Analysis 1. Semester (WS2017/18)

Dozent: Prof. Dr. Friedemann Schuricht Kursassistenz: Moritz Schönherr

28. November 2017

Inhaltsverzeichnis

Ι	Grundlagen der Mathematik	1
1	Grundbegriffe aus Mengelehre und Logik	3
2	Aufbau einer mathematischen Theorie 2.0.1 Relationen und Funktionen	7 7 10
II	Zahlenbereiche	11
3	Natürliche Zahlen	13
4	Ganze und rationale Zahlen	17
5	Reelle Zahlen	2 1
6	komplexe Zahlen	23
II	I Metrische Räume und Konvergenz	2 5
7	Grundlegen Ungleichungen	27
8	Metrische Räume	29
9	Konvergenz	31
10	Vollständigkeit	33
11	Kompaktheit	35
12	Reihen	37
ΙV	Funktionen und Stetigkeit	39
12	Funktionen	41

Literatur

• Forster: Analysis 1 + 2, Vieweg

Königsberger: Analysis 1 + 2, Springer
Hildebrandt: Analysis 1 + 2, Springer

 \bullet Walter: Analysis 1+2, Springer

 \bullet Escher/Amann: Analysis 1 + 2, Birkhäuser

• Ebbinghaus: Einfühung in die Mengenlehre, BI-Wissenschaftsverlag

• Teubner-Taschenbuch der Mathematik, Teubner 1996

• Springer-Taschenbuch der Mathematik, Springer 2012

Teil I Grundlagen der Mathematik

Grundbegriffe aus Mengelehre und Logik

Mengenlehre: Universalität von Aussagen

Logik: Regeln des Folgerns, wahre/falsche Aussagen

Definition Aussage: Sachverhalt, dem man entweder den Wahrheitswert "wahröder "falschßuordnen kann, aber nichts anders.

Beispiele:

- 5 ist eine Quadratzahl \rightarrow falsch (Aussage)
- Die Elbe fließt durch Dresden \rightarrow wahr (Aussage)
- Mathematik ist rot \rightarrow ??? (keine Aussage)

Definition Menge: Zusammenfassung von bestimmten wohlunterscheidbaren Objekten der Anschauung oder des Denkens, welche die Elemente der Menge genannt werden, zu einem Ganzen. (Cantor, 1877)

Beispiele:

- $M_1 := \text{Menge aller Städte in Deutschland}$
- $M_2 := \{1; 2; 3\}$

Für ein Objekt m und eine Menge M gilt stets $m \in M$ oder $m \notin M$ Für die Mengen M und N gilt M = N, falls dieselben Elemente enthalten sind $\{1; 2; 3\} = \{3; 2; 1\} = \{1; 2; 2; 3\}$

- $N \subseteq M$, falls $n \in M$ für jedes $n \in N$
- $N \subset M$, falls zusätzlich $M \neq N$

Definition Aussageform: Sachverhalt mit Variablen, der durch geeignete Ersetzung der Variablen zur Aussage wird.

Beispiele:

• A(X) := Die Elbe fließt durch X

- B(X;Y;Z) := X + Y = Z
- aber A(Dresden), B(2;3;4) sind Aussagen, A(Mathematik) ist keine Aussage
- A(X) ist eine Aussage fü jedes $X \in M_1 \to \text{Generalisierung von Aussagen durch Mengen}$

Bildung und Verknüpfung von Aussagen

A	B	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \iff B$
W	w	f	W	w	W	w
W	f	f	f	w	f	f
f	w	W	f	W	W	f
f	f	W	f	f	W	w

Beispiele:

- \neg (3 ist gerade) \rightarrow w
- (4 ist gerade) \wedge (4 ist Primzahl) \rightarrow f
- (3 ist gerade) \vee (3 ist Primzahl) \rightarrow w
- (3 ist gerade) \Rightarrow (Mond ist Würfel) \rightarrow w
- (Die Sonne ist heiß) \Rightarrow (es gibt Primzahlen) \rightarrow w

Auschließendes oder: (entweder A oder B) wird realisiert durch $\neg (A \iff B)$.

Aussageform A(X) sei für jedes $X \in M$ Aussage: neue Aussage mittels Quantoren

- ∀: "für alle"
- ∃: ës existiert"

Beispiele:

- $\forall n \in \mathbb{N} : n \text{ ist gerade} \to \mathbf{f}$
- $\exists n \in \mathbb{N} : n \text{ ist gerade} \to \mathbf{w}$

Definition Tautologie bzw. Kontraduktion/Widerspruch: zusammengesetzte Aussage, die unabhängig vom Wahrheitsgehalt der Teilaussagen stest wahr bzw. falsch ist.

