Candidate's Name: Voel	mjitu 078075	5437
Signature:formoy	Random No.	Personal No.

(Do not write your School /Centre Name or Number anywhere on this booklet.)

P525/3

CHEMISTRY

Paper 3

(Practical)

Nov./Dec. 2023

31/4 hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 3 (Practical)

3 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions. Use blue or black ink. Any work done in pencil will not be marked except drawings.

All your answers must be written in the spaces provided.

Mathematical tables and silent non-programmable scientific calculators may be used.

Reference books (i.e. text books, booklets on qualitative analysis etc.) should not be used.

You are not allowed to start working with the apparatus for the first 15 minutes. This time is to enable you read the question paper and make sure you have all the apparatus and chemicals that you may need.

	For Examin	ers' Use Only	y
Q.1	Q.2	Q.3	Total
X	X	X	X
30	30	20	80

© 2023 Uganda National Examinations Board

1. You are provided with the following:

FA1, which is a solution of hydrochloric acid of an unknown concentration.

June 1 mil

FA2, which is a solution containing 5 g of a mixture of sodium hydroxide and anhydrous sodium carbonate in a litre.

FA3, which is a solution of barium chloride.

Solid T, which is sodium tetraborate decahydrate, Na₂B₄O₇ · 10H₂O.

You are required to;

- (i) standardise the solution of hydrochloric acid, FA1.
- (ii) determine the composition of the mixture in FA2.

Theory

A solution of sodium tetraborate reacts with hydrochloric acid according to the following equation:

$$B_4 O_7^{2-} (aq) + 2H^+ (aq) + 5H_2O_{(l)}$$
 \longrightarrow $4H_3BO_3 (aq)$

When FA3 is added to FA2, the carbonate ions in FA2 are precipitated out according to the following equation:

$$Ba^{2^+}_{(aq)} + CO_3^{2^-}_{(aq)} \longrightarrow BaCO_3_{(s)}$$

PART I

Procedure

Weigh accurately 2.4 g of solid T and transfer it into a beaker. Add about 100 cm³ of hot water and stir to dissolve. Transfer the solution into a 250 cm³ volumetric flask and fill up to the mark with distilled water. Label the solution FA4.

Results

Mass of the weighing container + T = 35.5 L g (½ mark)

Mass of the weighing container alone = 33.1 L g (½ mark)

Mass of T weighed = 2.4 L g (½ mark)

Must be recorded to the Same decimal points (dps) @ Ignore all if the decump) places are not the small

PART II Procedure

Pipette 25.0 cm³ (or 20.0 cm³) of FA4 into a conical flask. Add 2-3 drops of methyl orange indicator and titrate with FA1 from the burette until the

les Company of the less of the

Repeat the titration to obtain consistent results and record your results in

Results

Tabl	P]

Results

Table 1

Volume of pipette used = $25.0 + \frac{25}{25.00}$ cm³. (½ mark)

Titration number	1	2	3
Final burette reading (cm ³)	13.201	25.70×	38.30×
Initial burette reading (cm ³)	0.501	13.200	25.704
Volume of FA1 used (cm ³)	12.701	12.50x	12.60

Centre Range ±3.00 (9.50 - 15.50) (41/2 marks)

(a)	(i)	Record the volumes of FA1 used for calculating t	the average
		volume.	(½ mark)
		12.50, 12.60 4 (3)	am3

(ii)	Calculate the average volume of FA1 used.	(2½ marks)
------	---	------------

		+0.1	スシ	
		+02	02	
	2 cm	+0.3	11	
<i>a</i> >	C. I. Jaka the appropriation of	+0.4	0/	
(b)	Calculate the concentration of;	+012	1	

FA4 in mol dm⁻³. $(2\frac{1}{2} \text{ marks})$ (i) (Na = 23; B = 11; O = 16; H = 1)Molar may of Na₂ b₄O₇·10H₂O = (23x2) + (4x11) + (7x16) + (10x18) $= 3829 \ \text{ }$

3829 & borax	Contain I mole	
2.49 I boax	Contain I mole Contain (1 x 2.4) m	oles
٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠	- 0.00628272251 ms	Pos of lovax

