

Database Systems Lecture #03

Sang-Wook Kim Hanyang University

Objectives

- ◆ To learn conceptual modeling using the entityrelationship (ER) model
 - Database design process
 - Entity-relationship model
 - Conceptual data modeling

Outline

- ◆ Database Design Process
- ◆ Example: COMPANY Database
- Entities and Attributes
 - Types of Attributes
 - Entity Type
 - Key Attribute
- ◆ Initial Conceptual Design of COMPANY Database
- ◆ Relationship
 - Relationship Degree
 - Recursive Relationships

Database Design Process

Data
And
Knowledge
Engineering

◆ Requirements

- Employees, departments, and projects
- Company is organized into departments
- Department: has unique name, unique number, locations, manager and start date when manager began managing the department

- ◆ Requirements (cont'd)
 - Department controls a number of projects
 - Project: has unique name, unique number, and location

- ◆ Requirements (cont'd)
 - Employee: store each employee's name, Social Security number, address, salary, sex (gender), and birth date
 - Employee is assigned to one department
 - Employee may work on several projects
 - Keep track of number of hours per week that employee work on each project
- Keep track of the direct supervisor

- ◆ Requirements (cont'd)
 - Keep track of the dependents of each employee
 - Dependent: dependent's first name, sex, birth date, and relationship to the employee

Data And Knowledge Engineering

Entities and Attributes

- ◆ Entity
 - Thing in real world with independent existence
 - Examples: person, car, house, student, employee, ...
- ◆ Attributes
 - Particular *properties* that describe the entity
 - Examples: name, age, address, job, phone number,
 ...

Entities and Attributes

- ◆ Category 1
 - Simple (atomic) attributes
 - Attributes that are not divisible
 - Composite attributes
 - Can be divided into smaller subparts
 - Can form a *hierarchy*

◆ A hierarchy of composite attributes

- ◆ Category 2
 - Single-valued attributes
 - Have a single value for a particular entity
 - Example: age
 - Multivalued attributes (set attributes)
 - Have a set of values for the same entity
 - Example: phone numbers

◆ Category 3

- Stored attributes
 - Actually *stored* in the database
 - Example: birth date
- Derived attributes
 - Can be *derived* from other attributes
 - Not stored in the database
 - Example: age (can be derived from birth date)

Entity Type

- ◆ Defines a collection of entities that have a same set of attributes
- ◆ Indicates the *schema* or *intention* for a set of entities
- ◆ Described by its *name* and *attributes*

Entity Type

Entity Type Name:

Entity Set:

(Extension)

EMPLOYEE

schema

Name, Age, Salary

Name, Headquarters, President

COMPANY

instance

*e*₁ •

(John Smith, 55, 80k)

 e_2 •

(Fred Brown, 40, 30K)

*e*₃ •

(Judy Clark, 25, 20K)

•

*c*₁ ●

(Sunco Oil, Houston, John Smith)

 C_2

(Fast Computer, Dallas, Bob King)

•

Data And Knowledge Engineering

Entity Type

◆ Domains

- Set of values that may be assigned to the attribute for each individual entity
- Example
 - Domain for AGE attribute of EMPLOYEE entity: 20 ~ 70

Key Attribute

- ◆ Attributes whose values are *distinct* for each individual entity
- ◆ Values of key attributes can be used to identify each entity uniquely
- ◆ Example: student number of STUDENT entity

```
. (ex. )
```


Key Attribute

- Multiple attributes can form a key
- ◆ A entity type can have more than two keys
- Preceding uniqueness property of a key must hold for *every entity set* of the entity type
 - Not for a particular entity set

Key Attribute

CAR

Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

CAR₁

((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR_2

((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR₃

((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

•

•

Initial Conceptual Design of the COMPANY Database

DEPARTMENT

Name, Number, {Locations}, Manager, ManagerStartDate

PROJECT

Name, Number, Location, ControllingDepartment

EMPLOYEE

Name(FName, MInit, LName), <u>SSN</u>, Sex, Address, Salary, BirthDate, Department, Supervisor, {WorksOn (Project, Hours)}

DEPENDENT

Employee, DependentName, Sex, BirthDate, Relationship

{}: multivalued attribute, (): composite attribute

Concepts of Relationship

- Relationship instances
 - Association among entities from entity set

- ◆ Relationship type
 - Indicates set of relationship instances from entity types
 - Represented with participating entity types

WORKS_FOR Relationship

Relationship Degree

- Degree of a relationship type
 - Number of participating entity types
 - Binary, ternary, ...

Binary Relationship

- ◆ A relationship type of degree two
- Most commonly used
- ◆ Example
 - WORKS_FOR relation type has EMPLOYEE and DEPARTMENT as participating entity types

WORKS_FOR Relationship

Ternary Relationship

- ◆ A relationship type of degree three
- ◆ Example
 - SUPPLY relation type has SUPPLIER, PART, and PROJECT as participating entity types

SUPPLY Relationship

Recursive Relationships

- ◆ Role name
 - Signifies role that a participating entity plays in each relationship instance
 - Example: EMPLOYEE and DEPARTMENT in WORKS_FOR relation type

Recursive Relationships

- ◆ Recursive relationship type
 - Same entity type participates more than once in a relationship type in different roles
 - Must specify role name

Recursive Relationships

Summary

- ◆ Database design process
- ◆ Basic ER model concepts of entities and their attributes
 - Different types of attributes
 - Structural constraints on relationships

References

- Batini, Carlo., S. Ceri, S. B. Navathe, and Carol Batini, *Conceptual Database Design:* an *Entity/Relationship Approach*, Addison-Wesley, Reading MA, 1991.
- 2. Chen, P. P., "The entity-relationship model: toward a unified view of data," *ACM Trans. on Database Systems* **1**:1, pp. 9-36, 1976.
- Thalheim, B., *Fundamentals of Entity-Relationship Modeling*, Springer-Verlag, Berlin, 2000.

Have a nice day!

