Assessment Schedule – 2012 Physics: Demonstrate understanding of mechanics (91171)

Question	Achievement			Merit		Excellence	Excellence				
ONE (a)	Energy										
(b)	Momentum										
(c)	$p_{i} = p_{f}$ $65 \times v = 120 \times 5.5$ $v = 10.15$					$mgh = \frac{1}{2}mv^2$ $65 \times 9.8 \times h = \frac{1}{2}$	×65×10.15 ²	h = 5.3 m	h = 5.3 m		
(d)	Arrow towards centre of circle.				of circle.						
(e) Hannah is moving in a must be a centripetal for OR The centripetal force is rope (tension).			orce on he	er.	there must be a on her. AND	ng in a circle so centripetal force force is provided sion).	force acting up gravity force a down. It is this	alanced force, force, is the veen the tension owards and the cting vertically			
NØ		N1	N2	A3	A4	M5	M6	E7	E8		
No evide	nce	1a	2a	3a	4a	1a + 2m	2a + 2m	1a + 2e	2a + 2e		

TWO (a)	$\tau_{c} = \tau_{ac}$ $(2 \times 55 \times 9.8) + (0.5 \times 210) = F \times 3$			1183 = F × 3 F = 394.3 = 394 N			F= 394 N Direction = up		
(b)	390 (2 sig fi AND Same as the	gs) least accurate data.							
(c)	$v_{v} = 15\sin 70^{\circ}$ $v_{v} = 14.095$			$v_{f} = v_{i} + at$ $0 = 14.095 - 9.8t$ $t = \frac{14.095}{9.8}$ $t = 1.4 \text{ s}$					
(d)	Horizontal velocity is 5.1 m s ⁻¹ to the right. OR Her vertical velocity is zero.			Horizontal velocithe right. AND Her vertical velocity OR One reason to so 5.1 m s ⁻¹ or 0 m	ocity is zero.	⁻¹ to	to the AND Her v AND There acting velocitors or She is acceled down		eing s ⁻² her vertical
NØ	N1	N2	A3	A4	M5	N	16	E7	E8
No evidence	1a	2a	3a	4a	1a + 2m	2a -	+ 2m	2m + 1e	1m + 2e

THREE (a)	Gravitational PE → Kinetic energy OR Kinetic energy → Elastic PE			Gravitational PE → Kinetic energy AND Kinetic energy →Elastic PE						
(b)(i)	The force is	upwards.								
(b)(ii)	If the rope is too tight, this will decrease her stopping time. OR The size of force increases. OR The size of her deceleration increases.			If the rope is too tight this will decrease her stopping time and so increase the size of the force acting on her. OR A shorter stopping time will increase the size of her deceleration.			If the rope is too tight this will decrease her stopping time. AND $\Delta p = F\Delta t$, the rope tension does not affect Δp . So a shorter stopping time will increase the size of the upward force acting on her. OR A shorter stopping time will increase the size of her deceleration. $F = ma$ and m is constant. So, a larger deceleration requires a larger upward force on her.			
(c)	$F = mg \text{ and } F = kx$ $55 \times 9.8 = k \times 0.60$			k = 898.3			$E = \frac{1}{2}kx^{2}$ $E = \frac{1}{2} \times 898.3 \times 0.60^{2}$ $E = 160 \text{ J}$			
NØ	N1 N2 A3		A3	A4	M5	N	<u>г</u> Л6	E7	E8	
No evidence	1a	2a	3a	4a	1a + 2m	3	m n +2a	2m + 1e Or 1a + 2e	1m + 2e	

FOUR (a)	$\cos 30^{\circ} = \frac{F_{H}}{55}$ $F_{H} = 55\cos 30$ $F_{H} = 47.6 = 48$	N							
(b) (i)	If the trolley is in force is zero. OR Forces are balance OR Net torque is zero OR Velocity is const	ced.	1	If the trolley is in equilibrium the net force is zero OR Forces are balanced. AND Net torque is zero.			If the trolley is in equilibrium the net force is zero OR Forces are balanced. AND Net torque is zero. AND This means that velocity is constant or acceleration is zero (NOT $\nu = 0$).		
b(ii)	traction OR Grip OR	Force to the left labelled push force OR Force to the left labelled push				st.			
(c)	By decreasing the angle between the handle and the floor.			By decreasing the handle and t AND This increases the force.	he floor.	een	betwee floor. AND This is force force AND This v	ecreasing the agent he handle encreases the handle to become unwill result in a $(\frac{F}{m})$ and m is	and the norizontal orizontal nbalanced.
NØ	N1	N2	A3	A4	M5	N	16	E7	E8
No evidence	1 a	2a	3a	4a	3a + 1m	2a + 2m 2m+1e Or 1a + 2e		2m+1e Or 1a + 2e	1m +2e

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 8	9 – 17	18 – 24	25 – 32