Лекции по предмету

Линейная алгебра и геометрия

Группа лектория ФКН ПМИ 2015-2016 Ася Иовлева Ксюша Закирова Руслан Хайдуров

2016 год

Содержание

JIEF	кция 15 от 11.01.2016	1
1.1	Скаляры. Поля	1
1.2	Поле комплексных чисел	2
1.3	Геометрическая модель поля $\mathbb C$	3
Лекция 16 от 18.01.2016		5
2.1	Комплексные числа (продолжение)	5
2.2	Корни из комплексного числа	6
2.3		7
2.4	Векторные пространства над произвольным полем	7
Лег	кция 17 от 25.01.2016	7
3.1	Овеществление и комплексификация	7
3.2		8
3.3	Переход к новому базису	9
Лен	кция 18 от 29.01.2016	10
4.1	Матрица перехода и переход к новому базису	10
4.2	Линейные отображения	11
4.3	Изоморфизм	13
Лен	кция 19 от 01.02.2016	14
5.1	Изоморфизм (продолжение)	14
5.2	Матрицы линейных отображений	16
Лег	кция 20 от 08.02.2016	18
6.1	Линейные отображения (продолжение)	18
6.2	Матрицы линейных отображений	19
	1.1 1.2 1.3 Лег 2.1 2.2 2.3 2.4 Лег 4.1 4.2 4.3 Лег 5.1 5.2 Лег 6.1	1.1 Скаляры. Поля 1.2 Поле комплексных чисел 1.3 Геометрическая модель поля € Лекция 16 от 18.01.2016 2.1 Комплексные числа (продолжение) 2.2 Корни из комплексного числа 2.3 Решение квадратных уравнений с комплексными коэффициентами 2.4 Векторные пространства над произвольным полем Лекция 17 от 25.01.2016 3.1 Овеществление и комплексификация 3.2 Сумма подпространств 3.3 Переход к новому базису Лекция 18 от 29.01.2016 4.1 Матрица перехода и переход к новому базису 4.2 Линейные отображения 4.3 Изоморфизм Лекция 19 от 01.02.2016 5.1 Изоморфизм (продолжение) 5.2 Матрицы линейных отображений Лекция 20 от 08.02.2016 6.1 Линейные отображения (продолжение)

Лекция 15 от 11.01.2016

Скаляры. Поля

Для начала вспомним, что такое *векторное пространство* — это множество, на котором введены операции сложения, умножения на скаляр и в котором будут выполнятся восемь аксиом (см. 1 семестр). Но что такое скаляр?

Определение. Скаляры — это элементы некоторого фиксированного поля.

Определение. Полем называется множество F, на котором заданы две операции — «сложение» (+) и «умножение» (\cdot) ,

$$F \times F \to F \Rightarrow \begin{array}{c} +: (a,b) \mapsto a+b \\ \cdot: (a,b) \mapsto a \cdot b \end{array}$$

удовлетворяющие следующим свойствам («аксиомам поля»): $\forall a, b, c \in F$

- 1. a + b = b + a (коммутативность по сложению);
- 2. (a + b) + c = a + (b + c) (ассоциативность по сложению);
- 3. $\exists 0 \in F : 0 + a = a + 0 = a$ (существование нулевого элемента);
- 4. $\exists -a \in F : a + (-a) = (-a) + a = 0$ (существование противоположного элемента);
- 5. a(b+c) = ab + ac (дистрибутивность; связь между сложением и умножением);
- $6. \ ab = ba \ (коммутативность по умножению);$
- 7. (ab)c = a(bc) (ассоциативность по умножению);
- 8. $\exists 1 \in F \setminus \{0\} : 1 \cdot a = a \cdot 1 = a$ (существование единицы);
- 9. $a \neq 0 \Rightarrow \exists a^{-1} \in F : a \cdot a^{-1} = a^{-1} \cdot a = 1$ (существование обратного элемента).

Пример.

- \mathbb{Q} рациональные числа;
- \mathbb{R} вещественные числа;
- \mathbb{C} комплексные числа;
- $F_2 = \{0,1\}$, при сложении и умножении по модулю 2.

Поле комплексных чисел

Поле вещественных чисел \mathbb{R} плохо тем, что в нем уравнение $x^2 + 1 = 0$ не имеет решения. Отсюда возникает идея определить поле, удовлетворяющее следующим требованиям:

- (T1) новое поле содержит \mathbb{R} ;
- (T2) уравнение $x^2 + 1 = 0$ имеет решение.

Давайте формально простроим такое поле.

Определение. Полем \mathbb{C} комплексных чисел называется множество $\{(a,b) \mid a,b \in \mathbb{R}\}$, на котором заданы операции сложения: $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)$ и умножения: $(a_1,b_1)\cdot(a_2,b_2)=(a_1a_2-b_1b_2,a_1b_2+b_1a_2)$.

Предложение. \mathbb{C} *и впрямь является полем.*

Доказательство. Операции сложения и умножения введены, осталось только проверить выполнение всех аксиом.

- 1. очевидно, так как сложение идет поэлементно;
- 2. также очевидно;
- 3. 0 = (0,0);
- 4. -(a,b) = (-a,-b);
- 5. почти очевидно (т.е. прямая проверка);
- 6. ясно (тоже прямая проверка);
- 7. проверим:

$$((a_1, b_1)(a_2, b_2))(a_3, b_3) = (a_1a_2 - b_1b_2, a_1b_2 + b_1a_2)(a_3, b_3) =$$

$$= (a_1a_2a_3 - b_1b_2b_3 - a_1b_2b_3 - b_1a_2b_3, a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3) =$$

$$= (a_1, b_1)(a_2a_3 - b_2b_3, a_2b_3 + b_2a_3) = (a_1, b_1)((a_2, b_2)(a_3, b_3));$$

- 8. 1 = (1,0);
- 9. $(a,b) \neq 0 \Leftrightarrow a^2 + b^2 \neq 0 \to (a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$.

Осталось только проверить, правда ли введенное поле С удовлетворяет нашим требованиям:

(T1) Заметим, что в подмножестве \mathbb{C} , состоящим из элементов вида (a,0) операции сложения и умножения будут работать как в поле вещественных чисел.

$$(a,0) + (b,0) = (a+b,0)$$

 $(a,0) \cdot (b,0) = (ab,0)$

Следовательно, отображение $a \mapsto (a,0)$ отождествляет \mathbb{R} с этим подмножеством, то есть $\mathbb{R} \to \mathbb{C}$. Что нам и требуется.

(Т2) Примем i = (0,1). Тогда $i^2 = (0,1) \cdot (0,1) = (-1,0) = -1$. Итого, требование выполнено.

Однако запись комплексных чисел в виде упорядоченной пары (a,b) не очень удобна и громоздка. Поэтому преобразуем запись следующим образом:

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0) \cdot (0,1) = a + bi.$$

Тем самым мы получили реализацию поля \mathbb{C} комплексных чисел как множества $\{a+bi\mid a,b\in\mathbb{R},\ i^2=-1\},$ с обычным сложением и умножением.

Определение. Запись z=a+bi называется алгебраической формой комплексного числа $z\in\mathbb{C}.$

 $a=\operatorname{Re} z\,-\,\partial$ ействительная часть числа z.

 $b = \operatorname{Im} z -$ мнимая часть числа z.

Определение. Числа вида z = bi (m.e. Re z = 0) называются чисто мнимыми.

