A LLT-like test for proving the primality of Fermat numbers.

Tony Reix (Tony.Reix@laposte.net)

First version: 2004, 24th of September Updated: 2005, 19th of October

In 1876, Édouard Lucas discovered a method for proving that a number is prime or composite without searching its factors. His method was based on the properties of the *Lucas Sequences*. He first used his method for Mersenne numbers and proved that $2^{127} - 1$ is a prime. In 1930, Derrick Lehmer provided a complete and clean proof. This test of primality for Mersenne numbers is now known as: Lucas-Lehmer Test (LLT).

Few people know that Lucas also used his method for proving that a Fermat number is prime or composite, still with an unclear proof. He used his method for proving that $2^{2^6} + 1$ is composite. Lehmer did not provide a proof of Lucas' method for Fermat numbers.

This paper provides a proof of a LLT-like test for Fermat numbers, based on the properties of Lucas Sequences and based on the method of Lehmer. The seed (the starting value S_0 of the $\{S_i\}$ sequence) used here is 5, though Lucas used 6.

Primality tests for special numbers are classified into N-1 and N+1 categories, meaning that the numbers N-1 or N+1 can be completely or partially factored. Since many books talk about the LLT only in the N+1 chapter for Mersenne numbers $N=2^q-1$, it seemed useful to remind that the LLT can also be used for numbers N such that N-1 is easy to factor, like Fermat numbers $N=2^{2^n}+1$, by providing a proof àla Lehmer.

Theorem 1

 $F_n=2^{2^n}+1\ (n\geqslant 1)$ is a prime if and only if it divides S_{2^n-2} , where $S_0=5$ and $S_i=S_{i-1}^{\,2}-2$ for $i=1,2,3,...\ 2^n-2$.

The proof is based on chapters 4 (The Lucas Functions) and 8.4 (The Lehmer Functions) of the book "Édouard Lucas and Primality Testing" of H. C. Williams (A Wiley-Interscience publication, 1998).

Chapter 1 explains how the (P,Q) parameters have been found. Then Chapter 2 provides the Lehmer theorems used for the proof. Then Chapter 3 and 4 provide the proof for: F_n prime $\Longrightarrow F_n \mid S_{2^n-2}$ and the converse, proving theorem 1. Chapter 5 provides numerical examples. The appendix in Chapter 6 provides first values of U_n and V_n plus some properties.

AMS Classification: 11A51 (Primality), 11B39 (Lucas Sequences), 11-03 (Historical), 01A55 (19th century), 01A60 (20th century).

1 Lucas Sequence with $P = \sqrt{R}$

Let
$$S_0=5$$
 and $S_i=S_{i-1}^2-2$. $S_1=23,\,S_2=527=17\times 31,\,\dots$

It has been checked that:
$$\begin{cases} S_{2^n-2} \equiv 0 \pmod{F_n} & \text{for } n = 1...4 \\ S_{2^n-2} \neq 0 \pmod{F_n} & \text{for } n = 5...14 \end{cases}$$

Here after, we search a Lucas Sequence $(U_m)_{m\geqslant 0}$ and its companion $(V_m)_{m\geqslant 0}$ with (P,Q) that fit with the values of the S_i sequence.

We define the Lucas Sequence V_m such that:

$$V_{2k+1} = S_k \tag{1}$$

Thus we have:
$$\begin{cases} V_2 = S_0 = 5 \\ V_4 = S_1 = 23 \\ V_8 = S_2 = 527 \end{cases}$$

If (4.2.7) page 74 (
$$V_{2n}=V_n^2-2Q^n$$
) applies, we have:
$$\left\{ \begin{array}{l} V_4=V_2^2-2Q^2 \\ V_8=V_4^2-2Q^4 \end{array} \right.$$

and thus:
$$Q = \sqrt[2]{\frac{V_2^2 - V_4}{2}} = \sqrt[4]{\frac{V_4^2 - V_8}{2}} = \pm 1$$
 .

With (4.1.3) page 70 ($V_{n+1} = PV_n - QV_{n-1}$), and with:

$$\begin{cases} V_0 = 2 \\ V_1 = P \\ V_2 = PV_1 - QV_0 = P^2 - 2Q \end{cases}$$

we have: $P = \sqrt{V_2 + 2Q} = \sqrt{7}$ or $\sqrt{3}$.

