© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°14

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Le problème de Cauchy $\begin{cases} y'+cy=f\\ y(0)=0 \end{cases}$ admet une unique solution d'où l'unicité de la solution $\varphi(f)$ de classe \mathcal{C}^1 sur I et vérifiant $\varphi(f)(0)=0$. Remarquons qu'en posant $\psi(x)=\varphi(f)(x)e^{cx}$ pour $x\in I$, ψ est également de classe \mathcal{C}^1 sur I et

$$\forall x \in I, \ \psi'(x) = e^{cx}(\varphi(f)'(x) + c\varphi(f)(x)) = e^{cx}f(x)$$

De plus, $\psi(0) = 0$. Ainsi ψ est l'unique primitive de $x \mapsto e^{cx} f(x)$ s'annulant en 0. D'après le théorème fondamental de l'analyse :

$$\forall x \in I, \ \psi(x) = \int_0^x e^{ct} f(t) \ dt$$

puis

$$\forall x \in I, \ \varphi(f)(x) = e^{-cx} \int_0^x e^{ct} f(t) \ dt$$

Soient $(f, g) \in \mathcal{C}^0(I)^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Alors

$$\begin{aligned} \forall x \in \mathcal{I}, \ \varphi(\lambda f + \mu g)(x) &= e^{-cx} \int_0^x e^{ct} \left(\lambda f + \mu g\right)(t) \ \mathrm{d}t \\ &= e^{-cx} \int_0^x e^{ct} \left(\lambda f(t) + \mu g(t)\right) \ \mathrm{d}t \\ &= \lambda e^{-cx} \int_0^x e^{ct} f(t) \ \mathrm{d}t + \mu e^{-cx} \int_0^x e^{ct} g(t) \ \mathrm{d}t \\ &= \lambda \varphi(f)(x) + \mu \varphi(g)(x) \\ &= (\lambda \varphi(f) + \mu \varphi(g))(x) \end{aligned}$$

Ainsi $\varphi(\lambda f + \mu g) = \lambda \varphi(f) + \mu \varphi(g)$ et φ est bien linéaire sur $\mathcal{C}^0(I)$.

3 Soit $f \in \mathcal{C}^0([a,b])$. En appliquant l'inégalité de Cauchy-Schwarz aux fonctions |f| et 1 pour le produit scalaire $(h,k)\mapsto \int_{\mathbb{T}} hk$, on obtient :

$$||f||_1 = \int_a^b |f(t)| dt \le \sqrt{\int_a^b f(t)^2 dt} \sqrt{\int_a^b dt} = \sqrt{b-a} ||f||_2$$

De plus,

$$||f||_2^2 = \int_a^b f(t)^2 dt \le \int_a^b ||f||_\infty^2 dt = (b-a)||f||_\infty^2$$

donc

$$\|f\|_2 \le \sqrt{b-a} \|f\|_{\infty}$$

On peut donc poser $M_1 = \sqrt{b-a}$ et $M_2 = b-a$.

© Laurent Garcin MP Dumont d'Urville

4 Soit $f \in \mathcal{C}^0([a,b])$.

$$\forall x \in \mathcal{I}, \ |\varphi(f)(x)| = e^{-cx} \left| \int_0^x e^{ct} f(t) \ \mathrm{d}t \right| \leq e^{-ca} \int_a^b e^{ct} |f(t)| \ \mathrm{d}t \leq e^{-ca} \|f\|_\infty \int_a^b e^{ct} \ \mathrm{d}t = e^{-ca} \frac{e^{cb} - e^{ca}}{c} \|f\|_\infty = \frac{e^{c(b-a)-1}}{c} \|f\|_\infty$$

Par conséquent, $\|\varphi(f)\|_{\infty} \le M_0 \|f\|_{\infty}$ avec $M_0 = \frac{e^{c(b-a)-1}}{c}$.

 $|\mathbf{5}|$ Soit $f \in \mathcal{C}^0([a,b])$.

$$\forall x \in I, \ |\varphi(f)(x)| = e^{-cx} \left| \int_0^x e^{ct} f(t) \ dt \right| \le e^{-ca} \int_a^b e^{ct} |f(t)| \ dt \le e^{-ca} \int_a^b e^{cb} |f(t)| \ dt = e^{c(b-a)} ||f||_1$$

Il suffit donc de poser $A = e^{c(b-a)}$. En intégrant que [a, b], on obtient

$$\|\varphi(f)\|_1 \le A(b-a)\|f\|_1$$

Il suffit donc de poser C = A(b - a).

