Proiectarea algoritmilor

Lucrare de laborator nr. 12

Paradigma programării dinamice

Problema rucsacului, varianta discretă

Cuprins

l Problema rucsacului		1	
	1.1	Descrierea problemei	1
	1.2	Modelul matematic	1
	1.3	Algoritm	5
2	Sarc	cini de lucru și barem de notare	6

1 Problema rucsacului

1.1 Descrierea problemei

Se consideră un rucsac de capacitate $M \in \mathbb{Z}_+$ şi n obiecte $1, \ldots, n$ de dimensiuni (greutăți) $w_1, \ldots, w_n \in \mathbb{Z}_+$.

Un obiect i este introdus în totalitate în rucsac, $x_i = 1$, sau nu este introdus deloc, $x_i = 0$, astfel că o umplere a rucsacului constă dintr-o secvență x_1, \ldots, x_n cu $x_i \in \{0, 1\}$ și $\sum_{i=1}^n x_i \cdot w_i \leq M$.

Introducerea obiectului *i* în rucsac aduce profitul $p_i \in \mathbb{Z}$, iar profitul total este $\sum_{i=1}^n x_i p_i$.

Problema constă în a determina o alegere $(x_1, ..., x_n)$ care să aducă un profit maxim.

Singura deosebire față de varianta continuă studiată la metoda greedy constă în condiția $x_i \in \{0,1\}$, în loc de $x_i \in [0,1]$.

1.2 Modelul matematic

Problema iniţială (starea RUCSAC(n, M))

Funcția obiectiv:

$$\max \sum_{i=1}^{n} x_i \cdot p_i$$

Restricții:

$$\sum_{i=1}^{n} x_i \cdot w_i \le M$$

$$x_i \in \{0,1\}, i = 1, \dots, n$$

$$w_i \in \mathbb{Z}_+, p_i \in \mathbb{Z}, i = 1, \dots, n$$

$$M \in \mathbb{Z}_+$$

Generalizarea problemei inițiale (starea RUCSAC(j,X))

Funcția obiectiv:

$$\max \sum_{i=1}^{j} x_i \cdot p_i$$

Restricții:

$$\sum_{i=1}^{j} x_i \cdot w_i \le X$$

$$x_i \in \{0, 1\}, i = 1, \dots, j$$

$$w_i \in \mathbb{Z}_+, p_i \in \mathbb{Z}, i = 1, \dots, j$$

$$X \in \mathbb{Z}_+$$

Notăm cu $f_j(X)$ valoarea optimă pentru instanța RUCSAC(j,X). Dacă j=0 şi $X \ge 0$, atunci $f_j(X)=0$. Presupunem j>0. Notăm cu (x_1,\ldots,x_j) alegerea care dă valoarea optimă $f_j(X)$.

Dacă $x_j = 0$ (obiectul j nu este pus în rucsac), atunci, conform principiului de optim, $f_j(X)$ este valoarea optimă pentru starea RUCSAC(j-1,X) și de aici $f_j(X) = f_{j-1}(X)$.

Dacă $x_j = 1$ (obiectul j este pus în rucsac), atunci, din nou conform principiului de optim, $f_j(X)$ este valoarea optimă pentru starea RUCSAC $(j-1,X-w_j)$ plus p_j și, de aici, $f_j(X) = f_{j-1}(X-w_j) + p_j$.

Combinând relațiile de mai sus obținem:

$$f_{j}(X) = \begin{cases} -\infty, & \text{dacă } X < 0 \\ 0, & \text{dacă } j = 0 \text{ și } X \ge 0 \\ \max\{f_{j-1}(X), f_{j-1}(X - w_{j}) + p_{j}\}, & \text{dacă } j > 0 \text{ și } X \ge 0 \end{cases}$$
 (1)

Am considerat $f_i(X) = -\infty$, dacă X < 0.

