Chapitre 15

Équations différentielles linéaires

Dans ce chapitre, I désigne un intervalle de \mathbb{R} , \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et E un un \mathbb{K} -espace vectoriel normé de dimension finie.

On identifie $\mathcal{M}_{n,1}(\mathbb{K})$ et \mathbb{K}^n .

I Équations différentielles linéaires

I. A Généralités

Notation : Dans ce chapitre, si u est un endomorphisme de E et $x \in E$, alors u(x) sera noté $u \cdot x$.

Définition 1.1

On appelle **équation différentielle linéaire d'ordre 1** toute équation de la forme :

$$(\mathcal{E}) \qquad x' = a(t) \cdot x + b(t), \quad t \in I,$$

où a est une application continue de I dans $\mathcal{L}(E)$ et b est une application continue de I dans E.

Les solutions de (\mathcal{E}) sont les fonctions φ dérivable de I dans E telle que :

$$\forall t \in I, \varphi'(t) = a(t) \cdot \varphi(t) + b(t).$$

L'équation homogène assocée à (\mathcal{E}) est :

$$(\mathcal{E}_0)$$
 $x'(t) = a(t) \cdot x(t).$

Remarques 1.2 : • On retrouve bien les équations différentielle linéaires scalaires d'ordre 1 si $E=\mathbb{K}$.

• Les applications a et b sont supposées continues et $(u, x) \mapsto u \cdot x$ est bilinéaire en dimension finie donc continue, donc toute solution de (\mathcal{E}) est de classe \mathcal{C}^1 sur I.

Forme matricielle : système différentiel linéaire

Si l'on munit l'espace vectoriel E d'une base $\mathcal{B},$ alors l'équation différentielle :

$$x' = a(t) \cdot x + b(t)$$

se traduit matriciellement par :

$$X' = A(t)X + B(t)$$

où, pour tout $t \in I$, $A(t) = \text{Mat}_{\mathcal{B}}(a(t))$, $B(t) = \text{Mat}_{\mathcal{B}}(b(t))$. En effet, $\varphi : I \longrightarrow E$ est solution de (\mathcal{E}) si et seulement si :

$$\forall t \in I, \quad X'(t) = A(t)X(t) + B(t)$$

où $\forall t \in I, X(t) = \operatorname{Mat}_{\mathcal{B}}(\varphi(t)).$

Un tel système s'écrit :

$$\begin{cases} x'_1 = a_{1,1}(t)x_1 + \dots + a_{1,n}(t)x_n + b_1(t) \\ \vdots \\ x'_n = a_{n,1}(t)x_1 + \dots + a_{n,n}(t)x_n + b_n(t) \end{cases}$$

Exemple 1.3:

$$\begin{cases} x' = y \\ y' = x \end{cases}$$

Proposition 1.4 (principe de superposition)

Si φ_1 et φ_2 sont respectivement solutions des équations :

$$x' = a(t) \cdot x + b_1(t)$$
 et $x' = a(t) \cdot x + b_2(t)$

et $\lambda_1, \lambda_2 \in \mathbb{K}$, alors $\lambda_1 \varphi_1 + \lambda_2 \varphi_2$ est solution de :

$$x' = a(t) \cdot x + b(t)$$

avec : $b = \lambda_1 b_1 + \lambda_2 b_2$.

(Définition 1.5)

On appelle **problème de Cauchy** pour l'équation différentielle linéaire $(\mathcal{E}): x' = a(t) \cdot x + b(t)$ sur I, la conjonction de cette équation et d'une **condition** initiale : $x(t_0) = x_0$ avec $t_0 \in I$ et $x_0 \in E$.

