| AD |  |
|----|--|
|    |  |

Award Number: DAMD17-01-1-0809

TITLE: Influences of Nutrition and Physical Forces on Bone

Structure/Function Properties

PRINCIPAL INVESTIGATOR: Steven A. Goldstein, Ph.D.

Barbara McCreadie, Ph.D. Michael Morris, Ph.D.

CONTRACTING ORGANIZATION: University of Michigan

Ann Arbor, Michigan 48109-1274

REPORT DATE: October 2002

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;

Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

## REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

| 1. AGENCY USE ONLY (Leave          | 2. REPORT DATE             | 3. REPORT TYPE AND |                             |  |  |
|------------------------------------|----------------------------|--------------------|-----------------------------|--|--|
| blank)                             | October 2002               | Annual (17 Sep     | 01 - 16 Sep 02)             |  |  |
| 4. TITLE AND SUBTITLE              |                            | 5. FUNDING NUMBERS |                             |  |  |
| Influences of Nutrition            |                            | n Bone             | DAMD17-01-1-0809            |  |  |
| Structure/Function Prope           | erties                     |                    |                             |  |  |
|                                    |                            |                    |                             |  |  |
|                                    |                            |                    |                             |  |  |
| 6. AUTHOR(S)                       | D.                         |                    |                             |  |  |
| Steven A. Goldstein, Ph.           |                            |                    |                             |  |  |
| Barbara McCreadie, Ph.D.           |                            |                    |                             |  |  |
| Michael Morris, Ph.D.              |                            |                    |                             |  |  |
| 7. PERFORMING ORGANIZATION NAI     | ME(S) AND ADDRESS(ES)      |                    | 8. PERFORMING ORGANIZATION  |  |  |
| 7. PERFORMING ONGANIZATION NA      | ME(O) AND ADDITEOU(EO)     |                    | REPORT NUMBER               |  |  |
| University of Michigan             |                            |                    |                             |  |  |
| Ann Arbor, Michigan 481            | 09-1274                    |                    |                             |  |  |
| Ain Albor, Michigan 401            | 12/4                       |                    |                             |  |  |
| E-Mail: stevegld@umich.            | edu                        |                    |                             |  |  |
| Z Marz. Seevegracamzem             |                            |                    |                             |  |  |
| 9. SPONSORING / MONITORING AGE     | NCY NAME(S) AND ADDRESS(ES | 3)                 | 10. SPONSORING / MONITORING |  |  |
|                                    |                            |                    | AGENCY REPORT NUMBER        |  |  |
| U.S. Army Medical Resear           | ch and Materiel Comma      | nd                 |                             |  |  |
| Fort Detrick, Maryland             |                            |                    |                             |  |  |
|                                    |                            |                    |                             |  |  |
|                                    |                            |                    |                             |  |  |
| 11. SUPPLEMENTARY NOTES            |                            |                    |                             |  |  |
|                                    |                            |                    |                             |  |  |
| Report contains color.             |                            |                    |                             |  |  |
|                                    |                            |                    | 12b. DISTRIBUTION CODE      |  |  |
| 12a. DISTRIBUTION / AVAILABILITY S | SIAIEMENI                  |                    | 12b. DISTRIBUTION CODE      |  |  |
| Approved for Public Rele           | ago. Distribution Unl      | imited             |                             |  |  |
| Approved for Public Refe           | ase; Discribation one      | THIT COU           |                             |  |  |
|                                    |                            |                    |                             |  |  |
|                                    |                            |                    |                             |  |  |

#### 13. ABSTRACT (Maximum 200 Words)

The purpose of this research program is to contribute towards two major objectives in support of advancing our ability to prevent or treat bone failure or fragility:

- 1. Developing and characterizing methods of evaluating bone properties in animal models that goes beyond measures of bone density and global mechanical properties.
- 2. Evaluating the influence of physical forces and nutritional status on bone biomechanical integrity.

Specifically, it was the purpose of this study to apply a hierarchical approach to quantifying the properties of murine bone to the level of the extracellular matrix. Furthermore, the study was designed to test hypotheses concerning the interplay between vitamin D and calcium nutritional support and physical forces.

Progress during the first year of study has followed the proposed statement of work. All of the mechanical fixtures have been fabricated and calibrated. This included a custom designed and fabricated treadmill system for exercising the animals, as well as whole bone and microspecimen mechanical testing fixtures. The first cohorts of animals have been entered into the study as scheduled and the bones from the first group of animals are beginning to be characterized. Finally, a database structure has been created and scheduled for continuing cohorts of animals prescribed.

| 14. SUBJECT TERMS bone biomechanics, medosteoporosis | ition, fragility,                                     | 15. NUMBER OF PAGES 20 16. PRICE CODE                |                                      |
|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|--------------------------------------|
| 17. SECURITY CLASSIFICATION OF REPORT Unclassified   | 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified | 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified | 20. LIMITATION OF ABSTRACT Unlimited |

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

## **Table of Contents**

| Cover                        | 1     |
|------------------------------|-------|
| SF 298                       | 2     |
| Introduction                 | 4     |
| Body                         | 4-9   |
| Key Research Accomplishments | 9     |
| Reportable Outcomes          | 10    |
| Conclusions                  | 10    |
| References                   | 10    |
| Appendices                   | 10-20 |

### A. Introduction

It is well known that the maintenance and adaptation of bone integrity is dependent on a complex interaction of metabolic and environmental factors (mechanical stresses, nutritional status). Unfortunately, the specific relationships between these factors and the biomechanical competence of bone tissue remains incompletely quantified. As a result, strategies for preventing or effectively treating bone fragility or enhancing general bone health are far from being optimized. The specific goals of this research program is to contribute to two major objectives in support of reducing the incidence of fracture:

- a. The development and application of microimaging and testing techniques in animal models to study bone structure function properties.
- b. Exploring the influence of calcium and vitamin D metabolism and physical forces on bone integrity.

## B. Body

The progress of this research program is described below, as a function of the statements of work that were approved by the USAMRMC for the first year. The statement of work was proposed as follows:

- 1, The acquisition of DBP founder mice and breeding will be performed during year 1 and 2 to produce 180 animals for testing.
- 2, Mechanical fabrication and calibration of all testing holders and test fixtures will be completed during the first nine months of study. Maintenance, recalibration and replacement of parts will continue years 2 through 4.
- 3, Micro CT, whole bone testing of DBP mice will be completed years 1 and 2.
- 4. Microspecimen production and testing of DBP bones will be completed years 2 through 3.
- 5. Micro CT, Whole bone testing of C57BL/56 and C3H/HeJ bones will be conducted years 1 through 3.
- 6. Microspecimen testing of C57BL/6J and C3H/HeJ bone will be tested years 2.5 through year 3.5.
- 7. Raman imaging, SEM, and light microscopy of DBP mice bone will be conducted in years 1 to 3.
- 8. Raman imaging, SEM, and light microscopy of C57BL/J6 and C3H/HeJ bone will be tested year 2 through 3.5.
- 9. Final data analyses and correlations across all mice and groups will be completed during year 4.

