Project ID: C23-M001-02053 Report No.: AA-23-04367_ONC Date Reported: Jul 13, 2023

ACTOnco® + Report

PATIENT		
Identifier: 鄭憶媚		Patient ID: 33157141
Date of Birth: Jun 10, 1966		Gender: Female
Diagnosis: Lung adenocarcinoma		
ORDERING PHYSICIAN		
Name: 陳育民醫師		Tel: 886-228712121
Facility: 臺北榮總		
Address: 臺北市北投區石牌路二段 201 號		
SPECIMEN		
Specimen ID: S11230179A, S11230179B	Collection site: Lung	Type: FFPE tissue
Date received: Jul 04, 2023	Lab ID: AA-23-04366, AA-23-04367	D/ID: NA

ABOUT ACTORGO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in P	atient's Cancer Type	Probable Sensitive in Other
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
ERBB2 Y772_A775dup (Exon 20 insertion)	Ado-trastuzumab emtansine,		
	Fam-trastuzumab	-	-
(Exon 20 insertion)	deruxtecan-nxki		

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
ERBB2 Y772_A775dup	Mobocertinib, Trastuzumab	Erlotinib, Gefitinib, Lapatinib,
(Exon 20 insertion)		Osimertinib
SMAD4 R361H	-	Cetuximab

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 20

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
ERBB2	Y772_A775dup (Exon 20 insertion)	34.9%
SMAD4	R361H	7.2%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
	Not	detected	

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	0.7 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 40% tumor purity.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 2 of 20

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect	
Level1			
ERBB2 Y772_A775dup	Fam-trastuzumab deruxtecan-nxki	sensitive	
(Exon 20 insertion)	Tairriastuzumab deluxtecan-mxi	Sensitive	
Level 2			
ERBB2 Y772_A775dup	Ado-trastuzumab emtansine	sensitive	
(Exon 20 insertion)	Ado-ti astuzumab emiansine	Sensitive	
Level3B			
ERBB2 Y772_A775dup	Trastuzumab	sensitive	
(Exon 20 insertion)	เาสรเนะนเาสม	Sensitive	
Level 4			
ERBB2 Y772_A775dup	Mobocertinib	sensitive	
(Exon 20 insertion)	Wobocei tii iib	Selisitive	
ERBB2Y772_A775dup	Erlotinib, Gefitinib, Lapatinib, Osimertinib	resistant	
(Exon 20 insertion)	Elourio, Geriulio, Lapaurio, Osirierurio	resistant	
SM AD4 R361H	Cetuximab	resistant	

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 3 of 20

Project ID: C23-M001-02053 Report No.: AA-23-04367_ONC Date Reported: Jul 13, 2023

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
N	t detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
SM AD4	Chuorourooil	Do a in tant	Clinical	Coloractal concer
R361H	Fluorouracil	Resistant	Clinical	Colorectal cancer

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 4 of 20

Project ID: C23-M001-02053 Report No.: AA-23-04367 ONC

Date Reported: Jul 13, 2023

VARIANT INTERPRETATION

ERBB2 Y772 A775dup (Exon 20 insertion)

Biological Impact

The epidermal growth factor receptor 2 (HER2, or ERBB2) gene encodes a transmembrane receptor tyrosine kinase that belongs to the epidermal growth factor (EGF) receptor family of receptor tyrosine kinases [1]. Amplification or activating mutations of ERBB2 can lead to aberrant activation of downstream pathways, such as phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) cascades, which are involved in cell survival and proliferation, respectively[1][2]. ERBB2 mutations are mostly observed in HER2-negative (non-overexpressed or nonamplified) samples[3].

ERBB2 Y772 A775dup mutation (also referred to as A775 G776ins YVMA) results in the insertion of four amino acids in the protein kinase domain of the ERBB2 protein. This is a gain-of-function mutation that could result in constitutive phosphorylation of ERBB2^[4]. Y772 A775dup is the most frequently appearing subtype of ERBB2 exon 20 insertions ^{[5][6]}.

