MNUM - PROJEKT 1

zadanie 1.2

Zadanie 1

Solwer rozwiązujący układ równań liniowych Ax = b. Metoda faktoryzacji: LDL^{T}

Dane

Funkcja do generowania danych

```
function [A, b] = data1(n)
  A = zeros(n,n);
  b = zeros(n,1);
  for i=1:n
        for j=1:n
            A(i,j) = i + j + 1;
        end
  end
  for i=1:n
        A(i,i) = 3*n^2 + (1.5*i+2)*n;
        b(i,1) = 2.5+0.6*i;
  end
end
```

Wygenerowane przykładowe dane dla n=5

A=	=					b=	
	92.5000	4.0000	5.0000	6.0000	7.0000	3.1000	
	4.0000	100.0000	6.0000	7.0000	8.0000	3.7000	
	5.0000	6.0000	107.5000	8.0000	9.0000	4.3000	
	6.0000	7.0000	8.0000	115.0000	10.0000	4.9000	
	7.0000	8.0000	9.0000	10.0000	122.5000	5.5000	

Metoda LDL

Zadanie: rozwiązać układ równań liniowych Ax = b

$$Ax = LDL^{T}x = L(DL^{T}x) = b$$

$$DL^{T}x = y$$

$$Ly = b$$

- 1. Faktoryzacja $A = L * DL^{T}$
- 2. Rozwiązanie równania Ly = b dla niewiadomej y
- 3. Rozwiązanie równania $DL^{T}x = y$ dla niewiadomej x

Slower

```
function x = solverLDLt(A,b)
  % A = LDL' decomposition
  [L, D] = LDLt(A);
  % solve Ly = b for y (lower triangular matrix)
  y = solveY(L, b);
  % solve DL'x = y for x (upper triangular matrix)
  x = solveX(D*L', y);
end
```

Faktoryzacja macierzy A na macierze L i D

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & 0 \\ \overline{l}_{21} & 1 & & & \\ \vdots & & \ddots & & \\ \overline{l}_{n1} & \overline{l}_{n2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} d_{11} & d_{11}\overline{l}_{21} & \cdots & d_{11}\overline{l}_{n1} \\ 0 & d_{22} & & d_{22}\overline{l}_{n2} \\ & & \ddots & & \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix}$$

Algorytm wyznaczania elementów macierzy

$$d_{ii} = a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2 * d_{kk}$$

$$l_{ji} = (a_{ji} - \sum_{k=1}^{i-1} l_{jk}^3 * d_{kk}^4 * l_{ik}^4) / d_{ii}$$

```
function [L, D] = LDLt(A)
  [n, \sim] = size(A);
  L = zeros(n);
  D = zeros(n);
  for i = 1:n
      % calculate values of the matrix D
      D(i,i) = A(i,i);
       for k = 1:i-1
           D(i,i) = D(i,i) - L(i,k) ^ 2 * D(k,k);
       end
       % calculate values of the matrix L
       for j = i+1:n
           L(j,i) = A(j, i);
           for k = 1:i-1
               L(j,i) = L(j,i) - (L(j,k) * D(k,k) * L(i,k));
           L(j,i) = L(j,i)/D(i,i);
       end
       L(i,i) = 1;
  end
end
```

Rozwiązanie układu równań z macierzą trójkątną dolną

Kolejno rozwiązujemy równania od góry z jedną niewiadomą. Wyznaczamy wartość i przy rozwiązywaniu równania w poniższym wierszu podstawiamy wartość i znowu rozwiązujemy równanie z jedną niewiadomą. Algorytm:

$$x_{1} = \frac{b_{1}}{a_{11}}$$
 $x_{k} = \frac{b_{k} - \sum_{j=1}^{k-1} a_{kj} x_{k}}{a_{kk}}$

Rozwiązanie układu równań z macierzą trójkątną górną

Analogiczna metoda jak przy macierzy trójkątnej dolnej, tylko rozwiązywanie równań należy zacząć od dołu. Wyznaczamy niewiadome po koeli od tyłu. Algorytm:

$$x_{n} = \frac{b_{n}}{a_{nn}}$$
 $x_{k} = \frac{b_{k} - \sum_{j=k+1}^{n} a_{kj} x_{k}}{a_{kk}}$

```
function x = solveX(A,b)
    % linear equation solver with upper triangular matrix
    [n, ~] = size(A);
    x = zeros(n,1);
    for k = n:-1:1
        x(k) = b(k);
        for j = k+1:n
            x(k) = x(k) - A(k,j) * x(j);
        end
        x(k) = x(k)/A(k,k);
    end
end
```

Wyniki

Wnioski

Zarówno błąd $\epsilon = \left|\left| \widehat{Ax} - b\right|\right|_2$, jak i czas obliczeń wydaje się rosnąć liniowo od liczby równań n. Na wykresie czasu obserwuję nietypowy wzrost dla niewielkich rozmiarów układów równań (n=5,10). Może być on spowodowany na przykład potrzebą załadowania funkcji przy pierwszym użyciu. Na wykresie $\epsilon(n)$ poziom błędu dla równań z większą liczbą niewiadomych jest niski, solwer poprawnie znajduje rozwiązania równania.

