<u>GPIO</u>

GPIO pins and alternate functions

Ю	Pin	Analog			Digi	ital Funct	ion (GPIO	PCTL PM	Cx Bit Fie	ld Encodi	ng) ^a		
Ю	FIN	Function	1	2	3	4	5	6	7	8	9	14	15
PA0	17	-	U0Rx	-	-	-	-	-	-	CAN1Rx	-	-	-
PA1	18	-	U0Tx	-	-	-	-	-	-	CAN1Tx	-	-	-
PA2	19	-	-	SSI0Clk	-	-	-	-	-	-	-	-	-
PA3	20	-	-	SSI0Fss	-	-	-	-	-	-	-	-	-
PA4	21	-	-	SSI0Rx	-	-	-	-	-	-	-	-	-
PA5	22	-	-	SSI0Tx	-	-	-	-	-	-	-	-	-
PA6	23	-	-	-	I2C1SCL	-	M1PWM2	-	-	-	-	-	-
PA7	24	-	-	-	I2C1SDA	-	M1PWM3	-	-	-	-	-	-
PB0	45	USB0ID	U1Rx	-	-	-	-	-	T2CCP0	-	-	-	-
PB1	46	USB0VBUS	U1Tx	-	-	-	-	-	T2CCP1	-	-	-	-
PB2	47	-	-	-	I2C0SCL	-	-	-	T3CCP0	-	-	-	-
PB3	48	-	-	-	I2C0SDA	-	-	-	T3CCP1	-	-	-	-
PB4	58	AIN10	-	SSI2Clk	-	M0PWM2	-	-	T1CCP0	CANORx	-	-	-
PB5	57	AIN11	-	SSI2Fss	-	морум3	-	-	T1CCP1	CANOTx	-	-	-
PB6	1	-	-	SSI2Rx	-	M0PWM0	-	-	TOCCPO	-	-	-	-
PB7	4	-	-	SSI2Tx	-	M0PWM1	-	-	TOCCP1	-	-	-	-
PC0	52	-	TCK	-	-	-	-	-	T4CCP0	-	-	-	-
PC1	51	-	TMS SWDIO	-	-	-	-	-	T4CCP1	-	-	-	-
PC2	50	-	TDI	_	-	_	-	_	T5CCP0	_	_	_	-
PC3	49	-	TDO SWO	-	-	-	-	-	T5CCP1	-	-	-	-
PC4	16	C1-	U4Rx	U1Rx	_	MOPWM6	_	IDX1	WT0CCP0	U1RTS	_	_	-
PC5	15	C1+	U4Tx	UlTx	_	MOPWM7	_	PhA1	WT0CCP1	U1CTS	_	_	_
PC6	14	C0+	U3Rx	-	_	-	_	PhB1	WT1CCP0	USB0EPEN	_	_	_
PC7	13	C0-	U3Tx	_	_	_	_	-	WT1CCP1	USB0PFL/T	_	_	_
PD0	61	AIN7	SSI3Clk			MOPWM6	M1PWM0	_	WT2CCP0	-	-	_	-
PD1	62	AIN6	SSI3Fss	SSI1Fss	I2C3SDA	MOPWM7	M1PWM1	_	WT2CCP1	_	_	_	_
PD2	63	AIN5	SSI3Rx	SSI1Rx	-	MOFAULTO	-	_	WT3CCP0	USB0EPEN	_	_	_
PD3	64	AIN4	SSI3Tx	SSI1Tx	_	-	_	IDX0	WT3CCP1	USB0PFLT	_	_	_
PD4	43	USB0DM	U6Rx	-	-	-	-	-	WT4CCP0	-		_	-
PD5	44	USB0DP	U6Tx	-	-		_	_	WT4CCP1	-	-	_	_
PD6	53	-	U2Rx	_	_	MOFAULTO	_	PhA0	WT5CCP0	-	_	_	_
PD7	10	_	U2Tx	_	_	-	-	PhB0	WT5CCP1	NMI		_	
PE0	9	AIN3	U7Rx	-	-		-	-	wiscepi -	NPII		-	-
PE1	8	AIN3	U7EX										
				-	-	-	-	-	-	-	-	-	-
PE2	7	AIN1	-	-	-	-	-	-	-	-	-	-	-

PE4	59	AIN9	U5Rx	-	I2C2SCL	MOPWM4	M1PWM2	-	-	CANORx	-	-	-
PE5	60	AIN8	U5Tx	-	I2C2SDA	MOPWM5	M1PWM3	-	-	CAN0Tx	-	-	-
PF0	28	-	U1RTS	SSI1Rx	CAN0Rx	-	M1PWM4	PhA0	TOCCPO	NMI	C0o	-	-
PF1	29	-	U1CTS	SSI1Tx	-	-	M1PWM5	PhB0	TOCCP1	-	C1o	TRD1	-
PF2	30	-	-	SSI1Clk	-	MOFAULTO	M1PWM6	-	T1CCP0	-	-	TRD0	-
PF3	31	-	-	SSI1Fss	CAN0Tx	-	M1PWM7	-	T1CCP1	-	-	TRCLK	-
PF4	5	-	-	-	-	-	M1FAULT0	IDX0	T2CCP0	USB0EPEN	-	-	-

Run Clock Gate Control Register for GPIO (RCGCGPIO) (address is 0x400FE608)

Value Description

0 GPIO Port A is disabled.

1 Enable and provide a clock to GPIO Port A in Run mode.

Base addresses for GPIO ports

Port A: 0x40004000

Port B: 0x40005000

Port C: 0x40006000

Port D: 0x40007000

Port E: 0x40024000

Port F: 0x40025000

Data Register: GPIODATA, offset 0x000

Data direction register: GPIODIR, offset 0x400

GPIO Alternate Function Select: GPIOAFSEL, offset 0x420

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	AFSEL	RW	_	GPIO Alternate Function Select

Value Description

- 0 The associated pin functions as a GPIO and is controlled by the GPIO registers.
- 1 The associated pin functions as a peripheral signal and is controlled by the alternate hardware function.