Since most of the tasks were described as objectives to be completed over 1 to 3 years, the progress report can't follow these 9 tasks precisely. We have presented the specific tasks that were proposed for completion during the first year. The tasks are outlined in "bold" followed by a description of the accomplishments.

Mechanical fabrication and calibration of all testing holders and test fixtures will be completed during the first nine months of study.

### 1. Treadmills and exercise protocol

The initial plan was to use a forced running wheel. In exploring the use of the wheels, it became clear that the mice tended to hop instead of run, cling to the walls or slide to avoid running. To avoid these problems and implement a more reliable system to apply physical loads, we designed, fabricated and calibrated a treadmill system. The systems were modeled from a commercially available instrument from Columbus Instruments (rodent treadmill). Performing the design and fabrication in our laboratory enabled us to have a custom optimized design and save substantial costs. The treadmill is illustrated below.



**Table 1: Exercise Protocol** 

| Week | Days | Speed   | Duration |
|------|------|---------|----------|
| Wook | Days | (m/min) | (min)    |
| 0    | 3-5  | 8       | 10-15    |
| 1    | 1-2  | 10      | 15       |
| 1    | 3-5  | 10      | 18       |
| 2    | 1-2  | 12      | 18       |
| 2    | 3-5  | 12      | 22       |
| 3    | 1-2  | 14      | 22       |
| 3    | 3-5  | 14      | 26       |
| 4    | 1-2  | 17      | 26       |
| 4    | 3-5  | 17      | 30       |
| 5-8  | 1-5  | 17      | 30       |



Two treadmills were fabricated and calibrated. Each treadmill is capable of exercising up to eight mice in individual lanes. The user can adjust the running speed from 4 to 35 m/min and the running surface can be inclined from -15° to 15° above horizontal. A stimulus can be created using electrical shock grids to encourage the mice to run. The intensity of the stimulus is user controlled and ranges from 0 - 150 volts. These treadmills are used five days a week for approximately 2 hours/day. The protocol used for exercising is shown in Table 1 and was based on the exercise regime of a previous study (Kohut 2001). In the

protocol, 'Days' refers to successive exercising days (ex. 1-2 = Mon & Tues; 3-5 = Wed - Fri.) This particular protocol allows for training up to a speed of 17 m/min for 30 minutes. In order to feasibly manage the large cohort of mice over the duration of the research program, the mice are divided such that there will be 9 week periods where two groups of 24 mice will be exercised following the protocol, with the groups being staggered by one week.

## **Exercise Protocol:**

The mice are placed on the treadmill in their respective lanes with the belt still and shock grids on. The next step is to start the belt at 10m/min, start the timer, and ensure the mice are running. After each minute, the speed of the treadmill is increased by 1m/min until the desired speed is reached. At this point, the mice are run until the predetermined amount of time has elapsed. Then the belt and shock grids are deactivated and the mice are returned to their cages. If at any point during the experiment a mouse becomes exhausted, the mouse must be removed and allowed time to rest.

#### **Exhaustion:**

We have developed guidelines to determine when a mouse should be removed from the treadmill due to exhaustion based on experience and consultation with laboratory animal medicine veterinarians. The guidelines are:

- a. Being shocked for greater than 5 consecutive seconds on the shock grid without attempting to reengage the treadmill.
- b. Continuously falling back onto the shock grid.
- c. Sustaining an injury that would hinder further exercise.

# 2. Development and fabrication of the mechanical testing fixtures and systems.

The devices and protocols for both the four-point bending of the femurs (Figure 2) and the vertebral compression testing (Figure 3) have been developed and tested. Various mechanical and material properties will be determined from these tests. Both systems function by utilizing the devices within the testing frame of an MTS Bionix servo-hydraulic testing system. A Matlab program was written for analysis and is fully functioning.



Figure 2: Four-point bending fixtures to test of a mouse femur.



Figure 3: Compression system to test a mouse vertebra.

# Acquire and begin to evaluate the DBP mice for evaluating the effects of vitamin D and physical exercise on bone properties.

DBP breeder mice (4 females and 2 males) have been obtained from Dr. Nancy Cooke at the University of Pennsylvania. These mice are being used to generate our own population of heterozygote breeders. Due to background noise, homozygous breeders cannot be used. We have also developed protocols for genotyping the newborn mice. We expect to have sufficient experimental animals to enter the vitamin D cohorts within the next 6 months

# Acquire and begin to evaluate the C3H/HeJ and C57BL/6J mice to evaluate the effects of calcium metabolism and physical exercise on bone properties.

The C3H/HeJ and the C57BL/6J mice are ordered through Jackson Laboratory. The mice have been numbered in increments of 7 starting with the number 2 (2, 9, 16, 23, etc.) to help avoid clerical errors. Currently 144 of the 360 mice have already been entered in the study and the first 48 were sacrificed on 9/10/02. The second cohort of 48 mice was sacrificed on 10/30/02. A new cohort of 48 mice has already been acquired and is currently going through the exercise protocols. A page from our database of animals is illustrated below to demonstrate how the experimental design is incorporated in the record. Note the numbering scheme that increments by 7 for each animal.

| Mouse ID | Cage ID | Group | Mark | Sex | Strain | DOB | Diet | Exercise |
|----------|---------|-------|------|-----|--------|-----|------|----------|
| 674      | 25a     |       | R    | М   | C57    |     | Low  | Yes      |
| 681      | 25b     |       | L    | М   | C57    |     | Low  | Yes      |
| 688      | 25c     |       | В    | М   | C57    |     | Low  | Yes      |
| 695      | 25d     |       | N    | М   | C57    |     | Low  | Yes      |
| 702      | 26      | 3b    | R    | М   | C57    |     | Low  | No       |
| 709      | 26      |       | L    | М   | C57    |     | Low  | No       |
| 716      | 26      |       | В    | М   | C57    |     | Low  | No       |
| 723      | 26      |       | Ν    | M   | C57    |     | Low  | No       |
| 730      | 27      | 3a    | R    | F   | C57    |     | Norm | Yes      |
| 737      | 27      |       | L    | F   | C57    |     | Norm | Yes      |
| 744      | 27      |       | В    | F   | C57    |     | Norm | Yes      |
| 751      | 27      |       | Ν    | F   | C57    |     | Norm | Yes      |
| 758      | 28      | 3b    | R    | F   | C57    |     | Norm | No       |
| 765      | 28      |       | L    | F   | C57    |     | Norm | No       |
| 772      | 28      |       | В    | F   | C57    |     | Norm | No       |
| 779      | 28      |       | N    | F   | C57    |     | Norm | No       |
| 786      | 29a     | 3a    | R    | М   | C57    |     | High | Yes      |
| 793      | 29b     |       | L    | М   | C57    |     | High | Yes      |

