WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

(11) International Publication Number:

WO 97/08320

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

A1

(22) International Filing Date:

19 August 1996 (19.08.96)

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

95113021.0

18 August 1995 (18.08.95)

DE et al.

EP

(34) Countries for which the regional or

international application was filed:

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FUR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).

(74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of humanderived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Datebase of human Translation in amino acid sequences Alignment of protein sequences Germline Rearranged sequences sequences Assignment to Computation of families ermline counterpart Database of used Assignment to germline families families Analysis of Computation of canonical structure consensus sequences Structural Analysis Design of CDRs Gene Design Synthetic combinatorial antibody library

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM AT AU BB BE BF BG BJ BR CC	Armenia Austria Austria Austria Austria Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Denmark Estonia Spain Finland France Gabon	GB GE GN GR HU IE IT JP KE KG KP KR LI LL LV MC MD MG ML MN MR	United Kingdom Georgia Gninea Greece Hungary Ireland Italy Japan Kenya Kyrgystan Democratic People's Republic of Korea Republic of Korea Kazakhstan Linchtenstein Sri Lanka Liberia Lithuania Lunembourg Latvia Monaco Republic of Moldova Madagascar Mali Mongolia Mauritania	MW MX NE NO NZ PL PT RO RU SD SE SG SI SK SN SZ TD TG TJ TT UA UG US UZ VN	Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore Slovenia Slovakia Senegal Senegal Togo Tajikistan Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam
---	---	---	--	--	--

-.-

()

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

٠

_¥.

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

4

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa1$, $V\kappa2$, $V\kappa3$, $V\kappa4$, $V\lambda1$, $V\lambda2$, $V\lambda3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3x2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IqSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecukle or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene $V\kappa 1$ was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains $C\kappa$ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains Cκ(A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic $C\lambda$ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2. The signal sequence (amino acids 1 to 21) was derived from the E. coli phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector pIG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from pIG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein scFv fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against ß-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-ß, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and 8-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against B-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-8, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the ß-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vk CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 $V\kappa$, 3 $V\lambda$, and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of caponical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 Vκ, 3 Vλ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- Vk, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: S₆₅T Vκ1: N₃₄A,

 V_{K3} : $G_{9}A$, $D_{60}A$, $R_{77}S$

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V κ . In the case of V λ , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2
HuCAL-VH1A	VH1-12-1	VH1-12-1
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
		VH4-31-17,-18,-19,-20
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2
HuCAL-VH6	VH ₆ -35-1	VH6-35-1
HuCAL-Vκ1	Vκ1-14,-15	Vĸ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
HuCAL-Vκ2	Vĸ2-6	Vκ2-6
HuCAL-Vk3	Vκ3-1,-4	Vκ3-4
HuCAL-Vĸ4	Vĸ4-1	Vĸ 4-1
HuCAL-Vλ1	HUMLV117,DPL5	DPL5
HuCAL-Vλ2	DPL11,DPL12	DPL12
HuCAL-Vλ.3	DPL23	HUMLV318

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vκ or Vλ genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₃Q

VH6: S₄,G

Vκ3: E,D, I₅₈V

Vκ4: K₂₄R

Vλ3: T,,S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vk2 consensus gene and the Ck gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGGS. The two oligonucleotides encoding this linker were 5'- TCAGCGGGTGGCGGTTCTGGCGGCGGTGGGAGCGGTGGCGGTGGTTC-TGGCGGTGGTGCTTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid pIG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3κ2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector pIG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekas et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI), GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI), (TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and (GTT/TAT) are trinucleotide mixtures encoding the amino acids phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7 x 10⁷ and 3.4 x 10¹⁰ for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 µl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3x2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3k2 encoding the H-CDR3 was replaced by the chloramphenicol acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 µl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12

clones of the 15-mer library had no open reading frame, thereby leading to a nonfunctional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{500nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

distribution.

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1×10^{10} cfu/well of the 10-mer and 5×10^8 cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of $100 \ \mu g/ml$ in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris-Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ l of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 μ l FITC-BSA (100 μ g/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at OD_{sopen} = 0.4 and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3x2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising B-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-B (LT-B), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to B-estradiol, testosterone, LeY, LT-B, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-B-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, B-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an AatII site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with AatII and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via Aatll/Xbal), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via AatlI/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-Vk2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal ß-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type ß-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa 1\&V\kappa 3$, $V\kappa 2$ and $V\kappa 4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and V) and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the V κ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the ß-lactamase cloning cassette via Bbsl/Mscl, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3κ2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 μg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 µg/ml). The starting OD_{soonm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD_{soonm} of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the $\alpha\text{-FLAG}$ antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in TE buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD 1.0 = 40 μ g/ml).

10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10⁸ for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial $H3\kappa2$ H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS <u>89</u>, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology 6, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology <u>6</u>, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry <u>30</u>, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, E., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ulirich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name'	Reference ²	Family	Germline genes
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11
Vk1-5	2	1	A30
Vk1-6	1 .	1	LFVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk1-10	1	1	L18; Va"
Vk1-11	1 .	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	012a (V3b)
Vk1-19	6	1	02; 012; DPK9
Vk1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk1-22	2	1	L22
Vk1-23	2	1	L23
Vk2-1	1	2	A2; DPK12
Vk2-2	6	. 2	01; 011(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name	Reference ²	Family	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	· 3	A27; humkv325; VkRF; DPK22
Vk3-5	. 2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	· 5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	· 1	7	•
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigned	VLAMBDA N.2
gVLX-4.4	6	10	

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	1-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

49

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2	2	VH2S12-14
VH3-11-1	13	3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3 .	DP59; VH19; V3-35
VH3-13-6	25	. 3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh2Ġc
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

Table 1C: (continued)

Used Name'	Reference	Family ³	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3 .	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	H7
VH4-11-10	20	4	Н8
VH4-11-11	20	4	H9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	. 17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	. H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	08	9	9,7%	. 8
MAL-NaCl	108	1	08	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	1	02	6	6,3%	123
HK102	95	1	L12(1)	0	0.0%	9
H20C3K	108	1	L12(2)	3	3,2%	125
CHEB	108	i	02	7	7,4%	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	3 1	02	9	9,5%	73

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference		
TR1.32	103	1	02	3	3,2%	92		
RF-KES1	97	1	A20	4	4,2%	121		
wes [.]	108	1	L5	10	10,5%	61		
DILp1	95	1	04	1	1,1%	70		
SA-4B	107	1	L12(2)	8	8,4%	120		
HK101	95	1	L15(1)	0	0,0%	9		
TR1.23	108	1	02	5	5,3%	92		
HF2-1/17	108	1	A30	0	0,0%	4		
2E7	108	1	A30	1	1,1%	62		
33.C9	107	1	L12(2)	7	7,4%	126		
3D6	105	1	L12(2)	2	2,1%	34		
1-2a	108	1	L8	8	8,4%	70		
RF-KL1	97	1	L8	4	4,2%	121		
TNF-E7	108	1	A30	9	9,5%	41		
TR1.22	108	1	02	7	7,4%	92		
HIV-B35	106	1	02	2	2,2%	8		
HIV-b22	106	1	02	2	2,2%	8		
HIV-b27	106	1	02	2	2,2%	8		
HIV-B8	107	1	02	10	10,8%	8		
HIV-b8	107	1	02	10	10,8%	8		
RF-SJ5	95	1	· A30	5	5,3%	113		
GAL(I)	108	1	A30	6	6,3%	64		
R3.5H5G	108	1	02	6	6,3%	70		
HIV-b14	106	1	A20	2	2,2%	8		
TNF-E1	105	1	L5	8	8,4%	41		
WEA	108	1	A30	8	8,4%	37		
EU	108	1	L12(2)	5	5,3%	40		
FOG1-G8	108	1	L8	11	11,6%	41		
1X7RG1	108	1	L1	8	8,4%	70		
BLI	108	1	L8	3	3,2%	72		
KUE	108	1	L12(2)	11	11,6%	. 32		
LUNm01	108	1	L12(2)	10	10,5%	6		
HIV-b1	106	1	A20	4	4,3%	8		
HIV-s4	103		02	2	2,2%	8		
			54.					

Table 2A: (continued)

Name'	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
CAR	107	1	L12(2)	11	11,7%	79
BR	107	1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0,0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	95	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0.0%	122
CLL PATIENT 9	88	1	012	1	1,1%	122
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	88	. 1	A20	1	1,1%	122
CLL PATIENT 1	88	1	L8	2	2,3%	122
CLL PATIENT 2	88	1	L8	0	0,0%	122
CLL PATIENT 7	88	1	L 5	0	0,0%	122
CLL PATIENT 8	88	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	0	0,0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108	1 ′	L12(2)	20	21,1%	68
1B11	108	1	L12(2)	20	21,1%	68
1H1	108	1	L12(2)	21	22,1%	68
2A12	108	1	L12(2)	21	22,1%	68
CUR	109	3	A27	0	0,0%	66
GLO	109	3	A27	0	0,0%	16
RF-TS1	96	3	A27	0	0,0%	121
GAR'	109	3	A27	0	0,0%	67
FLO	109	3	A27	0	0,0%	66
PIE	109	3	A27	0	0.0%	91
HAH 14.1	109	3	A27	1	1,0%	51
HAH 14.2	109	3	A27	1	1,0%	51

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HAH 16.1	109	3	A27	1	1,0%	51
NOV .	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67
PAY	109	3	A27	· 1	1,0%	66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	. 1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	. 2 -	2,1%	121
SIE	109	3	A27	2	2,1%	15
ESC	109	3	A27	2	2,1%	98
HEW'	110	3	A27	2	2,1%	98
YES8c	109	. 3	A27	3	3,1%	33
TI	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	3	A27	0	0,0%	94
ROB	106	3 .	A27	. 0	0,0%	94
NG9	96	3	A27	4	4,2%	11
NEU	109	3	A27	4	4,2%	66
WOL	109	3	A27	4	4,2%	2
35G6	109	3	A27	4	4,2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4,2%	84
BRA	106	3	A27	1	1,1%	94
HAH	106	3	A27	1	1,1%	94
HIC	105	3	A27	0	0,0%	94
FS-2	109	3	A27	6	6,3%	87
JH'	107	3	A27	6	6,3%	38
EV1-15	109	3	A27	6.	6,3%	83
SCA	108	3	A27	6	6,3%	65
			56			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A2 7	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0.0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2.	2,1%	99
LS2	108	3	L6	1.	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	2	2,1%	99
LS2S3-8c	107	3	L6	2	2,1%	99
LS5	108	3	Fe	1	1,1%	109
LS2S3-5	107	3	L6	3	3,2%	99
LUNm03	109	3	A27	13	13,5%	6
IARC/BL41	108	3	A27	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	111

5**天**

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L6	3	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
slkv12	101	3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3 .	3,2%	121
II-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3 .	L6	10	10,5%	121
GER	109	3	L2/L16	7 .	7,4%	75
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	3	L6	4	4,7%	13
slkv15	99	3	L6	2	2,3%	13
bkv6	100	3	L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
slkv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	· 6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
sikv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3	Ļ6	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
MEI,	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	. 3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0.0%	54
GA3.4	92	3	L6	7	9,0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

Table 2A: (continued)

Name ¹	.aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	. 0	0,0%	54
MD3.9	93	3	A27	0 .	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	3	A27	1	1,3%	54
M3.4N	91	. 3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	08	12	12,6%	31
REI-based CAMPATH-9	107	1	08	14	14,7%	39
RZ	107	1	08	14	14,7%	50
BI	108	1	08	14	14,7%	14
AND	107	1	02	13	13,7%	69
2A4	109	1	02	12	12,6%	23
KA	108	. 1	08	19	20,0%	107
MEV	109	1	02	14	14,7%	29
DEE	106	1	02	13	14,0%	76
OU(IOC)	108	1	02	18	18,9%	60
HuRSV19VK	111	1	08	21	21,0%	115
SP2	108	1	02	17	17,9%	93
BJ26	99	1 -	08	21	24,1%	1
NI ·	112	1	08	24	24,2%	106
BMA 0310EUCIV2	106	1	L12(1)	21	22,3%	105

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	80	16	21,9%	1
GM 607	113	2	A3	0	0,0%	58
R5A3K	- 114	2	A3	1	1,0%	125
R1C8K	114	2	A3	1	1,0%	125
VK2.R149	113	2	A3	. 2	2,0%	118
TR1.6	109	2	A3	. 4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2	A3	6	6,0%	87
TR1.8	110	2	A 3	6	6,0%	92
NIM	113	2 .	A3	8	8,0%	28
inc	112	2	A3	11	11,0%	35
TEW	107	2	A3	6	6,4%	96
CUM	114	2	01	7	6,9%	44
HRF1	71	2	A3	4	5,6%	124
CLL PATIENT 19	87	2	A3	0	0,0%	122
CLL PATIENT 20	87	2	A3	0	0,0%	122
MIL	112	2	A3	16	16,2%	26
FR	113	2	A3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Taykv306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1	1,6%	52 .
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	0	0.0%	119
1-187-29	110	3	A27	0	0.0%	119
TT117	110	.3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20,2%	8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22,3%	8
HIV-LC13	107	3	A27	21	22,3%	8
			61			

PCT/EP96/03647

WO 97/08320

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	. 8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	. 8
HIV-loop35	108	3	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
TT125	108	1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	08	16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17	5	5,0%	45
FK-001	113	4	В3	0	0,0%	81
CD5+.28	101	4	В3	1	1,0%	27
LEN	114	4	В3	1	1,0%	104
UC	114	4	В3	1	1,0%	111
CD5+.5	101	4	В3	1	1,0%	27

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	2	2.0%	27
CD5+.23	101	4	B3	2	2,0%	27
CD5+.7	101	4	B3	2	2.0%	27
VJI	113	4	В3	3	3,0%	56
LOC	113	4	B 3	3	3,0%	72
MAL	113	4	B 3	3	3,0%	72
CD5+.6	101	4	B3	3	3,0%	27
H2F	113	4	B3	3	3,0%	70
PB17IV	114	4	В3	4	4,0%	74
CD5+.27	101	4	B3	4	4,0%	27
CD5+.9	101	4	В3	4	4,0%	27
CD528	101	4	B3	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	B3	6	5,9%	27
CD5+.10	101	4	B3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	. 4	В3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	В3	10	9,9%	27
MD4.1	92	4	· B3	0	0,0%	54
MD4.4	92	4	B3	0	0,0%	54
MD4.5	92	4	В3	0	0,0%	54
MD4.6	92	4	В3	0	0,0%	54
MD4.7	92	4	B3	0	0,0%	54
MD4.2	92	4	В3	1	1,3%	54
MD4.3	92	4	В3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2,4%	122

Table 2B: rearranged human lambda sequences

				D'CC A	0/ 4:65 t-	Deference
Name¹	aa²	Computed	Germline	Diff. to germline ⁵	% diff. to germline ⁶	Reference
		family ³	gene⁴	3- ······	J	
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	. 112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0%	6
T2:C14	110	1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	0	0%	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	. 1	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
ZIM	112	. 1	HUMLV117	7	7%	18
RF-SJ1	100	1.	DPL5	9	9%	78
IGLV1.1	98	1	DPL4	0	0%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	50
H210	111	. 2	DPL10	4	4%	45
NOV	110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8	8%	24
AL MC	110	2	DPL11	6	6%	28
MES	112	2	DPL11	8	8%	84
FOG1-A3	. 111	2	DPL11	9	9%	27
AL NOV	112	2	DPL11	7	7%	28
			4			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
HMST-1	110	2	DPL11	4	4%	82
HBW4-1	108	2	DPL12	9	9%	52
WH	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
HBp2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	89	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0%	49
THY-29	110	3	DPL16	0 -	0%	27
PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	. 3	DPL16	6	6%	49
6H-3C4	108	3	DPL16	7	7%	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	4%	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	. 56
NGD9	110	2	DPL11	7	7%	56
MUC1-1	111	2	DPL11	11	10%	27
A30c	111	2	DPL10	6	6%	56
KS6	110	2	DPL12	6	6%	56
TEL13	111	2	DPL11 65	11	10%	49

Table 2B: (continued)

Name ¹	aa²	Computed	Germline	Diff. to	% diff. to germline ⁶	Reference'
		family ³	gene⁴	germine	germine	
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
вон	112	2	DPL12	11	10%	37
TOG .	111	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
во	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	15%	46
NIG-58	110	2	DPL12	20	19%	69 [°]
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	0%	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1	DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4 .
COX	112	1	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	3
VOR	112	1	DPL2	16	15%	16
AL POL	113	1	DPL2	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19
			66			

PCT/EP96/03647

WO 97/08320

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
mAb60	108	3	DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE	94	3	DPL23	17	17%	19
VL8	98	8	DPL21	0	0%	81
MOT	110	3	Humlv318	23	22%	38
GAR	108	3	DPL23	26	25%	33
32.B9	. 98	8	DPL21	5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	4%	60
YM-1	116	8	HUMLV801	51	49%	75
Кене	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	8	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	- 43
SHO	108	3	DPL23	19	18%	19
HAN	108		DPL23	20	19%	. 19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	. 9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY	106	3	DPL23	9	9%	19
COT	106	3	DPL23	13	12%	19
Pag-1	111	3	Humlv318	5	5%	31
_			67			

6 z

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humiv318	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13	12%	19
THO	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	98	1	VH1-13-12	10	10,2%	75
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	· 1	VH1-13-6	7	7,1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	55
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	77
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5,1%	98
LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	125	1	VH1-12-7	5	5,1%	98
LS253-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	. 6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	1	VH1-12-7	7	7.1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0,0%	105
NEI	127	1	VH1-12-1	0	0,0%	55
AND	127	1	VH1-12-1	0	0.0%	55
L7	127	1	VH1-12-1	0	0.0%	54
L22 ·	124	1	VH1-12-1	0	0.0%	54
L24	127	1	VH1-12-1	0	0,0%	54

Table 2C: (continued)

L26 116 1 VH1-12-1 0 0,0% 54 L33 119 1 VH1-12-1 0 0,0% 54 L34 117 1 VH1-12-1 0 0,0% 54 L36 118 1 VH1-12-1 0 0,0% 54 L39 120 1 VH1-12-1 0 0,0% 54 L41 120 1 VH1-12-1 0 0,0% 54 L41 120 1 VH1-12-1 0 0,0% 54 L42 125 1 VH1-12-1 0 0,0% 54 L42 125 1 VH1-12-1 0 0,0% 26 783c 127 1 VH1-12-1 0 0,0% 22 X17115 127 1 VH1-12-1 0 0,0% 37 L25 124 1 VH1-12-1 0 0,0% 54 L17	Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
L34	L26	116	1	VH1-12-1	0	0,0%	54
L36	L33	119	1	VH1-12-1	0	0.0%	54
L36	L34	117	1	VH1-12-1	0	0,0%	54
L41	•	118	1	VH1-12-1	0	0,0%	54
L42	L39	120	1	VH1-12-1	0	0,0%	54
VHGL 1.8 101 1 VH1-12-1 0 0,0% 26 783c 127 1 VH1-12-1 0 0,0% 22 X17115 127 1 VH1-12-1 0 0,0% 37 L25 124 1 VH1-12-1 0 0,0% 54 L17 120 1 VH1-12-1 1 1,0% 54 L30 127 1 VH1-12-1 1 1,0% 54 L37 120 1 VH1-12-1 7 7,1% 71 IL37 120 1 VH1-12-1 7 7,1% 70 KAS	L41	120	1	VH1-12-1	0	0,0%	54
783c 127 1 VH1-12-1 0 0,0% 22 X17115 127 1 VH1-12-1 0 0,0% 37 L25 124 1 VH1-12-1 0 0,0% 54 L17 120 1 VH1-12-1 1 1,0% 54 L30 127 1 VH1-12-1 1 1,0% 54 L37 120 1 VH1-12-1 1 1,0% 54 L37 120 1 VH1-12-1 1 1,0% 54 TNF-E7 116 1 VH1-12-1 2 2,0% 42 mAb111 122 1 VH1-12-1 7 7,1% 71 III-2R 122 1 VH1-12-1 7 7,1% 79 YES8c 121 1 VH1-12-1 7 7,1% 79 YES8c 122 1 VH1-12-1 8 8,2% 82 BO	L42	125	1	VH1-12-1	0	0,0%	54
X17115 127 1 VH1-12-1 0 0,0% 37 L25 124 1 VH1-12-1 0 0,0% 54 L17 120 1 VH1-12-1 1 1,0% 54 L30 127 1 VH1-12-1 1 1,0% 54 L37 120 1 VH1-12-1 1 1,0% 54 TNF-E7 116 1 VH1-12-1 2 2,0% 42 mAb111 122 1 VH1-12-1 7 7,1% 71 III-2R 122 1 VH1-12-1 7 7,1% 70 KAS 121 1 VH1-12-1 7 7,1% 79 YES8c 122 1 VH1-12-1 8 8,2% 34 RF-TS1 123 1 VH1-12-1 8 8,2% 82 BOR' 121 1 VH1-12-1 8 8,2% 26 mAb410.30F305 117 1 VH1-12-1 8 8,2% 26 <t< td=""><td>VHGL 1.8</td><td>101</td><td>1</td><td>VH1-12-1</td><td>0</td><td>0,0%</td><td>26</td></t<>	VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
L25 124 1 VH1-12-1 0 0,0% 54 L17 120 1 VH1-12-1 1 1,0% 54 L30 127 1 VH1-12-1 1 1,0% 54 L37 120 1 VH1-12-1 1 1,0% 54 TNF-E7 116 1 VH1-12-1 2 2,0% 42 mAb111 122 1 VH1-12-1 7 7,1% 71 III-2R 122 1 VH1-12-1 7 7,1% 71 III-2R 122 1 VH1-12-1 7 7,1% 70 KAS 121 1 VH1-12-1 7 7,1% 79 YES8c 122 1 VH1-12-1 8 8,2% 34 RF-TS1 123 1 VH1-12-1 8 8,2% 82 BOR' 121 1 VH1-12-1 8 8,2% 26 m	783c	127	1	VH1-12-1	0	0,0%	22
L17	X17115	127	1	VH1-12-1	0	0,0%	37
L30	L25	124	1	VH1-12-1	0	0,0%	54
L37	L17	120	1	VH1-12-1	1	1,0%	54
TNF-E7	L30	127	1	VH1-12-1	1	1,0%	54
mAb111 122 1 VH1-12-1 7 7,1% 71 III-2R 122 1 VH1-12-9 3 3,1% 70 KAS 121 1 VH1-12-1 7 7,1% 79 YES8c 122 1 VH1-12-1 8 8,2% 34 RF-TS1 123 1 VH1-12-1 8 8,2% 82 BOR' 121 1 VH1-12-8 7 7,1% 79 VHGL 1.9 101 1 VH1-12-8 7 7,1% 79 VHGL 1.9 101 1 VH1-12-1 8 8,2% 26 mAb410.30F305 117 1 VH1-12-9 5 5,1% 52 EV1-15 127 1 VH1-12-8 10 10,2% 78 mAb112 122 1 VH1-12-1 11 11,2% 71 EU 117 1 VH1-12-1 11 11,2% 28 H210 127 1 VH1-12-1 0 0,0% 30	L37	120	1	VH1-12-1	. 1	1,0%	54
III-2R	TNF-E7	116	1	VH1-12-1	2	2,0%	42
KAS 121 1 VH1-12-1 7 7,1% 79 YES8c 122 1 VH1-12-1 8 8,2% 34 RF-TS1 123 1 VH1-12-1 8 8,2% 82 BOR' 121 1 VH1-12-8 7 7,1% 79 VHGL 1.9 101 1 VH1-12-1 8 8,2% 26 mAb410.30F305 117 1 VH1-12-9 5 5,1% 52 EV1-15 127 1 VH1-12-8 10 10,2% 78 mAb112 122 1 VH1-12-1 11 11,2% 71 EU 117 1 VH1-12-1 11 11,2% 28 H210 127 1 VH1-12-1 12 12,2% 66 TRANSGENE 104 1 VH1-12-1 0 0,0% 30 CLL2-1 93 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113	mAb111	122	1	VH1-12-1	7 ·	7,1%	71
YES8c 122 1 VH1-12-1 8 8,2% 34 RF-TS1 123 1 VH1-12-1 8 8,2% 82 BOR' 121 1 VH1-12-8 7 7,1% 79 VHGL 1.9 101 1 VH1-12-1 8 8,2% 26 mAb410.30F305 117 1 VH1-12-1 8 8,2% 26 mAb410.30F305 117 1 VH1-12-9 5 5,1% 52 EV1-15 127 1 VH1-12-8 10 10,2% 78 mAb112 122 1 VH1-12-1 11 11,2% 71 EU 117 1 VH1-12-1 11 11,2% 28 H210 127 1 VH1-12-1 12 12,2% 66 TRANSGENE 104 1 VH1-12-1 0 0,0% 30 CLL2-1 93 1 VH1-12-1 0 0,0% 30 LS7 99 1 VH1-12-7 4 4,1% 113	III-2R	122	1	VH1-12-9	3	3,1%	70
RF-TS1 123 1 VH1-12-1 8 8,2% 82 BOR' 121 1 VH1-12-8 7 7,1% 79 VHGL 1.9 101 1 VH1-12-1 8 8,2% 26 mAb410.30F305 117 1 VH1-12-9 5 5,1% 52 EV1-15 127 1 VH1-12-8 10 10,2% 78 mAb112 122 1 VH1-12-1 11 11,2% 71 EU 117 1 VH1-12-1 11 11,2% 28 H210 127 1 VH1-12-1 11 11,2% 66 TRANSGENE 104 1 VH1-12-1 12 12,2% 66 TRANSGENE 104 1 VH1-12-1 0 0,0% 111 CLL2-1 93 1 VH1-12-1 0 0,0% 30 CLL10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-8 1 1,0% 30	KAS	121	1	VH1-12-1	7	7,1%	79
BOR' 121 1 VH1-12-8 7 7,1% 79 VHGL 1.9 101 1 VH1-12-1 8 8,2% 26 mAb410.30F305 117 1 VH1-12-9 5 5,1% 52 EV1-15 127 1 VH1-12-8 10 10,2% 78 mAb112 122 1 VH1-12-1 11 11,2% 71 EU 117 1 VH1-12-1 11 11,2% 28 H210 127 1 VH1-12-1 12 12,2% 66 TRANSGENE 104 1 VH1-12-1 0 0,0% 111 CLL2-1 93 1 VH1-12-1 0 0,0% 30 CLL10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-13-8 0 0,0% 30 </td <td>YES8c</td> <td>122</td> <td>1</td> <td>VH1-12-1</td> <td>8</td> <td>8,2%</td> <td>34</td>	YES8c	122	1	VH1-12-1	8	8,2%	34
VHGL 1.9 101 1 VH1-12-1 8 8,2% 26 mAb410.30F305 117 1 VH1-12-9 5 5,1% 52 EV1-15 127 1 VH1-12-8 10 10,2% 78 mAb112 122 1 VH1-12-1 11 11,2% 71 EU 117 1 VH1-12-1 11 11,2% 28 H210 127 1 VH1-12-1 12 12,2% 66 TRANSGENE 104 1 VH1-12-1 0 0,0% 30 CLL2-1 93 1 VH1-12-1 0 0,0% 30 CLL10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-6 1 1,0% 30 <	RF-TS1	123	1	VH1-12-1	8	8,2%	82
mAb410.30F305 117 1 VH1-12-9 5 5,1% 52 EV1-15 127 1 VH1-12-8 10 10,2% 78 mAb112 122 1 VH1-12-1 11 11,2% 71 EU 117 1 VH1-12-1 11 11,2% 28 H210 127 1 VH1-12-1 12 12,2% 66 TRANSGENE 104 1 VH1-12-1 0 0,0% 111 CLL2-1 93 1 VH1-12-1 0 0,0% 30 CLL10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-13-8 0 0,0% 30 ALL56-1 85 1 VH1-13-6 1 1,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30 <td>BOR'</td> <td>121</td> <td>1</td> <td>VH1-12-8</td> <td>7</td> <td>7,1%</td> <td>79</td>	BOR'	121	1	VH1-12-8	7	7,1%	79
EV1-15 127 1 VH1-12-8 10 10,2% 78 mAb112 122 1 VH1-12-1 11 11,2% 71 EU 117 1 VH1-12-1 11 11,2% 28 H210 127 1 VH1-12-1 12 12,2% 66 TRANSGENE 104 1 VH1-12-1 0 0,0% 111 CLL2-1 93 1 VH1-12-1 0 0,0% 30 CLL10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-6 1 1,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	VHGL 1.9	101	1 .	VH1-12-1	8	8,2%	26
mAb112 122 1 VH1-12-1 11 11,2% 71 EU 117 1 VH1-12-1 11 11,2% 28 H210 127 1 VH1-12-1 12 12,2% 66 TRANSGENE 104 1 VH1-12-1 0 0,0% 111 CLL2-1 93 1 VH1-12-1 0 0,0% 30 CLL10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	mAb410.30F305	117	1	VH1-12-9	-5	5,1%	52
EU 117 1 VH1-12-1 11 11,2% 28 H210 127 1 VH1-12-1 12 12,2% 66 TRANSGENE 104 1 VH1-12-1 0 0,0% 111 CLL2-1 93 1 VH1-12-1 0 0,0% 30 CLL10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	EV1-15	127	1	VH1-12-8	10	10,2%	78
H210 127 1 VH1-12-1 12 12,2% 66 TRANSGENE 104 1 VH1-12-1 0 0,0% 111 CLL2-1 93 1 VH1-12-1 0 0,0% 30 CLL10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	mAb112	122	1	VH1-12-1	11	11,2%	71
TRANSGENE 104 1 VH1-12-1 0 0,0% 111 CLL2-1 93 1 VH1-12-1 0 0,0% 30 CLL10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	EU	117	1	VH1-12-1	11	11,2%	28
CLL2-1 93 1 VH1-12-1 0 0,0% 30 CLL10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	H210	127	1	VH1-12-1	12	12,2%	66
CLL 10 13-3 97 1 VH1-12-1 0 0,0% 29 LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	TRANSGENE	104	1	VH1-12-1	0	0,0%	111
LS7 99 1 VH1-12-7 4 4,1% 113 ALL7-1 87 1 VH1-12-7 0 0,0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	CLL2-1	93	1	VH1-12-1	0	0,0%	30
ALL7-1 87 1 VH1-12-7 0 0.0% 30 CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	CLL10 13-3	97	1	VH1-12-1	0 .	0,0%	29
CLL3-1 91 1 VH1-12-7 1 1,0% 30 ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	LS7	99	1	VH1-12-7	4	4,1%	113
ALL56-1 85 1 VH1-13-8 0 0,0% 30 ALL1-1 87 1 VH1-13-6 1 1,0% 30	ALL7-1	87	1	VH1-12-7	0	0.0%	30
ALL1-1 87 1 VH1-13-6 1 1,0% 30	CLL3-1	91	1	VH1-12-7	1	1,0%	30
	ALL56-1	85	1	VH1-13-8	0	0,0%	30
ALL4-1 94 1 VH1-13-8 0 0,0% 30	ALL1-1	87	1	VH1-13-6	1	1,0%	30
•	ALL4-1	94	1	VH1-13-8	0	0,0%	30

7C

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
ALL56 15-4	85	1	VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	. 30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	, 1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1 .	VH1-13-15	3	3,1%	26
SP2	119	1	VH1-13-6	. 15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2,0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	. 2	2,0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
557	99	1	VH1-12-7	3	3,1%	46
s5B7	102	1	VH1-12-1	0	0,0%	46
s6A3	97	1	VH1-12-1	0	0,0%	46
ss6	99	1	VH1-12-1	0	0,0%	46
L2H7	103	1	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124		VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99		VH1-13-15	3	3,1%	46
PHOX15	124		VH1-12-7	20	20,4%	73
			<i></i> チ <i>l</i>			

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9,0%	4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2	VH2-31-11	8	8,1%	124
OU	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2	VH2-31-5	2	2,0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22,0%	131
MTFC8	125	3	VH3-14-4	23	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	. 114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107	3	VH3-14-4	. 9	9,0%	85
N51P8	126	3	VH3-14-1	9	9.0%	77
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126	3	VH3-13-26	5	5,1%	35
ZM1-1	112	3	VH3-11-3	8	8,2%	5
E55 3.15	110	3	VH3-13-26	0	0,0%	26
gF9	108	3	VH3-13-8	15	15,3%	75
THY-32	120	3	VH3-13-26	3	3,1%	42
RF-KL5	100.	3	VH3-13-26	5	5.1%	96
OST577	122		VH3-13-13	6	6,1%	5
			<u> </u>			-

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
ВО .	113	3	VH3-13-19	15	15,3%	10
П125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	. 124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8.2%	85
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-						
9	118	3	VH3-13-13	16	16,3%	41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	77
П117	107	3	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14,3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0	0.0%	46
s6C8	100	3	VH3-13-7	0	0.0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	125
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0.0%	46
s6H7	100	3	VH3-13-13	0	0,0%	46
ss1	102	3	VH3-13-13	0	0,0%	46
ss8	94	3	VH3-13-13	0	0,0%	46
DOB	120	3	VH3-13-26	21	21,4%	116
THY-33	115	3	VH3-13-15	20	20.4%	42
NOV	118	3	VH3-13-19	14	14,3%	38
rsv13H	120	3	VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2,0%	· 46
L2E8	99	3	VH3-13-19	0	0.0%	46
L2D10	101	3	VH3-13-10	1	1,0%	46
L2E7	98	3	VH3-13-10	1	1,0%	46

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0,0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	88
s6H9	101	3	VH3-13-25	0	0,0%	46
8	112	3	VH3-13-1	6	6,1%	118
23	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2	125	3	VH3-13-10	0	0,0%	32
18/9	125	3	VH3-13-10	0	0,0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3	VH3-13-10	0	0,0%	8
A77	109	3	VH3-13-10	0	0,0%	44
B19.7	108	3 .	VH3-13-10	0	0,0%	44
M43	119	3	VH3-13-10	0	0,0%	103
1/17	125	3	VH3-13-10	0	0,0%	31
18/17	125	3	VH3-13-10	0	0,0%	31
E54 3.4	109	3	VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	111	3	VH3-13-10	1	1,0%	26
GL16	106	3	VH3-13-10	1	1,0%	44
4G12	125	3	VH3-13-10	1	1,0%	. 56
A73	106	3	VH3-13-10	2	2,0%	44
AL1.3	111	3	VH3-13-10	3	3,1%	117
3.A290	118	3	VH3-13-10	2	2,0%	108
Ab18	127	3	VH3-13-8	2	2,0%	100
E54 3.3	105	3	VH3-13-10	3	3,1%	26
35G6	121	3	VH3-13-10	3	3,1%	

夕4
SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene'	Diff. to germline ⁵	% diff. to germline ⁶	Reference
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5,1%	100
N87	126	. 3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129—
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8,2%	115
9F2H	127	3	VH3-13-10	9	9,2%	127
VD	115	3	VH3-13-10	9	9,2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8,2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-8	0	0.0%	104
AL3.5	90	3	VH3-13-10	· 2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38C1.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42.
HA3D1	117	3	VH3-13-21	1	1,0%	81
E54 3.2	112	3	VH3-13-24	0	0,0%	26
mAb52	128	3	VH3-13-12	2	2,0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	.3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	51
mAb105	128	3	VH3-13-12	2	2,0%	51
mAb107	128	3	VH3-13-12	2	2.0%	51
E55 3.14	110		VH3-13-19	0	0,0%	26

75

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
F13-28	106	3	VH3-13-19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4,1%	51
YSE .	117	3	VH3-13-24	6	6,1%	. 72
E55 3.23	106	3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	VH3-13-1	3	3,1%	85
N42P5	124	3	VH3-13-2	7	7,1%	77
FOG1-H6	110	3	VH3-13-16	7	7,1%	42
0-81	115	3	VH3-13-19	11 -	11,2%	47
HIV-s8	122	3	VH3-13-12	11	11,2%	- 12
mAb114	125	3	VH3-13-19	12	12,2%	71
33.F12	116	3	VH3-13-2	4	4.1%	129
484	119	3	VH3-1X-3	0	0,0%	101
M26	123	3	VH3-1X-3	0	0,0%	103
VHGL 3.1	100	3	VH3-1X-3	0	0,0%	26
E55 3.13	113	3	VH3-1X-3	1	1,0%	26
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101	3	VH3-1X-6	3	3,0%	2
82-D V-D	106	3	VH3-1X-3	5	5,0%	112
MAL	129	3	VH3-1X-3	5	5,0%	72
LOC	123	3	VH3-1X-6	5	5,0%	72
LSF2	101	3	VH3-1X-6	11	11,0%	2
HIB RC3	100	3	· VH3-1X-6	11	11,0%	1
56P1	119	3	VH3-13-7	0	0,0%	104
M72	122	3	VH3-13-7	0	0,0%	103
M74	121	3	VH3-13-7	0	0,0%	103
E54 3.5	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	VH3-13-7	0	0,0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	3	VH3-13-7	1	1,0%	83
PR-TS1	114	3	VH3-13-7	1	1,0%	85
KIM46H	127	3	VH3-13-13	0	0,0%	18
E55 3.6	108	3	VH3-13-7	2	2,0%	26
E55 3.10	107	3	VH3-13-13	1	1,0%	26
3.B6	114	3	VH3-13-13	1	1,0%	108
E54 3.6	110	3	VH3-13-13	1 ,	1,0%	26
FL2-2	114	3	VH3-13-13	1	1,0%	80
				•		

76

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	82
E55 3.12	109	3	VH3-13-15	0	0,0%	26
19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8,2%	42
TNF-A1	117	3	VH3-13-15	4	4,1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
HN.14	124	3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10,2%	12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
333	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24.0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110	3	VH3-13-19	10	10,2%	126
К6Н6	119	3	VH3-1X-6	18	18,0%	60
K4B8	119	3	VH3-1X-6	18	18,0%	60
K5B8	119		VH3-1X-6	18	18,0%	60

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	119	3	VH3-1X-6	19	19,0%	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3	VH3-13-10	3	3,1%	77
N54P6	95	3	VH3-13-16	7	7,1%	77
LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	3
HY18	121	4	VH4-11-2	0	0,0%	43
mAb63	126	4	VH4-11-2	0	0,0%	45
FS-3	105	4	VH4-11-2	0	0,0%	86
FS-5	111	4	VH4-11-2	0	0,0%	86
FS-7	107	4	VH4-11-2	, 0	0,0%	86
FS-8	110	4	VH4-11-2	0	0,0%	86
PR-TS2	105	4	VH4-11-2	0	0,0%	85
RF-TMC	102	4	VH4-11-2	0	0,0%	85
mAb216	122	4	VH4-11-2	1	1,0%	15
mAb410.7.F91	122	4	VH4-11-2	1	1,0%	52
mAbA6H4C5	124	4	VH4-11-2	1	1,0%	15
Ab44	127	4	VH4-11-2	2	2,1%	100
6H-3C4	124	4	VH4-11-2	3	3,1%	59
FS-6	108	4	VH4-11-2	6	6,2%	86
FS-2	114	4 .	VH4-11-2	6	6,2%	84
HIG1	126	. 4	VH4-11-2	7	7,2%	62
FS-4	105	4	VH4-11-2	8	8,2%	86
SA-4A	123	4	VH4-11-2	9	9,3%	125
LES-C	119	4	VH4-11-2	10	10,3%	99
DI	78	4	VH4-11-9	16	16,5%	58
Ab26	126	4	VH4-31-4	8	8,1%	100
TS2	124	4	VH4-31-12	15	15,2%	110
265-695	115	4	VH4-11-7	16	16,5%	5
WAH	129	4	VH4-31-13	19	19,2%	93
268-D	122	4	VH4-11-8	22	22,7%	6
58P2	118	4	VH4-11-8	. 0	0,0%	104
mAb67	128	4	VH4-21-4	1	1,0%	45
4.L39	115	4	VH4-11-8	2	2,1%	108
mF7	111	4	VH4-31-13	3	3,0%	75
			_			

7**8**

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
B3	123	4	VH4-21-3	8	8,2%	53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78 .	118	4	VH4-11-9	11	11,3%	77
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0 .	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAŤ	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	85
E54 4.4	110	4	VH4-11-7	. 0	0,0%	26
E55 4.A1	108	4	VH4-11-7	0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	95	4	VH4-11-12	0	0,0%	104
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0.0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
L3-4	98	5	VH5-12-1	0	0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0,0%	17
CORD4	98	5	VH5-12-1	0	0.0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0 .	0,0%	17

zS

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
CD+1	98	5 .	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0,0%	17
CD+4	98	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0,0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0.0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB'	122	5	VH5-12-1	0	0,0%	97
VERG5	98	5	VH5-12-1	0	0,0%	17
PBL2	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1 -	1.0%	49
PBL12	98	5	VH5-12-1	1	1,0%	17
CD+2	98	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	. 5	VH5-12-1	1	1,0%	17
CORD2	98	5	VH5-12-1	2	2,0%	17
PBL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	. 2	2,0%	17
CD-2	98	5	VH5-12-1	2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5 `	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	. 3	3,1%	17 .
PBL13	98	.5	VH5-12-1	3	3,1%	17.
PBL7	98	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	3	3,1%	97
VERG3	98	· 5	VH5-12-1	3	3,1%	17
PBL3	98	5	VH5-12-1	3	3,1%	17
VERG7	98	5	VH5-12-1	3	3.1%	17
PBL5	94	5	VH5-12-1	0	0,0%	17
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98	5	VH5-12-1	4	4,1%	17
PBL11	98	5	VH5-12-1	4	4,1%	17
CORD6	98	5	VH5-12-1	. 4	4,1%	17
VERG2	98	5	VH5-12-1	5	5,1%	17

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLLG	98	5	VH5-12-1	6	6,1%	17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0,0%	97
HOM.	120	5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
Tu0	99	5	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
P3-69	127	5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4,1%	121

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
1-185-37	125	5 -	VH5-12-4	0	0,0%	124
1-187-29	125	5	VH5-12-4	0	0,0%	124
Pi-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6 ·	VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
F19ML1	107	6	VH6-35-1	0	0,0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	6	VH6-35-1	0 .	0,0%	122
VH6.N11	123	6	VH6-35-1	0	0.0%	122
VH6.N12	123	6	VH6-35-1	0	0,0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	0	0,0%	122
VH6.N6	127	6	VH6-35-1	0	0,0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0,0%	122
VH6.N9	123	6	VH6-35-1	0	0,0%	122

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0.0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1,0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3,0%	122
A10	107	6	VH6-35-1	3	3,0%	68
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	.4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6.A9	125	6	VH6-35-1	. 8	7,9%	122
VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2,0%	123
VH6.A10	126	6	VH6-35-1	12	11,9%	122

Table 2C: (continued)

Name¹	aa²	² Computed Germ family ³ gen		Diff. to germline ^s	% diff. to germline ⁶	Reference'
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	. 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B41	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

WO 97/08320 . PCT/EP96/03647

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Vk1-1	Family ¹	Name	Rearranged ²	Sum
Vk1-3	I	Vkl-l	28	
1 Vk1-4 0 1 Vk1-5 7 1 Vk1-6 0 1 Vk1-7 0 1 Vk1-8 2 1 Vk1-9 9 1 Vk1-9 9 1 Vk1-10 0 1 Vk1-11 1 1 Vk1-12 7 1 Vk1-13 1 1 Vk1-15 2 1 Vk1-16 2 1 Vk1-17 16 1 Vk1-18 1 1 Vk1-19 33 1 Vk1-20 1 1 Vk1-21 1 1 Vk1-21 1 1 Vk1-23 0 119 entries 2 Vk2-1 0 119 entries 2 Vk2-2 1 1 2 Vk2-3 0 119 entries 2 Vk2-4 0 2 2 Vk2-5 0 0 2 V	i	Vk1-2	0	
1 Vk1-5 7 1 Vk1-6 0 1 Vk1-7 0 1 Vk1-8 2 1 Vk1-9 9 1 Vk1-10 0 1 Vk1-11 1 1 Vk1-12 7 1 Vk1-13 1 1 Vk1-14 7 1 Vk1-15 2 1 Vk1-16 2 1 Vk1-17 16 1 Vk1-18 1 1 Vk1-19 33 1 Vk1-20 1 1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-8 0 2 Vk2-10 0 2 Vk2-11 7	. 1	Vk1-3	1	
Vk1-6	1	Vk1-4	0	
Vk1-7	1	Vk1-5	7	•
Vk1-8	1	Vk1-6	0	
Vk1-9	1	Vk1-7	0	
Vk1-10	I	Vk1-8	2	
Vk1-11	1	Vk1-9	9	
1 Vk1-12 7 1 Vk1-13 1 1 Vk1-14 7 1 Vk1-15 2 1 Vk1-16 2 1 Vk1-17 16 1 Vk1-18 1 1 Vk1-19 33 1 Vk1-20 1 1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	1	Vk1-10	0	
Vk1-13	1	Vk1-11	1	
1 Vk1-14 7 1 Vk1-15 2 1 Vk1-16 2 1 Vk1-17 16 1 Vk1-18 1 1 Vk1-19 33 1 Vk1-20 1 1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	1	Vk1-12	7	
Vk1-15 2 Vk1-16 2 Vk1-17 16 Vk1-18 1 Vk1-19 33 Vk1-20 1 Vk1-21 1 Vk1-22 0 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	1	Vk1-13	1	
Vk1-16 2 Vk1-17 16 Vk1-18	1	Vk1-14	7	
Vk1-17	1	Vk1-15	2	
1 Vk1-18 1 1 Vk1-19 33 1 Vk1-20 1 1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	l	Vk1-16	2	
Vk1-19 33 1	i	Vk1-17	16	
1 Vk1-20 1 1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	1	Vk1-18	1	
1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	I	Vk1-19	33	
1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	1	Vk1-20	1	
1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	I	Vk1-21	ī	
2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries	1	Vk1-22	0	
2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries	1	Vk1-23	0	119 entries
2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries	2	Vk2-I	0	
2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries	2	Vk2-2	1	
2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries	2	Vk2-3	0	
2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries	2	Vk2-4	0	
2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries	2	Vk2-5	- 0	
2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries	2 .	Vk2-6	-16	
2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	2	Vk2-7	0	
2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	2	Vk2-8	0	
2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	2	Vk2-9	1	
2 Vk2-12 0 25 entries 3 Vk3-1 1	2	Vk2-10	0	
3 Vk3-1 I	2	Vk2-11	7	
	2	Vk2-12	0	25 entrie:
3 Vk3-2 0	3	Vk3-1	1	
	3	Vk3-2	0	

WO 97/08320

Table 3A:

(continued)

Family 1	Name	Rearranged ²	Sum
3	Vk3-3	35	
3	Vk3-4	115	
3	Vk3-5	0	
. 3	Vk3-6	0	
. 3	Vk3-7	1	
3	Vk3-8	40	192 entries
4	Vk4-1	33	33 entries
5	Vk5-1	1	1 entry
6	Vk6-1	0	
6	Vk6-2	0	0 entries
7	Vk7-1	0	0 entries

WO 97/08320 PCT/EP96/03647

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1	DPL6	0	
1	DPL7	. 0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
. 2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

WO 97/08320 . PCT/EP96/03647

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	0	
1	VH1-12-4	0 -	
1	VH1-12-5	3	
1	VH1-12-6	0	
1	VH1-12-7	23	
1	VH1-13-1	1	
1 .	VH1-13-2	1	
1	VH1-13-3	0	
1	VH1-13-4	0	
1	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1	VH1-13-8	3	
1	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1	VH1-13-13	0	
1	VH1-13-14	0	
1	VH1-13-15	4	
1	VH1-13-16	2	
1	VH1-13-17	0	
1	VH1~13-18	1	
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	
2	VH2-31-1	0	
2	VH2-31-2	. 1	
2	VH2-31-3	1	
2	VH2-31-4	0	
2	VH2-31-5	2	
2	VH2-31-6	0	
2	VH2-31-7	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
2	VH2-31-14	1	
2	VH2-31-8	0	
2	VH2-31-9	0	
2	VH2-31-10	0	
2	VH2-31-11	1	
2	VH2-31-12	0	
2	VH2-31-13	1	7 entries
3	VH3-11-1	0	
3	VH3-11-2	0	
3	VH3-11-3	5	
3	VH3-11-4	0	
3	VH3-11-5	1	
3	VH3-11-6	1	
3 -	VH3-11-7	0	
3	VH3-11-8	5	
3	VH3-13-1	9	
3	VH3-13-2	3	
3	VH3-13-3	0	
3	VH3-13-4	0	
3	VH3-13-5	0	
3	VH3-13-6	0	
3	VH3-13-7	32	
3	VH3-13-8	4	
3	VH3-13-9	0	
3	VH3-13-10	46	
3	VH3-13-11	0	
3	VH3-13-12	11	
3	VH3-13-13	17	
3	VH3-13-14	8	
3	VH3-13-15	4	
3	VH3-13-16	3	
3	VH3-13-17	2	
3	VH3-13-18	1	
3	VH3-13-19	13	
3	VH3-13-20	1	
3	VH3-13-21	1	
3	VH3-13-22	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	· VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	
3	VH3-14-3	0	
3	VH3-1X-1	0	•
3	VH3-1X-2	0	•
3	VH3-1X-3	6	
3 3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	0	
4	VH4-11-2	20	
4	VH4-11-3	0	•
4	VH4-11-4	0	•
4	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	. 0	
4	VH4-11-15	0	
4 .	VH4-11-16	1	
4	VH4-21-1	0	
4	VH4-21-2	0	
4	VH4-21-3	1	
4	VH4-21-4	1	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
. 4	VH4-21-7	0 .	
4	VH4-21-8	0	
. 4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
4.	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4 .	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0 ·	
4	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320
Table 4A: Analysis of V kappa subgroup 1

•	Framework I															
amino acid'		2	3	4	5	9	7	6 0	6	2	=	12	13	14	15	16
A		1							1				102		1	
В			1			1										,.,
C														1		
D	64															
E	8		14												1	
F									1	6				1		
G																10
Н																
.		65													4	
K			1													
L		6		21							96		1			
М	1			66												
N																
P	<u> </u>							103		1		2			1	
Q			62			8 8					1					
R	<u> </u>															
5	 						89		102	80		103		103		
T	 	1			88					18						
V	 	1	9								8		2		98	
W	<u> </u>						٠					·				·····
X	1															·••••••
Y	<u></u>						-									
_	 															
unknown (?)	ļ															
not sequenced			_													
sum of seq ²		-	*********				:			:				:	:	
oomcaa,		· · · · · · · · · · · · · · · · · · ·				:								103		
mcaa ⁴	D	1	Q	М	T	Q	S		S	S	L	S	Α	S	V	G
rel. oomcaas	96%	88%	71%	76%	100%	%66	100%	100%	%86	76%	91%	%86	97%	986%	93%	100%
pos occupied	4	5	5	2	1	2	1			4	3	2	3	3	5	

5² SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

_															
amino acid' .	17	18	19	20	21	22	23	24	25	26	27	∢ .	œ.	ں	_
А			1	1		1			103						
В											1				
. C	<u></u>						105								
D	101														
Е	2							1	1		2				
F					2										
G										1					
Н											1				
1			6	4	101	1									
К								2			1				
L								1							
М															
N ·										1					
P															
Q								20			100				
R		94						81							
S		5		1						102					
Т		6		99		103			1	1					
V			98		2										
W															
X	1														
Y	1								ļ						
_									<u> </u>			105	105	105	105
unknown (?)	ļ							<u> </u>	ļ						
not sequenced							<u> </u>		<u> </u>	<u> </u>					
sum of seq²	105	105	105												
oomcaa,	101	94	98	99	:	:		:	:		i	105	105	105	105
mcaa ⁴	D	R	V	T	1	T	С	R	Α	S	Ω	-	-	-	-
rel. oomcaas	%96	90%	93%	94%	%96	%86	100%	77%	%86	92%	95%	100%	100%	100%	100%
pos occupied		1 3	3	4	3	3	1	5	3	4	5	1	1	1	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

	DRI	<i>-</i>													
amino acid'	ш	<u>u</u> .	28	53	30	31	32	33	34	35	36	37	38	39	40
А					1	1		1	42						
В												1	1		
. C							1								
D			25		1	5	7					1			
E							1					2			
F				1	1		7				6				
G			25		7	3			4						
Н					1	2	2		1			2		<u>}</u>	
1				98	1	4			1						
К						7								95	
L					2	1		101							
М										-	-				
N			6		16	42			50						
Р															102
Q				·÷···								98	103		
R					16	3	2							3	
5			41	2	57	32	3	1	1						1
T			7			4			4					1	
V			1	4	1			1			······································				
W							21			104					
X	Į				<u> </u>				1						
Y	<u> </u>				1		60				98				
-	105	105				<u> </u>	<u> </u>								
unknown (?)	ļ			·,	ļ	ļ	<u></u>							3	·
not sequenced						1						:			:
sum of seq?	105	105	105		:	:	:	•	;	:		:	•	:	:
oomcaa3	105	105	;	······································	?	:	:	?	***********	104			103	·	102
mcaa*		-	S	1	S	N	Y	L	N	:		Q	Q	K	Р
rel. oomcaa°	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	%66	91%	%86
pos occupied	1	1	6	4	12	11	9	4	8	1	2	5	2	4	3

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

-	Fran	iewo	rk II												DR II		_
amino acid'	41	42	43	•	4 ;	45	46	47	48	; —	 =	S S	<u>.</u>	25	53		52
Α			94	1						<u> </u>		50	95				
В										-							
. C										<u> </u>							
D				1						<u>ļ</u>	<u> </u>	21	1	1			
E	1	3				1	1			_		1		1			33
F			<u></u>				1				3			. 1			
G	100			1						_		9	2				
Н			<u>.</u>							_	2						1
		1	<u> </u>				1		10	0					1		
K		95				86			<u></u>	<u>.</u>		16			2		5
L		1			<u></u>		89	103	<u></u>							101	
M									<u></u>	2							
N						10		<u></u>				2		1	25		
P					104			<u> </u>	ļ			1					
Q						1		<u> </u>	<u> </u>						<u> </u>		62
R						3	3	<u></u>						ļ	1	1	
S					<u> </u>	1		<u> </u>	<u> </u>		5	1	1	99	41	2	
Τ			3			1		<u> </u>	ļ			1	4	1	31		
V				9			ç	<u> </u>					1	<u></u>	1		
W						444.5444		<u> </u>					<u> </u>	ļ		<u> </u>	
Χ						1		<u>.</u>					<u></u>	ļ	1		
Y							<u> </u>	<u> </u>		_	92	1		<u> </u>	<u> </u>	<u> </u>	<u> </u>
_							<u> </u>					<u> </u>	<u> </u>	ļ	<u></u>	<u> </u>	
unknown (?)		3					<u></u>	<u>.</u>				ļ <u>.</u>	ļ	ļ			
not sequence	d		1	1					2	3					ے۔		<u> </u>
sum of seq²	10	4 10	4 1	04	104	104	10	4 10	3 1	02	102	103	104	10	4 104	104	10
oomcaa³	10	0 9	15	94	104	86	8	9 10	3 1	00	92	50	9!	5 9	9 4	101	(
mcaa*	G	k		Α	Р	Κ	L	l		1	Υ	Α	Α	S	S	L	
rel. oomcaa	3	96%	91%	%06	100%	83%	70.70	06.00	8 20 1	%86	%06	490%	910%	2010	3000	0/0/b	
pos occupie		2	6	3		:	;	6	1	2	:	1 10)	6	6	9 :	3

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

- Anarysis or 1	T														
amino acid'	56	27	58	59	09	61	62	63	64	65	99	29	89	69	02
А	3										2	1	1	1	
В				1											
C								,							
D	1														67
E													1		30
F			1				103					3		i	
G	2	105							105	4	101		102		
Н															3
l	3		4				1	3							
K	1					1									1
L								1							
М														1	
N	6														
Р	1			101	2										
Q										1					
R	1					103		1		1		······································		2	
S	68			2	103			98		96		100			
T	19			1		1		2		3				101	
V			99				1								1
W													·····		
X			1								1		1		2
Y												1			1
															···········
unknown (?)	ļ			·····											
not sequenced									-					<u> </u>	
sum of seq²			************	·			:							:	
oomcaa3		105	?	}		:	:		:		•	:	:	•	
mcaa*	S	G	V	Р	S	R	F	S	G		G	5	G	T	D
rel. oomcaa'	65%	100%	94%	96%	986%	98%	%86	93%	100%	91%	%96	95%	97%	%96	64%
pos occupied ⁶	10	1	4	4	2	3	3	5	1	5	4	4	4	4	7

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

	Fr	amew	ork II												
amino acid'	71	72	73	74	75	92	77	78	79	8	<u>~</u>	82	83		85
Α		3				1				2				101	1
В	Ī				1				3		2				
. C															
D						1					16	101			
E											83				
F	102	1	21										73		
G							4				1			2	
Н															
1					99	. 5							17		
К															
L			81					103	1				1		
М															1
N						7	4								1
Р										97					1
Q									97						
R						2	1		2						
S		2		1		86	94			4			1	<u> </u>	
T		98		102		2	1							<u></u>	97
V	1		2		4			1				····	11	ļ	1
W													<u> </u>	<u></u>	<u> </u>
X		<u>.</u>		1							1	2			
Y	1	<u> </u>	<u> </u>							<u>. </u>			<u> </u>		
-			<u> </u>			<u> </u>	ļ			ļ	<u> </u>		<u> </u>	<u> </u>	
unknown (?)	<u></u>						ļ	ļ		ļ		ļ			
not sequenced			1 1								:			\div	
sum of seq²	10	4 10	4 104	104	104	104	÷ .	•	•	:					
oomcaa³	10	2 9	8 81	102	:	86	94	103	·:····	··········	:	101	-:	101	·::
mcaa*	F	Ţ	L	Ţ	<u> </u>	S	S	L	Q	Р	E	D	F	Α	T
rel. oomcaa'	7000	0,000	78%	%86	95%	83%	%06	%66	94%	94%	81%	%86	710%	980%	95%
pos occupied		····		3 3	:	3 7				3	5	2	2 !	5	2 (

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

4A. Allalysis of V					·				(DR II	I					
amino acid'	98	87	88	83	90	91	65	93	94	95	4	ω	ں	۵	ш	ш
Α					1	7	1		5	1						
В				2	3											
. C			102													
D							23	5	1							
E							1	1		1	1					
F		7			,	3			13							
G						1		1	2	1		1				
Н		1		4	6	7	3	1								
1							4	1	2	1						
K	1				7		1									
L				7		6	2		18	2						
M																
N						6	31	19	1							
Р									1	82	6					
Q				90	86	1	2									
R						1		2	2			••••••				
S	1					27	3	58	5	10						
T						3	1	15	25							
V									5							
W									1							
X																
Y	101	93				42	32	1	23							_
-										3	82	88	89	89	89	89
unknown (?)		1														
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
sum of seq ²	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa³	101	93	102	90	86	42	32	58	25	82	82	88	89	89	89	89
mcaa*	Υ	Y	С	Q	Q	Y	Y	S	T	Р	-	-	-	-	-	-
rel. oomcaa⁵	986	91%	100%	87%	83%	40%	31%	26%	24%	81%	92%	93%	100%	100%	100%	100%
pos occupied ⁶	3	3	1	4	5	11	12	10	14	8	3	2	1	1	1	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

iysis or v kappa :		<u></u>						ran			_					
amino acid'	96	97	86	66	.100	101		102	202	104	105	901	⋖	107	108	sum
А	1						-									627
В					1	-					1					19
·C																209
D	1										15					459
E					2						65					258
F	6		86			-						2				451
G				87	29) 8	37								2	894
Н	2	1		<u></u>			<u> </u>									40
1	5			······						1		72				606
K	1								77					79		480
	18	1	1							22	4	2				793
M		1		1								5				77
N	1											1		2		232
Р	6					7									1	620
a	1	·			4	8					1					865
R	6								6			<u>.</u>		2	70	413
S	2	2										<u> </u>				1636
Т	2	82				Ī		87	3			<u> </u>		2		1021
V	2								1	63		3			<u> </u>	440
W	15									<u> </u>	<u> </u>	<u> </u>			<u> </u>	141
X												<u>.</u>	<u> </u>	<u></u>	<u>.</u>	14
Y	16	3										<u></u>			<u> </u>	564
_	1	1	 								<u> </u>	<u> </u>	85	<u> </u>	1	1250
unknown (?)												<u> </u>	<u></u>	<u></u>		7
not sequenced	1	5 1	6 1	8 1	8 1	8	18	18	18	19	19	20	20	20	31	589
sum of seq²	-:-											85				
oomcaa³	1	8 8	2 8	6 8	7 4	18	87	87	77	6	3 6	5 72	85	79	70).
mcaa*	L	:	•••••••	••••	••••		••••		•	•	:	1	:	i	R	;
rel. oomcaa ^s	900	2000	7000	0/66	ه 201	55%	100%	100%	890/0	730%	750%	85%	100%	930%	95%	
pos occupied								:	:	:	•	•	:	:	4 4	•

33

WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

											Frar	new	ork	ı							
amino acid'	-	7	٣	4	5	9	7	8	6	10	Ξ	12	13	14	15	16	11	18	19	20	21
А																			22		
В																					
· C																					
D	14																				
E	3																15				
F .									1	1											
G																22					
Н																					
ı		8																			22
K																					
L		3		1					17		18				6						
М				15																	
N																					
Р								18				18			15			22			
Q						18											7				
R																					
S							18			17										22	
T					17									21							
V		6	17	1			,						18								
W																					
X																					
Y																					
-																					
unknown (?)					1																
not sequenced	5	5	5	5	4	4	4	4	4	4	4	4	4	1	1						
sum of seq ²	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	22
oomcaa	14	8	17	15	17	18	18	18	17	17	18	18	18	21	15	22	15	22	22	22	22
wcaa,	D	1	٧	М	Ţ	Q	S	Ρ	Ĺ	S	L	Р	٧	Τ	Р	G	Ε	Р	Α	S	1
rel. oomcaa ^s	82%	47%	100%	98%	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	68%	100%	100%	100%	100%
pos occupied ^a	2	3	:	;	:	:	:									:	:		:	1	1

100

Table 4B: Analysis of V kappa subgroup 2

											CDR										
amino acid'	22	23	24	25	56	27	٨	8	ပ	۵	ш	ш.	28	29	30	3	32	33	34	35	36
Α																					
В																					
. <u>C</u>		22																			
D										1			9		1	1			11		
E																					
F .															2						
G											1			22							
Н										16							1		1		
l																					
K			1													1					
L						1		22	13									22			
M									1												
N													10		7	12			9		
Р																					
Q	1					21															
R			21								2										
S	21			22	22		<u>2</u> 2				19		1								
T																8					
V									8												
W										1										22	
Χ													1		1				1		
Y										4			1		11		21				1
_												22				-					
unknown (?)																					
not sequenced																					
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	2
oomcaa¹	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	1
mcaa*	S	С	R	S	S	Q	S	L	L	Н	S	-	N	G	Υ	N	Υ	L	D	W	Υ
rel. oomcaa ^s	95%	100%	95%	100%	100%	95%.	100%	100%	59%	73%	36%	100%	45%	100%	20%	55%	95%	100%	20%	100%	7000
pos occupied		: :						•	:	:		:			: .						

WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

C 40. Allalysis of						new	ork	11								(DR	11			
amino acid'	37	38	39	40	4 3	42	43	44	45	46	47	48	49	20	51	52	53	54	55	56	57
Α																			14		
В																					
- C																					
D														·					7		
E									1												
F																	·				
G					22										12				1		22
Н																					
1										1		22									
K			15											5		·					
L	16									14	21			14	1						
M																					
N																	18				
Р				22				21													
Q	6	22				22			12					1							
R			7						8	7				1				22			
S							21								2	22	2			22	
T																	1				
V											1				6						
W																					
X																					
Y													21				1				
-																					
unknown (?)																					
not sequenced							1	1	1				1	1	1						
sum of seq'	22	22	22	22	22	22	21	21	21	22	22	22	21	21	21	22	22	22	22	22	22
oomcaa,	16	22	15	22	22	22	21	21	12	14	21	22	21	14	12	22	18	22	14	22	2 2
mcaa*	L	α	Κ	Р	G	Q	S	Р	Q	L	L	ı	Υ	L	G	S	N	R	Α	S	G
rel. oomcaa ^s	73%	100%	68%	100%	100%	100%	100%	100%	57%	64%	95%	100%	100%	9/0/9	57%	100%	82%	100%	64%	100%	100%
pos occupied ^r	2	1	2	1	1	1	1	1							••••••			1	3	1	1

102

Table 4B: Analysis of V kappa subgroup 2

•														Frai	nev	vork	: 111				
amino acid'	28	23	9	19	62	63	64	65	99	29	89	69	02	71	72	73	74	75	9/	77	8/
Α																					
В																					•••••
. С																					
D			22				1				1		22								
E																					
F					21									22							
G							21		22		21										
Н																					
1																	1	21			
К																	19				
L																21	1				
М																					
N																					
Р		22																			
Q																					
R				20				1		.,							<u> </u>	<u> </u>		20	
S				1		22		21		22	<u></u>						<u></u>	ļ	20	1	
T				1								22			21		<u></u>	<u> </u>	1		<u> </u>
V	22				1						<u> </u>						<u> </u>	<u></u>	<u> </u>	<u>-</u>	2
W									<u> </u>		ļ							ļ	ļ		-
X									<u></u>		<u> </u>							<u>.</u>	<u></u>		ļ
Υ	_																<u> </u>	<u> </u>			<u> </u>
-		<u> </u>			ļ	ļ		<u> </u>		<u> </u>	ļ					<u></u>	ļ	<u></u>	ļ	<u></u>	<u> </u>
unknown (?)	ļ					ļ	ļ		ļ	<u></u>	<u></u>				1	ļ			ļ	ļ	<u> </u>
not sequenced					<u> </u>	_		<u> </u>			<u> </u>			_		1	1	1	1	1	<u> </u>
sum of seq?	÷	÷	÷·····	÷	÷	÷····			·:·····	:	:	22	·	:	:	:	-	;	-		1
oomcaa3	22	22	22	20	21	22	21	21	22	22	21	22	22	22	21	21	19	21	20	20	2
mcaa'		·÷	•	•	······	·:····	• • • • • • • • • • • • • • • • • • • •	·•••••	-:	· 	···	T	:	;	:	÷	K	- †	†	R	<u> </u>
rel. oomcaas	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	95%	100%	%06	100%	95%	95%	7000
pos occupied ^a	:	:	-	:	:	-	:	:	:		•	:		:	:	:		:	;	:	<u>.</u>

4B: Analysis of																	С	DR	11		
amino acidi	79	80	.81	82	83	84	82	98	87	88	83	90	91	92	93	94	95	∢	В	ပ	_
Α		20											14			1					
В												1			1						
· C										21											
D			1	21																	
E	19		20																		
F .																					
G	1					21							6			1		2			
Н													1		7						
l							1									1					
K																					
L							1							12			2				
М											21										
N																					
Р	ļ	1														2	16	1			
Q	1		<u> </u>									20			13						
R			<u> </u>											1							
S																3	2				
T			<u></u>											8		7					
V		<u></u>	<u></u>		21		19														
W		ļ														6					
X		<u> </u>	<u></u>																		
Υ	L							21	21												_
_	ļ	<u></u>	ļ															14	17	17	1
unknown (?)	ļ	<u></u>	ļ																		
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	_
sum of seq ²	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	1
oomcaa3	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	1
mcaa*	Ε	Α	Ε	D	٧	G	٧	Υ	Υ	С	М	Q	Α	L	Q	T	Р	-	-	-	
rel. oomcaa'	%06	95%	95%	100%	100%	100%	%06	100%	100%	100%	100%	95%	67%	57%	62%	33%	80%	82%	100%	100%	1000
pos occupied ^a	:	:	:	:		:				:	:	;				:	:			1	

104

Table 4B: Analysis of V kappa subgroup 2

aysis or v kapp									Fra	new	ork	IV					
amino acid'	ш	u_	96	97	86	66	90	101	102	103	104	105	106	∢	107	108	sur
Α																	7
В												1					
С																	4
D																	11
E												13					7
. F			1		17												7
G						17	2	16				1					23
Н																	2
l			3										14				g
K										12					13		ε
L			2								11						21
М																	3
N																	5
Р			1														15
Q			1				14	<u> </u>									15
R	<u> </u>	<u> </u>					<u> </u>	<u></u>	<u> </u>	4						12	12
S	.	<u></u>				<u> </u>		ļ									32
Ţ			<u></u>	17	<u> </u>	<u></u>	ļ	<u></u>	16								14
V		<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u></u>	<u> </u>		5						14
W		<u></u>	2			<u> </u>			<u></u>								:
X			<u> </u>		<u> </u>	ļ	<u></u>	<u>.</u>	<u>.</u>							<u> </u>	
Y	L	<u> </u>	7	<u> </u>	<u> </u>											<u> </u>	1:
_	17	17	<u> </u>			<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u>.</u>	<u></u>		13		<u> </u>	1:
unknown (?)	_		·	<u> </u>		<u> </u>		<u>.</u>	<u></u>		<u> </u>	ļ		·	ļ	ļ	
not sequenced	1	5 5	5	5	5 5	5 5	6	6	6	6	6	7	8	9	9	10	2
sum of seq ²	17	7 17	17	17	17	17	16	16	16	16	16	15	14	13	13	12	
oomcaa,	17	7 17	7	17	17	1 17	1 14	16	16	12	11	13	14	13	13	12	
mcaa*	_	-	Y	T	F	G	Q	G	T	K	L	Ε	1	_	Κ	R	
rel. oomcaa ^s	,0U01	100%	410%	100%	100%	100%	80%	100%	100%	75%	9069	87%	100%	100%	100%	100%	
pos occupied			•••••				••••	·· : ····	•••	··:·······	7	:	:	:	:	1	

105
SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

											Fra	mew	ork I			
amino acid'	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
А		5					2		27						1	
В	1			<u> </u>	<u> </u>		<u> </u>							<u> </u>	<u>.</u>	
. с									·			2			<u> </u>	<u> </u>
D	2					<u> </u>			14					<u> </u>	<u>.</u>	<u></u>
E	76		27	<u> </u>		<u> </u>	<u></u>								<u> </u>	<u></u>
F .		1		<u> </u>		<u> </u>	<u> </u>							1	<u> </u>	
G	1			<u>.</u>		<u>.</u>	<u> </u>	<u> </u>	82						1	152
Н						: : : :	<u>.</u>	: : : :		1						
<u> </u>		75		<u>:</u>		<u> </u>	<u> </u>									
K	3						<u></u>									
L		4	1	104			1				150		129		1	
·M	5			13												
N														5		
Р								124							147	
Q						123	<u> </u>									
R					1		<u></u>									
S							119		3	1		150	1	141		
T		2			117		<u></u>			147				5	1	
V		1	89	1			1				1		22		1	
W							<u> </u>									
Χ																
Y																
-																
unknown (?)																
not sequenced																
sum of seq'	88	88	117	118	118	123	123	124	126	149	151	152	152	152	152	152
oomcaa'	76	75	89	104	117	123	119	124	82	147	150	150	129	141	147	152
mcaa*	E		٧	L	T	Q	S	Р	G	Ţ	L	S	L	S	Р	G
rel. oomcaas	86%	85%	76%	988%	99%	100%	97%	100%	65%	966	%66	%66	85%	93%	9/0/6	100%
pos occupied"	6	6				***********		1		3			3	:		1

Table 4C: Analysis of V kappa subgroup 3

-																DRI
amino acid'	12	18	19	20	21	22	23	24	25	56	27	∢	ω	U	۵	ш
А			178	2					166	1						
В																
. С							181			1						
D	6															
E	146	1									1					
F					7	1										
G	1	1	<u></u> į						7	1		1			-	
Н			<u></u>								17					
l		1		5	2											
К		1						5							·	
L					173						1	1				
M				<u> </u>												
N							<u></u>	<u> </u>	<u></u>			9				
Р																
Q											159					
R		175						176		1	1	10				
S						180			7	175		87				
T		1		174					7	2		1				
V		1	4	1					1			1				
W								1								
X																
Y						1					1					
_												72	182	182	182	182
unknown (?)											1					
not sequenced							<u> </u>									
sum of seq'	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182
oomcaa,	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182
mcaa*	:	R	<u>:</u>	T	L		:	R	Α	S	Q	S	-	-	-	-
rel. oomcaas	95%	97%	98%	%96	95%	%66	100%	97%	91%	97%	%88	48%	100%	100%	100%	100%
pos occupied ^a	:	•			;		÷	÷	:			:	<u> </u>	1	1	1
pos occupico	·`	.i	.i		.ż		107			. i					i	4

SUBSTITUTE SHEET (RULE 26)

Table 4C: Analysis of V kappa subgroup 3

															Fran	new
amino acid'	u.	28	53	30	31	32	33	34	35	36	37	38	39	40	4	42
Α				1	1	100 (10) (10) (10)		181								
В																
. C																
D			1	1	2	1										
E						1							1			
F .		1				7				1						
G			2	7	3	1		2						1	184	
Н			1			2				1		12	1	1		
l		24	4	1	1											
K				1	1								153			
Ĺ		8	1			1	176					3				
·M																
N			3	12	25	32										
Р					1									170		
Q					1	1					183	167	1			18
R			10	3	18	16		1			1		27	5		
S		72	86	151	118	4								5		
Ţ		1	1	3	8	1							1			
V		76	68		1		7					3		2		
W			5						185							
Χ																
Y				1	1	115				183						
-	182															
unknown (?)											1					
ot sequenced																
sum of seq ²	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	18
oomcaaı	182	76	86	151	118	115	176	181	185	183	183	167	153	170	184	18
mcaa*	-	V	S	S	S	Υ	L	Α	W	Y	Ω	Q	K	Р	G	Q
rel. oomcaas	100%	42%	47%	83%	65%	63%	%96	98%	100%	99%	%66	%06	83%	92%	%001	4000
pos occupied ⁶	1	 ء	:		13											

108

Table 4C: Analysis of V kappa subgroup 3

4C: Analysis of v	k II									C	DR II					
amino acid'	43	44	45	46	47	48	49	20	51	52	53	54	22	26	27	28
А	176							4	147				176	1		
В																
. с						<u> </u>			1							
D						<u></u>		43					2		4	
E																
F .				1	<u></u>	1	4									
G			<u></u>					125	-				2	10	179	
H							9		1							
١		į				178								1		168
К		<u></u>	1								7	1				
L		1		179	174	1		·····								
· M			<u></u>	į		3					1					
N			1					1	ļ		53		-	2		
Р	5	184							ļ	2			2	2		
Q						<u> </u>	1		<u> </u>							
R			182			<u> </u>		1	<u> </u>		4	180				
S						ļ	3	6	4	179	74	1		5		
T	3					<u> </u>			11	2	44			164		2
V				3	9	<u> </u>	<u> </u>	3	19				3			15
W	ļ 					<u> </u>	1	ļ	<u> </u>			1				
X					<u> </u>	<u></u>	<u> </u>	ļ	<u>.</u>							
Y					<u> </u>	<u> </u>	165		<u> </u>						2	
	ļ				<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	ļ						
unknown (?)			1	ļ	<u></u>	<u>.</u>	ļ	<u> </u>								<u></u>
not sequenced	_		<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>		
sum of seq ²	**********			-	•	•	7	:	:	183	:	•	•	•	:	:
oomcaa	176	184	182	179	174	178	165	125	147	179	ì	}	•	1		168
mcaa'	Α	Р	R	L	L	1	Υ	G	Α	S	S	R	Α	Τ.	G	1
rel. oomcaa'	96%	99%	98%	98%	95%	9.20%	%06	680//	800%	%86	40%	%86	95%	%68	97%	910%
pos occupied		3 2	3	3	3	2		5	7 (6 3	6	4	5	7	3	3

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

4C. Allalysis Of													Fr	amev	vork	
	<u></u>	0			<u></u>			9	7	- ω	69	0		72		
amino acid	E 29	09	19	62	63	64	65	99	67	89						_
<u>A</u>		68						3		5	3	1		3		
В																
. с																
D		112				1						152				
E								1		1		30				
F				183									183		2	
G						184	3	178	_	177						
Н		1														
				1										1		3
K			1													
L				1											182	
М								1								
N		1												1		
Р	177															
Q												1				
R			182		2		1				2					
5	7				180		179		185		3			7		2
T	1		2		3		2				177			172		179
V		3						1		1						
W										1						
X																
Υ													1			
unknown (?)								1								
not sequenced																
sum of seq ²	185	185	185	185	185	185	185	185	185	185	185	184	184	184	184	184
oomcaa ³	177	112	182	183	180	184	179	178	185	177	177	152	183	172	182	179
mcaa ⁴	Р	D	R	F	S	G	S	G	S	G	T	D	F	Ţ	L	Ţ
rel. oomcaas	%96	61%	%86	%66	97%	%66	92%	%96	100%	%96	%96	83%	%66	93%	%66	97%
pos occupied [*]	3	5	3	3	3	2	**********	5 1 0	1	5	4	4	2	5	2	3

Table 4C: Analysis of V kappa subgroup 3

-																
amino acid'	75	9/	22	78	79	8	81	82	83	84	82	98	87	88	68	06
Α							3			174						
В					1				<u></u>				·			
. С									2				1	182		
D			1				3	182								
E					149	<u> </u>	175									2
F		1				<u> </u>			178		2	1	4			
G			3		<u>.</u>			1		2		<u> </u>				
Н				<u> </u>							1				1	7
	178		<u></u>		<u> </u>			1	1		9					
K							1						<u></u>	<u> </u>		
Ĺ				178		1			1		7		1			1
М										1	5			<u> </u>		
N	1	5														
Р						149										
Q					34									1	181	155
R		1	111							3						1
5		169	65			34			1				2			
T		8	4							1						3
V	4			6			<u> </u>		1	3	159					7
W							<u> </u>	<u></u>	<u></u>	<u></u>						
X	ļ						<u> </u>	ļ	<u></u>	<u></u>						
Y	1									<u> </u>	1	183	176		1	
		<u> </u>	ļ	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u></u>				ļ		·····
unknown (?)		<u> </u>	ļ	ļ	<u> </u>	<u></u>	<u> </u>	<u> </u>						<u></u>		
not sequenced	-			<u></u>												
sum of seq ²		÷	÷	÷	÷	÷	Ī	:	:	:	184	:	:	:	:	:
oomcaa3	178	169	111	178	149	149	175	182	178	174	159	183		i	:	:
mcaa⁴	1	S	R	L	E	Р	E	D	F	Α	V	Υ	Υ	С	Q	Q
rel. oomcaas	97%	92%	%09	97%	81%	81%	%96	%66	97%	95%	%98	%66	%96	%66	%66	R 50%
pos occupied	-	<u> </u>	Ī	:	1	1		:	8 6	:	:	:	5	•	:	

Table 4C: Analysis of V kappa subgroup 3

4C: Analysis of \	KOP	pu 3u	og. o	<u> </u>	C	DR II	l									
amino acid'	91	92	93	94	92	⋖	ω	U	۵	ш	ш,	96	6	86	66	9
Α		1	8	3	3											1
В																
· C	2			1								2				
D		8	5										1			
Ε		2										1				
F	5		2								İ	7		166		
G	1	104	15		1	1	2					1			166	41
Н	4	1										2				
l			1			1						4				
K			2			1						1				1
L				2	7	5						42				
·M		1	<u></u>		1	2										
N		28	71									1				
Р				1	139	24						7	2			9
Q	1		1		3	1						3				114
R	34	2	3		2	2						19				
S	2	33	58	102	15	2						1	8			
Т		2	13	1	1	2						1	154			
V					3	· 1						2				
W				69								24				••••
Х																
Υ	134	1	1	·								43				
_			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)																
not sequenced						14	14	14	14	14	14	14	17	16	16	16
sum of seq²	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
· oomcaa¹	134	104	71	102	139	127	167	169	169	169	169	43	154	166	166	114
mcaa*	Υ	G	N	S	Р	-	-	-	-	-	-	Υ	Ţ	F	G	Q
rel. oomcaas	73%	57%	39%	56%	76%	75%	99%	100%	100%	100%	100%	25%	93%	99%	99%	%89
pos occupied ⁶	8	11	13		11	:	:		1	1	1	18	5	2	2	6

PCT/EP96/03647

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

•		Fr	amev	vork	١٧					i
amino acid'	101	102	103	104	105	106	4	107	108	sum
Α										1345
В										2
С										375
D					23					564
E			3		141					759
F						6				765
G	166								1	1804
Н					1					64
ı						143				803
K			152					157		489
L				54		1			2	1596
М						3				36
N		1						3		255
Р		1		1						1147
Q			1		1					1314
R			9		,	2		4	134	1326
S		2								2629
T		162	1					1		1593
V				111		11				646
W										287
X										
Y			1							1014
-	1	1	1	1	1	1	166	1	1	2151
unknown (?)									···········	4
not sequenced	16	16	15	16	16	16	17	17	. 45	337
sum of seq?	167	167	168	167	167	167	166	166	138	
oomcaa,	166	162	152	111	141	143	166	157	134	
mcaa*	G	T	Κ	V	E	1	-	K	R	
rel. oomcaa'	%66	97%	0,06	%99	84%	%98	100%	95%	97%	
pos occupied ^a	2	5	7	··········	5 1 3	7	1	5	4	

113

PCT/EP96/03647

Table 4D: Analysis of V kappa subgroup 4

·											Fran	new	ork	l				
amino acid'		2	က	4	5	9	7	8	6	10	=	12	13	14	15	91	17	18
А												24					1	
В																		
· C										1						1		
D	25								26									
E																	25	
F.																		
G	<u> </u>						<u></u>					1				24		
Н																		
1		26																
K						1												
L	ļ	••••		1							26		•••••		26	.,		
. M	ļ			24						••••								
N	1																	
Р	ļ				•••••			26				1						
<u> </u>			1			25												
R																		26
5							26			25				26		1		
T			•••••		26													
V			25	1									26		·			
W																		
X																		
Υ																		_
_																		
unknown (?)	ļ																	
not sequenced	7				==												-	==
sum of seq ²		26						:	:	·····	:	:	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••••		·····÷	
oomcaa ³		26						••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••		•••••••••••••••••••••••••••••••••••••••			•		:	
mcaa*	D		V	M	Ţ	Q	S	Р	D	S	L	Α	٧	S		G	E	R
rel. oomcaa ^s	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	100%	92%	%96	100%
pos occupied ⁶	2	1	2	3	1	2	1	1	1	2	1	3	1	1	1	3	2	1

Table 4D: Analysis of V kappa subgroup 4

					$_ \bot$								(CDRI				
amino acidi	19	70	21	22	23	24	25	56	27	⋖	8	ں	٥	u.	ш.	28	29	30
A	26						1				1							
В																		
С					33													
D											1		1			1		
E																		
F.																		
G																		
Н																		
1			26								1							
K						33										2		3
Į.											2	_31						
· M																		
N	ļ	<u> </u>		26												30	31	
Р	. .						1								1			
Q	. 								32									
<u>R</u> .	<u> </u>	<u> </u>							1								1	
<u>S</u> .	ļ	<u></u>					31	33		33				32	32		1	
T		26												1				
V		<u></u>						<u> </u>			28	2						
W	ļ																	_
X		<u> </u>	<u> </u>															_
<u>Y</u>	_	<u> </u>	<u> </u>										32					
-		<u> </u>	<u> </u>		ļ					<u></u>				<u> </u>				ļ
unknown (?)	- -	ļ	-		<u></u>					<u></u>	ļ							
not sequenced		÷···	; 		:		<u> </u>	-	<u> </u>		<u> </u>				<u> </u>			_
sum of seq ²		••••••	26	·····	·····	•	······	:	:	:	:	:	:	:	:	:		
oomcaa,	26	26	26		•		:		:	:		:		-		:	:	
mcaa*	Α	· · · · · · ·	1	:	С	·	:	•	Q	-	V	L	Y	S	S	N	N	1
rel. oomcaas	100%	100%	100%	100%	100%	100%	94%	100%	97%	100%	85%	94%	97%	97%	97%	91%	94%	
pos occupied ⁶	1	1	1	1	1	1	3		:	:	:	2	2	2	2	3	3	

Table 4D: Analysis of V kappa subgroup 4

											Fran	new	ork l	l				
amino acid'	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Α				32						2								
В																		
. C																		
D			: :															
E							······································				1							
F :																		
G											32							
Н						2												
ļ													**********	••••••				3
K									33						32			
L			33		••••••											29	33	
· M											******							
N	33							••••		•								
Р										31			31	33				· ••••
Q						•	32	33				32	*********	•••••				
R							1	••••		••••		1			1			•••••
S										********			2		********			*****
T				1														
V										••••				•		4	*****	•••••
W					33													•••••
Χ																		
Υ		33				31												
unknown (?)					•													
not sequenced						*********						************		•••••				
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3:
oomcaa³	:			:					33	•••••••••••••••••••••••••••••••••••••••	:	•••••••••••••••••••••••••••••••••••••••				**********	•••••••	
mcaa⁴	N		L	:	W			Q	•••••••••••••••••••••••••••••••••••••••	Р	:	•••••••••••••••••••••••••••••••••••••••	•••••••		*******	L	•	ı
rel. oomcaas	100%	100%	100%	97%	100%	94%	92%	100%	100%		97%		94%	100%	9/0/6	88%	100%	0/0/6
pos occupied ^e	1	1	1		1	2					2	:	:	1				

Table 4D: Analysis of V kappa subgroup 4

_				C	DR II													
amino acid'	49	20	21	25	23	54	22	26	57	28	23	9	6	62	<u>e</u>	64	65	99
Α			30															
В																		
С																		
D												33						
E							32											
F ·														33				
G									33						1	33		3
Н																		
					1										<u>i</u>			
K																		
L																		
M																		
N					2													
Р				1							33		1					
Q																		
R						33							32					
5			1	31	1			33							32		33	
Ţ	ļ	<u> </u>	2	1	29													<u> </u>
. <u></u>	ļ	<u> </u>					1			33								ļ
W	ļ	33	<u></u>		<u></u>											<u></u>		
X	ļ	<u></u>	ļ														<u></u>	
Υ	33	<u> </u>																_
	ļ	<u></u>	ļ		<u> </u>		<u>.</u>								<u></u>	<u> </u>		<u> </u>
unknown (?)	Į		<u></u>		<u> </u>			<u></u>		<u>.</u>								-
not sequenced	L	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>						_	<u> </u>			<u>!</u>
sum of seq ²		· ÷ · · · · · · · ·		******	·	········	÷			•	33	:	:	:	:	:	:	:
oomcaa,	33	33	30	31	29		÷	·:	:	:	33		:			1		•
mcaa'	Υ	. .	Α	S	T		<u> </u>	S	Ī		Р	<u></u>		F		G	S	Ť
rel. oomcaa ^s	100%	100%	91%	94%	988%	100%	926	100%	100%	100%	100%	100%	97%	100%	97%	100%	100%	
pos occupied		1 1	:	3	:	1	2	1	1	1	1	1	2	1	2	1	1	

117

Table 4D: Analysis of V kappa subgroup 4

TU. Milatysis Of V				<u>'</u>		mev	vork	111										• •
amino acid'	29	89	69	70	71	72	73	74	75	9/	11	78	79	80	81	82	83	84
А														33				32
В																		
. C																		
D				32												33		
E															33			
F.					32													
G		33		1														1
Н																		
1									33									
K																		
<u> </u>							33	•••••				32	•••					
· M												1						
N										2	1							
Р																		
Q					•••••								32					
R					•••••								1					
5	33									30	32							
Т			33			33		33		1								
V					1												33	
W																		
X																		
Y																		
													.,					
unknown (?)																		
not sequenced																		_
sum of seq'		:							•••••••••••••••••••••••••••••••••••••••			:		33	••••••••••••			
oomcaa,	33	33	33	32	32	33	33	33	33	30	32	32	32	33	33	33	33	32
mcaa'	S	G	Ţ	D	F	Ţ	L	T	1		S	L	Q	Α	Ε	D	٧	Α
rel. oomcaa ^s	100%	100%	100%	97%	97%	100%	100%	100%	100%	91%	97%	97%	97%	100%	100%	100%	100%	97%
pos occupied ⁶	1	1	1	2	2	1		1 8	1	3	2	2	2	1	1	1	1	2

Table 4D: Analysis of V kappa subgroup 4

): Analysis of V K														R III						
amino acid'	82	98	87	88		63	06	91	92	93	5	y (32	∢ 0	۰ ۵	، ر	۵	w —	ш.	96
Α												1							_	
В										<u> </u>								_	_	
С				3	3					<u> </u>						_				
D									1		1									
E										<u> </u>									_	
F ·				1					1	<u></u>						_				
G									 .	<u>.</u>	2 -	_				_			_	
H				1	<u></u>	3				ļ										
1										<u> </u>		2								
K		<u></u>	<u> </u>							ļ										••••
L							1		2	2		1	3							••••
· M			<u>.</u>																	
N									<u></u>	<u> </u>	4	4								
Р		<u> </u>							<u></u>	ļ		1	29	1						
Q						30	32	<u></u>	ļ				1							
R		<u> </u>						<u>.</u>	ļ	<u>.</u>	1			1	<u></u>					
S	<u> </u>							2			23	2								
T		<u>.</u>						<u> </u>	ļ		2	22						<u> </u>		
V	33	3						<u> </u>	ļ									<u> </u>		_
W								<u></u>										<u></u>		_
X								<u> </u>												
Y	L	3	3 :	31				3	2	9	_		-					<u> </u>	<u> </u>	<u> </u>
		<u>.</u>						<u> </u>	ļ					13	15	15	15	15	15	ļ
unknown (?)							<u></u>		_			·						-		-
not sequenced	L	_	_	<u> </u>			<u> </u>	<u> </u>		-	_							18		╤
sum of seq ²														15						
oomcaa ¹				<u>i</u> .						:				13	15	15	15	15	15	
mcaa*	٧	<u>/ \</u>	<u> </u>	Υ	С	Q	Q	Y		Y	S	T	Р	-				-	-	
rel. oomcaas	7000	0,00	100%	94%	100%	0/016	9.20%	2 %	04-00	9%88	0/00/	%/9	9/88	87%	100%	100%	100%	100%	100%	
pos occupied ⁶		1	1		1									3	1		l	1	1	۱

Table 4D: Analysis of V kappa subgroup 4

						Fra	mev	vork	IV					
amino acid'	97	86	66	100	101	102	103	104	105	106	⋖ .	107	108	sum
Α														183
В														
C														68
D														154
E									14					105
. F		15												82
G			15	4	15									228
Н														€
1										14				135
K							14					13		158
L								4						258
M	1													27
N												1		130
Р	<u></u>	ļ				1								19
Q	<u> </u>	<u> </u>		11				1						264
R	ļ	<u> </u>	<u> </u>	<u> </u>			1	<u></u>	1			1	11	110
<u>S</u>	2	<u></u>		ļ						1		******		499
Ţ .	12	<u> </u>	<u></u>	ļ		14		ļ	ļ					23
<u>V</u>	ļ	<u> </u>	<u></u>	<u>.</u>	<u> </u>	ļ		9	<u> </u>					19
W		<u> </u>		<u></u>	<u> </u>	<u></u>	-	1	<u></u>			•••••		6
X		<u>.</u>	<u></u>	<u> </u>		ļ			<u></u>					
Υ			<u> </u>	_						<u> </u>		_		25
		ļ	-	ļ		ļ					15			10
unknown (?)	. 	ļ	-		ļ		ļ		ļ					
not sequenced	====	$\overline{\cdot}$	-	:	-		:	:	:	:		;		51
sum of seq ²	15	15	··!-···	15		· ! ·····	:	·:	Ť		•	:		
oomcaa,	12	15	15	11		:	·				15			
mcaa*	Ţ	F	G	Q	G	T	K	V	E	1	-	K	R	
rel. oomcaa'	80%	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%	
pos occupied ⁴		3	۱ .	1 2	1	2	2	2 4	2	2	1	3	1	

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

											_	F	ram	ewo	rk l						
amino acid'		2	r		4	ഹ	9	7	. 🚥	6		2	=	12	13	4	15	91	17	- 28	19
A													19		18	20					
В																					
· C										<u></u>											
D										<u> </u>				<u> </u>							
E										ļ										1	
F .										ļ											
G										ļ					22			42			
Н	2	<u> </u>							<u> </u>	<u> </u>											
	<u> </u>	<u> </u>	<u>.</u>	1					ļ	<u> </u>			1	.							•••••
K	<u> </u>	<u> </u>							<u> </u>	ļ										14	
L	<u> </u>	ļ		1	41					ļ			1								
M	<u> </u>		_						ļ	ļ											
N									<u> </u>												
P	<u> </u>	ļ	_					41	41	ļ				<u></u>		1	41				
Q	22	<u> </u>		1			41		<u> </u>	ļ	_								42		
R		<u> </u>	_	_					<u> </u>	<u> </u>	_							<u> </u>		25	
5		3	9					<u></u>	<u> </u>		1			41			1	ļ		1	-
T		<u> </u>				41		<u> </u>	<u> </u>	-						19		<u> </u>		1	-
V		ļ	1	38					<u> </u>				20		1	1		<u></u>	<u> </u>		4
W		.ļ							<u>.</u>	-			······					ļ	<u> </u>		
Χ								<u>.</u>	ļ	_	_							ļ	<u> </u>		
Y		ļ	_					ļ	ļ	ļ	_						<u> </u>	<u></u>			_
Z	16	<u> </u>	╛	_				_	! 	_	_										-
	-	<u> </u>					<u> </u>	<u></u>	<u> </u>	-		41					<u> </u>	<u></u>	<u></u>	<u> </u>	-
unknown (?)		ļ	_				ļ	<u> </u>									<u> </u>	<u> </u>	<u></u>	<u> </u>	ļ
not sequence			2					=	=		=		_	1			-	4.0	40	40	
sum of seq				~~~~	********	;	÷	;				••••	:	:	:	:	:		42	•	:
oowcaa,						:	:	:					?****		7	:	:	:	42	:	:
mcaa'	0		S		L	Ţ	Q	Р			S	-		S		······		••••••••		R	
rel. oomcaa	2 20%		96%	93%	100%	100%	100%	100%		200	100%	100%	49%	100%	54%	49%	%86	100%	100%	%09	
pos occupied	:	3					·	1	1				4	:	3	4		2 1	1		5

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

					$oldsymbol{\perp}$									CDI									_
amino acid'	20	21	22	3 2	3 :	74	25	26	27	7	۵	ш		87	73	8	31	4	32	,	<u>.</u> د	+	35
Α	2									1			_	_	2	2				1			
В									_				<u> </u>	_					-	-		-	****
С			<u> </u>	4	12				_						_				<u> </u>	-			
D			_						_				3			3	1			3		1	
E			<u>.</u>										<u>.</u>			1				-			
F						1			<u> </u>		1							1	-	1	_		
G							42		3	1		<u> </u>	_ļ.	2	39	4			<u> </u>				
Н												<u> </u>					2		<u> </u>	2	_	2	
]	1	4	1									<u> </u>	1	37			*******		-			1	
K												<u> </u>	1			1			-				
L		<u>.</u>	1					<u> </u>				_	4	1				<u> </u>	-		_		
М		<u>.</u>						<u> </u>	_			_	_	1				<u> </u>	-	-	_		
N									_	2	1	3	37			13	31	1	2		1	9	
Р											<u> </u>	_	ļ					<u> </u>	<u> </u>	1	_		
Q		<u> </u>							_	_,,	<u> </u>	_					ļ	<u> </u>	-	1	_		
R			<u></u>					Ļ	1	1	<u> </u>	_	_			5		<u> </u>	-				
S	1			42		38	<u> </u>]:	34	34	3	3				13	 -	 -	1	3		19	
Ţ	38	3				3	<u> </u>	_	4	3		2			1	<u> </u>	1	1	+	7		2	
V									_		-			1		ļ	<u> </u>	-	-	2	40		_
W								ļ.	_		ļ	_			-	<u> </u>	-		-				
Х															-	<u> </u>		-					
Y							<u> </u>				<u> </u>	_			-	<u> </u>		4	1	20		7	-
Z							<u> </u>	_	_		Ļ	<u> </u>			<u> </u>	<u> </u>	╄-	+	<u> </u>	_			<u> </u>
-		_				<u> </u>	<u> </u>	_			<u> </u>	-			<u> </u>	<u>!</u>	ऻ	3	6				L
unknown (?						<u> </u>	<u> </u>	_			<u> </u>	_		<u> </u>	-	<u> </u>	-	-	-				-
not sequence	d						<u> </u>	4		_	╧	4		<u> </u>	<u> </u>	<u> </u>	<u> </u>		1	1			÷
sum of seq	4	2	42	42	42	42	2 4	2	42	4	2 4	2	42	42	42	2 42	2 4	2 4	1	41	41	41	-
oomcaa ₃	3	8	41	42	42	38	3 4			•	•	•		:		1:			:				<u>+</u>
mcaa ⁴		Γ	1	S	С	S	(3	S	5		5	N	1	G	N		<u> </u>	-	Y	٧	S	-
rel. oomcaa	5	2 2 2	98%	100%	100%	0/00	2 3	9,001	81%	010%	0.10	9006	980%	%0X8	920	210%	2 2	0/0+/	88%	49%	%86	46%	
pos occupie	-		2	<u> </u>			•	•	. <u>.==</u> 4		6	4			ς	3	•	7		10		:	,

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

_						F	ran	nev	vorl	(II												
amino acid'	36	37	ä	2 6	n n	40	41	42	: ;	}	44	45	7	} ;	÷ ,	Σ	£ 5	20	5	25	53	54
Α									4 4	10							_			1		
В								<u> </u>					<u> </u>	_			_					
C								<u>.</u>					<u> </u>	_			_	_				
D							1	ļ					ļ				_		10	8		
E												2						5			1	
F	1				4				<u>ļ.</u>				<u> </u>				1					
G							36)	<u>.</u>								_	1				
Н	1		1	6	1								ļ				1				1	
1													<u>.</u>			40		1				
K		ļ					<u></u>	<u>.</u>	1			35	·÷					1	1		18	
<u>L</u>		ļ		1	31		<u></u>						ļ	41	40						1	
M							<u></u>		1							1	_				1	; ;
N		ļ					ļ						1					3	28	30	2	<u> </u>
Р	ļ	<u></u>				42	<u> </u>	1	<u></u>		42	ļ	<u>.</u>								<u> </u>	<u> </u>
Q		3	39	34			<u>ļ</u>					<u> </u>	-								15	÷
R		<u> </u>	2		1		ļ	1					4					7			:	4
<u>S</u>	ļ	<u> </u>					<u>.</u>	_		1		<u> </u>						9	 -	3	1	<u> </u>
T	ļ	<u> </u>				<u> </u>	ļ		36	1		<u> </u>						1		<u> </u>	<u> </u>	-
<u>V</u>		<u>.</u>		1	5		<u>.</u>					ļ		1	2	1						<u>.</u>
W	ļ					ļ				••••••		-						···-·		<u> </u>	<u> </u>	<u> </u>
X												ļ									ļ	-
Υ	4()					<u>.</u>					ļ	_				40	1	1	<u> </u>	<u> </u>	-
Z	L	<u> </u>				_	<u> </u>	_	_		<u> </u>	Ļ	_					_	<u> </u>	<u> </u>	┿	╄
		<u> </u>			<u>.</u> .	ļ	<u>.</u>					ļ									-	
unknown (?)		ļ					 				<u> </u>	<u>.</u>						<u> </u>	-	<u> </u>		-
not sequence	<u> </u>	╧				-	+	_	-		<u> </u>	 	_							-	2 4	
sum of seq ²	4	2	42	42	42	4	2 4	12	42	42	4	2 4	12	42	42	42	42	42	4.	4.	4	4 4
oomcaa,	>				7							•			:	40						
mcaa ⁴				· · · · · · · · · · · · · · · · · · ·				:		•	1	•		L		1		D	N	<u>. N</u>	l K	
rel. oomcaa ^s	0.00	3240	93%	81%	7.40%	,	200	93%	96%	950%	3000	2	83%	%86	95%	95%	95%	310%	670%	2 2	7 20,	2
pos occupied	ام 	3	3	4		5				2		- :					•	1	כ	5	4	9

123

Table 5A: Analysis of V lambda subgroup 1

	CD	R II												·					
amino acid'	55	99	⋖	8	ပ	٥	ш	22	58	29	99	61	62	63	64	9	99	⋖	~
Α	1														5				
В																			
. С																			
D											38								
E																			
F													38						
G								41			2				36				
Н											1								
									17				3						
K																	38		•••
L		1		•••••						1									
M																			
N																			
P	38									38									
Q													••••						
R		•••••										42					4		
S	2	40				ļ				2				42		42			
T															1				
V						Ī			24				1						
W						<u> </u>	·												
Χ				••• •															****
Υ			·																
Z				 ! !														•	••••
_			41	41	41	41	42											42	_
unknown (?)										••••	•••••								
not sequenced	1	1						1	1	1	1								
sum of seq?	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	_
oomcaa ³	38	40	41	41	41	41	42	41	24	38	38	42	38	42	36	42	38	42	
mcaa'	Р	5	-	-	-	-	-	G	٧	Р	D	R	F	S	G	S	Κ	-	••••
rel. oomcaas	33%	%86	%00I	ا000	%001	%001	%00 ₁	0001	39%)3%	3%	%00	%O(%00	%9(100%	%06	100%	
pos occupied ⁶			:			:								••••••					

124

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

•				Fra	mev	vork	III												
amino acid'	29	89	69	20	71	72	73	74	75	9/	77	78	79	80	8	82	83	84	82
Α		1	3		41			24						2				38	1
В																			
· C							į												
D		1													1	41			37
E													1		24		42		1
F .												<u> </u>		<u></u>					
G		40				,		17		1	42	<u> </u>			15				
Н										<u></u>			1						2
· 1									41			<u> </u>		<u> </u>					1
K																			
L							42					41							
М																			
N																1			
Р														2					
Q				-									31	<u> </u>					
R													8						
S	42		1	42		24				20				20				1	
T			38			18				21				17				3	
V					1			1	1			1		1					
W						<u> </u>							1		2				
X																			
Y			<u> </u>			<u> </u>													
Z									<u> </u>										
-																			
unknown (?)									<u> </u>	<u> </u>	<u> </u>					<u> </u>		<u> </u>	
not sequenced							<u> </u>	<u> </u>			<u> </u>						<u> </u>		<u> </u>
sum of seq?	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa,	42	40	38	42	41	24	42	24	41	21	42	41	31	20	24	41	42	38	37
mcaa*	S	G	Ţ	S	Α	S	L	Α	1	Ţ	G	L	Q	S	E	D	E	Α	D
rel. oomcaas	100%	95%	%06	100%	%86	57%	100%	57%	98%	20%	100%	980%	74%	48%	57%	98%	100%	%06	88%
pos occupied	·			· :		2	:	3	•	:	1	:	5	:	:	:	-		5

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

										CDI	R III								
amino acid'	98	87	88	83	90	91	92	93	94	92	4	മ	U	۵	ய	ш.	96	-97	98
Α				22	15			1				16					4	1	
В																			
С			42																
D							39	17			7								
E												1					1		
F		2								1									3
G				14	<u> </u>			1				-17	1				5	1	
Н		1											1						
1											1							1	
K											1								
L				1						37			1					1	
М						<u> </u>												1	
N							2	2			9	1							
Р										1							6		
Q				3															
R									5	1	2						2		
S					4			17	35		18		1				1		
T	<u> </u>				22			1	1		1								
V	<u> </u>			1				1		1		2					9	34	
W	<u> </u>					38											7		
X	<u> </u>																		
Y	42	39				3		1									3		
Z																			_
-	<u> </u>										2	4	35	39	38	38	1		
unknown (?)	_	<u> </u>																	<u> </u>
not sequenced				1	_				1				_				-		-
sum of seq ²	42	42	42	41	41	41	41	41	41	41	41	41	39	39	38	38	39	39	3
oomcaa³	42	39	42	22	22	38	39	17	35	37	18	17	35	39	38	38	9	34	
mcaa*	Υ	Υ	С	Α	T	W	D	D	S	L	5	G	-	-	-	-	٧	٧	F
rel. oomcaas	100%	93%	100%	54%	54%	93%	92%	41%	85%	% 06	44%	41%	%06	100%	100%	100%	23%	87%	1000
pos occupied	-			;	:	2		•	3		:					1	10		

120

SUBSTITUTE SHEET (RULE 26)

Table 5A: Analysis of V lambda subgroup 1

-			F	rame	wor	k IV						
amino acid'	66	901	101	102	103	104	105	106	∢	107	108	sum
Α Α												285
В												
С												84
D												224
E		1				<u></u>						81
F												87
· G	36	31	36							26		559
Н												25
1										<u> </u>		188
К					30							141
L						25			34			344
M												5
N					1							176
Р		ļ	<u> </u>								1	296
Q		ļ	<u> </u>	<u> </u>	3				_1		18	251
R	ļ	<u> </u>	<u> </u>	<u> </u>	1					2		156
S	ļ	1	<u> </u>	<u> </u>	<u></u>					2		720
T	 	3	ļ	36	1		36					359
V		ļ	<u> </u>	ļ		11		36	1			282
W	ļ	ļ		ļ						1		92
X	ļ	ļ		<u> </u>	ļ							
ΥΥ		.ļ	<u> </u>	ļ		ļ			 .			202
Z	-	<u> </u>	┷	<u> </u>	-	<u> </u>						16
_	-	<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>			<u> </u>		524
unknown (?)	<u> </u>	<u> </u>								10	22	١,,,
not sequenced				5 6		-	 -	==			22	i i
sum of seq'					•-:		36	:		•	:	1
oomcaa,		6 3		• • • • • • • • • • • • • • • • • • • •		:	36		•	:	:	
mcaa'	G	·- 		1	K	L	·	V	L	G	Q	-
rel. oomcaas	100%	%0% 80%	100%	100%	83%	%69	100%	100%	94%	84%	95%	
pos occupied	6	1	4	1	1 !	5 2	1	1	3	4	2	

127

Table 5B: Analysis of V lambda subgroup 2

											Fran	newo	ork I						
amino acid'	-	2	3	4	2	9	7	8	6	2	=	12	13	14	15	16	17	28	19
A			35					30			6		1	1					
В												<u></u>							
. C										ļ									
D																1			
E															į				
F .																			
G													42			42			
Н	2																1		
1			1																28
K																			
L				40											3				1
М																			
N																			
P							42	6							40				
Q	22		4			41											42		
R								6	1										
S		41							40			42		42				43	
T					42				1										
V		1	2								36								14
W																			••••
Χ																			
Y							<u></u>												. .
Z	16						<u> </u>												
•						<u> </u>	<u></u>			42									
unknown (?)				<u> </u>	<u></u>	1	<u></u>												
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1							
sum of seq ²	40	42	42	40	42	42	42	42	42	42	42	42	43	43	43	43	43	43	4
oomcaa³	22	41	35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	2
mcaa*	Q	S	Α	L	Ţ	Q	Р	Α	S	-	٧	S	G	S	Р	G	Q	S	1
rel. oomcaas	55%	98%	83%	100%	100%	%86	100%	71%	95%	100%	9/098	100%	98%	%86	93%	98%	98%	100%	650%
pos occupied ⁶	•	:					;	3				1							

120

Table 5B: Analysis of V lambda subgroup 2

													CD								
amino acid'	20	21	23	77	73	24	25	56	27	_	י כ	ш	78	53	္က	<u>ج</u>	<	32	<u>ج</u>	34	35
Α						3		1							1			1			
В										<u>L</u>	<u>ļ</u>										· · · · · · · · · · · · · · · · · · ·
. С					42					<u> </u>	1					1					
D			<u> </u>							ļ.,	_	39		1	4		5				
E																	1				
F .			1					•••••							1			4			
G							43		1					39	26						
Н									1								1	1			
l		4	1			1			ļ				6								
. K		<u> </u>							<u> </u>	<u>.</u>	<u>.</u>						4				ļ
L		<u> </u>	1	<u> </u>					<u> </u>	<u>.</u>								4			<u> </u>
M		<u> </u>							<u> </u>												-
N										١	3	4		1	4	3	28			<u> </u>	
Р										1								ļ		<u> </u>	-
Q																		<u> </u>		<u></u>	
R											1				2			<u> </u>			_
S				42		3		3	3	5	38				5	1	2	4	1	42	
T	43					36		39		3				1		1		<u> </u>	ļ	ļ	
٧									<u> </u>	<u> </u>			37					<u> </u>	41	<u></u>	<u>.</u>
W																		<u> </u>	<u> </u>	<u> </u>	4
Χ																		<u> </u>	<u> </u>	<u></u>	<u> </u>
Y										1				1		37		29		<u></u>	
Z																			<u> </u>	<u> </u>	
	·																1	<u>.</u>	<u></u>	<u>.</u>	
unknown (?)													<u> </u>		<u> </u>		1	<u></u>	<u>.</u>	<u> </u>	
not sequence				1	1														1		1
sum of seq?	4:	3 4	13	42	42	43	43	4.	3 4	3	43	43	43	43	43	43	43	3 43	42	4	2 4
oomcaa ³	4:	3 4	11	42	42	36	43	3	9 3	5	38	39	37	39	26	37	28	3 29	4	4,	2
mcaa'	Ţ		ı	S	С	T	G	Ţ		5	S	D	٧	G	G	Υ	N	Υ	٧	S	_
rel. oomcaa	,000	2	92%	100%	%00	14%	100%	010%	2	5 L ₀ /0	38%	31%	36%	910%	%09	36%	5.5%	57%	980/	100%	2
pos occupies	:	•••••		 1		1	:	1	- 1	- :		i .	:	:	:	5	:	•	:	1	1

Table 5B: Analysis of V lambda subgroup 2

						Fram	iewo	rk II									·		
amino acid	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
A					1	4		40											
В				•															
С										į		<u> </u>							
D				1		2									20	1	2	1	
E															20			2	
F .	2													7		1			
G						36								<u></u> į	2	2		1	
Н			2	34										<u></u>				1	
l							1				1	9	43	<u></u>			1		
K .							40			41		<u> </u>					1	21	
L			1	1							38	6							
М												26	-				1		
N				2											1		8	12	
Р		,			41	<u> </u>			43										
Q		41	39			<u></u>				2									
R		1				<u></u>	1										2		4
S					1	<u> </u>	<u> </u>							2			21	3	
T		<u> </u>	<u> </u>	<u> </u>		<u> </u>	1									<u></u>	7		<u> </u>
V	<u> </u>			<u> </u>		1		3			4	2				39			
W		<u></u>	<u> </u>			<u> </u>													<u> </u>
X		ļ	<u></u>			<u> </u>	<u></u>	<u> </u>											
Y	41	<u>.</u>		5		<u></u>	ļ	<u> </u>						34				2	<u></u>
Z				<u> </u>		<u> </u>		<u> </u>											
_				<u> </u>		<u></u>													
unknown (?)		1	1	<u></u>		ļ	<u> </u>	ļ											<u> </u>
not sequenced	1					<u> </u>	<u> </u>	<u> </u>											<u> </u>
sum of seq ²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	4
oomcaa¹	41	41	39	34	41	36	40	40	43	41	38	26	43	34	20	39	21	21	4
mcaa*	Υ	Q	Q	Н	Р	G	Κ	Α	Р	Κ	L	М	I	Υ	D	٧	S	Κ	F
rel. oomcaas	95%	95%	91%	79%	95%	84%	93%	93%	100%	95%	88%	9009	100%	79%	47%	91%	49%	49%	2000
pos occupied	:	i .	:	ž.	•	1		2	:	:	.3							8	

Table 5B: Analysis of V lambda subgroup 2

	CDI	₹ I	1					_1.			<u> </u>										
amino acid'	22	26	} <	۵ ۲	ه د	ء ر	٠ ح	י ן	ر ۲	85	29	8	61	62	5 5	3 3		9	99	⋖	ω
Α														<u> </u>	_ _		2				••••
В														ļ							
C														<u> </u>	_			1			
D												17		<u>.</u>			_				
E														<u>.</u>							
F		ļ												4	2	_					
G		ļ							43	1		_					41				
Н						<u></u>						2	ļ	ļ	-						
		ļ							_	3			ļ								·
K		ļ																	42		.
<u> </u>		<u>.</u>		<u></u>		_						1	ļ		1						
М	ļ	<u> </u>		<u> </u>									ļ						••••		
N		<u> </u>										19	<u> </u>								 .
Р	43										15										
Q	ļ	ļ																			
R	ļ	ļ										<u> </u>	4	3					1		
5	ļ	<u>.</u>	43								28		?			43		42		<u> </u>	
<u> </u>	ļ	<u>.</u>										<u> </u>	-						<u> </u>	<u> </u>	<u>.</u>
<u>V</u>	ļ	_								39		ļ							<u> </u>	<u> </u>	ļ
W		_										<u> </u>	-	_			 -	<u></u>	-	<u> </u>	<u> </u>
X						<u> </u>					<u> </u>	<u> </u>	-						<u> </u>	<u></u>	ļ
Y			_								<u> </u>		2					<u></u>	-	ļ	
Z	<u> </u>	_								<u> </u>	<u> </u>	<u> </u>	<u> </u>	+				<u> </u>	╄	100	<u>:</u>
				43	43	43	43	43				ļ						<u></u>		43	
unknown (?)		_										<u> </u>	-	<u></u>				<u> </u>	<u> </u>		-
not sequence		<u>.</u>								<u> </u>	<u> </u>		_		_				1		<u> </u>
sum of seq ²	4	3	43	43	43	43	43	43	43	43	4:	3 4	3 4	13	43	43	43	4.	4.	3 43) <u></u>
oomcaa,				43	43	43	43	į												2 43) <u></u>
mcaa*	P	-	S	-	-	-	:	-	·									:	K		
rel. oomcaa	7000	2	100%	100%	100%	100%	100%	100%	100%	910%	5.50%		0/544	100%	980%	100%	9.2%	9000	98%	100%	
pos occupied	le 	1	1	1	1	:···		Ţ	-	:	:			:		:	•	•	•	:	1

131

Table 5B: Analysis of V lambda subgroup 2

				Fra	mev	vork	III				 *					<u> </u>			
amino acid'	67	89	69					74	75	9/	77	78	79	80	81	82	83	84	82
Α		3		1	43									36				43	
В																		,	
· C																			
D	•	1	2												3	42			39
E											1				38		43		
F																			
G		39									42				1				
Н																			2
l									35										
К			1																
L							43					43							
М																			
N			38												1	1			1
Р			-											2					
Q													41						
R													2						
S	42			1		43				42									
Т			1	41				43		1		<u></u>		2					
V									8			<u> </u>		3					
W							٠					<u></u>							
X																			
Y																			
Z																			
-		<u>.</u>	<u></u>	<u> </u>		<u></u>													
unknown (?)		<u> </u>	1	<u> </u>					·										1
not sequenced	_ 1			<u> </u>															
sum of seq ²	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa3	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	39
mcaa*	S	G	N	T	Α	S	L	Ţ	1	S	G	L	Q	Α	Ε	D	Ε	Α	D
rel. oomcaas	100%	910%	988%	95%	100%	100%	100%	100%	81%	98%	98%	100%	95%	84%	9/088	98%	100%	100%	91%
pos occupied ⁶	1	·	:	<u> </u>		•	:					:	2		:		1	1	3

