Question 1. What is the IP address of gaia.cs.umass.edu? On what port number is it sending and receiving TCP segments for this connection? What are the IP address and TCP port numbers used by the client computer (source) that is transferring the file to gaia.cs.umass.edu?

In TCP transport layer we set up the connection first, which shows the source and the destination in No.1.

The IP address of gaia.cs.umass.edu is 128.119.245.12, and the port number is 80. The IP address of the client computer is 192.168.1.102 and its port number is 1161.

No.	Time	Source	Destination	Protocol	Length Info
г 1	0.000000	192.168.1.102	128.119.245.12	TCP	62 1161 → 80 [SYI
2	0.023172	128.119.245.12	192.168.1.102	TCP	62 80 → 1161 [SY
_		400 400 4 400	400 440 045 40	T00	

Question 2. What is the sequence number of the TCP segment containing the HTTP POST command? Note that to find the POST command, you'll need to dig into the packet content field at the bottom of the Wireshark window, looking for a segment with a "POST" within its DATA field.

As first three lines are building the connection (three ways handshake), we check No.4 which request the data.

The sequence number is 232129013.

Time	Source					Des	stina	tion				Prof	toco	l Le	ength	h In	nfo									
REF	192.16	68.1.1	92			128	3.11	19.2	45.12			TCP)		62	2 1	161	→ 80	[SYN]	Seq=	23212	9012	Win=	1638	4 Le	n=0 M
0.023172	128.13	19.245	.12			192	2.16	88.1	.102			TCP)		62	2 8	0 →	1161	[SYN,	ACK	Seg=	8830	61785	Ack	=232	12901
0.023265	192.16	68.1.10	02			128	3.11	19.2	45.12			TCP	•		54	4 1:	161	→ 80	[ACK]	Seq=	=23212	9013	Ack=	8830	6178	6 Win
0.026477	192.1	68.1.1	92			128	3.11	19.2	45.12	?		TCP)		619	9 1	161	→ 80	[PSH,	ACK	Seq=	2321	29013	3 Ack	=883	96178
0.041737	192.16	68.1.10	02			128	3.11	19.2	45.12	2		TCP)		1514	4 1	161	→ 80	[PSH,	ACK]	Seq=	2321	29578	Ack	=883	96178
0.053937	128.13	19.245	.12			192	2.16	88.1	.102			TCP)		66	9 8	0 →	1161	[ACK]	Seq=	88306	1786	Ack=	2321	2957	3 Win
0.054026	192.16	68.1.10	02			128	3.11	19.2	45.12	2		TCP)		1514	4 1	161	→ 80	[ACK]	Seq=	23213	1038	Ack=	8830	6178	6 Win
																										Þ
Internet Pro	otoc-	0000	00	06	25	da	af	73 (90 20	e6	8a	70	1a	08	00	45	00	9	6··s·	· · p ·	· · E ·					
Transmission	n Co	0010	02	5d	1e	21	40	00 8	80 06	a2	e7	c0	a8	01	66	80	77	- 1	!@		·f·w					
Source Po	rt:	0020	f5	Θс	04	89	00	50 (9d d6	01	. f5	34	a2	74	1a	50	18		p	4 .	t·P·					
Destinati	on I	0030	44	70	1f	bd	00	00	50 4f	53	54	20	2f	65	74	68	65	Dp ·	• • • • P0	ST /	ethe					
[Stream i	nde:	0040	72	65	61	6c	2d	6c (61 62	73	2f	6c	61	62	33	2d	31	rea	al-lab	s/la	b3-1					
[Conversa	tio	0050	2d	72	65	70	6c	79 2	2e 68	74	6d	20	48	54	54	50	2f	-re	eply.h	tm H	ITTP/					
[TCP Segm	ent	0060	31	2e	31	0d	0a	48 (6f 73	74	3a	20	67	61	69	61	2e	1.1	L··Hos	t: g	aia.					
Sequence	Numl	0070	63	73	2e	75	6d	61	73 73	2€	65	64	75	0d	0a	55	73	CS.	umass	.edu	ı ∙ Us					
[Next Seq		0080	65	72	2d	41	67	65 (6e 74		20	4d	6f	7a	69	6c	6c	er-	-Agent	: Mo	zill					
Acknowled	Igmei	0090	61	2f	35	2e	30	20 2	28 57	69	6e	64	6f	77	73	3b	20	a/5	5.0 (W	indo	ws;					
Acknowled	igmei	0090	61	21	35	2e	30	20 /	28 57	95	50	64	61		73	3D	20	a/:	o.⊎ (W	indo	ws;					

Question 3. Consider the TCP segment containing the HTTP POST as the first segment in the TCP connection.

