Summarization System - LING573

03

Group 10
Jiadong Li

D4

03

- Related reading

Improvements in system ordering

03

Revious approach:

Content selection → information ordering → content realization.

Improvements in content selection

CF

Revious solution:

- Selected the highest score until the next sentence breaks 100 words limit.
- or problem: not fully used.

Rew solution:

- Because of the process of content realization, the sentences are shorten than the original length, so I will keep search for sentences to fit in the summary.
- 2 Problem: some low score sentence are selected at the end to fulfill the words limit.
- solutions: only select from the top 20 scored sentence.

Improvements in content realization

03

- UMD Approach #1 Trimmer based on POS tags
 - Split the sentence by any punctuation.
 - Remove shorter phrase (<=2) at the beginning.
 - Remove temporal expressions
 - Remove news source
 - Remove phrase in between two '--'.
 - Remove unnecessary punctuation.
 - Remove complementizer that.
 - Remove complement phrase in between two punctuation (normally comma and period) and After a NN tag and before a VB/W tag.
 - Remove some determiners before Capitalized Proper Noun.
 - Remove some adv.
 - Remove PPs that do not contain Nes (not fully implemented yet).
- Kill unnecessary space
 - new_sentence = new_sentence.replace(" 's", "'s")
 new_sentence = new_sentence.replace(" 're", "'re")
 new_sentence = new_sentence.replace(" n't", "n't")...

Improvements in content realization

03

S Problem:

After content realization, redundancy becomes more often.

Solution:

- In the content selection step, if current sentence is quite similar to one of previous selected sentence, then skip it.
 - Similarity:if-idf comparison or word co-appearance ratio

Results

03

D2

D3

D4

	R ₍ % ₎	P ₍ % ₎	F ₍ % ₎
ROUGE-1	17. 026	24. 534	19. 931
ROUGE-2	4. 88	7. 093	5. 73
ROUGE-3	1.762	2. 639	2. 092
ROUGE-4	0.655	1.011	0. 788

	R ₍ %)	P ₍ %)	F ₍ % ₎
ROUGE-1	22. 887	28. 247	25. 085
ROUGE-2	6. 366	7. 789	6. 954
ROUGE-3	2. 158	2. 658	2. 363
ROUGE-4	0.895	1. 115	0. 985

	R ₍ % ₎	P ₍ % ₎	F ₍ % ₎
ROUGE-1	24. 605	26. 078	25. 156
ROUGE-2	6. 611	6. 936	6. 751
ROUGE-3	2. 072	2. 159	2. 108
ROUGE-4	0. 786	0.812	0.796

Data used: ../devtest/GuidedSumm10_test_topics.xml ID from D1001A to D1046H

Results

devtest

	R ₍ % ₎	P ₍ % ₎	F ₍ % ₎
ROUGE-1	22. 887	28. 247	25. 085
ROUGE-2	6. 366	7. 789	6. 954
ROUGE-3	2. 158	2. 658	2. 363
ROUGE-4	0.895	1. 115	0. 985

evaltest

	R ₍ % ₎	P ₍ % ₎	F ₍ % ₎
ROUGE-1	27. 908	29. 233	28. 463
ROUGE-2	7. 452	7. 783	7. 593
ROUGE-3	2. 445	2. 532	2. 482
ROUGE-4	1. 039	1.056	1. 045

Data used: ../devtest/GuidedSumm10_test_topics.xml ID from D1001A to D1046H

Data used: ../evaltest/GuidedSumm11_test_topics.xml ID from D1101A to D1144H

Issues

CB

- - I have tried the Stanford Named Entity Recognizer (NER) and replace them with supervised trained classifier result.
 - Have some progress but not fully implemented.

Related reading

CB

- Multi-candidate reduction: Sentence compression as a tool for document summarization tasks
- https://www.sciencedirect.com/science/article/abs/pii/S0306457307000295

Thank you

