# Research and Teaching Overview

Guy Rosman 1/15/15











# Aspects of future robotic vision

Adaptive sensors



 Efficient sufficient statistics for lifelong learning



 Semantic-level understanding of the scene; of humans



## What does it afford us?

 More efficient and effective sensing subsystems,

 Robotic systems should interact with a much broader spectrum of environments.

#### **Current status**

#### 3D sensing

- Adaptive 3D scanning CVPR'16 submission, journal in preparation
- Improved 3D scanners, 3D reconstruction CVPR'14, CVPR '15

#### Coresets for visual summarization

- New k-segment mean coreset NIPS'14 journal in preparation
- Using coreset for localization and search ICRA'15 (new challenges – how to generalize to multimodal? To multitask?)

#### Inference in 3D and multimodal data

- Manhattan frames representation for scenes (CVPR'14)
- Multiuser summarization of human activities (CVPR'16 submission)
- On the role of 3D representation in multiple tasks (CVPR'16 submission)







### Plans Ahead

3D sensing – faster, higher (semantically), more accurate

- Realtime adaptive 3D scanning
- Semantically adaptive 3D scanning
- Incorporating visual and geometry priors into sensing

Coresets for visual summarization

- Learned representation for segmentation coresets
- Viewpoint-robust coresets

Inference in 3D and multimodal data

- Sensor planning in semantic models integrating users and sensors
- Semantic-level sensing breaking the sense reconstructanalyze









#### **Educational vision**

- Structured teaching
  - Slide set lecture problem sets project exam
- TA in charge (6 years) Numerical Geometry of Images (<a href="http://webcourse.cs.technion.ac.il/236861">http://webcourse.cs.technion.ac.il/236861</a>)
  - Advanced Graduate Course
  - EECS Students had to catch up on differential geometry, optimization
  - End projects are individual, some with industry, some led to conference papers
  - 15-20 students per class, individual-level teaching (universities are not MOOCs)
  - Created most of the slides set still in use.
- Relevant high-level courses:
  - CS5330 pattern recognition and computer vision
  - CS5320 Digital image processing
  - CS5310 Computer graphics
  - CS5350 Applied Geometric Representation and Computation
- Basic CS courses
  - Programming, graphs and data structures, numerical analysis / linear algebra, probability
- Diverse teaching background (academy, industry, army)

