Отчет по лабораторной работе №1

Вынужденная синхронизация

Выполнили студенты 430 группы Виноградов И.Д., Шиков А.П.

Эксперимент

Оборудование

- 1. Синхронизируемый автогенератор.
- 2. Генератор внешней силы (с регулировкой частоты и амплитуды).
- 3. Осциллограф.

Схема лабораторной установки

Рис. 1: Схема лабораторной установки

Мягкий режим

Изучение явления захватывания при мягком режиме возбуждения автогенератора

Был выставлен мягкий режим возбуждения генератора, для этого на управляющую сетку было подано напряжение 1.3 В. Амплитуда колебаний составляла $U_{amp}=9~\mathrm{B}$, на частоте $f_0=426.7~\mathrm{k}\Gamma$ ц.

При поданом внешнем воздействии, снималась зависимость амплитуды колебаний от частоты внешнего сигнала (АЧХ, см рис. 2). Зависимость снималась только для синхронного режима, измерения прекращались, при переходе в режим биений.

Рис. 2: АЧХ для мягкого режима автогенератора

Кривые для значени апмплитуды внешней силы $U_{out}=1.3~\mathrm{B}$ и $U_{out}=1~\mathrm{B}$ соответствуют сильному сигналу, $U_{out}=0.3~\mathrm{B}$ и $U_{out}=0.6~\mathrm{B}$ - слабому. Тип сигнала определялся по осциллограммам колебаний.

Зависимость границ полосы удержания и захвата от амплитуды внешнего воздействия

При тех же параматерах автогенератора снималась зависимость границ полосы удержания и полосы захвата от амплитуды внешнего воздействия.

Для измерения полосы захвата, частота менялась таким образом, чтобы переход происходил из области биений в область колебаний. Для полосы удержания частота менялась из области колебаний в область биений.

Рис. 3: Зависимость границ полосы синхронизации от внешней амплитуды

Как видно из рис. 3. полоса захвата всегда меньше полосы удержания. Также ширина полосы синхронизации и разность между полосой удержания и полосой захвата увеличивается с увеличением амплитуды внешнего воздействия.

Также была измерена зависимость амплитуды колебаний на (правой) границе полосы синхронизации.

Рис. 4: Амплитуда на правой границе полосы синхронизации ??

Рис. 5: Фигура Лиссажу и осциллограмма в режиме синхронизации (а, б) и биений (в, г)

Рис. 6: Осциллограмма режима биений в окрестностях границы полосы синхронизации

Жесткий режим

АЧХ амплитуд внешнего сигнала

Для достижения жесткого режима на сетке лампы выставлено смещение $U=2.95~{
m B}.$

При увеличении обратной связи, колебания (без внешнего воздействия) появлялись при значении $P_1=75$, а при обратном ходе пропадали при $P_2=35$. Измерения проводились при $P_2 < P < P_1, P=50$. Построенные графики приведены на рис. 7.

Рис. 7: АЧХ жесткого режима

При амплитудах внешнего воздействия $U_{out} = 700$ мВ и $U_{out} = 500$ мВ наблюдается синхронизация. Кривые, полученные при $U_{out} = 400$ мВ и $U_{out} = 350$ мВ соответствуют резонансу.