lab3_logistic_regression

November 15, 2022

LOGISTIC REGRESSION

```
[]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.model_selection import train_test_split
     from sklearn.linear_model import LogisticRegression
     from sklearn import preprocessing
     from sklearn.metrics import⊔
      →accuracy_score,confusion_matrix,recall_score,precision_score
[]: data=pd.read_csv("C:\Coding\ML_python\machine-learning-lab-main\datasets\iris.
      ⇔csv")
     data.head()
[]:
        sepal_length sepal_width petal_length petal_width species
                 5.1
                               3.5
                                             1.4
                                                          0.2 setosa
     0
                 4.9
                               3.0
                                             1.4
                                                          0.2 setosa
     1
     2
                 4.7
                               3.2
                                             1.3
                                                          0.2 setosa
                 4.6
                               3.1
                                             1.5
                                                          0.2 setosa
     3
                 5.0
                               3.6
                                             1.4
                                                          0.2 setosa
[]: X=data.iloc[:,:4]
     y=data.iloc[:,4]
     print(X)
     print(y)
         sepal_length sepal_width petal_length petal_width
    0
                  5.1
                                3.5
                                               1.4
                                                            0.2
                                                            0.2
                  4.9
                                3.0
                                               1.4
    1
    2
                  4.7
                                3.2
                                              1.3
                                                            0.2
    3
                  4.6
                                3.1
                                               1.5
                                                            0.2
    4
                  5.0
                                3.6
                                              1.4
                                                            0.2
                  6.7
                                3.0
                                              5.2
                                                            2.3
    145
                                              5.0
                  6.3
                                2.5
    146
                                                            1.9
    147
                  6.5
                                3.0
                                              5.2
                                                            2.0
    148
                  6.2
                                3.4
                                              5.4
                                                            2.3
                                3.0
                                              5.1
    149
                  5.9
                                                            1.8
```

```
[150 rows x 4 columns]
         setosa
  1
         setosa
  2
         setosa
  3
         setosa
  4
         setosa
  145
       virginica
  146
       virginica
  147
       virginica
  148
       virginica
  149
       virginica
  Name: species, Length: 150, dtype: object
[]: le = preprocessing.LabelEncoder()
   y=le.fit_transform(y)
   у
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        []: xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3,__
   →random state=0)
   print("training dataset:\n",xtrain,"\n",ytrain)
   print("\ntesting dataset:\n",xtest,"\n",ytest)
  training dataset:
       sepal_length sepal_width petal_length petal_width
  60
            5.0
                     2.0
                               3.5
                                        1.0
  116
            6.5
                     3.0
                               5.5
                                        1.8
  144
            6.7
                     3.3
                               5.7
                                        2.5
            6.0
  119
                     2.2
                               5.0
                                        1.5
            6.7
                     2.5
                               5.8
                                        1.8
  108
   . .
            •••
  9
            4.9
                     3.1
                               1.5
                                        0.1
  103
            6.3
                     2.9
                               5.6
                                        1.8
  67
            5.8
                     2.7
                               4.1
                                        1.0
  117
            7.7
                     3.8
                               6.7
                                        2.2
  47
            4.6
                                        0.2
                     3.2
                               1.4
   [105 rows x 4 columns]
```

 $[1\ 2\ 2\ 2\ 2\ 1\ 2\ 1\ 1\ 2\ 2\ 2\ 1\ 1\ 1\ 1\ 1\ 2\ 0\ 0\ 2\ 1\ 0\ 0\ 1\ 0\ 2\ 1\ 0\ 1\ 2\ 1$

testing dataset:				
	sepal_length	sepal_width	petal_length	petal_width
114	5.8	2.8	5.1	2.4
62	6.0	2.2	4.0	1.0
33	5.5	4.2	1.4	0.2
107	7.3	2.9	6.3	1.8
7	5.0	3.4	1.5	0.2
100	6.3	3.3	6.0	2.5
40	5.0	3.5	1.3	0.3
86	6.7	3.1	4.7	1.5
76	6.8	2.8	4.8	1.4
71	6.1	2.8	4.0	1.3
134	6.1	2.6	5.6	1.4
51	6.4	3.2	4.5	1.5
73	6.1	2.8	4.7	1.2
54	6.5	2.8	4.6	1.5
63	6.1	2.9	4.7	1.4
37	4.9	3.1	1.5	0.1
78	6.0	2.9	4.5	1.5
90	5.5	2.6	4.4	1.2
45	4.8	3.0	1.4	0.3
16	5.4	3.9	1.3	0.4
121	5.6	2.8	4.9	2.0
66	5.6	3.0	4.5	1.5
24	4.8	3.4	1.9	0.2
8	4.4	2.9	1.4	0.2
126	6.2	2.8	4.8	1.8
22	4.6	3.6	1.0	0.2
44	5.1	3.8	1.9	0.4
97	6.2	2.9	4.3	1.3
93	5.0	2.3	3.3	1.0
26	5.0	3.4	1.6	0.4
137	6.4	3.1	5.5	1.8
84	5.4	3.0	4.5	1.5
27	5.2	3.5	1.5	0.2
127	6.1	3.0	4.9	1.8
132	6.4	2.8	5.6	2.2
59	5.2	2.7	3.9	1.4
18	5.7	3.8	1.7	0.3
83	6.0	2.7	5.1	1.6
61	5.9	3.0	4.2	1.5
92	5.8	2.6	4.0	1.2
112	6.8	3.0	5.5	2.1
2	4.7	3.2	1.3	0.2
141	6.9	3.1	5.1	2.3

```
43
                 5.0
                              3.5
                                           1.6
                                                        0.6
    10
                 5.4
                              3.7
                                           1.5
                                                        0.2
     [2\ 1\ 0\ 2\ 0\ 2\ 0\ 1\ 1\ 1\ 2\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 2\ 1\ 0\ 0\ 2\ 0\ 0\ 1\ 1\ 0\ 2\ 1\ 0\ 2\ 2\ 1\ 0
     1 1 1 2 0 2 0 0]
[]: logr= LogisticRegression().fit(xtrain, ytrain)
    ypred=logr.predict(xtest)
    print("the predicted y values: ",ypred)
    print("the test y values: ",ytest)
    print("the score for the training data set is: ",logr.score(xtest,ytest))
    the predicted y values: [2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0
    1 1 0 2 1 0 2 2 1 0
     2 1 1 2 0 2 0 0]
    the test y values: [2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0
    2 1 0 2 2 1 0
     1 1 1 2 0 2 0 0]
    []: print("the accuracy score: ",accuracy_score(ytest,ypred))
    mat=confusion_matrix(ytest,ypred)
    print("the confusion matrix is:\n",mat)
    the confusion matrix is:
     [[16 0 0]
     [ 0 17 1]
     [ 0 0 11]]
[]: print("the recall score: ",recall_score(ytest,ypred,average='macro'))
    print("the precision score: ",precision_score(ytest,ypred,average='macro'))
    the recall score: 0.9814814814814815
    the precision score: 0.97222222222222
[]: from sklearn.metrics import classification_report
    print(classification_report(ytest, ypred))
                 precision
                              recall f1-score
                                                support
              0
                      1.00
                                1.00
                                         1.00
                                                     16
                      1.00
                                0.94
                                         0.97
                                                     18
              1
              2
                      0.92
                                1.00
                                         0.96
                                                     11
                                         0.98
                                                     45
       accuracy
                      0.97
                               0.98
                                         0.98
                                                     45
       macro avg
                                0.98
                                         0.98
                                                     45
    weighted avg
                      0.98
```