STATE OF NEW YORK
DEPARTMENT OF CONSERVATION
WATER RESOURCES COMMISSION

The Ground-Water Resources of Ontario County, New York

By
FREDERICK K. MACK
and
RALPH E. DIGMAN

Geologists, U. S. Geological Survey

Prepared by the

U. S. GEOLOGICAL SURVEY

in cooperation with the

NEW YORK WATER RESOURCES COMMISSION

BULLETIN GW-48
ALBANY, N. Y.

1962

STATE OF NEW YORK DEPARTMENT OF CONSERVATION WATER RESOURCES COMMISSION

The Ground-Water Resources of Ontario County, New York

By
FREDERICK K. MACK
and
RALPH E. DIGMAN

Geologists, U. S. Geological Survey

Prepared by the

U. S. GEOLOGICAL SURVEY

in cooperation with the

NEW YORK WATER RESOURCES COMMISSION

BULLETIN GW-48
ALBANY, N.Y.

STATE OF NEW YORK DEPARTMENT OF CONSERVATION WATER RESOURCES COMMISSION

Harold G. Wilm
J. Burch McMorranSuperintendent of Public Works
Louis J. LefkowitzAttorney General
Herman E. Hilleboe, M. DCommissioner of Health
Don J. WickhamCommissioner of Agriculture and Markets
Keith S. McHughCommissioner of Commerce
John C. ThompsonExecutive Engineer

UNITED STATES

DEPARTMENT OF THE INTERIOR

Stewart L. Udall, Secretary

GEOLOGICAL SURVEY

Thomas B. Noian	Director
Luna B. Leopold	Chief Hydraulic Engineer
O. Milton Hackett	Chief, Ground Water Branch
Ralph C. Heath	District Geologist

CONTENTS

	Page
Abstract	1
Introduction	2
Purpose and scope	2
Methods of investigation	2
Authorship	4
Well-location system	4
Previous investigations	4
Acknowledgments	5
Geography	6
Location and extent	6
Culture	6
Topography	7
Drainage	7
Climate	8
Geology	8
Geologic history	10
Rock units	12
Structure	12
Bedrock topography	15
Ground water	16
Principles and definitions	16
·	18
Occurrence	20
	22
Unconsolidated deposits	22
Water levels	25
Water-bearing units	25
Consolidated rocks	25
Lower shale aquifer	27
Limestone aquifer	28
Upper shale aquifer	29
Sandstone aquifer	30
Unconsolidated deposits	30
Coarse-grained stratified deposits	32
Fine-grained stratified deposits	33
Ouglity of water	33
Quality of water	39
Chemical quality	39
Related to use	44 44
Related to geology	44
Related to construction and pumping of wells	44
Temperature Utilization of ground water	45
Construction of wells	45
	46
Springs	46
Water supplies	47 47
Public supplies	47 47
Industrial supplies	47
Farm and domestic supplies	47 47
Summary and conclusions	50

ILLUSTRATIONS

		Page	
Plate	1.	Map of Ontario County, New York, showing location of selected wells, test holes, and springs (In pocket)	
	2.	Map and cross sections of the bedrock of Ontario County showing generalized water-bearing units and selected formation contacts (In pocket)	
	3.	Map of Ontario County showing areal distribution of surficial deposits(In pocket)	
Figure	1.	Map of New York, exclusive of Long Island, showing location of Ontario County and status of ground-water investigations	
	2.	Graphs showing monthly precipitation at Bristol Springs and temperature and precipitation at Geneva Experiment Station, Hemlock, and Shortsville	
	3.	Map of Ontario County showing the topography of the bedrock surface	16
	4.	Map of the Fishers area showing topography of the bedrock surface	
	5.	Graphs showing water-level fluctuations in observation well 0t 900 and precipitation at Canandaigua 24	
	6.	Map of Ontario County showing dissolved solids content, total hardness, noncarbonate hardness, and iron content of ground water and surface water; distribution of sampling points; and outcrop areas of bedrock aquifers facing 3	38
	7.	Graphs showing the bicarbonate, sulfate, and chloride content and the hardness of water from the water-bearing units of Ontario County 42	
	8.	Graphs showing the chemical character of nine ground-water samples and one surface-water sample	

TABLES

			Page
Table	1.	Age and description of bedrock formations	13
	2.	Character, occurrence, and hydrologic properties of the water-bearing units	19
	3.	Yield, depth, and water level of wells drawing from the coarse-grained unconsolidated deposits and the bedrock units	21
	4.	Chemical composition of bedrock	26
	5.	Chemical analyses of water from selected ground- water and surface-water sources	34
	6.	Constituents commonly found in ground water	40
	7.	Summary of chemical analyses of water from ground- water and surface-water sources in Ontario County	43
	8.	Public water supplies in Ontario County utilizing ground water	48
	9.	Ontario County	54
	10.	Records of selected wells and test holes in Ontario County	64
	11.	Records of selected springs in Ontario County	97

GROUND-WATER RESOURCES OF ONTARIO COUNTY, NEW YORK

By

Frederick K. Mack and Ralph E. Digman

ABSTRACT

Ontario County has an area of 649 square miles and its population in 1950 was 60,172. The northern part of the county is located in the Ontario Lake Plain and the southern part is located in the Finger Lakes region.

Ground-water supplies are obtained from both the bedrock and the unconsolidated deposits of the county. The productive bedrock consists of sedimentary rocks of Paleozoic age, which range in thickness from about 4,000 feet in the northern part of the county to about 9,000 feet in the southern part. Those rocks which actually crop out in the county consist of about 3,000 feet of shale, sandstone, limestone, and dolomite of Silurian and Devonian age. The outstanding structural features of the bedrock are a regional dip toward the south, gentle localized folding, and jointing.

On the basis of their water-bearing characteristics the bedrock formations have been grouped into four units. The northernmost and, therefore, the oldest of the units is the Camillus shale of the Salina group, termed the lower shale aquifer, which has a thickness of about 500 feet. The average yield of individual wells in this unit is 20 gpm (gallons per minute). The water is of two types, one high in sulfate with an average dissolved solids content of about 1,800 ppm (parts per million), and the other high in bicarbonate with an average dissolved solids content of 500 ppm. The next oldest unit, which crops out just south of the Camillus, is termed the limestone aquifer and is composed of the Bertie limestone, the Cobleskill dolomite, and the Onondaga limestone, and has a thickness of about 170 feet. Yields of individual wells tapping this unit average 22 gpm. The water is principally of the bicarbonate type and has a dissolved solids content averaging about 650 ppm. The third water-bearing unit includes the limestone and shale sequence (Marcellus shale of the Hamilton group to the Hatch shale member of the West Falls formation). It crops out in a broad east-west belt in the central part of the county and has a thickness of about 1,500 feet. The average yield of wells tapping this unit is 6 gpm. Water from the unit is of the bicarbonate type and has an average dissolved solids content of about 500 ppm. The youngest and southernmost sandstone aquifer includes the shale, siltstone, and sandstone sequence from the Grimes siltstone member of the West Falls formation to the Dunkirk shale member of the Perrysburg formation and has a thickness of about 1,000 feet. Yields from this unit average 6 gpm and range from 1 to 15 gpm. The one analysis available of water from this unit shows the water to be the bicarbonate type with a dissolved solids content of 232 ppm.

The bedrock is overlain in nearly all parts of the county by a layer of unconsolidated deposits, which range in thickness from less than a foot to more than 300 feet. The unconsolidated deposits are nearly all of Pleistocene age. They consist of unstratified materials (till) laid down by glacial ice, and of both fine- and coarse-grained stratified sediments

deposited either by glacial melt waters or by streams flowing into glacial lakes from upland areas. Till, which occurs in practically all parts of the county, and the fine-grained stratified deposits, which occur mainly in the northern part, are capable of yielding a few hundred gallons of water per day to large-diameter wells dug several feet below the minimum level of the water table. The coarse-grained stratified deposits underlie many of the low-lying areas, mainly in the northern part of the county. Although these deposits are presently relatively undeveloped, they are potentially the most productive deposits of the county. In the area underlain by the Camillus, the unconsolidated deposits yield water of both the sulfate type and the bicarbonate type. In the remainder of the county, the deposits yield water of the bicarbonate type.

Ground water is the principal source of supply for farms, rural homes, small industries, and several villages. The total use of ground water in 1957 is estimated to have ranged from 3,000,000 gpd (gallons per day) in the winter to 5,000,000 gpd in the summer. In some areas only small supplies can be obtained, and in other areas the ground water is not of usable quality; but the overall supply of water is not only adequate for present demands but also is capable of supporting substantially larger demands in the future.

INTRODUCTION

Purpose and Scope

A program of ground-water investigations was begun in upstate New York in 1945 by the U. S. Geological Survey in cooperation with the New York Water Resources Commission (formerly Water Power and Control Commission). The purpose of the program is to appraise the ground-water resources of the State on an area by area basis. The fundamental objectives of the program are to determine (1) the source, occurrence, quantity, and quality of the ground water, (2) the character of the water-bearing materials, and (3) the factors affecting the development of additional ground-water supplies. The study of the ground-water resources of Ontario County was begun in 1947 as a part of this statewide program. The index map (fig. 1) shows Ontario County and other areas in which similar investigations have been and are being made. Reports already published are listed on the back cover of this report.

The importance of ground water in Ontario County is demonstrated by the fact that most farms, rural homes, some industries, and, with the exception of the municipalities of Canandaigua, Geneva, and Rushville, all public water supply systems obtain water from wells or springs. The building of new homes and the development of additional industries will doubtless result in a continuing increase in the use of ground water.

Methods of Investigation

The work on which this report is based consisted of the following phases:

 Collection of information on the location, depth, diameter, yield, and other pertinent features of approximately 1,300 wells and test holes. Similar data were collected for 49 springs.

- Field examination of the bedrock and surficial deposits of the county in order to become familiar with the formations underlying the area and to supplement existing geologic maps.
- Collection and analysis of water samples from wells and springs for the determination of chemical characteristics.
- 4. Continuous measurement of the water level in an observation well to determine the magnitude of seasonal and other fluctuations.
- 5. Seismic studies to determine the thickness of unconsolidated deposits in the northwestern part of the county where well data were not adequate.
- 6. Compilation of data on the use of ground water.

Figure 1.--Map of New York, exclusive of Long Island, showing location of Ontario County and status of ground-water investigations.

Authorship

Most of the well records used in the preparation of this report were collected by Harry D. Wilson during the fall of 1947, the summer of 1948, and the spring of 1954. Using the well records collected in 1947 and 1948 and geologic data collected in the field during the summer of 1949, Ralph E. Digman had nearly completed a manuscript at the time of his death in December 1953. Much of the information contained in Digman's manuscript was integrated with data that were collected later by Frederick K. Mack and used in the preparation of this report.

The fieldwork on which the report is based, was done under the supervision of E. S. Asselstine, formerly geologist in charge of the Albany office. The preparation of the report was under the direct supervision of R. C. Heath, and under the general supervision of G. C. Taylor, Jr.

Water samples collected as a part of the investigation were analyzed in the laboratories of the New York State Department of Health, Albany, N. Y., and the Quality of Water Branch, U. S. Geological Survey.

Well-Location System

The locations of wells and springs for which records are contained in this report are shown in plate 1. The wells and springs are arbitrarily numbered in the order in which the records were collected, beginning with Ot 1. As an aid in locating wells on maps of New York State, latitude lines have been numbered at 15-minute intervals from north to south, beginning with "1" for parallel 45000' and ending with "17" for parallel 41000". Similarly, longitude lines at 15-minute intervals have been lettered consecutively from west to east, beginning with "A" for meridian 79045, and ending with "Z" for meridian 73°30'. The coordinate letters and numbers used to locate wells in Ontario County are shown on the well location map (pl. 1). Intersections of the coordinates form points from which wells and springs can be located by distance and direction. For example, well Ot 1 (9L, 8.5S, 0.4E) can be found by locating the point where lines "9" and "L" cross and measuring 8.5 miles south and 0.4 mile east. The coordinates, distances, and directions for each well and spring location are shown in the tables of well and spring records, tables 10 and 11. The "Ot" has been omitted in each well and spring number in plate I because all are in Ontario County.

Previous Investigations

This is the first report concerned with the ground-water resources of Ontario County. However, investigations of the ground-water resources of Monroe County (Leggette, Gould, and Dollen, 1935), Wayne County (Griswold, 1951), and Seneca County (Mozola, 1951), which are adjacent to Ontario County, included some data on the water-bearing properties of the geologic formations in the county.

Maps showing the bedrock geology of either the entire county or parts of it have been prepared by several geologists working in the area. Among

these are maps of the entire county by Clarke (1885), the town of Naples by Luther (1898), the Canandaigua and Naples quadrangles by Clarke and Luther (1904), the Geneva and Ovid quadrangles by Luther (1909), the Honeoye and Wayland quadrangles by Luther (1911), the Clyde quadrangle by Gillette (1940), and the southern half of the Phelps quadrangle by D. R. Pefley 1.

Detailed investigations of the stratigraphy of the bedrock formations underlying the county are described in reports on the Hamilton group by Cooper (1930), Tully limestone by Trainer (1932), Tully limestone by Cooper and Williams (1935), Genesee group by Grossman (1944), Wiscoy sandstone by Pepper and de Witt (1950), Onondaga limestone by Oliver (1954), West Falls formation by Pepper, de Witt, and Colton (1956), Naples group by R. G. Sutton 2/, the Sonyea formation by Colton and de Witt (1958), and the Genesee, Sonyea, and part of the West Falls formation by de Witt and Colton (1959).

Papers describing the structure of the rocks in the county have been prepared by Williams (1883), Fox (1932), Wedel (1932), Bradley and Pepper (1938), Richardson (1941), and Kreidler (1957).

Preglacial drainage and Pleistocene history of the area have been described by Grabau (1908) and Fairchild (1904, 1909, 1910, 1926, and 1935). Soils of the county have been described and mapped in a general way in a report by Carr and others (1912) and in detail in a report by Pearson and Cline (1958).

Acknowledgments

The New York State Department of Public Works, Bureau of Soil Mechanics, made seismic surveys of the depth to bedrock at 36 sites in the county and aided materially in the establishment of the observation well at Manchester (0t 900). It also furnished the results of test-drilling programs which were carried out by the State during the construction of the New York State Thruway to obtain water for restaurants and to determine foundation conditions for bridges.

The New York State Department of Health furnished approximately 100 water analyses, most of which were made specifically for the investigation.

J. G. Broughton, State geologist, and other geologists of the Geological Survey, New York State Museum and Science Service, provided valuable assistance and advice regarding the geology of the area.

Wilbur Secor, U. S. Department of Agriculture, Soil Conservation Service (Sodus Office), and the personnel of the Canandaigua office of the Soil Conservation Service furnished information pertaining to the soils of Ontario County.

^{1/ 1956,} Geology of the Stanley and Rushville quadrangles: Unpublished master's thesis at the University of Rochester.

^{2/ 1956,} Stratigraphy of the Naples group, (Late Devonian), in Western New York: Unpublished doctor's thesis at Johns Hopkins University.

Among the many well-drilling contractors who aided in the investigation by furnishing data on water wells are Walter Putnam, Paul Gardner, Lawrence Keith, Donald Rigby, Theodore Hall, Nelson Comstock, and Thomas Dempsey.

Thanks are due to the many county and village officials who furnished information regarding public water supplies. Appreciation is also expressed to the land owners and other individuals who furnished data regarding their water supplies.

Reports of previous investigations were used extensively in the preparation of this report.

GEOGRAPHY

Location and Extent

Ontario County is located in the Ontario Lake Plain and Finger Lakes region of New York about half way between the geographic center and the western boundary of the State (fig. 1). It is bordered on the north by Monroe and Wayne Counties, on the east by Seneca County, on the south by Yates and Steuben Counties, and on the west by Livingston and Monroe Counties. The county covers an area of 649 square miles (415,360 acres). It is irregular in outline but roughly resembles a short-handled meat cleaver with the handle extended southward and the cutting edge to the east. The county extends 32 miles in its greatest east-west dimension and approximately the same distance in its greatest north-south dimension. It is divided into 16 towns. The county seat is Canandaigua.

Culture

According to the New York State Department of Commerce (1957), the estimated population of Ontario County as of July 1, 1957, was 66,143, an increase of 10 percent over the 60,172 enumerated in the 1950 U. S. Census. The county is predominantly a rural area as shown by the following breakdown of the county's population in 1950: urban, 25,476; rural nonfarm, 22,623; and rural farm, 12,073. All but two of the urban communities in the county, Geneva (estimated population in 1957, 18,494) and Canandaigua (population in 1957, 9,042 1/), have fewer than 2,000 residents each.

Most of the industries in Ontario County are centered in Geneva and Canandaigua. The principal industries produce fabricated metal products, nonelectrical machinery, and food products.

In 1954 three-quarters of the county's land area was divided into 2,370 farms and was devoted to agriculture. Sales of products from these farms during 1954 totaled \$15,900,000, of which \$8,600,000 was derived from sales of livestock and livestock products and \$7,300,000 was derived from sale of crops.

The New York State Thruway and U. S. Highway 20 (New York Route 5), two of New York State's principal east-west lines of transportation, cross the northern part of the county. The New York State Barge Canal serves Ontario County at Port Gibson at the northern boundary of the county. Railroads serve the more populous areas.

 $[\]overline{1}$ From special census in 1957.

Topography

The surface of Ontario County, as may be seen in plate 1, is relatively irregular; however, it may be divided into two relatively distinct areas on the basis of local relief. The smaller of these areas, the southwestern part of the county, is characterized by high, smoothly rounded hills elongated in a north-south direction and by steep-sided U-shaped valleys. Most of the hills are capped by sandstone or siltstone of Late Devonian age. Some of the steepest hillsides rise 1,000 feet in elevation in a horizontal distance of 2,000 feet. The maximum relief in this part of Ontario County is about 1,570 feet, the lowest altitude being 688 feet at the surface of Canandaigua Lake and the highest altitude being 2,240 feet at the top of Gannett Hill. Individual hills rise as much as 1,300 feet above the floors of adjacent valleys. Canandaigua Lake, Canadice Lake, and Honeoye Lake, three of the well-known "Finger Lakes" of New York, are in this area.

The remainder of the county, encompassing the central and northern parts, is relatively flat and the surface slopes gently toward the north. This area is marked by numerous low and rounded or irregularly-shaped hills. Most of these hills are composed of unconsolidated deposits of Pleistocene age. The low rounded hills, most of which are oriented in a north-south direction, are termed drumlins. Drumlins are particularly abundant in the area immediately west of the northern end of Canandaigua Lake and in a belt along the northern boundary of the county. The irregularly-shaped hills which are characteristic of the northwestern and northeastern corners of the county were formed as kames or deltas during the melting of the ice sheets that invaded the area in Pleistocene time. One of the outstanding topographic features of the northern part of the county is the irregular lowland that extends from Victor eastward to the county line north of Geneva.

Drainage

With the exception of a small area of less than 2 square miles in the southwestern part of the Town of Naples, all of Ontario County is drained by streams of the Finger Lakes-Great Lakes-St. Lawrence River drainage system.

Approximately 75 percent of the county is in the Oswego River basin, approximately 22 percent is in the Genesee River basin, and approximately 3 percent is in the Irondoquoit Creek basin. The remainder of the county, less than 0.3 percent, drains southward to Chesapeake Bay through the Cohocton-Chemung-Susquehanna system. Principal streams of the county are Honeoye Creek, Mud Creek, Ganargua Creek, Canandaigua Outlet, and Flint Creek. Much of the flow of Canandaigua Outlet is derived from Canandaigua Lake and much of the flow of Honeoye Creek is derived from Hemlock, Honeoye, and Canadice Lakes.

The Surface Water Branch of the U. S. Geological Survey, in cooperation with the New York State Department of Public Works and other State and Federal agencies, measures the flow of streams and the fluctuations of the level of several lakes throughout the State. These measurements are published annually in water-supply papers of the U. S. Geological Survey.

Climate

Graphs of data collected by the U. S. Weather Bureau from 4 stations in or near Ontario County are plotted in figure 2. In general, the differences in climate from one part of the county to another are minor. The precipitation is generally higher in the summer than in the winter. The average annual temperature is about 480 F, and the growing season averages about 160 days.

The greatest difference in climate is reflected in the average annual precipitation which ranges from a high of about 35 inches at Bristol Springs to a low of about 30 inches at Shortsville. The higher precipitation at Bristol Springs is probably due, at least in part, to the higher altitude of the station.

GEOLOGY

Two major types of rock occur at or near the surface in Ontario County—(1) consolidated sedimentary rock (generally referred to in this report as bedrock) of Paleozoic age and (2) unconsolidated surficial deposits of glacial or alluvial origin and of Pleistocene or Recent age. The consolidated Paleozoic rocks underlie the entire area and are overlain in most places by the unconsolidated deposits. The consolidated rocks are underlain by igneous and/or metamorphic rocks (basement rocks) of Precambrian age.

The total thickness of the rocks of Paleozoic age underlying Ontario County ranges from about 4,000 feet in the northern part of the county to about 9,000 feet in the southern part. The total thickness of these rocks which crop out within the county is approximately 3,000 feet. The Paleozoic rocks consist of layers of sandstone, shale, limestone, and dolomite. Except for jointing and a gentle tilting of the formations toward the south, these beds have been disturbed relatively little since they were deposited. Because of the dip to the south, younger rocks are exposed progressively southward. The areal distribution of the principal bedrock units is shown in plate 2.

The unconsolidated deposits were laid down either directly or indirectly from the continental ice sheets that invaded the area in Pleistocene time. These deposits are variable in thickness. They are absent at bedrock outcrops but are as much as 300 feet in the area north of Fishers. Their average thickness in the county is probably on the order of 50 feet. The unconsolidated deposits may be subdivided into three distinctive types on the basis of the grain size, range in the grain size of the component particles, and the presence or absence of stratification. These are (1) till, an unstratified mixture of rock particles ranging in size from clay to boulders; (2) coarse-grained deposits (deltas, kames, and glacial outwash deposits), stratified materials consisting of layers of graded particles ranging in size from fine sand to cobbles; and (3) fine-grained deposits (lake-bottom sediments), stratified materials consisting of particles ranging in size from clay through fine sand.

Plate 3 is a map showing the areal extent of the different types of unconsolidated deposits.

Figure 2.--Graphs showing monthly precipitation at Bristol Springs and temperature and precipitation at Geneva Experiment Station, Hemlock, and Shortsville.

Geologic History

During and since Precambrian time, the Ontario County area has passed through many successive stages of erosion and deposition. Generally deposition occurred when the area was submerged, and erosion, when the land surface emerged. Very little direct evidence remains of the periods of erosion, but many of the sediments which accumulated during the periods of deposition are present in the area and indicate the character of the environment which existed during those times.

Rocks of Precambrian age (basement rocks) underlying Ontario County are the oldest rocks in the county and so deeply buried beneath younger rocks that little is known about their character or about the conditions at the time of their formation. Miller (1924, p. 33) has indicated that during a part of Precambrian time, most, if not all of New York State was covered by "a great expanse of ocean water." Doubtless, the existence of this ocean was only one of many major events which affected the area in Precambrian time.

Uncertainty exists as to whether or not any deposition of sediments occurred in Ontario County during Cambrian time, the beginning period of the Paleozoic era. Evidence from other parts of the State indicates that erosion rather than deposition was the dominant activity during most of that period.

The county was submerged and received sediments during a part of the Ordovician period. According to Miller (1924, p. 46), all of New York State, except the Adirondack area, was submerged under the Ordovician sea. Several deep wells in the county, drilled for gas and salt (Kreidler, 1957, p. 31-35), have reached the Queenston shale of Ordovician age. In general, the Ordovician sea was shallow and is believed to have covered most of the central and eastern parts of the country. The area emerged from the sea and erosion commenced at the end of Ordovician time.

Deposition commenced again early in the Silurian period and continued, with the exception of one relatively short break, until after the sediments comprising the Salina group had accumulated. (The formations mentioned in this account of the geologic history are listed in table 1.) The sequence of events which occurred from the beginning of deposition of the Camillus shale of the Salina group (the oldest rock unit cropping out in the county) until the end of the Silurian period included:

- 1. Deposition, in a shallow highly saline sea, of the layers of halite (common salt), gypsum, anhydrite, clay, and limy mud which now comprise the Camillus shale. At the end of Camillus time, a substantial reduction in the concentration of the mineral constituents in the sea water terminated the deposition of the salt, gypsum, and anhydrite.
- 2. Deposition of the layers of silt and limy mud, which now comprise the Bertie limestone of the Salina group.
- 3. Temporary emergence of the area from the sea, erosion of the land surface during a relatively brief interval, and then resubmergence of the area.

4. Deposition of the layers of silt, clay, and limy mud which comprise the Cobleskill dolomite.

Erosion was the dominant activity in the area during Early Devonian time. However, deposition commenced again by Middle Devonian time and continued with only minor breaks until all of the Devonian sediments now found in the county had been deposited. The lithology of these sediments indicates that the sequence of events during that time included:

- 1. A long period of stable conditions during which great thicknesses of a relatively pure calcareous ooze (now the Onondaga limestone) were deposited in the area.
 - 2. Deposition of a thick layer of limy mud (now the shales of the Hamilton group) over the ooze.
 - 3. Erosion for a relatively brief period and then resubmergence beneath the sea.
 - 4. Deposition of a relatively thin and pure layer of calcareous ooze (now the Tully limestone) at least in the eastern part of the county.
 - 5. Erosion for a relatively brief period and then resubmergence beneath the sea.
 - 6. Deposition of layers of clay and some limy muds (now the shales and limestones of the Genesee formation) over the Hamilton sediments of the western part of the county and over the Tully sediments in the eastern part of the county.
 - 7. Deposition of layers of clay and silt (now the rocks of the Sonyea formation) over the Genesee sediments.
 - 8. Deposition of the sediments that were to make up the rocks of the West Falls formation and Wiscoy sandstone. These, like those of other Upper Devonian rocks, were laid down in a cycle of deposition which included black mud as the first sediment, brown and dark-gray muds next, and finally silty mud, silt, and fine sand. The lower of the two cycles include the Rhinestreet shale member, the Hatch shale member, and the Grimes siltstone member; the upper two cycles include the Gardeau shale member, the West Hill member, and the Nunda sandstone member. The Wiscoy sandstone represents the last phase of the cycle.
 - 9. Deposition of the muds and silts of the Dunkirk shale member of the Perrysburg formation represents the start of a new cycle.

Intermittent erosion and deposition probably continued in the general area during the remaining periods of the Paleozoic era, although no known consolidated rocks younger than the Devonian have been preserved in the county. Large-scale crustal movements in eastern North America, termed the Appalachian Revolution, marked the closing of the Paleozoic era. The tilting and gentle folding of the Paleozoic rocks in Ontario County probably occurred at this time.

Throughout the Mesozoic era, the forces of weathering and degradation gradually reduced the region to a nearly flat plain or peneplain. During the Cenozoic era the region was uplifted once again and streams began eroding with renewed vigor. The uplifted peneplain was gradually dissected and major streams developed a pattern of north-south-trending valleys. Later continental glaciation modified the pre-Pleistocene drainage, in some cases to a considerable degree.

During Pleistocene time, continental ice sheets centered in eastern Canada advanced across nearly all of New York. In the vicinity of Ontario County, the ice was thick enough to cover the highest hills. As it advanced, the ice sheet smoothed and rounded hills, deepened valleys, and deposited a layer of unsorted debris (till) which rests upon the consolidated rock formations in most parts of the county. As the ice melted away, deposits of stratified sand and gravel were formed in the valleys by melt-water streams flowing from the ice and layers of clay and silt were deposited in the bottoms of the glacial lakes that formed in some valley areas. At the close of the Pleistocene epoch, the topography of Ontario County appeared much as it does today.

During Recent time, some erosion has occurred in the highland areas; small bodies of clay, silt, and sand have been deposited on the flood plains of the larger streams; and clay and silt have been deposited in the bottoms of lakes.

Rock Units

Each bedrock formation cropping out in Ontario County has been studied, named, and described in detail by geologists working in the region. Table lis a list of these rock units arranged according to age. The table also contains a description of the lithology of each unit and a column which shows the grouping of the formations into four water-bearing units. Further discussion of the stratigraphy and lithology of these water-bearing units is given in the section entitled "Ground Water."

Structure

The rocks cropping out in Ontario County have been affected very little by crustal movements. The outstanding structural features of the bedrock formations are (1) a regional dip toward the south, (2) gentle folds, and (3) joints. These features were probably developed during the Appalachian Revolution which affected all of eastern North America near the close of the Paleozoic era.

The geologic map (pl. 2) shows that the rock units of the county crop out along east-west bands. The rocks have an east-west strike and dip southward from 40 to 60 feet per mile. Because the rocks dip to the south and the land surface rises in that direction, progressively younger rocks are exposed at the surface from north to south. For the same reasons, it is generally true that the depth to any given formation increases as the distance south of the area of outcrop increases.

The gentle localized folding, which has been mapped by Bradley and Pepper (1938), is reflected by the variations in the dip of the beds in

Table 1.--Age and description of bedrock formations

ystem	Series	Group	Formation	Member	Thickness (feet)	Character of material	Water-bearing unit an approximate thicknes (see table 2)	
			Perrysburg formation	Dunkirk shale	100	Siltstone and shale		
			Wiscoy sandstone		2DD	Sandstone, greenish-gray, soft. Includes many beds of darker shale.		
				Nunda sands tone	200	Siltstone containing fine sand in places, light greenish-gray to light bluish- gray. Shaly in lower part. Beds thin to massive. Massive beds weather into large, curved slabs.	Sands tone	
				West Hill	180	Siltstone and silty shale; gray; contains layers of nodules in places. Silty shale is very dark gray and petroliferous in some areas.	aquifer	
			West Falls	Gardeau shale	35D	Shale, medium-gray, silty in places. In- cludes beds of siltstone, black shaly concretions, and some gray mud rock.	1,000 reet	
			formation	Grimes siltstone	50	Siltstone, light-gray, in lenticular beds l inch to 6 feet thick. Beds are massive, crossbedded, or even-bedded. Small amounts of shale are interbedded with the siltstone in the middle third.		
				Hatch shale	340	Shale, dark-gray, silty. Includes some beds of black shale and many layers of even-bedded to crossbedded siltstone. Clayey limestone and calcareous siltstone concretions are present, mainly in the lower part.		
				Rhinestreet shale	20	Shale, brownish-black, fissile, petrolif- erous, and generally unfossiliferous.		
				Cashaqua shale	90	Shale, calcareous, greenish-gray, studded with nodules of limestone.		
	ž	Upper	Samues	Rock Stream siltstone	80	Siltstone, quartz, medium-gray, very silty gray shale, and very silty gray mud rock.	Upper	
Devonian	ddn		Sonyea formation	Pul teney shale	50	Shale, dark-gray, with many intercalated thin layers of black shale and some thin beds of siltstone.		
				Middlesex shale	60	Shale, black, bituminous, massive in fresh exposures, fissile upon weathering. Fossils scarce.	aquifer	
				West River shale	130	Shale, interbedded dark-gray and black beds. Thin siltstone beds occur at several intervals within this formation in the eastern part of the county. The dark-gray shales are irregularly bedded and calcareous. The black shales are fissile and resemble the Marcellus black shales.	1,500 feet	
				Genesee formation	Genundewa limestone	15	Limestone, dark-to light-brown or gray, in layers from 2 to 10 inches thick and separated by layers of dark-gray or black shale. Some layers are flat and flaggy; others are concretionary and nodular. The fossil Styliolina fissurella is abundant. Useful as a stratigraphic marker.	
				Penn Yan shale	60	Shale, dark-gray, and mud rock containing thin beds of black shale, many layers of nodular limestone, and calcareous nodules		
				Geneseo shale	45	Shale, black, bituminous, similar in appearance to the Marcellus but almost devoid of fossils. Includes some interbedded limestone layers. Lenses of fossiliferous pyrite and marcasite as much as 7 inches thick and 1 inch to 10 feet long separate the Genesee formation from the underlying Moscow shale where the Tully is absent west of Canandaigua Lake.		
	Middle		Tully		7	Limestone, black when fresh and light bluish-gray when weathered, hard, dense, and fine textured. Thickest on eastern border of county and pinches out in central part. Where present, it serves as a good stratigraphic marker.		
	Ě	Hamilton	Moscow shale		125	Shale, dark-gray, soft, calcareous. Lighter in color and more fossiliferous than other formations of the Hamilton group.		

Table 1.--Age and description of bedrock formations (Continued)

Sys tem	Series	Group		Member	Thickness (feet)	Character of material	Water-bearing unit and approximate thickness (see table 2)
			Moscow shale	Menteth limestone	ì	Limestone, medium-gray, irregularly lami- nated with thin argillaceous bands.	
					55	Shale, bluish and brittle. This part of the formation has been called the Deep Run member by G. A. Cooper (1930).	
				Tichenor limestone	1	Limestone, resistant to weathering. Forms waterfalls in many of the ravines near the northern part of Canandaigua Lake.	Upper
			Ludiowville shale		65	Shale, light-to dark-blue and gray. In- cludes several thin layers of limestone. Called Wanakah shale member by Cooper (1930).	shale
		ton			65	Shale, black. Called Ledyard member by Cooper (1930).	aqui fer
		Hamilton		Centerfield limestone	20	Limestone, coral-rich. Includes several layers of shale.	1,500 feet
			Skanaa		22 5	Shale, dark-gray to black. Similar to Marcellus but has a somewhat higher calcium-carbonate content.	
			Skaneateles shale	Stafford limestone	2/3	Limestone, dark-gray when fresh and brownish gray when weathered, massive, fine-grained, argillaceous.	
Devonian	Middle		Marcellus shale		60	Shale, black when fresh and gray when weathered, fossiliferous. Includes some thin, calcareous layers and many large calcareous concretions. Includes Cardiff shale of New York State Museum Reports.	
			Onondaga limestone		100	Limestone, very dark gray when fresh, bluish-grav when weathered, and dense textured. Layers are from 6 inches to 3 feet in thickness and are commonly separated by thin layers of finely laminated shale. The Onondaga contains an abundance of silicified fossils and several layers contain nodules of dark chert (flint). The chert and silicified fossils, being more resistant to weathering than the rest of the rock, usually stand out above the weathered surface of the limestone. The upper part of the formation is free of chert as is a thinner coral-rich layer near the base. A layer of sandstone several inches thick, which occurs at the base of the Onondag, was once considered to be the Oriskany sandstone but it has since been shown to be the basal, Springvale zone of the Onondaga limestone (Chadwick, 1919, p. 42).	Limestone aquifer 170 feet
			Cobleskill dolomite		20	Dolomite, gray and thin-bedded in top half of formation. Shale and impure, dark- blue limestone in lower half of forma- tion. Difficult to distinguish from underlying Bertie limestone in most outcrops.	
urian			Bertie limestone		50	Limestone, shaly, drab or gray. Includes some layers of dolomite. Particularly well known for fossil eurypterids.	
Silurian		Salina	Camillus shale		500	Shale, light-gray. Includes beds of dolomitic limestone near top, layers of gypsum and anhydrite in upper part, and layers of salt (NaCl) in the lower part. The gypsum, anhydrite, and salt have been removed from surface exposures by weathering.	Lower shale aquifer 500 feet

many of the larger outcrops of the county. The gentle folding of the rocks may be observed in a few exposures, such as those along Flint Creek, near the southern boundary of the village of Phelps; along Rocky Run, a stream about one mile southwest of Clifton Springs; and along Tannery Creek about one mile southeast of the village of Naples.

Joints are fractures or partings which interrupt the physical continuity of rock masses. They generally result from stresses set up in the crust of the earth by tension or shear forces. The rocks underlying Ontario County display a fairly consistent joint pattern in which two sets, one oriented N. 40° W. and the other N. 75° E., are most prominent. The spacing between adjacent joints varies from a few inches to several feet and is not uniform for any one formation. However, the joints are more closely spaced in the shales than in the limestones and sandstones. Joints and other openings tend to close up with increased depth because of the increased pressure of overlying earth materials.

Bedrock Topography

The approximate altitude of the top of bedrock in Ontario County is shown in figure 3. Data on which the figure is based were obtained from bedrock outcrops, wells, test holes, lake surveys, and seismic studies. Due to the lack of detailed data, the contours on the map are generalized and therefore do not reflect minor irregularities in the bedrock surface.

As may be seen in figure 3, the topography of the bedrock in the southwestern quarter of the county differs considerably from the topography of the bedrock in the remainder of the county. The bedrock surface in the southwestern part is characterized by several high hills which are separated from one another by deep valleys whereas the bedrock surface in the remainder of the county is relatively flat and slopes gently toward the north in most places.

Three of the valleys in the southwestern part of the county are occupied by lakes of the Finger Lakes group (Canandaigua Lake, Canadice Lake, and Hemlock Lake). Most of the bedrock hills in this area are elongated in a north-south direction and are steep-sided on all but the north slope which is relatively gentle. The maximum known altitude of the bedrock surface is about 2,120 feet above sea level at well 0t 761 on Worden Hill 6 miles southeast of the village of Honeoye. The minimum altitude of the bedrock surface is some value smaller than 415 feet - the lowest altitude yet measured for the bottom of Canandaigua Lake. Maximum relief of the bedrock surface in this part of the county is thus over 1,700 feet. The thickness of unconsolidated deposits underlying Canandaigua Lake is not known. In his discussion of the preglacial drainage of the Genesee River, Fairchild (1935, p. 167) suggested that the altitude of the rock floor in the valley that extends southwestward from the village of Naples is less than 200 feet. Data from wells 0t 743 and Ot 784 (table 10) indicate the altitude of the rock floor is probably at least 700 feet and may be as much as 1,000 feet.

In the central and northern parts of the county, the bedrock surface is relatively flat, with a gentle slope to the north. A small valley has been cut into the relatively flat surface of the bedrock in the Fishers

area in the northwestern part of the county (fig. 3 and 4). As the valley is now filled with glacial debris, it was undoubtedly formed during or before Pleistocene time. The altitude of the top of bedrock in the bottom of the valley is about 250 feet above sea level. A map included in a report on the ground-water resources of Monroe County (Leggette, Gould, and Dollen, 1935) indicates that the abandoned valley of the Irondogenesee River (preglacial Genesee River) passes through the Fishers area. Fairchild (1935, p. 167 and 169), using this map and data from wells in other parts of the region as a basis, stated that glacial drift with a minimum thickness of 715 feet underlies the Fishers area. The well, test-hole, and seismic data presented in figure 4 shows that the thickness of drift in this valley is less than 200 feet in most places, but may reach a maximum thickness of 400 feet.

Figure 3 shows also that a low north-south trending trough has been cut in the bedrock along the eastern margin of the county north of Geneva. Possibly this is a segment of the channel of the main stream which, according to Fairchild (1935, p. 160), drained central New York in preglacial time.

GROUND WATER

Ground water in Ontario County occurs in both the unconsolidated deposits and in the bedrock. Information about the occurrence and availability of ground water in the county was obtained from the records of 1,130 wells, 170 test holes, and 49 springs. Information about the quality of ground water was obtained from the analyses of 101 water samples. The records for 767 wells, 34 test holes, and 49 springs on which data are relatively complete, are given in tables 10 and 11.

Principles and Definitions

Water that occurs in pore spaces or other openings in rocks is termed subsurface water. Such water occurs both in the zone of saturation and in the zone of aeration. The plane of separation between these zones is known as the water table. The zone of saturation lies below the water table and in this zone all interconnected openings are filled with water. Water within the zone of saturation is called ground water. The zone of aeration lies above the water table and contains air and other gases, in addition to water.

Nearly all subsurface water is derived from precipitation. One inch of precipitation on an area of I square mile provides 17 million gallons of water. Thus, with an average annual precipitation of about 32 inches, the total precipitation on the 649 square miles of Ontario County is about 353 billion gallons. However, as most of the precipitation runs off the surface of the land to streams or is returned to the atmosphere through evaporation and transpiration, only a small part reaches the zone of saturation. Among the factors determining the amount of water that is absorbed by the ground are the following: (1) the porosity and permeability of the surficial materials, (2) the slope of the land, (3) the amount and kind of vegetal cover, and (4) the intensity and amount of precipitation. Thus, rain falling at a slow, steady rate on dry, permeable, flat ground results in more infiltration than rain falling at a rapid rate on moist, steep, relatively impermeable ground.

Figure 3.— Map of Ontario County showing the topography of the bedrock surface.

	1	

Figure 4.--Map of the Fishers area showing topography of the bedrock surface.

Once water reaches the zone of saturation it begins to move laterally under the influence of gravity toward points of discharge, such as springs, wells, lakes, or streams. Water thus in transit may occur under either water-table or artesian conditions. Where ground water partially fills a permeable bed, its surface is free to rise and fall. Such water is unconfined and is said to be under water-table conditions. Where the water completely fills a permeable bed that is overlain by a relatively impermeable bed, its surface is not free to rise above the base of the confining bed and it is said to be under artesian conditions. Water under artesian conditions is not necessarily under sufficient pressure to rise above the land surface.

A formation in the zone of saturation that is sufficiently permeable to transmit water in usable quantities to wells or springs is called an aquifer. Areas in which aquifers are replenished are called recharge areas. Areas in which water is lost by natural seepage from aquifers are called discharge areas.

The quantity of water stored in an aquifer depends on the porosity, or percentage of the total volume that is occupied by pores and other openings. The rate at which water moves in aquifers, and the rate at which it may be withdrawn through wells or discharged by springs is controlled by the permeability, or the capacity of the rock to transmit water.

Occurrence

On the basis of the types of openings in which the ground water occurs, the geologic formations in Ontario County may be divided into two groups: (1) consolidated rocks of Paleozoic age and (2) unconsolidated deposits of Pleistocene and Recent age. In the unconsolidated deposits, most of the openings consist of pore spaces between the constituent grains. consolidated rocks, on the other hand, the intergranular openings are extremely small and most of the ground water occurs in bedding planes, joints, and other fractures which have developed since the rocks were consolidated. The porosity differs markedly between the consolidated rocks and the unconsolidated deposits. The openings developed along bedding planes, joints, and other fractures in the consolidated rocks occupy a relatively small proportion of the total volume of the rock. Thus, the porosity of most of these rocks is probably less than 5 percent. In the unconsolidated deposits, however, openings exist between the constituent grains and, depending on the degree of sorting, may occupy 30 percent or more of the total volume of the deposit.

The permeability of both the consolidated rocks and the unconsolidated deposits also ranges widely. Thus, those parts of the consolidated rocks in which the joints and other cracks are relatively closely spaced have a much higher permeability than those parts in which joints and cracks are widely spaced. Similarly, those unconsolidated deposits which are composed of well sorted, coarse-grained material, such as stratified sand and gravel, have a much higher permeability than unsorted deposits composed of particles ranging in size from clay to boulders, such as till.

The thickness, character, and water-bearing properties of the consolidated rocks and unconsolidated deposits underlying Ontario County are summarized in table 2. Most of the information in this table and in the

Table 2.--Character, occurrence, and hydrologic properties of the water-bearing units

The supprehension of the control of		-		Maximum		
Sand and gravel Sand and gravel included and well sorted by fast-moving water from melting glacial ice or from upland areas.	Clas	v,	Water-bearing unit	thickness (feet)		Water-bearing properties
Coarse-grained 200 Northern part of the country, as keams and valley northern part of the country, as keams and valley frine-grained 200 northern part of the country, as keams and valley northern part of the country, as keams and valley frine-grained 200 northern part of the country, as keams and valley northern part of the country, as keams and valley friedposits. Fine-grained 70 Well-sorted fine sand, silt, and clay deposited in glacial along that country that were limited by lake clays in some areas.		-	Recent deposits	20		Not important as source of water because of limited areal extent and because it is generally only a few feet thick. Restricted to scattered areas adjacent to streams.
Files_cripted 70 Well-sorted 10 Well-sort	ssisogab basebifos	<u> </u>		700	T t o t g m	Most prolific sources of water in the county. Yields of wells range from 0.5 to 500 gpm, average 21 gpm, Mederate to large supplies obstainable from properly constructed wells especially in areas where induced infiltration from streams and lakes is possible. Depths of wells range from 7 to 326 feet below land surface, average 72 feet. Water levels range from 200 feet below land surface to 7 feet above land surface, average 24 feet. Contain two types of water, one high in sulfate and the other high in bicarbonate. The sulfate type water has an average dissolved solids content (in 6 samples) of about 1,700 ppm and occurs only in those deposits directly underlain by the Camillus shale of Salina group. The bicarbonate-type water has an average dissolved solids content (in 2 samples) of about 350 ppm and occurs both in areas underlain by bedrock younger than the Camillus shale and in areas directly underlain by the Camillus shale in by the Camillus shale and in areas directly underlain.
Till 150 detergeneous intrure of city, silt, sand, gravel, and boulders deposited from glacial ice. Crops out in a screen where it forms duthen parts. Generally thin screen while and countern parts. Generally thin screen while and countern parts. Generally thin screen while counter while coarsers as in orthern parts. Generally thin screen while coarsers as in creen and countern parts. Generally thin some sandstone. Differs from the upper shale applied in the cap rock of many of repair and last statement of the counter. The cap rock of many of repair and last statement of dissolved solids. Predominantly shale with a few thin interbedded layers of individual wells range from 65 to 20 feet, average 30 feet. Constants bicarbonate calculations. Forms the cap rock of many of repair and last solid in the power part are somewhat calcure. In fame stone, a shale so in the upper shale aquifer in the upper shale and severage of the county. Limestone and some dollond to the county as a belt about and surface to 190 feet below land surface. Dissolved solid and surface to 100 feet below land surface. Solid surface surgade 450 pm. Water levels range from 10 stoly dollond to 100 pm, average 65 pm. Limestone and some dollond to 5 miles wide across the northern part of the county. Limestone may be the county. Limestone and some dollond to 5 miles wide across the northern part of the county. Limestone and some dollond shale with beds of dollond to 100 ppm, average 68 pm. Lower shale aquifer. Lower shale aquifer. Lower shale aquifer in the proper sections, and analydrite in upper surface to 56 feet below land surface, average 25 feet. Contain sourface exposures. Crops out in an east-wast of land of the county. The county in the cou	uooun			70	1 " L TO	,
Fredominantly interbedded layers of siltstone, shale, and some aquifer 1,000 Sandstone ada careaus. Shales in the lower part are somewhat calcare. 1,500 Sandstone and careaus Sands			III	150	Heterogeneous mixture of clay, silt, sand, gravel, and boulders deposited from glacial ice. Crops out in scattered areas in northern part of county but blankets most of the central and southern parts. Generally thin except where it forms drumlins.	Extensively tapped by dug wells. Relatively impermeable. Yields only a few hundred gallons a day to large-diameter wells.
Predominantly shale with a few thin interbedded layers of wellst range from 1 to 33 feet, average 100 feet. Water levels range from 1 to 33 feet, average 100 feet. Water levels range from 1 to 33 feet, average 100 feet. Water generally have specified extending and read are remarked to 1,500 county. 1,500 Crops out in more than half of the county as a belt about a specified with a part of the county. Crops out in more than half of the county as a belt about a specified with a standard friends and some dolomite. Chert nodules in the Ohondaga wide across the central part of the county. Crops out in more than half of the county as a belt about a specified with a standard friends and some dolomite. Chert nodules in the Ohondaga will a size of individual wells range from 0,5 to 300 ppm, average 22 ppm. Settions and beds of gypsum and anhydrite in upper sections, and beds of gypsum and anhydrite in upper sections, and beds of gypsum and anhydrite in upper sections. Salt, sypsum, and anhydrite in upper county. Companies to 26 feet to 200 feet to 26 feet. Water levels range from 8,5 feet below land surface, average 25 feet. Contain sourface exposures. Crops out in an east-west belt from 1 in each well shall be water is yielded by most deep wells. Crops out in an east-west belt from 1 in the late of water is yielded by most deep wells. Crops out in an east-west belt from 1 in relatively small grantities from shallow wells in recharge areas.			Sandstone aquifer 1	1,000	Predominantly interbedded layers of siltstone, shale, and some sandstone. Differs from the upper shale aquifer in that its beds are, on the Whole, coarser-grained and less calcareous. Forms the cap rock of many of the highest cills in the southern part of the county.	epths of ange from nate type
Limestone and some dolomite. Chert nodules in the Onondaga Yields of individual wells range from 0.5 to 300 gpm, average 22 gpm. S limestone make drilling slow and difficult. Crops out in northern part of the county. Limestone aquifer 170 an east-west belt from 3 to 5 miles wide across the neatron part of the county. Predominantly a light-colored shale with beds of dolomitic limestone near the top, layers of salt (NaCl) in lower shale aquifer 500 sections. Salt, gypsum, and anhydrite are found only in subsurface sections as weathering has removed them from surface exposures. Crops out in an east-west belt from 1 to 5 miles wide along the northern boundary of the county.	оска		<u> </u>	1,500	Predominantly shale with a few thin interbedded layers of limestone. Shales in the lower part are somewhat calcareous whereas shales in the upper part are arenaceous. Crops out in more than half of the county as a belt about 12 miles wide extending in an east-west direction across the central part of the county.	Yields of individual wells range from 0.2 to 40 gpm, average 6 gpm. Depths of wells range from 12 to 338 feet, average 100 feet. Water levels range from 1.5 feet above land surface to 190 feet below land surface, average 24 feet. Contains bicarbonate-type water. Dissolved solids in 17 samples of water ranged from 246 to 1,050 ppm and averaged 497 ppm. Water generally hard and high in iron.
Predominantly a light-colored shale with beds of dolomitic limestone near the top, layers of salt (MacI) in lower sections. Salt each of salt salt sections. Salt so gapsum and anhydrite in upper sections. Salt spseum, and anhydrite are found only in sulfate with an average dissolved solids content (in 4 samples) of subsurface exposures. Crops out in an east-west belt from 1 content (in 2 samples) of about 500 pm. Depths of wells in recharge areas. Yields range from 0.5 to 128 gpm, average 20 gpm. Depths of wells range from 8.5 feet and 5.6 feet	onsolidated ro		<u> </u>	170	Limestone and some dolomite. Chert nodules in the Onondaga limestone make drilling slow and difficult. Crops out in an east-west belt from 3 to 5 miles wide across the northern part of the county.	Yields of individual wells range from 0.5 to 300 gpm, average 22 gpm. Supplies the water used by some small industries and by the Shortsville public supply. Depths of wells range from 18 to 286 feet, average 55 feet. Water levels range from 6 to 187 feet below land surface, average 25 feet. Contains bicarbonate-type water. Dissolved solids in 6 samples of water ranged from 352 to 1,100 ppm, average 648 ppm.
	20		Lower shale aquifer	500	1	Yields range from 0.5 to 128 gpm, average 20 gpm. Depths of wells range from 26 to 200 feet, average 78 feet. Water levels range from 8.5 feet above land 2 surface to 96 feet below land surface. Contains two types of water, one high in sulfate with an average dissolved solids content (in 4 samples) of about 1,800 ppm and the other high in bicarbonate with an average dissolved solids content (in 2 samples) of about 500 ppm. Bicarbonate-type water is available in relatively small quantities from shallow wells in recharge areas. Sulfate-type water is yielded by most deep wells.

 ${\cal V}$ See table I for a list of the geologic formations which make up the four consolidated rock aquifers.

following discussion of the occurrence of water is based on the records of wells and springs listed in tables 10 and 11. The locations of wells and springs for which records are included in this report are shown in plate 1.

Consolidated Rocks

The consolidated rocks, also called "bedrock", are an important source of water in the county because they underlie the entire area and because they will generally yield sufficient water to supply domestic, farm, and other relatively small needs. The consolidated rocks consist of shale, sandstone, limestone, dolomite, and gypsum.

In upland areas, where bedrock crops out or is covered only by a thin veneer of unconsolidated deposits, water is generally under water-table conditions. Water-table conditions prevail also at shallow depth in the bedrock in those lowland areas where the bedrock is overlain by relatively permeable unconsolidated deposits. On the other hand, artesian conditions occur in both upland and lowland areas where the bedrock is overlain by relatively impermeable deposits such as till or lake-bottom sediments, or where the joints and other openings in the upper part of the bedrock are filled with impermeable material.

As may be seen in table 3, the yields of 356 wells tapping bedrock formations in Ontario County range from 0.5 to 300 gpm and average 12 gpm. The yields of individual wells tapping bedrock depend on several factors. The most important are the characteristics of joints and other openings, the permeability and thickness of overlying unconsolidated deposits, and the topographic position.

Because the openings along joints and bedding planes provide the principal channels for the movement of water in the bedrock of Ontario County, the yields of wells tapping the bedrock are determined largely by the spacing, continuity, and dimensions of the openings. The spacing of these openings is irregular, ranging from a few inches to many feet. The width of the openings is generally less than 0.1 inch but in some limestones and other soluble rocks, joints and bedding planes have been enlarged considerably by solution processes. Openings in bedrock tend to become smaller with depth because of the increased pressure of overlying earth materials. Thus, joints below a depth of a few hundred feet are generally effectively closed.

As may be seen in table 3, the average yield of wells tapping rocks which are relatively soluble - rocks of the lower shale aquifer and the limestone aquifer - is about 20 gpm. On the other hand, the average yield of the wells tapping the less soluble formations - the rocks of the upper shale aquifer and the sandstone aquifer - is 6 gpm. Sustained yields from wells tapping bedrock which is overlain by more than 15 feet of highly-permeable deposits may be expected to be much larger than yields from similar wells tapping bedrock which is not overlain by unconsolidated deposits or is overlain by relatively impermeable deposits.

The effect of topography on the yield of wells is difficult to differentiate from the effects of other factors. However, because the bedrock in valleys is recharged not only from precipitation falling on the valleys but by ground water percolating to the valleys from adjoining hills, the yields

Table 3.--Yield, depth, and water level of wells drawing from the coarse-grained unconsolidated deposits and the bedrock units a/

red	No. of	wells	179	17	214	70	28	350
Water level referred to land surface (feet)	Range 1	High	+7	7-	+1.5	9	+8.5	+8.5
level land su (feet)	Rai	Low	-200	-150	-190	-157	- 96	-190
Water		Average	24	38	24	25	29	27
ace.	No. of		196	19	245	79	30	398
Depth of wells below land surface (feet)	Range	High	326	200	338	286	200	338
pth of w w land s (feet)	Rar	Low	7	65	12	18	56	12
Delo		Average	72	101	100	65	78	95
lte)	No. of	wells	150	17	212	81	23	356
Yield per minute)	Range	High	500	15	047	300	128	300
· >	100	Low	0.5		0.2	5*0	6.0	0.5
(aallons		Average	21	9	9	22	20	12
			Coarse-grained	Sandstone aquifer	Upper shale aquifer	Limestone aquifer	Lower shale aquifer	All bedrock
			-noonU betebilos stisoqeb		rocks	bətabi	losno	

Based mainly on reported data. Does not include data for wells known to draw from two or more units. Descriptions of formations comprising the four bedrock aquifers are included in table 1. la I

of bedrock wells in valleys tend to be greater than the yield of those on hills.

Many of the bedrock formations of Ontario County are hydrologically similar. Because of this similarity and in order to facilitate description and comparison of the consolidated rocks, all of the formations have been grouped into four units: the lower shale aquifer, the limestone aquifer, the upper shale aquifer, and the sandstone aquifer. Each of these is described in the section entitled "Water-bearing Units."

Unconsolidated Deposits

Unconsolidated deposits cover the bedrock almost everywhere in Ontario County. (See plate 3.) Water in these deposits occurs principally in the pore spaces between constituent grains and the quantity of water which a deposit can yield to wells is dependent on the size of the pores and degree of interconnection between pores. Where the pores are small or not connected, little or no water can be transmitted by the deposit.

