Deep learning par la pratique

Leçon 1 : L'auto-encodeur

Présenté par Morgan Gautherot

Auto-encodeurs

Le but de l'auto-encodeur est de prendre des données et de les encoder dans une dimension plus petite à partir de laquelle elles peuvent ensuite être restaurées avec précision.

Quand l'utilisons-nous?

- Compression des données
- Réduction de la dimensionnalité
- Apprendre des caractéristiques intéressantes
- Pré-entraînement non supervisé
- Générer de nouvelles données

Auto-encodeur avec des images

Deep learning par la pratique

Leçon 2: Transposed convolution

Présenté par Morgan Gautherot

Auto-encodeur avec des images

Architecture d'un auto-encodeur

4	5	8	7
1	8	8	8
3	6	6	4
6	5	7	8

4

1	4	1
1	4	3
3	3	1

=

122	148
126	134

4 x 4

3 x 3

Convolution

1	4	1
1	4	3
3	3	1

3 x 3

_

1	4	1	0	1	4	3	0	3	3	1	0	0	0	0	0
0	1	4	1	0	1	4	3	0	3	3	1	0	0	0	0
0	0	0	0	1	4	1	0	1	4	3	0	3	3	1	0
0	0	0	0	0	1	4	1	0	1	4	3	0	3	3	1

4 x 16

4	5	8	7
1	8	8	8
3	6	6	4
6	5	7	8

4 x 4

1	4	1	0	1	4	3	0	3	3	1	0	0	0	0	0
0	1	4	1	0	1	4	3	0	3	3	1	0	0	0	0
0	0	0	0	1	4	1	0	1	4	3	0	3	3	1	0
0	0	0	0	0	1	4	1	0	1	4	3	0	3	3	1

4 x 16

148

134

55	52
57	50

*

1	2	1
2	1	2
1	1	2

=

55	162	159	52
167	323	319	154
169	264	326	204
57	107	164	100

2 x 2

3 x 3

			55
55	52		52
57	50		57
2 x 2			50
2 1	. Z	·	4 x 1

	1	2	1				
	2	1	2				
	1	1	2				
_	3 x 3						

			'		U	U
ion			0	1	0	0
			2	0	1	0
			1	2	2	1
	1		2	1	1	2
	2	=	0	2	0	1
	2		1	0	2	0
			1	1	1	2
3			2	1	2	1
			0	2	0	2
			0	0	1	0
			0	0	1	1
			0	0	2	1
			0	0	0	2
				16	v 1	

55	110	55	0
110	55	110	0
55	55	110	0
0	0	0	0

0	52	104	52
0	104	3	104
0	52	52	104
0	0	0	0

					1
	55	162	159	52	
	167	323	319	154	
	169	264	326	204	H
	57	107	164	100	

0	0	0	0
0	50	100	50
0	100	50	100
0	50	50	100

Deep learning par la pratique

Leçon 3 : Applications

Présenté par Morgan Gautherot

Exemple: Factorisation de matrices

L'objectif est de minimiser l'erreur de reconstruction

$$\min_{U,V} ||X - U.V^T||$$

Décompositions de matrices

Décompositions de matrices

Pré-entraînement non supervisé

Analyse exploratoire des données

Analyse exploratoire des données

Si

Enc(Image1) = C1

Enc(Image2) = C2

Alors (C1+C2)/2 est une moyenne sémantique des deux images

Avec ce type de modèle, vous pouvez modifier les images pour ajouter une moustache ou rendre une personne plus âgée.