Student Information

Full Name : Kerem Karabacak

Id Number: 2644417

Answer 1

Since every value is False, this is a contradiction.

b)

1.
$$p \implies ((q \vee \neg q) \implies (p \wedge q))$$
 given

2.
$$p \implies (T \implies (p \land q))$$
 Negation Law

3.
$$p \implies (F \lor (p \land q))$$
 Imp. Elimination(Lemma)

4.
$$p \implies (p \land q)$$
 Identity Law

5.
$$\neg p \lor (p \land q)$$
 Imp. Elimination(Lemma)

6.
$$(\neg p \lor p) \land (\neg p \lor q)$$
 Distribtive Law

7.
$$T \wedge (\neg p \vee q)$$
 Negation Law

8.
$$\neg p \lor q$$
 Identity Law

Answer 2

1.
$$\forall x \exists y (W(x,y))$$

2.
$$\forall x \exists y (\neg F(x, y))$$

3.
$$\forall x(W(x,P) \implies A(Ali,x))$$

4.
$$\exists y(W(Busra, y) \land F(TUBITAK, y))$$

5.
$$\exists x \exists y \exists z (S(x,y) \land S(x,z))$$

6.
$$\neg(\exists x \exists y \exists z (W(x,z) \land W(y,z)))$$

7.
$$\exists x \exists y \exists z \forall t (((W(x,z) \land W(y,z)) \implies \neg w(t,z)) \land (t \neq x \land t \neq y))$$

Answer 3

Answer 4

Ayşe: p

Barış : $s \Longrightarrow \neg q$ Can : $p \Longrightarrow (q \land r)$ Duygu : $r \Longrightarrow s$

According to Ekim, Barış is lying, so we need to prove $\neg(s \implies \neg q)$ with using Ayse, Can and Duygu's statements.

Answer 5

I am going to use Modus Tollens Lemma in my proof so here is the MT's ND proof:

$$\begin{array}{c|cccc}
1 & p \implies q \\
2 & \neg q \\
3 & q \\
4 & q \\
5 & \bot & \neg E, 2, 4 \\
6 & \neg p & \neg I, 3-5
\end{array}$$

Here is my proof:

$$\begin{array}{c|ccc}
1 & \forall x (P(x) \implies (Q(x) \implies R(x))) \\
2 & \exists x (P(x)) \\
3 & \forall x (\neg R(x)) \\
4 & a & p(a) \\
5 & p(a) \implies (Q(a) \implies R(a)) & \forall E, 1 \\
6 & \neg R(a) & \forall E, 3 \\
7 & Q(a) \implies R(a) & \Rightarrow E, 4, 5 \\
8 & \neg Q(a) & & \end{array}$$

I used Modus Tollens Lemma (6,7) here.

9
$$\exists x(\neg Q(x))$$
 $\exists I, 8$
10 $\exists x(\neg Q(x))$ $\exists E, 2, 4-9$