250cm3 of FA4 Cont	ain 0.006	28272251 m	fles of borax
1000 cm3 & FA4 Con	tain (0,0062	827225 100	D) under Japan
	-1	0010	01-3 (2-3)
	= 0.0251	3089095 ms	Idm C
			(21/ 1-2
(ii) FAI in mol dm ⁻³ .	0.0251308900	5 moles of bo	(3½ marks)
25 cm 3 FAzz Contain	(D.025/3089001	x25 moles o	f borax
	0.0006287	7225 notes	f bora X
Inote of ByO7 react	3 with 2 me	Per of HT	or HCl
0.00062827225 notes J	B407 (bonx)	read with	(2×0,00062827225
12.55 cm3 of FAT Contain			
1000 cm3 of FAI Conte	un (0.001250	5445 X1000)	moles of HCI and
	=0:100.	12306773 m	sldm3
PART III Procedure			(32)
Pipette 25.0 cm ³ (or 20.0 cm ³)	of FA2 into a co	nical flask, add	6.0 cm ³
of FA3, shake and allow to stan phenolphthalein indicator and ti			
until the end-point. Repeat the			
Record your results in table 2.		i nor 🐧	
Results Table 2		Awar 25	d for
Volume of pipette used =	25.0 2	+ (3) 25 cm	13. (½ mark)
Titration number	1	2	3
Final burette reading (cm ³)	16.004	31.104	46.204
Initial burette reading (cm ³)	0.704	16.001	31.104
Volume of FA1 used (cm ³)	15:30	15.10	15.104
Centre Ronge +3.00 (12.30 1	8.30) (4	(4½ marks)

(a) (1) Record the volumes of FA1 used for calculating the average
volume. (½ mark)
15.10 , 15.10 \downarrow $\frac{1}{2}$ cm ³ .
(ii) Calculate the average volume of FA1 used. (2½ marks)
Naca(1) (15:10 + 15:10)
Award $\frac{1}{2}$ $\frac{15.10 + 15.10}{2} = 15.10 = 2\frac{1}{2}$ cm ³ .
the working to 1 22
(b) Calculate the number of moles of; $\frac{\pm 0.2}{\pm 0.3}$ $\frac{0.2}{1\frac{1}{2}}$
(b) Calculate the number of moles of; ± 0.3 $1\frac{1}{2}$ (01 mark) (i) hydrochloric acid that reacted. ± 0.4 $\frac{1}{2}$ $\frac{1}{2}$
1000 cm3 of FAI Contain 0.10012306773 moles of HCl and
15.10cm] FAI Cortain (0.10012306773X15.10) rester of HCl and = 0.001511858324 rester of HCl and
- 0.0015/1858321 rustes & HCl and
(02 marks)
(ii) sodium hydroxide that reacted. (02 marks)
NaOH@9 + $HCl@9 \longrightarrow NaCl@9 + H2OU$
1 mole of HClacid reacts inthe I note of NaOH (02)
a coltiletaza maes of HCl and react with (1 x0,001511000)
= 0.00151185832 mes of NaOH
143.0
(c) Determine the mass of; (2½ marks)
(i) sodium hydroxide in FA2 in grammes per litre. (2½ marks)
(i) sodium hydroxide in FA2 in grammes per litte. (i) sodium hydroxide in grammes per litte. (i)
1000cm3 of FAZ Contain 25.
= 0.0604743328 mules of NaOH
= 0.0604743328 moles f NaOH = (23x1) + (16x1) + (1x1) = 409 + (21x1) + (16x1) + (1
Motor mass of the weighs 409 Lt
mole of NaOH weigh (10 X 0 0604743328) 9
0.0604743528 more 2:4189.7.91 mes per litre (01 mark)
0.0604743328 moles of NaOH weight (4000000000000000000000000000000000000
CALLER COCKING COLORS
= 2.58(03.9.1
Turn Over

2. You are provided with substance X which contains two cations and two anions. Carry out the following tests to identify the cations and anions present in X. Identify any gas(es) evolved.

Record your observations and deductions in table 3.

