

```
In []: import pandas as pd
import numpy as np

In []: df = pd.read_csv('Banking.csv')
    df.head()
```

Out[]:

	Client ID	Name	Age	Location ID	Joined Bank	Banking Contact	Nationality	Occupat
0	IND81288	Raymond Mills	24	34324	06-05-2019	Anthony Torres	American	Saf Technic
1	IND65833	Julia Spencer	23	42205	10-12-2001	Jonathan Hawkins	African	Softw Consult
2	IND47499	Stephen Murray	27	7314	25-01-2010	Anthony Berry	European	Help D Opera
3	IND72498	Virginia Garza	40	34594	28-03-2019	Steve Diaz	American	Geologis
4	IND60181	Melissa Sanders	46	41269	20-07-2012	Shawn Long	American	Assist Profes

 $5 \text{ rows} \times 25 \text{ columns}$

```
In []: # Check the shape of the DataFrame
print("Shape of the DataFrame:", df.shape)

# Get a concise summary of the DataFrame
print("\nDataFrame Info:")
df.info()
```

Shape of the DataFrame: (3000, 25)

DataFrame Info:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3000 entries, 0 to 2999 Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype			
	Clicat ID	2000				
0	Client ID	3000 non-null	object			
1	Name	3000 non-null	object			
2	Age	3000 non-null	int64			
3	Location ID	3000 non-null	int64			
4	Joined Bank	3000 non-null	object			
5	Banking Contact	3000 non-null	object			
6	Nationality	3000 non-null	object			
7	Occupation	3000 non-null	object			
8	Fee Structure	3000 non-null	object			
9	Loyalty Classification	3000 non-null	object			
10	Estimated Income	3000 non-null	float64			
11	Superannuation Savings	3000 non-null	float64			
12	Amount of Credit Cards	3000 non-null	int64			
13	Credit Card Balance	3000 non-null	float64			
14	Bank Loans	3000 non-null	float64			
15	Bank Deposits	3000 non-null	float64			
16	Checking Accounts	3000 non-null	float64			
17	Saving Accounts	3000 non-null	float64			
18	Foreign Currency Account	3000 non-null	float64			
19	Business Lending	3000 non-null	float64			
20	Properties Owned	3000 non-null	int64			
21	Risk Weighting	3000 non-null	int64			
22	BRId	3000 non-null	int64			
23	GenderId	3000 non-null	int64			
24	IAId	3000 non-null				
	dtypes: float64(9), int64(8), object(8)					

memory usage: 586.1+ KB

In []: df["Estimated Income"]

Out[]:	Estimated Income		
	0	75384.77	
	1	289834.31	
	2	169935.23	
	3	356808.11	
	4	130711.68	
	2995	297617.14	
	2996	42397.46	
	2997	48339.88	
	2998	107265.87	
	2999	56826.53	

 $3000 \text{ rows} \times 1 \text{ columns}$

dtype: float64

```
In [ ]: # Define income band boundaries
        bins = [0, 100000, 300000, float('inf')]
        labels = ['Low', 'Mid', 'High']
        # Create the 'Income Band' column using pd.cut
        df['Income Band'] = pd.cut(df['Estimated Income'], bins=bins, labels=labels, i
In [ ]: # Examine the distribution of unique categories in categorical columns
        categorical_cols = df[["Risk Weighting","Nationality","Occupation","Fee Struct
        for col in categorical cols:
          # if col in ["Client ID", "Name", "Joined Bank"]:
          # continue
          print(f"\nValue Counts for '{col}':")
          display(df[col].value counts())
```

Value Counts for 'Risk Weighting':

count

Risk Weighting

2	1222
1	836
3	460
4	322
5	160

dtype: int64

Value Counts for 'Nationality':

count

Nationality

European	1309
Asian	754
American	507
Australian	254
African	176

dtype: int64

Value Counts for 'Occupation':

count

Occupation

•	
Structural Analysis Engineer	28
Associate Professor	28
Recruiter	25
Human Resources Manager	24
Account Coordinator	24
Office Assistant IV	8
Automation Specialist I	7
Computer Systems Analyst I	6
Developer III	5
Senior Sales Associate	4

195 rows × 1 columns

dtype: int64

Value Counts for 'Fee Structure':

count

Fee Structure

High	1476
Mid	962
Low	562

dtype: int64

Value Counts for 'Loyalty Classification':

count

Loyalty Classification

Jade	1331
Silver	767
Gold	585
Platinum	317

dtype: int64

Value Counts for 'Properties Owned':

count

Properties Owned

2	777
1	776
3	742
0	705

dtype: int64

Value Counts for 'Risk Weighting':

count

Risk Weighting

2	1222
1	836
3	460
4	322
5	160

dtype: int64

Value Counts for 'Occupation':

count

Occupation

•	
Structural Analysis Engineer	28
Associate Professor	28
Recruiter	25
Human Resources Manager	24
Account Coordinator	24
Office Assistant IV	8
Automation Specialist I	7
Computer Systems Analyst I	6
Developer III	5
Senior Sales Associate	4

195 rows × 1 columns

dtype: int64

Value Counts for 'Income Band':

count

Income Band

Mid	1517
Low	1027
High	456

dtype: int64

```
In [ ]: # Generate descriptive statistics for numerical columns
    print("\nDescriptive Statistics for Numerical Columns:")
    display(df.describe())
```

Descriptive Statistics for Numerical Columns:

	Age	Location ID	Estimated Income	Superannuation Savings	Amount of Credit Cards	
count	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	:
mean	51.039667	21563.323000	171305.034263	25531.599673	1.463667	:
std	19.854760	12462.273017	111935.808209	16259.950770	0.676387	;
min	17.000000	12.000000	15919.480000	1482.030000	1.000000	
25%	34.000000	10803.500000	82906.595000	12513.775000	1.000000	:
50%	51.000000	21129.500000	142313.480000	22357.355000	1.000000	:
75 %	69.000000	32054.500000	242290.305000	35464.740000	2.000000	4
max	85.000000	43369.000000	522330.260000	75963.900000	3.000000	13

```
In [ ]: # Check for missing values
   missing_values = df.isnull().sum()
   print("Missing values per column:\n", missing_values)
```

```
Missing values per column:
 Client ID
                              0
                             0
Name
                             0
Age
Location ID
                             0
Joined Bank
                             0
Banking Contact
                             0
Nationality
                             0
Occupation
                             0
Fee Structure
                             0
Loyalty Classification
                             0
Estimated Income
                             0
Superannuation Savings
                             0
Amount of Credit Cards
                             0
Credit Card Balance
                             0
Bank Loans
                             0
Bank Deposits
                             0
Checking Accounts
                             0
Saving Accounts
                             0
Foreign Currency Account
                             0
Business Lending
                             0
Properties Owned
                             0
Risk Weighting
                             0
BRId
                             0
GenderId
                             0
IAId
                             0
                             0
Income Band
dtype: int64
```

```
In [ ]: df['Joined Bank'] = pd.to_datetime(df['Joined Bank'], format='%d-%m-%Y')
print(df['Joined Bank'].dtype)
```

```
In [ ]:
           import matplotlib.pyplot as plt
           import seaborn as sns
           # Numerical analysis and exploration
           numerical cols = ['Fee Structure','Age', 'Estimated Income', 'Superannuation S
           # Univariate analysis and visualization
           plt.figure(figsize=(15, 10))
           for i, col in enumerate(numerical cols):
                plt.subplot(4, 3, i + 1)
                sns.histplot(df[col], kde=True)
                plt.title(col)
           plt.tight layout()
           plt.show()
                         Fee Structure
                                                                                              Estimated Income
          4000
                                                                                 300
                                              200
          3000
                                              150
                                                                                Count
                                                                                 200
                                             Count
         2000
                                              100
                                                                                  100
          1000
                                               50
            0
                                                0
                                                                                        100000
                                                                                             200000 300000 400000
                         Fee Structure
                                                                                              Estimated Income
                     Superannuation Savings
                                                          Credit Card Balance
                                                                                                Bank Loans
           200
                                              200
                                                                                 200
         Count
100
                                             Count
                                                                                Count
                                              100
                                                                                  100
            0
                                                  0 2000 4000 6000 8000 10000 12000 14000
              0
                    20000
                           40000
                                  60000
                                                                                     0.0
                                                                                          0.5
                                                                                                    1.5
                                                                                                             2.5
                     Superannuation Savings
                                                          Credit Card Balance
                                                                                                               1e6
                        Bank Deposits
                                                          Checking Accounts
                                                                                              Saving Accounts
           400
                                              300
                                                                                 300
           300
                                              200
                                             Count
                                                                                 200
           200
                                              100
           100
                                                                                  100
            0
                                                0
                                                  0.0
                                                                                    0.00 0.25 0.50 0.75 1.00 1.25 1.50
                        Bank Deposits
                                                          Checking Accounts
                                                                                              Saving Accounts
                     Foreign Currency Account
                                                           Business Lendina
           200
                                              200
                                             Count
                                              100
           100
                  20000 40000 60000 80000 100000 120000
                                                          Business Lending
                     Foreign Currency Account
          # Select numerical columns for correlation analysis
           numerical_cols = ['Age', 'Estimated Income', 'Superannuation Savings', 'Credit
                                   'Bank Loans', 'Bank Deposits', 'Checking Accounts', 'Saving
                                   'Foreign Currency Account', 'Business Lending', 'Properties
           # Calculate the correlation matrix
           correlation_matrix = df[numerical_cols].corr()
           # Create a heatmap of the correlation matrix
           plt.figure(figsize=(12, 10))
           sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', fmt=".2f")
```

plt.title('Correlation Matrix of Numerical Features') plt.show()


```
x=x_col,
y=y_col,
scatter_kws={'alpha': 0.4}, # semi-transparent points
line_kws={'color': 'red'} # best-fit line color
)
plt.title(f'Relationship between {x_col} and {y_col}', fontsize=14)
plt.xlabel(x_col, fontsize=12)
plt.ylabel(y_col, fontsize=12)
plt.tight_layout()
plt.show()
```


Insights:

Deposits and Savings Behavior

The high correlation between Bank Deposits and Saving Accounts suggests that these may either measure overlapping financial behavior (e.g., total funds a customer keeps in the bank) or that people who actively deposit funds also tend to maintain or grow savings balances.

Income, Age, and Accumulation

Moderate correlations of Age and Estimated Income with various balances (Superannuation, Savings, Checking) reflect a common financial lifecycle trend: higher income earners and older individuals often accumulate more savings, retirement funds, and may carry higher credit card balances or loans.

Low Correlation with Properties Owned

Property ownership may depend on external factors (location, real estate market conditions, inheritance, etc.) that are not captured by these particular banking variables. Hence, we see weaker correlations here.

Business vs. Personal Banking

Business Lending's moderate link to Bank Loans suggests some customers may have both personal and business debts. However, business lending is relatively uncorrelated with other deposit or property-related metrics, indicating it may serve a distinct subset of customers or needs.

In []: