Nanyang Technological University SPMS/Division of Mathematical Sciences

2015/16 Semester 1

MH1810 Mathematics I

Tutorial 2

Reading: Lecture slides on Vectors & Thomas' Calculus: Chapter 12 (Sections 12.1 -12.5).

1. Let $\mathbf{u} = \mathbf{i} + \mathbf{j} - 5\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$.

Find $\|\mathbf{u}\|$, $\|\mathbf{v}\|$, $\mathbf{u} \cdot \mathbf{v}$, $\mathbf{u} \times \mathbf{v}$, $\mathbf{v} \times \mathbf{u}$, and $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

Note:

$$\mathrm{proj}_{\mathbf{v}}\mathbf{u} = \left(\mathbf{u}\cdot\hat{\mathbf{v}}\right)\hat{\mathbf{v}} = \left(\frac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{v}\|^2}\right)\mathbf{v}.$$

(Answers: $\sqrt{27}$; $\sqrt{6}$; 8; $4\mathbf{i} - 9\mathbf{j} - \mathbf{k}$; $-4\mathbf{i} + 9\mathbf{j} + \mathbf{k}$; $\frac{8}{6}(2\mathbf{i} + \mathbf{j} - \mathbf{k}) = \frac{8}{3}\mathbf{i} + \frac{4}{3}\mathbf{j} - \frac{4}{3}\mathbf{k}$.)

.....

2. For which values of k are $\mathbf{x}=(k,k,1)$ and $\mathbf{y}=(k,5,6)$ in \mathbb{R}^3 perpendicular to each other (i.e., orthogonal)? (Answers: k=-2 or k=-3.)

[Solution] $\mathbf{x} = (k, k, 1)$ and $\mathbf{y} = (k, 5, 6)$ in \mathbb{R}^3 are perpendicular to each other (i.e., orthogonal) if and only if $\mathbf{x} \cdot \mathbf{y} = 0$.

Thus we have $\mathbf{x} \cdot \mathbf{y} = (k, k, 1) \cdot (k, 5, 6) = k^2 + 5k + 6 = 0$ which gives k = -2 or k = -3.

.....

- 3. Consider the parallelogram ABPC with adjacent sides AB and AC and vertices $A\left(1,0,0\right)$, $B\left(0,1,0\right)$ and $C\left(0,0,1\right)$.
 - (a) Find the area of the parallelogram.
 - (b) Find the coordinates of the vertex P.
 - (c) Find the acute angle between the diagonals of the parallelogram.

[Solution]

(a) The area of the parallelogram is $\|\overrightarrow{AB} \times \overrightarrow{AC}\|$. where

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \times \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

$$= (1, 1, 1)$$

Thus, the area is $\sqrt{3}$.

- (b) To find the coordinates of the vertex P, we note that $\overrightarrow{BP} = \overrightarrow{AC}$, i.e., $\overrightarrow{0P} \overrightarrow{0B} = \overrightarrow{OC} \overrightarrow{0A}$. Thus, we have $\overrightarrow{0P} = \overrightarrow{0B} + \overrightarrow{OC} - \overrightarrow{0A} = (-1, 1, 1)$.
- (c) The acute angle between the diagonals of the parallelogram is the acute angle between vectors \overrightarrow{AP} and \overrightarrow{BC} , where $\overrightarrow{AP} = \overrightarrow{OP} \overrightarrow{OA} = (-2, 1, 1)$ and $\overrightarrow{BC} = \overrightarrow{OC} \overrightarrow{OB} = (0, -1, 1)$. We shall use dot-product to find this angle.

Since $\overrightarrow{AP} \cdot \overrightarrow{BC} = 0$, the angle is a right angle.

Find the work done by a force $\mathbf{F} = 5\mathbf{i}$ (magnitude 5 N) along the line from the origin to the poin $(1,1)$. (Distance measured in metres).
[Solution] Recall: Work done is $\mathbf{F} \cdot \mathbf{d}$.
Thus, the work done is $5\mathbf{i} \cdot (\mathbf{i} + \mathbf{j}) = 5J$.

5. A water main is to be constructed with at 20% grade (i.e., slope = $\frac{\text{height}}{\text{horizontal distance}} = 0.2$) in the north direction and a 10% grade in the east direction. Determine the angle θ required in the water main for the turn from north to east (i.e., the angle θ you need to bend the water main).

[SOLUTION] Set the positive x-axis along the east, the positive y-axis along the north, and the positive z-axis along the upward direction.

