

Universidade Federal da Paraíba Centro de Ciências Aplicadas à Educação Departamento de Ciências Exatas

Disciplina: Cálculo I

Professora: Juliana Aragão

Curso: LCC

Funções

• **Definição 4:** O gráfico de uma função f é o conjunto de pares ordenados da forma (x, f(x)) em que $x \in D(f)$.

Observação: O que entendemos por gráfico, na realidade, é a representação de todos esses pares ordenados num sistema de coordenadas cartesianas.

Para traçar o gráfico de uma função f no plano Cartesiano, deve-se colocar os valores de f(x), imagens, no eixo vertical (ou eixo-y), e os valores da variável independente, x, devem ser colocados no eixo horizontal (ou eixo-x).

Exemplo 1:
$$f(x) = x^2 - 1$$

x	$f(x) = x^2 - 1$
-2	3
-1	0
0	-1
1	0
2	3

Exemplo 2: $f(x) = \sqrt{x}$

x	$f(x) = \sqrt{x}$
0	0
1	1
2	1,41
3	1,73
4	2

Informações obtidas a partir do gráfico da função:

O valor da função

Exemplo:
$$f(x) = x^3 - 3x - 1$$

- a) Os valores de f(0) e f(-1);
- b) Os valores de x tais que f(x) = -3;
- c) Os valores de x tais que $f(x) \ge 1$;
- d) Os valores de x tais que

$$-3 \le f(x) \le 1;$$

Teste da reta vertical: Uma curva no plano Cartesiano representa uma função se, e somente se, nenhuma reta vertical o intercepta mais de uma vez.

• Exemplo: As curvas a) e c) não são gráficos de função.

Informações obtidas a partir do gráfico da função:

Domínio e Imagem

Informações obtidas a partir do gráfico da função:

• Zeros da função: Valores de x que satisfazem a equação $f(x)=\mathbf{0}$

- 1- Considerando o gráfico da função, a seguir, determine:
- a) O domínio da função;
- b) A imagem da função;
- c) f(-3), f(4)
- d) Os pontos em que $f(x) \ge 1$;
- e) Os zeros da função;

- 2- Considerando o gráfico da função, a seguir, determine:
- a) O domínio da função;
- b) A imagem da função;
- c) f(0), f(2), $f(\frac{1}{2})$
- d) Os zeros da função;

- 3- Considerando o gráfico da função, a seguir, determine:
- a) O domínio da função;
- b) A imagem da função;
- c) f(0), f(2), f(-3)
- d) Os zeros da função;

4- Considerando o gráfico da função, a seguir,

determine:

- a) O domínio da função;
- b) A imagem da função;
- c) f(-1), f(2), f(3)
- d) Os zeros da função;
- e) Os pontos em que f(x) < 1;
- f) Os pontos em que $f(x) = -\frac{1}{2}$;

5- Considerando o gráfico da função, a seguir,

determine:

a) Os pontos em que $f(x) \le \frac{1}{2}$;

b) Os pontos em que $g(x) \ge \frac{1}{2}$;

c) Os pontos em que $g(x) \ge f(x)$;

Informações obtidas a partir do gráfico da função:

Intervalos de crescimento/decrescimento

Informações obtidas a partir do gráfico da função:

Extremos locais e absolutos

Informações obtidas a partir do gráfico da função:

Simetria

$$f(x) = x^{3} - 2x^{2}$$

$$g(x) = x^{3} - 2x^{2} + 2$$

$$h(x) = x^{3} - 2x^{2} - 2$$

$$f(x) = x^3 - 2x^2$$

$$g(x) = -(x^3 - 2x^2)$$

$$f(x) = x^3 - 2x^2$$

$$g(x) = f(-x) = -x^3 - 2x^2$$

$$f(x) = x^3 - 2x^2$$

$$g(x) = (x+1)^3 - 2(x+1)^2$$

$$h(x) = (x-2)^3 - 2(x-2)^2$$