

Algoritmos e Estruturas de Dados I

Análise de Complexidade de Algoritmos

versão 5.4

Fabiano Oliveira

fabiano.oliveira@ime.uerj.br

Complexidade

 A análise de complexidade de algoritmos descreve a eficiência dos algoritmos

Como *medir* a eficiência de algoritmos?

Compare com outras grandezas:

"a massa do objeto é (igual a) 10 kg"
"a altura do menino é (igual a) 1,40 m"

Queremos dizer:

"a complexidade do algoritmo é ???"

 A preocupação com a complexidade (isto é, a eficiência) é antiga — em verdade, nasceu conjuntamente com a própria noção de computar por meios mecânicos:

"(....) As soon as analytic engine exists, it will necessarily guide the future course of science. Whenever any result is sought by its aid, the question will raise – By what means of calculation can these results be arrived at by this machine in the shortest time? (...)". Charles Babbage

"(....) it's convenient to have a measure of the amount of work involved in a computing process, even if it has to be a very crude one. We may count up the number of things that various times at various elementary operations are applied in the whole process. (...)". Alan Turing

• O quê medir?

• O quê medir?

 Tempo: tempo de execução do algoritmo

 Espaço: quantidade de memória máxima empregada durante execução

Complexidade

início execução fim

de tempo:

de espaço:

• Como medir?

• Como medir?

Empiricamente

Analiticamente

Empiricamente:

- Organizar um conjunto de entradas para o algoritmo, cada uma exigindo um nível diferente de consumo do recurso sendo estudado
- Executar e medir do consumo do recurso
- Apresentar de forma tabular e por meio de gráficos os resultados do experimento
- (Opcional) Sugerir a função que descreve os pontos do gráfico (uma reta? uma parábola? outra?)

Exemplo: ordenação de vetores

#	N	Tempo (em ms)	Espaço (em MB)
1	<i>n</i> ₁	<i>t</i> ₁	
2	n ₂	t_2	
3	n ₃	<i>t</i> ₃	
K	n _K	t_{κ}	

Desvantagens

 Qualidade da análise altamente dependente da amostra de entradas. Para ser relevante, deve ser muito bem justificada a escolha das entradas

 Impossibilidade de assegurar que a função sugerida corresponde à real

Desvantagens

 Esta disciplina NÃO empregará análise empírica

• Analiticamente:

Estudar o algoritmo

- Contabilizar o número de passos (complexidade de tempo) e de células de memória (complexidade de espaço) que o algoritmo requer para sua execução
 - Note que, normalmente, tal contabilidade deve resultar em uma função das variáveis de entrada

Análise da Complexidade de Tempo

```
função Calcular(B[], N: Inteiro): Inteiro
  var i, j, t: Inteiro

para i ← 1 até N faça
  para j ← 1 até i faça
        t ← t + j

retornar t
```

```
função Calcular(B[], N: Inteiro): Inteiro
  var i, j, t: Inteiro

para i ← 1 até N faça
  para j ← 1 até i faça
  t ← t + j = 1 passo

retornar t
```

```
função Calcular(B[], N: Inteiro): Inteiro
  var i, j, t: Inteiro

para i ← 1 até N faça

para j ← 1 até i faça = i passos
  t ← t + j = 1 passo

retornar t
```

Considere o seguinte algoritmo:

```
função Calcular(B[], N: Inteiro): Inteiro
var i, j, t: Inteiro

para i ← 1 até N faça = 1+2+...+N = N(N+1)/2 passos
para j ← 1 até i faça = i passos
t ← t + j = 1 passo
```

retornar t

```
função Calcular(B[], N: Inteiro): Inteiro

var i, j, t: Inteiro

= N(N+1)/2 + 1 passos

para i ← 1 até N faça = 1+2+...+N = N(N+1)/2 passos

para j ← 1 até i faça = i passos

t ← t + j = 1 passo

retornar t
```

Considere o seguinte algoritmo:

```
função Calcular(B[], N: Inteiro): Inteiro

var i, j, t: Inteiro

= N(N+1)/2 + 1 passos

para i ← 1 até N faça = 1+2+...+N = N(N+1)/2 passos

para j ← 1 até i faça = i passos

t ← t + j = 1 passo

retornar t
```

∴ a complexidade de tempo é N(N+1)/2 + 1

Compare as complexidades:

Empírica

Analítica

Compare as complexidades:

Desvantagens

 É necessário ter acesso à descrição do algoritmo (seu "código-fonte")

- Potencialmente de difícil obtenção
 - Existem algoritmos para os quais sua complexidade de tempo exata não é conhecida

Complexidade Assintótica

Considere a existência de outro algoritmo A₂
 que é equivalente ao algoritmo anterior A₁

 Suponha que a complexidade de tempo de A₂ seja determinada como sendo

 $10N\log N + 1000N + 1000000$

 Qual dos algoritmos é mais eficiente em tempo?

passos

N

 O grau do polinômio é o que determina o valor do polinômio a medida que a variável cresce!