Proposition 1.6 (mise sous forme intégrale d'un problème de Cauchy)

Soit $(t_0,x_0)\in I\times E.$ Une application $\varphi:I\longrightarrow E$ est une solution du problème de Cauchy :

$$(\mathcal{E}): x' = a(t) \cdot x + b(t)$$
 et $x(t_0) = x_0$

si et seulement si elle est continue et vérifie :

$$\forall t \in I, \quad \varphi(t) = x_0 + \int_{t_0}^t (a(s) \cdot \varphi(s) + b(s)) ds.$$

I. B Théorème de Cauchy linéaire

Théorème 1.7 (Cauchy linéaire)

Pour tout $(t_0, x_0) \in I \times E$, il existe une unique solution φ du problème de Cauchy :

$$x' = a(t) \cdot x + b(t)$$
 et $x(t_0) = x_0$.

Exemple 1.8 : Montrer qu'une solution non nulle d'une équation différentielle linéaire homogène : $x' = a(t) \cdot x$ ne s'annule pas.

Corollaire 1.9

Soit $A:I\longrightarrow \mathcal{M}_n(\mathbb{K})$ et $B:I\longrightarrow \mathbb{K}^n$ des applications continues. Pour tout $(t_0,X_0)\in I\times \mathbb{K}^n$, le problème de Cauchy :

$$X' = A(t)X + B(t) \quad \text{et} \quad X(t_0) = X_0$$

admet une unique solution.

Remarque 1.10: Cela correspond à un système de n équations différentielles linéaires scalaires avec une condition initiale pour chaque inconnue.

I. C Espace des solutions

Théorème 1.11

Soit (\mathcal{E}_0) : $x' = a(t) \cdot x$ une équation différentielle linéaire homogène. Alors \mathcal{S}_0 l'ensemble des solutions de (\mathcal{E}_0) est un sous-espace vectoriel de $\mathcal{F}(I,E)$ et pour tout $t_0 \in I$, l'application :

$$\Phi : \mathcal{S}_0 \longrightarrow E \\
\varphi \longmapsto \varphi(t_0)$$

est un isomorphisme.

Corollaire 1.12

Avec les notations du théorème précédent,

$$\dim \mathcal{S}_0 = \dim E.$$

Proposition 1.13

Soit $(\varphi_1, \ldots, \varphi_n)$ une famille de $n = \dim E$ solutions de (\mathcal{E}_0) : x' = a(t)x, les assertions suivantes sont équivalentes:

- $(\varphi_1, \ldots, \varphi_n)$ est une base de S_0 ;
- $\exists t_0 \in I \mid (\varphi_1(t_0), \dots, \varphi_n(t_0))$ est une base de E;
- $\forall t \in I \mid (\varphi_1(t), \dots, \varphi_n(t))$ est une base de E.

Exemple 1.14: reprise de l'exemple 1.3:

$$\begin{cases} x' = y \\ y' = x \end{cases}$$

Théorème 1.15

L'ensemble $\mathcal S$ des solutions de $x'=a(t)\cdot x+b(t)$ est un sous-espace affine de $\mathcal F(I,E)$ de direction $\mathcal S_0$ l'espace des solutions de l'équation homogène associée.

Remarque 1.16: Si φ est une solution de (\mathcal{E}) , alors $\mathcal{S} = \varphi + \mathcal{S}_0$.

- II Systèmes différentiels linéaires homogènes à coefficients constants
- II. A Exponentielle d'un endomorphisme, d'une matrice

Définition 2.1

- Soit $M \in \mathcal{M}_n(\mathbb{K})$, la série $\sum \frac{M^k}{k!}$ converge absolument, on note e^M ou $\exp(M)$ sa limite.
- Soit $a \in \mathcal{L}(E)$, la série $\sum \frac{a^k}{k!}$ converge absolument, on note e^a ou $\exp(a)$ sa limite.

Proposition 2.2

Soit $D = diag(d_1, \ldots, d_n)$ une matrice diagonale.

Alors:

$$e^D = \operatorname{diag}(e^{d_1}, \dots, e^{d_n}).$$

Exemples 2.3:

 $\forall t \in \mathbb{R}, e^{tI_n} = \underline{}$ en particulier : $e^0 = \underline{}$.

Proposition 2.4

Soit $N \in \mathcal{M}_n(\mathbb{K})$ une matrice nilpotente.

