

Topic 3 Conics

THEMES

- 1 Definition of conics (in terms of eccentricity)
- 2 Important features of conics (foci, directrices, etc.)
- 3 Cartesian and parametric equations of conics
- 4 Tangents and normals to conics

1000	-	1	B 4	8 10	-	A A	TE	
Bear 1	er m		100.0	88	-	# <i>I</i> /N	11 10-	
-		10.00	88	H WA	-88	-		-30

A conic section is the locus of a variable point P whose distance PS from a fixed point S (the focus) is in a ratio to its distance PN from a fixed line (the directrix).

The ratio $\frac{PS}{PN} = \square$ is called the \square .

- **2** For (i) a parabola, *e* 1
 - (ii) an ellipse, $e \square 1$
 - (iii) a hyperbola, e 1

Parabola

- 4 Equation of directrix y =
- 6 The equation of a chord PQ through P and Q with parameters p, q: y =
- 7 The equation of the tangent at P given that
 (a) $P(x_1, y_1)$: (b) $P(2ap, ap^2)$: y = [
- 8 The equation of the normal at $P(2ap, ap^2)$ is
- **9** The equation of the chord of contacts of tangents from an external point (x_1, y_1) is

- 10 The equation of the ellipse is .
- 11 (a) The coordinates of the foci S, S' in terms of a, e are S, and S',.
 - (b) The coordinates of the vertices A, A' and B, B' are $\boxed{\ , \ , \ , \ , \ , \ , \ , \ }$
- **12** The equations of directrices d, d' are x =_____.
- 13 In terms of major/minor axis lengths, the eccentricity can be found from $b^2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

	CONICS
	14 (a) The major axis length = (b) The minor axis length =
	15 SP + PS' =
	16 For parameter θ , the parametric equations are $x = [y, y = y]$.
	17 The equation of the tangent at $P(x_1, y_1)$ is
	18 The equation of the tangent at $P(\text{parameter }\theta)$ is
	19 The equation of the normal at $P(x_1, y_1)$ is
	The equation of the normal at $P(\text{parameter }\theta)$ is
	[N.B. The equations 17–20 are best derived rather than committed to memory.]
	The hyperbola
	 21 The equation of the hyperbola is 22 (a) The coordinates of the foci S, S' in terms of a, e are S, and S'
	(b) The coordinates of the vertices A, A' are , , .
	23 The equations of directrices d , d' are $x = $
	24 In terms of major/minor axis lengths, the eccentricity can be found from $b^2 = $
	25 (a) The transverse axis length = $S'A'$
	(b) The conjugate axis length =
	26 The equations of the asymptotes are $y = $. d'
	27 $ SP - P'S = $, $y = $.
	28 For parameter θ , the parametric equations are θ
	29 The equation of the tangent at $P(x_1, y_1)$ is
١	30 The equation of the tangent at $P(\text{parameter }\theta)$ is
١	31 The equation of the normal at $P(x_1, y_1)$ is
	32 The equation of the normal at $P(\text{parameter }\theta)$ is
	[N.B. The equations 29–32 are best derived rather than committed to memory.]
	The rectangular hyperbola $y = 0$, the equation of the hyperbola
	33 For a hyperbola with rectangular asymptotes $y = $, the equation of the hyperbola (rectangular) is
	34 For the special hyperbola $xy = k^2$, k a constant, then the
	(a) parametric equations are $x = \begin{bmatrix} y \\ y \end{bmatrix}$
	(b) equation of the chord PQ (with parameters $p, q^{r/18}$
	(c) equation of the tangent at P (parameter p) is (d) equation of the normal at P (parameter p) is
	(e) equation of the chord from $P(x_1, y_1)$ to $Q(x_2, y_2)$ is
	(f) equation of the tangent at $P(x_1, y_1)$ is

[N.B. The equations 34(b) - (f) are best derived rather than committed to memory.]

ANSWERS TO FORMULA TEST

1 constant ratio;

$$\frac{PS}{PN} = e$$
, the eccentricity

- (i) e = 1
 - (ii) e < 1
 - (iii) e > 1

Parabola

- 3 (0, a)
- $4 \quad y = -a$
- **5** $(2ap, ap^2)$
 - $\mathbf{6} \quad y = \left(\frac{p+q}{2}\right)x apq$
 - 7 (a) $xx_1 = 2a(y + y_1)$
 - **(b)** $y = px ap^2$
 - $8 \quad x + py = 2ap + ap^3$
 - 9 $xx_1 = 2a(y + y_1)$

The ellipse

10
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

- 11 (a) S(ae, 0); S'(-ae, 0)
 - **(b)** A(a, 0); A'(-a, 0)B(0,b); B'(0,-b)
- 12 $x = \pm \frac{a}{e}$
- 13 $b^2 = a^2(1-e^2), e < 1$
 - 14 (a) major axis = 2a
 - **(b)** minor axis = 2b
- $15 \quad SP + PS' = 2a$
 - 16 $x = a\cos\theta$, $y = b\sin\theta$
 - 17 $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$
 - 18 $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$
 - 19 $\frac{xa^2}{x_1} \frac{yb^2}{y_1} = a^2 b^2$
 - $20 \quad \frac{ax}{\cos\theta} \frac{by}{\sin\theta} = a^2 b^2$

The hyperbola

$$21 \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

- **22** (a) S(ae, 0); S'(-ae, 0)
 - **(b)** A(a, 0); A'(-a, 0)
- **23** $x = \pm \frac{a}{a}$
- **24** $b^2 = a^2(e^2 1), e > 1$
- 25 (a) transverse axis = 2a
 - **(b)** conjugate axis = 2b
- **26** $y = \pm \frac{b}{a} x$
- **27** |SP P'S| = 2a
- 28 $x = a \sec \theta, y = b \tan \theta$.
- **29** $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$
- 30 $\frac{x}{a}\sec\theta \frac{x}{b}\tan\theta = 1$
- $31 \quad \frac{xa^2}{x_1} + \frac{yb^2}{y_1} = a^2 + b^2$
- 32 $xa\cos\theta + yb\cot\theta = a^2 + b^2$

The rectangular hyperbola

- 33 $y = \pm x$; $x^2 y^2 = a^2$
- **34** (a) x = kt, $y = \frac{k}{4}$
 - **(b)** x + pqy = k(p+q)
 - (c) $x + p^2 y = 2kp$
 - (d) $p^2x y = \frac{k}{p}(p^4 1)$
 - (e) $k^2x + x_1x_2y = k^2(x_1 + x_2)$ in the second
 - (f) $xy_1 + x_1y = 2k^2$