 Esta complexidade é chamada de assintótica

 Ela é um dos critérios mais utilizados para comparação de eficiência de algoritmos

 Motivado por isto, existe uma notação especial que evidencia a classe de crescimento de uma função a notação assintótica

Intuição da notação assintótica:

Suponha uma função T(N) desconhecida.

Termo de maior crescimento	Notação	Funções T(N) que satisfazem notação	Funções T(N) que NÃO satisfazem notação
Igual a N ²	$\theta(N^2)$	$\frac{1}{2}$ N ² + 10N; 100N ²	10N; N ³ + 2N ² ; N log N
No máximo N ²	O(N ²)	100N ² ; 100; N log N	$N^3 + 2N^2$; $N^2 \lg N$
No mínimo N ²	$\Omega(N^2)$	100N ² ; N ³ + 2; N ² lg N	10N; 100; N log N
Menor que N ²	o(N ²)	10N; 100; N log N	100N ² ; N ³ + 2N ² ; N ² lg N
Maior que N ²	$\omega(N^2)$	$N^3 + 2N^2$; $N^2 \lg N$	100N ² ; 10N; 100; N log N

Formalidade da notação assintótica, a seguir

Notação O

$$O(g(n)) = \{ h(n) \mid \exists c, n_0 \text{ tais que}$$

 $0 \le h(n) \le cg(n), \forall n \ge n_0 \}$

Pode-se denotar $f(n) \subseteq O(g(n))$ por f(n) = O(g(n))

Se f(n)/g(n) admitir limite,

$$\lim_{n\to\infty} f(n)/g(n) \neq \infty \implies f(n) = O(g(n))$$

Notação Ω

$$\Omega(g(n)) = \{ h(n) \mid \exists c > 0, n_0 \text{ tais que}$$

 $0 \le cg(n) \le h(n), \forall n \ge n_0 \}$

Pode-se denotar $f(n) \subseteq \Omega(g(n))$ por $f(n) = \Omega(g(n))$

Se f(n)/g(n) admitir limite,

$$\lim_{n\to\infty} f(n)/g(n) \neq 0 \implies f(n) = \Omega(g(n))$$

Notação θ

$$\theta(g(n)) = \{ h(n) \mid \exists c_1 > 0, c_2, n_0 \text{ tais que} \\ 0 \le c_1 g(n) \le h(n) \le c_2 g(n), \forall n \ge n_0 \}$$

Pode-se denotar $f(n) \subseteq \theta(g(n))$ por $f(n) = \theta(g(n))$

Se f(n)/g(n) admitir limite,

 $\lim_{n\to\infty} f(n)/g(n) \neq 0, \infty \Rightarrow f(n) = \theta(g(n))$

Notação o

```
o(g(n)) = \{ h(n) \mid \forall c > 0, \exists n_0 \text{ tal que} \\ 0 \le h(n) < cg(n), \forall n \ge n_0 \}
Pode-se denotar f(n) \in o(g(n)) por f(n) = o(g(n))
```

Se f(n)/g(n) admitir limite,

$$\lim_{n\to\infty} f(n)/g(n) = 0 \implies f(n) = o(g(n))$$

Notação ω

```
ω(g(n)) = { h(n) | ∀ c > 0, ∃ n₀ tal que 
 0 ≤ cg(n) < h(n), ∀ n ≥ n₀}
Pode-se denotar f(n) ∈ ω(g(n)) por f(n) = ω(g(n))
Se f(n)/g(n) admitir limite,
```

$$\lim_{n\to\infty} f(n)/g(n) = \infty \implies f(n) = \omega(g(n))$$

- Assim, temos que
 - o algoritmo A_1 possui complexidade de tempo de $N(N+1)/2+1=\theta(N^2)$
 - o algoritmo A_2 possui complexidade de tempo de $10N \log N + 1000N + 1000000 = \theta(N \log N)$
- Portanto, como N log N = o(N²) o algoritmo
 A₂ possui uma melhor complexidade
 assintótica

- Contar as instruções pode ser um processo laborioso.
 Por outro lado...
- o que normalmente importa em relação ao tempo de execução de um algoritmo é seu crescimento assintótico (determinado pelo termo de maior grau do polinômio)
- Pergunta natural: há um processo prático para se chegar à complexidade sem determinar a função que fornece o número exato de passos?

