined as the circle $x^2 + y^2 = 1$ with C oriented anticlockwise. The value of $\oint (xy^2dx + x^2ydy)$ over the curve C equals ____.

equals ___.

$$= 0$$

$$M = xy^{2}$$

$$N = x^{2}y$$

$$\int \int \int \frac{\partial N - \partial M}{\partial x} dy dx = \int (2xy - 2xy) dy dx = 0$$

$$= \left(\left(2y + 2x \right) - \left(2y + 2x \right) dy dx \right)$$

$$= 0 \text{ Ans}$$

#Q. As shown in the figure, C is the arc from the point (3,0) to the point (0,3) on the circle $x^2 + y^2 = 9$. The value of the integral $\int_C (y^2 + y^2) dy$

 $2yx)dx + (2xy + x^2)dy$ is _____ (up to 2 decimal places).

M = -y = $\int \int 1 - (-1) dy dx$ N = -x = $\int \int 1 - (-1) dy dx$

Consider the line integral $\int_C (xdy - ydx)$ the integral being taken #Q. in a counterclockwise direction over the closed curve C that forms the boundary of the region R shown in the figure below. The region R is the area enclosed by the union of a rectangle and a semi-circle of radius 1. The line integral evaluates to

2 mins Summary

THANK - YOU