Beispiele:

- Tautologie (immer wahr): $(A) \vee (\neg A), \neg (A \wedge (\neg A)), (A \wedge B) \Rightarrow A$
- Widerspruch (immer falsch): $A \wedge (\neg A), A \iff \neg A$
- besondere Tautologie: $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$

Satz (de Morgansche Regeln): Folgende Aussagen sind Tautologien:

- $\bullet \neg (A \land B) \iff \neg A \lor \neg B$
- $\neg (A \lor B) \iff \neg A \land \neg B$

Bildung von Mengen Seien M und N Mengen

- Aufzählung der Elemente: {1; 2; 3}
- mittels Eigenschaften: $\{X \in M \mid A(X)\}$
- \emptyset := Menge, die keine Elemente enthält
 - leere Menge ist immer Teilmenge jeder Menge M
 - Warnung: $\{\emptyset\} \neq \emptyset$
- Verknüpfung von Mengen wie bei Aussagen

Definition Mengensystem: Ein Mengensystem \mathcal{M} ist eine Menge, bestehend aus anderen Mengen.

- $\bigcup M := \{X \mid \exists M \in \mathcal{M} : X \in M\}$ (Vereinigung aller Mengen in \mathcal{M}) • $\bigcap M := \{X \mid \forall M \in \mathcal{M} : X \in M\}$ (Durchschnitt aller Mengen in \mathcal{M})
- **Definition Potenzmenge:** Die Potenzmenge \mathcal{P} enthält alle Teilmengen einer Menge M. $\mathcal{P}(X) := \{ \tilde{M} \mid \tilde{M} \subset M \}$

Beispiel:

• $M_3 := \{1; 3; 5\}$ $\rightarrow \mathcal{P}(M_3) = \{\emptyset, \{1\}, \{3\}, \{5\}, \{1; 3\}, \{1; 5\}, \{3; 5\}, \{1; 3; 5\}\}\$

Satz (de Morgansche Regeln für Mengen):

- $(\bigcup_{N \in \mathcal{N}} N)^C = \bigcap_{N \in \mathcal{N}} N^C$ $(\bigcap_{N \in \mathcal{N}} N)^C = \bigcup_{N \in \mathcal{N}} N^C$

Definition Kartesisches Produkt: $M \times N := \{m, n \mid m \in M \land n \in N\}$ (m, n) heißt geordnetes Paar (Reihenfolge wichtig!) allgemeiner: $M_1 \times ... \times M_k := \{(m_1, ..., m_k) \mid m_j \in M_j, j = 1, ..., k\}$ $M^k := M \times ... \times M := \{(m_1, ..., m_k) \mid m_j \in M_j, j = 1, ..., k\}$

Satz (Auswahlaxiom): Sei \mathcal{M} ein Mengensystem nichtleerer paarweise disjunkter Men-

- Es existiert eine Auswahlmenge \tilde{M} , die mit jedem $M \in \mathcal{M}$ genau 1 Element gemeinsam
- beachte: Die Auswahl ist nicht konstruktiv!

Aufbau einer mathematischen Theorie

Axiome \rightarrow Beweise \rightarrow Sätze ("neue" wahre Aussagen) \rightarrow ergibt Ansammlung (Menge) wahrer Aussagen

Formulierung mathematischer Aussagen

- typische Form eines mathematischen Satzes: "Wenn A gilt, dann gilt auch B."
- formal: $A \Rightarrow B$ bzw. $A(X) \Rightarrow B(X)$ ist stets wahr (insbesondere falls A wahr ist)

Beispiel

- $X \in \mathbb{N}$ und ist durch 4 teilbar $\Rightarrow X$ ist durch 2 teilbar
- beachte: Implikation auch wahr, falls X = 5 oder X = 6, dieser Fall ist aber uninteressant
- genauer meint man sogar $A \wedge C \Rightarrow B$, wobei C aus allen bekannten wahren Aussagen besteht
- \bullet man sagt: B ist **notwendig** für A, da A nur wahr sein kann, wenn B wahr ist
- \bullet man sagt: A ist **hinreichend** für B, da B stets wahr ist, wenn A wahr ist

Mathematische Beweise

- direkter Beweis: finde Zwischenaussagen $A_1, ..., A_k$, sodass für A auch wahr: $(A \Rightarrow A_1) \land (A_1 \Rightarrow A_2) \land ... \land (A_k \Rightarrow B)$
- Beispiel: Zeige $x > 2 \Rightarrow x^2 3x + 2 > 0$ $(x > 2) \Rightarrow (x - 2 > 0) \land (x - 1 > 0) \Rightarrow (x - 2) \cdot (x - 1) \Rightarrow x^2 - 3x + 2 > 0$
- indirekter Beweis: auf Grundlage der Tautologie $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$ führt man direkten Beweis $\neg B \Rightarrow \neg A$ (das heißt angenommen B falsch, dann auch A falsch)
- praktisch formuliert man das auch so: $(A \land \neg B) \Rightarrow ... \Rightarrow (A \land \neg A)$
- Beispiel: Zeige $x^2 3x + 2 \le 0$ sei wahr $\neg B \Rightarrow (x 2) \cdot (x 1) \le 0 \Rightarrow 1 \le x \le 2 \Rightarrow \neg A$

2.0.1 Relationen und Funktionen

Definition Relation: Seien M und N Mengen. Dann ist jede Teilmenge R von $M \times N$ eine Relation.