Processo Prático

(para algoritmos não-recursivos)

- Passo 1: Separe o programa em blocos. Um bloco é um trecho do código que atende a alguma das definições abaixo:
 - Um comando
 - Um comando condicional incluindo os blocos correspondentes aos trechos então, senão se, e senão
 - Uma sequência de blocos
 - Uma repetição, incluindo o bloco de seu corpo

```
procedimento EscreverMochilaMáxima(val w[], v[], N, M: Inteiro)
    var MM[0..N, 0..M]: Inteiro, Escolha[1..N, 1..M]: Lógico
    MM[0, m] \leftarrow 0, m \in \{0, \ldots, M\}
    para i \leftarrow 1 até N faça
         para m ← 1 até M faça
              se w[i] > m então
                   MM[i, m], Escolha[i, m] \leftarrow MM[i-1, m], F
              senão se MM[i-1, m] > MM[i-1, m-w[i]] + v[i] então
                  MM[i, m], Escolha[i, m] \leftarrow MM[i-1, m], F
              senão
                   MM[i, m], Escolha[i, m] \leftarrow MM[i-1, m-w[i]] + v[i], V
    \mathsf{m} \leftarrow \mathsf{M}
    para i ← N até 1 passo -1 faça
         se Escolha[i, m] então
              escrever [i]
              \mathsf{m} \leftarrow \mathsf{m} - \mathsf{w[i]}
```

```
procedimento EscreverMochilaMáxima(val w[], v[], N, M: Inteiro)
    var MM[0..N, 0..M]: Inteiro, Escolha[1..N, 1..M]: Lógico
    MM[0, m] \leftarrow 0, m \in \{0, \ldots, M\}
    para i \leftarrow 1 até N faça
        para m ← 1 até M faça
             se w[i] > m então
                 MM[i, m], Escolha[i, m] ← MM[i-1, m], F
             senão se MM[i-1, m] > MM[i-1, m-w[i]] + v[i] então
                 MM[i, m], Escolha[i, m] ← MM[i-1, m], F
             senão
                 MM[i, m], Escolha[i, m] \leftarrow MM[i-1, m-w[i]] + v[i], V
    \mathsf{m} \leftarrow \mathsf{M}
    para i ← N até 1 passo -1 faça
        se Escolha[i, m] então
             escrever [i]
             m \leftarrow m - w[i]
```

 Passo 2: Determinação "bottom-up" das complexidades dos blocos

Seja B um bloco cuja complexidade falta determinar e tal que todas as complexidades dos blocos contidos em B já foram determinadas.

A complexidade de B é determinada conforme a natureza do bloco:

• Um comando:

Comando	Complexidade de Tempo
x ← x + 1	θ(1)
x ← x + y	θ(1)
A[i] ← 1	θ(1)
A[1N] ← 1	θ(N)
$A[i] \leftarrow máx\{ A[j] \mid 1 \le j \le N \}$	θ(N)
$A[i,j] \leftarrow 0$, para todo $1 \le i,j \le N$	$\Theta(\mathcal{N}^2)$
m ← Calcular(A,N)	complexidade de tempo de Calcular(A,N)

Um condicional:

```
se C então \Omega(N), O(N^2) \theta(N) senão \theta(N^2)
```

• Um condicional:

```
se C então \theta(N^2) \theta(N^2) senão \theta(N^2)
```

• Um condicional:

```
se C então \Omega(1), O(N^2) \theta(N^2)
```

Uma sequência:

$$\theta(N) + \theta(N^2) = \theta(N^2)$$

$$\theta(N)$$

$$\theta(N^2)$$

Uma sequência:

$$O(N^3) + \theta(N^2) = \Omega(N^2), O(N^3)$$
 $O(N^3)$
 $\theta(N^2)$

```
para i \leftarrow 1 até N faça \theta(N^2)
```

```
para i \leftarrow 1 até N faça \Omega(N^2), O(N^3) \Omega(N), O(N^2)
```

```
para i \leftarrow 1 até N faça \theta(1+2+...+N) = \theta(N^2) \theta(i)
```

