Cálculo I–Agrupamento 4

2019/2020

Soluções da Ficha de Exercícios 1

1. (a)
$$f^{-1}: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$
; $CD_{f^{-1}} = \mathbb{R} \setminus \{-1\}$
 $x \longmapsto \frac{1}{x} - 1$;

(b)
$$f^{-1}:]2, +\infty[\longrightarrow \mathbb{R}$$
 ; $CD_{f^{-1}} = \mathbb{R}$ $x \longmapsto -1 + \ln(x-2)$

(c)
$$f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$$
 $CD_{f^{-1}} =]-\infty, 2[$ $x \longmapsto 2-3^x$

(d)
$$f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$$
 ; $CD_{f^{-1}} = \mathbb{R}$ $x \longmapsto x^3 - 1$

2. (a) —; (b)
$$f^{-1}(x) = \ln(x + \sqrt{x^2 + 1}), D_{f^{-1}} = \mathbb{R};$$
 (c) $g_{\mathbb{R}_0^+}, CD_{g_{\mathbb{R}_0^+}} = CD_g = [1, +\infty[$.

3. (a)
$$\frac{\sqrt{3}}{2}$$
; (b) $\frac{\pi}{2}$; (c) $-\frac{1}{2}$; (d) $\frac{\sqrt{3}}{2}$; (e) $\frac{5}{12}$; (f) $-\frac{7}{25}$; (g) $\frac{1}{2}$; (h) $\frac{\pi}{4}$; (i) 0.

4. (a)
$$\mathcal{D}_{f^{-1}} = \left[-\frac{1}{2}, \frac{1}{2} \right] \; ; \; \mathcal{C}\mathcal{D}_{f^{-1}} = \left[-\pi, 0 \right] \; ; \; f^{-1}(y) = \arcsin{(2y)} - \frac{\pi}{2} ;$$

(b)
$$\mathcal{D}_{f^{-1}} = \left[\frac{\pi}{6}, \frac{5\pi}{6}\right] \; ; \; \mathcal{C}\mathcal{D}_{f^{-1}} = [0, 2] \; ; \; f^{-1}(y) = 1 - \operatorname{sen}\left(\frac{3\pi}{4} - \frac{3y}{2}\right) ;$$

(c)
$$\mathcal{D}_{f^{-1}} = \mathbb{R} \setminus \{0\} \; ; \; \mathcal{CD}_{f^{-1}} =] - \infty, 0[\cup]4, +\infty[\; ; \; f^{-1}(y) = 2 - \frac{\pi}{\arctan y};$$

(d)
$$\mathcal{D}_{f^{-1}} = \left[-\frac{\pi}{2}, \pi \right] \; ; \; \mathcal{C}\mathcal{D}_{f^{-1}} = \left[-4, -3 \right] \; ; \; f^{-1}(y) = \cos^2\left(\frac{y + \frac{\pi}{2}}{3}\right) - 4;$$

(e)
$$\mathcal{D}_{f^{-1}} = \left[-\frac{\pi}{2}, \frac{5\pi}{2} \right] \quad \mathcal{C}\mathcal{D}_{f^{-1}} = \mathbb{R} \; ; \; f^{-1}(y) = 2\operatorname{tg}\left(\frac{\pi - y}{3}\right) + 1;$$

(f)
$$\mathcal{D}_{f^{-1}} =]0, \pi[\ \mathcal{C}\mathcal{D}_{f^{-1}} =]-1, +\infty[\ ;\ f^{-1}(y) = e^{\cot y} - 1.$$

5.
$$(f^{-1})'(-3) = \frac{1}{54}$$
.

6.
$$(f^{-1})'(2) = 1$$
.

7. (a)
$$\frac{1}{3\sqrt[3]{x^2}}$$
; (b) -1.

8. (a)
$$f'(x) = \frac{4}{3\sqrt[3]{2x-1}}$$
, $D_{f'} = \mathbb{R} \setminus \{\frac{1}{2}\}$; (b) $f'(x) = 2x e^{x^2} (1+x^2)$, $D_{f'} = \mathbb{R}$; (c) $f'(x) = \frac{-2\operatorname{sen}(\log_2(x^2))}{x \ln 2}$, $D_{f'} = \mathbb{R} \setminus \{0\}$; (d) $f'(x) = \frac{1-x^2(2\ln x+1)}{x}$, $D_{f'} = \mathbb{R}^+$; (e) $f'(x) = 2x \operatorname{arctg} x + 1$, $D_{f'} = \mathbb{R}$; (f) $f'(x) = \frac{1}{2\sqrt{x-x^2}}$, $D_{f'} =]0, 1[$;

(e)
$$f'(x) = 2x \arctan x + 1$$
, $D_{f'} = \mathbb{R}$; (f) $f'(x) = \frac{1}{2\sqrt{x-x^2}}$, $D_{f'} =]0, 1[$;

9. (a)
$$\frac{-12x^2\cos(4x^3)}{1+\sin^2(4x^3)}$$
; (b) $\frac{-2}{x\sqrt{x^4-1}} = \frac{-2\sqrt{x^4-1}}{x^5-x}$; (c) $\frac{e^x}{\sqrt{2e^x-e^{2x}}}$; (d) $\frac{1}{x(2+\ln^2x+\ln(x^2))}$.

13.
$$f$$
 tem um zero em $]0,1[$, um em $]1,2[$ e outro em $]-1,0[$.

15. Verdadeira.

- 16. (a) Sugestão: Considere a função $f(x) = \arcsin x x$ e prove que é positiva no intervalo considerado analisando o comportamento da primeira derivada; (b) —; (c) —.
- 17. A função f é crescente em $]-\infty,0]$, decrescente em $[0,+\infty[$ e tem máximo f(0)=1 em x=0.
- 18. x = 0 é um minimizante local; h(0) = 5.
- 19. —
- 20. —
- $21. \lim_{x \to +\infty} \frac{x \sin x}{x + \sin x} = 1.$
- 22. (a) 1/9; (b) não existe; (c) 2/3; (d) -1/2; (e) -1; (f) 0; (g) 1; (h) 0; (i) 1; (j) e^4 ; (k) $\ln 3$; (l) 1; (m) e; (n) e^{-2} ; (o) 0.
- 23. (a) É contínua em \mathbb{R} ;
 - (b) f não é diferenciável em x = 0;
 - (c) $b = \frac{1}{6}$.
 - (d) máximo global: 0; mínimo global: -5π
- 24. (a) f é contínua em [0, e]; (b) $+\infty$;
 - (c) 0 é mínimo absoluto e 1 é máximo absoluto;
 - (d) $CD_f = [0, 1]$.
- 25. (a) f é contínua em x = 0.
 - (b) f não é diferenciável em x=0.
 - (c) f tem mínimo global em x = 0.
 - (d) —
 - (e) —
 - (f) $g^{-1}: [0, \pi/2[\to \mathbb{R} \quad g^{-1}(x) = -\sqrt{\operatorname{tg} x}, CD_{f^{-1}} = \mathbb{R}_0^-.$
- 26. —
- 27. (a) $D_f = [0, 2]$.
 - (b) —
 - (c) Para justificar a existência de máximo e mínimo globais usar o Teorema de Weierstrass. Observar que f'(x) < 0, para todo $x \in]0,2[$, $f(0) = \frac{\pi}{2}$ e $f(2) = \frac{-\pi}{2}$. Então o mínimo global é $\frac{-\pi}{2}$ e o máximo global é $\frac{\pi}{2}$.
 - (d) $CD_f = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$
- 28. —
- 29. —
- 30. (a) $[-\sqrt{2}, \sqrt{2}];$
 - (b) —
- 31. 1
- 32. f é estritamente decrescente em $]-\infty,0[$ e em $]0,+\infty[$. A função f não tem extremos locais.
- 33. (a) ; (b) 10^3 ; (c) $10^{0.75} 1$, que é aproximadamente 4.62; (d) 9.
- 34. (a) N é estritamente decrescente em \mathbb{R}_0^+ ;
 - (b) t = 0 é maximizante absoluto e o máximo absoluto correspondente é N(0) = a;
 - (c) $CD_N =]0, a];$
 - (d) 5×10^9 anos.