INTRODUCTION	TC
PARSING	

Computational mathematics

TOP-DOWN ANALYSIS

Parsing

Introduction

- \cdot We must find a path in the tree from the root to a leaf.
- This path will indicate that there is a leftmost derivation for the string using the grammar.
- $\boldsymbol{\cdot}$ If there is no such path, the string is rejected.

	100			4.5	
()	nti	m	iza	tic	۱n
$\mathbf{\circ}$	มน		ıza	uc	<i>ו</i> וו
_	J:				

 To limit the search, prefixes (terminal prefixes) will be used to identify the nodes that have the possibility to continue with the search and remove those that do not lead to a successful search.

Exercise

- Given the following grammar
 - 1. $S \rightarrow A$
 - 2. $A \rightarrow T \mid A+T$
 - 3. **T→b**
 - 4. T→(A)

Build the tree resulting from the tracking of the previous algorithm for the top-down syntactic analysis of the string (b)

When to finish?

- For the string (b), it can be said that the lowest branch of the tree is useless when a + is found in the strings that are derived.
- Therefore, that branch can be ignored from the since level

When to finish (b) (A+T) (A+T)

Remark

- Top-down parsing builds a derivation for any string in the language.
- In spite of this, a grammar with several rules or with rules with bodies with several symbols would make the tree grow quickly.
- · Always, we will look for a deterministic search.