Contents

Lis	st of Schab Codes	4
2	THERMAL STATIONS	5
3	HYDRO ELECTRIC STATIONS	10
7	TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION	14
9	CONSTANTS OF OVERHEAD TRANSMISSION LINES	72
10	STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES	110
11	OVERHEAD LINE INSULATORS	169
12	MECHANICAL DESIGN OF OVERHEAD LINES	181
13	INTERFERENCE OF POWER LINES WITH NEIGHBOURING COMMUNICATION CIRCUITS	197
14	UNDERGROUND CABLES	202
15	CORONA	220

16	LOAD FLOW STUDY USING COMPUTER TECHNIQUE	S 233
17	POWER SYSTEM STABILITY	247
18	LOAD FREQUENCY CONTROL AND LOAD SHARING OF POWER GENERATING SOURCES	287
20	WAVE PROPAGATION ON TRANSMISSION LINES	312
21	LIGHTNING AND PROTECTION AGAINST OVERVOLT AGES DUE TO LIGHTNING	317
22	INSULATION COORDINATION	322
23	POWER SYSTEM GROUNDING	326
24	ELECTRIC POWER SUPPLY SYSTEMS	328
25	POWER DISTRIBUTION SYSTEMS	341
27	SYMMETRICAL SHORT CIRCUIT CAPACITY CAL- CULATIONS	358
28	FAULT LIMITING REACTORS	384
29	SYMMETRICAL COMPONENTS ANALYSIS	391
30	UNSYMMETRICAL FAULTS IN POWER SYSTEMS	408
32	CIRCUIT BREAKER	444
33	PROTECTIVE RELAYS	451
34	PROTECTION OF ALTERNATORS AND AC MOTORS	458
35	PROTECTION OF TRANSFORMERS	469
36	PROTECTION OF TRANSMISSION LINE SHUNT INDUCTORS AND CAPACITORS	475
39	INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS	480

40	HEATING AND WELDING	524
41	ELECTROLYTIC AND ELECTRO METALLURGICAL PROCESSES	539
42	ILLUMINATION	544
43	ELECTRIC TRACTION SPEED TIME CURVES AND MECHANICS OF TRAIN MOVEMENT	556
44	MOTORS FOR ELECTRIC TRACTION	573
45	CONTROL OF MOTORS	582
46	BRAKING	588
47	ELECTRIC TRACTION SYSTEMS AND POWER SUPPLY	595

List of Scilab Codes

Exa 2.1	Limiting value and Coal per hour	5
Exa 2.2	Average load on power plant	6
Exa 2.3	Heat balance sheet	7
Exa 3.1	Firm capacity and Yearly gross output	10
Exa 3.3	Available continuous power	11
Exa 3.4	Minimum flow of river water to operate the plant	12
Exa 7.1	Demand factor and Load factor	14
Exa 7.2	Total energy generated annually	15
Exa 7.3	Annual load factors and Capacity factors of	
	two power stations	16
Exa 7.4	Reserve capacity of plant	18
Exa 7.5	Number of units supplied annually Diversity	
	factor and Demand factor	19
Exa 7.6	Annual load factor	21
Exa 7.7	Diversity factor and Annual load factor	22
Exa 7.8	Maximum demand and Connected load of each	
	type	24
Exa 7.9	Size and number of generator units Reserve	
	plant capacity Load factor Plant factor and	
	Plant use factor	26
Exa 7.10	Cost of generation per kWh at 100 and 50	
	percent load factor	28
Exa 7.11	Cost per unit generated	30
Exa 7.12	Minimum reserve capacity of station and Cost	
	per kWh generated	31
Exa 7.13	Two part tariff to be charged from consumers	33
Exa 7.14	Generation cost in two part form	35

Exa 7.15	Overall generating cost per unit at 50 and 100	
	percent capacity factor	37
Exa 7.16	Yearly cost per kW demand and Cost per	
	kWh supplied at substations and Consumer	
	premises	40
Exa 7.17	Number of working hours per week above which	
	the HV supply is cheaper	42
Exa 7.18	Cheaper alternative to adopt and by how much	44
Exa 7.19	Valuation halfway based on Straight line Re-	
	ducing balance and Sinking fund depreciation	
	method	47
Exa 7.20	Type and hp ratings of two turbines for the	
	station	48
Exa 7.21	Plot of chronological load curve and Load du-	
	ration curve	50
Exa 7.22	Daily energy produced Reserve capacity and	
	Maximum energy produced at all time and	
	fully loaded	54
Exa 7.23	Rating Annual energy produced Total fixed	
	and variable cost Cost per kWh generated	
	Overall efficiency and Quantity of cooling wa-	
	ter required	56
Exa 7.24	Turbine rating Energy produced Average steam	
	consumption Evaporation capacity Total fixed	
	cost and variable cost and Cost per kWh gen-	
	erated	60
Exa 7.25	Plot of hydrograph and Average discharge avail-	
	able	63
Exa 7.26	Plot of flow duration curve Maximum power	
	Average power developed and Capacity of pro-	
	posed station	67
Exa 9.1	Loop inductance and Reactance of transmis-	
	sion line	72
Exa 9.2	Inductance per phase of the system	73
Exa 9.3	Loop inductance of line per km	74
Exa 9.4	Inductance per phase of the system	75
Exa 9.5	Total inductance of the line	76
Exa 9.6	Inductance of the line	78

Exa 9.7	Inductance per km of the double circuit line	79
Exa 9.8	Geometric mean radius of the conductor and	
	Ratio of GMR to overall conductor radius .	81
Exa 9.9	Inductance of the line per phase	82
Exa 9.10	Inductance per km of 3 phase transmission line	84
Exa 9.11	Inductance of each conductor per phase per	
	km	85
Exa 9.12	Inductance of each conductor and Average in-	
	ductance of each phase	86
Exa 9.13	Inductance per phase	88
Exa 9.14	Inductance per phase of double circuit	90
Exa 9.15	Spacing between adjacent conductor to keep	
	same inductance	92
Exa 9.16	Capacitance of line neglecting and taking pres-	
	ence of ground	94
Exa 9.17	Capacitance of conductor	95
Exa 9.18	New value of capacitance	97
Exa 9.19	Capacitance per phase to neutral of a line .	98
Exa 9.20	Phase to neutral capacitance	100
Exa 9.21	Capacitance per phase to neutral	101
Exa 9.22	Capacitive reactance to neutral and Charging	
	current per phase	102
Exa 9.23	Inductive reactance Capacitance and Capac-	
	itive reactance of the line	104
Exa 9.24	Capacitance of the line and Charging current	106
Exa 9.25	Capacitance of the line	107
Exa 9.26	Capacitance of each line conductor	109
Exa 10.1	Voltage regulation Sending end power factor	
	and Transmission efficiency	110
Exa 10.2	Line current Receiving end voltage and Effi-	
	ciency of transmission	112
Exa 10.3	Sending end voltage	114
Exa 10.4	Distance over which load is delivered	115
Exa 10.5	Sending end voltage Voltage regulation Value	
	of capacitors and Transmission efficiency	116
Exa 10.6	Voltage regulation Sending end voltage Line	
	loss and Sending end power factor	119

Exa 10.7	Nominal pi equivalent circuit parameters and	
	Receiving end voltage	121
Exa 10.8	Voltage Current and Power factor at sending	
	end	122
Exa 10.9	Sending end voltage Current and Transmis-	
	sion efficiency	125
Exa 10.10	Line to line voltage and Power factor at send-	
	ing end	127
Exa 10.11	Voltage Current Power factor at sending end	
	Regulation and Transmission efficiency by Nom-	-
	inal T and Pi method	130
Exa 10.12	Receiving end Voltage Load and Nature of	
	compensation required	134
Exa 10.13	Sending end voltage and Current	136
Exa 10.14	Incident voltage and Reflected voltage at re-	
	ceiving end and 200 km from receiving end .	137
Exa 10.15	A B C D constants	139
Exa 10.16	Sending end voltage Current Power factor and	
	Efficiency	140
Exa 10.17	Values of auxiliary constants A B C D	143
Exa 10.18	Sending end voltage and Current using con-	
	vergent series method	145
Exa 10.19	Sending end voltage and Current using nom-	
	inal pi and nominal T method	147
Exa 10.20	Sending end voltage Voltage regulation Trans-	
	mission efficiency and A B C D constants by	
	Short line Nominal T Nominal pi and Long	
	line approximation	150
Exa 10.21	Sending end voltage Current Power factor and	
	Efficiency of transmission	160
Exa 10.23	Overall constants A B C D	163
Exa 10.24	Values of constants A0 B0 C0 D0	164
Exa 10.25	Maximum power transmitted Receiving end	
	power factor and Total line loss	165
Exa 10.26	Maximum power that can be transferred to	
	the load	167
Exa 11.1	Ratio of capacitance Line voltage and String	
	efficiency	169

Exa 11.2	Mutual capacitance of each unit in terms of C	170
Exa 11.3	Voltage distribution over a string of three sus-	
	pension insulators and String efficiency	171
Exa 11.4	Line to neutral voltage and String efficiency	172
Exa 11.5	Value of line to pin capacitance	173
Exa 11.6	Voltage distribution as a percentage of volt-	
	age of conductor to earth and String efficiency	174
Exa 11.7	Voltage across each insulator as a percentage	
	of line voltage to earth and String efficiency	
	With and Without guard ring	176
Exa 11.8	Voltage across each insulator as a percentage	
	of line voltage to earth and String efficiency	178
Exa 11.9	Voltage on the line end unit and Value of ca-	
	pacitance required	179
Exa 12.1	Weight of conductor	181
Exa 12.2	Point of maximum sag at the lower support	182
Exa 12.3	Vertical sag	183
Exa 12.4	Height above ground at which the conductors	
	should be supported	184
Exa 12.5	Permissible span between two supports	186
Exa 12.6	Maximum sag of line due to weight of con-	
	ductor Additional weight of ice Plus wind and	
	Vertical sag	187
Exa 12.7	Point of minimum sag	189
Exa 12.8	Clearance between conductor and water at a	
	point midway between towers	190
Exa 12.9	Sag at erection and Tension of the line	191
Exa 12.10	Sag in inclined direction and Vertical direction	193
Exa 12.11	Sag in still air Wind pressure Ice coating and	
	Vertical sag	194
Exa 13.1	Mutual inductance between the circuits and	
	Voltage induced in the telephone line	197
Exa 13.2	Induced voltage at fundamental frequency and	
	Potential of telephone conductor	198
Exa 14.1	Insulation resistance per km	202
Exa 14.2	Insulation thickness	203
Exa 14.3	Capacitance and Charging current of single	
	core cable	204

Exa 14.4	Most economical diameter of a single core ca-	
D 14.0	ble and Overall diameter of the insulation	205
Exa 14.6	Conductor radius and Electric field strength	200
D 14.7	that must be withstood	206
Exa 14.7	Location of intersheath and Ratio of maxi-	
	mum electric field strength with and without	207
D 140	intersheath	207
Exa 14.8	Maximum and Minimum stress in the insula-	000
D 140	tion	208
Exa 14.9	Maximum stress with and without intersheath	200
D 1410	Best position and Voltage on each intersheath	209
Exa 14.10	Maximum stress in the two dielectrics	211
Exa 14.11	Diameter and Voltage of intersheath Conduc-	
	tor and Outside diameter of graded cable and	010
D 1410	Ungraded cable	212
Exa 14.12	Equivalent star connected capacity and kVA	010
D 1410	required	213
Exa 14.13	Charging current drawn by a cable with three	01.4
D . 14.14	cores	214
Exa 14.14	Capacitance between any two conductors Two	
	bounded conductors Capacitance to neutral	015
D 1415	and Charging current taken by cable	215
Exa 14.15	Charging current drawn by cable	216
Exa 14.16	Capacitance of the cable Charging current To-	
	tal charging kVAR Dielectric loss per phase	017
D 151	and Maximum stress in the cable	217
Exa 15.1	Minimum spacing between conductors	220
Exa 15.2	Critical disruptive voltage and Corona loss .	221
Exa 15.3	Corona loss in fair weather and Foul weather	222
Exa 15.4	Corona characteristics	224
Exa 15.5	Spacing between the conductors	227
Exa 15.6	Disruptive critical voltage and Corona loss .	228
Exa 15.7	Corona will be present in the air space or not	229
Exa 15.8	Line voltage for commencing of corona	231
Exa 16.1	Bus admittance matrix Ybus	233
Exa 16.3	Voltage values at different buses	235
Exa 16.4	New bus admittance matrix Ybus	237
Exa 16.5	Bus admittance matrix V1 and V2	240

Exa 16.6	Bus impedance matrix Zbus	242
Exa 16.7	Power flow expressions	243
Exa 16.8	Voltage V2 by GS method	244
Exa 17.1	Operating power angle and Magnitude of P0	247
Exa 17.2	Minimum value of E and VL Maximum power	
	limit and Steady state stability margin	248
Exa 17.3	Maximum power transfer if shunt inductor	
	and Shunt capacitor is connected at bus 2 .	249
Exa 17.4	Maximum power transfer and Stability margin	251
Exa 17.5	QgB Phase angle of VB and What happens if	
	QgB is made zero	252
Exa 17.6	Steady state stability limit with two terminal	
	voltages constant and If shunt admittance is	
	zero and series resistance neglected	254
Exa 17.8	Power angle diagram Maximum power the line	
	is capable of transmitting and Power trans-	
	mitted with equal voltage at both ends	255
Exa 17.9	Maximum steady state power that can be trans-	
	mitted over the line	259
Exa 17.10	Maximum steady state power Value of P and	
	Q if static capacitor is connected and Re-	
	placed by an inductive reactor	260
Exa 17.11	Kinetic energy stored in the rotor at synchronou	lS
	speed and Acceleration	263
Exa 17.12	Kinetic energy stored in the rotor at synchronou	lS
	speed and Acceleration	264
Exa 17.13	Change in torque angle in that period and	
	RPM at the end of 10 cycles	265
Exa 17.14	Accelerating torque at the time the fault oc-	
	curs	266
Exa 17.16	Value of H and in 100 MVA base	267
Exa 17.17	Equivalent H for the two to common 100 MVA	
	base	268
Exa 17.18	Energy stored in the rotor at the rated speed	
	Value of H and Angular momentum	269
Exa 17.19	Acceleration of the rotor	270
Exa 17.20	Accelerating power and New power angle af-	
	ter 10 cycles	271

Exa 17.21	Kinetic energy stored by rotor at synchronous	~ -
	speed and Acceleration in	272
Exa 17.22	Change in torque angle and Speed in rpm at	
	the end of 10 cycles	274
Exa 17.23	Accelerating torque at the time of fault oc-	
	currence	275
Exa 17.24	Swing equation	276
Exa 17.26	Critical clearing angle	279
Exa 17.27	Critical angle using equal area criterion	283
Exa 17.28	Critical clearing angle	282
Exa 17.30	Power angle and Swing curve data	283
Exa 18.1	Load shared by two machines and Load at	
	which one machine ceases to supply any por-	
	tion of load \ldots	28'
Exa 18.2	Synchronizing power and Synchronizing torque	
	for no load and full load	289
Exa 18.3	Armature current EMF and PF of the other	
	alternator	295
Exa 18.4	New value of machine current and PF Power	
	output Current and PF corresponding to max-	
	imum load	293
Exa 18.5	Phase angle between busbar sections	29
Exa 18.6	Voltage and Power factor at this latter station	290
Exa 18.7	Load received Power factor and Phase differ-	
	ence between voltage	298
Exa 18.8	Percentage increase in voltage and Phase an-	
	gle difference between the two busbar voltages	300
Exa 18.9	Station power factors and Phase angle be-	
	tween two busbar voltages	303
Exa 18.10	Constants of the second feeder	304
Exa 18.11	Necessary booster voltages	30
Exa 18.12	Load on C at two different conditions of load	
-	in A and B	30'
Exa 18.13	Loss in the interconnector as a percentage of	- 0
	power received and Required voltage of the	
	booster	309
Exa 20.4	Reflected and Transmitted wave of Voltage	50.
20.1	and Current at the junction	313
	and Sarrone at the Janetion	014

Exa 20.5	First and Second voltages impressed on C .	313
Exa 20.6	Voltage and Current in the cable and Open	
	wire lines	315
Exa 21.1	Ratio of voltages appearing at the end of a	
	line when line is open circuited and Termi-	
	nated by arrester	317
Exa 21.2	Choosing suitable arrester rating	318
Exa 22.1	Highest voltage to which the transformer is	
	subjected	322
Exa 22.2	Rating of LA and Location with respect to	
	transformer	323
Exa 23.1	Inductance and Rating of arc suppression coil	326
Exa 24.1	Weight of copper required for a three phase	
	transmission system and DC transmission sys-	
	tem	328
Exa 24.2	Percentage increase in power transmitted	330
Exa 24.3	Percentage additional balanced load	330
Exa 24.4	Amount of copper required for 3 phase 4 wire	000
	system with that needed for 2 wire dc system	331
Exa 24.5	Weight of copper required and Reduction of	001
21.0	weight of copper possible	332
Exa 24.6	Economical cross section of a 3 core distribu-	002
_ 110	tor cable	334
Exa 24.7	Most economical cross section	335
Exa 24.8	Most economical current density for the trans-	333
21.0	mission line	337
Exa 24.9	Most economical cross section of the conductor	338
Exa 25.1	Potential of O and Current leaving each sup-	330
20.1	ply point	341
Exa 25.2	Point of minimum potential along the track	011
20.2	and Currents supplied by two substations .	342
Exa 25.3	Position of lowest run lamp and its Voltage	344
Exa 25.4	Point of minimum potential and its Potential	346
Exa 25.6	Ratio of weight of copper with and without	010
11A0 20.0	interconnector	348
Exa 25.7	Potential difference at each load point	350
Exa 25.8	Load on the main generators and On each	500
11A0 20.0	balancer machine	353
		-000

Exa 25.9	Currents in various sections and Voltage at	
	load point C	354
Exa 27.1	Per unit current	358
Exa 27.2	kVA at a short circuit fault between phases	
	at the HV terminal of transformers and Load	
	end of transmission line	360
Exa 27.3	Transient short circuit current and Sustained	
	short circuit current at X	362
Exa 27.4	Current in the short circuit	367
Exa 27.5	Per unit values of the single line diagram	369
Exa 27.6	Actual fault current using per unit method.	372
Exa 27.7	Sub transient fault current	374
Exa 27.8	Voltage behind the respective reactances	376
Exa 27.9	Initial symmetrical rms current in the hv side	
	and lv side	377
Exa 27.10	Initial symmetrical rms current at the gener-	
	ator terminal	378
Exa 27.11	Sub transient current in the fault in generator	
	and Motor	380
Exa 27.12	Sub transient fault current Fault current rat-	
	ing of generator breaker and Each motor breake	r 381
Exa 28.1	Reactance necessary to protect the switchgear	384
Exa 28.2	kVA developed under short circuit when re-	
	actors are in circuit and Short circuited	386
Exa 28.4	Reactance of each reactor	387
Exa 28.5	Instantaneous symmetrical short circuit MVA	
	for a fault at X	389
Exa 29.1	Positive Negative and Zero sequence currents	391
Exa 29.4	Sequence components of currents in the resis-	
	tors and Supply lines	392
Exa 29.5	Magnitude of positive and Negative sequence	
	components of the delta and Star voltages $$.	394
Exa 29.6	Current in each line by the method of sym-	
	metrical components	396
Exa 29.7	Symmetrical components of line current if phase	Э
	3 is only switched off	398
Exa 29.8	Positive Negative and Zero sequence compo-	
	nents of currents for all phases	400

Exa 29.9	Currents in all the lines and their symmetrical	
	components	402
Exa 29.10	Radius of voltmeter connected to the yellow	
	line and Current through the voltmeter	404
Exa 29.11	Three line currents and Wattmeter reading.	406
Exa 30.1	Initial symmetrical rms line currents Ground	
	wire currents and Line to neutral voltages in-	
	volving ground and Solidly grounded fault .	408
Exa 30.2	Current in the line with two lines short cir-	
	cuited	412
Exa 30.3	Fault current Sequence component of current	
	and Voltages of the sound line to earth at fault	415
Exa 30.4	Fault currents in each line and Potential above	
	earth attained by the alternator neutrals	418
Exa 30.5	Fault currents	420
Exa 30.6	Fault current for line fault and Line to ground	
	fault	422
Exa 30.7	Fault current for a LG fault at C	425
Exa 30.8	Fault current when a single phase to earth	
	fault occurs	430
Exa 30.9	Fault currents in the lines	432
Exa 30.10	Currents in the faulted phase Current through	
	ground and Voltage of healthy phase to neutral	433
Exa 30.11	Fault currents	435
Exa 30.12	Fault current if all 3 phases short circuited	
	If single line is grounded and Short circuit	
	between two lines	437
Exa 30.13	Sub transient current in the faulty phase	440
Exa 30.14	Initial symmetrical rms current in all phases	
	of generator	441
Exa 32.1	Maximum restriking voltage Frequency of tran-	
	sient oscillation and Average rate of rise of	
	voltage upto first peak of oscillation	444
Exa 32.3	Rate of rise of restriking voltage	445
Exa 32.5	Voltage across the pole of a CB and Resis-	
	tance to be used across the contacts	446
Exa 32.6	Rated normal current Breaking current Mak-	
	ing current and Short time rating	448

Exa 32.8	Sustained short circuit Initial symmetrical rms	
	current Maximum possible dc component of	
	the short circuit Momentary current rating	
	Current to be interrupted and Interrupting	
	kVA	449
Exa 33.1	Time of operation of the relay	451
Exa 33.2	Time of operation of the relay	452
Exa 33.3	Operating time of feeder relay Minimum plug	
	setting of transformer relay and Time setting	
	of transformer	453
Exa 33.4	Time of operation of the two relays	455
Exa 33.6	Will the relay operate the trip of the breaker	456
Exa 34.1	Neutral earthing reactance	458
Exa 34.2	Unprotected portion of each phase of the sta-	
	tor winding against earth fault and Effect of	
	varying neutral earthing resistance	459
Exa 34.3	Portion of alternator winding unprotected .	461
Exa 34.4	Will the relay trip the generator CB	462
Exa 34.5	Winding of each phase unprotected against	
	earth when machine operates at nominal volt-	
	age	463
Exa 34.6	Portion of winding unprotected	464
Exa 34.7	Percentage of winding that is protected against	
	earth faults	465
Exa 34.8	Magnitude of neutral earthing resistance	467
Exa 35.2	Ratio of CTs	469
Exa 35.3	Ratio of CTs on high voltage side	470
Exa 35.4	Ratio of protective CTs	471
Exa 35.5	CT ratios on high voltage side	472
Exa 35.6	Suitable CT ratios	473
Exa 36.1	First Second and Third zone relay setting With-	_
	out infeed and With infeed	475
Exa 36.2	Impedance seen by relay and Relay setting for	
	high speed backup protection	478
Exa 39.1	Total annual cost of group drive and Individ-	
	ual drive	480

Exa 39.2	Starting torque in terms of full load torque with star delta starter and with Auto trans-	
	former starter	482
Exa 39.3	Tapping to be provided on an auto transformer Starting torque in terms of full load	
	torque and with Resistor used	483
Exa 39.4	Starting torque and Starting current if motor	100
23100 0011	started by Direct switching Star delta starter	
	Star connected auto transformer and Series	
	parallel switch	484
Exa 39.5	Motor current per phase Current from the supply Starting torque Voltage to be applied	
	and Line current	487
Exa 39.6	Ratio of starting current to full load current	488
Exa 39.7	Resistance to be placed in series with shunt	
	field	489
Exa 39.9	Speed and Current when field winding is shunted	d
	by a diverter	491
Exa 39.10	Additional resistance to be inserted in the	
	field circuit to raise the speed	492
Exa 39.11	Speed of motor with a diverter connected in	
	parallel with series field	493
Exa 39.12	Diverter resistance as a percentage of field re-	
T 00.40	sistance	494
Exa 39.13	Additional resistance to be placed in the ar-	405
F 80.14	mature circuit	495
Exa 39.14	Resistance to be connected in series with ar-	40 <i>C</i>
E 20 15	mature to reduce speed	496
Exa 39.15	Ohmic value of resistor connected in the armature circuit	407
Exa 39.16		497
Exa 59.10	External resistance per phase added in rotor circuit to reduce speed	499
Exa 39.17	Braking torque and Torque when motor speed	499
LAG 00.11	has fallen	500
Exa 39.18	Initial plugging torque and Torque at standstill	501
Exa 39.19	Value of resistance to be connected in motor	501
	circuit	503

Exa 39.20	Current drawn by the motor from supply and	
	Resistance required in the armature circuit	
	for rheostatic braking	504
Exa 39.21	One hour rating of motor	505
Exa 39.22	Final temperature rise and Thermal time con-	
	stant of the motor	506
Exa 39.23	Half hour rating of motor	508
Exa 39.24	Time for which the motor can run at twice the	
	continuously rated output without overheating	509
Exa 39.25	Maximum overload that can be carried by the	
	motor	510
Exa 39.26	Required size of continuously rated motor .	511
Exa 39.27	Suitable size of the motor	512
Exa 39.28	Time taken to accelerate the motor to rated	
	speed against full load torque	514
Exa 39.29	Time taken to accelerate the motor to rated	
	speed	515
Exa 39.30	Time taken to accelerate a fly wheel	516
Exa 39.31	Time taken for dc shunt motor to fall in speed	
	with constant excitation and Time for the	
	same fall if frictional torque exists	517
Exa 39.32	Time taken and Number of revolutions made	
	to come to standstill by Plugging and Rheo-	
	static braking	518
Exa 39.33	Inertia of flywheel required	520
Exa 39.34	Moment of inertia of the flywheel	522
Exa 40.1	Diameter Length and Temperature of the wire	524
Exa 40.2	Width and Length of nickel chrome strip	526
Exa 40.3	Power drawn under various connections	527
Exa 40.4	Amount of energy required to melt brass	530
Exa 40.5	Height up to which the crucible should be	
	filled to obtain maximum heating effect	531
Exa 40.6	Voltage necessary for heating and Current flow-	
	ing in the material	532
Exa 40.7	Voltage applied across electrodes and Current	
	through the material	534
Exa 40.8	Time taken to melt Power factor and Electri-	
	cal efficiency of the furnace	536

Exa 41.1	Quantity of electricity and Time taken for the	
	process	539
Exa 41.2	Annual output of refined copper and Energy	
	consumption	540
Exa 41.3	Weight of aluminium produced from aluminium	
	oxide	541
Exa 42.2	mscp of lamp Illumination on the surface when	
	it is normal Inclined to 45 degree and Parallel	
	to rays	544
Exa 42.3	Illumination at the centre Edge of surface with	
	and Without reflector and Average illumina-	
	tion over the area without reflector	545
Exa 42.5	cp of the globe and Percentage of light emit-	
	ted by lamp that is absorbed by the globe.	547
Exa 42.6	Curve showing illumination on a horizontal	
	line below lamp	548
Exa 42.7	Maximum and Minimum illumination on the	
	floor along the centre line	551
Exa 42.8	Illumination on the working plane	553
Exa 42.9	Suitable scheme of illumination and Saving in	
	power consumption	554
Exa 43.1	Maximum speed over the run	556
Exa 43.2	Value of retardation	557
Exa 43.3	Rate of acceleration required to operate service	558
Exa 43.4	Duration of acceleration Coasting and Brak-	
	ing periods	560
Exa 43.5	Tractive resistance	561
Exa 43.6	Torque developed by each motor	562
Exa 43.7	Time taken by train to attain speed	563
Exa 43.8	Speed Time curve for the run and Energy con-	
	sumption at the axles of train	565
Exa 43.9	Acceleration Coasting retardation and Sched-	
	uled speed	567
Exa 43.10	Minimum adhesive weight of the locomotive	569
Exa 43.11	Energy usefully employed in attaining speed	
	and Specific energy consumption at steady	
	state speed	570
Exa 43.12	Minimum adhesive weight of a locomotive .	571
Exa 43.12	state speed	570 571

Exa 44.1	Speed current of the motor	573
Exa 44.2	Speed torque for motor	575
Exa 44.3	Speed of motors when connected in series .	577
Exa 44.4	HP delivered by the locomotive when dc series	
	motor and Induction motor is used	578
Exa 44.5	New characteristics of motor	579
Exa 45.1	Approximate loss of energy in starting rheostats	582
Exa 45.2	Energy supplied during the starting period	
	Energy lost in the starting resistance and Use-	
	ful energy supplied to the train	583
Exa 45.3	Duration of starting period Speed of train at	
	transition Rheostatic losses during series and	
	Parallel steps of starting	585
Exa 46.1	Braking torque	588
Exa 46.2	Current delivered when motor works as gen-	
	erator	589
Exa 46.3	Energy returned to lines	590
Exa 46.4	Energy returned to the line	592
Exa 46.5	Braking effect and Rate of retardation pro-	
	duced by this braking effect	593
Exa 47.1	Maximum potential difference between any	
	two points of the rails and Rating of the booster $$	595
Exa 47.2	Maximum sag and Length of wire required .	596

Chapter 2

THERMAL STATIONS

Scilab code Exa 2.1 Limiting value and Coal per hour

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART I : GENERATION
7 // CHAPTER 2: THERMAL STATIONS
9 // EXAMPLE : 2.1 :
10 // Page number 25-26
11 clear; clc; close; // Clear the work space and
      console
12
13 //Given data
14 M = 15000.0+10.0
                              // Water evaporated (kg)
                              // Coal consumption(kg)
15 \quad C = 5000.0+5.0
16 \text{ time} = 8.0
                              // Generation shift time(
      hours)
17
18 // Calculations
19 // Case (a)
```

```
20 \text{ M1} = \text{M} - 15000.0
21 \quad C1 = C-5000.0
22 \quad M_C = M1/C1
      // Limiting value of water evaporation(kg)
23 // Case (b)
24 \text{ kWh} = 0
      // Station output at no load
25 consumption_noload = 5000+5*kWh
      // Coal consumption at no load (kg)
26 consumption_noload_hr = consumption_noload/time
      // Coal consumption per hour (kg)
27
28 // Results
29 disp("PART I - EXAMPLE : 2.1 : SOLUTION :-")
30 printf("\nCase(a): Limiting value of water
      evaporation per kg of coal consumed, M/C = \%. f kg
      ", M_C)
31 printf("\nCase(b): Coal per hour for running station
       at no load = \%. f kg\n", consumption_noload_hr)
```

Scilab code Exa 2.2 Average load on power plant

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART I : GENERATION
7  // CHAPTER 2: THERMAL STATIONS
8
9  // EXAMPLE : 2.2 :
10  // Page number 26
11 clear ; clc ; close ; // Clear the work space and console
12
```

```
13 //Given data
14 \text{ amount} = 25.0*10**5
                                     // Amount spent in 1
      year (Rs)
15 value_heat = 5000.0
                                     // Heating value(kcal/
      kg)
16 \text{ cost} = 500.0
                                     // Cost of coal per
      ton (Rs)
                                     // Thermal efficiency
17 \, \text{n_ther} = 0.35
18 \text{ n_elec} = 0.9
                                     // Electrical
      efficiency
19
20 // Calculations
21 n = n_{ther*n_elec}
      Overall efficiency
22 consumption = amount/cost*1000
                                                    // Coal
      consumption in 1 year (kg)
23 combustion = consumption*value_heat
                                                    // Heat
      of combustion (kcal)
24 output = n*combustion
                                                    // Heat
      output (kcal)
25 unit_gen = output/860.0
                                                    // Annual
       heat generated (kWh). 1 kWh = 860 kcal
26 \text{ hours_year} = 365*24.0
                                                    // Total
      time in a year (hour)
  load_average = unit_gen/hours_year
27
      Average load on the power plant (kW)
28
29 //Result
30 disp("PART I - EXAMPLE : 2.2 : SOLUTION :-")
31 printf("\nAverage load on power plant = \%.2 \text{ f kW} \text{ n}",
      load_average)
32 printf("\nNOTE: ERROR: Calculation mistake in the
      final answer in the textbook")
```

Scilab code Exa 2.3 Heat balance sheet

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART I : GENERATION
  // CHAPTER 2: THERMAL STATIONS
8
9 // EXAMPLE : 2.3 :
10 // Page number 26
11 clear; clc; close; // Clear the work space and
      console
12
13 //Given data
                           // Coal consumption per kWh
14 \text{ consumption} = 0.5
      output (kg)
15 cal_value = 5000.0
                           // Calorific value(kcal/kg)
                            // Boiler efficiency
16 \text{ n_boiler} = 0.8
                            // Electrical efficiency
17 \text{ n_elec} = 0.9
18
19 // Calculations
20 input_heat = consumption*cal_value
     // Heat input (kcal)
21 input_elec = input_heat/860.0
     // Equivalent electrical energy (kWh). 1 kWh = 860
       kcal
22 loss_boiler = input_elec*(1-n_boiler)
     // Boiler loss (kWh)
  input_steam = input_elec-loss_boiler
      // Heat input to steam (kWh)
24 input_alter = 1/n_elec
     // Alternator input (kWh)
  loss_alter = input_alter*(1-n_elec)
25
     // Alternate loss (kWh)
  loss_turbine = input_steam-input_alter
     // Loss in turbine (kWh)
27 loss_total = loss_boiler+loss_alter+loss_turbine
     // Total loss (kWh)
```

```
28 output = 1.0
      // Output (kWh)
   Input = output+loss_total
      // Input (kWh)
30
31 // Results
32 disp("PART I - EXAMPLE : 2.3 : SOLUTION :-")
33 printf("\nHeat Balance Sheet")
34 printf("\nLOSSES:
                        Boiler loss
                                           =\%.3 f kWh",
      loss_boiler)
35 printf("\n
                        Alternator loss
                                           = \%.2 f kWh",
      loss_alter)
36 printf("\n
                        Turbine loss
                                           = \%.3 f kWh",
      loss_turbine)
37 printf("\n
                        Total loss
                                           =\%.2 f kWh",
      loss_total)
38 printf("\nOUTPUT:
                        \%.1\,\mathrm{f} kWh", output)
39 printf("\nINPUT:
                        \%.2 f \text{ kWh} n, Input)
```

Chapter 3

HYDRO ELECTRIC STATIONS

Scilab code Exa 3.1 Firm capacity and Yearly gross output

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART I : GENERATION
7 // CHAPTER 3: HYDRO-ELECTRIC STATIONS
9 // EXAMPLE : 3.1 :
10 // Page number 41
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
               // Minimum run-off (m^3/sec)
14 Q = 95.0
15 h = 40.0 // Head (m)
16
17 // Calculations
18 w = 1000.0
                               // Density of water(kg/m
```

```
^3)
19 weight = Q*w
                            // Weight of water per
     sec (kg)
20 work_done = weight*h
                            // Work done in one
     second (kg-mt)
                          // 1 kW(kg-mt/sec)
// Power production(kW)
21 \ kW_1 = 75.0/0.746
22 power = work_done/kW_1
kWhr)
25
26 // Results
27 disp("PART I - EXAMPLE : 3.1 : SOLUTION :-")
28 printf("\nFirm capacity = \%.f kW", power)
29 printf("\nYearly gross output = \%.2e kWhr.", output)
```

Scilab code Exa 3.3 Available continuous power

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART I : GENERATION
7 // CHAPTER 3: HYDRO-ELECTRIC STATIONS
9 // EXAMPLE : 3.3 :
10 // Page number 41
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 A = 200.0
                   // Catchment area (Sq.km)
                  // Annual rainfall (mm)
15 F = 1000.0
                   // Effective head (m)
16 H = 200.0
```

Scilab code Exa 3.4 Minimum flow of river water to operate the plant

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART I : GENERATION
7 // CHAPTER 3: HYDRO-ELECTRIC STATIONS
9 // EXAMPLE : 3.4 :
10 // Page number 41-42
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 load_factor = 0.15 // Load factor
                        // Rated installed capacity (kW
15 P = 10.0*10**3
                         // Head of plant (m)
16 H = 50.0
17 n = 0.8
                         // Efficiency of plant
18
19 // Calculation
```

Chapter 7

TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION

Scilab code Exa 7.1 Demand factor and Load factor

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART I : GENERATION
7  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
8
9  // EXAMPLE : 7.1 :
10  // Page number 73
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
14 connected_load = 450.0*10**3  // Connected load (kW)
```

```
// Maximum demand
15 \text{ maximum\_demand} = 250.0*10**3
      (kW)
16 units_generated = 615.0*10**6
                                     // Units
      generated per annum (kWh)
17
18 // Calculations
19 // Case(i)
20 demand_factor = maximum_demand/connected_load
             // Demand factor
21 // Case(ii)
22 \text{ hours_year} = 365.0*24
                                       // Total hours in
      a year
23 average_demand = units_generated/hours_year
               // Average demand(kW)
  load_factor = average_demand/maximum_demand*100
           // Load factor (%)
25
26 // Results
27 disp("PART I - EXAMPLE : 7.1 : SOLUTION :-")
28 printf("\nCase(i) : Demand factor = %.3 f ",
      demand_factor)
29 printf("\nCase(ii): Load factor = \%.1f percent",
      load_factor)
```

Scilab code Exa 7.2 Total energy generated annually

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART I : GENERATION
7  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
```

```
9 // EXAMPLE : 7.2 :
10 // Page number 73
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ maximum\_demand} = 480.0*10**3
                                        // Maximum demand
      (kW)
15 \text{ LF} = 0.4
                                         // Annual load
      factor
16
17 // Calculation
18 hours_year = 365.0*24
                                                         //
       Total hours in a year
19 energy_gen = maximum_demand*LF*hours_year
                                                         //
       Total energy generated annually (kWh)
20
21 // Results
22 disp("PART I - EXAMPLE : 7.2 : SOLUTION :-")
23 printf("\nTotal energy generated annually = \%.5e kWh
     ", energy_gen)
```

 ${
m Scilab\ code\ Exa\ 7.3}$ Annual load factors and Capacity factors of two power stations

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART I : GENERATION
7  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
8
9  // EXAMPLE : 7.3 :
```

```
10 // Page number 73
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ cap\_baseload} = 400.0*10**3
                                       // Installed
      capacity of base load plant (kW)
                                       // Installed
15 \text{ cap\_standby} = 50.0*10**3
      capacity of standby unit (kW)
  output_baseload = 101.0*10**6
                                       // Annual baseload
      station output (kWh)
17 \text{ output\_standby} = 87.35*10**6
                                     // Annual standby
      station output (kWh)
18 peakload_standby = 120.0*10**3
                                       // Peak load on
      standby station (kW)
                                       // Hours of standby
19 \text{ hours\_use} = 3000.0
       station use/year(hrs)
20
21 // Calculations
22 // Case(i)
23 LF_1 = output_standby *100/(peakload_standby *
      hours_use)
                      // Annual load factor (%)
24 \text{ hours_year} = 365.0*24
                                              // Total
      hours in a year
25 CF_1 = output_standby*100/(cap_standby*hours_year)
               // Annual capacity factor (%)
26 // Case ( i i )
27 peakload_baseload = peakload_standby
                              // Peak load on baseload
      station (kW)
28 LF_2 = output_baseload*100/(peakload_baseload*
      hours_use) // Annual load factor on baseload
      station (%)
29 \text{ hours_year} = 365.0*24
                                              // Total
      hours in a year
30 CF_2 = output_baseload*100/(cap_baseload*hours_year)
```

```
// Annual capacity factor on baseload
      station (%)
31
32 // Results
33 disp("PART I - EXAMPLE : 7.3 : SOLUTION :-")
34 printf("\nCase(i) : Standby Station")
35 printf("\n
                          Annual load factor = \%.2 \,\mathrm{f}
      percent", LF_1)
36 printf("\n
                          Annual capacity factor = \%.2 \,\mathrm{f}
      percent \ n", CF_1)
37 printf("\nCase(ii): Base load Station")
38 printf("\n
                          Annual load factor = \%.2 \,\mathrm{f}
      percent", LF_2)
                          Annual capacity factor = \%.2 \,\mathrm{f}
39 printf("\n
      percent n, CF_2
40 printf("\nNOTE: Incomplete solution in the textbook"
      ) ;
```

Scilab code Exa 7.4 Reserve capacity of plant

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART I : GENERATION
7 // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
8
9 // EXAMPLE : 7.4 :
10 // Page number 74
11 clear ; clc ; close ; // Clear the work space and console
12
13 // Given data
```

```
14 \text{ MD} = 500.0
                         // Maximum demand (MW)
                         // Annual load factor
15 \text{ LF} = 0.5
16 \text{ CF} = 0.4
                         // Annual capacity factor
17
18 // Calculations
19 hours_year = 365.0*24
                                              // Total
      hours in a year
20 energy_gen = MD*LF*hours_year
                                              // Energy
      generated / annum (MWh)
21 plant_cap = energy_gen/(CF*hours_year) // Plant
      capacity (MW)
22 reserve_cap = plant_cap-MD
                                              // Reserve
      capacity of plant (MW)
23
24 // Results
25 disp("PART I - EXAMPLE : 7.4 : SOLUTION :-")
26 printf("\nReserve capacity of plant = \%. f MW',
      reserve_cap)
```

 ${f Scilab\ code\ Exa\ 7.5}$ Number of units supplied annually Diversity factor and Demand

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART I : GENERATION
7  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
8
9  // EXAMPLE : 7.5 :
10  // Page number 74
11 clear ; clc ; close ; // Clear the work space and console
12
```

```
13 // Given data
14 \ load_1 = 150.0
                             // Load supplied by station (
     MW)
  load_2 = 120.0
                             // Load supplied by station (
15
     MW)
  load_3 = 85.0
                             // Load supplied by station (
16
     MW)
17
  load_4 = 60.0
                             // Load supplied by station (
     MW)
                             // Load supplied by station (
  load_5 = 5.0
18
     MW)
                             // Maximum demand (MW)
19 \text{ MD} = 220.0
20 \text{ LF} = 0.48
                             // Annual load factor
21
22 // Calculations
23 // Case (a)
24 \text{ hours_year} = 365.0*24
                                                          //
       Total hours in a year
25 units = LF*MD*hours_year
                                                          //
       Number of units supplied annually
26 // Case (b)
27 sum_demand = load_1+load_2+load_3+load_4+load_5
                                                          //
       Sum of maximum demand of individual consumers (MW
28 diversity_factor = sum_demand/MD
                                                          //
       Diversity factor
29 // Case (c)
30 DF = MD/sum_demand
                                                          //
       Demand factor
31
32 // Results
33 disp("PART I - EXAMPLE : 7.5 : SOLUTION :-")
34 printf("\nCase(a): Number of units supplied annually
      =\%.2e units", units)
35 printf("\nCase(b): Diversity factor = \%.3 f",
      diversity_factor)
36 printf("\nCase(c): Demand factor = \%.3 f = \%.1 f
      percent", DF,DF*100)
```

Scilab code Exa 7.6 Annual load factor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
      GENERATION
9 // EXAMPLE : 7.6 :
10 // Page number 74
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ power\_del}_1 = 1000.0
                             // Power delivered by
      station (MW)
15 \text{ time}_1 = 2.0
                              // Time for which power is
      delivered (hours)
16 \text{ power\_del}_2 = 500.0
                              // Power delivered by
      station (MW)
17 \text{ time}_2 = 6.0
                                 Time for which power is
      delivered (hours)
18 \text{ days\_maint} = 60.0
                              // Maintenance days
19 \text{ max\_gen\_cap} = 1000.0
                              // Maximum generating
      capacity (MW)
20
21 // Calculations
22 energy_sup_day = (power_del_1*time_1)+(power_del_2*
      time_2) // Energy supplied for each working day
      (MWh)
23 \text{ days\_total} = 365.0
```

```
//
      Total days in a year
24 days_op = days_total-days_maint
                                    // Operating days of
       station in a year
25 energy_sup_year = energy_sup_day*days_op
                          // Energy supplied per year (
     MWh)
26 \text{ hours\_day} = 24.0
                                                    //
      Total hours in a day
27 working_hours = days_op*hours_day
                                  // Hour of working in
     a year
28 LF = energy_sup_year * 100/(max_gen_cap * working_hours)
               // Annual load factor (%)
29
30 // Results
31 disp("PART I - EXAMPLE : 7.6 : SOLUTION :-")
32 printf("\nAnnual load factor = \%.1 f percent", LF)
   Scilab code Exa 7.7 Diversity factor and Annual load factor
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART I : GENERATION
7 // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
     GENERATION
9 // EXAMPLE : 7.7 :
10 // Page number 74
11 clear; clc; close; // Clear the work space and
```

```
console
12
13 // Given data
14 load_industry = 750.0
                                     // Industrial
      consumer load supplied by station (MW)
  load\_commercial = 350.0
                                     // Commercial
15
      establishment load supplied by station (MW)
                                     // Domestic power
16 \quad load_power = 10.0
      load supplied by station (MW)
17
  load_light = 50.0
                                     // Domestic light
      load supplied by station (MW)
                                     // Maximum demand (MW)
18 \text{ MD} = 1000.0
19 \text{ kWh\_gen} = 50.0*10**5
                                     // Number of kWh
      generated per year
20
21 // Calculations
22 // Case (i)
23 sum_demand = load_industry+load_commercial+
      load_power+load_light
                                // Sum of max demand of
      individual consumers (MW)
24 diversity_factor = sum_demand/MD
                                            // Diversity
      factor
25 // Case(ii)
26 \text{ hours_year} = 365.0*24
                                                        //
      Total hours in a year
27 average_demand = kWh_gen/hours_year
                                        // Average demand(
     MW)
28 LF = average_demand/MD*100
                                                  // Load
      factor (%)
29
30 // Results
31 disp("PART I - EXAMPLE : 7.7 : SOLUTION :-")
32 printf("\nCase(i) : Diversity factor = \%.2 \, \mathrm{f} ",
      diversity_factor)
```

```
33 printf("\nCase(ii): Annual load factor = \%.f percent", LF)
```

Scilab code Exa 7.8 Maximum demand and Connected load of each type

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
     GENERATION
8
9 // EXAMPLE : 7.8 :
10 // Page number 74-75
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 load_domestic = 15000.0
                                          // Domestic
      load supplied by station (kW)
15 diversity_domestic = 1.25
                                          // Diversity
      factor of domestic load
16 \text{ DF\_domestic} = 0.7
                                          // Demand
      factor of domestic load
17 \quad load\_commercial = 25000.0
                                          // Commercial
      load supplied by station (kW)
18 diversity_commercial = 1.2
                                          // Diversity
      factor of commercial load
19 	ext{ DF\_commercial} = 0.9
                                           // Demand
      factor of commercial load
20 load_industry = 50000.0
                                          // Industrial
      load supplied by station (kW)
21 diversity_industry = 1.3
                                          // Diversity
```

```
factor of industrial load
22 DF_industry = 0.98
                                          // Demand
      factor of industrial load
  diversity_factor = 1.5
                                          // Overall
     system diversity factor
24
25 // Calculations
26 // Case (a)
27 sum_demand = load_domestic+load_commercial+
      load_industry // Sum of max demand of
      individual consumers (MW)
28 MD = sum_demand/diversity_factor
                                 // Maximum demand
29 // Case (b)
30 MD_domestic = load_domestic*diversity_domestic
                  // Maximum domestic load demand(kW)
31 connected_domestic = MD_domestic/DF_domestic
                    // Connected domestic load (kW)
  MD_commercial = load_commercial*diversity_commercial
             // Maximum commercial load demand(kW)
  connected_commercial = MD_commercial/DF_commercial
              // Connected commercial load (kW)
  MD_industry = load_industry*diversity_industry
                  // Maximum industrial load demand(kW)
  connected_industry = MD_industry/DF_industry
                    // Connected industrial load (kW)
36
37 // Results
38 disp("PART I - EXAMPLE : 7.8 : SOLUTION :-")
39 printf("\nCase(a): Maximum demand = %.f kW", MD)
40 printf("\nCase(b): Connected domestic load = \%.1 \text{ f kW}
     ", connected_domestic)
41 printf("\n
                       Connected commercial load = \%.1 \,\mathrm{f}
     kW", connected_commercial)
                       Connected industrial load = \%.1 \,\mathrm{f}
42 printf ("\n
     kW", connected_industry)
```

Scilab code Exa 7.9 Size and number of generator units Reserve plant capacity Load

```
// A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART I : GENERATION
6
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
     GENERATION
9 // EXAMPLE : 7.9 :
10 // Page number 75-76
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ MD} = 10000.0
                        // Maximum demand(kW)
                        // Load from 11 PM-6 AM(kW)
15 \ load_1 = 2000.0
                        // Time from 11 PM-6 AM(hour)
16 t_1 = 7.0
17 \ load_2 = 3500.0
                        // Load from 6 AM-8 AM(kW)
                        // Time from 6 AM-8 AM(hour)
18 t_2 = 2.0
19 \ load_3 = 8000.0
                        // Load from 8 AM-12 Noon(kW)
20 t_3 = 4.0
                        // Time from 8 AM-12 Noon(hour)
21 \ load_4 = 3000.0
                        // Load from 12 Noon-1 PM(kW)
22 t_4 = 1.0
                        // Time from 12 Noon-1 PM(hour)
23 \quad load_5 = 7500.0
                        // Load from 1 PM-5 PM(kW)
24 t_5 = 4.0
                        // Time from 1 PM-5 PM(hour)
25 \quad load_6 = 8500.0
                        // Load from 5 PM-7 PM(kW)
                        // Time from 5 PM-7 PM(hour)
26 t_6 = 2.0
                        // Load from 7 PM-9 PM(kW)
27 \ load_7 = 10000.0
28 t_7 = 2.0
                        // Time from 7 PM-9 PM(hour)
                        // Load from 9 PM-11 PM(kW)
29 \quad load_8 = 4500.0
30 t_8 = 2.0
                        // Time from 9 PM-11 PM(hour)
```

```
31
32 // Calculations
33 energy_gen = (load_1*t_1)+(load_2*t_2)+(load_3*t_3)
      +(load_4*t_4)+(load_5*t_5)+(load_6*t_6)+(load_7*
      t_7)+(load_8*t_8) // Energy generated during 24
      hours (kWh)
34 \text{ LF} = \text{energy\_gen/(MD}*24.0)
                                    // Load factor
35 \text{ no\_units} = 3.0
                                                // Number
      of generating set
36 \text{ cap}_1 = 5000.0
                                                // Capacity
       of first generating unit (kW)
37 \text{ cap}_2 = 3000.0
                                                // Capacity
       of second generating unit (kW)
38 \text{ cap}_3 = 2000.0
                                                // Capacity
       of third generating unit (kW)
39 cap_reserve = cap_1
                                          // Reserve
      capacity (kW) i.e largest size of generating unit
40 cap_installed = cap_1+cap_2+cap_3+cap_reserve
              // Installed capacity (kW)
41 cap_factor = energy_gen/(cap_installed*24.0)
              // Plant capacity factor
42 \text{ cap_plant} = \text{cap_3*t_1+(cap_3+cap_2)*t_2+(cap_2+cap_1)}
      )*t_3+cap_2*t_4+(cap_2+cap_1)*t_5+(cap_3+cap_2+
      cap_1)*t_6+(cap_3+cap_2+cap_1)*t_7+cap_1*t_8 //
      Capacity of plant running actually (kWh)
43 use_factor = energy_gen/cap_plant
                           // Plant use factor
44
45 // Results
46 disp("PART I - EXAMPLE : 7.9 : SOLUTION :-")
47 printf("\nNumber of generator units = \%.f", no_units
      )
```

```
48 printf("\nSize of generator units required are %.f
     kW, %.f kW and %.f kW", cap_1,cap_2,cap_3)
49 printf("\nReserve plant capacity = %.f kW",
     cap_reserve)
50 printf("\nLoad factor = %.2f = %.f percent", LF,LF
     *100)
51 printf("\nPlant capacity factor = %.4f = %.2f
     percent", cap_factor,cap_factor*100)
52 printf("\nPlant use factor = %.3f = %.1f percent",
     use_factor,use_factor*100)
53 printf("\n\nNOTE: Capacity of plant is directly
     taken & operating schedule is not displayed here"
    )
```

 ${
m Scilab\ code\ Exa\ 7.10}$ Cost of generation per kWh at 100 and 50 percent load factor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
     GENERATION
8
9 // EXAMPLE : 7.10 :
10 // Page number 76
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ cap\_installed} = 210.0*10**3
                                       // Installed
      capacity of the station (kW)
15 \text{ capital\_cost\_kW} = 1000.0
                                        // Capital cost of
       station (Rs/kW)
```

```
// Fixed cost = 13
16 \text{ fixed\_cost\_per} = 0.13
     % * cost of investment
17 variable_cost_per = 1.3
                                        // Variable cost =
       1.3* fixed cost
18 \text{ LF}_1 = 1.0
                                        // Load factor
19 \text{ LF}_2 = 0.5
                                        // Load factor
20
21 // Calculations
22 MD = cap_installed
                                                  //
      Maximum demand (kW)
23 \text{ hours_year} = 365.0*24
                                               // Total
      hours in a year
24 capital_cost = capital_cost_kW*cap_installed
                     // Capital cost of station(Rs)
25 // Case(i) At 100% load factor
26 fixed_cost_1 = capital_cost*fixed_cost_per
                        // Fixed cost (Rs)
27 variable_cost_1 = variable_cost_per*fixed_cost_1
                 // Variable cost (Rs)
28 operating_cost_1 = fixed_cost_1+variable_cost_1
                  // Operating cost per annum(Rs)
29 units_gen_1 = LF_1*MD*hours_year
                                   // Total units
      generated (kWh)
30 cost_gen_1 = operating_cost_1*100/units_gen_1
                     // Cost of generation per kWh(Paise
31 // Case(ii) At 50% load factor
32 fixed_cost_2 = capital_cost*fixed_cost_per
                        // Fixed cost (Rs)
33 \text{ units\_gen\_2} = \text{LF\_2*MD*hours\_year}
                                   // Total units
      generated (kWh)
34 variable_cost_2 = variable_cost_1*units_gen_2/
      units_gen_1 // Variable cost(Rs)
35 operating_cost_2 = fixed_cost_2+variable_cost_2
```

```
// Operating cost per annum(Rs)
36 cost_gen_2 = operating_cost_2*100/units_gen_2
                    // Cost of generation per kWh(Paise
37
38 // Results
39 disp("PART I - EXAMPLE : 7.10 : SOLUTION :-")
40 printf("\nCost of generation per kWh at 100 percent
     load factor = \%.2 f paise", cost_gen_1)
41 printf("\nCost of generation per kWh at 50 percent
     load factor = \%.1 f paise", cost_gen_2)
42 printf("\nComment: As the load factor is reduced,
      cost of generation is increased\n")
43 printf("\nNOTE: ERROR: (1) In problem statement,
     Capital cost of station must be Rs. 1000/kW, not
     Rs. 1000 / MW")
44 printf("\n
                          (2) Calculation mistake in
     Total units generated in Case(i) in textbook")
```

Scilab code Exa 7.11 Cost per unit generated

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART I : GENERATION
7  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
8
9  // EXAMPLE : 7.11 :
10  // Page number 76
11 clear ; clc ; close ; // Clear the work space and console
12
```

```
13 // Given data
14 \text{ MD} = 100.0*10**3
                                           // Maximum
      demand (kW)
15 capital_cost = 200.0*10**6
                                           // Capital cost (
      Rs)
16 \text{ LF} = 0.4
                                           // Annual load
      factor
17 \text{ cost\_fueloil} = 15.0*10**6
                                           // Annual cost
      of fuel and oil (Rs)
18 \text{ cost\_tax} = 10.0*10**6
                                           // Cost of taxes
      , wages and salaries (Rs)
  interest = 0.15
                                           // Interest and
      depreciation
20
21 // Calculations
22 \text{ hours_year} = 365.0*24
      // Total hours in a year
23 units_gen = MD*LF*hours_year
      // Units generated per annum(kWh)
24 fixed_charge = interest*capital_cost
      // Annual fixed charges (Rs)
25 running_charge = cost_fueloil+cost_tax
      // Annual running charges (Rs)
26 annual_charge = fixed_charge+running_charge
      // Total annual charges (Rs)
27
  cost_unit = annual_charge*100/units_gen
      // Cost per unit (Paise)
28
29 // Results
30 disp("PART I - EXAMPLE : 7.11 : SOLUTION :-")
31 printf("\nCost per unit generated = %.f paise",
      cost_unit)
```

Scilab code Exa 7.12 Minimum reserve capacity of station and Cost per kWh generate

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
     GENERATION
9 // EXAMPLE : 7.12 :
10 // Page number 76-77
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 cap_installed = 500.0
                                      // Installed
      capacity of the station (MW)
15 \text{ CF} = 0.45
                                      // Capacity factor
16 \text{ LF} = 0.6
                                      // Annual laod
      factor
17 \text{ cost_fueloil} = 10.0*10**7
                                      // Annual cost of
      fuel, oil etc(Rs)
18 \text{ capital\_cost} = 10**9
                                      // Capital cost (Rs)
19 interest = 0.15
                                      // Interest and
      depreciation
20
21 // Calculations
22 // Case(i)
23 MD = cap_installed*CF/LF
                                            // Maximum
      demand (MW)
24 cap_reserve = cap_installed-MD
                                      // Reserve capacity(
     MW)
25 // Case(ii)
26 \text{ hours_year} = 365.0*24
                                                // Total
      hours in a year
```

```
27 units_gen = MD*10**3*LF*hours_year
                                // Units generated per
     annum (kWh)
28 fixed_charge = interest*capital_cost
                              // Annual fixed charges (Rs
29 running_charge = cost_fueloil
                                     // Annual running
     charges (Rs)
30 annual_charge = fixed_charge+running_charge
                      // Total annual charges (Rs)
31 cost_unit = annual_charge*100/units_gen
                          // Cost per kWh generated (
     Paise)
32
33 // Results
34 disp("PART I - EXAMPLE : 7.12 : SOLUTION :-")
35 printf("\nCase(i) : Minimum reserve capacity of
      station = \%. f MW', cap_reserve)
36 printf("\nCase(ii): Cost per kWh generated = \%.f
     paise", cost_unit)
```

Scilab code Exa 7.13 Two part tariff to be charged from consumers

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART I : GENERATION
// CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
// EXAMPLE : 7.13 :
// Page number 77
```

```
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ gen_expense} = 850000.0
                                                // Annual
      generation expense (Rs)
15 \text{ fuel\_expense} = 2800000.0
                                                // Annual
      fuel expense (Rs)
16 \text{ trans\_expense} = 345000.0
                                                // Annual
      transmission expense (Rs)
17 \text{ dist\_expense} = 2750000.0
                                                // Annual
      distribution expense (Rs)
18 \text{ repair\_expense} = 300000.0
                                                // Annual
      repairs, etc expense (Rs)
19 unit_gen = 600.0*10**6
                                                // Number of
      units generated per year (kWh)
20 \text{ MD} = 75.0*10**3
                                                // Maximum
      demand (kW)
21 \text{ gen} = 0.9
                                                // Fixed
      charges for generation
22 \text{ fuel} = 0.15
                                                // Fixed
      charges for fuel
23 \text{ transm} = 0.85
                                                // Fixed
      charges for transmission
24 \text{ dist} = 0.95
                                                // Fixed
      charges for distribution
25 repair = 0.5
                                                // Fixed
      charges for repairs, etc
  loss_dist = 0.2
                                                // Losses in
26
      transmission and distribution
27
28 // Calculations
29 fixed_gen = gen_expense*gen
                                                            //
      Fixed charge on generation (Rs)
30 running_gen = gen_expense*(1-gen)
                                                            //
      Running charge on generation (Rs)
31 fixed_fuel = fuel_expense*fuel
                                                            //
      Fixed charge on fuel (Rs)
```

```
32 running_fuel = fuel_expense*(1-fuel)
                                                      //
     Running charge on fuel (Rs)
33 fixed_trans = trans_expense*transm
     Fixed charge on transmission(Rs)
34 running_trans = trans_expense*(1-transm)
     Running charge on transmission (Rs)
35 fixed_dist = dist_expense*dist
     Fixed charge on distribution (Rs)
36 running_dist = dist_expense*(1-dist)
     Running charge on distribution (Rs)
37 fixed_repair = repair_expense*repair
     Fixed charge on repairs, etc(Rs)
38 running_repair = repair_expense*(1-repair)
     Running charge on repairs, etc (Rs)
39 fixed_charge = fixed_gen+fixed_fuel+fixed_trans+
     fixed_dist+fixed_repair
                                            // Total
     fixed charges (Rs)
40 running_charge = running_gen+running_fuel+
     running_trans+running_dist+running_repair
     Total running charges (Rs)
41 fixed_unit = fixed_charge/MD
                                                      //
     Fixed charges per unit (Rs)
42 units_dist = unit_gen*(1-loss_dist)
     Total number of units distributed (kWh)
43 running_unit = running_charge *100/units_dist
     Running charges per unit (Paise)
44
45 // Results
46 disp("PART I - EXAMPLE : 7.13 : SOLUTION :-")
47 printf("\nTwo part tariff is Rs \%.3 f per kW of
     maximum demand plus %.3f paise per kWh",
     fixed_unit,running_unit)
```

Scilab code Exa 7.14 Generation cost in two part form

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
      GENERATION
9 // EXAMPLE : 7.14 :
10 // Page number 77
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ cap\_installed} = 100.0*10**3
                                              // Installed
      capacity of the station (kW)
15 \text{ capital\_cost\_kW} = 1000.0
                                              // Capital
      cost (Rs/kW)
16 depreciation = 0.15
                                              // Annual
      depreciation charge
17 \text{ royalty\_kW} = 2.0
                                              // Royalty per
       kW per year (Rs)
18 \text{ royalty\_kWh} = 0.03
                                              // Royalty per
       kWh per year (Rs)
19 \text{ MD} = 70.0*10**3
                                                 Maximum
      demand (kW)
20 \text{ LF} = 0.6
                                              // Annual load
       factor
21 \text{ cost\_salary} = 1000000.0
                                              // Annual cost
       of salaries, maintenance charges etc (Rs)
                                              // Annual cost
22 cost_salary_per = 0.2
       of salaries, maintenance charges etc charged as
      fixed charges
23
24 // Calculations
25 \text{ hours_year} = 365.0*24
                                                       //
```

```
Total hours in a year
26 unit_gen = MD*LF*hours_year
                                            // Units
      generated/annum(kWh)
27 capital_cost = cap_installed*capital_cost_kW
                          // Capital cost of plant(Rs)
28 depreciation_charge = depreciation*capital_cost
                       // Depreciation charges (Rs)
29 salary_charge = cost_salary_per*cost_salary
                           // Cost on salaries,
      maintenance etc (Rs)
30 fixed_charge = depreciation_charge+salary_charge
                      // Total annual fixed charges (Rs)
31 cost_kW_fixed = (fixed_charge/MD)+royalty_kW
                          // Cost per kW(Rs)
32 salary_charge_running = (1-cost_salary_per)*
                          // Annual running charge on
      cost_salary
      salaries, maintenance etc(Rs)
33 cost_kWh_running = (salary_charge_running/unit_gen)+
      royalty_kWh // Cost per kWh(Rs)
34
35 // Results
36 disp("PART I - EXAMPLE : 7.14 : SOLUTION :-")
37 printf("\nGeneration cost in two part form is given
     by, Rs. (\%.2 \text{ f*kW} + \%.3 \text{ f*kWh}) ", cost_kW_fixed,
      cost_kWh_running)
```

 ${f Scilab\ code\ Exa\ 7.15}$ Overall generating cost per unit at 50 and 100 percent capaci

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART I : GENERATION
```

```
7 // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
      GENERATION
9 // EXAMPLE : 7.15 :
10 // Page number 78
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 cap_installed = 100.0*10**3 // Installed capacity
      of station (kW)
                                   // Generating cost per
15 \text{ cost\_gen} = 30.0
      annum (Rs/kW)
16 \text{ cost\_fixed} = 4000000.0
                                   // Fixed cost per annum
      (Rs)
                                   // Cost of fuel(Rs/
17 \text{ cost\_fuel} = 60.0
      tonne)
18 calorific = 5700.0
                                   // Calorific value of
      fuel (kcal/kg)
19 rate_heat_1 = 2900.0
                                   // Plant heat rate at
      100% capacity factor (kcal/kWh)
                                   // Capacity factor
20 \text{ CF}_1 = 1.0
21 \text{ rate_heat_2} = 4050.0
                                   // Plant heat rate at
      50% capacity factor (kcal/kWh)
22 \text{ CF}_2 = 0.5
                                   // Capacity factor
23
24 // Calculations
25 cost_fixed_kW = cost_fixed/cap_installed
      // Fixed cost per kW(Rs)
26 cost_fixed_total = cost_gen+cost_fixed_kW
      // Fixed cost per kW capacity (Rs)
27
  average_demand_1 = CF_1*cap_installed
      // Average demand at 100% capacity factor (kW)
28 average_demand_2 = CF_2*cap_installed
      // Average demand at 50% capacity factor (kW)
29 \text{ hours_year} = 365.0*24
      // Total hours in a year
30 \text{ unit\_gen\_1} = CF\_1*hours\_year
```

```
// Energy generated per annum with average demand
       of 1 kW(kWh)
31 unit_gen_2 = CF_2*hours_year
     // Energy generated per annum with average demand
       of 0.5 \text{ kW(kWh)}
32 cost_kWh_fixed_1 = cost_fixed_total*100/unit_gen_1
      // Cost per kWh due to fixed charge with 100% CF(
      Paise)
33 cost_kWh_fixed_2 = cost_fixed_total*100/unit_gen_2
      // Cost per kWh due to fixed charge with 50% CF(
      Paise)
34 kg_kWh_1 = rate_heat_1/calorific
     // Weight (kg)
35 kg_kWh_2 = rate_heat_2/calorific
     // Weight (kg)
36 \quad cost\_coal\_1 = kg\_kWh\_1*cost\_fuel*100/1000.0
     // Cost due to coal at 100% CF(Paise/kWh)
37 \text{ cost_coal_2} = \text{kg_kWh_2*cost_fuel*100/1000.0}
      // Cost due to coal at 50% CF(Paise/kWh)
38 cost_total_1 = cost_kWh_fixed_1+cost_coal_1
     // Total cost per unit with 100% CF(Paise)
39 cost_total_2 = cost_kWh_fixed_2+cost_coal_2
     // Total cost per unit with 50% CF(Paise)
40
41 // Results
42 disp("PART I - EXAMPLE : 7.15 : SOLUTION :-")
43 printf("\nOverall generating cost per unit at 100
      percent capacity factor = \%.3 \, f paise",
      cost_total_1)
44 printf("\nOverall generating cost per unit at 50
      percent capacity factor = \%.3 f paise \n",
      cost_total_2)
45 printf("\nNOTE: Slight changes in obtained answer
      from that of textbook answer is due to more
      precision here")
```

 ${
m Scilab\ code\ Exa\ 7.16}$ Yearly cost per kW demand and Cost per kWh supplied at substa

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
      GENERATION
9 // EXAMPLE : 7.16 :
10 // Page number 78
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ MD} = 75.0*10**3
                                                Maximum
      demand (kW)
15 \text{ LF} = 0.4
                                             // Yearly load
       factor
16 \text{ cost\_capital} = 60.0
                                             // Capital
      cost (Rs/annum/kW)
17 \quad cost_kWh = 1.0
                                             // Cost per
      kWh transmitted (Paise)
18 \text{ charge\_trans} = 2000000.0
                                                Annual
      capital charge for transmission (Rs)
                                             // Annual
19 charge_dist = 1500000.0
      capital charge for distribution (Rs)
20 diversity_trans = 1.2
                                                Diversity
      factor for transmission
21 diversity_dist = 1.25
                                                Diversity
      factor for distribution
22 \text{ n\_trans} = 0.9
                                             // Efficiency
```

```
of transmission system
23 \text{ n_dist} = 0.85
                                           // Efficiency
      of distribution system
24
25 // Calculations
26 // Case (a)
27 \text{ capital\_cost} = \text{cost\_capital*MD}
                                    // Annual capital
      cost (Rs)
28 fixed_charge_sub = capital_cost+charge_trans
                      // Total fixed charges for supply
      to substation per annum(Rs)
29 sum_MD_sub = MD*diversity_trans
                                    // Sum of all maximum
      demand of substation (kW)
30 cost_kW_sub = fixed_charge_sub/sum_MD_sub
                         // Yearly cost per kW demand at
       substation (Rs)
31 running_cost_unit_sub = 1/n_trans
                                 // Running cost per
      unit supplied at substation (Paise)
32 // Case(b)
33 sum_MD_con = sum_MD_sub*diversity_dist
                            // Sum of all maximum demand
       of consumer (kW)
34 fixed_charge_con = capital_cost+charge_trans+
      charge_dist
                  // Total fixed charges for supply
      to cosnumers (Rs)
35 cost_kW_con = fixed_charge_con/sum_MD_con
                         // Yearly cost per kW demand on
       consumer premises (Rs)
36 running_cost_unit_con = running_cost_unit_sub/n_dist
              // Running cost per unit supplied to
     consumer (Paise)
37
38 // Results
39 disp("PART I - EXAMPLE : 7.16 : SOLUTION :-")
40 printf("\nCase(a): Yearly cost per kW demand at the
```

```
substations = Rs. %.2f ", cost_kW_sub)
41 printf("\n Cost per kWh supplied at the
    substations = %.2f paise\n",
    running_cost_unit_sub)
42 printf("\nCase(b): Yearly cost per kW demand at the
    consumer premises = Rs. %.2f ", cost_kW_con)
43 printf("\n Cost per kWh supplied at the
    consumer premises = %.3f paise",
    running_cost_unit_con)
```

Scilab code Exa 7.17 Number of working hours per week above which the HV supply is

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
     GENERATION
9 // EXAMPLE : 7.17 :
10 // Page number 79
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA\_tariff\_hv} = 60.0
                             // HV supply per kVA per
      annum (Rs)
15 \text{ kWh\_tariff\_hv} = 3.0/100
                               // HV supply per kWh
     annum (Rs)
16 \text{ kVA\_tariff\_lv} = 65.0
                                // LV supply per kVA per
      annum (Rs)
17 kWh_tariff_lv = 3.3/100 // LV supply per kWh
     annum (Rs)
```

```
// Cost of transformers
18 \quad cost_equip_kVA = 50.0
     and switchgear per kVA(Rs)
19 loss_full_load = 0.02
                                // Full load
      transformation loss
20 fixed_charge_per = 0.2
                               // Fixed charges per
     annum
21 \text{ no\_week} = 50.0
                                // Number of working
      weeks in a year
22
23 // Calculations
24 rating_equip = 1000/(1-loss_full_load)
                                                     //
      Rating of transformer and switchgear (kVA)
25 cost_equip = cost_equip_kVA*rating_equip
                                                     //
      Cost of transformers and switchgear (Rs)
26 fixed_charge = fixed_charge_per*cost_equip
      Fixed charges per annum on HV plant(Rs)
27 X = poly(0, "X")
     Number of working hours per week
28 units_consumed = (no_week*X)*1000.0
      Yearly units consumed by load
29 total_units = units_consumed/(1-loss_full_load) //
      Total units to be paid on HV supply
30 // Case(a)
31 annual_cost_hv = (kVA_tariff_hv*rating_equip)+(
     kWh_tariff_hv*cost_equip*X)+fixed_charge //
      Annual cost (Rs)
32 // Case (b)
33 annual_cost_lv = (kVA_tariff_lv*1000.0)+(
     kWh_tariff_lv*units_consumed)
                                         // Annual cost (
     Rs)
34 p = annual_cost_hv-annual_cost_lv
      Finding unknown value i.e working hours in terms
     of X
35 x = roots(p)
                                                     //
      Finding unknown value i.e working hours
36
37 // Results
```

```
38 disp("PART I - EXAMPLE : 7.17 : SOLUTION :-")
39 printf("\nAbove %.1f working hours per week the H.V supply is cheaper ", x)
```

Scilab code Exa 7.18 Cheaper alternative to adopt and by how much

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART I : GENERATION
7 // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
      GENERATION
9 // EXAMPLE : 7.18 :
10 // Page number 79-80
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ load_1 = 10.0*10**3
                                 // Load per annum(kVA)
                                 // Time(hours)
15 \text{ time}_1 = 1800.0
                                 // Load per annum(kVA)
16 \quad load_2 = 6.0*10**3
                                 // Time(hours)
17 \text{ time}_2 = 600.0
                                 // Load per annum(kVA)
18 \quad load_3 = 0.25*10**3
                                 // Time(hours)
19 \text{ time}_3 = 400.0
20 \quad rating\_trans = 10.0*10**3
                                 // Transformer rating (kVA
      )
21 \text{ pf} = 0.8
                                 // Lagging power factor
                                 // Full load efficiency
22 n_fl_A = 98.3/100.0
      of transformer A
23 \text{ n_fl_B} = 98.8/100.0
                                 // Full load efficiency
      of transformer B
24 \quad loss_A = 70.0
                                 // Core loss at rated
```

```
voltage of transformer A(kW)
25 \ loss_B = 40.0
                               // Core loss at rated
      voltage of transformer B(kW)
  cost_A = 250000.0
                              // Cost of transformer A(
     Rs)
  cost_B = 280000.0
                               // Cost of transformer B(
27
     Rs)
  interest_per = 0.1
                               // Interest and
      depreciation charges
  cost_energy_unit = 3.0
                              // Energy costs per unit (
     Paise)
30
31 // Calculations
32 // Transformer A
33 output_A = rating_trans*pf
                                  // kW output at full
     load (kW)
34 input_A = output_A/n_fl_A
                                    // Input at full
     load (kW)
35 cu_loss_fl_A = input_A-output_A-loss_A
                      // Copper loss at full load (kW)
36 cu_loss_2_A = (load_2/load_1)**2*cu_loss_fl_A
               // Copper loss at 6 MVA output (kW)
  cu_loss_3_A = (load_3/load_1)**2*cu_loss_fl_A
               // Copper loss at 0.25 MVA output (kW)
  ene_iron_loss_A = loss_A*(time_1+time_2+time_3)
             // Energy consumed due to iron losses (kWh)
39 ene_cu_loss_A = time_1*cu_loss_fl_A+time_2*
     cu_loss_2_A+time_3*cu_loss_3_A
                                      // Energy
     consumed due to copper losses (kWh)
40 total_loss_A = ene_iron_loss_A+ene_cu_loss_A
                // Total loss per annum(kWh)
41 cost_energy_A = cost_energy_unit/100*total_loss_A
           // Energy cost per annum due to losses (Rs)
42 // Transformer B
43 output_B = rating_trans*pf
                                  // kW output at full
```

```
load (kW)
44 input_B = output_B/n_fl_B
                                   // Input at full
     load (kW)
45 cu_loss_fl_B = input_B-output_B-loss_B
                      // Copper loss at full load (kW)
46 cu_loss_2_B = (load_2/load_1)**2*cu_loss_fl_B
               // Copper loss at 6 MVA output (kW)
   cu_loss_3_B = (load_3/load_1)**2*cu_loss_fl_B
               // Copper loss at 0.25 MVA output (kW)
  ene_iron_loss_B = loss_B*(time_1+time_2+time_3)
             // Energy consumed due to iron losses (kWh)
  ene_cu_loss_B = time_1*cu_loss_fl_B+time_2*
      cu_loss_2_B+time_3*cu_loss_3_B // Energy
      consumed due to copper losses (kWh)
50 total_loss_B = ene_iron_loss_B+ene_cu_loss_B
                // Total loss per annum(kWh)
51 cost_energy_B = cost_energy_unit/100*total_loss_B
           // Energy cost per annum due to losses (Rs)
52 diff_capital = cost_B-cost_A
                                // Difference in
      capital costs (Rs)
  annual_charge = interest_per*diff_capital
                   // Annual charge due to this amount (
  diff_cost_energy = cost_energy_A - cost_energy_B
              // Difference in energy cost per annum(Rs
  cheap = diff_cost_energy-annual_charge
                      // Cheaper in cost (Rs)
56
57 // Results
58 disp("PART I - EXAMPLE : 7.18 : SOLUTION :-")
59 printf("\nTransformer B is cheaper by Rs. %. f per
      year \n", cheap)
60 printf("\nNOTE: ERROR: Full load efficiency for
      transformer B is 98.8 percent, not 98.3 percent
      as given in problem statement")
```

Scilab code Exa 7.19 Valuation halfway based on Straight line Reducing balance and

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
     GENERATION
9 // EXAMPLE : 7.19 :
10 // Page number 80-81
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ fixed\_cost} = 4.0*10**4
                                    // Fixed cost of
      plant (Rs)
15 salvage_value = 4.0*10**3
                                    // Salvage value (Rs)
                                    // Useful life (years)
16 n = 20.0
17 r = 0.06
                                    // Sinking fund
      depreciation compounded annually
18
19 // Calculations
20 \quad n_2 = n/2
      Halfway of useful life (years)
21 // Case (a)
22 total_dep_A = fixed_cost-salvage_value
      Total depreciation in 20 years (Rs)
23 \text{ dep}_10_A = \text{total}_dep_A/2
      Depreciation in 10 years (Rs)
```

```
24 value_10_A = fixed_cost-dep_10_A
                                                     //
      Value at the end of 10 years (Rs)
25 // Case (b)
26 P_B = fixed_cost
      Capital outlay (Rs)
                                                     // q =
27 q_B = (salvage_value/fixed_cost)**(1/n)
      (1-p)
28 \text{ value}_{10}B = P_B*(q_B)**n_2
      Value at the end of 10 years (Rs)
29 // Case(c)
30 P_C = fixed_cost
      Capital cost of plant (Rs)
31 P__C = salvage_value
      Scrap value (Rs)
32 \quad Q_C = P_C - P_C
                                                     // Cost
       of replacement (Rs)
33 q_C = Q_C/(((1+r)**n-1)/r)
      Yearly charge (Rs)
34 \text{ amount\_dep} = q_C*((1+r)**n_2-1)/r
                                                     //
      Amount deposited at end of 10 years (Rs)
35 value_10_C = P_C-amount_dep
      Value at the end of 10 years (Rs)
36
37 // Results
38 disp("PART I - EXAMPLE : 7.19 : SOLUTION :-")
39 printf("\nCase(a): Valuation halfway through its
      life based on Straight line depreciation method =
       \mathrm{Rs}~\%.1\,\mathrm{e} ", value_10_A)
40 printf("\nCase(b): Valuation halfway through its
      life based on Reducing balance depreciation
      method = Rs \%.2e ", value_10_B)
41 printf("\nCase(c): Valuation halfway through its
      life based on Sinking fund depreciation method =
      \mathrm{Rs}~\%.2\,\mathrm{e} ", value_10_C)
```

Scilab code Exa 7.20 Type and hp ratings of two turbines for the station

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
     GENERATION
8
9 // EXAMPLE : 7.20 :
10 // Page number 81
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 h = 30.0
                             // Mean head (m)
15 \text{ area_catch} = 250.0
                             // Catchment area (Square km
     )
                             // Average rainfall per
16 average_rain = 1.25
     annum (m)
17 utilized_rain = 0.7
                             // Rainfall utilized
                             // Expected load factor
18 \text{ LF} = 0.8
19 \text{ n_turbine} = 0.9
                             // Mechanical efficiency of
      turbine
20 \text{ n_gen} = 0.95
                             // Efficiency of generator
21
22 // Calculations
23 water_avail = utilized_rain*area_catch*10**6*
      average\_rain // Water available(m^3)
24 \text{ sec\_year} = 365.0*24*60*60
                                            // Total
      seconds in a year
25 Q = water_avail/sec_year
                                             // Quantity
      available per second(m^3) i.e Discharge(m^3/sec)
26 w = 1000.0
```

```
// Density of water(kg/m<sup>3</sup>)
27 n = n_turbine*n_gen
                                                  //
      Overall efficiency
28 P = 0.736/75*Q*w*h*n
     Average output of generator units (kW)
29 rating_gen = P/LF
                                                    //
     Rating of generator (kW)
30 rating_gen_each = rating_gen/2.0
                                    // Rating of each
      generator (kW)
31 rating_turbine = rating_gen/2*(1/(0.736*n_gen))
                    // Rating of each turbine (metric hp
32
33 // Results
34 disp("PART I - EXAMPLE : 7.20 : SOLUTION :-")
35 printf("\nChoice of units are:")
36 printf("\n 2 generators each having maximum rating
     of %.f kW ", rating_gen_each)
37 printf("\n 2 propeller turbines each having maximum
      rating of \%. f metric hp \n", rating_turbine)
38 printf("\nNOTE: Changes in obtained answer from that
       of textbook answer is due to more precision here
      ')
```

Scilab code Exa 7.21 Plot of chronological load curve and Load duration curve

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
```


Figure 7.1: Plot of chronological load curve and Load duration curve

```
3 // DHANPAT RAI & Co.
  // SECOND EDITION
  // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
     GENERATION
9 // EXAMPLE : 7.21 :
10 // Page number 81-82
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 t0 = 0.0
                               // Time 12 morning
15 \ 10 = 4.0
                               // Load at 12 morning (kW
      *1000)
16 t1 = 1.0
                               // Time 1 a.m
17 \quad 11 = 3.5
                               // Load at 1 a.m(kW*1000)
18 	 t2 = 2.0
                               // Time 2 a.m
                               // Load at 2 a.m(kW*1000)
19 \ 12 = 3.0
20 t3 = 3.0
                                 Time 3 a.m
                                  Load at 3 \text{ a.m}(kW*1000)
21 \quad 13 = 3.0
22 \text{ t4} = 4.0
                                  Time 4 a.m
```

```
// Load at 4 a.m(kW*1000)
23 	 14 = 3.5
24 	 t5 = 5.0
                                // Time 5 a.m
                                // Load at 5 a.m(kW*1000)
25 	 15 = 3.0
                                // Time 6 a.m
26 	 t6 = 6.0
27 	 16 = 6.0
                                // Load at 6 a.m(kW*1000)
28 	 t7 = 7.0
                                // Time 7 a.m.
29 	 17 = 12.5
                                // Load at 7 a.m(kW*1000)
30 t8 = 8.0
                                // Time 8 a.m.
31 \ 18 = 14.5
                                // Load at 8 a.m(kW*1000)
                                // Time 9 a.m
32 	 t9 = 9.0
33 	 19 = 13.5
                                // Load at 9 a.m(kW*1000)
34 \text{ t10} = 10.0
                                // Time 10 a.m.
35 \quad 110 = 13.0
                                // Load at 10 a.m(kW*1000)
36 t11 = 11.0
                                // Time 11 a.m
37 \quad 111 = 13.5
                                // Load at 11 a.m(kW*1000)
38 t113 = 11.50
                                   Time 11.30 a.m
39 1113 = 12.0
                                // Load at 11.30 am(kW
      *1000)
40 	 t12 = 12.0
                                   Time 12 noon
41 \quad 112 = 11.0
                                // Load at 12 noon(kW*1000)
42 	 t123 = 12.50
                                   Time 12.30 noon
43 \quad 1123 = 5.0
                                // Load at 12.30 noon(kW
      *1000)
44 \text{ t13} = 13.0
                                   Time 1 p.m
                                // Load at 1 p.m(kW*1000)
45 \quad 113 = 12.5
46 	 t133 = 13.50
                                // Time 1.30 p.m
  1133 = 13.5
                                // Load at 1.30 p.m(kW
      *1000)
48 \text{ t} 14 = 14.0
                                   Time 2 p.m
49 114 = 14.0
                                // Load at 2 p.m(kW*1000)
                                // Time 3 p.m
50 \text{ t}15 = 15.0
51 \quad 115 = 14.0
                                // Load at 3 p.m(kW*1000)
52 	 t16 = 16.0
                                // Time 4 p.m
53 \quad 116 = 15.0
                                // Load at 4 p.m(kW*1000)
54 	 t163 = 16.50
                                   Time 4.30 p.m
  1163 = 18.0
                                   Load at 4.30 p.m(kW
55
      *1000)
56 	 t17 = 17.0
                                   Time 5 p.m
```

```
57 \quad 117 = 20.0
                             // Load at 5 p.m(kW*1000)
                             // Time 5.30 p.m
58 t173 = 17.50
                             // Load at 5.30 p.m(kW
59 \quad 1173 = 17.0
     *1000)
                             // Time 6 p.m
60 	 t18 = 18.0
61 118 = 12.5
                             // Load at 6 p.m(kW*1000)
                             // Time 7 p.m
62 	 t19 = 19.0
63 	 119 = 10.0
                             // Load at 7 p.m(kW*1000)
64 	 t20 = 20.0
                             // Time 8 p.m
                             // Load at 8 p.m(kW*1000)
65 	 120 = 7.5
66 	 t21 = 21.0
                             // Time 9 p.m
                             // Load at 9 p.m(kW*1000)
67 	 121 = 5.0
68 	 t22 = 22.0
                             // Time 10 p.m
69 	 122 = 5.0
                             // Load at 10 p.m(kW*1000)
70 	 t23 = 23.0
                             // Time 11 p.m
71 	 123 = 4.0
                             // Load at 11 p.m(kW*1000)
72 	 t24 = 24.0
                             // Time 12 morning
                             // Load at 12 morning (kW
73 \quad 124 = 4.0
      *1000)
74
75 // Calculations
76 	 t = [t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,
     t14,t15,t16,t17,t18,t19,t20,t21,t22,t23,t24]
114,115,116,117,118,119,120,121,122,123,124]
78 \ a = gca() ;
79 a.thickness = 2
     // sets thickness of plot
80 plot(t,1, 'ro-')
      // Plot of Chronological load curve
81 T =
      [0,0.5,1,1.5,2.5,4.5,6,7,9,9.5,10,11,12,13,15.5,18.5,20.5,23.5,24]
      // Solved time
82 L =
      [20,18,17,15,14.5,14,13.5,13,12.5,12,11,10,7.5,6,5,4,3.5,3,3]
           // Solved load
83 plot(T,L,'—mo')
     // Plot of load duration curve
```

```
84 a.x_label.text = 'Time & No. of hours'
     // labels x-axis
85 a.y_label.text = 'Load in 10^3 kW'
     // labels y-axis
86 xtitle ("Fig E7.2 . Plot of Chronological load curve
     and load duration curve")
87 xset ('thickness',2)
     // sets thickness of axes
88 xstring(17.5,17, 'Chronological load curve')
89 xstring(1.1,17, 'Load duration curve')
90
91 // Results
92 disp("PART I - EXAMPLE : 7.21 : SOLUTION :-")
93 printf("\nThe chronological load curve and the load
      duration curve is shown in the Figure E7.2\n")
94 printf("\nNOTE: The time is plotted in 24 hours
     format')
```

 ${f Scilab\ code\ Exa\ 7.22}$ Daily energy produced Reserve capacity and Maximum energy produced Reserve capa

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART I : GENERATION
7  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
8
9  // EXAMPLE : 7.22 :
10  // Page number 82
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
```

```
14 \text{ MD} = 20.0*10**3
                                              // Maximum
      demand (kW)
15 \text{ LF} = 0.6
                                              // Load factor
                                              // Plant
16 \text{ CF} = 0.48
      capacity factor
17 \text{ UF} = 0.8
                                              // Plant use
      factor
18
19 // Calculations
20 // Case (a)
21 \text{ avg\_demand} = \text{LF*MD}
                                                // Average
      demand (kW)
22 ene_daily = avg_demand *24.0
                                                // Daily
      energy produced (kWh)
23 // Case(b)
24 cap_installed = avg_demand/CF
                                                // Installed
       capacity (kW)
25 cap_reserve = cap_installed-MD
                                                // Reserve
      capacity (kW)
26 // Case(c)
27 max_ene_C = cap_installed*24.0
                                                // Maximum
      energy that could be produced daily (kWh)
28 // Case (d)
29 max_ene_D = ene_daily/UF
                                                // Maximum
      energy that could be produced daily as per
      schedule (kWh)
30
31 // Results
32 disp("PART I - EXAMPLE : 7.22 : SOLUTION :-")
33 printf("\nCase(a): Daily energy produced = \%. f kWh",
       ene_daily)
34 printf("\nCase(b): Reserve capacity of plant = \%.f
     kW^{\prime\prime} , cap_reserve)
35 printf("\nCase(c): Maximum energy that could be
      produced daily when plant runs at all time = \%. f
      kWh", max_ene_C)
36 printf("\nCase(d): Maximum energy that could be
      produced daily when plant runs fully loaded = \%. f
```

Scilab code Exa 7.23 Rating Annual energy produced Total fixed and variable cost C

```
// A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
      GENERATION
9 // EXAMPLE : 7.23 :
10 // Page number 83-84
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                                          // Capacity of 3
14 \text{ cap\_3sets} = 600.0
      generators (kW)
15 \text{ no}_3 = 3.0
                                          // Number of sets
      of 600 kW
16 \text{ cap\_4thset} = 400.0
                                          // Capacity of 4th
       generator set (kW)
17 \text{ no}_4 = 1.0
                                          // Number of sets
      of 400 kW
18 \text{ MD} = 1600.0
                                             Maximum demand (
      kW)
19 \text{ LF} = 0.45
                                          // Load factor
20 \text{ cost\_capital\_kW} = 1000.0
                                          // Capital cost
      per kW installed capacity (Rs)
21 cost_annual_per = 0.15
                                          // Annual cost =
      15% of capital cost
22 \text{ cost\_operation} = 60000.0
                                          // Annual
```

```
operation cost (Rs)
23 cost_maintenance = 30000.0
                                          // Annual
      maintenance cost (Rs)
24 \text{ fixed_maintenance} = 1.0/3
                                          // Fixed cost
25 variable_maintenance = 2.0/3
                                          // Variable cost
26 \text{ cost_fuel_kg} = 40.0/100
                                          // Cost of fuel
      oil (Rs/kg)
                                          // Cost of
27 \text{ cost\_oil\_kg} = 1.25
      lubricating oil (Rs/kg)
  calorific = 10000.0
                                          // Calorific value
       of fuel(kcal/kg)
29 \text{ oil\_consum} = 1.0/400
                                          // Consumption of
      lubricating oil. 1kg for every 400kWh generated
30 \text{ fuel\_consum} = 1.0/2
                                          // Consumption of
      fuel. 1kg for every 2kWh generated
31 \text{ n_gen} = 0.92
                                          // Generator
      efficiency
32 \text{ heat\_lost} = 1.0/3
                                          // Heat lost in
      the fuel to cooling water
33 \text{ theta} = 11.0
                                          // Difference of
      temperature between inlet and outlet (C)
34
35 // Calculations
36 // Case(a)
37 rating_3set_A = cap_3sets/n_gen
       Rating of first 3 sets (kW)
38 rating_4th_A = cap_4thset/n_gen
       Rating of 4th set (kW)
39 // Case (b)
40 \text{ avg\_demand\_B} = \text{LF*MD}
      // Average demand(kW)
41 \text{ hours_year} = 365.0*24
      // Total hours in a year
42 energy_B = avg_demand_B*hours_year
```

```
//
     Annual energy produced (kWh)
43 // Case(c)
44 total_invest = (no_3*cap_3sets+cap_4thset*no_4)*
     cost_capital_kW
                                      // Total
     investment (Rs)
45 annual_cost = cost_annual_per*total_invest
                                           // Annual
     cost (Rs)
46 maintenance_cost = fixed_maintenance*
                                                 //
      cost_maintenance
     Maintenance cost (Rs)
47 fixed_cost_total = annual_cost+maintenance_cost
                                      // Total fixed
      cost per annum (Rs)
48 fuel_consumption = energy_B*fuel_consum
                                              // Fuel
     consumption (Kg)
49 cost_fuel = fuel_consumption*cost_fuel_kg
                                            // Cost of
      fuel (Rs)
50 oil_consumption = energy_B*oil_consum
      Lubrication oil consumption (Kg)
51 cost_oil = oil_consumption*cost_oil_kg
                                                // Cost
      of Lubrication oil (Rs)
52 var_maintenance_cost = variable_maintenance*
                                          // Variable
     cost_maintenance
     part of maintenance cost (Rs)
53 variable_cost_total = cost_fuel+cost_oil+
                                           // Total
     var_maintenance_cost+cost_operation
      variable cost per annum (Rs)
54 cost_total_D = fixed_cost_total+variable_cost_total
                                  // Total cost per
     annum (Rs)
55 cost_kWh_gen = cost_total_D/energy_B*100
                                             // Cost per
```

```
kWh generated (Paise)
56 // Case (c)
57 n_overall = energy_B*860/(fuel_consumption*calorific
                                  // Overall efficiency (
     )*100
     %)
58 // Case (d)
59 weight_water_hr = heat_lost*fuel_consumption/(
     hours_year*theta)*calorific
                                        // Weight of
      cooling water required (kg/hr)
60 weight_water_min = weight_water_hr/60.0
                                               // Weight
      of cooling water required (kg/min)
61 capacity_pump = weight_water_min*MD/avg_demand_B
                                     // Capacity of
      cooling water pump(kg/min)
62
63 // Results
64 disp("PART I - EXAMPLE : 7.23 : SOLUTION :-")
65 printf("\nCase(a): Rating of first 3 sets of diesel
      engine = \%. f kW, rating_3set_A)
66 printf("\n
                      Rating of 4th set of diesel
      engine = \%. f kW", rating_4th_A)
67 printf("\nCase(b): Annual energy produced = \%.1e kWh
     ", energy_B)
68 printf("\nCase(c): Total fixed cost = Rs %.f ",
     fixed_cost_total)
69 printf ("\n
                       Total variable cost = Rs \%. f ",
     variable_cost_total)
                      Cost per kWh generated = \%. f
70 printf("\n
      paise", cost_kWh_gen)
71 printf("\nCase(d): Overall efficiency of the diesel
      plant = \%.1f percent, n_overall)
72 printf("\nCase(e): Quantity of cooling water
     required per round = \%.2 e kg/hr = \%.f kg/min",
     weight_water_hr , weight_water_min)
73 printf("\n
                      Capacity of cooling-water pumps
     under maximum load = \%. f kg/min \n",
     capacity_pump)
```

```
74 printf("\nNOTE: Changes in obtained answer from that of textbook answer is due to more precision here ')
```

Scilab code Exa 7.24 Turbine rating Energy produced Average steam consumption Evap

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART I : GENERATION
  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
      GENERATION
9 // EXAMPLE : 7.24 :
10 // Page number 84
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ cap_installed} = 30.0*10**3
                                      // Rating of each
      generators (kW)
15 \text{ no} = 4.0
                                       // Number of
      installed generators
16 \text{ MD} = 100.0*10**3
                                       // Maximum demand (kW
17 \text{ LF} = 0.8
                                       // Load factor
                                      // Capital cost per
18 \quad cost\_capital\_kW = 800.0
     kW installed capacity (Rs)
19 depreciation_per = 0.125
                                      // Depreciation, etc
      = 12.5\% of capital cost
20 \quad cost\_operation = 1.2*10**6
                                      // Annual operation
      cost (Rs)
21 cost_maintenance = 600000.0
                                      // Annual
```

```
maintenance cost (Rs)
22 fixed_maintenance = 1.0/3
                                        // Fixed cost
                                       // Variable cost
23 variable_maintenance = 2.0/3
                                       // Miscellaneous
24 cost_miscellaneous = 100000.0
      cost (Rs)
25 \text{ cost\_fuel\_kg} = 32.0/1000
                                        // Cost of fuel oil(
      Rs/kg)
26 calorific = 6400.0
                                        // Calorific value
      of fuel(kcal/kg)
27 \text{ n_gen} = 0.96
                                        // Generator
      efficiency
28 \text{ n\_thermal} = 0.28
                                        // Thermal
      efficiency of turbine
                                        // Boiler efficiency
29 \text{ n_boiler} = 0.75
                                        // Overall thermal
30 \text{ n_overall} = 0.2
      efficiency
31
32 // Calculations
33 // Case(a)
34 rating_turbine = cap_installed/(n_gen*0.736)
                            // Rating of each steam
      turbine (metric hp)
35 // Case (b)
36 \text{ avg\_demand\_B} = \text{LF*MD}
      Average demand(kW)
37 \text{ hours_year} = 365.0*24
      Total hours in a year
38 \text{ energy\_B} = avg\_demand\_B*hours\_year
                                       // Annual energy
      produced (kWh)
39 // Case(c)
40 steam_consumption_C = (0.8+3.5*LF)/LF
                                    // Average steam
      consumption (kg/kWh)
41 // Case(d)
42 \text{ LF_D} = 1.0
```

```
// Assumption that Load factor for boiler
43 steam_consumption_D = (0.8+3.5*LF_D)/LF_D
                            // Steam consumption(kg/kWh
44 energy_D = cap_installed*1.0
                                          // Energy
      output per hour per set (kWh)
45 evaporation_cap = steam_consumption_D*energy_D
                       // Evaporation capacity of
      boiler (kg/hr)
46 // Case (e)
47 total_invest = no*cap_installed*cost_capital_kW
                      // Total investment (Rs)
48 capital_cost = depreciation_per*total_invest
                         // Capital cost (Rs)
49 maintenance_cost = fixed_maintenance*
      cost_maintenance
                                 // Maintenance cost (Rs
50 fixed_cost_total = capital_cost+maintenance_cost
                     // Total fixed cost per annum(Rs)
51 var_maintenance_cost = variable_maintenance*
      cost_maintenance // Variable part of
      maintenance cost (Rs)
52 input_E = energy_B/n_overall
                                          // Input into
     system per annum (kWh)
53 weight_fuel = input_E*860/calorific
                                  // Weight of fuel(kg)
54 cost_fuel = weight_fuel*cost_fuel_kg
                                 // Cost of fuel(Rs)
55 variable_cost_total = cost_operation+
     var_maintenance_cost+cost_miscellaneous+cost_fuel
         // Total variable cost per annum(Rs)
56 cost_total_E = fixed_cost_total+variable_cost_total
                  // Total cost per annum(Rs)
57 cost_kWh_gen = cost_total_E/energy_B*100
                             // Cost per kWh generated (
```

```
Paise)
58
59 // Results
60 disp("PART I - EXAMPLE : 7.24 : SOLUTION :-")
61 printf("\nCase(a): Rating of each steam turbine = \%.
      f metric hp", rating_turbine)
62 printf("\nCase(b): Energy produced per annum = \%.3e
      kWh", energy_B)
63 printf("\nCase(c): Average steam consumption per kWh
       =\%.1\,\mathrm{f}\,\mathrm{kg}/\mathrm{kWh}", steam_consumption_C)
64 printf("\nCase(d): Evaporation capacity of boiler =
     \%. f kg/hr", evaporation_cap)
65 printf("\nCase(e): Total fixed cost = Rs \%.2e",
      fixed_cost_total)
66 printf("\n
                        Total variable cost = Rs \%.2e ",
      variable_cost_total)
67 printf("\n
                        Cost per kWh generated = \%.2 \,\mathrm{f}
      paise \n", cost_kWh_gen)
68 printf("\nNOTE: Changes in obtained answer from that
       of textbook answer is due to more precision here
      ')
```

Scilab code Exa 7.25 Plot of hydrograph and Average discharge available

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART I : GENERATION
7  // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION
```


Figure 7.2: Plot of hydrograph and Average discharge available

```
9 // EXAMPLE : 7.25 :
10 // Page number 85
11 clear; clc; close; // Clear the work space and
       console
12
13 // Given data
                      // Week 1
14 \text{ w1} = 1.0
                      // Discharge during week 1(m<sup>2</sup>/sec)
15 \quad Q1 = 200.0
                      // Week 2
16 \text{ w2} = 2.0
                      // Discharge during week 2(m<sup>2</sup>/sec)
17 Q2 = 300.0
                      // Week 3
18 \text{ w3} = 3.0
                      // Discharge during week 3(m<sup>2</sup>/sec)
19 \quad Q3 = 1100.0
                      // Week 4
20 \text{ w4} = 4.0
21 \quad Q4 = 700.0
                      // Discharge during week 4(m<sup>2</sup>/sec)
                      // Week 5
22 \text{ w5} = 5.0
                      // Discharge during week 5(m<sup>2</sup>/sec)
23 \ Q5 = 900.0
24 \text{ w6} = 6.0
                      // Week 6
                      // Discharge during week 6(m<sup>2</sup>/sec)
25 \quad Q6 = 800.0
                      // Week 7
26 \text{ w7} = 7.0
                      // Discharge during week 7(m<sup>2</sup>/sec)
27 Q7 = 600.0
                      // Week 8
28 \text{ w8} = 8.0
                      // Discharge during week 8(m<sup>2</sup>/sec)
29 \ Q8 = 1000.0
                      // Week 9
30 \text{ w9} = 9.0
                      // Discharge during week 9(m<sup>2</sup>/sec)
31 \quad Q9 = 500.0
                      // Week 10
32 \text{ w10} = 10.0
                      // Discharge during week 10(m<sup>2</sup>/sec)
33 \quad Q10 = 400.0
                      // Week 11
34 \text{ w11} = 11.0
                      // Discharge during week 11(m<sup>2</sup>/sec)
35 \quad Q11 = 500.0
                      // Week 12
36 \text{ w12} = 12.0
                      // Discharge during week 12(m<sup>2</sup>/sec)
37 Q12 = 700.0
38 \text{ w} 13 = 13.0
                      // Week 13
                      // Discharge during week 13(m<sup>2</sup>/sec)
39 \quad Q13 = 100.0
40 no_week = 13.0 // Total weeks of discharge
41
42 // Calculations
Q13)/no_week
                          // Average weekly discharge (m
       ^3/\sec
```

```
44 // Hydrograph
45 \text{ W} = [0, \text{w}1, \text{w}1, \text{w}2, \text{w}2, \text{w}3, \text{w}3, \text{w}4, \text{w}4, \text{w}5, \text{w}5, \text{w}6, \text{w}6, \text{w}7, \text{w}7, \text{w}8,
       w8, w9, w9, w10, w10, w11, w11, w12, w12, w13, w13, w13]
46 \ Q = [200, Q1, Q2, Q2, Q3, Q3, Q4, Q4, Q5, Q5, Q6, Q6, Q7, Q7, Q8,
       Q8,Q9,Q9,Q10,Q10,Q11,Q11,Q12,Q12,Q13,Q13,Q13,O]
47 a = gca()
48 a.thickness = 2
       // sets thickness of plot
49 plot(W,Q)
       // Plotting hydrograph
50 q = Q_average
51 \text{ w} = [0, \text{w}1, \text{w}2, \text{w}3, \text{w}4, \text{w}5, \text{w}6, \text{w}7, \text{w}8, \text{w}9, \text{w}10, \text{w}11, \text{w}12, \text{w}13]
       ,14]
52 \text{ q_dash} = [q,q,q,q,q,q,q,q,q,q,q,q,q,q,q]
                                              // Plotting average
       weekly discharge
53 plot(w,q_dash, 'r--')
54 a.x_label.text = 'Time(week)'
                                                             // labels
        x-axis
55 a.y_label.text = Q(m^3/\sec),
                                                             // labels
        y-axis
56 xtitle("Fig E7.4 . Plot of Hydrograph")
57 xset('thickness',2)
       // sets thickness of axes
58 xstring(13,560, 'Q_av')
59 xstring(12.02,110,'Q_min')
60 xstring(2.02,1110,'Q_max')
61
62 // Results
63 disp("PART I - EXAMPLE : 7.25 : SOLUTION :-")
64 printf("\nThe hydrograph is shown in the Figure E7.4
       ")
65 printf("\nAverage discharge available for the whole
```


Figure 7.3: Plot of flow duration curve Maximum power Average power developed and Capacity of proposed station

```
period = \%.f m<sup>3</sup>/sec", Q_average)
```

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 7.26}\ {\sf Plot}\ {\sf of}\ {\sf flow}\ {\sf duration}\ {\sf curve}\ {\sf Maximum}\ {\sf power}\ {\sf Average}\ {\sf power}\ {\sf devel}$

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART I : GENERATION
```

```
7 // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER
       GENERATION
9 // EXAMPLE : 7.26 :
10 // Page number 85-86
11 clear; clc; close; // Clear the work space and
       console
12
   // Given data
13
14 \quad Q1 = 1100.0
                                    Discharge in descending
       order (m^3/sec)
15 \quad Q2 = 1000.0
                                 // Discharge (m<sup>3</sup>/sec)
16 \ Q3 = 900.0
                                 // Discharge (m<sup>3</sup>/sec)
                                 // Discharge (m<sup>3</sup>/sec)
17 \quad Q4 = 800.0
18 \ Q5 = 700.0
                                 // Discharge (m<sup>3</sup>/sec)
19 \ Q6 = 600.0
                                 // Discharge (m<sup>3</sup>/sec)
20 \ Q7 = 500.0
                                 // Discharge (m<sup>3</sup>/sec)
                                 // Discharge (m<sup>3</sup>/sec)
21 \ Q8 = 400.0
                                 // Discharge (m<sup>3</sup>/sec)
22 	 Q9 = 300.0
                                 // Discharge (m<sup>3</sup>/sec)
23 \quad Q10 = 200.0
                                 // Discharge (m<sup>3</sup>/sec)
24 \quad Q11 = 100.0
25 \text{ no\_week} = 13.0
                                 // Total weeks of discharge
26 h = 200.0
                                 // Head of installation (m)
27 \text{ n_overall} = 0.88
                                 // Overall efficiency of
       turbine and generator
28 w = 1000.0
                                 // Density of water (kg/m<sup>3</sup>)
29
30 // Calculations
31 \quad n1 = 1.0
                                            // Number of weeks
       for 1100 discharge (m<sup>3</sup>/sec)
32 n2 = 2.0
                                            // Number of weeks
       for 1000 and above discharge (m<sup>3</sup>/sec)
                                             // Number of weeks
33 \quad n3 = 3.0
       for 900 and above discharge (m<sup>3</sup>/sec)
                                            // Number of weeks
       for 800 and above discharge (m<sup>3</sup>/sec)
                                            // Number of weeks
35 \text{ n5} = 6.0
       for 700 and above discharge (m<sup>3</sup>/sec)
```

```
36 \quad n6 = 7.0
                                         // Number of weeks
      for 600 and above discharge (m<sup>3</sup>/sec)
                                         // Number of weeks
37 \quad n7 = 9.0
      for 500 and above discharge (m<sup>3</sup>/sec)
  n8 = 10.0
                                         // Number of weeks
      for 400 and above discharge (m<sup>3</sup>/sec)
39 \quad n9 = 11.0
                                         // Number of weeks
      for 300 and above discharge (m<sup>3</sup>/sec)
40 \quad n10 = 12.0
                                         // Number of weeks
      for 200 and above discharge (m<sup>3</sup>/sec)
                                         // Number of weeks
41 \quad n11 = 13.0
      for 100 and above discharge (m<sup>3</sup>/sec)
42 P1 = n1/no_week*100
                                         // Percentage of
      total period for n1
43 \text{ P2} = n2/no_week*100
                                         // Percentage of
      total period for n2
44 \text{ P3} = n3/no\_week*100
                                         // Percentage of
      total period for n3
                                         // Percentage of
45 \text{ P4} = n4/no\_week*100
      total period for n4
  P5 = n5/no_week*100
                                         // Percentage of
      total period for n5
  P6 = n6/no_week*100
                                         // Percentage of
47
      total period for n6
48 \text{ P7} = n7/no_week*100
                                         // Percentage of
      total period for n7
49 \text{ P8} = n8/no\_week*100
                                         // Percentage of
      total period for n8
  P9 = n9/no_week*100
                                         // Percentage of
      total period for n9
51 \text{ P10} = n10/no_week*100
                                         // Percentage of
      total period for n10
52 \text{ P11} = \text{n11/no_week*100}
                                         // Percentage of
      total period for n11
53 P = [0,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11]
54 Q = [Q1,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10,Q11]
                                      // Plotting flow
      duration curve
```

```
55 a = gca();
56 a.thickness = 2
      // sets thickness of plot
57 plot(P,Q,'ro-')
58 a.x_label.text = 'Percentage of time'
                                           // labels x-axis
59 a.y_label.text = Q(m^3/\sec),
                                                    //
      labels y-axis
60 xtitle ("Fig E7.5 . Plot of Flow-duration curve")
61 xset ('thickness',2)
      // sets thickness of axes
62 xgrid(4)
63 \quad Q_1 = 1.0
                                                // Discharge
      (m^3/sec)
64 P_1 = 0.736/75*w*Q_1*h*n_overall
                                                // Power
      developed for Q<sub>-1</sub>(kW)
                                                // Average
65 Q_av = 600.0
      discharge (m<sup>3</sup>/sec). Obtained from Example 1.7.25
66 P_av = P_1*Q_av/1000.0
                                                // Average
      power developed (MW)
67 \quad Q_{max} = Q1
                                                // Maximum
      discharge (m<sup>3</sup>/sec)
68 P_max = P_1*Q_max/1000.0
                                                // Maximum
      power developed (MW)
69 \quad Q_10 = 1070.0
                                                // Discharge
       for 10% of time (m<sup>3</sup>/sec). Value is obtained from
       graph
                                                // Installed
70 P_{10} = P_{1*Q_{10}/1000.0}
       capacity (MW)
71
72 // Results
73 disp("PART I - EXAMPLE : 7.26 : SOLUTION :-")
74 printf("\nFlow-duration curve is shown in the Figure
       E7.5")
75 printf("\nMaximum power developed = \%.f MW", P_max)
76 printf("\nAverage power developed = \%.f MW", P_av)
```

- 77 printf("\nCapacity of proposed station = %.f MW \n", P_10)

Chapter 9

CONSTANTS OF OVERHEAD TRANSMISSION LINES

Scilab code Exa 9.1 Loop inductance and Reactance of transmission line

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.1 :
10 // Page number 100
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 D = 100.0
                       // Distance between conductors (
     cm)
```

```
// Diameter of conductor(cm)
15 d = 1.25
                        // Frequency (Hz)
16 f = 50.0
17
18 // Calculations
19 r_{GMR} = 0.7788*d/2.0
                                          // GMR of
     conductor (cm)
20 L = 4.0*10**-4*log(D/r_GMR)
                                          // Loop
     inductance (H/km)
21 X_L = 2*\%pi*f*L
                                          // Reactance of
      transmission line (ohm)
22
23 // Results
24 disp("PART II - EXAMPLE : 2.1 : SOLUTION :-")
25 printf("\nLoop inductance of transmission line, L =
     \%.2e H/km", L)
  printf("\nReactance of transmission line, X_L = \%.2 f
       ohm", X_L)
```

Scilab code Exa 9.2 Inductance per phase of the system

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
LINES
8
9  // EXAMPLE : 2.2 :
10  // Page number 101
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
```

```
14 1 = 100.0
                        // Length of 3-phase
      transmission line (km)
                        // Distance between conductors (
15 D = 120.0
     cm
16 d = 0.5
                        // Diameter of conductor (cm)
17
18 // Calculations
                                           // GMR of
19 \text{ r}_{GMR} = 0.7788*d/2.0
      conductor (cm)
20 L = 2.0*10**-4*log(D/r_GMR)
                                          // Inductance
      per phase (H/km)
21 \quad L_1 = L*1
                                           // Inductance
      per phase for 100km length (H)
22
23 // Results
24 disp("PART II - EXAMPLE : 2.2 : SOLUTION :-")
25 printf("\nInductance per phase of the system, L=\%
      .4 f H \n", L_1)
26 printf("\nNOTE: ERROR: In textbook to calculate L,
      log10 is used instead of ln i.e natural logarithm
      . So, there is change in answer")
```

Scilab code Exa 9.3 Loop inductance of line per km

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
// EXAMPLE : 2.3 :
// Page number 101
```

```
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 D = 135.0
                       // Spacing between conductors (cm
     )
                       // Radius of conductor (cm)
15 r = 0.8
16
17 // Calculations
18 L = (1+4*\log(D/r))*10**-7*1000.0
                                              // Loop
     inductance per km(H)
19 L_mH = L*1000.0
                                               // Loop
     inductance per km(mH)
20
21 // Results
22 disp("PART II - EXAMPLE : 2.3 : SOLUTION :-")
23 printf("\nLoop inductance of line per km, L = \%.2 f
     mH", L_mH)
```

Scilab code Exa 9.4 Inductance per phase of the system

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
LINES
8
9  // EXAMPLE : 2.4 :
10  // Page number 101
11 clear ; clc ; close ; // Clear the work space and console
12
```

```
13 // Given data
14 1 = 80.0
                         // Length of 3-phase
      transmission line (km)
15 D = 100.0
                        // Distance between conductors (
     cm)
16 d = 1.0
                         // Diameter of conductor (cm)
17
18 // Calculations
19 r_{GMR} = 0.7788*d/2.0
                                           // GMR of
     conductor (cm)
20 L = 2.0*10**-7*log(D/r_GMR)
                                           // Inductance
     per phase (H/m)
21 L_1 = L*1*1000.0
                                           // Inductance
      per phase for 80 \text{km}(H)
22
23 // Results
24 disp("PART II - EXAMPLE : 2.4 : SOLUTION :-")
25 printf("\nInductance per phase of the system, L=\%
      .4 f H \setminus n", L_1)
26 printf("\nNOTE: ERROR: Calculation mistake in
      textbook to find Inductance per phase of the
      system")
```

Scilab code Exa 9.5 Total inductance of the line

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
LINES
8
9  // EXAMPLE : 2.5 :
```

```
10 // \text{Page number } 103-104
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 D_a_b = 120.0
                             // Distance between
      conductors a & b(cm)
15 D_a_b = 140.0
                             // Distance between
      conductors a & b'(cm)
16 D_aa_b = 100.0
                             // Distance between
      conductors a' & b(cm)
                             // Distance between
17 D_aa_bb = 120.0
      conductors a' & b'(cm)
                             // Distance between
18 D_a_a = 20.0
      conductors a & a'(cm)
19 d = 2.0
                             // Diameter of conductor (cm
20
21 // Calculations
D_m = (D_a_b*D_a_bb*D_aa_b*D_aa_bb)**(1.0/4)
               // Mutual GMD(cm)
23 D_aa = 0.7788*d/2.0
                                        // Self GMD of
      conductor a (cm)
24 D_aa_aa = D_a_a
                                              // Self GMD
       of conductor a'(cm)
25 D_aa_a = D_a_aa
                                              // Distance
       between conductors a' & a(cm)
26 D_s = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4)
               // Self GMD(cm)
27 L = 4*10**-4*log(D_m/D_s)
                                   // Total inductance
      of the line (H/km)
28 L_mH = L*1000.0
                                              // Total
     inductance of the line (mH/km)
```

```
29
30 // Results
31 disp("PART II - EXAMPLE : 2.5 : SOLUTION :-")
32 printf("\nTotal inductance of the line , L = %.2 f mH/km", L_mH)
```

Scilab code Exa 9.6 Inductance of the line

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.6 :
10 // Page number 104
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 D_a_b = 175.0
                              // Distance between
      conductors a & b(cm)
                              // Distance between
15 D_a_a = 90.0
      conductors a & a'(cm)
16 d = 2.5
                              // Diameter of conductor (cm
17
18 // Calculations
19 \text{ GMR} = 0.7788*d/2.0
                                           // \text{GMR}(\text{cm})
20 D_a_a = GMR
                                                   // Self
```

```
GMD of conductor a (cm)
21 D_aa_aa = D_a_a
                                             // Self GMD
       of conductor a'(cm)
22 D_aa_a = 90.0
     Distance between conductors a' & a(cm)
D_s = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4)
               // Self GMD of conductor A = Self GMD of
       conductor B(cm)
24 D_a_b = (D_a_a **2 + D_a_b **2) **(1.0/2)
                     // Distance between conductors a &
      b'(cm)
D_m = ((D_a_b*D_a_bb)**2)**(1.0/4)
                         // Mutual GMD(cm)
26 L = 4*10**-4*log(D_m/D_s)
                                   // Inductance of the
      line (H/km)
27
28 // Results
29 disp("PART II - EXAMPLE : 2.6 : SOLUTION :-")
30 printf("\nInductance of the line, L = \%.1e H/km", L)
   Scilab code Exa 9.7 Inductance per km of the double circuit line
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
```

9 // EXAMPLE : 2.7 :

```
10 // Page number 104
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 D_a_a = 100.0
                              // Distance between
      conductors a & a (cm)
15 D_ab = 25.0
                              // Distance between
     conductors a & b(cm)
16 d = 2.0
                              // Diameter of conductor(cm
17
18 // Calculations
19 r = d/2.0
                                                     //
      Conductor radius (cm)
20 \text{ GMR} = 0.7788 * r
                                                // \text{GMR}(\text{cm})
21 D_a_aa = GMR
                                                  // \text{GMR}
      of conductors a & a'(cm)
22 D_aa_a = D_a_aa
                                               // GMR of
      conductors a' & a(cm)
23 D_aa_aa = D_a_a
                                               // GMR of
      conductors a' & a'(cm)
D_s = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4)
               // Self GMD of conductor A = Self GMD of
       conductor B(cm)
D_abb = (D_aa**2+D_ab**2)**(1.0/2)
                       // Distance between conductors a
     & b'(cm)
26 \quad D_aa_b = D_a_bb
                                               // Distance
       between conductors a' & b(cm)
27 D_aa_bb = D_a_b
                                               // Distance
```

Scilab code Exa 9.8 Geometric mean radius of the conductor and Ratio of GMR to ove

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.8 :
10 // Page number <math>104-105
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 n = 7.0
                    // Number of strands
15 r = 1.0
                   // Radius of each conductor. Assume
      it 1 for calculation purpose
```

```
16
17 // Calculations
                                                         //
18 D_1_2 = 2.0*r
      Distance between conductor 1 & 2
19 D_1_6 = 2.0*r
                                                          //
       Distance between conductor 1 & 6
20 D_1_7 = 2.0*r
      Distance between conductor 1 & 7
21 D_3_4 = 2.0*r
                                                         //
      Distance between conductor 3 & 4
22 D_1_4 = 4.0*r
      Distance between conductor 1 & 4
23 D_1_3 = (D_1_4 **2 - D_3_4 **2) **(1.0/2)
                                                          //
       Distance between conductor 1 & 3
24 \quad D_1_5 = D_1_3
                                                          //
       Distance between conductor 1 & 5
25 \text{ GMR} = 0.7788 * r
                                                          //
      GMR
26 \quad n_o = n-1
                                                          //
       Number of outside strands
27 D_s = (GMR**n*(D_1_2**2*D_1_3**2*D_1_4*D_1_7)**6*(2*)
      r)**n_0)**(1.0/49)
                          // GMR
28 overall_radius = 3*r
                                                         //
       Overall conductor radius
29 ratio = D_s/overall_radius
                                                          //
       Ratio of GMR to overall conductor radius
30
31 // Results
32 disp("PART II - EXAMPLE : 2.8 : SOLUTION :-")
33 printf("\nGeometric mean radius of the conductor,
      D_s = \%.3 f * r, D_s)
34 printf("\nRatio of GMR to overall conductor radius =
      \%.4 \, \mathrm{f} ", ratio)
```

Scilab code Exa 9.9 Inductance of the line per phase

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.9 :
10 // Page number <math>108-109
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d = 1.8
                              // Diameter of conductor (cm
15 D_A_B = 4.0
                              // Distance between
      conductor A & B(cm)
16 D_B_C = 9.0
                              // Distance between
      conductor B & C(cm)
17 D_A_C = 6.0
                              // Distance between
      conductor A & C(cm)
18
19 // Calculations
20 D_{eq} = (D_A_B*D_B_C*D_A_C)**(1.0/3)
      Equivalent distance (cm)
                                               // \text{GMR}(\text{cm})
21 r_{GMR} = 0.7788*d/2.0
22 L = 2*10**-4*log(D_eq/r_GMR)
      Inductance per phase (H/km)
23 L_mH = L*1000.0
                                               //
      Inductance per phase (mH/km)
24
25 // Results
26 disp("PART II - EXAMPLE : 2.9 : SOLUTION :-")
27 printf("\nInductance of the line per phase, L = \%.3 f
      mH/km \setminus n", L_mH)
28 printf("\nNOTE: ERROR: Calculation mistake in the
```

Scilab code Exa 9.10 Inductance per km of 3 phase transmission line

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.10 :
10 // Page number 109
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d = 5.0
                                Diameter of conductor (cm
     )
15 d_1 = 400.0
                             // Distance between
     conductor 1 & 2(cm)
16 d_2 = 500.0
                             // Distance between
     conductor 2 & 3(cm)
17 d_3 = 600.0
                             // Distance between
      conductor 1 & 3(cm)
18
19 // Calculations
                                                        //
20 D_{eq} = (d_1*d_2*d_3)**(1.0/3)
       Equivalent distance (cm)
21 \text{ r}_{GMR} = 0.7788*d/2.0
                                                        //
      GMR(cm)
22 L = 0.2*log(D_eq/r_GMR)
                                                        //
       Inductance per phase per km(mH)
```

Scilab code Exa 9.11 Inductance of each conductor per phase per km

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.11 :
10 // Page number 109
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                              // Diameter of conductor(
14 d = 3.0
     cm)
15 D_{12} = 200.0
                              // Distance between
     conductor 1 & 2(cm)
16 D_23 = 200.0
                              // Distance between
     conductor 2 & 3(cm)
17 D_31 = 400.0
                              // Distance between
     conductor 1 & 3(cm)
18
19 // Calculations
```

```
20 D_{eq} = (D_{12}*D_{23}*D_{31})**(1.0/3)
                                                    //
      Equivalent distance (cm)
21 r = d/2.0
     Radius of conductor (cm)
22 L = (0.5+2*log(D_eq/r))*10**-7
      Inductance / phase/m(H)
23 L_mH = L*1000.0*1000.0
      Inductance per phase per km(mH)
24
25 // Results
26 disp("PART II - EXAMPLE : 2.11 : SOLUTION :-")
27 printf("\nInductance of each conductor per phase per
      km, L = \%.3 f mH \ n", L_mH)
28 printf("\nNOTE: ERROR: Calculation mistake in the
      textbook")
```

 ${f Scilab\ code\ Exa\ 9.12}$ Inductance of each conductor and Average inductance of each p

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.12 :
10 // Page number <math>109-110
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d = 2.0
                              // Diameter of conductor(
     cm)
```

```
// Distance between
15 D_ab = 400.0
      conductor a & b(cm)
16 D_bc = 400.0
                               // Distance between
      conductor b & c (cm)
17 D_{ca} = 800.0
                               // Distance between
      conductor c & a (cm)
18
19 // Calculations
20 I_ab = 1.0*exp(%i*-240.0*%pi/180)
      // I_a/I_b
21 I_cb = 1.0*exp(%i*-120.0*%pi/180)
      // I_c/I_b
22 \text{ r}_{\text{GMR}} = 0.7788*d/2.0
      // \text{GMR}(\text{cm})
23 L_a = 2.0*10**-7*complex(log((D_ab*D_ca)**0.5/r_GMR))
      /(3**0.5/2*log(D_ab/D_ca))) // Inductance per
      phase of A(H/m)
24 L_amH = L_a*10.0**6
      // Inductance per phase of A(mH/km)
25 \text{ L_b} = 2.0*10**-7*complex(log((D_bc*D_ab)**0.5/r_GMR))
      (3**0.5/2*log(D_bc/D_ab))) // Inductance per
      phase of B(H/m)
26 L_bmH = L_b*10.0**6
      // Inductance per phase of B(mH/km)
27 \text{ L_c} = 2.0*10**-7*complex(log((D_ca*D_bc)**0.5/r_GMR))
      (3**0.5/2*log(D_ca/D_bc))) // Inductance per
      phase of C(H/m)
28 L_cmH = L_c*10.0**6
      // Inductance per phase of C(mH/km)
29 D_{eq} = (D_{ab}*D_{bc}*D_{ca})**(1.0/3)
      // Equivalent distance (cm)
```

```
30 L_avg = 0.2*log(D_eq/r_GMR)

// Average inductance per phase(mH/km)
31
32 // Results
33 disp("PART II - EXAMPLE : 2.12 : SOLUTION :-")
34 printf("\nInductance of conductor a, L_a = (%.4f%.2 fj) mH/km", real(L_amH), imag(L_amH))
35 printf("\nInductance of conductor b, L_b = %.3 f mH/km", abs(L_bmH))
36 printf("\nInductance of conductor c, L_c = (%.4f+%.2 fj) mH/km", real(L_cmH), imag(L_cmH))
37 printf("\nAverage inductance of each phase, L_avg = %.3 f mH/km", L_avg)
```

Scilab code Exa 9.13 Inductance per phase

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.13 :
10 // Page number 110
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
                                 // Self GMD of
14 D_a_a = 0.9
     conductor a (cm)
15 D_a_a = 40.0
                                  // Distance between
```

```
conductor a & a'(cm)
16 D_a_b = 1000.0
                                   // Distance between
      conductor a & b(cm)
17 D_a_bb = 1040.0
                                   // Distance between
      conductor a & b'(cm)
18 D_aa_b = 960.0
                                   // Distance between
      conductor a' & b(cm)
19 D_c_a = 2000.0
                                   // Distance between
      conductor a & c(cm)
20 D_c_aa = 1960.0
                                   // Distance between
      conductor a' & c(cm)
21 D_cc_a = 2040.0
                                   // Distance between
      conductor a & c'(cm)
22
23 // Calculations
24 D_aa_aa = D_a_a
                                                        //
       Self GMD of conductor a'(cm)
                                                        //
25 D_aa_a = D_a_aa
       Distance between conductor a' & a(cm)
26 D_s1 = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4)
                                                        //
       Self GMD in position 1(cm)
27 D_s2 = D_s1
                                                        //
       Self GMD in position 2(cm)
28 D_s3 = D_s1
                                                        //
       Self GMD in position 3(cm)
29 D_s = (D_s1*D_s2*D_s3)**(1.0/3)
                                                        //
       Equivalent self GMD(cm)
30 \quad D_aa_bb = D_a_b
                                                        //
       Distance between conductor a' & b'(cm)
31 D_AB = (D_a_b*D_a_bb*D_aa_b*D_aa_bb)**(1.0/4)
                                                        //
       Mutual GMD(cm)
32 D_BC = D_AB
                                                        //
       Mutual GMD(cm)
                                                        //
33 \quad D_cc_aa = D_c_a
       Distance between conductor a' & c'(cm)
34 D_CA = (D_c_a*D_c_aa*D_cc_a*D_cc_aa)**(1.0/4)
                                                        //
       Mutual GMD(cm)
35 D_m = (D_AB*D_BC*D_CA)**(1.0/3)
                                                        //
```

Scilab code Exa 9.14 Inductance per phase of double circuit

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.14 :
10 \ // \ Page number 110-111
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                                // Radius of conductor(m
14 r = 6.0/1000
15 D_acc = 5.0
                                // Distance between
     conductor a & c'(m)
16 D_b_b = 6.0
                                // Distance between
     conductor b & b'(m)
17 D_c_aa = 5.0
                                // Distance between
     conductor c & a'(m)
18 D_{acc_bbb} = 3.0
                                // Distance between
     conductor ac' & bb'(m)
```

```
19 D_bbb_caa = 3.0
                                // Distance between
      conductor bb' & ca'(m)
20 D_a_c = 6.0
                                 // Distance between
      conductor a & c(m)
21
22 // Calculations
23 \text{ r}_{\text{GMR}} = 0.7788 * \text{r}
     // GMR of conductor (m)
D_ab = (D_acc_bbb**2+((D_b_bb-D_a_cc)/2)**2)
      **(1.0/2)
                           // Distance between
      conductor a & b(m)
25 \quad D_a_bb = (D_acc_bbb**2+(D_a_cc+(D_b_bb-D_a_cc)/2)
      **2) **(1.0/2) // Distance between conductor a
     & b'(m)
26 D_a_a = ((D_acc_bbb+D_bbb_caa)**2+D_c_aa**2)
      **(1.0/2)
                            // Distance between
      conductor a & a'(m)
27 D_a_a = r_GMR
     // Self GMD of conductor a(m)
28 D_aa_aa = D_a_a
     // Self GMD of conductor a'(m)
29 \quad D_aa_a = D_a_aa
      // Distance between conductor a' & a(m)
30 D_S1 = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4)
                           // Self GMD in position 1(m)
31 \quad D_bb_b = D_b_bb
     // Distance between conductor b' & b(m)
32 D_S2 = (D_a_a*D_b_bb*D_aa_aa*D_bb_b)**(1.0/4)
                          // Self GMD in position
33 D_S3 = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4)
                           // Self GMD in position 3(m)
34 D_S = (D_S1*D_S2*D_S3)**(1.0/3)
                                          // Equivalent
```

```
self GMD(m)
35 D_aa_bb = D_a_b
      // Distance between conductor a' & b'(m)
36 \quad D_aa_b = D_a_bb
      // Distance between conductor a' & b(m)
37 D_AB = (D_a_b*D_a_bb*D_aa_b*D_aa_bb)**(1.0/4)
                            // Mutual GMD(m)
38 D_BC = D_AB
     // Mutual GMD(m)
39 \quad D_c_a = D_a_c
      // Distance between conductor c & a(m)
40 \quad D_cc_aa = D_c_a
      // Distance between conductor a' & c'(m)
41 \quad D_cc_a = D_a_cc
      // Distance between conductor c' & a(m)
42 \quad D_CA = (D_c_a*D_c_aa*D_cc_a*D_cc_aa)**(1.0/4)
                           // Mutual GMD(m)
43 D_m = (D_AB*D_BC*D_CA)**(1.0/3)
                                           // Equivalent
      Mutual GMD(m)
44 L = 0.2*log(D_m/D_S)
                                                       //
      Inductance per phase (mH/km)
45
46 // Results
47 disp("PART II - EXAMPLE : 2.14 : SOLUTION :-")
48 printf("\nInductance per phase, L = \%.2 f \text{ mH/km}", L)
```

Scilab code Exa 9.15 Spacing between adjacent conductor to keep same inductance

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.15 :
10 // Page number 111
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 D_{eq} = 2.88
                                     // Equilateral
      spacing of line (m)
15
16 // Calculations
                                     // Distance (m)
17 D = D_{eq}/2**(1.0/3)
18 D_13 = 2.0*D
                                     // Distance between
      conductor 1 & 3(m)
19 D_12 = D
                                     // Distance between
      conductor 1 & 2(m)
20 D_23 = D
                                      // Distance between
      conductor 2 & 3(m)
21
22 // Results
23 disp("PART II - EXAMPLE : 2.15 : SOLUTION :-")
24 printf("\nSpacing between conductor 1 & 2 to keep
      inductance same, D_12 = \%.1 \, \text{f m}, D_12)
25 printf("\nSpacing between conductor 2 & 3 to keep
      inductance same, D_23 = \%.1 \, \text{f} m", D_23)
26 printf("\nSpacing between conductor 1 & 3 to keep
      inductance same, D_{-}13 = \%.1 \, \text{f} m", D_{-}13)
```

Scilab code Exa 9.16 Capacitance of line neglecting and taking presence of ground

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.16 :
10 // Page number 112
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad 1 = 40.0
                 // Length of line (km)
15 d = 5.0/1000 // Diameter of wire(m)
                // Spacing between conductor(m)
16 D = 1.5
                 // Height of conductors above ground (m
17 h = 7.0
18
19 // Calculations
20 r = d/2
     // Radius of wire (m)
21 e = 1.0/(36*\%pi)*10**-9
                                             // Constant
        _0
22 // Neglecting presence of ground
23 C_ab_1 = \pi/(\log(D/r))
                                           //
      Capacitance (F/m)
```

Scilab code Exa 9.17 Capacitance of conductor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.17 :
10 // Page number 114-115
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 d = 2.0/100
                 // Diameter of conductor (m)
                // Spacing between conductor A & B(m)
15 D_AB = 4.0
16 D_BC = 4.0
                 // Spacing between conductor B & C(m)
```

```
// Spacing between conductor C & A(m)
17 D_CA = 8.0
18
19 // Calculations
20 r = d/2
      // Radius of conductor (m)
21 D = 4.0
      // Assuming coomon distance (m)
22 e = 1.0/(36*\%pi)*10**-9
                                                      //
      Constant _0
23 C_A = 2*\%pi*e/(log(D/r)-complex(-0.5,0.866)*log(2))
                       // Capacitance of conductor A(F/km
      *1000.0
24 \quad C_Au = C_A*10.0**6
                                                            //
       Capacitance of conductor A(F/km)
25 \text{ C_B} = 2*\%pi*e/log(D/r)*1000.0
                                                //
      Capacitance of conductor B(F/km)
26 \quad C_Bu = C_B*10.0**6
                                                            //
       Capacitance of conductor B(F/km)
27 \text{ C_C} = 2*\%\text{pi*e/(log(D/r)-complex(-0.5,-0.866)*log(2))}
      *1000.0
                      // Capacitance of conductor C(F/km)
28 \quad C_Cu = C_C*10.0**6
                                                            //
       Capacitance of conductor C(F/km)
29
30 // Results
31 disp("PART II - EXAMPLE : 2.17 : SOLUTION :-")
32 printf("\nCapacitance of conductor A, C_A = (\%.5 \text{ f+}\%)
      .6 \, \mathrm{fj}) \, \mathrm{F/km}, real(C_Au), imag(C_Au))
33 printf("\nCapacitance of conductor B, C_B = \%.6 f F
      /\mathrm{km}", C_Bu)
34 printf("\nCapacitance of conductor C, C_C = (\%.5 \, \text{f}\%.6)
      fj) F /km", real(C_Cu), imag(C_Cu))
```

Scilab code Exa 9.18 New value of capacitance

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.18 :
10 // Page number 115
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                   // Diameter of conductor(m)
14 d = 2.0/100
                   // Spacing between conductor A & B(m)
15 D_AB = 4.0
15 D_RD
16 D_BC = 4.0
~ - 8.0
                  // Spacing between conductor B & C(m)
                  // Spacing between conductor C & A(m)
18
19 // Calculations
20 r = d/2
                                                    //
     Radius of conductor (m)
21 e = 1.0/(36*\%pi)*10**-9
      Constant
               _0
22 D_eq = (D_AB*D_BC*D_CA)**(1.0/3)
      Equivalent distance (m)
23 C_n = 2*\%pi*e/log(D_eq/r)*1000.0
      Capacitance to neutral (F/km)
24 \quad C_nu = C_n*10.0**6
                                                    //
      Capacitance to neutral (F/km)
25
```

Scilab code Exa 9.19 Capacitance per phase to neutral of a line

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.19 :
10 // Page number 115
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                  // Outside diameter of conductor(cm)
14 d = 2.6
                  // Spacing between conductor R & Y(m)
15 D_RY = 8.0
                  // Spacing between conductor Y & B(m)
16 D_{YB} = 8.0
17 D_{RB} = 16.0
                  // Spacing between conductor R & B(m)
                  // Height of conductor from ground (m)
18 h = 13.0
19
20 // Calculations
21 r = d/2
     // Radius of conductor(m)
```

```
22 e = 1.0/(36*\%pi)*10**-9
     // Constant _0
23 h_12 = (D_RY **2 + (2*h) **2) **(1.0/2)
                                              // Height
     of conductor 1 & 2(m)
24 h_23 = h_12
     // Height of conductor 2 & 3(m)
25 h_31 = (D_RB**2+(2*h)**2)**(1.0/2)
                                              // Height
     of conductor 3 & 1(m)
26 h_1 = 2*h
     // Height of transposed conductor 1(m)
27 h_2 = 2*h
     // Height of transposed conductor 2(m)
28 h_3 = 2*h
     // Height of transposed conductor 3(m)
29 D_eq = (D_RY*D_YB*D_RB)**(1.0/3)
                                                //
     Equivalent distance (m)
30 h_123 = (h_12*h_23*h_31)**(1.0/3)
                                               // Height (
     m)
31 h_1_2_3 = (h_1*h_2*h_3)**(1.0/3)
                                                // Height
      (m)
32 C_n = 2*\%pi*e/(log(D_eq*100/r)-log(h_123/h_1_2_3))
     *1000.0
                             // Capacitance of
     conductor A(F/km)
33
34 // Results
35 disp("PART II - EXAMPLE : 2.19 : SOLUTION :-")
36 printf("\nCapacitance per phase to neutral of a line
      C_{n} = \%.1e F/km, C_{n}
```

Scilab code Exa 9.20 Phase to neutral capacitance

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.20 :
10 // Page number 117-118
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                  // Diameter of conductor(cm)
14 d = 2.5
                  // Distance of separation(cm)
15 D = 200.0
                  // Length of line (km)
16 \ 1 = 100.0
17
18 // Calculations
19 r = d/2
                                                      //
     Radius of conductor (cm)
20 e = 1.0/(36*\%pi)*10**-9
     Constant _0
D_m = (D*(3**0.5)*D*(3**0.5)*D*D)**(1.0/4)
     Mutual GMD(cm)
22 D_s = (2*D*r)**(1.0/2)
     Self GMD(cm)
23 C_n = 2*\%pi*e/log(D_m/D_s)*1000.0
     Phase-to-neutral capacitance (F/km)
24 \quad C_nu = C_n*1*10.0**6
                                                      //
     Phase-to-neutral capacitance (F)
```

```
25
26 // Results
27 disp("PART II - EXAMPLE : 2.20 : SOLUTION :-")
28 printf("\nPhase-to-neutral capacitance, C_n = %.2 f
F ", C_nu)
```

Scilab code Exa 9.21 Capacitance per phase to neutral

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.21 :
10 // Page number 118
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                      // Diameter of conductor(m)
14 d = 2.5/100
                      // Distance of separation(m)
15 D = 5.0
16 h = 2.0
                       // Height of separation (m)
17
18 // Calculations
19 r = d/2
                                                       //
     Radius of conductor (m)
20 e = 1.0/(36*\%pi)*10**-9
     Constant _0
21 \quad m = (D**2+h**2)**(1.0/2)
      (m)
22 \quad n = (D**2+(h*2)**2)**(1.0/2)
                                                       //
```

```
(m)
23 D_ab = (D*m)**(1.0/2)
                                                       //
      Distance between conductor a & b(m)
24 D_bc = (D*m)**(1.0/2)
                                                       //
      Distance between conductor b & c(m)
25 D_{ca} = (2*D*h)**(1.0/2)
                                                       //
      Distance between conductor c & a(m)
26 D_{eq} = (D_{ab*D_bc*D_ca})**(1.0/3)
                                                       //
     Equivalent GMD(m)
  D_s1 = (r*n)**(1.0/2)
      Self GMD in position 1(m)
28 D_s2 = (r*h)**(1.0/2)
                                                       //
      Self GMD in position 2(m)
29 D_s3 = (r*n)**(1.0/2)
      Self GMD in position 3(m)
30 D_s = (D_s1*D_s2*D_s3)**(1.0/3)
                                                       //
      Self GMD(m)
31 C_n = 2*\%pi*e/log(D_eq/D_s)*1000.0
                                                       //
      Capacitance per phase to neutral (F/km)
32 \quad C_nu = C_n*10.0**6
                                                       //
      Capacitance per phase to neutral (F/km)
33
34 // Results
35 disp("PART II - EXAMPLE : 2.21 : SOLUTION :-")
36 printf("\nCapacitance per phase to neutral, C_n = \%
     .2 f F /km", C_nu)
```

Scilab code Exa 9.22 Capacitive reactance to neutral and Charging current per phase

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
```

```
7 // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
8
9 // EXAMPLE : 2.22 :
10 // Page number 119
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d = 2.5/100
                       // Diameter of conductor (m)
15 \quad V = 132.0*10**3
                       // Line voltage(V)
16 f = 50.0
                       // Frequency (Hz)
                       // Height (m)
17 h = 4.0
18 H = 8.0
                       // Height of separation (m)
                       // Distance between conductors 1
19 D_1_33 = 7.0
     & 3'(m)
                       // Distance between conductors 1
20 D_1_22 = 9.0
     & 2'(m)
21 D_1_11 = 8.0
                       // Distance between conductors 1
     & 1'(m)
22 D_1 = 1.0
                      // Distance (m)
23
24 // Calculations
25 r = d/2
                                                       //
     Radius of conductor (m)
26 \text{ e} = 1.0/(36*\%\text{pi})*10**-9
      Constant _0
27 D_12 = (h**2+D_1**2)**(1.0/2)
                                                       //
      Distance between conductors 1 & 2(m)
28 D_{122} = (h**2+D_{111}**2)**(1.0/2)
                                                       //
      Distance between conductors 1 & 2'(m)
29 D_111 = (D_1_11**2+D_1_33**2)**(1.0/2)
                                                       //
      Distance between conductors 1 & 1'(m)
30 D_1_2 = (D_12*D_122)**(1.0/2)
                                                       //
      Mutual GMD(m)
31 D_2_3 = (D_12*D_122)**(1.0/2)
                                                       //
      Mutual GMD(m)
32 D_3_1 = (D_1_33*D_1_11)**(1.0/2)
                                                       //
```

```
Mutual GMD(m)
33 D_{eq} = (D_1_2*D_2_3*D_3_1)**(1.0/3)
                                                          //
      Equivalent GMD(m)
34 D_s1 = (r*D_111)**(1.0/2)
      Self GMD in position 1(m)
35 D_s2 = (r*D_1_22)**(1.0/2)
      Self GMD in position 2(m)
36 D_s3 = (r*D_111)**(1.0/2)
                                                          //
      Self GMD in position 3(m)
37 D_s = (D_s1*D_s2*D_s3)**(1.0/3)
      Self GMD(m)
38 C_n = 2*\%pi*e/log(D_eq/D_s)
      Capacitance per phase to neutral (F/m)
39 \text{ X_cn} = 1/(2.0*\%pi*f*C_n)
      Capacitive reactance to neutral (ohms/m)
40 \text{ V_ph} = \text{V/(3**0.5)}
                                                          //
      Phase voltage (V)
41 \text{ I\_charg} = \text{V\_ph/X\_cn}*1000.0
                                                          //
      Charging current per phase (A/km)
42
43 // Results
44 disp("PART II - EXAMPLE : 2.22 : SOLUTION :-")
45 printf("\nCapacitive reactance to neutral, X_cn = \%
      .2 e \text{ ohms/m}, X_cn)
46 printf("\nCharging current per phase, I_charg = \%.3 f
       A/km, I_charg)
```

 ${f Scilab\ code\ Exa\ 9.23}$ Inductive reactance Capacitance and Capacitive reactance of t

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
```

```
7 // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
      LINES
8
9 // EXAMPLE : 2.23 :
10 // Page number 119
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d = 0.8/100
                       // Diameter of conductor (m)
15 f = 50.0
                       // Frequency (Hz)
                       // Distance between conductors a
16 D_a_b = 5.0
     & b(m)
                       // Distance between conductors b
17 D_b_c = 5.0
     & c (m)
18 D_c_a = 8.0
                       // Distance between conductors c
     & a (m)
19 1 = 25.0
                       // Length of line (km)
20
21 // Calculations
22 r = d/2
                                                         //
      Radius of conductor (m)
23 e = 8.854*10**-12
      Constant _0
D_e = (D_a_b*D_b_c*D_c_a)**(1.0/3)
                                                         //
      Equivalent GMD(m)
25 L = 2*((1.0/4) + \log(D_e/r))*10**-4
                                                         //
      Inductance (H/km)
26 \quad X_L = 2*\%pi*f*L
                                                         //
      Inductive reactance per km(ohms)
27 C = \%pi*e/log(D_e/r)
                                                         //
      Capacitance (F/m)
28 \quad C_1 = C*1000.0*1
                                                         //
      Capacitance for entire length (F)
29 \quad C_1u = C_1*10.0**6
                                                         //
      Capacitance for entire length (F)
30 \text{ X_c} = 1/(2.0 * \%pi * f * C_1)
                                                         //
      Capacitive reactance to neutral (ohm)
```

Scilab code Exa 9.24 Capacitance of the line and Charging current

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
9 // EXAMPLE : 2.24 :
10 // \text{Page number } 119-120
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 V = 250.0
                       // Line voltage(V)
15 f = 50.0
                      // Frequency (Hz)
                      // Distance of separation (m)
16 D = 1.5
```

```
// Diameter of conductor(m)
17 d = 1.5/100
                         // Length of line (km)
18 \ 1 = 50.0
19
20 // Calculations
21 // Case(i)
22 r = d/2
                                                            //
      Radius of conductor (m)
23 e = 8.854*10**-12
                                                            //
      Constant _0
24 C = \%pi*e/log(D/r)
      Capacitance (F/m)
25 \quad C_1 = C*1000.0*1
                                                            //
      Capacitance for entire length (F)
26 \quad C_1u = C_1*10.0**6
      Capacitance for entire length (F)
27 // Case(ii)
28 \text{ I\_charg} = 2.0 * \% \text{pi} * \text{f} * \text{C\_l} * \text{V} * 1000.0
                                                            //
      Charging current (mA)
29
30 // Results
31 disp("PART II - EXAMPLE : 2.24 : SOLUTION :-")
32 printf("\nCase(i) : Capacitance of the line, C = \%.3
      f F ", C_lu)
33 printf("\nCase(ii): Charging current, I_charg = \%.2 f
       mA", I_charg)
```

Scilab code Exa 9.25 Capacitance of the line

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
```

```
LINES
8
9 // EXAMPLE : 2.25 :
10 // Page number 120
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d_1 = 6.0
                           // Distance between conductor
      1 \& 2(m)
15 d_2 = 6.0
                            // Distance between conductor
       2 & 3(m)
16 d_3 = 12.0
                            // Distance between conductor
       3 & 1(m)
17 \text{ dia} = 1.24/100
                            // Diameter of conductor(m)
                           // Length of line (km)
18 \ 1 = 100.0
19
20 // Calculations
21 r = dia/2
                                                    //
      Radius of conductor (m)
22 e = 8.854*10**-12
      Constant _0
23 d = (d_1*d_2*d_3)**(1.0/3)
     Distance (m)
24 C = 2*\%pi*e/log(d/r)
      Capacitance (F/m)
25 \quad C_1 = C*1000.0*1
      Capacitance for entire length (F)
26 \quad C_1u = C_1*10.0**6
      Capacitance for entire length (F)
27
28 // Results
29 disp("PART II - EXAMPLE : 2.25 : SOLUTION :-")
30 printf("\nCapacitance of the line, C = \%.3 f F",
      C_lu)
```

Scilab code Exa 9.26 Capacitance of each line conductor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION
     LINES
8
9 // EXAMPLE : 2.26 :
10 // Page number 120
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d = 2.0
                           // Spacing between conductors
     (m)
                           // Diameter of conductor (m)
  dia = 1.25/100
15
16
17 // Calculations
18 r = dia/2
                                         // Radius of
     conductor (m)
19 e = 8.854*10**-12
                                         // Constant _0
20 C = 2*\%pi*e/log(d/r)
                                         // Capacitance (F
     /\mathrm{m})
21 \quad C_u = C*1000*10.0**6
                                         // Capacitance
      for entire length (F/km)
22
23 // Results
24 disp("PART II - EXAMPLE : 2.26 : SOLUTION :-")
25 printf("\nCapacitance of each line conductor, C = \%
      .4 f F / km, C_u)
```

Chapter 10

STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES

 ${\it Scilab\ code\ Exa\ 10.1\ Voltage\ regulation\ Sending\ end\ power\ factor\ and\ Transmission}$

```
14 P = 2.0*10**6
                             // Power delivered (W)
                             // Receiving end voltage(V)
15 \ V_r = 33.0*10**3
16 \text{ PF}_r = 0.8
                             // Receiving end lagging
      power factor
17 R = 10.0
                             // Total resistance of the
      line (ohm)
18 X = 18.0
                             // Total inductive
      resistance of the line (ohm)
19
20 // Calculations
21 // Case(i)
22 \quad I = P/(V_r*PF_r)
                                            // Line current
      (A)
                                            // Sin _R
23 \sin_{phi_r} = (1-PF_r**2)**0.5
                                            // Sending end
V_s = V_r + I * R * PF_r + I * X * sin_phi_r
      voltage (V)
25 \text{ reg} = (V_s-V_r)/V_r*100
                                            // Voltage
      regulation (%)
26 // Case(ii)
27 \text{ PF_s} = (V_r*PF_r+I*R)/V_s
                                            // Sending end
      lagging power factor
28 // Case(iii)
29 \; loss = I**2*R
                                            // Losses (W)
30 \text{ P_s} = \text{P+loss}
                                            // Sending end
     power (W)
31 n = P/P_s*100
                                            // Transmission
       efficiency (%)
32
33 // Results
34 disp("PART II - EXAMPLE : 3.1 : SOLUTION :-")
35 printf("\nCase(i) : Percentage voltage regulation =
      \%.3f percent", reg)
36 printf("\nCase(ii) : Sending end power factor = %.2f
       (lag)", PF_s)
37 printf("\nCase(iii): Transmission efficiency, =\%
      .2 f percent n, n)
38 printf("\nNOTE: ERROR: pf is 0.8 and not 0.9 as
      mentioned in the textbook problem statement")
```

Scilab code Exa 10.2 Line current Receiving end voltage and Efficiency of transmis

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.2 :
10 // Page number 128-129
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ 1 = 10.0
                              // Length (km)
15 \quad V_s = 11.0*10**3
                              // Sending end voltage(V)
16 P = 1000.0*10**3
                              // Load delivered at
      receiving end (W)
17 \text{ PF}_r = 0.8
                              // Receiving end lagging
     power factor
18 r = 0.5
                              // Resistance of each
     conductor (ohm/km)
19 x = 0.56
                              // Reactance of each
      conductor (ohm/km)
20
21 // Calculations
22 // Case (a)
23 R = r*1
                                          // Resistance
      per phase (ohm)
24 \quad X = x * 1
                                          // Reactance per
       phase (ohm)
```

```
// Phase voltage
25 E_s = V_s/3**0.5
      (V)
26 I = P/(3**0.5*V_s*PF_r)
                                            // Line current (
      A)
27 // Case (b)
28 \sin_{phi}r = (1-PF_r**2)**0.5
                                            // Sin _R
29 E_r = E_s-I*R*PF_r-I*X*sin_phi_r
                                            // Receiving end
       voltage (V)
30 E_r_{11} = 3**0.5*E_r/1000
                                               Receiving end
       line to line voltage (kV)
31 // Case(c)
32 \; loss = 3*I**2*R
                                            // Loss in the
      transmission line (W)
33 P_s = P + loss
                                            // Sending end
      power (W)
                                            // Transmission
34 n = P/P_s*100
      efficiency (%)
35 // Alternate method
36 \ Z = R**2+X**2
37 P_A = 1.0/3*P
                                            // Load
      delivered (W/phase)
38 Q = 1.0*P*sin_phi_r/(3*PF_r)
                                            // Reactive load
       delivered (VAR/phase)
39 A = (V_s **2/3.0) -2*(P_A *R+Q*X)
                                            // Constant
40 B = (1/9.0)*P**2*Z/PF_r**2
                                            // Constant
41 \text{ const} = (A**2-4*B)**0.5
                                            // \operatorname{sqrt}(A^2-4B)
42 E_r_A = ((A+const)/2)**0.5/1000.0
                                            // Receiving end
       voltage (kV/phase)
43 \quad E_r_A_{11} = 3**0.5*E_r_A
                                               Receiving end
       line-line voltage (kV)
  I_A = P/(3**0.5*E_r_A_11*1000*PF_r)
                                           // Line current (
      A)
  loss_A = 3*I_A**2*R
                                            // Loss in the
      transmission line (W)
46 \text{ P\_s\_A} = \text{P+loss\_A}
                                            // Sending end
      power (W)
47 \quad n_A = P/P_s_A*100
                                            // Transmission
      efficiency (%)
```

```
48
49  // Results
50  disp("PART II - EXAMPLE : 3.2 : SOLUTION :-")
51  printf("\nCase(a): Line current , |I| = %.1 f A" , I)
52  printf("\nCase(b): Receiving end voltage , E_r = %. f
        V (line-to-neutral) = %.2 f kV (line-to-line)" ,
            E_r,E_rll)
53  printf("\nCase(c): Efficiency of transmission = %.2 f
            percent \n" , n)
54  printf("\nAlternative solution by mixed condition:")
55  printf("\nCase(a): Line current , |I| = %.1 f A" , I_A)
56  printf("\nCase(b): Receiving end voltage , E_r = %.3 f
            kV/phase = %.2 f kV (line-line)" , E_r_A,E_r_A_ll)
57  printf("\nCase(c): Efficiency of transmission = %.2 f
            percent" , n_A)
```

Scilab code Exa 10.3 Sending end voltage

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.3 :
10 // Page number 129
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 I = 200.0
                            // Line current (A)
15 \text{ PF}_r = 0.8
                            // Receiving end lagging
```

```
power factor
16 R = 0.6
                             // Total resistance of the
     line (ohm)
17 X = 1.0
                             // Total inductive
      resistance of the line (ohm)
18 n = 0.93
                             // Efficiency (%)
19
20 // Calculations
21 \text{ V_r} = 3*I**2*R/((3*I*PF_r/n)-3*I*PF_r)
      Receiving end phase voltage(V)
                                                // Sin _{-}R
22 \sin_{phi}r = (1-PF_r**2)**0.5
                                               // Sending
V_s = V_r + I * R * PF_r + I * X * sin_phi_r
      end voltage (V)
24 V_s_{11} = 3**0.5*V_s
                                                // Sending
      end line voltage (V)
25
26 // Results
27 disp("PART II - EXAMPLE : 3.3 : SOLUTION :-")
28 printf("\nSending end voltage, V_s(line-line) = \%.2
      f V", V_s_{11})
```

Scilab code Exa 10.4 Distance over which load is delivered

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
// EXAMPLE : 3.4 :
// Page number 129
// Clear the work space and
```

```
console
12
13 // Given data
14 P = 15.0*10**6
                               // Load delivered at
      receiving end (W)
15 \text{ PF}_r = 0.85
                               // Receiving end lagging
      power factor
                               // Resistance of each
16 r = 0.905
     conductor (ohm/km)
17 V_r = 132.0*10**3
                               // Receiving end voltage(V
                               // Loss
  loss_per = 7.5/100
18
19
20 // Calculations
21 loss = loss_per*P
                                    // Losses in line (W)
22 I = P/(3**0.5*V_r*PF_r)
                                   // Line current (A)
23 \ 1 = loss/(3*I**2*r)
                                    // Length of line (km)
24
25 // Results
26 disp("PART II - EXAMPLE : 3.4 : SOLUTION :-")
27 printf("\nDistance over which load is delivered, l =
      \%.2 \text{ f km}", 1)
```

 ${
m Scilab~code~Exa~10.5}$ Sending end voltage Voltage regulation Value of capacitors an

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
// EXAMPLE : 3.5 :
```

```
10 // Page number 130
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 50.0
                               // Frequency (Hz)
15 \ 1 = 20.0
                               // Length (km)
16 P = 5.0*10**6
                               // Load delivered at
      receiving end (W)
                               // Receiving end lagging
17 \text{ PF}_r = 0.8
      power factor
                               // Resistance of each
18 r = 0.02
      conductor (ohm/km)
19 L = 0.65*10**-3
                               // Inductance of each
      conductor (H/km)
                               // Receiving end voltage(V)
20 E_r = 10.0*10**3
21
22 // Calculations
23 R = r*1
                                                    //
      Resistance per phase (ohm)
24 X = 2*\%pi*f*L*1
                                                // Reactance
       per phase (ohm)
25 // Case (a)
                                                    // Line
26 I = P/(E_r*PF_r)
      current (A)
27 \sin_{phi}r = (1-PF_r**2)**0.5
      Sin _R
28 E_s = E_r+I*R*PF_r+I*X*sin_phi_r
      Sending end voltage (V)
29 E_s_kV = E_s/1000.0
      Sending end voltage (kV)
30 \text{ reg} = (E_s-E_r)/E_r*100
      Voltage regulation (%)
31 // Case (b)
32 \text{ reg_new} = \text{reg/2}
                                                    // New
      regulation (%)
33 E_s_{new} = (reg_{new}/100)*E_r+E_r
                                                    // New
      value of sending end voltage (V)
```

```
34 tan_phi_r1 = ((E_s_new-E_r)*(E_r/P)-R)/X
                                                   //
      tan _r1
35 phi_r1 = atan(tan_phi_r1)
                                                        _{r1}
      (radians)
  phi_r1d = phi_r1*180/\%pi
                                                        _r1
      (degree)
37 \text{ PF}_r1 = \cos(\text{phi}_r1)
      Lagging power factor of receiving end
38 \sin_{phi_r1} = (1-PF_r1**2)**0.5
      Sin _r1
39 \quad I_R_{new} = P/(E_r*PF_r1)
                                                   // New
      line current(A)
40 I_R = I_R_new*complex(PF_r1,-sin_phi_r1)
41 I_c = I_R-I*complex(PF_r,-sin_phi_r)
                                                   //
      Capacitive current (A)
42 \quad I_C = imag(I_c)
      Imaginary part of Capacitive current (A)
43 c = I_C/(2*\%pi*f*E_r)*10.0**6
      Capacitance (F)
44 // Case(c)
45 \ loss_1 = I**2*R
                                                   // Loss(
     W)
46 \text{ n}_1 = P/(P+loss_1)*100
      Transmission efficiency (%)
  loss_2 = I_R_new**2*R
                                                   // Loss (
47
     W)
48 	 n_2 = P/(P+loss_2)*100
                                                   //
      Transmission efficiency (%)
49
50 // Results
51 disp("PART II - EXAMPLE : 3.5 : SOLUTION :-")
52 printf("\nCase(a): Sending end voltage, E_s = \%.2 f
     kV", E_s_kV)
53 printf("\n
                        Voltage regulation of the line =
     %.1f percent", reg)
54 printf("\nCase(b): Value of capacitors to be placed
      in parallel with load, c = \%.2 f F", c)
55 printf("\nCase(c): Transmission efficiency in part(a
```

```
), _{-1} = %.2 f percent", _{n_{-1}})

56 printf("\n Transmission efficiency in part(b), _{-2} = %.1 f percent", _{n_{-2}})
```

Scilab code Exa 10.6 Voltage regulation Sending end voltage Line loss and Sending

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.6 :
10 // \text{Page number } 130-131
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 	 f = 50.0
      Frequency (Hz)
15 \ 1 = 10.0
      Line length (km)
16 \ Z_1 = 0.5*exp(%i*60.0*%pi/180)
                             // Load impedance (ohm/km)
17 P = 316.8*10**3
                                              // Load side
      power (W)
18 \text{ PF}_r = 0.8
                                                   // Load
       side power factor
```

```
19 E_r = 3.3*10**3
                                                 // Load bus
      voltage (V)
20
21 // Calculations
22 Z_line = Z_l*1
                                                   // Load
      impedance (ohm)
23 I_r = P/(E_r*PF_r)*exp(%i*-acos(PF_r))
                      // Line current(A)
24 \sin_{phi}r = (1-PF_r**2)**0.5
                                  // Sin _R
25 E_s = E_r + I_r * Z_line
                                            // Sending end
      voltage (V)
26 \text{ reg} = (abs(E_s)-abs(E_r))/abs(E_r)*100
                       // Voltage regulation (%)
27 R = real(Z_line)
                                                 // Resistance
       of the load line (ohm)
28 \quad loss = abs(I_r)**2*R
                                           // Loss in the
      transmission line (W)
29 \quad loss_kW = loss/1000.0
                                          // Loss in the
      transmission line (kW)
30 \text{ P_s} = \text{P+loss}
                                                     //
      Sending end power (W)
31 angle_Er_Es = phasemag(E_s)
                                   // Angle between V<sub>r</sub> and
       V_{-s} ( )
32 angle_Er_Ir = acosd(PF_r)
                                      // Angle between V<sub>r</sub>
      and I_r ( )
33 angle_Es_Is = angle_Er_Es+angle_Er_Ir
                        // Angle between V<sub>s</sub> and I<sub>s</sub>( )
34 PF_s = cosd(angle_Es_Is)
```

Scilab code Exa 10.7 Nominal pi equivalent circuit parameters and Receiving end vo

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.7 :
10 // Page number 132-133
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V_s = 66.0
                                  // Voltage (kV)
                                  // Frequency (Hz)
15 f = 50.0
                                  // Line length (km)
16 \ 1 = 150.0
17 r = 0.25
                                  // Resistance of each
     conductor (ohm/km)
                                  // Inductive reactance
18 x = 0.5
       of each conductor (ohm/km)
```

```
// Capacitive
19 \quad y = 0.04*10**-4
      admittance (s/km)
20
21 // Calculations
22 // Case(a)
23 R = r*1
                                                            //
      Total resistance (ohm)
24 \quad X = x * 1
                                                            //
      Inductive reactance (ohm)
  Y = y*1
                                                            //
      Capacitive resistance(s)
26 \quad Y_2 = Y/2
                                                            //
      1/2 of Capacitive resistance(s)
27 // Case(b)
28 Z = complex(R,X)
      Total impedance (ohm)
29 A = 1+(Y*exp(%i*90.0*%pi/180)*Z/2)
                                                            //
      Line constant
30 \text{ V}_R = 100 \text{ m} = \text{V}_s / \text{abs}(A)
                                                            //
      Receiving end voltage at no-load (kV)
31
32 // Results
33 disp("PART II - EXAMPLE : 3.7 : SOLUTION :-")
34 printf("\nCase(a): Total resistance, R = %.1f ohm",
      R)
35 printf("\n
                         Inductive reactance, X = \%.1 f ohm
      ", X)
                         Capacitive resistance, Y = \%.1e s
36 printf("\n
      ", Y)
37 printf("\n
                         Capacitive resistance, Y/2 = \%.1e
       s", Y_2)
38 printf("\nCase(b): Receiving end voltage at no-load,
       V_{\text{-}}R = \%.\,2\,f kV"\text{, V_R_noload)}
```

Scilab code Exa 10.8 Voltage Current and Power factor at sending end

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.8 :
10 // \text{Page number } 133-134
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 50.0
                                   // Frequency (Hz)
                                   // Line voltage at
15 \quad V_r = 132.0*10**3
     receiving end(V)
                                   // Line length (km)
16 L = 100.0
17 r = 0.17
                                   // Resistance (ohm/km/
     phase)
18 \quad 1 = 1.1*10**-3
                                   // Inductance (H/km/
     phase)
                                   // Capacitance (F/km/
19 c = 0.0082*10**-6
     phase)
20 P_L = 70.0*10**6
                                   // Load at receiving
      end (W)
21 \text{ PF}_r = 0.8
                                   // Lagging load power
      factor
22
23 // Calculations
24 E_r = V_r/3**0.5
                                               //
      Receiving end phase voltage(V)
  I_r = P_L/(3**0.5*V_r*PF_r)*exp(%i*-acos(PF_r))
             // Receiving end current(A)
26 R = r*L
                                                         //
```

```
Total resistance (ohm/phase)
27 X = 2*\%pi*f*l*L
                                                 //
      Inductive reactance (ohm/phase)
28 \ Z = complex(R,X)
                                                // Total
      impedance(ohm/phase)
29 Y = 2*\%pi*f*c*exp(%i*90.0*\%pi/180)/L
                          // Shunt admittance of line (mho
      /phase)
30 E = E_r + I_r * (Z/2)
                                               // Voltage
      across shunt admittance (V/phase)
31 I_s = I_r + E * Y
      Sending end current (A)
32 E_s = E + I_s * (Z/2)
                                               // Sending
      end voltage (V/phase)
33 E_s_{11} = 3**0.5*abs(E_s)/1000
                                 // Sending end line to
      line voltage (kV)
34 angle_Er_Es = phasemag(E_s)
                                   // Angle between E_r
      and V_{-s}()
35 angle_Er_Is = phasemag(I_s)
                                   // Angle between E_r
      and I_s ( )
36 angle_Es_Is = angle_Er_Es-angle_Er_Is
                         // Angle between E<sub>s</sub> and I<sub>s</sub>( )
37 PF_s = cosd(angle_Es_Is)
                                       // Sending end
      power factor
38
39 // Results
40 disp("PART II - EXAMPLE : 3.8 : SOLUTION :-")
41 printf("\nVoltage at sending end, E_s = \%.2 f % .2
         V/phase = \%. f kV (line-to-line)", abs(E_s),
```

```
phasemag(E_s),E_s_11)
42 printf("\nCurrent at sending end, I_s = %.1 f % .1
    f A", abs(I_s),phasemag(I_s))
43 printf("\nSending end power factor = %.3 f (lagging)"
    , PF_s)
```

Scilab code Exa 10.9 Sending end voltage Current and Transmission efficiency

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.9 :
10 // Page number 134
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                                  // Frequency (Hz)
14 f = 50.0
15 E_r = 66.0*10**3
                                  // Line voltage at
      receiving end(V)
16 \ 1 = 120.0
                                  // Line length (km)
17 r = 0.1
                                  // Resistance (ohm/km/
     phase)
18 x = 0.3
                                  // Inductive reactance
     (ohm/km/phase)
19 \quad y = 0.04*10**-4
                                  // Capacitive
     susceptance (S/km/phase)
20 P_L = 10.0*10**6
                                  // Load at receiving
     end (W)
```

```
// Lagging load power
21 \text{ PF}_r = 0.8
      factor
22
23 // Calculations
24 R = r*1
      // Total resistance (ohm/phase)
25 \quad X = x*1
      // Inductive reactance (ohm/phase)
26 \ Y = y*1
     // Susceptance (mho)
27 Z = complex(R,X)
      // Total impedance (ohm/phase)
28 \ V_r = E_r/3**0.5
      // Receiving end phase voltage(V)
29 I_r = P_L/(3**0.5*E_r*PF_r)*exp(%i*-acos(PF_r))
                           // Load current (A)
30 \ V_1 = V_r + I_r * (Z/2)
                                                           //
       Voltage across capacitor (V)
31 I_c = \%i*Y*V_1
      // Charging current (A)
32 I_s = I_r + I_c
      // Sending end current (A)
33 V_s = V_1 + I_s * (Z/2)
                                                          //
       Sending end voltage (V/phase)
34 \text{ V_s_ll} = 3**0.5*abs(V_s)/1000.0
                                             // Sending end
       line to line voltage (kV)
35 angle_Vr_Vs = phasemag(V_s)
                                                  // Angle
```

```
between V<sub>r</sub> and V<sub>s</sub>( )
36 angle_Vr_Is = phasemag(I_s)
                                                 // Angle
      between V<sub>r</sub> and I<sub>s</sub>( )
37 angle_Vs_Is = angle_Vr_Vs-angle_Vr_Is
                                      // Angle between V<sub>s</sub>
       and I_s
38 PF_s = cosd(angle_Vs_Is)
      Sending end power factor
39 P_s = 3*abs(V_s*I_s)*PF_s
      Sending end power (W)
40 n = P_L/P_s*100
      // Transmission efficiency (%)
41
42 // Results
43 disp("PART II - EXAMPLE : 3.9 : SOLUTION :-")
44 printf("\nSending end voltage, |V_s| = \%. f V/phase =
       \%.3 \text{ f V (line-to-line)}", abs(V_s), V_s_ll)
45 printf("\nSending end current, |I_s| = \%.2 f A", abs(
      I_s))
46 printf("\nTransmission efficiency = \%.2 f percent \n"
47 printf("\nNOTE: ERROR: Calculation mistake in
      finding sending end power factor")
48 printf("\n
                     Changes in the obtained answer from
      that of textbook is due to more precision")
```

Scilab code Exa 10.10 Line to line voltage and Power factor at sending end

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
```

```
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.10 :
10 // Page number 135
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 50.0
                                   // Frequency (Hz)
15 \ 1 = 125.0
                                   // Line length (km)
16 P_r = 40.0*10**6
                                   // Load at receiving
     end (VA)
17 V_r = 110.0*10**3
                                   // Line voltage at
     receiving end(V)
18 \text{ PF}_r = 0.8
                                   // Lagging load power
      factor
19 R = 11.0
                                   // Resistance (ohm/
      phase)
20 X = 38.0
                                   // Inductive reactance
     (ohm/phase)
21 \quad Y = 3.0*10**-4
                                   // Capacitive
     susceptance (S)
22
23 // Calculations
24 // Case(i)
25 E_r = V_r/3**0.5
                                                //
      Receiving end phase voltage (V)
26 \ Z = complex(R,X)
                                                // Total
      impedance (ohm/phase)
27 I_c1 = E_r*(Y/2)*exp(%i*90.0*%pi/180)
                         // Current through shunt
      admittance at receiving end(A)
```

```
28 I_r = P_r/(3**0.5*V_r)*exp(%i*-acos(PF_r))
                    // Load current(A)
29 \quad I = I_r + I_c 1
                                                    //
      Current through series impedance (A)
30 \quad E_s = I*Z+E_r
      Voltage across shunt admittance at sending end(V)
31 E_s_{11} = 3**0.5*E_s/1000.0
                                     // Line to line
      voltage at sending end(kV)
32 I_c2 = E_s*(Y/2)*exp(%i*90.0*%pi/180)
                         // Current through shunt
      admittance at sending end(A)
33 // Case(ii)
34 I_s = I_c2+I_r
                                                  //
      Sending end current (A)
35 angle_Er_Es = phasemag(E_s)
                                    // Angle between E_r
      and E_{-s} ( )
36 angle_Er_Is = phasemag(I_s)
                                    // Angle between E_r
      and I_s()
37 angle_Es_Is = angle_Er_Es-angle_Er_Is
                         // Angle between E<sub>s</sub> and I<sub>s</sub> (
38 PF_s = cosd(angle_Es_Is)
                                       // Sending end
      power factor
39
40 // Results
41 disp("PART II - EXAMPLE : 3.10 : SOLUTION :-")
42 printf("\nCase(i) : Line to line voltage at sending
     end, E_s = \%. f kV", abs(E_s_11))
43 printf("\nCase(ii): Sending end power factor = \%.3 f
      \n", PF_s)
44 printf("\nNOTE: Answers in the textbook are
```

Scilab code Exa 10.11 Voltage Current Power factor at sending end Regulation and T

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.11 :
10 // \text{Page number } 135-137
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 50.0
                                   // Frequency (Hz)
15 R = 28.0
                                   // Resistance (ohm/
     phasemag)
16 X = 63.0
                                   // Inductive reactance
     (ohm/phasemag)
17 \quad Y = 4.0*10**-4
                                   // Capacitive
     susceptance (mho)
18 P_r = 75.0*10**6
                                   // Load at receiving
     end (VA)
19 \text{ PF}_r = 0.8
                                   // Lagging load power
     factor
20 V_r = 132.0*10**3
                                   // Line voltage at
      receiving end(V)
21
22 // Calculations
23 // Case(i) Nominal T method
```

```
24 \ Z = complex(R,X)
      // Total impedance(ohm/phasemag)
25 E_r = V_r/3**0.5
      // Receiving end phasemag voltage(V)
26 I_r = P_r/(3**0.5*V_r)*exp(%i*-acos(PF_r))
                                 // Line current at
     receiving end(A)
27 \quad E = E_r + I_r * (Z/2)
28 I_c = \%i*Y*E
     // Capacitive current (A)
29 \quad I_s = I_r + I_c
      // Sending end current (A)
30 \quad v_drop = I_s*(Z/2)
      // Voltage drop(V)
31 E_s = E + I_s * (Z/2)
      // Sending end voltage(V)
32 E_s_kV = E_s/1000.0
                                                           //
       Sending end voltage (kV)
33 E_s_{11} = 3**0.5*abs(E_s)
                                                       //
      Sending end line voltage (V)
34 E_s_{11kV} = E_s_{11}/1000.0
                                                     //
      Sending end line voltage (kV)
35 angle_Er_Es = phasemag(E_s)
                                                  // Angle
      between E<sub>r</sub> and E<sub>s</sub>( )
36 angle_Er_Is = phasemag(I_s)
                                                  // Angle
      between E_r and I_s ( )
37 angle_Es_Is = angle_Er_Es-angle_Er_Is
```

```
// Angle between E_s
       and I_s()
38 PF_s = cosd(angle_Es_Is)
                                                     //
      Sending end power factor
39 \text{ P_s} = 3**0.5*\text{E_s_ll*abs}(I_s)*\text{PF_s}
                                           // Power at
      sending end (W)
40 reg = (abs(E_s_11)-V_r)/V_r*100
                                             // Regulation (
      %)
41 n = (P_r*PF_r)/P_s*100
                                                       //
      Transmission efficiency (%)
42 // Case(ii) Nominal
                            method
43 I_c2 = E_r*(\%i*Y/2)
       Current through shunt admittance at receiving
      end(A)
44 \quad I = I_r + I_c 2
      // Line current (A)
45 \quad E_s_p = E_r+I*Z
      // Sending end voltage(V)
46 E_s_pkV = E_s_p/1000.0
                                                       //
      Sending end voltage (kV)
47 E_s_pll = 3**0.5*abs(E_s_p)
                                                  // Sending
       end line voltage (V)
48 \quad E_s_pllkV = E_s_pll/1000.0
                                                   //
      Sending end line voltage (kV)
49 I_c1 = E_s_p*(\%i*Y/2)
      Current through shunt admittance at sending end (A
```

```
50 I_s_p = I+I_c1
      // Sending end current(A)
51 angle_Er_Esp = phasemag(E_s)
                                                // Angle
      between E<sub>r</sub> and E<sub>s</sub>( )
52 angle_Er_Isp = phasemag(I_s)
                                                // Angle
      between E<sub>r</sub> and I<sub>s</sub> ( )
53 angle_Es_Isp = angle_Er_Esp-angle_Er_Isp
                                   // Angle between E_s
      and I_s ( )
54 PF_s_p = cosd(angle_Es_Isp)
                                                 // Sending
       end power factor
55 P_s_p = 3**0.5*E_s_p11*abs(I_s_p)*PF_s_p
                                   // Power at sending end
56 \text{ reg_p} = (abs(E_s_pll)-V_r)/V_r*100
                                         // Regulation (%)
57 \text{ n_p} = (P_r*PF_r)/P_s_p*100
                                                  //
      Transmission efficiency (%)
58
59 // Results
60 disp("PART II - EXAMPLE : 3.11 : SOLUTION :-")
61 printf("\n(i) Nominal T method")
62 printf("\nCase(a): Voltage at sending end, E_s = \%.2
       f \% .2 f kV = \%.1 f kV (line-to-line)", abs(
      E_s_kV), phasemag(E_s_kV), E_s_llkV)
63 printf("\nCase(b): Sending end current, I_s = \%.1
       f \% .2 f A", abs(I_s), phasemag(I_s))
64 printf("\nCase(c): Power factor at sending end = \%.4
      f (lagging)", PF_s)
65 printf("\nCase(d): Regulation = \%.2f percent", reg)
66 printf("\nCase(e): Efficiency of transmission = \%.2 \,\mathrm{f}
       percent n, n)
67 printf("\n(ii) Nominal
                              method")
```

```
68 printf("\nCase(a): Voltage at sending end, E_s = %.2
    f % .2 f kV = %.1 f kV (line-to-line)", abs(
    E_s_pkV),phasemag(E_s_pkV),E_s_pllkV)
69 printf("\nCase(b): Sending end current, I_s = %.1
    f % .2 f A", abs(I_s_p),phasemag(I_s_p))
70 printf("\nCase(c): Power factor at sending end = %.4
    f (lagging)", PF_s_p)
71 printf("\nCase(d): Regulation = %.2 f percent", reg_p
    )
72 printf("\nCase(e): Efficiency of transmission = %.2 f
    percent \n", n_p)
73 printf("\nNOTE: Changes in the obtained answer from
    that of textbook is due to more precision here
    and more approximation in textbook")
```

 ${f Scilab\ code\ Exa\ 10.12}$ Receiving end Voltage Load and Nature of compensation require

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.12 :
10 // Page number 143
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 E_s = 275.0
                                // Sending end voltage (
     kV)
15 f = 50.0
                                // Frequency (Hz)
```