In the following we consider: $(P,Q)=(\sqrt{7},1)$.

As explained by Williams page 196, "all of the identity relations [Lucas functions] given in (4.2) continue to hold, as these are true quite without regard as to whether P, Q are integers".

So, like Lehmer, we define $P = \sqrt{R}$ such that R = 7 and Q = 1 are coprime integers and we define (Property (8.4.1) page 196):

$$\overline{V}_n = \left\{ egin{array}{ll} V_n & \text{when } 2 \mid n \\ V_n / \sqrt{R} & \text{when } 2 \nmid n \end{array} \right. \quad \overline{U}_n = \left\{ egin{array}{ll} U_n / \sqrt{R} & \text{when } 2 \mid n \\ U_n & \text{when } 2 \nmid n \end{array} \right.$$

in such a way that \overline{V}_n and \overline{U}_n are always integers.

Tables 1 to 5 give values of U_i , V_i , $\overline{U}_i \pmod{F_n}$, $\overline{V}_i \pmod{F_n}$, with $(P,Q)=(\sqrt{7},1)$, for n=1,2,3,4.

2 Lehmer theorems

Like Lehmer, let define the symbols (where (a/b) is the Legendre symbol):

$$\begin{cases} \varepsilon = \varepsilon(p) = (D/p) \\ \sigma = \sigma(p) = (R/p) \\ \tau = \tau(p) = (Q/p) \end{cases}$$

The 2 following formulas (from page 77) will help proving properties:

$$(4.2.28) 2^{m-1}U_{mn} = \sum_{i=0}^{\lfloor \frac{m}{2} \rfloor} {m \choose 2i+1} D^{i} U_{n}^{2i+1} V_{n}^{m-(2i+1)}$$

$$(4.2.29) 2^{m-1}V_{mn} = \sum_{i=0}^{\lfloor \frac{m}{2} \rfloor} {m \choose 2i} D^{i} U_{n}^{2i} V_{n}^{m-2i}$$

Property (8.4.2) page 196:

If
$$p$$
 is an odd prime and $p \nmid Q$, then:
$$\begin{cases} \overline{U}_p \equiv (D/p) \pmod{p} \\ \overline{V}_p \equiv (R/p) \pmod{p} \end{cases}$$

Proof:

Since p is a prime, and by Fermat little theorem, we have: $2^{p-1} \equiv 1 \pmod{p}$.

• By (4.2.28), with m = p and n = 1, since $U_1 = 1$ and $V_1 = P$, we have:

$$2^{p-1}U_p = \sum_{i=0}^{\frac{p-1}{2}} {p \choose 2i+1} D^i U_1^{2i+1} V_1^{p-(2i+1)}$$

$$2^{p-1}U_p = \binom{p}{1}P^{p-1} + \binom{p}{3}DP^{p-3} + \dots + \binom{p}{p}D^{\frac{p-1}{2}}P^0$$

Since $\binom{p}{i} \equiv 0 \pmod{p}$ when 0 < i < p and $\binom{p}{p} = 1$, we have:

$$U_p = \overline{U}_p \equiv D^{\frac{p-1}{2}} \equiv (D_p) \pmod{p}$$

• By (4.2.29), with m = p and n = 1, since $U_1 = 1$ and $V_1 = P$, we have:

$$2^{p-1}V_p = \sum_{i=0}^{\frac{p-1}{2}} \binom{p}{2i} D^i U_1^{2i} V_1^{p-2i}$$

$$2^{p-1}V_p = \binom{p}{0}P^p + \binom{p}{2}DP^{p-2} + \dots + \binom{p}{p-1}D^{\frac{p-1}{2}}P$$

Since $\binom{p}{0} = 1$, and $\binom{p}{i} \equiv 0 \pmod{p}$ when 0 < i < p, we have:

$$V_p \equiv P^p \text{ and } \overline{V}_p \equiv P^{p-1} \equiv R^{\frac{p-1}{2}} \equiv (R_D) \pmod{p}$$

