Sequence models & Attention mechanism

LATEST SUBMISSION GRADE

100%

1. Consider using this encoder-decoder model for machine translation.

	This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x .
	O True
	● False
	✓ Correct
2.	In beam search, if you increase the beam width ${\cal B}$, which of the following would you expect to be true? Check all that apply.
	Beam search will run more slowly.
	✓ Correct
	Beam search will use up more memory.

Beam search will converge after fewer steps.

- In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.
 - True

✓ Correct

/ Correct

O False

 Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes P(y | x).

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

- 5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$ This suggest you should focus your attention on improving the search algorithm.
 - True.
 - O False.

Consider the attention model for machine translation.

	We expect $\alpha^{<\ell,\ell'>}$ to be generally larger for values of $a^{<\ell>}$ that are highly relevant to the value the network should output for $y^{<\ell>}$. (Note the indices in the superscripts.)
	✓ Correct
	$ \begin{tabular}{ll} \hline & We expect $\alpha^{< t,\ell'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.) \\ \hline \end{tabular}$
	$\ \ \ \ \ \ \ \ \ \ \ \ \ $
	$igsep_{t'} lpha^{< t, \ell>} = 1$ (Note the summation is over t' .)
	✓ Correct
7.	The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:
	We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.
	● True
	○ False
	✓ Correct
8.	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:
	$lacksquare$ The input sequence length T_x is large.
	\bigcirc The input sequence length T_x is small.

✓ Correct

Which of the following statements about $lpha^{< t, t'>}$ are true? Check all that apply.

9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?
	_c_oo_o_kkb_ooooo_oo_kkk
	○ cokbok
	● cookbook
	Cook book
	O coookkbooooookkk
	✓ Correct
10.	In trigger word detection, $x^{(4)}$ is:
	lacktriangle Features of the audio (such as spectrogram features) at time t .
	\bigcirc The t -th input word, represented as either a one-hot vector or a word embedding.
	\bigcirc Whether the trigger word is being said at time $t.$
	\bigcirc Whether someone has just finished saying the trigger word at time $t.$
	✓ Correct