(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 19 February 2004 (19.02.2004)

PCT

(10) International Publication Number WO 2004/015139 A1

(51) International Patent Classification7:

C12Q 1/68

(74) Agent: SCHUBERT, Klemens; Neue Promenade 5.

(21) International Application Number:

PCT/EP2003/008602

(22) International Filing Date: 1 August 2003 (01.08.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

102 36 406.0

2 August 2002 (02.08.2002) DE

(71) Applicant (for all designated States except US): EPIGE-NOMICS AG [DE/DE]; Kastanienallee 24, 10435 Berlin (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ADORJAN, Peter [HU/DE]; Dunckerstrasse 4, 10437 Berlin (DE). PIEPENBROCK, Christian [DE/DE]; Schwartzkoffstrasse 7 B, 10115 Berlin (DE). RUJAN, Tamas [HU/DE]; Hiddenseer Strasse 13, 10437 Berlin (DE). SCHMITT, Armin [DE/DE]; Hortensienstrasse 29, 12203 Berlin (DE).

10178 Berlin-Mitte (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

- AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR AMPLIFICATION OF NUCLEIC ACIDS OF LOW COMPLEXITY

(57) Abstract: The invention describes a method for amplifying nucleic acids, such as DNA with means of an enzymatic amplification step, such as a polymerase chain reaction, specified for template nucleic acids of low complexity, e.g. pre-treated DNA, like but not limited to DNA pre-treated with bisulfite is disclosed. The invention is based on the use of specific oligo-nucleotide primer molecules to solely amplify specific pieces of DNA. It is disclosed how to optimize the primer design for a PCR if the template DNA is of low complexity.

Method for amplification of nucleic acids of low complexity

5 The present invention relates to a method for the amplification of nucleic acids.

Description

- This invention relates to the fields of genetic engineering, molecular biology and computer science, and more specifically to the field of nucleic acid analysis based on specific nucleic acid amplification.
- The matter of the present invention is a method for amplifying nucleic acids, such as DNA by means of an enzymatic amplification step, such as a polymerase chain reaction, specified for template nucleic acids of low complexity, e.g. pre-treated DNA, like but not limited to DNA pre-treated with bisulfite. The invention is based on
- DNA pre-treated with bisulfite. The invention is based on the use of specific oligo-nucleotide primer molecules to solely amplify specific pieces of DNA. It is disclosed how to optimize the primer design for a PCR if the template DNA is of unusually low complexity. Also, for the optimal primer design it was considered that the treated
- optimal primer design it was considered that the treated template DNA is single stranded.
- The amplification of nucleic acids relies mainly on a method called polymerase chain reaction (PCR). The PCR is based on the activity of the enzyme DNA polymerase, which is elongating primer molecules, which bind to the template DNA by adding dNTPs and hereby copying the template sequence (Saiki RK, Gelfand DH, Stoeffel S, Scharf SJ, Higuchi R, Horn T, Mullis KB and Erlich HA (1988).
- Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491). The

 Ω

5

25

30

35

primer molecules are designed to specifically hybridize to those regions of the template DNA that define both ends of the amplificate. The forward primer binds to the 5' end of the sense strand of the amplificate, whereas the reverse primer binds to the 5' end of the reverse strand, hereby defining the starting points of the polymerase reaction and eventually determining the length of the amplificate.

10 Before the polymerase starts the template DNA gets denatured, this is usually done by a short cycle of heating the reaction mixture up to about 95°C, then cooling it down to the annealing temperature determined by the melting temperature of the primer molecules used and finally 15 allowing the polymerase to elongate the annealed primers at its ideal working temperature for some minutes. This cycle is repeated several times each starting with the denaturation step. The primer molecules hybridize to the single stranded DNA. The forward primer is the starting 20 molecule for a copy of the sense strand and the reverse primer is the starting molecule for a copy of the antisense strand.

These first copies will be of unspecific length, limited only by the polymerase's activity. However in the following cycle, the forward primer will also bind to the first copy of the anti-sense strand, the polymerase will take that copy as a template and will elongate the primer only as far as there is template DNA. Hereby the length of the second copy gets limited to the length defined by the first nucleotide of the second primer. In the following cycles more and more pieces of template DNA compete for the primer molecules and eventually the DNA amplificate of defined length will be the main product.

However, in the case of a bisulfite treated DNA the template DNA is single stranded. The bisulfite or similar treatment alters the original sequences on both strands such that these are not complementary to each other after the treatment. As a result no complementary strand to the target sequence exists. A first primer molecule binds to the one end of the single stranded target sequence. The polymerase elongates said primer and copies said target sequence. The second primer molecule cannot bind to the complementary, so called anti-sense strand, as it would in a standard PCR. Therefore the second primer molecule is designed to bind to the first copied sequence instead. More specifically it will bind to that part of the copied nucleic acid which is the complement to the other end of said target sequence.

5

10

15

20

25

30

35

The results of a PCR are highly depending on the choice of the ideal primer. The choice of a primer molecule must respect constraints permitting a correct amplification by PCR, fulfilling hybridization temperature conditions and auto- or hetero-hybridization prevention.

