How far can we go?

We might consider grouping redundant conditions

```
IF pclass='1' THEN

IF sex='female' THEN survive=yes

IF sex='male' AND age < 5 THEN survive=yes

IF pclass='2'

IF sex='female' THEN survive=yes

IF sex='male' THEN survive=no

IF pclass='3'

IF sex='male' THEN survive=no

IF sex='female'

IF age < 4 THEN survive=yes

IF age >= 4 THEN survive=no
```

A decision tree

Document Classification Example

Aside on Entropy

Consider two sequences of coin flips

How much information do we get after flipping each coin once?

We want some function "Information" that satisfies:

 $Information_{1&2}(p_1p_2) = Information_1(p_1) + Information_2(p_2)$

$$I(X) = \log_2 p_x$$

Expected Information = "Entropy"

$$H(X) = E(I(X)) = \sum_{x} p_x I(x) = -\sum_{x} p_x \log_2 p_x$$

Example: Flipping a Coin

Entropy =
$$-\sum_{i} p_x \log_2 p_x$$

= $-(0.5 \log_2 0.5 + 0.5 \log_2 0.5)$
= 1

Example: Rolling a die

$$p_1 = \frac{1}{6}, \ p_2 = \frac{1}{6}, \ p_3 = \frac{1}{6}, \dots$$

Entropy =
$$-\sum_{i} p_{i} \log_{2} p_{i}$$

= $-6 \times \left(\frac{1}{6} \log_{2} \frac{1}{6}\right)$

Example: Rolling a weighted die

$$p_1 = 0.1, p_2 = 0.1, p_3 = 0.1, \dots p_6 = 0.5$$

Entropy =
$$-\sum_{i} p_x \log_2 p_x$$

= $-5 \times (0.1 \log_2 0.1) - 0.5 \log_2 0.5$
= 2.16

The weighted die is more unpredictable than a fair die

How unpredictable is your data?

• 342/891 survivors in titanic training set

$$-\left(\frac{342}{891}\log_2\frac{342}{891} + \frac{549}{891}\log_2\frac{549}{891}\right) = 0.96$$

Say there were only 50 survivors

$$-\left(\frac{50}{891}\log_2\frac{50}{891} + \frac{841}{891}\log_2\frac{841}{891}\right) = 0.31$$

Back to decision trees

- Which attribute do we choose at each level?
- The one with the highest information gain
 - The one that reduces the unpredictability the most