

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики и информатики

Практическая работа 3, 4 по дисциплине «Уравнения математической физики»

Решение гармонических задач. Решение несимметричных СЛАУ

Группа ПМ-92 ИВАНОВ ВЛАДИСЛАВ

Вариант 5, 4 КУТУЗОВ ИВАН

Преподаватели ПАТРУШЕВ И. И.

ЗАДОРОЖНЫЙ А.Г.

Новосибирск, 2022

Содержание

1	Цель работы	2
2	Задание	2
3	Постановка гармонической задачи	3
4	Конечноэлементная аппроксимация гармонической задачи	3
5	Исследования 5.1 Вывод	5 7

1 Цель работы

Разработать программу решения гармонической задачи методом конечных элементов. Провести сравнение прямого и итерационного методов решения получаемой в результате конечноэлементной аппроксимации СЛАУ.

Изучить особенности реализации итерационных методов BCG, BCGStab, GMRES для СЛАУ с несимметричными разреженными матрицами. Исследовать влияние предобусловливания на сходимость этих методов.

2 Задание

- Выполнить конечноэлементную аппроксимацию исходного уравнения в соответствии с заданием. Получить формулы для вычисления компонентматрицы А и вектора правой части b
- Реализовать программу решения гармонической задачи с учетом следующих требований:
 - язык программирования С++ или Фортран;
 - предусмотреть возможность задания неравномерной сетки по пространству, разрывность параметров уравнения по подобластям, учет краевых условий;
 - матрицу хранить в разреженном строчном формате с возможностью перегенерации ее в профильный формат;
 - реализовать (или воспользоваться реализованными в курсе «Численные методы») методы решения СЛАУ: итерационный – локально-оптимальную схему или метод сопряженных градиентов для несимметричных матриц с предобуславливанием и прямой – LU -разложение или его модификации.
 - Протестировать разработанную программу на полиномах первой степени.
 - Провести исследования реализованных методов для сеток с небольшим количеством узлов 500 1000 и большим количеством узлов порядка 20000 50000 для различных значений параметров $10^{-4} \le \omega \le 10^9$, $10^2 \le \lambda \le 8 \cdot 10^5$, $8.81 \cdot 10^{-12} \le \chi \le 10^{-10}$, $0 \le \sigma \le 10^8$.

Вариант 5: Решить двумерную гармоническую задачу в декартовых координатах, базисные функции – билинейные.

Вариант 4: Реализовать решение СЛАУ методом BSG без предобуславливания.

3 Постановка гармонической задачи

Рассмотрим задачу для гиперболического уравнения:

$$\chi \frac{\partial u^2}{\partial t^2} + \sigma \frac{\partial u}{\partial t} - \operatorname{div} \lambda \operatorname{grad} u = f$$
(1)

Представим решение u данного уравнения и его правую часть f в виде:

$$u(x, y, t) = u^{s} \sin \omega t + u^{c} \cos \omega t \tag{2}$$

$$f(x, y, t) = f^{s} \sin \omega t + f^{c} \cos \omega t \tag{3}$$

Исходное уравнение (1) приводится к следующей системе:

$$\begin{cases} -\operatorname{div} \lambda \operatorname{grad} u^{s} - \omega \sigma u^{c} - \omega^{2} \chi u^{s} = f \\ -\operatorname{div} \lambda \operatorname{grad} u^{c} - \omega \sigma u^{s} - \omega^{2} \chi u^{c} = f \end{cases}$$
(4)

4 Конечноэлементная аппроксимация гармонической задачи

Элементы матрицы конечноэлементной слау находятся следующим образом:

$$p_{ij} = \int_{\Omega} \lambda \operatorname{grad} \psi_i \operatorname{grad} \psi_j - \omega^2 \chi \psi_i \psi_j d\Omega$$
 (5)

$$c_{ij} = \omega \int_{\Omega} \sigma \psi_i \psi_j d\Omega \tag{6}$$

Элементы локальной матрицы ${f A}$ для одномерного элемента находятся по формуле:

$$p_{ij} = -\frac{\lambda}{h} \mathbf{G}_{ij} - \frac{\omega^2 \chi h}{6} \mathbf{M}_{ij} \tag{7}$$

$$c_{ij} = \frac{\omega \sigma h}{6} \,\mathbf{M}_{ij} \tag{8}$$

Причем в данном случае ${\bf M}$ и ${\bf G}$ - матрицы билинейных одномерных конечных элементов.

