COST-SENSITIVE LEARNING: IN A NUTSHELL

- Cost-sensitive learning:
 - Classical learning: data sets are balanced, and all errors have equal costs
 - We now assume given, unequal cost
 - And try to minimize them in expectation
- Applications:
 - Medicine Misdiagnosing as healthy vs. having a disease
 - (Extreme) Weather prediction Incorrectly predicting that no hurricane occurs
 - Credit granting Lending to a risky client vs. not lending to a trustworthy client.

		Truth		
		Default	Pays Back	
Pred.	Default	0	10	_
	Pays Back	1000	0	

 In these examples, the costs of a false negative is much higher than the costs of a false positive.

 In some applications, the costs are unknown

→ need to be specified by experts, or be learnt.

COST MATRIX

Input: cost matrix C

	1	True Class y			
	j	1	2		g
Classification	1	C(1, 1)	C(1, 2)		C(1, g)
	2	C(2,1)	C(2,2)		C(2,g)
ŷ		* * *	* * *		, . . ,
		-			
	- 1	0(-, 1)			
	g	C(g,1)	C(g,2)		C(g,g)

- C(j, k) is the cost of classifying class k as j,
- 0-1-loss would simply be: $C(j, k) = \mathbb{1}_{[j \neq k]}$
- C designed by experts with domain knowledge
 - Too low costs: not enough change in model, still costly errors
 - Too high costs: might never predict costly classes

COST MATRIX FOR IMBALANCED LEARNING

- Common heuristic for imbalanced data sets:
 - $C(j,k) = \frac{n_j}{n_k}$ with $n_k \ll n_j$, misclassifying a minority class k as a majority class j
 - C(j,k) = 1 with $n_j \ll n_k$, misclassifying a majority class k as a minority class j
 - 0 for a correct classification

• Imbalanced binary classification:

	True class		
	<i>y</i> = 1	y = -1	
Pred. $\hat{y} = 1$	0	1	
class $\hat{y} = -1$	$\frac{n}{n_+}$	0	

So: much higher costs for FNs

MINIMUM EXPECTED COST PRINCIPLE

- Suppose we have:
 - a cost matrix C
 - knowledge of the true posterior $p(\cdot \mid \mathbf{x})$
- Predict class j with smallest expected costs when marginalizing over true classes:

$$\mathbb{E}_{K \sim p(\cdot \mid \mathbf{x})}(C(j, K)) = \sum_{k=1}^{g} p(k \mid \mathbf{x})C(j, k)$$

 If we trust we trust a probabilistic classifier, we can convert its scores to labels:

$$h(\mathbf{x}) := \underset{j=1,...,g}{\operatorname{arg\,min}} \sum_{k=1}^{g} \pi_k(\mathbf{x}) C(j,k).$$

• Can be better to take a less probable class (• Elkan et. al. 2001)

OPTIMAL THRESHOLD FOR BINARY CASE

- Optimal decisions do not change if
 - C is multiplied by positive constant
 - C is added with constant shift
- Scale and shift C to get simpler C':

•
$$C'(-1,1) = \frac{C(-1,1)-C(-1,-1)}{C(1,-1)-C(-1,-1)}$$

•
$$C'(1,1) = \frac{C(1,1) - C(-1,-1)}{C(1,-1) - C(-1,-1)}$$

We predict x as class 1 if

$$\mathbb{E}_{K \sim p(\cdot + \mathbf{x})}(C'(1, K)) \leq \mathbb{E}_{K \sim p(\cdot + \mathbf{x})}(C'(-1, K))$$

