Vector Spaces and Subspaces Independence, Basis and Dimension

충남대학교 컴퓨터공학과 이만호

Independence, Basis and Dimension

• Important issues:

Let A be an $m \times n$ matrix, what is the true size (dimension) of subspaces, C(A), N(A)?

- Dimension of C(A):
 - The number of independent columns
 - $\operatorname{rank}(A) = r$
- Definition:

Basis: independent vectors that span the space.

• Every vector in the space is a unique combination of the basis vectors.

Essential Ideas

- Four essential ideas:
 - Independent vectors (no extra vectors)
 - Spanning a space (enough vectors to produce the rest)
 - Basis for a space (not too many or too few)
 - Dimension of a space (the number of vectors in a basis)

Linear Independence

- Linear independence:
 - The columns of A are linearly independent when the only solutions to Ax = 0 is x = 0.
 - No other combination of the columns gives zero vector. i.e. N(A) contains only zero vectors.
- Linear independence: other definition
 - The sequence of vectors v_1, v_2, \dots, v_n is linearly independent if the only combination that gives the zero vector is

$$0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_n$$

(i.e. the only solution of $x_1v_1 + x_2v_2 + \cdots + x_nv_n = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$)

Linear Independence in \mathbb{R}^3

- Linear Independence with 3 vectors in \mathbb{R}^3
 - If three vectors are *not* in the same plane, they are independent. No combination of v_1 , v_2 , v_3 gives zero except $0v_1 + 0v_2 + 0v_3$.
 - If three vectors w_1 , w_2 , w_3 are in the same plane, they are dependent.

Remark on Linear Independence

- Columns of A are independent exactly when rank(A) = n.
 - There are *n* pivots and no free variables
 - $-N(A) = \{ 0 \}$
- Any set of n vectors in \mathbb{R}^m must be linearly dependent if n > m

Linear Independence – Example

• In \mathbf{R}^2

- -(1,0) & (0,1): independent
- -(1,0) & (1,0.00001): independent
- -(1, 1) & (-1, -1) : dependent
- -(1, 1) & (0, 0) : dependent
- Any three vectors are dependent!

• In Ax = 0

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix} \implies R = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{rank}(A) = \text{rank}(R) = 2 \neq 3$$

$$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 5 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies -3 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 3 \\ 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Ax = 0 has a nonzero solution $(-3, 1, 1) \in N(A)$

 \therefore Columns of A are not linearly independent.

Span

Column space

- Is spanned by the columns.
- Consists of all linear combinations of the columns. Ax

Definition

A set of vectors *spans* a space if their linear combinations fill the space.

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$, $\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{w}_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

- v_1 and v_2 span the full space \mathbb{R}^2 .
- $-v_1, v_2$ and v_3 also span the full space \mathbb{R}^2 . Relation among v_1, v_2, v_3 ?
- w_1 and w_2 only span a line in \mathbb{R}^2 .

Row Space

Definition

The row space of matrix is the subspace of \mathbb{R}^n spanned by the rows. (A: mxn)

- The row space of A is $C(A^T)$
- Example

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 7 \\ 3 & 5 \end{bmatrix}, \qquad A^{\mathrm{T}} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 7 & 5 \end{bmatrix}$$

- C(A): plane in \mathbb{R}^3 spanned by 2 columns of A.
- $C(A^{T})$: all of \mathbb{R}^{2} spanned by 3 rows of A (3 columns of A^{T}).
- The rows are in \mathbb{R}^n spanning the row space.
- The columns are in \mathbf{R}^m spanning the column space.

Basis for a Vector Space

- Definition: A basis for a vector space is a sequence of vectors with two properties
 - The basis vectors are linearly independent.
 - The basis vectors span the space.

Notes

- There is one and only one way to write v as a combination of the basis vectors.
 - Every vector v in the space is a linear combination of the basis vectors, and the combination is unique because the basis vectors are independent.
- 2 vectors can't span all of \mathbb{R}^3 , even if they are independent.
- 4 vectors can't be independent, even if they span \mathbb{R}^3 .

Standard Basis for \mathbb{R}^n

• Standard basis for \mathbb{R}^2 :

$$i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad j = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• Standard basis for \mathbb{R}^3 :

$$\boldsymbol{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \boldsymbol{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \boldsymbol{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• Standard basis for \mathbb{R}^n :

Column vectors of the $n \times n$ identity matrix $\begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$

Basis is not Unique

- The columns of *every invertible nxn matrix* give a basis for \mathbb{R}^n :
- In \mathbb{R}^3 , i, j, k(standard basis) is a basis

$$\mathbf{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 is a basis.