Локальный вектор правой части **b** будем находить таким образом:

$$b^s = \mathbf{M} \cdot f^s \tag{9}$$

$$b^c = \mathbf{M} \cdot f^c \tag{10}$$

При этом глобальный вектор собирается по следующему правилу:

$$\mathbf{b}_{2i} = b_k^s \tag{11}$$

$$\mathbf{b}_{2i+1} = b_k^c \tag{12}$$

Чтобы осуществить переход к двумерной задаче воспользуемся следующими формулами:

$$\mathbf{M}_{ij} = \mathbf{M}_{i\%2,j\%2}^{x} * \mathbf{M}_{i/2,j/2}^{y}$$
 (13)

$$\mathbf{A}_{ij} = \mathbf{A}_{i\%4,j\%4}^{x} * \mathbf{A}_{i/4,j/4}^{y}$$
 (14)

где % - остаток от деления, а / - целая часть от деления

5 Исследования

$$\begin{split} u^s &= 2x \\ u^c &= -2x + y \\ \Omega &= [0,1] \times [0,1] \\ \lambda &= 1,\, \omega = 1,\, \sigma = 1,\, \chi = 1\, \mathrm{e}{-11} \end{split}$$

Таблица 1: Размер сетки - 121 узлов. ω

parameter	LOS norm	BSG norm	LU norm	LOS iterations	BSG iterations
$\omega = 10^{-4}$	3,79e-7	$3,79\mathrm{e}{-7}$	1,13e-7	395	139
$\omega = 10^{-3}$	3,79e-6	3,79e-6	1,13e-6	395	132
$\omega = 10^{-2}$	3,79e-5	$3,79\mathrm{e}{-5}$	1,13e-5	395	135
$\omega = 10^{-1}$	3,78e-4	3,78e-4	1,13e-4	399	125
$\omega = 0$	3,66e-9	$3,66\mathrm{e}{-9}$	1,13e-9	395	138
$\omega = 10^1$	$3,11\mathrm{e}{-2}$	$3,11\mathrm{e}{-2}$	1,17e-4	517	158
$\omega = 10^2$	$9e{-2}$	$1,65\mathrm{e}{-1}$	1,07e-4	83	265
$\omega = 10^3$	$1,07\mathrm{e}{-1}$	$1,07\mathrm{e}{-1}$	$2,54\mathrm{e}{-3}$	240	123
$\omega = 10^4$	$1,05\mathrm{e}{-1}$	$1,05\mathrm{e}{-1}$	1,16e-2	80	64
$\omega = 10^5$	$1,06\mathrm{e}{-1}$	$1,06\mathrm{e}{-1}$	$7,48\mathrm{e}{-1}$	47	63
$\omega = 10^6$	1,13e-1	$1,06\mathrm{e}{-1}$	$7,85\mathrm{e}{-1}$	281	63
$\omega = 10^7$	1,13e-1	$1,06\mathrm{e}{-1}$	7,87e-1	113	80
$\omega = 10^8$	1,13e-1	$1,06\mathrm{e}{-1}$	$7,85\mathrm{e}{-1}$	82	73
$\omega = 10^9$	$1,14\mathrm{e}{-1}$	$1,07\mathrm{e}{-1}$	$7,58\mathrm{e}{-1}$	_	79