Property (8.4.3) page 197:

$$p$$
 odd prime and $p \nmid Q \Longrightarrow p \mid \overline{U}_{p-\sigma\varepsilon}$

Proof

By (4.2.28) with n = 1, $V_1 = P$, since p is a prime and (R, Q) = 1, we have:

• With: m = p + 1

$$2^{p}U_{p+1} = \sum_{i=0}^{\frac{p+1}{2}} \binom{p+1}{2i+1} D^{i}P^{p-2i}$$

$$2^{p}U_{p+1} = \binom{p+1}{1} P^{p} + \binom{p+1}{3} DP^{p-2} + \dots + \binom{p+1}{p} D^{\frac{p-1}{2}}P + \binom{p+1}{p+2} D^{\frac{p+1}{2}}P^{-1}$$

$$2^{p}U_{p+1} = (p+1)P^{p} + (p+1)p[\dots] + (p+1)D^{\frac{p-1}{2}}P + 0D^{\frac{p+1}{2}}P^{-1}$$

$$2^{p}U_{p+1} = P^{p} + D^{\frac{p-1}{2}}P + p[\dots] = P[(P^{2})^{\frac{p-1}{2}} + D^{\frac{p-1}{2}}] + p[\dots]$$

$$2^{p}U_{p+1} = P^{p} + D^{\frac{p-1}{2}}P + p[\dots] = P[(P^{2})^{\frac{p-1}{2}} + D^{\frac{p-1}{2}}] + p[\dots]$$

$$\frac{2^{p}U_{p+1}}{P} = 2^{p}\overline{U}_{p+1} \equiv R^{\frac{p-1}{2}} + D^{\frac{p-1}{2}} \equiv (R/p) + (D/p) = \sigma(p) + \varepsilon(p) \pmod{p}$$
Thus, if $\sigma\varepsilon = \sigma(p) \times \varepsilon(p) = -1$, then $p \mid \overline{U}_{p+1} = \overline{U}_{p-q\varepsilon}$.

• With: m = p - 1:

$$2^{p-2}U_{p-1} = \sum_{i=0}^{\frac{p-1}{2}} \binom{p-1}{2i+1} D^i P^{p-2(i+1)}$$

$$2^{p-2}U_{p-1} = \binom{p-1}{1} P^{p-2} + \binom{p-1}{3} D P^{p-4} + \ldots + \binom{p-1}{p-2} D^{\frac{p-3}{2}} P + \binom{p-1}{p} D^{\frac{p-1}{2}} P^{-1}$$

$$2^{p-2}U_{p-1} = (p-1)P^{p-2} + (p-1)DP^{p-4} + \ldots + (p-1)D^{\frac{p-3}{2}} P + 0D^{\frac{p-1}{2}} P^{-1}$$

$$\frac{2^{p-2}U_{p-1}}{P} \equiv -[P^{p-3} + DP^{p-5} + \ldots + D^{\frac{p-3}{2}}] \equiv -\frac{P^{p-1} - D^{\frac{p-1}{2}}}{P^2 - D} \pmod{p}$$

$$2^{p-2}\overline{U}_{p-1}(P^2 - D) \equiv -(P^2)^{\frac{p-1}{2}} + D^{\frac{p-1}{2}} \equiv \varepsilon(p) - \sigma(p) \pmod{p}$$
 Thus, if $\sigma\varepsilon = \sigma(p) \times \varepsilon(p) = 1$, then $p \mid \overline{U}_{p-1} = \overline{U}_{p-\sigma\varepsilon}$.

Property (8.4.4) page 197

If p is an odd prime and $p \nmid Q,$ then: $V_{p-\sigma\varepsilon} \equiv 2\sigma Q^{\frac{1-\sigma\varepsilon}{2}} \pmod p$.

Theorem 2 (8.4.1) If p is an odd prime and $p \nmid QRD$, then:

$$\begin{cases} p \mid \overline{V}_{\underline{p-\sigma\epsilon}} & when \quad \sigma = -\tau \\ p \mid \overline{U}_{\underline{p-\sigma\epsilon}} & when \quad \sigma = \tau \end{cases}$$

Definition (8.4.2) page 197 of $\omega(m)$: For a given m, denote by $\omega = \omega(m)$ the value of the least positive integer k such that $m \mid \overline{U}_k$. If $\omega(m)$ exists, $\omega(m)$ is called the **rank of apparition** of m.

