NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

MA1101R Linear Algebra I

2018-2019 (Semester 1)

Tutorial 4

1. Let A be an invertible matrix of order 4. Its reduced row-echelon form of A is obtained by the following sequence of elementary row operations:

$$m{A} \overset{R_1 \leftrightarrow R_3}{\longrightarrow} \overset{R_1 - 2R_2}{\longrightarrow} \overset{R_2 - 4R_4}{\longrightarrow} \overset{R_3 \leftrightarrow R_4}{\longrightarrow} \overset{R_1/2}{\longrightarrow} \overset{R_4/5}{\longrightarrow} m{I}.$$

Find $det(3\mathbf{A}^T)$ and $det(2\mathbf{A}^{-1})$.

Answer. First, we compute $\det A$. Following from the row operations, we have

$$E_6 E_5 E_4 E_3 E_2 E_1 \mathbf{A} = I.$$

Then $\det(\mathbf{A}) = \prod_{i=1}^{6} \det(E_i)^{-1}$. As $\det(E_1) = \det(E_4) = -1$, $\det(E_2) = \det(E_3) = 1$, $\det(E_5) = \frac{1}{2}$, $\det(E_6) = \frac{1}{5}$, we have $\det(\mathbf{A}) = (-1) \times (-1) \times 2 \times 5 = 10$. Hence

$$\det(3\mathbf{A}^T) = 3^4 \det(\mathbf{A}^T) = 81 \det(\mathbf{A}) = 810,$$

$$\det(2\mathbf{A}^{-1}) = 2^4 \det(\mathbf{A}^{-1}) = 16 \det(\mathbf{A})^{-1} = \frac{8}{5}.$$

- 2. Let \boldsymbol{A} and \boldsymbol{B} be two square matrices of order n.
 - (a) Show that if \mathbf{A} and \mathbf{B} are row equivalent then \mathbf{A} and \mathbf{B} are simultaneously singular or invertible, i.e., $\det(\mathbf{A}) = 0$ if and only if $\det(\mathbf{B}) = 0$.
 - (b) If $det(\mathbf{A}) = det(\mathbf{B}) = 0$, are \mathbf{A} and \mathbf{B} are row equivalent? If the answer is no, please construct a counter-example. If the answer is yes, please prove your answer.

Ans. Part (a). Since \boldsymbol{A} and \boldsymbol{B} are row equivalent, $\boldsymbol{B} = E_k E_{k-1} \cdots E_1 \boldsymbol{A}$ for some elementary matrices. Then $\det(\boldsymbol{B}) = \prod_{i=1}^k \det(E_i) \det(\boldsymbol{A})$. Since E_i are invertible, $\prod_{i=1}^k \det(E_i)$ is nonzero. Hence $\det(\boldsymbol{A}) = 0$ if and only if $\det(\boldsymbol{B}) = 0$. That is, \boldsymbol{A} and \boldsymbol{B} are simultaneously singular or invertible.

Part (b). No. For example, $A = \mathbf{0}_{2\times 2}$ and $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. We have $\det(A) = (B) = 0$, but they are not rwo equivalent.

3. Let

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 10 & 0 & 3 \\ -6 & 5 & -5 \end{pmatrix}.$$

1

(a) Find the adjoint of A.

Answer.

$$\mathbf{adj}(\mathbf{A}) = \begin{pmatrix} \begin{vmatrix} 0 & 3 \\ 5 & -5 \end{vmatrix} & -\begin{vmatrix} 10 & 3 \\ -6 & -5 \end{vmatrix} & \begin{vmatrix} 10 & 0 \\ -6 & 5 \end{vmatrix} \\ -\begin{vmatrix} 2 & -1 \\ 5 & -5 \end{vmatrix} & \begin{vmatrix} 1 & -1 \\ -6 & -5 \end{vmatrix} & -\begin{vmatrix} 1 & 2 \\ -6 & 5 \end{vmatrix} \\ \begin{vmatrix} 2 & -1 \\ 0 & 3 \end{vmatrix} & -\begin{vmatrix} 1 & -1 \\ 10 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 10 & 0 \end{vmatrix} \end{pmatrix}^{T}$$

$$= \begin{pmatrix} -15 & 32 & 50 \\ 5 & -11 & -17 \\ 6 & -13 & -20 \end{pmatrix}^{T}$$

$$= \begin{pmatrix} -15 & 5 & 6 \\ 32 & -11 & -13 \\ 50 & -17 & -20 \end{pmatrix}.$$

(b) Compute the inverse of \boldsymbol{A} .

Answer.

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \mathbf{adj}(\mathbf{A}) = -\begin{pmatrix} -15 & 5 & 6\\ 32 & -11 & -13\\ 50 & -17 & -20 \end{pmatrix} = \begin{pmatrix} 15 & -5 & -6\\ -32 & 11 & 13\\ -50 & 17 & 20 \end{pmatrix}.$$

(c) Solve for y by using Cramer's Rule:

$$\begin{cases} x + 2y - z = 14 \\ 10x + 3z = 27 \\ -6x + 5y - 5z = 12 \end{cases}$$

Answer.

$$y = \frac{\begin{vmatrix} 1 & 14 & -1 \\ 10 & 27 & 3 \\ -6 & 12 & -5 \end{vmatrix}}{\det(\mathbf{A})} = \frac{-5}{-1} = 5.$$

(d) Let $\mathbf{u} = (1, 2, -1), \mathbf{v} = (10, 0, 3), \mathbf{w} = (-6, 5, -5)$. Show that span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} = \mathbb{R}^3$

2

(Tips for tutors: students may follow the method outlined in Example 3.2.4.5 in thr textbook rather than to think of it in terms of the invertibility of A (or A^T). Similarly for 3(e), students may go through solving for the coefficients directly like in Example 3.2.2.)

