

CLASSROOM CONTACT PROGRAMME

(Academic Session : 2024 - 2025)

ENTHUSIAST ADVANCE COURSE

PHASE: MEA, B, C, D, L, M, N, O, P & Q

TARGET: PRE MEDICAL 2025

Test Type : MAJOR Test Pattern : NEET (UG)

TEST DATE: 03-12-2024

	_				
	-			EY	,
-	-30		•		

Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	1	2	1	1	3	1	2	1	3	2	3	1	1	1	3	4	1	2	3	2	2	4	1	1	2	1	1	3	3	3
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	3	2	1	2	4	1	4	2	1	1	2	4	4	3	3	3	2	3	2	4	3	1	2	2	3	4	3	2	1	3
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	1	3	1	4	2	4	2	1	2	3	3	1	1	1	3	4	4	3	3	4	1	4	3	3	2	4	3	1	3	3
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	2	4	2	2	3	1	2	2	3	4	4	3	2	4	4	1	1	2	4	4	3	3	1	2	4	2	2	4	2	3
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	4	2	1	2	3	1	3	3	3	1	3	2	3	3	4	4	1	1	4	1	2	4	1	3	2	4	3	2	3	2
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	3	2	4	3	3	1	1	3	3	1	2	2	4	2	4	2	4	4	4	4	2	1	4	2	4	3	3	1	4	1
Q.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200										
Α.	3	2	2	4	2	3	4	4	1	4	2	1	4	3	3	4	1	4	4	1										

HINT - SHEET

SUBJECT: PHYSICS

SECTION-A

1. Ans (1)

$$\frac{Q}{W} = \frac{\mu C_P \Delta T}{\mu R \Delta T}$$
 (as P is constant)

$$=\frac{C_P}{R}=\frac{C_P}{C_P-C_V}=\frac{C_P/C_V}{\left(\frac{C_P}{C_V}-1\right)}=\frac{\gamma}{\gamma-1}$$

3. Ans (1)

$$IB \Rightarrow T \uparrow \Rightarrow (\Delta U)_1 = +ve$$

IT
$$\Rightarrow$$
 T = Const. \Rightarrow $(\Delta U)_2 = 0$

$$AD \Rightarrow T \downarrow \Rightarrow (\Delta U)_3 = -ve$$

4. Ans (1)

$$W_{DE} = \frac{1}{2}(600 + 300)3.0 = \frac{1}{2}(900)(3.0)J$$

$$W_{EF} = 300 (-3.0) = -900 J$$

$$W = W_{DE} + W_{EF}$$

$$=\frac{1}{2}(900)(3.0)-900$$

$$= 450 \text{ J}$$

$5. \quad \mathbf{Ans}(3)$

$$C = C_V + \frac{R}{\gamma - 1}$$

for water
$$C_V = \frac{6}{2}R \& \gamma = \frac{7}{6}$$

$$C = 3R + \frac{R}{\left(\frac{7}{6} - 1\right)} \Rightarrow C = 3R + 6R = 9R$$

6. Ans (1)

$$\eta = \frac{T_1 - T_2}{T_1} \times 100$$

$$\frac{300 - 150}{300} \times 100 = 50\%$$

Ans (2) 7.

Mean K.E. per molecule =
$$\frac{3}{2}$$
 K_BT $\frac{(KE)_{O_2}}{(KE)_{H_2}} = 1$

8. Ans (1)

$$\begin{aligned} v_{RMS} &= \sqrt{\frac{3RT}{M_W}} \\ \frac{v_2}{v_1} &= \sqrt{\frac{927 + 273}{27 + 273}} & \Rightarrow \frac{v_2}{v_1} &= \sqrt{\frac{1200}{300}} \\ \Rightarrow v_2 &= 2v_1 \end{aligned}$$

9. Ans (3)

NCERT XI Pg # 324

10. Ans (2)

PV = nRT(1)
V = constant

$$\Delta$$
 PV = nR Δ T(2)
(2) ÷ (1)

$$\frac{\Delta P}{P} = \frac{\Delta T}{T}$$

$$\frac{0.5}{100} = \frac{2}{T}$$

$$\Rightarrow T = 400 \text{ K} \quad \text{OR} \quad 127^{\circ} \text{ C}$$

OR

11. Ans (3)

The given diagram shows that the curves more away from the origin is at higher temperature.

