# Expression, purification, and assay of beta-glucosidase B

# Day 1: Transform expression cells

## **MATERIALS**

| Material                      | Concentration | Amount per reaction |
|-------------------------------|---------------|---------------------|
| Chemical competent BLR cells  |               | 20 μL               |
| Sequence-verified plasmid     | > 20 ng/µL    | 1 <i>μ</i> L        |
| Terrific broth                |               | 200 μL              |
| LB agar plates with kanamycin |               | 1                   |
| Sterile beads                 |               | 8–10                |
| PCR tubes                     |               | 1                   |

- 1. In an ice cold tube, mix 1  $\mu$ L plasmid and 20  $\mu$ L competent cells
- 2. Incubate at 42 C for 60 seconds
- 3. Incubate on ice for 60 seconds
- 4. Add 200  $\mu$ L media and incubate at 37 C for 1 hour

# Day 2: Growth cultures

## **MATERIALS**

| Material                      | Concentration | Amount per reaction |
|-------------------------------|---------------|---------------------|
| Falcon tube                   |               | 1                   |
| Pre-cut tube seal             |               | 1                   |
| Terrific broth with kanamycin |               | 5 mL                |

- 1. Aliquot 5 mL terrific broth with kanamycin into Falcon tubes
- 2. Inoculate tubes with single colonies from plate
- 3. Seal tubes with tube seals
- 4. Incubate with shaking at 37 C for 24 hours

## Day 3: Expression cultures

## **MATERIALS**

| Material          | Concentration | Amount per reaction |
|-------------------|---------------|---------------------|
| Terrific broth    |               | 5 mL                |
| Pre-cut tube seal |               | 1                   |
| IPTG              | 1000X         | 25 μL               |
| Kanamycin         | 1000X         | 25 μL               |

- 1. Centrifuge growth cultures at 4,700 RPM for 10 minutes
- 2. Add IPTG and kanamycin to TB to make enough induction medium for all reactions
- 3. Add 5 mL induction medium to tubes
- 4. Vortex to resuspend pellets
- 5. Seal with tube seals
- 6. Incubate with shaking at 18 C for 24 hours

## **Day 4: Protein purification**

#### **MATERIALS**

| Material        | Concentration | Amount per reaction |
|-----------------|---------------|---------------------|
| Wash buffer     |               | 450 μL              |
| Bugbuster       | 10X           | 50 μL               |
| Lysis mix       |               | 1 mg                |
| 2 mL Goog tubes |               | 1                   |

- 1. Centrifuge expression cultures at 4,700 RPM for 10 minutes
- 2. Make lysis buffer and aliquot 500 uL into 2 mL Goog tubes
- 3. Pour off supernatant from cultures
- 4. Resuspend cell pellet in 500  $\mu$ L wash buffer
- 5. Transfer 1 mL of resuspension into Goog tubes with lysis buffer aliquots
- 6. Rock tubes for 20 minutes
- 7. Centrifuge at 14,700 RPM for 10 minutes
- 8. Set microcolumns in rack over waste collector
- 9. Add 100uL of nickel resin (blue) from 50% slurry to each microcolumn. Make sure resin is thoroughly mixed before pipetting out. Use 1000  $\mu$ L tips otherwise the beads get stuck!
- 10. Add 500  $\mu$ L of wash buffer and allow to drip through
- 11. Add 500  $\mu$ L of supernatant and allow to drip through
- 12. Add another 500  $\mu$ L of supernatant and allow to drip through
- 13. Wash six times with 500  $\mu$ L of wash buffer, allow to drip through each time
- 14. Transfer column to fresh tube
- 15. Add 100  $\mu$ L protein buffer directly to beads and wait five minutes
- 16. Add second 100  $\mu$ L protein buffer and spin briefly to ensure you get it all (this contains your purified protein)

## Day 5: Assay

#### **MATERIALS**

| Material                       | Concentration    | Amount per assay         |
|--------------------------------|------------------|--------------------------|
| Protein solution               | about 0.01 mg/mL | 600 $\mu$ L each protein |
| Substrate solution             | 100 mM           | 1200 μL                  |
| 96-well plate (cheap)          |                  | 1                        |
| Costar 96-well half area plate |                  | 1                        |

### **METHOD**

1. Aliquot 25  $\mu$ L of protein solution into wells of black plate as diagrammed below



- 2. In cheap plate, aliquot 100  $\mu$ L of substrate stock into the first row and 75  $\mu$ L of protein buffer into the rest of the rows
- 3. With the multichannel, remove 25  $\mu$ L from the first row, add to second row, and mix
- 4. Repeat, leaving the last row alone
- 5. Set up plate reader (use program "Model enzyme kinetics")
- 6. Transfer substrate from cheap plate to assay plate
- 7. Place assay plate in reader and press play

## **Recipes**

## **Plates**

LB plates with kanamycin (25 plates)

Autoclave 250 mL water with 2 pellets of LB agar in a 500 mL bottle. After autoclaving, hold in 50 C dry bath until 50 C, then add 250  $\mu$ L 1000X kanamycin solution. Use a serological pipet to pour 10 mL per plate

## **Stocks**

Lysis mix (100 reactions)

Combine 8 g lysozyme, 1 g DNAse, and 1 g PMSF.

Terrific broth (TB) (250 mL)

Dissolve 12.5 g granulated TB in 250 mL water and autoclave.

1 M isopropyl-beta-D-thiogalactopyranoside (1000X IPTG) (1 mL)

Dissolve 240 mg IPTG in 1 mL wash buffer. Store at -20 C.

## **Buffers**

Wash buffer (1 L)

Dissolve 11.9 g HEPES, 8.7 g sodium chloride, and 0.68 g imidazole in water and adjust pH to 7.4

Protein buffer (1 L)

Dissolve 11.9 g HEPES, 8.7 g sodium chloride, and 7.31 g EDTA in water and adjust pH to 7.4