

CampoCost-Aware Performance Optimization for Mixed-Precision Neural Network Training

USENIX ATC'22

Xin He, CSEE, Hunan University & Xidian University; Jianhua Sun and Hao Chen, CSEE, Hunan University; Dong Li, University of California, Merced

Usage of GPU in Al field is getting more and more common

Model size is getting huge

GPU & CPU performance

Model size

Present model require:

- high memory bandwidth and capacity
- High calculation speed
- Better energy efficiency

Mixed precision training

What is mixed precision training?

weights, activations and gradients are stored as FP16

Multiply in low precision, sum with full precision

What is mixed precision training?

- Training throughput
- memory bandwidth and capacity
- Algorithm power limit
- Fast execution

small gradient may be shrunk to zero

What is mixed precision training?

How is mixed precision achieved by present framework?

Figure 1: The workflow of mixed precision training.

Only supported by NVDIA in modelscale

AMP, Automatic mixed precision

How is mixed precision achieved by present framework?

Step 1. identifying which nodes should be changed to FP16 and inserting casts between FP32 nodes and FP16 nodes by a mixed precision graph optimizer (paper's focus)

Step 2. adding loss scaling to preserve small gradient values by an **automatic loss-scale optimizer**

How is mixed precision achieved by present framework?

Step 1. Assign precision for each nodes and inserting casts by a mixed precision graph optimizer (paper's focus)

Ops are sorted into lists based on numerical safety

Allowlist numerically-safe && performance-critical

Denylist numerically-dangerous

Inferlist numerically-safe on their own, affected by upstream denylist op

Clearlist doesn't matter

How is mixed precision achieved by present framework?

Step 1. Assign precision for each nodes and inserting casts by a mixed precision graph optimizer (paper's focus)

The conditions to run op in low precision

- 1. in the allowlist
- 2. op in the clearlist, immediate ancestor(s) and descendent(s) are using low precision
- 3. in the inferlist and there is no upstream denylist op

Figure 2: A snippet of the dataflow graph from BERT using mixed precision. The tuple on each edge represents a tensor with its shape (i.e., the size of each dimension).

Hardware basement of mixed precision—TC cores

Development of NVIDIA GPU architecture

- Nano Process improvement
- CUDA core
- Tensor core (TC core)
- RT core

Hardware basement of mixed precision—TC cores

- integer arithmetic logic unit (ALU)
- floating point unit (FPU)
- fused multiply-add (FMA)

General

$$Z = W * X + b$$
 Specific

Hardware basement of mixed precision—TC cores

Difference between CUDA && TC more performant and energy-efficient

Hardware basement of mixed precision—TC cores

TC candidate

- the operation is either matrix multiplication or convolution using FP16
- the input tensors of the operation satisfy the shape requirements.

	Hopper	Ampere	Turing	Volta
Supported Tensor core accuracy	FP64, TF32, bfloat16, FP16, FP8, INT8	FP64, TF32, bfloat16, FP16, INT8, INT4, INT1	FP16, INT8, INT4, INT1	FP16
Supported CUDA' core accuracy	FP64, FP32, FP16, bfloat16, INT8	FP64, FP32, FP16, bfloat16, INT8	FP64, FP32, FP16, INT8	FP64, FP32, FP16, INT8

Observation and Motivation

Impact of precision, TC, casting cost, input size on operation performance

Table 1: Performance comparison of some of the representative operations in NN training.

NN Operations	Input Data Size	FP16 Exe. Time (ms)	FP16+Cast Exe. Time (ms)	FP32 Exe. Time (ms)	Using TC
MatMul	(2048, 8, 8, 1024)	0.312	0.353	0.323	yes
	(64, 1001, 1001, 2048)	0.412	0.524	0.427	no
	(2048, 1024, 1024, 1024)	0.414	0.584	0.888	yes
Conv2D	(64, 35, 35, 48)	2.707	2.795	3.664	yes
	(64, 147, 147, 32)	28.965	29.249	29.487	no
	(64, 299, 299, 3)	57.879	58.944	60.098	no
Conv2DBackpropFilter	(64, 299, 299, 3)	8.690	9.773	10.246	no
	(64, 149, 149, 32)	6.013	7.988	7.011	no
	(64, 35, 35, 192)	0.786	0.948	0.871	yes
Conv2DBackpropInput	(64, 37, 37, 96)	3.954	4.049	6.943	yes
	(64, 149, 149, 32)	15.561	16.828	15.696	no
	(64, 35, 35, 192)	5.234	5.939	10.060	yes
BiasAdd	(64, 1001, 1001)	0.252	0.317	0.255	no
	(64, 4096, 4096)	0.294	0.323	0.298	no
	(64, 9216, 9216)	0.299	0.342	0.311	no
MaxPool	(64, 35, 35, 288)	1.849	2.072	1.793	no
	(64, 17, 17, 768)	1.399	1.542	1.402	no
	(64, 8, 8, 2048)	0.825	1.128	0.981	no