127° C

12. Ans (1)

$$U = U_1 + U_2$$

$$\frac{f}{2} (n_1 + n_2) RT = \frac{f}{2} n_1 RT_0 \frac{tf}{2} n R (2T_0)$$

$$\Rightarrow (n_1 + n_2) T = n_1 T_0 + n_2 (2T_0)$$

$$\Rightarrow 6T = 2T_0 + 8T_0$$

$$T = \frac{10T_0}{6} = \frac{5}{3}T_0$$

13. Ans (1)

Relation of gram specific heat C_p and C_v is

$$C_p - C_v = \frac{R}{M_w}$$

$$O_2 \Rightarrow C_p - C_v = \frac{R}{32} \Rightarrow a = \frac{R}{32}$$

$$N_2 \Rightarrow C_p - C_v = \frac{R}{28} \Rightarrow b = \frac{R}{28}$$

$$\frac{a}{b} = \frac{28}{32} = \frac{7}{8}$$

14. Ans (1)

P
$$\propto$$
 T³
 \Rightarrow P⁻¹ T³ = constant
 \Rightarrow P⁻¹(PV)³ = constant \Rightarrow PV \propto T
 \Rightarrow P²V³ = constant
 \Rightarrow PV^{3/2} = constant
So $\gamma = \frac{3}{2}$

15. Ans (3)

$$\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$
In the first 10 minute
$$\frac{62 - 50}{10} = K \left[\frac{62 + 50}{2} - \theta_0 \right]$$

In next 10 minute

 \Rightarrow 1.2 = K[56 – θ_0]

In next 10 minute
$$\frac{50 - 42}{10} = K \left[\frac{50 + 42}{2} - \theta_0 \right]$$

$$\Rightarrow 0.8 = K[46 - \theta_0] \quad(ii)$$
from equations (i) and (ii)
$$\frac{1.2}{0.8} = \frac{(56 - \theta_0)}{(46 - \theta_0)} \Rightarrow \theta_0 = 26 \text{ °C}$$

16. Ans (4)

$$\begin{split} &\lambda_{m} \propto \frac{1}{T} \\ &\Rightarrow \frac{\lambda^{'}_{m}}{\lambda_{m}} = \frac{2000}{3000} \,\Rightarrow \lambda^{'}_{m} = \frac{2}{3} \,\,\lambda m \end{split}$$

17. Ans (1)

$$T = 2\pi \sqrt{\frac{M}{K}} \quad \therefore Mg = K\ell$$
Therefore $T = 2\pi \sqrt{\frac{(M+m)\ell}{Mg}}$

18. Ans (2)

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$now k' = 4k$$

$$\therefore T' = \frac{T}{2}$$

19. Ans (3)

$$v = \omega \sqrt{a^2 - x^2}$$
at $x = \frac{a}{\sqrt{2}} \Rightarrow v = \omega \sqrt{a^2 - \frac{a^2}{2}}$

$$\Rightarrow v = \frac{2\pi}{T} \left(\frac{9}{\sqrt{2}}\right)$$

$$\Rightarrow = \frac{\sqrt{2\pi}a}{T}$$

20. Ans (2)

Total potential energy 0.04 J

Resting potential energy = 0.01 J

Maximum kinetic energy = (0.04 - 0.01)

$$= 0.03 \text{ J} = \frac{1}{2} \text{ m}\omega^2 a^2 = \frac{1}{2} \text{ ka}^2$$
$$0.03 = \frac{1}{2} \times \text{k} \times \left(\frac{20}{1000}\right)^2$$

 $k = 0.06 \times 2500 \text{ N/m} = 150 \text{ N/m}$

21. Ans (2)

$$A_1 = 4$$
, $A_2 = 3$, $f_1 = 202$ Hz, $f_2 = 200$ Hz

beat frequency $f_b = 202 - 200 = 2 \text{ Hz}$

$$\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(A_1 + A_2)^2}{(A_1 - A_2)^2} = \frac{49}{1}$$

