LoRa Cave Radios - "FLAMINGO"

Jamie Moon 2 July 2025 Huntsville Grotto Program

Introduction

Bio

- Started caving in 2018
- Joined Huntsville Grotto in 2020
- HCRU member since Aug 2022

Day Job

Autonomous systems test engineer at DoD contractor

Other Passions

- GIS, Remote Sensing, photography
- Tinkering/inventing
- RC and basic radios

Jamie M. Moon NSS #71412 KQ4VFH <u>linktr.ee/jmmoon</u>

Project Overview

LoRa radios for cave communication with focus on rescue applications

Outline

- 1. Cave comms background
- 2. Objectives
- 3. Implementation
- 4. Field Test Series
- 5. Conclusions
- 6. Next Steps

<u>Meshtastic</u>

- Meshtastic
- Long-Range (LoRa) low power radio protocol for IoT* devices
- Off-grid, self-organizing mesh network using LoRa radios
 - No WiFi or cell service needed
- Open-source and community-developed
- Supports seamless user operation with iOS and Android mobile apps
- Enables AES128 encrypted messaging and location sharing
- Natively supports <u>CalTopo</u> (and ATAK) integration

Current HCRU Comms Tech

Existing HCRU cave communication options:

- Electric analog voice intercoms (military phones) using conductive wire
 - Bulky, cumbersome
 - Intercoms are vintage technology (not sustainable)
- Runners
 - Slow
 - Potentially risky
- VHF/UHF radios
 - Not useful for in-cave

to HCRU systems

Other Cave Comms Options

Many devices are obsolete, expensive, or still in development

- Cavelink V4 VLF Radio \$1,400
 - Tested to 1.3km (~4,200ft)
 - Closed-source
- Nicola 3 Radio \$1,200
 - 1km (~3,300ft) max recorded distance
- CAVE-SYS Leaky Feeder Radio \$7,000
 - o 9mm cable (similar weight to HCRU comms wire)
 - 14 hrs max battery life
- ERMES Digital system \$7,000
 - Verified to 2.4km (~7,800ft)
- Sybet <u>SPELLCOM</u> Mesh Radios \$20,000+
 - o 50m spacing
 - 2.5 days battery life

ECRA, Technical Commission Underground Communications, Catalog of Communication Devices, Version 1.50, 8 April 2025

Other Cave Comms Options

Recent efforts

- Blackbird Field Phone
 - Proof of concept intended to replace aging field phones
- BuecherNet
 - Semi-permanent network of UHF radios (with one wired section)
 - Runs at low power (batteries replaced annually)

Meshtastic in Caves

"Semper ad Fundum*/Vangelis" project

- Created by cavers/developers from Virginia
- Originally used RakWireless "<u>WisBlock</u>" radios enclosed in a "<u>TacMesh</u>" 3D printed enclosure
- Tested in a handful of caves
- Using stock Meshtastic firmware and special "Pingbot" device for building network
- Removed decrementing hop count from firmware to overcome 7-hop limit

Credit: Phillip Balister & Paul Walko

Application for HCRU

Advantages of LoRa for cave comms:

- Messaging is text-based
 - Provides definitive data versus ambiguity/interpretation over voice comms
- Faster deployment time
 - Reduces need for routing through cave
- Interoperable with team situational awareness tools (i.e. CalTopo)
 - Seamlessly integrate with GPS's and/or land systems on surface

Disadvantages:

- ISM radios heavily rely on line-of-sight, especially in underground environment
- Multiple radios are needed, each with independent power supplies
- Some advanced configuration may require specialized training

Objectives

Goals & Acceptance Criteria

Acceptance Criteria

Determine if mesh radios are suitable alternative to wire:

- 1. Cost per meter of comms is less than wire or commercial alternatives
- 2. Weight per meter is less than wire and phones
- 3. Average deployment time is less than laying wire
- 4. System can be ruggedized to handle caving environment
- 5. System is easy to scale and train people to use

Methods

Implementation

Default Meshtastic Firmware

- Currently supported by the <u>Meshtastic community</u>
- FREE!
- Includes useful base code, especially mobile phone apps (robust)