Water in most of the unconsolidated deposits of the county is under water-table conditions. However, there are some parts of the county where sand and gravel is overlain by clay or other relatively impermeable material and in such places the water in the deposits is commonly under artesian conditions.

The materials which compose most of the unconsolidated deposits were derived from rock formations that crop out to the north - the direction from which the ice sheets advanced - and were transported to their present positions either by glacial ice, melt water from the ice sheet, or a combination of the two. Therefore, the materials comprising the unconsolidated deposits can, in a gross manner, be related with rock formations occurring to the north.

Because they were deposited by widely differing geologic processes, the unconsolidated deposits differ considerably in grain size and in degree of sorting. Using these characteristics, the unconsolidated deposits of the county have been subdivided into three general types: (1) coarse-grained stratified deposits, (2) fine-grained stratified deposits, and (3) till. Each of these types is described separately in the section entitled "Water-bearing Units."

Water Levels

Ground-water levels in Ontario County differ from one location to another in the same aquifer and from aquifer to aquifer in the same location. The average static water level for 529 wells in Ontario County is 26 feet below land surface. The lowest reported water level is 200 feet below land surface (in well 0t 937, drilled at the top of a hill composed principally of sand and gravel) and the highest with respect to land surface was 9.3 feet above land surface (in well 0t 900 which penetrates the Camillus shale of the Salina group in a lowland area).

Ground-water levels in individual wells fluctuate almost continuously in response to changes in the rates of recharge to and discharge from the par-

ticular water-bearing unit tapped by the well. The changes in water level during any period indicate the net change in the amount of ground water stored in aquifers in much the same manner as changes in water levels in surface reservoirs indicate net changes in surface—water storage. Water levels rise when rain or water derived from melting snow percolates downward to the zone of saturation. Discharge of ground water through springs, seepage into streams, evapotranspiration, and pumping of wells reduce the amount of water stored in the ground, resulting in a decline in water levels. In addition to fluctuations caused by changes in the amount of water stored in an aquifer, water levels in certain artesian wells also fluctuate in response to changes in barometric pressure, to earthquakes, and to other forces.

In order to observe the extent to which water levels in Ontario County fluctuate in response to changes in the rates of recharge and discharge and to other factors, records of the water-level fluctuations in well 0t 900 have been collected since May 1955. This well is 6 inches in diameter, 139 feet deep, and is cased through 11 feet of unconsolidated material to the top of the Camillus shale of the Salina group. The record for this well for the period May 1955 to May 1960 is shown graphically in figure 5. The water in the Camillus shale at the site of the well is under artesian conditions as indicated by the fact that the water level is above land surface. As there is no pumpage from the Camillus in the vicinity of the well, all fluctuations of the water level in this well are due to natural causes. It may be seen from figure 5, part A, that the dominant feature is an annual fluctuation of about 3 feet. During each 12-month period of record, the water level is generally highest during the spring of each year and lowest in the fall. The declining portion of the annual fluctuation corresponds to the growing season. (See figure 5. part B.) During the growing season much of the precipitation, which in other seasons would percolate to the zone of saturation, fails to reach the water table because the water is either evaporated at the land surface or is transpired by plants drawing from the zone of aeration. As may be seen in figure 5, part A, the rising phase of the annual fluctuation usually commences in the fall of each year, shortly after the end of the growing season when the amount of water lost by evapotranspiration decreases and the amount of water recharging the aquifer increases. Water levels usually follow a rising trend until spring. Figure 5, part A, also shows that some high water levels reflect heavy precipitation. For example, the rise of the water level in October and November 1955 reflects the exceptionally high precipitation during October. Likewise, the high water levels of June and July 1958 reflect the exceptionally high precipitation during those two months.

Figure 5, part C, which is a tracing from the original recorder chart, shows that the water level in well 0t 900 fluctuates almost constantly. The fluctuations appear to be due to two different causes: changes in storage in the aquifer, and changes in atmospheric pressure. The general decline of the water level during the period shown was a part of the seasonal decline. The semi-daily fluctuations are probably caused primarily by daily variations in atmospheric pressure. The temporary drop in the water level of about 0.2 foot, from the 17th through the 19th of September, was probably caused by a high-pressure atmospheric mass which is known to have passed through the area at the time. The small amount of precipitation recorded during this period had no apparent effect on the water level.

Figure 5.--Graphs showing water-level fluctuations in observation well 0t 900 and precipitation at Canandaigua. Well 0t 900, which is at New York State Thruway Interchange No. 43 near Manchester, taps water under artesian conditions in the Camillus shale of the Salina group.

Water-bearing Units

Consolidated Rocks

Lower shale aquifer

The Camillus shale of the Salina group is termed the lower shale aquifer in this report. (See table 1.) The outcrop area of the Camillus shale is predominantly a rural area but because of its proximity to the New York State Thruway it is likely to become highly developed in the future. Thus, it may be expected that the use of ground water will increase as the area develops. Data collected in the course of this investigation indicate that relatively large quantities of water are available from some parts of the Camillus. However, the quality of the water is commonly so poor that it is not suitable for many purposes.

Geologic characteristics.--The Camillus shale of the Salina group is the oldest rock that crops out at the land surface in Ontario County. It underlies the entire county, but its area of outcrop, which is the area in which most wells taking water from it are located, is confined to an eastwest belt from 1 to 5 miles wide along the northern boundary of the county. (See plate 2.)

The Camillus shale, as used in this report, refers to the rock sequence overlying the Vernon shale of the Salina group, which consists of a few hundred feet of red and green shales, and underlying the Bertie limestone. According to this usage, all beds of salt, gypsum, and anhydrite in the Salina group in Ontario County are in the Camillus shale.

In most parts of the county, the Camillus is about 500 feet thick. However, erosion has reduced the thickness by several hundred feet in the area of outcrop.

The Camillus is predominantly a light-colored shale containing beds of dolomitic limestone near the top. The chemical composition of a sample of this shale is given in table 4. Layers of common salt (NaCl), gypsum, and anhydrite occur in unweathered parts of the Camillus but have been removed by leaching from surface exposures. Two layers of salt, one 35 feet thick and the other 15 feet thick were penetrated by well 0t 494 (table 9) in the central part of the county. Salt is being mined presently from the Camillus in several parts of central New York. Gypsum occurs in the upper part of the formation and has been mined from time to time by surface methods in the area of outcrop in the town of Phelps and Victor. A layer of gypsum which occurs from 104 to 110 feet below land surface has been mined by underground methods in an area about 1.5 miles northeast of the village of Victor. The chemical analysis of a sample of "run-of-the-mine" gypsum taken from a mine in the Camillus about 15 miles west of Ontario County (at Garbutt, Monroe County) is given in table 4.

Hydrologic characteristics.--Water probably enters the Camillus shale both by direct recharge through the overlying unconsolidated deposits in its area of outcrop and by percolation downward from overlying formations in the central and southern parts of the county. Yields of 23 wells in the Camillus average about 20 gpm and range from 0.5 to 128 gpm. The Camillus

Table 4.--Chemical composition of bedrock

(Percent by weight)

	Lower shale	aquifer	Limestone aquifer	Uppe	er shale aquif	er	Sands tone aquifer
Determination	Gypsum 🏒	Camillus shale of Salina group 2/	Onondaga limestone 3/	Ludlowville shale of Hamilton group ½/	West River shale member of Genesee formation 5/	Cashaqua shale member of Sonyea formation <u>6</u> /	Gardeau shale member of West Falls formation ${\mathbb Z}^J$
SiO ₂	2.93	54.5	14.85	28.1	63.5	60.6	57.8
A1203	1.92	12.9	7.18	8.7	16.5	16.8	19.4
Fe ₂ 0 ₃	1.10	4.8	1.57	3.2	5.3	6.7	6.6
Mg0	8.29	6.3	1.95	1.7	1.9	2.8	2.5
Ca0	26.27	5.8	40.23	28.7	0.6	1.0	2.0
Ti02		0.6		0.4	0.8	1.0	1.0
Na ₂ 0		0.9		1.3	1.9	1.0	0.8
K ₂ 0		0.7		1.7	3.6	2.9	4.2
lgnition loss		11.3		26.4	7.6	6.4	5 .9
co ₂	11.02		33.76				
Alkalis							
Water	14.87						
so ₃	33.83						
Total	100.23	97.8	99.54	100.2	101.7	99.2	100.2

 $^{^{\}prime\prime}$ "Run-of-the-mine" gypsum from Garbutt, Monroe County; George E. Willcomb, analyst (Newland and Leighton, 1910, p. 60).

²/ Camillus shale of Salina group from roadside 3 miles north of LeRoy, Genesee County, on State Highway 19, 20 miles west of Ontario County (New York State Dept. of Commerce, 1951, p. 348).

^{3/} Onondaga limestone from quarry of G. J. Fisher, Waterloo, Seneca County, 5 miles east of Geneva (Ries, 1901, p. 819).

^{4/} Ludlowville (?) shale of Hamilton group from along stream at intersection of U. S. Highway 20 and State Highway 36 in Genesee County about 15 miles west of Ontario County (New York State Dept. of Commerce, 1951, p. 348).

West River shale member of Genesee formation or Middlesex shale member of Sonyea formation from point near State Highway 364, 3.5 miles south of Gorham (New York State Dept. of Commerce, 1951, p. 348).

^{6/} Cashaqua shale member of Sonyea formation from exposure 6 miles north of Naples on State Highway 21, Granger Point (New York State Dept. of Commerce, 1951, p. 348).

^{2/} Gardeau shale member of West Falls formation from 0.2 mile north of Strykersville, Wyoming County, 40 miles west of Ontario County (New York State Dept. of Commerce, 1951, p. 348).

aquifer and the limestone aquifer have the highest yields of any of the bedrock units in the county. (See table 3.) The depths of wells drawing from the Camillus average about 78 feet and range from 26 to 200 feet. Relatively large yields are available because the joints and bedding planes have been widened substantially by the dissolving action of ground water. Thus, the most productive parts of the Camillus may be expected to be those closest to the land surface where the ground water has been most effective in enlarging joints and other openings by solution.

Chemical character of the water.--At least two types of water, sulfate water and bicarbonate water, occur in the Camillus. The sulfate type has been in contact with and dissolved a part of the gypsum or anhydrite contained in the Camillus, whereas the bicarbonate type probably has contacted only those parts of the Camillus from which the gypsum and anhydrite have been removed by solution.

Much of the sulfate water is so highly mineralized that it is unsuitable for many uses. The dissolved solids content of 4 samples averaged 1,800 ppm and ranged from 858 to 2,360 ppm. Analyses indicate that it is generally more highly mineralized, has a higher hardness, and contains more sulfate than other ground water in the county. Most of the hardness of the sulfate water is of the noncarbonate type. Some sulfate water has a dark appearance and is accompanied by the odor-producing gas, hydrogen sulfide. The term "black sulfur water" has been applied locally to such water. The graph for well 0t 542 in figure 8 shows the chemical character of what is believed to be a typical sample of the sulfate water.

The bicarbonate-type water from the Camillus, although hard, has a relatively low mineral content when compared with the sulfate water. The dissolved solids content of water from wells 0t 109 and 531, two wells yielding bicarbonate-type water, is 604 ppm and 443 ppm respectively. The hardness of water from the same wells is 440 ppm and 420 ppm respectively, and is mainly of the carbonate type.

Limestone aquifer

The Bertie limestone of the Salina group, the Cobleskill dolomite, and the Onondaga limestone, are treated in this report as a single unit because they are all carbonate rocks and apparently act as a single hydrologic unit. The outcrop area of the limestone aquifer is fairly heavily populated (the villages of Victor, Shortsville, Manchester, and Phelps are located in or close to it) and this area is likely to become much more highly developed in the future because of its nearness to the New York State Thruway. Data collected in the course of this investigation indicate that water of usable quality and in moderate quantity may be obtained from parts of the area of outcrop of the limestone aquifer and that water in small quantity may be obtained in all parts of the area of outcrop.

Geologic characteristics.--The limestone aquifer directly overlies the Camillus shale of the Salina group in Ontario County. The area of outcrop forms an east-west belt from 2 to 5 miles wide across the northern part of the county. Rocks of the limestone aquifer crop out at the land surface, in the channels of several streams, and in some road cuts. A thickness of nearly 100 feet is exposed in a quarry (the Oaks Corners quarry of The

General Crushed Stone Co.) 4 miles northwest of Geneva. South of its area of outcrop, the limestone aquifer is overlain by the Marcellus shale of the Hamilton group, the oldest formation in the upper shale aquifer.

The total thickness of the limestone aquifer is about 170 feet. The base of the unit consists of the Bertie limestone of the Salina group, a layer about 50 feet thick, consisting of shaly limestone and some layers of dolomite. The Bertie limestone is overlain by the Cobleskill dolomite, a layer about 20 feet thick and consisting of interbedded layers of dark shale, impure limestone, and thin beds of gray dolomite. The upper 100 feet of the unit consists of the Onondaga limestone, a dark, dense-textured limestone, containing several layers of chert nodules. A chemical analysis of a sample of the Onondaga limestone is given in table 4.

Hydrologic characteristics. -- Recharge to the limestone aquifer is probably derived from (1) precipitation in the area of outcrop. (2) water percolating downward from overlying formations in the area south of the area of outcrop, and (3) water percolating upward from underlying formations. As is the case with all other bedrock aquifers in the county, water in the limestone aquifer occurs primarily in joints and other openings. However, because the rocks of the limestone aquifer are primarily carbonates which are soluble in water containing carbon dioxide, many of the joints and cracks have been widened by solution processes. The yields of wells drawing from the limestone aquifer average 22 gpm and range from 0.5 to 300 gpm. Well 0t 1014, which derives its water from this unit, is reported to have been test pumped at a rate of 300 gpm for 48 hours. Two other wells tapping the aquifer, Ot 221 and Ot 222, supply wells for the village of Shortsville, are reported to be capable of yielding over 100 gpm each when pumped separately. The depths of 79 wells drawing from the limestone aquifer average 65 feet and range from 18 to 286 feet.

Chemical character of the water. --All samples of water from the limestone aquifer were of the bicarbonate type. The graph for 0t 222 in figure 8, shows the chemical character of what is believed to be a typical sample of the water. The dissolved solids content of 7 samples averaged 648 ppm and ranged from 285 to 1,100 ppm. The hardness of 8 samples averaged 400 ppm and ranged from 260 to 560 ppm. The hardness is generally of the carbonate type although some samples have a relatively high noncarbonate hardness.

Upper shale aquifer

The geologic units comprising the upper shale aquifer are treated here as a single unit because they are composed almost entirely of shales and because they are believed to act more or less as one hydrologic unit.

The area of outcrop of the upper shale aquifer is predominantly a rural area devoted to farming although the city of Canandaigua and several small villages are located in it. Water can be obtained from the aquifer in quantity sufficient to supply the requirements of individual residences and small farms. Some canning factories located in the area of outcrop have been unable to develop adequate supplies. Water from the upper shale aquifer is generally of good quality.

Geologic characteristics.—The outcrop area of the upper shale aquifer includes more than half of the county, covering an area about 12 miles wide in the north-south direction and extending across the full width of the county in the east-west direction. (See plate 2.) The aquifer consists of approximately 1,500 feet of shale and widely-spaced thin beds of limestone. As may be seen in the description of the various geologic units in table 1, the shale beds comprising the upper shale aquifer differ from one another in color, hardness, fissility, and mineral composition. The shale in the lower part tends to be more calcareous than the shale in the upper part. Table 4 contains chemical analyses of rock samples from the Ludlowville shale of the Hamilton group, the West River shale member of the Genesee formation, and the Cashaqua shale member of the Sonyea formation.

Hydrologic characteristics.--Most of the water recharging the upper shale aquifer is probably received directly from precipitation on the area of outcrop. As with the other bedrock aquifers, most of the water occurs in joints, bedding planes, and other fractures. However, as these shales are relatively insoluble when compared with the gypsum of the lower shale aquifer and the carbonate beds of the limestone aquifer, the openings in the upper shale aquifer are probably no larger now than they were when first developed. Also, as these shales are much weaker structurally than the more massive beds of the limestone aquifer, they are more easily compressed by the weight of overlying formations. For this reason, most openings are probably too small to transmit significant quantities of water at depths greater than a few hundred feet. The yields of 212 wells drawing from the upper shale aquifer average 6 gpm and range from 0.2 to 40 gpm. The depths of 245 wells drawing from this unit average 100 feet and range from 12 to 338 feet.

Chemical character of the water.—The water from the upper shale aquifer is of the bicarbonate type. Calcium and magnesium are the predominant cations in water from most parts of this unit but, as may be seen from the bar graph for well 0t 263 in figure 8, sodium is the predominant cation in water from other parts. The dissolved solids content in 17 samples averaged 497 ppm and ranged from 246 to 1,050 ppm. Twelve of the samples had no noncarbonate hardness and the noncarbonate hardness of the other five ranged from 10 to 157 ppm. (See figure 7.) The iron content was more than 0.3 ppm in 14 of the samples. Some wells drawing from this unit yield water containing hydrogen sulfide gas.

Sandstone aquifer

Most of the area of outcrop of the sandstone aquifer in Ontario County, approximately 80 square miles, is sparsely populated. For this reason, relatively little ground water is used in the area. However, water of good quality and in quantities adequate to supply the needs of small farms and individual residences can generally be obtained from this unit.

Geologic characteristics.--The sandstone aquifer is the youngest bedrock aquifer in Ontario County and consists mainly of interbedded layers of siltstone, shale, and some sandstone. It underlies the higher hills in the southwestern part of the county. (See plate 2.) The aquifer differs from the underlying unit in that the beds of the sandstone aquifer are, on the whole, more coarse-grained and less calcareous than those of the upper

shale aquifer. A chemical analysis of a sample of rock taken from a shaly section (Gardeau shale member of the West Falls formation) of the sandstone aquifer is given in table 4.

Hydrologic characteristics.--Most of the water recharging the sandstone in Ontario County falls as precipitation on the area of outcrop. Most of the water occurs in joints and bedding planes; however, as these rocks are relatively insoluble when compared with the rocks of the lower shale aquifer and the limestone aquifer, the openings in the sandstone aquifer are probably no larger now than they were when first developed.

The yields of wells drawing from the sandstone aquifer average 6 gpm and range from 1 to 15 gpm. The depth of wells drawing from this unit average about 100 feet and range from 65 to 200 feet.

Chemical character of the water.--Only one analysis of water (from well 0t 763) from the sandstone aquifer in Ontario County is available. This analysis shows water of the bicarbonate type, having a relatively high carbonate hardness, no noncarbonate hardness, and a dissolved solids content of 232 ppm.

Unconsolidated Deposits

Coarse-grained stratified deposits

The coarse-grained unconsolidated deposits in Ontario County are potentially the most productive water-bearing deposits in the county, though relatively undeveloped at the present time (1959).

Geologic characteristics.--Most of the coarse-grained stratified deposits were laid down during Pleistocene time in scattered areas in the lowlands and valleys either by melt water flowing from glacial ice or by water flowing from upland areas into glacial lakes. In several areas, the deposits are interbedded with - or overlain by - layers of finer-grained material. Because the particles comprising the deposits were laid down by relatively swift moving water, they are usually larger than silt in size, fairly well rounded, and well sorted. Individual layers containing particles which have a uniform grain size, range from less than an inch to many feet in thickness. Many of the individual beds have steep angles of dip while others are horizontal. The lateral extent of individual beds differs from one deposit to another, ranging from lenses only a few feet wide in places to at least several hundred feet wide in other places. Coarse-grained deposits are commonly as much as 30 to 40 feet thick and in places are as much as 200 feet thick. In a few localities, the coarse-grained deposits are so strongly cemented by calcium carbonate that they cannot be excavated with power shovels.

The coarse-grained deposits occur both at the surface, as may be seen in plate 3, and buried beneath a surficial cover of fine-grained materials. Coarse-grained deposits comprise the surface layer in approximately 15 percent of the county. The portion of the county underlain by buried coarse-grained deposits is unknown but is probably at least several percent. Specific areas in which coarse-grained materials form the most extensive surficial deposits are (1) the low areas between drumlins north of State

Highway 96 in the northern part of the county and (2) much of the towns of Victor and West Bloomfield.

The coarse-grained deposits in the area north of State Highway 96 were deposited around the drumlins as glacial outwash by water issuing from the melting ice sheet when the ice was located a short distance to the north. The thickness of these deposits is controlled to a large extent by the topography of the surface upon which they were laid down. In general, they range in thickness from a feather edge on the side of drumlins to as much as 50 feet in the lowlands between drumlins. Because many of these deposits were used as sources of sand and gravel during the construction of the New York State Thruway, they are now exposed at many places. The most extensive excavations have been made by the Ontario Sand and Gravel Co., Inc., in an area along State Highway 96 about 0.7 mile west of State Highway 14.

The extensive surficial deposit of coarse-grained materials in the towns of Victor and West Bloomfield has a typical "kame and kettle" topography consisting of hills which are low, irregularly shaped, and steep sided, and of valleys which are narrow and poorly developed in places and which are relatively broad, flat bottomed, and marked by shallow closed depressions in other places. As the bedrock surface in this area is relatively flat, thickness of the coarse-grained deposits is greatest in those areas now topographically high and least in low areas. Considerable sand and gravel has also been obtained from this area for use in road building. The most extensive excavations are those worked by the Hoadley Sand and Gravel Company about 2.5 miles southwest of Victor.

Other surficial deposits of coarse-grained material are scattered throughout the county. Of these, the deposits in the town of Naples and the deposit near the village of Gorham are the largest.

In many areas coarse-grained stratified deposits are buried beneath the fine-grained stratified deposits shown in plate 3. Underlying coarse-grained deposits are known to occur in (1) the town of West Bloomfield (record for well 0t 398), (2) the vicinity of the village of Honeoye (log for well 0t 889), (3) the city of Geneva and several square miles to the north (log for well 0t 3), (4) the vicinity of Canandaigua (log for well 0t 1075), and (5) a valley area (Berby Hollow) about 7 miles north of Naples (log for well 0t 1112).

Hydrologic characteristics.—In areas where coarse-grained stratified deposits form the surface layer, water is usually under water-table conditions and much of the water recharging the deposits is received directly as precipitation. In areas where coarse-grained deposits occur below the water table and are overlain by fine-grained deposits, water is usually under artesian conditions and the deposits are recharged either by direct percolation in areas of outcrop or by percolation through the overlying fine-grained deposits.

As mentioned earlier, most of the water in unconsolidated deposits occurs in the pore spaces between constituent grains. Because the pore spaces are relatively large in the coarse-grained deposits, the permeability of these deposits is generally much higher than the permeability of the other water-bearing materials - both bedrock and unconsolidated - in the county.

Coarse-grained stratified deposits in low-lying flat areas usually are situated better, with respect to sources of recharge and for the retention of the water they receive, than coarse-grained stratified deposits in high sloping areas. In a low-lying flat area, a coarse-grained stratified deposit may intercept water moving from upland areas, require a longer period to drain because of the small hydrologic gradient in lowland areas, and at some periods may receive recharge from nearby streams or lakes when the water level in the deposit is lowered by pumping. Coarse-grained stratified deposits on hillsides, on the other hand, discharge water, in many cases nearly as fast as it is received.

The yields of 150 wells drawing from the coarse-grained deposits average 21 gpm and range from 0.5 to 500 gpm. It is probable that the values for maximum and average yield would be considerably higher if there had been a need for larger quantities of water and if the wells had been fully developed. Of the 150 wells for which yields were reported, less than 10 were screened. The other wells were drilled and cased to layers coarse grained enough to yield the quantity of water needed by the owner, in most cases from 5 to 10 gpm.

Chemical character of the water. -- Two types of water, one high in sulfate and the other high in bicarbonate, occur in the coarse-grained deposits of Ontario County. The sulfate type occurs only in those deposits in the area of outcrop of the Camillus shale of the Salina group, and although it is similar in composition to the sulfate water in the Camillus unit, it probably has a somewhat lower content of dissolved solids. The content of dissolved solids in 6 samples of this water averaged 1,743 ppm and ranged from 928 to 2,560 ppm. The hardness of 7 samples averaged 1,305 ppm and ranged from 692 to 1,760 ppm. Most of the hardness is of the noncarbonate type. The graph for well 0t 874 in figure 8 shows the chemical character of a more or less typical sample of the sulfate water from the coarse-grained deposits.

The bicarbonate water occurs both in the deposits located on the area of outcrop of the Camillus shale and in the deposits lying on bedrock units younger than the Camillus. The content of dissolved solids in 9 samples averaged 389 ppm and ranged from 278 to 620 ppm. The total hardness of 23 samples averaged 314 ppm and ranged from 188 to 490 ppm. Most of the hardness is of the carbonate type. (See figure 7.) The graphs for springs 0t 29Sp and 0t 39Sp in figure 8 show the chemical character of what are believed to be typical samples of this water.

Fine-grained stratified deposits

The fine-grained deposits of Ontario County are poor sources of water because they have a low permeability and, thus, will yield only small quantities of water to large-diameter wells. Their importance lies in the fact that they act as confining beds which retard the vertical movement of water.

Most of the fine-grained deposits in Ontario County were deposited during Pleistocene time in the quiet waters of glacial lakes which were impounded between the ice to the north and the uplands to the south. Most of the valleys and much of the lowland in the northern part of the county were occupied by such lakes during the waning stages of glaciation. The fine-grained

deposits in these areas consist of well-sorted layers of fine sand, silt, and clay.

As shown in plate 3, the most extensive deposits of fine-grained sediments are located in an irregular, discontinuous east-west band across the northern part of the county. Fine-grained deposits also occur in the valley of Flint Creek south of Gorham, in the valley of Mud Creek several miles north and south of Bristol Center, in the vicinity of Naples, and in several other smaller areas scattered throughout the county.

It must be emphasized that although these deposits yield little water, they are commonly underlain by more-permeable water-bearing materials which will yield small to moderate quantities of water. (See data for wells 0t 3, 0t 909, 0t 1031, and 0t 1074 in tables 9 and 10.)

Till

Till consists of earth debris deposited directly by the ice sheets during Pleistocene time, either during their advance or at the time of melting. Thus, it is chiefly unsorted material whose predominant characteristic is a wide range in grain size of its constituent particles. However, in a few places, thin lenses of sand or sand and gravel occur within the till. As may be seen in plate 3, till is the most extensive surface deposit in the county. Furthermore, it probably underlies many of the stratified deposits in the northern part of the county and therefore has a much greater extent than that indicated by the map of surficial deposits.

Drumlins, oval shaped hills consisting mainly of till deposited under moving ice, are prominent features in the northern part of the county. Drumlins in the county range in length from 0.5 to 1.5 miles and range in width from a few hundred feet to more than 0.3 mile. The direction of the long axes of the drumlins is approximately north-south. The height of many of the drumlins exceeds 100 feet. Till in the areas between drumlins and in the other parts of the county is generally less than 50 feet thick.

Because till consists of an unsorted mixture of particles ranging in size from clay to boulders, it has a low permeability. Water in usable quantities can generally be obtained from till only from large-diameter wells which provide a large area for the infiltration of water and a large volume for the storage of water between periods of use. The yield of most wells drawing from till is generally only a few hundred gallons a day. However, where the wells in till penetrate a sand lens or other permeable zone, the yield may be as much as 1 to 2 gpm.

Quality of Water

One of the most important considerations in the development of a water supply is the quality of water available at the site with respect to its intended use. Where the water is not entirely suitable, the treatment necessary to make the water usable becomes an additional consideration. Analyses showing the chemical composition of the water available in Ontario County are shown in table 5. This table contains 109 analyses of water samples from 64 wells, 8 springs, and 8 surface-water sources. Figure 6 is a map showing the location, both geographical and with respect to the type

Table 5.--Chemical analyses of water from selected ground-water and surface-water sources

Source of analysis: A, New York State Dept. of Health, Albany, N. Y.; B, U.S. Geol. Survey, Quality of Mater Branch.

Well or spring number: See section in text entitled 'Well-Location System', Location: For explanation of location coordinates, see section entitled "Mell-Location System".

Water-bearing unit: Descriptions of aquifers are included in table 2,

Manganese: Values in parenthesis indicate parts per million in solution at time of analysis. Bicarbonate: Values in parenthesis calculated from alkalinity.

(All results in parts per million except pH, specific conductance, color, and turbidity)

	Turbidity	80	5	=	Trace	Trace	;	Trace	Trace	;	Trace	Trace	5	52	'n	Trace	;	;	Trace	Trace	25	45	:	
	Color	0	2	•	-2	0	0	۰	2	_	٠.		5	0	٧.	0	i	•	0	0	5			-
-tou	specific condi ance (micro		:	ŀ	:	;	1,380	:	!	593		;	:	1	:	;	:	508	1	!	;	;	1.630	
	Hq	7.5	7.5	7.3	7.5	7.2	7.2	7.5	7.1	7.3	7.2	7.5	7.4	7.5	7.2	7.5	7.3	7.3	7.5	7.4	7.0	6.9	7.1	
	Alkalinit (as CaCO ₃	281	265	335	241	226	-	260	242	;	234	314	263	472	228	221	197	!	506	242	392	699	;	, 2 ppm.
ss 03)	9) enodresno	69	115	4+5	546	7 -	165	180	1,660	0	%	8	157	0	792	227	8	33	38	78	80	0	0	zinc, 1.2
Hardness (as CaCO ₃)	lejoT	350	380	380	064	340	048		1,900	422	320	004	420	260	1,020	844	268	257	544	270	200	230	256	. Md
spi	los bavlossid	:	ŀ	;	!	:	0,1,0	1 09	2,010	346	208	!	929	550	;	:	1	287	ı		563	0,170	963	phosphate, 0.00
(٤,	Nitrate (NO	1	;	1	;	;	0.3	:	!	3.1	ı	:	:		1	;	:	5.8	· ·	-	:	-	۲.	- hosph
(:	Fluoride (F	:	:	;	:			;	·	٠.	;	ŀ	;	:			:	- 	· · ·	.2	:	:	7:	bbm;
(1:	Chloride ((8.0	8.2	4.9	32	*	12	3.2	8.4	2.1	25	75	47	30	9.1	3.2	2.8	4.5	2.6	00_	98	230	185	lithium, 2.1
(†1	OS) sisilus	:	ŀ	;	:	ŀ	584	192	1,130	-	79	36	167	2	ŀ		;	34		;	- 2	:	2.0	
([£] 00H	icarbonate ((343)	(323)	(604)	(594)	(276)	304	(317)	(562)	410	(385)	(383)	(321)	(576)	(278)	(270)	(540)	273	(251)	(562)	(478)	(918)	69/	copper,
к)) muissatoq	1	:	ł	;	:	2.4	:	:	 	ŀ	:	ı	ı	:	1	:	o.	1	1	;	;	2.6	. mdd (
(ым) muibo?	:	;	;	1	1	5.5		:	20	1	:	;	;		;	;	4.8	· · · ·	:	:		285	Aluminum, 2.9
(5 _W) muisangeM	:	:	;	;	:	55			<u>®</u>							:	23		<u>-</u>		!		Alum
(6	J) muisleJ	1	-	;	1	ı	246 5	:	:	09	<u> </u>	1	:			:	:	65 2	1		-		91 92	ો
(UW) əsəuebu e W	1	· · ·		:		(0.01)	01.	10.	(00.)	·.01	10.5	 ō.	۰.			:	(00')		;	.05	<u>e</u> .	8.	ppm.
	(Fe) lron	0.70	1.5		.03	₹.	6:1	09.	٥.	2.7	٥.	<.03	.80	0.4	51.	.03	.03	.20	<u>e</u> .	.20	0.4	4.5	2.1	n; zinc, 0.0
(2)	Dic) soilic	:	;	ı	ŀ	1	=	:	1	£	!	ŀ		ŀ	:	1	;	12	ŀ	1	;	;	=	1.0 ppm;
u	Date of collection	8/13/52	5/25/54	7/11/55	3/22/55	3/28/56	8/20/52	64/1/8	64// /8	8/20/52	2/15/50	12/16/47	2/15/50	2/16/47	1/ 3/56	8/ 4/38	8/11/35	8/19/52	8/11/38	64/22/4	2/15/50	84/9/8	6/ 5/52	; lithium,
sisyle	Source of ans	4	⋖	4	∢	∢	6 0	∢	∢	60	4	<	∢	∢	∢	∢	⋖	60	⋖	∢	<	₹	_	ppm. 00 ppm
6u j	Water-bear unit	Pleistocene sand and gravel	do.	· op	do.	• op	do.	Camillus shale	do.	Pleistocene sand and gravel	Onondaga limestone	Pleistocene sand	Skaneateles shale	do.	Limestone and lower shale aquifers	Limestone aquifer	, op	• op	Pleistocene sand and gravel and Onondaga lime- stone	Pleistocene sand and gravel	Genesee formation	Moscow and Ludlow-	do.	Aluminum, 0.0 ppm; copper, 0.00 ppm; zinc, 0.3 ppm. Aluminum, 0.0 ppm; barium, 0.0 ppm; copper, 0.00 ppm; lithium,
115	Depth of w	135	135	135	91	91	54	20	9	120	29	25	02	57	107	88	2	70	85	-22	56	192	192	pper, rium,
		1.5E	1.5E	1.5E	6.6E	9.6E	3.6E	3.6E	5.7E	12.5E	1.6	1.18	1.1	3.3€	1.26	1.2E	1.2E	1.2E	1,2E	12.95	8.6E	10.36		om; co om; bat
	oijeool enibroop	8.55,	8.55,	8.55,	2.15,	2.15,	1.95,	1.65,	2.85,	13.85, 1	3.98,	7.85,	6.95,	6.98,	2.45,	2.45,	2.48,	2.45,	2.45,	2.3S, 12.9E		9J, 13.25, 1	9J, 13.2S, 10.3E	0.0 0.0 94
		я,	я, ,	ъ,	ж,	Ж,	9K,	ж,	¥,	¥,	¥,	ж,	¥,	94,	ж,	χ,	,,	ж,	¥.	26,	9J, 12.3S,	<u>ح</u> .	9,1	minum, minum,
	ollaw mun gpring	0t 3	0t 3	0t 3	0t 94	9. 4.	Ot 108 a/	0t 109		0t 177 b/	Ot 188	Ot 215	0t 216	0t 219	0t 220	Ot 221	Ot 222	Ot 222	Ot 223	0t 224	0t 235	0t 263	0t 263 S/	e/ b/ Alun

- 34 -

Table 5.--Chemical analyses of water from selected ground-water and surface-water sources (Continued)

Turbidity	:	15	2	2	5	2	Trace	01	100	Trace	15	25	5	;	ł	75	18	9	Trace	2	Trace	25	Trace
10100	1	0	0	6	2	12	0	'n	2	- 21	8	0	0	•	7	2	9	15	<u>.</u>	0	0	•	<u></u>
Specific conduct- ance (micromhos ac 25oC)	019,1	;	:	;	:	ŀ	;		;	;	;	:	:	2,440	2,580	;	:	1	;	;	`	ŀ	1
Нq	7.3	7.0	7.8	7.2	7.1	7.0	7.7	7.3	8.9	7.4	7.2	7.2	7.4	7.1	7.0	7.1	7.7	7.5	7.2	7.3	7.4	7.4	7.2
Alkalinity (as CaCO ₃)	;	370	216	353	367	452	374	287	<u> </u>	340	253	353	528	1	;	300	314	323	318	293	169	357	341
Noncarbonate	0	0	0	107	193	28	0	0	010,1	8	207	29	0	1,530	1,570	000,1	0	0	82	0	0	0	179
Total (as a Carlons of	262	360	190	0947	260	480	340	240	1,020	420	094	420	112	1,740	1,720	1,300	<u>‡</u>	260	400	250	5	290	520
sbilos bevlossid	:	386	257	482	815	001,1	885	297	2,250	553	1,280	#	265	2,360	2,560	1,870	535	413	620	331	232	084	290
Nitrate (NO ₃)	1	;	1	1	1	1	1	;	:	:	1	!	1	4.	9.	1	1	1	;	1	ŀ	1	ı
Fluoride (F)	4.0	i	ı	ı	:	1	1	:	;	;	;	1	1	1.5	٠.	;	:	·	:	1	ŀ	1	:
(ID) ebiroldD	62.1	₫.	8.1	45	98	9/	21	.2	3.0	38	3.4	21	2	6.2	36	8.8	5.8	9.5	23	=	81	15	28
Sulfate $(50_{f L})$	* .	23	17	56	<u> </u>	901	125	0:	1,280	95	764	27	5.2	064'1	015,1	166	33	4	107	01	12	£	62
Bicarbonate (HCO ₃)	750	(451)	(263)	(430)	(444)	(155)	(954)	(350)	(17)	(415)	(309)	(431)	(449)	258	180	(366)	(383)	(394)	(388)	(357)	(502)	(435)	(416)
Potassium (K)		;	:	 :		;	1	1	ļ	;	;		!	2.0	٠,0	;	;	1	;	;	;	:	1
(sN) muibo2	280	;	:	;	ı	:	1	;	1	:	:	:	ŀ	8.4	56	:	:	;	!	ŀ		!	1
(pM) muisanpaM	81	;	ī	1	:	;	;	:	;	1	1	1	1	82	86	1	i	:	1	· · ·	;	:	1
(a) muisfa)	75	1	ı	ŀ	ŀ	1	:	;	;	1	:	!	!	564	526	1	;	:	;	ŀ	:	1	1
Manganese (Mn)	:	0.03	6.0	01.	10,	10.	10.	.03	.30	ō.	.02	.03	ō.	(10.)	8.	ō.		:	٥.	.15	01.	\$.	
(Fe)	3.1	2.0	0:	09:	1.5	.35	٥.	2.3	91	8.	2.5	4.5	4.	12	2.9	7.0	1.5	1.5	•15	 	.03	4.5	.20
(Silica (SiO ₂)	=	:	ŀ	:	;	;	ł	1	ł	:	1	:	<u> </u>	12	12	1	!	1	;	;	i	i	
lo ate0 noitoalloo	45/21/2	2/15/50	2/15/50	2/15/50	5/28/48	6/ 2/48	64/18//	84/8 /9	2/14/50	2/15/50	2/22/48	2/15/50	2/14/50	8/22/52	10/10/57	64/18//	84/08//	8/ 2/48	8/ 3/48	2/15/50	2/15/50	8/29/49	64/1/8
Source of analysis	80	⋖	⋖	∢	⋖	⋖	∢	⋖	⋖	∢	⋖	⋖	⋖	60	-	∢	∢	⋖	⋖	⋖	∢	∢	× ;
Water-bearing unit	Moscow and Ludlow- ville shales	Sonyea formation	Moscow and Ludlow- ville shales	Genesee formation	Onondaga limestone	Bertie limestone	Onondaga limestone	Pleistocene sand and gravel	Camillus shale	Ludlowville shale	Pleistocene deposits and Cobleskill dolomite	Camillus shale	Skaneateles and Marcellus shales, and Onondaga limestone	Camillus shale	Pleistocene sand	Pleistocene deposits	Skaneateles shale	Pleistocene deposits	Pleistocene till	West Falls forma- tion (Hatch shale member)	West Falls forma- tion	Skaneateles and Marcellus shales	9J, 2.15, 4.5E 60 Onondaga limestone A 8/7/49
Depth of well	192	- 36	150	9	38	81	39	061	175	212	20	0+7	0=	82	63	121	147	56	22	901	72	130	9
	10.3E	7.8E	8.6E	5.45	10.8E	6.0E	3.9€	0.8E	1.2E	7.1E	11.2E	4.1v	9.7E	1.6w	3.	7.7	5.2E	9.2E	6.0E	9°.0E	4.2E	12.46	4.5E
Location sesenibroop	13.25, 1	14.05,	8.85,	12.85,	3.85, 1	1.85,	2.75,	4.75,	2.4N,	8.05.	2.35, 1	2.1N,	5.15,	1.3N,	0.8N, 1	0.3N,	6.25,	6.25,	0.25,	2.75,	5.35,	7.05,	2.15,
	97, 13	ع. 2.	<u>ع</u>	90, 12	92,3	ج 2	9,	9,	9K, 2	۶, ۳	91, 2	9K,	9,	¥.	¥,	ж,	97,	26.	94, 10.25,	3	3	2,	
Well or spring number	0t 263	0t 275	0t 285	Ot 287	Ot 332	0t 371	Ot 374	0t 378	Ot 442	Ot 451	0t 515	0t 531	Ot 534	Ot 542 d/	Ot 563	0t 570	Ot 582	0t 60 5	Ot 618	Ot 737	Ot 763	0t 768	0t 771

- 35 -

Table 5.--Chemical analyses of water from selected ground-water and surface-water sources (Continued)

9/ Carbonate, 4 ppm. $m{e}'$ Aluminum, 0.0 ppm; copper, 0.00 ppm; lithium, 1.1 ppm; phosphate, 0.0 ppm; zinc, 0.0 ppm. f Sample collected at time of construction and testing of well.

- 36 **-**

Table 5.--Chemical analyses of water from selected ground-water and surface-water sources (Continued)

	ra ibidauT	Trace	06+	30	Trace	2	20	:	}	Trace	Trace	Trace	Trace	Trace	0	}	Trace	Trace	Trace	Trace	Trace	Trace	:	Trace	Trace	!	
	10100	0	0	0	0	0	0	1	1	0	0	0	0	•	m	2	0	0	0	0	0	0	5	0	2	1	
	Specific cond ance (micro at 25°C)	1	:	ŀ	ŀ	1	ŀ	ł	1	ł	¦	1	1	;	1	535	!	1	:	;	:	;	794	1	1	1	
	Hq	 	7.9	7:1	6.9	7.0	7.0	7.1	7.6	7.4	8.0	7.7	7.5	7.7	7.9	7.9	7.4	7.1	7.8	7.3	7.5	7.1	8.0	7.5	7.9	!	
3)	inileallA ODeD se)	156	225	197	202	203	525	362	298	283	237	250	252	218	285	ŀ	235	352	219	216	209	230	;	201	210	1	
(3)	93 enod reanel	† 11	55	3,400	1,280	084,1	394	278	0	477	٣	30	78	202	45	747	35	00	6	4	18	20	25	109	50	1	
(as CaCO ₃)	[650]	270	280	3,600 3	1,480		979	049	290	760	240	280	330	420	330	536	270	360	310	220	290	280	546	310	230	260	
spilo	os beviossid	284		 	ŀ	:	:	858	1	:	!	;		;	356	335	407	524	;	1	:	:	278	 :		;	ppm.
([£] 0N)	9j6rjiN	-	1	!		;	;	-	-	:	-	1	-	ŀ		8.0	;	;	·	:	<u> </u>	1	6.3	1	:	-	0.29
(F)	F]uoride	:	;	0.2	:	1	ŀ	;	i	;	<.05	<.05	<.05	ŀ	;	-:	;	;	.05	<.05	.05		۰.	:		:	ppm; zinc, ppm; zinc,
(10)	ebito[d2	3.6	7.	245	360	60	5.4	4-5	47	4.5	8.9	3.6	<u>۔</u>	22	2.6	2.4	3.0	42	5.4	2.2	7:	2.4	3.0	2.6	6.4	-	0.0
(†05	S) estatlus	37	;			- 	 !	761				:		;	‡	20	78	79		 !	:	:	53			-	phosphate, phosphate,
	Bicarbonate	(190)	(274)	(540)	. (346)	-,-	(2/6)	(442)	(364)	(345)	. (682)	(305)	(307)	(392)	(348)	310	(287)	(624)	(267)	(492)	(255)	(280)	270	(542)	(256)	 ;	0.5 ppm; 0.3 ppm;
		=		(2	(2	(2		<u></u>	υ —	ຶ	(2	ຶ —	ອ —	(3			—	<u></u>									
	muisseso9	1	-		1	-	-		:	-	! 		-	-		0.3	-	 	!	 	: 		<u>:</u>	!	<u> </u>	<u> </u>	ppm; lithium, ppm; lithium,
	sN) muibo?	1	-	;	!	!	-		1	:	-	-		-	<u> </u>	4.0	-		! 	-	 	-		-	1	: 	0.00
(₆ M)	muisəngeM	81	 	- - -	<u> </u>	 	; 		-	<u> </u>	<u> </u>	 	<u> </u>	: 	- - -	1 2 1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	26	<u> </u>	<u> </u>	<u> </u>	ppm; copper, (
(60) muiste3	78	<u>'</u>	1	<u> </u>	; —		256	-	i	i 	<u> </u>		•	!	78	, 	-			 	 	- 26	-			1 ppm; 0 ppm;
(W)) əsəuebu e W	:	;	;	!	1	1	!	!	;	0.01	1	ē.	1	.05	.02	₹.	₹.	1	ŀ	·	1	· .	: —	! 	:	Aluminum, 0.1 Aluminum, 0.0
1	lron (Fe)	0.10	15	8.	.45	.70	.60	.30	.20	.20	.03	٥.	.08	٠.	04.	.24	• 05	01.	.20	.10	٥٠.	•03	.19	.05	.20	:	L∕ Alum Ev⁄ Alum
(2(Di2) esili2	;	;	ŀ	ł	;	!	;	;	:	ŀ	ŀ	;	1	;	8.5	:	:	!	;	;	ŀ	12	1	1	;	
u	lo ated oitoalfoo	11/28/55	8/17/53	8/ 6/53	8/12/53	8/13/53	8/26/53	8/ 9/55	10/27/55	10/27/55	15/6 /11	9/12/52	6/24/55	3/20/57	64/1 /6	3/21/54	64/18/9	8/31/49	64/61/4	12/ 1/52	3/10/54	6/29/55	95/8 /5	3/13/57	12/ 6/55	95/6 /2	g of well t pumped. 04 ppm.
isyli	Source of ana	+	⋖	⋖	∢	⋖	∢	۷	₹	₹	<u>-</u>	∢	۷	∢	4	60	٧	∢	⋖	∢	∢	∢	60	⋖	⋖	⋖	testin nd tes
6u	inead-naseW jinu	Pleistocene sand and gravel	op.	Camillus shale	Pleistocene sand and gravel	• op	Camillus shale	do.	qo.	•op	Pleistocene deposits	œ,	do.	do.	Pleistocene sand and gravel	do.	œ œ	Pleistocene till	Pleistocene sand and gravel	• op	• op	qo.	do.	op.	Pleis tocene deposits	•ор	Sample collected at time of construction and testing of well. Sample collected before well was surged. Sample collected after well had been surged and test pumped. Analyzed after water had been softened. Copper, 0.04 ppm.
H	Depth of we	97	95	90	27	27	15	15	15	15	ŀ	1	1	1	!	:	:	!	<u> </u>		!	1	1	!	!	1	time or ore we or well
		3.16	4.3E	3.5E	3.5E	3.5E	3.9E	3.9E	3.95	3.9E	5.6€	5.6E	5.6E	5.6E	4.1E	4.16	5.9E	10.9€	2.2E	2.2E	2.2E	2.2E	2.2E	2.2E	9.3E	9.3€	d at i ad befo id afte water
	Location tenibroop	0.9N,	0.15,	1.95,	1,98,	1.95,	1.95,	1.95,	1.95,	1.95,	6.75,	6.75,	6.75,	6.75,	10J, 11.25,	10J, 11.25,	1.9N,	9J, 12.55,	0.98,	0.95,	0.95,	0.9S,	0.95,	.98,	5.15,	5.15,	collecte collecte collecte d after
		91,	٤,	¥,	φ,	¥,	9,	¥,	¥,	¥,	¥,	8,	94,	¥,			٤,		9.	9.	<u>ع</u>	93,	<u>,</u>	9.	¥,	₩,	ample ample ample
ړ	Well or spring numbe	0t 1125	Ot 1127 £/	0t 1129 £/	0t 1129 h/	0t 1129 1/	Ot 1130	Ot 1130	0t 1130 j/	Ot 1130 KV	0t 10Sp	Ot 10Sp	Ot 10Sp	Ot 10Sp	Ot 295p	Ot 29Sp 1/	Ot 355p	Ot 38Sp	Ot 395p	Ot 39Sp	0t 39Sp	Ot 39Sp	Ot 395p m/	Ot 395p	Ot 40Sp	0t 40Sp	LY Sa

M Aluminum, 0.1 ppm; copper, 0.00 ppm; lithium, 0.5 ppm; phosphate, 0.1 ppm; zinc, 0.29 ppm. M Aluminum, 0.0 ppm; copper, 0.02 ppm; lithium, 0.3 ppm; phosphate, 0.0 ppm; zinc, 0.00 ppm.

Specific conduct-sone (micromhos follosofie 170 290 1 1 1 1 1 8.5 7.0 7.9 7.8 7.4 ۷.۶ 7.5 7.3 7.7 7.3 7.4 Alkalinity (as CaCO₃) 33 279 271 248 282 <u>7</u> 84, 281 295 142 38 72 30 34 24 105 56 3 et enod a te Hardness (as CaCO₂) 270 172 220 79 360 390 320 125 280 [610T 101 Spilos beviossid ; 1 : Nitrate (NO₃) ŀ 1 1 1 2 <u>.</u> ∞. ; ; ŀ 8.4 . 05 <0.0> Table 5.--Chemical analyses of water from selected ground-water and surface-water sources (Continued) • 05 .05 .6 .0 ٥. 0.2 Fluoride (F) 8.4 9.0 6.2 (13) abinold3 = Sulfate $(50_{t_{\rm p}})$ 30 1 28 ŀ 1 1 1 1 1 : : : (303) (344) (343) (162) (% Bicarbonate (HCO3) (360) (113) 121 (172) (180) (330)59 132 (X) muisseto9 ŀ 1 ŀ 1 ł 2.5 ł 2.4 2.1 3.0 3.0 7.0 (6N) muibo2 - 1 1 1 5.8 (6M) muisəngeM ŀ 1 1 1 1 0 ; 1 1 1 1 1 = (6) muisled 36 1 22 33 (00.) 5. 8 5 6 1 1 1 1 1 .03 .03 .03 9 .15 8 67 8 (Fe) (Fe) 3.5 1.2 Silica (SiO₂) ŀ : : 1 1 1 ł 5/29/50 4/ 8/54 95/11/8 6/20/51 9/15/53 6/28/54 6/27/55 7/ 8/55 9/22/6 /26 5/29/50 10/24/50 4/56/49 11/20/51 Date of collection > Source of analysis Seneca Lake (at Sampson Air Force Base) 🗹 Ple is tocene deposits 3 jun ę go. ę, ф. Water-bearing Canandaigua Lake (at Canandaigua) Honeoye Creek (at Honeoye Falls) Canandaigua Outlet (at Chapin) Depth of well Flint Creek (at Phelps) \underline{n}' ŀ ł : ŀ Grimes Creek (at Naples) Flint Creek (at Gorham) 3.4E 3,4E 3.9 3.95 3.96 3.9€ sed an ibnood 7.15, 7.15, 7.45, 7.15, 7.45, 7.15, Location SURFACE WATER SOURCES Hemlock Lake 95, 97, ٤, ۶, 92, 92, 0t 46Sp 0t 47Sp Ot 46Sp sbring number 0t 47Sp 46Sp 46Sp ပ ٥ ш 14. 9

Trace

0 0

0

Turbidity Color

0

0 0

Trace ! 2

0 4 35 9 0 5 17

1 1 1

Stream contains industrial waste. Aluminum, 0.0 ppm; copper, 0.00 ppm; lithium, 0.2 ppm; phosphate, 0.1 ppm; zinc, 0.00 ppm. ≥ 9

ŏ ŏ

Figure 6.— Map of Ontario County showing dissolved solids content, total hardness, noncarbonate hardness, and iron content of ground water and surface water; distribution of sampling points; and outcrop areas of bedrock aquifers.

		•	

of underlying bedrock, of each source and some chemical characteristics of water from each source. Sixteen of the analyses show the concentrations of all the constituents and characteristics commonly determined in water analyses. The remaining 93 analyses are less complete, showing only a few of the significant constituents and characteristics. Analyses of surface—water samples are included to permit comparison between chemical quality of ground waters and surface waters. It will be noted from such a comparison that surface water generally has a lower mineral content than ground water.

In all tables and maps, results are expressed in parts per million unless otherwise indicated. A part per million (ppm) is a unit weight of a constituent in a million unit weights of solution. For example, a water sample having an iron content of 1 ppm has an iron content equivalent to 1 pound of iron dissolved in a million pounds of solution.

Chemical Quality

Related to use

More than 50 constituents and characteristics of water may be determined in a water analysis. However, it is customary to make determinations for only those constituents and characteristics considered to be essential to the particular problem at hand. Determinations are commonly made for the following constituents of natural waters: silica, iron, manganese, calcium, magnesium, sodium, potassium, carbonate, bicarbonate, sulfate, chloride, fluoride, and nitrate. The sources of these constituents and the significance of each constituent to the user of the water are listed in table 6. Other characteristics of water that are often reported in chemical analyses (but not included in table 6) are dissolved solids, hardness, alkalinity, pH, specific conductance, color, and turbidity.

Dissolved solids. --In general, the value determined for the dissolved solids in a sample indicates the approximate quantity of substances in solution, although the values reported may include some organic matter and water of crystallization and exclude gases such as carbon dioxide which escape during heating. The United States Public Health Service (1946) recommends that the dissolved solids of water supplies used on interstate carriers not exceed 500 ppm, although a supply containing as much as 1,000 ppm is acceptable where a better supply is not available. The average concentration of dissolved solids in samples from 50 wells and springs in Ontario County is 780 ppm and the range is from 232 ppm to 2,560 ppm. In general, the content of dissolved solids in ground water from sources north of the area of outcrop of the upper shale aquifer (fig. 6) is considerably more than 500 ppm, whereas the average content of dissolved solids in ground water from the remainder of the county is less than 500 ppm.

Hardness. --Hardness is that property of water attributed to the presence of alkaline earth elements. This group of elements includes calcium, magnesium, strontium, and barium. Of the group, only calcium and magnesium commonly occur in natural waters in more than trace quantities. Hardness of water is indicated by the soap consuming tendency of water. Soap will not lather until the hardness producing elements (alkaline earths) either have been neutralized or precipitated as insoluble salts of the fatty acids.

Table 6.--Constituents commonly found in ground water

Constituent	Source	Significance	U. S. Public Health Limits (ppm) 1/
Silica (SiO ₂)	The silicate minerals present in nearly all formations.	Deposited from heated water as hard scale in pipes and boilers.	
Iron (Fe)	The common iron-bearing minerals, such as pyrite, marcasite, and hematite, present in most formations.	More than 0.3 ppm is objectionable because it oxidizes to form a reddish-brown precipitate when exposed to air. This precipitate stains laundry and utensils. It also imparts a disagreeable taste to the water and favors the growth of iron bacteria.	0.3 (Iron and manganese together)
Manganese (Mn)	Manganese-bearing minerals in metamorphic and sedimentary rocks. Not as abundant as the iron-bearing minerals.	Causes brown to black stain.	
Calcium (Ca)	Anorthite, pyroxenes, amphiboles, sandstone, limestone, dolomite, and gypsum.	Cause most of the hardness and scale-forming properties	
Magnesium (Mg)	Limestone and dolomite.	of water.	125
Sodium (Na) and potassium (K)	Connate water, salt deposits, feldspar, industrial brines and sewage.	Presence of large amounts of sodium ion in irrigation waters degrades the soil.	
Bicarbonate (HCO ₃) and carbonate (CO ₃)	Results from reaction between carbon dioxide in water and carbonate minerals such as calcite (limestone) and dolomite.	In combination with calcium and magnesium forms carbonate hard-ness; decomposes on application of heat with attendant formation of scale and release of corrosive carbon dioxide gas.	
Sulfate (SO _L)	Gypsum, sodium sulfate, and other minerals; common in some industrial wastes from oxidation of sulfides.	Sulfates of calcium and magnesium form hard scale.	250
Chloride (C1)	Occurs, at least in small amounts, in nearly all soils and rocks; connate water, salt deposits, and sewage; in human and animal excreta.	Major anion of most brines in the United States. Abnormal amounts in water supplies may indicate pollution by human or animal wastes.	250
Fluoride (F)	In minute amounts in various min- erals of widespread occurrence. Calcium fluoride (fluorite).	About 1.0 ppm believed to be help- ful in reducing incidence of tooth decay in children. Be- lieved to cause mottled enamel of teeth at higher concentra- tions. Often identifies water from deep strata.	1.5
Nitrate (NO ₃)	Decayed organic matter, sewage, fertilizers, nitrates in soil.	Forty-five ppm or more reported to produce methemoglobinemia in infants 2/. May indicate pollution.	

United States Public Health Service, 1946, Drinking water standards: Public Health Repts., v. 61, p. 371-384.

Maxey, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Natl. Research Council, Bull. Sanitary Eng., p. 265, App. D.

Carbonate hardness, also referred to as bicarbonate and temporary hardness, represents the hardness attributed to the bicarbonates of the alkaline earth elements. Heating converts bicarbonate to carbonates and results in the precipitation of calcium and magnesium carbonates in boilers and other heat-exchange equipment.

Noncarbonate hardness, also referred to as sulfate hardness and permanent hardness, represents the hardness attributed to the sulfates, chlorides, and/or nitrates of the alkaline earth elements. Figure 7 shows the total hardness as well as the carbonate and noncarbonate hardness of water from each of the water-bearing units in the county.

In this report, waters ranging in hardness from 0 to 50 ppm are considered soft, those between 51 and 100 ppm are medium hard, those between 101 and 200 ppm are hard, and those above 200 ppm are considered very hard. Of the 72 wells and springs from which water samples were collected, only 1 source (well 0t 832) yields water which is soft, no source yields water which is medium hard, 7 sources yield water which is hard, and 64 sources yield water which is very hard.

As may be seen in figure 7 and table 7, the carbonate hardness of water is much the same in all water-bearing units of the county, averaging about 250 ppm and ranging from 14 to 461 ppm for all ground water samples from the county. However, as may be seen in figure 7 and table 7, the non-carbonate hardness of most of the water from the Camillus and from much of the unconsolidated deposits overlying the Camillus is higher than it is from the other units. For example, the noncarbonate hardness of 12 samples from the Camillus averaged 1,340 ppm and ranged from 67 to 2,700 ppm, whereas the noncarbonate hardness of samples from the other water-bearing units in the county averaged about 60 ppm and ranged from 0 to 247 ppm.

Hydrogen-ion concentration (pH).--The corrosive characteristics of a water are related to the hydrogen-ion concentration, which is usually expressed in terms of pH. Water is generally progressively more active toward metal as the pH decreases below 7, the neutral point. However, at high pH values, the activity toward some metals may also accelerate. The pH values lower than 7 indicate acidic characteristics and those higher than 7 indicate alkaline characteristics. Of the 72 wells and springs from which water samples were collected, only 4 sources yield water with pH values lower than 7.0 and the remaining 68 sources yield water with pH values ranging from 7.0 to 8.3.

Hydrogen sulfide. -- Hydrogen sulfide gas causes water in which it is dissolved to have a disagreeable taste, the objectionable odor of "rotten eggs", and commonly causes water to be corrosive. Although no analyses giving hydrogen sulfide content in ground water from Ontario County are available, the odor has been noted in many wells and springs. (See remarks column of tables 10 and 11.) Hydrogen sulfide gas usually can be removed from water by aeration.

Flammable gas. -- Flammable gas (probably methane) is yielded with the water from several wells drilled in the county. It constitutes a fire and explosion hazard if allowed to accumulate in confined spaces.

Figure 7.--Graphs showing the bicarbonate, sulfate, and chloride content and the hardness of water from the water-bearing units of Ontario County.

Table 7.--Summary of chemical analyses of water from ground-water and surface-water sources in Ontario County (in parts per million)

														Hardness as CaCO3	s CaCO3		
	eg i eg	lron		Bicarbona	nate	Sulfate	ıte	Chloride	e P	Dissolved solids	ved	Total	15	Noncarbonate	onate	Carbonate	nate
	Water	Average and range a	Number of analyses	Average and range	Number of analyses	Average and range	Number of analyses	Average and range	Number of analyses	Average and range	Number of analyses	Average and range	Number of analyses	Average and range	Number of analyses	Average and range	Number ot analyses
<u> </u>	Underlain by consolidated rocks younger than the lower shale aquifer	0.51 <.03-2.7	61	348 160 - 562	† 1	41 0.1-107	ω	21 0.2-100	18	40 2 278 -6 20	7	324 188-490	6	56 0-247	61	267	6
bətsbil 2	Underlain by the lower shale aquifer	2.7	=	256 180-360	=	750 37-1,510	80	1,4-360	=	1,390 284-2,560	80	907 230-1,760	=	697 55-1,570	=	211	=
	All sources	1.31	30	307 160-562	25	395 .1-1,510	91	28 .2-360	29	931 278 -2, 560	15	538 188-1,760	30	291 0-1,570	30	246 131-461	30
,	Sandstone aquifer	£6:	-	204	-	15	-	<u>8</u> !	-	232	-	+01 	-	۰:	-	† 	-
ocks	Upper shale aquifer	1,64	17	458 238-1,150	17	29	17	32 .4-185	17	497 246-1,050	17	290 44-500	17	27 0-157	17	263 44-392	17
	Limestone aquifer	.03-1.5	ω	369 240-552	ω	81 34-141	7	30	80	648 285-1,100	7	400 260-560	∞	103 0-227	ω	299 197-452	œ
losno	Lower shale aquifer	3.8	12	292 17-442	12	664 27-1,490	7	3.0-380	12	1,340 443-2,360	7	1,580	12	1,340 67-2,700	12	239 14-362	12
4	All sources a/	1.82	14	384 17-1,150	14	.3-1,490	34	48 4-380	41	700 232-2,360	34	700	14	444 0-2,700	41	256 14-452	141
-	All ground-water sources a/	1.60 < .03-17	73	353 17-1,150	89	248 .1-1,510	51	39 .2-380	72	780	50	624	73	372	73	251 14-461	73
	All surface-water sampling sites	.29	80	124 59-172	80	30 26-36	4	19 4-114	8	194	ŧ	79-220	80	34 24-72	∞	108	ω

 \mathbf{a}' includes samples from wells tapping more than one water-bearing unit.

Related to geology

The chemical composition of ground water in Ontario County depends mainly on the chemical composition of the earth materials through which the water percolates and on the length of time the water is in contact with the material. The relatively large difference between the chemical composition of water from the northern part of the county, the area of outcrop of the lower shale aquifer, and water from the remainder of the county, is due primarily to differences in the composition of the water-bearing units. Water from the lower shale aquifer (which consists of the Camillus shale of the Salina group) usually contains relatively large amounts of calcium sulfate (fig. 8) because this unit contains large amounts of gypsum and anhydrite. Waters from the limestone, upper shale, and sandstone aquifers contain calcium bicarbonate and magnesium bicarbonate as their principal constituents (fig. 8) because the principal soluble minerals contained by these units or the unconsolidated deposits overlying them are of the carbonate type. It may be observed from figure 6 that 6 of the 21 analyses of water from the lower shale aquifer contain more carbonate hardness than noncarbonate hardness. These analyses doubtless reflect the fact that the water had percolated only through unconsolidated deposits or the upper part of the aquifer, from which the gypsum has been largely removed.

The mineralization of ground water tends to increase with depth in most areas. This is true because water at depth has had more time in contact with soluble minerals in earth materials during its movement downward than shallower water which generally has had relatively little time in contact with soluble earth material.

Related to construction and pumping of wells

As the mineralization of ground water tends to increase with depth in most areas, particularly in the area of outcrop of the lower shale aquifer, it is desirable that wells be (1) drilled no deeper than absolutely necessary to obtain the required quantity of water, (2) pumped at as low a rate as possible, and (3) pumped only when necessary. The mineralization of the water in several wells owned by the New York State Thruway Authority in the area of outcrop of the lower shale aquifer has increased since the wells have been in operation. Such increases doubtless result from an upward movement of mineralized water from the lower zones of the unit in response to the drawdowns produced by the pumping. It is probable that the mineralization of the water would decrease, at least in some cases, if pumping rates were reduced.

Temperature

The temperature of ground water is generally within a few degrees of the mean annual air temperature which is about 48°F at Geneva. The ground-water temperature fluctuates more widely near the land surface than at depth. Temperature measurements for water in 85 wells in the county are included in the remarks column of table 10. The average of these measurements is 50.3°F, the warmest water measured was 56°F, and the coolest was 46°F. As a result of its relatively low summer temperature, ground water is widely used for cooling purposes.

Figure 8.--Graphs showing the chemical character of nine ground-water samples and one surface-water sample.

Utilization of Ground Water

Construction of Wells

Several types of wells are used to obtain ground-water supplies in Ontario County. The type of well used is dependent upon such factors as depth to the aquifer, character of the aquifer and overlying material, desired yield, and cost of construction. The principal types of wells are classified as dug, driven, or drilled. The drilled well is the type best suited for the development of aquifers consisting of consolidated rock and it is usually the best for development of supplies from deeply buried unconsolidated materials.

Most ground-water supplies in Ontario County are obtained from either dug or drilled wells. Dug wells are used for many water supplies in rural areas because they are cheap and do not require skilled labor and expensive equipment for construction. The large diameter of such wells (average is about 3 feet) is advantageous in glacial till because of the large infiltration area and the large volume of water that is available for immediate use. It is difficult to extend dug wells more than a few feet below the water table. As a consequence, many dug wells go dry during prolonged

droughts because the water table declines below the bottom of the well. cause the yield of many dug wells is inadequate to supply the present large domestic requirements of many homes and farms, dug wells are gradually being replaced with drilled wells. Most drilled wells in Ontario County are constructed by the cable-tool method, also known as the percussion or churn-This method involves the excavation of a hole by the percussion and cutting action of a chisel-edged drilling bit which is alternately raised and dropped. The formation through which the hole is drilled is broken into small fragments that become churned and mixed into a sludge. At intervals the sludge is removed from the hole with either a bailer or a sand pump. Drilled wells are generally cased through the section of unconsolidated deposits penetrated by the well and are uncased in bedrock. drilled wells taking water from sand and gravel deposits in Ontario County have been completed by merely drilling and casing to a layer whose permeability is great enough to supply the required amount of water through the open end of the casing. This type of construction is feasible only where geologic and hydrologic conditions are favorable and where only a small percentage of the maximum potential yield of the aquifer is required. In order to withdraw the maximum amount of water from a sand or gravel deposit, it is necessary to set a screen of the proper length, diameter, and slot size for the deposit. A properly selected screen prevents the movement of earth materials into the well but provides openings through which water enters the well. As yet, screens have been used in only a few wells in Ontario County.

Springs

Springs, places where ground water discharges naturally at the land surface, are relatively abundant in the county. Data on the yield and other features of 49 springs in Ontario County are presented in table 11. Some springs occur where water flows to the surface from permeable material simply because the land surface extends down to the water table, some occur on slopes where water flows to the surface from permeable material overlying less permeable material that retards the downward percolation of the ground water and thus deflects it to the surface, and some flow from joints or other fractures in rock.

The yields of the springs in the county range from less than 1 gpm from small seeps to over 200 gpm from spring 0t 39Sp. The villages of Victor, Phelps, Clifton Springs, Naples, Holcomb, and East Bloomfield and many farms and individual residences in Ontario County use springs as the sources for their water supplies. A sanitarium in the village of Clifton Springs, with accommodations for 400 guests, has utilized the water from the sulfur springs located there for more than 60 years.

Water Supplies

Industry, private home owners, and farmers are the largest consumers of ground water in the county. Data from the "Use" column of table 10 indicates that approximately 90 percent of the wells in the county are used to supply the needs on farms and of non-farm rural residents. The total amount of ground water used in Ontario County during 1957 is estimated to have varied from approximately 3,000,000 gpd (gallons per day) during the winter months when the demands by industry were lowest to about 5,000,000 gpd during the summer months when the demand for water by sand and gravel producers and food processors was greatest.

Public supplies

The public water supply systems of nine of the larger villages of the county use ground water. Table 8 presents the data available for each of these systems. Together they supply a total of between 1,000,000 gpd and 1,250,000 gpd to a total of approximately 10,000 people and a few small industries. The two largest communities of the county, Geneva and Canandaigua, obtain their water from Seneca Lake and Canandaigua Lake respectively.

Industrial supplies

As most of the industries in Ontario County are located in the cities of Geneva and Canandaigua, the bulk of the water used by industries is surface water purchased from the city water systems. However, several food processing plants and two large sand and gravel companies in rural areas use ground water obtained either from private systems or small public supplies. It is estimated that as much as 1,800,000 gpd are used for the washing of sand and gravel and that about 700,000 gpd are used in the food processing plants. However, these industries are seasonal and although they may use as much as 2,500,000 gpd of ground water during the summer months, they use relatively little in the winter season.

Farm and domestic supplies

Approximately 30,000 people in Ontario County rely on water from privately owned wells and springs to supply their domestic needs. It is estimated that between 1,000,000 gpd and 1,500,000 gpd are used to satisfy this demand. In addition it is estimated that farm livestock consume an additional 500,000 gpd of ground water.

SUMMARY AND CONCLUSIONS

Both the consolidated bedrock and the unconsolidated deposits which overlie the bedrock are sources of ground water in Ontario County. The quantity and quality of water available from any of these sources depends in large part on the thickness, lateral extent, permeability, topographic setting, lithology, and location (with respect to the water table and to sources of recharge) of the aquifer.

Bedrock underlying the county has yielded as much as 300 gpm to individual wells but the average yield of 356 wells tapping it is 12 gpm. The bedrock has been divided, on the basis of hydrologic characteristics, into four water-bearing units. In the lower shale aquifer, the northern-most and therefore the oldest of the four units, the average yield of wells is about 20 gpm. The water from the unit is relatively highly mineralized. The average yield of wells in the limestone aquifer, the second oldest unit, is about 22 gpm and the water is of fairly good quality. The upper shale aquifer, the next oldest unit, yields relatively small amounts of water (an average of 6 gpm), and although the water is hard and locally high in iron, it is generally of usable quality. The sandstone aquifer, the youngest bedrock unit, also yields relatively small quantities of water (the average yield of wells is 6 gpm), but the quality of the water is probably better than that of water from the other bedrock aquifers.

Table 8.--Public water supplies in Ontario County utilizing ground water ${f L}$

Name	Source 2/	Consumption (gallons per day)	Population served	Treatment	Supply available in emergencies (existing connections)
Village of Clifton Springs	Spring (Ot 10Sp)	200,000	1,800	Chlorination	1 1 1
Village of East Bloomfield	Spring (0t 47Sp)	30,000	350	t t	Village of Holcomb water supply
Village of Holcomb	Spring (0t 46Sp)	50,000	400	! !	Village of East Bloomfield water supply
Village of Honeoye	Well (0t 889)	10,000 - 15,000	100	1	:
Village of Manchester	Well (0t 224)	95,000 -175,000	1,300	8 8	Village of Shortsville water supply
Village of Naples $3/$	Spring (Sb 91Sp) in Steuben County	170,000 -360,000	1,200	!	Grimes Creek
Village of Phelps	Spring (Ot 40Sp)	150,000	1,600	Chlorination	Newark Reservoir
Village of Shortsville	Wells (Ot 221, Ot 222, and Ot 223)	200,000	1,300	Chlorination	Village of Manchester water supply
Village of Victor 4	Spring (Ot 39Sp)	75 000°0 1	1,100	!	!

Based on data taken from New York State Department of Health Bulletin 19, 1954, and field observations.

See table 10 or table 11 for more complete data regarding individual springs and wells. Chemical analysis of water in each supply is listed in table 5. 75

Water obtained from a spring in Steuben County, 3 miles south of Naples, just south of county line. During emergencies, supplemental water has been taken from Grimes Creek. A newly developed supply located on an upper reach of Eelpot Creek is now being used for supplemental supply. ⋛

Does not include the water furnished by village of Victor to the restaurant on the New York State Thruway, Z

Unconsolidated deposits, mostly Pleistocene in age and ranging in thickness from less than a foot to more than 300 feet, overlie the bedrock in nearly all parts of the county. They have been classified as (1) till, (2) fine-grained stratified deposits, and (3) coarse-grained stratified deposits. Till is the surficial deposit in most highland areas of the county and it probably underlies unconsolidated stratified deposits in many of the lowland areas. The fine-grained stratified deposits form the surficial layer in many parts of the northern lowland area of the county and in some of the valleys in the southern and central areas. In most areas the till and the fine-grained stratified deposits yield only a few hundred gallons of water per day to large-diameter wells. The coarse-grained stratified deposits are fairly extensive in the low-lying areas in the northern part of the county and occur in several other scattered areas. In 1959 they were the source of water used by more than 200 farms and rural homes in the area and were adequate for considerable additional development.

Thus, availability of ground water in Ontario County may be summarized as follows: (1) amounts adequate to supply farms and rural homes can be obtained in any part of the county, (2) amounts up to several hundred gallons per minute may be obtained from individual wells drawing from some parts of the lower shale aquifer, the limestone aquifer and the coarsegrained stratified deposits.

SELECTED REFERENCES

- Alling, H. L., 1928, The geology and origin of the Silurian salt of New York

 State: New York State Mus. Bull. 275.
- Birge, E. A., and Juday, C., 1914, A limnological study of the Finger Lakes of New York: U. S. Bur. of Fisheries Bull., v. 32, p. 527-609.
- Bradley, W. H., and Pepper, J. F., 1938, Structure and gas possibilities of the Oriskany sandstone in Steuben, Yates, and parts of the adjacent counties, New York: U. S. Geol. Survey Bull. 899-A.
- Carr, M. E., and others, 1912, Soil survey of Ontario County, New York: U. S. Dept. of Agriculture.
- Chadwick, G. H., 1917, Lake deposits and evolution of the lower Irondequoit valley: Rochester Acad. Sci. Proc., v. 5, p. 123-160.
- 1919, Phelps quadrangle, in Clarke, J. M., 1919, Fourteenth report of the director of the State Museum and Science Department: New York State Mus. Bull. 207-208, p. 42-43.
- Clarke, J. M., 1885, Brief outline of the geological succession in Ontario County, New York: New York State Geologists 4th Ann. Rept. (for the year 1884), Assembly Doc. 161, p. 9-22.
- Clarke, J. M., and Luther, D. D., 1904, Stratigraphic and paleontologic map of Canandaigua and Naples quadrangles: New York State Mus. Bull. 63.
- Colton, G. W., and de Witt, W., Jr., 1958, Stratigraphy of the Sonyea formation of late Devonian age in western and west-central New York: U. S. Geol. Survey Oil and Gas Inv. Chart OC-54.
- Cooper, G. A., 1930, <u>Stratigraphy of the Hamilton group:</u> Am. Jour. Sci., v. 19, no. 3, p. 116-134, 214-236.
- Cooper, G. A., and Williams, J. S., 1935, Tully formation of New York: Geol. Soc. America Bull., v. 46, no. 5, p. 781-868.
- de Witt, W., Jr., and Colton, G. W., 1959, Revised Correlations of lower Upper Devonian rocks in western and central New York: Am. Assoc. Petroleum Geologists Bull., v. 43, no. 12, p. 2810-2828.
- Fairchild, H. L., 1904, <u>Direction of preglacial stream flow in central New York:</u> Am. Geologist, v. 33, p. 43-45.
- 1909, <u>Glacial waters in central New York:</u> New York State Mus. Bull. 127.
- Bull., v. 20, p. 668-670. Geol. Soc. America

SELECTED REFERENCES (Continued)

- Rochester Acad. Sci. Proc., v. 6, no. 7, p. 217-242.
- Proc., v. 7, no. 6, p. 157-189.
- Fox, I. W., 1932, Geology of part of the Finger Lakes region, New York:

 Am. Assoc. Petroleum Geologists Bull., v. 16, p. 675-690.
- Gillette, Tracy, 1940, Geology of the Clyde and Sodus Bay quadrangles, New York: New York State Mus. Bull. 320.
- Grabau, A. W., 1908, Preglacial drainage in central-western New York: Science, v. 28, p. 527-534.
- Griswold, R. E., 1951, The ground-water resources of Wayne County, New York:
 New York Water Power and Control Comm. Bull. GW-29.
- Grossman, I. G., and Yarger, L. B., 1953, <u>Water resources of the Rochester area, New York:</u> U. S. Geol. Survey Circ. 246.
- Grossman, W. L., 1944, Stratigraphy of the Genesee group of New York: Geol. Soc. America Bull., v. 55, no. 1, p. 41-75.
- Hoffmeister, J. E., 1941, Results to date of exploration for ground water in the buried Genesee valley: Econ. Geology, v. 36, p. 112-113.
- Hopkins, C. G., and Lozier, W. S., 1935, Report on obtaining a supplementary source of water supply for the city of Rochester: 32 p. (mimeo.), Rochester, New York.
- Kreidler, W. L., 1957, Occurrence of Silurian salt in New York State: New York State Mus. Bull. 361.
- Leggette, R. M., Gould, L. O., and Dollen, B. H., 1935, <u>Ground-water</u> resources of Monroe County, New York: Monroe County Regional Plan. Board.
- Luther, D. D., 1898, The stratigraphic position of the Portage sandstones in the Naples valley and the adjoining region: New York State Mus.

 Ann. Rept. 49 (for the year 1895), v. 2, p. 223-236.
- 1909, Geology of the Geneva-Ovid quadrangles: New York State Mus. Bull. 128.
- 1911, <u>Geology of the Honeoye-Wayland quadrangles:</u> New York State Mus. Bull. 152.

SELECTED REFERENCES (Continued)

- Meinzer, O. E., 1923, Outline of ground-water hydrology: U. S. Geol. Survey Water-Supply Paper 494.
- Miller, W. J., 1924, The geological history of New York State: New York State Mus. Bull. 255.
- Mozola, A. J., 1951, The ground-water resources of Seneca County, New York:

 New York Water Power and Control Comm. Bull. GW-26.
- Newland, D. H., and Leighton, Henry, 1910, Gypsum deposits of New York:
 New York State Mus. Bull. 143, p. 60.
- _____ 1920, <u>History of the gypsum industry in New York:</u> U. S. Geol. Survey Bull. 697, p. 187-217.
- New York State Dept. of Commerce, 1951, The clays and shales of New York State, p. 348.
- 1957, Business fact book for the Rochester area: p. 9.
- Oliver, W. A., 1954, Stratigraphy of the Onondaga limestone in central New York: Geol. Soc. America Bull., v. 65, no. 7, p. 621-652.
- Pearson, C. S., and Cline, M. G., 1958, Soil survey of Ontario and Yates Counties, New York: U. S. Dept. of Agriculture, Ser. 1949, no. 5.
- Pepper, J. F., and de Witt, W., Jr., 1950, Stratigraphy of the Upper Devonian Wiscoy sandstone and the equivalent Hanover shale in western and central New York: U. S. Geol. Survey Oil and Gas Inv. (Prelim.) Chart 37.
- Pepper, J. F., de Witt, W., Jr., and Colton, G. W., 1956, Stratigraphy of the Late Devonian West Falls formation in western and west-central New York: U. S. Geol. Survey Oil and Gas Inv. Chart OC-55.
- Richardson, G. B., 1941, Geologic structure and occurrence of gas in part of southwestern New York: U. S. Geol. Survey Bull. 899-B.
- Ries, Heinrich, 1900, Clays of New York: New York State Mus. Bull. 35.
- Mus. Bull. 44, p. 819.
- Trainer, D. W., Jr., 1932, The Tully limestone of central New York: New York State Mus. Bull. 291.
- U. S. Public Health Service, 1946, <u>Drinking water standards:</u> Public Health Repts., v. 61, p. 371-384.

SELECTED REFERENCES (Continued)

- Wedel, A. D., 1932, Geologic structures of the Devonian strata of south-central New York: New York State Mus. Bull. 294.
- Williams, S. G., 1883, Dip of the rocks of central New York: Am. Jour. Sci., v. 26, p. 303-305.

(Location coordinates are explained in section; 'Well-Location System'. Information in parenthesis was added by the author. Formation names were determined from geologic maps. Other data for each well or test hole are found in table 10.)

Part 1.--Logs of wells

				.093 O. WC.	'3		
		Thick-				Thick-	
		ness	Depth			ness	Depth
		(feet)	(feet)			(feet)	(feet)
0t 3:	9L, 8.5S, 1.5E; drilled by N. Comstock			0t 186:	9K, 3.8S, 4.2E; drilled by W. C.		
	Clay	20	20		Putnam		
	Quicksand and clay	30	50		Sand, red	15	15
	Hardpan	30	80		Limestone (Onondaga limestone)	13	28
	Boulders	20 31	100 131	O+ 188+	9K, 3.9S, 1.6E; drilled by W. C.		
	Gravel	4	135	ot 100.	Putnam		
		•	,,,		Soil	2	2
0t 9:	9L, 5.8S, 0.2E; drilled by N. Comstock				Sand with clay, red	6	8
	Clay	7	7		Limestone (Onondaga limestone)	21	29
	Sand and boulders	10	17		<u>-</u>		
	Limestone, loose (Onondaga limestone).	10	27	Ot 203:	9K, 7.9S, 8.7E; drilled by N.		
	Limestone, hard (Onondaga limestone)	3	30		Coms tock	_	
	0. 1 (0. 0				Soil	5	5
Ut II:	9L, 4.6S, 0.7E; drilled by Gardner				Shale, soft	25	30
	Drillers	10	10		Shale, hard	254	284 285
	Sand, coarseQuicksand	10 2	10 12		Shale, black	ŀ	205
	Clay	30	42	Ot 222:	9K, 2.4S, 1.2E; drilled by Cranston		
	Gravel, coarse	18	60	Vt 222.	and Son		
			•••		Sand, gravel, and clay	7	7
0t 13:	9L, 5.5S, 1.1E; drilled by Barney				Limestone, creviced and shattered	ۈ	16
	Moravec				Limestone (Onondaga limestone)	54	70
	Qui cksand	20	20				
	Clay	10	30	Ot 223:			
	Clay and sand	141	171		Sand, gravel, and cobbles	19	19
0. 00	01/ 0 00 10 15 / 111 1/				Limestone, creviced and shattered	4	23
Ut 20:	9K, 3.2S, 12.1E; drilled by Barney				Limestone (Onondaga limestone)	59	82
	Moravec Sand	20	20	Ot 235:	9J, 12.3S, 8.6E; drilled by W. C.		
	Sand	10	30	VL 255.	Putnam		
	Sand and clay	10	40		Soil	3	3
	Sand and boulders	10	50		Gravel	12	15
	Hardpan	30	80		Shale, gray (West River shale member		
	Limestone (Salina group)	13	93		of Genesee formation)	11	26
	• • • • • • • • • • • • • • • • • • • •						
0t 55:	9L, 9.0S, 0.7E; drilled by Gardner			Ot 246:	9J, 6.7S, 12.1E; drilled by W. C.		
	Drillers				Putnam		
	Fill; crushed stone	0	2		Clay, some sand, red	25	25
	Clay, red	13	15		Quicksand	60	.85
	Clay and gravel	6	21		Gravel	32	117
	Gravel, fine	4 4	25 29		Shale, black	61	178
	Sand, blackGravel, fine	1	30	0t 248:	9J, 11.2S, 12.4E; drilled by W. C.		
	didtor, rincassassassassassassassassassassassassass	•	,0	01 2401	Putnam		
0t 146	: 9K, 9.4N, 10.4E; drilled by Gardner				Clay	8	8
	Drillers				Gravel	24	32
	Soi 1	1	1		Shale, black (Ludlowville shale)	35	67
	Gravel, coarse	29	30				
	Sand and gravel	20	50	0t 249:	9J, 11.5S, 12.2E; drilled by W. C.		
	Sand, fine, yellow	12	62		Putnam	,	,
	Gravel, medium	8	70		Soil	6	6
	Sand, gray	20	90		Clay, blue, some boulders	16	22
	Clay	25	115		Sand, fine, and gravel	134	156
	Gravel, fine, and sand Sand, fine	30 20	145 165	0t 300 ·	9J, 9.0S, 12.8E; drilled by Gardner		
	Clav	8	173	01 700.	Drillers		
	Shale ledge (boulder?)	ĩ	174		Hardpan	5	5
	Gravel, coarse	16	190		Gravel, medjum	30	35
	Shale, blue (Skaneateles shale)	23	213		,	-	
	•	-	-	Ot 301:	9J, 6.3S, 10.2E; drilled by W. C.		
0t 151	: 9K, 9.8S, 7.8E; drilled by Gardner				Putnam		
	Drillers				Soil	2	2
	Soil	2	2		Gravel	17	19
	Hardpan	25	27				
	Shale, brown	113	140	0t 307:	9J, 1.8S, 12.5E; drilled by Gardner		
0. 170	OV 12 05 10 hs. 1 11 1 1 0 1				Drillers	-	-
0t 178					Boulders, sand, and gravel	7 23	7 30
	Drillers	25	25		Limestone, gray (Salina group) Limestone, brown (Salina group)	23 5	35
	No record (drilled in dug well) Sand and gravel	25 32	25 57		cimostone, otomi (serine group)	2	25
	Shale, gray	28	85	0t 312:	9K, 0.3S, 9.8E; drilled by Gardner		
	-, 3:-/		-7		Drillers		
0t 184	9J, 11.5S, 11.1E; drilled by W. C.				Sand and gravel	15	15
	Putnam				Hardpan	25	40
	Soi 1	8	8		Sand	2	42
	Clay with stones, blue	50	58		Shale, black (Salina group)	8	50
	Gravel, coarse	2	60				
	Shale, black	11	71				

		Thick- ness (feet)	Depth (feet)			Thick- ness (feet)	Depth (feet)
0t 318:	9J, 1.7S, 7.5E; drilled by W. C. Putnam Soil	2	2	Ot 488:	9J, 11.4S, 4.8E (continued) Limestone, hard	2 13	1,152 1,165
	GravelLimestone (Cobleskill dolomite)	26 2	28 30		Shale, hard, grayShale, hard, red	25 20 15	1,190 1,210 1,225
Ot 324:	9J, 10.1S, 10.8E; drilled by W. C. Putnam				Shale, gray, crumbly	25 37	1,250 1,287
	SoilClay, silt, and stonesClay, brown	2 13 25	2 15 40		Limestone and shale	38 35	1,325
	Gravel and clay	50 3 19	90 93 112		Rock, brown; yielded gas Limestone, brown Limestone, pink	50 60 10	1,410 1,470 1,480
0+ 380+	Sand, black	Ĩ	113		Shale, redLimestone, broken	60 60 25	1,540 1,600 1,625
Ot 380:	9J, 4.7S, 0.7E; driller unknown Sand Gravel	100 80	100 180		Shale, gray Limestone Limestone, sandy	2 2 5 75	1,850 1,925
	Open space	10 10 6	190 200 206		Shale, gray and red	110 17 98	2,035 2,052 2,150
0t 400:	9K, 3.6S, 1.3E; drilled by W. C. Putnam				SandstoneShale, red	14	2,164 2,175
	SoilClay, redClay and gravel	1 14 17	1 15 32	0t 490:	9J, 11.6S, 2.4E; drilled by Weaver Bros. Soil	1	1
	Limestone	12	44 45		GravelShale, black	27 1	28 29
0t 441:	9J, 0.5S, 11.3E; drilled by Donald Rigby	10	10	Ot 493:	Bros.	2	2
	MuckLimestone, hardLimestone, gray	10 90 50	10 100 150		Soil	20 16	22 38
Ot 442:	9K, 2.4N, 1.2E; drilled by Donald	50	200		Shale (Cashaqua shale member of Sonyea formation)	9	47
	Rigby No record (drilled in dug well) Hardpan and boulders	25 55	25 80	0t 494:	9J, 12.8S, 2.9E; drilled by Weaver Bros. Cashaqua shale member of Sonyea		
	Clay, very soft	4 91	84 175		formation to top of Onondaga limestone	1,070 100	1,070 1,170
Ot 444:	9K, 1.7N, 0.7E; drilled by Donald Rigby Soil	8	8		Sandstone	5 15 47	1,175 1,190 1,237
	Clay, some sand, very loose	4 6 8	12 18 26		Limestone	13 15 245	1,250 1,265 1,510
	Hardpan Sand, some fine gravel Sand, coarse	17 6	43 49		Shale Limestone, sandy; yields salt water. Sandstone	10 20 60	1,520 1,540 1,600
Ot 447:	9J, 15.0S, 12.2E; drilled by Donald	1	50		Salt (in Camillus shale) Limestone, sandy	35 35	1,635 1,670
	Rigby Sand Boulders	27 6	27 33		Shale, blue	40 15 3	1,710 1,725 1,728
	Gravel and clay	21 21 25	54 75 100		Shale, sandy	22 3 22	1,750 1,753 1,775
	Shale, grayShale, black	85 55	185 240		Shale, blue	155 15 55	1,930 1,945 2,000
0t 488:	9J, 11.4S, 4.8E; drilled by Weaver Bros. Clay and gravel	65	65		Limestone	35 65 2 0	2,035 2,100 2,120
	Quicksand Limestone, brown; water-bearing zone	13 17 455	78 95 550		Shale, red	40 10 225	2,160 2,170 2,395
	Shale, brown and black	110 15	660 675		Limestone, dark	85 25 47	2,480 2,505 2,552
	Limestone	260 35 30	935 970 1,0 00		Limestone	14 36 14	2,566 2,602
	Limestone, permeable; water level declined	75 40	1,075		Limestone, gray	110	2,616 2,726 2,745
	Shale, redShale, grayShale, red	10 10 15	1,125 1,135 1,150				

		Thick- ness (feet)	Depth (feet)			Thick- ness (feet)	Depth (feet)
0t 495:	9J, 15.18, 2.1E; drilled by Weaver			0t 764:		_	_
	Bros. Soil	5	5		Soil Sand and gravel	3 32	3 35
	Gravel	15	20		Clay	25	60
	Clay, some stones, white	45	65		Shale, soft	48	108
	Shale, black (Cashaqua shale member of Sonyea formation)	30	95	Ot 765:	9J, 8.5S, 1.0E; drilled by Gardner		
	or conjust formation,	,,,	"	ot 703.	Drillers		
0t 503:	10J, 10.8N, 2.6W; drilled by Weaver				Soil	1	1
	Bros. Soil	4	4		Clay, trace of gravel	19 10	20 30
	Clay	56	60		Clay, trace of gravel	20	50
	Quicksand, gravel, and boulders	55	115		Sand and gravel	.5	55
	Gravel	2	117		Sand and gravel, trace of clay Clay, trace of gravel	30 20	85 105
0t 534:	9J, 5.18, 9.7E; drilled by Barney				Sand and gravel	15	120
	Moravec Unconsolidated material	29	29		Clay, trace of gravel	20 10	140 150
	Shale	11	40		Gravel, trace of clay	11	161
	Limestone	_3	43		Shale, loose	30	191
	Shale Limes tone	57 10	100 110		Shale, brown	24	215
				0t 767:	9J, 9.7S, 12.6E; drilled by W. C.		
0t 558:	9K, 1.5N, 10.4W; drilled by Floyd				Putnam	10	10
	Van Ingen Soil	6	6		Clay, sandy	15	25
	Clay	14	20		Gravel and sand, black	20	45
	Sand and quicksand	130 23	150 173	Ot 777:	10J, 4.8S, 3.0E; drilled by L. Keith		
		-,	.,,	oc ///.	Loam, sandy	15	15
0t 628:	9J, 11.4S, 8.4E; drilled by William				Quicksand	10	25
	Putnam Clay	8	8		Gravel and clay	30 30	55 85
	Gravel	27	35		Gravel and sand	10	95
	Shale	170	205		Sand, fine	7	102
0t 640:	9J, 14.4S, 9.5E; drilled by W. C.				Clay Gravel, medium	3	105 108
	Putnam			00			
	Sand and clay, red	10 10	10 20	Ot 782:	10J, 11.9S, 2.0E; drilled by L. Keith Soil	2	2
	Shale, gray	99	119		Gravel	24	26
Ot 642:	01 12 90 12 25 4-111-4 5 W. C				Quicksand	6 8	32 40
01 042:	9J, 12.8S, 12.2E; drilled by W. C. Putnam				Gravel, fine	4	44
	Soil	1	1		Gravel, medium	1	45
	Clay, some sand	9 20	10 30	0t 784:	10J, 8.6S, 6.0E; drilled by S. Keith		
	Gravel, coarse	2	32	o. , o.,	Mud and gravel	13	13
	Clay, blue, some gravel	28	60		Shale, soft, light, some water	423	436
	Sand, black	8 32	68 100		Shale, gray, gas pocket at 650 ft Limestone, hard	314 25	750 775
	Sand, coarse	14	114		Shale, brown	115	890
0t 648:	9K, 14.6S, 10.1E; drilled by Donald				Limestone, hard	10 30	900 930
UL 040.	Rigby				Shale, light-brown, gas at 934 ft	22	952
	Soil, black	10	10		Shale, dark-brown	238	1,190
	Shale, black	28 37	38 75		Shale, gas at 1,210 ft (Marcellus shale)	45	1,235
	Limestone	8	83		Limestone (Onondaga limestone)	?	?
	Shale, gray	27 23	110 133	Ot 822:	9K, 5.8S, 0.7E; drilled by W. C.		
0t 666:	9J, 6.7S, 1.8E; drilled by Gardner				Clay, red	13	13
	Drillers Soil	1	1		Clay, blue, and gravelGravel	19 24	32 56
	Clay, yellow	10	ηi		Shale, blue	74	130
	Hardpan and boulders	188	199				
	SandClay	3 17	202 219	Ot 824:	9K, 0.7S, 5.7E; drilled by W. C. Putnam		
	Gravel	1	220		Clay, some sand, red	20	20
Ot 744:	101 8 00 5 75. 441144 5 1 4				Gravel and clay, blue	24	44 53
JE /44:	10J, 8.0S, 5.7E; drilled by L. Keith Soil	3	3		Clay, some sand, red	9 1	53 54
	Gravel	5	8		Limestone with gypsum (Salina group)	3	57
	Shale, soft with several hard inter- bedded layers (Cashaqua shale			Ot 838:	9K, 6.9S, 11.3E; drilled by Donald		
	member of Sonyea formation)	142	150	J. 030.	Rigby		
0. 700					Soil	3	3
0t 762:	10J, 7.3S, 4.1E; drilled by L. Keith Sand, gravel, and quicksand	60	60		HardpanShale, soft, crumbly, brown	32 12	35 47
	Sand, medium	6	66		Shale, firm	83	130
					Limestone (Onondaga limestone)	45	175

		Thick- ness (feet)	Depth (feet)			Thick- ness (feet)	Depth (feet)
Ot 841:	9J, 2.3S, 12.9E; drilled by Cranston			Ot 889:	10J, 3.0N, 0.6W; drilled by Cranston and Son		
	and Son	1	1		Topsoi I	1	1
	TopsoilClay, red	14	15		Clay, sand, and gravel	9	10
	Sand and gravel	4	ié		Clay, some shale, gravel, firm	9	19
	Sand, fine	5	24		Sand and gravel	2	21
	Sand and gravel	3	27		Clay, blue, and fine sand (contains		
	3				pieces of logs and pine cones)	11	32
Ot 842:	9K, 14.2S, 5.6E; drilled by Barney				Sand and gravel	9	41
	Moravec				Clay, blue, firm	2	43
	Sand	4	4				
	Muck	2	6	0t 900:	9K, 1.7S, 1.0E; drilled by Stewart		
	Qui cksand	14	20		Bros.	5	5
	Clay	2	22		Sand, medium	5	10
	Gravel	9	31		Shale, gray, and some layers of	,	
0. 91.6.	01 6 25 10 25, dm: 11 ad by W C				gypsum	110	120
0t 846:	9J, 6.2S, 10.2E; drilled by W. C. Putnam				Sands tone	10	130
	Clay, red	10	10		No record	5	139
	Clay, sand, and gravel (till)	41	51			-	
	Shale, black (Skaneateles shale)	10	6i	0t 901:	9J, 2.9S, 9.3E; drilled by W. C.		
	Silate, black (silates cites silate)		٠.		Putnam		
Ot 847:	9J, 0.5S, 3.1E; drilled by W. C.				Clay	14	14
	Putnam				Limestone, hard (Onondaga limestone)	17	31
	Sand	6	6				
	Clay, some sand	10	16	0t 909:	9J, 5.2S, 11.0E; drilled by W. C.		
	Clay, sand, and gravel (till)	29	45		Putnam	22	22
	Limestone (Salina group)	28	73		Clay, red	2 2	22
					Clay, blue	35 4	57 61
0t 870:	9J, 1.5N, 3.0E; drilled by F. C.				Gravel and clay	ī	62
	Ewart	24	24		Janu, Coarse	•	
	Sand	24 40	64	O+ 912+	9J, 5.3S, 10.0E; drilled by W. C.		
	Clay, hard	50	114	01 7.2.	Putnam		
	Gravel	30	144		Soil	2	2
	Sand	44	188		Clay	6	8
	Gravel, coarse	5	193		Clay, blue, and stones	24	32
	,	-			Sand	_6	38
Ot 871:	9J, 0.0N, 1.5E; drilled by F. C.				Shale, gray	80	118
	Ewart						
	Clay	12	12	0t 922:		•	•
	Sand	14	26		Soil	3	3
	Gravel	9	35		Clay	20 3	23 26
					GravelShale boulder	í	27
0t 880	9J, 2.6S, 4.5E; drilled by W. C.				Gravel, fine	i	28
	Putnam	10	10		Graver, Tille	•	
	Soil	20	30	Ot 929:	9J, 8.0S, 4.6E; drilled by W. C.		
	Clay, sticky	30	60	•• 5-5•	Putnam		
	Sand, fine	12	72		Soil	2	2
	Clay, blue	12	84		Clay and gravel	16	18
	Limestone, hard	74	158		Clay, blue	4	22
	,				Shale, gray (Ludlowville shale)	28	50
Ot 883:	9J, 3.3S, 4.5E; drilled by W. C.						
	Putnam		•-	0t 934:	9J, 2.9S, 3.5E; drilled by W. C.		
	Clay, gravel, and boulders	82	82		Putnam	E 2	53
	Sand	14	96		Clay, red	53 10	63
	Clay, red	50	146		Limestone (Onondaga limestone)	4	67
	Gravel, some sand	2	148		timestone (onondage timestone)	•	٠,
	Limestone (Onondaga limestone)	27	175	0t 935:	9J. 3.2S, 1.6E; drilled by L. Ward		
0t 884:	9J, 2.6S, 5.2E; drilled by W. C.			V. 333.	Soil	10	10
VE 004:	Putnam				Clay and sand	80	90
	Clay, some sand	55	55		Sand, coarse to fine	10	100
	Gravel	1 3	58		Sand, coarse, some fine	81	181
		-	-				
Ot 886:	9J, 4.3S, 7.1E; drilled by W. C.			0t 940:			
-	Putnam				Putnam	^-	
	Clay, red	45	45		Clay and boulders	27	27 66
	Clay, blue, and gravel	30	.75		Shale, gray	39 32	66 98
	Shale (Marcellus shale)	5 5	130		Shale, black	٤,	,,,
	Limestone (Onondaga limestone)	15	145	0t 946:	10J, 4.7S, 0.6E; drilled by L. Keith		
				∪(340 ;	Soil	3	3
					Gravel, sand, and silt	5	8
					Clay	7 2	80
					Gravel, fine	ii	91
					•		

		Thick- ness (feet)	Depth (feet)			Thick- ness (feet)	Depth (feet)
0t 947:	10J, 1.4S, 7.7E; drilled by W. C. Putnam			0t 982:	9K, 2.7S, 7.5E; drilled by T. Hall Soil	1	1
	Clay, blue Shale	40 130	40 170		Hardpan Limestone (Onondaga limestone)	34 7	35 42
0t 951:	9J, 16.0S, 8.9E; drilled by W. C. Putnam			0t 985:	Soil	1	1
	Clay, blue, and gravel	23 19	23 42		Sand, yellowClay, red	24 40	25 65
Ot 962:	Shale, black	70	112		Sand Gravel	15 7	80 87
01 962:	9J, 12.6S, 8.8E; drilled by L. Keith Clay	30	30	0t 986:			
	Clay and stonesQuicksand	25 7	55 62		Sand and clayLimestone, hard (Onondaga limestone)	18 64	18 82
	Clay Shale (West River shale member of	2	64	0t 988:	9J, 3.8S, 8.7E; drilled by W. C.		
	Genesee formation)	20	84	-	Putnam Gravel, boulders, and clay (till)	25	25
0t 965:	9K, 6.2S, 12.2E; drilled by T. Hall Sand	10	10		Shale, black (Marcellus shale) Limestone (Onondaga limestone)	7 20	32 52
	Sand and gravel	25 1	35 1	0	-	20	52
	Limestone ledge (boulder?) Sand and gravel	1 2	36 37	0t 991:	Putnam		
0t 966:	9K, 8.2S, 11.3E; drilled by T. Hall				SandClay	6 14	6 20
	Soil Hardpan	1 64	1 65		Gravel	6	26
	Shale, soft, brown (Skaneateles shale)	11	76	0t 992:	9K, 0.1N, 2.1E; drilled by T. Hall Hardpan	15	15
Ot 968:			,,		Shale, brown	8	23
or 300.	No record (drilled in dug well)	18	18	0. 000	Limestone	47	70
	Sand and gravel	20 12	38 50	Ut 993:	9K, 4.2S, 1.3E; drilled by T. Hall Soil	1	1
	Gravel	16	66		SandClay	4 5	5 10
0t 970:	9K, 3.7S, 12.1E; drilled by T. Hall Gravel	20	20		SandSands tone	20 24	30 54
	ClaySand, coarse, and gravel	46 3	66 69		Limes tone	16	70
Ot 972:	9L, 1.5S, 1.2E; drilled by T. Hall	•	0)	0t 994:	9K, 3.9S, 3.3E; drilled by W. C. Putnam		
	Soil	1	.1		No record (drilled in dug well)	16	16
	Clay	9 12	10 22		Sand, red Limestone (Onondaga limestone)	8 6	24 30
	Hardpan	5 13	27 40	0t 999:	9K, 2.7S, 4.5E; drilled by T. Hall		
Ot 973:	9L, 4.2S, 1.8E; drilled by T. Hall				SandClay	12 17	12 29
	HardpanClay, some sand	30 80	30 110		GravelLimestone, hard	1	30 31
	HardpanLimestone (Cobleskill dolomite)	5	115 120	Ot 1001:		·	•
0t 974:	9L, 4.3S, 1.9E; drilled by T. Hall	,	120	VI 10011	Putnam	10	12
37.10	Sand	113	113		Clay, red	12 3	15
	HardpanShale, brown	10 12	123 135	0. 1000.	Shale (Skaneateles shale)	50	65
0t 976:	9L, 5.6S, 1.2E; drilled by T. Hall	35	170	0t 1002:	Putnam	25	25
ot 5,0.	Soil	.1	.1		Clay and bouldersGravel	35 11	35 46
	SandClay	19 20	20 40	0t 1008:			
	Sand, fine Sand, coarse	15 20	55 75		SoilClay and boulders	3 67	3 70
0t 977:	9K, 2.3S, 12.1E; drilled by T. Hall				Clay, hard Shale (Skaneateles shale)	37 78	107 185
	Fill; gravel	1	1 5	Ot 1019:	_		-
	Sand, yellow	15 18	20 38		Putnam Clay	43	43
	Gravel, fine	5	43		Sand	2	45 45
0t 978:	9K, 2.3S, 12.5E; drilled by T. Hall Soil	1	1	0t 1028:	9J, 6.7S, 3.4E; drilled by W. C. Putnam		
	Clay Sand, yellow	9 20	10 30		Clay, red	6 16	6 2 2
	Sand, gray Sand, coarse	19 5	49 54		Gravel and sand	1	23

		Thick- ness (feet)	Depth (feet)			Thick- ness (feet)	Depth (feet)
Ot 1029:	9J, 6.6S, 1.7E; drilled by L. Keith Soil	5 65 10 2	5 70 80 82	Ot 1059:	Soil	1 17 82	1 18 100
Ot 1030:	9J, 4.9S, 0.4E; drilled by L. Keith Soil	3 27 55 45	3 30 85 130 131	0t 1067:	9L, 16.5S, 1.2E; drilled by Donald Rigby Gravel, some sand and silt Sand, fine Gravel, coarse Gravel, fine, and sand Gravel with shale fragments Shale, black	10 6 8 14 12 30	10 16 24 38 50 80
Ot 1031:	9J, 5.0S, 1.6E; drilled by L. Keith No record (drilled in dug well) Clay	12 43 35 6 2	12 55 90 96 98	Ot 1068:	Shale, gray 9L, 13.8S, 1.2E; drilled by T. Hall Hardpan Sand and gravel Hardpan Sand and gravel	16 3 87 10 5	96 3 90 100 105
Ot 1032:	10J, 10.8N, 0.9W; drilled by W. C. Putnam Clay Gravel	20 75	20 95	Ot 1069:	9K, 11.9S, 6.4E; drilled by Donald Rigby Gravel, some silt and sand	70 20	70 90
Ot 1035:	10J, 10.7N, 2.9W; drilled by W. C. Putnam Soil	4 52 14	4 56 70	Ot 1073:	Sand, coarse	18	92 110
0t 1037:	10J, 10.2N, 1.0W; drilled by W. C. Putnam Clay, some sand	60 122 8	60 182 190	Ot 1074:	Clay, red	10 49 1	10 59 60
Ot 1039:		12 7	202 209	Ot 1075:	Clay, red	10 26 1	10 36 37
	Putnam Soil	1 11 25 2	1 12 37 39	00 1075:	Putnam Boulders, sand, and silt Clay, blue	12 31 7	12 43 50
Ot 1050:	9K, 11.2S, 4.2E; drilled by L. Keith Soil	3 4 6 87 35 4	3 7 13 100 135 139	Ot 1078:	Putnam Soil	1 8 19 36	1 5 28 64
Ot 1052:	9K, 13.75, 6.2E; drilled by T. Hall Sand	15 20 6 84	15 35 41 125	0t 1080:	Soil	4 6 75 23	4 10 85 108
Ot 1053:	9K, 13.8S, 5.9E; drilled by L. Keith No record (drilled in dug well) Gravel, sand, and silt Shale, gray (Moscow shale)	10 16 36	10 26 62	0t 1091: 0t 1094:	10J, 8.7S, 6.3E; drilled by L. Keith Clay	22 100	22 122
0t 1054:	9K, 14.0S, 5.9E; drilled by T. Hall Sand, yellow Sand and gravel	8 39	8 47		Soil	3 9 34 1	3 12 46 47
Ot 1055:	9K, 14.9S, 6.4E; drilled by L. Keith No record (drilled in dug well) Sand and gravel Shale (Geneseo shale member of Genesee formation)	40 20 28	40 60 88	Ot 1097:	10J, 7.0S, 1.1E; drilled by L. Keith Soil	3 18 4 11	3 21 25 36
Ot 1056:	9K, 15.5S, 6.DE; drilled by L. Keith Soil	3 35 12 5 15 68	3 38 50 55 70	0t 1107:	Gravel	10 11 2	37 10 21 23
Ot 1057:	9K, 13.1S, 7.1E; drilled by T. Hall SoilHardpanShale, brown	1 24 15	1 25 40				

		Thick- ness (feet)	Depth (feet)			Thick- ness (feet)	Depth (feet)
0t 1109:	10J, 1.0S, 3.2E; drilled by L. Keith			Ot 1127:	9J, O.1S, 4.3E; drilled by Stewart		
	Soil	3	3		Bros.		
	No record	9	12		Sand, silt, and clay, some gravel,		
	Gravel No record	8	20		dark-brown	10	10
	Sand, fine	5 15	25 40		Sand, silt, and clay, light-brown	5 20	15
	Clay	7	47		Sand, silt, and clay, gray Gravel; yielded 18 gpm	20 5	35 40
	Gravel	í	48		Sand, fine, and silt	5	45
0t 1110:	101 1 00 2 15 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Gravel; yielded 25 gpm	12	57
01 1110:	10J, 1.2S, 3.1E; drilled by L. Keith Gravel	10	10		Sand, fine, and silt	. 3	60
	No record	10 20	10 30		Sand, fine, some gravel	10 24	70 94
	Quicksand, brown	15	45		Hardpan, boulders, clay, and silt.	18	112
	Quicksand, gray	14	59		Shale, dark-gray (Salina group to		.,_
	Sand	1	60		200 ft)	7	119
O+ 1111.	10J, 1.7S, 3.5E; drilled by L. Keith				Shale	. 6	125
oc 11111.	Soil	3	3		Shale with gypsumShale	15	140
	Gravel and soil	22	25		Shale with gypsum	15 15	155 170
	Clay	24	49		Shale	10	180
	Sand	1	50		Shale with gypsum	10	190
Ot 1112:	10J, 1.8S, 3.5E; drilled by L. Keith				Shale	10	200
	Soil	3	3	Ot 1128:	9K, 1.9S, 3.5E; drilled by Stewart		
	Gravel and soil	26	29		Bros.		
	Clay	30	59		Silt, some clay, trace of fine sand		
	Sand	1	60		and fine rounded gravel, brown	5	5
0t 1113:	10J, 2.3S, 3.9E; drilled by L. Keith				Gravel, fine, rounded, some silt, trace of fine sand and clay, dry,		
-	Clay	45	45		soft, nonplastic, brown	8	13
	Sand and gravel	7	52		Boulder	2	15
	Clay and quicksand	38	90		Gravel, fine, some silt and clay,		-
	Shale (Hatch shale member of West	18	108		trace of fine sand, moist, hard,	-	00
	Falls formation)	17	125		nonplastic, brown	5	20
		•			silt	8	28
Ot 1114:	10J, 2.5S, 3.9E; drilled by L. Keith	_	_		Limestone, gray (Salina group)	22	50
	SoilClay	2 18	2 20	0t 1129:	OV 1 OC 2 FF. 3-111-3 b Can - 1		
	Sand and gravel	3 2	52 52	01 1129:	9K, 1.9S, 3.5E; drilled by Stewart Bros.		
•		7 -	,-		Silt, trace of clay and fine		
0t 1115:	10J, 2.1S, 3.7E; drilled by L. Keith	_			rounded gravel, dry, soft, brown.	5	5
	SoilClay and gravel	3 21	3 24		Gravel, fine, rounded, trace of	_	
	Gravel, fine and medium	1	25		clay and silt, dry, brown Gravel, fine, some silt and clay,	5	10
	, , , , , , , , , , , , , , , , , , , ,	•	-,		dry, gray	5	15
0t 1126:	9J, 0.5N, 3.4E; drilled by Stewart				Gravel, fine, some silt and clay,	•	
	Bros.	12	12		moist, gray	11	2 6
	Sand, silt, and coarse gravel	13 3	13 16		GravelLimestone containing some gypsum,	1	27
	Sand, silt, clay and gravel; water-	,			fractured (Salina group)	73	100
	bearing	4	20		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	
	Gravel, fine, some silt, clay, and	•		Ot 1130:	9K, 1.9S, 3.9E; drilled by Stewart		
	sand Hardpan, some fine gravel, clay,	3	23		Bros. Silt, trace of clay and fine gravel,		
	and silt, red	32	55		dry, brown	5	5
	Clay and silt, red	5	60		Gravel, fine, some clay and silt,	,	•
	Clay and silt, red, trace of gravel	10	70		dry, brown	5	10
	Gravel, fine, sand, silt, and clay. Sand, fine, silt, and clay	10 20	80 100		Gravel, coarse to fine, some silt,	15	25
	Gravel, boulders, sand, silt, and	20	.00		trace of clay, dry, brown Limestone containing gypsum, and	15	25
	clay, gray	5	105		layers of mud or crushed rock		
	Shale, dark-gray (Salina group to	35	11.0		(Salina group)	26	51
	200 ft)	35	140				
	dark-red	36	176				
	Shale delemining and approximately	4	180				
	Shale, dolomitic, some gypsum Shale, dolomitic	10	190				
	Chartes del Old Libertains	10	200				

