Lecture 1: Anti Derivatives

Franco Vidal Math 125

March 28, 2023

Understanding the antiderivative

$$\frac{dy}{dx}x^6 = 6x^5$$

- The anti derivative is doing the above process backwards.
- x^6 is an antiderivative of $6x^5$
- an anti derivative of a function f(x) on an interval is a function F(x) for F'(x) = f(x)
- hence, we say x^6 is an antiderivative of $6x^5$

How to find the anti derivative

Method: guess and check

- $f(x) = x^3$
 - guess: $F(x) = x^4$
 - check: $F'(x) = 4x^3$

The above example shows that the two solutions are fairly close with the exception of the constant present in the seconds one Remember:

•
$$\frac{d}{dx}(C \cdot g(x)) = C \frac{d}{dx}(g(x))$$

For the previous example, set $C = \frac{1}{4}$

- guess: $F(x) = \frac{1}{4}x^4$
- check: $F'(x) = \frac{1}{4}(4x^3) = x^3$

Another example:

- $f(x) = xe^{x^2}$
 - idea: work chain rule backwards
 - * guess: $F(x) = e^{x^2}$
 - * check: $F'(x) = e^{x^2} \cdot 2x = 2xe^{x^2}$
 - · This is almost correct but not quite

* guess:
$$F(x) = \frac{1}{2}e^{x^2}$$

* check: $F'(x) = \frac{1}{2}(e^{x^2} \cdot 2x) = xe^{x^2}$
 $\cdot F(x) = \frac{1}{2}e^{x^2}$ is an antiderivative of $f(x) = xe^{x^2}$

Example:

•
$$f(x)=x^3$$

- try $F(x)=\frac{1}{4}x^4+\pi$
- $F'(x)=\frac{1}{4}(4x^3+0)=x^3$
- hence, $F(x)=\frac{1}{4}x^4+\pi$ is also an antiderivative of $f(x)=3$

• there are more than one antiderivative for any given function

General antiderivatives

- if f(x) is one antiderivative of f(x) on an interval, then F(x) + C is the general antiderivative of f(x) on that interval
- new notation: $\int f(x) dx$ is called the indefinite integral of f(x), it's the general antiderivative of f(x)
 - it's a set of functions of x

Example: guess and check

•
$$\int (3x+1)dx = -\frac{1}{3}cos(3x+1) + C$$

• guess:
$$F(x) = cos(3x + 1)$$

• check:
$$F'(x) = -\sin(3x+1) \cdot 3 = -3\sin(3x+1)$$

• guess:
$$-\frac{1}{3}cos(3x+1)$$

• check:
$$\frac{d}{dx}(-\frac{1}{3}cos(3x+1)) = -\frac{1}{3}(-sin(3x+1)\cdot 3) = sin(3x+1)$$