Samer N. Naif

Assistant Professor Georgia Institute of Technology School of Earth and Atmospheric Sciences 311 Ferst Drive, Atlanta, GA 30332 email: snaif@eas.gatech.edu

RESEARCH INTERESTS

Exploration of tectonic margins and oceanic plates with magnetotelluric, controlled-source electromagnetic (EM), and active-source seismic imaging methods.

EDUCATION

Ph.D., Earth Sciences	2015
Scripps Institution of Oceanography, UC San Diego	
M.S., Earth Sciences	2011
Scripps Institution of Oceanography, UC San Diego	
B.S., Environmental Engineering	2009
University of California, San Diego	

EMPLOYMENT HISTORY

Assistant Professor	$2020{\rm -present}$
Georgia Institute of Technology Adjunct Research Scientist	2020-present
Lamont-Doherty Earth Observatory, Columbia University	
Lamont Assistant Research Professor Lamont-Doherty Earth Observatory, Columbia University	2018-2020
Postdoctoral Fellow Lamont-Doherty Earth Observatory, Columbia University	2015–2018

PEER-REVIEWED PUBLICATIONS

- *student or postdoc first authors are underlined
 - [11] **S. Naif**, N. Miller, D. Shillington, A. Bécel, D. Lizarralde, and S. Hemming (*in prep*). Episodic intraplate volcanism, long-lived melt channels at the lithosphere-asthenosphere boundary, and mantle plumes.
 - [10] <u>D. Blatter</u>, **S. Naif**, K. Key, and A. Ray (*in prep*). A plume origin for hydrous melt channels at the lithosphere-asthenosphere boundary.
 - [9] <u>C. Chesley</u>, **S. Naif**, K. Key, and D. Bassett (*in revision*). Fluid-rich subducting topography generates anomalous forearc porosity. *Nature*.

- [8] S. Naif, K. Selway, B.S. Murphy, G. Egbert, and A. Pommier (2021). Electrical conductivity of the lithosphere-asthenosphere system. *PEPI*, 313, 106661.
- [7] E. Attias, K. Weitemeyer, S. Hölz, **S. Naif**, et al. (2018). CSEM joint inversion for high-resolution resistivity imaging of sub-seafloor structures. GJI, 214, 1701–1714.
- [6] **S. Naif** (2018). An upper bound on the electrical conductivity of hydrated oceanic mantle at the onset of dehydration melting. *EPSL*, 482, 357–366.
- [5] E. Attias, R.L. Evans, S. Naif, J. Elsenbeck, and K. Key (2017). Conductivity structure of the lithosphere-asthenosphere boundary beneath the eastern North American Margin. *Geochem Geophys Geosyst*, 18, 676–696.
- [4] S. Naif, K. Key, S. Constable, and R.L. Evans (2016). Porosity and fluid budget of a water-rich megathrust revealed with electromagnetic data at the Middle America Trench. *Geochem Geophys Geosyst*, 17, 4495–4515.
- [3] S. Naif, K. Key, S. Constable, and R.L. Evans (2015). Water-rich bending faults at the Middle America Trench. *Geochem Geophys Geosyst*, 16, 2582–2597.
- [2] S. Naif, K. Key, S. Constable, and R.L. Evans (2013). Melt-rich channel observed at the lithosphere-asthenosphere boundary. *Nature*, 495, 356–359.
- [1] J. Kleissl, C. J. Watts, J. C. Rodriguez, S. Naif, and E.R. Vivoni (2009). Scintillometer intercomparison study continued. *Boundary-Layer Meteorol*, 130, 437–443.

OTHER ARTICLES

- [7] J.D. Muirhead, S. Naif, T. Fischer, and D.J. Shillington (2021). Earth's volatile balancing act. EOS, 102, https://doi.org/10.1029/2021EO155887.
- [6] T. Fischer, J.D. Muirhead, D.J. Shillington, and S. Naif (2021). Volatile fluxes at rifting and subduction margins: review of results from the NSF MARGINS and GeoPRISMS programs. *GeoPRISMS Newsletter* (43).
- [5] C. Chesley, S. Naif, and K. Key (2019). Report from the Field: Hikurangi Trench Regional Electromagnetic Survey to Image the Subduction Thrust. GeoPRISMS Newsletter (42).
- [4] L. Wallace, D. Bassett, S. Naif, P. Fulton, H. Savage, and S. Han (2019). Investigating subduction processes at the Hikurangi margin, New Zealand. *GeoPRISMS Newsletter* (42).
- [3] S. Naif, E. Ferriss, and E. Hauri (2017). Reconciling laboratory measurements on the electrical conductivity of hydrous olivine. CIDER Working Group Report.
- [2] L. Wallace, M. Underwood, **S. Naif**, B. Fry, S. Bannister, and N. Bangs (2015). Workshop to cultivate and coordinate GeoPRISMS studies of Hikurangi subduction margin. *GeoPRISMS Newsletter* (34).
- [1] S. Naif, K. Key, S. Constable, and R.L. Evans (2014). Imaging the Nicaragua Subduction Zone with Marine Electromagnetic Methods. *GeoPRISMS Newsletter (33)*.

TEACHING EXPERIENCE

EAS 4312/6312: Geodynamics Spring 2021

Instructor

EESC G6950: EM Geophysics Spring 2020

Guest lecturer

ESYS102: The Solid and Fluid Earth Winter 2013

Teaching Assistant

SIO10: The Earth Spring 2012

Teaching Assistant

SIO113: Intro to Computational Earth Science Winter 2012

Teaching Assistant

SELECTED PROFESSIONAL ACTIVITIES

Member, Faulting and Earthquake Cycles working group 2020–present

SZ4D Research Coordination Network

Member, Electromagnetic Advisory Committee 2020—present

Incorporated Research Institutions for Seismology

Co-convener, Tectonophysics session on sediment subduction 2019

Fall AGU meeting

Reviewer

EPSL; EP&S; G-cubed; GJI; GRL; JGR; JVGR; Nature Comm.; Nature Geo.; Science Adv.

RECENT OFFSHORE FIELD EXPERIENCE (161 days at sea)

R/V Sikuliaq, 33 days at sea

Marine MT and CSEM survey of Alaska/Aleutians subduction zone

R/V Revelle, 8 days at sea

Marine MT survey of Hikurangi subduction zone

R/V Revelle, 29 days at sea 2018–2019

Marine CSEM survey of Hikurangi subduction zone

RECENT INVITED PRESENTATIONS

[5] "Discerning the distribution and tectonic origin of volatiles in oceanic plates and subduction margins: new insights from electromagnetic sounding" *U. New Mexico*, Mar. 2021

[4] "Imaging fluid-rich faults and melt-rich asthenosphere with electromagnetic data" UC Santa Cruz, Oct. 2020

[3] "Investigating the role of fluids at three subduction zones along the Ring of Fire with electromagnetic data" $Fall\ AGU\ meeting$, Dec. 2019

[2] "Electromagnetic imaging of subduction zones (& more)" SAGE/GAGE, Oct. 2019

[1] "A journey to the base of an oceanic plate: Linking EM, seismic, and geochemical observations from the Cocos seafloor" *Brown U. Colloquium*, Providence, Nov. 2018