SN5490A, SN5492A, SN5493A, SN54LS90, SN54LS92, SN54LS93, SN7490A, SN7492A, SN7493A, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE AND BINARY COUNTERS

SDLS125

'90A, 'LS90 . . . Decade Counters

MARCH 1974-REVISED MARCH 1988

30A, L330 Decade	Counters	SN7490A N PACKAGE
'92A, 'LS92 Divide	By-Tweive Counters	SN74LS90 D OR N PACKAGE
'93A, 'LS93 4-Bit B	inary Counters	(TOP VIEW)
		скв □1 U14□ ска
TYPES	TYPICAL POWER DISSIPATION	R0(1) ☐2 13☐ NC R0(2) ☐3 12☐ Q _A NC ☐4 11☐ Q _D
′90A	145 mW	
'92A, '93A	130 mW	VCC 05 100 GND
LS90, LS92, LS93	45 mW	R9(1) ☐6 9☐ OB

description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a threestage binary counter for which the count cycle length is divide-by-five for the '90A and 'LS90, divide-by-six for the '92A and 'LS92, and the divide-by-eight for the '93A and 'LS93.

All of these counters have a gated zero reset and the '90A and 'LS90 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-by-twelve, or four-bit binary) of these counters, the CKB input is connected to the QA output. The input count pulses are applied to CKA input and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '90A or 'L\$90 counters by connecting the Qp output to the CKA input and applying the input count to the CKB input which gives a divide-byten square wave at output QA.

SN5492A, SN54LS92 . . . J OR W PACKAGE SN7492A . . . N PACKAGE SN74LS92 . . , D OR N PACKAGE (TOP VIEW)

R9(2) 🛮 7

SN5490A, SN54LS90 . . . J OR W PACKAGE

в∐ ос

скв 🗆	1	U 14	Ь	CKA
NC [2	13	_	NC
NC □	3	12	þ	QΑ
NC 🗆	4	11		QΒ
Vcc 🗆	5	10	₽	GND
R0(1)	6	9	þ	a_{c}
R0(2)	7	8	b	a_{D}

SN5493A, SN54LS93 . . . J OR W PACKAGE \$N7493 . . . N PACKAGE SN74LS93 . . . D OR N PACKAGE (TOP VIEW)

скв □	U14D CKA
R0(1) 🗖 2	13 NC
R0(2) 🖂 3	12 🗀 QA
NC 🎞 ₄	11 QD
Vcc ☐5	10∏ GND
NC ∐6	9D QB
NC [7	sh oc

NC-No internal connection

logic symbols† '90 '92 '93A, 'L\$93 CTR R0(1) (2) CTR RO(1) (6) CTR R0(1) (2) ÇT=0 ÇT=0 CT=0 R0(2)__(7) (3) R0(2) (3) R0(2) (6) R9(1)-(12) QA R9(2)-(7) CKA (14) DIV2 **Z**3 (12) OA CKA (14) DIV2 DIV3 DIV8 (9) QΒ CKB (1) C CKA (14) DIV2 (12) Q_A CKB (1) (8) CT · (9) -ac ****124 (11) a_D -QC 3CT=1 DIV2 (8) - QD DIV5 (9) -QB (8) CKB-(1) CT σc (11) QD

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

'90A, 'LS90 BCD COUNT SEQUENCE (See Note A)

COUNT	OUTPUT									
COUNT	αD	ac	ΩB	QA						
0	L	L	L	Ĺ						
1	L	L	L	н						
2	Ł	L	Н	L						
3	L	L	Н	н						
4	L	н	L	L						
5	L	н	L	н						
6	L	н	н	L						
7	L	н	Н	H						
8	н	L	L	L						
1 9	н	1	1	н						

'92A, 'LS92 COUNT SEQUENCE (See Note C)