132

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

_				\perp							(DR	Ш		·						
amino acid'	98	87	ä	3 6	g (유	6	92	93	94	5	ဌ	Α	ω	ں ا	۰ ۵	ш.	ш.	96	97	86
Α					2	1		21				<u></u>			_				1	1	
В										<u> </u>	<u> </u>										
· C			4	3	11					<u></u>	_										
D									3	<u> </u>	<u> </u>	2	_						1		
E			_					1	1	<u> </u>											
F			3				3			ļ		1		1					5		4
G								1	21		3	4							1		
Н							1														
<u> </u>			_					1	1	ļ	_	1	2						1	7	<u></u>
K									<u></u>	ļ		3		<u> </u>							
<u></u>	ļ	ļ							<u></u>	<u></u>	_			1	1				6	<u> </u>	<u> </u>
M		ļ							<u> </u>		_							<u> </u>	1	:	
N		<u> </u>							<u> </u>		5	7	5						1	<u> </u>	
Р		<u></u>							1	<u> </u>				4				ļ <u>.</u>		ļ	<u>.</u>
Q	<u></u>	<u></u>							<u> </u>	_		1	2					<u> </u>		ļ	<u> </u>
R		<u> </u>						2	<u> </u>		3			1				<u> </u>	5	<u> </u>	
S ·	<u> </u>	<u> </u>	1		30	41		<u> </u>	12	2 2	3	14	9					ļ	1	<u> </u>	ļ
T	<u> </u>	<u> </u>						16	3	4	4	3	21					ļ	<u> </u>	<u> </u>	<u> </u>
V								1	ļ	_	_			<u> </u>				-	÷	28	3
W	<u> </u>	<u>.</u>							<u> </u>		_			<u> </u>				<u> </u>		5	-
X		<u>.</u>							_				<u> </u>		<u> </u>			ļ	<u> </u>		_
Y	43	3 3	39				39		-		1	6						ļ	-	1	-
Z							<u> </u>	<u></u>	<u> </u>	<u> </u>	_	·		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u></u>	
-							<u> </u>	ļ	<u> </u>			1	3	36	42	43	4:	3 43	}	<u>.</u>	_
unknown (?)							<u> </u>				2			<u> </u>	ļ		ļ	<u> </u>	ļ		-
not sequence			_			1		<u> </u>			_			<u> </u>	<u> </u>			<u> </u>	 -	⇌	1
sum of seq ²															43						
oomcaa ₃	4	3	39	43	30		·		•••					36	42	43	4	3 4	:	:	
mcaa*	Υ		Υ	С	S	S	Υ	Α	(3	S	S	Ţ	-	<u>-</u>	-	-		V	' V	
rel. oomcaa ^s	, OO	2	91%	100%	70%	98%	910%	2007	1.00	4 9 %	53%	33%	50%	84%	98%	100%	100%		2 700	7023	Q/ ₂ / Q
pos occupied		∓			:	:		•	:	:		:	:		•	:		1	1 1	3	5

133

Table 5B: Analysis of V lambda subgroup 2

				ram	ewo	rk I\	/					
amino acid'	66	100	101	102	103	104	105	106	۷	107	108	sum
А		1										280
В												
С												99
D												188
E												107
F												113
G	42	33	42							19		567
Н												48
l							1					184
К					36							189
L						28			40			264
М												29
N					1							146
Р												238
Q					1						14	250
R		1			2					4		121
S							1			2		831
T		7		41			40					398
V						14		42	1			327
W												48
X												
Υ					1							285
Z												16
-												555
unknown (?)												8
not sequenced	1	1	1	2	2	1	1	1	2	15	28	80
sum of seq²	42	42	42	41	41	42	42	42	41	25	14	
oomcaa,	42	33	42	41	36	28	40	42	40	19	14	
mcaa⁴	G	G	G	T	K	L	T	٧	L	G	Q	
rel. oomcaa ^s	100%	79%	100%	100%	88%	67%	95%	100%	%86	26%	100%	
pos occupied ^a	1	4	1	1	5	2	3	1	2	3	1	

134

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

[F	ram	ewo	rk I						
amino acid'	-	7	3	4	ഹ	ဖ	_	ω .	თ 	2	=	12		4	15	9	1	8	2
А					1		1	2	7					20	1		_		27
В															_			_	
. С								<u> </u>											
D			5				10					<u> </u>		_					
Е			20										1			1			
F	1	1										1			1				
G			1													37			
Н																			
К			<u> </u>														2		
L			<u> </u>	37				_			4		1		9				
M					‡														
N			<u> </u>															<u> </u>	
Р			ļ				26	35	1						27				
Q	4	<u> </u>	4			38											36		
R		<u> </u>	<u> </u>																
5	13	14	<u> </u>	<u> </u>	1		1		28			37		18					
Ţ	ļ	<u> </u>	<u> </u>	ļ	36			1	······							<u> </u>		38	
V		ļ	8	1					2		34		36			<u></u>			1
W	ļ	<u> </u>	<u> </u>	<u> </u>												<u> </u>	<u> </u>		
X		<u> </u>	ļ	<u> </u>												<u> </u>	<u> </u>		
Y	<u> </u>	23	3	<u>.</u>															
Z	<u> </u>											<u>!</u>	<u> </u>	<u> </u>	_				
_	20)	<u>.</u>	<u> </u>				<u> </u>		38	ļ					<u> </u>	<u> </u>	<u> </u>	
unknown (?)		<u> </u>		<u> </u>	<u> </u>		· 				<u> </u>					<u> </u>	<u> </u>		
not sequenced		▙	╄-	<u> </u>	<u> </u>		<u> </u>				-	<u> </u>				<u> </u>			_
sum of seq ²				3 38															
oomcaa3	20	2:		37	:		:	:	;	:	:	:	:	:	:	:		:	ŧ
mcaa'	-	Υ	E	L	T	Q	Р	Р	S	<u></u>	V	·	٧	Α	Р		Q	T	
rel. oomcaas	530%	200	20%	92.6	95%	100%	9/89	92%	74%	100%	%68	92%	95%	53%	71%	92%	95%	100%	
pos occupied			•••••	•	:	:	:	:	:	÷	7	•	•	•	1	1 2	•	•	

Table 5C: Analysis of V lambda subgroup 3

e SC: Analysis of											CE	PRI							
amino acid'	20	21	22	23	24	25	26	27	۵	ш	28	29	30	31	<	32	33	34	35
А			1					5					. 1	1			21	3	
В																			,
. С				38														5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
D							30	1					10			3		1	
Е							2	2				1	3	6					•••••
F .														1		2			
G					9	38		1				23	4						
Н							1									2		9	
1		38									9			1					
K								7					2	13					
L											28								
M	1													1					
N			2				4	9			1		2			1		2	
Р			1									3							
Q					10									4					
R	25							2				10	1				1		
S	9		1		19			10					11	2		8		14	
T	3		33					1				1	4						
V																1	15		
W																			38
X																			
Y							1							8		20	1	4	•••••
Z																			
-									38	38					37				
unknown (?)						•													
not sequenced															1	1			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	38
oomcaa¹	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	38
mcaa'	R	ı	T	С	S	G	D	S	_	-	L	G	S	Κ	_	Υ	Α	S	W
rel. oomcaa ^s	%99	100%	87%	100%	20%	100%	9067	26%	100%	100%	74%	61%	29%	35%	100%	54%	55%	37%	100%
pos occupied ^a	4		5	1		••••				1	3	•••••••••••••••••••••••••••••••••••••••						7	1

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

						F	ran	iew	ork	l II												
amino acid'	36	37	30	ဂ ဂ	33	9	4	42	7	} ;	4 4 4	45	46	47	} {	ş ş	4 r	<u>-</u>				54
Α									2	23				<u> </u>		_			1		1	
В									<u> </u>	_	_			<u> </u>	<u>.</u>	_						
С									-	_	_			<u> </u>								
D			<u> </u>								_			<u> </u>	_				22			
E				1					_	_	_				_	_		5	3		3	
F	3	ļ							_	_					_	_	2			1		
G							36										_	9				
Н								<u> </u>	1	_				_			1	3			1	
l		<u> </u>									_	1		<u> </u>		28				1		
K					32			<u> </u>	<u> </u>					-			_	2	6	1	13	
L				2				<u> </u>				6	33	}	1					<u> </u>	<u> </u>	
М				į				<u> </u>	_	_			1	_	<u>.</u>	1	_			<u> </u>	<u> </u>	
N.								<u> </u>	<u></u> į					_					1	19	9	
Р						36		<u> </u>	1	_	38				_					-		
Q			37	35	1			3	6				ļ	_				9		ļ	1	
R	<u> </u>		1		4		2	2	_				ļ					1	1	<u> </u>	·	3
S					1	2	<u> </u>	_		14			<u> </u>	_						10	 	<u> </u>
T							<u> </u>	<u> </u>	<u>.</u>				<u> </u>	-	_				2	2 4	<u> </u>	<u> </u>
V						<u> </u>	<u> </u>			1		31	<u> </u>	4	37	9			<u> </u>	 	<u> </u>	<u> </u>
W						<u></u>	<u> </u>	_					<u> </u>	_					<u> </u>	<u> </u>	-	-
X						<u> </u>	<u> </u>	<u> </u>	_				<u> </u>	_	_				<u> </u>	-	ļ	-
Y	3	5						_	_				<u> </u>	_	_		35		-	-	<u> </u>	-
Z		1				<u> </u>	<u> </u>	<u> </u>					<u>!</u>	∔					<u> </u>	-	<u> </u>	╄
_							_	_	_				<u> </u>	-					<u> </u>	-	-	-
unknown (?)	_	_			<u> </u>	<u> </u>	<u> </u>	-	_			<u> </u>	<u> </u>	_					-	 	-	-
not sequence	d_				<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	_				<u> </u>	<u> </u>		
sum of seq ⁷																			3 3	8 3	8 3	3 .
oomcaa ¹	3	5	37	35	32	3	6 3	6	36	23	•	•	•			28		 -			9 1	
mcaa*	Y	<u> </u>	Q	Q	K	Р	0	}	Q		·	·	1	_	٧	1	Υ	D	D	1	I K	<u> </u>
rel. oomcaa	7000	0/ ₀ 76	%∠€	92%	84%	350%	2 6	95%	95%	61%	100%	%0Ca	2 20	ο/ ₀ / Ω	97%	74%	92%	24%	2002	2000	3,000	2
pos occupied					•	4		:	- 7			T	•	- 1			3	:	-	8	7	9

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

	CD	RİI																	
amino acid'	52	26	⋖	8	U	٥	ш	27	28	23	9	61	62	63	64	65	99	4	8
А		1																	
В							<u> </u>												
С																			
D											9								
E											27								
F													38						
G								38							38				
Н														<u> </u>					
·				·					37					<u></u>					
K														<u></u>					
L																			
М																			
N																	21		
P	37	1								36									
Q																			
R	ļ											38							
S	1	36								1				38		38	12		
T			<u> </u>														5		
V																			
W	1																		
Χ	1																		
Y																			
Z																	·		
**************************************			38	38	38	38	38											38	3
unknown (?)		<u> </u>	<u> </u>								1								
not sequenced									1	1	1								
sum of seq?	~	38	38	38	38	38	38	38	37	37	37	38	38	38	38	38	38	38	3
oomcaa³		······		÷	·····	-			:	:	:	38		**********	:	:	:	:	:···
mcaa ⁴		S	-	-	-	-	-	G	ı	Р	E	R	F	S			Ν	-	-
rel. oomcaas	92%	95%	%001	%001	%00I	%001	0001	%001	100%	97%	73%	100%	100%	100%	%001	0001	55%	100%	,000
pos occupied	:	•		<u> </u>					1	:						1		<u> </u>	

Table 5C: Analysis of V lambda subgroup 3

•			•	Fra	mev	vork	111												
amino acid'	67	89	69	70	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	.85
А				1	36	1		1				11	1	34				38	
В																			
· C	·																		
D																38			37
E													10		14		38		1
F														·					
G		37									28				10				
H ⁻			1																
ı						1		1	37	1					1				
К			1																
L							38								2				
M															10				
N			28							1									
Р																			
Q		1										-	25						
R					·					1	10		1						
S	37		2			11				23				1					
Т	1		6	37		25		36		12		13		2					
٧					2				1			14	1	1	1				
W																	İ		
X																			
Υ															٠				
Z																			
-																			
unknown (?)																			
not sequenced																			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa,	37	37	28	37	36	25	38	36	37	23	28	14	25	34	14	38	38	38	37
mcaa•	S	G	N	Ţ	Α	Ţ	L	Ţ	1	S	G	٧	Q	Α	Ε	D	Ε	Α	D
rel. oomcaa ^s	97%	%26	74%	97%	95%	%99	100%	95%	97%	61%	74%	37%	%99	%68	37%	100%	100%	100%	97%
pos occupied					:									4					2

PCT/EP96/03647

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

										CDI	RIII								
amino acid'	98	87	88	83	90	91	92	93	94	92	⋖	80	U	٥	w	<u>u</u>	96	97	86
Α					13	3	2			1	2						4		
В																			
· C			38																
D							32	1	1		6								
<u>E</u>				1								2					2		
F .		2						2											3
G									3	14	3			1			3	1	
Н												12	1						
l																		4	
K											1								
L				1				1		1		1	1				4	2	
М									1								1	1	
N				10			2	1	2		10	1							
Р									1				3				1		
Q				25						1	1								
R						10		1	2			2							
S				1	14	1		28	26	13		1				1			
T						1		3		7	2								
V					11												18	28	
W						23	٠										1		
Χ																			
Υ	38	36					1		1		1	3	1				3		
Z																			
-											10	15	31	36	37	36		1	
unknown (?)																			
not sequenced							1	1	1	1	2	1	1	1	1	1	1	1	
sum of seq ²	38	38	38	38	38	38	37	37	37	37	36	37	37	37	37	37	37	37	3!
oomcaa¹	38	36	38	25	14	23	32	28	26	14	10	15	31	36	37	36	18	28	3
mcaa*	Υ	Ý	С	Ω	S	W	D	S	S	G	N	-	-	-	-	-	٧	V	F
rel. oomcaas	%00		_			•					28%		84%	%21	0001	97%			%OO
pos occupied		<u></u>	<u></u>												•••••				

Table 5C: Analysis of V lambda subgroup 3

_			F	ran	nev	vor	k IV						
amino acid'	66	90	101	102	103	3	104	105	106	∢	107	108	sum
Α						T							265
В	<u> </u>					Ī							
С	_				İ	Ī		<u> </u>			1		82
D	1				T	Ī							225
Е					Ī	2							145
F													90
G	35	31	35								24		461
н													32
													160
К						30							110
L							28			33	<u> </u>		233
М											-		17
N													126
Р										1			249
Q												7	275
R					Ţ	2							154
S				<u>.</u>							2		501
Т		4		3	5			35					347
V		<u> </u>	Ŀ	<u> </u>	_		7		35				308
W		<u> </u>			_							<u></u>	62
X						, .			ļ			<u> </u>	
Υ		<u>.</u>			_		<u> </u>	ļ	<u> </u>			ļ	211
Z	_	<u> </u>	<u> </u>	<u> </u>	_				<u> </u>		<u> </u>	<u> </u>	
		<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u>. </u>		<u> </u>	603
unknown (?)	<u>.</u>	<u> </u>						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1
not sequenced	;	_		3	3	_	3		3		=	28	89
sum of seq'		••••••		-			· - · · · · ·		35	:	:		
oomcas ₃	3	3	1 3	5 3	35	30	-		35	•	:	:	
mcaa*	G	G	(}	T	K	L	Ţ	V	L	G	Q	
rel. oomcaa'	100%	2 80	0200	3	100%	88%	80%	1000	100%	92%	89%	100%	
pos occupied				1	1	:		2	1	2	2 :	3	

141

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

											·			Fr	ame	wor	k I			
amino acid'	-	7	က	4	S	9	7	&	6	01	Ξ	12	13	14	15	16	11	82	6	20
Α					1	14			60							24	1			
В																				
. С																				
D																				
E	1				2	1		2		64										
F .																				
G								58	1						64					
Н			2																	
l		2																		
K		2										57	64						60	
L			2	59							3									
М		1																		
· N												6								
Р														63						
0	53		56		2	45														
R	ļ											1							3	
5							60		3					1		40	63			<u> </u>
Ţ	ļ																		1	
V	2	55		1	55						61							64		6
W																				
X	<u> </u>																			ļ
Υ	ļ																			
Z	3																			_
_																				ļ
unknown (?)	ļ	<u></u>																		
not sequenced	11	10	10	10	10	10	10	10	6	6	6	6	6	6	6	6	6	6	6	_
sum of seq ²	59	60	60	60	60	60	60	60	64	64	64	64	64	64	64	64	64	64	64	Ε
oomcaa³	53	·				!	·					•••••								(
mcaa ⁴	Q	٧	Q	L	٧	Q	. S	G	Α	Ε	V	K	K	Р	G	S	5	٧	K	
rel. oomcaa ⁵	%06	92%	93%	%86	92%	75%	100%	97%	94%	100%	95%	9068	100%	98%	100%	63%	98%	100%	94%	
pos occupied	:	•			:		:	•	•				:							

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

														CD	RI					
amino acid'	21	22	23	24	25	97	27	28	29	30	31	⋖	ω .	32	33	34	35	36	37	38
Α				62				1							41					
В				<u> </u>		<u> </u>	<u></u>										<u></u>		_	
. С		63		<u> </u>															_	
D				<u> </u>			1	<u> </u>												
E								<u> </u>												
F.								<u>.</u>	69					3		3			_	
G				1		69	41	<u>.</u>	1		_				23					
Н								<u> </u>	<u> </u>	1				1			1			••••
1							<u> </u>	1	<u> </u>	<u> </u>						61	1		1	
K			63				<u></u>	<u> </u>		1	1									
L						<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u></u>					1	2				
М							<u> </u>	<u></u>	<u> </u>							4				
N							<u></u>	<u>.</u>		2	5						4			
Р											<u></u>				1					
Q								<u>.</u>		<u>.</u>	<u> </u>									
R		1	1					<u>.</u>	<u></u>	1	1									7
S	63				6	3	1			40	60			2			60			
T	1			1	2			68	3	25	3				3		4			
V								<u> </u>	<u> </u>	<u>.</u>					1				69	
W								<u> </u>	<u> </u>	<u>.</u>	<u> </u>						<u> </u>	70		
X																	ļ			
Y							2	7						64			<u></u>			_
Z											<u> </u>									
-												70	70				<u></u>	<u></u>		<u> </u>
unknown (?)										<u></u>	<u>.</u>			••••			<u> </u>	<u> </u>		<u> </u>
not sequenced							1				<u></u>	<u> </u>		-				<u></u>		_
sum of seq²	64	64	1 6	4 6	5 6	8 6	9 7	0 70) 70) 70	70	70	70	70	70	70	70	70	70	
oomcaa3												70	70	64			60	70	69	
mcaa ⁴	S	С	K	. ,		5 0	6	T	F	S	S	-	-	Y	Α	1	S	W	٧	
rel. oomcaas	98%)Ro%	2000	0.00	0.50	100%		370%	9000	2.70%	36%	100%	100%	91%	29%	87%	%98	100%	966	
pos occupied	:	•		•			1	<u></u>	-	2	3 .	5 1	1			•	:	-	:	:

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

				Fr	ame	wor	k II				-		Τ				********			
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	2	52	⋖	8	υ	53	54	55
Α		70									1				5	5				
В	-						ļ				Ì					<u> </u>	<u> </u>		<u> </u>	
· c									<u> </u>	İ	<u> </u>			 	-	<u>†</u>		<u> </u>		
D								1	<u> </u>		<u> </u>			 			 	<u> </u>	<u> </u>	
E								69									<u> </u>	<u> </u>		
F .								-			-		2			-	<u> </u>	3	39	
G			1	68		69			1		69	39			1			-		68
Н			1						-						-				<u> </u>	
1											<u></u>		65	38				34		
K															<u> </u>			<u> </u>		
L				1			68		-	1		1						2	4	
М										67		• • • • • • • • • • • • • • • • • • •		2			Ī	4		
N							5							4		<u> </u>	<u> </u>	3	22	
Р			68				1								44		1			
Q	69				69													1	1	1
R	1			1		1						4						1		
S					1				1	1				22					1	1
TT													1	2	4			1	3	
V										1			2	2	16			1		
W							1	.,	67			26								
X																				
Υ									1									20		
Z																				
-																70	70			
unknown (?)																				
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	69	70	68	68	69	69	68	69	67	67	69	39	65	38	44	70	70	34	39	68
mcaa'	0	Α	Р	G	Q	G	L	Ε	W	М	G	G	1	1	Р	-]	-	Ī	F	G
rel. oomcaa ^s	%66	100%	97%	92%	%66	%66	92%	%66	%96	%96	%66	26%	93%	54%	63%	100%	100%	49%	26%	97%
pos occupied ^a	2	1	3	3	2	2	3	2	4	4	2	4	4	6	5	1	1		6	3

Table 6A: Analysis of V heavy chain subgroup 1A

•	С	DR I	I																	
amino acid'	99	22	28	29	09	61	62	63	64	65	99	29	89	69	02	71	72	73	74	75
Α	1	34			69											43				
В												<u> </u>								
- C																				
D	15		1							2							70			
E									1									33		
F .				1				48				3		4						
G	1			<u></u>			3			67	<u> </u>									
Н			1								<u></u>									
ı	4												1	44				1		
К	1		2	1			47		1		1							8		
L	1	1						22				2		1		3				
М														21						
N	9		59				18													
Р	1	7																		
Q	1	1				70			64											
R	2						2		1		69							1		
S '		1	2		1										5				70	
Ī	34	26	4						3				66		65	24		27		67
V										1		65	3							3
W																				
Х																				
Y			1	68																
Z	L.																	:		
	<u> </u>		<u> </u>														ļ			
unknown (?)	.	<u> </u>	<u> </u>	<u></u>		<u></u>	<u></u>													
not sequenced																				_
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	34	34	59	68	69	70	47	48	64	67	69	65	66	44	65	43	70	33	70	67
mcaa'	Ţ	Α	N	Υ	Α	Q	K	F	Q	G	R	٧	Τ	ı	T	Α	D	E	S	T
rel. oomcaa ^s	49%	49%	84%	97%	%66	100%	67%	%69	91%	%96	%66	93%	94%	63%	93%	61%	100%	47%	100%	%96
pos occupied ⁶	:	:	;	•	:	;	•	i	i .	:	•	: .				:	:	:	:	2

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

				F	ram	ewo	rk I	11												
amino acid'	9/	77	78	79	80	8	82	۷	8	ပ	83	84	82	98	87	88	89	90	91	92
Α .			64			1						3			1	70				
В																				
· C																				70
D						2							26	70						
E						64							44							
F																	1	1	2	
G									1		,	_								
Н				1				1												
1		1					3	1	1								2			
K											3									
Ĺ					3		63			70							2			
М					67										1		1			
N	4							1	16											
Р																				
Q				1		3														
R	3							23	1		62									
S	62		1					41	49			67			1					
T	.1	69	2					3	2		4				67					
V			3				4				1						64			
W																				
X																				
Y				68														69	68	
Z																				
_																				
unknown (?)																				
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	62		64	68	67	64	63	41	49	70	62	67	44	7 0	67	70	64	69	68	70
mcaa'	S	T	Α	Υ	М	Е	L	S	S	L	R	S	Е	D	T	Α	٧	Y	Υ	С
rel. oomcaa ^s	89%	966	91%	97%	%96	91%	%06	29%	20%	100%	89%	%96	63%	100%	%96	100%	91%	%66	97%	100%
pos occupied ^a	•	·····				:	:									1				1

148

WO 97/08320 . PCT/EP96/03647

Table 6A: Analysis of V heavy chain subgroup 1A

										CD	R III									
amino acid'	93	94	95	96	97	98	66	100	4	8	ပ	٥	ш	u.	9	I	_	_	×	101
Α	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В																				
. С					1	1	16	2		1	1	7	2	1						
D			16	5	3		3	5	4	3	4			1	1	14				59
E			9				2			1			1			1				
F .					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н										1	1	1		1						
				2	5	2	2		2	2	1	1			1					
K		5			2	1			1											
L		1	4	4	2	5	2	1	1		4	2		1			1		1	
М			1		2		1		1			1	1						10	
N				2	2	1	2	1	2	2	2	2			1	1	4			
P				20	3		1	3	2	2	2	4	2	1	4	1		1		1
Q				1			1		1	1	1									
R		55	1	5	7	8	1	4		2		1		16						
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
T	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3				1	5	1	
X																				
Y		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z																				
				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)													1		1	1		2	3	
not sequenced			2	2	2	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5
sum of seq²	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa,	66	55	16	20	20	20	16	21	20	15	16	23	26	26	31	34	46	39	28	59
mcaa'	Α	R	Α	Р	G	Υ	С	S	G	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa⁵	94%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
pos occupied ⁶	3	8	10	14	18	15	18	15	15	17	17	15	12	11	11	10	8	7	6	6

14 \times SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Table 6A: Analysis of V heavy chain subgroup 1A

			•			Fra	ame	wor	k IV					
	amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
ſ	Α				<u> </u>									670
	В			 -			<u> </u>	<u> </u>	<u> </u>	<u> </u>				
	С						Ī	<u></u>		ļ			<u> </u>	165
	D		1	1		<u> </u>		Ī	Ī				Ī	308
	E	1	1										······	297
	F	2							*		<u> </u>			226
	G			58		59	1	1				 -		928
	Н				1		·· ···							14
	1	3	<u> </u>							4		<u></u>		286
	K				3		1				<u></u>	<u> </u>		325
	L	3			1			40	1					386
	M	1						3						189
	N				1									176
	Р	5											1	238
	Q				52									494
	R				1									351
	S											53	51	972
	Ţ						54	11	1	51		1		736
	V	15		1				1	54		54		1	699
	W		59		1									243
	Χ								.,					
	Υ	34		1										542
	Z													3
	_	1												578
	unknown (?)													8
l	not sequenced	5	9	9	10	11	14	14	14	15	16	16	17	406
	sum of seq'	65	61	61	60	59	56	56	56	55	54	54	53	
	oomcaa³	******	••••••••••		52	59	54	40	54	51	54	.53	51	
	mcaa'	Υ	W	G	Q	G	T	L	٧	Ţ	٧	S	S	
	rel. oomcaa ^s	52%	97%	95%	87%	100%	%96	71%	%96	93%	100%	98%	%96	
	pos occupied ^s	:	:	:			:	1					3	

148

Table 6B: Analysis of V heavy chain subgroup 1B

														Fr	ame	wor	k I			
amino acid'	_	2	3	4	ß	9	7	8	6	10	=	12	13	14	15	16	17	18	13	20
Α									32							34				
В																				
· C																				
D																				
E		1			5	1				35										
F																				
G								27							35					
Н			1											1						
1																				1
K		3	1									34	33						33	
L			3	26	1															
M				1	1															
N																				
Р									1					3 3			1			
Q	21		20			26														
R	1											1	2							
S							27									1	34			
Ţ									1					1					2	
V	3	21			20						-35							35		34
W							•													
X																				
Υ																				
Z																				
-			_																	
unknown (?)																				
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	5	_5
sum of seq ²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	35
oomcaa3	21	21	20	26	20	26	27	27	32	35	35	34	33	33	35	34	34	35	33	34
mcaa*	Q	٧	Q	L	٧	Q	S	G	Α	Ε	٧	K	K	Р	G	Α	S	٧	K	٧
rel. oomcaas	84%	84%	%08	%96	74%	%96	100%	100%	94%	100%	100%	97%	94%	94%	100%	97%	97%	100%	94%	97%
pos occupied													:							

SUBSTITUTE SHEET (RULE 26)

Table 6B: Analysis of V heavy chain subgroup 1B

			•											CI	ORI				Γ	
amino acid'	21	22	23	24	25	26	27	28	29	30	31	∢	В	32	33	34	35	36	37	38
Α				30							2				6	<u> </u>				
В					<u></u>	<u> </u>														
· C		35												<u> </u>						
D											1				5		1			1
Е			3								1									
F							2		39			••••		2	2					
G				1		40				1	14				1					1
H									·					3	1		34			
I								1		1						9				
K			28																	
L									1		1					5			2	
M.																23				
N							1			1	3					1	3			
Р															1					
Q			2								1				1		1			1
R			2					2						1						37
S	35				40			5		2	15			2	1					
T				3				32		34					1					
V				1			1			1	1				2	2			38	
W																		40		
·X																				
Y							36	••••••			1			32	19		1			
Z																				
-												40	٠40							
unknown (?)																				
not sequenced	5	5	5	5		-														
sum of seq²	35	35	35	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa,						*******	*************		39	34	15	40	40	32	19	23	34	40	38	37
mcaa'	S	С	K	Α	S	G	Y	T	F	T	S	-	-	Υ	Υ	М	Н	W	٧	R
rel. oomcaa⁵	100%	100%	80%	%98	100%	100%	%06	%08	98%	85%	38%	100%	100%	%08	48%	58%	85%	100%	95%	93%
pos occupied ^a	1	1	4					:		•	•						5	1	2	

Table 6B: Analysis of V heavy chain subgroup 1B

•				Fra	mev	work	: 11		_											
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	21	52	⋖	æ	ပ	53	54	22
А		39				1					1				7			1		
В																				
. С																				
D														1					1	
E				1				39										1	1	
F .							. 2						1					1		
G				39		28					39	1			1			9	1	39
Н																		2		
I										3			34							
K					1														1	
L			1				37						1	<u></u>						
Ņ										37		2	4							
N							·							35				20	12	1
Р		1	34				1	·							31					
Q	39				39			1												
R	1					10						4						3	1	
S			1			1								2				1	20	
T			4											1					3	
V														1	1					
W			Ī						40			33								
Х			Ī																	
Y		-																2		
Z																				
-														· · ·		40	40			
unknown (?)																				
not sequenced																				
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	:	÷	÷			·:		39	:		:	:			: "	:	:	:	:	:
mcaa*	0	Α	Р	G	Q	G	L	E	W	М	G	W	١	N	Р	-	-	N	S	G
rel. oomcaas	38%	98%	35%	98%	38%	0,00	93%	986%	100%	93%	%86	83%	85%	88%	78%	100%	100%	50%	50%	98%
pos occupied		-	:	:	:	:	:	:	:	:	:	•		:	:	•	:	: .	<u></u>	2

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

•	С	DR	ii																	
amino acid'	26	57	58	59	9	. 19	62	63	64	65	99	29	89	69	70	71	72	73	74	75
Α	1	2			27	2				1		1				2				12
В																				
С																				
D	1									4							35			
Ε	2		2			1		·		1						1				
F	·			4				39						3						
G	15		6		1					34										
Н			1	1		·											1			_
1		1	1						*********			1	1	13						22
· K	2	2	8				36		1	********						1				
L						1		1						1						
М														23				1		1
N	17		18				1										4			
Р																			3	
Q						36			37											
R			2				1		2		37					34		1		
5	1			2	11		1									1			37	
Т		35	2		1		1						39		40	1		38		5
V	1											38								
W											3									
X															·					
Y				33	•••••			.,,												
Z																				
-																				
unknown (?)				-																
not sequenced																				
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa,	17	35	18	33	27	36	36	39	37	34	37	38	39	23	40	34	35	38	37	22
mcaa*	N	T	N	Υ	Α	Q	K	F	Q	G	R	٧	T	М	T	R	D	T	S	1
rel. oomcaas	43%	%88	45%	83%	%89	%06	%06	98%	93%	85%	93%	95%	98%	58%	100%	85%	88%	92%	93%	55%
pos occupied ⁶	: ;		:												1			_ :	:	4

Table 6B: Analysis of V heavy chain subgroup 1B

												_								
-				F	ram	ewo	rk II													
amino acid'	92	77	78	79	8	8	82	4	8	ں	83	84	82	98	83	88	83	8	9	92
Α			35									1	2			40				
В																				
· C																				3
D	1					4							19	40			1			
E						35							19							
F			1									2							2	
G						1		1	2											
. H																				
<u> </u>		1															1			
K											1									
L					2		39			39							2			
М					37		1							-			2			
N	7							1	2											
Р												1							1	
Q																				
R	4							2	16		37									_
<u> </u>	27			1				35	20		1	36						1	1	
Ţ	1	39	<u> </u>					1			1				40					
V			4		1					1							33			
W	<u></u>																			
X			<u> </u>																	
Υ				39														38	35	
Z	L		<u> </u>																	
-		<u> </u>	ļ																	
unknown (?)			<u> </u>			<u> </u>														
not sequenced		<u> </u>	<u> </u>														_		1	=
sum of seq ²	·	!	:	÷	·	 -		:···	•			40								:
oomcaa3		÷	÷	÷	·		· · · · · · · · · · · · · · · · · · ·	••••	····			36			***********				·	÷
mcaa'	S	T	Α	Υ	М	E	L	5	S	L	R	S	D	D	T	Α	٧	Υ	Υ	(
rel. oomcaas	9689	%86	%88	%86	93%	98%	%86	98%	50%	%86	93%	%06	48%	100%	100%	100%	85%	92%	%06	2
pos occupied	•	1	•	Ē	:	:	:	:	4	:	:	: :	3				5		:	

Table 6B: Analysis of V heavy chain subgroup 1B

								_		CDR	111									
amino acid'	93	94	92	96	97	86	66	901	⋖	മ	ပ	۵	ш	ц.	ပ	I	_	_	×	<u>10</u>
Α	37	1	6		1	1		2	3	1	3		1					5		
В											<u> </u>	<u></u>								
· C		1				3				2	1									
D			7		5	2	3	1	5	4		1		2	2	1	2			27
E			2		1			1	1		2		1		1					
F				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2			1	1									
1		1		1	1	3	1	1	1	1	1	1				<u></u>			1	
K		1			1				1	1		1		1		<u></u>	1			
L			2	4	4	4	3			1	2	1	1	2		1			2	
M		•••••		2		1	1								1				4	
N					1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q					1							1	2	1						
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
T		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1		7	1	1		1	3	1	2		1			1	2	1			1
W	I		1	<u> </u>	1		2	2		1	1					1		4		
Χ		<u> </u>				<u> </u>														
Y				5	5	4	2	3		4	3	3	2	1	2	· 5	6	2		
Z																				
-	Γ			1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)																			3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq ²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa ¹	37	31	7	7	5	5	9	8	10	11	14	20	23	25	25	25	23	18	15	27
mcaa*	Α	R	D	G	D	G	G	_	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	95%	3%	3%	3%	9%‡	10%	%t	5%	28%	1%	%6	909	4%	%6	9%	%6	4%	%C	2%	75%
	:	1		:	:	:	1	:	:	;	:	;	į	Ì	•	•			i	1
pos occupied	3	8	10	12	18	13	13	12	12	15	<u> </u>	13	10	9	8	7	8	8	5	5

WO 97/08320 .

Table 6B: Analysis of V heavy chain subgroup 1B

					Fra	mev	vork	IV.					
amino acid'	102	103	104	105	106	107-	108	109	110	111	112	113	sur
Α													34
В													
С													7
D	2												17
E		*******		1									15
F	1									İ			13
G			27		26					1			45
Н	1												5
	7								3				11
K				2							·		19
L							12			1			20
М							2						14
N	1												13
Р	1			1									12
Q				23									25
R							1						24
S	3								1		18	18	43
T						21	6		16		1		39
V	6							21		18			34
W		29											15
X													
Υ	11												29
Z													
_	3												39
unknown (?)													
not sequenced	4	11	13	13	14	19	19	19	20	20	21	22	45
sum of seq²	36	29	27	27	26	21	21	21	20	20	19	18	
oomcaa3	11	29	27	23	26	21	12	21	16	18	18	18	
mcaa'	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	80%	%06	95%	100%	
pos occupiedº		:	:·	 -	:	1	:			3	2	1	

SUBSTITUTE SHEET (RULE 26)

Table 6C: Analysis of V heavy chain subgroup 2

OC. Fillerysis of				- , -										Fra	mev	wor	k 1			
amino acid'		7	က	4	S.	9	7	80	6	10	=	12	13	4	15	16	17	18	19	20
A										3										_
В																				_
. C		l																		
D																				
E	1					6								_		2				
F																				
G								6												
Н																				
<u>l</u>		1																		
K					3								6		1					
L				6							6							6		6
М																				
N							1													
Р							1		6					6			1			
Q	2															4				
R					2		<u></u>													
S							4													
Т			6		1					2					5		5		6	
V		5								1		6								
W																				
Х																				
Y							<u></u>													
Z	3							<u> </u>												
-							<u></u>	<u></u>	ļ								<u> </u>			
unknown (?)		<u> </u>			<u></u>		<u></u>	<u></u>									<u> </u>			
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa ³	3	5	6	6	3	6	4	6	6	3	6	6	*********			·	÷	·		
mcaa*	Z	٧	T	L	K	Ε	S	G	Р	Α	L	٧	K	Р	T	Q	T	L	T	L
rel. oomcaas	50%	83%	100%	100%	50%	100%	67%	100%	100%	20%	100%	100%	100%	100%	83%	67%	83%	100%	100%	100%
pos occupied ⁶		:	:	•	:	;	;	•		i	:	:				:	2	1	1	1

156

Table 6C: Analysis of V heavy chain subgroup 2

•														CDI	31					
amino acid'	21	22	23	24	25	26	27	28	29	e 	3	⋖ :	6	32	33	34	35	36	37	38
Α								1				1			1					
В				<u> </u>	<u>.</u>															
. C		7		<u> </u>											2					
D												1								
E						<u></u>														
F				3			6		1											
G					<u>.</u>	7							4		3		3			
Н			<u></u>	<u> </u>	<u>.</u>	<u> </u>														
1 .		<u></u>	<u> </u>		<u>.</u>	<u>.</u>							1						7	<u> </u>
K			<u> </u>		<u> </u>	<u> </u>						·								<u> </u>
L				2		<u></u>	1		6									<u> </u>		<u> </u>
М														5				<u> </u>		<u> </u>
N						<u> </u>	<u></u>				2							<u></u>		<u> </u>
Р						<u>.</u>		<u></u>										ļ		ļ
Q																			ļ	
R								<u> </u>					2		1			<u> </u>	<u> </u>	<u> </u>
S			1		(5		6		6	2	4				<u> </u>	4	<u> </u>	ļ	L
T	6		6	3				<u> </u>		1	3	1				<u> </u>	<u> </u>	<u> </u>		<u> </u>
٧				1	2	<u> </u>		<u> </u>						2	******	7	<u> </u>	ļ	<u></u>	<u> </u>
W							<u>.</u>	<u> </u>								<u> </u>		7	<u></u>	ļ
Х																<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Y						1		<u></u>								ļ	ļ			ļ
Z							<u>!</u>	<u> </u>									<u> </u>	<u> </u>	<u> </u>	<u> </u>
-								<u> </u>	<u> </u>							<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>
unknown (?)					1		<u> </u>	<u>!</u>	<u>.</u>							<u> </u>	<u> </u>	<u> </u>	ļ	-
not sequenced						<u> </u>										<u> </u>	<u>_</u>	Ļ	<u>!</u>	-
sum of seq²	(5	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7 7	7	7
oomcaa3		3	7	6	3	6	7 (6	6	6	3							1 7	·÷···-	7
mcaa ⁴	T	С	T	F	5	G	F	S	L	S	T	S	G	М	G	· V	. <u>.</u>	W	. <u>.</u>	
rel. oomcaas	100%	100%	7070	420%	43.40	100%	86%	86%	%98	86%	43%	57%	57%	71%	43%	100%	57%	100%	100%	
pos occupied	,		1		•	:	:	2 2	:	:	Ė	:	:	•	1	i	•		:	1

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

				Fra	mev	work	: 11													<u> </u>
amino acid'	39	4	4	42	43	44	45	46	47	48	49	20	51	25	٨	8	ပ	23	54	55
Α						6					7									
В																				
. С									<u> </u>	<u> </u>										
D														2					3	6
E								7												
F														2						
G		1		7		1														
Н												2								1
I													6							
K					6															
L							7			7		2	1	1						
M																				
N																			3	
Р		5	7																	
Q	6																			
R	1				1							2					ļ			
S		1															<u> </u>	2		
T	.																<u> </u>	<u> </u>		
V	ļ														·		<u> </u>	<u> </u>		
W	ļ							-,,	7			1					<u> </u>	4		
X														1			<u> </u>	1	1	
Y	ļ			ļ										1	1			ļ		
Z	<u> </u>			<u> </u>														<u> </u>		
	ļ						<u></u>								6	7	7	<u> </u>		<u></u>
unknown (?)	ļ	<u> </u>	<u> </u>	ļ	<u> </u>	<u></u>											<u> </u>	<u> </u>	<u> </u>	<u></u>
not sequenced	<u> </u>					_														
sum of seq ²	7	7	7	7	7	7	7	7	7	7							 		 -	
oomcaa,	6	÷	÷	·			····	;					•••••		6	7	7	÷	÷	÷
mcaa*	0	Р	Р	G	K	Α	L	ļ	W			Н		D	<u>-</u>	-	-	W	D	D
rel. oomcaas	%98	71%	100%	100%	%98	%98	100%	100%	100%	100%	100%	29%	%98	29%	96%	100%	100%	57%	43%	%98
pos occupied ⁶		-	:	1	2	2	1	1	1	1	1	4		: :		:	1	3	3	2

Table 6C: Analysis of V heavy chain subgroup 2

	C	DR																		
amino acid'	26	22	28	29	09	19	62	63	64	65	99	29	89	69	20	7	72	73	74	75
А																				
В																				
. C																				
D	5																6	1		
E	1								1											
F		1		1																
G																				
Н				1																
ı														6						
K	1	6							4							6				6
L								7				7								
M .																				
N																	1			
. Р						2														
Q																				
R			2			1			2		7					1				1
S			2		6		7			4		·	1		5				7	
T						4				3			6		2			6		
V														1						
W				1			٠													
X					1															
Y			3	4																
Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa ³	5	6	3	4	6	4	7	7	4	4	7	7	6	6	5	6	6	6		
mcaa'	D	K	Υ	Υ	S	T	S	L	K	S	R	L	Ţ	ı	S	K	D	T	S	K
rel. oomcaas	71%	%98	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	96%	%98	71%	%98	%98	%98	100%	%98
pos occupied ⁶	:	:	:	:	;	:	:	15	3	:	:	: :				2	:	•	:	2

Table 6C: Analysis of V heavy chain subgroup 2

·							wor															
amino acid'	92	77	78	2 2	6 6	2	8	82	⋖	8	ပ	83	6	† L	6 6	9 6	6 8	8 8	£ 6	S ₹	5 	92
Α												<u> </u>	<u> </u>		1	_	_	5		_		
В											<u> </u>	<u>.</u>						_ -			-	
. С											<u> </u>	<u> </u>				_				_		
D											<u> </u>	<u> </u>	6			7		_			_	.,
E											<u> </u>							_				
F .						1					<u> </u>							_		_	_	
G											<u>.</u>	<u>.</u>						2		_		
Н										<u> </u>	<u> </u>						_			_		
							2		1	<u> </u>	<u> </u>									_		
<u></u> К			Ī							<u> </u>	<u>.</u>											
L		<u> </u>				6					<u> </u>											
M		<u> </u>	Ī					7		<u> </u>	<u> </u>	5										
N	5									(5		1									
P		1				,				<u>.</u>				7								
Q			7							<u>.</u>												_
R																						<u> </u>
S	2	2	Ī							<u> </u>	<u>.</u>											_
T			Ī				5		ţ	5	<u></u>						7		7			<u> </u>
٧		Ī		7	7							1			6							<u></u>
W		Ī									<u> </u>											<u>_</u>
X		1	Ī																			<u> </u>
Y	-	Ī																		7	7	_
Z		1	1		••••••																	<u>!</u>
	T									1	1	1							<u> </u>			ļ.
unknown (?)										<u> </u>									<u> </u>	<u> </u>		ļ.
not sequence	. B							<u> </u>	<u> </u>													Ļ
sum of seq ²		7	7	7	7	7	7	,	7	7	7	7	7	7	7	7	7	7	7	7	7	<u>'</u>
oomcaa³		5	7	7	7	6	5 5	5	7	5	6	5	6						÷	÷	.	7
mcaa*	١	V	Q	٧	٧	L	T	Ν	1 1		N	М	D	Р	٧	D	T	Α	T	Υ	Y	-
rel. oomcaa	7,10%	0/-1/	100%	100%	100%	96%	710%	100%	2 2	0/5 / /	%98	71%	%98	100%	%98	100%	100%	71%	100%	100%	100%	2
pos occupied	JE	2	1	1	1	·	2	2				:	2	1	:	:		2	1	1		1

Table 6C: Analysis of V heavy chain subgroup 2

										CDF		~_								
amino acid	93	94	95	96	97	86	66	90	⋖	8	ပ	۵	u	u.	9	I	_	<u> </u>	×	101
Α	5							1	2	1										
В																				
. C																				
D																				6
E								2			1									
F ·																			3	
G						1	1		1	2	1	1	1	1						
Н		1		1																
1			3			2														
K							1													
L								1	Ī	1									1	
M .						•••••		1											2	
N				1	2												1			
P				1	1		1		1											
Q			1																	
R		6	1			1			1											
<u> </u>				1		1	1								•					
T				1			1		1											
V	2		1	1	1		1	1			1									
W						1									1			1		
Х						•••••														
Υ	-				2						1	2	1	1	1			2		
Z					•••••	••••••														
										2	2	3	4	4	4	6	5	3		
unknown (?)																			-	
not sequenced			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq?	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa3	5	6	3	1	2	2	1	2	2	2	2	3	4	4	4	6	5	3	3	6
mcaa*	Α		÷	Н	N	ı	G	E	Α	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	71%	%98	50%	17%	33%	33%	17%	33%	33%	33%	33%	20%	67%	67%	67%	100%	83%	20%	50%	100%
pos occupied							6	5	5	4	5	3	3	3	3	1	2	3	3	1
•		·	±	·					16	• • • • • • • • • • • • • • • • • • • •										

Table 6C: Analysis of V heavy chain subgroup 2

ſ		<u>·</u>			Fra	me	ew(ork	IV					
amino acid'	102	103	104	105	106	107		90	109	110		112	113	sum
А									ŀ	1				35
В														
С							<u> </u>	<u> </u>						16
D					****									43
E														21
F														18
G			6	********	6		-							55
Н				•••••										6
							Ī					·		29
K				1				1						42
L	1					<u> </u>		3						78
М								<u>-</u>						20
N				·····										23
Р	1							1						41
Q				3										23
R				2									<u></u>	41
S									<u></u>			6	3	82
Т							6	1		5				102
٧	3								6	<u> </u>	6			68
W		6												29
Χ														4
Υ	1													35
Z														3
-														56
unknown (?)			<u> </u>			<u>.</u>							<u></u>	
not sequenced	1	1		<u> </u>	1	1	1	1	1	1	1	1	4	54
sum of seq'	E	6	5 (5 (3	6	6	6	6	6	6	Ε	3	3
oomcaa ¹	3			••;••••		6	6		-	÷•••••		÷	•••••••	
mcaa*	٧	W	G	0	(;	T	L	٧	T	٧	S	S	
rel. oomcaa ^s	20%	100%	100%	2002	2000	200	100%	20%	100%	83%	100%	100%	100%	
pos occupied	1	•	l .	1	3	1	1	4	1	2	1	1	<u> </u>	1

SUBSTITUTE SHEET (RULE 26)

Table 6D: Analysis of V heavy chain subgroup 3

Γ														Fr	ame
amino acid'	_	2	က	4	ა	9	7	œ	6	01	=	12	13	14	15
Α			T	T	1		1			12		-1		3	1
В			1			1							1		
C															
D	1					1				16					
E	110		9		15	166			9				8		2
F											4				
G								181	193	174		1			202
Н			5										4		
1				<u></u>								9			
К		5	3	į									26		
L		1	5	176	43						140			1	
М		12		1											
N										1					
Р													1	194	
Q	41		138	1	3	12							162		
R			6										4		
S							178			2				8	
T							1								
V	5	147		1	118						62	195			
W															1
Х															
Y												-			
Z	8														
-															
unknown (?)															
not sequenced							32								
sum of seq ²		···		*********			·	:	·	205					
oomcaa ₁	·	·		176				·		174		•			
mcaa*	E	٧	Q	L	٧	E	S	G	G	G	L	V	Q	Р	G
rel. oomcaas	67%	%68	83%	%86	%99	92%	%66	100%	%96	85%	%89	95%	79%	94%	98%
pos occupied	:	<u>:</u>	<u>:</u>				1	:	:	-			:	4	4

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

<u></u>	vork l														
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	29	90
Α								183	192		1				
В						<u></u>									
C						1	209								
D															7
Е	8							8			3		1		
F .		1	1			1						201		201	*********
G	134								2		207				3
Н															1
1								2				3	17	1	
K				15											4
L			205		201							6		3	
M			1										1		
·N													10		1(
Р								1					2		
Q			1						<u></u>						
R	62			191											1
S		206				207		4	······	209			15		174
T	4	1		2				4	!	!		1	163		
V			.,		8			7	9				1	6	
<u>W</u>	ļ								<u> </u>					<u></u>	
Χ	ļ								ļ					<u></u>	
Y	ļ							ļ					<u> </u>		
Z					<u> </u>				<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>
	ļ				<u> </u>			ļ				ļ	<u> </u>		
unknown (?)	ļ				<u> </u>										
not sequenced									3 3					1	-
sum of seq ²										209					
oomcaa,	·	÷	·!···	:	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	•	• • • • • • • • • • • • • • • • • • • •		209			163 T	201 F	
mcaa*	G	S	L	R	L	S	С	Α	Α		G	F		Г	
rel. oomcaas	64%	%66	%66	92%	%96	%66	100%	880%	92%	100%	%86	95%	78%	95%	3
pos occupied	:	-	:			:	1		7 !	5 1	3	4	٤ ١	3 4	

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

Î				CD	RI									Fi	rame
amino acid'	31	⋖	8	32	33	34	35	36	37	38	39	40	41	42	43
Α	1			17	80		1			1		187		1	
В				•								,			
· c												1		1	
D	26			3	7		2								
E	1				10									1	1
F .				5											
G	13				31		1					2		209	
Н				4			88								
l	1			1	••••••	15			12						
К	7										1				202
L	3	•				3			2	3	1	2	1		
М				***************************************		193				~	-				
N	35			8	3	***************************************	34								
Р				1			1					4	191		
Q									***********		209		1		1
R	7									207		7	-		8
5	103			17	8		72					3	14		
Т	9				15		10					4	5		
٧	2				7	1			197			2			
W					30			212							
Х	1													•	
Υ	1			154	19		3								
Z															
-		210	210								-				
unknown (?)															
not sequenced	2			2	2				1	1	1				
sum of seq ²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	212
oomcaa,	103	210	210	154	80	193	88	212	197	207	209	187	191	209	202
mcaa*	S	-	-	Y	Α	М	Н	W	٧	R	Q	Α	Р	G	Κ
rel. oomcaas	49%	100%	100%	73%	38%	91%	42%	100%	93%	98%	%66	88%	%06	99%	95%
pos occupied	14	1	1			: :	: :					: :	: :	:	

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

	vork l	1					\perp					<u> </u>			
amino acid'	44	45	46	47	48	49	20	21	52	4	മ	U	53	54	55
Α	1					77	42		1	2		14		7	
В			3		<u> </u>					1					
С	,												1		
D			1			<u> </u>				7			94	8	
E			198						3	2	1		2		
F .							7	1	2	1				1	
G	207					33	11		-10	46			4	163	8
Н							6			1					
					3		3	191		1					
K								1	37	2	30		3	1	
L		211	·····		5		12	1							
M							1	1							
N							13		7	9	2		13	11	
P		1								1			1		
Q			7				7			10			·		
R	1						24	1	17	5	1		2		1
<u>S</u>	3			1		102	11	9	118	43		1	74	17	
Ţ							3	5	4	2		13	12	3	
V			3		204		49	2		1		6			
W				210			1		8	6					
X								******					4		
Y	}			1			22		5	58	••				
<u>.</u> Z					••••										
~										14	178	178	2	1	
unknown (?)	 														
not sequenced		<u> </u>			*******			····							
sum of seq²		212	212	212	212	212	212	212	212	212	212	212	212	212	2
oomcaa,		·•••••••••	198			;	; -		·			:	:		:
mcaa'	G	L	E	W		S	٧	1	S		-	-	: _	G	(
rel. oomcaa ⁵	%86	100%	93%	%66	%96	48%	23%	%06	56%	27%	84%	84%	44%	77%	
	6	2		<u>6</u>	:	:	15	:	:	:	:	5	•	i	

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

-	C	DR II													
amino acid'	26	57	28	29	09	19	62	63	64	65	99	29	89	69	2
Α	9	1	2		174	33							1		
В	1	2													
· c															
D	11		17			160									
E	8	3	2			1			2						
F	1		3	2								207			
G	5	1	5		4	5				212	1				
Н	1		4												
1	3	37	2					8					14	208	
К	1	61							199		8				
Ĺ	1	1	1		1							1		1	
М	8		2		1										
N	51		4			2			. 2						
Р	1	1			6	8	18		1						
Q	3	2							2		2				
R	5	4			5				6		201				
S	48		11		4		193					2	7		211
Т	42	97	5		7								189		1
V		2			10	2		204				1		3	
W			2												
X	4		1			1									
Υ	9		151	210			1					1	1		
Z															
-															
unknown (?)															
not sequenced											·				
sum of seq²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa ³	51	97	151	210	174	160	193	204	199	212	201	207	189	208	211
mcaa*	N	T	Y	Y	Α	D	S	٧	K	G	R	F	T	1	S
rel. oomcaas	24%	46%	71%	%66	82%	75%	91%	%96	94%	100%	95%	%86	89%	98%	100%
pos occupied"	:		!·····					2	:	:		:	:	: · · · · · · · · · · · · · · · · · · ·	

Table 6D: Analysis of V heavy chain subgroup 3

													ram	ewc	rk	111				
amino acid'	7.1	72	7.3	2	74	75		9/	77	78	9	2	8	8	5	78	⋖	8	ر	ر —
Α					57				1		В				-	_		1	<u> </u>	
В											_				2	_			<u> </u>	
C		<u> </u>									_				-	_			-	
D		19	9	38			2_	2			-	1					10		-	
E			6				4				_				5			.,	-	
F					,						_	13			-					
G															_		.1		1	••••
Н	ļ					ļ	_	1				1			2		2		1	
1	.			1		<u> </u>			2		2				-	3	1			
K	ļ	<u> </u>				18	36	6		<u> </u>							3			
L		<u> </u>				<u> </u>	_			 -	38		209			3	1		- 4	212
М		1				ļ	2		10	-	3		2	ļ		205				
N			5	170		ļ	2	188		<u> </u>					3		181		0	
Р							_	,	1	-										
Q							7			-				15	9					
R	21	1				_	1			-				-			2	·- <u>-</u>	8	
5					15	3	8	10	56	•••••••	_	3		-	_		<u></u>	18	2	
T					<u> </u>				142					<u> </u>	1		4	<u> </u>		
٧					ļ	1					11		1			1	<u> </u>	-	-	
W					<u> </u>	_								-			<u> </u>			
X	_		2	2	<u> </u>	_			<u> </u>	-		-		-			<u> </u>	1		:
Υ								<u> </u>				194	-	-			<u> </u>	_	-	
Z		<u> </u>			<u> </u>	<u> </u>		<u> </u>	-	÷			<u> </u>	+-			- -	-	_	-
					ļ	_ _		ļ		_			<u> </u>	-						••••
unknown (?)							 	-							<u></u>	-	-		
not sequence	ed	_			1	1		<u> </u>				21	1 21	2 .	117	21	2 21	2 2	12	2
sum of seq	' 2	12	212	21	1 21	1	212	21	2 21	2	212	21.	4 20	2 2	100	20	Z: Z I	1 1	26	2
oomcaa3			*******						8 14		188 L	19 ⁴	4 20 L	ב	0	M	5: 10 N		S	
mcaa*		R	D	N		>	Κ	N	Ţ		L 								· · · · · · ·	
rel. oomcaa	ə ⁵	100%	94%	010%	0/-10	73%	280%		28.40	9/1/9	%68	9000	25.00	0/166	94%	0.70%	06/6	85%	9/088	
pos occupie	-10 	2	4		4	3				6	5		5	3	6	3	4	11	7	

