Parte Teórica

- 5. (15 pts.) Sean W_1, W_2 dos subespacios de un espacio vectorial V y sean $\mathcal{B}_1, \mathcal{B}_2$ bases de W_1 y W_2 , respectivamente. Probar que:
 - a) $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2)$.
 - b) Si $V=W_1\oplus W_2$ entonces $\mathcal{B}_1\cup\mathcal{B}_2$ es una base de V
- 6. (13 pts.) Sea $A \in \mathbb{K}^{n \times n}$. Probar que las siguientes afirmaciones son equivalentes
 - a) A es inversible.
 - b) A es producto de matrices elementales.
 - c) $\det(A) \neq 0$.
- 7. (12 pts.) Determinar si las siguientes afirmaciones son verdaderas o falsas. Justificar o dar un contraejemplo según el caso.
 - a) Existe una base $\mathcal B$ de $\mathbb C^2$ tal que $P=\begin{pmatrix} \frac{1}{2} & -3 \\ \frac{1}{3} & -2 \end{pmatrix}$ es la matriz de cambio de base de la base canónica de $\mathbb C^2$ a $\mathcal B$.
 - b) Si $\lambda=0$ es autovalor de una transformación lineal $T:V\to V$ entonces existe $\mathcal B$ una base de V tal que $[T]_{\mathcal B}$ tiene una columna nula.
 - c) Si $T:V\to W$ una transformación lineal y $\{v_1,\ldots,v_n\}$ una base de V entonces $\{Tv_1,\ldots,Tv_n\}$ es una base de W.

Importante: Para aprobar se deben sumar al menos la mitad de los puntos de cada parte: práctica (30 puntos) y teórica (20 puntos). Justificar adecuadamente todas las respuestas.

Parte Práctica

1. (15 pts.) Sea $T: \mathbb{R}^4 \to \mathbb{R}^4$ la transformación lineal dada por

$$T(x, y, z, w) = (3x + 6y - 3z - 3w, -6x - 2y - 4z + 6w, 3x - 2y + 5z - 3w, 3x + 4y - z - 3w)$$

- a) Dar una base del núcleo de T.
- b) Describir implícitamente y dar una base de la imagen de T.
- c) Dar una base de $Nu(T) \cap Im(T)$.
- 2. (15 pts.) Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal tal que

$$T((1,1)) = (4,6)$$
 y $T((1,-1)) = (8,-2)$

- a) Sea $\mathcal{B} = \{(1,1), (1,-1)\}$. Calcular la matriz de T respecto de la base \mathcal{B} .
- b) Calcular la matriz de T en la base canónica C.
- c) Hallar la matriz de cambio de base P que verifica que $[T]_{\mathcal{C}} = P^{-1}[T]_{\mathcal{B}}P$.
- d) Determinar si T es diagonalizable. Justificar.
- 3. (10 pts.) Sean los vectores de \mathbb{R}^4 : $v_1 = (1, 2, 0, 1), \quad v_2 = (2, 4, 1, 3), \quad v_3 = (1, 2, 1, 2)$
 - a) Determinar si el conjunto $\{v_1, v_2, v_3\}$ es linealmente independiente.
 - b) Hallar una base del subespacio generado por ellos.
 - c) Extender esa base a una base de \mathbb{R}^4 .
- 4. (20 pts.) Sea la matriz $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.
 - a) Calcular los autovalores de A.
 - b) Para cada autovalor, hallar una base del autoespacio asociado.
 - c) ¿Es diagonalizable A? En caso afirmativo, dar una base de autovectores.
 - d) Hallar una matriz inversible P y una matriz diagonal D tal que $P^{-1}AP = D$. (No es necesario calcular la inversa de P ni hacer el producto pero si es necesario justificar bien).