Convex Optimization

optimization problem

Mathematical optimization problem

minimize
$$f_0(\mathbf{x})$$
 subject to $f_i(\mathbf{x}) \leq b_i$, $i=1,\ldots,m$

- \circ optimization variable $\mathbf{x} = (x_1, ..., x_n)$
- \circ objective function $f_0: \mathbb{R}^n \to \mathbb{R}$
- \circ (inequality) constraint functions $f_i \colon \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m
- optimal or solution x*
 - ① 제약조건을 만족시키는 벡터 x중에서 objective의 값을 가장 작게 하는 벡터
 - ② for any $x \in \mathbb{R}^n$ with $f_1(x) \le b_1$, ..., $f_m(x) \le b_m$, we have $f_0(x^*) \le f_0(x)$

line

- line
 - $x_1 \neq x_2 \text{ and } x_1, x_2 \in \mathbb{R}^n$
 - $\ \, 0\ \, \theta\in\mathbb{R}$

$$y = \theta x_1 + (1 - \theta) x_2$$

 \circ y는 x_1 과 x_2 사이를 지나는 line을 만든다.

affine

Affine

- \circ $C \subseteq \mathbb{R}^n$ and C is affine,
 - ① If the line through any two distinct points in C lies in C.
 - ② (수학적 표현) For any $x_1, x_2 \in C$ and $\theta \in \mathbb{R} \Rightarrow \theta x_1 + (1 \theta) x_2 \in C$
- \circ If C is an affine set and $x_1, \dots, x_k \in C$ and $\theta_1 + \dots + \theta_k = 1$, then $\theta_1 x_1 + \dots + \theta_k x_k \in C$

Affine hull

 \circ The set of all affine combinations of points in some set $C \in \mathbb{R}^n$

$$\text{aff } C = \{\theta_1 \mathbb{x}_1 + \dots + \theta_k \mathbb{x}_k \mid \mathbb{x}_1, \dots, \mathbb{x}_k \in C, \theta_1 + \dots + \theta_k = 1\}$$
 affine combination

convex (set)

Convex

- \circ $C \subseteq \mathbb{R}^n$ and C is convex,
 - ① If the line segment between any two points in C lies in C.
 - ② (수학적) For any $x_1, x_2 \in C$ and any θ with $0 \le \theta \le 1 \Rightarrow \theta x_1 + (1 \theta) x_2 \in C$
 - ③ if and only if C contains every convex combination of its points

Convex hull

 \circ the set of all convex combinations of points in C (i = 1, ..., k)

non convex set

12개 points의 convex hull

위의 non convex set의 convex hull

affine (function)

Affine function

- o a function composed of a linear function and constant (translation)
- o in 1-dim

$$y = Ax + C$$

o in 2-dim

$$f(x,y) = Ax + By + C$$

o in 3-dim

$$f(x, y, z) = Ax + By + Cz + D$$

convex (function)

 \bullet $f: \mathbb{R}^n \to \mathbb{R}$ is convex if **dom** f is convex and

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

for $\forall x, y \in \mathbf{dom} f$, $0 \le \theta \le 1$.

 \circ *f* is concave if -f is convex.

 $\operatorname{dom} f$: 함수 f의 유효한 입력 값의 집합. 이 영역을 f가 define 되는 영역이라고도 표현 한다.

Optimization problem in standard form

optimization problem

minimize
$$f_0(\mathbf{x})$$
 subject to $f_i(\mathbf{x}) \leq 0$, $i=1,...,m$ $h_i(\mathbf{x}) = 0$, $i=1,...,p$

- \circ $x \in \mathbb{R}^n$ is the optimization variable.
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the objective function or cost function.
- $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$, are inequality constraint functions.
- $h_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., p$, are equality constraint functions.
- \circ optimal value p^*

$$p^* = \inf\{f_o(\mathbf{x}) \mid f_i(\mathbf{x}) \le 0, i = 1, ..., m, h_i(\mathbf{x}) = 0, i = 1, ..., p\}$$

