

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

5129/22

Paper 2

May/June 2013

2 hours 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

Electronic calculators may be used.

You may lose marks if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use

Use words from the list to complete the sentences below.

1

carbon carbon dioxide chemical chlorophyll haemoglobin heat hormones light nitrogen phloem oxygen Each word may be used once, more than once or not at all. (a) Energy from the Sun is converted into energy during photosynthesis. This energy is trapped by and used to combine water and to form glucose. [3] **(b)** Ions containing are needed for a plant to form proteins. [1] 2 (a) Magnesium reacts with nitrogen to produce magnesium nitride. The equation for the reaction is $3Mg + N_2 \longrightarrow Mg_3N_2$ The relative molecular mass, M_r , of magnesium nitride is 100. [A_r: Mg, 24; N, 14] Complete the following sentences. 144 g of magnesium reacts withg of nitrogen and producesg of magnesium nitride. 14.4g of magnesium reacts withg of nitrogen and producesg of magnesium nitride. 2.4g of magnesium producesg of magnesium nitride. [4] **(b)** Explain why the bonding in magnesium nitride is ionic.[1]

(c)	Nitrogen and oxygen are the major constituents of air. State the percentages of nitrogen and of oxygen in the air.				
	nitrogen				
	oxygen[1]			

3 Fig. 3.1 shows a measuring cylinder containing a liquid.

Fig. 3.1

(a) State the volume of the liquid in the cylinder.

volume = cm³ [1]

(b) The mass of the measuring cylinder and the liquid is 30.2g.

The mass of the empty measuring cylinder is 9.4g.

Calculate the density of the liquid.

density = units[3]

4 Fig. 4.1 shows how the speed of a runner changes with time.

For Examiner's Use

Fig. 4.1

(a)	use F	ıg. 4	r. I to	caicuia	ite the	iengtn	or time	tnat tn	e runne	eris	
	(1)										

(')	ai iesi,	

(ii)	moving with constant non-zero acceleration.	S
(ii)	moving with constant non-zero acceleration.	S

[2]

(b)	Explain why it is possible for the runner to have a constant speed but not have a constant velocity.
	•

[4]

(c) The runner has a mass of 70.0 kg.

At one time, the accelerating force produced by the runner is 175N.

Calculate the acceleration of the runner.

acceleration =
$$m/s^2$$
 [2]

5 Fig. 5.1 shows cell functions and different types of cell.

For Examiner's Use

On Fig. 5.1, draw a line to link each cell function with the type of cell that carries out that function.

One line has been drawn for you.

Each type of cell may be linked-to once, more than once, or not at all.

Fig. 5.1

For Examiner's Use

6

Elei	Element P reacts with dilute hydrochloric acid but not with steam.					
Elei	Element Q does not react with dilute hydrochloric acid.					
Elei	ment	R reacts with both	dilute hydrochloric acid and cold water.			
Elei	ment	S reacts with both	dilute hydrochloric acid and steam but not cold water.			
(a)	Dec	duce the order of re	eactivity of the elements P, Q, R and S.			
	mo	st reactive				
	leas	st reactive		[2]		
(b)		en element S react he chloride of S is p	s with dilute hydrochloric acid, hydrogen is given off and a solu produced.	tion		
	(i)	State the test for h	nydrogen.			
		test				
		result				
				[2]		
	(ii)	Element S forms	an ion \mathbf{S}^{2+} .			
		Deduce the formu	la of the chloride of S .	[1]		
(c)	One	e of the four elemer	nts P, Q, R and S is zinc.			
	Cor	nplete the equation	for the reaction of zinc with steam.			
		Zn + H ₂ O -		[1]		

7	A weight-lifter lifts a weight of 1700N.							
	(a)	Cal	culate the work done on the weight in lifting it through a vertical distance of 2.0m.	Examiner's Use				
			work done =]				
	(b)	Cor	nplete the following sentence.					
		As t	the weight is being lifted, the useful energy changes are from					
			energy of the weight-lifter to	-				
		ene	rgy and energy of the weight. [2]				
8	Sou	ınd is	s an example of a longitudinal wave.					
	Air particles vibrate as the sound wave passes through the air.							
	(a) Fig. 8.1 shows the direction of vibration of an air particle as a sound wave moves through the air.							
			direction of vibration					
			air particle					
			Fig. 8.1					
		On	Fig. 8.1, draw an arrow to show a possible direction of the sound wave. [1]				
	(b)	(i)	Explain what is meant by <i>frequency</i> .					
			[1]				
		(ii)	A sound wave has a frequency of 200Hz and travels at a speed of 340m/s.					
			Calculate the wavelength of the sound wave.					

