BITS Pilani, Post Graduate Programme in AI/MLC6: Deep Learning and ANN Assignment 1 - [12 marks]

Q1. Train a Perceptron

Perceptron is a fundamental building block for neural networks. Let us try to train a single perceptron. Consider the data given in the following table. As one can see, it has two attributes x1,x2 and a class label (either 0 or 1).

- 1. Implement the perceptron training rule and get the appropriate parameters for a single perceptron.
- 2. Plot the data points and the obtained decision boundary.
- 3. Also draw the schematic diagram of the trained perceptron with learned weights. You can draw this on paper and attach a photo.

[2+2+1=5 Marks]

x_1	x_2	Class
2	3	0
4	5	0
11	11	1
4	11	1
12	5	0
5	2	0
6	1	0
6	3	0
2	10	1
4	7	1
13	8	0
1	6	1
6	9	1
10	12	1
8	3	0
2	8	1

Q2. Train a Neural Network

Let us design a neural network to classify flowers from Iris dataset.

- 1. Implement a single hidden layer MLP. Final output layer will have 3 neurons, one for each result. Arch: [Input, hidden, output]
- 2. Now use an NN with two hidden layers. The first hidden layer has 9 neurons. The second hidden layer has 3 neurons. Arch: [Input,hidden1,hidden2,output]
- (i) Use keras to design the NN model and train on the iris data.
- (ii) Draw the schematic diagram of the NN 2 along with all the weights and specify suitable activation function. How many trainable parameters are there? [2 (NN1) + 3 (NN2) + 2 (diagram) = 7 Marks]

Link for Iris dataset: https://archive.ics.uci.edu/ml/datasets/iris