Table 9.--Drillers' logs of selected wells and test holes in Ontario County

Part 2. -- Logs of test holes

(All test holes in this part were drilled by the New York State Department of Public Works)

		Thick- ness (feet)	Depth (feet)			Thick- ness (feet)	Depth (feet)
Ot 1134:	9J, 1.1N, 1.4E; Thruway bridge at			0t 1148:			
	Fishers Road Topsoil Sand, fine, silt, and clay,	1	1		Interchange No. 45 Topsoil, sand, some silt Silt, some sand, brown	2 9	2 11
	slightly moist, mottled brown Sand, very fine, silt, moist, brown	9 1	10 11		Sand, some silt, trace of gravel,	17	28
	Sand, fine, silt, and clay in alternating layers, moist, brown.	2	13		Silt, some sand, trace of gravel, brown	12	40
	Sand, fine, and silt, moist, brown. Sand, medium, and silt, saturated,	2	15		Sand, some silt, trace of gravel, brown	5	45
	Sand, fine, silt, and clay in	3	18		Silt, some sand, and gravel, compact, brown	1	46
	alternating layers, wet, brown Sand, fine, moist, dark-brown Sand, fine, silt, and clay in	9 2	27 29		Silt, some sand and gravel, hard and dense, dark-brown	7	53
	alternating layers, wet, dark- brown	10	39	Ot 1157:	9J, 0.5N, 3.3E; Thruway bridge at Willow Road		
	Sand, medium, little silt, wet,	2	41		Topsoil, sand and gravel Gravel, some sand, loose, moist,		1
	Sand, fine, silt, and clay in alternating layers, wet, gray	10	51		Clay loam, some gravel, dense, gray	14 13	15 28
Ot 1138:	9J, 1.1N, 1.5E; Thruway bridge at New York Central R. R.			Ot 1163:	9J, 0.2S, 6.1E; Thruway bridge over Brównville Road	_	
	Topsoil	2 3	2 5		Topsoil	2	2
	Sand, fine, light-brown	4 5	9 14		brown Sand and gravel, coarse, loose,	4	6
	Sand, fine, and silt, brown Sand, fine, and silt alternating	3	17		Sand, fine to medium, and gravel,	1	7
	with thin layers of red clay Sand, fine, some silt, brown	4 5	21 26		Sand, fine, brown	7 1	11 12
	Sand, brown	3 9	29 38		Sand, fine, some silt and gravel, gray	3	15
	Silt, fine sand, and clay, gray Sand, fine, gray	11 3	49 52		Clay and silt, gray Sand, fine to coarse, some gravel,	4	19
	Sand, fine, and silt, gray Sand, medium to coarse, some	15	67		Sand, fine, and silt, gray	3	30 33
	gravel, gray	4 10	71 81		Sand, silt, and clay, some gravel,	3	36
	Sand, fine to medium, gray	7 5	88 93		Silt and fine sand, some gravel, gray	4	37
	Sand, fine to medium, gray	4	97	Ot 1164:			
0t 1139:	9J, 1.1N, 1.7E; Thruway bridge over Irondoquoit Creek				Ganargua Creek Sand, fine, silt, and clay, mottled	3	3 10
	Sand, silt, and gravel, brown Sand, very fine, silt muck,	3	3		Sand, very fine, and silt, gray Sand, coarse, and silt, some gravel	7 2	12
	dark-graySand, fine, some gravel, saturated,	4	7		and organic matter, dark-brown Sand, fine, shaley, and silt,	4	16
	Sand, fine to medium, some gravel,	11	18		Sand, fine to coarse, and silt,	1	17
	saturated, brown	24	42		Shale, disintegrated, fine sand and		19
	wet, red-brown	3 12	45 57		silt, gray (Salina group) Sand, fine, and silt, dark-brown Shale, soft, and silt in alter-	ì	20
	clay, dark-brown	4 9	61 70		nating layers, brown-gray, (Salina group to 45 ft)	9	29
Ot 1143:	9J, 1.1N, 1.8E; Thruway crossing at				Shale, soft, dark-gray (Salina group)	2	31
	Log Cabin Road Gravel, sand, and silt	15	15		layers	14	45
	BoulderGravel, sand, and silt	2	16 18				
	BouldersGravel, sand, and silt	7	20 27				
	BouldersGravel, sand, and silt	5	30 35				
	BouldersGravel, sand, and silt	2 3	37 40				

Table 9.--Drillers' logs of selected wells and test holes in Ontario County

Part 2. -- Logs of test holes (Continued)

		Thick- ness (feet)	Depth (feet)			Thick- ness (feet)	Depth (feet)
Ot 1169:	9J, 0.3S, 6.7E; Thruway crossing at Crowley Road			Ot 1209:	9K, 1.7S, 3.5E; Thruway bridge over Canandaigua Outlet		
	Sand, very fine, and silt, some	1	1		Topsoil, brown	2 4	2 6
	gravel, brown	14 5	15 20		Silt, some sand, trace of gravel and clay, plastic, brown	3	9
	Clay, red	í	21		Sand and gravel, some silt, brown	í	10
	Sand, fine, silt, disintegrated rock, gray	4	25		Shale, disintegrated, gray (Salina group to 27 ft)	12	22
	Rock, disintegrated, fine sand and silt, mottled, gray	2	27		Limestone, shaly	5	27
	Sand, very fine, and silt, light- gray	3	30	Ot 1213:	9K, 1.7S, 3.6E; Thruway crossing at Port Gibson Road		
	Rock with gypsum (Salina group) Open space	3 1	33 34		Sand, some silt and gravel Sand, some gravel and silt	6 10	6 16
	Rock and silt, dark-gray (Salina group to 43 ft)	3	37		Limestone, shaly (Salina group)	5	21
0. 11.77	Rock, dark-gray	6	43	Ot 1228:	9K, 1.9S, 4.7E; Thruway bridge over Fall Brook		
Ot 1177:	Highway 332 over Lehigh Valley R.	R.			TopsoilGravel, sand, and silt, brown and	I	ł
	Sand, fine, silt, stones, some	5	5		gray Limestone, shaly, soft	12 3	13 16
	gravel	3 2	8 10		Gravel and sand, trace of silt, gray	3	19
	Rock, soft, compact, gray (Salina group to 33 ft)	3	13		Silt, some sand, trace of gravel, red.	4	
	Rock, gray, disintegrated, consist- ing of alternating hard and soft	,	1,5		Limestone, shaly, soft (Salina		23
	layers	7	20		group)	2 1	25 26
	Gypsum, gray, alternating with layers of white gypsum 1/16 inch				Limestone, shaly, soft (Salina group)	4	30
	thick	13	33	Ot 1235:	9K, 1.8S, 5.5E; Thruway crossing at		
0t 1181:	9J, 0.4S, 7.9E; Thruway bridge over Pumpkin Hook Road				Kendall Road Fill	11	11
	Silt, trace of sand and gravel Shale, disintegrated (Salina group	1	1		Silt, some sand, trace of gravel Shale, disintegrated (Salina group	9	20
	to 23 ft) Limestone, soft, some silt	2 9	3 12		to 36 ft)Limestone, shaly	11 5	31 36
	Limes tone	ΙÍ	23	Ot 1245:		,	٥,
0t 1189:	9J, 0.5S, 8.8E; Thruway bridge over Farmington Road			00 1245.	Pennsylvania R. R.	1	1
	Topsoil	1	1		Topsoil	42	5 1 2 5
	gravel	10	11		Limestone, broken, trace of sand and silt (Cobleskill dolomite to		_
	Shale, disintegrated (Salina group to 24 ft)	4	15		17 ft) Limestone, shaly	2 10	17
0. 1101.	Limestone, shaly	9	24	Ot 1249:	9K, 2.2S, 9.0E; Thruway bridge over		
ot Hyl:	9J, 1.3S, 11.5E; Thruway bridge over Blacksmith Corners Road				N. Y. State Highway 88 Silt, some sand, trace of gravel	6	6
	FillSilt, some sand and gravel	1 5	1 6		Silt, some sand and gravel Shale, soft (Cobleskill dolomite to	2	8
	Silt, some sand, trace of gravel Shale, disintegrated (Salina group	6	12		26 ft) Limestone, shaly	1 17	9 26
	to 26 ft) Limestone, shaly	8 6	20 26	Ot 1251:	•	••	
0t 1196:	9K, 1.4S, 0.8E; Thruway bridge at			_	Canandaigua Outlet Topsoil	1	1
	Interchange No. 43 Silt and sand, some grayel, brown	1	1		Silt, some sand, trace of gravel, and vegetable matter, black	9	10
	Gravel, some sand and silt, gray Shale, disintegrated, dark-gray	7	8		Silt, some shaly gravel and sand,		
	(Salina group to 24 ft) Limestone, shaly	6 10	14 24		Silt, some sand and shaly gravel	5 4	15 19
0t 1197:	9K, 1.5S, 1.3E; Thruway crossing at	10	24	0. 10(0.	Limestone, shaly (Salina group)	9	28
00 1137.	N. Y. State Highway 21	_	_	0t 1260:	9K, 2.3S, 9.9E; Thruway crossing at Marbletown Road		
	Sand, some silt, and gravel Silt, some sand, trace of shaly	5	5		Silt, some sand, trace of gravel Silt, some sand and gravel	6 9	6 15
	Shale, disintegrated (Salina group	6	11		Gravel, shaly, some sand and silt Silt, some sand, trace of shaly	7	22
	to 33 ft)	12 10	23 33		gravel	4 5	26 31
0t 1199:	9K, 1.6S, 1.8E; Thruway bridge over				Silt, some sand and shaly gravel Limestone, shaly (Salina group)	17 4	48 52
	Sand, some gravel and silt, gray	10	10				
	Shale, disintegrated, gray (Salina group to 22 ft)	7	17				
	Limestone, shaly	5	22				

Table 9.--Drillers' logs of selected wells and test holes in Ontario County

Part 2.--Logs of test holes (Continued)

		Thick- ness (feet)	Depth (feet)			Thick= ness (feet)	Depth (feet)
Ot 1263:	9K, 2.7S, 10.7E; Thruway crossing at Gifford Road			Ot 1286:	9L, 3.2S, 1.3E; Thruway crossing at N. Y. Central R. R., Fall Brook		
	Fill, sand and gravel	10 9	10 19		Branch Topsoil	1	1
	Silt, some sand, trace of gravel	4	2 3		Silt, trace of sand and gravel,	-	6
	Silt and sand, some shaly gravel	2	25		brownbrown	5 6	12
	Silt, some sand, trace of shaly		21		Silt, trace of sand and clay, brown Silt, some sand and gravel, brown.	4	16
	gravel	6	31		Silt, some sand, brown	22	38
	Shale, disintegrated (Salina group to 48 ft)	4	35		Silt and sand, some gravel, gray	14	5 2
	Limestone, shaly, seamy	10	45				
	Shale, disintegrated	3	48	Ot 1288:	Highway 20 at Castle Creek		_
Ot 1264:	9K, 3.0S, 12.2E; Thruway crossing				Boulders and washed sand	3 40	43
	at Pre-Emption Road				Sand, trace of silt and gravel	40	4)
	Sand, some silt	10	10		Silt, trace of clay, sand, and gravel, plastic	35	78
	Silt, some sand, trace of gravel	13 2	23 25		Gravel and sand, some silt, hard,		•
	Silt, trace of sand	5	30		dense	13	91
	Gravel, some sand and silt	31	61				
	Shale, disintegrated (Salina group			0t 1289:			
	to 80 ft)	17	78		Geneva boat basin	6	6
	Limestone, shaly, soft	2	80		Silt, trace of sand	10	16
Ot 1272:	9L, 3.2S, 0.5E; Thruway bridge over				Silt, trace of clay and sand, plastic	81	97
	Canandaigua Outlet	1	1		Silt, some sand and gravel	5	102
	Topsoil	5	6				
	Sand, some gravel and silt, gray	30	36	0t 1290:	9K, 8.6S, 0.1W; Bridge on U. S.		
	Silt, sand, and gravel, gray	11	47		Highway 20 over Canandaigua		
	Shale, soft (Salina group)	8	55		Outlet	1	1
Ot 1273:	9L, 3.2S, 0.9E; Thruway bridge at				Topsoil Sand, some silt, trace of vegetable matter, mottled, brown	4	5
	Interchange No. 42	5	5		Silt, trace of sand, gravel and		-
	Muck, brown	7	12		clay, dense, red	5	10
	Sand, some gravel, trace of silt,				Silt, some sand and gravel, medium plastic, red	19	29
	Sand, trace of silt and gravel,	3	15		Silt, some sand and gravel, com-	13	42
	gray	4 8	19 27		pact, gray-brown		
	Sand, trace of silt, brown Silt, trace of sand, brown	13	40	0t 1296:	9K, 9.0S, 0.5E; Bridge on U. S. Highway 20 over Fall Creek		
	Silt, some sand, trace of gravel, gray	5	45		Topsoil	1	1
	Silt, some sand and gravel, hard,	•	.,		Shale, disintegrated	8	.9
	dense, gray Limestone, shaly with seams (Salina	6	51		Shale (Ludlowville shale)	10	19
	group)	5	56				
Ot 1278:	9L, 3.2S, 1.2E; Thruway crossing at N. Y. State Highway 14		_				
	Topsoil	1	1				
	clay, red-brown	4	5				
	brown	11	16				
	brown	13	29				
	brown	7	36				
	Sand, some silt, gray	4	40				
	Sand, some silt, brown	12	52				

Table 10, -- Records of selected wells and test holes in Ontario County

Part 1. -- Records of wells

Well number: See section in text entitled "Well-Location System".

Location: For explanation of location coordinates see section entitled "Well-Location System":

Altitude: Estimated from topographic maps. Type of well: Dr³, drilled; Drv, driven. Water-bearing unit: Descriptions of aquifers are included in table 2.

Water level: Measurements made by U. S. Geological Survey are reported to nearest tenth of foot; others to nearest foot. Water levels preceded by plus (+) are above land surface. Use: A, agricultural; C, commercial; H, residential; I, industrial; H, municipal or community; O, other; U, use discontinued or well unsuccessful; b, boller feed; c, cooling; d, domestic; i, irrigation; I, livestock; P, processing; s, sanitary and service.

Remarks: Most data reported, except temperature measurements; gpd, gallons per day; gpm, gallons per minute; ppm, parts per million;

Related to nearby city Owner or occidents Owner occidents Own	1927 1947 1947 1933± 1936 1931 1943 1945	sea Type [feet] of [feet] well 520 Drll 460 Drl 460 Drl 480 Drl 480 Drl 490 Drl			of to casing Diameter bedrock (feet) (inches) (feet)	to	Water~bearing	land	(gallons		
91. 8.55. 0.4E Geneva 91. 8.35. 0.8E do. 91. 8.55. 1.5E do. 91. 8.55. 1.1E 1 mi N. of Geneva 91. 7.15. 1.1E 2 mi N. of Geneva 91. 5.85. 0.2E 3½ mi N. of Geneva 91. 4.65. 0.7E 4½ mi N. of Geneva 91. 4.65. 0.7E 4½ mi N. of Geneva 91. 3.55. 1.1E 3½ mi N. of Geneva 91. 3.55. 1.2E 2½ mi N. of Geneva 91. 3.55. 1.2E 2½ mi N. of Geneva 91. 3.55. 1.2E 2½ mi N. of Geneva 91. 3.55. 1.2E 3½ mi N. of Geneva 91. 3.55. 1.3E 3½ mi N. of Geneva 91. 3.55. 3.56. 3½ mi N. of Geneva 91. 3.55. 3.56. 3½ mi N. of Geneva 91. 3.55. 3.56. 3½ mi N. of Geneva	1927 1947 1933 1936 1931 1945 1945	:	.]	150		(feet)	+: 4:	surface (fort)	per	-	
9L, 8.55, 1.5E do. 9L, 8.55, 1.1E 1 mi N. of Geneva 9L, 7.1S, 1.1E 2 mi N. of Geneva 9L, 7.1S, 1.1E 2 mi N. of Geneva 9L, 6.4S, 1.3E 2½ mi N. of Geneva 9L, 4.6S, 0.2E 3½ mi N. of Geneva 9L, 4.6S, 1.2E 3½ mi N. of Geneva 9L, 5.5S, 1.1E 3½ mi N. of Geneva 9L, 5.5S, 1.1E 3½ mi N. of Geneva 9K, 3.2S, 12.1E 2½ mi E. of Phelps 9K, 5.7S, 11.2E 3½ mi N. of Geneva 9K, 5.7S, 11.2E 3 mi SE. of Phelps 9K, 5.7S, 11.2E 3 mi SE. of Phelps 9L, 1.2S, 1.1E 7 mi N. of Geneva 9L, 1.2S, 1.1E 7 mi N. of Geneva 9L, 1.2S, 1.1E 7½ mi N. of Geneva	1947 1933± 1937 1945 1945				9	150 0	Onondaga limestone	39	60	H	Well unused because water contains hydrogen sulfide.
91, 8.55, 1.5f do. A. J. Tarr Hilk 91, 8.55, 1.1E mi N. of Geneva J. Brigandi 91, 7.15, 1.1E mi N. of Geneva Dominick Acquila 91, 6.45, 1.3E 2½ mi N. of Geneva H. Skuse 91, 6.45, 0.2E 3½ mi N. of Geneva George Drooby 91, 4.65, 0.7E 4½ mi N. of Geneva J. O'Brien 91, 3.55, 1.1E 3½ mi N. of Geneva George Drooby 91, 3.55, 1.1E 3½ mi N. of Geneva Gravel Co., In 91, 3.55, 1.2E 2½ mi N. of Geneva Gravel Co., In 92, 5.75, 11.2E 3½ mi SE of Phelps Bernard Dekuyter 94, 5.75, 11.2E 3½ mi N. of Geneva H. B. Abbott 94, 2.35, 1.2E 6½ mi N. of Geneva Howard Steele 94, 1.55, 1.5E 7½ mi N. of Geneva Howard Steele 94, 1.55, 1.1E 7½ mi N. of Geneva Howard Steele 94, 1.55, 1.1E 7½ mi N. of Geneva Howard Steele 94, 1.55, 1.1E 7½ mi N. of Geneva Howard Steele 94, 1.55, 1.1E 7½ mi N. of Geneva Howard Steele 95, 1.55, 1.1E 7½ mi N. of Geneva Howard Steele 96, 1.55, 1.1E 7½ mi N. of Geneva Howard Steele 96, 1.55, 1.1E 7½ mi N. of Geneva Howard Steele 97, 1.55, 1.1E 7½ mi N. of Geneva Howard Steele 96, 1.55, 1.1E 7½ mi N. of Geneva Howard Steele 97, 1.25, 1.1E 7½ mi N. of Geneva Howard Steele 98, 1.25, 1.1E 7½ mi N. of Geneva Howard Steele	1933± 1936 1936 1938 1943 1945			105	80	115	do.	9	130	ວ	Water contains hydrogen sulfide.
9L. 8.55, 1.1E 1 mi N. of Geneva Dominick Acquil 9L. 6.45, 1.3E 2½ mi N. of Geneva Bominick Acquil 9L. 6.45, 1.3E 2½ mi N. of Geneva H. Skuse 9L. 5.85, 0.2E 3½ mi N. of Geneva G. Yancey 9L. 4.65, 0.7E 4½ mi N. of Geneva G. Yancey 9L. 5.55, 1.1E 3½ mi N. of Geneva George Drooby 9L. 5.55, 1.1E 3½ mi N. of Geneva Gravel Co., 1 9K, 3.25, 1.2E do. 6 Geneva Gravel Co., 1 9K, 3.25, 12.1E 2½ mi E. of Phelps Gravel Co., 1 9K, 5.75, 11.2E 3 mi SE. of Phelps H. B. Abbott 9K, 5.75, 11.2E 3 mi SE. of Phelps H. B. Abbott 9K, 5.75, 11.2E 5½ mi N. of Geneva H. B. Abbott 9L, 1.95, 1.1E 7 mi N. of Geneva Howard Steele 9L, 1.65, 1.5E 7½ mi N. of Geneva Howard Steele 9L, 1.65, 1.5E 7½ mi N. of Geneva Howard Steele 9L, 1.25, 0.7E Ab mi N. of Geneva C. Doverslaugh 9L, 1.25, 1.1E 7 mi N. of Geneva C. Doverslaugh 9L, 1.25, 1.1E 7 mi N. of Geneva C. Benge C. Benge	1937 1936 1943 1945 1945		3	135	9	1	Pleistocene sand and gravel	9	7	Гср	(a) (b). Water contains hydrogen sulfide.
91. 7.15. 1.1E 2 mi N. of Geneva Dominick Acquil 91. 6.45. 1.3E 2½ mi N. of Geneva R. E. McClure 91. 5.85. 0.2E 3½ mi N. of Geneva H. Skuse 91. 4.65. 0.7E 4½ mi N. of Geneva G. Yancey 91. 5.55. 1.1E 3½ mi N. of Geneva J. O'Brien 91. 5.55. 1.1E 3½ mi N. of Geneva George Drooby 91. 5.55. 1.2E 40. 60.0 George Drooby 92. 5.55. 1.2E 2½ mi N. of Geneva Gravel Co., 1 9K, 3.25, 12.1E 2½ mi E. of Phelps Bernard DeRuyte 9K, 6.35, 12.0E 3 mi NN. of Geneva H. B. Abbott 9K, 5.75, 11.2E 3 mi SE. of Phelps H. B. Abbott 9L, 1.35, 1.2E 6½ mi N. of Geneva Howard Steele 9L, 1.65, 1.5E 7½ mi N. of Geneva Howard Steele 9L, 1.25, 0.7E 7½ mi N. of Geneva C. Overslaugh 9L, 1.25, 0.7E 8½ mi N. of Geneva C. Doverslaugh 9L, 1.25, 1.1E 7 mi N. of Geneva C. Benge C. Benge	1936 1943 1945 1945		79	62	9	:	do.	flows	9	3	(6).
91, 6.45, 1.3E 2½ mi N. of Geneva 91, 5.85, 0.2E 3½ mi N. of Geneva 91, 4.65, 0.7E 4½ mi N. of Geneva 92, 4.65, 0.7E 4½ mi N. of Geneva 92, 4.65, 1.2E 3½ mi N. of Geneva 94, 3.65, 0.5E 5½ mi N. of Geneva 96, 3.25, 12.1E 2½ mi E. of Phelps 96, 6.35, 12.0E 3½ mi N. of Geneva 96, 5.75, 11.2E 3 mi SE. of Phelps 97, 5.75, 11.2E 3 mi SE. of Phelps 91, 2.35, 12E 6½ mi N. of Geneva 92, 1.55, 12E 6½ mi N. of Geneva 92, 1.55, 12E 7½ mi N. of Geneva 92, 1.55, 12E 3½ mi N. of Geneva 92, 1.55, 12E 6½ mi N. of Geneva 92, 1.55, 12E 6½ mi N. of Geneva 92, 1.55, 12E 7½ mi N. of Geneva 92, 1.25, 12E 7½ mi N. of Geneva 62, 1.25, 12E 7½ mi N. of Geneva 72, 12E 72			98	98	9	1	Pleistocene deposits	9+	9	Ŧ	
91. 5.85, 0.2E 3½ mi N. of Geneva 91. 4.65, 0.7E 4½ mi N. of Geneva 6. 91. 4.65, 1.2E do. 92. 5.55 1.1E 3½ mi N. of Geneva 91. 3.65, 0.5E 5½ mi N. of Geneva 91. 3.65, 0.5E 5½ mi N. of Geneva 91. 3.65, 12.1E 2½ mi E. of Phelps 91. 5.75, 11.2E 3 mi SE. of Phelps 91. 5.75, 11.2E 3 mi SE. of Phelps 91. 2.35, 1.2E 6½ mi N. of Geneva 91. 1.95, 1.1E 7 mi N. of Geneva 91. 1.55, 1.1E 7½ mi N. of Geneva 92. 1.55, 1.5E 7½ mi N. of Geneva 92. 1.55, 1.5E 7½ mi N. of Geneva 92. 1.25, 1.2E 63½ mi N. of Geneva 92. 1.25, 1.2E 63½ mi N. of Geneva 92. 1.25, 1.1E 7 mi N. of Geneva 93. 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.2			180	;	9	1	Salina group	35	:	5	
91. 4.65, 0.7E 4½ mi N. of Geneva G. 9L, 4.65, 1.2E do, do, 9L, 5.5S, 1.1E 3½ mi N. of Geneva J. 9L, 3.6S, 0.5E 5½ mi E. of Phelps 9K, 5.3S, 12.1E 2½ mi E. of Phelps 9K, 6.3S, 12.0E 3½ mi N. of Geneva H. 9K, 5.7S, 11.2E 3 mi SE. of Phelps 9L, 2.3S, 1.2E 6½ mi N. of Geneva H. 9L, 1.5S, 1.1E 7½ mi N. of Geneva H. 9L, 1.5S, 1.1E 7½ mi N. of Geneva H. 9L, 1.5S, 1.1E 7½ mi N. of Geneva H. 9L, 1.5S, 1.1E 7½ mi N. of Geneva H. 9L, 1.2S, 1.1E 7½ mi N. of Geneva H. 9L, 1.2S, 1.1E 7½ mi N. of Geneva T. 9L, 1.2S, 1.1E 7½ mi N. 05 Geneva T. 9L, 1.2S, 1.1E 7½ mi N. 05 Geneva T. 9L, 1.2S, 1.1E 7½ mi N. 05 Geneva T. 9L, 1.2S, 1.2E 7½ mi N. 05 Geneva T. 9L, 1.2S, 1.2E 7½ mi N. 05 Geneva T. 9L, 1.2S, 1.2E 7½ mi N. 05 Gene			30	ŀ	9	17 0	Onondaga limestone	27	9	¥	(6).
9L, 4,6.5, 1,2.E do. 66 9L, 5.55, 1,1.E 3½ mi N. of Geneva 9L, 3,6.S, 0,5.E 5½ mi N. of Geneva 9K, 3,2.S, 12.1E 2½ mi E. of Phelps 9K, 6,3.S, 12.0E 3 mi SE. of Phelps 9K, 5,7.S, 11.2E 3 mi SE. of Phelps 9L, 2,3.S, 1,2.E 6½ mi N. of Geneva 9L, 1,9.S, 1,1.E 7 mi N. of Geneva 9L, 1,6.S, 1,5.E 7½ mi N. of Geneva 9L, 1,6.S, 1,5.E 7½ mi N. of Geneva 9L, 1,5.S, 1,1.E Ado. 1, 1,5.S, 1,1.E Ado. 2, 1,5.S, 1,5.E Ado. 3, 1,5.S, 1,5.E Ado. 4, 1,5.S, 1,5.E Ado. 4, 1,5.S, 1,5.E Ado. 5, 1,5.S, 1,5.E Ado. 6, 1,5.S, 1,5.E Ado. 7, 1,5.S, 1,5.E Ado.		30 Dr.1	9	09	9	1	Pleistocene sand and gravel	35	80	x	(b).
9L, 5.55, 1.1E 3½ mi N. of Geneva 9L, 3.65, 0.5E 5½ mi N. of Geneva 00 9K, 3.25, 12.1E 2½ mi E. of Phelps 9K, 6.35, 12.0E 37 mi NN. of Geneva H. 9K, 5.75, 11.2E 3 mi SE. of Phelps 9L, 2.35, 1.2E 6½ mi N. of Geneva El 9L, 1.95, 1.1E 77 mi N. of Geneva H. 9L, 1.65, 1.5E 7½ mi N. of Geneva 1.05, 1.2E 3½ mi N. of Geneva 1.05, 1.2E 3½ mi N. of Geneva 1.05, 1.2E 3½ mi N. of Geneva 1.05, 1.25, 1.1E 40.		00 Dr.1	153	153	9	141 S	Salina group	91	50	I	(6).
94, 3.65, 0.5E 5½ mi N. of Geneva Or 97, 3.25, 12.1E 2½ mi E. of Phelps 96, 6.35, 12.0E 3½ mi NV. of Geneva H. 94, 5.75, 11.2E 3 mi SE. of Phelps 91, 2.35, 1.2E 6½ mi N. of Geneva El 91, 1.95, 1.1E 7 mi N. of Geneva H. 91, 1.55, 1.5E 7½ mi N. of Geneva T. 91, 1.25, 0.7E do.		470 Dri	141	140	9	1	Pleistocene sand	50	20	r	(b). Water has relatively high iron content.
9K, 3.25, 12.1E 2½ mi E. of Phelps 9K, 6.35, 12.0E 3 mi MV. of Geneva 9K, 5.75, 11.2E 3 mi SE. of Phelps 9L, 2.35, 1.2E 6½ mi N. of Geneva 9L, 1.95, 1.1E 7 mi N. of Geneva 9L, 1.65, 1.5E 7½ mi N. of Geneva 9L, 1.25, 0.7E do. 9L, 1.25, 1.1E do. 9L, 0.75, 1.5E 8½ mi N. of Geneva	1941± 450	0 Dr.1	20	20	9	1	Pleistocene sand and gravel	15	09	<u>«</u>	
9K, 6.3s, 12.0e 3 mi NN. of Geneva 9K, 5.7s, 11.2E 3 mi SE, of Phelps 9L, 2.3s, 1.2E 6½ mi N. of Geneva 9L, 1.9s, 1.1E 7 mi N. of Geneva 9L, 1.6s, 1.5E 7½ mi N. of Geneva 9L, 1.2s, 0.7E do. 9L, 1.2s, 1.1E do.	1947 480	10 Dr.1	93	8	9	80	Salina group	26	20	Adl	(b).
9K, 5.75, 11.2E 3 mi SE. of Phelps 9L, 2.35, 1.2E 6½ mi N. of Geneva 9L, 1.95, 1.1E 7 mi N. of Geneva 9L, 1.65, 1.5E 7½ mi N. of Geneva 9L, 1.25, 0.7E do. 9L, 1.25, 1.1E do. 9L, 0.75, 1.5E 8½ mi N. of Geneva	1945 560	o Dr.	64	64	9	1	Pleistocene sand and gravel	20	09	PA	
9L, 2.35, 1.2E 6½ mi N. of Geneva 9L, 1.95, 1.1E 7 mi N. of Geneva 9L, 1.65, 1.5E 7½ mi N. of Geneva 9L, 1.25, 0.7E do, 9L, 1.25, 1.1E do, 9L, 0.75, 1.5E 8½ mi N. of Geneva	1945 610	0 Drl	47	30	9	30 Or	Onondaga limestone	9	30	Adl	Water contains hydrogen sulfide.
9L, 1.95, 1.1E 7 mi N. of Geneva 9L, 1.65, 1.5E 7½ mi N. of Geneva 9L, 1.25, 0.7E do, 9L, 1.25, 1.1E do. 9L, 0.75, 1.5E 8½ mi N. of Geneva	1900 520	0 Dr.1	95	96	9	1	Pleistocene sand and gravel	70	20	Ā	Water contains hydrogen sulfide. Temp 480F, 7/26/47.
9L, 1.65, 1.55 7½ mi N. of Geneva 9L, 1.25, 0.7E do. 9L, 1.25, 1.1E do. 9L, 0.75, 1.5E 8½ mi N. of Geneva	064	0 Dug	32	32	36	ŀ	ę,	77	:	Ŧ	Temp 50°F, 7/26/47.
9L, 1.25, 0.7E do. 9L, 1.25, 1.1E do. 9L, 0.75, 1.5E 8½ mi N. of Geneva	520	O Dug	27	27	36	1	•op	20	9	Adl	
9L, 1.2S, 1.1E do. 9L, 0.7S, 1.5E 8½ mi N. of Geneva	01/11	0 Drl	55‡	55	9	ŀ	do.	30	~	Adl	
9L, 0.7S, 1.5E 8½ mi N. of Geneva	480	0 Dug	55	55	36	:	do.	64	0	Adl	
	0947	0 Dug	17	13	36	<u>ا</u>	Pleistocene deposits	12.2 7/28/47	1	I	Temp 50 ⁰ F, 7/28/47.
Ot 31 9L, 0.45, 1.16 do. Adrian Raymer	094	0 Dug	8	30	36	ı	ę	20	1	I	Temp 56 ^O F, 7/28/47.
0t 34 9L, 2.9S, 0.4E 6 mi N. of Geneva C. West	1940 460	0 Dug	71	71	36	:	Pleistocene sand	01	01	A1	
Ot 35 9K, 9.85, 12.2E 1 3/4 mi SW. of Geneva Frank Klug	1945 700	0 Drl	55	52	9	:	Pleistocene sand and	12	8	Ŧ	

nable 10.--Records of selected wells and test holes in Ontario County
Part 1.--Records of wells (Continued)

	Remarks					hydrogen sulfide.	Well yielded flammable gas at 90 ft.		7/1/1	,,,,			ill No. 4. Six other test wells	. No. 4.	No. 4.	eil No. 4. Six other test wells	sil No. 4. Six other test wells sal of industrial waste.	ell No. 4. Six other test wells sal of industrial waste.	sil No. 4. Six other test wells sal of industrial waste.	sil No. 4. Six other test wells sal of industrial waste.	sal of industrial waste. 2/47.	sal of industrial waste. 2/47. hydrogen sulfide.	sal of industrial waste. 2/47. hydrogen sulfide.	sal of industrial waste. 2/47. hydrogen sulfide.	sal of industrial waste. 2/47. hydrogen sulfide.	sal of industrial waste. 2/47. hydrogen sulfide.	sal of industrial waste. 2/47. hydrogen sulfide.
					Water is salty.	Water contains hydrogen sulfide.	Well yielded flamme		Temp 50 ⁰ F, 7/30/47.				(b). Owners well No. 4. on property.	<u>u</u>	(b). Owners well han property.	(b). Owners well han property.	(b). Owners well N on property. Used for disposal o	(b), Owners well hand property. Used for disposal of	(b). Owners well by on property. Used for disposal c	(b). Owners well by on property. Used for disposal c	(b). Owners well N on property. Used for disposal of temp 54°F, 11/2/47.	(b). Owners well No. 4. Six ot on property. Used for disposal of industrial Temp 54°F, 11/2/47. Temp 52°F, 11/4/47.	(b). Owners well by on property. Used for disposal of the property. Temp 54°F, 11/2/47 Temp 52°F, 11/4/47	(b), Owners well by on property. Used for disposal of Temp 540F, 11/2/47 Temp 520F, 11/4/47	(b). Owners well by on property. Used for disposal of the contains hyd Water contains hyd	(b), Owners well by on property. Used for disposal of the posal of the property.	(b), Owners well by on property. Used for disposal of the posal of th
) Use	ΑΙ	I	I	:	I	Adl	1	I		A1	۲ ک	٦ ۽ ا	2 x 1 x	2 x x -	Z = = = =	Z = 1 = - = =	¥	¥	8 = 1 = - = = = = = = = = = = = = = = = =	A		8 x 1 x - x x 5 x x 5 x 5 x 5	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8	A T T A A T T A A T T A A A T T A A A A
Yield (qallons	per minute)	32	⊣kv	7	<u>-</u> k	2	15	- 17	20	9		2	5 5	5 5 4	15 4 4 100	5 4 4 100 100	2 4 00 1 1	2 4 90 1 1 1	2 4 00 1 1 1	5 4 4 1 1 100 1 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4	25 4 1 1 25 1	25 4 1 1 25 4 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 4 60 1 1 2 2 1 1 2 2 1 1 2 1	25 4 60 1 1 25 4 1 1 25 1 1 25 1 1 2 1 1	25 4 60 1 1 1 2 2 1 1 2 2 1 1 2 1 1 1	25 4 6 1 1 2 1 1 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
below (surface (feet)	Į.	73	51	=	91	0+1	12	80	30		;	: 1	1 1 %	5 3 1 1	3 8 3 1 1	1 1 50 00 11		1. 2. 2. 2. 2. 3. 3. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.		11/4/47	 20 20 20 10 10 10 10 10 10 20 20 20 20 20 20 20 20 20 33 33 40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	 20 20 20 20 40 40 40 1/4/47 30 10			20 20 20 1/4/4/7 33 30 10 10 10 10 10 10 10 10 10 10 10 10 10
	Water-bearing unit	Pleistocene sand and gravel	Skaneateles shale	Pleistocene sand and gravel	Ludlowville shale	Moscow shale	Ludlowville shale	Skaneateles shale	Pleistocene sand and gravel	Salina group		Pleistocene sand	Pleistocene sand Pleistocene sand and gravel	Pleistocene sand Pleistocene sand and gravel Salina group	Pleistocene sand and gravel Salina group Ohondaga linestone and Cobeskill dolomite	Pleistocene sand gravel gravel Salina group Onondaga limestone and Gobieskill dolonite Pleistocene sand and gravel	Pleistocene sand gravel gravel Salina group Onondaga limestone and Gobleskill dolmite sand and gravel Pleistocene till	_	_	_		Pleistocene sand and gravel Salina group Onondaga limestone and Cobleskill dolomite Pleistocene sand and gravel Pleistocene sand and gravel Camillus shale Onondaga limestone and and gravel Pleistocene sand and gravel Pleistocene sand and gravel Onondaga limestone and gravel Onondaga limestone and gravel Onondaga limestone and and gravel	Pleistocene sand and gravel Salina group Onondaga limestone and Cobleskill dolonite Pleistocene sand and gravel Camillus shale Onondaga limestone and and gravel Pleistocene sand and gravel Pleistocene sand and gravel Onondaga limestone and comite and cobleskill dolonite Pleistocene sand and gravel	Pleistocene sand and gravel Salina group Onondaga limestone and Cobleskill and Cobleskill Pleistocene sand and gravel Pleistocene sand and gravel Camillus shale Onondaga limestone and Cobleskill dolomite Pleistocene sand and gravel And Cobleskill dolomite Pleistocene sand and Gobleskill dolomite Onondaga limestone and Cobleskill dolomite Onondaga limestone and Cobleskill dolomite and Cobleskill	Pleistocene sand and gravel Salina group Onondaga limestone and Cobleskill dolomite Pleistocene sand and gravel Pleistocene sill Pleistocene sand and gravel Camillus shale Onondaga limestone and colleskill dolomite Pleistocene sand and gravel Onondaga limestone and Cobleskill dolomite bleistocene sand and gravel Onondaga limestone do. Pleistocene sand and gravel Pleistocene sand and gravel Pleistocene sand and gravel	Pleistocene sand and gravel Salina group Onondaga limestone and Cobleskill dolomite Pleistocene sand and gravel Camillus shale Onondaga limestone and and gravel Pleistocene sand and gravel Onondaga limestone and connite and Cobleskill dolomite Pleistocene sand and gravel Pleistocene sand and gravel Onondaga limestone and Cobleskill do. Onondaga limestone and Cobleskill dolomite Pleistocene sand and gravel Ao.	Pleistocene sand and gravel Salina group Onondaga limestone and old old old old old old old old old ol
Depth	bedrock (feet)		78	1	20	20	18	9	ŀ	04		ŀ	1 1	3	1 1 3 2	3 ~	113, 11	113011	1 1 3 2 1 1 1 6	1 1 3 2 1 1 1 66 2	113 11162	11 \$ 2 1 1 1 8 5 1 %	1 1 2 2 1 1 1 6 5 1 5 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 2 2 2 3 3 3 3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 2 2 3 3 3 5 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 2 2 2 3 1 1 2 6 2 1 1 2 6 2 1 1 1 2 6 2 1 1 1 2 6 2 1 1 1 2 6 2 1 1 1 1	1 1 9 2 2 3 3 1 1 1 6 5 1 5 5 6 6 1 1 1 1
	casing Diameter bedrock (feet) (inches) (feet)	9	9	9	9	9	9	9	9	9		9	9 9	999	, , , , , , , , , , , , , , , , , , , 	, se e e	9 8 8 9 9	36 38 8666	e 36 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	, , , , , , , , , , , , , , , , , , ,	36 66 66	6 36 6 36 9 9 9 9 9 9 9 9 9 9 9	, , , , , , , , , , , , , , , , , , ,		3, 6,6,7 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,6 6,	3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Depth	ising Di eet) (i	001	8	17	53	54	20	0	£ 7	45	113	2	3 3	30 47	13 30 12	13 30 30 32 32 32 32 32 32 32 32 32 32 32 32 32	13 30 42 42 43	13 30 12 22 23 23 23	13 30 47 12 22 23 23 100	130 30 47 12 100 100 49	130 30 47 12 13 19 49	130 30 43 100 100 14 37	130 30 47 100 100 43 23 14 14 25	13 30 12 12 12 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	130 30 43 43 23± 49 49 49	13 30 47 12 12 12 13 14 19 19 15 55 55 55 56 56 56 56 56 56 56 56 56 56	13 30 12 12 12 13 14 49 13 15 25 25 25 25 30 30 30 30 30 30 30 30 30 30 30 30 30
Depth De	= 7		160	[4	145	72	175	192	£	041		~						+1	+1	+1	+1	+1	+1	+1	+1	+1	+1
	of well (f	1	Dr. 1	Drl	Drl	Drl	Dr1 1	Drl 2	Dr1	Dri		Drl													_		
å	level (feet)	730 D	780 D	745 D	960 D	920 D	920 D	910	250 D	0 09t ₇		520 D															
Year ab	ple le	N .	1945	1945	1947	9461	1917	1946	1945	1905		1936															
	Outer or occupant	1	Vance Serba	Charles Butcher	Luther Smith	John Birdsey	James Van Houte	Deane Lightfoot	Floyd Rohner	George Sheppard		Sayre MacLeod	Sayre MacLeod Bell Telephone Co.	Sayre MacLeod Bell Telephone Co. R. Bump	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co.	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner John Tollee	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner John Tollee Serfass S. DeWind	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner John Tollee Serfass S. DeWind Albert Oaks	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner John Tollee Serfaas S. DeWind Albert Oaks	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner John Tollee Serfaas S. DeWind Albert Oaks Arthur Day Ludvik Podest	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner John Tollee Serfaas S. DeWind Albert Oaks Arthur Day Ludvik Podest R. J. Conners	Sayre HacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner John Tollee Serfaas S. DeWind Albert Oaks Arthur Day Ludvik Podest R. J. Conners Floyd Conne	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner John Tollee Serfaas S. DeWind Albert Daks Arthur Day Ludvik Podest R. J. Conners Floyd Conne	Sayre MacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner John Tollee Serfass S. DeWind Albert Oaks Arthur Day Ludvik Podest R. J. Conners Floyd Conne H. Corneles C. Pollot	Sayre HacLeod Bell Telephone Co. R. Bump Empire State Pickling Co. F. C. Ridley H. Fagner John Tollee Serfaas S. DeWind Albert Oaks Arthur Day Ludvik Podest R. J. Conners Floyd Conne H. Corneles C. Pollot Peter Schroo
Location	Related to nearby city	Ucordinates 9K, 9.8S, 11.4E 2½ mi WNW. of Geneva	9K, 9.58, 10.6E 3½ mi W. of Geneva	 10.75, 11.8Ε 2½ mi SW. of Geneva 	9K, 9.7S, 5.1E 7 mi E. Canandaigua	0.6s,	10.75, 4.3E	9K, 11.3S, 4.6E 7 mi ESE. of Canandaigua	9L, 10,2S, 0,4E 1 mi S, of Geneva	L, 0.5N, 0.9E $9\frac{1}{2}$ mi N. of Geneva		2.3S, 0.1W	2.3s, 0.1W 9.0s, 0.7E	2.35, 0.1W 9.05, 0.7E 3.45, 11.3E	2.35, 0.1W 9.0S, 0.7E 3.4S, 11.3E 2.8S, 9.2E	2.35, 0.1W 9.0S, 0.7E 3.4S, 11.3E 2.8S, 9.2E 0.6S, 8.7E	2.35, 0.1W 9.05, 0.7E 3.45, 11.3E 2.85, 9.2E 0.65, 8.7E	2.35. 0.1W 9.05. 0.7E 3.45, 11.3E 2.85. 9.2E 0.65, 8.7E 1.45, 8.7E	2.35, 0.1W 9.05, 0.7E 3.45, 11.3E 2.85, 9.2E 0.65, 8.7E 1.45, 8.7E 1.05, 11.9E	2.35, 0.1W 9.05, 0.7E 3.45, 11.3E 2.85, 9.2E 0.65, 8.7E 1.45, 8.7E 1.05, 11.9E 1.15, 0.3E 4.65, 12.0E	2.35. 0.1W 9.05. 0.7E 3.45, 11.3E 2.85. 9.2E 0.65, 8.7E 1.45, 8.7E 1.05, 11.9E 4.65, 12.0E	2.35, 0.1W 9.05, 0.7E 3.45, 11.3E 2.85, 9.2E 0.65, 8.7E 1.45, 8.7E 1.15, 0.3E 4.65, 12.0E 4.65, 12.0E 4.85, 10.2E	2.35, 0.1W 9.05, 0.7E 2.85, 9.2E 2.85, 9.2E 1.45, 8.7E 1.05, 11.9E 1.15, 0.3E 4.65, 12.0E 4.85, 10.2E 4.85, 10.2E	2.35, 0.1W 9.05, 0.7E 2.85, 9.2E 2.65, 8.7E 1.45, 8.7E 1.15, 0.3E 4.65, 12.0E 4.45, 12.0E 4.15, 9.9E 4.15, 9.9E	2.35, 0.114 9.05, 0.77E 2.85, 9.2E 0.65, 8.7E 1.05, 11.9E 1.15, 0.3E 4.65, 12.0E 5.45, 11.3E 4.15, 9.9E 3.75, 11.5E	2.35, 0.114 9.05, 0.77E 2.85, 9.2E 0.65, 8.7E 1.45, 8.7E 1.15, 0.3E 4.65, 12.0E 4.15, 9.9E 3.75, 9.8E 2.75, 11.5E	2.35, 0.1W 9.05, 0.7E 2.85, 9.2E 1.45, 8.7E 1.15, 0.3E 4.65, 12.0E 4.15, 9.9E 4.15, 9.9E 2.75, 11.5E 2.75, 11.5E
									₽	47 91.,		48 91.															
	Well	Ot 36	0t 37	0t 38	0t 39	9	Ot 42	Ot 43	5	0t 47		0t 78	Ot 48	6 6 6	0t 48 0t 55 0t 58 0t 63	0t 48 0t 55 0t 58 0t 63	0 0 0 0	0t 48 0t 55 0t 58 0t 63 0t 71	0 0 0 0 0 0	01 48 01 55 01 58 01 63 01 63 01 68 01 71 01 73	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01,48 01,58 01,68 01,68 01,77 01,77 01,88					

Table 10,--Records of selected wells and test holes in Ontario County Part 1

(pa
ting
<u>ē</u>
wells
٦
Records
÷

			5	5						nebru	ร์	vepth		helow	Vield		
We I I				Related to nearby city				Type	jo!	o o		2		land			
. [8	Coordinates	es	or village	Owner or occupant	ted	~!	_	. 1	(feet) (inches) (feet)	ches) (drock feet)	Water-bearing unit	surface (feet)	per minute)	Use	Remarks
₹ 5	ž.	2.15,	6. 6E	2.1S, 6.6E I mi NE. of Clifton Springs	Everson Dairy	:	260	Dug	91	91	77	1	Pleistocene sand and gravel	ľ	8		(a). Temp 52°F, 11/5/47.
0t 95		3.75,	5.5E	3.75, 5.5E I mi S. of Clifton Springs	Roy Williams	9461	089	0-1	38	0	9	- Ouc	Onondaga limestone	24	;	r	Located 150 ft from 0t 96. Water contains hydrogen sulfide.
0t 96	¥.		5.5E	· op	do.	1	680	Dug	12	7	36	ă !	Pleistocene till	9	;	I	Water does not contain hydrogen sulfide.
0t 99		1.75,		7.7E 2½ mi NW. of Phelps	George Rector	1929	999	Drl	75	7	9	6 Sal	Salina group	34	20	Adi	Supplies 2 homes and 100 livestock
0t 100	ж	1.15,		5.9E 1½ mi N. of Clifton Springs	Simeon Hughes	1947	240	Drl	39	33	9	32 Ber	Bertie limestone	30	9	Ŧ	
Ot 101	ж,	0.35,	5.5E	$2\frac{1}{4}$ mi N. of Clifton Springs Albert Reed	Albert Reed	1928	280	Dri	59	09	9	1 6	Pleistocene sand and gravel	3.	91	I	Temp 50 ⁰ F, 11/6/47.
Ot 103	ж,	0.68,	4.7E	4.7E 2½ mi NW, of Clifton Springs	H. M. Bedette	ŀ	290	Dug	21	77	30	1	Pleistocene till	17.1	;	I	Temp 52 ⁰ F, 11/6/47.
Ot 105	¥,	1.45, 1	4.2E	2 mi NW. of Clifton Springs	Philip Swartele	;	260	bng	28	-	36	- Ple	Pleistocene deposits	22	9	Adl	
0t 106	9K, 2	2.05,	5.5E	½ mi N. of Clifton Springs	E. Grimes	i	250 [Dng	91	91		- Ple	Pleistocene sand and gravel	2	9 2	I	
0t 108	9K, -	.98,	3.6E	1.95, 3.6E 24 mi NW. of Clifton Springs	T. Page	18 ₄	250	Dri	77	20	9		•op	ŀ	22	I	(a). Water believed to enter well at contact between cravel and bedeath
0t 109	χ, ,	1.68,	3.6E	1.6S, 3.6E 2½ mi NW. of Clifton Springs	Edward White	;	240	Drl	20	13	9	13 Cam	Camillus shale	8	;	>	(a).
0t 110	9K, o	0.38, 3	3.5E	3.5E 3t mi NW. of Clifton Springs	Paul Finewood	:	280	Bug	15	15 3	36	15 Ple	Pleistocene till	თ	;	I	
0t 111	9K, 0	0.7N, 3	3.8E 4	3.8E 4 mi NNM, of Clifton Springs	Roger Norton	1945	280	Drl	65	04	9	40 Ple	Pleistocene sand and gravel	54	12	I	
Ot 113	¥, -	1.7N, 4	4.3E	4.3E I mi SW. of Port Gibson	James Baldree	1947	520 D	P-1	31	28	9	27 Cam	Camillus shale	œ	9	I	Temp 510E: 11/7/47
0t 114 S	9K, 2	2.4N, 8	8.0%	8.04 Port Gibson	H. Goellner	9461	0 084	Dr.1	168	168	. 9	Ple D	Pleistocene sand and gravel	ŀ	1	¬	(b). Water reported to have salty taste.
01.116	9K, -	.4N, 5	5.0E	1.4N, 5.0E I mi S. of Port Gibson	A. Burgess	1	2,40	Dug	12	12 3	. 92	, ;	do.	1	;	I	
Ot 117	9K, 0	0.5N, 6	6.2E 3	3 mi N. of Clifton Springs	l, DeCook	1943	280 D	Dr.1 17	041	84	7 9	47 Cam	Camillus shale	20	-		Water contains hydrogen sulfide, Yield not adequate for farm supplies
Ot 122 9	, ye	1.7N, 2	2.9E 2	2 mi SW, of Port Gibson	М. DeMay	;	530 D	Drl	20	37	9	36	do.	20	8	Ψ	Subblies 35 livestock.
Ot 125 9	9K,	1.3N, 0	0.46 3	3½ mi N. of Manchester	Francis Metal Products Corp.	9461	260 D	Dri	30	30		Ple 9	Pleistocene sand and gravel	r.	-101		
Ot 128 9	9K,	0.5N, 1.3E	1.3E 2	2½ mi N. of Manchester	Church of Jesus Christ of Latter Day Saints	1939	580 D	Dr.I	89	89	•	ı	op O	0	1	ပ	Has been pumped continuously for 48 hrs.
		1.05, 0	0.6E	0.6E mi N. of Manchester	Harry Dunk	1	580 D	Dug 2	28	28 36		- Plei	Pleistocene deposits	14.7	1	=	Temp 510F, 11/10/47.
	9K, 0	0.25, 1	1,2E 2	2 mi N. of Manchester	R. H. Wood	1927 6	009	Dr.1 6	09	09	,	;	op.	28	;	I	
Ot 133 9	¥, -	1.0N, 2	2.1E 3	3분 mi NNE. of Manchester	Maynard DeMay	1	580 Di	Dug 3	36	36 36		- Plei	Pleistocene sand and gravel	10.1	:	Adı	
	9K, o	0.75, 2	2.2E 1	2.2E 1/3 mi NE. of Manchester	Richard Kinsey	:	009	Dug 2	22	22 36		- Plei	ne tili	0	;	· =	Temp 54 ⁰ f, 11/10/47.
Ot 137 9	я, o,	0.IN, 2	2.5E 2	24 mi NF of Manchacter		,											

