Fiche de révision Méthodes d'estimation et Théorie moderne du Codage

Alexis GRACIAS

7 décembre 2024

Table des matières

1	Not	ions d	'estimation	4
	1.1	Rappels des cours de 1A		
		1.1.1	Espace de Hilbert	4
		1.1.2	Espace Lp	4
		1.1.3	Précisions	5
		1.1.4	Probabilités	6
		1.1.5	Schématiquement	6
	1.2	Estima	ation	7
		1.2.1	Notions et définitions de base	7
		1.2.2	Point de vu Bayésien et non Bayésien	8

Introduction

Les objectifs du cours sont de présenter les bases de la théorie de la décision :

- L'estimation pure
- La détection

Plan du cours :

- Notions d'estimation
 - Introduction
 - Estimateurs bayésiens (espaces de Hilbert, projection orthogonale, estimation moyenne quadratique avec contrainte linéaire)
 - Estimateurs non bayésiens (Inégalité de Cramer-Rao, maximum de vraisemblance)
- Estimation d'un signal dans un bruit auditif
- Analyse spectrale non paramétrique
- Détection
 - Test des hypothèses (théorie bayésienne, stratégie de Nayman-Person, courbes COR)
 - Application à la détection du signal dans un bruit (décomposition de Karhunen-Loève, détection d'un signal déterminisme dans un bruit gaussien)
- Détection
- Filtrage linéaire statistique
 - Introduction
 - Filtrage de Wiener
 - Filtrage de Wiener avec filtrage linéaire
- Prédiction à un pas et passé infini
 - Cas d'un signal dont la densité spectrale de puissance est bornée et admet une factorisation forte
 - Cas général, décomposition de Wold
- Interpolation d'un signal stationnaire
- Prédiction à un pas passé et infini
- Primitives de la théorie de l'information
 - Introduction (source d'information discrète, canal discret, message)
 - Deux problèmes clés de codage (codage canal, codage source distribuée)
 - Théorèmes fondamentaux (codage aléatoire (random coding), compartimentage aléatoire (random binning))
- Exercices de la théorie de l'information (2H de TD)

Prérequis :

- Cours de CIP
- Cours de Ch
 Cours de Traitement du Signal
 Cours de Statistique et Apprentissage
 COurs de SIP

Chapitre 1

Notions d'estimation

1.1 Rappels des cours de 1A

1.1.1 Espace de Hilbert

Definition 1: Espaces de Hilbert

Un espace de Hilbert est un **espace préhilbertien complet**, c'est à dire un **espace de Banach** dont la norme ||.|| découle d'un **produit scalaire** ou **hermitien** par la formule suivante :

$$||x|| = \sqrt{\langle x, x \rangle} \tag{1.1}$$

Definition 2: Espaces de Banach

Un espace de Banach est un **espace vectoriel complet et normé** sur un sous corps \mathbb{K} de \mathbb{C} (\mathbb{R} ou \mathbb{C}), peut importe la norme.

En d'autres termes, un espace de Hilbert est un espace vectoriel complet muni d'une norme définie par un produit scalaire.

1.1.2 Espace Lp

Definition 3: Espaces $L^p[a,b]$

Espace vectoriel des fonctions p intégrables au sens de **Lebesgue** sur [a,b]. i.e.

$$\int_{a}^{b} |f(t)|^{p} dt \tag{1.2}$$

converge, avec la norme L^p :

$$||f||_p = \sqrt[\frac{1}{p}]{\int_a^b |f(t)|^p dt}$$
 (1.3)

1.1.3 Précisions

Definition 4: Espace vectoriel normé

Un K-espace vectoriel E est dit normé si il est muni d'une norme, c'est-à-dire d'une application $\mathcal{N}: E \to \mathbb{R}^+$ qui satisfait les conditions suivantes :

Séparation

$$\forall x \in E, \mathcal{N}(x) = 0 \implies x = 0_E \tag{1.4}$$

- Homogénéité

$$\forall (x,\lambda) \in E \times \mathbb{R}, \mathcal{N}(\lambda x) = |\lambda| \mathcal{N}(x) \tag{1.5}$$

— Sous-additivité (inégalité triangulaire)

$$\forall (x,y) \in E^2, \mathcal{N}(x+y) < \mathcal{N}(x)\mathcal{N}(y)$$
(1.6)

Definition 5: Espace métrique complet

Un espace métrique (E, d) est dit complet si toute suite de Cauchy ^a converge dans ce même espace, c'est-à-dire :

$$\forall n \in \mathbb{N}, (x_n)_{n \in \mathbb{N}} \in E, x_n \longrightarrow l \in E$$
(1.8)

a. Suite qui vérifie le critère de Cauchy, c'est-à-dire que les éléments de la suite se rapprochent uniformément entre-eux à l'infini, i.e.

$$\forall \epsilon > 0, \exists (n_0, p_0) \in \mathbb{N}^2, \forall n > n_0, \forall p > p_0, d(x_n, x_p) < \epsilon$$

$$\tag{1.7}$$

Definition 6: Espace métrique

On note (E, d) un espace métrique (E ensemble et d la distance définie pour tout éléments de E). C'est un espace vectoriel au sein duquel la notion de distance est bien définie pour tout éléments de E. L'application d satisfait les conditions suivantes :

— Symétrie

$$\forall (x,y) \in E^2, d(x,y) = d(y,x) \tag{1.9}$$

— Séparation

$$\forall (x,y) \in E^2, d(x,y) = 0 \Longleftrightarrow x = y \tag{1.10}$$

— Inégalité triangulaire

$$\forall (x, y, z) \in E^3, d(x, y) < d(x, z) + d(z, y)$$
(1.11)

1.1.4 Probabilités

Definition 7: Espaces probabilisé

Un espace probabilisé est constitué d'un espace probabilisable et d'une mesure de probabilité, noté $(\Omega, \mathcal{A}, \mathbb{P})$ avec :

- Ω : l'univers, l'espace des observations ou espace des évènements élémentaires
- \mathcal{A} est une **tribu** sur Ω
- \mathbb{P} : mesure de probabilité

tel que $\mathbb{P}(\Omega) = 1$ et $\forall A \in \mathcal{A}, \mathbb{P}(A)$ est appelé probabilité de l'évènement A

Definition 8: Espaces probabilisables

Un espace probabilisable est noté (Ω, \mathcal{A}) , il est constitué de **l'univers** et de la **tribu** de cet univers.

Definition 9: Mesure de probabilité

La mesure de probabilité est définie par l'application $\mathbb{P}:\Omega\longrightarrow [0;1]$ telle que :

- $\mathbb{P}(\Omega) = 1$
- $\hat{\mathbb{P}(\{\})} = 0$
- σ -additivité : \forall collection dénombrable $\{A_i\}$ d'ensemble disjoints :

$$\mathbb{P}(\bigcup_{I \in \mathcal{I}} A_i) = \sum_{I \in \mathcal{I}} \mathbb{P}(A_i)$$
 (1.12)

1.1.5 Schématiquement

Espace vectoriel

1.2 Estimation

1.2.1 Notions et définitions de base

On cherche à reconstituer un signal \underline{x} ou $\underline{\theta}$ à partir de son observation, le vecteur \underline{y} . On cherche alors une fonction $\widehat{\theta}$ tel que $x \circ y = \widehat{\theta}(y)$ soit la meilleure estimation de $\underline{\theta}$.

