ANOVA Analysis of Variances

Argon Chen Industrial Engineering National Taiwan University

Replicated 2² Factorial Design and Sum of Squares (SS's)

Test	$X_{\overline{1}}$	x_2	y _{i1}	<i>y</i> _{i2}	<i>y</i> _{i3}	y_{i4}	<i>y</i> _{i5}	\overline{y}_i
1	-1	-1	11	7	10	15	7	10
2	+ 1	- 1	48	43	52	55	47	49
3	-1	+1	31	24	27	23	20	25
4	+1	+1	37	33	34	37	34	35

i = 1,..., m m = # of Tests = 4 j = 1,..., n n = # of replicates = 5

$$\overline{y}_{i} = \frac{\sum_{j=1}^{n} y_{ij}}{n} \quad i = 1, ..., m \qquad \overline{\overline{y}} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}}{mn} = 29.75$$

$$y_{ij} = \overline{\overline{y}} + (\overline{y}_{i} - \overline{\overline{y}}) + (y_{ij} - \overline{y}_{i}) \quad \text{Sum of Squares=SS} = \sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}^{2}$$

$$y_{ij} = \overline{\overline{y}} + (\overline{y}_i - \overline{\overline{y}}) + (y_{ij} - \overline{y}_i)$$
 Sum of Squares=SS = $\sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}^2$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}^{2} = mn\overline{\overline{y}}^{2} + n\sum_{i=1}^{m} (\overline{y}_{i} - \overline{\overline{y}})^{2} + \sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i})^{2}$$

= SS(mean) + SS(between tests) + SS(within tests)

Sum of Squares

$$\sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}^{2} - mn\overline{\overline{y}}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \overline{\overline{y}})^{2} = n\sum_{i=1}^{m} (\overline{y}_{i} - \overline{\overline{y}})^{2} + \sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i})^{2}$$

$$SS - SS(mean) = SS(total) = SS(between tests) + SS(within tests)$$

$$\frac{\text{SS(total)} = \sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \overline{y})^2}{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}^2 - mn\overline{y}^2}$$

$$= 21969 - 17701.25$$

SS(between tests) =
$$n \sum_{i=1}^{m} (\bar{y}_i - \bar{\bar{y}})^2 = 4053.75$$

SS(within tests) =
$$\sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \overline{y}_i)^2 = 214$$

= Sum of Squared Errors = SSE

3

Mean Squares

· Mean squares within tests: Mean Squared Error (MSE)

$$\frac{\hat{\sigma}_{\varepsilon}^{2} = s_{p}^{2}}{m} = \frac{\sum_{j=1}^{m} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i})^{2}}{m (n-1)} = \frac{\text{SS(within tests)}}{m(n-1)} = \frac{\text{SS(within tests)}}{\text{degrees of freedom}}$$

$$= \frac{214}{4(5-1)} = 13.375 = \text{Mean Square (within tests)} = \text{MS(within tests)}$$

$$= \text{Mean Squared Error} = \text{MSE}$$

· Mean squares between tests: MS(between tests)

whealt squares between tests. Ms(between tests)
$$s_{\overline{y}}^{2} = \frac{\sum_{i=1}^{m} (\overline{y}_{i} - \overline{\overline{y}})^{2}}{m-1} \Rightarrow s_{\overline{y}}^{2} = \frac{s_{\overline{y}}^{2}}{n} \Rightarrow s_{\overline{y}}^{2} = ns_{\overline{y}}^{2} \quad n \text{ is the sample size of } \overline{y}_{i}$$

$$s_{\overline{y}}^{2} = ns_{\overline{y}}^{2} = \frac{n\sum_{i=1}^{m} (\overline{y}_{i} - \overline{\overline{y}})^{2}}{m-1} = \frac{\text{SS(between tests)}}{\text{DOF(between tests)}}$$

$$= \frac{4053.75}{4-1} = 1351.25 = \text{MS(between tests)}$$

Recall F Statistic and Distributions

- Two normal populations have the same variance
- S₁²: sample variances from population 1 with sample size n₁
- s₂²: sample variances from population 2 with sample size n₂
- Then, s_1^2 / s_2^2 follows $F_{v1, v2}$ distribution $v_1 = v_1 = v_1 1$; $v_2 = v_2 1$
- · F table look-up

5

F-test

- H₀: MS(between tests)=MS(within tests)
 H_a: MS(between tests)>MS(within tests)
- · Test statistic:

