

AMS

Applied Microcontroller Systems

Lesson 3: The I²C bus

Version: February 2013, Asbjørn Baagø

I²C (IIC)

- Inter IC bus (Introduced by Philips)
- Aka "two-wire interface"
- Different versions supporting 100 kHz 5 MHz
- Limited range (often locally at PCB)
- Built-in addressing (minor HW demands)
- Simple protocol built in (ACK / NACK)
- Real time qualified (response times can be calculated)

I²C topology

Each node has its own unique address (or ID). By sending a START command, each node is able to become the bus master.

I²C bus hardware

SCL and SDA are bi-directional.

Open drain => External pull-up necessary!

Influence of line length and bus termination on waveforms

I²C Master: START + address

All other nodes now enter a state of "listening".

Then the master sends the address of the slave, it wants to communicate with:

The address is 7 bits.

The last bit (R/W) informs the slave, whether the master wants to read or write.

I²C Slave: ACK

After having received the START command and the address, <u>all</u> slaves compare the address with their own address:

- * If no address match, the STOP command is awaited.
- * If the address matches, the slave sends an ACK:

The slave holds SDA low and generates an SCL -pulse.

- Subsequently the master regains bus control -

I²C master: Sends / receives data

1. Master sends data:

2. Master receives data:

During reception (2) the slave controls SDA, but the master controls SCL.

The slave is only allowed to change SDA while SCL is low.

I²C Master: ACK after each byte received

Following each byte received from a slave, the master MUST send an ACK (except after the last byte).

Master sets SDA low and generates a clock pulse. Then the slave regains control over SDA.

Following the last received byte, the master sends the STOP command (freeing the bus again).

Master: STOP

Sent by the master, when it has finished sending /receiving data.

Received by all slaves, now knowing the bus is again free.

STOP can be sent at any time (even in the middle of a data transmission).

In all cases STOP means "END of transmission".

Reserved addresses

Address	RM	Designation
0000-000	0	General Call address (see note 1)
0000-000	1	START byte (see note 2)
0000-001	х	reserved for the (now obsolete) C-Bus format (note 3)
0000-010	х	Reserved for a different bus format (note 4)
0000-011	х	Reserved for future purposes (note 5)
0000-1xx	х	Reserved for future purposes
1111-1xx	х	Reserved for future purposes
1111-0xx	х	10-bit slave addressing mode (note 6)

10-bit addressing is possible (new standard).

In this case 2 bytes are sent as address: 11110AAx + AAAAAAAA.

(7-bit nodes ignores 10-bit addressing).

I²C Bus Arbitration

If a master is unable to set an output high (it always checks for this), it looses the bus control.

If 2 masters start transmission simultaneously, the following happens:

Until the yellow marking, both masters think, they own the bus.

Then CPU2 surrenders (until STOP).

Mega32: I²C interface

Mega32 has HARDWARE for I²C interface.
 This is called the "Two Wire Serial Interface".
 Dedicated pins for SDA and SCL.

Registers:

TWI Bit Rate Register – TWBR
TWI Control Register – TWCR
TWI Status Register – TWSR
TWI Data Register – TWDR
TWI (Slave) Address Register – TWAR

The Mega32 I²C interface (=TWI)

TWBR: TWI Bit Rate Register

Bit	7	6	5	4	3	2	1	0	
	TWBR7	TWBR6	TWBR5	TWBR4	TWBR3	TWBR2	TWBR1	TWBR0	TWBR
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

$$SCL frequency = \frac{CPU \, Clock \, frequency}{16 + 2(TWBR) \cdot 4^{TWPS}}$$

- TWBR = Value of the TWI Bit Rate Register
- TWPS = Value of the prescaler bits in the TWI Status Register

TWDR: TWI Data Register

Bit	7	6	5	4	3	2	1	0	_
	TWD7	TWD6	TWD5	TWD4	TWD3	TWD2	TWD1	TWD0	TWDR
Read/Write	R/W	•							
Initial Value	1	1	1	1	1	1	1	1	

- When transmitting: Contains the next byte to be sent
- When receiving: Contains the last byte received

TWCR: TWI Control Register

Bit	7	6	5	4	3	2	1	0	_
	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	TWCR
Read/Write	R/W	R/W	R/W	R/W	R	R/W	R	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

- TWINT: Set to 1 when ANY bus operation ends.
 If TWI interrupt enabled, we get an interrupt. Must be cleared (by writing a 1) before next bus operation can start.
- TWEA: Set this bit (to 1) if <u>ACK</u> is to be generated on next reception.
- TWSTA: Write to 1 (together with TWINT and TWEN) to generate a START condition.
- TWSTO: Write to 1 (together with TWINT and TWEN) to generate a STOP. A STOP being sent will <u>NOT</u> set TWINT.
- TWWC: Set to 1, if you do a write collision (not important).
- TWEN: Must be set to 1 when you write the TWCR.
- TWIE: TWI interrupt enable (write to 1 to enable).

