集合論 メモ

tko919

目次

1.4	順序数の算法	4
1.3	順序数の定義	
1.2	整列集合の諸性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
1.1	ZFC 公理系	2
第1章	順序数	2

第1章

順序数

1.1 ZFC 公理系

- (1) 外延性の公理 : 集合 A,B に属する元が一致するなら A=B
- (2) 空集合の公理: いかなる元も持たないような集合が存在する
- (3) 対の公理 : 要素 x,y について、x,y のみを元とする集合が存在する
- (4) 和集合の公理 : 集合 X について、 X の元の要素全体からなる集合が存在する
- (5) 無限公理 : $\emptyset \in X$ かつ $\forall x \in X, x \cup \{x\} \in X$ なる集合 X が存在する
- (6) べき集合の公理: 集合 X について、 X の部分集合全体からなる集合 2^X が存在する
- (7) 置換公理: 集合 X と論理式 φ について、 $\forall x \in X$ に対し $\varphi(x,y)$ を満たす y が一意に存在するなら、 $\{y | \exists x \in X, \varphi(x,y)\}$ は集合である
- (8) 正則性公理 : 空でない集合 X について、元 $x \in X$ であって $\forall y \in X, y \notin x$ が成り立つ
- (9) 選択公理 : 空でない集合の族 $\{X_{\lambda}\}_{\lambda\in\Lambda}$ について、選択関数 $f:\Lambda\to \cup_{\lambda\in\Lambda}X_{\lambda}, f(\lambda)\in X_{\lambda}$ が存在する

1.2 整列集合の諸性質

定義 1.2.1. 全順序かつ任意の部分集合が最小元を持つとき、整列集合 と呼ぶ。

命題 1.2.1. (P,<) を整列集合, $f:P\to P$ を単調増加とすると, $\forall x\in P, f(x)\geq x$ 。

証明. f(x) < x なる $x \in P$ の最小元を z とする。 w = f(z) とおくと f(w) < f(z) = w < z より最小性に矛盾。

系 1.2.1. 整列集合の同型写像は恒等写像しかない。	
------------------------------	--

系 1.2.2. 整列集合 P_1,P_2 が同型ならば、同型写像は一意。

P を整列集合, $w \in P$ として, $\{x \in P : x < w\}$ を w の 切片 P(w) と呼ぶ。

補題 1.2.1. 自身の切片と同型な整列集合 P は存在しない。

証明. $f:P \to P(w)$ を同型写像とすると, $f(w) < w, P(w) \subset P$ より命題 1.2.1 に矛盾する。

定理 1.2.1. P_1, P_2 :整列集合について、次のいずれか1つが成り立つ。

- P₁, P₂ は同型
- P1 と P2 の切片は同型
- P2 と P1 の切片は同型

証明. $f = \{(x,y) \in P_1 \times P_2 \colon P_1(x) \cong P_2(y)\}$ とおく。

補題 1.2.1 より f は単射な写像。また x' < x とすると、同型写像 $\varphi: P_1(x) \to P_2(f(x))$ を $P_1(x')$ に制限して $P_1(x') \cong P_2(\varphi(x')), \varphi(x') = f(x') < f(x)$ を得るので、f は順序を保つ。

 $\operatorname{dom} f = P_1, \operatorname{ran} f = P_2$ のとき 1 番目が成り立つ。

 $\operatorname{ran} f \neq P_2$ のとき、 y_0 を $P_2 \setminus \operatorname{ran} f$ の最小元とする。 $y_1 < y_2, y_2 \in \operatorname{ran} f \Rightarrow y_1 \in \operatorname{ran} f$ に注意すると $\operatorname{ran} f \cong P_2(y_0)$ がわかる。 もし $\operatorname{dom} f \neq P_1$ ならば x_0 を $P_1 \setminus \operatorname{dom} f$ の最小元として同様に $\operatorname{dom} f \cong P_1(x_0)$ より $(x_0, y_0) \in f$ だが $x_0 \notin \operatorname{dom} f$ に矛盾する。よって $\operatorname{dom} f = P_1$ より 2 番目が成り立つ。また $\operatorname{dom} f \neq P_1$ のときも同様に 3 番目が成り立つことがわかる。

