PMATH 440 Notes

Analytic Number Theory Fall 2025

Based on Professor Michael Rubinstein's Lectures

CONTENTS Peiran Tao

Contents

1	Introduction	3
2	Summation Methods	4
	2.1 Summation by parts	4

- Lecture 1, 2025/09/04 -

1 Introduction

Topics covered in this course

(1). Summation methods (summation by parts, Euler-Maclaurin Summation, Poisson Summation, Dirichlet Hyperbola).

(2). Dirichlet series and Dirichlet divisor problem.

(3). Riemann zeta function ζ . Meromorphic continuation (ζ has a pole at s=1) and functional equation.

$$\zeta(s) = \sum_{n>1} \frac{1}{n^s} \text{ for } \operatorname{Re}(s) > 1$$

(4). Prime Number Theorem. If $\pi(x)$ = number of prime numbers $\leq x$, then

$$\pi(x) \sim \int_2^x \frac{1}{\log t} \, \mathrm{d}t \sim \frac{x}{\log x}$$

(5). Dirichlet's Theorem. If $0 \neq a, b \in \mathbb{Z}$ and gcd(a, b) = 1, there are infinitely many prime numbers of the form ak + b for $k \in \mathbb{Z}$. For example, there are infinitely many primes of the form 4k + 1.

(6). More Complex analysis. Gamma function, Weierstrass products and possibly linear fractional transformations and modular forms.

We first introduce some asymptotic notations.

Definition. We say that $f(x) \sim g(x)$ as $x \to \infty$ if

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

The Prime Number Theorem says $\pi(x) \sim \frac{x}{\log x}$ as $x \to \infty$, which is equivalent to

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1$$

Example. By the Stirling's approximation, we know

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 as $n \to \infty$

Definition. Let f, g be defined on (a subset of) \mathbb{R} and g be a real-valued. We write $f(x) = \mathcal{O}(g(x))$ as $x \to \infty$, where g is real-valued, if there exists c > 0 such that $|f(x)| \le cg(x)$ for all $x > x_0$.

Example. $\sin(x) = \mathcal{O}(1)$ as $x \to \infty$ since sin is bounded.

Example. By the Stirling's formula we have

$$n! = \mathcal{O}\left(\sqrt{n}\left(\frac{n}{e}\right)^n\right)$$
 and $n! = \mathcal{O}\left(\frac{n^{n+1}}{e^n}\right)$

The first one implies the second one because $\sqrt{n} = \mathcal{O}(n)$.

Definition. We write f(x) = o(g(x)) as $x \to a$ if

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

In most cases we will take $a=\infty$ or $a=-\infty$. This means "f(x) is much smaller than g(x) near a".

Example. By the Stirling's formula we have

$$\lim_{n \to \infty} \frac{n!}{\frac{n^{n+1}}{e^n}} = \lim_{n \to \infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{\frac{n^{n+1}}{e^n}} = \lim_{n \to \infty} \frac{\sqrt{2\pi}}{\sqrt{n}} = 0$$

It follows that $n! = o(n^{n+1}/e^n)$ as $n \to \infty$.

Remark (Vinogradov's notation). We can also write $f(x) = \mathcal{O}(g(x))$ as $f(x) \ll g(x)$.

2 Summation Methods

2.1 Summation by parts

This method is the discrete version of integration by parts.

Theorem 2.1. Let $f: \mathbb{N} \to \mathbb{C}$ and $g: \mathbb{R} \to \mathbb{C}$ be continuously differentiable on [1, x]. Then, for all $x \geq 1$ we have

$$\sum_{1 \le n \le x} f(n)g(n) = \left(\sum_{1 \le n \le x} f(n)\right)g(x) - \int_1^x \sum_{1 \le n \le t} f(n)g'(t) dt \tag{1}$$

Proof. Consider the term f(n)g(n), we note

$$f(n)g(x) - f(n) \int_{n}^{x} g'(t) dt = f(n)g(x) - f(n)(g(x) - g(n)) = f(n)g(n)$$
 (2)

This equality is obtained by looking at the terms that have to do with f(n) in (1). Then summing the equation (2) over $1 \le n \le x$ gives us (1).

Example. Consider the harmonic series $\sum_{1 \le n \le x} \frac{1}{n}$. Take f(n) = 1 and $g(x) = \frac{1}{x}$. Then by the partial summation formula we have

$$\sum_{1 \le n \le x} \frac{1}{n} = \left(\sum_{1 \le n \le x} f(n)\right) g(x) - \int_1^x \sum_{1 \le n \le t} f(n)g'(t) dt = \frac{\lfloor x \rfloor}{x} + \int_1^x \frac{\lfloor t \rfloor}{t^2} dt$$

Here note that

$$\lfloor x \rfloor := \sum_{1 \le n \le x} 1 = \text{the largest integer} \le x$$

and using this we define

$$\{x\} := x - \lfloor x \rfloor =$$
the fractional part of x

For example $|\pi| = 3$ and $\{\pi\} = 0.1415926535897 \cdots$. Therefore

$$\sum_{1 \le n \le x} \frac{1}{n} = \frac{x - \{x\}}{x} + \int_{1}^{x} \frac{t - \{t\}}{t^{2}} dt$$

$$= 1 - \frac{\{x\}}{x} + \int_{1}^{x} \frac{1}{t} - \frac{\{t\}}{t^{2}} dt$$

$$= 1 + \log x - \int_{1}^{x} \frac{\{t\}}{t^{2}} dt + \mathcal{O}\left(\frac{1}{x}\right)$$

Now we analyze this integral

$$\int_{1}^{x} \frac{\{t\}}{t^{2}} dt = \underbrace{\int_{1}^{\infty} \frac{\{t\}}{t^{2}} dt}_{<\infty} - \underbrace{\int_{x}^{\infty} \frac{\{t\}}{t^{2}} dt}_{\mathcal{O}(\frac{1}{x})}$$

The estimation of second integral is by bounding $\{t\}/t^2$ by $1/t^2$. Therefore

$$\sum_{1 \le n \le x} \frac{1}{n} = \log x + \underbrace{1 - \int_{1}^{\infty} \frac{\{t\}}{t^2} dt}_{:=\gamma} + \mathcal{O}\left(\frac{1}{x}\right)$$

This constant γ is called the Euler's constant, that is,

$$\lim_{x \to \infty} \left(\sum_{1 \le n \le x} \frac{1}{n} - \log x \right) = \gamma$$

Conjecture: γ is irrational.

Example. Take the log and consider $\log(n!)$. Let f(n) = 1 and $g(x) = \log(x)$. By the partial summation formula we have

$$\sum_{1 \le m \le n} \log(m) = n \log n - \int_1^n \frac{\lfloor t \rfloor}{t} dt$$
$$= n \log n - \int_1^n \frac{t - \{t\}}{t} dt$$
$$= n \log n - (n - 1) + \int_1^n \frac{\{t\}}{t} dt$$

- Lecture 2, 2025/09/09 -