LECTURE 22: The Poisson process

- Definition of the Poisson process
 - applications
- Distribution of number of arrivals
- The time of the kth arrival
- Memorylessness
- Distribution of interarrival times

Definition of the Poisson process

Numbers of arrivals in disjoint time intervals are **independent**

 $P(k,\tau) = \text{Prob. of } k \text{ arrivals in interval of duration } \tau$

Small interval probabilities:

For VERY small δ :

$$P(k,\delta) \approx \begin{cases} 1 - \lambda \delta & \text{if } k = 0 \\ \lambda \delta & \text{if } k = 1 \\ 0 & \text{if } k > 1 \end{cases} \qquad P(k,\delta) = \begin{cases} 1 - \lambda \delta + O(\delta^2) & \text{if } k = 0 \\ \lambda \delta + O(\delta^2) & \text{if } k = 1 \\ 0 + O(\delta^2) & \text{if } k > 1 \end{cases} \qquad O(\delta^2)$$

- Independence
- Time homogeneity: Constant p at each slot

$$\frac{O(\delta^2)}{\delta} \xrightarrow{\delta} 0$$

 λ : "arrival rate"

Applications of the Poisson process

- Deaths from horse kicks in the Prussian army (1898)
- Particle emissions and radioactive decay
- Photon arrivals from a weak source
- Financial market shocks
- Placement of phone calls, service requests, etc.

Siméon Denis Poisson (1781-1840)

The Poisson PMF for the number of arrivals

• N_{τ} : arrivals in $[0,\tau]$ $P(k,\tau) = \mathbf{P}(N_{\tau} = k)$

 $n=\tau/\delta$ intervals/slots of length δ — suc lel

P(some slot contains two or more arrivals)

$$\leq \sum \int (slot i las > 2 arnivals)$$

= $\sum O(\delta^2) = 0$

 $\int_{T} (k \, annlua \, l_s \, lu \, loissou) \approx l \, (k \, s \, lots)$ $N_{\tau} \approx \text{binomial} \qquad p = \lambda \delta + O(\delta^2) \, \text{Rave annual}$

$$np = \lambda \tau + O(\delta) \approx \lambda \tau$$

Bernoulli

$$p_S(k) = \frac{n!}{(n-k)! \, k!} \cdot p^k (1-p)^{n-k},$$

 $k = 0, \dots, n$

$$\lambda=np$$
 $n o\infty$ $p o 0$ For fixed $k=0,1,\ldots,$ $p_S(k) o rac{\lambda^k}{k!}e^{-\lambda},$

Mean and variance of the number of arrivals

$$P(k,\tau) = \mathbf{P}(N_{\tau} = k) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}, \qquad k = 0, 1, \dots$$

$$\mathbf{E}[N_{\tau}] = \sum_{k=0}^{\infty} k \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!} = \cdots = \lambda \tau$$

 $N_{\tau} \approx \mathsf{Binomial}(n,p)$

$$n = \tau/\delta$$
, $p = \lambda \delta + O(\delta^2)$

$$E[N_{\tau}] \approx Mp \approx \lambda \tau$$

 $var(N_{\tau}) \approx Mp(1-p) \approx \lambda \tau$

$$\mathbf{E}[N_{\tau}] = \lambda \tau$$

$$\operatorname{var}(N_{\tau}) = \lambda \tau$$

Example

• You get email according to a Poisson process, at a rate of $\lambda = 5$ messages per hour.

$$\mathbf{E}[N_{ au}] = \lambda au$$
 $\mathrm{var}(N_{ au}) = \lambda au$

- Mean and variance of mails received during a day $= 5 \cdot 2 4$
- P(one new message in the next hour) = $P(1,1) = 5e^{-5}$

$$P(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}, \qquad k = 0, 1, \dots$$

• P(exactly two messages during each of the next three hours) =

$$\frac{2}{1} + \frac{2}{1} + \frac{2}{1} + \left(P(2,1)\right)^3 = \left(\frac{5^2 e^{-5}}{2}\right)^3$$

The time T_1 until the first arrival

$$P(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}, \qquad k = 0, 1, \dots$$

• Find the CDF: $P(T_1 \le t) =$

$$=1-P(T,>t)=1-P(o,t)=1-e^{-\lambda t}$$

$$f_{T_1}(t) = \lambda e^{-\lambda t}$$
, for $t \ge 0$

Exponential(λ)

