MATH2040C Homework 6

ZHENG Weijia (William, 1155124322)

April 9, 2021

1 Section 6.1, Q8

- Provide reasons why each of the following is not an inner product on the given vector spaces.
 - (a) $\langle (a,b),(c,d)\rangle = ac bd$ on \mathbb{R}^2 .
 - (b) $\langle A, B \rangle = \operatorname{tr}(A + B)$ on $M_{2 \times 2}(R)$.
 - (c) $\langle f(x), g(x) \rangle = \int_0^1 f'(t)g(t) dt$ on P(R), where ' denotes differentiation.

Figure 1: Section 6.1 Q8

1.1 (a)

Suppose this is an inner product. Then $\langle x, x \rangle \geq 0$ should hold $\forall x \in \mathbb{R}^2$. Let x = (1, 10). Then $\langle x, x \rangle = \langle (1, 10), (1, 10) \rangle = 1^2 - 10^2 = -99 < 0$. Therefore, this is not an inner product.

1.2 (b)

Suppose this is an inner product. Then $\langle x, x \rangle \geq 0$ should hold $\forall x \in M_{2 \times 2}(R)$.

Let
$$x = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
. Then

$$\langle x, x \rangle = tr(x+x) = -2 - 2 = -4 < 0.$$

Therefore, this is not an inner product.

1.3 (c)

Suppose this is an inner product. Then $\forall f,g\in P(\mathbb{R}), \overline{\langle\,g,f\rangle}=\langle\,f,g\rangle$ should hold. Let $f(x)=x,g(x)=x^2+x$.

Then

$$\langle f, g \rangle = \int_0^1 1(x^2 + x) \, dx = \frac{5}{6}.$$

$$\overline{\langle g, f \rangle} = \overline{\int_0^1 (2x+1)x \, dx} = \frac{7}{6}.$$

Therefore $\overline{\langle\,g,f\rangle} \neq \langle\,f,g\rangle$ for some $f,g \in P(\mathbb{R}).$

Hence, this is not an inner product.

Done.

2 Section 6.1, Q17

17. Let T be a linear operator on an inner product space V, and suppose that ||T(x)|| = ||x|| for all x. Prove that T is one-to-one.

Figure 2: Section 6.1 Q17

Note that because we have ||T(x)|| = ||x||. Then $\forall x \in V$, with $x \neq 0$ we have

$$||T(x)|| = ||x|| > 0.$$

Therefore $x \neq 0$.

Note that ||T(0)|| = ||0|| = 0, which implies

$$T(0) = 0.$$

Hence $N(T) = \{0\}.$

Hence, T is one-to-one.

Done.