Introduction to Relational Databases

Toni Espinosa

Departament of Computer Architecture and Operating Systems, UAB

Outline

- What is a database?
- Tables and relations
- The entity-relationship concept
- Database design from entities and relationships
- Tables and primary keys

What is a database?

- A collection of data
- A set of rules to manipulate data
- A method to mold information into knowledge
 - Is a yellow pages book a database?
 - Is a yellow pages phone service a database?

Why are databases relevant?

- Provide means of consistently extracting knowledge from data
- Solution to manipulate large data sets efficiently
- Can integrate multiple data sources

Why scientific relational databases?

- Large collections of annotated data
- Public databases provide cross-links to other databases
- Individual research lab databases need to integrate public data of interest
- Human activity is constantly being measured and stored

How can a database be useful?

- Provide data analysis language and tools
- What if we used folders and Excel files for our data?
- "Data Analysts" phone number in yellow pages
 - Manually: Look for D pages, then A, then T, ...
 - Linux: grep "data analysts" /tmp/yellow_pages/*.*
 - DB: SELECT * FROM yellow_pages
 WHERE profession="data analyst"

Searches are usually complex

Find all data analysts with experience in Linux:

- Manually: read all descriptions of all data analysts
- Linux: program that reads all yellow_pages files to extract lines with data analysts then find features
- Database
 - SELECT last name
 - FROM yellow pages
 - WHERE skills LIKE "%linux%"

Objectives of learning DB systems

- Conceptualize data in terms of relations
- Design/understand relational databases
- use SQL to build and manage databases
- use SQL language to extract data from databases

Flat files vs relational DB

- Flat files use delimited ad-hoc formats to describe data and categories item by item
 - Flat files or custom formats require specific parsers and filters (usually done in Python ->JSON)
- Relational databases store data in terms of their relationship to each other
 - A simplified data manipulation language (DML) can extract information from any database with any design

https://en.wikipedia.org/wiki/Data_manipulation_language

Typical format: JSON (source: google maps)

```
"markers": [
  "name": "Rixos The Palm Dubai",
  "location": [25.1212, 55.1535],
  "name": "Shangri-La Hotel",
  "location": [25.2084, 55.2719]
```

GenBank format

```
LOCUS
            SCU49845
                         5028 bp
                                     DNA
                                                     PLN
                                                               21-JUN-1999
            Saccharomyces cerevisiae TCP1-beta gene, partial cds, and Ax12p
DEFINITION
            (AXL2) and Rev7p (REV7) genes, complete cds.
ACCESSION
            U49845
VERSION
            U49845.1 GI:1293613
KEYWORDS
            Saccharomyces cerevisiae (baker's yeast)
SOURCE
            Saccharomyces cerevisiae
  ORGANISM
            Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes;
            Saccharomycetales; Saccharomycetaceae; Saccharomyces.
            1 (bases 1 to 5028)
REFERENCE
            Torpey, L.E., Gibbs, P.E., Nelson, J. and Lawrence, C.W.
  AUTHORS
            Cloning and sequence of REV7, a gene whose function is required for
  TITLE
            DNA damage-induced mutagenesis in Saccharomyces cerevisiae
  JOURNAL
            Yeast 10 (11), 1503-1509 (1994)
  PUBMED
            7871890
REFERENCE
            2 (bases 1 to 5028)
            Roemer, T., Madden, K., Chang, J. and Snyder, M.
  AUTHORS
            Selection of axial growth sites in yeast requires Axl2p, a novel
  TITLE
            plasma membrane glycoprotein
            Genes Dev. 10 (7), 777-793 (1996)
  JOURNAL
 PUBMED
            8846915
REFERENCE
            3 (bases 1 to 5028)
  AUTHORS
            Roemer, T.
  TITLE
            Direct Submission
            Submitted (22-FEB-1996) Terry Roemer, Biology, Yale University, New
  JOURNAL
            Haven, CT, USA
                     Location/Qualifiers
FEATURES
     source
                     /organism="Saccharomyces cerevisiae"
                     /db xref="taxon:4932"
                     /chromosome="IX"
                     /map="9"
     CDS
                     <1..206
                     /codon start=3
                     /product="TCP1-beta"
```

/protein id="AAA98665.1"

But flat files are not relational

Mix of content and structure:

- Data type is part of the data
- Record order is important
- Records contain duplicated data items:
 - source/organism info in genbank
- Some records are hierarchical
 - Records contain multiple subrecords (authors)
- There is an implicit use of a key only clear to experts

Relational databases

- Build data management system on top of data entities relationships: ready for new data adquisition
- Databases are made of tables and links between them
- A data language is used for querying the database (SQL /sequel/)
- The system that manages the tables and links is called a Data Base Management System (DBMS)

DBMS ACID

ACID model of databases

- Atomicity: All transactions proceed or fail. "All or nothing"
- Consistency: Only valid data can be part of the database
- Isolation: Any concurrent execution of transactions will produce the same result as generating them one after the other
- **Durability**: Once a transaction is committed, it will remain so

even after any error or problem

Well known DBMS

- MySQL/MariaDB
 - World most popular DBMS
 - Popular in open source LAMP software stack: now mariadb.org
 - Property of Oracle since 2009
- PostgresSQL
 - Open Source DMBS
 - Large Linux Support, MacOS since Lion
 - Object Oriented
- Oracle
 - High end DBMS for complex data models
 - Huge amount of available functionality
 - License is around \$40K per CPU
 - Evaluation purposes is free

Data conceptualization: from data to DB

Phone book application data model

Structuring data into tables

- Data is stored in tables with multiple columns (attributes)
- Each record is a row of our table (tuple)

Attributes

First name	Last name	
John	Smith	
David Tu	oles Waterson	
Andrew	Locke	

What's in a table?