6 D'après les questions précédentes, il suffit de poser $B = AM_1$.

$$\forall x \in I, \ \varphi(f)(x)^2 \le B^2 ||f||_2^2$$

En intégrant sur [a, b], on obtient,

$$\int_{a}^{b} \varphi(f)(x)^{2} dx \le (b - a)B^{2} ||f||_{2}^{2}$$

c'est-à-dire

$$\|\varphi(f)\|_2 \le B\sqrt{b-a}\|f\|_2$$

Il suffit donc de poser $K = B\sqrt{b-a}$.

7 Par caractérisation de la continuité pour les applications linéaires, les questions précédentes assurent que l'endomorphisme φ est continu pour chacune des normes $\|\cdot\|_{\infty}$, $\|\cdot\|_{1}$ et $\|\cdot\|_{2}$.

8 Pour tout $x \in I$,

$$\varphi(f_{\lambda})(x) = e^{-cx} \int_0^x e^{ct} f_{\lambda}(t) dt = e^{-cx} \int_0^x e^{(c-\lambda)t} dt = \begin{cases} \frac{e^{-\lambda x} - e^{-cx}}{c - \lambda} & \text{si } c \neq \lambda \\ xe^{-cx} & \text{si } c = \lambda \end{cases}$$

D'après le cours, pour tout a>0, $x\mapsto e^{-ax}$ est intégrable sur \mathbb{R}_+ . Notamment, f_λ est intégrable sur \mathbb{R}_+ . De même, si $c\neq\lambda$, $\varphi(f_\lambda)$ est intégrable sur \mathbb{R}_+ comme combinaison linéaire de fonctions intégrables sur \mathbb{R}_+ . Enfin, $x\mapsto xe^{-x}$ est continue sur \mathbb{R}_+ et $xe^{-x}=0$ $\left(\frac{1}{x^2}\right)$ donc f_c est aussi intégrable sur \mathbb{R}_+ . De manière générale, pour a>0, $\int_0^{+\infty}e^{-ax}~\mathrm{d}x=\frac{1}{a}$. Notamment, comme f_λ est positive sur \mathbb{R}_+ , $\|f_\lambda\|_1=\frac{1}{\lambda}$. Remarquons

que, si $\lambda \neq c$, $\varphi(f_{\lambda})$ est encore positive (numérateur et dénominateur de même signe). On en déduit que

$$\|\varphi(f_{\lambda})\|_1 = \frac{1/\lambda - 1/c}{c - \lambda} = \frac{1}{\lambda c}$$

Enfin, f_c est encore positive sur \mathbb{R}_+ et, par intégration par parties

$$\|\varphi(f_c)\|_1 = \int_0^{+\infty} x e^{-cx} dx = -\frac{1}{c} \left[x e^{-cx} \right]_0^{+\infty} + \frac{1}{c} \int_0^{+\infty} e^{-cx} dx = \frac{1}{c^2}$$

On a donc $\|\varphi(f_{\lambda})\|_1 = \frac{1}{\lambda c}$ de manière générale.

10 Les mêmes arguments permettent de prouver que f_{λ}^2 et $\varphi(f_{\lambda})^2$ sont intégrables sur \mathbb{R}_+ . On trouve également comme à la question précédente que $||f_{\lambda}||_2 = \frac{1}{\sqrt{2\lambda}}$ et que, lorsque $\lambda \neq c$,

$$\|\varphi(f_{\lambda})\|_{2}^{2} = \frac{1}{(c-\lambda)^{2}} \left(\frac{1}{2\lambda} + \frac{1}{2c} - \frac{2}{\lambda+c}\right) = \frac{1}{2c\lambda(\lambda+c)}$$

© Laurent Garcin MP Dumont d'Urville

donc $\|\varphi(f_{\lambda})\|_2 = \frac{1}{\sqrt{2c\lambda(\lambda+c)}}$. Par double intégration par parties, on obtient

$$\|\varphi(f_c)\|_2^2 = \int_0^{+\infty} x^2 e^{-2cx} \, dx = -\frac{1}{2c} \left[x^2 e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c} \int_0^{+\infty} 2x e^{-2cx} \, dx = -\frac{1}{2c^2} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = \frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \int_0^{+\infty} e^{-2cx} \, dx = -\frac{1}{4c^3} \left[x e^{-2cx} \right]_0^{+\infty} + \frac{1}{2c^2} \left[x e^{-2cx} \right]_0^{+\infty} + \frac$$

de sorte que $\|\varphi(f_c)\|_2 = \frac{1}{2\sqrt{c^3}}$. On a donc $\|\varphi(f_\lambda)\|_2 = \frac{1}{\sqrt{2c\lambda(\lambda+c)}}$ de manière générale.