Table 10. -- Records of selected wells and test holes in Ontario County

															E C				clay.									
	Ramarke	Well vialded 2 mm when 10 ft deer		Water turbid and contains hydrogen sulfide.				(b). Used for disposal of industrial waste. Gravel at depth of 70 ft yielded 15 gpm.	Located 950 ft SW, of 0t 146,	Located 900 ft SW. of Ot 146.		(b). Water contains hydrogen sulfide.	Used for disposal of industrial waste, Flowed when 75 ft deep.	(a). Water unused because of high hydrogen sulfide content.	One of 4 wells supplying the sanitarium, Supplemental water is occasionally obtained from municipal supply.				Goes dry in dry seasons. Well bottomed in blue clay.	Water contains hydrogen sulfide.	Supply is inadequate. Water contains hydrogen sulfide.							(a). (b).
	2	1	:	Ā	I	I	I	-	<u>-</u>	<u>«</u>	Adl	PA	0	>	ຽ	r	I	I	I	Adl	I	Adl	Ŧ	Adl	Ā	Adl	Ŧ	A
Yield	(gallons per minute)	1	: `	٥	;	5	9	!	2	15	;	7	150	30	20	٣	:	1	į	ł	:	ŀ	2	ł	→N	;	1	70
Water level below	land Surface (feet)	13	<u>.</u>	22	9	flows	30	001	061	ł	9	04	09	flows	15	2	:	8.1	30	:	09	٣	09	91	04	1	35	0
N.	Water-bearing	Onerdeen House tone		:	Pleistocene sand and gravel	Skaneateles and Marcellus shales	Pleistocene sand and gravel	Skaneateles shale	Ludlowville and Skaneateles shales	Pleistocene sand	Pleistocene till	Ludlowville and Skaneateles shales	Onondaga limestone and Cobleskill dolomite	Camillus shale	Onondaga limestone and Cobleskill dolomite	Onondaga limestone	Pleistocene till	•	do.	Onondaga limestone	• op	Pleistocene sand	Skaneateles shale	Pleistocene sand	Ludlowville shale	Pleistocene deposits	• op	Pleistocene sand and gravel
Depth	to edrock) 16		;	1	55	1	961	185	1	;	27	ν.	2	9	91	1	:	:	35	6	1	8	1	160	ı	;	1
	Diameter bedrock	ncnes)	۰ د	9	36	9	9	9	9	9	36	9	9	9	9	9	9	36	36	9	9	9	9	36	9	84	36	•
Depth	of casing Di (fact) (i		7	:	12	65	99	192	187	120	13½	27	01	8	20	11	67	<u>*</u>	94	35	01	7	8	17	160	12	745	120
Depth [of well (for)	н	3	62	13	134	99	213	240	120	13½	041	137	65	27	22	89	<u> </u>	94	29	8	7	9	21	981	13	745	120
	o y o	-		<u>ا</u> ــا	Dug	Dri	Dr1	1-0	110	Dr.1	Dug	Dri	Dri	Dri	Dr.1	Dri	Drl	Drig	Dug	Pri	Dr1	Dug	Drl	Dug	Pr	Dug	Dug	Dr.
Altitude above	sea Type level of	199	3	280	019	720	900	790	790	790	820	870	595	260	620	630	720	740	675	099	675	800	830	962	740	700	902	700
Year	ple-	rea 1036	936	<u> </u>	:	1947	1947	1947	1929	9461	:	1947	1931	;	1929	1947	3461	:	:	:	1941	;	1947	:	:	:	1	1947
		wher or occupant	nyron van sickie	John Holleran	L. K. Van Gorden	Roy Bixler	Frank Johnson	Empire State Pickling Co.	• o	. op	W. R. Lightfoote	R, Norris	Seneca Kraut and Pickling Co.	Clifton Springs Sani- tarium and Clinic	•op	Claude Johnson	Ivor Nelson	Robert Hooper	Leonard Toll	Charles Trimble	R. Leland	M. E. Alleman	H. S. Cline	Elmer Compson	George Baxter	G. H. Brown	J. A. Jensen	George Moore
Location	Relate	1		12,2E 2 mi NW, of Geneva	8.15, 12.2E 1 3/4 mi NW. of Geneva	9.3S, 12.2E l½ mi W. of Geneva	12.2E 3/4 mi SW. of Geneva	0.4톤 3½ mi W. of Geneva	10.2E do.	10.2E do.	9.3E 4 mi W. of Geneva	7.8E 6 mi W. of Geneva	8.8E Phelps	5.7E Clifton Springs	5.8E do.	2.2E 3/4 mi E. of Shortsville	9.4E 3 mi S. of Phelps	8,3E do.	8.2E 2 mi SW, of Phelps	7.6E do.	$7.3E$ $2\frac{1}{2}$ mi SW, of Phelps	7.2E 3½ mi SW. of Phelps	7.2E 3 mi SE, of Clifton Springs	5.4E 2½ mi S. of Clifton Springs	12.4E 2½ mi SW. of Geneva	9K, 12.1S, 12.5E 3t mi SW. of Geneva	12,5E 4 mi S. of Geneva	12.5E 5 mi S. of Geneva
ļ	:	Coordinates	6.95, 12.25	7.2S, 12.2E	18, 1	.35, 1	9.8S, 12.2E	9.45, 10.4E	9.5S, 10.2E	9.5S, 10.2E	9.75,	9.88,	2.65,	2.88,	3.05,	3.05,	5.68,	5.48,	4.38,	3.75,	4.38,	5.25,	5.78,	5.18,	11.25, 12.4E	1.15, 1	9K, 13.1S, 12.5E	9К, 13.8S, 12.5E
	,		ž,	¥,	9K, 8	9K, 9	9K, 9	9K, 9	9K,	94,	94,	9K,	9K, 2	9K, 2	9K, 3	9¥,	94, 5	9K, 5	9K,	9K, 3	9K, 4	94, 5	9K, 5	94, 5	9K, 11	9K, 12	9K, 13	9K, 1
	We!!	1		0t 14}	Ot 142	Ot 143	0t 14	Ot 146	Ot 147	0t 148	Ot 149	0t 151	Ot 152	Ot 153	Ot 156	Ot 160	0t 163	0t 165	Ot 166	0t 169	0t 170	0t 171	Ot 172	0t 173	Ot 174	0t 175	0t 176	0t 177

Table 10.--Records of selected wells and test holes in Ontario County

Selected to nearby city Owner or occupant				401+420	W			Altitude	4				Wate	e	;		
Section Sect				200	5					5	e E	ייי כ	<u>-</u>		Yield		
8, 13.15, 13.15 di si di conesse di conesse de la conesse	Well number	Š	ordinates	ş	Related to nearby city or village	į			_	ing Diam. et) (inch	heter bedi				per per pinute)		Rema r ks
9. 13.15 7.34 G iff 10. of General Synthetic of 1947 200 12 10 1 10 1 10 1 10 1 10 1 10 1 1	Ot 178	Ж,	12.98, 10	10,4E	5 mi SW, of Geneva	A. L. Brawley	ł	ĺ				H		ı	-		Drilled inside dug well approximately 25 ft
9. 1.25. 7.15. 1.2 ii 34. of Gamena	Ot 180	¥,	12.15, 7		6½ mi SW. of Geneva	Church (Hamlet of Stanley)								30	-∤74		contains hydrogen sulfide.
94, 15.15, 5.76 for it St. of General Harry Carlin 1947 156, pp. 11, pp. 156, pp. 15	Ot 181	¥,	12.25, 7	7.3E	7 mi SW, of Geneva					2				20	9	I	.00
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Ot 182	¥,	7.75,	7.8€	5 mi SW. of Phelps							3	es shales	0	-		
94, 1.55, 11.15 3 in 5, of Canandaigue Marion Case 720 bril 23 d 40 d 61 d 6	Ot 183	¥,	15.18, 5	5.7E	10 mi SW. of Geneva	Harry Catlin						Genesee		70	2		contains
94, 3.85, 4.87 if in E. of Stortsville (2.00 mills) and the solution of the so	ot 184	93,	11.55, 11	J. 1E	3½ mi S. of Canandaigua	Marion Case							shale	lows	15		Water contains
94, 3.85, 4.22 aii E, of Shortsville do, 1946 670 pri 21 16 6 15 60. 15 60. 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Ot 185	¥,	2.85, 2	2.7E	l扌mi E. of Shortsville									:	80		Drilled inside dug
96. 3.85, 4, 46 14 15 14 15 14 15 14 14	Ot 186	¥,		4.2E	3 mi E. of Shortsville									2	25		(a).
36. 1.56 In il S. of Shortsville Hr. North — 650 Dr. 29 6 40 Stanssteles shale 6 40 Stanssteles shale 6 40 Stanssteles shale 9 5 44 1 1 1 1 1 1 1 1	Ot 187		3.85, 4	4.8E	l½ mi SW, of Clifton Springs									6	ω	PA	
94, 5.65, 0.4E	Ot 188	¥,	3.95,	1.6E	l mi S. of Shortsville	Mr. North								6	5		(a) (b).
94, 3.85, 0.46 2 mi St. of Canandsigua John Farguson 1946 720 pri 185 65 64 Lodiovorila and and all significant speed and all significant speed and all significant speed and all speed	0t 190		5.65, 0	0.8E	34 mi NE. of Canandaigua								shale	80	-		dug well 19 ft deep. ogen sulfide.
9K, 9.25, 7.66 9f mi N, of Geneve Brotheries 1946 800 bril 110 43 6 64 Lucilowille and Stanestets shales 90 pril 110 43 6 64 Lucilowille and Stanestets shales 90 pril 110 43 6 44 Lucilowille and Stanestets shales 90 pril 110 43 6 43 6 44 Booth Canandalgue Bloch & George Jones Stanes Stane	0t 194		8.85, 0		2 mi SE, of Canandaigua									8	7		ь).
9K. 7.45, 7.75 6 ml W. of Geneva E. F. Gaggenheimer 1946 800 pr. 110 pr. 43 pr. 6 pr. 49 pr. 6 pr. 7 p	0t 196		9.25, 7		5½ mi ₩. of Geneva				_			3	and ss shales	30	. ‡		2
9K, 7.45, 7.35 Girl W. of Geneva Block 6 Loggen Function.	139			7.7E	5 mi W. of Geneva	L								02	91	x	
9K, 7.95, 8.1E 2.5 mi M. of Geneva Soper Brothers 1933 780 Dr.I 285 30 Skaneateles and Parcelius shales 5 25 AI 4 Abrecilus shales 9K, 7.95, 9.2E 4½ mi W. of Geneva George Jones 1916 760 Dr.I 6 17 Skaneateles shale 15 6 18 Moscow and Ludlow ville shales 15 6 18 Moscow shale 10 20 6 18 Moscow shale 10 20 Ad1 20 6 18 Moscow shale 10 20 Ad1 20 6 18 Moscow shale 10 20 Ad1 20 8 18	0t 200			7.3E	5½ mi W. of Geneva	Bloch & Guggen- heimer, Inc.							E .	9	rv.		beer used by canning factory. Several attempts to obtain water from drilled wells have been untarties Supplemental water is transported in tanks from Orleans.
9K, 7.95, 9.2E 4½ mi W. of Geneva George Jones 1916 760 Dr1 69 22 6 17 Skaneateles shale 15 25 Ad1 Supplementary 193 80 Dr1 280 Dr1 32 Dr1 280 Dr1 280 Dr1 32 Dr1	Ot 203		7.95, 8		5 mi NM, of Geneva				_			쏬	and shales and limes tone	rv.	25		Well has been pumped at 25 gpm for 5 blies 60 livestock.
9k, 12.05, 8.16 6½ mi SW, of Geneva Gane Robson 1944 880 Dr1 280 6 18 hoscow and Ludlow- Income Stranch School 1944 880 Dr1 42 31 6 30 hoscow shale 10 20 Ad1 SW, 13.85, 10.3E 6 mi SW, of Geneva Gage Robson 1944 880 Dr1 42 31 6 30 hoscow shale 10 20 Ad1 SW, 13.85, 8.8E 7 mi SW, of Geneva Libby Whkeill 6 1923+ 920 Dr1 32 32 30 32 Pleistocene sand 8 45 1ps We 9k, 7.85, 1.1E 2½ mi NE. of Canandaigua Donald Howard 1940\$ 740 Dr1 70 50 6 20 Skaneatales shale	0t 204	¥,	7.98, 9		4½ mi W. of Geneva									51	52		Water
9K, 13.85, 10.3E 6 mi SN, of Geneva Gage Robson 1944 880 Dr1 42 31 6 30 Hoscow shale 10 20 Ad1 9K, 13.85, 8.8E 7 mi SN, of Geneva Libby HcMeill 6 1923+ 920 Dr1 32 32 30 32 Pleistocene sand 8 45 lps Ne Libby HcMeill 6 1923+ 920 Dr1 32 32 30 32 Pleistocene sand 8 45 lps Ne Libby HcMeill 6 19404 Pr1 70 50 6 20 Skaneateles shale Cs (a SK, 6.9S, 1.1E 2½ mi Hc. of Canandaigua James Hunt 820 Dr1 160 70 6 70 Skaneateles and HcMer PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 4 2 U (a Nc. 6.9S, 3.3E 5 mi E. of Canandaigua Harry Read 1945 820 Dr1 57 22 6 20 Skaneateles shale 4 2 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PRead 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PREAD 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PREAD 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PREAD 1945 820 Dr1 57 22 6 20 Skaneateles shale 5 U (a Labert PREAD 1945 820 Dr1 57 22 0 U (a Labert PREAD 1945 820 Dr1 57 22 0 U (a Labert PREAD 1945 820 Dr1 57 22 0 U (a Labert PREAD 1945 820 Dr1 57 22 0 U (a Labert PREAD 1945 820 Dr1 57 22 0 U (a Labert PREAD 1945 820 Dr1 57 24 0 U (a Labert PREAD 1945 820 Dr1 57 24 0 U (a Labert PREAD 1945 820 Dr1 57 24 0 U (a Labert PREAD 1945 820 Dr1 57 24 0 U (a Labert PREAD 1945 820 Dr1 57 24 0 U (a Labert PREAD 1945 820 Dr1 57 24 0 U (a Labert PREAD 1945 820 Dr1 57 24 0 U	Ot 208	¥,	12.05, 8		5½ mi SW, of Geneva									:	;		8
9K, 13.85, 8.8E 7 mi SW, of Geneva Libby McNeil 6 1923+ 920 Drl 32 32 Pleistocene sand 8 45 lps We Libby Libby Consolidation 1. Libby Libby Consolidation 1. Libby Consolidation	Ot 211	Ж,	13.85, 10	0.3E	5 mi SW. of Geneva									0	20	Ad1	
9K, 6.9S, 1.1E 2½ mi E. of Canandaigue J. J. Morgan 760 bug 25 25 36 do. 20 5 H (a 9 K, 6.9S, 1.1E 2½ mi NE. of Canandaigue Donald Howard 194ch 740 Drl 70 50 6 20 Skaneateles shale Cs (a 9 K, 6.8S, 2.6E 4½ mi E. of Canandaigue James Hunt 820 Drl 160 70 6 70 Skaneateles and 30 3 Al Su Narcellus shales Harry Reed 1945 820 Drl 57 22 6 20 Skaneateles shale 4 2 U (a 1945 6.9S, 3.3E 5 mi E. of Canandaigue Harry Reed 1945 820 Drl 57 22 6 20 Skaneateles shale 4 2 U (a 1945 6.9S, 3.3E 5 mi E. of Canandaigue Harry Reed 1945 820 Drl 57 22 6 20 Skaneateles shale 4 2 U (a 1945 6.9S, 3.3E 5 mi E. of Canandaigue Harry Reed 1945 820 Drl 57 22 6 20 Skaneateles shale 5 U (a 1945 6.9S, 3.3E 5 mi E. of Canandaigue Harry Reed 1945 820 Drl 57 22 6 20 Skaneateles shale 5 U (a 1945 6.9S, 3.3E 5 mi E. of Canandaigue Harry Reed 1945 820 Drl 57 22 6 20 Skaneateles shale 5 U (a 1945 6.9S, 3.3E 5 mi E. of Canandaigue Harry Reed 1945 820 Drl 57 22 6 20 Skaneateles shale 5 U (a 1945 6.9S, 3.3E 5 mi E. of Canandaigue Harry Reed 1945 820 Drl 57 22 6 20 Skaneateles shale 5 U (a 1945 6.9S, 3.3E 5 mi E. of Canandaigue 1945 6.9S	Ot 212	ж -		8.8E	7 mi SW. of Geneva								pues	∞	45		-
9K, 6.9S, 1.1E 2½ mi NE of Canandaigua Donald Howard 1940\$ 740 Drl 70 50 6 20 Skaneatales shale Cs (a 9K, 6.8S, 2.6E 4½ mi E, of Canandaigua James Hunt 820 Drl 160 70 6 70 Skaneatales and 30 3 Al Su harcellus shales 9K, 6.9S, 3.3E 5 mi E, of Canandaigua Harry Reed 1945 820 Drl 57 22 6 20 Skaneatales shale 4 2 U (a	Ot 215		7.85, 1	J. 1E	$rac{1}{2}$ mi E. of Canandaigua	J. J. Morgan							••	02	72		а).
9K, 6.8S, 2.6E 4½ mi E. of Canandaigua James Hunt 820 Drl 160 70 6 70 Skaneatalas and 30 3 Al Su Marcellus shales 9K, 6.9S, 3.3E 5 mi E. of Canandaigua Harry Reed 1945 820 Drl 57 22 6 20 Skaneateles shale 4 2 U (a	Ot 216		6.98, 1	J. I	산 mi NE. of Canandaigua									;	ł		
9K, 6.9S, 3.3E 5 mi E. of Canandaigue Harry Reed 1945 820 Drl 57 22 6 20 Skaneateles shale 4 2 U (a	217		6.85, 2	2.6E	선 mi E, of Canandaigua	James Hunt						Š	and shales	00	~		A p
	219	¥,	6.98, 3	3.3E	i mi E. of Canandaigua								shale	±t	8		a). Well unused because it produced 'black sulfur water'. Dark color probably caused by presence of iron sulfide or manganese sulfide. Water contains hydrogen sulfide.

- 68 -

Table 10.--Records of selected wells and test holes in Ontario County
Part 1.--Records of wells (Continued)

		-		Year	r above		Depth	Depth		Depth		5	0		
¥e] .		j	Related to nearby city						0iameter	ă	Wate	e)	(gallons per		
number	Coordinates	tes	or village	Owner or occupant ted	- 8	r) well	(feet)		(inches)	(feet)) unit	(feet)	minute)	Use	Remarks
	9к, 2,4S, 1,2E	, 1.2E	3/4 mi S. of Shortsville	Village of Shortsville Well no. 1	620	1-10	107	1	9	1	Onondaga limestone, Cobleskill dolomite, and Bertie limestone	¦ - •	150	5	(a), Well abandoned in 1935 because of hydrogen sulfide content and hardness. Has been pumped at 150 gpm for 6 hrs.
Ot 221	9K, 2.4S,	2.45, 1.25	• ор	Village of Shortsville Well no. 4	620	Dri	88	91	œ	15	Onondaga limestone	23	110	x	(a). Together with 0: 222 and 0: 223 supplies 200,000 gpd to Village of Shortsville. Water contains hydrogen sulfide.
Ot 222	9K, 2.4S, 1.2E	, 1.2E	• op	Village of Shortsville	620	Drl	70	91	80	15	,	6	100	Σ	(a) (b). Temp 52 ⁰ F, 8/19/52.
Ot 223	9K, 2.4S,	2.45, 1.2E	do.	Village of Shortsville Well no. 2	620	Dri	82	20	80	20	Pleistocene sand and gravel and Onondaga limestone	121	8	x	(a) (b). Casing slotted between depths of 15 and 18 ft. Temp 490F, 12/11/47.
Ot 224	9J, 2.3S,	, 12.9E	2.3S, 12.9E 1 ml W. of Manchester	Village of Manchester 1916	9 9	Dug	15	15	420	1	Pleistocene sand and gravel	7.6	300	I	(a). Supplies 95,000 - 175,000 gpd. Was found to be inadequate during drought of 1949. Wells 0t 840 and 0t 841 were drilled nearby to supplement the supply.
Ot 226	9K, 5.3S,	2.1E	5.38, 2.1E 2½ mi SE. of Shortsville	Philip Myers 1943	3 720	Dri	65	63	9	1	Pleistocene deposits	22	8	¥	Supplies 20 livestock.
		5.45, 3.2E	3 mi SE, of Shortsville	George Cole 1945	5 770	Drl	14	17	9	:	Pleistocene sand and gravel	15	70	Adl	Water contains hydrogen sulfide.
Ot 231	9K, 5.3S,	4.36	9K, 5.3S, 4.3E 4 mi SE. of Shortsville	Judson Archer 1913	3 780	Drl	75	99	9	9	Skaneateles shale	20	80	I	Do.
	9J, 13.75.	, 10.06	9J, 13.7S, 10.0E 6 mi S. of Canandaigua	L. A. Evans	720	Drl	59	6	9	9	Moscow and Ludlow- ville shales	01	-	5	Material overlying bedrock consists of blue clay and shale fragments.
Ot 233	94, 15.28,	, 9.2E	9.2E 4 mi SE, of Bristol Center	F. H. Bedford 1947	7 700	Drl	63	15	9	15	Moscow shale	17	4	I	Material overlying bedrock consists of blue clay.
Ot 234	91, 16.35,	, 10.2E	91, 16.35, 10.2E 4½ mi SE, of Bristol Center Clifford Middlebrook	r Clifford Middlebrook 1947	7 1,080	Drl	87	65	9	62	Sonyea formation	30	15	Adl	Supplies farmhouse and 57 livestock.
Ot 235	9J, 12.35,	, 8.6E	3½ mi NE. of Bristol Center	S. Stinardo	1,020	Dri	56	17	9	15	Genesee formation	9	4	I	(a) (b), Water contains hydrogen sulfide,
Ot 237	9J, 13.0S,	, 6.3E	3/4 mi E. of Bristol Center	r 4H Club (Camp 1936 Letchworth)	6 1,300	Drl	<u>5</u>	29	9	29	Sonyea formation	9	15	x	Supplies up to 100 campers,
Ot 238	91, 6.85,	6.8s, 10.4E	City of Canandaigua	Mrs. Donald Marks 1947	7 800	Drl	124	3	ø	30	Ludlowville and Skaneateles shales	70	m	>	Well yielded flammable gas when drilled.
Ot 243	9J, 2.15,	, 6.2E	2.15, 6.2E 1 3/4 ml SE. of Victor	Charles Lentine 1947	7 640	Dr1	04	33	9	33	Onondaga limestone	15	~	I	
Ot 244	9J, 1.58	, 5.7E	9J, 1.5S, 5.7E 1 mi E. of Victor	Orin Pittenger 1946	9 560	Drl	20	17	9	91	Salina group	4	5	Ŧ	
Ot 245	91, 5.68,	5.65, 12.16	2 mi NE. of Canandaigua	A. Andrews 1920	0 720	170	38	38	9	!	Pleistocene sand and gravel	91	4	Ā	Supplies 26 livestock.
Ot 246	91, 6.75	, 12.1E	6.75, 12.1E mi NE. of Canandaigua	R. Wheeler 1946	6 760	וים	178	118	9	117	Skaneateles shale	20	-	Ŧ	(b).
Dt 248	93, 11.25	, 12.4E	9J, 11.2S, 12.4E 3½ mi SE. of Canandaigua	Joseph Reish 1946	M 700	Dri	67	34	9	32	Ludlowville shale	80	4	Ŧ	(b).
Ot 249	9J, 11.58, 12.2E	, 12.2E	4 mi SE, of Canandaigua	E. H. Pletsch 1946	6 700	Drl	156	156	9	1	Pleistocene deposits	50	91	I	(b).
Ot 250	9J, 12.2S, 12.2E	, 12.2E	4½ mi SE. of Canandaigua	William Young 1946	6 700	Dri	\$	ま	9	1	•ор	œ	-101	I	
Ot 251	9J, 12.6S, 12.2E	, 12.2E	5 mi SE, of Canandaigua	R. Veak & L. Mumerow 1946	9 760	Dr1	88	88	9	ł	Pleistocene till	0	-101	=	
Ot 252	94, 13.98, 11,66	, 11.6E	3 mi NW. of Rushville	A. Yegudkin 1947	1 700	1.0	19	64	9	47	Ludlowville shale	flows	91	I	Supplies four summer cottages. Water contains hydrogen sulfide.
Ot 253	9J, 15.2S, 10.5E	, 10.5E	3½ mi NW. of Rushville	A. Night 1947	47 720	Dr1	18	91	9	13	œ,	23	-	x	
;															

Table 10.--Records of selected wells and test holes in Ontario County
Part 1,--Records of wells (Continued)

į				en t.														(See		ater".						/25/48.
	Rema F.ks	Well bottoms on bedrock,		(a). Water has relatively high iron content. Supplies poultry farm.	Supplies 85 pupils. Temp 50°F, 5/20/48.		Water has relatively high iron content. Temp 48°F, 5/20/48.				(a). Drilled inside dug well 26 ft deep.	Drilled inside dug weil 20 ft deep.		Temp 50 ^o F, 5/22/48.		Supply inadequate.	(a).	(a), Well produced "black sulfur water", remarks for well 0t 219.)		Well is used but produces "black sulfur water". (See remarks for well Ot 219.)	Drilled inside dug well 17 ft deep.			Supplies restaurant.	(b). Supplies home and 10 cabins.	(b). Supplies gas station. Temp 50°F, 5/25/48.
	Use	li .	Ā	PA	ន	A1	·	I V	Ŧ	Adl	I	Adl	I	=	I	±	Adı	§	I	1	=	I	I	Csp	S	S
Yield	(gallons per minute)	:	12	5	;	7	2	01	;	0	2	~	7	_	٣	:	:	9	18	2	-	2	12	8	93	2
ive	land (g surface (feet)		flows	;	2.8 5/20/48	09	7	82	12.2 5/21/48	82	52	20	01	20	30	:	۲۰	flows	15	7	50	09	₹	01	12	٠,
We	Water-bearing unit	Pleistocene till	Pleistocene deposits	Moscow and Ludlow- ville shales	Pleistocene sand and gravel	Moscow shale	Pleistocene sand and gravel	Sonyea formation	Pleistocene till	Pleistocene sand and gravel	Sonyea formation	. op	Genesee formation	. ob	West Falls formation (Hatch shale member)	Pleistocene sand and gravel	Moscow and Ludlow- ville shales	Genesee formation	Moscow shale	Genesee formation	Moscow shale	Sonyea and Genesee formations	Pleistocene sand and gravel	Ludlowville shale	Pleistocene sand and gravel	do.
Depth	to drock feet)	14 P	1	9 8	<u>-</u>	150 Mo	:	17 So	1	<u>=</u>	72 So	12	95 84	88	38 We	<u>=</u>	97 Mo	52 Ge	94 94	20 Ge	47 Mo	20 So	<u>.</u>	12 Lu	<u>-</u>	;
٩	of casing Diamater bedrock (feet) (inches) (feet)	32	36	9	30	9	9	9	30	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
振.	ing Dia	Ŧ	12	=	01	150	4.5	17	27	19	72	12	84	8	86	4.7	26	55	9	27	84	50	き	12	*	61
-			12	2	8.6																			•		
Depth		1		1 192		165	54	8	£ 27	19	95	8 -	- 83	190	86	147	150	9	. 67	E .	76	190	*	9	35	61
ğ.,	sea lype level of (feet) well		970 bug	870 Drl	O Dug	00 Dr.1	0 Drl	00	o Dug	10 Or	0 Dr1	0 0r1	0 Dr.1	O Drl	o bri	0 011	0 Dr.	0 0r1	0	0 Dr.1	0 Dr1	0 01	0 0	O Dri	0 01	0 Dr.I
			·6	1944	1,040	1946 1,060	010,1 2461	1923 1,160	1,380	1948 1,180	1948 1,360	1948 1,340	1948 1,000	070'1 976	1935 1,360	1937 860	000,1 7891	1936 920	1938 910	010,1	1942 900	1,160	1947 940	1937 900	1948 700	1937 780
*	completed Owner or occupant ted		Martin Wyffels	George St. Angelo 19	Cheshire Union School	C. Miller 19	Albert Hicks 19	Harry Thompson 19	S. A. Burd	G. Sisto 19	P. Marvin	John Pata 19	C. Harrington		Miss Haggett	D. Mullin 19	K, M, Holcomb 19	E. F. Case 19	E. D. Fales 19	L. Bliss	W. A. Symonds 19		K. C. Tietgen 19	Reed's Restaurant 19	Kenneth Smith 19	Willard Clapper 19
Location	Related to nearby city or village	9.25, 10.5€ 1½ mi SW. of Canandaigua	E 4½ mi SW, of Canandaigua	E 5½ mi S. of Canandaigua	E 5 mi SW, of Canandaigua	8.6E 3 mi SW. of Canandaigua	E 3½ mi SW. of Canandigua	E 2 3/4 mi E, of Bristol Center	E 3 mi SE, of Bristol Center	3 mi N. of Bristol Springs	i 2⅓ mi S€, of Bristol Center	7.2E 3/4 mi E. of Bristol Center	: 3½ mi NE, of Bristol Center	8.7E $3\frac{1}{2}$ mi SE, of Bristol Center J. R. Conde	E 1½ mi S. of Bristol Springs	8.55, 10.1E 1‡ mi SW. of Canandaigua	: 3 mi SW, of Canandaigua	: Bristol Center	5.1E 2 mi N. of Bristol Center	: 3 mi NM, of Bristol Center	9J, 11.3S, 4.4E 2 mi NW. of Bristol Center	: 1½ mi NM, of Bristol Center W. E. Powell	: l½ mi S. of Bristol Center	9.4s, 1.7E 3 mi SE. of Canandaigua	: 2 mi S£, of Canandalgua	6.3S, 10.2E 1½ mi NW. of Canandaigua
ř	ates	, 10.5	9.8	5, 10.31	3, 8.7E		, 9.3E	, 8.3E	7.76	7.0E	, 7.8E		9,8,6€		6.2E	10.16	, 8.6E	. 5.4E		, 4.4E	4.4	4.0E	. 5.4€	. 1.7	9.05, 12.8E	, 10.2E
	Coordinates	90, 9.25	9J, 11.85, 9.8E	9J, 13.2S, 10.3E	9J, 12.35,	91, 9.68,	9J, 10.75,	9J, 13.4S,	9J, 15.28,	10J, 0.15,	9J. 14.0S, 7.8E	9J, 13.0S,	9J, 12.58,	90, 13.75,	10J, 4.55,	94, 8.55	9J, 8.8S,	9J, 12.85,	9J, 11.25,	9J, 10.4S,	93, 11.38	9J, 12.5S,	9J, 14.35,	9K, 9.4s	90, 9.08	91, 6.38
	Well number	Ot 255	0t 259	Ot 263	Ot 264	Ot 266	Ot 267	Ot 268	Ot 272	Ot 273 1	Ot 275	Ot 276	Ot 277	Ot 278	Ot 280 1	Ot 282	Ot 285	Ot 287	Ot 289	0t 291	Ot 293	Ot 295	ot 298	0t 299	Ot 300	Ot 301

Table 10, -- Records of selected wells and test holes in Ontario County

Constitution Cons													1 4/1	land			
Secondaries			Loc	ation			ftitude above	,		ip th	_)epth		below (2)	rield		
5.7. 1.1.5.1.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.	. [e]	Coord	e de constant de c	Related to nearby city or village	Owner or occupant				or well ca feet) (f	sing Di eet) (i	ameter be	to drock (feet)			per nute)	Use	Remerks
1. 1. 1. 1. 1. 1. 1. 1.	t 303	94. 3.	15, 12.3E	1 3/4 ml W. of Shortsville	Joseph Pulling		049	I	21	21	30	;	F G	1	:	Adl	
3.6. 1.5. 1.6. 1.5. 1.6. 1.5. 1.6. 1.5. 1.6. 1.5. 1.6. 1.5. 1.6. 1.5. 1.6. 1.5. 1.6. <th< td=""><td>t 304</td><td>.1 .16</td><td>2S, 10.3E</td><td></td><td>N. Clark</td><td>1936</td><td></td><td>Į.</td><td>30</td><td>:</td><td>9</td><td></td><td>ertie limestone</td><td>8.1 5/25/48</td><td>9</td><td></td><td>Supplies irrigation for 15 acres of cabbage plants. Drilled inside dug well 16 ft deep. Temp 50°F, $5/25/48$.</td></th<>	t 304	.1 .16	2S, 10.3E		N. Clark	1936		Į.	30	:	9		ertie limestone	8.1 5/25/48	9		Supplies irrigation for 15 acres of cabbage plants. Drilled inside dug well 16 ft deep. Temp 50° F, $5/25/48$.
64. 0.55. 5.6E 2 mi N. of Pinelps 6. 1. willise 1947 540 6 mi N. of Pinelps 1948 550 6 mi N. of Pinelps 1948 5	Ot 307	ر. ت	8S, 12.5E		L. J. Brophy	1947		110	35	\$ 8	9		alina group	1,4	~		(b).
8, 0.55, 9.85	Ot 308	ж, Г.		I mi N. of Clifton Springs	George Mallory	1947		Orl	04	35	9		ertie limestone	50	5	I	
1. 1. 1. 1. 1. 1. 1. 1.	Ot 311				B. L. Willson	1947		Dri	33	33	9			<u>8</u> 2	<u>o</u>	I	
5.6. 1.56 1.6. <th< td=""><td>Ot 312</td><td></td><td></td><td></td><td>W. M. Vandermill</td><td>1948</td><td></td><td>Drl</td><td>20</td><td>745</td><td>9</td><td></td><td>amillus shale</td><td>25</td><td>٧.</td><td></td><td>(b).</td></th<>	Ot 312				W. M. Vandermill	1948		Drl	20	745	9		amillus shale	25	٧.		(b).
4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,)t 314		85, 1.86		Ontario County Home	<u>₹</u>		Drj	30	30	9		leistocene sand and gravel	81	0_		a). Well has been pumped at 30 gpm for 5 hrs. Supplies 140 people. Temp $50^\circ\mathrm{F}$, $5/26/48$.
9, 1.35, 7.5E 7 ml M, of Canandaigue Mart & Hunt Fruit 1936 620 0 ml 65.8 66 6	Ot 315	9¥,	8S, 2.1E	: 3½ mi NE, of Canandaigua	E. Howard	1935		Dri	150		to 44		kaneateles shale	!	;		
91, 5.83, 12.6E 1.37 ain Nr. of Canandaigua J. Smith 1928 60 0-1 66 6 pissocene sand and and graves 2 6 1.2 pissocene sand and and graves 2 6 1.2 6 pissocene sand and and sand s	Ot 318	94, 1.	78, 7.5	7 mi NV. of Canandaigua	Hunt & Hunt Fruit Stand	1936		Dr.1	30	88	9		obleskili dolomite	15	4		b). Water contains hydrogen sulfide. Temp 50°F, 5/27/48.
131, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Ot 319		85, 12.66	: 13/4 mi NE. of Canandaigua		1923		Dr.I	65.8	99	9		leistocene sand and gravel	25	7	I	
91, 1.85, 3.6 I mi Sw, of Victor William McMahon 1936 660 Dril 159 127 6 12 Cobleskill dolomite 20 4 Add 1 Add 1	Ot 320	۶, ۲.		: ½ mi E, of Victor	Thomas Lynaugh	1936		Drl	92	29	9	1	. ob	20	2		Two other wells, I drilled and I dug, on same property.
91, 1.15; 10.8 1.1	Ot 323	91, 1.		: 1 mi SW, of Victor	William McMahon	1935		Drl	159	127	9		obleskill dolomite	50	4	Adl	
91, 4, 45, 8, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Ot 324	93, 10.	.15, 10,81		H. D. Miller	1948		Drl	113	113	9		leistocene sand and gravel	+1	52		(b).
91, 4, 85, 11, 5E 31, 11, 5E 31 in N. of Canandaigua R. R. Purdy 1940 720 Dr1 68 58 6 6 6 6 6 6 6 6 6 6 6 6 7 Adl 91, 4, 65, 11, 5E 3, 13, 10, 5E 4 mil N. of Canandaigua L. Smith 1940 660 0 rl 38 19 6 9 19 6 9 19 6 9 19 6 19 19 6 19 19 6 19	Ot 325				L. R. Pritchard	1932		Dri	53	£ 7	9		kaneateles and Marcellus shales	15	ł		Drilled inside dug well 23 ft deep.
91, 3.85, 11.5E 3 mi N. of Canandaigue Charles Uhl 1946 670 Dr. 1	Ot 326				C. Purdy	1940		Dri	124	19	9		kaneateles shale	8	7		Together with a dug well 35 ft deep supplies 240 livestock. Yields some flammable gas. Temp $48^{\rm OF}$, $5/28/48$.
91, 3.75, 9.2E 4 mi N. of Canandaigua L. Smith 1940 660 0 r.1 38 19 6 19 6 mondaga linestone 10 7 7 6 Pleistocene sand and line 12 6 8 Pleistocene sand and line 12 8 12 7 7 6 9 6.8 mondaga linestone 3 8 9 9	Ot 331		.68, 11.58	E 3 mi N. of Canandaigua	R. R. Purdy	9761		Dr1	89	28	9		tarcellus shale	<u>†</u>	-	I	
91, 3.75, 9.26 4½ mi Nu of Canandaigua Charles Uhl 680 brl 77 77 6 Pleistocene sand and gravel 12 6.8 Prl 77 77 6 Pleistocene sand and gravel 12 78 77 6 40. 5/29/48 3 77 6 78 Marcell us shale 56.8 4.4 8 77 6 78 Marcell us shale 56.8 4.4 8 77 6 78 Marcell us shale 56.29/48 77 6 78 78 79 78 79 78 79	0t 332	91, 3.	.88, 10.8i		L. Smith	946		Drl	38	61	9		nondaga limestone	10	2		(a). Supplies 50 livestock.
91, 3.58, 4.5E 1½ mi N. of Holcomb Howard Burt 1948 90 Dr.I 70 77 6 do. 6.8 mode 3 4.4 mode 6.8 mode 3 4.4 mode 6.8 mode 70 6 77 6 76 Mode 70 71 6 76 Mode 70	Ot 333		.75, 9.2		Charles Uhl	ŀ		1.0	37	37	9		Pleistocene sand and gravel	12	2		Drilled inside dug well 25 ft deep. Temp 50^{0} F, $5/28/48$.
91, 3.75, 5.6E 1½ mi St. of Victor J. Minchan 800 049 70 70 6 70 6 70 Marcellus shale 56 Adlance J. Minchan 800 049 30 30 36 Pleistocene deposits 4.4 Hall S. Of Victor J. Minchan 820 040 12 12 12 12 12 12 12 12 12 12 12 12 12	Ot 335				Howard Burt	1948		0-1	11	#	9	ł	o	6.8 5/29/48	m	I	
94, 3.95, 4.6E 3½ mi S. of Victor J. Minehan 820 Duj 30 36 Pleistocene deposits 4.4 Pleistocene deposits 5/29/48 H. Green 820 Drl 122 120 6 120 Pleistocene deposits 444 Adla 1 imestone 2 imes	Ot 337	9, 3.			Philip Calcagno	1938		Dri	80	11	9		farcellus shale	95	:		Supplies 5 people and 30 livestock.
91, 2.85, 4.6E 1½ mi 5. of Victor H. Green H. Gr	0t 338			3½ mi	J. Minehan	ŀ	800	Drug	30	30	36		Pleistocene deposits	4.4 5/29/48	;	I	
9K, 10.15, 0.6E 3½ mi SE. of Canandaigua William Henry 1923 930 Drl 57 17 6 17 Ludlowville shale 10 4 Al 4 Al 9K, 11.15, 1.5E 4½ mi SE. of Canandaigua George Gage 930 Drl 50 6 Moscow shale +1½ UA 9K, 11.25, 1.7E 5 mi SE. of Canandaigua do 940 Dug 18 18 60 Pleistocene till 7 Adl	Ot 340			- -	H, Green	ŀ		1.0	122	120	9		Pleistocene deposits and Onondaga limestone	3	1	Adl	
9K, 11.15, 1.5E $4\frac{1}{2}$ mi SE, of Canandaigua George Gage 930 Drl 50 6 Moscow shale $+1\frac{1}{2}$ UA 9K, 11.25, 1.7E 5 mi SE, of Canandaigua do 940 Dug 18 18 60 Pleistocene till 7 Adl	Ot 343	9K, 10,		3½ mi SE.	William Henry	1923	930	וים	23	17	9		Ludlowville shale	2	4		Well produces "black sulfur water". (See remarks for well Ot 219.)
9K, 11.25, 1.7E 5 mi SE, of Canandaigus do 940 Dug 18 18 60 Pleistocene till 7 Adl	ot 3	9K, 11.	.15, 1.5	E 나눔 mi SE, of Canandaigua	George Gage	;	930	Dri	20	:	9		Moscow shale	+ 2	:	Ą	Temp 51 ⁰ F, 5/30/48.
	01.345	9K, 11.	.25, 1.7	E 5 mi SE, of Canandaigua	do.	:		Dug	<u>8</u>	8	09		Pleistocene till	7	;	P4	Temp 50 ^O F, 5/30/48.

Table 10. --Records of selected wells and test holes in Ontario County

						Al ti tude						×	Water level			
		ទ័	Location		Year	above	ر دريو دريو	Depth De	Depth	٥	Depth			Yield		
Coordinates	Ĕ	s	Related to nearby city or village	Owner or occupant	ple t	level (feet)	4 - E		asing Di	casing Diameter bedrock (feet) (inches) (feet)	drock feet)	Water-bearing unit	surface (feet)	(gallons per minute)	9	Domestic
~	S,	1.8£	9K, 12.1S, 1.8E 5½ mi SE, of Canandaigua	James Dunigan	1945 1,040	040	Dr.1	55	15	9	15 G	Genesee formation	0	-	!!	venier k.s.
<u></u>	s,	9K, 11.3S, 2.0E	2 mi N. of Rushville	M. R. Bay	1948 1,100	901,	Dri	491	30	9	30	Sonyea and Genesee formations	15	2	:	Well yields flammable gas and water contains hydrogen sulfide.
5.	, SS	9K, 15.2S, 2.6E	2 mi NE. of Rushville	Donald Johncox	1945	960	Dri	185	911	9	116 G	Genesee formation	٣	-	Ā	Well yields flammable gas. Supplies 24 livestock.
9	s,	9J, 16.0S, 10.4E	3½ mi W. of Rushville	E. C. Welch	1936	940	110	117	11	9	11	Op	*2	8	I	Well yields flammable gas. Material overlying bedrock consists of clay and fragments of shale. Temp 50°F, 5/31/48.
5	, SS	10.3E	9J, 15.55, 10.3E $3\frac{1}{2}$ mi W. of Rushville	H. Thompson	1936	700	Drl	36	17	9	15 L	Ludlowville shale	ŀ	~	Ŧ	Layer of red clay 17 ft thick overlies bedrock.
7	55,	7.5S, 2.0E	3½ mi E. of Canandaigua	C. S. Van Voorhis	948	780	Drl	75	35	9	35 SI	Skaneateles shale	ŀ	72	=	(b).
~	7.75,	2.7E	4½ mi E. of Canandaigua	F. Van Troost	ŀ	820	рид	9	1 2 04	4 to 40	1	Pleistocene till	18.6 6/1/48	ł	Adl	Supplies house and 20 livestock.
	98,	7.9s, 3.7E	5½ mi E. of Canandaigua	S. McMurray	:	820	Dug	32	32	36	ŀ	œ.	12	ŀ	Ŧ	Temp 50 ⁰ F, 6/1/48.
۲.	7.25,	4.6E	5 mi S, of Clifton Springs	School No. 7	1935	900	Drl	951	%	9	95 SI	Skaneateles shale	ŀ	:	ន	
9	6.88,	5.3E	4½ mi S. of Clifton Springs	Linehan Brothers	ł	980	Dug	‡	\$	36	1	Pleistocene till	62	ł	PA	Supplies house and 40 livestock.
•	6.05,	6.7E	3½ mi S. of Clifton Springs	Glen Jensen	1942	820	Drl	≉	89	9	ts 99	Skaneateles shale	12	0.1	Ŧ	
o o	6.08,	6.75	do.	Walter Jensen	1934	820	Dri	210	23	٧	23 85	Skaneateles and Marcellus shales, and Onondaga limestone	:	<u> </u>	5	Well destroyed because of small yield, Another well on property used from 1920-1924 was 420 ft deep and yielded several gpm of water containing hydrogen sulfide.
ė.	6.45,	6.7E	4 mi S. of Clifton Springs	T. B. Sheppard	ŀ	800	Dng	56	56	1 2	1	Pleistocene deposits	5	ŀ	PA	Supplies farmhouse and 70 livestock. Temp 51 ⁰ F, 6/2/48.
3	6. 68,	6.8E	5 mi S. of Clifton Springs	J. R. Maney & Bros.	1945	960	Drl	88	87}	9	87	op.		7	Ŧ	Well bottoms on bedrock.
۲,	2,85,	8.0E	3½ mi SE, of Victor	£, Blazey	1944	680	Drl	31	17	9	17 9	Onondaga limestone	12	ł	Adl	Drilled inside dug well 17 ft deep.
<u>-</u> :	1.85,	6.0E	6.0€ 1½ mi E. of Victor	William English	1948	260	Dri	82	81	9	2 Be	Bertie limestone	6	4	Ŧ	(a). Temp 47°F, 6/2/48.
_:	es,	3.7E	1.6S, 3.7E I mi W. of Victor	Karl Mortensen	84/61	099	DrJ	1 79	63	9	<u>-</u>	Pleistocene sand and gravel	64	02	±	
2	75,	3.9E	2,75, 3.9E 1½ mi SW. of Victor	North Brothers	;	675	Dr.1	33	;	9	20 Or	Onondaga limestone	54	ł	PA	(a),
ë.	3.75,	3.2E	3 mi SW, of Victor	W. L. Murray	:	760	1.0	£	84 14	3 to 6	<u>-</u>	Pleistocene sand and gravel	14.1 6/3/48	o	Adl	Supplies house and 50 livestock.
.	4.75,	0.8E	4 mi NW. of Holcomb	Pietro Madafferi	9461	920	Dri	190	130	9	:	.ob	50	2	Ŧ	(a) (b). Drawdown 50 ft after producing 10 gpm for 1 hr.
.	4.75,	0.7E	•op	H. G. Sanders	1939	00 6	 [-10	506	201 8	8 to 6	1	ç,	#	'n	Ŧ	(b). Well has been pumped at 50 gpm for 24 hrs.
m	9K, 13.6S,	6.1E	Gorham	Grandview Dairy	1945	906		204	2	9	01 %	Moscow and Ludlow- ville shales	œ	04	<u>8</u>	Well has been pumped at 40 gpm for 5 hrs. This well together with another well of same depth located at distance of 30 ft supplies 30,000 gpd.
m	9K, 13.5S,	6.25	do.	Lohmann Foods Corp.	<u>¥</u>	900	Dri	17	39	9	39 Mc	Moscow shale	15	52	dd!	From August to November supplies 40,000 gpd to canning factory.
'n	,4s,	9K, 15.4S, 6.0E	l½ mi S. of Gorham	S. W. Thomas	1933 1,010	010,	2.0	126	92	9	25 Ge	Genesee formation	55	:	Adl	Water contains hydrogen sulfide. Supplies house and 55 livestock, Well Ot 1056 located on property.
r,	9K, 15.5S,	9.7€	2 mi SE, of Gorham	Fred Frederickson	1942 1,040		110	102	23	9	22	do.	50	œ	Adl	Well yielded flammable gas at depth of 40 ft. Supplies water to house and 40 livestock.
٠,	25,	9K, 16.2S, 6.8E	2 3/4 mi SE. of Gorham	Loren Bender	1915 1,100		Drl	20	45	9	14	Ġ.	0	30	Adl	Supplies 9 people and 40 livestock,

Table 10,--Records of selected wells and test holes in Ontario County

				ΕΞ			\$	ty eol. 1901.		<u>.</u>																
		Remarks		Well yields flammable gas. Well Ot 393 and another dug well 25 ft deep are located on property. Well 25 ft deep goes dry in dry seasons.	Supplies 20 livestock.	A dug well 18 ft deep on property bottoms in silt or fine sand and goes dry in dry seasons.	Has been pumped at 6 gpm for 13 hrs. Another well of similar construction located 200 ft away.	Water contains hydrogen sulfide. Spring on property supplies drinking water. Well listed in U. S. Geol. Survey Water-Supply Paper 102 (well 228, p. 184) 1901	Supplies Town Hall,	(b), Water may be from a cavern filled with gravel.			Well yields flammable gas.		Supplies 30 livestock. Temp $55^{\rm O}$ F, $6/17/48$.	Supplies 40 livestock. Dug well on property also flows. Temp $52^{\rm OF},~6/18/48$.	Temp 49 ^O F, 6/18/48.	Supplies 20 livestock. Temp 50^{0} F, $6/18/48$.	Temp 50°F, 6/10/48.	Drilled inside dug well. Temp 52 ⁹ F, 6/18/48.	Supplies 20 livestock.	Temp 50 ^O F, 6/19/48.	Supplies 50 livestock,			
		Use	I	¥	₹	Ad	Adl	š	E	Ŧ	±	Ŧ	r	Adı	A1	F	¥	¥	I PV	æ	Ā	I	₹	Adl	Ŧ	PA
Yield	(gallons per	minute)	2	3/4	:	m	9	2	2	20	4	:	-101	1	1	9	:	:	ŀ	ı	1	ł	;	20	2	5
- Š	land (g surface	(feet)	œ	:	01	œ	13	47.2 6/6/48	001	=	:	;	±	4.4	2.1 6/17/48	7	9	18.9 6/18/48	5.0 6/18/48	6.9 84/81/9	6	5	5	15	3	20
Wa	Water-bearing	unit	Pleistocene sand and gravel	Genesee formation	Pleistocene till	Genesee formation, Tully limestone, and Moscow shale	Pleistocene sand and gravel	G	op	Onondaga limestone	West Falls formation (Hatch shale member)	Genesee formation	. op	Pleistocene till	. op	Pleistocene sand and gravel	ı	;	Pleistocene sand	Genesee formation, Tully limestone, and Moscow shale	Pleistocene till	ę,	do.	Moscow and Ludlow- ville shales	Moscow shale	do.
Depth	to edrock	(feat)	:	m	1	32 (1	1	:	32 (30	9	9	1	ŀ	1	ŀ	ł	1	1	ł	ł	1	11	7.	7
	Diamater b	(inches)	9	9	36	9	9	9	•	9	9	9	9	36	30	9	9	9	30	9	36	36	36	9	9	9
Depth	of Sasing D	(feet) (20	:	27	35	9	ı	300	33	30	3	19	17	15	72	1	:	12.5	:	93	20	20	82	<u>*</u>	œ
Depth C		_	39	132	22	125	9	85	300	45	82	45	183	11	15	72	80	11	5	Ξ	8	20	20	58	92	62
	8 4 6 4	_	Dr.1	Dri	Dug	Dri	Dri	Drl	0	Į.	DrJ	Drl	Dri	Dug	Dug	12	110	110	D n 0	Pr.	Dug	Dug	Dug	Drl	Drl	Drl
Al ti tude above	sea	\sim	1,080		040,1	£	1,020	980	156	620	1,500	960	076	960	096	980	0,040	,020	900	960	980	050	1,080	96	980	980
Year	- com-	ted	-	1944 1,040	ī	1935	-	1899	ield 1947	1948	1946	1904	1945	:	1	1948	-	1940 1,020	ŀ	ŀ	;	1,050	1	<u>₹</u>	1945	1912
		Owner or occupant	Richard Townsend	M. Sheppard	M. Sheppard	Walter Robson	C. Wilson	Fred Grundman	Town of W. Bloomfield Town Hall	£. Brahm	R, E, Frederickson	E. L. Moody	Howard Gorton	Clifford Smith	G. F. Gifford	C. F. Stell	A. D. Clark	Charles Jones	S. E. Bowersox	C. Nageldinger	J. M. Bay	Lorenzo Gage	D, Green	Floyd Gage	John Ricker	O. D. Whyte
Location	Deleted of Learning City	Coordinates or village	9K, 16.0S, 6.6E 2½ mi S. of Gorham	9K, 15.6S, 7.3E 2½ mi SE, of Gorham	9K, 15.3S, 7.2E 2 mi SE. of Gorham	9K, 13.9S, 8.0E 2 ml E. of Gorham	9K, 15.1S, 8.5E 3 mi SE. of Gorham	10J, 6.7N, 1.7M ¼ mi N. of Honeoye	10J, 10.7N, 2.0W $6\frac{1}{2}$ mi W. of Holcomb	9K, 3.6S, 1.3E ½ mi S. of Shortsville	9J, 14,5S, 7,4E 2½ mi SE, of Bristol Center R, E. Frederickson	9K, 15.7S, 1.4E 1 mi NE. of Rushville	9K, 16.0S, 2.2E do.	9K, 15.6S, 4.6E 2thmi SW. of Gorham	9K, 14.8S, 4.8E 1½ mi SW, of Gorham	9K, 14.8S, 3.4E 3 mi NE, of Rushville	9K, 14.6S, 3.9E 2 mi SW. of Gorham	9K, 14,1S, 4,5E 1½ mi SW. of Gorham	9K, 13.9S, 5.2E 1 mi W. of Gorham	9K, 13.0S, 8.2E 2½ mi NE. of Gorham	9K, 13.25, 1.0E 3 mi N. of Rushville	9K, 14.25, 1.1E 2 mi N. of Rushville	9K, 15.25, 0.7E 1 mi NW, of Rushville	9K, 10.5S, 1.8E 4½ mi SE. of Cenandeigua	9K, 11.2S, 2.7E $5\frac{1}{2}$ mi SE, of Canandaigua	9K, 11.2S, 3.6E $6rac{1}{2}$ mi SE. of Canandaigua
			,																							
	107	umper	0t 389	Ot 392	0t 393	0t 395	0t 396	0t 397	Ot 398	Ot 400	Ot 402	01 406	01 414	Ot 416	0t 417	0t 419	Ot 420	Ot 421	0t 422	0t 426	Ot 429	0t 430	Ot 431	Ot 434	Ot 435	Ot 436

