Università degli Studi di Bologna

Corso di Laurea in Informatica Esercitazione scritta di LINGUAGGI Teoria — 16 gennaio 2009

 Dare la sintassi per le formule della logica del primo ordine Risposta:

$$< F > ::= < F > \land < F >$$
 $| < F > \lor < F >$
 $| < F > \Rightarrow < F >$
 $| \bot$
 $| \top$
 $| \forall x. < F >$
 $| \exists x. < F >$
 $| P^n(< t_1 >, ..., < t_n >)$
 $< t > ::= c$
 $| x$
 $| f^n(< t_1 >, ..., < t_n >)$

ove P^n , f^n e c rappresentano rispettivamente un predicato n-ario, un simbolo di funzione n-aria e una costante prese da un linguaggio del primo ordine.

- 2. Dare la definizione di conseguenza logica per il calcolo proposizionale Risposta: sia Γ un insieme di formule e F una formula data. F é conseguenza logica di Γ (in simboli $\Gamma \Vdash F$) se per ogni valutazione v tale che per ogni formula G in Γ si ha $\|G\|^v = 1$, si ha $\|F\|^v = 1$
- 3. Dare la definizione di insieme funzionalmente completo di connettivi

Risposta: un insieme Δ di connettivi si dice funzionalmente completo quando è possibile esprimere qualunque altro connettivo usando solamente connettivi di Δ .

- 4. Definire le nozioni di formula in forma normale prenessa e di Skolem Risposta: una formula è in forma normale prenessa quando è della forma Q_1, \ldots, Q_n, M dove Q_i è un connettivo esistenziale o universale e la formula M (detta matrice) è priva di connettivi. Una formula in forma normale prenessa è in forma normale di Skolem quando non vi compaiono connettivi esistenziali.
- Scrivere la regola di risoluzione per il calcolo proposizionale Risposta:

$$\frac{C_1 \quad C_2}{C_1 \setminus \{F\} \cup C_2 \setminus \{\neg F\}}$$

sotto la condizione $F \in C_1$ e $\neg F \in C_2$.

6. Identificare nella seguente mappa di Karnaugh l'insieme di tutti gli implicanti, quello di tutti gli implicanti primi e quello di tutti gli implicanti primi essenziali. Gli implicanti debbono essere indicati con la formula congiuntiva che li caratterizza universalmente

AB/CD	00	01	11	10
00	0	1	1	1
01	0	1	0	0
11	1	0	0	1
10	1	0	0	1

Risposta:

- Implicanti: $AB\bar{C}\bar{D}, A\bar{B}\bar{C}\bar{D}, \bar{A}\bar{B}\bar{C}D, \bar{A}B\bar{C}D, \bar{A}\bar{B}CD, \bar{A}\bar{B}C\bar{D}, ABC\bar{D}, ABC\bar{D}, ABC\bar{D}, ABC\bar{D}, \bar{A}\bar{D}D, \bar{A}\bar{D}D,$
- Gli implicanti primi sono quelli sottolineati
- L'unico implicante primo non essenziale è $\bar{A}\bar{B}D$
- 7. Enunciare il teorema di completezza per la deduzione naturale per la logica proposizionale classica

Risposta: per ogni insieme di formula Γ e per ogni formula F se $\Gamma \Vdash F$ allora $\Gamma \vdash_{RAA} F$

8. Dimostrare il teorema di correttezza per la deduzione naturale per la logica proposizionale classica, limitandosi alle regole per gli atomi, il ⊤ e la congiunzione

Risposta: dimostriamo per induzione su $\Gamma \vdash F$ che $\Gamma \Vdash F$

Caso $A \in \Gamma$: per dimostrare $\Gamma \Vdash A$ in quanto $A \in \Gamma$ e per definizione di conseguenza logica.

Caso $_{\mp}$: si ha $\Gamma \Vdash \top$ per definizione di conseguenza logica.

Caso $\frac{F_1 - F_2}{F_1 \wedge F_2}$: per ipotesi induttiva $\Gamma \Vdash F_1$ e $\Gamma \Vdash F_2$; quindi, per ogni valutazione v in cui per ogni formula G in Γ vale $\|G\|^v = 1$, si ha $\|F_1\|^v = 1$ e $\|F_2\|^v = 1$. Quindi $\|F_1 \wedge F_2\|^v = 1$.

Caso $\frac{F_1 \wedge F_2}{F_i}$: per ipotesi induttiva $\Gamma \Vdash F_1 \wedge F_2$, ovvero per ogni valutazione v in cui per ogni formula G in Γ vale $\|G\|^v = 1$, si ha $\|F_1 \wedge F_2\|^v = 1$ e in particolare $\|F_i\|^v = 1$.

9. Sia F una formula proposizionale in cui possano comparire solo \bot , \top , atomi e congiunzioni. Dimostrare, per induzione su F, che se F é una tautologia allora in F non occorrono atomi e \bot .

ATTENZIONE: É diverso dall'assumere che F sia una tautologia E POI andare per induzione

Risposta: dimostriamo per induzione su F che se $\Vdash F$ allora P(F) dove la proprietà P è quella di non contenere \bot e atomi.

Caso \top : si ha $\Vdash \top \Rightarrow P(\top)$ in quanto $P(\top)$

Caso \perp : si ha $\Vdash \perp \Rightarrow P(\perp)$ in quanto $\neg \Vdash \perp$

Caso A: si ha $\Vdash A \Rightarrow P(A)$ in quanto $\neg \Vdash A$

Caso $F_1 \wedge F_2$: si ha $\Vdash F_1 \wedge F_2 \Rightarrow P(F_1 \wedge F_2)$ in quanto:

 $\Vdash F_1 \land F_2$ implica $\Vdash F_1$ e $\Vdash F_2$ per definizione di \Vdash e le proprietà della funzione minimo;

per ipotesi induttiva, $\Vdash F_1 \Rightarrow P(F_1)$ e $\Vdash F_2 \Rightarrow P(F_2)$; quindi $P(F_1)$ e $P(F_2)$; da cui $P(F_1 \land F_2)$