CS & IT ENGINEERING Algorithms

Introduction to Algorithms and Analysis

Topics to be Covered

Topic

Introduction to the Course

ABOUT ME

Hello, I'm Dr. Khaleel Ur Rahman Khan.

- 1. Ph.D. in Computer Science.
- 2. Professor in Computer Science.
- 3. Has more than 28 Years of Experience in Teaching at Engineering Colleges.
- 4. Published more than 50 journal articles in the areas of Wireless Networks.
- Seven candidates have been awarded Ph.D. under his Supervision.
- 6. Has more than 22 years of Educating and Mentoring the GATE Aspirants.

By- Dr. Khaleel

My PW Official Telegram Channel https://t.me/KhaleelSirPw

1. Analysis of Algorithms

- 1.1 Algorithm Concept and Lifecycle
- 1.2 Analysis of Algorithms
- 1.3 Methodology & Types of Analysis
- * 1.4 (Asymptotic Notations) FISN 23 & 5
- * 1.5 Framework for Analysing Recursive Algorithms
 - 1.6 Apriori analysis of Non-Recursive Algorithms
- \$1.7 Analysing Loops lung Complexities
 - 1.8 Space Complexity
 - 1.9 Mathematical Background

Design Strategies

2. Divide & Conquer

- 2.1 General Method
- 2.2 Max-Min Problem
- 2.3 Merge Sort
 - 2.4 Binary Search
- 2.5 Quick Sort
 - 2.6 Matrix Multiplication
- 2.7 Long Integer Multiplication (LIM)
- 2.8 Master Method for D and C Recurrences
 - 2.9 Recursion Tree

Carx. Studies
Application

3. Greedy Method

- 3.1 General Method
- 3.2 Knapsack Problem
- 3.3 Job Sequencing with Deadlines
- 3.4 Optimal Merge Patterns
 - *3.4.1Huffman Coding
- 3.5 Minimum Cost Spanning Trees
 - 3.5.1 Prims Method
 - 3.5.2 Kruskal's Method
- 3.6 Dijkstras Shortest Paths Problem

Dynamic Programming (DP)

- 4.1 The Method
- 4.2 Difference between DP, Greedy Method and DandC
 - 4.3 Multistage Graphs
 - 4.4 Travelling Salesperson Problem
 - 4.5 Binary Knapsack Problem
 - 4.6 All Pairs Shortest Paths
 - 4.7 Bellman-Ford Single Source Shortest Paths
 - 4.8 Longest Common Subsequence LCS
 - 4.9 Matrix Chain Multiplication (MCP)
 - 4.10 Sum of Subsets (SoS)
 - 4.11 Reliable System Design
 - 4.12 Optimal Cost Binary Search Tree

Applications

5. Graph Algorithms

- 5.1 Representation of Graphs
- 5.2 Graph Traversals

- 5.2.1 Undirected Connected Graphs
- 5.2.2 Undirected Disjoint Graphs: DFT
- 5.2.3 Directed Graphs & Types of Edges
- 5.2.4 DAG

BFS

- 5.2.5 FIFO BFS
- 5.2.6 LIFO BFS
- 5.2.7 LC BFS
- 5.3 Parenthesization Theorem

6. Heap Algorithms

- 6.1 Operations: Create, Insert, Delete, Modify
- 6.2 Applications: Heapsort

7. Sets

- 7.1 Representations
- 7.2 Operations

8. Soring Algorithms

- 8.1 Basic terminology
- 8.2 Methods
 - 8.2.1 Bubble Sort
 - 8.2.2 Selection Sort
 - 8.2.3 Insertion Sort
 - 8.2.4 Radix Sort

9. Backtracking & Branch and Bound

Text - Books:

- Introduction to Algorithms Cormen (LCS Book)
- 2. Fundamentals of Algorithms Horowitz and Sahni

Meightage: 8-10 m (12-14 m)

uisités:

1. Programming Constructs: 4-then-elre loops Frequisités: 2. Data Structures: (Roop-Complanitie)

(Struck + Queue + L. L 3. Mathematics: Trees +

Trees +

Graphs

The Comples of the property of the p Maths Logic)

Algorithm

other Courses:

J A I 2) Machine Learning 3) Deap 4) N.L.P + 5) Research

Consists 9 Finite Set 9 Steps Statements to stue a given Problem; Persion: Md. Musa Alkhwarzmi (Alsosithm) Consists of overland operations. Définiterens (cher) En: (x-y+3) < Addition (+)
Assignment (=) expective (finite Jime)

-> Every Algorithm may take zero/more Imputs; -> Surry Also. Must Roduce atleast one op

Algorithm ~ Abstract Machine Rocering Logic

Every Algo. Showld Jerminate in, finite amount Jime;

	Algorithm Lifecycle Steps
	1. Problem Definition
	2. Requirements (anditions) [SRS]
DAA	3. Logic persign (Southern
Deingn &	4. Deuelsp Algorithm (Propress) 5. Validation (Prove correctness)
' Analysic	
2 Alson	E. Analysis Rogram doublyment]
	8. Justing & Debugging

J

THANK - YOU