Table 10.--Records of selected wells and test holes in Ontario County

General Pedrock Water-bearing Strate Clinches Cleek Water-bearing Strate Clinches Cleek Cl			Ž	Location		Year	Altitude above			Depth	_	Depth	3	Water level	Yield		
1.55. 3.15 \$\$\text{\$\t				Street of Leteles								. و		land	(gallons		
1.55, 3.15 f al K, of Canamaligues 1945 1945 1940 112 112 114	ٽ	oordin	nates		Owner or occupant		feet)		feet) (1	feet) (i	ameter be nches) ((feet)	Water-bearing un!t	surface (feet)	per minute)		Rema r ks
1.255 1.15 1.11	¥,	11.68	5, 3.3	6½ mi	John Van Gelder	1945	980	Drl	32	22	و	ł		5	9	Adl	
1.255 5.05 this Nh, of Sportsville E. Ven Castle 1977 6.02 p. 1 2.02 1.1 1.0 1.0 Camillus shale 4.0 1.	¥,	12.25	÷.		Allen Brothers	1942			128	22	9		enesee formation, Tully limestone, and Moscow shale	50	i	¥	Supplies 21 livestock.
0.55; 11.35 \$\text{\$1 \text{\$11.55}\$ \$\text{\$1 \text{\$11.55}\$ \$\text{\$11.55}\$	¥,	12.95		E 1년 mi NW, of Gorham	Lula Thomas	:		5nq	15	15	36		leistocene deposits	6.6 6/21/48	1	Ŧ	
2.44, 1.15 5 in N. of Storttville Williams Finnerty 1946 540 Dr. 1 151 640 640 640 640 640 640 10 10 10 10 10 10 10 10 10 10 10 10 10	ď		3, 11.3	5 4 mi NV. of Shortsville	E. Van Castle	1937	900		200	=	01		amillus shale	4	0	5	(b).
1.78, 0.75 5 ii N, of Shorteville 0. Pearsail 1944 504 Dri 240 54 6 Pietitecene and and a signature 1956 540 Dri 240 54 6 Pietitecene and and a signature 1956 540 Dri 195 55 11 11 11 11 11 1	¥,		1, 1.2	한 5½ mi N. of Shortsville	William Finnerty	1948			175	8	9	₫	do.	30	7	ł	
5.55 1.28 2 mil M, of hallouse 1.95 2.96 1.97 2.90	¥,				D. Pearsall	<u>₹</u>		Dr.I	20	54	9		sand	4	30	I	(b), Well has been pumped at 30 gpm for 6 hrs. Finished with 5 ft length of 4-inch screen. Another 6-inch well drilled on property bottomed on bedrock. At 72 ft, yielded 7 gpm, but was unused because water had bitter isste.
1,556, 1,11 2, 0.0 2, 0.0 1,550, 1,11 2, 0.0 1,21 2, 0.0 1	g,	15.08	12.24	2 mi	Fred Schlagerter	1936			540	Æ	9		enesee formation, Tully limestone, and Moscow shale	30	-144	Ā	Well yielded gas during drilling. he property also used.
4.35 7.05 5 ml K, of labeles Chri Vilder 193 70 10 6 70 Ludiowills shale 9 1 A Month of the control of the	٤,	15.65	, 12.16		Fred Wilson	1938			601	75	9		enesee formation	30	20	I	
8.05, 5.1E 4 mi W, of Canandaiguea V. H. Winnea 1948 960 pt 121 2 12 2 0 6 5 9 4 Ladiowille shale 8 1	.0.		7.06		Carl Widmer	1938		110	90	20	9	13	.op	-	80	Ŧ	
8.05, 7.1	<u>ع</u>		8.5		W. H. Winne	1948			125	75	9		udlowville shale	35	-	Ā	Used only in dry seasons.
8.05, 6.3E 4.34 ml W, of Conendaçian S, Langan 1937 500 pr 1942 50.0 p	ъ,		7.16		E. J. Monaghan	1905			212	20	9	20	op o	20	-	¥	
8.05, 5.0E ½ mi St. of holocomb E. Saxby 1947 900 101 10	g,								152	15	9		udlowville and Skaneateles shales	<u></u>	-	∢	Supplies 200 sheep.
6.35, 2.46 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 65 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 65 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 65 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 65 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 65 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 65 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 65 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 65 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 186 67 ani NV. of Holcomb (V. Chamberlin 1) 1912 60 brin 1	۶,				E. Saxby			ī	70	55	9		udlowville shale	80	4	I	
6.25, 2.46 2 mi Mv of blocomb A. Bennett 1918 34 4 A. Bennett 1918 4 Dig 2 G G G G G G G G G G G G G G G G G G	3,		3.3		0. Baker			-	81	8	9		leistocene deposits	flows	i	Ŧ	Temp 49 ^O F, 6/23/48.
5.15 1.3E 3 mill M. of Hollcomb A. Bennett 1918	ď,		3.46		H. W. Chamberlin	 :			992	230			udlowville shale	104	4	I	Well has yielded 7 gpm for 24 hrs.
6.65 1.0E 3 mi W. of Holcomb Raymond Years 940 bug 25 29 24 Pleistocene deposits 6/24/48 8.05 2.5E 2 mi SW. of Holcomb S. Steele 1.040 bug 31 31 36 do. 12 do. 6/25/48 8.05 2.5E 2 mi SW. of Holcomb R. Scheele 1.040 bug 31 31 36 do. 2	3		. 1.3		A. Bennett			Ę	99	99	9	<u>-</u>	leistocene sand and gravel	28	œ	Ŧ	
8.05 2.5	3,				Raymond Years			5ng	25	52	54		leistocene deposits	3.4 6/24/48	:	Ad1	Supplies 10 people and 40 livestock, Temp $50^{\rm OF}$, $6/24/48$.
7.88 1.35 4 mi SW, of Holcomb H. Schreib 940 Bug 31 31 36 do. 95,2448 H. Temp 49PF, 6/25/48 8.95 0.65 4½ mi SW, of Holcomb C. L. Kunes 900 Bug 30 72 do. Alo Supplies 20 livestock. 8.95 0.65 4½ mi SW, of Holcomb G. F. Breckenridge 1946 1,100 Bug Bug 30 6 6 18 Genesee formation 4 1 H Water has relatively high iron content. 9.95 2. 2.75 3 mi SW, of Holcomb H. Bortle 1946 1,100 Bug Bug 6 6 10 Genesee formation 4 1 H Water has relatively high iron content. 5.05 0.55 4 mi M. of Holcomb F. R. Lockwood 1930 900 Bug Bug 6 6 10 Genesee formation 4 5 1 H Good H Temp 50F 6.026/48 4.15 1.75 3½ mi M. of Holcomb P. McArthy 820 Bug 68 6 18 H Good H Temp 50F 6.026/48 H Temp 50F 6.026/48 4.15 1.75 3½ mi N. of Victor W. Dillman 1935 800 Bug 134 134 6 Pleistocene sand and gug H Temp 50F 6.026/48	۶,		, 2.5E		S. Steele			δη	82	78	04	:	9	12	:	I	
8.95, 0.6E 44 mi SN. of Holcomb C. L. Kunes 900 bug 30 72 do, 20 Al Supplies 20 livestock. 8.75, 3.0E 2½ mi SN. of Holcomb G. F. Breckenridge 1948 1,100 brl 24 19 6 18 Genesee formation 4 1 H Water has relatively high iron content. 9.25, 2.7E 3 mi SN. of Holcomb H. Bortle 1946 1,100 brl 36 6 Pleistocene sand and 8 3 Adl Supplies 5 people and 15 livestock. 5.05, 0.5E 4 mi MN. of Holcomb D. McCarthy 820 bug 68 68 18 Pleistocene deposits 60 H Temp 50PF, 6/26/48. 4.15, 1.7E 3½ ml NN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 20 brl 34 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 134 6 Pleistocene sand and 44 Upplies 2 mi SN. of Victor W. Dillman 1936± 800 brl 194 6 Upplies 2 mi SN. of Victor W. Of Victor	ઢ		. 1.3		H. Schreib			6n ₍	31	31	36	ı	o	9.9 6/25/48	1	I	Temp 49 ⁰ F, 6/25/48.
8.75, 3.0E 2½ mi SW. of Holcomb 6. F. Breckenridge 1948 1,100 Drl 24 19 6 18 Genesee formation 4 1 H Water has relatively high iron content. 9.25, 2.7E 3 mi SW. of Holcomb H. Bortle 1946 1,100 Drl 36 6 Pleistocene sand and gravel 3 Adl Supplies 5 people and 15 livestock. 5.05, 0.5E 4 mi Mv. of Holcomb F. R. Lockwood 1930 900 Drl 100 97 6 to 4 do. 45 H H 4.15, 1.7E 3½ mi Mv. of Holcomb D. McCarthy 820 Dug 68 68 18 Pleistocene deposits 60 H Temp 50 ^P F, 6/26/48. 3.35, 2.3E 3 mi Sw. of Victor W. Dillman 1936± 800 Drl 134 134 6 Pleistocene sand and 44 U	3.		, 0.6E		C. L. Kunes			6n _C	30	30	22	ŀ	do.	20	:	₹	Supplies 20 livestock.
9.25, 2.7E 3 mi SM. of Holcomb H. Bortle 1946 1,100 Dr1 36 36 6 Pleistocene sand and 8 3 Ad1 Supplies 5 people and 15 livestock. 5.05, 0.5E 4 mi MM. of Holcomb D. McCarthy 820 Dug 68 18 Pleistocene deposits 60 H Temp 50 ^D F, 6/26/48. 3.35, 2.3E 3 mi SM. of Victor W. Dillman 1936 80 Dr1 134 134 6 Pleistocene sand and 44 U	3		3.05		G. F. Breckenridge	1948 1,		<u>.</u>	1 2	6	9		enesee formation	4	-	r	Water has relatively high iron content.
5.0S, 0.5E 4 mi Mv. of Holcomb F. R. Lockwood 1930 900 Drl 100 97 6 to 4 do, 45 H 4.1S, 1.7E 3½ mi Nv. of Holcomb D. McCarthy 820 Dug 68 68 18 Pleistocene deposits 60 H 3.3S, 2.3E 3 mi Sv. of Victor W. Dillman 1936± 800 Drl 134 6 Pleistocene sand and 44 U	z,				M. Bortle	1946 1,		Ę	36	36	9		leistocene sand and gravel	∞	٣	Adl	
4.15, 1.7E 3½ ml MM. of Holcomb D. McCarthy 820 Dug 68 68 18 Pleistocene deposits 60 H 3.3S, 2.3E 3 ml SM. of Victor M. Dillman 1936± 800 Drl 134 6 Pleistocene sand and 444 U gravel	δ,		, 0.5E	4 mi NW. of Holcomb	F. R. Lockwood				8		2	:	ę,	547	;	Ŧ	
3.35, 2.3E 3 mi SW. of Victor W. Dillman 1936. 800 Drl 134 6 Pleistocene sand and 44 gravel	3,		, 1.7E	32 mi NW. of Holcomb	D. McCarthy			6n ₀	89	89	<u>~</u>		leistocene deposits	09	:	I	Temp 50 ⁰ F, 6/26/48.
	95.			3 mi SW, of Victor	W. Dillman				34	134	9		leistocene sand and gravel	\$:	ɔ	

Table 10.--Records of selected wells and test holes in Ontario County
Part 1.--Records of wells (Continued)

Company Comp	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	4004100					Altitude			4		1	We	Water level	3		
183 760 184	Location	Location	Location	ation			COM				Depth of	-	to th		De low	Yield (gallons		
1833 760 Ref. 116 116 6 Pleistocome and and do. Ad Supplies de Josephe and II Investock. 1	Related to nearby city Coordinates or village Owner	Related to nearby city or village	Related to nearby city or village		Owner	or occupant	ple- ted			well ca feet) (1	asing D feet) (inches)	edrock (feet)		surface (feet)	per minute)	Use	Remarks
1	9J, 2.45, 2.2E 2 3/4 mi SW. of Victor Ray Rose	2 3/4 mi SW, of Victor Ra	2 3/4 mi SW, of Victor Ra	2 3/4 mi SW, of Victor Ra	Ray Rose		1893	l .			116	9	l		09	:	PA	Supplies 4 people and 12 livestock.
1940 860 bri 144 145 6 14 141	9J, 1.3S, 1.3E 3½ mi W. of Victor John Reese				John Rees		;		Dri	72	17	9	i	do.	<u>*</u>	;	P4	Supplies 6 people and 11 livestock.
1940 860 Dri 114 6 14 Pleitocene and and 20 11 114 6 14 Pleitocene and and 20 11 114 6 114 Pleitocene and and 20 11 114 114 6 114 Pleitocene and and 20 11 114 114 6 114 114 114 6 114 1	9J, 0.7S, 1.3E do. L. D. Strong	do.	do.		L. D. Stro	66	:	620	Drl	55	25	9	ŀ	. 09	81	;	Ρ	Supplies 2 people and 4 livestock, Temp $50^{\rm O}F$, $6/28/48$.
1947 860 Dr. 114 114 6 1.0	9J, 0.2S, 1.0E 4 mi NM. of Victor C. E. Potter	4 mi NW. of Victor	4 mi NW. of Victor	4 mi NW. of Victor	C. E. Potte	Ŀ	ł		Drl	84	45	9		Salina group	20	ŀ	Ŧ	
1940 890 81 21/15 21	9J, 4.5S, 0.2W 5 mi NM, of Holcomb D. F. O'Brien	0.2W 5 miNM. of Holcomb	5 mi NM. of Holcomb	5 mi NM. of Holcomb	D. F. 0'Bri	6	1947			1	† []	9		Pleistocene sand and gravel	30	:	Ŧ	
1918 144 140 141	9J, 11.4S, 4.8E 2 mi N. of Bristol Center J. Darcy	4.8E 2 mi N. of Bristol Center	2 mi N. of Bristol Center	2 mi N. of Bristol Center	J. Darcy		0461				.175	8½ to 6½ to 3	:	;	ł	1	0	
1918 1,140 Dr. 12 12 12 13 15 14 14 15 15 15 15 15	9J, 11.65, 2.4E 3社 mi NV. of Bristol Center C. Tilton	2,46			ır C. Tilton				110	30	53	8/5 9		Pleistocene deposits and Moscow shale	12	0	Ŧ	Drilled inside
1947 1,180 Dr. 47 38 6 5/8 38 Sanyea formation 12 13 14 16 15 14 18 14 15 14 18 14 15 15 15 15 15 15 15	9J, 11.4S, 1.6E 4½ mi NW. of Bristol Center Isaac Green	'S, 1.6E 4½ mi NW. of Bristol Center Isaac Green	.6E 4½ mi NW. of Bristol Center Isaac Green	나를 mi NW. of Bristol Center Isaac Green	r Isaac Green		1918 1		Dri	21	52	9		Senesee formation	20	ŧ	Ā	Water contains hydrogen sulfide.
1947 1,040 Dr1 2,726 2,726 G 6 6 6 6 6 6 6 6	9J, 11.9S, 2.9E 3 mi NM, of Bristol Center Gordon Allen, Sr.	2.9E 3 mi NW, of Bristol Center				, Sr.	1947		Drl	147	38	8/5 9		Sonyea formation	12	-	Ā	(6).
1947 1,040 0	9J, 12,8S, 2,9E 2 3/4 mi W. of Bristol Reubenstein well Center No. I	2.9E 2 3/4 mi W. of Bristol Center	2 3/4 mi W, of Bristol Center	2 3/4 mi W, of Bristol Center	Reubenstein w No. 1	=	1933 1				,726	1	1	I	1	;	0	(b). Well was drilled for gas. Salt water at depth of 1,540 ft. Listed in N.Y.S. Mus. Bull. 361 (Kreidler, 1957, p. 32).
1946 1,250 Dr 26 15 6 16 5 5 6 16 5 5 6 16 5 6 16 5 6 16 5 6 16 5 6 16 5 6 16 5 6 16 5 6 16 5 6 16 5 6 16 5 6 16 5 6 6 16 5 6 6 16 6 6 6 6 6 6	9J, 15.1S, 2.1E 3 mi E. of Honeoye E. V. Marshall	2.1E 3 mi E. of Honeoye	3 mi E. of Moneoye	3 mi E. of Moneoye	E. V. Marshal	_	1947		Dri	95	99			Sonyea formation	35	- 2	I	
1946 1,250 Dr 26 17 6 16 Sonyea formation 10 ms 10	9J, 12.6S, 0.2E 1½ mi NE. of Honeoye Frank Earing	0.2E 1½ mi NE. of Honeoye	1½ mi NE. of Honeoye	1½ mi NE. of Honeoye	Frank Earing		19461		Dri	20	36	9			82	2	PA	
1948 810 81 82 82 83 84 84 85 85 85 85 85 85	9J, 13.3S, 1.0E 2 mi NE. of Honeoye E. C. Tilton	1.0E 2 mi NE. of Honeoye	2 mi NE. of Honeoye	2 mi NE. of Honeoye	E. C. Tilton		1 9461		Dri	92	11	9		Sonyea formation	flows	0	I	
1946 900 01 112 16 5/8 16 Mear Falls formation 67 19 19 19 112 16 5/8 16 Mear Falls formation 67 19 19 19 19 19 19 19 1	10J, 0.9N, 0.2W 2 mi SE, of Honeoye E, Zacker	0.2W 2 mi SE, of Honeoye	2 mi SE, of Honeoye	2 mi SE, of Honeoye	E. Zacker		84761		Dri	30	30	79		Pleistocene deposits	3	52	Ŧ	Water is of poor quality.
1946 1,290 Dri 112 16 5/8 16 Mest Falls formation shift and Rhinestreet	10J, 1.9N, 0.9W 1 mi S. of Honeoye E. Ace	0.9W 1 mi S. of Honeoye			E. Ace		846		1-0	28	20	œ		enesee formation	20	4	>	Water contains hydrogen sulfide.
1947 860 In 1 117 6 5/8 Pleistocene sand and gravel 40 15 6 b. Supplies restaurant. 1938 800 br1 190 101 6 100 Skanestelss and Apacellus shales 150 6 40 Supplies people and 70 livestock. 1946 785 br1 151 120 15 6 Ad Supplies people and 70 livestock. 760 br1 151 120 15 6 Ad Supplies people and 70 livestock. 760 br1 150 120 15 70 Ad Supplies people and 70 livestock. 760 br1 150 136 4 16 10 10 10 10 10 10 <t< td=""><td>10J, 2.0N, 4.kW 3½ mi SW. of Honeoye W. Kraft</td><td>4.tw 3½ mi SW. of Honeoye</td><td>3½ mi SW. of Honeoye</td><td>3½ mi SW. of Honeoye</td><td>V. Kraft</td><td></td><td>1948 1</td><td></td><td></td><td>112</td><td>91</td><td>6 5/8</td><td></td><td>West Falls formation (Match and Rhinestre shale members) and Sonyea formation</td><td>67 et</td><td>~</td><td>=</td><td>Drilled inside dug well 12 ft deep.</td></t<>	10J, 2.0N, 4.kW 3½ mi SW. of Honeoye W. Kraft	4.tw 3½ mi SW. of Honeoye	3½ mi SW. of Honeoye	3½ mi SW. of Honeoye	V. Kraft		1948 1			112	91	6 5/8		West Falls formation (Match and Rhinestre shale members) and Sonyea formation	67 et	~	=	Drilled inside dug well 12 ft deep.
80 Dr. 190 100 Skaneateles and Harcellus shales 150 6 Add Supplies 6 people and 70 livestock. 785 Dr. 151 121 6 15 16 Add Supplies 6 people and 70 livestock. 800 Dr. 130 15 16 Add Supplies 6 people and 70 livestock. 1780 Dr. 130 15 Add Supplies 5 people and 75 livestock. 1780 Dr. 130 13 Skaneateles shales 10 4dg well 40 ft deep. 1780 Dr. 15 16 16 10 17	10J, 10.8N, 2.6W 7 mi W. of Holcomb Ravine Restaurant Donald Graves				Ravine Restaura Donald Graves	ant	1947			1117	117	8/5 9		Pleistocene sand and gravel	94	15	Csp	
36 Dr. 151 16 120 do. 35 5 Add Supplies 6 people and 70 livestock. 36 Dr. <td>10J, 11.7N, 2.6W do. F. B. Harshall</td> <td>œ,</td> <td>œ,</td> <td></td> <td>F. B. Marshall</td> <td></td> <td>1938</td> <td></td> <td></td> <td>190</td> <td><u>.</u></td> <td>9</td> <td></td> <td>Skaneateles and Marcellus shales</td> <td>150</td> <td>9</td> <td>Adı</td> <td>people</td>	10J, 11.7N, 2.6W do. F. B. Harshall	œ,	œ,		F. B. Marshall		1938			190	<u>.</u>	9		Skaneateles and Marcellus shales	150	9	Adı	people
130 131 130 136 135 Staneateles and 15 15 16 Add Supplies 6 people and 75 livestock. Add	10J, 12.3N, 2.7W 7thmi NW. of Holcomb L. Strapp				L. Strapp		9461			151	121	9	120	ço,	35	2	Adl	Supplies 6 people and 70 livestock.
150 15 15 15 15 15 15 15	10J, 12.8N, 2.2M 7 mi NM. of Holcomb W. G. Nudd				W. G. Nudd		1			•	;	9	:	:	15	2	Adl	people and 75 livestock. 30 ft deep.
780 Dr. 60 30 Skaneateles shale 10 H Drilled inside dug well 30 ft deep. 680 Dr. 52 50 6 Pleistocene sand and gravel 20 H 640 Dr. 44 28 6 28 Onndaga limestone 20 8 H 610 Dr. 52 th 6 and Cobleskill 7/22/48 H (a). Temp 490F, 7/22/48.	10J, 12.7N, 1.1W 6 mi NM. of Holcomb F. Sackett	6 mi NV. of Holcomb	6 mi NV. of Holcomb	6 mi NV. of Holcomb	F. Sackett		:			150	136	9		Skaneateles and Marcellus shales	35	;	Adl	Drilled
680 Dri 52 50 6 Pleistocene sand and 20 H H S Pravel Stravel 640 Dri 444 28 6 28 Onondaga limestone 20 8 H H S Preistocene deposits 12.8 H A S Preistocene deposits 12.8 H A S P Preistocene deposits 12.8 H A S P P P P P P P P P P P P P P P P P P	9J, 5.75, 10.7E 2 mi N. of Canandaigua John Cross				John Cross		1915		Dri	09	30	9		Skaneateles shale	01	;	I	Drilled inside dug well 30 ft deep. Temp 51 ⁰ F, 7/22/48.
640 Drl 44 28 6 28 Onondaga limestone 20 8 H 610 Drl 50 52½ 6 Pleistocene deposits 12,8 H and Cobleskill 7/22/48 dolomite	9J. 3.85, 11.0E 4 mi N. of Canandaigua M. G. Elwell	4 mi N. of Canandaigua	4 mi N. of Canandaigua	4 mi N. of Canandaigua	M. G. Elwell		1945		Dri	25	92	9		Pleistocene sand and gravel	50	:	I	
610 Drl 50 52½ 6 Pleistocene deposits 12.8 H and Cobleskill 7/22/48 dolomite	9J, 2.8S, 10.6E 5 mi N. of Canandaigua B. Reed				B. Reed		1946		Dri	‡	82	9		Onondaga limestone	20	œ	I	
	9J, 2.35, 11.2E $5\frac{1}{2}$ mi N. of Canandaigua F. A. King	5½ mi N. of Canandaigua	5½ mi N. of Canandaigua	5½ mi N. of Canandaigua	F. A. King		1940		Dri	20	52 1	9		Pleistocene deposits and Cobleskill dolomite	12.8 7/22/48	:	I	(a). Temp 490F, 7/22/48.

Table 10.--Records of selected wells and test holes in Ontario County

Part 1,--Records of wells (Continued)

		Remarks	Temp 50 ^O F, 7/23/48.	Supplies 12 livestock.	Temp 53 ^O F, 7/23/48.	Well abandoned in 1933 because it produced "black sulfur water" (see remarks for well 0t 219) which rapidly corroded plumbing fixtures. Water supply is obtained from spring 0t 175p located $\frac{1}{4}$ mi southwest of well.		Flows in spring of year, Supplies greenhouse.	Total hardness 580 ppm on 4/26/48. Drilled inside dug well 30 ft deep.	Water probably enters well at contact between unconsolidated deposits and bedrock. Well supplies 35 livestock.	(a).	(a) (b). Temp $50^{0}\mathrm{F}$, $2/14/50$. Water reported to have salty taste.	Supplies 38 livestock,	Goes dry in dry seasons.		Water contains hydrogen sulfide, Drilled inside dugwell 30 ft deep.	Drilled inside dug well 40 ft deep.	(a). Temp 50 ⁰ F, 8/22/52.	Supplies 7 people and 18 livestock. Temp 50°F, 7/26/48.	Supplies 4 people and 55 livestock.	Temp 50 ⁰ F, 7/26/48.	Supplies 3 people and 44 livestock.	Supplies 9 people and 11 livestock, Temp 50° F, $7/26/48$.	Temp 520F, 7/27/48.	Temp 51 ⁰ F, 7/27/48.
		Use	#	A.	Ŧ	5	I	Ā	I	Ā	I	PA	₹	I	I	¥	Ŧ	Ŧ	P	Adi	ē	Adl	PA	Ŧ	r
3	Tieid (gallons	per minute)	:	ł	;	•	1	9	0	:	;	30	1	;	1	1	-	09	;	:	2	91	:	:	:
Water level	land	surface (feet)	8 9	27	20	05	43.3 7/23/48	flows	33	09	;	و کو 19	;	20	=	20	;	2	15.0 7/26/48	04	22	12	19.5 7/26/48	6.8	15.5
Wa		Water-bearing unit	Pleistoc	Pleistocene deposits and Camillus shale	Onondaga limestone	Camillus shale	Pleistocene deposits	Pleistocene sand and gravel	Pleistocene deposits and Camillus shale	do.	Camillus shale	Skaneateles and Marcellus shales, and Onondaga limestone	Pleistocene deposits	1	Onondaga limestone, Cobleskill dolomite, and Bertie limestone	Salina group	Camillus shale	do.	Pleistocene deposits	Camillus shale	Pleistocene deposits	Camillus shale	Pleistocene deposits	, do	•op
	to de	bedrock (feet)	:	04	25	÷100-	:	1	24	;	, *	53	;	:	45 (1	0+7	13	;	8	:	65	:	:	;
,	3	Diamater be (inches) (l	9	9	9	9	9	9	9	9	9	22	9	9	9	9	9	36	9	9	9	30	30	9
1	of	(feet)		9	56	;	1	17	;	120	35	53	52	:	3	ŀ	7	82	:	9	‡	99	23	91	65
i i		well (feet) (32	745	84	451	20	7	84	120	9	110	25	20	99	135	80	82	6	801	‡	88	23	91	65
í	a Y			Dr.1	Dri	i.d	וים	Dr.1	Dri	Drl	Drl	Drl	Dug	Drl	Dri	l-10	Drl	Drl	Bng	Dri	Drl	Drl	Dug	Dug	Dri
Altitude	Sea		-	615 D	610 D	615 D	o 065	Q 095	019	260 b	250 D	0770 D	650 D	620 D	630 b	Q 009	230 D	570 D	Q 009	260 D	260 D	580 b	009	Q 095	620 b
		ple-le ted (f	¥	9 0161	9 1261	1923± 6	٠ ا	5	9 2461	1947 5	1948 5	1 949 7	9	9	938 6	9 8261	2	928 5	9	1945 5	1943 5	:	9 8461	I.	1945 6
×	- 8	Owner or occupant to					Thomas 0'Connell														Schrader Brothers 19				
		Owner	S. Whitbeck	M. Coulter	C. S. Redfield	P. J. DeWandel	Thomas (A. DeJae	Floyd Sheldon	A, Herendeen	E. Williams	R. C. Tuttle	L. J. O'Maal	A. H. Tuttle	F. V. Alderman	Frank Cobb	J. S. Holtz	George Fox	0. Young	Robert Weigert	Schrader	Harold Weigert	S. Bowers	Willis Simonds	0, English
		Related to nearby city or village	3,4	· op	5½ mi N. of Canandaigua	5 mi NW. of Shortsville	0.6N, 0.3W 4thmi NM. of Shortsville	9K, 1.7N, 1.3W 5 3/4 mi MM. of Shortsville A. DeJaeger	•op	5½ mi NE, of Victor	2.1N, 4.1W 5 mi NE. of Victor	3 mi NM. of Canandaigua	5½ mi NW. of Canandaigua	4 mi E. of Victor	3½ mi E. of Victor	4 mi NE, of Victor	5½ mi NE, of Victor	5½ mi NW. of Shortsville	3½ mi NE. of Victor	4½ mi NE. of Victor	3½ mi NE, of Victor	2½ mi NE. of Victor	,	6.0E 3/4 me NE, of Victor	9K, 0,9 N, 7,3₩ 2½ mi N. of Victor
1011100	5	õ	₹	12.4E	.0.4E	2.0W	0.3W	1.3W	2.8W		4.1V	9.7E	9.3€	8.8E	8.2E	8.8E	3.5W		4.9v	5.2W	5.8W	×6.5	6.9E	6.0E	7.3W
		Coordinates	9J, 1.5S, 11.4E	0.5S, 12.4E	2.25, 10.4E	0.1N,	. 6N	. 7N.	0.4N,	2.0N, 3.7W	N.	5.15,	2.55,	0.98,	1.75,	0.48,	0.1N, 3.5W	1.3N, 1.6W	. N4.0	1.9K,	0.9N,	0.2N,	0.75,	0.15,	₹.
		Coor	26,	97, 0	90, 2	ж, о	9K, 0	¥.	9 k .	9K, 2	9K, 2	97, 5	9, 2	92,0	۶. -	٤,	¥,	9K, -	¥,	¥,	¥,	9,	۶, و	9.	¥,
		Well number	Ot 516	Ot 518	Ot 521	Ot 522	Ot 523	0t 525	Ot 528	0t 530	Ot 531	Ot 534	Ot 537	Ot 538	0t 539	Ot 540	0t 541	Ot 542	Ot 543	Ot 544	Ot 545	0t 546	Ot 548	0t 550	Ot 553

Table 10.--Records of selected wells and test holes in Ontario County
Part 1.--Records of wells (Continued)

						41+1+ude	90.	-				eW.	ter level			
			Loc	Location	Year			Depth	Depth		Depth		below	Yield		
Well number	క	Coordinates	tes	Related to nearby city or village	Owner or occupant ted		et) well	۳	0-	Diameter (inches)	₽°	Water-bearing unit		per minute)	Use	Remarks
0t 554	¥,	1.6N	7.64	9K, 1.6N, 7.6W 3½mi N, of Victor	1	±		l .		9	0 -	leistocene deposits and Camillus shale	1	:	±	Mater enters well at contact between the Camillus shale of the Salina group and the overlying Pleistocene deposits. Mater has relatively high iron content.
Ot 556	¥,	. NG. I	19.6	9K, 1,9N, 9,6W 33/4mi NM. of Victor	Kenneth Smith 1944	¥ 715	5 Dr1	168	155	6 to 5	155	Camillus shale	%	2	x	Well drilled to 72 ft in 1942 and used successfully for I year. Later became dry and was deepened to 168 ft.
Ot 557	¥	1.5N,	1.5N, 9.9W	3½ mi NW, of Victor	H. Erber 1948	049 84	0 01	138	ı	9	ŀ	;	43.2 7/28/48	2	I	
Ot 558	8,	9K, 1.5N, 10.4W	, 10.4	op.	M. W. Strong	575	5 Drl	173	155	9	150	Camillus shale	04	;	Ŧ	(b).
Ot 559	¥,		, II.2k	2.4N, 11.2W 5 mi MM. of Victor	A, Kaiser	- 560	o Dug	36	36	54	:	Pleistocene sand and gravel	24.5 7/28/48	ł	I	Temp 49 ⁰ F, 7/28/48.
Ot 562	91,	1.5N,	. 1.8	1.5N, 1.8E 4 mi NW. of Victor	Joseph Lortscher, Sr	- 490	Dug 0	12	12	30	i	• op	æ	;	I	
Ot 563	¥,		ź. :	0.8N, 11.1W Fishers	Fred Fowler 1941	41 520	0 0rl	63	19	9	ł	Pleistocene sand	10	;	I	(a).
0t 566	95.	0.15,	, 2.0E	3 mi NW, of Victor	George Maynard	- 560	Dr.	11	11	9	*	Bertie limestone	32	;	I	
Ot 570	Ж,	0.3N,		7.7W 1 3/4 mi N. of Victor	C. Maier 1945	45 680	0 Dr1	121	121	9	1	Pleistocene deposits	;	5	I	(a).
Ot 573	¥,	0.9N,	. 8.7w	/ 2½ mi NM, of Victor	L. C. Boughton	- 760	o Dug	57	57	38	ł	Pleistocene till	11.2 7/29/48	;	P4	
Ot 576	8,	0.25,	φ.0Ε	14 mi NV. of Victor	W. Baker 1948	00/ 8+	0 Dr.1	901	ŀ	9	26	Bertie limestone	87	5	I	Has been pumped at $5~\mathrm{gpm}$ for 4 hrs.
0t 579	3,	4.95,	, 3.0E	2 mi NW. of Holcomb	E. Years	840	0 0	3	%	9	34	Skaneateles shale	58	Ŧ	¥	Supplies 30 livestock.
Ot 580	٤,	7.05,	, 5.7E	կ <u>ե</u> րա E, of Holcomb	V. Randall	880	6ng C	56	56	36	:	Pleistocene till	8.3	;	P	Supplies 2 people and 14 livestock.
Ot 582	٤,	6.25,	, 5.2E	i ነቲ mi NE, of Holcomb	F. A. Buell 1946	940	0 Dr.1	147	52	9	84	Skaneateles shale	17	15	¥	(a), Water contains hydrogen suifide. Supplies 40 livestock.
Ot 585	3,	4.95,	, 5.0E	2 mi NE, of Holcomb	Paul Birdsail	- 860	o Dug	27	27	54	;	Pleistocene deposits	31	:	I	
Ot 586	g,	4.85,	5.95	2½ mi NE. of Holcomb	N. Ellsworth 1947	47 760	0 Dr1	137	137	9	137	op	23	;	Ā	Supplies 35 livestock,
Ot 587	9	5.58,	, 6.6Е	5 mi NW, of Canandaigua	R. E. Brocklebank	- 800	0 Dr.1	9	31	9	93	Skaneateles shale	20	-	I	
0t 588	g,	6.35,	, 7.2E	: 4½ mi NW. of Canandaigua	H. Northrop 1946	46 842	2 Drl	72	72	9	70	. op	9	80	Adi	Supplies 6 people and 32 livestock.
Ot 592	97,	3.88,	, 7.3E	: $5rac{1}{2}$ mi NW, of Canandaigua	M. S. Johnson 191	1910‡ 720	0 0,1	25	:	٥	!	Marcellus shale and Onondaga limestone	9	:	Adl	Drilled inside dug well 27 ft deep.
0t 5 94	97,	3.25,	, 7.1E	: 3 mi SE, of Victor	F. Mandrio 1938	38 680	0 011	36	35	9	35	Pleistocene deposits and Onondaga limestone	12.3 8/ 1/48	:	Adı	Drilled inside dug well 10 ft deep.
Ot 596	95,	4.85,	7.18	7.1E 5 mi NW. of Canandaigua	J. Yerkes 1946	09/ 94	0 0	92	75	9	73	Skaneateles shale	20	-3	F A	Supplies 95 livestock.
Ot 598	ζ,	5.48,		7.0E 4½ mi NW. of Canandaigua	J. Purdy 1946	94,	0 Drl	25	81	9	91	. op	3,4	4	Adl	Supplies 2 people and 75 sheep.
0t 600	97,	6.85,	, 7.5E	: 4 3/4 mi W. of Canandaigua	Fred Yerkes 1948	98 84	0 Drl	100	95	9	83	. ob	30	:	I	
Ot 601	92.	7.65,	, 7.9E	i 3½ mi W. of Canandaigua	K. M. Thompson	- 860	o Dug	45	45	36	;	Pleistocene deposits	17.6 8/ 2/48	ł	I	
0t 603	97,	6.55,	9,4€	2 mi NM. of Canandaigua	C. P. Connelly 1945	45 800	0 Brl	36	36	9	;	Pleistocene sand and gravel	=	2	±	Water has relatively high iron content,
Ot 605	97,	6.25,	, 9.2€	: $2\frac{1}{4}$ mi MV, of Canandaigua	W. A. McCann	800	o Dug	97	56	84	:	Pleistocene deposits	:	:	I	(a). Temp 48 ⁰ F, 8/2/48.

Table 10.--Records of selected wells and test holes in Ontario County
Part 1.--<u>Records of wells</u> (Continued)

ł		!	ı		90 ft.					1938 ins ie gas.		yer			vs	deep. of use.			зоше						
		Remarks	Supplies 110 livestock,	Supplies 13 livestock.	Well yielded some flammable gas from depth of 90 ft.	Water contains hydrogen sulfide,	(a). Goes dry in dry seasons.	Well yields some flammable gas.		(b), Well was drilled to a depth of 42 ft in 1938 and deepened to 205 ft in 1950. Water contains hydrogen sulfide. Well once yielded flammable gas.		Drilled inside dug well 14 ft deep. Gravel layer 2 ft thick overlies bedrock.	Drawdown 30 ft after pumping 15 gpm for 3 hrs. Water contains hydrogen sulfide.	Has been pumped at 15 gpm for 2 hrs.	Goes dry in dry seasons. Supplemental water is carried to farm in tanks.	(b), Well was considered finished when 67 ft deep. Had to be deepened to 119 ft after 2 months of use. Has been pumped at 10 gpm for 3 hrs. Water contains hydrogen sulfide.	(6).		Supplies 9 people and 25 livestock, Contains some hydrogen sulfide,	(b).		Supplies 13 livestock.		Supplies 14 livestock. Temp $47^{\rm OF}$, $8/7/48$.	Supplies 30 livestock.
		Use	Adı	ē	A	Ŧ	Adl	I	Ŧ	Ŧ	I	I	I	Ŧ	₹	±	I	PA I	PA	Adl	ı	P	PAI	a	ŀ
Yield	(gallons	minute)	:	ŧ	9	٣	:	ŧ	ı	٣	;	20	15	15	1	9	15	<u>≁</u>	52	:	ŀ	30	ı	1	٣
Water level below	_		23	9	20	9	01	37.28 8/ 3/48	11.5	5	13.1 8/ 5/48	7	٣	27	23	ŀ	30	v	25	:	01	18	4	10.0 8/ 7/48	2
Va	Water-bearing	unit	Skaneateles shale	Pleistocene sand and gravel	Genesee formation	do.	Pleistocene till	1	Pleistocene deposits	Genesee formation	Pleistocene till	Salina group	Marcellus shale and Onondaga limestone	Pleistocene sand and gravel	Pleistocene deposits	Moscow and Ludlow- ville shales	Pleistocene sand	Moscow and Ludlow- ville shales	Genesee formation	Genesee formation, Tully limestone, and Moscow shale	:	Pleistocene sand	Pleistocene till	•op	43 Ludlowville shale
Depth	to bedrock	(feet)	35	i	8	;	1	:	;	3	1	91	28	1	:	20	;	81	8	38	30	;	1	;	t ,
	Diameter	(inches)	9	9	9	9	36	9	9	9	36	9	9	9	84	•	9	9	9	9	9	9	36	36	9
Depth	of	(feet)	33	57	8	ŧ	22	:	23	74	<u>6</u>	70	9	£	57	23	<u>†</u>	70	8	9	:	98	20	25	\$
Depth	e o		88	57	00	92	22	90	23	205	<u></u>	%	83	Æ	57	6	71	901	8	133	<u>\$</u>	8	02	52	8
	Type of	-	1	170	Drl	Drl	Dug	Dr.1	Dug	110	5ng	Dri	Dri	Dr.1	bng	1 o	Drl	14	0-1	Dri	Dri	Dr1	Dug	Dng	ī
Al ti tude above	sea	(feet)	790	900	0,170	.160	1,160	1,140	980	041.	1,140	064	920	720	720	780	780	940	960	860	860	760	840	960	740
	o de l	te d	1910	1940	1945 1,170	1946 1,160	1	1	ł	041,1 0261	1	9461	1942	i	:	8461	1948	1943	<u>¥</u>	1936	ł	1935	:	:	:
		Owner or occupant	L. H. Purdy	Leon Berry	A. G. Sherman	H. J. McGreehan	G. Hallock	L, Ingalis	William Houghton	Wesley Collins	R. J. Scoville	Arthur Hughson	Chester Gridley	T. L. Goodall	Charles Lucey	G. Mountjoy	P. Horton	Rexford Ansley	W. J. McFetridge	M. Redman	O. R. Robson	Chris Hansen	Willis Austin	Gordon Bush	Peter DeBoover
Location	Related to nearby city	- {	3 mi NW. of Canandaigua	3 mi N. of Bristol Center	3¼ mi S. of Holcomb	4 mi S, of Holcomb	6 mi SW. of Canandaigua	2 3/4 mi NE, of Bristol Center	3½ mi S€, of Holcomb	4½ mi SW. of Canandaigua	9J, 11.8S, 6.5E $1\frac{1}{2}$ mi NE, of Bristol Center	2.75, 10.3E Phelps	5.75, 10.1E 3 mi S. of Phelps	7.85, 10.4€ 3½ mi NW. of Geneva	3¼ mi W. of Geneva	9J, 14.4S, 9.5E 7 mi SW. of Canandaigua	5½ mi SE, of Canandaigua	4 mi E. of Gorham	4 mi SE, of Gorham	4½ mi E, of Gorham	4½ mi SE, of Gorham	7½ mi S. of Geneva	7½ mi SW. of Geneva	7 mi SW, of Geneva	9K, 13.8S, 11.7E 5½ mi SW. of Geneva
Loca		es	8.8E	5.3E	4.5E	3.8E	6.0E	6.3E	6.45	8.4E	6.5E	10.3E	10.1E	10.4€	10.4E	9.5E	12.2E	9.9€	9.2E	10.1E	9.8€	12.1E	11.16	11.1E	11.7£
		Coordinates	9J, 5.6S, 8.8E	9J, 10.25,	91, 9.75,	9J, 10.6S,	9J, 10.25,	9J, 10.58,	9J, 9.35,	9J, 11.4S, 8.4E	9J, 11.85,	9K, 2.7S,	9K, 5.7S,	9K, 7.8S,	9К, 8.75, 10.4Е	93, 14.48,	9J, 12.8S, 12.2E	9K, 13.5S,	9K, 15.1S,	9K, 14.6S, 10.1E	9K, 15.6S,	9K, 15.8S, 12.1E	9K, 16.0S, 11.1E	9K, 15.0S, 11.1E	эк, 13.8s,
	Ve I			0t 611	01 614 9	Ot 617	Ot 618	Ot 619 9	Ot 622 9	0t 628 g	Ot 630 9	Ot 632 9	Ot 634 9	0t 636 9	Ot 638 9	0t 640 9	0t 642 9	0, 644 9	Ot 647 9	0t 648 9	Ot 650 9	Ot 651 9	Ot 652 9	Ot 653 9	Ot 654 9

Table 10. --Records of selected wells and test holes in Ontario County

(Continued)
of wells
Records
Part 1

		ı							pue	Drilling of of boulders.		ft.	inside						gen sulfide.			Temp 51 ^O F, 10/13/48.		10/14/48.	vally drilled in sulfide.		¹⁰ F, 11/15/48.
		= 1	.hool. Temp 49°F, 8/8/48.			Has been pumped at 9 gpm for 4 hrs.			ig well. Supplies 10 people and	(b), Well is 1 of 3 started on property. D 2 earlier wells was discontinued because o Supplies trailer park and 14 cabins.	ě	Well back-filled with gravel to depth of 160 ft.	Supplies 2 people and 24 livestock. Drilled inside dug well. Temp 50°F, 10/12/48.		Supplies 5 people and 21 livestock.		/48.	contains hydrogen sulfide.	stock. Water contains hydrogen sulfide			Supplies 8 people and 50 livestock, Temp 51		Water contains hydrogen sulfide. Temp 50 ⁰ F, 10/14/48.	Supplies 5 people and 130 livestock. Originally drilled to depth of 78 ft. Mater contains hydrogen sulfide.	./48.	Supplies 5 people and 50 livestock. Temp $51^{\rm O}{\rm F}$, $11/15/448$.
			Supplies small school.			Has been pumped a			Drilled inside dug well. 65 livestock.	(b), Well is I on 2 earlier wells Supplies traile	Supplies 19 people.						Temp 51 ⁰ F, 10/12/48.	Water contains hy	Supplies 25 livestock.					Water contains h		Temp 52 ⁰ F, 10/14/48	
		Use	ន	Adl	I	I	I	I	PA	S	I	Adl	Adı	I	PA	I	I	Ā	4	I	I	Ā	I	₹	Adl	I	Adl
Yield	(gallons	minute)	!	7	-	6	;	ł	90	9	:	:	4	80	1	ŀ	:	9	-	1	ŀ	1	101	0	1	ł	;
Water level	land ((feet)	flows	±	1	22	13.1 8/ 9/48	13	91	001	4	‡ 09	64	ŀ	04	61	3	13	04	flows	25	8	3	7.8	15	5.2 10/14/48	11.3
*	Water-bearing	unit	34 Ludlowville shale	Moscow shale	Pleistocene sand and gravel	Pleistocene sand	Pleistocene till	do.	:	Pleistocene sand and gravel	do.	Pleistocene sand	:	Pleistocene sand and gravel	G	Pleistocene silt and sand	Pleistocene till	Moscow shale	Genesee formation	;	Pleis tocene sand	1	Genesee formation, Tully limestone, and Moscow and Ludlowville shales	Sonyea formation	Genesee formation	Pleistocene silt and clay	Pleistocene deposits
Depth	to	(feet)	34	8	:	1	1	;	:	1	ł	:	1	ŀ	:	;	1	30	95	ŀ	ŀ	;	∞	20	\$	ł	1
	of to	(inches)	9	9	9	9	8	36	36	9	54	9	9	9	9	36	84	9	9	9	9	9	9	9	9	90	9
Depth	و	(feet)	36	6	115	205	78	27	;	220	12	180	;	ŧ	1	52	7	3	8	1	9/	ł	Ξ	Ξ	3	91	17
	5	\sim i	9	120	119	207	78	27	42	220	12	180	111	ż	120	25	7	28	150	92	92	120	338	45	88	91	17
	Type	- -	L L	0-1	Dri	Drl	Dug	Dug	Drl	1	Dug	7	ī	Drl	1	pug	Dug	Dri	2	Dri	Prl	2	4	Drl	Pri	Dug	Рид
Al titude	sea	(feet) well	720	760	960	35	0,140	1,070	1,340	000	940	1,020	985	920	875	800	860	£	1,020	870	860	906	910	1936 1,150	940	800	905
A 7		ted	1	9161	1947	1947	1	-	1	1948 1,000	;	1	1912	1910	1910	;	1875	9461	;	1938	:	1908	1939	1936	;	:	1
		Owner or occupant	District No. 3 Schoolhouse	S. Bishop	W. Lockwood	A, Birdsall	Harry McKee	Martin Blood	George Wood	Preston Fleming	H. Niles	Leo Leary	G. C. Wood	John Rawlinson	Fred Grundman	J. Shetler	E. J. Nighan	George Deal	R. Cook	James Stanton	James Ryan	Gene Fisher	L. B. Ashley	L. Shattuck	G. H. Ashley	H. Shetler	R. Farrell
	Location	Coordinates or village	9K, 14.5S, 12.4E 6 mi SW, of Geneva	9K, 15.3S, 12.3E 6½ mi SW. of Geneva	5.75, 0.5E 4 mi NW. of Holcomb	9J, 7.0S, 1.0E 34 mi W. of Holcomb	9J, 10.6S, 1.5E 44 mi N. of Honeoye	.65, 2.7E 4½ mi SW. of Holcomb	1.7	6.75, 1.8E 2½ mi W. of Holcomb	7N. 0.5W 4 3/4 mi NW. of Holcomb	2.0W	. ¥	9.0N, 0.4w 4 3/4 ml W. of Holcomb	7.8N, 1.9V 5½ mi N. of Honeoye		4.0N, 0.3W 1½ mi NE. of Honeoye	5.8N, 0.7W 3 mi N. of Honeoye	6.2N, 0.8W 3½ mi N. of Honeoye	11.5N, 1.9W 64 mi W. of Holcomb	8.3N, 1.4W 5½ mi N. of Honeoye	7.4N, 0.3W 4 3/4 mi N. of Honeoye	3.4N, 1.7M 1 mi NW. of Honeoye	10J, 3.1N, 3.1W 24 ml W. of Honeoye	.gn, 2.4W 2 mi NW. of Honeoye	5.2N, 2.4W 3 mi NW. of Honeoye	10J, 5.9N, 3.6W 4 mi NM. of Honeoye
		Coord	ž.	K, 15.	9.5	٠, 7	.01 .0.	94, 10.68,	13, 12,	91, 6.	10J. 11.7N.	.6		10J. 9.	100.		.4.			103, 11,	10, 8	100, 7.	100, 3.	۵, ،	10J, 3.9N,	100, 5	5 , 60
		ب	1																								
		well	Ot 655	0t 656	Ot 657	0t 658	Ot 661	Ot 663	Dt 664	Ot 666	01 667	04 668	0t 669	Dt 670	0t 671	0t 672	Ot 673	0t 674	Ot 675	Ot 676	0t 678	Ot 679	00 00	0t 685	Ot 688	0t 690	Ot 691

Table 10,--Records of selected wells and test holes in Ontario County

Part 1,--Records of wells (Continued)

			Location	ion		Year	above	ē	pth Depth	ţ,	Depth		ac ac	٧٠٠		
We]				Related to nearby city			sea T	Type of	of of	نسون ال	to	1	land	-		
number	ి	Coordinates	Sã	or village	ı	_		_	_ R	(feet) (inches)	s) (feet)	n water-bearing) unit	Surrace (feet)	per minute)	Use	Remarks
0t 692	107	6.7N,	3.7	lbJ, 6.7N, 3.7W 5 mi NV. of Honeoye	Frank Stoltman	1	880	Dug	12	12 36	1	Pleistocene silt and clay	80	:	I PV	Supplies 5 people and 20 livestock, Water contains hydrogen sulfide.
0t 694	<u>5</u>	3.9N,	3.6W	10J, 3.9N, 3.6W 3 mi NW. of Honeoye	Robert Reed	<u>-</u>	ı, 090 i	h gud	04	96 04	1	Pleistocene till	20	4	1	Supplies 7 people and 20 livestock. Temp $50^{\circ}F$, $10/15/48$. An unused drilled well, 45 ft deep, is located on the same property.
0t 695	<u>.</u>	5.2N,	3.94	5.2N, 3.9W 4 mi NW. of Honeoye	City of Rochester	;	096	Dr.1	30	27 6	;	Pleistocene sand and gravel	flows	1	I	
0t 697		103, 1.0N,	Mh. 4	4.4W 4 mi SW. of Honeoye	P. DeGraff	- -	1,100 Du	Dug	91	16 36	;	Pleistocene deposits	9	1	r	
0ι 698	100,	0.2N,	4.74	4½ mi SW. of Honeoye	Fred Rath	1	1,280 0,	Oug 2	20	20 36	1	Pleistocene till	10.0	:	r	
0t 699	ĕ	0.55,	3.5W L	0.55, 3.5W 4th mi SW. of Honeoye	Roy Swan	1914 1,140		Dug 2	28	28 36	1	Pleistocene deposits	20	ŀ	Ŧ	
Ot 700		2.IN,	3.5W	3.5W 3 mi W. of Honeoye	T. Henry	1944 1,400	100 Dr.1		73	23 6	22	West Falls formation (Hatch shale member)	35	~	Adl	Supplies 6 people and 40 livestock.
Ot 701		1.3N,	3.6W 3	1.3N, 3.6W 3 mi SW. of Honeoye	ira Briggs	- -	1,560 Dr1		09	11 6	0	West Falls formation	Ξ	9	Adl	Supplies 6 people and 55 livestock.
0t 703	107	2.7N,	2.2W	l∮mi W. of Honeoye	Robert Eddy	1,097	97 Dr.1		0,	31 6	30	Sonyea formation	20	80	Adl	Water contains hydrogen sulfide.
Ot 704		.9.	1.6W	l mi SW, of Honeoye	A. M. Plain	- 	1,060 Bug		23	23 36	1	Pleistocene till	10,7	ł	Adi	Temp 51 ^O F, 10/16/48.
Ot 705		0.9N.	₹.	2 mi SW. of Honeoye	L. C. Owen	1,280	.80 Dr.1		25	9 9	4	West Falls formation (Hatch and Rhine- street shale members)	9 (s.	8	I	
Ot 706	107	0.95, 2	2.9W 4	4급 mi SW. of Honeoye	C. Masenflug	1942 1,440	40 Drl	±		31 6	30	West Falls formation	;	œ	x	Yields 3 qpm at depth of 78 ft. Temp 50^{0} F. 10/16/48
Ot 707		0.1N, 1.9W		3 mi SW, of Honeoye	J. T. Hopkins	1,260	60 Dug	†I 6		14 36	;	Pleistocene till	11.6	ŧ	I	Well bottoms on bedrock, Temp $53^0\mathrm{F}$, $10/16/48$,
Ot 710	Š.	0.98, 2	2.1W 4	2.1W 4 mi SW. of Moneoye	Truman Becker	1,570	70 Dri	047		9 04	;	ę,	30	:	Ŧ	
Ot 711	3.	2.75, 2	2.9W 6	6 mi S. of Honeoye	Dayton Becker	1941 1,400	00 Dr.1		76 3	31 6	30	West Falls formation	σ	4	Adi	
Ot 712		3.45, 2	2.8W 6	6½ mi S. of Honeoye	W. Preston	1946 1,440	40 Dr.	1 56		33 6	32	ģ.	ŀ	~	Ad1	
Ot 713	30.	5.15, 3	3.5W 8	$8\frac{1}{2}$ mi SW, of Honeoye	Fred Giles	1,440	40 Dug	- 6		11 36	ı	Pleistocene till	9	:	Adl	Supplies 2 people and 20 livestock, Temp 51°F: 10/18/48.
	3	3.75,	3.3W 7	7 mi SW, of Honeoye	J. C. Magin	1,180	80 Dr.I	. 65		9 =	02	West Falls formation (Hatch and Rhine- street shale members)	۱ ټ	ω	r	
Ot 716	.00	0.3N, C	3.9W 2	0.3N, 0.9W $2\frac{1}{2}$ mi S. of Honeoye	J. Lambo	1948 8	820 Dug	9 12		12 60	42	Genesee formation	4	0	=	Supplies summer cottages,
		0.35, 0	0.9W 3	0.9W 3 mi S. of Honeoye	A. E. Bellard		840 Dr1	17		50 6	ŀ	Sonyea and Genesee formations	17.4	ŀ	;	
Ot 719	100,	1.25, 1.0W		4 mi S. of Honeoye	Wilber Clint		880 Drl	1 26		56 6	13	Sonyea formation	4	- <u>1</u>	·	Water contains hydrogen sulfide.
0t 720	3.	2.05, 3	3.34 5	5 mi S. of Honeoye	G. L. Alger		880 Drl	1 32		9	9	do.	9	0.	Ŧ	Water has relatively high iron content.
Ot 721	., .,	3.25, 0	0.5W 6	6 mi S. of Honeoye	Roy McMann		860 Drl	09 1		9	!	op ·	;	:	P	Supplies 2 people and 2 horses. Water is turbid.
Ot 722	100,	2.05, 1	1.74 5	5 mi S. of Honeoye	H, Hørt	1944 1,820	20 Dr.I	110		12 6	01	West Falls formation	45	5	Ŧ	
Ot 723	, 2	2.85, 1	1.4W 5	5 3/4 mi S. of Honeoye	F. W. Ross	096'1	50 Drl	89	~	3 6	2 ,	Wiscoy sandstone	15	;	Ŧ	
Ot 724	2	4.25, 2	2.1W 7	7th mi S. of Honeove	7::000	1 0/10	9	•								

Table 10. -- Records of selected wells and test holes in Ontario County

Par. 1.--Records of wells (Continued)