Uma iteração:

```
para i \leftarrow 1 até N faça \theta(\emph{i})
```

No mínimo, a complexidade de:

```
para i \leftarrow N/2 até N faça \theta(N/2 \times N/2) = \theta(N^2)
\theta(N/2)
```

Uma iteração:

```
para i \leftarrow 1 até N faça \theta(i)
```

No máximo, a complexidade de:

```
para i \leftarrow 1 até N faça \theta(N \times N) = \theta(N^2) \theta(N)
```

```
para i \leftarrow 1 até N faça \Omega(N^2), O(N^2) = \theta(N^2) \theta(i)
```

Uma iteração:

```
enquanto C faça \theta(\textit{it} \times \textit{N})
```

onde *it* é o número de iterações necessárias até que C se torne falso. Tal valor deve ser determinado analisando-se o algoritmo.

$$it = N$$

$$it = N/2$$

$$it = \log N$$

```
procedimento EscreverMochilaMáxima(val w[], v[], N, M: Inteiro)
    var MM[0..N, 0..M]: Inteiro, Escolha[1..N, 1..M]: Lógico
    MM[0, m] \leftarrow 0, m \in \{0, \ldots, M\}
    para i \leftarrow 1 até N faça
        para m ← 1 até M faça
             se w[i] > m então
                 MM[i, m], Escolha[i, m] ← MM[i-1, m], F
             senão se MM[i-1, m] > MM[i-1, m-w[i]] + v[i] então
                 MM[i, m], Escolha[i, m] ← MM[i-1, m], F
             senão
                 MM[i, m], Escolha[i, m] \leftarrow MM[i-1, m-w[i]] + v[i], V
    \mathsf{m} \leftarrow \mathsf{M}
    para i ← N até 1 passo -1 faça
        se Escolha[i, m] então
             escrever [i]
             m \leftarrow m - w[i]
```

```
\theta(MN)
procedimento EscreverMochilaMáxima(val w[], v[], N, M: Inteiro)
    var MM[0..N, 0..M]: Inteiro, Escolha[1..N, 1..M]: Lógico
    MM[0, m] \leftarrow 0, m \in \{0, ..., M\} \theta(M)
    para i \leftarrow 1 até N faça
                                                                                \theta(MN)
         para m ← 1 até M faça
                                                                              \theta(M)
              se w[i] > m então
                                                                             \theta(1)
                   MM[i, m], Escolha[i, m] \leftarrow MM[i-1, m], F \theta(1)
               senão se MM[i-1, m] > MM[i-1, m-w[i]] + v[i] então
                   MM[i, m], Escolha[i, m] \leftarrow MM[i-1, m], F \theta(1)
              senão
                   MM[i, m], Escolha[i, m] \leftarrow MM[i-1, m-w[i]] \theta(4)v[i], V
    \mathsf{m} \leftarrow \mathsf{M}
                 \theta(1)
                                                                          \theta(N)
    para i ← N até 1 passo -1 faça
         se Escolha[i, m] então
                                                                 \theta(1)
              escrever [i] \theta(1)
              m \leftarrow m - w[i] \qquad \theta(1)
```

Exercício: analisar a complexidade de tempo

```
procedimento Ordenar(B[], N: Inteiro)
  var i, j, t: Inteiro
  para i ← N até 1 passo -1 faça
    para j ← 1 até i-1 faça
    se B[j] > B[j+1] então
    t ← B[j]
    B[j] ← B[j+1]
    B[j+1] ← t
```

Complexidade de Tempo de Pior Caso, Melhor Caso e Caso Médio

 Suponha que N seja a variável que determina o tempo de execução de um algoritmo A. Seja U o conjunto de entradas para algum valor de N e T(E) o número de passos em que o algoritmo executa com entrada E ∈ U. Classificamos as análises de complexidade como

```
o de pior caso: máx \{ T(E) : E \in U \}
```

- de melhor caso: min $\{ T(E) : E \in U \}$
- o de caso médio: $\sum \{ p(E)T(E) : E \in U \}$ onde p(E) é a probabilidade de ocorrência da entrada E
- amortizada: número máximo de passos em n execuções consecutivas de A dividido por n

Análise da Complexidade de Espaço

- Como medimos complexidade de espaço?
 - Espaço Auxiliar: memória utilizada internamente ao algoritmo, adicional à entrada do algoritmo
 - Espaço Total: memória auxiliar mais a memória para guardar a entrada
 - Como todo algoritmo precisa armazenar a entrada, usualmente é empregado o espaço auxiliar como critério de eficiência de espaço entre algoritmos

Como medimos complexidade de espaço?