これらの条件は互いに排反なので題意が示された。

1.3 順序数の定義

定義 1.3.1. 集合 T が推移的とは、任意の元が T の部分集合となることである。 $(y \in x \in T \Rightarrow y \in T$ と言い換えられる)

定義 1.3.2. 順序数とは、 関係 \in について整列集合かつ推移的な集合のことである (正則性公理から整列性は全順序性に仮定を弱められる)。

順序数の二項関係 < を α < β \iff α \in β で定義する。

補題 1.3.1. (1) $0 = \emptyset$ は順序数。

- (2) α を順序数として $\beta \in \alpha$ ならば β は順序数。
- (3) $\alpha \neq \beta$ が順序数かつ $\alpha \subset \beta$ ならば $\alpha \in \beta$ 。
- (4) α, β が順序数ならば $\alpha \subset \beta$ または $\beta \subset \alpha$ 。

証明. (1),(2) 明らか。

(3) γ を $\beta\setminus \alpha$ の最小元 ((2) よりこれは順序数) として $\alpha=\gamma$ を示す。まず $x\in \gamma$ とすると γ の推移性から $x\in \beta$ 。ここで $x\notin \alpha$ ならば $x\in \beta\setminus \alpha$ と γ の最小性から $x=\gamma$ または $\gamma\in x$ 。これはいずれも $x\in \gamma$ に反する。

次に $x \in \alpha$ とすると、仮定より $x \in \beta$ 。 もし $x \notin \gamma$ ならば $x = \gamma$ または $\gamma \in x$ だが、 α の推移性から $\gamma \in \alpha$ が得られ γ の取り方に矛盾する。以上より $\alpha = \gamma$ 。

(4) $\alpha \cap \beta = \gamma$ は明らかに順序数である。 γ が α, β のどちらでもないとすると、(3) より $\gamma \in \alpha, \gamma \in \beta$ なので $\gamma \in \gamma$ 。これは α が \in での全順序集合であることに反する。

補題 1.3.1 より次のことが確認できる (Exercise)

- (1) 順序数全体の集合 On は関係 < で全順序となる。
- (2) 順序数 α について $\alpha = \{\beta \colon \beta < \alpha\}$ 。

- (3) 順序数の族 C について $\cap C$ は順序数であり $\cap C \in C, \cap C = \inf C$ 。
- (4) 順序数の集合 X について $\cup X$ は順序数であり、 $\cup X = \sup X$ 。
- (5) 順序数 α について $\alpha \cup \{\alpha\}$ も順序数であり $\alpha \cup \{\alpha\} = \inf\{\beta : \alpha < \beta\}$ 。

定理 1.3.1. 任意の整列集合について、順序同型な順序数が一意に存在する。

証明・補題 1.2.1 より一意性はすぐに従うので、存在性を示す。P を整列集合とし、 $x\in P$ について $F(x)=\{F(y)\colon y\in P,y< x\}$ と定義し、像を α とする。

まず α の推移性をみる。 $\beta \in \alpha, \gamma \in \beta$ と仮定すると、定義から $\exists x \in P, \beta = F(x)$ であり $\exists y < x, \gamma = F(y)$ 。 つまり $\gamma \in \alpha$ となるので良い。

次に整列集合であることをみる。 \in を関係とする全順序集合であることは F の定義からすぐに分かる。 $S \subset \alpha$ を空でない部分集合とすると $\emptyset \neq \exists Y \subset P, S = F(Y)$ 。P は整列集合だったので Y の最小元が存在し、F に写した値が S の最小元となる。

最後に F が順序同型であることを示せばよい。 $x < y \Rightarrow F(x) \in F(y)$ より F は順序を保つ単射であり、全射性は明らか。

定義 1.3.3. $\alpha + 1 = \alpha \cup \{\alpha\}$ を α の後者 と呼ぶ。

lpha=eta+1 と書けるとき lpha を後続順序数、そうでないとき極限順序数と呼ぶ。 \emptyset を極限順序数とするかどうかは流儀がある。

補題 1.3.2. α が極限順序数であることと $\alpha = \sup_{\beta < \alpha} \beta$ は同値。

証明. $\gamma = \sup_{\beta < \alpha} \beta$ とおく。 $\gamma \leq \alpha$ は明らかなことに注意する。