Din relația (1) rezultă că proprietatea de substructură optimă se caracterizează astfel:

Soluţia optimă $(x_1,...,x_j)$ a problemei RUCSAC(j,X) include soluţia optimă $(x_1,...,x_{j-1})$ a subproblemei RUCSAC $(j-1,X-x_jw_j)$.

Soluţia optimă pentru RUCSAC(j,X) se poate obţine utilizând soluţiile optime pentru subproblemele RUCSAC(i,Y) cu $1 \le i < j, 0 \le Y \le X$.

Relația (1) implică o recursie în cascadă și deci numărul de subprobleme de rezolvat este $O(2^n)$, fapt pentru care calculul și memorarea eficientă a valorilor optime pentru subprobleme devine un task foarte important.

Fie M = 10, n = 3 și greutățile și profiturile date de următorul tabel:

Valorile optime pentru subprobleme sunt calculate cu ajutorul relației (1)≡(2)

$$f_{j}(X) = \begin{cases} -\infty, & \text{dacă } X < 0 \\ 0, & \text{dacă } j = 0 \text{ și } X \ge 0 \\ \max\{f_{j-1}(X), f_{j-1}(X - w_{j}) + p_{j}\}, & \text{dacă } j > 0 \text{ și } X \ge 0 \end{cases}$$
 (2)

Valorile optime pot fi memorate într-un tablou bidimensional astfel:

Tabloul de mai sus este calculat linie cu linie. Exemplu: $f_2(8) = \max\{f_1(8), f_1(8-5) + 30\} = \max\{10, 40\} = 40$.

Tabloul valorilor optime are dimensiunea $n \cdot M$ (au fost ignorate prima linie şi prima coloană). Dacă $M = O(2^n)$ rezultă că atât complexitatea spațiu, cât şi cea timp sunt exponențiale.

Privind tabloul de mai sus observăm că există multe valori care se repetă. *Cum putem memora mai compact tabloul valorilor optime*?

Soluție: Construim graficele funcțiilor $f_0, f_1, f_2 \cdots$

$$f_0(X) = \begin{cases} -\infty & , X < 0 \\ 0 & , X \ge 0 \end{cases}$$

$$g_0(X) = f_0(X - w_1) + p_1 = \begin{cases} -\infty & , X < 3 \\ 10 & , 3 \le X \end{cases}$$

Figura 1: Funcțiile f_0 și g_0

$$f_1(X) = \max\{f_0(X), g_0(X)\} = \begin{cases} -\infty, X < 0 \\ 0, 0 \le X < 3 \\ 10, 3 \le X \end{cases}$$

$$g_1(X) = f_1(X - w_2) + p_2 = \begin{cases} -\infty, X < 5 \\ 30, 5 \le X < 8 \\ 40, 8 \le X \end{cases}$$

$$f_2(X) = \max\{f_1(X), g_1(X)\} = \begin{cases} -\infty, X < 0 \\ 0, 0 \le X < 3 \\ 10, 3 \le X < 5 \\ 30, 5 \le X < 8 \\ 40, 8 \le X \end{cases}$$

$$g_2(X) = f_2(X - w_3) + p_3 = \begin{cases} -\infty, X < 6 \\ 20, 6 \le X < 9 \\ 30, 9 \le X < 11 \\ 50, 11 \le X < 14 \\ 60, 14 \le X \end{cases}$$

Figura 2: Funcțiile f_0 și g_0 ; Funcțiile f_1 și g_1

Figura 3: Funcțiile f_1 și g_1 ; Funcțiile f_2 și g_2

$$f_3(X) = \max\{f_2(X), g_2(X)\} = \begin{cases} -\infty & , X < 0 \\ 0 & , 0 \le X < 3 \\ 10 & , 3 \le X < 5 \\ 30 & , 5 \le X < 8 \\ 40 & , 8 < X \le 11 \\ 50 & , 11 \le X < 14 \\ 60 & , 14 \le X \end{cases}$$

Se remarcă faptul că funcțiile f_i și g_i sunt funcții în scară. Graficele acestor funcții pot fi reprezentate prin mulțimi finite din puncte din plan. De exemplu, graficul funcției f_2 este reprezentat prin mulțimea $\{(0,0),(3,10),(5,30),(8,40)\}$.