 $(x,y) \in R$ heißt: x und y stehen in Relation zueinander

Beispiele

• M ist die Menge aller Menschen. Die Liebesbeziehung x liebt y sieht als geordnetes Paar geschrieben so aus: (x,y). Das heißt die Menge der Liebespaare ist das: $L:=\{(x,y)\mid x\ liebt\ y\}$. Und es gilt: $L\subset M\times M$.

Die Relation $R \subset M \times N$ heißt **Ordnungsrelation** (kurz. Ordnung) auf M, falls für alle $a, b, c \in M$ gilt:

- $(a, a) \in R$ (reflexiv)
- $(a,b),(b,a) \in R$ (antisymetrisch)
- $(a,b),(b,c) \in R \Rightarrow (a,c) \in R$ (transitiv)
- z.B. $R = \{(X, Y) \in \mathcal{P}(Y) \times \mathcal{P}(Y) \mid X \subset Y\}$

Eine Ordnungsrelation heißt **Totalordnung**, wenn zusätzlich gilt: $(a,b) \in R \lor (b,a) \in R$

Beispiel

Seien m, n und o natürliche Zahlen, dann ist $R = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid x \leq y\}$ eine Totalordnung, da

- $m \le m$ (reflexiv)
- $(m \le n \land n \le m) \Rightarrow m = n$ (antisymetrisch)
- $(m \le n \land n \le o) \Rightarrow m \le o \text{ (transitiv)}$
- $m \le n \lor n \le m$ (total)

Eine Relation auf M heißt Äquivalenzrelation, wenn für alle $a, b, c \in M$ gilt:

- $(a, a) \in R$ (reflexiv)
- $(a,b),(b,a) \in R$ (symetrisch)
- $(a,b),(b,c) \in R \Rightarrow (a,c) \in R$ (transitiv)

Obwohl Ordnungs- und Äquivalenzrelation die gleichen Eigenschaften haben, haben sie unterschiedliche Zwecke: Ordnungsrelationen ordnen Elemente in einer Menge (z.B. das Zeichen \leq ordnet die Menge der natürlichen Zahlen), während Äquivalenzrelationen eine Menge in disjunkte Teilmengen (Äquivalenzklassen) ohne Rest aufteilen.

```
Wenn R eine Ordnung auf M ist, so wird häufig geschrieben: a \leq b bzw. a \geq b falls (a,b) \in \mathbb{R} a < b bzw. a > b falls zusätzlich a \neq b
```

Definition Abbildung/Funktion: Eine Funktion F von M nach N (kurz: $F: M \mapsto N$), ist eine Vorschrift, die jedem Argument/Urbild $m \in M$ genau einen Wert/Bild $F(m) \in N$ zuordnet. D(F) := M heißt Definitionsbereich/Urbildmenge

```
N \text{ heißt Zielbild}
F(M') := \{n \in N \mid n = F(m) \text{ für ein } m \in M'\} \text{ ist Bild von } M' \subset M
F^{-1}(N') := \{m \in M \mid n = F(m) \text{ für ein } N'\} \text{ ist Urbild von } N' \subset N
R(F) := F(M) \text{ heißt Wertebereich/Bildmenge}
graph(F) := \{(m, n) \in M \times N \mid n = F(m)\} \text{ heißt Graph von } F
F_{|M'|} \text{ ist Einchränkungvon } F \text{ auf } M' \subset M
```

```
Unterschied Zielmenge und Wertebereich: f(x) = sin(x): Zielmenge: \mathbb{R} Wertebereich: [-1;1]
```

Funktionen F und G sind gleich, wenn

- D(F) = D(G)
- $F(m) = G(m) \quad \forall m \in D(F)$

Manchaml wird auch die vereinfachende Schreibweise benutzt:

- $F: M \mapsto N$, obwohl $D(F) \subsetneq M$ (z.B. $tan: \mathbb{R} \mapsto \mathbb{R}$, Probleme bei $\frac{\pi}{2}$)
- gelegentlich spricht man auch von "Funktion F(m)ßtatt Funktion F

Definition Komposition/Verknüpfung: Die Funktionen $F: M \mapsto N$ und $G: N \mapsto P$ sind verknüpft, wenn

