100

50

150

200

— $J_{LIT} = 0.5$

 $Re\{L_i(\sigma_r)\}$

 1.5×10^{-7}

 $1.\times10^{-7}$

 $5. \times 10^{-8}$

0

6.×10⁻¹³⁸

5.×10⁻¹³⁸

4.×10⁻¹³⁸

 $3.\times10^{-138}$

 $2. \times 10^{-138}$

1.×10⁻¹³⁸

Out[•]=

Re(Det[\hat{H}_{mn} -(E_0 + σ_r +i σ_i) \hat{N}_{mn}])

50

100

100

100

J=0.5

50

50

J=0,.5

 $\text{Re}(\text{EV}_{\text{min}}[\hat{\mathcal{H}}_{\text{mn}} - (E_0 + \sigma_r + \mathrm{i}\sigma_i)\hat{\mathcal{N}}_{\text{mn}}])$ 0.2

-0.2

-0.4

-0.6

-0.8

150

150

150

200

200

200