# Estimation of multinomial logit model using the Begg & Gray approximation

Hana Ševčíková and Adrian Raftery February 21, 2012

### 1 MNL Model Specification

Our observations correspond to N individuals each of whom makes one choice out of J alternatives. The dependent variable,  $Y_n$ , is the choice made by the n-th individual. The set of independent variables is divided into a set of variables that are individual-specific, say  $X_n = (x_{n1}, \ldots, x_{nK_o})^T$ , and a set of variables that are alternative-specific, say  $W_{ni} = (w_{ni1}, \ldots, w_{niK_a})^T$ ,  $i = 1, \ldots, J$ . The probability of individual n choosing alternative i is given by the standard multinomial logit formula

$$P_{ni} = \frac{e^{V_{ni}}}{\sum_{i=1}^{J} e^{V_{nj}}} \quad \text{where } V_{ni} = \alpha_{i0} + \alpha_i X_n + \beta_i W_{ni}$$
 (1)

Here,  $\alpha_i = (\alpha_{i1}, \dots, \alpha_{iK_o})$  and  $\beta_i = (\beta_{i1}, \dots, \beta_{iK_a})$ . We call  $\alpha_{10}, \dots, \alpha_{J0}$  the alternative-specific constants.

It is often of interest to constrain the coefficients to be the same over the given set of alternatives, i.e.  $\alpha_{1k} = \alpha_{2k} \cdots = \alpha_{Jk}$  for a given k. The same applies to the  $\beta$  coefficients.

#### Base Alternative

In order to be able to use the Begg & Gray approximation [1], we need to set a base alternative and treat the remaining alternatives as differences to the base. Thus, if the base alternative is 1,  $V_{n1} = 0$  for all n. Furthermore,

$$V_{ni} = \alpha_{i0} + \alpha_i X_n + \beta_i W'_{ni}$$
 where  $W'_{ni} = W_{ni} - W_{n1}$  for  $i = 2, ... J$  (2)

#### 2 Conversion

The conversion is done analogously to [2]. We decompose the original dataset into  $D_0 = \{D_b, D_r\}$ , where  $D_b$  denotes the set of individuals that chose the base alternative, and  $D_r$  denotes the set of the remaining individuals. For each

 $i=1,\ldots,J,$  set  $N_i$  to be the number of individuals that chose alternative i. Then the converted dataset is constructed as follows:

- 1. Form J matrices  $M_1, \ldots, M_J$  where each  $M_i$  has  $N_i$  rows and the columns consist of Y, X and  $U = W'_{i}$ .
- 2. Form J-1 blocks,  $D_2, \ldots, D_J$ , where  $D_i$  has  $(N_1+N_i)$  rows and is formed as follows:
  - (a) Take the rows of  $M_1$  and  $M_i$ .
  - (b) Add columns:

$$\bullet \ Y^* = \left\{ \begin{array}{ll} 0 & : & Y = 1 \\ 1 & : & \text{otherwise} \end{array} \right.$$

• 
$$\{Z_2, \ldots, Z_J\}$$
, where  $Z_j = \begin{cases} \mathbf{1} & : j = i \\ \mathbf{0} & : \text{ otherwise} \end{cases}$ 

- $\{Z_2X,\ldots,Z_JX\}$
- $\{Z_2U,\ldots,Z_JU\}$
- 3. Combine the rows of  $D_2, \ldots, D_J$ .

The approximated binary logistic model is given by

$$logit(P[Y^* = 1]) = \gamma_2 + \sum_{l=3}^{J} \gamma_l Z_l + \sum_{k=1}^{K_o} Q(\delta_{(\cdot)k}, X_k) + \sum_{k=1}^{K_a} Q(\theta_{(\cdot)k}, U_k)$$
 (3)

where

$$Q(\tau_{(\cdot)k},S) = \left\{ \begin{array}{ll} \tau_k S & : & \text{if the coefficients of } S \text{ are contrained to be} \\ & \text{the same for all alternatives, i.e. } \tau_{(\cdot)k} = \tau_k \\ \sum_{l=2}^J \tau_{lk} Z_l S & : & \text{otherwise} \end{array} \right.$$

Given estimated coefficients  $\widehat{\gamma}$ ,  $\widehat{\delta}$  and  $\widehat{\theta}$ , estimators of the coefficients of the original model in Equation (2) are given by:

$$\widehat{\alpha}_{10} = 0$$
,  $\widehat{\alpha}_{20} = \widehat{\gamma}_2$ ,  $\widehat{\alpha}_{i0} = \widehat{\gamma}_i + \widehat{\gamma}_2$ , for  $i = 3, ..., J$   
 $\widehat{\alpha}_{ik} = \widehat{\delta}_{ik}$ , for  $i = 2, ..., J$ ,  $k = 1, ..., K_o$   
 $\widehat{\beta}_{ik} = \widehat{\theta}_{ik}$ , for  $i = 2, ..., J$ ,  $k = 1, ..., K_a$ 

