

Linguagens Formais e Autômatos (LFA)

Aula de 19/08/2013

Símbolos, Cadeias, Linguagens Propriedades e Representações Formais de Interesse

(1)

Nota preliminar

O conceito de "decomposição" e suas representações

Estruturas e Composições Unidades e Átomos

Todo

= Parte 1

Parte 2

(3) Todo = Parte 1 + Parte 2

(4)
Todo → Parte 1 Parte 2
Todo → Parte 1 , Parte

Algumas (de)composições interessantes

Usando uma das notações do slide anterior (4)

Todo → ParteA ParteB

Parte $A \rightarrow a$

ParteA \rightarrow a ParteA

ParteB \rightarrow b

Todo → ParteA ParteB

Parte $A \rightarrow a$

Parte $A \rightarrow a$ Parte A

ParteB \rightarrow b

 $ParteB \rightarrow b ParteB$

Dê exemplos de "Todos" válidos a cada caso.

Continua no próximo slide

Algumas (de)composições interessantes

Continuação

Todo → ParteA ParteB

Parte $A \rightarrow a$

Parte $A \rightarrow \epsilon$ (ϵ representa cadeia vazia)

ParteB \rightarrow b

Todo → ParteA ParteB

Parte $A \rightarrow a$

 $ParteA \rightarrow a ParteA$

ParteB $\rightarrow \epsilon$

ParteB \rightarrow b

ParteB \rightarrow b ParteB

Dê exemplos de "Todos" válidos a cada caso.

Tradução entre notações

Tente transformar estas notações (4) em notações (2)

- Todo → ParteA ParteB
 ParteA → a
 ParteA → a ParteA
 ParteB → b
- Todo → ParteA ParteB
 ParteA → a
 ParteA → a ParteA
 ParteB → b
 ParteB → b ParteB

- Todo \rightarrow ParteA ParteB ParteA \rightarrow a ParteA \rightarrow ϵ (ϵ representa cadeia vazia) ParteB \rightarrow b
- Todo → ParteA ParteB
 ParteA → a
 ParteA → a ParteA
 ParteB → ε
 ParteB → b
 ParteB → b ParteB

Expressividade de notações

As notações (1), (2), (3) e (4) podem expressar conjuntos de infinitos elementos.

Já falamos em representações de conjuntos infinitos antes?

Expressividade de notações

As notações (1), (2), (3) e (4) podem expressar conjuntos de infinitos elementos.

Já falamos em representações de conjuntos infinitos antes?

Símbolos e Cadeias

Símbolos são átomos (ou unidades indivisíveis).

<u>Cadeias</u> são **justaposições** (ou **concatenações**) de um número finito de símbolos, ou <u>alfabeto</u>.

Exemplo:

Alfabeto = $\{0,1,2,3,4,5,6,7,8,9\}$

Cadeias-exemplo:

101, 2013, 45690, 9

101 é uma cadeia formada pela concatenação de 3 símbolos do alfabeto {0,1,2,3,4,5,6,7,8,9}: 1,0,1

2013 é uma cadeia formada pela concatenação de 4 símbolos do alfabeto {0,1,2,3,4,5,6,7,8,9}: 2,0,1,3

45690 e 9 também são cadeias formadas com o alfabeto {0,1,2,3,4,5,6,7,8,9}.

Mas o mesmo não é verdade para as cadeias: 2013-1, INF1626, LFA.

Operações básicas sobre cadeias

Comprimento, representada como |x|, significa o número de símbolos concatenados para formar x.

Exemplo: |cadeia| = 6

Concatenação, representada como x.y, significa a justaposição da cadeia x à cadeia y.

Exemplo: cadeias = cadeias

Note que |cadeia.s| = |cadeia|+|s| = 6 + 1 = 7

Potenciação (iteração), representada por x^y , significa a justaposição de y cópias de x.

Exemplo: cadeia³ = cadeiacadeiacadeia

Indexação, representada por x_y , significa o y_e ésimo símbolo de x.

Exemplo: cadeia₃ = d

Elemento neutro, sufixação e prefixação

Seja ϵ a representação de uma cadeia vazia e α uma cadeia qualquer.

Propriedades do **elemento neutro**:

- $\epsilon.\alpha = \alpha.\epsilon = \alpha$
- $|\varepsilon.\alpha| = |\alpha.\varepsilon| = |\alpha|$

Uma cadeia α é **prefixo** de uma cadeia β se existe γ tal que β = $\alpha.\gamma$.

Uma cadeia α é sufixo de uma cadeia β se existe γ tal que β = $\gamma.\alpha$.

Observação: Considerando-se que ϵ é o elemento neutro da concatenação, ele é prefixo e sufixo de qualquer cadeia. No entanto, os casos mais interessantes são os de <u>prefixo e sufixo próprios</u>, verificados quando a cadeia de início ou fim de β **não é vazia**.

Uma cadeia α é <u>subcadeia</u> de uma cadeia β se existem duas cadeias γ e δ tais que β = $\gamma.\alpha.\delta$.

Cadeias reversas

Uma cadeia α é o <u>reverso</u> de uma cadeia β (α = β R) se α contiver os mesmos símbolos de β , porém justapostos no sentido no sentido inverso ('de trás para frente'). Ou seja, se α = β R então:

$$\bullet \alpha = \sigma 1$$
, $\sigma 2$, ..., σn -1, σn

•
$$\beta$$
 = σn , σn -1 , ... $\sigma 2$, $\sigma 1$

Precisa de um lembrete para o alfabeto grego?

