Vectors

25 January 2020 15:16

$$a + b = (a1 + b1, a2 + b2)$$

$$\lambda a = (\lambda a 1, \lambda a 2)$$

$$a + b = (a1 + b1, a2 + b2, a3 + b3)$$

$$\lambda a = (\lambda a1, \lambda a2, \lambda a3)$$

Vector a + vector b = vector c where OABC is a parallelogram

Length and Distance

If $\underline{a} = (a_1, a_2) \in \mathbb{R}^2$ then we define the length $|\underline{a}|$ of \underline{a} by

$$|\underline{a}| = \sqrt{a_1^2 + a_2^2}.$$

Similarly if $\underline{a} = (a_1, a_2, a_3) \in \mathbb{R}^3$, then we define the length of \underline{a}

$$|\underline{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

A vector is called a *unit vector* if its length is 1. The *distance* between \underline{a} and \underline{b} is defined to be $|\underline{b} - \underline{a}|$.

Normalisation

If we have a vector and need to find the unit vector then we carry out a process call normalisation Take the modulus of the vector to get the length

Divide the vector by this value

e.g.
$$|(2, -1)| = \text{root } 5$$

$$1/root5(2, -1) = 1$$

$$(2/root5, -1/root5) = 1$$

Scalar Product (Dot Product)

$$a.b = a1b1 + a2b2$$

Finding the Angle Between Vectors

$$\cos \theta = \cos(\beta - \alpha) = \cos \beta \cos \alpha + \sin \beta \sin \alpha = \frac{a_1 b_1 + a_2 b_2}{|\underline{a}| |\underline{b}|}.$$

Two vectors are orthogonal (perpendicular) if their dot product is 0