Analogy using vector transport

Word2grass

September 16, 2020

Analogy task looks like this - a:b::c:d where a,b,c are three words represented by points on the grassmanian manifold. Now, let me denote a,b,c with orthonormal matrices A,B,C respectively.

Steps to find the unknown subspace D representing the word d-

• Use the closed form equation of the geodesic connecting a and b to get the tangent vector at point A. The closed form equation is given by

$$\gamma(t) = XV\cos(\Theta t) + U\sin(\theta t)$$

where $\gamma(0) = A$, $\gamma(1) = B$ and $\Theta = \arctan \Sigma$. The quantities U, Σ, V are gotten after the SVD decomposition of projection of $B(A^TB)^{-1}$ onto the orthogonal complement of X, i.e.,

$$U\Sigma V^T = (I - AA^T)B(A^TB)^{-1}$$

The tangent vector that we need is basically $\dot{\gamma}(0)$. Let us give it a better name T_A . So T_A can be calculated simply using $U\Theta V^T$. Infact, Θ is the diagonal matrix having all the principal angles between subspace A and B. We also normalise T_A because it might have arbitrary length.

- We also calculate the geodesic length of the curve connecting the two subspaces. This turns out to be $\sqrt{\sum_i \theta_i^2}$ where θ_i are the principal angles between the two subspaces. Let us call it L.
- Now that we have T_A , we use the vector transport equation to parallely translate it along the geodesic connecting A and C. The closed form of the equation is given by

$$T_A(t) = (-AV\sin(\Theta t)U^T + U\cos(\Theta t)U^T + (I - UU^T))T_A$$

where $T_A(t)$ represents the tangent vector after being transported to a point $\alpha(t)$ where α represents the geodesic. $\Theta = \arctan(\Sigma)$ and U, Σ, V are gotten after SVD decomposition of $(I - AA^T)C(A^TC)^{-1}$, i.e, $U\Sigma V^T = (I - AA^T)C(A^TC)^{-1}$. We require $\tau T_A(1)$ and let us call it T_C . We rescale T_C by L.

• Next step is to use this transported vector at subspace C to move along the geodesic till we have covered a distance of length L. The closed form of this equation is given by -

$$\beta(t) = XV\cos(\Theta t) + U\sin(\theta t)$$

where $\beta(0) = C$ and U, Θ, V are gotten after SVD decomposition of the parallel transported tangent vector T_C , i.e, $U\Theta V^T = T_C$.

So, the point we get after traversing the curve β till length L at a velocity equal to T_C is our required subspace D. Now we search for all words that are close to D.