Analyzing US Census Data with tidycensus

Kyle Walker Texas Christian University February 24, 2022

What you'll learn

Part 1: an introduction to tidycensus

- Getting started with R and the Census API
- Requesting data from the decennial US Census and American Community Survey
- Customizing Census data outputs
- Analyzing data with tidyverse tools
- Visualizing Census data with ggplot2

What you'll learn

Part 2: mapping US Census data in R

- Understanding "simple feature geometry"
- The **tigris** R package and requesting simple feature geometry with **tidycensus**
- Mapping Census data with tmap
- Map layouts and interactivity
- Advanced topics: coordinate reference systems and "erasing" water area

About me

- Associate Professor of Geography at TCU; spatial data science / R consultant
- Book: <u>Analyzing US Census</u>
 <u>Data: Methods, Maps, and</u>
 <u>Models in R</u>
- PhD from Minnesota;
 undergrad at Oregon (Go Ducks!)
- Twitter: okyle_e_walker

Workshop setup

- Participants new to R / RStudio: visit https://rstudio.cloud/project/3626443
 and sign up for an account (you can authenticate with a Google account).
 This will set you up with a pre-prepared RStudio environment.
- Experienced users familiar with R / RStudio: clone the workshop repository with git clone https://github.com/walkerke/uw-workshop.git and install the required packages in the scripts.
- To get a Census API key, visit https://api.census.gov/data/key_signup.html
 and follow the instructions.

Walkthrough: setting up RStudio Cloud

Part 1: An introduction to tidycensus

The Census API

- The Census Bureau's
 main data download
 interface,
 data.census.gov, is
 powered by the Census
 Application Programming
 Interface (API)
- The API allows for programmatic access to Census data for developers

```
[["NAME", "B01001 001E", "state", "county"],
["Fayette County, Illinois", "21565", "17", "051"],
["Logan County, Illinois", "29003", "17", "107"],
["Saline County, Illinois", "23994", "17", "165"],
["Lake County, Illinois", "701473", "17", "097"],
["Massac County, Illinois", "14219", "17", "127"],
["Cass County, Illinois", "12493", "17", "017"],
["Huntington County, Indiana", "36359", "18", "069"],
["White County, Indiana", "24149", "18", "181"],
["Jay County, Indiana", "20840", "18", "075"],
["Shelby County, Indiana", "44438", "18", "145"],
["Sullivan County, Indiana", "20730", "18", "153"],
["Tippecanoe County, Indiana", "191553", "18", "157"],
["Hamilton County, Indiana", "323117", "18", "057"],
["Bartholomew County, Indiana", "82481", "18", "005"],
["Fulton County, Indiana", "20096", "18", "049"],
["Noble County, Indiana", "47506", "18", "113"],
["Clark County, Indiana", "116507", "18", "019"],
["Hendricks County, Indiana", "163799", "18", "063"],
["Grant County, Indiana", "66452", "18", "053"],
["Jackson County, Indiana", "44025", "18", "071"],
["Owen County, Indiana", "20835", "18", "119"],
["Whitley County, Indiana", "33730", "18", "183"],
["Clinton County, Indiana", "32273", "18", "023"],
["Union County, Indiana", "7113", "18", "161"],
["Dearborn County, Indiana", "49479", "18", "029"],
["Lawrence County, Indiana", "45548", "18", "093"],
["Perry County, Indiana", "19102", "18", "123"],
["Posey County, Indiana", "25560", "18", "129"],
["Carroll County, Indiana", "20074", "18", "015"],
["Fountain County, Indiana", "16430", "18", "045"],
["Starke County, Indiana","22952","18","149"],
```

The tidycensus R package

- First released in 2017,
 tidycensus is an R package that helps users acquire
 pre-formatted Census data
- Over 234,000 downloads from the RStudio CRAN mirror since its debut

