6. Fysikk i væsker og gasser

Aggregattilstander: fast form, væske, gass, plasma...

$$p = \frac{m}{V} \times \frac{massen}{\text{Nocumet}}$$
Tho

eks: gull
$$p = 19.3 \frac{g}{cm^3}$$
 aluminium $p = 2.7 \frac{g}{cm^3}$
vann $p = 1.0 \frac{g}{cm^3}$ Luft $p = 1.29 \frac{g}{cm^3}$

gull
$$p=19.3\frac{9}{cm^3}$$
 aluminium $p=2.7\frac{9}{cm^3}$
 $Vann p=1.0\frac{9}{cm^3}$ Luft $p=1.29\frac{9}{cm^3}$ (ved havet)

eks. 6.1 Bad, gulv 9,6 m³, takhøyde 2,40 m

a) Finn m av (ufta i rommet hvis
$$\rho = 1.24 \frac{kg}{m^3}$$

 $V = A \cdot h = 9.6 m^2 \cdot 2.40 m = 23.04 m^3$
 $\rho = \frac{m}{V}$

$$p = V$$
 $m = pV = 1,24 \frac{kg}{m^3} \cdot 23,04 m^3 = 29 kg$

$$p = 1000 \frac{11}{m^3}$$
 $m = pV = 1000 \frac{kg}{m^3} \cdot 23,04 \text{ m}^3 = 23.10 \text{ kg}$

Trykk

Når en kraft F virker vinkelrett på en flate med areal A, er trykket på flaten kraften per areal:

$$P = \frac{F}{A}$$
 (skalar)

$$\left[\frac{N}{m^3} = Pa, pascal\right]$$

eks, Stå på en mynt med A = 4,0cm³. Din masse, 70kg.
Trykk under mynt:

 $p = \frac{F}{A} = \frac{mg}{A} = \frac{70 kg \cdot 9.81 \frac{m}{52}}{4.0 \cdot 10^{-4} m^{2}} = 1.7 \cdot 10^{6} Pa$

Lufttrykk rundt oss,

Po=101kPa standard ved havnivå

Måles med barometer pavtar med høyden. (1,3 kPa per 100m i starten)

Enheter: bar, atm, torr, psi

(Overtrykk = pover po)

Trykki væsker: 90° på overflaten.

Er lik i lik høyde.

$$\sum F = 0$$

$$F_1 = F_2$$

$$P_1 = P_2$$

pien væske i ro = hydrostatisk trykk p=po+pgh der po=trykk over væska fordi:

h
$$F_0 = p_0 A$$

$$F_0 = p_0 A$$

$$F = p_0 A$$

$$\sum F = 0$$

$$F - F_o - G = 0$$

$$pA - P_o A - mg = 0 \quad og \quad m = pV = pAh$$

$$pA = P_o A + mg$$

$$p = P_o + \frac{mg}{A}$$

$$p = P_o + \frac{pAhg}{A}$$

$$p = P_o + pgh$$
(

$$eks.6.3$$
 a) P 5,1m ned i ferskvann
 $P = P_0 + \rho gh = 101.10^3 Pa + 1000 \frac{kg}{m^3} \cdot 9,81 \frac{N}{kg} \cdot 5,1 m$
 $= 1,510 \cdot 10^5 Pa = 1,5 \cdot 10^5 Pa$

b) Trykkraften mot en flate på $0.25m^2$ er: $P = \frac{F}{A}$ $F = pA = 1.510 \cdot 10 Pa \cdot 0.25m^2 = 38kN$

90° på flaten.

Pascals lov: Når vi øver et ytre trykk på en væske i ro, vil trykket i hele væsken øke like mye som det ytre trykket.

eks. Hydrauliske maskiner

Gasstrykk skyldes molekylbevegelser. Brownske bevegelser Molekylene støter mot veggene Økt temp. vil si at fart og En øker

Oppdrift

Arkimedes lov: Et legeme som flyter eller er helt omgitt av en væske har en oppdrift lik G til den fortrengte væsken. Oppdriften virker rett opp.

$$\Sigma F=0$$

 $O=G$ for væskelegemet

eks.6.5 Lodd med V=100cm³ viser 2,65N i luft. Henger så (øddet i vann.

a) Finn oppdriften.

$$O = m_{v} \cdot g = \rho_{v} \cdot V \cdot g = 1,00 \cdot 10 \frac{3}{m^{3}} \cdot 100 \cdot (10^{-2})^{3} \cdot 9,81 \frac{N}{kg}$$

$$= 0.981 N$$

b) Hva viser fjærvekta nå?

$$\sum F = 0$$

 $K + O - G = 0$
 $K = G - O$
 $= 2,65N - 0,981N$
 $= 1,67N$

Temperatur

-273,15°C er det absolutte nullpunkt

T = 273K + tA temp. i c

i Kelvin

Kinetisk gassteori har forenklinger: *molekylene er i snitt langt fra hverandre * de har ubetydelig volum

* de kolliderer elastisk

Den gj.snittlige translatoriske kinetiske energien Ek til molekylene i en gass med absolutt temp.

Ter:

 $E_k = \frac{3}{2}kT$ Boltmannkonstanten $k = 1,38 \cdot 10^{-23} \frac{7}{K}$

Gjelder alle gasser. U=1,66·10²⁷kg er atommasseenheten

eks 6.6 a) Ex translatorisk til molekylene i He-gass når t=27°C.

 $E_{k} = \frac{3}{2}kT = \frac{3}{2}\cdot 1{,}38\cdot 10\frac{23}{k}\cdot (273+27)K = 6{,}210\cdot 10\frac{-21}{3} = 6{,}2\cdot 10\frac{-21}{3}$

b) Ex translatorisk til alle molekylene i 4,0gram He-gass.

 $m_{He} = 4,000 = 4,00 \cdot 1,66 \cdot 10 \text{ kg} = 6,640 \cdot 10^{27} \text{ kg}$

 $N = \frac{m}{m_{HR}} = \frac{0.0040 \, \text{kg}}{6.640 \cdot 10^{-27} \, \text{kg}} = 6.024 \cdot 10^{23}$

 $E = N \cdot E_{k} = 6,024 \cdot 10^{23} \cdot 6,210 \cdot 10^{21} = 3,7k$

C) $\frac{1}{2}mV^2 = E_k$ $V = \sqrt{\frac{E_K}{m}} = \sqrt{\frac{2 \cdot 6,210 \cdot 10^{-21} \text{ J}}{6,640 \cdot 10^{-27} \text{ kg}}} = \frac{1.4 \text{ km}}{5}$

Tilstandslikningen

For en innestengt gass gjelder likningen

$$\frac{PV}{T} = konst. \qquad p = trykk \\ V = volum \\ T = absolutt \\ temp. \qquad disconnected \\ factorization \\ gassen$$

Dvs. $\frac{P_2V_2}{T_2} = \frac{P_1V_1}{T_1}$ for en innestengt gass.

eks. 6.7 p=151kPa ved o°C i ei stålflaske. Vi varmer opp flaska til p=180kPa mens V er vendret. Finn ny temp.

$$\frac{P_{2}V_{2}}{T_{2}} = \frac{P_{1}V_{1}}{T_{1}} \quad og \quad V_{2} = V_{1} = V$$

$$\frac{P_{2}V}{T_{2}} = \frac{P_{1}V}{T_{1}} : V$$

$$\frac{P_{2}}{T_{2}} = \frac{P_{1}}{T_{1}} | \cdot T_{2} \cdot T_{1}$$

$$\frac{P_{2} \cdot T_{2} \cdot T_{1}}{T_{2}} = \frac{P_{2} \cdot T_{2} \cdot T_{1}}{T_{1}}$$

$$P_{2} \cdot T_{1} = P_{1} \cdot T_{2}$$

$$T_{2} = \frac{P_{2}}{P_{1}} \cdot T_{1} = \frac{180 \, kP_{a}}{151 \, kP_{a}} \cdot 273 \, K = \frac{325 \, K}{4VS}.$$

$$dvs. \quad t = (325 - 273)^{\circ}C = 52^{\circ}C$$

p-V-diagram:

En idealgass følger T.likningen 100%. Virkelige gasser avviker lite når per max noen få atmosfærer og T godt over Kondenseringstemp.

T. Likningen for en idealgass med volumet V, trykket p og temperaturen T er:

der N er antall molekyler og k er boltzmannskonstanten.

eks. 6.13 p=4,0MPa, T=295K og V=15dm³ for en gass som så komprimeres isotermt til 10dm.

a) Finn antall molekyler.

$$PV = NKT$$

$$N = \frac{PV}{KT} = \frac{4.0 \cdot 10 \, Pa \cdot 15 \cdot (10^{11})^3}{1.38 \cdot 10^{-23} \frac{3}{K} \cdot 295 \, K} = 1.473 \cdot 10^{-25} = 1.5 \cdot 10^{-25}$$

b) Finn nytt trykk. Ter vendret.

$$P_2 V_2 = NkT_2$$

 $P_2 = \frac{NkT_2}{V_2} = \frac{1,473 \cdot 10^{25} \cdot 1,38 \cdot 10^{-23} \text{ F} \cdot 295 \text{ K}}{10 \cdot (10^{-1} \text{ m})^3}$

= 6,0 MPa