2D - SHAPES

Square

$$A = s^2$$

Rectangle

$$P = 2(a + b)$$

$$A = a.b$$

$$P = 2(a + b)$$

Circle

$$P = 2\pi r$$

$$A = \pi r^2$$

Triangle

$$P = a + b + c$$

$$A = \frac{1}{2} b.h$$

Paralellogram

$$P = 2(a + b)$$

$$A = b.h$$

Circular sector

$$L = 2\pi r \cdot \frac{\theta}{360^{\circ}}$$

$$A = \pi r^2, \frac{\theta}{360^\circ}$$

Circular ring

$$A = \pi(R^2 - r^2)$$

Trapezoid

P = a + b + c + d
A =
$$\frac{1}{2}$$
 h. (a + b)

Rhombus

$$A = b.h$$

- SHAPES

SPHERE

Volume = $\frac{4.7r^3}{3}$

Volume of a general pyramid = $\frac{1}{3}$ Ah

TRIANGULAR PRISM

Volume = Al or $\frac{1}{2}$ bhl Surface area = bh + 2ls + lb

REGULAR TETRAHEDRON

Volume = $\frac{b^3}{6\sqrt{2}}$ Surface area = $\sqrt{3}b^2$

RIGHT CYLINDER

Volume = .rr2h

CUBE

Volume = s^3 Surface area = 6s2

SQUARE-BASED PYRAMID

Volume = $\frac{1}{3}$ s²h Surface area = $s^2 + 2sL$

RIGHT CIRCULAR CONE

PENTAGONAL PRISM

Volume of any prism = Ah

Surface area of a closed prism = $2A + 5(h \times p)$

where:

A = area of base

h = height p = perimeter of base

FRUSTUM OF A CONE

 $Volume = \frac{1}{3}\pi h(r^2 + rR + R^2)$

Total Surface Area = $\pi(\mathbf{r}+\mathbf{R})\sqrt{(\mathbf{R}-\mathbf{r})^2+\mathbf{h}^2} + \pi(\mathbf{r}^2+\mathbf{R}^2)$

CUBOID

Volume = $t \times w \times h$

Surface area = 2th + 2tw + 2wh

POINT IN 2D CARTESIAN SYSTEM

Point Definition

Point is an exact location. It has no size, only position.

Section Formula

Internally

When P divides AB in ratio $\lambda_1:\lambda_2$

$$p\left(\frac{\lambda_1x_2+\lambda_2x_1}{\lambda_1+\lambda_2}, \frac{\lambda_1y_2+\lambda_2y_1}{\lambda_1+\lambda_2}\right)$$

Externally

When P divides AB in ratio $\lambda_1:\lambda_2$

$$p \; \left(\frac{\lambda_1 x_2 - \lambda_2 x_1}{\lambda_1 - \lambda_2} \; , \; \frac{\lambda_1 y_2 - \lambda_2 y_1}{\lambda_1 - \lambda_2} \right)$$

Special points in a triangle with 2D co-ordinates

Centroid (G)

Point of intersection of medians

$$G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

Incentre (I)

Point of intersection of angle bisectors

$$I\left(\frac{ax_1 + bx_2 + cx_3}{a+b+c}, \frac{ay_1 + by_2 + cy_3}{a+b+c}\right)$$

Orthocentre (0)

Point of intersection of Altitudes

 $o \left(\frac{x_1 \tan A + x_2 \tan B + x_3 \tan C}{\tan A + \tan B + \tan C} \right)$ $\frac{y_1 \tan A + y_2 \tan B + y_3 \tan C}{\tan A + \tan B + \tan C}$

Circumcentre (C)

Point of intersection of perpendicular bisectors

 $c \left(\frac{x_1 \sin 2A + x_2 \sin 2B + x_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}, \right.$ $\frac{y_1 \sin 2A + y_2 \sin 2B + y_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C} \right)$

Straight line

Slope - Intercept Form

2 Double Intercept Form

Normal Form

Slope - Point Form

Two Point Form

6 Parametric Form

Angle between two Straight lines

Distance between
Point & line

