

Combining Word Embeddings of Protein Sequences with Evolutionary Information for Secondary Structure Prediction Using Deep Neural Networks

Anna Reithmeir
Introduction to Bachelor's thesis
Advisor: Michael Heinzinger
28th November 2018

Overview

- Project introduction
- Dataset
- Data preprocessing
- Convolutional neural networks
- Results so far
- Outlook

Project Introduction

- Secondary structure prediction with neural networks
- Integrate evolutionary information in input
- Multi target prediction
 - Secondary structure
 - Solvent accessibility
 - Flexibility
- ProtVec representation on residue basis

Project Introduction

Dataset

- 3313 protein sequences from PDB
- According structure information, solvent accessibility and flexibility from DSSP algorithm
- Aligned sequences for each protein sequence

Dataset – Sequence Lengths

Dataset – DSSP States

Dataset – DSSP-3 States Chains

Avg: 4,2

Avg: 9,8

Avg: 4,7

Dataset – Training, Validation, Test Set

- 20% of the samples → test set (649 samples)
- Remaining 80% → train and validation set (2092 and 529 samples)
- Random selection, assured equal distribution

Implementation So Far

- Training and testing pipeline implemented
- Simple CNN used
 - 3 layers
 - Kernels: 1, 7, 15
 - NLL loss + log_softmax
- · Secondary structure prediction without evolutionary information

- Protein sequences represented through word embeddings
- ProtVec
 - Vector embeddings learned through Word2Vec
 - Vector for each possible n-gram, fixed length
- 3-grams, length 100

Convolutional Neural Networks

https://de.wikipedia.org/wiki/Convolutional_Neural_Network

Convolutional Neural Networks

https://brohrer.github.io/images/cnn18.png

Results So Far – 1hot & ProtVec Accuracy

Results So Far – 1hot & ProtVec Accuracy

1hot

ProtVec

Outlook

- Incorporate evolutionary information
- Flexibility and solvent accessibility prediction
- Tune hyperparameters
 - Kernel sizes
 - Regularization
 - Non-linear activation functions e.g. SeLU
- LSTM networks
 - Capable of learning long-term dependencies

Thank you for your attention!