```
// Line length (km)
16 \ 1 = 400.0
17 x = 0.05
                                  // Inductive reactance (
      ohm/km)
18 \quad y = 3.0*10**-6
                                  // Line charging
      susceptance (S/km)
19 r = 0.0
                                  // Lossless line
20
21 // Calculations
22 // Case(a)
23 R = r*1
                                  // Total resistance (ohm/
      phase)
                                  // Inductive reactance (
24 \quad X = x * 1
      ohm/phase)
25 \quad Y = y*1
                                  // Susceptance (mho)
                                  // Total impedance(ohm/
26 \ Z = complex(R,X)
      phase)
27 A = 1 + (Y*Z/2)*\%i
                                  // Line constant
28 \quad E_r = E_s/abs(A)
                                  // Receiving end voltage
       at no load (kV)
29 // case(b)
30 \quad Z_0 = (X/Y) **0.5
                                  // Load at receiving end
      (ohm)
31 // Case(c)
32 \ Z_0_{new} = 1.2*Z_0
                                  // New load at receiving
       station (ohm)
33
34 // Results
35 disp("PART II - EXAMPLE : 3.12 : SOLUTION :-")
36 printf("\nCase(a): Receiving end voltage on open
      circuit = \%.1 f kV", E_r)
37 printf("\nCase(b): Load at receiving end for flat
      voltage profile on line, Z_0 = \%.1 f ", Z_0
38 printf("\nCase(c): Distributed inductive reactance
      of the line is to be increased as, Loading for
      new voltage profile = \%.2 \,\mathrm{f} ", Z_0_new)
```

Scilab code Exa 10.13 Sending end voltage and Current

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.13 :
10 // \text{Page number } 143-144
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V_r = 220.0*10**3
                                 // Receiving end voltage
      (V)
15 \ Z = complex(20,100)
                                  // Impedance (ohm/phase)
                                 // Admittance (mho)
16 \quad Y = \%i * 0.0010
                                 // Receiving end current
17 I_r = 300.0
      (\mathbf{A})
18 \text{ PF}_r = 0.9
                                 // Lagging power factor
19
20 // Calculations
V_2 = V_r/3**0.5
      Receiving end phase voltage (V)
22 \quad I_2 = I_r * exp(\%i * -acos(PF_r))
                                                  //
      Receiving end current (A)
23 I_C2 = (Y/2)*V_2
      Capacitive current at receiving end(A)
24 I = I_2 + I_C2
25 V_1 = V_2 + I * Z
```

 ${f Scilab\ code\ Exa\ 10.14}$ Incident voltage and Reflected voltage at receiving end and

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.14 :
10 // Page number 144
11 clear; clc; close; // Clear the work space and
      console
12 funcprot(0)
13
14 // Given data
15 f = 50.0
                                  // Frequency (Hz)
```

```
16 r = 0.1
                                       // Resistance (ohm/km)
                                       // Inductance (H/km)
17 \quad 1 = 1.4*10**-3
18 c = 8.0*10**-9
                                       // Capacitance (F/km)
                                       // conductance (mho/km)
19 g = 4.0*10**-8
20 \ V_r = 400.0
                                       // Receiving end
      voltage (kV)
21 x = 200.0
                                       // Length of line (km)
22
23 // Calculations
24 V_2 = V_r/3**0.5
      Receiving end phase voltage (kV)
25 z = r + \%i * 2 * \%pi * f * 1
                                                    // Total
      impedance (ohm/km)
26 y = g + \%i * 2 * \%pi * f * c
                                                    // Total
      susceptance (mho/km)
27 Z_c = (z/y)**0.5
                                                    // Surge
      impedance (ohm)
28 \text{ gamma} = (z*y)**0.5
29 // Case (i)
30 \ V_0_{plus} = V_2/2
                                                    // Incident
        voltage to neutral at receiving end(kV)
31 // Case(ii)
32 \ V_0_{minus} = V_2/2
      Reflected voltage to neutral at receiving end(kV)
33 // Case(iii)
34 \text{ gamma_l} = \text{gamma*x}
                                                    // Incident
35 \quad V_1_{plus} = (V_2/2) * exp(gamma_1)
       voltage to neutral at 200 km from receiving end(
36 \ V_1_{minus} = (V_2/2) * exp(-gamma_1)
      Reflected voltage to neutral at 200 km from
      receiving end(kV)
37 // Case (iv)
                                                    //
38 \quad V_1 = V_1_plus + V_1_minus
      Resultant voltage to neutral (kV)
39 \text{ V_L} = \text{abs}(\text{V}_1)
      Resultant voltage to neutral (kV)
40 \quad V_L_{11} = 3**0.5*V_L
                                                    // Line to
```

```
line voltage at 200 km from receiving end(kV)
41
42 // Results
43 disp("PART II - EXAMPLE : 3.14 : SOLUTION :-")
44 printf("\nCase(i) : Incident voltage to neutral at
      receiving end, V_0-plus = \%.1 f \% . f kV, abs(
      V_0_plus), phasemag(V_0_plus))
45 printf("\nCase(ii) : Reflected voltage to neutral at
       receiving end, V_{-0}-minus = \%.1 f \% . f kV", abs
      (V_0_minus), phasemag(V_0_minus))
46 printf("\nCase(iii): Incident voltage to neutral at
      200 km from receiving end, V_1-plus = (%.3 f+%.2 fj
      ) kV", real(V_1_plus), imag(V_1_plus))
47 printf("\nCase(iv) : Resultant voltage to neutral at
       200 km from receiving end, V_L = \%.2 f kV, V_L
48 printf("\n
                        Line to line voltage at 200 km
      from receiving end = \%.2 \,\text{f} kV", V_L_11)
```

Scilab code Exa 10.15 A B C D constants

```
14 f = 50.0
                                       // Frequency (Hz)
15 L = 200.0
                                       // Line length (km)
16 \ 1 = 1.20*10**-3
                                       // Inductance (H/km)
                                       // Capacitance (F/km)
17 c = 8.0*10**-9
18 r = 0.15
                                        // Resistance (ohm/km)
19 g = 0.0
                                        // Conductance (mho/km)
20
21 // Calculations
22 z = r + \%i * 2 * \%pi * f * 1
                                                       Total
      impedance (ohm/km)
23 \quad Z = z*L
                                                    // Total
      impedance (ohm)
24 y = g + \%i * 2 * \%pi * f * c
                                                       Total
      susceptance (mho/km)
25 \quad Y = y*L
                                                    // Total
      susceptance (mho/km)
26 \text{ gamma_l} = (Z*Y)**0.5
                                                        1
27 \text{ alpha_l} = \text{real}(\text{gamma_l})
28 \text{ beta_l} = \frac{\text{imag}(\text{gamma_l})}{\text{mag}}
                                                        1
29 \ Z_c = (Z/Y) **0.5
                                                    // Surge
      impedance (ohm)
30 A = cosh(gamma_1)
                                                    // Constant
31 B = Z_c*sinh(gamma_1)
                                                    // Constant (
      ohm)
32 C = (1/Z_c)*sinh(gamma_l)
                                                       Constant (
33 D = A
                                                    // Constant
34
35 // Results
36 disp("PART II - EXAMPLE : 3.15 : SOLUTION :-")
37 printf("\nA = D = \%.3 \ f \% .2 f", abs(A),phasemag(A
38 printf("\nB = \%.2 f \% .3 f
                                  ", abs(B),phasemag(B))
                                     S", abs(C),phasemag(C))
39 printf("\nC = \%.2 e \% .3 f
```

Scilab code Exa 10.16 Sending end voltage Current Power factor and Efficiency

```
// A Texbook on POWER SYSTEM ENGINEERING
  // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
8
9 // EXAMPLE : 3.16 :
10 // Page number 145-146
11 clear; clc; close; // Clear the work space and
      console
12 funcprot(0)
13
14 // Given data
15 V_r = 132.0*10**3
                                 // Receiving end voltage
      (V)
16 f = 50.0
                                  // Frequency (Hz)
                                 // Line length (km)
17 L = 200.0
                                 // Inductance (H/km)
18 \ 1 = 1.3*10**-3
                                  // Capacitance (F/km)
19 c = 9.0*10**-9
                                  // Resistance (ohm/km)
20 r = 0.2
                                  // Conductance (mho/km)
21 g = 0.0
22 P_r = 50.0*10**6
                                  // Power received (VA)
                                  // Lagging power factor
23 \text{ PF}_r = 0.8
      at receiving end
24
25 // Calculations
26 z = r + \%i * 2 * \%pi * f * 1
                                                        //
      Total impedance (ohm/km)
27 y = g + \%i * 2 * \%pi * f * c
      Total susceptance (mho/km)
28 \ Z_c = (z/y)**0.5
      Surge impedance (ohm)
29 \text{ gamma} = (z*y)**0.5
                                                        //
```

```
//
30 gamma_l = gamma*L
31 \cosh_g l = \cosh(gamma_l)
                                                           //
      cosh l
32 \sinh_g l = \sinh(gamma_l)
                                                          //
      sinh l
33 V_2 = V_r/(3**0.5)
                                                           //
      Receiving end phase voltage (V)
34 I_2 = P_r/(3*V_2)*exp(%i*-acos(PF_r))
      Line current (A)
35 V_1 = V_2*cosh_gl+I_2*Z_c*sinh_gl
                                                           //
      Sending end voltage (V)
36 \quad V_1kV = V_1/1000.0
      Sending end voltage (kV)
37 I_1 = (V_2/Z_c)*sinh_gl+I_2*cosh_gl
                                                           //
      Sending end current (A)
                                                          //
38 \text{ angle_V2_V1} = \text{phasemag(V_1)}
      Angle between V<sub>2</sub> and V<sub>1</sub>(
   angle_V2_I1 = phasemag(I_1)
                                                           //
      Angle between V<sub>2</sub> and I<sub>1</sub> (
40 angle_V1_I1 = angle_V2_V1-angle_V2_I1
                                                           //
      Angle between V<sub>-1</sub> and I<sub>-1</sub> ( )
41 PF_s = cosd(angle_V1_I1)
      Sending end power factor
42 P_1 = 3*abs(V_1*I_1)*PF_s
      Sending end power (W)
43 P_2 = P_r*PF_r
                                                           //
      Receiving end power (W)
44 n = P_2/P_1*100
                                                          //
      Efficiency
45
46 // Results
47 disp("PART II - EXAMPLE : 3.16 : SOLUTION :-")
48 printf("\nSending end voltage, V_{-1} = \%.3 f % .4 f
      kV per phase", abs(V_1kV), phasemag(V_1kV))
49 printf("\nSending end current, I_{-}1 = \%.3 f % .2 f
      ", abs(I_1),phasemag(I_1))
```

```
50 printf("\nPower factor = \%.3 \, f", PF_s)
51 printf("\nEfficiency, = \%.2 \, f percent", n)
```

Scilab code Exa 10.17 Values of auxiliary constants A B C D

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.17 :
10 // Page number 147-148
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 50.0
                                 // Frequency (Hz)
                                 // Line length (km)
15 L = 160.0
16 r = 0.15
                                 // Resistance (ohm/km/
     phasemag)
17 \quad 1 = 1.2*10**-3
                                 // Inductance (H/km/
     phasemag)
18 c = 0.008*10**-6
                                 // Capacitance (F/km/
     phasemag)
19 g = 0.0
                                 // Conductance (mho/km/
     phasemag)
20
21 // Calculations
22 // Case(i) Using convergent series (Complex angles)
     method
23 z = r + \%i * 2 * \%pi * f * 1
                                                //
```

```
Impedance (ohm/km)
24 \quad Z = z*L
                                                     // Total
      series impedance (ohm)
25 y = g + \%i * 2 * \%pi * f * c
                                                     // Shunt
      admittance (S/km)
                                                     // Total
26 \quad Y = y*L
      shunt admittance(S)
27 A = 1 + (Y*Z/2) + ((Y*Z)**2/24)
      Constant
28 B = Z*(1+(Y*Z/6)+((Y*Z)**2/120))
      Constant (ohm)
29 \quad C = Y*(1+(Y*Z/6)+((Y*Z)**2/120))
                                                     //
      Constant (mho)
30 \, D = A
                                                     //
      Constant
31 // Case(ii) Using convergent series(Real angles)
      method
32 \text{ gamma_l} = (Z*Y)**0.5
33 \text{ alpha_l} = \text{real}(\text{gamma_l})
34 beta_1 = imag(gamma_1)
35 \quad Z_c = (Z/Y) **0.5
                                                      // Surge
      impedance (ohm)
36 \quad A_2 = \cosh(gamma_1)
      Constant
37 B_2 = Z_c*sinh(gamma_1)
      Constant (ohm)
38 C_2 = (1/Z_c)*sinh(gamma_1)
      Constant (mho)
39 D_2 = A_2
                                                     //
      Constant
40
41 // Results
42 disp("PART II - EXAMPLE : 3.17 : SOLUTION :-")
43 printf("\nCase(i): Using convergent series(Complex
      Angles) method")
44 printf("\nA = D = \%.3 \text{ f } \% .1 \text{ f} ", abs(A),phasemag(A
      ))
45 printf("\nB = \%. f % .1 f ohm", abs(B), phasemag(B))
```

Scilab code Exa 10.18 Sending end voltage and Current using convergent series meth

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.18 :
10 // Page number 148
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V_r = 220.0*10**3
                                          // Line voltage
      at receiving end(V)
15 \ Z = complex(40,200)
                                          // Impedance
     per phasemag (ohm)
16 \quad Y = \%i * 0.0015
                                          // Admittance (
```

```
mho)
17 I_r = 200.0
                                           // Receiving
      end current (A)
18 \text{ PF}_r = 0.95
                                           // Lagging
      power factor
19
20 // Calculations
21 // Case(a)
22 A = 1+(Y*Z/2)+((Y*Z)**2/24)
                                      // Constant
23 B = Z*(1+(Y*Z/6)+((Y*Z)**2/120)+((Y*Z)**3/5040))
               // Constant (ohm)
24 \ C = Y*(1+(Y*Z/6)+((Y*Z)**2/120)+((Y*Z)**3/5040))
               // Constant (mho)
25 D = A
     // Constant
26 E_r = V_r/3**0.5
                                                  //
      Receiving end phasemag voltage (V)
27 I_r1 = I_r*\exp(\%i*-a\cos(PF_r))
                                   // Line current(A)
28 E_s = A*E_r+B*I_r1
                                                // Sending
       end voltage (V)
29 E_s_{11} = 3**0.5*E_s/1000.0
                                       // Sending end
      line voltage (kV)
30 // Case(b)
31 \quad I_s = C*E_r+D*I_r1
                                                // Sending
       end current (A)
32
33 // Results
34 disp("PART II - EXAMPLE : 3.18 : SOLUTION :-")
35 printf("\nCase(a): Sending end voltage, E_s = \%.1
       f \% .2 f kV (line-to-line)", abs(E_s_11),
      phasemag(E_s_ll))
```

Scilab code Exa 10.19 Sending end voltage and Current using nominal pi and nominal

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.19 :
10 // Page number 148-149
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V_r = 220.0*10**3
                                           // Line voltage
       at receiving end(V)
15 \ Z = complex(40,200)
                                           // Impedance
     per phasemag(ohm)
16 \quad Y = \%i * 0.0015
                                           // Admittance (S
     )
17 I_R = 200.0
                                           // Receiving
     end current (A)
18 \text{ PF}_r = 0.95
                                           // Lagging
     power factor
19
```

```
20 // Calculations
21 // Case(i) Nominal method
22 // Case (a)
23 E_r = V_r/3**0.5
                                                      //
      Receiving end phasemag voltage (V)
24 I_r = I_R * exp(%i*-acos(PF_r)) // Line current(A)
25 \quad Y_2 = Y/2.0
      Admittance (S)
26 I_c2 = Y_2*E_r
      Current through shunt admittance at receiving end
      (A)
27 \quad I = I_r + I_c 2
                                                      //
      Current through impedance (A)
  IZ_drop = I*Z
      Voltage drop (V)
  E_s = E_r + IZ_drop
      Sending end voltage (V)
30 E_s_kV = E_s/1000.0
      Sending end voltage (kV)
31 // Case (b)
32 I_c1 = E_s * Y_2
      Current through shunt admittance at sending end (A
33 I_s = I+I_c1
                                                      //
      Sending end current (A)
34 // Case(ii) Nominal T method
35 // Case(a)
36 \quad I_r_Z2 = I_r*Z/2
                                                      //
      Voltage drop at receiving end(V)
37 \quad E = E_r + I_r Z2
      Voltage (V)
  I_c = Y * E
      Current through shunt admittance (A)
39 \quad I_s_2 = I_c+I_r
      Sending end current (A)
40 \quad I_s_{Z2} = I_s_{2*(Z/2)}
                                                      //
      Voltage drop at sending end(V)
41 \quad E_s_2 = I_s_{Z2+E}
                                                      //
```

```
Sending end voltage (V)
42 \quad E_s_2kV = E_s_2/1000.0
                                                       //
      Sending end voltage (kV)
43
44 // Results
45 disp("PART II - EXAMPLE : 3.19 : SOLUTION :-")
46 printf("\nCase(i): Nominal
                                    method")
47 printf("\n
                         Case(a): Sending end voltage, E<sub>s</sub>
       =\%.1 f \% .2 f kV", abs(E_s_kV), phasemag(E_s_kV)
48 printf("\n
                         Case(b): Sending end current, I_s
       = \%.1 \text{ f } \% .2 \text{ f}
                         A", abs(I_s), phasemag(I_s))
49 printf("\nCase(ii): Nominal T method")
50 printf ("\n
                         Case(a): Sending end voltage, E<sub>s</sub>
       = \%.1 \text{ f } \% .2 \text{ f}
                         kV", abs(E_s_2kV),phasemag(
      E_s_{2kV})
                         Case(b): Sending end current, I_s
51 printf("\n
       = \%.1 \text{ f } \% .2 \text{ f} A \ \text{n}", abs(I_s_2), phasemag(I_s_2)
52 printf("\nThe results are tabulated below")
53 printf("\
54 printf("\nMETHOD
                                   E_s(kV)
      I_s(A)")
55 printf("\
56 printf("\nRigorous
                               3 * 132.6 16 .46
              209.8 39 .42 ")
57 printf("\nNominal
                                    3 *%.1 f % .2 f
              \%.1 \text{ f } \% .2 \text{ f } ", abs(E_s_kV), phasemag(
      E_s_kV), abs (I_s), phasemag (I_s))
58 printf("\nNominal T 3 *\%.1 f \% .2 f
      \%.1 \text{ f } \% .2 \text{ f} ", abs(E_s_2kV), phasemag(E_s_2kV),
      abs(I_s_2), phasemag(I_s_2))
59 printf("\
```

Scilab code Exa 10.20 Sending end voltage Voltage regulation Transmission efficien

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.20 :
10 // Page number 149-153
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 50.0
                               // Frequency (Hz)
                              // Line length (km)
// Series impedance (ohm)
15 L = 280.0
16 \ Z = complex(35,140)
                            // Shunt admittance(S)
17 \quad Y = \%i*930.0*10**-6
                               // Power delivered (W)
18 P_r = 40.0*10**6
19 \ V_r = 220.0*10**3
                               // Voltage at receiving
     end(V)
20 \text{ PF}_r = 0.9
                               // Lagging power factor
21
22 // Calculations
23 R = real(Z)
     // Resistance of the line (ohm)
24 // Case (a)
25 I_r_a = P_r/(3**0.5*V_r*PF_r)*exp(%i*-acos(PF_r))
     // Receiving end current (A)
```

```
26 I_s_a = I_r_a
      // Sending end current (A)
27 V_r_a = V_r/3**0.5
                                                       //
      phasemag voltage at receiving end(V)
V_s_a = V_r_a + I_r_a * Z
                                                    //
      Sending end voltage (V)
29 V_s_a_{11} = 3**0.5*V_s_a
                                                  // Sending
       end line voltage (V)
30 \ V_s_a_1lkv = V_s_a_1l/1000.0
                                            // Sending end
      line voltage (kV)
31 \text{ reg_a} = (abs(V_s_a_ll)-V_r)/V_r*100
                                    // Voltage regulation (
      %)
32 loss_a = 3*abs(I_r_a)**2*R
                                              // Line loss (
      W)
33 \text{ input_a} = P_r + loss_a
      Input to line (W)
34 n_a = P_r/input_a*100
      Efficiency of transmission (%)
35 \text{ A}_a = 1.0
      // Constant
36 B_a = Z
      // Constant (ohm)
37 C_a = 0
      // Constant (mho)
38 D_a = A_a
```

```
// Constant
39 // Case (b)
40 \ V_b = V_r_a + I_r_a * Z/2
                                           // Voltage drop
      across shunt admittance (V)
41 \quad I_c_b = Y*V_b
                                                    //
      Current through shunt admittance (A)
42 \quad I_s_b = I_r_a+I_c_b
                                             // Sending end
       current (A)
43 \ V_s_b = V_b + I_s_b * Z/2
                                           // Sending end
      voltage (V)
44 \ V_s_b_{11} = 3**0.5*V_s_b
                                         // Sending end
      line voltage (V)
45 \ V_s_b_llkv = V_s_b_ll/1000.0
                                   // Sending end line
      voltage (kV)
46 angle_V_Is_b = phasemag(I_s_b)
                                 // Angle between V_r and
      I_s_b(
47 angle_V_Vs_b = phasemag(V_s_b)
                                 // Angle between V<sub>r</sub> and
      V_s_b(
48 angle_Is_Vs_b = angle_V_Is_b-angle_V_Vs_b
                    // Angle between V_s_b and I_s_b ( )
49 PF_s_b = cosd(angle_Is_Vs_b)
                                   // Sending end power
      factor
50 P_s_b = 3**0.5*abs(V_s_b_11*I_s_b)*PF_s_b
                    // Sending end power (W)
51 \text{ n_b} = P_r/P_s_b*100
                                             // Efficiency
      of transmission (%)
52 \text{ reg_b} = (abs(V_s_b_ll) - V_r)/V_r*100
                           // Voltage regulation (%)
```

```
53 A_b = 1 + (1.0/2) *Y *Z
                                             // Constant
54 B_b = Z*(1+(1.0/4)*Y*Z)
                                         // Constant (ohm)
55 \quad C_b = Y
      // Constant (mho)
56 \quad D_b = A_b
                                                        //
      Constant
57 // Alternative solution for case(b)
58 V_s_ba = A_b*V_r_a+B_b*I_r_a
                                   // Sending end voltage (
      V)
59 V_s_ba_11 = 3**0.5*V_s_ba
                                      // Sending end line
      voltage (V)
60 \ V_s_ba_llkv = V_s_ba_ll/1000.0
                                 // Sending end line
      voltage (kV)
61 I_s_ba = C_b*V_r_a+D_b*I_r_a
                                   // Sending end current (
      A)
62 angle_V_Is_ba = phasemag(I_s_ba)
                               // Angle between V<sub>r</sub> and
      I_s_b(
63 angle_V_Vs_ba = phasemag(V_s_ba)
                               // Angle between V<sub>r</sub> and
      V_s_b( )
64 angle_Is_Vs_ba = angle_V_Is_ba-angle_V_Vs_ba
                 // Angle between V_s_b and I_s_b ( )
65 PF_s_ba = cosd(angle_Is_Vs_ba)
                                 // Sending end power
      factor
66 \text{ P_s_ba} = 3**0.5**abs(V_s_ba_ll*I_s_ba)*PF_s_ba
                // Sending end power (W)
67 \text{ n_ba} = P_r/P_s_ba*100
                                           // Efficiency of
```

```
transmission (%)
68 reg_ba = (abs(V_s_ba_ll)-V_r)/V_r*100
                         // Voltage regulation (%)
69 // Case (c)
70 I_c2_c = Y/2.0*V_r_a
       Current through shunt admittance at receiving
      end(A)
71 \quad I_c = I_r_a+I_c2_c
                                                           //
       Current through impedance (A)
72 \quad V_s_c = V_r_a+I_c*Z
       Sending end voltage (V)
73 V_s_c_{11} = 3**0.5*V_s_c
                                                           //
       Sending end line voltage (V)
74 \ V_s_c_llkv = V_s_c_ll/1000.0
                                                           //
       Sending end line voltage (kV)
75 I_c1_c = V_s_c*Y/2.0
       Current through shunt admittance at sending end (
      A)
76 \quad I_s_c = I_c+I_c1_c
                                                           //
       Sending end current (A)
  angle_V_Is_c = phasemag(I_s_c)
                                                           //
       Angle between V_r and I_s_c (
78 angle_V_Vs_c = phasemag(V_s_c)
       Angle between V<sub>r</sub> and V<sub>s_c</sub> (
79 angle_Is_Vs_c = angle_V_Is_c-angle_V_Vs_c
                                                           //
       Angle between V_s_c and I_s_c ( )
80 PF_s_c = cosd(angle_Is_Vs_c)
                                                           //
       Sending end power factor
81 P_s_c = 3**0.5*abs(V_s_c_ll*I_s_c)*PF_s_c
       Sending end power (W)
82 \text{ n_c} = P_r/P_s_c*100
                                                           //
       Efficiency of transmission (%)
83 reg_c = (abs(V_s_c_1)-V_r)/V_r*100
                                                           //
       Voltage regulation (%)
84 \text{ A_c} = 1 + (1.0/2) *Y *Z
                                                           //
       Constant
85 B_c = Z
                                                           //
       Constant (ohm)
```

```
//
86 \quad C_c = Y * (1 + (1.0/4) * Y * Z)
        Constant (mho)
                                                               //
 87 \quad D_c = A_c
        Constant
 88 // Alternative solution for case(c)
 89 V_s_ca = A_c*V_r_a+B_c*I_r_a
                                                               //
        Sending end voltage (V)
90 \ V_s_call = 3**0.5*V_s_ca
                                                               //
        Sending end line voltage (V)
91 \ V_s_ca_1lkv = V_s_ca_1l/1000.0
                                                               //
        Sending end line voltage (kV)
92 I_s_ca = C_c*V_r_a+D_c*I_r_a
                                                               //
        Sending end current (A)
93 angle_V_Is_ca = phasemag(I_s_ca)
                                                               //
        Angle between V_r and I_s_c (
94 angle_V_Vs_ca = phasemag(V_s_ca)
                                                               //
        Angle between V<sub>r</sub> and V<sub>s_c</sub> (
   angle_Is_Vs_ca = angle_V_Is_ca-angle_V_Vs_ca
                                                               //
        Angle between V_s_b and I_s_c ( )
96 PF_s_ca = cosd(angle_Is_Vs_ca)
                                                               //
        Sending end power factor
97 \text{ P_s_ca} = 3**0.5**abs(V_s_ca_ll*I_s_ca)*PF_s_ca
                                                               //
        Sending end power (W)
98 \text{ n_ca} = P_r/P_s_ca*100
                                                               //
        Efficiency of transmission (%)
99 reg_ca = (abs(V_s_ca_11)-V_r)/V_r*100
                                                               //
        Voltage regulation (%)
100 // Case(d).(i)
101 \text{ gamma_l} = (Y*Z)**0.5
                                                               //
102 \ Z_c = (Z/Y) **0.5
       // Surge impedance (ohm)
103 \text{ V}_s_d1 = \text{V}_r_a*\cosh(\text{gamma}_1)+\text{I}_r_a*\text{Z}_c*\sinh(\text{gamma}_1)
                          // Sending end voltage(V)
104 \ V_s_d1_11 = 3**0.5*V_s_d1
                                                         //
```

```
Sending end line voltage (V)
105 \ V_s_d1_llkv = V_s_d1_ll/1000.0
                                               // Sending
       end line voltage (kV)
106 I_s_d1 = V_r_a/Z_c*sinh(gamma_1)+I_r_a*cosh(gamma_1)
                        // Sending end current (A)
107 angle_V_Is_d1 = phasemag(I_s_d1)
                                             // Angle
       between V<sub>r</sub> and I<sub>s</sub>d()
108 angle_V_Vs_d1 = phasemag(V_s_d1)
                                             // Angle
       between V_r and V_s_d ( )
109 angle_Is_Vs_d1 = angle_V_Is_d1-angle_V_Vs_d1
                                // Angle between V_s_d and
        I_s_d
110 PF_s_d1 = cosd(angle_Is_Vs_d1)
                                               // Sending
       end power factor
111 P_s_d1 = 3**0.5*abs(V_s_d1_l1*I_s_d1)*PF_s_d1
                               // Sending end power (W)
112 n_d1 = P_r/P_s_d1*100
       Efficiency of transmission (%)
113 reg_d1 = (abs(V_s_d1_l1)-V_r)/V_r*100
                                        // Voltage
       regulation (%)
114 \text{ A\_d1} = \cosh(\text{gamma\_l})
        Constant
115 B_d1 = Z_c*sinh(gamma_1)
       Constant (ohm)
116 \quad C_d1 = (1/Z_c)*sinh(gamma_l)
       Constant (mho)
117 D_d1 = A_d1
       // Constant
```

```
118 // Case (d).(ii)
119 A_d2 = (1+(Y*Z/2)+((Y*Z)**2/24.0))
                               // Constant
120 B_d2 = Z*(1+(Y*Z/6)+((Y*Z)**2/120))
                              // Constant (ohm)
121 C_d2 = Y*(1+(Y*Z/6)+((Y*Z)**2/120))
                             // Constant (mho)
122 D_d2 = A_d2
                                                        //
       Constant
123 \quad V_s_d2 = A_d2*V_r_a+B_d2*I_r_a
                                   // Sending end voltage (
124 \ V_s_d2_11 = 3**0.5*V_s_d2
                                         // Sending end
      line voltage (V)
125 \ V_s_d2_11kv = V_s_d2_11/1000.0
                                   // Sending end line
       voltage (kV)
126 I_s_d2 = C_d2*V_r_a+D_d2*I_r_a
                                   // Sending end current (
127 angle_V_Is_d2 = phasemag(I_s_d2)
                                 // Angle between V<sub>r</sub> and
       I_s_d ( )
   angle_V_Vs_d2 = phasemag(V_s_d2)
                                 // Angle between V<sub>r</sub> and
       V_s_d ( )
    angle_Is_Vs_d2 = angle_V_Is_d2-angle_V_Vs_d2
                    // Angle between V_s_d and I_s_d ( )
130 PF_s_d2 = cosd(angle_Is_Vs_d2)
                                   // Sending end power
       factor
131 P_s_d2 = 3**0.5*abs(V_s_d2_11*I_s_d2)*PF_s_d2
                  // Sending end power (W)
132 \text{ n_d2} = P_r/P_s_d2*100
                                             // Efficiency
       of transmission (%)
```

```
133 \text{ reg_d2} = (abs(V_s_d2_11)-V_r)/V_r*100
                                                                 // Voltage regulation (%)
134
135 // Results
136 disp("PART II - EXAMPLE : 3.20 : SOLUTION :-")
137 printf("\nCase(a): Short line approximation")
138 printf("\nSending end voltage, V_s = \%.1 f % .1 f
                kV (line-to-line)", abs(V_s_a_llkv), phasemag(
                V_s_a_llkv))
139 printf("\nVoltage regulation = \%.1f percent", reg_a)
140 printf("\nTransmission efficiency, = \%.1f percent
                ", n_a)
141 printf ("\nA = D = \%. f ", A_a)
142 printf("\nB = \%.1 f \% .1 f ohm", abs(B_a), phasemag(
                B_a))
143 printf("\nC = \%. f \n", C_a)
144 printf("\nCase(b): Nominal T method approximation")
145 \texttt{printf}("\ndelta{r} \ndelta{r} \ndel
                kV (line-to-line)", abs(V_s_b_1lkv), phasemag(
                V_s_b_llkv))
146 printf("\nVoltage regulation = \%.2 f percent", reg_b)
147 printf("\nTransmission efficiency, = \%.1f percent
                ", n_b)
148 printf("\nA = D = \%.3 \ f \% .2 \ f", abs(A_b),phasemag
                (A_b)
149 printf("\nB = \%.1 f % .1 f ohm", abs(B_b), phasemag(
                B_b))
150 printf("\nC = %.2 e % .f S ", abs(C_b), phasemag(
                C_b))
151 printf("\n\tALTERNATIVE SOLUTION:")
152 printf("\n\tSending end voltage, V_s = \%.1 f % .1 f
                  kV (line-to-line)", abs(V_s_ba_1llkv), phasemag(
                V_s_ba_llkv))
153 printf("\n\tVoltage regulation = %.2f percent",
                reg_ba)
154 printf("\ntTransmission efficiency, = \%.1 f
                percent", n_ba)
155 printf("\n\t A = D = \%.3 f \% .2 f", abs(A_b),
```

```
phasemag(A_b))
156 printf("\n\t B = \%.1 f \% .1 f ohm", abs(B_b),
      phasemag(B_b))
157 printf("\n\t C = \%.2 e % .f S \n", abs(C_b),
      phasemag(C_b))
158 printf("\nCase(c): Nominal method approximation")
159 printf("\nSending end voltage, V_s = \%. f % .1 f
       (line-to-line)", abs(V_s_c_llkv), phasemag(
      V_s_c_llkv))
160 printf("\nVoltage regulation = \%.2 f percent", reg_c)
161 printf("\nTransmission efficiency, = \%.1f percent
      ", n_c)
162 printf("\nA = D = \%.3 \ f \% .2 \ f", abs(A_c),phasemag
      (A_c)
163 printf("\nB = \%.1 f \% .1 f ohm", abs(B_c), phasemag(
      B_c))
164 printf ("\nC = \%.2 e \% .1 f
                                mho", abs(C_c), phasemag(
      C_c))
165 printf("\n\tALTERNATIVE SOLUTION:")
166 printf("\n\tSending end voltage, V_s = \%.1 f % .1 f
       kV (line-to-line)", abs(V_s_ca_llkv), phasemag(
      V_s_ca_llkv))
167 printf("\n\tVoltage regulation = \%.2f percent",
      reg_ca)
168 printf("\n\tTransmission efficiency,
                                             = \%.1 \text{ f}
      percent", n_ca)
169 printf("\n\tA = D = \%.3 f \% .2 f", abs(A_c),
      phasemag(A_c))
170 printf("\n\t B = \%.1 f \% .1 f ohm", abs(B_c),
      phasemag(B_c))
171 printf("\n\t C = \%.2 \ e \% . f S \n", abs(C_c),
      phasemag(C_c))
172 printf("\nCase(d): Long Line Rigorous Solution")
173 printf("\n Case(i): Using Convergent Series (Real
      Angles) Method")
174 printf("\n Sending end voltage, V_s = \%. f % .1 f
      kV (line-to-line)", abs(V_s_d1_llkv), phasemag(
      V_s_d1_lkv)
```

```
175 printf("\n Voltage regulation = \%.2 f percent",
      reg_d1)
176 printf("\n Transmission efficiency, = \%.1 f
      percent", n_d1)
177 printf("\n A = D = \%.3 f \% .2 f ", abs(A_d1),
      phasemag(A_d1))
178 printf("\n B = %. f % .1 f ohm", abs(B_d1),phasemag
      (B_d1)
179 printf("\n C = \%.2 e \% .1 f mho \n", abs(C_d1),
      phasemag(C_d1))
180 printf("\n Case(ii): Using Convergent Series (
      Complex Angles) Method")
181 printf("\n Sending end voltage, V_s = \%. f % .1 f
      kV (line-to-line)", abs(V_s_d2_llkv),phasemag(
      V_s_d2_llkv))
182 printf("\n Voltage regulation = \%.2 f percent",
      reg_d2)
183 printf("\n Transmission efficiency, = \%.1 f
      percent", n_d2)
184 printf("\n A = D = \%.3 f \% .2 f ", abs(A_d2),
      phasemag(A_d2))
185 printf("\n B = \%.1 f \% .1 f ohm", abs(B_d2),
      phasemag(B_d2))
186 printf("\n C = \%.2 e \% .1 f mho \n", abs(C_d2),
      phasemag(C_d2))
187 printf("\nNOTE: Changes in obtained answer from that
       of textbook is due to more precision")
```

Scilab code Exa 10.21 Sending end voltage Current Power factor and Efficiency of t

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
```

```
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.21 :
10 // Page number 153
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V_r = 132.0*10**3
     Line voltage at receiving end(V)
15 P_L = 45.0*10**6
     Load delivered (VA)
16 \text{ PF}_{r} = 0.8
     Lagging power factor
17 A = 0.99 * exp(%i*0.3 * %pi/180)
     Constant
18 B = 70.0 * exp(%i*69.0 * %pi/180)
     Constant (ohms)
19 \quad C = A
      Constant
20 D = 4.0*10**-4*\exp(\%i*90.0*\%pi/180)
      Constant
21
22 // Calculations
23 E_r = V_r/3**0.5
                                                   //
      Receiving end phasemag voltage (V)
24 I_r = P_L/(3**0.5*V_r)*exp(%i*-acos(PF_r))
                      // Line current(A)
25 \quad E_s = A*E_r+B*I_r
                                                 //
      Sending end voltage (V)
26 E_s_{11kV} = 3**0.5*E_s/1000.0
                                     // Sending end line
      voltage (kV)
27 I_s = C*I_r+D*E_r
```

```
//
      Sending end current (A)
28 angle_Er_Es = phasemag(E_s)
                                      // Angle between
      E_r and E_s ( )
29 angle_Er_Is = phasemag(I_s)
                                      // Angle between
      E_r and I_s ( )
30 angle_Es_Is = angle_Er_Es-angle_Er_Is
                           // Angle between E<sub>s</sub> and I<sub>s</sub> (
31 PF_s = cosd(angle_Es_Is)
                                          // Sending end
      power factor
32 P_s = 3*abs(E_s*I_s)*PF_s
                                        // Sending end
      power (W)
33 P_skW = P_s/1000.0
                                                // Sending
       end power (kW)
34 P_r = P_L*PF_r
      Receiving end power (W)
35 n = P_r/P_s*100
      Transmission efficiency (%)
36
37 // Results
38 disp("PART II - EXAMPLE : 3.21 : SOLUTION :-")
39 printf("\nCase(i) : Sending end voltage, E_s = \%.1
      f~\% . f~kV~(\mbox{line-to-line})\mbox{", abs(E_s_llkV),}
      phasemag(E_s_llkV))
40 printf("\nCase(ii) : Sending end current, I_s = \%.1
      f \% .1 f A", abs(I_s), phasemag(I_s))
41 printf("\nCase(iii): Sending end power, P_s = \%.f kW
      ", P_skW)
42 printf("\nCase(iv) : Efficiency of transmission = %
      .2 f percent n, n
```

43 printf("\nNOTE: Changes in obtained answer from that textbook is due to more precision")

Scilab code Exa 10.23 Overall constants A B C D

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
8
9 // EXAMPLE : 3.23 :
10 // Page number 156
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 A_1 = 0.98* exp(%i*2.0*%pi/180)
                                           // Constant
     of 1st line
15 B_1 = 28.0 * \exp(\%i * 69.0 * \%pi/180)
                                            // Constant
     of 1st line (ohms)
16 C_1 = 0.0002*exp(%i*88.0*%pi/180)
                                            // Constant
      of 1st line (mho)
17 D_1 = A_1
                                            // Constant
     of 1st line
18 A_2 = 0.95*exp(%i*3.0*%pi/180)
                                            // Constant
     of 2nd line
19 B_2 = 40.0 * exp(%i * 85.0 * %pi/180)
                                            // Constant
     of 2nd line (ohms)
20 C_2 = 0.0004 * exp(%i*90.0 * %pi/180)
                                            // Constant
      of 2nd line (mho)
21 D_2 = A_2
                                            // Constant
```

```
of 2nd line
22
23 // Calculations
                          // Constant
// Constant (ohm)
// Constant (mho)
24 A = A_1 * A_2 + B_1 * C_2
25 B = A_1*B_2+B_1*D_2
26 \quad C = C_1 * A_2 + D_1 * C_2
                                  // Constant
27 D = C_1*B_2+D_1*D_2
28
29 // Results
30 disp("PART II - EXAMPLE : 3.23 : SOLUTION :-")
31 printf("\nA = \%.3 \ f \% \ .1 \ f", abs(A),phasemag(A))
32 printf("\nB = \%.1 \ f \% \ .f \ ohm", abs(B),phasemag(B))
33 printf("\nc = \%.6 \ f \% \ .1 \ f \ mho", abs(C),phasemag(C)
34 printf("\nD = \%.3 f \% .1 f ", abs(D), phasemag(D))
```

Scilab code Exa 10.24 Values of constants AO BO CO DO

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
// EXAMPLE : 3.24 :
// Page number 156-157
clear ; clc ; close ; // Clear the work space and console
// Given data
// Given data
// Given data
// Given data
// Constant (ohm
```

```
16 D = A
                                             // Constant
17 \text{ Y_t} = 0.00025*\exp(\%i*-75.0*\%pi/180) // Shunt
      admittance (mho)
18 Z_t = 100.0*exp(%i*70.0*%pi/180) // Series
      impedance (ohm)
19
20 // Calculations
21 C = (A*D-1)/B // Constant (mho)
22 A_0 = A*(1+Y_t*Z_t)+B*Y_t // Constant
                                 // Constant (ohm)
23 \quad B\_0 = A*Z\_t+B
24 C_0 = C*(1+Y_t*Z_t)+D*Y_t // Constant (mho)
                                  // Constant
25 \quad D_0 = C*Z_t+D
26
27 // Results
28 disp("PART II - EXAMPLE : 3.24 : SOLUTION :-")
29 printf("\nA_0 = \%.3 f % . f ", abs(A_0), phasemag(
30 printf("\nB_0 = \%. f % .1 f ohm", abs(B_0),phasemag
      (B_0)
31 printf("\nC_0 = \%.6 \text{ f } \% \text{ .1 f} \text{ mho}", abs(C_0),
      phasemag(C_0))
32 printf("\nD_0 = \%.3 f % .1 f \n", abs(D_0),phasemag
      (D_0)
33 printf("\nNOTE: Changes in obtained answer from that
       of textbook is due to more precision")
```

 ${f Scilab\ code\ Exa\ 10.25}$ Maximum power transmitted Receiving end power factor and Tot

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
```

```
7 // CHAPTER 3: STEADY STATE CHARACTERISTICS AND
     PERFORMANCE OF TRANSMISSION LINES
9 // EXAMPLE : 3.25 :
10 // Page number 163
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 z = complex(0.2,0.6)
                         // Per phase impedance (ohm)
15 V_r = 6351.0
                             // Receiving end voltage
     per phase (V)
16 \text{ reg} = 7.5/100.0
                             // Voltage regulation
17
18 // Calculations
19 V_s = (1+reg)*V_r
     // Sending end voltage per phase (V)
20 R = real(z)
     // Resistance of the line(ohm)
21 X = imag(z)
     // Reactance of the line(ohm)
22 Z = (R**2+X**2)**0.5
     // Impedance per phase (ohm)
23 P_m = (V_r **2/Z) *((Z*V_s/V_r)-R)
      // Maximum power transmitted through line (W/phase
24 P_m_MW = P_m/10**6
     // Maximum power transmitted through line (MW/
     phase)
25 P_m_MWtotal = 3*P_m_MW
     // Total maximum power (MW)
26 \ Q = -(V_r**2*X)/Z**2
     // Reactive power per phase(Var)
27 Q_MW = Q/10**6
     // Reactive power per phase (MVAR)
28 phi_r = atand(abs(Q_MW/P_m_MW))
    // <u>r</u> ( )
29 	ext{ PF_r} = cosd(phi_r)
```

```
// Receiving end lagging PF
30 I = P_m/(V_r*PF_r)
      // Current delivered (A)
31 I_KA = I/1000.0
      // Current delivered (KA)
32 \; loss = 3*I**2*R
      // Total line loss (W)
  loss_MW = loss/10**6
      // Total line loss (MW)
34
35 // Results
36 disp("PART II - EXAMPLE : 3.25 : SOLUTION :-")
37 printf("\nMaximum power transmitted through the line
      , P_m = \%.1 f MW, P_m_MWtotal)
38 printf("\nReceiving end power factor = \%.2 \,\mathrm{f} (lagging
      )", PF_r)
39 printf("\nTotal line loss = \%.2 \text{ f MW}", loss_MW)
```

Scilab code Exa 10.26 Maximum power that can be transferred to the load

```
14 L = 100.0
                             // Length of line (km)
                             // Receiving end Power factor
15 \text{ PF}_r = 1.0
16 \ Z_c = 400.0
                             // Characteristic impedance (
      ohm)
17 \text{ beta} = 1.2*10**-3
                             // Propagation constant (rad/
     km)
                             // Sending end voltage (kV)
18 \ V_s = 230.0
19
20 // Calculations
21 \text{ beta_L} = \text{beta*L}
                                      // (rad)
22 \text{ beta\_L\_d} = \text{beta\_L*180/\%pi}
                                      // ( )
23 A = cosd(beta_L)
                                      // Constant
                                      // Constant
24 B = \%i*Z_c*sin(beta_L)
25 alpha_angle = phasemag(A)
26 beta_angle = phasemag(B)
27 \text{ V_r} = \text{V_s}
                                      // Receiving end
      voltage due to lossless line (kV)
28 P_{max} = (V_s*V_r/abs(B))-(abs(A)*V_r**2/abs(B))*cosd
      (beta_angle-alpha_angle) // Maximum power
      transferred (MW)
29
30 // Results
31 disp("PART II - EXAMPLE : 3.26 : SOLUTION :-")
32 printf("\nMaximum power that can be transferred to
      the load at receiving end, P_{-max} = \%. f MW \n",
      P_max)
33 printf("\nNOTE: Changes in obtained answer from that
       of textbook is due to more precision")
```

Chapter 11

OVERHEAD LINE INSULATORS

Scilab code Exa 11.1 Ratio of capacitance Line voltage and String efficiency

```
19 // Case (a)
20 \text{ K} = (V_2 - V_1) / V_1
                              // Ratio of capacitance b/
      w pin & earth to self capacitance
21 // Case (b)
22 V_3 = V_2 + (V_1 + V_2) * K
                           // Potential across bottom
       unit (kV)
23 \quad V = V_1 + V_2 + V_3
                                // Voltage between line
      and earth (kV)
24 \quad V_1 = 3**0.5*V
                                // Line voltage (kV)
25 // Case(c)
26 \text{ eff} = V/(n*V_3)*100
                               // String efficiency (%)
27
28 // Results
29 disp("PART II - EXAMPLE : 4.1 : SOLUTION :-")
30 printf("\nCase(a): Ratio of capacitance b/w pin &
      earth to self-capacitance of each unit, K = \%.2f
      ", K)
31 printf("\nCase(b): Line voltage = \%.2 \text{ f kV}", V_1)
32 printf("\nCase(c): String efficiency = \%. f percent",
       eff)
```

Scilab code Exa 11.2 Mutual capacitance of each unit in terms of C

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 4: OVERHEAD LINE INSULATORS
// EXAMPLE : 4.2 :
// Page number 183-184
clear ; clc ; close ; // Clear the work space and console
```

```
12
13 // Given data
14 m = 10.0
                            // Mutual capacitance of top
      insulator in terms of C
15
16 // Calculations
17 \quad X = 1 + m
                               // Mutual capacitance in
      terms of C
18 \quad Y = (1.0+2) + m
                                  Mutual capacitance in
      terms of C
19 Z = (1.0+2+3) + m
                               // Mutual capacitance in
      terms of C
20 U = (1.0+2+3+4) + m
                               // Mutual capacitance in
      terms of C
21 \quad V = (1.0 + 2 + 3 + 4 + 5) + m
                               // Mutual capacitance in
      terms of C
22
23 // Results
24 disp("PART II - EXAMPLE : 4.2 : SOLUTION :-")
25 printf("\nMutual capacitance of each unit:")
26 printf ("\n X = \%. f *C", X)
27 printf("\n Y = \%. f*C", Y)
28 printf("\n Z = %. f*C", Z)
29 printf("\n U = \%. f*C", U)
30 printf("\n V = %. f*C", V)
```

 ${
m Scilab\ code\ Exa\ 11.3}$ Voltage distribution over a string of three suspension insula

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 4: OVERHEAD LINE INSULATORS
```

```
9 // EXAMPLE : 4.3 :
10 // Page number 184
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 n = 3.0
                         // Number of insulators
15
16 // Calculations
17 V_1 = 155.0/475.0
                                // Potential across top
      unit
18 \quad V_2 = 154.0/155.0*V_1
                                  // Potential across
      middle unit
19 \quad V_3 = 166.0/155.0 * V_1
                                  // Potential across
     bottom unit
20 \text{ eff} = 100/(n*V_3)
                                  // String efficiency (%)
21
22 // Results
23 disp("PART II - EXAMPLE : 4.3 : SOLUTION :-")
24 printf("\nVoltage across top unit, V_{-1} = \%.3 \, f*V",
25 printf("\nVoltage across middle unit, V_{-2} = \%.3 \, f*V",
       V<sub>2</sub>)
26 printf("\nVoltage across bottom unit, V_{-3} = \%.2 \, f *V",
       V_3)
27 printf("\nString efficiency = \%.2 f percent", eff)
```

Scilab code Exa 11.4 Line to neutral voltage and String efficiency

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
```

```
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 4: OVERHEAD LINE INSULATORS
9 // EXAMPLE : 4.4 :
10 // \text{Page number } 184-185
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad V_3 = 17.5
                        // Voltage across line unit(kV)
                         // Shunt capacitance = 1/8 of
15 c = 1.0/8
     insulator capacitance
16 n = 3.0
                        // Number of insulators
17
18 // Calculations
19 \ K = c
                                 // String constant
20 V_1 = V_3/(1+3*K+K**2)
                                // Voltage across top
      unit (kV)
21 \quad V_2 = (1+K)*V_1
                                // Voltage across middle
       unit (kV)
22 \quad V = V_1 + V_2 + V_3
                                // Voltage between line
     & earth (kV)
                                // String efficiency (%)
23 \text{ eff} = V*100/(n*V_3)
24
25 // Results
26 disp("PART II - EXAMPLE : 4.4 : SOLUTION :-")
27 printf("\nLine to neutral voltage, V = \%.2 f \text{ kV}", V)
28 printf("\nString efficiency = \%.2 f percent", eff)
```

Scilab code Exa 11.5 Value of line to pin capacitance

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
```

```
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 4: OVERHEAD LINE INSULATORS
9 // EXAMPLE : 4.5 :
10 // Page number 185
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 n = 8.0
                          // Number of insulators
15
16 // Calculations
17 A = 1.0/(n-1)
                          // Line to pin capacitance
                         // Line to pin capacitance
18 B = 2.0/(n-2)
                          // Line to pin capacitance
19 C = 3.0/(n-3)
20 D = 4.0/(n-4)
                          // Line to pin capacitance
                          // Line to pin capacitance
21 E = 5.0/(n-5)
22 F = 6.0/(n-6)
                          // Line to pin capacitance
23 G = 7.0/(n-7)
                          // Line to pin capacitance
24
25 // Results
26 disp("PART II - EXAMPLE : 4.5 : SOLUTION :-")
27 printf("\nLine-to-pin capacitance are:")
28 printf("\n A = \%.3 f*C", A)
29 printf("\n B = %.3 f*C", B)
30 printf("\n C = \%.3 \, f*C", C)
31 printf("\n D = \%.3 \text{ f}*C", D)
32 printf("\n E = \%.3 \text{ f}*\text{C}", E)
33 printf("\n F = \%.3 \text{ f*C}", F)
34 printf("\nG = %.3f*C", G)
```

Scilab code Exa 11.6 Voltage distribution as a percentage of voltage of conductor

1 // A Texbook on POWER SYSTEM ENGINEERING

```
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 4: OVERHEAD LINE INSULATORS
9 // EXAMPLE : 4.6 :
10 // Page number 186
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 m = 6.0
                           // Mutual capacitance
                           // Number of insulators
15 n = 5.0
16
17 // Calculations
18 E_4 = (1+(1/m))
      // Voltage across 4th insulator as percent of E<sub>-</sub>5
      (\%)
19 \quad E_3 = (1+(3/m)+(1/m**2))
      // Voltage across 3rd insulator as percent of E<sub>-</sub>5
      (\%)
20 E_2 = (1+(6/m)+(5/m**2)+(1/m**3))
      // Voltage across 2nd insulator as percent of E<sub>-</sub>5
      (\%)
21 	 E_1 = (1+(10/m)+(15/m**2)+(7/m**3)+(1/m**4))
      // Voltage across 1st insulator as percent of E<sub>5</sub>
      (\%)
22 E_5 = 100/(E_4+E_3+E_2+E_1+1)
      // Voltage across 5th insulator as percent of E_{-}5
      (\%)
23 \quad E4 = E_4 * E_5
      // Voltage across 4th insulator as percent of E<sub>-</sub>5
      (\%)
24 E3 = E_3 * E_5
      // Voltage across 3rd insulator as percent of E_{-}5
      (\%)
```

```
25 E2 = E_2*E_5
      // Voltage across 2nd insulator as percent of E<sub>-</sub>5
26 	 E1 = E_1 * E_5
      // Voltage across 1st insulator as percent of E<sub>-</sub>5
      (\%)
27 \text{ eff} = 100/(n*E1/100)
      // String efficiency (%)
28
29 // Results
30 disp("PART II - EXAMPLE : 4.6 : SOLUTION :-")
31 printf("\nVoltage distribution as a percentage of
      voltage of conductor to earth are:")
32 printf("\n E_1 = \%.2 f percent", E1)
33 printf("\n E<sub>-</sub>2 = %.2f percent", E2)
34 printf("\n E<sub>-</sub>3 = %.1f percent", E3)
35 printf("\n E_4 = \%.1 f percent", E4)
36 printf("\n E<sub>-</sub>5 = %.2 f percent", E<sub>-</sub>5)
37 printf("\nString efficiency = \%.f percent \n", eff)
38 printf("\nNOTE: Changes in obtained answer from that
       of textbook is due to more precision")
```

 ${f Scilab\ code\ Exa\ 11.7}$ Voltage across each insulator as a percentage of line voltage

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 4: OVERHEAD LINE INSULATORS
// EXAMPLE : 4.7 :
// Page number 186-187
clear ; clc ; close ; // Clear the work space and
```

```
console
12
13 // Given data
                           // Number of insulators
14 n = 3.0
15 \quad C_1 = 0.2
                           // Capacitance in terms of C
16 \ C_2 = 0.1
                           // Capacitance in terms of C
17
18 // Calculations
19 // Without guard ring
20 e_2_a = 13.0/13.3
                                          // Potential
      across middle unit as top unit
                                          // Potential
21 e_1_a = 8.3/6.5*e_2_a
      across bottom unit
22 E_a = 1+(1/(8.3/6.5))+(1/e_1_a)
                                          // Voltage in
      terms of e<sub>-</sub>1
23 \text{ eff_a} = E_a/n*100
                                          // String
      efficiency (%)
24 \text{ e1}_a = 1/E_a
                                          // Voltage across
      bottom unit as a % of line voltage
25 \text{ e2}_a = 1/(8.3/6.5)*e1_a
                                          // Voltage across
      middle unit as a % of line voltage
                                          // Voltage across
26 \text{ e3}_a = 1/e_1_a * e1_a
      top unit as a % of line voltage
27 // With guard ring
                                          // Potential
28 \text{ e}_2\text{-b} = 15.4/15.5
      across middle unit as top unit
29 \text{ e}_1_b = 8.3/7.7 * e_2_b
                                          // Potential
      across bottom unit
30 E_b = 1 + (1/(8.3/7.7)) + (1/e_1_b)
                                          // Voltage in
      terms of e<sub>-</sub>1
31 \text{ eff_b} = E_b/n*100
                                          // String
      efficiency (%)
32 \text{ e1_b} = 1/E_b
                                          // Voltage across
      bottom unit as a % of line voltage
  e2_b = 1/(8.3/7.7)*e1_b
                                          // Voltage across
      middle unit as a % of line voltage
34 \ e3_b = 1/e_1_b*e1_b
                                          // Voltage across
      top unit as a % of line voltage
```

```
35
36 // Results
37 disp("PART II - EXAMPLE : 4.7 : SOLUTION :-")
38 printf("\nWithout guard ring:")
39 printf("\n Voltage across bottom unit, e_1 = \%.2 f*E"
      , e1_a)
40 printf("\n Voltage across bottom unit, e_2 = \%.2 f*E"
      , e2_a)
41 printf("\n Voltage across bottom unit, e_3 = \%.2 f*E"
      , e3_a)
42 printf("\n String efficiency = \%.1f percent \n",
      eff_a)
43 printf("\nWith guard ring:")
44 printf("\n Voltage across bottom unit, e_1 = \%.2 f*E"
      , e1_b)
45 printf("\n Voltage across bottom unit, e_2 = \%.2 f*E"
      , e2_b)
46 printf("\n Voltage across bottom unit, e_3 = \%.3 f*E"
      , e3_b)
47 printf("\n String efficiency = \%.2 f percent", eff_b)
```

 ${f Scilab\ code\ Exa\ 11.8}$ Voltage across each insulator as a percentage of line voltage

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 4: OVERHEAD LINE INSULATORS
// EXAMPLE : 4.8 :
// Page number 187-188
// Page number 187-188
clear ; clc ; close ; // Clear the work space and console
```

```
12
13 // Given data
14 n = 3.0
                          // Number of insulators
15
16 // Calculations
17 \quad V_1 = 0.988
                                 // Voltage across top
      unit as middle unit
18 \quad V_3 = 1.362
                                 // Voltage across bottom
       unit as middle unit
19 V_2 = 1/(V_1+1+V_3)
                                 // Voltage across middle
       unit as % of line voltage to earth
20 V1 = V_1 * V_2 * 100
                                 // Voltage across top
      unit as % of line voltage to earth
21 \quad V2 = V_2*100
                                 // Voltage across middle
       unit as % of line voltage to earth
  V3 = V_3 * V_2 * 100
                                 // Voltage across bottom
       unit as % of line voltage to earth
  eff = 100/(n*V3/100)
                                 // String efficiency (%)
23
24
25 // Results
26 disp("PART II - EXAMPLE : 4.8 : SOLUTION :-")
27 printf("\nCase(a): Voltage across top unit as a
      percentage of line voltage to earth, V_{-1} = \%.2 f
      percent", V1)
28 printf ("\n
                       Voltage across middle unit as a
      percentage of line voltage to earth, V_{-2} = \%.2 f
      percent", V2)
29 printf("\n
                       Voltage across bottom unit as a
      percentage of line voltage to earth, V_{-3} = \%.2 f
      percent", V3)
30 printf("\nCase(b): String efficiency = \%.2f percent"
      , eff)
```

Scilab code Exa 11.9 Voltage on the line end unit and Value of capacitance require

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 4: OVERHEAD LINE INSULATORS
9 // EXAMPLE : 4.9 :
10 // Page number 188
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                         // Number of insulators
14 n = 3.0
15 V = 20.0
                         // Voltage across each
     conductor (kV)
16 c = 1.0/5
                         // Capacitance ratio
17
18 // Calculations
19 \quad V_2 = 6.0/5.0
                              // Voltage across middle
     unit as top unit
20 V_1 = V/(1+2*V_2)
                              // Voltage across top unit (
     kV)
21 \quad V_3 = V_2 * V_1
                              // Voltage across bottom
     unit (kV)
22 C_x = c*(1+(1/V_2))
                             // Capacitance required
23
24 // Results
25 disp("PART II - EXAMPLE : 4.9 : SOLUTION :-")
26 printf("\nCase(a): Voltage on the line-end unit, V<sub>3</sub>
      = \%.2 \, f \, kV", V_3)
27 printf("\nCase(b): Value of capacitance required, Cx
      = \%.3 f*C", C_x)
```

Chapter 12

MECHANICAL DESIGN OF OVERHEAD LINES

Scilab code Exa 12.1 Weight of conductor

```
19 // Calculations
20 T = u/s
                                              // Allowable
     max tension (kg)
21 \quad w = S*8.0*T/L**2
                                              // weight (kg/
     m)
22 \ 1 = L/2
                                              // Half span
     length (m)
23 half_span = 1+(w**2*1**3/(6*T**2)) // Half span
      length (m)
                                              // Total
24 total_length = 2*half_span
      length (m)
25 weight = w*total_length
                                              // Weight of
      conductor (kg)
26
27 // Results
28 disp("PART II - EXAMPLE : 5.1 : SOLUTION :-")
29 printf("\nWeight of conductor = \%.2 \, \text{f kg}", weight)
```

Scilab code Exa 12.2 Point of maximum sag at the lower support

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
8
9  // EXAMPLE : 5.2 :
10  // Page number 198
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
14 L = 250.0  // Span length (m)
```

```
// Difference in height (m)
15 h = 10.0
                          // Radius of conductor(cm)
16 r = 1.0
                          // Weight of conductor (kg/m)
17 w = 2.5
                          // Wind load (kg/m)
18 \text{ wind} = 1.2
                          // Factor of safety
19 s = 3.0
20 tensile = 4300.0
                         // Maximum tensile strength (kg
     / sq.cm)
21
22 // Calculations
23 W = (w**2+wind**2)**0.5
                                  // Total pressure on
      conductor (kg/m)
24 f = tensile/s
                                   // Permissible stress
     in conductor (kg/sq.cm)
25 \ a = \%pi*r**2
                                   // Area of the
     conductor (sq.cm)
26 T = f*a
                                   // Allowable max
      tension (kg)
27 x = (L/2) - (T*h/(L*W))
                                   // Point of maximum
      sag at the lower support (m)
28
29 // Results
30 disp("PART II - EXAMPLE : 5.2 : SOLUTION :-")
31 printf("\nPoint of maximum sag at the lower support,
       x = \%.2 f metres", x)
```

Scilab code Exa 12.3 Vertical sag

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
```

```
9 // EXAMPLE : 5.3 :
10 // Page number 198-199
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ a = 2.5
                          // Cross-sectional area (sq.cm)
                          // Span (m)
15 L = 250.0
                          // Weight of conductor(kg/m)
16 \text{ w_c} = 1.8
                          // Ultimate strength (kg/cm<sup>2</sup>)
17 u = 8000.0
                          // Wind load (kg/cm<sup>2</sup>)
18 \text{ wind} = 40.0
                          // Factor of safety
19 	 s = 3.0
20
21 // Calculations
22 d = (4.0*a/\%pi)**0.5
                                       // Diameter (cm)
                                       // Allowable max
23 T = u*a/s
      tension (kg)
24 \text{ w_w} = \text{wind*d/100.0}
                                       // Horizontal wind
      force (kg)
25 \text{ w_r} = (\text{w_c**2+w_w**2})**0.5
                                       // Resultant force (kg
      /\mathrm{m})
26 S = w_r*L**2/(8*T)
                                       // Slant sag (m)
                                       // Vertical sag(m)
27 \text{ vertical\_sag} = S*(w_c/w_r)
28
29 // Results
30 disp("PART II - EXAMPLE : 5.3 : SOLUTION :-")
31 printf("\nVertical sag = \%.3f metres", vertical_sag)
```

Scilab code Exa 12.4 Height above ground at which the conductors should be support

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
```

```
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
9 // EXAMPLE : 5.4 :
10 // Page number 199
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ a = 110.0
                             // Cross-sectional area (sq.
     mm)
15 \text{ w_c} = 844.0/1000
                              // Weight of conductor (kg/m)
16 \ U = 7950.0
                             // Ultimate strength (kg)
                              // Span (m)
17 L = 300.0
                             // Factor of safety
18 s = 2.0
19 \text{ wind} = 75.0
                             // Wind pressure (kg/m<sup>2</sup>)
20 h = 7.0
                             // Ground clearance (m)
                              // Diameter of copper (mm)
21 d = 2.79
22 \quad n = 7.0
                              // Number of strands
23
24 // Calculations
25 dia = n*d
                                        // Diameter of
      conductor (mm)
26 \text{ w_w} = \text{wind*dia}/1000.0
                                        // Horizontal wind
      force (kg)
27 w = (w_c * *2 + w_w * *2) * *0.5
                                        // Resultant force (
      kg)
                                        // Allowable
28 T = U/2.0
     tension (m)
                                        // Half-span (m)
29 1 = L/2.0
30 D = w*1**2/(2*T)
                                        // Distance (m)
31 height = h+D
                                        // Height above
      ground at which the conductors should be
      supported (m)
32
33 // Results
34 disp("PART II - EXAMPLE : 5.4 : SOLUTION :-")
35 printf("\nHeight above ground at which the
```

Scilab code Exa 12.5 Permissible span between two supports

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
9 // EXAMPLE : 5.5 :
10 // Page number 199
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ w_w} = 1.781
                        // Wind pressure on conductor(
     kg/m)
15 \text{ w_i} = 1.08
                         // Weight of ice on conductor (
     kg/m)
                         // Maximum permissible sag(m)
16 D = 6.0
                         // Factor of safety
17 s = 2.0
                         // Weight of conductor(kg/m)
18 \text{ w_c} = 0.844
19 \ u = 7950.0
                         // Ultimate strength (kg)
20
21 // Calculations
22 w = ((w_c+w_i)**2+w_w**2)**0.5
                                          // Total force
     on conductor (kg/m)
23 T = u/s
                                           // Allowable
     maximum tension (kg)
24 \ 1 = ((D*2*T)/w)**0.5
                                           // Half span (m)
25 L = 2.0*1
                                           // Permissible
```

Scilab code Exa 12.6 Maximum sag of line due to weight of conductor Additional wei

```
1 // A Texbook on POWER SYSTEM ENGINEERING
  // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
  // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
8
  // EXAMPLE : 5.6 :
10 // \text{Page number } 199-200
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ a = 0.484
                         // Area of conductor(sq.cm)
                         // Overall diameter(cm)
15 d = 0.889
                         // Weight (kg/m)
16 \text{ w_c} = 428/1000.0
                         // Breaking strength(kg)
17 u = 1973.0
18 s = 2.0
                         // Factor of safety
                         // Span (m)
19 L = 200.0
                         // Ice thickness (cm)
20 t = 1.0
21 \text{ wind} = 39.0
                         // Wind pressure (kg/m<sup>2</sup>)
22
```

```
23 // Calculations
24 // Case(i)
25 \ 1 = L/2.0
                                                              //
       Half span (m)
26 T = u/s
                                                              //
       Allowable maximum tension (kg)
27 D_1 = w_c*1**2/(2*T)
                                                              //
       Maximum sag due to weight of conductor (m)
28 // Case(ii)
29 \text{ w_i} = 913.5 * \% \text{pi} * \text{t} * (\text{d+t}) * 10 * * -4
                                                              //
       Weight of ice on conductor (kg/m)
30 \quad w = w_c + w_i
                                                              //
       Total weight of conductor & ice (kg/m)
31 D_2 = w*1**2/(2*T)
       Maximum sag due to additional weight of ice (m)
32 // Case(iii)
33 D = d+2.0*t
                                                              //
       Diameter due to ice (cm)
34 \text{ w_w} = \text{wind*D*10**-2}
                                                              //
       Wind pressure on conductor (kg/m)
35 \text{ w}_3 = ((\text{w}_\text{c}+\text{w}_\text{i})**2+\text{w}_\text{w}**2)**0.5
                                                              //
       Total force on conductor (kg/m)
36 \quad D_3 = w_3*1**2/(2*T)
                                                              //
       Maximum sag due to (i), (ii) & wind(m)
37 theta = atand(w_w/(w_c+w_i))
                                                              //
          (
  vertical\_sag = D_3*cosd(theta)
                                                              //
       Vertical sag(m)
39
40 // Results
41 disp("PART II - EXAMPLE : 5.6 : SOLUTION :-")
42 printf("\nCase(i) : Maximum sag of line due to
      weight of conductor, D = \%.2 f metres", D_1)
43 printf("\nCase(ii): Maximum sag of line due to
      additional weight of ice, D = \%.2f metres", D_2)
44 printf("\nCase(iii): Maximum sag of line due to (i)
       ,(ii) plus wind, D = \%.2 f metres", D_3)
45 printf("\n
                           Vertical sag = \%.2 f metres",
```

Scilab code Exa 12.7 Point of minimum sag

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
9 // EXAMPLE : 5.7 :
10 // Page number 200
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                        // Weight (kg/m)
14 W = 428/1000.0
                        // Breaking strength(kg)
15 u = 1973.0
                        // Factor of safety
16 	 s = 2.0
                        // Span (m)
17 \quad 1 = 200.0
18 h = 3.0
                        // Difference in tower height (m)
19
20 // Calculations
21 T = u/s
                                            // Allowable
     maximum tension (kg)
22 \times 2 = (1/2.0) + (T*h/(W*1))
                                           // Point of
     minimum sag from tower at higher level (m)
23 \quad x_1 = 1 - x_2
                                           // Point of
     minimum sag from tower at lower level (m)
24
25 // Results
26 disp("PART II - EXAMPLE : 5.7 : SOLUTION :-")
27 printf("\nPoint of minimum sag, x_1 = \%.1f metres",
```

```
x_1)  
28 printf("\nPoint of minimum sag, x_2 = \%.1 f metres", x_2)
```

Scilab code Exa 12.8 Clearance between conductor and water at a point midway between

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
9 // EXAMPLE : 5.8 :
10 // Page number 200-201
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 h_1 = 50.0
                        // Height of tower P1(m)
                        // Height of tower P2(m)
15 h_2 = 80.0
16 L = 300.0
                        // Horizontal distance b/w
     towers (m)
17 T = 2000.0
                        // Tension in conductor (kg)
                        // Weight of conductor(kg/m)
18 w = 0.844
19
20 // Calculations
21 h = h_2 - h_1
                                           // Difference
     in height of tower (m)
22 x_2 = (L/2.0) + (T*h/(w*L))
                                           // Point of
     minimum sag from tower P2(m)
23 	 x_1 = (L/2.0) - (T*h/(w*L))
                                           // Point of
     minimum sag from tower at lower level (m)
24 P = (L/2.0)-x_1
                                           // Distance of
```

```
point P(m)
25 D = w*P**2/(2*T)
                                            // Height of P
       above O(m)
26 D_2 = w*x_2**2/(2*T)
                                            // Height of
     P2 above O(m)
27 \text{ mid_point_P2} = D_2-D
                                            // Mid-point
      below P2(m)
  clearance = h_2-mid_point_P2
                                            // Clearance b
     /w conductor & water (m)
  D_1 = w*x_1**2/(2*T)
                                            // Height of
      P1 above O(m)
                                            // Mid-point
30 \text{ mid_point_P1} = D-D_1
      above P1(m)
31 clearance_alt = h_1+mid_point_P1
                                            // Clearance b
      /w conductor & water (m)
32
33 // Results
34 disp("PART II - EXAMPLE : 5.8 : SOLUTION :-")
35 printf("\nClearance between conductor & water at a
      point midway b/w towers = \%.2 \, \text{f} m above water\n",
      clearance)
36 printf("\nALTERNATIVE METHOD:")
37 printf("\nClearance between conductor & water at a
      point midway b/w towers = \%.2 f m above water",
      clearance_alt)
```

Scilab code Exa 12.9 Sag at erection and Tension of the line

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
```

```
9 // EXAMPLE : 5.9 :
10 // Page number 201
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 L = 300.0
                           // Span (m)
15 T_still = 45.0
                           // Temperature in still air ( C
      )
16 \ a = 226.0
                           // Area (mm^2)
                           // Overall diameter (cm)
17 d = 19.53/10
                           // Weight of conductor (kg/m)
18 \text{ w}_2 = 0.844
                           // Ultimate strength (kg)
19 u = 7950.0
20 alpha = 18.44*10**-6 // Co-efficient of linear
      expression (/ C )
21 E = 9.32*10**3
                           // Modulus of elasticity (kg/mm
      ^2)
22 t = 0.95
                           // Ice thickness (cm)
23 \text{ wind} = 39.0
                           // Wind pressure (kg/m^2)
24 \text{ T_worst} = -5.0
                           // Temperature in worst
      condition (C)
25
26 // Calculations
27 \text{ w_i} = 915.0 * \% \text{pi*t*(d+t)*10**-4}
                                                  // Weight of
       ice on conductor (kg/m)
  w_w = wind*(d+2*t)*10**-2
                                                  // Wind load
       of conductor (kg/m)
29 \text{ w}_1 = ((\text{w}_2+\text{w}_i)**2+\text{w}_w**2)**0.5
                                                  // Total
      force on conductor (kg/m)
30 t = T_still - T_worst
                                                  //
      Temperature (C)
31 1 = L/2.0
                                                  // Half span
      (m)
32 T = u/2.0
                                                  // Allowable
       tension (kg)
                                                  // Co-
33 \quad A = 1.0
      efficient of x<sup>3</sup>
```

```
34 B = a*E*(alpha*t+((w_1*1/T)**2/6))-T
                                               // Co-
      efficient of x<sup>2</sup>
                                               // Co-
35 \ C = 0
      efficient of x
36 D = -(w_2**2*1**2*a*E/6)
                                               // Co-
      efficient of constant
37 \quad T_2 = roots([A,B,C,D])
                                               // Roots of
      tension of a line
38 \quad T_2_s = T_2_{sol}(3)
                                               // Feasible
      solution of tension of
                                               // Tension
39 \quad T_2 = 1710.0
      in conductor (kg). Obtianed directly from textbook
  sag = w_2*1**2/(2*T_2)
                                               // Sag at
40
      erection (m)
41
42 // Results
43 disp("PART II - EXAMPLE : 5.9 : SOLUTION :-")
44 printf("\nSag at erection = %.2 f metres", sag)
45 printf("\nTension of the line, T_{-2} = \%. f kg (An app.
       solution as per calculation) = %.f kg (More
      correctly as standard value)", T_2_s, T_2
```

Scilab code Exa 12.10 Sag in inclined direction and Vertical direction

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
8
9  // EXAMPLE : 5.10 :
10  // Page number 201-202
11 clear ; clc ; close ; // Clear the work space and
```

```
console
12
13 // Given data
                           // Span (m)
14 L = 250.0
15 d = 1.42
                           // Diameter (cm)
                          // Dead weight (kg/m)
16 w = 1.09
                          // Wind pressure (kg/m^2)
17 \text{ wind} = 37.8
18 r = 1.25
                          // Ice thickness (cm)
19 f_m = 1050.0
                          // Maximum working stress(kg/sq.
      cm)
20
21 // Calculations
22 \text{ w_i} = 913.5 * \% pi * r * (d+r) * 10 * * -4
                                                     // Weight of
        ice on conductor (kg/m)
23 \text{ w_w} = \text{wind*}(d+2*r)*10**-2
                                                     // Wind load
        of conductor (kg/m)
24 \text{ w_r} = ((w+w_i)**2+w_w**2)**0.5
                                                     // Resultant
       pressure (kg/m)
  a = \%pi*d**2/4.0
                                                     // Area (cm
      ^2)
                                                     // Tension (
  T_0 = f_m*a
      kg)
27 S = w_r*L**2/(8*T_0)
                                                     // Total sag
      (m)
28 \text{ vertical\_sag} = S*(w+w_i)/w_r
                                                     // Vertical
      component of sag(m)
29
30 // Results
31 disp("PART II - EXAMPLE : 5.10 : SOLUTION :-")
32 printf("\nCase(i) : Sag in inclined direction = \%. f
      \mathbf{m}\text{"} , \mbox{\ensuremath{\mathtt{S}}}\mbox{\ensuremath{\mathtt{)}}}
33 printf("\nCase(ii): Sag in vertical direction = \%.2 f
       m", vertical_sag)
```

Scilab code Exa 12.11 Sag in still air Wind pressure Ice coating and Vertical sag

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 5: MECHANICAL DESIGN OF OVERHEAD LINES
9 // EXAMPLE : 5.11 :
10 // Page number 202-203
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                                // Area (mm<sup>2</sup>)
14 \ a = 120.0
15 \text{ ds} = 2.11
                                // Diameter of each strand
      (mm)
16 \ W = 1118.0/1000
                                // Weight of conductor (kg/
     m)
17 L = 200.0
                                // Span (m)
18 \text{ stress} = 42.2
                                // Ultimate tensile stress
      (kg/mm^2)
19 \text{ wind = } 60.0
                                // Wind pressure (kg/m<sup>2</sup>)
                                // Ice thickness (mm)
20 t = 10.0
21
22 // Calculations
23 n = 3.0
                                                          //
     Number of layers
24 d = (2*n+1)*ds
      Overall diameter of conductor (mm)
25 u = stress*a
                                                          //
      Ultimate strength (kg)
26 T = u/4.0
                                                          //
      Working stregth (kg)
27 // Case (a)
28 S_a = W*L**2/(8*T)
                                                          //
      Sag in still air (m)
29 // Case (b)
```

```
30 \text{ area} = d*100*10.0*10**-6
                                                             //
       Projected area to wind pressure (m<sup>2</sup>)
31 \text{ w_w = wind*area}
                                                              //
      Wind load/m(kg)
32 \text{ w_r} = (\text{W}**2+\text{w_w}**2)**0.5
                                                              //
      Resultant weight/m(kg)
33 \text{ S_b} = w_r*L**2/(8*T)
      Total sag with wind pressure (m)
34 \text{ w_i} = 0.915 * \% \text{pi} / 4 * ((d+2*t)**2-(d**2)) / 1000.0
                                                              //
      Weight of ice on conductor (kg/m)
35 \text{ area_i} = (d+2*t)*1000.0*10**-6
      Projected area to wind pressure (m<sup>2</sup>)
36 \text{ w_n = wind*area_i}
      Wind load/m(kg)
37 \text{ w_r_c} = ((W+w_i)**2+w_n**2)**0.5
                                                              //
      Resultant weight/m(kg)
38 \text{ S_c} = \text{w_r_c*L**2/(8*T)}
      Total sag with wind pressure and ice coating (m)
39 S_v = S_c*(W+w_i)/w_r_c
       Vertical component of sag (m)
40
41 // Results
42 disp("PART II - EXAMPLE : 5.11 : SOLUTION :-")
43 printf("\nCase(a) : Sag in still air, S = \%.2 f m",
44 printf("\nCase(b) : Sag with wind pressure, S = \%.2 f
       m", S_b)
                           Sag with wind pressure and ice
45 printf("\n
       coating, S = \%.2 f m, S_c)
                           Vertical sag, S_v = \%.2 f m \n,
46 printf ("\n
      S_v)
47 printf("\nNOTE: ERROR: calculation mistake in the
      textbook")
```

Chapter 13

INTERFERENCE OF POWER LINES WITH NEIGHBOURING COMMUNICATION CIRCUITS

 ${f Scilab\ code\ Exa\ 13.1}$ Mutual inductance between the circuits and Voltage induced in

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// SECOND EDITION
// CHAPTER 6: INTERFERENCE OF POWER LINES WITH NEIGHBOURING COMMUNICATION CIRCUITS
// EXAMPLE : 6.1 :
// Page number 206
clear ; clc ; close ; // Clear the work space and console
```

```
12
13 // Given data
14 f = 50.0
                         // Frequency (Hz)
                         // Spacing b/w conductors (m)
15 d = 4.0
16 D = 2.0
                         // Distance of telephone line
      below conductor (m)
17 s = 60.0/100
                         // Spacing b/w telephone line (m
18 r = 2.0
                         // Radius of power line (mm)
                         // Current in power line (A)
19 I = 150.0
20
21 // Calculations
22 D_ac = (D**2+((d-s)/2)**2)**0.5
                                                 //
      Distance b/w a & c(m)
23 D_ad = (D**2+(((d-s)/2)+s)**2)**0.5
      Distance b/w a & d(m)
24 M = 4.0*10**-7*log(D_ad/D_ac)*1000
                                                 // Mutual
       inductance b/w circuits (H/km)
25 \text{ V}_{CD} = 2.0*\%pi*f*M*I
      Voltage induced in the telephone line (V/km)
26
27 // Results
28 disp("PART II - EXAMPLE : 6.1 : SOLUTION :-")
29 printf("\nMutual inductance between the circuits, M
      = %.e H/km", M)
30 printf("\nVoltage induced in the telephone line,
      V_{CD} = \%.2 f V/km, V_{CD}
```

Scilab code Exa 13.2 Induced voltage at fundamental frequency and Potential of tel

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
```

```
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 6: INTERFERENCE OF POWER LINES WITH
      NEIGHBOURING COMMUNICATION CIRCUITS
9 // EXAMPLE : 6.2 :
10 // Page number 206-207
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                           // Frequency (Hz)
14 f = 50.0
15 \quad 1 = 160.0
                           // Length of line (km)
                          // Line voltage(V)
16 \ V = 132.0*10**3
17 P = 25.0*10**6
                           // Load delivered (W)
                           // Lagging power factor
18 \text{ PF} = 0.8
                           // Radius of power line
19 r = 5.0/1000
      conductor (m)
20 d = 4.0
                           // Spacing b/w conductors (m)
21 	 OS = 6.0
                           // Distance (m)
                           // Distance (m)
22 \text{ OT} = 6.5
                           // Distance (m)
23 \text{ CT} = 18.0
24
25 // Calculations
26 \text{ AO} = 3**0.5*d/2.0
                                                          //
      Distance A to O(m). From figure E6.2
27 \text{ AS} = \text{OS} + \text{AO}
      // Distance A to S(m)
28 \text{ AT} = \text{AO+OT}
      // Distance A to T(m)
29 \text{ OB} = d/2.0
      // Distance O to B(m)
30 \text{ BS} = (08**2+08**2)**0.5
                                                   // Distance
       B to S(m)
```

```
31 BT = (0B**2+0T**2)**0.5
                                                  // Distance
      B to T(m)
32 \quad M_A = 0.2*log(AT/AS)
                                                      //
      Mutual inductance at A(mH/km)
33 \text{ M}_B = 0.2*\log(BT/BS)
                                                      //
      Mutual inductance at B(mH/km)
34 \quad M = M_B - M_A
      // Mutual inductance at C(mH/km)
35 I = P/(3**0.5*V*PF)
                                                       //
      Current (A)
36 E_m = 2.0*\%pi*f*M*I*10**-3*1
                                            // Induced
      voltage (V)
37 \quad V_A = V/3**0.5
                                                            //
       Phase voltage (V)
38 h = AO + CT
     // Height (m)
39 V_SA = V_A*log10(((2*h)-AS)/AS)/log10(((2*h)-r)/r)
                  // Potential(V)
40 \text{ H} = \text{CT}
     // Height (m)
41 \quad V_B = V_A
     // Phase voltage(V)
42 V_SB = V_B*log10(((2*H)-BS)/BS)/log10(((2*H)-r)/r)
                  // Potential (V)
43 \quad V_S = V_SB - V_SA
                                                           //
      Total potential of S w.r.t earth(V)
44
```

Chapter 14

UNDERGROUND CABLES

Scilab code Exa 14.1 Insulation resistance per km

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.1 :
10 // Page number 211
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 d = 2.5
                    // Core diameter (cm)
ohm-cm)
17 \ 1 = 10.0**5 // Length (cm)
18
19 // Calculations
```

Scilab code Exa 14.2 Insulation thickness

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.2 :
10 // Page number 211
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 R = 495.0*10**6
                   // Insulation resistance (ohm/km
     )
                       // Core diameter (cm)
15 d = 3.0
16 rho = 4.5*10**14 // Resistivity of insulation (
     ohm-cm)
17
18 // Calculations
```

```
// Length
19 1 = 1000.0
      of cable (m)
20 r_2 = d/2.0
                                                   // Core
      radius (cm)
21 Rho = rho/100.0
      Resistivity of insulation (ohm-m)
                                                   // r1/r2
22 \text{ r1\_r2} = \exp((2*\%\text{pi}*1*\text{R})/\text{Rho})
                                                   // Cable
23 r_1 = 2*r_2
      radius (cm)
24 thick = r_1-r_2
                                                   //
      Insulation thickness (cm)
25
26 // Results
27 disp("PART II - EXAMPLE : 7.2 : SOLUTION :-")
28 printf("\nInsulation thickness = %.1 f cm", thick)
```

Scilab code Exa 14.3 Capacitance and Charging current of single core cable

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.3 :
10 // Page number 212
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V = 66.0*10**3
                         // Line Voltage(V)
15 \quad 1 = 1.0
                          // Length of cable (km)
16 d = 15.0
                          // Core diameter (cm)
```

```
17 D = 60.0
                          // Sheath diameter (cm)
                         // Relative permittivity
18 e_r = 3.6
19 f = 50.0
                          // Frequency (Hz)
20
21 // Calculations
22 C = e_r/(18.0*log(D/d))*l
                                         // Capacitance (
      F )
23 I_ch = V/3**0.5*2*%pi*f*C*10**-6 // Charging
      current (A)
24
25 // Results
26 disp("PART II - EXAMPLE : 7.3 : SOLUTION :-")
27 printf ("\nCapacitance of single-core cable, C = \%.3 f
28 printf("\nCharging current of single-core cable = \%
      .2\,\mathrm{f} A", I_ch)
```

Scilab code Exa 14.4 Most economical diameter of a single core cable and Overall d

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.4 :
10 // Page number 212
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad V_1 = 132.0
                        // Line Voltage(kV)
                       // Maximum Line Voltage(kV)
15 \text{ g_max} = 60.0
```

```
16
17 // Calculations
18 V = V_1/3**0.5*2**0.5 // Phase Voltage(kV)
                             // Core diameter (cm)
19 d = 2*V/g_max
20 D = 2.718*d
                             // Overall diameter (cm)
21
22 // Results
23 disp("PART II - EXAMPLE : 7.4 : SOLUTION :-")
24 printf("\nMost economical diameter of a single-core
     cable, d = \%.1 f \text{ cm}, d)
25 printf("\nOverall diameter of the insulation, D=\%
     .3 f cm n, D)
26 printf("\nNOTE: Slight change in obtained answer due
      to precision")
```

 ${
m Scilab\ code\ Exa\ 14.6}$ Conductor radius and Electric field strength that must be wit

```
// Overall
18 D = dia_out/2.0
     diameter (cm)
19 d = (D)/2.718
                                           // Conductor
     diameter (cm)
20 r = d/2
                                           // Conductor
     radius (cm)
21 \text{ g_m} = 2*V/(d*\log(D/d)*10)
                                           // Maximum
      value of electric field strength (kV/m)
22
23 // Results
24 disp("PART II - EXAMPLE : 7.6 : SOLUTION :-")
25 printf("\nConductor radius, r = \%.3 f \text{ cm}", r)
26 printf("\nElectric field strength that must be
      withstood, g_m = \%. f kV/m, g_m)
```

Scilab code Exa 14.7 Location of intersheath and Ratio of maximum electric field s

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.7 :
10 // Page number 214
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                        // Cable radius (cm)
14 R_3 = 1.00
                       // Cable radius (cm)
15 R_1 = 2.5
16
17 // Calculations
```

Scilab code Exa 14.8 Maximum and Minimum stress in the insulation

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.8 :
10 // Page number 215
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 \ V = 33.0
                          // Line Voltage(kV)
                         // Conductor diameter (cm)
15 D_2 = 2.0
16 \ D_1 = 3.0
                         // Sheath diameter (cm)
17
18 // Calculations
```

```
// Conductor
19 R_2 = D_2/2
      radius (cm)
20 R_1 = D_1/2
                                          // Sheath radius
      (cm)
21 g_{max} = V/(R_2*log(R_1/R_2))
                                          // RMS value of
     maximum stress in the insulation (kV/cm)
                                          // RMS value of
22 g_min = V/(R_1*\log(R_1/R_2))
      minimum stress in the insulation (kV/cm)
23
24 // Results
25 disp("PART II - EXAMPLE : 7.8 : SOLUTION :-")
26 printf ("\nMaximum stress in the insulation, g_max = 1
     \%.2 \text{ f kV/cm (rms)}", g_max)
27 printf("\nMinimum stress in the insulation, g_min = 1
     \%.2 f kV/cm (rms)", g_min)
```

 ${f Scilab\ code\ Exa\ 14.9}$ Maximum stress with and without intersheath Best position and

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.9 :
10 // Page number 215
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d = 2.5
                        // Conductor diameter (cm)
15 D = 6.0
                        // Sheath diameter (cm)
16 \quad V_1 = 66.0
                        // Line Voltage(kV)
```

```
17
18 // Calculations
19 alpha = (D/d)**(1.0/3)
                                             // Best
20 d_1 = d*alpha
      position of first intersheath (cm)
21 d_2 = d_1*alpha
                                            // Best
      position of second intersheath (cm)
                                            // Peak voltage
22 V = V_1/3**0.5*2**0.5
       on core(kV)
V_2 = V/(1+(1/alpha)+(1/alpha**2))
                                            // Peak voltage
       on second intersheath (kV)
V_1 = (1+(1/alpha))*V_2
                                            // Voltage on
      first intersheath (kV)
  stress_max = 2*V/(d*log(D/d))
                                            // Maximum
25
      stress without intersheath (kV/cm)
   stress_min = stress_max*d/D
                                            // Minimum
      stress without intersheath (kV/cm)
  g_max = V*3/(1+alpha+alpha**2)
                                            // Maximum
      stress with intersheath (kV/cm)
28
29 // Results
30 disp("PART II - EXAMPLE : 7.9 : SOLUTION :-")
31 printf ("\nMaximum stress without intersheath = \%.2 f
      kV/cm", stress_max)
32 printf("\nBest position of first intersheath, d_1 = \frac{1}{2}
      \%.2 \text{ f cm}, d_1)
33 printf("\nBest position of second intersheath, d_2 =
       \%.3 \text{ f cm}", d_2)
34 printf("\nMaximum stress with intersheath = \%.2 \, f \, kV/
      cm", g_max)
35 printf ("\nVoltage on the first intersheath, V_{-}1 = \%
      .2 \text{ f kV}", V_{-}1)
36 printf ("\nVoltage on the second intersheath, V_{-}2 = \%
      .2 \text{ f kV } \text{ } \text{n}", V_2)
37 printf("\nNOTE: Changes in the obtained answer is
      due to more precision here")
```

