

#10

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

117 —

89 —

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Antibody Inhibition of HA
Endocytosis by HARE in LECs

Figure 12

Antibody Inhibition of HA Binding to HARE
on LECs is Temperature Dependent

Figure 13

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Immunolocalization of HARE
in Bone Marrow

Control

Bars = 50 μ m

Figure 19

Figure 20

Figure 21

1 TCTTACCAAGTCTACTCAGCGCTGGAGCAGATGCCGACTATCCATTTCGAGGTACATTATTCAACCTGCAAGTGAATGAGTCAGATGCTTATACTGTGTT
 1 S D P S L L T R L E Q M P D Y S T F R G Y I T H Y N L A S A I E S A D A Y T V F
 121 GTGCCAAACATGAAGCCATGAAACATCTATCAGGGAGAAGAAAGCCACATCTCAAAGGAAGATATTCTACGGTACCATGTTGCTCTGGGAAAAGCTCTGAAAGAATGACTGATC
 41 V P N N E A I E N Y I R E K K A T S L K E D I L R Y H V V L G E K L L K N D L H
 241 AACGCCATGCACCGAGAGACCATGCTGGGTTCTCCACTCTCCACTCTCCGCAATGACAGCTGTTGATGTAATGAAAGCTCAATAAAACTACACCAATGTTGCACTGATCAA
 81 N G M H R E T M L G F S Y N D Q L Y V N E A P I N Y T N V A T D K
 361 GGAGTGATCATGGCTGGAGAAAGTCTGGAAATTCAAGAGAACAGATGTGACAATAATGACACCAATTATTGTGAGAGGGAGGTGAAAGTGTCCAGGAAGCCCCCTGCCAAC
 121 G V I H G L E K V L E I Q K N R C D N N N D T I I V R G E C G K C S Q Q A P C P L
 481 GAGACAAACCAACTAGAGAGACGAGAAATGCATCTACCCATCTACTCTATGGGAAGAGATCGCTATTCACTGGGAGCCACAGTGTGAGAACCATCAACAGGCCCTG
 161 E T K P L R E T R K C I Y S I V R G E C G K C S Q Q A P C P L
 601 TGGCTGGCTCTTGGCCACAAATGCCAACGCCGGAGAGGCTAAATGTGCTCTGGGACGGCTCTGTGAAATGGCACTGGCACGGTGTGAATGGCACTGGCACGGTGTGGCG
 201 W L A S L A H N A K P A P G E V K C M A L G T A S V W D G V N G T G T C Q C G L
 721 GCCTCAATGGCACGCCCTGTGAAACCTGCACTGGGAGAATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAG
 241 G P N G T A C E T C T E G K Y G I H C D Q A C S C V H G R C S Q G P L G D G S C
 841 GACTGTGAGCTGGCTGGCGAGGGTGAAGTGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAG
 281 D C D V R G K C D M E I T T D N C N G T C H T S A N C L L D P D G K A S C
 961 AAATGTGCGGCAGGATTGGAGGGAAATGGACCGCTGAGGGAACTGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAG
 321 K C A G F R G N G T V C T A I N A C E T S N G G C S T K A D C K R T T P G N R
 081 GTGTTGTTGAGGGAGGGCTATAACGGGAGGGCTATAACGGGAGGGCTATAACGGGAGGGCTATAACGGGAGGGCTATAACGGGAGGGCTATAACGGGAGGGCTATAACGGG