Alors:

$$e^N = \sum_{k=0}^{n-1} \frac{N^k}{k!}$$

Proposition 2.5

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$. Si $B = P^{-1}AP$, alors :

$$e^B = P^{-1}e^A P.$$

Remarque 2.6 : En particulier, si A est diagonalisable : $A = PDP^{-1}$, alors : $e^A = Pe^DP^{-1}$ où e^D est diagonale.

Proposition 2.7

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Si les valeurs propres de A, comptées avec multiplicité, sont : $\lambda_1, \ldots, \lambda_n$, alors celles de e^A sont $e^{\lambda_1}, \ldots, e^{\lambda_n}$.

Attention: Ce résultat est faux pour le spectre réel d'une matrice réelle.

Contre exemple 2.8: $A = \begin{pmatrix} 0 & \pi \\ -\pi & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$

Remarque 2.9 : Si X est un vecteur propre de A pour la valeur propre λ , alors c'est un vecteur propre de e^A pour la valeur propre e^{λ} .

Proposition 2.10

Soit $a \in \mathcal{L}(E)$ et \mathcal{B} une base de E. Si $A = \operatorname{Mat}_{\mathcal{B}}(a)$, alors $e^A = \operatorname{Mat}_{\mathcal{B}}(e^a)$.

Théorème 2.11

- L'application exp : $\begin{vmatrix} \mathcal{L}(E) & \longrightarrow & \mathcal{L}(E) \\ a & \longmapsto & e^a \end{vmatrix}$ est continue.
- L'application exp : $\begin{vmatrix} \mathcal{M}_n(\mathbb{K}) & \longrightarrow & \mathcal{M}_n(\mathbb{K}) \\ A & \longmapsto & e^A \end{vmatrix}$ est continue.

Théorème 2.12

• Soit $a \in \mathcal{L}(E)$, l'application $\varphi : t \mapsto e^{ta}$ est de classe \mathcal{C}^1 de \mathbb{R} dans $\mathcal{L}(E)$ et

$$\forall t \in \mathbb{R}, \varphi'(t) = a \circ e^{ta} = e^{ta} \circ a.$$

• Soit $A \in \mathcal{M}_n(\mathbb{K})$, l'application $\varphi : t \mapsto e^{tA}$ est de classe \mathcal{C}^1 de \mathbb{R} dans $\mathcal{M}_n(\mathbb{K})$ et

$$\forall t \in \mathbb{R}, \varphi'(t) = A \times e^{tA} = e^{tA} \times A.$$

Théorème 2.13

• Soit a et b des endomorphismes de E qui commutent, alors :

$$e^{a+b} = e^a \circ e^b = e^b \circ e^a$$
.

• Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ qui commutent, alors :

$$e^{A+B} = e^A \times e^B = e^B \times e^A$$
.

II. B Systèmes différentiels linéaires homogènes à coefficients constants

On s'intéresse dans cette partie à une équation différentielle de la forme :

$$(\mathcal{E}_0): \quad x' = a \cdot x$$

où $a \in \mathcal{L}(E)$.

C'est à dire à une équation différentielle linéaire homogène $x' = a(t) \cdot x$ où la fonction $a: I \longrightarrow \mathcal{L}(E)$ est constante et on identifie alors a à cette constante dans $\mathcal{L}(E)$.

Version matricielle : si \mathcal{B} est une base de E et $A = \operatorname{Mat}_{\mathcal{B}}(a)$, alors l'équation (\mathcal{E}_0) se traduit matriciellement par :

$$X' = A \times X$$

c'est à dire :

$$\begin{cases} x'_1 = a_{1,1}x_1 + \dots + a_{1,n}x_n \\ \vdots \\ x'_n = a_{n,1}x_1 + \dots + a_{n,n}x_n \end{cases}$$

Théorème 2.14

Soit $a \in \mathcal{L}(E), x_0 \in E$ et $t_0 \in \mathbb{R}$. L'application

$$\varphi : \mathbb{R} \longrightarrow E$$

$$t \longmapsto e^{(t-t_0)a} \cdot x_0$$

est l'unique solution du problème de Cauchy :

$$x' = a \cdot x$$
 et $x(t_0) = x_0$.