Limitations

- Limited to maximum "hop" limit of 7
- Geared towards ease-of-use
- Wide variety of hardware geared toward static outdoor use
 - Some mobile options

Custom Firmware

"FLAMINGO" - Forward Link And Mesh Interconnect Network Ground Operations

Bob Reese's custom firmware

- Branched from Meshtastic v2.5.20
- Added 4 bytes to header (increased from 16 to 20 bytes)
 - 1 byte for "hop_limit" Decrements after each rebroadcast
 - 1 byte for "hop_start" Initial hop count at initialization
 - 2 bytes for "magicnumber" Isolates system from stock/other incompatible Meshtastic radios
- Hop limit currently expanded to soft limit of 32 (true limit is 255!)
- Additional improvements (see test slides)

Deployment

- Built and verified custom firmware on bench (surface)
 - Firmware is catalogued in Github repo
- Created configuration file (*.YML) to standardize all radio settings for their respective roles
 - Custom Python scripts allow user to quickly flash standardized settings to radios
- Developed test plan to systematically evaluate system

Hardware

- Initially built 7x "<u>TacMesh</u>"-style radios
 - Built off of RAKWireless RAK4631 (RAK19003 I/O board)
 - Same testbed used by original Vangelis test

Test Loadout

- Primary **Surface Node** (x1)
 - Wismesh Pocket
- Cave Nodes (x9)
 - 7x TacMesh and 2x Wishmesh Pockets
 - One temporarily designated as range-test "Listener Node"

TacMesh radio assembly

WisMesh Pocket

Hardware Performance

Water ingress

- Passed various spray tests
- Failed submersion test
 - Due to porosity of 3D printed material
- Estimated IP55

Battery life

- 1+ week expected life for single charge
 - 6 days to reach 47% battery
 - Included 2 nights reaching sub-freezing temps

In-Cave Test #1

Tumbling Rock Cave 4 April 2025

Test Objectives

- 1. Verify custom firmware can **transmit message past more than 7 nodes**
- 2. Quantify how far into cave we can get with all available nodes
- 3. Characterize performance through various in-cave terrain

Cave Selection

Tumbling Rock Cave Preserve

- One of most heavily visited and thus more likely for rescue events
- Notable landmarks for estimating node placement
- Depth and accessibility conducive to test
- Proximity to test team

Participants

Name	Role	
Bob Reese	"IC"/Surface Node tech.	
Jamie Moon	Listener Node tech.	
Brad Tannehill	Node placement tech.	
Chris Tran	Mapper	
Abby Diering	Photographer	
Walter King	Runner	

Setup

1. Set up Surface Node

- a. Set up PC (with power supply) and Python Command-Line Interface (CLI)
- b. [OPTIONAL] Establish GPS signal or manually enter GPS location
- c. Start Range Test (transmission) at 30s intervals

2. Turn on Listener Node

- a. Start Range Test receiving
- b. Set mobile device to audibly ping during each range test

Building Chain

- 1. Proceed into cave, using paired phone to observe pings
- 2. Stop movement where pings begin to drop off
- 3. Backtrack slightly until pings return with no perceivable loss
- 4. Emplace *second* cave node and power on
- 5. Use newest node to send status update to Surface Node
 - a. Surface Node replies to verify newest node placement is ok
- 6. Continue moving original Listener Node forward, dropping new nodes using steps 1-3

Building Chain

- Placed 9 nodes throughout cave
 - 1 was added in middle to bolster weak part of chain (messages getting dropped)
- Some adjustments were made to reduce signal loss
- Marked locations on map
- Experimented with hands-free concept for Listener node
 - Tactical chest mount courtesy of Chris Tran

Final Node

- H01 (mobile Listener Node) was placed around the stream curve across from the "Handprint Wall"
- Successfully exchanged multiple messages with surface
 - Throughput improved once range-test was stopped

