Маска підмережі

Маска — число, що використовується разом з IP-адресою. Двійковий запис маски має одиниці у розрядах, що в IP-адресі відповідають номеру мережі.

Маски для стандартных типов сетей имеют вид:

Класс А: - 11111111.00000000.0000000.00000000 (255.0.0.0)

Класс В: - 11111111.111111111.00000000.00000000 (255.255.0.0)

Класс С: - 11111111.1111111111111111111.00000000 (255.255.255.0)

Мережевий префікс

255.0.0.0 - /8 255.255.0.0 - /16 255.255.255.0 - /24

Підмережі

- До введення маски було **2** градації адресування: *мережа* і *номер комп'ютеру* у даній мережі
- Введення маски створює **3** градації адресування: *мережа*, *підмережа* і *номер комп'ютеру* у даній підмережі

Розрахунок маски підмережі

- розрахувати маску, яка дозволить створити необхідну кількість підмереж із заданою кількістю комп'ютерів в кожній підмережі.
- визначити адреси підмереж.
- визначити широкомовні адреси для кожної підмережі.
- визначити діапазони доступних адрес для кожної підмережі.

Адреса мережі **198.1.120.0**

Розрахувати маску <u>підмережі,</u> яка дозволяє розбити блок адрес мережі класу C так, що його можна адаптувати до 4-х існуючих мереж, кожна з яких має 15 комп'ютерів.

Задача

- Дано: мережі підприємства привласнена адреса мережі класу С: 206.0.125.0
- **Необхідно** поділити блок адрес мережі класу С таким чином, щоб адаптувати його до 3-х існуючих підмереж (офіси A, B і C рис. 1) і зарезервувати дві додаткові підмережі для майбутнього використання. Кожна підмережа повинна мати не менше 25 доступних адрес.

Мережа підприємства

• Стандартна маска для мережі класу С має вигляд: **255.255.25.0.** Вона містить «1» в тих розрядах, які повинні інтерпретуватися маршрутизаторами як номер мережі, тобто маска містить одиниці в трьох перших байтах:

11111111.111111111.111111111.000000000

- Тому в нашому випадку тільки біти останнього байту можуть бути використані для організації підмереж. Причому для створення підмереж використовуються старші біти байту, молодші використовуються для адресації вузлів.
- Формула, що дозволяє визначити необхідну кількість біт для створення підмереж має вигляд:

Nsubnet
$$\leq 2$$
, $N - 6iTu$

• Необхідно підібрати таке **N**, щоб число **2** було більше або дорівнювало необхідної кількості підмереж. Підставляючи N=1,2,3.. одержимо:

Nsubnet = 2 = 2 підмережі

Nsubnet = 2 = 4 підмережі

Nsubnet = 2 = 8 підмереж

- Таким чином, для створення 2 підмереж необхідно задіяти 1 старшій біт з останнього байту маски, для створення 4 підмереж 2 біти, 8 підмереж 3 біти.
- В дані розряди записуються одиниці. Тоді, наприклад, для 8 підмереж отримуємо наступний запис маски у двійковому вигляді:

11111111.111111111.11111111.11100000

- Для того, щоб отримати запис маски у десятковому вигляді необхідно визначити вагові коефіцієнти для даних бітів.
- Створимо таблицю, першій рядок якої номер біту, другій вага цього біту, яка розраховується як 2 (основа системи числення) у відповідному ступені, третій рядок вага розряду у десятковому вигляді.

Таблиця 1. Вагові коефіцієнті розрядів двійкового числа

128	64	32	16	8	4	2	1
2 ⁷	2 6	2 ⁵	2 4	2 3	2 ²	2 1	2 0
8 біт	7 біт	6 біт	5 біт	4 біт	3 біт	2 біт	1 біт

• Сума вагових коефіцієнтів дорівнює 224

128+64+32=224

- Тобто маска підмережі буде мати наступний вигляд: 255.255.254
- Для організації 8 підмереж необхідні 3 старші біти останнього байта ІР-адреси. Запишемо всі можливі двійкові комбінації, які можна створити на основі 3-х розрядів:

Таблиця 2. Двійкові комбінації на основі 3 розрядів

№ комбінації	3 біт	2 біт	1 біт
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

Сформуємо адреси підмереж. Для цього представимо адресу підмережі таким чином:

Запишемо першу комбінацію у відповідні розряди номера підмережі. Одержимо:

Таким чином, перша підмережа матиме наступну IP-адресу: **206.0.125.0**.

Запишемо наступну комбінацію у відповідні розряди номера підмережі. Одержимо:

ІР-адреса другій підмережі буде: 206.0.125.32

IP-адреса 3-й підмережі буде: **206.0.125.64**, тобто:

IP-адреса 4-ї підмережі буде: **206.0.125.96**:

Таблиця 3. Адреси підмереж

№ підмережі	ІР-адреса	
1	206.0.125.0	
2	206.0.125.32	
3	206.0.125.64	
4	206.0.125.96	
5	206.0.125.128	
6	206.0.125.160	
7	206.0.125.192	
8	206.0.125.224	

Широкомовна адреса

- Широкомовна адреса це спеціальна адреса, яка використовується для розсилки пакету всім вузлам деякої підмережі.
- У даній адресі в кожен розряд, що застосовується для нумерації вузла встановлюються в «1», тобто 5 останніх розрядів байта ІР-адреси, що відведені для організації підмереж, необхідно встановити в «1».
- Використовуючи комбінацію № підмережі і № вузла, в якому всі розряди встановлені в «1», наприклад, для 2-ї підмережі одержимо:

Широкомовна адреса для 2-ої підмережі матиме вигляд: 206.0.125.63.

Для третьої підмережі одержимо: 206.0.125.95, тобто:

Остаточний результат

Таблиця 5. Адреси підмереж з широкомовною адресою

№ підмережі	IP-адреса підмережі	Широкомовна ІР-адреса
1	206.0.125.0	206.0.125.31
2	206.0.125.32	206.0.125.63
3	206.0.125.64	206.0.125.95
4	206.0.125.96	206.0.125.127
5	206.0.125.128	206.0.125.159
6	206.0.125.160	206.0.125.191
7	206.0.125.192	206.0.125.223
8	206.0.125.224	206.0.125.255

Діапазон доступних адрес для кожної підмережі не включатиме власну адресу мережі і широкомовну адресу для даної підмережі

Таблиця 6. Діапазони доступних ІР-адрес для кожної підмережі

No mimonomi	Начальный	Конечный
№ <u>під</u> мережі	IP-адрес	ІР-адрес
1	206.0.125.1	206.0.125.30
2	206.0.125.33	206.0.125.62
3	206.0.125.65	206.0.125.94
4	206.0.125.97	206.0.125.126
5	206.0.125.129	206.0.125.158
6	206.0.125.161	206.0.125.190
7	206.0.125.193	206.0.125.222
8	206.0.125.225	206.0.125.254

Результат:

Таблиця 7. Результати виконання завдання

№	ІР-адрес	Широковещательный	Начальный	Конечный
подсети	подсети	IP-адрес	IP-адрес	IP-адрес
1	206.0.125.0	206.0.125.31	206.0.125.1	206.0.125.30
2	206.0.125.32	206.0.125.63	206.0.125.33	206.0.125.62
3	206.0.125.64	206.0.125.95	206.0.125.65	206.0.125.94
4	206.0.125.96	206.0.125.127	206.0.125.97	206.0.125.126
5	206.0.125.128	206.0.125.159	206.0.125.129	206.0.125.158
6	206.0.125.160	206.0.125.191	206.0.125.161	206.0.125.190
7	206.0.125.192	206.0.125.223	206.0.125.193	206.0.125.222
8	206.0.125.224	206.0.125.255	206.0.125.225	206.0.125.254

Незабаром ІР-адреса закінчаться

• Когда Винт Серф вместе с другими специалистами заложил основу интернета в 1977 году, он ввел "интернет-протокол четвертой версии" (IPv4), который мог обеспечить **4,2 млрд** адресов. Однако число устройств с доступом в интернет, особенно мобильных телефонов, возрастает, и теперь свободны лишь 14% этих адресов.

- По оценкам, адреса IPv4, каждый из которых представляет собой ряд из 32 двоичных символов, закончатся к 2010 году.
- Новая система, названная IPv6, готова к внедрению уже больше десятилетия.

Точечно- десятичное представление маски подсети	Двоичная маска подсети	Представление с косой чертой	Число битов узла	Возможное число узлов 2^n-2
255.0.0.0	11111111.00000000.00000000.00000000	/8	24	16777214
255.128.0.0	11111111.10000000.00000000.00000000	/9	23	8388606
255.192.0.0	11111111.11000000.00000000.00000000	/10	22	4194302
255.224.0.0	11111111.11100000.00000000.00000000	/11	21	2097150
255.240.0.0	11111111.11110000.00000000.00000000	/12	20	1048574
255.248.0.0	11111111.11111000.00000000.00000000	/13	19	524286
255.252.0.0	11111111.11111100.00000000.00000000	/14	18	262142
255.254.0.0	11111111.11111110.00000000.00000000	/15	17	131070
255.255.0.0	11111111.11111111.00000000.00000000	/16	16	65534
255.255.128.0	11111111.11111111.10000000.00000000	/17	15	32766
255.255.192.0	11111111.11111111.11000000.00000000	/18	14	16382
255.255.224.0	11111111.11111111.11100000.00000000	/19	13	8190
255.255.240.0	11111111.11111111.11110000.00000000	/20	12	4094