第十章 半群与群

积代数

定义 设 $V_1 = \langle S_1, \circ \rangle$, $V_2 = \langle S_2, * \rangle$ 为半群(或独异点),令 $S = S_1 \times S_2$,并定义S上的•运算如下: $\forall \langle a,b \rangle, \langle c,d \rangle \in S, \langle a,b \rangle \bullet \langle c,d \rangle = \langle a \circ c,b * d \rangle$ 称 $\langle S, \bullet \rangle$ 为 V_1 和 V_2 的直积(积代数),记作 $V_1 \times V_2$ 。且 $V_1 \times V_2$ 也是半群(或独异点)。

说明 若 V_1 , V_2 是独异点,单位元分别为 e_1 , e_2 ,则 $V_1 \times V_2$ 的单位元是 $< e_1$, $e_2 >$ 。

- 1) 封闭的: ∀<a,b>,<c,d>∈S, <a,b>•<c,d>=<a°c,b*d>∈S
- 2) 可结合的: ∀<a,b>,<c,d>,<e,f>∈S, (<a,b>•<c,d>)•<e,f> = <a°c,b*d>•<e,f>
 - $= <(a^{\circ}c)^{\circ}e,(b^*d)^*f>$
 - $= <a^{\circ}(c^{\circ}e),b^{*}(d^{*}f)>$
 - $= \langle a,b \rangle \bullet \langle c^{\circ}e,d^{*}f \rangle$
 - $= \langle a,b \rangle \bullet (\langle c,d \rangle \bullet \langle e,f \rangle)$
- 3) <e₁,e₂>是●的单位元: ∀<a,b>∈S, <a,b>●<e₁,e₂>=<a°e₁,b*e₂>=<a,b> <e₁,e₂>●<a,b>= <a,b>

10. 2 群的定义与性质

定义 设<G,°>是代数系统,°为二元运算。如果

- 1. °运算是可结合的;
- 存在单位元e∈G;
- 3. ∀x∈G,有x⁻¹∈G, 则称G为**群**。

- 1. <Z,+>,<Q,+>,<R,+>是<u>群</u>;
- 2. $< N, \cdot>, < Z, \cdot>, < Q, \cdot>, < R, \cdot>, < R^*, \cdot>?$
- 3. $<\Sigma^*,°,\lambda>$ 不是群,其中 Σ 是有穷字母表,°表示连接运算。单位元是空串 λ 。除 λ 外,其它符号串没有逆元;
- 4. <P(S),⊕,∅><u>是群</u>,元素的逆元是<u>自身</u>。
- 5. <Z_n,⊕,0><u>是群</u>,其中Z_n ={0,1,...,n-1},⊕表示模n加法。0的逆元是<u>0</u> 非0元素x的逆元是<u>n-x</u>。

- 6. $<M_n(R), +>, <M_n(R), \times>?$
- 7. $\langle A^A, \circ, I_A \rangle$, $\langle P(S), \cup, \varnothing \rangle$, $\langle P(S), \cap, S \rangle$?

例设G={e,a,b,c},°为G上的二元运算,定义由下面运算表给出。证明G是一个群。

1. °是可结合的	5
-----------	---

- 2. e是单位元
- 3. $\forall x \in G, x^{-1}=x$
- 4. °是可交换的

c	e	a	b	c
е	e	a	b _	ε
a	a	e	c	ь
b	b	c	ŧ	a
c	¢	ь	a	e

特点: a,b,c三个元素中, "信息", "

一般称这个群为Klein四元群。

积代数

定义 设<G₁,°>,<G₂,*>为群,在G₁ \times G₂上定义 \bullet 运算如下:

 \forall <a,b>,<c,d> \in G₁×G₂,
<a,b>,<c,d>=<a^{\circ}c,b*d>
<a,b>,<c,d>=<a^{\circ}c,b*d>
称<G₁×G₂,•>为G₁和G₂的直积(积代数),且它也是群。

 $\forall < a,b > \in G_1 \times G_2, < a,b >^{-1} = < a^{-1},b^{-1} > \in G_1 \times G_2$

无限群与有限群

定义 若群G是有穷集,则称G为有限群,否则称G为无限群。对于有限群G,G中的元素个数也叫做G的阶,记作|G|。

例,

- 1. <Z,+>,<R,+>是____。
- 2. **<Z**_n,⊕>是_____,其阶是____。
- 3. <u>Klein四元群</u>是_____,其阶是____。

平凡群

定义 只含单位元的群称为平凡群。

如, $<{0},+>$, $<{1},\cdot>$, $<{\emptyset},\cup>$, $<{I_A},\circ>$ 等。

平凡群的阶是1。

交换群

定义 若群G中的二元运算是可交换的,则称G为交换群或阿贝尔(Abel)群。

如,

- 1. <Z,+>,<Q,+>,<R,+>
- 2. **<P(B)**,⊕,∅**>**
- 3. <Z_n, \oplus ,0>
- 4. Klein四元群是阿贝尔群。

元素的幂

定义 设G是群, $\forall a \in G$,则a的n次幂($n \in Z$):

$$a^{n} = \begin{cases} e & n = 0 \\ a^{n-1}a & n > 0 \\ (a^{-1})^{-n} & n < 0 \end{cases}$$

元素的幂

例,

1.
$$< Z_3, \oplus, 0 > \oplus,$$

 $2^{-3} = 0$

2.
$$< Z, +, 0 >$$

元素的阶

定义 设G是群,a∈G,使得等式 a^k=e

成立的最小的正整数k叫做a的阶(或周期),

记作|a|=k,称a为k阶元;

如果不存在正整数k,使a^k=e,则称a为**无限阶元**。 任何群**G**中单位元**e**的阶都是

1, |e|=1.

元素的阶

例,

- 1. <Z₆,⊕,0>中,求 |0|, |1|, |2|, |3|, |4|, |5|?
- 2. <Z,+,0>中,求 |0|, 其它?

作业(习题十)

, 9, 15, 16