

Taxi Mobility Surge Price Prediction Capstone Project - 2 Team 2

Team Members

Bhanu Pratap Shahi Sanchita Paul Shubham Kumar Sumanta Muduli

Content

- **Problem Statement**
- Data Summary
- Comparing features with Surge Pricing Type
 - **Feature Selection**
- **Models used**
- Which model did we choose and why?
 - Challenges
- Conclusion

o'l'HeyOle

Problem Statement

- The goal is to build a predictive model which can help Sigma Cabs in predicting Surge Pricing Type proactively.
- This will help them in matching the right priced cabs with the right customers quickly and efficiently.

Data Summary:

Data set name Data Sigma Cabs

Shape

- Rows -- 131,662
- Columns--14

Features

Customer_Rating, Cancellation_Last_1Month, Var1, Var2, Var3, Gender, Life_Style_Index, Confidence_Life_Style_Index,Destination_Type, Trip_ID, Trip_Distance, Type_of_Cab, Customer_since_months, Surge_Pricing_Type

4 Comparing Trip Distance with Surge Pricing

Comparing Customer Rating with Surge **Pricing Type:**

Count of Type of Cab with Gender Filter

Features selection:

Methods used:

- Extra Tree Classifier ANOVA Chi-Square

Extra Trees Classifier:

Chi-Square:

Models used:

- Logistic Regression Classifier
 - **SVM Classifier**
- Random Forest Classifier
 - XGBoost Classifier

Logistic Regression:

- One vs Rest approach ("ovr")
- Hyperparameter Tuning(Bayesian Optimisation)-C:0.001, solver:"Ibfgs",penalty=12
- Precision=72%, Recall=70% & fl_score=71% Metric Scores- Accuracy=72%,

Support Vector Machine:

- One vs One approach ("ovo")
- Parameters C:1, degree =3,
- Kernel Poly Kernel is giving us the best results. Accuracy i.e 72%, Precision=73%, Recall=70% & fl_score=70%

Random Forest Classifier:

Hyper parameter Tuning(Bayesian Search)-

('max_depth', 8),

('min_samples_leaf', 10),

('min_samples_split', 50),

('n_estimators', 100)

accuracy= 72%,

precision=73%, recall=70%,fi_score=71%

XGBoost Classifier:

Hyperparameters-gamma=0, learning_rate=0.1, max_depth=15, n_estimators=100, objective='multi:softprob' Metric Scores- accuracy=72%, precision=73%, recall=70%,f1_score=71%

SHAP Values:

Which model did we choose and why?

We choose logistic regression as it's evaluation scores is computationally cheaper and more interpretable. very similar to other complicated models but it is

Accuracy: 72%

Recall: 72%

Precision: 72%

This is the most consistent performing model with same scores for all metrics.

Challenges

- Lots of NaN values in the dataset.
- Some features like Var1, Var2, Var3 are not clearly explained.
- Choosing the right encoding technique for categorical
- Choosing the right features for modelling.
- Faced issues while running the models as the dataset is
- Choosing the right models as there is not much difference in accuracy.

Conclusion

- We build a predictive model which can help Sigma Cabs in predicting Surge Pricing Types proactively.
- This will helps in matching the right cab with the right customer quickly and efficiently
- They can increase their customer base and profit by providing better services.