O mulțime care reprezintă o funcție în scară conține acele puncte în care funcția face salturi.

Graficul funcției g_i se obține din graficul funcției f_i printr-o translație. Graficul funcției f_{i+1} se obține prin interclasarea graficelor funcțiilor f_i și g_i .

Figura 4: Funcțiile f_2 și g_2 ; Funcția f_3

1.3 Algoritm

În general, fiecare f_i este complet specificat de o mulțime $S_i = \{(X_j, Y_j) \mid j = 0, ..., r\}$, unde $Y_j = f_i(X_j)$. Presupunem $X_1 < \cdots < X_r$. Analog, funcțiile g_i sunt reprezentate prin mulțimile $T_i = \{(X + w_{i+1}, Y + p_{i+1}) \mid (X, Y) \in S_i\}$. Notăm $T_i = \tau(S_i)$ și $S_{i+1} = \mu(S_i, T_i)$.

Mulţimea S_{i+1} se obţine din S_i şi T_i prin interclasare. Operaţia de interclasare se realizează într-un mod asemănător cu cel de la interclasarea a două linii ale orizontului.

Se consideră o variabilă L care ia valoarea 1 dacă graficul lui f_{i+1} coincide cu cel al lui f_i şi cu 2 dacă el coincide cu cel al lui g_i . Deoarece (0,0) aparține graficului rezultat, considerăm L=1, j=1 şi k=1. Presupunând că la un pas al interclasării se compară $(X_i,Y_i) \in S_i$ cu $(X_k,Y_k) \in T_i$, atunci:

- dacă L=1:
 - dacă $X_i < X_k$, atunci se adaugă (X_j, Y_j) în S_{i+1} și se incrementează j;
 - dacă $X_i = X_k$:
 - * dacă $Y_i \ge Y_k$, atunci se adaugă (X_i, Y_i) în S_{i+1} și se incrementează j și k;
 - * dacă $Y_j < Y_k$, atunci se adaugă (X_k, Y_k) în S_{i+1} , L = 2 și se incrementează j și k;
 - dacă $X_i > X_k$ sau $j > |S_i|$:
 - * dacă $Y_{i-1} \ge Y_k$, atunci se incrementează k;
 - * dacă $Y_{i-1} < Y_k$, atunci L = 2;
- dacă L=2:
 - dacă $X_k < X_j$, atunci se adaugă (X_k, Y_k) în S_{i+1} și se incrementează k;
 - dacă $X_k = X_i$:
 - * dacă $Y_k \ge Y_j$, atunci se adaugă (X_k, Y_k) în S_{i+1} și se incrementează j și k;
 - * dacă $Y_k < Y_j$, atunci se adaugă (X_j, Y_j) în S_{i+1} , L = 1 și se incrementează j și k;
 - dacă $X_k > X_i$ sau $k > |T_i|$:
 - * dacă $Y_{k-1} \ge Y_j$, atunci se incrementează j;
 - * dacă $Y_{k-1} < Y_j$, atunci L = 1;

Dacă se termină mulțimea S_i , atunci se adauga la S_{i+1} restul din T_i .

Dacă se termină mulțimea T_i , atunci se adauga la S_{i+1} restul din S_i .