In other words, as any PCR requires two primer molecules to amplify a specific piece of DNA in one reaction the melting temperatures of both primers need to be very similar in order to allow proper binding of both at the same hybridization temperature. That is why most primer design programs require the user to define a preferred melting temperature or a permitted range of melting temperatures. This requirement becomes the limiting factor when designing primers for a so called multiplex PCR, as all primer pairs in use need to have the same or at least very similar melting temperatures. Additionally primers have to be very specific, in order to only amplify those pieces of DNA that are the target.

By providing the means for designing extremely accurate primer pairs for DNA hybridization procedures this invention relates to the so called PCR primer design. More specifically the body of this invention relates to the specific requirements of primers and therefore of primer design when using template DNA that consists of essentially only three different nucleotides and is single stranded. This is the case when using bisulfite treated DNA as a template, as it contains no cytosine other than the methylated cytosines in a CG dinucleotide and a rest of insufficiently treated and therefore untransformed non-methylated cytosines. The invention relates specifically to the primer design when using bisulfite treated DNA as template.

15

10

5

It would be obvious to an individual skilled in the art that the use of the primers as specified in this invention are not limited to nucleic acid amplification. Said primers can be used for several purposes, such as amplification, but also for nucleic acid sequencing or as blocking oligonucleotides during analysis of bisulfite treated DNA. Therefore the use of said primers is not limited to nucleic acid amplification but extends to all standard molecular biological methods.

25

20

Pairs of these primers are used to specifically amplify DNA from a small amount of sample DNA that consists of bisulfite treated DNA originating from a limited source of DNA like a bodily fluid or tissue sample.

30

35

DNA can occur methylated or non-methylated at certain positions and this information is relevant for the status of a genes transcription. The methyl group is attached to the cytosine bases in CpG positions. The identification of 5-methylcytosine in a DNA sequence as opposed to unmethylated cytosine is of greatest importance for example

when studying the role of DNA methylation in tumorigenesis. But, because the 5-Methylcytosine behaves just as a cytosine for what concerns its hybridization preference (a property relied upon for sequence analysis) its positions can not be identified by a normal sequencing reaction. Furthermore in a PCR amplification this relevant epigenetic information, methylated cytosine or unmethylated cytosine, will be lost completely.

5

- This problem is usually solved by treating the genomic DNA with a chemical leading to a conversion of the cytosine bases, which consequently allows to differentiate the bases afterwards.
- A tool most useful for analyzing DNA methylation is the bisulfite conversion of DNA that converts cytosine bases into bases showing a hybridization behavior as thymin bases. Hereby the DNAs complexity is reduced by a fourth.
- Bisulfite conversion is the most frequently used method 20 for analyzing DNA for 5-methylcytosine. It is based upon the specific reaction of bisulfite with cytosine which, upon subsequent alkaline hydrolysis, is converted to uracil, whereas 5-methylcytosine remains unmodified under 25 these conditions (Shapiro et al. (1970) Nature 227: 1047). However, in its base pairing behavior, uracil coresponds to thymine, that is, it hybridizes to adenine; whereas 5-methylcytosine doesn't change its chemical properties under this treatment and therefore still has the base pairing behavior of a cytosine, that is hybrid-30 izing with guanine. Consequently, the original DNA is converted in such a manner that methyl-cytosine, which originally could not be distinguished from cytosine by
- its hybridization behavior, can now be detected as the only remaining cytosine using "normal" molecular biological techniques, for example, by amplification and hy-

bridization or sequencing. All of these techniques are based on base pairing which can now be fully exploited. Comparing the sequences of the DNA prior to and after bisulfite treatment allows an easy identification of those bases that have been methylated.

5

10

20

25

30

35

In the scope of this invention when it says "a nucleotide (...) was converted by the treatment..." this conversion is meant to be able to differentiate between methylated and un-methylated cytosine bases within said sample, as for example the conversion of un-methylated cytosine bases to bases which hybridize to adenine by the treatment with bisulfite.

An alternative method is to use restriction enzymes that are capable of differentiating between methylated and unmethylated DNA, but this is restricted in its uses due to the selectivity of the restriction enzyme towards a specific sequence.

An overview of the further known methods of detecting 5-methylcytosine may be gathered from the following review article: Rein T, DePamphilis ML, Zorbas H, Nucleic Acids Res. 1998, 26, 2255.

In terms of sensitivity, the prior art is defined by a method, which encloses the DNA to be analyzed in an agarose matrix, thus preventing the diffusion and renaturation of the DNA (bisulfite reacts with single-stranded DNA only), and which replaces all precipitation and purification steps with fast dialysis (Olek A, Oswald J, Walter J (1996) A modified and improved method for bisulfite based cytosine methylation analysis. Nucleic Acids Res. 24: 5064-6). Using this method, it is possible to analyze individual cells, which illustrates the potential of the method.