 361 V C V C K A G Y T G D G I V C L E I N P C L E N H G G C D R N A E C T Q T G P N
 .201 CAGGCCGCTCTGTAACCTGCTGGCAAGGTAACCTGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAGATGGAG
 401 Q A V C N C L P K Y T G D G K V C S L I N V C L T N N G G C S P F A F C N Y T E
 .321 CAAGATCAAAGGATATGTAACCTGCAAGGAGACATACGGGTGATGGAATCGTCTGGGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGG
 441 Q D Q R I C T C K P D Y T T G V C R G S I Y G E L P K N P S T S Q Y F P Q L
 441 CAGGAGCATGCTGGAGAGGCTGGACCTGGGACCTGGGACCTGGGACCTGGGACCTGGGACCTGGGACCTGGGACCTGGGACCTGGGACCTGGGACCTGGGACCTGG
 481 Q E H A V R E L A G P G P F T V F A P L L S S F N H E P R I K D W D Q Q G L M S
 .561 CAGGTTCTCGTATCACGGTGTGGCTGGCAGCGCTGCTTGGACACCTAAAGTGACCAAGTGCACAGGACCTCCAAGGAGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
 521 Q V L R Y H V V G C Q O L L L D N L K V T T S A T T L Q G E P V S I S V S Q D T
 .681 GTGTCATAAAACATGGGGAGGTCTGTCAGTGCACATCAGCACCAATGGCTCATCCGGTATAGACAAGTGTGCTCTCCAAAATCTGCTTATCACCCCAAAGATGG
 561 V P I N N E A K V L L S S D I S T N G V I I H V I D K L L S P K N N L I T T P K D A
 .801 TTGGCAGGGTCTGCAAAATCTTACTACAGTGGCAGGAAACACGGGATATAACCAAAATCAGCAAGTTGATACAGGACTCAGGTTGCTGTCAGTCATCACTGACTCCATCAC
 601 G V L R U N L T T V A N H G Y T P F S K L D O S G L L S V I T T D S I H T P
 .921 GTCACTGCTCTGCGCTACGGCAACGGCTGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGG
 641 V T V F W P T D K A L E A L P C C E Q Q D F L F N Q D N K D K L K S Y L K F H V I
 041 CGGACTCCAAGGCTTAGCTGGGGGACTCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGG
 681 R D S K A L A S D L P R S A S W K T L Q G S E L S V R C G T G S D I G E L F L N
 .161 GAACAAATGTGCAAGATTACACCGGGACTCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGGGGGAGGGCTGG
 721 E Q M C R F I H R G L D F V G V A Y G I D C L C M N P T L G G R C D T T T P
 .281 GATATCCGGGGAGGGCTGGGGAGGTGCAATTTCACCTCCAAATGCCACTGAAGAGCAAGGCAAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
 761 D I P G E C G S C I T F T P K C P L K S P K F G V K K K C I Y N P L L P F R R N V E
 .401 GGCTGCCAGAACCTGCAACGG
 801 G C O N L C T V V I Q T P R C G P K T G W T A S C D T P C T A V F A V C T P A C
 .521 TGGCCGATCTGTAACACCCATGGGAGCTGGCTATGCCACACGGGCTCAACGGGAGCAGGGCTGG
 841 C R D L Y P T M G Q C L C H T G F P N G T A C E L L C C W H G R F G P D C Q P R S C S
 .641 GAGCATGGAGACTGTGATGGGGGATCACAGGCTGG