 F_{calc} =MS(between tests)/MS(within tests)

- Reject H₀ when $F_{calc} > F_{v1}, v2, 1-\alpha$
- Reject H₀: Difference between tests are not caused by noise (estimated by difference within tests)
- Example:

$$F_{calc} = \frac{MS(\text{between tests})}{MS(\text{within tests})} = \frac{1351.25}{13.375} = 101.03 > F_{3,16,0.99} = 5.29$$

ANOVA Table for Replicated 2

	_		•	
Source of variation	Sum of Squares (SS)	Degrees of Freedom (DOF)	Mean square (MS)	F Ratio
Mean	$mnar{ar{y}}^2$	1	SS(Mean)/ DoF(Mean)	MS(Mean)/MS(P ure error)
Between tests	$n\sum_{i=1}^m(\bar{y}_i-\bar{\bar{y}})^2$	<i>m</i> –1	SS(B/W Tests)/DoF(B/W Tests)	MS(B/w Tests)/MS(Pure error)
Pure error (within tests)	$\sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \bar{y}_i)^2$	<i>m</i> (<i>n</i> –1)	SS(Pure error)/DoF(Pure error)	
SS	$\sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}^2$	mn		

Source of variation	Sum of Squares	DOF	Mean square	F _{calc}
Mean	17,701.25	1	17,701.25	1,323.46
Between tests	4,053.75	3	1,351.25	101.03
Pure error (within tests)	214.00	16	13.375	
SS	21,969.00	20		

ANOVA Table without "Mean"

$$SS(total) = \sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \overline{y})^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}^{2} - mn\overline{y}^{2}$$

Source of variation	Sum of Squares (SS)	Degrees of Freedom (DOF)	Mean square (MS)	F Ratio
Between tests	$n\sum_{i=1}^m(\bar{y}_i-\bar{\bar{y}})^2$	<i>m</i> −1	SS(B/W Tests)/DoF(B/W Tests)	MS(B/w Tests)/MS(Pure error)
Pure error (within tests)	$\sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i})^{2}$	<i>m</i> (<i>n</i> –1)	SS(Pure error)/DoF(Pure error)	
SS(Total)= SS-mean	$\sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \bar{y})^{2}$	<i>mn</i> –1		

ANOVA Table without "Mean"

$$SS(total) = \sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} - \overline{\overline{y}})^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}^{2} - mn\overline{\overline{y}}^{2}$$
$$= 21969 - 17701.25 = 4267.75$$

Source of variation	Sum of Squares	DOF	Mean square	F _{calc}
Between tests	4,053.75	3	1,351.25	101.03
Pure error (within tests)	214.00	16	13.375	
SS-Mean =SS(Total)	4,267.75	19		

9

Linear Regression Model

$$\hat{y} = 29.75 + 12.25x_1 + 0.25x_2 - 7.25x_1x_2$$

	X1	X2	X1X2	Y
	-1	-1	1	11
Replicate 1	1	-1	-1	48
Replicate 1	-1	1	-1	31
	1	1	1	37
	-1	-1	1	7
Replicate 2	1	-1	-1	43
Replicate 2	-1	1	-1	24
	1	1	1	33
	-1	-1	1	10
Replicate 3	1	-1	-1	52
Replicate 3	-1	1	-1	27
	1	1	1	34
	-1	-1	1	15
Replicate 4	1	-1	-1	55
Replicate 4	-1	1	-1	23
	1	1	1	37
	-1	-1	1	7
Replicate 5	1	-1	-1	47
Replicate 3	-1	1	-1	20
	1	1	1	34

迴歸	統計
R 的倍數	0.974606
R 平方	0.949856
調整的 R	0.940455
標準誤	3.657185
觀察值個	20

ANOVA					
	自由度	SS	MS	F	顯著值
迴歸	3	4053.75	1351.25	101.028	1.3E-10
殘差	16	214	13.375		
總和	19	4267.75			

	係數	標準誤	t 統計	P-值	下限 95%	上限 95%
截距	29.75	0.817771	36.37936	8.18E-17	28.0164	31.4836
X1	12.25	0.817771	14.97974	7.8E-11	10.5164	13.9836
X2	0.25	0.817771	0.305709	0.763768	-1.4836	1.983597
X1X2	-7.25	0.817771	-8.86556	1.43E-07	-8.9836	-5.5164