Определение. Отображение $\mathbb{C} \to \mathbb{C}$: $a+bi \mapsto a-bi$ называется (комплексным) сопряжением. Само число $\overline{z}=a-bi$ называется (комплексно) сопряженным к числу z=a+bi.

Лемма. Для любых двух комплексных числе $z,w\in\mathbb{C}$ выполняется, что

- 1. $\overline{z+w} = \overline{z} + \overline{w}$;
- 2. $\overline{zw} = \overline{z} \cdot \overline{w}$.

Доказательство. Пусть z = a + bi, a w = c + di.

1.
$$\overline{z} + \overline{w} = a - bi + c - di = (a + c) - (b + d)i = \overline{z + w}$$

2.
$$\overline{z} \cdot \overline{w} = (a - bi)(c - di) = ac - adi - bci + bdi^2 = (ac - bd) - (ad + bc)i = \overline{zw}$$

Замечание. Равенство $z=\overline{z}$ равносильно равенству $\operatorname{Im} z=0$, то есть $z\in\mathbb{R}$.

Геометрическая модель поля $\mathbb C$

Заметим, что поле комплексных числе $\mathbb{C} = \{(a,b) \mid a,b \in \mathbb{R}\}$ равно \mathbb{R}^2 . Следовательно, комплексные числа можно представить как точки на действительной плоскости \mathbb{R}^2 , или сопоставить их векторам.

В таком представлении сложение комплексных чисел сопоставляется со сложением векторов, а сопряжение — с отражением относительно оси $Ox(\operatorname{Re} z)$.

Определение. Модулем комплексного числа z = a + bi называется длина соответствующего вектора. Обозначение: |z|; $|z| = \sqrt{a^2 + b^2}$.

Свойства модуля:

- 1. $|z| \geqslant 0$, причем |z| = 0 тогда и только тогда, когда z = 0;
- 2. $|z + w| \le |z| + |w|$ неравенство треугольника;
- 3. $z \cdot \overline{z} = |z|^2$;

Доказательство.
$$(a+bi)(a-bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2$$
.

4. $|zw| = |z| \cdot |w|$;

Доказательство. Возведем в квадрат.

$$|z|^2 \cdot |w|^2 = z\overline{z}w\overline{w} = (zw)\overline{z}\overline{w} = zw\overline{z}\overline{w} = |zw|^2$$

Замечание. Из свойства 3 следует, что при $z \neq 0$ выполняется:

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$(a+bi)^{-1} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2}.$$

Определение. Аргументом комплексного числа $z \neq 0$ называется всякий угол φ такой что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}; \quad \sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

Неформально говоря, аргумент z — это угол между осью Ox и соответствующим вектором.

Замечание.

- 1. Аргумент определен с точностью до 2π .
- 2. Аргумент z=0 не определен.

Для $z \neq 0$ введем множество $\operatorname{Arg} z = \{$ множество всех аргументов $z\}$ — большой аргумент. Также введем малый аргумент $\operatorname{arg} z$ — это такой $\varphi \in \operatorname{Arg} z$, который удовлетворяет условию $0 \leq \varphi < 2\pi$ и, следовательно, определен однозначно.

Используя аргумент, можно представить комплексное число следующим образом:

$$\begin{vmatrix} a = |z|\cos\varphi \\ b = |z|\sin\varphi \end{vmatrix} \Rightarrow z = a + bi = |z|\cos\varphi + i|z\sin\varphi = |z|(\cos\varphi + i\sin\varphi)$$

Определение. 3anucь $z=|z|(\cos\varphi+i\sin\varphi)$ называется тригонометрической формой комплексного числа z.

Замечание.

$$r_1(\cos\varphi_1 + i\sin\varphi_1) = r_2(\cos\varphi_2 + i\sin\varphi_2) \Leftrightarrow \begin{cases} r_1 = r_2\\ \varphi_1 = \varphi_2 + 2\pi n, & n \in \mathbb{Z} \end{cases}$$

Лекция 16 от 18.01.2016

Вспомним предыдущую лекцию и кое-что дополним

Замечание.

- 1. Элемент $0 e \partial u$ нственный.
- 2. И элемент -a единственный.
- 3. Даже элемент 1 единственный.
- 4. Как это ни удивительно, но a^{-1} тоже единственный.

Легко увидеть, что пункты 2 и 4 доказываются одинаково с точностью до замены операции, как и пункты 1 и 3.

Доказательство. Докажем пункт 3. Если существует 1' — еще одна единица, тогда по аксиомам $1' = 1' \cdot 1 = 1$.

Докажем теперь пункт 4. Пусть b и c таковы, что $b \neq c$ и ba = ab = ac = ca = 1. Тогда

$$bac = (ba) c = b (ac) = 1 \cdot c = c = 1 \cdot b = b$$

To есть b = c.

Комплексные числа (продолжение)

Предложение. Пусть $z_1 = |z_1| (\cos \varphi_1 + i \sin \varphi_1), \ z_2 = |z_2| (\cos \varphi_2 + i \sin \varphi_2).$ Тогда

$$z_1 z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

Иными словами, при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Доказательство. Просто раскроем скобки и приведём подобные.

$$z_1 z_2 = |z_1||z_2| \left(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i \left(\cos \varphi_1 \sin \varphi_2 + \cos \varphi_2 \sin \varphi_1\right)\right) =$$
$$= |z_1||z_2| \left(\cos \left(\varphi_1 + \varphi_2\right) + i \sin \left(\varphi_1 + \varphi_2\right)\right)$$

Следствие. $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$

Следствие (Формула Муавра). Пусть $z = |z|(\cos \varphi + i \sin \varphi)$. Тогда:

$$z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi)) \quad \forall n \in \mathbb{Z}.$$

Замечание. В комплексном анализе функция $\exp x\colon \mathbb{R} \to \mathbb{R}$ доопределяется до $\exp z\colon \mathbb{C} \to \mathbb{C}$ следующим образом:

$$\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!} .$$

И тогда оказывается, что $\exp z$ обладает теми же свойствами, кроме того:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi \quad \forall \varphi \in \mathbb{C}.$$

Всякое $z \in \mathbb{C}$ можно представить в виде $z = |z|e^{i\varphi}$, где $\varphi \in \mathrm{Arg}\ (z)$. Тогда формула Муавра приобретает совсем очевидный вид:

$$|z_1|e^{i\varphi_2} \cdot |z_2|e^{i\varphi_2} = |z_1||z_2|e^{i(\varphi_1+\varphi_2)}.$$

Замечание. Отображение $R_{\varphi} \colon \mathbb{C} \to \mathbb{C}, \ z \to ze^{i\varphi}, \ \varphi \in \mathbb{R}$ определяет поворот на угол φ вокруг 0.

Корни из комплексного числа

Пусть $n \in \mathbb{N}$ и $n \geqslant 2$.

Определение. Корнем n-й степени из числа z называется всякое $w \in \mathbb{C}$: $w^n = z$. То есть

$$\sqrt[n]{z} = \{ w \in \mathbb{C} \mid w^n = z \}.$$

Если z=0, то |z|=0, а значит |w|=0, w=0. Получается, 0 — единственное комплексное число, у которого корень определён однозначно.