 881 E H G Q C D E G G I T G S G E C L C E T G W T A S C D T P C T A V F A V C T P A C
 .761 TCCCTGCAACGG
 921 S W H A T C E T N N T C V V I Q T P R C G P K T G W T A S C D T P C T V V D F C K Q N N G G C A K
 .881 GTCCTCAAGTGTCTCCAGAACGGCAACGGCAACGGCAACGGCAACGGCAACGGCAACGGCAACGGCAACGGCAACGGCAACGGCAACGGCAACGGCAACGGCAACGG
 961 V A K C S Q K G T Q V S C S C K K Y G K D G Y S C I E I D P C A D G V N G G C
 001 CATGAGCACCGGACCTCCGAGGATGAGGG
 1 H E H A T C R M T G P K G K H C K S E C K S V G D V C D P Q L F D R C L
 121 CAGGACAACGGGACAGTGCACCCAGATGCCAGCTGGCAGACCTCTACTCCAGGACACGACCGTCAAGGAGTATTCCATCACCGTCCACGGGAGGATACAACTG
 041 Q D N G Q C H P D A S C A D L Y F Q D T T V G V F H L R S P L G Q Y K L T F D K
 241 G C C A A A G G C T G C C A A A G A A G C T G C G A C C T A C A C C A C C T C T C T A C T G C C C A A G G C A A G G C A A G G C A
 081 A K E A C A K E B A T I A T Y N Q L A A Q K A K Y H L C S G A W L E S G R V A
 .361 TACCGGACTGTTGCTCTGAGGATGG
 121 Y P T T Y A S O K G I V D G S R A N K S E M W D V F C Y R M K D V
 481 AACTGCACTGCAAGGAGGCTATGGGGAGATGG
 161 N C T C K A G Y V G D G F S C S G N L L Q V L M S F P S L T N F L T E V L A F S
 601 AAGAGCTGCCAGGG
 081 K S S A R G Q Q A F K H L T D L S I R G T C P G N K S L S G R D
 .721 ATTGAGCACCACTCACTAATGCAACGCTCTCTTAACTACGCTGCAATGGTACCTTCTGAGGACTATGCTGGGAGCCACTGCTCATACCTTCAGCCAGGACCTCCAC
 241 I T E H H L T N V N V S F Y N D L V N G T F L R T M L G S Q L L I T F S Q D Q L H
 841 CAAGAGCACCGGTTCTGATGGAGAGGCTATCTGG
 281 Q E T R F V D G R S I L Q W D I I X A A N G I L H I I S E P L R A P P T A A T A A
 .961 CACTCTGGCTGGGGAGGGTATTTCTGATGG
 321 H S G L G T G I F C A V V L V T G A I A L A A K Q R T T G
 081 CAGAAGGAGACATGGAGGATCTGGAGGACAGGCCACCCCTGG
 361 Q K R T L M S W [REDACTED] A S S S P R I S Q T C M R P Q R R H P Q S P P V T P S Q T
 201 CTGGAGAACAGGATCTGGAGGACAGGCCACCCCTGG
 401 L B N R W T A T L W G H C G P D M R S Q Q A T T V T V P R *
 .321 ATCAAGTGTAAAGAATGACAACACTCATAGCCAGCCATACCTCACCTCTGGTTAATCTGGGATGTGCGCAGGGCTAAGGAGGCCATGTTGCTGGATACCTGGGG
 441 CTCCCTGAGCCATACCGGTTCTCTCACTCCCATGATGGTGTGTTCTGCCCCTCTGTTGACCCCAAACCTGTGACTCTGTTGATTCCTATGACGTAAGGACCAAGG
 561 CGGGCTTACCCCTATGTTCTGAGTACCCAGAACGACTGGCCACACATGTCGTCATAATGTTGGAAACAAATAAGAAGGCAACTGTCGACCTGAAAGGCTGCAA
 681 CTATGAAAGCRAAAA[REDACTED]