Mathématiquement, on a:

$$\underline{\theta} = \begin{bmatrix} \theta_0 & \theta_1 & \dots & \theta_n \end{bmatrix}, (\theta_i)_{i \in \mathbb{N}} \in G$$

$$y = \begin{bmatrix} y_0 & y_1 & \dots & y_n \end{bmatrix}, (y_i)_{i \in \mathbb{N}} \in F$$

Avec:

 $-\theta$: paramètre décisionnel

-y: vecteur d'observation

— $(\theta_i)_{i\in\mathbb{N}}, (y_i)_{i\in\mathbb{N}}:$ variables aléatoires de G et F

— (G,\mathcal{G}) et (F,\mathcal{F}) sont des espaces probabilisables

Estimateur

Pour un estimateur $\widehat{\theta}$, le meilleur estimateur (ou filtre) de θ est donc l'application $\widehat{\theta}$:

$$\widehat{\theta}: F \longrightarrow G, \widehat{\theta} \circ y = \widehat{\theta}(\underline{y}) \in \mathcal{M}(F, G)$$

Avec $\mathcal{M}(F,G)$ l'ensemble des applications de F dans G.

Densité de probabilité conditionnelle

 (Ω, ϵ, P) est un espace probabilisé qui modélise l'expérience aléatoire (signaux aléatoires rencontrés) \underline{y} est le vecteur d'observation qui admet une **densité** par rapport à F, de **mesure canonique** ν , tandis que $\widehat{\theta}(\underline{y})$ est une VA à valeurs dans G, alors la **densité de probabilité conditionnelle de** y **sachant** $\widehat{\theta}$ s'exprime sous la forme :

$$f_{\underline{y}|\theta}(\underline{\nu}|\theta), \forall \nu \in F$$

Fonction de perte ou de coût : application L telle que :

$$L: G \times G \longrightarrow \mathbb{R}, (\theta_1, \theta_2) \mapsto L[\theta_1, \theta_2]$$

Pour un estimateur $\widehat{\theta}$ et $\nu \in F$ donnés, $L[\widehat{\theta}(\underline{\nu}), \theta]$ représente le **coût de la décision** $\widehat{\theta}(\nu)$ quand la vraie valeur du paramètre décisionnel est θ . Ce coût est généralement arbitraire.

Fonction de risque

$$\mathcal{R}(\widehat{\theta}, \theta) = E[L(\widehat{\theta}(\underline{y}), \theta) | \theta] = \int_{F} L[\widehat{\theta}(\underline{\nu}), \theta] f_{\underline{y} | \theta}(\underline{\nu} | \theta) d\underline{\nu}$$

^{1.} Mesure canonique que l'on prend comme mesure de Lebesgue

1.2.2 Point de vu Bayésien et non Bayésien

- Non Bayésien : θ est supposé déterministe, c'est à dire qu'il obéit à des lois non probabilistes
- Bayésien : θ est supposé aléatoire et de loi connue
- Paramétrique : θ est aléatoire et de loi connue (i.e. Bayésien sans supposition)
- Non Paramétrique : θ est aléatoire et de loi inconnue.

Le point de vu **fréquentiste**, i.e. non paramétrique ne sera étudié dans le cadre de ce cours. Le point de vu Bayésien permet d'introduire d'autres notions telles que :

Risque moyen

pour une densité de probabilité a fortiori $f_{\theta}(u)$ du paramètre décisionnel, le risque moyen s'exprime sous la forme :

$$\overline{R}(\widehat{\theta}) = E[R(\widehat{\theta}), \theta] = \int_{G} R(\widehat{\theta}, u) f_{\theta}(u) du = \int_{F} H_{c}(\underline{\nu}) f_{y}(\underline{\nu}) d\underline{\nu}$$
(1.13)

Avec

$$H_c(\underline{\nu}) = \int_G L[\widehat{\theta}(\underline{\nu}), u] f_{\theta|y}(u|\underline{\nu}) du = E\{L[\widehat{\theta}(\underline{y}), \theta] | \underline{y} = \underline{\nu}\}$$
(1.14)

La ddp conditionnelle $f_{\theta|y}(u|\underline{\nu})$ devient la **densité de probabilité a posteriori** et la loi de \underline{y} est l'evidence