22. Ans (4)

$$\upsilon_0 = \frac{1}{2L} \sqrt{\frac{F}{\mu}}$$

$$\frac{416 = \frac{1}{2L} \sqrt{\frac{4kg\omega t}{\mu}}}{416 = \frac{1}{2(2L)} \sqrt{\frac{F}{\mu}}}$$

$$1 = 2\sqrt{\frac{4}{F}}$$

$$F = 16 \text{ kg}$$

23. Ans (1)

Equation of the harmonic progressive wave given $y = a \sin 2\pi (bt - cx)$

Here
$$2\pi v = \omega = 2\pi b$$

$$\Rightarrow v = b$$

$$k = \frac{2\pi}{\lambda} = 2\pi c \Rightarrow \frac{1}{\lambda} = c$$

(Here c is the symbol given for $\frac{1}{\lambda}$ and not the velocity)

$$\therefore$$
 Velocity of the wave = $n\lambda = b \left(\frac{1}{c}\right) = \frac{b}{c}$

$$\frac{dy}{dt} = a2\pi b \cos 2\pi (bt - cx) = a\omega \cos(\omega t - kx)$$

Maximum particle velocity = $a\omega = a2\pi b = 2\pi ab$

given this is
$$2 \times \frac{b}{a}$$

i.e.,
$$2\pi ab = \frac{2b}{c} \text{ or } c = \frac{1}{\pi a}$$
.

24. Ans (1)

$$f_n = nf_1 = 252 \text{ Hz}; f_{n+1} = (n+1) f_1 = 336 \text{ Hz}.$$
Now $\frac{f_n}{f_{n+1}} = \frac{n}{n+1} = \frac{252}{336}$
 $\Rightarrow n = 3 : f_1 = \frac{252}{336} = 84 \text{ Hz}$

25. Ans (2)

$$e = \frac{L_2 - 3L_1}{2} = \frac{32 - 30}{2} = 1 \text{ cm}$$

26. Ans (1)

$$\frac{\lambda}{4} = \ell_1 + e \& \frac{3\lambda}{4} = \ell_2 + e$$

$$\Rightarrow \lambda = 2(\ell_2 - \ell_1)$$

speed of sound = $f\lambda$

$$v = 512 \times 2 \times 34 \times 10^{-2} = 348 \text{ m/s}$$

27. Ans (1)

Let the final temperature of mixture be θ . Then $100 \times 80 + 100(\theta - 0) = 100 \times 1 \times (100 - \theta)$ Solving, we get $\theta = 10^{\circ}$ C

28. Ans (3)

Heat gain by water = Heat loss by steam $\Rightarrow MS_w (80-16) = m S_w (100-80) + mL$ $\Rightarrow 1400 \times 1 \times (64) = m \times 1 \times (20) + m \times 540$ $\Rightarrow m = 160 \text{ gram}.$

29. Ans (3)

$$v = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{\gamma RT}{M_w}}$$

$$\therefore v \propto \sqrt{\frac{\gamma}{M_w}}$$

$$\frac{v_1}{v_2} = \sqrt{\frac{7/5}{5/3} \times \frac{4}{28}}$$

$$= \frac{\sqrt{3}}{5}$$

30. Ans (3)

When lift accelerates upwards, then effective acceleration on the pendulum

$$g_{eff} = g + \frac{g}{3} = \frac{4g}{3}$$

$$\therefore \text{ Time period T}' = 2\pi \sqrt{\frac{1}{g_{eff}}}$$

$$= 2\pi \sqrt{\frac{1}{\frac{4g}{3}}} = \frac{\sqrt{3}}{2} \cdot 2\pi \sqrt{\frac{1}{g}} = \frac{\sqrt{3}}{2} \text{ T}$$

32. Ans (2)

$$a = -\omega^{2}x$$

$$20 = -\omega^{2} \times 5$$

$$\Rightarrow \omega = 2$$

$$\therefore T = \frac{2\pi}{\omega} = \pi \text{ sec}$$

33. Ans (1)

$$U = \frac{1}{2}kx^{2}$$
at $x = \pm A \Rightarrow U = U_{max} = \frac{1}{2}kA^{2}$

34. Ans (2)

For
$$S_1 \Rightarrow V_1 = \frac{1}{2\pi} \sqrt{\frac{K_1}{m}} \Rightarrow \frac{K_1}{m} = (2\pi v_1)^2$$

