Machine Learning in Healthcare

#L04-Linear models for classification

Technion-IIT, Haifa, Israel

Asst. Prof. Joachim Behar Biomedical Engineering Faculty, Technion-IIT Artificial intelligence in medicine laboratory (AIMLab.) https://aim-lab.github.io/

Twitter: @lab_aim

Classification versus regression

Regression versus classification

Estimate relationships among usually continuous variables.

Classification

Identify decision boundary between examples of different classes.

Classification

- Examples:
 - Tumor: Malignant/benign?
 - Rhythm: Atrial fibrillation/normal sinus?
- Let's consider a binary classification problem for now:

$$y \in \{0,1\}$$

0: negative class (non-AF),

1: positive class (AF).

LR hypothesis representation

Hypothesis representation

- Linear regression: $h_w(x) = w^T x$
- Logistic regression: $h_w(x) = g(w^T x)$
 - With $g(z) = \frac{1}{1+e^{-z}} = \sigma(z)$ the sigmoid function.
 - $\bullet \quad \lim_{z \to +\infty} \sigma(z) = 1,$
 - $\bullet \lim_{z\to -\infty} \sigma(z) = 0,$
 - $\sigma(0) = 0.5$.

Remark: "Logistic regression" is not a "regression" algorithm but a classification one. The naming is just historical (and somewhat confusing!).

Hypothesis representation

• Interpretation of the probabilistic output:

•
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ CosEn \end{bmatrix}$$
,

•
$$h_w(x) = 0.7 = P(y = 1|x, w),$$

This individual has 70% chance to have AF.

Hypothesis representation

• Interpretation of the decision boundary:

•
$$h_w(x) = \sigma(w^T x) = \frac{1}{1 + e^{-w^T x}}$$

- Example:
 - y = 1 if $h_w(x) \ge 0.5 \iff w^T x \ge 0$
 - Conversely, y = 0 if $h_w(x) \le 0.5 \iff w^T x \le 0$.
 - This gives the decision boundary.
- $e.g. h_w(x) = \sigma(-3 + x_1 + x_2)$

LR Cost Function

Cost function

- We have a training set of
 - m examples: $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$
 - With target labels: $\{y^{(1)}, y^{(2)}, ..., y^{(m)}\}$
- How do we find the weights w of the LR model?
 - Reminder in linear regression:

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2$$

In LR we have $h_w(x) = \sigma(z)$ and thus the resulting cost function J(w) is **non-convex**. Thus we need to find another cost function that is convex.

Reminder: convex function

Figure 1.31 A convex function f(x) is one for which every chord (shown in blue) lies on or above the function (shown in red).

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b).$$

Reminder: convex function

Cost function in LR

We define the following error:

$$E_{w}(x,y) = \begin{cases} -\log(h_{w}(x)), & \text{if } y = 1\\ -\log(1 - h_{w}(x)), & \text{if } y = 0, \end{cases}$$

- If y = 1 and $h_w(x) \to 0$ then $E_w(x, y) \to \infty$
- If y = 1 and $h_w(x) \to 1$ then $E_w(x, y) \to 0$.
- Ibid y = 0.
- We can re-write it:
 - $E_w(x,y) = -y\log(h_w(x)) (1-y)\log(1-h_w(x))$

Cost function in LR

The cost function:

- It is possible to show that the cost function J(w) is convex.
- This is called the Cross-Entropy cost function or log loss.

Cost function in LR

- Why do we choose this particular error definition?
 - Maximum likelihood estimate.

$$\quad argmax_w \mathcal{L}(w|Y,X) = argmax_w (\prod_{i=1}^m \mathcal{L}\big(w\big|y^{(i)},x^{(i)}\big))$$

• Convex cost function.

Gradient descent

- We want to use some optimization algorithm to solve our optimization problem given the cost function we defined.
- Optimization is about maximizing/minimizing an objective function g(x) parametrized by x.
- In machine learning we are interesting in minimizing J(w) parametrized by w.
- We want to find $min_w(J(w))$
- For that purpose we will use **gradient descent**.