Test #1 Results

Observations & Conclusions

Initial Test Results

- Successfully exchanged text messages from surface to deep into Tumbling Rock Cave using Meshtastic radios
- Made it past "Elephant's Feet" near "Handprint Wall"
 - Roughly **600m/2,000ft** deep
- Exceeded native Meshtastic hop limit of 7
 - Successfully demonstrated 8 hops
 - Validated HopMod custom firmware functionality
- Setup time was ~2.5 hrs, which included adjustments/experimentation
 - Teardown time was <30mins

Mesh Geometry Stats

Chain distance estimate

- Direct distance:
 - Bee-line distance between nodes
- RF/Passage distance:
 - Approximation of RF path distance (around tunnel geometry)
- Roughly 600m/2,000ft reached

Note: Only used 2D distances for estimate

Node A	Node B	# Est. Direct Distance [m]	# Est. RF Distance [m]	Uncertainty [±m]
BRO1	H02	36	22	5
H02	H03	18	60	5
H03	H04	105	108	5
H04	H06	83	86	5
H06	H05	49	49	7
H05	H07	109	112	7
H07	BRO2	95	102	10
BRO2	BRO3	41	44	8
BRO3	H01	36	50	8
	Total Chain	552	632	

Time Study

- Total setup time was roughly 2.5hrs
 - First attempt and time efficiency was not priority
 - Includes time for readjusting placement and running comms checks
- Network teardown duration = 24 minutes
 - If target locations were predetermined, setup could be this fast

Node	Approx. Setup Time [min]
H02	12
H03	6
H04	10
H06	14
H05	
H07	25
BRO2	29
BRO3	43
H01	35
Elapsed	151

Hop Mod Validation

Final Traceroute results

- Chain went through all nodes but H06
 - Skipped intermediary node
- 8 hops from surface to/from final cave node
 - Validated functionality of HopMod

Traceroute

Route traced toward destination:

- HCRU1 3aac (H01)
- µ -11.25 dВ
- BReese03 (BR03)
- ш -15.25 dB
- BReese02 (BR02)
- ш -10.25 dB
- HCRU7 c6a4 (H07)
- ц 0.5 dB
- HCRU5 0207 (H05)
- ц -17.5 dB
- HCRU4 4a58 (H04)
- ц 5.0 dl
- HCRU3 143e (H03)
- ц -16.0 dB
- HCRU2 f2cc (H02)
- µ 2.5 dB
- BReese01 (BR01)

Route traced back to us:

- BReese01 (BR01)
- ц 2.5 dВ
- HCRU2 f2cc (H02)
- ц -16.75 dB
- HCRU3 143e (H03)
- µ 5.0 dB
- HCRU4 4a58 (H04)
- ц -18.0 dB
- HCRU5 0207 (H05)
- ц 0.25 dB
- HCRU7 c6a4 (H07)
- ц -15.25 dB
- BReese02 (BR02)
- ц -13.25 dB
- BReese03 (BR03)
- ц 1.0 dB
- HCRU1 3aac (H01)

Tunnel Attenuation

- Sharp turns attenuate signal
- Low ceilings appear to attenuate signal
 - As also observed by <u>Vangelis</u>
- Larger, straighter boreholes result in better range (not surprisingly)
- Sometimes switching from one side of the cave to another can make or break connection

Network Congestion

- Messages take upward of 1+ minute round trip to get to and from surface
- Constant Range-Test pings from surface node caused congestion on the network
- Running Traceroute was often unreliable for larger hop numbers
 - Probability of traceroute success exponentially decreased with number of hops
 - Range-Test pings were silenced when running Traceroute
 - It's likely there was interference/congestion between Traceroute and Range-Test pings

Direct Messaging

- Sending messages to broadcast channel may not be as robust as direct messages
- Direct messages notifies sender of:
 - Acknowledgement of nearest node and
 - Delivery confirmation at receiver
 - May replace "Ack" procedure
- Disadvantages
 - No other technicians utilizing other nodes will hear messages sent

Lessons Learned

- Monitoring Received Signal Strength Indication (RSSI) is user-intensive for Listener Node operator
 - No realtime RSSI display
- Listening for range-test pings is unreliable
 - Binary: doesn't provide quantifiable RSSI info
 - Pings are interrupted by other operations (such as Traceroute)
- Using hopping Range-Test packets from Surface Node caused congestion
- Better antennas or other radio modes may improve signal