The tidycensus R package

- Original motivation: streamline the process of getting decennial Census / ACS data with geometry (GIS data) pre-joined
- Core functions: get_decennial() and get acs()
- The project has since evolved to accommodate ACS microdata, Census population estimates, and migration flows data as well

Demo: getting started with tidycensus

Census geography

Census variables and datasets

- While hundreds of datasets are available from the Census API (see the censusapi R package!), tidycensus focuses on a select few, centered around the decennial Census and ACS
- To look up variables for a given dataset, use the
 load_variables() function
 and then browse the result in
 RStudio with View()

name [‡]	label	concept ÷
B01001_001	Estimate!!Total:	SEX BY AGE
B01001_002	Estimate!!Total:!!Male:	SEX BY AGE
B01001_003	Estimate!!Total:!!Male:!!Under 5 years	SEX BY AGE
B01001_004	Estimate!!Total:!!Male:!!5 to 9 years	SEX BY AGE
B01001_005	Estimate!!Total:!!Male:!!10 to 14 years	SEX BY AGE
B01001_006	Estimate!!Total:!!Male:!!15 to 17 years	SEX BY AGE
B01001_007	Estimate!!Total:!!Male:!!18 and 19 years	SEX BY AGE
B01001_008	Estimate!!Total:!!Male:!!20 years	SEX BY AGE
B01001_009	Estimate!!Total:!!Male:!!21 years	SEX BY AGE
B01001_010	Estimate!!Total:!!Male:!!22 to 24 years	SEX BY AGE
B01001_011	Estimate!!Total:!!Male:!!25 to 29 years	SEX BY AGE
B01001_012	Estimate!!Total:!!Male:!!30 to 34 years	SEX BY AGE
B01001_013	Estimate!!Total:!!Male:!!35 to 39 years	SEX BY AGE
B01001_014	Estimate!!Total:!!Male:!!40 to 44 years	SEX BY AGE
B01001_015	Estimate!!Total:!!Male:!!45 to 49 years	SEX BY AGE
B01001_016	Estimate!!Total:!!Male:!!50 to 54 years	SEX BY AGE
B01001_017	Estimate!!Total:!!Male:!!55 to 59 years	SEX BY AGE
B01001_018	Estimate!!Total:!!Male:!!60 and 61 years	SEX BY AGE
B01001_019	Estimate!!Total:!!Male:!!62 to 64 years	SEX BY AGE
B01001_020	Estimate!!Total:!!Male:!!65 and 66 years	SEX BY AGE
B01001_021	Estimate!!Total:!!Male:!!67 to 69 years	SEX BY AGE
B01001_022	Estimate!!Total:!!Male:!!70 to 74 years	SEX BY AGE
B01001_023	Estimate!!Total:!!Male:!!75 to 79 years	SEX BY AGE
B01001_024	Estimate!!Total:!!Male:!!80 to 84 years	SEX BY AGE
B01001_025	Estimate!!Total:!!Male:!!85 years and over	SEX BY AGE

tidycensus data structure

tidycensus users can request data in two output formats:

- output = "tidy" (the
 default), which returns data in
 long form;
- output = "wide", withCensus variables spread acrossthe columns

GEOID ÷	NAME		÷	variable [‡]	estimate [‡]	moe ‡		
53001	Adams Cou	nty, Washir	igton	B19001_001	5973	159		
53001	Adams Cou	nty, Washir	gton	B19001_002	490	147		
53001	Adams Cou	nty, Washir	igton	B19001_003	233	96		
53001	Adams Cou	nty, Washir	gton	B19001_004	294	107		
53001	Adams Cou	nty, Washir	gton	B19001_005	463	150		
53001	Adams Cou	nty, Washir	gton	B19001_006	331	140		
53001	Adams Cou	nty, Washir	igton	B19001_007	203	68		
53001	Adams Cou	nty, Washir	igton	B19001_008	317	120		
53001	Adams County, Washington		igton	B19001_009	479	164		
53001	Adams Cou	nty, Washir	gton	B19001_010	227	102		
53001	Adams County, Washington Adams County, Washington		igton	B19001_011	439	118		
53001	Adams County, Washington		B19001_012	706	163			
53001	Adams Cou	GEOID ^	NAME		\$ B19001	_001E *	B19001_001M *	B19001_002E *
53001	Adams Cou	53001	Adams County, Washington		n	5973	159	490
53001	Adams Cou	53003	Asotin Co	ounty, Washington	า	9101	231	382
		53005	Benton C	county, Washingto	on	72121	607	2999
	NOSP(05/05/05)		ounty, Washingto	on 28384		668	1536	
		53009	Clallam (County, Washingto	on	32958	517	1948
		53011	Clark Co	unty, Washington		174661	837	6070
		53013	Columbia	County, Washing	gton	1795	99	112