Далее рассмотрим случай $z \neq 0$.

$$z = |z| (\cos \varphi + i \sin \varphi)$$
$$w = |w| (\cos \psi + i \sin \psi)$$

$$z = w^n \Leftrightarrow \begin{cases} |z| = |w|^n \\ n\psi \in \operatorname{Arg}(z) \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ n\psi = \varphi + 2\pi k, \quad k \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ \psi = \frac{\varphi + 2\pi k}{n}, \quad k \in \mathbb{Z} \end{cases}$$

С точностью до кратного 2π различные значения в формуле $\psi = \frac{\varphi + 2\pi k}{n}$ получаются при $k = 0, 1, \dots, n-1$. Значит z имеет ровно n корней n-й степени.

$$\sqrt[n]{z} = \left\{ |z| \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) \mid k = 0, \dots, n - 1 \right\}$$

Замечание. Точки из множества $\sqrt[n]{z}$ при $z \neq 0$ лежат в вершинах правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{|z|}$.

Пример. $z = -1 = \cos \pi + i \sin \pi$

$$\sqrt[3]{z} = \left\{ \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}; \cos\pi + i\sin\pi; \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3} \right\}$$

Решение квадратных уравнений с комплексными коэффициентами

Пусть дано квадратное уравнение $az^2 + bz + c = 0$, где $a, b, c \in \mathbb{C}$ и $a \neq 0$. Тогда имеем:

$$z^{2} + \frac{b}{a} + \frac{c}{a} = 0$$

$$z^{2} + 2\frac{b}{2a} + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$

$$\left(z + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$z + \frac{b}{2a} \in \sqrt{\frac{b^{2} - 4ac}{4a^{2}}} = \frac{\sqrt{b^{2} - 4ac}}{2a}$$

То есть все решения — это $z_1=\frac{-b+d_1}{2a},\ z_2=\frac{-b+d_2}{2a},$ где $\{d_1,d_2\}=\sqrt[2]{b^2-4ac}.$ В частности, квадратное уравнение всегда имеет комплексный корень, а при $b^2-4ac\neq 0$ два корня.

Теорема (Основная теорема алгебры). Всякий многочлен $P\left(z\right)=a_{n}z^{n}+a_{n-1}z^{n-1}+\ldots+a_{1}z+a_{0}$ степени $n,\ \textit{где}\ n\geqslant 1,\ a_{n}\neq 0,\ u\ a_{0},\ldots,a_{n}\in\mathbb{C}$ имеет корень.

Векторные пространства над произвольным полем

И снова вспомним, что такое векторное пространство:

- некоторое множество V;
- есть операция сложения $V \times V \to V$;
- есть операция умножения на скаляр $F \times V \to V$;
- выполняются 8 аксиом.

Все основные понятия и результаты теории векторных пространств из прошлого полугодия можно перенести на случай пространства над произвольным полем F без изменений.

Пример. Пусть V- векторное пространство над полем из двух элементов, $\dim V=n$. Тогда $|V|=2^n$. Действительно, каждое конечномерное пространство обладает базисом (в данном случае e_1,\ldots,e_n). Тогда $V=\{k_1e_1+k_2e_2+\ldots+k_ne_n\mid k_i\in F\}$. Но очень легко заметить, что всего таких линейных комбинаций 2^n

Лекция 17 от 25.01.2016

Овеществление и комплексификация

Пусть V — векторное пространство над \mathbb{C} .

Определение. Овеществление пространства V — это то же пространство V, рассматриваемое как пространство над \mathbb{R} . Обозначение: $V_{\mathbb{R}}$.

Операция умножения на элементы \mathbb{R} в V уже есть, так как \mathbb{R} — подполе в \mathbb{C} .

Пример. $\mathbb{C}_{\mathbb{R}} = \mathbb{R}^2$.

Предложение. V — векторное пространство над \mathbb{C} , $\dim V < \infty$. Тогда $\dim V_{\mathbb{R}} = 2\dim V$.

Доказательство. Пусть e_1, \ldots, e_n — базис в V. Тогда $V = \{z_1e_1 + \ldots + z_ne_n \mid z_k \in \mathbb{C}\}$, причём такая запись единственная в силу определения базиса. Пусть $z_k = a_k + ib_k$, причём такая запись тоже единственная. Тогда будем иметь

$$V = \{(a_1 + ib_1) e_1 + \ldots + (a_n + ib_n) e_n \mid a_k, b_k \in \mathbb{R}\} = \{a_1e_1 + \ldots + a_ne_n + b_1ie_1 + \ldots + b_nie_n \mid a_k, b_k \in \mathbb{R}\}$$

И причём такая запись тоже единственная. Выходит, что $e_1,e_2,\ldots,e_n,ie_1,ie_2,\ldots,ie_n$ — базис в $V_{\mathbb{R}}$, в котором $2n=2\dim V$ элементов.

Определение. Комплексификация пространства W — это множество $W \times W = W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\}$ с операциями $(u_1,v_1)+(u_2,v_2)=(u_1+u_2,v_1+v_2), (a+ib)(u,v)=(au-bv,av-bu).$

Пример. $\mathbb{R}^{\mathbb{C}} = \mathbb{R}$.

Утверждение. В нём выполняются все 8 аксиом векторного пространства над \mathbb{C} .

W отождествляется подмножеством $\{(u,0) \mid u \in W\}$. Действительно

$$w \in W \Leftrightarrow (w,0) \in W^{\mathbb{C}}; \ i(w,0) = (0,w) \in W^{\mathbb{C}}$$

В итоге $\forall (u,v) \in W^{\mathbb{C}}$ представим в виде

$$(u,v) = (u,0) + (0,v) = (u,0) + i(v,0) = u + iv$$

To ect $W^{\mathbb{C}} = \{u + iv \mid u, v \in W\}.$

Предложение. $\dim W^{\mathbb{C}} = \dim W$

Замечание. $3\partial ecv\ W^{\mathbb{C}} - npocmpancmeo\ нad\ \mathbb{C},\ a\ W\ - нad\ \mathbb{R}.$

Доказательство. Пусть e_1, \ldots, e_n — базис в W. Тогда

$$W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\} = \{(a_1e_1 + a_2e_2 + \dots + a_ne_n, b_1e_1 + b_2e_2 + \dots + b_ne_n) \mid a_k,b_k \in \mathbb{R}\} = \{(a_1e_1,b_1e_1) + \dots + (a_ne_n,b_ne_n)\} = \{(a_1+ib_1)e_1 + \dots + (a_n+ib_n)e_n\} = \{z_1e_1 + \dots + z_ne_n \mid z_k \in \mathbb{C}\}$$

То есть выходит, что e_1, \ldots, e_n — базис в $W^{\mathbb{C}}$.

Сумма подпространств

Пусть V — конечномерное векторное пространство, а U и W — подпространства (в качестве упражнения лектор предлагает доказать, что их пересечение — тоже подпространство).

Определение. Сумма подпространств $U\ u\ W\ -\$ это множество.

$$U + W = \{u + w \mid u \in U, w \in W\}$$

Замечание. $\dim (U \cap W) \leqslant \dim U \leqslant \dim (U + W)$

Пример. Двумерные плоскости в пространстве \mathbb{R}^3 содержат общую прямую.

Теорема. dim $(U \cap W)$ = dim U + dim W - dim (U + W)

Доказательство. Положим $p = \dim(U \cap W)$, $k = \dim U$, $m = \dim W$. Выберем базис $a = \{a_1, \ldots, a_k\}$ в пересечении. Его можно дополнить до базиса W и до базиса U. Значит $\exists b = \{b_1, \ldots, b_{k-p}\}$ такой, что $a \cup b$ — базис в U и $\exists c = \{c_1, \ldots, c_{m-p}\}$ такой, что $a \cup c$ — базис в W. Докажем, что $a \cup b \cup c$ — базис в U + W.