Tipo de Variável	Complexidade de Espaço
Escalar Primitiva (Inteiro, Real, Lógico, DataHora, Caracter, etc.)	θ(1)
Vetor/Matriz A, cada elemento de tipo X	θ(A) · <espaço de="" x=""></espaço>
Estrutura E, com campos de tipos T ₁ , T ₂ ,, T _K	∑ { <espaço de="" t<sub="">i> : i = 1,,K }</espaço>
Ponteiro para tipo qualquer tipo (Nota: Uma variável passada por referência para uma rotina conta, no escopo desta rotina, como ponteiro!)	θ(1)

Análise de Espaço:

```
procedimento Imprime(ref L[]: Tipo)
```

O vetor L está sendo passado por referência e, portanto, foi alocado fora da rotina Imprime. Logo, o espaço de L deve ser contabilizado na rotina que faz sua alocação. O espaço criado para passar L por parâmetro é o tamanho apenas de um ponteiro, que é de espaço constante (não depende de |L|).

```
procedimento Imprime(L[]: Tipo), equivalente à
procedimento Imprime(val L[]: Tipo)
```

L está sendo passado por valor e, portanto, o vetor original está sendo copiado para o procedimento Imprime. Logo, devemos contabilizar $\theta(|L|)$ < Espaço Tipo> em espaço para a entrada.

Análise de Espaço:

Alguns problemas envolvendo espaço se preocupam além do aspecto assintótico, precisando que se leve em consideração valores específicos para o espaço ocupado. Neste caso, as premissas empregadas neste material, normalmente válidas para as linguagens de programação modernas, serão as seguintes:

Análise de Espaço:

- 1. 1 B (byte) = 8 bits
- 2. 1 valor "Lógico" = 1 bit; 1 valor "Inteiro" = 4 B; 1 valor caractere = 1 B;
- 3. Como 4 B = 32 bits, e como com tais 32 bits é possível enumerar 2^{32} configurações distintas, pode-se representar inteiros num intervalo contíguo de \mathbb{Z} com \approx 4 bilhões de elementos. Em geral, assumimos que este intervalo é aquele entre 0 e 2^{32} -1 (\approx 4 bilhões) ou ainda entre - 2^{31} (\approx -2 bilhões) e 2^{31} -1 (\approx 2 bilhões).
- 4. 1 KB = $2^{10} \approx 10^3$ bytes; 1 MB = $2^{20} \approx 10^6$ bytes; 1 GB = $2^{30} \approx 10^9$ bytes

Análise de Complexidade de Tempo em Algoritmos Recursivos

Método #1: Árvore de Recursão

```
Complexidade
função f(n: Inteiro): Inteiro
                                          de Tempo:
   //retorna n!
                                     soma do número de
    se n = 0 então
                                      passos de cada nó
       retornar 1
    senão
       retornar n*f(n-1)
                                             Árvore de Recursão
f(n)=n*f(n-1)
        |---f(n-1)=(n-1)*f(n-2)
                                        \Theta(1)
                               |--- f(1)=1*f(0)
                                           |--- f(0)
```

 $n \times \Theta(1) = \Theta(n)$

Método #2: Relações de Recorrência

 Seja T(n) a complexidade de tempo da função recursiva:

$$T(n) = T(n_1) + g(n), com n_1 < n$$

• Como $T(n_1) = T(n_2) + g(n_1)$, com $n_2 < n_1$,

$$T(n) = T(n_2) + g(n_1) + g(n)$$

• Como $T(n_2) = T(n_3) + g(n_2)$, com $n_3 < n_2$,

$$T(n) = T(n_3) + g(n_2) + g(n_1) + g(n)$$

 Agora, tentamos generalizar a expressão da função da *i*-ésima recorrência,

$$T(n) = T(n_i) + g(n_{i-1}) + ... + g(n_1) + g(n)$$

 Em seguida, descobrimos para qual valor de i vale que n_i é um caso base. Digamos que tal valor seja para i = b. Finalmente, determinamos a forma fechada do somatório

$$T(n) = 1 + g(n_{b-1}) + ... + g(n_1) + g(n)$$

Método #3: Teorema Mestre

Quando a função de recorrência é

T(n) = a T(n/b) + f(n), com a,b constantes

aplicar *Teorema-Mestre*

```
procedimento AlgRecursivo(Dados[], N: Inteiro)
      se N = 0 então // ou N = 1, ou ...
                                               Tamanho do
                       Caso
                                                Problema
                       Base
      senão
         AlgRecursivo(SubDados<sub>1</sub>, N_1) // N_1 < N
Caso
         AlgRecursivo(SubDados, N_2) // N_2 < N
Geral
         AlgRecursivo(SubDados, N_a) // N_a < N
```

