OpenADC

Function: Configure the A/D convertor.

Include: adc.h

Prototype: void OpenADC(unsigned char *config*,

unsigned char config2,

unsigned char portconfig);

Arguments: Config

A bitmask that is created by performing either bitwise AND operation ('&') or bitwise OR operation ('l'), configurable either way as shown in the example at the end of this file, with a value from each of the categories listed below. These values are defined in the file adc.h.

A/D clock source:

```
ADC_FOSC_2 FOSC / 2
ADC_FOSC_4 FOSC / 4
ADC_FOSC_8 FOSC / 8
ADC_FOSC_16 FOSC / 16
ADC_FOSC_32 FOSC / 32
ADC_FOSC_64 FOSC / 64
ADC_FOSC_RC Internal RC Oscillator
```

A/D result justification:

ADC_RIGHT_JUST	Result in Least Significant bits
ADC_LEFT_JUST	Result in Most Significant bits

A/D acquisition time select:

```
0 Tad
ADC_0_TAD
ADC_2_TAD
            2 Tad
ADC_4_TAD
            4 Tad
ADC_6_TAD
            6 Tad
            8 Tad
ADC_8_TAD
ADC_12_TAD
            12 Tad
            16 Tad
ADC_16_TAD
            20 Tad
ADC_20_TAD
```

config2

A bitmask that is created by performing either bitwise AND operation ('&') or bitwise OR operation ('|'), configurable either way as shown in the example at the end of this file, with a value from each of the categories listed below. These values are defined in the file adc.h.

Channel:

ADC_CH0	Channel 0
ADC_CH1	Channel 1
ADC_CH2	Channel 2
ADC_CH3	Channel 3
ADC_CH4	Channel 4

```
Channel 5
ADC_CH5
             Channel 6
ADC_CH6
             Channel 7
ADC_CH7
             Channel 8
ADC_CH8
             Channel 9
ADC_CH9
             Channel 10
ADC_CH10
             Channel 11
ADC_CH11
             Channel 12
ADC_CH12
             Channel 13
ADC_CH13
             Channel 14
ADC_CH14
             Channel 15
ADC_CH15
```

A/D Interrupts:

ADC_INT_ON Interrupts enabled ADC_INT_OFF Interrupts disabled

A/D Vref+ and Vref- configuration:

ADC_REF_VDD_VREFMINUS VREF+ = VDD & VREF- = Ext.

ADC_REF_VREFPLUS_VREFMINUS VREF+ = Ext. & VREF- = Ext.

ADC_REF_VREFPLUS_VSS VREF+ = Ext. & VREF- = VSS

ADC_REF_VDD_VSS VREF+ = VDD & VREF- = VSS

Portconfig

•		
ADC_0ANA	All digital	
ADC_1ANA	analog:AN0	digital:AN1-AN15
ADC_2ANA	analog:AN0-AN1	digital:AN2-AN15
ADC_3ANA	analog:AN0-AN2	digital:AN3-AN15
ADC_4ANA	analog:AN0-AN3	digital:AN4-AN15
ADC_5ANA	analog:AN0-AN4	digital:AN5-AN15
ADC_6ANA	analog:AN0-AN5	digital:AN6-AN15
ADC_7ANA	analog:AN0-AN6	digital:AN7-AN15
ADC_8ANA	analog:AN0-AN7	digital:AN8-AN15
ADC_9ANA	analog:AN0-AN8	digital:AN9-AN15
ADC_10ANA	analog:AN0-AN9	digital:AN10-AN15
ADC_11ANA	analog:AN0-AN10	digital:AN11-AN15
ADC_12ANA	analog:AN0-AN11	digital:AN12-AN15
ADC_13ANA	analog:AN0-AN12	digital:AN13-AN15
ADC_14ANA	analog:AN0-AN13	digital:AN14-AN15
ADC_15ANA	All analog	

Remarks: This function resets the A/D-related registers to the POR state and then

configures the clock, result format, voltage reference, port and channel.

File Name: adcopen.c

Code Example: With AND mask:

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST &

```
ADC_12_TAD,
ADC_CH0 &
ADC_REF_VDD_VSS &
ADC_INT_OFF, 12 );
With OR mask:
OpenADC( ADC_FOSC_32 |
ADC_RIGHT_JUST |
ADC_12_TAD,
ADC_CH0 |
ADC_REF_VDD_VSS |
ADC_INT_OFF, 12 );
```