CS341

Data Science:

คาบ <u>บรรยาย</u> ที่ <u>2</u>

Data Science Process Cycle วัฎจักรกระบวนการวิทยาการข้อมูล

จากบทที่ 1 What does a Data Scientist do? นักวิทยาการข้อมูลต้องทำกระบวนการใดบ้าง?

อย่างไรก็ตามขั้นตอนที่นักวิทยการทำข้อมูลได้ดำเนินการเป็นเพียงส่วน หนึ่งของโครงการพัฒนาระบบต่างๆ ที่ใช้เทคนิควิทยาการข้อมูล

ขั้นตอนกระบวนการทำงาน ในมุมมองโครงการด้านวิทยาการข้อมูล (Processes of Data Science Project)

- ภาพรวมของการนำเทคนิควิทยาการข้อมูลไปใช้ประโยชน์ด้านต่าง ๆ
- เช่น ธุรกิจ การเกษตร การศึกษา ฯลฯ

Skills (ทักษะ) ที่จำเป็นของ "ทีม" นักวิทยาการข้อมูล

Marin & Statistics

*Nowledge is tice Data Science Team Venn Diagram Machine Learning Data Science

กรอบการทำงานแบบ CRISP-DM

CRoss-industry Standard Process for Data Mining

- เป็นกระบวนการมาตรฐานอุตสาหกรรม สำหรับระบบการ ทำเหมืองข้อมูล (Data Mining)
 - เหมือนกับกระบวนการ ISO ในโรงงานอุตสาหกรรม
 - เหมือนกับกระบวนการ CMMI ในการพัฒนาซอร์ฟแวร์
- กำหนดมาตรฐานเพื่อ
 - เป็นขั้นตอนการทำงานมาตรฐาน (workflow) ที่ทำให้การพัฒนาเหมืองข้อมูลเหมาะสมต่อกลยุทธ์และความต้องการของธุรกิจหรือการวิจัย
 - ทำให้กระบวนการเหมืองข้อมูลนั้นเชื่อถือได้ (Reliable) และสามารถทำซ้ำได้ (repeatable) โดยผู้ที่มีพื้นฐานด้านเหมืองข้อมูลไม่มากนักได้

Data Mining หรือ ระบบการทำเหมืองข้อมูล เป็นการพัฒนาเทคนิค เพื่อค้นหารูปแบบที่มีประโยชน์ต่อธุรกิจที่แฝง อยู่ในข้อมูล ซึ่งต่อมากระบวนการเหมืองข้อมูลก็ถูกรวบรวมเข้ามาไว้ใน สาขาวิชา Data Science ซึ่งแนวคิดของมาตรฐาน CRISP-DM ก็มักถูกนำมาใช้ใน Data Science Process Management เช่นเดียวกัน

CRISP-DM → CRISP-DS (Data Science)

กรอบการทำงานแบบ CRISP-DM

ประโยชน์ของการมีกรอบการทำงาน (framework) มาตรฐาน

- กรอบการทำงานช่วยในการบันทึกและเพิ่มประสบการณ์ (recording experience)
 - นำไปสู่การทำซ้ำแต่ละโปรเจคได้
- บูรณาการกับการทำการวางแผนและบริหารโครงการได้ (project planning and management)
- อำนวยความสะดวก(comfort) ให้กับผู้ที่รับไปใช้ (adopter)
 - สามารถแสดงพัฒนาการเติบโต (maturity) ของการทำเหมืองข้อมูลในโปรเจคได้
 - ลดการผูกขาดกับคนใดคนหนึ่งในคณะทำงานโครงการ (reduces dependency on stars)

ข้นตอนของ CRISP-DS

CRISP-DS: 6 Phases Process Cycle

- Business/Research Understanding
 - ทำความเข้าใจในวัตถุประสงค์ของธุรกิจหรือปัญหางานวิจัยให้ชัดเจน
- Data Understanding
 - ทำความเข้าใจข้อมูลของธุรกิจหรือ ข้อมูลของปัญหาวิจัย รวมถึงระบุการเก็บข้อมูล
- Data Preparation
 - การจัดเตรียมข้อมูลเพื่อให้อยู่ในรูปที่เหมาะในการวิเคราะห์ ประมวลผล
- Modeling
 - การสร้างตัวแบบที่เหมาะสมกับวัตถุประสงค์ของธุรกิจ หรือ ปัญหางานวิจัย
- Evaluation
 - ประเมินตัวแบบเพื่อวัดประสิทธิภาพ
- Deployment
 - นำตัวแบบที่สร้างขึ้นไปใช้งานจริงเพื่อประเมินความสมบูรณ์โครงการ