Optimal and locally optimal points

optimal point

- $\mathcal{D} = (\bigcap_{i=1}^m \operatorname{dom} f_i) \cap (\bigcap_{i=1}^p \operatorname{dom} h_i)$ is domain of the optimization problem.
- \bigcirc A point $x \in \mathcal{D}$ is feasible, if it satisfies $f_i(x) \le 0$, i = 1, ..., m and $h_i(x) = 0$, i = 1, ..., p.
- \circ A feasible x is optimal if $f_0(x) = p^*$ (p^* is the optimal value.)
- \circ optimal set X_{opt}

$$X_{opt} = \{ x \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p, f_0(x) = p^* \}$$

locally optimal point

 \circ A feasible x is locally optimal if there is an R > 0 such that

$$f_0(\mathbf{x}) = \inf\{f_0(\mathbf{z}) \mid f_i(\mathbf{z}) \le 0, i = 1, ..., m, h_i(\mathbf{z}) = 0, i = 1, ..., p, \|\mathbf{z} - \mathbf{x}\|_2 \le R\}$$

Convex optimization problem in standard form

convex optimization problem

minimize
$$f_0(\mathbf{x})$$
 subject to $f_i(\mathbf{x}) \leq 0$, $i=1,...,m$ $\mathbf{a}_i^T\mathbf{x} = b_i$, $i=1,...,p$

- \circ f_0, \dots, f_m are convex.
- $h_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{x} b_i$, i = 1, ..., p are affine.
- The feasible set of a convex optimization problem is convex.
 - ① Since $f_1, ..., f_m$ are convex, $\bigcap_{i=1}^m \mathbf{dom} f_i$ is convex.
 - ② Since $\{x \mid a_i x = b_i\}$ is hyperplane, $\bigcap_{i=1}^p \{x \mid a_i x = b_i\}$ is affine(i.e convex).
- In a convex optimization, we minimize a convex objective function over a convex set.

Local and global optima

- Any locally optimal point of convex optimization problem is globally optimal.
 - 증명 아이디어 : local optimal value보다 더 작은 값을 가지는 point가 존재한다고 가정할 때, local optimal의 feasible 영역에 local optimal보다 더 작은 값이 존재하는 것을 보인다.

proof)

Recall, x is local optimal, then there is an R > 0 such that

$$f_0(\mathbf{x}) = \inf\{f_0(\mathbf{w}) \mid \mathbf{w} \text{ is feasible, } ||\mathbf{w} - \mathbf{x}||_2 \le R\}$$

Suppose x is not globally optimal, then there is a feasible y with $f_0(y) < f_0(x)$ and ||y - x|| > R.

Consider
$$z = (1 - \theta)x + \theta y$$
 with $\theta = \frac{R}{2||y-x||_2}$.

Then, $\|\mathbf{z} - \mathbf{x}\|_2 = \frac{R}{2} < R$ and $\theta < \frac{1}{2}$ and \mathbf{z} is feasible. (: convexity)

So,
$$f_0(\mathbf{z}) = (1 - \theta)f_0(\mathbf{x}) + \theta f_0(\mathbf{y}) < f_0(\mathbf{x})$$

It contradicts x is local optimal.

Hence, x is globally optimal.

Lagrangian

optimization problem in standard form (not necessarily convex)

minimize
$$f_0(\mathbf{x})$$
 subject to $f_i(\mathbf{x}) \leq 0$, $i=1,...,m$ $h_i(\mathbf{x}) = 0$, $i=1,...,p$

- \circ variable $x \in \mathbb{R}^n$, domain $\mathcal{D} = (\bigcap_{i=1}^m \operatorname{dom} f_i) \cap (\bigcap_{i=1}^p \operatorname{dom} h_i)$, optimal value p^*
- Lagrangian $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} \mathcal{L} = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$

$$\mathcal{L}(\mathbf{x}, \Lambda, V) = f_o(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p v_i h_i(\mathbf{x})$$

- weighted sum of objective and constraint functions
- o v_i is Lagrange multiplier associated with $h_i(\mathbf{x}) = 0$ and $V = (v_1, ..., v_p)$

Lagrange dual Function

• Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\Lambda, V) = \inf_{\mathbf{x} \in \mathcal{D}} \mathcal{L}(\mathbf{x}, \Lambda, V) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p v_i h_i(\mathbf{x}) \right)$$

- \circ g is concave. (: g is pointwise infimum of a family of affine functions of (Λ, V)) (?)
- x*가 g를 최소화 시키는가?

- Lower bounds on optimal value
 - \circ If $\Lambda \geq 0$, then $g(\Lambda, V) \leq p^*$
 - \circ dual feasible is a pair of (Λ, V) with $\Lambda \geq 0$ and $(\Lambda, V) \in \operatorname{dom} g$

Lagrange dual problem

Lagrange dual problem

maximize
$$g(\Lambda, V)$$

subject to $\Lambda \geqslant 0$

- \circ Find lower bound on p^* , obtained from Largrange dual function.
- \cap Λ, V are dual feasible if $\Lambda \geq 0$ and $(\Lambda, V) \in \mathbf{dom} \ g$
- A convex optimization problem : objective function to be maximized is concave and constraint is convex.
 - ① Concave maximization problem is readily solved by minimizing the convex objective function $-f_0$.
- \circ d^* is the optimal value of the Lagrange dual function.

Weak and strong duality

- Weak duality : $d^* \le p^*$
 - o always holds (Whether original problem is convex or not.)
 - o can be used to find a lower bound on the optimal value of a problem that is difficult to solve.
 - o duality gap is $p^* d^*$.
- Strong duality : $d^* = p^*$
 - (usually) holds for convex problem
 - 1 objective function is convex.
 - 2 inequality constraint is convex.
 - 3 equality constraint is affine.

Complementary slackness

• Suppose that strong duality holds, x^* is primal optimal, (Λ^*, V^*) is dual optimal.

$$f_0(\mathbf{x}^*) = g(\Lambda^*, V^*)$$

$$= \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}) + \sum_{i=1}^p v_i^* h_i(\mathbf{x}) \right)$$

$$\leq \left(f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}^*) + \sum_{i=1}^p v_i^* h_i(\mathbf{x}^*) \right)$$

$$\leq f_0(\mathbf{x}^*)$$

- $\uparrow \circ \mathbb{X}^*$ minimizes $\mathcal{L}(\mathbb{X}, \Lambda^*, V^*)$
- $\uparrow \bigcirc$ complementary slackness : $\lambda_i^* f_i(\mathbf{x}^*) = 0$, i = 1, ..., m

 - ② $f_i(\mathbf{x}^*) < 0 \Longrightarrow \lambda_i^* = 0$

- x^* is a primal optimal, (Λ^*, V^*) is a dual optimal, $d^* = p^*$ (strong duality)
 - \circ In strong duality, x^* minimize $\mathcal{L}(x, \Lambda^*, V^*)$
- Then, the KKT conditions must be satisfied. $(f_i, h_i : differentiable)$
 - primal constraints

①
$$f_i(\mathbf{x}^*) \leq 0, i = 1, ..., m$$

②
$$h_i(\mathbf{x}^*) = 0, i = 1,...,p$$

dual constaints

①
$$\lambda_i^* \geq 0, i = 1, ..., m$$

complementary slackness

①
$$\lambda_i^* f_i(\mathbf{x}^*) = 0, i = 1, ..., m$$

 \circ gradient of Lagrangian with respect to x vanishes at x*

①
$$\nabla f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(\mathbf{x}^*) + \sum_{i=1}^p v_i^* \nabla h_i(\mathbf{x}^*) = 0$$

• For any optimization problem with differentiable objective and constraint functions for which strong duality obtains, any pair of primal and dual optimal points must satisfy the KKT conditions.

KKT conditions for convex problems

• If f_i are convex and h_i are affine and x', Λ' , V' are any points that satisfy the KKT conditions, then x' is primal optimal and (Λ', V') is dual optimal with zero duality gap.

$$f_i(\mathbf{x}') \le 0, \ i = 1, ..., m$$

$$h_i(x') = 0, i = 1, ..., p$$

$$\lambda_i' \geq 0, i = 1, \dots, m$$

$$\lambda_i' f_i(\mathbf{x}') = 0, i = 1, ..., m$$

x' is primal optimal

 (Λ', V') is dual optimal

zero duality gap

$$\nabla f_0(\mathbf{x}') + \sum_{i=1}^m \lambda_i' \nabla f_i(\mathbf{x}') + \sum_{i=1}^p v_i' \nabla h_i(\mathbf{x}') = 0$$

Since $\mathcal{L}(\mathbf{x}, \Lambda', V')$ is convex, $g(\Lambda', V') = \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}', \Lambda', V') = \mathcal{L}(\mathbf{x}', \Lambda', V')$

KKT conditions for convex problems