- a) What are the sequence numbers of the first six segments in the TCP connection (including the segment containing the HTTP POST) sent from the client to the webserver (Do not consider the ACKs received from the server as part of these six segments)?
- b) At what time was each segment sent? When was the ACK for each segment received? Given the difference between when each TCP segment was sent and when its acknowledgement was received, what is the RTT value for each of the six segments?
- c) What is the *EstimatedRTT* value (see relevant parts of Section 3.5 or lecture slides) after receiving each ACK? Assume that the initial value of *EstimatedRTT* is equal to the measured RTT (*SampleRTT*) for the

first segment and then is computed using the *EstimatedRTT* equation for all subsequent segments. Set alpha to 0.125.

EstimatedRTT = 0.875*EstimatedRTT+0.125*sampleRTT

Question 4. What is the length of each of the first six TCP segments? (same six segments as Question 3)

Segment (determin e by source and destinatio n IP address)	Lengt h (find in heade r)	Seq. number	Sent time	Received time (find in ACK -> length+se q)	Sample RTT (Receive d time – sent time)	Estimated RTT
1 (no.4)	565	23212901	0.02647 7	0.05394	0.02746	0.02746 (same as sample RTT as it's the first column)
2 (no.5)	1460	23212957 8	0.04173 7	0.077294 (ACK= no.9)	0.03556	0.0284721
3 (no.7)	1460	23213103 8	0.05469 0	0.0124085 (ACK= no.12)	0.07005 9	0.0327848 75
4 (no.8)	1480	23213249 8	0.05469 0	0.169118 (ACK=no.1 4)	0.114428	0.038331
5 (no.10)	1480	23213395 8	0.07740 5	0.217299 (ACK=no.1 5)	0.139894	0.04151425

6 (no.11)	1480	23213541	0.07815	0.267802	0.189645	0.04773312
		8	7			5
				(ACK=no.1		
				6)		

Question 5. What is the minimum amount of available buffer space advertised at the receiver for the entire trace? Does the lack of receiver buffer space ever throttle the sender?

Check SYN ACK packet (no. 2nd) -> window (maximum value 5840). As the size is increasing, the lack of receiver buffer space does jot throttle the sender.

Question 6. Are there any retransmitted segments in the trace file? To answer this question, what did you check for (in the trace)?

(1. Check is there same sequence number + same content OR wireshark->statistics->TCP stream graph-> time sequence sevens)

The sequence numbers increase step by step in TCP steam graph which means we did not retransmit the graph.

Question 7. How much data does the receiver typically acknowledge in an ACK? Can you identify cases where the receiver is ACKing every other

received segment (recall the discussion about delayed acks from the lecture notes or Section 3.5 of the text)?

We observe the packet no.53- no.62 and there are 6 packets with 4 ACK.

No.53-No.58: 6 packets (we can't fine the ACK for no.54 & no.55) -> which no.54 - no.56 combine their ACK in no.60

No59-No. 62: 4 ACK

53 1.117333	192.168.1.102	128.119.245.12	TCP	1514 1161 → 80 [ACK] Seq=232162601 Ack=883061786 Win=
54 1.118133	192.168.1.102	128.119.245.12	TCP	1514 1161 → 80 [ACK] Seq=232164061 Ack=883061786 Win=
55 1.119029	192.168.1.102	128.119.245.12	TCP	1514 1161 → 80 [ACK] Seq=232165521 Ack=883061786 Win=
56 1.119858	192.168.1.102	128.119.245.12	TCP	1514 1161 → 80 [ACK] Seq=232166981 Ack=883061786 Win=
57 1.120902	192.168.1.102	128.119.245.12	TCP	1514 1161 → 80 [ACK] Seq=232168441 Ack=883061786 Win=
58 1.121891	192.168.1.102	128.119.245.12	TCP	946 1161 → 80 [PSH, ACK] Seq=232169901 Ack=883061786
59 1.200421	128.119.245.12	192.168.1.102	TCP	60 80 → 1161 [ACK] Seq=883061786 Ack=232164061 Win=
60 1.265026	128.119.245.12	192.168.1.102	TCP	60 80 → 1161 [ACK] Seq=883061786 Ack=232166981 Win=
61 1.362074	128.119.245.12	192.168.1.102	TCP	60 80 → 1161 [ACK] Seq=883061786 Ack=232169901 Win=
62 1.389886	128.119.245.12	192.168.1.102	TCP	60 80 → 1161 [ACK] Seq=883061786 Ack=232170793 Win=

Question 8. What is the TCP connection's throughput (bytes transferred per unit of time)? Explain how you calculated this value.

