Project 1 Implementation of a Lexer Due Friday, March 29, 2019

1. Identifiers (10%)

Input:

ABCD OR AND EFG AND 1 NOT1 123 A1

Output:

(token ABCD OR_AND_EFG AND_1 NOT1 _123 _A1)

2. Keywords (15%)

Input:

begin declare else end exit for if in integer is loop procedure read then write

Output:

(token begin declare else end exit for if in integer is loop procedure read then write)

3. Integer constants (10%)

Input:

123 00123 0 4 8 4560

Output:

(token 123 0 0 123 0 4 8 4560)

4. Operators (20%)

Input:

Output:

(token : .. ; + - * / % =
$$<>>=$$
 $<$ $<=$ && \parallel ! := ())

5. Comments (10%)

Input:

// nothing should be printed

Output:

token

6. White spaces (10%)

Input:

```
// The following line contains a ' ', a '\t', and a '\n'.
```

Output:

token

7. Example (25%)

Input:

```
// A program to sum 1 to N
procedure SUM is
  declare
    N: integer;
    S: integer;
    I: integer;
begin
  read N;
  if N < 0 then
    write -1;
    exit;
  else
    S := 0;</pre>
```

```
end if;

// Loop
for I in 1..N loop
S := S + I;
end loop;
write S;
end;
```

Output:

```
(token procedure SUM is declare N: integer; S: integer; I: integer; begin read N; if N < 0 then write - 1; exit; else S := 0; end if; for I in 1.. N loop S := S + I; end loop; write S; end;)
```