Therapeutic and prognostic relevance

Clinical trials of afatinib, dacomitinib and neratinib indicated that different ERBB2 variant subtypes responded differently to individual HER2-targeted agents. Some studies suggested that afatinib, dacomitinib, and neratinib was not effective in lung cancer patients harboring ERBB2 Y772 A775dup. In a retrospective study, afatinib treatment resulted in an ORR of 15.6% (5/32) and a DCR of 68.8% (22/32) in patients with lung adenocarcinoma harboring ERBB2 mutations; however, ORR (0%, 0/14), DCR (35.7%, 5/14), and median PFS of 1.2 months were significantly lower in patients with Y772 A775dup than those with other exon 20 insertions [6]. In addition, dacomitinib treatment also showed no partial response in patients with metastatic lung adenocarcinomas harboring ERBB2 Y772 A775dup according to the result of phase II trial (NCT00818441)[7]. In another phase II trial (SUMMIT; NCT01953926), neratinib treatment showed clinical response in breast cancer patients harboring ERBB2 Y772 A775dup or G788 P780dup; however, the response was not observed in NSCLC[8].

In a phase II trial (NCT03066206), poziotinib treatment resulted in a confirmed ORR of 42% and DCR of 83% in patients with NSCLC harboring ERBB2 Y772 A775dup (n=9) or ERBB2 G778 P780dup (n=3), with a median PFS of 5.6 months[9]. Besides, the combination of low-dose poziotinib and T-DM1 treatment showed antitumor efficacy in vivo[9].

There are case reports and cohort studies of NSCLC patients with HER2 exon 20 mutations, including Y772_A775dup, experiencing benefit from trastuzumab-based therapies[10][11], or ado-trastuzumab emtansine (T-DM1)[11]. In a phase II basket trial, three out of five lung cancer patients harboring Y772 A775dup showed partial response to T-DM1 treatment (NCT02675829)[12].

In preclinical studies, transformed cells expressing ERBB2 Y772 A775dup were sensitive to mobocertinib in vitro and in vivo, but resistant to lapatinib, osimertinib, and trastuzumab treatment in vitro [13][14].

Clinical trials and case reports have demonstrated that afatinib and dacomitinib treatment offer clinical benefits to NSCLC patients with ERBB2 exon 20 insertion[15][16][6][7]. Case reports have also shown that trastuzumab-based therapies or trastuzumab em tansine may benefit NSCLC patients with ERBB2 exon 20 insertion [17][11][11][18].

Preclinical studies have shown that neratinib and poziotinib can be effective against NSCLC cells with ERBB2 exon 20 insertion[19][9], which result in constitutive phosphorylation and activation of ERBB2, leading to resistance to EGFR tyrosine kinase inhibitors erlotinib and gefitinib [20][16].

Fam-trastuzumab deruxtecan-nxki is FDA-approved for treating adult patients with unresectable or metastatic NSCLC harboring ERBB2 activating mutations.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 5 of 20

Project ID: C23-M001-02053 Report No.: AA-23-04367_ONC Date Reported: Jul 13, 2023

ACTOnco® + Report

In NCCN guidelines for NSCLC, ERBB2 (HER2) mutations have been suggested as an emerging biomarker for adotrastuzumab emtansine and fam-trastuzumab deruxtecan-nxki (T-DXd; DS-8201) in patients with NSCLC.

ERBB2 mutations have been determined as an inclusion criterion for the trials evaluating neratinib, lapatinib, afatinib, dacomitinib, and trastuzumab efficacies in multiple types of solid tumors (NCT01670877, NCT01953926, NCT01306045, NCT02780687, NCT00818441, and NCT02693535).

SMAD4 R361H

Biological Impact

The SMAD family member 4 (SMAD4) gene encodes a transcription factor that acts as a downstream effector in the TGF- β signaling pathway. Upon phosphorylated and activated by serine-threonine receptor kinase, Smad4 is the Co-Smad which recruits other activated R-Smad proteins to the Smad transcriptional complex and regulate TGF- β -targeted genes^[21]. Smad4 has been identified as a haploinsufficient gene with one copy loss may lead to a weak protein expression and is insufficient to execute its original physiological function^[22]. SMAD4 germline mutations are associated with juvenile polyposis syndrome (JPS)^{[23][24][25][26]}. Somatic mutations of SMAD4 are commonly observed in pancreatic cancer^[27], colorectal cancer (CRC)^{[25][28][29]}, and less frequently seen in other cancers such as lung adenocarcinoma^[30], head and neck cancer^{[31][32]}, and cutaneous squamous cell carcinoma^[33].

R361H is a hotspot mutation occurred within the MH2 domain of the SMAD4 protein (UniProtKB). This mutation was predicted to confer a loss of function on SMAD4 due to loss of heterocomplex formation [34].