R² to Assess the Model

Toal Variation in y SST= SSR + SSE

• R² measures the proportion of the variation in y that is explained by the variation in x.

$$R^2 = \frac{\text{Variation explained by Model}}{\text{Total variation in y}} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

	係數	標準誤	t 統計	P-值	下限 95%	上限 95%
截距	29.75	0.817771	36.37936	8.18E-17	28.0164	31.4836
X1	12.25	0.817771	14.97974	7.8E-11	10.5164	13.9836
X2	0.25	0.817771	0.305709	0.763768	-1.4836	1.983597
X1X2	-7.25	0.817771	-8.86556	1.43E-07	-8.9836	-5.5164

總和

Two-Way ANOVA

- · Example: agriculture experiments
 - Three tomato varieties (i): Harvester, Pusa Early Dwarf and Ife No. 1
 - Four plantation densities (*j*): 10, 20, 30, and 40 thousand plants per hectare)
 - Three replicates (k)
- Experimental results: x_{iik}

		Plantatio				
Variety	10k	20k	30k	40k	sum	$X_{i \bullet \bullet}$
Н	10.5, 9.2, 7.9	12.8, 11.2, 13.3	12.1, 12.6, 14.0	10.8, 9.1, 12.5	136.0	11.3
lfe	8.1, 8.6, 10.1	12.7, 13.7, 11.5	14.4, 15.4, 13.7	11.3, 12.5, 14.5	146.5	12.21
Р	16.1, 15.3, 17.5	16.6, 19.2, 18.5	20.8, 18.0, 21.0	18.4, 18.9, 17.2	217.5	18.13
sum	103.3	129.5	142.0	125.2	500.00	
$X_{\bullet j \bullet}$	11.48	14.39	15.78	13.91		13.89

Sum of Squares

$$SS(Total) = \sum_{i} \sum_{j} (X_{ijk} - X_{\bullet\bullet\bullet})^{2}$$

$$SSE = \sum_{i} \sum_{j} (X_{ijk} - X_{ij\bullet})^{2}$$

$$SS(Variety) = \sum_{i} \sum_{j} (X_{i\bullet\bullet} - X_{\bullet\bullet\bullet})^{2} = \frac{N}{I} \sum_{i} (X_{i\bullet\bullet} - X_{\bullet\bullet\bullet})^{2}$$

$$SS(Density) = \sum_{i} \sum_{j} (X_{\bullet j\bullet} - X_{\bullet\bullet\bullet})^{2} = \frac{N}{J} \sum_{j} (X_{\bullet j\bullet} - X_{\bullet\bullet\bullet})^{2}$$

$$X_{\bullet i\bullet} = \sum_{i} \sum_{j} X_{ijk} / N$$

$$X_{ij\bullet} = \sum_{k} X_{ijk} / (N / I)(=JK)$$

$$X_{\bullet j\bullet} = \sum_{i} \sum_{k} X_{ijk} / (N / J)(=JK)$$

$$X_{\bullet j\bullet} = \sum_{i} \sum_{k} X_{ijk} / (N / J)(=JK)$$

$$SS(Interaction) = \sum_{i} \sum_{j} \sum_{k} [(X_{ij\bullet} - X_{\bullet\bullet\bullet}) - (X_{i\bullet\bullet} - X_{\bullet\bullet\bullet}) - (X_{\bullet j\bullet} - X_{\bullet\bullet\bullet})]^2$$

$$= \sum_{i} \sum_{j} \sum_{k} (X_{ij\bullet} - X_{i\bullet\bullet} - X_{\bullet j\bullet} + X_{\bullet\bullet\bullet})^2 = \frac{N}{IJ} \sum_{i} \sum_{j} (X_{ij\bullet} - X_{i\bullet\bullet} - X_{\bullet j\bullet} + X_{\bullet\bullet\bullet})^2$$

$$SS(Total) = SS(Variety) + SS(Density) + SS(Interaction) + SSE$$

Mean Squares

$$MSE = \sum_{i} \sum_{j} \sum_{k} (X_{ijk} - X_{ij\bullet})^{2} / (K - 1)IJ$$

$$MS(Variety) = \sum_{i} \sum_{j} \sum_{k} (X_{i\bullet\bullet} - X_{\bullet\bullet\bullet})^{2} / (I - 1) = \frac{N}{I} \sum_{i} (X_{i\bullet\bullet} - X_{\bullet\bullet\bullet})^{2} / (I - 1)$$