Во-первых, докажем, что U+W порождается множеством $a\cup b\cup c$.

$$\begin{array}{l} v \in U + W \Rightarrow \exists u \in U, w \in W \colon \ v = u + w \\ u \in U = \langle a \cup b \rangle \subset \langle a \cup b \cup c \rangle \\ w \in W = \langle a \cup c \rangle \subset \langle a \cup b \cup c \rangle \end{array} \\ \Rightarrow v = u + w \in \langle a \cup b \cup c \rangle \Rightarrow U + W = \langle a \cup b \cup c \rangle$$

Во-вторых, докажем линейную независимость векторов из $a \cup b \cup c$.

Пусть скаляры $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_{k-p}, \gamma_1, \ldots, \gamma_{m-p}$ таковы, что:

$$\underbrace{\alpha_1 a_1 + \ldots + \alpha_p a_p}_{x} + \underbrace{\beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}}_{y} + \underbrace{\gamma_1 c_1 + \ldots + \gamma_{m-p} c_{m-p}}_{z} = 0$$

$$x + y + z = 0$$

$$z = -x - y$$

$$z \in W$$

$$-x - y \in U \cap W$$

$$\Rightarrow \exists \lambda_1, \ldots, \lambda_p \in F \colon z = \lambda_1 a_1 + \ldots + \lambda_p a_p$$

Тогда $\lambda_1 a_1 + \ldots + \lambda_p a_p - \gamma_1 c_1 - \ldots - \gamma_{m-p} c_{m-p} = 0$. Но $a \cup c$ — базис W. Следовательно, $\lambda_1 = \ldots = \lambda_p = \gamma_1 = \ldots = \gamma_{m-p} = 0$. Но тогда $0 = x + y = \alpha_1 a_1 + \ldots + \alpha_p a_p + \beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}$. Но $a \cup b$ — базис $U + W \Rightarrow \alpha_1 = \ldots = \alpha_p = \beta_1 = \ldots = \beta_{k-p} = 0$. Итого, все коэффициенты равны нулю и линейная независимость тем самым доказана. То есть $a \cup b \cup c$ — базис U + W.

$$\dim(U+W) = |a \cup b \cup c| = |a| + |b| + |c| = p + k - p + m - p = k + m - p =$$

$$= \dim U + \dim W - \dim(U \cap W)$$

Определение. $E c \pi u \ U \cap W = \{0\}, \ mo \ U + W \$ называется прямой суммой.

Следствие. B таком случае $\dim (U+W) = \dim U + \dim W$.

Пример. U- плоскость, W- прямая в \mathbb{R}^3 .

Переход к новому базису

Пусть V — векторное пространство, $\dim V = n, e_1, \ldots, e_n$ — базис. То есть

$$\forall v \in V \quad \exists! \ v = x_1 e_1 + \ldots + x_n e_n,$$

где $x_1, \ldots, x_n \in F$ — координаты вектора v в базисе (e_1, \ldots, e_n) . Пусть также есть базис e'_1, \ldots, e'_n :

$$e'_{1} = c_{11}e_{1} + c_{21}e_{2} + \dots + c_{n1}e_{n}$$

$$e'_{2} = c_{12}e_{2} + c_{22}e_{2} + \dots + c_{n2}e_{n}$$

$$\vdots$$

$$e'_{n} = c_{1n}e_{1} + c_{2n}e_{2} + \dots + c_{nn}e_{n}$$

Обозначим матрицу $C = (c_{ij})$. Тогда можно переписать (e'_1, \ldots, e'_n) как $(e_1, \ldots, e_n) \cdot C$.

Предложение. e'_1, \ldots, e'_n образуют базис тогда и только тогда, когда $\det C \neq 0$.

Доказательство.

 $[\Rightarrow] e'_1, \dots, e'_n$ — базис, а значит $\exists C' \in M_n$:

$$(e_1, \dots, e_n) = (e'_1, \dots, e'_n) C' = (e_1, \dots, e_n) C' C$$

$$E = CC'$$

$$C' = C^{-1} \Leftrightarrow \exists C^{-1} \Leftrightarrow \det C \neq 0$$

 $[\Leftarrow] \det C \neq 0 \Rightarrow \exists C^{-1}$. Покажем, что e'_1, \ldots, e'_n в таком случае линейно независимы. Пусть $x_1e'_1 + x_2e'_2 + \ldots + x_ne'_n = 0$. Тогда можно записать

$$(e'_1, e'_2, \dots, e'_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

$$(e_1, \dots, e_n) C \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

Поскольку (e_1,\dots,e_n) — базис, то $C\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}=0$. Умножая слева на обратную матрицу, получаем, что $x_1=x_2=\dots=x_n=0$

Лекция 18 от 29.01.2016

Матрица перехода и переход к новому базису

Пусть V — векторное пространство, $\dim V = n$, вектора e_1, \ldots, e_n — базис, а e'_1, \ldots, e'_n — некий набор из n векторов. Тогда каждый вектор из этого набора линейно выражается через базис.

$$e'_{j} = \sum_{i=1}^{n} c_{ij} e_{i}, \quad c_{ij} \in F$$

$$(e'_{1}, \dots, e'_{n}) = (e_{1}, \dots, e_{n}) \cdot C, \quad C = (c_{ij})$$

То есть мы получили матрицу, где в j-ом столбце стоят коэффициенты линейного разложения вектора e'_j в базисе (e_1, \ldots, e_n) .

Теперь пусть e_1', \dots, e_n' — тоже базис в V. Вспомним, что на прошлой лекции уже было сказано, что в этом случае $\det C \neq 0$.

Определение. Матрица C называется матрицей перехода от базиса (e_1, \ldots, e_n) κ базису (e'_1, \ldots, e'_n) .

Замечание. Матрица перехода от (e'_1,\ldots,e'_n) κ (e_1,\ldots,e_n) есть C^{-1} .

И небольшое замечание касательно записи: когда базис записан в скобках, то есть (e_1, \ldots, e_n) , то нам важен порядок векторов в нем, в противном случае, при записи e_1, \ldots, e_n , порядок не важен.

Итого, имеем два базиса пространства V, (e_1, \ldots, e_n) и (e'_1, \ldots, e'_n) , и матрицу перехода C такую, что $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C$. Возьмем некий вектор v и разложим его по обоим базисам.

$$v \in V \Rightarrow \begin{cases} v = x_1 e_1 + \ldots + x_n e_n, & x_i \in F \\ v = x_1' e_1' + \ldots + x_n' e_n', & x_i' \in F \end{cases}$$

Предложение. Формула преобразования координат при переходе к другому базису:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} \qquad u \wedge u \qquad x_i = \sum_{j=1}^n c_{ij} x_j'$$

Доказательство. С одной стороны:

$$v = x_1'e_1' + \ldots + x_n'e_n' = \begin{pmatrix} e_1' & \ldots & e_n' \end{pmatrix} \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = \begin{pmatrix} e_1 & \ldots & e_n \end{pmatrix} C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Однако с другой стороны:

$$v = x_1 e_1 + \ldots + x_n e_n = \begin{pmatrix} e_1 & \ldots & e_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Сравнивая одно с другим, получаем, что:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Линейные отображения

Пусть V и W — два векторных пространства над полем F.