Scilab code Exa 14.10 Maximum stress in the two dielectrics

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.10 :
10 // Page number 215-216
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ e_1 = 3.6
                        // Inner relative permittivity
15 e_2 = 2.5
                        // Outer relative permittivity
                        // Conductor diameter (cm)
16 d = 1.0
                        // Sheath diameter (cm)
17 d_1 = 3.0
                        // Overall diameter (cm)
18 D = 5.0
                        // Line Voltage(kV)
19 V_1 = 66.0
20
21 // Calculations
22 V = V_1/3**0.5*2**0.5
                                      // Peak voltage on
       core (kV)
23 g1_max = 2*V/(d*(log(d_1/d)+e_1/e_2*log(D/d_1)))
         // Maximum stress in first dielectric (kV/km)
24 \text{ g_max} = 2*V/(d_1*(e_2/e_1*\log(d_1/d)+\log(D/d_1)))
         // Maximum stress in second dielectric (kV/km)
25
26 // Results
27 disp("PART II - EXAMPLE : 7.10 : SOLUTION :-")
```

Scilab code Exa 14.11 Diameter and Voltage of intersheath Conductor and Outside di

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.11 :
10 // Page number 216-217
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                    // Line Voltage(kV)
14 V = 85.0
15 g_max = 55.0 // Maximum stress (kV/cm)
16
17 // Calculations
18 V_1 = 0.632*V
                         // Intersheath potential(kV)
                        // Core diameter (cm)
19 d = 0.736*V/g_max
                        // Intersheath diameter (cm)
20 \ d_1 = 2*V/g_max
21 D = 3.76*V/g_max
                        // Overall diameter (cm)
                        // Core diameter of ungraded
22 d_{un} = 2*V/g_{max}
     cable (cm)
23 D_un = 2.718*d_1
                         // Overall diameter of
     ungraded cable (cm)
24
25 // Results
```

Scilab code Exa 14.12 Equivalent star connected capacity and kVA required

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.12 :
10 // Page number 219
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 c = 0.3
                   // Capacitance b/w any 2 conductor &
      sheath earthed (F/km)
15 \quad 1 = 10.0
                   // Length (km)
16 V = 33.0
                   // Line Voltage(kV)
17 f = 50.0
                   // Frequency (Hz)
```

```
18
19 // Calculations
                                             // Capacitance
20 \text{ C_eq} = 1*c
       b/w any 2 conductor & sheath earthed (F)
21 C_p = 2.0*C_eq
                                            // Capacitance
      per phase (F)
22 \text{ kVA} = \text{V}**2*2*\%\text{pi}*f*C_p/1000.0 // Three-phase
       kVA required (kVA)
23
24 // Results
25 disp("PART II - EXAMPLE : 7.12 : SOLUTION :-")
26 printf("\nEquivalent star connected capacity, C_eq =
       \%. f F ", C_eq)
27 printf("\nkVA required = \%.1 \text{ f kVA}", kVA)
```

Scilab code Exa 14.13 Charging current drawn by a cable with three cores

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.13 :
10 // Page number 219
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 V = 11.0*10**3 // Line Voltage(V)
15 f = 50.0 // Frequency(Hz)
                    // Frequency (Hz)
15 f = 50.0
16 C_c = 3.7 // Measured capacitance(F)
17
```

Scilab code Exa 14.14 Capacitance between any two conductors Two bounded conductor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
_3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.14 :
10 // \text{Page number } 219-220
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 c_s = 0.90
                      // Capacitance b/w all conductors (
      \mathbf{F}
15 \quad C_0 = 0.4
                     // Capacitance b/w two conductor (
      F )
16 \ V = 11.0*10**3 // Line \ Voltage(V)
                // Frequency (Hz)
17 f = 50.0
18
19 // Calculations
```

```
20 \ C_s = c_s/3.0
                                                 //
      Capacitance measured (F)
21 C_c = (C_0 - C_s)/2.0
      Capacitance (F)
22 C_a = 3.0/2*(C_c+(1/3.0)*C_s)
      Capacitance b/w any two conductors (F)
23 C_b = 2.0*C_c+(2.0/3)*C_s
      Capacitance b/w any two bounded conductors and
      the third conductor (F)
24 C_o = 3.0*C_c+C_s
                                                 //
      Capacitance to neutral (F)
  I_c = 2.0*\%pi*f*C_o*V/3**0.5*10**-6
                                                 //
      Charging current (A)
26
27 // Results
28 disp("PART II - EXAMPLE : 7.14 : SOLUTION :-")
29 printf("\nCase(a): Capacitance between any two
      conductors = \%.3 \, \text{f} F ", C_a)
30 printf("\nCase(b): Capacitance between any two
      bounded conductors and the third conductor = \%.1 \,\mathrm{f}
        F ", C_b)
31 printf("\nCase(c): Capacitance to neutral, C_0 = \%.2
      f F ", C_o)
32 printf("\n
                       Charging current taken by cable,
      I_{-c} = \%.3 f A \ n", I_{-c})
33 printf("\nNOTE: ERROR: Calculation mistakes in
      textbook answer")
```

Scilab code Exa 14.15 Charging current drawn by cable

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
```

```
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
9 // EXAMPLE : 7.15 :
10 // Page number 220-221
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad V = 13.2*10**3
                    // Line Voltage(V)
15 f = 50.0
                     // Frequency (Hz)
16 \ C_BC = 4.2
                    // Capacitance b/w two cores ( F )
17
18 // Calculations
19 C_n = 2.0*C_BC
     Capacitance to neutral (F)
20 V_{ph} = V/3**0.5
      Operating phase voltage (V)
21 I_c = 2.0*\%pi*f*C_n*V/3**0.5*10**-6
      Charging current (A)
22
23 // Results
24 disp("PART II - EXAMPLE : 7.15 : SOLUTION :-")
25 printf ("\nCharging current drawn by cable, I_c = \%.2
     f A", I_c)
```

 ${
m Scilab~code~Exa~14.16}$ Capacitance of the cable Charging current Total charging kVA

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 7: UNDERGROUND CABLES
```

```
9 // EXAMPLE : 7.16 :
10 // Page number 222-223
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V = 33.0*10**3
                        // Line Voltage(V)
15 f = 50.0
                        // Frequency (Hz)
                        // Length (km)
16 \ 1 = 4.0
17 d = 2.5
                        // Diameter of conductor(cm)
18 t = 0.5
                        // Radial thickness of insulation (
      cm)
19 e_r = 3.0
                        // Relative permittivity of the
      dielectric
20 \text{ PF} = 0.02
                        // Power factor of unloaded cable
21
22 // Calculations
23 // Case (a)
24 r = d/2.0
                                                               //
       Radius of conductor (cm)
25 R = r + t
                                                               //
       External radius (cm)
26 \text{ e}_{0} = 8.85*10**-12
                                                               //
       Permittivity
27 \text{ C} = 2.0 * \% \text{pi} * \text{e}_0 * \text{e}_r / \log(R/r) * 1 * 1000
                                                               //
        Capacitance of cable/phase(F)
28 // Case (b)
29 V_{ph} = V/3**0.5
                                                               //
       Phase voltage (V)
30 I_c = V_ph*2.0*\%pi*f*C
                                                               //
       Charging current/phase(A)
31 // Case(c)
32 \text{ kVAR} = 3.0 * \text{V_ph} * \text{I_c}
       Total charging kVAR
33 // Case (d)
34 \text{ phi} = acosd(PF)
```

```
//
35 \text{ delta} = 90.0-phi
                                                          //
36 \text{ P_c} = \text{V_ph*I_c*sind(delta)/1000}
       Dielectric loss/phase(kW)
37 // Case (e)
38 E_{max} = V_{ph}/(r*log(R/r)*1000)
                                                          //
      RMS value of Maximum stress in cable (kV/cm)
39
40 // Results
41 disp("PART II - EXAMPLE : 7.16 : SOLUTION :-")
42 printf("\nCase(a): Capacitance of the cable, C = \%.3
      e F/phase", C)
43 printf("\nCase(b): Charging current = \%.2 f A/phase",
       I_c)
44 printf("\nCase(c): Total charging kVAR = %.4e kVAR",
       kVAR)
45 printf("\nCase(d): Dielectric loss/phase, P_c = \%.2 f
      kW", P_c)
46 printf("\nCase(e): Maximum stress in the cable,
      E_{max} = \%.1 f kV/cm (rms)", E_{max})
```

Chapter 15

CORONA

Scilab code Exa 15.1 Minimum spacing between conductors

${\it Scilab \ code \ Exa\ 15.2}$ Critical disruptive voltage and Corona loss

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 8: CORONA
9 // EXAMPLE : 8.2 :
10 // Page number 227-228
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                        // Operating line voltage(kV)
14 V = 220.0
                        // Frequency (Hz)
15 f = 50.0
16 \, d = 1.5
                        // Diameter of conductor (cm)
                         // Distance b/w conductor(cm)
17 D = 300.0
```

```
// Air density factor
18 \text{ delta} = 1.05
                           // Breakdown strength of air (kV
19 g_0 = 21.1
     /\mathrm{cm}
20 \, \text{m} = 1.0
                           // Irregularity factor
21
22 // Calculations
23 E = V/3**0.5
      Phase voltage (kV)
24 r = d/2.0
      Radius of conductor (cm)
25 E_0 = m*g_0*delta*r*log(D/r)
                                    // Disruptive critical
      voltage to neutral(kV/phase)
26 \quad E_0_{11} = 3**0.5*E_0
                                              // Line-to-
      line Disruptive critical voltage (kV)
27 P = 244.0*10**-5*(f+25)/delta*(r/D)**0.5*(E-E_0)**2
         // Corona loss (kW/km/phase)
28 P_{total} = P*3.0
                                                   // Corona
      loss (kW/km)
29
30 // Results
31 disp("PART II - EXAMPLE : 8.2 : SOLUTION :-")
32 printf("\nCritical disruptive voltage, E_0 = \%.2 f kV
      / \, \text{phase} = \%.2 \, \text{f kV (line-to-line)}", E_0,E_0_11)
33 printf("\nCorona loss, P = \%.2 f \text{ kW/km } \text{n}", P_total)
34 printf("\nNOTE: ERROR: Calculation mistake in the
      final answer in textbook")
```

Scilab code Exa 15.3 Corona loss in fair weather and Foul weather

1 // A Texbook on POWER SYSTEM ENGINEERING

```
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 8: CORONA
8
9 // EXAMPLE : 8.3 :
10 // Page number 228
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V = 132.0
                         // Operating line voltage(kV)
                         // Frequency (Hz)
15 f = 50.0
                         // Diameter of conductor(cm)
16 d = 1.17
                         // Distance b/w conductor (cm)
17 D = 300.0
                         // Irregularity factor
18 m = 0.96
                         // Barometric pressure (cm)
19 b = 72.0
20 t = 20.0
                         // Temperature ( C )
21
22 // Calculations
23 \text{ delta} = 3.92*b/(273.0+t)
                                                 // Air
      density factor
24 r = d/2.0
     // Radius of conductor (cm)
25 \quad E_0 = 21.1*m*delta*r*log(D/r)
                                           // Critical
      disruptive voltage for fair weather condition (kV/
      phase)
26 E_0_foul = 0.8*E_0
      Critical disruptive voltage for foul weather (kV/
     phase)
27 E = V/3**0.5
```

Scilab code Exa 15.4 Corona characteristics

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 8: CORONA
9 // EXAMPLE : 8.4 :
10 \ // \ Page number 228-229
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                         // Operating line voltage(kV)
14 \quad V = 110.0
                         // Frequency (Hz)
15 f = 50.0
16 \ 1 = 175.0
                         // Line length (km)
17 d = 1.0
                         // Diameter of conductor (cm)
```

```
// Distance b/w conductor (cm)
18 D = 300.0
                         // Temperature ( C )
19 t = 26.0
                         // Barometric pressure (cm)
20 b = 74.0
                         // Irregularity factor
21 m = 0.85
                        // Roughness factor for local
22 \text{ m_v_local} = 0.72
      corona
                         // Roughness factor for general
23 \text{ m_v_gen} = 0.82
       corona
24
25 // Calculations
26 \text{ delta} = 3.92*b/(273.0+t)
     // Air density factor
27 r = d/2.0
     // Radius of conductor (cm)
28 E_0 = 21.1*m*delta*r*log(D/r)
                                                      //
      Critical disruptive voltage (kV) rms
29 \text{ E_v_local} = 21.1*\text{m_v_local*delta*r*}(1+(0.3/(delta*r)))
      **0.5))*log(D/r) // Critical disruptive
      voltage for local corona(kV) rms
30 \text{ E_v_gen} = 21.1*\text{m_v_gen*delta*r*}(1+(0.3/(delta*r))
      **0.5))*log(D/r)
                                 // Critical disruptive
      voltage for general corona(kV) rms
31 E = V/3**0.5
      // Phase voltage(kV)
32 // Case(i)
33 P_c_i = 244.0*10**-5*(f+25)/delta*(r/D)**0.5*(E-E_0)
                              // Peek"s formula for fair
      weather condition (kW/km/phase)
34 P_c_i_total = P_c_i*1*3
      // Total power loss (kW)
35 // Case(ii)
36 \text{ P_c_ii} = 244.0*10**-5*(f+25)/delta*(r/D)**0.5*(E)
      -0.8*E_0)**2
                                  // Peek"s formula for
```

```
stormy condition (kW/km/phase)
37 P_c_{ii}_{total} = P_c_{ii}*1*3
      // Total power loss (kW)
38 // Case(iii)
39 	ext{ } F_{\text{iii}} = 0.0713
      // From text depending on E/E_0
40 P_c_{iii} = 21.0*10**-6*f*E**2*F_{iii}/(log10(D/r))**2
                               // Peterson"s formula for
      fair condition (kW/km/phase)
41 P_c_iii_total = P_c_iii*1*3
                                                         //
      Total power loss (kW)
42 // Case (iv)
43 \text{ F_iv} = 0.3945
      // From text depending on E/E_0
44 P_c_{iv} = 21.0*10**-6*f*E**2*F_{iv}/(log10(D/r))**2
                                 // Peterson"s formula
      for stormy condition (kW/km/phase)
45 P_c_{iv}total = P_c_{iv}*1*3
      // Total power loss (kW)
46
47 // Results
48 disp("PART II - EXAMPLE : 8.4 : SOLUTION :-")
49 printf("\nCase(i) : Power loss due to corona using
      Peek formula for fair weather condition, P<sub>c</sub> = %
      .3 f \text{ kW/km/phase}, P_c_i)
50 printf("\n
                          Total corona loss in fair
      weather condition using Peek formula = \%.1 f kW",
      P_c_i_total)
51 printf("\nCase(ii) : Power loss due to corona using
      Peek formula for stormy weather condition, P<sub>c</sub> =
      \%.2 \text{ f kW/km/phase}, P_c_ii)
52 printf("\n
                          Total corona loss in stormy
      condition using Peek formula = \%. f kW",
```

```
P_c_ii_total)
53 printf("\nCase(iii): Power loss due to corona using
     Peterson formula for fair weather condition, P_{-c}
      = \%.4 \, f \, kW/km/phase, P_c_iii)
54 printf("\n
                         Total corona loss in fair
      condition using Peterson formula = \%.2 f kW",
     P_c_iii_total)
55 printf("\nCase(iii): Power loss due to corona using
      Peterson formula for fair weather condition, P_c
      = \%.4 \, f \, kW/km/phase, P_c_iv)
56 printf("\n
                         Total corona loss in stormy
     condition using Peterson formula = \%.1 f kW \n",
     P_c_iv_total)
57 printf("\nNOTE: ERROR: Calculation mistake in the
      final answer in textbook")
```

Scilab code Exa 15.5 Spacing between the conductors

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 8: CORONA
9 // EXAMPLE : 8.5 :
10 // Page number 229
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V = 132.0
                         // Operating line voltage(kV)
                         // Diameter of conductor(cm)
15 \text{ dia} = 1.956
16 \text{ v_c} = 210.0
                         // Disrputive voltage(kV)
```

```
17 \text{ g}_0 = 30.0/2**0.5 // Breakdown strength of air (kV)
      /cm)
18
19 // Calculations
20 r = dia/2.0
                                               // Radius
      of conductor (cm)
V_c = v_c/3**0.5
      Disrputive voltage/phase(kV)
22 \text{ m}_0 = 1.0
      Irregularity factor
                                               // Air
23 \text{ delta} = 1.0
      density factor
24 d = \exp(V_c/(m_0*delta*g_0*r))*r
                                               // Spacing
      between conductors (cm)
25
26 // Results
27 disp("PART II - EXAMPLE : 8.5 : SOLUTION :-")
28 printf("\nSpacing between the conductors, d = \%.f cm
       n, abs(d))
29 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to precision")
```

Scilab code Exa 15.6 Disruptive critical voltage and Corona loss

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 8: CORONA
8
9  // EXAMPLE : 8.6 :
10  // Page number 229
11 clear ; clc ; close ; // Clear the work space and
```

```
console
12
13 // Given data
14 P_c1 = 53.0
                           // Total corona loss (kW)
15 \quad V_1 = 106.0
                           // Operating line voltage (kV)
                           // Total corona loss (kW)
16 P_c2 = 98.0
                           // Operating line voltage(kV)
17 \quad V_2 = 110.9
18 \quad V_3 = 113.0
                           // Operating line voltage(kV)
19
20 // Calculations
                                               // Phase
21 E_1 = V_1/3**0.5
      voltage (kV)
22 E_2 = V_2/3**0.5
                                               // Phase
      voltage (kV)
23 P_{ratio} = (P_c2/P_c1)**0.5
24 E_0 = (P_ratio*E_1-E_2)/(P_ratio-1)
                                               //
      Disruptive critical voltage (kV)
25 E_3 = V_3/3**0.5
                                               // Phase
      voltage (kV)
26 \text{ W} = ((E_3-E_0)/(E_1-E_0))**2*P_c1
                                               // Corona
      loss at 113 kV(kW)
27
28 // Results
29 disp("PART II - EXAMPLE: 8.6: SOLUTION:-")
30 printf("\nDisruptive critical voltage, E_0 = \%. f kV"
      , E_0)
31 printf("\nCorona loss at 113 kV, W = \%. f kW\n", W)
32 printf("\nNOTE: Changes in obtained answer from
      textbook is due to more precision here")
```

Scilab code Exa 15.7 Corona will be present in the air space or not

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
```

```
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 8: CORONA
9 // EXAMPLE : 8.7 :
10 // \text{Page number } 229-230
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d = 3.0
                         // Diameter of conductor(cm)
                         // Relative permittivity
15 \text{ e_r} = 4.0
16 \ d_1 = 3.5
                         // Internal diameter of
      porcelain bushing (cm)
17 d_2 = 9.0
                         // External diameter of
     porcelain bushing (cm)
18 \ V = 25.0
                         // Voltage b/w conductor and
     clamp (kV)
19
20 // Calculations
21 r = d/2.0
     // Radius of conductor (cm)
22 r_1 = d_1/2.0
      // Internal radius of porcelain bushing (cm)
23 r_2 = d_2/2.0
      // External radius of porcelain bushing (cm)
24 \text{ g}_2\text{max} = r/(e_r*r_1)
      Maximum gradient of inner side of porcelain
25 \text{ g_1max} = V/(r*\log(r_1/r)+g_2\max*r_1*\log(r_2/r_1))
                   // Maximum gradient on surface of
      conductor (kV/cm)
26
27 // Results
```

Scilab code Exa 15.8 Line voltage for commencing of corona

```
// A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 8: CORONA
8
9 // EXAMPLE : 8.8 :
10 // Page number 230
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d = 2.0
                        // Diameter of conductor(cm)
                        // Spacing b/w conductor(cm)
15 D = 150.0
16 \text{ delta} = 1.0
                        // Air density factor
17
18 // Calculations
19 r = d/2.0
                                         // Radius of
     conductor (cm)
20 V_d = 21.1*delta*r*log(D/r)
                                         // Disruptive
      critical voltage (kV/phase)
21 V_d_{11} = 3**0.5*V_d
                                         // Line voltage
      for commencing of corona (kV)
22
23 // Results
```

Chapter 16

LOAD FLOW STUDY USING COMPUTER TECHNIQUES

Scilab code Exa 16.1 Bus admittance matrix Ybus

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 9: LOAD FLOW STUDY USING COMPUTER
     TECHNIQUES
9 // EXAMPLE : 9.1 :
10 // Page number 235-236
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 Z_L1 = complex(14.3,97) // Series impedance of
      line L1(ohm)
15 Z_PL1 = complex(0,-3274) // Shunt impedance of
     line L1(ohm)
```

```
16 \ Z_L2 = complex(7.13,48.6)
                                        // Series impedance of
        line L2(ohm)
17 \ Z_{PL2} = complex(0, -6547)
                                        // Shunt impedance of
      line L2(ohm)
  Z_L3 = complex(9.38,64)
                                        // Series impedance of
        line L3(ohm)
                                        // Shunt impedance of
   Z_PL3 = complex(0, -4976)
       line L3 (ohm)
20
21 // Calculations
                                                 Series
22 \quad Y_S12 = 1.0/Z_L1
       admittance (mho)
23
  Y_{P12} = 1.0/Z_{PL1}
                                                 Shunt
       admittance (mho)
24 \text{ Y}_S23 = 1.0/Z_L3
                                                Series
       admittance (mho)
25 \text{ Y}_{P23} = 1.0/Z_{PL3}
                                                 Shunt
       admittance (mho)
                                              // Series
  Y_S13 = 1.0/Z_L2
       admittance (mho)
                                                 Shunt
  Y_P13 = 1.0/Z_PL2
       admittance (mho)
28 \text{ Y}_{11} = \text{Y}_{P12} + \text{Y}_{P13} + \text{Y}_{S12} + \text{Y}_{S13}
                                              // Admittance (mho)
29 \quad Y_{12} = -Y_{S12}
                                              // Admittance (mho)
30 \quad Y_13 = -Y_513
                                              // Admittance (mho)
31 \quad Y_21 = Y_12
                                              // Admittance (mho)
32 \quad Y_22 = Y_P12+Y_P23+Y_S12+Y_S23
                                              // Admittance (mho)
33 \quad Y_23 = -Y_523
                                              // Admittance (mho)
                                              // Admittance (mho)
34 \quad Y_31 = Y_13
35 \quad Y_32 = Y_23
                                              // Admittance (mho)
36 \quad Y_33 = Y_P13+Y_P23+Y_S23+Y_S13
                                              // Admittance (mho)
37 \text{ Y_bus} = [[Y_11, Y_12, Y_13],
              [Y_21, Y_22, Y_23],
38
39
              [Y_31, Y_32, Y_33]
40
   // Results
41
42 disp("PART II - EXAMPLE : 9.1 : SOLUTION :-")
43 printf("\langle n[Y_bus] = \langle n"\rangle; disp(Y_bus)
```

Scilab code Exa 16.3 Voltage values at different buses

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 9: LOAD FLOW STUDY USING COMPUTER
     TECHNIQUES
9 // EXAMPLE : 9.3 :
10 // Page number 236-237
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V_a = 1.0
                                                   //
      Voltage (p.u)
15 V_b = 1.0 * exp(%i*-36.87 * %pi/180)
      Voltage (p.u)
16 \ V_c = 1.0
      Voltage (p.u)
17 \ Z_1 = complex(0,1)
      Reactance (p.u)
18 \ Z_2 = complex(0,1)
      Reactance (p.u)
  Z_3 = complex(0,1)
      Reactance (p.u)
20 \ Z_{13} = complex(0,0.4)
      Reactance (p.u)
21 \ Z_23 = complex(0,0.4)
      Reactance (p.u)
22 Z_14 = complex(0,0.2)
                                                   //
```

```
Reactance (p.u)
                                                        //
Z_2 = complex(0,0.2)
      Reactance (p.u)
24 \ Z_34 = complex(0,0.2)
      Reactance (p.u)
25 \ Z_{12} = complex(0,0)
      Reactance (p.u)
26
27
  // Calculations
                              // Current injection vector(p.
  I_1 = V_a/Z_1
      u)
                              // Current injection vector(p.
   I_2 = V_b/Z_2
      u )
  I_3 = V_c/Z_3
                              // Current injection vector (p.
      u )
                                 Current injection vector (p.
31
  I_4 = 0.0
      u )
32 y1 = 1.0/Z_1
                              // Admittance(p.u)
33 \text{ y2} = 1.0/Z_2
                              // Admittance(p.u)
34 \text{ y3} = 1.0/Z_3
                              // Admittance(p.u)
                              // Admittance(p.u)
35 \text{ y} 13 = 1.0/Z_13
36 \text{ y}23 = 1.0/Z_23
                              // Admittance(p.u)
37 \text{ y}14 = 1.0/Z_14
                              // Admittance(p.u)
38 \text{ y}24 = 1.0/Z_24
                                Admittance (p.u)
39 \text{ y}34 = 1.0/Z_34
                              // Admittance(p.u)
40 \text{ y} 12 = 0.0
                              // Admittance(p.u)
41 \quad Y_{11} = y_{1} + y_{13} + y_{14}
                                 Equivalent admittance (p.u)
42 \quad Y_{12} = y_{12}
                              // Equivalent admittance(p.u)
                              // Equivalent admittance(p.u)
43 \quad Y_13 = -y13
44 \quad Y_14 = -y14
                                 Equivalent admittance (p.u)
45 \quad Y_21 = Y_12
                              // Equivalent admittance(p.u)
46 \quad Y_22 = y_2 + y_23 + y_24
                                 Equivalent admittance (p.u)
                              // Equivalent admittance(p.u)
47 \quad Y_23 = -y23
48 \quad Y_24 = -y24
                              // Equivalent admittance(p.u)
49 \quad Y_31 = Y_13
                                 Equivalent admittance (p.u)
50 \quad Y_32 = Y_23
                                 Equivalent admittance (p.u)
51 Y_33 = y3+y13+y23+y34 // Equivalent admittance(p.u)
52 \quad Y_34 = -y34
                                 Equivalent admittance (p.u)
```

```
53 \quad Y_41 = Y_14
                             // Equivalent admittance(p.u)
                             // Equivalent admittance(p.u)
54 \quad Y_{42} = Y_{24}
55 \quad Y_43 = Y_34
                             // Equivalent admittance(p.u)
                             // Equivalent admittance(p.u)
56 \quad Y_44 = y_14 + y_24 + y_34
57 \text{ Y_bus} = [[Y_11, Y_12, Y_13, Y_14],
              [Y_21, Y_22, Y_23, Y_24],
58
              [Y_31, Y_32, Y_33, Y_34],
59
60
              [Y_41, Y_42, Y_43, Y_44]
                                                       // Bus
                 admittance matrix
   I_bus = [I_1,
61
62
              I_2,
63
              I_3,
64
              I_4]
  V = inv(Y_bus)*I_bus
                                                       // Bus
      voltage (p.u)
66
67 // Results
68 disp("PART II - EXAMPLE : 9.3 : SOLUTION :-")
69 printf("\nVoltage at bus 1, V_{-1} = \%.4 \, \text{f}\%.4 \, \text{fj p.u}",
      real(V(1,1:1)), imag(V(1,1:1)))
70 printf("\nVoltage at bus 2, V_2 = \%.4 \, \text{f}\%.4 \, \text{fj p.u}",
      real(V(2,1:1)), imag(V(2,1:1)))
71 printf("\nVoltage at bus 3, V_3 = \%.4f\%.4fj p.u",
      real(V(3,1:1)), imag(V(3,1:1)))
72 printf("\nVoltage at bus 4, V_{-4} = \%.4 \, \text{f}\%.4 \, \text{fj p.u\n}",
      real(V(4,1:1)),imag(V(4,1:1)))
73 printf("\nNOTE: Node equation matrix could not be
      represented in a single equation. Hence, it is
      not displayed")
```

Scilab code Exa 16.4 New bus admittance matrix Ybus

```
    // A Texbook on POWER SYSTEM ENGINEERING
    // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
    // DHANPAT RAI & Co.
```

```
// SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 9: LOAD FLOW STUDY USING COMPUTER
      TECHNIQUES
9 // EXAMPLE : 9.4 :
10 // \text{Page number } 237-238
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V_a = 1.0
                                                    //
      Voltage (p.u)
15 V_b = 1.0 * exp(%i*-36.87 * %pi/180)
      Voltage (p.u)
16 \ V_c = 1.0
      Voltage (p.u)
17 \ Z_1 = complex(0,1)
      Reactance (p.u)
18 \ Z_2 = complex(0,1)
      Reactance (p.u)
19 \ Z_3 = complex(0,1)
      Reactance (p.u)
20 \ Z_13 = complex(0,0.4)
      Reactance (p.u)
Z_{23} = complex(0,0.4)
      Reactance (p.u)
  Z_{14} = complex(0,0.2)
      Reactance (p.u)
23 \ Z_24 = complex(0,0.2)
      Reactance (p.u)
24 \ Z_34 = complex(0,0.2)
      Reactance (p.u)
25
  Z_12 = complex(0,0)
                                                    //
      Reactance (p.u)
26
27 // Calculations
```

```
// Current injection vector(p.
28 I_1 = V_a/Z_1
      u )
                              // Current injection vector(p.
   I_2 = V_b/Z_2
29
      u)
                              // Current injection vector(p.
  I_3 = V_c/Z_3
      u )
                              // Current injection vector(p.
31
  I_4 = 0.0
      u )
32 \text{ y1} = 1.0/Z_1
                                  Admittance (p.u)
33 \text{ y2} = 1.0/Z_2
                                  Admittance (p.u)
34 \text{ y3} = 1.0/Z_3
                                 Admittance (p.u)
                                 Admittance (p.u)
35 \text{ y}13 = 1.0/Z_13
36 \text{ y}23 = 1.0/Z_23
                                  Admittance (p.u)
                                 Admittance (p.u)
37 \text{ y}14 = 1.0/Z_14
38 \text{ y} 24 = 1.0/Z_24
                               // Admittance(p.u)
39 \text{ y}34 = 1.0/Z_34
                                  Admittance (p.u)
40 \text{ y} 12 = 0.0
                               // Admittance(p.u)
41 \quad Y_{11} = y_{1} + y_{13} + y_{14}
                               // Equivalent admittance(p.u)
42 \quad Y_{12} = y_{12}
                                  Equivalent admittance (p.u)
43 \quad Y_{13} = -y_{13}
                                  Equivalent admittance (p.u)
                               //
44 \quad Y_14 = -y14
                                 Equivalent admittance (p.u)
45 \quad Y_21 = Y_12
                                 Equivalent admittance (p.u)
46 \quad Y_22 = y_2 + y_23 + y_24
                               // Equivalent admittance(p.u)
                                  Equivalent admittance (p.u)
47 \quad Y_23 = -y23
  Y_{24} = -y_{24}
                                  Equivalent admittance (p.u)
48
49 \quad Y_31 = Y_13
                               // Equivalent admittance(p.u)
50 \quad Y_32 = Y_23
                                  Equivalent admittance (p.u)
  Y_33 = y_3 + y_13 + y_23 + y_34
                                  Equivalent admittance (p.u)
51
                               // Equivalent admittance(p.u)
52 \quad Y_34 = -y34
53 \quad Y_41 = Y_14
                                  Equivalent admittance (p.u)
54 \quad Y_42 = Y_24
                                  Equivalent admittance (p.u)
55 \quad Y_43 = Y_34
                                  Equivalent admittance (p.u)
56 \quad Y_44 = y_14 + y_24 + y_34
                              // Equivalent admittance(p.u)
57 \text{ Y_bus} = [[Y_11, Y_12, Y_13, Y_14],
58
               [Y_21, Y_22, Y_23, Y_24],
               [Y_31, Y_32, Y_33, Y_34],
59
                                                                 //
               [Y_41, Y_42, Y_43, Y_44]]
60
                   Bus admittance matrix
```

Scilab code Exa 16.5 Bus admittance matrix V1 and V2

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 9: LOAD FLOW STUDY USING COMPUTER
     TECHNIQUES
8
9 // EXAMPLE : 9.5 :
10 // Page number 238
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 I_1 = 2.0
                                                //
     Voltage (p.u)
15 I_2 = 2.0*exp(%i*45.0*%pi/180)
```

```
Voltage (p.u)
                                                          //
16 \text{ y1} = \text{complex}(0, -1.0)
       Admittance (p.u)
17 	 y2 = complex(0, -2.0)
       Admittance (p.u)
18 \text{ y} 12 = \text{complex}(0, -2.0)
                                                          //
       Admittance (p.u)
19
20 // Calculations
21 \quad E_1 = I_1 * y1
                                                    // Voltage
       element (p.u)
22 \quad E_2 = I_2 * y2
                                                    // Voltage
       element (p.u)
                                                    // Self
23 \quad Y_{11} = y_{1} + y_{12}
       Admittance (p.u)
24 \quad Y_{12} = -y_{12}
                                                    // Mutual
       Admittance (p.u)
                                                       Mutual
25 \quad Y_21 = Y_12
       Admittance (p.u)
                                                    // Self
26 \quad Y_22 = y_2 + y_12
       Admittance (p.u)
27 \text{ Y_bus} = [[Y_11, Y_12],
              [Y_21, Y_22]
                                                    // Bus
28
                  admittance matrix
29 I_bus = [I_1, I_n]
30
              I_2]
31 V = inv(Y_bus)*I_bus
                                                       // Voltage (
32 \quad V_1 = V(1,1:1)
      p.u)
                                                       // Voltage (
33 \quad V_2 = V(2,1:1)
      p.u)
34
35 // Results
36 disp("PART II - EXAMPLE : 9.5 : SOLUTION :-")
37 printf("n[Y_bus] = n"); disp(Y_bus)
38 printf("\nV_1 = \%.3 \ f \% .1 \ f \ p.u", abs(V_1),
       phasemag(V_1))
39 printf("\nV_2 = \%.3 \ f \% .1 f p.u\n", abs(\nV_2),
```

Scilab code Exa 16.6 Bus impedance matrix Zbus

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 9: LOAD FLOW STUDY USING COMPUTER
     TECHNIQUES
9 // EXAMPLE : 9.6 :
10 // Page number 238
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ Y_bus} = [[-\%i*10.5, 0, \%i*5.0, \%i*5.0],
             [0, -\%i*8.0, \%i*2.5, \%i*5.0],
15
16
            [\%i*5.0, \%i*2.5, -\%i*18.0, \%i*10.0],
            [%i*5.0, %i*5.0, %i*10.0, -%i*20.0]]
17
                                                      //
               Bus admittance matrix
18
19 // Calculations
20 \text{ Z_bus} = inv(Y_bus)
                                                      //
      Bus impedance matrix
21
22 // Results
23 disp("PART II - EXAMPLE : 9.6 : SOLUTION :-")
24 printf("\n[Z_bus] = \n'); disp(Z_bus)
```

Scilab code Exa 16.7 Power flow expressions

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 9: LOAD FLOW STUDY USING COMPUTER
      TECHNIQUES
8
9 // EXAMPLE : 9.7 :
10 // Page number 239
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ Y_C} = \text{complex}(0,0.1)
                                              Shunt
      admittance (mho)
15 \ Z_L = complex(0,0.2)
                                           // Series
      impedance (mho)
16
17 // Calculations
                                           // Series
18 \quad Y_L = 1.0/Z_L
      admittance (mho)
19 \quad Y\_11 = Y\_C+Y\_C+Y\_L+Y\_L
                                           // Admittance (mho)
20 \quad Y_12 = -Y_L
                                           // Admittance (mho)
                                           // Admittance (mho)
21 \quad Y_{13} = -Y_{L}
22 \quad Y_21 = Y_12
                                           // Admittance (mho)
                                           // Admittance (mho)
23 \quad Y_22 = Y_L+Y_L+Y_C+Y_C
                                           // Admittance (mho)
24 \quad Y_23 = -Y_L
25 \quad Y_31 = Y_13
                                           // Admittance (mho)
26 \quad Y_32 = Y_23
                                           // Admittance (mho)
27 	 Y_33 = Y_L + Y_L + Y_C + Y_C
                                           // Admittance (mho)
```

```
28 \text{ Y_bus} = [[Y_11, Y_12, Y_13],
              [Y_21, Y_22, Y_23],
29
              [Y_31, Y_32, Y_33]]
                                      // Bus admittance
30
                 matrix
31 S_11 = conj(Y_bus(1,1:1))
32 S_{12} = conj(Y_bus(1,2:2))
33 S_13 = conj(Y_bus(1,3:3))
34 S_21 = S_12
35 \text{ S}_{22} = \text{conj}(Y_\text{bus}(2,2:2))
36 \text{ S}_23 = \text{conj}(Y_bus(2,3:3))
37 S_31 = S_13
38 S_32 = S_23
39 S_33 = conj(Y_bus(3,3:3))
40
41 // Results
42 disp("PART II - EXAMPLE : 9.7 : SOLUTION :-")
43 printf("\nPower flow expressions are:")
44 printf ("\nS_1 = \%.1 fj | V_1|^2 \%.1 fjV_1V_2 * \%.1 fjV_3 *"
       , imag(S_11),imag(S_12),imag(S_13))
45 printf ("\nS_2 = \%.1 \text{ fjV}_2 \text{V}_1 * + \%.1 \text{ fj} |V_2|^2 \%.1
      fjV_2V_3*, imag(S_21), imag(S_22), imag(S_23))
46 printf ("\nS_3 = \%.1 fjV_3V_1 * \%.1 fjV_3V_2 * + \%.1 fj |
      V_{-3}|^2, imag(S_31), imag(S_32), imag(S_33))
```

Scilab code Exa 16.8 Voltage V2 by GS method

```
9 // EXAMPLE : 9.8 :
10 // Page number 242
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V_1 = 1.0
                                        // Voltage(p.u)
15 S_g2 = complex(0,1.0)
                                       // Complex power
      generated (p.u)
16 \text{ S_D2} = \text{complex}(0.5, 1.0)
                                       // Complex power
      demand (p.u)
                                        // Impedance(p.u)
17 \ Z_L = complex(0,0.5)
18
19 // Calculations
                                                         //
20 \quad Y_L = 1.0/Z_L
      Admittance (p.u)
21 \quad Y_22 = Y_L
      Admittance (mho)
22 \quad Y_21 = -Y_L
      Admittance (mho)
23 S_2 = S_g2 - S_D2
24 \quad V_2_0 = 1.0
      Initial guess
V_2 = 1.0/Y_2 * ((conj(S_2/V_2_0)) - Y_2 * V_1)
                                                         //
      V_{-2}(p.u). In 1st iteration
V_{20} = 1.0/Y_{22}*((conj(S_2/V_{21}))-Y_{21}*V_{1})
                                                         //
      V_2(p.u). In 2nd iteration
27 V_2_3 = 1.0/Y_22*((conj(S_2/V_2_2))-Y_21*V_1)
                                                         //
      V<sub>2</sub>(p.u). In 3rd iteration
V_2_4 = 1.0/Y_22*((conj(S_2/V_2_3))-Y_21*V_1)
                                                         //
      V_2(p.u). In 4th iteration
29 \quad V_2_5 = 1.0/Y_22*((conj(S_2/V_2_4))-Y_21*V_1)
                                                         //
      V_{2}(p.u). In 5th iteration
                                                         //
30 \quad V_2_6 = 1.0/Y_22*((conj(S_2/V_2_5))-Y_21*V_1)
      V_2(p.u). In 6th iteration
31
32 // Results
33 disp("PART II - EXAMPLE : 9.8 : SOLUTION :-")
```

34 printf("\nBy G—S method, V_2 = %.6 f % .5 f p.u\n", abs(V_2_6),phasemag(V_2_6))

Chapter 17

POWER SYSTEM STABILITY

Scilab code Exa 17.1 Operating power angle and Magnitude of PO

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.1 :
10 // Page number 270
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
              // Impedance of transmission line(p.u
14 Z = 0.1
    )
17
```

Scilab code Exa 17.2 Minimum value of E and VL Maximum power limit and Steady stat

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.2 :
10 // Page number 270
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                  // Reactance(p.u)
14 x_s = 0.85
                  // Reactance(p.u)
15 \quad x_T1 = 0.157
                 // Reactance(p.u)
16 \quad x_T2 = 0.157
17 x_11 = 0.35
                  // Reactance(p.u)
                  // Reactance (p.u)
18 x_12 = 0.35
19 E = 1.50
                  // Sending end voltage(p.u)
20 V_L = 1.0
                  // Load voltage(p.u)
```

```
// Stable power output(p.u)
21 P_0 = 1.0
22
23 // Calculations
24 x = x_s + x_T + x_T + (x_1 / 2)
                                         // Total
      reactance (p.u)
25 \quad P_{max} = E*V_L/x
                                         // Maximum power
      limit (p.u)
26 M = (P_max - P_0)/P_max*100
                                         // Steady state
      stability margin (%)
  V_Lmin = P_0*x/E
                                            Minimum value
      of V_L(p.u)
28 \quad E_min = P_0*x/V_L
                                         // Minimum value
      of E(p.u)
29
30 // Results
31 disp("PART II - EXAMPLE : 10.2 : SOLUTION :-")
32 printf("\nMinimum value of |E|, |E_{min}| = \%.3 \, f \, p.u",
       E_min)
33 printf("\nMinimum value of |V_L|, |V_L| = \%.3 f p.
      u", V_Lmin)
34 printf("\nMaximum power limit, P_0 = \%.2 f p.u",
      P_max)
35 printf ("\nSteady state stability margin, M = \%.1 f
      percent", M)
```

 ${f Scilab\ code\ Exa\ 17.3\ Maximum\ power\ transfer\ if\ shunt\ inductor\ and\ Shunt\ capacitor}$

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 10: POWER SYSTEM STABILITY
```

```
9 // EXAMPLE : 10.3 :
10 // Page number 270-271
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 E_1 = 1.25
                    // Sending end voltage(p.u)
                    // Reactance (p.u)
15 x_d = 1.0
                    // Reactance(p.u)
16 x_T1 = 0.2
                    // Reactance (p.u)
17 x_11 = 1.0
18 x_12 = 1.0
                    // Reactance (p.u)
                    // Reactance (p.u)
19 x_T2 = 0.2
                    // Receiving end voltage(p.u)
20 \quad E_2 = 1.0
                    // Shunt inductor reactance (p.u)
21 x_L = 1.0
22 x_C = 1.0
                    // Shunt capacitor reactance (p.u)
23
24 // Calculations
25 // Case(a)
                                                  //
26 \quad Z_1_a = x_d+x_T1+(x_11/2.0)
      Reactance (p.u)
  Z_2_a = x_T2+x_d
      Reactance (p.u)
28 \quad Z_3_a = x_L
      Reactance (p.u)
29 \quad Z_a = Z_1_a+Z_2_a+(Z_1_a*Z_2_a/Z_3_a)
                                                  // Transfer
       reactance (p.u)
30 \text{ P_max_1} = \text{E_1}*\text{E_2}/\text{Z_a}
                                                  // Maximum
      power transfer if shunt inductor is connected at
      bus 2(p.u)
31 // Case (b)
32 \quad Z_1_b = x_d+x_T1+(x_11/2.0)
                                                  //
      Reactance (p.u)
33 \quad Z_2_b = x_T2 + x_d
      Reactance (p.u)
34 \ Z_3_b = -x_C
      Reactance (p.u)
35 \quad Z_b = Z_1_b+Z_2_b+(Z_1_b*Z_2_b/Z_3_b)
                                                  // Transfer
       reactance (p.u)
```

Scilab code Exa 17.4 Maximum power transfer and Stability margin

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 10: POWER SYSTEM STABILITY
8
9 // EXAMPLE : 10.4 :
10 // Page number 271
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V = 400.0
                       // Voltage (kV)
                       // Line length (km)
15 L = 220.0
16 P = 0.58
                      // Initial real power transfer(p.
     u )
17 \text{ PF} = 0.85
                       // Lagging power factor
18 V_L = 1.00
                       // Load bus voltage(p.u)
```

```
19 x_d = 0.460
                       // Reactance(p.u)
                       // Reactance(p.u)
20 x_T1 = 0.200
                       // Reactance(p.u)
21 x_T2 = 0.15
22 \text{ x\_line} = 0.7
                       // Reactance(p.u)
23
24 // Calculations
25 x = x_d+x_T1+x_T2+(x_line/2)
                                                     // Net
       reactance (p.u)
26 \text{ phi} = acosd(PF)
27 Q = P*tand(phi)
      Reactive power(p.u)
28 E = ((V_L+(Q*x/V_L))**2+(P*x/V_L)**2)**0.5
      Excitation voltage of generator (p.u)
29 \quad P_{max} = E*V_L/x
      Maximum power transfer (p.u)
30 M = (P_max-P)/P_max*100
      Steady state stability margin (%)
31
32 // Results
33 disp("PART II - EXAMPLE : 10.4 : SOLUTION :-")
34 printf("\nMaximum power transfer, P_{max} = \%.2 f p.u",
       P_max)
35 printf("\nStability margin, M = \%.f percent", M)
```

 ${f Scilab\ code\ Exa\ 17.5\ QgB\ Phase\ angle\ of\ VB\ and\ What\ happens\ if\ QgB\ is\ made\ zero}$

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 10: POWER SYSTEM STABILITY
```

```
9 // EXAMPLE : 10.5 :
10 // Page number 271-272
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad V_A = 1.0
                        // Voltage at bus A(p.u)
                        // Impedance(p.u)
15 \quad Z_AB = \%i*0.5
                        // p.u
16 \, S_DA = 1.0
                        // p.u
17 \text{ S}_{DB} = 1.0
18 \ V_B = 1.0
                        // Voltage at bus B(p.u)
19
20 // Calculations
21 // Case(i) & (ii)
22 X = abs(Z_AB)
      Reactance (p.u)
23 \sin_{\text{delta}} = 1.0*X/(V_A*V_B)
                                                      // Sin
24 delta = asind(sin_delta)
       )
25 \quad V_2 = V_B
26 \quad V_1 = V_A
27 \ Q_gB = (V_2**2/X) - (V_2*V_1*cosd(delta)/X)
28 // Case(iii)
29 \quad V_2_3 = 1/2.0**0.5
      Solving quadratic equation from textbook
  delta_3 = acosd(V_2_3)
31
32 // Results
33 disp("PART II - EXAMPLE : 10.5 : SOLUTION :-")
34 printf("\nCase(i) : Q_gB = \%.3 f", Q_gB)
35 printf("\nCase(ii): Phase angle of V_B,
      ", delta)
36 printf("\nCase(iii): If Q_gB is equal to zero then
      amount of power transmitted is, V_{-2} = \%.3 f %.
          ", V_2_3,delta_3)
```

Scilab code Exa 17.6 Steady state stability limit with two terminal voltages const

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
 3 // DHANPAT RAI & Co.
4 // SECOND EDITION
 6 // PART II : TRANSMISSION AND DISTRIBUTION
 7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.6 :
10 // Page number 272
11 clear; clc; close; // Clear the work space and
      console
12 funcprot(0)
13
14 // Given data
15 A = 0.98*exp(%i*0.3*%pi/180) // Constant

16 B = 82.5*exp(%i*76.0*%pi/180) // Constant(ohm)

17 C = 0.0005*exp(%i*90.0*%pi/180) // Constant(mho)
18 D = A
                                             // Constant
                                            // Sending end
19 \ V_S = 110.0
      voltage (kV)
20 V_R = 110.0
                                             // Receiving end
      voltage (kV)
21
22 // Calculations
23 alpha = phasemag(A)
      // ( )
24 beta = phasemag(B)
      // ( )
25 P_{max} = (V_S*V_R/abs(B))-(abs(A)*V_R**2/abs(B)*cosd
```

```
((beta-alpha))) // Maximum power transfer (MW)
26 \text{ B_new} = abs(B)*sind(beta)
      Constant (ohm)
27 \text{ beta_new} = 90.0
      // ( )
28 \quad P_{max_new} = (V_S*V_R/B_new) - (V_R**2/B_new*cosd(
                     // Maximum power transfer (MW
      beta_new))
29
30 // Results
31 disp("PART II - EXAMPLE : 10.6 : SOLUTION :-")
32 printf("\nSteady state stability limit, P_{-max} = \%.2 f
      MW', P_{max})
33 printf("\nSteady state stability limit if shunt
      admittance is zero & series resistance neglected,
       P_{\text{max}} = \%.2 \text{ f MW } \text{n}", P_{\text{max}}
34 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to precision")
```

Scilab code Exa 17.8 Power angle diagram Maximum power the line is capable of trans

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 10: POWER SYSTEM STABILITY
// EXAMPLE : 10.8 :
// Page number 273-275
```


Figure 17.1: Power angle diagram Maximum power the line is capable of transmitting and Power transmitted with equal voltage at both ends

```
11 clear; clc; close; // Clear the work space and
      console
12 funcprot(0)
13
14 // Given data
15 \quad V = 33.0*10**3
                           // Line voltage(V)
                           // Resistance per phase(ohm)
16 R = 6.0
                           // Reactance per phase (ohm)
17 X = 15.0
18
19 // Calculations
20 V_S = V/3**0.5
      Sending end phase voltage (V)
21 V_R = V/3**0.5
      Receiving end phase voltage(V)
22 \text{ beta} = \text{atand}(X/R)
23 \ Z = (R**2+X**2)**0.5
      Impedance (ohm)
24 \text{ delta_0} = 0.0
                                                         //
25 P_0 = (V_R/Z**2)*(V_S*Z*cosd((delta_0-beta))-V_R*R)
      /10**6 // Power received (MW/phase)
26 \text{ delta}_1 = 30.0
                                                        //
27 P_1 = (V_R/Z**2)*(V_S*Z*cosd((delta_1-beta))-V_R*R)
      /10**6 // Power received (MW/phase)
28 \text{ delta}_2 = 60.0
                                                        //
29 P_2 = (V_R/Z**2)*(V_S*Z*cosd((delta_2-beta))-V_R*R)
      /10**6 // Power received (MW/phase)
30 \text{ delta}_3 = \text{beta}
```

```
//
31 P_3 = (V_R/Z**2)*(V_S*Z*cosd((delta_3-beta))-V_R*R)
      /10**6 // Power received (MW/phase)
32 \text{ delta}_4 = 90.0
                                                       //
33 P_4 = (V_R/Z**2)*(V_S*Z*cosd((delta_4-beta))-V_R*R)
      /10**6 // Power received (MW/phase)
34 \text{ delta}_5 = 120.0
                                                      //
35 P_5 = (V_R/Z**2)*(V_S*Z*cosd((delta_5-beta))-V_R*R)
      /10**6 // Power received (MW/phase)
36 \text{ delta}_6 = (acosd(R/Z)) + beta
                                         // ( )
37 P_6 = (V_R/Z**2)*(V_S*Z*cosd((delta_6-beta))-V_R*R)
      /10**6 // Power received (MW/phase)
38
39
40 delta = [delta_0,delta_1,delta_2,delta_3,delta_4,
      delta_5,delta_6]
41 P = [P_0, P_1, P_2, P_3, P_4, P_5, P_6]
42 \ a = gca() ;
43 a.thickness = 2
      sets thickness of plot
44 plot(delta,P,'ro-')
45 a.x_label.text = 'Electrical degree'
      labels x-axis
46 a.y_label.text = 'Power in MW/phase'
      labels y-axis
47 xtitle ("Fig E10.7 . Power angle diagram")
48 xset('thickness',2)
                                                         //
      sets thickness of axes
49 xstring (70,14.12, 'P_max = 14.12 MW/phase(
      approximately)')
50 \text{ P_max} = \text{V_R/Z} **2*(\text{V_S*Z-V_R*R})/10**6
                                           // Maximum
```

```
power transmitted (MW/phase)
51 delta_equal = 0.0

// With no phase shift()
52 P_no_shift = (V_R/Z**2)*(V_S*Z*cosd((delta_equal-beta))-V_R*R)/10**6 // Power transmitted with no phase shift (MW/phase)
53
54 // Results
55 disp("PART II - EXAMPLE : 10.8 : SOLUTION :-")
56 printf("\nPower angle diagram is plotted and is shown in the Figure 1")
57 printf("\nMaximum power the line is capable of transmitting, P_max = %.2 f MW/phase", P_max)
58 printf("\nWith equal voltage at both ends power transmitted = %.f MW/phase", abs(P_no_shift))
```

Scilab code Exa 17.9 Maximum steady state power that can be transmitted over the 1

```
// Line impedance per
15 Z_line = complex(4,6)
      phase (ohm)
16
17 // Calculations
18 \ V_S = V/3**0.5
      Sending end phase voltage (V)
19 V_R = V/3**0.5
      Receiving end phase voltage (V)
20 Z = abs(Z_line)
      Impedance (ohm)
21 R = real(Z_line)
      Resistance per phase (ohm)
22 \text{ P_max_phase} = ((V_S*V_R/Z) - (R*V_R**2/Z**2))/10**6
           // Maximum steady state power that can be
      transmitted over the line (MW/phase)
23 P_{max_total} = 3.0*P_{max_phase}
                                 // Maximum steady state
      power that can be transmitted over the line (MW)
24
25 // Results
26 disp("PART II - EXAMPLE : 10.9 : SOLUTION :-")
27 printf("\nMaximum steady state power that can be
      transmitted over the line, P_{-}max = \%.f~MW (total
     3-phase)", P_max_total)
```

 ${
m Scilab\ code\ Exa\ 17.10\ Maximum\ steady\ state\ power\ Value\ of\ P\ and\ Q\ if\ static\ capacitation and in the static capacitation of the static c$

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
```

```
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.10 :
10 // Page number 275-276
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                   // Sending end voltage(p.u)
14 E_1 = 1.1
                   // Reactance(p.u)
15 x_d1 = 1.0
                   // Reactance(p.u)
16 x_T1 = 0.1
                  // Reactance(p.u)
17 x_11 = 0.4
                   // Reactance (p.u)
18 x_12 = 0.4
                   // Reactance(p.u)
19 x_T2 = 0.1
                   // Receiving end voltage(p.u)
20 \quad E_2 = 1.0
                   // Reactance(p.u)
21 x_d2 = 1.0
22 x_L = 1.0
                   // Shunt inductor reactance(p.u)
23 \text{ x_C} = 1.0
                   // Static capacitor reactance (p.u)
24 \text{ delta} = 30.0
                   // ( )
25
26 // Calculations
27 // Case(a)
Z_1_a = x_d1+x_T1+(x_11/2.0)
                                   // Reactance(p.u)
29 X_1_a = \%i*Z_1_a
30 \ Z_2_a = x_T2+x_d2
      Reactance (p.u)
31 \quad X_2_a = \%i * Z_2_a
32 \ Z_3_a = -x_C
                                                     //
      Reactance (p.u)
33 X_3_a = \%i*Z_3_a
34 \quad X_a = X_1_a+X_2_a+(X_1_a*X_2_a/X_3_a)
                         // Transfer reactance (p.u)
35 P_{max_a} = E_1*E_2/abs(X_a)
```

```
// Maximum steady
      state power if static capacitor is connected (p.u)
36 P_a = P_max_a*sind(delta)
                                        // Value of P(p.u)
37 \ Q_a = (E_1*E_2/abs(X_a))*cosd(delta)-(E_2**2/abs(X_a))
      )) // Value of Q(p.u)
  // Case (b)
39 \quad Z_1_b = x_d1+x_T1+(x_11/2.0)
                                    // Reactance(p.u)
40 \quad X_1_b = \%i * Z_1_b
41 \quad Z_2_b = x_T2 + x_d2
      Reactance (p.u)
42 \quad X_2_b = \%i * Z_2_b
43 \ Z_3_b = x_L
                                                       //
      Reactance (p.u)
44 \quad X_3_b = \%i*Z_3_b
45 \quad X_b = X_1_b + X_2_b + (X_1_b * X_2_b / X_3_b)
                          // Transfer reactance(p.u)
46 \quad P_{max_b} = E_1*E_2/abs(X_b)
                                       // Maximum steady
      state power if static capacitor is replaced by an
       inductive reactor (p.u)
47 P_b = P_{max_b*sind(delta)}
                                        // Value of P(p.u)
  Q_b = (E_1*E_2/abs(X_b))*cosd(delta)-(E_2**2/abs(X_b))*cosd(delta)
      )) // Value of Q(p.u)
49
50 // Results
51 disp("PART II - EXAMPLE : 10.10 : SOLUTION :-")
52 printf("\nCase(a): Maximum steady state power if
      static capacitor is connected, P_max = \%.3 f p.u",
       P_max_a)
53 printf("\n
                        Value of P = \%.3 f p.u, P_a
                       Value of Q = \%.3 f p.u, Q_a
54 printf("\n
55 printf("\nCase(b): Maximum steady state power if
      static capacitor is replaced by an inductive
```

Scilab code Exa 17.11 Kinetic energy stored in the rotor at synchronous speed and

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.11 :
10 // Page number 303
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 50.0
                   // Frequency (Hz)
                  // Rating of generator (MVA)
15 G = 100.0
                  // Inertia constant (MJ/MVA)
16 H = 5.0
17 P_a = 20.0
                  // Acceleration power (MVA)
18
19 // Calculations
20 \text{ GH} = \text{G}*\text{H}
                            // Energy stored in rotor at
      synchronous speed (MJ)
21 M = GH/(180*f)
                            // Angular momentum
22 acceleration = P_a/M // Acceleration ( /sec^2)
23
24 // Results
25 disp("PART II - EXAMPLE : 10.11 : SOLUTION :-")
26 printf("\nKinetic energy stored in the rotor at
      synchronous speed, GH = \%. f MJ", GH)
```

```
27 printf("\n Acceleration = \%. f /\sec^2", acceleration)
```

Scilab code Exa 17.12 Kinetic energy stored in the rotor at synchronous speed and

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.12 :
10 // Page number 303-304
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 50.0
                     // Frequency (Hz)
                    // Number of poles
15 P = 4.0
                   // Rating of generator (MVA)
16 G = 20.0
                    // Inertia constant (kWsec/MVA)
17 H = 9.0
18 P_m = 26800.0 // Rotational loss(hp)
                    // Electric power developed (kW)
19 P_e = 16000.0
20
21 // Calculations
22 \text{ GH} = \text{G}*\text{H}
      Energy stored in rotor at synchronous speed (MJ)
23 P_m_kW = P_m*0.746
     Rotational loss (kW)
24 P_a = P_m_kW-P_e
      Acceleration power (kW)
25 P_a1 = P_a/1000.0
      Acceleration power (MW)
26 M = GH/(180*f)
```

```
Angular momentum

27 acceleration = P_a1/M // Acceleration( /sec^2)

28 acceleration_1 = acceleration*%pi/180.0 // Acceleration(rad/sec^2)

29

30 // Results

31 disp("PART II - EXAMPLE : 10.12 : SOLUTION :-")

32 printf("\nKinetic energy stored in the rotor at synchronous speed, GH = %.f MJ", GH)

33 printf("\nAcceleration = %.f /sec^2 = %.2f rad/sec^2 \n", acceleration, acceleration_1)

34 printf("\nNOTE: ERROR: H = 9 kW-sec/MVA, not 9 kW-sec/kVA as mentioned in the textbook statement")
```

 ${\it Scilab\ code\ Exa\ 17.13}$ Change in torque angle in that period and RPM at the end of

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.13 :
10 // Page number 304
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 	 f = 50.0
                       // Frequency(Hz)
// Number of poles
15 P = 4.0
16 \text{ alpha} = 200.0
                      // Acceleration ( /sec^2)
17 \text{ alpha}_{rad} = 3.49
                       // Acceleration (rad/sec^2)
```

```
// Number of cycle
18 n = 10.0
19
20 // Calculations
21 t = 1/f*n
                                                  // Time (sec
22 \text{ delta_rel} = ((alpha_rad*2)**0.5*0.5)**2
                                                  // Relation
       of change in rotor angle with time (rad)
23 delta = delta_rel*t**2
                                                  // Change
      in torque angle (rad)
  delta_deg = delta*180/%pi
                                                  // Change
      in torque angle in that period (
25 \text{ rpm\_rad} = (alpha\_rad*2*delta)**0.5
                                                  // r.p.m(
      rad/sec)
26 rpm = rpm_rad*60.0/(%pi*P)
                                                  // r.p.m
27 \text{ speed\_rotor} = (120*f/P) + rpm
                                                  // Rotor
      speed at the end of 10 cycles(r.p.m)
28
29 // Results
30 disp("PART II - EXAMPLE : 10.13 : SOLUTION :-")
31 printf("\nChange in torque angle in that period,
      = \%.4 \, \text{f} \, \text{rad} = \%. \, \text{f} \, \text{elect degree}, delta,delta_deg)
32 printf("\nRotor speed at the end of 10 cycles = \%.2 f
       r.p.m", speed_rotor)
```

Scilab code Exa 17.14 Accelerating torque at the time the fault occurs

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 10: POWER SYSTEM STABILITY
// EXAMPLE : 10.14 :
```

```
10 // Page number 304
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ Power} = 20.0*10**3
                               // Rating of generator (kVA)
                               // Lagging power factor
15 \text{ PF} = 0.8
                               // Reduction in output
16 \text{ fault} = 0.5
      under fault
17 P = 4.0
                               // Number of poles
18 f = 50.0
                               // Frequency (Hz)
19
20 // Calculations
21 P_m = Power*PF
                               // Output power before
      fault (kW)
                               // Output after fault (kW)
22 P_e = fault*P_m
23 \quad P_a = P_m - P_e
                               // Accelerating power(kW)
24 \text{ w_s} = 4.0 * \% \text{pi*f/P}
                               // Speed
25 T_a = P_a*10**3/w_s
                               // Accelerating torque at
      the time the fault occurs (N-m)
26
27 // Results
28 disp("PART II - EXAMPLE : 10.14 : SOLUTION :-")
29 printf("\nAccelerating torque at the time the fault
      occurs, T_a = \%.2 \text{ f N-m}, T_a)
```

Scilab code Exa 17.16 Value of H and in 100 MVA base

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A.Chakrabarti , M.L.Soni , P.V.Gupta , U.S.Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 10: POWER SYSTEM STABILITY
```

```
9 // EXAMPLE : 10.16 :
10 // Page number 304-305
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                        // Rating of generator (MVA)
14 S = 1000.0
                        // Speed of alternator(r.p.m)
15 N = 1500.0
16 WR_sq = 5.0*10**6 // WR^2(lb.ft^2)
17
18 // Calculations
19 H = 2.31*10**-10*WR_sq*N**2/S
                                       // Inertia
      constant (MJ/MVA)
20 \text{ H}_100 = \text{H}*1000.0/100
                                        // Inertia
      constant on 100 MVA(MJ/MVA)
21
22 // Results
23 disp("PART II - EXAMPLE : 10.16 : SOLUTION :-")
24 printf("\nValue of inertia constant, H = \%.1 f MJ/MVA
     ", H)
25 printf("\nValue of inertia constant in 100 MVA base,
      H = \%. f MJ/MVA, H_100)
```

Scilab code Exa 17.17 Equivalent H for the two to common 100 MVA base

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 10: POWER SYSTEM STABILITY
// EXAMPLE : 10.17 :
```

```
10 // Page number 305
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ MVA}_1 = 500.0
                          // Rating of generator (MVA)
                          // Inertia constant (MJ/VA)
15 \text{ H}_{1} = 4.0
                          // Rating of generator (MVA)
16 \text{ MVA}_2 = 1000.0
                          // Inertia constant (MJ/VA)
17 \text{ H}_2 = 3.5
                          // Base MVA
18 \text{ MVA} = 100.0
19
20 // Calculations
21 KE_T = H_1*MVA_1+H_2*MVA_2 // Total KE of the
      system (MJ)
22 H_total = KE_T/MVA
                                     // Equivalent H for
      the two to common 100MVA base (MJ/MVA)
23
24 // Results
25 disp("PART II - EXAMPLE : 10.17 : SOLUTION :-")
26 printf("\nEquivalent H for the two to common 100 MVA
       base, H = \%. f MJ/MVA", H_{total})
```

 ${f Scilab\ code\ Exa\ 17.18}$ Energy stored in the rotor at the rated speed Value of H and

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 10: POWER SYSTEM STABILITY
8
9 // EXAMPLE : 10.18 :
10 // Page number 305
11 clear ; clc ; close ; // Clear the work space and
```

```
console
12
13 // Given data
14 \text{ MVA} = 210.0
                          // Rating of generator (MVA)
15 P = 2.0
                           // Number of poles
16 f = 50.0
                           // Frequency (Hz)
17 \text{ MI} = 60.0*10**3
                           // Moment of inertia (kg-mt^2)
18
19 // Calculations
                                               // Speed(r.
20 N = 120.0*f/P
      p.m)
21 KE = 1.0/2*MI*(2*\%pi*N/f)**2/10**6
                                               // Energy
      stored in the rotor at rated speed (MJ)
22 H = KE/MVA
                                               // Inertia
      constant (MJ/MVA)
23 G = MVA
24 M = G*H/(180*f)
                                               // Angular
     momentum (MJ-sec/elect.degree)
25
26 // Results
27 disp("PART II - EXAMPLE : 10.18 : SOLUTION :-")
28 printf("\nEnergy stored in the rotor at the rated
      speed, KE = \%.2e MJ", KE)
  printf("\nValue of inertia constant, H = %.2f MJ/MVA
30 printf("\nAngular momentum, M = \%.3 f MJ-sec/elect.
      degree", M)
```

Scilab code Exa 17.19 Acceleration of the rotor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
```

```
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.19 :
10 // Page number 305
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                          // Acceleration power (MVA)
14 P_{accl} = 30.0
                           // Angular momentum (MJ-sec/
15 M = 0.474
      elect.degree). From Example 10.18
16
17 // Calculations
                                 // Acceleration of the
18 acceleration = P_accl/M
      rotor (elect.degree/sec^2)
19
20 // Results
21 disp("PART II - EXAMPLE : 10.19 : SOLUTION :-")
22 printf("\nAcceleration of the rotor = \%.2 f elect.
      \operatorname{degree}/\operatorname{sec}^2", acceleration)
```

Scilab code Exa 17.20 Accelerating power and New power angle after 10 cycles

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 10: POWER SYSTEM STABILITY
8
9  // EXAMPLE : 10.20 :
10  // Page number 305
11 clear ; clc ; close ; // Clear the work space and
```

```
console
12
13 // Given data
                           // Rating of alternator (MVA)
14 \text{ MVA} = 50.0
15 P = 4.0
                           // Number of poles
16 f = 50.0
                           // Frequency (Hz)
                           // Kinetic energy stored in
17 \text{ KE} = 150.0
      rotor (MJ)
18 P_m = 25.0
                           // Machine input (MW)
                           // Developed power (MW)
19 P_e = 22.5
20 n = 10.0
                           // Number of cycles
21
22 // Calculations
23 \quad P_a = P_m - P_e
                               // Accelerating power (MW)
24 H = KE/MVA
                               // Inertia constant (MJ/MVA)
25 G = MVA
26 \text{ M\_deg} = G*H/(180*f)
                               // Angular momentum (MJ-sec/
      elect.degree)
27 \quad M = G*H/(\%pi*f)
                               // Angular momentum (MJ-sec/
      rad)
28 acceleration = P_a/M
                               // Accelerating power(rad/
      sec^2
29 t = 1/f*n
                               // Time(sec)
30 \text{ delta} = 1.309*t**2
                               // Term in
31
32 // Results
33 disp("PART II - EXAMPLE : 10.20 : SOLUTION :-")
34 printf("\nAccelerating power = \%.3 \, \text{f rad/sec}^2",
      acceleration)
35 printf ("\nNew power angle after 10 cycles, = (\%.3)
      f + _0 ) rad", delta)
```

Scilab code Exa 17.21 Kinetic energy stored by rotor at synchronous speed and Acce

1 // A Texbook on POWER SYSTEM ENGINEERING

```
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 10: POWER SYSTEM STABILITY
8
9 // EXAMPLE : 10.21 :
10 // Page number 305-306
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 50.0
                   // Frequency (Hz)
                   // Number of poles
15 P = 4.0
16 G = 20.0
                   // Rating of turbo-generator (MVA)
17 V = 13.2
                   // Voltage (kV)
                   // Inertia constant (kW-sec/kVA)
18 H = 9.0
                   // Input power less rotational loss (
19 P_s = 20.0
     MW)
20 P_e = 15.0
                   // Output power (MW)
21
22 // Calculations
23 \text{ KE} = G*H
                                      // Kinetic energy
     stored (MJ)
24 M = G*H/(180*f)
                                      // Angular momentum
     (MJ-sec/elect.degree)
25 P_a = P_s-P_e
                                      // Accelerating
     power (MW)
                                      // Acceleration (
  alpha = P_a/M
      elect.degree/sec^2)
  alpha_deg = alpha/2.0
                                     // Acceleration (
27
      degree/sec^2)
  alpha_rpm = 60.0*alpha_deg/360 // Acceleration(rpm
     /sec)
29
30 // Results
31 disp("PART II - EXAMPLE : 10.21 : SOLUTION :-")
```

Scilab code Exa 17.22 Change in torque angle and Speed in rpm at the end of 10 cyc

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
_3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 10: POWER SYSTEM STABILITY
8
9 // EXAMPLE : 10.22 :
10 // Page number 306
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                   // Frequency (Hz)
14 f = 50.0
15 P = 4.0
                   // Number of poles
                  // Rating of turbo-generator (MVA)
16 G = 20.0
                   // Voltage (kV)
17 V = 13.2
18 H = 9.0
                   // Inertia constant (kW-sec/kVA)
                   // Input power less rotational loss (
19 P_s = 20.0
     MW)
20 P_e = 15.0
                   // Output power (MW)
                   // Number of cycles
21 n = 10.0
22
23 // Calculations
24 \text{ KE} = G*H
                                      // Kinetic energy
```

```
stored (MJ)
25 M = G*H/(180*f)
                                       // Angular momentum
      (MJ-sec/elect.degree)
26 \quad P_a = P_s-P_e
                                       // Accelerating
      power (MW)
27 \text{ alpha} = P_a/M
                                       // Acceleration (
      elect.degree/sec^2)
  alpha_deg = alpha/2.0
                                       // Acceleration (
      degree/sec^2)
  alpha_rpm = 60.0*alpha_deg/360
                                      // Acceleration (rpm
29
      /sec)
30 t = 1.0/f*n
                                       // Time (sec)
31 \text{ delta} = 1.0/2*alpha*t**2
                                       // Change in torque
       angle (elect.degree)
32 N_s = 120*f/P
                                       // Synchronous
      speed (rpm)
33 speed = N_s+alpha_rpm*t
                                       // Speed at the end
       of 10 cycles (rpm)
34
35 // Results
36 disp("PART II - EXAMPLE : 10.22 : SOLUTION :-")
37 printf("\nChange in torque angle in that period,
     = %. f elect degrees.", delta)
38 printf("\nSpeed in rpm at the end of 10 cycles = \%.2
      f rpm", speed)
```

Scilab code Exa 17.23 Accelerating torque at the time of fault occurrence

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 10: POWER SYSTEM STABILITY
```

```
9 // EXAMPLE : 10.23 :
10 // Page number 306
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 G = 20.0
                    // Rating of turbo-generator (MVA)
                  // Lagging power factor
15 \text{ PF} = 0.75
                   // Fault reduces output power
16 \text{ fault} = 0.5
17 N_s = 1500.0 // Synchronous speed (rpm). From
      Example 10.22
18
19 // Calculations
20 P_prefault = PF*G // Pre-fault output power(
     MW
21 \text{ P_a} = \text{P_prefault*fault} // \text{Post-fault output power}
      (MW)
22 w = 2.0 * \%pi * N_s/60
                              // (rad/sec)
23 \text{ T_a} = P_a*10**6/w
                              // Accelerating torque at
      the time of fault occurrence (N-m)
24
25 // Results
26 disp("PART II - EXAMPLE : 10.23 : SOLUTION :-")
27 printf("\nAccelerating torque at the time of fault
      occurrence, T_a = \%.f N-m, T_a
```

Scilab code Exa 17.24 Swing equation

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
```

```
7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.24 :
10 // Page number 306-307
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 x_d = \%i*0.2
                         // Transient reactance of
      generator (p.u)
                         // Power delivered(p.u)
15 P_e = 0.8
                        // Terminal voltage(p.u)
16 \ V_t = 1.05
                        // Inertia constant (kW-sec/kVA)
17 H = 4.0
                        // Transformer reactance(p.u)
18 x_t = \%i*0.1
                        // Transmission line reactance(p
19 x_1 = \%i*0.4
    . u )
                         // Infinite bus voltage(p.u)
20 \quad V = 1.0
21 	 f = 50.0
                         // Frequency (Hz)
22
23 // Calculations
24 	 x_12 = x_d+x_t+(x_1/2)
                                             // Reactance
     b/w bus 1 & 2(p.u)
25 \quad y_12 = 1/x_12
                                                       //
      Admittance b/w bus 1 & 2(p.u)
26 \quad y_21 = y_12
                                                         //
       Admittance b/w bus 2 & 1(p.u)
27 y_10 = 0.0
     // Admittance b/w bus 1 & 0(p.u)
28 y_20 = 0.0
     // Admittance b/w bus 2 & 0(p.u)
29 \quad Y_{11} = y_{12} + y_{10}
                                                    //
      Admittance at bus 1(p.u)
```

```
30 \quad Y_12 = -y_12
                                                         //
      Admittance b/w bus 1 & 2(p.u)
31 \quad Y_21 = -y_12
      Admittance b/w bus 2 & 1(p.u)
32 \quad Y_22 = y_21+y_20
                                                    //
      Admittance at bus 2(p.u)
33 \quad x_32 = x_t + (x_1/2)
      Reactance b/w bus 3 & 1(p.u)
34 theta_t = asind(P_e*abs(x_32)/V_t)
                                // Angle ( )
35 \ V_t1 = V_t*exp(%i*theta_t*%pi/180)
                                // Terminal voltage(p.u)
36 I = (V_t1-V)/x_32
                                                   //
      Current (p.u)
37 E = V_t1+I*x_d
      Alternator voltage (p.u)
38 \text{ sine = } poly(0,"sin")
39 P_e1 = 2.0*abs(E)
                                                   //
      Developed power(p.u) in terms of sin
40 P_m_P_e = P_e-P_e1*sine
41 M = 2*H/(2*\%pi*f)
      Angular momentum
42 acc = (P_e-P_e1*sine)*2*\%pi*f/(2*H)
                               // Acceleration = (rad/
      sec^2
43
44 // Results
45 disp("PART II - EXAMPLE : 10.24 : SOLUTION :-")
46 printf("\nSwing equation is, \%.4 \, f* = \%.1 \, f - \%.3
      fsin \n", M,P_e,P_e1)
```

Scilab code Exa 17.26 Critical clearing angle

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.26 :
10 // Page number 308-309
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 X_d = 0.25
                       // Transient reactance of
      generator (p.u)
15 \quad X_{t1} = 0.15
                       // Reactance of transformer (p.u)
                       // Reactance of transformer(p.u)
16 X_t2 = 0.15
17 X_t3 = 0.15
                       // Reactance of transformer (p.u)
18 X_t4 = 0.15
                       // Reactance of transformer(p.u)
19 X_11 = 0.20
                       // Reactance of line(p.u)
                       // Reactance of line(p.u)
20 \quad X_12 = 0.20
                       // Reactance of transformer(p.u)
21 X_{tr} = 0.15
22 P_m = 1.0
                       // Power delivered (p.u)
23 E = 1.20
                       // Voltage behind transient
     reactance (p.u)
24 \ V = 1.0
                       // Infinite bus voltage(p.u)
25
```

```
26 // Calculations
27 X_14 = X_d+((X_t1+X_t2+X_11)/2)+X_tr
                              // Reactance before fault (p
      . u )
28 x_1_b = X_t1+X_t2+X_11
                                              // Reactance (
      p.u). From figure (b)
29 x_2b = X_12+X_t4
                                                   //
      Reactance(p.u). From figure (b)
30 x_1 = x_1_b*X_t3/(x_1_b+x_2_b+X_t3)
                               // Reactance (p.u). From
      figure (c)
31 	 x_2 = x_1_b*x_2_b/(x_1_b+x_2_b+X_t3)
                              // Reactance(p.u). From
      figure (c)
32 x_3 = X_t3*x_2_b/(x_1_b+x_2_b+X_t3)
                               // Reactance(p.u). From
      figure (c)
33 X_14_fault = x_1+X_d+x_2+X_tr+((x_1+X_d)*(x_2+X_tr)/
      x_3) // Reactance under fault (p.u)
34 \quad X_14_after_fault = X_d+X_t1+X_l1+X_t2+X_tr
                       // Reactance after fault is
      cleared (p.u)
35 \quad P_{max} = V*E/X_14
      Maximum power transfer (p.u)
36 \text{ gamma}_1 = (V*E/X_14_fault)/P_max
37 \text{ gamma}_2 = (V*E/X_14_after_fault)/P_max
38 \text{ delta_0} = \frac{\text{asin}(P_m/P_max)}{\text{}}
                                          // _0 (radians)
39 delta_0_degree = delta_0*180/%pi
40 delta_m = \%pi-asin(P_m/(gamma_2*P_max))
                           // _1 (radians)
41 delta_m_degree = delta_m*180/%pi
```

Scilab code Exa 17.27 Critical angle using equal area criterion

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 10: POWER SYSTEM STABILITY
8
9 // EXAMPLE : 10.27 :
10 // Page number 309-310
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 50.0
                           // Frequency (Hz)
                           // Power delivered(p.u)
15 P_m = 1.0
16 \, P_{max} = 1.8
                           // Maximum power (p.u)
                           // Reduced maximum power
17 \text{ gamma}_1P_max = 0.4
      after fault (p.u)
18 \text{ gamma}_2P_max = 1.30
                           // Maximum power after fault
      clearance (p.u)
19
20 // Calculations
```

```
21 \text{ delta_0} = asin(P_m/P_max)
                                       // _0 (radians)
22 delta_0_degree = delta_0*180/%pi
                               // _0 ( )
23 delta_f = \%pi-asin(P_m/(gamma_2_P_max))
                       // _1 (radians)
24 delta_f_degree = delta_f*180/%pi
                               // _1 ( )
25 \text{ gamma}_1 = \text{gamma}_1 P_max/P_max
                                       _1
26 \text{ gamma}_2 = \text{gamma}_2P_\text{max}/P_\text{max}
                                       _{2}
27 delta_c = acosd(1.0/(gamma_2-gamma_1)*((delta_f-
      delta_0)*sin(delta_0)+(gamma_2*cos(delta_f)-
      gamma_1*cos(delta_0)))) // Clearing angle()
28
29 // Results
30 disp("PART II - EXAMPLE : 10.27 : SOLUTION :-")
31 printf("\nCritical angle, _{-}c = \%.2 \, f ", delta_c)
```

Scilab code Exa 17.28 Critical clearing angle

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// SECOND EDITION
// CHAPTER 10: POWER SYSTEM STABILITY
// CHAPTER 10: POWER SYSTEM STABILITY
// Page number 310
clear ; clc ; close ; // Clear the work space and console
```

```
13 // Given data
14 \sin_{delta_0} = 0.45
                           // Supplying percent of peak
     power capacity before fault
15 x = 4.0
                           // Reactance under fault
     increased
16 \text{ gamma}_2 = 0.7
                           // Peak power delivered after
       fault clearance
17
18 // Calculations
19 delta_0 = asin(sin_delta_0)
     // _0 (radians)
20 delta_0_degree = delta_0*180/%pi
     // _0 ( )
21 \text{ gamma}_1 = 1.0/x
22 delta_m = %pi-asin(sin_delta_0/(gamma_2))
     // _m (radians)
23 delta_m_degree = delta_m*180/%pi
      // _m ( )
24 \text{ delta_c} = a\cos d(1.0/(gamma_2-gamma_1)*((delta_m-
     delta_0)*sin(delta_0)+(gamma_2*cos(delta_m)-
      gamma_1*cos(delta_0)))) // Clearing angle()
25
26 // Results
27 disp("PART II - EXAMPLE : 10.28 : SOLUTION :-")
28 printf("\nCritical clearing angle, _{c} = %. f ",
     delta_c)
```

Scilab code Exa 17.30 Power angle and Swing curve data

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
```

```
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 10: POWER SYSTEM STABILITY
9 // EXAMPLE : 10.30 :
10 // \text{Page number } 310-311
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 f = 60.0
                       // Frequency (Hz)
                       // Number of poles
15 P = 6.0
16 H = 4.0
                      // Inertia constant(p.u)
                      // Power supplied by generator(p.u
17 P_e = 1.0
      )
18 E = 1.2
                      // Internal voltage(p.u)
                      // Infinite bus voltage(p.u)
19 V = 1.0
                      // Line reactance(p.u)
20 X = 0.3
21 \text{ del_t} = 0.05
                      // t = Interval step size(sec)
22
23 // Calculations
24 \text{ P_max} = \text{E*V/X}
      Maximum power (p.u)
25 \text{ delta_0} = asind(P_e/P_max)
                                                      // _0
     26 G = P_e
27 M = G*H/(180*f)
      Angular momentum (p.u)
28 P_a_0 = 1.0/2*(P_e_0)
                                                      // (p.u
29 \text{ alpha_0} = P_a_0/M
                                                         _0
     ( / \sec^2)
30 \text{ del_w_r_1} = \text{alpha_0*del_t}
        r_1 \qquad ( / \sec )
31 \text{ w_r_1} = 0 + \text{del_w_r_1}
        r_1 \quad ( / sec )
32 \text{ del_delta_1} = w_r_1*del_t
        _1 ( )
33 delta_1 = delta_0+del_delta_1
                                                      // _1
```

```
( )
34 P_a_1 = 1.0*(P_e-0)
                                                          // (p.u
                                                          // _1
35 \text{ alpha}_1 = P_a_1/M
    (/\sec^2)
36 \text{ del_w_r_2} = \text{alpha_1*del_t}
   r_2 ( / sec )
37 \text{ w_r_2} = \text{del_w_r_1+del_w_r_2}
        r_2 ( / sec)
38 \text{ del_delta_2} = w_r_2*del_t
       _2 ( )
39 delta_2 = delta_1+del_delta_2
                                                          // _2
40 \text{ del_w_r_3} = \text{del_w_r_2}
   r_3 \qquad ( / \sec )
41 \text{ w_r_3} = \text{w_r_2+del_w_r_3}
                                                          //
        r_3 \quad ( / sec )
42 \text{ del_delta_3} = w_r_3*del_t
    _3 ( )
43 delta_3 = delta_2+del_delta_3
                                                          // _3
     //
44 \quad del_w_r_4 = del_w_r_2
   r_4 \qquad ( / \sec )
45 \text{ w_r_4} = \text{w_r_3+del_w_r_4}
        r_4 \quad ( / sec )
46 \text{ del_delta}_4 = w_r_4*del_t
      _4 ( )
47 delta_4 = delta_3+del_delta_4
                                                          // _4
   48 \text{ del_w_r_5} = \text{del_w_r_2}
    r_5 \qquad ( / \sec )
49 \text{ w_r_5} = \text{w_r_4} + \text{del_w_r_5}
        r_5 \quad ( / sec )
50 \text{ del_delta_5} = w_r_5*del_t
        _5 ( )
51 delta_5 = delta_4+del_delta_5
                                                          // _5
      52
```

```
53 // Results
54 disp("PART II - EXAMPLE : 10.30 : SOLUTION :-")
55 printf("\nPower angle, 0 = \%.2 \text{ f}", delta_0)
56 printf("\nValue\ of\ vs\ t\ are:")
57 printf("\n_____")
                              (degree)")
58 printf("\n
               t (Sec) :
59 printf("\n_____")
                           \%.2~\mathrm{f} ", 0,delta_0)
60 printf("\n
                \%.1 f :
                             \%.2 \text{ f} ", (del_t),delta_1)
                \%.2 f :
61 printf("\n
                \%.2\,\mathrm{f} : \%.2\,\mathrm{f} ", (del_t+del_t),
62 printf ("\n
     delta_2)
               \%.2 f : \%.2 f ", (del_t*3),delta_3
63 printf("\n
     )
              \%.2 \, \mathrm{f} : \%.2 \, \mathrm{f} ", (del_t*4),delta_4
64 printf("\n
     )
              \%.2 \, \mathrm{f} : \%.2 \, \mathrm{f} ", (del_t*5),delta_5
65 printf("\n
     )
66 printf("\n_____")
```

Chapter 18

LOAD FREQUENCY CONTROL AND LOAD SHARING OF POWER GENERATING SOURCES

Scilab code Exa 18.1 Load shared by two machines and Load at which one machine cea

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD SHARING OF POWER GENERATING SOURCES
8
9  // EXAMPLE : 11.1 :
10  // Page number 330
11 clear ; clc ; close ; // Clear the work space and console
12 funcprot(0)
13
```

```
14 // Given data
15 \text{ rating} = 1000.0
                            // Rating of alternator (kW)
16 \quad load = 1600.0
                            // Total load (kW)
17 X_f1 = 100.0
                            // Full load speed regulation
       of alernator X(\%)
18 \quad Y_{fl} = 104.0
                             // Full load speed regulation
       of alernator Y(\%)
19 X_nl = 100.0
                            // No load speed regulation
      of alernator X(\%)
  Y_nl = 105.0
                            // No load speed regulation
      of alernator Y(\%)
21
22 // Calculations
23 h = poly(0,"h")
24 PB = (Y_nl-X_nl)-h
25 \text{ PR} = \text{rating/(Y_nl-X_nl)*PB}
                                            // Load shared
      by machine X(kW) in terms of h
26 \quad QQ = (Y_fl-X_fl)-h
27 RQ = rating/(Y_fl-X_fl)*QQ
                                            // Load shared
      by machine Y(kW) in terms of h
28 h_1 = roots(PR+RQ-load)
29 	 PB_1 = (Y_nl-X_nl)-h_1
                                            // Load shared
30 \text{ PR}_1 = \text{rating}/(Y_nl-X_nl)*PB_1
      by machine X(kW)
31 QQ_1 = (Y_fl-X_fl)-h_1
32 RQ_1 = rating/(Y_fl-X_fl)*QQ_1
                                            // Load shared
      by machine Y(kW)
  load_cease = rating/(Y_nl-X_nl)
                                            // Y cease
      supply load (kW)
34
35 // Results
36 disp("PART II - EXAMPLE : 11.1 : SOLUTION :-")
37 printf("\nLoad shared by machine X, PR = \%.f kW",
      PR_1)
  printf("\nLoad\ shared\ by\ machine\ Y,\ RQ = \%.f\ kW",
      RQ_1)
39 printf("\nLoad at which machine Y ceases to supply
      any portion of load = \%. f kW", load_cease)
```

Scilab code Exa 18.2 Synchronizing power and Synchronizing torque for no load and

