AMATH 301 Final Cheat Sheet that I cannot even use on the final:)

Root Finding Methods (find roots of a function f(x) =0)

MATLAB fzero(fun,x0) tries to find a point x where fun(x) = 0. This solution is where fun(x)changes sign. fzero cannot find a root of a function such as x^2.

Bisection Method: use midpoints

- Steps: make a left and right point, find the *midpoint*, use for loop and find f(current_mid), the value of the function at the current x value.
- if (abs(f mid) < tol) is approximately equal to zero \rightarrow root found, break;
- else if $(f_mid * sin(left) < 0) \rightarrow$ set right = mid (the root is in between the left and mid), and vice versa
- **Bisection Cons**: only works if there is **one root** within the given starting range, is somewhat slower than Newton's Method.
 - **Pro:** will always find root if exists in between starting points

Newton's Method: use derivatives

Steps: choose an initial point, set functions and find derivative of function

f = @(x) x + 0.5*sin(2*x) - 3; fprime = @(x) 1 + cos(2*x);

Declare x(k+1) = x(k) - f(x(k))/fprime(x(k)); if abs(f(x(k+1))) < tolerance, break from loop

 $x_{n+1}=x_{n}-rac{f\left(x_{n}
ight) }{f^{\prime}\left(x_{n}
ight) }$

Cons: need to choose a good starting point, need to know the derivative of the function, will NOT converge if on a critical point!!!

Pros: faster than Bisection Method if converges

Linear Systems

Code for Jacobi:

D = diag(diag(A));

T = A-D;

 $\mathbf{M} = -\mathbf{D} \setminus \mathbf{T}; \mathbf{c} = \mathbf{D} \setminus \mathbf{b};$

for k = 1:max

x next = M*x + c;

if error < tol \rightarrow

break

eigenvalue $|\mathbf{A}| < 1$, the linear solving method will be guaranteed to converge.

Choose to use backslash over inverse (inv(A)) in most cases.

condition number:

This tells you how much solving a linear system will magnify any noise in your data. Will never fall below 1. An orthogonal matrix will not

Gaussian Elimination, a slow way of calculating solution for linear system, has an order of growth O(N^3) ("full price"). Ideal runtime for any iterative method: O(NlogN)

Jacobi Iteration: isolate all variables in the linear system

xk+1 = (-15+yk+5zk)/2

yk+1 = (4xk + zk + 21)/8

zk+1 = (7-4x+y)

Gauss-Seidel: enhancement of Jacobi Iteration. Use if you want a method that takes one input and does the whole process instead of individually filling out each variable like Jacobi.

Xxx1 = (7+4x - 7)/4

Z== (5+2x=4x)/5

Upm = (21+4xx+7x)/-8

A = S+T; % S is the lower triangle of A % T is everything else

$$M = -S^{-1}T, \ c = S^{-1}b,$$

while norm(x_next - x_current, Inf) >= tol && iter < maxIters $x_{current} = x_{next}$;

 $x_next = M*x_current + c;$

- Gauss-Seidel Cons: need solutions from earlier lines, cannot be ran as parallel process (like computer with many processing cores)
- Pros: much faster than Jacobi Iteration

Strictly Diagonally Dominant: all diagonal elements are strictly larger than the sum of the elements in the same row (of the matrix A). Jacobi and Gauss-Seidel methods will be guaranteed to converge if A is SDD. SOR method may converge regardless. **Error** checking condition for iterative linear solving methods:

$$\|x_k - \overline{x}\|$$

$$\blacksquare \|x_{k+1} - x_k\|$$

LUP factorization: A = L*U; Therefore, L*U*x = b \rightarrow y = L\b; x = y\b;

amplify any noise in your data.

Should I use an iterative method over a direct one?

→ Large and sparse

- Why use **LUP** (Lower Triangle, Upper Triangle, Permutation) factorization over Gaussian Elimination? In many engineering applications, when you solve Ax=b, the matrix A remains unchanged, while the *right hand side vector b keeps changing*.
- This decouples the factorization phase (usually computationally expensive) from the actual solving phase.