11 Soit $f \in L^1(I)$.

$$\forall x \in I, \ |\varphi(f)(x)| = e^{-cx} \left| \int_0^x e^{-ct} f(t) \ \mathrm{d}t \right| \le e^{-cx} \int_0^x e^{-ct} |f(t)| \ \mathrm{d}t \le e^{-cx} \int_0^{+\infty} |f(t)| \ \mathrm{d}t = e^{-cx} \|f\|_1$$

En intégrant sur \mathbb{R}_+ , on obtient que $\varphi(f) \in L^1(I)$ et

$$\|\varphi(f)\|_1 \le \frac{1}{c} \|f\|_1$$

Par caractérisation de la continuité pour les applications linéaires, φ est un endomorphisme continu de $L^1(I)$. De plus, $\||\varphi|| \le \frac{1}{c}$. Par ailleurs, pour tout $\lambda > 0$,

$$\|\|\varphi\|\| \ge \frac{\|\varphi(f_{\lambda})\|_{1}}{\|f_{\lambda}\|_{1}} = \frac{1}{c}$$

 $\operatorname{donc} \|\|\varphi\|\| = \frac{1}{c}.$

12 Fixons X > 0. Par définition de φ , f = g' + cg puis $g'g + cg^2 = fg$ en intégrant sur le segment [0, X], on obtient

$$\int_0^X g'(t)g(t) dt + c \int_0^X g(t)^2 dt = \int_0^X f(t)g(t) dt$$

On remarque que $\frac{1}{2}g^2$ est la primitive de gg' nulle en 0 donc

$$\frac{g(X)^2}{2} + c \int_0^X g(t)^2 dt = \int_0^X f(t)g(t) dt$$

Comme $g(X)^2 \ge 0$,

$$c \int_0^X g(t)^2 dt \le \int_0^X f(t)g(t) dt$$

puis, par inégalité de Cauchy-Schwarz,

$$c \int_0^X g(t)^2 dt \le \sqrt{\int_0^X f(t)^2 dt} \sqrt{\int_0^X g(t)^2 dt}$$

Si $\int_0^X g(t)^2 dt \neq 0$, on obtient en divisant par $\sqrt{\int_0^X g(t)^2 dt}$:

$$c\sqrt{\int_0^X g(t)^2 dt} \le \sqrt{\int_0^X f(t)^2 dt}$$

Mais cette inégalité est encore évidemment valide si $\int_0^X g(t)^2 dt = 0$. A fortiori, comme f^2 est positive,

$$\sqrt{\int_0^X g(t)^2 dt} \le \frac{1}{c} \sqrt{\int_0^{+\infty} f(t)^2 dt} = \frac{1}{c} ||f||_2$$

© Laurent Garcin MP Dumont d'Urville

Mais comme g^2 est positive, la fonction $X \mapsto \sqrt{\int_0^X g(t)^2 dt}$ est croissante. De plus, elle est majorée par $\frac{1}{c} \|f\|_2$ donc elle admet une limite en $+\infty$. Ceci signifie que $\int_0^{+\infty} g(t)^2 dt$ converge i.e. $g = \varphi(f) \in L^2(I)$. De plus, $\|\varphi(f)\|_2 \le \frac{1}{c} \|f\|_2$. Ainsi φ est un endomorphisme continu de $L^2(I)$ par caractérisation de la continuité des applications linéaires. On peut ajouter que $\||\varphi|\| \le \frac{1}{c}$. Mais pour tout $\lambda > 0$,

$$\||\varphi|| \ge \frac{\|\varphi(f_{\lambda})\|_2}{\|f_{\lambda}\|_2} = \frac{\sqrt{2\lambda}}{\sqrt{2c\lambda(\lambda+c)}} = \frac{1}{c(\lambda+c)}$$

Passant à la limite lorsque λ tend vers 0^+ , on obtient $|||\phi||| \ge \frac{1}{c}$. Finalement, $|||\phi||| = \frac{1}{c}$.