In-Cave Test #2

Tumbling Rock Cave 6 June 2025

Hardware Enhancements

Hardware updates

- Larger whip antennas to be evaluated
 - Unfortunately have to be installed once in-cave
- LED status indicator added to all TacMesh Nodes

Firmware Enhancements

Notable updates

- Nodes with OLED screens will now display RSSI and SNR for received messages
- Added admin commands to remotely control Range Test
 - "ADRT on" turns on range test
 - "ADRT on hop" turns on range test that hops (propagates down chain)
 - "ADRT off" turns off range test
 - "ADRT delay <15 | 30 | 60>" select preset range test period (seconds)
- Firmware support for RS485 bridge (see next slide)
- Serial logging improved

Wire Bridge

Specialized Nodes

4x specialized nodes have <u>RAK5802</u> RS485 modules installed

Enables tying together two RF nodes through tight passages

where RF can be highly attenuated

Supports using existing HRCU cave wire

RAK5802

Wired Bridge architecture

LoRa Modes

- Meshtastic features preset "LoRa" modes
- Default is "Long/Fast"
- "Medium/Slow" would provide:
 - Slightly reduced link margin
 - Slightly reduced data rate
 - Additional error correction
 - Reduced air time (reduced collisions and latency)

Radio Preset	Alt Preset Name	Data-Rate	SF / Symbols	Coding Rate	Bandwidth	Link Budget
Medium Range / Slow	Medium Slow	1.95 kbps	10 / 1024	4/5	250 kHz	150.5dB
Long Range / Fast	Long Fast	1.07 kbps	11 / 2048	4/5	250 kHz	153dB

Radio Loadout

- 7x TacMesh Radios
- 4x Wismesh Pocket Radios
 - 1x designated as Listener
- 4x Wired Bridge prototype nodes
 - Packaged in quick and simple tackle boxes

Prototype Wired Bridge box

Waterproof case can carry 11 nodes

Test Objectives

Primary

- 1. Evaluate baseline network with **new antennas**
- 2. Evaluate baseline network with different LoRa modes
- 3. Validate **RSSI visualization** method

Secondary

- 1. Expand baseline network distance with quantity of 9
- 2. Extend network to 9+ hops
- 3. Demonstrate haptics (LED/buzzer)
- 4. Demonstrate RF/Wire bridge

Personnel

Name	Role
Bob Reese	"IC"/Surface Node tech.
Jamie Moon	Listener Node tech.
Chris Tran	Secondary node tech./Videographer
Tom Barthel	Mapper
Stephen Estevez	Photographer/Support
Daniel Mote	Support
Jimmy Farrar	Support

Test Scenarios

- Recording RSSI between each node pair as we go
 - Compare signal performance of each possible change

Case	Description	# Nodes	Antenna	LoRa Preset	Objective 1	Objective 2
1-A	T-Rock 1 baseline	9	1/4 Wave	Long/Fast	Measure RSSI between each node	Run 3x traceroutes from end to surface
1-B	T-Rock 1 new antennas	9	1/2 Wave	Long/Fast	Measure RSSI between each node	Downselect antenna
2-A	T-Rock 1 moderate speed	9	TBD	Long/Moderate	Measure RSSI between each mode	Run 3x traceroutes from end to surface
2-B	T-Rock 1 slow speed	9	TBD	Medium/Slow	Measure RSSI between each node	Downselect LoRa preset
3	Chain expansion	10+	TBD	TBD	Rebuild chain to reach as far as possible	Verify Bridge (wire) nodes work in mixed net

Test #2 Results

Observations & Conclusions

Results

- Successfully reached far end of Totem Gallery using hybrid network
 - Expanded to ~3,000ft into cave
- Introduced new antennas (slight improvement)
- Evaluated alternative LoRa mode
- Expanded mesh to 11 hops
- Validated RS485 bridge nodes in mixed network (using comms wire)
- Validated RSSI visualization tool