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

-															
amino acid'	83	84	82	98	87	88	68	90	91	92	93	94	95	96	97
Α		149	1		1	207					173	2	15	9	11
В										<u></u>					
· C									1	210		5	2		1
D		5	15	209								2	54	7	6
E	1		190										11	2	11
F .							1		15			1		9	6
G	1	1	6			4	1		<u></u>		2	8	34	26	35
Н		1							1					3	11
ı		8					2						4	15	10
К	30											60	4	3	5
L							18					1	6	11	7
М					2		1							6	1
N		1		1								2	20	4	3
Р		9									1	3	4	29	10
Q				1								5	3	9	2
R	177											103	9	30	19
S		1			1							3	9	8	11
Ţ	3	28			207		1				25	15	7	6	20
V		9					187				10	1	7	7	15
W										1			3	4	3
X		<u></u>		1											
Y								211	194				12	9	8
Z															
-			<u> </u>				<u></u>						1	3	4
unknown (?)							<u> </u>								
not sequenced			<u> </u>		1		-			-		-			
sum of seq?	·	····	· ; · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	••••••		:	:	:	211		:		200	:
oomcaa,	177	·÷··	·;	· 	*****	÷	-;	· · · · · · · · · · · · · · · · · · ·	·	210	;·····	,	,	·	
mcaa'	R	Α	E	D	T	Α	V	Υ	Υ	С	Α	R	D	R	G
rel. oomcaas	83%	20%	%06	%66	98%	%86	89%	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ⁶	-	10	;				:	:	:	2	5	14	18	20	21

WO 97/08320 PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

					CDI	RIII									
amino acid'	86	66	100	۷	æ	ပ	٥	w	ட	g	I	_	<u> </u>	×	101
Α	7	13	7	9	6	2	3	5	5		9		13		2
В															
· C	13	5		1	2	11	3		2					1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
E	6	3	1	13		1	1								1
F .	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
1	6	11	4	4	3	1	3	10	3	3	2		1	2	
К	2	11			3	1									
L	26	13	4	12	8	· 2	6	3	10	3				2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	. 1					1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2	3	1	1	1
Т	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12		1	1	1	1		
W	6	5	6	7	2	4				1		6	10		
X				1											1
Y	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z															
-	12	21	35	54	73	87	102	110	126	135	134	120	91	71	21
unknown (?)							3	2	1	1			3	2	
not sequenced	14	14	14	14	15	19	21	22	23	23	23	25	25	. 26	25
sum of seq ²	198	198	198	197	196	192	190	189	188	188	188	186	186	185	186
oowcaa _a	34	28	35	54	73	87	102	110	126	135	134	120	91	71	146
mcaa'	G	S	G	-	-	-	-	-	-	-	-	-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	28%	67%	72%	71%	65%	49%	38%	78%
pos occupied ⁶	20	20	19		19			••••••	:			;		***********	

Table 6D: Analysis of V heavy chain subgroup 3

. [Fr	amev	vork l	٧				
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113
Α	1		1			2						
В				1								
С												
D	2											
E					1							
.F	2											
G			140		130		1					
Н	4						·					
l	15								1	1		
K	<u></u>	<u></u>	<u></u>	13			<u> </u>					
L .	10			1			91					2
. M							6					
N	1					1						
Р	17					1	1					
Q				111								
R				8								
S	7	1									118	110
<u>T</u> .						123	27		122			1
V	34		1			1		125		119		
W		158										
Х												
Y	82											
Z												
	9	2	2	2	2	2	2	2	2	2	1	1
nknown (?)												
t sequenced	27	50	67	75	78	81	83	84	86	89	92	97
sum of seq'	184	161	144	136	133	130	128	127	125	122	119	114
oomcaa,				111			91			••••••••••		
mcaa'	Y	W	G	Q	G	T	L	V	T	V	S	S
el. oomcaas	45%	98%	97%	82%	0/086	95%	71%	98%	98%	98%	%66	% 96
os occupied ⁶	12											

Table 6E: Analysis of V heavy chain subgroup 4

															Fran	new	ork I			
amino acid'	-		٠ ٣	4	. г	. c	۰ ۲	۰ ،	0	, 5	2 :	= 5	4 ~	2 4	1, 7,	3	17	. α	19	20
А									1	9					1	T		1		1
В											····					<u> </u>	<u> </u>			1
. С																1	-	<u> </u>	-	<u> </u>
D									Ī							<u> </u>	<u> </u>	<u> </u>	-	
E		<u>.</u>				3	2		Ī							4	4	<u> </u>	-	1
F		<u> </u>																<u> </u>		<u>† </u>
G	<u> </u>	<u>.</u>						5	4	1 5	3	-			-		2			†
Н		<u> </u>	4	1	;	2												1		<u> </u>
1		<u>.</u>	<u> </u>	<u>!</u>													<u> </u>	•	<u> </u>	-
K	<u> </u>	<u> </u>	<u> </u>	<u>!</u>									54	l.		<u> </u>	-	<u> </u>	1	<u>† </u>
L	<u> </u>	7	7	54	ļ <u>.</u>	<u> </u>	<u></u>				5.	3 19)	1				53		50
M		<u> </u>	<u> </u>													<u></u>		 -		
N	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>				<u>.</u>											Ī	
P	ļ	ļ	<u>.</u>		<u> </u>	<u> </u>			33	3				51	1		-	1	-	2
<u>Q</u>	52	ļ	50	ļ	51	20			<u> </u>	<u> </u>						7				
R	1	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u></u>			<u> </u>	<u> </u>		<u> </u>								
S	ļ	<u> </u>	<u> </u>	<u> </u>	ļ	ļ	33	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	52				52	
T	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	1	ļ	<u> </u>	<u> </u>	<u> </u>	<u></u>			52			
V	ļ	47	<u> </u>	<u></u>	ļ	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	34	<u> </u>							1
W	ļ		ļ			<u> </u>	20		<u> </u>	<u> </u>		<u> </u>	<u> </u>							
X								<u> </u>		ļ		ļ				<u> </u>				
<u>Y</u>								ļ	ļ	ļ	<u> </u>									
Z	1							<u> </u>	<u> </u>			<u> </u>								
- (2)								ļ	<u> </u>	<u></u>	<u> </u>	ļ								
unknown (?)											<u> </u>	<u> </u>								
not sequenced											4									4
sum of seq ²	54	54	54	54	53	53	53	54	54	53	53	54	54	53	53	53	53	53	54	53
	52 ()	4/ V	50 Q		51 Q		33	54				34			*******	-		53		50
mcaa'		· ·						G		G		٧	Κ	Р	S	E	T	L	S	L
rel. oomcaas	•	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	98%	83%	%86	100%	%96	94%
pos occupied ⁿ	3	2	2	1	2	3	2	1	4	1	1	3	1	3	2	1	2	1	3	3

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

														CD	RI	-				
amino acid'	21	22	23	24	22	56	27	28	29	30	3	∢	ω	32	33	34	35	36	37	38
Α			22											1						
В																				
. С		53													1					
D			1								4	1	1	1			1			
Ε																				
F					1				22					1	1				1	
G						53	53				21	3	4				8			
Н							1							2						
1	<u></u>		1					1	32										51	
K																				
L																			1	
M																				
N										1	1		2	2			1			
Р								3												
Q								<u></u>	<u> </u>	<u></u>	1									
R		<u> </u>				1			<u> </u>	3	2		1				<u> </u>			5
S		<u></u>	2		35			51	1	52	25	5	9	1			44		1	<u> </u>
T	53	<u> </u>	29								2	1					3	<u> </u>		
V		<u> </u>	<u> </u>	55		1		<u></u>	1	<u> </u>	<u> </u>						<u> </u>	<u> </u>	3	
W							٠		<u> </u>		<u> </u>	1			2	56	<u></u>	57	<u> </u>	<u> </u>
Χ																	<u> </u>		<u> </u>	
Y					19		1							48	52					
Z																<u> </u>	<u> </u>			
_												45	39					<u> </u>	<u> </u>	<u> </u>
unknown (?)										<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>
not sequence	d 4	4	2	2	2	2	2	2	1	1	1	<u> </u>		1	1	1	<u> </u>		<u> </u>	<u>_</u>
sum of seq ²	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa ³	53	53	29	55	35	53	53	51	32	52	25	45	39	48	52			·	·	:
mcaa'	T	С	T	٧	S	G	G	S	1	S	S	-	-	Υ	Υ	W	S	W	١	
rel. oomcaas	100%	100%	53%	100%	64%	%96	%96	93%	57%	93%	45%	80%	20%	%98	93%	100%	77%	100%	%68	
pos occupied			:	:	:	:	•	:		:	7	÷	•	•		-	Ţ		•	5

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

				C _r	ame	wor	k 11													
	6	_						9	7		<u></u>	0	<u> </u>	- 2				3	4	
amino acid'	ن	4	4	4	4	4	4	46	4	48	4	N.	O.	ίλ	~		ں	λ <i>ί</i>	ίλ	<u>```</u>
Α	ļ	<u> </u>	8	1	ļ				<u> </u>	ļ	1	<u></u>	<u> </u>	<u></u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	
В .	.	<u> </u>	<u> </u>	<u> </u>			<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	
· C	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>						<u> </u>	<u> </u>	<u> </u>	
D	<u> </u>	<u> </u>	<u> </u>	<u> </u>						<u> </u>	ļ.			1				1		
E		<u> </u>		1				56				22								
F .				<u></u>								1		1						
G		<u> </u>		55		55					56	1						1		57
Н	<u> </u>	2	<u> </u>															24		
ı	ļ									54		1	54				-			
K					54													Ī		
L		1					55			2										
M																				
N													••••••	21						
Р		50	49				2													
Q	56							1				1	*******							
R					3	2						9		1						
S		3					•				· · · · ·	7		1					52	
Т	1	1													•••••			8	···· ·	
V										1			3				•••••			
W									56											
Х																				-
Υ		-						***********	1			15		32				23		_
Z																				
-															57	57	57			_
unknown (?)				•																
not sequenced															*********				<u>-</u>	
sum of seq²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
oomcaa,	:	:	:		:	:			•		56							******	******	*******
mcaa*	Q			G	Κ		L		W	1	G	E	1	Υ	-	-	-	Н	S	
												_	_		چ	؞	Q.			9
rel. oomcaa ^s	%86	980%	%98	%96	95%	%96	360 %	%86	%86	95%	980%	39%	95%	26%	100%	100%	%00 I	42%	91%	100%
pos occupied ^a		5			2		:		·····	<u>-</u>	2	:	•••••••	:		1	1		2	
	*********	******	********		********		······································			<u>i</u>	i.		:					i	<u>-</u> .i.	

ノブチ

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

	С	DR I	11																	
amino acid'	26	27	28	23	9	61	62	63	64	65	99	29	89	69	2	71	72	73	74	75
Α		1									1		1			1				1
В										<u></u>										
· C																				
D			2									1					55			
Е																	1			
F .				3														1		
G	1									1										
Н			2						<u></u>											
1	1	1										1	1	48		3				
K					1			<u> </u>	53	<u></u>	<u> </u>							1		51
L						1		55				1				3				1
M														7				2		
N	2		40		53			İ					2							1
Р						54		1												
Q																	1			
R	2								3		56									2
S	49		1		2		56			56			1		56			1	57	
T	1	54	1			1			1				51		1			52		
V	1	1										53		2		50				1
W							٠													
X																				
Y			11	54																
Z									_											
-																	<u></u>			
unknown (?)																				
not sequenced					1	1	1	1				1	1							
sum of seq'	57	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	57
oomcaa ³	49	54	40	54	53	54	56	55	53	56	56	53	51	48	56	50	55	52	57	51
mcaa'	5	T	N	Υ	N	Р	5	L	K	S	R	٧	T	ı	S	٧	D	T	5	K
rel. oomcaas	%98	95%	70%	95%	95%	%96	100%	98%	93%	%86	%86	95%	91%	84%	%86	88%	%96	91%	100%	%68
pos occupied ⁶	•		i	:	:	3	•	•	3	•	•	:	5		:	:	! _		1	6

Table 6E: Analysis of V heavy chain subgroup 4

				F	ıam	ewo	rk II	ı												
amino acid'	9/	77	78	79	80	8	82	⋖	8	ပ	83	84	82	98	87	88	83	8	91	92
Α												55	57			57				
В																				
C									<u></u>											5
D					1									57						
E						1														
F .			54						1											
G								1												
Н																				_
			1					1			3									
K	3					46		2												
Ĺ		3	1		55		53			2							1			
M _.						1	1			1							1			
N	54					3		3	1											
Р			<u> </u>																	
Q		54			1	1														
R			<u></u>			2		2				1								
S			1	57		2	1	44	55		1				2				1	<u> </u>
T						1		4			53				55					
V							2			54		1					55			<u>. </u>
W																				
Χ				<u> </u>																
Y .			-															57	56	
Z ·																				
-																				
unknown (?)			Ī													·				
not sequenced	3			-																
sum of seq²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	Ç
oomcaa'	÷	÷	÷	÷	·	.:		•	·····	·····	53	:	:	:			:	7	:	:
mcaa*	N	Q	F	S	L	K	L	S	S	٧	T	Α	Α	D	T	Α	٧	Υ	Υ	(
rel. oomcaas	95%	95%	95%	100%	%96	81%	93%	77%	%96	95%	93%	%96	100%	100%	%96	100%	%96	100%	%86	
pos occupied	:	:	-	1	3	:	:	:	3	:	:	:	i	•	;	•	:	:	2	

WO 97/08320 .

Table 6E: Analysis of V heavy chain subgroup 4

· [CDR	111									
amino acid'	93	94	92	96	97	86	66	100	∢	æ	ပ	۵	ш	ட	<u>ග</u>	I	_	_	×	101
А	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В													_	_						
. С					1				1				_	_	_					
D			6		5	5	5	4	3	2	4	3	1	_	1	2	1			41
Е			6	1	1	2	_1			1	3	1	2	1						
F .				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	_1	1	1	2	1	9		
Н			1				1						1			1				2
1				1		2	4	1	3	2	3		1						1	
K			2	1						2	2			1						
L			2	6	7	3	5	3	2	4	1	5	3	3		1				
М				1	4		3	1		2	1			-					9	
N				3					2	1	1	5	1	1			2			
P ·				4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3					1
R		54	4	12	2	5	5	3	2	3	1	2			2	1				
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
Ţ		1	1	2	1	3	4	4	3	3			1	1	1					
٧	1	1	4	2	2	5	4	4	7	3	1	2	1							
W	Ī		1	2	1	2	2	4	5	1	1	2		2	1		3	2		<u> </u>
X							<u></u>													<u> </u>
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z							<u> </u>												<u> </u>	<u> </u>
-				<u></u>		1	2	4	6	9	11	16	23	27	29	34	31	14	4	<u> </u>
unknown (?)		<u> </u>	<u> </u>	<u>.</u>		<u> </u>	<u></u>							1			1	1	1	<u> </u>
not sequenced			1			•	1	=		===	6	_	8			_	-	;	:	
sum of seq ²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa	56	54	25	12	10	8	10	11	7	9	11	16	23	27	29	34	31	14		:
mcaa'	Α	R	G	R	G	G	G	G	٧	-	-	-	-	-	-	-	<u> </u>	-	F	D
rel. oomcaa ^s	98%	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	67%	30%	67%	89%
pos occupied	2		:	:		:	:	-	:	;	18			:	:	E	•	1	÷	}

Table 6E: Analysis of V heavy chain subgroup 4

:					Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
А						1			1				332
В						<u>†</u>							
С													113
D													210
Е													176
F													135
G			41		40	1							674
Н	1								1				45
ı	9					1							282
K				3									278
L	4						19						540
М							9						43
N						1							204
Р	3			2								2	281
Q				29									334
R	1			4			1						250
S	1			1							36	33	986
Ţ				1		33	8		34				532
V	12							36		36			488
W		46											267
X				••••••									
Y	16			•••••								·	455
Z						-							1
-													466
unknown (?)	į												4
not sequenced	-				_								426
•	47			• • • • • • • • • • • • • • • • • • • •									
oomcaa¹			41 G		·····			36 V	34 T	36 V	36 S	33 S	
mcaa'		W		Q	G	T	L						
rel. oomcaa ^s	34%	100%	100%	73%	100%	89%	51%	100%	94%	100%	100%	94%	•
pos occupied ⁶	8	1	1	6	1	5	4	1	3	1	1	2	

178

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

														Fra	me	wor	k I			
amino acid'	-	7	က	4	2	9	7	80	တ	0	=	12	13	4	15	16	17	28	19	70
Α					1			1	89		1			1						
В																				
· C							1		· <u> </u>											
D										2										
E	88	1			2				4	93						92	<u> </u>			
F .																	1			
G	1							92							94					
Н																				
																				9(
K												94	94						77	
L		1		91		2				,								95		
M											3								1	
N																				
Р				1			.,		1					94						
Q	. 3		92		1	90										3			1	
R						1						1	1		1				17	
S							92										94			
T																				
V		90			89				1		91					·				
W					••••															
Χ	ļ																			
Y																				
Z				•••••																
_																				
unknown (?)																				
not sequenced	5	5	5	5	4	4	4	4	2	2	2	2	2	2	2	2	2	2	1	
sum of seq ²	92	92	92	92	93	93	93	93	95	95	95	95	95	95	95	95	95	95	96	9
oomcaa,	88	90	92	91	89	90	92	92	89	93	91	94	94	94	94	92	94	95	77	9
mcaa'	E	٧	Q	L	٧	Q	S	G	Α	Ε	٧	K	K	Р	G	Ε	S	L	K	١
rel. oomcaa ^s	%9£	98%	100%	%66	%96	92%	%66	%66	94%	%86	%96	%66	%66	%66	%66	97%	%66	100%	80%	1000
pos occupied	:	:	:		:	:	:	:	•	:		2	: :	:	:	:	•	:	i	

179

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

														(DR		,			<u> </u>
amino acid	21	22	23	24	25	26	27	28	29	30	31	⋖	<u> </u>	33	۶, ۶	34	35	36	3 2	38
А				3	2	2					1			T		Ī	-	3		1
В										<u> </u>	İ					<u> </u>		<u> </u>		<u> </u>
· C		96	3						1	Ī	1	- 		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	1
D								2	2	Ī	2	2				<u> </u>		 	<u> </u>	
E		<u>.</u>	· [2	2				1							Ī	-	-
F .		<u> </u>	<u>.</u>		3		(3	97	'				2	2			Ī	-	
G		ļ	<u> </u>	92	<u> </u>	93					1						72	2	-	
H		ļ	ļ	<u></u>	ļ		<u></u>		<u>.</u>		1			4	1					1
<u> </u>	. [<u> </u>	<u>.</u>	<u> </u>	<u></u>	<u> </u>	<u></u>		<u> </u>	4						93	3			
Κ	<u></u>	<u> </u>	89	<u> </u>	<u> </u>	<u> </u>		1	<u> </u>	<u> </u>	<u> </u>									
L	. .	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>		1				2	2
M		<u> </u>	1	<u> </u>	<u></u>	<u> </u>	<u></u>	ļ	ļ	<u>.</u>	<u> </u>	<u> </u>	-			1			1	
N		<u></u>	1					2		4	14	<u> </u>		2						
Р	Į	<u></u>	<u></u>		1		ļ	<u>.</u>	<u></u>	<u> </u>										1
Q	ļ	ļ	4	ļ			ļ			<u></u>	<u></u>	<u> </u>								
R		<u> </u>	1			1	<u> </u>	2					<u></u>		1					95
<u>S</u>	94	<u> </u>	ļ	1	90			84	<u> </u>	10	61		<u> </u>	2	2		15			
T	2	<u> </u>						5	<u> </u>	75	16		<u> </u>			2	1			
<u> </u>	ļ															1			93	
<u> </u>					•••••										93			97	<u> </u>	
X																				
Y							90							87						
<u>Z</u>				_		_														
- (2)							••••••					97	97							
unknown (?)																				
not sequenced		==							_	_	_									_
sum of seq ²																				
oomcaa¹	94 C	96	89 K	92 G	90	93			97 F			97	:				· · · · · · · · · · · · · · · ·			
mcaa'		···	·····÷				Υ	;			S	-	-		W		G	W	٧	R
rel. oomcaas	98%	100%	93%	%96	94%	97%	94%	87%	100%	77%	63%	100%	100%	%06	%96	%96	74%	100%	%96	98%
pos occupied ^r	2	1	5	3	4	3	2	7	1	5	8	1	1	5	4	4		·····	4	

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

		_		Fra	mev	work	: 11													<u> </u>
amino acid'	39	40	4	42	43	44	45	46	47	48	49	20	51	25	⋖	8	ပ —	53	54	22
Α			1			1									1			2	_1	
В								<u> </u>								_				
· C														1				1		
D														14				8	93	
E					3			97											2	
F												1		2						
G				97		96					95							69	1	
Н														3	1					
1										1		75	92							
K		1			94															
L			<u> </u>				94			2		2	1							
М		92								89			1							
N				<u> </u>																
Р			96				2							1	93					1
Q	97		<u> </u>	<u> </u>			1													
R		1		<u> </u>			<u></u>				1	14						1		
S				<u> </u>			<u></u>					1			1			16		96
Ţ		1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>				3	1		1					ļ
V	.	2	<u> </u>	<u> </u>				<u> </u>		5	1	1	2						<u> </u>	
W	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	94										<u></u>	
X							<u></u>												<u> </u>	<u></u>
Y				<u>.</u>			ļ	<u> </u>	3			<u> </u>		76					ļ	<u></u>
Z																			<u> </u>	<u> </u>
-											<u></u>	<u> </u>				97	97		ļ	<u></u>
unknown (?)									<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	ļ
not sequenced										<u> </u>				<u> </u>						<u> </u>
sum of seq?	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa,	97	92	96	97		;	••••••	· · · · · · · · ·	÷	÷	÷	·••••	92			97	97	÷	·	
mcaa'	0	М	Р	G	K	G	L	E	W	М	G		1	Υ	Р	-	-	G	D	S
rel. oomcaa ^s	100%	95%	%066	100%	9/0/6	% 66	97%	100%	97%	92%	98%	77%	95%	78%	%96	100%	100%	71%	%96	%66
pos occupied	•	!			:	:	:	1		:	:		Ē	6	1		:	1	1	
	*******	********								18										

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

·		DR																		
amino acid'	99	22	58	59	09	19	62	63	64	65	99	67	89	69	70	71	72	73	74	75
Α		6					1									88				
В																				
. C					1					1										
D	77									2					: !		97			
E	3								2									2		
F				2				91				1		3						
G	1									94										
Н											15									
l		4	1					1				3		88						91
K			2													•		93		
L						1		4							2					
M														3						1
N	2		14	2																
P						95	1		1										1	
Q									91		81							1		
R			78						3		1			1				1		
S	2	2			95	1	95	1					1		95				96	1
T		85	2		1								96							4
V				1								93		2		9				
W																				
X																				
Y	12			92																
Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq ⁷	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa³	•••••	******				;	**********	•••••		·÷	••••••••	• • • • • • • • • • • • • • • • • • • •		88	95	88	97	93	96	91
mcaa*	D	Ţ	R	Υ	S	Р	S	F	Q	G	Q	٧	Ţ	1	S	Α	D	Κ	S	1
rel. oomcaa ^s	79%	988%	90%	95%	98%	98%	98%	94%	94%	97%	84%	%96	%66	91%	%86	91%	100%	%96	99%	94%
pos occupied ⁶			•	:	3	:		i		•	3				2	2	1	:	:	4

182

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

				F	ram	ewo	rk li	1												
amino acid'	92	77	78	79	80	81	82	⋖	ω	ပ	83	84	82	98	81	88	68	06	91	92
A		1	91								1	96				93				
. B																				
. С				<u> </u>			1													95
D				1										96						
E						1					1									
F .				1														2	6	
G								3	1							4				••••••
Н						3														
١															2		9			
К											91						1			
L					96					97							2			
М																	84			
N	7							2	2						2					
Р			1																	
Q						93														
R	1						1	1	3		3									
S	87	2	1	1				90	91				96		5					
T	2	94	2					1			1	1	1		88		1			
٧			2		1									1						
W			<u> </u>				95													
X																				
Y				94														94	89	
Z																	<u> </u>			
_																	<u></u>			
unknown (?)											<u></u>						<u> </u>	<u> </u>	<u> </u>	<u></u>
not sequence	1							<u></u>	<u> </u>		<u> </u>							1	2	_
sum of seq ²	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96	95	9
oomcaa ³	87	94	91	94	96	93	95	90	91	÷	÷	÷			88	•••••	÷	÷	÷	Ţ
mcaa'	S	T	Α	Υ	L	Q	W	S	S	L	K	Α	S	. D	T	Α	М	Υ	Υ	(
rel. oomcaas	%06	97%	94%	97%	%66	%96	98%	93%	94%	100%	94%	%66	%66	%66	91%	%96	87%	%86	94%	000
pos occupied	:	:	:	:	•	;	į		:	•	•	:	:	:	:	:	:	:	2	

Table 6F: Analysis of V heavy chain subgroup 5

										CD	RIII									
amino acid'	93	94	92	96	97	86	66	100	⋖	8	ပ	٥	ш	ц	9	I	_	_	×	101
Α	92		1	1	2		3	4	3	2		1			1			4		2
В														,						
. С						1	1	1			2		1							
D				3	3	3	3	1	2	1	1	2		2	1	1	2			37
Ε			1	1	1	2			1	1				1			1			
F.					1		3			3	2		1						26	
G			1	9	11	12	12	5	2	4	3.	10	2	1				5		
Н			10	1		2			1	1		1								
				3		2	2	1	1	4	1	1		1	1					
K		1	1	1		1	3	1								2				
L			11	2	3	1	1	2	5		1		1		1					
М					2	1	1		1	1	1	1							10	
N				1		2		1	1	2			1					2		
Р			5	1	4	3	1	2				1	1	. 1	1					
Q		1	3	2		1	1	4	2	1	2									3
R		92	7	9	2	2		2	1		2									
S		1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	
Т	1		1	3	2	1	2	6	3	3	6	1		1						
V	2		2	4	4		1		1	2			1							
W			1		2	1					1		2		1		1	1		
X																				
Y				1	6	3	6	9	8	7	2	1	2	6	8	9	9	10		1
Z																				
						1	1	2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)													1			1	1	1		
not sequenced	2	2	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	53	52
sum of seq²	95	95	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	44	45
oomcaa¹	92	92	11	9	11	12	12	9	8	10	16	23	30	30	31	32	30	22	26	37
mcaa*	Α.	R	L	G	G	G	G	Υ	Υ	-	-	-	-	-	-	-	-]	-	F	D
rel. oomcaa ^s	97%	97%	24%	20%	24%	27%	27%	20%	18%	22%	36%	51%	%29	67%	%69	71%	9029	49%	59%	82%
pos occupied"	•	•		:				-	:	:	:	:			••••••		······································		•••••	

184

Table 6F: Analysis of V heavy chain subgroup 5

					Frai	mew	vork	IV			<u> </u>	\neg	
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113	sum
А												1	611
В													
С		Ì	<u>†</u>										205
D	1							Ī					458
Е				1									404
F	2												256
G			41		41								1065
Н													44
1	9			Ī					2				588
К				3									650
L	2						25	1					549
М							8						303
N													64
Р	2					1					1		414
Q				34									612
R				3									351
S	2										40	39	1545
T	1					40	8		39				604
V	11							40		41			594
w		43											432
X													
Y	13												738
Z			<u> </u>	<u> </u>									
-	2												635
unknown (?)	<u>.</u>		<u> </u>	<u> </u>			<u></u>						4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq'	45	43	41	41	41	41	41	41	41	41	41	40	
oowcss,	13	43	41	34	41	40	25	40	39	:		*****	
mcaa*	Υ	W	G	Q	G	T	L	٧	Ţ	V	S	S	
rel. oomcaas	29%	100%	100%	83%	100%	%86	61%	%86	95%	100%	%86	%86	
pos occupied ^e	10	1	1	4	1	2	3	2	2	1	2	2	j
					18	25							

Table 6G: Analysis of V heavy chain subgroup 6

				-										F	rame	ewo	rk I			
amino acid'	-	2	3	.4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
Α												1								
В							·													
· C																				
D																				
<u>E</u>		<u></u>	ļ		<u></u>							-							<u> </u>	
F ,				<u> </u>		ļ	<u></u>	ļ							ļ		<u></u>			
G				ļ				52	<u> </u>	67					<u></u>		<u></u>	<u></u>		
Н		ļ				<u></u>		<u></u>							<u></u>	<u></u>	<u>.</u>	<u>.</u>		
1								<u> </u>	<u></u>						<u></u>					
Κ									.				68		<u></u>					
L				52							68	1						67	1	68
М																				
N																				
Р									68					67					1	
Q	52		52		51	52										68				
R					1					1										
S						•••••••	52							1	6 8				66	
T																	68			
V		52										66						1		
w																				
X																				
Υ																				
Z																				
_																				
unknown (?)																				
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq²	52	52	52	52	52	52	52	52	68	68	68	68	68	68	68	68	68	68	68	68
oomcaa³	52	52	52	52	51	52	52	52	68	67	68	66	68	67	68	68	68	67	66	68
mcaa•	Q	٧	Q	L	Q	Q	S	G	Р	G	L	٧	Κ	Р	S	Q	Т	L	S	L
rel. oomcaa⁵	100%	100%	100%	100%	98%	100%	100%	100%	100%	%66	100%	92%	100%	%66	100%	100%	100%	99%	97%	100%
pos occupied ⁶	1	1	1	1	2	1	1	1	1	2	:	;	:				1			

Table 6G: Analysis of V heavy chain subgroup 6

														CD	RI					
amino acid'	71	.22	23	24	25	76	27	28	53	ဇ္က	31	∢	<u> </u>	32	33	34	35	36	37	38
Α	1		67											66	67					
В																				
С		68																		
D							68				1						1			
E																				
F .										2				1	1				1	
G			1			69			<u> i</u>				3	1	2					
Н																	1			
				64								2					1		70	
К												3								
L																				
М																				
N							1				2	66					70			
Р																				
Q	1										·									
R			-								2	1								7
S	1			1	69			69		68	66		67		3		1			
Ţ	67										2	1	4		1	<u> </u>	<u></u>			
V	1		1	4					70					6		<u> </u>			2	
W		1					٠									74	<u></u>	74		<u> </u>
Χ																	<u>.</u>			
Y												1					<u> </u>		1	ļ
Z																	<u> </u>	<u> </u>		<u> </u>
_																	<u> </u>	<u> </u>	<u></u>	
unknown (?)											1	<u> </u>						<u> </u>	<u> </u>	<u> </u>
not sequence		5 5	5 5	5	5	5	5	5	4	4		<u> </u>			<u> </u>					<u> </u>
sum of seq²	69	69	69	69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	7
oomcaa ³	6	7 68	67	64	69	69	68	69	70	68	66	66	67	66	67	74	70	74	70	7
mcaa'	T	С	Α	1	S	G	D	S	٧	S	S	N	S	Α	Α	W	N	W	1	1
rel. oomcaa ^s	9.20%	9061	9206	93%	%00 l	100%	%6€	100%	100%	97%	39%	%68	91%	89%	91%	100%	95%	100%	95%	
pos occupied			:	:	;	1	2	1		<u> </u>	:	6	1	•		1	5			-

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

				Fra	ame	wor	k II													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	٧	8	υ	53	54	55
Α				1									1					1		
В																				
· C																				
D			<u> </u>																	
E								74												
F .														2	1			1		
G						74					74	1							1	
Н		••••••				••••••				••••					1					
		*********					•••••													
K	1	•••••	<u> </u>		1					••••					••••	1			66	
L	1	•••••	<u></u>				74			74										*******
М		********					•••••													********
N		********																	1	
Р			73						•••••											
Q	72	*******				•		••••	••••					•••••						
R		••••••	<u> </u>		73		*******	•••••				73				72			1	1
S		74	1	73			••••••								•••••	1		72		
Т									-				73						5	••••••
V													•••••							
W									74	******										73
Х				••••											•					••••••
Υ							******		••••					72	72					
Z							••••••						*******							
_																	74			
unknown (?)														•••••	********					
not sequenced																				
sum of seq'	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
oomcaa ³	72	74	73	73	73	74	74	74	74	74	74	73	73	72	72	72	74	72	66	73
mcaa*	Q	S	Р	S	R	G	L	Ε	W	L	G	R	T	Υ	Υ	R	-	S	K	W
rel. oomcaa ^s	92%	100%	%66	%66	%66	100%	100%	100%	100%	100%	100%	%66	%66	92%	92%	97%	100%	97%	89%	%66
pos occupied ⁶	3	1	2	2	2			1		•		į		•	:	:	•	_ }	:	2

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

		DR	_																	
amino acid'	26	23	28	29	9	6	62	63	64	9	99	29	89	69	2	7	72	73	74	75
Α					73	1							2			6		1		
В																				
. С				1																
D			68			1									2		73			
E	1		3			7			1											
F .	7																			
G			1				1			8										
Н	1		<u> </u>														1			
1			<u> </u>			1						65	2	71				1		
K		1	<u> </u>						67						1					7
L	1					5		2				4						1		
М												1								
N	2	65	1						1						69					
Р					1	1										66				
Q									2		1									
R		1							3		73									
S	2	2	1	1			73			66			1		2	1			73	
T		4	Ī										69	1				71	1	
٧	1					58		72				4		2		1				-
W							•													
Χ																				
Υ	60	1		72																
Z																		<u> </u>		
-						<u> </u>	Ī													
unknown (?)																		<u> </u>		
not sequence	d																	<u> </u>		_
sum of seq?	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	7
oomcaa,	60	65	68	72	73	58	73	72	67	66	73	65	69	71	69	66	73	71	73	7
mcaa'	Y	N	D	Y	Α	٧	S	٧	Κ	S	R	1	T	1	N	Р	D	Ţ	S	
rel. oomcaas	31%	38%	32%	37%	%6£	78%	%6£	%/6	91%	39%	.%66	, %88	93%	%96	93%	89%	%66	%96	%66	
pos occupied	•	:	•	;	•	•	;		:	;	2	1	4	:	4	:	:	-	2	i

WO 97/08320 ·

Table 6G: Analysis of V heavy chain subgroup 6

				F	ran	ewo	ork I	<u></u>							<u> </u>				_	
amino acid'	92	77	78						8	ပ	83	84	85	98	87	88	83	90	91	92
А													1			74				
В																				
· C																				73
D								3						73						
E													73							
F .			71						1										3	
G														1						
Н						2		1												-
1			1														2			
К								4												
L		1			74		72								•••••					
M							1			1					•		2			
N	74							63											1	
Р												70								
Q		72				71														
R		1				1		1												1
S				74				1	73		1	3								
Т								1			73			•••••	74			1		
V			2				1			73							70			
W																				
Х									,											
Υ																		73	70	
Z																				
-																				_
unknown (?)																				
not sequenced												1			•••••					
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	73	74	74	74	74	74	74	74	74
oomcaa3	74	72	71	74	74	71	72	63	73	73	73	70	73	73	74	74	70	73	70	73
mcaa'			F	*******	L					*******	T	Р	Ε	D	T	Α	٧			С
rel. oomcaa ^s	100%	92%	%96	100%	100%	%96	97%	85%	%66	%66	%66	%96	%66	%66	100%	100%	95%	%66	95%	%66
pos occupied ⁶	1	3	3	1	1	3	3	7	2 19		2	2	:	:		1				2

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

ļ										CDF	R 111			•						
amino acid'	93	94	95	96	97	98	66	100	∢	8	ပ	۵	ш	u.	g	I	_		×	101
A	69		11	1	3	12	4	3	2	5		8						10	1	
В																				
· C					1		1			1		1	1							
D			19	4	3	7	4	3	1	6	1	1	1							62
E			10	4	2	1	2	2	1	2							1			
F .	1		1	1	1		1	2	3		2			1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
Н				1		1			1	1	1	1				1	1	1		
1				1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
L			1	8	4	2	3	2	1					1	5				8	
М				. 1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
S		3	5	5	5	7	6	7	3	4	2					1	1			
Т			1	1	4	3	4	4	6	3	1			1						
V	3	1	4	5	1	9			4		9	5	1	1					2	
W			1	6	8		3	2	4								4	4		
X																				
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z																				
-				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)														6	1	5				
not sequenced				1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq²	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa ³	69	69	19	10	15	15	14	23	25	33	41	47	53	54	57	56	50	28	38	62
mcaa'	Α	R	D	Р	G	G	-	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	93%	93%	26%	14%	21%	21%	19%	32%	35%	46%	57%	65%	7 40%	75%	29%	78%	9%69	39%	53%	96%
pos occupied ⁶	:	:	<u>:</u>		:	:	:	:			<u> </u>	:				:	:			:

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

	Framework IV												
amino acid'	102	103	104	105	106	107	108	109	110	==	112	113	sum
Α							2						494
В	<u> </u>			<u> </u>	<u> </u>	Ĭ					<u> </u>		
С						 -	<u> </u>				<u> </u>	<u> </u>	147
D								1					403
E												<u> </u>	186
F	2										2		150
G			49		50							}	571
Н	2												18
1	9					3		1					304
K				1			1						293
L	5	<u>.</u>					26						632
М		<u> </u>			<u>.</u>		8			-	٠.		31
N		<u> </u>											436
Р	4			6								1	387
Q				40			<u></u>						539
R				2									495
5	4		1			1					43	46	1271
T						45	4		45				640
V	21						2	46		48			647
W		65					5						398
X													
Y	19												518
Z													
-	2												585
unknown (?)	·												13
not sequenced	5	8	23	24	23	24	25	25	28	25	28	26	580
sum of seq²	68	65	50	49	50	49	48	48	45	48	45	47	
oomcaa	*******	65	•	•••••••		45	26	46	45	••••••	•••••••	46	
mcaa⁴	٧	W	G	Q	G	T	L	٧	T	٧	5	S	
rel. oomcaa ^s	31%	100%	%86	82%	100%	92%	54%	%96	100%	100%	%96	%86	
pos occupied ⁶	9	1	2	4		3	7	3	1	1	2	2	

192

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L. Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- 16 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869-2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401-1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989)
 J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405–1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- 33 Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991) Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., ladarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799–804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077–1080.
- 44 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc.Acids Res., 12, 5249–5263.
- Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272-3277.
- Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903–1911.
- 60 Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322-1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 67 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322–1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)

 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 · Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 81 Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991) J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)
 Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- 108 Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- 114 Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- 115 Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- 117 Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 118 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991)
 J.Clin.Invest., 87, 1603–1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.Immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767;
 Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur J. Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- 27 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.lmmunol., 124, 301-306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 45 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971)
 Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953–954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833–836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561–572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- 66 Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979) J.Biochem., 86, 1523–1535.
- 67 Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- 69 Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- 72 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- 75 Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

203

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722–1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812-823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529–1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727–738.
- 15 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845–848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- 32 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- 41 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 42 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934–1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- 45 Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741-3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689–1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 56 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993)
 J.Exp.Med., 178, 1903-1911.
- Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318 1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin. Exp. Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975)
 Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69–85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- 68 Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203–213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- 73 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, JJuliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511–1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320–1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 86 Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992)
 J.Immunol., 149, 2337–2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83-103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, LC. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- 95 Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. & Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867–878; Matthyssens, G. & Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561–6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, LZ. & Kipps, TJ. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 106 Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020–8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)
 Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.
- B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827–836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821–1827.

- Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H. D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- 12 Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc. Acids. Res., 17, 3976.
- Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992)
 Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601–1616.

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843-1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003-2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- 12 Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047–1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur.J.Immunol., 23, 832-839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L-Y. & Marcus, D.M. (1992) Eur J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur J. Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 2. A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- 5. The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

 The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

2/7

24. The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of;
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32:
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- **41**. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, and
 deducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- **42.** A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

- (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 45. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- 48. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- **50**. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

- 51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.
- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

sednences
consensus
kappa
2A: VL
Figure

7	(=	=	Hallicwolk		-									\dashv		١	ᆀ	CUR	Ì	
	3	3 4	9		7	8	6	-01	11	71	13	tl	91	91	<u>ا</u> ا	81	61	50	17	77	23	74	52	72 26	∀	8)
	Q	Σ	-		S	Ь	S	S			ĺ	ŀ	>	9	ا م	~	>	⊢		 	ر	i			ا		
	>	Σ	 	Q.	S	ط		S	_	۵	>	—	۵	g	ш	Δ.	4	S		S	ی	~	S.	2	о, С		
_	>			Ō	S	م	⋖	—		S			مـ	9	ш	\propto	⋖	—		S	၂			_	_		
_	>	Σ	—	O	S	۵		Š		-	•	S	_	9	ш	~	Þ	—	_	Z	ر ر					<i>></i>	_
														fra	m	N.	X	2					\vdash		00	 	
7	4	82	67								1		i			l	I	1	1	1	1		-	1	1		75
ı	1	9	_	S	S	>		A			0			۵	9	\times	A	٦	Y		_			1	1	100	
S	1	z	9	>	z	>		0	3	>			\mathbf{x}	۵	G	D	S	م	O			_	_	٠,			<u>~</u>
ı	1	>	S	S	S	>		A	_				\checkmark	۵	9	O	⋖	۵	\propto			_	~			· · ·	~
S	S	z	Z	×	Z	>-	_	A	_			d	<u>\</u>	م	g	d	م	۵	<u>~</u>	ن	_	_	> _	_	-		<u>∝</u>
\k\k1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				S S S S S S S S S S	CDM T Q	CDM T Q S S S S S S S S S S S S S S S S S S	CDR	- 0 M T Q S P S - V L T Q S P A C DR	- 0 M T Q S P S S - V M T Q S P B S S - V M T Q S P D S P A T - V M T Q S P D	- C M T Q S P S S L - V M T Q S P L S L - V M T Q S P D S L C L C M T Q S P D S L C L M T Q S P D S L C L M T Q S P D S L C L M T Q S S Y L A W S S S Y L A	- CM T Q S P S S L S L V M T Q S P L S L P L P	- C M T Q S P S S L S A - V M T Q S P L S L P V - V L T Q S P A T L S L - V M T Q S P D S L A V - V M T Q S P D S L A V - G N S S Y L A W Y Q - S S S Y L A W Y Q - S S S Y L A W Y Q - S S S Y L A W Y Q - S S S Y L A W Y Q - S S S Y L A W Y Q	- CDRI	- CDRI - G N Y C S P S S L S A S V - V L T Q S P L S L P V T P P P S L A V S L S P D S L A V S L CDRI - CDRI - G L S S Y L A W Y Q Q K S - G L S S Y L A W Y Q Q K S - V S S S Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K	- CDRI - G N Y C S P S S L S A S V - V L T Q S P L S L P V T P P P S L A V S L S P D S L A V S L CDRI - CDRI - G L S S Y L A W Y Q Q K S - G L S S Y L A W Y Q Q K S - V S S S Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K	- CDRI - G N Y C S P S S L S A S V - V L T Q S P L S L P V T P P P S L A V S L S P D S L A V S L CDRI - CDRI - G L S S Y L A W Y Q Q K S - G L S S Y L A W Y Q Q K S - V S S S Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K	- CDRI - G N Y C S P S S L S A S V - V L T Q S P L S L P V T P P P S L A V S L S P D S L A V S L CDRI - CDRI - G L S S Y L A W Y Q Q K S - G L S S Y L A W Y Q Q K S - V S S S Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K S S N N K N Y L A W Y Q Q K	1 0 M T Q S P S S L S A S V G D R V I V L T Q S P L S L P V T P G E P A I V L T Q S P A T L S L S P G E R A I V M T Q S P D S L A V S L G E R A F R R R R R R R R R R R R R R R R R	1 0 M T Q S P S S L S A S V G D R V T P G E P A S P L S L P V T P G E P A S P L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P L A W Y Q Q R P G Q S P P S S N N K N Y L A W Y Q Q R P G Q P P S S N N K N Y L A W Y Q Q R P G Q P P	1 0 M T Q S P S S L S A S V G D R V T P C E P A S P V L T Q S P L S L P V T P G E P A S P L V L T Q S P A T L S L S P G E R A T L P M T Q S P D S L A V S L G E R A T P P M T Q S P D S L A V S L G E R A T P P M T Q S P Q P T P M T Q S P Q P T P M T Q S S S Y L A W Y Q Q K P G Q S P Q S S S N N K N Y L A W Y Q Q K P G Q P P K S S S N N K N Y L A W Y Q Q K P G Q P P K	1 0 M T Q S P S S L S A S V G D R V T I T T V M T Q S P L S L P V T P G E P A S I S I V L T Q S P A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S P G E R A T L S L S L G E R A T L S L S L G E R A T L S L S L S L A W Y Q Q R P G G R P R L S S S R L A W Y Q Q R P G G A P R L S S S N R R Y Q Q R P G Q P P R L	1 0 M T Q S P S S L S A S V G D R V T 1 T C 1 V M T Q S P L S L P V T P G E P A S 1 S C 1 V L T Q S P A T L S L S P G E R A T L S C 1 V M T Q S P D S L A V S L G E R A T L N C 1 V M T Q S P D S L A V S L G E R A T I N C 2 DRI 2 CDRI 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	1 Q M T Q S P S S L S A S V G D R V T I T C R 1 V M T Q S P L S L P V T P G E P A S I S C R 1 V L T Q S P A T L S L S P G E R A T L S C R 1 V M T Q S P D S L A V S L G E R A T I N C R 2 L M T Q S P D S L A V S L G E R A T I N C R 3 S Y L A W Y Q Q K P G K A P K L L I 5 - K G Y N Y L D W Y L Q K P G Q S P Q L L I 5 S N N K N Y L A W Y Q Q K P G Q P P K L L I 5 S N N K N Y L A W Y Q Q K P G Q P P K L L I 6 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L L I 7 S S N N K N Y L A W Y Q Q K P G Q P P K L L L I 8 S S N N K N Y L A W Y Q Q K P G Q P P K L L L L I 8 S S N N K N Y L A W Y Q Q K P G Q P P K L L L L L L L L L L L L L L L L L	1 Q M T Q S P S S L S A S V G D R V T 1 T C R A 1 V M T Q S P L S L P V T P G E P A S 1 S C R S 1 V L T Q S P A T L S L S P G E R A T L S C R A 1 V M T Q S P D S L A V S L G E R A T I N C R S 2 L R R A T I N C R S 3 R R R A T I N C R R 4 P R L L I Y 2 P R R R R L L I Y 3 R R R R R R R R R R R R R R R R R R R	1 Q M T Q S P S S L S A S V G D R V T 1 T C R A S O I V M T Q S P L S L P V T P G E P A S 1 S C R S S O I V L T Q S P A T L S L S P G E R A T L S C R A S O I V M T Q S P D S L A V S L G E R A T I N C R S S O I A W S Q Q R P Q R P Q R P Q P Q P Q P C I I Y M Y Q Q K P G Q S P Q L L I Y Q S O I C I I Y Q S S N N K N Y L A W Y Q Q K P G Q P P K L L I Y Q Y W Y Q Q K P G Q P P K L L I Y W Y Q Q K P G Q P P K L L I Y W Y Q Q K P G Q P P K L L I Y W Y Q Q K P G Q P P K L L I Y W Y Q Q K P G Q P P K L L I Y W Y Y Q Q K P G Q P P K L L I Y W Y Y M Y Q Q K P G Q P P K L L I Y W Y Y M Y Q Q K P G Q P P K L L I Y W Y Y M Y Q Q K P G Q P P P K L L I Y W Y Y M Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y Q Q K P G Q P P R L L I I Y W Y Y M Y Y M Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y M Y Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y M Y Y M Y M Y M Y M	1 Q M T Q S P S S L S A S V G D R V T 1 T C R A S O I V M T Q S P L S L P V T P G E P A S 1 S C R S S O I V L T Q S P A T L S L S P G E R A T L S C R A S O I V M T Q S P D S L A V S L G E R A T I N C R S S O I A W S Q Q R P Q R P Q R P Q P Q P Q P C I I Y M Y Q Q K P G Q S P Q L L I Y Q S O I C I I Y Q S S N N K N Y L A W Y Q Q K P G Q P P K L L I Y Q Y W Y Q Q K P G Q P P K L L I Y W Y Q Q K P G Q P P K L L I Y W Y Q Q K P G Q P P K L L I Y W Y Q Q K P G Q P P K L L I Y W Y Q Q K P G Q P P K L L I Y W Y Y Q Q K P G Q P P K L L I Y W Y Y M Y Q Q K P G Q P P K L L I Y W Y Y M Y Q Q K P G Q P P K L L I Y W Y Y M Y Q Q K P G Q P P P K L L I Y W Y Y M Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y Q Q K P G Q P P R L L I I Y W Y Y M Y Y M Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y M Y Y Q Q K P G Q P P P K L L I Y W Y Y M Y Y M Y Y M Y Y M Y M Y M Y M	OM T O S P S S L S A S V G D R V T T C R A S V M T O S P L S L P V T P G E P A S S C R S S S V M T O S P A T L S L S P G E R A T L S C R A S V M T O S P D S L A V S L G E R A T N C R S S S V M T O S P D S L A V S L G E R A T N C R S S S V M Y O O K P G R A P K L L Y A S S S Y L A W Y O O K P G O S P O L L Y G S S N N K N Y L A W Y O O K P G O A P R L L Y G S S N N K N Y L A W Y O O K P G O A P K L L Y G S S N N K N Y L A W Y O O K P G O A P K L L Y W W A O O K P G O A P K L L Y W W A O O K P G O A P K L L Y W W A O O K P G O A P K L L Y W W A O O K P G O A P K L L Y W W A O O K P G O A P K L L Y W W A O O K P G O P P K L L Y W W A O O K P G O P P K L L Y W W A O O K P G O P P K L L Y W W A O O K P G O P P K L L Y W W A O O K P G O P P K L L Y W W A O O K P G O P P K L L Y W W A O O K P G O P P K L L Y W W A O O K P G O P P K L L Y W W A O O K P G O P P K L L Y W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W A O O K P G O P P K L L Y W W W M W A O O K P G O P P K L L Y W W W M W A O O K P G O P P K L L Y W W W M W M W M W M W M W M W M W M W

	u	٦	
	Œ	j	
	Č	j	
	Č	•	
	ō	7	
	3	ξ	
	=	2	
	ç	7	
	a	2	
	u	7	
	u	٩	
	シニンロるシロン	3	
	ū	ñ	
	ē	-	
	5	٦,	
	3	ί	
	ř	ď	
	>	₹	
	č	٠.	
	•	•	
	a	3	
	ċ	5	
	7	5	
	2	-	
	2000	2	
•	•	6	
	_	J	
•	>	>	
•	_		
ı	:	÷	
٩	4	Ļ	
ţ	`	J	
	_		
	٠	•	
	:	₹	
	Ξ	•	
	C	,	ı
i	7	_	
	_	_	

	CD	CDRII													framework	nev	٥ ۷		က											
	99	99	22	89	69	09	19	79	63	79	92	99	۷9	89	69	02	11	72	73	74	92	94	12	87	62	08	18 28	83	148	٦٣٥
VK1	0	S	S G V	>	۵	S	R	ட	S	9	S	9	S.	ව	⊢			-		 -	_	S	S		0	٦	Ш		FA	
Vk2	A	S	G	>	٥		X	ட	S	9	S	G	S	9	\vdash	٥	щ	—	_	\checkmark		S	<u>~</u>	>	E/	A	ш	0	9 /	-(0
Vk3	A	-	9	>	٩	A	\propto	ட	S	O.	S	G	S	9	—	Q	ட		_	-	_	S	S		ш	ط	ш	1	Α	
VK4	ш	S	9	>	۵.		8	ц.	S	9.	S	9	S	9	—	Ω	ட	<u></u>	_	\vdash		S	S		0	A	ш	7	, A	
					ė			,					,																	7
fr	framework 3	e	lo l	3				CDRI	\mathbb{Z}								fra	E L	framework	l X	4				_					
	82	98	۲8	88	68	06	16	65	63	7 6	96	96	۷6	86	66	100	101	102	103	104	501	901	201	801 801	ا در ا					
/k1	—	λ λ	>	C	Q	Q	工	>	—	. 	_	۵	 - -	ட	9	O	9	-	×	>	l L		<u>~</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u></u>			•		
Vk2	>	>	>	S	O	Q	工	>	-		م	۵	-	ட	Ð	O	9	—	\checkmark	>	تتا	_	\preceq	· ∝						
Vk3	>_	>-	>	C	O	Q	エ	>	—	⊢ ,	م	۵.	—	ட	9	O	9	—	\checkmark	>	ш	_	<u>~</u>	<u>~</u>						
VK4 \	>	>	>	<u>ں</u>	a	a	エ	>	-	⊢	۵.	Ъ	 	ட	O	O	9	—	\checkmark	>	ய	_	-	∝						

Figure 2B: VL lambda consensus sequences

	1				1		1			
	28	-	>	_			L S	9	G	G
'	3	Z		t			99	\scrip*	S	S
=	а	S	S	ı			99	4	۵	۵
CDRI	72	S	S	V		=	75	~	\propto	\propto
	97	S	<u></u>			CDR II	23	a	Z	
	52	ပ	G	9		0	25	z	S	S
	77	S	—	S			1S	z	>	0
	23	Ų	S	C			09			0
	77	S	S	S			67	>	>	>
	17	_	_				84	_	_	
	50	 -	—	\propto		,	LÞ		Σ	>
	61	>	_	⋖			97		_	_
	81	<u>ح</u>	S	<u> </u>			94	\prec	\checkmark	>
	11	a	O	O		2	44	۵	۵	۵
	91	ပ	9	G	ı	ork	43	A	\forall	⋖
	Sl	۵	٩	٩		framework 2	45	⊢	¥	Q
	τl	⋖	S	4		an	lb	9	G	G
framework	13	ග	G	>		fr	07	ط	٥	ط
e	15	S	S	S			38	٠.	工	×
am	11	>	>	>	•		38	Q	O	Q
1	٥Ĺ	١	1	i :			37	0	Q	Q
	6	S	S	S			36	Υ.	>	Υ .
	8	Д	A	٩			35	≥	≥	8
	L	۵	Δ.	Δ.			34	2	S	S
	9	Ø	O	O			33	>_	>	A
1	S	1	 	 	·	교	32	>	>	>
	7			_		CDRI	A		Z	1
	3	>	⋖	ш			15	Z	>	¥
	9994871	S	S	>			29 30 7 32 33	S	0 G Y N Y V	0
	l	0	<u> </u>	S			58	9	<u> </u>	9
		WIDSVLTO	M2 0 5 A L T Q	\\X3				W1 G S N	M2	W3 G D K - Y A

Figure 2B: VL lambda consensus sequences

88888888888888888888888888888888888888
RFSGSKSGTSASLAITGLQSEDEADYY
R F S G S K S G N T A S L T I S G L Q A E D E A D Y Y
R F S G S N S G N T A T L T I S G T Q A E D E A D Y Y
CDRIII framework 4
92 99 76 99 99 99 99 99 99 100 100 100 100 100 1
HYTTPPVFGGGTKLTVLG
HYTTPPVFGGGTKLTVLG
W.3 COOHYTTPPVFGGGTKLTVLG

Figure 2C: V heavy chain consensus sequences

											LS	×		\prec	 	—	\vdash	Z
											99	-	G		S	S		>
	30	S	\vdash	S	S	S		S			99	9	9		G	G	S	≥
1	67	ட	ய		ட	_	ட	>		٠٠	75	ഥ	S		9	S		\checkmark
	28	—	—	S	<u></u>	Ś	S	S		- X	23	_	Z	≥	S	>	9	S
	77	ව	>	ய	ட	9	>	۵			Э	ı	1	1	1	1	ı	ı
	97	ල	9	G	9	9	9	9			В	1	ı	1	1	1	1	8
	52	S	S	S	S	S	S	S			A	امـ	۵.	1	9	ı	٩	>
	74	⋖	\forall	ட	\forall	>	ල	_			25	-	Z		S	>-	>	>
	23	$ \mathbf{x} $	\checkmark	\vdash	\forall	\vdash	\checkmark	A			LS				_	_		—
	77	C	ں	J	ر ر	ပ	ں	ں			09	9	≥	_	\triangleleft	>		~
	17	2	S	-	S	\vdash	S	\vdash			6t	9	9	\forall	S	9	9	9
	50	>	>		_	_					84	≥	≥	_	>	_	≥	_
	61	\mathbf{x}	\checkmark	\vdash	\propto	S	\checkmark	S			L \$	≥	≥	≥	≥	≥	≥	≥
_	81	>	>	_	_	نـ	ت	_		2	97	ш	ய	ш	ш	ш	ш	ш
논	41	S	S	—	S	. —	S	-		1	94			_	_			_
framework	91	S	X	0	9	ш	ш	a		mework	77	ပ	G	\forall	9	O	9	ပ
ne	SI	ග	9		9	S	9	S		ne	43	a	O	\checkmark	\checkmark	\checkmark	\checkmark	.∝
rar	τl	مـ	ط	م	۵	ط	٩	ما		frar	45		9	9	Э	9	9	0
	13	노	\checkmark	\checkmark	0	\checkmark	\checkmark	\prec		_	lt	مـ	ط	۵_	٥	٥	٥	۵_
	71	\mathbf{x}	\checkmark	>	>	>	\checkmark	>.			0t	⋖	Ø	م_`	Ø	۵	≥	\
	11	>	\geq	_		_	>	. —			38	Q	O	O	Q.	O	d	a
	10	ш	ш	A	G	9	ш	ပ			38	~	\propto	~	\propto	\propto	\propto	2
	6	×	A	Д	9	٩	A	ط			37	>	>	_	>	_	>	_
	8	9	9	9	G	9	9	9			36	3	≥	≥	≥	≥	≥	3
	L	S	S	S				S				Ś		G	S	-	9	Z
	9	O	O		ш	ш	Q	0			34	_	Σ	>		>	_	≥
	S	>	>	\prec	>	O	>			CDR	33	A	>	ග	\forall	>-	>	4
	7	-	- -					_		ت	35	\forall	>	>	>	>	>-	4
	3	0	O	O	O	O	O				8	1	1	9	1	ı	ł	S
	7	>	>	>		>	>	>			A	'	1	S	ı	1	- 1	2
	L	a	<u>0</u>	<u></u>	ш	<u> </u>	ш				15	S	S	<u> </u>	S	<u>S</u>	2	S
		14	18	2	3	4	₅	9				11A	118	7	က	4	2	9
•		X	ΥH	VH2	X	VH4	X.	\mathbb{X}				Ϋ́	XX.	VH2	VH3	VH4	VH5	X
							SUI	3STIT	UTE 6	SHE! / 204	et (fil 1	ILE 2	6)					

Š
မ္မ
ĕ
~
=
7
ຬ
Š
S
3
2
5
×
=
ō
Ū
_
.=
chai
듰
U
>
cav
ū
=
-
>
ن
Ñ
z
Figur
9
证

,	_																		
	82	П	ш	>	ш	V	S	ш]		113	V	ע נ	7 0	7 0	7 0) V	7 0	<u> </u>
	148	S	S	٩	\forall	V	< <	م		4	711) V	ט ר) V) U	7 V	י ר)
	83	8	\propto	0	œ	—	\prec	<u> </u>		논	111	>	· >	> >	> >	· >	> >	· >	>
) J.	-		\geq	_	>	_	>		NO.	011	-				·		-	-
	8	S	S	Z	S	S	S	S		mewo	60 L	>	· >	· >	. >	· >	· >	. >	
	A	S	S	—	Z	S	S	Z		frar	80 f		_				ı	ı —	,
	85		_	Σ	≥	_	≥				۷0 L	<u>-</u>	-	· -	· - -	-	· <u> </u>	. —	.
	18	ш	ш	—	O	\checkmark	O	O			901	9	<u></u>	<u> </u>	9	٣	· ©	9	,
3	08	≥	Σ		_	_	ت				SOL	a	C	0	d	C	0	O	
framework	62	>	>	>	>-	S	>	S			104	9	9	9	9	5	9	9	
le V	87	A	⋖	>		ட	A	ட			103		≥	≥	≥	≥	` ≥	≥	
am	LL	—	—	O	-	O	-	0			102	>-	>	>	>	>	>	>	
1	94	S	S	Z	Z	Z	S	Z			101		Ω						
	SZ	—	-	\prec	\times	\checkmark	_	\succeq		=	Э	≥	Σ	Σ	≥	Σ	Σ	≥	
	74	S	S	S	S	S	S	S		CDR	8	×	V	A	\forall	⋖	\forall	\forall	
`	73	ш	—	<u> </u>	Z	—	\prec	—		ပ	A	>	>	>	>	>	>	>	
	72		٥								100	<u> </u>	ட	ட	<u>'</u>	ய	ц.	ட	l
	17	Κ.,	<u>~</u>	\checkmark	æ	>	A.	۵.			66	9	9	9	9	ග	G	9	
	02		⊢	S	S	S	S	Z			86							0	
	69		≥			_		_			۷6	9	9	9	9	G	Ġ	G	
-	89	⊢	⊢	—	_	⊢	_	-			96	9	0	9	5	_	9	6	
	<u> </u>	<i>></i> ~	<i>></i>		الله مح		<i>></i>				96	<	>	3	≥	3	3	3	
-					<u>د</u>		_	2			7 6						8	<u>~</u>	
	-0	9 G			_		0 6	- 1		m	.63	l		A			-	A	
	'	<u>u</u> ,		<u></u>	<u>×</u>		Т	×		framework	65		C	. 0		O.	<i>ن</i>		
CDRI					<u> </u>		S			N K	91	\	>	>	<u>,</u>	>	>	>	
0			_,	⊢		٠, <u>م</u>		>		E	06	/	_	<u>_</u>	_	≻	≻	_	
.	1	○ ·					S		Ì	ا ت	68	/ /	_	_	<i>-</i>	<i>_</i>	∀		
	69	<u> </u>	<u>`</u>	> . >-	>	<u>-</u> ≻	٠. ≻				78 88	/ 1	_			<u> </u>	_		
	[, Z:	z	<u></u>	>	z	~				98		_			<u> </u>	_		
نــا	_		<u> </u>						L		30	_ -	<u></u>		_			ت	
1	•	 ,	Ī	VH2	£Ξ.	VH4	H5	9H				H 1	H H 1	VH2	73	VH4	15	9	
		> :	H>	>	>	>	₹ _{Sι}	= JBSTI	TUT	E SHE	et (Rui	$\sum_{i \in 2\ell}$		5	X H	>	5	Ĭ N	
									7	/ 204			-,			•			

Ω	GA	-	166 CC	A	CA	SUHI	~~ L1C
ტ	GCGTGGGTGA	H	AGCTATCTGG TCGATAGACC	≻	AATTTATGCA TTAAATACGT	G S BamHI	GGATC
>	GTG	⊁	SAT	Ι	, LTT, \AAA'	တ	CT
))))	ഗ	AGC		~~~~~~ ATT AAT TAA TTA		GCJ
, W	GA	လ	0 0 0	L AseI	~~~ TT AA	r O	90
S	7.GC		rta vat	K L L Ase	CTA SAT.	ß	ſAG
Ŋ	AG(Н	CAS	×	AA(TT(R FI	TL
H	CTGAGCGCGA GACTCGCGCT	G	GGGCATTAGC CCCGTAATCG		CGAAACTATT GCTTTGATAA	ሺ	CGTTTTAGCG GCTCTGGATC
S		Q		K A P		ഗ	
	TA(S	\GC(A	\GC2		, GT(
ъ S	GTC	A.	CG7	X	AAP TTT	. P))))
HH	cccgrctage gggcagarcg		~ GAG CTC	G A I	GGTAAAGCAC CCATTTCGTG	V SanDI	G GGTCCC
S BanII	GAG CCC CTC GGG	t L	ATTACCTGCA GAGCGAGCCA TAATGGACGT CTCGCTCGGT	× ×			~ D.
	TGACCCAGAG ACTGGGTCTC	C PstI	°~~ CTG SAC	S Sey	GCAGAAACCA CGTCTTTGGT	Ø	YGC(
: sedne))))	₽	'ACC TGC		GAZ	Q .	.AA.
) gene	TGA ACT	H	ATT TAA	Ø	GCA	Q	TGC
1 (Xr)		[ပ () ()	Ø		H	E
карра О /	CCA(rga(ACT(/ Y KpnI	rac TAC	ഗ	CAG
igure 3A: V ka D I ECORV	~~~~~ GATATC CTATAG	R V	TCGTGTGACC AGCACACTGG	W Kr	GGTAC	S)	AG(
Figure 3A: V kappa 1 (Vk1) gene sequence • D I Q M T Q • ECORV	~~~~~ GATATCCAGA CTATAGGTCT	K	TCG AGC	M M	CGTGGTACCA GCACCATGGT	A	GCCAGCAGCT TGCAAAGCGG GGTCCCGTCC
_					•		

	CGAGACCTAG
	PCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG
(p)	CCAGGGCAGG
gene sequence (continue	ACGTTTCGCC
Figure 3A: V kappa 1 (Vk1)	CGGTCGTCGA

ഥ				
Ω		S	2	,
P. E Eco57I	~ ~ ~ ~ ~ ~ ~	BbsI	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
P ECC	}			
Q				
니				
S				
S				
Н				
E				
H				
E				
Ĺτι		-		
Q				
EH .		H		
O		BamHI	?	

