Introduction to Machine Learning (Spring 2019)

Homework #2 (40 Pts, April 29)

Student ID 2014310198

Name Namjaeyoun

Instruction: We provide all codes and datasets in Python. Please write your code to complete the softmax classifier. Compress 'models/SoftmaxClassifier.py' and submit with the filename 'HW2 STUDENT ID.zip'.

(1) [20 pts] Implement five functions in 'models/SoftmaxClassifier.py'. ('train', 'eval', 'softmax_loss', 'compute_grad' and '_softmax' respectively). Copy 'optim/Optimizer.py' from the previous assignment if you have implemented.

```
1. <func train>
2.
             for i in np.arange(0, num data, batch size):
3.
                  batch x = x[i:i + batch size]
4.
                  batch y = y[i:i + batch size]
                  score = batch_x.dot(self.W)
5.
6.
                  prob = self. softmax(score)
7.
                  batch losses.append(self.softmax loss(prob, batch y))
                  grad = self.compute grad(batch x, self.W, prob, batch y)
8.
9.
                  self.W = optimizer.update(self.W, grad, lr)
10.
11. <func eval>
12.
             score = x.dot(self.W)
13.
             pred = np.argmax(score, 1)
14.
15. <func softmax loss>
16.
             N = prob.shape[0]
17.
             softmax loss = -np.log(prob[range(N), label])
18.
             softmax loss = np.sum(softmax loss)/N
19.
20. <func compute grad>
21.
             dprob = prob
22.
             N = x.shape[0]
23.
             dprob[range(N), label] = 1
24.
             grad weight = np.dot(x.T, dprob) / N
25.
26. <func softmax>
27.
             ex = np.exp(x - x.max(1, keepdims=True))
28.
             softmax = ex /np.reshape(np.sum(ex, axis=1), (-1, 1))
29.
```

- (2) [20 pts] Writre your experimental results.
- (a) For 'Iris' and 'Digit' dataset, adjust the number of training epochs and learning rate to maximize accuracy. Report your best results for each optimizer.

(Batch size = 10 for Iris & 256 for Digit, epsilon = 0.01, gamma = 0.9)

Dataset	Optimizer	# of epochs	Learning rate	Acc.
Iris	SGD	500	0.05	1
	Momentum	500	0.05	1
	RMSprop	500	0.05	1
Digit	SGD	50	0.00001	0.92
	Momentum	50	0.00001	0.90
	RMSprop	50	0.00001	0.92

(b) For 'Digit' dataset, execute the softmax classifier with a given parameter setting. Using the code provided in 'main.py', show 10 sample images for true labels and corresponding predicted labels. (Set the variable 'show_plot' as 'True' to show sample images.).

Parameter Settings				
Batch size	256			
Learning rate	0.00001			
Optimizer	RMSProp			
Epsilon	0.01			
Gamma	0.9			
# of Epochs	50			