- Performance variance with different data precisions
- Impact of input data size on performance gains from FP16
- Impact of casting cost

Observation and Motivation

Observation:

- Using FP16 leads to slightly better performance than using FP32. Using TC for FP16 magnifies the performance benefit of FP16
- The performance gain of using FP16 varies largely across input data sizes
- The cast operation introduces non-negligible overhead. Considering the casting cost, it is not always performance-profitable to convert FP32 to FP16 regardless of using TC or not

Motivatoin:

Usage of TC

Input data size

Figure 3: Overview of Campo.

- Offline component
 performance predict model
- Online component
 model graph profiling
 graph rewriting

Figure 3: Overview of Campo.

- Offline component
 performance predict model
 decide precision for a given operation
 with input data size
- Online component
 model graph profiling
 graph rewriting

Figure 3: Overview of Campo.

Composition

- Offline component
 performance predict model
- Online component
 model graph profiling
 profile operation in FP32 to provide

Information for performance model graph rewriting

Figure 3: Overview of Campo.

- Offline component
 performance predict model
- Online component
 model graph profiling
 graph rewriting
 - graph traverse
 - input transformation

Figure 3: Overview of Campo.

- Offline component
- Online component
 model graph profiling
 graph rewriting
 - graph traverse
 - 1. make four passes on dataflow graph
 - 2. make final decision on precision assignment of each operation node
 - input transformation

Figure 3: Overview of Campo.

- Offline component
- Online component
 model graph profiling
 graph rewriting
 - graph traverse
 - input transformation
 pad the input tensors to make TC
 candidates meet the requirement of
 TC on input shape

Figure 3: Overview of Campo.

- Offline component
 performance predict model
- Online component
 model graph profiling
 graph rewriting

Performance model's work:

Determine whether low or full precision should be employed for a single given operation with a given input data size

Benefit:

More efficient and accurate method for offline prediction

Predictions

- 1. casting cost based on the input data size
- 2. execution time of the operation with low precision

Casting cost based on the input data size

Offline Component **Operation Performance** Modeling **Correlation Analysis Candidate Hardware Events NN Training Operations** Profiling

Casting cost based on the input data size

Offline Component **Operation Performance** Modeling **Correlation Analysis Candidate Hardware Events NN Training Operations Profiling**

Execution time of the operation with low precision

2. execution time of the operation with low precision

- 2. dynamic profiling via three training iterations of 2. increase in training time the NN model

Execution time of the operation with low precision

- 1. general model for all the operations to predict performance
- 2. dynamic profiling via three training iterations of the NN model

Each op -> specific model Offline strategy

Architecture-specific

Model intuition

Performance modeling

Only when it's TC candidate

Performance modeling

Performance modeling

Building performance models for 143 operations takes about 112.5 hours

Runtime graph rewriting

Graph rewriting's work:

- 1. assign precision for each operation
- 2. which operations to be **converted together** to **reduce** the number of **cast operation nodes**

Benefit & Goal:

- 1. minimizing the training time
- 2. minimizing the casting cost
- 3. no adverse impact on the numerical safety (compared with the traditional mixed-precision training)

Runtime graph rewriting—graph profiling

Graph profiling run on CUDA cores in FP32

Figure 3: Overview of Campo.

Input for performance model

Runtime graph rewriting—graph traverse

Four-round traverse on dataflow graph

Runtime graph rewriting—graph traverse

Four-round traverse on dataflow graph

Traverse

Runtime graph rewriting—insert casting node

Online Component

Graph Rewriting

Decision

using the API ChangeTypeAttrsAndAddCasts provided by TensorFlow

FP16 -> FP32, vice versa

Usage of tensor cores

Figure 3: Overview of Campo.

Efforts to make full use of TC:

- 1. Take TC&CUDA's difference into account when assignment
- 2.Pad the unfit input to suit TC's input requirement

Benefit:

- 1. Take advantage of TC's superiority in low precision
- 2.Make full use of heterogeneous computing resources

Usage of tensor cores

Overhead analysis

The usage of tensor cores is a multi-dimensional problem

Campo Overview

Figure 3: Overview of Campo.