Theorem 3 (8.4.3)

$$\begin{cases} If \ k \mid n, \ then \ \overline{U}_k \mid \overline{U}_n \ . \\ If \ m \mid \overline{U}_n, \ then \ \omega(m) \mid n \ . \end{cases}$$

Theorem 4 (8.4.5) If (m,Q) = 1, then $\omega(m)$ exists.

Theorem 5 (8.4.6) If (N, 2QRD) = 1 and $N \pm 1$ is the rank of apparition of N, then N is a prime.

Theorem 6 (8.4.7) If (N, 2QRD) = 1, $\overline{U}_{N\pm 1} \equiv 0 \pmod{N}$ and $\overline{U}_{\frac{N\pm 1}{q}} \neq 0 \pmod{N}$ for each distinct prime divisor q of $N \pm 1$, then N is a prime.

Proof:

Let $\omega = \omega(N)$. We see that $\omega \mid N \pm 1$, but $\omega \nmid (N \pm 1)/q$. Thus if $q^{\alpha} \parallel N \pm 1$, then $q^{\alpha} \mid \omega$. It follows that $\omega = N \pm 1$ and N is a prime by Theorem 5 (8.4.6).

3
$$F_n$$
 prime $\Longrightarrow F_n \mid \overline{V}_{\frac{F_n-1}{2}}$ and $F_n \mid S_{2^n-2}$

Let $N=F_n=2^{2^n}+1$ with $n\geq 1$ be an odd prime. Let: $P=\sqrt{R}$, R=7 , Q=1 , and $D=P^2-4Q=3$.

Hereafter we compute (3/N) and (7/N):

•
$$(\sqrt[3]{N})$$
:
Since:
$$\begin{cases}
N & \text{odd prime} \\
N = (4)^{2^{n-1}} + 1 \equiv 2 \pmod{3} \\
(\sqrt[N]{3}) = (\sqrt[2]{3}) = -1 \\
(\sqrt[3]{N}) = (\sqrt[N]{3}) \times (-1)^{\frac{3-1}{2}} \frac{N-1}{2}
\end{cases}$$
then: $(\sqrt[3]{N}) = -1$.

• (7/N) : We have:
$$\left\{ \begin{array}{ll} 2^3 & \equiv 1 \pmod{7} \\ 2^{3a+b} & \equiv 2^b \pmod{7} \end{array} \right.$$

With $2^n \equiv b \pmod 3$, we have: $2^{2^n} + 1 \equiv 2^b + 1 \pmod 7$. Then we study the exponents of 2, modulo 3. We have: $2^2 \equiv 1 \pmod 3$, and:

If
$$n = 2m$$

$$\begin{cases} 2^{2m} \equiv 1 \pmod{3} \\ N = 2^{2^{2m}} + 1 \equiv 2^1 + 1 \equiv 3 \pmod{7} \\ \binom{N}{7} = \binom{3}{7} = -1 \end{cases}$$

If
$$n = 2m + 1$$

$$\begin{cases}
2^{2m+1} \equiv 2 \pmod{3} \\
N = 2^{2^{2m+1}} + 1 \equiv 2^2 + 1 \equiv 5 \pmod{7} \\
\binom{N}{7} = \binom{5}{7} = -1
\end{cases}$$

Finally, we have: $(7/N) = (N/7)(-1)^{\frac{7-1}{2}2^{2^n}} = (N/7) = -1$.

So we have:
$$\begin{cases} \varepsilon = (D/N) = (3/N) = -1 \\ \sigma = (R/N) = (7/N) = -1 \\ \tau = (Q/N) = (1/N) = +1 \end{cases}$$

Since $\sigma=-\tau$, $\sigma\epsilon=+1$, and $F_n\nmid QRD$ with $n\geq 1,$ then by Theorem 2 (8.4.1) we have:

$$F_n \text{ prime } \Longrightarrow F_n \mid \overline{V}_{\frac{F_n-1}{2}} = V_{22^n-1}$$

By (1) we have: $V_{2^{k-1}} = S_{k-2}$ and thus, with $k=2^n$: $F_n \mid S_{2^n-2}$.

