Lecture #10 Advanced Data Structure (2)

Algorithm
JBNU Spring 2021
Jinhong Jung

In Previous Lecture

Red-black tree (used in std::map)

- Why do we need red-black tree?
 - \circ \Rightarrow For a worst case, BST has O(n) height, but RBT guarantees $O(\log n)$ height
- Definition and properties
 - BST where each node is colored by either RED or BLACK
 - P1) BLACK root node
 - P2) All BLACK leaf (or NIL) nodes
 - P3) No two consecutive RED nodes
 - P4) Consistent black height
- Insert and remove
 - Do BST's corresponding operation and re-arrange violated area using re-colorring and rotation case by case

In This Lecture

Advanced data structure

- Disjoint set
- What is the disjoint set?
- How to represent and implement disjoint sets?
 - Basic version of disjoint set
- How to improve efficiency?
 - Union by rank
 - Path compression

Outline

Definition of disjoint set

Disjoint set using non-binary tree

How to improve efficiency?

Analysis of disjoint set

Disjoint Set

What is disjoint set?

- A set is used to contain unique objects
- Consider we have multiple sets, and they are not overlapping, i.e., each intersection is empty

 Disjoint set is a data structure managing such nonoverlapping sets

Applications

- Used when we need to manage multiple partitions or groups in a problem
 - Connected components in a graph
 - Minimum spanning tree in a graph (Kruskal's algorithm)

Main Operations

Disjoint set consists of the following operations

- make-set(u)
 - Create a new set containing only given element u
- find-set(u)
 - Return the set containing given element u
- union(u, v)
 - Merge (or union) the set having u and the set having v

Notes

- We do not need to consider intersect operation in disjoint set
- Due to the operations, it's also known as union-find
- We cover only a basic version of disjoint set in this lecture
 - It does not have remove operation of an element (not easy)

Outline

Definition of disjoint set

Disjoint set using non-binary tree

How to improve efficiency?

Analysis of disjoint set

How To Represent Disjoint Set

A disjoint set is represented by a (non-binary) tree

- Unlike normal trees, we use parent pointer tree
 - A child points to its parent in the parent pointer tree
 - The root node points to itself (self-looped node)

 $\{8, 9, 10\}$

{1, 2, 3, 4, 5, 6, 7}

- This data structure manages multiple sets (= forest)
- This tree is represented by an 1D array called p[]

Main Operations

Main operations of disjoint set

- make-set(u)
 - Given an element u, make it one disjoint set
 - It's implemented as u's parent points to u
- find-set(u)
 - Return the root of the set containing given u
 - Recursively walk up from u to the root
- union(u, v)
 - Merge the set having u and the set having v
 - Let the root of one set point to the root of other set

Analysis of Disjoint Set

Space complexity of disjoint set [forest model]

• It takes $\Theta(n)$ space

Time complexity of each operation

- Efficiency of the basic implementation hinges completely on the height of the tree
 - \circ make-set(u) takes $\Theta(1)$ time
 - \circ find-set(u) takes $\Theta(h_u)$ time
 - Where h_u is the height of the tree having u
 - \circ union(u, v) takes $h_v + h_u + c$ time
- For a worst case, find-set(u) takes $\Theta(n)$ time
 - \circ When the tree of n nodes becomes degenerate (or unbalanced)
 - Can we improve this even for such a worst case?

Outline

Definition of disjoint set

Disjoint set using non-binary tree

How to improve efficiency?

Analysis of disjoint set

How To Improve Efficiency?

Disjoint set can be improved in terms of efficiency

- By reducing the height of each tree
- Because main operations totally depends on the tree height

Two techniques can be used for the purpose

- Union by rank
 - Idea: smaller tree is merged into taller tree in union
- Path compression
 - Idea: flatten the tree while walking up to the root in find-set

When does the tree's height increase?

- It increases while we merge two disjoint sets union(u, v)
- Let S_u denote the set containing u
- Merging S_v and S_u results in a tree of height as $\max\{\text{height}[S_u], \text{height}[S_v] + 1\}$
 - \circ height[S_v] + 1 means the tree of v is added below the root of the tree of u

Smaller into taller strategy

Let's merge the shorter tree into the taller tree

- To check the tree's height quickly, let's store a variable for each node, called rank
 - The rank of node u is the (upper bound) height of the sub-tree rooted at node u