To date, barring few exceptions (e.g., Zeschnigk M, Lich C, Buiting K, Doerfler W, Horsthemke B (1997) A singletube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet. 5: 94-8) the bisulfite technique is only used in research. Always, however, short, specific fragments of a known gene are amplified subsequent to a bisulfite treatment and either completely sequenced (Olek A, Walter J (1997) The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet. 3: 275-6) or individual cytosine positions are detected by a primer extension reaction (Gonzalgo ML and Jones PA (1997) Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 25 :2529-31; WO 95/00669) or by enzymatic digestion (Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25: 2532-4).

20

25

30

35

5

10

15

Another technique to detect hypermethylation is the so called methylation specific PCR (MSP) (Herman JG, Graff JR, Myohanen S, Nelkin BD and Baylin SB (1996), Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 93: 9821-6). The technique is based on the use of primers that differentiate between a methylated and a non-methylated sequence if applied after bisulfite treatment of said DNA sequence. The primer either contains a quanine at the position corresponding to the cytosine in which case it will after bisulfite treatment only bind if the position was methylated. Or the primer contains an adenine at the corresponding cytosine position and therefore only binds to said DNA sequence after bisulfite treatment if the cytosine was unmethylated and has hence been altered by the bisulfite treatment so that it hybridizes to adenine.

5

10

15

With the use of these primers amplicons can be produced specifically depending on the methylation status of a certain cytosine and will as such indicate its methylation state. The present invention, however, does preferably not include CpGs in the primer sequence.

Another new technique is the detection of methylation via Tagman PCR, also known as MethylLight (WO 00/70090). With this technique it became feasible to determine the methylation state of single or of several positions directly during PCR, without having to analyze the PCR products in an additional step.

In addition, detection by hybridization has also been described (WO 99/28498).

Further publications dealing with the use of the bisulfite technique for methylation detection in individual genes are:

- 20 Grigg G, Clark S (1994) Sequencing 5-methylcytosine residues in genomic DNA. Bioassays 16: 431-6; Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W (1997) Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman 25 syndrome region as determined by the genomic sequencing method. Hum Mol Genet. 6: 387-95; Feil R, Charlton J, Bird AP, Walter J, Reik W (1994) Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. 22: 695-6; Martin V, Ribieras S, Song-Wang X, Rio MC, Dante R (1995) Ge-30 nomic sequencing indicates a correlation between DNA hypomethylation in the 5' region of the pS2 gene and its
 - expression in human breast cancer cell lines. Gene 157: 261-4; WO 97/46705; WO 95/15373; WO 97/45560

For all those methods mentioned above, which are based on PCR amplification of bisulfite treated DNA, the biggest challenge is to design primers that are specific.

THE PROBLEM AND ITS SOLUTION

There are a number of programs available on the market that offer to design primer pairs in order to amplify a piece of DNA in a PCR. Usually they require as input the template DNA sequence, the preferred melting temperature TM, the desired length of the amplificate and optionally the preferred length of the primer molecules.

However if a primer is required to bind specifically to bisulfite treated DNA, the design of the primer molecule is especially difficult and those tools known in the art are not competent to design primers that lead to specific products. The following problems occur when dealing with bisulfite treated DNA instead of standard DNA:

20

25

30

35

5

10

15

First, the sequence complexity of the bisulfite treated genome is reduced dramatically. Complexity in this context is meant to be a measure for the similarity of a given sequence to a random or stochastic sequence; the more complex a sequence is the more it is similar to a random sequence. A reduced complexity of the genome means there are less degrees of variation. Where there are essentially only three different nucleotides rather than four, the probability of a sequence to occur twice in a given length of sequence is much higher. For example, a primer molecule of 20 nucleotides in length is likely to be unique in the human genome, if it is not part of a repeat sequence: The human genome is known to consist of about 3 x 109 bases. There are 420 ≈ 1012 different ways to form sequences of a length of 20 nucleotides, assuming equidistribution of the bases, which makes multiple occurrences of a given 20-mer (oligonucleotide of 20 nucleotides) extremely unlikely. However since there are only $320 \approx 3 \times 109$ different 20-mers possible over a 3-letter alphabet, this multiple occurrence cannot be excluded. In addition a bisulfite treated sequence, enriched in thymine in the sense strand and enriched in adenine in the reverse complementary strand, will contain more repeats and regions of general low complexity.

5

35

lower TM.

- Another way to enhance or guarantee uniqueness of primer and/or oligo molecules is to estimate their expected frequency in the genome based upon a Markov model of order n for the human genome or to check their uniqueness explicitly by counting their exact occurrence. The estimation based upon the Markov model relies upon the determination
- based upon the Markov model relies upon the determination of the probabilities of all 4n n-mers (oligo molecules of n nucleotides) in the human genome or in all amplificates which are used in the hybridization and the conditional probabilities of all four bases given these n-mers. The
- primer pairs will be constructed from forward and reverse oligos which lie within an appropriate distance to each other and which have minimal individual expected occurrence elsewhere in the genome.
- A second challenge in primer design for bisulfite treated DNA is that the melting temperature TM of a bisulfite DNA primer of a certain length is typically lower than the melting temperature TM of a standard primer containing cytosines. This is due to the fact that every cytosine in a bisulfite treated DNA is after amplification by PCR replaced by thymine. Cytosine binds its corresponding base guanine via three hydrogen bonds, whereas thymine binds its corresponding base adenine via two hydrogen bonds only, leading to a generally weaker binding, a

A third problem arises from the fact that bisulfite treated sequences are not only lacking cytosines but are also thymine-rich. Thymine also hybridizes unspecifically with guanine. This makes mismatching (unspecific binding of a primer to a sequence not identical) of a primer designed for bisulfite treated DNA much more likely than mismatching of a standard primer consisting of four different nucleotides.

