

IIC1253 — Matemáticas Discretas — 1' 2022

PAUTA TAREA 3

Pregunta 1

Sea A un conjunto no vacío y $R \subseteq A \times A$ una relación cualquiera. Para cada una de las siguientes afirmaciones, diga cuál de las direcciones son verdaderas o y cuales son falsas. En caso de una dirección ser verdadera, demuestrelo, y en caso de ser falsa de un contra-ejemplo.

Pregunta 1.a

 $R \circ R$ es asimétrica si, y solo si, R es asimétrica.

Solución:

PD: $R \circ R$ es asimétrica $\Leftrightarrow R$ es asimétrica . Demostraremos ambas direcciones.

 (\longleftarrow)

Esta dirección es falsa. basta con tomar la relación R:

$$R = \{(a,c), (c,b), (b,d), (d,a)\}$$

Esta relación es claramente asimétrica, ya que para cada par $(a,b) \in R \Rightarrow (b,a) \notin R$. Sin embargo, si tomamos $R \circ R$:

$$R \circ R = \{(a, b), (b, a), (c, d), (d, c)\}\$$

Esta relación es claramente no asimétrica, por lo que encontramos un contraejemplo.

Dado lo anterior la distribución de puntaje es la siguiente:

- (3 Puntos) Por describir un contraejemplo totalmente correcto
- (1 Punto) Por la explicación del contraejemplo

 (\Longrightarrow)

Demostraremos por contrapositivo. Sea R no asimétrica. Entonces $\exists a, b \ (a, b) \in R \land (b, a) \in R$. Luego, por definición de $R \circ R$, sabemos que $(a, a) \in R \circ R$ - Luego, $R \circ R$ no es asimétrica. Con esto demostramos que si $R \circ R$ es asimétrica, entonces R es asimétrica.

Dado lo anterior la distribución de puntaje es la siguiente:

- (2 Puntos) Por definir correctamente una relación no asimétrica
- (1 Punto) Por deducir que $(a, a) \in R \circ R$
- (1 Punto) Por concluir

Pregunta 1.b

 $R \circ R$ es transitiva si, y solo si, R es transitiva. Solución:

PD: $R \circ R$ es transitiva $\Leftrightarrow R$ es transitiva . Demostraremos ambas direcciones. (\Longrightarrow)

Demostraremos por contraejemplo. Podemos tomar la siguiente relación:

$$R = \{(a, b), (b, c)\}$$

Luego calculamos el $R \circ R$ respectivo

$$R \circ R = \{(a, c)\}$$

 $R \circ R$ es transitiva, ya que sólo tiene una tupla. sin embargo, R no es transitiva, ya que $(a, c) \notin R$. Por lo tanto, este lado de la demostración es falso.

Dado lo anterior la distribución de puntaje es la siguiente:

- (3 Puntos) Por describir un contraejemplo totalmente correcto
- (1 Punto) Por la explicación del contraejemplo

 (\Longleftrightarrow)

Sea R una relación transitiva. Por lo tanto,

$$\forall a, b, c(a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R$$

Sean x, y, z tal que $(x, y) \in R \circ R \land (y, z) \in R \circ R$.

Por definición de $R \circ R$:

$$(x,y) \in R \circ R \Rightarrow \exists w_1 \text{ tq } (x,w_1) \in R \land (w_1,y) \in R$$

$$(y,z) \in R \circ R \Rightarrow \exists w_2 \text{ tq } (y,w_2) \in R \land (w_2,z) \in R$$

Como R es transitiva, entonces $(x,y) \in R$ y $(y,z) \in R$. Luego, $(x,z) \in R \circ R$. Por lo tanto, $R \circ R$ es transitiva.

Dado lo anterior la distribución de puntaje es la siguiente:

- (1 Punto) Por enunciar la definición de transitividad
- (1 Punto) Por explicitar implicancias de definición de composición
- (1 Punto) Por deducir que $(x, y) \in R$ y $(y, z) \in R$
- (1 Punto) Por concluir que $R \circ R$ es transitiva

Pregunta 2

Pregunta 2.a

Solución:

Considerando el conjunto \mathcal{N} de todos los subconjuntos de \mathbb{N} finitos no nulos y la relación $R \subseteq \mathcal{N} \times \mathcal{N}$ tal que $(A, B) \in R$ si, y sólo si es cierto que

$$A \neq B \rightarrow [\min((A \cup B) - (A \cap B))] \in A$$

mostramos que R es

- Refleja: Definiendo $C \in \mathcal{N}$, dado que C = C, se tiene que $(C, C) \in R$ debido a que se cumple el lado izquierdo de la implicancia.
- Antisimétrica: Sean $A, B \in \mathcal{N}$ tales que $(A, B) \in R$ y $(B, A) \in R$. Por contradicción suponga que $A \neq B$. Es claro que $a^* = \min((A \cup B) (A \cap B)) \in A$ y $b^* = \min((B \cup A) (B \cap A)) \in B$ por definición de R. Además, por conmutatividad de la unión e intersección de conjuntos, se tiene que

$$\min((A \cup B) - (A \cap B)) = \min((B \cup A) - (B \cap A)),$$

es decir, $a^* = b^*$. Entonces $a^* \in A \cap B$, lo que es una contradicción ya que también es cierto que $a^* \in (A \cup B) - (A \cap B)$. Por lo tanto, A = B necesariamente.

- Conexa: Definiendo $A, B \in \mathcal{N}$ se analizan los siguientes casos
 - Si A = B entonces se cumple que $(A, B) \in R \vee (B, A) \in R$ por reflexividad.
 - Si $A \neq B$, entonces se tiene que $(A \cup B) (A \cap B) \neq \emptyset$. Considerando que este conjunto es un subconjunto de \mathbb{N} y que (\mathbb{N}, \leq) es un orden total, entonces existe un $z^* \in (A \cup B) (A \cap B)$ tal que

$$z^* = \min((A \cup B) - (A \cap B)).$$

Y por lo tanto, como $((A \cup B) - (A \cap B)) \subseteq (A \cup B)$, se cumple que

$$z^* \in A \cup B \Leftrightarrow z^* \in A \lor z^* \in B$$
$$\Leftrightarrow \min((A \cup B) - (A \cap B)) \in A \lor \min((B \cup A) - (B \cap A)) \in B$$
$$\Leftrightarrow (A, B) \in R \lor (B, A) \in R.$$

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Se demuestran correctamente las tres propiedades.
- (3 Puntos) Se demuestran con errores menores antisimetría o convexidad o no se demuestra reflexividad.
- (2 Puntos) No se demuestra antisimetría o convexidad o se demuestran todas las propiedades con errores mayores.
- (0 Puntos) Se demuestra sólo reflexividad u otro caso.

Pregunta 2.b

Sean $A, B, C \in \mathcal{N}$. Suponga que $(A, B) \in R$ y $(B, C) \in R$, entonces se quiere demostrar que $(A, C) \in R$

- Si A = B o B = C entonces se cumple trivialmente
- Si $A \neq B \neq C$

Se define $A \triangle B = (A \cup B) - (A \cap B)$, tal que:

$$x^* = \min(A \triangle B)$$
 $y^* = \min(B \triangle C)$ $z^* = \min(A \triangle C)$

Es evidente que $x^* \in A - B$ y $y^* \in B - C$. Entonces, queremos demostrar que $z^* \in A - C$. Considere los siguientes conjuntos:

$$S_1 = A - (B \cup C)$$

$$S_2 = B - (A \cup C)$$

$$S_3 = C - (B \cup B)$$

$$S_4 = (A \cap B) - C$$

$$S_5 = (B \cap C) - A$$

$$S_6 = (A \cap C) - B$$

$$S_7 = A \cap B \cap C$$

Notar que

$$x^* \in S_1 \cup S_6 = A - B \tag{1}$$

$$y^* \in S_2 \cup S_4 = B - C \tag{2}$$

Asi necesitamos demostrar que

$$z^* \in S_1 \cup S_4 = A - C \tag{3}$$

Ademas, notar que

$$\min(A \triangle B) = \min(S_1 \cup S_6 \cup S_2 \cup S_5) \tag{4}$$

$$\min(B \triangle C) = \min(S_2 \cup S_4 \cup S_3 \cup S_6) \tag{5}$$

$$\min(A \triangle C) = \min(S_1 \cup S_4 \cup S_3 \cup S_5) \tag{6}$$

Entonces, nos pondremos en los distintos casos dados por (1) y (2):

