Pipeline de Indicadores Macroeconômicos e Modelos de Séries Temporais (VAR, VECM, PCA–ARX e Markov-Switching)

Relatório Técnico

24 de setembro de 2025

Sumário

1	Visão geral						
2 Atualizações do pipeline (versão atual)							
3	Pipeline de dados (resumo do código)						
	3.1 Janela temporal e agregação	2					
	3.2 Fontes e robustez	2					
4	Transformações para modelagem	3					
5	Resultados empíricos mais recentes						
	5.1 VAR (6 variáveis, seleção por AIC)	3					
	5.2 VECM (USD/BRL e spread SELIC–Fed)	5					
	5.3 PCA-ARX (retorno do Ibovespa)	5					
	5.4 Markov-Switching (2 regimes)	5					
6	Como executar	5					
7	Diagnósticos e cuidados						
Q	Extensões	6					

1 Visão geral

Este relatório documenta:

• O pipeline de coleta e preparação de dados macroeconômicos (últimos 10 anos), que produz um Excel consolidado em:

C:\Users\Lenovo\Desktop\Mestrado FGV\IndicadoresMacro\indicadores_macro.xlsx

- Quatro modelos de séries temporais aplicados aos dados salvos:
 - 1. VAR (previsão multivariada e IRFs);
 - 2. VECM (cointegração em níveis, ex.: câmbio e diferencial de juros);
 - 3. PCA-ARX (fatores dinâmicos para prever retorno do Ibovespa);
 - 4. Markov-Switching (mudança de regime de volatilidade/retornos).

2 Atualizações do pipeline (versão atual)

- Treasury 10 anos (% a.a.): inclusão de fix automático de unidade. Se a mediana vier em fração (e.g., 0.04 = 4%), o script multiplica por 100; se vier ≈ 0.4 (deveria ser 4.0), multiplica por 10. Fallback permanece ^TNX/10.
- PIB EUA (% a/a): passa a ser baixado do FRED (A191RL1Q225SBEA), marcado no fim do trimestre e reamostrado para ME.
- Crédito/Endividamento/Inadimplência: mapeamento ampliado (PF, PJ, livres, total, %PIB e % renda).
- Estrutura para Ipeadata/SIDRA/SGS extra: dicionários de mapeamento (IPEA_MAP, SIDRA_MAP, SGS_EXTRA) prontos para ativar novas séries sem mudar o pipeline.
- Metadados e médias anuais: aba adicional com médias anuais (média simples das observações mensais de cada ano).

3 Pipeline de dados (resumo do código)

3.1 Janela temporal e agregação

A amostra cobre os **últimos 10 anos** até o *último mês fechado*. Séries diárias são **reamostradas** para ME (month-end) por last ou mean.

3.2 Fontes e robustez

Yahoo Finance com yfinance (coluna Adj Close ou Close).

PTAX (Olinda/BCB) com fatiamento anual e fallback para USDBRL=X.

SGS (python-bcb) com janelas de 5 anos e concatenação.

FRED (DGS10, DFEDTARU/DFEDTARL, PIB EUA YoY). Fallback UST10 por ^TNX/10 quando necessário.

4 Transformações para modelagem

- Índices/preços: $\Delta \ln x_t$ (retornos/crescimentos);
- Juros: pct_change;
- VAR em estacionários; VECM para níveis I(1) quando houver cointegração.

5 Resultados empíricos mais recentes

Esta seção resume os resultados que você rodou com o Excel gerado pela versão atual do pipeline.

5.1 VAR (6 variáveis, seleção por AIC)

Especificação. $y_t = \{\Delta \ln \text{IBC}, \Delta \ln \text{USD/BRL}, \Delta \ln \text{Brent}, \Delta \ln \text{S\&P500}, \Delta \text{Selic}, \Delta \text{UST10}\}.$

Coeficientes relevantes (p-valores).

