- 1. Reflexive, symmetric, transitive.
- **2.** Not reflexive $(\neg(aRa))$, not symmetric $(aRb \land \neg(bRa))$, transitive.
- **3.** Not reflexive $(\neg(aRa))$, not symmetric $(aRb \land \neg(bRa))$, not transitive $(cRb \land bRc \land \neg(cRc))$.
- 4. Reflexive, symmetric, transitive.
- **5.** Not reflexive $(\neg(1R1))$, symmetric, transitive.
- **6.** Reflexive, symmetric, transitive. The relation R on \mathbb{Z} is =.

7.

Transitive

	$R = \varnothing$	$R = A \times A$	$R = \{(x, y) \in A$	$\times A : a \neq b \}$	$R = \{$	$(a,a) \in A \times A\}$	$R = \{(a, b), (a, a)\}$	$R = \{(a, b), (b, b)\}$
Reflexive	F	Т	F			Т	F	F
Symmetric	${ m T}$	Т	F			${ m T}$	F	F
Transitive	${ m T}$	Т	Т			${ m T}$	T	Т
	$R = \{(a$	$(a,b),(b,a)\}$	$R = \{(a,a), (b,a)$	$R = \{(a, a),$	(b,b) }			
Reflexive		F	F	Т				
Symmetric		T	\mathbf{F}	${ m T}$				

Т

- **8.** $R = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : |x-y| < 1\}$. Reflexive, symmetric, transitive. The relation R on \mathbb{Z} is =.
- **9.** $R = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x \equiv y \pmod{2}\}$. Reflexive, symmetric, transitive. The relation R on \mathbb{Z} is 2|(x-y).
- **10.** Not reflexive $(\forall x \in A, (x, x) \notin \emptyset)$, symmetric, transitive.
- 11. Reflexive, symmetric, transitive.

 \mathbf{F}

12. Proposition The relation | (divides) on the set \mathbb{Z} is reflexive and transitive.

Т

Proof.

First we show that the relation is reflexive. Let $x \in \mathbb{Z}$, and observe that x = x(1), so x|x by def. of divisibility. Thus | is reflexive.

Next we show that the relation is transitive. Suppose x|y and y|z for $y, z \in \mathbb{Z}$. Then y = xa for any $a \in \mathbb{Z}$. It follows that xa|z, so z = xab for some $b \in \mathbb{Z}$. Thus x|z, which means | is transitive.

Therefore \mid on the set \mathbb{Z} is reflexive and transitive.

13. Proposition The relation $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x - y \in \mathbb{Z}\}$ on \mathbb{R} is reflexive, symmetric and transitive.

Proof.

First we show that the relation is reflexive. Let $x \in \mathbb{R}$. Observe that x - x = 0, so $x - x \in \mathbb{Z}$ and consequently xRx. Thus R is reflexive.

Next we show that the relation is symmetric. Suppose xRy for some $y \in \mathbb{R}$, which means x - y = a for any $a \in \mathbb{Z}$. Multiplying both sides by -1 gives y - x = -a. Then $y - x \in \mathbb{Z}$, which implies yRx. Thus R is symmetric.

Finally we show that the relation is transitive. Suppose xRy and yRz for any $z \in \mathbb{R}$. Then x - y = a and y - z = c for any $c \in \mathbb{Z}$. Adding the two equations, we get (x - y) + (y - z) = a + b so x - z = a + b. Then $x - z \in \mathbb{Z}$, which implies xRz. Thus R is transitive.

Therefore $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x - y \in \mathbb{Z}\}$ on \mathbb{R} is reflexive, symmetric and transitive.

14. Proposition Suppose R is a symmetric and transitive relation on a set A. If there exists an element $a \in A$ for which aRx for all $x \in A$, then R is reflexive.

Proof.

Suppose there exists $a \in A$ for which aRx for all $x \in A$. Since R is symmetric, xRa and aRx. Since R is transitive, xRx. Thus R is reflexive. Therefore R is reflexive on set A if R is symmetric and transitive, and there exists $a \in A$ for which aRx for all $x \in A$.