Figure 22

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0

Figure 23

Figure 24

Figure 25

Autoradiography

Western Blot

Figure 26

A	B
C	D

Figure 27A

Figure 27B

**Degradation of internalized HA by transfected
SK-Hep1 cell lines expressing the 175-kDa HARE**

Figure 27C

**Hyperosmolarity inhibits HA endocytosis
mediated by HARE in transfected SK-Hep1 cells**

Figure 27D

Specific monoclonal antibodies against HARE inhibit HA endocytosis in SK-Hep1 transfectants expressing the 175-kDa HARE

Figure 28

Figure 29

— 120 — 209

kDa

— 209

— 120

Figure 3 0

Figure 31

Figure 3 2

Figure 33

1 ATTCAATATAATCTGGCGAATGCAATTGAGGCTGCCATGCCATCACAGTGTGTCACAAACAATGCCATCGAGAATTACATCAGGGAGAAGAAGTCTGTCTAGAGGAGGAC
 1 I Q Y N L A N A I E A A D A Y T V F A P N N N A I E N Y I R E K K V L S L E E D
 121 GTCCCTCCGATATCATGTGGCTCGAGGAGAAAATCTGAAGAATGACCTGCACATGGCATGATCGTGAGAACATGCTGGGTTCTCTATTTCTTAGCTCTTCCATAATGAC
 41 V L R Y H V V L E E K L L K N D L H N G M H R E T M L G F S Y F L S F F L H N D
 241 CAGCTCTATGAAATGAGGCTCAATAACTACACCAATGAGCCACTGATAAGGGAGTGTGATGAGAACATGGCTGGAAAGTCTCTGAGAATTCTGAGAACAGATGATAATAATGAC
 81 Q L Y V N E A P I N Y T N V A T D K G V I H G L G K V L E I Q K N R C D N N N D T
 361 ACTATTATACAGGAGAAGATGAGGACATGCTCCAGAGCTGACCTGCCATTGGAACTAATCTCTAGGTAATGAGAAGAGGAGATGCACTATACCTCTATTCTGGAGAACAGC
 121 T I I R G R C R T C S S E L T C P F G T K S L G N E K R R C I Y T S Y F M G R R
 481 ACCCTGTTATTGGGTGCCAGCAAATGTGAGAACCCGCTATTAGAGAGAATGCTGGCCCTTGGCCCAATGCCAGGCCCTGTCAGGGAAATGCCAGGATGCCAGTCTGCTT
 161 T L F I G C O P K C V R T I T R E C C A G F F G P O C O P C P G N A Q N V C F
 601 CCTAAATGGCACTGTTGGAGTGGAGTGAATGGCACAGGTGTGACTGTGGAGGGCTTCAGGGCACAGCTGCGAGAACCTGCCAGGGACATACGGCATCCACTGTGACCA
 201 G N G G A C I C L D G V N G T G V C E C G E E G F S G T C E T C T E G K Y G I H C D Q
 721 GCATGTTCTGTGTCATGGAGATGCAACCAAGGACCCCTGGGAGATGGCTCTGTGACTGTGATGTGGCTGGGAGAGTGCATGGTGAACATGCAACACAGAACACTGCAAT
 241 A S C C V H G R C N Q G P L G D G S C D V G W R G V H C D N A T T E D N N C N
 841 GGGACATGCCATACCGGCCAACGCTCAGAACACTCAGATGGTACAGGCTCATGCAAGTGTGAGCAGGATTCAAGGAAACGGGACATCTGCACAGCAATCAATGCCAGTCTGAGATC
 281 G T C H T S A N C L T N S D G T A S C K C A A G F Q G N G T I C T A I N A C E I
 961 AGCAATGGAGGTGCTGCCAGGCTGACTGTAAGAGAACCCCCAGGAAGGGAGTGTGACCTGCAAGCAGGCTAACCGGTATGGTGTGCTGGAAATCAACCCGTT
 321 S N G G C S A K A D C K R T P G R R V C T C K A G Y T G D G I V C L E I N P C
 1081 TTGGAGAACATGGTGGCTGACAAGAATGCGGAGTGCACAGACAGGACCAACCCAGGCTGTAACCTGGCAGGATCATCTGGAGATGAAAGGCTGCAACAACTACATGGAGATGAAAGGCTGCAACTCATCAAT
 361 L E N H G G C D K N A E C T Q T G P N Q A A C N C L P A Y T G D G V K C T L I N
 1201 GTCTGTTAACTAAAAATGGGGCTGTAGTGAATTGGCATCGAACACACTGGCAAGTAGAAAGGACTTGTACTTGCAAGGAAACTACATGGAGATGAAAGGCTGCAACAACTACATGGAGATGAAAGGCTGCAACTCATCAAT
 401 V C L T K N G G C S E F A I C N H T Q V E R T C T C K P N Y I G D G F T C R I G
 1321 AGCAATTATCAGGAGCTGCCAGAACCCAAAACCTCCAGATTCTCCAGGTTGAGGAGCTTCTGGTAAATCTGGTCCAGGCTTACTGTGACCTGGTCCAGGCTTACTGTGACCTTAT
 441 S T Y Q E L F K N P K T S Q Y F P D O B H F V K D L V G P G C P T T V F A P L S
 1441 GCAAGCTTTCATGAGGAAGCTGGTAAAGACTGGGACAATACGGTTTACGGTACCTGGTCAAGGAGCTTCTGGTAAATCTGGTCCAGGCTTACTGTGACCTGGAAACCTGAAATGATC
 481 A A F D E E A R V K D K M P Q L R Y H V A C H Q O L L E N L K L I
 1561 TCAAATGCTACTCCCTCAAAGGAGCCAAATGTCATCTCCGCTCTCAGAGCAGGCTGATATAACAACTAACAGGCTAAAGGCTATCTGGTACTAATGGAGATGAAAGGCTGCAACT
 521 S N A T S L Q G E P I V I S V S Q S T V Y V N N K A I T S S D I I S T N G I V
 1681 CATATCATGACAAATTGCTATCCAAAATTGCTTATCCTCCAAAGAACACTCTGGAGAATTCTGCAAAATCTGGACTTGGCAACAAACATGGCTACATCAATTTAGC
 561 H I I K D K L L S P K N L L I T P K D N S R I L Q N L T L A T N N G Y I K P S
 1801 AACCTAAATCAGGACTCAAGGTTGCTGAGTGTCAATCAGGATCCCACACCCAGTCAGCTCTCTGGCCACCGGCAACCCCTCATGGCTACCTGCTAACACAGGACTTC
 601 N L I Q D S G L L S V I T D P I H T P V T L F W P T D Q A L H A L P A E Q Q D F
 1921 CTGTTCAACCAAGAACAGGACAAAGCTGAAGGAGTATTGAGTTTCATGTGATAACGGAGATGCCAGGTTAGCTGTTGGATCTCCACATCCACTGCCCTGGAAAGGCCCTGGAG
 641 L F N Q D N K D K L K R Y H V I R D A K V L A V D L P T D Q A L K T L O G
 2041 TCAGAGCTGAGTGTGAATTGGAGCTGGAGGGACATCGGTGACCTTCTGTAATGGCAACACTGAGAATTGTCAGCGGGAGCTTGTGACTTGGGTGTGCCACGGCATT
 681 S E L S V K I C G A G R D I G D L F L N G O T C R I V Q R E L L F D L V A Y G I
 2161 GACTGTCGATTGATCTCCACCCCTGGGGCGCTGTGACACCTTACTCTTCAGTGCCTGGGGAGTGTGGAGCTGTGCAATTACTCCCAGGCTGCCAACGGCTGCA
 721 D C L L I D P T T L C R D T F T T F D A S E C G S C V N T P C S C P R N S K P
 2281 AACAGTGTGAGGAGAACAGTGTCTACAACCTGCCCTCAAGAGAACCTGGAGGCTGCCGGAGCTGGTACAGATCCCAGGTGTGCAAGCTACTGGGCA
 761 K G V Q K C L Y N L P F K R N L E G C R E R C S L V I Q I P R C C K I G Y F G R
 2401 GACTGTCAGGCTGCCCTGGAGGACAGATGCCCTGGCTGTAATAACGGGGTCTGCTGCTGATGACTGACTCGCCACCGGAGAGTGTAAATGCAACACGGCTTACATGGAGGGCTG
 801 D C Q A C P C G P D A P C N R G V C L D Q Y S A T G E C K C N T T G F N G T A C
 2521 GAGATGTCGCCGGGGAGATTGGCTGATTGTGCCCTGTGCTGACAGACCGGACATGCGATGATGCCATACGGCTCCGGCGAGTGTGCTGAAACGGGCTGGACA
 841 E M C W P G R F G P D C L P C G C S D H G Q C D D G I T G S G O C L C E T G N T
 2641 GGAGGCTCTGGTGAACACTCAGGAGCTTGTGACTGCAAGGCTCTGGCTCATGGCACCTGTGAAAGGAGAACACAGCTGAGTGTAACTGGATTAGAGGAGCAG
 881 G P S C D T Q A V L P A V C T P P C S A H A T C K E N N T C E C N L D Y E G D G