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
     SHARING OF POWER GENERATING SOURCES
9 // EXAMPLE : 11.2 :
10 // Page number 330-331
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA} = 5000.0
                         // Rating of alternator(kVA)
15 N = 1500.0
                        // Speed (rpm)
                        // Voltage(V)
16 V = 6600.0
                        // Frequency (Hz)
17 f = 50.0
                        // Lagging power factor
18 \text{ PF} = 0.8
19 x = 0.15
                        // Short circuit reactance
20
21 // Calculations
22 E = V/3**0.5
     // Phase voltage(V)
23 I = kVA*1000/(3**0.5*V)
                                                 // Full
      load current of alternator (A)
24 \text{ V_drop} = \text{E*x}
      // Synchronous reactance drop(V)
```

```
25 X = V_drop/I
      // Synchronous reactance per phase (ohm)
26 P = 120*f/N
     // Number of poles
27 \quad n = N/60
      // Speed (rps)
28 \text{ phi} = acosd(PF)
     // ( )
29 // Case(a)
30 \text{ theta_a} = 2.0
      // For a 4 pole m/c. 1 mech degree = 2 elect
      degree
31 \quad E_s_a = E*sind(theta_a)
                                                   //
      Synchronizing voltage (V)
32 \quad I_s_a = E_s_a/X
      // Synchronizing current (A)
33 P_s_a = E*I_s_a
      // Synchronizing power per phase (W)
34 P_s_a_{total} = 3.0*P_s_a
                                                   // Total
      synchronizing power (W)
35 P_s_a_{total_kw} = P_s_a_{total/1000.0}
                                      // Total
      synchronizing power (kW)
36 \quad T_s_a = P_s_a_total/(2*\%pi*n)
                                            //
      Synchronizing torque (N-m)
37 // Case (b)
38 \sin_{phi} = \sin_{phi}
39 OB = ((E*PF)**2+(E*sin_phi+V_drop)**2)**0.5
```

```
// Voltage(V)
40 \quad E_b = OB
      // Voltage (V)
41 alpha_phi = atand((E*sin_phi+V_drop)/(E*PF))
                           // + ( )
42 alpha = alpha_phi-phi
43 E_s_b = 2.0*E_b*sind(2.0/2)
      Synchronizing voltage (V)
44 \quad I_s_b = E_s_b/X
      // Synchronizing current (A)
45 \quad P_s_b = E*I_s_b*cosd((alpha+1.0))
                                       // Synchronizing
      power per phase (W)
46 P_s_b_total = 3.0*P_s_b
                                                   // Total
      synchronizing power (W)
47 P_s_b_total_kw = P_s_b_total/1000.0
                                     // Total
      synchronizing power (kW)
48 \quad T_s_b = P_s_b_total/(2*\%pi*n)
                                            //
      Synchronizing torque (N-m)
49
50 // Results
51 disp("PART II - EXAMPLE : 11.2 : SOLUTION :-")
52 printf("\nCase(a): Synchronizing power for no-load,
      P_s = \%.1 f \text{ kW}, P_s_a_{\text{total}_kw})
53 printf("\n
                        Synchronizing torque for no-load,
       T_s = \%. f N-m, T_s_a
54 printf("\nCase(b): Synchronizing power at full-load,
       P_{-s} = \%.1 f \text{ kW}, P_{-s_b_total_kw})
55 printf("\n
                       Synchronizing torque at full-load
      , T_s = \%. f N-m \n", T_s_b
```

```
56 printf("\nNOTE: ERROR: Calculation mistakes in textbook")
```

Scilab code Exa 18.3 Armature current EMF and PF of the other alternator

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
     SHARING OF POWER GENERATING SOURCES
8
9 // EXAMPLE : 11.3 :
10 // Page number 331-332
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                           // Voltage(V)
14 V = 6600.0
                           // Resistance (ohm)
15 R = 0.045
16 X = 0.45
                           // Reactance (ohm)
17 Load = 10000.0*10**3
                           // Total load (W)
                           // Lagging power factor
18 \text{ PF} = 0.8
19 I_a = 437.5
                           // Armature current (A)
20
21 // Calculations
22 I = Load/(3**0.5*V*PF)
                                                        //
     Load current (A)
23 I_{working} = PF*I
     Working component of current (A)
24 \text{ I_watless} = (1-PF**2)**0.5*I
      Watless component of current (A)
25 \quad I_{second} = (I_{a**2+I_watless**2})**0.5
```

```
Load current supplied by second alternator (A)
26 \text{ PF\_second} = I_a/I_second
                                                                                                                                                                                              //
                    Lagging power factor of second alternator
27 V_{ph} = V/3**0.5
                    Terminal voltage per phase (V)
28 I_R = I_second*R
                    Voltage drop due to resistance (V)
29 I_X = I_second*X
                                                                                                                                                                                              //
                    Voltage drop due to reactance (V)
30 \text{ sin\_phi\_second} = (1-PF\_second**2)**0.5
31 E = ((V_ph+I_R*PF_second+I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(I_X*sin_phi_second)**2+(
                    *PF_second-I_R*sin_phi_second)**2)**0.5
                                                                                                                                                                      // EMF
                    of the alternator (V/phase)
32 E_11 = 3**0.5*E
                                                                                                                                                                                              //
                    Line-to-line EMF of the alternator (V)
33
34 // Results
35 disp("PART II - EXAMPLE : 11.3 : SOLUTION :-")
36 printf("\nArmature current of other alternator = \%.1
                     f A", I_second)
37 printf("\ne.m.f of other alternator = \%. f V (line-to
                    -line)", E_11)
38 printf("\nPower factor of other alternator = \%.3 f (
                    lagging)", PF_second)
```

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD SHARING OF POWER GENERATING SOURCES
```

```
9 // EXAMPLE : 11.4 :
10 // Page number 332-333
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 X = 10.0
                             // Reactance (ohm)
15 I_a = 220.0
                             // Armature current (A)
                             // Unity power factor
16 \text{ PF} = 1.0
17 V = 11000.0
                             // Phase voltage(V)
                             // EMF rasied by 20%
18 \text{ emf\_raised} = 0.2
19
20 // Calculations
21 \quad I_X = I_a * X
                                           // Reactance drop
      (V)
22 \quad E_0 = (V**2+I_X**2)**0.5
                                          // EMF(V)
23 E_00 = (1+emf_raised)*E_0
                                          // New value of
      induced emf(V)
24 \ U = ((E_00**2-I_X**2)**0.5-V)/X
                                          // Current(A)
                                          // Current (A)
25 I_1 = (I_a **2 + U **2) **0.5
26 	 PF_1 = I_a/I_1
                                          // Lagging power
      factor
  I_X_2 = (E_{00} **2 + V **2) **0.5
                                          // Reactance drop
      (V)
28 \quad I_2 = I_X_2/X
                                          // Current
      corresponding to this drop(A)
29 	ext{ PF}_2 = E_00/I_X_2
                                          // Leading power
      factor
30 \text{ P_max} = V*I_2*PF_2/1000
                                          // Maximum power
      output (kW)
31
32 // Results
33 disp("PART II - EXAMPLE : 11.4 : SOLUTION :-")
34 printf("\nNew value of machine current = \%.1 \, f \, A",
      I_1)
35 printf("\nNew vaue of power factor, p.f = \%.4 f (
      lagging)", PF_1)
```

Scilab code Exa 18.5 Phase angle between busbar sections

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
     SHARING OF POWER GENERATING SOURCES
9 // EXAMPLE : 11.5 :
10 // Page number 333
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad V = 10000.0
                          // Voltage (V)
                          // Full load rating (kW)
15 \text{ rating} = 10000.0
16 V_drop_per = 0.2
                          // Voltage drop of 20% for
      10000 kW
17
18 // Calculations
19 V_drop = V_drop_per*rating
      Voltage drop (V)
                                                    // Sin
20 \sin_{\theta} = (V_{drop}/2)/V
```

Scilab code Exa 18.6 Voltage and Power factor at this latter station

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
     SHARING OF POWER GENERATING SOURCES
9 // EXAMPLE : 11.6 :
10 // Page number 334
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                             // Total load (kW)
14 \ load_1 = 20000.0
                             // Voltage (V)
15 \quad V = 11000.0
                            // Unity power factor
16 \text{ PF}_1 = 1.0
17 \ load_2 = 8000.0
                             // Load supplied (kW)
18 \text{ PF}_2 = 0.8
                             // Lagging power factor
```

```
// Resistance (ohm/phase)
19 R = 0.5
                             // Reactance (ohm/phase)
20 X = 0.8
21
22 // Calculations
I_1 = load_1*1000/(3**0.5*V*PF_1)
                                          // Load current (
     A)
24 I_2 = load_2*1000/(3**0.5*V*PF_2)*exp(%i*-acos(PF_2))
                      // Current supplied by local
      generators (A)
25 \quad I_3 = I_1 - I_2
      // Current through interconnector (A)
26 \text{ angle}_{I_3} = \text{phasemag}(I_3)
      Current through interconnector leads reference
      phasor by angle ( )
27 \text{ V_drop} = (R + \%i * X) * I_3
                                                        //
      Voltage drop across interconnector (V)
28 V_{ph} = V/3**0.5
     // Phase voltage(V)
29 V_S = V_ph + V_drop
      // Sending end voltage (V/phase)
30 V_S_{11} = 3**0.5*V_S
                                                          //
       Sending end voltage (V)
31 angle_V_S_11 = phasemag(V_S_11)
                                             // Angle of
      sending end voltage ( )
32 PF_S = cosd(angle_I_3-angle_V_S_11)
                                        // Power factor at
       sending station
33
34 // Results
35 disp("PART II - EXAMPLE : 11.6 : SOLUTION :-")
```

```
36 printf("\nVoltage at this latter station = %. f % .2 f V (line-to-line)", abs(V_S_11),angle_V_S_11)
37 printf("\nPower factor at this latter station = %.4f (leading)", PF_S)
```

Scilab code Exa 18.7 Load received Power factor and Phase difference between volta

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
      SHARING OF POWER GENERATING SOURCES
9 // EXAMPLE : 11.7 :
10 // Page number 334
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 V = 33000.0
                             // Voltage (V)
                             // Resistance (ohm/phase)
15 R = 0.7
16 X = 3.5
                             // Reactance (ohm/phase)
17 \ load_1 = 60.0
                             // Load on generator at
      station X(MW)
18 \text{ PF}_1 = 0.8
                             // Lagging power factor
19 \ load_2 = 40.0
                             // Local load taken by
      consumer (MW)
20 \text{ PF}_2 = 0.707
                             // Lagging power factor
21
22 // Calculations
23 \text{ V_ph} = \text{V/3**0.5}
```

```
// Phase voltage(V)
I_1 = load_1*10**6/(3**0.5*V*PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(PF_1)*exp(%i*-acos(P
                                                                       // Load current on generator at X
                  ))
                  (A)
25 \text{ I}_2 = \text{load}_2*10**6/(3**0.5*V*PF}_2)*exp(%i*-acos(PF}_2)
                                                                       // Current due to local load (A)
26 I_3 = I_1-I_2
                  // Current through interconnector (A)
27 \text{ angle}_{I_3} = phasemag(I_3)
                   Current through interconnector leads reference
                   phasor by angle (
28 \ V_drop = (R+\%i*X)*I_3
                   Voltage drop across interconnector (V)
29 \quad V_Y = V_{ph} - V_{drop}
                  // Voltage at Y(V)
30 angle_V_Y = phasemag(V_Y)
                                                                                                                                                              //
                   Angle of voltage at Y( )
31 phase_diff = angle_I_3-angle_V_Y
                                                                                                                                       // Phase
                   difference b/w Y_{-}Y  and I_{-}3  ( )
32 PF_Y = cosd(phase_diff)
                                                                                                                                                                     //
                  Power factor of current received by Y
33 P_Y = 3*abs(V_Y*I_3)*PF_Y/1000.0
                                                                                                                                       // Power
                   received by station Y(kW)
34 phase_XY = abs(angle_V_Y)
                   Phase angle b/w voltages of X & Y( )
35
36 // Results
37 disp("PART II - EXAMPLE : 11.7 : SOLUTION :-")
38 printf("\nLoad received from station X to station Y
```

Scilab code Exa 18.8 Percentage increase in voltage and Phase angle difference bet

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
     SHARING OF POWER GENERATING SOURCES
9 // EXAMPLE : 11.8 :
10 // Page number 335
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 V_tie = 11000.0
                            // Tie line Voltage(V)
                            // Impedance of tie line (ohm
15 Z = (3.5 + \%i * 7.0)
     /conductor)
16 V = 6600.0
                            // Bus bar voltage(V)
                            // Percentage impedance on
17 Z_{per} = (2.5 + \%i * 7.5)
     1000kVA rating
18 \text{ kVA} = 2500.0
                            // Load receieved by other (
     kVA)
19
20 // Calculations
```

```
// Phase
21 V_{ph} = V/3**0.5
      voltage (V)
22 I_fl_LV = 100.0*V_tie/V_ph
                                                     // LV
      side Full load current of each transformer (A)
23 R_eq = V_ph*real(Z_per)/(100*I_fl_LV)
      Equivalent resistance of transformer (ohm/phase)
24 \text{ X_eq} = 3.0*\text{R_eq}
      Equivalent reactance of transformer (ohm/phase)
25 \text{ R_phase} = \text{real}(Z)*(V/V_{\text{tie}})**2
                                                     //
      Resistance of line per phase (ohm)
26 \text{ X_phase} = \text{imag}(Z)*(V/V_{tie})**2
                                                     //
      Resistance of line per phase (ohm)
27
  R_{total} = 2.0*R_{q+R_{phase}}
                                                        Total
      resistance per phase (ohm)
28 X_{total} = 2.0*X_{eq}+X_{phase}
                                                        Total
      resistance per phase (ohm)
29 \quad Z_{total} = R_{total} + \%i * X_{total}
                                                        Total
      impedance (ohm/phase)
30 I = kVA*1000/(3**0.5*V)
                                                     // Load
      current (A)
31 \ V_drop = I*Z_total
      Voltage drop per phase (V)
32 \quad V_A = V_{ph}
33 \quad V_AA = V_A+V_drop
                                                     //
      Sending end voltage per phase (V)
34 \text{ V_increase} = abs(V_AA)-V_A
      Increase in voltage required (V/phase)
35 percentage_increase = V_increase/V_A*100
      Percentage increase required (%)
                                                     // Angle
36 phase_diff = phasemag(V_AA)
      at which V<sub>A</sub> & V<sub>B</sub> are displaced ( )
37
38 // Results
39 disp("PART II - EXAMPLE : 11.8 : SOLUTION :-")
40 printf("\nCase(a): Percentage increase in voltage =
      %.2 f percent", percentage_increase)
41 printf("\nCase(b): Phase angle difference between
      the two busbar voltages = \%.2 \,\mathrm{f} \n", phase_diff)
```

Scilab code Exa 18.9 Station power factors and Phase angle between two busbar volt

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
     SHARING OF POWER GENERATING SOURCES
9 // EXAMPLE : 11.9 :
10 // Page number 335-336
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 X = 2.80
                         // Combined reactance (ohm/phase
     )
                   // Consumer load at station A(
15 \ load_1 = 7000.0
     kW)
16 \text{ PF}_1 = 0.9
                         // Lagging power factor
17 \quad V = 11000.0
                         // Voltage (V)
                        // Load supplied by station B(
18 \ load_2 = 10000.0
     kW)
19 \text{ PF}_2 = 0.75
                        // Lagging power factor
20
21 // Calculations
22 V_{ph} = V/3**0.5
     // Phase voltage(V)
I_1 = load_1*10**3/(3**0.5*V*PF_1)*exp(%i*-acos(PF_1)
```

```
// Current at A due to local
                   ))
                   load (A)
I_2 = load_2*10**3/(3**0.5*V*PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(%i*-acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2)*exp(*acos(PF_2
                   ))
                                                                                          // Current at B due to local
                   load (A)
25 \text{ IA}_X = 0.5*(load_1+load_2)*1000/(3**0.5*V)
                                                                                                                           // Current (A)
26 \text{ Y}_1 = 220.443/V_ph
                   // Solved manually referring textbook
27 X_1 = (1-Y_1**2)**0.5
28 \text{ angle}_1 = \text{atand}(Y_1/X_1)
                                                                                                                                                                                          //
                       Phasor lags by an angle ( )
29 \text{ IA}_Y = (6849.09119318 - V_ph*X_1)/X
                                                                                                                                                           // Current (
                   A)
30 \quad Y_X = IA_Y/IA_X
31 \text{ angle}_2 = \text{atand}(Y_X)
                   // Angle by which I_A lags behind V_A( )
32 \text{ PF\_A} = \cos d(\text{angle\_2})
                   // Power factor of station A
33 angle_3 = acosd(PF_2)+angle_1
                                                                                                                                                                         //
                    Angle by which I_2 lags V_A ( )
34 \text{ I}_{22} = \text{load}_{2*10**3}/(3**0.5*V*PF_{2})*\exp(\%i*-\text{angle}_{3*})
                   %pi/180)
                                                                                         // Current (A)
35 I = 78.7295821622 - \%i * (IA_Y - 177.942225747)
                                                                                                                              // Current (A)
36 I_B = I_22-I
                   // Current (A)
37 angle_4 = abs(phasemag(I_B))-angle_1
                                                                                                                                                // Angle by
                    which I_B lags behind V_B( )
38 PF_B = cosd(angle_4)
```

Scilab code Exa 18.10 Constants of the second feeder

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
     SHARING OF POWER GENERATING SOURCES
9 // EXAMPLE : 11.10 :
10 // Page number 336
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                          // Total balanced load (kW)
14 \ load_1 = 10000.0
15 \quad V = 33000.0
                          // Voltage (V)
                          // Lagging power factor
16 \text{ PF}_1 = 0.8
17 R = 1.6
                          // Resistance of feeder (ohm/
     phase)
18 X = 2.5
                          // Reactance of feeder (ohm/
```

```
phase)
19 \; load_2 = 4460.0
                       // Load delivered by feeder (kW
                         // Lagging power factor
20 \text{ PF}_2 = 0.72
21
22 // Calculations
23 I = load_1*1000/(3**0.5*V*PF_1)*exp(%i*-acos(PF_1))
            // Total line current(A)
I_1 = load_2*1000/(3**0.5*V*PF_2)*exp(%i*-acos(PF_2))
           // Line current of first feeder(A)
25 I_2 = I_1_1
                                                       //
     Line current of first feeder (A)
26 \quad Z_1 = complex(R,X)
     Impedance of first feeder (ohm)
27 \quad Z_2 = I_1 * Z_1 / I_2
     Impedance of second feeder (ohm)
28
29 // Results
30 disp("PART II - EXAMPLE : 11.10 : SOLUTION :-")
31 printf("\nImpedance of second feeder, Z_2 = \%.2 f %
      .1 f ohm \n", abs(Z_2), phasemag(Z_2))
32 printf("\nNOTE: ERROR: Changes in the obtained
      answer from that of textbook is due to wrong
      values of substitution")
```

Scilab code Exa 18.11 Necessary booster voltages

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
```

```
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
     SHARING OF POWER GENERATING SOURCES
8
9 // EXAMPLE : 11.11 :
10 // Page number 337
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 P = 9.0
                              // Load supplied from
     substation (MW)
15 \quad V = 33000.0
                              // Voltage (V)
                              // Unity power factor
16 \text{ PF}_1 = 1.0
                             // Impedance of circuit A(
17 \ Z_A = complex(2.0, 8.0)
     ohm)
18 Z_B = complex(4.0,4.0) // Impedance of circuit B(
     ohm)
19
20 // Calculations
21 V_{ph} = V/3**0.5
                                                      //
      Voltage at receiving end per phase (V)
22 P_A = 1.0/3*P
     Power supplied by line A(MW)
23 P_B = 2.0/3*P
     Power supplied by line B(MW)
24 I_A = P_A*10**6/(3**0.5*V)
      Current through line A(A)
  I_B = P_B*10**6/(3**0.5*V)
      Current through line B(A)
  IA\_ZA\_drop = I\_A*Z\_A
                                                      //
     I_A Z_A drop(V/phase)
  IB_ZB_drop = I_B*Z_B
27
                                                      //
     I_B Z_B drop(V/phase)
  phase_boost = real(IB_ZB_drop)-real(IA_ZA_drop)
                                                     //
      Voltage in phase boost (V/phase)
29 quad_boost = imag(IB_ZB_drop)-imag(IA_ZA_drop)
      Voltage in quadrature boost (V/phase)
```

Scilab code Exa 18.12 Load on C at two different conditions of load in A and B

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
     SHARING OF POWER GENERATING SOURCES
9 // EXAMPLE : 11.12 :
10 // Page number 337
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ cap\_A} = 15000.0
                                  // Capacity of station
     A(kW)
15 \text{ cap\_B} = 10000.0
                                  // Capacity of station
     B(kW)
16 \text{ cap\_C} = 2000.0
                                  // Capacity of station
     C(kW)
17 speed_reg_A = 2.4/100
                                  // Speed regulation of
```

```
A
18 \text{ speed\_reg\_B} = 3.2/100
                                 // Speed regulation of
19 \text{ slip_C} = 4.5/100
                                 // Full load slip
20 local_load_B_a = 10000.0 // Local load on
      station B(kW)
                                 // Local load on
21
  local_load_A_a = 0
      station A(kW)
  local_load_both = 10000.0 // Local load on both
22
      station (kW)
23
24 // Calculations
25 // Case(a)
26 speed_A = speed_reg_A/cap_A
                                              // % of
      speed drop for A
27 speed_C = slip_C/cap_C
                                                    // %
      of speed drop for C
28 speed_B = speed_reg_B/cap_B
                                              // % of
      speed drop for B
29 X = local_load_B_a*speed_B/(speed_A+speed_B+speed_C)
                    // Load on C when local load of B
      is 10000 kW and A has no load (kW)
30
  // Case(b)
31 Y = local_load_both*(speed_B-speed_A)/(speed_A+
                        // Load on C when both station
      speed_B+speed_C)
       have local loads of 10000 kW(kW)
32
33 // Results
34 disp("PART II - EXAMPLE : 11.12 : SOLUTION :-")
35 printf("\nCase(a): Load on C when local load of B is
       10000 \text{ kW} and A has no load, X = \%.\text{ f kW}, X)
36 printf("\nCase(b): Load on C when both station have
      local loads of 10000 kW, Y = \%. f kW", Y)
```

Scilab code Exa 18.13 Loss in the interconnector as a percentage of power received

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD
     SHARING OF POWER GENERATING SOURCES
9 // EXAMPLE : 11.13 :
10 // Page number 337-338
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 1 = 20.0
                              // Length of cable (km)
                              // Resistance (ohm/km)
15 r = 0.248
16 x = 0.50*10**-3
                              // Inductance (H/m)
17 \ V_{gen} = 6600.0
                              // Generation voltage(V)
                              // Frequency (Hz)
18 f = 50.0
19 V = 33000.0
                              // Transmission voltage(V)
                              // Transformer rating (MVA)
20 rating = 10.0
21 loss_cu = 100.0
                              // Copper loss at full load
      (kW)
22 \text{ x_tr} = 2.5/100
                              // Transformer reactance
23 \quad load = 7.5
                              // Load to be transmitted (
     MW)
24 \text{ PF} = 0.71
                              // Lagging power factor
25
26 // Calculations
27 R = 1*r
```

```
// Resistance of the cable (ohm)
28 I_fl = rating*10**6/(3**0.5*V)
                                          // Transformer
      current at full load (A)
29 R_eq = loss_cu*1000/(3*I_f1**2)
                                         // Equivalent
      resistance per phase of transformer (ohm)
30 R_{total_hv} = R+2.0*R_eq
                                                  // Total
      resistance per conductor in terms of hv side (ohm)
31 X = 2.0*\%pi*f*l*x
                                                         //
      Reactance of cable per conductor (ohm)
32 \text{ per_X_tr} = V/3**0.5*x_tr/I_fl
                                           // % reactance
      of transformer (ohm)
33 \quad X_{total_hv} = X+2.0*per_X_tr
                                              // Total
      reactance per conductor in terms of hv side (ohm)
34 I = load*10**6/(3**0.5*V*PF)
                                             // Line
      current at receiving end(A)
35 \text{ IR} = I*R\_total\_hv
      IR drop (V)
36 	ext{ IX = I*X_total_hv}
     IX drop(V)
37 E_r = V/3**0.5
      // Phase voltage at station B(V)
38 \text{ cos\_phi\_r} = PF
39 \sin_{phi_r} = (1-PF**2)**0.5
40 \quad E_s = ((E_r*cos_phi_r+IR)**2+(E_r*sin_phi_r+IX)**2)
      **0.5/1000 // Sending end voltage(kV)
41 E_s_{11} = 3**0.5*E_s
      Sending end line voltage (kV)
```

```
42 V_booster = 3**0.5*(E_s-E_r/1000)
                                       // Booster voltage
      between lines (kV)
43 	an_{phi_s} = (E_r*sin_{phi_r+IX})/(E_r*cos_{phi_r+IR})
                      // tan _s
44 phi_s = atand(tan_phi_s)
                                                  // _s (
45 \cos_{\text{phi}}s = \cos_{\text{qhi}}s
      C O S - S
46 \text{ P_s} = 3.0*\text{E_s*I*cos_phi_s}
                                                // Power at
       sending end (kW)
47 \; loss = P_s - load * 1000
                                                      //
      Loss (kW)
48 \; loss_per = loss/(load*1000)*100
                                          // loss
      percentage
49
50 // Results
51 disp("PART II - EXAMPLE : 11.13 : SOLUTION :-")
52 printf("\nLoss in the interconnector as a percentage
       of power received = \%.3 f percent", loss_per)
53 printf("\nRequired voltage of the booster = \%.3 \,\mathrm{f} kV
      (in terms of H.V) \n", V_booster)
54 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here")
55 printf("\n kVA rating of booster is not
      calculated in textbook and here")
```

WAVE PROPAGATION ON TRANSMISSION LINES

 ${
m Scilab\ code\ Exa\ 20.4}$ Reflected and Transmitted wave of Voltage and Current at the

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 13: WAVE PROPAGATION ON TRANSMISSION
     LINES
9 // EXAMPLE : 13.4 :
10 // Page number 366
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
                 // Surge impedance of underground
14 R_1 = 60.0
     cable (ohm)
15 R_2 = 400.0
                  // Surge impedance of overhead line (
     ohm)
```

```
// Maximum value of surge(kV)
16 e = 100.0
17
18 // Calculations
19 i = e*1000/R_1
                                   // Current (A)
20 k = (R_2-R_1)/(R_2+R_1)
21 \text{ e_ref} = k*e
                                   // Reflected voltage (
     kV)
22 e_trans = e+e_ref
                                   // Transmitted voltage
     (kV)
23 \text{ e\_trans\_alt} = (1+k)*e
                                   // Transmitted voltage
      (kV). Alternative method
                                   // Reflected current (A
24 i_ref = -k*i
  i_{trans} = e_{trans}*1000/R_2
                                   // Transmitted current
      (A)
  i_trans_alt = (1-k)*i
                                   // Transmitted current
      (A). Alternative method
27
28 // Results
29 disp("PART II - EXAMPLE : 13.4 : SOLUTION :-")
30 printf ("\nReflected voltage at the junction = \%. f kV
      ", e_ref)
31 printf("\nTransmitted voltage at the junction = \%.f
     kV", e_trans)
32 printf("\nReflected current at the junction = \%.f A"
      , i_ref)
33 printf("\nTransmitted current at the junction = \%.f
     A \setminus n", i_trans)
34 printf("\nNOTE: ERROR: Calculation mistake in
      textbook in finding Reflected current")
```

Scilab code Exa 20.5 First and Second voltages impressed on C

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
```

```
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 13: WAVE PROPAGATION ON TRANSMISSION
     LINES
8
9 // EXAMPLE : 13.5 :
10 // Page number 366
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 R_A = 500.0
                   // Surge impedance of line A(ohm)
                   // Surge impedance of line B(ohm)
15 R_B = 70.0
16 R_C = 600.0
                   // Surge impedance of line C(ohm)
                   // Rectangular voltage wave(kV)
17 e = 20.0
18
19 // Calculations
20 E_2 = e*(1+((R_B-R_A)/(R_B+R_A)))
                                             //
     Transmitted wave(kV)
                                             // First
21 E_4 = E_2*(1+((R_C-R_B)/(R_C+R_B)))
      voltage impressed on C(kV)
22 E_3 = E_2*(R_C-R_B)/(R_C+R_B)
                                             // Reflected
      wave (kV)
23 E_5 = E_3*(R_A-R_B)/(R_A+R_B)
                                             // Reflected
       wave (kV)
24 E_6 = E_5*(1+((R_C-R_B)/(R_C+R_B)))
      Transmitted wave(kV)
                                             // Second
25 second = E_4+E_6
      voltage impressed on C(kV)
26
27 // Results
28 disp("PART II - EXAMPLE : 13.5 : SOLUTION :-")
29 printf("\nFirst voltage impressed on C = \%.1 f \text{ kV}",
     E_4)
30 printf("\nSecond voltage impressed on C = \%.1 f \text{ kV}",
      second)
```

Scilab code Exa 20.6 Voltage and Current in the cable and Open wire lines

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 13: WAVE PROPAGATION ON TRANSMISSION
     LINES
9 // EXAMPLE : 13.6 :
10 // Page number 367
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 Z = 100.0
                     // Surge impedance of cable (ohm)
15 \quad Z_1 = 600.0
                    // Surge impedance of open wire (
     ohm)
16 \ Z_2 = 1000.0
                     // Surge impedance of open wire (
     ohm)
                    // Steep fronted voltage (kV)
17 e = 2.0
18
19 // Calculations
20 Z_t = Z_1*Z_2/(Z_1+Z_2)
                                  // Resultant surge
     impedance (ohm)
21 E = e*(1+((Z_t-Z)/(Z_t+Z)))
                                  // Transmitted voltage
     (kV)
22 I_1 = E*1000/Z_1
                                  // Current (A)
                                  // Current (A)
23 I_2 = E*1000/Z_2
24 \quad E_ref = e*(Z_t-Z)/(Z_t+Z)
                                 // Reflected voltage (
     kV)
25 I_ref = -E_ref*1000/Z
                                  // Reflected current (A
```

LIGHTNING AND PROTECTION AGAINST OVERVOLTAGES DUE TO LIGHTNING

Scilab code Exa 21.1 Ratio of voltages appearing at the end of a line when line is

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 14: LIGHTNING AND PROTECTION AGAINST
        OVERVOLTAGES DUE TO LIGHTNING
8
9  // EXAMPLE : 14.1 :
10  // Page number 382
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
```

```
14 RI_072 = 72000.0
                         // Charactersistic of lightning
       arrester
                         // Surge impedance (ohm)
15 \ Z_c = 500.0
                         // Surge voltage(kV)
16 \quad V = 500.0
17
18 // Calculations
19 // Case(a)
20 V_a = 2.0 * V
                           // Voltage at the end of line
       at open-circuit (kV)
21 \text{ ratio_a} = V_a/V
                           // Ratio of voltage when line
       in open-circuited
22 // Case (b)
23 I = V*1000/Z_c
                        // Surge current (A)
24 R = RI_072/(I)**0.72 // Resistance of LA(ohm)
                           // Ratio of voltage when line
25 \text{ ratio_b} = R/Z_c
       is terminated by arrester
26
27 // Results
28 disp("PART II - EXAMPLE : 14.1 : SOLUTION :-")
29 printf("\nCase(a): Ratio of voltages appearing at
      the end of a line when line is open-circuited = \%
      .f", ratio_a)
30 printf("\nCase(b): Ratio of voltages appearing at
      the end of a line when line is terminated by
      arrester = \%.f", ratio_b)
```

Scilab code Exa 21.2 Choosing suitable arrester rating

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 14: LIGHTNING AND PROTECTION AGAINST
```

OVERVOLTAGES DUE TO LIGHTNING

```
8
9 // EXAMPLE : 14.2 :
10 // Page number 383
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                          // Rating of transformer(kVA)
14 \text{ rating} = 5000.0
                          // HV voltage(kV)
15 \text{ V_hv} = 66.0
16 \ V_lv = 11.0
                          // LV voltage (kV)
                          // System voltage(kV)
17 V = 66.0
                         // Voltage fluctuations
18 fluctuation = 0.1
                          // BIL for 66kV(kV)
19 \text{ BIL} = 350.0
                          // Dynamic over-voltage = 1.3*
20 \text{ dynamic_ov} = 1.3
      system operating voltage
21 V_power_freq = 1.5
                         // Power frequency breakdown
      voltage of arrester = 1.5*arrester rating(kV)
22 \quad lower_limit = 0.05
                         // Margin of lower limit of
      arrester rating
23
24 // Calculation & Result
25 disp("PART II - EXAMPLE : 14.2 : SOLUTION :-")
26 V_rating = V*(1+fluctuation)*0.8*(1+lower_limit)
               // Voltage rating of arrester (kV)
27 if (round (V_rating) == 51) then
28
       V_rating_choosen = 50.0
                                          // Arrester
          rating choosen (kV)
       V_{discharge} = 176.0
29
          Discharge voltage for 50kV arrester (kV)
30
       protective_margin = BIL-V_discharge
                             // Protective margin
          available (kV)
       V_power_frequency_bd = V_rating_choosen*
31
          V_power_freq // Power frequency breakdown
          voltage (kV)
```

```
32
       Over_voltage_dynamic = dynamic_ov*V/3**0.5
                      // Dynamic overvoltage(kV)
       if(V_power_frequency_bd>Over_voltage_dynamic)
33
          then
34
           printf("\nFirst arrester with rating 50 kV (
              rms) & discharge voltage 176 kV chosen is
               suitable")
35
       end
36 elseif(round(V_rating) == 61) then
       V_{rating\_choosen} = 60.0
                                          // Arrester
          rating choosen (kV)
38
       V_{discharge} = 220.0
          Discharge voltage for 50kV arrester (kV)
       protective_margin = BIL-V_discharge
39
                             // Protective margin
          available (kV)
       V_power_frequency_bd = V_rating_choosen*
40
          V_power_freq // Power frequency breakdown
          voltage (kV)
       Over_voltage_dynamic = dynamic_ov*V/3**0.5
41
                     // Dynamic overvoltage(kV)
       if (V_power_frequency_bd>Over_voltage_dynamic)
42
           printf("\nSecond arrester with rating 60 kV
43
              (rms) & discharge voltage 220 kV chosen
              is suitable")
44
       end
45 else(round(V_rating) == 74) then
       V_{rating\_choosen} = 73.0
46
                                          // Arrester
          rating choosen (kV)
       V_{discharge} = 264.0
47
          Discharge voltage for 50kV arrester (kV)
       protective_margin = BIL-V_discharge
48
                             // Protective margin
          available (kV)
```

```
V_power_frequency_bd = V_rating_choosen*
49
          V_power_freq // Power frequency breakdown
          voltage (kV)
       Over_voltage_dynamic = dynamic_ov*V/3**0.5
50
                     // Dynamic overvoltage(kV)
       if (V_power_frequency_bd>Over_voltage_dynamic)
51
          then
           printf("\nThird arrester with rating 73 kV (
52
              rms) & discharge voltage 264 kV chosen is
               suitable")
53
       end
54 end
```

INSULATION COORDINATION

Scilab code Exa 22.1 Highest voltage to which the transformer is subjected

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 15: INSULATION CO-ORDINATION
9 // EXAMPLE : 15.1 :
10 // \text{Page number } 398-399
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 L = 30.0
                      // Height of arrester located (m)
                     // BIL (kV)
15 \text{ BIL} = 650.0
                  // Rate of rising surge wave front
16 \text{ de_dt} = 1000.0
     (kV/-sec)
17 V = 132.0
                      // Transformer voltage at HV side (
```

Scilab code Exa 22.2 Rating of LA and Location with respect to transformer

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 15: INSULATION CO-ORDINATION
9 // EXAMPLE : 15.2 :
10 // Page number 399
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                     // Voltage at the HV side of
14 \ V_hv = 132.0
     transformer (kV)
15 V_1v = 33.0
                     // Voltage at the LV side of
     transformer (kV)
```

```
// Insulator allowable voltage(kV)
16 V = 860.0
                      // Line surge impedance(ohm)
17 Z = 400.0
18 \text{ BIL} = 550.0
                      // BIL (kV)
19
20 // Calculations
21 V_rating_LA = V_hv*1.1*0.8
      Voltage rating of LA(kV)
22 E_a = 351.0
      Discharge voltage at 5 kA(kV)
  I_disc = (2*V-E_a)*1000/Z
      Discharge current (A)
24 L_1 = 37.7
      Separation distance in current b/w arrester tap
      and power transformer tap (m)
                                                  // Lead
25 \text{ dist} = 11.0
      length from tap point to ground level (m)
26 \text{ de_dt} = 500.0
     Maximum rate of rise of surge(kV/ -sec)
  Inductance = 1.2
      Inductance (H/metre)
  di_dt = 5000.0
                                                  // di/dt(
     A/-\sec
                                                  // Drop
  lead_drop = Inductance*dist*di_dt/1000
      in the lead (kV)
30 E_d = E_a + lead_drop
                                                  // (kV)
31 \text{ V\_tr\_terminal} = \text{E\_d+2*de\_dt*L\_1/300}
      Voltage at transformer terminals (kV)
32 E_t = BIL/1.2
      Highest voltage the transformer is subjected (kV)
33 L = (E_t-E_a)/(2*de_dt)*300
      Distance at which lightning arrester located from
       transformer (m)
34 \text{ L_lead} = (E_t-E_a*1.1)/(2*de_dt)*300
      Distance at which lightning arrester located from
       transformer taken 10% lead drop(m)
35
36 // Results
37 disp("PART II - EXAMPLE : 15.2 : SOLUTION :-")
```

- 38 printf("\nRating of L.A = $\%.1\,\mathrm{f}$ kV", V_rating_LA)
- 39 printf("\nLocation of L.A, L = %.f m", L)
- 40 printf("\nLocation of L.A if 10 percent lead drop is considered, L = $\%.1\,f$ m", L_lead)
- 41 printf("\nMaximum distance at which a ligtning arrester is usually connected from transformer is %.f-%.f m", L-2,L+3)

POWER SYSTEM GROUNDING

Scilab code Exa 23.1 Inductance and Rating of arc suppression coil

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 16: POWER SYSTEM GROUNDING
9 // EXAMPLE : 16.1 :
10 // Page number 409
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                         // Voltage (V)
14 \quad V = 132.0*10**3
                           // Number of phase
15 n = 3.0
                          // Frequency(Hz)
// Line length(km)
16 f = 50.0
17 \quad 1 = 50.0
18 \ C = 0.0157*10**-6
                           // Capacitance to earth (F/km)
```

```
19
20 // Calculations
21 L = 1/(n*(2*\%pi*f)**2*C*1)
                                        // Inductance (H)
                                         // Reactance (ohm)
22 \quad X_L = 2*\%pi*f*L
                                        // Current (A)
23 I_F = V/(3**0.5*X_L)
24 \text{ rating} = I_F*V/(3**0.5*1000)
                                        // Rating of arc
      suppression coil(kVA)
25
26 // Results
27 disp("PART II - EXAMPLE : 16.1 : SOLUTION :-")
28 printf("\nInductance, L = \%.1 f Henry", L)
29 printf("\nRating of arc suppression coil = %.f kVA \
      n", rating)
30 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more approximation in
      the textbook")
```

ELECTRIC POWER SUPPLY SYSTEMS

 ${
m Scilab\ code\ Exa\ 24.1}$ Weight of copper required for a three phase transmission syst

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
9 // EXAMPLE : 17.1 :
10 // Page number 422-423
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ no\_phase} = 3.0
                            // Number of phases in ac
     transmission system
15 V = 380.0*10**3
                            // Voltage b/w lines(V)
                            // Load (MW)
16 \; load = 100.0
                            // Power factor
17 \text{ PF} = 0.9
```

```
18 1 = 150.0
                             // Line length (km)
                             // Efficiency
19 n = 0.92
                             // Resistance (ohm/km/sq.cm)
20 r = 0.045
                             // Weight of 1 cm<sup>3</sup> copper(
21 \ w_cu_1 = 0.01
      kg)
22
23 // Calculations
24 // Case (i)
25 P_{loss} = (1-n)*load
                                            // Power loss
      in the line (MW)
26 I_L = load*10**6/(3**0.5*V*PF)
                                            // Line current
      (A)
27
  loss_cu = P_loss/no_phase*10**6
                                            // I^2*R loss
      per conductor (W)
28 R = loss_cu/I_L**2
                                            // Resistance
      per conductor (ohm)
29 R_km = R/1
                                            // Resistance
      per conductor per km(ohm)
30 \text{ area} = r/R_km
                                            // Conductor
      area (Sq.cm)
31 \text{ volume} = area*100.0
                                            // Volume of
      copper per km run(cm<sup>3</sup>)
32 W_cu_km = volume*w_cu_1
                                            // Weight of
      copper per km run(kg)
33 \text{ W_cu = no_phase*l*1000*W_cu_km}
                                            // Weight of
      copper for 3 conductors of 150 km(kg)
34 // Case(ii)
35 \text{ W_cu_dc} = 1.0/2*PF**2*W_cu
                                            // Weight of
      copper conductor in dc(kg)
36
37 // Results
38 disp("PART II - EXAMPLE : 17.1 : SOLUTION :-")
39 printf("\nWeight of copper required for a three-
      phase transmission system = \%. f kg", W_cu)
40 printf("\nWeight of copper required for the d-c
      transmission system = \%. f kg \n", W_cu_dc)
41 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision")
```

Scilab code Exa 24.2 Percentage increase in power transmitted

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
8
9 // EXAMPLE : 17.2 :
10 // Page number 423
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 P_1 = 1.0 // Assume P1 to be 1
15
16 // Calculations
17 P_2 = (3.0*2)**0.5
                                  // 3-phase power
      transmitted in terms of P<sub>-</sub>1
18 inc_per = (P_2-P_1)/P_1*100 // Increase in power
     transmitted (%)
19
20 // Results
21 disp("PART II - EXAMPLE : 17.2 : SOLUTION :-")
22 printf("\nPercentage increase in power transmitted =
      \%. f percent", inc_per)
```

Scilab code Exa 24.3 Percentage additional balanced load

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
9 // EXAMPLE : 17.3 :
10 // Page number 424
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 PF = 0.95 // Lagging power factor
16 // Calculations
17 P_1 = 1.0
                                                  //
     Power in terms of V*I_1
18 P_2 = 2.0*PF**2
     Power in terms of V*I_1
19 P_{additional_percentage} = (P_2-P_1)/P_1*100
     Percentage additional power transmitted in a 3-
     phase 3-wire system
20
21 // Results
22 disp("PART II - EXAMPLE : 17.3 : SOLUTION :-")
23 printf("\nPercentage additional power transmitted in
      a 3-phase 3-wire system = \%. f percent",
     P_additional_percentage)
```

Scilab code Exa 24.4 Amount of copper required for 3 phase 4 wire system with that

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
```

```
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
9 // EXAMPLE : 17.4 :
10 // Page number 424-425
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 n = 3.0
                 // 3-phase 4 wire ac system
15
16 // Calculations
17 	 a2_a1 = 1.0/6
                             // Ratio of cross-sectional
       area of 2 wire dc to 3-phase 4-wire system
18 \text{ ratio_cu} = 3.5/2*a2_a1
                             // Copper for 3 phase 4
      wire system to copper for 2 wire dc system
19
20 // Results
21 disp("PART II - EXAMPLE : 17.4 : SOLUTION :-")
22 printf("\nCopper for 3-phase 4-wire system/Copper
      for 2-wire dc system = \%.3 \, \mathrm{f} : 1", ratio_cu)
```

 ${f Scilab\ code\ Exa\ 24.5}$ Weight of copper required and Reduction of weight of copper p

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
```

```
9 // EXAMPLE : 17.5 :
10 // Page number 425
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                         // Line length (km)
14 L = 60.0
15 P = 5.0
                         // Load (MW)
                         // Lagging power factor
16 \text{ PF} = 0.8
                         // Voltage (V)
17 V = 33.0*10**3
                         // Transmission efficiency
18 n = 0.85
                         // Specific resistance of copper
19 rho = 1.73*10**-8
      (ohm-mt)
20 \text{ density} = 8900.0
                         // Density (kg/mt<sup>3</sup>)
21
22 // Calculations
23 I = P*10**6/(3**0.5*V*PF)
                                               // Line
      current (A)
24 line_loss = (1-n)*P*1000/n
                                               // Line loss
      (kW)
  line_loss_phase = line_loss/3.0
                                               // Line loss
     /phase(kW)
26 R = line_loss_phase*1000/I**2
      Resistance/phase(ohm)
27 \ a = rho*L*1000/R
                                               // Area of
      cross section of conductor (m<sup>2</sup>)
  volume = 3.0*a*L*1000
                                               // Volume of
       copper (m<sup>3</sup>)
29 W_cu = volume*density
                                               // Weight of
       copper in 3-phase system (kg)
30 I_1 = P*10**6/V
                                               // Current
      in single phase system (A)
31 R_1 = line_loss*1000/(2*I_1**2)
      Resistance in single phase system(ohm)
  a_1 = rho*L*1000/R_1
                                               // Area of
      cross section of conductor in single phase system
      (m^2)
33 \text{ volume}_1 = 2.0*a_1*L*1000
                                               // Volume of
```

Scilab code Exa 24.6 Economical cross section of a 3 core distributor cable

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
9 // EXAMPLE : 17.6 :
10 // Page number 427-428
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 L = 250.0
                              // Cable length (m)
                              // Load (W)
15 P = 80.0*10**3
16 V = 400.0
                              // Voltage (V)
                              // Lagging power factor
17 \text{ PF} = 0.8
```

```
18 \text{ time} = 4000.0
                                // Time of operation (hours
      /annum)
19 a = poly(0, 'a')
                                // Area of each conductor(
      Sq.cm)
20 \quad cost_instal = 15.0*a+25
                                // Cost of cable including
       installation (Rs/m)
21 interest_per = 0.1
                                // Interest & depreciation
                               // Cost of energy wasted (
22 \text{ cost_waste_per} = 0.1
      Rs/unit)
23 r = 0.173
                                // Resistance per km of 1
      \operatorname{cm}^2(\operatorname{ohm})
24
25 // Calculations
26 I = P/(3**0.5*V*PF)
                                              // Line
      current (A)
27 \text{ energy_waste} = 3.0*I**2*r/a*L*10**-3*time*10**-3
              // Energy wasted per annum(kWh)
28 cost_energy_waste = cost_waste_per*energy_waste
               // Annual cost of energy wasted as losses
      (Rs)
29 capitaL_cost_cable = cost_instal*L
                             // Capital cost of cable (Rs)
30 annual_cost_cable = capitaL_cost_cable*
      cost_waste_per
                      // Annual cost on cable (Rs)
31 \text{ area} = (1081.25/375) **0.5
                                       // Area = a (Sq.cm).
       Simplified and taken final answer
32
33 // Results
34 disp("PART II - EXAMPLE : 17.6 : SOLUTION :-")
35 printf("\nEconomical cross-section of a 3-core
      distributor cable, a = \%.1 f cm^2, area)
```

Scilab code Exa 24.7 Most economical cross section

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
8
  // EXAMPLE : 17.7 :
10 // Page number 428
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad V = 110.0*10**3
                                    // Voltage (V)
                                    // Load (MW)
15 \quad 1_1 = 24.0*10**6
                                    // Time(hours)
16 t_1 = 6.0
                                    // Load (MW)
17 \quad 1_2 = 8.0*10**6
18 t_2 = 6.0
                                    // Time(hours)
19 \quad 1_3 = 4.0*10**6
                                    // Load (MW)
20 t_3 = 12.0
                                    // Time (hours)
21 \text{ PF} = 0.8
                                    // Lagging power
      factor
                                    // Cross-section of
22 a = poly(0, 'a')
      each conductor (Sq.cm)
23 \text{ cost\_line} = 12000.0+8000*a
                                    // Cost of line
      including erection (Rs/km)
24 R = 0.19/a
                                    // Resistance per km
      of each conductor (ohm)
                                    // Energy cost (Rs/unit
25 \text{ cost\_energy} = 8.0/100
  interest_per = 0.1
                                    // Interest &
26
      depreciation. Assumption
27
28 // Calculations
29 annual_charge = interest_per*cost_line
                                                  // Total
      annual charge (Rs)
30 I_1 = I_1/(3**0.5*V*PF)
                                                   // Line
```

```
current for load 1(A)
31 I_2 = 1_2/(3**0.5*V*PF)
                                                 // Line
      current for load 2(A)
32 I_3 = 1_3/(3**0.5*V*PF)
                                                 // Line
      current for load 3(A)
33 \quad I_2_t = I_1**2*t_1+I_2**2*t_2+I_3**2*t_3
                                                 // I^2 * t
                                                 // Annual
34 \text{ annual\_energy} = 3.0*R*365/1000*I_2_t
       energy consumption on account of losses (kWh)
35 cost_waste = annual_energy*cost_energy
                                                // Cost
      of energy wasted per annum(Rs)
36 \text{ area} = (2888.62809917355/800.0)**0.5
      Economical cross-section = a(Sq.cm). Simplified
      and taken final answer
37
38 // Results
39 disp("PART II - EXAMPLE : 17.7 : SOLUTION :-")
40 printf("\nMost economical cross-section, a = \%.2 f cm
      ^2", area)
```

Scilab code Exa 24.8 Most economical current density for the transmission line

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
8
9  // EXAMPLE : 17.8 :
10  // Page number 428-429
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
```

```
14 \ \text{cost\_km\_cu} = 2800.0
                                 // Cost per km for each
      copper conductor of sq.cm(Rs)
                                // Load factor of load
15 \text{ LF}_{I} = 80.0/100
      current
16 \text{ LF_loss} = 65.0/100
                                 // Load factor of losses
17 interest_per = 10.0/100
                                // Rate of interest and
      depreciation
18 \text{ cost\_energy} = 5.0/100
                              // Cost of energy(Rs/kWh
19 \text{ rho} = 1.78*10**-8
                                // Resistivity (ohm-m)
20
21 // Calculations
22 P_2 = cost_km_cu*interest_per
                                                        //
      Cost in terms of L(Rs)
23 \text{ time_year} = 365.0*24
      Total hours in a year
24 P_3 = cost_energy*rho*10**4*time_year*LF_loss
                                                        //
      Cost in terms of I^2 & L(Rs)
25 \text{ delta} = (P_2/P_3)**0.5
      Economical current density for the transmission
      line(A/sq.cm)
26
27 // Results
28 disp("PART II - EXAMPLE : 17.8 : SOLUTION :-")
29 printf("\nMost economical current density for the
      transmission line, = \%. f A/sq.cm", delta)
```

Scilab code Exa 24.9 Most economical cross section of the conductor

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
```

```
7 // CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
9 // EXAMPLE : 17.9 :
10 // Page number 429
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ MD} = 1000.0
                                  // Maximum demand (kW)
                                  // Annual energy
15 \text{ energy\_cons} = 5.0*10**6
      consumption (kWh)
16 \text{ PF} = 0.85
                                  // Power factor
17 \text{ capital\_cost} = 80000.0
                                  // Capital cost of cable
      (Rs/km)
18 \text{ cost\_energy} = 5.0/100
                                  // Energy cost (Rs/kWh)
19 interest_per = 10.0/100
                                  // Rate of interest and
      depreciation
20 \text{ r\_specific} = 1.72*10**-6
                                  // Specific resistance
      of copper (ohm/cubic.cm)
                                  // Voltage (kV)
21 V = 11.0
22
23 // Calculations
24 I = MD/(3**0.5*V*PF)
      Line current corresponding to maximum demand(A)
25 \text{ hours_year} = 365.0*24
                                                      //
      Total hours in a year
26 LF = energy_cons/(MD*hours_year)
                                         // Load factor
27 \ loss_LF = 0.25*LF+0.75*LF**2
                                              // Loss load
      factor
28 P_2 = capital_cost*interest_per
                                          // Cost in terms
       of L(Rs)
29 P_3 = 3.0*I**2*r_specific*10**4*hours_year*loss_LF*
      cost_energy // Cost in terms of I^2 & L(Rs)
```

```
30 a = (P_3/P_2)**0.5

Most economical cross-section of conductor(sq.cm)
31
32 // Results
33 disp("PART II - EXAMPLE : 17.9 : SOLUTION :-")
34 printf("\nMost economical cross-section of the conductor, a = %.2 f cm^2 \n", a)
35 printf("\nNOTE: ERROR: Calculation mistake in the textbook solution")
```

POWER DISTRIBUTION SYSTEMS

Scilab code Exa 25.1 Potential of O and Current leaving each supply point

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART II : TRANSMISSION AND DISTRIBUTION
7  // CHAPTER 18: POWER DISTRIBUTION SYSTEMS
8
9  // EXAMPLE : 18.1 :
10  // Page number 437
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
14  V_A = 225.0  // Potential at point A(V)
15  R_A = 5.0  // Resistance of line A(ohm)
16  V_B = 210.0  // Potential at point B(V)
17  R_B = 1.0  // Resistance of line B(ohm)
18  V_C = 230.0  // Potential at point C(V)
```

```
// Resistance of line C(ohm)
19 R_C = 1.0
20 V_D = 230.0
                                                    // Potential at point D(V)
                                                    // Resistance of line D(ohm)
21 R_D = 2.0
22 V_E = 240.0
                                                    // Potential at point E(V)
23 R_E = 2.0
                                                    // Resistance of line E(ohm)
24
25 // Calculations
V_0 = ((V_A/R_A) + (V_B/R_B) + (V_C/R_C) + (V_D/R_D) + (V_E/R_C) + (V_B/R_C) + (V_B/R_C)
                R_E))/((1/R_A)+(1/R_B)+(1/R_C)+(1/R_D)+(1/R_E))
                      // Potential at point O(V)
27 I_A = (V_A - V_0)/R_A
                                                                                       // Current leaving supply
                   point A(A)
       I_B = (V_B - V_0)/R_B
                                                                                       // Current leaving supply
                   point B(A)
      I_C = (V_C - V_0)/R_C
                                                                                       // Current leaving supply
                   point C(A)
                                                                                       // Current leaving supply
30 I_D = (V_D - V_0)/R_D
                   point D(A)
31 I_E = (V_E - V_0)/R_E
                                                                                       // Current leaving supply
                   point E(A)
32
33 // Results
34 disp("PART II - EXAMPLE : 18.1 : SOLUTION :-")
35 printf("\nPotential of point O, V_0 = \%. f V", V_0
36 printf("\nCurrent leaving supply point A, I_-A = \%.f
               A", I_A)
37 printf("\nCurrent leaving supply point B, I_B = \%.f
               A", I_B)
     printf("\nCurrent leaving supply point C, I_{-}C = \%.f
                A", I_C)
39 printf ("\nCurrent leaving supply point D, I_D = \%.2 f
                  A", I_D)
40 printf ("\nCurrent leaving supply point E, I_-E = \%.2 f
                  A", I_E)
```

Scilab code Exa 25.2 Point of minimum potential along the track and Currents suppl

```
1 // A Texbook on POWER SYSTEM ENGINEERING
  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 18: POWER DISTRIBUTION SYSTEMS
9 // EXAMPLE : 18.2 :
10 // Page number 437-438
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 I = 600.0
                      // Constant current drawn(A)
                     // Distance b/w two sub-stations (
15 D = 8.0
     km)
                    // Potential at point A(V)
16 \quad V_A = 575.0
                     // Potential at point B(V)
17 V_B = 590.0
18 R = 0.04
                     // Track resistance (ohm/km)
19
20 // Calculations
                                                     // x(
21 x = poly(0, 'x')
     km)
  I_A = ((-V_B+R*I*D+V_A)-(R*I)*x)/(D*R)
      Simplifying
23 \quad V_P = V_A - I_A * R * x
      Potential at P in terms of x(V)
24 \text{ dVP_dx} = \text{derivat}(V_P)
      dV_P/dx
25 \text{ x\_sol} = \text{roots}(dVP\_dx)
      Value of x(km)
  I_A_1 = ((-V_B+R*I*D+V_A)-(R*I)*x_{sol})/(D*R)
      Current drawn from end A(A)
27 \quad I_B = I-I_A_1
      Current drawn from end B(A)
```

Scilab code Exa 25.3 Position of lowest run lamp and its Voltage

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 18: POWER DISTRIBUTION SYSTEMS
9 // EXAMPLE : 18.3 :
10 // Page number 438-439
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ 1 = 400.0
                       // Length of cable (m)
                       // Load (A/m)
15 i = 1.0
                       // Current at 40m from end A(A)
16 I_1 = 120.0
17 \quad 1_1 = 40.0
                       // Distance from end A(A)
                       // Current at 72m from end A(A)
18 I_2 = 72.0
19 \quad 1_2 = 120.0
                       // Distance from end A(A)
20 I_3 = 48.0
                       // Current at 200m from end A(A)
```

```
// Distance from end A(A)
21 \quad 1_3 = 200.0
                         // Current at 320m from end A(A)
22 I_4 = 120.0
                        // Distance from end A(A)
23 \quad 1_4 = 320.0
                        // Cable resistance (ohm/km)
// Voltage at end A(A)
24 r = 0.15
25 V_A = 250.0
                        // Voltage at end A(A)
26 V_B = 250.0
27
28 // Calculations
29 I = poly(0,"I")
      // Current from end A(A)
30 \text{ A\_A1} = 1_1 * r * (I - (1.0/2) * i * 1_1)
                                                  // Drop
      over length(V)
31 I_d_1 = 40.0
      // Distributed tapped off current(A)
32 \quad I_A1_A2 = I-1_1-1_2
      // Current fed in over length (A)
33 A1_A2 = (1_2-1_1)*r*(I_A1_A2-(1.0/2)*i*(1_2-1_1))
                            // Drop over length (V)
34 I_d_2 = 80.0
      // Distributed tapped off current(A)
35 \quad I_A2_A3 = I_A1_A2 - (I_2+I_d_2)
                                                   // Current
       fed in over length (A)
36 \quad A2\_A3 = (1\_3-1\_2)*r*(I\_A2\_A3-(1.0/2)*i*(1\_3-1\_2))
                            // Drop over length (V)
37 I_d_3 = 80.0
      // Distributed tapped off current(A)
38 I_A3_A4 = I_A2_A3 - (I_3+I_d_3)
                                                   // Current
       fed in over length (A)
39 \quad A3\_A4 = (1\_4-1\_3)*r*(I\_A3\_A4-(1.0/2)*i*(1\_4-1\_3))
                            // Drop over length (V)
```

```
40 I_d_4 = 120.0
                      // Distributed tapped off current(A)
41 \quad I_A4_B = I_A3_A4 - (I_4 + I_d_4)
                                                                                                                                                                                    //
                       Current fed in over length (A)
42 \text{ A4}_B = (1-1_4)*r*(I_A4_B-(1.0/2)*i*(1-1_4))
                                                                                                                         // Drop over length (V)
43 \text{ V_drop} = A_A1 + A1_A2 + A2_A3 + A3_A4 + A4_B
                                                                                                                                                    // Total voltage
                       drop in terms of I
44 I = roots(V_drop)
                      // Current (A)
45 I_{total} = 760.0
                      // Total load current (A)
46 I_B = I_total-I
                      // Current from B(A)
47 \quad A\_A3 = 2.0*r/1000*(1_1*(I-20)+(1_2-1_1)*(I-200)+(1_3)*(I-200)+(1_3)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-200)*(I-
                      -1_2)*(I-352)) // Potential drop over length
                      A_A3(V)
48 \quad V_A3 = V_A-A_A3
                      // Voltage at the lowest run lamp(V)
49
50 // Results
51 disp("PART II - EXAMPLE : 18.3 : SOLUTION :-")
52 printf("\nPosition of lowest-run lamp, A_{-3} = \%. f m",
53 printf("\nVoltage at the lowest-run lamp = \%.1 \text{ f V}",
                      V_A3)
```

Scilab code Exa 25.4 Point of minimum potential and its Potential

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 18: POWER DISTRIBUTION SYSTEMS
8
  // EXAMPLE : 18.4 :
10 // Page number 439
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad 1 = 450.0
                        // Length of wire (m)
                        // Voltage at end A(V)
15 \quad V_A = 250.0
                       // Voltage at end A(V)
16 V_B = 250.0
                       // Conductor resistance (ohm/km)
17 r = 0.05
                        // Load (A/m)
18 i = 1.5
19 I_C = 20.0
                        // Current at C(A)
                       // Distance to C from A(m)
20 \ 1_C = 60.0
                       // Current at D(A)
21 I_D = 40.0
                       // Distance to D from A(m)
22 \quad 1_D = 100.0
                       // Distance to E from A(m)
23 \quad 1_E = 200.0
24
25 // Calculations
26 x = poly(0, "x")
                                                         //
      Current to point D from end A(A)
  AD = (I_C+x)*r*l_C+x*r*(l_D-l_C)
      Drop in length AD
  BD = (i*r*V_A**2/2) + (I_D-x)*r*(450-1_D)
      Drop in length BD
29 \text{ x\_sol} = \text{roots}(AD-BD)
      Current (A)
  I_F = x_sol - I_D
                                                         //
      Current supplied to load from end A(A)
31 \ l_F = l_E + (I_F/i)
                                                         //
      Point of minimum potential at F from A(m)
```

Scilab code Exa 25.6 Ratio of weight of copper with and without interconnector

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 18: POWER DISTRIBUTION SYSTEMS
9 // EXAMPLE : 18.6 :
10 // Page number 440-441
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                         // Length between A & B(m)
14 \ l_AB = 100.0
                         // Length between B & C(m)
15 \ l_BC = 150.0
16 \ 1_{CD} = 200.0
                         // Length between C & D(m)
17 \quad 1_AD = 350.0
                         // Length between A & D(m)
                         // Length between A & E(m)
18 \ 1_AE = 200.0
19 \ 1_{ED} = 250.0
                         // Length between E & D(m)
20 I_B = 10.0
                         // Current at B(A)
                         // Current at C(A)
21 I_C = 20.0
                         // Current at D(A)
22 I_D = 50.0
23 I_E = 39.0
                         // Current at E(A)
```

```
24
25 // Calculations
26 x = poly(0, "x")
     // Current in section AB(A)
27 \text{ ABCDEA} = x*1_AB+(x-I_B)*1_BC+(x-I_B-I_C)*1_CD+(x-I_B)
     -I_C-I_D)*1_ED+(x-I_B-I_C-I_D-I_E)*1_AE // KVL
      around loop ABCDEA
28 \times sol = roots(ABCDEA)
                                                       //
      Current in section AB(A)
29 V_AD = x_sol*1_AB+(x_sol-I_B)*1_BC+(x_sol-I_B-I_C)*
                       // Voltage drop from A to D in
      1_CD
      terms of /a_1(V)
30 \text{ R_AD} = (1\_AB+1\_BC+1\_CD)*(1\_AE+1\_ED)/(1\_AB+1\_BC+1\_CD+
      1_AE+1_ED) // Resistance of n/w across
      terminals AD in terms of
31 I_AD = V_AD/(R_AD+1_AD)
                                                     //
      Current in interconnector AD(A)
32 \quad V_A_D = I_AD*1_AD
     // Voltage drop between A & D in terms of
                                                    /a_2
33 \quad a2_a1 = V_A_D/V_AD
34 length_with = (1_AB+1_BC+1_CD+1_AE+1_ED+1_AD)
                             // Length of conductor with
       interconnector (m)
35 length_without = (l_AB+l_BC+l_CD+l_AE+l_ED)
                               // Length of conductor
      without interconnector (m)
36 volume_with = a2_a1*length_with/length_without
                            // Weight of copper with
      interconnector
37
38 // Results
39 disp("PART II - EXAMPLE : 18.6 : SOLUTION :-")
40 printf("\nRatio of weight of copper with & without
      interconnector = \%.3 f : 1 (or) 1 : \%.2 f,
```

Scilab code Exa 25.7 Potential difference at each load point

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART II : TRANSMISSION AND DISTRIBUTION
7 // CHAPTER 18: POWER DISTRIBUTION SYSTEMS
9 // EXAMPLE : 18.7 :
10 // Page number 441-442
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ r_out} = 0.05
                              // Resistance of each outer
       per 100 metre length (ohm)
15 \text{ r_neutral} = 0.10
                              // Resistance of each
      neutral per 100 metre length (ohm)
                              // Potential at point A(V)
16 \quad V_A = 200.0
17 V_B = 200.0
                              // Potential at point B(V)
                              // Length between A & C(m)
18 \ 1\_AC = 100.0
19 \ 1_{CD} = 150.0
                              // Length between C & D(m)
20 \ 1_{DB} = 200.0
                              // Length between D & B(m)
21 \quad 1_AF = 200.0
                              // Length between A & F(m)
22 \quad 1_{FE} = 100.0
                              // Length between F & E(m)
                              // Length between E & B(m)
23 \quad 1_{EB} = 150.0
                              // Current at point C(A)
24 I_C = 20.0
25 I_D = 30.0
                              // Current at point D(A)
                              // Current at point F(A)
26 I_F = 60.0
27 I_E = 40.0
                              // Current at point E(A)
28
```

```
29 // Calculations
30 x = poly(0, "x")
      // Current in positive outer alone (A)
31 \text{ equ}_1 = r_\text{out}*(l_DB*(I_D-x))-r_\text{out}*(l_AC*(I_C+x)+
      1_{CD*x}
32 \times sol = roots(equ_1)
                                                              //
      Current in positive outer alone (A)
33 y = poly(0, "y")
      // Current in negative outer alone (A)
34 \text{ equ}_2 = r_\text{out}*((I_E-y)*l_FE+(I_E+I_F-y)*l_AF)-r_\text{out}
      *(1_EB*y)
35 \text{ y\_sol} = \text{roots}(\text{equ\_2})
                                                              //
      Current in negative outer alone (A)
36 \quad I_pos_out = I_C+x_sol
                                                            //
      Current entering positive outer (A)
37 I_neg_out = I_E+I_F-y_sol
      Current returning via negative outer(A)
38 I_middle = I_neg_out-I_pos_out
                                                 // Current in
      the middle wire towards G(A)
39 \text{ r_CD} = \text{r_out*l_CD/100.0}
      Resistance between C & D(ohm)
40 \text{ r_D} = \text{r_out*l_DB/100.0}
                                                           //
      Resistance between D & B(ohm)
41 \text{ r_IH} = \text{r_neutral*l_FE*0.5/100.0}
                                                // Resistance
      between I & H(ohm)
42 \text{ r_IJ} = \text{r_neutral*l_FE*0.5/100.0}
                                                // Resistance
      between I & J(ohm)
```

```
43 \text{ r_GH} = \text{r_neutral*l_AF*0.5/100.0}
                                                                                                                                           // Resistance
                    between G & H(ohm)
44 \text{ r_AF} = \text{r_out*l_AF}/100.0
                                                                                                                                                                       //
                    Resistance between A & F(ohm)
45 \text{ I}_{CD} = x_{sol}
                   // Current flowing into D from C(A)
46 \quad I_out_D = I_D-x_sol
                                                                                                                                                                                      //
                    Current flowing into D from outer side (A)
47 I_GH = I_C+I_middle
                                                                                                                                                                                      //
                    Current flowing into H from G(A)
48 \quad I_IH = I_F-I_GH
                   // Current flowing into H from I(A)
49 \quad I_BJ = I_E - (I_D - I_IH)
                                                                                                                                                                               //
                    Current flowing into J from B(A)
50 I_FE = y_sol-I_E
                   // Current flowing into E from F(A)
51 \quad I_IJ = I_D-I_IH
                   // Current flowing into J from I(A)
52 V_C = V_A-(I_pos_out*r_out-I_middle*r_neutral)
                                                                                      // Potential at load point C(A
53 \text{ V}_D = \text{V}_C - (I_CD*r_CD+I_IH*r_IH-I_GH*r_GH)
                                                                                                        // Potential at load
                    point D(A)
V_F = V_A - (I_middle*r_neutral + I_GH*r_neutral + I_GH
                    I_neg_out*r_AF)  // Potential at load point F
                    (A)
55 V_E = V_F - (-I_IH*r_IH+I_IJ*r_IJ-I_FE*r_out)
                                                                                                 // Potential at load point
```

```
E(A)

56

57 // Results

58 disp("PART II - EXAMPLE : 18.7 : SOLUTION :-")

59 printf("\nPotential difference at load point C = %.3 f V", V_C)

60 printf("\nPotential difference at load point D = %.3 f V", V_D)

61 printf("\nPotential difference at load point E = %.3 f V", V_E)

62 printf("\nPotential difference at load point F = %.3 f V", V_F)
```

Scilab code Exa 25.8 Load on the main generators and On each balancer machine

```
1 // A Texbook on POWER SYSTEM ENGINEERING
  // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
  // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 18: POWER DISTRIBUTION SYSTEMS
8
9 // EXAMPLE : 18.8 :
10 // Page number 442-443
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
                         // Voltage between outer(V)
14 \ V = 440.0
15 I_{pos} = 210.0
                         // Ligting load current on
     positive side (A)
                         // Ligting load current on
16 I_neg = 337.0
     negative side (A)
17 I_power = 400.0
                        // Power load current(A)
```

```
// Loss in each balancer
18 P_{loss} = 1.5
      machine (kW)
19
20 // Calculations
21 P = I_power*V/1000.0
      Power (kW)
  load_pos = I_pos*V*0.5/1000.0
22
      Load on positive side (kW)
23 \ load_neg = I_neg*V*0.5/1000.0
      Load on negative side (kW)
24 loss_total = 2*P_loss
      Total loss on rotary balancer set (kW)
25
  load_main = P+load_pos+load_neg+loss_total
      Load on main machine (kW)
  I = load_main*1000/V
      Current (A)
  I_M = I - 610.0
27
      Current through balancer machine (A)
28 I_G = 127.0 - I_M
      Current through generator (A)
29 output_G = I_G*V*0.5/1000.0
      Output of generator (kW)
  input_M = I_M*V*0.5/1000.0
30
      Input to balancer machine (kW)
31
32 // Results
33 disp("PART II - EXAMPLE : 18.8 : SOLUTION :-")
34 printf("\nLoad on the main machine = \%.2 \text{ f kW}",
      load_main)
35 printf("\nOutput of generator = \%.2 \text{ f kW}", output_G)
36 printf("\nInput to balancer machine = \%.2 \text{ f kW}",
      input_M)
```

Scilab code Exa 25.9 Currents in various sections and Voltage at load point C

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART II : TRANSMISSION AND DISTRIBUTION
  // CHAPTER 18: POWER DISTRIBUTION SYSTEMS
8
9 // EXAMPLE : 18.9 :
10 // Page number 444
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                                   // Line voltage at A(V)
14 \quad V_a = 11.0*10**3
                               // Impedance between A
15 \text{ Z\_AB} = \text{complex}(1.0,0.8)
     & B(ohm)
16 \ Z_AC = complex(3.0,2.0)
                                   // Impedance between A
     & C(ohm)
17 \ Z_BD = complex(3.0,4.0)
                                   // Impedance between B
     & D(ohm)
18 \ Z_{CD} = complex(1.0,0.7)
                                   // Impedance between C
     & D(ohm)
19 I_B = 60.0
                                   // Current at B(A)
20 I_C = 30.0
                                   // Current at C(A)
                                   // Current at D(A)
21 I_D = 50.0
22 \text{ pf}_B = 0.8
                                   // Power factor at B
                                   // Power factor at C
23 \text{ pf}_C = 0.9
                                   // Power factor at D
24 \text{ pf}_D = 0.707
25
26 // Calculations
27 \sin_{B} = (1-pf_B**2)**0.5
28 I_B1 = I_B*(pf_B-\%i*sin_phi_B)
                                           // Load current (
      A)
29 \sin_{\text{phi}_{\text{C}}} = (1-\text{pf}_{\text{C}}**2)**0.5
30 I_C1 = I_C*(pf_C-\%i*sin_phi_C)
                                           // Load current (
      A)
31 \sin_{D} = (1-pf_D**2)**0.5
```

```
32 \quad I_D1 = I_D*(pf_D-\%i*sin_phi_D)
                                           // Load current (
      A)
33 V_A = V_a/3**0.5
                                            // Phase voltage
       at A(V)
  I\_AC = I\_C1
                                               Current in
      section AC when C & D is removed (A)
  I_BD = I_D1
                                               Current in
      section BD when C & D is removed (A)
36 \quad I\_AB = I\_B1+I\_D1
                                               Current in
      section AB when C & D is removed (A)
37 \text{ V_AC\_drop} = I\_AC*Z\_AC
                                           // Voltage drop
      at section AC(V)
  V_AB_drop = I_AB*Z_AB
                                            // Voltage drop
      at section AB(V)
39 \ V_BD_drop = I_BD*Z_BD
                                            // Voltage drop
      at section BD(V)
40 \quad V_drop_D = V_BD_drop+V_AB_drop
                                           // Total drop
      upto D(V)
                                           // Potential
41 \text{ pd}_CD = V_drop_D-V_AC_drop
      difference between C & D(V)
42 \quad Z_C_D = Z_AB + Z_BD + Z_AC
                                           // Impedance of
      network looking from terminal C & D(ohm)
43 \quad I_CD = pd_CD/(Z_C_D+Z_CD)
                                           // Current
      flowing in section CD(A)
44 \quad I\_AC = I\_CD+I\_C1
                                               Current
      flowing in section AC(A)
  I_BD = I_D1-I_CD
                                            // Current
      flowing in section BD(A)
  I\_AB = I\_BD + I\_B1
                                            // Current
      flowing in section AB(A)
  V_drop_AC = I_AC*Z_AC
                                           // Drop caused
      by current flowing in section AC(V/phase)
48 V_drop_AC_line = V_drop_AC*3**0.5
                                           // Drop caused
      by current flowing in section AC(V)
                                           // Voltage at C(
  V_C = V_a - V_drop_AC_line
      V)
50
51 // Results
```

Chapter 27

SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS

Scilab code Exa 27.1 Per unit current

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY
     CALCULATIONS
9 // EXAMPLE : 1.1 :
10 // Page number 466-467
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 V = 500.0
                                // Generator voltage(V)
                                // Rating of the
15 \text{ rating} = 10.0
```

```
generator (kVA)
16 \text{ n_up} = 1.0/2
                                // Turns ratio of step-
     up transformer
  Z_{line} = complex(1.0,2.0)
                                 // Transmission line
     impedance (ohm)
18 \, n_{down} = 10.0/1
                                 // Turns ratio of step-
     down transformer
                                // Load (ohm)
19 \; load = complex(2.0, 4.0)
20
21 // Calculations
22 V_base_gen = V
      Base voltage (V)
  kVA_base_gen = rating
23
      Base rating (kVA)
24 I_base_gen = kVA_base_gen*1000/V_base_gen
      Base current (A)
25 Z_base_gen = V_base_gen/I_base_gen
     Base impedance (ohm)
26 V_base_line = V_base_gen/n_up
      Voltage base of the transmission line (V)
27 kVA_base_line = rating
      Base rating of transmission line (kVA)
  I_base_line = kVA_base_line*1000/V_base_line
      Base current of transmission line (A)
29 Z_base_line = V_base_line/I_base_line
      Base impedance of transmission line (ohm)
30 Z_line_1 = Z_line/Z_base_line
      Impedance of transmission line (p.u)
31 V_base_load = V_base_line/n_down
      Base voltage at the load (V)
32 kVA_base_load = rating
      Base rating of load (kVA)
33 I_base_load = kVA_base_load*1000/V_base_load
                                                     //
      Base current of load (A)
34 Z_base_load = V_base_load/I_base_load
      Base impedance of load (ohm)
35 Z_load = load/Z_base_load
     Load impedance (p.u)
```

Scilab code Exa 27.2 kVA at a short circuit fault between phases at the HV termina

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY
     CALCULATIONS
9 // EXAMPLE : 1.2 :
10 // Page number 467-468
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kV} = 33.0
                                 // Transmission line
      operating voltage (kV)
15 R = 5.0
                                 // Transmission line
      resistance (ohm)
16 X = 20.0
                                 // Transmission line
     reactance (ohm)
17 \text{ kVA\_tr} = 5000.0
                                 // Rating of step-up
      transformer (kVA)
```

```
// Reactance of
18 X_{tr} = 6.0
      transformer (%)
19 \text{ kVA\_A} = 10000.0
                                    // Rating of alternator
      A(kVA)
20 X_A = 10.0
                                    // Reactance of
      alternator A(\%)
21 \text{ kVA}_B = 5000.0
                                    // Rating of alternator
      B(kVA)
22 X_B = 7.5
                                    // Reactance of
      alternator B(%)
23
24 // Calculations
25 \text{ kVA\_base} = \text{kVA\_A}
                                                  // Base
      rating (kVA)
26 \quad X_gen_A = X_A*kVA_base/kVA_A
                                    // Reactance of
      generator A(\%)
27 X_gen_B = X_B*kVA_base/kVA_B
                                    // Reactance of
      generator B(%)
28 X_trans = X_tr*kVA_base/kVA_tr
                                 // Reactance of
      transformer (%)
29 \quad X_{per} = kVA_{base*X}/(10*kV**2)
                                   // X(%)
30 R_per = kVA_base*R/(10*kV**2)
                                   // R(\%)
31 \ Z_F1 = (X_gen_A*X_gen_B/(X_gen_A+X_gen_B))+X_trans
          // Impedance upto fault (%)
32 \text{ kVA}_F1 = \text{kVA}_base*(100/Z_F1)
                                    // Short-circuit kVA fed
        into the fault (kVA)
33 R_per_F2 = R_per
                                                  // R(\%)
34 \text{ X_per_F2} = \text{X_per+Z_F1}
                                            // X(%)
35 \text{ Z}_F2 = (R_per_F2**2+X_per_F2**2)**0.5
```

```
// Total impedance upto F2(\%)
36 \text{ kVA}_F2 = \text{kVA}_base*(100/Z_F2)
                                // Short-circuit kVA fed
       into the fault at F2(kVA)
37
38 // Results
39 disp("PART III - EXAMPLE : 1.2 : SOLUTION :-")
40 printf("\nCase(a): kVA at a short-circuit fault
      between phases at the HV terminal of transformers
      = %. f kVA", kVA_F1)
41 printf("\nCase(b): kVA at a short-circuit fault
      between phases at load end of transmission line =
      \%. f kVA \n", kVA_F2)
42 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here &
      approximation in textbook")
```

Scilab code Exa 27.3 Transient short circuit current and Sustained short circuit of

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
8
9  // EXAMPLE : 1.3 :
10  // Page number 468-469
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
14 kVA_a = 40000.0  // Capacity of transmission
```

```
line (kVA)
15 x_a = 10.0
                                // Reactance of
      transmission line (%)
16 \text{ kVA_b} = 20000.0
                                // Capacity of transmission
       line (kVA)
17 x_b = 5.0
                                // Reactance of
      transmission line (%)
                                // Capacity of transmission
18 \text{ kVA\_c} = 50000.0
      line (kVA)
                                // Reactance of
19 x_c = 20.0
      transmission line (%)
                                // Capacity of transmission
20 \text{ kVA\_d} = 30000.0
       line (kVA)
21 x_d = 15.0
                                // Reactance of
      transmission line (%)
22 \text{ kVA\_e} = 10000.0
                                // Capacity of transmission
       line (kVA)
23 \text{ x_e} = 6.0
                                // Reactance of
      transmission line (%)
24 \text{ kVA}_T1 = 150000.0
                                // Capacity of transformer (
      kVA)
25 x_T1 = 10.0
                                // Reactance of transformer
      (\%)
                                // Capacity of transformer (
  kVA_T2 = 50000.0
      kVA)
27 x_T2 = 8.0
                                // Reactance of transformer
      (\%)
                                // Capacity of transformer (
28 \text{ kVA}_T3 = 20000.0
      kVA)
29 x_T3 = 5.0
                                // Reactance of transformer
      (\%)
30 \text{ kVA\_GA} = 150000.0
                                // Capacity of generator (
      kVA)
31 x_sA = 90.0
                                // Synchronous reactance of
       generator (%)
                                // Transient reactance of
32 x_tA = 30.0
      generator (%)
33 \text{ kVA\_GB} = 50000.0
                                // Capacity of generator (
```

```
kVA)
34 x_sB = 50.0
                                     // Synchronous reactance of
         generator (%)
35 x_tB = 17.5
                                         Transient reactance of
       generator (%)
36 V = 33.0
                                     // Feeder voltage(kV)
37
38 // Calculations
39 \text{ kVA\_base} = 200000.0
                                                    // Base rating (
       kVA)
40 \text{ X}_a = \text{kVA}_base/kVA_a*x_a
                                             // Reactance (%)
41 \quad X_b = kVA_base/kVA_b*x_b
                                             // Reactance (%)
42 \text{ X_c} = \text{kVA_base/kVA_c*x_c}
                                             // Reactance (%)
43 \text{ X_d} = \text{kVA\_base/kVA\_d*x\_d}
                                             // Reactance (%)
44 \text{ X_e} = \text{kVA_base/kVA_e*x_e}
                                             // Reactance (%)
45 \text{ X}_T1 = \text{kVA}_base/\text{kVA}_T1*x_T1
                                         // Reactance (%)
46 \text{ X}_T2 = \text{kVA}_base/kVA_T2*x_T2
                                         // Reactance (%)
47 \text{ X}_T3 = \text{kVA}_base/kVA_T3*x_T3
                                         // Reactance (%)
48 \text{ X\_sA} = \text{kVA\_base/kVA\_GA*x\_sA}
                                         // Synchronous reactance
        (\%)
49 \text{ X_tA} = \text{kVA_base/kVA_GA*x_tA}
                                         // Transient reactance (%
50 \text{ X\_sB} = \text{kVA\_base/kVA\_GB}*\text{x\_sB}
                                         // Synchronous reactance
       (\%)
51 \text{ X\_tB} = \text{kVA\_base/kVA\_GB*x\_tB}
                                         // Transient reactance (%
```

```
52 \quad X_eq_ab = X_a+X_b
                                               // Equivalent
      reactance of transmission lines a & b(%)
53 \text{ X_eq_abc} = \text{X_eq_ab*X_c/(X_eq_ab+X_c)}
                         // Equivalent reactance of
      transmission line c with series combination of a
      & b(%)
54 \text{ X}_{CF} = (X_{eq}abc+X_sA)*X_d/(X_{eq}abc+X_sA+X_d)
             // Total reactance b/w sub-station C & F(%)
55 // Case (i)
56 X_tr_genA = kVA_base/kVA_GA*x_tA
                             // Reactance in transient
      state of generator A(\%)
57 \text{ X}_{T1_{tr}} = \text{kVA}_{base/kVA}_{T1*x}_{T1}
                                // Reactance in transient
      state of transformer T1(%)
58 X_CF_tr = X_CF
                                                  // Total
      reactance in transient state b/w sub-station C &
      F(%)
59 X_eq_tAF = X_tr_genA+X_T1_tr+X_CF_tr
                         // Equivalent transient reactance
        from generator A to substation F(\%)
60 X_tr_genB = kVA_base/kVA_GB*x_tB
                             // Reactance in transient
      state of generator B(\%)
61 \text{ X}_{T2} = \text{kVA}_{base}/\text{kVA}_{T2} \times \text{x}_{T2}
                               // Reactance in transient
      state of transformer T2(%)
62 X_eq_tBF = X_tr_genB+X_T2_tr
                                  // Equivalent transient
      reactance from generator B to substation F(\%)
63 \quad X_{eq_tF} = X_{eq_tAF} \times X_{eq_tBF} / (X_{eq_tAF} \times X_{eq_tBF})
            // Equivalent transient reactance upto
      substation F(%)
64 \ X_eq_tfault = X_eq_tF+X_T3
                                    // Equivalent transient
```

```
reactance upto fault point (%)
65 kVA_t_sc = kVA_base/X_eq_tfault*100
                         // Transient short circuit kVA(
      kVA)
66 I_t_sc = kVA_t_sc/(3**0.5*V)
                                 // Transient short
      circuit rms current (A)
67 I_t_sc_peak = 2**0.5*I_t_sc
                                  // Peak value of
      transient short circuit current (A)
68 // Case(ii)
69 X_S_genA = kVA_base/kVA_GA*x_sA
                              // Reactance in steady state
       of generator A(\%)
70 \text{ X_eq_SAF} = \text{X_S_genA} + \text{X_T1} + \text{X_CF}
                                // Equivalent steady state
       reactance from generator A to substation F(\%)
71 \quad X_eq_SBF = X_sB+X_T2
                                          // Equivalent
      steady state reactance from generator B to
      substation F(%)
72 \times_{eq\_SF} = X_{eq\_SAF} \times X_{eq\_SBF} / (X_{eq\_SAF} + X_{eq\_SBF})
           // Equivalent steady state reactance upto
      substation F(%)
73 X_eq_Sfault = X_eq_SF+X_T3
                                   // Equivalent steady
      state reactance upto fault point (%)
74 kVA_S_sc = kVA_base/X_eq_Sfault*100
                         // Steady state short circuit
      kVA(kVA)
75 \text{ I}_S_{sc} = kVA_S_{sc}/(3**0.5*V)
                                 // Sustained short
      circuit rms current(A)
76 I_S_{sc_peak} = 2**0.5*I_S_{sc}
                                  // Peak value of
      sustained short circuit current (A)
77
78 // Results
```

```
79 disp("PART III - EXAMPLE : 1.3 : SOLUTION :-")
80 printf("\nCase(i) : Transient short circuit current
      at X = %.f A (peak value)", I_t_sc_peak)
81 printf("\nCase(ii): Sustained short circuit current
      at X = %.f A (peak value) \n", I_S_sc_peak)
82 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here")
```

Scilab code Exa 27.4 Current in the short circuit

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY
      CALCULATIONS
9 // EXAMPLE : 1.4 :
10 // Page number 469-470
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                              // Generator rating (kVA)
14 \text{ kVA\_gen} = 21000.0
15 \text{ kV_gen} = 13.8
                              // Voltage rating of
      generator (kV)
16 \text{ X\_tr\_gen} = 30.0
                              // Transient reactance of
      generator (%)
17 \text{ kVA\_trans} = 7000.0
                              // Transformer rating (kVA)
18 \text{ kV\_trans\_lv} = 13.8
                              // LV voltage rating of
      transformer (kV)
19 \text{ kV\_trans\_hv} = 66.0
                              // HV voltage rating of
      transformer (kV)
```