TWSR: TWI Status Register

Bit	7	6	5	4	3	2	1	0	_
	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	TWSR
Read/Write	R	R	R	R	R	R	R/W	R/W	1
Initial Value	1	1	1	1	1	0	0	0	

Bits 7 – 3: Status code telling the status of the I2C bus.
 Can be used for verifying that bus operations performed all right.

The status codes can be found in the Mega32 manual.

Bits 1 – 0: TWI clock prescaler (see below).

TWPS1	TWPS0	Prescaler Value
0	0	1
0	1	4
1	0	16
1	1	64

TWAR: TWI (slave) Address Register

 Can be used in SLAVE mode for automatic detecting the received address (compares ID).

Typical TWI transmission

i2c_start()

```
void i2c_start()
{
   TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
   while ((TWCR & (1<<TWINT)) == 0)
   {}
}</pre>
```

i2c_write()

```
void i2c_write(unsigned char data)
{
  TWDR = data;
  TWCR = (1<<TWINT) | (1<<TWEN);
  while ((TWCR & (1<<TWINT)) == 0)
  {}
}</pre>
```

i2c_read()

i2c_stop()

```
Doid i2c_stop()
{
   TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
}</pre>
```

I2C example: LM75

LM75 Digital Temperature Sensor and Thermal Watchdog with Two-Wire Interface

- I²C Bus interface
- Separate open-drain output pin operates as interrupt or comparator/thermostat output
- Register readback capability
- Power up defaults permit stand-alone operation as thermostat
- Shutdown mode to minimize power consumption
- Up to 8 LM75s can be connected to a single bus

Key Specifications

■ Supply Voltage		3.0V to 5.5V
■ Supply Current	operating	250 μA (typ)
		1 mA (max)
	shutdown	4 μA (typ)
■ Temperature Accuracy	–25°C to 100°C	±2°C(max)
	_55°C to 125°C	+3°C(may)

LM75: Block Diagram

LM75 address

LM75 is always a slave (not capable of being a master).

The address (7 bit) is composed of 4 constant bits and the external pin settings (A2-A0).

LM75: Temperature data format

Temperature	Digital Ou	tput
	Binary	Hex
+125°C	0 1111 1010	0FAh
+25°C	0 0011 0010	032h
+0.5°C	0 0000 0001	001h
0°C	0 0000 0000	000h
–0.5°C	1 1111 1111	1FFh
–25°C	1 1100 1110	1CEh
–55°C	1 1001 0010	192h

2's complement format.

LSB = 0.5 deg. Celsius.

LM75: Register structure

LM75: Pointer register

1.11 POINTER REGISTER

(Selects which registers will be read from or written to):

P7	P6	P5	P4	P3	P2	P1	P0
0	0	0	0	0	0	Register	
						Se	lect

P0-P1: Register Select:

P1	P0	Register
0	0	Temperature (Read only) (Power-up default)
0	1	Configuration (Read/vvrite)
1	0	T _{HYST} (Read/Write)
1	1	Tos (Read/Write)

LM75: Temperature registers

1.12 TEMPERATURE REGISTER

(Read Only):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
MSB	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	LSB	Х	Х	Х	Х	Х	Χ	Х

D0-D6: Undefined

D7-D15: Temperature Data. One LSB = 0.5°C. Two's

complement format.

1.14 T_{HYST} AND T_{OS} REGISTER

(Read/Write):

D1	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
MS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	LSB	Χ	Χ	Χ	Χ	Χ	Χ	Χ

D0-D6: Undefined

D7-D15: T_{HYST} Or T_{OS} Trip Temperature Data. Power up

default is Tos = 80°C, THYST = 75°C.

LM75: Configuration register

1.13 CONFIGURATION REGISTER

(Read/Write):

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	Fault Queue		O.S.	Cmp/Int	Shutdown
					Polarity		

Power up default is with all bits "0" (zero).

D0: Shutdown: When set to 1 the LM75 goes to low power shutdown mode.

D1: Comparator/Interrupt mode: 0 is Comparator mode, 1 is Interrupt mode.

D2: O.S. Polarity: 0 is active low, 1 is active high. O.S. is an open-drain output under all conditions.

D3-D4: Fault Queue: Number of faults necessary to detect before setting O.S. output to avoid false tripping due to noise. Faults are determind at the end of a conversion. Conversions take about 100 ms, typically, to complete.

D4	D3	Number of Faults
0	0	1 (Power-up default)
0	1	2
1	0	4
1	1	6

D5-D7: These bits are used for production testing and must be kept zero for normal operation.

LM75: I2C timing, 2 byte reading

(b) Typical Pointer Set Followed by Immediate Read for 2-Byte Register such as Temp, Tos, Thyst

LM75: I2C timing, 1 byte reading

(c) Typical 1-Byte Read From Configuration Register With Preset Pointer

LM75: I2C timing

(a) Typical Pointer Set Followed by Immediate Read from Configuration Register

(b) Configuration Register Write

(c) TOS and THYST Write

LAB16: LM75 I2C slave

End of lesson 3