Определение. Отображение $f:V\to W$ называется линейным, если:

1.
$$f(u_1 + u_2) = f(u_1) + f(u_2), \quad \forall u_1, u_2 \in V;$$

2.
$$f(\alpha u) = \alpha f(u), \quad \forall u \in V, \forall \alpha \in F.$$

Замечание. Свойства 1-2 эквивалентны тому, что

$$f(\alpha_1 u_1 + \alpha_2 u_2) = \alpha_1 f(u_1) + \alpha_2 f(u_2), \quad \forall u_1, u_2 \in V, \ \forall \alpha_1, \alpha_2 \in F.$$

Здесь важно понимать, что сначала сложение векторов и умножение на скаляр происходит в пространстве V, а потом в пространстве W.

Простейшие свойства.

1.
$$f(\vec{0}_V) = \vec{0}_W$$

Доказательство.
$$f(\vec{0}_V) = f(0 \cdot \vec{0}_V) = 0 \\ f(\vec{0}_V) = \vec{0}_W$$

2. $\varphi(-u) = -\varphi(u)$, где (-u) — обратный элемент к u.

Доказательство.
$$\varphi(-u) + \varphi(u) = \varphi(-u+u) = \varphi(\vec{0}_V) = \vec{0}_W \Rightarrow \varphi(-u) = -\varphi(u)$$

Примеры

- (0) $V \to V : v \mapsto v$ тождественное отображение.
- (1) $f: \mathbb{R} \to \mathbb{R}$ линейно $\Leftrightarrow \exists k \in \mathbb{R}: f(x) = kx, \quad \forall x \in \mathbb{R}$

Доказательство.

$$\Rightarrow f(x) = f(x \cdot 1) = x f(1) = kx$$
, где $k = f(1)$

← Проверим необходимые условия линейности.

1.
$$f(x) = kx \Rightarrow f(x_1 + x_2) = k(x_1 + x_2) = kx_1 + kx_2 = kf(x_1) + kf(x_2)$$

2.
$$f(\alpha x) = k\alpha x = \alpha kx = \alpha f(x)$$

- (2) $f: \mathbb{R}^2 \to \mathbb{R}^2$ декартова система координат.
 - 2.1 Поворот вокруг 0 на угол α линеен.
 - 2.2 Проекция на прямую, проходящую через 0, линейна.
- (3) $P_n = R[x]_{\leq n}$ пространство всех многочленов от x степени не больше n.

$$\Delta: f\mapsto f' \mbox{ (производная)}$$

$$(f+g)'=f'+g' \bigg|\Rightarrow \Delta - \mbox{ линейное отображение из } P_n \mbox{ в } P_{n-1}$$

$$(\alpha f)'=\alpha f'$$

(4) Векторное пространство $V, \dim V = n, e_1, \dots, e_n$ — базис.

$$V\mapsto \mathbb{R}^n$$
 $x_1e_1+\ldots+x_ne_n\mapsto \begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$ — тоже линейное отображение.

(5) $A \in \operatorname{Mat}_{m \times n}, k \geqslant 1$ — любое, $\varphi : \operatorname{Mat}_{n \times k} \to \operatorname{Mat}_{m \times k}$.

$$\varphi(X) = A \cdot X$$

$$A(X_1 + X_2) = AX_1 + AX_2$$

$$A(\alpha X) = \alpha(AX)$$

Частный случай, при $k=1-\varphi:F^n \to F^m.$

Изоморфизм

Определение. Отображение $\varphi: V \to W$ называется изоморфизмом, если φ линейно и биективно. Обозначение: $\varphi: V \xrightarrow{\sim} W$.

Рассмотрим те же примеры:

- (0) Изоморфизм.
- **(1)** Изоморфизм, при $k \neq 0$.
- (2) 2.1 Изоморфизм.2.2 Не изоморфизм.
- (3) Не изоморфизм.
- (4) Изоморфизм.
- (5) Задача: доказать, что φ изоморфизм тогда и только тогда, когда n=m и $\det A \neq 0$.

Предложение. Пусть $\varphi: V \to W$ — изоморфизм. Тогда $\varphi^{-1}: W \to V$ — тоже изоморфизм.

Доказательство. Так как φ — биекция, то φ^{-1} — тоже биекция.

$$w_1, w_2 \in W \Rightarrow \exists v_1, v_2 \in V : \begin{cases} \varphi(v_1) = w_1 & v_1 = \varphi^{-1}(w_1) \\ \varphi(v_2) = w_2 & v_2 = \varphi^{-1}(w_2) \end{cases}$$

Тогда осталось только доказать линейность обратного отображения. Для этого проверим выполнение необходимых условий линейности.

1.
$$\varphi^{-1}(w_1 + w_2) = \varphi^{-1}(\varphi(v_1) + \varphi(v_2)) = \varphi^{-1}(\varphi(v_1 + v_2)) = \mathrm{id}(v_1 + v_2) = v_1 + v_2$$

2.
$$\alpha \in F$$
, $\varphi^{-1}(\alpha w_1) = \varphi^{-1}(\alpha \varphi(v_1)) = \varphi^{-1}(\varphi(\alpha v_1)) = \operatorname{id}(\alpha v_1) = \alpha v_1$.

Определение. Два векторных пространства V и W называются изоморфными, если существует изоморфизм $\varphi:V\stackrel{\sim}{\to} W$ (и тогда существует изоморфизм $V\stackrel{\sim}{\leftarrow} W$ по предположению). Обозначение: $V\simeq W$ или $V\cong W$.

Отображения можно соединять в композиции:

$$\begin{vmatrix} \varphi : U \to V \\ \psi : V \to W \end{vmatrix} \Rightarrow \psi \circ \varphi : U \to W \quad \psi \circ \varphi(u) = \psi(\varphi(u))$$

Предложение.

- 1. Если φ и ψ линейны, то $\psi \circ \varphi$ тоже линейно.
- 2. Если φ и ψ изоморфизмы, то $\psi \circ \varphi$ тоже изоморфизм.

Доказательство.

1. Опять-таки, просто проверим необходимые условия линейности.

(a)
$$(\psi \circ \varphi)(u_1 + u_2) = \psi(\varphi(u_1 + u_2)) = \psi(\varphi(u_1) + \varphi(u_2)) = \psi(\varphi(u_1)) + \psi(\varphi(u_2)) = (\psi \circ \varphi)(u_1) + (\psi \circ \varphi)(u_2)$$

(b)
$$(\psi \circ \varphi)(\alpha u) = \psi(\varphi(\alpha u)) = \psi(\alpha \varphi(u)) = \alpha \psi(\varphi(u)) = \alpha(\psi \circ \varphi)(u)$$

2. Следует из сохранения линейности и того, что композиция биекций тоже биекция.

Следствие. Изоморфизм это отношение эквивалентности на множестве всех векторных пространств над фиксированным полем F.

Доказательство.

Рефлексивность $V \simeq V$.

Симметричность $V \simeq W \Rightarrow W \simeq V$.

Транзитивность $(V \simeq U) \& (U \simeq W) \Rightarrow V \simeq W.$

То есть множество всех векторных пространств над фиксированным полем F разбивается на попарно непересекающиеся классы, причем внутри одного класса любые два пространства изоморфны. Такие классы называются κ лассами эквивалентности.

Теорема. Если два конечномерных векторных пространства V и W на полем F изоморфны, то $\dim V = \dim W$.

Но для начала докажем следующую лемму.

Лемма (1). Для векторного пространства V над полем F размерности n верно, что $V \simeq F^n$.

Доказательство. Рассмотрим отображение $\varphi: V \to F^n$ из примера 4. Пусть (e_1, \dots, e_n) — базис пространства V. Тогда:

$$x_1e_1 + \ldots + x_ne_n \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad x_i \in F.$$

Отображение φ линейно и биективно, следовательно φ — изоморфизм. А раз существует изоморфное отображение между пространствами V и F^n , то они изоморфны.

Лекция 19 от 01.02.2016

Изоморфизм (продолжение)

На прошлой лекции мы ввели теорему и доказали одну лемму. Напомним их.

Теорема. Если два конечномерных векторных пространства V и W изоморфны, то $\dim V = \dim W$.

Лемма (1). Если dim V = n, то $V \simeq F^n$.

Замечание. Говорят, что функция φ отождествляет пространство V с пространством F^n , если $\varphi:V\xrightarrow{\sim} F^n$.

Но перед тем, как доказывать эту теорему, докажем лучше еще одну лемму.

Лемма (2). Пусть $\varphi: V \xrightarrow{\sim} W$ — изоморфизм векторных пространств, а e_1, \ldots, e_n — базис V. Тогда $\varphi(e_1), \ldots, \varphi(e_n)$ — базис W.

Доказательство. Пусть $w \in W$ — произвольный вектор. Положим $v \in V$ таковым, что $v = \varphi^{-1}(w)$.

$$v = x_1 e_1 + \ldots + x_n e_n, \quad x_i \in F$$

$$w = \varphi(v) = \varphi(x_1 e_1 + \ldots + x_n e_n) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n) \Rightarrow W = \langle \varphi(e_1), \ldots, \varphi(e_n) \rangle$$

Покажем, что $\varphi(e_1), \dots, \varphi(e_n)$ — линейно независимые вектора.

Пусть $\alpha_1, \ldots, \alpha_n \in F$ таковы, что $\alpha_1 \varphi(e_1) + \ldots + \alpha_n \varphi(e_n) = 0$. Это то же самое, что $\varphi(\alpha_1 e_1 + \ldots + \alpha_n e_n) = 0$. Применяя φ^{-1} , получаем $\alpha_1 e_1 + \ldots + \alpha_n e_n = \varphi^{-1}(0) = 0$. Но так как e_1, \ldots, e_n базис в V, то $\alpha_1 = \ldots = \alpha_n = 0$, и потому вектора $\varphi(e_1), \ldots, \varphi(e_n)$ линейно независимы. Следовательно, этот набор векторов — базис в W.

Теперь приступим наконец к доказательству теоремы.

Доказательство.

- $\Rightarrow V \simeq W \Rightarrow \exists \varphi : V \xrightarrow{\sim} W$. Тогда по лемме 2, если e_1, \ldots, e_n базис V, то $\varphi(e_1), \ldots, \varphi(e_n)$ базис W, и тогда $\dim V = \dim W$.
- \Leftarrow Пусть dim $V=\dim W=n$. Тогда по лемме 1 существуют изоморфизмы $\varphi:V\stackrel{\sim}{\to} F^n$ и $\psi:W\stackrel{\sim}{\to} F^n$. Следовательно, $\psi^{-1}\circ\varphi:V\to W$ изоморфизм.

То есть получается, что с точностью до изоморфизма существует только одно векторное пространство размерности n. Однако не стоит заканчивать на этом курс линейной алгебры. Теперь главная наша проблема — это как из бесконечного множества базисов в каждом векторном пространстве выбрать тот, который будет наиболее простым и удобным для каждой конкретной задачи.

например, рассмотрим вектор $v \in F^n$ с координатами $v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Пусть $v \neq 0$. Тогда

существует такой базис $e_1,\dots,e_n,$ что $v=e_1,$ то есть в этом базисе вектор имеет координаты

$$v = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Пусть V, W — векторные пространства над F, и e_1, \ldots, e_n — базис V.

Предложение.

- 1. Всякое линейное отображение $\varphi: V \to W$ однозначно определяется векторами $\varphi(e_1), \dots, \varphi(e_n)$.
- 2. Для всякого набора векторов $f_1, \ldots, f_n \in W$ существует единственное линейное отображение $\varphi: V \to W$ такое, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$.

Доказательство.

- 1. Пусть $v \in V$, $v = x_1e_1 + \ldots + x_ne_n$, где $x_i \in F$. Тогда $\varphi(v) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n)$, то есть если мы знаем вектора $\varphi(e_i)$, то сможем задать $\varphi(v)$ для любого $v \in V$.
- 2. Определим отображение $\varphi: V \to W$ по формуле $\varphi(x_1e_1 + \ldots + x_ne_n) = x_1f_1 + \ldots + x_nf_n$. Прямая проверка показывает, что φ линейна, а единственность следует из пункта 1.

Следствие. Если $\dim V = \dim W = n$, то для всякого базиса e_1, \ldots, e_n пространства V и всякого базиса f_1, \ldots, f_n пространства W существует единственный изоморфизм $\varphi : V \xrightarrow{\sim} F$ такой, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$.

Доказательство. Из пункта 2. предложения следует, что существует единственное линейное отображение $\varphi: V \to W$ такое, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$. Но тогда $\varphi(x_1e_1 + \ldots + x_ne_n) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n) = x_1f_1 + \ldots + x_nf_n$ для любых $x_i \in F$. Отсюда следует, что φ биекция.

Матрицы линейных отображений

Пусть V и W — векторные пространства, $\mathfrak{e} = (e_1, \dots, e_n)$ — базис V, $\mathfrak{f} = (f_1, \dots, f_m)$ — базис W, $\varphi : V \to W$ — линейное отображение. Тогда:

$$\varphi(e_j) = a_{1j}f_1 + \ldots + a_{mj}f_m = \sum_{i=1}^m a_{ij}f_i.$$

Определение. Матрица $A = (a_{ij}) \in Mat_{m \times n}(F)$ называется матрицей линейного отображения φ в базисах e и f (или по отношению κ базисам e и f).

Замечание. Существует биекция {линейные отображения $V \to W$ } $\rightleftarrows Mat_{m \times n}$.

Замечание. $B A^{(j)}$ стоят координаты $\varphi(e_i)$ в базисе \mathbb{F} .

$$(\varphi(e_1),\ldots,\varphi(e_n))=(f_1,\ldots,f_n)\cdot A$$

Рассмотрим пример.

Пусть $P_n = F[x]_{\leqslant n}$ — множество многочленов над полем F степени не выше n. Возьмем дифференцирование $\Delta: P_n \to P_{n-1}$.

Базис $P_n-1, x, x^2, \ldots, x^n$. Базис $P_{n-1}-1, x, \ldots, x^{n-1}$. Тогда матрица линейного отображения будет размерности $n \times (n+1)$ и иметь следующий вид.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & n \end{pmatrix}$$

Предложение. Если $v = x_1 e_1 + \ldots + x_n e_n$ и $\varphi(v) = y_1 f_1 + \ldots + y_m f_m$, то

$$\begin{pmatrix} y1\\ \vdots\\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$$

Доказательство. С одной стороны:

$$\varphi(v) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n) = (\varphi(e_1), \ldots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \ldots, f_m) A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Однако с другой стороны:

$$\varphi(v) = (f_1, \dots, f_m) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Сравнивая обе части, получаем требуемое.

