

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS DISCIPLINA: CÁLCULO FUNDAMENTAL I/CÁLCULO DIFERENCIAL E INTEGRAL I

GABARITO DA LISTA DE EXERCÍCIOS I

- 1. Podemos tonar f(x) tão próximo de 5 quanto desejarmos tomando x suficientemente próximo de 2, mas $x \neq 2$. Sim, o gráfico teria uma bola aberta no ponto (2,5) e a função estaria definida de forma que f(2) fosse igual a 3, desse modo o gráfico teria uma bola fechada em (2,3).
- 2. a) 0
 - b) 0
 - c) 1
 - $d) +\infty$
 - e) $-\infty$
- 3. Existem diversos exemplos que atendem as características solicitadas. Segue um exemplo:

$$g(x) = \begin{cases} x+2, & x < 2 \\ -x+6, & x > 2 \end{cases}$$

Gráfico:

4. Se g é uma função racional ela é da forma $g(x) = \frac{P(x)}{Q(x)}$, onde P(x) e Q(x) são polinômios reais. O domínio de g é $D(g) = \{x | x \in \mathbb{R} \text{ e } Q(x) \neq 0\}$. Como $a \in D(g)$ tem-se que $Q(a) \neq 0$, assim temos

$$\lim_{x \to a} g(x) = \lim_{x \to a} \frac{P(x)}{Q(x)} = \frac{\lim_{x \to a} P(x)}{\lim_{x \to a} Q(x)} = \frac{P(a)}{Q(a)} = g(a).$$

- 5. a) 27
 - b) $\frac{\sqrt{2}}{2}$

- c) $\frac{6}{5}$
- d) -2
- e) $\frac{11}{2}$ f) $3x^2$
- g) 8
- h) a + 1
- i) n
- j) na^{n-1}
- k) 1
- l) $\frac{5}{14}$
- m) -1
- $n) \ \frac{1}{3}$
- p) $\frac{5}{2}$ q) $\frac{4}{3}$ r) 3a

- t) 0
- u) 0

6. 2

- a) $\lim_{x\to 3^+}g(x)=1,$ $\lim_{x\to 3^-}g(x)=-1$ e $\lim_{x\to 3}g(x)$ não existe.
 - b) Gráfico:

ii.
$$-\infty$$

iii.
$$0$$

vii. Não existe

b) Gráfico:

9. $\lim_{x \to 1/5^+} f(x) = 2$, $\lim_{x \to 1/5^-} f(x) = 2$ e $\lim_{x \to 1/5} f(x) = 2$.

10.
$$\lim_{x \to 2^+} f(x) = 7$$
, $\lim_{x \to 2^-} f(x) = -7$ e $\lim_{x \to 2} f(x)$ não existe.

11.
$$\lim_{x \to 2^+} f(x) = -1$$
, $\lim_{x \to 2^-} f(x) = 1$ e $\lim_{x \to 2} f(x)$ não existe.

12.
$$a = -4$$

13. a)
$$+\infty$$

b)
$$-\infty$$

- c) $-\infty$
- d) $-\infty$
- e) $+\infty$
- f) $+\infty$
- g) $+\infty$
- h) 1
- i) Não existe
- $j) +\infty$
- k) $-\infty$
- l) $+\infty$
- m) $+\infty$
- n) $-\infty$
- o) $-\infty$
- 14. 8
- 15. a) $+\infty$
 - b) 0
 - c) $\frac{9}{8}$ d) 4

 - e) $+\infty$

 - g) 2
 - h) -1
 - i) 2
 - j) 0
 - k) 1
 - 1) 0
 - m) $+\infty$
 - n) 0
 - o) 0
 - p) 2
 - q) 1
 - r) 2
 - s) $+\infty$
 - t) $\frac{1}{2}$