• Gradient descent, update w_i :

$$w_j := w_j - \alpha \frac{\partial J(w)}{\partial w_j}$$

 More sophisticated alternative to gradient descent (but based on gradient descent) exist: conjugate gradient, BFGS, L-BFGS etc.

- How do we use gradient descent with LR? Snapshot here.
- The overall cost function:

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} log \left(h_w(x^{(i)}) \right) - \left(1 - y^{(i)} \right) log \left(1 - h_w(x^{(i)}) \right) \right]$$

• We need to compute $\frac{\partial J(w)}{\partial w_j}$, $\forall j \in [1, ..., n_x]$:

• Gradient descent, update w_i :

•
$$w_j := w_j - \alpha \frac{\partial J(w)}{\partial w_j} = w_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

What about feature scaling? Yes, we need it!

LR gradient descent

Logistic regression

- Equations:
 - $z = w^T x + b$
 - $\bullet \quad a = h_w(z) = \sigma(z)$
- Cost function:
 - $J(w) = -y \log(h_w(x)) (1 y) \log(1 h_w(x))$
 - J(w) = -ylog(a) + (1 y)log(1 a)

Logistic regression equations

- Forward propagation: →
 - $z = w^T x + b$
 - $a = \sigma(z)$

■ Backward propagation: ←

•
$$w_1 \coloneqq w_1 - \alpha \frac{\partial J(w)}{\partial w_1} = w_1 - \alpha (\alpha - y) x_1$$

•
$$w_2 \coloneqq w_2 - \alpha \frac{\partial J(w)}{\partial w_2} = w_2 - \alpha (a - y) x_2$$

•
$$b \coloneqq b - \alpha \frac{\partial J(w)}{\partial b} = b - \alpha (a - y)$$

Iterate between forward and backward steps.

Logistic regression equations

- Now consider m examples
 - Forward propagation,

$$z^{(i)} = w^T x^{(i)} + b, \forall i \in [1, m]$$

$$a^{(i)} = \sigma(z^{(i)}), \forall i \in [1, m]$$

Backward propagation:

•
$$w_1 := w_1 - \frac{1}{m} \sum_{i=1}^m \alpha (a^{(i)} - y^{(i)}) x_1^{(i)}$$

•
$$w_2 := w_2 - \frac{1}{m} \sum_{i=1}^m \alpha (a^{(i)} - y^{(i)}) x_2^{(i)}$$

•
$$b := b - \frac{1}{m} \sum_{i=1}^{m} \alpha (a^{(i)} - y^{(i)}).$$

Logistic regression equations

- Now consider n_x input features:
 - Forward propagation:

$$z^{(i)} = w^T x^{(i)} + b, \forall i \in [1, m]$$

$$a^{(i)} = \sigma(z^{(i)}), \forall i \in [1, m]$$

Backward propagation:

•
$$w_j := w_j - \frac{1}{m} \sum_{i=1}^m \alpha (a^{(i)} - y^{(i)}) x_j^{(i)}, \forall j \in [1, n_x]$$

$$b \coloneqq b - \frac{1}{m} \sum_{i=1}^{m} \alpha \left(a^{(i)} - y^{(i)} \right).$$

• So if we perform k iterations of gradient descent we need to go through two loops of m (forward) and then n (backward) steps. Can we vectorize?

How can we vectorise?

Forward propagation

$$z^{(1)} = w^T x^{(1)} + b$$

$$a^{(1)} = \sigma(z^{(1)})$$

$$z^{(2)} = w^T x^{(2)} + b$$

$$a^{(2)} = \sigma(z^{(2)})$$

•

Vectorized form of forward propagation:

$$z = w^T X + b$$

$$z \in \mathbb{R}^m, z = [z^{(1)}, ..., z^{(m)}]$$

•
$$w \in \mathbb{R}^{n_x}, w = [w_1, ..., w_{n_x}]$$

$$X \in \mathbb{R}^{n_X \cdot m}, X = [x^{(1)}, ..., x^{(m)}]$$

•
$$b \in \mathbb{R}^m, b = [b, b, \dots, b]$$

How can we vectorise?