# 3 Example

Consider the following toy dataset with eight individuals, four alternatives and two independent variables, X and W:

| $\operatorname{id}$ | Y | X     | $W_1$    | $W_2$    | $W_3$    | $W_4$    |
|---------------------|---|-------|----------|----------|----------|----------|
| 1                   | 1 | $x_1$ | $w_{11}$ | $w_{12}$ | $w_{13}$ | $w_{14}$ |
| 2                   | 1 | $x_2$ | $w_{21}$ | $w_{22}$ | $w_{23}$ | $w_{24}$ |
| 3                   | 2 | $x_3$ | $w_{31}$ | $w_{32}$ | $w_{33}$ | $w_{34}$ |
| 4                   | 2 | $x_4$ | $w_{41}$ | $w_{42}$ | $w_{43}$ | $w_{44}$ |
| 5                   | 3 | $x_5$ | $w_{51}$ | $w_{52}$ | $w_{53}$ | $w_{54}$ |
| 6                   | 3 | $x_6$ | $w_{61}$ | $w_{62}$ | $w_{63}$ | $w_{64}$ |
| 7                   | 4 | $x_7$ | $w_{71}$ | $w_{72}$ | $w_{73}$ | $w_{74}$ |
| 8                   | 4 | $x_8$ | $w_{81}$ | $w_{82}$ | $w_{83}$ | $w_{84}$ |
|                     |   |       |          |          |          |          |

Setting the base alternative to 1, the converted dataset is of the form:

|       | Y | X     | U                 | $Y^*$ | $Z_2$ | $Z_3$ | $Z_4$ | $Z_2X$ | $Z_3X$ | $Z_4X$ | $Z_2U$            | $Z_3U$            | $Z_4U$            |
|-------|---|-------|-------------------|-------|-------|-------|-------|--------|--------|--------|-------------------|-------------------|-------------------|
|       | 1 | $x_1$ | $w_{12} - w_{11}$ | 0     | 1     | 0     | 0     | $x_1$  | 0      | 0      | $w_{12} - w_{11}$ | 0                 | 0                 |
| $D_2$ | 1 | $x_2$ | $w_{22} - w_{21}$ | 0     | 1     | 0     | 0     | $x_2$  | 0      | 0      | $w_{22} - w_{21}$ | 0                 | 0                 |
|       | 2 | $x_3$ | $w_{32} - w_{31}$ | 1     | 1     | 0     | 0     | $x_3$  | 0      | 0      | $w_{32} - w_{31}$ | 0                 | 0                 |
|       | 2 | $x_4$ | $w_{42} - w_{41}$ | 1     | 1     | 0     | 0     | $x_4$  | 0      | 0      | $w_{42} - w_{41}$ | 0                 | 0                 |
|       | 1 | $x_1$ | $w_{13} - w_{11}$ | 0     | 0     | 1     | 0     | 0      | $x_1$  | 0      | 0                 | $w_{13} - w_{11}$ | 0                 |
| $D_3$ | 1 | $x_2$ | $w_{23} - w_{21}$ | 0     | 0     | 1     | 0     | 0      | $x_2$  | 0      | 0                 | $w_{23} - w_{21}$ | 0                 |
|       | 3 | $x_5$ | $w_{53} - w_{51}$ | 1     | 0     | 1     | 0     | 0      | $x_5$  | 0      | 0                 | $w_{53} - w_{51}$ | 0                 |
|       | 3 | $x_6$ | $w_{63} - w_{61}$ | 1     | 0     | 1     | 0     | 0      | $x_6$  | 0      | 0                 | $w_{63} - w_{61}$ | 0                 |
|       | 1 | $x_1$ | $w_{14} - w_{11}$ | 0     | 0     | 0     | 1     | 0      | 0      | $x_1$  | 0                 | 0                 | $w_{14} - w_{11}$ |
| $D_4$ | 1 | $x_2$ | $w_{24} - w_{21}$ | 0     | 0     | 0     | 1     | 0      | 0      | $x_2$  | 0                 | 0                 | $w_{24} - w_{21}$ |
|       | 4 | $x_7$ | $w_{74} - w_{71}$ | 1     | 0     | 0     | 1     | 0      | 0      | $x_7$  | 0                 | 0                 | $w_{74} - w_{71}$ |
|       | 4 | $x_8$ | $w_{84} - w_{81}$ | 1     | 0     | 0     | 1     | 0      | 0      | $x_8$  | 0                 | 0                 | $w_{84} - w_{81}$ |

An MNL model, specified in mlogitBMA by  $Y \sim 1 \mid X + U$ , is approximated using the logit model

$$Y^* \sim Z_3 + Z_4 + Z_2X + Z_3X + Z_4X + Z_2U + Z_3U + Z_4U$$

The MNL coefficients from Equation (2) correspond to:

 $(\alpha_{20}, \alpha_2, \beta_2) = (Intercept, Z_2 X coef., Z_2 U coef.)$ 

 $(\alpha_{30}, \alpha_3, \beta_3) = (Intercept + Z_3 coef., Z_3 X coef., Z_3 U coef.)$ 

 $(\alpha_{40}, \alpha_4, \beta_4) = (Intercept + Z_4 coef., Z_4 X coef., Z_4 U coef.)$ 

If we constrain the coefficients to be the same for all alternatives, i.e.  $\alpha = \alpha_2 = \alpha_3 = \alpha_4$  and  $\beta = \beta_2 = \beta_3 = \beta_4$ , which is specified in mlogitBMA by  $Y \sim X + U$ , the logit model

$$Y^* \sim Z_3 + Z_4 + X + U$$

is used as an approximation. In this case,  $\alpha$  corresponds to the coefficient of X and  $\beta$  corresponds to the coefficient of U.

## References

- [1] Begg, C.B., Gray, R. (1984) Calculation of polychotomous logistic regression parameters using individualized regressions. *Biometrika* **71**, 11–18.
- [2] Yeung, K.Y., Bumgarner, R.E., Raftery, A.E. (2005) Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data. *Bioinformatics* **21** (10), 2394–2402.