Chapitre 21

Applications linéaires

21	Applications linéaires	1
	21.4 Exemple	
	21.8 Structure de $\mathcal{L}(E,F)$	
	21.10Composition de deux AL	
	21.13Bilinéarité de la composition	
	21.16Structure des images directes et réciproques	
	21.21 Famille génératrice de $Im(f)$	
	21.23Réciproque d'un isomophisme	
	21.41Structure de l'ensemble des polynômes annulateurs - Hors Programme	
	21.52 Caractérisation de l'image d'un projecteur	
	21.53Diagonalisation d'un projecteur	

21.4 Exemple

Exemple 21.4.1

L'application de \mathbb{R}^2 dans \mathbb{R} définie par f(x,y) = 2x + 3y.

Soit $((x,y),(x',y'),\lambda) \in (\mathbb{R}^2)^2 \times \mathbb{R}$. On a

$$f((x,y) + \lambda(x',y')) = f(x + \lambda x', y + \lambda y')$$

= 2(x + \lambda x') + 3(y + \lambda y')
= 2x + 3y + \lambda(2x' + 3y')
= f(x,y) + \lambda f(x',y').

21.8 Structure de $\mathcal{L}(E, F)$

Propostion 21.8

 $\mathcal{L}(E,F)$ est un estpace vectoriel sur \mathbb{K} .

- $--\mathcal{L}(E,F)\subset F^E$
- $\overline{0}\hat{\mathcal{L}}(E,F)$
- Soit $(f,g) \in \mathcal{L}(E,F)^2$ et $\alpha \in \mathbb{K}$. Soit $(x,y) \in E^2, \lambda \in \mathbb{K}$. On a :

$$\begin{split} (f+\alpha g)(x+\lambda y) &= f(x+\lambda y) + \alpha g(x+\lambda y) \\ &= f(x) + \lambda f(y) + \alpha g(x) + \alpha \lambda g(y) \\ &= f(x) + \alpha g(x) + \lambda (f(y) + \alpha g(y)) \\ &= (f+\alpha g)(x) + \lambda (f+\alpha g)(y). \end{split}$$

Donc $f + \alpha g \in \mathcal{L}(E, F)$.

21.10 Composition de deux AL

Propostion 21.10

Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$, alors $g \circ f \in \mathcal{L}(E, G)$.

Soit $(x, y) \in E^2$ et $\lambda \in \mathbb{K}$:

$$\begin{split} g \circ f(x + \lambda y) &= g(f(x + \lambda y)) \\ &= g(f(x) + \lambda f(y)) \\ &= g(f(x)) + \lambda g(f(y)) \\ &= g \circ f(x) + \lambda g \circ f(y). \end{split}$$

Donc $g \circ f \in \mathcal{L}(E, G)$.

21.13 Bilinéarité de la composition

Propostion 21 13

La composition d'application linéaire est bilinéaire. En termes plus précis, $E,\,F$ et G étant des \mathbb{K} -ev, l'application

$$\Psi: \mathcal{L}(E,F) \times \mathcal{L}(F,G) \longrightarrow \mathcal{L}(E,G); (u,v) \mapsto v \circ u$$

est une application bilinéaire.

D'après la remarque (21.11), Ψ est linéaire à droite.

$$\forall u \in \mathcal{L}(E,F), \forall (v,v') \in \mathcal{L}(F,G)^2, \forall \lambda \in \mathbb{K}, \Psi(u,v+\lambda v') = \Psi(u,v) + \lambda \Psi(u,v')$$
 Soit $(u,u') \in \mathcal{L}(E,F)^2, v \in \mathcal{L}(F,G), \lambda \in \mathbb{K}$. On a :
$$\forall x \in \mathbb{E}, \Psi(u+\lambda u',v)(x) = v \circ (u+\lambda u')(x)$$

$$= v(u(x)+\lambda u'(x))$$

$$= v(u(x)) + \lambda v(u'(x))$$

$$= \Psi(u,v)(x) + \lambda \Psi(u',v)(x)$$

Donc $\Psi(u + \lambda u', v) = \Psi(u, v) + \lambda \Psi(u', v)$.

