Graphentheoretische Konzepte und Algorithmen

SoSe 19

Probeklausur vom 12. Juni 2019 Deckblatt

J. Padberg

Bitte prüfen Sie zuerst, dass Ihr Klausurexemplar 14 Seiten hat.

Bitte heften Sie die Lösungen an das ausgefüllte Deckblatt.

Bitte schreiben Sie auf **jedes** Blatt, dass Sie abgeben, Ihren Namen und Matrikelnummer und vermerken Sie bitte an der Aufgabe, falls Sie zusätzliche Blätter zur Lösung benutzt haben.

Name	
Matrikelnummer	

DAUER: Für die Bearbeitung sind 90 Minuten vorgesehen.

Bewertung:

Klausurpunkte	Leistungspunkte
> 100	15
≥ 96	14
≥ 91	13
≥ 86	12
<u>≥ 81</u>	11
≥ 76	10
≥ 71	9
≥ 66	8
≥ 61	7
≥ 56	6
≥ 50	5
< 50	0-4

Erreichte Leistungspunkte:

Erlaubte Hilfsmittel:

- 3 doppelseitig beschriftete Seiten mit Notizen
- Papier und Schreibgerät
- und sonst nichts:
 - keine Folienkopien
 - kein Skript
 - keine elektronischen Geräte (kein Taschenrechner, kein Laptop, kein Smartphone, etc.)

	Name	:	
	Matrikelnummer		
fgabe 1: nr oder Falsch?? Jeweils			1 Pun
e begründen Sie Ihre Auss . Es gibt keinen nicht-plan Begründung:		_	_
. Ein Graph, dessen Gerü ist immer e	alle isomorph sind, Baum	wahr oder	falsch Begründu r

Name	
Matrikelnummer	

Fortsetzung der Aufgabe 1:

3. Für einen schlichten, ungerichteten Graphen G gilt:

4. Es gibt keinen Algorithmus,

Name	
Matrikelnummer	

Fortsetzung der Aufgabe 1:

Name	
Matrikelnummer	

Name	
Matrikelnummer	

Fortsetzung der Aufgabe 2:

Name	
Matrikelnummer	

Name	
Matrikelnummer	

Aufgabe 4:......15 Punkte

Gegeben das folgende Netzwerk. Berechnen Sie bitte den maximalen Fluss mit dem Ford-Fulkerson-Algorithmus, wobei Sie dieses unbewertete Netzwerk benutzen sollen.

Name	
Matrikelnummer	

- 1. Die Bands Krach und Noise haben den gleichen Gitarristen.
- 2. Die Bands Pink Lips und Link Pips nutzen zum Teil die gleiche Ausrüstung.
- 3. Die Leadsängerin der Pink Lips ist Bassistin bei dem Jazz-Trio JamJazz.
- 4. Keine der drei Punkbands *Pink Lips*, *Noise* und *Folle Vindel* sollen gleichzeitig spielen, um die Fans nicht zu überfordern.
- 5. Der Gitarrist von Krach möchte unbedingt die Band Folle Vindel erleben.
- 6. Die Schlagersängerin Annabell ist Tänzerin für's Schlagerduo.
- 7. Das Schlagerduo will nicht zeitgleich mit irgendeiner der drei Punkbands spielen.
- 8. Das Jazz-Trio *JamJazz* fürchtet die Konkurrenz des *Schlagerduo*s und will deswegen nicht gleichzeitig mit ihm spielen.
- 9. Der Hauptsponsor möchte auf jeden Fall Noise, Link Pips und Annabell sehen.

Damit nicht zuviele Lehrveranstaltungn ausfallen, so viele wie möglich parallele Auftritte stattfinden. Zeigen und erläutern Sie bitte, wie Sie mit Hilfe der Graphentheorie den Bands verschiedene Spielzeiten zuordnen.

Name	
Matrikelnummer	

 $T: \begin{array}{|c|c|} \hline L \\ \hline z \\ \hline \downarrow \\ \hline Y \\ \hline z \\ \hline \end{array} \begin{array}{|c|c|} \hline K \\ \hline Y \\ \hline \downarrow \\ \hline z \\ \hline \end{array}$

Name	
Matrikelnummer	

Fortsetzung der Aufgabe 6:

2. Erläutern Sie bitte die Klebebedingungen. 5 Punkte

Name	
Matrikelnummer	

Name	
Matrikelnummer	

Fortsetzung der Aufgabe 7:

Name	
Matrikelnummer	

Gegeben dieser vollständige und gewichtete Graph K_6 . Finden Sie mit dem "Nächstgelegener Knoten"-Algorithmus einen möglichst kurze Rundreise, die bei v1 beginnt.

