Combinatoire des singularités algébriques réelles Énumération des buissons et des diagrammes analytiques

Christopher-Lloyd Simon

Départment de mathématiques ENS Lyon

Vendredi 14 Décembre 2018

Sommaire

- Énumération des buissons
 - Décomposition de Cunningham
 - Opérade des buissons
 - Énumération des buissons connexes étiquetés
- Diagrammes de cordes analytiques
 - Structure d'opérade et grammaire inambigüe
 - Dénombrement des diagrammes de cordes analytiques

3 Questions sur la forme asymptotique

Sommaire

- Énumération des buissons
 - Décomposition de Cunningham
 - Opérade des buissons
 - Énumération des buissons connexes étiquetés
- 2 Diagrammes de cordes analytiques
- 3 Questions sur la forme asymptotique

Dans un graphe connexe, on définit une décomposition (A_1,A_2) :

On demande $|A_k| > 1$.

On la factorise avec des sommets de contrôle :

On a un arbre-de-graphes. Nœuds internes induits par $A_k \cup \{x_k\}$. On continue jusqu'à ce que les nœuds soient indécomposables ou dégénérés.

On la factorise avec des sommets de contrôle :

On a un arbre-de-graphes. Nœuds *internes* induits par $A_k \cup \{x_k\}$. On continue jusqu'à ce que les nœuds soient *indécomposables* ou *dégénérés*.

Cela peut ressembler à :

lci tous les sommets sont dégénérés : star-clique.

L'arbre-de-graphes est *réduit* si pas de clique-join ou star-join :

Théorème (Cunningham, Gioan-Paul)

Tout graphe admet une unique décomposition en arbre-de-graphes réduits.

Réciproquement on récupère le graphe d'accessibilité des feuilles :

Buisson: arbre-de-graphes-dégénérés réduit

Corollaire (de la décomposition de Cunningham)

Un buisson connexe ayant au moins trois sommets est le graphe d'accessibilité d'un unique arbre-de-graphes-dégénérés réduit, et réciproquement. Désormais on pense aux buissons comme SK-arbres.

Démonstration.

- Tout sous-graphe induit d'un buisson est un buisson (caractérisation distance-héréditaire).
- Or les graphes aux nœuds d'un arbre de-graphes sont induits dans le graphe d'accessibilité de ses feuilles.
- Un graphe indécomposable n'est pas un buisson donc un buisson se factorise nécessairement en un SK-arbre.

Buisson: arbre-de-graphes-dégénérés réduit

Corollaire (de la décomposition de Cunningham)

Un buisson connexe ayant au moins trois sommets est le graphe d'accessibilité d'un unique arbre-de-graphes-dégénérés réduit, et réciproquement. Désormais on pense aux buissons comme SK-arbres.

Démonstration.

- Tout sous-graphe induit d'un buisson est un buisson (caractérisation distance-héréditaire).
- Or les graphes aux nœuds d'un arbre de-graphes sont induits dans le graphe d'accessibilité de ses feuilles.
- Un graphe indécomposable n'est pas un buisson donc un buisson se factorise nécessairement en un SK-arbre.
- Réciproquement : un SK-arbre a un sommet pendant ou des jumeaux. La simplification préserve la propriété d'être un SK-arbre. On itère.

Buissons : grammaire génératrice inambigüe

Grammaire génératrice inambigüe (structure d'opérade)

On enracine les buissons en une feuille, on étiquette les feuilles, on compose en branchant racines des enfants sur feuilles des parents.

Énumération des buissons connexes étiquetés

Système pour les buissons connexes étiquetés

$$B(z) = \frac{1}{2} (B_K(z) + B_{S^*}(z) + B_{S'}(z) - z)$$

$$B_K(z) = z + \sum_{n>1} \frac{B_{S^*}(z)^n}{n!} + \sum_{n>1} B_{S'}(z) \frac{B_{S^*}(z)^{n-1}}{(n-1)!}$$

$$B_{S^*}(z) = z + \sum_{n>1} \frac{B_K(z)^n}{n!} + \sum_{n>1} B_{S'}(z) \frac{B_{S^*}(z)^{n-1}}{(n-1)!}$$

$$B_{S'}(z) = z + \sum_{n>1} \frac{B_K(z)^n}{n!} + \sum_{n>1} \frac{B_{S^*}(z)^n}{n!}$$

On calcule $B_K = z + f(B_K)$ où $f(w) = 2 \exp(w) + \exp(-w) - w - 3$. « Smooth implicit-function schéma » Flajolet-Sedgewick (Thm. VII.3).