| 800  | 29c        |     | В | М | C57 | High | Yes |
|------|------------|-----|---|---|-----|------|-----|
| 807  | 29d        |     |   |   | C57 | High | Yes |
| 814  | 30         |     |   | M | C57 | High | No  |
| 821  | 30         |     |   | M | C57 | High | No  |
| 828  | 30         |     | * | M | C57 | High | No  |
| 835  | 30         |     |   | M | C57 | High | No  |
| 842  | 31         |     |   | F | C57 | Low  | Yes |
| 849  | 31         | -ra |   | F | C57 | Low  | Yes |
| 856  | 31         |     |   | F | C57 | Low  | Yes |
| 863  | 31         |     |   | F | C57 | Low  | Yes |
| 870  |            |     |   | F | C57 | Low  | No  |
| 877  | 32         |     | 1 | F | C57 | Low  | No  |
| 884  | 32         |     | B | F | C57 | Low  | No  |
| 891  | 32         |     |   | F | C57 | Low  | No  |
|      |            |     |   | M | C57 | Norm | Yes |
| 898  | 33a        |     |   | M | C57 | Norm | Yes |
| 905  | 33b<br>33c |     |   | M | C57 | Norm | Yes |
| 912  |            |     |   |   |     |      | Yes |
| 919  | 33d        |     |   | M | C57 | Norm |     |
| 926  |            |     |   | M | C57 | Norm | No  |
| 933  | 34         |     |   | M | C57 | Norm | No  |
| 940  | 34         |     |   | M | C57 | Norm | No  |
| 947  | 34         |     |   | M | C57 | Norm | No  |
| 954  |            |     | R | F | C57 | High | Yes |
| 961  | 35         |     | L | F | C57 | High | Yes |
| 968  | 35         |     | В | F | C57 | High | Yes |
| 975  |            |     |   | F | C57 | High | Yes |
| 982  |            |     | R | F | C57 | High | No  |
| 989  |            |     | L | F | C57 | High | No  |
| 996  |            |     | В | F | C57 | High | No  |
| 1003 |            |     | N | F | C57 | High | No  |
| 1010 | 37a        | 4a  | R | F | C57 | High | Yes |
| 1017 | 37b        |     | L | F | C57 | High | Yes |

### Sacrifice Procedures and Additional Protocol

Although we didn't propose to conduct studies for hematology and serum chemistry analysis in our initial grant application, in hindsight, after completion of the first round of exercise and nutrition modulation studies, we believe that it would be valuable to examine these parameters. It is well established that exercise can affect hematologic parameters. For instance, exercise increases red cell volume and hemoglobin concentration. In addition, it is important that we determine the general health of the treatment animals relative to controls. Although we have taken great care to appropriately acclimate the mice to exercise, it is possible that the exercise may cause an increased level of stress. Alterations in general health will be indicated by changes in white blood cell and red blood cell parameters. This is obviously an important consideration for the interpretation of our final results because alterations in general health may adversely impact bone remodeling. In addition to the measurement of hematologic parameters, it is also prudent to study a number of serum-based indices. Specifically, we propose to measure Ca, P, Vitamin D, osteocalcin, and the resorption marker NTx. The dietary treatments, as well as exercise, could affect serum mineral concentrations as well as parameters of bone remodeling (osteocalcin an NTx). As a result, we have modified our protocols at sacrifice to take a blood sample from each of the mice. This procedure requires a chamber induction with 5% isoflurane gas with 1% oxygen anesthesia. The anesthesia is maintained with a mask at 2% isoflurane with 1% oxygen (for 10-15 minutes). When a surgical plane of anesthesia has been achieved (as determined by muscle relaxation, lack of a conscious response to superficial pain, and absence of a palpebral reflex) a pasteur pipette is used to collect 250 microliters of blood by retro-orbital bleeding. The blood is collected into an EDTA tube, centrifuged, and plasma frozen at -70 Following bleeding, the mouse is then sacrificed via cervical dislocation. This is an AVMA approved method for mice and the mice are anesthetized while cervical dislocation is performed. Bilateral pneumothorax is preformed to ensure death. The mice are then frozen and the bones extracted for testing as needed. The right femur and the 8th caudal vertebrae will then be micro-CT scanned. From these scans, geometric features, such as the femoral cross sectional area and the vertebral trabecular number, can be determined. In addition, four-point bending will be performed on the right femurs and the vertebrae will be compression tested to collect mechanical data on the bones.

## C. Key Research Accomplishments

- Designed and fabricated exercise treadmills
- Implemented exercise protocol and developed guidelines for exhaustion of mice
- Designed, fabricated and calibrated mechanical testing hardware and software.
- Developed and implemented database management tools for entire program
- Acquired and in progress of breeding DBP mice
- Completed protocols for first 96 animals in calcium/exercise groups and all are sacrificed and evaluation of bone properties is underway
- Completed schedule and have already entered next cohort of 48 animals into calcium and exercise groups
- Developed new protocol for blood acquisition at sacrifice to monitor metabolic and bone turnover parameters; implemented for first cohort of sacrificed animals

## D. Reportable Outcomes

No abstracts or publications have been completed to date. Study has just ended first year and first groups of animals are presently under evaluation.

### E. Conclusions

The first year of work has been extremely successful and we have accomplished all of our proposed tasks and are slightly ahead of schedule. It should be noted that the breeding of the DBP mice has been more difficult than anticipated and we are looking for ways to accelerate that process in order to stay on schedule for that study cohort. The design and use of the two treadmills had gone extremely well and we expect to have our first bone structure/function data within the next 3 months.

#### F. References

Kohut, ML, Boehm, GW, Moynihan, JA 2001 Moderate exercise is associated with enhanced antigen-specific cytokine, but not IgM antibody production is aged mice. Mech Ageing Dev 122:1135-1150.

## G. Appendices

We have included a printout of our databases for the animals entered into the study.

A1: Rpt Mouse Info: This demonstrates our main database in Access and the animals entered into the exercise study to date.

A2: Food consumption database output record.

A3: Schedule tables for entering next several cohorts for calcium study that demonstrates how the timetables are developed.

# Rpt\_Mouse\_Info

| mouse_id | cageid | sex | dob       | diet   | strain | exercise     | group_number |
|----------|--------|-----|-----------|--------|--------|--------------|--------------|
| 2        | 1      | М   | 4/21/2002 | Low    | C57    | ✓            | 1            |
| 9        | 1      | М   | 4/21/2002 | Low    | C57    | $\checkmark$ | 1            |
| 16       | 1      | M   | 4/21/2002 | Low    | C57    | $\checkmark$ | 1            |
| 23       | 1 .    | M   | 4/21/2002 | Low    | C57    | $\checkmark$ | 1            |
| 30       | 2      | M   | 4/21/2002 | Low    | C57    |              | 1            |
| 37       | 2      | М   | 4/21/2002 | Low    | C57    |              | 1            |
| 44       | 2      | М   | 4/21/2002 | Low    | C57    |              | 1            |
| 51       | 2      | M   | 4/21/2002 | Low    | C57    |              | 1            |
| 58       | 3      | F   | 4/21/2002 | Normal | C57    | $\checkmark$ | 1            |
| 65       | 3      | F   | 4/21/2002 | Normal | C57    | <b>✓</b>     | 1            |
| 72       | 3      | F   | 4/21/2002 | Normal | C57    | V            | 1            |
| 79       | 3      | F   | 4/21/2002 | Normal | C57    | V            | 1            |
| 86       | 4      | F   | 4/21/2002 | Normal | C57    |              | 1            |
| 93       | 4      | F   | 4/21/2002 | Normal | C57    |              | 1            |
| 100      | 4      | F   | 4/21/2002 | Normal | C57    |              | 1            |
| 107      | 4      | F   | 4/21/2002 | Normal | C57    |              | 1            |
| 114      | 5      | M   | 4/21/2002 | High   | C57    | $\checkmark$ | 1            |
| 121      | 5      | М   | 4/21/2002 | High   | C57    | $\checkmark$ | 1            |
| 128      | 5      | М   | 4/21/2002 | High   | C57    | $\checkmark$ | 1            |
| 135      | 5      | M   | 4/21/2002 | High   | C57    | $\checkmark$ | 1            |
| 142      | 6      | M   | 4/21/2002 | High   | C57    |              | 1            |
| 149      | 6      | M   | 4/21/2002 | High   | C57    |              | 1            |
| 156      | 6      | M   | 4/21/2002 | High   | C57    |              | 1            |
| 163      | 6      | M   | 4/21/2002 | High   | C57    |              | 1            |
| 170      | 7      | M   | 4/21/2002 | Low    | C57    | $\checkmark$ | 1            |
| 177      | 7      | M   | 4/21/2002 | Low    | C57    | $\checkmark$ | 1            |
| 184      | 7      | М   | 4/21/2002 | Low    | C57    | $\checkmark$ | 1            |
| 191      | 7      | М   | 4/21/2002 | Low    | C57    | $\checkmark$ | 1            |
|          |        |     |           |        |        |              |              |