For $S_2 \Rightarrow V_2 = \frac{1}{2\pi} \sqrt{\frac{K_2}{m}} \Rightarrow \frac{K_2}{m} = (2\pi v_2)^2$
for combination $V = \frac{1}{2\pi} \sqrt{\frac{K_1 + K_2}{m}}$
 $= \frac{1}{2\pi} \sqrt{\frac{K_1}{m} + \frac{K_2}{m}}$
 $\Rightarrow V = \sqrt{V_1^2 + V_2^2}$

SECTION-B

36. Ans (1)

$$W = \frac{P_i V_i - P_f V_f}{(\gamma - 1)} = \frac{100 \times 4 - 200 \times 3}{(1.4 - 1)}$$
$$= -\frac{200}{0.4} = -500 \text{ J}$$

37. Ans (4)

$$\begin{split} &\frac{1}{2}MV^2 = nC_v\Delta T \\ &\frac{1}{2}MV^2 = \frac{R}{\gamma - 1}\Delta T \\ &\Delta T = \frac{(\gamma - 1)MV^2}{2R} \end{split}$$

38. Ans (2)

$$U = nC_vT$$

As $T_A = T_D$ & $T_B = T_C$ (from graph)
So, $U_A = U_D$ & $U_B = U_C$

39. Ans (1)

This is the case of free expansion and in this case $\Delta W = 0$, $\Delta U = 0$ so temperature remains same i.e. 300 K.

40. Ans (1)

41. Ans (2)

Let length of submerged part = h then $Ah\rho = Al\rho_0$ $\Rightarrow h = \frac{\rho_0 \ell}{\rho}$

$$\therefore T = 2\pi \sqrt{\frac{h}{g}} \implies T = 2\pi \sqrt{\frac{\rho_0 \ell}{\rho g}}$$

42. Ans (4)

At mean position velocity is maximum

i.e.,
$$v_{max} = \omega a \implies \omega = \frac{v_{max}}{a} = \frac{16}{4} = 4$$

 $\therefore v = \omega \sqrt{a^2 - y^2} \implies 8\sqrt{3} = 4\sqrt{4^2 - y^2}$
 $\implies 192 = 16(16 - y^2) \implies 12 = 16 - y^2 \implies y = 2cm$

43. Ans (4)

$$T' = \frac{T}{\sqrt{1 - \frac{\rho}{\sigma}}} = \frac{T}{\sqrt{1 - \frac{1}{8}}} = \sqrt{\frac{8}{7}}T$$

 ρ is density of liquid and σ is density of bob.

44. Ans (3)

$$T = \mu xg$$

$$V = \sqrt{\frac{T}{\mu}} = \sqrt{xg}$$

$$a = V \frac{dV}{dx} = \frac{g}{2}$$

$$S = \frac{1}{2}at^{2}$$

$$\ell = \frac{1}{2}\frac{g}{2} \cdot t^{2}$$

$$\Rightarrow t = 2\sqrt{\frac{\ell}{g}}$$

45. Ans (3)

Beat frequency =
$$f_1 - f_2$$

$$\frac{v}{2\ell} - \frac{v}{2(\ell + x)}$$

$$= \frac{v}{2\ell} \left[1 - \left(1 + \frac{x}{\ell} \right)^{-1} \right]$$

$$\approx \frac{v}{2\ell} \left[1 - 1 + \frac{x}{\ell} \right] = \frac{vx}{2\ell^2}$$

46. Ans (3)

Equivalent electrical circuit will be as shown in figure.

$$A - \hspace{-0.1cm} \stackrel{R}{\longrightarrow} \hspace{-0.1$$

Temperature difference between A and D is 180°C which is equally distributed in all the rods. Therefore, temperature difference between A and B will be 60°C or temperature of B should be 140°C.

47. Ans (2)

$$V = f\lambda$$

for same node $\lambda = \text{constant } v \propto f$

$$\frac{V_2}{V_1} = \frac{f_2}{f_1}, \text{ also } V \propto \sqrt{T}$$

$$\Rightarrow \sqrt{\frac{T_2}{T_1}} = \frac{f_2}{f_1}$$

$$\Rightarrow f_2 = f_1 \sqrt{\frac{T_2}{T_1}} = 400\sqrt{\frac{363}{300}}$$

$$\Rightarrow f_2 = 440 \text{ Hz}$$

48. Ans (3)

$$f \propto \sqrt{T}$$

$$\frac{\Delta f}{f} = \frac{1}{2} \frac{\Delta T}{T}$$

$$\Delta f = \frac{1}{2} \left(\frac{1}{300}\right) (2400)$$

$$= 4 \text{ heat/s}$$

49. Ans (2)

$$n_A = 256$$

As tuning fork A when sounded with tuning fork B gives four beats, therefore the frequency n_B of tuning fork B is,

$$n_B = 256 \pm 4 = 252 \text{ or } 260$$

When the tuning fork A is slightly loaded with wax, the frequency of A decreases and the difference between two frequencies decreases if $n_{\rm B}=252$

As on sounding beats decrease, hence $n_B = 252 \text{ Hz}$.

50. Ans (4)

From graph Equation of SHM

$$x = 1 \sin\left(\frac{2\pi}{8}t\right) \text{ cm}$$

$$v = 1 \left(\frac{2\pi}{8}\right) \sin\left(\frac{2\pi}{8}t\right) \text{ cm/s}$$

$$a = -\left(\frac{2\pi}{8}\right)^2 \sin\left(\frac{2\pi}{8}t\right)$$

$$at t = \frac{4}{3} \text{ s}$$

$$a = -\frac{\pi^2}{16} \times \sin\left(\frac{\pi}{3}\right)$$

$$= -\frac{\pi^2}{16} \times \frac{\sqrt{3}}{2}$$

$$= -\frac{\sqrt{3}}{21} \pi^2 \text{ cm/s}^2$$

SUBJECT: CHEMISTRY

SECTION-A

51. Ans (3)

- (A) Alkyne (C \equiv C) C_nH_{2n-2}
- (B) Alkanol (ROH) $C_nH_{2n+2}O$
- (C) Alkanal $\underset{(-C-H)}{\overset{O}{\parallel}}$ $C_nH_{2n}O$

59. Ans (1)

62. Ans (3)

Ortho effect

66. Ans (4)

72. Ans (1)

HOC∝ no. of carbon

for isomers

$$HOC \propto \frac{1}{Stability}$$

76. Ans (4)

80. Ans (4)

Reaction based

81. Ans (1)

Fact Based

82. Ans (4)

E.S.R. not E.A.R.

SECTION-B

87. Ans (3)

89. Ans (3)

For a molecule to be optically active necessary condition is CHIRALITY i.e., symmetry element must be absent. CHIRAL CARBON is not the necessary condition for a molecule to be optically active.

90. Ans (3)

Compounds which have $\alpha\text{-H}$ in carbonyl nitro compounds can show tautomerism.

92. Ans (4)
Acidic strength $\propto \frac{1}{pK_a}$

98. Ans (2)

$$\begin{array}{cccc} \text{(i)} & CH_3 - CH_2 - CH_2 & \xrightarrow{conc. H_2SO_4} & CH_3 - \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ &$$

(ii)
$$\overset{\text{CH}_3}{\underset{\text{CH}_3}{\mid}} \overset{\text{-CH}}{\underset{\text{CH}_3}{\mid}} \overset{\text{-CH}}{\underset{\text{CH}_3}{\mid}} \overset{\text{conc.H}_2SO_4}{\underset{\text{CH}_3}{\mid}} \overset{\text{CH}_3}{\underset{\text{CH}_3}{\mid}} \overset{\oplus}{\underset{\text{CH}_3}{\mid}} \overset{\bigoplus}{\underset{\text{CH}_3}{\mid}} \overset{\bigoplus$$

$$\begin{array}{c} \text{CH}_3 - \overset{\oplus}{\text{CH}} - \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \xrightarrow{\begin{array}{c} \text{Rearrangemen} \\ \text{Rearrangemen} \\ \end{array}} \\ \begin{array}{c} \text{CH}_3 - \text{C} = \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array}$$

(iii) $CH_3 - CH - OH \xrightarrow{H_2SO_4} CH_3 - CH = CH_2$ $CH_3 - CH = CH_2$ Propylen

conc.