		Remarks	Supplies 3 people and 18 livestock.							Temp 50 ⁰ F, 10/20/48.							Temp 46 ⁹ F, 10/22/48.	Yielded 6 gpm at depth of 118 ft.	Supplies house and 40 livestock.	Water has relatively high iron content.	темр 52 ⁰ F, 10/23/48.	Well bottoms on bedrock. Goes dry in dry seasons. Temp 52°F, 10/23/48.	Goes dry in dry seasons.	Temp 54 ^O F, 10/26/48.	Temp 51 ⁰ F, 10/26/48.	Temp 52 ⁰ F, 10/26/48.	Supplies water used in operation of radio transmission tower,		(a). Bedrock is overlain by layer of gravel 22 ft thick.
		- 11								Temp	©					(e)	- Temp		Ad1 Supp								Cs Sup		(e)
9			. Adl	T		±	=	.	±	T	Ā	_	_	¥ 5	0 S	1.0	. 51	±		Э	± ¦	± 	± !	± ¦	±	± 	- F	-¥-	5
	(gallons	Į.	•	7		9	;	;	:	+		=		•	-		-	15	1		•		-						
Water level	land	(feet)	15	8	8.9 10/19/48	20	5	4	2	ŀ	82	=	80	ŀ	15	011	20	82	20	ı	2	9.2 10/23/48	17.0	20.3 10/26/48	16.8 10/26/48	25.5 10/26/48	150	9	10
M	Water-bearing	unit	Pleistocene till	Genesee formation	Pleistocene till	West Falls formation	• op	Pleistocene till	Pleistocene silt and clay	ŀ	West Falls formation	op	op	op.	•op	Sonyea formation	West Falls formation	do	op	Pleistocene sand and gravel	Pleistocene tili	do.	do.	do.	op	Pleistocene sand and gravel	West Falls formation	Pleistocene sand	West Falls formation
e t	to	(feet)	!	8	12	9	22	;	ı	ŀ	59	œ	7	2	15	00	6	91	80	ŀ	:	:	ł	1	ł	1	m	:	22
	of to casing Diameter bedrock	inches)	36	8/5 9	36	9	30	36	36	9	9	9	9	9	80	9	9	9	9	9	30	%	36	36	36	36	9	9	9
4	of asing D	feet) (30	6	=	15	22	œ	54	:	8	2	80	13	8	Q	01	17	<u>o</u>	%	20	12	11	22	22	27	4	99	23
		_ 8	30	호	12	59	22	œ	7,7	65	8	2	32	20	09	150	<u>8</u>	138	65	%	20	12	17	22	22	27	200	99	72
		ı	6ng	Drl	Dug	Dri	Dug	Dug	Dug	Dri	Dr1	Drl	0r1	Dri	Dri	Prl	Drl	Dr.1	Dri	Dri	Dng	6ng	6nq	Dug	bug	6ng	Dri	Dri	Dri
Altitude	sea	(feet) well	1,800	810		1,680	1,540	001,1	930	940	1,200	1,220	1,240	980	820	906	046	,120	,620	090	1,700	1,380	1,480	1,320	1,360	1,260	2,120	004,	,520
¥ ,	-	ı	:	846	1,420	-	-	-	1	;	;	-	-	;	1940	1948	1948 1,940	1948 2,120	1,620	1947 1,060	:	1	ī	1	1	;	1	1948 1,400	1948 1,520
		Owner or occupant	Lee Harris	Howard Decker	L. Marshall	G. L. Gugel	Andrew Linn	Addie Trickey	M. Kahn	L. Riefer	J. Barrett	M. Lincoln	N. Baeder	Widmer's Wine Cellars, Inc.	do.	Frank Saunders	J. Scott	Lee McCanne	William Schenk	R. Landman	H, Kidman	William Wooderd	E. A. Pestle	T. Atterbury	A. Warden	A. Fox	GLF Radio Station	R. McCormick	H. Weiss
	ition Related to nearby city	or village	8½ mi S. of Moneoye	3 mi S. of Honeoye	5½ mi SW. of Moneoye	6 mi SW. of Honeoye	7½ mi SW. of Honeoye	3½ mi SE, of Bristol Center	$2\frac{1}{4}$ mi S, of Bristol Center	3 mi S. of Bristol Center	7 mi N. of Naples	6½ miN. of Naples	3 mi NE, of Naples	l½ mi NE, of Naples	Naples	l½ mi NE. of Naples	5 mi N. of Naples	6 mi N. of Naples	4 mi N. of Naples	54 mi S. of Bristol Center	4 3/4 mi SE, of Bristol Center	iỷ mi SW, of Bristol Center	3속 mi W. of Bristol Center	4½ mi SW, of Bristol Center	64 mi SW, of Bristol Center	64 mi S. of Bristol Center	5 mi S. of Bristol Center	2 mi NW. of Naples	4 mi N. of Naples
	Location	es	2.6W	0.2W	M6.4	4.5W	4.6W	6.8E	5.0E	4.7	90°9	6.2E	6.1E	5.6E	4.8E	5.7E	5.2E	4.8E	5.6E	5.0E	6.15	4.16	2.3E	2.8E	3.2E	2.05, 4.3E	3.86	4.16	4.2E
		Coordinates	5.38,	0.1N,	0.85,	1.75,	3.55,	93, 16.05,	9J, 15.28,	9J, 15.98,	2.75,	3.05,	6.75,	7.85,	9.35,	8.05,	4.25,	3.55,	5.25,	1.05,	0.55,	9J, 13.8S,	9J, 13.55,	9J, 16.3S,	1.45,		0.55,	7.35,	5.38,
		ဒ	10.		<u>s</u>	10.	101	9,	٤,	9,	100.	<u>.</u>	<u>5</u>	<u>.</u>	<u>.</u>	<u>.</u>	10,	101	<u>5</u>	₹.	18	٤.			<u>.</u>	<u>s</u>	100,		
	3	number	Ot 725	Ot 726	Ot 727	Ot 729	Ot 730	Ot 733	Ot 734	Ot 735	Ot 737	Ot 739	Ot 741	Ot 742	Ot 743	Ot 744	Ot 746	Ot 747	Ot 749	Ot 751	Ot 753	Ot 754	Ot 756	Ot 758	Ot 759	0t 760	Ot 761	Ot 762	Ot 763

Table 10.--Records of selected wells and test holes in Ontario County
Part 1.--Records of wells (Continued)

			_						, <u>,</u>	s s								n by /48.						gpm eld.		
		Remarks	(b).	(b). Dry hole.		(6).	(a) (b).		Water-bearing formation is overlain by sandy clay.	(a). Supplies house and 100 livestock. Bedrock is overlain by gravel.				Bedrock overlain by layer of gravel 20 ft thick.		(b). Well has been pumped at 7 gpm for 8 hrs. Temp 480F, 11/13/48.		Well yields some flammable gas, Bedrock overlain by layer of gravel 22 ft thick, Temp 50°F, 11/15/48,		Well ended in quicksand.	(b). Temp 49 ^O F, 11/15/48.	Drilled for gas.	Do.	Drilled for supplemental supply. Has yielded 4 gpm for 96 hrs. Not used because of inadequate yield. Spring Ot 105p on property.	Temp 48 ⁰ F, 11/17/48.	
		Use	Ŧ	>	I	x	r	I	x	PA	I	±	I	I	I	I	x	z	I	>	r	0	0	5	¥	P
yield	٠,	minute)	37	ŀ	2	20	~	4	0	91	5	•	:	7	m	7	12	2	15	;	15	:	ı	4	2	7
Water level	land	(feet)	0-	ŀ	9	54	22	٣	30	50	35	21 20	91	\$	50	0,	04	12	9	:	30	~	ı	:	7	09
	Water-bearing	u	West Falls formation	:	Moscow and Ludlow- ville shales	Pleistocene sand and gravel	Skaneateles and Marcellus shales	Ludlowville and Skaneateles shales	Pleistocene sand and gravel	Onondaga limestone and Cobleskill dolomite	Pleistocene sand and gravel	West Falls formation (Gardeau shale, Grimes siltstone, and Hatch shale members)	Pleistocene till	West Falls formation	ŀ	Pleistocene sand and gravel	West Falls formation	West Falls formation (Match shale member)	Pleistocene sand and gravel	Pleistocene sand	Pleistocene sand and gravel	ŀ	ŀ	Marcellus shale and Onondaga limestone	West Falls formation	Pleistocene sand and gravel
Depth	to r bedrock	(feet)	۸ 09	191	15	;	8	4	!	6	1	70 70	1	20 W	ŀ	1	M 09	22 W	1	1	1	:	5	ž ¦	25 W	ŀ
	iameter b	inches)	9	9	9	9	9	9	9	9	9	9	36	9	9	œ	9	9	9	9	9	œ	5 5/8 to 44	9	9	9
Depth		(feet) (inches)	19	162	91	45	100	∞	95	6	1 51	12	32	88	:	108	62	23	81	205	1 +5	54	1,235	92	92	<u>\$</u>
Depth		-	108	215	78	54	130	25	95	9	154	122	32	충	8	108	82	37	22	205	45	200	1,235	205	73	<u>+</u> 00_
ē.	o of		DrJ	Drl	Dri	Pr.	7	170	170	12	Dri	וים	Dug	Drl	Drl	Dri	Dri	P-1	10	Dri	Dr1	Drl	Dr1	7	Dri	뒽
Altitude above		(feet)	1948 1,700	900	740	720	700	800	760	700	240	1934 1,810	-1,300	1947 1,620	1,780	1948 1,760	1947 1,460	1947 1,080	1,040	ž	1,360	780	720	880	1946 1,480	1,200
Year	com-	Ē	1948	1948	1948	1948	1948	1948	1948	1948	;	1934	1	1947	ł	1948	1947	1947	1948 1,040	1943	ł	1947	1935	1924	3461	:
		Owner or occupant	John DeClemente	C. D. Beard	R. F. Gentner	George Bahringer	W. Putnam	H. Bennett	Gordon Barry	Walter Barry	H. H. Mohr	Raymond F, Allen	H. Deuel	Edward Hipps	Marion Gleeson	M. Kale	Leroy Cool	E. Herrick	William Wohlschlegel	Foldine Fox	Ray Merrill	J. Recterwald	Granby and Hemenway Gas Co.	Village of Clifton Springs	Н. Н. Велл	E. C. Lyons
Location	Relate	ordinates	10J, 4.8S, 4.2E 4½ mi N. of Naples	9J, 8,5S, 1.0E 3½ mi SW. of Holcomb	9J, 14.6S, 11.1E $3rac{1}{4}$ mi NW. of Rushville	9J, 9.7S, 12.6E $2\frac{1}{2}$ mi SE, of Canandaigua	9J, 7.0S, 12.4E $1\frac{1}{4}$ mi NE. of Cenandaigua	9J, 6.7S, 11.7€ do.	9J, 2.5S, 4.4E 1 mi S, of Victor	9J, 2.1S, 4.5E 3/4 mi S. of Victor	9K, 0.7N, 10.9W Fishers	94, 16.45, 3.5E 3½ mi SW, of Bristol Center Raymond F. Allen	9J, 15.6S, 1.1E 2½ mi SE. of Honeoye	10J, 0.2S, 1.6E 4 mi SE. of Honeoye	10J, 3.8S, 2.6E 6 mi NM. of Naples	10J, 4.8S, 3.0E 5 miNM, of Naples	10J, 7.8S, 3.5E 2 mi NW. of Naples	10J, 9.0S, 3.3E 1½ mi W. of Naples	10J, 7.3S, 1.4E 4 mi NM. of Naples	10J, 10.2S, 4.6E 1 mi S. of Naples	10J, 11.9S, 2.0E 4 mi SW. of Naples	10J, 9.7S, 5.1E Naples	10J, 8.65, 6.0E do.	9K, 6.7S, 5.4E 4 ml S. of Clifton Springs	10J, 6.1S, 4.1E 3½ mi N. of Naples	10J, 11.3S, 3.0E 2 3/4 mi SW, of Naples
	Well	1	19/ 10	0t 765	0t 766	Ot 767	0t 768	ot 769	0t 770 g	Ot 771	0t 772 9	0t 773 9	0t 774 9	Ot 775 10	0t 776 10	0t 777 10	Ot 778 10	0t 779 10	Ot 780 10	Ot 781 10	Ot 782 10		01 784 10	0t 786 9		Ot 788 10

Table 10.--Records of selected wells and test holes in Ontario County
Part 1,--Records of wells (Continued)

	Remarks			Supplies 3 people and 15 livestock.		Supplies two summer houses.	Water contains hydrogen sulfide.). At another well on property, flammable gas reported at depth of 75 ft.	(a). Supplies 200 livestock, Dynamited at depth of 132 ft. Water contains hydrogen sulfide.					(b). Two other wells on property, 104 ft and 107 ft deep respectively, produce "black sulfur water" (see remarks for well 0t 219).				Well drilled inside dug well 38 ft deep.			Water contains hydrogen sulfide.			(b). Has been pumped at 20 gpm for 10 hrs.	Has been pumped at 275 gpm for μ hrs. Yielded some flammable gas when new. Water used to wash sand and gravel. Well 0t 1014 on property.	(a). Water used only in emergencies because hardness is 660 ppm. Wells Ot 224 and Ot 841 on property.
				Supp 1 ie		(a)	(a)	(a). repor	(a).			©	(e) (b).	(b). deep (see				Well da			Water			(b).	Has bee flamm	(a) is 66
	Use	±	x	PA	I	r	3	r	Ā	1	:	:	ı	:	Pq	Adl	ł	;	:	;	;	1	⋖	∢	<u>s</u>	<u>\$</u>
Yield	gallons per minute)	tλ	₩	ŀ	-	ŀ	7	;	3	27	:	9	1	'n	7	~	30	15	_	12	12	_	2	20	275	ı
_	surface (g	ı	80	21	8	:	:	ł	04	91	¥ ,	01	25	37	19	95	73	70	25	19	30	27	12	9 _	157.0 10/14/55	i
Wat	Water-bearing s unit (Pleistocene sand and gravel	Pleistocene sand	Pleistocene deposits	Wiscoy sandstone	Sonyea formation	Genesee formation	do.	Ludlowville and Skaneateles shales	Cemillus shale	Genesee formation, Tully limestone, and Moscow and Ludlowville shales	Onondaga limestone	Skaneateles and Marcellus shales	Camillus shale	Cobleskill dolomite and Bertie limestone	Pleistocene sand and gravel	• ор	do.	Genesee formation	Moscow shale	Genesee formation	Ludlowville and Skaneateles shales	Cobleskill dolomite	Skaneateles and Marcellus shales, and Onondaga limestone	Onondaga limestone, Cobleskill dolomite, and Bertie limestone	;
Depth	to bedrock (feet)	1	1	1	85 W	4	0	₹09	136 L	17 6	20 G	13	95	53	174 C	1	:	<u>\$</u>	3	ž o	9	-T +79	25 C	35 SI	170 0	:
_	Diameter be (inches)	۰	판	98	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	ω	:
Depth	of casing Di (feet) (i	52	27	25	82	ı	13	9	136	13	20	Ξ	99	æ	174	156	136	<u>\$</u>	45	0	04	45	56	36	170	ŀ
£	of well (feet) (55	27	25	110	30	₹	87	183	43	200	56	130	57	<u>8</u>	156	136	<u>\$</u>	147	147	45	150	7	175	270	:
	ype of e	r.	Ž	Dug	Dri	Dri	Dri	Pr.	10	Dri	Dri	011	Dri	Dri	Drl	P.	Pri	Dri	Drl	Drl	Dri	P-I	Dr1	<u>ا</u>	1.0	-
Al titude above	sea level (feet)		1,420	1,480	0,940	1,350	850	720	840	950	090	099	700	595	200	800	800	989	1,140	700	35	950	620	625	790	009
	ple ted	I	-	-	-	-	6461	1942	1948	1948	1948 1,060	1949	6461	6761	1949	6461	1949	1949	1 6461	1949	1949	646	1949	646	1955	1951
	Owner or occupant	L. Coons	Hyland Gillett	Charles Payne	Babbin and Harmon	L. C. Webster	Ear! Riefsteck	R. H. Hawks	Marion Case	F. Twitchell	Carl Gerhard	Walter Colf	Paul Walker	Ralph Sleight	Francis Barry	Christopher Hummel	Ernest Meyers	William English	Andrew Burt	Victor Logan	Horace Cooper	W. A. Gill	John Drost	Carl Trickler	John Syracusa	Village of
Location	Well Related to nearby city number Coordinates or village	10J, 10.8S, 5.9E 1	Ot 790 10J, 10.5S, 6.5E 2 mi SE of Naples	0t 791 10J, 9.6S, 2.1E 3 mi W. of Naples	0t 792 10J, 8.0S, 0.8E 4½ mi W. of Naples	0t 805 9J, 13.75, 7.7E 2 mi E. of Bristol Center	Ot 809 9J, 16.28, 10.5E 3½ mi W. of Rushville	Ot 813 10J, 3.15, 7.2E 6 3/4 mi N, of Naples	Ot 815 9J, 7.15, 9.6E 2½ ml NW. of Canandaigua	0t 818 9J, 1.15, 6.2E 1½ mi E. of Victor	Ot 819 9J, 9.7S, 5.0E 3 ml SE. of Holcomb	Ot 821 9K, 4.0S, 1.5E 3/4 mi S. of Shortsville	Ot 822 9K, 5.85, 0.7E 3½ mi NE. of Canandaigua	Ot 824 9K, 0.75, 5.7E 2 mi N. of Clifton Springs	Ot 825 9J, 1.35, 3.2E 1½ mi W. of Victor	Ot 826 9J, 2.55, 1.2E 3 3/4 mi SW. of Victor	0t 827 9J, 2.55, 1.1E do.	0t 828 9J, 1.2S, 3.5E 1 mi W. of Victor	Ot 829 9J, 11.0S, 8.3E 4 mi SW. of Canandaigua	0t 830 9J, 16.3S, 9.1E 8½ mi S. of Canandaigua	0t 831 9J, 13.8S, 5.6E 1 mi S. of Bristol Center	Ot 832 9J, 8.25, 6.8E 4½ mi W. of Cenandaigua	Ot 837 9J, 2.38, 12.2E 24 mi NW. of Shortsville	0t 838 9K, 6.95, 11.3E 3½ mi NM. of Geneva	Ot 839 9J, 2.35, 2.9E 2 ml SW, of Victor	0t 840 9J, 2.35, 12.9E I mi W. of Manchester

Table 10. -- Records of selected wells and test holes in Ontario County

					ively			more		ft se.				S S	s, c	=											
		Remarks	(a) (b). Finished with screen and gravel pack.	(a) (b). Finished with 5 ft length of screen. Has been pumped at 25 gpm for 14 hrs.	 Flows at 4 gpm. Supplies restaurant. Water has relatively high iron content and contains hydrogen sulfide. 		(b). Water contains hydrogen sulfide.	(b). Flows at rate of 10 gpm. Static water level is more than 6 ft above land surface. Water contains hydrogen sulfide.		Supplies restaurant. Was considered finished when 47 ft deep. Was deepened to 64 ft in 1951 after 2 years use.		Supplies gas station.		Drawdown 5 ft after pumping 650 gpm for 2 hrs. Supplies 5,000 to 10,000 gpd to trailer park.	(a), Originally supplied 10 to 15 trailers in Matteson's Trailer Park, Wells Ot 867 and Ot 1122 nearby.	Well abandoned because it produced "black sulfur water" (see remarks for Well Ot 219).	(a). Supplies trailer park, Another well of similar construction is located on property.	(a).	(b). Supplies gas station.	(6).	Contaminated by gasoline.	Do.	(a). Water has an unpleasant taste.				
	. v) Use	5	S	Csp	r	Ŧ	Ŧ	I	Csp	I	S	1	1	S	-	S	Ŧ	S	I	Ŧ	I	Š	I	Ŧ	∢	∢
1	(gallons	minute)	75	25	\$	9	04	20	2	2	30	9	9	200	0	ł	15+	15	4	15	4	4	ŀ	9		20	01
Water level	land	(feet)	ŀ	9	flows	84	٣	flows	0	13	6	53	61	15	12	ŀ	73	₹	133	٣	<u>+</u>	<u>*</u>	09	91	38	82	14
Wa	Water-bearing	unit	Pleistocene sand	Pleistocene sand and gravel	do.	do.	Skaneateles shale	Salina group	Cobleskill dolomite	Cobleskill dolomite and Bertie limestone	œ,	•op	Bertie limestone	Pleistocene sand and gravel	Camillus shale	do.	Pleistocene sand and gravel	Pleistocene sand	Pleistocene sand and gravel	do.	Bertie limestone	do.	Pleistocene sand and gravel	Salina group	Onondaga limestone	Onondaga limestone and Cobleskill dolomite	Onondaga limestone
4	to edrock	(feet)	27	1	1	ŀ	23	5+	32 (0	54	4	28 B	1	81	20	ī	96	;	1	15 8	∞	1	24 S	38	38	57 0
	Diameter bedrock	(inches)	8	ω	9	9	9	9	9	•	9	9	9	36	9	9	9	9	S	8 /5 5	9	9	:	9	9	9	9
Per th	_	(feet) (27	<u></u>	λζ.	102	53	47	32	0	7,7	œ	82	70	82	30	117	102	193	35	91	:	8	24	38	38	23
4		_ #	27	<u></u>	26	102	19	73	33	1 9	35	55	33	70	92	96	117	102	193	35	36	32	8	39	53	98	99
	of pe	> II	011	Dri	Drl	Drl	Drl	Dri	Dri	Dri	Dri	Drl	Dri	Dug	Dri	Dri	Drl	Drl	וים	Drl	170	Dri	Drl	Dri	Drl	i.	Ori
Altitude	sea	(feet)	009	830	009	290	770	570	630	620	910	630	019	570	280	280	710	960	710	950	580	280	910	260	700	710	730
4 0 2		ted	1961	1955	1955	1955	9561	1956	1950	1951	1953	1950	1	:	:	1950	1948	1955	1955	1955	1953	1954	1961	1952	1952	1950	1950
		Owner or occupant	Village of Manchester	Gorham Central School	Robert Montgomery	Gordon Phillips	Daniel Farchione	Robert O'Beirne	Everett Blazey	Di Pacific's Restaurant	Walter Mace	I. R. Shoemaker	Richard Goers	Osborn Munt	N. Y. State Thruway Authority	ò	Harry's Trailer Park	John Fowler	Mobile Gas Station	Grace Hughes	Clarence Ernissee	Alfred Tyson	Lifetime Distributors, Inc.	Fred Murray	Thomas Doran	Ralph Verhurst	Walter Barry
Cocation	elate	ı	l mi W. of Manchester	Gorham	2 mi NW. of Victor	3 mi NW. of Victor	2 mi NW, of Canandaigua	l½ mi NW, of Victor	1.75, 7.7€ 3½ mi €. of Victor	2 3/4 mi E. of Victor	2½ mi E. of Victor	2 3/4 mi E, of Victor	2 3/4 mi NE, of Victor	2 mi NE, of Victor	$2\frac{1}{2}$ mi NE, of Victor (Interchange No. 44)	do.	1.5N, 3.0E l½ mi NE, of Fishers	Fishers	$1rac{1}{2}$ mi NE, of Fishers	1.5E 3/4 mi S. of Fishers	l½ mi €. of Victor	do.	Fishers	5.4E Victor	I mi S. of Victor	•op	do.
670		Ì		5.6E	3.2E	2.4E	10.2E	3. IE	7.7E	7.46	7.2E	7.4E	7.4E	6.7E	6.8E	6.9E	3.0E	1.9£	3.0E		6.2E	6.1E	1.6E	5.4E	4.5E	4.6E	4.5E
		Coordinates	2.35, 12.9E	14.25,	0. IN,	0.4N, 2.4E	6.25, 10.2E	0.55,	1.75,	1.65,	1.45,	1.55,	0.55,	0.45,	0.55,	0.68,	1.5N,	0.7N,	1.5N,	0.0N,	1.75,	1.38,	0.7N,	1.45,	2.15,	2.15,	2.25,
		ပ္သိ	3.	9K,	92,	9,	£,	۶.	3,	3,	3,	۶.	з. С	3.	<u>ع</u> ٥	۶, 0		9,	٤,	9,	۶,	۶.	g,	۶,	8,	9,	۶.
	Well	number	0t 84:1	0t 842	0t 844	Ot 845	0t 846	Ot 847	Ot 860	0t 861	0t 862	Ot 863	0t 864	0t 865	Ot 866	Ot 867	0t 868	0t 869	Ot 870	0t 871	Ot 872	Ot 873	Ot 874	Ot 875	Ot 876	Ot 877	Ot 878

Table 10. -- Records of selected wells and test holes in Ontario County

										ith slotted casing. used because of	umping 125 gpm for 36 hrs. -inch screen. A test well very hard water.				ep.					ep.		pumping 30 gpm for 8 hrs. uality. U. S. Geol. Survey te. Temp 50°F, 9/1/53.				
	Remarks	(6).			(b).	(6).		(b).		Supplies 500 pupils. Finished with slotted casing. Another well on property is unused because of low yield.	(a) (b), Drawdown 21 ft after pumping 125 gpm for 36 hrs, Finished with 5 ft length of 8-inch screen. A test well drilled 0,2 mi to west yielded very hard water.	Supplies trailer park.			Drilled inside dug well 22 ft deep.					Drilled inside dug well 28 ft deep.		(a) (b). Drawdown 124 ft after pumping 30 gpm for 8 hrs. Water unused because of poor quality. U. S. Geol. Survey observation well 5/25/55 to date. Temp 50°F, 9/1/53.	(b).			
	Use	 	:	ŀ	;	ł	ŀ	∢	1	ప	x	S	ŀ	I	ł	!	ŀ	;	1	1	;	0	;	Ŧ	ŀ	ı
Yield	(gallons per minute)	_	33	2	~	7	15	0	7	8	125	20	0	30	5	15	5	7	6	2	9	30	0	9	4	2
Š.	land (g surface (feet) r		30	09	85	%	22	ŀ	25	~	‡	<u> </u>	7	9	91	₹	21	:	15	1	80	+8.46 1/ 1/56	12	10	10	91
We	Water-bearing unit	es tone kill	Pleistocene sand and gravel	do.	Onondaga limestone	Pleistocene deposits	Onondaga limestone	Marcellus shale and Onondaga limestone	Skaneateles shale	Pleistocene sand	Pleistocene sand and gravel	Cobleskill dolomite and Bertie limestone	do.	Cobleskill dolomite	Camillus shale	Cobleskill dolomite and Bertie limestone	do.	. op	Cobleskill dolomite	Onondaga limestone	Pleistocene deposits	Camillus shale	Onondaga limestone	do.	do.	Bertie limestone
Depth	to bedrock (feet)	₹	1	!	87.	;	38	75	99	1	:	9	12	91	34	7	15	12	30	35	ł	=	15	21	0	5
	of casing Diameter by (feet) (inches)	1	9	9	9	9	9	9	9	ŀ	12	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Depth	of casing (feet)	ಪೆ	85	æ	ŀ	ŀ	38	75	99	27	3	9	13	91	34	~	15	13	30	35	31	=	15	21	6	ŀ
Depth		158	85	æ	175	88	‡	145	125	27	£3	.	20	52	89	87	74	20	43	745	31	139	<u>.</u>	36	53	30
	Type Meli	- 10	Dri	Drl	Drl	Dri	Drl	Drl	Drl	וים	L G	Dri	Drl	Drl	Dri	1.0	Drl	Drj	Dri	Dri	Dri	Dri	Drl	Dri	Dri	1.1
Altitude above	sea level (feet)	820	770	820	805	700	989	740	830	825	90 4	620	630	610	570	620	620	620	620	989	989	555	099	099	049	900
	ple ted	1954	1952	1952	1954	1953	1961	1952	1953	6761	1953	1955	1955	1955	:	1952	1950	1952	1950	1951	1952	1953	946	1950	1961	1961
	Owner or occupant	Chaster Mapes	Albert Green	Joseph Calcagno	C. K. Southgate	Harold Pierce	John Racinowski	Harold Purdy	William Parker and Erwin Hallock	Moneoye Central School	Honeoye Water District	J. R. Shoemaker	Leslie Case	Fred Northrup	John Conover	Ralph Richardson	Fred Clark	I. B. Estes	Carlton Stone	Thomas Dawson	Floyd Wells	N. Y. State Thrumay Authority	Alton Smith	Lawrence Foster	Harold Button	N. B. Dunning
Location	Related to nearby city or village	1. mi S.	ly mi SW, of Victor	l∮mi S. of Victor	2 mi S. of Victor	l½ mi SE, of Victor	2 mi SE, of Victor	5t mi NW. of Canandaigue	4 mi NW. of Canandaigua	3/4 mi E. of Honeoye	Honeoye	2½ mi €, of Victor	2 3/4 mi E. of Victor	2 mi E, of Victor	do.	2½ mi €, of Victor	do.	do.	do.	5½ mi NW. of Canandaigua	do.	½ mi N. of Manchester (Interchange No. 43)	5 mi N. of Cenandaigue	do.	5½ mi N. of Canandaigua	6 mi N. of Canandaigua
👸	ies Se	4.5E	34.4	4.6E	4.5E	5.2E	6.2E	7.1E	7.5E	0.3W	0.6W	7.3E	7.46	6.7E	6.4E	6.8E	6.7E	7.2E	7.2E	8,2E	8. IE	1.06	9.3E	9.3€	9.4€	1.65. 11.4E
	Coordinates	2.68,	2.65,	2.65,	3.35,	2.65,	2.55,	4.35,	6.75,	3.0N,	10J, 3.0N,	1,68,	1.65,	1.75,	1.15,	1.75,	1.75,	1.75,	1.75,	3.25,	3.15,	1.75,	2.95,	2.85,	2.55,	
	Š	۶,	3,	8	£	۶,	8,	٤,	٤,	.5	3	99.	۶.	97,	90,	95,	9,	£.	3,	97,	9,	ж,	ζ,	99,	8,	3.
	Well number	0t 880	0t 881	Ot 882	Ot 883	0t 884	0t 885	0t 886	0t 887	0t 888	0t 889	0t 890	Ot 891	0t 892	0t 893	0t 894	0t 895	0t 896	0t 897	0t 898	0t 899	0t 900	0t 901	0t 902	Ot 903	0¢ 30 ¢

Table 10.--Records of selected wells and test holes in Ontario County

	Remarks	Drilled inside dug well 19 ft deep.				Drilled inside dug well 16 ft deep. Water contains hydrogen sulfide.	Well was considered finished at depth of 45 ft in 1948. Was deepened to 70 ft in 1950.	(b). Water contains hydrogen sulfide.		 Well was considered finished and used in 1948 when at depth of 93 ft, Deepened to 123 ft in 1952. Mater contains hydrogen sulfide. 				Water contains hydrogen sulfide.	Do.			. Water has relatively high iron content.			Water contains hydrogen sulfide.	Do.				Yields salty water.	Dry hole. Casing removed and well destroyed.		Water contains hydrogen sulfide.	
	Use	н .			- (b).	10	- Ke	<u>a</u>		3	•	;		žež.	;	;		(<u>e</u>)		;			I		- (e)	; -			- F	(e) -
2		•	∢	∢		'			Ξ	=			I			-		∢ .		'	>	1	A	1	•	'	5			
e) Yield	(gallons per minute)	1	12	12	01	3/4	4	_	7	5	2/3	7	8	01	7	-	4	0	9	7	ď	4	4	-	-	6	:	:	33	9
Water level below	land surface (feet)	20	8	63	0	<u>‡</u>	13	15	90	113 and	7	10	∞	Ť	1	80	:	flows	1	:	13½	12	0	1	0	91	:	0	flows	23
	Water-bearing unit	Bertie limestone	Salina group	Onondaga limestone	Pleistocene sand	Skaneateles and Marcellus shales	do.	o	ę,	Skaneateles and Marcellus shales, and Onondaga limestone	Pleistocene deposits	Skaneateles shale	Ludlowville and Skaneateles shales	do.	Skaneateles shale	Pleistocene deposits	Skaneateles shale	Pleistocene sand and gravel	Pleistocene sand	Pleistocene deposits	ę,	Genesee formation	Ludiowville shale	ę,	. op	ę,	Pleistocene deposits	Pleistocene sand and gravel	. 60	Onondage limestone
Depth	to bedrock (feet)		92	38	1	32	ŀ	37	28	17	1	69	4	9	82	;	2	28	;	!	:	9	98	12	22	9	1	1	ì	63
	Diameter b (inches)	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	1	9	9	9	9	9	9	9	9
Depth	of casing D (feet) (25	92	38	62	32	;	38	87	ı	23	i	4	2	:	32	;	88	2	\$	35	:	87	22		09	105	75	56	63
ء	of Well c (feet) (37	09	<u>\$</u>	62	76	02	81.	611	123	23	ŧ	88	22	25	35	30	88	20	đ	35	;	130	63	20	95	501	75	11	67
	Type of of	1	Dri	Dri	Dri	Dr.1	Dri	Drl	L L	L G	Drl	Drj	1.0	Drl	Dri	Dr1	Drl	Dri	Drl	Drl	Dri	Dri	Drl	Drl	Dri	Drl	Drl	Drl	Prl	Drl
ĕ	sea level (feet)	909	900	680	780	0//	260	780	770	- 0 1 /2	800	810	780	780	170	800	770	880	046	076	1 096	- 096	1 088	₽ ₽	076	920	780	800	1 088	720 [
	com- ple-	a a	1954	1950	1952	1961	1950	1955	1	1952	1954	1961	1954	1953	1954	1952	1953	1952	1951	1951	1961	1961	1950	1952	1952	1951	1950	1951	1950	1951
	Owner or occupant	H. J. Knowlton	Paul Goodenow	Camiel Mortier	Frank Schrader	Benjamin Emerson	Daniel Olsson	Ernest Johnson	Herbert Nash	Stewart North	Charles Figenscher	Kenneth Bundy	Roy Poole	Marry Bennett	James Murphy	Marion Case	Albert Hicks	Grover Murray	Herbert Rogers	Maud Mansfield	James Thompson	Robert McKinney	Lewis Adams	Carl Pickering	Karl Clutter	D. B. Hudson	Paul Birdsell	Samuel Freeman	W. A. Luke	Arthur Brown
Location	Related to nearby city or village	6½ mi N.	,4E do.	9J, 4.2S, 11.3E 3½ mi N. of Canandaigue	9J, 5.25, 11.0E 2½ mi N. of Canandaigua	.0£ do.	$0.3E$ $2\frac{1}{2}$ mi N. of Cenandaigue	.0E 2½ mi NW. of Canandaigua	9.9E 3 mi NW. of Canandaigua	9.6E $3\frac{1}{2}$ mi NM, of Canandaigua	6.35, 11.0E mi N. of Canandaigua	JE do.	7.15, 12.0E I mi NE. of Canandaigua	.0E do.	. 2E do.	9J, 7.0S, 9.4E 2 mi NW. of Canandaigue	6.85, 12.2E $1\frac{1}{2}$ mi NE. of Canandaigua	5.7E 2½ mi SE, of Holcomb	5.5E Bristol Center	5.5E do.	5.5E do.	5.5E do.	5.1E 3/4 mi SE, of Holcomb	4.7E 1½ mi SE, of Holcomb	4.6E 1½ mi S. of Holcomb	4.5E ImiS. of Holcomb	5.2E 2 mi NE, of Holcomb	4.9E 1½ mi NE, of Holcomb	9J, 6.6S, 3.2E 1 mi W. of Holcomb	2.95, 3.5E 2 mi SW. of Victor
	Coordinates	38, 11	25, 11	25, 11	25, 11	5.3S, 11.0E	5.35, 10.3E	5.38, 10.0E	5.25, 9	4.55, 9	38, 11	6.25, 11.1E	18, 12	7.15, 12.0E	6.8S, 12.2E	os, 9	85, 12	8.55, 5	45. 5				8.15, 5	8.15, 4	8.05, 4	7.75, 4	5.05, 5	5.75, 4	68, 3	98, 3
	Coord	9J, 1.3S, 11.4E	9J, 1.2S, 11.4E	9, 4.	9, 5.	9, 5.	93, 5.	91, 5.	9J, 5.	9J., 4.	93, 6.	99, 6.	93, 7.	9J, 7.	93, 6.	99, 7.	۶. 6.	9, 8.	91, 13.45,	90, 13.45,	91, 13.45,	9J, 13.38,	93, 8.	9, 8,	9, 8	93, 7.	93, 5.	93, 5.	9, 6.	91, 2.
	Well number		0t 907	0t 908	06 30	0t 910	0t 911	0t 912	0t 913	0t 914	0t 915	0t 916	0t 917	0t 918	0t 919	Ot 920	0t 921	0t 922	0t 923	0t 924	0t 925	0t 926	Ot 927	0t 928	0t 929	0t 930	0t 931	0t 932	Ot 933	0£ 934

Table 10.--Records of selected wells and test holes in Ontario County

Location	
Related to nearby city Owner or occupant ted (feet) well (feet)	ple= level of Owner or occupant ted (feet) well
3½ mi SW. of Victor Dennis Donovan 1949 870 Drl 181	Dennis Donovan 1949 870 Drl
2½ mi SW, of Victor Warren Dillman 1949 720 Dri 81	Werren Dillman 1949 720 Dri
4 mi SW, of Victor T. W. Braun 1952 980 Drl 240	T. W. Braun 1952 980 Drl
9.75, 12.7E 2½ mi SE, of Canandaigua Maynard Cooper 1952 700 Dri	Maynard Cooper 1952 700
do. John Hook 1952 700 Dri	1952 700
9J, 10.35, 12.6E 3 mi SE. of Canandaigua John Rankin 1953 710 Drl	John Rankin 1953 710
do. The Akers 1952 700 Dri	1952 700
do. Joseph Youst 1953 710 Drl	1953 710
5½ mi SE, of Canandaigua Roy Frazer 1954 860 Drl	Roy Frazer 1954 860
5½ mi SE. of Canandaigua R. J. Johnson 1952 860 Drl	R. J. Johnson 1952 860
3½ mi MM, of Rushville Ralph Ruff 1953 710 Drl	Reiph Ruff 1953 710
6½ mi MM. of Naples William Meyers 840 Drl	William Meyers 840
8½ mi NE. of Naples C. f. Burnett, Jr. 1954 700 Drl	C. F. Burnett, Jr. 1954 700
9½ mi S. of Canandaigua Edward Watson 1950 780 Drl	Edward Watson 1950 780
9 mi S. of Cenendeigua Herold Johnson 1950 1,160 Drl	Harold Johnson 1950 1,160
do. C. W. Middlebrook 1945±1,180 Drl	1945±1,180
$8\frac{1}{2}$ mis, of Canandaigua Giadys Welch 1950 880 Drl	Gladys Welch 1950 880
8 mi S. of Cenendaigua Stuart Middlebrook 1953 1,110 Drl	Stuart Middlebrook 1953 1,110
8.7E 6 mi SW, of Canandaigue Karl Manz 1,040 Drl	Karl Manz 1,040
8.65, 10.4E 14 mi SW. of Canandaigue R. D. Jenkins 1952 845 Dr1	R. D. Jenkins 1952 845
5 mi SW. of Canandaigua Fred Hilliker 1953 1,110 Orl	Fred Hilliker 1953 1,110
2 mi NE. of Bristol Center Frank Connelly 1951 1,100 Drl	Frank Connelly 1951 1,100
5½ mi SW. of Canandaigua John Spittle 1952 1,040 Drl	John Spittle 1952 1,040
do, Charles Yarger 1952 1,030 Drl	1952 1,030
do. Bernard Van Troost 1950 1,010 Dri	010,1 0261
2 mi E. of Bristol Center Henry Brockmyre 1950 1,310 Drl	Henry Brockmyre 1950 1,310
5½ mi SW. of Canandaigua Lyndon Quayle 1,010 Drl	Lyndon Quayle 1,010

Table 10. -- Records of selected wells and test holes in Ontario County

							Altitude						Water level			
			roc:	Location	≻ 0		above sea Tv	Depth Type of	th Depth of		Depth		below	Yield		
Well number	8	Coordinates	es	Related to nearby city or village	Owner or occupant to		level of (feet) well		_	g Diameter bedrock (inches) (feet)	r bedroe) (feet	Water-bearing unit	surface (feet)	per minute)	Use	Remarks
Ot 963	93, 1	9J, 12.5S,	8.8E	5½ mi SW. of Canandaigua	ı	1949 1,020	·	ł	1+1	9	35	enesee formation	13	7	l	Temp 480F, Nov. 1949.
0t 964	97,	6.05,	2.6E	6.05, 2.6E $l\frac{1}{2}$ mi NW. of Holcomb	W. R. Stewart	6	930 Dug		9 9	36	ŀ	Pleistocene deposits	4.12 5/12/55	:	I	Water has relatively high iron content. Temp 4,70f, 5/12/55.
Ot 965	, ,	6.25, 12.2E	12.2E	3½ mi NW. of Geneva	Harry Fields	1949 5	540 Dr1	1 37	7 37	9	1	do.	2	7	x	(b).
Ot 966	, ,	8.25, 11.3E	11.3E	2½ mi NW. of Geneva	James White	9 6461	680 Drl	- -	9/ 4	9	99	Skaneateles shale	20	7	±	(b). Water contains hydrogen sulfide.
Ot 967	¥.	8.45,	11.9E	8.45, 11.9E 2 mi NW. of Geneva	Albert Sanford	9 8561	660 Drl	1 52	2 52	9	ł	Pleistocene deposits	12	2	ł	
0t 968	91,	4.65,	0.3E	4½ mi N. of Geneva	Nathan Oaks	1953 4	460 Dr1	99 -	99 9	9	:	Pleistocene sand and gravel	34	20	I	(b), Drilled inside dug well 18 ft deep.
01 969	¥,	4.8S, 12.1E	12.1E	3 mi SE, of Phelps	Frank Oaks 19	1949	500 Dr1	1 50	41. 0	9	12	Onondaga limestone and Cobleskill dolomite	=	-	Ŧ	
Ot 970	¥.	3.75, 12.16	12.16	2½ mi SE, of Phelps	Lester Green 19	1953 4	460 Dr!	69 -	69 6	9	ł	Pleistocene sand and gravel	30	15	Csp	(b). Supplies restaurant.
Ot 971	٩ 	3.75.	0.1E	$5\frac{1}{2}$ mi N, of Geneva	John W. Gifford	1953 4	450 Dr1	64 1	64 6	9	1	Pleistocene deposits	!	;	:	Drilled inside dug well 35 ft deep.
Ot 972	Эг,	1.55,	1.2E	1.55, 1.2E 7½ mi N. of Geneva	Albert Oaks 19	# 1 561	460 Dr1	1 40	0 29	9	27	Camillus shale	30	0	r	(6).
0t 973	Я,	4.25, 1.8E	1.86	5 mi N. of Geneva	Harold Osborne	1954 51	540 Drl	1 120	911	9	115	Cobleskill dolomite	73	2	r	(6).
0t 974	٩٤, ٢	4.38,	1.9£	do.	Raymond Hurlburt 19	1951 5	535 Dr1	1 170	0 125	9	123	Cobleskill dolomite and Salina group	8	-	I	(b). Water below 160 ft contains hydrogen sulfide.
0t 976	я,	5.68,	1.2E	5.65, 1.2E 3½ mi N. of Geneva	Clara M. Skinner 19	1953 4	470 Dri	1 75	5 75	9	:	Pleistocene sand	15	70	r	(b).
Ot 977	ж,	2.35,	12.16	2.3S, 12.1E 2½ mi E. of Phelps	Lyman Fisher 19	15 6461	500 Drl	1 43		9	1	ę,	01	20	٧	(b).
Ot 978	ж, ,	2.35,	12.5E	2.3S, 12.5E 3 mi E. of Phelps	William Fisher 19	1949 51	500 Drl	- -25	1	9	:	ę,	20	70	٧	(6).
0t 979	¥.	1.15,	8.4€	2½ mi NW. of Phelps	Martha Fridley 19	1952 50	500 Drl	1 35	5 30	9	9	Salina group	15	23	I	
0t 980	¥,	1.25,	7.8E	do.	Samuel Walter	1953 5	530 Drl	1 47	7 29	9	7	Cobleskill dolomite and Bertie limestone	28	70	I	
0t 981	, ,	2.75,	7.0E	2.75, 7.0E I mi E. of Clifton Springs	Charles MacComber 19	1955 6	630 Dr1	1,48		9	6	Onondaga limestone	80	4	ŀ	
Ot 982	¥,	2.75,	7.5E	2.75, 7.5E 1½ mi E. of Clifton Springs	Hutchinson 19	1953 59	590 Drl	1 42	!	9	35	do.	15	70	r	(6).
0t 983	, ¥	4.4s,	7.8E	2½ mi SW. of Phelps	B. F. Butler 19	1954 68	680 Drl	1 85	15	9	∞	Marcellus shale and Onondaga limestone	33	2/3	r	
0t 984	¥,	4.2S, 10.9E	10.9E	1 3/4 mi SE, of Phelps	George Madagan 19	1948‡ 6	620 Dr1	9/1 1	37	9	33	Onondaga limestone, Cobleskill dolomite, and Bertie limestone	001	-	∢	
Ot 985	٩,	5.25,	0, 1E	4 mi N. of Geneva	Norman Walker	34 6461	1480 Dr.1	1 87	7 87	9	ł	Pleistocene sand and gravel	20	9	r	(6).
0t 986	Я,	6.75,	0.2E	2½ mi NW. of Geneva	Vincent Cardinele 19	1954 50	500 Drl	۱ 82	81	9	8	Onondaga limestone	30	2	I	(6).
Ot 987	٩,	7.85,		0.3E 1½ mi NW. of Geneva	W. R. Seymour 19	1953 50	500 Dr1	- 8	9 9	9	ŀ	do.	25	4	x	
Ot 988	9. 3.	3.88,	8.7E	4½ mi NW. of Canandaigua	Lee Fuller 19	1952 70	700 Dr.1	1 52	25	9	25	Marcellus shale and Onondaga limestone	7	3/4	:	(6).
01 989	ж,	5.98,	1.0E	5.95, 1.0E 3¼ mi NE. of Canandaigue	Irving Jones	1952 71	710 Dr1	1 20	05	9	:	Pleistocene sand and gravel	7	12	I	

Table 10, --Records of selected wells and test holes in Ontario County

Parinute 1848 Remarks Remarks	1						A	Al ti tude		1				Wate	Water level	;		
				Locat	- Fo						r pth ř		Depth to		land land	gallons		
5. 5. 5. 6. 6. 5. 14 mill of the control of t		2003	dinates	9	Related to nearby city or village			evel feet) v			sing Di eet) (i	nches)	edrock (feet)	Water-bearing unit	urface feet)	minute)	B	Remarks
94, 3, 3, 6, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10,	1	9K, 5	.75, 0	0.8E	3뉴 mi NE. of Canandaigua		Į.		1	24		9		kaneateles shale	01	5	:	
94, 5, 18, 11, 11, 12, 11, 11, 13, 15, 15, 11, 11, 15, 15, 11, 11, 11, 11	•			0.1E	l∮mi W. of Shortsville	James Masyin				56	;	9		leistocene sand and gravel	0	0	;	(b).
94, 355, 400 3 km st. of Special Spirited and spirited an	-			2.1E	3½ mi N. of Shortsville	Harold Sprague	1951			20	;	9		amillus shale	12	20	i	(6).
94, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,				1.3E	I mi S. of Shortsville	Roland Nudd	1951			0/	2 5	9		hondaga limestone	;	~	∢	(b).
94, 3.85, 4.1				3.3E	2 mi SE, of Shortsville	Harold Lytle	1954			30	;	9	54	do.	15	0	:	
94, 3.84, 4,16				4°0E	2½ mi SW, of Clifton Springs	G. F. DeSchepper	1952			25	9	9	6	ę,	:	9	:	Water contains hydrogen sulfide.
94. 3.54, 4.66				4.1E	*op	Willard Deal	1950			22	01	9	~	do.	Ξ	01	I	
94, 3.54, 5.06 miles, of Clifton Springs Language 194, 2.54 miles, of Clifton Miles, of Clifto				4.6E	l½ mi SW, of Clifton Springs	Hanry Converse	1951			20	9	9	. ‡	• op	01	0.	!	
1. 1. 1. 1. 1. 1. 1. 1.				5.0€	I mi SW. of Clifton Springs		1952			32	ł	9	2	do.	20	15	1	Well was considered finished at a depth of 18 ft in May 1952. Deepened to 32 ft in Sept. 1952.
5.85 0.8E 34 in KE, of Cananda juan Methodist Personne 1854 700 Drive 60 61 Stanmate last shale 20 5 H (b). Well Off 1002 also on property. 6.05, 0.5E -0.5E				4.5E	lỷ mi W. of Clifton Springs		1949			3	E.	9		Pleistocene deposits, Onondaga limestone, and Cobleskill dolomi	œ <u>a</u>	0	∢	(6).
94, 6.05, 0.55 3.41 K. of Canandaigues decreted by the control of				0.8E	3½ mi NE. of Canandaigua	Methodist Parsonage Hamlet of Chapin	1954			87	:	9		Skaneateles and Marcellus shales	20	•	1	
94, 6.05, 0.55				0.5E	3 mi NE, of Canandaigua	Harold Burgess	1949			9	147	9		Skaneateles shale	30	2	I	
94, 5.95, 2.2E 3 mi KE, of Shortsville Peter Fredericks 194, 770 770 0 mile 6 95 do. 10 3 Mater contains shale 20 Mater contains shale 9 6 55 do. 11 18 9 9 20 11 18 9 9 9 11 40 11 18 9 9 9 11 40 19 6 6 60 9 9 11 18 9 60 9 60 9 60 9 60 9 60 9 60 9				0.5E		do.	1953		Jr.1	94	94	9		Pleistocene sand	41		ł	(b).
9k, 6.0s, 3.4E 5 mill NE. of Canandaigua Aceleart Schutt 195 790 701 6 6 6 6 6 6 6 6 6 6 6 6 6 9				2.2E	3 mi SE, of Shortsville	Peter Fredericks	1961		9r1	58	61	9		Skaneateles shale	70	15	1	
94, 7.65, 0.9E 24 mi E. of Canandaigue Raymond Coom 1950 840 pr. 1 40 19 6 6 86 do. 11 18 00 95, 7.65, 0.9E 24 mi E. of Canandaigue Robert Pollock 1953 800 pr. 1 172 6 56 do. 2 20 20 0 brilled insidequate. 96, 7.65, 0.9E 24 mi E. of Canandaigue Robert Pollock 1953 800 pr. 1 172 6 107 do. 2 2 1 0 Vield insidequate. 97, 8.35, 1.1E 14 mi W. of Canandaigue Robert Pollock 1953 800 pr. 1 172 6 107 do. 2 2 1 0 Vield insidequate. 98, 8.35, 1.1E 14 mi W. of Fishers Canandaigue Robert Pollock 1953 800 pr. 1 172 6 6 107 do. 2 2 1 0 Vield insidequate. 99, 1.6M, 1.4E 3/4 mi W. of Fishers Canandaigue Robert Pollock 1954 810 pr. 1 172 6 6 107 do. 2 2 1 0 Vield insidequate. 99, 1.6M, 1.4E 3/4 mi W. of Fishers Canandaigue Robert Pollock 1954 810 pr. 1 172 6 6 107 do. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			, os,	3.4E	5½ mi NE. of Canandaigua	Adelbert Schutt	1952		116	62	ŀ	9	55	do.	9	m	ł	Water contains hydrogen sulfide.
94, 7.65, 0.9E 2½ mi E. of Canandajus Robert Pollock 1953 800 Dr1 172 6 107 do. 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			, 0S.	3.46	5 mi E, of Canandaigua	Raymond Coon	1950		116	04	61	9	œ	do.	=	81	;	Do.
91, 8.25, 7.1E 4½ mi N. of Fishers Robert Pollock 1953 80 Dr. 172 6 107 do. 25 1 0 Yield inadequate. 91, 8.25, 7.1E 4½ mi N. of Fishers Harry Clauss 1951 95 0-1 185 6 107 do. 85 ½ 65 (b). Supplies grocery store. 94, 0.34, 5.04 ½ mi N. of Fishers C. H. Strong, Jr. 680 0-1 156 6 Pleistocene deposits 40 3 10 Well inot screened. Vield inadequate. 94, 2.1N, 1.5E 1½ mi N. of Fishers C. H. Strong, Jr. 680 0-1 150 6 Pleistocene sand 0 Well inot screened. Vield inadequate. 94, 2.1N, 1.5B, 1.4M, 3.5E 1½ mi N. of Victor Raymond Romeiser 1952 77 150 6 do.					2½ mi E. of Canandaigua	Howard Samuels	1954		Dri	95	:	9	95	do.	59	20	>	Drilled inside well 33 ft deep. Abandoned because of pollution.
94, 8.25, 7.1E 4½ mi W. of Canandaigua Harry Clauss 1951 950 Dr1 185 6 107 do. 85 ½ 65 (b). Supplies grocery store. 95, 0.3N, 3.9E 2 mi MV. of Victor Hoadley Sand and Gravel Co., 11c. 96, 0.3N, 3.9E 2 mi MV. of Victor Hoadley Sand and Gravel Co., 11c. 97, 0.3N, 2.3E, 2.1E 2 3/4 mi SW. of Victor Hoadley Sand and Gravel Co., 11c. 98, 0.3S, 2.1E 2 3/4 mi SW. of Victor Hoadley Sand and Gravel Co., 11c. 99, 1.5M, 1.5E 1½ mi N. of Fishers (C. H. Strong) Jr 680 Dr1 326 6 Pleistocene deposits 40 3 10 Well not screened. Victor Manneth Bliss 1954 790 Dr1 150 6 Pleistocene sand 10 Well not screened. Victor Manneth Bliss 1954 810 Dr1 216 200± 6 to 4 10 Dr2 20 5 10 Vield inadequate. Penetrated bedrock and Supplies domestic requirements. 91, 2.3S, 2.1E 2 3/4 mi SW. of Victor Hoadley Sand and Gravel Co., 11c.					3 mi E, of Canandaigua	Robert Pollock	1953			172	:	9	œ	ģ	25	-	>	Yield inadequate.
94, 0.3M, 5.0W 3½ mi NE. of Victor Peter Yahn 1950 600 Dr1 62 62 6 Pleistocene deposits 40 3 Mell not screened. Yield inadequate. \$ 91, 2.1N, 1.5E 1½ mi N. of Fishers Eugene Reich 1954 740 Dr1 48 48 6 do 0			8.25.	7.1E	4 mi W. of Canandaigus	Harry Clauss	1961			185	;	9	107	• op	85	- α	S	
91, 2.1N, 1.5E 1½ mi N. of Fishers C. H. Strong, Jr 680 Drl 326 6 Pleistocene sand 0 Well not screened. Vield inadequate. Slope ty, supplies domestic requirements. 91, 1.6N, 1.4E 3/4 mi N. of Fishers Eugene Reich 1954 740 Drl 48 48 6 do. 20 5 Supplies domestic requirements. 92, 1.4N, 3.5E 3 mi NN, of Victor Kanneth Bliss 1954 810 Drl 216 2001 6 to 4			0.3N	. o.	34 mi NE. of Victor	Peter Yahn	1950		Drl	62	62	9		Pleistocene deposits	04	~	:	
94, 1.6N, 1.4E 3/4 mi N. of Fishers Eugene Reich 1952 575 Dr1 150 150 6 do do u Well not screened. Dry hole. Spring On supplies domestic requirements. 94, 1.4N, 3.5E 3 mi NV. of Victor Kanneth Bliss 1954 740 Dr1 48 48 6 do. 20 5 U Yield inadequate. Penetrated bedrock a by, 0.3N, 3.9E 2 mi NV. of Victor Kanneth Bliss 1954 740 Dr1 216 200 [±] 6 to 4 U Yield inadequate. Penetrated bedrock a betained from nearby gravel-packed we obtained from nearby gravel-packed we betained from nearby gravel first drilled. 94, 2.3S, 2.1E 2 3/4 mi SN. of Victor Hoadley Sand and 1954 790 Dr1 286 254 12 254 Ohondaga limestone 300 Ips Has been upped at 300 gpm for 48 hrs. And gravel. Because water requirement used water requirement used water requirement used water registed through two setts requirements.					l½ mi N. of Fishers	C. H. Strong, Jr.	:			326	326	9		Pleistocene sand	1	1	¬	Well not screened. Yield inadequate. Spring Ot $445p$, also on property, supplies domestic requirements.
93, 1.4M, 3.5E 3 mi NM, of Victor Ranneth Bilss 1954 740 Drl 148 48 6 do. 20 5 94, 0.3M, 3.9E 2 mi NM, of Victor Kanneth Bilss 1954 810 Drl 216 200 [±] 6 to 4 U Vield inadequate. Penetrated bedrock a betained from nearby gravel-packed we obtained from nearby gravel-packed we obtained from nearby gravel packed we near requirement because water requirement by 2.3S, 2.1E 2.3/4 mi SM, of Victor Hoadley Sand and 1954 790 Drl 286 254 12 254 Ohondaga limestone 300 lps Has been pumped at 300 gpm for 48 hrs. hydrogen suffice when first drilled. Because water requirement used water is passed through two sett requirements used water is passed through two sett requirements.	_				3/4 mi N. of Fishers	Eugene Reich	1952			150	150	9	ŀ	o p	:	i	ח	Well not screened. Dry hole. Spring Ot 415p supplies domestic requirements.
9J, 0.3N, 3.9E 2 mi NW, of Victor Kanneth Bliss 1954 810 Drl 216 2001 6 to 4 U Vield inadequate. Penetrated bedrock a Water for uses other rith of vining and parel packed we obtained from nearby gravel-packed we obtained frough its drilled. 9J, 2.3S, 2.1E 2 3/4 mi SW, of Victor Hoadley Sand and 1954 790 Drl 286 254 12 254 Onondaga limestone 300 lps Nas been pumped at 300 gpm for 48 hrs. hydrogen sulfide when first drilled. Because water requirement used water is passed through two sett requirements.	7				3 mi NW. of Victor	Raymond Romeiser	1954		Dr.1	84	84	9	:	do.	20	5	;	
9J, 2.35, 2.1E 2 3/4 mi SW, of Victor Hoadley Sand and 1954 790 Drl 286 254 12 254 Onondaga limestone 300 ips Has been pumped at 300 gpm for 48 hrs. hydrogen sulfide when first drilled. Gravel Co., Inc. Gravel Co., Inc. space requirement used water requirement two sets recoved. Well 0t 839 on property.	~				2 mi NW, of Victor	Kenneth Bliss	1954	810		216		2	:	i	1	1	>	Yield inadequate. Penetrated bedrock at unknown depth. Water for uses other than drinking and cooking is obtained from nearby gravel-packed well 20 ft deep.
		97,	2.35,	2.1E	2 3/4 mi SW, of Victor	Moadley Sand and Gravel Co., inc.	1954			586	254	12		Onondaga limestone	1	300	eq.	

