Hackathon

Tiffany Houston, Mack McGowen, Jared Delora-Ellefson

Overview

Problems Statement: Given the data at hand, when constrained to 20 features, how well can we predict if a person makes greater than \$50k/yr.

- Feature Engineering
- Visualizations
- Modeling Process
- Metrics Summary

Feature Engineering

Government workers are grouped to save feature space due to constraints

Feature Engineering (cont)

Marital statuses are grouped into 3 features due to constraints

Hours Worked Per Week by Sex:

Male $\sim 43 \text{ hrs/wk}$

 $\mathbf{v}\mathbf{s}$

Female ∼ 36 hrs/wk

Hours Worked per Week by Education Number:

Top 3 numbers working most hours:

- 9 (47 hrs/wk)
- 14 (45 hrs/wk)
- -5/7 (40 hrs/wk)

How Factors Correlate to Wage

Naive Bayes, Logistic, and SVC Classification

Mu	lt	ir	om	ia	INI

Best Score: 0.379

X_train, y_train Score: 0.379 X_test, y_test Score: 0.376

	precision	recall	T1-score
0	0.78	0.25	0.38
1	0.25	0.78	0.37
accuracy			0.38
macro avg	0.51	0.51	0.38
weighted avg	0.65	0.38	0.38

Logistic Regression:

Best Score: 0.826

X_train, y_train Score: 0.827 X_test, y_test Score: 0.827

	precision	recall	f1-score
0	0.86	0.92	0.89
1	0.68	0.52	0.59
accuracy			0.83
macro avg	0.77	0.72	0.74
weighted avg	0.82	0.83	0.82

LinearSVC:

Best Score: 0.826

X_train, y_train Score: 0.827 X_test, y_test Score: 0.828

	precision	recall	f1-score
0	0.86	0.93	0.89
1	0.69	0.51	0.59
accuracy			0.83
macro avg	0.78	0.72	0.74
weighted avg	0.82	0.83	0.82

Random Forest Classifier

- This model performed the best.
- There is an imbalance in the target variable (0.76% of the target variables were \geq 50K).
- Due to this imbalance,
 predicting ≥ 50K has a lower
 precision than < 50K.

```
RandomForestClassifier:
X_train, y_train Score: 0.877
X_test, y_test Score: 0.828
True Positives: 1434, True Negatives: 7462, False Positives: 696, False Negatives: 1154
              precision
                            recall f1-score
                                               support
                   0.87
                              0.91
                                        0.89
                                                  8158
                   0.67
                              0.55
                                        0.61
                                                  2588
                                        0.83
                                                 10746
    accuracy
                   0.77
                              0.73
                                        0.75
                                                 10746
   macro avg
weighted avg
                   0.82
                              0.83
                                        0.82
                                                 10746
```

Model Metrics Summary

Model	Target - Income	Precision	Recall	F1 Score	Accuracy
Multinomial	<= 50K	0.78	0.25	0.38	0.38
Naive Bayes	> 50K	0.25	0.78	0.37	
Logistic	<= 50K	0.86	0.92	0.89	0.83
Regression	> 50K	0.68	0.52	0.59	
Support	<= 50K	0.86	0.91	0.89	0.00
Vector Classifier	> 50K	0.69	0.51	0.59	0.83
Random	<= 50K	0.87	0.91	0.89	0.83
Forest Classifier	> 50K	0.67	0.55	0.61	