DSC5103 Statistics

Session 11. Review

Last time

- Unsupervised Learning
 - Clustering Methods
 - K-mean clustering
 - Gaussian mixture model
 - Hierarchical clustering

- Principle Components Analysis

The Fundamental

- Out-of-sample performance is the key in predictive analytics
- The Bias-Variance decomposition and trade-off

The Process

- Data partition
 - Training: fit/train a particular model
 - Validation / Cross-Validation: model selection, model comparison
 - Test: final evaluation of out-of-sample performance
- Monte-Carlo Simulation: a tool to test the tools from the God's view
- Bootstrap: a tool to mimic the process of generating data samples from the population

The Tools

- Supervised learning toolbox
 - K Nearest Neighbors
 - Regression and generalizations
 - Linear regression
 - Generalized linear models: logistic regression, Poisson regression
 - Regularized regression: Ridge regression, LASSO, Elastic Net
 - Tree-based methods
 - Tree
 - Bagging & Random Forest
 - Boosting
 - Support Vector Machine
 - Neural Network
- Unsupervised learning toolbox
 - K-means clustering, Gaussian mixture models, hierarchical clustering
 - Principal Components Analysis

The Big Ideas

Regularization: shrink to control variance

Bagging: average to control variance

• Boosting: sequentially train weak learners

The Mixture Example

Flexibility vs. Interpretability

Moving Forward

- Feature engineering
- Unstructured data: text, image, voice, ...
- Deep Learning
- Bigger data

Bayesian models