Cognome	Nome	
Matricola	Numero di CFU	Fila 1

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

- L1 (2 punti). (a) Definire la relazione $v \Vdash F$ dove F è una formula della logica classica proposizionale e v un'interpretazione (o mondo)
 - (b) Dare un esempio di equivalenza logica notevole che vale classicamente, ma non intuizionisticamente
 - (a) $v \Vdash F$ (v soddisfa F) sse $||F||^v = 1$
 - (b) $\neg (F \land G) \equiv \neg F \lor \neg G$

L2 (6 punti). Considerare le seguenti grammatiche:

$$\begin{array}{lll} \mathbb{L} & ::= & \left[\right] \mid \mathbb{N} :: L \\ T & ::= & \emptyset \mid \langle \mathbb{N}, T \rangle \mid \langle T, \mathbb{N}, T \rangle \\ C & ::= & \emptyset \mid \langle C, \mathbb{L}, C \rangle \end{array}$$

Il non terminale \mathbb{L} genera liste di numeri naturali.

Gli alberi generati dal non terminale T sono o vuoti (\emptyset) oppure nodi contenente un naturale e un solo sottoalbero $(\langle \mathbb{N}, T \rangle)$ oppure nodi contente un naturale e due sottoalberi.

Gli alberi generati dal non terminale C sono o vuoti (\emptyset) oppure nodi contente una lista di naturali $\mathbb L$ e due sottoalberi.

Si ottiene una lista di naturali leggendo in sequenza i naturali di un cammino radice-foglia di un albero generato da T, oppure concatenando le liste di naturali incontrate in un cammino radice-foglia di un albero generato da C.

Risolvere, tramite ricorsione strutturale, il seguente problema. È possibile introdurre funzioni ausiliarie e/o usare parametri aggiuntivi. Nel caso di funzioni ausiliarie, dare la specifica dettagliata della funzione. Nel caso di parametri ausiliari, indicare il valore iniziale.

Problema: dato un albero t generato dal non-terminale T, restituire un albero c generato dal non-terminale C e equivalente a t, ovvero tale che ogni cammino radice-foglia di t abbia un corrispondente cammino radice-foglia in c, dove corrispondente significa che le due liste di naturali ottenute dal cammino sono le stesse.

Esempio: $t = \langle \langle 5, \langle 6, \emptyset \rangle \rangle, 3, \langle 2, \langle \emptyset, 4, \emptyset \rangle \rangle$ ha come insieme di cammini $\{3:5:6:[], 3:2:4:[]\}$. L'albero equivalente da restituire è $c = \langle \langle \emptyset, 5:6:[], \emptyset \rangle, 3:[], \langle \emptyset, 2:4:[], \emptyset \rangle \rangle$ che ha lo stesso insieme di cammini.

Soluzione al problema originale: f(t)

```
f(\emptyset) = \emptyset
f(\langle t_1, n, t_2, \rangle = \langle f(t_1), n, f(t_2) \rangle
f(\langle n, t \rangle) = add(n, f(t))
```

Problema 2: dato un numero n e un albero c generato dal non terminale C, produce un nuovo albero generato dal non terminale C che ha come cammini gli stessi di c, ma con il naturale n in testa.

Soluzione: add(n, t)

```
\begin{array}{l} add(n,\emptyset) = \langle \emptyset, n : [], \emptyset \rangle \\ add(n, \langle c_1, l, c_2 \rangle) = \langle c_1, n :: l, c_2 \rangle \end{array}
```

Cognome	Nome	
Matricola	Numero di CFU	Fila 1

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

L3 (6 punti). Definiamo la differenza simmetrica di due insiemi come segue:

$$A\Delta B := \{x \in A \mid x \notin B\} \cup \{x \in B \mid x \notin A\}$$

Dimostrare che $\forall A, B, A \subseteq A\Delta B \cup A \cap B$.

Ogni passo della dimostrazione deve corrispondere a uno o più passi di deduzione naturale al prim'ordine. Preferire una prova intuizionista a una classica se possibile.

Esplicitare prima della dimostrazione l'enunciato degli assiomi di teoria degli insiemi che utilizzate poi nel testo.

Assioma di separazione: $X \in \{Y \in A \mid P(Y)\} \iff X \in A \land P(X)$ Assioma dell'unione binaria: $X \in A \cup B \iff X \in A \lor X \in B$ Assioma dell'intersezione binaria: $X \in A \cap B \iff X \in A \land X \in B$

Teorema: $\forall A, B, A \subseteq A\Delta B \cup A \cap B$

Dimostrazione: siano A, B insiemi. Dobbiamo dimostrare $A \subseteq A\Delta B \cup A \cap B$ o equivalentemente $\forall X, (X \in A \Rightarrow X \in A\Delta B \cup A \cap B)$. Sia X un insieme t.c. $X \in A$ (H). Per il principio del terzo escluso, $X \in B \vee X \notin B$. Quindi procediamo per casi:

- Caso $X \in B$. Quindi, per $H, X \in A \land X \in B$ e quindi, per l'assioma dell'intersezione binaria, $X \in A \cap B$ e quindi, per l'assioma dell'unione binaria, $X \in A \Delta B \cup A \cap B$.
- Caso $X \notin B$. Quindi, per H, $X \in A \land X \notin B$ e quindi, per l'assioma di separazione, $X \in \{Y \in A \mid Y \notin B\}$ e quindi, per l'assioma dell'unione binaria, $X \in A\Delta B$ e quindi, per l'assioma dell'unione binaria, $X \in A\Delta B \cup A \cap B$.

Qed.

Cognome	Nome	
Matricola	Numero di CFU	Fila 1

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

L4 (6 punti). Si consideri il seguente ragionamento:

Se non vincerà Lazza, allora gli ascoltatori si saranno addormentati o il televoto sarà stato pilotato. Lazza vincerà se gli ascoltatori si saranno addormentati. La giuria non sarà composta solo da boomer o il televoto sarà pilotato. Se il televoto sarà pilotato o la giuria sarà composta da boomer, allora Mengoni vincerà. Quindi vinceranno Lazza o Mengoni.

Verificare la correttezza del ragionamento utilizzando la deduzione naturale per la logica proposizionale. Preferire una prova intuizionista se possibile.

 $\neg A \Rightarrow B \lor C, \quad B \Rightarrow A, \quad \neg E \lor C, \quad C \lor E \Rightarrow D \vdash A \lor D$ $\frac{\neg A \Rightarrow B \lor C \qquad [\neg A]}{B \lor C} \Rightarrow e \qquad \frac{[\neg A]}{\frac{\bot}{A}} \xrightarrow{\neg e} \Rightarrow e$ \vdots $\frac{\neg A \Rightarrow B \lor C \qquad [\neg A]}{B \lor C} \Rightarrow e \qquad \frac{[\neg A]}{\frac{\bot}{A}} \xrightarrow{\neg e} \qquad [C]$ $\frac{\neg C}{C \lor E} \Rightarrow C \qquad C \lor E \Rightarrow C$ $\frac{\neg C}{C \lor E} \Rightarrow e$ $\frac{$

		$\overline{}$

Cognome	Nome	
Matricola	Numero di CFU	Fila 1

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

A5 (3 punti). Considera il monoide $(\mathbb{R}, +, 0)$, dove \mathbb{R} é l'insieme dei reali. Dati due valori arbitrari $m, b \in \mathbb{R}$, possiamo definire la funzione $f : \mathbb{R} \to \mathbb{R}$ come f(x) = mx + b. Per quali valori di m e di b la funzione f é anche un morfismo di monoidi tra $(\mathbb{R}, +, 0)$ e $(\mathbb{R}, +, 0)$? Motiva la tua risposta.

Per b=0 é sempre un morfismo di monoidi perchè f(x+y)=m(x+y)=mx+my=f(x)+f(y) e f(0)=m0=0. Per $b\neq 0$, non é un morfismo di monoidi perché $f(x+y)=m(x+y)+b=mx+my+b\neq mx+my+2b=mx+b+my+b=f(x)+f(y)$.

A6 (3 punti). Per ciascuno dei seguenti enunciati, indica se é vero o falso. Se falso, scrivi un controesempio.

- (a) $(\mathbb{N}, \times, 1)$ forma un monoide.
- (b) Dato l'insieme $X = \{a, b\}$, considera $(\mathbb{L}(X), +, [])$, dove $\mathbb{L}(X)$ é l'insieme delle liste di elementi di X, + indica l'operazione di concatenazione di due liste, e [] é la lista vuota. $(\mathbb{L}(X), +, [])$ forma un monoide commutativo (detto anche monoide abeliano).
- (c) $(\mathbb{N}, z, 0, ^{\star})$, dove z(n, m) = 0 e $n^{\star} = n$, forma un gruppo.
- (d) $(\mathbb{N}, max, 0, ^*)$, dove max(n, m) é il numero piú grande tra n ed m, e $n^* = n$, forma un gruppo.

(a) Si, (b) No (non é commutativo), (c) No, perché z(n,0) = 0 = z(0,n) quindi 0 non é l'elemento neutro per z, (d) No perché $max(n,n^*) = max(n,n) = n$ é diverso da 0 per $n \neq 0$.

A7 (4 punti). Considera i seguenti monoidi:

- $(\mathcal{L}, +, [])$, dove \mathcal{L} é l'insieme delle liste di numeri naturali, + indica l'operazione di concatenazione di due liste, e [] é la lista vuota.
- $(\mathcal{P}, \cup, \emptyset)$, dove \mathcal{P} é l'insieme degli insiemi di numeri naturali, \cup indica l'operazione di unione di insiemi, e \emptyset é l'insieme vuoto.

Considera il morfismo di monoidi $f: \mathcal{L} \to \mathcal{P}$ definito come $f(l) = \{x \mid x \text{ \'e un elemento della lista } l\}$. Rispondi alle seguenti domande:

- (a) Considera l'insieme quoziente $\mathcal{L}_{/\sim_f}$ dato da f su \mathcal{L} . Come sono definiti i suoi elementi?
- (b) Il teorema fondamentale dei morfismi stabilisce che $\mathcal{L}_{/\sim_f}$ é un monoide. Definisci la sua struttura di monoide.
- (c) Qual é la relazione tra \mathcal{P} e Imm(f), l'immagine di f?
- (d) Il teorema fondamentale dei morfismi stabilisce che $\mathcal{L}_{/\sim_f}$ é isomorfo a Imm(f). Definisci un isomorfismo di monoidi tra $\mathcal{L}_{/\sim_f}$ e Imm(f).

(a) Gli elementi di $\mathcal{L}_{/\sim_f}$ sono classi di equivalenza definite come segue:

$$[l] = \{l' \mid l \text{ e } l' \text{ hanno gli stessi elementi } \}$$

Perció due liste fanno parte della stessa classe quando hanno gli stessi elementi. Ad esempio [2,3]=[3,2,3].

- (b) $[l] \circ [l'] := [l + l']$ e l'elemento neutro é la classe d'equivalenza della lista vuota.
- (c) Sono lo stesso insieme (f é suriettiva).
- (d) L'isomorfismo mappa [l] nell'insieme degli elementi di l.