(iv)
$$\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2 & \xrightarrow{\text{H}_2\text{SO}_4}\text{-CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\\ \text{OH} & \\ \text{CH}_3\text{-CH}_2\text{-CH-CH}_3 & \xrightarrow{\text{Rearrangement}} \\ & & \downarrow 440\text{K} & \\ & & \downarrow (-\text{H}^{\oplus}) & \text{CH}_3\text{-CH=CH-CH}_3\\ & & \beta\text{-Butylene} \end{array}$$

100. Ans (4)

% of
$$N_2 = \frac{28 \times 41.9 \times 100}{22400 \times 0.5} = \frac{117320}{11200} = 10.475 \%$$

SUBJECT: BOTANY

SECTION-A

101. Ans (4) NCERT, Pg. # 140, 141, 142

102. Ans (3) NCERT Page No. 143,146

103. Ans (2) NCERT, Pg. # 147

104. Ans (4) NCERT, Pg # 149

105. Ans (4) NCERT Pg. No. # 136

106. Ans (1)

NCERT Pg. # 150

107. Ans (1)

NCERT Pg. # 135

108. Ans (2)

NCERT Pg. # 145

109. Ans (4)

NCERT Pg. # 143

110. Ans (4)

NCERT Pg. # 144

111. Ans (3)

NCERT, Pg. # 139

112. Ans (3)

NCERT Pg. No. # 147

113. Ans (1)

NCERT XI Pg # 147

114. Ans (2)

NCERT XI Pg # 160

115. Ans (4)

NCERT Pg. # 159,160

116. Ans (2)

NCERT, Pg. # 159

117. Ans (2)

NCERT Pg. No. # 158

118. Ans (4)

NCERT-XI Pg. No. # 158

119. Ans (2)

NCERT, XI Pg. # 157

120. Ans (3)

NCERT, Pg. # 159

121. Ans (4)

NCERT Pg. No. # 154

122. Ans (2)

NCERT Pg. # 154

123. Ans (1)

NCERT Pg. # 155, 156

124. Ans (2)

NCERT Pg. # 163

125. Ans (3)

NCERT XI Pg # 162

126. Ans (1)

NCERT XI Pg # 167

127. Ans (3)

NCERT XI Pg # 176, 177, 178

128. Ans (3)

NCERT Pg. # 170

129. Ans (3)

NCERT Pg. No. # 176, 177

130. Ans (1)

NCERT Pg. # 175

131. Ans (3)

NCERG Pg # 176 (E)

132. Ans (2)

NCERT Pg # 175

133. Ans (3)

NCERT XI, Pg. # 176, 177

134. Ans (3)

NCERT-XI, Pg # 175

135. Ans (4)

NCERT Pg # 177, 178 (E)

SECTION-B

136. Ans (4)

NCERT Pg. # 134, 135

137. Ans (1)

NCERT XI Pg # 149

138. Ans (1)

NCERT Pg. No. # 138

139. Ans (4)

NCERT XI Page # 134, 13.1

140. Ans (1)

NCERT Pg. # 149

141. Ans (2)

NCERT Pg. # 160

ALLEN®

143. Ans (1)

NCERT XI Pg # 157

144. Ans (3)

NCERT, Pg. # 156

146. Ans (4)

NCERT XI Pg # 161

147. Ans (3)

NCERT Pg. # 168,169

148. Ans (2)

NCERT Pg. # 169

149. Ans (3)

NCERT Pg. # 175

150. Ans (2)

NCERT Pg. # 176

SUBJECT: ZOOLOGY

SECTION-A

160. Ans (1)

Pg. No. 234 XI-NCERT

171. Ans (2)

NCERT Pg. # 239, 248

172. Ans (1)

NCERT Pg. # 240,241,242,244

173. Ans (4)

NCERT Pg. # 246

174. Ans (2)

Module-1

175. Ans (4)

NCERT Pg. # 239,240,241

180. Ans (1)

NCERT XI Page No. # 304, 305

181. Ans (3)

Thoracic vertebrae, ribs and sternum together form the rib cage.

SECTION-B

189. Ans (1)

NCERT Pg#236

190. Ans (4)

NCERT Pg. # 245

199. Ans (4)

NCERT Pg. # 225,226

200. Ans (1)

NCERT Pg. # 218, 220, 221