CPE301 - SPRING 2019

Design Assignment 6

Student Name: Geovanni Portillo

Student #: 8000603824

Student Email: portig1@unlv.nevada.edu

Primary Github address: https://github.com/portig1/submissions_E

Directory: submissions_E/DA/LAB6/

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Atmel Studio 7 ATmega328PB Xplained mini

Figure 1-1. ATmega328P Xplained Mini Headers and Connectors

Table 1-1. Default Configurations

QFN Package 24-pin, 4mm x 4mm x 0.9mm

MPU Pin Diagram

2. MODIFIED CODE OF TASK 1

```
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#include <avr/io.h>
#include <util/delay.h>
#include <math.h>
                                                                                    /*
#include <stdlib.h>
Include standard library file */
#include <stdio.h>
Include standard library file */
#include "MPU6050_def.h"
                                                                      /* Include MPU6050
register define file */
#include "i2c_master.h"
                                                                      /* Include I2C
Master header file */
#include "uart.h"
                                                               /* Include USART header
file */
#define MPU6050_WRITE 0xD0
#define MPU6050_READ 0xD1
float Acc_x, Acc_y, Acc_z, Temp_out, Gyro_x, Gyro_y, Gyro_z;
void init_uart(uint16_t baudrate){
       uint16_t UBRR_val = (F_CPU/16)/(baudrate-1);
```

```
UBRROH = UBRR val >> 8;
      UBRRØL = UBRR val;
      UCSRØB |= (1<<TXENØ) | (1<<RXENØ) | (1<<RXCIEØ); // UART TX (Transmit - senden)</pre>
einschalten
      UCSR0C |= (1<<USBS0) | (3<<UCSZ00); //Modus Asynchron 8N1 (8 Datenbits, No Parity,
1 Stopbit)
void uart_putc(unsigned char c){
       while(!(UCSR0A & (1<<UDRE0))); // wait until sending is possible</pre>
       UDR0 = c; // output character saved in c
}
void uart_puts(char *s){
      while(*s){
              uart_putc(*s);
              S++;
       }
}
void init_MPU6050(void){
      _delay_ms(150);
       /* Power up time >100ms */
       i2c_start(MPU6050_WRITE); // Set Gyroscope Sample Rate = 1 KHz, Accelerometer
Sample Rate = 1 KHz (default)
       i2c_write(SMPLRT_DIV); // Sample Rate is generated by dividing the gyroscope
output rate by SMPLRT_DIV
       i2c_write(0x07); // Gyroscope Output Rate = 8kHz, Sample Rate = Gyroscope Output
Rate / (1 + SMPLRT_DIV)
       i2c_stop();
       i2c_start(MPU6050_WRITE);
       i2c_write(PWR_MGMT_1);
       i2c_write(0x01); // PLL with X axis gyroscope reference
       i2c_stop();
       i2c_start(MPU6050_WRITE);
       i2c_write(CONFIG); //Frame Synchronization & Digital Low Pass Filter (DLPF)
setting
       i2c_write(0x00);
       i2c_stop();
       i2c_start(MPU6050_WRITE);
       i2c_write(GYRO_CONFIG); //gyroscopes' scale range = FS_SEL selects = 11 = ± 2000
°/s
                                  // accelerometer range = ± 2g (default)
       i2c write(0x18);
       i2c stop();
       i2c_start(MPU6050_WRITE);
       i2c_write(INT_ENABLE); // DATA_RDY_EN = 1
       i2c write(0x01);
       i2c_stop();
}
void getreading(void){
```

```
i2c start(MPU6050 WRITE);
       i2c write(ACCEL XOUT H); // set pointer
       i2c_stop();
       i2c start(MPU6050 READ);
       Acc x = (((int)i2c read ack() << 8) | (int)i2c read ack());
       Acc y = (((int)i2c read ack() << 8) | (int)i2c read ack());
       Acc_z = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
      Temp out = (((int)i2c read ack()<<8) | (int)i2c read ack());</pre>
      Gyro_x = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
    Gyro_y = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
      Gyro_z = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
       i2c stop();
int main(void){
       char buffer[20], float_[10];
       float Ax, Ay, Az, Gx, Gy, Gz;
       init uart(9600);
       i2c_init();
       init_MPU6050();
       while(1){
              getreading();
              Ax = Acc_x/16384.0;
Divide raw value by sensitivity scale factor to get real values */
              Ay = Acc_y/16384.0;
              Az = Acc z/16384.0;
              Gx = Gyro_x/16.4;
              Gy = Gyro_y/16.4;
              Gz = Gyro_z/16.4;
              USART_SendString("\n----\n");
                                                                             /* Take
              dtostrf( Ax, 3, 2, float_ );
values in buffer to send all parameters over USART */
              sprintf(buffer, "Ax = %s g, ", float );
              USART_SendString(buffer);
              dtostrf( Ay, 3, 2, float_ );
              sprintf(buffer, "Ay = %s g, ",float_);
              USART SendString(buffer);
              dtostrf( Az, 3, 2, float_ );
              sprintf(buffer, "Az = %s g\n\n", float_);
              USART SendString(buffer);
              dtostrf( Gx, 3, 2, float_ );
              sprintf(buffer, "Gx = %s degrees/s, ",float_);
              USART_SendString(buffer);
```

```
dtostrf( Gy, 3, 2, float_ );
    sprintf(buffer, "Gy = %s degrees/s, ",float_);
    USART_SendString(buffer);

    dtostrf( Gz, 3, 2, float_ );
    sprintf(buffer, "Gz = %s degrees/s",float_);
    USART_SendString(buffer);

    USART_SendString("\n----\n");
    __delay_ms(2000);
}

return 0;
}
```

3. SCHEMATICS

Task 1 Schematic

4. SCREENSHOTS OF EACH TASK OUTPUT

Task 1 serial output for acceleration and gyro values

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Task 1 Board setup

6. GITHUB LINK OF THIS DA

https://github.com/portig1/submissions E/tree/master/DA/LAB6

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Geovanni Portillo