Let $\mathbf{u} = 10\mathbf{j} + 2\mathbf{k}$ which is parallel to the pipe in the north direction and $\mathbf{v} = 10\mathbf{i} + \mathbf{k}$ which is parallel to the pipe in the east direction.

To find the angle θ , we use dot-product of ${\bf u}$ and ${\bf v}$.

The angle θ required satisfies

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{u}\| \cos \theta;$$

which is $2 = \sqrt{104}\sqrt{101}\cos\theta$.

Thus, $\cos\theta = \frac{2}{\sqrt{104}\sqrt{101}}$ and hence $\theta \approx 1.55$ rad, or $88.88^{\circ}.$

.....

- 6. Let **u** and **v** be vectors in \mathbb{R}^3 .
 - (a) Using $\|\mathbf{w}\|^2 = \mathbf{w} \cdot \mathbf{w}$ and some properties of dot products, prove that

$$\|\mathbf{u} \pm \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \pm 2\mathbf{u} \cdot \mathbf{v} + \|\mathbf{v}\|^2.$$

Hence prove that

$$\mathbf{u}\cdot\mathbf{v} = \frac{1}{4}\|\mathbf{u}+\mathbf{v}\|^2 - \frac{1}{4}\|\mathbf{u}-\mathbf{v}\|^2.$$

(b) Use part (a) to prove that two vectors \mathbf{u} and \mathbf{v} are perpendicular if and only if $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u} - \mathbf{v}\|$. Also, interpret this geometrically in \mathbb{R}^2 .

[SOLUTION]

(a) We use $\|\mathbf{w}\|^2 = \mathbf{w} \cdot \mathbf{w}$ and properties

$$(\mathbf{u} \pm \mathbf{v}) \cdot \mathbf{w} = (\mathbf{u} \cdot \mathbf{w}) \pm (\mathbf{v} \cdot \mathbf{w}),$$

 $\mathbf{w} \cdot (\mathbf{u} \pm \mathbf{v}) = (\mathbf{w} \cdot \mathbf{u}) \pm (\mathbf{w} \cdot \mathbf{v}), \text{ and }$
 $\mathbf{v} \cdot \mathbf{u} = \mathbf{u} \cdot \mathbf{v}.$

$$\begin{aligned} \left\| \mathbf{u} \pm \mathbf{v} \right\|^2 &= (\mathbf{u} \pm \mathbf{v}) \cdot (\mathbf{u} \pm \mathbf{v}) = ((\mathbf{u} \pm \mathbf{v}) \cdot \mathbf{u}) \pm ((\mathbf{u} \pm \mathbf{v}) \cdot \mathbf{v}) \\ &= ((\mathbf{u} \cdot \mathbf{u} \pm \mathbf{v} \cdot \mathbf{u}) \pm ((\mathbf{u} \cdot \mathbf{v} \pm \mathbf{v} \cdot \mathbf{v}) \\ &= \mathbf{u} \cdot \mathbf{u} \pm 2\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v} = \|\mathbf{u}\|^2 \pm 2\mathbf{u} \cdot \mathbf{v} + \|\mathbf{v}\|^2. \end{aligned}$$

$$\begin{split} &\frac{1}{4}\|\mathbf{u}+\mathbf{v}\|^2 - \frac{1}{4}\|\mathbf{u}-\mathbf{v}\|^2 = \frac{1}{4}\left((\mathbf{u}+\mathbf{v})\cdot(\mathbf{u}+\mathbf{v})\right) - \frac{1}{4}\left((\mathbf{u}-\mathbf{v})\cdot(\mathbf{u}-\mathbf{v})\right) \\ &= \frac{1}{4}\left(\mathbf{u}\cdot\mathbf{u} + 2\mathbf{u}\cdot\mathbf{v} + \mathbf{v}\cdot\mathbf{v}\right) - \frac{1}{4}\left(\mathbf{u}\cdot\mathbf{u} - 2\mathbf{u}\cdot\mathbf{v} + \mathbf{v}\cdot\mathbf{v}\right) = \frac{1}{4}\left(4\mathbf{u}\cdot\mathbf{v}\right) = \mathbf{u}\cdot\mathbf{v}. \end{split}$$

WARNING: The following are incorrect:

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + 2\underbrace{\|\mathbf{u}\| \|\mathbf{v}\|}_{WRONG!} + \|\mathbf{v}\|^2.$$

$$\|\mathbf{u} + \mathbf{v}\|^2 = \underbrace{\mathbf{u}^2}_{WRONG!} + 2\mathbf{u} \cdot \mathbf{v} + \underbrace{\mathbf{v}^2}_{WRONG!}.$$

(b) Note that the parallelogram with sides \mathbf{u} and \mathbf{v} is a rectangle when \mathbf{u} and \mathbf{v} are perpendicular. Thus, the result says that a parallelogram is a rectangle if and only if its two diagonals have the same length.

