Bode Plot:

•
$$FcH = f_2$$

•
$$@f_2$$
, $X_c = R$

•
$$X_C = \frac{1}{2\pi fC}$$

$$R = \frac{1}{2\pi f_2 C}$$

•
$$f_2 = \frac{1}{2\pi RC}$$

•
$$\Delta v_{dB} = 20 log \frac{v_{out}}{v_{in}}$$

•
$$\Delta v_{dB} = 20 \log \frac{1}{\sqrt{1 + (\frac{f}{f_2})^2}}$$

•
$$20log \frac{Vout}{Vin} = 20log \frac{1}{\sqrt{1 + (\frac{f}{f_2})^2}}$$

•
$$Vout = Vin \times \frac{1}{\sqrt{1 + (\frac{f}{f_2})^2}}$$

•
$$Vout = Vin \times \frac{1}{\sqrt{1 + (\frac{f}{f_2})^2}}$$

- If Vin = 100%, $Vout\ becomes\ a\ \%Vin$
 - Vout % of Vin = $100\% \times \frac{1}{\sqrt{1+(\frac{f}{f_2})^2}}$
- Now get f in terms of f_2 and substitute:
 - $f = 0.25f_2$
 - Vout % of Vin = $100\% \times \frac{1}{\sqrt{1 + (\frac{0.25f_2}{f_2})^2}}$
 - *Vout* % of $Vin = 100\% \times \frac{1}{\sqrt{1+0.0625}}$
 - *Vout* % of $Vin = 100\% \times \frac{1}{1.03078}$
 - *Vout* % *of* $Vin = 100\% \times .970$
 - $Vout_{0.25f_2} = 97\%$ of Vin

- Now get f in terms of f_2 and substitute:
 - $f = 0.5f_2$
 - Vout % of Vin = $100\% \times \frac{1}{\sqrt{1 + (\frac{0.5f_2}{f_2})^2}}$
 - *Vout* % of $Vin = 100\% \times \frac{1}{\sqrt{1+0.25}}$
 - *Vout* % *of* $Vin = 100\% \times \frac{1}{1.118}$
 - *Vout* % *of* $Vin = 100\% \times .894$
 - $Vout_{0.5f_2} = 89.4\%$ of Vin
- Now get f in terms of f_2 and substitute:
 - $f = f_2$
 - *Vout* % of $Vin = 100\% \times \frac{1}{\sqrt{1 + (\frac{f_2}{f_2})^2}}$
 - *Vout* % of $Vin = 100\% \times \frac{1}{\sqrt{1+1}}$
 - *Vout* % *of* $Vin = 100\% \times \frac{1}{1.414}$
 - *Vout* % *of* $Vin = 100\% \times .707$
 - $Vout_{f_2} = 70.712\%$ of Vin

- Now get f in terms of f_2 and substitute:
 - $f = 2f_2$
 - Vout % of Vin = $100\% \times \frac{1}{\sqrt{1+(\frac{2f_2}{f_2})^2}}$
 - Vout % of Vin = $100\% \times \frac{1}{\sqrt{1+4}}$
 - *Vout* % *of* $Vin = 100\% \times \frac{1}{2.236}$
 - *Vout* % *of* $Vin = 100\% \times .447$
 - $Vout_{2f_2} = 44.721\%$ of Vin
- Now get f in terms of f_2 and substitute:
 - $f = 10f_2$
 - Vout % of Vin = $100\% \times \frac{1}{\sqrt{1 + (\frac{10f_2}{f_2})^2}}$
 - Vout % of Vin = $100\% \times \frac{1}{\sqrt{1+100}}$
 - *Vout* % *of* $Vin = 100\% \times \frac{1}{10.05}$
 - *Vout* % *of* $Vin = 100\% \times .0995$
 - $Vout_{10f_2} = 9.95\%$ of Vin

•
$$\Delta v_{dB} = 20 log \frac{v_{out}}{v_{in}} \ OR \ \Delta v_{dB} = 20 log \frac{1}{\sqrt{1 + (\frac{f}{f_2})^2}}$$

•
$$Vout_{0.25f_2} = 97\% \text{ of Vin}$$

•
$$\Delta v_{dB@0.25f_2} = 20log 0.97 \ OR \ \Delta v_{dB} = 20log \frac{1}{\sqrt{1+(\frac{0.25f_2}{f_2})^2}}$$