| mouse_id | cageid | sex | dob       | diet   | strain | exercise     | group_number |
|----------|--------|-----|-----------|--------|--------|--------------|--------------|
| 198      | 8      | М   | 4/21/2002 | Low    | C57    |              | 1            |
| 205      | 8      | M   | 4/21/2002 | Low    | C57    |              | 1            |
| 212      | 8      | M   | 4/21/2002 | Low    | C57    |              | 1            |
| 219      | 8      | М   | 4/21/2002 | Low    | C57    |              | i            |
| 226      | 9      | F   | 4/21/2002 | Normal | СЗН    | V            | 1            |
| 233      | 9      | F   | 4/21/2002 | Normal | СЗН    | $\checkmark$ | 1            |
| 240      | 9      | F   | 4/21/2002 | Normal | СЗН    | V            | 1            |
| 247      | 9      | F   | 4/21/2002 | Normal | СЗН    | V            | 1            |
| 254      | 10     | F   | 4/21/2002 | Normal | СЗН    |              | 1            |
| 261      | 10     | F   | 4/21/2002 | Normal | СЗН    |              | 1            |
| 268      | 10     | F   | 4/21/2002 | Normal | СЗН    |              | 1            |
| 275      | 10     | F   | 4/21/2002 | Normal | СЗН    |              | 1            |
| 282      | 11     | M   | 4/21/2002 | High   | СЗН    | $\checkmark$ | 1            |
| 289      | 11     | M   | 4/21/2002 | High   | СЗН    | ✓            | 1            |
| 296      | 11     | M   | 4/21/2002 | High   | СЗН    | $\checkmark$ | 1            |
| 303      | 11     | M   | 4/21/2002 | High   | СЗН    | $\checkmark$ | 1            |
| 310      | 12     | M   | 4/21/2002 | High   | СЗН    |              | 1            |
| 317      | 12     | M   | 4/21/2002 | High   | СЗН    |              | 1            |
| 324      | 12     | M   | 4/21/2002 | High   | СЗН    |              | 1            |
| 331      | 12     | M   | 4/21/2002 | High   | СЗН    |              | 1            |
| 338      | 13     | F   | 4/28/2002 | Low    | C57    | $\checkmark$ | 2            |
| 345      | 13     | F   | 4/28/2002 | Low    | C57    | $\checkmark$ | 2            |
| 352      | 13     | F   | 4/28/2002 | Low    | C57    | $\checkmark$ | 2            |
| 359      | 13     | F   | 4/28/2002 | Low    | C57    | $\checkmark$ | 2            |
| 366      | 14     | F   | 4/28/2002 | Low    | C57    |              | 2            |
| 373      | 14     | F   | 4/28/2002 | Low    | C57    |              | 2            |
| 380      | 14     | F   | 4/28/2002 | Low    | C57    |              | 2            |
| 387      | 14     | F   | 4/28/2002 | Low    | C57    |              | 2            |
| 394      | 15     | M   | 4/28/2002 | Normal | C57    | $\checkmark$ | 2            |
| 401      | 15     | М   | 4/28/2002 | Normal | C57    | V            | 2            |
|          |        |     |           |        |        |              |              |

| mouse_id | cageid | sex | dob       | diet   | strain | exercise     | group_number |
|----------|--------|-----|-----------|--------|--------|--------------|--------------|
| 408      | 15     | М   | 4/28/2002 | Normal | C57    | $\checkmark$ | 2            |
| 415      | 15     | M   | 4/28/2002 | Normal | C57    | $\checkmark$ | 2            |
| 422      | 16     | M   | 4/28/2002 | Normal | C57    |              | 2            |
| 429      | 16     | M   | 4/28/2002 | Normal | C57    |              | 2            |
| 436      | 16     | M   | 4/28/2002 | Normal | C57    |              | 2            |
| 443      | 16     | M   | 4/28/2028 | Normal | C57    |              | 2            |
| 450      | 17     | F   | 4/28/2002 | High   | C57    | $\checkmark$ | 2            |
| 457      | 17     | F   | 4/28/2002 | High   | C57    | $\checkmark$ | 2            |
| 464      | 17     | F   | 4/28/2002 | High   | C57    | $\checkmark$ | 2            |
| 471      | 17     | F   | 4/28/2002 | High   | C57    | $\checkmark$ | 2            |
| 478      | 18     | F   | 4/28/2002 | High   | C57    |              | 2            |
| 485      | 18     | F   | 4/28/2002 | High   | C57    |              | 2            |
| 492      | 18     | F   | 4/28/2002 | High   | C57    |              | 2            |
| 499      | 18     | F   | 4/28/2002 | High   | C57    |              | 2            |
| 506      | 19     | F   | 4/28/2002 | Low    | СЗН    | V            | 2            |
| 513      | 19     | F   | 4/28/2002 | Low    | СЗН    | $\checkmark$ | 2            |
| 520      | 19     | F   | 4/28/2002 | Low    | СЗН    | <b>✓</b>     | 2            |
| 527      | 19     | F   | 4/28/2002 | Low    | СЗН    | $\checkmark$ | 2            |
| 534      | 20     | F   | 4/28/2002 | Low    | СЗН    |              | 2            |
| 541      | 20     | F   | 4/28/2002 | Low    | СЗН    |              | 2            |
| 548      | 20     | F   | 4/28/2002 | Low    | СЗН    |              | 2            |
| 555      | 20     | F   | 4/28/2002 | Low    | СЗН    |              | 2            |
| 562      | 21     | М   | 4/28/2002 | Normal | СЗН    | V            | 2            |
| 569      | 21     | М   | 4/28/2002 | Normal | СЗН    | $\checkmark$ | 2            |
| 576      | 21     | M   | 4/28/2002 | Normal | СЗН    | $\checkmark$ | 2            |
| 583      | 21     | M   | 4/28/2002 | Normal | СЗН    | V            | 2            |
| 590      | 22     | М   | 4/28/2002 | Normal | СЗН    |              | 2            |
| 597      | 22     | M   | 4/28/2002 | Normal | СЗН    |              | 2            |
| 604      | 22     | M   | 4/28/2002 | Normal | СЗН    |              | 2            |
| 611      | 22     | M   | 4/28/2002 | Normal | СЗН    |              | 2            |
|          |        |     |           |        |        |              |              |