 2761 ATCACATGCAAGTGTGATTCTGCAACACAGGACAACGGGGCTGTGCAAGGGCAGATCTCCAGAAGGGCAGAGCTCTGGCTGAGGAGGCTGCAAGGGATA
 921 I T C V V D F C K Q N G C K A V K R S C S C O K G Y K G D
 2881 GGGCACAGCTGCCACAGAGATAGACCCCTGTGCAAGGGCTTAACGGAGGGCTGACAGCAGGACCTGTAAGATGACAGGGGGCAAGCACAGTGTGAGTAAAAGTCACTAT
 961 G H S C T E I D P C A D G L N G G C H E A T C K M T G P G K H K C E C K S H Y
 3001 GTCGGAGATGGCTGAACCTGAGCCGGAGCAGCTGCCATTGACCGCTGCTTACAGGACATGGGAGTGCATGAGCCAAATGTCAGGCTCCACTCCAGGATA
 1001 V G D G L N C E P E I P D R C L Q D N G Q C H A D A K C V D L H F P D T T V
 3121 GGGGTGTCCTCTACGCTGCCACTGGGGCAAGTAAAGCTGACCTTGGCAAGGAGGGCTGTGCAAGGCAACCTACAAACAGCTCTCTATGCCCA
 1041 G V P H L R S P L G Q Y K L D F K A R I E A C A N E A T M A T Y N Q L S Y A Q
 3241 AAGGCCAAGTACCACTCTGCTCAGCAGGCTGGCTGGAGACGGGGGGTTGCTACCCACAGGCTCCAGAAGCTGTGGCTCTGGTGTGGGGATAGTGACTATGGAC
 1001 K A K H L C S A G H L E T G R V A Y P T A F S Q N C G S G V Y G I V D Y G P
 3361 AGACCCAAAGAGTGAATTGGGGTGTCTCTGCTATCGGATGAAAGATGTAACCTGCCACCTGCAAGGTTGGCTATGTGGAGATGGCTCTCATGCA
 1121 R P N K S E M W D V F C Y R M K D V N C T C K V G Y V G D G F P S C G N L L Q V
 3481 CTGATGTCCTCTCCCTCACTCACAACATTCTGCTGAGGAAACTGCTGGCTTATTCACAGGCTGAGGCTGGCTATTCTGAGAACCTCTGACTGACCTGT
 1161 L M S F P S L T N F L T E V L A Y S N S S A R G R A F L E H L T D L S I R G T L C
 3601 TTTGTGCCACAGAACAGTGGGCTGGGGAGATGAGAACCTTGTGCTGGGGGGACATCGAGAACCTCGCAATGTCAGCATGGTGTGGGGATAGTGACTATGGAC
 1201 F V P Q N S G L G E N E T L S G R D I E H H L A N V S M F Y N D L V N G T T L
 3721 CAAACGAGCTGGGAGAGCTGCTCATCAGGCCAGGACCCACTCCACCCAGCAGGGAGAACCTGAGGCTGGGGCTTGTGAGTGGAGAGCAGCTCTGCA
 1241 Q T R L G S K L I T A S Q D P L Q P T E T R F V D G R A I L Q W D I P A S N G
 3841 ATCATGATGTCATTCAGGCTTAAAGGACCCCCCTGCCCGTGGCTGACCTGAGGAGGGCTTGTGACTCTGGCATCTCTGGTCAATGGCAACCC
 1281 I T H V I S R P L K A P P A P V T L T H T G L G A G I F F A I L V T G A V A L
 3961 GCTGCTACTCTACTTTGGATAACCCGAGAACATCGCTCCAGCATTTGAGTGGAGAGGACATTAATGTCAGCTCTGGCAAGCAGCAGCCCTGAGAATATCTG
 1321 A Y S Y F R I N R T I G F Q H F E S B D I N V A L G K Q Q P E N I S N P
 4081 TTGTATGAGAGACAACCTCAGCTCCCCAGAACCTTCTACAGGACCCCTTACGGACTCTGAGAACGGCAGCTGGAGGGCAATGACCCCTTGGAGGACACTGT
 1361 L Y E S T T S A P P E P S Y D P F T D S E E R Q L E G N D P L R T L * (1394aa)
 4201 ATGCCAGCCATCACTCACTGGCACCTGGCCATCAACTGTGAAATTCTCAGCACAGTGTGCTTCTGGAGAACCTGAAAGCTGAGAACGGCAGCTGGGAG
 4321 CTGGGGGTTTCTGTGGGAGAGATGTTGCTGCCCCACCCAGTACAGCTTCTCTGACCCCTTGGCTCTCTTCTGACTCTCAGCTGGCACCTGCTCCATTG
 4441 CTACATGATGGTAACTGTGATCTTCTCCCTGTTAGATGTAAGCTCCGCTGGAGAACAGGAACTGTGCAACATAAGGTTATGGAAACA
 4561 GAAACAAAGTCAACAG