Therapeutic and prognostic relevance

In Chinese patients with metastatic colorectal cancer, SMAD4 or NF1 mutations are suggested as a potential biomarker for poor prognosis to cetuximab-based therapy^[35]. Preclinical data demonstrated that depletion of SMAD4 by shRNA knockdown increased clonogenic survival and cetuximab resistance in HPV-negative head and neck squamous cell carcinoma cells^[36].

SMAD4 is also suggested as a predictive marker for 5-fluorouracil-based chemotherapy in colorectal cancer (CRC)^{[37][38]}. CRC patients with normal SMAD4 diploidy exhibited three-fold higher benefit of 5-FU/mitomycin-based adjuvant therapy when compared with those with SMAD4 deletion^[39].

Results from clinical and meta-analyses showed that loss of SMAD4 in CRC, pancreatic cancer was correlated with poor prognosis^{[40][41][42][43][44][45][46][47]}. In cervical cancer patients, weak cytoplasmic SMAD4 expression and absent nuclear SMAD4 expression were shown to be significantly associated with poor disease-free and overall 5-year survival^[48].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 6 of 20

Project ID: C23-M001-02053 Report No.: AA-23-04367_ONC Date Reported: Jul 13, 2023

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Ado-trastuzumab emtansine (KADCYLA)

Ado-trastuzumab emtansine, also know n as T-DM1, is a HER2-targeting monoclonal antibody conjugated with a microtubule inhibitor, emtansine (DM1). Ado-trastuzumab emtansine is developed and marketed by Genentech under the trade name KADCYLA.

- FDA Approval Summary of Ado-trastuzumab emtansine (KADCYLA)

EMILIA ^[49] NCT00829166	Her2-receptor positive breast cancer (Approved on 2013/02/22)
	HER2+
	Ado-trastuzumab emtansine vs. Lapatinib + capecitabine [PFS(M): 9.6 vs. 6.4]

Fam-trastuzumab deruxtecan-nxki (ENHERTU)

Fam-trastuzumab deruxtecan-nxki is a HER2-directed antibody and topoisomerase inhibitor conjugate. Fam-trastuzumab deruxtecan-nxki is manufactured by Daiichi Sankyo and marketed by Daiichi Sankyo and AstraZeneca under the trade name ENHERTU.

- FDA Approval Summary of Fam-trastuzumab deruxtecan-nxki (ENHERTU)

DECTINAL	Her2-mutated non-small cell lung cancer (Approved on 2022/08/11)					
DESTINY-Lung02 NCT04644237	HER2 mutation					
NC104044237	Fam-trastuzumab deruxtecan-nxki [ORR(%): 58.0]					
DESTINY-Breast04	Her2-low breast cancer (Approved on 2022/08/05)					
NCT03734029	HER2-low					
NC103734029	Fam-trastuzumab deruxtecan-nxki [PFS(M): 9.9 vs. 5.1]					
	Gastroesophageal adenocarcinomas, Gastric adenocarcinoma (Approved on 2021/01/15)					
DESTINY-Gastric01	HER2+					
NCT03329690	Fam-trastuzumab deruxtecan-nxki vs. Physician's choice of either irinotecan or paclitaxel					
	monotherapy [ORR(%): 40.5 vs. 11.3, OS(M): 12.5 vs. 8.4]					
DESTINY-Breast01 ^[50]	Her2-receptor positive breast cancer (Approved on 2019/12/20)					
NCT03248492	HER2+					
NC103246492	Fam-trastuzumab deruxtecan-nxki [ORR(%): 60.3]					

Mobocertinib (EXKIVITY)

Mobocertinib is a first-in-class, oral tyrosine kinase inhibitor (TKI) specifically designed to selectively target epidermal growth factor receptor (EGFR) Exon 20 insertion mutations. Mobocertinib is developed and marketed by Takeda under the trade name EXKIVITY.

- FDA Approval Summary of Mobocertinib (EXKIVITY)

Ot d o d [51]	Non-small cell lung carcinoma (Approved on 2021/09/15)					
Study 101 ^[51]	EGFR ex20ins					
NCT02716116	Mobocertinib [ORR(%): 28.0, DOR(M): 17.5]					

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 7 of 20

ACTOnco® + Report

Trastuzumab (HERCEPTIN)

Trastuzumab is a monoclonal antibody that that targets the extracellular domain of the HER2 receptor. Trastuzumab is marketed in the United States by Genentech, in Japan by Chugai, and internationally by Roche, under the trade name HERCEPTIN.

