

Théorie des Graphes Coloration de graphes

Fabrice Theoleyre

theoleyre@unistra.fr http://www.theoleyre.eu

Coloriage & coloration?

Coloration par l'exemple

- **Exercice Terminale ES**
 - Est-il possible de colorier le dessin
 - En utilisant le minimum de couleurs différentes
 - ❖ Deux zones ayant une frontière commune ont deux couleurs différentes

Allocation de fréquences en GSM

- Problème : des ressources restreintes
 - LTE: 2,5 Mds € (partagés entre opérateurs)
 - Objectif: réutilisation spatiale

Coloration

Pavage hexagonal, avec 7 couleurs

Extensions

- Antennes directionnelles
 - ❖ 3 directions (120°)
- MicroCell, Picocell, femtocell
 - Différents pavages avec des couleurs différentes

Formalisation

- Soit un graphe non orienté G(S,A)
 - Soit une application $c: S \to \mathbb{N}$
 - $\forall (x,y) \in A, c(x) \neq c(y)$

Problème

- Décisionnel : existe-t-il une coloration avec k couleurs ?
 - ❖ Application $c: S \rightarrow [1, k]$
- Optimisation : trouver le nombre minimum de couleurs
 - $Nombre chromatique (notation <math>\mathcal{X}(G)$)
- Approche naïve
 - Nombre croissant de couleurs
 - 2. Teste toutes les combinaisons possibles
- Complexité 3-colorabilité, dans NP : vérification en temps polynomial
 - Chaque arête a des extrémités de couleur différente

Formalisation

3-SAT

- Soit une expression booléenne : existe-t-il des affectations pour x1, x2 et x3 telles que l'assertion soit vraie ?
- $x1 \vee \overline{x2} \vee x3$

Réduction de 3-SAT à de la 3-Coloriabilité

- 1. Si le graphe est 3-coloriable, alors soit xi soit !xi est de la couleur de vrai (donc xi est soit vrai, soit faux)
- 2. Pour chaque clause, on crée un gadget qui crée un triangle pour chaque paire de variables
- 3. On relie les variables entre gadgets et graphe principal

Propriétés

- Borne inférieure du nombre chromatique d'un graphe G(S,A) ?
 - Le degré?
 - $\forall u \in S, \mathcal{X}(G) \geq |N(u)|$?
 - La taille de la clique ?

$$\forall (u,v) \in A, \mathcal{X}(G) \geq |\{(u,x)\}_{(v,x) \in A}| ?$$

- Cas particuliers : nombre Chromatique de :
 - C_n
 - ❖ 2 si n pair
 - ❖ 3 si n impair

BORNES DU NOMBRE CHROMATIQUE

Bornes de coloration

- Théorème de Brooks (1941)
 - $\mathcal{X}(G) \leq \Delta(G) + 1$
 - $\mathcal{X}(G) = \Delta(G) + 1$ ssi G est complet ou G est un cycle impair

Bornes de coloration

Graphes planaires

- Kenneth Appel et Wolfgang Haken (1976)
- Premier théorème dont la démonstration a nécessité l'usage d'un ordinateur
 - ❖ 1 200 heures de calcul
- Un graphe planaire est 4-colorable
 - $\mathcal{X}(G) = 4$
 - 4 couleurs nécessaires quand il existe un nombre impair de régions (faces) qui l'entourent
 - Région = zone délimitée par un groupe d'arêtes
 - ❖ → traiter tous les cas possibles
 - Il faut retirer un sommet et lui réaffecter sa couleur pour enlever le besoin de 5 couleurs
 - ❖ 1476 anneaux à 14 sommets possibles

Théorème des 4 couleurs

Stables et coloration

- Stable = indépendance des sommets
 - Créer une partition en sous-ensembles stables
 - Une couleur par stable
 - Preuve?
 - Nombre chromatique
 - ❖ Le plus petit entier k tel qu'il existe une partition en k stables
 - $\mathcal{X}(G) \leq k$
- Application
 - Montrer que $\mathcal{X}(G) = 3$

Sous graphe complet (a,b,c): $\mathcal{X}(G) \geq 3$ Partition en 3 stables : $\mathcal{X}(G) \leq 3$

Mineur d'un graphe

- H est mineur de G (non orienté)
 - G → H après un nombre quelconque d'opérations
 - Extraction d'un sommet isolé de G
 - Suppression d'une arrête (en gardant les sommets)
 - Contraction d'une arrête : fusionne les deux sommets correspondants

Utilité

- Permet de caractériser un graphe
 - Exemples
 - Existence d'un mineur K_5
 - Conjecture de Hadwiger : tout graphe dont K_k n'est pas un mineur est colorable avec k-1 couleurs
 - » Ordonnancement, assignation de ressources
 - » K>=6 ouvert

Mineur d'un graphe

RÉSOLUTION

Tourisme & Tours opérateurs

- 7 agences de voyages qui organisent les visites de :
 - Lyon, Paris, Strasbourg, Nice
 - Pas deux agences dans la même ville le même jour
 - Une seule ville par jour
 - Programme
 - ❖ Ag1: Lyon
 - ❖ Ag2: Lyon & Paris
 - ❖ Ag3: Strasbourg
 - ❖ Ag4: Paris & Strasbourg
 - ❖ Ag5: Lyon, Nice
 - ❖ Ag6: Nice & Strasbourg
 - ❖ Ag7: Nice & Paris

