Position and Velocity of SHM

 $x=Asin(\omega t + \Phi_0)$

 $v = A\omega\cos(\omega t + \Phi_0)$

$$v = \omega \sqrt{A^2 - x^2}$$

a)
$$x=0 \rightarrow v_{max}=A\omega$$

b)
$$x=\frac{A}{2} \rightarrow v=\frac{\sqrt{3}A\omega}{2}$$

c)
$$x = \frac{A}{\sqrt{2}} \rightarrow v = \frac{A\omega}{\sqrt{2}}$$

d)
$$x=A \rightarrow v=0$$

Graphical Representation of Position and Velocity

Start from mean position, $\Phi_0 = 0$ $x = A\sin(\omega t)$

v=Aωcos(ωt)

Start from extreme position $\Phi_0 = \frac{\pi}{2}$ x=Acos(ω t)

 $v = -A\omega \sin(\omega t)$

$$\mathbf{A} = \sqrt{\frac{\mathbf{V}_{1}^{2} \mathbf{X}_{2}^{2} - \mathbf{V}_{2}^{2} \mathbf{X}_{1}^{2}}{\mathbf{V}_{1}^{2} - \mathbf{V}_{2}^{2}}} \qquad \omega = \sqrt{\frac{\mathbf{V}_{1}^{2} - \mathbf{V}_{2}^{2}}{\mathbf{X}_{2}^{2} - \mathbf{X}_{1}^{2}}}$$

Acceleration of SHM

$$x = A\sin(\omega t + \Phi_0)$$

$$v = A\omega\cos(\omega t + \Phi_0)$$

$$a = -A\omega^2\sin(\omega t + \Phi_0)$$

$$a_{max} = -A\omega^2$$

$$a \leftarrow A\omega^2$$

Phase difference between x and v= $\frac{\pi}{2}$

Phase difference between v and $a = \frac{\pi}{2}$

Phase difference between \times and a= π

Simple Harmonic Motion 01

Graphical Representation of Acceleration

Start from mean position, $\Phi_{\rm o}\!=\!0$

$$a = -A\omega^2 \sin(\omega t)$$

Start from extreme position, $\Phi_0 = \frac{\pi}{2}$

$$a = -A\omega^2\cos(\omega t)$$

Calculation of Time period and amplitude

$$v_{\text{max}} = A\omega$$

$$a_{\text{max}} = A\omega^2$$

$$\omega = \frac{\mathbf{a}_{\text{max}}}{\mathbf{v}_{\text{max}}}$$

$$A = \frac{v_{\text{max}}^2}{a_{\text{max}}}$$

$$\frac{2\pi}{T} = \frac{a_{\text{max}}}{v_{\text{max}}}$$

$$T = 2\pi \frac{v_{max}}{a_{max}}$$

Energy of SHM

$$K.E = \frac{1}{2}mv^2 = \frac{1}{2}m\omega^2(A^2-x^2)$$

KE=0
$$KE_{\text{max}} = \frac{1}{2} \text{m} \omega^2 A^2$$

$$X = A$$

$$X = 0$$

$$X = A$$

$$P.E = \frac{1}{2}m\omega^2x^2$$

$$PE_{max} = \frac{1}{2}m\omega^2 A^2 \qquad PE = 0 \qquad PE_{max} = \frac{1}{2}m\omega^2 A$$

$$\times = -A \qquad \times = 0 \qquad \times = A$$

Total mechanical energy, $E = \frac{1}{2} m\omega^2 A^{2=Constant}$

2)
$$x = \frac{A}{2}$$

 $K.E = \frac{3E}{4} \cdot P.E = \frac{E}{4}$

3) x=0

K.E=E P.E=0

4) x=AK.E=0 P.E=E

Total mechanical energy(E) = $\frac{1}{2}$ m $\omega^2 A^2$

Note: In SHM, if particle oscillates with frequency ω , then the K.E & P.E oscillate with 2 ω

Harmoni Simple

PROJECTION OF CIRCULAR MOTION

Projection/shadow of uniform circular motion on y axis is SHM

Two particles executing SHM meet at $X = \sqrt{3}A$

for particle A

$$X = \frac{\sqrt{3}A}{2}$$
, $t=0 \Rightarrow \frac{\sqrt{3}A}{2} = A \sin \Phi_A$

$$\Phi_{A} = 60^{\circ} = \frac{\pi}{3}$$

Calculation of time

for particle B

$$X = \frac{\sqrt{3}A}{2}$$
, $t=0 \Rightarrow \frac{\sqrt{3}A}{2} = A\sin\Phi_B$