Cowlitz County, Washington

Douglas County, Washington

Franklin County, Washington

Garfield County, Washington

Grays Harbor County, Washington

Grant County, Washington

Island County, Washington

Ferry County, Washington

B19001_002M

Demo: geography, variables, and tables in tidycensus

tidycensus and the tidyverse

- The tidyverse: a popular suite of packages for exploratory data analysis / data wrangling maintained by RStudio
- tidycensus was originally developed to help analysts work with Census data in a tidyverse-friendly way

Visualizing US Census data

- Census data can be used to create a wide range of compelling visualizations - see <u>Chapter 4 of Analyzing US</u> <u>Census Data!</u>
- Let's walk through how to use tidyverse tools to create the graphic to the right

Exercises

1. Look up variables from the 2020 decennial Census with

```
load_variables(2020, "pl").
```

- 2. Get a dataset with information on total population and the Hispanic population from the 2020 decennial Census for counties in Washington using appropriate Census variable IDs and get decennial().
- 3. Bonus: try to adapt the code above to find out which county in Washington has the largest Hispanic share of its population in 2020. We'll review after the break!

Part 2: mapping Census data

Exercises #1 and #2

```
library(tidycensus)
library(tidyverse)
vars2020 <- load variables(2020, "pl")</pre>
wa 2020 <- get decennial(
  geography = "county",
  state = "WA",
  variables = c("P2 001N", "P2 002N"),
  year = 2020,
  output = "wide"
```

Exercise #3

```
library(tidycensus)
library(tidyverse)

# Use mutate() to create a new column and arrange() to view
# the top values
wa_pct_hispanic <- wa_2020 %>%
   mutate(percent_hispanic = 100 * (P2_002N / P2_001N)) %>%
   arrange(desc(percent_hispanic))
```

Typical GIS workflows

- The US Census Bureau releases extracts from its TIGER/Line database as shapefiles, which can be downloaded from the Census website
- These shapefiles are typically opened in dedicated GIS software like ArcGIS or QGIS

The tigris R package

- I first developed tigris in 2015 to automate loading of Census shapefiles into R and avoid navigating menus / remembering FIPS codes
- Since then: downloaded over 400,000 times from the RStudio CRAN mirror
- Available datasets include
 Census enumeration areas
 (counties, tracts) as well as
 geographic features like roads
 and water areas

Census geometries in R

- tigris returns Census geographic data as "simple feature geometry", implemented in the sf R package
- Census shapes typically come from the core TIGER/Line shapefiles (the default) or the cartographic boundary shapefiles with the argument cb
 TRUE
- tidycensus users can get
 Census data pre-joined with geometry automatically!

