3.6: Complex Zeros, Fundamental Theorem of Algebra

Supplementary Notes

Any polynomial f with real coefficients and with degree $n \geq 1$ can be factored

$$f(x) = a(x - z_1)(x - z_2) \cdot \dots \cdot (x - z_{n-1})(x - z_n)$$

where the coefficient a and zeros z_i , $i \le i \le n$, are real or complex. If a + bi is a zero of f, then so is its conjugate a - bi.

Exercise

1. Select the polynomial with real coefficients of degree 5 and having zeros 1, -2 + 4i, 3 - i.

A.
$$(x-1)(x-2+4i)(x-2+4i)(x+3-i)(x+3+i)$$

B.
$$(x-1)(x+2+4i)(x+2+4i)(x+3-i)(x+3+i)$$

C.
$$(x-1)(x+2+4i)(x+2+4i)(x-3-i)(x-3+i)$$

D. None of these

E.
$$(x-1)(x-2+4i)(x-2+4i)(x-3-i)(x-3+i)$$