Remarque 2.15 : De même, $\varphi: t\mapsto e^{(t-t_0)A}X_0$ est l'unique solution du problème de Cauchy :

$$X' = A \times X$$
 et $X(t_0) = X_0$.

II. C Résolution pratique

On s'intéresse à une équation homogène de la forme :

$$X' = A \times X$$

avec $A \in \mathcal{M}_n(\mathbb{K})$, dont les solutions sont les fonctions $t \mapsto e^{tA}V$ avec $V \in \mathbb{K}^n$.

Pour les calculs explicites, on se limite aux deux cas suivants : A diagonalisable ou $\dim(E) \leqslant 3$.

1) Cas où A est diagonalisable

Proposition 2.16 (hors programme)

Soit A une matrice diagonalisable. Soit (V_1, \ldots, V_n) une base de vecteurs propres de A et $\lambda_1, \ldots, \lambda_n$ les valeurs propres associées. Alors, en notant pour tout $k \in [\![1\,;n]\!]$:

$$\varphi_k : \mathbb{R} \longrightarrow \mathbb{K}^n \\
 t \longmapsto e^{\lambda_k t} V_k$$

la famille $(\varphi_1, \ldots, \varphi_n)$ est une base de \mathcal{S}_0 .

Remarque 2.17: En utilisant ce résultat, on obtient l'ensemble des solutions de (S_0) à partir des valeurs propres et des vecteurs propres (c'est à dire de la matrice de passage P), mais on n'a pas besoin de calculer l'inverse de cette matrice de passage.

Exemple 2.18:

$$\begin{cases} x' = x + 3y \\ y' = 3x + y \end{cases}$$

2) Cas où A est \mathbb{C} diagonalisable

Si $A \in \mathcal{M}_n(\mathbb{R})$ est \mathbb{C} diagonalisable, mais pas \mathbb{R} diagonalisable, alors pour toute valeur propre λ non réelle, $\overline{\lambda}$ est valeur propre avec la même multiplicité et pour tout V vecteur propre associé à λ , \overline{V} est un vecteur propre associé à $\overline{\lambda}$.

De plus si $\varphi: \mathbb{R} \longrightarrow \mathbb{C}^n$, alors

$$\operatorname{Vect}(\varphi, \overline{\varphi}) = \operatorname{Vect}(\operatorname{Re} \varphi, \operatorname{Im} \varphi),$$

 $\operatorname{car} \varphi = \operatorname{Re} \varphi + i \operatorname{Im} \varphi, \overline{\varphi} = \operatorname{Re} \varphi - i \operatorname{Im} \varphi$

et Re $\varphi = \frac{\varphi + \overline{\varphi}}{2}$, Im $\varphi = \frac{\varphi - \overline{\varphi}}{2i}$.

Donc, à partir d'une base de solutions complexes, on peut obtenir une base de solutions réelles.

Exemple 2.19:

$$\begin{cases} x' = x - y \\ y' = x + y \end{cases}$$

3) Cas où A est trigonalisable avec une seule valeur propre

Si A est trigonalisable et a une unique valeur propre λ , alors $A = \lambda I_n + N$ avec N nilpotente. On peut alors facilement calculer e^{tA} .

Exemple 2.20:

$$\begin{cases} x' = 3x + y - z \\ y' = 2y \\ z' = x + y + z \end{cases}$$

4) Cas où A est trigonalisable avec plusieurs valeurs propres

Méthode 2.21 (par changement de variable)

- 1. On trigonalise $A = PTP^{-1}$ avec T triangulaire supérieure (la plus simple possible).
- 2. On pose $Y=P^{-1}X$, donc X solution de X'=AX si et seulement si Y est solution de Y'=TY: système triangulaire que l'on résout ligne par ligne en remontant.
- 3. On obtient les solutions à l'aide de X = PY.

