Exercício 1 (c)

Para provar que $f(n) \in O(g(n))$, precisamos encontrar constantes c > 0 e $n_0 > 0$ tais que:

$$0 \le f(n) \le c \cdot g(n)$$
 para todo $n \ge n_0$ (1)

Neste caso, temos:

$$f(n) = \lg n = \log_2 n \tag{2}$$

$$g(n) = \log_{10} n \tag{3}$$

Portanto, precisamos encontrar c>0 e $n_0>0$ tais que:

$$\log_2 n \le c \cdot \log_{10} n \quad \text{para todo } n \ge n_0 \tag{4}$$

Para relacionar $\log_2 n$ e $\log_{10} n$, podemos usar a propriedade de mudança de base dos logaritmos:

$$\log_2 n = \frac{\log_{10} n}{\log_{10} 2} \tag{5}$$

Substituindo na nossa expressão de desigualdade:

$$\frac{\log_{10} n}{\log_{10} 2} \le c \cdot \log_{10} n \tag{6}$$

Para n>1, o valor de $\log_{10}n$ é positivo. Portanto, podemos dividir ambos os lados da inequação por $\log_{10}n$ sem alterar o sentido da desigualdade:

$$\frac{1}{\log_{10} 2} \le c \tag{7}$$

Escolhendo $c=\frac{1}{\log_{10}2}$ e $n_0=2$ (ja que n>1 foi condição para descobrir c), verificamos que $\log_2 n \leq c \cdot \log_{10} n$ para todo $n \geq n_0$. Portanto, $\lg n \in O(\log_{10} n)$.

Exercício 3 (e)

Para mostrar que a afirmação "Se f(n) = O(g(n)), então $2^{f(n)} = O(2^{g(n)})$ " é falsa, vamos construir um contraexemplo.

Considere as funções:

$$f(n) = 2n \tag{8}$$

$$q(n) = n (9)$$

Primeiro, vamos verificar que f(n) = O(g(n)), ou seja, que 2n = O(n). Por definição, precisamos encontrar constantes positivas c e n_0 tais que:

$$2n \le c \cdot n$$
 para todo $n \ge n_0$ (10)

Escolhendo c=2 e $n_0=1$, a desigualdade $2n \leq 2n$ é verdadeira para todo $n \geq 1$. Portanto, f(n) = O(g(n)) é satisfeita.

Agora, vamos verificar se $2^{f(n)} = O(2^{g(n)})$, ou seja, se $2^{2n} = O(2^n)$.

Para isso, precisaríamos encontrar constantes c' e n_0' tais que:

$$2^{2n} \le c' \cdot 2^n \quad \text{para todo } n \ge n_0' \tag{11}$$

Podemos reescrever $2^{2n} = (2^2)^n = (2^n)^2$. Assim:

$$(2^n)^2 \le c' \cdot 2^n \tag{12}$$

Dividindo ambos os lados por 2^n (que é sempre positivo):

$$2^n < c' \tag{13}$$

Como a função 2^n cresce exponencialmente e tende ao infinito quando $n \to \infty$, não existe nenhuma constante finita c' que satisfaça esta desigualdade para todos os valores suficientemente grandes de n.

Portanto, $2^{2n} \neq O(2^n)$, o que mostra que a afirmação original é falsa.

Exercício 4 (a)

Para provar que $\sum_{k=1}^n k^{10} \in \Theta(n^{11})$, precisamos encontrar constantes positivas c_1 , c_2 e n_0 tais que:

$$c_1 \cdot n^{11} \le \sum_{k=1}^{n} k^{10} \le c_2 \cdot n^{11}$$
 para todo $n \ge n_0$ (14)

Primeiro, vamos encontrar o limite superior. Como $k \leq n$ para todo $k \in [1, n]$, temos $k^{10} \le n^{10}$. Assim:

$$\sum_{k=1}^{n} k^{10} \le \sum_{k=1}^{n} n^{10} \tag{15}$$

$$= n \cdot n^{10}$$
 (16)
= n^{11} (17)

$$= n^{11} \tag{17}$$

Portanto, podemos escolher $c_2 = 1$.

Agora, vamos encontrar o limite inferior. Consideremos apenas os termos da segunda metade da soma:

$$\sum_{k=1}^{n} k^{10} \ge \sum_{k=\lceil n/2 \rceil}^{n} k^{10} \tag{18}$$

Para $k \ge \lceil n/2 \rceil \ge n/2$, temos $k^{10} \ge (n/2)^{10}$. O número de termos nesta soma é pelo menos n/2 (para $n \ge 2$). Logo:

$$\sum_{k=\lceil n/2\rceil}^{n} k^{10} \ge \frac{n}{2} \cdot \left(\frac{n}{2}\right)^{10} \tag{19}$$

$$= \frac{n}{2} \cdot \frac{n^{10}}{2^{10}}$$

$$= \frac{n^{11}}{2^{11}}$$
(20)

$$=\frac{n^{11}}{2^{11}}\tag{21}$$

Portanto, podemos escolher $c_1 = \frac{1}{2^{11}} = \frac{1}{2048}$ e $n_0 = 2$. Com essas constantes, verificamos que:

$$\frac{1}{2048}n^{11} \le \sum_{k=1}^{n} k^{10} \le n^{11} \quad \text{para todo } n \ge 2$$
 (22)

Portanto, $\sum_{k=1}^{n} k^{10} \in \Theta(n^{11})$.