 $wavelength = \dots \qquad m \ [2]$

9 Amylase is an enzyme that digests starch.

		- 1-	٠,,
(a)	State the chemical produced when amylase digests starch.		
	[1]		

lodine solution is a brown liquid. When starch and iodine solution are mixed together, the starch grains are stained black.

An experiment used to investigate amylase digesting starch is shown in Fig. 9.1.

Fig. 9.1

Each tube contains the same concentrations of starch, amylase and iodine solution.

Each tube is kept at a different temperature, as shown in Fig. 9.1.

Table 9.1 shows the results of this experiment.

Table 9.1

		colour of solution			
time/min	solution A	solution B	solution C		
1 15	black black	black brown	black black		
25	brown	brown	black		

© UCLES 2013 5129/22/M/J/13

For Examiner's Use

(b)	Ехр	lain why solutions A and B change from black to brown.	For Examiner's
			Use
		[2]	
(c)	(i)	State which solution turns brown most quickly.	
		[1]	
	(ii)	Explain the difference in the timing of the colour change in solutions A and B .	
		[2]	
	(iii)	Explain why solution C remains black.	
		[2]	

10 Fig. 10.1 shows some reactions of ethene.

For Examiner's Use

Fig. 10.1

(a)	(i)	Identify the	reagents A	and B	and process	C
-----	-----	--------------	------------	--------------	-------------	---

(ii) Identify gas **D** and liquid **E**.

- (b) The molecular formula of ethanol is ${\rm C_2H_5OH.}$
 - (i) Draw the structure of ethanol.

[1]

(ii) State one use of ethanol.

......[1]

11 Fig. 11.1 shows a lighting circuit.

For Examiner's Use

Fig. 11.1

(a)	Switch A	is left o	nen and	switches R	and C	are closed.
(a)	SWILCH A	12 1611	pen anu	SWILCINGS D	anu 🗸	are cioseu.

State which lamp or lamps, if any, will light. [1]

(b) The circuit contains a fuse.

The fuse has a rating of 3A.

Explain what is meant by the *fuse rating*.

.....[2]

- (c) When all the switches are closed to light both lamps, the current in lamp **P** is 0.25A and the current in lamp **Q** is 0.35A.
 - (i) Calculate the current in the fuse.

(ii) The p.d. across lamp **P** when lit is 240V and the current in it is 0.25A.

Calculate the power of lamp **P**.

power = W [2]

12 Fig. 12.1 shows an electromagnet, an iron rod and a permanent magnet. The poles of the permanent magnet are marked.

For Examiner's Use

Fig. 12.1

(a) The current in the electromagnet is switched on and the iron rod becomes magnetised.

Both the iron rod and the permanent magnet are attracted to the electromagnet.

On Fig. 12.1, mark the poles of the iron rod. [1]

- **(b)** The current in the electromagnet is now reversed.
 - (i) State whether the iron rod is attracted, repelled or neither attracted nor repelled.

The iron rod is

(ii) State whether the permanent magnet is attracted, repelled or neither attracted nor repelled.

The permanent magnet is

[2]

13 (a) Complete Table 13.1.

particle	number of protons	number of neutrons	number of electrons
¹⁶ O	8		8
²⁷ Al		14	13
³⁵ C <i>l</i> ⁻		18	18
⁴⁰ Ca ²⁺	20	20	

For Examiner's Use

[4]

Table 13.1

(b) Complete Fig. 13.1 to show the electronic structure of ¹⁶O.

[1]

Fig. 13.1

14 Fig. 14.1 shows a flower.

Fig. 14.1

(a)	(i)	State the function of petals.
		[1
	(ii)	State the function of anthers.
		[1

(b) Fig. 14.2 shows a section through a seed.

Fig. 14.2

(1)	Use letters from the diagram to identify

1.	the testa,	

_		
2	the radicle.	
~ .	uic iauluc.	

[2]

(ii) State a function of the cotyledon.

(c)	(i)	State two ways in which seeds are dispersed.			
		1	Examiner's Use		
		2			
		[2]			
	(ii)	Explain why it is important for seeds to be dispersed.			
		[1]			
(d)		mplete Table 14.1 to show differences between asexual reproduction and sexual roduction for the given features.			

Table 14.1

feature	asexual reproduction	sexual reproduction
number of parents		
appearance of offspring		

[2]

15 Fig. 15.1 shows a heater emitting infra-red radiation.

Fig. 15.1

Two metal plates are placed equal distances from the heater.