А теперь проанализируем операции над матрицами линейных отображений.

V и W — векторные пространства. Обозначение: $\mathrm{Hom}(V,W):=$ множество всех линейных отображений $V \to W$.

Пусть $\varphi, \psi \in \text{Hom}(V, W)$.

Определение.

- 1. $\varphi + \psi \in \text{Hom}(V, W) \mathfrak{smo}(\varphi + \psi)(v) := \varphi(v) + \psi(v)$.
- 2. $\alpha \in F, \alpha \varphi \in \text{Hom}(V, W) \mathfrak{smo}(\alpha \varphi)(v) := \alpha(\varphi(v)).$

Упражнение.

- 1. Проверить, что $\varphi + \psi$ и $\alpha \varphi$ действительно принадлежат Hom(V, W).
- 2. Проверить, что Hom(V, W) является векторным пространством.

Предложение. Пусть $e = (e_1, \dots, e_n) - \text{базис } V, f = (f_1, \dots, f_m) - \text{базис } W, \varphi, \psi \in \text{Hom}(V, W).$ При этом A_{φ} — матрица линейного отображения φ , A_{ψ} — матрица для ψ , $A_{\varphi+\psi}$ — для $\varphi+\psi$, а $A_{\alpha\varphi}$ — для $\alpha\varphi$.

Torda
$$A_{\varphi+\psi} = A_{\varphi} + A_{\psi} \ u \ A_{\alpha\varphi} = \alpha A_{\varphi}.$$

Доказательство. Упражнение.

Теперь возьмем три векторных пространства — U,V и W размерности n,m и k соответственно, и их базисы е, $\mathbb F$ и g. Также рассмотрим цепочку линейных отображений $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$. Пусть A — матрица φ в базисах $\mathbb F$ и g, B — матрица ψ в базисах е и $\mathbb F$, C — матрица $\varphi \circ \psi$ в базисах е и g.

Предложение. C = AB.

Замечание. Собственно говоря, отсюда и взялось впервые определение умножения матрии.

Доказательство. Запишем по определению:

$$(\varphi \circ \psi)(e_r) = \sum_{p=1}^k c_{pr} g_p, \quad r = 1, \dots, n$$

$$\psi(e_r) = \sum_{q=1}^m b_{qr} f_q, \quad r = 1, \dots, n$$

$$\varphi(f_q) = \sum_{p=1}^k a_{pq} g_p, \quad q = 1, \dots, m$$

Тогда:

$$(\psi \circ \psi)(e_r) = \varphi(\psi(e_r)) = \varphi\left(\sum_{q=1}^m b_{qr} f_g\right) = \sum_{q=1}^m b_{qr} \varphi(f_g) = \sum_{q=1}^m b_{qr} \left(\sum_{p=1}^k a_{pq} g_p\right) = \sum_{p=1}^k \left(\sum_{q=1}^m a_{pq} b_{qr}\right) g_p$$

$$\downarrow \downarrow$$

$$c_{pr} = \sum_{q=1}^m a_{pq} b_{qr}$$

$$\downarrow \downarrow$$

$$C = AB$$

И снова, пусть V и W — векторные пространства с линейным отображением $\varphi:V\to W.$

Определение. Ядро φ — это множество $\operatorname{Ker} \varphi := \{v \in V \mid \varphi(v) = 0\}.$

Определение. Образ φ — это множество Im $\varphi := \{w \in W \mid \exists v \in V : \varphi(v) = w\}$.

Пример. Все то жее $\Delta: P_n \to P_{n-1}$. Для него $\operatorname{Ker} \Delta = \{f \mid f = const\}$, $\operatorname{Im} \Delta = P_{n-1}$.

Лекция 20 от 08.02.2016

Линейные отображения (продолжение)

Пусть $\varphi \colon V \to W$ — лиенйное отображение

Предложение.

- 1. $\operatorname{Ker} \varphi nodnpocmpaнcmeo \ e \ V$
- 2. $\operatorname{Im} \varphi nodnpocmpaнcmeo \ e \ W$

Теорема. Если два конечномерных векторных пространства V и W изоморфны, то $\dim V = \dim W$.

Лемма (1). Если dim V = n, то $V \simeq F^n$.

Замечание. Говорят, что функция φ отождествляет пространство V с пространством F^n , если $\varphi:V\stackrel{\sim}{\to} F^n$.

Но перед тем, как доказывать эту теорему, докажем лучше еще одну лемму.

Лемма (2). Пусть $\varphi: V \xrightarrow{\sim} W$ — изоморфизм векторных пространств, а e_1, \ldots, e_n — базис V. Тогда $\varphi(e_1), \ldots, \varphi(e_n)$ — базис W.

Доказательство. Пусть $w \in W$ — произвольный вектор. Положим $v \in V$ таковым, что $v = \varphi^{-1}(w)$.

$$v = x_1 e_1 + \ldots + x_n e_n, \quad x_i \in F$$

$$w = \varphi(v) = \varphi(x_1 e_1 + \ldots + x_n e_n) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n) \Rightarrow W = \langle \varphi(e_1), \ldots, \varphi(e_n) \rangle$$

Покажем, что $\varphi(e_1), \dots, \varphi(e_n)$ — линейно независимые вектора.

Пусть $\alpha_1, \ldots, \alpha_n \in F$ таковы, что $\alpha_1 \varphi(e_1) + \ldots + \alpha_n \varphi(e_n) = 0$. Это то же самое, что $\varphi(\alpha_1 e_1 + \ldots + \alpha_n e_n) = 0$. Применяя φ^{-1} , получаем $\alpha_1 e_1 + \ldots + \alpha_n e_n = \varphi^{-1}(0) = 0$. Но так как e_1, \ldots, e_n базис в V, то $\alpha_1 = \ldots = \alpha_n = 0$, и потому вектора $\varphi(e_1), \ldots, \varphi(e_n)$ линейно независимы. Следовательно, этот набор векторов — базис в W.

Теперь приступим наконец к доказательству теоремы.

Доказательство.

- $\Rightarrow V \simeq W \Rightarrow \exists \varphi : V \xrightarrow{\sim} W$. Тогда по лемме 2, если e_1, \ldots, e_n базис V, то $\varphi(e_1), \ldots, \varphi(e_n)$ базис W, и тогда $\dim V = \dim W$.
- \Leftarrow Пусть dim $V=\dim W=n$. Тогда по лемме 1 существуют изоморфизмы $\varphi:V\xrightarrow{\sim} F^n$ и $\psi:W\xrightarrow{\sim} F^n$. Следовательно, $\psi^{-1}\circ\varphi:V\to W$ изоморфизм.

То есть получается, что с точностью до изоморфизма существует только одно векторное пространство размерности n. Однако не стоит заканчивать на этом курс линейной алгебры. Теперь главная наша проблема — это как из бесконечного множества базисов в каждом векторном пространстве выбрать тот, который будет наиболее простым и удобным для каждой конкретной задачи.

Например, рассмотрим вектор $v \in F^n$ с координатами $v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Пусть $v \neq 0$. Тогда

существует такой базис e_1, \ldots, e_n , что $v=e_1$, то есть в этом базисе вектор имеет координаты

$$v = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

V Пусть V, W — векторные пространства над F, и e_1, \ldots, e_n — базис V.

Предложение.

- 1. Всякое линейное отображение $\varphi: V \to W$ однозначно определяется векторами $\varphi(e_1), \dots, \varphi(e_n)$.
- 2. Для всякого набора векторов $f_1, ..., f_n \in W$ существует единственное линейное отображение $\varphi : V \to W$ такое, что $\varphi(e_1) = f_1, ..., \varphi(e_n) = f_n$.

Доказательство.

- 1. Пусть $v \in V$, $v = x_1 e_1 + \ldots + x_n e_n$, где $x_i \in F$. Тогда $\varphi(v) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n)$, то есть если мы знаем вектора $\varphi(e_i)$, то сможем задать $\varphi(v)$ для любого $v \in V$.
- 2. Определим отображение $\varphi: V \to W$ по формуле $\varphi(x_1e_1 + \ldots + x_ne_n) = x_1f_1 + \ldots + x_nf_n$. Прямая проверка показывает, что φ линейна, а единственность следует из пункта 1.

Следствие. Если $\dim V = \dim W = n$, то для всякого базиса e_1, \ldots, e_n пространства V и всякого базиса f_1, \ldots, f_n пространства W существует единственный изоморфизм $\varphi : V \xrightarrow{\sim} F$ такой, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$.

Доказательство. Из пункта 2. предложения следует, что существует единственное линейное отображение $\varphi: V \to W$ такое, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$. Но тогда $\varphi(x_1e_1 + \ldots + x_ne_n) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n) = x_1f_1 + \ldots + x_nf_n$ для любых $x_i \in F$. Отсюда следует, что φ биекция.

Матрицы линейных отображений

Пусть V и W — векторные пространства, $\mathfrak{e} = (e_1, \dots, e_n)$ — базис V, $\mathfrak{f} = (f_1, \dots, f_m)$ — базис W, $\varphi : V \to W$ — линейное отображение. Тогда:

$$\varphi(e_j) = a_{1j}f_1 + \ldots + a_{mj}f_m = \sum_{i=1}^m a_{ij}f_i.$$

Определение. Матрица $A = (a_{ij}) \in Mat_{m \times n}(F)$ называется матрицей линейного отображения φ в базисах $\mathfrak e$ и $\mathfrak f$ (или по отношению κ базисам $\mathfrak e$ и $\mathfrak f$).

Замечание. Существует биекция $\{$ линейные отображения $V \to W \} \rightleftarrows Mat_{m \times n}.$

Замечание. В $A^{(j)}$ стоят координаты $\varphi(e_i)$ в базисе \mathbb{F} .

$$(\varphi(e_1),\ldots,\varphi(e_n))=(f_1,\ldots,f_n)\cdot A$$

Рассмотрим пример.

Пусть $P_n = F[x]_{\leqslant n}$ — множество многочленов над полем F степени не выше n. Возьмем дифференцирование $\Delta: P_n \to P_{n-1}$.

Базис $P_n - 1, x, x^2, \dots, x^n$. Базис $P_{n-1} - 1, x, \dots, x^{n-1}$. Тогда матрица линейного отображения будет размерности $n \times (n+1)$ и иметь следующий вид.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & n \end{pmatrix}$$

Предложение. Если $v = x_1e_1 + \ldots + x_ne_n$ и $\varphi(v) = y_1f_1 + \ldots + y_mf_m$, то

$$\begin{pmatrix} y1\\ \vdots\\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$$

Доказательство. С одной стороны:

$$\varphi(v) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n) = (\varphi(e_1), \ldots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \ldots, f_m) A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Однако с другой стороны:

$$\varphi(v) = (f_1, \dots, f_m) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Сравнивая обе части, получаем требуемое.

А теперь проанализируем операции над матрицами линейных отображений.

V и W — векторные пространства. Обозначение: $\mathrm{Hom}(V,W):=$ множество всех линейных отображений $V \to W$.

Пусть $\varphi, \psi \in \text{Hom}(V, W)$.

Определение.

- 1. $\varphi + \psi \in \text{Hom}(V, W) \mathfrak{smo}(\varphi + \psi)(v) := \varphi(v) + \psi(v).$
- 2. $\alpha \in F, \alpha \varphi \in \text{Hom}(V, W) \mathfrak{smo}(\alpha \varphi)(v) := \alpha(\varphi(v)).$

Упражнение.

- 1. Проверить, что $\varphi + \psi$ и $\alpha \varphi$ действительно принадлежат Hom(V, W).
- 2. Проверить, что Hom(V,W) является векторным пространством.

Предложение. Пусть $e = (e_1, \dots, e_n) - \textit{базис } V$, $f = (f_1, \dots, f_m) - \textit{базис } W$, $\varphi, \psi \in \text{Hom}(V, W)$. При этом A_{φ} — матрица линейного отображения φ , A_{ψ} — матрица для ψ , $A_{\varphi+\psi}$ — для $\varphi+\psi$, а $A_{\alpha\varphi}$ — для $\alpha\varphi$.

Το εδα
$$A_{\omega+\psi} = A_{\omega} + A_{\psi} u A_{\alpha\omega} = \alpha A_{\omega}$$
.

Доказательство. Упражнение.

Теперь возьмем три векторных пространства — U,V и W размерности n,m и k соответственно, и их базисы \mathfrak{E}, \mathbb{F} и \mathfrak{g} . Также рассмотрим цепочку линейных отображений $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$. Пусть A — матрица φ в базисах \mathbb{F} и \mathfrak{g}, B — матрица ψ в базисах \mathfrak{E} и \mathfrak{g}, C — матрица $\varphi \circ \psi$ в базисах \mathfrak{E} и \mathfrak{g} .

Предложение. C = AB.

Замечание. Собственно говоря, отсюда и взялось впервые определение умножения матриц. Доказательство. Запишем по определению:

$$(\varphi \circ \psi)(e_r) = \sum_{p=1}^k c_{pr} g_p, \quad r = 1, \dots, n$$

$$\psi(e_r) = \sum_{q=1}^m b_{qr} f_q, \quad r = 1, \dots, n$$

$$\varphi(f_q) = \sum_{p=1}^k a_{pq} g_p, \quad q = 1, \dots, m$$

Тогда:

$$(\psi \circ \psi)(e_r) = \varphi(\psi(e_r)) = \varphi\left(\sum_{q=1}^m b_{qr} f_g\right) = \sum_{q=1}^m b_{qr} \varphi(f_g) = \sum_{q=1}^m b_{qr} \left(\sum_{p=1}^k a_{pq} g_p\right) = \sum_{p=1}^k \left(\sum_{q=1}^m a_{pq} b_{qr}\right) g_p$$

$$\downarrow \downarrow$$

$$c_{pr} = \sum_{q=1}^m a_{pq} b_{qr}$$

$$\downarrow \downarrow$$

$$C = AB$$

И снова, пусть V и W — векторные пространства с линейным отображением $\varphi: V \to W$.

Определение. $Ядро \varphi - это множество Ker \varphi := \{v \in V \mid \varphi(v) = 0\}.$

Определение. Образ φ — это множество $\operatorname{Im} \varphi := \{w \in W \mid \exists v \in V : \varphi(v) = w\}.$

Пример. Все то жее $\Delta: P_n \to P_{n-1}$. Для него $\operatorname{Ker} \Delta = \{f \mid f = const\}$, $\operatorname{Im} \Delta = P_{n-1}$.