

Figure 1. The small-sample performance of different algorithms. We choose TD3BC as the baseline algorithm. The ratio 100% indicates training with the full dataset, while 5% indicates training with only 1/20th of the full dataset. The shaded area comes from four different seeds {0, 10, 100, 1000}.

Table 1. Comparison of running time and performance of different algorithms. The time unit is minutes, and all experiments run on a server equipped with an Intel® Xeon® Gold 6254 CPU @ 3.10GHz and NVIDIA GeForce RTX 3090 GPU.

Algorithm	Training Steps	halfcheetah-mr		hoppe	r-mr	walker2d-mr		
7 Hgorrann	Truming Steps	Runtime (m)	Score	Runtime (m)	Score	Runtime (m)	Score	
TD3BC	1 M	142.1	44.8±0.6	137.3	64.4±21.5	135.7	85.6±4.0	
	2M	290.7	45.0 ± 0.4	271.5	65.4 ± 21.7	261.4	68.5 ± 11.4	
TD3BC + Q-SAM	1M	276.9	45.3±0.4	296.1	87.3±5.0	298.1	90.1±1.0	

Table 2. Performance under different parameters λ . The λ comes from WSAM in Q-SAM, and its use generally leads to performance improvements compared to using SAM alone.

Algorithm	Parameter	halfcheetah		hopper			walker2d			Proportion	
		-m	-mr	-me	-m	-mr	-me	-m	-mr	-me	Troportion
TD3BC + Q-SAM	$\lambda = 0.1$	48.4	45.3	93.9	63.7	76.8	105.1	84.2	87.5	111.5	5/9
	$\lambda = 0.9$	48.2	45.0	91.7	65.7	87.3	104.6	85.4	90.1	111.2	4/9
TD3BC + SAM	_	48.5	44.6	90.3	60.9	69.4	101.5	82.9	86.7	109.0	_
CQL + Q-SAM	$\lambda = 0.1$	47.3	45.6	95.6	70.3	95.5	109.5	84.2	84.4	111.8	7/9
	$\lambda = 0.9$	47.1	45.5	94.9	65.5	95.3	109.8	82.8	80.7	112.3	2/9
CQL + SAM	_	47.1	45.5	94.1	59.7	94.9	108.7	81.7	74.9	109.6	_
IQL + Q-SAM	$\lambda = 0.1$	49.2	45.1	95.9	75.3	103.0	111.9	87.6	88.3	111.7	7/9
	$\lambda = 0.9$	48.8	44.6	95.5	70.9	102.1	113.4	87.4	90.9	111.6	2/9
IQL + SAM	_	48.4	44.6	95.0	68.5	100.5	109.4	86.9	87.2	111.3	_

Figure 2. Critic loss values in the small-sample experiment (Figure 1 above). The critic loss value can serve as a statistical measure of the Bellman error, where Log(1 + Critic Loss) indicates taking the logarithm of the loss value to address scenarios of loss explosion. We removed the Weighted Samples from Q-SAM to better emphasize the impact of Weighted Sharpness in reducing Bellman error.