GAAGACTTTG CTTCTGAAAC CCTGCAACCT GGACGTTGGA CCATTAGCAG GGTAATCGTC TTTACCCTGA AAATGGGACT CGGCACTGAT GCCGTGACTA

Ø MscI G נדו ₽ Д Д \vdash \vdash \succ 工 O) Ø \mathcal{O} \vdash Ø

CTTTGGCCAG GAAACCGGTC ~~~~~ CCCCGCCGAC GGGCGGCTG CATTATACCA GTAATATGGT TTGCCAGCAG AACGGTCGTC CGACCTATTA GCTGGATAAT

G T K V E I K R T Bsiwi GGTACGAAAG TTGAAATTAA ACGTACG CCATGCTTTC AACTTTAATT TGCATGC

~ ~ ~ ~ ~

Ø

Д

S

Ø

Q

Д

×

Ø

Ц

×

3

Д

口

 \succ

Z

×

Ö

KpnI

SexAI

CGGACGCTCG TAATCGACGT CTTCGTCGGT TTCGGACGAC GTATCGTTGC

Figure 3B: V kappa 2 (Vk2) gene sequence

M T Q S P L S L P V T P G E Banli		GA	Ç			5 5 7
<mark>ෆ</mark>		3GC	SCG	Z		ZAA
Д		CGC	CCC	W		AG
		CTCCGGGCGA	GAGGCCCGCT	Ħ		CAT
E				_		Ö
>		3TG	CAC	h		CT
Д		CAC	GT(Н		CT(
ᆸ		CTGCCAGTGA	GACGGTCACT	ISCRSSQSLLHSN Psti		C ATTAGCTGCA GAAGCAGCCA AAGCCTGCTG CATAGCAACG
				<u> </u>	•••••	4
Ø		₹GC	ıcg	O		CCA
i i		TG1	AC.	W		AG
<u>.</u>	}	CCCACTGAGC	GGGTGACTCG	W		AGC
HH	ì	S	GG		}	GA
S BanII	~ ~ ~ ~ ~ ~ ~ ~ ~			T H	}. }	Ø
o [ì	AGA	TCJ	ည Ps	1 1 1 1 1 1 1 1 1	TG
F4		TGACCCAGAG	ACTGGGTCTC	Ŋ	•	AGC
		GA	CT(H		TT.
Σ				••		ر ا
_		TG.	AC	P A S		BAG
I RV	?	ICG	AGC	A		gco
D I V EcoRV	2 2 2 2 2 2	GATATCGTGA	CTATAGCACT	Дı		GCCTGCGAG
μщ	{	GA	5			g

AAGCCCGCAG TTCGGGCGTC AACCAGGTCA TTGGTCCAGT TACCTTCAAA ATGGAAGTTT TCTGGATTGG AGACCTAACC GCTATAACTA CGATATTGAT

ſτι Д ρι SanDI > Ö S Ø 召 Z Ŋ Q × Н AseI 口 Ы

CGGATCGTTT GCCTAGCAAA AGTGGGGTCC TCACCCCAGG CAACCGTGCC GTTGGCACGG CTATTAATTT ATCTGGGCAG TAGACCCGTC GATAATTAAA

(continued)
gene sequence
(VK2)
appa 2
~

	9 0 0 0	വ		S G G		
S R	'GT CA	.) (CC (GG	•	
民	3C.2	H		CAC		
Ø	AGCCGTGTGG TCGGCACACC	T T		TACCACCCCG ATGGTGGGGC		ပ ပ
				A T	R T BsiWI	ATTAAACGTA CG TAATTTGCAT GC
H	AT. TA		٠	TT/ AA	R Bs.	GTZ CAT
×	AAA ITTI	H		CA CGT	L.	AC.
L K I	CCTGAAAATT GGACTTTTAA	Q		AGCAGCATTA TCGTCGTAAT	I K R T BsiW	AAT ATT
	C C G	01		AG	H	AT" TA
D F T	A G G	O		O	ſŧ1	A'A T'I
ĮΤΙ	TT.	Ü		TG		TG2 AC1
Ω	ATT FAA	≻		rat Ata	K V E	AGT ICA
	CCGATTTTAC GGCTAAAATG	у у С О О Н У		TATTATTGCC ATAATAACGG	×	GAAAGTTGAA CTTTCÄACTT
H					تب	
G S G T BamHI	GGATCCGGCA	>		GTC	G Q G T MscI	TAC
H	200 300	Λ Ω Λ		36C	C)	900
G S BamHI	GGATCC	· >		TGC	Q	~~ CAC GTC
υщ	00 00 00		ì	20	G MscI	∑ 0 0 0 0
W	CT	Ωн	BbsI	GA		TG GCCA AC CGGT
r h	SCT	E 57	PP PP PP PP PP PP PP PP PP PP PP PP PP	AAA YTT	Ĺτι	TT
Ŋ	000	A E Eco57I	ì	CTC	E	ACC TGG
Ŋ	TAGCGGCTCT ATCGCCGAGA	•		AAGCTGAAGA CGTGGGCGTG TTCGACTTCT GCACCCGCAC	വ	CCGACCTTTG GCCAGGGTAC GGCTGGAAAC CGGTCCCATG
]	ഥ		7		

Œ	1 .		GA CT			TC AG		X	•		AT	TA	ហ	HI
ני)		360	X		SAT	·			,	rTT.	AAA	ഗ	BamHI
Д			000	S		AGC			AseI	<pre></pre>	AAI	TT	Ŋ	щ
			CTCCGGGCGA GAGGCCCGCT	ഗ		AGCAGCTATC TCGTCGATAG	ı	٦	As	?	ATTAATTAT	TAATTAAATA		
U.)												ഗ	
	1		CTG	S		GAG					GTC	CAG	ŢŦ	
ď	2		CTGAGCCTGT GACTCGGACA	>	•	GAGCGTGAGC CTCGCACTCG	,	x			CACCGCGTCT	GTGGCGCAGA	K	
<u>, </u>	1		TG7	S		AG(TC(,	<u>Д</u>			ACC	TG	Æ	
				C			•	Ø						
E	4		TGACCCAGAG CCCGGCGACC ACTGGGTCTC GGGCCGCTGG	O)		CTGAGCTGCA GAGCGAGCCA GACTCGACGT CTCGCTCGGT	(Ø			CCAGGTCAAG	GGTCCAGTTC	വ	I.
· 🛭	3		909	ഗ		GAG			 	?	GTC	CAG	>	SanDI
Д	٠	}		A	•	16C	1	უ ი.	SexAI	* * * * * * * * * * * * * * * * * * * *	CAG	3TC	. ტ	ഗ
	BanI]	?	2 2	ĸ	?	85		щ	Š	?			_	
. <i>U</i>		* * * * * * * * * * * * * * * * * * * *	SAG	C B	F D C I	GCA	;	乂			TGGCGTGGTA CCAGCAGAAA	AT GGTCGTCTTT	- E +	
ביים כי אמניים כי	K	•	CA(Δ	ų į	SCT(•	:AG	TC,	A	
Figure 3C: V kappa 3 (Vk.3) gene sequence $T = X T = T T T$	-		ACC TGG	· W	•	GAG	(0 0			AGC	TCG	CX.	
vk3)ge T	5			H					Н	~ ~ ~ ~ ~ ~	2	99	တ	
>)			GATATCGTGC CTATAGCACG	H		ACGTGCGACC TGCACGCTGG	:	>	KpnI	?	STA	CAT		
ارت v kappa ⊤ کر	>		GATATCGT CTATAGCA	Ø		CGP	;	3	יאי	{	TGG	ACCGCACC	Ŋ	
۲ کر: َ		~ ~ ~ ~ ~	ATA	R A		STG	1	A			3CG	3gc	, A	
rigure	고 <u>편</u>	\	GA1 CT2	j.i.e		AC(TG(1	LAW	- 19 1		TG(AC	Ò	
									-					

GCCGCGAGCA GCCGTGCAAC TGGGGTCCCG GCGCGTTTTA GCGGCTCTGG

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

兄

Ω

>

AGTCGGCGGC

TCTTTGGTCC

ACCATGGTCG

GATAGACCGC

ACAACAAAA TGTTGTTTT

Figure 3D: V kappa 4 (Vx4) gene sequence

ជា	GA		SCA	Д	ACAACAAAAA CTATCTGGCG TGGTACCAGC AGAAACCAGG TCAGCCGCCG
Ŋ	999	01	CAC	പ	CG(
ц	GCCTGGGCGA CGGACCCGCT	W	TATAGCAGCA ATATCGTCGT	d d o	AGC
	S S S S S	×		_	~~ TC
	CTGGCGGTGA GACCGCCACT	ı	GAGCGTGCTG CTCGCACGAC	GAI	ACCAGG T
>	CTGGCGGTGA GACCGCCACT	>	TGC	P G SexAI	
A	, d C C C C C C C		9 0 0 0 0	×	~ AAA
ᆸ	CT(GA(01	GA(CT(\circ	AG,
ഗ	ე ე	O	CA	Ci Ci	CC
Ω	АТА ТАТ	Ø	~ GAAGCAGCCA CTTCGTCGGT	Ot H	~~ CCA
0.	, C C C C C C C C C C C C C C C C C C C	Ω.	AGC TCG	√ Y KpnI	GGTACC
III	200	~	GA	M	_ TG
M T Q S P D S L A V S L G E BanII	SAG CCC CTC GGG	T I N C R S S Q S V L Y S S PstI	ATTAACTGCA GAAGCAGCCA GAGCGTGCTG TAATTGACGT CTTCGTCGGT CTCGCACGAC	N Y L A W Y Q Q K P G KpnI SexAI	SCG
Q	CAG GTC	P S	ATTAACTGCA TAATTGACGT	니	TGG
E	ACC	Z	TAA ATT	≯	ATC
· .	TG	H			CT
24	GA	E) 000 000	Z	AAA
> >	~ CGT GCA	•	CGA	×	AA
D I EcoRV	GATATCGTGA TGACCCAGAG CCCGGATAGC CTATAGCATAGC	R A	ACGTGCGACC TGCACGCTGG	z z	AAC
Ωй	GAC	. •	ACT	z	AC
	•				

TCCCGGATCG AGGGCCTAGC Д SanDI CTTTCGCCCC GAAAGCGGGG U S 回 ATCCACCCGT TAGGTGGCCA 召 H S TTTATTGGGC TTTGATAATT AAATAACCCG Ø 3 AAACTATTAA AseI Ц Ц ×

Figure 3D: V kappa 4 (Vk4) gene sequence (continued)

T D F T L T I S S	GCACTGATTT TACCCTGACC ATTTCGTCCC CGTGACTAAA ATGGGACTGG TAAAGCAGGG	V Y Y С Q Q Н Y T T		GTGTATTATT GCCAGCAGCA TTATACCACC CACATAATAA CGGTCGTCGT AATATGGTGG	T K V E I K R T Bsiwi	TACGAAAGTT GAAATTAAAC GTACG ATGCTTTCAA CTTTAATTTG CATGC
FSGSGSG BamHI	TTTTAGCGGC TCTGGATCCG GAAAATCGCCG AGACCTAGGC C	D V A	BbsI	GTGGCG	P P T F G Q G MscI	222 299

ĸ	<u>ა</u> ე	. .	AGCAACTATG TCGTTGATAC	×	GCTGATTTAT CGACTAAATA	Н	ł
Q	CAG	~	CTZ	н	TT.	G S BamHI	} } }
g ^H	GTCAC	Z	AAS	Н	rga ACI	က ရှိ	} }
P SexAI	AC CAGGTCAGCG TG GTCCAGTCGC	Ŋ	AGC	H	550		
P Se3	}	e h	υ o	J	T S	ഗ	
A P	∑ A D C C C C C C C C C C C C C C C C C C	ڻ ·	TGG	×	AA(TT	Ľι	
Ö	555	H	SAT		CGA	K	
w	AGTGGCGCAC TCACCGCGTG	Z	CAACATTGGC GTTGTAACCG	A BbeI	GG CGCCGAAACT CC GCGGCTTTGA	Q ·	
_		W	AG IC	A Bb	, 25 25 27	വ	
>	GCCTTCAGTG CGGAAGTCAC Eco57I	Ø	GCAGCAGCAG CGTCGTCGTC	[- 1	CCCGGGACGG		
Ŋ	CTTCAG GAAGTC ECO57I	Ø	GCA	G a I	000		
Д	ည်ပ (၁၁) (၁၁) (၁၁) (၁၁) (၁၁) (၁၁) (၁၁) (၁၁		SCA CGT	P G XmaI	0000000	ъ Н	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Д		Ŋ				P S Bsu36I	} }
	TGACCCAGCC ACTGGGTCGG	· w	~~~~~ TCGTGTAGCG AGCACATCGC	니	~~ CCAGCAGTTG GGTCGTCAAC	P Bsu	} }
ence Q	CCA	υн	GTP CAT	Q	CAC		
sedn T	ACC	S C BssSI	TCGTG AGCAC	Q	CAG	民	
) gen	T A O	o, g	}	별	}	à	
1 (VX.1) g	0 0 0 0	н	ATC PAG	/ Y Kpn	GGTA CCAT	z	
ure 4A: V lambda 1 (Vλ.1) gene sequence Q S V L T Ç	CAGAGCGTGC GTCTCGCACG	H	TGTGACCATC ACACTGGTAG	M	TGAGCTGGTA ACTCGACCAT	Z	
ire 4A: V lar Q S	3AG YTC	>	TGA	W	AGC	Ω.	
ure 4/ Q	CAGAGCGTGC GTCTCGCACG	ν.	TG' AC.	>	TG	Д.	

Figure 4A: V lambda 1 (VA1) gene sequence (continued)

GCGGATCCAA CGCCTAGGTT	S E D BbsI	AGCGAAGACG TCGCTTCTGC	V F G TGTGTTTGGC ACACAAACCG		
AGGCGTGCCG GATCGTTTTA TCCGCACGGC CTAGCAAAAT	G I S	GGGCCTGCAA		٠.	
	T T	TTGCGATTAC AACGCTAATG	Q H Y T T P P CAGCATTATA CCACCCGCC GTCGTAATAT GGTGGGGGGG	L G MscI	TCTTGGC AGAACCG
GATAACAACC AGCGTCCCTC CTATTGTTGG TCGCAGGGAG	S A S L	AGCGCGAGCC TCGCGCTCGG	Y C Q TTATTGCCAG AATAACGGTC	L T V Hpai	AGTTAACCGT TCTTGGC TCAATTGGCA AGAACCG
GATAACAACC CTATTGTTGG	S S	AAGCGGCACC AGCGCGAGCC TTCGCCGTGG TCGCGCTCGG	E A D Y AAGCGGATTA TTCGCCTAAT	S F F	GGCGGCACGA

Figure 48: V lambda Q S A	oda 2 (WA A	bda 2 (W.2) gene sequence A L T Q P A S V S G S P G Q S	Equenc T	ہ ک	വ	Ø	ß	>	ß	დ	ß	ሷ	Ö	Q
ָרָיָרָ עַרָּי	ָרָ אָרָי מיני	5854584554554554565455554545	ر	ر م	ر	יריי ביי	ָל עָ עַ	ر ا ا	7	<u>ر</u> د	υ , ς Σ , ζ	SexAI	T ~ C	, , ,
TCG(CGTG	GTCTCGCGTG ACTGGGTCGG) () ()	D D L	ָטַ טָ	TCGAAGTCAC Eco57I	GAAGTC Eco57I	D A C	TCGCCGAGTG GTCCAGTCTC	200	AGTG	GTO	CCAC	FICT
Ľ	Н	S	Ö	E E	Ö	}	~ ~ ∑ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	չ Ω	N Y U U S S L	>	ď	r.	>	Z
	}	BssSI				-			l	•))	1	1
TAC	CATC	CATTACCATC TCGTGTACGG GTACTAGCAG CGATGTGGGC GGCTATAACT	TGT	ACG	ត់ .	STAC	rag(CAG	CGAT	rGT(3660	999	CTA	PAAC
ATG(GTAG	GTAATGGTAG AGCACATGCC CATGATCGTC GCTACACCCG CCGATATTGA	ACA	TGC.	ט	CATG	ATC(GIC	GCTZ	ACA (SCCG	CCC	3AT?	TTG

AGGCGCCGAA ACTGATGATT Ŋ TGACTACTAA BamHI 11111 TTAGCGGATC AATCGCCTAG O S [T₁ TCCGCGGCTT AGCAACCGTT TCGTTGGCAA 召 Z S CATCCGGGA GTAGGGCCCT GCAACCGTCC CTCAGGCGTG GAGTCCGCAC G P S Bsu36I CGTTGGCAGG CATGGTCGTC GTACCAGCAG 区 Z S ATGTGAGCTG TACACTCGAC TATGATGTGA ATACTACACT > Q

 \succ

SUBSTITUTE SHEET (RULE 26)

Н

 Ξ

Н

X

Д

A

×

P G XmaI

Ή

Ø

Q

×

3

S

ゝ

 \succ

KpnI

BbeI

Figure 4B: V lambda 2 (VA2) gene sequence (continued)

E BbsI	CAAGCGGAAG GTTCGCCTTC	ĮΉ	GCCTGTGTTT		
Q A E	3000	P V F	rgt(ă.
	CAA(GTT(Д	GCC1		
S G L	TAGCGGCCTG ATCGCCGGAC	Д) (C) (D) (D) (D)		
O	TAGCGGCCTG ATCGCCGGAC	о о н у т т р	ATACCACCCC TATGGTGGGG		
S	050,	E	ACC	·	
		>-			
LTI	GCCTGACCAT CGGACTGGTA	r rri	CAGCAGCATT GTCGTCGTAA	G MscI	CGTTCTTGGC GCAAGAACCG
H	ACC TGC	Α.	1007 1007	i ğ	TTC
Ţ	CTG	O.	CAGCAGCATT GTCGTCGTAA	V L G	CGTTCTTGGC GCAAGAACCG
ß					
N T A S	AACACCGCGA TTGTGGCGCT	D . Y Y C	TTATTATTGC AATAATAACG	K L T Hpal	CGAAGTTAAC GCTTCAATTG
))))))))	≯	rat.	L T Hpal	TTZ
F.	CAC	≻	ידאי ידאזי	x	AAC
4		• .		E	
O	992 202	Д	GGA	Ŋ	GCA
S I	~ CAAAAGCGGC GTTTTCGCCG	A	~~ ACGAAGCGGA TGCTTCGCCT		GGCGGCGGCA
K BamHI	AAA.	D E BbsI	GAZ GCT	Ö	3000
Ва	CA GT	D Bk	AC TG	Ö	99

Figure 4C: V lambda 3 (Vλ3) gene sequence

H	AC		CT GA	Д	AT TA
E O	~~~~~ CAGGTCAGAC GTCCAGTCTG	Y A S	TACGCGAGCT ATGCGCTCGA	, Д	TTATGATGAT AATACTACTA
	3GTCAC	K) () () () () ()		ATG.
S V A P G	AC CAGGT IG GTCCA	×	TAC	ہحر	TT? AAT
S B	AC TG	×	AA TT	н	AT TA
A	rac.	0	ATA.	>	TG.
>	GTJ	G D K	1007 1907	H	TGG
W	AGCGTTGCAC TCGCAACGTG	G	GGGCGATAAA CCCGCTATTT		TTCTGGTGAT AAGACCACTA
5		니		Q A P V L V I Bbei	
P S V	GCCTTCAGTG CGGAAGTCAC Eco57I	D A L	GCGATGCGCT CGCTACGCGA	D T	CAGGCGCCAG GTCCGCGGGTC
01	CTTCAG GAAGTC Eco57I	Ω	ATC	A Bbe	990900 009099
щ	000 000 000 000		999	O ·	CAG
<u>ρ</u> ι	ည <u>က</u>	ט	<u>ე</u>	C) H	9 0
Q E	TGACCCAGCC ACTGGGTCGG	Ω.	TCGTGTAGCG	K P G XmaI	GAAACCCGGG CTTTGGGCCC
E	000	SI	TG1	щи	ACC
ļД	TGA ACT	S C BssSI	TCGTG	×	GAA
	AC IIG			Q.	CA TE
臼	IGA.	ĸ	STA		AG(
S	асстатсаас тссатасттс	Ą	CGCGCGTATC GCGCGCATAG	W Y KpnI	GGTACCAGCA
ω	AGC	ď.	909 808	W Y Q KpnI	GGT

Figure 4C: V lambda 3 (VA.3) gene sequence (continued)

G S N S G BamHI	TTTAGCGGAT CCAACAGCGG AAATCGCCTA GGTTGTCGCC	E D E A Bbsi	SAA GACGAAGCGG CTT CTGCTTCGCC	F G G G TT TGGCGGCGGC AA ACCGCCGCCG		
R S D	TTTAGCGGAT AAATCGCCTA	A O	TCAGGCGGAA AGTCCGCCTT	PVF CGCCTGTGTT GCGGACACAA	~ '	
P S G I P E R Bsu36I	CCTCAGGCAT CCCGGAACGC GGAGTCCGTA GGGCCTTGCG	T L T I S G T	ACCCTGACCA TTAGCGGCAC TGGGACTGGT AATCGCCGTG	Q Q H Y T T P CCAGCAGCAT TATACCACCC GGTCGTCATA ATATGGTGGG	7 >	ACGAAGTTAA CCGTTCTTGG C TGCTTCAATT GGCAAGAACC G
S D R	TCTGACCGTC	N T A	CAACACCGCG	D Y Y C ATTATTATTG TAATAATAAC	T K L '	ACGAAGTTAA TGCTTCAATT

								•
	Ø	AG TC		GA	G	ည္သမ္မ	3 0 0 0	_
•	Ø	cegecaecae ecccercerc	K	AGCTATGCGA TCGATACGCT		GATGGGCGGC CTACCCGCCG	Q G R TTCAGGGCCG AAGTCCCGGC	니
		CA GT	≯	AT.	O	900	() () () ()	ា
	O.	ည် ည		CT	Σ	ATG PAC	O CAC	ч
		0 0	W	AG		G2 C3	ř_	Σ
	Д	ပွဲ ဗ	.00	C) (D)	3	5 S	A Q K F GCGCAGAAGT CGCGTCTTCA	ب
	×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W	PAC ATC	ын≀	4G.7 ΓC2	K AA(IT(×
	×	GTGAAAAAAC CACTTTTTTG	Ĺτι	CACTTTTAGC GTGAAAATCG	L. E XhoI	GTCTCGAGTG CAGAGCTCAC	A Q K GCGCAGAAGT CGCGTCTTCA	K
		GAZ CT.	H	GA	⊣ं≅्	CT. GA(A · Q CGCA(۲
	>	GT(CA(-	CA		GT	C C C	_
			O		Ch		U O	Ŋ
	闰	GA	_	CCTCCGGAGG GGAGGCCTCC	O/	CCTGGGCAGG GGACCCGTCC	A N Y GGCGAACTAC CCGCTTGATG	_
	Ø	TGGCGCGGAA ACCGCGCCTT	S G BSPEI	900			N & F	[-
		0 0 0 0	S G BspEI) () ()	Ο <u>;</u>) 	A CGA	W
	Ŋ	1 1 1 1 1 1 1	•	3G7	Д : ;	55. 367	360	
	W		Ø		Q A P G BstXI	•		田
nce	01	TGGTTCAGTC ACCAAGTCAG	×	AGCTGCAAAG TCGACGTTTC	A Bst	GCGCCAAGCC CGCGGTTCGG	F G T TTTTGGCAC AAAAACCGTG	Д
egue	Ot -	CA(CAZ	O1 ?	AA(TT(0 0 0	
ene s	>	TT(AA(Ü	TG	R O) (0,0)	F TT AA	Ø
1A) g		900	ß	S S S S	R.	ည်	TT	H
1A (VH1A) gene sequence	e L	H 4	•		_		H	
in 1A		TAT	>	TG AC	<i>></i>	GGT	P CGA GCT	н
, γ cha	Q Mf	CGI		AAG FTG	3	rgc Acc	rcc AGC	ЕН
Figure 5A: V heavy chain	>	CAGGTGCAAT GTCCACGTTA	X	CGTGAAAGTG GCACTTTCAC	ഗ	TTAGCTGGGT AATCGACCCA	I I P ATTATTCCGA TAATAAGGCT	V T BstEII
	Q	AGC ICC	>	GT(CA(TA(AT(I TT. AA'	V stj
Jure !	<u></u>	υ υ		Ŭΰ	Н	HA	A FI	Д
Ē,								

(continued)
A) gene sequence
(VH1A)
ieavy chain 1
Figure 5A: V h

GGTGACCATT ACCGCGGATG CCACTGGTAA TGGCGCCTAC S L R S E D GCAGCCTGCG ATCGCTTCTA G D G F Y A M GGCGATGGCT TTTATGCGAT V S S BlpI CCAATCGAGT CCAATCAGT CCAATCAGT CCAATCAG

Figure 58: V heavy chain 18 (VH1B) gene sequence

W	AG	N.	ATA	ß	1GG	30 B
G A	900	μ,	TTZ AAI	Ŋ	GCI	990
	CGGGCGCGAG GCCCGCGCTC	S X	AGCTATTATA TCGATAATAT	ڻ Σ	GATGGGCTGG	Q G R TTCAGGGCCG AAGTCCCGGC
Д		_		Z		EL.
×	GTGAAAAAAC CACTTTTTTG	T F T	TACCTTTACC ATGGAAATGG	E W	GTCTCGAGTG	A Q K F GCGCAGAAGT CGCGTCTTCA
×	AA/ TT:		CT	L E XhoI	TCGA	O CAG GTC
G A E V K K P	GTG	H	TAC	1	GTC	8 6 6 6 6 6 6 6
EJ	AA TT	×	TA AT	р G G	(C)	K FAC
_	0 0 0 0 0	S G BSPEI	GA	Oi	SCA	ACT FGA
re;	200	S G BspEI		Ö		N GAA CŤT
r U	CGGCGCGGAA	· ·	CCTCCGGATA GGAGGCCTAT	Q A P G BstXI	CCTGGGCAGG	T N Y CACGAACTAC GTGCŤTGATG
ß	AG II C	S C K	AG TC	A BstXI	ည်ဗ	်ဗ ဗ္ဗ ဗ္ဗ
S O	AG	K.	AA	Bst	AG TTC	ဗ ဂို ဂို လ
_	LTC	Ö	rgc Acg		CCA GGT	သ လူလူလူ လူလူလူ
}	CAGGTGCAAT TGGTTCAGAG GTCCACGTTA ACCAAGTCTC	လ	AGCTGCAAAG TCGACGTTTC	K	CCGCCAAGCC	ATA TAT
e L	T. A.			>	E A	Z
Q Z ≥	CAA	<i>></i>	AG1 TC2	'	999	CCC GGC
>	CAGGTGCAAT GTCCACGTTA	V K V	CGTGAAAGTG GCACTTTCAC	M	TGCACTGGG ACGTGACCC	I N P N ATTAACCCGA TAATTGGGCT
Q	AGG rcc	> ·	GTC	Ħ	GCZ	I TT? AAI
	2 G		ŭΰ	Σ	ΗĀ	A H

	н	ATGGAACTGA TACCTTGACT	ъ	GCGTTGGGGC CGCAACCCCG	T \	CCCTGGTGAC GGGACCACTG		
	臼	GAA(CTT(X	TTG	H	rgg1		
	Σ	ATG	H ~	2000		CCC:	,	
	≯ı	ATA	C A BSSHII		H			
	Ą	3CG1	ດ B B	FTGC	Q G Styr	AAGG		
	Ħ	CACCGCGTAT GTGGCGCATA	×	ATTATTGCGC TAATAACGCG	S. S.	GGCCAAGGCA CCGGTTCCGT		
	യ	AG	≯ 1	GT	M			
nued)	н	TATE	A V Sign	CGT	×	ATT		
	Ø	CCAGCATTAG	T A Eagi	ACGGCCGTGT TGCCGGCACA) D	GGATTATTGG CCTAATAACC		
(conti	EH				¥			
dneuce	Ω	SATZ	Ω	AGA!	M	GAJ		
ene se	K	GTC	田	GAZ	A	ACG		
1B (VH1B) gene sequence (continued)	E	ACCCGTGATA TGGGCACTAT	တ	TAGCGAAGAT ATCGCTTCTA	>	TTTATGCGAT AAATACGCTA		ບ ບ
ain 1B (Σ		24	•	<u>जि</u>	•	STU	
eavy ch	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	GGTGACCATG CCACTGGTAC	н	GCAGCCTGCG CGTCGGACGC	Ŋ	GGCGATGGCT CCGCTACCGA	S S BlpI	GGTTAGCTCA CCAATCGAGT
iB: V h	V T BstEII	rga act	w	AGC TCG	Ω	CGA	>	LTA
Figure 5B: V heavy chain	© ≥	(b) (c) (d)	တ	0 0 0 0	Ŋ	0 0 0 0	•	, 00, 00,

든 Ø 덛 Д \bowtie 口 K Д G ഗ Figure 5C: V heavy chain 2 (VH2) gene sequence 团 凶 Ы MfeI >

CTGGTGAAAC CGACCCAAAC GCTGGGTTTG GACCACTTTG CAGGTGCAAT TGAAAGAAAG CGGCCCGGCC GICCACGITA ACTITICITIC GCCGGCCGG ~ ~ ~ ~ ~ ~ ~

C ഗ ⊱ ഗ Ы ഗ لترا S G BspEI Ŀ <u>[-</u>-Ö Н Н П

ACGTCTGGCG TGCAGACCGC TAGCCTGTCC TGGACATGGA AAAGGCCTAA ATCGGACAGG TTTCCGGATT ACCTGTACCT CCTGACCCTG GGACTGGGAC

3 ~~~~~~ 团 XhoI Н Ø 又 G Д BstXI Д Ø 3 G

TIGGCGIGGG CIGGATICGC CAGCCGCCIG GGAAAGCCCT CGAGIGGCIG GICGGCGGAC CCTITCGGGA GCTCACCGAC AACCGCACCC GACCTAAGCG

× Ц ഗ ₽ ഗ × Ä × Д \Box Ω 3 Ø

MluI

GCCTGAAAAC CGGACTTTTG TATAGCACCA ATATCGTGGT TGATAAGTAT ACTATTCATA GCTCTGATTG ATTGGGATGA TAACCCTACT CGAGACTAAC

SUBSTITUTE SHEET (RULE 26)

G

>

	Ħ	CTA	M	TGG	>	GGT		
	H	TGA	<u></u>	CGT	H	CCT(٠
	>	GTGCTGACTA CACGACTGAT	C A BSSHII	G CGCGCGTTGG	[⊣	GCACCCTGGT CGTGGGACCA		
	>		D B		Y I	}		
	Ø	CAGG	≯	rtat Aata	G Q St	CGGT		
	Z	AAATCAGGTG TTTAGTCCAC	≯.	CCTATTATTG GGATAATAAC	Ø	TGGGGCCAAG ACCCCGGTTC		
	× ∨ ×		H		≯	•		
	S K NspV	TCG	K	3000 2000 2000	Д	ATT		
inued)	E '	ATACTTCGAA TATGAAGCTT	T Q	GATACGGCCA CTATGCCGGT	Σ	GATGGATTAT CTACCTAATA		
ce (cont	Ω		>		A			
e sequer	×	CAA GTT:	Ъ	CGGC.	×	TATC		f
Figure 5C: V heavy chain 2 (VH2) gene sequence (continued)	S S	ATTAGCAAAG TAATCGTTTC	Ω.	GGACCCGGTG	FLI	GCTTTTATGC CGAAAATACG	ΩН	TCAG
chain 2 (£		Σ	•	ტ -		Bl	}
V heavy	H.	TGAC	Z ·	AAC TTG:	Д	CGAS	S >	TTAC
gure 5C:	R MluI	GCGTCTGACC CGCAGACTGG	Ħ	TGACCAACAT ACTGGTTGTA	r D	GGCGGCGATG CCGCCGCTAC	EH .	GACGGTTAGC
ΙŒ	Σi	ָט ט •	X	HÆ		O O		שׁ טַ

Figure 5D: V heavy chain 3 (VH3) gene sequence

ω	CGGGCGGCAG GCCCGCCGTC	A.	AGCTATGCGA TCGATACGCT	Æ	GGTGAGCGCG CCACTCGCGC	K G R TGAAAGGCCG ACTTTCCGGC
Ü	990	Ø	TGC	ß	900	ဗဗ္ဗ
ڻ ت	0 0 0 0 0	×	TAS	S	GA	K AAA TTT:
	000	ß	AGC	>	GG1 CC2	TGA
д	•	••		3		>
Q	CAA	ഗ	TAG	щн	AG1	S AGO TCO
L V Q P	CTGGTGCAAC GACCACGTTG	Ĭ u	TACCTTTAGC ATGGAAATCG	L E XhoI	GTCTCGAGTG	A D S CGGATAGCG
ت	IGG ACC	E	ACC IGG	цX	TCT AGA	₽ . CGG GCC
		_		to		_
ڻ ت	ອວວອວວອວວອ	E4 H }	CCTCCGGATT GGAGGCCTAA	ტ Ж	CCTGGGAAGG	T Y Y CACCTATTAT GTGGATAATA
_ອ	ပ္ပိပ္ပိ	S G BSPEI	900		GA	K F F F
רח	30 00 00 00	S B S	rcc Agg	G	100 100	T CCT GGA
O	000		CC.	дн	200	CAC
W		C A A	<u>დ</u> ე	A BstX	CAAGCC CCTGG GTTCGG GGACC	S A C I
闰	TGGTGGAAAG ACCACCTTTC	A	AGCTGCGCGG TCGACGCGCC	m	GCGCCAAGCC	GCGCCGCAG
>	IGG ACC	Ö	rgc ACG	ì	CCA	0 0 0 0 0 0 0
ł	550	ß	ည်သ	PH)	Ö Ö Ö	900
e L	T K	•		>	E A	
Z Z Z	AA	H	CTC	_	36G 2002	G G T S C A
>	rgc Acg	K	CGT	X	CTC	8 600 000
	GAAGTGCAA CTTCACGTT	ᆸ	CCTGCGTCTG	വ	TGAGCTGGG ACTCGACCC	TA AT
团	GA		00	Σ	T T	H A T A T

GGTTAGCTCA CCAATCGAGT

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

Figure 5E: V heavy chain 4 (VH4) gene sequence

			_				
H	AC TG		TT	×	AT	T I	GGT
臼	CGAGCGAAAC GCTCGCTTTG	×	AGCTATTATT TCGATAATAA		GATTGGCTAT CTAACCGATA	R BstEI	AAAGCCGGGT TTTCGGCCCA
	999	≻ 1	TAT	Ŋ	95.7 00.0	Bs	000
W	AG	70	CT	н	TT.	Ŋ	AAG TTC
Д	Ö	W	A T		G C	×	AATT
H	AC I'G	ω	C C	X	FG AC	14	A E
×	AA. IT	<u> </u>	TA(AT(Өн	AG.	·H	CT(
>	CTGGTGAAAC GACCACTTTG	H	CAGCATTAGC GTCGTAATCG	L E Xhoi	GTCTCGAGTG	Ŋ	CCGAGCCTGA GGCTCGGACT
r v	GG.	ß	G G	u X	CTC	- -	GA CT
H	CT		CA		GT	Ъ	C C C C C
	ပ္ ပ	Ö	ຜູ ບ	Ŋ	တ္ ပ		HA
Ŋ	990	. H :	AG	×	AG	Z	AA
വ	TGGTCCGGGC	S G BSPEI	TTTCCGGAGG AAAGGCCTCC	7D 1	CCTGGGAAGG	≯	CAACTATAAT GTTGATATTA
O .	STC SAC	S E	1CC	D S		Z	ACJ IGZ
0	PGC ACC	•	rT.		13. 13. 13.	4	CAZ
w	*	>		P BstXI		. [∸	
	AA	. E4 .	, D	ъ В S	D D D		CA
凹	GACT		CA	0	AG	, W	AG
Ø	TGCAAGAAAG ACGTTCTTTC	Ŋ	ACCTGCACCG TGGACGTGGC	1		Ŋ	GCGCCAGCAC
ł	001 001	E4	\CC 0001	ĸ)))		300
그片		٠	φ _Γ	н		o	ď. Fi
Q L MfeI ~~~~~~	AA I'I'	그	CT(GA(GA	≯	AT. TA'
	007 007	ß	Ö Ö Ö	M	TG		TT
>	GT.		GA	Ø	252	×	TA
Q	CAGGTGCAAT GTCCACGTTA	H	CCTGAGCCT(GGACTCGGA(GGAGCTGGAT CCTCGACCTA	н	АТТТАТТАТА ТАААТААТАТ
	O O		O	Z	60		4 L

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

	•				
ß	AAACTGAGCA TTTGACTCGT	೮	2000 2000 2000	>	GGT
K L S	CTG	Ŋ	9999		GAC
	AAA(TTT(5 5 M	TTGGGGCGGC	Þ	TGGTGACGGT ACCACTGCCA
Ţ	TG	R H	္ ၁၁ ၁၁ ၁၁	H	
လ	0000	C A BssHII	525252 552525	E 4	CAC
V D T S K N Q F S L Nspv	GTTTAGCCTG CAAATCGGAC		ATTGCGCGCG TAACGCGCGC	Q G T L V T V Styl	c caaggcaccc g grrccgrggg
O		≯			
Z	CGAAAAACCA GCTTTTTGGT	>	GCCGTGTATT	0	TTATTGGGGC AATAACCCCG
×	AAA.	>	GTC	`≤	TTG
S NspV	GTTGATACTT CGAAAAACCA CAACTATGAA GCTTTTTGGT	A D T A V Y Y Eagi	GGCGGATACG GCCGTGTATT CCGCCTATGC CGGCACATAA	Y A M D Y W G	tta aat
" Ž	GTTGATACTT CAACTATGAA	F E	ည်း	Ω,	GA
0	ATAC	Ω	GGCGGATACG	Σ	ATGCGATGGA TACGCTACCT
1 /	TGZ	Æ	000 000	Æ	ວອວ
				> 1	AT TA
ß	AGC TCG	Ø	522 295	Įτι	rtt Aaa
HHH	ATT TAA	H	SAC	r.	SCT
T I BstEII	GACCATTAGC	>	GCGTGACGGC CGCACTGCCG	0	GATGGCTTTT CTACCGAAAA
m i	G 5	Ŋ	Ö	H	G D

TAGCTCAG S S BlpI

ഗ 团 G Д 又 又 > 团 Ø G Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ Ø > MfeI Ø

GCCCGCTTTC CGGGCGAAAG CACTTTTTG GTGAAAAAAC CGGCGCGGAA GCCGCGCCTT GAAGTGCAAT TGGTTCAGAG ACCAAGTCTC CTTCACGTTA

ഗ Ė Ŀı ഗ \succ BSPEI G ഗ G 又 C ഗ × 口

3

TTCCTTTACG AGCTATTGGA TCGATAACCT AAGGAAATGC GTTCCGGATA CAAGGCCTAT AGCTGCAAAG TCGACGTTTC CCTGAAAATT GGACTTTAA

3 XhoI 团 Ц G 区 G ~~~~~~~~~~~ Д BstXI Σ O ĸ > 3 G

G

Σ

CTACCCGTAA GATGGGCATT CGCGGTCTAC GGACCCTTCC CAGAGCTCAC GTCTCGAGTG CCTGGGAAGG GCCCCAGATG PTGGCTGGGT AACCGACCCA

TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT ტ O Įщ TCTCCGAGCT ഗ Д ഗ ATGGGCAATA TACCCGTTAT 公 H CGCTATCGCT Ω GCGATAGCGA . ເ Ω ᠐ TAAATAGGCC ATTTATCCGG Д \succ

GGTTAGCTCA CCAATCGAGT

BlpI

ഗ

 \geq

Figure 5G: V heavy chain 6 (VH6) gene sequence

.	
H	
Ø	
ω	
Ф	
×	
>	
H	
Ŋ	
Д	
Ŋ	
ഗ	
O.	
Ø	
eI	? ? ? ?
ΩΩ	۲ ۲
>	
o ·	

CGAGCCAAAC GCTCGGTTTG CTGGTGAAAC GACCACTTTG TGGTCCGGGC ACCAGGCCCG TGCAACAGTC ACGTTGTCAG GTCCACGTTA CAGGTGCAAT

		GAGC AGCAACAGCG	t
		TAGCG1	
		GA	
ÞΕΙ	?	GGA	
Bs	?	TTTCC	用が出づらられる。 申じじしないないが正
		3A	E
		rgcc	700
		TGI	704:
٠		ACC	T T
		CTG	745
		AGC	JUL L
		CCTG	CGACTCC
	BSpEI	BSpEI	BSPEI ~~~~~~ ACCTGTGCGA TTTCCGGAGA TAGCGTGAGC P

AAAGGCCTCT ATCGCACTCG TCGTTGTCGC T フランゼンゼララ T

GGCGTGGCCT CGAGTGGCTG CCGCACCGGA GCTCACCGAC GCCGCACCTT GACCTAAGCG GTCAGAGGAC CAGTCTCCTG CTGGATTCGC CGGCGTGGAA

GCCACTCGCA CGGTGAGCGT ഗ TTGCTAATAC AACGATTATG × Ω Z CAAATGGTAT GTTTACCATA Z × ATTATCGTAG CCGGCATGGA TAATAGCATC ഗ ĸ GGCCGTACCT ۲ ď

		•						
	Eri CO	CAGTTTAGCC GTCAAATCGG	Y C A Bsshii	TTATTGCGCG	O G T Styl	GCCAAGGCAC		
	OI,	CA			r C	999		
	Z	AAC TTG	×	GTA CAT	M	222 266		
	N K	`~~ SAAA YTTT	V V	CGT	>-	ATT		
,	S NspV	TTCGAAAAAC AAGCTTTTTG	r A Eagi	ceeccerera cceccerera ccceccacar	Ω	GATTATTGGG CTAATAACCC		
	H	TAC	T Q	ATA TAT	Σ	ATG		
(p)	P D	GGA	ഥ	SAAG	A	16CG		·
continue	Н	ACCCGGATAC TGGGCCTATG	Д	CCGGAAGATA GGCCTTCTAT	×	TTATGCGATG AATACGCTAC		
nence (o	N	~ CA GT	E		ĺτι		Н	
ene seq	T BsaBI	CCAJ GGTA	>	GTG/ CAC1	Ŋ	rggc Acce	S S BlpI	GCTCA GCAGT
Figure 5G: V heavy chain 6 (VH6) gene sequence (continued)	I Bs	C TAATGGTAGT	ω	CAGCGTGACC GTCGCACTGG	Ω	GCGATGGCTT CGCTACCGAA	>	GTTAGCTCAG CAATCGAGTC
chain 6	~		Z		G	ဖ ပ	E-(_
/ heavy	ഗ	GAAAAGCCGG CTTTTCGGCC	H	TGCAACTGAA ACGTTGACTT	g H	CGTTGGGGC GCAACCCCG	L V T	CCTGGTGACG
re 5G: \	\bowtie	AAAA	OI .	CAA	R W BSSHII	TTG	H	TGG
Figu		GP CI	<u>.</u>	TG	BS ~	90		00
							•	

- Figure 6: oligonucleotides for gene synthesis
- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
- **01K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- O2K3 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTTGACCTGGTTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGGCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- O3K3 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- **O4K2** 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- **O1L1** 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- **O1L5** 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6: (continued)

O1L6 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'

- **O2L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **O2L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **O2L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** _5 ' GAATGCATACGCTAGCTATGAACTGACCCAGCC GCCTTCAGTGAGCG -3 '
- **O3L2** 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- **O3L3** 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- **O3L4** 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC- ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- **O3L5** 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- **O3L6** 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- **O1AH2** 5 ' GGCTTTGCAGCTCACTTTCACGCTGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

Figure 6: (continued)

- **O1AH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- O1BH2 5'- GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- **O1BH3** 5 ' GAAAGTGAGCTGCAAAGCCTCCGGATATACCTT-TACCAGCTATTATATGCACTGGGTCCGCCAAGCCCCTGGGCAGGTCCGCCA
- O1BH45'- GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGCC-3'
- O1BH5 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCCTGG -3'

Figure 6: (continued)

- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATGTCAGC -3'
- **O3H1** 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCT-GGTGCAACCGGCGGCAG -3'
- **O3H2** 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAG-3'
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **O4H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- O4H4 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

- Figure 6: (continued)
- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'.
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGGATAAAAGCATTAGCACCGCGTATCTTC -3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGGGGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK1 5 ' GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3 '
 SUBSTITUTE SHEET (RULE 26)

Figure 6: (continued)

- OCLK2 5 '- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5 ' GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGTGTGCCTGCTG -3 '
- OCLK4 5 '- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5 ' GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3 '
- OCLK6 5 '- GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG -3'
- OCLK7 5 ' GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3 '
- OCLK8 5 ' GGCATGCTTATCAGGCCTCGCCACGATTAAAAGATTTAGTCACCGGGCTGCTCAGAC -3'
- **OCH1** 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- **OCH4** 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Figure 7A: sequence of the synthetic Ck gene segment

Q	CA	I.C.	ე ე ე	2 2 3 5 6	ວ ດ
<u>ਜ਼</u>	GAA	F Y TTTA! AAAT!	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	X PATI	H K ATAAP TATTI
A A P S V F I F P P S D E	GCGATGAACA CGCTACTTGT	N F Y AACTTTTATC TTGAAAATAG	Q S G GCAAAGCGGC CGTTTCGCCG	S K D S T Y S AGCAAAGATA GCACCTATTC TCGTTTCTAT CGTGGATAAG	K H K AAACATAAAG TTTGTATTTC
Ω	A L	្តីប្តីភូ		S T C	
Д	3000	GAA CTT	A CGCGC GCGCG	D GAT CTA	TGA ACT
д	TTTCCGCCGA AAAGGCGGCT	L L N CCTGCTGAAC GGACGACTTG	ACAACGCGCT TGTTGCGCGA	K AAA TTT	D Y E GGATTATGAA CCTAATACTT
ĮΞų	TTJ	CCT	D N A L ACAACGCGCT TGTTGCGCGA	S K D S AGCAAAGATA TCGTTTCTAT	D Y E GGATTATGAA CCTAATACTT
Н	ATT TAA	CAC	/ D FAG A	D AAT TA	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ħ	TTT. AAA	V GGTGT CCACA	K V AAAGTAG TTTCATC	O CAGO STCO	S K GCAAAG CGTTTC
>	CGTGTTTATT GCACAAATAA	G T A S V V C GGCACGCGA GCGTGGTGTG CCGTGCCGCT CGCACACA	W K V TGGAAAGTAG ACCTTTCATC	E Q D CGAACAGGAT GCTTGTCCTA	T L T L S K A ACCCTGACCC TGAGCAAAGC TGGGACTGGG ACTCGTTTCG
W	SAG	Y CGA	O CAG	TAC	1 0.00 1
<u>a</u>) (660 (700	V O	STG CAC	L T TGAC ACTG
K	CTGCTCCGAG GACGAGGCTC	G T A GGCACGA	AG IC	E S V T AAAGCGTGAC TTTCGCACTG	CCT(
4	CT	ပ ပို့ ပိ		E AA TT'	AC(
V , BsiWI	CGTACGGTGG GCATGCCACC	L K S ACTGAAAAGC TGACTTTTCG	P R E A CGCGTGAAGC GCGCACTTCG	N S Q E AACAGCCAGG TTGTCGGTCC	L S S TCTGAGCAGC AGACTCGTCG

Figure 7A: sequence of the synthetic Ck gene segment (continued)

GGTGACTAAA CCACTGATTT TGAGCAGCCC ACTCGTCGGG Н GTAGTTCCAG H Q G I CATCAAGGTC GCTTCACTGG E V T CGAAGTGACC V Y A C TGTATGCGTG ACATACGCAC

F N R G E A * StuI

ഗ

SphI

TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

Figure 7B: sequence of the synthetic CH1 gene segment

ഗ S Д ď 口 Д لتر ഗ Д G 又 E Sal ഗ Ø BlpI

AGGCTCGTCG TCCGAGCAGC AAGGCGACCG TTCCGCTGGC GGTTCGCACA CCAAGCGTGT CTGGTTTCCA GACCAAAGGT CGAGTCGCAG GCTCAGCGTC

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTTCTAAT Ω × IJ ပ ഗ CCGACGGGAC GGCTGCCCTG K Ø CGCCGCCGTG GCGGCGGCAC g G ഗ AAAAGCACCA TTTTCGTGGT H ഗ

CTGACCAGCG GACTGGTCGC 드 CAGCGGGGCG GTCGCCCGC K ტ ഗ CCAGTCACCG TGAGCTGGAA Z GGTCAGTGGC ACTCGACCTT 3 ഗ Ę > Д TTTCCCGGAA AAAGGGCCTT ٦. Д Ĺτι

GTATAGCCTG CATATCGGAC ഗ CGTCGCCGGA GCAGCGGCCT Ŋ ഗ Ŋ GTGCTGCAAA CACGACGTTT Ø ᄀ \gt CTTTCCGGCG GAAAGGCCGC Ø بض ഥ GCGTGCATAC CGCACGTATG 工 > .

