Read Section 4.3-BSL.	velocity Potential. Friday. Velocity Potential. Friday. effect of viscosity is negligible.
Flow of Invisual Flow Using	relocity Potential
considering a situation where Re>>1, very fout flow.	effect of viscosity is negligible. high Reynolds number or
Flow over a submerged biscon be determined using	Potential flow theory and
Boundary layer theory,	
	two dimensional flow (planar flow), Viscous forces case meglected, Steady flow.
Equation of of motion for I	AVISCICI FLOOR

Assumptions,

Incompressible flow. $g = \cot t$ (density is constant). $\nabla \cdot \vec{\nabla} = 0$. C from equal of continuity).

Irrotational flow (curl of relocity) 2 VXV=0

(Two dimensional, steady flow),

 $\Phi(x,y)$ $x = \frac{30}{30}$ $y = \frac{30}{30}$

 $y = -\frac{\partial y}{\partial x}$ $y = -\frac{\partial y}{\partial x}$

complex velocity & complex veloc

 $\left[\sqrt{2} \phi = 0 \right]$

The velocity potential ϕ is assumed to simplify the solution approach for velocity and pressure distribution. ϕ is picked as $V = -\nabla \phi$ so that ϕ the $\nabla x \nabla = 0$ is automatically solisfied, i.e. the importational flow assumption ϕ is solisfied.

From definition of velocity potential & Stream function.

Page 4.

$$\frac{9x}{9\phi} = \frac{9\lambda}{90}$$

$$\frac{\partial x}{\partial x} = \frac{\partial y}{\partial y}$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x}$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x}$$
Cauchy

These are known as Governy Cauchy-Riemann equations. There allow to come up with the complex velocity function, as the real timaginary post must be satisfy this condition.

Proof that \$ & \$ Satisfies the Laplace equation. PA=0.

Proof:
$$\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial y}$$

$$\frac{3x^2}{3\phi} = \frac{3x}{3y}$$

$$\frac{3x}{3\phi} = \frac{3x}{3y}$$

$$\frac{3x^2}{3\phi} = \frac{3x}{3y}$$

$$\frac{3x^2}{3\phi} = \frac{3x}{3x}$$

$$\frac{3x^2}{3\phi} = \frac{3x}{3x}$$

$$\frac{3x^2}{3\phi} = \frac{3x}{3x}$$

$$\frac{3x^2}{3\phi} = \frac{3x}{3x}$$

$$a+b \Rightarrow \frac{3^2\phi}{3x^2} + \frac{3^2\phi}{3y^2} = \frac{3^2\phi}{3x^3y} - \frac{3^2\phi}{3y^3y}$$

$$= 0 \Rightarrow \frac{3^2\phi}{3x^2} + \frac{3^2\phi}{3y^2} = 0 \Rightarrow \frac{3^2\phi}{3y^3y} = 0$$

calculus of complex voodcuble.

$$z = v(x,y) + w(x,y).$$

$$Z = \frac{9x}{90} + \frac{9x}{69x}$$