

Mealy machine

module Healy_case (imput NK, X module Mealy_Sequence_detector (input clk, x; output Z); reg [1:0] state ; wire [1:0] next state) always @ (poode clk) state <= next state; // sequential logic always @ 8 case (state) 11 combinational logic: anign next_state [O] = x; arrign nost state [1] = (~x) & state [0]; // compainational logic for the output Z: aroign Z = X & state [] jendrace and module endmodule

i (5 pg traptes reg [1:0] state; [1:0] next_state; // to use it in parameter 50 = 2600, 51 = 2601,

Sa = 2610; the always Hock always @ (proedge elk) syste <= next_state ; : begin = = 1/60; ip x = 1'b1next_state = SI; olse next_state = So; end Si : begin z = 1/60; if x = l'blnext_state = 8ijelse next-state = 52; end if x = Ybl begin Z = 1/bi; neet_state = SI; else begin Z=1'bo; next_state = 50; end begin Z=1'bo; next_state = 50; end

State Table

	Next_	Output	
Precent state	X = 0	X = 1	2
00 50	50 00	€1 9[]	\Diamond
01 51	Sa [डा पा	0
10 52	S. 00	S3 II	0
11 53	S2 10	ड(वी	· [

State	50	S(Sa	52
0	0	0	٥	0
1	1	1	1	

6	5	1		0
)	Ó	0	0	

[(X & state []

next_state
$$[G] = X$$
;
next_state $[G] = (NX) U$ state $[G]$) | $(X U \text{ state } [G])$;

```
module Mosre_machine (input clk x );
 wine [1:0] next_state;
 reg [1:0] state ;
  always @ (parage dk)
      State <= next state i
auxign Z = next_state [0] & next_state [1];
arrign next state [] = (nx & state [0]) / (x & state [] & (n state [a]));
```

endmodule

Example:

A sequential circuit has one input (i) and one output (Z). The circuit examines groups four consecutive imputs and produces an output Z = 1 if the imput sequence (0101) or (1001) occurs.

The circuit resists after every four imputs. Find the Mealy state graph.

$$X = 0001 \mid 0000 \mid 1001 \mid 0000$$

$$Z = 0001 \mid 0000 \mid 0000$$

So reset state - none of the bits have been received

The frist bit of 1001 has been received

The n n n n old has n u

The n n n n old has a u

The first 2 bits of either (sol or old have been received)

The first 2 bits of either (sol or old have been received)

The n 3 u u 1001 or old have been received

So Two bits of a wrong sequence have been received.

So 3 bits of a arrong sequence have been received