Énumération des buissons connexes étiquetés

Proposition (2018 : Série des buissons connexes étiquetés)

Le nombre B_n de buissons connexes enracinés étiquetés de taille n équivaut

$$\frac{b}{2\sqrt{\pi n^3}}.\beta^{-n}.n!$$

$$\beta=2\sqrt{3}-1+2\log\frac{1+\sqrt{3}}{2}$$
 vérifie $6<\beta^{-1}<7$ et $b=\sqrt{\frac{\beta}{\sqrt{3}}}$. Premiers termes de la suite $(B_n)_{n\in\mathbb{N}}$:

0, 1, 4, 38, 596, 13072, 368488, 12693536, 516718112, 24268858144, 1291777104256, 76845808729472, 5052555752407424

Comprendre les buissons connexes non étiquetés?

Remarque (Buissons non étiquetés et automorphismes)

Pour déduire une asymptotique du nombre de buissons non étiquetés il faudrait connaître la taille typique de leurs groupes d'automorphismes.

- Essayer de pondérer les séries par les cardinaux des groupes.
- Etudier la forme typique d'un SK-arbre et la distribution des degrés des sommets pour décomposer les symétries d'un buisson.

Comprendre les buissons connexes non étiquetés?

Remarque (Buissons non étiquetés et automorphismes)

Pour déduire une asymptotique du nombre de buissons non étiquetés il faudrait connaître la taille typique de leurs groupes d'automorphismes.

- Essayer de pondérer les séries par les cardinaux des groupes.
- Etudier la forme typique d'un SK-arbre et la distribution des degrés des sommets pour décomposer les symétries d'un buisson.
 - Tentative à préciser...

Comprendre les buissons connexes non étiquetés?

Remarque (Buissons non étiquetés et automorphismes)

Pour déduire une asymptotique du nombre de buissons non étiquetés il faudrait connaître la taille typique de leurs groupes d'automorphismes.

- Essayer de pondérer les séries par les cardinaux des groupes.
- Etudier la forme typique d'un SK-arbre et la distribution des degrés des sommets pour décomposer les symétries d'un buisson.
 - Une symétrie du graphe en induit une sur le SK-arbre
 - Souvent les nœuds internes sont presque tous fixés.
 - Il reste à permuter les feuilles : on obtient environ un produit de k_j ! où les k_j sont les tailles des paquets de feuilles attachés à un même nœuds.

Sommaire

- Énumération des buissons
- Diagrammes de cordes analytiques
 - Structure d'opérade et grammaire inambigüe
 - Dénombrement des diagrammes de cordes analytiques
- Questions sur la forme asymptotique

Opérade sur les diagrammes analytiques connexes marqués

- Relever la factorisation en SK-arbres des buissons (connexes, non étiquetés mais enracinés) aux diagrammes connexes enracinés.
- Attention : à un buisson correspond plusieurs diagrammes de cordes. Ils diffèrent précisément par une série de mutations :

- Un diagramme enraciné possède une gauche et une droite.
- Un arbre enraciné induit un ordre partiel sur ses nœuds.

Opérade sur les diagrammes analytiques connexes marqués

On décore les nœuds internes d'un arbre par les diagrammes :

Enraciné, non étiqueté. Retenir gauche et droite lors de l'insertion.

Grammaire inambigüe

Lemme (2018)

Chaque diagramme analytique enraciné connexe est ainsi engendré, et ce de manière unique.

