Assume the following register allocation: \$13 = x, \$20 = y, \$15 = z Write MIPS code to compute the following expression?

$$z = 4 + x*y - z;$$

R-type

op	rs	rt	rd	shamt	func
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
add \$	5, \$10,	, \$4			

I-tvpe

,			
ор	rs	rt	imm
6 bits	5 bits	5 bits	16 bits
ori \$	7, \$2,	0xff	

- op is an operation code or opcode that selects a specific operation.
- rs is always a the first source register
- rt is either a second source (Rtype) or a destination (I-type)
- rd is the destination register in Rtype
- shamt is only used for shift instructions.
- func is used together with op to select an arithmetic instruction.
- Imm is a 16-bit signed two'scomplement value from -32,768 to +32,767.

Instruction	Opcode	Func	alu_op	itype	wr_enable
add					
sub					
and					
or					
xor					
nor					
addi					
andi					
ori					
xori					