- Tables are relations where operations are applied to
- All rows should be different
- Each attribute for a tuple has only one value
- Tuples within a table are not sorted
- Each tuple is identified by a unique number named Primary Key

ID	First name	Last name
1	John	Smith
2	David	Waterson
3	Andrew	Locke

Database basic design principles

How do we create a database from a given data source?

- 1. Find out the data elements: the entities
- 2. Draw relationships between entities
- Make schema <u>simple</u>
- 4. Avoid redundancy
- 5. Make sure the design describes the data <u>accurately</u>

Database table design example

Entities become our first tables

Entity-relationships to DB tables

What have we done: Entity-Relationship Diagram

- 1. Identify data attributes
- 2. Conceptualize entities by grouping related attributes
- Identify relationships/links
- 4. Draw preliminary Entity-Relationship diagram
- 5. Add cardinalities and references

WORK!: Normalizing our author data

Article data set review

Post date: 24 Jan 2017

Content type: Article

Author: Stefano Maffulli

Title: Maffulli, Brotli: A new compression algorithm for

faster Internet

Comment count: 12

Path:/article/17/1/brotli-compression-algorithm

Tags: Internet

Word count: 590

Objective: extract a database design from a flat data file

Which tables, attributes, relationships?

Which of these features are related?

Post date: 24 Jan 2017

Content type: Article

Author: Stefano Maffulli

Title: Maffulli, Brotli: A new compression algorithm for

faster Internet

Comment count: 12

Path:/article/17/1/brotli-compression-algorithm

Tags: Internet

Word count: 590

Which features are related?

- Post date: 24 Jan 2017
- Content type: Article, Poll
- Author: Stefano Maffulli
- Title: Brotli: A new compression algorithm for faster Internet
- Comment count: 12
- Path:/article/17/1/brotli-compression-algorithm
- Tags: Internet, Business, Programming
- Word count: 590

First step: identify entities and attributes

- Date, title, comment count, word count, path
 - describe characteristics of the post
- Content type
 - Defines a category of different content
- Authors
 - Name of authors
- Tags
 - Defines a category of tags for an article

Second step: can you name entities from the list? A <entity> is defined by: <attributes>

- Date, title, comment count, word count, path
 - describe characteristics of the post
- Content type
 - Defines a category of different content
- Authors
 - Name of authors
- Tags
 - Defines a category of tags for an article

2nd step: identify entities by grouping attributes

- A post is described by:
 - A title, counts, a date of creation and a path
- Content type is described by:
 - A list of content categories
- Authors are described by:
 - Name and surname of authors
- Tags are described by
 - A list of text labels

Can you draw individual entities and their links?

3rd step: draw individual entities

Which are the relationships between our entities?

Draw entity relationships

Add cardinalities and references

- One type category is associated to one type Id: 1->1
- One type category can be found in many posts: 1->n
- Each individual post contains just one type: 1->1

Can you draw relationship cardinalities?

Add cardinalities and references

Draw entity attributes

First Entity-Relationship diagram

Summary

- Databases follow ACID design principles
- Databases are made of tables that describe relations
- Relations are entities that have attributes and tuples
- Databases can be designed from Entity-Relationship diagrams that are easily converted to tables
- Primary keys define unique individual tuples and represent links between tables

Exercise: design your own database

GeneName	GeneDescript	GeneBankId		
BRCA1 GBE1	Collagen Collagen	L02870 S75295		
Locusid	LocusDescr	GeneBankId		
1294 2632	Glucan Glucan	L02870 S75295		
Tissue	Experiment	Value	SampleId	
Liver Liver	1 1	12 67	sample1 sample256	
GO ID	GO Descr	GeneBankId		
0005202 0003844	Serine Proteine Glucan Enzyme	L02870 S75295		
Experiment	GeneBankId	SampleId	Species	
1 1	L02870 L02870	Sample1 sample256	Human Human	

Some nomenclature

- Gene Ontology: described function database
 - Reference: Donna Magglot: "Gene: a directory of genes". The NCBI Handbook. http://www.ncbi.nlm.nih.gov/books/NBK21085

List of attributes

- GeneName, GeneDescription, GeneBankId
- LocusId, LocusDescription, GenBankId
- GO ID, GO Description, GeneBankId
- Tissue, Experiment, Species, Sample Id, GeneBankId

Group attributes to find entities

- Gene descriptions
 - Name, description, GenBankId
- Ontologies
 - GO Id, GO description
- Locus
 - Locus id, locus description
- Experiment data
 - Sample species, Experiment number, expression value, tissue

Entities of our diagram

Draw entity relationships in diagram

Entity-Relationship diagram

E-R diagram

Entities and relationships

- Table Ontologies is not well normalized: descriptions are repeated for some ontology terms
- How do we decide what to split out?
 - Try to identify entities already existing within the data
 - Imagine all possible relationships between them

E-R analysis of ontologies table

- Entities: Genes and GO Id identification numbers
- Relationships
 - one gene can have many ontology annotations
 - one ontology annotation has to one annotation GO id
- Create two tables: ontologies and GO descriptions

Redesign E-R graph for GO_descr

E-R new design