COUNT		OUT	PUT	
COUNT	QD	a_{c}	ав	QA
0	L	L	L	Ĺ
1	Ł	L	L	н
2	L	L	н	L
3	L	L	н	н
4	LH		L	L
5	L	н	L	н
6	н	٤	L	Ļ
7	Н	L	L	н
8	Н	L	Н	L
9	Н	L	н	н
10	Н	н	L	L
11	н	н	L	Н

'92A, 'LS92, '93A, 'LS93 RESET/COUNT FUNCTION TABLE

TILUL	TESET/COUNT TOTOTON TABLE										
RESET	RESET INPUTS			OUTPUT							
R ₀₍₁₎	R ₀₍₂₎	α _D	a_{C}	σ_{B}	Q _A						
Н	Н	L	L	L	L						
L	×	COUNT									
×	1		COL	INT							

NOTES: A. Output $\mathbf{Q}_{\mathbf{A}}$ is connected to input CKB for BCD count.

- B. Output QD is connected to input CKA for bi-quinary
- C. Output QA is connected to input CKB.
- D. H = high level, L = low level, X = Irrelevant

'90A, 'LS90 BI-QUINARY (5-2) (See Note B)

			<u></u>	
COUNT		OUT	PUT	
COUNT	Q _A	αD	$\alpha_{\mathbf{C}}$	QΒ
0	L	L	L	L
1	L	L	L	Н
2	L	L	н	Ļ
3	L	L	Н	Н
4	L	н	L	L
5 j	н	L	L	L
6	н	L	L	н
7	н	L	H	L
8	Н	L	Н	н
9	н	H	L	L

'90A, 'LS90 RESET/COUNT FUNCTION TABLE

	RESET	INPUTS	;	OUTPUT					
R ₀₍₁₎	R ₀₍₂₎	R9(1)	A ₉₍₂₎	αp	$\alpha_{\mathbf{C}}$	ав	QA		
н	Н	L	×	L	L	L	L		
н	н	×	Ł	L	L	L	L		
×	×	н	н	н	L	L	н		
×	Ł	×	L		CO	UNT			
L	×	L	х	COUNT					
L	×	x	L	COUNT					
×	L	L	×		ÇQI	JNT	ĺ		

'93A, 'LS93 COUNT SEQUENCE

(See Note C)

COUNT		OUT	PUT	
COUNT	$\mathbf{Q}_{\mathbf{D}}$	σ_{C}	ав	QA
0	١	Ľ	L	L
1	Ŀ	L	L	н
2	L	L	H	L
3	L.	L	Н	н
4	L	Н	L	L
5	L	Н	L	н
6	L	Н	н	Ļ
7	L	н	Н	н
8	н	L	L	L
9	Н	L	L	н
10	Н	L	H	L
11	н	L	Н	н
12	Н	н	L	L
13	H	н	L	н
14	Н	н	н	L
15	Н	н	н	н

logic diagrams (positive logic) '90A, 'LS90 '92A, 'LS92 '93A, 'LS93 R9[1] (6) R9(2) (7) (121 QA ('93A)['L93] CKA 1141 (12I OA CKA (14) Q (12) [13] QA CKA 174)[14] (9) Qg CKB (1) CKB (1) (9) (9) OB CKB (1)|8| (8) QC Jα (8) [10] QC (B) aD (11)[12] a_D s of R₀₍₂₎ (6) R₀₍₂₎ (7) $B_{0(1)} = \frac{(2)[1]}{2}$ RÕ R0(2) (31 |2) $R_{0(1)} \frac{(2)}{2}$ R₀₍₂₎ (3)

The J and K inputs shown without connection are for reference only and are functionally at a high level. Pin numbers shown in () are for the 'LS93 and '93A and pin numbers shown in () are for the 54L93.

schematics of inputs and outputs

| 100 Ω | 100

schematics of inputs and outputs (continued)

'LS90, 'LS92, 'L\$93

SN5490A, SN5492A, SN5493A, SN7490A, SN7492A, SN7493A DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

NOTES 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple emitter transistor. For these circuits, this rating applies between the two R_Q inputs, and for the '90A circuit, it also applies between the two R_Q inputs.