GPIO Port Control: GPIOPCTL, offset 0x52C

Bit/Field	Name	Type	Reset	Description
31:28	PMC7	RW	-	Port Mux Control 7 This field controls the configuration for GPIO pin 7.
27:24	PMC6	RW	=	Port Mux Control 6 This field controls the configuration for GPIO pin 6.
23:20	PMC5	RW	-	Port Mux Control 5 This field controls the configuration for GPIO pin 5.
19:16	PMC4	RW	-	Port Mux Control 4 This field controls the configuration for GPIO pin 4.
15:12	PMC3	RW	=	Port Mux Control 3 This field controls the configuration for GPIO pin 3.
11:8	PMC2	RW	-	Port Mux Control 2 This field controls the configuration for GPIO pin 2.
7:4	PMC1	RW	-	Port Mux Control 1 This field controls the configuration for GPIO pin 1.
3:0	PMC0	RW	-	Port Mux Control 0 This field controls the configuration for GPIO pin 0.

GPIO Interrupt Sense (GPIOIS), offset 0x404

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		'		'				rese	rved							'
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	l rved I			1				l:	S L			
Type	RO	RO	RO	RO	RO	RO	RO	RO	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IS	RW	0x00	GPIO Interrupt Sense

Value Description

- O The edge on the corresponding pin is detected (edge-sensitive).
- 1 The level on the corresponding pin is detected (level-sensitive).

GPIO Interrupt Both Edges: GPIOIBE, offset 0x408

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IBE	RW	0x00	GPIO Interrupt Both Edges

Value Description

- Interrupt generation is controlled by the GPIO Interrupt Event (GPIOIEV) register (see page 666).
- 1 Both edges on the corresponding pin trigger an interrupt.

GPIO Interrupt Event: GPIOIEV, offset 0x40C

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IFV	RW	0x00	GPIO Interrupt Event

- O A falling edge or a Low level on the corresponding pin triggers an interrupt.
- 1 A rising edge or a High level on the corresponding pin triggers an interrupt.

GPIO Interrupt Mask: GPIOIM, offset 0x410

IME

RIS

7:0

7:0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		'						rese	rved					•	'	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		'		rese	rved		'			•		IM	E	•	'	'
Type	RO	RO	RO	RO	RO	RO	RO	RO	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name Type 31:8 reserved RO		Reset 0	Soft	patibility	with fut	ure prod	he value ucts, the dify-write	value of	f a reserv		vide hould be				

Value Description

GPIO Interrupt Mask Enable

- 0 The interrupt from the corresponding pin is masked.
- 1 The interrupt from the corresponding pin is sent to the interrupt controller

GPIO Raw Interrupt Status: GPIORIS, offset 0x414 (read only)

RW

0x00

Value Description

GPIO Interrupt Raw Status

- O An interrupt condition has not occurred on the corresponding pin.
- 1 An interrupt condition has occurred on the corresponding pin.

For edge-detect interrupts, this bit is cleared by writing a 1 to the corresponding bit in the ${\bf GPIOICR}$ register.

For a GPIO level-detect interrupt, the bit is cleared when the level is deasserted.

GPIO Masked Interrupt Status: GPIOMIS, offset 0x418 (read only)

RO

0x00

- O An interrupt condition on the corresponding pin is masked or has not occurred.
- An interrupt condition on the corresponding pin has triggered an interrupt to the interrupt controller.

GPIO Interrupt Clear: GPIOICR, offset 0x41C

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IC	W1C	0x00	GPIO Interrupt Clear

Value Description

- 0 The corresponding interrupt is unaffected.
- 1 The corresponding interrupt is cleared.

GPIO Pull-Up Select: GPIOPUR, offset 0x510

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	PUE	RW	-	Pad Weak Pull-Up Enable

Value Description

- 0 The corresponding pin's weak pull-up resistor is disabled.
- 1 The corresponding pin's weak pull-up resistor is enabled.

GPIO Pull-Down Select (GPIOPDR), offset 0x514

Bit/Field	Name	Type	Reset	Description
31:8	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	PDE	RW	0x00	Pad Weak Pull-Down Enable

- 0 The corresponding pin's weak pull-down resistor is disabled.
- 1 The corresponding pin's weak pull-down resistor is enabled.

GPIO Analog Mode Select: GPIOAMSEL, offset 0x528

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		'	'	'		'	'	rese	rved		'			'	'	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved										'	GPIO/	AMSEL	'	'	'
Type	RO	RO	RO	RO	RO	RO	RO	RO	RW							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	GPIOAMSEL	RW	0x00	GPIO Analog Mode Select

Value Description

- The analog function of the pin is disabled, the isolation is enabled, and the pin is capable of digital functions as specified by the other GPIO configuration registers.
- 1 The analog function of the pin is enabled, the isolation is disabled, and the pin is capable of analog functions.

GPIO Digital Enable: GPIODEN, offset 0x51C

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	DEN	RW	-	Digital Enable

Value Description

- 0 The digital functions for the corresponding pin are disabled.
- 1 The digital functions for the corresponding pin are enabled.

GPIO ADC Control: GPIOADCCTL, offset 0x530

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	ADCEN	RW	0x00	ADC Trigger Enable

- 0 The corresponding pin is not used to trigger the ADC.
- 1 The corresponding pin is used to trigger the ADC.

TIMER

SysTick

Address	31-24	23-17 16		15-3	2	1	0	Name
\$E000E010	0	0	0 COUNT 0 CLK_SRC INTEN ENABLE					STCTRL
\$E000E014	0	24-bit F	ELOAD va	alue		STRELOAD		
\$E000E018	0	24-bit C	URRENT	value of		STCURRENT .		

SysTick Control and Status Register(STCTRL)

Enable: 0 timer disabled, 1 timer enabled

INTEN: 0 interrupt disabled, 1 interrupt is generated to the NVIC when SysTick counts to 0.

CLK_SRC: 0 (POSC) divided by 4, 1 system clock

COUNT: 0 SysTick timer has not counted to 0 yet, 1 SysTick timer has counted to 0. This bit is cleared

by a read of the register or if the STCURRENT register is written with any value.

SysTick Reload Value Register (STRELOAD)

This register specifies the start value to load into the SysTick Current Value (STCURRENT) register when the counter reaches 0.

Start value can be between 0x1 and 0x00FFFFFF (only 24 bit value an be written)

SysTick Current Value Register (STCURRENT)

This register is write-clear. Writing to it with any value clears the register. Clearing this register also clears the COUNT bit of the STCTRL register.