 $F \circ G : M \mapsto P \text{ mit } (F \circ G)(m) := G(F(m))$

Eigenschaften von Funktionen:

- injektiv: Zuordnung ist eineindeutig $\rightarrow F(m_1) = F(m_2) \Rightarrow m_1 = m_2$
- Beispiel: x^2 ist nicht injektiv, da F(2) = F(-2) = 4
- surjektiv: $F(M) = N \quad \forall n \in N \ \exists m \in M : F(m) = n$
- Beispiel: sin(x) ist nicht surjektiv, da es kein x für y = 27 gibt
- bijektiv: injektiv und surjektiv

Für bijektive Abbildung $F: M \mapsto N$ ist Umkehrabbildung/inverse Abbildung $F^{-1}: N \mapsto M$ definiert durch: $F^{-1}(n) = m \iff F(m) = n$ Hierweite Die Netstien $F^{-1}(N')$ für Urbild bedeutst nicht, dass die inverse Abbildung F^{-1} evistient

Hinweis: Die Notation $F^{-1}(N')$ für Urbild bedeutet nicht, dass die inverse Abbildung F^{-1} existiert.

Satz: Sei $F:M\mapsto N$ surjektiv. Dann existiert die Abbildung $G:N\mapsto M,$ sodass $F\circ G=id_N$ (d.h. $F(G(n))=n\quad \forall n\in N)$

Definition Rechenoperation/Verknüpfung: Eine Rechenoperation auf einer Menge M ist die Abbildung $*: M \times M \mapsto M$ d.h. $(m, n) \in M$ wird das Ergbnis $m * n \in M$ zugeordnet.

Eigenschaften von Rechenoperationen:

- hat neutrales Element $e \in M : m * e = m$
- ist kommutativ m * n = n * m
- ist assotiativ k * (m * n) = (k * m) * n
- hat ein inverses Element $m' \in M$ zu $m \in M : m * m' = e$

e ist stets eindeutig, m' ist eindeutig, wenn die Operation * assoziativ ist.

Beispiele:

• Addition +: $(m, n) \mapsto m + n$ Summe, neutrales Element heißt Nullelement, inverses Element -m

• Multiplikation $: (m, n) \mapsto m \cdot n$ Produkt, neutrales Element Eins, inverses Element m^{-1} Addition und Multiplikation sind distributiv, falls $k(m+n) = k \cdot m + k \cdot n$

Definition Körper: Eine Menge M ist ein Körper K, wenn man auf K eine Addition und eine Multiplikation mit folgenden Eigenschaften durchführen kann:

- es gibt neutrale Elemente 0 und $1 \in K$
- Addition und Multiplikation sind jeweils kommutativ und assoziativ
- Addition und Multiplikation sind distributiv
- es gibt Inverse -k und $k^{-1} \in K$
 - \rightarrow die reellen Zahlen sind ein solcher Körper

Eine Menge M habe die Ordnung " \leq ünd diese erlaubt die Addition und Multiplikation, wenn

- $a \le b \iff a + c \le b + c$
- $a \le b \iff a \cdot c \le b \cdot c \quad c > 0$
 - \rightarrow Man kann die Gleichungen in gewohnter Weise umformen.

Ein Körper K heißt angeordnet, wenn er eine Totalordnung besitzt, die mit Addition und Multiplikation verträglich ist.

Isomorphismus bezüglich einer Struktur ist die bijektive Abbildung $I: M_1 \mapsto M_2$, die die vorhandene Struktur auf M_1 und M_2 erhält, z.B.

- Ordnung \leq_1 auf M_1 , falls $a \leq_1 b \iff I(a) \leq_2 I(b)$
- Abbildung $F_i: M_i \mapsto M_i$, falls $I(F_1(a)) = F_2(I(a))$
- Rechemoperation $*_i: M_i \times M_i \mapsto M_i$, falls $I(a *_1 b) = I(a) *_2 I(b)$
- spezielles Element $a_i \in M_i$, falls $I(a_1) = a_2$

Ës gibt 2 verschiedene Arten von reellen Zahlen, meine und Prof. Schurichts. Wenn wir einen Isomorphismus finden, dann bedeutet das, dass unsere Zahlen strukturell die selben sind."

