Appendix A: Fun Matrix Facts

For convenience, we summarize several useful matrix facts here.

SQUARE MATRIX RESULTS: Let **A** and **B** be square matrices of the same dimension. Inverses below are assumed to exist.

- $(AB)^{-1} = B^{-1}A^{-1}, (A^{-1})^T = (A^T)^{-1}.$
- We denote the **determinant** of \boldsymbol{A} by $|\boldsymbol{A}|$.
- $|A| = |A^T|, |A| = 1/|A^{-1}|$
- |AB| = |A||B|
- $(A + B)^{-1} = A^{-1} A^{-1}(A^{-1} + B^{-1})^{-1}A^{-1}$
- $(\mathbf{A} + \mathbf{C}\mathbf{B}\mathbf{D})^{-1} = \mathbf{A}^{-1} \mathbf{A}^{-1}\mathbf{C}(\mathbf{B}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{C})^{-1}\mathbf{D}\mathbf{A}^{-1}$. Here, \mathbf{A} and \mathbf{B} need not be of the same dimension, and \mathbf{C} and \mathbf{D} are conformable matrices.
- The following are equivalent: (i) **A** is **nonsingular**, (ii) $|\mathbf{A}| \neq 0$, (iii) \mathbf{A}^{-1} exists.
- We denote the *trace* of a square matrix **A** by tr(**A**).
- $tr(\mathbf{A}) = tr(\mathbf{A}^T)$, $tr(b\mathbf{A}) = btr(\mathbf{A})$
- $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B}), tr(\mathbf{AB}) = tr(\mathbf{BA})$
- If **A** is $(n \times n)$ and **x** is $(n \times 1)$, then the **quadratic form**

$$\mathbf{x}^T \mathbf{A} \mathbf{x}$$

and \mathbf{A} are *nonnegative definite* if $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$. The quadratic form and \mathbf{A} are *positive definite* if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$. If \mathbf{A} is positive definite, then it is symmetric and nonsingular (so its inverse exists).

- $\mathbf{x}^T \mathbf{A} \mathbf{x} = \text{tr}(\mathbf{A} \mathbf{x} \mathbf{x}^T)$
- If x is a *random vector* with mean μ and covariance matrix V, then

$$E(\mathbf{x}^T \mathbf{A} \mathbf{x}) = \text{tr}\{E(\mathbf{x} \mathbf{x}^T) \mathbf{A}\} = \text{tr}(\mathbf{V} \mathbf{A}) + \mu^T \mathbf{A} \mu = \text{tr}(\mathbf{A} \mathbf{V}) + \mu^T \mathbf{A} \mu.$$

vec and vech NOTATION:

- For a $(n \times r)$ matrix \mathbf{A} , $\text{vec}(\mathbf{A})$ is defined as the $(nr \times 1)$ vector consisting of the r columns of \mathbf{A} stacked in the order $1, \dots, r$.
- If furthermore A is (n × n) and symmetric, then vec(A) contains redundant entries. The vech(·) operator yields the column vector containing all the distinct entries of A by stacking the lower diagonal elements; e.g., for n = 3,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \quad \text{and} \quad \text{vech}(\mathbf{A}) = \begin{pmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{22} \\ a_{23} \\ a_{33} \end{pmatrix}.$$

- For matrices \boldsymbol{A} ($a \times a$), \boldsymbol{B} , \boldsymbol{C} , \boldsymbol{D} ,
 - (i) $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = {\operatorname{vec}(\boldsymbol{A})}^T {\operatorname{vec}(\boldsymbol{B}^T)} = {\operatorname{vec}(\boldsymbol{A}^T)}^T {\operatorname{vec}(\boldsymbol{B})}.$
 - (ii) $tr(\mathbf{A}\mathbf{B}\mathbf{D}^T\mathbf{C}^T) = \{vec(\mathbf{A})\}^T(\mathbf{B}\otimes\mathbf{C})vec(\mathbf{D}), \text{ where } \otimes \text{ represents Kronecker product.}$
 - (iii) For $\bf A$ symmetric, there is a relationship between $\text{vec}(\bf A)$ and $\text{vech}(\bf A)$. In particular, there exists a unique matrix $\bf \Phi$ of dimension $\{a^2 \times a(a+1)/2\}$ such that

$$vec(\mathbf{A}) = \mathbf{\Phi}vech(\mathbf{A}).$$

Clearly, Φ is unique and of full column rank, as there is only one way to write the distinct elements of \boldsymbol{A} in a full, redundant vector.