General Purpose Timers

Base addresses of six 16/32 bit Timers and six 32/64 bit Timers:

- 16/32-bit Timer 0: 0x4003.0000
- 16/32-bit Timer 1: 0x4003.1000
- 16/32-bit Timer 2: 0x4003.2000
- 16/32-bit Timer 3: 0x4003.3000
- 16/32-bit Timer 4: 0x4003.4000
- 16/32-bit Timer 5: 0x4003.5000
- 32/64-bit Wide Timer 0: 0x4003.6000
- 32/64-bit Wide Timer 1: 0x4003.7000
- 32/64-bit Wide Timer 2: 0x4004.C000
- 32/64-bit Wide Timer 3: 0x4004.D000
- 32/64-bit Wide Timer 4: 0x4004.E000
- 32/64-bit Wide Timer 5: 0x4004.F000

Timer Configuration: CFG, offset 0x000

Value of Bit field 2:0	Description
0x0	For a 16/32-bit timer, this value selects the 32-bit timer configuration. For a 32/64-bit wide timer, this value selects the 64-bit timer configuration.
0x1	For a 16/32-bit timer, this value selects the 32-bit real-time clock (RTC) counter configuration. For a 32/64-bit wide timer, this value selects the 64-bit real-time clock (RTC) counter configuration.
0x4	For a 16/32-bit timer, this value selects the 16-bit timer configuration. For a 32/64-bit wide timer, this value selects the 32-bit timer configuration.

Timer A/B Mode: TAMR/ TBMR, offset 0x004/0x008

Bit field	Value	Description
1:0	0x1	One shot timer mode
	0x2	Periodic timer mode
	0x3	Capture mode
2	0	Edge count mode
	1	Edge time mode
3	0	Capture or compare mode
	1	PWM
4	0	Timer counts down

	1	Timer counts up
5	0	The match interrupt is disabled for match events.
	1	An interrupt is generated when the match value in the TAMATCHR register is reached in the one-shot and periodic modes.
6	0	Timer A begins counting as soon as it is enabled
	1	If Timer A is enabled (TAEN is set in the CTL register), Timer A does not begin counting until it receives a trigger from the timer in the previous position in the daisy chain
7	0	Snap shot mode is disabled
	1	If Timer A is configured in the periodic mode, the actual free-running, capture or snapshot value of Timer A is loaded at the time-out event/capture or snapshot event into the Timer A (TAR) register. If the timer prescaler is used, the prescaler snapshot is loaded into the Timer A (TAPR).
8	0	Update the TAR and TAV registers with the value in the TAILR register on the next cycle. Also update the TAPS and TAPV registers with the value in the TAPR register on the next cycle.
	1	Update the TAR and TAV registers with the value in the TAILR register on the next timeout. Also update the TAPS and TAPV registers with the value in the TAPR register on the next timeout.
9	0	Capture event interrupt is disabled.
	1	Capture event interrupt is enabled.
10	0	Update the TAMATCHR register and the TAPR register, if used, on the next cycle.
	1	Update the TAMATCHR register and the TAPR register, if used, on the next time out.
11	0	Legacy operation with CCP pin driven Low when the TAILR is reloaded after the timer reaches 0.
	1	CCP is driven High when the TAILR is reloaded after the timer reaches 0.

Timer Control: CTL, offset 0x00C

Bit field	Value	Description
14	0	Output is unaffected.
	1	Output is inverted.
13	0	The output Timer B ADC trigger is disabled.
	1	The output Timer B ADC trigger is enabled.
11:10	0x0	Timer B Event Mode, Positive edge
	0x1	Timer B Event Mode, Negative edge
	0x3	Timer B Event Mode, both edges

9	0	Timer B continues counting while the processor is halted by the debugger.
	1	Timer B freezes counting while the processor is halted by the debugger.
8	0	Timer B is disabled.
	1	Timer B is enabled and begins counting or the capture logic is enabled based on the CFG register.
6	0	Timer A PWM Output Level is unaffected.
	1	Timer A PWM Output Level is inverted.
5	0	The output Timer A ADC trigger is disabled.
	1	The output Timer A ADC trigger is enabled.
4	0	RTC counting freezes while the processor is halted by the debugger.
	1	RTC counting continues while the processor is halted by the debugger.
3:2	0x0	Timer A Event Mode, Positive edge
	0x1	Timer A Event Mode, Negative edge
	0x3	Timer A Event Mode, both edges
1	0	Timer A continues counting while the processor is halted by the debugger.
	1	Timer A freezes counting while the processor is halted by the debugger.
0	0	Timer A is disabled.
	1	Timer A is enabled and begins counting or the capture logic is enabled based on the CFG register.

Timer Interrupt Mask: IMR, offset 0x018

bit	function
16	32/64-Bit Wide Write Update (WUE) Error Interrupt Mask
11	Timer B Match (TBM) Interrupt Mask
10	Timer B Capture Mode Event (CBE) Interrupt Mask
9	Timer B Capture Mode Match (CBM) Interrupt Mask
8	Timer B Time-Out (TBTO) Interrupt Mask
4	Timer A Match (TAM) Interrupt Mask
3	RTC Interrupt Mask
2	Timer A Capture Mode Event (CAE) Interrupt Mask
1	Timer A Capture Mode Match (CAM) Interrupt Mask
0	Timer A Time-Out (TATO) Interrupt Mask

0: Interrupt is disabled, 1: Interrupt is enabled

Timer Raw Interrupt Status: RIS, offset 0x01C

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		'	'	'				reserved		' '						WUERIS
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RW
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		rese	rved	'	TBMRIS	CBERIS	CBMRIS	TBTORIS		reserved		TAMRIS	RTCRIS	CAERIS	CAMRIS	TATORIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- 0: Match/capture/time-out etc. events not occurred.
- 1: Match/capture/time-out etc. events occurred.

(TBM, CBE, etc. corresponds to the same abbreviations as the above table)

Timer Masked Interrupt Status: MIS, offset 0x020

- 0: Match/capture/time-out etc. interrupts has not occurred or masked.
- 1: Unmasked Match/capture/time-out etc. interrupt has occurred.

(TBM, CBE, etc. corresponds to the same abbreviations as the above table)

Timer Interrupt Clear: ICR, offset 0x024

Writing a 1 to this a bit clears the respective bit in RIS and MRIS registers.

Timer A/B Interval Load: TAILR/ TBILR, offset 0x028/0x02C

(Same for Timer B)

Timer A/B Match: TAMATCHR/ TBMATCHR, offset 0x030/0x034

events.

(Same for Timer B)

Timer A/B Prescale: TAPR/ TBPR, offset 0x038/0x03C

TAPSRH: GPTM Timer A Prescale High Byte. For the 16/32-bit GPTM, this field is reserved. For the 32/64-bit Wide GPTM, this field contains the upper 8-bits of the 16-bit prescaler.