"Med/Slow" Mode Evaluation

- RSSI was not significantly improved
- Initial perception was that error rate was improved (fewer lost messages)
- Since performance wasn't significantly reduced, team used Med/Slow for remaining tests

Node	Time Placed [HH:MM]	RSSI [dBm]	From Sender
BR01			
H01	18:05	-113	BR01
H02	18:07	-108	H01
H03	18:11	-84	H02
H04	18:14	-66	H03
H05	18:18	-85	H04
H06	18:22	-110	H05
BR02			H06
H07			BR02
BR03	18:43		H07
WB01	18:55	-115	BR03
WB02	19:28	0	WB01
BR04	20:01	-110	WB02
BR05	20:21	-114	BR04

Usability Enhancements

LED indicator

LED indicator and reflective tape worked fairly well

RSSI Visualization

- RSSI readout allowed tech to reliably predict edge of dropoff region
- "ADRT" admin commands proved extremely useful
 - Eliminating hopping RangeTest pings relieved congestions

Wired Bridges

- Wired Bridge nodes provide reliable comms through tight/breakdown passage
- Operators can easily hook up with standard comms wire
- No special setup is needed for bridge radios

New Antennas

- In-cave RSSI

- Possible slight (+7dBm) increase
 - Wide variation (Std. Dev. ±20 dBm)
- Additional bench test supported measurable improvement of alternative antenna
- Size of new antenna must be taken into consideration

Stock Antenna	New Antenna	Delta
[dBm] 🔻	[dBm] 🔻	[dBm] 🕝
-110	-105	5
-122	-84	38
-88	-68	20
-72	-84	-12
-83	-112	-29
-112	-108	4
-118	-93	25
-111	-112	-1
-122	-106	16
	Mean	7

SUMMARY						
Groups	Count	Sum	Average	Variance		
Stock	17	-1406	-82.70588235	1.220588235		
Amazon	18	-1384	-76.88888889	5.633986928		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	295.8356676	1	295.8356676	84.66581372	1.24709E-10	4.139252496
Within Groups	115.3071895	33	3.494157259			
Total	411.1428571	34				

Single-Factor ANOVA for bench test

Map

Legend

- 4/4/25 test
- 6/6/25 test

Map

Legend

- 4/4/25 test
- 6/6/25 test

Mesh Geometry Stats

Chain distance estimate

- Direct distance:
 - Bee-line distance between nodes
- Passage distance:
 - Approximation of signal path distance (around tunnel geometry)
- Roughly 900m/3,000ft reached

Note: Only used 2D distances for estimate

Node A	~	Node B	~	Est. Direct Distance [m]	~	Est. Passage Distance [m]	~	Uncertainty [±m]	~
BRO1		H01		36		22		5	
H01		H02		58		65		5	
H02		H03		109		112		5	
H03		H04		87		91		5	
H04		H05		49		49		7	
H05		H06		111		114		7	
H06		BR02		85		90		10	
BR02		H07		42		45		8	
H07		BR03		36		51		8	
BR03		WB01		58		58		5	
WB01		WB02		112		183		1	
WB02		BR04		34		34		8	
BR04		BR05		42		43		6	
		Total Chair	[m]		839		957		
		Chai	n [ft]		2753		3140		

Vertical Cave Test

8 June 2025 Falling Cave (aka Balcony Sink)

Quick Look

- Tested TacMesh network from trailhead into upper passage
- Demonstrated feasibility of radio network in vertical application
- Surface Nodes **withstood thunderstorm** for portion of test

Method

- Used one radio as mobile Listener Node
- RSSI readout (on phone toast notifications) allowed placement to be optimized while hiking

Surface Nodes

- 1. First node placed inside car near trailhead
- 2. Two nodes placed along trail

Surface Nodes

- Reached near lip of main pit with fourth Surface Node
- Thunderstorm hit as last caver was finishing rappel

Cave Nodes

- Placed two additional nodes along upper passage
- Decided not to place last node as it was in winding area

Мар

- Reached *roughly* 30-40m down the Extension passage
- Included hop from surface, down into pit, and funneling several metres into the passage

