CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No: **8.4.5**

Lecture: Eigen and Singular Values

Topic: SVD & Pseudoinverse

Concept: SVD Applications and References

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

SVD Applications

SVD - Definition

$$\mathbf{A}_{[\mathbf{m} \times \mathbf{n}]} = \mathbf{U}_{[\mathbf{m} \times \mathbf{r}]} \, \boldsymbol{\Sigma}_{[\mathbf{r} \times \mathbf{r}]} \, (\mathbf{V}_{[\mathbf{n} \times \mathbf{r}]})^{\mathsf{T}}$$

- A: Input data matrix
 - m x n matrix (e.g., m documents, n terms)
- U: Left singular vectors
 - m x r matrix (m documents, r concepts)
- Σ: Singular values
 - r x r diagonal matrix (strength of each 'concept')
 (r: rank of the matrix A)
- V: Right singular vectors
 - n x r matrix (n terms, r concepts)

2:50 / 13:39

Stanford University: Lecture 47 - SVD

Ref: https://www.youtube.com/watch?v=P5mlg91as1c

Image Compression

Ref: https://www.youtube.com/watch?v=H7qMMudo3e8

EPFL: Classification of Movies

Ref: https://www.youtube.com/watch?v=CQbbsKK1kus ²

SVD References

Steve Brunton: SVD - Math Overview

Ref: https://www.youtube.com/watch?v=nbBvuuNVfco

Steve Brunton: SVD - Matrix Approximation

Ref: https://www.youtube.com/watch?v=02QCtHM1qb4

Gilbert Strang: SVD

Singular Value Decomposition (the SVD)

Ref: https://www.youtube.com/watch?v=mBcLRGuAFUk

More References

1. Cornell:

- a. https://www.cs.cornell.edu/courses/cs322/2008sp/stuff/TrefethenBau_Lec4_SVD.pdf
- b. https://www.cs.cornell.edu/courses/cs3220/2010sp/notes/svd.pdf

2. Stanford:

- a. https://web.stanford.edu/class/cs168/l/l9.pdf
- b. citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.725.8741

3. Dan Kalman:

a. https://datajobs.com/data-science-repo/SVD-[Dan-Kalman].pdf

4. Max Planck:

a. https://www.mpi-inf.mpg.de/fileadmin/inf/d5/teaching/ss17_dmm/lectures/2017-05-15-normalization_and_computing_svd.pdf

Appendix: SVD and A^TA

Singular Values

Since matrix products of the form A^TA will play an important role in our work, we will begin with two basic theorems about them.

THEOREM 9.4.1 *If* A *is an* $m \times n$ *matrix, then*:

- (a) A and $A^{T}A$ have the same null space.
- (b) A and $A^{T}A$ have the same row space.
- (c) A^T and A^TA have the same column space.
- (d) A and $A^{T}A$ have the same rank.

We will prove part (a) and leave the remaining proofs for the exercises.

Proof (a) We must show that every solution of $A\mathbf{x} = \mathbf{0}$ is a solution of $A^T A \mathbf{x} = \mathbf{0}$, and conversely. If \mathbf{x}_0 is any solution of $A\mathbf{x} = \mathbf{0}$, then \mathbf{x}_0 is also a solution of $A^T A \mathbf{x} = \mathbf{0}$ since

$$A^T A \mathbf{x}_0 = A^T (A \mathbf{x}_0) = A^T \mathbf{0} = \mathbf{0}$$

Conversely, if \mathbf{x}_0 is any solution of $A^T A \mathbf{x} = \mathbf{0}$, then \mathbf{x}_0 is in the null space of $A^T A$ and hence is orthogonal to all vectors in the row space of $A^T A$ by part (q) of Theorem 4.8.8. However, $A^T A$ is symmetric, so \mathbf{x}_0 is also orthogonal to every vector in the column space of $A^T A$. In particular, \mathbf{x}_0 must be orthogonal to the vector $(A^T A) \mathbf{x}_0$; that is,

$$\mathbf{x}_0 \cdot (A^T A) \mathbf{x}_0 = 0$$

Using the first formula in Table 1 of Section 3.2 and properties of the transpose operation we can rewrite this as

$$\mathbf{x}_0^T (A^T A) \mathbf{x}_0 = (A \mathbf{x}_0)^T (A \mathbf{x}_0) = (A \mathbf{x}_0) \cdot (A \mathbf{x}_0) = \|A \mathbf{x}_0\|^2 = 0$$

which implies that $A\mathbf{x}_0 = \mathbf{0}$, thereby proving that \mathbf{x}_0 is a solution of $A\mathbf{x}_0 = \mathbf{0}$.