Backward propagation:

•
$$w_j := w_j - \frac{1}{m} \sum_{i=1}^m \alpha (a^{(i)} - y^{(i)}) x_j^{(i)}, \forall j \in [1, n]$$

- Vectorized backward propagation:
 - $w := w \alpha \frac{1}{m} X \left(\underline{a} \underline{y} \right)$
 - $\underline{a} \in \mathbb{R}^m, \underline{y} \in \mathbb{R}^m, X \in \mathbb{R}^{n_x \cdot m}$

How can we vectorise?

In conclusion, the vectorized form of LR gradient descent:

$$z = w^T X + b$$
 (forward step)

•
$$w \coloneqq w - \alpha \frac{1}{m} X \left(\underline{a} - \underline{y} \right)$$
 (backward step)

•
$$b \coloneqq b - \frac{1}{m} \sum_{i=1}^{m} \alpha (a^{(i)} - y^{(i)})$$
 (backward step)

- We are now interested in a problem where the output is not binary.
- Consider the arrhythmia example. Say we now want to distinguish between categories:
 Atrial fibrillation (AF), other arrythmias (ARR) and normal sinus rhythm (NSR).

- How do we do that?
- "One vs. all" also called "one vs. the rest" approach.
- Transform the problem into a set of 2-class classification problems:

- "One vs. one".
- Transform the problem into a set of 2-class classification problems:

- Can be computationally expensive.
- Problem of ambiguous region.
 - How can we resolve?

Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to ambiguous regions, shown in green. On the left is an example involving the use of two discriminants designed to distinguish points in class C_k from points not in class C_k . On the right is an example involving three discriminant functions each of which is used to separate a pair of classes C_k and C_j .

- On the example of the one vs. the rest
- So we come up with 3-classifiers, each classifier is trained to recognize one of the three classes.
- How do we classify a new observation x?
- Example:
 - You record:

- We saw the one vs. the rest and one vs. one approaches.
- These approaches can be used to generalize any binary classifier to a multiclass setting.
- Can we actually change the classifier (LR here) hypothesis class and cost function to be multiclass?
 - Multinomial LR. (Also called multiclass LR or softmax regression).

- Two class classification: $z = w^T x + b$
- Multinomial: z = Wx + b
 - $z, b \in \mathbb{R}^{n_y}$,
 - $W \in \mathbb{R}^{n_{\mathcal{Y}} \cdot n_{\mathcal{X}}}$
- From the *z* vector how do we classify? **Softmax** activation function:
 - $a = softmax(z) = e^{z} / \sum_{k=1}^{n_y} e^{z_k}$
- The softmax is also called normalized exponential function. It is a function that takes an input vector of size n_y and normalizes it into n_y probability distribution proportional to the exponentials of the input numbers.

Cost function we add for the two-class classification:

• For the multinomial LR:

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{n_y} \left[1\{y^{(i)} = k\} \log(h_{w_k}(x^{(i)})) \right],$$

- Thus two differences with what we had previously:
 - The cost function sums over the number of classes.
 - We use the softmax activation function and not σ .

- We saw the one vs. the rest and one vs. one approaches which are general approaches for any binary classifier.
- Multinomial LR which is a generalization to multiclass specific to the LR model.
- What about if the classes are not exclusives?

Take home

- Classification versus regression.
- Hypothesis representation and Cross-entropy cost function.
- Convexity of the cost function.
- Optimization using gradient descent.
- Multiclass classification:
 - General framework: one vs. all, one vs. one,
 - Model (LR) specific: multinomial.
- LR is one of the most popular classification algorithm. Use it as a baseline.
 - Advantages: efficient, interpretable, outputs probabilities.
 - Drawback: cannot solve non-linear problems since the LR decision surface is linear.

References

- [1] Andrew Ng, Coursera, Machine Learning. Coursera.
- [2] Andrew Ng, Coursera, Neural Networks and Deep Learning. Coursera.
- [3] CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU
- URL: http://research.cs.tamu.edu/prism/lectures/pr/pr l10.pdf
- [4] Pattern recognition and Machine Learning. Christopher M. Bishop. 2006 Springer Science.