AGACCTATAT AATCCGTGAG TCTGGATATA TTAGGCACTC H ŋ GAGCAGCAGC CTCGTCGTCG ഗ ഗ TGACCGTGCC ACTGGCACGG > Λ TCGTCGCAAC AGCAGCGTTG <u>်</u> ഗ

Figure 78; sequence of the synthetic CH1 gene segment (continued)

K K V	AAAAAAGTGG	TTTTTCACC
K V D	CAAAGTGGAT	GTTTCACCTA
S L	CGAGCAACAC C	GCTCGTTGTG G'
ப		
V N H K	AACCATAAAC	AC TIGGIATITG
N N	TTGCAACGTG A	AACGTTGCAC :

P K S E F * EcoRI HindIII

団

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CA gene segment (huCL lambda)

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

[BbsI ~~~~~ GAAGACGAAG CTTCTGCTTC	CGGATTATTA GCCTAATAAT	TTGCCAGCAG AACGGTCGTC	CATTATACCA GTAATATGGT	CCCCGCCTGT
	GTTTGGCGGC	HpaI ~~~~~ GGCACGAAGT TAACCGTTCT CCGTGCTTCA ATTGGCAAGA	HpaI ~~~~~~ GT TAACCGTTCT CA ATTGGCAAGA	MscI ~~~~~~ TGGCCAGCCG ACCGGTCGGC	DrallI ~~~ AAAGCCGCAC TTTCGGCGTG
101	DraIII ~~~~~ CGAGTGTGAC GCTCACACTG	GCTGTTTCCG CGACAAAGGC	CCGAGCAGCG	AAGAATTGCA TTCTTAACGT	GGCGAACAAA
151	GCGACCCTGG CGCTGGGACC	G TGTGCCTGAT C ACACGGACTA	TAGCGACTTT ATCGCTGAAA	TATCCGGGAG ATAGGCCCTC	CCGTGACAGT GGCACTGTCA
201	GGCCTGGAAG CCGGACCTTC	G GCAGATAGCA C CGTCTATCGT	GCCCCGTCAA GGCGGGAGTG CGGGGCAGTT CCGCCCTCAC	GGCGGGAGTG CCGCCCTCAC	GAGACCACCA CTCTGGTGGT

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

CTATCTGAGC GATAGACTCG GCCGGTCGTC CGGCCAGCAG AACAAGTACG TTGTTCATGC ACAAAGCAAC TGTTTCGTTG CACCCTCCAA GTGGGAGGTT 251

RleAI

~~~~~

GCCAGGTCAC CGGTCCAGTG TCGATGTCGA GTCCCACAGA AGCTACAGCT CAGGGTGTCT TCGTCACCTT CTGACGCCTG AGCAGTGGAA GACTGCGGAC 301

StuI

~~~~~

GAGGCCTGAT TGCGCCGACT GCATGAGGG AGCACCGTGG AAAAAACCGT

CTCCGGACTA ACGCGGCTGA TTTTTGGCA TCGTGGCACC

SphI

CGTACTCCCC

TTCGTACG

AAGCATGC

401

SUBSTITUTE SHEET (RULE 26) 49 / 204

351

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCAGTTATACCACCCCGCCTGTGTTTGGCGGCG-GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTCCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

M24-D: TGTTTGGAGGGTGTGGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

Et	TCTTCACCCC AGAAGTGGGG	U ,	GAAAGCGGCG CTTTCGCCGC	A S Bspei	ZZZ CCCCCCACO	rg Out t	AAGCCCCTGG	TTCGGGGACC
	rca(AGT(w	AGC(ICG(A B	3600	A P BstXI	2000	3995
ent VH3 j pI	TCT	ចា	GAAZ	æ	၁၅၁၅	A Bs	AAGC	FTCC
Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 M K Q S T I A L A L L P L L F SapI		>		Ö		O	1	
le-chain	GTT	e L	TGG	Ŋ	AGC	EK .	ნენ	ລອລ
us single	TTACCGTTGC AATGGCAACG	Q I Mfei	GCAATTGGTG CGTTAACCAC	H	GTCTGAGCTG CAGACTCGAC	>	тесетесесс	ACCCACGCGG
consensu				R.		×		
ng the c	ACTC GAG	>	AGT	ı	TGC	ഗ	AGC	TCG
encodii A	3GC2	四	TGA	ß	၅၅၁ ၁၁၅၁	Σ	ATG	TAC
C gene	ACTGGCACTC TGACCGTGAG	Ω .	AAGATGAAGT TTCTACTTCA	_ල	GGCAGCCTGC CCGTCGGACG	Æ	TGCGATGAGC	ACGCTACTCG
yntheti A		¥		ڻ ن		>1		
of the s I	GCACTATTGC CGTGATAACG	≯ı	GCCGACTACA CGGCTGATGT		GCAACCGGGC CGTTGGCCCG	တ	TTAGCAGCTA	AATCGTCGAT
n map (ACTA FGAJ	D	CGAC	д O	AACC FTGG	ω ·	\GC.P	rcgı
estrictio S	GC7	A	000		GC7	Įترا	TT	AAT
e and re Q	AAA PTT	×	AAA ITT	>	GGT	H H	CT	3GA
ducuce \$	ATGAAACA TACTTTGT	EH	TGTTACCA ACAATGGT	H	GCGGCCTGGT CGCCGGACCA		GGATTTAC	CCTAAATG
re 8: seq	GAA ACTI	>	STT	Ŋ	3000	pE ~	ATI	TA
Figure M	A)		TC AC	Ŋ	99	B S	Ö	$\mathcal{E}_{\mathcal{E}}$

ed)		
(continu	H	
VK2 (co	ß	
ient VH3-Vi	ტ	
iin fragn	ט	-
le-cha	ഗ	
ding the consensus single-chain frac	<u>ი</u>	
he conse	ഗ	
ding t	Н	
ietic gene encoding t	A	
thetic g	ഗ	
the syr	>	
nap of	<u>×</u>	
striction map of the syr	臼	hoI
and re	니	Хh
dneuce	ပ	
Figure 8: sequence and	×	
Figu		

GGCAGCACCT CCGTCGTGGA CGGTAGCGGC GCCATCGCCG GCGCGATTAG CGCGCTAATC GAGTGGGTGA CTCACCCACT CTTCCCAGAG GAAGGGTCTC

NspV TGATAATTCG ACTATTAAGC വ Z Д PmlI ĸ GGTAAAGTGC CCATTTCACG ഗ Н GGCCGTTTTA CCGGCAAAAT ہتا K Ç TAGCGTGAAA ATCGCACTTT × > S ATTATGCGGA TAATACGCCT Ω K \succ ×

EagI AAGATACGGC TTCTATGCCG \vdash Д 团 CTGCGTGCGG GACGCACGCC K 召 Н AATGAACAGC TTACTTGTCG S Z Σ TGTATCTGCA ACATAGACGT Ø 口 × Ц AAAAACACCC TTTTTGTGGG Н Z NspV×

Ω Σ Ø \succ ᄺ C C C 3 α 4 C >

EagI BSSHII

GCGATGGATT TGGCTTTTAT GGGCGGCGA TGCGCGCGTT CGTGTATTAT

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) GCACATAATA ACGCGCGCAA CCCCGCCGCT ACCGAAATA CGCTACCTAA Y W G Q G T L V T V S S A G G S S StyI BlpI	TGGCGGTTCT ACCGCCAAGA	G S D I ECORV	GTTCCGATAT CAAGGCTATA	G E	GGCGAGCCTG CCGCTCGGAC	N G Y	CAACGGCTAT GTTGCCGATA
gure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragm GCACATAATA ACGCGCGCAA CCCCGCCGCT ACCGAAATA Y W G Q G T L V T V S S A G Styl	GCTCAGCGGG	<u>ი</u> ი	GGCGGTGGTG	A T D	AGTGACTCCG TCACTGAGGC	L L H S	TGCTGCATAG ACGACGTATC
etic gene encoding the or CCCCGCCGCT V T V	GTGACGGTTA	ტ დ	CGGTGGTTCT	N H M	TGAGCCTGCC	დ დ	AGCCAAAGCC TCGGTTTCGG
striction map of the synth ACGCGCGCAA G T L	A AGGCACCCTG T TCCGTGGGAC	ა ე	GGAGCGGTGG CCTCGCCACC	Q S P] Banii	CAGAGCCCAC GTCTCGGGTG	C R S PstI	CTGCAGAAGC GACGTCTTCG
Figure B: sequence and restric GCACATAATA A Y W G Q StyI	ATTGGGGCCA TAACCCCGGT	ິ ອ ອ	GGCGGCGGTG	V M T ECORV	CGTGATGACC GCACTACTGG	A S I S	CGAGCATTAG GCTCGTAATC

CCCCGCCGAC

CATTATACCA

TTGCCAGCAG AACGGTCGTC

GCGTGTATTA

GAAGACGTGG

inued) L	AseI	ATT	AA			SCG	SGC	· 4		CT	GA	ЕН	
2 (cont	A	CTZ	GAJ	r. W		TAG	ATC	臼	٠	AAG	TTC	д	
t VH3-VK2		CGCAGCTATT	GCGTCGATAA	저 Fi		CGTTTTAGCG	GCAAAATCGC	>		TGTGGAAGCT	ACACCTTCGA	. е	
gment P						_		R R				H	
nain fra S		AGC(ICG(Ω		GGA	CCLY			3000	3 3 3 3 3 3	EH	
single-chain fi Q S		CAA	TT.	ъ 19	1 1	CCC	9999	H S		TTA(AAT(×	
ensus si G		GGTCAAAGCC	CCAGTTTCGG	G V		GGTCCCGGAT	CCAGGGCCTA			AAATTAGCCG	TTTAATCGGC	H	
the cons	SexAI	l		Ω Ω Ω) {) {]	99,	ည	, x			C.	Ø	
oding t	ω	AAAC	TTC	ß		AGI	TCA	ı		CCI	3GGA	ŏ	
restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) ${ m D}$ ${ m W}$ ${ m Y}$ ${ m L}$ ${ m Q}$ ${ m K}$ ${ m P}$ ${ m G}$ ${ m Q}$ ${ m C}$ ${ m L}$ ${ m L}$		TCAAAAACCA	AGTTTTTGGT	K		GTGCCAGTGG	CACGGTCACC	드		TTTACCCTGA	AAATGGGACT	ပ	
hetic g				R.								>-	
e synth	Н	~~ CC1	GGZ	Z	÷	ACC)DI	Ω		GAJ	CIZ		
p of the	KpnI	GGTACC	CAT	ß		GCA	CGT	EH		ACC	TGG	≯	٠.
ion ma W	,	ATTGGTACCT	TAACCATGGA	ى ن		GGCAGCAACC	CCGTCGTTGG	ტ		C CGGCACCGAT	GCCGTGGCTA	>	
restrict D						כיז	ט	ഗ	HI	יט ו	כיז	വ	
ce and L		CTG	GAC	니		TCT	AGA	Ŋ	am	GAT	CTA	>	
sednen Y		rat(۹TA(≯ +	4	LTA	AAT	വ	;	CTG	GAC	Q	SI
Figure 8: sequence and ${f N}$ ${f Y}$ ${f L}$		AACTATCTGG	TTGATAGACC	H U	; ; ; ; ; ;	AATTTATCT	TTAAATAGA	ت ن	•	GCTCTGGAT	CGAGACCTA	्रा	BbsI
Œ		. •											٠

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vκ2 (continued) E Ecori ACGTACGGAA TGCATGCCTT R T BsiWI AACTTTAATT TTGAAATTAA × 回 > GGTACGAAAG CCATGCTTTC × H Ö CTTTGGCCAG GAAACCGGTC MscI ტ ы

SUBSTITUTE SHEET (RULE 26) 56 / 204

E01	<u>×</u>	<u>></u>	≥	>	>	>	≷	≥	≥	≥	≥	≥	≥
105	≻	>	>	>	>	>	>-	>	>	>-	>	>	<u>></u>
101	Δ.		Ω		Ω	Ω							
100E	Σ	ı	. 1	· t	1	ı	1	ı	ı	'n	ł	. !	į
100D	. 1	1	1	t	1	1	1	t	1	1	j.	1	1
J001	ı	ı		I	ı	ı	t	1	1	í	ì	ı	ı
1008	⋖	ı	ι	ı	ı	t	ı	t	1	1	ı	ī	ı
A001	> .	. 1	1	1	ı	ı	ŧ	1	ı	8,	ı	1	ı
001	ட	>	I	I	8	>	م	i	S	\leq	⋖		Σ
66	9	Z	≥	>	4	9	0	œ	Z	S	⋖	>	≥
86	Ω	Σ	ш	_	\checkmark	H	⋖	<u> </u>	~		ட	0	ш
<i>26</i>	G	\checkmark	\vdash	ш		— '	ш		Z	ტ	-	٩	S
96	Ŋ	9	\simeq	\propto	ட	Z	Z	⋖	>-	>	¥	4	0
<i>S6</i>	≥	ய	I	>	\checkmark	≥		—	≥	S	S	>	Σ
7 6	\simeq	\propto	~	\propto	\propto	~	\propto	\propto	\propto	~	~	\propto	X
86	<u> </u>	A	⋖	⋖	⋖	⋖	⋖	⋖	⋖	⋖	4	⋖	∢
<i>Z6</i>	S	, O	ပ	S	S	S	S	S	S	C	C	ပ	S
⋖		\tilde{\											

Figure 10: Sequence analysis of initial libraries

C

 $\Sigma \Sigma \Gamma \Sigma \Sigma \Gamma \Gamma \Sigma \Sigma \Sigma \Sigma$ > - ス > ヷ - エ ト > - ヷ $\Sigma \succ \kappa \times \Sigma \times \neg \circ \circ \neg \circ \circ$ $\vdash \lor \lor \lor \lor \bot \supset \vdash \lor \lor \lor$ \succ O I O L I Z Z L L Z Z L L Z **しらドヨNヨ>NLYF** $I \times Z \times X \cup S \times X \cup Z \vdash$ \bot \forall Z Q Q D Z Y D \geqslant \forall $\succ \Sigma \times \vdash \succ * \times \Sigma \times \circ \succ$ **KKKKKKKKKK** 4444444444 000000000000

Figure 11: Expression analysis of initial library

Figure 12: Increase of specificity during the panning rounds

Figure 13: Phage ELISA of clones after the 3rd round of panning

Clone Number

Figure 14: Competition ELISA

- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

Figure 15: Sequence analysis of fluorescein binders

0001 KKKKVO>××KKK-OKK 8001 RZRXTRY->ZZRRRFF001 Z K I K X C J \rightarrow O K O L O \rightarrow K \rightarrow 99 QARAZILRRSRAHEQ86 ZQXK->ZIZNKXI-XX $79 \sum R$ $96 \times 02 \times \times - \times \times \times \times \times 02 \times \times$ 46 KKKKKKKKKKKKKKK

Figure 16: Purification of fluorescein binding scFv fragments

Figure 17: Enrichment factors after three rounds of panning

Figure 18: ELISA of anti-ESL-1 and anti- β -estradiol antibodies

Figure 19: Selectivity and cross-reactivity of HuCAL antibodies

Figure 20: Sequence analysis of estradiol binders

```
103
         33333333333
  105
  101
         100E
        \mathsf{T} \mathrel{\mathop{>}} \mathsf{T} \mathrel{\mathop{>}} \mathsf{T} \mathrel{\mathop{>}} \mathsf{T} \mathrel{\mathop{>}} \mathsf{Z} \mathrel{\mathop{>}} \mathsf{Z} \mathrel{\mathop{>}} \mathsf{Z} \mathsf{Z} \mathsf{Z} \mathsf{T}
000 L
         GKRFHMIR>FEN
J001
         \times \times \times \times \times \times \times
                                \mathsf{I} \times \mathsf{X} \times \mathsf{X} \times \mathsf{X}
1008
         R.S. E. S. R.
                               \neg \succ > \simeq \circlearrowleft \simeq
A001
            Z-OSI I LOLKS
 001 M × J J II K J ≥ N K N K
        Q \vdash S \times Q \vdash T \vdash S \subseteq \neg S
        \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z}
   46
        x Q x v T Q \sum x x x \sum \sum
         ト乙メン>Z-G3ZZZ
   96
        \alpha
   t6
         63
```

Frequency	4	က	2		-	-
103	>	≥	≥	≥	≥	≥
105	>	>	->-	>	>-	>
101				Ω		۵
100E	ب	ட	ட்	ட	ш.	ட
0001	A	O	O	Σ	≥	a,
J001		Σ	Σ	—	¥	Σ
1008	¥	×	\checkmark	¥	Σ	O
A001	~	O	Z	≥	_	œ
001	\checkmark	≥	æ	≥	~	S
66	Ø	V	4	Ø	~	<
86	O	工	>-	တ		\propto
Z 6	\checkmark	\propto	\checkmark	8	۵.	×
96		Z	>	\checkmark	¥	œ
<i>96</i>	>	>	>	>	<u>.</u> œ	>
7 6	æ	\propto	\propto	œ	œ	<u>~</u>
63	A	A	V	⋖	⋖	Δ.
<i>7</i> 6	ی	ی	ر	ص ٔ	ں	C

Frequency	16		_	-				
103	≥	3	<u></u>	3	≥	≥	>	≥
105	>	>-	>	>	>	>	>	>
101	۵	۵	0		9	۵	0	
100E	ш.	Σ	ட	Σ	Σ	ட	Σ	ட
100D	工	۵	O	≥	>	S	≥	≥
J001	9	Ω	>	王	エ	O	ய	>-
1008	\checkmark	>-	≥	ェ		—	Z	≥
A001	.—	S	>-	ط	\propto	ட	ш	ட
100	\checkmark	Z	Z	¥	V	O	<u></u>	
66	S	· L	Ω	<u></u>	O	S	O	_
86	~	۵	_	>-	<u></u>	z	ட	-
∠ 6	>	<u>~</u>	0	Ø	_	X	工	؎
96	~	≥	V	Q		≥	0	≥
<i>9</i> 6	O	ı	Σ		œ	S	>	
7 6	œ	~	\propto	œ	œ	\propto	œ	\propto
63	4	V	Ø	A	A	⋖	⋖	Δ
<i>7</i> 6	ب	ပ	ပ	ပ	ပ	ر ر	ပ	ں

Figure 23: Sequence analysis of ESL-1 binders

Frequency	4	4	2			2	-	13	! ო	•	· (·
103	8	≥	3	≯	≥	≥	≥	3	≥	≥	≥	≥
105	>	>	>	>-	>	>-	>	>	>	>	>-	>
101			0				۵			۵		
100E	ı	ட	Σ	Σ	Σ	Σ	ட	щ	Σ	ட	1	Σ
100D	ı	~	O	_	O,		¥	×	œ	u.	1	_
100Ca	1	ł	ı	1	<u>«</u>	ı	I	1	1	ı	ı	
J001	i	8	œ	œ	~	_	~	8	≥	<u>~</u>	ı	~
1,008	4	>	S		مـ	_	>	~	۵	¥	1	œ
A001	ı	ய	\checkmark	⋖	≥	Σ	≥	-	工	S	ı	O
100	ш	S	S	ල	S	Ω	~	\checkmark	>	¥	ட	¥
66	—		S	>-	V	>	—	S	>-	—	ш	—
86	щ	ш	u	ш,	. ப	≥	ш	ш	O	ш	Σ	·ш
۷6	9		¥		LL .	u	S	¥	-	œ	_	ш
96	ட	ட	_	Q	工	Z	>-	ட்	\checkmark	≥	>-	ட
<i>9</i> 6	9	O	_	ш	Z	ய்	O	O	\checkmark	æ	۵	o ·
\$ 6	æ	œ	œ	\propto	<u>~</u>	~	~	<u>~</u>	~	~	œ	æ
63	4	⋖	α	⋖	⋖	⋖	⋖	⋖	⋖	⋖	⋖	Δ
76	ں	ن	ں	ن	َں	َ ں	ن	ر	ر	ں	$\overline{\mathcal{O}}$	$\overline{\mathcal{O}}$

Figure 24: Sequence analysis of BSA binders

Frequency	Ω	_		_	_	
103	≥	3	≥	≥	≥	<u> </u>
102	>	>	>	>	>	>
101		Ω	۵			۵
100E	Σ	ட	Σ	Σ	Σ	ட
100D	>	<u>~</u>	∝	O	>-	ட
J001	>-	ட	>	S	≥	エ
100B		>-	>	≥	z	
A001		Z	ш	S	۵_	_
100	4	>-	Σ	ن	A	۵_
66	>	≥	O	8	≥	×
86	ய	> _	ш	>	œ	ட
Z 6	9	—	ட	ш	S	Ö
96	O	ட	ц.	\checkmark	ط	9
<i>9</i> 6		>	>	u	>	Ω
7 6	\propto	\propto	æ	\simeq	\propto	\propto
£6	A	A	A	A	⋖	⋖
76	ں	ر	ں	C	ں	C

phoA stll

lox' site

who A Xbai BgIII a lox site lox site ColEI Ext2 origin p15A module AatIII Jac p/o cat pCAL system Nhel fl ori Fsel BsrGI gIII ss Pacl_lpp-Terminator-(His, myc) Hind||7 tails domains module, dssoc. Figure 25: modular pCAL vector system effector functions (IL2) lacI long SUBSTITUTE SHEET (RULE 26)

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Aatll	
Afill	Bfrl, BspTl, Bst98l
Ascl	
Asel	Vspl, Asnl, PshBl
BamHI	Bstl
Bbel	Ehel, Kasl, Narl
Bbsl	BpuAl, Bpil
BgIII	
Blpl	Bpu1102l,Celll, Blpl
BsaBl	Maml, Bsh1365l, BsrBRl
BsiWl	Pfl23II, SpII, Sunl
BspEl	Accill, BseAl, BsiMl, Kpn2l, Mrol
BsrGl	Bsp1407l, SspBl
BssHII	Paul
BstEll	BstPl, Eco91l, Eco0651
BstXI	- 1
Bsu36l	Aocl, Cvnl, Eco811
Dralll	
DsmAl	
Eagl	BstZl, EclXl, Eco52l, Xmalll
Eco57I	
Eco01091	Drall
EcoRI	
EcoRV	Eco32I
Fsel	
HindIII	
Hpal	1
Kpnl	Acc65l, Asp718l
Mlul	
Mscl	Ball, MluNl

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

	·
unique restriction site	Isoschizomers
Munl	Mfel
Nhel	1
Nsil	Ppu10l, EcoT22l, Mph1103l
NspV	Bsp119l, BstBl, Csp45l, Lspl, Sful
Pacl	
Pmel	/
Pmll	BbrPl, Eco72l, PmaCl
Psp511	PpuMI
Pstl	1
RsrII	(Rsril), Cpol, Cspl
SanDI	1
Sapl	1
SexAl	1
Spel	
Sfil	
Sphl	Bbul, Pael,Nspl
Stul	Aatl, Eco147l
Styl	Eco130l, EcoT14l
Xbal	BspLU11II
Xhol	PaeR7I
Xmal	Aval, Smal, Cfr9l, PspAl

Figure 26: list of pCAL vector modules

wo	97/08320				PCT/EP96/0364
	reference	Skerra et al. (1991) Bio/Technology 9, 273-278	Hoess et al. (1986) Nucleic Acids Res. 2287-2300	see M2	Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266
	template	vector pASK30	(synthetic)	(synthetic)	vector plG10
	sites to be inserted	Aatli	lox, BgIII	lox', Sphl	none
	sites to be removed	2x Vspl (Asel)	2x Vspl (Asel)	none	Sphi, BamHI
	functional element	lac promotor/operator	Cre/lox recombination site	Cre/lox' recombination site	glllp of filamentous phage with N- terminal myctail/amber codon
module/flan-	king restriction sites	Aatil-lacp/o- Xbal	BgIII-lox- Aatii	Xbal-lox'- Sphl	EcoRI- gIIIlong- HindIII
Zindir	N _O	. M	M2	M3	M7-I

Figure 26: list of pCAL vector modules

·	7			_	101	/EP96/036
see M7-I	see M7-1	see M3	see M1	see M1	see M1	see M1
vector plG10	vector plG10	(synthetic)	(synthetic)	pASK30	pASK30	pASK30
		xol	Pacl, Fsel	Pacl, Fsel, BsrGl	BsrGl, Nhel	BsrGI, Nhel
Sphl	Sphl, Bbsl	none	none	Vspl, Eco571, BssSl	Dralli (Banli not removed)	Dralli, Banli
truncated glllp of filamentous phage with N-terminal Gly- Ser linker	truncated gillp of filamentous phage with N-terminal myctail/amber codon	Cre/lox recombination site	lpp-terminator	beta-lactamase/bla (ampR)	origin of single- stranded replication	origin of single- stranded replication
M7-II EcoRI-gIIIss- HindIII	M7-III EcoRI-gIIIss- HindIII	Sphl-lox- HindIII	HindIII-Ipp- Pacl	Pacl/Fsel-bla- BsrGl	BsrGI-f1 ori- Nhel	BsrGl-f1 ori- Nhel
M7-11	M7-III		M9-11	M10-	M11-	M11-

Figure 26: list of pCAL vector modules

WO 97/0832	20				PCT/EP96
Rose, R.E. (1988) Nucleic Acids Res. 16, 355	see M3	Yanisch-Peron, C. (1985) Gene 33,103-119	Cardoso, M. & Schwarz,S. (1992) J. Appl. Bacteriol.72, 289-293	see M1	Knappik, A & Branch Plückthun, A. (1994) BioTechniques 17, 754-761
pACYC184	(synthetic)	6LDNd	pACYC184	(synthetic)	(synthetic)
Nhel, BgIII	BgIII, Iox, Xmnl	BgIII, Nhel			·
BssSI, VspI, NspV	none	Eco57l (BssSl not removed)	BspEI, MscI, Styl/Ncol	(synthetic)	(synthetic)
origin of double- stranded replication	Cre/lox recombination site	origin of double- stranded replication	chloramphenicol- acetyltransferase/ cat (camR)	signal sequence of phosphatase A	signal sequence of phosphatase A + FLAG detection tag
Nhel-p15A- Bglll	BgIII-lox- BgIII	BgIII-ColEI- Nhel	Aatll-cat- BgIII	Xbal-phoA- EcoRI	Xbal-phoA- FLAG-EcoRI
M12	M13	M14- Ext2	M17	M19	M20

modules
vector
of pCAL
Figure 26: list
ij.

WO 97/0832	.0	
Lee et al. (1983) Infect. Immunol. 264-268	see M1	Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41-
(synthetic)	pASK30	(synthetic)
(synthetic)	BstXI, MluI,BbsI, BanII, BstEII, HpaI, BbeI, VspI	(synthetic)
heat-stable enterotoxin II signal (synthetic) sequence	lac-repressor	poly-histidine tail
Xbal-stll- Sapl	Afill-lacl- Nhel	EcoRI-Histail- HindIII
M21	M41	M42

SUBSTITUTE SHEET (RULE 26) 80 / 204

	Bsrai	2 2 2 2 2	CCCCCCCCC TGTACACCCC	Aatii Xbai	~~~~~	CCCCCCCGA CGTCCCCCT	GGGGGGGT GCAGGGGGGA	EcoRI AatII	************	CGAATTCGAC GTC GCTTAAGCTG CAG
tinued)	PacI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CCTTAATTAA GGAATTAATT	Bglii	11111	CCAGATCTCC	GGTCTAGAGG		?	<u> </u>
Figure 27: functional map and sequence of MCS module (continued)	HindIII	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ACATGTAAGC TTCCCCCCCCTTGTAGGGGGGGGGGGGGG	Nhel	~~~~	CCCCCGCTA GCCCCCCCC	GGGGGCGAT CGGGGGGGG	XbaI SphI		CTAGACCCCC CCCCCGCATG CCCCCCCCCCCCCCCCCC
Figure 2			ᠳ .			51				101

Figure 28: functional map and sequence of pMCS cloning vector

-	
continue	
vector (
S cloning ve	
of pMC	
map and sequence	
ap and	
functional n	
Figure 28:	

TTGTTTATTT AACAAATAAA	AACCCTGATA TTGGGACTAT	CAACATTTCC GTTGTAAAGG	TGTTTTTGCT ACAAAAACGA	AGTTGGGTGC TCAACCCACG BSSSI	ATCCTTGAGA TAGGAACTCT
GAACCCCTAT CTTGGGGATA	ATGAGACAAT TACTCTGTTA	TATGAGTATT ATACTCATAA	TTTGCCTTCC AAACGGAAGG	Eco57I ~~~~~~ GCTGAAGATC CGACTTCTAG	CAGCGGTAAG GTCGCCATTC
AATGTGCGCG TTACACGCGC	GTATCCGCTC CATAGGCGAG	AAAGGAAGAG TTTCCTTCTC	TTTGCGGCAT	AGTAAAAGAT TCATTTTCTA	TGGATCTCAA ACCTAGAGTT
TTTTCGGGGA AAAAGCCCCT	ATTCAAATAT TAAGTTTATA	ТААТАТТGAA АТТАТААСТТ	TATTCCCTTT ATAAGGGAAA	CGCTGGTGAA GCGACCACTT	TACATCGAAC ATGTAGCTTG
CAGGTGGCAC GTCCACCGTG	TTCTAAATAC AAGATTTATG	AATGCTTCAA TTACGAAGTT	GTGTCGCCCT CACAGCGGGA	CACCCAGAAA GTGGGTCTTT	ACGAGTGGGT TGCTCACCCA BssSI
Н	51	101	151	201	251

Figure 28: functional map and sequence of pMCS cloning vector (continued)

XmnI	*****
	?
•	

CGTTGCGCAA	ATGGCAACAA	GCCTGTAGCA	ACACCACGAT	GACGAGCGTG	651
CATACCAAAC	TGAATGAAGC	GAACCGGAGC	TGATCGTTGG	TAACTCGCCT	601
GTATGGTTTG	ACTTACTTCG	CTTGGCCTCG	ACTAGCAACC	ATTGAGCGGA	
GGGGATCATG	GCACAACATG	CCGCTTTTTT	AAGGAGCTAA	CGGAGGACCG	551
CCCCTAGTAC	CGTGTTGTAC	GGCGAAAAAA	TTCCTCGATT	GCCTCCTGGC	
TGACAACGAT	AACTTACTTC	CACTGCGGCC	TGAGTGATAA	GCCATAACCA	501
ACTGTTGCTA	TTGAATGAAG	GTGACGCCGG	ACTCACTATT	CGGTATTGGT	
ATGCAGTGCT	TAAGAGAATT	GGCATGACAG	TCTTACGGAT	CAGAAAAGCA	451
TACGTCACGA	ATTCTCTTAA	CCGTACTGTC	AGAATGCCTA	GTCTTTTCGT	
TCACCAGTCA	GGTTGAGTAC CCAACTCATG	AGAATGACTT TCTTACTGAA	CACTATTCTC GTGATAAGAG	TCGCCGCATA	401
AGCAACTCGG	GCCGGGCAAG	CCGTATTGAC	CGGTATTATC	CTATGTGGCG	351
TCGTTGAGCC	CGGCCCGTTC	GGCATAACTG	GCCATAATAG	GAŤACACCGC	
TAAAGTTCTG ATTTCAAGAC	TGAGCACTTT ACTCGTGAAA	TTTCCAATGA	CGAAGAACGT GCTTCTTGCA	GTTTTCGCCC	301

CTGCTCGCAC TGTGGTGCTA CGGACATCGT TACCGTTGTT GCAACGCGTT Figure 28: functional map and sequence of pMCS cloning vector (continued)

AseI	CAATTAATAG GTTAATTATC	CTCGGCCCTT GAGCCGGGAA	AGCGTGGGTC TCGCACCCAG	TCCCGTATCG	ACGAAATAGA TGCTTTATCT	AACTGTCAGA TTGACAGTCT	CATTTTTAAT GTAAAAATTA
	TTCCCGGCAA	CACTTCTGCG GTGAAGACGC	GGAGCCGGTG CCTCGGCCAC	TGGTAAGCCC '	CTATGGATGA Z	AAGCATTGGT /	TTTAAAACTT AAATTTTGAA
	TTACTCTAGC	GTTGCAGGAC CAACGTCCTG	TGATAAATCT ACTATTTAGA	TGGGGCCAGA	AGTCAGGCAA TCAGTCCGTT	CTCACTGATT GAGTGACTAA	TTTAGATTGA AAATCTAACT
,	GGCGAACTAC CCGCTTGATG	GGCGGATAAA CCGCCTATTT	GGTTTATTGC CCAAATAACG	ATTGCAGCAC TAACGTCGTG	CACGACGGGG	AGATAGGTGC TCTATCCACG	TCATATATAC AGTATATATG
	ACTATTAACT TGATAATTGA	ACTGGATGGA TGACCTACCT	CCGGCTGGCT GGCCGACCGA	TCGCGGTATC AGCGCCATAG	TAGTTATCTA	CAGATCGCTG GTCTAGCGAC	CCAAGTTTAC GGTTCAAATG
	701	751	801 BSTITUTE S	851 851	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	951	1001

Figure 28: functional map and sequence of pMCS cloning vector (continued)

		C	IDOTIT!	011==== /D111 = /	•		
1051	1101	1151	1201	1251		1301	1351
TTAAAAGGAT AATTTTCCTA	CCTTAACGTG GGAATTGCAC	CAAAGGATCT GTTTCCTAGA	AAACAAAAAA TTTGTTTTT	CTACCAACTC GATGGTTGAG	I.	AAATACTGTC TTTATGACAG	CTGTAGCACC
CTAGGTGAAG GATCCACTTC	AGTTTTCGTT TCAAAAGCAA	TCTTGAGATC AGAACTCTAG	ACCACCGCTA TGGTGGCGAT	TTTTTCCGAA AAAAAGGCTT		CTTCTAGTGT GAAGATCACA	GCCTACATAC CGGATGTATG
ATCCTTTTTG TAGGAAAAAC	CCACTGAGCG	CTTTTTTTCT GAAAAAAAGA	CCAGCGGTGG GGTCGCCACC	GGTAACTGGC CCATTGACCG Eo		AGCCGTAGTT TCGGCATCAA	CTCGCTCTGC GAGCGAGACG
ATAATCTCAT TATTAGAGTA	TCAGACCCCG	GCGCGTAATC CGCGCATTAG	TTTGTTTGCC AAACAAACGG	C TTCAGCAGAG G AAGTCGTCTC Eco57I	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AGGCCACCAC TCCGGTGGTG	TAATCCTGTT ATTAGGACAA
GACCAAAATC CTGGTTTTAG	TAGAAAAGAT ATCTTTTCTA	TGCTGCTTGC ACGACGAACG	GGATCAAGAG CCTAGTTCTC	CGCAGATACC GCGTCTATGG		TTCAAGAACT AAGTTCTTGA	ACCAGTGGCT TGGTCACCGA

Figure 28: funçtional map and sequence of pMCS cloning vector (continued)

	1401	GCTGCCAGTG CGACGGTCAC	GCGATAAGTC CGCTATTCAG	GTGTCTTACC CACAGAATGG	GGGTTGGACT CCCAACCTGA	CAAGACGATA GTTCTGCTAT
	1451	GTTACCGGAT CAATGGCCTA	AAGGCGCAGC TTCCGCGTCG	GGTCGGGCTG CCAGCCCGAC	AACGGGGGGT TTGCCCCCCA	TCGTGCACAC AGCACGTGTG
	1501	AGCCCAGCTT	GGAGCGAACG CCTCGCTTGC	ACCTACACCG TGGATGTGGC	AACTGAGATA TTGACTCTAT	CCTACAGCGT GGATGTCGCA
SUBSTITU	1551	GAGCTATGAG CTCGATACTC	AAAGCGCCAC TTTCGCGGTG	GCTTCCCGAA CGAAGGGCTT	GGGAGAAAGG CCCTCTTTCC	CGGACAGGTA GCCTGTCCAT
ITE SHEET (RULE	1601	TCCGGTAAGC AGGCCATTCG	GGCAGGGTCG CCGTCCCAGC	GAACAGGAGA CTTGTCCTCT	GCGCACGAGG CGCGTGCTCC BssSI	GAGCTTCCAG CTCGAAGGTC
= 261	. •				} } } }	
	1651	GGGGAAACGC CCCCTTTGCG	CTGGTATCTT GACCATAGAA	TATAGTCCTG ATATCAGGAC	TCGGGTTTCG AGCCCAAAGC	CCACCTCTGA GGTGGAGACT
	1701	CTTGAGCGTC GAACTCGCAG	GATTTTTGTG CTAAAAACAC	ATGCTCGTCA	GGGGGGCGGA	GCCTATGGAA CGGATACCTT
	1751	AAACGCCAGC	AACGCGGCCT	TTTACGGTT	CCTGGCCTTT	TGCTGGCCTT

Figure 28: functional map and sequence of pMCS cloning vector (continued)

ACGACCGGAA	BsrGI	CCCCCCTGTA	AatII	CCCCGACGTC	RI .~~~	TTCACGT AAGTGCA
TTGCGCCGGA AAAATGCCAA GGACCGGAAA ACGACCGGAA	PacI	CCCCCCCTT AATTAACCCC GGGGGGAA TTAATTGGGG	Bglii	CCCCCCAG ATCTCCCCCC CCCCGACGTC GGGGGGGGTC TAGAGGGGGGG GGGGCTGCAG	ECORI	CCCCCCGAA TTCACGT GGGGGGCTT AAGTGCA
AAAATGCCAA		CCCCCCCCTT	Bg	CCCCCCCCAG	Sphi	CGCATGCCCC GCGTACGGGG
TTGCGCCGGA	HindIII	GTAAGCTTCC CATTCGAAGG		CCGCTAGCCC	} }	ACCCCCCCCC TGGGGGGGGG
TTTGCGGTCG		TTGCTCACAT AACGAGTGTA	BsrGI	CACCCCCCC GTGGGGGGGG	XbaI	CCCCCTCTAG GGGGGAGATC
		1801		1851		1901
				SUBSTITU	TE SHEE	T (RULE 2

X 142 bp

SUBSTITUTE SHEET (RULE 28)

89 / 204

Figure 29: functional map and sequence of pCAL module M1

AatII

CCGAAATGTG GGCTTTACAC TCCGTGGGGT AGGCACCCCA GAGTGAGTAA CTCACTCATT ACACTCAATC TGTGAGTTAG CTGCAGAATT GACGTCTTAA

GATAACAATT CTATTGTTAA TAACACTCGC ATTGTGAGCG GTTGTGTGGA CAACACACCT GCCGAGCATA CGGCTCGTAT AAATACGAAG TTTATGCTTC 51

XbaI

GA CGAATTTCTA GCTTAAAGAT ACCATGATTA TGGTACTAAT TTGTCGATAC AACAGCTATG TCACACAGGA AGTGTGTCCT

SUBSTITUTE SHEET (RULE 26)

101

Figure 30: functional map and sequence of pCAL module M7-II (continued)

ECORI

	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?		-		
7	GAATTCGAGC	AGAAGCTGAT	CTCTGAGGAG	GC AGAAGCTGAT CTCTGAGGAG GATCTGTAGG GTGGTGGCTC	GTGGTGGCTC
	CTTAAGCTCG	TCTTCGACTA	GAGACTCCTC	CTTAAGCTCG TCTTCGACTA GAGACTCCTC CTAGACATCC CACCACCGAG	CACCACCGAG

51	TGGTTCCGGT	GATTTTGATT	ATGAAAAGAT	GATTTTGATT ATGAAAAGAT GGCAAACGCT AATAAGGGGG	AATAAGGGGG
	ACCAAGGCCA	CTAAAACTAA	TACTTTTCTA	CCGTTTGCGA	TTATTCCCCC
	•				

151 AAACTTGATT CTGTCGCTAC TGATTACGGT GCTGCTATCG ATGGTTTCAT TTTGAACTAA GACAGCGATG ACTAATGCCA CGACGATAGC TACCAAAGTA	T 0 T	CTATGACCGA	CTATGACCGA AAATGCCGAT GAAAACGCGC TACAGTCTGA CGCTAAAGGC GATACTGGCT TTTACGGCTA CTTTTGCGCG ATGTCAGACT GCGATTTCCG	GAAAACGCGC	TACAGTCTGA	CGCTAAAGGC GCGATTTCCG
	151	AAACTTGATT TTTGAACTAA	CTGTCGCTAC	TGATTACGGT ACTAATGCCA	GCTGCTATCG CGACGATAGC	ATGGTTTCAT TACCAAAGTA

•	GGTGATTTTG	CCACTAAAAC
	GGTGCTACT	GATTACCATT ACCACGATGA CCACTA
•	TG CTAATGGTAA 1	GATTACCATT
	TT TCCGGCCTTG	AGGCCGGAAC
	TGGTGACGTT	ACCACTGCAA
	201	
= 1	[(R)	U!E

TAA TTCCCAAATG GCTCAAGTCG GTGACGGTGA TAATTCACCT	TT AAGGGTTTAC CGAGTTCAGC CACTGCCACT ATTAAGTGGA
GTGACGGTGA	CACTGCCACT
GCTCAAGTCG	CGAGTTCAGC
TTCCCAAATG	AAGGGTTTAC
CTGGCTCTAA	GACCGAGATT
251	

XmnI

AATCGGTTGA TTAGCCAACT TCCCTCCCTC AGGGAGGGAG ATATTTACCT TATAAATGGA ATTICCGICA TAAAGGCAGT AATTACTTAT TTAATGAATA 301

Figure 30: functional map and sequence of pCAL module M7-II (continued)

351	ATGTCGCCCT	TTTGTCTTTG	ATGTCGCCCT TTTGTCTTTG GCGCTGGTAA ACCATATGAA TTTTCTATTG	ACCATATGAA TTTTTCTATTG	TTTTCIATIO
	TACAGCGGGA	AAACAGAAAC	TACAGCGGGA AAACAGAAAC CGCGACCATT TGGTATACTT AAAAGATAAC	TGGTATACTT AAAAGATAAC	AAAAGATAAC
401	ATTGTGACAA	AATAAACTTA	ATTGTGACAA AATAAACTTA TTCCGTGGTG TCTTTGCGTT TCTTTTATAT	TCTTTGCGTT	TCTTTTATAT
	TAACACTGTT	TTATTTGAAT	TAACACTGTT TTATTTGAAT AAGGCACCAC AGAAACGCAA AGAAATATA	AGAAACGCAA	AGAAAATATA
451	GTTGCCACCT	TTATGTATGT AATACATACA	GTTGCCACCT TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA CAACGGTGGA AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT	TTTGCTAACA AAACGATTGT	TACTGCGTAA ATGACGCATT
501	TAAGGAGTCT	HindIII TAAGGAGTCT TGATAAGCTT ATTCGAA		· .	

Figure 31: functional map and sequence of pCAL module M9-II (continued)

