Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Национальный исследовательский университет ИТМО

Мегафакультет трансляционных информационных технологий Факультет информационных технологий и программирования

Лабораторная работа №2

Выполнили

Толмачев Сергей Евгеньевич

Савоськин Максим Евгеньевич

Шуваев Федор Васильевич

Задание 1.

1. Где строить? Две конкурирующие крупные торговые фирмы F_1 и F_2 , планируют построить в одном из четырех небольших городов G_1 , G_2 , G_3 , G_4 , лежащих вдоль автомагистрали, по одному универсаму. Взаимное расположение городов, расстояние между ними и численность населения показаны на следующей схеме:

140 км	30 км	40 км	50 км	150 км
	G_1	G_2	G_3	G_4
Число покупателей	30 тыс	50 тыс	40 тыс	30 тыс

Доход, получаемый каждой фирмой, определяется численностью населения городов, а также степенью удаленности универсамов от места жительства потенциальных покупателей. Специально проведенное исследование показало, что доход универсамов будет распределяться между фирмами так, как это показано в следующей таблице:

Условие		F_2
Универсам фирмы F_1 расположен от города ближе универсама фирмы F_2	75%	25%
Универсамы обеих фирм расположены на одинаковом расстоянии от города		
Универсам фирмы F_1 расположен от города дальше универсама фирмы F_2	45%	55%

Например, если универсам фирмы F_1 расположен от города G_1 ближе универсама фирмы F_2 , то доход фирм от покупок, сделанных жителями данного города, распределится следующим образом: 75% получит F_1 , остальное – F_2 .

- а) Представьте описанную ситуацию, как игру двух лиц;
- б) В каких городах фирмам целесообразно построить свои универсамы?

Представим описанную ситуацию как игру двух лиц. Составим матрицу для игры двух игроков.

F1	G1	G2	G3	G4
G1	90	76,5	91,5	91,5
G2	103,5	90	91,5	103,5
G3	88,5	88,5	90	103,5
G4	88,5	76,5	76,5	90

Найдём седловую точку матрицы - элемент наименьший в строке и наибольший в столбце. Это (G2;G2) Значит фирмам целесообразно стоить универсамы в городе G2.

Доход фирмы F1 = 90. Доход фирмы F2 = 150 - 90 = 60

Задание 2.

2. Двум погрузчикам разной мощности за 24 часа нужно погрузить на первой площадке 230 т, на второй - 68 т. Первый погрузчик на 1-ой площадке может погрузить 10 т в час, а на 2-ой - 12 т в час. Второй погрузчик на каждой площадке может погрузить по 13 т в час. Стоимость работ, связанных с погрузкой 1 т первым погрузчиком на первой площадке 8 руб., на второй - 7 руб., вторым погрузчиком на первой площадке - 12 руб., на второй - 13 руб. Нужно найти, какой объем работ должен выполнить каждый погрузчик на каждой площадке, чтобы стоимость всех работ по погрузке была минимальной.

Представим эту задачу, как задачу линейного программирования

```
F = 8 * x11 + 7 * x12 + 12 * x21 + 13 * x22 ---> min

10 * x11 + 13 * x21 = 230

12 * x12 + 13 * x22 = 168

x11 + x12 <= 24

x21 + x22 <= 24
```

```
F = 8 * x1 + 7 * x2 + 12 * x3 + 13 * x4 \rightarrow min

10x1 + 13x3 = 230

12x2 + 13x4 = 168

x1 + x2 <= 24

x3 + x4 <= 24
```

Ответ: 298

Задание 3.

3. При составлении суточного рациона кормления скота используют сено и силос. Рацион должен обладать определенной питательностью и содержать белка не менее 1 кг, кальция не менее 100 г и фосфора не менее 80 г. При этом количество питательного рациона должно быть не менее 60 кг. Содержание питательных компонентов в 1 кг сена и силоса приведено в следующей таблице. В ней указана также стоимость единицы того или иного корма. Требуется определить оптимальный суточный рацион кормления животных, обеспечивающий минимальную стоимость корма.