GEOID 0	NAME ÷	total_pop [‡]	hispanic [‡]	geometry
53055	San Juan County, Washington	17788	1298	list(list(c(-122.766567, -122.765633, -122.764552, Q
53031	Jefferson County, Washington	32977	1305	list(list(c(-122.94347, -122.929488, -122.916706, -1 Q
53015	Cowlitz County, Washington	110730	10802	list(list(c(-123.218309, -123.21795, -123.176508, -1 Q
53053	Pierce County, Washington	921130	111811	list(list(c(-122.640638, -122.638649, -122.635884, Q
53061	Snohomish County, Washington	827957	95644	list(list(c(-122.33164, -122.328343, -122.322362, -1 Q
53019	Ferry County, Washington	7178	210	list(list(c(-118.869633, -118.837006, -118.836999, Q
53021	Franklin County, Washington	96749	52445	list(list(c(-119.456993, -119.45319, -119.432409, -1 Q
53073	Whatcom County, Washington	226847	22825	list(list(c(-122.593346, -122.587158, -122.586678, Q
53067	Thurston County, Washington	294793	29024	list(list(c(-123.200888, -123.201013, -123.200041, Q
53071	Walla Walla County, Washington	62584	14206	list(list(c(-119.039918, -119.037218, -119.031961, Q
53045	Mason County, Washington	65726	7595	list(list(c(-123.505916, -123.505917, -123.505923, Q
53029	Island County, Washington	86857	7118	list(list(c(-122.538916, -122.538234, -122.534431, Q
53057	Skagit County, Washington	129523	23792	list(list(c(-122.537676576494, -122.535835, -122.5 Q
53011	Clark County, Washington	503311	58790	list(list(c(-122.795963, -122.785696, -122.785515, Q
53005	Benton County, Washington	206873	49339	list(list(c(-119.875084, -119.874337, -119.874042, Q

Demo: Census geometries in R

Mapping Census data in R

- The ggplot2 and tmap R
 packages are the most popular
 packages for mapping spatial
 data
- Analysts familiar with mapping in a desktop GIS will likely find tmap intuitive
- Maps from data are initialized with tm_shape(), then cartographic design and layout elements are layered on

Customizing map outputs with tmap

- tmap includes a wide range of options for customization of maps, including ColorBrewer color palettes and customizable breaks (e.g. Jenks natural breaks) familiar to GIS users
- Alternative map types including graduate symbol and dot-density maps are also available with tmap
- Convert to an interactive map with tmap_mode("view"); switch back with tmap mode("plot")

Hispanic residents, 2020

Demo: making maps in R with tmap

Advanced workflow: modifying geometries

- For water-rich areas like the Seattle region, shapefiles available from the Census Bureau (even the cartographic boundary files) may be insufficiently detailed
- For example: where is Mercer Island?

Choosing a coordinate reference system

- While the sf R package has functionality for working with spherical geometries, it is often faster to work in a projected coordinate reference system
- The crsuggest R package helps us choose an appropriate CRS, which can be used in a CRS transformation with the st_transform() function

crs_code ‡	crs_name	crs_type ‡	crs_gcs ‡	crs_units ‡
6597	NAD83(2011) / Washington North (ftUS)	projected	6318	us-ft
6596	NAD83(2011) / Washington North	projected	6318	m
3690	NAD83(NSRS2007) / Washington North (ftUS)	projected	4759	us-ft
3689	NAD83(NSRS2007) / Washington North	projected	4759	m
32148	NAD83 / Washington North	projected	4269	m
32048	NAD27 / Washington North	projected	4267	us-ft
2926	NAD83(HARN) / Washington North (ftUS)	projected	4152	us-ft
2855	NAD83(HARN) / Washington North	projected	4152	m
2285	NAD83 / Washington North (ftUS)	projected	4269	us-ft
6599	NAD83(2011) / Washington South (ftUS)	projected	6318	us-ft

Brand-new feature: erase water()

- I just added the erase_water()
 function to tigris, which
 automates the process of
 removing water area from
 geometries in areas like the
 Seattle region
- Removal of large bodies of water from Census polygons (like Lake Washington) can dramatically improve cartographic displays

Demo: advanced geometry workflows with Census data in R

Exercises

- 1. Use your knowledge gained in both parts of this workshop to get spatial Census data for a different location and different Census variable with **tidycensus**.
- 2. Make a static map of that data with **tmap**.
- 3. Make an interactive map of that data with tmap as well!

Thank you!