$$MS(Density) = \sum_{i} \sum_{j} \sum_{k} (X_{\bullet j\bullet} - X_{\bullet\bullet\bullet})^{2} / (J - 1) = \frac{N}{J} \sum_{j} (X_{\bullet j\bullet} - X_{\bullet\bullet\bullet})^{2} / (J - 1)$$

$$MS(Interaction) = \sum_{i} \sum_{j} \sum_{k} (X_{ij\bullet} - X_{i\bullet\bullet} - X_{\bullet j\bullet} + X_{\bullet\bullet\bullet})^{2} / (I - 1)(J - 1)$$

$$= \frac{N}{IJ} \sum_{i} \sum_{j} (X_{ij\bullet} - X_{i\bullet\bullet} - X_{\bullet j\bullet} + X_{\bullet\bullet})^{2} / (I - 1)(J - 1)$$

16

ANOVA Table

Source of variation	Sum of Squares	DOF	Mean square	F _{calc}
Variety	327.60	2	163.8	163.8/1.59
Density	86.69	3	28.9	28.9/1.59
Interaction	8.03	6	1.34	1.34/1.59
Pure error (within tests)	38.04	24	1.59	
Total	460.36	35		

$$F_{2,24,0.99} = 5.61 \ F_{3,24,0.99} = 4.241 \ F_{6,24,0.99} = 3.63$$

17

Two-Way ANOVA in Excel

		Plantation Density					
		10K	20K	30K	40K		
	Harvester	10.5	12.8	12.1	10.8		
		9.2	11.2	12.6	9.1		
		7.9	13.3	14	12.5		
	Ife No.1	8.1	12.7	14.4	11.3		
Variety		8.6	13.7	15.4	12.5		
		10.1	11.5	13.7	14.5		
	Pusa Early Dwarf	16.1	16.6	20.8	18.4		
		15.3	19.2	18	18.9		
		17.5	18.5	21	17.2		

ANOVA						
變源	SS	自由度	MS	F	P-值	臨界值
樣本	327.5972	2	163.7986	103.343	1.61E-12	3.402826
欄	86.68667	3	28.89556	18.23063	2.21E-06	3.008787
交互作用	8.031667	6	1.338611	0.84455	0.548361	2.508189
組內	38.04	24	1.585			
總和	460.3556	35				

Additive Model with Interactions

Let
$$\mu = \sum_{i} \sum_{j} \mu_{ij} / IJ \ \mu_{i\bullet} = \sum_{j} \mu_{ij} / J \ \mu_{\bullet j} = \sum_{i} \mu_{ij} / I$$

 $\alpha_i = \mu_{i \bullet} - \mu = \text{effect of factor } A \text{ at level } i$

 $\beta_j = \mu_{\bullet j} - \mu = \text{effect of factor } B \text{ at level } j$

 γ_{ij} =(μ_{ij} - μ)- α_i - β_j = interaction effect of A at level i and B at level j

Then, the additive linear model is:

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$

19

ANOVA Table for All Terms (Back to Text-book Example)

Source of variation	Sum of Squares	DOF	Mean square	F _{calc}
E ₁	3,001.25	1	3,001.25	224.39*
E_2	1.25	1	1.25	0.09
E ₁₂	1,051.25	1	1,051.25	78.60*
Pure error (within tests)	214.00	16	13.375	
Total	4,267.75	19		_

ANOVA Table for Partial Model

• Partial model: $\hat{y} = \hat{b}_0 + \hat{b}_1 x_1 + \hat{b}_{12} x_1 x_2$

		•	1 1 12						
Source of variation	Sum of Squares	DOF	Mean square	F _{calc}					
E ₁	3,001.25	1	3,001.25	224.39*					
E ₁₂	1,051.25	1	1,051.25	78.60*					
Residual E ₂	1.25	1	1.25	0.09					
Pure error	214.00	16	13.375						
Total	4,267.75] 19							
$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{4052.5}{4267.75} = 0.949564$									

Sum of Squares (Interactions)

SS(ij interaction) =
$$\frac{N}{IJ} \sum_{i} \sum_{j} [X_{ij...} - X_{i....} - X_{\bullet,j...} + X_{\bullet ...}]^{2}$$

