第3节 四个常见条件的翻译 (★★★)

强化训练

1. (2022•四川绵阳模拟•★★)若 $f(x) = \sin(\omega x + \varphi)(\omega > 0)$ 的图象与直线 y = m的三个相邻交点的横坐标 分别是 $\frac{\pi}{6}$, $\frac{\pi}{3}$, $\frac{2\pi}{3}$, 则 $\omega =$ _____.

答案: 4

解析:如图,水平线与f(x)的图象的相邻两个交点的中间必定是对称轴,

由题意, $x = \frac{\pi}{4}$ 和 $x = \frac{\pi}{2}$ 是相邻的两条对称轴,所以 $\frac{T}{2} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \Rightarrow T = \frac{\pi}{2} \Rightarrow \omega = \frac{2\pi}{T} = 4$.

2. $(2023 \cdot 安徽模拟 \cdot ★★★) 已知函数 <math>f(x) = \sin(\omega x + \varphi)(\omega$ 为正整数, $0 < \varphi < \pi$) 在区间 $(\frac{\pi}{4}, \pi)$ 上单调,

且
$$f(\pi) = f(\frac{3\pi}{2})$$
,则 $\varphi = ($)

(A)
$$\frac{\pi}{6}$$

$$\frac{\pi}{4}$$

(C)
$$\frac{\pi}{3}$$

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$

答案: B

解析: f(x)在 $(\frac{\pi}{4},\pi)$ 上单调怎样翻译? 可由内容提要 1 来推周期的范围,进而得到 ω 的范围,

$$f(x)$$
在 $(\frac{\pi}{4},\pi)$ 上单调 $\Rightarrow \frac{T}{2} \ge \pi - \frac{\pi}{4} = \frac{3\pi}{4} \Rightarrow T \ge \frac{3\pi}{2}$

所以 $\omega = \frac{2\pi}{T} \le \frac{4}{2}$,又 $\omega \in \mathbb{N}^*$,所以 $\omega = 1$,故 $T = 2\pi$,且 $f(x) = \sin(x + \varphi)$,

有了周期,可看看 π 与 $\frac{3\pi}{2}$ 之间是否小于一个周期.若是,则可由 $f(\pi) = f(\frac{3\pi}{2})$ 来推断对称轴,

由 $T = 2\pi$ 知 π 和 $\frac{3\pi}{2}$ 之间小于一个周期,又 $f(\pi) = f(\frac{3\pi}{2})$,所以 $x = \frac{5\pi}{4}$ 是 f(x)的对称轴,

从而
$$\frac{5\pi}{4} + \varphi = k\pi + \frac{\pi}{2}$$
,故 $\varphi = k\pi - \frac{3\pi}{4} (k \in \mathbb{Z})$,结合 $0 < \varphi < \pi$ 可得 $\varphi = \frac{\pi}{4}$.

函数 f(x) 图象上各点的横坐标伸长为原来的 2 倍得到函数 g(x) 的图象,则 $g(x) = ____.$

答案: $2\sin(x+\frac{\pi}{2})$

解析:由内容提要 1,因为 f(x)在 $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ 上单调递减,所以 $\frac{T}{2} \ge \frac{\pi}{2} - \frac{\pi}{6}$,故 $T \ge \frac{2\pi}{3}$,

条件中有 $f(\frac{\pi}{2}) = -f(\frac{\pi}{6})$,且给了 f(x)在 $[\frac{\pi}{6}, \frac{\pi}{2}]$ 上单调,可由此推断对称中心,

如图, $(\frac{\pi}{2},0)$ 必为函数 f(x) 图象的一个对称中心,

还剩 $f(\frac{\pi}{2}) = f(\frac{2\pi}{2})$ 这个条件,可由它推断对称轴,

如图, $\left[\frac{\pi}{2}, \frac{2\pi}{2}\right]$ 的宽度小于一个周期, 所以 $x = \frac{7\pi}{12}$ 为 f(x)图象的一条对称轴,

由图可知 $\frac{T}{4} = \frac{7\pi}{12} - \frac{\pi}{3}$,所以 $T = \pi$, $\omega = \frac{2\pi}{T} = 2$,故 $f(x) = 2\sin(2x + \varphi)$,

还需求 φ ,可代 $x = \frac{7\pi}{12}$ 这个最小值点, $f(\frac{7\pi}{12}) = 2\sin(2\times\frac{7\pi}{12}+\varphi) = -2$,所以 $\sin(\frac{7\pi}{6}+\varphi) = -1$,

又
$$|\varphi| < \frac{\pi}{2}$$
,所以 $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$,从而 $\frac{2\pi}{3} < \frac{7\pi}{6} + \varphi < \frac{5\pi}{3}$,故 $\frac{7\pi}{6} + \varphi = \frac{3\pi}{2}$,解得: $\varphi = \frac{\pi}{3}$,

所以 $f(x) = 2\sin(2x + \frac{\pi}{2})$,由题意, $g(x) = f(\frac{x}{2}) = 2\sin(x + \frac{\pi}{2})$.

4. (2022 • 上海模拟 • ★★★★)已知函数 $f(x) = \sin x + a \cos x$ 满足 $f(x) \le f(\frac{\pi}{6})$,若 f(x) 在 $[x_1, x_2]$ 上单调,

且 $f(x_1) + f(x_2) = 0$,则 $|x_1 + x_2|$ 的最小值为(

(A)
$$\frac{\pi}{6}$$

(B)
$$\frac{\pi}{3}$$

(C)
$$\frac{2\pi}{3}$$

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{3}$ (C) $\frac{2\pi}{3}$ (D) $\frac{4\pi}{3}$

答案: C

解析: $f(x) \le f(\frac{\pi}{6}) \Rightarrow x = \frac{\pi}{6} \not = f(x)$ 的最大值点,

又 $f(x) = \sin x + a \cos x = \sqrt{1 + a^2} \sin(x + \varphi)$,所以 f(x)的最小正周期为 2π ,

有了这两点,就可以推断 f(x) 图象上的对称轴、对称中心这些关键信息了. 例如, $x = \frac{\pi}{6}$ 左侧的第一个对

称中心是 $(-\frac{\pi}{2},0)$,右侧的第一个对称中心是 $(\frac{2\pi}{2},0)$,

如图,因为 f(x)在 $[x_1,x_2]$ 上单调,且 $f(x_1)+f(x_2)=0$,所以 $x=\frac{x_1+x_2}{2}$ 处必为对称中心,

当 $|x_1+x_2|$ 最小时, $\left|\frac{x_1+x_2}{2}\right|$ 也最小,所以只需找到横坐标绝对值最小的那个对称中心,

由图可知, $(-\frac{\pi}{3},0)$ 这个对称中心的横坐标的绝对值最小,所以 $\left|\frac{x_1+x_2}{2}\right|_{\min} = \frac{\pi}{3}$,故 $\left|x_1+x_2\right|_{\min} = \frac{2\pi}{3}$.

《一数•高考数学核心方法》