Оглавление

		Смешанное произведение		
1	_	инное (точечное) пространство Определение	3	
2	-	мые на плоскости Определения	5	
Лекция 6: Смешанное произведение. Афинное простран-				
J'I	BO			30.10.2023

0.1 Смешанное произведение

Определение 1. $\mathbf{a}, \mathbf{b}, \mathbf{c}$ — векторы в \mathbb{R}^3 $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} \times \mathbf{b}; \mathbf{c})$ — смешанное произведение Геометрический смысл: $\pm V_{\text{параллелепипеда}}$ Доказательство. $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = |\mathbf{a} \times \mathbf{b}| |\mathbf{c}| \cos \alpha = S_{\mathbf{a}, \mathbf{b}} |\mathbf{c}| \cos \alpha = \pm V_{\mathbf{a}, \mathbf{b}, \mathbf{c}}$

В координатах:

$$(\mathbf{a} \times \mathbf{b}; \mathbf{c}) = (a_2b_3 - a_3b_2; a_3b_1 - a_1b_3; a_1b_2 - a_2b_1)(c_1, c_2, c_3) =$$

$$a_2b_3c_1 - a_3b_2c_1 + a_3b_1c_2 - a_1b_3c_2 + a_1b_2c_3 - a_2b_1c_3 = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

0.2 Свойства смешанного произведения

(по свойствам определителей)

1.
$$(\mathbf{e} + \mathbf{f}, \mathbf{b}, \mathbf{c}) = (\mathbf{e}, \mathbf{b}, \mathbf{c}) + (\mathbf{f}, \mathbf{b}, \mathbf{c})$$
 для каждого аргумента

2.
$$(\alpha \mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a}, \alpha \mathbf{b}, \mathbf{c}) = (\mathbf{a}, \mathbf{b}, \alpha \mathbf{c}) = \alpha(\mathbf{a}, \mathbf{b}, \mathbf{c})$$

3.
$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = 0 \Leftrightarrow \mathbf{a}, \mathbf{b}, \mathbf{c} - \Pi 3$$

$$4. \ (\mathbf{a},\mathbf{b},\mathbf{c}) = (\mathbf{b},\mathbf{c},\mathbf{a}) = (\mathbf{c},\mathbf{a},\mathbf{b}) = -(\mathbf{b},\mathbf{a},\mathbf{c}) = -(\mathbf{a},\mathbf{c},\mathbf{b}) = -(\mathbf{c},\mathbf{b},\mathbf{a})$$

5. Знак смешанного произведения – ориентация тройки.

Глава 1

Афинное (точечное) пространство

1.1 Определение

Определение 2. V – векторное пространство, E – множество. Назовем E точечным (аффинным) пространством , если определена операция $+: E \times V \to E$, т.е. $(e; \mathbf{v}) \mapsto (e + \mathbf{v})$ со свойствами:

1.
$$(e + \mathbf{v}_1) + \mathbf{v}_2 = e + (\mathbf{v}_1 + \mathbf{v}_2)$$

2.
$$e + 0 = e$$

3.
$$\forall e_1, e_2 \in E \exists ! \mathbf{v} \in V : e_2 = e_1 + \mathbf{v}$$

Такой вектор будем обозначать $\mathbf{v} = \overrightarrow{e_1 e_2}$

Определение 3 (Построение точек). Если в V есть базис $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ и мы зафиксируем $e_0 \in E \Rightarrow \forall e \in E \exists ! \mathbf{v} : e_0 + \mathbf{w} = e$, при этом: $\exists ! \alpha_1, \alpha_2, \dots, \alpha_n : \mathbf{w} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n \Rightarrow e = (\alpha_1, \alpha_2, \dots, \alpha_n)$ – координаты e.

