Primer parcial de Lógica

29 de abril 2019

Indicaciones generales

- Apagar los celulares
- La duración del parcial es de **tres** (3) horas.
- En esta prueba **no** se permite consultar material alguno.
- Puntaje: 40 puntos.
- Toda respuesta debe estar fundamentada. Pueden usarse los resultados que aparecen en el texto del curso, en esos casos debe describirse con precisión el enunciado que se utiliza.
- Numerar todas las hojas e incluir en cada una su nombre y cédula de identidad, utilizar las hojas de un solo lado, escribir con lápiz, iniciar cada ejercicio en hoja nueva y poner en la primera hoja la cantidad de hojas entregadas.

Ejercicio 1 (12 puntos)

- a. I. Dar una definición inductiva del conjunto \mathcal{A} de todas las fórmulas de PROP que se pueden construir usando los conectivos $\{\neg, \land\}$ y que cumplan las siguientes condiciones:
 - Las letras proposicionales sólo aparecen negadas.
 - No aparecen otras negaciones que las que afectan a las letras proposicionales.

Ejemplos:
$$\neg p_5$$
, $(\neg p_0 \land \neg p_3)$, $((\neg p_3 \land \neg p_8) \land (\neg p_3 \land \neg p_2))$, $(\neg p_1 \land (\neg p_1 \land \neg p_9))$, $((\neg p_1 \land \neg p_1) \land \neg p_9)$

- II. Definir de acuerdo con el ERP, una función: $f: \mathcal{A} \to PROP$ de tal forma que $f(\alpha)$ sea el resultado de cambiar todos los conectivos \wedge por \vee y eliminar todas las negaciones de α . Ejemplos:
 - $f((\neg p_0 \land \neg p_3)) = (p_0 \lor p_3)$
 - $f(((\neg p_3 \land \neg p_8) \land (\neg p_3 \land \neg p_2))) = ((p_3 \lor p_8) \lor (p_3 \lor p_2))$
- b. Probar que para toda $\alpha \in \mathcal{A}$ se cumple que:
 - I. $f(\alpha) \vdash \neg \alpha$.
 - II. $\neg \alpha \models f(\alpha)$
 - III. Deduzca de las partes anteriores que: α eq $\neg f(\alpha)$

Ejercicio 2 (10 puntos)

a. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique.

I.
$$\models \neg (p_1 \lor \neg p_0) \lor ((p_0 \to \neg p_1) \to \neg p_0)$$
II. $(p_0 \land p_1) \to p_2, p_2 \to p_3 \models p_0 \to p_3$
III. $(\neg p_0 \lor p_1), \neg p_0 \to p_2 \models \neg p_1 \to p_2$
IV. $p_0 \leftrightarrow (p_1 \land (p_2 \land p_3)), p_1 \lor p_0 \models \neg (p_2 \land p_3)$

b. Para cada una de las afirmaciones falsas de la parte anterior, encuentre una letra proposicional o la negación de una letra proposicional, que agregada como hipótesis haga que la afirmación sea verdadera. Justifique su respuesta.

Ejercicio 3 (8 puntos)

Construya derivaciones que justifiquen los siguientes juicios.

a.
$$\neg p \lor \neg q, r \lor \neg s \vdash p \land s \rightarrow r \land \neg q$$

b.
$$p \lor q, p \to r, \neg s \to \neg q \vdash r \lor s$$

Nota: En ningún caso se aceptan justificaciones semánticas.

Ejercicio 4 (10 puntos)

Se recuerda que un conjunto $\Delta \subseteq \mathtt{PROP}$ es completo si: Δ es consistente y para todo $\varphi \in \mathtt{PROP}$ se cumple: $\Delta \vdash \varphi$ o $\Delta \vdash \neg \varphi$.

- a. Sea v una valuación cualquiera. Sea v' la valuación que se define como:
 - $v'(p_i) = v(p_i)$ si $i \neq k$.
 - $v'(p_k) = 1 v(p_k)$

Demostrar que para toda $\varphi \in PROP$: si p_k no ocurre en φ entonces $v(\varphi) = v'(\varphi)$.

- b. Demostrar que para todo $\Delta \subseteq PROP$: si $v(\Delta) = 1$ y $v'(\Delta) = 1$ entonces Δ no es completo.
- c. Sea Γ un subconjunto finito de PROP. Demuestre que no es completo.

29 de abril 2019 2