

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final-Term Exam: Trimester: Summer 2023

Course Code: EEE 2123; Course Title: Electronics Total Marks: 40; Duration: 2 hours

Any examinee found adopting unfair means would be expelled from the trimester/ program as per UIU disciplinary rules.

There are six(6) questions in this paper. Answer all of them.

Q1(a). For the given NMOS, find the operating region in each cases: [4x1=4]

Fig 1: Circuit diagram for Q1(a)

(a)
$$V_G = 0 V$$
, $V_S = -2V$, $V_D = 1V$, $V_t = 1V$

(b)
$$V_G = 1.5V$$
, $V_S = 0V$, $V_D = 0.1V$, $V_t = 1.2V$

(c)
$$V_G = -2V$$
, $V_S = -3V$, $V_D = 5V$, $V_t = 1.5V$

(d)
$$V_G = 5V$$
, $V_S = -1 V$, $V_D = 5 V$, $V_t = 1V$

Q1(b). The MOSFET shown below has V_{tn} = 1V , $\mu_n C_{ox}$ = 0.1 mA/V². Find the values of **W/L** and **R** so that when v_I = V_{DD} = +5 V , r_{DS} = 50 Ω & v_o = 50 mV . [6]

Fig 2: Circuit diagram for Q1(b)

Q2. Analyze the circuit below to determine voltages at all nodes and the currents through all branches. Let, $V_{tn} = 1V$, $k_n'(W/L) = 1 \text{ mA/V}^2$. [6]

Fig 3: Circuit diagram for Q2

Q3. Determine the voltage at all nodes and current through all branches for the BJT circuit shown below. Here, $R_E + R_C = 8 \text{ k}\Omega$ and $0 < R_E < R_C$ [4]

Fig 4: Circuit diagram for Q3

Q4. For the bipolar junction transistor in the following circuit,

 $R_B=100 \text{ k}\Omega$ and $\beta_{\text{forced}}=15$. Find the value of R_C . Assume silicon diode. [6]

Fig 5: Circuit diagram for Q4

Q5(a). The PMOS network of a random digital system is given below: [4]

Fig 6: Circuit diagram for Q5(a)

Draw the corresponding NMOS network using the concept of CMOS technology and mention the expression of the output function, V_{out} .

Q5(b). Implement the following logic function "f" in single stage and draw the corresponding circuit diagram: [4]

$$f = (ab + \overline{c})ed + gh$$

Q6. Design an amplifier circuit that can generate the following outputs: [3+3]

(a)
$$v_0 = 10 v_i - 5 \frac{dvi}{dt}$$

(b)
$$v_0 = 5v_1 + 15v_2$$
 (here, v1 and v2 are two different inputs)

Clearly mention the values of all circuit parameters. Assume that the feedback resistor is $10 \text{ k}\Omega$ in all cases.