.....

- 7. (a) Find the vector equation of the line through A(1,0,1) and B(1,-1,1).
 - (b) Find the parametric equation of the line through P(1,2,-1) and Q(-1,0,1).
 - (c) Find the parametric equation of the line through the point R(2,4,5) and perpendicular to the plane 3x + 7y 5z = 21.

[Solution] To obtain an equation of a line, we must find a direction vector and the position vector of a point on this line.

(a) Positive vector of a point on this line $\overrightarrow{OA} = (1, 0, 1)$

Direction vector : $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (0, -1, 0)$.

Thus, a vector equation of this line is: $\mathbf{r} = (1,0,1) + t(0,-1,0), t \in \mathbb{R}$.

(b) Positive vector of a point on this line $\overrightarrow{OP} = (1, 2, -1)$

Direction vector $\mathbf{v} = (-2, -2, 2)$.

Parametric equation: $x = 1 - 2t, y = 2 - 2t, z = -1 + 2t, t \in \mathbb{R}$.

(c) Direction vector is the normal to the plane. Thus, we have $\mathbf{v} = (3, 7, -5)$.

Parametric equation: $x = 2 + 3t, y = 4 + 7t, z = 5 - 5t, t \in \mathbb{R}$.

.....

- 8. Consider vectors $\mathbf{u} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$.
 - (i) Find a unit vector that is perpendicular to vectors \mathbf{u} and \mathbf{v} .
 - (ii) Determine the scalar equation of the plane Π which passes through the point (1,1,0) and is parallel to \mathbf{u} and \mathbf{v} . What is the distance between planes Π and the plane containing the origin and parallel to \mathbf{u} and \mathbf{v} ?

[SOLUTION] NOTE: A plane is determined by a point on this plane and a normal vector (usually denoted by \mathbf{n}). Since the plane is parallel to \mathbf{u} and \mathbf{v} , the vector $\mathbf{n} = \mathbf{u} \times \mathbf{v}$ is a normal vector.

- (i) Let $\mathbf{n} = \mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} 1 & 2 \\ 1 & -2 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ 2 & -2 \end{vmatrix}, \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} \end{pmatrix} = (-4, 6, -1)$. Thus, a unit vector required is $\hat{\mathbf{n}} = \frac{\mathbf{n}}{\|\mathbf{n}\|} = \frac{1}{\sqrt{53}}(-4, 6, -1)$.
- (ii) The scalar equation of the plane Π which passes through (1,1,0) and is parallel to \mathbf{u} and \mathbf{v} is -4x + 6y z = 2.

Note that the point O lies on the plane containing both \mathbf{u} and \mathbf{v} .

The distance between planes Π and the plane containing \mathbf{u} and \mathbf{v} is given by

$$\left|\overrightarrow{OP} \cdot \hat{\mathbf{n}}\right| = \left|(1, 1, 0) \cdot \frac{1}{\sqrt{53}}(-4, 6, -1)\right| = \frac{2}{\sqrt{53}}.$$

- 9. (a) Find the vector equation and scalar equation of the plane through the point P(1, -1, 3) parallel to the plane 3x + y + z = 7.
 - (b) Find the vector equation of the plane through $A\left(1,-2,1\right)$ perpendicular to OA.

[Solution]

(a) From the equation of the plane 3x + y + z = 7, we obtain a normal vector $\mathbf{n} = (3, 1, 1)$ of the plane via the coefficients of x, y and z.

Thus, a vector equation of this plane is given by $\overrightarrow{PR} \cdot \mathbf{n} = 0$, i.e., $(\mathbf{r} - (1, -1, 3)) \cdot (3, 1, 1) = 0$; which gives $\mathbf{r} \cdot (3, 1, 1) = 5$. Scalar equation: 3x + y + z = 5.

(b) Normal vector is $\mathbf{n} = \overrightarrow{OA}$. Vector equation: $(\mathbf{r} - (1, -2, 1)) \cdot (1, -2, 1) = 0$, i.e., $\mathbf{r} \cdot (1, -2, 1) = 6$.

.....

- 10. (a) Find the distance from S(3, -1, 4) to the line $\ell : x = 4 t, y = 3 + 2t, z = -5 + 3t$.
 - (b) Find the distance from S(2, -3, 4) to the plane x + 2y + 2z = 13.
 - (c) Find the distance between the two planes x + 2y + 6z = 1 and x + 2y + 6z = 10.