= $\frac{N}{IJ} \sum_{i} \sum_{j} [(X_{ij...} - X_{\bullet ...}) - (X_{ij...} - X_{\bullet ...}) - (X_{\bullet,j...} - X_{\bullet ...})]^{2}$

SS(il interaction) = $\frac{N}{IL} \sum_{i} \sum_{l} [X_{i\bullet l} - X_{i....} - X_{\bullet ...} + X_{\bullet ...}]^{2}$

= $\frac{N}{IL} \sum_{i} \sum_{l} [(X_{\bullet l} - X_{\bullet ...}) - (X_{\bullet ...} - X_{\bullet ...}) - (X_{\bullet ...} - X_{\bullet ...})]^{2}$

SS(jl interaction) = $\frac{N}{JL} \sum_{j} \sum_{l} [X_{\bullet jl...} - X_{\bullet ...} - X_{\bullet ...} + X_{\bullet ...}]^{2}$

SS(jl interaction) = $\frac{N}{JL} \sum_{j} \sum_{l} [X_{\bullet jl...} - X_{\bullet ...} - X_{\bullet ...} - X_{\bullet ...} + X_{\bullet ...}]^{2}$

SS(jl interaction) = $K \sum_{l} \sum_{j} \sum_{l} [X_{\bullet jl...} - X_{\bullet ...} - (X_{\bullet jl...} - X_{\bullet ...}) - (X_{\bullet ...} - X_{\bullet ...})]^{2}$

SS(ijl interaction) = $K \sum_{l} \sum_{j} \sum_{l} [X_{ijl...} - X_{\bullet ...} - (X_{ij...} - X_{\bullet ...}) - (X_{\bullet ...} - X_{\bullet ...})]^{2}$

- $[(X_{ij...} - X_{\bullet ...}) - (X_{i....} - X_{\bullet ...}) - (X_{\bullet ...} - X_{\bullet ...})]$

- $[(X_{ij...} - X_{\bullet ...}) - (X_{ij...} - X_{\bullet ...}) - (X_{\bullet ...} - X_{\bullet ...})]$

- $[(X_{\bullet jl...} - X_{\bullet ...}) - (X_{\bullet ...} - X_{\bullet ...}) - (X_{\bullet ...} - X_{\bullet ...})]$

- $[(X_{\bullet jl...} - X_{\bullet ...}) - (X_{\bullet ...} - X_{\bullet ...}) - (X_{\bullet ...} - X_{\bullet ...})]^{2}$

= $K \sum_{l} \sum_{l} \sum_{l} [X_{ijl...} - X_{ij...} - X_{ij...} - X_{ij...} + X_{ij...} + X_{ij...} - X_{\bullet ...})]^{2}$

= $K \sum_{l} \sum_{l} \sum_{l} [X_{ijl...} - X_{ij...} - X_{ij...} - X_{ij...} - X_{ij...} - X_{ij...} - X_{ij...} - X_{ij...})$

Analysis of Surface Defects Data

	Average	η by Fact (dB)	or Level					
Factor	1	2	3	Degree of Freedom	Sum of Squares	Mean Square	F	
A. Temperature	- 24.23	-50.10	- 61.76	2	4427	2214	27	
B. Pressure	- 27.55	-47.44	- 61.10	2	3416	1708	21	
C. Nitrogen	-39.03	- 55.99	- 41.07	2	1030	515	6.4	
D. Silane	- 39.20	- 46.85	-50.04	2	372	186	2.3	
E. Settling time	-51.52	- 40.54	- 44.03	2	. 378	189	2.3	
F. Cleaning method	-45.56	- 41.58	- 48.95	2	164†	82		
Error		,		5	405†	81		
Total				17	10192			
(Error)				(7)	(569)	(81)		

^{*} Overall mean $\eta = -45.36$ dB. Underscore indicates starting level.

[†] Indicates the sum of squares added together to form the pooled error sum of squares shown in parentheses.