TAPSRL: GPTM Timer A Prescale Low Byte. For the 16/32-bit GPTM, this field contains the entire 8-bit prescaler. For the 32/64-bit Wide GPTM, this field contains the lower 8-bits of the 16-bit prescaler.

(Same for Timer B)

Timer A/B Prescale Match: TAPMR/TBPMR, offset 0x040/0x044

TAPSRH: GPTM Timer A Match Prescale High Byte. For the 16/32-bit GPTM, this field is reserved. For the 32/64-bit Wide GPTM, this field contains the upper 8-bits of the 16-bit match prescaler.

TAPSRL: GPTM Timer A Match Prescale Low Byte. For the 16/32-bit GPTM, this field contains the entire 8-bit match prescaler. For the 32/64-bit Wide GPTM, this field contains the lower 8-bits of the 16-bit match prescaler.

(Same for Timer B)

Timer A/B: TAR/ TBR, offset 0x048/0x04C

A read returns the current value of the **GPTM Timer A Count Register**, in all cases except for Input Edge Count and Time modes. In the Input Edge Count mode, this register contains the number of edges that have occurred. In the Input Edge Time mode, this register contains the time at which the last edge event took place.

Activate Windows

(Same for Timer B)

Timer A/B Value: TAV/ TBV, offset 0x050/0x054

A read returns the current, free-running value of Timer A in all modes. When written, the value written into this register is loaded into the **GPTMTAR** register on the next clock cycle.

(Same for Timer B)

Timer Peripheral Properties (PP), offset 0xFC0

Bit field 3:0 defines the size where

- Timer A and Timer B counters are 16 bits each with an 8-bit prescale counter.
- 1 Timer A and Timer B counters are 32 bits each with a 16-bit prescale counter.

Timer Synchronize (SYNC), offset 0x010

This register is only implemented on timer Module 0 only. This register allows software to synchronize a number of timers.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				rese	rved			'	SYN	CWT5	SYNC	CWT4	SYNO	CWT3	SYNC	WT2
Type *	RO	RO	RO	RO	RO	RO	RO	RO	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SYN	CWT1	SYNO	CWT0	SYN	ICT5	SYN	ICT4	SYN	ICT3	SYN	CT2	SYN	ICT1	SYN	СТО
Type	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Two bits for each timer to synchronize. For a timer Timer n, bit values and descriptions are as follows:

0x0 Timer n is not affected.

0x1

0x2

A timeout event for Timer A of Timer n is triggered.
A timeout event for Timer B of Timer n is triggered.
A timeout event for both Timer A and Timer B of Timer n is triggered. 0x3

Analog-to-Digital Converter

Base addresses of the ADC modules are:

ADC0: 0x4003.8000 ADC1: 0x4003.9000

Sample sequencers:

Sequencer	Number of Samples	Depth of FIFO
SS3	1	1
SS2	4	4
SS1	4	4
SS0	8	8

Analog-to-Digital Converter Run Mode Clock Gating Control: RCGCADC, 0x400FE638

Rn=0 ADC module n is disabled.

Rn=1 Enable and provide a clock to ADC module n in Run mode.

ADC Sample Sequence Input Multiplexer Select 0: ADCSSMUX0, offset 0x040

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		MU	IX7	'		MUX6				MU	X5			MU	IX4	•
Type	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							_		_	_	_		_	_		
	15	14	13	12	11	10	9	- 8	7	6	5	4	3	2	1	0
		MU	IX3	•		MU	IX2	'		MU	X1			MU	X0	•
Type	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060

ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080

ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0

Bit/Field	Name	Туре	Reset	Description
31:28	MUX7	RW	0x0	8th Sample Input Select
				The MUX7 field is used during the eighth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion. The value set here indicates the corresponding pin, for example, a value of 0x1 indicates the input is AIN1.
27:24	MUX6	RW	0x0	7th Sample Input Select
				The MUX6 field is used during the seventh sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
23:20	MUX5	RW	0x0	6th Sample Input Select
				The MUX5 field is used during the sixth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
19:16	MUX4	RW	0x0	5th Sample Input Select
				The MUX4 field is used during the fifth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
15:12	MUX3	RW	0x0	4th Sample Input Select
				The MUX3 field is used during the fourth sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
11:8	MUX2	RW	0x0	3rd Sample Input Select
				The MUX2 field is used during the third sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
7:4	MUX1	RW	0x0	2nd Sample Input Select
				The MUX1 field is used during the second sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.
3:0	MUX0	RW	0x0	1st Sample Input Select
				The MUXO field is used during the first sample of a sequence executed with the sample sequencer. It specifies which of the analog inputs is sampled for the analog-to-digital conversion.

ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	TS7	IE7	END7	D7	TS6	IE6	END6	D6	TS5	IE5	END5	D5	TS4	IE4	END4	D4
Type Reset	RW 0															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
Type Reset	RW 0															

ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064

ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Type	RO															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
Type Reset	RW 0															
. 10001	3	5	3	3	3	3	3	3	3	3	3	3	3		3	3

ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4

3 TS0 RW 0 1st Sample Temp Sensor Select

Value Description

- The input pin specified by the ADCSSMUXn register is read during the first sample of the sample sequence.
- 1 The temperature sensor is read during the first sample of the sample sequence.
- 2 IEO RW 0 1st Sample Interrupt Enable

Value Description

- 0 The raw interrupt is not asserted to the interrupt controller.
- 1 The raw interrupt signal (INRO bit) is asserted at the end of the first sample's conversion. If the MASKO bit in the ADCIM register is set, the interrupt is promoted to the interrupt controller.

It is legal to have multiple samples within a sequence generate interrupts.

1 END0 RW 0 1st Sample is End of Sequence

Value Description

- 0 Another sample in the sequence is the final sample.
- 1 The first sample is the last sample of the sequence.

It is possible to end the sequence on any sample position. Software must set an ENDn bit somewhere within the sequence. Samples defined after the sample containing a set ENDn bit are not requested for conversion even though the fields may be non-zero.

0 D0 RW 0 1st Sample Differential Input Select

Value Description

- 0 The analog inputs are not differentially sampled.
- 1 The analog input is differentially sampled. The corresponding ADCSSMUXn nibble must be set to the pair number "i", where the paired inputs are "2i and 2i+1".

Because the temperature sensor does not have a differential option, this bit must not be set when the ${\tt TS0}$ bit is set.

ADC Active Sample Sequencer (ADCACTSS), offset 0x000

ASENn=0, sample sequencer n is disabled, ASENn=1, sample sequencer n is enabled.

BUSY=0, ADC is idle, BUSY=1, ADC is busy.

ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	GSYNC		reserved		SYNCWAIT						reserved					
Type	RW	RO	RO	RO	RW	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			' '		, '	rese	rved						SS3	SS2	SS1	SS0
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO	WO	WO	wo
Reset	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-

GSYNC bit is cleared once sampling has been initiated.

GSYNC=1 This bit initiates sampling in multiple ADC modules at the same time. Any ADC module that has been initialized by setting an SSn bit and the SYNCWAIT bit starts sampling once this bit is written.

SYNCWAIT=0 Sampling begins when a sample sequence has been initiated.

SYNCWAIT=1 This bit allows the sample sequences to be initiated, but delays sampling until the GSYNC bit is set.

SSn=0 No effect.

SSn=1 Begin sampling on Sample Sequencer n, if the sequencer is enabled in the ADCACTSS register.

ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048
ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068
ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088
ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8

ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC

FULL=0 The FIFO is not currently full. FULL=1 The FIFO is currently full.

EMPTY=0 The FIFO is not currently empty. EMPTY=1 The FIFO is currently empty.

HPTR / TPTR: the current "head" / "tail" pointer index for the FIFO, that is, the next entry to be written.

ADC Underflow Status (ADCUSTAT), offset 0x018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		'	'	•		'	'	rese	rved	•		•		'		
Type Reset	RO 0															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		'	'	'		rese	erved	'		'			UV3	UV2	UV1	UV0
Type Reset	RO	RO 0	RO 0	RO 0	RO	RO	RO 0	RO 0	RO	RO	RO	RO 0	RW1C	RW1C	RW1C	RW1C 0

UVn=0 The FIFO has not underflowed.

UVn=1 The FIFO for the Sample Sequencer has hit an underflow condition, meaning that the FIFO is empty and a read was requested. The problematic read does not move the FIFO pointers, and 0s are returned.

This bit is cleared by writing a 1.

ADC Overflow Status (ADCOSTAT), offset 0x010

OVn=0 The FIFO has not overflowed.

OVn=1 The FIFO for Sample Sequencer n has hit an overflow condition, meaning that the FIFO is full and a write was requested. When an overflow is detected, the most recent write is dropped. This bit is cleared by writing a 1.

ADC Event Multiplexer Select (ADCEMUX), offset 0x014

Name	Туре	Reset	Description	on	
EMn	RW	0x0	SSn Trigg	ger Selec	t
			This field	selects t	he trigger source for Sample Sequencern .
			The valid	configur	ations for this field are:
			Value	Event	
			0x0	Process	or (default)
				The trig	ger is initiated by setting the ssn bit in the ADCPSSI
			0x1	Analog	Comparator 0
					ger is configured by the Analog Comparator Control (TL0) register
			0x2	Analog	Comparator 1
				-	ger is configured by the Analog Comparator Control TL1) register
			0x3	reserve	1
			0x4	Externa	(GPIO Pins)
					ger is connected to the GPIO interrupt for the anding GPIO (see "ADC Trigger Source" on page 655).
				Note:	GPIOs that have AINx signals as alternate functions can be used to trigger the ADC. However, the pin cannot be used as both a GPIO and an analog input.
			0x5	Timer	
					on, the trigger must be enabled with the ThOTE bit PTMCTL register
			0x6	PWM ge	enerator 0
					M generator 0 trigger can be configured with the nterrupt and Trigger Enable (PWM0INTEN) register
			0x7	PWM ge	enerator 1
					M generator 1 trigger can be configured with the NTEN register
			0x8	PWM ge	enerator 2
					M generator 2 trigger can be configured with the NTEN register
			0x9	PWM ge	enerator 3
					M generator 3 trigger can be configured with the NTEN register
			0xA-0xE		
			0xF	Always	(continuously sample)

ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•					rese	rved		<u> </u>					
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									_		_			_		_
	15	14	13	12	11	10	9	8		6	5	4	3	2	1	0
	rese	rved	S	33	rese	rved	S	32 32	rese	rved	SS	81	rese	rved	S	30
Туре	RO	RO	RW	RW	RO	RO	RW	RW	RO	RO	RW	RW	RO	RO	RW	RW
Reset	0	0	1	1	0	0	1	0	0	0	0	1	0	0	0	0

SSn: This field contains a binary-encoded value that specifies the priority encoding of Sample Sequencer n. A priority encoding of 0x0 is highest and 0x3 is lowest.

ADC Sample Phase Control: ADCSPC

Name Type Reset Description

0x0

RW

PHASE

This field selects the sample phase difference from the standard sample time.

Value Description

Phase Difference

0x0 ADC sample lags by 0.0°
 0x1 ADC sample lags by 22.5°
 0x2 ADC sample lags by 45.0°

0x3 ADC sample lags by 67.5° 0x4 ADC sample lags by 90.0°

0x5 ADC sample lags by 112.5° 0x6 ADC sample lags by 135.0°

0x7 ADC sample lags by 157.5° 0x8 ADC sample lags by 180.0°

0x9 ADC sample lags by 202.5°
 0xA ADC sample lags by 225.0°
 0xB ADC sample lags by 247.5°

0xC ADC sample lags by 270.0° 0xD ADC sample lags by 292.5° 0xE ADC sample lags by 315.0°

0xF ADC sample lags by 337.5°

ADC Interrupt Mask (ADCIM), offset 0x008

DCONSSn=0 The status of the digital comparators does not affect the SSn interrupt status.

DCONSSn=1 The raw interrupt signal from the digital comparators (INRDC bit in the ADCRIS register) is sent to the interrupt controller on the SSn interrupt line.

MASKn=0 The status of Sample Sequencer n does not affect the SSn interrupt status.

MASKn=1 The raw interrupt signal from Sample Sequencer 3 (ADCRIS register INRn bit) is sent to the interrupt controller.

ADC Interrupt Status and Clear (ADCISC), offset 0x00C

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			'	ı	ı	rese	rved	'	' 		1		DCINSS3	DCINSS2	DCINSS1	DCINSS0
Type Reset	RO 0															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			'	'		rese	rved	'					IN3	IN2	IN1	IN0
Type	RO	RW1C	RW1C	RW1C	RW1C											
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

DCINSSn=0 No interrupt has occurred or the interrupt is masked. Both the INRDC bit in the ADCRIS register and the DCONSSn bit in the ADCIM register are set, providing a level-based interrupt to the interrupt controller.

DCINSSn=1 This bit is cleared by writing a 1 to it. Clearing this bit also clears the INRDC bit in the ADCRIS register.

