BLAS AND LAPACK

T. Daniel Crawford, Virginia Tech

Linear Algebra in Computational Chemistry

 $\mathbf{AV} = \mathbf{\Lambda V}$

* Eigenvalue Problems

* The Schrödinger equation

$$\hat{H}\Psi = E\Psi$$

- * Configuration interaction (Hamiltonian matrix)
- * Normal mode analysis (Hessian matrix)
- * Moments of inertia (Inertia tensor)

Linear Algebra in Computational Chemistry

Ax = b

- * Linear Equation Systems
 - * Orbital response equations (CPHF)
 - * Hessian matrix inversion
 - * Geometry step (potential-energy-surface scanning)

Linear Algebra in Computational Chemistry

AB = C

- * Matrix-Matrix Multiplication
 - * Algebraic (basis-set) problems cast as matrix problems
 - * Coupled cluster theory (many-body methods)
 - * Self-consistent field theory (Roothaan's algorithm)

BLAS

- * Basic Linear Algebra Subprograms
 - ***** BLAS1:
 - * vector norms
 - * dot products
 - * vector scaling
 - * addition of a scalar multiple of one vector to another (AXPY):

$$\mathbf{y} = \alpha \mathbf{x} + \mathbf{y}$$

BLAS

- * Basic Linear Algebra Subprograms
 - ***** BLAS2:
 - * matrix-vector operations:

$$\mathbf{y} = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{y}$$

BLAS

- * Basic Linear Algebra Subprograms
 - ***** BLAS3:
 - * matrix-matrix operations:

$$\mathbf{C} = \alpha \mathbf{A} \mathbf{B} + \beta \mathbf{C}$$

***** GEMM = GEneral Matrix Multiply:

LAPACK

- * Linear Algebra PACKage for solving:
 - * Systems of linear equations:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

* Singular value problems;

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}$$

* Eigenvalue problems:

$$\mathbf{AV} = \mathbf{\Lambda V}$$

QR Algorithm

$\mathbf{AV} = \mathbf{\Lambda V}$

QR Decomposition: A square matrix may be factored into a product of an orthogonal matrix and an upper-triangular matrix:

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$
 $\mathbf{Q}^T\mathbf{Q} = \mathbf{1}$

$$\mathbf{A}_0 \equiv \mathbf{A} = \mathbf{Q}_0 \mathbf{R}_0$$

$$\mathbf{A}_1 \equiv \mathbf{R}_0 \mathbf{Q}_0 = \mathbf{Q}_0^T \mathbf{Q}_0 \mathbf{R}_0 \mathbf{Q}_0 = \mathbf{Q}_0^T \mathbf{A}_0 \mathbf{Q}_0 = \mathbf{Q}_0^{-1} \mathbf{A} \mathbf{Q}_0$$

$$\mathbf{A}_{k+1} \equiv \mathbf{R}_k \mathbf{Q}_k = \mathbf{Q}_k^T \mathbf{Q}_k \mathbf{R}_k \mathbf{Q}_k = \mathbf{Q}_k^T \mathbf{A}_k \mathbf{Q}_k = \mathbf{Q}_k^{-1} \mathbf{A}_k \mathbf{Q}_k$$

Naming Conventions

- * Precision:
 - * S = single precision real (float)
 - * D = double-precision real (double)
 - * C = single-precision complex
 - * Z = double-precision complex
- * Matrix type: GE = general; SY = symmetric
- * Drivers: SV = solve; EV = eigenvalues; SVD = duh

Library Interface: DGEMM

- * C = alpha * A * B + beta * C
 - * TRANSA = 'n' (normal) or 't' (transpose)
 - * TRANSA = 'n' (normal) or 't' (transpose)
 - * M = rows of matrix C and of matrix A or A-transpose
 - * N = columns of matrix C and of matrix B or B-transpose
 - * K = columns of A/A-transpose and rows of B/B-transpose
 - * ALPHA = (double) scalar
 - A = (double) array (or double * in C/C++)
 - * LDA = row-dim. (Fortran) or col.-dim. (C/C++) of matrix A
 - * B = (double) array (or double * in C/C++)
 - \star LDB = row-dim. (Fortran) or col.-dim. (C/C++) of matrix B
 - * BETA = (double) scalar
 - \star C = (double) array (or double * in C/C++)
 - \star LDC = row-dim. (Fortran) or col.-dim. (C/C++) of matrix C.

Fortran vs. C/C++

- * The ordering of the elements in memory of a matrix is different between Fortran and C/C++:
 - * In Fortran: consecutive elements follow the columns
 - * In C/C++: consecutive elements follow the rows

Fortran

C/C++

Fortran vs. C/C++

* Given that the standard BLAS and LAPACK interfaces are defined to be Fortran77/90, some adjustments by C/C++ programs are necessary to call the functions correctly.

$$\mathbf{C} = \mathbf{A}\mathbf{B}$$

$$\mathbf{C}^T = (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

* Thus, when calling DGEMM() from C/C++, we reverse the ordering of the matrices, but keep the same 'n' and 't' arguments.

Library Interface: DSYEV

- $A \cdot V = W \cdot V$
 - * JOBZ = 'n' (eigenvalues only) or 'v' (also eigenvectors)
 - * UPLO = '1' (lower-triangle) or 'u' (upper-triangle) (not important for full matrix)
 - * N = dimension of A
 - * A = (double) array (or double * in C/C++) containing the matrix. This is replaced by the eigenvectors on exit.
 - \star LDA = row-dim. (Fortran) or col.-dim. (C/C++) of matrix A
 - * W = (double) array (or double * in C/C++) containing the eigenvalues in ascending order on exit.
 - * WORK = (double) array (or double * in C/C++) containing memory for temporary use by the function.
 - * LWORK = (int) length of WORK.
 - * INFO = 0 (if successful) on exit. (Other values indicate incorrect arguments or lack of convergence).

Optimized BLAS/LAPACK

Maximum optimization of BLAS/LAPACK is vital for all computational chemistry software, and many implementations exist:

- * Netlib: The original source of the code. Should never be used for production-level computations. (free)
- * Intel Math Kernel Library (MKL): Hand optimized using evil and ancient magic for Intel processors. (\$\$)
- * IBM Engineering and Scientific Subroutine Library (ESSL): Optimized for PowerPC architectures. (\$\$)
- * Goto BLAS: Hand-optimized in assembler by Kazushige Goto. Astonishingly fast for Intel Nehalem and AMD Opteron. (BSD)
- * Automatically Tuned Linear Algebra Subroutines (ATLAS): Self-tuning at compile time for a given architecture. (BSD)