- FDA Approval Summary of Trastuzumab (HERCEPTIN)

MOUNTAINEER	Colore ctal cancer (Approved on 2023/01/19)						
NCT03043313	HER2+ & RAS wild-type						
NC103043313	Tucatinib [ORR(%): 38.0, DOR(M): 12.4]						
	Gastric ade nocarcinoma (Approved on 2010/10/20)						
ToGA ^[52]	HER2+						
NCT01041404	Trastuzumab + cisplatin + fluoropyrimidine (fc) vs. Cisplatin + fluoropyrimidine (fc)+ placebo [OS(M): 13.1 vs. 11.7]						
	Her2-receptor positive breast cancer (Approved on 2006/11/16)						
NSABP B-31 ^[53]	HER2+						
NCT00004067	Trastuzumab + doxorubicin + cyclophosphamide followed by paclitaxel (ac→paclitaxel) vs. Placebo + doxorubicin + cyclophosphamide followed by paclitaxel (ac→paclitaxel) [DFS(%): 92.9 vs. 86.1]						
	Her2-receptor positive breast cancer (Approved on 2006/11/16)						
NCCTG N9831 ^[53]	HER2+						
NCT00005970	Trastuzumab + doxorubicin + cyclophosphamide followed by paclitaxel (ac→paclitaxel) vs. Placebo + doxorubicin + cyclophosphamide followed by paclitaxel (ac→paclitaxel) [DFS(%): 92.9 vs. 86.1]						
	Her2-receptor positive breast cancer (Approved on 1998/09/25)						
[54]	HER2+						
	Paclitaxel or anthracycline + cyclophosphamide + trastuzumab vs. Paclitaxel or anthracycline cyclophosphamide + placebo [TTP(M): 7.2 vs. 4.5]						

D=day; W=w eek; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 8 of 20

Project ID: C23-M001-02053 Report No.: AA-23-04367_ONC Date Reported: Jul 13, 2023

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 9 of 20

Project ID: C23-M001-02053

Report No.: AA-23-04367_ONC Date Reported: Jul 13, 2023

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change		Exol		cDNA Change	Accession Number	COSMICID	Allele Frequency	Coverage	
ERBB2	Y772_A775dup (Exon 20 insertion)	20	c.2313_2324dup	NM_004448	COSM20959	34.9%	962			
SMAD4	R361H	9	c.1082G>A	NM_005359	COSM14122	7.2%	889			

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-23-04367

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 10 of 20

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMICID	Allele Frequency	Coverage	
ADAMTSL1	P1330L	22	c.3989C>T	NM_001040272	-	55.9%	1515	
AMER1	R646W	2	c.1936C>T	NM_152424	-	51.3%	879	
ATRX	Splice region	-	c.189+7A>G	NM_000489	-	43.1%	1099	
BARD1	R529Q	7	c.1586G>A	NM_000465	-	49.0%	553	
CARD11	S694L	16	c.2081C>T	NM_032415	COSM5505215	47.3%	560	
EPHB1	R905C	15	c.2713C>T	NM_004441	-	42.6%	1441	
HSPA4	T175S	5	c.524C>G	NM_002154	-	9.3%	894	
IL7R	R140W	4	c.418C>T	NM_002185	COSM1695578	51.4%	834	
NBN	V346M	9	c.1036G>A	NM_002485	COSM1258764	48.3%	963	
SYNE1	S289T	10	c.866G>C	NM_182961	-	49.3%	708	

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 11 of 20

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Jun 27, 2023
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11230179A, S11230179B
- Collection site: Lung
- Examined by: Dr. Yun-An Chen
 - 1. The percentage of viable tumor cells in total cells in the w hole slide (%): 30%/40%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the w hole slide (%): 30%/40%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%/0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%/0%
 - Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTOnco®+

DNA test

- Mean Depth: 840x
- Target Base Coverage at 100x: 95%

RNA test

- Average unique RNA Start Sites per control GSP2: 111

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **12** of **20**

Project ID: C23-M001-02053 Report No.: AA-23-04367 ONC

Date Reported: Jul 13, 2023

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would 3. not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using lon Chef system Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the lon Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \ge 85\%$ with a mean coverage $\ge 500x$.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the low est 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aw are model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 13 of 20

Jath am

Project ID: C23-M001-02053 Report No.: AA-23-04367_ONC Date Reported: Jul 13, 2023

ACTOnco® + Report

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database ow ned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19

Jyth-am

- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

解剖病理專科醫師朱盈霞 Ying-Hsia Chu, M.D. 病解字第 000653 號 Sign Off

解剖病理專科醫師朱盈霞 Ying-Hsia Chu, M.D. 病解字第 000653 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **14** of **20**

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA 2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MAIT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРКЗ
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	митүн	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	PIK3C3
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

A 1 1/	0045	FCFD	50504	50583	50500		11001	NEDICA	AUTRICO	NEDICO	DET	DOC1
ALK	BRAF	EGER	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RE I	ROS I

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **15** of **20**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION Not Applicable.

