Lecture 19 Genome assembly

Course: Practical Bioinformatics (BIOL 4220)

Instructor: Michael Landis

Email: <u>michael.landis@wustl.edu</u>

Lecture 19 outline

Last time: jupyter, matplotlib

This time: genome assembly

- genome sequences
- genome sizes
- genome assembly

Sequencing

true sequence

ACGGTATATATACCGA

sequence copies

ACGGTATATATACCGA ACGGTATATATACCGA

sequence fragments (reads) ACGGTATA TATACCGA ACGGTATAT ATACCGA AC GGTATATA TACCGA ACGGTA TATATACC GA

Assembly

unordered reads **ATACCGA** aligned reads **TATATACC GGTATATA ACGGTATA** assembled ACGGTATATATACCGA sequence

Assembly

TATATACC
TATATACC
TATATACC
GGTATATA
ACGGTATA
ACGGTATA
ACGGTATA
ACGGTATA
ACGGTATA

Would be easy if we knew how reads were aligned

We would retrieve the original genome sequence with no effort

Instead, we have an unordered and unaligned bag of reads

True genome

Sequenced reads

Assembled genome

How do we assemble reads?

ATACCGA
TATATACC
TATATACC
GGTATATA
ACGGTATA
ACGGTATA
ACGGTATA
ACGGTATA
ACGGTATA

Can we do global pairwise alignments for each pair of reads?

Let's make a block of contiguously mapped reads (contig)

Reads can align to any contig

Read mapped to contig with best score

Basic unit of assembly

We want high-coverage contigs

```
depth = # reads mapped for one site
```

avg. coverage =
$$(8 + 8 + 8 + 8 + 8 + 8 + 7)$$

Short read dataset sizes

How many 150 bp length reads needed for 30x coverage?

<u>Species</u>	<u>#bp</u>	<u>#reads</u>
SARS-CoV-2	2x10 ⁴	$4x10^{3}$
E. coli	4.5x10 ⁶	$9x10^{5}$
Human	$3.2x10^9$	6.4x10 ⁸
Fern	1.6x10 ¹¹	$3.2x10^{10}$

Assembly problem

Naive assembly would require N² pairwise alignments.

Not possible for short read datasets!

e.g. 10¹⁸ alignments for 10⁹ reads

de Bruijn graph

- Choose kmer length (often 40 < k < 100)
- Make left and right (k-1)mers for each kmer
- Add node for (k-1)mer if it doesn't exist
- Add edge from left (k-1)mer to right (k-1)mer

Graph construction


```
ACGGTATA
```

```
ACG
CGG
GGT
GTA
TAT
ATA
```

Graph construction

Graph traversal

Eulerian path: visit all nodes using each edge once

Starting at AC

ACGGTATACCGA

Starting at AT

ATACCGA or ATACCGGTAT

Repeat regions

contigs form where assembly is ambiguous

Scaffolds from contigs

Mate pair reads establish order and estimated distance between pairs of contigs

What influences number of contigs?

- genome size
- repetitiveness of genome
- number of reads
- read length

Short read workflow

Lab focuses on these steps

- 1. Assess quality of raw reads
- 2. Trim raw reads based on quality
- 3. Assemble trimmed reads into contigs
- 4. Assess quality of contigs
- 5. Scaffold contigs into genome
- 6. Assess/annotate genome

Overview for Lab 19