Линейни системи с постоянни коефициенти

Метод на изключването

В пълно съответствие със скаларния случай линейните системи с постоянни коефициенти се решават експлицитно. В този параграф ще изложим най-простия метод, който води до целта, без да се използват почти никакви сведения от линейната алгебра — метода на изключването. Както ще видим, с помощта на елементарни операции (диференциране и образуване на подходящи линейни комбинации) задачата се свежда до решаване на едно единствено диференциално уравнение с постоянни коефициенти и на система от линейни алгебрични уравнения. При този подход операционните означения, въведени в § 5 на трета глава, и формулата за отместване ще играят основна роля.

Понеже в разсъжденията, които следват, се налага многократно да диференцираме дадената система, целесъобразно е да започнем с един общ резултат, който ни осигурява тази възможност.

Теорема 1. Да разгледаме нормалната система

$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x})$$

при предположение, че $\mathbf{f} \in C^k(D)$, $k \ge 1$, където D е област в \mathbf{R}^{n+1} . Тогава всички решения на (1) притежават непрекъснати производни до (k+1)-ви ред включително.

Локазва, че $\ddot{\mathbf{x}}(t) \in C^2(\alpha, \beta)$. След едно диференциране получаваме

(2)
$$\ddot{\mathbf{x}}(t) = \frac{\partial f}{\partial t}(t, \mathbf{x}(t)) + \sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}}(t, \mathbf{x}(t))\dot{x}^{j}(t)$$

и веднага заключаваме, че дясната страна на (2) има непрекъсната производна, т.е. че ж съществува и е непрекъсната рабо (α, β) .

(α, β). След k последователни диференцирания стигаме до форму, лирания резултат. Сега вече можем да пристъпим към нашата истинска зада. ча. Да разгледаме линейната (не непременно нормална) система

(3)
$$\sum_{j=1}^{n} L_{j}^{i}(p)x^{j} = f^{i}(t), \qquad t \in (\alpha, \beta), i = 1, 2, ..., n,$$

където $L_j^i(p)$ са полиноми на символа $p=\frac{d}{dt}$, т.е. линейни диференциални оператори, а функциите $f^i(\alpha, \beta) \longrightarrow \mathbf{H}$ притежават достатъчен брой производни. Ако въведем $(n \times n)$ -матрицата $L(p) = (L_j^i(p))$ и векторите-стълбове $\mathbf{x} = (x^1, x^2, ..., x^n)$, $\mathbf{f} = (f^1, f^2, ..., f^n)$, (3) взема вида

(4)
$$L(p)\mathbf{x} = \mathbf{f}(t), \quad t \in (\alpha, \beta).$$

Сега да допуснем, че векторът $\mathbf{x} = (x^1, x^2, ..., x^n)$ удовлетворява (3) и притежава достатъчен брой производни. Според теорема 1 това свойство ще бъде налице, ако векторната функция $t \longrightarrow \mathbf{f}(t)$ е достатъчно гладка и системата (3) може да се сведе до нормална.

Да означим с $M_i^k(p)$ адюнгираното количество на елемента $L_k^i(p)$ от матрицата L(p), да умножим i-тото уравнение на (3) с $M_i^k(p)$ и да съберем получените тъждества. Получаваме

$$\sum_{i=1}^{n} \sum_{j=1}^{n} M_{i}^{k}(p) L_{j}^{i}(p) x^{j} = \sum_{i=1}^{n} M_{i}^{k}(p) f^{i}(t),$$

T.e.

(5)
$$\sum_{j=1}^{n} \left(\sum_{i=1}^{n} M_{i}^{k}(p) L_{j}^{i}(p) \right) x^{j} = \sum_{i=1}^{n} M_{i}^{k}(p) f^{i}(t).$$

^{*}Понеже $M_i^k(p)$ е полином на p, умножението на i-тото уравнение с $M_i^k(p)$ означава, че действаме на това равенство с диференциалния оператор съссимволичен запис $M_i^k(p)$.

 A_{KO} означим с D(p) детерминантата на матрицата $L(p) = (L_j^i(p))$ и вземем предвид добре известното тъждество

$$\sum_{i=1}^{n} M_i^k(p) L_j^i(p) = \begin{cases} 0 & \text{sa} \quad j \neq k, \\ D(p) & \text{sa} \quad j = k, \end{cases}$$

от (5) получаваме тъждеството

(6)
$$D(p)x^{k} = \sum_{i=1}^{n} M_{i}^{k}(p)f^{i}(t)$$

 x^k и понеже k беше произволно, като дадем на k стойностите $1,2,\ldots,n$, намираме уравнения за всичките координати на евентуалното решение $\mathbf{x}=\mathbf{x}(t)$.

Да допуснем, че D(p) не се редуцира до константа, и да се съсредоточим върху основния случай $\mathbf{f} \equiv 0$, т.е. когато системата е хомогенна. (Условието $D(p) \neq \text{const}$ е естествено и означава, че системата (3) не е прекалено изродена. Читателят лесно ще съобрази, че то е изпълнено за всички системи, които могат да се сведат към нормални.)

$$(7) L(p)\mathbf{x} = 0.$$

Вече констатирахме, че ако $\mathbf{x} = (x^1, \dots, x^n)$ е решение на (7), имаме $D(p)x^k = 0$ за $k = 1, 2, \dots, n$, т.е. всичките координати на \mathbf{x} удовлетворяват едно и също уравнение с постоянни коефициенти. Това е най-важното заключение, до което ни доведе изложеният метод. Трябва дебело да подчертаем обаче, че уравнението за координатите

$$D(p)x^k=0,$$

до което стигнахме, е само следствие от (7) и следователно, след като определим x^k , $k=1,2,\ldots,n$, от (8), трябва да заместим обратно в (7), за да видим при какви връзки между произволните константи векторът $\mathbf{x}=(x^1,\ x^2,\ldots,\ x^n)$ наистина удовлетворява изходната система. (Такива връзки трябва да се

очакват, защото за да стигнем до (8), в общия случай лиферен очакват, защото за да стигнем до (8), в общия случай лиферен цираме уравненията на (7).) Преди да илюстрираме метола два примера, ще направим една забележка, която улеснява ило по-точно разделя на части практическата работа.

по-точно разделя на части. Нека $\alpha_1, \alpha_2, \ldots, \alpha_m$ са корените на характеристичното урак нение $D(\alpha) = 0$ на (8) с кратности съответно r_1, r_2, \ldots, r_m накъв случай според изученото в § 5 на трета глава имаме

$$x^{k}(t) = \sum_{\nu=1}^{m} P_{\nu}^{k}(t)e^{\alpha_{\nu}t}, \qquad k = 1, 2, ..., n,$$

където $P_{\nu}^k(t)$ е полином от степен, ненадминаваща $r_{\nu}-1$. Следо вателно предполагаемото решение $\mathbf{x}=(x^1,\ x^2,\ldots,\ x^n)$ има вид

(9)
$$\mathbf{x}(t) = \mathbf{g}_1(t)e^{\alpha_1 t} + \mathbf{g}_2(t)e^{\alpha_2 t} + \cdots + \mathbf{g}_m(t)e^{\alpha_m t}$$

където

(10)
$$g_{\nu}(t) = (P_{\nu}^{1}(t), P_{\nu}^{2}(t), \dots, P_{\nu}^{n}(t)), \qquad \nu = 1, 2, \dots, m.$$

От него произтича следното правило за решаване на систе-

Mata $L(p)\mathbf{x} = 0$:

а) Намираме корените на уравнението $D(\alpha) = 0$ и образуваа) нашите (10), в които полиномите са с неопределени коеме функциенти и P_{ν}^{k} е от степен $r_{\nu}-1$ $(k=1,2,\ldots,n)$.

 $_{6}$) Определяме коефициентите на полиномите P_{ν}^{k} , k=1,2,...,n, при фиксирано ν от системата полиномни уравнения L(p+1) $a_{\nu}(t) = 0$, които се получават, като приравним на нула кое a_{ν}/s^{ν} фициентите пред $e^{\alpha_{\nu}t}$, $s=0,1,2,\ldots,r_{\nu}-1$.

След като по този начин определим функциите $g_1, g_2, ..., g_m,$

образуваме общото решение (9).

И така да разгледаме системата

(14)
$$\dot{\mathbf{x}} = A\mathbf{x}, \qquad A = (a_j^i) \in \mathfrak{M}_n,$$

където a_{j}^{i} са реални или комплексни числа.

В по-подробен запис (14) взема вида

 $\delta_j^{\mathrm{r.e.}} = L(p)\mathbf{x} = 0$, където $L_j^i(p) = a_j^i - \delta_j^i p$, $i, \ j = 1, 2, \dots, n$, и $\delta_j^i = \left\{ egin{array}{ll} 0 & \mathrm{sa} & i \neq j \\ 1 & \mathrm{sa} & i = j \end{array} \right.$ е символът на Кронекер. В случая

(16)
$$D(p) = \begin{vmatrix} a_1^1 - p & a_2^1 \dots a_n^1 \\ a_1^2 & a_2^2 - p \dots a_n^2 \\ \vdots & \vdots & \vdots \\ a_1^n & \vdots & a_2^n \dots a_n^n - p \end{vmatrix} = |A - Ip|$$

и характеристичното уравнение $D(\alpha)=0$ съвпада с уравнението за собствените стойности на матрицата А. Естествено възникват два случая:

а) Уравнението $D(\alpha)=0$ има n различни корена — да ги означим с $\alpha_1, \alpha_2, \ldots, \alpha_n$.

б) Уравнението $D(\alpha) = 0$ има m, m < n, различни корена $\alpha_1, \alpha_2, \ldots, \alpha_m$.

 $lpha_1,\ lpha_2,\dots,\ lpha_m$. Ше започнем с първия случай. И така да допуснем, че а) е налице. Понеже в случая $r_j=1,\ j=1,2,\dots,n$, според т. 6.1 общото решение на (14) има вида

(17)
$$\mathbf{x}(t) = \sum_{\nu=1}^{n} \mathbf{g}_{\nu} e^{\alpha_{\nu} t},$$

където координатите на \mathbf{g}_{ν} са полиноми на t от нулева степен, т.е. константи.

За неизвестните вектори g_1, g_2, \ldots, g_n получаваме уравненията

(18)
$$L(p + \alpha_{\nu})g_{\nu} = 0$$
, r.e. $(A - (p + \alpha_{\nu})I)g_{\nu} = 0$,

 $u=1,2,\ldots,n$, където с I сме означили единичната $(n\times n)$ -матрица. Понеже очевидно $p\mathbf{g}_{\nu}=\frac{d}{dt}\mathbf{g}_{\nu}=0$, равенствата (18) се редуцират до съотношенията

(19)
$$(A - \alpha_{\nu}I)g_{\nu} = 0$$
, т.е. до $Ag_{\nu} = \alpha_{\nu}g_{\nu}$, $\nu = 1, 2, ..., n$,

които означават, че \mathbf{g}_{ν} е или нулев, или собствен вектор на A_{ν} отговарящ на собственото число α_{ν} . Обратното също е вярно: Ако векторите \mathbf{g}_{ν} , $\nu = 1, 2, \ldots, n$, удовлетворяват (19), то (17) е решение на (14).

Както е известно от линейната алгебра, в случая а) всяма система от собствени вектори $\mathbf{h}_1,\ \mathbf{h}_2,\dots,\ \mathbf{h}_n$, където \mathbf{h}_ν отговаря на собственото число α_ν , образува база в \mathbf{C}^n . За удобство на читателя ще припомним доказателството.

Ше разсъждаваме индуктивно и ще покажем, че за всяко k_1 $1 \le k \le n$, системата от вектори h_1, h_2, \ldots, h_k е линейно независима. Ако k = 1, няма какво да доказваме, защото собствените вектори по дефиниция са различни от нула.

Да допуснем, че нашето твърдение е вярно за всяко $k \le n^{-1}$, и да вземем произволна линейна комбинация

(20)
$$\sum_{\nu=1}^{n} c_{\nu} \mathbf{h}_{\nu} = 0.$$

$$\beta$$
 такъв случай
$$0 = A\left(\sum_{\nu=1}^{n} c_{\nu} \mathbf{h}_{\nu}\right) = \sum_{\nu=1}^{n} c_{\nu} \alpha_{\nu} \mathbf{h}_{\nu}.$$

Oт друга страна, като умножим (20) с α_n и го извадим от (21), намираме

(22)
$$(\alpha_1-\alpha_n)c_1\mathbf{h}_1+(\alpha_2-\alpha_n)c_2\mathbf{h}_2+\cdots+(\alpha_{n-1}-\alpha_n)c_{n-1}\mathbf{h}_{n-1}=0,$$

 $_{\text{което}}$ заедно с индуктивната хипотеза ни дава $(\alpha_{\nu}-\alpha_{n})c_{\nu}=0$, $_{\text{т.е.}}$ $c_{\nu}=0$, $\nu=1,2,\ldots n-1$, защото $\alpha_{n}\neq\alpha_{\nu}$ за $\nu\neq n$. Сега вече от (20) следва и $c_{n}=0$ и твърдението, че $\mathbf{h}_{1},\ \mathbf{h}_{2},\ldots,\ \mathbf{h}_{n}$ са линейно независими, е доказано.

За да завършим обсъждането на а), остава да отбележим, че в този случай на всяко собствено число α_{ν} отговаря едномерно собствено пространство, т.е. множество от безбройно много собствени вектори, които са колинеарни помежду си. Следователно, ако $\mathbf{h}_1, \mathbf{h}_2, \ldots, \mathbf{h}_n$ е фиксирана база от собствени вектори на A, като \mathbf{h}_j отговаря на α_j , то ще имаме $\mathbf{g}_{\nu} = c_{\nu} \mathbf{h}_{\nu}$ и формулата (17) за общото решение взема вида

(23)
$$\mathbf{x}(t) = \sum_{\nu=1}^{n} c_{\nu} \mathbf{h}_{\nu} e^{\alpha_{\nu} t},$$

където $c_{\nu} \in \mathbb{C}$ са произволни константи.

Остава да кажем няколко думи за случая б), когато A има m < n различни собствени числа. Разбира се, и сега разполагаме поне с m линейно независими собствени вектора, но изобщо казано, техният брой не е достатъчен, за да образуват база в C^n . Ето защо в съответствие със скаларния случай общото решение на системата има по-сложния вид (17), където $\mathbf{g}_{\nu} = \mathbf{g}_{\nu}(t)$ са вектори, чиито координати са полиноми на t.

Пример 2. За системата от трети ред

(13)
$$\dot{x}^{1} = 2x^{1} - x^{2} - x^{3},$$

$$\dot{x}^{2} = 2x^{1} - x^{2} - 2x^{3},$$

$$\dot{x}^{3} = -x^{1} + x^{2} + 2x^{3}$$

намираме

$$D(p) = \begin{vmatrix} 2-p & -1 & -1 \\ 2 & -1-p & -2 \\ -1 & 1 & 2-p \end{vmatrix} = (1-p)^3.$$

Следователно $(p-1)^3x^k=0,\ k=1,2,3,\$ откъдето

$$x^{1} = (c_{1} + c_{2}t + c_{3}t^{2})e^{t},$$

$$x^{2} = (c_{4} + c_{5}t + c_{6}t^{2})e^{t},$$

$$x^{3} = (c_{7} + c_{8}t + c_{9}t^{2})e^{t}.$$

Като заместим в (13) и разделим на e^t , получаваме уравненията $Q_k(t) = 0$, k = 1, 2, 3, където Q_k са полиноми от втора степен. Понеже равенствата $Q_k(t) = 0$, k = 1, 2, 3, трябва да са в сила за всяко $t \in \mathbb{R}$, като приравним на нула коефициентите във всяко от тях, намираме търсените връзки между константите c_j , $j = 1, 2, \ldots, 9$.

Получаваме

$$x^{1} = (c_{1} + c_{2}t)e^{t},$$
 $x^{2} = (2c_{2} + c_{4})e^{t},$
 $x^{3} = (c_{1} - c_{2} - c_{4} - c_{2}t)e^{t}.$

Подробностите предоставяме на читателя.