

GEOMETRÍA

Capítulo 1

TRIÀNGULOS

MOTIVATING | STRATEGY

El triángulo es una de las figuras geométricas elementales y por lo tanto, el conocimiento de sus teoremas, clasificación, etc., es básico para comprender mejor a las demás figuras geométricas que estudiaremos posteriormente. Esta figura tiene en la actualidad diferentes usos y aplicaciones como podemos observar.

TRIÁNGULO

<u>DEFINICIÓN</u>: Si A, B y C son tres puntos no colineales, entonces la reunión de los segmentos AB, BC y CA se denomina triángulo.

ELEMENTOS

• VÈRTICES: A; B y C

• LADOS: \overline{AB} , \overline{BC} y \overline{CA}

NOTACIÓN: ΔABC

Se lee: triángulo ABC

INTERIOR Y EXTERIOR DE UN TRIÁNGULO

REGIÓN TRIANGULAR

La unión de un triángulo y el interior, se denomina región triangular

[Región Triangular] = [△ABC] ∪ [Interior]

PERÍMETRO DE UNA REGIÓN TRIÁNGULAR

Es la suma de las longitudes de los lados de una región triángular y se denota por 2p.

$$2\mathbf{p}_{(\Delta ABC)} = \mathbf{a} + \mathbf{b} + \mathbf{c}$$

ÁNGULOS EN UN TRIÁNGULO

Medida de los ángulos:

• INTERNOS: α , β y θ

• **EXTERNOS**: δ , ω y γ

CLASIFICACIÓN DE LOS TRIÁNGULOS

I. SEGÚN LA LONGITUD DE SUS LADOS

a) TRIÁNGULO ESCALENO

Los tres lados no son congruentes

Además:

$$\theta \neq \alpha$$
; $\theta \neq \beta$; $\alpha \neq \theta$

b) TRIÁNGULO ISÓSCELES

Tiene dos lados congruentes.

Además:

$$\alpha < 90^{\circ}$$

c) TRIÁNGULO EQUILÁTERO

Tiene los tres lados congruentes.

II. SEGÚN LAS MEDIDAS DE SUS ÁNGULOS

a) TRIÁNGULO RECTÁNGULO

Tiene un ángulo interno que mide 90°.

$$c^2 = a^2 + b^2$$

b) TRIÁNGULO ACUTÁNGULO

Los ángulos internos son agudos.

c) TRIÁNGULO OBTUSÁNGULO

Un ángulo interno es obtuso.

△ Oblicuángulo

TEOREMAS FUNDAMENTALES EN EL TRIÁNGULO

TEOREMA 1:

TEOREMA 2:

TEOREMA 3:

TEOREMA 4:

Teorema de desigualdad triangular (teorema de existencia)

TEOREMA 5:

En todo triángulo, al lado de mayor longitud se opone el ángulo interno de mayor medida y viceversa.

$$\theta + \alpha + \beta + \omega + \varphi = 180^{\circ}$$

... (1)

1. En la figura, halle el valor de x.

$$x + 2\beta + \beta = 180^{\circ}$$

 $x + 3\beta = 180^{\circ}$

$$8\beta + 5\beta + \beta = 180^{\circ}$$

 $9\beta = 180^{\circ}$
 $\beta = 20^{\circ}$

$$x + 3(20^{\circ}) = 180^{\circ}$$

 $x = 120^{\circ}$

2. Halle el valor de x, si AB = AC

Resolución

- Piden: x
- ΔABC: Isósceles

$$4x + 3x + 3x = 180^{\circ}$$

$$10x = 180^{\circ}$$

$$x = 18^{\circ}$$

3. Las longitudes de los lados de un triángulo son 6 y 13. Calcule la diferencia entre el máximo y el mínimo valor entero que puede tomar la longitud del tercer lado.

Resolución

- Piden: x _{máx} x _{min}
 - Aplicando el teorema de la existencia.

$$13 - 6 < x < 13 + 6$$
 $7 < x < 19$

$$x = (8); 9; 10; ... 16; 17; (18)$$

$$x_{máx} - x_{min} = 10$$

4. Halle el valor de x.

Aplicando el teorema:

$$7x + 5x + 120^{\circ} = 360^{\circ}$$

 $12x = 240^{\circ}$

$$x = 20^{\circ}$$

5. En la figura, AB = AC = CD. Halle el valor de x.

6. Cuando Aldo viajo a provincia, observo el siguiente paisaje y recordó un ejercicio que no pudo resolver en el colegio. Ayúdelo a calcular el valor de x si $\alpha+\beta+\theta+\omega=250^{\circ}$

180°-x

Resolución

*Realizando los trazos adecuados

*Aplicando el teorema del ángulo exterior

*En PQR:

$$180^{\circ} - x + \alpha + \beta + \theta + \omega = 360^{\circ}$$

$$250^{\circ}-x=180^{\circ}$$

$$X = 70^{\circ}$$

7. Se muestra el piso de una pileta en forma de región AABC. Del punto P se distribuye agua por tubos hacia los puntos A, B y C. Si el perímetro del piso es 16 m, determine el menor número entero de metros de tubo, que se deben comprar para hacer dichas conexiones.

- **Resolución** Piden: (a + b + c)_{menor}
 - $2p_{(ABC)} = 16 \text{ m}$ m + n + t = 16
 - Aplicando el teorema de desigualdad triangular:

$$m < a + b$$
 $n < b + c$
 $t < a + c$
 $m + n + t < 2(a + b + c)$

$$16 < 2(a + b + c)$$

 $8 < a + b + c$
 $x = 9$, 10; 11; 12; ...

$$(a+b+c)_{min} = 9 \text{ m}$$