- Est-il possible de programmer toutes les visites en 3 jours ?
 - Borne inférieure : nombre de villes par agence

Tourisme & Tours opérateurs

Algorithme de Welsh-Powell

Approche gloutonne

- Classer les sommets par degré décroissant
 - a) Créer une nouvelle partition c
 - b) Parcourir la liste ordonnée des sommets non marqués
 - Si le sommet u est non adjacent à un autre sommet de la partition c
 - marguer u et l'assigner à cette partition
 - c) S'il reste un sommet non marqué, retourner à a).

Algorithme de Welsh-Powell

Application

Algorithme DSAT

Brélaz, 1979

- 1. Ordonner les sommets par ordre décroissant
- 2. Assigner la couleur 0 à tous les sommets
 - a) Couleur invalide
- 3. Sélectionner le sommet de degré maximum et le colorer en c1
- 4. Sélectionner le degré avec DSAT maximum (si conflit, degré)
 - a) Métrique de choix du sommet à colorer
- 5. Le colorer avec la plus petite couleur disponible
- 6. S'il existe encore un sommet de couleur 0, revenir en 2.

Critère de gloutonnerie

- DSAT(u) = nombre de couleurs différentes parmi les sommets adjacents à u
 - Relatif à la « pression » de coloration
 - Soit c(u) la couleur associée au sommet u, et $\mathcal{C} = \{c_i\}$ l'ensemble des couleurs

-
$$DSAT(u) = |\{c_i | \exists v \in S \mid (u, v) \in A \land c(v) = c_i\}|_{c_i \in \mathcal{C}/\{0\}}$$

Algorithme DSAT

Application

Algorithme de reliements-contraction

Ce qui doit nous guider : pour colorier une clique de taille n, il faut n couleurs

Principe

- 2 sommets non reliés (i.e. non voisins)
 - Contraction (en un seul sommet) : même couleur
 - Reliement (on ajoute une arête) : couleur différente
- **Optimal**
 - ❖ Pour toute paire de sommets, on teste les 2 possibilités

Arrêt

Le graphe est une clique : la taille donne le nombre de couleurs

Algorithme de reliements-contraction

Algorithme de reliements-contraction

Heuristique gloutonne

On contracte gloutonnement les deux sommets qui enlèvent le plus d'arêtes

$$vc(x,y) = |E(G)| - |E(G')|$$

❖ Avec G' le sous-graphe contractant x et y

Variante

- Coloration équitable : les ensembles de sommets pour chaque couleur ont la même cardinalité
 - Plus ou moins 1
 - Équilibrage de charge dans des affectations
- Coloration équitable d'un graphe étoile à k sommets ?

COLORATION D'ARÊTES

Coloration des arêtes

Coloration

- c couleurs : affectation d'une couleur à chaque arête
- Couleur à chaque Couplage du graphe
 - ❖ Couplage = des arêtes sans sommet commun

- Contrainte : deux arêtes adjacentes ont deux couleurs distinctes
- Nombre minimal de couleurs pour les arêtes

Théorème de Ramsey (1930)

- Coloration des arêtes d'un graphe
 - c couleurs : affectation d'une couleur à chaque arête
 - Attention : coloration quelconque, sans contrainte
- Théorème de Ramsey
 - « Pour tout entier N, il existe un graphe complet suffisamment grand dont une clique d'ordre N est colorée avec la même couleur »
- Equivalent à
 - Un graphe complet K_N coloré à l'aide de c couleurs
 - Si N suffisamment grand :
 - Coloration en c couleurs
 - une suite d'entier (n1, .., nc) donnée
 - Il existe une couleur i telle qu'une clique monochromatique d'ordre ni existe
 - ❖ But : calculer R(n1,..,nc) = N pour une suite d'entiers donnée
 - N le plus petit entier pour lequel le graphe complet K_N vérifie cette propriété
 - R(s,t) = en coloriant en 2 couleurs, il existe une clique de taille s pour la couleur c1 ou une clique de taille t pour la couleur c2
 - NB: R(s,t) = R(t,s)

Application du théorème de Ramsey

- Calcul de R(3,3): deux couleurs, et au moins une avec un K3
 - Un graphe complet K5 utilisant 2 couleurs
 - Coloration sans aucun K3 monochromatique
 - Graphe Complet K6 utilisant 2 couleurs
 - ❖ Au moins une clique d'ordre 3 monochromatique
 - Conclusion

$$R(3,3) \le 6 \text{ et } R(3,3) > 5$$

$$R(3,3) = 6$$

2 couleurs, K3 pour chaque couleur (3,3)

- Objectif : Trouver des sous-structures organisées
 - Bornes d'efficacité

❖ Inconnu pour R(5,5) et plus

- R(5,5): entre 43 et 49

- R(10,10): entre 798 et 23,556