Composition

- Offline component
 performance predict model
- Online component
 model graph profiling
 graph rewriting

Experimental setup

Table 2: Hardware configurations

CPU	Intel Xeon CPU E5-2648L v4@ 1.80GH				
Main Memory	64 GB DDR4				
CPU Cores	2 sockets, 14 cores per socket				
GPU	NVIDIA GeForce RTX 2080 Ti (Turing)				
CUDA Cores	4352 CUDA cores (68 SMs, 1.54GHz)				
Tensor Cores	544 tensor cores				
L1 Cache	64 KB (per SM)				
L2 Cache	5.767 MB				
GPU Device Memory	11 GB GDDR6				
GPU	NVIDIA Tesla V100 (Volta)				
CUDA Cores	5376 CUDA cores (84 SMs, 1.53GHz)				
Tensor Cores	672 tensor cores				
L1 Cache	128 KB (per SM)				
L2 Cache	6.144 MB				
GPU Device Memory	32 GB HBM2				

TensorFlow	v1.15
CUDA	9.0
cuDNN	8.0
Ubuntu	18.04

Hardware & Software

Training throughput

Figure 4: Training throughput with FP32, TF_AMP and Campo on RTX 2080 Ti.

Figure 5: Training throughput with FP32, TF_AMP and Campo on V100.

Speedup reach

1.28x - 3.05x

Performance breakdown—Number of cast operation nodes

Figure 6: The number of cast nodes of NN models trained with TF_AMP and Campo, respectively.

27.7% less cast operation nodes on average (up to 31.3%)

compared with TF_AMP

Performance breakdown——TC utilization

Figure 7: TC utilization of NN models trained with TF_AMP and Campo, respectively.

increases the utilization of TC by 29.4% on average (up to 37.9%)

compared with TF_AMP

Performance breakdown——Contribution quantification of the graph rewriting and TC utilization

Figure 8: Breakdown of the overall performance improvement from graph rewriting and improving TC utilization.

84.5% of the overall performance improvement (on average)

comes from the graph rewriting

Training accuracy

Table 3: Model accuracy of NN models trained with FP32, TF_AMP and Campo, respectively.

NN models	Top-1 Accuracy (%)		Top-5 Accuracy (%)			
	FP32	TF_AMP	Campo	FP32	TF_AMP	Campo
AlexNet	63.39	64.41	64.38	81.24	81.21	81.19
ResNet50	78.77	78.74	78.75	94.86	94.82	94.85
Inception3	78.42	78.45	78.43	90.15	90.16	90.15
Vgg16	71.58	71.6	71.57	88.28	88.25	88.27
DCGAN	80.12	80.16	80.13	92.47	92.46	92.44
BERT-large	91.35	91.36	91.33	N/A		

Prediction accuracy of performance models

$$M_A = 1 - \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\hat{y}_i - y_i}{y_i} \right|$$

Figure 9: Performance prediction accuracy for five operations based on the operation-specific performance models

prediction error for 143 operations is 5.8% on average

Power consumption and energy efficiency

Table 4: Average system power consumption of NN models trained with FP32, TF_AMP and Campo on RTX 2080 Ti and V100, respectively.

	Average System Power (W)					
NN Models	RTX 2080 Ti		Гі	V100		
	FP32	TF_AMP	Campo	FP32	TF_AMP	Campo
AlexNet	274	268	267	325	319	316
ResNet50	272	265	263	324	313	311
Inception3	273	264	263	326	316	315
Vgg16	273	267	267	324	316	316
DCGAN	275	268	267	327	320	319
BERT-large	N/A	N/A	N/A	332	320	318

Figure 10: Energy efficiency of NN models trained with FP32, TF_AMP and Campo.

Campo Review

Figure 3: Overview of Campo.

Composition

- Offline component
 performance predict model
- Online component
 model graph profiling
 graph rewriting

Conclusion

Advantage:

- Reveal the rule that the casting cost can outweigh the performance benefit of using low precision
- Consider many dimensions to complete performance model: Input data size, casting cost, usage of TC
- Reach perfect balance on training speed and accuracy loss
- Offline operation-specific performance model can train faster than dynamic profiling

Disadvantage:

- Only consider FP16 as lower precision in this paper
- Campo can only be applied to those NN models whose dataflow graphs are static
- Performance model is architecture-specific, which means poor reusability on different devices

Thanks

2023-1-9

Presented by Guangtong Li