Если имеем $\mathbf{v} = \beta_1 \mathbf{v}_1 + \ldots + \beta_n \mathbf{v}_n$, то: $e + \mathbf{v} = (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \ldots, \alpha_n + \beta_n)$

Определение 4 (Расстояние). Пусть e_0 – начало координат, $\mathbf{v}_1, \dots, \mathbf{v}_n$ – ОНБ. $e_1 = e_0 + \mathbf{u} = (\mathbf{u}_1, \dots, \mathbf{u}_n), e_2 = e_0 + \mathbf{w} = (\mathbf{w}_1, \dots, \mathbf{w}_n)$

$$dist(e_1, e_2) = |\mathbf{u}_1 - \mathbf{w}_1| = \sqrt{(\mathbf{u}_1 - \mathbf{w}_1, \mathbf{u}_1 - \mathbf{w}_1)}$$

Определение 5 (Преобразование начала координат). (Если хотим перейти от начала координат e_0 к e_0')

Есть базис $\mathbf{v}_1,\dots,\mathbf{v}_n$ и вектор $e_0'-e_0=\mathbf{w}=(\mathbf{w}_1,\dots,\mathbf{w}_n)$. И пусть точка $e=(e_1,\dots,e_n)$ – координаты с началом e_0 и $e=(e_1',\dots,e_n')$ –

координаты с началом в e_0' . Тогда:

$$e = e_0 + e_1 \mathbf{v}_1 + \ldots + e_n \mathbf{v}_n$$
$$e'_0 = e_0 + e_1 \mathbf{w}_1 + \ldots + e_n \mathbf{w}_n \Leftrightarrow e_0 = e'_0 - \mathbf{w}_1 \mathbf{v}_1 - \ldots - \mathbf{w}_n \mathbf{v}_n$$

Упражнение: почему равносильно?

Имеем
$$e=e_0'+(e_1-\mathbf{w}_1)\mathbf{v}_1+\ldots+(e_n-\mathbf{w}_n)\mathbf{v}_n$$

Значит $(e_1',\ldots e_n')=(e_1-\mathbf{w}_1,\ldots,e_n-\mathbf{w}_n)$

Глава 2

Прямые на плоскости

2.1 Определения

Определение 6. E — точечное пространство, V — векторное пространство, $\dim V=2$. Тогда прямая — это подмножество $l\subset E,$ если: $\forall e\in E, \mathbf{v}\in V\setminus\{0\}$:

$$l = \{e + \alpha \mathbf{v} : \alpha \in \mathbb{R}\}\$$

 ${f v}$ – направляющий вектор прямой.

Определение 7 (Параметрическое уравнение прямой). Пусть $e=(e_1,e_2)$ $\mathbf{v}=(v_1,v_2)$ $e+t\mathbf{v}=(e_1+tv_1,e_2+tv_2)=(x,y)$ $\begin{cases} x=e_1+tv_1 & -\text{параметрическое уравнение прямой.} \\ y=e_2+tv_2 & -\text{параметрическое уравнение прямой.} \end{cases}$

Определение 8 (Каноническое уравнение прямой). Если выразить t из параметрического уравнения, то получим каноническое уравнение прямой:

$$\frac{x-e_1}{v_1} = \frac{y-e_2}{v_2}$$

Если $v_1 \vee v_2 = 0$ то $x = e_1 \vee y = e_2$, но $v_1 \wedge v_2$ быть не может.

Определение 9 (Построение прямой по точкам). Пусть $e=(x_0,y_0), e_1=(x_1,y_1)$ $e\vec{e}_1=(x_1-x_0,y_1-y_0)$ – направляющий вектор. Пусть e – начало, тогда уравнение прямой:

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}$$

Теорема 1 (Прямая в стандаритных координатах). Из канонического уравнения прямой получаем:

$$x(v_2) - y(v_1) - e_1v_2 + e_2v_1 = 0 \Leftrightarrow \forall A, B, C : A^2 + B^2 \neq 0 : Ax + By + C = 0$$

$$Ax + C = -By \Rightarrow \frac{x + \frac{C}{A}}{B} = \frac{y - 0}{-A}, \ A \neq 0$$

Определение 10 (Уравнение в отрезках). Если $A, B, C \neq 0$, то

$$\frac{x}{p} + \frac{y}{q} = 1$$

$$p = -\frac{C}{A}, q = -\frac{C}{B}$$

(p,0) и (0,q) – подходят:

Теорема 2. Если A, B – коэффициенты уравнения прямой, то вектор (нормаль) $(A, B) \perp \mathbf{v}$.

Доказательство.
$$(A,B)=(v_2,-v_1)\perp (v_1,v_2), \text{ т.к. } (v_1,v_2)\cdot (v_2,-v_1)=0$$