Remarque 2.22 : Ici non plus, on n'a pas besoin de calculer P^{-1} .

Méthode 2.23 (par trigonalisation)

- 1. On trigonalise $A=PTP^{-1}$ avec T triangulaire supérieure décomposable sous la forme T=D+N avec D diagonale et N nilpotente qui commutent.
- 2. On calcule $e^{tA} = Pe^{tT}P^{-1}$
- 3. On en déduit l'ensemble des solutions.

Remarque 2.24: Ces méthodes s'appliquent aussi aux autres cas.

Exemple 2.25:

$$\begin{cases} x' = 4x + y - 3z \\ y' = 2x + y - 2z \\ z' = 4x + y - 3z \end{cases}$$

III Équations scalaires d'ordre n

Définition 3.1

On appelle équation différentielle linéaire scalaire d'ordre n une équation de la forme :

$$(\mathcal{E}): \quad x^{(n)} + \sum_{k=0}^{n-1} a_k(t) x^{(k)} = b(t)$$

où $(a_k)_{k\in[0,n-1]}$ est une famille de n applications continues de I dans \mathbb{K} et b est une application continue de I dans \mathbb{K} .

Une **solution** de cette équation est une application $\varphi: I \longrightarrow \mathbb{K}$, n fois dérivable telle que :

$$\forall t \in I, \quad \varphi^{(n)}(t) + \sum_{k=0}^{n-1} a_k(t) \varphi^{(k)}(t) = b(t).$$

L'équation homogène associée à (\mathcal{E}) est :

$$x^{(n)} + \sum_{k=0}^{n-1} a_k(t)x^{(k)} = 0.$$

Remarque 3.2 : Toute solution de (\mathcal{E}) est nécessairement de classe \mathcal{C}^n sur I.

On considère (\mathcal{E}) une équation différentielle linéaire scalaire d'ordre n et les applications $A: I \longrightarrow \mathcal{M}_n(\mathbb{K}), B: I \longrightarrow \mathbb{K}^n$ définies par

$$A: t \mapsto \begin{pmatrix} 0 & 1 \\ \vdots & \ddots & \ddots & & & & \\ \vdots & & \ddots & \ddots & & & \\ \vdots & & & \ddots & \ddots & & \\ 0 & & \dots & & \dots & 0 & 1 \\ -a_0(t) & -a_1(t) & \dots & \dots & -a_{n-1}(t) \end{pmatrix} \quad \text{et} \quad B: t \mapsto \begin{pmatrix} 0 \\ \vdots \\ 0 \\ b(t) \end{pmatrix}$$

Remarque 3.3 : Pour tout t, la matrice A(t) est la transposée de la matrice compagnon du polynôme $P = X^n + \sum_{k=0}^{n-1} a_k(t)X^k$.

Proposition 3.4

Une application $\varphi: I \longrightarrow \mathbb{K}$ est solution de l'équation différentielle (\mathcal{E}) si et seulement si l'application $\Phi: t \mapsto \begin{pmatrix} \varphi(t) \\ \vdots \\ \varphi^{n-1}(t) \end{pmatrix}$ est solution du système différentiel :

$$X' = A(t)X + B(t).$$

De plus, toute solution Φ de X' = A(t)X + B(t) est de la forme $\Phi : t \mapsto \begin{pmatrix} \varphi(t) \\ \vdots \\ \varphi^{n-1}(t) \end{pmatrix}$ avec φ solution de (\mathcal{E}) .

Théorème 3.5 (Théorème de Cauchy linéaire)

Pour tout $t_0 \in I$ et tout $(x_0, \ldots, x_{n-1}) \in \mathbb{K}^n$, il existe une unique solution φ du **problème de Cauchy linéaire scalaire d'ordre** n:

$$x^{(n)} + \sum_{k=0}^{n-1} a_k(t) x^{(k)} = 0$$
 et $\forall k \in [0; n-1], \varphi^{(k)}(t_0) = x_k$.