Équations pour la grammaire des diagrammes connexes

$$C(z) = \frac{1}{2} (C_T + C_{D^*} + C_{D'})$$

$$C_T(z) = z + \sum_{n>1} C_{D^*}^n + \sum_{k+l>0} C_{D'} C_{D^*}^{k+l}$$

$$C_{D^*}(z) = z + \sum_{n>1} C_T^n + \sum_{k+l>0} C_{D'} C_{D^*}^{k+l}$$

$$C_{D'}(z) = z + \sum_{n>1} C_{D^*}^n + \sum_{n>1} C_T^n$$

Diagrammes analytiques linéaires connexes

Algébricité de la série génératrice, Asymptotique, Formule close

Proposition (2018)

Algébricité de la série : $2C^3 + (z+2)C^2 + (2z-1)C + z = 0$.

Asymptotique : $C_n \sim c_0 n^{-\frac{3}{2}} \gamma^{-n}$ avec $13 < \gamma^{-1} < 14$:

$$\gamma = \frac{1}{12} \left(49 - \frac{433}{\sqrt[3]{24407 - 1272\sqrt{318}}} - \sqrt[3]{24407 - 1272\sqrt{318}} \right)$$

Formule par inversion de Lagrange :

$$C_n = \frac{1}{n} \sum_{k=0}^{n-1} {n-1+k \choose n-1} {2n+k \choose n-1-k} 2^k$$

Premiers termes de la suite $(C_n)_{n\in\mathbb{N}}$:

1, 4, 27, 226, 2116, 21218, 222851, 2420134, 26954622, 306203536.

Grammaire algébrique et développement asymptotique.

Remarque (Grammaire acontextuelle : règles de subtitution)

- $\bullet S \longrightarrow z \mid T_1 \mid D_1^* \mid D_1'$
- $T_1 \longrightarrow z \mid t_l D^* D^* t_r \mid t_l D^* D' t_r \mid t_l D' D' t_r$
- $T \longrightarrow z \mid t_l D^* D^* t_r \mid t_l D^* D' t_r \mid t_l D' D' t_r \mid TT$
- $\bullet \ \ D_1^* \longrightarrow \quad z \ \mid \ d_I^* T T d_r^* \ \mid \ d_I^* T D' d_r^* \ \mid \ d_I^* D' D' d_r^*$
- $D^* \longrightarrow z \mid d_l^* TTd_r^* \mid d_l^* TD'd_r^* \mid d_l^* D'D'd_r^* \mid D^*D^*$
- $D_1' \longrightarrow z \mid d_1'Ld_m'Md_n'Rd_r' \quad (\forall M \in \{T_1, D^*\}, \forall L, R \in \{T, D'\})$
- $D' \longrightarrow z \mid d'_{l}Ld'_{m}Md'_{n}Rd'_{r} \mid D'D' \ (\forall M, \forall L, R)$

Indices 1 distinguent les emplacements où la lettre ne peut être dupliquée : au nœud racine ainsi que dans la corde de D' intersectant la corde racine.

Grammaire algébrique et développement asymptotique.

Remarque (Développement asyptotique des coefficients)

Le théorème de Drmota-Lalley-Woods (F.-S. VII.6) prévoit un développement asymptotique complet des C_n de la forme suivante :

$$\gamma^{-n} n^{-\frac{3}{2}} \left(\sum_{k \in \mathbb{N}} c_k n^{-k} \right).$$

Le développement de l'équation sur C au voisinage du point critique permettrait de calculer les c_k .

Diagrammes analytiques linéaires

Algébricité de la série génératrice, Asymptotique

Lemme (2018)

Les séries génératrices A et C sont liées par l'équation

$$A = 1 + zA^2 + zA^2 C(zA^2).$$

Diagrammes analytiques linéaires Algébricité de la série génératrice, Asymptotique

Théorème (2018 : diagrammes analytiques linéaires)

La série génératrice des diagrammes analytiques est algébrique :

$$(z^3 + z^2)A^6 - z^2A^5 - 4zA^4 + (8z + 2)A^3 - (4z + 6)A^2 + 6A - 2 = 0$$

Asymptotique : $A_n \sim a_0 n^{-\frac{3}{2}} \alpha^{-n}$ où $15 < \alpha^{-1} < 16$. Premiers termes de la suite $(A_n)_{n \in \mathbb{N}}$ (vérifiés algorithmiquement) :