(30 marks)

Table 3

	TESTS	OBSERVATIONS	DEDUCTIONS
(a)	Heat two spatula end-fuls of X in a dry test tube	A Colouries gas That	Non-transition Cottons
	strongly until there is no further change.	milky and moist	CO2 gas evolved;
A - 2	DR.	blue litmus paper red A colorless progent gas that	CO3 - C204, CH3cco,
j	1 de lognore	and aidified the liters presented	HCOZ D SOzigas evalved; SOZ or
	502 ga	A reddish boxun solid	P60, P62+
		and turns yellow on cooling	
	to the total	30,12	HOME CH
		Branch Bar Jak	
(b)	To two spatula end-fuls of	0 11 11 15 0 1	
(0)	X in a test tube, add 4 cm ³	partially dissolves to	29 T 2
		form;	
	of distilled water, shake and filter.	, ,	
		A Colourless filtrates	Non-transition
	Keep both the filtrate and the residue.	11.10.	metal extrôns
	Divide the filtrate into	de la Miller de la marchina della ma	1
	Albana mantiana		112
	potentials.	A white residue	Non-tigusition
	A CONTRACTOR	11111 41711 1.2	Ghous
		e to a self-one il	
(i)	To the first portion,	and the state had been	
	add 2 – 3 drops of	A white precipitate	0.02-
	barium nitrate solution	CDII X good watt -	4204 100
	followed by dilute nitric	A white precipitate Soluble in acid with- out efervescence	C204 por (1)
	acid until in excess.	out eferverance	1303

	TESTS		
(ii	of the second portion, add 3-4 drops of interest	OBSERVATIONS	DEDUCTIONS
(iii)		Effervescence of a colourless blue light paper red and bleecles it	SO ₃ t (01) SO ₂ gga evolved; SO ₃ reonfirmed
(c)	Wash the residue in (b) with little distilled water and dissolve it in dilute nitric acid. Add dilute sodium hydroxide solution drop-wise until in excess and then filter. Keep the residue for use in part (e).	audified potassium permangamenta poetution from purple to Estourtess Effervescence of a colourless gas that turns most blue litmus paper red and lime water milk A Colourless solution formed A white precipitate insolute A Colourless filtrate	CO244/23; CO3-Cotfirmed Zn2+, Pb2+, Al3+, Sn2+, Sn4+, Mg2+, Ca2+, B2+ Mg2+, Ca2+ or Ba2+ Zn2+, Pb2+, Al3+, Sn2+, Sn4+, Sn2+, Sn2+,
(d)	To the filtrate from part (c), add dilute nitric acid drop-wise until the solution is just acidic. Divide the solution into four portions.	A white resistance A white precipitate Solubland to form a colourless solution	Mg2t Ca2t or Ba2t Pb2t Al3t, Zn2t, Sn2t or Sn4t
(i)	To the first portion of the acidified solution, add dilute sodium hydroxide solution drop-wise until in excess.	A white procipitate Solublet to form a Colorden Solution	Pb2+ Al3+, Zn2+ Sn2+ or Sn4+

TESTS	OBSERVATIONS	DEDUCTIONS
(ii) To the second portion of the acidified solution, add dilute ammonia solution drop-wise until in excess.	A white precipitate involuble	Pb2+, Al2+, Sn2+ or Sn4+
		All many
(iii) To the third portion of the acidified solution, add 2-3 drops of dilute	A white precipitate	Pb2+
sulphuric acid.		
(iv) Use the fourth portion of the acidified solution to carry out a test of your own choice to confirm one of the cations in X.		at
Test: 3 drops of potassium todide are formed added	A yellow precipitate	Pb2+ aprifirmed
or 3 doss of potarium chromate (VI) Solution are added followed be dilite Sidium Rydrophide Solut districte until in excess	fullovide flips to for	Pb2+ Confirmed.
(e) Wash the residue from part (c) with dilute sodium hydroxide, transfer it into a test tube, add dilute nitric acid and shake to dissolve. Divide the resulting solution into four portions.	sissolves to form a colourless solution	Mg ²⁺ , Ca ²⁺ or Ba ²⁺ , Col
	In hymothy	
(i) To the first portion, add dilute sodium hydroxide solution drop-wise until in excess.	A whiter precipi tate insolubler	Mg ²⁺ , Ca ²⁺ or (1)