INVERSE OF PARTITIONED MATRIX: Consider a generic $(k \times k)$ matrix

$$\boldsymbol{C} = \left(\begin{array}{cc} \boldsymbol{C}_{11} & \boldsymbol{C}_{12} \\ \boldsymbol{C}_{21} & \boldsymbol{C}_{22} \end{array} \right),$$

where the C_{ij} are submatrices such that C_{11} is $(k_1 \times k_1)$ and C_{22} is $(k_2 \times k_2)$ such that $k = k_1 + k_2$, and C_{11}^{-1} and C_{22}^{-1} exist, as do all other inverses below. Then

$$C^{-1} = \begin{pmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{pmatrix},$$

where

$$D_{11} = (C_{11} - C_{12}C_{22}^{-1}C_{21})^{-1}$$

$$D_{22} = (C_{22} - C_{21}C_{11}^{-1}C_{12})^{-1} = C_{22}^{-1} + C_{22}^{-1}C_{21}D_{11}C_{12}C_{22}^{-1}$$

$$D_{12} = -C_{11}^{-1}C_{12}D_{22} = -D_{11}C_{12}C_{22}^{-1}$$

$$D_{21} = -C_{22}^{-1}C_{21}D_{11}.$$

MATRIX DIFFERENTIATION: Let \mathbf{x} be a $(n \times 1)$ vector depending on a $(p \times 1)$ vector $\boldsymbol{\beta}$, and let \mathbf{A} be a $(n \times n)$ square matrix.

- For quadratic form $Q = \mathbf{x}^T \mathbf{A} \mathbf{x}$, $\partial Q / \partial \mathbf{x} = 2 \mathbf{A} \mathbf{x}$. Note that this is a $(n \times 1)$ vector.
- The chain rule then gives $\partial Q/\partial \beta = (\partial x/\partial \beta)(\partial Q/\partial x)$. Note that $\partial x/\partial \beta$ is a $(p \times n)$ matrix.

Let $V(\xi)$ be a $(n \times n)$ nonsingular matrix depending on a $(q \times 1)$ (parameter) vector ξ .

- If ξ_k is the kth element of ξ , then $\partial/\partial \xi_k V(\xi)$ is the $(n \times n)$ matrix whose (ℓ, p) element is the partial derivative of the (ℓ, p) element of $V(\xi)$ with respect to ξ_k .
- $\partial/\partial \xi_k \{ \log |\mathbf{V}(\boldsymbol{\xi})| \} = \operatorname{tr} \left[\mathbf{V}^{-1}(\boldsymbol{\xi}) \{ \partial/\partial \xi_k \mathbf{V}(\boldsymbol{\xi}) \} \right].$
- $\partial/\partial \xi_k V^{-1}(\xi) = -V^{-1}(\xi) \{\partial/\partial \xi_k V(\xi)\} V^{-1}(\xi)$.
- For quadratic form $Q = \boldsymbol{x}^T \boldsymbol{V}(\boldsymbol{\xi}) \boldsymbol{x}$, $\partial Q / \partial \xi_k = \boldsymbol{x}^T \{\partial / \partial \xi_k \, \boldsymbol{V}(\boldsymbol{\xi})\} \boldsymbol{x}$. Thus, from the previous result,

$$\partial/\partial \xi_k \left\{ \boldsymbol{x}^T \boldsymbol{V}^{-1}(\boldsymbol{\xi}) \boldsymbol{x} \right\} = -\boldsymbol{x}^T \boldsymbol{V}^{-1}(\boldsymbol{\xi}) \left\{ \partial/\partial \xi_k \, \boldsymbol{V}(\boldsymbol{\xi}) \right\} \, \boldsymbol{V}^{-1}(\boldsymbol{\xi}) \boldsymbol{x}.$$