Coordinate Geometry Using Matrix Analysis

Haveesh Singirikonda Prashanth Babu

IIT Hyderabad

February 15, 2019

Question

One of the diameters of the circle, given by

$$x^2 + y^2 - 4x + 6y = 12$$

is a chord of the circle S whose centre is at (-3,2). Find the radius of S.

Question in MATRIX Form

One of the diameters of the circle, given by

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} + 2\begin{bmatrix} -2 & 3 \end{bmatrix}\mathbf{X} = 12$$

is a chord of the circle S whose centre is at

$$\begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

Find the radius of S.

Figure

Points on a circle with centre C and radius R would follow

$$(\mathbf{X} - \mathbf{C})^T (\mathbf{X} - \mathbf{C}) = R^2$$

Simplifying it:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mathbf{C}^{\mathsf{T}}\mathbf{C} - \mathbf{C}^{\mathsf{T}}\mathbf{X} - \mathbf{X}^{\mathsf{T}}\mathbf{C} = R^2$$

In this case:

$$\mathbf{C}^{\mathsf{T}}\mathbf{X} = \mathbf{X}^{\mathsf{T}}\mathbf{C}$$

As **X** and **C** are one dimensional arrays.

So the equation of a circle centered at ${\bf C}$ and of radius ${\bf R}$ is

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} - 2\mathbf{C}^{\mathsf{T}}\mathbf{X} = R^2 - \mathbf{C}^{\mathsf{T}}\mathbf{C}$$

Now comparing it with

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} + 2\begin{bmatrix} -2 & 3 \end{bmatrix}\mathbf{X} = 12$$

We get

$$\mathbf{C} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

$$R^2 - \mathbf{C}^\mathsf{T} \mathbf{C} = 12$$

$$R = 5$$

Given that chord of circle S is the diameter of the circle centered at C

 $\boldsymbol{\mathsf{CS}}$ would be perpendicular to the chord of $\boldsymbol{\mathsf{S}}$ i.e, is perpendicular to a diameter of $\boldsymbol{\mathsf{C}}$

To find the points $\bf A$ and $\bf B$, we find the points of intersection of the diameter perpendicular to $\bf SC$ and the circle.

If **D** is the direction vector of **SC**

$$D = S - C$$

$$D = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$$

For the line \boldsymbol{AB} , it's normal \boldsymbol{N} is parallel to \boldsymbol{SC}

So we can take

$$\mathbf{N} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Equation of **AB** is

$$N^TX = p$$

As the centre of circle C passes through this line,

$$N^TC = p$$

$$p = 5$$

Equation of AB

$$(1 -1) X = 5$$

Equation of circle in parametric form is

$$\mathbf{X} = \mathbf{C} + R\mathbf{\Theta}$$

Where

$$\mathbf{\Theta} = egin{pmatrix} \cos heta \ \sin heta \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

Substituting this in the line equation would give us the value of θ at ${\bf A}$ and ${\bf B}$

After substitution we get

$$\mathbf{N}^{\mathsf{T}}\left[\mathbf{C}+R\mathbf{\Theta}\right]=p$$

$$\mathbf{N}^{\mathsf{T}}\mathbf{\Theta} = \frac{p - \mathbf{N}^{\mathsf{T}}\mathbf{C}}{R}$$

We get

$$cos\theta = sin\theta$$

In the range $\theta \in [0, 2\pi]$

$$\theta = \frac{\pi}{4}, \frac{5\pi}{4}$$

$$\mathbf{A} = \begin{pmatrix} 2 + \frac{5}{\sqrt{2}} \\ -3 + \frac{5}{\sqrt{2}} \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 2 - \frac{5}{\sqrt{2}} \\ -3 - \frac{5}{\sqrt{2}} \end{pmatrix}$$

ΔBCS and ΔACS are right angled triangles.

In △ACS

$$\vec{AS} = \mathbf{S} - \mathbf{A}$$

The radius of S

$$R_S = AS$$
 $R_S^2 = (\mathbf{S} - \mathbf{A})^T (\mathbf{S} - \mathbf{A})$

Where

$$\mathbf{A} = \begin{pmatrix} 2 + \frac{5}{\sqrt{2}} \\ -3 + \frac{5}{\sqrt{2}} \end{pmatrix}$$

$$\mathbf{S} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

$$\therefore R_S = 5\sqrt{3}$$

Figure

The End