3. DOMAĆA ZADAĆA IZ FIZIKE I

21. ožujka 2012.

DZ8 Nerastegnuta opruga duljine $L=1,5\,\mathrm{m}$ i konstante $k=100\,\mathrm{Nm^{-1}}$ nalazi se na ravnoj podlozi (prema slici), a pričvršćena je jednim krajem za zid. Na udaljenosti $x_1=50\,\mathrm{cm}$ od njenog slobodnog (desnog) kraja nalazi se tijelo mase $m=1\,\mathrm{kg}$. Ono je gurnuto brzinom od $v_0=8\,\mathrm{m/s}$ prema opruzi. Gibajući se uz koeficijent trenja $\mu=0,6$ ono se "zalijepi" za kraj opruge i stisne ju za x_0 . Zatim se podloga podigne tako da se tijelo sada nalazi na kosini. Koliko treba nagnuti oprugu, tj. koliki mora biti kut α da bi se opruga sada stisnula 20% više od x_0 ? Početna brzina v_0 i početna udaljenost x_1 ostaju nepromijenjeni.

Slika uz 8. zadatak

DZ9 Kugla mase m_1 koja ima količinu gibanja \vec{p}_1 nalijeće na mirnu kuglu mase m_2 (prema slici). Na slici je označen i parametar A, tzv. parametar udara koji predstavlja razmak između središta kugala. Nakon savršeno elastičnog sudara, kugle se rasprše u ravnini. Izračunajte iznose horizontalnih komponenti (tj. komponenti u smjeru vektora \vec{p}_1 prema slici) količina gibanja prve i druge kugle i izvrijednite ih za dva slučaja: (a) A = R (R je polumjer prve kugle), $m_2 = 2m_1$ i (b) A = 2R (polumjer druge kugle je 2R), $m_2 = 4m_1$. (Rezultati će biti oblika $p'_{1/x} = p_1 \cdot \ldots$ i $p'_{2/x} = p_1 \cdot \ldots$!). Napišite vektor \vec{p}_1 rastavljen na dvije komponente od kojih je prva u smjeru kuta ϕ a druga okomita na taj smjer.

Slika uz 9. zadatak

[Zadaću predati u ponedjeljak, 26. ožujka 2012. na predavanju (u dvorani B1).]