Beispiele: $M_1 = \mathbb{N}$ und $M_2 = \{\text{gerade Zahlen}\}$, jeweils mit Addition, Multiplikation und Ordnung

- $\rightarrow I: M_2 \mapsto M_2 \text{ mit } I(k) = 2k \quad \forall k \in \mathbb{N}$
- → Isomorphismus, der die Addition, Ordnung und die Null, aber nicht die Multiplikation erhält

2.0.2 Bemerkungen zum Fundament der Mathematik

Forderungen an eine mathematische Theorie:

- widerspruchsfrei: Satz und Negation nicht gleichzeitig herleitbar
- vollständig: alle Aussagen innerhalb der Theorie sind als wahr oder falsch beweisbar
- 2 Unvollständigkeitssätze:
- jedes System ist nicht gleichzeitig widerspruchsfrei und vollständig
- in einem System kann man nicht die eigene Widerspruchsfreiheit zeigen

Teil II **Z**ahlenbereiche

Natürliche Zahlen

N sei diejenige Menge, die die **Peano-Axiome** erfüllt, das heißt

- N sei induktiv, d.h. es existiert ein Nullelement und eine injektive Abbildung N \mapsto N mit $\nu(n) \neq 0 \quad \forall n$
- Falls $N \subset \mathbb{N}$ induktiv in \mathbb{N} $(0, \nu(n) \in N \text{ falls } n \in N \Rightarrow N = \mathbb{N}$
- $\to \mathbb{N}$ ist die kleinste induktive Menge

Nach der Mengenlehre ZF (Zermelo-Fraenkel) existiert eine solche Menge $\mathbb N$ der natürlichen Zahlen. Mit den üblichen Symbolen hat man:

- \bullet 0 := \emptyset
- $1 := \nu(0) := \{\emptyset\}$
- $2 := \nu(1) := \{\emptyset, \{\emptyset\}\}\$
- $3 := \nu(2) := \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\$

Damit ergibt sich in gewohnter Weise $\mathbb{N} = \{1; 2; 3; ...\}$ anschauliche Notation $\nu(n) = n + 1$ (beachte: noch keine Addition definiert!)

Theorem: Falls \mathbb{N} und \mathbb{N}' die Peano-Axiome erfüllen, sind sie isomorph bezüglich Nachfolgerbildung und Nullelement. Das heißt alle solche \mathbb{N}' sind strukturell gleich und können mit obigem \mathbb{N} identifiziert werden.

Satz (Prinzip der vollständigen Induktion): Sei $\{A_n \mid n \in N\}$ eine Menge von Aussagen A_n mit der Eigenschaft

IA: A_0 ist wahr

IS: $\forall n \in \mathbb{N} \text{ gilt } A_n \Rightarrow A_{n+1}$

 A_n ist wahr für alle $n \in \mathbb{N}$

Lemma: Es gilt:

- $\nu(n) \cup \{0\} = \mathbb{N}$
- $\nu(n) \neq n \quad \forall n \in \mathbb{N}$

Satz (rekursive Definition/Rekursion): Sei B eine Menge und $b \in B$. Sei F eine Abbildung mit $F: B \times \mathbb{N} \mapsto B$. Dann liefert nach Vorschrift: f(0) := b und $f(n+1) = F(f(n), n) \quad \forall n \in \mathbb{N}$ genau eine Abbildung $f: \mathbb{N} \mapsto B$. Das heißt eine solche Abbildung exstiert und ist eindeutig.

Rechenoperationen:

- Definition Addition '+': $\mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$ auf \mathbb{N} durch $n+0 := n, n+\nu(m) := \nu(n+m) \quad \forall n, m \in \mathbb{N}$
- Definition Multiplikation '.': $\mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$ auf \mathbb{N} durch $n \cdot 0 := 0$, $n \cdot \nu(m) := n \cdot m + n \quad \forall n, m \in \mathbb{N}$ Für jedes feste $n \in \mathbb{N}$ sind beide Definitionen rekursiv und eindeutig definiert.

 $\forall n \in \mathbb{N} \text{ gilt: } n+1=n+\nu(0)=\nu(n+0)=\nu(n)$

Satz: Addition und Multiplikation haben folgende Eigenschaften:

- es existiert jeweils ein neutrales Element
- kommutativ
- assoziativ
- distributiv

Es gilt $\forall k, m, n \in \mathbb{N}$:

- $m \neq 0 \Rightarrow m + n \neq 0$
- $m \cdot n = 0 \Rightarrow n = 0$ oder m = 0
- $m + k = n + k \Rightarrow m = n$ (Kürzungsregel der Addition)
- $m \cdot k = n \cdot k \Rightarrow m = n$ (Kürzungsregel der Multiplikation)

Ordnung auf \mathbb{N} : Relation $R := \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid m \leq n\}$ wobei $m \leq n \iff n = m + k$ für ein $k \in \mathbb{N}$

Satz: Es gilt auf \mathbb{N} :

- $m \le n \Rightarrow \exists! k \in \mathbb{N} : n = m + k$, nenne n m := k (Differenz)
- Relation R (bzw. \leq) ist eine Totalordnung auf N
- \bullet Ordnung \leq ist verträglich mit der Addition und Multiplikation

Bweis:

- $Sei\ n = m + k = m + k' \Rightarrow k = k'$
- Sei $n = n + 0 \Rightarrow n \leq n \Rightarrow reflexiv$ sei $k \leq m, m \leq n \Rightarrow \exists l, j : m = k + l, n = m + j = (k + l) + j = k + (l + j) \Rightarrow k \leq n \Rightarrow transitiv$

sei nun $m \le nundn \le m \Rightarrow n = m+j = n+l+j \Rightarrow 0 = l+j \Rightarrow j = 0 \Rightarrow n = m \Rightarrow antisymmetrisch$

Totalordnung, d.h. $\forall m, n \in \mathbb{N} : m \le n \text{ oder } n \le m$ $IA: m = 0 \text{ wegen } 0 = n + 0 \text{ folgt } 0 \le n \forall n$
$$\begin{split} & \textit{IS: gelte } m \leq n \textit{ oder } n \leq m \textit{ mit festem } m \textit{ und } \forall n \in \mathbb{N}, \textit{ dann} \\ & \textit{falls } n \leq m \Rightarrow n \leq m+1 \\ & \textit{falls } m < n \Rightarrow \exists k \in \mathbb{N} : n = m+(k+1) = (m+)1+k \Rightarrow m+1 \leq n \\ & m \leq n \textit{ oder } n \leq m \textit{ gilt f\"{u}r } m+1 \textit{ und } \forall n \in \mathbb{N}, \textit{ also } \forall n, m \in \mathbb{N} \\ & \bullet \textit{ sei } m \leq n \Rightarrow \exists j : n = m+j \Rightarrow n+k = m+j+k \Rightarrow m+k \leq n+k \end{split}$$

Ganze und rationale Zahlen

Frage: Existiert eine natürliche Zahl x mit n = n' + x für ein gegebenes n und n'?

Antwort: Das geht nur falls $n \le n'$, dann ist x = n - n'

Ziel: Zahlenbereichserweiterung, sodass die Gleichung immer lösbar ist. Ordne jedem Paar $(n, n') \in \mathbb{N} \times \mathbb{N}$ eine neue Zahl als Lösung zu. Gewisse Paare liefern die gleiche Lösung, z.B. (6,4), (5,3), (7,5). Diese müssen mittels Relation identifiziert werden.

$$\mathbb{Q} := \{ (n_1, n_1'), (n_2, n_2') \in (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \mid n_1 + n_2' = n_1' + n_2 \}$$

Satz: \mathbb{Q} ist die Äquivalenzrelation auf $\mathbb{N} \times \mathbb{N}$

Beispiele:

- $(5,3) \sim (6,4) \sim (7,5)$ bzw. $(5-3) \sim (6-4) \sim (7-5)$
- $(3,6) \sim (5,8)$ bzw. $(3-6) \sim (5-8)$

Beweis:

- offenbar $((n, n'), (n, n')) \in \mathbb{Q} \Rightarrow reflexiv$
- $falls\ ((n_1, n_1'), (n_2, n_2')) \in \mathbb{Q} \Rightarrow (n_2, n_2'), (n_1, n_1')) \in \mathbb{Q} \Rightarrow symmetrisch$
- $sei\ ((n_1, n_1'), (n_2, n_2')) \in \mathbb{Q}\ und\ ((n_2, n_2'), (n_3, n_3')) \in \mathbb{Q} \Rightarrow n_1 + n_2' = n_1' + n_2, n_2 + n_3' = n_2' + n_3 \Rightarrow n_1 + n_3' = n_1' + n_3 \Rightarrow ((n_1, n_1'), (n_3, n_3')) \in \mathbb{Q} \Rightarrow transitiv$

setze $\overline{\mathbb{Z}} := \{[(n, n')] \mid n, n' \in \mathbb{N}\}$ Menge der ganzen Zahlen, [ganze Zahl] Kurzschreibweise: $\overline{m} := [(m, m')]$ oder $\overline{n} := [(n, n')]$

Satz: Sei $[(n, n')] \in \overline{\mathbb{Z}}$. Dann existiert eindeutig $n* \in \mathbb{N}$ mit $(n*, 0) \in [(n, n')]$, falls $n \geq n'$ bzw. $(0, n*) \in [(n, n')]$ falls n < n'.

Beweis:

- $n \ge n' \Rightarrow \exists! n* \in \mathbb{N} : n = n' + n* \Rightarrow (n*,0) \sim (n,n')$
- $n < n' \Rightarrow \exists ! n * \in \mathbb{N} : n + n * = n' \Rightarrow (0, n *) \sim (n, n')$

Frage: Was hat $\overline{\mathbb{Z}}$ mit \mathbb{Z} zu tun?