Anton, Elementary Linear Algebra: Applications Version (11th Edition)

THEOREM 9.4.2 *If A is an m* \times *n matrix, then*:

- (a) A^TA is orthogonally diagonalizable.
- (b) The eigenvalues of A^TA are nonnegative.

Proof (a) The matrix A^TA , being symmetric, is orthogonally diagonalizable by Theorem 7.2.1.

Proof (b) Since A^TA is orthogonally diagonalizable, there is an orthonormal basis for R^n consisting of eigenvectors of A^TA , say $\{v_1, v_2, \ldots, v_n\}$. If we let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the corresponding eigenvalues, then for $1 \le i \le n$ we have

$$||A\mathbf{v}_i||^2 = A\mathbf{v}_i \cdot A\mathbf{v}_i = \mathbf{v}_i \cdot A^T A\mathbf{v}_i$$
 [Formula (26) of Section 3.2]
= $\mathbf{v}_i \cdot \lambda_i \mathbf{v}_i = \lambda_i (\mathbf{v}_i \cdot \mathbf{v}_i) = \lambda_i ||\mathbf{v}_i||^2 = \lambda_i$

It follows from this relationship that $\lambda_i \geq 0$.

Appendix: SVD and A^TA

THEOREM 7.2.1 If A is an $n \times n$ matrix with real entries, then the following are equivalent.

- (a) A is orthogonally diagonalizable.
- (b) A has an orthonormal set of n eigenvectors.
- (c) A is symmetric.

Proof (a) \Rightarrow (b) Since A is orthogonally diagonalizable, there is an orthogonal matrix P such that $P^{-1}AP$ is diagonal. As shown in Formula (2) in the proof of Theorem 5.2.1, the n column vectors of P are eigenvectors of A. Since P is orthogonal, these column vectors are orthonormal, so A has n orthonormal eigenvectors.

(b) \Rightarrow (a) Assume that A has an orthonormal set of n eigenvectors $\{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$. As shown in the proof of Theorem 5.2.1, the matrix P with these eigenvectors as columns diagonalizes A. Since these eigenvectors are orthonormal, P is orthogonal and thus orthogonally diagonalizes A.

(a) \Rightarrow (c) In the proof that $(a) \Rightarrow (b)$ we showed that an orthogonally diagonalizable $n \times n$ matrix A is orthogonally diagonalized by an $n \times n$ matrix P whose columns form an orthonormal set of eigenvectors of A. Let D be the diagonal matrix

$$D = P^T A P$$

Appendix: Row and Column Spaces

Ref: https://en.wikipedia.org/wiki/Row_and_column_spaces

Row and column spaces

From Wikipedia, the free encyclopedia

In linear algebra, the **column space** (also called the **range** or **image**) of a matrix *A* is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation.

Let \mathbb{F} be a field. The column space of an $m \times n$ matrix with components from \mathbb{F} is a linear subspace of the m-space \mathbb{F}^m . The dimension of the column space is called the rank of the matrix and is at most min(m, n). A definition for matrices over a ring \mathbb{K} is also possible.

The **row space** is defined similarly.

This article considers matrices of real numbers. The row and column spaces are subspaces of the real spaces \mathbf{R}^n and \mathbf{R}^m respectively.^[2]

The row vectors of a matrix. The row space of this matrix is the vector space generated by linear combinations of the row vectors.

Appendix: Mechanics of Computing SVD

Finding the SVD of a 3×2 matrix!

$$A = U\Sigma V^T, \qquad A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}$$

$$V^T = eigenvectors(A^TA)^T = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$