O.33 Electron-phonon beyond Fröhlich: dynamical quadrupoles in polar and covalent solids

Guillaume Brunin¹, Henrique Pereira Coutada Miranda¹, Matteo Giantomassi¹, Miquel Royo², Massimiliano Stengel^{2,3}, Matthieu J. Verstraete^{4,5}, Xavier Gonze^{1,6}, Gian-Marco Rignanese¹ and Geoffroy Hautier¹

⁶Skolkovo Institute of Science and Technology, Moscow, Russia

First-principles computations of electron-phonon related properties in polar and covalent solids have gained popularity in the last five years. In polar semiconductors, the long-range electrostatic interactions lead to the dipolar Fröhlich divergence of the electron-phonon coupling matrix elements. This contribution was recently generalized to anisotropic materials, opening up a first avenue for computations of electron-phonon effects in polar materials [1].

In this talk, we include the treatment of quadrupolar fields beyond the Fröhlich interaction in the electron-phonon vertex in semiconductors. Such quadrupolar fields induce additional long-range interactions that have to be taken into account for accurate physical results. We apply our formalism to Si (nonpolar), GaAs, and GaP (polar) and demonstrate that phonon-limited electron mobilities show large errors if dynamical quadrupoles are not properly treated.

¹ UCLouvain, Institute of Condensed Matter and Nanoscience, Chemin des Étoiles 8, 1348 Louvain-la-Neuve, Belgium

²Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain

³ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain ⁴NanoMat/Q-Mat/CESAM, Université de Liège (B5), B-4000 Liège, Belgium ⁵Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, 08193 Bellaterra, Spain

^[1] Phys. Rev. Lett. **115**, 176401 (2015), Phys. Rev. B **92**, 054307 (2015)