procedimento AlgRecursivo(Dados[], N: Inteiro) se N = 0 então Contagem de número de passos em senão vermelho AlgRecursivo(SubDados, N_1) // $N_1 < N$ AlgRecursivo(SubDados, N_2) // $N_2 < N$ $AlgRecursivo(SubDados_a, N_a) // N_a < N$

Análise de Complexidade de Tempo:

$$T(N) = \begin{cases} \theta(1), \text{ se } N = 0 \text{ // ou N} = 1, \text{ ou ...} \\ \sum \{ T(N_i) : 1 \le i \le a \} + f(N), \text{ c.c.} \end{cases}$$

Resolver uma equação de recorrência!

Exemplos:

- Ordenação BubbleSort
- Ordenação InsertionSort
- Ordenação SelectionSort

Caso particular importante:

Todos os problemas possuem o mesmo tamanho!

```
procedimento AlgRecursivo(Dados[], N: Inteiro)
     se N = 0 então
                                Contagem de
                                 número de
                                 passos em
      senão
                                 vermelho
        AlgRecursivo(SubDados, N/b)
        AlgRecursivo(SubDados, N/b)
        AlgRecursivo(SubDados, N/b)
```

Análise de Complexidade de Tempo:

$$T(N) = \begin{cases} \theta(1), \text{ se } N = 0 \\ \text{a } T(N/b) + f(N), \text{ se } N > 0 \end{cases}$$

```
Teorema ("Teorema Mestre"):
Na recorrência T(N) = a T(N/b) + f(N):
1) Caso f(N) = O(N^c) e c < log_b a:
    T(N) = \theta(N^{\log_b a})
2) Caso f(N) = \theta(N^c \log^k N), k \ge 0 e c = \log_b a:
    T(N) = \theta(N^c \log^{k+1} N)
3) Caso f(N) = \Omega(N^c), f(N) = O(N^k) e c > log_b a:
    T(N) = \Theta(f(N))
```

Exemplo 1:

$$T(N) = 5 T(N/2) + \theta(N^2)$$

Como $f(N) = O(N^2)$ e 2 < $log_2 5$, **Caso 1** é aplicado, resultando em $T(N) = \theta(N^{log_2 5})$

• Exemplo 2:

$$T(N) = 27 T(N/3) + \theta(N^3 \log N)$$

Como $f(N) = \theta(N^3 \text{ Ig } N)$ e $3 = \log_3 27$, **Caso 2** é aplicado, resultando em $T(N) = \theta(N^3 \log^2 N)$

• Exemplo 3:

$$T(N) = 5 T(N/2) + \theta(N^3)$$

Como $f(N) = \Omega(N^3)$, $3 > \log_2 5$ e $f(N) = O(N^3)$, **Caso 3** é aplicado, resultando em $T(N) = \theta(N^3)$

• Exemplo 4:

$$T(N) = 27 T(N/3) + \theta(N^3 / \log N)$$

Nenhum caso pode ser aplicado. Esta recorrência não pode ser resolvida com o Teorema Mestre.

(felizmente, casos como este são menos comuns...)

- Outros Exemplos:
 - Pesquisa Binária
 - Ordenação MergeSort

Exemplo Prático

• Problema:

Dados um vetor A[1..N] de naturais, com N \approx 1 bilhão e cada natural \leq 2 bilhões, e um natural K \leq 2 bilhões, determinar se há dois elementos deste vetor cujo produto resulta em K. Ex.:

```
N=8, A=[10,16,7,60,5,3,24,4], K=48 \Rightarrow SIM
N=8, A=[10,16,7,60,5,3,24,4], K=9 \Rightarrow SIM
N=8, A=[10,16,7,60,5,3,24,4], K=45 \Rightarrow NÃO
```

Solução #1:

```
função Prod(A[],N,K: Inteiro): Lógico
  para i ← 1 até N faça
    para j ← 1 até N faça
    se A[i]*A[j]=K então
       retornar V
  retornar F
```

Tempo:

≈ 31 mil anos (10⁶ passos/s) Tempo: $O(N^2)$

Solução #2:

```
função Prod(A[],N,K: Inteiro): Lógico
  para i ← 1 até N faça
    para j ← i até N faça
    se A[i]*A[j]=K então
        retornar V
  retornar F
```

Tempo: $O(N^2)$

Solução #3:

Solução #4:

```
função Prod(A[],N,K: Inteiro): Lógico
   Ordenar(A,N) //por QuickSort
   para i ← 1 até N faça
      pos ← BuscaBinaria(A,N,K/A[i])
      se pos ≥ 1 então
          retornar V
                                            Tempo:
                                            O(N^2)
   retornar F
                                          Caso Médio:
                           Tempo:
                                          \rightarrow \theta(N \log N)
                          ≈ 8,3 horas
```

Solução #5:

```
função Prod(A[],N,K: Inteiro): Lógico
Ordenar(A,N) //por MergeSort
para i ← 1 até N faça
    pos ← BuscaBinaria(A,N,K/A[i])
    se pos ≥ 1 então
    retornar V
retornar F
```

Tempo: ≈ 8,3 horas

Tempo: $\theta(N \log N)$

Solução #6:

```
função Prod(A[],N,K: Inteiro): Lógico
   Ordenar(A,N) //por MergeSort
    i,j \leftarrow 1,N
    enquanto i ≤ j faça
        se A[i]*A[j]=K então
            retornar V
        senão se A[i]*A[j]>K então
            j \leftarrow j-1
        senão
            i ← i+1
                                 Tempo:
    retornar F
                               ≈ 17 minutos
```

Tempo: $\theta(N \log N)$ ou $\theta(N)$ se A[1..N] já estiver ordenado

Solução #7:

```
função Prod(A[],N,K: Inteiro): Lógico
   Ordenar(A,N) //por CountingSort
    i,j \leftarrow 1,N
   enquanto i ≤ j faça
        se A[i]*A[j]=K então
            retornar V
        senão se A[i]*A[j]>K então
            j \leftarrow j-1
        senão
            i ← i+1
                                  Tempo:
    retornar F
```

≈ 17 minutos

Tempo:

 $\theta(N)$

Solução #8:

```
função Prod(A[],N,K: Inteiro): Lógico
   Ordenar(A,N) //por CountingSort
    i ← 1
    enquanto A[i] \leq \sqrt{(K)} faça
        pos ← BuscaBinaria(A,N,K/A[i])
        se pos ≥ 1 então
            retornar V
        i \leftarrow i+1
    retornar F
                                 Tempo:
```

Tempo:

 $\theta(N)$

OU

 $\theta(\sqrt{N}) \log N$ se A[1..N] já estiver

ordenado e seus elementos distribuídos uniformemente

≈ 1 segundo

1. Preencha com V ou F (preencha "V" na linha "100" coluna "O(n)", por exemplo, se 100 = O(n) ou "F" caso contrário)

	O(n)	Ω(n)	θ(n)	O(n ²)	$\Omega(n^2)$	$\theta(n^2)$
100						
3n + 3						
10n ² + n						
2n ³						

	o(n)	ω(n)	o(n²)	ω(n²)
100				
3n + 3				
10n ² + n				
2n ³				

- 2. Prove ou refute (necessário usar a definição de cada notação):
 - a. $n^{2,7} = o(n^3)$
 - b. $2^{n+1} = \theta(2^n)$
 - c. $2^{2n} = O(2^n)$
 - d. $\log n = \theta(\lg n)$
 - e. $\lg (n!) = O(n \lg n)$
 - f. $lg^k n = O(n)$, para todo $k \ge 1$

Sejam f(n) e g(n) funções assintoticamente positivas.

- h. f(n) = O(g(n)) implica g(n) = O(f(n))
- i. f(n) = O(g(n)) implica lg(f(n)) = O(lg(g(n))), onde $lg(g(n)) \ge 1$ e $f(n) \ge 1$ para todo n suficientemente grande
- j. f(n) = O(g(n)) implica $2^{f(n)} = O(2^{g(n)})$
- k. $f(n) = O((f(n))^2)$
- I. f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$
- m. $f(n) = \theta(f(n/2))$
- n. $f(n) + o(f(n)) = \theta(f(n))$

3. Determine a complexidade de tempo do algoritmo InsertionSort:

```
procedimento Ordenar(B[], N: Inteiro)
  var i, j, t: Inteiro
  para i ← 2 até N faça
      t ← B[i]
      j ← i - 1
      enquanto j > 0 e B[j] > t faça
            B[j+1] ← B[j]
            j ← j - 1
            B[j+1] ← t
```