Analysis of Thickness Data

	Average η' by Level (dB)						
Factor	1	2	3	Degree of Freedom	Sum of Squares	Mean Square	F.
A. Temperature	35.12	34.91	24.52	2	440	220	16
B. Pressure	31.61	30.70	32.24	2	7†	3.5	
C. Nitrogen	34.39	27.86	32.30	2	134	67	5.0
D. Silane	31.68	34.70	28.17	2	128	64	4.8
E. Settling time	30.52	32.87	31.16	2	18†	9	
F. Cleaning method	27.04	33.67	33.85	2	181	90.5	.6.8
Error				5	96†	19.2	
Total				17	1004	59.1	
(Error)				(9)	(121)	(13.4)	

25

Analysis of Deposition Rate Data

	Average	η" by Fact (dBam)	tor Level				
Factor	1	2	3	Degree of Freedom	Sum of Squares	Mean Square	F
A. Temperature	28.76	34.13	39.46	2	343.1	171.5	553
B. Pressure	32.03	34.78	35.54	2	41.0	20.5	66
C. Nitrogen	32.81	35.29	34.25	2	18.7	9.4	30
D. Silane	32.21	34.53	35.61	2	36.3	18.1	58
E. Settling time	34.06	33.99	34.30	2	0.3†	0.2	
F. Cleaning method	33.81	34.10	34.44	2	1.2†	0.6	
Error				5	1.3†	0.26	
Total				17	441.9	25.9	
(Error)				(9)	(2.8)	(0.31)	

^{*} Overall mean $\eta'=31.52$ dB. Underscore indicates starting level. † Indicates the sum of squares added together to form the pooled error sum of squares shown in parentheses.

^{*} Overall mean $\eta''=34.12$ dBam. Underscore indicates starting level. \dagger Indicates the sum of squares added together to form the pooled error sum of squares shown in parentheses.

More on Linear Regression

Argon Chen Industrial Engineering National Taiwan University

27

Multiple Regression?

Example: Fuel Consumption

Y=FUEL=1000×FUELC/POP = motor fuel consumption, gallons per person

X₁=TAX, cents per gallon

X₂=DLIC=NLIC/POP =proportion of population with driver's licenses. Six columns of Table 2.1 list values, for each of the 48 contiguous states, of the following quantities:

POP = 1971 population (in thousands).

TAX = 1972 motor fuel tax in cents per gallon.

NLIC = 1971 number of licensed drivers (in thousands).

INC = 1972 per capita personal income in dollars.

ROAD = 1971 length of Federal-aid primary highways, in miles.

STATE POP TAX NLIC INC ROAD FUELC DLIC FUEL

IME 1029 9.00 340 3571 1976 557 0.225 541

2NH 771 9.00 -441 4892 1230 444 0.372 524

2NH 771 9.00 -441 4892 1230 444 0.372 524

2NH 771 9.00 -441 4892 1230 444 0.372 524

3 MA 577 7.00 500 -600 1231 133 1408 0.371 437

3 MA 577 7.00 500 500 100 176 534

3 NJ 737 8.00 4074 5126 2133 1408 0.371 437

7 NY 18366 8.00 8278 5319 11868 6312 0.451 344

8 NJ 7376 8.00 4074 5126 2138 3439 0.535 467

9 PA 11926 8.00 6312 4447 8577 3528 0.239 464

11 NJ 5297 8.00 4074 5126 2138 3439 0.535 467

9 PA 11929 8.00 6312 4447 8577 3528 0.239 464

11 NJ 5291 8.00 2804 4391 5939 3068 0.330 580

12 NJ 1376 8.00 4074 341 6799 3068 0.330 580

13 NJ 3809 -100 2168 4392 8139 2204 0.045 508

13 NJ 3809 -100 2168 4392 8139 2204 0.056 565

15 NJ 3809 -100 2168 4392 8139 2204 0.056 565

15 NJ 8809 -100 2168 4392 8139 2204 0.056 565

21 NJ 805 79 700 449 716 9910 776 640 714

18 ND 655 8.00 3073 4878 4981 8981 0.356 6.50

21 NJ 805 79 700 419 4716 9915 7910 0.726 865

22 NJ 12 NJ 12 NJ 13 NJ 1

Statistical Meaning of Multiple Regression

$$\widehat{FUEL} = \widehat{\beta}_0 + \widehat{\beta}_1 \widehat{I}AX + \widehat{\beta}_2 DLIC$$

$$\widehat{FUEL} = 984.0 - 53.11 \widehat{I}AX$$

In Most Designs of Experiments

- X's are designed to be orthogonal (statistically uncorrelated) to one another
- L₉ (3⁴)

