

Simulation of a dynamical system

Paolo Giaccone Emilio Leonardi

paolo.giaccione@polito.it-emilio.leonardi@polito.it

What is simulation?

Simulating a dynamic system means imitating its behavior in time

- By imitating the system behavior, we artificially recreate its history and evolution
- From the system evolution we can deduce a lot of information on the system itself

What is simulation?

- We may be interested in discovering or verifying system
 - Performance: how well does it work?
 - Correctness: is it working as desired?
 - Capabilities: can it reach some objectives?
 - Reliability: under which conditions is it working as desired?
 - **...**

What is simulation?

- Several simulation objectives:
 - System design
 - Dimensioning of the system components to satisfy requirements
 - Effects of the improvements or changes of system components on the overall system performance
 - Comparison of different design choices
 - **...**

When do we need to simulate?

- During the design phase
 - no existing implementation or prototype of the actual system
- On already existing systems
 - To study the system in special conditions, like critical or future scenarios
 - To design improvements for the system components

4

Areas of application

- Manufacturing applications
- Logistics, supply chains and distribution applications
- Transportation and traffic
- Business process simulation
- Health care
- ... and many others

Application to ICT

Performance analysis

- The system can be a (part of a) network, computing element, a storage unit, or a service, an application, an algorithm, a protocol, ... as far as it is dynamic system
- Verification of the correct working of the system under different assumptions of: load, environment (e.g., temperature, radio-channel noise, user behavior), failures, attack, ...
- Verification of conditions to guarantee correct of system working and possibly quality levels
- System performance under future load assumptions

Application to ICT

System dimensioning

- Effects due to the increase of the capacity of elements (bandwidth, computing power, no. of cores, storage capacity, ...)
- Effects due to the increase of the number of elements (no. of servers, no. of nodes, no. of transmission channels...)
- Choice of the number of new resources or the capacity of the resources

Application to ICT

System design

- Comparison among algorithms
- Design of new protocols or comparisons of protocols
- Architectures of communications/computing/...

Simulation model

- To simulate we need to develop a simulation model
 - A formal description of how the system works (i.e., evolves with time)
- A simulation model is
 - made by a set of assumptions on the system and its behavior
 - describes a dynamic system as a set of components interacting according to specific rules

Simulation model

- The system and its components are described by state variables
 - In any instant, the working conditions of the system are given by the value of the state variables
- To describe the system evolution we need to describe the rules according to which the system changes its own state
- To imitate the system and recreate its history means to rebuild the sequence of states visited by the system

Deriving the model

- A simulation model is a formal representation of a system derived from the theoretical knowledge of the system or from empirical observations
- We need to identify the boundary between the system and its environment
 - The system environment, even if it is not the object of our model, has effects on the model and on the system behavior

Some definitions

- State: describes the system behavior in any time instant
- Entities: objects/components of interest in the system
- Attributes: properties of an entity
- Activity: a time period dedicated to a specific operation
- Event: an instantaneous occurrence that changes the system state
- Endogenous: events and activities internal to the system
- Exogenous: events and activities in the environment that affect the system

- Models can further be classified as
 - Static: the system behavior does not change in time (or it is studied in a specific moment in time)
 - Dynamic: the system behavior changes in time
- Dynamic models can be classified as
 - Discrete models
 - Continuous models

- Dynamic models can be classified as
 - Discrete: the system state changes only in a discrete set of points in time
 - Continuous: the system state changes continuously in time (fluid models)

- Models can be classified as being
 - Deterministic: the model does not contain random variables, therefore a set of input values produces a unique set of outputs
 - Stochastic: inputs are represented by random variables, so the outputs are random processes (and estimates of the characteristics of the model)

Observation

- When considering stochastic models, a simulation run consists in
 - Performing a stochastic experiment
 - Observing a single possible sample path of the process describing the evolution of the system state in time
- The simulation output analysis requires the application of statistic techniques on results collected in several simulation runs

Analytical models

- An analytical model of the system can be a viable alternative to simulation for simple systems or under special hypothesis
- By using an analytical model, we can obtain indications on the system performance through mathematical expressions
 - Physics laws, differential equations, Markov chains,
 Stochastic processes

4

Analytical models

- The analytical models can have
 - Exact solution: the solution is represented by a closed form expression (e.g., physics laws, some basic results from queuing theory)
 - x=f(y,z,n)
 - Numerical solution: due to its complexity, the solution can be obtained only though numerical approximation (e.g., fixed-point methods, solutions not expressed in closed form, solutions of equation systems)
 - x=f(y,z,n); y=g(z,n); z=(x,y,n)

Analytical vs. simulation models

- Analytical models
 - Emphasize the cause-effect relations between inputs and outputs
 - Limited solution cost (in time and computational power)
 - Help the system comprehension
 - Fewer 'technical' errors (bugs)
- Simulation models
 - Better adherence the actual system
 - Easier to introduce incremental improvements in the model
 - Easier to modify some to the underlying model hypothesis
 - Simpler model construction

Analytical vs. simulation models

We will experiment this as lab activity for some system

- Analytical models
 - Emphasize the cause-effect relations between inputs and outputs
 - Limited solution cost (in time and computational power)
 - Help the system comprehension
 - Fewer 'technical' errors (bugs)
- Simulation models
 - Better adherence the actual system
 - Easier to introduce incremental improvements in the model
 - Easier to modify some to the underlying model hypothesis
 - Simpler model construction

	Analytical / Numeric	Static / Dynamic	Deterministic / Stochastic
Ohm's Law	A	S	D
Law of Large Numbers	A	S	S
Markovian Processes	A (N)	D	S
Non-linear differential equations	N	D	D
Simulation	N	D	S

- Problem formulation
- Setting of objectives
- Overall project plan
- Model conceptualization
 - Ability of abstracting the essential features of the system
 - Selection of simplifying hypothesis at a suitable level of details

- The level of details depends on a trade-off between accuracy (realism) and simplicity
 - A simulation model with too many details
 - Requires longer development time (debugging)
 - Requires a larger running time (long simulations)
 - Produces complex results difficult to be interpreted
 - A simulation model with too few details
 - Is unsuitable to observe some interesting and particular behavior of the system
 - Is unrealistic and produces wrong conclusions on the system behavior

4

- Inputs and data collection
 - Selection of the input parameters considered to be important for the model
 - Study and characterization of the parameters (from raw data to statistical distributions)
- Model translation → Coding
- Model verification → Is the code correct?
- \blacksquare Model validation \rightarrow Is the model correct?
 - Comparison of some model results with the expected model behavior (e.g., with previously collected data)

- Experimental design
 - Length of the initialization periods
 - Length of simulation runs
 - Number of simulation runs
- Production runs and analysis
- More runs?

Wrap-up

- Simulations are emulations of the behavior of a dynamic system with time
- Simulation is used to understand and design dynamic systems
- Building up a simulation tool is not straightforward, requires carefull definition of elements of the system whose behavior is represented