Airfare Price Detection Using Machine Learning

∴ Overview

This project focuses on building a machine learning model that can **predict airfare prices** based on various flight-related features. Accurate price prediction is beneficial for travelers, travel agencies, and airline companies to plan effectively and stay competitive.

6 Objectives

- Analyze the factors affecting flight prices.
- Apply machine learning regression techniques to predict airfare.
- Evaluate models and select the most accurate one.
- Build a reliable and efficient predictive system.

Dataset

Source: Kaggle

- Features:
 - o Airline
 - Date of Journey
 - Source & Destination
 - Route
 - Duration
 - Total Stops
 - Additional Info
 - Price (Target)

Technologies Used

• Language: Python

- Libraries:
 - O Pandas & NumPy (Data manipulation)
 - o Matplotlib & Seaborn (Data visualization)
 - Scikit-learn (ML models)
 - XGBoost (Gradient boosting)

☐ Exploratory Data Analysis (EDA)

Key steps:

- Converted Date of Journey, Dep_Time, Arrival_Time to datetime features.
- Extracted day, month, hour for deeper insights.
- Encoded categorical variables using Label Encoding and OneHot Encoding.
- Handled null values and inconsistencies in data.

☐ Models Implemented

Model MAE MSE RMSE R² Score

Linear Regression ~1800 ~6000000 ~2450 ~0.68

Random Forest Regressor ~1100 ~1500000 ~1225 ~0.85

ExtraTrees Regressor ~1050 ~1450000 ~1204 ~0.86

✓ Best Model: ExtraTrees Regressor

Performance Metrics

- MAE (Mean Absolute Error): Average absolute error between predicted and actual prices.
- RMSE (Root Mean Squared Error): Penalizes large errors more than MAE.
- R² Score: Indicates how well the model explains the variance in target values.

Visualization

- Heatmaps for correlation analysis.
- Count plots for airline frequency, source/destination distribution.
- Distribution plots of predicted vs actual prices.

Future Work

- Deploy the model using Flask/Streamlit as a web app.
- Use LSTM or Deep Learning for time-based predictions.
- Integrate real-time pricing data using APIs.
- Apply to hotel or travel package prediction systems.

Project Structure

🔂 🔳 Author

Harsh Kumar

hk6528259@gmail.com

Greater Noida, Uttar Pradesh, India

License

This project is licensed under the MIT License.