ข้นตอนของ CRISP-DS

การดำเนินการในแต่ละ phases CRISP-DS

Phases and Tasks

1. Business Understanding

- การทำความเข้าใจการทำธุรกิจ
- 1.1 Determine Business Objectives

ระบุวัตถุประสงค์ (Objectives) และความจำเป็นของโครงการอย่างชัดเจน

• 1.2 Assess Situation

ประเมินสถานการณ์ (Situation) ระบุข้อจำกัด หรือ กฎเกณฑ์

• 1.3 Determine Goals

ระบุผลลัพธ์ หรือ เป้าหมาย (Goals) ที่ต้องการได้จากการทำเหมืองข้อมูล การวิเคราะห์ ข้อมูล

• 1.4 Produce Project Plan

จัดเตรียมวางแผนกลยุทธ์ (Plan) เบื้องต้นสำหรับบรรลุวัตถุประสงค์

ตัวอย่าง Goal

- ทำอย่างไรถึงเพิ่มยอดขายให้กับสินค้าชนิดต่างๆได้
- ทำอย่างไรให้ลูกค้ากลับมาซื้อสินค้าอีก
- อยากรู้ว่าลูกค้ำคนใดบ้างที่มีโอกาสตั้งครรภ์
- อยากท้ำนายปริมาณน้ำฝนที่ตกในอีก 2 วันข้างหน้า
- อยากแบ่งกลุ่มนักศึกษาออกมาตามทักษะของแต่ละคน

ตัวอย่าง CRIPS-DM

Business Understanding

- บริษัทผู้ผลิต smart phone แห่งหนึ่งกำลังจะวางตลาดสินค้าระดับ premium รุ่นใหม่
- ต้องการทำยอดขายสินค้านี้ในปริมาณมาก และ กระตุ้นตลาดอย่างต่อเนื่อง (Objective)
- บริษัทมีข้อมูลการซื้อ smart phone รุ่นก่อนหน้านี้ผ่านช่องทาง shopping online ของ กลุ่มลูกค้าอยู่แล้ว (Situation)

Business Understanding

- เพื่อให้ยอดจำหน่ายเกิดขึ้นตลอดเวลาและสม่ำเสมอ
- (Situation) บริษัททราบดีว่าโปรโมชั่นไม่จำเป็นต้องส่งให้กับลูกค้าทุกๆคน สามารถส่งเฉพาะ บางคนในบางช่วงเวลา เพราะลูกค้ามีพฤติกรรมการสั่งซื้อหลังเริ่มวางขายผลิตภัณฑ์ที่ไม่ เหมือนกัน (พวกที่ซื้อทันที พวกที่รอการรีวิว พวกที่รอสินค้าติดตลาด)
- บริษัทจึงหาวิธีแบ่งกลุ่มลูกค้าออกเป็นกลุ่มๆ ได้ตามช่วงเวลาที่มีการสั่งซื้อหลังเริ่มวางขาย (Goal)
- บริษัทส่งข้อมูลโปรโมชั่นที่เข้ากันกับลูกค้าให้ลูกค้าแต่ละกลุ่มที่ไม่เหมือนกัน ตามจังหวะเวลาที่ เหมาะสม (Plan)

2. Data Understanding

- การทำความเข้าใจข้อมูลทางธุรกิจ | การทำความเข้าใจข้อมูล งานวิจัย
 - 2.1 Collect Data การเก็บรวบรวมข้อมูล (Data) ที่เกี่ยวข้อง
 - แหล่งข้อมูลมาจากไหน ภายใน|ภายนอก
 - 2.2 Describe Data ทำความเข้าใจข้อมูลเพื่อสร้างความคุ้นเคยข้อมูล และสามารถอธิบาย (describe) ข้อมูลได้
 - รวามถึงแง่กฎหมาย และ ทางเทคนิค
 - 2.3 Explore Data ค้นหา (explore) ทำความเข้าใจเชิงลึกเบื้องต้น (graph, attribute, missing value)
 - 2.4 Verify Quality ประเมินคุณภาพของข้อมูล
 - มีปริมาณและมีรายละเอียดมากพอการวิเคราะห์หรือไม่?
 - ข้อมูลมีความน่าเชื่อถือหรือไม่?
- เพื่อสร้างสมมติฐานสำหรับการวิเคราะห์สารสนเทศที่ซ่อนอยู่ (Insight)

