0.1 R5 数学選択

 $oxed{A}$ (1) (a)K のイデアルI が $a \in K^{\times} \cap I$ をもつなら $1 \in I$ より I = K である.よって K のイデアルは (0), K である.

(b) $\ker \rho = F$ なら $\rho|_K = \operatorname{id}$ に矛盾. よって $\ker \rho = (0)$ より ρ は単射である.

F,F' は体 K 上の有限次ベクトル空間とみなせる. $\rho:F\to F'$ が $\rho|_K=\mathrm{id}$ なら ρ はベクトル空間の単射準同型写像である. よって $[F:K]=\dim_K F<\dim_K F'=[F':K]$ である.

(2) (a) $X^4 - 25X = X(X^3 - 25)$ である. $X^3 - 25$ の根は $\sqrt[3]{5}^2$, $\sqrt[3]{5}^2\omega$, $\sqrt[3]{5}^2\omega^2$ ($\omega = e^{\frac{2\pi i}{3}}$) である.

よって $\sqrt[3]{5^2}\omega/\sqrt[3]{5^2}=\omega\in F$ である. X^3-25 はアイゼンシュタインの既約判定法から $\mathbb{Z}[X]$ 上既約である. \mathbb{Z} は UFD でその商体は \mathbb{Q} であり, X^3-25 は原始多項式であるから X^3-25 は $\mathbb{Q}[X]$ 上既約である. よって $[\mathbb{Q}(\sqrt[3]{5^2}):\mathbb{Q}]=3$ である. $\omega\in\mathbb{C}\setminus\mathbb{R}$ であり, $\mathbb{Q}(\sqrt[3]{5^2})\subset\mathbb{R}$ であるから $\omega\notin\mathbb{Q}(\sqrt[3]{5^2})$ である. X^2+X+1 が ω の最小多項式であるから $[\mathbb{Q}(\sqrt[3]{5^2})(\omega):\mathbb{Q}(\sqrt[3]{5^2})]=2$ である. よって $[F:\mathbb{Q}]=6$ である.

(b) X^4-14X^2-14 について $t=X^2$ とすれば $t^2-14t-14$ であり根は $7\pm\sqrt{7^2+14}=7\pm3\sqrt{7}$ である. よって P の根は $\pm\sqrt{7\pm3\sqrt{7}}$ である. $\sqrt{7+3\sqrt{7}}\sqrt{7-3\sqrt{7}}=\sqrt{-14}\in F$ である.

 $\sqrt{7+3\sqrt{7}} \in \mathbb{R}$ であるから $\sqrt{-14} \notin \mathbb{Q}(\sqrt{7+3\sqrt{7}})$ である.よって $F = \mathbb{Q}(\sqrt{7+3\sqrt{7}})(\sqrt{-14})$ である.P はアイゼンシュタインの既約判定法から $\mathbb{Q}[X]$ 上既約である.したがって $[\mathbb{Q}(\sqrt{7+3\sqrt{7}}):\mathbb{Q}] = 4$, $[\mathbb{Q}(\sqrt{7+3\sqrt{7}})(\sqrt{-14}):\mathbb{Q}(\sqrt{7+3\sqrt{7}})] = 2$ であるから $[F:\mathbb{Q}] = 8$ である.

 $oxed{B}$ (1)p を素元とする. p=ab と表せるとき, $ab\in(p)$ であり,(p) は素イデアルであるから $a\in(p)$ または $b\in(p)$ である. $a\in(p)$ として一般性を失わない. a=pc とかける. よって p=pcb である. すなわち p(1-cb)=0 である. p は素元であるから $p\neq 0$. よって整域であるから 1-cb=0 より bc=1 すなわち b は単元である. よって p は既約元.

 $(2)b \neq 0$ のとき, $I_{a,b} = (x^2 + ay^2, bx) = (x^2 + ay^2, x) = (ay^2, x)$ である. $\mathbb{R}[x,y]/I_{a,b} \cong \mathbb{R}[y]/(ay^2)$ である。 $ay^2 = ay \cdot y$ であるから整域となるのは a = 0 のときのみ.

b=0 のとき, $I_{a,b}=(x^2+ay^2)$ である. $a\leq 0$ なら $x^2+ay^2=(x-\sqrt{-a}y)(x+\sqrt{-a}y)$ であるから $\mathbb{R}[x,y]/I_{a,b}$ は整域でない.a>0 のとき, (x^2+ay^2) は $\mathbb{R}[x][y]$ 上可約なら,係数環が UFD であるからその商体上の多項式間 $\mathbb{R}(x)[y]$ 上可約である.よって $x^2+a(\frac{f(x)}{g(x)})^2=0$ となる $f(x),g(x)\in\mathbb{R}[x]$ が存在する. $g(x_0)\neq 0$ なる $x_0\neq 0$ について $x_0^2+a(\frac{f(x_0)}{g(x_0)})^2>0$ となり矛盾.よって既約である.したがって素イデアル.

(3) 素イデアル $\mathfrak p$ が全ての $I_{a,b}$ を含むとする. $x \in I_{a,1}$ であるから $x \in \mathfrak p$ である. また $y^2 \in I_{1,1}$ であるから $y^2 \in \mathfrak p$ である. よって $(x,y^2) \subset \mathfrak p$ である. 逆にイデアル J について $(x,y^2) \subset J$ なら J は全ての $I_{a,b}$ を含む. (x,y^2) より大きい素イデアルは $\mathbb R[x,y]/(x,y^2) \cong \mathbb R[y]/(y^2)$ の素イデアルと対応する.

 $\mathbb{R}[y]/(y^2)$ の非自明なイデアル J で $cy+d+(y^2)\in J$ とする. c=0 なら $J=\mathbb{R}[y]/(y^2)$ であるから $c\neq 0$ である. よって $y+d+(y^2)\in J$ である. $(y+d)(y-d)=y^2-d^2$ より $y+d+(y^2)\in J$ なら $d^2+(y^2)\in J$ であるから,J が真のイデアルであるから d=0 である. したがって $J=(y+(y^2))$ である.

すなわち J の逆像 $\mathfrak{p} = (x, y)$ が求める素イデアル.