Antwort: identifiziere (n,0) bzw. (n-0) mit $n \in \mathbb{N}$ und identifiziere (0,n) bzw. (0-n) mit Symbol -n

 \Rightarrow ganze Zahlen kann man eindeutig den Elementen folgender Mengen zuordnen: $\mathbb{Z} := \mathbb{N} \cup \{(-n) \mid n \in \mathbb{N}\}$

Rechenoperationen auf $\overline{\mathbb{Z}}$:

- Addition: $\overline{m} + \overline{n} = [(m, m')] + [(n, n')] = [(m + n, m' + n')]$
- Multiplikation: $\overline{m} \cdot \overline{n} = [(m, m')] \cdot [(n, n')] = [(mn + m'n', mn' + m'n)]$

 $\bf Satz:$ Addition und Multiplikation sind eindeutig definiert, d.h. unabhängig von Repräsentant bezüglich $\mathbb Q$

Beweis:

Sei
$$(m_1, m_1') \sim (m_2, m_2'), (n_1, n_1') \sim (n_2, n_2') \Rightarrow m_1 + m_2' = m_1' + m_2, n_1 + n_2' = n_1' + n_2 \Rightarrow m_1 + n_1 + m_2' + n_2' = m_1' + n_1' + m_2 + n_2 \Rightarrow (m_1, m_1') + (n_1, n_1') \sim (m_2, m_2') + (n_2, n_2')$$

Satz: Für Addition und Multiplikation auf \mathbb{Z} gilt $\forall \overline{m}, \overline{n} \in \overline{\mathbb{Z}}$:

- es existiert eine neutrales Element: 0 := [(0,0)], 1 := [(1,0)]
- jeweils kommutativ, assoziativ und gemeinsam distributiv
- $-\overline{n} := [(n', n)] \in \mathbb{Z}$ ist invers bezüglich der Addition zu $[(n, n')] = \overline{n}$
- $\bullet \ (-1) \cdot \overline{n} = -\overline{n}$
- $\overline{m} \cdot \overline{n} = 0 \iff \overline{m} = 0 \lor \overline{n} = 0$

Beweis:

- offenbar $\overline{n} + 0 = 0 + \overline{n} = \overline{n}$ und $\overline{n} \cdot 1 = 1 \cdot \overline{n} = \overline{n}$
- Fleißarbeit
- offenbar $\overline{n} + (-\overline{n}) = (-\overline{n}) + \overline{n} = [(n + n', m + m')] = 0$
- $(-1) \cdot \overline{n} = [(0,1)] \cdot [n,n'] = [n',n] = -\overline{n}$
- Übungsaufgabe

Satz: Für $\overline{m}, \overline{n} \in \mathbb{Z}$ hat die Gleichung $\overline{m} = \overline{n} + \overline{x}$ die Lösung $\overline{x} = \overline{m} + (-\overline{n})$

Ordnung auf $\overline{\mathbb{Z}}$: betrachte Relation $R := \{(\overline{m}, \overline{n}) \in \overline{\mathbb{Z}} \times \overline{\mathbb{Z}} \mid \overline{m} < \overline{n}\}$

Satz: R ist Totalordnung auf \mathbb{Z} und verträglich mit Addition und Multiplikation

Ordnung verträglich mit Addition: $\overline{n} < 0 \iff 0 = \overline{n} + (-\overline{n}) < -\overline{n} = (-1) \cdot \overline{n}$

beachte: $\mathbb{Z} := \mathbb{N} \cup \{(-n) \mid n \in \mathbb{N}_{>0}\}\$

Satz: \mathbb{Z} und $\overline{\mathbb{Z}}$ sind isomorph bezüglich Addition, Multiplikation und Ordnung.

Beweis:

betrachte Abbildung $I: \mathbb{Z} \to \overline{\mathbb{Z}}$ mit I(k) := [(k,0)] und I(-k) := [(0,k)] $\forall k \in \mathbb{N} \Rightarrow \ddot{U}$ bungsaufgabe

Notation: verwende stets \mathbb{Z} , schreibe m, n, ... statt $\overline{m}, \overline{n}, ...$ für ganze Zahlen in \mathbb{Z}

Frage: Existiert eine ganze Zahl mit $n = n' \cdot x$ für $n, n' \in \mathbb{Z}, n' \neq 0$

Antwort: im Allgemeinen nicht **Ziel:** Zahlbereichserweiterung analog zu $\mathbb{N} \to \mathbb{Z}$

ordne jedem Paar $(n, n') \in \mathbb{Z} \times \mathbb{Z}$ neue Zahl x zu

schreibe (n, n') auch als $\frac{n}{n'}$ oder n: n'

identifiziere Paare wie z.B.
$$\frac{4}{2}$$
, $\frac{6}{3}$, $\frac{8}{4}$ durch Relation $\mathbb{Q} := (\frac{n_1}{n_2'}, \frac{n_2}{n_2'}) \in (\mathbb{Z} \times \mathbb{Z}_{\neq 0}) \times (\mathbb{Z} \times \mathbb{Z}_{\neq 0}) \mid n_1 n_2' = n_1' n_2$

