

Next: About this document ... Up: midterm2 18f Previous: Instructions

Do not click until you are ready to take the exam

The Problems

1. **Problem 12 (33 points)**

The circuit given below is composed of a differential amplifier (top) and a voltage follower (bottom), whick feeds the output v_{out} to the non-inverting input of the differentiator.

Give the expression of the output current \underline{i} , and show that it is uniquely determined by the circuit parameters, independent of the load resistor R_L , i.e., the circuit is a current source.

Hint: use virtual ground assumption, label the voltages at both the inverting and non-inverting inputs of the differentiator by V_1 , and label the output of the differentiator as V_2 . Apply KCL to the two input nodes.

2. Problem 2 (33 points)

The AC bridge circuit shown below powered by an AC voltage source is used to measure the unknown capacitance C_x and unknown resistance R_x . By adjusting R_1 or R_2 , the bridge is balanced, i.e., the

current through the ampmeter is zero, and the values of C_x and R_x can be expressed in terms of the known values of R, C, R_1 and R_2 . Give these expressions for C_x and R_x .

3. Problem 3 (34 points)

In the circuit given below, $R_1=R_2=10\,k\Omega$, $R_3=20\,k\Omega$, $C=10\,\mu F$, the current source is $I=1\,mA$, the voltage source is $V=10\,V$. The circuit is at steady state before the switch \underline{s} closes at $\underline{t=0}$. Find the current $\underline{i(t)}$ through R_3 and voltage $\underline{v_c(t)}$ across C for t>0, and sketch them as two functions of time.

Next: About this document ... Up: midterm2 18f Previous: Instructions

Ruye Wang 2018-11-02