Dwarf novae

Tuomo Salmi

University of Turku thjsal@utu.fi

February 26, 2018

Contents

- Introduction
- How to explain observations of dwarf noave:
 - Mass transfer variation from the companion
 - Viscosity variations in accretion disc
- Discussion

- 2 types of cataclysmic variable stars:
 - Classical novae
 - Dwarf novae
- In both: Irregularly increase in brightness by a large factor, then drop back down to a quiescent state.
- Difference: Dwarf novae are much smaller in amplitude, and recur at intervals of weeks to months (only 1 outburst in classical novae).

- What is powering the novae?
- Classical novae: Runaway thermonuclear burning (RTB) of the accreted material on the white dwarf.
- Dwarf novae:
 - RTB cannot provide recurrence times of less than about 10⁴ yr.
 - Variable mass transfer rate from the companion star.
 - Variable mass transfer rate due the changes in accretion disc (instabilities).

Variable mass transfer model (companion)

- Viscous timescale depends on the surface density gradient.
- In the beginning of the outburst, the disc tries to reach a steady state corresponding to the new, high accretion rate.
- This evolution proceeds on the viscous timescale $t_{\rm visc} \propto \frac{l^2}{\nu}$, l << R, corresponding to the steep density gradients in the disc caused by the sudden influx of mass.
- Rapid rise in luminosity (flat top, slow decay).
- Decay with longer time scale $\frac{R^2}{\nu}$, given by the more even density distribution after the injected matter is accreted.

Variable mass transfer model (companion)

- Numerical modeling shows that $\alpha \approx 0.1 1$ produce the observed duration of the burst.
- However, a few problems:
 - Basic cause of the instability in the companion star remains obscure. Some systems with similar companion show no dwarf novae bursts.
 - Disc has been observed to shrink in quiescence, rather than returning to a steady state.
 - The observed decay is not exponential, but faster.

Contents

- Introduction
- How to explain observations of dwarf noave:
 - Mass transfer variation from the companion
 - Viscosity variations in accretion disc
- Discussion

- Back to the S-curve.
- Limit-cycle behaviour expected if the disc contains regions of partial ionization.

Fig. 5.12. Phase plane in the vicinity of a fixed point, indicated by a solid dot at the intersection of the two critical curves h=0 and k=0: (a) stable fixed point; (b) unstable fixed point and stable limit cycle.

Fig. 5.14. Effective temperature–surface density diagrams with (a) a unique, stable steady solution (T_0, Σ_0) , and (b) a case where limit-cycle behaviour occurs as the steady solution (T_0, Σ_0) lies on a region of the curve with $\partial T/\partial \Sigma < 0$.

- Alternating long-lived (low viscosity) states of low M and short-lived (high viscosity) states of high M, with rapid (thermal timescale) transitions between them.
- Considered so far a purely local instability at a fixed value of R.
- A domino effect needed to trigger instability in the adjacent annuli.

14 / 23

• In quiescence $\Sigma(R, t)$ is between

$$\begin{split} \Sigma_{\rm max} &= 11.4 R_{10}^{1.05} M_1^{-0.35} \alpha_c^{-0.86} \text{ g cm}^{-2}, \\ \Sigma_{\rm min} &= 8.25 R_{10}^{1.05} M_1^{-0.35} \alpha_h^{-0.8} \text{ g cm}^{-2}, \end{split}$$

- Outburst is triggered when $\Sigma > \Sigma_{\text{max}}$ at some R.
- At Σ_{max} , a transition to the hot state, and steep Σ and T gradients cause mass and heat to diffuse to adjacent annuli stimulating them to same transition.
- Leads to the propagation of heating fronts both inwards and outwards from the initial instability.

Heating and cooling fronts

- Heating front (HR)
 - Inward-moving with $v_{\rm h} pprox \alpha c_{\rm s}$
 - An outward-moving front slower, because the front moves into matter at higher density, from which it cannot readily remove angular momentum.
 - Matter flows inwards because of enhanced viscosity
- Cooling front (CR)
 - Forms when Σ decreases below Σ_{min} in the outer part of the disc.
 - Moves inward with $v_c = 0.1 v_h$. Mass flows outwards.
 - Disc returns to cool quiescent state

Consequences for observations

- Rise to maximum corresponds to the time taken by the HR to travel across the disc.
- The decline time to the inward motion of the CR.
- The time at maximum depends on the point when(/if) the HR first encounters $\Sigma_{\min}(R)$.
- Observed duration and brightness can only be obtained by using the freedom to manipulate the effective value of the α parameter.

17 / 23

Variations in disc mass

A and B type dwarf novae (DWN)

- DWN outbursts dived in 2 classes depending on \dot{M} from the companion:
- type A
 - High \dot{M} , a rapid rise and a slower decay, short intervals between bursts.
 - Outside-in outbursts
- type B
 - Low M, slower rise than in type A, and more symmetrical.
 - Inside-out outbursts, since viscosity has time increase Σ over Σ_{max} close to disc center.
 - May alternate between narrow and wide outbursts

Type B?

Comparison with observations

- The instability picture is successful in some areas, but also some problems exist:
 - Correlation between M and t_{rec} sometimes in contradiction with the other indicators of DWN outburst type (SS Cygni).
 - "UV delay": Shorter wavelengths delayed more than predicted.
 Central hole?

Conclusions

- How to explain observations of dwarf noave:
- 1) Mass transfer variation from the companion
- 2) Viscosity variations in accretion disc
- Second model is favourited.
- It satisfies the fundamental requirement of correctly predicting the occurrence of outbursts (if and only if the disc contains ionization zones).
- Needed also a viscosity mechanism for turning local thermal-viscous instabilities into global ones ($\alpha_h \sim 10\alpha_c \sim 0.1$).

The End