 α が極限順序数のとき $\alpha \leq \gamma$ を示す。 $\gamma < \alpha$ とすると、 α が極限順序数であることから $\gamma < \gamma + 1 < \alpha$ ($\beta < \alpha \Rightarrow \beta + 1 \leq \alpha$ に注意)。よって $\gamma < \gamma$ だがこれは全順序性に矛盾。

逆に $\alpha=\gamma$ とする。 $\forall \beta<\alpha=\gamma$ について、 γ の定義から $\beta<\exists \delta<\alpha$ 。よって $\beta<\beta+1\leq\delta<\alpha$ より α は $\beta\cup\{\beta\}$ と書けない。

定義 1.3.4. 無限公理から \emptyset , \emptyset \cup $\{\emptyset\}$, \emptyset \cup $\{\emptyset\}$ \cup $\{\emptyset\}$, \dots を元とする集合の存在が保証され、順序数の公理を満たす。これを ω と書く。

1.4 順序数の算法

定義 1.4.1. $\alpha>0$ を極限順序数、 $\{a_\xi\}_{\xi<\alpha}$ を非減少な順序数の列としたとき、その極限を $\lim_{\xi\to\alpha}a_\xi=\sup\{a_\xi\colon \xi<\alpha\}$ で定める。

定義 1.4.2. α, β の和を以下で帰納的に定める。

- $(1) \ \alpha + 0 = \alpha$
- (2) $\alpha + (\beta + 1) = (\alpha + \beta) + 1$
- (3) $\alpha + \beta = \lim_{\xi \to \beta} \alpha + \xi \quad (\beta > 0)$: limit)

 $\alpha \cdot \beta, \alpha^{\beta}$ についても同様にいい感じで定義する。

分配法則などの各種性質は超限帰納法で証明できる。

定理 1.4.1. (超限帰納法) 順序数を引数にもつ論理式 φ について

- (1) $\varphi(0)$:True
- (2) $\varphi(\alpha) \Rightarrow \varphi(\alpha+1)$
- (3) $\forall \beta < \alpha, \varphi(\beta) \Rightarrow \varphi(\alpha) \ (\alpha : \text{ limit})$

が成り立つなら、任意の順序数 α について $\varphi(\alpha)$ は True。

証明. $\varphi(\alpha)$ が False となる最小の α をとって上の条件を適用する。

定理 1.4.2. (Cantor 標準形) $\alpha>0$ は $n\geq 1, \alpha\geq \beta_1>\cdots>\beta_n, k_1,\cdots,k_n\in\omega$ を用いて $\alpha=\omega^{\beta_1}\cdot k_1+\cdots+\omega^{\beta_n}\cdot k_n$ と一意的に表される。

証明. α の帰納法による。 $\alpha=1$ のときは $1=\omega^0\cdot 1$ より良い。

 $\alpha>1$ について $\beta<\gamma\Rightarrow\omega^{\beta}<\omega^{\gamma}$ を用いると $\alpha\leq\omega^{\alpha}<\omega^{\alpha+1}$ 。よって $\alpha<\omega^{\xi}$ なる ξ が存在するので最小元をとってくる。 ξ が極限順序数だとすると \sup の定義からより小さな元を取れるので ξ は後続型。

 $\xi=eta_1+1$ とおくと $\omega^{eta_1}\le lpha<\omega^{eta_1}\cdot\omega$ 。よって $lpha<\omega^{eta_1}\cdot\eta$ なる最小の η は 2 以上の自然数なので $\eta=k_1+1$ と書ける。

このとき $\alpha=\omega^{\beta_1}\cdot k_1+\alpha_1 (0\leq \alpha_1<\omega^{\beta_1}<\alpha)$ となるので α_1 に帰納法の仮定を適用すれば存在性がわかる。一意性も同様に α の帰納法を用いればよい。

第2章

基数