Таблица 2: Размер сетки - 121 узлов. λ

parameter	LOS norm	BSG norm	LU norm	LOS iterations	BSG iterations
$\lambda = 10^2$	$6,66\mathrm{e}{-2}$	$3,79\mathrm{e}{-5}$	1,42e-5	13	120
$\lambda = 10^3$	$6,66\mathrm{e}{-2}$	3,79e-6	1,43e-6	231	166
$\lambda = 10^4$	$6,66\mathrm{e}{-2}$	$3,79\mathrm{e}{-7}$	$1,43e{-7}$	_	169
$\lambda = 10^5$	$6,66\mathrm{e}{-2}$	3,78e-8	9,06e-8	49	178
$\lambda = 8 \cdot 10^5$	6,66e-2	5,78e-9	2,97e-9	23	180

Таблица 3: Размер сетки - 121 узлов. χ

parameter	LOS norm	BSG norm	LU norm	LOS iterations	BSG iterations
$\chi = 10^{-12}$	$3,65\mathrm{e}{-3}$	3,65e - 3	$2,54\mathrm{e}{-3}$	408	125
$\chi = 10^{-11}$	$3,65\mathrm{e}{-3}$	3,65e - 3	$2,54\mathrm{e}{-3}$	408	133
$\chi = 10^{-10}$	$3,65\mathrm{e}{-3}$	$3,65\mathrm{e}{-3}$	$2,54\mathrm{e}{-3}$	408	128

Таблица 4: Размер сетки - 121 узлов. σ

parameter	LOS norm	BSG norm	LU norm	LOS iterations	BSG iterations
$\sigma = 0$	3,66e-9	$3,66\mathrm{e}{-9}$	1,13e-9	395	127
$\sigma = 10^1$	$3,11\mathrm{e}{-2}$	$3,11\mathrm{e}{-2}$	1,17e-4	517	161
$\sigma = 10^2$	$9e{-2}$	$1,65\mathrm{e}{-1}$	1,07e-4	82	259
$\sigma = 10^3$	$1,07\mathrm{e}{-1}$	$1,07\mathrm{e}{-1}$	$2,54\mathrm{e}{-3}$	248	121
$\sigma = 10^4$	$1,05\mathrm{e}{-1}$	$1,05\mathrm{e}{-1}$	1,16e-2	80	64
$\sigma = 10^5$	$1,06\mathrm{e}{-1}$	$1,06\mathrm{e}{-1}$	$7,49\mathrm{e}{-1}$	47	63
$\sigma = 10^6$	1,13e-1	$1,06\mathrm{e}{-1}$	$7,85\mathrm{e}{-1}$	95	63
$\sigma = 10^7$	1,13e-1	$1,06\mathrm{e}{-1}$	$7,88e{-1}$	167	65
$\sigma = 10^8$	1,13e-1	$1,06\mathrm{e}{-1}$	$7,88e{-1}$	70	69