(Proposition 3.6)

L'ensemble S_0 des solutions de l'équation homogène est un sous-espace vectoriel de $C^n(I, \mathbb{K})$ et pour tout $t_0 \in I$, l'application

$$\begin{array}{ccc}
\mathcal{S}_0 & \longrightarrow & \mathbb{K}^n \\
\varphi & \longmapsto & \left(\varphi(t_0), \varphi'(t_0), \dots, \varphi^{n-1}(t_0)\right)
\end{array}$$

est un isomorphisme d'espaces vectoriels.

(Proposition 3.7)

- L'ensemble S_0 des solutions de l'équation homogène (\mathcal{E}_0) est un sous-espace vectoriel de $\mathcal{C}^n(I,\mathbb{K})$ de dimension n.
- L'ensemble \mathcal{S} des solutions de l'équation (\mathcal{E}) est un sous-espace affine de $\mathcal{C}^n(I,\mathbb{K})$ de direction \mathcal{S}_0 .

Exemple 3.8 : Résolution d'une équation différentielle linéaire d'ordre 2 à coefficients constants.

IV Équations scalaires d'ordre 2

On considère une équation linéaire scalaire du second ordre :

$$(\mathcal{E}) \quad x'' + a_1(t)x' + a_0(t)x = b(t),$$

où a_0, a_1 et b sont des fonctions continues de I dans \mathbb{K} .

On sait que:

- l'espace S_0 des solutions de l'équation homogène (\mathcal{E}_0) associée à (\mathcal{E}) est de dimension 2 :
- si φ_p est une solution de (\mathcal{E}) , alors l'ensemble \mathcal{S} des solutions de (E) est le sous-espace affine :

$$\mathcal{S} = \varphi_p + \mathcal{S}_0.$$

• d'après le théorème de Cauchy linéaire, pour tout $t_0 \in I$ et $(x_0, x_1) \in \mathbb{K}^2$, le problème de Cauchy :

$$x'' + a_1 x'(t) + a_0 x(t) = b(t)$$
 et $x(t_0) = x_0, x'(t_0) = x_1$

admet une unique solution.

IV. A Wronskien

Définition 4.1

Soit φ_1, φ_2 deux solutions de l'équation homogène (\mathcal{E}_0) . On appelle **wronskien** du couple de solutions (φ_1, φ_2) l'applicaction :

$$\begin{array}{cccc} W_{\varphi_1,\varphi_2} & : & I & \longrightarrow & \mathbb{K} \\ & & t & \longmapsto & \det \begin{pmatrix} \varphi_1(t) & \varphi_2(t) \\ \varphi_1'(t) & \varphi_2'(t) \end{pmatrix}. \end{array}$$

Proposition 4.2

Le wronskien d'un couple $(\varphi_1, \varphi_2) \in \mathcal{S}_0^2$ est solution sur I de l'équation différentielle linéaire homogène d'ordre 1:

$$x' + a_1(t)x = 0.$$

Exemple 4.3 : pour une équation x'' + q(t)x = 0, le wronskien d'un couple de solutions est constant.

Théorème 4.4

Soit φ_1 et φ_2 des solutions de (\mathcal{E}_0) et W le wronskien du couple (φ_1, φ_2) . Les assertions suivantes sont équivalentes :

- (φ_1, φ_2) est une base de S_0 ;
- $\exists t \in I \mid W(t) \neq 0$;
- $\forall t \in I, W(t) \neq 0.$

IV. B Méthodes de résolution d'une équation homogène

(Méthode 4.5)

On cherche des solutions évidentes.

Méthode 4.6

Rechercher une solution polynomiale, on commence par raisonner sur le degré.