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

Receptor Tyrosine Kinase/Growth Factor Signalling

1: Mobocertinib; 2: Trastuzumab, Ado-trastuzumab emtansine, Fam-trastuzumab deruxtecan-nxki

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **16** of **20**

Project ID: C23-M001-02053 Report No.: AA-23-04367_ONC Date Reported: Jul 13, 2023

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告 移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 17 of 20

Project ID: C23-M001-02053 Report No.: AA-23-04367 ONC

Date Reported: Jul 13, 2023

ACTOnco® + Report

REFERENCE

- PMID: 11252954; 2001, Nat Rev Mol Cell Biol;2(2):127-37 1. Untangling the ErbB signalling network.
- PMID: 21204711; 2011, Arch Pathol Lab Med;135(1):55-62 HER2: biology, detection, and clinical implications.
- PMID: 25480824; 2015, Oncologist; 20(1):7-12 Oncogenic alterations in ERBB2/HER2 represent potential therapeutic targets across tumors from diverse anatomic sites of origin.
- PMID: 17311002; 2007, Oncogene;26(34):5023-7 The major lung cancer-derived mutants of ERBB2 are oncogenic and are associated with sensitivity to the irreversible EGFR/ERBB2 inhibitor HKI-272.
- PMID: 30425522; 2018, Onco Targets Ther;11():7323-7331 Clinical characterization of ERBB2 exon 20 insertions and heterogeneity of outcomes responding to a fatinib in Chinese lung cancer patients.
- PMID: 32162827; 2020, Oncologist; 25(3): e545-e554 Mutation Variants and Co-Mutations as Genomic Modifiers of Response to Afatinib in HER2-Mutant Lung Adenocarcinoma.
- PMID: 25899785; 2015, Ann Oncol;26(7):1421-7 Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors.
- PMID: 29420467; 2018, Nature; 554(7691): 189-194 HER kinase inhibition in patients with HER2- and HER3-mutant cancers.
- PMID: 31588020; 2019, Cancer Cell;36(4):444-457.e7 Pan-Cancer Landscape and Analysis of ERBB2 Mutations Identifies Poziotinib as a Clinically Active Inhibitor and Enhancer of T-DM1 Activity.
- PMID: 23610105; 2013, J Clin Oncol;31(16):1997-2003 Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives.
- 11. PMID: 26598547; 2016, Ann Oncol;27(2):281-6 Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: results from the European EUHER2 cohort.
- PMID: 29989854; 2018, J Clin Oncol;36(24):2532-2537 12. Ado-Trastuzumab Emtansine for Patients With HER2-Mutant Lung Cancers: Results From a Phase II Basket Trial.
- PMID: 34380634; 2021, Cancer Res;81(20):5311-5324 Targeting HER2 Exon 20 Insertion-Mutant Lung Adenocarcinoma with a Novel Tyrosine Kinase Inhibitor Mobocertinib.
- PMID: 29967253; 2018, Clin Cancer Res;24(20):5112-5122 High-Throughput Functional Evaluation of Variants of Unknown Significance in ERBB2.
- PMID: 26964772: 2016. J Thorac Oncol:11(6):918-23 15 Pulse Afatinib for ERBB2 Exon 20 Insertion-Mutated Lung Adenocarcinomas.
- PMID: 26545934; 2016, Cancer Sci;107(1):45-52 Antitumor effect of afatinib, as a human epidermal growth factor receptor 2-targeted therapy, in lung cancers harboring HER2 oncogene
- PMID: 23328556; 2013, J Thorac Oncol;8(2):e19-20 Non-small-cell lung cancer with HER2 exon 20 mutation: regression with dual HER2 inhibition and anti-VEGF combination treatment.
- PMID: 25789838; 2015, J Thorac Oncol;10(4):e16-7 Rapid response to trastuzumab emtansine in a patient with HER2-driven lung cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 18 of 20

Project ID: C23-M001-02053 Report No.: AA-23-04367_ONC Date Reported: Jul 13, 2023

ACTOnco® + Report

19. PMID: 16818618: 2006. Cancer Res:66(13):6487-91

Non-small-cell lung cancer and Ba/F3 transformed cells harboring the ERBB2 G776insV_G/C mutation are sensitive to the dual-specific epidermal growth factor receptor and ERBB2 inhibitor HKI-272.

