Universal gravitation

Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman

March 2, 2016

Announcements

- Clinic hours today: 1:30-5:30
- Computational project 2 next week bring your laptops
- Homework due tomorrow

The conical pendulum

I swing a conical pendulum of length L with angular velocity ω . What angle does the string make with the vertical?

A block on a ramp

A block of mass m_1 rests on a ramp at angle θ ; a weight of mass m_2 hangs over the side of the ramp. The coefficient of kinetic friction is μ_k .

Calculate its acceleration if it:

- ... slides down the ramp $(m_2 \text{ is small})$
- ... is pulled back up the ramp $(m_2 \text{ is large})$

A new force: Gravity, in general

- On Earth all objects experience a gravitational force proportional to their mass:
- \bullet $F_{
 m grav} = mg$, directed down toward the Earth
 - How does this work when you're not on Earth?
 - What determines how big g is?

A brief history of gravity and the heavens

The history here is an interesting insight into the way scientific thought has evolved: "How can we explain the sky?"

- Stars in the sky all seem to move together, but with some "wanderers": planets
 - They appear to move in one direction, but sometimes stop and turn around

• How can we explain this?

A brief history of gravity and the heavens

- Ptolemy: Things go in circles rotating on circles, because circles are perfect, with the Earth at the center
 - "Epicycles" required to make the retrograde motion
- Copernicus: Things go in circles rotating on circles, but with the Earth at the center
 - Relative motion between Earth and planets responsible for retrograde motion
- Brahe: Fantastic measurements of motions of the planets (even more epicycles); geoheliocentrism
- Kepler: Ellipses! No epicycles needed. Laws of planetary motion.
- Galileo: Kinematics; moons of Jupiter; phases of Venus
- Newton: Universal gravitation; dynamics

Newtonian gravity

- All objects stars, planets, apples, people exert forces on each other
- That force is given by

$$F_g = \frac{GMm}{r^2}$$

- Both objects feel the same force, directed toward each other
- Note:

$$a_g = F_g/m = \frac{GM}{r^2}$$

- What is *G*?
- → Fundamental constant of nature that tells us how strong gravity is

Clicker question

What are the units of *G*?

(Remember, it appears in the equation $F_g = \frac{GMm}{r^2}$)

- \bullet a) m/s²
- b) m^2/s^2
- c) $N \cdot m^2/kg^2$
- d) $m^3 kg^{-1}s^{-2}$

Newtonian gravity

- All objects stars, planets, apples, people exert forces on each other
- That force is given by

$$F_g = \frac{GMm}{r^2}$$

- Both objects feel the same force, directed toward each other
- Note:

$$a_g = F_g/m = \frac{GM}{r^2}$$

- What is *G*?
 - Fundamental constant of nature that tells us how strong gravity is

$$G = 6.673 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$$

• This is really, really tiny

Measuring *G*

Measuring *G*

What is the force between a 1kg mass and a 5kg mass that are 5cm apart?

Measuring *G*

What is the force between a 1kg mass and a 5kg mass that are 5cm apart?

Back of the envelope math (in SI units):

$$F_g \approx \frac{(7 \times 10^{-11})(5)(1)}{5 \times 10^{-2}} = 7 \times 10^{-9} \text{ N!}$$

Measuring the mass of the Earth

What is the mass of the Earth?

Measuring the mass of the Earth

What is the mass of the Earth?

We have two expressions for the gravitational force:

- ullet $F_g=mg$, where g is an empirical measurement of Earth's gravity
- $F_g = GMm/r^2$, giving the force between any two objects (not just on Earth

$$F_g = \frac{GMm}{r^2} = mg$$

Measuring the mass of the Earth

What is the mass of the Earth?

We have two expressions for the gravitational force:

- ullet $F_g=mg$, where g is an empirical measurement of Earth's gravity
- $F_g = GMm/r^2$, giving the force between any two objects (not just on Earth

$$F_g = \frac{GMm}{r^2} = mg$$

$$M = \frac{gR^2}{G} = 5.97 \times 10^{24} \text{ kg...}$$

Gravity and circular motion

- Many orbits are nearly circular
- Everything you learned on Tuesday about uniform circular motion still applies
- Weighing the Earth by looking at the Moon:

•
$$F_g = \frac{GM_eM_m}{r^2} = M_m\omega^2 r$$

• These problems are nothing new and nothing hard; it's just a new force

March 2, 2016

$$F_g = \frac{GMm}{r^2}$$

$$F_g = \frac{GMm}{r^2}$$
 $m\omega^2 r = \frac{GMm}{r^2}$

$$F_g = rac{GMm}{r^2}$$
 $m\omega^2 r = rac{GMm}{r^2}$
 $r^3\omega^2 = GM$

$$F_g = rac{GMm}{r^2}$$
 $m\omega^2 r = rac{GMm}{r^2}$
 $r^3\omega^2 = GM$
 $T = rac{2\pi}{\omega} o \omega = rac{2\pi}{T}$

$$F_g = rac{GMm}{r^2}$$
 $m\omega^2 r = rac{GMm}{r^2}$
 $r^3\omega^2 = GM$
 $T = rac{2\pi}{\omega} o \omega = rac{2\pi}{T}$
 $rac{4\pi^2 r^3}{T^2} = GM$

$$F_{g} = \frac{GMm}{r^{2}}$$

$$m\omega^{2}r = \frac{GMm}{r^{2}}$$

$$r^{3}\omega^{2} = GM$$

$$T = \frac{2\pi}{\omega} \to \omega = \frac{2\pi}{T}$$

$$\frac{4\pi^{2}r^{3}}{T^{2}} = GM$$

$$\frac{r^{3}}{T^{2}} = \frac{GM}{4\pi^{2}}$$

A note on Kepler's law

We saw earlier that

$$GM = \frac{4\pi^2 r^3}{T^2}$$

If we're studying the orbital dynamics of the Earth, then it makes sense to choose some different units for time and distance.

- ullet Time: measure in years (T=1 then)
- Distance: measure in AU (r = 1 then)

This means that $GM_{\rm sun}=4\pi^2$; we will use this next week!