10 It is the aim of this invention to overcome these problems, which are specific for primer based amplification of bisulfite treated DNA.

5

For a so called "multiplex PCR" it becomes especially 15 difficult to design primer pairs. This expression is used to describe an experiment in which several different pieces of DNA are amplified simultaneously, in one reaction vessel and at the same time. Obviously this saves a lot of effort and time and is as such a basic requirement 20 for high throughput assays based on PCR amplification. An overview on the state of the art concerning multiplex PCR is given by Henegariu et al. (Henegariu O, Heerema NA, Dlouhy SR, Vance GH and Vogt PH (1997) Multiplex PCR: Critical Parameters and Step-by-Step Protocol. BioTech-25 niques 23: 504-511), who offer a step-by-step protocol on how to tackle multiplex PCR problems. However, the possibility of a special primer design is not mentioned in this article.

To ensure that the multiplex PCR works and the multiple products are amplified indeed usually a gel electrophoresis of the reaction mixture is performed. The products get separated due to their different sizes. Unfortunately, the ability of agarose gel electrophoresis to distinguish the products is slightly limited. However, it is possible to test for different product sizes with the

means of a fragment analyzer, which is much more accurate and able to distinguish product sizes of one base difference. Hence different product sizes are no longer a requirement to be considered in the primer design for a

12

PCT/EP2003/008602

WO 2004/015139

multiplex PCR.

5

10

15

20

25

In patent WO 01/94634 a method for a multiplex PCR using at least two primer pairs is described that consists of basically a two step amplification procedure wherein one step is referred to as pre-amplification. After pre-amplification (by means of PCR) with a number of primer pairs the sample gets divided into as many portions as there are primer pairs. At least one (and preferably only one) of the previously used primer pairs is added. This method doesn't relate in any way to the selection or design of primer molecules described herein.

In an article by Shuber et al. (Shuber AP, Grondin VJ and Klinger KW (1995) A simplified procedure for developing multiplex PCRs. Genome Res 5 (5): 488-493) regarding multiplex PCR, the authors suggest to use primers, which contain a 3' region complementary to sequence specific recognition sites and a 5' region of a defined length of 20 nucleotides each. The authors claim that they could establish identical reaction conditions, cycling times and annealing temperatures for any PCR primer pair following those requirements.

In several recent papers successful multiplex PCRs have been established. For example, Becker et al. have reported the development of a multiplex PCR reaction for the detection of multiple staphylococcal enterotoxin genes, which uses individual primer sets for each toxin gene (Becker K, Roth R and Peters G (1998) Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for amplifica-

tion and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J. Clin. Microbiol. 36: 2548-2553). This has been developed even further by Monday and Bohach, by increasing the number of primer pairs applied in one reaction up to about 10 in order to have one assay to amplify all of the characterized enterotoxin genes. This still required a unique established primer pair for the detection of every individual gene (Monday SR and Bohach GA (1999) Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 37: 3411-3414).

5

10

15

20

25

30

35

In another paper by Sharma et al. a method for a onevessel-multiplex PCR is described wherein each of six chosen primer pair consists of one identical universal forward primer, based on a highly conserved region of those genes of interest and one reverse primer, specific for each individual gene. As such the assay leads to a rapid amplification of a family of genes, which all have a conserved region in common. It is designed to detect presence or absence of certain genes in an unknown mixture. No further information is given about the primer design, apart from saying that they were designed by alignment of published DNA sequences. This is certainly not the only requirement though, as one big limitation of the method is the need of getting PCR products of different sizes in order to identify those in the end (Sharma NK, Rees CED and Dodd CER (2000) Development of a singlereaction multiplex PCR toxin typing assay for Staphylococcus aureus strains. Applied and Environmental Microbiology 66 (4): 1347-1353).

In the patent application WO 01/36669 a method is described which uses a similar approach for the controllable amplification of a higher number of sequences in selec-

ting one randomly chosen reverse primer that hybridizes unspecifically and a number of specific forward primers to amplify a group of sequences. As the reverse primer is labeled all products formed will be labeled as well. By hybridizing said amplicons towards immobilized detection oligos, which are able to differentiate the products, it will be easy to see which products have been amplified and herein the presence or absence of said sequences in the mixture can be determined.