Zadanie 2

Porównanie solwera z zadania 1 z danym solwerem GS dla macierzy A i wektora b danych wzorami:

```
a_{ii}=-20 a_{ij}=7.\, 5, j=i\,\pm\,3 a_{ij}=0 - dla pozostałych b_{i}=2.\,5\,+\,0.\,6i
```

Dane

Funkcja do generowania danych

Wygenerowane przykładowe dane dla n=5

```
A=
                                                        b=
  -20.0000
                                7.5000
                                                        3.5000
         0 -20.0000
                            0
                                          7.5000
                                                        3.0000
         0
                  0 -20.0000
                                               0
                                                        2.5000
                       0 -20.0000
                                                        2.0000
    7.5000
             7.5000
                                     0 -20.0000
                                                        1.5000
```

Parametry metody Gaussa-Seidela

```
itmax = 1000 * n

delta = 1e - 8
```

Wyniki

Wnioski

Błąd ϵ dla porównywanych solwerów na danych z zadania 2 jest na zupełnie różnym poziomie. Dla solwera GS od 10 $^{-8}$ do 10 $^{-7}$. Natomiast dla solwera z poprzedniego zadania błąd jest na poziomie 10 $^{-13}$ (co słabo widać na powyższym wykresie). Jeśli chodzi o czas rozwiązania równania, to są porównywalne. Liniowo zależą od liczby równań. W obydwu przypadkach zaobserwowałem anomalie dla małej liczby równań (tak jak w poprzednim zadaniu). Dla większej liczby równań solwer GS szybciej oblicza rozwiązania.

Zadanie 3

Wyznaczanie funkcji aproksymującej dane metodą najmniejszych kwadratów przy użyciu:

- A. solwera z zadania 1 (rozkładem LDL')
- B. solwera GS
- C. rozkładu SVD

Dane

Bezpośrednio z tabeli w zadaniu

```
X = [-10:2:10];

Y = [-5.460 -3.880 -1.969 -1.666 -0.076 -0.397 -1.030 -4.548 -11.528 -21.641 -34.445];

N = [3 5 7 9 10]; (stopień wielomianu)
```

Aproksymacja

Zadanie aproksymacji: wyznaczyć wartości współczynników a0, a1, a2,, an określających funkcję aproksymującą aby zminimalizować błąd średniokwadratowy.

$$H(a_0, ..., a_n) \stackrel{\text{df}}{=} \sum_{j=0}^{N} \left[f(x_j) - \sum_{i=0}^{n} a_i \phi_i(x_j) \right]^2$$

Możemy zdefiniować macierz A postaci

$$\mathbf{A} = \begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\ \phi_0(x_2) & \phi_1(x_2) & \cdots & \phi_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(x_N) & \phi_1(x_N) & \cdots & \phi_n(x_N) \end{bmatrix}$$

która w przypadku aproksymacji funkcją wielomianową będzie wyglądała w następujący sposób:

$$A = egin{bmatrix} x_0^0 & x_0^1 & \dots & x_0^n \ x_1^0 & x_1^1 & \dots & x_1^n \ x_2^0 & x_2^1 & \dots & x_2^n \ \dots & \dots & \dots & \dots \ x_N^0 & x_N^1 & \dots & x_N^n \end{bmatrix}$$

```
function A = calculateMatrixA(x,n)

A = zeros(length(x), n+1);

for i = 1:length(x)
    for j = 0:n
        A(i,j+1) = x(i)^j;
    end
end
end
```

Wówczas zadanie aproksymacji możemy zapisać w prostszej postaci

$$H(a) = (||y - A * a||_{2})^{2}$$

Za pomocą metody liniowego zadania najmniejszych kwadratów (LZNK) wystarczy rozwiązać powyższy układ równań normalnych dla wektora współczynników a w następujący sposób

$$A^{T} * A * a = A^{T} * y$$

Aproksymacja solwerem LDLt

```
function a = approxLDLt(x,y,n)
  % calculate matrix A
  A = calculateMatrixA(x,n);
  % solve linear equation A'Aa = A'y
  a = solverLDLt2(A' * A, A' * y');
end
```

Aproksymacja solwerem GS

```
function a = approxGS(x,y,n,delta,itmax)
  % calculate matrix A
  A = calculateMatrixA(x,n);
  % solve linear equation A'Aa = A'y
  [a, ~, ~] = GS(A' * A, A' * y', delta, itmax*n);
end
```

Aproksymacja rozkładem SVD

```
function a = approxSVD(x,y,n)
    % calculate matrix A
    A = calculateMatrixA(x,n);
    % decomposition of matrix A by SVD
    [U, S, V] = svd(A);
    % solve for a using SVD
    s = diag(S);
    k = rank(A);
    y_ = U' * y';
    a_ = [y_(1:k, 1) ./ s(1:k, 1); zeros(n-k,1)];
    a = V * a_;
end
```

Wyniki

Wnioski

Aproksymacja solwerem LDLt oraz metodą SVD daje dobre przybliżenie i niskie błędy. Przy wyższych stopniach wielomianów funkcja aproksymująca się zbyt dopasowuje do punktów. Aproksymacja przy użyciu solwera GS daje zadowalające rezultaty dla niewielkich stopni wielomianów. Przy stopniu większym od 5 błędy i niedopasowania wykładniczo wzrastają.