INn=0 No interrupt has occurred or the interrupt is masked.

INn=1 Both the INRn bit in the ADCRIS register and the MASKn bit in the ADCIM register are set, providing a level-based interrupt to the interrupt controller.

This bit is cleared by writing a 1. Clearing this bit also clears the INRn bit in the ADCRIS register.

ADC Raw Interrupt Status (ADCRIS), offset 0x004

INRn = 0 An interrupt has not occurred.

INRn = 1 A sample has completed conversion and if the respective ADCSSCTLn IEx bit is set, enabling a raw interrupt.

This bit is cleared by writing a 1 to the INn bit in the ADCISC register.

ADC Peripheral Configuration (ADCPC), offset 0xFC4

ADC Sample Rate

This field specifies the number of ADC conversions per second and is used in Run, Sleep, and Deep-Sleep modes. The field encoding is based on the legacy RCGC0 register encoding. The programmed sample rate cannot exceed the maximum sample rate specified by the MAR field in the ADCPP register. The BR field is encoded as follows:

Value	Description
0x0	Reserved
0x1	125 ksps
0x2	Reserved
0x3	250 ksps
0x4	Reserved
0x5	500 ksps
0x6	Reserved
0x7	1 Msps
0x8 - 0xF	Reserved

ADC Sample Averaging Control (ADCSAC), offset 0x030

No hardware oversampling 0x0

0x1 2x hardware oversampling

4x hardware oversampling

8x hardware oversampling

16x hardware oversampling 0x4 0x5 32x hardware oversampling

64x hardware oversampling 0x6

0x7 reserved

Serial I/O

UART

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 UART2 base: 0x4000.E000 UART3 base: 0x4000.F000 UART4 base: 0x4001.0000 UART5 base: 0x4001.1000 UART6 base: 0x4001.2000 UART7 base: 0x4001.3000

Run Clock Gate Control Register for UART (RCGCUART) (address is 0x400FE618)

RO 0 R7

R6

R5

RW 0 R4

R3

R2

R1

RW

R0

RW

UART Data (UARTDR), offset 0x000

RO 0

UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

3	OE	RO	0	UART Overrun Error

Value Description

- 0 No data has been lost due to a FIFO overrun.
- New data was received when the FIFO was full, resulting in data loss.

This bit is cleared by a write to UARTECR.

The FIFO contents remain valid because no further data is written when the FIFO is full, only the contents of the shift register are overwritten. The CPU must read the data in order to empty the FIFO.

2 BE RO 0 UART Break Error

Value Description

- 0 No break condition has occurred
- A break condition has been detected, indicating that the receive data input was held Low for longer than a full-word transmission time (defined as start, data, parity, and stop bits).

This bit is cleared to 0 by a write to UARTECR.

In FIFO mode, this error is associated with the character at the top of the FIFO. When a break occurs, only one 0 character is loaded into the FIFO. The next character is only enabled after the receive data input goes to a 1 (marking state) and the next valid start bit is received.

1 PE RO 0 UART Parity Error

Value Description

- 0 No parity error has occurred
- 1 The parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.

This bit is cleared to 0 by a write to UARTECR.

0 FE RO 0 UART Framing Error

Value Description

- 0 No framing error has occurred
- 1 The received character does not have a valid stop bit (a valid stop bit is 1).

This bit is cleared to 0 by a write to UARTECR.

In FIFO mode, this error is associated with the character at the top of the FIFO.

UART Control (UARTCTL), offset 0x030

- 0 CTS hardware flow control is disabled.
- 1 CTS hardware flow control is enabled. Data is only transmitted when the ulcrs signal is asserted.

14	RTSEN	RW	0	Enable Request to Send
				Value Description
				0 RTS hardware flow control is disabled.
				1 RTS hardware flow control is enabled. Data is only requested (by asserting ulrts) when the receive FIFO has available entries.
11	RTS	RW	0	Request to Send
				When RIBEN is clear, the status of this bit is reflected on the Ulris signal. If RIBEN is set, this bit is ignored on a write and should be ignored on read.
9	RXE	RW	1	UART Receive Enable
				Value Description
				The receive section of the UART is disabled.
				1 The receive section of the UART is enabled.
				If the UART is disabled in the middle of a receive, it completes the current character before stopping.
				Note: To enable reception, the UARTEN bit must also be set.
8	TXE	RW	1	UART Transmit Enable
				Value Description
				0 The transmit section of the UART is disabled.
				1 The transmit section of the UART is enabled.
				If the UART is disabled in the middle of a transmission, it completes the current character before stopping.
				Note: To enable transmission, the UARTEN bit must also be set.
7	LBE	RW		0 UART Loop Back Enable
				Value Description
				 Normal operation.
				1 The Unix path is fed through the Unix path.
5	HSE	RW	0	High-Speed Enable
				Value Description
				0 The UART is clocked using the system clock divided by 16.
				1 The UART is clocked using the system clock divided by 8.
				Note: System clock used is also dependent on the baud-rate divisor configuration (see page 914) and page 915).
				The state of this bit has no effect on clock generation in ISO 7816 smart card mode (the SMART bit is set).
4	EOT	RW	0	End of Transmission
				This bit determines the behavior of the TXRIS bit in the UARTRIS register.
				Value Description
				0 The TXRIS bit is set when the transmit FIFO condition specified
				in UARTIFLS is met. 1 The TXRIS bit is set only after all transmitted data, including
				stop bits, have cleared the serializer.
0	UARTEN	RW	0	UART Enable
				Value Description
				0 The UART is disabled.
				1 The UART is enabled.
				If the UART is disabled in the middle of transmission or reception, it completes the current character before stopping.