ตัวอย่าง CRIPS-DM

Data Understanding

- บริษัทเก็บข้อมูลการสั่งซื้อสินค้า online ผ่านเว็บในอดีต และสามารถนำมาใช้วิเคราะห์ได้ (Collect)
- บริษัทมีสมมติฐานสำหรับการวิเคราะห์สารสนเทศที่ซ่อนอยู่ และ อธิบาย (Describe) ว่า ลูกค้าสามารถแบ่งกลุ่มได้จากพฤติกรรมการซื้อสินค้าในแต่ละช่วงเวลา หลังสินค้าใหม่นั้นออกวางจำหน่าย
- บริษัทกำหนดว่า ลูกค้าน่าจะมีสี่กลุ่ม (customer group) แบ่งตามช่วงเวลาที่สั่งซื้อสินค้าหลังเริ่มวางจำหน่าย
 - Innovator คือ ลูกค้าที่ซื้อทันทีหลังสินค้าวางจำหน่ายในสัปดาห์แรก
 - Early Adaptor คือ ลูกค้าที่ซื้อหลังสัปดาห์แรกไปจนถึงสัปดาห์ที่ 3
 - Early Majority คือ ลูกค้าที่ซื้อหลังสัปดาห์ที่ 3 ไปจนถึงเดือนที่ 2
 - Late Majority คือ ลูกค้าที่ซื้อหลังจากเดือนที่ 2 ไปตลอด
- จำนวนข้อมูลน่าจะใช้ประมาณ 1000 คน
- ข้อมูลแบ่งเป็น ข้อมูลส่วนตัว (gender, age) และ พฤติกรรมการใช้งานเครือข่าย(Website_activity, Social_media_account, payment_method) และการ ทำธุรกรรม

customer_ID	gender	age	website_activity	social_media_account	payment_method
9123	M	58	rarly	no	bank transfer
4567	М	26	regular	no	bank transfer
1254	F	30	rarly	yes	bank transfer
3332	М	48	rarly	yes	website account

0	2 6	-
คาตอา	ปผลลพธ	

customer_group
Late Majority
Innovator
Early Adopter
Early Adopter

• การเตรียมข้อมูล *ขั้นตอนที่ใช้เวลานานที่สุด

• เป็นขั้นตอนที่ท้ำการแปลงข้อมูลที่ได้รวบรวมมา (Raw data) ให้กลายเป็นข้อมูลที่สามารถนำไปวิเคราะห์ได้

- Data Preparation Select Data Clean Data Construct Data Integrate Data **Format** Data
 - ตัวแบบ (Model) เพื่อการวิเคราะห์ข้อมูลที่ดี ขึ้นอยู่กับ คุณภาพของข้อมูลที่ใช้วิเคราะห์ ซึ่งขึ้นกับ
 - 3.1 การคัดเลือกข้อมูล (data selection)
 - 3.2 การกลั่นกรองข้อมูล (data cleaning)
 - 3.3 การสร้างข้อมูล (data construction)
 - 3.4 การผสมผสานข้อมูล (data Integration)
 - 3.5 การทำข้อมูลให้อยู่ในรูปแบบ (format) ที่เหมาะสมต**่**อการ วิเคราะห์ข้อมูล

3.1 Data Selection การคัดเลือกข้อมูล

- เลือกเฉพาะข้อมูลที่เกี่ยวข้องกับสิ่งที่เราทำการวิเคราะห์
 - เลือกสุ่มข้อมูล (Sampling) แค่บางชุดออกมาจากข้อมูล ทั้งหมด
 - เลือกเฉพาะบางลักษณะของข้อมูล (attribute)

แบบสำรวจความพึงพอใจ โครงการ การพัฒนาสื่อประสม เรื่องทรัพย์สินทางปัญญา "การละเมิดลิขสิทธิ์ชอฟต์แวร์" ด้วยเทคนิค Animation 3D

คำขึ้แจง แบบสอบถามชุดนี้ จัดทำขึ้นโดยนักศึกษา สาขางานคอมพิวเตอร์ธุรกิจ ระดับชั้น ปวส.2 วิทยาลัย อาชีวศึกษาสุพรรณบุรี มีวัตถุประสงค์เพื่อศึกษาและดำเนินการสร้างแอนิเมชั่น 3D เรื่องทรัพย์สิน ทางปัญญา "การละเมิดลิขสิทธิ์ชอฟต์แวร์" และเพื่อศึกษาความพึงพอใจต่อสื่อแอนิเมชั่น

ตอนที่ 1 ข้อมูลทั่วไป

1.	เพศ	O	ชาย	O	หญิง							
2.	อายุ	0	10-20 ปี	0	21-30 ปี	O 31-40 ปี	0	40 ปีขึ้ง	มไป			
3.	อาชีพ	0	ครู-อาจารย์	0	นักเรียน-นักค์	์ กษา	0	อื่นๆ ระ	ะบุ			
4.	วุฒิการศึกษา	0	ประถม	0	มัธยมต้น	O มัธยมปลาย	0	ปวช.	O ปวส.	0	ปริญญาตรีขึ้น	1,