[Answers] (a)
$$\frac{9\sqrt{42}}{7}$$
 (b) 3 (c) $\frac{9}{\sqrt{41}}$.

[Solution] It is helpful to draw a diagram to have an idea of the problem, and use your diagram to find the distance via dot-product or cross-product.

(a)

To find the distance from S(3,-1,4) to the line $\ell: x=4-t, y=3+2t, z=-5+3t$, we need a point P on the line. We take $\overrightarrow{OP}=(4,3,-5)$, with t=0.

A direction vector is t $\mathbf{v} = (-1, 2, 3)$.

The required distance is given by

$$d = \|\overrightarrow{PS}\| \sin \theta = \|\overrightarrow{PS} \times \widehat{\mathbf{v}}\| = \|(-1, -4, 9) \times \frac{1}{\sqrt{14}}(-1, 2, 3)\|$$
$$= \frac{1}{\sqrt{14}} \|(-30, -6, -6)\| = \frac{6}{\sqrt{14}} \|(5, 1, 1)\| = \frac{9\sqrt{42}}{7}.$$

(b)

(b)

To find the distance from S(2, -3, 4) to the plane x + 2y + 2z = 13, we begin with finding a point P on the plane by setting y = 0 and z = 0 to get x = 13. Thus $\overrightarrow{OP} = (13, 0, 0)$, and a normal vector $\mathbf{n} = (1, 2, 2)$.

The required distance is given by

$$d = \left\| \overrightarrow{PS} \right\| |\cos \theta| = \left| \overrightarrow{PS} \cdot \widehat{\mathbf{n}} \right|$$
$$= \left| (-11, -3, 4) \cdot \frac{1}{\sqrt{9}} (1, 2, 2) \right| = \left| \frac{-11 - 6 + 8}{3} \right| = 3.$$

(c)

To find the distance between the two planes x + 2y + 6z = 1 and x + 2y + 6z = 10, we find two points P and Q on each plane as follows:

Set y=0 and z=0 in both equations gives x=1 and x=10 respectively. Thus, we have $\overrightarrow{OP}=(1,0,0)$ and $\overrightarrow{OQ}=(10,0,0)$ so that $\overrightarrow{PQ}=(9,0,0)$.

A normal vector $\mathbf{n} = (1, 2, 6)$.

The required distance is given by

$$d = \left\| \overrightarrow{PQ} \right\| |\cos \theta| = \left| \overrightarrow{PQ} \cdot \widehat{\mathbf{n}} \right|$$
$$= \left| (9, 0, 0) \cdot \frac{1}{\sqrt{41}} (1, 2, 6) \right| = \frac{9}{\sqrt{41}} \text{ or } \frac{9\sqrt{41}}{41}.$$

......

- 11. Consider four distinct points A(0,0,0), B(1,2,0), C(0,-3,2) and D(3,-4,5) where AB, AC and AD are three edges of a parallelepiped.
 - (i) Find the volume of the parallelepiped via scalar triple product.
 - (ii) If A, B and C are three vertices on the base of the parallelepiped, compute the height of the parallelepiped.
 - (iii) Let ℓ_1 be the line through A and B and ℓ_2 the line through D and parallel to AC. What is the distance between the skew lines ℓ_1 and ℓ_2 ?

[SOLUTION]

(i)
$$\overrightarrow{AB} = \mathbf{i} + 2\mathbf{j}$$
, $\overrightarrow{AC} = -3\mathbf{j} + 2\mathbf{k}$ and $\overrightarrow{AD} = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$.
Volume is $\left| \left(\overrightarrow{AB} \times \overrightarrow{AC} \right) \cdot \overrightarrow{AD} \right|$ where $\overrightarrow{AB} \times \overrightarrow{AC} = (4, -2, -3)$.

Thus the required volume is

$$|(4,-2,-3)\cdot(3,-4,5)|=5.$$

(ii) Volume of parallelepiped = base area \mathbf{x} height.

Base area of parallelepiped = $\|\overrightarrow{AB} \times \overrightarrow{AC}\| = \|(4, -2, -3)\| = \sqrt{29}$.

Height of the parallelepiped = $\frac{5}{\sqrt{29}}$.

(iii) Note that lines lie on opposite planes, one of which contains the parallelogram with sides AB and AC. Thus the distance between ℓ_1 and ℓ_2 is height of the parallelepiped which $\frac{5}{\sqrt{29}}$.

.....