Operating Systems

An Overview

Operating System

- software for using the hardware
- computer resources
 - controls
 - shares
- program development environment
- kernel = operating system

Computer System

Operating System

- · direct access to hardware not allowed
- user mode x kernel mode
- hides difficulties of using hardware
- interface between user and hardware
 - system calls

System Calls

- for user programs to
 - interact with operating system
 - $\bullet\,$ get operating system to perform a task for $\,$ them
- a library routine for every system call
- user program uses library routine

Operating System Responsibilities

- · resource sharing
- virtual machine

Resource Sharing

- sharing among users
- security
- isolate users
- shared resources:
 - CPU
 - memory
 - I/O components
 - data

Resource Sharing

- objectives:
 - to maximize resource utilization
 - · to maximize resource availability

Resource Sharing

- · provided services:
 - · define user interface
 - system calls
 - · sharing and usage control of resources in multi-use systems
 - · prevent race for resources
 - mutual exclusion
 - allow users to share data (shared memory)
 - · resource scheduling
 - I/O scheduling
 - · error handling

Resource Sharing

- example:
 - users cannot share printer
 - · possible to share disk

Virtual Machine

- as if single user
 - resource sharing transparent to user
- virtual machine may be different from actual physical machine:
 - I/O
 - memory
 - file system
 - protection and error handling
 - program interaction
 - · program control

Virtual Machine

- I/O
 - requires hardware dependent programming
 - device drivers

Virtual Machine

- memory
 - · different memory capacity in virtual machine
 - use disk as secondary memory
 - · share among users
 - each user sees part of memory allocated to her

Virtual Machine

- file system
 - for longterm storage of program and data
 - on disk
 - use symbols to acces info instead of physical addresses
 - naming
 - all accessed as files in UNIX

Virtual Machine

- protection and error handling
 - isolate users in multi-user systems

Virtual Machine

- program interaction
 - in runtime
 - for example one program may use output of another program as input

Virtual Machine

- · program control
 - provide user with high-level command set
 - shell commands
 - shell: command interpreter
 - · shell not part of operating system
 - but shell uses system calls heavily

Types of Operating Systems

- mainframe operating systems
- server operating systems
- multi-processor operating systems
- PC operating systems
- real-time operating systems
- · embedded operating systems
- · smartcard operating systems

Mainframe Operating Systems

- for heavily I/O bound tasks
- · three main services:
 - · batch mode
 - non-interactive, routine tasks
 - e.g. preparing employee paychecks
 - · transaction processing
 - e.g. airline reservation systems
 - time-sharing
 - multiple remote users running tasks
 - e.g. database
 - e.g.: OS/390

Server Operating Systems

- on servers
 - · PCs with high resource capacities
 - workstations
 - · mainframe systems
- services for multi-users over a network
 - hardware and software sharing
 - e.g: printer services, file sharing, web access
- e.g.: UNIX, Windows 2000

Multi-Processor Operating Systems

- for multi-processor systems
- to increase computing power
- based on interconnection between processors:
 - · parallel systems
 - networked computers
 - multi-processor computers
- special operating system features required
 - design objectives similar to server operating systems
 - extra features for interconnection and communication between processors

PC Operating Systems

- · efficient and easy to use interface
- office applications
- e.g.:
 - Windows 98, 2000, XP
 - Macintosh
 - Linux

Real-Time Operating Systems

- $\bullet \ \ time\ constraints\ important$
- industrial control systems
 - feedback
- two types:
 - hard real-time
 - time constraints compulsory
 a g report in car production
 - e.g. robots in car production line
 - soft-real-time
 - possible not to obey some constraints
- e.g. multimedia systems
- örnek: VxWorks ve QNX

Embedded Operating Systems

- palm computers and embedded systems
- · limited operation
- special purpose
- e.g.: TV, microwave oven, cell phones, ...
- in some systems, size, memory and power consumption constraints
- e.g.: PalmOS, Windows CE

Smart-Card Operating Systems

- · smallest operating system
- · on credit card sized cards with processor
- strict memory and CPU constraints
- · some are dedicated e.g. elektronic payments
- · some may have several functionalities
- usually special purpose operating systems developed by card companies
- · some Java based
 - possible to load and execute small JAVA programs (applet)
 - · some may execute more than one applet
 - · multi-programming, scheduling, resource sharing and protection

Main Kernel Architectures

- monolithic
- layered
- · virtual machine
- exo-kernel
- · server-client model
- modular

Monolithic

- no general structure
- · all services and functionalities included in operating system
- · all functional procedures
 - at the same level
 - · may interact with each other
- large

Modular

- minimal kernel
- · services added to kernel at runtime as they are needed
 - e.g. device drivers
- · small kernel size
- slower

Layered

- · layered structure
 - · hierarchical
- e.g.: THE operating system

3		
4	user programs	
3	I/O control	
2	operator – process interaction	
1	memory and disk control	
0	CPU sharing and multi-programming	

- ach layer independent of operations of tyers below. e.g.: for layer 2 operations, data may be on memory or disk

Exo-Kernel

- · developed at MIT
- similar to the virtual machine concept
 - copy of system
 - difference: each virtual machine gets subset of system resources
- external kernel
 - controls that virtual machines do not exceed thir allocated resources
- each virtual machine may have different operating systems

Server-Client Model

- minimal kernel micro-kernel
- most of operating system in user mode
- server and client processes
 - e.g. file read operation
 - client process asks from server process
 - server carries out operation
 - · gives reply to client
- kernel coordinates communication and interaction between servers and clients

Server-Client Model

- · servers in user mode
 - · file server
 - process server
 - terminal server
 memory server
- operating system consists of many smaller sub-units:
 - easy to manage
 - error in one does not affect others (units do not access hardware directly)
 - implementation problems: not possible to implement especially some I/O device drivers at user mode
- suitable for distributed systems