•
$$\Delta v_{dB@0.25f_2} = -0.264dB$$

•
$$Vout_{0.5f_2} = 89.4\%$$
 of Vin

•
$$\Delta v_{dB@0.5f_2} = 20log0.894 \ OR \ \Delta v_{dB} = 20log \frac{1}{\sqrt{1+(\frac{0.5f_2}{f_2})^2}}$$

•
$$\Delta v_{dB@0.5f_2} = -0.973dB$$

•
$$Vout_{f_2} = 70.712\%$$
 of Vin

•
$$\Delta v_{dB@f_2} = 20log 0.70713 \ OR \ \Delta v_{dB} = 20log \frac{1}{\sqrt{1+(\frac{f_2}{f_2})^2}}$$

•
$$\Delta v_{dB@f_2} = -3.01dB$$

•
$$Vout_{2f_2} = 44.72\%$$
 of Vin

•
$$\Delta v_{dB@2f_2} = 20log 0.4472 \; OR \; \Delta v_{dB} = 20log \frac{1}{\sqrt{1+(\frac{2f_2}{f_2})^2}}$$

•
$$\Delta v_{dB@2f_2} = -6.99dB$$

•
$$Vout_{10f_2} = 9.95\%$$
 of Vin

•
$$\Delta v_{dB@10f_2} = 20log 0.0995 \ OR \ \Delta v_{dB} = 20log \frac{1}{\sqrt{1+(\frac{10f_2}{f_2})^2}}$$

•
$$\Delta v_{dB@10f_2} = -20.044dB$$

• VC

Phase:

•
$$Vgen = \sqrt{VR^2 + VC^2}$$

•
$$\theta = Cos^{-1} \frac{Vc}{Vgen}$$

•
$$\frac{Vc}{Vgen} = \frac{Vout\%}{100} = \frac{1}{\sqrt{1 + (\frac{f}{f_2})^2}}$$

•
$$\theta = Cos^{-1} \frac{Vout\%}{100}$$

•
$$\theta = Cos^{-1} \frac{1}{\sqrt{1 + (\frac{f}{f_2})^2}}$$

•
$$\theta = Cos^{-1} \frac{Vout\%}{100} \text{ or } \theta = Cos^{-1} \frac{1}{\sqrt{1 + (\frac{f}{f_2})^2}}$$

- $Vout_{0.25f_2} = 97\%$ of Vin
 - $\theta_{0.25f_2} = Cos^{-1}.97 OR \ Cos^{-1} \frac{1}{\sqrt{1 + (\frac{0.25f_2}{f_2})^2}}$
 - $\theta_{0.25f_2} = -14^{\circ}$
- $Vout_{0.5f_2} = 89.4\% \text{ of Vin}$
 - $\theta_{0.5f_2} = Cos^{-1}$. 894 $OR \ Cos^{-1} \frac{1}{\sqrt{1 + (\frac{0.5f_2}{f_2})^2}}$
 - $\theta_{0.5f_2} = -26.62^{\circ}$
- $Vout_{f_2} = 70.71\%$ of Vin
 - $\theta_{f_2} = Cos^{-1}$. 7071 $OR \ Cos^{-1} \frac{1}{\sqrt{1 + (\frac{f_2}{f_2})^2}}$
 - $\theta_{f_2} = -45^{\circ}$
- $Vout2_{f_2} = 44.72\% \ of \ Vin \ OR \ Cos^{-1} \frac{1}{\sqrt{1 + (\frac{2f_2}{f_2})^2}}$
 - $\theta 2_{f_2} = Cos^{-1}$. 4472
 - $\theta 2_{f_2} = -63.44^{\circ}$
- $Vout10_{f_2} = 9.95\% \text{ of Vin}$
 - $\theta 10_{f_2} = Cos^{-1}$. 0995 $OR \ Cos^{-1} \frac{1}{\sqrt{1 + (\frac{10f_2}{f_2})^2}}$
 - $\theta 10_{f_2} = -84.29^{\circ}$

FCh=F2	Vout=%of Vin	dB	Phase
0.25F2	97%	-0.264dB	-13.664°
0.5F2	89.40%	-0.973dB	-26.62°
1F2	70.71%	-3.01dB	-45°
2F2	44.72%	-6.99dB	-63.44°
10F2	9.95%	-20.044dB	-84.29°