เกณฑ์การประเมิน ระดับ 1 หมายถึง น้อยที่สุด

ระดับ 2 หมายถึง น้อย ระดับ 3 หมายถึง ปานกลาง ระดับ 4 หมายถึง มาก ระดับ 5 หมายถึง มากที่สุด

โปรดใส่เครื่องหมาย 🗸 ลงในช่องที่ตรงกับความพึงพอใจของท่านมากที่สุด

รายการประเมิน	ระดับความพึงพอใจ							
ร.เดเบเรบระผมน	5	4	3	2	1			
1. ด้านเนื้อหา								
1.1 ความเหมาะสมในการจัดลำดับการเล่าเรื่องมีความเข้าใจ								
ง่าย								
1.2 เนื้อหามีความถูกต้อง								
1.3 เนื้อหามีความเหมาะสม								
1.4 เนื้อหามีความกะทัดรัด เข้าใจง่าย								
1.5 Animation 3D มีภาพลักษณ์โดยรวมที่ดี								
1.6 การเล่าเรื่องสื่อถึงการละเมิดลิขสิทธิ์ชอฟต์แวร์								

แบบสอบถามใบที่	เพศ	อายุ	อาชีพ	วุฒิการศึกษา	ข้อที่ 1	ข้อที่ 2	ข้อที่ 3	ข้อที่ 4	ข้อที่ 5
1	ช	22	รับราชการ	ป ตรี	1	2	2	5	1
2	្ស	23	ข้าราชการ	ปริญญาตรี	1	5	1	3	3
3	ช	21ปี 9 เดือน	ส่วนตัว	ม 6	2	1	3	1	5
4	ชาย	24	freelance	มัธยมศึกษาตอนปลาย	5	2	3	3	3
5	หญิง	25.3	นักศึกษา	ไม่บอก	3	2	2	5	5

3.2 Data Cleaning การทำความสะอาดข้อมูล

- ลบข้อมูลที่ซ้ำซ้อน (redundancy reduction)
- แก้ไขข้อมูลที่ผิดพลาด (missing values)
- ขจัดข้อมูลที่ผิดรูปแบบ (Outlier)

ตัวอย่างข้อมูลที่จำเป็นต้องทำความสะอาด (Cleaning)

รหัส	เพศ	อายุ	ความสูง	น้ำหนัก
55001	ชาย	20	180	70
55002			120	45
55003	หญิง	21	160	250
55004	ช	19	168	89
	ผิดรูปแบบ	ขาดหาย	Out	lier

Data Transformation

ตัวอย่าง ใบเสร็จสินค้า

ข้อมูล Transaction ใน ฐานข้อมูลร้านค้า

ID	สินค้า	จำนวนที ่ซื้อ
	กะปิ	1
	น้ำปลา	5
1	ซีอิ๊ว	5 3 1
2	พริก	1
2	กะปิ	1
3	พริก	1 2
	กะปิ	1
3	น้ำปลา	1

ข้อมูลที่ถูก Transformation เพื่อ กระบวนการต่อไป

ID	กะปิ	น้ำปลา	ซีอิ๊ว	พริก
1	TRUE	TRUE	TRUE	-
2	TRUE	_	-	TRUE
3	TRUE	TRUE	-	TRUE
	1 2	1 TRUE 2 TRUE	1 TRUE TRUE 2 TRUE -	1 TRUE TRUE TRUE 2 TRUE

Data Transformation

ตัวอย่าง การแปลงข้อมูลภาพให้อยู่ในรูปแบบ ที่เหมาะแก่การประมวลผล

ตัวอย่าง Data Preparation

- กรณีบริษัทจำหน่าย smart phone
 - ลบแอตทริบิวต์ (column) customer_ID จากหน้า13 ออกไป ได้เพราะเป็นแค่หมายเลขสมาชิกของลูกค้า ไม่มีประโยชน์ต่อ การวิเคราะห์
 - แปลงอายุ (age) จากตัวเลขเป็นช่วงอายุ