Throughput = (Total amount of data)/ (total transmission time) = (#202_seq - #4_seq - 1)/(#202_ack_time - #4_seq_time)

```
(232293103 - 232129013 - 1) \div (5.45583 - 0.026477) = 30222.5697979
```

Consider the following TCP transaction between a client (10.9.16.201) and a server (10.99.6.175).

No	Source IP	Destination IP	Protocol	Info
295	10.9.16.201	10.99.6.175	ТСР	50045 > 5000 [SYN] Seq=2818463618 win=8192 MSS=1460
296	10.99.6.175	10.9.16.201	ТСР	5000 > 50045 [SYN, ACK] Seq=1247095790 Ack=2818463619 win=262144 MSS=1460
297	10.9.16.201	10.99.6.175	ТСР	50045 > 5000 [ACK] Seq=2818463619 Ack=1247095791 win=65535
298	10.9.16.201	10.99.6.175	ТСР	50045 > 5000 [PSH, ACK] Seq=2818463619 Ack=1247095791 win=65535
301	10.99.6.175	10.9.16.201	ТСР	5000 > 50045 [ACK] Seq=1247095791 Ack=2818463652 win=262096
302	10.99.6.175	10.9.16.201	ТСР	5000 > 50045 [PSH, ACK] Seq=1247095791 Ack=2818463652 win=262144
303	10.9.16.201	10.99.6.175	ТСР	50045 > 5000 [ACK] Seq=2818463652 Ack=1247095831 win=65535
304	10.9.16.201	10.99.6.175	ТСР	50045 > 5000 [FIN, ACK] Seq=2818463652 Ack=1247095831 win=65535
305	10.99.6.175	10.9.16.201	ТСР	5000 > 50045 [FIN, ACK] Seq=1247095831 Ack=2818463652 win=262144
306	10.9.16.201	10.99.6.175	ТСР	50045 > 5000 [ACK] Seq=2818463652 Ack=1247095832 win=65535
308	10.99.6.175	10.9.16.201	ТСР	5000 > 50045 [ACK] Seq=1247095831 Ack=2818463653 win=262144

Question 1. What is the sequence number of the TCP SYN segment that is used to initiate the TCP connection between the client computer and server?

The sequence number is 2818463618.

Question 2. What is the sequence number of the SYNACK segment sent by the server to the client computer in reply to the SYN? What is the value of the Acknowledgement field in the SYNACK segment? How did the server determine that value?

As it is sent by the server to the client (check the ip), which the sequence number is 1247095790.

The ACK is 2818463619.

Question 3. What is the sequence number of the ACK segment sent by the client computer in response to the SYNACK? What is the value of the Acknowledgment field in this ACK segment? Does this segment contain any data?

The sequence number of the ACK segment CK is 2818463619. The ACK segment is 1247095791. This segment does not contain any data because the sequence number is same as segment #298.

Question 4. Who has done the active close? Is it the client or the server? How you have determined this? What type of closure has been performed? 3 Segment (FIN/FINACK/ACK), 4 Segment (FIN/ACK/FIN/ACK) or Simultaneous close?

Both client and server done the active close. As both of them sent [FIN, ACK] flags to each other without receiving ACK flag. In addition, the sequence number in segment #304 is equal to the value of the acknowledgement field in segment #305. The type of closure is simultaneous close.

Question 5 . How many data bytes have been transferred from the client to the server and from the server to the client during the whole duration of the connection? What relationship does this have with the Initial Sequence Number and the final ACK received from the other side?

client to server = 2818463653 - 2818463618 - 2(SYN & FIN) = 33 bytes

server to client = 1247095831 - 1247095790 - 2(SYN & FIN) = 40 bytes

As SYN and FIN flags increase 1 at ACK without containing any data. This relationship can be used to calculate the data transfer.