UART Line Control (UARTLCRH), offset 0x02C

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	,		'		'		'	rese	erved							'	l
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	•							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				rese	rved		'	•	SPS	WL	EN	FEN	STP2	EPS	PEN	BRK	I
Type Reset	RO 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	•							
7			SPS		RW		0	UART	Stick Pa	rity Sele	ct						
			0. 0							-		CRH are	set, the	parity bi	t is trans	mitted	
												1 and 7 cked as		and 2 is	cleared,	the	
												arity is di					
6:5			WLEN		RW		0x0	UART	Word Le	nath							
-										_	mber of	data bits	s transm	itted or r	received	in a	
								frame a	as follow	S:							
								Value	Descrip	tion							
								0x0	5 bits (c	lefault)							
								0x1	6 bits								
								0x2 0x3	7 bits 8 bits								
			FEN		DW					FIFO-							
4			FEN		RW		0		Enable								
								Value 0	Descrip		disabled	l (Chara	rter mod	le) The	FIFOs b	ecome	
								•		deep ho			otor mod	icj. IIIc	111 03 0	CCOIIIC	
								1	The tra	nsmit an	d receive	e FIFO b	uffers are	e enable	d (FIFO	mode).	
3			STP2		RW		0	UART	Two Sto	p Bits S	elect						
			0.1.2						Descri		Olout .						
								0			transmit	ted at th	e end of	f a frame	.		
								1	Two sto	op bits ar	re transr	nitted at	the end	of a fran	ne. The r	eceive	
									-			r two sto d mode		-	eived. s set in t	he	
															orced to		
2			EPS		RW		0	UART	Even Pa	arity Sele	ect						
									Descrip								
								0			rformed	, which c	hecks fo	r an odd	Inumber	of 1s.	
								1							ed during		
										ission ar i data an			ch chec	ks for an	even nu	umber	
								This b	it has no	effect w	hen par	ity is disa	abled by	the PEN	bit.		
1			PEN		RW		0	UART	Parity E	nable							
								Value	Descrip	otion							
								0	Parity i	s disable	ed and n	o parity l	bit is add	ded to th	e data fr	rame.	
								1	Parity (checking	and ger	neration	is enabl	ed.			
0			BRK		RW		0	UART	Send B	reak							
								Value	Descrip	otion							
								0	Norma								
								1			ontinual	ly output	t on the	UnTx Sig	gnal, afte	er	
															For the p		
												aracter p			20. 0110		

UART Flag (UARTFR), offset 0x018

<u>OAI</u>	`	<u>ug ((</u>	<i>77</i> (1)	, , ,	00	<i>,</i> ι υχ	<u> </u>									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
L									rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ				reserv	ved 1		'	'	TXFE	RXFF	TXFF	RXFE	BUSY	rese	rved	CTS
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
7			TXFE		RO		1	The m			Empty t depend	ds on the	e state o	f the FEI	ง bit in t	he
								Value	Descri	ption						
								0	The tra	ansmitte	r has da	ta to trar	nsmit.			
								1	If the F is emp		lisabled	(FEN is (0), the tr	ansmit h	olding r	egister
									If the F	TFO is e	enabled (FEN is 1), the tra	ansmit F	IFO is e	mpty.
6			RXFF		RO		0	UART	Receive	e FIFO F	ull					
									eaning LCRH r		t depend	ds on the	e state o	f the FEI	ง bit in t	he
								Value	Descri	ption						
								0			an recei	ve data.				
								1		IFO is d	lisabled	(FEN is (D), the re	eceive ho	olding re	gister
									is full. If the F	TFO is e	nabled (FEN is 1), the re	ceive FI	FO is fu	II.
5			TXFF		RO		0	The n	neaning	nit FIFO of this b register.	oit deper	nds on th	ne state	of the FI	รท bit in	the
								Value	e Descr	iption						
								0			er is not	full.				
								1	If the is full.		disabled	l (fen is	0), the t	transmit	holding	register
									If the	FIFO is	enabled	(fen is	1), the t	ransmit	FIFO is	full.
4			RXFE		RO		1			e FIFO						
										of this b register.	oit deper	nds on th	ne state	of the FI	รห bit in	the
								Value	e Descr	iption						
								0	The re	eceiver i	s not en	npty.				
								1	is em	oty.	disabled				_	
									If the	FIFO is	enabled	(FEN IS	1), the r	eceive F	·IFO is e	empty.
3			BUSY		RO		0		T Busy							
									e Desc	•						
								0 1			not busy		a data T	Thin hit r	omoino	oot until
									the c		byte, inc					set until nt from
											n as the er UART			ecomes	non-em	pty
0			CTS		R	0	() (Clear To	Send						
								,	Value [Descript	tion					
											ста sigr	nal is no	t assert	ted.		

- 0 The ulcrs signal is not asserted.
- 1 The ulcts signal is asserted.

UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

5:3 RXIFLSEL RW 0x2 UART Receive Interrupt FIFO Level Select

The trigger points for the receive interrupt are as follows:

Value Description
0x0 RX FIFO ≥ 1/8 full

0x1 RX FIFO ≥ ¼ full

0x2 RX FIFO ≥ ½ full (default)

0x3 RX FIFO ≥ ¾ full 0x4 RX FIFO ≥ % full

0x5-0x7 Reserved

2:0 TXIFLSEL RW 0x2 UART Transmit Interrupt FIFO Level Select

The trigger points for the transmit interrupt are as follows:

Value Description

0x0 TX FIFO ≤ % empty

0x1 TX FIFO ≤ ¾ empty

0x2 TX FIFO ≤ ½ empty (default)

0x3 TX FIFO ≤ 1/4 empty 0x4 TX FIFO ≤ 1/8 empty

0x5-0x7 Reserved

UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

UART Interrupt Mask (UARTIM), offset 0x038

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		'		'				rese	rved							'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		9BITIM	reserved	OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM	rese	rved	CTSIM	reserved
Type	RO	RO	RO	RW	RO	RW	RO	RO	RW	RO						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

12	9BITIM	RW	0	9-Bit Mode Interrupt Mask
				Value Description
				O The 9BITRIS interrupt is suppressed and not sent to the interrupt controller.
				An interrupt is sent to the interrupt controller when the 9BITRIS bit in the UARTRIS register is set.
10	OEIM	RW	0	UART Overrun Error Interrupt Mask
				Value Description
				0 The OERIS interrupt is suppressed and not sent to the interrupt controller.
				An interrupt is sent to the interrupt controller when the OBRIS bit in the UARTRIS register is set.
9	BEIM	RW	0	UART Break Error Interrupt Mask
				Value Description
				The BERIS interrupt is suppressed and not sent to the interrupt controller.
				An interrupt is sent to the interrupt controller when the BERIS bit in the UARTRIS register is set.
8	PEIM	RW	0	UART Parity Error Interrupt Mask
				Value Description
				The PERIS interrupt is suppressed and not sent to the interrupt controller.
				An interrupt is sent to the interrupt controller when the PERIS bit in the UARTRIS register is set.
7	FEIM	RW	0	UART Framing Error Interrupt Mask
				Value Description
				0 The FERIS interrupt is suppressed and not sent to the interrupt controller.
				An interrupt is sent to the interrupt controller when the FERIS bit in the UARTRIS register is set.
6	RTIM	RW	0	UART Receive Time-Out Interrupt Mask
				Value Description
				The RTRIS interrupt is suppressed and not sent to the interrupt controller.