1	۲	4
i	۲	4
1	-	4
Ŧ	ζ	3
	ς	7
	_	
٠	7	4

AGATTGTGCG TCTAACACGC TTTTACCGCG AAAATGGCGC TGTGAAGTGA ACACTTCACT TTCGAACTGG AAGCTTGACC 9999999999 CCCCCCCC

~~~~~~ FseI ~~~~~~~ PacI ACATTTTTT

GCCGGCCTGG CGGCCGGACC 8666666666 CCCCCCCCCTTAATTAAAG AATTAATTTC TGTCTGCCGT ACAGACGGCA TGTAAAAAA

51

BsrGI ~~~~~~ 101 GGGGGGTGT ACAGGGGGG GGG CCC

TGTCCCCCC

CCCCCCACA



SUBSTITUTE SHEET (RULE 26) 96 / 204

ATTGGTTAAA

ATTTCGGCCT

TATTCTTTTG ATTTATAAGG GATTTTGCCG

351

Figure 32: functional map and sequence of pCAL module M11-III (continued)

NheI

| ,         | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                          |                          |                          |                          |
|-----------|---------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| <b>-1</b> | GCTAGCACGC                            | GCCCTGTAGC<br>CGGGACATCG | GGCGCATTAA<br>CCGCGTAATT | 2229229292<br>9992992929 | TGTGGTGGTT<br>ACACCACCAA |
| 51        | ACGCGCAGCG<br>TGCGCGTCGC              | TGACCGCTAC<br>ACTGGCGATG | ACTTGCCAGC<br>TGAACGGTCG | GCCCTAGCGC<br>CGGGATCGCG | CCGCTCCTTT<br>GGCGAGGAAA |
| 101       | CGCTTTCTTC<br>GCGAAAGAAG              | CCTTCCTTTC<br>GGAAGGAAAG | TCGCCACGTT<br>AGCGGTGCAA | CGCCGGCTTT<br>GCGGCCGAAA | CCCCGTCAAG               |
| 151       | CTCTAAATCG<br>GAGATTTAGC              | GGGCATCCCT<br>CCCGTAGGGA | TTAGGGTTCC<br>AATCCCAAGG | GATTTAGTGC<br>CTAAATCACG | TTTACGGCAC<br>AAATGCCGTG |
| 201       | CTCGACCCCA                            | AAAAACTTGA<br>TTTTTGAACT | TTAGGGTGAT<br>AATCCCACTA | GGTTCTCGTA<br>CCAAGAGCAT | GTGGGCCATC<br>CACCCGGTAG |
| 251       | GCCCTGATAG<br>CGGGACTATC              | ACGGTTTTTC<br>TGCCAAAAAG | GCCCTTTGAC<br>CGGGAAACTG | GTTGGAGTCC<br>CAACCTCAGG | ACGTTCTTTA<br>TGCAAGAAAT |
| 301       | ATAGTGGACT<br>TATCACCTGA              | CTTGTTCCAA<br>GAACAAGGTT | ACTGGAACAA<br>TGACCTTGTT | CACTCAACCC<br>GTGAGTTGGG | TATCTCGGTC               |

| (continued)                                                 |
|-------------------------------------------------------------|
| ≡                                                           |
|                                                             |
| =                                                           |
| ≥                                                           |
| jure 32: functional map and sequence of pCAL module M11-III |
|                                                             |
| <u></u>                                                     |
| I map and sequence of                                       |
| and                                                         |
| map                                                         |
| unctional                                                   |
| ıre 32: fun                                                 |
| Figure (                                                    |

|            | •                     |                   |
|------------|-----------------------|-------------------|
| TAACCAATTT | AAAATATTAA            | 'I"I"I"I'T'I'I'I  |
| TAAAGCCGGA | GAATTTTAAC            | C.I."I'AAAA'I"I'G |
| CTAAAACGGC | ATTTAACAAA AATTTAACGC | T.I.AAAT.I.GCG    |
| TAAATATTCC | ATTTAACAAA            | TAAATTI GITIT     |
| ATAAGAAAAC |                       | I"I"I AC I CGAC   |
|            | 401                   |                   |

BsrGI

CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

451





SUBSTITUTE SMEET (NULE 26) 99 / 204

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

|   | • |
|---|---|
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   | _ |
| i | - |
| 1 | _ |
|   | מ |
|   | 7 |
|   |   |
|   |   |
|   |   |
|   |   |

|   | Н   | AGATCTGACC<br>TCTAGACTGG | AAAATCCCTT<br>TTTTAGGGAA | AACGTGAGTT<br>TTGCACTCAA | TTCGTTCCAC                       | TGAGCGTCAG |
|---|-----|--------------------------|--------------------------|--------------------------|----------------------------------|------------|
|   | 51  | ACCCCGTAGA<br>TGGGGCATCT | AAAGATCAAA<br>TTTCTAGTTT | GGATCTTCTT<br>CCTAGAAGAA | GAGATCCTTT<br>CTCTAGGAAA         |            |
|   | 101 | GTAATCTGCT<br>CATTAGACGA | GCTTGCAAAC<br>CGAACGTTTG | AAAAAAACCA<br>TTTTTTGGT  | CCGCTACCAG                       |            |
| • | 151 | TTTGCCGGAT<br>AAACGGCCTA | CAAGAGCTAC<br>GTTCTCGATG | CAACTCTTTT<br>GTTGAGAAAA | TCCGAAGGTA<br>AGGCTTCCAT         |            |
|   | 201 | GCAGAGCGCA<br>CGTCTCGCGT | GATACCAAAT<br>CTATGGTTTA | ACTGTTCTTC<br>TGACAAGAAG | TAGTGTAGCC<br>ATCACATCGG         |            |
|   | 251 | CACCACTTCA               | AGAACTCTGT<br>TCTTGAGACA | AGCACCGCCT<br>TCGTGGCGGA | ACATACCTCG<br>TGTATGGAGC         |            |
|   | 301 | CCTGTTACCA<br>GGACAATGGT | GTGGCTGCTG<br>CACCGACGAC | CCAGTGGCGA<br>GGTCACCGCT | TAAGTCGTGT<br>ATTCAGCACA         |            |
|   | 351 | TGGACTCAAG               | ACGATAGTTA               | CCGGATAAGG               | CCGGATAAGG CGCAGCGGTC GGGCTGAACG |            |

SUBSTITUTE SHEET (RULE 26)

| Figure 33: | Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued) | ice of pCAL module M14-I                       | Ext2 (continued)                               |                                             |                                   |
|------------|----------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------|-----------------------------------|
|            | ACCTGAGTTC                                                                 | TGCTATCAAT                                     | GGCCTATTCC                                     | ACCTGAGTTC TGCTATCAAT GGCCTATTCC GCGTCGCCAG | CCCGACTTGC                        |
| 401        | GGGGGTTCGT<br>CCCCCAAGCA                                                   | GCACACAGCC<br>CGTGTGTCGG                       | GCACACAGCC CAGCTTGGAG<br>CGTGTGGG GTCGAACCTC   | CGAACGÁCCT<br>GCTTGCTGGA                    | ACACCGAACT                        |
| 451        | GAGATACCTA<br>CTCTATGGAT                                                   |                                                | CAGCGTGAGC TATGAGAAAG<br>GTCGCACTCG ATACTCTTTC | CGCCACGCTT<br>GCGGTGCGAA                    | CCCGAAGGGA<br>GGGCTTCCCT          |
| 501        | GAAAGGCGGA<br>CTTTCCGCCT                                                   | GAAAGGCGGA CAGGTATCCG<br>CTTTCCGCCT GTCCATAGGC | GTAAGCGGCA<br>CATTCGCCGT                       | GGGTCGGAAC<br>CCCAGCCTTG                    | AGGAGAGCGC<br>TCCTCTCGCG<br>BSSSI |
|            |                                                                            |                                                |                                                |                                             | <b>?</b>                          |
| 551        | ACGAGGGAGC<br>TGCTCCCTCG<br>BssSI                                          | TTCCAGGGGG                                     | TTCCAGGGG AAACGCCTGG<br>AAGGTCCCCC TTTGCGGACC  | ТАТСТТТАТА<br>АТАGАААТАТ                    | GTCCTGTCGG<br>CAGGACAGCC          |

TCGTCAGGGG AGCAGTCCCC ACGGTTCCTG TGCCAAGGAC AAACACTACG CGGCCTTTTT GCCGGAAAAA TCGCAGCTAA GCCAGCAACG CGGTCGTTGC GAGACTGAAC ATGGAAAAAC TACCTTTTTG CAAAGCGGTG GGCGGAGCCT CCGCCTCGGA

AGCGTCGATT TTTGTGATGC

CTCTGACTTG

GTTTCGCCAC

601

651

~ ~ ~ ~ ~

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACG AGTGTACCGA TCG

701

SUBSTITUTE SHEET (RULE 26) 102 / 204





SUBSTITUTE SHEET (RULE 26) 103 / 204

Figure 34: functional map and sequence of pCAL module M17. (continued)

## AatII

|     | 2222                     |                          |                          |                          |                          |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| ਜਂ  | GGGACGTCGG               | GTGAGGTTCC<br>CACTCCAAGG | AACTTTCACC<br>TTGAAAGTGG | ATAATGAAAT<br>TATTACTTTA | AAGATCACTA<br>TTCTAGTGAT |
| 51  | CCGGGCGTAT               | TTTTTGAGTT<br>AAAAACTCAA | ATCGAGATTT<br>TAGCTCTAAA | TCAGGAGCTA<br>AGTCCTCGAT | AGGAAGCTAA<br>TCCTTCGATT |
| 101 | AATGGAGAAA<br>TTACCTCTTT | AAAATCACTG<br>TTTTAGTGAC | GATATACCAC<br>CTATATGGTG | CGTTGATATA<br>GCAACTATAT | TCCCAATGGC<br>AGGGTTACCG |
| 151 | ATCGTAAAGA<br>TAGCATTTCT | ACATTTTGAG<br>TGTAAAACTC | GCATTTCAGT<br>CGTAAAGTCA | CAGTTGCTCA<br>GTCAACGAGT | ATGTACCTAT<br>TACATGGATA |
| 201 | AACCAGACCG<br>TTGGTCTGGC | TTCAGCTGGA<br>AAGTCGACCT | TATTACGGCC               | TTTTTAAAGA<br>AAAAATTTCT | CCGTAAAGAA<br>GGCATTTCTT |
| 251 | AAATAAGCAC<br>TTTATTCGTG | AAGTTTTATC<br>TTCAAAATAG | CGGCCTTTAT<br>GCCGGAAATA | TCACATTCTT<br>AGTGTAAGAA | GCCCGCCTGA<br>CGGGCGGACT |
| 301 | TGAATGCTCA               | CCCGGAGTTC<br>GGGCCTCAAG | CGTATGGCAA<br>GCATACCGTT | TGAAAGACGG<br>ACTTTCTGCC | TGAGCTGGTG<br>ACTCGACCAC |
| 351 | ATATGGGATA               | GTGTTCACCC               | TTGTTACACC               | GTTTTCCATG               | GTTTTCCATG AGCAAACTGA    |

Figure 34: functional map and sequence of pCAL module M17 (continued)

| AAACGCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC | GGGTGCCCTT AAACGCCTTGG | GGCAGTTATT               | ATTTTTAA                 | GCGGGGCGTA               | 751 |
|------------------------------------------|------------------------|--------------------------|--------------------------|--------------------------|-----|
| GAGTGGCAGG                               | GTACTGCGAT             | AATTACAACA               | ATGCTTAATG               | TGTCGGCAGA               | 701 |
| CTCACCGTCC                               | CATGACGCTA             | TTAATGTTGT               | TACGAATTAC               | ACAGCCGTCT               |     |
| ATGGCTTCCA<br>TACCGAAGGT                 | GCCGTTTGTG             | GGTTCATCAT<br>CCAAGTAGTA | TGGCGATTCA<br>ACCGCTAAGT | CTGATGCCGC<br>GACTACGGCG | 651 |
| CGACAAGGTG                               | ATACGCAAGG             | GGCAAATATT               | TTTCACTATG               | TCGCCCCCGT               | 601 |
| GCTGTTCCAC                               | TATGCGTTCC             | CCGTTTATAA               | AAAGTGATAC               | AGCGGGGGCA               |     |
| GACAACTTCT                               | AGCCAATATG             | ATTTAAACGT               | ACCAGTTTTG               | GGTGAGTTTC               | 551 |
| CTGTTGAAGA                               | TCGGTTATAC             | TAAATTTGCA               | TGGTCAAAAC               | CCACTCAAAG               |     |
| CCAATCCCTG                               | TTCGTCTCAG             | GAATATGTTT               | GGTTTATTGA               | TTCCCTAAAG               | 501 |
| GGTTAGGGAC                               | AAGCAGAGTC             | CTTATACAAA               | CCAAATAACT               | AAGGGATTTC               |     |
| CCTGGCCTAT                               | ACGGTGAAAA             | GTGGCGTGTT               | TTCGCAAGAT               | TACACATATA               | 451 |
| GGACCGGATA                               | TGCCACTTTT             | CACCGCACAA               | AAGCGTTCTA               | ATGTGTATAT               |     |
| CGGCAGTTTC                               | CGACGATTTC             | GTGAATACCA               | TCGCTCTGGA               | AACGTTTTCA               | 401 |
| GCCGTCAAAG                               | GCTGCTAAAG             | CACTTATGGT               | AGCGAGACCT               | TTGCAAAAGT               |     |
| TCGTTTGACT                               | CAAAAGGTAC             | AACAATGTGG               | CACAAGTGGG               | TATACCCTAT               |     |

Figure 34: functional map and sequence of pCAL module M17 (continued)

CGCCCCGCAT TAAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC

BglII

TGCTAGATCT

801

ACGATCTAGA

SUBSTITUTE SHEET (RULE 26) 106 / 204





SUBSTITUTE SHEET (QU'LE 28) 107 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

EcoRI ~~~~~

TGGTGGCTCT ACCACCGAGA TAGACATCCC ATCTGTAGGG AGACTCCTCC TCTGAGGAGG CTTCGACTAG GAAGCTGATC TTAAGCTCGT AATTCGAGCA

ATAAGGGGGC TATTCCCCCG GCAAACGCTA CGTTTGCGAT ACTTTTCTAC TGAAAAGATG TAAAACTAAT ATTTGATTA CCAAGGCCAC GGTTCCGGTG 51

GCTAAAGGCA CGATTTCCGT ACAGTCTGAC TGTCAGACTG TTTTGCGCGA AAAACGCGCT AATGCCGATG TTACGGCTAC TATGACCGAA ATACTGGCTT 101

TGGTTTCATT ACCAAAGTAA CTGCTATCGA GACGATAGCT CTAATGCCAC GATTACGGTG TGTCGCTACT ACAGCGATGA TTGAACTAAG AACTTGATTC 51

GTGATTTTGC CACTAAAACG GGTGCTACTG CCACGATGAC TAATGGTAAT ATTACCATTA CCGGCCTTGC GGCCGGAACG GGTGACGTTT CCACTGCAAA 201

AATTCACCTT TTAAGTGGAA TGACGGTGAT ACTGCCACTA CTCAAGTCGG GAGTTCAGCC TCCCAAATGG AGGGTTTACC ACCGAGATTA TGGCTCTAAT 251

XmnI

TAGCCAACTT ATCGGTTGAA CCCTCCCTCA GGGAGGGAGT TATTACCTT ATAAATGGAA TTTCCGTCAA AAAGGCAGTT ATTACTTATT TAATGAATAA 301

SUBSTITUTE SHEET (RULE 26) 108 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

|    | 351 | TGTCGCCCTT<br>ACAGCGGGAA | TTGTCTTTGG<br>AACAGAAACC                     | CGCTGGTAAA                                   | CCATATGAAT<br>GGTATACTTA     | TTTCTATTGA<br>AAAGATAACT                   |
|----|-----|--------------------------|----------------------------------------------|----------------------------------------------|------------------------------|--------------------------------------------|
|    | 401 | TTGTGACAAA<br>AACACTGTTT | ATAAACTTAT<br>TATTTGAATA                     | TCCGTGGTGT                                   | CTTTGCGTTT<br>GAAACGCAAA     | CTTTTATATG<br>GAAAATATAC                   |
|    | 451 | TTGCCACCTT<br>AACGGTGGAA | TATGTATGTA<br>ATACATACAT                     | TTTTCTACGT<br>AAAAGATGCA                     | TTGCTAACAT<br>AACGATTGTA     | ACTGCGTAAT<br>TGACGCATTA                   |
|    | 501 | AAGGAGTCTT<br>TTCCTCAGAA | HindIII<br>~~~~~<br>GATAAGCTTG<br>CTATTCGAAC | ACCTGTGAAG<br>TGGACACTTC                     | TGAAAAATGG<br>ACTTTTTACC     | CGCAGATTGT<br>GCGTCTAACA                   |
| ,  | 551 | GCGACATTTT<br>CGCTGTAAAA | TTTTGTCTGC<br>AAAACAGACG                     | PacI<br>~~~~~~~~<br>CGTTTAATTA<br>GCAAATTAAT | ~<br>AAGGGGGGGG<br>TTCCCCCCC | FseI<br>~~~~~~~<br>GGGCCGGCC<br>CCCCGGCCGG |
| ., | 601 | TGGGGGGGG                | BsrGI<br>~~~~~~<br>TGTACATGAA<br>ACATGTACTT  | ATTGTAAACG<br>TAACATTTGC                     | ТТААТАТТТТ<br>ААТТАТАААА     | GTTAAAATTC                                 |

WO 97/08320 PCT/EP96/03647

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| AGGCCGAAAT<br>TCCGGCTTTA | GGGTTGAGTG<br>CCCAACTCAC | GGACTCCAAC<br>CCTGAGGTTG | TACGAGAACC<br>ATGCTCTTGG | GCACTAAATC<br>CGTGATTTAG |       | AAAGCCGGCG               | GCGCTAGGGC<br>CGCGATCCCG |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|--------------------------|--------------------------|
| TTTAACCAAT<br>AAATTGGTTA | GACCGAGATA<br>CTGGCTCTAT | TAAAGAACGT<br>ATTTCTTGCA | GATGGCCCAC               | GTGCCGTAAA<br>CACGGCATTT |       | CTTGACGGGG<br>GAACTGCCCC | AAAGGAGCGG<br>TTTCCTCGCC |
| CAGCTCATTT<br>GTCGAGTAAA | СААААСААТА<br>GTTTTCTTAT | AGTCCACTAT<br>TCAGGTGATA | CTATCAGGGC<br>GATAGTCCCG | TGGGGTCGAG               |       | CGATTTAGAG<br>GCTAAATCTC | GAAGAAAGCG               |
| TTTGTTAAAT<br>AAACAATTTA | CCTTATAAAT<br>GGAATATTTA | TTGGAACAAG               | GAAAAACCGT<br>CTTTTTGGCA | TCAAGTTTTT<br>AGTTCAAAAA | BanII | AGGGAGCCCC<br>TCCCTCGGGG | GAAAGGAAGG<br>CTTTCCTTCC |
| GCGTTAAATT<br>CGCAATTTAA | CGGCAAAATC<br>GCCGTTTTAG | TTGTTCCAGT<br>AACAAGGTCA | GTCAAAGGGC<br>CAGTTTCCCG | ATCACCCTAA<br>TAGTGGGATT |       | GGAACCCTAA<br>CCTTGGGATT | AACGTGGCGA<br>TTGCACCGCT |
| 651                      | 701                      | 751                      | 801                      | 851                      | Ċ     | 901                      | . 951                    |

SUBSTITUTE SHEET (RULE 26)

CACGCTGTAG

TCTCATAGCT AGAGTATCGA

CGTGGCGCTT GCACCGCGAA

CTTCGGGAAG GAAGCCCTTC

GCCTTTCTCC CGGAAAGAGG

1301

| <u>i</u>                                                                                                                                    |      | <b>~</b>                 |                          |                          | <br>ET (RULE 26)         |   | 7                        |
|---------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|---|--------------------------|
| Figure 35: fo<br>1001                                                                                                                       |      | 1051                     | 1101                     | 1151                     | 1201                     |   | 1251                     |
| unctional map and sequenc<br>GCTGGCAAGT<br>CGACCGTTCA                                                                                       |      | TTAATGCGCC               | AAAAGGCCAG<br>TTTTCCGGTC | CTCCGCCCCC               | GCGAAACCCG<br>CGCTTTGGGC |   | CCCTCGTGCG               |
| Figure 35: functional map and sequence of modular vector pCAL4 (continued)  1001 GCTGGCAAGT GTAGCGGTCA CGCTGC  CGACCGTTCA CATCGCCAGT GCGACC |      | GCTACAGGGC<br>CGATGTCCCG | GAACCGTAAA<br>CTTGGCATTT | CTGACGAGCA<br>GACTGCTCGT | ACAGGACTAT<br>TGTCCTGATA |   | CTCTCCTGTT<br>GAGAGGACAA |
| CGCTGCGCGT GCGACGCGCA                                                                                                                       | NheI | GCGTGCTAGC<br>CGCACGATCG | AAGGCCGCGT<br>TTCCGGCGCA | TCACAAAAT<br>AGTGTTTTTA  | AAAGATACCA<br>TTTCTATGGT | • | CCGACCCTGC<br>GGCTGGGACG |
| AACCACCACA                                                                                                                                  |      | CATGTGAGCA<br>GTACACTCGT | TGCTGGCGTT<br>ACGACCGCAA | CGACGCTCAA<br>GCTGCGAGTT | GGCGTTTCCC               |   | CGCTTACCGG<br>GCGAATGGCC |
| 9292992999                                                                                                                                  |      | AAAGGCCAGC<br>TTTCCGGTCG | TTTCCATAGG<br>AAAGGTATCC | GTCAGAGGTG<br>CAGTCTCCAC | CCTGGAAGCT<br>GGACCTTCGA |   | ATACCTGTCC<br>TATGGACAGG |

SUBSTITUTE SHEET (RULE 26)

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| 1351 | GTATCTCAGT<br>CATAGAGTCA | TCGGTGTAGG<br>AGCCACATCC | TCGTTCGCTC               | CAAGCTGGGC<br>GTTCGACCCG | TGTGTGCACG<br>ACACACGTGC |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1401 | AACCCCCCGT<br>TTGGGGGGCA | TCAGCCCGAC<br>AGTCGGGCTG | CGCTGCGCCT               | TATCCGGTAA<br>ATAGGCCATT | CTATCGTCTT<br>GATAGCAGAA |
| 1451 | GAGTCCAACC               | CGGTAAGACA<br>GCCATTCTGT | CGACTTATCG<br>GCTGAATAGC | CCACTGGCAG<br>GGTGACCGTC | CAGCCACTGG<br>GTCGGTGACC |
| 1501 | TAACAGGATT<br>ATTGTCCTAA | AGCAGAGCGA<br>TCGTCTCGCT | GGTATGTAGG<br>CCATACATCC | CGGTGCTACA<br>GCCACGATGT | GAGTTCTTGA<br>CTCAAGAACT |
| 1551 | AGTGGTGGCC<br>TCACCACCGG | TAACTACGGC<br>ATTGATGCCG | TACACTAGAA<br>ATGTGATCTT | GAACAGTATT<br>CTTGTCATAA | TGGTATCTGC<br>ACCATAGACG |
| 1601 | GCTCTGCTGT<br>CGAGACGACA | AGCCAGTTAC<br>TCGGTCAATĠ | CTTCGGAAAA<br>GAAGCCTTTT | AGAGTTGGTA<br>TCTCAACCAT | GCTCTTGATC               |
| 1651 | CGGCAAACAA<br>GCCGTTTGTT | ACCACCGCTG<br>TGGTGGCGAC | GTAGCGGTGG               | TTTTTTTGTT<br>AAAAAAACAA | TGCAAGCAGC               |
| 1701 | AGATTACGCG<br>TCTAATGCGC | CAGAAAAAA<br>GTCTTTTTTT  | GGATCTCAAG<br>CCTAGAGTTC | AAGATCCTTT<br>TTCTAGGAAA | GATCTTTTCT<br>CTAGAAAAGA |

SUBSTITUTE SHEET (RULE 26) 112 / 204

AGTTATTGG

TTTGTATAAG

GACTCTGCTT

GTCCCTAACC

CTTTGAGTGG

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| GGATTTTGGT<br>CCTAAAACCA       | TTAAAAAAAT<br>AATTTTTTA                    | CATTAAGCAT<br>GTAATTCGTA       | TGAATCGCCA<br>ACTTAGCGGT       | CATAGTGAAA<br>GTATCACTTT       | CAAAACTGGT<br>GTTTTGACCA       | TCAATAAACC            |
|--------------------------------|--------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------|
| TCACGTTAAG GC<br>AGTGCAATTC CC | AATAACTGCC TT<br>TTATTGACGG AA             | TGTTGTAATT CA<br>ACAACATTAA GI | ATGATGAACC TG<br>TACTACTTGG AC | AATATTTGCC CA<br>TTATAAACGG GI | ACGTTTAAAT CA<br>TGCAAATTTA GT |                       |
| GAACGAAAAC<br>CTTGCTTTTG       | TAAGGGCACC /                               | ATCGCAGTAC<br>TAGCGTCATG       | CACAAACGGC Z                   | CCTTGCGTAT GGAACGCATA          | CATATTGGCT /                   | CTGAGACGAA AAACATATTC |
| ACGCTCAGTG<br>TGCGAGTCAC       | ACCAGGCGTT<br>TGGTCCGCAA                   | CCTGCCACTC<br>GGACGGTGAG       | TGGAAGCCAT<br>ACCTTCGGTA       | CACCTTGTCG                     | AGAAGTTGTC<br>TCTTCAACAG       | CAGGGATTGG CTGAGACGAA |
| ACGĞGGTCTG<br>TGCCCCAGAC       | Bglii<br>~~~~~<br>CAGATCTAGC<br>GTCTAGATCG | TACGCCCCGC                     | TCTGCCGACA<br>AGACGGCTGT       | GCGGCATCAG<br>CGCCGTAGTC       | ACGGGGGCGA<br>TGCCCCCGCT       | GAAACTCACC            |
| 1751                           | 1801                                       | 1851                           | 1901                           | 1951                           | 2001                           | 2051                  |
|                                |                                            |                                | TE SHEET (i<br>13 / 204        | ŖULE 26)                       |                                |                       |
|                                |                                            | '                              | .5 / 204                       |                                |                                |                       |

SUBSTITUTE SHEET (RULE 28

|                                                                            | ₹¥<br>ŢŢ                                                                                   | S E                             |       | ά.<br>Ť                                        | Τά                                                                 |             |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|-------|------------------------------------------------|--------------------------------------------------------------------|-------------|
|                                                                            | AACTCAAAAA<br>TTGAGTTTTT                                                                   | GGAACCTCAC<br>CCTTGGAGTG        |       | AGGCTTTACA<br>TCCGAAATGT                       | TGTTGTGG AATTGTGAGC GGATAACAAT<br>ACAACACACC TTAACACTCG CCTATTGTTA | SphI        |
|                                                                            | ACTC<br>TGAG                                                                               | GAAC                            |       | 3GCT<br>CCGA                                   | SATA                                                               | Ŋ.          |
|                                                                            |                                                                                            |                                 |       |                                                | ÖÖ                                                                 | XbaI        |
|                                                                            | TTTCTCCATT TTAGCTTCCT TAGCTCCTGA AAATCTCGAT<br>AAAGAGGTAA AATCGAAGGA ATCGAGGACT TTTAGAGCTA | GGTGAAAGTT<br>CCACTTTCAA        |       | GCTCACTCAT TAGGCACCCC<br>CGAGTGAGTA ATCCGTGGGG | AATTGTGAGC<br>TTAACACTCG                                           | ×           |
|                                                                            | ATCT<br>TAGA                                                                               | rgaa<br>actt                    |       | GCCA                                           | rtgt                                                               |             |
|                                                                            | AA.<br>TT                                                                                  |                                 |       | TAC<br>ATC                                     | AA]<br>TT                                                          |             |
|                                                                            | TGA                                                                                        | ATTTCATTAT<br>TAAAGTAATA        |       | CAT                                            | TGG                                                                |             |
| nued)                                                                      | CTCC                                                                                       | rcat<br>AGTA                    |       | GCTCACTCAT                                     | TGTTGTGGG                                                          |             |
| 4 (conti                                                                   | TAG                                                                                        | ATT'<br>TAA                     |       | GCT(<br>CGA(                                   | TGT                                                                |             |
| Figure 35: functional map and sequence of modular vector pCAL4 (continued) | TTAGCTTCCT TAGCTCCTGA<br>AATCGAAGGA ATCGAGGACT                                             | CTT                             |       | тта<br>Аат                                     | GTA                                                                |             |
| dular vec                                                                  | SCTT                                                                                       | TAGTGATCTT<br>ATCACTAGAA        |       | rgag<br>Actc                                   | SCTC                                                               |             |
| e of mo                                                                    | TTA(<br>AAT(                                                                               | TAGTGATCTT<br>ATCACTAGAA        | ,     | CCGACGTCTA ATGTGAGTTA<br>GGCTGCAGAT TACACTCAAT | CCGGCTCGTA<br>GGCCGAGCAT                                           | •           |
| sednenc                                                                    | ATT<br>TAA                                                                                 | 200<br>300                      |       | CTA                                            |                                                                    |             |
| nap and                                                                    | TCC                                                                                        | ,<br>,<br>,<br>,<br>,<br>,<br>, | AatII | GACGTO                                         | ATG(<br>TAC(                                                       |             |
| ctional r                                                                  | TTTCTCCATT<br>AAAGAGGTAA                                                                   | ATACGCCCGG<br>TATGCGGGCC        | A     | CCGA                                           | CTTTATGCTT<br>GAAATACGAA                                           |             |
| 35: <b>fu</b> n                                                            |                                                                                            |                                 |       | •                                              |                                                                    |             |
| Figure .                                                                   | 2501                                                                                       | 2551                            |       | 2601                                           | 2651                                                               |             |
|                                                                            |                                                                                            |                                 |       | SHRS                                           | TITI ITE QUEE                                                      | ו זי ופי/ ד |

AGAGCATGCG TCTCGTACGC GACCATGATT ACGAATTTCT CTGGTACTAA TGCTTAAAGA AAACAGCTAT TTTGTCGATA TTCACACAGG AAGTGTGTCC

ECORI

2701

00000 00000 2751

SUBSTITUTE SHEET (RULE 26)

115 / 204





SUBSTITUTE SHEET (RULE 26) 116 / 204





SUBSTITUTE SHEET (RULE 26)
118 / 204

AatlI 11111

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Σ

BgllI

111111

TGACGIC ACTGCAG ATGCTTCAAT TACGAAGTTA ATGTATGCTA TACATACGAT TGAAGCATAT ACTTCGTATA TCTAGAGTAT AGATCTCATA

> SUBSTITUTE SHEET (RULE 26) 119 / 204





SUBSTITUTE SHEET (RULE 26)

120 / 204

CTCTCGACGG

TATATCAACC ATATAGTTGG

GGGCTATACT

CACCTATTCC GTGGATAAGG

TACGGTGATA

301

GAGAGCTGCC

TCTGAGGGTG

GGGTGGTGGC

CTGAAAATGA

CTTGCTATCC

TCCTATTGGG

201

AGGATAACCC

GAACGATAGG

GACTTTTACT

CCCACCACCG

AGACTCCCAC

ACCTCCTGAG TGGAGGACTC

GCGGTACTAA

TCTGAGGGTG AGACTCCCAC

CCCACCGCCA

GGGTGGCGGT

GCGGTTCTGA

251

CGCCAAGACT

CGCCATGATT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M 7-I (long):

ECORI

| G AAAGTTGTTT | G AAAGACGACA             | G GAATGCTACA | G GTACATGGGT             |
|--------------|--------------------------|--------------|--------------------------|
| GAAACGGTTG   | TAACGTCTGG<br>ATTGCAGACC | GCTGTCTGTG   | CAGTGTTACG<br>GTCACAATGC |
| TGCGTGCGCT   | ATTCATTTAC               | AACTATGAGG   | TGACGAAACT               |
|              | TAAGTAAATG               | TTGATACTCC   | ACTGCTTTGA               |
| GTGGTGGATC   | CATACAGAAA               | TCGTTACGCT   | TTTGTACTGG               |
| CACCACCTAG   | GTATGTCTTT               | AGCAATGCGA   | AAACATGACC               |
| GAATTCGGTG   | AGCAAAATCC               | AAACTTTAGA   | GGCGTTGTAG               |
| CTTAAGCCAC   | TCGTTTTAGG               | TTTGAAATCT   | CCGCAACATC               |
| 7            | 51                       | 101          | 151                      |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ATCCT AATCCTTCTC<br>FAGGA TTAGGAAGAG | CAGAA TAATAGGTTC<br>STCTT ATTATCCAAG | CACTG TTACTCAAGG<br>STGAC AATGAGTTCC | CTGTA TCATCAAAAG<br>SACAT AGTAGTTTTC | SACTG CGCTTTCCAT | CAAG GCCAATCGTC | SCTCT GGTGGTGGTT | GCGG TTCTGAGGGT |
|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------|-----------------|------------------|-----------------|
| CGCTAATCCT                           | TGTTTCAGAA                           | ACGGGCACTG                           | CACTCCTGTA                           | TCAGAGACTG       | GAATATCAAG      | CGGCGGCTCT       | AGGGTGGCGG      |
| GCGATTAGGA                           | ACAAAGTCTT                           | TGCCCGTGAC                           | GTGAGGACAT                           | AGTCTCTGAC       | CTTATAGTTC      | GCCGCCGAGA       | TCCCACCGCC      |
| AGCAAAACCC                           | AATACTTTCA                           | AACTGTTTAT                           | ATTACCAGTA                           | AACGGTAAAT       | ATTTGTTTGT      | TCAATGCTGG       | GGTGGCTCTG      |
| TCGTTTTGGG                           | TTATGAAAGT                           | TTGACAAATA                           | TAATGGTCAT                           | TTGCCATTTA       | TAAACAAACA      | AGTTACGACC       | CCACCGAGAC      |
| CCTGGTACTG                           | TCAGCCTCTT                           | AGGGGGCATT                           | GTTAAAACTT                           | CGCTTACTGG       | ATGAGGATTT      | CAACCTCCTG       | CTCTGAGGGT      |
| GGACCATGAC                           | AGTCGGAGAA                           | TCCCCCGTAA                           | CAATTTTGAA                           | GCGAATGACC       | TACTCCTAAA      | GTTGGAGGAC       | GAGACTCCCA      |
| CACTTATCCG                           | TTGAGGAGTC                           | CGAAATAGGC                           | CACTGACCCC                           | CCATGTATGA       | TCTGGCTTTA      | TGACCTGCCT       | CTGGTGGCGG      |
| GTGAATAGGC                           | AACTCCTCAG                           | GCTTTATCCG                           | GTGACTGGGG                           | GGTACATACT       | AGACCGAAAT      | ACTGGACGGA       |                 |
| 351                                  | 401                                  | 451                                  | 501                                  | 551              | 601             | 651              | 701             |

SUBSTITUTE SHEET (RULE 26) 122 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|   | 751  | GGCGGCTCTG<br>CCGCCGAGAC | AGGGAGGCGG<br>TCCCTCCGCC | TTCCGGTGGT<br>AAGGCCACCA | GGCTCTGGTT<br>CCGAGACCAA | CCGGTGATTT<br>GGCCACTAAA                     |
|---|------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------------|
|   | 801  | TGATTATGAA<br>ACTAATACTT | AAGATGGCAA<br>TTCTACCGTT | ACGCTAATAA<br>TGCGATTATT | GGGGGCTATG               | ACCGAAAATG<br>TGGCTTTTAC                     |
| • | 851  | CCGATGAAAA<br>GGCTACTTTT | CGCGCTACAG<br>GCGCGATGTC | TCTGACGCTA<br>AGACTGCGAT | AAGGCAAACT<br>TTCCGTTTGA | TGATTCTGTC<br>ACTAAGACAG                     |
|   | 901  | GCTACTGATT<br>CGATGACTAA | ACGGTGCTGC<br>TGCCACGACG | TATCGATGGT<br>ATAGCTACCA | TTCATTGGTG<br>AAGTAACCAC | ACGTTTCCGG<br>TGCAAAGGCC                     |
|   | 951  | CCTTGCTAAT<br>GGAACGATTA | GĠTAATGGTG<br>CCATTACCAC | CTACTGGTGA<br>GATGACCACT | TTTTGCTGGC<br>AAAACGACCG | TCTAATTCCC<br>AGATTAAGGG                     |
| H | 1001 | AAATGGCTCA<br>TTTACCGAGT | AGTCGGTGAA<br>TCAGCCACTT | GGTGATAATT<br>CCACTATTAA | CACCTTTAAT<br>GTGGAAATTA | XmnI<br>~~~~~~~~<br>GAATAATTTC<br>CTTATTAAAG |
| - | 1051 | CGTCAATATT<br>GCAGTTATAA | TACCTTCCAT<br>ATGGAAGGTA | CCCTCAATCG<br>GGGAGTTAGC | GTTGAATGTC<br>CAACTTACAG | GCCCTTTTGT<br>CGGGAAAACA                     |

SUBSTITUTE SHEET (RULE 26) 123 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 2:

Aatii

22222

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA TGTGAGTTAG ACACTCAATC GACGTCTTAA CTGCAGAATT

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 51

XmnI

XbaI

GTATAATGTA CATATTACAT GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

SphI

-----

CGCTATACGA AGTTATCGCA TGC GCGATATGCT TCAATAGCGT ACG

151

SUBSTITUTE SHEET (RULE 26)

101

PCT/EP96/03647

| $\overline{}$               |  |
|-----------------------------|--|
| 9                           |  |
| 2                           |  |
| :፷                          |  |
| 5                           |  |
| ೭                           |  |
| ctors (c                    |  |
| 2                           |  |
|                             |  |
| >,                          |  |
| ₹                           |  |
| 얼                           |  |
| or modules and pCAL ve      |  |
| 묾                           |  |
| S                           |  |
| Ť                           |  |
| ġ                           |  |
| Ĕ                           |  |
| =                           |  |
| ecto                        |  |
| ă                           |  |
| _                           |  |
| X                           |  |
| Z                           |  |
| ₩.                          |  |
| tional                      |  |
| ∄                           |  |
| 믕                           |  |
| æ                           |  |
| ਰ                           |  |
| S                           |  |
| ت                           |  |
| ē                           |  |
| 퓽                           |  |
| d sedu                      |  |
| Þ                           |  |
| ă                           |  |
| bs                          |  |
| jaj                         |  |
| I maps and sequences of add |  |
| 2                           |  |
| .ō                          |  |
| IJ                          |  |
| . <b>Z</b>                  |  |
| Ψ                           |  |
| e.                          |  |
| 3                           |  |
| ā                           |  |
| 2                           |  |
| Œ.                          |  |
|                             |  |

| GACAAAATAA<br>CTGTTTTATT | CACCTTTATG<br>GTGGAAATAC | HindIII<br>AGTCTTGATA | TCAGAACTAT |       |                                      |
|--------------------------|--------------------------|-----------------------|------------|-------|--------------------------------------|
| TATTGATTGT<br>ATAACTAACA | TATATGTTGC<br>ATATACAACG | CGTAATAAGG            | GCATTATTCC |       |                                      |
| ATGAATTTTC<br>TACTTAAAAG | GCGTTTCTTT<br>CGCAAAGAAA | TAACATACTG            | ATTGTATGAC |       |                                      |
| GGTAAACCCT<br>CCATTTGGGA | TGGTGTCTTT<br>ACCACAGAAA | CTACGTTTGC            | GATGCAAACG | ·     |                                      |
| CTTTGGCGCT<br>GAAACCGCGA | ACTTATTCCG<br>TGAATAAGGC | TATGTATTTT            | ATACATAAAA | HindI | AGCTT<br>TCGAA                       |
| 1101                     | 1151                     | 1201                  | SUB        |       | 15<br>27<br>SHEET (RULE 26)<br>1/204 |





SUBSTITUTE SHEET (RULE 25) 125 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M 7-II (SS-TAG):

ECORI

GTGATTTTGA CACTAAAACT AGACCAAGGC TCTGGTTCCG GCCACCACCG CGGTGGTGGC CTCCGCCAAG GAGGCGGTTC GCCCTTAAGC CGGGAATTCG

GAAAATGCCG CTTTTACGGC CCGATACTGG GGCTATGACC GATTATTCCC CTAATAAGGG TACCGTTTGC ATGGCAAACG AATACTTTTC TTATGAAAAG 51

TTCTGTCGCT AAGACAGCGA CGTTTGAACT GCAAACTTGA CTGCGATTTC GACGCTAAAG GCTACAGTCT CGATGTCAGA TACTTTTGCG ATGAAAACGC 101

ATTGGTGACG TAACCACTGC CGATGGTTTC GCTACCAAAG GTGCTGCTAT CACGACGATA ACTGATTACG TGACTAATGC

TTTCCGGCCT

AATTCCCAAA TTAAGGGTTT TGCTGGCTCT ACGACCGAGA CTGGTGATTT GACCACTAAA AATGGTGCTA TTACCACGAT TGCTAATGGT ACGATTACCA 201

XmnI

TAATTTCCGT ATTAAAGGCA CTTTAATGAA GAAATTACTT GATAATTCAC CTATTAAGTG CGGTGACGGT GCCACTGCCA TGGCTCAAGT ACCGAGTTCA 251

SUBSTITUTE SHEET (RULE 26) 126 / 204

151

| AL vectors (continued) |
|------------------------|
| ರ                      |
| vector modules and p   |
| >                      |
| ਤ                      |
| g                      |
| additional             |
| ō                      |
| maps and sequences     |
| Jal                    |
| Figure 35a: Function   |
|                        |

| 301 | CAATATTTAC<br>GTTATAAATG | CTTCCCTCCC<br>GAAGGGAGGG | TCAATCGGTT<br>AGTTAGCCAA                      | GAATGTCGCC<br>CTTACAGCGG | CTTTTGTCTT<br>GAAAACAGAA            |
|-----|--------------------------|--------------------------|-----------------------------------------------|--------------------------|-------------------------------------|
| 351 | TGGCGCTGGT               | AAACCATATG<br>TTTGGTATAC | AATTTTCTAT<br>TTAAAAGATA                      | TGATTGTGAC<br>ACTAACACTG | AAAATAAACT<br>TTTTATTTGA            |
| 401 | TATTCCGTGG<br>ATAAGGCACC | TGTCTTTGCG               | TTTCTTTTAT ATGTTGCCAC<br>AAAGAAATA TACAACGGTG | ATGTTGCCAC<br>TACAACGGTG | CTTTATGTAT<br>GAAATACATA            |
| 451 | GTATTTTCTA<br>CATAAAAGAT | CGTTTGCTAA<br>GCAAACGATT | CATACTGCGT<br>GTATGACGCA                      | AATAAGGAGT<br>TTATTCCTCA | HindIII<br>CTTGATAAGC<br>GAACTATTCG |
|     | Hi                       |                          |                                               | *.                       | ,                                   |
| 501 | TH<br>«                  |                          |                                               |                          |                                     |

SUBSTITUTE SHEET (RULE 26) 127 / 204





SUBSTITUTE SHEET (RULE 26)

128 / 204

HindII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. დ Σ SphI

TAAGCTT ATTCGAA 11111 TACGAAGTTA ATGTACGCTA GCATGCCATA

ATGCTTCAAT TACATGCGAT ACTTCGTATA TGAAGCATAT CGTACGGTAT

SUBSTITUTE SHEET (RULE 26)

129 / 204



SUBSTITUTE SHEET (RULE 26) 130 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 10-II:

BsrGI

| AACCCTGATA<br>TTGGGACTAT | CAACATTTCC                     |
|--------------------------|--------------------------------|
| ATGAGACAAT<br>TACTCTGTTA | TATGAGTATT                     |
| GTATCCGCTC<br>CATAGGCGAG | AG                             |
| АТТСАААТАТ<br>ТААGТТТАТА | AATGCTTCAA TAATATTGAA AAAGGAAG |
| GGGGGTGTAC<br>CCCCCACATG | AATGCTTCAA                     |
| H                        | 51                             |
|                          |                                |

| CAACATTTCC<br>GTTGTAAAGG | TGTTTTTGCT<br>ACAAAAACGA |
|--------------------------|--------------------------|
|                          | TGTI                     |
| TATGAGTATT               | TTTGCCTTCC<br>AAACGGAAGG |
| T ATTATAACTT TTTCCTTCTC  | TTTGCGGCAT<br>AAACGCCGTA |
| ATTATAACTT               | TATTCCCTTT<br>ATAAGGGAAA |
| TTACGAAGTT               | GTGTCGCCCT<br>CACAGCGGGA |
| d<br>)                   | 101                      |
| . Ser OUT                | )<br>                    |

|            | TCAACCCACG |
|------------|------------|
| GCTGAGGATC | CGACTCCTAC |
| AGTAAAAGAT | TCATTTTCTA |
| CGCTGGTGAA | GCGACCACTT |
| ACCCAGAAA  | GTGGGTCTTT |
| E 151      | (RUL       |

| GGT TACATCGAAC TGGATCTCAA CAGCGGTAAG AHCCHHAAA | ACCTAGAGTT GTOGOCATANO TACCLIGAGA |
|------------------------------------------------|-----------------------------------|
| 2 4 4 F ごじ ご ひ Y O                             | GTCGCCATTC                        |
| TGGATCTCAA                                     | ACCTAGAGTT                        |
| GGT TACATCGAAC                                 | A ATGTAGCTTG                      |
| GCGAGTGGGT                                     | CGCTCACCCA                        |
| 201                                            |                                   |

XmnI

TAAAGTTCTG ATTTCAAGAC TGAGCACTTT ACTCGTGAAA TTTCCAATGA AAAGGTTACT GCTTCTTGCA CGAAGAACGT GTTTTCGCCC CAAAAGCGGG 251

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

| ectors (continued)   |
|----------------------|
| Š                    |
| Ļ                    |
| ₹.                   |
| ્ર                   |
| modules and pCAL     |
| 2                    |
| ă                    |
| iA                   |
| نة                   |
| 3                    |
| ō                    |
| Ō                    |
| Ε                    |
|                      |
| 0                    |
| ฮ                    |
| تة                   |
| >                    |
| AL vector            |
| Я                    |
| બ્ર                  |
| _                    |
| ß                    |
| Ξ                    |
| .9                   |
| .=                   |
| <u> </u>             |
| ᄁ                    |
|                      |
| 7                    |
|                      |
| nces                 |
| $\tilde{\mathbf{z}}$ |
| 5                    |
| 3                    |
| Ō                    |
| ĕ                    |
|                      |
| 2                    |
| ā                    |
| S                    |
| ₫                    |
| 2                    |
| al maps and sequen   |
| =                    |
| ĕ                    |
| õ                    |
| Ξ.                   |
| $\tilde{z}$          |
| =                    |
| Ŧ                    |
| ••                   |
| .00                  |
| 35                   |
|                      |
| 5                    |
| 3                    |
| _                    |
| .≌'                  |
| Œ.                   |

SUBSTITUTE SHEET (PULE 25)

| _             |
|---------------|
| ਓ             |
| ีย            |
| 2             |
| ∵Ξ            |
| =             |
| 9             |
| ۳             |
| Ň             |
| ŏ             |
| Ŧ             |
| ັ             |
| >             |
| y             |
| റ             |
| ₫             |
| 70            |
| Ē             |
| G             |
| S             |
| ₹             |
| ㅋ             |
| ŏ             |
| Ε             |
| _             |
| .0            |
| ਹ             |
| ٩             |
| -,            |
| ¥             |
| $\mathcal{O}$ |
| σ             |
| <u></u>       |
| Ë             |
| .0            |
| ≔             |
| ₽             |
| 20            |
| 4             |
| 0             |
| Š             |
| ຽ             |
| Ē             |
| ₹.            |
| 5             |
| ñ             |
| ~             |
| 2             |
| ਰ             |
| Š             |
| β             |
| Ë             |
| _             |
| ā             |
| Ĕ             |
| .≃            |
| บ             |
| ⊑             |
| Ξ.            |
| -:-           |
| ä             |
| 35            |
| ٠,            |
| Ξ             |
| 2             |
| ᄄ.            |
| _             |

|             | 701  | ACTGGATGGA<br>TGACCTACCT | GGCGGATAAA<br>CCGCCTATTT | GGATAAA GTTGCAGGAC CACT  | CACTTCTGCG               | CTCGGCCCTT<br>GAGCCGGGAA |
|-------------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|             | 751  | CCGGCTGGCT               | GGTTTATTGC<br>CCAAATAACG | TGATAAATCT<br>ACTATTTAGA | GGAGCCGGTG<br>CCTCGGCCAC | AGCGTGGGTC<br>TCGCACCCAG |
| •           | 801  | TCGCGGTATC<br>AGCGCCATAG | ATTGCAGCAC<br>TAACGTCGTG | TGGGGCCAGA<br>ACCCCGGTCT | TGGTAAGCCC<br>ACCATTCGGG | TCCCGTATCG<br>AGGGCATAGC |
| SUBST       | 851  | TAGTTATCTA<br>ATCAATAGAT | CACGACGGGG<br>GTGCTGCCCC | AGTCAGGCAA<br>TCAGTCCGTT | CTATGGATGA<br>GATACCTACT | ACGAAATAGA<br>TGCTTTATCT |
| ITUTE SHEE  | 901  | CAGATCGCTG<br>GTCTAGCGAC | AGATAGGTGC<br>TCTATCCACG | CTCACTGATT<br>GAGTGACTAA | AAGCATTGGG<br>TTCGTAACCC | TAACTGTCAG<br>ATTGACAGTC |
| T (RULE 26) | 951  | ACCAAGTTTA<br>TGGTTCAAAT | CTCATATATA<br>GAGTATATAT | CTTTAGATTG<br>GAAATCTAAC | ATTTAAAACT<br>TAAATTTTGA | TCATTTTAA<br>AGTAAAAATT  |
|             | 1001 | TTTAAAAGGA               | TCTAGGTGAA<br>AGATCCACTT | GATCCTTTTT<br>CTAGGAAAAA | GATAATCTCA<br>CTATTAGAGT | TGACCAAAAT<br>ACTGGTTTTA |
|             | 1051 | CCCTTAACGT<br>GGGAATTGCA | GAGTTTTCGT<br>CTCAAAAGCA | TCCACTGAGC<br>AGGTGACTCG | GTCAGACCCC               | GTAGAAAAGA<br>CATCTTTTCT |

133 / 204

PacI

FseI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|      |                          |                                              | -                        | 1111111                  | £ 1        |
|------|--------------------------|----------------------------------------------|--------------------------|--------------------------|------------|
| 1101 | TCAAAGGATC<br>AGTTTCCTAG | CAAAGGATC TTCTTGAGAT<br>GTTTCCTAG AAGAACTCTA | CCTTTTTGAT<br>GGAAAAACTA | AATGGCCGGC<br>TTACCGGCCG | CCCCCCCCTT |
|      | PacI                     |                                              |                          |                          |            |
|      | 1 1 1 1 1 1              |                                              |                          |                          |            |
| 1151 | AATTAAGGGG GGG           | . 555                                        |                          |                          |            |
|      | TTAATTCCCC CCC           | CCC                                          |                          |                          |            |

SUBSTITUTE SHEET (RULE 26) 134 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 135 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M11-II:

NheI

| GCGCGGCGG TGTGGTGGTT     | GCCCTAGCGC CCGCTCCTTT    | CGCCGGCTTT CCCCGTCAAG    | GATTTAGTGC TTTACGGCAC                      | GGTTCTCGTA GTGGGCCATC    | GTTGGAGTCC ACGTTCTTTA    |
|--------------------------|--------------------------|--------------------------|--------------------------------------------|--------------------------|--------------------------|
| CGCGCCCCC ACACCACCAA     | CGGGATCGCG GGCGAGGAAA    | GCGGCCGAAA GGGGCAGTTC    | CTAAATCACG AAATGCCGTG                      | CCAAGAGCAT CACCCGGTAG    | CAACCTCAGG TGCAAGAAAT    |
| ၁၅၁၅၁                    | GCCC<br>CGGG             | ၁၁၁၁                     | GATT'<br>CTAA                              | GGTT(<br>CCAA            | GTTG                     |
| GGCGCATTAA               | ACTTGCCAGC               | TCGCCACGTT               | TTAGGGTTCC                                 | TTAGGGTGAT               | GCCCTTTGAC               |
| CCGCGTAATT               | TGAACGGTCG               | AGCGGTGCAA               | AATCCCAAGG                                 | AATGCCACTA               | CGGGAAACTG               |
| GCCCTGTAGC<br>CGGGACATCG | TGACCGCTAC<br>ACTGGCGATG | CCTTCCTTTC<br>GGAAGGAAAG | BanII<br>~~~~~~<br>GGGCTCCCT<br>CCCCGAGGGA | AAAAACTTGA<br>TTTTTGAACT | ACGGTTTTTC<br>TGCCAAAAAG |
| GCTAGCACGC               | ACGCGCAGCG               | CGCTTTCTTC               | CTCTAAATCG                                 | CTCGACCCCA               | GCCCTGATAG               |
|                          | TGCGCGTCGC               | GCGAAAGAAG               | GAGATTTAGC                                 | GAGCTGGGGT               | CGGGACTATC               |
| 1                        | 51                       | 101                      | 151                                        | 201                      | 251                      |

SUBSTITUTE SHEET (RULE 26

| ਉ          |
|------------|
| ສ          |
| Ξ          |
| Ξ          |
| ತ          |
| 2          |
| 2          |
| ູຍ         |
| _          |
| 8          |
| ď          |
| þ          |
| ਰ          |
| S          |
| 풀          |
| ĕ          |
| . =        |
| ₫          |
| vect       |
| _          |
| 8          |
| ď          |
| 12         |
| .₫         |
| ≓          |
| ğ          |
| <u>=</u>   |
| S          |
| ಶ          |
| nd sequen  |
| 급          |
| S          |
| Б          |
| s an       |
| ğ          |
| Ë          |
| _          |
| Ë          |
| : <u>≓</u> |
| Ĕ          |
| Ŀ          |
| 'n         |
| 35         |
| 5          |
| ig         |
| Figi       |

| TATCTCGGTC                       | ATTGGTTAAA                                     | AAAATATTAA                       |
|----------------------------------|------------------------------------------------|----------------------------------|
| ATAGAGCCAG                       | TAACCAATTT                                     | TTTTATAATT                       |
|                                  | ATTTCGGCCT ATTGGTTAAA<br>TAAAGCCGGA TAACCAATTT |                                  |
| CTTGTTCCAA ACTGGAACAA CACTCAACCC | GATTTTGCCG                                     | ATTTAACAAA AATTTAACGC GAATTTTAAC |
| GAACAAGGTT TGACCTTGTT GTGAGTTGGG | CTAAAACGGC                                     | TAAATTGTTT TTAAATTGCG CTTAAAATTG |
| CTTGTTCCAA                       | ATTTATAAGG                                     | ATTTAACAAA                       |
| GAACAAGGTT                       | TAAATATTCC                                     | TAAATTGTTT                       |
| ATAGTGGACT                       | TATTCTTTTG                                     | AAATGAGCTG                       |
| TATCACCTGA                       | ATAAGAAAAC                                     | TTTACTCGAC                       |
| 301                              | 351                                            | 401                              |

BsrGI

CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

451

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

CTTGGAGCGA

TACAGTCCAG

GGTTCGTGCA

CTGAACGGGG

AGCGGTCGGA

301

GACTTGCCCC

GATAAGGCGC CTATTCCGCG

TATCAATGGC

TGAGTTCTGC

AGGCCCAACC

ACGTACAGAA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

12:

Σ

|       | CGCGTAATCT<br>GCGCATTAGA | TTCGTAGGTT<br>AAGCATCCAA | GAGGAGCGCA               | CATGACTTCA<br>GTACTGAAGT   | GTGGTGCTTT<br>CACCACGAAA | SATAAGGCGC                                  |
|-------|--------------------------|--------------------------|--------------------------|----------------------------|--------------------------|---------------------------------------------|
|       | TTTTGGTCTG AAAACCAGAC    | AGGGCGGTTT T             | AACTGGCTTG (TTGACCGAAC)  | TTAACCGGCG AATTGGCCGC      | GCTGCTGCCA (CGACGACGGT)  | TCCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGCGC |
|       | CTTGAGATCG<br>GAACTCTAGC | ACCGCCTTGC<br>TGGCGGAACG | GAACCGAGGT<br>CTTGGCTCCA | CAGTTTAGCC<br>GTCAAATCGG   | ATTACCAGTG<br>TAATGGTCAC | ACTCAAGACG                                  |
|       | AGATGATCTT<br>TCTACTAGAA | AAACGAAAAA<br>TTTGCTTTTT | CCAACTCTTT<br>GGTTGAGAAA | CTTGTCCTTT<br>GAACAGGAAA   | CTCTAAATCA<br>GAGATTTAGT | TCCGGGTTGG                                  |
| BglII | AGATCTAATA<br>TCTAGATTAT | CTTGCTCTGA<br>GAACGAGACT | CTCTGAGCTA<br>GAGACTCGAT | GTCACTAAAA<br>CAGTGATTTT   | AGACTAACTC<br>TCTGATTGAG | TGCATGTCTT                                  |
|       | <b>.</b>                 | 51                       | 101<br>SUBSTITU          | 15<br>15<br>15<br>15<br>15 | 701E 26)                 | 251                                         |

WO 97/08320 PCT/EP96/03647

CAGTGAGCGA

CGTAGCGAGT GCATCGCTCA

AACGACCGAG TTGCTGGCTC

GCCGCAGTCG CGGCGTCAGC

ATTTCCGCTC TAAAGGCGAG

651

|                              | 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAL vectors (continued)      | ACTOCOMACO COCAACTOM TOTOACACTOM TOTOACTOCOMACTOCOMACTOCOMACTOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMACTOCOMAC |
| AL vector modules and pC     | TOUCACHON to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ences of additional pC       | CGGAACTGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| i: Functional maps and seque | ACTGCCTACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 35a:                  | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| AAACGCGGCC<br>TTTGCGCCGG                                                                    |      | AGGAGAGCGC<br>TCCTCTCGCG | GTCCTGTCGG<br>CAGGACAGCC | TTGTCAGGGG               | ACTTCCCTGT<br>TGAAGGGACA | TTCGTAAGCC<br>AAGCATTCGG |
|---------------------------------------------------------------------------------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| GGAATGAGAC<br>CCTTACTCTG                                                                    |      | AGGCAGGAAC<br>TCCGTCCTTG | ТАТСТТТАТА<br>АТАGАААТАТ | TTCGTGATGC<br>AAGCACTACG | CGGCCCTCTC<br>GCCGGGAGAG | CTCCGCCCCG               |
| CEGAACTIGAG TGTCAGGCGT GGAATGAGAC AAACGCGGCC<br>GCCTTGACTC ACAGTCCGCA CCTTACTCTG TTTGCGCCGG | ?    | GTAAACCGAA<br>CATTTGGCTT | AAACGCCTGG<br>TTTGCGGACC | AGCGTCAGAT<br>TCGCAGTCTA | GGCTTTGCCG<br>CCGAAACGGC | TCCAGGAAAT<br>AGGTCCTTTA |
| CGGAACTGAG<br>GCCTTGACTC                                                                    | AgeI | AATGACACCG<br>TTACTGTGGC | CGCCAGGGGG               | CACTGATTTG<br>GTGACTAAAC | ATGGAAAAAC<br>TACCTTTTTG | CCTGGCATCT<br>GGACCGTAGA |
| ACIGCCIACC<br>TGACGGATGG                                                                    |      | ATAACAGCGG<br>TATTGTCGCC | AGGAGGGAGC<br>TCCTCCCTCG | GTTTCGCCAC               | GGCGGAGCCT               | TAAGTATCTT<br>ATTCATAGAA |
| 3 D L                                                                                       |      | 401                      | 451                      | 501                      | 551                      | 601                      |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

1.

|     |                          |                          |                                                                                            |                                                                                         | AgeI                                           |
|-----|--------------------------|--------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|
| 701 | GGAAGCGGAA<br>CCTTCGCCTT | TATATCCTGT<br>ATATAGGACA | GGAAGCGGAA TATATCCTGT ATCACATATT CTGCTGACGC<br>CCTTCGCCTT ATATAGGACA TAGTGTATAA GACGACTGCG | CTGCTGACGC<br>GACGACTGCG                                                                | CTGCTGACGC ACCGGTGCAG<br>GACGACTGCG TGGCCACGTC |
| 751 | CCTTTTTTCT<br>GGAAAAAAGA | CCTGCCACAT               |                                                                                            | XmnI<br>~~~~~~~<br>GAAGCACTTC ACTGACACCC TCATCAGTGC<br>CTTCGTGAAG TGACTGTGGG AGTAGTCACG | TCATCAGTGC<br>AGTAGTCACG                       |
| 801 | CAACATAGTA<br>GTTGTATCAT | AGCCAGTATA<br>TCGGTCATAT | Nhel<br>AGCCAGTATA CACTCCGCTA GC<br>TCGGTCATAT GTGAGGCGAT CG                               | ,<br>00<br>00<br>00                                                                     |                                                |





BglII

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

13: Σ BglII

~ ~ ~ ~ ~ ~ ~ ~

ATGTATGCTA AGATCTCATA

TTCAGATCT AAGTCTAGA TACGAAGTTA ATGCTTCAAT TACATACGAT ACTTCGTATA TGAAGCATAT TCTAGAGTAT





CTATTGCACT GATAACGTGA

ECORI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 19:

| , L           | ~~~~T                                                                           |
|---------------|---------------------------------------------------------------------------------|
| $\mathcal{O}$ |                                                                                 |
| <b>6</b> 3: 1 | . 29<br>29<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 |

SapI

| 1111 | GAATTC         | CTTAAG                    |  |
|------|----------------|---------------------------|--|
| ·    | ACCAAAGCC      | TGGTTTCGG                 |  |
|      | r TCACCCCTGT 1 | I GGCAACGAGA AGTGGGGACA A |  |
|      | A CCGTTGCTCT I | GGCAACGAGA                |  |
|      | GGCACTCTTA     | CCGTGAGAAT                |  |

SUBSTITUTE SHEET (RULE 26)

51





Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20:

XbaI SphI

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTAC GCGTAGGAGA CGCATCCTCT TCTAGAGCAT AGATCTCGTA

SapI

GACTACAAAG CTGATGTTTC TACCAAAGCC ATGGTTTCGG TCACCCCTGT AGTGGGGACA CCGTTGCTCT GGCAACGAGA CCGTGAGAAT GGCACTCTTA

51

MunI EcoRI

12111

ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

SUBSTITUTE SHEET (RULE 26)
147 / 204

101





Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21 Σ XbaI

11111

TTCTTCTTGC TTATAGCGTA AATATCGCAT TATGAAAAAG ATACTTTTTC CTCCACTAAA GAGGTGATTT TCTAGAGGTT AGATCTCCAA

NsiI

ECORI

GAATTC 1111

~~~~~~

CTTAAG TGCATACGCT TTGCTACAAA

ACGTATGCGA AACGATGTTT

ATCTATGTTC 51

TAGATACAAG

GTTTTTTCTA CAAAAAAGAT

SUBSTITUTE SHEET (PULE 26)

ATCAACTGGG

TAGTTGACCC

AGAGCGCGGC TCTCGCGCCG

GGCGATTAAA CCGCTAATTT

AAATTGTCGC TTTAACAGCG

GCGCCGTCGC CGCGGCAGCG

301

CCGGGACGTG

GGAGGTCAGA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

41 Σ

NheI

CAT GATAGCGCCC GTA CTATCGCGGG	GTA ACGTTATACG CAT TGCAATATGC	TTC CCGCGTGGTG AAG GGCGCACCAC	AAG TGGAAGCGGC FTC ACCTTCGCCG	AA CAACTGGCGG	CT GGCCCTGCAC
GGTATGGCAT	GAAACCAGTA	AGACCGTTTC	CGGGAAAAAG	CGTGGCACAA	CCTCCAGTCT
CCATACCGTA	CTTTGGTCAT	TCTGGCAAAG	GCCCTTTTTC	GCACCGTGTT	GGAGGTCAGA
AACCTTTCGC	TGGTGAATGT	GTCTCTTATC	TGCGAAAACG	TTCCTAACCG	GGCGTTGCCA
TTGGAAAGCG	ACCACTTACA	CAGAGAATAG	ACGCTTTTGC	AAGGATTGGC	CCGCAACGGT
AATGGCGCAA	CAATTCAGGG	GTATGCCGGT	GCCACGTTTC	CTGAATTACA	GTTGCTGATT
TTACCGCGTT	GTTAAGTCCC	CATACGGCCA	CGGTGCAAAG	GACTTAATGT	CAACGACTAA
GCTAGCATCG	GGAAGAGAGT	ATGTCGCAGA	AACCAGGCCA	GATGGCGGAG	GCAAACAGTC
CGATCGTAGC	CCTTCTCTCA	TACAGCGTCT	TTGGTCCGGT	CTACCGCCTC	CGTTTGTCAG
П	21	101	151	201	251

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUESTITUTE SHEET (RULE 26) 153 / 204 Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GGAGGCCGTT	CCTCCGGCAA
CTTCCTGACA	GAAGGACTGT
ATAAAAGCGG	TATTTTCGCC
AGGCTACCCG	TCCGATGGGC
GCGGGCAGTG	CGCCCGTCAC
151	

GCCCACTTAA CGGGTGAATT TTGTTTTGCA AACAAAACGT 1201

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 155 / 204

WO 97/08320

PCT/EP96/03647

ATCACTTTTG

TAGTGAAAAC

TATTTGCCCA

ATAAACGGGT

TTTGACCACT

AAACTGGTGA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) pCAL0-1:

BglII ~~~~

AAAAAATTA TAACTGCCTT ATTGACGGAA AGGCCACCAA TCCCGTGGTT CAGGCGTTTA GTCCGCAAAT CTAGATCGTG GATCTAGCAC

AATTCGTAAG TTAAGCATTC TTGTAATTCA AACATTAAGT CGCAGTACTG GCGTCATGAC ACGGTGAGTA TGCCACTCAT 959595555 222522252 51

TTAGCGGTCG AATCGCCAGC GATGAACCTG CTACTTGGAC CAAACGGCAT GTTTGCCGTA CTTCGGTAGT GAAGCCATCA ACGGCTGTAC TGCCGACATG 101

TTGCGTATAA AACGCATATT GGAACAGCGG CCTTGTCGCC GGCATCAGCA CCGTAGTCGT

GTTTAAATCA CAAATTTAGT TATTGGCTAC ATAACCGATG TTCAACAGGT AAGTTGTCCA CCCCCCTLC GGGGCGAAG 201

TTATTTGGGA AATAAACCCT TGTATAAGAG ACATATTCTC GAGACGAAAA CTCTGCTTTT CCCTAACCGA GGGATTGGCT TTGAGTGGGT AACTCACCCA 51

CTTGCGAATA GAACGCTTAT CACGCCACAT GTGCGGTGTA TTCACCGTAA AAGTGGCATT TCCGGTCCAA AGGCCAGGTT AATCCCTTTA TTAGGGAAAT 301

SUBSTITUTE SHEET (RULE 26)

51

=
5
2
ઃ≅
õ
೨
Σ
5
بۆ
₹
. ₽
ō
ā
S
3
g
Ě
ö
픐
Š
ب
S
₫
īg
9
≘
믕
G
0
S
ű
Ä
큣
Š
D
<u></u>
Sd
2
=
<u>=</u>
.≘
2
.≒
<u>:</u> :
35a
ς.
<u>۽</u>
jo
正

	351	TATGTGTAGA ATACACATCT	AACTGCCGGA TTGACGGCCT	AATCGTCGTG TTAGCAGCAC	GTATTCACTC CATAAGTGAG	CAGAGCGATG GTCTCGCTAC
4 (401	AAAACGTTTC TTTTGCAAAG	AGTTTGCTCA TCAAACGAGT	TGGAAAACGG ACCTTTTGCC	TGTAACAAGG	GTGAACACTA CACTTGTGAT
4.5	451	TCCCATATCA AGGGTATAGT	CCAGCTCACC	GTCTTTCATT CAGAAAGTAA	GCCATACGGA CGGTATGCCT	ACTCCGGGTG TGAGGCCCCAC
5(501	AGCATTCATC TCGTAAGTAG	AGGCGGGCAA TCCGCCCGTT	GAATGTGAAT CTTACACTTA	AAAGGCCGGA TTTCCGGCCT	TAAAACTTGT ATTTTGAACA
551	51	GCTTATTTTT CGAATAAAAA	CTTTACGGTC GAAATGCCAG	TTTAAAAAGG AAATTTTTCC	CCGTAATATC GGCATTATAG	CAGCTGAACG
601	01	GTCTGGTTAT CAGACCAATA	AGGTACATTG TCCATGTAAC	AGCAACTGAC TCGTTGACTG	TGAAATGCCT ACTTTACGGA	CAAAATGTTC GTTTTACAAG
651	51	TTTACGATGC AAATGCTACG	CATTGGGATA GTAACCCTAT	TATCAACGGT ATAGTTGCCA	GGTATATCCA CCATATAGGT	GTGATTTTT CACTAAAAAA
701)1	TCTCCATTTT AGAGGTAAAA	AGCTTCCTTA TCGAAGGAAT	GCTCCTGAAA CGAGGACTTT	ATCTCGATAA TAGAGCTATT	CTCAAAAAAT GAGTTTTTTA

_
ģ
nued)
Ξ.
Ĕ
ಶ
Ň
٥
ਹ
×
7
Q
_
2
æ
<u>ಶ</u>
쿠
ŏ
Ε
ŏ
ひ
vector
7
ට
٩
13
<u>ō</u>
≅
펄
9
0
Ş
2
Ä
큣
Š
힏
ਰ
S
2
_
E L
.ē
걸
5
15a: Fur
29
Figure 3
n 6
표.

AACCTCACCC	
TGAAAGTTGG ACTTTCAACC	
TTCATTATGG AAGTAATACC	
GTGATCTTAT CACTAGAATA	
ACGCCCGGTA TGCGGGCCAT	AatII
751	

GCTTTACACT	CGAAATGTGA
AGTTAGC TCACTCATTA GGCACCCCAG GCTTTACACT	A CACTCAATCG AGTGAGTAAT CCGTGGGGTC CGAAATGTGA
TCACTCATTA	AGTGAGTAAT
AAT GTGAGTTAGC TCACTCATTA	A CACTCAATCG
GACGTCTAAT	CTGCAGATTA

2222

801

A TTGTGAGCGG ATAACAATTT	CCGAGCATAC AACACCTT AACACTCGCC TATTGTTAAA	
TTGTGTGGA	AACACACCTT A	
GGCTCGTATG	CCGAGCATAC	
TTATGCTTCC	AATACGAAGG	
851		

?	ACCCCCCCC	COCCCCCCCC
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	ACAGCTATGA CCATGATTAC GAATTTCTAG ACCCCCCCC	TOTICGATACT GGTACTAATC CTTAAAGATC TGGGGGG
	CCATGATTAC	GGTACTAATG
	ACAGCTATGA	TOTOGATACT
	CACACAGGAA	
	901	
E SH	iEE!	· (A

XbaI.

ACCCCCCCC	TGGGGGGGGG	HindIII	? ? ? ? ? ?
GAATTTCTAG	CTTAAAGATC		
. ACAGCTATGA CCATGATTAC GAATTTCTAG	GGTACTAATG		
ACAGCTATGA	TCCTT TGTCGATACT		
CACACAGGAA	GTGTGTCCTT	Sphi	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
901			
F=1	· ÆH	E 03/	

ATAAGCTTGA	TTTGTCTGCC
TATTCGAACT	AAACAGACGG
AATGTACGCT ATACGAAGTT ATAAGCTTGA	CGACATTTTT TTTGTCTGCC
TTACATGCGA TATGCTTCAA TATTCGAACT	GCTGTAAAA AAACAGACGG
AATGTACGCT	GCAGATTGTG
TTACATGCGA	CGTCTAACAC
CGCATGCCAT AACTTCGTAT	CCTGTGAAGT GAAAATGGC
GCGTACGGTA TTGAAGCATA	GGACACTTCA CTTTTTACCG
951	1001

SUBSTITUTE SHEET (RULE 23) 158 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

BsrGI	~~~~~~ GTACATGAAA CATGTACTTT	TTGTTAAATC AACAATTTAG	CTTATAAATC GAATATTTAG	TGGAACAAGA ACCTTGTTCT	AAAAACCGTC TTTTTGGCAG	CAAGTTTTTT GTTCAAAAAA	BanII ~~~~~~ GGGAGCCCCC CCCTCGGGGG			
	GGGGGGGGGT	ССТТАААТТТ ССААТТТААА	GGCAAAATCC CCGTTTTAGG	TGTTCCAGTT ACAAGGTCAA	TCAAAGGGCG AGTTTCCCGC	TCACCCTAAT AGTGGGATTA	GAACCCTAAA CTTGGGATTT			
FseI	GGGCCGGCCT	TTAAAATTCG AATTTTAAGC	GGCCGAAATC CCGGCTTTAG	GGTTGAGTGT CCAACTCACA	GACTCCAACG CTGAGGTTGC	ACGAGAACCA TGCTCTTGGT	CACTAAATCG GTGATTTAGC			
	AGGGGGGGGG TCCCCCCCC	TAATATTTTG ATTATAAAAC	TTAACCAATA AATTGGTTAT	ACCGAGATAG TGGCTCTATC	AAAGAACGTG TTTCTTGCAC	ATGGCCCACT TACCGGGTGA	TGCCGTAAAG ACGGCATTTC			
	GTTTAATTAA CAAATTAATT	TTGTAAACGT AACATTTGCA	AGCTCATTTT TCGAGTAAAA	AAAAGAATAG TTTTCTTATC	GTCCACTATT	TATCAGGGCG ATAGTCCCGC	GGGGTCGAGG			
	1051	1101	1151 1151	1201	1251 1251	1301	1351			
	SUBSTITUTE SHEET (DULE 26)									

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AAAGGAAGGG TTTCCTTCCC	TAGCGGTCAC ATCGCCAGTG	CTACAGGGCG GATGTCCCGC	GATGAGGGTG	H	CCGGTGCGTC	CACTGACTCG GTGACTGAGC	ACGAACGGGG
•		_			1		
ACGTGGCGAG TGCACCGCTC	CTGGCAAGTG GACCGTTCAC	TAATGCGCCG	TGTTGGCACT		~ AAAGGCTGCA TTTCCGACGT	CTTCCTCGCT GAAGGAGCGA	GAAATGGCTT
AAGCCGGCGA TTCGGCCGCT	CGCTAGGGCG GCGATCCCGC	CCGCCGCGCT	TGGCTTACTA		GCAGGAGAAA CGTCCTCTTT	ATATATTCCG TATATAAGGC	GCGGCGAGCG
TTGACGGGGA	AAGGAGCGGG TTCCTCGCCC	ACCACCACAC TGGTGGTGTG	GAGTGTATAC CTCACATATG	Ħ	GCTTCATGTG	GTGATACAGG CACTATGTCC	TCGTTCGACT
GATTTAGAGC	AAGAAAGCGA TTCTTTCGCT	GCTGCGCGTA CGACGCGCAT	NheI ~~~~~ CGTGCTAGCG GCACGATCGC	IrmX	TCAGTGAAGT AGTCACTTCA	AGCAGAATAT TCGTCTTATA	CTACGCTCGG
1401	1451	1501	1551		1601	1651	1701
		. 8	BUBSTITUTE SHEET	(RULE 2	?6)		

ਰੂ
ت
⊇
.≒
Ξ
ᅙ
ت
~
Ξ
₽
ς.
>
_
⋖
Š
2
∖≂
<u>ئة</u>
3
Ā
2
⊏
≍
₽
. ບ
5
5
\sim
~
Ξ
.2
≔
육
×
<u> </u>
0
S
ວ
Ξ.
ĭ
5
sedno
-
Ξ
æ
S
<u> </u>
maps and sequence
_
-
Ξ
·≚
ਹੁ
⊑
-
•
53
3
به
Figure
ੁਨ
ıĔ.