1, 1, 3, 15, 105, 923, 9417, 105815, 1267681, 15875631, 205301361

Diagrammes de cordes analytiques

Asymptotique

Corollaire (2018 : diagrammes analytiques non enracinés)

$$\tilde{A}_n \sim \frac{A_n}{n} \sim a_0 n^{-\frac{5}{2}} \alpha^{-n}$$

Ingrédients de la preuve.

- Formule des classes
- Définition d'un diagramme quotient (si pas d'inversions de cordes)
- Gérer le cas des inversions de cordes
- Analyse et comparaison

Sommaire

- Énumération des buissons
- ② Diagrammes de cordes analytiques
- Questions sur la forme asymptotique

Diagrammes analytiques vs permutations séparables

On connait la forme typique d'une grande permutation séparable. Son (\oplus,\ominus) -arbre converge vers l'arbre brownien. Et les SK-arbres?

Une permutation séparable et son (\oplus,\ominus) -arbre, d'après M. Maazoun.

Grammaire algébrique avec diagramme de dépendance irréductible donc (Miermont, de Raphélis : G-W multitypes) cv vers l'arbre brownien?

Modèle limite pour les diagrammes de cordes et convergence

D. Aldous a introduit la limite d'échelle des dissections d'un polygône : convergence en loi (topologie Hausdorff) vers la triangulation brownienne.

Lamination du cercle.

Motivation : compactification combinatoire de l'espace des singularités.

Diagramme analytique aléatoire d'après M. Maazoun (par Boltzmann sampling).

Utilisations éventuelles pour synthétiser comprendre les échanges.

Requêtes:

- Limites compatibles avec les limites des graphes d'entrelacement (graphons en limite d'échelle, Benjamini-Schramm si limites locales)
- Limites compatibles avec celles des arbres-de-graphes.

Requêtes:

- Limites compatibles avec les limites des graphes d'entrelacement (graphons en limite d'échelle, Benjamini-Schramm si limites locales)
- Limites compatibles avec celles des arbres-de-graphes.

Idées :

- Les diagrammes à n cordes E_n forment une famille consistente c.a.d. $\mathcal{P}(E_n)$ est un système projectif pour les restrictions aux sous-motifs.
- Un diagramme définit une mesure de probabilité E_n via ses motifs.
- ullet Les limites sont définies par convergence faible des mesures sur E_{∞} .

Résumé

From singularities to combinatorics and back again

• La topologie d'une singularité est encodée par un diagramme de cordes analytique ou un buisson.

Résumé

From singularities to combinatorics and back again

- La topologie d'une singularité est encodée par un diagramme de cordes analytique ou un buisson.
- pour comprendre leur structure et les dénombrer.

• Les factorisations de ces diagrammes et graphes est appropriée

- ► Etablir un théorème de décomposition unique : grammaire inambigüe.
- ► Ecrire le système d'équations associé sur les séries génératrices.
- ► Etudier le système par les méthodes de combinatoire analytique.

Résumé

From singularities to combinatorics and back again

- La topologie d'une singularité est encodée par un diagramme de cordes analytique ou un buisson.
- pour comprendre leur structure et les dénombrer.

• Les factorisations de ces diagrammes et graphes est appropriée

- Etablir un théorème de décomposition unique : grammaire inambigüe.
- Ecrire le système d'équations associé sur les séries génératrices.
- ► Etudier le système par les méthodes de combinatoire analytique.
- Reste à étudier les limites d'échelles.
 - Diagrammes de cordes analytiques, analogues aux permutations séparables.
 - D'autres classes de diagrammes en s'autorisant différents motifs interdits aux nœuds de l'arbre.
 - Applications éventuelles en informatique, pour l'étude des nœuds aléatoires,...

Thank you for listening. Bon appétit!

Random analytic chord diagram (M. Maazoun, 14/12/18).