An interrupt is sent to the interrupt controller when the ${\tt RTRI8}$ bit in the <code>UARTRIS</code> register is set.

5	TXIM	RW	0	UART Transmit Interrupt Mask
				Value Description
				0 The TXRIS interrupt is suppressed and not sent to the interrupt controller.
				An interrupt is sent to the interrupt controller when the TXRIS bit in the UARTRIS register is set.
4	RXIM	RW	0	UART Receive Interrupt Mask
				Value Description
				0 The RXRIB interrupt is suppressed and not sent to the interrupt controller.
				1 An interrupt is sent to the interrupt controller when the RXRIS bit in the UARTRIS register is set.
1	CTSIM	RW	0	UART Clear to Send Modem Interrupt Mask
				Value Description
				O The CTBRIS interrupt is suppressed and not sent to the interrupt controller.
				An interrupt is sent to the interrupt controller when the CTSRIS

This bit is implemented only on UART1 and is reserved for UART0 and UART2.

bit in the UARTRIS register is set.

UART Raw Interrupt Status (UARTRIS), offset 0x03C

UART Interrupt Clear (UARTICR), offset 0x044

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		' '						rese	rved						'	
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		9BITIC	reserved	OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC	rese	rved	CTSMIC	reserved
Type Reset	RO 0	RO 0	RO 0	RW 0	RO 0	W1C 0	RO 0	RO 0	W1C 0	RO 0						

<u>SSI</u>

SSI Control 0 (SSICR0), offset 0x000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	31	1	1	1	1	1	1	1	erved		21	1	19	- 10	- "	
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	511	5111	514		CR L		5111	5	SPH	SPO		RF			SS	
Type Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
15:8			SCR		RW	0	x00	SSI Se	rial Cloc	k Rate						
									t field is ne bit rat		generate	e the tra	nsmit ar	nd receiv	e bit rat	e of the
									sClk/(R * (1	+ SCF	R))			
									CPSDVS					_	ned in th	ne
								SSICP	SR regis	ter, and	SCR IS	a value i	from 0-2	55.		
7			SPH		RW		0	SSI Se	rial Cloc	k Phase	;					
								This bi	is only	applicab	le to the	Freeso	ale SPI	Format.		
									н contro							
									ange sta er allowi							
								capture	e edge.							
								Value	Descrip	tion						
								0	Data is	capture	d on the	first clo	ck edge	transitio	on.	
								1	Data is	capture	d on the	second	clock e	dge tran	sition.	
6			SPO		RW		0	221 20	rial Cloc	k Dolarit	v					
O		,	370		KVV		U	331 36	nai Cioc	K POIAIII	y					
								Value	Descrip	tion						
								0						ne ssin		
								1	A stead data is i	y state F not being	_		ced on t	he ssir	ıC1k pin	when
									Note:	If this	bit is set	t, then so	oftware r	nust als	o configi	ure the
														to the sa Up Sele		
										regist		i uio Oi	io i un-	op ocio	01 (01 10	or org
- 4			EDE		D 1				0. 5	_						
5:4			FRF		RI	W	0x0	5	SI Fram	ie Form	at Sele	CT				
								\	/alue Fi	rame Fo	ormat					
								0	x0 F	reescale	SPI F	rame Fo	ormat			
								0	x1 Te	exas Ins	strumen	ts Sync	hronou	s Serial	Frame	Format
								0	x2 M	ICROW	/IRE Fra	ame Fo	rmat			

0x3 Reserved

3:0	DSS	RW	0x0	SSI Data	Size Select
				Value	Data Size
				0x0-0x2	Reserved
				0x3	4-bit data
				0x4	5-bit data
				0x5	6-bit data
				0x6	7-bit data
				0x7	8-bit data
				0x8	9-bit data
				0x9	10-bit data
				0xA	11-bit data
				0xB	12-bit data
				0xC	13-bit data
				0xD	14-bit data
				0xE	15-bit data
				0xF	16-bit data

SSI Control 1 (SSICR1), offset 0x004

This bit is only valid for Master mode devices and operations (Ms = 0x0).

Value Description

- 0 The TXRIS interrupt indicates that the transmit FIFO is half full or less.
- 1 The End of Transmit interrupt mode for the TXRIS interrupt is enabled.

2 MS RW 0 SSI Master/Slave Select

This bit selects Master or Slave mode and can be modified only when the SSI is disabled (sse=0).

- 0 The SSI is configured as a master.
- 1 The SSI is configured as a slave.

1 SSE RW 0 SSI Synchronous Serial Port Enable

Value Description

- 0 SSI operation is disabled.
- 1 SSI operation is enabled.

Note: This bit must be cleared before any control registers

are reprogrammed.

0 LBM RW 0 SSI Loopback Mode

Value Description

- Normal serial port operation enabled.
- Output of the transmit serial shift register is connected internally to the input of the receive serial shift register.

SSI Data (SSIDR), offset 0x008

SSI Status (SSISR), offset 0x00C

Value Description

- 0 The SSI is idle.
- 1 The SSI is currently transmitting and/or receiving a frame, or the transmit FIFO is not empty.
- 3 RFF RO 0 SSI Receive FIFO Full

Value Description

- 0 The receive FIFO is not full.
- The receive FIFO is full.
- 2 RNE RO 0 SSI Receive FIFO Not Empty

Value Description

- 0 The receive FIFO is empty.
- 1 The receive FIFO is not empty.
- 1 TNF RO 1 SSI Transmit FIFO Not Full

Value Description

- 0 The transmit FIFO is full.
- 1 The transmit FIFO is not full.
- 0 TFE RO 1 SSI Transmit FIFO Empty

Value Description

- 0 The transmit FIFO is not empty.
- 1 The transmit FIFO is empty.

SSI Clock Prescale (SSICPSR), offset 0x010

SSI Interrupt Mask (SSIIM), offset 0x014

SSI Raw Interrupt Status (SSIRIS), offset 0x018

SSI Masked Interrupt Status (SSIMIS), offset 0x01C

SSI Interrupt Clear (SSIICR), offset 0x020

Writing a 1 to this bit clears the RORRIS bit in the SSIRIS register and the RORMIS bit in the SSIMIS register.

SSI Clock Configuration (SSICC), offset 0xFC8

The following table specifies the source that generates for the SSI baud clock:

Value Description

0x0 System clock (based on clock source and divisor factor)

0x1-0x4 reserved
 0x5 PIOSC
 0x6 - 0xF Reserved