recommended operating conditions

		:	SN5493	Α _	SN7493A			UNIT
		MIN NOM MAX				NOM	MAX	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧	
High-level output current, IOH			-800			-800	μА	
Low-level output current, IOL			16			16	mA	
	A input	0		32	0		32	MHz
	B input	0		16	0		16	WIFIZ
	A input	15			15			
Pulse width, tw	8 input	30			30			ns
	Reset inputs	15		7	15			
Reset inactive-state setup time, t _{Su}					25			ns
Operating free-air temperature, TA				125	0		70	^C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					Ī.	' 9 0A		'92A			'93A			UNIT
	PARAMET	ER'	TEST CONDI	TIONS	MIN	TYP	MAX	MIN	TYP®	MAX	MIN	TYP	MAX	UNIT
VIH	High-level inp	ut voltage			2			2			2			٧
VIL	Low-level inpi	ut voltage					0.8			0.8			0.8	٧
VIK	Input clamp v	oftage	V _{CC} = MIN, H =	-12 mA			-1.5			-1.5			-1.5	V
Voн			V _{CC} = MIN, V _{IH} V _{IL} = 0.8 V, I _{OH}		2.4	3,4		2.4	3.4		2.4	3.4		٧
VOL	VCC =		V _{CC} = MIN, V _{IH} V _{IL} = 0.8 V, I _{OL}			0.2	0.4		0.2	0.4		0.2	0.4	٧
Ч	Input current at maximum input voltage VCC = MAX, VI = 5.5 V		5.5 V			1			1			1	mΑ	
		Any reset					40			40		_	40	
Ιн	High-level	CKA	VCC - MAX, VI =	2.4 V			80			80			80	μA
	input current	СКВ					120			120		_	80	
		Any reset		•			-1.6			-1.6			-1.6	
IIL	Low-level	CKA	VCC = MAX, VI =	0.4 V		-3.2			-3.2			-3.2	mA	
	input current	СКВ					-4.8			-4.8			-3.2	
	Short-circuit			SN54'	-20		-57	-20		-57	-20		-57	mА
los	output curren	t \$	VCC = WAX	VCC = MAX SN74'			-57	-18		-57	-18		-57	
lcc	Supply curren	t	V _{CC} = MAX, See	Note 3		29	42		26	39		26	39	mΑ

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

 $[\]frac{1}{2}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ C}$.

Not more than one output should be shorted at a time.

^{*}QA outputs are tested at IQL = 16 mA plus the limit value for I_{IL} for the CKB input. This permits driving the CKB input while maintaining

SN5490A, SN5492A, SN5493A, SN7490A, SN7492A, SN7493A DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER†	FROM	TO	TEST CONDITIONS	ST CONSITIONS '90A		'92A				'93A		UNIT	
LAUWINE LEW.	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	ONLL
	CKA	QΑ		32	42		32	42		32	42		
^f max	CK8	ΩB		16			16			16			MHz
¹₽LH	CKA	0-			10	16		10	16		10	16	
₹PHL		QΑ	C _L = 15 pF,		12	18		12	18		12	18	ns
!PLH	CKA	αp			32	48		32	48		46	70	
tPHL .	1	чь			34	50		34	50		46	70	ns
^t PLH	СКВ	α _B			10	16		10	16		10	16	
tPHL	CKB	GR GR	RL = 400 Ω,		14	21		14	21		14	21	ns
^t PLH	СКВ	α _C	See Figure 1		21	32		10	16		21	32	
tPHL.	CKB	uc			23	35		14	21		23	35	ns
TPLH	СКВ	0			21	32		21	32		34	51	
tPHL_		α _D			23	35		23	35		34	51	ns
tPHL	Set-to-0	Дпу			26	40		26	40		26	40	ns
^t PLH	Set-to-9	α _A , α _D			20	30							
[†] PHL	361-10-9	a_{B}, a_{C}			26	40							ns