- 4. Determine a complexidade de tempo dos algoritmos abaixo:
 - a) para i ← 1 até 10 faça escrever(i)

 - c) para i ← 1 até N faça escrever(A[1..N])

 - f) $i \leftarrow 1$ enquanto i < N/4 faça $i \leftarrow i*2$

- h) $i \leftarrow 1$ enquanto i < N*N faça $i \leftarrow i*2$
- i) $i \leftarrow N$ enquanto i > 1 faça $i \leftarrow i \text{ div } 2$
- j) $i \leftarrow 2$ enquanto i < N faça $i \leftarrow i * i$

5. Determine a complexidades de tempo do algoritmo abaixo:

```
procedimento Imprime(ref B[], N: Inteiro)
   var i, j: Inteiro
    i ← 1
    enquanto i < N faça
       escrever( B[i] )
        i \leftarrow i * 2
    se B[1] > 0 então
        para i ← 1 até N/2 faça
            j \leftarrow i+1
            enquanto (j < N) E (B[j] > B[i]) faça
                escrever ( B[j] )
                j \leftarrow j + 1
```

```
6. Determine as complexidades de tempo dos algoritmos abaixo:
   procedimento Imprime(ref B[], N: Inteiro)
       var i: Inteiro \leftarrow 1
       enquanto i < N faça
           escrever( B[i] )
           i \leftarrow i * 4
           Calcula(B, N)
   procedimento Calcula(ref B[], N: Inteiro)
       var i, j, z, x: Inteiro; i, x \leftarrow 1, 0
       enquanto B[i] < 0 e i < N-1 faça
           i ← i+1
       para j ← i até N faça
           para z ← N até i passo -1 faça
               x \leftarrow x + B[j]*z
       escrever (x)
```

7. Determine as complexidades de tempo do algoritmos abaixo:

```
função ExisteValor(ref M[], L1,L2,C1,C2,x: Inteiro): Lógico
   se |1 \le |2  e |1 \le |2  então
       var m1, m2: Inteiro
       m1, m2 \leftarrow (L1+L2) div 2, (C1+C2) div 2
       se M[m1, m2] = x então
           retornar V
       senão se M[m1, m2] < x então
           retornar ExisteValor(M, m1+1, L2, m2+1, C2, x)
       senão
           retornar ExisteValor(M, L1, m1-1, C1, m2-1, x)
   senão
       retornar F
```

- 8. Marque (**V**)erdadeiro ou (**F**)also e justifique.
 - a. () Um algoritmo A resolve o problema P em tempo $O(n^2)$ e um algoritmo B resolve P em tempo $O(n^2)$. Portanto, P é resolvível em tempo $O(n^2)$.
 - b. () Um algoritmo que executa em tempo Θ(n lg n) é sempre preferível a outro que resolve o mesmo problema em tempo Θ(n⁴) para n suficientemente grande.
 - c. () Prova-se que, sob um conjunto restrito das entradas, um algoritmo A executa exatamente n²+n-50 passos. Logo, a complexidade de tempo de A é O(n²).
 - d. () Prova-se que, sob um conjunto restrito das entradas, um algoritmo A executa exatamente n^2+n-50 passos. Logo, a complexidade de tempo de pior caso de A é $\Omega(n^2)$.
 - e. () Devido aos valores de N, entrada de certo algoritmo A, serem muito elevados em certa aplicação, nenhum algoritmo de tempo $\omega(N\sqrt{N})$ é aceitável. Um algoritmo que resolve o mesmo problema em tempo de pior caso $\Theta(n^{1.4})$ estaria portanto dentro do desejável.

- 9. O famoso algoritmo de Euclides para calcular o MDC entre os números x > y é dado abaixo.
 - a. Mostre que sua complexidade é O(lg x). (Dica: se a,b,c,d são uma subsequência de restos produzidos pelo algoritmo, mostre que 2(c+d) < a+b e elabore com tal desigualdade um limite superior no número de iterações do algoritmo.)
 - b. Mostre que sua complexidade de pior caso é θ(lg x). (Dica: mostre que se x = F(n) e y = F(n-1), onde F(n) representa o n-ésimo número de Fibonacci, então a sequência de restos é a série de Fibonacci F(1),F(2),...,F(n-1),F(n). O número de Fibonnaci F(n) é definido como F(n)=n se n=1 ou n=2 e F(n) = F(n-1)+F(n-2) se n>2.)