15. Conjecture If a relation is symmetric and transitive, then it is also reflexive.

Disroof.

This conjecture is false. We show this with a counterexample. Let $A = \{a, b, c\}$ and $R = \{(a, b), (b, a), (a, a), (b, b)\}$ and $x, y \in A$. Observe that xRy implies yRx, thus R is symmetric. Also xRy and yRx implies xRx, thus R is transitive. But it is not the case that cRc, thus R is not reflexive. \blacksquare

16. Proposition Let R be a relation on \mathbb{Z} such that xRy if and only if $x^2 \equiv y^2 \pmod{4}$. Then R is reflexive, symmetric and transitive.

Proof.

First we show that the relation is reflexive. Let $x \in \mathbb{Z}$. Observe that 4|0 implies $4|(x^2 - x^2)$ by def. of divisibility, so $x^2 \equiv x^2 \pmod{4}$ by def. of congruence modulo 4. Thus R is reflexive.

Next we show that the relation is symmetric. Suppose xRy for any $y \in \mathbb{Z}$. It follows that $x^2 \equiv y^2 \pmod{4}$. Then $x^2 = 4a + c$ and $y^2 = 4b + c$ for some $a, b, c \in \mathbb{Z}$ where $0 \le c < 4$ by def. of division algorithm. Solving for c, we get $x^2 - 4a = y^2 - 4b$, so $x^2 - y^2 = 4a - 4b$. Multiplying both sides by -1, we get $y^2 - x^2 = 4b - 4a$, thus $4|(y^2 - x^2)$. Thus $y^2 \equiv x^2 \pmod{4}$, which implies yRx and so R is symmetric.

Finally we show that R is transitive. Suppose xRy and yRz for any $z \in \mathbb{Z}$. Then $x^2 \equiv y^2 \pmod 4$ and $y^2 \equiv z^2 \pmod 4$, which implies $4|(x^2-y^2)$ and $4|(y^2-z^2)$ and consequently $x^2-y^2=4s$ and $y^2-z^2=4t$ for some $s,t\in\mathbb{Z}$. Adding the two equations, we get $(x^2-y^2)+(y^2-z^2)=4s+4t$, so $x^2-z^2=4(s+t)$. Thus $4|(x^2-z^2)$, which implies $x^2\equiv z^2 \pmod 4$. Since xRz, it follows that R is transitive.

Therefore the relation R on Z such that xRy if and only if $x^2 \equiv y^2 \pmod{4}$ is reflexive, symmetric and transitive.

17. Proposition Let R be a relation on \mathbb{Z} such that xRy if and only if $|x-y| \leq 1$. Then R is reflexive and symmetric, but not transitive.

Proof.

First we show that the relation is reflexive. Let $x \in \mathbb{Z}$. Since $|x-x| = 0 \le 1$, it follows that xRx. Thus R is reflexive.

Next we show that the relation is symmetric. Suppose xRy for any $y \in \mathbb{Z}$. Observe that $|x-y| \le 1$ implies that $-1 \le x-y \le 1$. Multiplying all sides by -1 we get $1 \ge y-x \ge -1$, which implies that $|y-x| \le 1$. It follows that yRx, thus R is symmetric.

Finally, we show that the relation is not transitive with a counterexample. Observe that (-2)R(-1) and (-1)R0, but it is not the case that (-2)R0. Thus there exists some $a, b, c \in \mathbb{Z}$ for which aRb and bRc but not aRc, which means R is not transitive.

Therefore the relation R on \mathbb{Z} such that xRy if and only if $|x-y| \leq 1$ is reflexive and symmetric but not transitive.

18.

	$R = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : 2 a \wedge 2 b\}$		
Reflexive	F	Т	F
Symmetric	Т	$\mid T \mid$	Γ
Transitive	T	F	Т