Figure 34

Figure 35

hHARE 1 I QYNLANAIAAADAYTVFAP NNNALENYIREKKVLSLEED VLRYHVYLEEKLLKNDLHQG MRETMIGFSYFLSFFLHDN QLYVNEAPINTTIVATDKGV
rHARE 23 I HYNLASAIESADAYTVFVP NNNALENYIREKKATSLKED ILYRVVILGEKLLKNDLHQG MRETMIGFSYFLSFFLHDN QLYVNEAPINTTIVATDKGV

hHARE 101 IHGLGKVLEONR[DNDT] TIIRGRTTSSSETPFGT KSLGNENKRRIIYTSMGRR TLFIGQPKTRVITIRE[C AGFFGPQCOPCPGNAONVC[F
rHARE 123 IHGLEKVLEONR[DNDT] IIVRGE[GK]SQQAAPPLET KPL-RERKVIISIYFMGRR SVFIGQPKTRVITIRAW LASLAHNAKPAPGVKMCAL

hHARE 201 GNGICLDGV[RE]GEG FSGTAETTEGKYGTHDQ A[S]PVHGRNQGPLGDGSID [D]VGWGRG[VH]DNATTEDDN [C]HTSANTLTNSDGTA[K
rHARE 222 GTASVWDGV[RE]GTLQGLG FNGTAETTEGKYGTHDQ A[S]PVHGRSQQGPLGDGSID [D]VGWGRG[VH]DMELTTDN [C]HTSANTLTNSDGTA[K

hHARE 301 PAAAGFOGQNT[RE]TAINA[E]I SNGG[S]AKAD[K]RTTPGRRV [T]EAGYTGDGIV[RE]LEINP [LENHG[G]DKNAETQTGPNO AAAN[P]PAYTDGKV[RE]TLIN
rHARE 322 PAAAGFRGNEY[T]TAINA[E]T SNGG[S]TKAD[K]RTTPGRRV [T]EAGYTGDGIV[RE]LEINP [LENHG[G]DRNAETQTGPNO AVON[P]LPKYTDGKV[RE]SLIN

hHARE 401 V[RE]LTNKNG[RE]SEFA[RE]M[RE]T Q VERT[RE]TPKNYIGDGFTRG SIYQELPKNPSTSQQFFOLQ EHFKDLYVGPFTVFAPLS AAFDEEARV[K]MDVKYGLMPQ
rHARE 422 V[RE]LTNKNG[RE]SPFA[RE]M[RE]T Q DORIT[K]PDYTGDGIV[RE]RG SIYGELPKNPSTSQQFFOLQ EHARELZAGGPFTVFAPLS SSFNHEPRIKDWDQQGLMSQ

hHARE 501 VLRYHVA[RE]HOLLLENKLII SNATSLOGEPIVISVSQSTV YINNKAKIISSDIISTNGIV HIIIDLSPKNLITIPKDN S GRILON[RE]TTLATNINGYIKFS
rHARE 522 VLRYHVV[G]COLLDDNLKVT TSATLQGEPVSVSQDTV FINNEAKVLSDDIISTNGIVI HVIDKULLSPKNLITIPKDAL GRVLQ[NL]TVAAHGYTKFS

hHARE 601 NLIQDSGLLSVITDPIHTV TLFWPTDOALIALPAEQDF LFNODNDKDLKEYLKFHVIR DAKVALDLPSTAWKTQG SELSVK[G]AGRDJGDLFLNG
rHARE 622 KLIQDSGLLSVITDPIHTV TLFWPTDKALEALPPEQQDF LFNODNDKDLKEYLKFHVIR DSKALASDLPRASWMTQG SELSVR[G]TSVGDIGELFLNE

hHARE 701 QT[RE]RIVQRELLFDLGVAYGI DLLIDPTLGGR[D]FTTFD ASCEB[G]VNTPS[P]RWSKP KGVKOKR[RE]LYN-LPFKRNLEG P[RE]RSV[RE]LVIQIPR[G]KGYFG
rHARE 722 QMORFTHRLGLFVDGVAYGI DLLMNPTLGGR[D]FTTFD IPCEB[G]SIFTPKPLKSXP KGVKKKK[RE]YNPLPFRNVEG S[RE]NLTUVYTOTP[RE]KGYFG