คำตอบผลลัพธ์

gender	age	website_activity	social_media_account	payment_method
M	High	rarly	no	bank transfer
M	Middle	regular	no	bank transfer
F	Middle	rarly	yes	bank transfer
М	High	rarly	yes	website account

customer_group
Late Majority
Innovator
Early Adopter
Early Adopter

customer_	ID
	9123
	4567
	1254
	3332

4. Modeling

- เป็นขั้นตอนการทำงานวิเคราะห์ข้อมูลด้วยเทคนิค Statistical Modeling / Machine Learning
 - 4.1 เลือกและใช้เทคนิคเพื่อสร้างตัวแบบ (Model) ที่เหมาะสม บนพื้นฐานการ วิเคราะห์วัตถุประสงค์และเป้าหมายจากขั้นตอนก่อนหน้านี้
 - 4.2 ออกแบบการทดสอบ (testing) ตัวแบบที่สร้างขึ้น
 - 4.3 สร้างตัวแบบ (Model)
 - รวมถึงการเลือกตัวแปร (parameter) เริ่มต้นของเทคนิคที่เหมาะสม
 - ศึกษาพฤติกรรมของตัวแบบ
 - วิเคราะห์ความไว (sensitivity analysis)
 - 4.4 ประเมิน (assess) ตัวแบบ
 - แปลผลการทำงานของตัวแบบ วินิจฉัยผลลัพธ์
 - สามารถใช้หหลายๆ เทคนิคเปรียบเทียบกันเพื่อให้ได้คำตอบที่ดีที่สุด

Modeling Techniques

"ไม่มีเทคนิคหรือเครื่องมือเพียงชนิดเดียวของกระบวนการวิทยาการข้อมูลที่เหมาะสมกับงานทุกชนิด งานในแต่ละชนิดก็
จะมีเทคนิคที่เหมาะสมที่แตกต่างกันออกไป"

เทคนิคของการสร้างตัวแบบวิเคราะห์สำหรับวิทยาข้อมูล แบ่งเป็น 2 ประเภทหลัก

- แบบจำลองในการบรรยาย (Descriptive/ Unsupervised Modeling) ในที่นี้ อาจเป็นการหาความสัมพันธ์ต่างๆ (Association) หรือหาการจัด กลุ่มข้อมูล (Clustering) ซึ่งไม่ได้มีจุดมุ่งหมายเพื่อการทำนาย
 - 1. การพรรณนา (Description) (ในเชิงสถิติ)
 - 2. การหาความสัมพันธ์ (Association)
 - 3. การจัดกลุ่ม (Clustering)
- แบบจำลองในการทำนาย (Predictive/ Supervised Modeling) เป็นผลลัพธ์ที่สร้างจากการอนุมาน (Inference) ชุดข้อมูลปัจจุบัน เพื่อใช้ใน การทำนายประเภทตัวอย่างในอนาคต
 - 1. การจัดหมวดหมู่ (Classificat<mark>i</mark>on)
 - 2. การประเมินค่า (Estimation)
 - 3. การทำนายล่วงหน้า (Prediction)

ประเภทของเทคนิคในการทำตัวแบบวิเคราะห์ของ วิทยาการข้อมูล

เทคนิคต่างๆ ที่อยู่ในกระบวนการวิทยาการข้อมูล

1. การพรรณนา (Description)

- วัตถุประสงค์ของการทำวิทยาการข้อมูล คือ ต้องการอธิบายรูปแบบและแนวโน้มของฐานข้อมูล
 - สามารถแปลความหมายและเข้าใจได้ง่าย
- เพื่อเพิ่มความเข้าใจในส่วนของประชากร ผลิตภัณฑ์ หรือ กระบวนการให้มากขึ้น
- การวิเคราะห์ข้อมูลโดยการสำรวจเชิงกราฟในการหารูปแบบและแนวโน้ม

2. การทำเหมืองกฎความสัมพันธ์ (Mining Association Rules)

- เป็น Descriptive หรือ Unsupervised Modeling
- การค้นหากฎความสัมพันธ์ มักเป็นงานทำเหมืองบนฐานข้อมูล Transactional เพื่อค้นหาสหสัมพันธ์ (correlation) ของสิ่งของ ส่วนใหญ่ จะใช้ในการช่วยการวิเคราะห์ Market basket analysis
- การหากฎความสัมพันธ์แสดงอยู่ในรูปแบบ

- หมายถึง การเกิดขึ้นของไอเท็มเซต x เกิดขึ้นร่วมกันของไอเท็มเซต Y ด้วยค่าสนับสนุน (Support) และค่าความเชื่อมั่น (Confidence)
- ใอเท็มเซต เช่น เซตของสินค้าในร้าน หรือเซตของประเภทบริการ

ตัวอย่าง เทคนิค Association Rule Discovery

- ระบบแนะนำหนังสือให้กับลูกค้าแบบอัตโนมัติ ของ Amazon คือ
 - ลูกค้าที่ซื้อหนังสือเล่มหนึ่งๆ มักจะซื้อหนังสือเล่มใด พร้อมกันด้วยเสมอ เช่น

buys (x , database) -> buys (x , data mining) [80% , 60%]