```
20 \text{ X\_trans} = 8.4
                               // Reactance of transformer (
      %)
21 \quad 1 = 50.0
                               // Tie line length (miles)
22 x = 0.848
                               // Reactance of tie line (ohm
      /mile)
23 	 l_fault = 20.0
                               // Location of fault from
      station A(miles)
24
25 // Calculations
26 \text{ kVA\_base} = \text{kVA\_gen}
                                                           //
      Base rating (kVA)
27 X_A = X_{tr}gen
      Reactance of generator A(\%)
28 X_B = X_{tr}gen
      Reactance of generator B(%)
  X_T1 = 3.0*X_{trans}
      Reactance of transformer T1(%)
30 \quad X_T2 = 3.0*X_{trans}
      Reactance of transformer T2(%)
31 \text{ X}_1 = \text{kVA}_\text{base}/(10*\text{kV}_\text{trans}_\text{hv}**2)*x*l_\text{fault}
      Reactance (%)
32 X_2 = X_1*(1-1_fault)/1_fault
      Reactance (%)
33 \quad X_AF = X_A+X_T1+X_1
      Resultant reactance A to F(\%)
34 \quad X_BF = X_B+X_T2+X_2
      Resultant reactance B to F(\%)
35 \text{ X_eq_fault} = \text{X_AF*X_BF/(X_AF+X_BF)}
      Equivalent reactance upto fault (%)
36 kVA_SC = kVA_base/X_eq_fault*100
      Short circuit kVA((kVA)
  I\_SC = kVA\_SC/(3**0.5*kV\_trans_hv)
                                                           //
37
      Short circuit current (A)
38
39 // Results
40 disp("PART III - EXAMPLE : 1.4 : SOLUTION :-")
41 printf("\nShort circuit current = \%.f A \n", I_SC)
42 printf("\nNOTE: Changes in the obtained answer from
```

Scilab code Exa 27.5 Per unit values of the single line diagram

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY
      CALCULATIONS
9 // EXAMPLE : 1.5 :
10 // Page number 470-471
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ MVA}_{G1} = 100.0
                                 // Generator rating (MVA)
15 \quad X_G1 = 30.0
                                 // Reactance of generator (
      %)
16 \text{ MVA}_{G2} = 150.0
                                 // Generator rating (MVA)
17 \quad X_G2 = 20.0
                                 // Reactance of generator (
     %)
18 \text{ MVA}_{G3} = 200.0
                                 // Generator rating (MVA)
19 X_G3 = 15.0
                                 // Reactance of generator (
     %)
20 \text{ MVA}_T1 = 150.0
                                 // Transformer rating (MVA)
                                 // Reactance of
21 X_T1 = 10.0
      transformer (%)
22 \text{ MVA}_T2 = 175.0
                                 // Transformer rating (MVA)
23 \text{ X}_{T2} = 8.0
                                 // Reactance of
      transformer (%)
24 \text{ MVA}_{3} = 200.0
                                 // Transformer rating (MVA)
```

```
25 X_T3 = 6.0
                                 // Reactance of
      transformer (%)
26 \text{ MVA}_T4 = 100.0
                                     Transformer rating (MVA)
27 X_T4 = 5.0
                                    Reactance of
      transformer (%)
28 \text{ MVA}_{T5} = 150.0
                                     Transformer rating (MVA)
29 X_T5 = 5.0
                                    Reactance of
      transformer (%)
30 \text{ Z_L1} = \text{complex}(0.5, 1.0)
                                    Line impedance (ohm/km)
                                 // Line length (km)
31 L1 = 100.0
                                 // Line impedance (ohm/km)
32 \text{ Z_L2} = \text{complex}(0.4, 1.2)
                                 // Line length (km)
33 L2 = 50.0
34 \text{ Z_L3} = \text{complex}(0.4, 1.2)
                                 // Line impedance (ohm/km)
35 L3 = 50.0
                                 // Line length (km)
36 \ Z_L4 = complex(0.3,1.0)
                                 // Line impedance (ohm/km)
37 \text{ L4} = 60.0
                                 // Line length (km)
38 \text{ kV}_L1 = 220.0
                                 // Voltage towards line(kV
                                 // Voltage towards line(kV
   kV_L2 = 220.0
  kV_L3 = 132.0
                                 // Voltage towards line(kV
                                 // Voltage towards line(kV
   kV_L4 = 132.0
42
43
  // Calculations
44 \text{ MVA\_base} = 200.0
                                                     Base
      rating (MVA)
  X_d_G1 = (MVA_base/MVA_G1)*(X_G1/100)
                                                   //
      Reactance of generator (p.u)
                                                   //
  X_d_G2 = (MVA_base/MVA_G2)*(X_G2/100)
      Reactance of generator (p.u)
  X_d_G3 = (MVA_base/MVA_G3)*(X_G3/100)
                                                   //
      Reactance of generator (p.u)
  X_T_1 = (MVA_base/MVA_T_1)*(X_T_1/100)
                                                   //
      Reactance of transformer (p.u)
49 \ X_T_2 = (MVA_base/MVA_T2)*(X_T2/100)
                                                   //
      Reactance of transformer (p.u)
```

```
//
50 \text{ X}_T_3 = (\text{MVA}_\text{base}/\text{MVA}_T3)*(\text{X}_T3/100)
      Reactance of transformer (p.u)
                                                 //
51 \ X_T_4 = (MVA_base/MVA_T_4)*(X_T_4/100)
      Reactance of transformer (p.u)
52 X_T_5 = (MVA_base/MVA_T_5)*(X_T_5/100)
                                                 //
      Reactance of transformer (p.u)
                                                 // L1 base
  Z_L1_base = kV_L1**2/MVA_base
      impedance (ohm)
54 \quad Z_L_1 = Z_L1*L1/Z_L1_base
                                                 // Line
      impedance (p.u)
  Z_L2_base = kV_L2**2/MVA_base
                                                 // L2 base
      impedance (ohm)
  Z_L_2 = Z_L2*L2/Z_L2_base
                                                 // Line
56
      impedance (p.u)
  Z_L3_base = kV_L3**2/MVA_base
                                                 // L3 base
      impedance (ohm)
58 \quad Z_L_3 = Z_L3*L3/Z_L3_base
                                                 // Line
      impedance (p.u)
59 \text{ Z_L4\_base} = \text{kV\_L4**2/MVA\_base}
                                                 // L4 base
      impedance (ohm)
60 \quad Z_L_4 = Z_L4*L4/Z_L4_base
                                                 // Line
      impedance (p.u)
61
62 // Results
63 disp("PART III - EXAMPLE : 1.5 : SOLUTION :-")
64 printf("\np.u values of the single line diagram are
      as below")
65 printf("\nGenerators p.u reactances :")
66 printf("\n X_d_G1 = \%.1 f p.u", X_d_G1)
67 printf("\n X_d_G2 = \%.3 f p.u", X_d_G2)
68 printf("\n X_d_G3 = \%.2 f p.u", X_d_G3)
69 printf("\nTransformers p.u reactances :")
70 printf("\n X_T1 = \%.3 \, f p.u", X_T_1)
71 printf("\n X_T2 = \%.4 f p.u", X_T_2)
72 printf("\n X_T3 = \%.2 f p.u", X_T_3)
73 printf("\n X_T4 = \%.1 f p.u", X_T_4)
74 printf("\n X_T5 = \%.3 f p.u", X_T_5)
75 printf("\nLines p.u impedances :")
```

Scilab code Exa 27.6 Actual fault current using per unit method

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY
     CALCULATIONS
8
9 // EXAMPLE : 1.6 :
10 // Page number 471
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA\_gen} = 21000.0
                            // Generator rating (kVA)
                             // Voltage rating of
15 \text{ kV_gen} = 13.8
      generator (kV)
16 \text{ X\_tr\_gen} = 30.0
                             // Transient reactance of
```

```
generator (%)
17 \text{ kVA\_trans} = 7000.0
                              // Transformer rating (kVA)
18 \text{ kV\_trans\_lv} = 13.8
                              // LV voltage rating of
      transformer (kV)
19 \text{ kV\_trans\_hv} = 66.0
                              // HV voltage rating of
      transformer (kV)
20 \text{ X\_trans} = 8.4
                              // Reactance of transformer (
     %)
21 \quad 1 = 50.0
                                 Tie line length (miles)
                              // Reactance of tie line (ohm
22 x = 0.848
      /mile)
23 \ l_fault = 20.0
                              // Location of fault from
      station A(miles)
24
25 // Calculations
26 \text{ kVA\_base} = \text{kVA\_gen}
                                               // Base
      rating (kVA)
27 kV_base_lv = kV_trans_lv
                                        // Base voltage on
      L.V side(kV)
28 kV_base_hv = kV_trans_hv
                                        // Base voltage on
      H.V side (kV)
29 Z_gen_pu = %i*X_tr_gen/100
                                      // Impedance of
      generator (p.u)
30 Z_trans_pu = %i*X_trans*3/100
                                  // Impedance of
      transformer (p.u)
31 Z_F_left = %i*x*l_fault*kVA_base/(kV_base_hv
      **2*1000) // Impedance of line to left of fault
      F(p.u)
32 \ Z_F_right = Z_F_left*(l-l_fault)/l_fault
                      // Impedance of line to right of
      fault (p.u)
33 Z_AF = Z_gen_pu+Z_trans_pu+Z_F_left
                           // Impedance(p.u)
```

```
34 \text{ Z_BF} = \text{Z_gen_pu+Z_trans_pu+Z_F\_right}
                           // Impedance(p.u)
35 \text{ Z_eq} = \text{Z_AF*Z_BF/(Z_AF+Z_BF)}
                                    // Equivalent impedance
      (p.u)
36 \text{ I}_F = 1.0/abs(Z_eq)
                                              // Fault
      current (p.u)
37 \text{ I\_base} = kVA\_base/(3**0.5*kV\_base\_hv)
                         // Base current(A)
38 I_F_actual = I_F*I_base
                                          // Actual fault
      current (A)
39
40 // Results
41 disp("PART III - EXAMPLE : 1.6 : SOLUTION :-")
42 printf("\nActual fault current = \%. f A \n",
      I_F_actual)
43 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here")
```

Scilab code Exa 27.7 Sub transient fault current

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// SECOND EDITION
// CHAPTER 1: SWITCHGEAR AND PROTECTION
// CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
// EXAMPLE : 1.7 :
// Page number 471-472
clear ; clc ; close ; // Clear the work space and
```

```
console
12
13 // Given data
                             // Generator rating (MVA)
14 \text{ MVA}_{G1} = 50.0
15 \text{ kV}_{G1} = 15.0
                             // Voltage rating of generator
      (kV)
16 \quad X_G1 = 0.2
                             // Reactance of generator(p.u)
                             // Generator rating (MVA)
17 \text{ MVA}_{G2} = 25.0
18 \text{ kV}_{\text{G}} = 15.0
                             // Voltage rating of generator
      (kV)
19 \quad X_G2 = 0.2
                             // Reactance of generator(p.u)
                             // Voltage rating of
20 \text{ kV}_T = 66.0
      transformer (kV)
21 X_T = 0.1
                             // Reactance of transformer (p.
      u )
22 \text{ kV_fault} = 66.0
                             // Voltage at fault occurence (
      kV)
                             // Base voltage(kV)
23 \text{ kv\_base} = 69.0
                             // Base MVA
24 \text{ MVA\_base} = 100.0
25
26 // Calculations
                                                     // Sub-
27 \text{ X\_d\_G1} = \text{X\_G1*MVA\_base/MVA\_G1}
      transient reactance referred to 100 MVA(p.u)
28 E_G1 = kV_fault/kv_base
                                                     // Voltage
      (p.u)
29 \text{ X\_d\_G2} = \text{X\_G2*MVA\_base/MVA\_G2}
                                                     // Sub-
      transient reactance referred to 100 MVA(p.u)
30 E_G2 = kV_fault/kv_base
                                                     // Voltage
      (p.u)
31 \text{ X_net} = \text{X_d_G1*X_d_G2/(X_d_G1+X_d_G2)}
                                                     // Net sub
      -transient reactance (p.u)
                                                     // Net
32 E_g = (E_G1+E_G2)/2
      voltage (p.u). NOTE: Not sure how this comes
                                                     // Sub-
33 I_fault = E_g/(%i*(X_net+X_T))
      transient fault current (p.u)
34
35 // Results
36 disp("PART III - EXAMPLE : 1.7 : SOLUTION :-")
```

```
37 printf("\nSub-transient fault current = %.3 fj p.u \n
          ", imag(I_fault))
38 printf("\nNOTE: Changes in the obtained answer from
          that of textbook is due to more precision here")
```

Scilab code Exa 27.8 Voltage behind the respective reactances

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY
     CALCULATIONS
9 // EXAMPLE : 1.8 :
10 // Page number 472
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ X_d_st = 0.2
                       // Sub-transient reactance (p.u)
                       // Transient reactance (p.u)
15 X_d_t = 0.4
                       // Direct axis reactance(p.u)
16 X_d = 1.0
                       // Load current(p.u)
17 I_pu = 1.0
18 \text{ PF} = 0.80
                       // Lagging power factor
19
20 // Calculations
21 V = 1.0
                                 // Terminal voltage(p.u)
22 \sin_{phi} = (1-PF**2)**0.5
                                 // Load current(p.u)
23 I = I_pu*(PF-\%i*sin_phi)
24 \quad E_st = V + \%i * I * X_d_st
                                 // Voltage behind sub-
      transient reactance (p.u)
25 \quad E_t = V + \%i * I * X_d_t
                                 // Voltage behind
```

Scilab code Exa 27.9 Initial symmetrical rms current in the hv side and lv side

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY
     CALCULATIONS
9 // EXAMPLE : 1.9 :
10 // Page number 472
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA}_G = 7500.0
                           // Generator rating (kVA)
15 \text{ kV}_G = 6.9
                           // Voltage rating of
      generator (kV)
16 X_d_st = 9.0/100
                           // Sub-transient reactance of
       generator
```

```
17 X_d_t = 15.0/100
                            // Transient reactance of
      generator
18 X_d = 100.0
                            // Synchronous reactance of
      generator (%)
19 \text{ kVA}_T = 7500.0
                            // Transformer rating (kVA)
20 \text{ kV}_T\text{_delta} = 6.9
                            // Voltage rating of
      transformer delta side (kV)
21 \text{ kV}_T\text{wye} = 115.0
                            // Voltage rating of
      transformer wye side (kV)
22 X = 10.0/100
                            // Transformer reactance
23
24 // Calculations
25 	ext{ I_base_ht = kVA_T/(3**0.5*kV_T_wye)}
                                               // Base
      current at ht side (A)
26 \text{ I\_base\_lt} = kVA\_T/(3**0.5*kV\_T\_delta)
                                               // Base
      current at lt side(A)
27 I_f_st = 1.0/(%i*(X_d_st+X))
                                               // Sub-
      transient current after fault (p.u)
28 I_f_ht = abs(I_f_st)*I_base_ht
                                               // Initial
      fault current in h.t side(A)
29 I_f_lt = abs(I_f_st)*I_base_lt
                                               // Initial
      fault current in l.t side (A)
30
31 // Results
32 disp("PART III - EXAMPLE : 1.9 : SOLUTION :-")
33 printf("\nInitial symmetrical rms current in the h.v
       side = \%.f A, I_f_ht)
34 printf("\nInitial symmetrical rms current in the l.v
       side = \%.f A \n", I_f_lt)
35 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here")
```

Scilab code Exa 27.10 Initial symmetrical rms current at the generator terminal

1 // A Texbook on POWER SYSTEM ENGINEERING

```
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY
     CALCULATIONS
8
  // EXAMPLE : 1.10 :
10 // Page number 472
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA\_alt} = 625.0
                         // Alternator rating (kVA)
                          // Voltage rating of
15 V_alt = 480.0
      alternator (V)
                          // Load (kW)
16 \quad load = 500.0
                          // Load voltage(V)
17 V_{load} = 480.0
18 X_st = 8.0/100
                          // Sub-transient reactance
19
20 // Calculations
21 \text{ kVA\_base} = 625.0
                                 // Base kVA
                                 // Base voltage(V)
22 \ V_base = 480.0
                                // Load cuurent (A)
23 I_load = load/kVA_base
24 \ V = 1.0
                                 // Terminal voltage(p.u)
25 \text{ E\_st} = V + \%i * I\_load * X\_st // Sub-transient voltage
     (p.u)
  I_st = E_st/(\%i*X_st)
                          // Sub-transient current
26
      (p.u)
27
28 // Results
29 disp("PART III - EXAMPLE : 1.10 : SOLUTION :-")
30 printf("\nInitial symmetrical rms current at the
      generator terminal = (\%.1f\%.1fj) p.u", real(I_st)
      ,imag(I_st))
```

Scilab code Exa 27.11 Sub transient current in the fault in generator and Motor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY
      CALCULATIONS
9 // EXAMPLE : 1.11 :
10 // Page number 472-473
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad X_d_st_G = 0.15
                          // Sub-transient reactance of
      generator (p.u)
15 \quad X_d_st_M = 0.45
                          // Sub-transient reactance of
      motor (p.u)
16 X = 0.10
                          // Leakage reactance of
      transformer (p.u)
                          // Terminal voltage of the
17 V = 0.9
      generator (p.u)
18 I_G = 1.0
                          // Output current of the
      generator (p.u)
19 \text{ PF} = 0.8
                          // Power factor of the load
20
21 // Calculations
22 \sin_{phi} = (1-PF**2)**0.5
23 I = I_G*(PF+\%i*sin_phi)
                                         // Load current(p
      . u )
24 \quad E_st_G = V + \%i * I * X_d_st_G
                                         // Sub-transient
```

```
voltage of the generator(p.u)
25 \quad E_st_M = V-\%i*I*X_d_st_M
                                       // Sub-transient
     voltage of the motor(p.u)
  I_st_g = E_st_G/(%i*(X_d_st_G+X)) // Sub-transient
     current in the generator at fault (p.u)
 I_st_m = E_st_M/(\%i*(X_d_st_M-X)) // Sub-transient
27
     current in the motor at fault (p.u)
28
29 // Results
30 disp("PART III - EXAMPLE : 1.11 : SOLUTION :-")
31 printf("\nCase(a): Sub-transient current in the
     fault in generator = \%.3 f \% .3 f p.u", abs(
     I_st_g),phasemag(I_st_g))
32 printf("\nCase(b): Sub-transient current in the
     fault in motor = \%.3 f \% .2 f
                                     p.u \ n, abs(
     I_st_m), 180+phasemag(I_st_m))
33 printf("\nNOTE: ERROR: Sub-transient reactance of
     motor is 0.45 p.u & not 0.35 p.u as mentioned in
     textbook statement")
```

Scilab code Exa 27.12 Sub transient fault current Fault current rating of generators

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS
8
9 // EXAMPLE : 1.12 :
10 // Page number 473-474
11 clear ; clc ; close ; // Clear the work space and console
```

```
12
13 // Given data
14 \text{ kVA\_G} = 625.0
                                // Generator rating (kVA)
                                // Voltage rating of
15 \ V_G = 2.4
      generator (kV)
16 \text{ X\_st\_G} = 8.0/100
                                // Sub-transient reactance
      of generator
                                // Motor rating (HP)
17 \text{ rating}_M = 250.0
18 \ V_M = 2.4
                                // Voltage rating of motor(
      kV)
                                // Efficiency of motor
19 n = 90.0/100
                                // Sub-transient reactance
20 X_st_M = 20.0/100
      of motor
21
22 // Calculations
23 \text{ kVA\_base} = 625.0
                                                 // Base kVA
24 \text{ input_M} = \text{rating_M*0.746/n}
                                     // Each motor input (
      kVA)
25 X_st_m_pu = X_st_M*kVA_base/input_M
                           // Sub-transient reactance of
      motor (p.u)
26 \text{ I\_base} = kVA\_base/(3**0.5*V_M)
                                // Base current (A)
27 \quad Z_{th} = \%i*X_{st_m_pu/3}*X_{st_G/(X_{st_m_pu/3}+X_{st_G})}
           // Thevenin impedance(p.u)
28 I_st = 1.0/Z_th
                                                  // Initial
      symmetrical current at F(p.u)
29 \quad I_st_g = I_st*(X_st_m_pu/3/(X_st_m_pu/3+X_st_G))
           // Fault current rating of generator breaker
      (p.u)
30 I_st_m = (I_st-I_st_g)/3
                                        // Fault current
      rating of each motor breaker (p.u)
31
32 // Results
```

```
33 disp("PART III - EXAMPLE : 1.12 : SOLUTION :-")
34 printf("\nSub-transient fault current at F = %.2 fj p
    .u", imag(I_st))
35 printf("\nFault current rating of generator breaker
    = %.1 fj p.u", imag(I_st_g))
36 printf("\nFault current rating of each motor breaker
    = %.2 fj p.u", imag(I_st_m))
```

Chapter 28

FAULT LIMITING REACTORS

Scilab code Exa 28.1 Reactance necessary to protect the switchgear

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 2: FAULT LIMITING REACTORS
9 // EXAMPLE : 2.1 :
10 // Page number 479-480
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                             // Rating of alternator A(
14 \text{ kVA\_A} = 2500.0
     kVA)
                             // Reactance of alternator
15 x_A = 8.0
     A(\%)
16 \text{ kVA\_B} = 5000.0
                              // Rating of alternator B(
```

```
kVA)
17 x_B = 6.0
                                // Reactance of alternator
      B(\%)
18 \text{ kVA\_CB} = 150000.0
                                // Rating of circuit
      breaker (kVA)
19 \text{ kVA}_T = 10000.0
                                // Rating of transformer (
      kVA)
20 x_T = 7.5
                                // Reactance of transformer
      (\%)
21 \quad V = 3300.0
                                // System voltage(V)
22
23 // Calculations
24 \text{ kVA\_base} = 10000.0
      Base kVA
25 \text{ X}_A = \text{kVA}_base/kVA_A*x_A
      Reactance of generator A(\%)
26 \text{ X}_B = \text{kVA}_base/kVA}_B*x_B
      Reactance of generator B(\%)
27 \quad X_eq = X_A*X_B/(X_A+X_B)
      Combined reactance of A & B(%)
  kVA\_SC\_G = kVA\_base/X\_eq*100
      Short-circuit kVA due to generators (kVA)
  kVA\_SC\_T = kVA\_base/x\_T*100
      Short-circuit kVA due to grid supply (kVA)
30 X = (kVA\_base*100/(kVA\_CB-kVA\_SC\_G))-x\_T
      Reactance necessary to protect switchgear (%)
31 I_fl = kVA_base*1000/(3**0.5*V)
      Full load current corresponding to 10000 kVA(A)
32 \text{ X_phase} = \text{X*V/}(3**0.5*I_fl*100)
      Actual value of reactance per phase (ohm)
33
34 // Results
35 disp("PART III - EXAMPLE : 2.1 : SOLUTION :-")
36 printf("\nReactance necessary to protect the
      switchgear = \%.3 f ohm/phase, X_phase)
```

Scilab code Exa 28.2 kVA developed under short circuit when reactors are in circuit

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 2: FAULT LIMITING REACTORS
9 // EXAMPLE : 2.2 :
10 // Page number 480
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 X = 10.0
                    // Reactance of reactor(%)
15 kVA = 30000.0 // Rating of generator(kVA)
16 X_sc = 20.0 // Short-circuit reactance (%)
17
18 // Calculations
19 X_1 = 1.0/3*(X_sc+X)
                                   // Combined reactance
       of generator A,B,C & associated reactors (%)
20 \quad X_2 = X_1 + X
                                   // Combined reactance
      upto fault (%)
21 \quad X_{total_a} = X_2/2.0
                                    // Total reactance
      upto fault (%)
22 kVA_SC_a = 100/X_{total_a*kVA} // Short-circuit kVA(
     kVA)
23 X_{total_b} = 1.0/4*X_{sc} // Total reactance
      upto fault when E,F,G & H are short-circuited (%)
24 \text{ kVA\_SC\_b} = 100/\text{X\_total\_b*kVA} // Short-circuit \text{ kVA}(
     kVA)
25
```

```
26  // Results
27  disp("PART III - EXAMPLE : 2.2 : SOLUTION :-")
28  printf("\nCase(a): kVA developed under short-circuit
      when reactors are in circuit = %.f kVA",
      kVA_SC_a)
29  printf("\nCase(b): kVA developed under short-circuit
      when reactors are short-circuited = %.f kVA",
      kVA_SC_b)
```

Scilab code Exa 28.4 Reactance of each reactor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 2: FAULT LIMITING REACTORS
9 // EXAMPLE : 2.4 :
10 // Page number 481
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA} = 20000.0
                    // Rating of generator (kVA)
                   // Frequency (Hz)
15 f = 50.0
16 \quad V = 11.0*10**3
                    // Voltage of generator(V)
17 X_G = 20.0
                    // Generator short-circuit reactance
      (\%)
18 x = 60.0
                    // Reactance falls to 60% normal
      value
19
20 // Calculations
21 \text{ kVA\_base} = 20000.0
```

```
// Base kVA
22 X = poly(0, "X")
      Reactance of each reactors E,F,G & H(%)
23 \quad X_AE = X+X_G
                                                       //
      Reactances of A & E in series (%)
24 \quad X_BF = X + X_G
      Reactances of B & F in series (%)
25 \quad X_CD = X + X_G
                                                       //
      Reactances of C & D in series (%)
26 \quad X_eq = X_AE/3
                                                      // X_eq
       = X_AE*X_BF*X_CD/(X_BF*X_CD+X_AE*X_CD+X_AE*X_BF)
      . Combined reactances of 3 groups in parallel (%)
27 X_f = X_eq+X
      Reactances of these groups to fault via tie-bar(%
28 \text{ X\_sol} = \text{roots}(6.66666666666667 - (100 - x) / 100 * (X_f))
            // Value of reactance of each reactors E,F,
      G & H(%)
29 I_fl = kVA_base*1000/(3**0.5*V)
                                 // Full load current
      corresponding to 20000 kVA & 11 kV(A)
30 \text{ X_ohm} = \text{X_sol*V/(3**0.5*100*I_fl)}
                               // Ohmic value of reactance
       X(ohm)
31
32 // Results
33 disp("PART III - EXAMPLE : 2.4 : SOLUTION :-")
34 printf("\nReactance of each reactor = \%.4 \text{ f ohm } \text{n}",
35 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here")
```

Scilab code Exa 28.5 Instantaneous symmetrical short circuit MVA for a fault at X

```
// A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 2: FAULT LIMITING REACTORS
9 // EXAMPLE : 2.5 :
10 // Page number 481-482
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                          // Base kVA
14 \text{ kVA\_base} = 10000.0
15 \quad V = 6.6*10**3
                          // Voltage of generator(V)
                          // Reactance of generator A(\%)
16 \quad X_A = 7.5
                          // Reactance of generator B(\%)
17 X_B = 7.5
                          // Reactance of generator C(\%)
18 \quad X_C = 10.0
                          // Reactance of generator D(\%)
19 \quad X_D = 10.0
20 X_E = 8.0
                          // Reactance of reactor E(\%)
                          // Reactance of reactor F(\%)
21 X_F = 8.0
22 X_G = 6.5
                          // Reactance of reactor G(\%)
23 X_H = 6.5
                          // Reactance of reactor H(\%)
24
25 // Calculations
26 \quad Z_1 = X_B * X_C / (X_H + X_B + X_C)
                                              // Impedance (
     %). Fig E2.7
  Z_2 = X_H * X_C / (X_H + X_B + X_C)
                                              // Impedance (
     \%). Fig E2.7
  Z_3 = X_B*X_H/(X_H+X_B+X_C)
                                              // Impedance (
     %). Fig E2.7
```

```
29 \quad Z_4 = Z_2 + X_F
                                                // Impedance (
      %). Fig E2.8 & Fig 2.9
30 \ Z_5 = Z_3 + X_E
                                                // Impedance (
      %). Fig E2.8 & Fig 2.9
  Z_6 = X_D*Z_1/(X_D+Z_1+Z_4)
                                                // Impedance (
      %). Fig E2.10
32 \quad Z_7 = X_D*Z_4/(X_D+Z_1+Z_4)
                                                // Impedance (
      \%). Fig E2.10
33 \quad Z_8 = Z_1 * Z_4 / (X_D + Z_1 + Z_4)
                                                   Impedance (
      %). Fig E2.10
34 \ Z_9 = Z_7 + X_G
                                                // Impedance (
      %). Fig E2.11 & Fig 2.12
  Z_{10} = Z_{8+Z_{5}}
                                                // Impedance (
      %). Fig E2.11 & Fig 2.12
  Z_{11} = Z_{9}*Z_{10}/(Z_{9}+Z_{10})
                                                // Impedance (
      %). Fig 2.12 & Fig 2.13
37 \quad Z_{12} = Z_{6} + Z_{11}
                                                   Impedance (
      %). Fig 2.13
  Z_{eq} = X_A*Z_{12}/(X_A+Z_{12})
                                                // Final
38
      Impedance (\%). Fig 2.13 & Fig 2.14
39 \text{ MVA\_SC} = \text{kVA\_base}*100/(Z_eq*1000)
      Instantaneous symmetrical short-circuit MVA for a
       fault at X(MVA)
40
41 // Results
42 disp("PART III - EXAMPLE : 2.5 : SOLUTION :-")
43 printf("\nInstantaneous symmetrical short-circuit
      MVA for a fault at X = \%. f MVA \n", MVA_SC)
44 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more approximation in
      the textbook")
```

Chapter 29

SYMMETRICAL COMPONENTS ANALYSIS

Scilab code Exa 29.1 Positive Negative and Zero sequence currents

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS
8
9  // EXAMPLE : 3.1 :
10  // Page number 487-488
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
14  I_R = complex(12.0,24.0)  // Line current(A)
15  I_Y = complex(16.0,-2.0)  // Line current(A)
16  I_B = complex(-4.0,-6.0)  // Line current(A)
17
18  // Calculations
```

```
19 alpha = \exp(\%i*120.0*\%pi/180)
      Operator
                                                    // Zero
20 I_R0 = 1.0/3*(I_R+I_Y+I_B)
       sequence component (A)
I_R1 = 1.0/3*(I_R+alpha*I_Y+alpha**2*I_B)
      Positive sequence component (A)
  I_R2 = 1.0/3*(I_R+alpha**2*I_Y+alpha*I_B)
                                                    //
      Negative sequence component (A)
23
24 // Results
25 disp("PART III - EXAMPLE : 3.1 : SOLUTION :-")
26 printf("\nPositive sequence current, I_R1 = (\%.3 f + 1)
     \%.1 \text{ fj}) A", real(I_R1), imag(I_R1))
27 printf("\nNegative sequence current, I_R2 = (\%.3 f +
     \%.2 \text{ fj}) A", real(I_R2), imag(I_R2))
28 printf("\nZero sequence current, I_R0 = (\%.1 f + \%.2)
      fj ) A", real(I_R0), imag(I_R0))
```

Scilab code Exa 29.4 Sequence components of currents in the resistors and Supply 1

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS
8
9  // EXAMPLE : 3.4 :
10  // Page number 489-490
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
14 R_bc = 5.0  // Resistance of resistor connected b/
```

```
w b & c (ohm)
15 R_ca = 10.0
                // Resistance of resistor connected b/
     w c & a (ohm)
16 R_ab = 20.0
                 // Resistance of resistor connected b/
     w a & b (ohm)
17 V = 100.0 // Voltage of balanced system (V)
18
19 // Calculations
20 \quad E_A = -V
      Voltage across resistor connected b/w b & c(V)
21 \text{ angle} = 60.0
      Angle in delta system ( )
22 E_B = V*exp(%i*60.0*%pi/180)
      Voltage across resistor connected b/w c & a(V)
23 E_C = V*exp(%i*-60.0*%pi/180)
      Voltage across resistor connected b/w a & b(V)
24 I_A = E_A/R_bc
      Current flowing across resistor connected b/w b &
       c (A)
25 I_B = E_B/R_ca
     Current flowing across resistor connected b/w c &
       a (A)
26 \quad I_C = E_C/R_ab
      Current flowing across resistor connected b/w a &
      b (A)
27 alpha = \exp(\%i*120.0*\%pi/180)
      Operator
                                                   // Zero
28 I_A0 = 1.0/3*(I_A+I_B+I_C)
       sequence delta current(A)
29 I_A1 = 1.0/3*(I_A+alpha*I_B+alpha**2*I_C)
      Positive sequence delta current (A)
30 I_A2 = 1.0/3*(I_A+alpha**2*I_B+alpha*I_C)
      Negative sequence delta current (A)
                                                  // Zero
31 I_a0 = 0.0
       sequence star current (A)
32 I_a1 = (alpha-alpha**2)*I_A1
      Positive sequence star current (A)
33 I_a2 = (alpha**2-alpha)*I_A2
```

```
Negative sequence star current (A)
34
35 // Results
36 disp("PART III - EXAMPLE : 3.4 : SOLUTION :-")
37 printf("\nCurrent in the resistors are:")
38 printf("\n I_A = (\%. f+\%. fj) A", real(I_A), imag(I_A))
39 printf("\n I_B = (\%. f+\%.2 fj) A", real(I_B), imag(I_B)
40 printf("\n I_C = (\%.1 \text{f\%}.2 \text{f\j}) A", real(I_C), imag(I_C)
41 printf("\nSequence components of currents in the
      resistors:")
42 printf ("\n Zero-sequence current, I_A0 = (\%.3 f+\%.2 fj
      ) A", real(I_A0),imag(I_A0))
43 printf ("\n Positive-sequence current, I_A1 = (\%.2 f+\%)
      . fj) A, real(I_A1), imag(I_A1))
44 printf ("\n Negative-sequence current, I_A2 = (\%.2 f\%)
      .2 fj) A, real(I_A2), imag(I_A2))
45 printf("\nSequence components of currents in the
      supply lines:")
46 printf("\n Zero-sequence current, I_a0 = \%.f A",
47 printf("\n Positive-sequence current, I_a1 = %.1 fj A
     ", imag(I_a1))
48 printf ("\n Negative-sequence current, I_a2 = (\%.1 f+\%)
      .2 fj ) A", real(I_a2), imag(I_a2))
```

 ${f Scilab\ code\ Exa\ 29.5}$ Magnitude of positive and Negative sequence components of the

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART III : SWITCHGEAR AND PROTECTION
```

```
7 // CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS
9 // EXAMPLE : 3.5 :
10 // Page number 490-491
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 E_a = 100.0
                   // Line to line voltage(V)
                   // Line to line voltage (V)
15 E_b = 150.0
16 E_c = 200.0
                   // Line to line voltage(V)
17
18 // Calculations
                                                           //
19 e_A = 1.0
       100 \text{ V} = 1 \text{ unit}
20 e_B = 1.5
                                                           //
       150 \text{ V} = 1 \text{ unit}
21 e_C = 2.0
                                                           //
       200 V = 1 unit
22 \text{ cos\_alpha} = (e_C**2-e_A-e_B**2)/(2*e_B)
23 alpha = acosd(cos_alpha)
                                                           //
       angle ( )
24 \text{ cos\_beta} = (e_A+e_B*cos\_alpha)/e_C
25 beta = acosd(cos_beta)
                                                           //
       angle ( )
26 E_A = E_a*exp(%i*180.0*%pi/180)
                                                           //
       Voltage (V)
27 E_B = E_b * exp(%i*(180.0-alpha)*%pi/180)
                                                           //
       Voltage (V)
28 E_C = E_c*exp(%i*-beta*%pi/180)
                                                           //
       Voltage (V)
29 a = \exp(\%i*120.0*\%pi/180)
                                                           //
       Operator
30 E_A0 = 1.0/3*(E_A+E_B+E_C)
                                                           //
       Zero sequence voltage (V)
31 E_A1 = 1.0/3*(E_A+a*E_B+a**2*E_C)
                                                           //
       Positive sequence delta voltage (V)
32 E_A1_mag = abs(E_A1)
                                                           //
```

```
Magnitude of positive sequence delta voltage (V)
33 E_a1 = -\%i/3**0.5*E_A1
       Positive sequence star voltage (V)
34 \quad E_a1_mag = abs(E_a1)
       Magnitude of positive sequence star voltage (V)
35 E_A2 = 1.0/3*(E_A+a**2*E_B+a*E_C)
       Negative sequence delta voltage (V)
36 \quad E_A2_mag = abs(E_A2)
       Magnitude of negative sequence delta voltage(V)
  E_a2 = \%i/3**0.5*E_A2
       Negative sequence star voltage (V)
38 \quad E_a2_mag = abs(E_a2)
       Magnitude of negative sequence star voltage (V)
39
40 // Results
41 disp("PART III - EXAMPLE : 3.5 : SOLUTION :-")
42 printf("\nMagnitude of positive sequence delta
      voltage, |E_A1| = \%.f V, E_A1_mag)
43 printf("\nMagnitude of positive sequence star
      voltage , |E_a1| = \%.1 f V, E_a1_mag)
44 printf("\nMagnitude of negative sequence delta
      voltage, |E_A2| = \%.f V, E_A2_mag)
45 printf("\nMagnitude of negative sequence star
      voltage, |E_a2| = \%. f V", E_a2_mag)
```

 ${f Scilab\ code\ Exa\ 29.6}$ Current in each line by the method of symmetrical components

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS
```

```
9 // EXAMPLE : 3.6 :
10 // Page number 491-492
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 V = 2300.0
                                                        //
      Rated voltage (V)
15 \text{ kVA} = 500.0
     kVA rating
16 E_A = 2760.0*exp(%i*0*%pi/180)
     Line voltage (V)
17 E_B = 2300.0*exp(%i*-138.6*%pi/180)
                                                        //
      Line voltage (V)
18 E_C = 1840.0 * exp(%i*124.2 * %pi/180)
                                                        //
      Line voltage (V)
19
20 // Calculations
21 a = \exp(\%i*120.0*\%pi/180)
                                                 //
      Operator
22 E_A1 = 1.0/3*(E_A+a*E_B+a**2*E_C)
      Positive sequence voltage (V)
23 E_A2 = 1.0/3*(E_A+a**2*E_B+a*E_C)
      Negative sequence voltage (V)
24 E_a1 = -\%i/3**0.5*E_A1
                                                 //
      Positive sequence star voltage (V)
25 E_a2 = \%i/3**0.5*E_A2
                                                 //
      Negative sequence star voltage (V)
26 E_a0 = 0.0
                                                 // Zero
      sequence voltage (V)
27 E_a = E_a1 + E_a2 + E_a0
                                                 //
      Symmetrical voltage component (V)
28 R = V**2/(kVA*1000)
                                                  //
     Resistance (ohm)
  I_a = abs(E_a)/R
                                                  //
      Current in line a(A)
30 E_b = a**2*E_a1+a*E_a2+E_a0
      Symmetrical voltage component (V)
```

 ${f Scilab\ code\ Exa\ 29.7}$ Symmetrical components of line current if phase 3 is only swi

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS
9 // EXAMPLE : 3.7 :
10 // Page number 492-493
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 V = 2300.0
     Rated voltage (V)
                                                   // kVA
15 \text{ kVA} = 500.0
```

```
rating
16 I_1 = 100.0
                                                  // Line
     current (A)
17 I_2 = 100.0*exp(%i*180*%pi/180)
                                                  // Line
     current (A)
18 I_3 = 0
                                                  // Line
      current (A)
19
20 // Calculations
21 a = \exp(\%i*120.0*\%pi/180)
                                           // Operator
22 I_10 = 1.0/3*(I_1+I_2+I_3)
     Symmetrical component of line current for phase
I_{11} = 1.0/3*(I_{1+a*I_2+a**2*I_3})
     Symmetrical component of line current for phase
I_{12} = 1.0/3*(I_{1+a}**2*I_{2+a}*I_{3})
     Symmetrical component of line current for phase
     1(A)
25 I_20 = I_10
     Symmetrical component of line current for phase
     2(A)
26 I_21 = a**2*I_11
     Symmetrical component of line current for phase
     2(A)
27 I_22 = a*I_12
     Symmetrical component of line current for phase
     2(A)
  I_30 = I_10
     Symmetrical component of line current for phase
     3(A)
  I_31 = a*I_11
     Symmetrical component of line current for phase
     3(A)
30 I_32 = a**2*I_12
     Symmetrical component of line current for phase
     3(A)
31
```

```
32 // Results
33 disp("PART III - EXAMPLE : 3.7 : SOLUTION :-")
34 printf("\nSymmetrical component of line current for
      phase 1:")
35 printf("\n I_10 = \%.1 \, \text{f A}", abs(I_10))
36 printf("\n I_11 = \%.2 f \% . f A", abs(I_11),
      phasemag(I_11))
37 printf("\n I_12 = \%.2 f \% .f A", abs(I_12),
      phasemag(I_12))
  printf("\nSymmetrical component of line current for
      phase 2:")
39 printf("\n I_20 = \%.1 \, f \, A", abs(I_20))
40 printf("\n I_21 = \%.2 f \% . f A", abs(I_21),
      phasemag(I_21))
41 printf("\n I<sub>-</sub>22 = \%.2 f \% . f A", abs(I<sub>-</sub>22),
      phasemag(I_22))
42 printf("\nSymmetrical component of line current for
      phase 3:")
43 printf("\n I<sub>-</sub>30 = \%.1 \, \text{f A}", abs(I<sub>-</sub>30))
44 printf("\n I_31 = \%.2 f \% . f A", abs(I_31),
      phasemag(I_31))
45 printf("\n I_32 = \%.2 f \% . f A", abs(I_32),
      phasemag(I_32))
```

Scilab code Exa 29.8 Positive Negative and Zero sequence components of currents for

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS
8
9  // EXAMPLE : 3.8 :
```

```
10 // Page number 493
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 I_a = 1000.0
                                             // Current to
      earth (A)
15 I_b = 0
                                             // Current (A)
16 I_c = 0
                                             // Current (A)
17
18 // Calculations
19 a = \exp(\%i*120.0*\%pi/180)
                                             // Operator
20 I_a0 = 1.0/3*(I_a+I_b+I_c)
                                             // Zero
      sequence component of current (A)
21 \quad I_b0 = I_a0
                                             // Zero
      sequence component of current (A)
22 I_c0 = I_a0
                                             // Zero
      sequence component of current (A)
I_a1 = 1.0/3*(I_a+a*I_b+a**2*I_c)
                                             // Positive
      sequence component of current (A)
                                             // Positive
24 I_b1 = a**2*I_a1
      sequence component of current (A)
                                             // Positive
25 I_c1 = a*I_a1
      sequence component of current (A)
26 I_a2 = 1.0/3*(I_a+a**2*I_b+a*I_c)
                                             // Negative
      sequence component of current (A)
27 \quad I_b2 = a*I_a2
                                             // Negative
      sequence component of current (A)
  I_c2 = a**2*I_a2
                                             // Negative
      sequence component of current (A)
29
30 // Results
31 disp("PART III - EXAMPLE : 3.8 : SOLUTION :-")
32 printf("\nZero sequence component of current for all
       phases are")
33 printf("\n I_a0 = \%.1 f \% . f A", abs(I_a0),
     phasemag(I_a0))
34 printf("\n I_b0 = \%.1 f \% . f A", abs(I_b0),
```

```
phasemag(I_b0))
35 printf("\n I_c0 = \%.1 f \% . f A", abs(I_c0),
     phasemag(I_c0))
36 printf("\nPositive sequence component of current for
       all phases are")
37 printf("\n I_a1 = \%.1 f \% . f A", abs(I_a1),
     phasemag(I_a1))
38 printf("\n I_b1 = \%.1 f \% . f A", abs(I_b1),360+
     phasemag(I_b1))
39 printf("\n I_c1 = \%.1 f \% . f A", abs(I_c1),
     phasemag(I_c1))
40 printf("\nNegative sequence component of current for
       all phases are")
41 printf("\n I_a2 = \%.1 f \% . f A", abs(I_a2),
     phasemag(I_a2))
42 printf("n I_b 2 = \%.1 f \% .f A", abs(I_b2),
     phasemag(I_b2))
43 printf("\n I_c2 = \%.1 f \% . f A", abs(I_c2),360+
     phasemag(I_c2))
```

Scilab code Exa 29.9 Currents in all the lines and their symmetrical components

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// SECOND EDITION
// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS
// EXAMPLE : 3.9 :
// Page number 493-494
clear ; clc ; close ; // Clear the work space and console
```

```
13 // Given data
14 I_A = 1000.0
                                             // Current
      through line A(A)
15 \quad I_C = 0
                                             // Current
      through line C(A)
16
17 // Calculations
                                             // Current
18 I_B = 1000.0 * exp(%i*180.0 * %pi/180)
     through line B(A)
19 a = \exp(\%i*120.0*\%pi/180)
                                             // Operator
                                             // Zero
20 I_a0 = 1.0/3*(I_A+I_B+I_C)
      sequence component of current (A)
21
  I_b0 = I_a0
                                             // Zero
      sequence component of current(A)
                                             // Zero
22 I_c0 = I_a0
      sequence component of current (A)
I_a1 = 1.0/3*(I_A+a*I_B+a**2*I_C)
                                             // Positive
      sequence component of current (A)
24 I_b1 = a**2*I_a1
                                             // Positive
      sequence component of current (A)
                                             // Positive
25 I_c1 = a*I_a1
      sequence component of current(A)
  I_a2 = 1.0/3*(I_A+a**2*I_B+a*I_C)
                                             // Negative
      sequence component of current(A)
  I_b2 = a*I_a2
                                                Negative
27
      sequence component of current(A)
  I_c2 = a**2*I_a2
                                             // Negative
      sequence component of current (A)
29
30 // Results
31 disp("PART III - EXAMPLE : 3.9 : SOLUTION :-")
32 printf ("\nCurrent in line A, I_-A = \%. f \% . f
      abs(I_A), phasemag(I_A))
33 printf("\nCurrent in line B, I_{-}B = \%. f \% . f
      abs(I_B), phasemag(I_B))
34 printf("\nCurrent in line C, I_{-}C = \%. f A", I_{-}C)
35 printf("\nSymmetrical current components of line A
      are:")
```

```
36 printf("\n I_a0 = \%. f A", abs(I_a0))
37 printf("\n I_a1 = \%.1 f \% . f A", abs(I_a1),
     phasemag(I_a1))
38 printf("\n I_a2 = \%.1 f \% . f A", abs(I_a2),
     phasemag(I_a2))
39 printf("\nSymmetrical current components of line B
     are:")
40 printf("\n I_b0 = \%.f A", abs(I_b0)
41 printf("\n I_b1 = \%.1 f \% . f A", abs(I_b1),
     phasemag(I_b1))
42 printf("\n I_b2 = \%.1 f \% . f A", abs(I_b2),
     phasemag(I_b2))
43 printf("\nSymmetrical current components of line C
     are:")
44 printf("\n I_c0 = \%. f A", abs(I_c0))
45 printf("\n I_c1 = \%.1 f \% .f A", abs(I_c1),
     phasemag(I_c1))
46 printf("\n I_c2 = \%.1 f \% . f A", abs(I_c2),
     phasemag(I_c2))
```

 ${
m Scilab\ code\ Exa\ 29.10}$ Radius of voltmeter connected to the yellow line and Current

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART III : SWITCHGEAR AND PROTECTION
// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS
// EXAMPLE : 3.10 :
// Page number 494
clear ; clc ; close ; // Clear the work space and console
```

```
13 // Given data
14 R = 20000.0
                                                      //
      Resistance of voltmeter (ohm)
15 E_R = 100.0
      Line-to-neutral voltage (A)
16 E_Y = 200.0 * exp(%i * 270.0 * %pi/180)
      Line-to-neutral voltage (A)
17 E_B = 100.0 * exp(%i * 120.0 * %pi/180)
                                                      //
      Line-to-neutral voltage (A)
18
19 // Calculations
20 a = \exp(\%i*120.0*\%pi/180)
                                             // Operator
                                             // Zero
21 V_R0 = 1.0/3*(E_R+E_Y+E_B)
      sequence voltage (V)
22 V_R1 = 1.0/3*(E_R+a*E_Y+a**2*E_B)
                                             // Positive
      sequence voltage (V)
V_R2 = 1.0/3*(E_R+a**2*E_Y+a*E_B)
                                             // Negative
      sequence voltage (V)
                                              // Positive
24 \quad I_R1 = V_R1/R
      sequence current (A)
                                              // Negative
25 I_R2 = V_R2/R
      sequence current (A)
26 V_Y1 = a**2*V_R1
                                              // Positive
      sequence voltage of line Y(V)
27 \quad V_Y2 = a*V_R2
                                              // Negative
      sequence voltage of line Y(V)
28 \quad V_Y = V_Y1+V_Y2
                                              // Voltmeter
      reading connected to the yellow line (V)
                                              // Current
  I_Y = abs(V_Y)/R*1000
      through voltmeter (mA)
30
31 // Results
32 disp("PART III - EXAMPLE : 3.10 : SOLUTION :-")
33 printf("\nVoltmeter reading connected to the yellow
      line , |V_{-}Y| = \%.1 \, f \, V", abs(V_Y))
34 printf("\nCurrent through voltmeter, I_Y = \%.3 f mA\
      n", I_Y)
35 printf("\nNOTE: Changes in the obtained answer from
```

Scilab code Exa 29.11 Three line currents and Wattmeter reading

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS
9 // EXAMPLE : 3.11 :
10 // Page number 495
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V = 400.0
                            // Voltage (V)
                           // Resistor load (ohm)
15 \ Z_ab = 20.0
16 \quad Z_bc = -\%i*40.0
                           // Capacitor load (ohm)
17 Z_{ca} = 5.0 + \%i * 10.0 // Inductor and resistance
      load (ohm)
18
19 // Calculations
20 V_ab = V
                                                        //
       Line voltage (V)
V_bc = V*exp(%i*-120.0*%pi/180)
                                                        //
       Line voltage (V)
22 V_{ca} = V*exp(%i*120.0*%pi/180)
                                                        //
       Line voltage (V)
23 I_ab = V_ab/Z_ab
                                                        //
       Current (A)
24 I_bc = V_bc/Z_bc
                                                        //
       Current (A)
```

```
//
25 I_ca = V_ca/Z_ca
       Current (A)
                                                         //
26 \quad I_a = I_ab-I_ca
       Line current (A)
27 \quad I_b = I_bc-I_ab
                                                         //
       Line current (A)
28 I_c = I_ca-I_bc
       Line current (A)
29 phi = -120.0-phasemag(I_a)
                                                         //
         30 P = abs(I_a*V_bc)*cosd(phi)/1000
                                                         //
       Wattmeter reading (kW)
31
32 // Results
33 disp("PART III - EXAMPLE : 3.11 : SOLUTION :-")
34 printf("\nLine currents are:")
35 printf("n I_a = \%.1 f \% .1 f A", abs(I_a),phasemag
      (I_a))
36 printf("n I_b = \%.1 f \% .2 f A", abs(I_b),phasemag
      (I_b)
37 printf("\n I_c = \%.2 f \% .f A", abs(I_c), phasemag(
      I_c))
38 printf("\nWattmeter reading, P = \%.2 f \text{ kW } \text{\n"}, P)
39 printf("\nNOTE: ERROR: Calculation mistakes in the
      textbook solution")
```

Chapter 30

UNSYMMETRICAL FAULTS IN POWER SYSTEMS

 ${f Scilab\ code\ Exa\ 30.1}$ Initial symmetrical rms line currents Ground wire currents an

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART III : SWITCHGEAR AND PROTECTION
// CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
// EXAMPLE : 4.1 :
// Page number 510-512
clear ; clc ; close ; // Clear the work space and console
// Given data
// Given data
// WVA = 15.0 // Generator rating (MVA)
kV = 6.9 // Generator voltage (kV)
kV = 6.9 // Positive sequence reactance (%)
// X_2 = 25.0 // Negative sequence reactance (%)
X_0 = 8.0 // Zero sequence reactance (%)
```

```
// Reactor placed in line (%)
19 X = 6.0
20
21 // Calculations
22 a = \exp(\%i*120.0*\%pi/180)
                                        // Operator
23 \quad Z_1 = \%i * X_1/100
      // Positive sequence impedance(p.u)
24 \ Z_2 = \%i * X_2/100
      // Negative sequence impedance(p.u)
25 \quad Z_g0 = \%i * X_0/100
      // Impedance(p.u)
26 \ Z = \%i * X / 100
      // Impedance(p.u)
27 \ Z_0 = Z_g0 + 3 * Z
      // Zero sequence impedance(p.u)
28 E_a = 1.0
      // Voltage (p.u)
29 E_b = a**2*E_a
     // Voltage(p.u)
30 // \operatorname{Case}(a)
31 I_a0_a = 0
      // Current (A)
32 I_a1_a_pu = 1.0/(Z_1+Z_2)
                                                    //
      Current (p.u)
33 I_a1_a = I_a1_a_pu*MVA*1000/(3**0.5*kV)
                                   // Current (A)
34 I_a2_a = -I_a1_a
      // Current (A)
```

```
35 I_b0_a = 0
      // Current (A)
36 I_b1_a = a**2*I_a1_a
                                                      //
      Current (A)
37 I_b2_a = a*I_a2_a
     // Current (A)
38 I_a_a = I_a1_a+I_a2_a
      Line current (A)
39 I_b_a = I_b1_a+I_b2_a
      Line current (A)
40 I_c_a = -I_b_a
     // Line current (A)
41 I_g_a = 0
     // Ground wire current (A)
42 V_a_a = (E_a-I_a1_a*Z_1-I_a2_a*Z_2-I_a0_a*Z_0)*kV
      *1000/3**0.5
                    // Voltage (V)
43 \text{ V_b_a} = (a**2*E_a+\%i*3**0.5*I_a1_a_pu*Z_1)*kV
                          // Voltage (V)
      *1000/3**0.5
44 \quad V_c_a = V_b_a
      // Voltage (V)
45 // Case(b)
46 I_a1_b_pu = E_a/(Z_1+(Z_2*Z_0/(Z_2+Z_0)))
                               // Current(p.u)
47 \quad I_a1_b = I_a1_b_pu*MVA*1000/(3**0.5*kV)
                                  // Current (A)
48 I_a2_b_pu = -Z_0*Z_2/(Z_2*(Z_0+Z_2))*I_a1_b_pu
                          // Current(p.u)
49 I_a2_b = -Z_0*Z_2/(Z_2*(Z_0+Z_2))*I_a1_b
                                // Current (A)
50 I_a0_b_pu = -Z_0*Z_2/(Z_0*(Z_0+Z_2))*I_a1_b_pu
```

```
// Current(p.u)
I_a0_b = -Z_0*Z_2/(Z_0*(Z_0+Z_2))*I_a1_b
                                // Current(A)
52 I_a_b = I_a0_b+I_a1_b+I_a2_b
                                            // Line
      current (A)
53 I_b_b = I_a0_b+a**2*I_a1_b+a*I_a2_b
                                     // Line current (A)
54 I_cb = I_a0_b+a*I_a1_b+a**2*I_a2_b
                                     // Line current(A)
55 I_0_b = 3*I_a0_b
     // Current in the ground resistor (A)
V_a_b_p = E_a_I_a1_b_p *Z_1_I_a2_b_p *Z_2_I_a0_b_p 
                    // Voltage(p.u)
57 V_a_b = abs(V_a_b_pu)*kV*1000/(3**0.5)
                                 // Voltage (V)
58 \ V_b_b = 0
     // Voltage (V)
59 \quad V_c_b = 0
     // Voltage(V)
60
61 // Results
62 disp("PART III - EXAMPLE : 4.1 : SOLUTION :-")
63 printf("\nCase(a): Initial symmetrical rms line
      current when ground is not involved in fault, I_a
      = %.f A", abs(I_a_a))
64 printf("\n
                      Initial symmetrical rms line
      current when ground is not involved in fault, I_b
      = %. f A", real(I_b_a))
65 printf("\n
                       Initial symmetrical rms line
      current when ground is not involved in fault, I_c
      = %.f A", real(I_c_a))
66 printf("\n
                      Ground wire current = \%. f A",
      I_g_a)
67 printf ("\n
                  Line to neutral voltage, V_a = \%.
```

```
f V", real(V_a_a))
                       Line to neutral voltage, V_b = \%.
68 printf("\n
      f \ V", real(V_b_a))
69 printf("\n Li f V", real(V_c_a))
                       Line to neutral voltage, V_c = \%.
70 printf("\nCase(b): Initial symmetrical rms line
      current when fault is solidly grounded, I_a = \%.
      A", abs(I_a_b))
71 printf ("\n
                       Initial symmetrical rms line
      current when fault is solidly grounded, I_b = (\%).
      f+\%. fj) A", real(I_b_b), imag(I_b_b))
72 printf ("\n
                       Initial symmetrical rms line
      current when fault is solidly grounded, I_c = (\%).
      f+\%. fj) A", real(I_c_b), imag(I_c_b))
73 printf("\n
                       Ground wire current = \%. fj A",
      imag(I_0_b))
74 printf("\n
                       Line to neutral voltage, V_a = \%.
      f \ V", V_a_b
75 printf("\n
                       Line to neutral voltage, V_b = \%.
      f V", V_b_b
76 printf("\n
                       Line to neutral voltage, V_c = \%.
      f V n, V_c b
77 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here
      and approximation in textbook")
```

Scilab code Exa 30.2 Current in the line with two lines short circuited

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A.Chakrabarti , M.L.Soni , P.V.Gupta , U.S.Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
```

```
9 // EXAMPLE : 4.2 :
10 // Page number 512
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA} = 10000.0
                       // Generator rating (kVA)
                      // Frequency (Hz)
15 f = 50.0
                      // Positive sequence current (%)
16 I_1 = 30.0
                    // Negative sequence current (%)
17 I_2 = 10.0
                      // Zero sequence \operatorname{current}(\%)
18 I_0 = 5.0
                      // Diameter of conductor(m)
19 d = 1.0/100
                      // Triangular spacing (m)
20 D = 5.0
21 \text{ kV} = 30.0
                       // Generator voltage on open-
      circuit (kV)
22 \quad 1 = 20.0
                       // Distance of line at short
      circuit occurance (km)
23
24 // Calculations
25 a = \exp(\%i*120.0*\%pi/180)
      Operator
26 \ Z_g1 = kV **2 * I_1 * I_2 / kVA
      Positive phase sequence reactance of generator (
      ohm)
27 Z_g2 = Z_g1*I_2/I_1
       Negative phase sequence reactance of generator (
      ohm)
28 \ Z_g0 = Z_g1*I_0/I_1
       Zero phase sequence reactance of generator (ohm)
29 r = d/2
      // Radius of conductor(m)
30 \ Z_{11} = 2.0*\%pi*f*(0.5+4.606*log10(D/r))*10**-7*1
```

```
*1000
                         // Positive phase sequence
     reactance of line (ohm)
31 \quad Z_{12} = 2.0*\%pi*f*(0.5+4.606*log10(D/r))*10**-7*1
                    // Negative phase sequence
     *1000
     reactance of line (ohm)
32 Z_1 = \%i*(Z_g1+Z_11)
                                                      //
     Z1 upto the point of fault (ohm)
33 Z_2 = \%i*(Z_g2+Z_12)
     Z2 upto the point of fault (ohm)
34 E_a = kV*1000/3**0.5
                                                      //
     Phase voltage (V)
35 I_a1 = E_a/(Z_1+Z_2)
                                                      //
      Positive sequence current in line a(A)
36 I_a2 = -I_a1
     // Negative sequence current in line a(A)
37 I_a0 = 0
     // Zero sequence current in line a(A)
38 I_b0 = 0
     // Zero sequence current in line b(A)
39 I_c0 = 0
     // Zero sequence current in line c(A)
40 I_a = I_a0+I_a1+I_a2
                                                     //
     Current in line a(A)
41 I_b = I_b0+a**2*I_a1+a*I_a2
                                              // Current
      in line b(A)
42 I_c = I_c0+a*I_a1+a**2*I_a2
                                              // Current
      in line c(A)
```

Scilab code Exa 30.3 Fault current Sequence component of current and Voltages of t

```
// A Texbook on POWER SYSTEM ENGINEERING
  // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
9 // EXAMPLE : 4.3 :
10 // Page number 512-513
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA} = 10000.0
                                    // Alternator rating (
     kVA)
15 \ Z_g1 = complex(0.5, 4.7)
                                    // Positive sequence
      impedance (ohm/phase)
16 \ Z_g2 = complex(0.2,0.6)
                                    // Negative sequence
      impedance (ohm/phase)
17 \ Z_g0 = complex(0,0.43)
                                    // Zero sequence
      impedance (ohm/phase)
18 \ Z_{11} = complex(0.36,0.25)
                                    // Impedance (ohm)
19 Z_{12} = complex(0.36, 0.25)
                                    // Impedance (ohm)
```

```
// Impedance (ohm)
20 \ Z_{10} = complex(2.9, 0.95)
                                     // Voltage (V)
21 V = 6600.0
22
23 // Calculations
24 a = \exp(\%i*120.0*\%pi/180)
                                     // Operator
25 // Case (a)
26 E_a = V/3**0.5
                                                 // Phase
      voltage (V)
27 \quad Z_1 = Z_g1 + Z_11
                                                // Z1 upto
      the point of fault (ohm)
28 \ Z_2 = Z_g2 + Z_12
                                                // Z2 upto
      the point of fault (ohm)
29 \quad Z_0 = Z_g0 + Z_{10}
                                                // Z0 upto
      the point of fault (ohm)
30 I_a = 3*E_a/(Z_1+Z_2+Z_0)
                                     // Fault current(A)
31 // Case(b)
32 I_a0 = abs(I_a)/3
                                              // Zero
      sequence current of line a(A)
33 I_a1 = abs(I_a)/3
                                              // Positive
      sequence current of line a(A)
34 I_a2 = abs(I_a)/3
                                              // Negative
      sequence current of line a(A)
35 I_b0 = I_a0
                                                    // Zero
       sequence current of line b(A)
36 I_b1 = a**2*I_a1
                                               // Positive
      sequence current of line b(A)
37 I_b2 = a*I_a2
```

```
Negative sequence current of line b(A)
38 I_c0 = I_a0
                                                    // Zero
       sequence current of line c(A)
39 I_c1 = a*I_a1
      Positive sequence current of line c(A)
40 I_c2 = a**2*I_a2
                                               // Negative
      sequence current of line c(A)
41 // Case (c)
42 \quad V_b = E_a/(Z_1+Z_2+Z_0)*((a**2-a)*Z_2+(a**2-1)*Z_0)
        // Voltage of the line b(V)
43 V_c = E_a/(Z_1+Z_2+Z_0)*((a-a**2)*Z_2+(a-1)*Z_0)
           // Voltage of the line c(V)
44
45 // Results
46 disp("PART III - EXAMPLE : 4.3 : SOLUTION :-")
47 printf("\nCase(a): Fault current, |I_a| = \%. f A",
      abs(I_a))
48 printf("\nCase(b): Zero sequence current of line a,
      I_{-}a0 = \%. f A, I_{-}a0)
                        Positive sequence current of line
49 printf ("\n
       a, I_a1 = \%.f A", I_a1
50 printf("\n
                        Negative sequence current of line
       a, I_a2 = \%.f A", I_a2
                        Zero sequence current of line b,
51 printf("\n
      I_{-}b0 = \%. f A, I_{-}b0)
52 printf ("\n
                        Positive sequence current of line
       b, I_b1 = (\%.1 \, \text{f} \%.1 \, \text{fj}) \, \text{A}, real(I_b1), imag(I_b1))
53 printf("\n
                        Negative sequence current of line
      b, I_b2 = (\%.1 f+\%.1 fj) A", real(I_b2), imag(I_b2)
      )
54 printf ("\n
                        Zero sequence current of line c,
      I_{-c0} = \%. f A", I_{-c0}
                       Positive sequence current of line
55 printf("\n
       c, I_{c1} = (\%.1 f+\%.1 fj) A", real(I_c1), imag(I_c1)
```

```
)
56 printf("\n Negative sequence current of line
        c, I_c2 = (%.1f%.1fj) A", real(I_c2),imag(I_c2))
57 printf("\nCase(c): Voltage of the sound line to
        earth at fault, |V_b| = %.f V", abs(V_b))
58 printf("\n Voltage of the sound line to
        earth at fault, |V_c| = %.f V\n", abs(V_c))
59 printf("\nNOTE: Changes in the obtained answer from
        that of textbook is due to more precision here")
```

Scilab code Exa 30.4 Fault currents in each line and Potential above earth attained

```
1 // A Texbook on POWER SYSTEM ENGINEERING
  // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
  // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
8
  // EXAMPLE : 4.4 :
10 // Page number 513-514
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad V = 11000.0
                                    // Alternator voltage
      (V)
15 \text{ kVA} = 50000.0
                                    // Alternator rating (
     kVA)
16 \ Z_{11} = complex(0.4,0.7)
                                    // Positive sequence
     impedance of feeder (ohm)
17 \ Z_{12} = complex(0.4,0.7)
                                    // Negative sequence
      impedance of feeder (ohm)
18 \ Z_{10} = complex(0.7,3.0)
                                    // Zero sequence
```

```
impedance of feeder (ohm)
19 Z_g1_A = complex(0,0.6)
                                     // Positive sequence
      reactance (ohm)
20 \ Z_g1_B = complex(0,0.6)
                                     // Positive sequence
      reactance (ohm)
Z_g2_A = complex(0,0.4)
                                     // Negative sequence
      reactance (ohm)
                                     // Negative sequence
  Z_g2_B = complex(0,0.4)
      reactance (ohm)
  Z_g0_A = complex(0,0.2)
                                     // Zero sequence
      reactance (ohm)
24 \ Z_g0_B = complex(0,0.2)
                                     // Zero sequence
      reactance (ohm)
  Z_n_A = complex(0,0.2)
                                     // Neutral reactance (
25
      ohm)
                                     // Neutra reactance (
26
  Z_n_B = complex(0,0.2)
      ohm)
27
28 // Calculations
29 a = \exp(\%i*120.0*\%pi/180)
                                                     //
      Operator
30 \ Z_g1 = 1.0/((1/Z_g1_A)+(1/Z_g1_B))
      Equivalent positive sequence impedance (ohm)
  Z_g2 = 1.0/((1/Z_g2_A)+(1/Z_g2_B))
      Equivalent negative sequence impedance (ohm)
32 Z_g0 = 1.0/((1/Z_g0_A)+(1/Z_g0_B))
                                                     //
      Equivalent zero sequence impedance (ohm)
33 Z_n = 1.0/((1/Z_n_A)+(1/Z_n_B))
                                                     //
      Equivalent neutral impedance (ohm)
34 \quad Z_1 = Z_{11} + Z_{g1}
      Positive sequence impedance (ohm)
  Z_2 = Z_{12} + Z_{g2}
      Negative sequence impedance (ohm)
                                                     // Zero
36 \quad Z_0 = Z_{10} + Z_{g0} + 3 * Z_n
       sequence impedance (ohm)
37 Z = Z_0*Z_2/(Z_0+Z_2)
      Impedance (ohm)
38 E_R = V/3**0.5
                                                     //
```

```
Phase voltage (V)
39 I_R1 = E_R/(Z_1+Z)
                                                    //
      Postive sequence current (A)
40 I_R2 = -Z*I_R1/Z_2
      Negative sequence current (A)
41 I_R0 = -Z*I_R1/Z_0
                                                    // Zero
       sequence current (A)
42 \quad I_R = I_R0+I_R1+I_R2
      Fault current in line (A)
  I_Y = I_R0 + a ** 2 * I_R1 + a * I_R2
      Fault current in line (A)
44 I_B = I_R0 + a * I_R1 + a * * 2 * I_R2
      Fault current in line (A)
  I_earth = 3.0*I_R0
      Current through earth reactance (A)
46 \text{ V_neutral} = abs(I_earth*Z_n)
      Magnitude of potential above earth attained by
      generator neutral (V)
47
48 // Results
49 disp("PART III - EXAMPLE : 4.4 : SOLUTION :-")
50 printf("\nFault current in the line R, I_R = \%. f A",
       abs(I_R))
51 printf ("\nFault current in the line Y, I_Y = (\%.f\%.
      fj) A", real(I_Y), imag(I_Y))
52 printf("\nFault current in the line B, I_B = (\%. f+\%.
      fj ) A", real(I_B), imag(I_B))
53 printf("\nPotential above earth attained by the
      alternator neutrals = \%. f V\n", V_neutral)
54 printf("\nNOTE: ERROR: Voltage is 11000 not 11000 kV
       as given in textbook statement")
55 printf("\n
                    Changes in the obtained answer from
      that of textbook is due to more precision here")
```

Scilab code Exa 30.5 Fault currents

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
8
  // EXAMPLE : 4.5 :
10 // Page number 514-515
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 V = 6600.0
                           // Alternator voltage(V)
15 \text{ kVA} = 10000.0
                           // Alternator rating (kVA)
16 x_1 = 15.0
                           // Reactance to positive
     sequence current (%)
17 x_2 = 75.0
                           // Reactance to negative
     sequence current (%)
18 x_0 = 30.0
                           // Reactance to zero sequence
       current (%)
                           // Earth resistance (ohm)
19 R_{earth} = 0.3
20
21 // Calculations
22 a = \exp(\%i*120.0*\%pi/180)
                                             // Operator
23 E_g = V/3**0.5
                                              // Phase
      voltage (V)
24 // Case (a)
25 I = kVA*1000/(3**0.5*V)
                                              // Full load
      current of each alternator (A)
  X = x_1*V/(100*3**0.5*I)
                                              // Positive
      sequence reactance (ohm)
  Z_g1 = \%i * X
      Equivalent positive sequence impedance (ohm)
28 Z_g2 = Z_g1*x_2/100
      Equivalent negative sequence impedance (ohm)
29 Z_g0 = Z_g1*x_0/100
```

```
Equivalent zero sequence impedance (ohm)
30 \ Z_1 = Z_g1/3
                                              // Positive
      sequence impedance (ohm)
31 \quad Z_2 = Z_g2/3
                                              // Negative
      sequence impedance(ohm)
32 \ Z_0 = Z_g0/3
                                              // Zero
      sequence impedance (ohm)
33 I_a_a = 3*E_g/(Z_1+Z_2+Z_0)
                                              // Fault
      current (A)
34 // Case (b)
                                              // Impedance
35 \ Z_0_b = Z_g0
      (ohm)
  I_a_b = 3*E_g/(Z_1+Z_2+Z_0_b)
                                              // Fault
36
      current (A)
37 // Case (c)
                                              // Impedance
38 \quad Z_0_c = R_earth*3+Z_g0
      (ohm)
  I_a_c = 3*E_g/(Z_1+Z_2+Z_0_c)
                                              // Fault
      current (A)
40
41 // Results
42 disp("PART III - EXAMPLE : 4.5 : SOLUTION :-")
43 printf("\nCase(a): Fault current if all the
      alternator neutrals are solidly earthed, I_a = \%.
      fj A", imag(I_a_a))
44 printf("\nCase(b): Fault current if only one of the
      alternator neutrals is solidly earthed & others
      isolated = \%. fj A", imag(I_a_b))
45 printf("\nCase(c): Fault current if one of
      alternator neutrals is earthed through resistance
      & others isolated = \%.f A\n", abs(I_a_c))
46 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here")
```

Scilab code Exa 30.6 Fault current for line fault and Line to ground fault

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
8
  // EXAMPLE : 4.6 :
10 // Page number 515-516
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA}_G = 2000.0
                              // Generator rating (kVA)
15 \text{ X}_{G} = 10.0
                              // Generator reactance (%)
                              // Transformer rating (kVA)
16 \text{ kVA}_T1 = 2000.0
                              // LV side voltage(kV)
17 \ lv_T1 = 6.6
                              // HV side voltage(kV)
18 \text{ hv}_{T1} = 11.0
19 X_T1 = 5.0
                              // Transformer reactance (%)
                              // Cable reactance (ohm)
20 \text{ X_cable} = 0.5
                              // Cable voltage(V)
21 \ V_{cable} = 11.0
22 \text{ kVA}_T2 = 2000.0
                              // Transformer rating (kVA)
                              // LV side voltage(kV)
23 \text{ lv}_{T2} = 6.6
24 \text{ hv}_T2 = 11.0
                              // HV side voltage(kV)
25 X_T2 = 5.0
                              // Transformer reactance (%)
26
27 // Calculations
28 a = \exp(\%i*120.0*\%pi/180)
      Operator
29 \text{ kVA\_base} = 2000.0
                                                       // Base
       kVA
30 \text{ kV} = 6.6
                                                      // Base
       voltage (kV)
31 X_1 = X_G*kV**2*10/kVA_base
                                                      // 10%
      reactance at 6.6 kV(ohm)
                                                      // 5%
32 X_2 = X_T1*kV**2*10/kVA_base
      reactance at 6.6 kV(ohm)
```

```
// 0.5
33 X_3 = (kV/hv_T1)**2*X_cable
      ohm at 11kV when referred to 6.6kV(ohm)
34 \ Z_g1 = \%i * X_1
      Positive sequence impedance of generator (ohm)
35 \quad Z_g2 = Z_g1*0.7
      Negative sequence impedance of generator equal to
       70% of +ve sequence impedance (ohm)
36 \quad T1_Z_T1_1 = \%i * X_2
      Positive sequence impedance of transformer (ohm)
  T1_Z_T1_2 = \%i * X_2
      Negative sequence impedance of transformer (ohm)
  Z_C1 = \%i * X_3
      Positive sequence impedance of cable (ohm)
39 \ Z_C2 = \%i*X_3
                                                     //
      Negative sequence impedance of cable (ohm)
  T2_{Z_{T2_{1}}} = \%i * X_{2}
      Positive sequence impedance of transformer (ohm)
  T2_Z_T2_2 = \%i * X_2
      Negative sequence impedance of transformer (ohm)
42 \quad Z_1 = Z_g1+T1_Z_T1_1+Z_C1+T2_Z_T2_1
      Positive sequence impedance (ohm)
43 \quad Z_2 = Z_g2+T1_Z_T1_2+Z_C2+T2_Z_T2_2
      Negative sequence impedance (ohm)
                                                     // Zero
44 \ Z_0 = \%i * X_2
       sequence impedance (ohm)
  E_a = kV*1000/3**0.5
      Phase voltage (V)
46 // Case (a)
47 I_a1 = E_a/(Z_1+Z_2)
      Positive sequence current (A)
  I_a2 = -I_a1
      Negative sequence current (A)
                                                     // Zero
  I_a0 = 0
       sequence current (A)
  I_a = I_a1+I_a2+I_a0
      Fault current in line a(A)
51 I_b = (a**2-a)*I_a1
      Fault current in line b(A)
```

Scilab code Exa 30.7 Fault current for a LG fault at C

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
8
9  // EXAMPLE : 4.7 :
10  // Page number 516-518
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
14 MVA_G1 = 40.0  // Generator rating (MVA)
```

```
15 \text{ kV}_{G1} = 13.2
                          // Generator voltage(kV)
                          // Sub-transient reactance(p.u)
16 \ X_st_G1 = 0.15
17 \quad X_2_{G1} = 0.15
                          // Negative sequence reactance(p.
      u)
18 \quad X_0_G1 = 0.08
                          // Zero sequence reactance(p.u)
                          // Generator rating (MVA)
19 \text{ MVA}_{G3} = 60.0
                          // Generator voltage (kV)
20 \text{ kV}_{\text{G}3} = 13.8
21 X_st_G3 = 0.20
                          // Sub-transient reactance(p.u)
22 \quad X_2G3 = 0.20
                          // Negative sequence reactance (p.
      u )
23 \quad X_0_G3 = 0.08
                          // Zero sequence reactance(p.u)
                          // Transformer rating (MVA)
24 \text{ MVA}_T1 = 40.0
                          // Transformer low voltage(kV)
25 \text{ kV_lv_T1} = 13.8
                          // Transformer high voltage(kV)
26 \quad kV_hv_T1 = 138
                          // Positive sequence reactance(p.
27 \quad X_1_T1 = 0.10
      u )
28 \quad X_2_T1 = 0.10
                          // Negative sequence reactance(p.
      u )
29 \quad X_0_T1 = 0.08
                          // Zero sequence reactance(p.u)
                          // Transformer rating (MVA)
30 \text{ MVA}_{T5} = 30.0
                          // Transformer low voltage(kV)
31 \text{ kV_lv_T5} = 13.8
                          // Transformer high voltage (kV)
32 \quad kV_hv_T5 = 138
33 \quad X_1_T5 = 0.10
                          // Positive sequence reactance (p.
      u)
34 \quad X_2_{T5} = 0.10
                          // Negative sequence reactance(p.
      u )
35 \quad X_0_{T5} = 0.08
                          // Zero sequence reactance(p.u)
                           // Reactance of reactor
36 \text{ X_neutral} = 0.05
      connected to generator neutral (p.u)
37
38 // Calculations
39 \text{ MVA\_base} = 100.0
      // Base MVA
40 \text{ kV\_line} = 138.0
      // Base voltage for line(kV)
41 \text{ kV}_{G} = 13.8
```

```
// Base voltage for generator(kV)
42 \text{ X\_st\_G1\_pu} = \%i*X\_st\_G1*(kV\_G1/kV\_G)**2*MVA\_base/
                         // Impedance of G1 & G2(p.u)
      MVA_G1
43 \text{ X}_2_{G1}_{pu} = \%i*X_2_{G1}*(kV_{G1}/kV_{G})**2*MVA_base/
      MVA_G1
                            // Impedance of G1 & G2(p.u)
44 \ X_g0_G1_pu = \%i*X_0_G1*(kV_G1/kV_G)**2*MVA_base/
                           // Impedance of G1 & G2(p.u)
      MVA_G1
45 X_gn_G1_pu = %i*X_neutral*(kV_G1/kV_G)**2*MVA_base/
                      // Impedance of G1 & G2(p.u)
      MVA_G1
46 \text{ X\_st\_G3\_pu} = \%i*X\_st\_G3*(kV\_G3/kV\_G)**2*MVA\_base/
                         // Impedance of G3(p.u)
      MVA_G3
  X_2_G3_pu = \%i*X_2_G3*(kV_G3/kV_G)**2*MVA_base/
47
                            // Impedance of G3(p.u)
      MVA_G3
48 \ X_g0_G3_pu = \%i*X_0_G3*(kV_G3/kV_G)**2*MVA_base/
                          // Impedance of G3(p.u)
49 \text{ X_gn_G3_pu} = \%i*X_neutral*(kV_G3/kV_G)**2*MVA_base/
                       // Impedance of G3(p.u)
      MVA_G3
50 \quad X_1_T1_pu = \%i*X_1_T1*MVA_base/MVA_T1
                                      // Impedance of T1, T2
      T3 & T4(p.u)
51 \quad X_2_{T1_pu} = \%i * X_2_{T1} * MVA_base/MVA_T1
                                      // Impedance of T1, T2
      T3 & T4(p.u)
52 \quad X_0_T1_pu = \%i*X_0_T1*MVA_base/MVA_T1
                                      // Impedance of T1, T2
      T3 & T4(p.u)
53 \quad X_1_T5_pu = \%i*X_1_T5*MVA_base/MVA_T5
                                      // Impedance of T5 &
      T6(p.u)
54 \quad X_2_T5_pu = \%i*X_2_T5*MVA_base/MVA_T5
                                      // Impedance of T5 &
      T6(p.u)
55 \quad X_0_T5_pu = \%i*X_0_T5*MVA_base/MVA_T5
                                      // Impedance of T5 &
      T6(p.u)
56 \text{ X\_1\_line\_20} = \%i*20.0*100/kV\_line**2
                                       // Impedance of 20
```

```
ohm line (p.u)
57 X_2_line_20 = %i*20.0*100/kV_line**2
                                       // Impedance of 20
      ohm line (p.u)
58 X_0_{line_20} = 3.0*X_1_{line_20}
                                               // Impedance
      of 20 ohm line (p.u)
59 X_1_line_10 = %i*10.0*100/kV_line**2
                                       // Impedance of 10
      ohm line (p.u)
60 X_2_line_10 = %i*10.0*100/kV_line**2
                                       // Impedance of 10
      ohm line (p.u)
61 \ X_0_{line_10} = 3.0*X_1_{line_10}
                                               // Impedance
      of 10 ohm line(p.u)
62 // Positive, negative and zero sequence network
63 \quad Z_1_1 = X_1_T1_pu+X_1_T1_pu+X_1_line_20
                                   // Impedance(p.u)
64 \quad Z_2_1 = X_1_T1_pu+X_1_T5_pu+X_1_line_10
                                   // Impedance(p.u)
65 \quad Z_3_1 = X_1_T1_pu+X_1_T5_pu+X_1_line_10
                                   // Impedance(p.u)
66 \quad Z_4_1 = Z_1_1*Z_2_1/(Z_1_1+Z_2_1+Z_3_1)
                                    // Impedance after star
      -delta transformation (p.u)
67 \quad Z_5_1 = Z_3_1*Z_1_1/(Z_1_1+Z_2_1+Z_3_1)
                                    // Impedance after star
      -delta transformation (p.u)
68 \quad Z_{-6_1} = Z_{-3_1} * Z_{-2_1} / (Z_{-1_1} + Z_{-2_1} + Z_{-3_1})
                                   // Impedance after star
      -delta transformation (p.u)
69 \ Z_7_1 = X_st_G1_pu+Z_4_1
      Impedance (p.u)
70 \ Z_8_1 = X_st_G1_pu+Z_5_1
      Impedance (p.u)
```

```
71 \quad Z_{9}_{1} = Z_{7}_{1} * Z_{8}_{1} / (Z_{7}_{1} + Z_{8}_{1})
                                         // Impedance in
      parallel(p.u). Refer Fig E4.14(e) & E4.14(f)
72 \quad Z_10_1 = Z_9_1+Z_6_1
      Impedance(p.u). Refer Fig E4.14(f) & E4.14(g)
73 \quad Z_11_1 = Z_10_1 * X_st_G3_pu/(Z_10_1 + X_st_G3_pu)
                           // Impedance in parallel(p.u).
       Refer Fig E4.14(g) & E4.14(h)
74 \quad Z_1 = Z_{11_1}
     // Positive sequence impedance(p.u)
75 \quad Z_2 = Z_1
     // Negative sequence impedance(p.u)
76 \ Z_0 = X_g0_G3_pu+3.0*X_gn_G3_pu
                                           // Zero
      sequence impedance(p.u)
77 E_g = 1.0
     // Voltage(p.u)
78 I_f_pu = 3*E_g/(Z_1+Z_2+Z_0)
                                               // L-G fault
       current (p.u)
79 I_f = abs(I_f_pu)*MVA_base*1000/(3**0.5*kV_G)
                            // Actual fault current(A)
80 MVA_fault = abs(I_f_pu)*MVA_base
                                          // Fault MVA
81
82 // Results
83 disp("PART III - EXAMPLE: 4.7: SOLUTION:-")
84 printf("\nFault current for a L-G fault at C = \%. f A
      \n", I_f)
85 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here")
```

Scilab code Exa 30.8 Fault current when a single phase to earth fault occurs

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
9 // EXAMPLE : 4.8 :
10 // Page number 518-519
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kV}_{G} = 11.0
                                // Generator rating (kV)
15 \quad X_1_G = \%i * 0.1
                                // Positive sequence
      reactance of generator (p.u)
16 \quad X_2_G = \%i * 0.1
                                // Negative sequence
      reactance of generator(p.u)
17 \quad X_0_G = \%i * 0.02
                               // Zero sequence reactance
       of generator (p.u)
18 \ Z = 1.0
                                // Earthing resistor (ohm)
                                // Positive sequence
19 \quad X_1_T1 = \%i * 0.1
      reactance of 2-winding transformer (p.u)
20 \quad X_2_T1 = \%i*0.1
                               // Negative sequence
      reactance of 2-winding transformer (p.u)
21 \quad X_0_T1 = \%i*0.1
                                // Zero sequence reactanc
      of 2-winding transformere (p.u)
22 X_1_T2_hv = \%i*0.05
                                // Positive sequence
      reactance of hv 3-winding transformer (p.u)
23 \quad X_2_T2_hv = \%i*0.05
                               // Negative sequence
      reactance of hv 3-winding transformer(p.u)
```

```
// Zero sequence reactanc
24 X_0_T2_hv = \%i*0.05
      of hv 3-winding transformere(p.u)
25 \quad X_1_T2_1v_1 = \%i*0.02
                                 // Positive sequence
      reactance of ly 3-winding transformer (p.u)
26 \quad X_2_T2_1v_1 = \%i*0.02
                                 // Negative sequence
      reactance of ly 3-winding transformer (p.u)
27 X_0_T2_1v_1 = \%i*0.02
                                 // Zero sequence reactanc
      of ly 3-winding transformere(p.u)
28 \quad X_1_T2_1v_2 = \%i*0.05
                                 // Positive sequence
      reactance of lv 3-winding transformer(p.u)
29 \quad X_2_T2_1v_2 = \%i*0.05
                                 // Negative sequence
      reactance of lv 3-winding transformer (p.u)
30 \quad X_0_{T2_1v_2} = \%i*0.05
                                // Zero sequence reactanc
      of ly 3-winding transformere(p.u)
31
32 // Calculations
33 \text{ MVA\_b} = 10.0
      // Base MVA
34 \text{ kV_b} = 11.0
      // Base voltage(kV)
35 \quad Z_n = Z*MVA_b/kV_b**2
      // Impedance(p.u)
36 \quad Z_1 = X_1_G+X_1_T1+X_1_T2_hv+((X_1_T2_lv_1*
      X_1_T_2_1v_2)/(X_1_T_2_1v_1+X_1_T_2_1v_2)
                                                            //
      Positive sequence impedance(p.u)
37 \quad Z_2 = X_2G+X_2T1+X_2T2hv+((X_2T2lv_1*
      X_2_{T2_1v_2}/(X_2_{T2_1v_1}+X_2_{T2_1v_2})
                                                            //
      Negative sequence impedance(p.u)
38 \quad Z_0 = ((X_0_T1 + X_0_T2_hv) * X_0_T2_lv_2/(X_0_T1 + X_0_T2_hv) * X_0_T2_lv_2/(X_0_T1 + X_0_T2_hv) * X_0_T2_hv)
      X_0_{T2}hv + X_0_{T2}lv_2) + X_0_{T2}lv_1 + 3*Z_n
      Zero sequence impedance(p.u)
39 E = 1.0
      // Voltage(p.u)
40 I_f_pu = 3*E/(Z_1+Z_2+Z_0)
```

```
// Fault current(p.u)
41 I_f = MVA_b*1000*abs(I_f_pu)/(3**0.5*kV_b)

Fault current(A)

42
43 // Results
44 disp("PART III - EXAMPLE : 4.8 : SOLUTION :-")
45 printf("\nFault current, I_f = %.f A\n", I_f)
46 printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here")
```

Scilab code Exa 30.9 Fault currents in the lines

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
9 // EXAMPLE : 4.9 :
10 // Page number 519
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ MVA\_G} = 10.0
                      // Generator rating (MVA)
                      // Generator rating(kV)
15 \text{ kV}_{G} = 11.0
                      // Positive sequence reactance of
16 \quad X_1_G = 27.0
      generator (p.u)
17 \quad X_2_G = 9.0
                      // Negative sequence reactance of
      generator (p.u)
18 \ X_0_G = 4.5
                      // Zero sequence reactance of
```

```
generator (p.u)
19 \quad X_1_L = 9.0
                     // Positive sequence reactance of
     line upto fault (p.u)
20 X_2L = 9.0
                     // Negative sequence reactance of
     line upto fault (p.u)
21 \quad X_0_L = 0
                      // Zero sequence reactance of line
      upto fault (p.u)
22
23 // Calculations
24 E_a = kV_G*1000/3**0.5
                                   // Phase voltage(V)
25 \quad Z_1 = \%i*(X_1_G+X_1_L)
                                    // Positive sequence
      reactance (p.u)
26 \quad Z_2 = \%i*(X_2_G+X_2_L)
                                    // Negative sequence
       reactance (p.u)
  I_b = \%i*3**0.5*E_a/(Z_1+Z_2) // Fault current in
     line b(p.u)
28 I_c = -I_b
                                     // Fault current in
      line c(p.u)
29
30 // Results
31 disp("PART III - EXAMPLE : 4.9 : SOLUTION :-")
32 printf("\nFault current in line b, I_b = \%.f A", abs
      (I_b)
33 printf("\nFault current in line c, I_c = \%.f A",
     real(I_c))
```

 ${
m Scilab~code~Exa~30.10}$ Currents in the faulted phase Current through ground and Vol

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
```

```
9 // EXAMPLE : 4.10 :
10 // Page number 519-520
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                          // Alternator rating (MVA)
14 \text{ MVA\_A} = 30.0
15 \text{ kV}_A = 11.0
                          // Alternator rating (kV)
                          // Reactance to positive
16 X_1 = 2.5
      sequence current (ohm)
17 \quad X_2 = 0.8 * X_1
                          // Reactance to negative
      sequence current (ohm)
18 \quad X_0 = 0.3 * X_1
                          // Reactance to zero sequence
      current (ohm)
19
20 // Calculations
21 // Case(a)
22 a = \exp(\%i*120.0*\%pi/180)
                                                   //
      Operator
23 \quad Z_1 = \%i * X_1
      Positive sequence impedance (ohm)
24 \ Z_2 = \%i * X_2
      Negative sequence impedance (ohm)
                                                   // Zero
25 \quad Z_0 = \%i * X_0
      sequence impedance (ohm)
26 \quad Z_02 = Z_0*Z_2/(Z_0+Z_2)
      Impedance (ohm)
27 E_a = kV_A*1000/3**0.5
                                                   // Phase
      voltage (V)
28 I_a1 = E_a/(Z_1+Z_02)
                                                   //
      Positive sequence current (A)
29 I_a2 = -Z_0/(Z_0+Z_2)*I_a1
      Negative sequence current (A)
30 I_a0 = -Z_2/(Z_0+Z_2)*I_a1
                                                   // Zero
      sequence current (A)
                                                   // Zero
31 I_0 = I_a0
      sequence current (A)
```

```
// Line
32 I_a = I_a0+I_a1+I_a2
      current (A)
33 I_b = I_0+a**2*I_a1+a*I_a2
                                                // Line
      current (A)
34 I_c = I_0+a*I_a1+a**2*I_a2
                                                // Line
      current (A)
35
  // Case (b)
36 I_n = 3*abs(I_0)
                                                // Current
      through ground (A)
37 // Case(c)
38 V_a2 = Z_02*I_a1
                                                //
     Negative sequence voltage (V)
39 \ V_a = 3*abs(V_a2)
                                                // Voltage
       of healthy phase to neutral (V)
40
41 // Results
42 disp("PART III - EXAMPLE : 4.10 : SOLUTION :-")
43 printf("\nCase(a): Currents in the faulted phase are
                       I_a = \%. f A, abs(I_a))
44 printf("\n
45 printf("\n
                       I_{-}b = \%. f \% .1 f A", abs(I_b),
     phasemag(I_b))
                       I_{-c} = \%. f \% .1 f A", abs(I_c),
46 printf("\n
     phasemag(I_c))
47 printf("\nCase(b): Current through ground, I_n = \%.f
      A", I_n)
48 printf("\nCase(c): Voltage of healthy phase to
      neutral, V_a = \%. f V n, V_a
49 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here")
```