| mouse_id | cageid | sex | dob       | diet | strain | exercise     | group_number |
|----------|--------|-----|-----------|------|--------|--------------|--------------|
| 618      | 23     | F   | 4/28/2002 | High | СЗН    | ✓            | 2            |
| 625      | 23     | F   | 4/28/2002 | High | СЗН    | $\checkmark$ | 2            |
| 632      | 23     | F   | 4/28/2002 | High | СЗН    | $\checkmark$ | 2            |
| 639      | 23     | F   | 4/28/2002 | High | СЗН    | $\checkmark$ | 2            |
| 646      | 24     | F   | 4/28/2002 | High | СЗН    |              | 2            |
| 653      | 24     | F   | 4/28/2002 | High | СЗН    |              | 2            |
| 660      | 24     | F   | 4/28/2002 | High | СЗН    |              | 2            |
| 667      | 24     | F   | 4/28/2002 | High | СЗН    |              | 2            |

| Cage | Group |      | Date of   | Starting   | Leftover   | Consump. | # mice  | avg           |            |
|------|-------|------|-----------|------------|------------|----------|---------|---------------|------------|
| ID   | ID    | Week | leftover  | Amount (g) | amount (g) | by cage  | in cage | comsum./mouse | Special    |
| 1    | 1     | 1    | 19-Jul-02 | 119.7      | 48.2       | 71.5     | 4       | 17.875        |            |
| 2    |       | 1    |           | 121.4      | 36.2       | 85.2     | 4       | 21.3          |            |
| 3    |       | 1    |           | 118.2      | 61.7       | 56.5     | 4       | 14.125        |            |
| 4    |       | 1    |           | 116.8      | 60.5       | 56.3     | 4       | 14.075        |            |
| 5    |       | 1    |           | 120.4      | 55.3       | 65.1     | 4       | 16.275        |            |
| 6    |       | 1    |           | 117.9      | 41.6       | 76.3     | 4       | 19.075        |            |
| 7    |       | 1    |           | 119.4      | 37.5       | 81.9     | 4       | 20.475        |            |
| 8    |       | 1    |           | 120.2      | 38         | 82.2     | 4       | 20.55         |            |
| 9    |       | 1    |           | 116.9      | 62.6       | 54.3     | 4       | 13.575        |            |
| 10   |       | 1    |           | 117.3      | 51.3       | 66       | 4       | 16.5          |            |
| 11   |       | 1    |           | 119.7      | 21.5       | 98.2     | 4       | 24.55         |            |
| 12   |       | 1    |           | 116.3      | 22.6       | 93.7     | 4       | 23.425        |            |
| 1    | 1     | 2    | 26-Jul-02 | 141.3      | 41.8       | 99.5     | 4       | 24.875        |            |
| 2    |       | 2    |           | 141.1      | 14.8       | 126.3    | 4       | 31.575        |            |
| 3    |       | 2    |           | 139.1      | 60.7       | 78.4     | 4       | 19.6          |            |
| 4    |       | 2    |           | 138.8      | 51.1       | 87.7     | 4       | 21.925        | Cage '5' = |
| 5a   |       | 2    |           | 36.3       | 5.7        | 30.6     | 1       | 30.6          | 32.1       |
| 5c   |       | 2    |           | 36.8       | 3.2        | 33.6     | 1       | 33.6          |            |
| 6    |       | 2    |           | 139.3      | 41.6       | 97.7     | 4       | 24.425        |            |
| 7    |       | 2    |           | 140        | 45.5       | 94.5     | 4       | 23.625        |            |
| 8    |       | 2    |           | 139.6      | 40.8       | 98.8     | 4       | 24.7          |            |
| 9    |       | 2    |           | 105.9      | 35.5       | 70.4     | 3       | 23.46666667   |            |
| 10   |       | 2    |           | 140.6      | 56.5       | 84.1     | 4       | 21.025        |            |
| 11   |       | 2    |           | 140.9      | 38.4       | 102.5    | 4       | 25.625        |            |
| 12   |       | 2    |           | 140.4      | 35.5       | 104.9    | 4       | 26.225        |            |
| 1a   | 1     | 3    | 2-Aug-02  | 35.1       | 6.5        | 28.6     | 1       | 28.6          | Cage '1' = |
| 1b   |       | 3    |           | 35.8       | 10.1       | 25.7     | 1       | 25.7          | 25.825     |
| 1c   |       | 3    |           | 35.1       | 7.8        | 27.3     | 1       | 27.3          |            |
| 1d   |       | 3    |           | 35.7       | 14         | 21.7     | 1       | 21.7          |            |
| 2    |       | 3    |           | 141.2      | 27.5       | 113.7    | 4       | 28.425        |            |
| 3    |       | 3    |           | 141.7      | 63.4       | 78.3     | 4       | 19.575        |            |
| 4    |       | 3    |           | 140.3      | 58.8       | 81.5     | 4       | 20.375        | Cage '5' = |
| 5a   |       | 3    |           | 37.1       | 11.6       | 25.5     | 1       | 25.5          | 27.9       |
| 5c   |       | 3    |           | 37.6       | 7.3        | 30.3     | 1       | 30.3          | ****       |
| 6    |       | 3    |           | 140.4      | 45.4       | 95       | 4       | 23.75         |            |
| 7    |       | 3    |           | 141.2      | 46.6       | 94.6     | 4       | 23.65         |            |
| 8    |       | 3    |           | 139.3      | 42.2       | 97.1     | 4       | 24.275        |            |
| 9    |       | 3    |           | 103.6      | 33.9       | 69.7     | 3       | 23.23333333   |            |
| 10   |       | 3    |           | 139.3      | 57.1       | 82.2     | 4       | 20.55         |            |
| 11   |       | 3    |           | 140.4      | 47.4       | 93       | 4       | 23.25         |            |
| 12   |       | 3    |           | 141.8      | 33.6       | 108.2    | 4       | 27.05         |            |