10

15

- 20

25

30

35

5

The big disadvantage in all these methods is that every primer pair needs to be established individually first to ensure that a PCR product of the expected size was produced and that no additional or nonspecific products are generated. Once the specificity of the primer pairs had been determined, PCR conditions, buffers, and primer concentrations need to be optimized to establish conditions under which the primer molecules can be combined into one single PCR reaction without affecting the ability of the primer pairs to generate a gene specific amplicon.

A more recently published approach by Nicodeme and Steyaert describes the conditions required for multiplex PCR and suggests an algorithm to automatically select for primer pairs (Nicodeme P and Steyaert JM (1997) Selecting optimal oligonucleotide primers for multiplex PCR. Proc. Int. Conf. Intell Syst Mol Biol; 5: 210-213). In this approach the conditions for pre-selecting primer pairs for a successful one locus amplification (singleplex PCR conditions) are rather broad. The three basic requirements are the pairing distance between a forward and a reverse primer, the condition of non-palindromicity of a primer, and the condition that the 3' end of a primer must not be reverse complementary to any of the other primers sequence. This selection is done with the help of a typical primer design program called PRIMER. However,

PRIMER is a two step program, and in this approach the new method to design primers for a multiplex PCR takes the output from step 1 as input, which is a list of possible forward and a list of possible reverse primers for every amplificate.

The only further selection criteria for the multiplex PCR primers are the absence of the reverse complementarity of their 3' end towards the other primer sequences in the experiment. A second critical factor considered here is the GC versus AT ratio. To some extent it is this ratio that determines the melting temperature of a primer pair. The authors suggest to limit the GC/AT ratio to be inside a given range which would enable the simultaneous hybridization of several primer pairs at one reaction temperature. The final requirement is the electrophoresis distance, determined by the tool that is used to differentiate the PCR products in, for example, a gel electrophoresis. This most common method requires the products to be of different sizes. The whole concept of this method also requires to have a pool of possible primer pairs for each amplicon.

The design of suitable primers for a multiplex PCR on bisulfite treated DNA is an even greater challenge. The low complexity of the DNA, being reduced to essentially three different bases rather than four different bases, requires an extra careful selection of primers to avoid mismatching and unwanted amplification.

30

35

25

5

10

15

20

In the scope of this invention the word "mismatching" corresponds to the situation when the alignment of two sequences which are essentially complementary reveals positions in one of the sequences where the nucleotide base does not align with its corresponding base but a different one. The corresponding or complementary base pairs are adenine and thymine, cytosine and guanine,

are adenine and thymine, cytosine and guanine, uracil and adenine. For example, a cytosine that aligns with a thymine in its otherwise complementary sequence creates a mismatch of one base or nucleotide.

5

Accordingly "base mismatches" refers to the situation of a base mismatching with another as explained above, respectively "one or more base mismatches" refers to one or more bases (in a given sequence) that cannot be aligned with their corresponding bases.

Also, when the alignment reveals single nucleotide gaps in one of the aligned sequences this is understood under the term "mismatch" in the scope of this invention.

15

20

25

10

A 'gap' is to be understood as follows: If an alignment reveals that, in order to get the highest number of corresponding base pairs aligned, some bases are lacking a corresponding base in its otherwise complementary sequence, this is called a gap. Such a gap can have a length of one or more nucleotides.

To solve the problems mentioned above we invented a method consisting of several steps that is applicable for the amplification of nucleic acids in singleplex as well as in multiplex PCR experiments.

SUMMARY OF THE INVENTION

The method is comprised of the following steps:

Firstly, the nucleic acid sample containing the region of interest, which is to be amplified, is isolated. Secondly, this nucleic acid sample is treated in a manner that differentiates between methylated and un-methylated cytosine bases within said sample. Thirdly, a reaction mixture is set up containing a) the treated template nu-

cleic acids, carrying the region of interest (also called: target nucleic acid) that is to be amplified, b) specified oligo-nucleotide primers, c) an enzyme capable of amplifying said nucleic acids in a defined manner, d) the necessary nucleotides required for the nucleic acid synthesis and e) a suitable buffer.

Said specified oligo-nucleotide primers are characterized in that

their sequences each reach a predefined measure of complexity (as described in detail below)
every possible combination of two primer molecules in said reaction mixture has a melting temperature below a specified threshold temperature

5

35

- none of the possible combinations of two primer molecules in said reaction mixture leads to the amplification of an additional unwanted product as determined by virtual testing for amplification.
- In the last step of the method said amplified target nucleic acid is detected by means commonly used by one skilled in the art.
- The invention is composed of a method for the amplification of nucleic acids comprising the following steps of
 isolating a nucleic acid sample, treating said sample in
 a manner that differentiates between methylated and unmethylated cytosine bases within said sample, amplifying
 at least one target sequence, within said treated nucleic
 acid, by means of enzymatic amplification and a set of
 primer molecules, wherein said primer molecules are characterized in that
 - a) each primer molecule sequence reaches a predefined measure of complexity, b) every combination of any two primer molecules in the set has a melting temperature below a specified threshold temperature and c) every combi-

nation of two primer molecules, under conditions allowing for one or more base mismatches per primer, does not lead to the amplification of an unwanted product when virtually tested using the treated and the untreated sample nucleic acids as template and the last step of detecting said amplified target nucleic acid.