- หมายความว่า เมื่อซื้อหนังสือ database แล้วมีโอกาสที่จะ ซื้อหนังสือ data mining ด้วย 60 % และมีการซื้อทั้งหนังสือ database และหนังสือ data mining พร้อม ๆ กัน 80 %
- การซื้อสินค้าของลูกค้า 1 ครั้ง ต้องการทราบว่าสินค้า ใดบ้างที่ลูกค้ามักซื้อด้วยกัน เพื่อน าไปพิจารณาปรับปรุงการจัดวาง สินค้าในร้าน เช่น {รองเท้า,ถุงเท้า } หรือ { ปากกา , หมึก }

3. การวิเคราะห์เพื่อการจัดกลุ่ม (Clustering)

- เป็น Descriptive หรือ Unsupervised Modeling
- เป็นการตรวจหากลุ่มตามธรรมชาติของข้อมูล โดยพิจารณาจากค่ามาตรวัดที่กำหนด ว่าวัตถุที่ อยู่กลุ่มเดียวกันจะมีความคล้ายคลึงกันมากที่สุด และวัตถุต่างกลุ่มจะมีความคล้ายคลึงน้อย ที่สุด

จำนวนผู้ติดเชื้อโรคโควิด-19 ต่อประชากร

ณ วันที่ 4 พ.ค. 2563

จังหวัด	ประชากร	จำนวนผู้ติดเชื้อ สะสม*	State Quarantine	จำนวนผู้ติดเชื้อต่อ ประชากรล้านคน*
กรุงเทพมหานคร	5,666,264	1,526	14	269.14
ภูเก็ต	416,582	220		523.81
นนทบุรี	1,265,387	157		123.62
ยะลา	536,330	118	8	218.52
สมุทรปราการ	1,344,875	114		84.44
ซลบุรี	1,558,301	87	4	55.83
ปัตตานี	725,104	79	12	108.95
สงขลา	1,435,968	44	19 (+60)	30.56
เชียงใหม่	1,779,254	40		22.47
ปทุมธานี	1,163,604	39		33.62
นราธิวาส	808,020	28	6	34.65
นครปฐม	920,030	22		23.91
นครราชสีมา	2,648,927	19		7.17
สตูล	323,586	-	18	0

^{*} จำแนกตามจังหวัดที่เข้ารับการรักษา

จังหวัดที่ยังไม่มีรายงานการรับรักษาผู้ป่วย (+1 จาก State Quarantine)

กำแพงเพชร, ชัยนาท, ตราด, น่าน, บึงกาฬ, พิจิตร, ระนอง, สิงห์บุรี, อ่างทอง, (+สตูล)

แบบจำลองในการทำนาย (Predictive/ Supervised Modeling)

ได้แก่ 3. การจำแนกประเภทข้อมูล (Classification) 4. การประมาณค่า (Estimation) 5. การทำนาย (prediction)

- เป็นการค้นหาแบบจำลองหรือฟังก์ชันทางคณิตศาสตร์และสถิติจากข้อมูลที่มีอยู่
- ผลลัพธ์ที่ใค้อาจจะอยู่ในแบบบตัวแบบ หรือ ฟังก์ชัน เช่น ต้นไม้ตัดสินใจ (Decision Tree) กฎการ จำแนกประเภทข้อมูล หรือ เครือข่ายประสาทเทียม (Neural Network) เป็นต้น

ตัวอย่าง: เทคนิคการจำแนกข้อมูล (Classification)

• Classification: Decision Tree

Business Info

Age	Rent Period	Buy
23	3	No
36	1.5	No
20	1.5	No
27	2	Yes
20	1	No
50	2.5	Yes
36	1	No
36	2	Yes
22	2.5	no

ตัวอย่าง: เทคนิคการประมาณค่า

(Estimation)

• Prediction: Neural Network

การวิเคราะห์แนวโน้มหรือวิวัฒนาการข้อมูล

- เป็นเทคนิควิทยการข้อมูลที่เกี่ยวกับเวลา เพื่อบรรยายและสร้างแบบจำลองของความสม่ำเสมอ หรือ แนวโน้มของวัตถุซึ่งมีพฤติกรรมเปลี่ยนแปลงไปตามเวลา โดยช่วยทำนายแนวโน้มในอนาคต เช่น ราคาหุ้น
 - Regression

ตัวอย่าง: เทคนิคการวิเคราะห์แนวโน้ม (regression) ช่วงโควิด นักศึกษาคุ้นกับแผนภูมินี้กันบ้างใหม

ตัวอย่าง: เทคนิคการพยากรณ์ (Prediction)

