Math 345 – PS#3 Solutions Summer 2, 2012

p.60, #36. Prove that the generators of \mathbb{Z}_n are the congruence classes [r] such that $1 \leq r < n$ and $\gcd(r,n)=1.$

Proof. First note that $\mathbb{Z}_n = \langle [1] \rangle$ since [r] = r[1]. Let $[r] \in \mathbb{Z}_n \setminus [0]$; then [r] = r[1]. By Theorem 4.6, |[r]| = n/d, where $\gcd(r, n) = d$. But [r] is a generator if and only if |[r]| = n if and only if d = 1.

p.60, #38. Prove that the order of an element in a cyclic group G must divide the order of the group. **Proof.** Let $a \in G$. Then $|a| = |\langle a \rangle|$. By Lagrange's Theorem 6.5, $|\langle a \rangle| | |G|$. Therefore |a| | |G|.

p.76, #27. Let G be a group and let $g \in G$. Prove that the function $\lambda_q : G \to G$ defined by $\lambda_q(a) = ga$ is a permutation of G.

Proof. To show that λ_q is injective, assume that $\lambda_q(a) = \lambda_q(b)$. Evaluating both sides gives ga = gb so that a=b by left cancellation. Hence λ_q is injective. To show that λ_q is surjective, let $b\in G$; then $g^{-1}b\in G$ since G has inverses and the closure property holds in G. But $(g^{-1}b) = g(g^{-1}b) = (gg^{-1})b = eb = b$. Therefore λ_q is surjective.

p.76, #29. Recall that the **center** of a group G is the subgroup $Z(G) = \{g \in G \mid gx = xg \text{ for all } x \in G\}$. Find the center of D_8 . What about the center of D_{10} ? What is the center of D_n ?

Solution. First note that any two rotations in D_n commute: Let r be the rotation of $2\pi/n$ in D_n . Then the rotations in D_n are $\{r, r^2, \dots r^{n-1}, r^n = id\}$ and $r^m r^n = r^{m+n} = r^{n+m} = r^n r^m$ for all m, n. Let sbe the reflection in D_n that fixes vertex 1; then the reflections in D_n are $\{s, sr, sr^2, \dots, sr^{n-1}\}$. Note that $r^{i}(sr^{j}) = r^{i}(sr^{j}ss) = r^{i}(srs)^{j}s = r^{i}(r^{-1})^{j}s = r^{i}r^{-j}s = r^{i-j}s$ and $(sr^{j})r^{i} = sr^{i+j}ss = r^{-i-j}s$. Thus $r^i(sr^j) = (sr^j)r^i$ iff $i-j \equiv -i-j \pmod{n}$ iff $2i \equiv 0 \pmod{n}$. Thus $Z(D_{2n}) = \{id, r^n\}$ and $Z(D_{2n+1}) = \{id\}$. In particular, $Z(D_8) = \{id, r^4\}$ and $Z(D_{10}) = \{id, r^5\}$.

- p., #11. Let H be a subgroup of a group G. Prove that
 - a. If $x \in H$, then Hx = H.
 - b. If $g_1, g_2 \in G$ and $g_1 \in g_2H$, then $g_2H \subseteq g_1H$.

 - c. If $g_1, g_2 \in G$ and $g_1^{-1}g_2 \in H$, then $Hg_2^{-1} \subseteq Hg_1^{-1}$. d. If $g_1, g_2 \in G$ and $Hg_1^{-1} = Hg_2^{-1}$, then $g_1^{-1}g_2 \in H$.

Proof. (a) Let $a \in Hx$. Then there exists some $h \in H$ such that a = hx. But $x \in H$, so $a = hx \in H$ by closure. Therefore $Hx \subseteq H$. Let $b \in H$. Then $b = b(x^{-1}x) = (bx^{-1})x$. But $x^{-1} \in H$ since H is a subgroup containing x, and $bx^{-1} \in H$ by closure. Hence $b = (bx^{-1}) x \in Hx$ and $H \subseteq Hx$.

- (b) Let $x \in g_2H$. Then there exists $h \in H$ such that $x = g_2h$. Since $g_1 \in g_2H$, there exists $h' \in H$ such that
- $g_1 = g_2 h'$ and $g_2 = g_1 (h')^{-1}$. Thus $x = g_2 h = \left(g_1 (h')^{-1}\right) h = g_1 \left((h')^{-1}h\right) \in g_1 H$. Therefore $g_2 H \subseteq g_1 H$. (c) Let $x \in Hg_2^{-1}$. Then there exists $h \in H$ such that $x = hg_2^{-1}$. Since $g_1^{-1}g_2 \in H$, there exists $h' \in H$ such that $g_1^{-1}g_2 = h'$ and $g_2^{-1} = (h')^{-1}g_1^{-1}$. Thus $x = hg_2^{-1} = h\left((h')^{-1}g_1^{-1}\right) = \left(h(h')^{-1}\right)g_1^{-1} \in Hg_1^{-1}$.
- Therefore $Hg_2^{-1} \subseteq Hg_1^{-1}$. (d) Let $x \in Hg_1^{-1} = Hg_2^{-1}$. Then there exist $h, h' \in H$ such that $x = hg_1^{-1} = h'g_2^{-1}$. Hence $g_1^{-1}g_2 = h^{-1}h' \in H$ H.