- Atividade ($\Delta \ln IBC$): efeito negativo de UST10_{t-1} sobre o crescimento (p $\approx 0,003$).
- Brent: ret_spx_{t-1} positivo (p ≈ 0.044) e UST10_{t-1} positivo (p ≈ 0.013).
- S&P 500: inércia negativa em t-4 (p ≈ 0.029); Selic $_{t-5}$ positiva (p ≈ 0.009); $\Delta \ln \text{Brent}_{t-8}$ negativa (p ≈ 0.012); Selic $_{t-9}$ positiva (p ≈ 0.045).
- Selic: $\Delta \ln IBC_{t-2}$ positiva (p ≈ 0.031); ret_spx_{t-2} positiva (p ≈ 0.004); UST10_{t-3} positiva (p ≈ 0.036); $\Delta \ln USD/BRL_{t-7}$ positiva (p ≈ 0.029).
- **UST10**: persistência (UST10_{t-2}, p ≈ 0.025); ligações com Brent (+ em t-6, p ≈ 0.014 ; em t-11, p ≈ 0.015); e com ret_spx_{t-10} (p ≈ 0.029).

IRFs. As funções resposta ao impulso (Figura 1) mostram impactos moderados e bandas largas; choques de UST10 tendem a reduzir o crescimento do IBC nos meses seguintes; Brent e S&P se influenciam mutuamente.

Impulse responses

Figura 1: IRFs do VAR (horizonte de 12 meses).

Previsão (12 meses). As variações mensais previstas são pequenas (reversão à média). Primeiras 5 linhas (ilustrativo):

Data	$\Delta \ln IBC$	$\Delta \ln { m USD}$	$\Delta \ln \text{Brent}$	$\Delta \ln S\&P$	$\Delta \mathrm{Selic}$	Δ UST10
2025-08-31	0,027	-0,028	0,033	0,024	0,021	-0,076
2025-09-30	-0,010	0,042	-0,112	0,012	0,001	0,068
2025-10-31	-0,015	0,014	-0,025	-0,030	0,055	-0,176
2025-11-30	-0,015	0,066	-0,203	-0,056	0,001	-0,006
2025-12-31	-0,008	-0,002	-0,032	0,036	-0,027	-0,079

5.2 VECM (USD/BRL e spread SELIC-Fed)

Teste de Johansen. Estatística traço = 13,38 para r = 0 e críticos de 95% = 15,49; para r = 1, traço = 4,72 e crítico = 3,84. **Conclusão**: não há cointegração a 95% na amostra corrente (spread com *proxy* UST10 em vez do Fed Funds real).

Implicação. VECM não é indicado nesta configuração; use VAR em diferenças ou reestime com Fed Funds via FRED (média da banda) e/ou amostra mais longa.

5.3 PCA-ARX (retorno do Ibovespa)

Ajuste. $R^2 \approx 0.7\%$; coeficientes dos fatores não significativos; intercepto quase significativo (p ≈ 0.052).

Sinal de 1 passo (mês seguinte): $\hat{r}_{t+1} \approx 0.009$ (cerca de 0.9%).

Leitura. Em base mensal e usando apenas 2 fatores macro/mercado, o poder preditivo é baixo — condizente com literatura. Sugere-se testar horizontes mais longos, mais fatores e validação fora da amostra.

5.4 Markov-Switching (2 regimes)

Ajuste atual. AIC -398.4; porém, as probabilidades suavizadas colapsaram para ≈ 1.0 em sequência e houve ConvergenceWarning e matriz quase singular.

Diagnóstico. Colapso de regime (um regime com variância quase zero). Provável causa: escala dos dados ou especificação muito restrita.

Correções sugeridas.

- Usar retornos padronizados $(r \bar{r})/\sigma$;
- Estimar com switching_mean=True além de switching_variance=True;
- Fornecer chutes/EM (em_iter=10) e aumentar maxiter;
- Se persistir, testar 3 regimes.

6 Como executar

Pré-requisitos de Python

- pandas, numpy, requests, yfinance, statsmodels, scikit-learn, python-dateutil;
- FRED: definir FRED_API_KEY no ambiente (para Fed Funds & PIB EUA);
- SGS: python-bcb.

Fluxo

- Rodar o pipeline (indicadores_macro.xlsx);
- 2. Rodar os blocos dos modelos (1 a 4).

7 Diagnósticos e cuidados

- Conferir **metadados** quando houver *fallbacks*;
- Em pandas, preferir frequência ME (aviso de depreciação para "M");
- VAR: verificar estabilidade e autocorrelação dos resíduos; FEVD e Granger ajudam na interpretação;
- Estratégias: incorporar custos e gestão de risco.

8 Extensões

- Ativar Ipeadata/SIDRA/SGS extra (IPCA, confiança, fiscal/dívida, desemprego);
- DFM/Kalman e TVP-VAR; combinação de sinais condicionada ao regime do Markov.