A hollow tube is used to investigate stationary waves. The tube is closed at one end and open at the other end. A loudspeaker connected to a signal generator is placed near the open end of the tube, as shown in Fig. 6.1.

Fig. 6.1

The tube has length *L*. The frequency of the signal generator is adjusted so that the loudspeaker produces a progressive wave of frequency 440 Hz. A stationary wave is formed in the tube. A representation of this stationary wave is shown in Fig. 6.1. Two points P and Q on the stationary wave are labelled.

(a)	(i)	Describe, in terms of energy transfer, the difference between a progressiv stationary wave.	e wave and a
			[1]
	(ii)	Explain how the stationary wave is formed in the tube.	
			[3]
	(iii)	State the direction of the oscillations of an air particle at point P.	
			[1]
(b)	On	Fig. 6.1 label, with the letter N, the nodes of the stationary wave.	[1]
(c)	Sta	ate the phase difference between points P and Q on the stationary wave.	
		phase difference =	[1]

(d)	The	The speed of sound in the tube is $330\mathrm{ms^{-1}}$.		
	Calculate			
	(i)	the wavelength of the sound wave,		
	(ii)	$wavelength = \dots m [2]$ the length $\it L$ of the tube.		
		length = m [2]		