More detailed description of the method:

5

20

25

35

10 The method is comprised of the following steps: In the first step of the method, the nucleic acid sample, which contains the region of interest that is to be amplified, must be isolated from tissue or cellular sources. Such sources may include at least one cell, but 15 usually several cells, cell lines, histological slides, bodily fluids, or tissue embedded in paraffin.

In a preferred embodiment of this invention the nucleic acid sample is isolated from a bodily fluid, a cell culture, a tissue sample or a combination thereof.

For example a certain kind of organ sample from a patient or an animal can be used to extract genomic DNA by the usually applied methods. Preferably, in this invention DNA is extracted from a tissue sample or a biological fluid like blood, serum, urine or other fluids. 'Bodily fluid' herein refers to a mixture of macromolecules obtained from an organism. This includes, but is not limited to, blood, blood plasma, blood serum, urine, sputum, ejaculate, semen, tears, sweat, saliva, lymph fluid, 30 . bronchial lavage, pleural effusion, peritoneal fluid, meningal fluid, amniotic fluid, glandular fluid, fine needle aspirates, nipple aspirate fluid, spinal fluid, conjunctival fluid, vaginal fluid, duodenal juice, pancreatic juice, bile and cerebrospinal fluid. This also includes experimentally separated fractions of all of the

preceding. 'Bodily fluid' also includes solutions or mixtures containing homogenized solid material, such as feces.

19

PCT/EP2003/008602

WO 2004/015139

5 The nucleic acids may include DNA or RNA. Isolation may be by means that are standard to one skilled in the art, this includes for example extraction of DNA with the use of detergent lysates, sonification and vortexing with glass beads. An example is the extraction of DNA from a piece of a plant, like a leave or fruit. Once the nucleic acids, like genomic double stranded DNA, have been extracted they are used in the analysis.

In a preferred embodiment of this invention the nucleic acid sample is comprised of plasmid DNA, BACs (bacterial artificial chromosomes), YACs (yeast artificial chromosomes) or genomic DNA.

In another especially preferred embodiment of this invention the nucleic acid sample is comprised of human genomic DNA. It is preferred that the nucleic acids are of human origin.

In the second step, this nucleic acid sample is treated
in a manner that differentiates between methylated and
un-methylated cytosine bases within said sample. Cytosine
bases which are unmethylated at the 5'-position are converted to uracil, thymine, or another base which is dissimilar to cytosine in terms of hybridization behavior.

This will be understood as 'treatment' hereinafter. The
method most commonly used so far is the so called bisulfite treatment.

This step is of essential meaning to the process as it translates the methylation pattern of said nucleic acids into a pattern that is something like an imprint of the

methylation status itself. It contains essentially the same information but the pre-treated nucleic acids are no longer sensitive to amplification via PCR. Amplification via PCR does not differentiate between methylated and unmethylated cytosines and therefore leads to the loss of this level of information. The original methylation status however can be deducted whenever the described pre-treatment had been performed prior to the amplification step. Hence any means suitable to differentiate between a methylated and an un-methylated cytosine base are applicable, as long as the modified bases are still capable of being amplified by enzymatic means after treatment.

5

10

25

30

35

It is a preferred embodiment of this invention that said sample is treated by means of a solution of a bisulfite, hydrogen sulfite or disulfite. A treatment of genomic DNA as described above is carried out with bisulfite (hydrogen sulfite, disulfite) and subsequent alkaline hydrolysis which results in a conversion of non-methylated cytosine nucleobases to uracil or to another base which is dissimilar to cytosine in terms of base pairing behavior.

In the third step of this method, a reaction mixture is set up containing a) the treated template nucleic acids, comprising the region of interest (also called target nucleic acid) that is to be amplified, b) specified oligonucleotide primers, c) an enzyme capable of amplifying said nucleic acids in a defined manner, for example a polymerase, d) the necessary nucleotides required for the nucleic acid synthesis and e) a suitable buffer. The template nucleic acid contains at least one target nucleic acid, which is amplified in the reaction. One primer molecule of the at least one primer pair in the reaction mixture is capable of binding to the 3' end of one specified target nucleic acid. The first primer binds to the

3' end of the target sequence, this primer is elongated and a complementary sequence to the target sequence is made. The polymerase stops to elongate unspecifically. The next cycle starts by thermally denaturing the now double stranded template nucleic acid into single stranded template nucleic acids. This is followed by the next phase of annealing when both primer molecules specifically bind to the target nucleic acid and its complementary strand. The second primer is identical to the 5' end of the target molecule. It doesn't bind to the target sequence itself but to said complementary nucleic acid to the target sequence, as soon as this is denatured from the template.

5

10

25

30

35

The process is finished by the actual amplification phase at a slightly lower reaction temperature, during which the enzyme, for example the polymerase elongates the primer as a complementary sequence to the target nucleic acid. The polymerase elongates this second primer by using the first copy as template until the end of said copied nucleic acid is reached. That way an identical copy to the original single stranded target nucleic acid is created. Hence, the length of the amplificate is determined by choosing the two primers.

The elongation products, being complementary to each other and hereby building a double stranded version of the target nucleic acid, serve as additional targets for the primer molecules binding in the next cycle of amplification.

Essentially step 3 of the method is comprised of amplifying at least one target sequence, within said treated nucleic acid, by means of enzymatic amplification and a set of primer molecules.

Said primer molecules used in said method are characterized in that they, in addition to fulfilling all the usual requirements towards a PCR primer as will be specified in more detail later, also fulfill the following requirements:

Firstly, the sequence of each primer molecule used in step 3 of this method reaches a predefined measure of complexity.

10

15

20

25

30

35

5

In a preferred embodiment of this method the primer molecules are reaching a certain value of linguistic complexity. A notion and a measure of linguistic complexity has been introduced by Trifonov in 1990 and has been used for analysis of nucleotide sequences before (Trifonov, EN (1990) Making sense of the human genome. In Structure &Methods. Vol 1 pp 69-77 (eds. Sarma, RH and Sarma MH, Adenine Press, Albany, US). The linguistic complexity technique allows a calculation to be made of the structural complexity of any linear sequence of characters irrespective of whether the text is cognized or presently undeciphered. The sequences are compared exclusively from the point of view of their structural complexity with no reference to the meaning of the texts. In 1997 Trifonov published how the linguistic complexity of nucleosomal sequences is defined (Bolshoy, A; Shapiro, K; Trifonov, E and Ioshikhes I. (1997) Enhancement of the nucleosomal pattern in sequences of lower complexity. NAR 25 (16): 3248-3254). Quote: "The linguistic complexity measure exploits the major distinguishing feature between natural nucleotide sequences and uniformly random ones: the repetitiveness of the natural sequences, i.e. the frequent repetition, not necessarily a tandem one, of some oligonucleotides ("words"), while others are avoided. (...) Complexity can be directly calculated as the extent to which the maximal possible vocabulary (all word sizes

considered) is utilized in a given strength of sequence
(...)."

23

PCT/EP2003/008602

WO 2004/015139

5

10

15

20

In another preferred embodiment of this method said measure of complexity is set by the so called Shannon entropy (Shannon, C E, (1948) A Mathematical Theory of Communication, University of Illinois Press, Urbana). This is the most common measure to assess the information content (in a technical, non-semantic meaning) of linear information carriers. It attributes the maximal value (which can be chosen to be 1 without restrictions) to sequences where all symbols (characters) occur at equal probability and a value of 0 to sequences consisting of just one repeated symbol (character, letter). A derived and more general measure is the higher order Shannon entropy which attributes maximal value to sequences where all its subsequences occur at equal probability and a value of 0 or close to 0 to sequences consisting of periodic repetitions of short subsequences. The practical determination of the (higher order) Shannon entropy however is limited by the finite lengths of sequences which often does not permit a precise estimation of the probability distribution of their constitutive symbols.

Further possible measures are for example the Lempel-Ziv complexity (Lempel, LB and Ziv, J (1976) On the complexity of finite sequences. IEEE Trans. Inf. Theory IT-22, 75-81), the grammar complexity (Ebeling, W; Jimenez-Montano, MA (1980) On Grammars, Complexity and Information Measures of Biologoical Macromolecules. Mathematical Bioscience 52, 53-71), the algorithmic complexity (Chaitin, 1990) and the conditial entropy.

Secondly, said primer molecules are also characterized in that every possible combination of any two primer molecules, in the set, has a melting temperature below a

24

PCT/EP2003/008602

WO 2004/015139

5

10

15

20

25

30

35

specified threshold temperature. That way the accumulation of dimers caused by the binding of two primer molecules to each other in said reaction mixture is excluded. The number of primer pairs used in that step can be any between one and n, leading to one or n amplificates respectively (n being a natural number).

As mentioned in the text the word "dimer" refers to a secondary structure formed by the hybridization of two primer molecules to each other.

As referred to in the text 'melting temperature' refers to the temperature at which 50% of the nucleic acid molecules are in duplex and 50% are denatured under standard reaction solution conditions.

Some primer design tools disqualify a primer if, besides the target sequence, a second identical sequence can be found in the template. However, due to the higher probability of a bisulfite primer to mismatch with nonidentical bisulfite treated DNA, it is an embodiment of this invention that only those primers are allowed to be used in said amplification method, for which no sequence homology can be found, to the extent that even those sequences that are different and/or mismatching in several nucleotides are excluded. However, this would exclude primer molecules unnecessarily. Therefore they are only excluded if two primer molecules match to the template in a distance allowing for the amplification of an unwanted product. This test is performed by means as, for example, the Electronic PCR. Electronic PCR (e-PCR) is an in silico virtual PCR carried out in order to assess the suitability of primer molecules prior to in vitro PCR. In the scope of this invention this testing will be called 'virtual testing' and it will be referred to as "virtually tested" or "virtually testing".