| Cage       | Group |      | Date of   | Starting   | Leftover   | Consump. | # mice  | avg           |           |
|------------|-------|------|-----------|------------|------------|----------|---------|---------------|-----------|
| ID         | ID    | Week | leftover  | Amount (g) | amount (g) | by cage  | in cage | comsum./mouse | Special   |
| 1a         | 1     | 4    | 9-Aug-02  | 36.2       | 8          | 28.2     | 1       | 28.2          |           |
| <b>1</b> b |       | 4    |           | 35.7       | 10.3       | 25.4     | 1       | 25.4          |           |
| 1c         |       | 4    |           | 34.4       | 7.4        | 27       | 1       | 27            | Cage 1 =  |
| 1d         |       | 4    |           | 33.9       | 11.9       | 22       | 1       | 22            | 25.65     |
| 2          |       | 4    |           | 139.7      | 34         | 105.7    | 4       | 26.425        |           |
| 3          |       | 4    |           | 139.2      | 55.9       | 83.3     | 4       | 20.825        |           |
| 4          |       | 4    |           | 141.2      | 55.9       | 85.3     | 4       | 21.325        |           |
| 5a         |       | 4    |           | 35.7       | 7.8        | 27.9     | 1       | 27.9          | Cage 5 =  |
| 5c         |       | 4    |           | 36.1       | 5.3        | 30.8     | 1       | 30.8          | 29.35     |
| 6          |       | 4    |           | 140.9      | 43.4       | 97.5     | 4       | 24.375        |           |
| 7          |       | 4    |           | 141.2      | 49.1       | 92.1     | 4       | 23.025        |           |
| 8          |       | 4    |           | 140        | 52.3       | 87.7     | 4       | 21.925        |           |
| 9          |       | 4    |           | 105.9      | 33.3       | 72.6     | 1       | 72.6          |           |
| 10         |       | 4    |           | 140.6      | 53.7       | 86.9     | 4       | 21.725        |           |
| 11         |       | 4    |           | 139.4      | 43.9       | 95.5     | 4       | 23.875        |           |
| 12         |       | 4    |           | 142.3      | 34.8       | 107.5    | 4       | 26.875        |           |
| 13         | 2     | 1    | 9-Aug-02  | 141.5      | 60.3       | 81.2     | 4       | 20.3          |           |
| 14         |       | 1    |           | 139.4      | 58.8       | 80.6     | 4       | 20.15         |           |
| 15a        |       | 1    |           | 35.2       | 5          | 30.2     | 1       | 30.2          | Cage 15 = |
| 15b        |       | 1    |           | 36.6       | 9.8        | 26.8     | 1       | 26.8          | 28.35     |
| 15c        |       | 1    |           | 34.1       | 7          | 27.1     | 1       | 27.1          |           |
| 15d        |       | 1    |           | 36.4       | 7.1        | 29.3     | 1       | 29.3          |           |
| 16         |       | 1    |           | 140.3      | 33.9       | 106.4    | 4       | 26.6          |           |
| 17         |       | 1    |           | 141.6      | 51.8       | 89.8     | 4       | 22.45         |           |
| 18         |       | 1    |           | 142.1      | 50         | 92.1     | 4       | 23.025        |           |
| 19         |       | 1    |           | 142.1      | 55         | 87.1     | 4       | 21.775        |           |
| 20         |       | 1    |           | 141.2      | 51.8       | 89.4     | 4       | 22.35         |           |
| 21         |       | 1    |           | 139.4      | 32.6       | 106.8    | 4       | 26.7          |           |
| 22         |       | 1    |           | 138.2      | 26.2       | 112      | 4       | 28            |           |
| 23         |       | 1    |           | 142.3      | 47.3       | 95       | 4       | 23.75         |           |
| 24         |       | 1    |           | 142.9      | 38         | 104.9    | 4       | 26.225        |           |
| 1a         | 1     | 5    | 16-Aug-02 | 35.1       | 9          | 26.1     | 1       | 26.1          |           |
| 1b         |       | 5    |           | 39.3       | 15         | 24.3     | 1       | 24.3          | Cage 1 =  |
| 1c         |       | 5    |           | 36.8       | 11.9       | 24.9     | 1       | 24.9          | 24.775    |
| 1d         |       | 5    |           | 35.4       | 11.6       | 23.8     | 1       | 23.8          |           |
| 2          |       | 5    |           | 140.5      | 31.5       | 109      | 4       | 27.25         |           |
| 3          |       | 5    |           | 139.9      | 54.2       | 85.7     | 4       | 21.425        |           |
| 4          |       | 5    |           | 141.5      | 54         | 87.5     | 4       | 21.875        |           |
| 5a         |       | 5    |           | 35.7       | 8          | 27.7     | 1       | 27.7          | Cage 5 =  |
| 5c         |       | 5    |           | 37.6       | 3          | 34.6     | 1       | 34.6          | 31.15     |
| 6          |       | 5    |           | 141.7      | 43.6       | 98.1     | 4       | 24.525        |           |
| 7          |       | 5    |           | 140.4      | 54.2       | 86.2     | 4       | 21.55         |           |
| 8          |       | 5    |           | 143.1      | 67.1       | 76       | 4       | 19            |           |
| 9          |       | 5    |           | 107        | 35.5       | 71.5     | 3       | 23.83333333   |           |
| 10         |       | 5    |           | 140        | 55.9       | 84.1     | 4       | 21.025        |           |
| 11         |       | 5    |           | 141        | 41.8       | 99.2     | 4       | 24.8          |           |
| 12         |       | 5    |           | 141.8      | 34.5       | 107.3    | 4       | 26.825        |           |