$$\Phi_{\rm B}$$
=90°+30

$$\frac{\pi}{2} + \frac{\pi}{4} = \frac{2\pi}{3}$$

Phase difference between particles

$$\Phi = \frac{2\pi}{3} - \frac{\pi}{3} = \frac{\pi}{3} = 60^{\circ}$$

INITIAL PHASE FROM POSITION & DIRECTION

Eg: Particle is at $x = \frac{A}{2}$ [t=0] and moves towards A

1st Quadrant

1) Particle is at $x = \frac{A}{2}$ [t=0] and moves towards A

 $x = A \sin(\omega t + \frac{\pi}{4})$

$$X=\frac{\sqrt{3}A}{2}$$
, $t=0\Rightarrow \frac{\sqrt{3}A}{2}=Asin \Phi_0$

$$\Phi_0 = 60^\circ = \frac{\pi}{3}$$

$$x = A \sin(\omega t + \frac{\pi}{3})$$

2nd Quadrant

1) Particle is at $x = \frac{A}{2}$ [t=0] and moves towards O

$$X = \frac{A}{2}, t=0 \Rightarrow \frac{A}{2} = A\cos\Phi_0$$

$$\Phi = \cos\phi + \cos\phi = \pi + \pi + 5\pi$$

2) Particle is at $x = \frac{A}{\sqrt{2}}$ [t=0] and moves towards O

$$X = \frac{A}{\sqrt{2}}, t = 0 \Rightarrow \frac{A}{\sqrt{2}} = A \cos \Phi_0$$

$$\Phi_0 = 90^{\circ} + 45^{\circ} = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

$$\times = A\cos(\omega t + \frac{3\pi}{4})$$

TIME PERIOD OF S.H.M

COMBINATIONS OF SPRINGS

OSCILLATION OF FLOATING BODY **OSCILLATION OF** LIQUID COLUMN **H** σ,**m** ↓× $T=2\pi \sqrt{\frac{m}{\rho gA}}$ $T=2\pi \sqrt{\frac{\sigma H}{\rho g}}$ m=mass of body σ=Density of Body ρ=Density of liquid $T=2\pi\sqrt{\frac{h}{a}}$ m=mass of liquid ρ=Density of liquid A=Area of U-tube

SPECIAL CASE

CUTTING OF SPRINGS

$$k \propto \frac{1}{L}$$

$$k_1L_1=k_2L_2=kL$$

-7000000000\ -7000000000\ -7000000000\ -700000000V-

L=L,+L,

$$k_1 = \frac{kL}{L_1}$$

$$k_2 = \frac{kl}{L_1}$$

$$\mathbf{k}_1 = \frac{\mathbf{k}(\mathbf{L}_1 + \mathbf{L}_2)}{\mathbf{L}_1}$$

$$k_2 = \frac{k(L_1 + L_2)}{L_2}$$

$$k_3 = \frac{6k}{3} = 2k$$

SIMPLE PENDULUM

Second's pendulam

T=2 second I=1 meter

3

Motion

Harmonic

Idu

S

Concept of geffective

$$T=2\pi\sqrt{\frac{1}{g_{eff}}}$$

Pendulum in lift

Case 1-Moving with constant upward acceleration 'a'

 $\int_{a}^{b} g_{eff} = g + a$ $T=2\pi\sqrt{\frac{1}{q+a}}$

 $\textbf{\textit{Case 2-Moving with constant downward acceleration 'a'}}$

 $\int a^{g_{eff}=g-a}$ $T=2\pi\sqrt{\frac{1}{q-a}}$

Case 3-Moving with constant velocity

 $T=2\pi\sqrt{\frac{1}{q}}$

Case 4-Free fall

 $g_{eff} = g - \alpha = g - g = 0$ $T \rightarrow \infty$

Pendulum in Water

DIFFERENTIAL EQUATION OF S.H.M

ma= -kx

$$m \frac{d^2x}{dt^2} = -kx$$

$$\frac{d^2x}{dt^2} = \frac{-k}{m} x$$

$$\frac{d^2x}{dt^2} + \frac{k}{m} x = 0$$

$$\frac{d^2x}{dt^2} + \omega^2x = 0$$

where, $\omega^2 = \frac{k}{m}$ $\omega = \sqrt{\frac{k}{m}}$

Solving, $x = Asin(wt + \Phi_0)$

A=Amplitude of SHM Φ_{o} =Initial phase angle

 $\lceil m = 4 \text{ Kg} \rceil$ K = 320 N/m

 $4\frac{d^2x}{dt^2} + 320 \times =0$

 $\frac{d^2x}{dt^2} + 80x = 0$

 $\omega^2=80$ $\omega=\sqrt{80}$

 $\frac{2\pi}{T} = \sqrt{80}$

 $T = \frac{2\pi}{\sqrt{80}}$

Pendulum in a truck moving with constant acceleration

PHYSICS WALLAH