4 $F_n \mid S_{2^{n}-2} \implies F_n$ is a prime

Let $N=F_n$ with $n\geq 1$. By (1) we have: $N\mid S_{2^n-2}\Longrightarrow N\mid V_{2^{2^n-1}}$. And thus, by (4.2.6) page 74 ($U_{2a}=U_aV_a$), we have: $N\mid \overline{U}_{2^{2^n}}$.

By (4.3.6) page 85: ($(V_n,U_n)\mid 2Q^n$ for any n), and since Q=1, then: $(V_{2^{2^n}-1},\overline{U}_{2^{2^n}-1})=2$ and thus: $N\nmid \overline{U}_{2^{2^n}-1}$ since N odd.

With $\omega=\omega(N)$, by Theorem 3 (8.4.3) we have : $\omega\mid 2^{2^n}$ and $\omega\nmid 2^{2^{n}-1}$. This implies: $\omega=2^{2^n}=N-1$. Then N-1 is the rank of apparition of N, and thus by Theorem 5 (8.4.6) N is a prime.

This test of primality for Fermat numbers has been communicated to the community of number theorists working on this area on mersenneforum.org (http://www.mersenneforum.org/showthread.php?t=2130) in May 2004, and the proof was finalized in September 2004.

Then, in a private communication, Robert Gerbicz provided a proof of the same theorem based on $Q[\sqrt{21}]$.

5 Numerical Examples

6 Appendix: Table of U_i and V_i

With n = 2, 3, 4, we have the following (not proven) properties (modulo F_n):

$$\begin{cases}
\overline{U}_{F_{n}-5} \equiv 5 \\
\overline{U}_{F_{n}-4} \equiv 6 \\
\overline{U}_{F_{n}-3} \equiv 1 \\
\overline{U}_{F_{n}-2} \equiv 1 \\
\overline{U}_{F_{n}-1} \equiv 0 \\
\overline{U}_{F_{n}} \equiv -1 \\
\overline{U}_{F_{n}+1} \equiv -1 \\
\overline{U}_{F_{n}+2} \equiv -6 \\
\overline{U}_{F_{n}+3} \equiv -5
\end{cases}
\begin{cases}
\overline{V}_{F_{n}-5} \equiv -23 \\
\overline{V}_{F_{n}-4} \equiv -4 \\
\overline{V}_{F_{n}-3} \equiv -5 \\
\overline{V}_{F_{n}-2} \equiv -1 \\
\overline{V}_{F_{n}-1} \equiv -2 \\
\overline{V}_{F_{n}-1} \equiv -2 \\
\overline{V}_{F_{n}+1} \equiv -5 \\
\overline{V}_{F_{n}+2} \equiv -4 \\
\overline{V}_{F_{n}+2} \equiv -4 \\
\overline{V}_{F_{n}+3} \equiv -23
\end{cases}$$

The values of $\overline{U'}_n$ and $\overline{V'}_n$ $(n \ge 1)$ with $(P,Q) = (\sqrt{3},-1)$ can be built by:

$$\begin{cases} \overline{U'}_{2n} &= \overline{U}_{2n} \\ \overline{U'}_{2n+1} &= \overline{V}_{2n+1} \end{cases} \begin{cases} \overline{V'}_{2n} &= \overline{V}_{2n} \\ \overline{V'}_{2n+1} &= \overline{U}_{2n+1} \end{cases}$$

Values of U_i and V_i in previous tables can be computed easily by the following PARI/gp programs:

 U_{2j+1} : U0=1;U1=6; for(i=1,N, U0=5*U1-U0; U1=5*U0-U1; print(4*i+1," ",U0); print(4*i+1," ",U1))

i	U_i		V_{i}	
0	0	$\times\sqrt{7}$	2	
1	1		1	$\times \sqrt{7}$
2	1	$\times \sqrt{7}$	5	
3	6		4	$\times \sqrt{7}$
4	5	$\times \sqrt{7}$	23	
5	29		19	$\times \sqrt{7}$
6	24	$\times \sqrt{7}$	110	
7	139		91	$\times \sqrt{7}$
8	115	$\times \sqrt{7}$	527	
9	666		436	$\times \sqrt{7}$
10	551	$\times \sqrt{7}$	2525	
11	3191		2089	$\times \sqrt{7}$
12	2640	$\times \sqrt{7}$	12098	
13	15289		10009	$\times \sqrt{7}$
14	12649	$\times \sqrt{7}$	57965	
15	73254		47956	$\times \sqrt{7}$
16	60605	$\times \sqrt{7}$	277727	
17	350981		229771	$\times \sqrt{7}$
18	290376	$\times \sqrt{7}$	1330670	
19	1681651		1100899	$\times \sqrt{7}$
20	1391275	$\times \sqrt{7}$	6375623	
21	8057274		5274724	$\times \sqrt{7}$
22	6665999	$\times \sqrt{7}$	30547445	
23	38604719		25272721	$\times \sqrt{7}$
24	31938720	$\times \sqrt{7}$	146361602	
25	184966321		121088881	$\times \sqrt{7}$
26	153027601	$\times \sqrt{7}$	701260565	
27	886226886		580171684	$\times \sqrt{7}$
28	733199285	$\times \sqrt{7}$	3359941223	
29	4246168109		2779769539	$\times \sqrt{7}$
30	3512968824	$\times \sqrt{7}$	16098445550	
31	20344613659		13318676011	$\times \sqrt{7}$
32	16831644835	$\times \sqrt{7}$	77132286527	
33	97476900186		63813610516	$\times \sqrt{7}$
34	80645255351	$\times \sqrt{7}$	369562987085	
35	467039887271		305749376569	$\times \sqrt{7}$
36	386394631920	$\times \sqrt{7}$	1770682648898	
37	2237722536169		1464933272329	$\times \sqrt{7}$
38	1851327904249	$\times \sqrt{7}$	8483850257405	
39	10721572793574		7018916985076	$\times \sqrt{7}$
40	8870244889325	$\times \sqrt{7}$	40648568638127	

Table 1: $P = \sqrt{7}$, Q = 1

i	$\overline{U}_i \pmod{F_1}$	$\overline{V}_i \pmod{F_1}$
0	0	2
1	1	1
2	1	0
3	1	4
4	0	3
5	4	4
6	4	0
7	4	1
8	0	2

Table 2: $P = \sqrt{7}$, Q = 1 , Modulo F_1

i	$\overline{U}_i \pmod{F_2}$	$\overline{V}_i \pmod{F_2}$
0	0	2
1	1	1
2	1	5
3	6	4
4	5	6
5	12	2
6	7	2 8
7	3	6
8	13	0
9	3	11
10	7	9
11	12	15
12	5	11
13	6	-4
14	1	-5
15	1	-1
16	0	-2
17	-1	-1
18	-1	-5
19	-6	-4
20	-5	11
21	5	15
22	10	9
23	14	11
24	4	0

Table 3: $P = \sqrt{7}$, Q = 1 , Modulo F_2

i	$\overline{U}_i \pmod{F_3}$	$\overline{V}_i \pmod{F_3}$
0	0	2
1	1	1
2	1	5
3	6	4
4	5	23
8	115	13
16	210	167
32	118	131
64	38	197
128	33	0
192	38	60
224	118	126
240	210	90
248	115	-13
252	5	-23
253	6	-4
254	1	-5
255	1	-1
256	0	-2
257	-1	-1
258	-1	-5
259	-6	-4
260	-5	-23

Table 4: $P = \sqrt{7}$, Q = 1 , Modulo F_3

i	$U_i \pmod{F_4}$	$V_i \pmod{F_4}$
2048	9933	15934
4096	567	2016
8192	28943	960
16384	63129	4080
32768	5910	0
65532	5	-23
65533	6	-4
65534	1	-5
65535	1	-1
65536	0	-2
65537	-1	-1
65538	-1	-5
65539	-6	-4
65540	-5	-23

Table 5: $P=\sqrt{7}$, Q=1 , Modulo F_4