Conclusions

- Radios work in vertical application
 - Better attachment points for harnesses is desired
- TacMesh enclosures survived heavy rainfall
- Reached from upper passage back to car node
 - A couple messages may have failed to deliver during heaviest rainfall
 - Suspected due to attenuation between weakest surface nodes

Lessons Learned

- A more hands-free visualization method would be helpful for placing radios on the go
- Connecting car node to internet using MQTT could allow cavers to reach callout personnel, emergency services, etc

Operational Test

Guffey Cave 27 June 2025

Enhancements

Hardware updates

- Added active buzzer to Listener Node (BR05)
 - Allows Listener operator to space nodes hands-free
 - Can easily be added to nodes as standard feature

RSSI Range [dBm]	Beeps	Indication
≥-90	1X	Good Signal
-110 to -90	2X	Moderate Signal
<-110	3X	Marginal Signal

Wired Bridge Testing

- Informed maximum driving distance for given baud rates
- Lowest baud rate (4800b/s) is still 4x faster than "Medium/Slow" LoRa data rate
- More than 2x bridge nodes can utilize the same wire (i.e. can daisy-chain)

	Α	В	С	D	Е	F	G	Н
1	RS485	Distance (ft)						
2	Speed (bits/sec	100	730	1300	2100	2400	2700	3300
3	€360400	NO	NO	NO	NO	NO	NO	NO
4	115200	YES	NO	NO	NO	NO	NO	NO
5	57600	YES	YES	NO	NO	NO	NO	NO
6	38400	YES	YES	NO	NO	NO	NO	NO
7	19200	YES	YES	YES	NO	NO	NO	NO
8	9600	YES	YES	YES	YES	YES	NO	NO
9	4800	YES	YES	YES	YES	YES	YES	YES

Test Objectives

Primary

- 1. Identify node placement for potential instructor network for upcoming HCRU Cave Rescue course
- 2. Estimate setup time
- 3. Evaluate **audio haptics**

Loadout

Role	Туре	Qty
Listener	WisMesh Pocket w/ Buzzer	1
Wired Bridge	Prototype Box	6
RF Node	TacMesh	7
RF Node	WisMesh Pocket	4
Comms Wire	800ft Spool	3
Comms Wire	900ft Spool	1

Personnel

Name	Role
Bob Reese	"IC"/Surface Node tech.
Jamie Moon	Listener Node tech.
Andy Sheaff	Wire technician
Chris Cargal	Wire technician
Jimmy Farrar	Support

Method

- 1. Ran one wire from entrance to end of spool (800ft) between bridge nodes
- 2. Used RF to span across the Pump Room
- 3. Ran second spool of wire to the center of Grand Central
- 4. Continued RF network north to just outside of Little India

NOTE: 2x relay nodes will span from IC at road to node at cave entrance (validated in separate test)

Method

After objectives were met, network was retrofitted

- 1. Pulled end of Spool #1 back to the bottom of the 15ft ladder
- 2. Replaced Spool #1 with 3 wireless nodes
 - **a. Reduced wire usage** to two partial spools total
 - **b.** Reduced setup time for next iteration

Operational Test Results

Observations & Conclusions

LITTLE INDIA -TIGHT 4 404 Network LENGTH 32,726 FT. 6/27/25 SCALE IN FEET SPIRES OF GUFFEY · HO2 ENTRANCE LEGEND BRPI BROI BIG FALL ROOM BRP2 PUMP ROOM 405 WIRED BRIDGE RF. ONLY HOL LADOER DOWN 15 -GRAND CENTRAL **WB02-B** SPOOL #1 H06 WB02 GIANTS HALL WBOI (PO) **4** -THE BARRIER BLASTED ROOM

Network Geometry

Total distance:

• Roughly **2,400ft**

Note: Only used 2D distances for estimate

Node A	~	Node B	~	Est. Direct Distance [m]	~	Est. Passage Distance [m]	~	Est. Passage Dist. [ft]	~	Uncertainty [±m]	~
BRP2		BR05		61		61		201		8	
BR05		H05		67		70		230		8	
H05		H06		54		55		181		8	
H06		BRP1		48		57		188		8	
BRP1		WB01		50		51		167		8	
WB01		WB02		101		101		330		8	
WB02		H01		58		61		199		8	
H01		H02		69		69		228		8	
H02		H03		98		99		324		8	
H03		H04		126		127		415		8	
		Total Chain [m]		711	<u> </u>	750				
		Chain	[ft]		2334		2462				

