LightGBM을 이용한 서울지역 아파트 가격 예측모형

optuna pakage를

활용한 hyper

parameter 방법의

효율성 검증

연세대학교 미래캠퍼스 경영학부

이승준, 류호윤

지도교수 - 신택수

[개요]

본 연구에서는 LightGBM 기계학습 알고리즘을 통해 서울지역 아파트의 가격을 예측함. 변인으로 자연/환경요인, 교통/인프라요인, 교육요인, 경제요인을 사용함. 서울시 공공데이터 포털 등에서 공개된 데이터를 이용하여 분석을 수행하였으며, 변수 중요도(Feature Importance) 확인을 통해 각 변인의 중요도를 살펴봄. 지하철역의 수, 행정구역(동), 전용면적이 중요한 변인으로 확인됨. 이를 바탕으로 서울지역 아파트 가격의 예측을 수행하였으며, 확인된 LightGBM의 RMSLE score는 0.150898로 확인됨. 본 연구의 한계점은 다음과 같음. 각 sample의 특성을 반영한 요소들을 통해 각 아파트 sample에 대한 가치를 평가하는데 성공했으나, 시계열 데이터를 이용한 미래 가격에 대한 예측으로 이어지지는 못하였음. 본 연구를 통해 서울지역 아파트의 가치를 평가하는데 있어 유의미한 활용이 가능할 것으로 기대됨.

1. 서론

[연구의 배경 및 목적]

대한민국의 많은 사람들은 투자수단 중 하나로 부동산 투자를 선택함.

어떤 요소가 해당 아파트의 가격 형성에 영향을 주는지를 통해 개발이나 투자 시시간과 노력을 줄일 수 있지 않을까 하는 기대를 가지고 다양한 요소와 선호도 간의관계 분석 후 이를 중심으로 해당 지역의 아파트 가격에 대한 예측을 하고자 함.

2. 선행연구

▼ 부동산 가격 예측에 관한 연구 ▼ Hyper Parameter에 관한 연구 사용 적용 저자명 저자명 사용 적용 성과 성과 (연도) data model model data 아파트 주변의 Exmouth 하이퍼 파마이터 환경변수를 통한 하부분지에 이현재 외 이미지 최용욱 외 CNN 서울 아파트 튜닝 프로세스에 Bayesian 데이터 (2020)서 획득된 가격예측 (2020)소요되는 시간을 optimization Vincent (설명 비율 62.5%) field 자료 test data 정확도(평균 GP와 TPE기법에 경제 및 금융 **James** 김채원 외 96.855%), 실제 있어 효율적인 Bergstra conves, (2020)GP, DBNs, TPE (시계열) 예측 정확도(평균 MRBI hyperparameter 82.521%) (2011)의 방법 제공 RMSE를 활용하여 Linear

Takuya

Akiba1

(2019)

MNIST

optuna

각 예측 모형 간의

성능 비교

(XGBoost

95.1%의 정확도)

3. 연구모형

실거래가,

주변 환경

주정민 외

(2020)

Regression,

Ridge, Xgboost,

Lightgbm,

Catboost

[LightGBM]

LightGbm은 Boosting기반이며, Boosting 기법의 대표적인 algorithm으로는 Gradient Boost 기법이 있음.

장점으로는 큰 사이즈의 데이터를 다루기 용이하고 적은 메모리를 차지하는 특징, 단점으로 10,000개 이하의 dataset을 사용할 경우 과적합 가능성이 존재함.

[Hyper Parameter]

본 연구에서는 Optuna, 그중에서도 Tree-structured Parzen Estimator라는 베이지안 최적화 알고리즘을 사용하여 Hyper Parameter를 추정함.

4. 실증분석

[사용 data]

#	Column	Info	
1	exclusive_use_area	전용면적	
2	floor	층	
3	transaction_real_price	실거래가	
4	hangang	한강 인접 여부	
5	CBD	중심업무지구 인접	
6	park	공원의 수	
7	base_money_rate	기 준금 리 (연)	
8	number_subway_stations	지하철역의 수	
9	department_stores	백화점의 수	
10	age	준공 경과기간	
11	is_rebuild	재건축	
12	special_high_school	특목고의 수	
13	middle_school	중학교의 수	
14	elementary_schools	초등학교의 수	

[분석 수행]

▼ RMSLE Score **▼** Feature Importance

▼ KMSLE SCOIE				▼ reature importance		
#		del	score	#	column	importance
	1 Linear regression		0.281969	1	전용면적	27889
2	2 Ridge		0.281969			
3			0.298397	2	준공 경과기간	16597
	4 ElasticNet		0.294288	3	지하철 역 수	8378
5	5 Decision tree Regressor		0.266754			
6	6 Random forest Regression		0.215594	4	기준 금리	6821
7			0.150898	5	공원	6172
8	8 XGBoost Regressor 0.131689			6	중학교의 수	5792
	V Hypor D	aramatar	Tuning	7		
	▼ Hyper Parameter Tuning				초등학교의 수	4044
be	best trial score 0.1569955481482		814820735	8	층	3970
	max_depth 15			9	백화점의 수	3794
	earning_rate	0.009770823		10	한강 인접 여부	2775
n	_estimators	298	34			_
min	_child_samples	36	ò	11	중심 업무 지구 인접 여부	1794

12

0.8832752415247064

5. 결론

subsample

[결론]

LightGBM 을 활용한 분석 결과에서는 전용면적, 아파트의 준공 경과 기간이 높은 수치를 나타냄.

특목고의 수

1493

이는 샘플이 가지고 있는 특성이 가격에 중요한 영향을 미쳤다는 것을 의미함. 교통 요인인 지하철의 수가 세 번째로 중요한 요인으로 선택되었다는 점은 아파트 가격에 교통이 중요한 요소가 되고 있다는 의미.

따라서 아파트 입지분석 시 교통 요소를 중점적으로 확인하는 것이 적합.

[한계점]

이번 프로젝트에서 진행하고자 했던 아파트 가격 예측은 아파트 가격의 가치 평가에 그침.

미래 가격 예측을 위해서는 각 샘플이 되는 아파트 가격에 대한 시간 데이터가 필요하지만 보유하고 있던 데이터는 그렇지 못했음.

미래 예측을 위해서는 각 충분한 시간 시퀀스를 가지고 있는 아파트 샘플들이 갖춰져야함.

따라서 후행 연구에서는 적합한 형태를 가진 시퀀스 데이터를 수집하여 미래 예측이 가능하며 높은 정확도를 확보할 수 있는 모델을 이용하여 분석을 수행해야 할 것으로 보여짐.

[향후 활용 방안]

아파트 샘플에 대한 가격 예측 결과를 바탕으로 모델이 도출한 가치는 시장의 평가를 토대로 진행됨.

그리고 본 프로젝트에서 활용한 모델에서는 변수 중요도 (Feature Importance)를 확인할 수 있었음. 이를 통해 예측 가격과 중요한 입지 요인을 파악할 수 있었는데 이 점은 추후 아파트에 대한 가치 평가를 하는데 있어 활용될 수 있을 것으로 보임.