Tutorial Sheet 10

Limit, Continuity and Differentiability of a Function of Several Variables

1. Examine the limits of the below mentioned functions as $(x,y) \to (0,0)$.

(a)
$$f_1(x,y) = \begin{cases} \frac{x^2+y^2}{x^2-y^2}, & x \neq y \\ 0, & x = y \end{cases}$$

(b)
$$f_2(x,y) = xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right)$$

2. Find the repeated limits of the following functions.

(a)
$$f(x,y) = \frac{3x - 4y}{5x + 8y}$$

(b)
$$g(x,y) = \left(\frac{2+x}{3+y}\right) \left(\frac{y-x}{y+x}\right)$$

3. Examine the continuity of the following functions at (0,0).

(a)
$$f_1(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6}, & (x,y) \neq (0,0) \\ 0, & \text{otherwise.} \end{cases}$$

(b)
$$f_2(x,y) = \begin{cases} \frac{\sin^2(x-y)}{|x|+|y|}, & (x,y) \neq (0,0) \\ 0, & \text{otherwise.} \end{cases}$$

4. Find the first order partial derivatives of the following functions at the given points

(a)
$$f(x,y) = (x^2 + xy)^3$$
, at $(1,0)$ (b) $g(x,y) = \left(\frac{x^2 + y^2}{xy}\right)$, at $(\sqrt{2}, \sqrt{2})$.

5. Discuss the differentiability of the following functions at (0,0).

(a)
$$f(x,y) = \begin{cases} x \sin\frac{1}{x} + y \sin\frac{1}{y}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$
 (b) $g(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x = y = 0 \end{cases}$

6. Let f(x,y) = ||x| - |y|| - |x| - |y|. Is f continuous at (0,0)? Which directional derivatives of f exist at (0,0)? Is f differentiable at (0,0)? Give reasons.

1

- 7. If $z = x^5 e^{9y}$, then find the value of dz.
- 8. Find the total differential of $z = x^3y + xy$ at the point (1, 2).
- 9. If $z = x^3y + xy + 4$ and $x = \cos t$, $y = \sin 2t$, then compute $\frac{dz}{dt}$ and evaluate it at $t = \frac{\pi}{4}$.
- 10. Find the direction where the directional derivative is greatest for the function $f(x,y) = 3x^2y^2 x^4 y^4$ at the point (1,2).
- 11. Let $\sin(xyz) = x + 3z + y$. Then find $\frac{\partial z}{\partial x}$.
- 12. Let $f(x,y) = \sqrt{x} \sin y$. Find the approximate value of f(4.1,0.2).
- 13. Given that f(2,-3) = 6, $f_x(2,-3) = 1.3$ and $f_y(2,-3) = -0.6$. Approximate the value of f(2.1,-3.03).
- 14. An ant travels along a path on a surface. The exact path and surface are not known, but at time $t = t_0$, it is known that:

$$\frac{\partial z}{\partial x} = -7$$
, $\frac{\partial z}{\partial y} = 2$, $\frac{dx}{dt} = -1$ and $\frac{dy}{dt} = 3$.

Find $\frac{dz}{dt}$ at time t_0 .

15. Let $\sin(xy) + y^2 + x = 5$. Find $\frac{dy}{dx}$.