Таблица 5: Размер сетки - 10201 узлов. ω

parameter	LOS norm	BSG norm	LU norm	LOS iterations	BSG iterations
$\omega = 10^{-4}$	$7,03e{-3}$	$4,56\mathrm{e}{-8}$	6,26e-8	_	_
$\omega = 10^{-3}$	$7,03e{-3}$	$4,56\mathrm{e}{-7}$	$6,26\mathrm{e}{-7}$	379	_
$\omega = 10^{-2}$	$7,03e{-3}$	4,56e-6	$6,26e{-}6$	23	_
$\omega = 10^{-1}$	$7,03e{-3}$	$4,54\mathrm{e}{-5}$	6,27e-5	853	_
$\omega = 0$	$7,03e{-3}$	$2,81\mathrm{e}{-10}$	_	$6,26\mathrm{e}{-10}$	_
$\omega = 10^1$	$7,03e{-3}$	$3,96\mathrm{e}{-3}$	$2,41\mathrm{e}{-4}$	48	_
$\omega = 10^2$	$1,81\mathrm{e}{-2}$	2, 1e-2	$1,43e{-3}$	_	_
$\omega = 10^3$	$1,63\mathrm{e}{-3}$	$2,44\mathrm{e}{-2}$	$7,59e{-2}$	_	_
$\omega = 10^4$	$1,43e{-2}$	$2,74\mathrm{e}{-2}$	7,86e-2	_	_
$\omega = 10^5$	$1,46\mathrm{e}{-2}$	$1,46\mathrm{e}{-2}$	7,86e-2	185	277
$\omega = 10^6$	$1,46\mathrm{e}{-2}$	$1,46\mathrm{e}{-2}$	7,86e-2	81	80
$\omega = 10^7$	$1,46\mathrm{e}{-2}$	$1,46\mathrm{e}{-2}$	7,86e-2	95	79
$\omega = 10^8$	$1,47\mathrm{e}{-2}$	$1,47\mathrm{e}{-2}$	7,86e-2	70	89
$\omega = 10^9$	$1,49\mathrm{e}{-2}$	$1,48\mathrm{e}{-2}$	7,86e-2	318	91

Таблица 6: Размер сетки - 10201 узлов. λ

parameter	LOS norm	BSG norm	LU norm	LOS iterations	BSG iterations
$\lambda = 10^2$	$7,03e{-3}$	4,56e-6	3,79e-6	983	_
$\lambda = 10^3$	$7,03e{-3}$	$4,56\mathrm{e}{-7}$	3,79e-7	955	_
$\lambda = 10^4$	$7,03e{-3}$	$4,56\mathrm{e}{-8}$	3,79e-8	_	_
$\lambda = 10^5$	$7,03e{-3}$	4,6e-9	3,79e-9	_	_
$\lambda = 8 \cdot 10^5$	$7,03\mathrm{e}{-3}$	$6,6e{-}10$	3,79e-10	_	_

Таблица 7: Размер сетки - 10201 узлов. χ

parameter	LOS norm	BSG norm	LU norm	LOS iterations	BSG iterations
$\chi = 10^{-12}$	$7,03e{-3}$	$4,41\mathrm{e}{-4}$	$2,41\mathrm{e}{-4}$	517	_
, C	/	$4,41\mathrm{e}{-4}$	$2,41\mathrm{e}{-4}$	405	_
$\chi = 10^{-10}$	7,03e-3	$4,41e{-4}$	$2,41e{-4}$	517	_

Таблица 8: Размер сетки - 10201 узлов. σ

parameter	LOS norm	BSG norm	LU norm	LOS iterations	BSG iterations
$\sigma = 0$	7,03e-3	$2,81\mathrm{e}{-10}$	6,26e-10	_	_
$\sigma = 10^1$	$7,03e{-3}$	$3,96\mathrm{e}{-3}$	$1,43e{-3}$	49	_
$\sigma = 10^2$	2,94e-2	2,92e-2	$7,59\mathrm{e}{-2}$	513	_
$\sigma = 10^3$	1,56e-2	2, 1e-2	7,59e-2	_	_
$\sigma = 10^4$	1,43e-2	$2,74\mathrm{e}{-2}$	$7,59\mathrm{e}{-2}$	_	_
$\sigma = 10^5$	1,46e-2	6,13e-3	7,59e-2	185	277
$\sigma = 10^6$	$1,46\mathrm{e}{-2}$	$1,46e{-2}$	$7,86e{-2}$	76	80
$\sigma = 10^7$	$1,46e{-2}$	$1,46e{-2}$	$7,86e{-2}$	86	79
$\sigma = 10^8$	$1,46e{-2}$	$1,46\mathrm{e}{-2}$	$7,86e{-2}$	104	85

5.1 Вывод

При уведичении ω точность уменьшается. При увеличении λ точность увеличивается. Изменения χ не влияют на точность.

Локально-оптимальная схема, как правило показывает результат хуже, чем метод бисопряженных градиентов.