• 2³ Factorial

Expt.	Column								
No.	1	2	3	4					
1	1	1	1	1					
2	1	2	2	2					
3	1	3	3	3					
4	2	1	2	3					
4 5 6	2 2 2	2	3	1					
6	2	3	1	2					
7	3	1	3	2					
8	3	2	i	3					
9	3	3	2	.1					
Li		,							

		Main Effects			Interactions					
Test	I	x_1	x_2	<i>x</i> ₃	x_1x_2	x_1x_3	$x_{2}x_{3}$	$x_1x_2x_3$		
1	+	-1	-1	-1	+1	+1	+1	-1		
2	+	+1	-1	-1	-1	-1	+1	+1		
3	+	-1	+1	-1	-1	+1	-1	+1		
4	+	+1	+1	-1	+1	-1	-1	-1		
5	+	-1	-1	+1	+1	-1	-1	+1		
6	+	+1	-1	+1	-1	+1	-1	-1		
7	+	-1	+1	+1	-1	-1	+1	-1		
8	+	+1	+1	+1	+1	+1	+1	+1		
								32		

With Uncorrelated Variables X's

Back to the example of the Glove Box 2⁴ factorial design of experiments

Multiple Regression b_i = Simple Regression b_i

	_							
	係數	標準誤	t 統計	P-值	下限 95%	上限 95%	下限 95.0%	上限 95.0%
截距	-0.08719	0.079537	-1.09619	0.28922	-0.2557976	0.08142257	-0.2557976	0.08142257
X1	-0.32719	0.079537	-4.11367	0.000813	-0.4957976	-0.1585774	-0.4957976	-0.15857743
X2	0.397188	0.079537	4.993769	0.000133	0.22857743	0.56579757	0.22857743	0.56579757
X3	0.319063	0.079537	4.011517	0.001007	0.15045243	0.48767257	0.15045243	0.48767257
X4	0.160938	0.079537	2.023439	0.060064	-0.0076726	0.32954757	-0.0076726	0.32954757
X1X2	0.073438	0.079537	0.923317	0.369557	-0.0951726	0.24204757	-0.0951726	0.24204757
X1X3	-0.05844	0.079537	-0.73472	0.473139	-0.2270476	0.11017257	-0.2270476	0.11017257
X1X4	-0.01531	0.079537	-0.19252	0.849756	-0.1839226	0.15329757	-0.1839226	0.15329757
X2X3	-0.09531	0.079537	-1.19835	0.248231	-0.2639226	0.07329757	-0.2639226	0.07329757
X2X4	-0.07719	0.079537	-0.97046	0.346258	-0.2457976	0.09142257	-0.2457976	0.09142257
X3X4	0.004688	0.079537	0.058935	0.953734	-0.1639226	0.17329757	-0.1639226	0.17329757
X1X2X3	0.085938	0.079537	1.080477	0.295948	-0.0826726	0.25454757	-0.0826726	0.25454757
X1X2X4	0.050313	0.079537	0.63257	0.535951	-0.1182976	0.21892257	-0.1182976	0.21892257
X1X3X4	-0.06906	0.079537	-0.86831	0.398062	-0.2376726	0.09954757	-0.2376726	0.09954757
X2X3X4	-0.05219	0.079537	-0.65614	0.521056	-0.2207976	0.11642257	-0.2207976	0.11642257
X1X2X3X	0.060313	0.079537	0.758298	0.459297	-0.1082976	0.22892257	-0.1082976	0.22892257

	係數	標準誤	t 統計	P-值	下限 95%	上限 95%	下限 95.0%	上限 95.0%
截距	-0.08719	0.112713	-0.77354	0.445257	-0.31738	0.143003	-0.31738	0.143003
X2	0.397188	0.112713	3.523892	0.001386	0.166997	0.627378	0.166997	0.627378

33

Multicollinearity in Linear Regression

- Example: House Price
 - A real estate agent believes that a house selling price can be predicted using the house size, number of bedrooms, and lot size.
 - A random sample of 100 houses was drawn and data recorded.

Price	Bedrooms	H Size	Lot Size
124100	3	1290	3900
218300	4	2080	6600
117800	3	1250	3750
			-

- Analyze the relationship among the four variables

- Solution
- The proposed model is $\begin{array}{l} \textbf{PRICE} = \beta_0 + \beta_1 \textbf{BEDROOMS} + \beta_2 \textbf{H-SIZE} \\ + \beta_3 \textbf{LOTSIZE} + \epsilon \end{array}$
 - Excel solution

- However,
 - when regressing the price on each independent variable alone, it is found that each variable is strongly related to the selling price.
 - Multicollinearity is the source of this problem.