add dilute ammonia solution drop-wise until in excess. A white prespitate mg2t or Ba2t (12) (iii) To the third portion, add 3-4 drops of sodium sulphate solution. A white prespitate mg2t or Ba2t (12) (iv) Use the fourth portion to carry out a test of your own choice to confirm the second cation in X. Test: 3 drops of sodium Test: 4 white prespitate Ba2t Color of Ba2t A white prespitate Ba2t Color of Ba2t Colo	TESTS To the second	OBSERVATIONS	DEDUCTIONS
3-4 drops of sodium sulphate solution. (iv) Use the fourth portion to carry out a test of your own choice to confirm the second cation in X. Test: 3 drops of sodium A white precipitate Ba2+ Chometa(VI) Solution are added followed by dilute Godium hydroxide solution drop size A white precipitate Ba2+ Colin partificate Insoluble tim sodium Confirmed Confirmed Confirmed	solution drop-wise until in		
carry out a test of your own choice to confirm the second cation in X. Test: 3 drops of potassium chromate(VI) Solution are added followed by dilute Sodium Lydroxide Solution drop rice Carry out a test of your own and solve the second cation in X. Test: 1 drops of potassium Lydroxide Solution drop rice Confirmed Confirmed Confirmed	3-4 drops of sodium sulphate solution.	A white pecipitate	Ba2+
own choice to confirm the second cation in X. Test: 3 drops of potassium chomate(VI) Solution are added followed by dilute Godium Lydroxide Solution dopine Godium Lydroxide Solution dopine	(iv) Use the fourth portion to carry out a test of your	,	, in
added followed by dilute hydroxide white Confirmed Confirmed Confirmed	own choice to confirm the second cation in X.		
Sodium Lydoxide Solution doppine	Chamate (VI) Solution are	tellow patripitate insoluble in sodium Lydroxide which	Ba2+ Confirmed
0. 61.		ice In the second	

the followed by etheronic acicles the followed by etheronic acicles the followed by etheronic acicles and $Ba^{2+}e(iv)$ and $Ba^{2+}e(iv)$ (ii) The anions in X are SO_3^{2-} billip and $CO_3^{2-}e(iv)$

3. You are provided with substance M, which is an organic compound. You are required to carry out the tests in table 4 and determine the nature of M.

Record your observations and deductions in the table.

(20 marks)

Table 4

	TESTS	OBSERVATIONS	DEDUCTIONS
(a)	Burn a small amount of M on a spatula-end or in a porcelain dish.	Bourns with a yellow non-sorty flame	Aliphatic saturated Compound with lew Corton Content present
(b)	To 1cm ³ of M in a test tube, add 2cm ³ of distilled water and shake. Test the mixture with litmus paper.	Miscible with water to form a colourless solution. The struction lass no effect on both blue and red litmus papers	Polar diplotic Compound with low medecular mass present Neutral Compound present Garbonyls or alcohols present.
(c)	To 0.5 cm ³ of M, add one spatula end-ful of solid sodium carbonate.	No observable change it	Carboxylic and absent
(d)	To 0.5 cm ³ of M, add 2-3 drops of neutral iron(III) chloride solution.	No observable jehonge	Phenol jabrent
(e)	To about 0.5 cm ³ of M, add 2-3 drops of Brady's reagent.	No observable change it	Carbonyl compound about
(f)	To 3 cm ³ of M, add 2-3 drops of acidified potassium dichromate solution and warm. Divide the resultant solution into two portions.	An orange solution turns green	A reducing Compound present, Primary or Accordany alcohol present

	TESTS	OBSERVATIONS	DEDUCTIONS
(i)	To the first portion, add 2-3 drops of Brady's reagent.	A Hellow precipitate	Carbonyl Compound formed from an exidation of primary or secondary alcohol
(ii)	To the second portion, add 1 cm ³ of Fehling's solution and heat.	No observable change d'	Aldehyde not formed; Secondary alcohol Oxidised to a arketone.
(g)	To about 1 cm ³ of M, add an equal volume of ethanoic acid followed by 2-3 drops of concentrated sulphuric acid and warm the mixture.	sweet fruity Small	Ester formed; Cecondary alcohol Confirmed present
(h)	To about 1 cm ³ of M, add 2 cm ³ of iodine solution and shake to mix, then add dilute sodium hydroxide solution drop-wise until the brown colour of iodine is just discharged. Allow to stand.	A tellow precipitate formed	CHIz formed; A secondary alcohol with a teethyl group attached on Carbon Comying a hydroxyl- group Probable structure; CH3-C-R

(1)	Describe the nature of M.	1
	M is an aliphatic Secondary alcoh	of with
	· ·	
	a nothyl group attacked on carbon 9H a hydroxyl group that is CH3-C-1	1
	a hydroxy) group 1147 H C113 C-1	
	ires	