Название ингредиента	Норма (г)	Содержание ингредиента в 1 кг корма (г/кг)		
		Сено	Силос	
Белок	1000	40	10	
Кальций	100	1,25	2,5	
Фосфор	80	2	1	
Стоимость ед. корма	(ден. ед.)	12	8	

белок >= 1 кг кальций >= 100г фосфор >= 80г

общий вес >= 60кг

F = $12x1 + 8x2 \rightarrow min$ 40 * x1 + 10 * x2 >= 1000 5 * x1 + 10 * x2 >= 400 2 * x1 + x2 >= 80x1 + x2 >= 60000

Ответ: 480000

Задание 4.

4. Пусть матрица проигрышей (в млн руб.) первого игрока имеет вид

$$\begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$$

Решить матричную игру, перейдя к задаче линейного программирования. Найти оптимальную смешанную стратегию для первого игрока (использовать симплекс-метод).

$$F = x1 + x2 \rightarrow max$$

2 * x2 <= 1
2 * x1 + 1 * x2 <= 1

$$P = (\frac{1}{3}, \frac{2}{3})$$

Otbet: 0,75

Задание 5.

5. Пусть матрица проигрышей (в млн руб.) первого игрока имеет вид

$$\begin{pmatrix} 8 & 4 & 6 \\ 4 & 8 & 5 \end{pmatrix}$$

Решить матричную игру, перейдя к задаче линейного программирования. Найти оптимальную смешанную стратегию для первого игрока (использовать симплекс-метод).

$$P = (\frac{1}{2}, \frac{1}{2}, 0)$$

Otbet: 0,5

Задание 6.

6. Пусть матрица проигрышей первого игрока имеет вид

$$\begin{pmatrix}
7 & 2 & 5 & 1 \\
2 & 2 & 3 & 4 \\
5 & 3 & 4 & 4 \\
3 & 2 & 1 & 6
\end{pmatrix}$$

Решить соответствующую матричную игру. Чему равно математическое ожидание проигрыша первого игрока, если и первый игрок, и второй игрок используют свои оптимальные стратегии?

цена игры : 98/27

p3 = 0

p4 = 2/27

Математическое ожидание = 0.0535

Задание 7.

7. Платежная матрица в некоторой игре имеет вид

$$\begin{pmatrix} 1 & -1 & -1 \\ -1 & -1 & 3 \\ -1 & 2 & -1 \end{pmatrix}$$

Пусть первый игрок придерживается следующей смешанной стратегии: (6/13, 3/13, 4/13), а второй (6/13, 4/13, 3/13). Вычислить математическое ожидание проигрыша первого игрока.

Задание 8.

8. Перейти от следующей задачи линейного программирования: $L(x) = x_1 + x_2 \rightarrow \min$

$$\begin{cases} 7x_1 + 2x_2 \ge 1, \\ x_1 + 11x_2 \ge 1, \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

к матричной игре. Решить Матричную игру любым известным способом.

Перейдем к матричной игре

(71)

(211)

Перейдем от матричной игры к системам уравнений и решим их методом Гаусса

v - цена игры

$$7p1 + 2p2 = v$$

$$p1 + 11p2 = v$$

$$p1 + p2 = 1$$

$$7q1 + q2 = v$$

$$2q1 + 11q2 = v$$

$$q1 + q2 = 1$$

$$P = (\%, \%)$$

$$Q = (\frac{2}{3}, \frac{1}{3})$$

$$v = 5$$

Задание 9.

9. Перейти от следующей задачи линейного программирования: $L(x) = x_1 + x_2 \to \max$

$$\begin{cases} 7x_1 + 2x_2 + 5x_3 + x_4 \le 1, \\ 2x_1 + 2x_2 + 3x_3 + 4x_4 \le 1, \\ 5x_1 + 3x_2 + 4x_3 + 4x_4 \le 1, \\ 3x_1 + 2x_2 + x_3 + 6x_4 \le 1, \\ x_1 \ge 0, \dots, \quad x_2 \ge 0 \end{cases}$$

к матричной игре. Можно ли упростить матричную игру, используя понятие доминирования стратегий? Решить матричную игру любым известным вам способом.

Перейдем к матричной игре

(7, 2, 5, 1)

- (2, 2, 3, 4) (5, 3, 4, 4)
- (3, 2, 1, 6)

Заметим, что у матрицы есть седловая точка (3, 2)