| Cage | Group |      | Date of   | Starting   | Leftover   | Consump. | # mice  | avg         |             |
|------|-------|------|-----------|------------|------------|----------|---------|-------------|-------------|
| ID   | ID    | Week | leftover  | Amount (g) | amount (g) | by cage  | in cage |             | Special     |
| 13   | 2     | 2    | 16-Aug-02 | 142.5      | 55.4       | 87.1     | 4       | 21.775      |             |
| 14   |       | 2    |           | 139.5      | 57.4       | 82.1     | 4       | 20.525      |             |
| 15a  |       | 2    |           | 37.5       | 9.4        | 28.1     | 1       | 28.1        | Cage 15 =   |
| 15b  |       | 2    |           | 39.4       | 12.6       | 26.8     | 1       | 26.8        | 26.2        |
| 15c  |       | 2    |           | 38.5       | 15.3       | 23.2     | 1       | 23.2        |             |
| 15d  |       | 2    |           | 36.3       | 9.6        | 26.7     | 1       | 26.7        |             |
| 16   |       | 2    |           | 143.6      | 141.7      | 1.9      | 4       | 0.475       |             |
| 17   |       | 2    |           | 140        | 139        | 1        | 4       | 0.25        |             |
| 18   |       | 2    |           | 142.3      | 139.3      | 3        | 4       | 0.75        |             |
| 19   |       | 2    |           | 142.4      | 61.9       | 80.5     | 4       | 20.125      |             |
| 20   |       | 2    |           | 140        | 55.4       | 84.6     | 4       | 21.15       |             |
| 21   |       | 2    |           | 140.7      | 45.7       | 95       | 4       | 23.75       |             |
| 22   |       | 2    |           | 140.7      | 42.4       | 98.3     | 4       | 24.575      |             |
| 23   |       | 2    |           | 141.8      | 51.7       | 90.1     | 4       | 22.525      |             |
| 24   |       | 2    |           | 140.6      | 44.7       | 95.9     | 4       | 23.975      |             |
| 1a   | 1     | 6    | 23-Aug-02 | 35.2       | 8.7        | 26.5     | 1       | 26.5        | Cage 1 =    |
| 1b   |       | 6    |           | 37         | 11.3       | 25.7     | 1       | 25.7        | 26.83333333 |
| 1c   |       | 6    |           | 37.2       | 8.9        | 28.3     | 1       | 28.3        |             |
| 2    |       | 6    |           | 141.9      | 28.8       | 113.1    | 4       | 28.275      |             |
| 3    |       | 6    |           | 141.5      | 53.6       | 87.9     | 4       | 21.975      |             |
| 4    |       | 6    |           | 141.4      | 53.9       | 87.5     | 4       | 21.875      |             |
| 5c   |       | 6    |           | 36.3       | 7.7        | 28.6     | 1       | 28.6        | 28.6        |
| 6    |       | 6    |           | 142.5      | 47.1       | 95.4     | 4       | 23.85       |             |
| 7    |       | 6    |           | 140.3      | 39.1       | 101.2    | 4       | 25.3        |             |
| 8    |       | 6    |           | 140.3      | 56.9       | 83.4     | 4       | 20.85       |             |
| 9    |       | 6    |           | 106.2      | 34.7       | 71.5     | 3       | 23.83333333 |             |
| 10   |       | 6    |           | 141.5      | 55.3       | 86.2     | 4       | 21.55       |             |
| 11   |       | 6    |           | 139.7      | 43.4       | 96.3     | 4       | 24.075      |             |
| 12   |       | 6    |           | 139.9      | 32         | 107.9    | 4       | 26.975      |             |
| 13   | 2     | 3    | 23-Aug-02 | 139.1      | 44.8       | 94.3     | 4       | 23.575      |             |
| 14   |       | 3    |           | 140.7      | 49.9       | 90.8     | 4       | 22.7        |             |
| 15a  |       | 3    |           | 40.9       | 13.8       | 27.1     | 1       | 27.1        | Cage 15 =   |
| 15b  |       | 3    |           | 36.5       | 6.9        | 29.6     | 1       | 29.6        | 26.05       |
| 15c  |       | 3    |           | 37.5       | 15.1       | 22.4     | 1       | 22.4        |             |
| 15d  |       | 3    |           | 37.4       | 12.3       | 25.1     | 1       | 25.1        |             |
| 16   |       | 3    |           | 44         | 51.3       | -7.3     | 4       | -1.825      |             |
| 17   |       | 3    |           | 52.5       | 50.4       | 2.1      | 4       | 0.525       |             |
| 18   |       | 3    |           | 45         | 26.5       | 18.5     | 4       | 4.625       |             |
| 19   |       | 3    |           | 141.9      | 53.8       | 88.1     | 4       | 22.025      |             |
| 20   |       | 3    |           | 141.2      | 55         | 86.2     | 4       | 21.55       |             |
| 21   |       | 3    |           | 140.1      | 56         | 84.1     | 4       | 21.025      |             |
| 22   |       | 3    |           | 141.1      | 48.5       | 92.6     | 4       | 23.15       |             |
| 23   |       | 3    |           | 140.1      | 50.9       | 89.2     | 4       | 22.3        |             |
| 24   |       | 3    |           | 140.9      | 51.5       | 89.4     | 4       | 22.35       |             |

| Cage | Group |      | Date of   | Starting   | Leftover   | Consump. | # mice  | avg           |             |
|------|-------|------|-----------|------------|------------|----------|---------|---------------|-------------|
| ID   | ID    | Week | leftover  | Amount (g) | amount (g) | by cage  | in cage | comsum./mouse | Special     |
| 1a   | 1     | 7    | 30-Aug-02 | 36.2       |            | 36.2     | 1       | 36.2          | Cage 1 =    |
| 1b   |       | 7    |           | 37.1       |            | 37.1     | 1       | 37.1          | 36.96666667 |
| 1c   |       | 7    |           | 37.6       |            | 37.6     | 1       | 37.6          |             |
| 2    |       | 7    |           | 141.2      |            | 141.2    | 4       | 35.3          |             |
| 3    |       | 7    |           | 140.4      |            | 140.4    | 4       | 35.1          |             |
| 4    |       | 7    |           | 140.8      |            | 140.8    | 4       | 35.2          |             |
| 5c   |       | 7    |           | 34.9       |            | 34.9     | 1       | 34.9          | 34.9        |
| 6    |       | 7    |           | 140.7      |            | 140.7    | 4       | 35.175        |             |
| 7    |       | 7    |           | 139.2      |            | 139.2    | 4       | 34.8          |             |
| 8    |       | 7    |           | 141.2      |            | 141.2    | 4       | 35.3          |             |
| 9    |       | 7    |           | 105.6      |            | 105.6    | 3       | 35.2          |             |
| 10   |       | 7    |           | 141.6      |            | 141.6    | 4       | 35.4          |             |
| 11   |       | 7    |           | 138.8      |            | 138.8    | 4       | 34.7          |             |
| 12   |       | 7    |           | 141        |            | 141      | 4       | 35.25         |             |
| 13   | 2     | 4    | 30-Aug-02 | 139.7      |            | 139.7    | 4       | 34.925        |             |
| 14   |       | 4    |           | 140.8      |            | 140.8    | 4       | 35.2          |             |
| 15a  |       | 4    |           | 36.7       |            | 36.7     | 1       | 36.7          | Cage 15 =   |
| 15b  |       | 4    |           | 37.6       |            | 37.6     | 1       | 37.6          | 36.625      |
| 15c  |       | 4    |           | 35.2       |            | 35.2     | 1       | 35.2          |             |
| 15d  |       | 4    |           | 37         |            | 37       | 1       | 37            |             |
| 16   |       | 4    |           | 142.2      |            | 142.2    | 4       | 35.55         |             |
| 17   |       | 4    |           | 139.2      |            | 139.2    | 4       | 34.8          |             |
| 18   |       | 4    |           | 141.9      |            | 141.9    | 4       | 35.475        |             |
| 19   |       | 4    |           | 141.9      |            | 141.9    | 4       | 35.475        |             |
| 20   |       | 4    |           | 140.5      |            | 140.5    | 4       | 35.125        |             |
| 21   |       | 4    |           | 141.6      |            | 141.6    | 4       | 35.4          |             |
| 22   |       | 4    |           | 140.3      |            | 140.3    | 4       | 35.075        |             |
| 23   |       | 4    |           | 143.2      |            | 143.2    | 4       | 35.8          |             |
| 24   |       | 4    |           | 140.6      |            | 140.6    | 4       | 35.15         |             |