21.16 Structure des images directes et réciproques

Propostion 21.16

- 1. Soit E' un sev de E. Alors f(E') est un sev de F.
- 2. Soit F' un sev de F. Alors $f^{-1}(F')$ est un sev de E.
- 1. $-f(E') \subset F$ $-0 = f(0) \in f(E')$ $-\text{Soit } (x,y) \in f(E')^2, \lambda \in \mathbb{K}$. On écrit $x = f(\alpha), y = f(\beta)$ avec $(\alpha,\beta) \in E'^2$.

$$x + \lambda y = f(\alpha) + \lambda f(\beta)$$
$$= f(\alpha + \lambda \beta)$$
$$\in f(E')$$

$$\begin{split} 2. & \ -- \ f^{-1}(F') \subset E \\ & \ -- \ 0 = f(0) \in f^{-1}(F') \\ & \ -- \ \mathrm{Soit} \ (x,y) \in f^{-1}(F')^2, \lambda \in \mathbb{K}. \end{split}$$

$$f(x + \lambda y) = f(x) + \lambda f(y) \in F'$$
donc $x + \lambda y \in f^{-1}(F')$

21.21 Famille génératrice de Im(f)

Propostion 21.21

Soit $f \in \mathcal{L}(E, F)$ et $(e_i)_{i \in I}$ une famille génératrice de E. Alors $(f(e_i)_{i \in I})$ est une famille génératrice de Im(f). Soit

$$Im(f) = Vect(f(e_i)_{i \in I})$$

— Pour tout $i \in I, f(e_i) \in Im(f)$. Comme Im(f) est un sev :

$$Vect(f(e_i)_{i\in I})\subset Im(f)$$

— Soit $a \in Im(f)$. On choisit $x \in E$ tel que a = f(x). Comme $(e_i)_{i \in I}$ est une famille génératrice de E, on peut écrit $x = \sum_{i \in I} \lambda_i e_i$ où $(\lambda_i)_{i \in I}$ est à spport fini.

$$a = f\left(\sum_{i \in I} \lambda_i e_i\right)$$
$$= \sum_{i \in I} \lambda_i f(e_i)$$
$$\in Vect(f(e_i)_{i \in I})$$

21.23 Réciproque d'un isomophisme

Théorème 12.23

Soit f un isomorphisme de E vers F. Alors f^{-1} est une application linéaire, donc un isomophisme de F vers E.

On pose $g = f^{-1}$. Soit $(x, y) \in F^2, \lambda \in \mathbb{K}$.

$$g(x + \lambda y) = g(f(g(x)) + \lambda f(g(y)))$$
$$= g(f(g(x)) + \lambda f(g(y)))$$
$$= g(x) + \lambda g(y)$$

Donc $g \in \mathcal{L}(F, E)$.

21.41 Structure de l'ensemble des polynômes annulateurs - Hors Programme

Propostion 21.41 - HP

L'ensemble des polynômes annulateurs de f est un idéal de $\mathbb{K}[X]$.

Si P et Q annulent u, alors :

$$(P-Q)(u) = P(u) - Q(u) = 0_{\mathcal{L}(E)}$$

Si $B \in \mathbb{K}[X]$:

$$(PB)(u) = P(u) \circ B(u) = B(u) \circ 0_{\mathcal{L}(E)} = 0_{\mathcal{L}(E)}$$

21.52 Caractérisation de l'image d'un projecteur

Propostion 21.52

Soit p un projecteur de E. Alors $x \in Im(p)$ si et seulement si p(x) = x. Soit :

$$Im(p) = \ker(p - id_E)$$

 $x \in Im(p) \Leftrightarrow p(x) = x$

Soit p un projecteur. Soit $x \in E$.

- Si $x \in Im(p)$, on choisit $y \in E$ tel que x = p(y).
- Donc $p(x) = p^2(y) = p(y) = x$.
- Si p(x) = x, alors $x \in Im(p)$.

 $\Leftrightarrow p(x) - x = 0$ $\Leftrightarrow (p - id)(x) = 0$ $\Leftrightarrow x \in \ker(p - id)$

21.53 Diagonalisation d'un projecteur

Théorème 21.53

Soit p un projecteur de E. Alors :

$$E = \ker(p) \oplus \ker(p - id_E)$$

Soit $x \in \ker(p) \cap \ker(p - id_E)$.

Donc p(x) = 0 et p(x) - x = 0.

Donc x = 0.

Soit
$$x \in E$$
, on écrit $x = \underbrace{x - p(x)}_{\in \ker(p)} + \underbrace{p(x)}_{\in Im(p) = \ker(p - id)}$.
Donc $E = \ker(p) \oplus \ker(p - id)$.