Answer. For every $\boldsymbol{x} \in \mathbb{R}^3$, write $\boldsymbol{x} = a\boldsymbol{u} + b\boldsymbol{v} + c\boldsymbol{w}$, which is a linear system of variables a, b, and c. We need to show that this linear system is consisten, i.e., every vector \boldsymbol{x} in \mathbb{R}^3 is a linear combination of $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$.

Let us write the matrix form of this linear system:

$$\begin{pmatrix} 1 & 10 & -6 \\ 2 & 0 & 5 \\ -1 & 3 & -5 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \boldsymbol{x}, i.e., \boldsymbol{A}^T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \boldsymbol{x}.$$

Since \boldsymbol{A} is invertible, \boldsymbol{A}^T is invertible. Thus

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = (\boldsymbol{A}^T)^{-1} \boldsymbol{x}.$$

That is, every vector \boldsymbol{x} in \mathbb{R}^3 is a linear combination of $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$.

(e) Write (14, 27, 12) as a linear combination of $\mathbf{u} = (1, 2, -1), \mathbf{v} = (10, 0, 3), \mathbf{w} = (-6, 5, -5).$

Answer. Write $(14, 27, 12) = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$, As $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$, by Part (b), we have

$$(\mathbf{A}^T)^{-1} = \begin{pmatrix} 15 & -32 & -50 \\ -5 & 11 & 17 \\ -6 & 13 & 20 \end{pmatrix}.$$

By Part (d), we have

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = (\mathbf{A}^T)^{-1} \begin{pmatrix} 14 \\ 27 \\ 12 \end{pmatrix} = \begin{pmatrix} 15 & -32 & -50 \\ -5 & 11 & 17 \\ -6 & 13 & 20 \end{pmatrix} \begin{pmatrix} 14 \\ 27 \\ 12 \end{pmatrix} = \begin{pmatrix} -1254 \\ 431 \\ 507 \end{pmatrix}.$$

- 4. Let A, D and P be square matrices of the same size such that $A = PDP^{-1}$. (Here P is invertible.)
 - (a) Show that $det(\mathbf{A}) = det(\mathbf{D})$.

Answer.

$$\det(\mathbf{A}) = \det(\mathbf{P}\mathbf{D}\mathbf{P}^{-1})$$

$$= \det(\mathbf{P}) \det(\mathbf{D}) \det(\mathbf{P}^{-1})$$

$$= \det(\mathbf{P}) \det(\mathbf{D}) \det(\mathbf{P})^{-1}$$

$$= \det(\mathbf{D}).$$

(b) If A is invertible, show that $A^n = PD^nP^{-1}$ for all integers n.

Answer. First, we use the mathematical induction to prove it for $n \geq 0$. When n = 0, by definition, $\mathbf{A}^0 = \mathbf{I} = \mathbf{D}^0$. By $\mathbf{P}\mathbf{I}\mathbf{P}^{-1} = \mathbf{I}$ we have $\mathbf{A}^0 = \mathbf{I} = \mathbf{P}\mathbf{D}^0\mathbf{P}^{-1}$.

Assume that the statement is true for n = k. For n = k + 1,

$$A^{k+1} = A^k A = PD^k P^{-1} PDP^{-1}$$
 (by assumption)
= $PD^k IDP^{-1}$
= $PD^{k+1} P^{-1}$.

By induction, we have $\mathbf{A}^n = \mathbf{P} \mathbf{D}^n \mathbf{P}^{-1}$ for all nonnegative integers n. As

$$m{A}^{-1} = (m{P}m{D}m{P}^{-1})^{-1} = (m{P}^{-1})^{-1}m{D}^{-1}m{P}^{-1} = m{P}m{D}^{-1}m{P}^{-1}, \ m{A}^{-n} = (m{A}^{-1})^n = m{P}(m{D}^{-1})^nm{P}^{-1} = m{P}m{D}^{-n}m{P}^{-1}.$$

Hence $\mathbf{A}^n = \mathbf{P} \mathbf{D}^n \mathbf{P}^{-1}$ for all integers n.

5. Determine the values of a and b so that the following three points are in the same line

$$(1, 2, -1),$$
 $(10, 0, 3),$ $(a, b, -5).$

Answer. Recall that a linear in \mathbb{R}^3 is represented explicitly in set notation by

$$\{(1,2,-1)+t(9,-2,4)\mid t\in\mathbb{R}\}.$$

The point (a, b, -5) lies in this line if and only if there exists a real number t so that (1, 2, -1) + t(9, -2, 4) = (a, b, -5), that is,

$$\begin{cases} 1 + 9t = a \\ 2 - 2t = b \\ -1 + 4t = -5 \end{cases}$$

The linear system is consistent if and only if a = -8 and b = 4.