13. Soit $(f,g) \in H(I)^2$. On sait que $|fg| \le \frac{1}{2}(f^2 + g^2)$. Or f^2 et g^2 sont intégrables sur I donc fg l'est également. Pour la même raison, f'g' est intégrable sur I.

13.b L'application ϕ est clairement symétrique. La bilinéarité de ϕ provient de la linéarité de l'intégrale et de la dérivation. Enfin, si f vérifie $\phi(f,f)=0$, alors $\int_{\rm I} f^2+\int_{\rm I} (f')^2=0$. Comme il s'agit d'une somme de deux termes positifs, $\int_{\rm I} f^2=\int_{\rm I} (f')^2=0$. Notamment, $\|f\|_2=0$ donc f=0. On a bien vérifié que ϕ était un produit scalaire.

13.c $\|\cdot\|_H$ est tout simplement la norme euclidienne associée au produit scalaire φ .

14 14.a Soit $f \in L^2(I)$. On a supposé que φ était un endomorphisme de $L^2(I)$ donc $\varphi(f) \in L^2(I)$. Par conséquent $\varphi(f)' = f - c\varphi(f) \in L^2(I)$.

Ainsi $\varphi(f) \in L^2(I)$ et $\varphi(f)' \in L^2(I)$ donc $\varphi(f) \in H(I)$. De plus, $\varphi(f)(0) = 0$ par définition donc $\varphi(f) \in K$.

Enfin, remarquons que

$$\forall g \in H(I), \|g\|_{H}^{2} = \|g\|_{2}^{2} + \|g'\|_{2}^{2}$$

On a supposé que φ était continu pour la norme $\|\cdot\|_2$. On peut donc poser $N = \|\|\Phi\|\|$. D'après la remarque précédente,

$$\|\varphi(f)\|_{\mathcal{H}}^2 = \|\varphi(f)\|_2^2 + \|\varphi(f)'\|_2^2$$

Tout d'abord, $\|\varphi(f)\|_2 \le N\|f\|_2$. De plus, on rappelle que $\varphi(f)' + c\varphi(f) = f$ de sorte que, par inégalité triangulaire,

$$\|\varphi(f)'\|_2 = \|f - c\varphi(f)\|_2 \le \|f\|_2 + c\|\varphi(f)\|_2 \le (1 + Nc)\|f\|_2$$

Finalement,

$$\|\varphi(f)\|_{\mathcal{H}}^2 \le (N^2 + (1 + Nc)^2)\|f\|_2^2$$

En posant A = $\sqrt{N^2 + (1 + Nc)^2}$, on a bien le résultat voulu.

14.b On a vérifié à la question précédente que φ était bien une application linéaire de L²(I) dans \mathbb{K} .

Soit $f \in \text{Ker } \varphi$. Alors $\varphi(f) = 0$ puis $f = \varphi(f)' + c\varphi(f) = 0$. Ainsi $\text{Ker } \varphi = \{0\}$ et φ est injective.

Soit $g \in K$. Posons f = g' + cg. Puisque g et g' appartiennent à $L^2(I)$, f également. De plus, g est solution de l'équation différentielle g' + cg = 0 et vérifie la condition initiale g(0) = 0. Par unicité de la solution à un problème de Cauchy, $g = \varphi(f)$ et φ est surjective.

On peut donc conclure que φ est un isomorphisme de L²(I) dans K.

14.c Il suffit d'utiliser la caractérisation de la continuité pour les applications linéaires.

14.d Soit $g \in K$. Posons $f = \varphi^{-1}(g)$. Alors $g = \varphi(f)$ de sorte que f = g' + cg. Par inégalité triangulaire,

$$||f||_2 = ||g' + cg||_2 \le ||g'||_2 + c||g||_2$$

Mais comme $\|g\|_{H}^{2} = \|g\|_{2}^{2} + \|g'\|_{2}^{2}$, on a clairement $\|g\|_{2} \le \|g\|_{H}$ et $\|g'\|_{2} \le \|g\|_{H}$. Ainsi

$$\|\varphi^{-1}(g)\|_2 = \|f\|_2 \le (1+c)\|g\|_{\mathcal{H}}$$

A nouveau, φ^{-1} est continue par caractérisation de la continuité pour les applications linéaires.