Sample answers

Session 8

Q1. In the same situation as above example, what does Markov's Inequality tell you about the probability it takes 2 or more attempts?

Answer. This time we have

$$P(X \ge 2) \le \frac{E(X)}{2} = \frac{2.5}{2} = 1.25.$$

This should not be confusing. The probability must be always less than 1, so in this case, Markov's Inequality is true, but not helpful. \Box

Q2: How to proof Lemma 5.3?

$$X_1, \dots, X_n$$
 independent, $S_0, \forall i, j = 1, \dots, n$, $i \neq j$,

we have $C_0 v(X_1, X_j) = 0$
 $Var(\frac{1}{2}X_j) = E(\frac{1}{2}X_j)^2 - [E(\frac{1}{2}X_j)]^2$
 $= E[\frac{1}{2}X_j^2 + 2\frac{1}{2}X_j^2 + 2\frac{$