Scilab code Exa 30.11 Fault currents

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
```

```
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
9 // EXAMPLE : 4.11 :
10 // Page number 520-521
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 n = 6.0
                  // Number of alternator
15 \text{ kV}_A = 6.6
                  // Alternator rating (kV)
                  // Positive sequence reactance (ohm)
16 \quad X_1 = 0.9
                  // Negative sequence reactance (ohm)
17 \quad X_2 = 0.72
                 // Zero sequence reactance (ohm)
18 \quad X_0 = 0.3
19 \ Z_n = 0.2
                  // Resistance of grounding resistor (
      ohm)
20
21 // Calculations
22 E_a = kV_A*1000/3**0.5
                                           // Phase
      voltage (V)
23 // Case (a)
                                           // Positive
24 \ Z_1_a = \%i * X_1/n
      sequence impedance when alternators are in
      parallel (ohm)
25 \ Z_2_a = \%i * X_2/n
                                           // Negative
      sequence impedance when alternators are in
      parallel (ohm)
26 \ Z_0_a = \%i * X_0/n
                                           // Zero
      sequence impedance when alternators are in
      parallel (ohm)
27 I_a_a = 3*E_a/(Z_1_a+Z_2_a+Z_0_a)
                                          // Fault
      current assuming 'a' phase to be fault (A)
28 // Case (b)
                                           // Zero
29 \quad Z_0_b = 3*Z_n+\%i*X_0
      sequence impedance (ohm)
```

```
30 I_a_b = 3*E_a/(Z_1_a+Z_2_a+Z_0_b) // Fault
      current (A)
31 // Case (c)
32 \ Z_0_c = \%i * X_0
                                          // Zero
      sequence impedance (ohm)
33 I_a_c = 3*E_a/(Z_1_a+Z_2_a+Z_0_c)
                                          // Fault
      current (A)
34
35 // Results
36 disp("PART III - EXAMPLE : 4.11 : SOLUTION :-")
37 printf("\nCase(a): Fault current if all alternator
      neutrals are solidly grounded, I_a = \%. f A", imag
      (I_a_a))
38 printf("\nCase(b): Fault current if one alternator
      neutral is grounded & others isolated, I_a = \%.1
      f \% .1 f A", abs(I_a_b), phasemag(I_a_b))
39 printf("\nCase(c): Fault current if one alternator
      neutral is solidly grounded & others isolated,
      I_a = \%.2 \text{ fj } A n, imag(I_a_c)
40 printf("\nNOTE: ERROR: Calculation mistakes in the
      textbook solution")
```

 ${f Scilab\ code\ Exa\ 30.12}$ Fault current if all 3 phases short circuited If single line

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART III : SWITCHGEAR AND PROTECTION
// CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
// EXAMPLE : 4.12 :
// Page number 521-522
// Clear the work space and
```

```
console
12
13 // Given data
                         // Alternator rating (MVA)
14 \text{ MVA\_A} = 30.0
15 \text{ kV}_A = 6.6
                         // Alternator rating (kV)
16 \quad X_G = 10.0
                         // Reactance of alternator(%)
17 \quad kV_lv_T = 6.6
                         // Transformer lv side rating (kV
  kV_hv_T = 33.0
                             Transformer hv side rating (kV
                         // Reactance of transformer(%)
19 X_T = 6.0
                         // Transmission line voltage (kV)
20 \text{ kV_line} = 33.0
                         // Transmission line reactance(
21 X_line = 4.0
      ohm)
                         // Negative sequence reactance
  X_g2 = 70.0
      is 70% of +ve sequence reactance of generator (%)
23
24 // Calculations
                                                 // Base MVA
25 \text{ MVA\_base} = 30.0
26 \text{ kV_base} = 6.6
                                                 // Base kV
27 Z_base = kV_base**2/MVA_base
                                                 // Base
      impedance (ohm)
                                                 // Positive
28 \ Z_g1 = \%i*Z_base*X_G/100
       sequence impedance of alternator (ohm)
                                                 // Positive
29 \ Z_T1 = \%i*Z_base*X_T/100
       sequence impedance of transformer (ohm)
30 \text{ Z_L1} = \%i*(kV_base/kV_line)**2*X_line
                                                 // Positive
       sequence impedance of transmission line (ohm)
31 \quad Z_g2 = X_g2/100*Z_g1
                                                 // Negative
       sequence impedance of alternator (ohm)
  Z_T2 = \%i*Z_base*X_T/100
                                                 // Negative
       sequence impedance of transformer (ohm)
33 \ Z_T0 = \%i*Z_base*X_T/100
                                                 // Zero
      sequence impedance of transformer (ohm)
                                                 // Negative
  Z_L2 = Z_L1
       sequence impedance of transmission line (ohm)
35 \quad Z_1 = Z_g1+Z_T1+Z_L1+Z_T1
                                                 // Positive
       sequence impedance (ohm)
```

```
// Negative
36 \quad Z_2 = Z_g2 + Z_T2 + Z_L2 + Z_T2
       sequence impedance (ohm)
                                               // Zero
37 \quad Z_0 = Z_T0
      sequence impedance (ohm)
  E_a = kV_base*1000/3**0.5
                                               // Base
      voltage (V)
39 // Case (a)
40 \quad I_sc = E_a/Z_1
                                               // Fault
      current if all 3 phases short circuited (A)
41 // Case (b)
42 I_a = 3*E_a/(Z_1+Z_2+Z_0)
                                               // Fault
      current if single line is grounded assuming 'a'
      to be grounded (A)
43 // Case (c)
44 I_b = \%i*3**0.5*E_a/(Z_1+Z_2)
                                               // Fault
      current for a short circuit between two lines (A)
                                               // Fault
45 I_c = -\%i*3**0.5*E_a/(Z_1+Z_2)
      current for a short circuit between two lines (A)
46
47 // Results
48 disp("PART III - EXAMPLE : 4.12 : SOLUTION :-")
49 printf("\nCase(a): Fault current if all 3 phases
      short circuited, I_sc = \%. f \% . f A", abs(I_sc)
      , phasemag(I_sc))
50 printf("\nCase(b): Fault current if single line is
      grounded, I_a = \%. fj A", imag(I_a))
51 printf("\nCase(c): Fault current for a short circuit
       between two lines, I_b = \% f A", real(I_b))
                       Fault current for a short circuit
52 printf ("\n
       between two lines, I_c = \% f A\n", real(I_c))
53 printf("\nNOTE: ERROR: (1). Calculation mistake in
      Z_{-2} in the textbook solution")
54 printf("\n
                            (2). Transformer reactance is
      6 percent, not 5 percent as in problem statement"
```

Scilab code Exa 30.13 Sub transient current in the faulty phase

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
9 // EXAMPLE : 4.13 :
10 // Page number 522
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                       // Alternator rating (kV)
14 \text{ kV} = 6.9
15 \text{ MVA} = 10.0
                      // Alternator rating (MVA)
                      // Sub-transient reactance(p.u)
16 X_st = 0.15
17 \quad X_2 = 0.15
                   // Negative sequence reactance(p.u
     )
18 \quad X_0 = 0.05
                      // Zero sequence reactance(p.u)
19 X = 0.397
                    // Grounding reactor (ohm)
20
21 // Calculations
20 \text{ MVA\_base} = 10.0
                                                // Base MVA
23 \text{ kV_base} = 6.9
                                                // Base kV
24 \text{ Z_base} = kV\_base**2/MVA\_base
                                                // Base
      impedance (ohm)
25 \text{ Z_n} = X/Z\_base
                                                // Grounding
       reactor (p.u)
26 \ Z_1 = \%i * X_st
                                                // Positive
      sequence impedance(p.u)
27 \quad Z_2 = \%i * X_2
                                                // Negative
```

```
sequence impedance(p.u)
28 \quad Z_0 = \%i*(X_0+3*Z_n)
                                             // Zero
     sequence impedance(p.u)
                                             // Phase
29 E_a = 1.0
      voltage (p.u)
30 I_a_pu = 3*E_a/(Z_1+Z_2+Z_0)
                                             // Sub-
      transient current in the faulty phase(p.u)
31 I_{base} = kV_{base}*1000/(3**0.5*Z_{base})
                                             // Base
     current (A)
  I_a = abs(I_a_pu)*I_base
                                             // Sub-
      transient current in the faulty phase (A)
33
34 // Results
35 disp("PART III - EXAMPLE : 4.13 : SOLUTION :-")
36 printf("\nSub-transient current in the faulty phase,
       I_a = \%.f A n, I_a
37 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here")
```

 ${f Scilab\ code\ Exa\ 30.14}$ Initial symmetrical rms current in all phases of generator

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS
8
9  // EXAMPLE : 4.14 :
10  // Page number 522-523
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
```

```
14 \text{ kVA} = 10000.0
                      // Generator rating (kVA)
                      // Generator rating (kV)
15 \text{ kV} = 13.8
                      // Sub-transient reactance (%)
16 \ X_st = 10.0
                      // Negative sequence reactance (\%)
17 X_2 = 10.0
                      // Zero sequence reactance(%)
18 \quad X_0 = 5.0
                      // Grounding reactor (%)
19 X = 8.0
                      // Reactance of reactor connecting
20 \quad X_{con} = 6.0
      generator & transformer (%)
21
22 // Calculations
23 a = \exp(\%i*120.0*\%pi/180)
                                               // Operator
24 \ Z_1 = \%i*(X_st+X_con)/100
                                               // Positive
      sequence impedance(p.u)
Z_{25} = x_{i*}(x_{2}+x_{con})/100
                                               // Negative
      sequence impedance(p.u)
                                               // Zero
  Z_0 = \%i * X_con/100
      sequence impedance(p.u)
                                               // Phase
  E_a = 1.0
      voltage (p.u)
  I_a1 = E_a/(Z_1+Z_2+Z_0)
                                               // Sub-
      transient current in the faulty phase(p.u)
                                               // Positive
  I_A1 = \%i * I_a1
      sequence current (p.u)
                                               // Negative
30 I_A2 = -\%i*I_a1
      sequence current (p.u)
31 \quad I_A = I_A1 + I_A2
                                               // Initial
      symmetrical r.m.s current in phase a(p.u)
                                               // Positive
32 I_B1 = a**2*I_A1
      sequence current (p.u)
                                               // Negative
33 I_B2 = a*I_A2
      sequence current (p.u)
  I_B = I_B1+I_B2
                                               // Initial
      symmetrical r.m.s current in phase b(p.u)
  I_C1 = a*I_A1
                                               // Positive
      sequence current (p.u)
36 I_C2 = a**2*I_A2
                                               // Negative
      sequence current (p.u)
37 \quad I_C = I_C1 + I_C2
                                               // Initial
```

```
symmetrical r.m.s current in phase c(p.u)
                                              // Base
38 \text{ I_base} = kVA/(3**0.5*kV)
      current (A)
  I_A_amp = I_A*I_base
                                              // Initial
39
      symmetrical r.m.s current in phase a(p.u)
                                              // Initial
40 I_B_amp = I_B*I_base
      symmetrical r.m.s current in phase b(p.u)
41 I_C_amp = I_C*I_base
                                              // Initial
      symmetrical r.m.s current in phase c(p.u)
42
43 // Results
44 disp("PART III - EXAMPLE : 4.14 : SOLUTION :-")
45 printf("\nInitial symmetrical r.m.s current in all
      phases of generator are,")
46 printf("\n I<sub>-</sub>A = %.f A", abs(I<sub>-</sub>A<sub>-</sub>amp))
47 printf("\n I_B = \%. f \% . f A", abs(I_B_amp),
      phasemag(I_B_amp))
48 printf("\n I_C = \%. f \% . f A", abs(I_C_amp),
      phasemag(I_C_amp))
```

Chapter 32

CIRCUIT BREAKER

Scilab code Exa 32.1 Maximum restriking voltage Frequency of transient oscillation

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6\ //\ {
m PART\ III}\ :\ {
m SWITCHGEAR\ AND\ PROTECTION}
7 // CHAPTER 6: CIRCUIT BREAKER
9 // EXAMPLE : 6.1 :
10 // Page number 545
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                      // Generator frequency (Hz)
// emf to neutral rms voltage (kV)
14 f = 50.0
15 \text{ kV} = 7.5
                       // Reactance of generator &
16 X = 4.0
      connected system (ohm)
17 C = 0.01*10**-6 // Distributed capacitance(F)
18
19 // Calculations
```

```
20 // Case (a)
21 \quad v = 2**0.5*kV
                                              // Active
      recovery voltage i.e phase to neutral(kV)
22 V_{max\_restrike} = v*2
                                              // Maximum
      restriking voltage i.e phase to neutral(kV)
23 // Case(b)
                                              //
24 L = X/(2.0*\%pi*f)
     Inductance (H)
25 f_n = 1/(2.0*\%pi*(L*C)**0.5*1000)
                                              // Frequency
       of transient oscillation (kHZ)
26 // Case(c)
27 t = 1.0/(2.0*f_n*1000)
                                             // Time(sec)
28 avg_rate = V_max_restrike/t
                                             // Average
      rate of rise of voltage upto first peak of
      oscillation (kV/s)
29
30 // Results
31 disp("PART III - EXAMPLE : 6.1 : SOLUTION :-")
32 printf("\nCase(a): Maximum re-striking voltage(phase
     -to-neutral) = \%.1 f kV", V_max_restrike)
33 printf("\nCase(b): Frequency of transient
      oscillation, f_n = \%.1 f \text{ kHz}, f_n
34 printf("\nCase(c): Average rate of rise of voltage
      upto first peak of oscillation = \%. f kV/s \n",
      avg_rate)
35 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more approximation in
      the textbook")
```

Scilab code Exa 32.3 Rate of rise of restriking voltage

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
```

```
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 6: CIRCUIT BREAKER
9 // EXAMPLE : 6.3 :
10 // Page number 545-546
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kV} = 132.0
                     // Voltage (kV)
                    // Power factor of the fault
15 \text{ pf} = 0.3
                     // Recovery voltage was 0.95 of
16 \text{ K3} = 0.95
      full line value
17 	 f_n = 16000.0
                   // Natural frequency of the
      restriking transient (Hz)
18
19 // Calculations
20 \text{ kV\_phase} = \text{kV/3**0.5}
                                               // System
      voltage (kV)
21 sin_phi = sind(acosd(pf))
                                               // Sin
22 \text{ K2} = 1.0
v = K2*K3*kV/3**0.5*2**0.5*sin_phi
                                              // Active
     recovery voltage (kV)
24 \ V_max_restrike = 2*v
                                               // Maximum
      restriking voltage (kV)
25 t = 1.0/(2.0*f_n)
                                               // Time(sec)
26 RRRV = V_max_restrike/(t*10**6)
                                               // Rate of
      rise of restriking voltage(kV/
                                        -\sec
27
28 // Results
29 disp("PART III - EXAMPLE : 6.3 : SOLUTION :-")
30 printf("\nRate of rise of restriking voltage, R.R.R.
     V = \%.2 f kV/ -sec, RRRV)
```

Scilab code Exa 32.5 Voltage across the pole of a CB and Resistance to be used acr

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 6: CIRCUIT BREAKER
9 // EXAMPLE : 6.5 :
10 // Page number 565
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kV} = 132.0
                    // Voltage (kV)
15 C = 0.01*10**-6 // Phase to ground capacitance (F)
                    // Inductance (H)
16 L = 6.0
17 i = 5.0
                     // Magnetizing current (A)
18
19 // Calculations
20 V_pros = i*(L/C)**0.5/1000 // Prospective value
      of voltage (kV)
21 R = 1.0/2*(L/C)**0.5/1000
                                  // Resistance to be
     used across the contacts to eliminate the
      restriking voltage (k-ohm)
22
23 // Results
24 disp("PART III - EXAMPLE : 6.5 : SOLUTION :-")
25 printf("\nVoltage across the pole of a CB = \%.1 f kV"
      , V_pros)
26 printf("\nResistance to be used across the contacts
     to eliminate the restriking voltage, R = \%.2 f k
     ohm \ n", R)
27 printf("\nNOTE: ERROR: Unit of final answer R is k-
     ohm, not ohm as in the textbook solution")
```

Scilab code Exa 32.6 Rated normal current Breaking current Making current and Shor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 6: CIRCUIT BREAKER
9 // EXAMPLE : 6.6 :
10 // Page number 567
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                  // Rated normal current(A)
14 I = 1200.0
                  // Rated MVA
15 \text{ MVA} = 1500.0
                  // Voltage (kV)
16 \text{ kV} = 33.0
17
18 // Calculations
19 I_breaking = MVA/(3**0.5*kV) // Rated symmetrical
      breaking current (kA)
20 I_making = I_breaking*2.55 // Rated making
     current (kA)
21 I_short = I_breaking
                                   // Short-time rating (
     kA)
22
23 // Results
24 disp("PART III - EXAMPLE : 6.6 : SOLUTION :-")
25 printf("\nRated normal current = \%. f A", I)
26 printf("\nBreaking current = %.2 f kA (rms)",
      I_breaking)
27 printf("\nMaking current = %.f kA", I_making)
```

```
28 printf("\nShort-time rating = \%.2 \, f kA for 3 secs", I_short)
```

Scilab code Exa 32.8 Sustained short circuit Initial symmetrical rms current Maxim

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 6: CIRCUIT BREAKER
9 // EXAMPLE : 6.8 :
10 // Page number 569
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA} = 7500.0
                    // Rated kVA
                   // Sub-transient reactance (%)
15 X_st = 9.0
                   // Transient reactance (%)
16 X_t = 15.0
                   // Direct-axis reactance (%)
17 X_d = 100.0
18 \text{ kV} = 13.8
                   // Voltage (kV). Assumption
19
20 // Calculations
                                              // Base kVA
21 \text{ kVA\_base} = 7500.0
22 kVA_sc_sustained = kVA_base/X_d*100
                                             // Sustained
      S.C kVA
23 I_sc_sustained = kVA_base/(3**0.5*kV) // Sustained
      S.C current (A). rms
24 I_st = kVA*100/(X_st*3**0.5*kV)
                                             // Initial
      symmetrical rms current in the breaker (A)
25 I_{max_dc} = 2**0.5*I_{st}
                                              // Maximum
      possible dc component of the short-circuit (A)
```

```
26 I_moment = 1.6*I_st
                                             // Momentary
       current rating of the breaker (A)
  I_{interrupt} = 1.1*I_{st}
                                             // Current
      to be interrupted by the breaker (A)
  I_kVA = 3**0.5*I_interrupt*kV
      Interrupting kVA
29
30 // Results
31 disp("PART III - EXAMPLE : 6.8 : SOLUTION :-")
32 printf("\nCase(a): Sustained short circuit KVA in
      the breaker = \%.f kVA", kVA_sc_sustained)
33 printf("\n
                       Sustained short circuit current
      in the breaker = \%.1 \, f \, A \, (rms)", I_sc_sustained)
34 printf("\nCase(b): Initial symmetrical rms current
      in the breaker = \%. f A (rms)", I_st)
35 printf("\nCase(c): Maximum possible dc component of
      the short-circuit in the breaker = \% f A",
      I_max_dc)
36 printf("\nCase(d): Momentary current rating of the
      breaker = \%. f A (rms)", I_moment)
37 printf("\nCase(e)): Current to be interrupted by the
      breaker = \%.f A (rms)", I_interrupt)
38 printf("\nCase(f): Interrupting kVA = \%. f kVA \n",
      I_kVA)
39 printf("\nNOTE: Changes in the obtained answer from
      that of textbook due to more approximation in
      textbook")
```

Chapter 33

PROTECTIVE RELAYS

Scilab code Exa 33.1 Time of operation of the relay

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 7: PROTECTIVE RELAYS
9 // EXAMPLE : 7.1 :
10 // Page number 595-596
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 I_{\text{setting}} = 150.0 // Current setting of IDMT(%)
15 t_mult = 0.5 // Time multiplier setting
16 ratio_CT = 500.0/5 // CT ratio
19
20 // Calculations
```

```
21 I_sec_fault = I_f/ratio_CT
                                                //
      Secondary fault current (A)
22 PSM = I_sec_fault/(CT_sec*I_setting/100)
                                                // Plug
      setting multiplier
23 t = 3.15
                                                // Time
      against this PSM(sec). From graph E7.1 in
      textbook page no 595
24 \text{ time\_oper} = t*t\_mult
                                                //
      Operating time (sec)
25
26 // Results
27 disp("PART III - EXAMPLE : 7.1 : SOLUTION :-")
28 printf("\nTime of operation of the relay = \%.3 f sec"
      , time_oper)
```

Scilab code Exa 33.2 Time of operation of the relay

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 7: PROTECTIVE RELAYS
9 // EXAMPLE : 7.2 :
10 // Page number 596
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                        // CT ratio
14 \text{ ratio} = 525.0/1
                        // Secondary turn
15 \text{ CT\_sec} = 1.0
                        // Time multiplier setting
16 t_mult = 0.3
17 I_f = 5250.0
                        // Fault current (A)
```

```
18
19 // Calculations
                             // Secondary
20 I_sec_fault = I_f/ratio
      fault current (A)
21 PSM = I_sec_fault/(1.25*CT_sec) // Plug_setting
      multiplier
22 t = 3.15
                                        // Time against
      this PSM(sec). From graph E7.1 in textbook page
      no 595
                                        // Operating time
23 \text{ time\_oper} = t*t\_mult
      (sec)
24
25 // Results
26 disp("PART III - EXAMPLE : 7.2 : SOLUTION :-")
27 printf("\nTime of operation of the relay = \%.3 \,\mathrm{f} sec"
      , time_oper)
```

Scilab code Exa 33.3 Operating time of feeder relay Minimum plug setting of transf

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 7: PROTECTIVE RELAYS
9 // EXAMPLE : 7.3 :
10 // Page number 596
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ MVA} = 20.0
                          // Transformer MVA
15 overload = 30.0
                          // Overload of transformer (%)
```

```
16 \text{ kV} = 11.0
                            // Bus bar rating (kV)
                           // Transformer CT
17 \text{ CT\_trans} = 1000.0/5
18 \text{ CT\_cb} = 400.0/5
                            // Circuit breaker CT
                            // Plug setting (%)
19 ps = 125.0
                           // Time setting
20 \text{ ts} = 0.3
21 I_f = 5000.0
                            // Fault current (A)
                           // Discriminative time margin (
22 t_margin = 0.5
      sec)
23
24 // Calculations
25 I_sec_fault = I_f/CT_cb
      Secondary fault current (A)
26 \text{ CT\_cb\_sec} = 5.0
      Secondary turn
27 PSM = I_sec_fault/(ps/100*CT_cb_sec)
      Plug setting multiplier
28 t = 2.8
      Time against this PSM(sec). From graph E7.1 in
      textbook page no 595
29 \text{ time_oper} = t*ts
                                                          //
      Operating time of feeder relay (sec)
30 I_ol = (1+(overload/100))*MVA*1000/(3**0.5*kV)
      Overload current (A)
  I_{sec_T} = I_{ol/CT_trans}
      Secondary current (A)
32 \text{ CT\_T\_sec} = 5.0
      Secondary turn of transformer
33 \text{ PSM}_T = I_sec_T/CT_T_sec}
      Minimum plug setting multiplier of transformer
34 I_sec_T1 = I_f/CT_trans
      Secondary fault current (A)
35 ps_T1 = 1.5
      Plug setting as per standard value
36 \text{ PSM}_T1 = I_sec_T1/(CT_T_sec*ps)
                                                          //
      Plug setting multiplier of transformer
37 t_T1 = 7.0
      Time against this PSM(sec). From graph E7.1 in
      textbook page no 595
```

Scilab code Exa 33.4 Time of operation of the two relays

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 7: PROTECTIVE RELAYS
9 // EXAMPLE : 7.4 :
10 // Page number 596-597
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                       // Fault current (A)
14 I_f = 2000.0
15 ratio_CT = 200.0/1 // CT ratio
                       // Relay 1 set on (%)
16 R_1 = 100.0
                       // Relay 2 set on(%)
17 R_2 = 125.0
                       // Discriminative time margin (
18 t_{margin} = 0.5
     sec)
19 \text{ TSM}_1 = 0.2
                        // Time setting multiplier of
```

```
relay 1
20
21 // Calculations
                                              // CT
22 \text{ CT\_sec} = 200.0
      secondary
23 \text{ PSM}_1 = I_f*100/(CT_sec*R_1)
                                              // PSM of
      relay 1
24 t_1 = 2.8
                                              // Time
      against this PSM(sec). From graph E7.1 in
      textbook page no 595
25 \text{ time_oper_1} = TSM_1*t_1
                                              // Operating
      time of relay with TSM of 0.2 (Sec)
  PSM_2 = I_f*100/(CT_sec*R_2)
                                              // PSM of
      relay 2
                                              // Time
27 t_2 = 3.15
      against this PSM(sec). From graph E7.1 in
      textbook page no 595
28 actual_time_2 = time_oper_1+t_margin
                                              // Actual
      time of operation of relay 2(sec)
  TSM_2 = actual_time_2/t_2
                                              // Time
      setting multiplier of relay 2
30
31 // Results
32 disp("PART III - EXAMPLE: 7.4: SOLUTION:-")
33 printf("\nTime of operation of relay 1 = \%.2 \, \text{f sec}",
      time_oper_1)
34 printf("\nActual time of operation of relay 2 = \%.2 f
       \sec ", actual_time_2)
35 printf("\nT.S.M of relay 2 = \%.4 \,\mathrm{f}", TSM_2)
```

Scilab code Exa 33.6 Will the relay operate the trip of the breaker

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
```

```
4 // SECOND EDITION
5
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 7: PROTECTIVE RELAYS
9 // EXAMPLE : 7.6 :
10 // Page number 611
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 I_{min} = 0.1
                         // Relay minimum pick up
     current (A)
                         // Slope characteristic (%)
15 \text{ slope} = 10.0
                         // CT ratio
16 \text{ CT_ratio} = 400.0/5
                         // Current(A)
17 I_1 = 320.0
18 I_2 = 304.0
                         // Current (A)
19
20 // Calculations
21 I_{op\_coil} = (I_1-I_2)/CT_ratio
                                              // Current
     in operating coil(A)
22 I_{re\_coil} = 1.0*(I_1+I_2)/(2*CT_ratio)
                                              // Current
     in restraining coil (A)
23 I_re_coil_slope = I_re_coil*slope/100
                                              // Current
      in restraining coil with slope (A)
24
25 // Results
26 disp("PART III - EXAMPLE : 7.6 : SOLUTION :-")
27 if(I_op_coil<I_re_coil_slope) then
       printf("\nRelay will not trip the circuit
28
          breaker")
29 else then
       print("\nRelay will trip the circuit breaker")
30
31 end
```

Chapter 34

PROTECTION OF ALTERNATORS AND AC MOTORS

Scilab code Exa 34.1 Neutral earthing reactance

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 8: PROTECTION OF ALTERNATORS AND AC
     MOTORS
9 // EXAMPLE : 8.1 :
10 // Page number 624
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
                       // Alternator Voltage(V)
14 V = 6600.0
15 P = 2000.0*10**3 // Rating of alternator(W)
```

```
// Power factor of alternator
16 \text{ PF} = 0.8
                          // Alternator reactance(%)
17 X = 12.5
                          // Current protection(A)
18 I = 200.0
                          // Percentage of winding
19 \text{ per} = 10.0
      unprotected (%)
20
21 // Calculations
21 I_f1 = P/(3**0.5*V*PF)
                                       // Full load current
       of alternator (A)
23 \times = X*V/(3**0.5*100*I_fl)
                                       // Reactance per
      phase of alternator (ohm)
24 \text{ x_per} = \text{per}/100*x
                                       // Reactance of 10%
      of the winding (ohm)
25 \text{ NA} = V/(3**0.5*per)
                                       // Voltage induced
      in winding (V)
26 r = ((NA/I)**2-x_per**2)**0.5 // Neutral earthing
      reactance (ohm)
27
28 // Results
29 disp("PART III - EXAMPLE : 8.1 : SOLUTION :-")
30 printf("\nNeutral earthing reactance, r = \%.2 f ohm",
       r)
```

Scilab code Exa 34.2 Unprotected portion of each phase of the stator winding again

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 8: PROTECTION OF ALTERNATORS AND AC MOTORS
8
9  // EXAMPLE : 8.2 :
```

```
10 // Page number 624-625
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ MVA} = 20.0
                           // Generator rating (MVA)
                           // Generator voltage(V)
15 \quad V = 11.0*10**3
16 ratio_CT = 1200.0/5
                          // Ratio of current
      transformer
  I_min_op = 0.75
                           // Minimum operating current
      of relay (A)
18 R = 6.0
                           // Neutral point earthing
      resistance (ohm)
19
20 // Calculations
21 I_max_fault = ratio_CT*I_min_op
                                            // Maximum
      fault current to operate relay(A)
22 x = I_{max_fault*3**0.5*100*R/V}
                                            // Unprotected
       portion for R = 6 \text{ ohm}(\%)
23 R_1 = 3.0
                                            // Neutral
      point earthing resistance (ohm)
24 	 x_1 = I_max_fault*3**0.5*100*R_1/V
                                            // Unprotected
       portion for R = 3 \text{ ohm}(\%)
25 R_3 = 12.0
                                            // Neutral
      point earthing resistance (ohm)
26 \text{ x}_3 = I_{max_fault}*3**0.5*100*R_3/V
                                            // Unprotected
       portion for R = 12 \text{ ohm}(\%)
27
28 // Results
29 disp("PART III - EXAMPLE: 8.2: SOLUTION:-")
30 printf("\nUnprotected portion of each phase of the
      stator winding against earth fault, x = \%. f
      percent", x)
31 printf("\nEffect of varying neutral earthing
      resistance keeping relay operating current the
      same:")
32 printf("\n (i) R = 3 \text{ ohms}")
                 Unprotected portion = \%.1f percent"
33 printf("\n
```

```
, x_{1}
34 printf("\n
                      Protected portion = \%.1f percent",
      (100-x_1)
35 printf("\n (ii) R = 6 ohms")
36 \text{ printf}(" \ n
                      Unprotected portion = \%.f percent",
       x)
                      Protected portion = \%.f percent",
37 printf("\n
      (100-x))
38 printf("\n (iii) R = 12 \text{ ohms}")
39 printf("\n
                      Unprotected portion = \%. f percent",
       x_3)
                      Protected portion = \%.f percent",
40 printf("\n
      (100-x_3))
```

Scilab code Exa 34.3 Portion of alternator winding unprotected

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 8: PROTECTION OF ALTERNATORS AND AC
     MOTORS
8
9 // EXAMPLE : 8.3 :
10 // Page number 625
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA} = 5000.0
                      // Alternator rating (kVA)
                      // Alternator voltage(V)
15 \quad V = 6600.0
16 X = 2.0
                      // Synchronous reactance per phase
     (ohm)
```

```
17 R = 0.5
                     // Resistance (ohm)
                     // Out-of-balance current (%)
18 \text{ ofb} = 30.0
                      // Resistance of resistor earthed
19 R_n = 6.5
     to star point (ohm)
20
21 // Calculations
22 I_fl = kVA*1000/(3**0.5*V)
                                                // Full
     load current (A)
23 I_ofb = ofb/100*I_fl
                                                // Out-of
     -balance current (A)
24 x = R_n/((V/(3**0.5*100*I_ofb)) - (R/100))
     Portion of winding unprotected (%)
25
26 // Results
27 disp("PART III - EXAMPLE : 8.3 : SOLUTION :-")
28 printf("\nPortion of alternator winding unprotected,
      x = \%.1f percent", x)
```

Scilab code Exa 34.4 Will the relay trip the generator CB

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 8: PROTECTION OF ALTERNATORS AND AC MOTORS
8
9  // EXAMPLE : 8.4 :
10  // Page number 625
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
```

```
14 I_{min} = 0.15
                          // Minimum pick up current of
      relay (A)
15 \text{ slope} = 12.0
                           // Slope (%)
                           // CT ratio
16 \text{ CT_ratio} = 400.0/5
                           // Current (A)
17 I_1 = 360.0
18 I_2 = 300.0
                           // Current (A)
19
20 // Calculations
21 i_1 = I_1/CT_ratio
                                                  //
      Current (A)
22 i_2 = I_2/CT_ratio
      Current (A)
  percentage = (i_1-i_2)/((i_1+i_2)/2)*100
23
      Percentage (%)
24
25 // Results
26 disp("PART III - EXAMPLE : 8.4 : SOLUTION :-")
27 if(percentage>slope) then
       printf("\nRelay would trip the circuit breaker,
28
          since the point lie on +ve torque regime")
29 else then
       printf("\nRelay would not trip the circuit
30
          breaker, since the point do not lie on +ve
          torque regime")
31 end
```

Scilab code Exa 34.5 Winding of each phase unprotected against earth when machine

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 8: PROTECTION OF ALTERNATORS AND AC
```

```
MOTORS
8
9 // EXAMPLE : 8.5 :
10 // Page number 625-626
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ MVA} = 50.0
                         // Alternator rating (MVA)
                         // Alternator voltage (V)
15 \quad V = 33.0*10**3
                        // CT ratio
16 \text{ CT_ratio} = 2000.0/5
17 R = 7.5
                         // Resistor earthed generator
      neutral (ohm)
18 I = 0.5
                         // Current above which pick up
      current (A)
19
20 // Calculations
21 I_min = CT_ratio*I
                                  // Minimum current
      required to operate relay (A)
                                  // Winding unprotected
22 x = I_min*R/(V/3**0.5)*100
      during normal operation (%)
23
24 // Results
25 disp("PART III - EXAMPLE : 8.5 : SOLUTION :-")
26 printf("\nWinding of each phase unprotected against
      earth when machine operates at nominal voltage, x
      =\%.2 f percent", x)
```

Scilab code Exa 34.6 Portion of winding unprotected

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
```

```
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 8: PROTECTION OF ALTERNATORS AND AC
     MOTORS
9 // EXAMPLE : 8.6 :
10 // Page number 626
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                     // Alternator rating (MVA)
14 \text{ MVA} = 50.0
                    // Alternator voltage (kV)
15 \text{ kV} = 11.0
                    // Synchronous reactance per phase
16 X = 2.0
     (ohm)
                     // Resistance per phase(ohm)
17 R = 0.7
                 // Resistance through which
18 R_n = 5.0
      alternator is earthed (ohm)
19 \text{ ofb} = 25.0
                     // Out-of-balance current (%)
20
21 // Calculations
21_{fl} = MVA*1000/(3**0.5*kV)
                                                       //
      Full load current (A)
23 I_ofb = ofb/100*I_fl
     Out-of-balance current (A)
24 x = R_n/((kV*1000/(3**0.5*100*I_ofb))-(R/100))
     Portion of winding unprotected (%)
25
26 // Results
27 disp("PART III - EXAMPLE : 8.6 : SOLUTION :-")
28 printf ("\nPortion of winding unprotected, x = \%. f
      percent", x)
```

 ${f Scilab\ code\ Exa\ 34.7}$ Percentage of winding that is protected against earth faults

 $1\ //\ A\ Texbook$ on POWER SYSTEM ENGINEERING

```
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 8: PROTECTION OF ALTERNATORS AND AC
     MOTORS
8
9 // EXAMPLE : 8.7 :
10 // Page number 626-627
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kV} = 11.0
                      // Alternator voltage (kV)
15 \text{ MVA} = 5.0
                      // Alternator rating (MVA)
                     // Reactance per phase (ohm)
16 X = 2.0
                     // Out-of-balance current (%)
17 \text{ ofb} = 35.0
18 R_n = 5.0
                      // Resistance through which star
      point is earthed (ohm)
19
20 // Calculations
                                               // Full
21 I_fl = MVA*1000/(3**0.5*kV)
      load current (A)
22 I_ofb = ofb/100*I_fl
                                                // Out-of-
      balance current (A)
23 \times I_ofb*R_n*100/(kV*1000/3**0.5)
                                                // Portion
      of winding unprotected (%)
24 \text{ protected} = 100.0-x
                                                // Winding
      that is protected against earth faults (%)
25
26 // Results
27 disp("PART III - EXAMPLE: 8.7: SOLUTION:-")
28 printf("\nPercentage of winding that is protected
      against earth faults = \%.2 \, \text{f} percent", protected)
```

Scilab code Exa 34.8 Magnitude of neutral earthing resistance

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 8: PROTECTION OF ALTERNATORS AND AC
     MOTORS
8
9 // EXAMPLE : 8.8 :
10 // Page number 627
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kV} = 11.0
                     // Alternator voltage(kV)
                    // Alternator maximum rating (MW)
15 P = 100.0
                   // Power factor
16 \text{ PF} = 0.8
                    // Reactance of alternator(pu)
17 X = 0.1
                    // Current (A)
18 i = 500.0
              // Windings unprotected (%)
19 \text{ per} = 10.0
20
21 // Calculations
22 I = P*1000/(3**0.5*kV*PF) // Rated current of
      alternator (A)
23 \quad a = i/I
                                   // Relay setting
24 I_n = a*I*100/per
                                   // Current through
     neutral (A)
25 R = kV*1000/(3**0.5*I_n) // Magnitude of
      neutral earthing resistance (ohm)
26
27 // Results
```

```
28 disp("PART III - EXAMPLE : 8.8 : SOLUTION :-")
29 printf("\nMagnitude of neutral earthing resistance,
   R = %.2 f ohm\n", R)
30 printf("\nNOTE: ERROR: Unit of resistance is not mentioned in textbook solution")
```

Chapter 35

PROTECTION OF TRANSFORMERS

Scilab code Exa 35.2 Ratio of CTs

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
7 // CHAPTER 9: PROTECTION OF TRANSFORMERS
9 // EXAMPLE : 9.2 :
10 // Page number 635-636
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                                 // LV side voltage of
14 V_1v = 220.0
     transformer (V)
                                 // HV side voltage of
15 \text{ V_hv} = 11000.0
      transformer (V)
16 ratio_CT = 600.0/(5/3**0.5) // CT ratio on LV side
```

```
of transformer
17
18 // Calculations
19 \text{ CT_pri} = 600.0
                            // Primary CT
20 \text{ CT\_sec} = 5.0/3**0.5
                            // Secondary CT
21 I_1 = V_lv/V_hv*CT_pri // Line current in
      secondary of transformer corresponding to primary
       winding (A)
22 I_2 = CT_sec*3**0.5 // Current in secondary of
     CT(A)
23
24 // Results
25 disp("PART III - EXAMPLE : 9.2 : SOLUTION :-")
26 printf("\nRatio of CTs on 11000 V side = \%.f : \%.f \
     n", I_1, I_2
27 printf("\nNOTE: ERROR: Mistake in representing the
      final answer in textbook solution")
```

Scilab code Exa 35.3 Ratio of CTs on high voltage side

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART III : SWITCHGEAR AND PROTECTION
// CHAPTER 9: PROTECTION OF TRANSFORMERS
// EXAMPLE : 9.3 :
// Page number 636
clear ; clc ; close ; // Clear the work space and console
// Given data
// Given data
// LV side voltage of
```

```
transformer (V)
15 \quad V_hv = 66.0*10**3
                            // HV side voltage of
      transformer (V)
16 \text{ ratio}_{CT} = 250.0/5
                            // CT ratio on LV side of
      transformer
17
18 // Calculations
                                       // HV side phase
19 V_hv_phase = V_hv/3**0.5
      voltage (V)
20 ratio_main_T = V_hv_phase/V_lv
                                        // Ratio of main
      transformer
21 \quad I_2 = 250.0
                                        // Primary CT
22 I_1 = I_2/(ratio_main_T*3**0.5)
                                        // Primary line
      current (A)
23 CT_sec = 5.0
                                        // Secondary CT
                                        // HV side CT
24 secondary_side = CT_sec/3**0.5
      secondary
25
26 // Results
27 disp("PART III - EXAMPLE : 9.3 : SOLUTION :-")
28 printf("\nRatio of CTs on high voltage side = \%.1 \,\mathrm{f}:
      \%.1 f = (\%. f/\%.2 f 3) : (\%. f/3) ", I_1,
      secondary_side, I_2, ratio_main_T, CT_sec)
```

Scilab code Exa 35.4 Ratio of protective CTs

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 9: PROTECTION OF TRANSFORMERS
8
9  // EXAMPLE : 9.4 :
```

```
10 // Page number 636
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V_hv = 33.0
                          // HV side voltage of
      transformer (kV)
15 V_lv = 6.6
                          // LV side voltage of
      transformer (kV)
16 \text{ ratio}_{CT} = 100.0/1
                         // CT ratio on LV side of
      transformer
17
18 // Calculations
                                // Primary CT
19 \text{ CT_pri} = 100.0
                                // Secondary CT
20 \text{ CT\_sec} = 1.0
21 I_hv = V_lv/V_hv*CT_pri // Line current on HV
      side (A)
22 I_lv = CT_sec/3**0.5 // Line current on LV
      side (A)
23
24 // Results
25 disp("PART III - EXAMPLE : 9.4 : SOLUTION :-")
26 printf("\nRatio of protective CTs on 33 kV side = %.
      f : \%. f / 3 = \%. f : \%. f ", I_hv,CT_sec,3**0.5*
      I_hv, I_1v*3**0.5
```

Scilab code Exa 35.5 CT ratios on high voltage side

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART III : SWITCHGEAR AND PROTECTION
7  // CHAPTER 9: PROTECTION OF TRANSFORMERS
```

```
9 // EXAMPLE : 9.5 :
10 // Page number 636-637
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ kVA} = 200.0
                         // Transformer rating (kVA)
15 E_1 = 11000.0
                         // HV side voltage of
      transformer (kV)
16 E_2 = 400.0
                         // LV side voltage of
      transformer (kV)
17
  ratio_CT = 500.0/5
                         // CT ratio on LV side of
      transformer
18 I_f = 750.0
                         // Fault current(A)
19
20 // Calculations
21 I_2 = 500.0
                                   // Primary CT
22 I_1 = 5.0
                                   // Secondary CT
I_1_T = E_2*I_2/(3**0.5*E_1)
                                   // Primary current in
      transformer (A)
24 I_hv_T = I_1_T*3**0.5
                                   // Equivalent line
      current on HV side (A)
  I_pilot_lv = I_1*3**0.5
                                   // Pilot current on LV
       side (A)
26
27 // Results
28 disp("PART III - EXAMPLE : 9.5 : SOLUTION :-")
29 printf("\nCT ratios on high voltage side = \%.2 \, \mathrm{f} : \%
      .2 f \ n", I_hv_T,I_pilot_lv)
30 printf("\nNOTE: Circulating current is not
      calculated")
```

Scilab code Exa 35.6 Suitable CT ratios

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 9: PROTECTION OF TRANSFORMERS
8
9 // EXAMPLE : 9.6 :
10 // Page number 640
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ MVA} = 50.0
                      // Transformer rating (MVA)
15 \ V_hv = 132.0
                    // HV side voltage of transformer (
     kV)
16 \ V_1v = 33.0
                     // LV side voltage of transformer (
     kV)
17 CT_sec = 1.0 // Secondary CT rating
18
19 // Calculations
20 I_FL = MVA*1000/(3**0.5*V_lv)
     // Full-load current (A)
21 \text{ CT\_ratio\_33kV} = I\_FL/CT\_sec
     // CT ratio on 33 kV side
22 \text{ CT_ratio}_{132kV} = (I_FL*V_lv/V_hv)/(CT_sec/3**0.5)
      // CT ratio on 132 kV side
23
24 // Results
25 disp("PART III - EXAMPLE: 9.6: SOLUTION:-")
26 printf("\nCT ratio on 33 kV side = \%.f : 1 ",
      CT_ratio_33kV)
27 printf ("\nCT ratio on 132 kV side = \%. f : 1 = \%.
       f \ 3 \ : \ 1 ", CT_ratio_132kV, CT_ratio_132kV
      /3**0.5)
```

Chapter 36

PROTECTION OF TRANSMISSION LINE SHUNT INDUCTORS AND CAPACITORS

 ${\it Scilab\ code\ Exa\ 36.1}$ First Second and Third zone relay setting Without infeed and

```
// G2 is fed at 70%
14 \text{ G2_per} = 70.0
      distance from A in section AB(%)
15 \quad X_T = 10.0
                                  // Transformer reactance (
      %)
16 \text{ zone\_1\_per} = 80.0
                                  // Setting for first zone
      (\%)
                                  // Setting for second
17 \text{ zone}_2\text{-per} = 50.0
      zone (%)
                                  // CT ratio
18 \text{ CT_ratio} = 400.0/5
                                // PT ratio
19 PT_ratio = 166000.0/110
20 Z_AB = complex (20.0,60.0) // Section AB impedance (
      ohm)
21 Z_BC = complex(10.0,25.0) // Section BC impedance(
      ohm)
22 \text{ MVA} = 10.0
                                  // Transformer rating (MVA)
                                  // HV side voltage (kV)
23 \text{ kV_hv} = 166.0
                                  // LV side voltage(kV)
24 \text{ kV_lv} = 33.0
25
26 // Calculations
27 // Case(i) Without infeed
28 Z_sec_1 = zone_1_per/100*Z_AB*CT_ratio/PT_ratio
                        // First zone setting (ohm)
29 \quad Z_BC_hv = Z_BC*(kV_hv/kV_lv)**2
                                           // Z<sub>BC</sub> on 166 kV
       base (ohm)
30 \quad Z_T = \%i*10*X_T*kV_hv**2/(MVA*1000)
                                      // Transformer
      impedance (ohm)
31 \text{ Z_sec_2} = (Z_AB+zone_2_per/100*Z_BC_hv+Z_T)*CT_ratio
      /PT_ratio // Second zone setting (ohm)
32 \text{ Z_sec_3} = (Z_AB+Z_BC_hv+Z_T)*CT_ratio/PT_ratio
                          // Third zone setting (ohm)
33 // Case(ii) With infeed
34 I_AB = 2.0
      // Current ratio
35 \text{ Z_zone_1} = (G2_per/100*Z_AB)+I_AB*(zone_1_per-G2_per)
```

```
)/100*Z_AB
      // First zone impedance(ohm)
36 Z_1 = Z_zone_1*CT_ratio/PT_ratio
      // First zone setting (ohm)
37 \text{ Z_zone_2} = (G2_per/100*Z_AB)+I_AB*(((zone_1_per-
      zone_2_per)/100*Z_AB)+(zone_2_per/100*Z_BC_hv)+
      Z_T) // Second zone impedance (ohm)
38 Z_2 = Z_zone_2*CT_ratio/PT_ratio
      // Second zone setting (ohm)
39 under_reach = Z_zone_2-(Z_AB+zone_2_per/100*Z_BC_hv+
      Z_T)
      // Under-reach due to infeed (ohm)
40 \text{ Z_zone_3} = (G2_per/100*Z_AB)+I_AB*(((zone_1_per-
      zone_2per)/100*Z_AB)+Z_BC_hv+Z_T)
                          // Third zone impedance (ohm)
41 Z_3 = Z_zone_3*CT_ratio/PT_ratio
      // Third zone setting (ohm)
42
43 // Results
44 disp("PART III - EXAMPLE : 10.1 : SOLUTION :-")
45 printf("\nCase(i) Without infeed:")
                        First zone relay setting = (\%.2 \,\mathrm{f}
46 printf ("\n
      +\%.2 \,\mathrm{fj}) ohm", real(Z_sec_1), imag(Z_sec_1))
47 printf ("\n
                        Second zone relay setting = (\%.1 \,\mathrm{f}
       +\%.1 \,\mathrm{fj}) ohm", real(Z_sec_2), imag(Z_sec_2))
48 printf("\n
                        Third zone relay setting = (\%.1 f)
      +\%.1 fj) ohm", real(Z_sec_3), imag(Z_sec_3))
49 printf("\nCase(ii) With infeed:")
50 printf("\n
                       First zone relay setting = (\%.3 \, \text{f})
      + \%.2 \, fj) ohm", real(Z_1), imag(Z_1))
51 printf("\n
                        Second zone relay setting = (\%.1 \,\mathrm{f}
       + \%.1 \, fj) \, ohm", \, real(Z_2), imag(Z_2))
52 printf ("\n
                        Third zone relay setting = (\%.1 \,\mathrm{f}
      +\%. fj) ohm\n", real(Z_3), imag(Z_3))
53 printf("\nNOTE: ERROR: Calculation mistake in Z_BC.
```

Hence, changes in the obtained answer from that of textbook")

Scilab code Exa 36.2 Impedance seen by relay and Relay setting for high speed back

```
// A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART III : SWITCHGEAR AND PROTECTION
  // CHAPTER 10: PROTECTION OF TRANSMISSION LINE,
     SHUNT INDUCTORS AND CAPACITORS
9 // EXAMPLE : 10.2 :
10 // Page number 648
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ CT\_ratio} = 300.0/5
                                 // CT ratio
                                // PT ratio
15 PT_ratio = 166000.0/110
16 Z_AB = complex(40.0, 160.0) // Section AB impedance(
     ohm)
17 Z_BC = complex(7.5, 15.0) // Section BC impedance(
     ohm)
                                 // HV side voltage(kV)
18 \text{ kV_hv} = 166.0
19 \text{ kV_lv} = 33.0
                                 // LV side voltage(kV)
20 \text{ MVA} = 5.0
                                 // Transformer rating (
     MVA)
21 X_T = 6.04
                                 // Transformer reactance
      (\%)
22
23 // Calculations
24 \ Z_T = \%i*10*X_T*kV_hv**2/(MVA*1000) // Tranformer
```

```
impedance (ohm)
                                             // Fault
25 Z_fault = Z_AB+Z_T
      impedance (ohm)
                                             // Relay
26 Z_sec = Z_fault*CT_ratio/PT_ratio
      setting for primary protection (ohm)
  Z_BC_hv = Z_BC*(kV_hv/kV_lv)**2
                                             // Z<sub>BC</sub> on 166
27
      kV base (ohm)
28 \quad Z = Z_AB + Z_T + Z_BC_hv
                                             // For backup
      protection of line BC(ohm)
                                            // Relay
  Z_sec_set = Z*CT_ratio/PT_ratio
      setting (ohm)
30
31 // Results
32 disp("PART III - EXAMPLE : 10.2 : SOLUTION :-")
33 printf("\nImpedance seen by relay = (\%. f + \%. fj) ohm
      ", real(Z_fault), imag(Z_fault))
34 printf("\nRelay setting for high speed & backup
      protection = (\%.1 f + \%.2 fj) ohm", real(Z_sec_set)
      ,imag(Z_sec_set))
```

Chapter 39

INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS

Scilab code Exa 39.1 Total annual cost of group drive and Individual drive

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
8
9 // EXAMPLE : 1.1 :
10 // Page number 676
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 capital_cost_group = 8000.0 // Capital cost of
      group drive (Rs)
```

```
// Number of
15 \text{ n\_single} = 5.0
      individual drive
16 capital_cost_single = 2500.0
                                        // Capital cost of
       individual drive (Rs)
17 \text{ energy\_cons\_group} = 40000.0
                                        // Annual energy
      consumption of group drive (kWh)
  energy_cons_single = 30000.0
18
                                        // Annual energy
      consumption of group drive (kWh)
19 \text{ cost\_energy} = 8.0/100
                                        // Cost of energy
      per kWh(Rs)
20 \text{ dmo\_group} = 12.0
                                        // Depreciation,
      maintenance & other fixed charges for group drive
21 \text{ dmo\_single} = 18.0
                                        // Depreciation,
      maintenance & other fixed charges for individual
      drive (%)
22
23 // Calculations
24 // Case (a)
25 annual_cost_energy_a = energy_cons_group*cost_energy
         // Annual cost of energy (Rs)
26 dmo_cost_a = capital_cost_group*dmo_group/100
               // Depreciation, maintenance & other
      fixed charges per year for group drive (Rs)
27 yearly_cost_a = annual_cost_energy_a+dmo_cost_a
             // Total yearly cost (Rs)
28 // Case (b)
29 total_cost = capital_cost_single*n_single
                    // Capital cost of individual drive (
      Rs)
30 annual_cost_energy_b = energy_cons_single*
      cost_energy // Annual cost of energy(Rs)
31 dmo_cost_b = total_cost*dmo_single/100
                       // Depreciation, maintenance &
      other fixed charges per year for individual drive
      (Rs)
32 yearly_cost_b = annual_cost_energy_b+dmo_cost_b
             // Total yearly cost (Rs)
```

Scilab code Exa 39.2 Starting torque in terms of full load torque with star delta

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.2 :
10 // Page number 680
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 I_sc = 6.0
               // Short circuit current = 6 times
     full load current
15 	 s_fl = 5.0
              // Full load slip(%)
16 tap = 60.0 // Auto-transformer tapping (%)
17
18 // Calculations
19 // Case (a)
20 I_s_fl_a = I_sc/3.0
                                       // I_s/I_fl
21 T_s_fl_a = I_s_fl_a**2*s_fl/100 // Starting
     torque in terms of full-load torque with star-
```

```
delta starter
22 // Case (b)
23 I_s_fl_b = tap/100*I_sc
                                        // I_s/I_fl
24 T_s_fl_b = I_s_fl_b**2*s_fl/100
                                        // Starting
     torque in terms of full-load torque with auto-
      transformer starter
25
26 // Results
27 disp("PART IV - EXAMPLE : 1.2 : SOLUTION :-")
28 printf("\nCase(a): Starting torque in terms of full-
     load torque with star-delta starter, I_s/I_fl = \%
     .1f ", T_s_fl_a)
29 printf("\nCase(b): Starting torque in terms of full-
     load torque with auto-transformer starter, I_s/
     I_-fl_-=\%.3\,f_- ", T_s_fl_b)
```

 ${f Scilab\ code\ Exa\ 39.3}$ Tapping to be provided on an auto transformer Starting torque

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.3 :
10 // \text{Page number } 680-681
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \quad V = 400.0
                 // IM voltage (V)
15 s_fl = 5.0 // Full-load slip (%)
```

```
16 I_f1 = 20.0
                  // Full load current drawn from supply
      by IM(A)
17 Z = 2.5
                  // Impedance per phase (ohm)
                 // Maximum current drawn(A)
18 I_{max} = 50.0
19
20 // Calculations
21 \ V_{phase} = V/3**0.5
                                          // Normal phase
       voltage (V)
22 P = (100**2*I_max*Z/V_phase)**0.5
                                          // Tapping to
     be provided to auto-transformer (%)
23 I_s = I_max/(P/100)
                                           // Starting
      current taken by motor(A)
24 \text{ T_s_fl} = (I_s/I_fl)**2*s_fl/100
                                          // Starting
      torque in terms of full-load torque
25 \text{ T_s_fl_R} = (I_max/I_fl)**2*s_fl/100
                                         // Starting
      torque in terms of full-load torque when a
      resistor is used
26
27 // Results
28 disp("PART IV - EXAMPLE : 1.3 : SOLUTION :-")
29 printf("\nTapping to be provided on an auto-
      transformer, P = \%.1f percent", P)
30 printf("\nStarting torque in terms of full-load
      torque, T_s = \%.3 f * T_fl ", T_s_fl)
31 printf("\nStarting torque in terms of full-load
      torque if a resistor were used in series, T_s = \%
      .4 f*T_fl ", T_s_fl_R)
```

Scilab code Exa 39.4 Starting torque and Starting current if motor started by Dire

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
```

```
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
      MOTORS
8
9 // EXAMPLE : 1.4 :
10 // Page number 681-682
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ hp} = 30.0
                    // Power of cage IM(hp)
15 V = 500.0
                    // Cage IM voltage(V)
                   // Number of poles
16 P = 4.0
                   // Frequency (Hz)
17 f = 50.0
                    // Full load current(A)
18 I_f1 = 33.0
                    // Slip
19 s = 4.0/100
20 \ Z = 3.5
                    // Impedance per phase (ohm)
                   // Auto-transformer tap setting (%)
21 \text{ tap} = 60.0
22
23 // Calculations
24 // Case (1)
25 I_s_1 = 3**0.5*(V/Z)
                                                    //
      Starting current taken from line (A)
26 \text{ N_s} = 120*f/P
                                                    // Speed (
      rpm)
27 \text{ N_fl} = \text{N_s-N_s*s}
                                                    // Full
      load speed of motor(rpm)
28 \text{ T_fl} = \text{hp*746*60/(2*\%pi*N_fl)}
                                                    // Full
      load torque (N-m)
29 T_s_1 = (I_s_1/I_f1)**2*s*T_f1
      Starting torque (N-m)
30 // Case(2)
31 \text{ V_ph} = \text{V/3**0.5}
                                                    // Phase
      voltage in star (V)
  I_s_2 = V_ph/Z
      Starting current (A/phase)
33 T_s_2 = (I_s_2/(I_f1/3**0.5))**2*s*T_f1
      Starting torque (N-m)
```

```
34 // Case(3)
35 \text{ V_ph_at} = \text{V*tap/(3**0.5*100)}
                                                 // Phase
      voltage of auto-transformer secondary (V)
36 \text{ V_impressed} = \text{V_ph_at*3**0.5}
      Volatage impressed on delta-connected stator (V)
37 I_s_3 = V_impressed/Z
      Starting current (A/phase)
                                                 // Motor
38 I_s_{line} = 3**0.5*I_s_3
      starting line current from auto-transformer
      secondary (A)
39 I_s_line_3 = tap/100*I_s_line
                                                 //
      Starting current taken from supply (A)
40 \text{ T_s_3} = (I_s_3/(I_f1/3**0.5))**2*s*T_f1
                                                 //
      Starting torque (N-m)
41 // Case (4)
42 I_s_4 = 3**0.5*V/Z
                                                 //
      Starting current from line (A)
43 T_s_4 = T_fl*s*(I_s_4/I_fl)**2
      Starting torque (N-m)
44
45 // Results
46 disp("PART IV - EXAMPLE : 1.4 : SOLUTION :-")
47 printf("\nCase(1): Starting torque for direct
      switching, T_s = \%. f N-m", T_s_1
48 printf ("\n
                       Starting current taken from
      supply line for direct switching, I_s = \% f A,
      I_s_1)
49 printf("\nCase(2): Starting torque for star-delta
      starting, T_s = \%. f N-m", T_s_2
50 printf("\n
                       Starting current taken from
      supply line for star-delta starting, I_s = \%.1 f A
       per phase", I_s_2)
51 printf("\nCase(3): Starting torque for auto-
      transformer starting, T_s = \% f N-m", T_s_3
                       Starting current taken from
52 printf ("\n
      supply line for auto-transformer starting, I_{-s} =
     \%. f A", I_s_line_3)
53 printf("\nCase(4): Starting torque for series-
```

Scilab code Exa 39.5 Motor current per phase Current from the supply Starting toro

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.5 :
10 // Page number 682
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 \ V = 400.0
                 // IM voltage (V)
                // Frequency (Hz)
15 f = 50.0
                 // Full voltage starting current in
16 I_s = 5.0
     terms of full load current
              // Full voltage starting torque in
17 T_s = 2.0
     terms of full load torque
18 tap = 65.0 // Auto-tranformer tapping (%)
19
20 // Calculations
21 V_{ph} = V/3**0.5
                                 // Phase voltage(V)
22 V_ph_motor = tap/100*V_ph // Motor phase voltage
```

```
when auto-transformer is used (V)
23 I_ph_motor = tap/100*I_s
                                   // Motor phase current
       in terms of full load current
24 I_1 = tap/100*I_ph_motor
                                  // Line current from
      supply in terms of full load current
25 T = (tap/100)**2*T_s
                                   // Starting torque in
     terms of full load current
V_{applied} = V_{ph}/2**0.5
                                   // Voltage to be
      applied to develop full-load torque(V)
  I_line = V_applied/V_ph*I_s
                                  // Line current in
      terms of full load current
28
29 // Results
30 disp("PART IV - EXAMPLE : 1.5 : SOLUTION :-")
31 printf(" \setminus nCase(i)):
                         Motor current per phase = \%.2 f*
      I_-fl ", I_-ph_-motor)
32 printf("\nCase(ii):
                         Current from the supply, I_{-1} =
     \%.2 f * I_-fl ", I_1)
33 printf("\nCase(iii): Starting torque with auto-
      transformer starter, T = \%.3 \, f * T_fl ", T)
34 printf("\nVoltage to be applied if motor has to
      develop full-load torque at starting, V = \% f V",
       V_applied)
35 printf("\nLine current from the supply to develop
      full-load torque at starting = \%.2 \, f * I_-fl",
      I_line)
```

Scilab code Exa 39.6 Ratio of starting current to full load current

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART IV : UTILIZATION AND TRACTION
```

```
7 // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
8
9 // EXAMPLE : 1.6 :
10 // Page number 682
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                  // IM rating (hp)
14 \text{ hp} = 10.0
15 \quad V = 400.0
                  // IM voltage(V)
16 \text{ pf} = 0.8
                  // Lagging power factor
                  // Efficiency of IM
17 n = 0.9
18 I_sc = 7.2
                  // Short-circuit current at 160V(A)
                  // Voltage at short-circuit (V)
19 \ V_sc = 160.0
20
21 // Calculations
22 I_fl = hp*746/(3**0.5*V*pf*n)
                                   // Full-load line
      current (A)
23 \quad I_sc_fv = V/V_sc*I_sc
                                     // Short-circuit
     current at full voltage (A)
24 I_s = I_sc_fv/3.0
                                     // Starting current
      with star-delta starter (A)
  I_s_fl = I_s/I_fl
                                     // Ratio of starting
       current to full load current
26
27 // Results
28 disp("PART IV - EXAMPLE : 1.6 : SOLUTION :-")
29 printf("\nRatio of starting current to full-load
      current, I_s/I_fl = \%.1f \n, I_s_fl
30 printf("\nNOTE: ERROR: Calculation mistake in final
      answer in textbook solution")
```

Scilab code Exa 39.7 Resistance to be placed in series with shunt field

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.7 :
10 // Page number 685-686
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                  // Voltage of DC shunt motor(V)
14 \quad V = 230.0
15 N_1 = 1000.0 // No load speed(rpm)
                  // Shunt resistance (ohm)
16 R_sh = 40.0
17 N_2 = 1200.0
                // Speed with series resistance (rpm)
18
19 // Calculations
20 \text{ phi}_2 = N_1/N_2
                          // Flux_2 in terms flux_1
21 I_N1 = V/R_sh
                          // Exciting current at 1000
     rpm(A)
22 \text{ phi}_1 = 11.9
                          // Flux corresponding to I<sub>N</sub>1
     (mWb)
23 phi_N2 = phi_1*phi_2 // Flux at 1200 rpm (mWb)
24 I_{phi}N2 = 3.25
                           // Exciting current
      corresponding to phi_N2(A)
25 R = V/I_phi_N2
                          // Resistance in field
     circuit (ohm)
26 R_{extra} = R-R_{sh}
                          // Resistance to be placed in
       series with shunt field (ohm)
27
28 // Results
29 disp("PART IV - EXAMPLE : 1.7 : SOLUTION :-")
30 printf("\nResistance to be placed in series with
      shunt field = \%.1 f ohm", R_extra)
```

Scilab code Exa 39.9 Speed and Current when field winding is shunted by a diverter

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.9 :
10 // Page number 686-687
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 I_f1 = 25.0
                  // Current without diverter (A)
15 N_1 = 500.0
                  // Speed of dc series motor without
      diverter (rpm)
16
17 // Calculations
18 I_a2 = ((3.0/2)**0.5*I_f1**2*3/2)**0.5 // Field
     current with diverter (A)
                                             // Speed
19 N_2 = I_f1*N_1*3/(2*I_a2)
     with diverter (rpm)
20
21 // Results
22 disp("PART IV - EXAMPLE : 1.9 : SOLUTION :-")
23 printf("\nSpeed when field winding is shunted by a
      diverter, N_2 = \%. f rpm", N_2)
24 printf("\nCurrent when field winding is shunted by a
      diverter, I_a2 = \%.1 f A, I_a2)
```

Scilab code Exa 39.10 Additional resistance to be inserted in the field circuit to

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
 3 // DHANPAT RAI & Co.
 4 // SECOND EDITION
 6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
      MOTORS
 9 // EXAMPLE : 1.10 :
10 // Page number 687
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V = 220.0
                    // DC shunt motor voltage(V)
                   // Armature current at 800rpm(A)
15 I_a1 = 50.0
16 N<sub>1</sub> = 800.0 // Speed of dc shunt motor(rpm)
17 N<sub>2</sub> = 1000.0 // Speed of dc shunt motor with
      additional resistance (rpm)
18 I_a2 = 75.0
                     // Armature current with additional
      resistance (A)
                     // Armature resistance (ohm)
19 R_a = 0.15
20 R_f = 250.0
                 // Field resistance (ohm)
21
22 // Calculations
23 \quad E_b1 = V-R_a*I_a1
                                          // Back emf at 800
       rpm(V)
                                          // Shunt field
24 I_f1 = V/R_f
      current (A)
25 \quad E_b2 = V-R_a*I_a2
                                          // Back emf at
      1000 \operatorname{rpm}(V)
```

```
// Shunt field
26 I_f2 = E_b2*N_1*I_f1/(E_b1*N_2)
      current at 1000 \text{ rpm}(A)
27 R_f2 = V/I_f2
                                       // Field
      resistance at 1000 rpm(ohm)
28 R_add = R_f2-R_f
                                       // Additional
      resistance required (ohm)
29
30 // Results
31 disp("PART IV - EXAMPLE : 1.10 : SOLUTION :-")
32 printf("\nAdditional resistance to be inserted in
      the field circuit to raise the speed = \%.1 \text{ f ohm}
      ", R_add)
33 printf("\nNOTE: ERROR: Calculation mistake in E_b2
      in the textbook solution")
```

 ${f Scilab\ code\ Exa\ 39.11}$ Speed of motor with a diverter connected in parallel with se

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.11 :
10 // Page number 687
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 V = 220.0
                   // DC series motor voltage(V)
                 // Armature current at 800rpm(A)
15 I_1 = 20.0
16 N_1 = 800.0
                   // Speed of dc series motor(rpm)
```

```
17 R_{div} = 0.4
                     // Diverter resistance (ohm)
                     // Armature resistance (ohm)
18 R_a = 0.5
19 R_f = 0.2
                     // Series field resistance (ohm)
20
21 // Calculations
22 E_b1 = V-(R_a+R_f)*I_1
                                       // Back emf at 800
      rpm(V)
                                       // Series field
I_2 = I_1*R_div/(R_div+R_f)
      current at new speed (A)
24 E_b2 = V-(R_a*I_1+R_f*I_2)
                                       // Back emf at new
      speed (V)
25 \text{ N}_2 = \text{I}_1 * \text{N}_1 * \text{E}_b 2 / (\text{I}_2 * \text{E}_b 1) // New speed with
      diverter (rpm)
26
27 // Results
28 disp("PART IV - EXAMPLE : 1.11 : SOLUTION :-")
29 printf("\nSpeed of motor with a diverter connected
      in parallel with series field, N_{-}2 = \%. f rpm",
      N_2
```

Scilab code Exa 39.12 Diverter resistance as a percentage of field resistance

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION

// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS

// EXAMPLE : 1.12 :
// Page number 687-688

clear ; clc ; close ; // Clear the work space and console
```

```
12
13 // Given data
14 speed_per = 15.0 // Motor speed increased by (\%)
15
16 // Calculations
17 N_2 = (100+speed_per)/100 // New speed N_2(rpm
18 \text{ phi}_2 = 1/N_2*100
                                    // Flux_2 in terms
    of full load flux
19 I_sc1 = 0.75
                                    // New series field
      current in terms of I_a1
20 I_a2 = N_2
                                    // Armature current
     in terms of I_a1
21 R_d = I_sc1/(I_a2-I_sc1)*100 // Diverter
      resistance in terms of series field resistance (%)
22
23 // Results
24 disp("PART IV - EXAMPLE : 1.12 : SOLUTION :-")
25 printf("\nDiverter resistance, R_{-}d = \%.1f percent of
       field resistance", R_d)
```

 ${
m Scilab\ code\ Exa\ 39.13}$ Additional resistance to be placed in the armature circuit

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS
8
9 // EXAMPLE : 1.13 :
10 // Page number 689
11 clear ; clc ; close ; // Clear the work space and
```

```
console
12
13 // Given data
14 V = 250.0
                  // Voltage of DC shunt motor(V)
                  // No load speed(rpm)
15 N_1 = 400.0
16 R_a = 0.5
                  // Armature resistance (ohm)
17 N_2 = 200.0
                  // Speed with additional resistance (
     rpm)
18 I_a = 20.0
                  // Armature current (A)
19
20 // Calculations
21 \text{ k_phi} = (V-I_a*R_a)/N_1 // k
                             // Resistance (ohm)
22 R = (V-k_phi*N_2)/I_a
                              // Additional resistance
23 R_add = R-R_a
     to be placed in armature circuit (ohm)
24
25 // Results
26 disp("PART IV - EXAMPLE : 1.13 : SOLUTION :-")
27 printf("\nResistance to be placed in the armature
      circuit = \%. f ohm\n", R_add)
28 printf("\nNOTE: ERROR: The given data doesnt match
     with example 1.7 as mentioned in problem
     statement")
```

Scilab code Exa 39.14 Resistance to be connected in series with armature to reduce

```
9 // EXAMPLE : 1.14 :
10 // Page number 689
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 \quad V = 400.0
                   // Voltage of DC shunt motor(V)
15 \text{ hp} = 20.0
                   // Power of DC shunt motor(hp)
                  // Current drawn by motor(A)
16 I = 44.0
                  // Speed (rpm)
17 N_1 = 1000.0
18 N_2 = 800.0
                   // Speed with additional resistance (
     rpm)
19 R_{sh} = 200.0 // Shunt field resistance (ohm)
20
21 // Calculations
22 output = hp*746
                               // Motor output (W)
23 I_f1 = V/R_sh
                              // Shunt field current(A)
                             // Armature current (A)
24 I_a1 = I-I_f1
                             // Back emf(V)
25 E_b1 = output/I_a1
26 R_a = (V-E_b1)/I_a1
                              // Armature resistance (
     ohm)
27 I_a2 = I_a1*(N_2/N_1)**2 // Armature current at N2
     (A)
28 \quad E_b2 = N_2/N_1*E_b1
                              // Back emf at N2(V)
                            // Resistance connected
29 r = ((V-E_b2)/I_a2)-R_a
     in series with armature (ohm)
30
31 // Results
32 disp("PART IV - EXAMPLE : 1.14 : SOLUTION :-")
33 printf("\nResistance to be connected in series with
     armature to reduce speed, r = \%.2 f ohm", r)
```

Scilab code Exa 39.15 Ohmic value of resistor connected in the armature circuit

1 // A Texbook on POWER SYSTEM ENGINEERING

```
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
8
  // EXAMPLE : 1.15 :
10 // Page number 690
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ hp} = 15.0
                      // Power of DC shunt motor(hp)
                      // Voltage of DC shunt motor(V)
15 \quad V = 400.0
16 N_reduce = 20.0 // Speed is to be reduced by (\%)
17 I_f = 3.0
                      // Field current(A)
                      // Armature resistance (ohm)
18 R_a = 0.5
19 n = 0.85
                      // Efficiency of motor
20
21 // Calculations
22 \text{ motor_input} = \text{hp}*746/\text{n}
                                     // Motor input (W)
                                     // Motor current(A)
23 I = motor_input/V
24 I_a1 = I-I_f
                                     // Armature current (
     A)
  I_a2 = I_a1
                                     // Armature current
      at new speed (A)
26 \quad E_b1 = V-I_a1*R_a
                                     // Back emf(V)
27 	 E_b2 = E_b1*(100-N_reduce)/100
                                    // Back emf at new
      speed (V)
28 r = ((V-E_b2)/I_a2)-R_a
                                     // Ohmic value of
      resistor connected in the armature circuit (ohm)
29
30 // Results
31 disp("PART IV - EXAMPLE : 1.15 : SOLUTION :-")
32 printf("\nOhmic value of resistor connected in the
      armature circuit, r = \%.2 f ohm", r)
```

Scilab code Exa 39.16 External resistance per phase added in rotor circuit to redu

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.16 :
10 // Page number 697-698
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 p = 6.0
                      // Number of poles
15 f = 50.0
                     // Frequency (Hz)
                     // Rotor resistance per phase(ohm)
16 R_2 = 0.3
                     // Rotor speed (rpm)
17 N_1 = 960.0
18 N_2 = 800.0
                     // New rotor speed with external
      resistance (rpm)
19
20 // Calculations
                         // Synchronous speed(rpm)
// Slip at full load
21 N_s = 120*f/p
22 S_1 = (N_s-N_1)/N_s
                       // New slip
23 S_2 = (N_s-N_2)/N_s
24 R = (S_2/S_1*R_2)-R_2 // External resistance per
     phase added in rotor circuit to reduce speed (ohm)
25
26 // Results
27 disp("PART IV - EXAMPLE : 1.16 : SOLUTION :-")
28 printf("\nExternal resistance per phase added in
```

Scilab code Exa 39.17 Braking torque and Torque when motor speed has fallen

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.17 :
10 // Page number 699
11 clear ; clc ; close ; // Clear the work space and
      console
12
13 // Given data
14 \text{ hp} = 50.0
                         // DC shunt motor rating(hp)
                        // Voltage (V)
15 \quad V = 440.0
                        // Breaking current (A)
16 I_b = 150.0
                    // Speed of motor fallen by (%)
17 \text{ N_reduce} = 40.0
                        // Armature resistance (ohm)
18 R_a = 0.1
                        // Full-load armature current (A)
19 I_a_fl = 100.0
                        // Full-load speed (rpm)
20 N_f1 = 600.0
21
22 // Calculations
23 \quad E_b = V-I_a_fl*R_a
                                          // Back emf of
     motor (V)
                                          // Voltage
24 V_a = V+E_b
      across armature when braking starts (V)
25 R_b = V_a/I_b
                                          // Resistance
      required (ohm)
                                          // Extra
26 R_{extra} = R_{b}-R_{a}
```

```
resistance required (ohm)
27 \text{ T_fl} = \text{hp*746*60/(2*\%pi*N_fl)}
                                          // Full-load
      torque (N-m)
28 T_{initial_b} = T_{fl*I_b/I_a_fl}
                                           // Initial
      breaking torque (N-m)
29 E_b2 = E_b*(100-N_reduce)/100
                                           // Back emf at
      new speed (V)
                                           // Current (A)
30 I = (V+E_b2)/R_b
31 \quad EBT = T_fl*I/I_a_fl
                                           // Torque when
      motor speed reduced by 40%(N-m)
32
33 // Results
34 disp("PART IV - EXAMPLE : 1.17 : SOLUTION :-")
35 printf("\nBraking torque = \%.1 f N-m", T_initial_b)
36 printf("\nTorque when motor speed has fallen, E.B.T
     =\%.1\,\mathrm{f} N-mn", EBT)
37 printf("\nNOTE: ERROR: Calculation mistakes in the
      textbook solution")
```

Scilab code Exa 39.18 Initial plugging torque and Torque at standstill

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART IV : UTILIZATION AND TRACTION
7  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS
8
9  // EXAMPLE : 1.18 :
10  // Page number 699-700
11 clear ; clc ; close ; // Clear the work space and console
12
```

```
13 // Given data
14 \ V = 400.0
                          // Voltage of IM(V)
                          // Number of poles
15 p = 4.0
                         // Frequency (Hz)
16 f = 50.0
                          // Power developed (hp)
17 \text{ hp} = 25.0
                          // Slip
18 S = 0.04
                          // Ratio of rotor resistance to
19 R_X_2 = 1.0/4
      standstill reactance i.e R2/X2
20
21 // Calculations
22 N_s = 120*f/p
      // Synchronous speed (rpm)
23 N_fl = N_s*(1-S)
      // Full load speed (rpm)
24 \text{ T_fl} = \text{hp*735.5*60/(2*\%pi*N_fl*9.81)}
                                                    // Full-
      load torque (kg-m)
25 S_1 = 1.0
      // Slip at standstill
26 \quad X_R_2 = 1.0/R_X_2
      // Ratio of standstill reactance to rotor
      resistance
27 \text{ T_s_fl} = \text{S_1/S*}((1+(\text{S*X_R_2})**2)/(1+(\text{S_1*X_R_2})**2))
                                  // T_standstill/T_fl
28 T_standstill = T_s_fl*T_fl
      // Standstill torque(kg-m)
29 S_{instant} = (N_s+N_fl)/N_s
      // Slip at instant of plugging
30 T_{initial} = (S_{instant/S})*((1+(S*X_R_2)**2)/(1+(S*X_R_2)**2))
      S_instant*X_R_2)**2))*T_fl // Initial plugging
      torque (kg-m)
31
```

Scilab code Exa 39.19 Value of resistance to be connected in motor circuit

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.19 :
10 // Page number 701
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 T = 312.5
                     // Load torque (N-m)
15 N = 500.0
                    // Speed limit (rpm)
                    // Total resistance of armature &
16 R_{total} = 1.0
      field (ohm)
17
18 // Calculations
19 input_load = 2*%pi*N*T/60
                                       // Input from
     load (W)
```

 ${
m Scilab\ code\ Exa\ 39.20}$ Current drawn by the motor from supply and Resistance require

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
8
9 // EXAMPLE : 1.20 :
10 // Page number 702
11 clear; clc; close; // Clear the work space and
      console
12 funcprot(0)
13
14 // Given data
15 \quad V = 500.0
                      // Shunt motor voltage (V)
16 \quad load = 400.0
                    // Hoist load (kg)
17 \text{ speed} = 2.5
                      // Hoist raised speed (m/sec)
```

```
18 n_{motor} = 0.85 // Efficiency of motor
                   // Efficiency of hoist
19 \quad n_{\text{hoist}} = 0.75
20
21 // Calculations
22 P_output = load*speed*9.81
     Power output from motor (W)
23 P_input = P_output/(n_motor*n_hoist)
     Motor input (W)
24 I = P_input/V
      Current drawn from supply (A)
25 output_G = load*speed*9.81*n_motor*n_hoist
                                                     //
     Generator output (W)
26 R = V**2/output_G
      Resistance required in the armature circuit for
      rheostatic braking (ohm)
27
28 // Results
29 disp("PART IV - EXAMPLE : 1.20 : SOLUTION :-")
30 printf ("\nCurrent drawn by the motor from supply = \%
      .1f A", I)
31 printf("\nResistance required in the armature
      circuit for rheostatic braking, R = \%. f ohm", R)
```

Scilab code Exa 39.21 One hour rating of motor

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS
// EXAMPLE : 1.21 :
```

```
10 // Page number 705
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 t = 1.0
                    // Time(hour)
                   // Motor rating (hp)
15 \text{ hp} = 15.0
                    // Time constant (hour)
16 T = 2.0
17 theta_f = 40.0 // Temperature rise ( C )
18
19 // Calculations
20 P = (1.0/(1-\exp(-t/T)))**0.5*hp // One-hour
     rating of motor(hp)
21
22 // Results
23 disp("PART IV - EXAMPLE : 1.21 : SOLUTION :-")
24 printf("\nOne-hour rating of motor, P = \%.f hp\n", P
25 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more approximation in
     the textbook solution")
```

 ${f Scilab\ code\ Exa\ 39.22}$ Final temperature rise and Thermal time constant of the motor

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART IV : UTILIZATION AND TRACTION
7  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS
8
9  // EXAMPLE : 1.22 :
10  // Page number 706
```

```
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ hp} = 10.0
                                 // Motor rating (hp)
15 d = 0.7
                                 // Diameter of cylinder (
     m)
                                 // Length of cylinder (m)
16 \ 1 = 1.0
                                 // Weight of motor(kgm)
17 w = 380.0
                                 // Specific heat (J/kg/1
18 heat_specific = 700.0
      \mathbf{C}
19 heat_dissipation = 15.0
                                 // Outer surface heat
      dissipation rate (W/sq.cm/C)
20 n = 0.88
                                 // Efficiency
21
22 // Calculations
23 output = hp*735.5
                                                 // Output
      of motor (W)
24 loss = (1-n)/n*output
                                            // Losses (W)
25 area_cooling = %pi*d*l
                                           // Cooling
      surface area (sq.m)
26 theta_m = loss/(area_cooling*heat_dissipation)
                // Final temperature rise ( C )
27 T_sec = w*heat_specific/(area_cooling*
      heat_dissipation) // Thermal time constant(sec)
28 T_hour = T_sec/3600
                                              // Thermal
      time constant (hours)
29
30 // Results
31 disp("PART IV - EXAMPLE : 1.22 : SOLUTION :-")
32 printf("\nFinal temperature rise, _{\rm m}=\%.1\,{\rm f} C",
      theta_m)
33 printf("\nThermal time constant of the motor = \%.2 \, \mathrm{f}
      hours \n", T_hour)
```

```
34 printf("\nNOTE: ERROR: Mistake in calculating thermal time constant in the textbook solution")
```

Scilab code Exa 39.23 Half hour rating of motor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
8
9 // EXAMPLE : 1.23 :
10 // Page number 706
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                     // Motor rating (hp)
14 \text{ hp} = 25.0
                     // Heating time constant (hour)
15 T = 100.0/60
                    // Temperature rise ( C )
16 \text{ theta} = 40.0
                     // Time (hour)
17 t = 0.5
                     // Motor maximum efficiency
18 n = 0.85
19
20 // Calculations
21 \text{ output = } hp*735.5/1000
                                                      //
     Output of motor (kW)
22 output_max = output*n
     Power at maximum efficiency (kW)
23 theta_f2 = theta/(1-\exp(-t/T))
       _f2 ( C )
24 loss = 1+(output/output_max)**2
                                                      //
      Losses at 18.4 kW output in terms of W
```

Scilab code Exa 39.24 Time for which the motor can run at twice the continuously r

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
8
9 // EXAMPLE : 1.24 :
10 // Page number 706
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                      // Temperature rise ( C )
14 \text{ theta}_{1} = 40.0
                        // Heating time constant (min)
15 T = 100.0
                        // Motor at twice the
16 \text{ rated}_2 = 2.0
      continuously rating
17
18 // Calculations
```

```
19 \; loss_cu = 2.0**2
                                             // Copper
     loss at twice full load in terms of W
20 loss_total = loss_cu+1
                                             // Total
     losses at full load in terms of W
21 theta_f2 = theta_f1*loss_total/rated_2
                                             // _f2 (
      \mathbf{C}
22 t = log(1-(theta_f1/theta_f2))*(-T)
                                             // Time for
       which motor can run at twice the continuously
     rated output without overheating (min)
23
24 // Results
25 disp("PART IV - EXAMPLE : 1.24 : SOLUTION :-")
26 printf("\nMotor can run at twice the continuously
     rated output without overheating for time, t = \%.
     f min", t)
```

Scilab code Exa 39.25 Maximum overload that can be carried by the motor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.25 :
10 // Page number 706-707
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
                   // Motor output (kW)
14 \text{ kW} = 20.0
15 theta_1 = 50.0 // Temperature rise not to be
```

```
exceeded on overload (C)
                     // Time on overload (hour)
16 \ t_1 = 1.0
17 theta_2 = 30.0 // Temperature rise on full-load(
      \mathbf{C}
18 t_2 = 1.0
                    // Time on full-load (hour)
19 theta_3 = 40.0 // Temperature rise on full-load(
      C )
               // Time on full-load (hour)
20 t_3 = 2.0
21
22 // Calculations
23 \text{ e_lambda} = 1.0/3
                                        // Obtained
      directly from textbook
24 \text{ theta_f} = \text{theta_2}/(1-\text{e_lambda})
                                       // <u>f</u> (C)
                                      // '_f(C')
25 \text{ theta_f1} = \text{theta_1/(1-e_lambda)}
                                       // Maximum overload
26 P = (theta_f1/theta_f)**0.5*kW
       that can be carried by the motor (kW)
27
28 // Results
29 disp("PART IV - EXAMPLE : 1.25 : SOLUTION :-")
30 printf("\nMaximum overload that can be carried by
      the motor, P = \%.1 f \text{ kW}, P)
```

Scilab code Exa 39.26 Required size of continuously rated motor

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART IV : UTILIZATION AND TRACTION
7  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS
8
9  // EXAMPLE : 1.26 :
10  // Page number 707-708
```

```
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ hp}_1 = 100.0
                        // Motor load (hp)
15 t_1 = 10.0
                        // Time of operation (min)
                        // Motor load (hp)
16 \text{ hp}_2 = 0
                        // Time of operation (min)
17 t_2 = 5.0
                       // Motor load (hp)
18 \text{ hp}_3 = 60.0
                        // Time of operation (min)
19 t_3 = 8.0
                        // Motor load(hp)
20 \quad hp_4 = 0
21 t_4 = 4.0
                        // Time of operation (min)
22
23 // Calculations
24 t_{total} = t_{1}+t_{2}+t_{3}+t_{4}
                                                         //
      Total time of operation (min)
25 \text{ rms} = ((hp_1**2*t_1+hp_2**2*t_2+hp_3**2*t_3+hp_4**2*)
      t_4)/t_total)**0.5 // rms horsepower
26
27 // Results
28 disp("PART IV - EXAMPLE : 1.26 : SOLUTION :-")
29 printf("\nRequired size of continuously rated motor
     =\%. f H.P\n", rms)
30 printf("\nNOTE: ERROR: Calculation mistake in the
      textbook")
31 printf("\n
                    Actual value is written here instead
       of standard values")
```

Scilab code Exa 39.27 Suitable size of the motor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
```

```
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
8
9 // EXAMPLE : 1.27 :
10 // Page number 708
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                     // Motor load(hp)
14 \text{ hp}_1 = 200.0
                     // Time of operation(min)
15 t_1 = 5.0
                    // Motor load (hp)
16 \text{ hp}_2 = 100.0
                     // Time of operation (min)
17 t_2 = 10.0
18 \text{ hp}_3 = 0
                     // Motor load (hp)
19 t_3 = 3.0
                    // Time of operation (min)
20
21 // Calculations
22 m = hp_1/t_1
                                                    //
      Slope of uniform rise power
23 t_{total} = t_{1}+t_{2}+t_{3}
                                          // Total time of
       operation (min)
24 ans = integrate('(m*x)**2', 'x', 0, t_1)
                      // Integarted uniform area upto 5
      min
  rms = ((ans+hp_2**2*t_2+hp_3**2*t_3)/t_total)**0.5
          // rms horsepower
26
27 // Results
28 disp("PART IV - EXAMPLE : 1.27 : SOLUTION :-")
29 printf ("\nrms horsepower = \%.1 \,\mathrm{f} HP. Therefore, a
      motor of %.f H.P should be selected", rms,rms+4)
```

 Scilab code Exa 39.28 Time taken to accelerate the motor to rated speed against fu