1. Si $x^* \in S_1$ y $y^* \in S_2$, por (4) y (5) se tiene que:

$$x^* = \min(S_1 \cup S_6 \cup S_2 \cup S_5)$$

$$y^* = \min(S_2 \cup S_4 \cup S_3 \cup S_6)$$

Pero como $x^* \in S_1$ entonces $x^* = \min(S_1)$. Lo mismo podemos concluir para $y^* = \min(S_2)$ Ademas como $x^* = \min(S_1 \cup S_6 \cup \mathbf{S_2} \cup S_5)$, entonces

$$x^* \le \min(S_2) = y^*$$

Así, entonces podemos concluir

$$x^* \leq \min(S_2 \cup S_4 \cup S_3 \cup S_6) \Rightarrow x^* = \min(S_1 \cup S_6 \cup S_2 \cup S_5 \cup S_4 \cup S_3)$$
$$\Rightarrow x^* = \min(S_1 \cup S_4 \cup S_3 \cup S_6)$$
$$\Rightarrow x^* = \min(A \triangle C)$$
$$\Rightarrow x^* = z^*$$

Por lo que $z^* \in S_1 \subseteq A - C$

2. Si $x^* \in S_1$ y $y^* \in S_4$. Haciendo el mismo argumento que en el punto anterior, tenemos que:

$$x^* = \min(S_1) = \min(S_1 \cup S_6 \cup S_2 \cup S_5)$$

$$y^* = \min(S_4) = \min(S_2 \cup S_4 \cup S_3 \cup S_6)$$

Si tomamos el mínimo entre x^* y y^*

$$\min(\{x^*, y^*\}) = \min(S_1 \cup S_6 \cup S_2 \cup S_5 \cup S_4 \cup S_3)$$

$$= \min(S_1 \cup S_4 \cup S_3 \cup S_6)$$

$$= \min(A \triangle C)$$

$$= z^*$$

Por lo que $z^* \in (S_1 \cup S_4) = A - C$

3. Si $x^* \in S_6$ y $y^* \in S_2$, tenemos que:

$$x^* = \min(S_6) = \min(S_1 \cup S_6 \cup S_2 \cup S_5)$$
$$y^* = \min(S_2) = \min(S_2 \cup S_4 \cup S_3 \cup S_6)$$

Entonces, $x^* = \min(S_2 \cup S_6) = y^*$ y como $x^* \in S_6$ y $y^* \in S_2$ se tiene que $x^* \in (S_6 \cap S_2)$. Esto quiere decir que $S_6 \cap S_2 \neq \emptyset$. Sin embargo,

$$S_{6} \cap S_{2} = ((A \cap C) - B) \cap (B - (A \cup C))$$

$$= ((A \cap C) \cap B^{c}) \cap (B \cap (A \cup C)^{c})$$

$$= A \cap C \cap B^{c} \cap B \cap A^{c} \cap C^{c}$$

$$= (A \cap A^{c}) \cap (B \cap B^{c}) \cap (C \cap C^{c})$$

$$= \varnothing \cap \varnothing \cap \varnothing$$

$$= \varnothing$$

Lo que es una contradicción, por lo que este caso no puede ocurrir.

4. Si $x^* \in S_6$ y $y^* \in S_4$. Se tiene que:

$$x^* = \min(S_6) = \min(S_1 \cup S_6 \cup S_2 \cup S_5)$$

$$y^* = \min(S_4) = \min(S_2 \cup S_4 \cup S_3 \cup S_6)$$

Como $y^* = \min(S_2 \cup S_4 \cup S_3 \cup S_6)$, entonces

$$y^* \leq \min(S_6) \Rightarrow y^* \leq x^*$$

$$\Rightarrow y^* \leq \min(S_1 \cup S_6 \cup S_2 \cup S_5)$$

$$\Rightarrow y^* = \min(S_1 \cup S_6 \cup S_2 \cup S_5 \cup S_4 \cup S_3)$$

$$\Rightarrow y^* = \min(S_1 \cup S_4 \cup S_3 \cup S_5)$$

$$\Rightarrow y^* = \min(A \triangle C)$$

$$\Rightarrow y^* = z^*$$

Por lo que $z^* \in S_4 \subseteq A - C$

Asi queda demostrado que $z^* \in A \Rightarrow (A,C) \in R$. Por lo que R es transitiva.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Se demuestran correctamente todos los casos.
- (3 Puntos) Se demuestran dos casos correctamente y/o la demostración presenta errores menores.
- (2 Puntos) Se demuestra solo un caso correctamente y/o la demostración presenta errores importantes.
- (0 Puntos) No demuestra ningún caso y/o solo menciona el caso trivial.