1. There are two sets A and B.

Assume that graph G is a bipartite graph with odd cycles, and there is a cycle with point X_1 . X_2 . X_3 ... X(2k-1). $k \in \mathbb{Z}$. $k \ge 1$.

Each points are connected with adjacent one, and X_1 is connected with $\chi(2k-1)$.

According to the definition of bipartite graph. X_1 is in the set A. X_2 is in the set B, and X_3 is in the set A because of its relation with X_2 .

 X_2 .

In a similar way, odd points are in the set A, and even points are in the set B. So both X_1 and X(2k-1) are in the set A, but we have

As stated above, it reach a contradiction.

 \Rightarrow A graph G is biparcite iff it contains no cycles of odd length.