Memorylessness: conditioned on $T_1 > t$, the PDF of $T_1 - t$ is again exponential

The time Y_k of the kth arrival

$$P(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}, \qquad k = 0, 1, \dots$$

k=2

- Can derive its PDF by first finding the CDF $\int (Y_k \le \gamma) = \sum_{n=1}^{\infty} (n, \gamma)$
- More intuitive argument:

$$f_{Y_k}(y) \delta \approx P(y \le Y_k \le y + \delta) =$$

$$\approx P(k-1, \gamma) \lambda \delta + P(k-2, \gamma) O(\delta^2) + 1 (k-3, \gamma) O(\delta^2)$$

$$\frac{(\lambda \gamma)^{\varkappa-1}e^{-\lambda \gamma}}{(\varkappa-i y_k(y))}$$

Erlang distribution:
$$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \ge 0$$

Memorylessness and the fresh-start property

- Analogous to the properties for the Bernoulli process
 - plausible, given the relation between the two processes
 - use intuitive reasoning
 - can be proved rigorously

Memorylessness and the fresh-start property

• If we start watching at time t,

we see Poisson process, independent of the history until time t s t α_2 t f res Q

- time until next arrival: Exp(A), independent of post
- If we start watching at time T_1 , $T_1 = 3$ we see Poisson process, independent of the history until time T_1
 - hence: time between first and second arrival, $T_2 = Y_2 Y_1$ is: $\mathcal{F}_{\times p}(\lambda)$
 - similarly for all $T_k = Y_k Y_{k-1}$, $k \ge 2$

$$Y_k = T_1 + \cdots + T_k$$
 is sum of i.i.d. exponentials

$$\mathbf{E}[Y_k] = k/\lambda$$
 $\operatorname{var}(Y_k) = k/\lambda^2$

- An equivalent definition
- A simulation method

This is the most important definition above where Tk is exponential random variable

Bernoulli/Poisson relation

	POISSON	BERNOULLI
Times of Arrival	Continuous	Discrete
Arrival Rate	λ /unit time	p/per trial
PMF of # of Arrivals	Poisson	Binomial
Interarrival Time Distr.	Exponential	Geometric
Time to k -th arrival	Erlang	Pascal

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda = 0.6/\text{hour}$
 - fish for two hours;
 - if you caught at least one fish, stop
 - else continue until first fish is caught

P(fish for more than two hours) =
$$P(0, 2)$$

$$P(T_1 > 2) = \int_{2}^{\infty} f_{T_1}(t) dt$$

P(fish for more than two and less than five hours)=

$$P(0,2) (1-P(0,3))$$

 $P(2 < T, \le 5) = \int_{2}^{5} f_{T,}(t) dt$

$$P(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}$$

$$\mathbf{E}[N_{\tau}] = \lambda \tau$$

$$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}$$

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda = 0.6/\text{hour}$
 - fish for two hours;
 - if you caught at least one fish, stop
 - else continue until first fish is caught

P(catch at least two fish)=

$$\sum_{k=2}^{\infty} P(k,2) = 1 - P(0,2) - P(1,2)$$

$$\sum_{k=2}^{\infty} P(Y_2 \le 2) = \int_0^2 f_{Y_2}(y) dy$$

 $\mathbf{E}[\text{future fishing time} \mid \text{already fished for three hours}] = \frac{1}{\lambda}$

$$P(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}$$

$$\mathbf{E}[N_{\tau}] = \lambda \tau$$

$$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}$$

Example: Poisson fishing

- Fish are caught as a Poisson process, $\lambda = 0.6/\text{hour}$
 - fish for two hours;
 - if you caught at least one fish, stop
- else continue until first fish is caught

E[total fishing time] =
$$E[F] = 2 + E[F - 2]$$

= $2 + P(F = 2) \cdot O + P(F > 2) E[F - 2) F > 2]$
= $2 + P(0, 2) \cdot 1/A$

E[number of fish] =
$$\lambda \tau + P(0,2) - 1$$

0.6 * 2

$$P(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}$$

$$\mathbf{E}[N_{\tau}] = \lambda \tau$$

$$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}$$