Propriétés : Soit a, b des nombres réels et n

 $e^0 = 1$ $e^1 = e$ $e^{a+b} = e^a \times e^b$ $e^{a-b} = \frac{e^a}{e^b}$ $e^{an} = \frac{1}{e^a}$

E1 Écrire les nombres suivants sous forme d'une puissance de e :

$$\frac{e^{-1} \times (e^{0,2})^{-2}}{e \times e^{-1,4}}$$

Simplifiez les expressions suivantes sous la forme e^A :

 $\frac{e^{2x}}{e^{-3x}} \qquad e^{-x} \times e^{2x} \times e^{x} \qquad \left(\frac{e^{x}}{e^{-2x}}\right)^{3} \\
\left(\frac{e^{4x}}{e^{x}}\right)^{-1} \qquad e^{3x+3} \times e^{2x-1} \qquad \frac{e^{2x} \times e^{-x}}{e^{x+1}} \\
\frac{e^{-x} \times e^{-(x+3)}}{e^{-2x-1}} \qquad \left(\frac{e^{2x-3}}{e^{7x+5}}\right)^{-2} \qquad \frac{e^{(x-3)^{2}}}{(e^{x+2})^{2}}$

E4 Développez puis simplifiez les expressions suivantes :

 $\left(e^{2x}-e^{3x}\right)^{2'}$

 $e^{x} (e^{x} + e^{-x})$ $(e^{x} + e^{-x})^{2}$ $(e^{-5x} + e^{2x}) (e^{-5x} - e^{2x})$

Propriétés : Soit x un nombre réel. On a :

- ullet Pour tout x, $\mathrm{e}^x>0$ et $\mathrm{e}^{-x}>0$;
- $\mathrm{e}^x > 1$ (ou $\mathrm{e}^{-x} < 1$) si et seulement si x>0;
- $\mathrm{e}^x < 1$ (ou $\mathrm{e}^{-x} > 1$) si et seulement si x < 0.

E5 Déterminez le signe des expressions suivantes :

 $egin{align} f_1(x) &= 4 \mathrm{e}^x - x \mathrm{e}^x \ f_3(x) &= x^2 \mathrm{e}^x - 9 \mathrm{e}^x \ \end{array} \qquad egin{align} f_2(x) &= x^2 \mathrm{e}^{-x} + 5 x \mathrm{e}^{-x} \ f_4(x) &= -x^2 \mathrm{e}^{-x} + 5 x \mathrm{e}^{-x} \end{array}$ **E6** Déterminez le signe des expressions

suivantes à l'aide d'une factorisation : $f_1(x) = \mathrm{e}^x - \mathrm{e}^{2x} \quad f_2(x) = \mathrm{e}^{2x} - \mathrm{e} \quad f_3(x) = \mathrm{e}^{-x} - \mathrm{e}^x$

On se propose de déterminer le signe de l'expression $e^{2x} + 3e^x - 4$.

- **a.** Résoudre l'équation $X^2+3X-4=0$.
- b. En déduire une factorisation de l'expression $e^{2x} + 3e^x - 4$.
- c. Conclure.

Propriété : Pour tous réels a et b, $e^a = e^b$ si et seulement si a = b.

Résolvez les équations suivantes : $e^x = e^{2x+1}$ $e^x = e^{3x+2}$ $e^{x^2-2x} = \frac{1}{e}$ $5e^{7x+21} - 1 = 4$

Propriété : Pour tous réels a et b, $e^a < e^b$ si et seulement si a < b.

E9 Résolvez les inéquations suivantes : $e^{2x+1} < e^{8x-1}$ $e^{7x-3} < e^{4x^2}$ $2e^{12x-36} + 3 \leqslant 5$

lacksquare On considère la fonction f définie sur ${\mathbb R}$ par $f(x) = 20e^{-0.346 5x}$.

a. Montrez que pour tous réels x, $f(x+2) = e^{-0.693x} f(x)$.

b. Sachant que $e^{-0.693}pprox 0,5$, complétez le tableau de valeurs suivant :

x	0	2	4	6
f(x)				

 ${f c.}$ Tracez la fonction f dans le repère suivant.

On considère les fonctions suivantes définies sur $\mathbb R$:

$$f(x) = e^{0,5x} \qquad g(x) = e^{1,2x} \qquad h(x) = e^{2x} \ i(x) = e^{-0,5x} \qquad j(x) = e^{-1,2x} \qquad k(x) = e^{-2x}$$

- **a.** Comparer les fonctions f, g et h.
- **b.** Comparer les fonctions i, j et k.
- c. En déduire à quelles fonctions correspondent les courbes en les repassant d'une couleur différente.