CCGAA TGCTTGCCCC	ACAGG GAAGTGAGAG FGTCC CTTCACTCTC	SCCCT GACAAGCATC	CCGAC AGGACTATAA GGCTG TCCTGATATT	SCGCT CTCCTGTTCC	SGCCG CGTTTGTCTC	rcgct ccaagctgga agcga ggttcgacct	SCGCC TTATCCGGTA
CTTTACCGAA	ACTTAACAGG TGAATTGTCC	CCGCCCCCCT	GAAACCCGAC CTTTGGGCTG	CTCCTGCGCT	GTTATGGCCG	GCAGTTCGCT CGTCAAGCGA	CCGCTGCGCC
CGCCGCTCGC	CCAGGAAGAT GGTCCTTCTA	TCCATAGGCT AGGTATCCGA	CAGTGGTGGC GTCACCACCG	TGGCGGCTCC	TCATTCCGCT AGTAAGGCGA	TTCCGGGTAG AAGGCCCATC	TTCAGTCCGA
AGCAAGCTGA	CTGGAAGATG GACCTTCTAC	AAGCCGTTTT TTCGGCAAAA	ACGCTCAAAT TGCGAGTTTA	CGTTTCCCCC GCAAAGGGGG	AgeI ~~~~~~ TTTACCGGTG AAATGGCCAC	TGACACTCAG ACTGTGAGTC	GAACCCCCCG
gure 358. Functional maps and sequences of acutionial posts extend moderns and posts extend teaming and acution and acution and acution and acution and acution and acution and acution acution and acution acution acution and acution acutio	CGGAGATTTC GCCTCTAAAG	GGCCGCGGCA	ACGAAATCTG TGCTTTAGAC	AGATACCAGG TCTATGGTCC	TGCCTTTCGG	ATTCCACGCC TAAGGTGCGG	CTGTATGCAC
ure 358: runcuonal	1751	1801	1851	1901 1901	ET (80 TE)	2001	2051

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ACCACTGGCA TGGTGACCGT	TCATGCGCCG	TCCTCCAAGC AGGAGGTTCG	ACGAAAAACC TGCTTTTTGG	ACGCGCAGAC TGCGCGTCTG		
ATGCAAAAGC TACGTTTTCG	AGTCTTGAAG TCAGAACTTC	GTGACTGCGC CACTGACGCG	CAGAGAACCT GTCTCTTGGA	GCAAGAGATT CGTTCTCTAA		
CCGGAAAGAC GGCCTTTCTG	TAGAGGAGTT AGTCTTGAAG ATCTCCTCAA TCAGAACTTC	AACTGAAAGG ACAAGTTTTA TTGACTTTCC TGTTCAAAAT	GTTGGTAGCT CAACCATCGA	CGTTTTTCAGA GCAAAAGTCT	BglII	сатсттатта Gragaataat
TGAGTCCAAC ACTCAGGTTG	GTAATTGATT CATTAACTAA	AACTGAAAGG TTGACTTTCC	GGTTCAAAGA CCAAGTTTCT	GCGGTTTTTT CGCCAAAAA		TCAAGAAGAT AGTTCTTCTA
ACTATCGTCT TGATAGCAGA	GCAGCCACTG CGTCGGTGAC	GTTAAGGCTA CAATTCCGAT	CAGTTACCTC GTCAATGGAG	GCCCTGCAAG CGGGACGTTC		CAAAACGATC GTTTTGCTAG
2101	2151	2201	2251	2301		2351
		S	UBSTITUTE	SHEET (FIUL	.E 25)	

SUBSTITUTE SHEET (AULG 20 162 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a.: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

-2
Ö
Į
\sim

BsrGI

AATTCG CGTTAAATTT	GCAATTTAAA
7	AATTTTAAGC
ACGT TAATATTTTG TT	ATTATAAAAC
TTGTAAACGT	AACATTTGCA
GTACATGAAA	CATGTACTTT
\leftarrow	

NATC GGCAAAATCC	CCGTTTTAGG
7	CCGGCTTTAG
TTAACCAATA	AATTGGTTAT
AGCTCATTTT TTAACCAATA GGCCGA	TCGAGTAAAA
TTGTTAAATC	AACAATTTAG
51	

TGTTCCAGTT	ACAAGGTCAA
GGTTGAGTGT	CCAACTCACA
ATC AAAAGAATAG ACCGAGATAG GGTTGAGTGT TGTTCCAGTT	TTAG TTTTCTTATC TGGCTCTATC CCAACTCACA ACAAGGTCAA
AAAAGAATAG	TTTTCTTATC
3	GAATATTTAG
101	
SUB	STITU

TCACCCTAAT	ACGAGAACCA	ATGGCCCACT	FIC TATCAGGGCG ATGGCCCACT ACGAGAACCA TCACCCTAAT	AAAAACCGTC	201
AGTTTCCCGC	CTGAGGTTGC	TTTCTTGCAC	CT CAGGTGATAA TTTCTTGCAC CTGAGGTTGC AGTTTCCCGC	ACCTTGTTCT	
TCAAAGGGCG	GA GTCCACTATT AAAGAACGTG GACTCCAACG TCAAAGGGCG	AAAGAACGTG	GTCCACTATT	TGGAACAAGA	151

TCACCCTAAT AGTGGGATTA

TGCTCTTGGT

TACCGGGTGA

ATAGTCCCGC

TTTTGGCAG

BanII

2222

GGGAGCCCCC GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG 301

SUBSTITUTE SHEET (RULE 20)

Figure 3	5a: Functiona	Figure 35a: Functional maps and sequences of a	dditional pCAL vector moc	of additional pCAL vector modules and pCAL vectors (continued)	ntinued)	ע פּיַט ליני ליני אַ נער פּיַט פּיַט פּיַט פּיַט פּיַט פּיַט פּיַט פּיַט פּיַט פּיַט פּיַט פּיַט פּיַט פּיַט פּיַט
		CCCICGGGGG		CIAAAICICG AACIGCCCI	T.T.C.G.C.C.T.	TGCACCGCTC
	351	AAAGGAAGGG TTTCCTTCCC	AAGAAAGCGA TTCTTTCGCT	AAGGAGCGGG TTCCTCGCCC	CGCTAGGGCG GCGATCCCGC	CTGGCAAGTG GACCGTTCAC
	401	TAGCGGTCAC	GCTGCGCGTA	ACCACCACAC TGGTGGTGTG	CCGCCGCGCT	TAATGCGCCG
S			NheI			
UBSTITUTE S 165,	451	CTACAGGGCG GATGTCCCGC	CGTGCTAGCG GCACGATCGC	GAGTGTATAC CTCACATATG	TGGCTTACTA ACCGAATGAT	TGTTGGCACT ACAACCGTGA
HEET (F / 204			IrmX	Ιι		AgeI
IULE 26)	501	GATGAGGGTG	TCAGTGAAGT AGTCACTTCA	GCTTCATGTG	GCAGGAGAAA CGTCCTCTTT	AAAGGCTGCA TTTCCGACGT
		AgeI				
	551	CCGGTGCGTC	AGCAGAATAT TCGTCTTATA	GTGATACAGG CACTATGTCC	ATATATTCCG TATATAAGGC	CTTCCTCGCT GAAGGAGCGA
	601	CACTGACTCG	CTACGCTCGG	TCGTTCGACT	GCGGCGAGCG	GAAATGGCTT

ued)
Ē
S
S (
į
Ķ
٦
ည
pu
Sa
fules
õ
×
ž
×
S
<u>a</u>
Sug
≝
ado
o
S
en
D.
Sc
an
I maps and sec
Ĕ
naj
tiona
, and
Ē
35a
آو
Figu
ᄪ

		GTGACTGAGC	GATGCGAGCC	AGCAAGCTGA	CGCCGCTCGC	CTTTACCGAA
	651	ACGAACGGGG TGCTTGCCCC	CGGAGATTTC GCCTCTAAAG	CTGGAAGATG	CCAGGAAGAT GGTCCTTCTA	ACTTAACAGG TGAATTGTCC
	701	GAAGTGAGAG CTTCACTCTC	GGCCGCGGCA	AAGCCGTTTT TTCGGCAAAA	TCCATAGGCT AGGTATCCGA	CCGCCCCCT
SURS	751	GACAAGCATC	ACGAAATCTG TGCTTTAGAC	ACGCTCAAAT TGCGAGTTTA	CAGTGGTGGC GTCACCACCG	GAAACCCGAC CTTTGGGCTG
TITUTE SHE	801	AGGACTATAA TCCTGATATT	AGATACCAGG TCTATGGTCC	CGTTTCCCCC	TGGCGGCTCC ACCGCCGAGG	CTCCTGCGCT GAGGACGCGA
FT (9:11 F 28)	851	CTCCTGTTCC	TGCCTTTCGG	AgeI ~~~~~~ TTTACCGGTG	TCATTCCGCT	GTTATGGCCG
		GAGGACAAGG	ACGGAAAGCC	AAATGGCCAC	AGTAAGGCGA	CAATACCGGC
	901	CGTTTGTCTC GCAAACAGAG	ATTCCACGCC TAAGGTGCGG	TGACACTCAG ACTGTGAGTC	TTCCGGGTAG AAGGCCCATC	GCAGTTCGCT CGTCAAGCGA
	951	CCAAGCTGGA GGTTCGACCT	CTGTATGCAC GACATACGTG	GAACCCCCCG	TTCAGTCCGA	CCGCTGCGCC

ວວວອວວວວອວ

ААААААТТА ТТТТТТТААТ

TAACTGCCTT ATTGACGGAA

TCCCGTGGTT AGGGCACCAA

CAGGCGTTTA GTCCGCAAAT

1301

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ATGCAAAAGC TACGTTTTCG	AGTCTTGAAG TCAGAACTTC	GTGACTGCGC	CAGAGAACCT GTCTCTTGGA	GCAAGAGATT CGTTCTCTAA	Bglii ~~~~~~ GATCTAGCAC CTAGATCGTG
CCGGAAAGAC GGCCTTTCTG	TAGAGGAGTT ATCTCCTCAA	ACAAGTTTTA TGTTCAAAAT	GTTĠGTAGCT CAACCATCGA	CGTTTTCAGA GCAAAAGTCT	~~ CATCTTATTA GTAGAATAAT
TGAGTCCAAC	GTAATTGATT CATTAACTAA	AACTGAAAGG TTGACTTTCC	GGTTCAAAGA CCAAGTTTCT	GCGGTTTTTT CGCCAAAAAA	TCAAGAAGAT AGTTCTTCTA
ACTATCGTCT TGATAGCAGA	GCAGCCACTG	GTTAAGGCTA CAATTCCGAT	CAGTTACCTC GTCAATGGAG	GCCCTGCAAG CGGGACGTTC	CAAAACGATC GTTTTGCTAG
TTATCCGGTA AATAGGCCAT	ACCACTGGCA TGGTGACCGT	TCATGCGCCG AGTACGCGGC	TCCTCCAAGC AGGAGGTTCG	ACGAAAAACC TGCTTTTTGG	ACGCGCAGAC TGCGCGTCTG
1001	1051	1101	1151 1151	TZ 01	1251
				-	•

WO 97/08320 PCT/EP96/03647

dules and pCAL vectors (continued)
bo
Ε
ğ
Ş
S
, <u>ō</u> .
na
<u>ę</u>
Ē
ĕ
<u></u>
ည
en en
큵
ıd seque
ınd
Š
Ja Z
=
na
Ħ
Ĕ
ī
59
r 3
gure
Fig

TTAAGCATTC TGCCGACATG AATTCGTAAG ACGGCTGTAC	AATCGCCAGC GGCATCAGCA TTAGCGGTCG CCGTAGTCGT	TAGTGAAAAC GGGGGGGGAAG ATCACTTTTG CCCCCGCTTC	AAACTGGTGA AACTCACCCA TTTGACCACT TTGAGTGGGT	AATAAACCCT TTAGGGAAAT TTATTTGGGA AATCCCTTTA	CTTGCGAATA TATGTGTAGA GAACGCTTAT ATACACATCT	CAGAGCGATG AAAACGTTTC GTCTCGCTAC TTTTGCAAAG	GTGAACACTA TCCCATATCA CACTTGTGAT AGGGTATAGT
	, -		•				
TTGTAATTCA	GATGAACCTG CTACTTGGAC	TATTTGCCCA	GTTTAAATCA CAAATTTAGT	ACATATTCTC TGTATAAGAG	CACGCCACAT GTGCGGTGTA	GTATTCACTC	TGTAACAAGG ACATTGTTCC
CGCAGTACTG	CAAACGGCAT GTTTGCCGTA	TTGCGTATAA AACGCATATT	TATTGGCTAC ATAACCGATG	GAGACGAAAA CTCTGCTTTT	TTCACCGTAA AAGTGGCATT	AATCGTCGTG TTAGCAGCAC	TGGAAAACGG ACCTTTTGCC
TIGORA 353. FUNCTIONAL MAJORA STANDONS POR ACCEPTANT OF THE THE ATTICA ACGET GAGTA GCGTCATGAC AACATTAAGT	GAAGCCATCA CTTCGGTAGT	CCTTGTCGCC	AAGTTGTCCA TTCAACAGGT	GGGATTGGCT CCCTAACCGA	AGGCCAGGTT TCCGGTCCAA	AACTGCCGGA TTGACGGCCT	AGTTTGCTCA TCAAACGAGT
1351	1401	1451	1501	1551	1601	1651	1701
rigure 3				UTE SHEET (168 / 204	RULE 26)		

rs (continued)
vecto
p CAL
es and
modul
vector
pCAL
additional
of
seduences
and
maps
Functional
35a:
Figure

AGCATTCATC TCGTAAGTAG	GCTTATTTT CGAATAAAAA	GTCTGGTTAT CAGACCAATA	TTTACGATGC AAATGCTACG	TCTCCATTTT AGAGGTAAAA	ACGCCCGGTA TGCGGGCCAT	Aatii	GACGTCTAAT CTGCAGATTA	TTATGCTTCC
ACTCCGGGTG TGAGGCCCAC	TAAAACTTGT ATTTTGAACA	CAGCTGAACG GTCGACTTGC	CAAAATGTTC GTTTTACAAG	GTGATTTTTT CACTAAAAAA	CTCAAAAAAT GAGTTTTTTA	•	AACCTCACCC TTGGAGTGGG	GCTTTACACT
GCCATACGGA	AAAGGCCGGA TTTCCGGCCT	CCGTAATATC GGCATTATAG	TGAAATGCCT ACTTTACGGA	GGTATATCCA CCATATAGGT	ATCTCGATAA TAGAGCTATT		TGAAAGTTGG ACTTTCAACC	GGCACCCCAG
GTCTTTCATT	GAATGTGAAT CTTACACTTA	TTTAAAAAGG AAATTTTTCC	AGCAACTGAC TCGTTGACTG	TATCAACGGT ATAGTTGCCA	GCTCCTGAAA CGAGGACTTT		TTCATTATGG AAGTAATACC	TCACTCATTA
CCAGCTCACC	AGGCGGGCAA TCCGCCCGTT	CTTTACGGTC GAAATGCCAG	AGGTACATTG TCCATGTAAC	CATTGGGATA GTAACCCTAT	AGCTTCCTTA TCGAAGGAAT		GTGATCTTAT САСТАGААТА	GTGAGTTAGC
1751	1801	1851	SUBSTITU	TESHEET (F	700 TILE 260		2051	2101
ı					20)			

(continued)	
Lvectors	
es and pCAI	
ector modules	
I pCAL ve	
f additiona	
nd sequences of	
l maps a	
Functional	
35a:	
Figure	

AATACGAAGG	CACACAGGAA GTGTGTCCTT	Sphi ~~~~~~ cgcargccar gcgracggra	CCTGTGAAGT	PacI ~~~~~~~ GTTTAATTAA CAAATTAATT	TCCTTTGATC AGGAAACTAG
AATA	CACA	Sphi CGCATG GCGTAC	CCTG	GTTT CAAA	TCCT
CGAAATGTGA	ATAACAATTT TATTGTTAAA	ACCCCCCCCC	HindIII ~~~~~~ ATAAGCTTGA TATTCGAACT	TTTGTCTGCC	CTCAAGAAGA GAGTTCTTCT
THE 358: FUNCTIONAL MAPS AND SEQUENCES OF AUGUSONIAL PUAR VECTOR INDUSTRIES AND PUAR VECTORS (CONTINUED) CACTCAATCG AGTGAGTAAT CCGTGGGGTC CGA	TTGTGAGCGG AACACTCGCC	XbaI ~~~~~ GAATTTCTAG CTTAAAGATC	ATACGAAGTT TATGCTTCAA	CGACATTTTT GCTGTAAAAA	CAAAAAGGAT GTTTTTCCTA
AGTGAGTAAT	TTGTGTGGAA AACACACCTT	CCATGATTAC GGTACTAATG	AATGTACGCT TTACATGCGA	GCAGATTGTG CGTCTAACAC	FseI ~~~~~~ C CGCCATTAT
CACTCAATCG	GGCTCGTATG CCGAGCATAC	ACAGCTATGA TGTCGATACT	AACTTCGTAT TTGAAGCATA	GAAAAATGGC CTTTTTACCG	Fs
ssa: runctional	2151	2201	2251	2301	2351
م		S	SUBSTITUTE SHEET (RULE 26)	

SUBSTITUTE SHEET (RULE 26)

- 170 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GGAAC GAAAACTCAC GTTAAGGGAT	ATCTT CACCTAGATC CTTTTTAAATT	AAGTA TATATGAGTA AACTTGGTCT	SAGGC ACCTATCTCA GCGATCTGTC	ACTCC CCGTCGTGTA GATAACTACG	CCAGT GCTGCAATGA TACCGCGAGA	rcagc aataaaccag ccagccggaa	AACTT TATCCGCCTC CATCCAGTCT
CCTTG CTTTTGAGTG CAATTCCCTA	TAGAA GTGGATCTAG GAAAATTTAA	TTCAT ATATACTCAT TTGAACCAGA	CTCCG TGGATAGAGT CGCTAGACAG	TGAGG GGCAGCACAT CTATTGATGC	3GTCA CGACGTTACT ATGGCGCTCT	agtcg ttatttggtc ggtcggcctt	
TCAGTGGAAC AGTCACCTTG	AAAGGATCTT TTTCCTAGAA	ATCTAAAGTA TAGATTTCAT	TCAGTGAGGC AGTCACTCCG	GCCTGACTCC	TGGCCCCAGT	ATTTATCAGC TAAATAGTCG	CCTGCAACTT
GGTCTGACGC	AGATTATCAA	TTTTAAATCA	CAATGCTTAA	ATCCATAGTT	GCTTACCATC	CCGGCTCCAG	CAGAAGTGGT
CCAGACTGCG	TCTAATAGTT	AAAATTTAGT	GTTACGAATT	TAGGTATCAA	CGAATGGTAG	GGCCGAGGTC	GTCTTCACCA
TTTTCTACGG	TTTGGTCATG	AAAAATGAAG	GACAGTTACC	TATTTCGTTC	ATACGGGAGG	CCCACGCTCA	GGGCCGAGCG
AAAAGATGCC	AAACCAGTAC	TTTTTACTTC	CTGTCAATGG	ATAAAGCAAG	TATGCCCTCC	GGGTGCGAGT	
2401	2451	2501	2551	2601 SHEET (RUL	2651	2701	2751

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

	2801	ATTAACTGTT TAATTGACAA	GCCGGGAAGC CGGCCCTTCG	TAGAGTAAGT ATCTCATTCA	AGTTCGCCAG TCAAGCGGTC	ТТААТАСТТТ ААТТАТСААА
	2851	GCGCAACGTT	GTTGCCATTG CAACGGTAAC	CTACAGGCAT GATGTCCGTA	CGTGGTGTCA GCACCACAGT	CGCTCGTCGT GCGAGCAGCA
c	2901	TTGGTATGGC AACCATACCG	TTCATTCAGC AAGTAAGTCG	TCCGGTTCCC	AACGATCAAG TTGCTAGTTC	GCGAGTTACA CGCTCAATGT
I IRCTITI ITE	2951	TGATCCCCCA	TGTTGTGCAA ACAACACGTT	AAAAGCGGTT TTTTCGCCAA	AGCTCCTTCG TCGAGGAAGC	GTCCTCCGAT
SHEET (SU	3001	CGTTGTCAGA GCAACAGTCT	AGTAAGTTGG TCATTCAACC	CCGCAGTGTT GGCGTCACAA	ATCACTCATG TAGTGAGTAC	GTTATGGCAG CAATACCGTC
2 CC)	3051	CACTGCATAA GTGACGTATT	TTCTCTTACT AAGAGAATGA	GTCATGCCAT	CCGTAAGATG GGCATTCTAC	CTTTTCTGTG GAAAAGACAC
	3101	ACTGGTGAGT TGACCACTCA	ACTCAACCAA TGAGTTGGTT	GTCATTCTGA CAGTAAGACT	GAATAGTGTA CTTATCACAT	TGCGGCGACC
	3151	GAGTTGCTCT	TGCCCGGCGT	CAATACGGGA GTTATGCCCT	TAATACCGCG	CCACATAGCA

SUBSTITUTE SHEET (RULE 20) 172 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

XmnI

	BsrGI			÷ .		
GAAGCATTTA CTTCGTAAAT	СААТАТТАТТ GTTATAATAA	CTTCCTTTTT GAAGGAAAAA	AAATGTTGAA TACTCATACT TTTACAACTT ATGAGTATGA	AAATGTTGAA TTTACAACTT	3401	JLE 26)
GGCGACACGG CCGCTGTGCC	GCCGCAAAA AGGGAATAAG CGGCGTTTTT TCCCTTATTC	GCCGCAAAAA CGGCGTTTTT	CAAAAACAGG AAGGCAAAAT GTTTTTGTCC TTCCGTTTTA	CAAAAACAGG GTTTTTGTCC	3351	E SHEET (R!
TCTGGGTGAG AGACCCACTC	CACCAGCGTT GTGGTCGCAA	CTTTTACTTT GAAAATGAAA	TCCTCAGCAT AGGAGTCGTA	ACCCAACTGA TGGGTTGACT	3301	SUBSTITUT
CCACTCGCGC GGTGAGCGCG	TCGATGTAAC AGCTACATTG	GAGATCCAGT CTCTAGGTCA	TACCGCTGTT ATGGCGACAA	TCAAGGATCT AGTTCCTAGA	3251	
GCGAAAACTC CGCTTTTTGAG	GTTCTTCGGG CAAGAAGCCC	ATTGGAAAAC TAACCTTTTG	GAACTTTAAA AGTGCTCATC CTTGAAATTT TCACGAGTAG	GAACTTTAAA CTTGAAATTT	3201	

ATTTGAAT TCAGGGTTAT TGTCTCATGA GCGGATACAT AGTCCCAATA ACAGAGTACT CGCCTATGTA 3451

SUBSTITUTE SHEET (RULE 28 173 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 174 / 204

AatII

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				1
H	GATCTCATAA CTAGAGTATT	CTTCGTATAA GAAGCATATT	TGTATGCTAT ACATACGATA	ACGAAGTTAT TGCTTCAATA	~~~~~ GACGTCTAAT CTGCAGATTA
51	GTGAGTTAGC CACTCAATCG	TCACTCATTA AGTGAGTAAT	GGCACCCCAG CCGTGGGGTC	GCTTTACACT CGAAATGTGA	TTATGCTTCC AATACGAAGG
101	GGCTCGTATG CCGAGCATAC	TTGTGTGGAA AACACACCTT	TTGTGAGCGG	ATAACAATTT TATTGTTAAA	CACACAGGAA GTGTGTCCTT
151	ACAGCTATGA TGTCGATACT	CCATGATTAC GGTACTAATG	XbaI ~~~~~ GAATTTCTAG CTTAAAGATC	.~ ACCCCCCCCC TGGGGGGGG	SphI ~~~~~~ CGCATGCCAT GCGTACGGTA
201	AACTTCGTAT	AATGTACGCT TTACATGCGA	ATACGAAGTT TATGCTTCAA	HindIII ~~~~~~ ATAAGCTTGA TATTCGAACT	CCTGTGAAGT GGACACTTCA

SUBSTITUTE SHEET (RULE 26) 175 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

. ₹.		ည် ၅	TY A:	rr YA	T A	ည်တို့	ט ט
~~~~~~~ GTTTAATTAA CAAATTAATT		TCCTTTGATC AGGAAACTAG	GTTAAGGGAT CAATTCCCTA	CTTTTAAATT GAAAATTTAA	AACTTGGTCT TTGAACCAGA	GCGATCTGTC CGCTAGACAG	GATAACTACG CTATTGATGC
GTTT CAAA		TCC1 AGG2	GTT2 CAA1	CTTT GAAA	AAC1 TTGA	GCG2	GAT? CTA1
TTTGTCTGCC		CTCAAGAAGA GAGTTCTTCT	GAAAACTCAC CTTTTGAGTG	CACCTAGATC GTGGATCTAG	TATATGAGTA ATATACTCAT	ACCTATCTCA TGGATAGAGT	CCGTCGTGTA GGCAGCACAT
CGACATTTTT GCTGTAAAAA		CAAAAAGGAT GTTTTTCCTA	TCAGTGGAAC AGTCACCTTG	AAAGGATCTT TTTCCTAGAA	ATCTAAAGTA TAGATTTCAT	TCAGTGAGGC AGTCACTCCG	GCCTGACTCC CGGACTGAGG
GCAGATTGTG CGTCTAACAC	S & I	CGGCCATTAT GCCGGTAATA	GGTCTGACGC CCAGACTGCG	AGATTATCAA TCTAATAGTT	TTTTAAATCA AAAATTTAGT	CAATGCTTAA GTTACGAATT	ATCCATAGTT TAGGTATCAA
GAAAAATGGC CTTTTTACCG	ያ ቸ	r	TTTTCTACGG AAAAGATGCC	TTTGGTCATG AAACCAGTAC	AAAAATGAAG TTTTTACTTC	GACAGTTACC CTGTCAATGG	TATTTCGTTC
251		301	351	401	451	501	551
			SUBSTIT	UTE SHEET (	(RULE 26)		
			1	76 / 204			

_
Ð
ued)
Ξ
Ξ
္မွ
Ş
ō
ਹ
۶
7
Š
7
an(
S
تة
긓
ည
Ξ
ctor
S
>
¥
Š
=
Ę
.2
Ē
aq
5
Š
೭
E .
괊
Š
Ö
æ
Š
ap
Ε
æ
5
품
Ξ
丑
<del></del>
35
ن
5
Figur

601	ATACGGGAGG TATGCCCTCC	GCTTACCATC CGAATGGTAG	TG	TGGCCCCAGT ACCGGGGGTCA	GCCCCAGT GCTGCAATGA CGGGGTCA CGACGTTACT
651	CCCACGCTCA GGGTGCGAGT	CCGGCTCCAG	ATTTATCAGC TAAATAGTCG	AATA TTAT	AATAAACCAG TTATTTGGTC
701	GGGCCGAGCG CCCGGCTCGC	CAGAAGTGGT GTCTTCACCA	CCTGCAACTT GGACGTTGAA	TATCCGCCTC ATAGGCGGAG	GCCTC
751	ATTAACTGTT TAATTGACAA	GCCGGGAAGC CGGCCCTTCG	TAGAGTAAGT ATCTCATTCA	AGTTCGCCAG TCAAGCGGTC	CCAG
801	GCGCAACGTT CGCGTTGCAA	GTTGCCATTG CAACGGTAAC	CTACAGGCAT GATGTCCGTA	CGTGGTGTCA	STCA
851	TTGGTATGGC AACCATACCG	TTCATTCAGC AAGTAAGTCG	TCCGGTTCCC AGGCCAAGGG	AACGATCAAG TTGCTAGTTC	CAAG
901	TGATCCCCCA ACTAGGGGGT	TGTTGTGCAA ACAACACGTT	AAAAGCGGTT TTTTCGCCAA	AGCTCCTTCG TCGAGGAAGC	TCG
951	CGTTGTCAGA GCAACAGTCT	AGTAAGTTGG TCATTCAACC	CCGCAGTGTT GGCGTCACAA	ATCACTCATG	ATG

SUBSTITUTE SHEET (RULE 26)

_	
=	
2	
×	
=	
.=	
=	
=	
0	
<u>.</u>	
Ω	
5	
₽	
U	
بو	
>	
_	
7	
S	
$\simeq$	
_	
╼.	
≥	
<u>_</u>	
Š.	
<u>~</u>	
_	
Ō	
Õ	
=	
=	
_	
0	
ecto	
9	
€.	
_	
_	
⋖	
()	
pcAL	
_	
=	
==	
≍	
.≌	
=	
additi	
~	
~	
0	
Š	
SS	
Ces C	
nces c	
ences c	
nences c	
duences c	
sednences o	
sednences	
d sequences o	
nd sequences o	
and sequences o	
s and sequences o	
os and sequences c	
aps and sequences o	
naps and sequences o	
maps and sequences o	
I maps and sequences c	
al maps and sequences c	
nal maps and sequences c	
onal maps and sequences c	
tional maps and sequences c	
ctional maps and sequences c	
nctional maps and sequences c	
unctional maps and sequences c	
Functional maps and sequences c	
: Functional maps and sequences c	
: Functional maps and seq	
5a: Functional maps and sequences c	
5a: Functional maps and seq	
35a: Functional maps and seq	
35a: Functional maps and seq	
35a: Functional maps and seq	
35a: Functional maps and seq	
5a: Functional maps and seq	

BanII

TCAAAAAACC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

1401

1451

1501

# TTTACAACTT ATGAGTATGA GAAGGAAAAA GTTATAAATAA

cii migasimiga gaassaaaa si"i'a'i'aaraa cttcgtaaat	BsrGI	~~~~~ GT ACATGAAATT CA TGTACTTTAA	GTTAAATCAG	TATAAATCAA ATATTTAGTT	GAACAAGAGT	AAACCGTCTA TTTGGCAGAT	AGTTTTTGG TCAAAAAACC
GTTATATA	Bs	ATTTGAATGT TAAACTTACA	ТТАААТГТТТ ААТТТААААА	CAAAATCCCT GTTTTAGGGA	TTCCAGTTTG AAGGTCAAAC	AAAGGGCGAA TTTCCCGCTT	ACCCTAATCA TGGGATTAGT
GAAGGAAAAA		GCGGATACAT CGCCTATGTA	AAAATTCGCG TTTTAAGCGC	CCGAAATCGG GGCTTTAGCC	TTGAGTGTTG AACTCACAAC	CTCCAACGTC GAGGTTGCAG	GAGAACCATC CTCTTGGTAG
WOLKI BAD IN		TGTCTCATGA ACAGAGTACT	ATATTTTGTT TATAAAACAA	AACCAATAGG TTGGTTATCC	CGAGATAGGG GCTCTATCCC	AGAACGTGGA TCTTGCACCT	GGCCCACTAC CCGGGTGATG
		TCAGGGTTAT AGTCCCAATA	GTAAACGTTA CATTTGCAAT	CTCATTTTTT GAGTAAAAAA	AAGAATAGAC TTCTTATCTG	CCACTATTAA GGTGATAATT	TCAGGGCGAT AGTCCCGCTA

SUBSTITUTE SHEET (RULE 26) 179 / 204

1551

1601

1651

ntinued)
<u></u>
ctors (co
Š
A
ರ್ಷ
<u></u>
ä
ules
⋽
pow
Ε
₫
يو
_
S
ā
tional
Ē
æ
o
S
ű
Š
ភ្ជ
d s
a
S
폡
<u>-</u>
2
.≘
2
Z
ä
35
۳
ng
Fig

ure 35a: Functional maps and sequences of auditional 1701 GGTCGAGGTG CCG CCG	GAC	GGA	CAC	GTC		ŢŢ, V	Ą
CCGTAAAGCA CTAAATCGGA ACC	GACGGGGAAA CTGCCCCTTT	GGAGCGGGCG CCTCGCCCGC	CACCACACCC GTGGTGTGGG	GTGTATACTG CACATATGAC		TTCATGTGGC	GATACAGGAT
CTAAATCGGA GATTTAGCCT	GCCGGCGAAC	CTAGGGCGCT GATCCCGCGA	GCCGCGCTTA	GCTTACTATG CGAATGATAC		AGGAGAAAAA TCCTCTTTTT	ATATTCCGCT
ACCCTAAAGG	GTGGCGAGAA CACCGCTCTT	GGCAAGTGTA CCGTTCACAT	ATGCGCCGCT	TTGGCACTGA	AgeI	AGGCTGCACC	TCCTCGCTCA
GAGCCCCCGA CTCGGGGGGCT	AGGAAGGGAA TCCTTCCCTT	GCGGTCACGC CGCCAGTGCG	ACAGGGCGCG	TGAGGGTGTC	AgeI	GGTGCGTCAG	CTGACTCGCT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

<i>የ</i> ካ የነ	<i>የ</i> ካ የነ	<i>[ ] [ ]</i>	th ti	<i>th t</i> 1	г. л	۲. ٦
GAACGGGGCG CTTGCCCCGC	AGTGAGAGGG TCACTCTCCC	CAAGCATCAC GTTCGTAGTG	GACTATAAAG CTGATATTTC	CCTGTTCCTG GGACAAGGAC	TTTGTCTCAT AAACAGAGTA	AAGCTGGACT TTCGACCTGA
GAAC	AGTG	CAAG	GACT/ CTGA!	CCTG	TTTG1 AAAC?	AAGC1 TTCG2
AATGGCTTAC TTACCGAATG	TTAACAGGGA AATTGTCCCT	GCCCCCCTGA CGGGGGGACT	AACCCGACAG TTGGGCTGTC	CCTGCGCTCT GGACGCGAGA	TATGGCCGCG	AGTTCGCTCC TCAAGCGAGG
GGCGAGCGGA CCGCTCGCCT	AGGAAGATAC TCCTTCTATG	CATAGGCTCC GTATCCGAGG	GTGGTGGCGA	GCGGCTCCCT CGCCGAGGGA	ATTCCGCTGT TAAGGCGACA	CCGGGTAGGC GGCCCATCCG
GTTCGACTGC CAAGCTGACG	GGAAGATGCC CCTTCTACGG	GCCGTTTTTC CGGCAAAAAG	GCTCAAATCA CGAGTTTAGT	TTTCCCCCCTG AAAGGGGGGAC	AgeI ~~~~~~ TACCGGTGTC ATGGCCACAG	ACACTCAGTT TGTGAGTCAA
ACGCTCGGTC TGCGAGCCAG	GAGATTTCCT CTCTAAAGGA	CCGCGGCAAA GGCGCCGTTT	GAAATCTGAC CTTTAGACTG	ATACCAGGCG TATGGTCCGC	CCTTTCGGTT GGAAAGCCAA	TCCACGCCTG AGGTGCGGAC
2051	2101	2151	2201	2251	2301	2351
		SU	BSTITUTE S	HEET (RULE	26)	

SUBSTITUTE SHEET (RULE 26 181 / 204

AAGAAGATCA TCTTATTA TTCTTCTAGT AGAATAAT

AAACGATCTC TTTGCTAGAG

_
0
₽
=
:Ξ
Ξ
ō
ָט
_
2
0
ᆸ
ī
>
⋖
Q
α,
$\boldsymbol{\sigma}$
=
1.0
Š
품
Ā
2
ב
_
vecto
۲,
ະ
>
_
⋖
Ü
d
_
ē
Jna
iona
litiona
lditiona
additiona
⁻ additiona
of additiona
s of additiona
es of additiona
ices of additiona
ences of additiona
sences of additiona
quences of additiona
equences of additiona
sequences of additiona
d sequences of additiona
nd sequences of additiona
and sequences of additiona
s and sequences of additiona
ips and sequences of additional
naps and sequences of additiona
maps and sequences of additiona
If maps and sequences of additiona
nal maps and sequences of additiona
onal maps and sequences of additiona
tional maps and sequences of additiona
ctional maps and sequences of additiona
inctional maps and sequences of additiona
unctional maps and sequences of additiona
Functional maps and sequences of additiona
a: Functio
a: Functio
a: Functio
e 35a: Functional maps and sequences of additiona
a: Functio
a: Functio
a: Functio

SUBSTITUTE SHEET (RULE 26) 182 / 204

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

**AAGTTAT** 

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

**AGATCTCA** 

M3: PCR, NoVspAatll as second oligo

XloxS-muta: CATTTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-

TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-1: PCR

gllINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

**AAACGGTTGAAAGTTG** 

gliinew-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (AULE 25)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

**GAGGCGG** 

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

**AAGGATCTCAAGAAGATCC** 

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 26) 184 / 204

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

# M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

**CAAGGCG** 

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

# M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

**TGAGA** 

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (RULE 28)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGETAGCCATGTGAGCAAAAGGCCAGCAA

# M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

## M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

**GGAGCCAGGGTGGTTTTTC** 

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

**AGCTGCATCAGTGAATCGGCCAAC** 

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

**AAGGGGGGGGGG** 

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

Bbe I (1361) Ase I (1364)	Eco 571 (1366) Xho I (1371) Bee HII (1376)	Bbs I (1386)	Bsr GI (1403)			
$\mathbf{\omega}$	Fse I (210) Eag I (1340) -35 (bla) -10 (bla)		bla-term		bla MCS	1289 bp
<i>Pml</i> I (189) Bsa BI (182)	Bsi WI (166) Eco O109I (161)	Psp 511 (161) Sty 1 (157) Msc 1 (156)	Bst XI (152) Bst Ell (140)	Bsu 36ì (136) Hpa I (132)	Mlu I (126)	

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

				$\mathtt{StyI}$	
				Psp5II	
	MluI Bsu	Bsu36I	BStXI	ECOO1091	
	HpaI	BSteil	}		BeiMT NenV
126	0000	TCAGGTGACC AGTCCACTGG	AAGCCCCTGG CCA TTCGGGGACC GGT	AGGTCC( TCCAGG	GTACGT
		PmlI			
		; ; ;	KpnI	FseI	
176	AGATTACCAT C TCTAATGGTA G	CACGT GTGCA	GGATC CGGTACCAGG CCTAG GCCATGGTCC	GG CCGGCCATTA	TCAAAAAGGA AGTTTTTCCT
226	TCTCAAGAAG AGAGTTCTTC	ATCCTTTGAT TAGGAAACTA	CTTTTCTACG GAAAAGATGC	GGGTCTGACG CCCAGACTGC	CTCAGTGGAA GAGTCACCTT
276	CGAAAACTCA GCTTTTGAGT	CA CGTTAAGGGA	TTTTGGTCAT AAAACCAGTA	GAGATTATCA CTCTAATAGT	AAAAGGATCT TTTTCCTAGA

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of  $\it B$ -lactamase-MCS module (continued)

NGAT CCTTTTAAAT TAAAATGAA GTTTTTAAATC AATCTAAAGT	BAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TCAGTGAGGC	ETCA GCGATCTGTC TATTTCGTTC ATCCATAGTT GCCTGACTCC SAGT CGCTAGACAG ATAAAGCAAG TAGGTATCAA CGGACTGAGG	rgta gataactacg atacgggagg gcttaccatc tggccccagt acat ctattgatgc tatgccctcc cgaatggtag accggggtca	ATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG ATTTATCAGC FACT ATGGCGCTCT GGGTGCGAGT GGCCGAGGTC TAAATAGTCG	SCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT CCTGCAACTT 3GTC GGTCGGCCTT CCCGGCTCGC GTCTTCACCA GGACGTTGAA	SCTC CATCCAGTCT ATTAACTGTT GCCGGGAAGC TAGAGTAAGT 3GAG GTAGGTCAGA TAATTGACAA CGGCCCTTCG ATCTCATTCA	
CCTTTTAA GGAAAATT	AAACTTGG TTTGAACC	GCGATCTG CGCTAGAC	GATAACTA CTATTGAT	TACCGCGA	CCAGCCGG	CATCCAGI	ттаатас <del>т</del> тт
TCACCTAGAT AGTGGATCTA	ATATATGAGT TATATACTCA	ACCTATCTCA TGGATAGAGT	CCGTCGTGTA GGCAGCACAT	GCTGCAATGA CGACGTTACT	AATAAACCAG TTATTTGGTC	TATCCGCCTC	PACCECTED A
326	376	426	476	526	576	929	676

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

TCCGGTTCCC	AAAAGCGGTT	CCGCAGTGTT	GTCATGCCAT	GTCATTCTGA	CAATACGGGA	ATTGGAAAAC	GAGATCCAGT
AGGCCAAGGG	TTTTCGCCAA	GGCGTCACAA	CAGTACGGTA		GTTATGCCCT	TAACCTTTTG	CTCTAGGTCA
TTCATTCAGC	TGTTGTGCAA ACAACACGTT	AGTAAGTTGG TCATTCAACC	TTCTCTTACT AAGAGAATGA	ACTCAACCAA TGAGTTGGTT	TGCCCGGCGT	AGTGCTCATC TCACGAGTAG	TACCGCTGTT
TTGGTATGGC	TGATCCCCCA	CGTTGTCAGA	CACTGCATAA	ACTGGTGAGT	GAGTTGCTCT	GAACTTTAAA	TCAAGGATCT
	ACTAGGGGGGT	GCAACAGTCT	GTGACGTATT	TGACCACTCA	CTCAACGAGA	CTTGAAATTT	AGTTCCTAGA
CGCTCGTCGT GCGAGCAGCA	GCGAGTTACA CGCTCAATGT	GTCCTCCGAT	GTTATGGCAG CAATACCGTC	CTTTTCTGTG GAAAAGACAC	TGCGGCGACC	CCACATAGCA GGTGTATCGT	GCGAAAACTC CGCTTTTGAG
CGTGGTGTCA	AACGATCAAG	AGCTCCTTCG	ATCACTCATG	CCGTAAGATG	GAATAGTGTA	TAATACCGCG	GTTCTTCGGG
GCACCACAGT	TTGCTAGTTC	TCGAGGAAGC	TAGTGAGTAC	GGCATTCTAC	CTTATCACAT	ATTATGGCGC	CAAGAAGCCC
726	977	826	876	926	916	1026	1076

Figure 36: functional map and sequence of 8-lactamase-MCS module (continued)

CTTTTACTTT GAAAATGAAA	GCCGCAAAAA CGGCGTTTTT	CTTCCTTTTT GAAGGAAAAA	GCGGATACAT CGCCTATGTA	XhoI	BSSHII	ATGGCTCGAG TACCGAGCTC	
TCTTCAGCAT CAGAAGTCGTA GECO57I	AAGGCAAAAT G TTCCGTTTTA C	TACTCATACT C ATGAGTATGA G	TGTCTCATGA GACAGAGA			GGCGCCATTA A	H
ACCCAACTGA TGGGTTGACT	CAAAAACAGG GTTTTTGTCC	AAATGTTGAA TTTACAACTT	TCAGGGTTAT AGTCCCAATA	PstI	BssSI	ACGAGCTGCA	BspEI BsrGI
CCACTCGTGC GGTGAGCACG BSSSI	TCTGGGTGAG AGACCCACTC	GGCGACACGG CCGCTGTGCC	GAAGCATTTA CTTCGTAAAT		EagI	ACTCGGCCGC	
TCGATGTAAC AGCTACATTG	CACCAGCGTT GTGGTCGCAA	AGGGAATAAG TCCCTTATTC	CAATATTATT GTTATAATAA			ATTTGAATGT TAAACTTACA	BssHII
1126	1176	1226	1276			1326	
		SORSIIIC	JTE SHEET (	HULE 26	<b>i)</b>		

CATGAAATT GTACTTTAA CGCTTTGTCT TCCGGATGTA AGGCCTACAT Figure 36: functional map and sequence of  $\theta\text{-lactamase-MCS}$  module (continued) GCGAAACAGA CGCGCTTCAG GCGCGAAGTC 1376

BbsI

Eco57I

SUBSTITUTE SHEET (RULE 26) 193 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

Figure 37: Oligo and primer design for Vκ CDR3 libraries

ign for VK CDR3 libraries	
30	40
	Q
0000000000000000	C CA
V Y Y C	
TGTATTATTG	C CA
V Y Y C	
TGTATTATTG	C CA
	A []
	С
	D
NO. DESCRIPTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERT	P Y Y C C T T A T T A T T G T T V Y Y C T G T A T T A T T G

A C D E T T T T G H C A T T K L C T T M A T G N P C A G R S T V W W Y 80% Q

SUBSTITUTE SHEET (RULE 26) 195 / 204

Figure 37: Oligo and primer design for  $\mbox{V}\kappa$  CDR3 libraries

	. 20	3'- G G A
		т
G .	Took State 1	ACCT
		T
G		A C C T
G		ACCT

G C T																	•	
G A G       G A G       G A G         T T T T       T T T T       T T T T         G G T G G T G G T G G T       C A T       C A T         C A T G G T G G T G G T G G T       C A T G G T         A T T G G G T G G T G G T G G T G G T G G G T       A T T G G G T G G T G G T G G T G G T G G G T G G G T G G G T G G G T G G G T G G G T G G G G T G G G G G G G G G G G G G G G G G G G G	G	C	T							G	С	Τ				G	С	T
G A G       G A G       G A G         T T T T       T T T T       T T T T         G G T G G T G G T G G T       C A T       C A T         C A T G G T G G T G G T G G T       C A T G G T         A T T G G G T G G T G G T G G T G G T G G G T       A T T G G G T G G T G G T G G T G G T G G G T G G G T G G G T G G G T G G G T G G G T G G G G T G G G G G G G G G G G G G G G G G G G G																		
T T T T       G G T       G G T       G G T       G G T       G G T       G G T       G G T         C A T       C A T       C A T       C A T       A T T       A T T         A A G       A A G       A A G       A A G       A A G         C T T       A T G       A T G       A T G         A A T G       A A T A A T A A T A A T A A T       A A T G         C A G       C A G       C A G       C A G         C G T       C C T C T C T T C T       C G T         T C T T C T T C T T C T T C T T C T T C T       A C T         G T T       A C T       A C T         T G G       T A T A T       T A T	G	Α	Τ	G	Α	Τ	G	Α	Τ		Α	T				_		T
G G T G G T G G T G G T C A T C A T A A G A A G A A A G A A A G A A A A	G	Α	G							G	Α	G				G	Α	G
C A T       C A T       C A T         A T T       A A G       A A G         C T T       A A G       A A G         C T T       C T T       C T T         A T G       A T G       A T G         A A T A A T A A T A A T A A T A A T       A A T G         C A G       C C T C T C T       C C T         C G T       C G T       C G T         T C T T C T T C T T C T T C T T C T T C T T C T T C T       T C T T C T         A C T G T T C T T G G       T G G         T A T T A T T A T       T A T T A T	T	T	Τ							T	T	T				T	T	T
A T T       A T T       A T T       A T T         A A G       A A G       A A G       A A G         C T T       A A G       C T T       A A G         A T G       A T G       A T G         A A T A A T A A T A A T A A T A A T       A A T G         C A G       C C T C T C T C T C T         C G T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C	G	G	Τ	G	G	T	G	G	T	G	G	T				G	G	T
A A G       A A G       A A G       A A G         C T T       C T T       C T T         A T G       A T G       A T G         A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A T A A T A T A A T A T A A T A T A T A T A T A T A T A T A	C	Α	T			_				С	Α	Τ				С	Α	T
C T T       C T T       C T T         A T G       A T G       A T G         A A T A A T A A T A A T A A T       A A T G         C A G       C C T C C T C C T         C G T C C T C C T       C A G         C G T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T T C T T T T C T T T T	Α	T	Τ						-	Α	T	T				Α	T	Τ
A T G	Α	Α	G					************		Α	Α	G				Α	Α	G
A A T       A A T       A A T       A A T       A A T         C A G       C A G       C A G       C A G       C A G         C G T       C G T       C G T       C G T       C G T         T C T       T C T       T C T       T C T       T C T       T C T         A C T       A C T       A C T       A C T       A C T         G T T       G T T       T G G       T G G       T A T         T A T       T A T       T A T       T A T	E	T	T		*****					С	T	T	1,	,		C	Τ	T
C A G       C C T C C T C C T         C A G       C A G         C G T       C G T         T C T T C T T C T T C T T C T T C T         A C T       A C T         G T T       G T T         T G G       T A T	Α	T	G		**********					Α	T	G				Α	T	G
C A G       C A G       C A G         C G T       C G T       C G T         T C T T C T T C T T C T T C T T C T T C T       T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T C T T T T C T T T T C T T T T C T T T T C T T T T C T T T T T T T T T T T T T T T T T T T T	Α	Α	T	Α	Α	T	Α	Α	T	Α		T						T
C G T       C G T         T C T T C T T C T T C T T C T T C T         A C T       A C T         G T T       G T T         T G G       T G G         T A T T A T       T A T			******							С	C	T	C	С	T	C	C	T
T C T T C T T C T T C T T C T         A C T       A C T         G T T       G T T         T G G       T G G         T A T T A T       T A T	C	Α									Α	G				C	Α	G
A C T       A C T         G T T       G T T         T G G       T G G         T A T T A T       T A T	C		T							С	G	T				С	G	T
G T T G G T G G T A T A T T A T T A T	T	С	T	T	C	T	T	C	T	Τ	C	T	T	С	T	T	С	T
TGG TGG TGG TATTAT TAT	A		T							Α	C	T				Α	С	T
TATTAT TAT TAT	G	T	Ţ	<del></del>		*******				G	T	T				G	T	T
	T	G	G							T	G	G				T	G	G
50% Y 80% P	T	Α	T	T	Α	T				T	Α	T	_			T	Α	T
	5	<u>0</u> %	Y										-80	)%	P			

SUBSTITUTE SHEET (RULE 26) 196 / 204

Figure 37: Oligo and primer design for Vκ CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 198 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries



SUBSTITUTE SHEET (RULE 26) 199 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries



Figure 38: Oligo and primer design for VA CDR3 libraries

F1 OR

COLE1 ORI



Eco RV (525)

Figure 39: functional map of expression vector series pBS13

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

% soluble	ĸ	Z	Ā	κ4	λ1	77	73
H1A	61%	58%	52%	42%	%06	61%	%09
H1B	39%	48%	%99	48%	47%	39%	36%
H2	47%	57%	46%	49%	37%	36%	45%
H3	85%	%29	0/09/	61%	80%	71%	83%
H4	%69	52%	51%	44%	45%	33%	42%
H5	49%	49%	46%	9/0/9	54%	46%	47%
9H	%06	58%	54%	47%	45%	20%	51%

Total 2005							
iotal amount	· ·	,	Ç		,	(	•
compared to H3ĸ2	<u>-</u> ¥	Ž	<u> </u>	<b>4</b> 4	γ.	77	73
H1A	289%	94%	166%	272%	20%	150%	78%
H1B	219%	122%	89%	139%	117%	158%	101%
H2	186%	223%	208%	182%	126%	%09	97%
H3	20%	• .	71%	54%	29%	130%	47%
H4	37%	22%	<b>%</b> 09	77%	195%	107%	251%
H ₂	98%	201%	167%	83%	93%	128%	115%
9H	65%	117%	89%	109%	299%	215%	278%

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

Soluble amount	ţ	ć	, ,			, ,	12
compared to H3K2	<u>-</u>	2	2	4 4		77	5
H1A	191%	880%	121%	122%	26%	211%	0/09/
H1B	124%	95%	83%	107%	79%	142%	29%
H2	126%	204%	139%	130%	%99	20%	20%
H3	63%	I	81%	49%	%69	143%	61%
H4	40%	47%	49%	54%	95%	.55%	125%
H5	%69	158%	116%	80%	72%	84%	84%
9H	85%	122%	87%	77%	162%	162%	212%
	McPC						
soluble	38%						
%H3k2 total	117%						
%H3k2 soluble	%69						

SUBSTITUTE SHEET (RULE 26) 204 / 204

Inv onal Application No PCT/EP 96/03647

	· · · · · · · · · · · · · · · · · · ·	PC	1/EP 96/0364/
	ATION OF SUBJECT MATTER C12N15/13 C12N15/10 C12N15 C07K1/04 G01N33/53	/62 C12N15/70	C12N1/21
According to In	ternational Patent Classification (IPC) or to both national cla	ssification and IPC	
B. FIELDS SE			
IPC 6	mentation searched (classification system followed by classifi C12N C07K G01N	cation symbols)	
Documentation	searched other than minimum documentation to the extent th	at such documents are included in	n the fields searched
Electronic data (	base consulted during the international search (name of data	base and, where practical, search	terms used)
C. DOCUMEN	TS CONSIDERED TO BE RELEVANT		
	tation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
			A CALL OF CAME INC.
A	EP 0 368 684 A (MEDICAL RES COUMay 1990 cited in the application	NCIL) 16	1-55
	see the whole document	•	·
A	EUROPEAN J. IMMUNOLOGY, vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHE	IN DOD	1-55
	pages 1456-1461, XP000616572 S.C. WILLIAMS AND G. WINTER: "( sequencing of human immunoglobu	Cloning and	
	V-lambda gene segments" cited in the application see the whole document		
		-/	
·		٠,	
	•		
χ Further d	locuments are listed in the continuation of box C.	X Patent family members	s are listed in annex.
Special categor	ries of cited documents:	"T" later document published a	fter the international filing date
considered	defining the general state of the art which is not to be of particular relevance	or priority date and not in	conflict with the application but ncaple or theory underlying the
filing date L° document w	ment but published on or after the international  thich may throw doubts on priority claim(s) or	"X" document of particular relo cannot be considered nove involve an inventive step u	evance; the claimed invention d or cannot be considered to when the document is taken alone
citation or	ted to establish the publication date of another other special reason (as specified) effering to an oral disclosure, use, exhibition or	document is combined wit	volve an inventive step when the h one or more other such docu-
P" document p	ublished prior to the international filing date but he priority date claimed	in the art.  *&* document member of the s	eing obvious to a person skilled ame patent family
Date of the actua	al completion of the international search	Date of mailing of the inter	•
	January 1997	.1 1. 02	97
	ng address of the ISA European Patent Office, P.B. 5818 Patendaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer	•
	Fax: (+ 31-70) 340-3016	Hornig, H	

tr strong Application No PCT/EP 96/03647

Category *	citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223 C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document	1-55
<b>A</b>	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET T A ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document	1-55
<b>A</b>	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XPO00384398 GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document	1-55
<b>A</b>	PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document	1-55
<b>A</b> :	ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document	1-55
A	JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document	1-55

1

Int 10nal Application No PCT/EP 96/03647

Continue	uson) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP 96/03647		
Category *	Citation of document, with indication, where appropriate, of the relevant passages			
	of the relevant passages		Relevant to claim No.	
4	NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL		1-55	
	INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document			
,	WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document		1-55	
	ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4		1-55	
	CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980, 1994,		1-55	
-				
İ	•		•	

nformation on patent family members

tne onal Application No PCT/EP 96/03647

Patent document cited in search report	Publication date		t family iber(s)	Publication date
EP-A-0368684	16-05-90	AU-B-	634186	18-02-93
	•	AU-A-	4520189	28-05-90
		CA-A-	2002868	11-05-90
		DE-D-	68913658	14-04-94
		DE-T-	68913658	08-09-94
		ES-T-	2052027	01-07-94
•		WO-A-	9005144	17-05-90
		JP-T-	3502801	27-06-91
W0-A-9511998	04-05-95	AU-A-	8091694	22-05-95
		EP-A-	0725838	14-08-96

# THIS PAGE BLANK (USPTO)

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
·

IMAGES ARE BEST AVAILABLE COPY.

OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)