Cryptography, part I: Symmetric Key Encryption

3/10/2012 Cryptography

Symmetric Cryptosystem

Scenario

- Alice wants to send a message (plaintext P) to Bob.
- The communication channel is insecure and can be eavesdropped
- If Alice and Bob have previously agreed on a symmetric encryption scheme and a secret key K, the message can be sent encrypted (ciphertext C)

Issues

- What is a secure symmetric encryption scheme?
- What is the complexity of encrypting/decrypting?
- What is the size of the ciphertext, relative to the plaintext?

Basics

- Notation (simplified for fixed-length plaintexts)
 - Secret key K
 - Encryption function $E_{\kappa}(P)$
 - Decryption function D_K(C)
 - Encryption and decryption are permutation functions (bijections) on the set of all n-bit arrays
- Efficiency
 - functions E_{κ} and D_{κ} should have efficient algorithms
- Consistency
 - Decrypting the ciphertext yields the plaintext
 - $-D_{\kappa}(E_{\kappa}(P)) = P$

3/10/2012 Cryptography

Attacks

- Attacker may have
 - a) collection of ciphertexts (ciphertext only attack)
 - b) collection of plaintext/ciphertext pairs (known plaintext attack)
 - c) collection of plaintext/ciphertext pairs for plaintexts selected by the attacker (chosen plaintext attack)
 - d) collection of plaintext/ciphertext pairs for ciphertexts selected by the attacker (chosen ciphertext attack)

3/10/2012

Brute-Force Attack

- Try all possible keys K and determine if D_K(C) is a likely plaintext
 - Requires some knowledge of the structure of the plaintext (e.g., PDF file or email message)
- Key should be a sufficiently long random value to make exhaustive search attacks unfeasible

3/10/2012 Cryptography

Encrypting English Text

- English text typically represented with 8-bit ASCII encoding
- A message with t characters corresponds to an n-bit array, with n = 8t

 English plaintexts are a very small subset of all n-bit arrays

Substitution Ciphers

- Each letter is uniquely replaced by another.
- key = permutation between English letters
- There are 26! possible substitution cipher keys
- $26! > 4 \times 10^{26}$

 One popular substitution "cipher" for some Internet posts is ROT13.

Public domain image from http://en.wikipedia.org/wiki/File:ROT13.png

3/10/2012

Cryptography

Frequency Analysis

- Letters in a natural language, like English, are not uniformly distributed.
- Knowledge of letter frequencies, including pairs and triples can be used in cryptologic attacks against substitution ciphers.

a:	8.05%	b:	1.67%	c:	2.23%	d:	5.10%
e:	12.22%	f:	2.14%	g:	2.30%	h:	6.62%
i:	6.28%	j:	0.19%	k:	0.95%	1:	4.08%
m:	2.33%	n:	6.95%	o:	7.63%	p:	1.66%
q:	0.06%	r:	5.29%	s:	6.02%	t:	9.67%
u:	2.92%	v:	0.82%	w:	2.60%	x:	0.11%
y:	2.04%	z:	0.06%				

Letter frequencies in the book The Adventures of Tom Sawyer, by

Substitution Boxes

- Permutations can also be done over binary alphabets, e.g. n-bit strings.
- Permutation on n-bit strings can be described by n/2 x n/2 "substitution box", or "S-box":

		01					1		
00	0011	0100 0110 1101 0000	1111	0001	0	3	8 6 13 0	15	1
01	1010	0110	0101	1011	1	10	6	5	11
10	1110	1101	0100	0010	2	14	13	4	2
11	0111	0000	1001	1100	3	7	0	9	12
(a)					(b)				

Figure 8.3: A 4-bit S-box (a) An S-box in binary. (b) The same S-box in decimal.

3/10/2012 Cryptography

One-Time Pads

- There is one type of substitution cipher that is absolutely unbreakable.
 - The one-time pad was invented in 1917 by Joseph Mauborgne and Gilbert Vernam
 - Assume alphabet of p elements (e.g. p=26 for English)
 - We use a block of shift keys, $K=(k_1,k_2,...,k_n)$, to encrypt a plaintext of length n, $M=(m_1,m_2,...,m_n)$, i.e. $C=(c_1,c_2,...,c_n)$ where $c_i=m_i+k_i$ (modulo p).
 - Each shift key is chosen uniformly at random in {1,...,p}
- Since each shift is random, every ciphertext is equally likely for any plaintext.

Weaknesses of the One-Time Pad

- In spite of their perfect security, one-time pads have some weaknesses
- The key has to be as long as the plaintext
- Keys can never be reused
 - Repeated use of one-time pads allowed the U.S. to break some of the communications of Soviet spies during the Cold War.