Αα...Ωω

Alfabeto grego			
Aα	Alfa	Nv	Nu
Вβ	Beta	Ξξ	Csi
Γγ	Gama	Oo	Ómicron
Δδ	Delta	$\Pi\pi$	Pi
Εε	Épsilon	Pρ	Rô
Zζ	Zeta	Σσς	Sigma
$H\eta$	Eta	$T\tau$	Tau
Θθ	Teta	Yυ	Úpsilon
Ιι	lota	$\Phi \phi$	Fi
Kκ	Capa	Xχ	Qui
$\Lambda\lambda$	Lambda	Ψ_{Ψ}	Psi
$\mathbf{M}\boldsymbol{\mu}$	Mu	$\Omega\omega$	Ômega

Linguagens Formais (ou "Linguagens")

Uma linguagem é um conjunto - finito ou infinito - de cadeias de comprimento finito formadas pela concatenação de símbolos de um alfabeto finito e não vazio.

Obs: Na maioria das linguagens interessantes com que trabalhamos as cadeias que a elas pertencem seguem regras de formação (ou seja, não são meras justaposições quaisquer de símbolos que pertençam ao alfabeto da linguagem).

Cadeia Vazia, Conjunto Vazio, Linguagem = $\{\epsilon\}$

L1 = $\{\epsilon\}$ é uma linguagem que contém uma única cadeia de símbolos, casualmente a cadeia vazia (ϵ) .

$$|L1| = 1$$

L2 = Ø é uma linguagem vazia (Ø) que não contém cadeia nenhuma.

$$|L2| = 0$$

Concatenação de símbolos e de linguagens

Concatenação de símbolos (já vista no slide 9).

Concatenação Z de linguagens X e Y

Z = X.Y = {x.y | x∈X e y∈Y}

Exemplo-exercício: Seja Z a linguagem equivalente a X.Y para

- X = {αβγ | Alfabeto = {a,b,c,..., x,y,w,z}, α, β, γ ∈ Alfabeto }
- $Y = {\alpha\beta\gamma\delta \mid Alfabeto = \{0,1,2,3,4,5,6,7,8,9\}, \alpha, \beta, \gamma, \delta \in Alfabeto \}}$

Concatenação de símbolos e de linguagens

Concatenação de símbolos (já vista no <u>slide 9</u>).

Concatenação Z de linguagens X e Y

Z = X.Y = {x.y | x ∈ X e y ∈ Y}

Z lhes parece uma "linguagem" familiar? Onde a encontramos?

Exemplo-exercício: Seja Z a linguagem equivalente a X.Y para

•
$$X = {\alpha\beta\gamma \mid Alfabeto = {a,b,c,...,x,y,w,z}, \alpha, \beta, \gamma \in Alfabeto}$$

•
$$Y = {\alpha\beta\gamma\delta \mid Alfabeto = \{0,1,2,3,4,5,6,7,8,9\}, \alpha, \beta, \gamma, \delta \in Alfabeto \}}$$

Fechamento reflexivo (ou recursivo) e transitivo

O fechamento reflexivo (ou recursivo) e transitivo de um alfabeto Σ é o conjunto (infinito) de todas as possíveis cadeias resultantes da concatenação de seus elementos mais a cadeia vazia ε .

Pergunta: Qual o fechamento reflexivo e transitivo do alfabeto da linguagem Z, definida no slide 14?

Denotamos o fechamento reflexivo e transitivo de um alfabeto Σ por Σ^* .

Fechamento transitivo

O fechamento transitivo de um alfabeto Σ é o conjunto (infinito) de todas as possíveis cadeias resultantes da concatenação de seus elementos sem a cadeia vazia ϵ .

Denotamos o fechamento transitivo de um alfabeto Σ por Σ^{+} .

Voltando a linguagens típicas

Substituição

Substituição é uma **função** que mapeia elementos de um alfabeto $\Sigma 1$ sobre um alfabeto $\Sigma 2$.

Voltando ao início da aula, seja $\Sigma = \{a,b\}$ e $L \subseteq \Sigma^+$

- Seja Σ1 = {Todo, ParteA, ParteB}
- Seja $\Sigma 2 = \Sigma 1 \cup \Sigma = \{a,b\} \cup \{ParteA, ParteB\}$
- Seja " → " notação para uma função de "substituição"

As propriedades restritivas de L (uma das linguagens examinadas no início da aula), podem ser (e, como se vê, foram) definidas por funções de substituição de símbolos de $\Sigma 1$ (à esquerda de \rightarrow) por símbolos de $\Sigma 2$ (à direita de \rightarrow).

Todo → ParteA ParteB

Parte $A \rightarrow a$

ParteA → a ParteA

ParteB → b

ParteB \rightarrow b ParteB

Para casa da aula 3

Examine as linguagens L1, L2 e L3 a seguir e responda:

- 1. Elas definem o mesmo conjunto de cadeias? Como você concluiu isto?
- Atentando para os símbolos que aparecem à esquerda e direita de "→"
 nas propriedades que as definem, o que distingue as três linguagens
 entre si?
- Você tem algo mais a comentar?

<u>L1:</u>	<u>L2:</u>	<u>L3:</u>
$T \rightarrow A B$ $A \rightarrow a$ $A \rightarrow a A$ $B \rightarrow b$ $B \rightarrow b B$	$T \rightarrow a X$ $X \rightarrow a X$ $X \rightarrow b$ $X \rightarrow b Y$ $Y \rightarrow b Y$	$T \rightarrow a A$ $A \rightarrow a A$ $A \rightarrow b B$ $B \rightarrow b B$ $B \rightarrow \varepsilon$