 $^{^{\}dagger}$ f_{max} = maximum count frequency

tpLH ≡ propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

SN54LS90, SN54LS92, SN54LS93, SN74LS90, SN74LS92, SN74LS93 DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	/
Input voltage: R inputs	/
A and B inputs	J
Operating free-air temperature range: SN54LS' Circuits	3
SN74LS' Circuits	3
Storage temperature range	3

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54 LS90			SN74LS90			
		!	SN54LS	92	[5	UNIT			
			SN54LS	93]				
		MIN	NOM	MAX	MIN	NOM	MAX		
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧	
High-level output current, IOH				-400			-400	μА	
Low-level output current, IQL				4			8	mA	
Count frequency, fcount (see Figure 1)	A input 0			32	0		32		
Obusin frequency, (count (see 1 igure 1)	B input	0		16	0		16	MHz	
	A input	15			15				
Pulse width, t _W	B input Reset inputs				30			пѕ	
					30	-		1	
Reset inactive-state setup time, t _{Su}		25			25			пs	
Operating free-air temperature, TA		-55		125	0		70	Ċ	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS [†]			1	N54LS9 N54LS9		SN74LS90 SN74LS92			UNIT
						MIN	TYP‡	MAX	MIN	ТҮР‡	MAX	
V_{IH}	High-level inpu	t voltage				2			2			٧
v_{1L}	Low-level inpu	t voltage						0.7			0.8	٧
VIK_	Input clamp vo	ltage	V _{CC} = MIN,	= -18 mA		1		-1.5		-	-1.5	٧
VOH High-level output voltage		V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{1H} = 2 V, I _{OH} = -400 μA	λ	2.5	3.4		2.7	3.4		V	
VOL Law-level o	Law laval auto	us valenas	VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	
	Low-level output voltage		VIL = VIL max.		IOL = B mA¶					0.35	0.5	٧
	Input current at maximum	Any reset	VCC = MAX.	V1 = 7 V				0.1			0.1	
11		CKA	V HAY	V _I = 5.5 V				0.2			0.2	mA
	input voltage	CKB	V _{CC} = MAX,					0.4			0.4	
	High-level	Any reset						20			20	-
ΙН	-	CKA	VCC = MAX,	V _I = 2.7 V				40			40	μА
	input current	CKB	<u> </u>					80			80	
	J. ave. Javasi	Any reset						-0.4	_		-0.4	
ΊL	Low-level input current	CKA	VCC = MAX,	V₁ ≈ 0.4 V				-2.4		-	-2.4	mΑ
		СКВ	<u> </u>					-3.2			-3.2	
los	Short-circuit ou	tput current§	VCC - MAX			-20		-100	20		-100	mA
laa	Supply current		V _{CC} = MAX,	See Note 3	'LS90		9	15		9	15	
ICC .	Supply current		VCC - MAX,	SEE MOIR S	'L\$92		9	15		9	15	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4,5 V, and all other inputs

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_{A} = 25 $^{\circ}$ C.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
¶QA outputs are tested at specified IOL plus the limit value of I_{IL} for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DARAMETER			TECT COMPUTIONS!			S	N54LS9	3	S	UNIT		
	PARAME	TER	TEST CONDITIONS [†]			MIN	TYP‡	MAX	MIN	T YP‡	MAX	OIVII
νін	High-level inpu	t voltage				2			2			V
VIL	Low-level inpu	t voltage						0.7			0.8	V
Vικ	Input clamp vo	ltage	VCC = MIN,	lj = -18 mA				-1.5			-1.5	
vон	High-level outp	out voltage	V _{CC} = MIN, V _{IL} = V _{IE} max,	V _{IH} = 2 V, I _{OH} = -400 μA		2.5	3.4		2.7	3.4		v
VOL	Low-level outp	ut voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V,	I _{OL} = 4 mA ^e I _{OL} = 8 mA ^e		0,25	0.4		0.25 0.35	0.4 0.5	V
	Input current	Any reset	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	0
Ц	at maximum input voltage	CKA or CKB	VCC = MAX,	V _I = 5.5 V				0.2			0.2	mA
	High-level	Any reset	V MAY	V 27V				20			20	
ΙН	input current	CKA or CKB	V _{CC} = MAX,	V ₁ = 2.7 V			40				80	μA
	Low-level input current	Any reset						-0.4			-0.4	
I _I L		CKA	V _{CC} = MAX, V ₁ = 0.4 V	$V_1 = 0.4 V$				-2.4			-2.4	mA
Input current		Input current	ÇKB						-1.6			-1.6
los	Short-circuit or	utput current§	V _{CC} = MAX			-20		-10 0	-20		-100	mΑ
Icc	Supply current		V _{CC} = MAX,	See Note 3			9	15		9	15	mΑ

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions

switching characteristics, VCC = 5 V, TA = 25°C

	FROM	то	TECT COMPLETIONS		'LS90)		'LS92			'LS93		UNIT					
PARAMETER#	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	7					
	CKA	QA		32	42		32	42		32	42	-	MHz					
f _{max}	CKB	a _B		16			16			16			WIFTZ					
¹PL,H	CK A	Q _A			10	16		10	16		10	16	ns					
1PHL	CKA				12	18		12	18		12	18	113					
tPLH	ÇKA	0-			3 2	48		32	48		46	70	ns					
^t PHL		a _D			34	50		34	50		46	70	i ''3					
tpLH	СКВ	0-	CL = 15 pF,		10	16		10	16		10	16	ns ns					
[†] PHŁ	CKB	α _B	RL = 2 kΩ	RL=2kΩ	R _L = 2 kΩ			14	21		14	21		14	21			
^t PLH	СКВ	00	See Figure 1		21	32		10	16		21	32	ns					
†PHL	UKB	40	UC .	<u> </u>	<u> </u>	a _c	uc uc			23	35		14	21		23	35	
tPLH	CKB	0-			21	32		21	32		34	51	ns					
1PHL	CKB	α _D		[23	35		23	35		34	51	113					
¹PHL	Set-to-0	Any	,		26	40		26	40		26	40	ns					
¹PLH	Set-to-9	α_{A}, α_{D}			20	30							пs					
¹PHL	261-to-a	Q_{B},Q_{C}			26	40							113					

[#]f_{max} = maximum count frequency

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. Not more than one output should be shorted et a time, and duration of the short-circuit should not exceed one second.

[¶]QA outputs are tested at specified IOL plus the limit value for I_{IL} for the CKB input. This permits driving the CKB input while maintaining full fan-out capability.

NOTE 3: ICC is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs

tpLH = propagation delay time, low-to-high-level output

 $t_{PHL} = propagation delay time, high-to-low-level output$

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Input pulses are supplied by a generator having the following characteristics: for '90A, '92A, '93A, $t_r \le 5$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms; for 'LS90, 'LS93, $t_r \le 15$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.
 - D. Each reset input is tested separately with the other reset at 4.5 V.
 - E. Reference waveforms are shown with dashed lines.
 - F. For '90A, '92A, and '93A; $V_{ref} = 1.5$ V. For 'LS90, 'LS92, and 'LS93; $V_{ref} = 1.3$ V.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

- NOTES: A. Input pulses are supplied by a generator having the following characteristics: for '90A, '92A, '93A, $t_r \le 5$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms; for 'LS90, 'LS93, $t_r \le 15$ ns, $t_f \le 5$ ns, PRR = 1 MHz, duty cycle = 50%, $Z_{out} \approx 50$ ohms.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.
 - D. Each reset input is tested separately with the other reset at 4.5 V.
 - E. Reference waveforms are shown with dashed lines.
 - F. For '90A, '92A, and '93A; $V_{ref} = 1.5 \text{ V. For 'LS90, 'LS92, and 'LS93; } V_{ref} = 1.3 \text{ V.}$

FIGURE 1B

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated