```
In [ ]: #Social_Network_Ads.csv
```

Import libraries

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
#from sklearn import datasets, neighbors
from sklearn.linear_model import LogisticRegression
#from mlxtend.plotting import plot_decision_regions # used to plot the decision boundary of ml al
from sklearn.model_selection import cross_val_score # import all the functions reqd for cross val
from sklearn.model_selection import train_test_split
```

Importing the dataset

```
In [2]: data = pd.read_csv('C:/Users/Karthi/Desktop/Social_Network_Ads.csv')
    data
```

Out[2]:		User ID	Gender	Age	EstimatedSalary	Purchased
	0	15624510	Male	19	19000	0
	1	15810944	Male	35	20000	0
	2	15668575	Female	26	43000	0
	3	15603246	Female	27	57000	0
	4	15804002	Male	19	76000	0
	•••					
	395	15691863	Female	46	41000	1
	396	15706071	Male	51	23000	1
	397	15654296	Female	50	20000	1
	398	15755018	Male	36	33000	0
	399	15594041	Female	49	36000	1

400 rows × 5 columns

```
In [3]: X = data.iloc[:, [2, 3]].values
y = data.iloc[:, 4].values
```

Splitting the dataset into the Training set and Test set

```
In [4]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
```

Feature Scaling

```
In [12]: from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
```

Fitting SVM to the Training set

Predicting the Test set results

Making the Confusion Matrix

```
In [15]: from sklearn.metrics import confusion_matrix
    cm = confusion_matrix(y_test, y_pred)
    from sklearn.metrics import accuracy_score
    print ("Accuracy : ", accuracy_score(y_test, y_pred))
    cm
Accuracy : 0.93
```

Visualising the Training set results

```
In [16]: from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.00
np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01))
```

Visualising the Test set results

```
In [18]: from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.00
np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01))
```