- u) 0
- 16. a) Assíntota Vertical: x = 4; Assíntota Horizontal: y = 0;
 - b) Assíntotas Verticais: x = 1 e x = 2; Assíntota Horizontal: y = 0;
 - c) Assíntotas Verticais: x=-4 e x=3; Assíntotas Horizontais: y=1 e y=-1;
 - d) Assíntota Vertical: x = 3; Assíntota Horizontal: y = 0;
 - e) Não tem assíntotas verticais; Assíntota Horizontal: y=-1;
 - f) Assíntota vertical: x = 0; Assíntota Horizontal: y = 1;
 - g) Não tem assíntotas horizontais; Assíntota
 Vertical: $\boldsymbol{x}=0;$
 - h) Não tem assíntotas horizontais; Assíntotas Verticais: $x=\frac{\pi}{2}+k\pi,\,k\in\mathbb{Z};$
- 17. a) 9
 - b) $\frac{3}{2}$
 - c) $\frac{10}{7}$
 - d) 1
 - e) $\frac{2}{3}$
 - f) 0
 - g) $-\frac{1}{2}$
 - h) 2
 - i) $-\frac{1}{\pi}$
 - j) $\frac{1}{64}$
 - k) -sen(a)
 - 1) 0
 - $m) \ \frac{5}{2}$
 - n) 1
 - o) -sen(a)
 - p) 0
 - q) $\sqrt{2}$
 - r) $\frac{3}{2}$
 - s) $-\frac{1}{4}$
 - t) 0
 - u) 1
 - $\mathbf{v}) \frac{1}{2}$
- 18. a) $\frac{1}{e^3}$
 - b) 0

- c) 0
- d) 0
- e) $+\infty$
- f) $+\infty$
- g) 10^{-1}
- h) e^{-12}
- i) $-\infty$
- $j) +\infty$
- $k) +\infty$
- 1) $\log \frac{8}{3}$
- m) e
- n) e^6
- o) $\frac{1}{e^6}$
- p) $\frac{1}{e^5}$
- $q) e^4$
- r) e^2
- s) 3 ln 2
- $t) \ \frac{2\ln 3}{5\ln 2}$
- u) $2^a \ln 2$
- 19. a) $\log e^3$
 - b) *e*
 - c) $\frac{1}{20} \ln 3$
 - d) b-a
 - e) $\frac{1}{2}[1-\ln a]$
- 20. a) f(x) não é contínua em x=-1, pois $\lim_{x\to -1} f(x)\neq f(-1)$.
 - b) f(x) não é contínua em x = 1, pois $\lim_{x \to 1} f(x) \neq f(1)$.
 - c) f(x) não é contínua em x=-2, pois $\lim_{x\to -2} f(x)$ não existe.
 - d) f(x)não é contínua em x=0, pois $\lim_{x\to 0} f(x) \neq f(0).$
 - e) f(x) não é contínua em x=1, pois $\lim_{x\to 1} f(x) \neq f(1)$.
 - f) f(x) é contínua em x=2, pois $\lim_{x\to 2} f(x)=f(2)$.
 - g) f(x) não é contínua em x=-3, pois f(x) não está definida nesse ponto.
- 21. a) $a = \frac{\sqrt{2}}{4}$
 - b) a = -1

- 22. a) Mostre
 - b) Mostre
- 23. a) Não é contínua em x=3 e x=7, pois a função não está definida nesses pontos.
 - b) Não é contínua em (3,6), pois a função não está definida nesse intervalo.
 - c) Não existem pontos onde a função seja descontínua, a função é contínua em \mathbb{R} .
 - d) Não é contínua em x=0, pois $\lim_{x\to 0}f(x)$ não existe.
- 24. a) Contínua em \mathbb{R} .
 - b) Contínua em \mathbb{R} exceto em x=2 e x=-2.
 - c) Contínua em $\mathbb{R}-\{2\}$
 - d) Contínua em $\mathbb{R}-\{1\}$
- 25. p = 2
- 26. a) 0
 - b) $arctg\frac{2}{3}$