	Price L	Bedrooms	H Size	Lot Size
Price	1			
Bedrooms	0.645411	1		
H Size	0.747762	0.846454	1	
Lot Size	0.740874	0.83743	0.993615	1

- Multicollinearity causes two kinds of difficulties:
 - The t statistics appear to be too small.
 - The β coefficients cannot be interpreted as "slopes".

Nonlinearity in Linear Regression

- Regression analysis is considered powerful for several reasons:
 - It can cover variety of mathematical models
 - · linear relationships.
 - non linear relationships.
 - · qualitative variables.
 - It provides efficient methods for model building, to select the best fitting set of variables.

Polynomial Models

- The independent variables may appear as functions of a number of predictor variables.
 - Polynomial models of order p with one predictor variable: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^p + \varepsilon$
 - Polynomial models with two predictor variables

For example:

$$y = β_0 + β_1x_1 + β_2x_2 + ε$$

 $y = β_0 + β_1x_1 + β_2x_2 + β_3x_1x_2 + ε$

• Polynomial models with one predictor variable

First order model (p = 1)

$$y=\beta_0+\beta_1x+\epsilon$$

- Second order model (p=2)

- Third order model (p=3)

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \varepsilon$$

 $\beta_3 < 0$

• Polynomial models with two predictor variables - First order model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$ x_2

- Example Location for a new restaurant
 - A fast food restaurant chain tries to identify new locations that are likely to be profitable.
 - The primary market for such restaurants is middle-income adults and their children (between the age 5 and 12).
 - Which regression model should be proposed to predict the profitability of new locations?

- Solution
 - The dependent variable will be Gross Revenue
 - There are quadratic relationships between Revenue and each predictor variable. Why?
 - Members of middle-class families are more likely to visit a fast food family than members of poor or wealthy families.

• Families with very young or older kids will not visit the restaurant as frequent as families with mid-range ages of kids.

Revenue =
$$\beta_0$$
 + β_1 Income + β_2 Age + β_3 Income² + β_4 Age² + β_5 (Income)(Age) + ϵ

- Example
 - To verify the validity of the model proposed in example, 25 areas with fast food restaurants were randomly selected.
 - Data collected included (see Xm19-02.xls):
 - Previous year's annual gross sales.
 - · Mean annual household income.
 - Mean age of children

The model can be used to make predictions.

However, do not interpret the coefficients or test them.

Multicollinearity is a problem!!

In excel: Tools > Data Analysis > Correlation

	INCOME	AGE	INC sq	AGEsq	INC X AGE
INCOME	1				
AGE	0.0201	1			
INC sq	0.9945	-0.045	1		
AGEsq	-0.042	0.9845	-0.099	1	
INC X AGE	0.4596	0.8861	0.3968	0.8405] 1

Regression results of the modified model

SUMMARY O	UTPUT	M	lulticolinea	arity is not	t a problen	n anymo	re
Regression	Statistics		Income	Age	Inc-sq	Age sq	Inc X Age
Multiple R	0.952121	Income	1				
R Square	0.906535	Age	0.020058	1			
Adjusted R Sc	0.881939	Inc-sq	-0.17263	-0.61236	1		
Standard Error		Age sq	-0.31219	0.400929	0.096296	1	
Observations	25	Inc X Age	-0.61438	-0.37221	0.167909	-0.08263	1
ANOVA			140			_	
	df	SS	MS	F	Significance I	-	
Regression	5	368140.4	73628.08	36.85692	3.86E-09		
Residual	19	37955.78	1997.673				
Total	24	406096.2				•	
	Coefficients	andard Ern	t Stat	P-value	Lower 95%	Upper 95	%
Intercept	1200.066	15.08728	79.54156	1.91E-25	1168.488	1231.64	14
Income	9.367849	2.743887	3.41408	0.00291	3.624827	15.1108	37
Age	6.225473	5.472777	1.137534	0.269457	-5.229186	17.6801	3
Income sq	-3.72613	0.542156	-6.8728	1.48E-06	-4.860874	-2.5913	88
Age sq	-3.86871	1.179054	-3.28119	0.003928	-6.336497	-1.4009	92
Inc X Age	1.967268	0.944082	2.08379	0.050921	-0.008718	3.94325	55