Table 10. -- Records of selected wells and test holes in Ontario County

		Loca	Location			Altitude			1			Water level	1		
:					- N		Type of	of of	-	r to t	_	be low	Yield		
we?!		Coordinates	Related to nearby city or village	Owner or occupant		_			casing Diameter (feet) (inches)	e Pe	k Water-bearing	Surface (feet)	per		
Ot 1015	•	.5N, 4.6E	9K, 2.5N, 4.6E Port Gibson	Perry McKenney	H _		[50	34 6	*	ami 1 lus	28	*		Kema rks
Ot 1017	¥.	.8S, 0.5E	1.85, 0.5E 1½ mi NW. of Shortsville	Daniel Record	1953	570 D	Drl 13	133 4	9 04	4		4	٠ ;	=	M
Ot 1018	٦, ٦,	1.75, 8.2E	3½ mi E. of Victor	David Cannan			Dr.1			1		20 2	12		water unused because of poor quality.
Ot 1019	9K, 1.	1.85, 7.7E	3 mi E. of Victor	E. B. Potter	1961	620 D	Dr.1 4	14 54	9 54	1	Pleistocene sand	5	20	I	(6).
Ot 1020	97, 1.	1.15, 7.2E	2⅓ mi E. of Victor	E. R. Weigert	1961	009	Dr.1 16	169 28	9	78	Camillus shale	99	2	;	Water contains hydrogen sulfide
Ot 1021	9.	1.75, 5.4E	I mi SE, of Victor	Philip Carruba	1961	0 095	Dr1 2	28 20	9	20	Bertie limestone	0	30	;	
Ot 1022	97, 0	0.4s, 3.0E	2 mi NW, of Victor	Mildred Van Orman	1953	570 b	B 110	88	9	53	Salina group	flows	~	;	Well produces "black sulfur water" (see remarks for well 0t 219).
Ot 1023	.0 ,06	0.2N, 3.0E	l½ mi SE, of Fishers	Harold Roy	1952	280 D	Dr.1 3	32 32	9 2	ı	Pleistocene sand and gravel	flows	50	Ŧ	Flowed 10/18/57 at 3/4 gpm. Water relatively high in iron content.
Ot 1024	9J, 1.6S,	6S, 2.8E	2 mi W. of Victor	Robert F. Harrigan	1952	730 D	Dr.1 115	:	9	;	do.	20	2	ŀ	
Ot 1027	92, 8,	8,4s, 8,4E	3 mi SW. of Canandaigua	Morris Rossier	1953 9	066	Dr.1 8	947 08	9	34	Ludiowville shale	24	7	1	
Ot 1028	97' 6	6.75, 3.4E	East Bloomfield	Lewis Neenan	955	910 D	Dri 2	23 23	9	ı	Pleistocene sand and gravel	flows	1	Ŧ	(b).
Ot 1029	97, 6.6	6.65, 1.7E	2½ mi ₩. of Holcomb	Lester Bennett	1951 1,000	000 Dr.1		82 82	9	ŀ	do.	35	4	I	(b).
Ot 1030	9, 4.5	4.95, 0.4E	4 mi NW. of Holcomb	do.	1953 9	900 Dr	Dr.i 131	131	9	1	.op	9	7	I	(6).
Ot 1031	94, 5.0	5.0S, 1.6E	3 mi NW, of Holcomb	do.	1950	900 Drl		96 86	9	;	ę	flows	50 5	∢	(b). Supplies mink ranch. Flows 6 apm.
Ot 1032	10J, 10.8N,	₩6.0	5 mi W. of Holcomb	George Marin	1961	960 Dr1	. 95	5 95	9	1	do.	ł	;	ł	
Ot 1033	10J, 10.8N,	8N, 0.9W	. op	do.	1951 9	960 Drl	711	7 11.7	9 1	1	do.	9	4	:	Supplies motel.
Ot 1034	10J, 10.9N,	2.14	6¼ mi W. of Holcomb	Edward Domville	1952 9	930 Drl	108	 	9	1	, op	30	15	1	Well was considered finished at depth of 82 ff in June 1952. Was deepened to 108 ft in July 1952.
Ot 1035 10J, 10.7N,	100, 10.	2.94	74 mi W. of Holcomb	D. E. Barnes, Sr.	1952 7	750 Drl	. 2	0 70	9	ŀ	do.	9	ď	Ŧ	(b).
Ot 1036	10J, 10.8N,	₩6.0	5 mi W. of Holcomb	Raymond Heath	1951	960 Drl	1 155	5 155	9	ł	do.	04	-	;	(b).
Ot 1037	10J, 10.2N,	.0€	5¼ mi W. of Holcomb	Grace Conn	1953 9	970 Dr1	.1 209	9 206	9	:	Pleistocene sand	99	ď	ł	(b). Driller filled lower 17 ft of well with crushed stone.
Ot 1038	70J, 6.3	6.3N, 0.7W	3½ mi N. of Honeoye	Eugene Fisher	1952 1,010	10 Dr.I	105	1	9	20	Genesee formation, Tully limestone, and Moscow shale	15	- %	1	Well was deepened from 45 ft to 105 ft in 1952.
Ot 1039	9K, 5.8	5.8S, 0.7E	3½ mi NE. of Canandalgua	Andrew Burt, Sr.	1952 7	700 Dr!	. 39	1	9	:	Pleistocene sand	6	70	:	(b)·
Ot 1040		5.6S, 1.1E	. ob	Charles Graham	1961 7	700 Dr1	8 ∓	:	9	23	Skaneateles and Marcellus shales	81	2	:	
1041		6S, 10.4E	6.65, 10.4E I mi NW. of Cenendaigue	Leora Gehrig	1955 7	790 Dr.1	. 50	1	9	04	Ludlowville and Skaneateles shales	2	9	!	Water contains hydrogen sulfide.
Ot 1042	90. 6.7	75, 10.5E	6.75, 10.5E I mi NW. of Canandaigua	A. W. White		800 Drl	. 30	0 25	9	70	9	2	91	S	Supplies garage.
Ot 1043	91. 0.4	0.4N, 0.4E	9½ mi N. of Geneva	Eugene Groescup	1953 5	510 Drl	1 125	5 95	9	69	Camilius shale	*	<u>o</u>	∢	Well was considered finished at depth of 100 ft in Narch 1952. Became dry during summer of 1953. and use

Well was considered finished at depth of 100 ft in March 1952. Became dry during summer of 1953 and was deepened to 125 ft. An abandoned well to the east and 175 ft deep yielded water containing hydrogen sulfide.

Table 10. --Records of selected wells and test holes in Ontario County

									ater contains		t deep.		t deep. Water contains								8-inch screen. Two				ed well from bottom,	ed well from bottom,	ed well from bottom,
	· ·	Kema nks	Water contains hydrogen sulfide.	Well yields flammable gas.	Water contains hydrogen sulfide.				Drilled inside well 18 ft deep. Water contains hydrogen sulfide.		(b). Drilled inside dug well 10 ft deep.		(b). Drilled inside dug well 40 ft deep. hydrogen sulfide.			er contains hydrogen sulfide.	. Supplies restaurant.). Finished with 5 ft length of θ -inch screen, other drilled wells on property.				. Abandoned because sand entered well from bottom.		
								(Þ)	ייים.	(e)		(P)		(b)	(<u>a</u>)	Water	(P)				Adl (a).			(e)	н (Б).		
		te) Use	1	;	1	1	I	∢	í	ł	Ξ	I	∢	∢	∢	Ξ	S	1	1	!		=		±	¥		
	(gallons		2	;	~	01		0.1	30	7	2	7	9	•	2	01	_	2	3	20	41	2	2	7	20	20	3 4 20
Water level	land Surface	(feet)	:	1	4	7	15	39	11	30	12	91	35	34	٣	:	9	20	20	<u>8</u>	15	18	i	:	91	32	32 50 50
N/a	Water-bearing	_	graver	Ludiowville and Skaneateles shales	Ludlowville shale	Moscow and Ludlow- ville shales	do.	ę,	Moscow shale	Tully limestone and Moscow shale	Moscow shale	Pleistocene sand and gravel	Genesee formation	op O	do.	Ludlowville shale	, ob	Ludiowville and Skaneateles shales	Pleistocene sand	op	Pleistocene sand and gravel	Ludlowville shale	op.	ę,	Pleistocene sand and gravel	Pleistocene sand and gravel do.	pleistocene sand and gravel do. Pleistocene deposits
	to bedrock	(feet)			- -	80	35	13	32	33	76	ŀ	09	9	25	69	82	140	:	;	:	#	33	84	ŀ	: :	
		(inches) 6	9	9	9	9	9	9	9	8 to 6	9	9	9	9	9	9	9	9	9	9	æ	9	1	9	9	9 9	9 9 9
	of of casing D	(feet) (8	· 00	œ	1	35	:	:	2	27	41	:	;	56	69	23	041	09	09	47	3	047	20	105	105	105
	of Li		77	150	9	99	78	139	35	125	62	147	88	138	9	157	90	159	09	9	47	25	25	96	105	105	105
		Pr.	r.	Drl	Drl	DrJ	Drl	Drl	Dr.)	Dri	Dr1	Drl	Drl	Drl	Drl	DrJ	Drl	Dri	7.	Dr1	Drl	Dr.1	Drl	Drl	Drl	Dr.1	ו ה
Altitude		(feet) 710	018		820	016	986	990		900	890	900	1,000	1,010	960	870	960	730	720	200	99/	099	049	084	995	960	560 860 800
		ted (1954		1961	1954	1950	:	060,1 4661	6461	:	6761	- <u>-</u>	- -	946	:	1953	1954	1954	1954	1949	1955	1955	1955	1950	1950	1950
		Owner or occupant D. H. Lincoln	Till doesol	duric	op	Felix Phillips	Ralph Smith	James De Pew	E. H. Gulvin, Jr.	Lohmann Foods Corp.	Henry Teece	Elmer Perry	Francis Adams	H. C. Thomas	L. S. Pedersen	Kenneth Carson	Martha Bleich	Robert Vogt	Wilber Gee	Star Broadcasting Co. (WGVA)	Seneca Guernsey Farms	A. P. Brown	A. Callahan	George Senne	John E. Vance	John E. Vance Milford Herod	John E. Vance Milford Herod Henry Miller
	Location Related to nearby city	Coordinates or village 9J, 7.1S, 12.5E 1½ mi NE. of Canandaigua	of mi of Canandaions	do.	do.	5 mi SE, of Canandaigua	9K, 9.0S, 5.8E 7½ mi E. of Canandaigua	3½ mi NW. of Gorham	do.	Gorham	op.	op	6.4E 1 mi S. of Gorham	l½ mi S. of Gorham	l扌mi NE. of Gorham	3 mi N. of Gorham	6 mi ₩, of Geneva	2½ mi SW. of Geneva	2 mi SW, of Geneva	do.	9K, 10.8S, 11.4E 3 mi SW. of Geneva	7½ mi S. of Geneva	do.	œ.	4 3/4 mi S. of Geneva		
	7007	tes 12.5E	ä	7.0	9.1	2.7E	5.8E	4.2E	3.46	6.2E	5.9E			6.0E	7.1E	6.8E	9.8s, 7.7E	9.98, 11.46	9.9S, 12.1E	9.8s, 12.0E	11.46	0.2E	0.5E	9L, 16.5S, 1.2E	1,26	1.2E 6.4E	1.2E 6.4E
		Coordinates 7.15, 12	0 10	9.25,	9K, 9.2S, 1.0E	9.68,	9.0s,	9K, 11.2S,	9К, 11.9S, 3.4E	9K, 13.7S,	9K, 13.8S,	9K, 14.0S,	9к, 14.9s,	9K, 15.5S,	9K, 13.1S, 7.1E	9K, 11.0S,	9.88,		9.98,		10.88,	9L, 16.4S, 0.2E	91, 16.45,	16.55,	9L, 13.8S, 1.2E	9L, 13.8S, 1.2E 9K, 11.9S, 6.4E	9L, 13.8S, 1.2E 9K, 11.9S, 6.4E 9J, 10.3S, 10.9E
									¥.		¥	¥,	¥,	, 8	¥,			9K,	¥,	¥,							
	We I	number Ot 1044	100	0t 10#6	Ot 1047	Ot 1048	Ot 1049	Ot 1050	Ot 1051	Ot 1052	Ot 1053	Ot 1054	Ot 1055	Ot 1056	Ot 1057	Ot 1058	Ot 1059	0t 1060	Ot 1061	Ot 1062	Ot 1063	Ot 1065	0t 1066	Ot 1067	Ot 1068	Ot 1068	Ot 1068 Ot 1069 Ot 1070

Table 10. -- Records of selected wells and test holes in Ontario County

Part 1. -- Records of wells (Continued)

		Trained to				Water has relatively high iron content and contains hydrogen suifide. Sand and gravel layer between 117 ft and 129 ft had static water level of 33 ft and yield of 10 gpm.	Water has relatively high iron content.	(b). Well finished at depth of 29 ft in 1947. Deepened to 64 ft in 1951. Layer of clay 9 ft thick overlies bedrock. Temp 50°F, 5/21/48.				Originally drilled to depth of 47 ft.		Drilled inside dug well 30 ft deep.							Water has an unpleasant taste.		All water entering well below depth of 60 ft contained hydrogen suflide.	(b). Well abandoned because fine sand plugged bottom of well.	
		İ	(b).	(b)	(b)	Water ha hydrog 117 ft and yi	Water ha	(b). We to 64 bedroc		(b).		Origina l		Drilled							(b). Wa		All wate hydrog	(b). We of wel	
	<u> </u>	1	ł	1	:	:	}	I	ŀ	I	I	∢	Ŧ	I	x	I	I	I	I	=	I	r	I	5	±
Yield	(gallons per	15	91	12	0	5	15	15	.#	→kv	-	2	7	-	2	15	-10	~	S	73	-	0	-	4	īv
Water level below	land Surface (fact)	-	28	2	15	02	ŀ	0.	4	20	15	50 ,	20	94	0	38	20	;	84	<u>∞</u>	7	=	91	15	œ
Wat	Water-bearing	leistocene sand and gravel	op.	do.	Pleistocene sand	Ludlowville shale	Pleistocene sand and gravel	Ludlowville shale	Moscow shale	Sonyea formation	Sonyea and Genesee formations	West Falls formation (Hatch shale member)	do.	Sonyea formation	Genesee formation	West Falls formation	West Falls formation (Hatch shale member)	do.	Pleistocene sand and gravel	West Falls formation (Grimes siltstone and Match shale members)	Sonyea and Genesee formations	West Falls formation (Hatch shale member)	do.	Pleistocene sand	Pleistocene sand and gravel
Depth	to bedrock		1	ł	1	1 79 L	1	10 L	39 A	s †	9	}	m	30 S	5 84	28 W	*	80	1	9	22 S	ž	∞	1	1
	Diameter t	و	9	9	9	9	9	9	9	9	9	4 3/4	9	9	9	9	9	2	9	9	9	9	7 to 5 5/8	9	9
Depth	of casing [(fast) (ま	9	37	ŀ	£	62	9	39	;	i	:	ŀ	;	ŀ	63	ŀ	6	63	:	;	:	150	47	91
Depth	well (feet)		9	37	20	247	8	₹9	100	108	9	124	78	140	65	95	120	69	63	108	122	17	150	47	91
e '	و م آ	- Pa	Dri	Drl	Drl	P.	10	170	Dri	Dri	Pri	Pri	Dri	Drl	110	Dri	Drl	Dr1	<u>-</u> 2	1.0	170	170	Dri	Dri	Dri
Al ti tude above	Sea level	810	820	820	840	930	720	720	860	1,050	930	1,260	1,300	1951 1,000	700	1949 1,980	1949 1,200	1,300	084,1	1,290	750	,100	980	850	870
Year	P P P	1951	1950	1950	1952	!	1961	1951	1951	:	:	1953 1,260	ł	1961	:	1949	1949	1951 1,300	1950 1,480	1949 1,290	1954	1950 1,100	1953	:	1950
	Parent or or age	Irwin Hicks	Mr. Merson	Lee Smith	Harold North	Warren Hopkins	L. M. Higgins	Adrian Taylor	Robert Foster	Harold Blake	E. C. VanKeuran	J. H. Brahm, Jr.	H. J. Rennoldson	Curtis Phillips	Marold Manning	Lynn Watkins	Charles Standish	Edwin C. Rex	Wm. Schenk	Philipp Baader	Emmett Williams	Widmer's Wine Cellars, Inc.	op	Ralph Lyon	Julian Fox
ilon.	Related to nearby city	8.9s, 10.7E I mi SW, of Canandaigua	•op	do.	op .	l½ mi SW. of Canandaigua	9J, 11.15, 11.2E 3½ mi S. of Canandaigua	5 mi S. of Canandaigua	do.	4½ mi SE, of Bristol Center	. op	9½ mi NE. of Naples	8 mi NE, of Naples	6 mi NE, of Naples	4½ mi NE. of Naples	6½ mi N. of Naples	op o	4.6S, 6.4E 5 mi ME. of Naples	3½ mi N. of Naples	3 mi NE. of Naples	l½ mi NE. of Naples	2 mi NE, of Naples	1 3/4 mi NE, of Naples	Ot 1094 10J, 10.25, 4.4E 3/4 mi S. of Naples	Ot 1095 10J, 10.2S, 4.2E 1 mi SW. of Naples
Location		10.7E	10.6E	10.6E	10.5E		11.2E		10.6E	8,6€	8.7E	6.8€	9€.9	6.8E	7.0E	4.8E	6.2E	94.9	5.9E	6.1E	6.3E		5.7E	4.46	4.2E
	Condinates	91, 8.95, 1	9J, 8.7S, 10.6E	9J, 8.75, 10.6E	9J, 8.8S, 10.5E	9J, 9.0S, 10.3E	1, 11.15,	9J, 12.65, 10.8E	9J, 12.8S, 10.6E	9J, 16.8S, 8.6E	91, 16.85,	0.25,	1.75,	3.68,	5.58,	3.05,	3.05,		6.15,	6.75,	8.75,	1, 7.45,	7.95.	1, 10.25,	1, 10.25,
	Well	2	Ot 1073 9J	0t 1074 9J	0t 1075 9J	0t 1076° 9J	0t 1077 9J	0t 1078 9J	0t 1079 9J	0t 1080 9J	0t 1081 9J	Ot 1082 10J,	Ot 1083 10J,	Ot 1084 10J,	0t 1085 10J,	Ot 1086 10J,	0t 1087 10J,	0t 1088 10J,	Ot 1089 10J,	0t 1090 10J,	0t 1091 10J,	0t 1092 10J, 7.45, 5.9E	Ot 1093 10J,	0t 1094 10J	Ot 1095 10J

Table 10.--Records of selected wells and test holes in Ontario County
Part 1.--<u>Records of wells</u> (Continued)

																			ields								toll sulfur	uway at
1	ns Remarks	A	н (b).	Ŧ	r	Drilled inside dug well 16 ft deep. Water has relatively high iron content.	·	į	I	I	H Water contains hydrogen sulfide.	-	н (b).	=	н (b).	н (b).	н (b).	A (b).	 (b). Water contains hydrogen suifide and well yields some flammable gas. 	н (b).	н (b).	=	=	·	i	U Yield inadequate. Yielded some flammable gas when new.	 (a), Was drilled as source of water for Thrumay toll booth. Well unused because it produced "black sulfur water" (see remarks for well 0t 219). 	cs (a). Was auxiliary supply for restaurant on Thruway at Clifton Springs. Well Ot 1130 nearby.
Yield	(gallons per minute)	1	2	٣	-	∞	82	4	~ 3	17	7	0	:	2	7	~	7	7	7	٣	2	2	10	9	9	!	l or 2	001
Water level below	land surface (feet)	:	<u></u>	<u>.</u>	8	1 1	35	24	35	0	ŀ	20	9	01	22	25	35	35	50	flows	0	35	20	4	4	ŀ	25	1
	Water-bearing unit	est Falls formation	Pleistocene sand and gravel	West Falls formation	*op	Pleistocene sand and gravel	Sonyea formation	• op	Genesee formation	op	. op	Sonyea formation	Pleistocene sand and gravel	do.	O	Pleistocene sand	do.	op	West Falls formation (Hatch shale member)	Pleistocene sand and gravel	, ob	ę,	Onondaga limestone and Cobleskill dolomite	Pleistocene sand	o	Skaneateles and Marcellus shales	Camillus shale	. op
Depth	to bedrock (feet)	95	1	12	ł	:	47	8	15	20	35	9	ı	:	:	1	:	ł	801	ŀ	:	:	9	:	1	8	6	25
	Diameter (inches)		9	ł	5 5/8	9	9	9	9	9	9	9	9	9	9	9	9	9	'n	9	5 5/8	9	9	9	9	9	9	œ
Depth	of casing (feet)	:	37	:	ł	63	47	ł	:	;	1	:	23	53	84	99	20	9	ł	52	25	105	2	27	25	8	23	25
Depth	of weli (feet)	156	37	29	105	63	0/	£ 1	8	99	04	96	23	23	84	9	20	99	125	25	25	105	102	27	25	185	165	25
-8	Type of		Drl	Drl	Dri	Drl	Dr1	Drl	Dri	Pri	Dri	L'a	Drl	Pri	Dri	Dri	Drl	Drl	נים	Drl	Drl	Dri	<u> </u>	Drl	Dri	1-0	Dr.I	0r1
Altitude above	sea level (feet)	014,1 0261	1951 1,000	015,1 1261	1953 1,460	1951 1,120	1951 1,260	1951 1,240	1951 1,160	1953 1,160	930	1953 1,200	1949 1,220	1,320	1951 1,400	1,340	1950 1,400	1,410	1,280	1950 1,240	1949 1,340	910	069	800	800	720	570	530
Year	ple-	1950	1961	1981	1953	1951	1951	1951	1961	1953	ł	1953	1949	:	1951	!	1950	ŀ	1	1950	946	1954	1954	1952	1952	1955	1954	1956
	Owner or occupant	M. Peck	James Grove	Joseph Deats	Carl Bausch	M. T. Ganzauge	Henry Junge	Louis A. Valenza	Julian Harter	George Tiffany	Anna Fletcher	Edward Harris	Joseph Panzarella	George Schultz	Harold Converse	Alfred Wadecki	Carl Anderson	Albert Worden	Donald Weatherup	Oleson	Unknown	Ray Davis	M. Bushman	Eugene Fisher	op	Harold Updyke	N. Y. State Thruway Authority	N. Y. State Thruway Authority
Location	Related to nearby city	~	l.1E 4½ mi NW. of Naples	2.5W $3\frac{1}{2}$ mi SW. of Honeoye	2.7W 7 mi S. of Honeoye	1.0E 2 mi NE, of Honeoye	1.1E 24 mi NE. of Honeoye	0.9E 2 mi NE. of Honeoye	3.9E 4 mis, of Holcomb	3.9E do.	5.6E Bristol Center	5.3E 2 mi S. of Bristol Center	4,0€ 7½ miN. of Naples	2.9E 8 3/4 mi N. of Naples	3.2E 8½ mi N. of Naples	3.1E do.	3.5E 73/4 mi N. of Naples	3.5E do.	3.9E 7 mi N. of Naples	3,9E do.	10J, 2.1S, 3.7E 74 mi N. of Naples	0.0W 4 3/4 mi NW. of Holcomb	4,0¼ 9 mi NM, of Holcomb	6.5S, 10.7E 1½ mi N. of Canandaigua	10.8E do.	9,3E 2½ mi S, of Phelps	0.53, 7.0E 2½ mi NE, of Victor (Interchange No. 444)	9K, 1.9S, 3.9E 2 mi NM, of Clifton Springs N. Y. State Thruws) Authority
	o teciproci	10J, 11.2S, 1.7E	10J, 7.0S, 1.1E	0.15,	4.05,	90, 14.15,	9J, 13.8S, 1.1E							0.55,	1.08,	1,25,	1.75,	1.85,	2.35,	2.55,	2.15,			6,55, 1	6.5S, 10.8E	5.38,	0.55,	1.98,
	Š	101,		107,	100.	1, 16	91,1	91, 13.85,	93, 10.88,	9J, 10.55,	9J. 13.25,	91, 15.58,	10J, 2.25,	5,	100,	101	20.	101,		3	10.	10J, 12.8N,	10J, 13.4N,	97,	91,	¥,	2	¥.
	Well	0t 1096		0t 1098	Ot 1099	0¢ 1100	Ot 1101	Ot 1102	Ot 1103	Ot 1104	Ot 1105	0t 1106	0t 1107	Ot 1108	0t 1109	Ot 1110	Ot 1113	Ot 1112	Ot 1113	Ot 1114	Ot 1115	Ot 1116	Ot 1117	0t 1119	Ot 1120	Ot 1121	Ot 1122	Ot 1123

Table 10. --Records of selected wells and test holes in Ontario County

		2 2		-	5 # ृ₽ €		ы р. <u>т.</u>	T
	Remarks	(a). Supplies Thrumay toll booth. Originally drilled to depth of 100 ft. Static water level of Salina group between depths of 08 ft and 100 ft was 45 ft below land surface. Vield was 15 gpm and quality was unsatisfactory. Lower 50 ft of well was sealed off and the well redeveloped in sand and gravel at depth of 50 ft. Static water level in sand and gravel was 24 ft. Drawdown of 16 ft became constant after pumping at rate of 9.5 gpm for 8 hrs.	(a). Supplies Thruway toll booth. Has been pumped at 12 gpm for 8 hrs.	(b), Drilled to obtain water supply for restaurant on Thruway near Victor. Yield inadequate. Drawdown 106 ft after pumping 12 gpm for 8 hrs. Water reported to enter well through lenses of gypsum, Temp 500F, 8/17/53.	(a) (b). Drilled to obtain water supply for restaurant on Thruway near Victor. Static water level of layer of sand and gravel between depths 35 ft and 40 ft was 31 the below land surface and yield was 18 gpm. Static water level of sand and gravel layer between depths 48 ft and 56 ft was 16 ft below land surface and yield was 25 gpm. Static water level of Salina group between depths 119 ft and 140 ft was 110 ft below land surface and yield was 9 gpm.	(b). Drilled to obtain water supply for restaurant on Thruway near Clifton Springs. Yield inadequate. Located 60 ft east of well 0t 1129.	(a) (b). Drilled to obtain water supply for restaurant on Throway near clifton Springs. Originally drilled to depth of 100 ft. Static water level of Salina group between depths of 27 ft and 100 ft was 40 ft below land surface. Yield of 20 gpm was not adequate and quality was unsatisfactory. Lower 73 ft of well was sealled off and the ween depths of 23 ft and 27 ft. Static water level of unconsoil dated material was at land surface and yield was 56 gpm. Hardness of water from bedrock was 3,600 ppm; from unconsolidated material.	(a) (b). Supplied water for restaurant on Thruway near Clifton Springs. Static water level of Salina group between depths of 25 ft and 51 ft was 13 ft below land surface and yield was 138 gpm. Located 1,900 ft east of 01 11128 and 01 1129 and 100 ft from 01 1123. Restaurant now supplied by Newark public water supplyiemp 510; 8/26/53.
	Jse	8) S3	Cs (a	9	e)	9	n))
P 4 2	(gallons per minute) Use	6	12 (5	6			
l			-	~	-	•	:	1
Water level	land surface (feet)	24 5/54	72	92	0	;	•	<u></u>
P. P.	Water-bearing unit	gravel	o p	Salina group	Camillus shale	. op	gravel	Camillus shale
Depth	to edrock (feet)	78 PI	;	105 Sa	119 G	28	27 PI	25 Cs
å	of to casing Diameter bedrock (feet) (inches) (feet)	9	•	9	9	9	ø	9
Depth	of casing ((feet)	15	1	901	62	ł	1	1
Depth	_	12	26	200	200	20	00	ī
	Type of well	110	Drl	Dri	1.0	Dr.	1.0	<u>ר</u>
Altitude above		450	650	650	700	240	540	530
Altituc Year above	com- ple- ted	1954	1954	1953	1953	1953	1953	1953
	Owner or occupant	N. Y. State Thruway Authority	ę,	ફ	ė	ę	ું	do.
ion	Related to nearby city or village	9L, 3.3S, 1.1Ε 5 3/4 mi N. of Geneva (Interchange No. 42)	9J, 0.9N, 3.1E 2 3/4 mi NW, of Victor (Interchange No. 45)	9J, 0,5N, 3.4E 2½ mi NN. of Victor (restaurant site 23, hole No. 1)	9J, O.1S, 4.3E 14 mi N. of Victor (restaurant site 23, hole No. 2)	9K, 1.9S, 3.5E 2½ mi NW. of Clifton Springs (restaurant site 22, hole No. 1)	2½ mi MM, of Clifton Springs (restaurant site 22 hole Mo. 2)	9K, 1.9S, 3.9E 2 mi MW. of Clifton Springs (restaurant site 22, hole Mo. 3)
Location	v	1, 16	3.1E 1	3.46	4.36	3.5E ;	3.5E	3.96 .
	Coordinates	3.38,	0.9N,	0.5N,	.15,	1.95,	9K, 1.9S, 3.5E	.98,
	80	91,	ž.	ب	3.	¥,	%	ЭК,
	Well number	0t 1124	Ot 1125	Ot 1126	Ot 1127	Ot 1128	Ot 1129	0t 1130

Table 10. --Records of selected wells and test holes in Ontario County

Part 2. -- Records of test holes

(The test holes for which data are tabulated below were drilled by the New York State Department of Public Works to obtain data for the design of foundations for highway bridges. Although several test holes were constructed at each bridge site, the data for only one, usually the deepest, are included in the table. Cores or spoon samples were obtained at selected depths. Table 9, part 2, contains a log for each test hole listed below.)

					Altitude					Water level	el
Test			Location	:	above	Depth of	Diameter of outside	Depth to	Below land	Date of	Depth of hole at
hole	Coordinates	nates	Bridge Site	Year completed	level (feet)	well (feet)	of casing (inches)	bedrock (feet)	surrace (feet)	measurement	(feet)
TEST HOLE:	S CONSTRUCT	ED ALON	TEST HOLES CONSTRUCTED ALONG THE NEW YORK STATE THRUMAY Or 1134 9J, 1,1N, 1,4E Fishers Road, 支 mi NM, of Fishers	36	520	15	4 3/8	not reached	:	:	i
Ot 1138	9J, 1.IN, 1.5E	1.5E	New York Central R.R., ½ mi NW. of Fishers	9461	505	97	8/8 4	œ,	ì	:	;
Ot 1139	9J, 1.1N, 1.7E	1.76	Irondoquoit Creek, 扌mi NE. of Fishers	9461	480	29	4 3/8	op	71	94/6	20
Ot 1143	9J, 1.1N,	1.8E	Log Cabin Road, y mi NE. of Fishers	9461	523	04	4 3/8-2 3/4	do.	:	;	t
Ot 1148	9J, 0.6N,	3.1E	Interchange No. 45, 1½ mi E. of Fishers	1952	650	53	2 3/4	do.	ł	ł	:
0t 1157	9J, 0.5N,	3.3E	Willow Road, 1½ mi E. of Fishers	19461	099	78	ŀ	œ,	:	ł	:
0t 1163	9J, 0.25,	6.1E	Brownville Road, 1 3/4 mi NE. of Victor	9461	595	37	4 3/8	do.	5	3/46	13
Ot 1164	94, 0.38,	6.4E	Ganargua Creek, 2 mi NE. of Victor	9461	535	45	4 3/8	17	1.5	3/46	20
Ot 1169	9J, 0.35,	6.7E	Crowley Road, 2¼ mi NE. o€ Victor	9461	598	43	4 3/8	25	:	;	i
Ot 1177	91, 0.98,	7.0E	Lehigh Valley R.R., 2½ mi NE. of Victor	9461	586	æ	4 3/8	01	;	ŀ	;
Ot 1181	9J, 0.4S, 7.9E	7.9E	Pumpkin Hook Road, 3½ mi NE. of Victor	1981	579	23	4 3/8	8	4	12/46	10
Ot 1189	94, 0.55,	8.8E	Farmington Road, 44 mi E. of Victor	1961	230	24	4 3/8	=	:	ł	:
Ot 1191	9J, 1.3S, 11.5E	11.5E	Blacksmith Corners Road, 6½ mi N. of Canandaigua	1951	578	92	4 3/8	91	ŧ	1	!
Ot 1196	9K, 1.4S,	0.8E	Interchange No. 43, 1 mi NW, of Manchester	1952	1 755	77	4 3/8	∞	3.5	2/22	5
Ot 1197	9K, 1.5S, 1.3E	1.36	N. Y. State Highway 21, 3/4 mi N. of Manchester	1952	955	33	4 3/8-2 3/4	=	:	1	;
Ot 1199	9K, 1.6S,	1.8E	Canandaigua Outlet, 1 mi NE. of Manchester	1952	543	22	4 3/8	0	1	:	;
Ot 1209	9K, 1.7S,	3.5E	Canandaigua Outlet, 2½ mi E. of Manchester	1952	535	27	4 3/8	01	3.5	3/52	2
Ot 1213	9K, 1.7S,	3.6E	Port Gibson Road, $2\frac{1}{2}$ mi E. of Manchester	1952	145	21	4 3/8	91	;	;	1
Ot 1228	9K, 1.9S,	4.7E	Fall Brook, 1½ mi NW. of Clifton Springs	1952	525	93	1 3/8	13	6	4/52	;
Ot 1235	9K, 1.8S,	5.5E	Kendall Road, 1 mi NW, of Clifton Springs	1961	527	%	4 3/8-2 3/4	20	;	:	:
Ot 1245	9K, 2.0S,	8.6E	Pennsylvania R.R., l½ mi NW. of Phelps	1952	550	11	4 3/8	7	ŀ	1	:

Table 10.--Records of selected wells and test holes in Ontario County

Part 2. -- Records of test holes (Continued)

					Al ti tude		į			Water level	el
Test			Location		above sea	Depth of	Diameter of outside	Depth to	Below land	Date of	Depth of hole at
hole number	Coord	Coordinates	Bridge Site	Year completed	level (feet)	well (feet)	of casing (inches)	bedrock (feet)	surface (feet)	measurement	time of measurement
0t 1249	9K, 2.2S, 9.0E	, 9.0E	N. Y. State Highway 88, 14 mi NW. of Phelps	1951	552	25	4 3/8-2 3/4	7		:	
Ot 1251	9K, 2.3S, 9.7E	, 9.7E	Canandaigua Outlet, 3/4 mi N. of Phelps	1952	7463	28	2 3/4	61	-	6/52	;
Ot 1260	9K, 2.3S, 9.9E	9.9€	Marbletown Road, 3/4 mi N. of Phelps	1952	064	52	4 3/8-2 3/4	84	:	:	:
Ot 1263	9K, 2.7S, 10.7E	, 10.7E	Gifford Road, I mi E. of Phelps	1952	464	84	4 3/8-2 3/4	33	;	;	ŀ
Ot 1264	9K, 3.0S, 12.2E	, 12.2E	Pre-Emption Road, 2½ mi E. of Phelps	1952	964	80	4 3/8-2 3/4	19	:	:	;
Ot 1272	9L, 3.2S, 0.5E	, 0.5E	Canandaigua Outlet, 6 mi N. of Geneva	1952	426	55	2 3/4	47	:	;	:
0t 1273	91, 3.28	, 0.9E	9L, 3.2S, 0.9E Interchange No. 42, 6 mi N. of Geneva	1952	426	26	2 3/4	51	5	6/52	15
Ot 1278	91, 3.25	, 1.2E	Ot 1278 9L, 3.25, 1.2E N. Y. State Highway 14, 6 mi N. of Geneva	1952	479	25	2 3/4	not reached	ŀ	:	:
Ot 1286	91, 3.25	, 1.3E	Ot 1286 9L, 3.25, 1.3E N. V. Central R.R., Fall Brook Branch, 6 mi N. of Geneva	1952	084	52	4 3/8-2 3/4	o	ł	:	:
TEST HOL! 0t 1288	ES CONSTRU 9L, 9.1S	CTED AL	TEST HOLES CONSTRUCTED ALONG U.S. HIGHWAY 20 (NY 5) Ot 1288 9L, 9.1S, 1.2E Castle Creek culvert, Geneva lake front, Geneva	1950	11 3	16	4 3/8-2 3/4	9	:	;	ı
Ot 1289	9L, 9.4S, 1.0E	, 1.0E	Boat basin, Geneva lake front, Geneva	1950	736	102	4 3/8-2 3/4	ģ	ŀ	;	1
Ot 1290	9K, 8.6S, 0.1W	. 0.1¥	Canandaigua Outlet, Canandaigua City bypass, 2 mi SE. of Canandaigua	1953	685	47	2 3/4	.	ŀ	ŀ	:
Ot 1296	Ot 1296 9K, 9.0S, 0.5E	, 0.5E	Fall Creek, Canandaigua City bypass, 2½ mi SE, of Canandaigua	1953	729	61	2 3/4	-	;	ŀ	ı

Table 11, -- Records of selected springs in Ontario County

Remarks: Most data reported, except temperature measurements; gpd, gallons per day; gpm, gallons per minute; (a), chemical analysis in table 5. Use: A, agricultural; H, residential; I, industrial; M, municipal or community; U, use discontinued; d, domestic; i, irrigation; I, livestock, Location: For explanation of location coordinates see section entitled "Well-Location System". Water-bearing unit: Descriptions of aquifers are included in table 2. Spring number: See section in text entitled "Well-Location System". Altitude: Estimated from topographic maps.

					1	Al ti tude			
			Location	tion		above			
Spring	900	Coordinates	Ş	Related to nearby city or village	Owner or occupant	level (feet)	Water-bearing unit	Use	Remarks
0t 1Sp	я,	6.45,	0.2E	2 3/4 mi NW. of Geneva	F. Guest	200	Pleistocene deposits	Adl	Vields 4 gpm. Temp 50°F, 7/23/47.
0t 2Sp	٩ 	3.38,	0.2W	3 mi E. of Phelps	F. A. Salisbury	240	Pleistocene sand and gravel	;	Vields 2 gpm.
0t 3Sp	٩,	4.75, 1.0W	.04	2½ mi SE, of Phelps	Nathan Oaks, Jr.	240	Onondaga limestone	4	Supplies 2 houses and 80 livestock.
Ot 45p	¥,	2.5S, 10.8E	10.8E	I mi NE, of Phelps	G. E. Mott	7480	Pleistocene sand and gravel	Ad1	Supplies 50 livestock.
Ot 5Sp	¥.	0.5N,	5.2E	3½ mi N. of Clifton Springs	H, Lannon	550	. ob	PA	Yields I gpm. Supplies 30 livestock.
0t 6Sp	¥,	2.5N,	0.5E	4½ mi N. of Manchester	Church of Jesus Christ of Latter Day Saints	200	Pleistocene till	Adl	Supplies 9 people and 35 livestock.
Ot 7Sp	¥,	0.85,	1.2E	l‡mi N. of Manchester	William Eddinger	630	do.	Adl	Temp 51 ⁰ F, 11/10/47.
Ot 8Sp		1.65,	2.3E	1½ mi NE, of Manchester	W. S. Smith	260	do.	Adl	Supplies 6 people and 4 livestock. Temp $51^{ m OF}$, $11/10/47$.
Ot 9Sp	, %	4.38,	6.4E	2 mi S. of Clifton Springs	Clifton Springs Sanitarium	680	do.	A)	Once supplied several families and 400 livestock.
Ot 10Sp	9 K	6.75,	5.6E	4 mi S. of Clifton Springs	Village of Clifton Springs	830	Pleistocene deposits	£	(a). Village consumption of 200,000 gpd is supplied by this spring. Temp $50^{\rm OF}$, $9/30/55$.
Ot 11Sp	*	5.55,	6.5E	3 mi S. of Clifton Springs	George Durkee	760	Pleistocene till	Adl	Once supplied water for engines operating on Pennsylvania R.R.
Ot 125p	9K, 1	9K, 14.1S,	9.6E	3½ mi E. of Gorham	C. C. Lang & Son, Inc.	890	Pleistocene deposits	_	Supplies canning factory. Yield of 25 gpm inadequate at *ilmes of peak production. Supplemental water is transported by railroad tank car from Penn Yan.
Ot 13Sp	98, 1	9K, 10.3S, 12.4E	12,46	2 mi SW. of Geneva	A. G. Lewis	989	Pleistocene till	Adi	Supplies 10 people.
Ot 145p	26	9.98.	8.2E	3½ mi SW. of Canandaigua	H. W. Nash	1,080	do.	Adl	Supplies 7 people and 10 livestock.
Ot 155p		5.08,			Clifford Purdy	800	Pleistocene deposits	Ā	Temp 51 ⁰ F, 5/28/48.
Ot 16Sp		8,65,	4.0E	1 3/4 mi S. of Holcomb	C. B. Gauss	1,060	Pleistocene till	Adl	Supplies 8 people and 50 sheep. Water flows from contact between till and bedrock. Contains hydrogen sulfide. Temp $50^9\mathrm{F}$, $6/25/48$.
Ot 17Sp	97,	0.1N, 10.7E	10.7E	5 mi NW. of Shortsville	P. J. DeWandel	280	:	Adl	Supplies 6 people and 30 livestock. Well Ot 522 on property. Temp 510F, 7/23/48.
Ot 18Sp		2.75,	10K, 2.75, 4.4W	6½ mi SW. of Honeoye	William Luther	1,820	Pleistocene till	Ŧ	Water flows from contact between till and bedrock.

Table 11.-Records of selected springs in Ontario County (Continued)

n Related to nearby city	A I	Altitude above sea level	Water-hearing		
I	Owner or occupant ((feet)	water-bearing unit	Use	Remarks
3	Miller	1,800	Pleistocene till	Adl	Water flows from contact between till and bedrock.
F. ¥.	W. Shellman	900	Pleistocene deposits	Ŧ	
Frank Yaw		009'≀	Pleistocene sand and gravel	I	
A. Lee	_	1,380	West Falls formation (Hatch shale member)	Ŧ.	
op	-	1,300	do.	>	
G. M. Cornish		1,420	Pleistocene silt and sand	±	
L. C. Watkins		2,000	Pleistocene till	Adl	Supplies 42 sheep. Water flows from contact between till and bedrock,
J. Lambo	-	000,1	Sonyea formation	=	Temp 56 ^o F, 10/18/48.
O. Warren	-	1,020	Pleistocene deposits	Adl	Temp 54 ^o F, 11/12/48.
Walter Wood	-	1,160	Pleistocene sand and gravel	Adl	Temp 49 ⁰ F, 11/13/48.
Philip Schuyler		1,100	do.	Adl	(a). Temp 46 ⁰ F, 3/21/54.
K. G. Smith		450	do.	I	Yields I gpm.
F. C. Small		800	do.	I	Supplies two families. Yield not adequate.
Irma Conover		570	do.	ı	Supplies two families. Water is slightly turbid.
Benjamin Carpenter	rpenter	280	do.	Adl	
Richard Lankes	se>	580	do.	Adl	(a). Temp 49.5 ^o F, 9/28/55.
Homer Rugg		670	do.	Adl	
Clayton Klem		570	do.	Adl	
C. A. Carpenter	nter	720	Pleistocene till	I	(a). Roadside spring. Water flows from contact between till and bedrock. Contains hydrogen sulfide. White precipitate deposited around spring.
Village of Victor	Victor	630	Pleistocene sand and gravel	x	(a). Source of municipal supply for Village of Victor and for restaurant on N. Y. State Thruway north of Victor. Yield was 200 gpm 5/4/55. Temp 480F, 5/4/55; 480F, 5/3/56.
Village of Phelps	Phelps	790	Pleistocene deposits	Σ	(a). Source of municipal supply for Village of Phelps.

Table 11. -- Records of selected springs in Ontario County (Continued)

1			Loca	Location	,	Altitude			
Spring	Š	Coordinates	S	Related to nearby city or village	Owner or occupant	level (feet)	Water-bearing unit	Use	Remarks
0t 41Sp	H	1.6N,	1.4E	9J, 1.6N, 1.4E i mi NW. of Fishers	Thomas McMillan	500	Pleistocene sand and gravel	I	Yields 10 gpm.
0t 42Sp		0.6N,	1.0E	9J, 0.6N, 1.0E 3/4 mi W. of Fishers	Chauncey Young	525	Pleistocene silt and sand	¬	Yields 75 to 100 gpm. Temp 49.5°F, 6/13/55. Undeveloped.
Ot 43Sp	97,	1.25,	6.1E	9J, 1.2S, 6.1E 1½ mi E. of Victor	John McMahan	550	Pleistocene deposits	ΑI	Undeveloped.
0t 44Sp	91,	9J, 2.0N, 1.5E	1.5E	14 mi N. of Fishers	C. H. Strong	625	Pleistocene sand	I	Supplies family of seven.
Ot 45Sp		14.25,	6.8E	9K, 14.2S, 6.8E ½ mi E. of Gorham	Harry Seashore	970	Pleistocene sand and gravel	Ā	Supplies farm and milk-processing plant.
0t 46Sp	92,	7.15,	3.9£	9J, 7.1S, 3.9E ½ mi SW. of Holcomb	Village of Holcomb	970	Pleistocene deposits	Σ	(a), Source of municipal supply (50,000 gpd) for the Village of Holcomb. First developed in 1932. Occasionally inadequate during canning season.
0t 47Sp	97,	9J, 7.45, 3.4E	3.4E	East Bloomfield	Village of East Bloomfield	970	•op	Σ	(a). Source of municipal supply (30,000 gpd) for the Village of East Bloomfield. Yield was 60 gpm $5/11/55$. Temp $48^{\rm O}{\rm F}$, $5/11/55$.
Ot 48Sp	٩,	9L, 0.4S, 1.4E	1.4E	9 mi N. of Geneva	Rupert Raymer	430	ф.	∍	Yields 22 gpm. Water flows from contact between unconsolidated deposits and bedrock. Undeveloped,
0t 49Sp	97,	0.75,	1.1E	9J, 0.7S, 1.1E $3\frac{1}{2}$ mi W. of Victor	Arthur White	610	Pleistocene sand and gravel	∢	Was developed during excavation of farm pond. Yielded 120 gpm before pond was filled.
Ot 50Sp		0.15,	3.0E	9J, 0.1S, 3.0E 2 mi NW. of Victor	Mrs. L. Locke	260	:	¬	White precipitate deposited around spring. Yields 2550 gpm. Pool 30 ft in diameter and 5 ft deep. Temp $50^9\mathrm{F}$, $10/11/57$. Undeveloped.

REPORTS DEALING WITH GROUND-WATER CONDITIONS IN NEW YORK PUBLISHED BY THE NEW YORK STATE WATER RESOURCES COMMISSION AND PREPARED IN COOPERATION WITH THE U. S. GEOLOGICAL SURVEY

BULLETINS:

- *GW- 1. WITHDRAWAL OF GROUND WATER ON LONG ISLAND, N. Y.; D. G. Thompson and R. M. Leggette 1936.
- *GW- 2. Engineering Report on the Water Supplies of Long Island; Russell Suter, 1937.
- *GW- 3. RECORD OF WELLS IN KINGS COUNTY, N. Y.; R. M. Leggette and others. 1937.
- *GW- 4. RECORD OF WELLS IN SUFFOLK COUNTY, N. Y.; R. M. Leggette and others. 1938.
- *GW- 5. RECORD OF WELLS IN NASSAU COUNTY, N. Y.; R. M. Leggette and others. 1938.
- *GW- 6. RECORD OF WELLS IN QUEENS COUNTY, N. Y.; R. M. Leggette and others. 1938.
- *GW- 7. Report on the Geology and Hydrology of Kings and Queens Counties, Long Island; Homer Sanford. 1938.
- GW- 8. RECORD OF WELLS IN KINGS COUNTY, N. Y., SUPPLEMENT 1; R. M. Leggette and M. L. Brashears, Jr. 1944.
- GW- 9. RECORD OF WELLS IN SUFFOLK COUNTY, N. Y., SUPPLEMENT 1; C. M. Roberts and M. L. Brashears, Jr. 1945.
- GW-10. RECORD OF WELLS IN NASSAU COUNTY, N. Y., SUPPLEMENT 1; C. M. Roberts and M. L. Brashears, Jr. 1946.
- *GW-11. RECORD OF WELLS IN QUEENS COUNTY, N. Y., SUPPLEMENT 1; C. M. Roberts and Marion C. Jaster. 1947.
- *GW-12. THE WATER TABLE IN THE WESTERN AND CENTRAL PARTS OF LONG ISLAND, N. Y.; C. E. Jacob. 1945.
- *GW-13. THE CONFIGURATION OF THE ROCK FLOOR IN WESTERN LONG ISLAND, N. Y.; Wallace De Laguna and M. L. Brashears, Jr. 1948.
- GW-14. CORRELATION OF GROUND-WATER LEVELS AND PRECIPITATION ON LONG ISLAND, N. Y.; C. E. Jacob. 1945.
- *GW-15. PROGRESS REPORT ON GROUND-WATER RESOURCES OF THE SOUTHWESTERN PART OF BROOME COUNTY, N. Y.; R. H. Brown and J. G. Ferris. 1946.
- *GW-16. Progress Report on Ground-Water Conditions in the Cortland Quadrangle, N. Y.; E. S. Asselstine. 1946.
- *GW-17. GEOLOGIC CORRELATION OF LOGS OF WELLS IN KINGS COUNTY, N. Y.; Wallace De Laguna. 1948.
- GW-18. Mapping of Geologic Formations and Aquifers of Long Island, N. Y.; Russell Suter, Wallace De Laguna, and N. M. Perlmutter. 1949.
- *GW-19. Geologic Atlas of Long Island. 1950. (Consists of large-scale reproductions of maps in GW-18, available through special purchase).
- GW-20. THE GROUND-WATER RESOURCES OF ALBANY COUNTY, N. Y., Theodore Arnow. 1949.
- GW-21. THE GROUND-WATER RESOURCES OF RENSSELAER COUNTY, N. Y.; R. V. Cushman. 1950.
- GW-22. THE GROUND-WATER RESOURCES OF SCHOHARIE COUNTY, N. Y.; Jean M. Berdan. 1950.
- GW-23. THE GROUND-WATER RESOURCES OF MONTGOMERY COUNTY, N. Y.; R. M. Jeffords. 1950.
- GW-24. THE GROUND-WATER RESOURCES OF FULTON COUNTY, N. Y.; Theodore Arnow. 1950.
- GW-25. THE GROUND-WATER RESOURCES OF COLUMBIA COUNTY, N. Y.; Theodore Arnow. 1951.
- GW-26. THE GROUND-WATER RESOURCES OF SENECA COUNTY, N. Y.; A. J. Mozols. 1951.
- *GW-27. THE WATER TABLE IN LONG ISLAND, N. Y., IN JANUARY, 1951; N. J. Lusczynski and A. J. Johnson. 1952.
- *GW-28. WITHDRAWAL OF GROUND WATER ON LONG ISLAND, N. Y.; A. H. Johnson and others. 1952.
- GW-29. THE GROUND-WATER RESOURCES OF WAYNE COUNTY, N. Y.; R. E. Griswold. 1951.
- GW-30. THE GROUND-WATER RESOURCES OF SCHENECTADY COUNTY, N. Y.; E. S. Simpson. 1952.
- GW-31. RECORDS OF WELLS IN SUFFOLK COUNTY, N. Y., SUPPLEMENT 2; A. H. Johnson and others. 1952.
- GW-32. GROUND WATER IN BRONK, NEW YORK, AND RICHMOND COUNTIES WITH SUMMARY DATA ON KINGS AND QUEENS COUNTIES, NEW YORK CITY, N. Y.; N. M. Perlmutter and Theodore Arnow. 1953.
- GW-33. THE GROUND-WATER RESOURCES OF WASHINGTON COUNTY, N. Y.; R. V. Cushman. 1953.
- GW-34. THE GROUND-WATER RESOURCES OF GREENE COUNTY, N. Y.; Jean M. Berdan. 1954.
- GW-35. THE GROUND WATER RESOURCES OF WESTCHESTER COUNTY, N. Y., PART 1, RECORDS OF WELLS AND TEST HOLES; E. S. Asselstine and I. G. Grossman. 1955.
- GW-36. Saline Waters in New York State; N. J. Lusczynski, J. J. Geraghty, E. S. Asselstine, and I. G. Grossman. 1956.
- GW-37. THE GROUND WATER RESOURCES OF PUTNAM COUNTY, N. Y.; I. G. Grossman. 1957.
- GW-38. CHLORIDE CONCENTRATION AND TEMPERATURE OF WATER FROM WELLS IN SUFFOLK COUNTY, LONG ISLAND, N. Y., 1928-53; J. F. Hoffman and S. J. Spiegel. 1958.
- GW-39. RECORD OF WELLS IN NASSAU COUNTY, N. Y., SUPPLEMENT 2; Staff, Long Island Office, Water Power and Control Commission. 1958.
- GW-40. THE GROUND-WATER RESOURCES OF CHEMUNG COUNTY, N. Y.; W. S. Wetterhall. 1959.
- GW-41. GROUND-WATER LEVELS AND RELATED HYDROLOGIC DATA FROM SELECTED OBSERVATION WELLS IN NASSAU COUNTY, LONG ISLAND, N. Y.; by John Isbister. 1959.
- GW-42. GEOLOGY AND GROUND-WATER RESOURCES OF ROCKLAND COUNTY, N. Y.; by N. M. Perlmutter. 1959.
- GW-43 GROUND-WATER RESOURCES OF DUTCHESS COUNTY, N. Y., by E. T. Simmons, I. G. Grossman, and R. C. Heath, 1961.
- GW-44. GROUND-WATER LEVELS AND THEIR RELATIONSHIP TO GROUND-WATER PROBLEMS IN SUFFOLK COUNTY. LONG ISLAND, N. Y., by J. F. Hoffman and E. R. Lubke, 1961.
- GW-45 HYDROLOGY OF THE SHALLOW GROUND-WATER RESERVOIR OF THE TOWN OF SOUTHOLD, SUFFOLK COUNTY, N. Y., by J. F. Hoffman, 1961.
- GW-46 THE GROUND-WATER RESOURCES OF SULLIVAN COUNTY, N. Y., by Julian Soren, 1961.
- GW-47. Ground-Water Resources of the Massena-Waddington Area, St. Lawrence County, N. Y., by F. W. Trainer and E. H. Salvas, 1962.
- GW-48. GROUND-WATER RESOURCES OF ONTARIO COUNTY, N. Y., by F. K. Mack and R. E. Digman, 1962.
- An asterisk (*) indicates that the report is out of print, but such reports are available for consultation in certain libraries.