20. PMID: 16843263; 2006, Cancer Cell;10(1):25-38

HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR ty rosine kinase inhibitors.

- PMID: 25935112; 2015, Trends Biochem Sci;40(6):296-308
 Structural determinants of Smad function in TGF-β signaling.
- 22. PMID: 19014666; 2008, Pathogenetics;1(1):2 Smad4 haploinsufficiency: a matter of dosage.
- PMID: 9545410; 1998, Am J Hum Genet;62(5):1129-36
 A gene for familial juv enile poly posis maps to chromosome 18q21.1.
- PMID: 8553070; 1996, Science;271(5247):350-3
 DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
- PMID: 8673134; 1996, Nat Genet;13(3):343-6
 Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers.
- PMID: 18662538; 2008, Cell;134(2):215-30
 TGFbeta in Cancer.
- PMID: 9135016; 1997, Cancer Res;57(9):1731-4
 Tumor-suppressive pathways in pancreatic carcinoma.
- PMID: 23139211; 2013, Cancer Res;73(2):725-35
 SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.
- PMID: 22810696; 2012, Nature;487(7407):330-7
 Comprehensive molecular characterization of human colon and rectal cancer.
- PMID: 25890228; 2015, World J Surg Oncol;13():128
 Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study.
- PMID: 19841540; 2009, J Clin Invest;119(11):3208-11
 Smad4: gatekeeper gene in head and neck squamous cell carcinoma.
- 32. PMID: 15867212; 2005, Clin Cancer Res;11(9):3191-7 Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.
- PMID: 25589618; 2015, Clin Cancer Res;21(6):1447-56
 Genomic analysis of metastatic cutaneous squamous cell carcinoma.
- PMID: 21763698; 2011, J Mol Biol;413(2):495-512
 Structural and functional impact of cancer-related missense somatic mutations.
- 35. PMID: 29703253; 2018, BMC Cancer;18(1):479
 SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients
- 36. PMID: 28522603; 2017, Clin Cancer Res;23(17):5162-5175
 SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.
- PMID: 16144935; 2005, Clin Cancer Res;11(17):6311-6
 SMAD4 levels and response to 5-fluorouracil in colorectal cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **19** of **20**

Project ID: C23-M001-02053 Report No.: AA-23-04367_ONC Date Reported: Jul 13, 2023

ACTOnco® + Report

- PMID: 24384683; 2014, Br J Cancer;110(4):946-57
 Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.
- PMID: 12237773; 2002, Br J Cancer;87(6):630-4
 SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer.
- PMID: 25749173; 2015, Transl Oncol;8(1):18-24
 A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer.
- 41. PMID: 19478385; 2009, Cell Oncol;31(3):169-78

 Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients.
- PMID: 25681512; 2015, J Clin Pathol;68(5):341-5
 Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer.
- PMID: 26861460; 2016, Clin Cancer Res;22(12):3037-47
 Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.
- PMID: 26947875; 2016, Transl Oncol;9(1):1-7
 Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis.
- PMID: 25760429; 2015, Pancreas;44(4):660-4
 SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer.
- PMID: 22504380; 2012, Pancreas;41(4):541-6
 SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma.
- PMID: 19584151; 2009, Clin Cancer Res;15(14):4674-9
 SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer.
- 48. PMID: 18425078; 2008, Mod Pathol;21(7):866-75

 Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival.
- PMID: 23020162; 2012, N Engl J Med;367(19):1783-91
 Trastuzumab emtansine for HER2-positive advanced breast cancer.
- PMID: 31825192; 2020, N Engl J Med;382(7):610-621
 Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer.
- 51. PMID: 33632775; 2021, Cancer Discov;11(7):1688-1699
 Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II Trial.
- 52. PMID: 20728210; 2010, Lancet;376(9742):687-97 Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial.
- 53. PMID: 25332249; 2014, J Clin Oncol;32(33):3744-52
 Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831.
- PMID: 11248153; 2001, N Engl J Med;344(11):783-92
 Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 20 of 20