 $\Rightarrow \mathbb{Q}$ ist eine Äquivalenzrelation auf $\mathbb{Z} \times \mathbb{Z}_{\neq 0}$

setze $\mathbb{Q} := \left[\frac{n}{n'}\right] \mid (n, n') \in \mathbb{Z} \times \mathbb{Z}_{\neq 0}$ Menge der rationalen Zahlen beachte: unendlich viele Symbole $\frac{n}{n'}$ für gleiche Zahl $\left[\frac{n}{n'}\right]$ wir schreiben später $\frac{n}{n'}$ für die Zahl $\left[\frac{n}{n'}\right]$

offenbar gilt die Kürzungsregel: $[\frac{n}{n'}] = [\frac{kn}{kn'}] \quad \forall k \in \mathbb{Z}_{\neq 0}$

Rechenoperationen auf Q:

- Addition: $\left[\frac{m}{m'}\right] + \left[\frac{n}{n'}\right] := \left[\frac{mn' + m'n}{m'n'}\right]$ Multiplikation: $\left[\frac{m}{m'}\right] \cdot \left[\frac{n}{n'}\right] := \left[\frac{mn}{m'n'}\right]$

- **Satz:** Mit Addition und Multiplikation ist \mathbb{Q} ein Körper mit neutralen Elementen: $0 = \begin{bmatrix} \frac{0_{\mathbb{Z}}}{1_{\mathbb{Z}}} \end{bmatrix} = \begin{bmatrix} \frac{0_{\mathbb{Z}}}{n_{\mathbb{Z}}} \end{bmatrix}, 1 := \begin{bmatrix} \frac{1_{\mathbb{Z}}}{1_{\mathbb{Z}}} \end{bmatrix} = \begin{bmatrix} \frac{n}{n} \end{bmatrix} \neq 0$ inversen Elementen: $-[\frac{n}{n'}] = [\frac{-n}{n}], [\frac{n}{n'}]^{-1} = [\frac{n'}{n}]$

Ordnung auf \mathbb{Q} : für $\left[\frac{n}{n'}\right] \in \mathbb{Q}$ kann man stets n' > 0 annehmen Realtion: $R := \{([\frac{m}{m'}], [\frac{n}{n'}]) \in \mathbb{Q} \times \mathbb{Q} \mid mn' \leq m'n, m', n' > 0\}$ gibt Ordnung \leq

Satz: \mathbb{Q} ist ein angeordneter Körper (d.h. \leq ist eine Totalordnung und verträglich mit Addition und Multiplikation)

Notation: schreibe vereinfacht nur noch $\frac{n}{n'}$ für die Zahl $\left[\frac{n}{n'}\right] \in \mathbb{Q}$ und verwende auch Symbole p, q, \dots für Elemente aus \mathbb{Q}

Gleichung $p \cdot x = q$ hat stets eindeutige Lösung: $x = q \cdot p^{-1} \ (p, q \in \mathbb{Q}, p \neq 0)$

Frage: $\mathbb{N} \subset \mathbb{Z} \to \mathbb{Z} \subset \mathbb{Q}$? **Antwort:** Sei $\mathbb{Z}_{\mathbb{Q}} := \frac{n}{1} \in \mathbb{Q} \mid n\mathbb{Z}, I : \mathbb{Z} \to \mathbb{Z}_{\mathbb{Q}} \text{ mit } I(n) = \frac{n}{1}$ $\Rightarrow I$ ist Isomorphismus bezüglich Addition, Multiplikation und Ordnung. In diesem Sinn: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

Folgerung: Körper $\mathbb Q$ ist archimedisch angeordnet, d.h. für alle $q\in\mathbb Q\exists n\in\mathbb N:q<_{\mathbb Q}n$

Beweis:

$$\begin{array}{l} Sei \ q = \left[\frac{k}{k'}\right] \ mit \ k' > 0 \\ n := 0 \ falls \ k < 0 \Rightarrow q = \left[\frac{k}{k'}\right] < \left[\frac{0}{k'}\right] = 0 = n \\ n := k + 1 \ falls \ k \geq 0 \Rightarrow q = \left[\frac{k}{k'}\right] < \left[\frac{k+1}{k'}\right] = n \end{array}$$

Reelle Zahlen

Kapitel 6 komplexe Zahlen

Teil III Metrische Räume und Konvergenz

Grundlegen Ungleichungen

Metrische Räume

Konvergenz

Vollständigkeit

Kompaktheit

Reihen

Teil IV Funktionen und Stetigkeit

Funktionen