$\begin{array}{c} {\bf Exam~1} \\ {\bf Algebraic~Coding~Theory} \\ {\bf Math~525} \end{array}$

Stephen Giang RedID: 823184070

Problem 4: Let C be the code:

 $C = \{000100, 101010, 001001\}$

1. Determine the error patterns that Theorem 1.12.9 guarantees that C corrects.

Notice the minimum distance, d=3. By Theorem 1.12.9, "A code of distance d will correct all error patterns of weight $\leq \lfloor \frac{d-1}{2} \rfloor$ ". So C will correct all error patterns of weights ≤ 1 . That is:

 $e = \{000000, 100000, 010000, 001000, 000100, 000010, 000001\}$

2. Use the technique described in Example 1.12.11 to decide whether or not C corrects the error pattern 110000.

Notice the IMLD table:

\overline{w}	000100 + w	101010 + w	001001 + w	v
110100	11000*	011110	111101	000100
011010	011110	110000*	010011	101010
111001	111101	010011	11000*	001001

So C does in fact correct u = 110000