|          |                  |           |             | · · · · · |      |      | ,        |      | _    |          |        |        |          |        |        |         | ,    |      |        |      |      | _       |        |        |         |        |        |     |
|----------|------------------|-----------|-------------|-----------|------|------|----------|------|------|----------|--------|--------|----------|--------|--------|---------|------|------|--------|------|------|---------|--------|--------|---------|--------|--------|-----|
|          |                  |           | Total       | 15        | 15   | 15   | 15       | 15   | 15   | 15       | 15     | 15     | 15       | 15     | 15     | 15      | 15   | 15   | 15     | 15   | 15   | 15      | 15     | 15     | 15      | 15     | 15     | 360 |
|          | 2-Aug 11)        |           | Group 10    | 0         | 0    | 0    | 0        | 0    | 0    | 0        | 0      | 0      | 0        | 0      | 0      | 0       | ε    | 0    | 0      | 3    | 0    | 3       | 0      | ε      | 3       | 0      | દ      | 18  |
| Period 5 | (June 2-4        |           | Group 9     | 0         | 0    | 0    | 0        | 0    | 0    | 0        | 0      | 0      | 0        | 0      | 0      | 3       | 0    | 3    | 3      | 0    | 3    | 0       | 4      | 0      | 0       | 3      | 0      | 19  |
|          | 1-June 2)        |           | Group 8     | 0         | 3    | 0    | 0        | 3    | 0    | 4        | 0      | 4      | 3        | 0      | 3      | 0       | 4    | 0    | 0      | 4    | 0    | 4       | 0      | 4      | 4       | 0      | 4      | 44  |
| Period 4 | (March 24-June   |           | Group 7     | 5         | 0    | 4    | 3        | 0    | က    | 0        | 3      | 0      | 0        | 3      | 0      | 4       | 0    | 4    | 4      | 0    | 4    | 0       | 4      | 0      | 0       | 4      | 0      | 45  |
|          | 6-March 24)      |           | Group 6     | 0         | 4    | 0    | 0        | 4    | 0    | 4        | 0      | 4      | 4        | 0      | 4      | 0       | 4    | 0    | 0      | 4    | 0    | 4       | 0      | 4      | 4       | 0      | 4      | 48  |
| Period 3 | (Jan 6-Ma        |           | Group 5     | 4         | 0    | 4    | 4        | 0    | 4    | 0        | 4      | 0      | 0        | 4      | 0      | 4       | 0    | 4    | 4      | 0    | 4    | 0       | 4      | 0      | 0       | 4      | 0      | 48  |
|          | -Dec 9)          |           | Group 4     | 0         | 4    | 0    | 0        | 4    | 0    | 4        | 0      | 4      | 4        | 0      | 4      | 0       | 0    | 0    | 0      | 0    | 0    | 0       | 0      | 0      | 0       | 0      | 0      | 24  |
| Period 2 | (Sept 23         |           | Group 3     | 3         | 0    | 9    | 4        | 0    | 4    | 0        | 4      | 0      | 0        | 4      | 0      | 0       | 0    | 0    | 0      | 0    | 0    | 0       | 0      | 0      | 0       | 0      | 0      | 25  |
|          | pt 23)           |           | Group 2     | 0         | 4    | 0    | 0        | 4    | 0    | 3        | 0      | 3      | 4        | 0      | 4      | 0       | 4    | 0    | 0      | 4    | 0    | 4       | 0      | 4      | 4       | 0      | 4      | 46  |
| Period 1 | (July 1-Sept 23) |           | Group 1     | 3         | 0    | -    | 4        | 0    | 4    | 0        | 4      | 0      | 0        | 4      | 0      | 4       | 0    | 4    | 4      | 0    | 4    | 0       | 3      | 0      | 0       | 4      | 0      | 43  |
|          |                  | Male or   | Female      | Male      | Male | Male | Male     | Male | Male | Female   | Female | Female | Female   | Female | Female | Male    | Male | Male | Male   | Male | Male | Female  | Female | Female | Female  | Female | Female |     |
|          |                  | Exercise  | (yes or no) | yes       | yes  | yes  | ou       | ou   | ou   | yes      | yes    | yes    | no       | no     | no     | yes     | yes  | yes  | no     | no   | no   | yes     | yes    | yes    | ou      | no     | no     |     |
|          |                  |           | Diet        | low       | norm | high | low      | norm | high | low      | norm   | high   | low      | norm   | high   | low     | norm | high | Nol    | norm | high | woi     | norm   | high   | low     | norm   | high   |     |
|          |                  | Strain of | Mouse       | C57BL/6J  |      |      | C57BL/6J |      |      | C57BL/6J |        |        | C57BL/6J |        |        | СЗН/НеЛ |      |      | СЗН/Не |      |      | СЗН/НеЛ |        |        | СЗН/НеЛ |        |        |     |

|                                  |                       | _    | 1 -  | 1      | T =      | _    | _    | -        | -      | -      | T =      | _      | -      | -       | -    | -    |         | _    | 6    | <u> </u> | -      | -      |         | 6      |        | <u> </u> |
|----------------------------------|-----------------------|------|------|--------|----------|------|------|----------|--------|--------|----------|--------|--------|---------|------|------|---------|------|------|----------|--------|--------|---------|--------|--------|----------|
| #                                | mechanical            | 0    | 0    | 0      | 0        | 0    | 0    | 0        | 0      | 0      | 0        | 0      | 0      | 0       | 0    | 0    | 0       | 0    | 0    | 0        | 0      | 0      | 0       | 0      | 0      | 0        |
|                                  | # analyzed            | 0    | 0    | 0      | 0        | 0    | 0    | 0        | 0      | 0      | 0        | 0      | 0      | 0       | 0    | 0    | 0       | 0    | 0    | 0        | 0      | 0      | 0       | 0      | 0      | 0        |
|                                  | # scanned             | 0    | 0    | 0      | 0        | 0    | 0    | 0        | 0      | 0      | 0        | 0      | 0      | 1       | 8    | 2    | 0       | 0    | 2    | 0        | 3      | 0      | 0       | 4      | 0      | 15       |
|                                  | # to be<br>Exercised  | 6    | 7    | 8      | 7        | 7    | 7    | 8        | 7      | 8      | 7        | 4      | 7      | 11      | 11   | 11   | 11      | 11   | 11   | 11       | 12     | 11     | 11      | 11     | 11     | 222      |
|                                  | # Currently Exercised | 8    | 4    | 9      | 4        | 4    | 4    | 4        | 4      | 4      | 4        | 4      | 4      | 0       | 0    | 0    | 0       | 0    | 0    | 0        | 0      | 0      | 0       | 0      | 0      | 49       |
| # Finished<br>with<br>Exercising | and                   | 3    | 4    | +      | 4        | 7    | 4    | ε        | 7      | 8      | 4        | 4      | 4      | 4       | 4    | 4    | 4       | 4    | 4    | 4        | 3      | 4      | 4       | 4      | 4      | 89       |
|                                  | Male or<br>Female     | Male | Male | Male   | Male     | Male | Male | Female   | Female | Female | Female   | Female | Female | Male    | Male | Male | Male    | Male | Male | Female   | Female | Female | Female  | Female | Female |          |
|                                  | Exercise (ves or no)  | yes  | yes  | yes    | no       | ou   | ou   | yes      | yes    | sek    | ou       | no     | ou     | yes     | yes  | yes  | no      | no   | no   | yes      | yes    | yes    | ou      | no     | no     |          |
|                                  | Diet                  | No   | ٦    | $\Box$ | low      | п    | high | low      |        | high   | wol      | _      | high   | low     | norm | high | low     | norm | high | low      | norm   | high   | low     | norm   | high   |          |
|                                  | Strain of<br>Mouse    |      |      |        | C57BL/6J |      |      | C57BL/6J |        |        | C57BL/6J |        |        | СЗН/НеЛ |      |      | СЗН/НеЛ |      |      | СЗН/НеЛ  |        |        | СЗН/НеЛ |        |        | total    |