LISTING OF CLAIMS

The listing of claims below will replace all prior versions and listings of claims in the present application.

(Previously Presented) A communication network, comprising:
 a plurality of server devices for providing a plurality of services to the network, where each service of the plurality of services has a corresponding service address; and a client device configured to access a first service of the plurality of services by performing the following:

accessing a service point map on the client device to obtain the corresponding service address for the first service, and

sending a request for the first service to the corresponding service address for the first service,

wherein

the service point map comprises a listing of at least one service of the plurality of services available on the network and the corresponding service address for each service of the at least one service.

- 2. (Previously Presented) The communication network of claim 1 further comprising a service point map manager device to intermittently generate a current service point map identifying at least one connected service and corresponding address information for the at least one connected service connected to the network, where each respective server device of the server devices sends corresponding address information for each service at the respective server device to the service point map manager and the client device collects the current service point map from the service point map manager device when the client device connects to the network.
- 3. (Previously Presented) The communication network of claim 2, wherein the service point map manager device selects the at least one connected service for inclusion in the current service point map using server load balancing techniques.

- 4. (Previously Presented) The communication network of claim 3, wherein the server load balancing techniques are implemented by supplying a first service point map to the client device, wherein the first service point map has been processed for load balancing.
- 5. (Previously Presented) The communication network of claim 3, wherein the server load balancing techniques are implemented by supplying a first service point map to the client device, wherein the client device runs a script code in the first service point map to select the at least one connected service.
- 6. (Previously Presented) The communication network of claim 2, wherein the service point map manager device selects the at least one connected service for inclusion in the current service point map based on the topographical location of the client device in the network.
- 7. (Previously Presented) The communication network of claim 1, wherein the service point map includes supplemental service identification data comprising a client epoch value for a second service identified in the service point map, wherein the client epoch value is used to correlate the performance of the client device and the second service.
- 8. (Previously Presented) The communication network of claim 7, wherein a third service has a corresponding service epoch value, whereby the third service causes the client device to take corrective action at the time that a mismatch is detected between the client epoch value and the service epoch value using executable commands embedded in the service point map.
- 9. (Previously Presented) The communication network of claim 1, wherein a second service of the plurality of services causes the client device to perform actions using executable commands in the service point map.
- 10. (Previously Presented) The communication network of claim 1, wherein the service point map includes backup address information for a selected service identified in the service point map in the event that the selected service cannot be reached.

- 11. (Previously Presented) The communication network of claim 10, wherein the backup address information comprises address information for a service point map manager device.
- 12. (Previously Presented) The communication network of claim 10, wherein the backup address information comprises address information for an alternate server device providing the selected service.
- 13. (Previously Presented) In a client/server communication network wherein a plurality of services are located on a plurality of servers operable to connect to the network, a server computer system for

generating a table listing of at least one service connected to the network and corresponding location information for each service of the at least one service, wherein a first service of the at least one service is selected from the plurality of services using a first partitioning scheme, and

providing the table listing to a client computer system configured to

access a second service of the at least one service using the table listing on the

client computer system to obtain the corresponding location information

for the second service, and

send a request for the second service to the corresponding location for the second service.

- 14. (Previously Presented) The server computer system of claim 13, wherein the server computer system generates the table listing based on current service topology.
- 15. (Previously Presented) The server computer system of claim 13, wherein the client computer system collects the table listing from the server computer system upon connecting to the network.
- 16. (Previously Presented) The server computer system of claim 13, wherein the first partitioning scheme is a functional partitioning of the plurality of services.

- 17. (Previously Presented) The server computer system of claim 13, wherein the first partitioning scheme uses identification data associated with the client computer system to select the first service.
- 18. (Previously Presented) The server computer system of claim 13, wherein the first partitioning scheme is uses a resource connection to select the first service.
- 19. (Previously Presented) The server computer system of claim 13, wherein the first partitioning scheme uses equivalency to select the first service.
- 20. (Previously Presented) A method for a client process running on a client to access a plurality of services provided by a plurality of servers over a computer network using a dynamic service point map, comprising:

in response to a connection by the client process to the computer network,
transferring a dynamic service point map to the client process from a first server of the
plurality of servers, wherein

the dynamic service point map comprises a listing of at least one service of the plurality of services and corresponding location information for each service of the at least one service, and

the client process is configured to perform the following:

store the dynamic service point map on the client;

obtain the corresponding location information for a first service of the at least one service from by directly accessing the dynamic service point map on the client;

connect to the first service using the corresponding location information for the first service.

21. (Previously Presented) The method of claim 20 further comprising:

generating second location information for a second server on which a second service is provided, and

publishing the second location information to the first server for inclusion in the dynamic service point map.

- 22. (Previously Presented) The method of claim 20 further comprising transferring an updated dynamic service point map to the client process upon failure of the client process to connect to a second service of the at least one service listed in the dynamic service point map.
- 23. (Previously Presented) A computer-readable medium comprising: transferring instructions to transfer a dynamic service point map to a client process running on a client from a first server of a plurality of servers in a network in response to the client process connecting to the network, wherein the dynamic service point map comprises a listing of at least one service of a plurality of services and corresponding location information for each service of the at least one service, and

the client process is configured to

connect to a first service of the at least one service listed in the dynamic service point map by directly accessing the corresponding location information in the dynamic service point map on the client to obtain the corresponding location information for the first service, and

send a request for the first service to the corresponding location for the first service.

24. (Previously Presented) The computer-readable medium of claim 23 further comprising:

generating instructions to generate second location information for a second server on which a second service is provided, and

publishing instructions to publish the second location information to the first server for inclusion in the dynamic service point map.

25. (Previously Presented) The computer-readable medium of claim 23 further comprising:

second transferring instructions to transfer an updated dynamic service point map to the client process upon failure of the client process to connect to a second service of the at least one service listed in the dynamic service point map.