Notăm cu intercl $Grafice(S_i, T_i)$ funcția care determină S_{i+1} conform algoritmului de mai sus.

```
S_3 = \{(0,0), (3,10), (5,30), (8,40), (11,50), (14,60)\}.
```

$$S_2 = \{(0,0), (3,10), (5,30), (8,40)\}.$$

$$S_1 = \{(0,0), (3,10)\}.$$

$$S_0 = \{(0,0)\}.$$

Se caută în $S_n = S_3$ perechea (X_j, Y_j) cu cel mai mare X_j pentru care $X_j \le M$. Obţinem $(X_j, Y_j) = (8,40)$. Deoarece $(8,40) \in S_3$ şi $(8,40) \in S_2$ rezultă $f_{optim}(M) = f_{optim}(8) = f_3(8) = f_2(8)$ şi deci $x_3 = 0$. Perechea (X_j, Y_j) rămâne neschimbată.

Pentru că $(X_j, Y_j) = (8,40)$ este în S_2 și nu este în S_1 , rezultă că $f_{optim}(8) = f_1(8 - w_2) + p_2$ și deci $x_2 = 1$. În continuare se ia $(X_j, Y_j) = (X_j - w_2, Y_j - p_2) = (8 - 5, 40 - 30) = (3, 10)$.

Pentru că $(X_j, Y_j) = (3, 10)$ este în S_1 și nu este în S_0 , rezultă că $f_{optim}(3) = f_1(3 - w_1) + p_1$ și deci $x_1 = 1$.

Inițial se determină perechea $(X_j, Y_j) \in S_n$ cu cel mai mare X_j pentru care $X_j \leq M$. Valoarea Y_j constituie încărcarea optimă a rucsacului, *i.e.*, valoarea funcției obiectiv din problema inițială.

Pentru i = n - 1, ..., 0:

- dacă (X_j, Y_j) este în S_i , atunci $f_{i+1}(X_j) = f_i(X_j) = Y_j$ şi se consideră $x_{i+1} = 0$ (obiectul i+1 nu este ales);
- dacă (X_j, Y_j) nu este în S_i , atunci $f_{i+1}(X_j) = f_i(X_j w_{i+1}) + p_{i+1} = Y_j$ şi se consideră $x_{i+1} = 1$ (obiectul i+1 este ales), $X_j = X_j w_{i+1}$ şi $Y_j = Y_j p_{i+1}$.

```
procedure rucsac(M, n, w, p, x) S_0 \leftarrow \{(0,0)\} T_0 \leftarrow \{(w_1,p_1)\} for i \leftarrow 1 to n S_i \leftarrow \text{interclGrafice}(S_{i-1},T_{i-1}) T_i \leftarrow \{(X+w_{i+1},Y+p_{i+1}) \mid (X,Y) \in S_i\} determină (X_j,Y_j) cu X_j = \max\{X_i \mid (X_i,Y_i) \in S_n,X_i \leq M\} for i \leftarrow n-1 downto 0 do if (X_j,Y_j) \in S_i then x_{i+1} \leftarrow 0 else x_{i+1} \leftarrow 1 X_j \leftarrow X_j - w_{i+1} Y_j \leftarrow Y_j - p_{i+1} end
```

2 Sarcini de lucru și barem de notare

Sarcini de lucru:

- 1. Scrieți o funcție C/C++ care implementează algoritmul rucsac.
- 2. Se consideră un rucsac de capacitate $M \in \mathbb{Z}_+$ şi n obiecte $1, \ldots, n$ de dimensiuni (greutăți) $w_1, \ldots, w_n \in \mathbb{Z}_+$.. Scrieți un program care să afișeze soluția optimă.

Barem de notare:

1. Implementarea algoritmului rucsac: 7p

- 2. Afişarea soluţiei optime: 2p
- 3. Baza: 1p

Bibliografie

- [1] Lucanu, D. și Craus, M., Proiectarea algoritmilor, Editura Polirom, 2008.
- [2] R.E. Bellman şi S.E. Dreyfus, *Applied Dynamic Programming*, Princeton University Press, 1962.
- [3] Moret, B.M.E.şi Shapiro, H.D., *Algorithms from P to NP: Design and Efficiency*, The Benjamin/Cummings Publishing Company, Inc., 1991.