UNIVERSIDADE DO MINHO

Geometria

Curso: M. C. C.

Época especial - 18 Jul 2022

Nota. O teste é constituído por duas páginas, frente e verso. Justifique pormenorizadamente todas as respostas.

1. Considere em \mathbb{R}^2 o produto interno canónico. Seja $\lambda: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ a aplicação definida por

$$\lambda(x,y) = (x-1,y)$$

- a) $_{(2 \text{ val})}$ Mostre que λ é uma isometria.
- b) (2 val) Determine o ponto $(a,b) \in \mathbb{R}^2$ e o isomorfismo ortogonal $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que

$$\lambda = T_{(a,b)} \circ \varphi$$

em que $T_{(a,b)}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ designa a translação associada ao ponto (a,b).

2. (2 val) Sejam E um espaço vetorial, não necessariamente euclidiano, e $\varphi: E \longrightarrow E$ uma aplicação linear. Sejam $a \in E$ e $T_a: E \longrightarrow E$ a translação associada ao vetor a. Considere a aplicação afim $\lambda: E \longrightarrow E$ definida por

$$\lambda = T_a \circ \varphi$$

e suponha que λ é um isomorfismo afim. Mostre que φ é um isomorfismo linear.

3. Considere em \mathbb{R}^3 o produto interno canónico e seja X o subconjunto de \mathbb{R}^3 definido por

$$X = \{(x, y, z) \in \mathbb{R}^3 : x + y = 2\}$$

a) (2 val) Mostre que X é um espaço afim e escreva-o na forma X = a + F, em que a é um ponto de X e F é o subespaço vetorial associado a X.

Nas alíneas seguintes, designe por F^{\perp} o suplemento ortogonal de F. Recorde que

$$\mathbb{R}^3 = F \oplus F^{\perp}$$

- b) $_{(2 \text{ val})}$ Determine uma base do subespaço vetorial F.
- c) $_{(2\;\mathrm{val})}$ Determine o subespaço vetorial $F^{\perp},$ indicando uma base ortonormada deste subespaço.
- d) (1 val) Determine a projeção ortogonal sobre o subespaço vetorial F^{\perp} .
- 4. $_{(2 \text{ val})}$ Sejam $(E, \cdot \mid \cdot)$ um espaço euclidiano e u, v dois vetores de E tais que

$$u \neq 0_E$$
 $v \neq 0_E$ $u \mid v = 0_{\mathbb{R}}$

Mostre que o conjunto $\{u,v\}$ é linearmente independente.

5. Considere a cónica definida pela equação

$$x^2 - y^2 + 4xy + 3x + y + 1 = 0$$

- a) $_{\mbox{\tiny (1\ val)}}$ Mostre que a cónica é não degenerada.
- b) $_{(2 \text{ val})}$ Classifique a cónica.

*** **FIM** ***