3/10/2012 Cryptography 11
Public domain declassified government image from the original public of the substitution of the subs

Block Ciphers

- In a block cipher:
 - Plaintext and ciphertext have fixed block length b (e.g., 128 bits)
 - A plaintext of length n is partitioned into a sequence of m
 blocks, P[0], ..., P[m-1], where n ≤ bm < n + b
- Each message is encrypted or decrypted in terms of its blocks.

Padding

- Block ciphers require the length n of the plaintext to be a multiple of the block size b
- Padding the last block needs to be unambiguous (cannot just add zeroes)
- When the block size and plaintext length are a multiple of 8, a common padding method (PKCS5) is a sequence of identical bytes, each indicating the length (in bytes) of the padding
- Example for b = 128 (16 bytes)
 - Plaintext: "Roberto" (7 bytes)
 - Padded plaintext: "Roberto 999999999" (16 bytes), where 9 denotes the number and not the character
- We need to always pad the last block, which may consist only of padding

3/10/2012 Cryptography 13

Block Ciphers in Practice

- Data Encryption Standard (DES)
 - Developed by IBM and adopted by NIST in 1977
 - 64-bit blocks and 56-bit keys
 - Small key space makes exhaustive search attack feasible since late 90s
- · Triple DES (3DES)
 - Nested application of DES with three different keys KA, KB, and KC
 - Effective key length is 168 bits, making exhaustive search attacks unfeasible
 - $C = E_{KC}(D_{KB}(E_{KA}(P))); P = D_{KA}(E_{KB}(D_{KC}(C)))$
 - Equivalent to DES when KA=KB=KC (backward compatible)
 - Mode with KC=KA but different KB also seems to resist attacks so far.
- Advanced Encryption Standard (AES)
 - Selected by NIST in 2001 through open international competition and public discussion
 - 128-bit blocks and several possible key lengths: 128, 192 and 256 bits
 - Exhaustive search attack not currently possible
 - AES-256 is the symmetric encryption algorithm of choice

The Advanced Encryption Standard (AES)

- In 1997, the U.S. National Institute for Standards and Technology (NIST) put out a public call for a replacement to DES.
- It narrowed down the list of submissions to five finalists, and ultimately chose an algorithm that is now known as the Advanced Encryption Standard (AES).
- AES is a block cipher that operates on 128-bit blocks. It is designed to be used with keys that are 128, 192, or 256 bits long, yielding ciphers known as AES-128, AES-192, and AES-256.

3/10/2012

15

AES Round Structure

- The 128-bit version of the AES encryption algorithm proceeds in ten rounds.
- Each round performs an invertible transformation on a 128-bit array, called state.
- The initial state X₀ is the XOR of the plaintext P with the key K:
- $X_0 = P XOR K.$
- Round i (i = 1, ..., 10) receives state X_{i-1} as input and produces state X_i.
- The ciphertext C is the output of the final round: C = X₁₀.

3/10/2012 Cryptography

16

AES Rounds

- Each round is built from four basic steps:
- 1. SubBytes step: an S-box substitution step
- 2. ShiftRows step: a permutation step
- **3. MixColumns step**: a matrix multiplication step
- 4. AddRoundKey step: an XOR step with a round key derived from the 128-bit encryption key

3/10/2012 Cryptography 17

Block Cipher Modes

- A block cipher mode describes the way a block cipher encrypts and decrypts a sequence of message blocks.
- Electronic Code Book (ECB) Mode (is the simplest):
 - Block P[i] encrypted into ciphertext block C[i] = $E_{\kappa}(P[i])$
 - Block C[i] decrypted into plaintext block M[i] = D_K(C[i])

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

Strengths and Weaknesses of ECB

• Strengths:

- Is very simple
- Allows for parallel encryptions of the blocks of a plaintext
- Can tolerate the loss or damage of a block

Weakness:

- Not Chosen-Plaintext Secure
- Intuitively: Related plaintexts always encrypt the same
- Example: Documents and images are not suitable for ECB encryption since patters in the plaintext are repeated in the ciphertext:

3/10/2012

Cryptog

Cipher Block Chaining (CBC) Mode

- In Cipher Block Chaining (CBC) Mode
 - The previous ciphertext block is combined with the current plaintext block $C[i] = E_K(C[i-1] \oplus P[i])$
 - C[-1] = V, a random block separately transmitted encrypted (known as the initialization vector)
 - Decryption: $P[i] = C[i-1] \oplus D_{\kappa}(C[i])$

Strengths and Weaknesses of CBC

• Strengths:

- Doesn't show patterns in the plaintext
- Is the most common mode
- Is fast and relatively simple

• Weaknesses:

- CBC requires the reliable transmission of all the blocks sequentially
- CBC is not suitable for applications that allow packet losses (e.g., music and video streaming)