Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Lösningar till kvalificeringstävlingen den 9 oktober 1975

1. **Metod 1.** Sätt $x = \lg 2$. Tabellvärdena ger

$$\begin{array}{l} 0,30095 \leq x < 0,30105 \\ 0,60205 \leq 2x < 0,60215 \\ 0,90395 \leq 3x < 0,90315 \\ 1,20495 \leq 4x < 1,20415 \\ 1,50595 \leq 5x < 1,50515 \\ 1,80615 \leq 6x < 1,80625 \\ 2,10715 \leq 7x < 2,10725 \\ 2,40815 \leq 8x < 2,40825 \\ 2,70925 \leq 9x < 2,70935 \end{array}$$

Speciellt får vi

$$2,70925 \le 9x$$
 vilket ger $0,3010277 < x$
 $5x < 1,50515$ vilket ger $x < 0,30103$.

Alltså är

$$0,3010277 < x \le 0,30103$$

 $0,6020554 < 2x \le 0,60206$

och vi kan skriva med 5 gällande siffror

$$\lg 2 = 0,30103$$
 $\lg 4 = 0,60206.$

Metod 2. Genom att studera de sista siffrorna i de givna logaritmerna kan man sluta att 8062 bör vara ett höjt närmevärde och 4082 ett sänkt närmevärde. En god approximation till $\lg 2$ bör därför vara 2,1072/7 som är nära 0,30103. För att visa att detta är ett korrekt avrundat värde och att 0,60206 är ett korrekt avrundat värde för $\lg 4$ har vi att visa

$$0.3010275 < \lg 2 < 0.3010325.$$

Men detta följer av att $9 \cdot 0$, 3010275 = 2, 7092475 är ett för lågt närmevärde och $5 \cdot 0$, 3010325 = 1, 5051625 är ett för högt närmevärde.

2. Beteckna talet $BCDE \mod X$. Då är

$$ABCDE = 10^4 A + X$$
$$BCDEA = 10X + A$$

Eliminera X:

$$10(10^4A + X) - (10X + A) = 99999A = 271 \cdot 369A.$$

Om $10^4A + X$ är delbart med 271 måste därför även 10X + A vara delbart med 271.

3. Sätt $\left(\sqrt{2}+1\right)^x=y$. Eftersom

$$(\sqrt{2}+1)^x (\sqrt{2}-1)^x = ((\sqrt{2}+1)(\sqrt{2}-1))^x = 1^x = 1$$

har vi $\left(\sqrt{2}-1\right)^x=1/y$. Den givna ekvationen kan då skrivas $y+1/y=6,\ y^2-6y+1=0$ med lösningarna $y_1=3+2\sqrt{2},\ y_2=3-\sqrt{2}$. Ekvationen $\left(\sqrt{2}+1\right)^x=3+2\sqrt{2}$ ger $x_1=2$ och ekvationen $\left(\sqrt{2}+1\right)^x=3-2\sqrt{2}=1/\left(3+\sqrt{2}\right)$ ger $x_2=-2$.

4. Olikheten kan skrivas i ekvivalent form:

$$5(x-n) > -2n^2 - n + 6.$$

Eftersom $0 \le x - n < 1$ blir denna olikhet i varje fall uppfylld så snart $-2n^2 - n + 6 < 0$, vilket inträffar då $n \ge 2$, så att olikheten är uppfylld för alla $x \ge 2$. Vi har att undersöka n = 1 och n = 0.

$$n = 1, 1 \le x < 2$$
 ger kravet $5(x - 1) > 3, x - 1 > 3/5, x > 8/5.$
 $n = 0, 0 < x < 1$ ger kravet $5x > 6$ vilket är omöjligt då $x < 1$.

Svaret blir därför att olikheten gäller för alla x > 8/5.

Alternativ metod. Vänstra ledet i den givna olikheten är för fast n-värde en växande linjär funktion i x. Då x går från n till n+1 varierar den från n/(n+1) till (n+1)/(n+2). Funktionskurvan består därför av linjestycken som förbinder punkterna $(0,0), (1,1/2), (2,2/3), \ldots$ Funktionen är växande och passerar 3/5 för x=8/5.

- 5. Låt B_1 vara polygonens ena ändpunkt. Kalla polygonens hörn successivt B_2 , B_3 ,..., B_{n-1} och dess andra ändpunkt B_n så att polygonen består av sträckorna B_1B_2 , B_2B_3 ,..., $B_{n-1}B_n$. Som B_1 kan väljas alla n olika punkterna A_i . Då B_1 valts måste B_2 väljas som en av de två längs cirkeln närliggande punkterna A_i (annars skulle B_1B_2 dela de återstående hörnen i två olika mängder och man kunde inte fortsätta polygonen genom alla dessa punkter utan att skära B_1B_2). För B_3 står också två möjligheter öppna nämligen de båda punkter som ligger närmast mängden $\{B_1, B_2\}$ osv. Detta gäller tills vi kommer till den sista B_n , för vilken endast finns en möjlighet. Vi får därför $n \cdot 2^{n-2}$ möjligheter att välja punkterna B_1 så att de bildar en polygon med önskade egenskaper. Då varje polygon har två ändpunkter blir antalet olika polygoner $n \cdot 2^{n-2}/2 = n \cdot 2^{n-3}$.
- 6. Beteckningar, se figuren. Vi har $0 < v < \pi/2$ och måste ha 0 < x < v, 0 < y < v. Sinussatsen på triangeln OAB ger $|AB| = \sin(v-x)/\sin v$. Vi får därför arean av rektangeln med två hörn på den mindre bågen:

$$A_1 = 2\sin x \frac{\sin(v-x)}{\sin v}$$
$$= \frac{\cos(v-2x) - \cos v}{\sin v}.$$

För den andra rektangeln blir arean, beräknad på motsvarande sätt:

$$A_2 = 2\sin y \frac{\sin(v+y)}{\sin v} = \frac{\cos v - \cos(v+2y)}{\sin v}.$$

 A_1 blir maximal då $\cos(v-2x)=1$, x=v/2. Vi får

$$\max A_1 = \frac{1 - \cos v}{\sin v}.$$

För att $\max A_1 \cdot \max A_2 = 1$ fordras då att

$$\max A_2 = \frac{\sin v}{1 - \cos v} = \frac{\sin v (1 + \cos v)}{1 - \cos^2 v} = \frac{1 + \cos v}{\sin v}.$$

 A_2 kan endast uppnå detta värde om $\cos(v+2y)=-1,\,v+2y=\pi.$ På grund av kravet $y\leq v$ kan y väljas på detta sätt då och endast då $v+2v\geq \pi,\,v\geq \pi/3.$

Svar: $\pi/3 \le v < \pi/2$

Lösningarna hämtade, med författarens tillstånd, ur: