Noções Topológicas em Rⁿ

Revisão - norma e distância em \mathbb{R}^n

Chama-se **norma Euclideana em R**ⁿ à norma associada ao produto interno canónico em **R**ⁿ, isto é, à função definida por

$$\| \cdot \| : \mathbf{R}^n \to \mathbf{R}$$
 $\mathbf{x} \to \| \mathbf{x} \| = \sqrt{\mathbf{x} | \mathbf{x}} = \sqrt{x_1^2 + \dots + x_n^2}$

Tal como todas as normas, verifica as seguintes propriedades:

- $\|\mathbf{x}\| \geq 0, \forall \mathbf{x} \in \mathbf{R}^n$;
- $||a\mathbf{x}|| = |a||\mathbf{x}||, \forall \mathbf{x} \in \mathbf{R}^n \text{ e } \forall a \in \mathbf{R};$
- $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}^n;$
- Se $\|\mathbf{x}\| = 0$ então $\mathbf{x} = \mathbf{0}$.

Chama-se distância (ou métrica) associada à norma Euclideana em \mathbb{R}^n à função

$$d: \mathbf{R}^{n} \times \mathbf{R}^{n} \to \mathbf{R}$$

$$(\mathbf{x}, \mathbf{y}) \to d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$

onde ||. || é a norma Euclideana.

Portanto,

$$d(\mathbf{x},\mathbf{y}) = \sqrt{(x_1 - y_1)^2 + ... + (x_n - y_n)^2}.$$

A distância Euclideana goza das seguintes propriedades:

- $d(\mathbf{x}, \mathbf{y}) \geq 0, \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}^n$;
- $d(\mathbf{x}, \mathbf{y}) = 0 \operatorname{sse} \mathbf{x} = \mathbf{y};$
- $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x}), \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}^n$;
- $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}), \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{R}^n$.

Nota: Qualquer função distância associada a uma norma verifica estas propriedades, que resultam das propriedades da norma.

Bola aberta e vizinhança

Definição: Sejam $\mathbf{a} \in \mathbf{R}^n$ e $r \in \mathbf{R}^+$.

Chama-se bola aberta de centro a e raio r ao conjunto

$$B_r(\mathbf{a}) = \{\mathbf{x} \in \mathbf{R}^n : d(\mathbf{x}, \mathbf{a}) < r\}.$$

[representa-se também por $B(\mathbf{a}, r)$].

Nota: Em R, as bolas abertas são intervalos abertos.

Definição: Qualquer subconjunto de \mathbb{R}^n que contenha uma bola aberta de centro em \mathbf{a} diz-se uma **vizinhança de \mathbf{a}**.

Isto é, V é uma vizinhança de \mathbf{a} se existe algum r > 0 tal que

$$B_r(\mathbf{a}) \subseteq V$$
.

Nota: qualquer bola aberta é vizinhança do seu próprio centro e facilmente se mostra que é vizinhaça de qualquer um dos seus pontos.

Noções Topológicas Elementares

Definição: Seja S um subconjunto de \mathbb{R}^n e $\mathbb{a} \in \mathbb{R}^n$.

a diz-se um ponto interior de S, se S for uma vizinhança de
 a, isto é, se

$$\exists r > 0 : B_r(\mathbf{a}) \subseteq S;$$

- **a** diz-se um **ponto exterior de** *S* se for interior ao seu complementar;
- a diz-se um **ponto fronteiro de** *S* se não for interior nem exterior ao conjunto *S*.

Nota: da definição resulta imediatamente que:

 \rightarrow **a** é um ponto exterior de *S* sse existe uma bola de centro em **a** totalmente contida no complementar de *S*, isto é:

$$\exists r > 0 : B_r(\mathbf{a}) \subseteq \mathbf{R}^n \backslash S;$$

ou seja,

$$\exists r > 0 : B_r(\mathbf{a}) \cap S = \emptyset.$$

 \rightarrow **a** é um ponto fronteiro de *S* sse qualquer bola de centro em **a** tem ponto de *S* e do seu complementar, isto é:

$$\forall r > 0 [B_r(\mathbf{a}) \cap S \neq \emptyset \land B_r(\mathbf{a}) \cap (\mathbf{R}^n \backslash S) \neq \emptyset].$$

Notação: Sendo S um subconjunto de \mathbb{R}^n , **interior de** $S \to \text{int}S = \text{conjunto dos pontos interiores de } S$; **exterior de** $S \to \text{ext}S = \text{conjunto dos pontos exteriores de } S$; **fronteira de** $S \to \text{fr}S = \text{conjunto dos pontos fronteiros de } S$. (A fronteira de S representa-se também por ∂S .) **Proposição**: Sendo S um subconjunto de \mathbb{R}^n ,

- int $S \subseteq S$;
- $\mathbf{ext}S \subseteq \mathbf{R}^n \backslash S$;
- $\mathbf{R}^n = \mathbf{int} S \cup \mathbf{ext} S \cup \mathbf{fr} S$.

(∪ representa a união disjunta de conjuntos.)

Definição: Um subconjunto de \mathbb{R}^n diz-se **aberto** se todos os pontos seus pontos forem pontos interiores.

Portanto

$$S \subseteq \mathbf{R}^n$$
 é um conjunto aberto sse **int** $S = S$.

Nota:

A união finita ou infinita numerável de conjuntos abertos é ainda um conjunto aberto.

 $(\bigcup_{n\in\mathbb{N}} A_n = \{x: \text{ existe } i \in \mathbb{N} \text{ tal que } x \in A_i\} \text{ diz-se uma união numerável de conjuntos.})$

A intersecção finita de conjuntos abertos é ainda um conjunto aberto.

A intersecção infinita de conjuntos abertos pode não ser um conjunto aberto!

Definição: Um subconjunto de \mathbb{R}^n diz-se **fechado** se se o seu complementar for aberto.

Proposição: $S \subseteq \mathbb{R}^n$ é um conjunto fechado sse $\mathbf{fr}S \subseteq S$.

Nota: Um dado conjunto pode ser aberto, fechado, nem aberto nem fechado e simultaneamente aberto e fechado.

Definição: Chama-se **fecho** ou **aderência do conjunto** S à união de S com a sua fronteira que se representa por \bar{S} .

Portanto

$$\bar{S} = \mathbf{int} S \cup \mathbf{fr} S$$
.

Um ponto a diz-se aderente a S se pertencer \bar{S} .

Nota: O fecho de um conjunto é sempre um conjunto fechado.

Nota: S é fechado sse $\bar{S} = S$.

Definição: Diz-se que o ponto $\mathbf{a} \in \mathbf{R}^n$ é **ponto de acumulação** $\mathbf{de} S \subseteq \mathbf{R}^n$ se em toda a vizinhança de \mathbf{a} existe uma infinidade de pontos de S.

Nota 1: É imediato que **a** é ponto de acumulação de *S* sse em toda a bola aberta de centro em **a** existe uma infinidade de pontos de *S*.

Nota 2: Prova-se que **a** é ponto de acumulação de *S* sse toda a bola aberta de centro em **a** tiver pelo menos um ponto de *S* diferente de **a**.

Chama-se **derivado de** S ao conjunto de todos os pontos de acumulação de S e denota-se por S'.

Nota: Um conjunto finito não tem pontos de acumulação.

Definição: Um ponto **a** de S diz-se **isolado** se existir r > 0 tal que

$$B_r(\mathbf{a}) \cap S = \{\mathbf{a}\}.$$

Definição: Um conjunto S diz-se **limitado** se existir alguma bola que o contenha.

Definição: Um subconjuntos de \mathbb{R}^n diz-se **compacto** se for limitado e fechado.

Nota: Os intervalos [a,b], com $a,b \in \mathbf{R}$, são compactos de \mathbf{R} .