hHARE 800 RDOAQ[P]GGDA[P]NNRGY[RE] LDQYSATGE[G]ONTGFGCTA [EM]WPGRFRGPDP[L]PCGSD HGQDDGIGTGSQ[RE]LGETW TGPSD[RE]TOAVLPV[RE]TPPS
rHARE 822 PDQ[A]P[P]GGDTP[P]NNRGY[RE] RDLYTPMGQ[RE]HTGFNGTA [EM]WHRFRGPDP[RE]RSSE HGQDDGIGTGSQ[RE]LGETW TAASDTPAVFATP[RE]

hHARE 900 AHA[RE]KE[RE]T[RE]CNLYEGD GIT[RE]TVVDF[K]ODNG[G]AKV AR[S]OKGTGKVSP[S]PKQGYKG DGH[RE]TEIDP[RE]ADGLNGCH EHAT[K]MTGPGKH[RE]EKS
rHARE 922 VHA[RE]KE[RE]T[RE]CNLYEGD GIT[RE]TVVDF[K]QNG[G]AKV AK[S]QKGTQVS[S]PKQGYKG DGYSP[RE]TEIDP[RE]ADG[V]NC[G]H EHAT[K]MTGPGKH[RE]EKS

hHAR 1000 YVGDLN[RE]EPBQLPIDR[RE]LQ DNGQ[RE]HADAK[V]DLHFQDTT VGFVHLRSPLGQXKLTFDKA READEAATMATVNOISYA OKAYH[RE]SAGWLETGRVAY
rHARE 1022 YVGDGVD[RE]EPBQLPLD[RE]LQ DNGQ[RE]HPDASADLYFQDTT VGFVHLRSPLGQXKLTFDKA KEA[RE]EAATATVNOISYA OKAYH[RE]SAGWLETGRVAY

hHARE 1100 PTAFA[RE]NGSGVVGIVDYG PRP[RE]EMMDV[Y]RMKD[V] S[RE]KVGIVGDDGS[RE]SGNLLQ VIMSFPSSLTNFLTEVAYSN SSARGRAFLEHLTLDSLRT
rHARE 1122 PTYASQK[G]ANVVGIVDYG SRANKS[RE]MDV[Y]RMKD[V] S[RE]KAGYVGDDGS[RE]SGNLLQ VLMSPSSLTNFLTEVAFSK SSARGQAFKLH[RE]TLDSLRT

hHARE 1200 LFVPONSGLGENETLSGRDI EHHLANYSMFFYNDLVNGT[RE] LOTRLGSKLLITASQDPLQ TTRFVDRGAILQWDIFASN GIHTSRPLKAPPAPVYLTL
rHARE 1222 LFVPONSGLP[G]NKSLSGRDI EHHLTNVNSFYNDLVNGT[RE] LRTMLGSQ[RE]LTSQDQLHQ -ETRFVDRGSLQWDLQI[RE]AN GILHISEPLRAPTAATAA

hHARE 1300 HTG[RE]LÄG[RE]IFFÄIILVIGÄVÄ LAÄYSYRINRRTIG[RE]QHFE SEEDINVAALGKOOPENISN P[RE]EST[S]APPESD[RE]DPFTD SEERQLEGNDPLRTL
rHARE 1321 HSGLGTGIFCAVVLVGAIA LAÄYSYRUKORT[RE]QHFE OKRITLMSWLAASSPRI[S] LCMRPQRHNPQ[S]PPV[S]PSQT LENLWRTA[RE]LWGHC[G]PDMR

rHARE 1421 SQQATTVTVPR

Figure 36

Figure 37

Amplification of the 1394 amino acid HARE
Open Reading Frame from a human lymph
node cDNA Library

Figure 38

Schematic Organization of the Human HARE Gene on Chromosome 12 (encoding 1357 of the 1394 amino acids disclosed here)

Decreasing HA Size

Figure 3 9