Thesis Proposal

Visualization methods for genealogical and RNA-sequencing datasets

Lindsay Rutter

Program of Study Committee:

Dianne Cook, Major Professor Amy Toth, Major Professor Heike Hofmann Daniel Nettleton James Reecy

Contents

C	Contents			
1	Intr	roduction	3	
	1.1	Background to data visualization	3	
	1.2	Problems to be addressed	3	
	1.3	Overview of thesis research	3	
2	Visualization methods for genealogical datasets			
	2.1	Database structure	4	
		2.1.1 Question types	4	

Chapter 1

Introduction

1.1 Background to data visualization

1.2 Problems to be addressed

1.3 Overview of thesis research

Chapter 2

Visualization methods for genealogical datasets

2.1 Database structure

2.1.1 Question types

Now, we will run the REFER TO SECTION .

Table 2.1: Topic numbers and descriptions

Number	Description
01	Data
02	Descriptive Statistics for a Single Categorical Variable
03	Descriptive Statistics for a Single Quantitative Variable

List 1: Learning outcomes for Topic 03

- A. Use standardizing to determine how many standard deviations an observation is away from the mean value.
- B. Use z-scores to compare observations for different quantitative variables.
- C. Explain how standardizing affects the shape, center, and variability of the distribution of a quantitative variable.

```
Example question title: T16.A.A.04-1.1.MC.1
```

The absolute pathway to the extdata directory on your local computer can be determined by typing the following command into the R console:

```
system.file("inst/extdata/", package = "ePort")
```

```
keyHTM = system.file("inst/extdata/KeyFiles/Topic06.Questions.htm", package =
  "ePort")
refineKey(keyHTM)
keyPath = gsub("htm$", "txt", keyHTM)
dataPath = system.file("inst/extdata/DataFiles/Topic06/Topic06.A.csv", package =
  "ePort")
rewriteData(dataPath)
loPath = system.file("inst/extdata/LOFiles/Topic06.Outcomes.txt", package = "ePort")
outPath = system.file("inst/extdata/OutputFiles", package = "ePort")
makeReport(keyFile = keyPath, dataFile = dataPath, loFile = loPath, outFile =
outPath)
merged = subsetData(mergedData, dataTable)
makeReport(outFile = outPath, unit = 2, reportType = "crossSecUnit", className =
```

- "Eng444", repeatLowScore = 70)
 - One topic for one section short version ("secTopicShort")
 - One topic for one section long version ("secTopicLong")
 - One topic comparing multiple sections short version ("crossSecTopicShort")

- One topic comparing multiple sections long version ("crossSecTopicLong")
- One unit (group of topics) for one section ("secUnit")
- \bullet One unit (group of topics) comparing multiple sections ("crossSecUnit")