Main operations of disjoint set

def make-set(u): $p[u] \leftarrow u$ $rank[u] \leftarrow 0$

- make-set(u)
 - Given an element u, make it one disjoint set
- union(u, v)
 - Merge the set having u and the set having v by smaller into larger strategy

```
\begin{array}{l} \text{def union}(u,\,v)\colon\\ u_r\,\leftarrow\,\text{find-set}(u)\,\,\#\,u_r\,\,\text{is the root node of the set having }u\\ v_r\,\leftarrow\,\text{find-set}(v)\\ \text{if } \text{rank}[u_r]\,\,>\,\text{rank}[v_r]\colon\,\#\,\text{the tree of }u_r\,\text{is taller than that of }v_r\\ p[\,v_r]\,\leftarrow\,u_r\,\,\#\,\text{the tree of }v_r\,\,\text{is merged into that of }u_r\\ \text{else:}\\ p[\,u_r]\,\leftarrow\,v_r\\ \text{if } \text{rank}[\,u_r]\,\,=\,\,\text{rank}[\,v_r]\colon\,\#\,\text{the tree of }u_r\,\text{has the same height as that of }v_r\\ \text{rank}[\,v_r]\,\leftarrow\,\,\text{rank}[\,v_r]\,\,+\,\,1\,\,\#\,\text{the resulting height increases by 1} \end{array}
```

Examples

Rank changes

Path Compression

When does the tree's height increase?

- Even if we use union-by-rank, the tree's height can increase during the union operation
 - When the height of the sets to be merged is the same
- Where else can we reduce the tree's height?
- ⇒ Path compression's idea: Let's flatten the tree
 - Every time we walk up the tree in find-set, let's re-assign parent pointers to make each node we pass a direct child of the root

Outline

Definition of disjoint set

Disjoint set using non-binary tree

How to improve efficiency?

Analysis of disjoint set

Analysis of Union By Rank

Claim: using union by rank, # of elements in a set represented by a root having rank k is at least 2^k

Proof by induction

- ∘ Base case: If rank = 0, $2^0 = 1$ element in the set [\checkmark]
- Inductive step
 - Assume the claim holds for rank r; then, is it true for rank r+1
 - The rank becomes r + 1 when both ranks of two sets are r
 - By the assumption, each set has at least 2^r elements
 - Thus, the resulting set of rank r+1 has at least $2^r+2^r=2^{r+1}$ elements $[\checkmark]$

Claim: using union by rank, if the set has n nodes, then the root of the set for has $O(\log n)$ rank

- Let k be the root's rank; $n \ge 2^k \Leftrightarrow k \le \log_2 n = O(\log n)$
 - The height of the tree \leq rank $k \leq \log_2 n$

Analysis + Union By Rank

Using only union by rank

- Time complexity of each operation
 - \circ make-set(u) takes $\Theta(1)$ time
 - \circ find-set(u) takes $\Theta(\log n)$ time
 - \circ union(u, v) takes $\Theta(\log n)$ time
- (Amortized) Analysis based on a sequence of operations
 - \circ Among m operations consisting of make-set, find-set, and union, let n be the number of make-set operations
 - \circ Then, the total complexity is $O(m \log n)$
 - Because after n make-set operations, there are n nodes; thus, the height of a tree cannot exceeds $O(\log n)$
 - Thus, m times of the above operations takes $O(m \log n)$

Analysis + Path Compression

Using union by rank + path compression

- (Amortized) Analysis based on a sequence of operations
 - \circ Among m operations consisting of make-set, find-set, and union, let n be the number of make-set operations
 - \circ Then, the total complexity is $O(m \log^* n)$ (proof is out-of-scope)
 - $\log^* n = \min\{k \mid \log \log \cdots \log n \le 1\}$ (repeatedly apply $\log()$ to n, k times)
 - $\log^* n$ is very small for extremely large n (e.g., $\log^* 2^{65536} = 5$)
 - \circ The result means that after m operations, it takes O(m) time for a worst case (with a practical input size n)
 - On average, each operation takes O(1) time!
 - Disjoint-set with rank and path compression supports very fast operations

What You Need To Know

Disjoint set (a.k.a. union-find)

- Data structure managing such non-overlapping sets
- Main operations: make-set, find-set, and union
 - This lecture does not cover a version having remove operation
- Represented by a non-binary parent pointer tree
 - For positive integer elements, 1D-array is enough for the purpose
- Disjoint set is improved by
 - Union by rank: smaller into taller strategy
 - Path compression: flatten the tree while walking up to the root
- Disjoint set with both techniques is very fast
 - \circ By amortized analysis, each operation takes O(1) time!

In Next Lecture

Dynamic programming

- Concept and motivation
- Basic problems

Thank You