Exemple 4.7: Déterminer les solutions polynomiales de l'équation :

$$(t^2 + 2t - 1)x'' + (t^2 - 3)x' - (2t + 2)x = 0.$$

Méthode 4.8 (solutions développables en séries entières)

- 1. On suppose qu'il existe une solution φ développable en série entière sur]-R; R[avec R>0;
- 2. on remplace $\varphi(t)$ par $\sum_{n=0}^{+\infty} a_n t^n$ dans l'équation, et par unicité du développement en série entière, on en déduit les coefficients;
- 3. on reconnait un développement en série entière usuel, ou on vérifie que l'on a bien R>0. Les calculs sur les coefficients permettent de justifier que φ est alors bien solution.

Exemple 4.9:

$$x'' + tx' + x = 0$$

Méthode 4.10 (on connaît une solution qui ne s'annule pas sur I)

Soit f une solution de l'équation homogène qui ne s'annule pas sur I. On cherche une solution sous la forme λf avec $\lambda \in \mathcal{C}^2(I)$.

La fonction λf est solution de $\mathcal E$ si et seulement si λ' est solution d'une équation d'ordre 1.

Exemple 4.11: Sur $]0; +\infty[:$

$$x'' + \frac{x'}{t} - \frac{x}{t^2} = 0$$

IV. C Méthode de variation des constantes

Supposons connue (φ_1, φ_2) une base de l'espace \mathcal{S}_0 des solutions de l'équation homogène (\mathcal{E}_0) . La méthode de variation des constantes consiste à chercher une solution de (\mathcal{E}) sous la forme :

$$\varphi = \lambda_1 \varphi_1 + \lambda_2 \varphi_2$$
 avec λ_1, λ_2 dérivables sur I .

Donc:

$$\varphi'' + a_1 \varphi' + a_0 \varphi = 2(\lambda_1' \varphi_1' + \lambda_2' \varphi_2') + a_1(\lambda_1' \varphi_1 + \lambda_2 \varphi_2) + (\lambda_1'' \varphi_1 + \mu'' \varphi_2).$$

Ainsi, φ est solution de (\mathcal{E}) si :

$$\begin{cases} \lambda_1' \varphi_1 + \lambda_2' \varphi_2 = 0 \\ \lambda_1' \varphi_1' + \lambda_2' \varphi_2' = b. \end{cases}$$

Le déterminant de ce système est le wronskien, il ne s'annule pas car (φ_1, φ_2) est supposé être une base de \mathcal{S}_0 . Cela permet ainsi de déterminer λ'_1 et λ'_2 . En primitivant on en déduit **une** solution de (\mathcal{E}) .

Exemple 4.12 : résoudre sur $]0; +\infty[$:

$$x'' + \frac{1}{t}x' - \frac{1}{t^2}x = 3 - \frac{1}{t^2}.$$

V Équations non normalisées

Étant donné une équation différentielle linéaire scalaire de la forme :

$$a_n(t)x^{(n)} + \dots + a_0(t)x = b(t),$$

si la fonction a_n ne s'annule pas sur l'intervalle I de résolution, alors en divisant par $a_n(t)$, on se ramène à une équation normalisée.

Méthode 5.1

Pour résoudre une équation différentielle de la forme $a_n(t)x^{(n)} + \cdots + a_0(t)x = b(t)$ lorsque a_n s'annule sur I:

- on résout l'équation sur tout sous intervalle de I où a_n ne s'annule pas;
- On effectue un racordement par analyse-synthèse :
 - prolongement par continuité aux points de racordement;
 - $-\,$ vérification de la dérivabilité en ces points ;
 - vérification de l'équation différentielle.

Attention : • la dimension du sous-espace S_0 des solutions n'est pas nécessairement l'ordre de l'équation.

• le problème de Cauchy n'a pas nécessairement une unique solution.

Exemples 5.2: 1. tx' - x = 0 sur $I = \mathbb{R}$.

- 2. tx' 2x = 0 sur $I = \mathbb{R}$.
- 3. $tx' + 2x = \frac{t^2}{1+t^2} \text{ sur } I = \mathbb{R}.$
- 4. $2t^2x'' 5tx' + 5x = 0$ sur \mathbb{R} on cherchera des solutions sous la forme $t \mapsto t^{\alpha}$ sur $[0; +\infty[$.