Min & Max Derivative-Free Methods

matrix A

(Optimization)

feasibility (of regions) constrained = narrow feasibility, unconstrained = can take in any number

fminbnd: a combination of Golden Section Search and SOR optimized to find the min value

- Only for onedimensional function over a specific domain Golden Section Search: does not use any derivatives, function MUST BE *UNIMODAL*!!! Is a lot like Bisection Method. Has variables a, b, x1, x2.

Successive Parabolic Interpolation: pick three points, draw a curve through them.

$$x_0 = \frac{x_1 + x_2}{2} - \frac{(f(x_2) - f(x_1))(x_3 - x_1)(x_3 - x_2)}{2[(x_2 - x_1)(f(x_3) - f(x_2)) - (f(x_2) - f(x_1))(x_3 - x_2)]}$$

Get rid of side that is greater than x0.

Ex: If $x0 < x2 \rightarrow x1$ new = x1 old; If x2 new = x0; x3 new = x2 old;

- Cons: Sometimes does not converge. Less reliable than Golden Section Search.
- **Pros:** SOR can converge in fewer iterations, is *faster than GSS*.

Gradient Descent:

method that can find the minimum of functions of multiple variables.

fminsearch(fun,x0): finds a single vector of values that will minimize a multidimensional function given some initial guess

Steps for Gradient Descent

Outside the loop:

f = @(p) fxy(p(1),p(2)); Define the objective function with one vector input. **fgrad** = @(**p**) **fgradxy(p(1),p(2))**; Define gradient with one vector input. p = [-2;0]; Initial guess

Inside the loop:

phi = @(**t**) **p** - **t*fgrad**(**p**); Define line that points in the direction of steepest descent. **f**_o**f**_p**hi** = @(**t**) **f**(p**hi**(**t**)); Function handle defining value along path. grad = fgrad(p); Create a vector pointing in the direction, f increases the fastest. **tmin** = **fminbnd**(**f**_o**f**_p**hi**, **0**, **1**); Find the time it takes to reach min height on path. p = phi(tmin); Gives the point on the path that is the updated guess for the minimum.

Exam Question: What is **domain and range of the minimum finding process of gradient descent**?

R --> R^2, phi's codomain must be R^2, fgrad is R^2 to R^2 Which of the following are valid operations?

fgrad(**phi**(**t**)) is okay (fgrad needs an R^2 input, phi outputs an R^2) **phi**(**f**(**p**)) f spits out something in R, phi wants R as domain

Curve Fitting

mu = center of a graph (change mu to move right or left) - bigger mu = more to the right sigma2 = height of peak, change to move up or down) ex: sigma2 = 0.2 (very high), sigma2 = 1 (flatter curve)

Interpolation:

getting data point where you don't have a data point (within range of current data)

Polynomial Wiggle:

middle part is accurate, but left side and right side are very inaccurate) Find value of polynomial at x = 2: y = polyval(polynomial, 2);

An n-degree polynomial will go through n+1 points; Therefore, the error for a 2nd degree polynomial fit of 3 points will always be zero.

Maximal Error

- Weakness: *can't apply to huge outliers* (trying to minimize length of outlier to line), usually inaccurate in real life data
- Strengths: **fast** if points generally not outliers

Average Error

- Strength: can handle outliers very well, generally the safest method.
- Notes: best accuracy if worried about worst case scenario, want to match that very well (try to ignore outliers)

Root-Mean Square

- Strength: can be thrown off by outliers. but not as much as maximal error Least Square Fit

The minimum is from the inside summation. No max error, only min error!