One plate has a shiny white surface and the other plate has a matt black surface.

(a)	The	re is a large air-gap between each plate and the heater.
	Sug	gest why there is very little heating of the plates by
	(i)	conduction,
		[1]
	(ii)	convection.
		[1]
(b)	-	lain why the plate with the matt black surface heats up more quickly than the plate the shiny white surface.
		[1]
(c)	Infra	a-red radiation is part of the electromagnetic spectrum.
		ne two components of the electromagnetic spectrum with longer wavelengths than a-red radiation.
	1	
	2	[2]

For Examiner's Use

16	The follo	wing is a list of metals			
		copper	iron	lead	
		s	sodium	zinc	
	Each wo	ord in the list may be us	sed once, more than	once, or not at all.	
	From the	e list, select the metal t	hat		
	(a) (i)	is extracted from haer	matite,		
	(ii)	is used for electrical v	viring,		
	(iii)	forms compounds wh	ich pollute the air,		
	(iv)	is used in galvanising	J.		
					[4]
	(b) Bras	ss is an alloy.			
	(i)	State what is meant b	by the term alloy.		
					[1]
	(ii)	Explain why metals a	re made into alloys.		

17 Fig. 17.1 shows a magnet being pushed towards a coil to induce an e.m.f.

Fig. 17.1

	A current is induced in the coil.				
	Explain how the induced current produces effects that oppose the motion of the magne				
			[2	 2]	
18	(a)	Def	ine a <i>drug</i> .		
				••	
			[2	2]	
	(b)	(i)	Alcohol is a drug.		
			State three effects that the excessive consumption of alcohol may have on person.	а	
			1		
			2		
			3		
			[3	 3]	
		(ii)	Name a drug of abuse other than alcohol.		
			[1	1]	

19 A student breaks a bottle containing potassium nitrate crystals.

For Examiner's Use

In order to separate the potassium nitrate from the broken glass, the student adds the mixture to water.

Use words from the list below to complete the following sentences.

Each word may be used once, more than once, or not at all.

	distillation	filtration	insoluble	soluble	
	solute	solution		solvent	
The potassi	um nitrate dissolve	s in the water to	form a colourle	ess	
The glass is	3	in water and	d is removed fi	rom the solution by	
	In this	experiment the p	otassium nitra	ate acts as the	
					[4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

į DATA SHEET Ē

						È	ne Perio	dic Tabl	e of the	The Periodic Table of the Elements	ts						
								Gre	Group								
_	=											≡	≥	>	5	II/	0
							- エ										4 H
							Hydrogen 1										Helium 2
7	6					,						1	12	14	16	19	20
=	Be											Ω	ပ	Z	0	ш	Ne
Lithium 3	Beryllium 4	E,										Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na	Mg	_										ΝI	Si	Δ.	ဟ	CI	Ā
Sodium 11	Magnesium 12	mi										Aluminium 13	Silicon 14	Phosphorus 15	Sulfur 16	Chlorine 17	Argon
39	40	45	48	51	52	55	56	59	59	49		02	73	75	62	80	84
¥	Ca	Sc	F	>	ဝံ	M	Бe	ပိ	Z	Cn	Zu	Ga	Ge	As	Se	ģ	₹
Potassium 19	20	. 2	Titanium 22	Vanadium 23	Chromium 24	9	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
85	88	68	91	93	96		101	103	106	108	112	115	119	122	128	127	131
В	Š		Zr	Q N			Bu	R	Pd	Ag	ဥ	In	Sn		Те	Ι	Xe
Rubidium 37	Strontium 38	um Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	509	210	222
Cs	Ba	La	Ξ	Ē	>	Re	Os	ī	풉	Αn	Hg	1 1	Pb	Ξ	Po	Αt	R
Caesium 55	Barium 56	n Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
223	226																
Francium	Radium Badium	Actinium Actinium															
87	88	86															
* 58–7	1 Lantha	* 58-71 Lanthanoid series		140	141	144	147	150	152		159		165	167	169	173	175
+ 90-1	03 Actin	† 90–103 Actinoid series		రి	ቯ	PZ	Pm		En		Q L		운	ш	E	Λb	Γn
. [) -)		Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
	(oca ciacto chitolog – c	ooc m oim														

a = relative atomic mass X = atomic symbol а **×** Key

Pa 232 **Th** Thorium 28 90 b = atomic (proton) number

The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.).

580

S59 Nobelium

258 **Md**

257 **Fm** Fermium 100

252 **ES**

52

247 **BK**

247 **Cm** Curium

243 **Am**

Plutonium 94 244 **Pu**

Neptunium