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.28 :
10 // Page number 710
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ V = 440.0
                  // DC shunt motor voltage(V)
                 // Motor rating (hp)
15 \text{ hp} = 50.0
16 N = 600.0
                  // Speed (rpm)
17 I = 80.0
                  // Current at full-load (A)
                  // Lower current limit in terms of
18 I_1 = 1.1
      full current
                  // Upper current limit in terms of
19 I_2 = 1.5
      full current
20 J = 20.0
                  // Moment of inertia(kg-m^2)
21
22 // Calculations
23 T = hp*746*60/(2*\%pi*N)
                            // Full load torque of
      motor (N-m)
24 \text{ T_avg\_start} = (I_1+I_2)/2*T
                                  // Average starting
     torque (N-m)
25 \text{ T_g} = ((I_1+I_2)/2-1)*T
                                  // Torque available
     for acceleration (N-m)
```

Scilab code Exa 39.29 Time taken to accelerate the motor to rated speed

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.29 :
10 // Page number 710
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
17
18 // Calculations
```

```
19 g = 9.81
20 T = hp*746*60/(2*\%pi*N*g)
                                          // Full load
      torque of motor(kg-m)
21 J = hp*energy*2*g/(2*%pi*N/60)**2
                                          // Moment of
      inertia (kg-m<sup>2</sup>)
22 alpha = T*g/J
                                          // Angular
      acceleration (rad/sec^2)
23 t = 2*\%pi*N/(60*alpha)
                                          // Time taken to
       accelerate the motor to rated speed (sec)
24
25 // Results
26 disp("PART IV - EXAMPLE : 1.29 : SOLUTION :-")
27 printf("\nTime taken to accelerate the motor to
      rated speed, t = \%.2 f \text{ sec}, t)
```

Scilab code Exa 39.30 Time taken to accelerate a fly wheel

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.30 :
10 // Page number 710
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 J = 1270.0
                 // Moment of inertia of fly-wheel(kg-
     m^2
15 N = 500.0
                 // Speed (rpm)
```

```
16 hp = 50.0 // Motor rating (hp)
17
18 // Calculations
19 g = 9.81
20 T = hp*746*60/(2*\%pi*N*g)
                                        // Full load
      torque of motor(kg-m)
21 \quad T_m = 2*T
                                        // Accelerating
      torque (kg-m)
22 \text{ alpha} = T_m * g/J
                                        // Angular
      acceleration (rad/sec^2)
23 t = 2*\%pi*N/(60*alpha)
                                        // Time taken to
      accelerate a fly-wheel (sec)
24
25 // Results
26 disp("PART IV - EXAMPLE : 1.30 : SOLUTION :-")
27 printf("\nTime taken to accelerate a fly-wheel, t =
     \%.1 f sec", t)
```

 ${
m Scilab\ code\ Exa\ 39.31}$ Time taken for dc shunt motor to fall in speed with constant

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART IV : UTILIZATION AND TRACTION
7  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC MOTORS
8
9  // EXAMPLE : 1.31 :
10  // Page number 710-711
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
```

```
14 N_1 = 1000.0
                    // Speed of dc shunt motor(rpm)
                    // Speed of dc shunt motor(rpm)
15 N_2 = 400.0
                    // Resistance connected across
16 R = 14.0
      armature (ohm)
17 E_1 = 210.0
                    // EMF induced in armature at 1000
     rpm(V)
18 J = 17.0
                   // Moment of inertia(kg-m^2)
                   // Frictional torque(kg-m)
19 T_F = 1.0
20
21 // Calculations
22 g = 9.81
                                                 // Motor
23 output = E_1**2/R
      output (W)
                                                 // Electric
24 \text{ T_E} = \text{output}*60/(2*\%\text{pi}*\text{N}_1*\text{g})
      braking torque (kg-m)
25 \text{ w_1} = 2*\%pi*N_1/60
                                                 // _1 (rad
     / sec
26 k = T_E/w_1
27 t = J/(g*k)*log(N_1/N_2)
                                                 // Time
      taken for dc shunt motor to fall in speed with
      constant excitation (sec)
28 \text{ kw} = T_E*N_2/N_1
29 \text{ t_F} = J/(g*k)*log((1+T_E)/(1+kw))
                                                 // Time for
       the same fall if frictional torque exists (sec)
30
31 // Results
32 disp("PART IV - EXAMPLE : 1.31 : SOLUTION :-")
33 printf("\nTime taken for dc shunt motor to fall in
      speed with constant excitation, t = \%.1 f \text{ sec}", t)
34 printf("\nTime for the same fall if frictional
      torque exists, t = \%.1 f sec, t_F)
```

Scilab code Exa 39.32 Time taken and Number of revolutions made to come to standst

1 // A Texbook on POWER SYSTEM ENGINEERING

```
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
8
9 // EXAMPLE : 1.32 :
10 // Page number 711
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                     // Voltage of synchronous motor(V)
14 \quad V = 400.0
                     // Number of poles
15 p = 8.0
                    // Moment of inertia(kg-m^2)
16 J = 630.0
17 \text{ T_E} = 165.0
                    // Braking torque(kg-m)
                     // Electric braking torque(kg-m)
18 \text{ kw}_1 = 690.0
                     // Frictional torque(kg-m)
19 T_F = 1.4
                     // Frequency (Hz). Assumed normal
20 	 f = 50.0
      supply frequency
21
22 // Calculations
23 \text{ g} = 9.81
24 // Case(a) Plugging
25 \quad T_B = T_E + T_F
     // Torque(kg-m)
26 \text{ beta} = T_B*g/J
     // Retardation (rad/sec^2)
27 N_s = 120*f/p
     // Synchronous speed (rad/sec)
28 \ w = 2*\%pi*N_s/60
      // (rad/sec)
```

```
29 t_a = integrate('-1.0/beta', 'w', w, 0)
                                                                                                                    // Time taken to
                  stop the motor (sec)
30 n_a = integrate('-w/(2*\%pi*beta)', 'w', w, 0)
                                                                                                 // Number of revolutions
31 // Case(b) Rheostatic braking
32 k = kw_1/w
33 t_b = J/(g*k)*log((T_F+kw_1)/T_F)
                                                                                                                                    // Time taken
                     to stop the motor(sec)
34 \text{ n_b} = 1.0/(2*\%pi*k)*(J/(g*k)*(T_F+kw_1)*(1-exp(-k*g*k))*(J/(g*k)*(T_F+kw_1)*(J-exp(-k*g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g*k))*(J/(g
                  t_b/J))-T_F*t_b) // Number of revolutions
35
36 // Results
37 disp("PART IV - EXAMPLE : 1.32 : SOLUTION :-")
38 printf("\nCase(a): Time taken to come to standstill
                  by plugging, t = \%.1 f \text{ sec}, t_a)
39 printf("\n
                                                        Number of revolutions made to
                  come to standstill by plugging, n = \%. f
                  revolutions", n_a)
40 printf("\nCase(b): Time taken to come to standstill
                  by rheostatic braking, t = \%.1 f \text{ sec}, t_b
41 printf("\n
                                                   Number of revolutions made to
                  come to standstill by rheostatic braking, n = \%. f
                     revolutions n, n_b
42 printf("\nNOTE: ERROR: Calculation mistake in
                  finding number of revolution in case(a) in
                  textbook solution")
```

Scilab code Exa 39.33 Inertia of flywheel required

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
```

```
5
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
8
9 // EXAMPLE : 1.33 :
10 // Page number 712-713
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ hp} = 500.0
                    // Rating of IM(hp)
                    // No-load speed(rpm)
15 N_n1 = 40.0
                    // Slip at full-load
16 S_fl = 0.12
                    // Load torque(kg-m)
17 \quad T_1 = 41500.0
                    // Duration of each rolling period (
18 t = 10.0
      sec)
19
20 // Calculations
21 g = 9.81
22 \text{ T_fl} = \text{hp*746*60/(2*\%pi*N_nl*g*(1-S_fl))}
      Torque at full-load (kg-m)
23 T_m = 2.0*T_f1
      Motor torque at any instant (kg-m)
24 \text{ slip} = S_fl*N_nl
                                                     // Slip
      (rpm)
  slip_rad = slip*2*%pi/60
                                                     // Slip
      (rad/sec)
26 k = slip_rad/T_fl
27 	 J = -g*t/(k*log(1-(T_m/T_l)))
                                                     //
      Inertia of flywheel (kg-m<sup>2</sup>)
28
29 // Results
30 disp("PART IV - EXAMPLE : 1.33 : SOLUTION :-")
31 printf("\nInertia of flywheel required, J = \%.3e kg-
     m^2 \ n", J)
32 printf("\nNOTE: ERROR: J = 2.93*10^6 \text{ kg-m}^2 and not
       2.93*10<sup>5</sup> as mentioned in the textbook solution"
```

)

Scilab code Exa 39.34 Moment of inertia of the flywheel

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 1: INDUSTRIAL APPLICATIONS OF ELECTRIC
     MOTORS
9 // EXAMPLE : 1.34 :
10 // Page number 713
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 T_1 = 150.0
                    // Load torque(kg-m)
                   // Duration of load torque(sec)
15 t = 15.0
                    // Motor torque(kg-m)
16 \text{ T_m} = 85.0
                    // Speed (rpm)
17 N = 500.0
                    // Full-load slip
18 \text{ s_fl} = 0.1
19
20 // Calculations
21 g = 9.81
22 \text{ slip} = N*s_fl*2*%pi/60
                                              // Slip (rad/
      sec)
23 k = slip/T_m
24 \text{ T_0} = 0
                                              // No-load
     torque (kg-m)
25 J = -g*t/(k*log((T_1-T_m)/(T_1-T_0))) // Moment of
       inertia of flywheel (kg-m^2)
26
```

```
27 // Results
28 disp("PART IV - EXAMPLE : 1.34 : SOLUTION :-")
29 printf("\nInertia of flywheel required, J = %.f kg-m ^2\n", J)
30 printf("\nNOTE: ERROR : Calculation mistake in the textbook solution")
```

Chapter 40

HEATING AND WELDING

Scilab code Exa 40.1 Diameter Length and Temperature of the wire

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 2: HEATING AND WELDING
9 // EXAMPLE : 2.1 :
10 // Page number 724-725
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
                 // Power supplied (W)
14 P = 15.0*10**3
                   // Voltage (V)
15 V = 220.0
// Radiatting efficiency
18 k = 0.6
19 e = 0.9
                   // Emissivity
20
```

```
21 // Calculations
22 \text{ rho} = 1.016/10**6
      // Specific resistance (ohm-m)
23 d_square = 4*rho*P/(%pi*V**2)
                                               // d^2 in
      terms of l
24 \quad T_1 = T_w + 273
     // Absolute temperature ( C )
25 \quad T_2 = T_c + 273
     // Absolute temperature ( C )
26 \text{ H} = 5.72*10**4*k*e*((T_1/1000)**4-(T_2/1000)**4)
                          // Heat produced (watts/sq.m)
27 	 dl = P/(\%pi*H)
28 \ 1 = (d1**2/d_square)**(1.0/3)
                                               // Length of
       wire (m)
29 d = d1/1
      // Diameter of wire (m)
30 \quad T_2 = 20.0 + 273
                                                          //
       Absolute temperature at the 20 C normal
      temperature (C)
31 \quad T_1\_cold = (H/(5.72*10**4*k*e)+(T_2\_cold/1000)**4)
      **(1.0/4)*1000 // Absolute temperature when
      charge is cold (C)
32 T_1_c = T_1_cold - 273
                                                         //
      Temperature when charge is cold (C)
33
34 // Results
35 disp("PART IV - EXAMPLE : 2.1 : SOLUTION :-")
36 printf("\nDiameter of the wire, d = \%.3 f \text{ cm}", d*100)
37 printf("\nLength of the wire, l = \%.2 f m", 1)
38 printf("\nTemperature of the wire when charge is
```

```
cold , T_1 = %.f C absolute = %.f C \n",
T_1_cold,T_1_c)
39 printf("\nNOTE: Slight changes in the obtained
    answer from that of textbook is due to more
    precision here")
```

Scilab code Exa 40.2 Width and Length of nickel chrome strip

```
// A Texbook on POWER SYSTEM ENGINEERING
  // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 2: HEATING AND WELDING
9 // EXAMPLE : 2.2 :
10 // Page number 725
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 P = 15.0*10**3
                           // Power supplied (W)
15 V = 220.0
                           // Voltage (V)
                           // Temperature of wire ( C )
16 T_w = 1000.0
17 T_c = 600.0
                           // Temperature of charges ( C
18 k = 0.6
                           // Radiatting efficiency
19 e = 0.9
                           // Emissivity
                           // Thickness of nickel-chrome
20 thick = 0.25/1000
       strip (m)
21
22 // Calculations
23 \text{ rho} = 1.016/10**6
                                            // Specific
```

```
//
      Resistance (ohm)
25 \quad l_w = R*thick/rho
                                               // Length of
      strip in terms of w
26 \quad T_1 = T_w + 273
      Absolute temperature (C)
27 \quad T_2 = T_c + 273
      Absolute temperature (C)
28 H = 5.72*10**4*k*e*((T_1/1000)**4-(T_2/1000)**4)
            // Heat produced (watts/sq.m)
29 \text{ wl} = P/(2*H)
30 \text{ w} = (\text{wl/l_w}) **0.5
                                               // Width of
      nickel-chrome strip (m)
31 \quad 1 = w*1_w
                                                        //
      Length of nickel-chrome strip (m)
32
33 // Results
34 disp("PART IV - EXAMPLE : 2.2 : SOLUTION :-")
35 printf("\nWidth of nickel-chrome strip, w = \%.3 f cm"
      , w*100)
36 printf("\nLength of nickel-chrome strip, l = \%.1 f m"
   Scilab code Exa 40.3 Power drawn under various connections
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
```

resistance (ohm-m)

24 R = V**2/P

```
4 // SECOND EDITION
5
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 2: HEATING AND WELDING
9 // EXAMPLE : 2.3 :
10 // Page number 726-727
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 R = 50.0
              // Resistance of each resistor in oven(
     ohm)
15 n = 6.0
               // Number of resistance
               // Supply voltage (V)
16 V = 400.0
               // Auto-transformer tapping (%)
17 	 tap = 50.0
18
19 // Calculations
20 // Case(a)(i)
21 P_a_i = n*V**2/R*10**-3
     Power consumption for 6 elements in parallel (kW)
22 // Case(a)(ii)
23 P_{a_i} = V**2/(R+R)*10**-3
                                                    //
     Power consumption in each group of 2 resistances
     in series (kW)
24 P_a_{ii} = n/2*P_each_a_{ii}
      Power consumption for 3 groups (kW)
25 // Case (b) (i)
26 \quad V_b_i = V/3**0.5
      Supply voltage against each resistance (V)
27 \text{ P_each_b_i} = 2*V_b_i**2/R*10**-3
                                                    //
     Power consumption in each branch (kW)
28 P_b_i = n/2*P_each_b_i
      Power consumption for 2 elements in parallel in
      each phase (kW)
29 // Case(b)(ii)
                                                    //
30 \ V_b_{ii} = V/3**0.5
      Supply voltage to any branch (V)
```

```
31 P_{each_b_{ii}} = V_{b_{ii}}**2/(R+R)*10**-3
                                                     //
      Power consumption in each branch (kW)
32 P_b_{ii} = n/2*P_each_b_{ii}
      Power consumption for 2 elements in series in
      each phase (kW)
33 // Case(c)(i)
34 \text{ P_each_c_i} = V**2/(R+R)*10**-3
                                                     //
      Power consumption by each branch (kW)
35 P_c_i = n/2*P_each_c_i
      Power consumption for 2 elements in series in
      each branch (kW)
36 // Case(c)(ii)
37 P_{each_c_{ii}} = 2*V**2/R*10**-3
                                                     //
      Power consumption by each branch (kW)
38 P_c_{ii} = n/2*P_each_c_{ii}
      Power consumption for 2 elements in parallel in
      each branch (kW)
39 // Case(d)
                                                     //
40 \ V_d = V*tap/100
      Voltage under tapping (V)
41 \text{ ratio_V} = V_d/V
      Ratio of normal voltage to tapped voltage
  loss = ratio_V**2
                                                     //
      Power loss in terms of normal power
43
44 // Results
45 disp("PART IV - EXAMPLE : 2.3 : SOLUTION :-")
46 printf("\nCase(a): AC Single phase 400 V supply")
                       Case(i): Power consumption for
47 printf("\n
      6 elements in parallel = \%.1 \, \text{f kW}, P_a_i)
48 printf("\n
                       Case (ii): Power consumption for
      3 groups in parallel with 2 element in series = \%
      .1 f kW", P_a_ii)
49 printf("\nCase(b): AC Three phase 400 V supply with
      star combination")
50 printf("\n
                       Case(i): Power consumption for
      2 elements in parallel in each phase = \%.1 f kW",
      P_b_i)
```

```
51 printf("\n
                      Case (ii): Power consumption for
     2 elements in series in each phase = \%.1 f kW",
     P_b_ii)
52 printf("\nCase(c): AC Three phase 400 V supply with
     delta combination")
53 printf("\n
                      Case(i): Power consumption for
     2 elements in series in each branch = \%.1 \, f \, kW,
     P_c_i)
54 printf("\n
                      Case (ii): Power consumption for
     2 elements in parallel in each branch = \%.1 f kW",
      P_c_ii)
55 printf("\nCase(d): Power loss will be %.2f of the
     values obtained as above with auto-transformer
     tapping", loss)
```

Scilab code Exa 40.4 Amount of energy required to melt brass

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 2: HEATING AND WELDING
9 // EXAMPLE : 2.4 :
10 // Page number 728
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                              // Weight of brass(kg)
14 \text{ w\_brass} = 1000.0
                              // Time(hour)
15 \text{ time} = 1.0
16 \text{ heat\_sp} = 0.094
                              // Specific heat
17 fusion = 40.0
                              // Latent heat of fusion (
```

```
kcal/kg)
18 T_initial = 24.0
                             // Initial temperature ( C )
19 melt_point = 920.0
                             // Melting point of brass(
      C )
20 n = 0.65
                             // Efficiency
21
22 // Calculations
23 heat_req = w_brass*heat_sp*(melt_point-T_initial)
          // Heat required to raise the temperature (
      kcal)
24 heat_mel = w_brass*fusion
                                   // Heat required for
      melting (kcal)
25 heat_total = heat_req+heat_mel
                              // Total heat required (
      kcal)
26 \text{ energy} = \text{heat\_total}*1000*4.18/(10**3*3600*n)
               // Energy input (kWh)
27 power = energy/time
                                          // Power (kW)
28
29 // Results
30 disp("PART IV - EXAMPLE : 2.4 : SOLUTION :-")
31 printf("\nAmount of energy required to melt brass =
     \%. f kWh", energy)
```

 ${
m Scilab\ code\ Exa\ 40.5}$ Height up to which the crucible should be filled to obtain ma

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 2: HEATING AND WELDING
```

```
9 // EXAMPLE : 2.5 :
10 // Page number 728-729
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                        // Secondary voltage(V)
14 \quad V_2 = 12.0
                        // Power (W)
15 P = 30.0*10**3
                        // Power factor
16 \text{ PF} = 0.5
17
18 // Calculations
19 I_2 = P/(V_2*PF)
                                  // Secondary current (A)
20 \ Z_2 = V_2/I_2
                                  // Secondary impedance (
      ohm)
21 R_2 = Z_2*PF
                                  // Secondary resistance (
      ohm)
22 \sin_{\text{phi}} = (1-PF**2)**0.5
23 \quad X_2 = Z_2 * sin_phi
                                  // Secondary reactance (
      ohm)
24 h = R_2/X_2
                                  // Height up to which
25 \text{ H}_{m} = \text{h}
      the crucible should be filled to obtain maximum
      heating effect in terms of H<sub>c</sub>
26
27 // Results
28 disp("PART IV - EXAMPLE : 2.5 : SOLUTION :-")
29 printf("\nHeight up to which the crucible should be
      filled to obtain maximum heating effect, H_m = \%
      .3 f*H_c \ \ n", H_m)
30 printf("\nNOTE: ERROR: Calculation mistake in
      textbook solution and P is 30 kW not 300 kW")
```

 ${
m Scilab\ code\ Exa\ 40.6}$ Voltage necessary for heating and Current flowing in the mate

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 2: HEATING AND WELDING
8
  // EXAMPLE : 2.6 :
10 // Page number 732
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 1 = 10.0
                     // Length of material (cm)
                     // Breadth of material(cm)
15 b = 10.0
                     // Thickness of material (cm)
16 t = 3.0
                     // Frequency (Hz)
17 f = 20.0*10**6
                     // Power absorbed (W)
18 P = 400.0
                     // Relative permittivity
19 e_r = 5.0
20 \text{ PF} = 0.05
                     // Power factor
21
22 // Calculations
                                  // Absolute
23 e_0 = 8.854*10**-12
     permittivity
24 A = 1*b*10**-4
                                  // Area (Sq.m)
25 C = e_0 * e_r * A/(t/100)
                                  // Capacitace of
      parallel plate condenser(F)
                                  // Reactance of
  X_c = 1.0/(2*\%pi*f*C)
      condenser (ohm)
27 \text{ phi} = acosd(PF)
                                        (
28 R = X_c*tand(phi)
                                  // Resistance of
      condenser (ohm)
29 V = (P*R)**0.5
                                  // Voltage necessary
      for heating (V)
30 I_c = V/X_c
                                  // Current flowing in
      the material(A)
31
```

Scilab code Exa 40.7 Voltage applied across electrodes and Current through the mat

```
1 // A Texbook on POWER SYSTEM ENGINEERING
  // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
  // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 2: HEATING AND WELDING
8
  // EXAMPLE : 2.7 :
10 // Page number 732-733
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \ 1 = 4.0
                     // Length of material (cm)
15 b = 2.0
                     // Breadth of material(cm)
                     // Thickness of material (cm)
16 t = 1.0
                     // Length of area(cm)
17 l_e = 20.0
                     // Breadth of area(cm)
18 b_e = 2.0
19 \text{ dis} = 1.6
                     // Distance of separation of
      electrode (cm)
20 	 f = 20.0*10**6
                     // Frequency (Hz)
21 P = 80.0
                     // Power absorbed (W)
```

```
// Relative permittivity
22 e_r1 = 5.0
                     // Relative permittivity of air
23 e_r2 = 1.0
24 \text{ PF} = 0.05
                     // Power factor
25
26 // Calculations
27 e_0 = 8.854*10**-12
                                            // Absolute
      permittivity
28 A_1 = (1_e-1)*b_e*10**-4
                                      // Area of one
      electrode (sq.m)
29 \quad A_2 = 1*b*10**-4
                                               // Area of
      material under electrode (sq.m)
30 d = dis*10**-2
      Distance of separation of electrode (m)
31 d_1 = t*10**-2
                                                 // (m)
32 d_2 = (d-d_1)
33 C = e_0*((A_1*e_r2/d)+(A_2/((d_1/e_r1)+(d_2/e_r2))))
        // Capacitance (F)
34 \text{ X_c} = 1.0/(2*\%pi*f*C)
                                          // Reactance (ohm
35 phi = acosd(PF)
                                                // ( )
36 R = X_c*tand(phi)
      Resistance (ohm)
37 V = (P*R)**0.5
      Voltage applied across electrodes (V)
38 I_c = V/X_c
                                                    //
      Current through the material (A)
39
```

 ${
m Scilab\ code\ Exa\ 40.8}$ Time taken to melt Power factor and Electrical efficiency of

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 2: HEATING AND WELDING
9 // EXAMPLE : 2.8 :
10 // Page number 736-737
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ weight} = 3000.0
                          // Weight of steel(kg)
                          // Current (A)
15 I = 5000.0
                          // Arc voltage(V)
16 \ V_{arc} = 60.0
17 R_t = 0.003
                          // Resistance of transformer (
     ohm)
18 X_t = 0.005
                         // Reactance of transformer (
     ohm)
                         // Specific heat of steel
19 \text{ heat\_sp} = 0.12
                       // Latent heat of steel(kilo-
20 \text{ heat\_latent} = 8.89
      cal/kg)
```

```
// Melting point of steel ( C )
21 t_2 = 1370.0
                          // Initial temperature of
22 t_1 = 18.0
      steel (C)
23 n = 0.6
                          // Overall efficiency
24
25 // Calculations
26 R_arc_phase = V_arc/I
                                                       //
      Arc resistance per phase (ohm)
27 \quad IR_t = I*R_t
      Voltage drop across resistance (V)
28 \quad IX_t = I*X_t
      Voltage drop across reactance (V)
29 V = ((V_arc+IR_t)**2+IX_t**2)**0.5
      Voltage (V)
                                                       //
30 \text{ PF} = (V_arc+IR_t)/V
      Power factor
31 heat_kg = (t_2-t_1)*heat_sp+heat_latent
                                                       //
     Amount of heat required per kg of steel (kcal)
32 heat_total = weight*heat_kg
      Heat for 3 tonnes (kcal)
33 heat_actual_kcal = heat_total/n
      Actual heat required (kcal)
34 heat_actual = heat_actual_kcal*1.162*10**-3
      Actual heat required (kWh)
35 P_{input} = 3*V*I*PF*10**-3
      Power input (kW)
36 time = heat_actual/P_input*60
      Time required (min)
37 n_elect = 3*V_arc*I/(P_input*1000)*100
      Electrical efficiency (%)
38
39 // Results
40 disp("PART IV - EXAMPLE : 2.8 : SOLUTION :-")
41 printf("\nTime taken to melt 3 metric tonnes of
      steel = \%.f minutes, time)
42 printf("\nPower factor of the furnace = \%.2 \,\mathrm{f}", PF)
43 printf("\nElectrical efficiency of the furnace = \%.f
       percent\n", n_elect)
```

44 printf("\nNOTE: ERROR: Calculation and substitution mistake in the textbook solution")

Chapter 41

ELECTROLYTIC AND ELECTRO METALLURGICAL PROCESSES

Scilab code Exa 41.1 Quantity of electricity and Time taken for the process

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART IV : UTILIZATION AND TRACTION
7  // CHAPTER 3: ELECTROLYTIC AND ELECTRO-METALLURGICAL PROCESSES
8
9  // EXAMPLE : 3.1 :
10  // Page number 747-748
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
```

```
14 \ 1 = 20.0
                  // Length of shaft (cm)
                  // Diameter of shaft (cm)
15 d = 10.0
                  // Layer of nickel (mm)
16 \text{ thick} = 1.5
                  // Current density (A/sq.m)
17 J = 195.0
                  // Current efficiency
18 n_I = 0.92
19 g = 8.9
                  // Specific gravity of nickel
20
21 // Calculations
22 \text{ Wt} = \text{\%pi*l*d*thick}/10*g*10**-3
                                             // Weight of
      nickel to be deposited (kg)
23 \text{ ece_nickel} = 1.0954
                                             // Electro-
      chemical equivalent of nickel (kg/1000 Ah)
24 Q_I = Wt*1000/(ece_nickel*n_I)
                                             // Quantity of
       electricity required (Ah)
  time = Q_I/(\%pi*l*d*10**-4*J)
                                             // Time taken (
      hours)
26
27 // Results
28 disp("PART IV - EXAMPLE : 3.1 : SOLUTION :-")
29 printf("\nQuantity of electricity = \%. f Ah", Q_I)
30 printf("\nTime taken for the process = \%. f hours",
      time)
```

Scilab code Exa 41.2 Annual output of refined copper and Energy consumption

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART IV : UTILIZATION AND TRACTION
7  // CHAPTER 3: ELECTROLYTIC AND ELECTRO-METALLURGICAL PROCESSES
8
9  // EXAMPLE : 3.2 :
```

```
10 // Page number 748
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ no\_cells} = 600.0
                         // Number of cells employed for
      copper refining
15 I = 4000.0
                         // Current (A)
                         // Voltage per cell(V)
16 V = 0.3
                         // Time of plant operation(hours
17 \text{ hour} = 90.0
18 \text{ ece_cu} = 1.1844
                         // Electro-chemical equivalent
      of copper (kg/1000 \text{ Ah})
19
20 // Calculations
21 \text{ Ah_week} = I*hour
                                                    // Ah
      per week per cell
22 \text{ Ah\_year} = \text{Ah\_week}*52
                                                    // Ah
      per year per cell
23 Wt = no_cells*ece_cu*Ah_year/(1000*10**3)
      Weight of copper refined per year (tonnes)
24 energy = V*I*no_cells*hour*52/1000
      Energy consumed (kWh)
25 consumption = energy/Wt
      Consumption (kWh/tonne)
26
27 // Results
28 disp("PART IV - EXAMPLE : 3.2 : SOLUTION :-")
29 printf ("\nAnnual output of refined copper = \%. f
      tonnes", Wt)
30 printf("\nEnergy consumption = \%.1 \text{ f kWh/tonne} \n",
      consumption)
31 printf("\nNOTE: ERROR: Substitution & calculation
      mistake in the textbook solution")
```

Scilab code Exa 41.3 Weight of aluminium produced from aluminium oxide

```
1 // A Texbook on POWER SYSTEM ENGINEERING
  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 3: ELECTROLYTIC AND ELECTRO-METALLURGICAL
      PROCESSES
8
9 // EXAMPLE : 3.3 :
10 // Page number 748
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ hour} = 24.0
                        // Time(hour)
                        // Average current(A)
15 I = 3500.0
16 n = 0.9
                        // Current efficiency
                        // Aluminium valency
17 \text{ valency} = 3.0
                        // Atomic weight of aluminium
18 w = 27.0
19 \text{ ece\_Ag} = 107.98
                        // Electro-chemical equivalent
      of silver
20 \text{ Wt\_dep} = 0.00111
                        // Silver deposition by one
      coulomb (gm)
21
22 // Calculations
23 chemical_eq_Al = w/valency
                                                     //
      Chemical equivalent of aluminium
24 \text{ eme\_Al} = Wt_dep/ece_Ag*chemical_eq_Al
      Electro-chemical equivalent of aluminium (gm/
      coulomb)
25 \text{ Wt_Al_liberated} = I*hour*3600*n*eme_Al/1000
      Weight of aluminium liberated (Kg)
26
27 // Results
28 disp("PART IV - EXAMPLE : 3.3 : SOLUTION :-")
```

29 printf("\nWeight of aluminium produced from aluminium oxide = $\%.1\,\mathrm{f}$ kg", Wt_Al_liberated)

Chapter 42

ILLUMINATION

Scilab code Exa 42.2 mscp of lamp Illumination on the surface when it is normal In

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 4: ILLUMINATION
9 // EXAMPLE : 4.2 :
10 // Page number 753
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
                     // Flux emitted by a lamp(
14 \text{ lumens} = 800.0
     lumens)
15 \text{ cp} = 100.0
                        // cp of a lamp
16 d = 2.0
                       // Distance b/w plane surface
     & lamp (m)
```

```
19
20 // Calculations
21 // Case (a)
22 mscp = lumens/(4.0*\%pi)
                                      // mscp of lamp
23 // Case (b)
24 I_i = cp/d**2
                                       // Illumination
     on the surface when it is normal(lux)
25 I_{ii} = cp/d**2*cosd(theta_{ii})
                                      // Illumination
     on the surface when it is inclined to 45 (lux)
  I_iii = cp/d**2*cosd(theta_iii) // Illumination
     on the surface when it is parallel to rays(lux)
27
28 // Results
29 disp("PART IV - EXAMPLE : 4.2 : SOLUTION :-")
30 printf("\nCase(a): mscp of the lamp, mscp = \%.f",
31 printf("\nCase(b): Case(i) : Illumination on the
     surface when it is normal, I = \% f lux", I_i)
32 printf("\n
                      Case (ii): Illumination on the
      surface when it is inclined to 45 , I = \%.3 f lux
     ", I_ii)
33 printf("\n
                      Case (iii): Illumination on the
     surface when it is parallel to rays, I = \%. f lux
     n", abs(I_iii))
34 printf("\nNOTE: ERROR: Calculation mistake in case(a
     ) in textbook solution")
```

 ${f Scilab\ code\ Exa\ 42.3}$ Illumination at the centre Edge of surface with and Without r

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
6 // PART IV : UTILIZATION AND TRACTION
```

```
7 // CHAPTER 4: ILLUMINATION
9 // EXAMPLE : 4.3 :
10 // Page number 753-754
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ cp} = 200.0
                       // cp of a lamp
                       // Reflector directing light
15 \text{ per} = 0.6
                       // Diameter (m)
16 D = 10.0
17 h = 6.0
                       // Height at which lamp is hung(m)
18
19 // Calculations
                                                    // Flux(
20 flux = cp*4*\%pi
      lumens)
21 I_i = cp/h**2
      Illumination at the centre without reflector (lux)
22 d = (h**2+(D/2)**2)**0.5
23 I_without = (cp/h**2)*(h/d)
      Illumination at the edge without reflector (lux)
24 I_{with} = cp*4*%pi*per/(25*%pi)
      Illumination at the edge with reflector (lux)
  theta = acosd(h/d)
                                                         (
26 \text{ w} = 2.0 * \% \text{pi} * (1 - \cos d (\text{theta}/2))
      steradian)
27 phi = cp*w
      lumens)
28 I_avg = phi/(25*\%pi)
      Average illumination over the area without
      reflector (lux)
29
30 // Results
31 disp("PART IV - EXAMPLE : 4.3 : SOLUTION :-")
32 printf("\nCase(i) : Illumination at the centre
      without reflector = \%.2 \, \text{f lux}", I_i)
33 printf("\n
                         Illumination at the centre with
```

```
reflector = %.1f lux", I_with)
34 printf("\nCase(ii): Illumination at the edge of the
    surface without reflector = %.2f lux", I_without)
35 printf("\n Illumination at the edge of the
    surface with reflector = %.1f lux", I_with)
36 printf("\nAverage illumination over the area without
    the reflector, I = %.3f lux\n", I_avg)
37 printf("\nNOTE: ERROR: Slight calculation mistake &
    more approximation in textbook solution")
```

Scilab code Exa 42.5 cp of the globe and Percentage of light emitted by lamp that

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 4: ILLUMINATION
8
  // EXAMPLE : 4.5 :
10 // Page number 754
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 \text{ flux} = 900.0
                   // Lamp emitting light (lumens)
17
18 // Calculations
19 cp = \%pi/4*D**2*(B/\%pi)
                                    // Candle power
20 flux_emit = cp*4*\%pi
                                    // Flux emitted
     by globe (lumens)
21 flux_abs = flux-flux_emit
                                    // Flux absorbed
```


Figure 42.1: Curve showing illumination on a horizontal line below lamp

Scilab code Exa 42.6 Curve showing illumination on a horizontal line below lamp

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
```

```
// SECOND EDITION
5
  // PART IV : UTILIZATION AND TRACTION
   // CHAPTER 4: ILLUMINATION
9 // EXAMPLE : 4.6 :
10 // Page number 754-755
11 clear; clc; close; // Clear the work space and
       console
12
13 // Given data
14 \text{ cp}_0 = 500.0
                         // Candle power
15 \text{ theta_0} = 0.0
                               (
16 \text{ cp}_1 = 560.0
                         // Candle power
17 \text{ theta}_1 = 10.0
                               (
18 \text{ cp}_2 = 600.0
                         // Candle power
19 \text{ theta}_2 = 20.0
                               20 \text{ cp}_3 = 520.0
                         // Candle power
21 \text{ theta}_3 = 30.0
                               (
22 \text{ cp}_4 = 400.0
                         // Candle power
23 \text{ theta}_4 = 40.0
                               (
24 \text{ cp}_5 = 300.0
                            Candle power
25 \text{ theta}_{5} = 50.0
                               Candle power
26 \text{ cp}_6 = 150.0
27 \text{ theta}_6 = 60.0
                               (
28 \text{ cp}_7 = 50.0
                         // Candle power
29 \text{ theta}_{7} = 70.0
30 h = 6.0
                         // Height of lamp(m)
31
32 // Calculations
33 I_0 = cp_0/h**2*(cosd(theta_0))**3
                                                 //
      Illumination (lux)
34 \quad 1_0 = h*tand(theta_0)
                                                     Distance (m)
35 I_1 = cp_1/h**2*(cosd(theta_1))**3
      Illumination (lux)
36 \quad l_1 = h*tand(theta_1)
                                                     Distance (m)
37 I_2 = cp_2/h**2*(cosd(theta_2))**3
       Illumination (lux)
```

```
38 \quad 1_2 = h*tand(theta_2)
                                              // Distance (m)
39 I_3 = cp_3/h**2*(cosd(theta_3))**3
      Illumination (lux)
40 \quad 1_3 = h*tand(theta_3)
                                              // Distance (m)
41 I_4 = cp_4/h**2*(cosd(theta_4))**3
      Illumination (lux)
42 \quad 1_4 = h*tand(theta_4)
                                              // Distance (m)
43 I_5 = cp_5/h**2*(cosd(theta_5))**3
      Illumination (lux)
44 \quad 1_5 = h*tand(theta_5)
                                              // Distance (m)
45 I_6 = cp_6/h**2*(cosd(theta_6))**3
      Illumination (lux)
46 \quad 1_6 = h*tand(theta_6)
                                              // Distance (m)
47 I_7 = cp_7/h**2*(cosd(theta_7))**3
      Illumination (lux)
48 \quad 1_7 = h*tand(theta_7)
                                              // Distance (m)
49 \quad 1 = [-1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1, 1.0, 1.0, 1.1,
      1_2,1_3,1_4,1_5,1_6,1_7]
50 I = [I_7, I_6, I_5, I_4, I_3, I_2, I_1, I_0, I_0, I_1, I_2, I_3]
      ,I_4,I_5,I_6,I_7]
51 a = gca();
52 a.thickness = 2
                                                 // sets
      thickness of plot
53 plot(1,I,'ro-')
                                                 // Plot of
      illumination curve
54 \times = [0,0,0,0,0,0]
55 y = [0,5,10,11,14,16]
56 \text{ plot}(x,y)
                                                        //
      Plot of straight line
57 a.x_label.text = 'Distance (metres)'
                          // labels x-axis
58 a.y_label.text = 'Illumination(flux)'
                       // labels y-axis
59 xtitle ("Fig E4.4 . Illumination on a horizontal line
       below the lamp")
```

```
60 xset('thickness',2)

// sets

thickness of axes

61

62 // Results
63 disp("PART IV - EXAMPLE : 4.6 : SOLUTION :-")
64 printf("\nThe curve showing illumination on a horizontal line below lamp is represented in Figure E4.4")
```

Scilab code Exa 42.7 Maximum and Minimum illumination on the floor along the centr

```
1 // A Texbook on POWER SYSTEM ENGINEERING
  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
  // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 4: ILLUMINATION
8
  // EXAMPLE : 4.7 :
10 // Page number 755
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 d = 9.15
                   // Lamp space (m)
                 // Height (m)
15 h = 4.575
16 P = 100.0
                  // Power (candle)
17
18 // Calculations
19 \text{ theta}_3\_\text{max} = 0
20 cos_theta_3_max_cubic = cosd(theta_3_max)**3
```

```
21 \text{ theta}_4\text{_max} = \text{atand}(2)
      // ( )
22 cos_theta_4_max_cubic = cosd(theta_4_max)**3
23 theta_5_max = atand(4)
      // ( )
24 cos_theta_5_max_cubic = cosd(theta_5_max)**3
25 \text{ theta}_6\text{_max} = \text{atand}(6)
26 cos_theta_6_max_cubic = cosd(theta_6_max)**3
27 \text{ I_max} = P/h**2*(cos_theta_3_max_cubic+2*)
      cos_theta_4_max_cubic+2*cos_theta_5_max_cubic+2*
      cos_theta_6_max_cubic) // Max illumination(lux)
28 \text{ theta}_4\text{min} = \text{atand}(1)
      // ( )
29 cos_theta_4_min_cubic = cosd(theta_4_min)**3
30 \text{ theta}_5\text{_min} = \text{atand}(3)
      // ( )
31 cos_theta_5_min_cubic = cosd(theta_5_min)**3
32 \text{ theta\_6_min} = \text{atand(5)}
33 cos_theta_6_min_cubic = cosd(theta_6_min)**3
34 \text{ I_min} = P/h**2*2*(cos_theta_4_min_cubic+
      cos_theta_5_min_cubic+cos_theta_6_min_cubic)
      // Minimum illumination(lux)
35
36 // Results
37 disp("PART IV - EXAMPLE : 4.7 : SOLUTION :-")
38 printf("\nMaximum illumination on the floor along
      the centre line = \%.2 \, f \, lux, I_max)
39 printf("\nMinimum illumination on the floor along
      the centre line = \%.2 \, f lux", I_min)
```

Scilab code Exa 42.8 Illumination on the working plane

```
// A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 4: ILLUMINATION
9 // EXAMPLE : 4.8 :
10 // Page number 758
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 b = 15.25
                 // Breadth of workshop (m)
15 \quad 1 = 36.6
                 // Length of workshop(m)
                 // Number of lamps
16 \text{ no} = 20.0
                 // Power of each lamp(W)
17 P = 500.0
                  // Luminous efficiency of each lamp(
18 n = 15.0
     lumens/watt)
                  // Depreciation factor
19 	 df = 0.7
                 // Co-efficient of utilization
20 \text{ cou} = 0.5
21
22 // Calculations
23 \quad lumen_lamp = no*P*n
                                        // Lamp lumens
24 lumen_plane = lumen_lamp*df*cou // Lumens on the
     working plane
  I = lumen_plane/(1*b)
                                        // Illumination (
25
     lm/sq.m)
26
27 // Results
28 disp("PART IV - EXAMPLE : 4.8 : SOLUTION :-")
```

Scilab code Exa 42.9 Suitable scheme of illumination and Saving in power consumpti

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 4: ILLUMINATION
9 // EXAMPLE : 4.9 :
10 // Page number 758-759
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 b = 27.45
                   // Breadth of hall (m)
                  // Length of hall (m)
15 \quad 1 = 45.75
16 I_avg = 108.0 // Average illumination(lumens/sq.m)
                  // Height (m)
17 h = 0.75
                  // Co-efficient of utilization
18 \text{ cou} = 0.35
                  // Pereciation factor
19 \text{ pf} = 0.9
20 P_fl = 80.0
                  // Fluorescent lamp power (W)
21 \quad n_100 = 13.4
                  // Luminous efficiency for 100W
      filament lamp(lumens/watt)
22 n_200 = 14.4
                   // Luminous efficiency for 200W
      filament lamp(lumens/watt)
                  // Luminous efficiency for 80W
23 \quad n_80 = 30.0
      fluorescent lamp(lumens/watt)
24
```

```
25 // Calculations
26 \text{ area} = b*1
                                                   // Area
       to be illuminated (Sq.m)
  I_total = area*I_avg
      Total illumination on working plane (lumens)
28 gross_lumen = I_total/(cou*pf)
      Gross lumens required
29 P_required = gross_lumen/n_200
     Power required for illumination (W)
  P_required_kW = P_required/1000
      Power required for illumination (kW)
31 \text{ no\_lamp} = P\_required/200
     Number of lamps
32 P_required_new = gross_lumen/n_80
     Power required when fluorescent lamp used (W)
33 P_required_new_kW = P_required_new/1000
     Power required when fluorescent lamp used (kW)
34 P_saving = P_required_kW-P_required_new_kW
      Saving in power (kW)
35
36 // Results
37 disp("PART IV - EXAMPLE : 4.9 : SOLUTION :-")
38 printf("\nSuitable scheme: Whole area divided into %
      .f rectangles & 200-watt fitting is suspended at
      centre of each rectangle", no_lamp)
39 printf("\nSaving in power consumption = \%.1 \text{ f kW}",
     P_saving)
```

Chapter 43

ELECTRIC TRACTION SPEED TIME CURVES AND MECHANICS OF TRAIN MOVEMENT

Scilab code Exa 43.1 Maximum speed over the run

```
// Scheduled speed (kmph)
14 \text{ speed} = 45.0
                      // Distance between 2 stops (km)
15 D = 1.5
                     // Time of stop(sec)
16 t = 20.0
                     // Acceleration (km phps)
17 \text{ alpha} = 2.4
                    // Retardation (km phps)
18 \text{ beta} = 3.2
19
20 // Calculations
21 t_{total} = D*3600/speed
                                               // Total
     time (sec)
22 T = t_total-t
                                               // Actual
      time for run(sec)
23 k = (alpha+beta)/(alpha*beta)
                                               // Constant
V_m = (T/k) - ((T/k) **2 - (7200*D/k)) **0.5 // Maximum
      speed over the run(kmph)
25
26 // Results
27 disp("PART IV - EXAMPLE : 5.1 : SOLUTION :-")
28 printf("\nMaximum speed over the run, V_m = \%.f kmph
      ", V_m)
```

Scilab code Exa 43.2 Value of retardation

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION

// SECOND EDITION

// PART IV : UTILIZATION AND TRACTION
// CHAPTER 5: ELECTRIC TRACTION—SPEED TIME CURVES
AND MECHANICS OF TRAIN MOVEMENT

// EXAMPLE : 5.2 :
// Page number 778

clear ; clc ; close ; // Clear the work space and console
```

```
12
13 // Given data
14 \ V_m = 65.0
                      // Maximum speed (kmph)
                      // Time of stop(sec)
15 t = 30.0
                      // Scheduled speed (kmph)
16 \text{ speed} = 43.5
                      // Acceleration (km phps)
17 \text{ alpha} = 1.3
                      // Distance between 2 stops (km)
18 D = 3.0
19
20 // Calculations
21 t_total = D*3600/speed
                                        // Total time of
      run including stop(sec)
22 T = t_total - t
      Actual time for run(sec)
23 V_a = D/T*3600
      Average speed (kmph)
24 beta = 1/((7200.0*D/V_m**2*((V_m/V_a)-1))-(1/alpha))
         // Value of retardation (km phps)
25
26 // Results
27 disp("PART IV - EXAMPLE : 5.2 : SOLUTION :-")
28 printf("\nValue of retardation, = \%.3 \text{ f km phps} \n"
      , beta)
29 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here")
30 printf ("\n
                    ERROR:
                            unit is km phps & not km
      phps as mentioned in textbook solution")
```

Scilab code Exa 43.3 Rate of acceleration required to operate service

```
    // A Texbook on POWER SYSTEM ENGINEERING
    // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
    // DHANPAT RAI & Co.
```

```
4 // SECOND EDITION
5
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 5: ELECTRIC TRACTION—SPEED TIME CURVES
     AND MECHANICS OF TRAIN MOVEMENT
9 // EXAMPLE : 5.3 :
10 // \text{Page number } 778-779
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 \text{ speed} = 25.0
                      // Scheduled speed (kmph)
                   // Distance between 2 stations (km
15 D = 800.0/1000
16 t = 20.0
                      // Time of stop(sec)
                      // Maximum speed higher than (%)
17 \ V_m_{per} = 20.0
18 \text{ beta} = 3.0
                       // Retardation (km phps)
19
20 // Calculations
21 t_{total} = D*3600/speed
                                        // Total time of
      run including stop (sec)
22 T = t_total - t
      Actual time for run(sec)
23 V_a = D/T*3600
      Average speed (kmph)
V_m = (100 + V_m_{per}) * V_a/100
                                   // Maximum speed (kmph)
25 alpha = 1/((7200.0*D/V_m**2*((V_m/V_a)-1))-(1/beta))
         // Value of acceleration (km phps)
26
27 // Results
28 disp("PART IV - EXAMPLE : 5.3 : SOLUTION :-")
29 printf("\nRate of acceleration required to operate
      this service, = \%.2 \, \text{f km phps}, alpha)
```

Scilab code Exa 43.4 Duration of acceleration Coasting and Braking periods

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 5: ELECTRIC TRACTION—SPEED TIME CURVES
     AND MECHANICS OF TRAIN MOVEMENT
9 // EXAMPLE : 5.4 :
10 // Page number 779
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 D = 2.0
                     // Distance between 2 stations (km)
                     // Average speed(kmph)
15 \ V_a = 40.0
                     // Maximum speed limitation(kph)
16 \quad V_1 = 60.0
                     // Acceleration (km phps)
17 \text{ alpha} = 2.0
18 \text{ beta\_c} = 0.15
                     // Coasting retardation (km phps)
19 \text{ beta} = 3.0
                     // Braking retardation (km phps)
20
21 // Calculations
22 t_1 = V_1/alpha
                                                // Time
      for acceleration (sec)
23 T = 3600*D/V_a
                                                 // Actual
      time of run(sec)
V_2 = (T-t_1-(V_1/beta_c))*beta*beta_c/(beta_c-beta)
        // Speed at the end of coasting period(kmph)
25 t_2 = (V_1 - V_2)/beta_c
```

```
// Coasting
period(sec)

t_3 = V_2/beta

//
Braking period(sec)

//

28 // Results
29 disp("PART IV - EXAMPLE : 5.4 : SOLUTION :-")
30 printf("\nDuration of acceleration, t_1 = %.f sec", t_1)

31 printf("\nDuration of coasting, t_2 = %.f sec", t_2)
32 printf("\nDuration of braking, t_3 = %.f sec", t_3)
```

Scilab code Exa 43.5 Tractive resistance

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
 // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 5: ELECTRIC TRACTION—SPEED TIME CURVES
     AND MECHANICS OF TRAIN MOVEMENT
9 // EXAMPLE : 5.5 :
10 // Page number 781-782
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 r = 1.0 // Tractive resistance (N/tonne)
15
16 // Calculations
17 tractive_res_i = 0.278*r // Tractive resistance(
     N/tonne) = Energy consumption (Wh/tonne-km)
```

```
18 beta = 1/277.8
                                // Tractive resistance (
     N/tonne) = Retardation(km kmps/tonne)
19 energy = 98.1*1000/3600 // 1\% gradient = energy
     (Wh per tonne km)
20
21 // Results
22 disp("PART IV - EXAMPLE : 5.5 : SOLUTION :-")
23 printf("\nCase(i) : Tractive resistance of 1 N per
     tonne = \%.3 f Wh per tonne-km", tractive_res_i)
24 printf("\nCase(ii) : Tractive resistance of 1 N per
     tonne = \%.5 f km phps per tonne", beta)
25 printf("\nCase(iii): 1 percent gradient = \%.2 f Wh
     per tonne km \ n", energy)
26 printf("\nNOTE: Slight change in the obtained answer
      from that of textbook is due to more precision
     here")
```

Scilab code Exa 43.6 Torque developed by each motor

```
// Number of motor
15 \text{ no} = 4.0
                   // Time(sec)
16 t_1 = 20.0
                   // Maximum speed(kmph)
17 \quad V_m = 40.25
18 \ G = 1.0
                    // Gradient (%)
                    // Gear ratio
19 \text{ gamma} = 3.5
20 n = 0.95
                    // Gear efficiency
                    // Wheel diameter (m)
21 D = 91.5/100
                    // Train resistance (N/tonne)
22 r = 44.0
23 I = 10.0
                    // Rotational inertia (%)
24
25 // Calculations
26 \text{ W_e} = \text{W*}(100+\text{I})/100
                                             // Accelerating
       weight of train (tonne)
27 \text{ alpha} = V_m/t_1
                                             // Acceleration
      (km phps)
  F_t = 277.8*W_e*alpha+W*r+98.1*W*G
                                             // Tractive
      effort (N)
  T = F_t*D/(2*n*gamma)
                                             // Torque
      developed (N-m)
30 \text{ T_each} = \text{T/no}
                                             // Torque
      developed by each motor (N-m)
31
32 // Results
33 disp("PART IV - EXAMPLE : 5.6 : SOLUTION :-")
34 printf("\nTorque developed by each motor = \%. f N\righthank\n
      ", T_each)
35 printf("\nNOTE: Changes in the obtained answer from
      that of textbook is due to more precision here &
      more approximation in textbook")
36 printf("\n
                     ERROR: W = 254 tonne, not 256 tonne
      as mentioned in textbook problem statement")
```

Scilab code Exa 43.7 Time taken by train to attain speed

1 // A Texbook on POWER SYSTEM ENGINEERING

```
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 5: ELECTRIC TRACTION—SPEED TIME CURVES
     AND MECHANICS OF TRAIN MOVEMENT
  // EXAMPLE : 5.7 :
10 // Page number 782
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 W = 203.0
                   // Weight of motor-coach train(tonne)
                   // Number of motors
15 \text{ no} = 4.0
16 T = 5130.0
                   // Shaft torque (N-m)
                   // Maximum speed(kmph)
17 \quad V_m = 42.0
18 G = 100.0/250
                   // Gradient
                   // Gear ratio
19 \text{ gamma} = 3.5
                   // Gear efficiency
20 n = 0.93
                   // Wheel diameter (m)
21 D = 91.5/100
                   // Train resistance (N/tonne)
22 r = 45.0
                   // Rotational inertia (%)
23 I = 10.0
24
25 // Calculations
26 \text{ W_e} = \text{W*}(100+\text{I})/100
                                               //
      Accelerating weight of train (tonne)
                                               // Tractive
  F_t = n*4*T*2*gamma/D
      effort (N)
  alpha = (F_t-W*r-98.1*W*G)/(277.8*W_e)
      Acceleration (km phps)
29 t_1 = V_m/alpha
                                               // Time
      taken by train to attain speed (sec)
30
31 // Results
32 disp("PART IV - EXAMPLE : 5.7 : SOLUTION :-")
33 printf("\nTime taken by train to attain speed, t_{-}1 =
```


Figure 43.1: Speed Time curve for the run and Energy consumption at the axles of train

```
\%.1 f sec, t_1)
```

 ${f Scilab\ code\ Exa\ 43.8}$ Speed Time curve for the run and Energy consumption at the ax

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION

// PART IV : UTILIZATION AND TRACTION
// CHAPTER 5: ELECTRIC TRACTION—SPEED TIME CURVES
AND MECHANICS OF TRAIN MOVEMENT

// EXAMPLE : 5.8 :
// Page number 782-783

clear ; clc ; close ; // Clear the work space and console
```

```
13 // Given data
14 \ V_a = 42.0
                         // Average speed of train (kmph)
15 D = 1400.0/1000
                         // Distance (km)
                         // Acceleration (km phps)
16 \text{ alpha} = 1.7
                         // Retardation (km phps)
17 \text{ beta} = 3.3
                         // Tractive resistance (N/tonne)
18 r = 50.0
                         // Rotational inertia (%)
19 I = 10.0
20
21 // Calculations
22 T = D*3600/V_a
                                               // Time for
       run (sec)
23 k = (alpha+beta)/(alpha*beta)
                               // Constant
V_m = (T/k) - ((T/k) **2 - (7200*D/k)) **0.5
                     // Maximum speed over the run(kmph)
25 t_1 = V_m/alpha
                                              // Time of
      acceleration (sec)
26 t_3 = V_m/beta
                                               // Time (sec
27 t_2 = T - (t_1 + t_3)
                                            // Time(sec)
28 D_1 = D-(V_a*t_1/(2*3600))
                                  // Distance (km)
29 \text{ We}_W = (100+I)/100
                                           // W_e/W
30 energy = (0.0107*V_m**2*We_W/D)+(0.278*r*D_1/D)
           // Energy consumption (Wh per tonne-km)
31 a = gca();
32 a.thickness = 2
                                              // sets
      thickness of plot
33 plot([0,t_1,t_1,(t_1+t_2),(t_1+t_2),(t_1+t_2+t_3)
      ],[O,V_m,V_m,V_m,V_m,O])
                                    // Plotting speed-
      time curve
34 plot([t_1,t_1],[0,V_m],'r--')
```

```
35 plot([t_1+t_2,t_1+t_2],[0,V_m],'r--')
36 a.x_label.text = 'Time(seconds)'
                          // labels x-axis
37 a.y_label.text = 'Speed (km/h)'
                           // labels y-axis
38 xtitle("Fig E5.1 . Speed-time curve for the run")
39 xset ('thickness',2)
                                        // sets
     thickness of axes
40
41 // Results
42 disp("PART IV - EXAMPLE : 5.8 : SOLUTION :-")
43 printf("\nSpeed-time curve for the run is shown in
      Figure E5.1")
44 printf("\nEnergy consumption at the axles of train =
      \%.1 f Wh per tonne-km", energy)
```

Scilab code Exa 43.9 Acceleration Coasting retardation and Scheduled speed

```
15 t_1 = 24.0
                     // Time taken to accelerate from
      rest to speed (sec)
                     // Coasting time(sec)
16 t_2 = 69.0
17 r = 58.0
                     // Constant resistance (N/tonne)
                     // Retardation (km phps)
18 \text{ beta} = 3.3
19 t_3 = 11.0
                     // Retardation time (sec)
                     // Station stop time(sec)
20 t_{ii} = 20.0
                     // Station stop time(sec)
21 t_{iii_b} = 15.0
                     // Rotational inertia (%)
22 I = 10.0
23
24 // Calculations
25 alpha = V_A/t_1
      // Acceleration (km phps)
26 \text{ V}_B = \text{beta*t}_3
      // Speed at B(km phps)
27 	 beta_c = (V_A - V_B)/t_2
                                                    //
      Retardation during coasting (km phps)
28 distance_acc = 1.0/2*t_1*V_A/3600
                                        // Distance
      covered during acceleration (km)
29 distance_coasting = (V_A**2-V_B**2)/(2*beta_c*3600)
                     // Distance covered during coasting
      (km)
30 distance_braking = t_3*V_B/(3600*2)
                                      // Distance covered
       during braking (km)
31 distance_total = distance_acc+distance_coasting+
      distance_braking // Total distance(km)
32 speed_iii_a = distance_total*3600/(t_1+t_2+t_3+
                          // Scheduled speed with a stop
      t_iii_a)
       of 20 sec (kmph)
33 speed_iii_b = distance_total*3600/(t_1+t_2+t_3+
      t_iii_b)
                          // Scheduled speed with a stop
       of 15 sec (kmph)
34
```

```
// Results
disp("PART IV - EXAMPLE : 5.9 : SOLUTION :-")
printf("\nCase(i) : Acceleration, = %.f km phps", alpha)
printf("\nCase(ii) : Coasting retardation, _c = % .2 f km phps", beta_c)
printf("\nCase(iii): Scheduled speed with a stop of 20 seconds = %.2 f kmph", speed_iii_a)
printf("\n Scheduled speed with a stop of 15 seconds = %.2 f kmph\n", speed_iii_b)
printf("\nNOTE: ERROR: Calculation mistakes in the textbook solution")
```

Scilab code Exa 43.10 Minimum adhesive weight of the locomotive

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 5: ELECTRIC TRACTION—SPEED TIME CURVES
     AND MECHANICS OF TRAIN MOVEMENT
9 // EXAMPLE : 5.10 :
10 // Page number 784
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 W = 350.0
                  // Weight of train(tonne)
                  // Gradient
15 G = 1.0
                  // Acceleration (km phps)
16 \text{ alpha} = 0.8
                  // Co-efficient of adhesion
17 u = 0.25
18 r = 44.5
                  // Train resistance (N/tonne)
```

```
19 I = 10.0 // Rotational inertia (%)
20
21 // Calculations
22 \text{ W_e} = \text{W*}(100+\text{I})/100
                                           // Accelerating
       weight of train (tonne)
23 F_t = 277.8*W_e*alpha+W*r+98.1*W*G // Tractive
      effort (N)
24 adhesive_weight = F_t/(u*9.81*1000) // Adhesive
      weight (tonnes)
25
26 // Results
27 disp("PART IV - EXAMPLE : 5.10 : SOLUTION :-")
28 printf("\nMinimum adhesive weight of the locomotive
     =\%.1\,\mathrm{f} tonnes\n", adhesive_weight)
29 printf("\nNOTE: ERROR: Train resistance is 44.5 N
      per tonne & not 45 N per tonne as mentioned in
      textbook problem statement")
```

 ${
m Scilab\ code\ Exa\ 43.11}$ Energy usefully employed in attaining speed and Specific energy

```
// Weight of train(tonne)
14 W = 400.0
                     // Gradient
15 G = 100.0/75
                     // Acceleration (km phps)
16 \text{ alpha} = 1.6
                     // Train resistance (N/tonne)
17 r = 66.75
18 I = 10.0
                     // Rotational inertia (%)
19 V = 48.0
                     // Speed (kmph)
                     // Overall efficiency of equipment
20 n = 0.7
21
22 // Calculations
23 \text{ W_e} = \text{W*}(100+\text{I})/100
                                             // Accelerating
       weight of train (tonne)
24 	ext{ F_t} = 277.8 * W_e * alpha + W * r + 98.1 * W * G
                                             // Tractive
      effort (N)
25 t = V/alpha
                                             // Time(sec)
26 \text{ energy_a} = F_t*V*t/(2*3600**2)
                                             // Energy
      usefully employed (kWh)
27 G_r = 98.1*G+r
                                             // Force (N)
28 \text{ work\_tonne\_km} = G_r*1000
                                             // Work done
      per tonne per km(Nw-m)
   energy_b = work_tonne_km/(n*3600)
                                             // Energy
      consumption (Wh per tonne-km)
30
31 // Results
32 disp("PART IV - EXAMPLE : 5.11 : SOLUTION :-")
33 printf("\nCase(a): Energy usefully employed in
      attaining speed = \%.2 \, f \, kWh", energy_a)
34 printf("\nCase(b): Specific energy consumption at
      steady state speed = \%.1f Wh per tonne-km",
      energy_b)
```

Scilab code Exa 43.12 Minimum adhesive weight of a locomotive

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
```

```
4 // SECOND EDITION
5
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 5: ELECTRIC TRACTION—SPEED TIME CURVES
     AND MECHANICS OF TRAIN MOVEMENT
9 // EXAMPLE : 5.12 :
10 // Page number 784-785
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
14 W = 200.0
                   // Trailing weight (tonne)
15 G = 1.0
                  // Gradient (%)
                  // Acceleration (km phps)
16 \text{ alpha} = 1.0
17 u = 0.2
                   // Co-efficient of adhesion
                   // Train resistance (N/tonne)
18 r = 50.0
19 I = 10.0
                   // Rotational inertia (%)
20
21 // Calculations
22 \text{ W_L} = ((277.8*(100+I)/100*alpha)+98.1*G+r)*W/(u)
     *9.81*1000-((277.8*(100+I)/100*alpha)+98.1*G+r))
      // Weight of locomotive (tonnes)
23
24 // Results
25 disp("PART IV - EXAMPLE : 5.12 : SOLUTION :-")
26 printf("\nMinimum adhesive weight of a locomotive,
     WL = \%.1 f tonnes \n", W_L)
27 printf("\nNOTE: ERROR: Calculation mistake in
     textbook solution in calculating WL")
```

Chapter 44

MOTORS FOR ELECTRIC TRACTION

Scilab code Exa 44.1 Speed current of the motor

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART IV : UTILIZATION AND TRACTION
7  // CHAPTER 6: MOTORS FOR ELECTRIC TRACTION
8
9  // EXAMPLE : 6.1 :
10  // Page number 788
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
14  I_1 = 10.0  // Current(A)
15  T_1 = 54.0  // Torque(N-m)
16  I_2 = 20.0  // Current(A)
17  T_2 = 142.0  // Torque(N-m)
18  I_3 = 30.0  // Current(A)
```

```
// Torque (N-m)
19 \quad T_3 = 250.0
                 // Current(A)
20 \quad I_4 = 40.0
21 \quad T_4 = 365.0
                 // Torque (N-m)
                 // Current(A)
22 I_5 = 50.0
                 // Torque (N-m)
23 \quad T_5 = 480.0
24 I_6 = 60.0
                 // Current (A)
                 // Torque (N-m)
25 \quad T_6 = 620.0
                 // Current (A)
26 I_7 = 70.0
                 // Torque (N-m)
27 \quad T_7 = 810.0
                 // Operating voltage(V)
28 E = 500.0
29 R_a = 0.6
                 // Armature resistance (ohm)
30
31 // Calculations
32 N_1 = 9.55*(E-I_1*R_a)*I_1/T_1
                                   // Speed (rpm)
                                   // Speed (rpm)
33 N_2 = 9.55*(E-I_2*R_a)*I_2/T_2
                                   // Speed (rpm)
34 N_3 = 9.55*(E-I_3*R_a)*I_3/T_3
                                   // Speed (rpm)
35 \text{ N}_4 = 9.55*(E-I_4*R_a)*I_4/T_4
                                   // Speed (rpm)
36 N_5 = 9.55*(E-I_5*R_a)*I_5/T_5
37 \text{ N}_6 = 9.55*(E-I_6*R_a)*I_6/T_6
                                   // Speed (rpm)
38 N_7 = 9.55*(E-I_7*R_a)*I_7/T_7
                                     // Speed (rpm)
39
40 // Results
41 disp("PART IV - EXAMPLE : 6.1 : SOLUTION :-")
42 printf("\nSpeed-current of the motor")
43 printf("\n______")
44 printf("\n Current(A) : Speed(rpm) ")
45 printf("\n_____")
                                           \%. f ", I_1,
46 printf("\n
                %. f
                              :
     N_1)
47 printf("\n
                %. f
                                          \%. f ", I_2,
     N_2
                                          \%. f ", I_3,
48 printf ("\n
                %. f
                                  :
     N_3)
49 printf("\n
                %. f
                                           \%. f ", I_4,
     N_4)
50 printf("\n
                %. f
                                           \%. f ", I_5,
                                  :
     N_5)
                                          \%. f ", I_6,
51 printf("\n
                %. f
                                 :
```

Scilab code Exa 44.2 Speed torque for motor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 6: MOTORS FOR ELECTRIC TRACTION
9 // EXAMPLE : 6.2 :
10 // Page number 788-789
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
                  // Speed (rpm)
14 N_1 = 500.0
                  // Current(A)
15 I_1 = 50.0
                  // Armature voltage(V)
16 E_1 = 220.0
17 I_2 = 100.0
                  // Current (A)
18 E_2 = 350.0
                  // Armature voltage(V)
                  // Current (A)
19 I_3 = 150.0
20 E_3 = 440.0
                  // Armature voltage(V)
21 \quad I_4 = 200.0
                  // Current (A)
                  // Armature voltage(V)
22 E_4 = 500.0
                  // Current(A)
23 I_5 = 250.0
24 E_5 = 540.0
                  // Armature voltage(V)
```

```
25 I_6 = 300.0
                   // Current (A)
                   // Armature voltage(V)
26 E_6 = 570.0
                   // Armature and brush resistance (ohm)
27 R_wb = 0.08
28 R_f = 0.05
                    // Resistance of series field (ohm)
29 V = 600.0
                   // Operating voltage(V)
30
31 // Calculations
32 R_a = R_wb+R_f
                                   // Armature resistance (
      ohm)
33 N_11 = N_1/E_1*(V-I_1*R_a)
                                   // Speed (rpm)
34 T_1 = 9.55*E_1*I_1/N_1
                                   // Torque (N-m)
                                   // Speed (rpm)
35 N_2 = N_1/E_2*(V-I_2*R_a)
                                   // Torque (N-m)
36 \text{ T}_2 = 9.55*\text{E}_2*\text{I}_2/\text{N}_1
                                  // Speed (rpm)
37 N_3 = N_1/E_3*(V-I_3*R_a)
                                   // Torque (N-m)
38 \text{ T}_3 = 9.55*\text{E}_3*\text{I}_3/\text{N}_1
                                   // Speed (rpm)
39 \text{ N}_4 = \text{N}_1/\text{E}_4*(\text{V-I}_4*\text{R}_a)
                                   // Torque (N-m)
40 \quad T_4 = 9.55 * E_4 * I_4 / N_1
41 N_5 = N_1/E_5*(v i_5 ) // Torque(N-in // Speed (rpm))
                                  // Speed (rpm)
                                   // Torque (N-m)
                                  // Torque (N-m)
44 \text{ T}_6 = 9.55 * \text{E}_6 * \text{I}_6 / \text{N}_1
45
46 // Results
47 disp("PART IV - EXAMPLE : 6.2 : SOLUTION :-")
48 printf("\nSpeed-torque curve for motor")
49 printf("\n_____")
                              : Torque (N-m) ")
50 printf("\n Speed(rpm)
51 printf("\n______")
52 printf("\n
                 %. f
                                  : %.f ", N_11,
      T_1
                %. f
                                             \%. f ", N_2,
53 printf("\n
                                    :
      T_2
                                             \%. f ", N_3,
54 printf("\n
                 %. f
                                    :
      T_3)
55 printf("\n
                 %. f
                                             \%. f ", N_4,
                                    :
      T_4)
56 printf("\n
                 %. f
                                             \%. f ", N<sub>5</sub>,
      T_5)
```

Scilab code Exa 44.3 Speed of motors when connected in series

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
5
  // PART IV : UTILIZATION AND TRACTION
  // CHAPTER 6: MOTORS FOR ELECTRIC TRACTION
8
9 // EXAMPLE : 6.3 :
10 // Page number 790
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 V = 650.0
                    // Voltage supply (V)
15 r_A = 45.0 // Radius of driving wheel(cm)
16 r_B = 43.0 // Radius of driving wheel(cm)
17 N_A = 400.0 // Speed(rpm)
18 drop = 10.0 // Voltage drop(%)
19
20 // Calculations
21 \text{ rho} = r_B/r_A
22 	ext{ IR} = drop*V/100
                                        // Voltage drop(V)
23 V_A = (rho*(V-IR)+IR)/(1+rho) // Voltage(V)
                                        // Voltage (V)
24 \quad V_B = V - V_A
25 \quad N_A_A = N_A*(V_A-IR)/(V-IR)
                                       // N"_A (rpm)
```

Scilab code Exa 44.4 HP delivered by the locomotive when dc series motor and Induc

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 6: MOTORS FOR ELECTRIC TRACTION
9 // EXAMPLE : 6.4 :
10 // Page number 791
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
                 // Tractive effort (N)
14 F_t = 33800.0
                 // Velocity (kmph)
15 \ V = 48.3
16 T = 53400.0 // Tractive effort (N)
17
18 // Calculations
19 HP = F_t*V*1000/(60*60*746) // HP on level track(
     hp)
20 HP_i = HP*(T/F_t)**0.5 // hp delivered by
```

Scilab code Exa 44.5 New characteristics of motor

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 6: MOTORS FOR ELECTRIC TRACTION
9 // EXAMPLE : 6.5 :
10 // Page number 792-793
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 I_1 = 100.0
                                // Current (A)
15 N_1 = 71.0
                                // Speed (kmph)
                                // Tractive effort (N)
16 	ext{ } F_t1 = 2225.0
17 I_2 = 150.0
                                // Current (A)
18 N_2 = 57.0
                                // Speed (kmph)
                                // Tractive effort (N)
19 	ext{ } F_t2 = 6675.0
                                // Current(A)
20 I_3 = 200.0
21 N_3 = 50.0
                                // Speed (kmph)
```

```
// Tractive effort (N)
22 F_t3 = 11600.0
                                    // Current (A)
23 I_4 = 250.0
24 N_4 = 45.0
                                    // Speed (kmph)
                                    // Tractive effort (N)
25 F_t4 = 17350.0
26 I_5 = 300.0
                                    // Current (A)
27 N_5 = 42.0
                                    // Speed (kmph)
                                    // Tractive effort (N)
28 F_t5 = 23200.0
29 D_A = 101.6
                                    // Size of wheels (cm)
                                    // Gear ratio
30 \text{ ratio\_gear} = 72.0/23
                                    // Size of wheels(cm)
31 D_B = 106.7
32 \text{ ratio\_gear\_new} = 75.0/20
                                    // Gear ratio
33
34 // Calculations
35 N_B = ratio_gear*D_B/(ratio_gear_new*D_A)
                                                          //
      Speed in terms of V(kmph)
36 F_tB = D_A*ratio_gear_new/(ratio_gear*D_B)
                                                          //
      Tractive effort in terms of F<sub>-</sub>tA(N)
37 \text{ N_B1} = \text{N_B*N_1}
      Speed (kmph)
38 	ext{ } F_tB1 = F_tB*F_t1
      Tractive effort (N)
39 N_B2 = N_B*N_2
      Speed (kmph)
40 \quad F_tB2 = F_tB*F_t2
       Tractive effort (N)
41 \quad N_B3 = N_B * N_3
      Speed (kmph)
42 	ext{ F_tB3} = 	ext{F_tB*F_t3}
       Tractive effort (N)
43 \quad N_B4 = N_B*N_4
      Speed (kmph)
44 \quad F_tB4 = F_tB*F_t4
       Tractive effort (N)
45 \text{ N_B5} = \text{N_B*N_5}
      Speed (kmph)
46 	ext{ F_tB5} = 	ext{F_tB*F_t5}
       Tractive effort (N)
47
```

```
48 // Results
49 disp("PART IV - EXAMPLE : 6.5 : SOLUTION :-")
50 printf("\nNew characteristics of motor")
51 printf("\n_____")
52 printf("\n Current(A) : Speed(kmph) : F_t(N)")
53 printf("\n_____")
54 printf("\n %.f : %.1f : %.f ",
    I_1, N_B1, F_tB1)
                  : %.1 f : %. f ",
55 printf("\n %.f
    I_2, N_B2, F_tB2
56 printf("\n %.f
                  : %.1 f : %. f ",
    I_3, N_B3, F_tB3)
                   : %.1 f : %. f ",
57 printf ("\n %. f
    I_4,N_B4,F_tB4)
58 printf("\n %.f
                 : \%.1 f : \%.f ",
    I_5, N_B5, F_tB5)
59 printf("\n____\n"
60 printf("\nNOTE: Changes in the obtained answer from
    that of textbook is due to more precision here")
```

Chapter 45

CONTROL OF MOTORS

Scilab code Exa 45.1 Approximate loss of energy in starting rheostats

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
 3 // DHANPAT RAI & Co.
 4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
 7 // CHAPTER 7: CONTROL OF MOTORS
 9 // EXAMPLE : 7.1 :
10 // Page number 798
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 no = 2.0  // Number of motors

15 V_m = 48.0  // Uniform speed(kmph)

16 t = 30.0  // Time(sec)
17 F_t_m = 13350.0 // Average tractive effort per
      motor (N)
18
19 // Calculations
```

Scilab code Exa 45.2 Energy supplied during the starting period Energy lost in the

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 7: CONTROL OF MOTORS
9 // EXAMPLE : 7.2 :
10 // Page number 798
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 W = 175.0
                      // Weight of multiple unit train (
      tonnes)
15 \text{ no} = 6.0
                      // Number of motors
                     // Total tractive effort(N)
// Line voltage(V)
16 	ext{ F_t} = 69000.0
17 V = 600.0
                    // Average current(A)
18 I = 200.0
19 \quad V_m = 38.6
                     // Speed (kmph)
```

```
// Resistance of each motor(ohm)
20 R = 0.15
21
22 // Calculations
23 alpha = F_t/(277.8*W)
                                                       //
       Acceleration (km phps)
24 T = V_m/alpha
      Time for acceleration (sec)
25 t_s = (V-2*I*R)*T/(2*(V-I*R))
      Duration of starting period (sec)
26 	 t_p = T-t_s
       (sec)
27 energy_total_series = no/2*V*I*t_s
       Total energy supplied in series position (watt-
      sec)
28 energy_total_parallel = no*V*I*t_p
       Total energy supplied in parallel position (watt-
      sec)
29 total_energy = (energy_total_series+
      energy_total_parallel)/(1000*3600)
      Energy supplied during starting period (kWh)
30 energy_waste_series = (no/2)/2*(V-2*I*R)*I*t_s
      Energy wasted in starting resistance in series
      position (watt-sec)
31 energy_waste_parallel = no*(V/2)/2*I*t_p
       Energy wasted in starting resistance in parallel
       position (watt-sec)
32 total_energy_waste = (energy_waste_series+
                                           // Total
      energy_waste_parallel)/(1000*3600)
      energy wasted in starting resistance (kWh)
33 energy_lost = (no*I**2*R*T)/(1000*3600)
                                                       //
      Energy lost in motor resistance (kWh)
34 useful_energy = T*F_t*V_m/(2*3600**2)
                                                       //
       Useful energy supplied to train (kWh)
35
36 // Results
37 disp("PART IV - EXAMPLE : 7.2 : SOLUTION :-")
38 printf("\nEnergy supplied during the starting period
      =\%.2 \,\mathrm{f} kWh", total_energy)
```

Scilab code Exa 45.3 Duration of starting period Speed of train at transition Rhec

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 7: CONTROL OF MOTORS
9 // EXAMPLE : 7.3 :
10 // Page number 799
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 W = 132.0
                        // Weight of electric train (
      tonnes)
                       // Number of motors
// Voltage of motor(V)
15 \text{ no} = 4.0
16 V = 600.0
17 I = 400.0
                        // Current per motor(A)
                       // Tractive effort per motor at
18 	ext{ } F_t_m = 19270.0
     400A & 600V(N)
                        // Train speed (kmph)
19 \ V_m = 39.0
                        // Gradient
20 G = 1.0
21 r = 44.5
                        // Resistance to traction (N/tonne
      )
                        // Rotational inertia (%)
22 inertia = 10.0
                        // Resistance of each motor (ohm)
23 R = 0.1
24
```

```
25 // Calculations
26 \text{ W_e} = \text{W*}(100+\text{inertia})/100
                                      // Accelerating
      weight of train (tonne)
27 	ext{ F_t = F_t_m*no}
                                                   // Total
      tractive effort at 400A & 600V(N)
28 alpha = (F_t-W*r-98.1*W*G)/(277.8*W_e)
                        // Acceleration (km phps)
29 T = V_m/alpha
                                                    // Time
      for acceleration (sec)
30 \text{ t_s} = (V-2*I*R)*T/(2*(V-I*R))
                                  // Duration of starting
      period (sec)
31 V_transition = alpha*t_s
                                       // Speed at
      transition (km phps)
32 t_p = T-t_s
                                                      // (
      sec)
33 loss_series = (no/2*((V-2*I*R)/2)*I*t_s)/(1000*3600)
         // Energy lost during series period (kWh)
34 loss_parallel = (no*(V/2)/2*I*t_p)/(1000*3600)
               // Energy lost during parallel period (kWh
35
36 // Results
37 disp("PART IV - EXAMPLE : 7.3 : SOLUTION :-")
38 printf("\nCase(i) : Duration of starting period,
      t_s = \%.1 f_sec, t_s)
39 printf("\nCase(ii) : Speed of train at transition,
       t = \%.1 \, f \, \sec", V_transition)
40 printf("\nCase(iii): Case(a): Rheostatic losses
      during series starting = \%.2 \,\mathrm{f} kWh", loss_series)
41 printf("\n
                          Case(b): Rheostatic losses
      during parallel starting = \%.2 \text{ f kWh} \text{ n}",
      loss_parallel)
```

42 printf("\nNOTE: ERROR: Calculation mistakes in the textbook solution")

Chapter 46

BRAKING

Scilab code Exa 46.1 Braking torque

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 8: BRAKING
9 // EXAMPLE : 8.1 :
10 // Page number 806
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
              // Voltage of motor(V)
14 \ V = 525.0
15 I_1 = 50.0 // Current(A)
16 \text{ T}_1 = 216.0 // \text{Torque}(N-m)
               // Current (A)
17 I_2 = 70.0
18 T_2 = 344.0 // Torque(N-m)
19 I_3 = 80.0 // Current(A)
20 T_3 = 422.0 // Torque(N-m)
```

```
21 I_4 = 90.0 // Current(A)
22 T_4 = 500.0 // Torque(N-m)
23 V_m = 26.0 // Speed(kmph)
                   // Resistance of braking rheostat (ohm)
24 R_b = 5.5
25 R_m = 0.5
                  // Resistance of motor(ohm)
26
27 // Calculations
28 I = 75.0
                               // Current drawn at 26 kmph(
      A)
29 back_emf = V-I*R_m // Back emf of the motor(V)
30 R_t = R_b+R_m // Total resistance (ohm)
31 I_del = back_emf/R_t // Current delivered (A)
32 T_b = T_3*I_del/I_3 // Braking torque (N-m)
33
34 // Results
35 disp("PART IV - EXAMPLE : 8.1 : SOLUTION :-")
36 printf("\nBraking torque = \%.f N-m", T_b)
```

Scilab code Exa 46.2 Current delivered when motor works as generator

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART IV : UTILIZATION AND TRACTION
7  // CHAPTER 8: BRAKING
8
9  // EXAMPLE : 8.2 :
10  // Page number 806
11 clear ; clc ; close ; // Clear the work space and console
12
13  // Given data
14  V = 525.0  // Voltage of motor(V)
```

```
15 I_1 = 50.0
                   // Current (A)
                   // Speed (rpm)
16 N_1 = 1200.0
                   // Current(A)
17 I_2 = 100.0
18 N_2 = 950.0
                   // Speed (rpm)
19 I_3 = 150.0
                   // Current (A)
20 N_3 = 840.0
                   // Speed (rpm)
                   // Current(A)
21 \quad I_4 = 200.0
                   // Speed (rpm)
22 N_4 = 745.0
23 N = 1000.0
                   // Speed opearting (rpm)
                   // Resistance (ohm)
24 R = 3.0
25 R_m = 0.5
                   // Resistance of motor(ohm)
26
27 // Calculations
28 I = 85.0
                             // Current drawn at 1000 rpm
      (A)
29 \text{ back\_emf} = V-I*R\_m
                            // Back emf of the motor (V)
                            // Total resistance (ohm)
30 R_t = R + R_m
31 I_del = back_emf/R_t
                          // Current delivered (A)
32
33 // Results
34 disp("PART IV - EXAMPLE : 8.2 : SOLUTION :-")
35 printf("\nCurrent delivered when motor works as
      generator = \%.f A", I_del)
```

Scilab code Exa 46.3 Energy returned to lines

```
// A Texbook on POWER SYSTEM ENGINEERING
// A. Chakrabarti , M. L. Soni , P. V. Gupta , U. S. Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 8: BRAKING
// EXAMPLE : 8.3 :
```

```
10 // Page number 810
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
                    // Weight of train(tonne)
14 W = 400.0
                    // Gradient (%)
15 G = 100.0/70
                    // Time(sec)
16 t = 120.0
17 \quad V_1 = 80.0
                    // Speed (km/hr)
                    // Speed (km/hr)
18 \quad V_2 = 50.0
                    // Tractive resistance (kg/tonne)
19 r_kg = 5.0
20 I = 7.5
                    // Rotational inertia (%)
21 n = 0.75
                    // Overall efficiency
22
23 // Calculations
24 \text{ W_e} = \text{W*}(100+\text{I})/100
                                              //
      Accelerating weight of train (tonne)
25 r = r_kg*9.81
                                                     //
      Tractive resistance (N-m/tonne)
26 energy_recuperation = 0.01072*W_e*(V_1**2-V_2**2)
              // Energy available for recuperation (kWh)
      /1000
27 	ext{ F_t = W*(r-98.1*G)}
                                               // Tractive
       effort during retardation (N)
28 distance = (V_1+V_2)*1000*t/(2*3600)
                           // Distance travelled by
      train during retardation period (m)
29 energy_train = abs(F_t)*distance/(3600*1000)
                   // Energy available during train
      movement (kWh)
30 net_energy = n*(energy_recuperation+energy_train)
             // Net energy returned to supply system(
     kWh)
31
32 // Results
33 disp("PART IV - EXAMPLE : 8.3 : SOLUTION :-")
```

Scilab code Exa 46.4 Energy returned to the line

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti, M.L. Soni, P.V. Gupta, U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 8: BRAKING
9 // EXAMPLE : 8.4 :
10 // Page number 810
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
14 W = 355.0
                     // Weight of train(tonne)
                     // Speed (km/hr)
15 \quad V_1 = 80.5
                     // Speed (km/hr)
16 \quad V_2 = 48.3
                     // Distance (km)
17 D = 1.525
                     // Gradient (%)
18 G = 100.0/90
                     // Rotational inertia (%)
19 I = 10.0
20 r = 53.0
                     // Tractive resistance (N/tonne)
                     // Overall efficiency
21 n = 0.8
22
23 // Calculations
24 beta = (V_1**2-V_2**2)/(2*D*3600)
                                          // Braking
      retardation (km phps)
25 \text{ W_e} = \text{W*}(100+\text{I})/100
                                          // Accelerating
      weight of train (tonne)
```

Scilab code Exa 46.5 Braking effect and Rate of retardation produced by this braki

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
7 // CHAPTER 8: BRAKING
9 // EXAMPLE : 8.5 :
10 // Page number 811-812
11 clear; clc; close; // Clear the work space and
      console
12 funcprot(0)
13
14 // Given data
                    // Area of brakes(sq.cm/pole face
15 \text{ area} = 16.13
16 phi = 2.5*10**-3 // Flux (Wb)
                      // Co-efficient of friction
17 u = 0.2
18 W = 10.0
                     // Weight of car(tonnes)
19
```

```
20 // Calculations
21 \ a = area*10**-4
                                      // Area of brakes (
     sq.m/pole face)
                                      // Force(N)
22 F = phi**2/(2*\%pi*10**-7*a)
                                      // Braking effect
23 force = F*u
      considering flux and coefficient of friction (N)
24 beta = u*F/(W*1000)*100
                                     // Rate of
      retardation produced by braking effect (cm/sec^2)
25
26 // Results
27 disp("PART IV - EXAMPLE : 8.5 : SOLUTION :-")
28 printf("\nBraking effect, F = \%.f N", force)
29 printf("\nRate of retardation produced by this
      braking effect, = \%.2 \, \text{f cm/sec}^2, beta)
```

Chapter 47

ELECTRIC TRACTION SYSTEMS AND POWER SUPPLY

 ${f Scilab\ code\ Exa\ 47.1}$ Maximum potential difference between any two points of the ra

```
1 // A Texbook on POWER SYSTEM ENGINEERING
2 // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3 // DHANPAT RAI & Co.
4 // SECOND EDITION
6 // PART IV : UTILIZATION AND TRACTION
 // CHAPTER 9: ELECTRIC TRACTION SYSTEMS AND POWER
     SUPPLY
9 // EXAMPLE : 9.1 :
10 // Page number 817-818
11 clear; clc; close; // Clear the work space and
     console
12
13 // Given data
                     // Length of section ACB of rail(
14 L = 3.0
     km)
```

```
// Distance of B from A(km)
15 L_B_A = 2.0
                      // Loading (A/km)
16 I_{load} = 350.0
                      // Resistance of rail(ohm/km)
17 r_rail = 0.035
                      // Resistance of negative feeder (
18 r_{feed} = 0.03
      ohm/km)
19
20 // Calculations
21 x_val = integrate('I_load*(L-x)', 'x', 0, L_B_A)
22 \quad I = x_val/(L_B_A-0)
      Current in negative feeder (A)
23 x = L-(I/I_load)
      Distance from feeding point (km)
24 C = integrate('r_rail*I_load*x', 'x',0,x)
25 V = r_feed*L_B_A*I
      Voltage produced by negative booster (V)
26 \text{ rating} = V*I/1000
                                                       //
      Rating of the booster (kW)
27
28 // Results
29 disp("PART IV - EXAMPLE : 9.1 : SOLUTION :-")
30 printf("\nMaximum potential difference between any
      two points of the rails, C = \%.2 \, f \, V", C)
31 printf("\nRating of the booster = \%.1 \text{ f kW}", rating)
```

Scilab code Exa 47.2 Maximum sag and Length of wire required

```
1  // A Texbook on POWER SYSTEM ENGINEERING
2  // A. Chakrabarti , M.L. Soni , P.V. Gupta , U.S. Bhatnagar
3  // DHANPAT RAI & Co.
4  // SECOND EDITION
5
6  // PART IV : UTILIZATION AND TRACTION
7  // CHAPTER 9: ELECTRIC TRACTION SYSTEMS AND POWER SUPPLY
8
```

```
9 // EXAMPLE : 9.2 :
10 // Page number 820
11 clear; clc; close; // Clear the work space and
      console
12
13 // Given data
               // Distance between poles (m)
14 D = 50.0
              // Weight of trolley wire per metre(kg)
15 w = 0.5
16 T = 520.0
              // Maximum tension (kg)
17
18 // Calculations
19 \ 1 = D/2
                                         // Half
     distance b/w poles (m)
20 d = w*1**2/(2*T)
                                         // Sag(m)
21 wire_length = 2*(1+(2*d**2/(3*1)))
                                        // Length of
      wire required (m)
22
23 // Results
24 disp("PART IV - EXAMPLE : 9.2 : SOLUTION :-")
25 printf("\nMaximum sag, d = \%.4 f metres", d)
26 printf("\nLength of wire required = \%. f metres",
     wire_length)
```