Sum of Squared Errors

y = @(x) blah using mu and sigma $err = sum(abs(y(X)-Y).^2);$

- this is generally well-fitted but ok with including outliers

Exam Question: To fit a polynomial through n+1 data points, what degree must the polynomial be? **N degree (see below polynomial equation)**

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Numerical Difference Schemes

(solving an ODE)

- error always increases over time

Error Order of Growth: **Forward and Backward** have an error growth of **O(time step)**

- Central and Leapfrog are second order accurate.
- RK4 is fourth order accurate

Second derivative error order of growth = O(step^2) **Taylor Series Expansion:** The following equations are valid.

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \dots$$

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \dots$$

Forward Euler

- **Explicitly solves for solution.** If you know the current point, just plug in Xk.
- UNSTABLE, if the step size is too big, the error will suddenly explode
- Otherwise usually **over-approximating** the actual solution

Backward Euler: (f(x) - f(x-dx))/dx; %% (rise over run but backwards)

- -yk+1 = yk + delta t * f(yk+1)
- **implicit** method value being determined is a function of unknown variables, need to solve an algebraic equation for the unknown, **is stable**
- can also be written as: xk+1 = inv(I-step*A) * xk; when solving v = x problem.

Central Difference: (f(x+dx) - (f(x-dx)))/(2*dx); %% middle derivative

- is the slope between the two lines representing forward and backward
- only has odd deltas, the even ones cancel out

Leap Frog

 $A = [0 \ 1; -g/L \ -ro];$ % matrix representing change to x and v every step x0 = [theta0; v0];

```
x1 = x0 + step*A*x0; % one step of forward to calculate x at first step
Local Error vs
                       for t = 2*step: step: 60
                          x_new = x0 + 2*step*A*x1; % x0 is two before, x1 is previous
Global Error: If
solving for 0<t<T,
                          x0 = x1;
you take order
                          x1 = x_new;
1/step steps. Then
                       end
local error =
O(step^n), then
                       Using ode45
global error =
                       ts = 0:step:T; %% a range of times
O(step^{(n-1)})
                       Z0 = [theta0; v0];
                       odefun2 = @(t,Z) [ dxdt2(Z(1),Z(2));
                                  dvdt2(Z(1),Z(2)) ]; %% t is ts, Z is initial values
                       [t,isol] = ode45(odefun2,ts,Z0);
                       - Note: ode45 becomes unstable under "stiff differential equations" situation
                       Runge-Kutta ODE:
                       RK2 (midpoint): 2^{nd} order of growth error \rightarrow more accurate than forward and
Phase Portraits:
lets you see how
                       backward.
state variables
                       for k = 1: N-1; %% from first point to almost last point
                          k1 = f(x(k)); %% x value at k
depend on each
other.
                          k2 = f(x(k) + dt/2 * k1);
                          x(k+1) = x(k) + dt*k2;
    May show
    "limit cycle"
                       end
    (predator prey
    reliance)
                       RK4: even more accurate: Do half step forward, do another half step of forward
                       from first point, use a weighted average of the 4 slopes and take a full step
                       x(k+1) = x(k) + dt/6 * (k1 + 2*k2 + 2*k3 + *k4); %% average of all k's
                       Left and Right rectangle rule (Global error: O(step))
Numerical
Integration
                       left_rect = dt*sum(c(1:end-1))
                       right rect = dt*sum(c(2:end))
MATLAB's built-in
                       Midpoint Rule
                       - Global error: O(step^2)
integral function:
works only for
                       Trapezoidal rule: Global error = O(step^2)
function handles
                       trap = \frac{dt}{2}*(c(1) + c(end) + 2*sum(c(2:end-1));
                       <u>Simpson's Rule</u> \rightarrow closest to true solution, <u>Global error</u> = O(step^4)
integral(f, 0, 8);
                       simpson = dt/3 * (c(1) + c(end) + 4*sum(c(2:2:end-1)) + 2*sum(c(3:2:end-2));
                       - The first and last endpoints, and 4*the even points, 2*odd points
```

- must have EVEN NUMBER OF INTERVALS!!!