Consider
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A is invertible, full column rank, full row rank.

 \therefore Column vectors of *A* is also a basis.

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} : ?$$

Properties of Basis

- Columns of A is a basis: (A: nxn)
 - -N(A) contains only the zero vector.
 - The only solution to Ax = 0 is x = 0.
 - The columns are independent.
 - The column space is the whole space \mathbf{R}^n .
 - -Ax = b can always be solved by $x = A^{-1}b$.
- \Rightarrow in one sentence

The vectors v_1, v_2, \dots, v_n are basis for \mathbb{R}^n exactly when they are the columns of an $n \times n$ invertible matrix. Thus \mathbb{R}^n has infinitely many different bases.

Pivot Columns are a Basis

• When the columns are dependent, keep only the pivot columns. They are independent and span the column space.

The pivot columns of A are a basis for C(A).

The pivot rows of A are basis for its row space.

So are the pivot rows of its echelon form *R*.

Pivot Columns are a Basis - Example

$$A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} \quad \Rightarrow \quad R = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

- The pivot column (2, 3) of A is a basis for C(A). The second column (4, 6) of A would be a different basis.
- The pivot column (1, 0) of R is a basis for C(R).
- C(A) and C(R) are different. Their bases are different.
- Dimensions of C(A) and C(R) are the same.
- The row space of *A* is the *same* as the row space of *R*.
- There are infinitely many bases to choose from.
 - One natural choice is to pick the nonzero rows of R (rows with a pivot).

Basis for
$$C(A)$$
: $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Basis for the row space: $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Pivot Columns are a Basis - Example

$$R = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- Pivot columns: column 1 and 3
 - -(1, 0, 0), (0, 1, 0) are basis for C(R). Subspace of \mathbb{R}^3 .
 - Column 1 and 4 are also a basis for C(R). Subspace of \mathbb{R}^3 .
 - Column 2 and 3 are also a basis for C(R). Subspace of \mathbb{R}^3 .
 - Column 2 and 4 are also a basis for C(R). Subspace of \mathbb{R}^3 .
 - Column 1 and 2 are not a basis for C(R).
- Pivot rows: row 1 and 2
 - -(1,2,0,3), (0,0,1,4) are basis for row space. Subspace of \mathbb{R}^4 .

Dimension of a Vector Space

- There are many choices for the basis vectors, but the *number* of basis vectors doesn't change.
- Theorem

If v_1, v_2, \dots, v_m and w_1, w_2, \dots, w_n are both bases for the same vector space, then m = n.

- The number of basis vectors doesn't change.
- Definition

Dimension of a space is the number of vectors in every basis.

- Dimension of $C(A) = \operatorname{rank}(A)$

Independence, Basis, Dimension

Extended Concept of Basis

- The words independence, basis, dimension are not restricted to column vectors.
- Examples: see next slide
 - Matrix spaces
 - Function spaces

Matrix Spaces

- M: set of all 2x2 matrices.
 - Dimension is 4.
 - One basis: $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
 - Every 2x2 matrix is the linear combination of A_1 , A_2 , A_3 , A_4 .

$$c_1 A_1 + c_2 A_2 + c_3 A_3 + c_4 A_4 = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$

- $-A_1, A_4$ are a basis for a subspace the diagonal matrices.
- $-A_1, A_2, A_4$ are a basis for a subspace the upper triangular matrices. Its dimension is 3.
- What is a basis for the symmetric matrices?
- M: set of all nxn matrices. ???

Function Spaces

- y'' = 0
 - Solution: y = cx + d
 - One basis: x, 1
- y'' = y
 - Solution: $y = ce^x + de^{-x}$
 - One basis: e^x , e^{-x}
- y'' = -y
 - Solution: $y = c \sin x + d \cos x$
 - One basis: $\sin x$, $\cos x$

Z (zero vector)

• In **R**²

```
-A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} Dimension of C(A) = ? One basis: ?
-A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} Dimension of C(A) = ? One basis: ?
-A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} Dimension of C(A) = ? One basis: ?
-Z = \begin{bmatrix} 0 \\ 0 \end{bmatrix} Dimension of Z = ? One basis: ?
```

- Basis for **Z**: ?
- Z can/never? be allowed as a basis.

Question?