Name Arnav Kumar Sinha

Roll No. 22075013 Course B.Tech CSE

Table Of Contents

- Table Of Contents
- Analysis
 - Zipf's Law
 - * English Zipf
 - * Hindi Zipf
 - Stemming
 - * English Stemming
 - $\ast\,$ Hindi Stemming
 - \ast Analysis and Results

Analysis

Zipf's Law

[!NOTE] Code related to this can be found in directory zipfs-law

English Zipf

For the English Dataset, it doesn't seem to follow zipf's law precisely.

Using, ignoring numbers and punctuation (except the hyphen), here is the log-log plot of frequency vs rank,

and now with a best-fit line

For a dataset following Zipf's law, the log-log plot should have been almost linear, but here the R^2 value is around 0.9828...

Figure 1: most common words

Here are the 40 most common words in the collection with their frequencies:

Term	Frequency		
the	3165967		
of	1191753		
to	1173978		
a	1052318		
and	1009427		
in	975690		
-	718358		
on	452788		
for	446121		
is	405643		
that	340393		
with	310592		
was	295030		
at	291176		
it	268103		
by	261282		
said	256954		
be	241164		
from	232918		
has	226159		
pm	221154		
he	218450		
as	218228		
S	217175		
have	208039		
will	194965		
calcutta	192773		
are	185001		
his	183397		
not	182055		
an	170376		
had	161636		
but	160628		
i	143241		
this	139506		
telegraph	139167		
cal	135123		
we	123564		
who	118165		
been	116681		

The tokenization step involved matching with this regex expression <code>[a-zA-Z\-]+</code>,

which ignores numbers and punctuation (other than the hyphen) and then lowercasing the matches

Some weird tokens are

- obviously due to the tokenization scheme
- this weird token occurs so many times, because in the dataset, the words like that's look like that?s, country's -> country?s, army's -> army?s

[!NOTE] Associated code can be found in english analysis

Hindi Zipf

For the Hindi Dataset, it doesn't seem to follow zipf's law precisely. Here is the log-log plot of frequency vs rank,

and now with a best-fit line

For a dataset following Zipf's law, the log-log plot should have been almost linear, but here the R^2 value is around 0.9768...

Figure 2: most common words

Here are the 40 most common words in the collection with their frequencies:

Term (wxn)	Frequency	
ke	2666812	
hai	1903989	
kI	1868646	
se	1204763	
ko	1193956	
me	1180160	
kA	1161792	
meM	942672	
ne	872033	
para	809653	
ki	677851	
jAgaraNA	521605	
bhI	459633	
eka	395570	
lie	395319	
isa	363829	
hI	334565	
aura	320864	
haiM	308684	
aAaira	307561	
kara	306016	
ho	290355	
yaha	268787	
kahA	266529	
nahIM	249308	
kiyA	243252	
to	234119	
nahI	225234	
bhArata	215572	
gayA	214916	
karane	213012	
thA	190662	
aaura	185410	
bAda	174859	
rahe	168503	
sAtha	164968	
taka	161141	
vaha	161001	
$\operatorname{diy} A$	156540	
aba	152971	

The tokenization step involved matching with this regex expression $\w+$ along

with UNICODE flag set, which doesnot ignore numbers and punctuation

[!NOTE] Associated code can be found in hindi analysis

Stemming

English Stemming

Porter stemmer was used for this english stemming. It was taken from the <code>snowball project</code>.

Detailed stemming description can be found in stemming/porter.sbl

Steps of the Algorithm:

- 1) Deals with plurals and past participles.
 - Removes common endings like -SSES, -IES, -ED, -ING, and modifies endings based on conditions.
- 2) Targets specific suffixes that indicate derivational forms.
 - Examples include -ATIONAL -> -ATE, -TIONAL -> -TION, etc.
- 3) Further reduces words by removing suffixes like -ICATE, -ATIVE, -ALIZE, etc.
- 4) Focuses on removing additional suffixes based on the measure of the stem.
 - Examples include -AL, -ANCE, -ENCE, -ER, etc.
- 5) Final tidying up of the stem. Removes trailing -E based on conditions related to the measure.

Hindi Stemming

The Hindi stemmer was taken from here

Detailed stemming description can be found in stemming/hindi.sbl

In WX Notation, the stemmer is implemented by simply removing from each word the longest possible suffix from this list:

A	AeM	awA	Ane	egA
i	MoA	awI	UMgA	egI
I	iyAM	MI	UMgI	AegA
u	iyoM	awIM	AUMgA	AegI
U	AiyAM	awe	AUMgI	AyA
е	AiyoM	AwA	eMge	Аe
0	AMh	AwI	eMgI	ΑI
еM	iyAMh	AwIM	AeMge	MIA
oM	AiyAMh	Awe	AeMgI	ie
AM	awAeM	\mathtt{anA}	oge	Ao
uAM	awAoM	anI	ogI	Aie
ueM	\mathtt{anAeM}	ane	Aoge	akara
uoM	\mathtt{anAoM}	AnA	AogI	Akara

The snowball file for this can be found here

Analysis and Results

The script analyze.sh was written to record the process used to extract the required stats.

Scripts gen-hindi-terms.py and gen-english-terms.py were used to extract words from document collection.

Type	Count
Unique hindi	268089
Stemmed unique hindi	215072
Unique english	250704
Stemmed unique english	194800

All code and intermediate files can be found in directory stemming