ตัวอย่าง: เทคนิคการพยากรณ์ (Prediction)

เทคนิควิทยาการข้อมูลที่ประยุกต์กับงานด้านอื่นๆ

การวิเคราะห์ข้อมูลผิดปกติ

• ปกติข้อมูลที่มีค่าสูงหรือค่าต่ำกว่าผิดปกติ มักจะ ถูกเป็นข้อมูลรบกวน แต่บางกรณีมักจะมี ประโยชน์ เช่น

... 2009 2010

monthly	Payment (baht)	monthly	Payment (baht)
1	25,000.00	1	10,000.00
2	30,000.00	2	15,000.00
3	17,000.00	3	1,500,000.00
12	23,500.00		

Supervised or Unsupervised

Outlier value can be detected

- -Location
- -Type of purchase
- -Purchase frequency

ข้นตอนของ CRISP-DM

Data preparation& Modeling

บางเทคนิคมีความเฉพาะเจาะจง กับรูปแบบของข้อมูล ดังนั้น สามารถย้อนกลับไปขั้นตอนการ จัดเตรียมข้อมูลเพื่อแปลงข้อมูล บางส่วนให้เหมาะสมกับเทคนิค

ตัวอย่าง ขั้นตอนที่ 4 Modeling

- กรณีบริษัทจำหน่าย smart phone
- •แบ่งข้อมูลเป็น 2 ส่วน ส่วนแรก 70 % นำมาใช้สร้างตัวแบบด้วยเทคนิคต้นไม้ช่วย การตัดสินใจ (decision tree) (จะได้เรียนในหัวข้อต่อๆไป)

5. Evaluation

- 5.1 การตรวจสอบตัวแบบว่าทำงานได้ผลลัพธ์ (Result) เป็น อย่างไรด้วยข้อมูลทดสอบที่ใส่เข้าไป (Testing data)
- 5.2 วิธีทดสอบขึ้นกับประเภทของปัญหาและตัวแบบ
 - อาจเป็นการใช้ผู้เชี่ยวชาญ (expert) เป็นผู้ประเมิน (Review)
 - การประเมินโดยใช้มุมมองทางธุรกิจ (Business Perspective)
 - ใช้การนิยามกลุ่มควบคุม (control groups)
 - ผลตอบแทนการลงทุน (expected return on investment)
- 5.3 เพื่อได้ข้อมูลที่นำไปสู่ขั้นถัดไป (Next Step)
 - ศักยภาพการนำไปใช้จริง
 - สถาปัตยกรรมที่ใช้เมื่อนำไปใช้จริง
 - ตัววัดความสำเร็จหลังจากนำไปใช้

ตัวอย่างการทำ Evaluation

6. Deployment

- การนำตัวแบบ (model) หรือ องค์ความรู้ที่ได้จากตัวแบบ (Knowledge) ไปใช้งาน (deploy) กับงานที่เฉพาะเจาะจงกับ วัตถุประสงค์
 - 6.1 ต้องมีแผนกลยุทธ์ในการนำไปใช้ (strategy)
 - 6.2 การสอดส่องดูผลลัพธ์ (Monitoring) และ การบำรุงรักษา (Maintenance)
 - 6.3 เป็นรายงานความรู้ (Report)
 - เสนอในการประชุมของบริษัท
 - เสนอเพื่อออกโปรโมชั่นใหม่
 - บทความงานวิจัยใหม่
 - ต้องมีการสร้างรายงาน
 - มีการทำเอกสารประกอบการทำงาน (final report) ทุกขั้นตอน
 - มีแผนในการควบคุม (monitoring) และ ดูแล (maintenance)
 - 6.4 Review project

ตัวอย่างการทำ Deployment

งานวิจัยเรื่อง "การสร้างแบบจำลองรายการธุรกรรมผิดปกติของบัญชีเงินฝากออมทรัพย์ผู้สูงวัยโดยการทำเหมืองข้อมูล กรณีศึกษาธนาคารพาณิชย์แห่งหนึ่ง" ได้ *นำเสนอเทคนิคการคัดกรองข้อมูล และ เทคนิคการสร้างแบบจำลอง*

- ประยุกต์ใช้ในการคัดกรองข้อมูล เพื่อ *การวางแผนตรวจสอบรายการธุรกรรมบัญชีเงินฝากออมทรัพย์ของผู้สูงวัยที่* ผิดปกติขององค์กร และทราบถึงลักษณะพฤติกรรมของกลุ่มธุรกรรมผิดปกติ
- เป็นส่วนสำคัญในการ *ป้องกันความเสียหายที่จะเกิดขึ้นกับองค์กร* ทั้งในด้านที่เป็นตัวเงินและชื่อเสียงขององค์กร
- ด้วยการศึกษาจากปัจจัยต่างๆ ดังที่ได้กล่าวมา ทำให้ระบบช่วย *สร้างความเชื่อมั่นในการทำรายการธุรกรรม* ให้กับลูกค้า ได้เป็นอย่างดี

