AR2

Strojno učenje

Detekcija kaskadom boostanih Haarovih klasifikatora

Siniša Šegvić

Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave
Fakultet elektrotehnike i računarstva
Sveučilište u Zagrebu

PLAN

Kombiniranje strojno naučenih algoritama

- 1. Pregled značajnijih pristupa:
 - nezavisno naučeni eksperti (varijante glasanja)
 - višerazinsko učenje (npr: boostanje, kaskadiranje)
 - □ Alpaydin, poglavlje 15
- 2. Postupak Viole i Jonesa:
 - o detekciji kaskadom ojačanih (boostanih) Haarovih klasifikatora
 - P. Viola and M. Jones, Robust Real-Time Face Detection, IJCV04.

UVOD: KONTEKST

Promotrit ćemo jednu uspješnu primjenu boostanja u računalnom vidu

Računalni vid: izvlačenje simboličkih podataka iz slika

- 1. 3D rekonstrukcija
- 2. praćenje objekata kroz slijed slika
- 3. prepoznavanje objekata (koji tip automobila je ispred rampe?)
- 4. detekcija objekata (ima li koje lice na slici?)

Detekcija objekata:

- 1. detekcijom specifičnih geometrijskih struktura: relativno brzo, gubitak informacije
- 2. binarnom klasifikacijom u pokretnom detekcijskom oknu: računski iznimno zahtjevno, prikladno za strojno učenje

UVOD: DETEKCIJA KLASIFIKACIJOM

Ideja: pomicati detekcijsko okno po slici, u svakom položaju pozvati binarni klasifikator

- □ u svakoj slici ima oko 2.5e6 interesantnih lokacija (720*576*60)
- detekcija treba raditi u stvarnom vremenu...

- zbog ogromne računske složenosti,značajke moraju biti jednostavne!
- □ jednostavne značajke ⇒ slabi klasifikatori
- □ logično rješenje: kaskada boostanih slabih klasifikatora!

Što je s jakim klasifikatorima?

 \square ne možemo ih izračunati 2.5e6 puta u $40\,\mathrm{ms...}$

UČENJE: OZNAČAVANJE

HAAR: ZNAČAJKA

Haarove značajke su pogodne za brzinsku obradu:

- $\Box H_i(x, y, sx, sy) = \sum I_{\text{bijeli}} \sum I_{\text{crni}}$
- mogu se vrlo brzo izračunati primjenom integralne slike

Integralna slika u svakom pikselu sadrži integral po pravokutniku čiji drugi vrh je u ishodištu slike:

$$ii(x,y) = \sum_{x' < x,y' < y} i(x',y')$$

Za izračunavanje pravokutnog integrala potrebna su samo 4 pristupa integralnoj slici:

$$D = ii_4 - ii_2 - ii_3 + ii_1$$

HAAR: KLASIFIKATOR

Kako od značajke $H_i(x, y, sx, sy)$ doći do binarnog klasifikatora?

- fiksirati položaj i mjerilo unutar detekcijskog okna (svaki tip značajke inducira velik broj klasifikatora)
- \square testirati vrijednosti značajke parametrima p_j (polaritet) i θ_j (prag)

$$h_j(\mathbf{x}|p_j,\theta_j) = \begin{cases} 1 & \text{ako } p_j f_j(x) < p_j \theta_j, \\ 0 & \text{inače} \end{cases}$$

HAAR: OKNO

Klasifikatore $h_j(\mathbf{x}|p_j,\theta_j)(\mathbf{x})$ evaluiramo u detekcijskom oknu:

- x ... vektor piksela iz detekcijskog okna
- $lue{}$ osnovna veličina okna je $24 imes 24 \Rightarrow$ oko 45000 različitih klasifikatora
- za veća okna skaliramo klasifikatore
 (brže od konstrukcije rezolucijske piramide!)

Viola Jones: Haar (3) 8/15

DETEKCIJA: BOOSTANJE

Slabi Haarovi klasifikatori se kombiniraju u jaki klasifikator boostanjem:

- lacktriangleulaz: označeni skup za učenje (\mathbf{x}_i,y_i) , te željeni broj T
- $lue{}$ incijaliziraju se težine elemenata skupa za učenje w_i
- \Box for t in $\{1,2, ..., T\}$:
 - iscrpnim pretraživanjem pronalazi se klasifikator $h_t(\mathbf{x})$ s najmanjom pogreškom $\epsilon = \sum_i w_i [h_t(\mathbf{x}_i) == y_i]$
 - \square određuju se β_t i $\alpha_t = log(1/\beta_t)$
 - lacktriangle težine w_i se ažuriraju s obzirom na eta_t , te normaliziraju
- konačni jaki klasifikator je:

$$h(\mathbf{x}) = \begin{cases} 1 & \text{ako } \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t, \\ 0 & \text{inače} \end{cases}$$

DETEKCIJA: KASKADIRANJE

Problem: za zadovoljavajuće rezultate treba previše slabih klasifikatora

- □ formiramo binarnu kaskadu: na višim razinama složeniji klasifikatori
- □ jaki klasifikatori se konfiguriraju tako da:
 - 🗖 odbacuju minimalan broj pozitivnih primjera,
 - propuštaju poneki negativni primjer
- na većini lokacija prvi jaki klasifikator daje ispravan neg. odgovor

REZULTATI: DETEKCIJA

Rezultati testiranja detektora na dva različita ispitna skupa:

Skup	Faktor skaliranja	Znakova	Pogodaka	Promašaja	Lažno pozitivnih
			[% ispitni skup]	[% ispitni skup]	[% ispitni skup]
1	1.05	101	96 %	4 %	84 %
1	1.20	101	93 %	7 %	42 %
2	1.05	72	93 %	7 %	163 %
2	1.20	72	90 %	10 %	53 %

Raniji rezultat, 352 slike za učenje:

- □ odziv: 68%
- 🗆 lažne pozitivne detekcije: 46%

REZULTATI: PRIMJERI

REZULTATI: VJ vs HOG SVM

[MunderGavrillaPami06]

REZULTATI: GROUNDTRUTH

[MunderGavrillaPami06]

Intrigantni rezultati:

- □ ROC performansa raste s povećanjem skupa za učenje:
- \square efekti zasićenja nisu zamijećeni ni za N=12.800
- udvostručenje skupa za učenje postiže bolje rezultate od odabira najbolje kombinacije značajka - klasifikator.

REZULTATI: KRAJ