安徽大学 2018 — 2019 学年第 1 学期

《 数学物理方法 》考试试卷 (A 卷) (闭卷 时间 120 分钟)

考场登记表序号

题 号	_	=	Ξ	四	五	总分
得 分						
阅卷人						

一、单项选择题(每小题2分,共16分)

得分

- 1. 当x < 0, y > 0时, 复数z = x + jy的辐角主值为(
 - **A.** $\arctan \frac{y}{x}$; **B.** $-\arctan \frac{y}{x}$; **C.** $\arctan \frac{y}{x} + \pi$; **D.** $\arctan \frac{y}{x} \pi$.
- 2. $\operatorname{Re}(z) > \frac{1}{2}$ 为下面哪个图中**虚线**所示的区域(

- 3. 若函数 f(z) 在 z_0 点解析,则下面的结论**不正确**的是(
 - A. f(z)在 z_0 点连续;

忽

- **B.** f(z)在 z_0 点存在任意阶导数;
- C. f(z)可以以 z_0 点为中心展开为泰勒级数;
- **D.** f(z)以 z_0 点为中心的罗朗级数展开式中包含有限项负幂次项,即有 $f(z) = \sum_{n=-m}^{\infty} c_n (z-z_0)^n$,其中 m 为大于零的整数。
- **4.** 若函数 f(z) 在环形区域 $R_1 < |z-z_0| < R_2$ 内展开为罗朗级数,则下面的说法**不正确**的是(A. z_0 可能是也可能不是 f(z) 的不解析的点; B. f(z) 在环形区域内解析;

- C. 罗朗级数在环形区域内绝对且一致收敛;
- **D.** 罗朗级数的系数为 $c_n = \frac{1}{i2\pi} \oint_C \frac{f(\zeta)}{(\zeta z_*)^{n+1}} d\zeta$,其中积分路径C为环形区域内绕 z_0 的任一简 单闭合曲线,由高阶导数公式可知 $c_n = \frac{1}{n!} f^{(n)}(z_0)$ 。
- 5. 下面**不能**判断 z_0 为函数 f(z) 的一阶极点的判据是(
 - **A.** f(z)以 z_0 为中心的罗朗级数展开式为 $f(z) = \sum_{n=0}^{\infty} c_n (z z_0)^n$;
 - **B.** $\frac{1}{f(z)}\Big|_{z=z_0}=0$, $\frac{d}{dz}\Big[\frac{1}{f(z)}\Big]_{z=z_0}\neq 0$, $\mathbb{P}[z_0]$ $\frac{1}{f(z)}$ 的一阶零点;
 - C. f(z)在 z_0 点有界;
 - **D.** $f(z) = \frac{P(z)}{Q(z)}$, 函数 P(z) 和 Q(z) 都在 z_0 点解析, z_0 为 Q(z) 的一阶零点,且 $P(z_0) \neq 0$ 。
- 6. 函数 sin kx(k为实常数) 的拉普拉斯变换是(
- A. $\frac{s}{s^2 + k^2}$; B. $\frac{k}{s^2 + k^2}$; C. $\frac{s}{s^2 + k^2}$; D. $\frac{k}{s^2 + k^2}$
- 7. 方程 $(\frac{\partial^2 u}{\partial v^2})^2 + (\frac{\partial^2 u}{\partial v^2})^2 = \sin x \cos y$ 为下面那种性质的偏微分方程(
 - A. 二阶线性齐次方程:
- B. 二阶线性非齐次方程;
- C. 二阶非线性齐次方程; D. 二阶非线性非齐次方程。
- 8. 对于施图姆一刘维尔(SL)型方程 $\frac{d}{dx}[p(x)\frac{dy}{dx}]+q(x)y+\lambda\rho(x)y=0, (a \le x \le b)$,附以齐次第一、 二、三类边界条件或自然边界条件就构成了 SL 本征值问题, 若 p(x) 和 $\rho(x)$ 只取非负的值(≥ 0),

且 $q(x) \le 0$, 则下面关于 SL 本征值问题的说法**不正确**的是(

- **A.** 存在无穷多个本征值 $\lambda_1 \leq \lambda_2 \leq \cdots$,对应着无穷多个本征函数 $y_1(x), y_2(x), \cdots$;
- B. 存在负的本征值; C. 对不同的本征函数 $y_m(x)$ 和 $y_n(x)$ 有正交性 $\int_a^b \rho(x) y_m(x) y_n(x) dx = 0$;
- **D.** 若函数 f(x) 在区间 [a,b] 上有连续的一阶和分段连续的二阶导数,且满足本征值问题的边界 条件,可用本征函数系将 f(x) 展开为绝对且一致收敛的广义傅里叶级数。

二、填空题(每空2分,共24分)

得分

- 1. 复数 z = 2j 的指数式为: ______。
- 3. 设C为逆时针方向沿圆周|z|=1的简单闭合曲线,则积分 $\oint_C \frac{1}{\sigma^2} dz =$ ______。

- **4.** 泰勒级数 $\sum_{n=0}^{\infty} \frac{n!}{n^n} (z-j)$ 的收敛圆为: _______。
- 5. 求函数 $\frac{z}{z^2+1}$ 在孤立奇点 j 处的留数_____。
- 7. 对于本征值问题: $\begin{cases} X''(x) + \lambda X(x) = 0, & x \in (0, l) \\ X'(0) = X'(l) = 0 \end{cases}$

其本征值为: _________,本征函数为: ______。

- 8. 已知勒让德方程 $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + n(n+1)y = 0$ 满足在 $x = \pm 1$ 处为有界的解是勒让德多项式 $P_n(x)$,则方程 $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + 6y = 0$ 的解可用勒让德多项式表示为: ______。
- 9. 已知v阶贝塞尔方程 $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 v^2)y = 0$ 的一个解为v阶贝塞尔函数 $J_v(x)$,则可把方程 $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (4x^2 \frac{9}{25})y = 0$ 的一个解用贝塞尔函数表示为: ______。

三、简答题(10分)

得分

二阶线性常微分方程的标准形式为: $\frac{d^2w(z)}{dz^2} + p(z)\frac{dw(z)}{dz} + q(z)w(z) = 0$

试简述方程的常点和正则奇点,并写出常点和正则奇点邻域内方程级数解的形式。

四、证明题(10分)

得分

证明函数 $f(z) = z \operatorname{Re}(z)$ 在 z = 0 点可导,但在复平面上处处不解析。

五、计算题

得分

(第1,2题每题10分,第3题8分,第4题12分,共40分)

1. 计算积分 $\oint_{|z|=1} \frac{\cos z}{z^3} dz$ 。

3. 由达朗贝尔公式求解初值问题:

雅

异

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0\\ u(x,t)|_{t=0} = \cos x & (-\infty < x < \infty, t > 0, a > 0)\\ \frac{\partial u(x,t)}{\partial t}|_{t=0} = \sin x \end{cases}$$

4. 应用分离变量法求解如下定解问题:

$$\begin{cases} \frac{\partial^2 u(x,t)}{\partial t^2} = a^2 \frac{\partial^2 u(x,t)}{\partial x^2}, & (0 < x < l, t > 0) \\ u(x,t)\big|_{x=0} = \frac{\partial u(x,t)}{\partial x}\big|_{x=l} = 0 & (t > 0) \\ u(x,t)\big|_{t=0} = cx, \frac{\partial u(x,t)}{\partial t}\big|_{t=0} = 0, & (0 < x < l) \end{cases}$$