อ้างอิง

บทความวิชาการเรื่อง "การสร้างแบบจำลองรายการธุรกรรมผิดปกติของบัญชีเงินฝากออมทรัพย์ผู้สูงวัยโดยการทำเหมืองข้อมูล กรณีศึกษา ธนาคารพาณิชย์แห่งหนึ่ง" โดย ปรียานุช สมัครการ และ กมล เกียรติเรื่องกมลา

ตัวอย่างการทำ Deployment

งานวิจัยเรื่อง "ระบบผู้เชี่ยวชาญสำหรับคัดแยกโรคพืชในไม้ผล : มะม่วงน้ำดอกไม้" ได้ *นำเสนอเทคนิคการสร้าง* แบบจำลอง และ การประยุกต์ใช้แบบจำลอง

- ประยุกต์ใช้ในกาจำแนกข้อมูลอาการใบบนพืชอย่างมะม่วงน้ำดอกไม้สีทอง ด้วยเทคนิคต้นไม้การตัดสินใจ (Decision Tree) ทำให้สามารถระบุโรคพืชได้ เพื่อ การวางแผนการรักษาโรคพืชและควบคุมการระบาดของโรคทำให้ลดการสูญเสีย พืชและผลผลิต ช่วยควบคุมค่าใช้จ่ายการเพาะปลูกได้
- เป็นส่วนสำคัญในการ ป้องกันความเสียหายที่จะเกิดขึ้นกับแปลงปลูก และผลผลิตส่วนใหญ่ยังคงมีคุณภาพและขายได้ราคา
- ด้วยการศึกษาจากปัจจัยอาการบนใบจากองค์ความรู้ทางการเกษตร ทำให้ระบบช่วย *สร้างความเชื่อมั่นในการเพาะ* ให้กับ เกษตรกรได้เป็นอย่างดี

อ้างอิง

บทความวิชาการเรื่อง "Expert System for Classification of Plant Disease In Fruit Plant: Barrracuda Mango" โดย ชุตินันท์ ตรงต่อกิจ และ พาสน์ ปราโมกข์ชน ICDAMT & NCON2018

ตัวอย่างการทำ Deployment

งานวิจัยเรื่อง "ระบบสนับสนุนการตัดสินใจเพื่อการลงทะเบียนของนักศึกษาสาขาวิทยาการคอมพิวเตอร์" ได้ *นำเสนอ* เทคนิคการหาความสัมพันธ์ และ การประยุกต์ใช้แบบจำลองความสัมพันธ์

- ประยุกต์ใช้เทคนิคการหาความสัมพันธ์สร้างกฏความสัมพันธ์ระหว่างรายวิชาและผลการเรียน เพื่อ แนะนำนักศึกษา ลงทะเบียนรายวิชาที่เหมาะสมกับทักษะความรู้ในอดีตทำให้นักศึกษาสามารถได้ผลการเรียนที่ดี
- เป็นส่วนสำคัญในการ ช่วยให้คำแนะนำที่ทำให้นักศึกษาเลือกเรียนในสิ่งที่ตัวเองถนัด และได้ผลการเรียนที่ดี
- ด้วยการศึกษาจากปัจจัยต่างๆ ดังที่ได้กล่าวมา ทำให้ระบบเหมือนเป็นที่ปรึกษาในการลงทะเบียนเรียนรายวิชาช่วย *สร้าง* ความเชื่อมั่นในการทำเรียนในมหาวิทยาลัย ให้กับนักศึกษาได้เป็นอย่างดี

อ้างอิง

บทความวิชาการเรื่อง "DECISION SUPPORT SYSTEM FOR SUBJECTS REGISTRATIONOF COMPUTER SCIENCE STUDENT" โดย ณรัฐศภรณ์ เหมรา และ พาสน์ ปราโมกข์ชน

ตัวอย่าง Deployment

- นำข้อมูลของลูกค้าที่มีอยู่มาจำแนกกลุ่มว่าน่าจะเป็นลูกค้ากลุ่มใด
- แล้วส่งโปรโมชั่นที่เหมาะสมกับลูกค้าไปในช่วงเวลาที่เหมาะสม

Sprint to Project2 Phase1

CRISP-DS ไม่ได้เป็นแค่ Framework เดียวใน Data Science process

END

Q/A