Deployment Time

Wire-laying

- Average ~19 minutes for each original spool
 - Roughly ~28ft per minute

RF nodes

- Average ~13 minutes between nodes
 - o Roughly 33-38ft per minute
 - Includes adjustment/experimentation time
- Rapid deployment is closer to ~4 minutes per node

Scenario

Estimated <1.5 hr total setup time for Guffey network for HCRU course

Original Name	Time Placed	Est. dt [min]	Est. Dist [m]	Deployment Speed [m/min]	~	Note ~
BRP2	5:00					Initial Entrance bridge node
WB02-B	5:07	7.5	60		8	Spool #1 from Entrance to overlook above base of Ladder
BR05	5:10	2.7	30		11	
H05	5:16	6.1	67		11	
H06	5:21	4.9	54		11	
BRP1	5:25	4.3	48		11	Should be replaced with regular RF node
WB01	5:30	4.6	50		11	Start of Spool #2
WB02	5:42	12.6	101		8	End of Spool #2
H01	5:48	5.3	58		11	
H02	5:54	6.2	69		11	
H03	6:03	8.9	98		11	
H04	6:14	11.4	126		11	

Conclusion

Takeaways and Ongoing Work

Summary

- Successfully demonstrated hybrid Meshtastic network in multiple real cave environments
 - Exchanged text messages from within cave to (beyond) entrance to representative IC locations
 - Demonstrated 11 hops
 - Reached well over 2000ft in less than 1.5hr deployment time
- Streamlined network setup process
- Demonstrated promising alternative to existing comms tech
 - Cheaper than most radio systems
 - Easy to make cheap, rugged, waterproof enclosures

Kit Concept

- Single technician could easily carry 12 nodes in one box
 - <7lbs
 - Fits in 10L backpack
 - Cover roughly 2,000ft of passage
 - o Estimated \$600
- Bridge nodes can be added in if needed
 - Existing comms wire can be used
 - Expand network through tight passage if needed
- Technicians can wear mobile nodes on their persons
 - Maintain comms when walking through the cave

Fieldability

- Mesh radios show promising improvement in size and weight
- Comparable cost for bare minimum configuration
- Comparison:
 - 9x mesh radios in carrying case versus:
 - 2x military phones with standard wire spool

	Comms Wire	Mesh Radios	
Packaged Size [in]	14x14x4 (spool) 10x9x4 (phone)	13x10x5 (box)	
Est. Kit Volume [in3]	1285	650	
Est. Weight [lbs]	34	6	
Max. Length [ft]	1,000	2,000	
Est. Cost [USD]	\$420	\$450	

Next Steps

- Utilize functional network in mock rescue scenario
 - HCRU Cave Rescue class scheduled for 3 Aug 2025
- Further improve hands-free setup process
 - Improve audio feedback
 - Streamline RSSI testing (reduce setup time)
- Create affordable, rugged enclosures
 - Designing 3D printed rugged cases for both RF and Wired Bridge types
 - Explore better antennas
 - Utilize standard, replaceable 18650 Li-ion batteries

Conceptual enclosure by Becky Williams

Next Steps

- Investigate MQTT implementation
 - See if it can be combined with existing internet/SMS messaging service
 - Allows users to reach emergency services directly from inside cave
- MORE TESTING!!
- Develop training material

Acknowledgements

Development

- Bob Reese
- Chris Tran
- Daniel Mote
- Phillip Balister (Vangelis)
- Paul Walko (Vangelis)

Mechanical

- Brad Tannehill
- Austin O'Neil
- Becky Williams

Field Testing

- Jimmy Farrar
- Chris Cargal
- Walter King
- Abby Diering
- Andy Sheaff
- Tom Barthal
- Stephen Estevez

Scan for interest form \rightarrow

Questions?

Contact: jamie.moon762@gmail.com