5

10

15

20

Thirdly, the primers used in step 3 of this invention are characterized, in that every possible combination of two primer molecules, in said reaction mixture, does not lead to the amplification of an additional unwanted product, when virtually testing for amplification using the treated and the untreated nucleic acid sample as template, even under conditions allowing for at least one base but not more than 20% of the total number of bases per sequence mismatching per primer. In the scope of this invention it is to be understood that those primer molecules are considered to bind to the template for which a template sequence exists that is in at least 80% of its nucleotide sequence identical to the target sequence the primer originally has been designed for. For example, a primer molecule of 50 nucleotides length is considered to still hybridize to a template sequence that differs in less than 11 nucleotides (= is identical in at least 80% of its nucleotide sequence) from the according target sequence. If a match is considered to be possible it has to be tested whether this match would lead to the amplification of an unwanted product. This can be done with the use of a program similar to e-PCR (see below).

Especially preferred is an embodiment of said method wherein the ability of said primer molecules to amplify an unwanted product is tested by means of in silico PCR, taking as template nucleic acid the coding strand of the treated sample, the non-coding strand of the treated sample and both of the strands of the untreated sample. It is especially preferred to perform the virtual testing with a tool like electronic PCR on the pretreated, preferably bisulfite treated, template sequence consisting of the treated sense and the treated anti-sense strand, and on the unconverted template.

Furthermore it is preferred that this treatment is bisulfite treatment and hence the nucleic acid template is the bisulfite converted coding strand of the human genome, the bisulfite converted non-coding strand of the human genome and both of the strands of the untreated human genome. Preferred is an embodiment of said method wherein the ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR, hereby taking as template nucleic acid the bisulfite converted coding strand of the human genome, the bisulfite converted non-coding strand of the human genome and both of the strands of the untreated human genome.

5

10

30

35

It is preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 20% of the number of nucleotides of the primer.

It is also preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 10% of the number of nucleotides of the primer.

It is especially preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 5% of the number of nucleotides of the primer.

It is a preferred embodiment of this invention that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than seven.

It is especially preferred that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than five.

5

It is another preferred embodiment of this invention that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than three.

10

It is especially preferred in the scope of this invention that the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is one.

15

20

25

30

It is also included in the scope of this invention to consider such primer molecules as being sufficiently similar to facilitate their binding to the template sequence, for which a template sequence can be found that differs in the number of nucleotides but is otherwise identical to the target sequence. When the alignment of the primer and the template sequence leads to a gap of up to 20% of the nucleotides of one sequence, preferably of the primer sequence, this shall still be considered to be sufficient for binding and hence potentially leading to the amplification of an unwanted product. Therefore these primers also need to be tested with the means of virtual PCR (for example with a program like e-PCR). Only if this test reveals the virtual amplification of an unwanted product caused by the combination of two primers, the according primer pairs are excluded from the set of selected pairs.

It is preferred that the number of nucleotides creating
one gap, in one of the sequences, when aligning the primer molecule sequence with the template sequence, allowed

for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 20% of the number of nucleotides of the primer molecule.

5

10

15

20

25

30

35

It is also preferred that the number of nucleotides creating one gap, in one of the sequences, when aligning the primer molecule sequence with the template sequence, allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 10% of the number of nucleotides of the primer molecule.

It is preferred that the number of nucleotides creating one gap, in one of the sequences, when aligning the primer molecule sequence with the template sequence, allowed for when virtually testing the amplification of unwanted products according to step 3 c) of the invention is less than 5% of the number of nucleotides of the primer molecule.

Both of these situations, mismatching due to an alternative nucleotide or no-matching due to a missing nucleotide, are meant to be covered in the expression describing those primer molecules that will eventually be selected: "said primer molecules are characterized in that every combination of two primer molecules, under conditions allowing for one or more base mismatches per primer, does not lead to the amplification of an unwanted product when virtually tested using the treated and the untreated sample nucleic acids as template".

It is also preferred that the primer molecules that exceed a pre-specified melting temperature when binding to the template have to be virtually tested for amplification of unwanted products using the treated and the untrea-

ted sample nucleic acids as template according to step 3

29

PCT/EP2003/008602

WO 2004/015139

5

10

15

20

30

35

c) of the method.

The basic problem of finding a primer specific enough to give only one product on the little complex bisulfite DNA, is finally solved by testing each potential primer pair for hybridization across the whole bisulfite converted human genome. This requires translating the whole human genome sequence information virtually into its bisulfite treated version before performing a similarity search against the primer pairs, which is based on a method like the so called e-PCR (Schuler G.D. (1997) Sequence Mapping by electronic PCR. Genome Research 7(5): 541-550). However, as the bisulfite conversion results in two no longer complementary strands this virtual hybridization test needs to be done against both bisulfite converted strands. In addition in most cases the template DNA is contaminated with unconverted genomic DNA. To also exclude unwanted amplification on the unconverted DNA as template, the same hybridization test has to be performed a third time using the whole human genome sequence as a template.

Therefore it is a preferred embodiment of this invention that the ability of said primer molecules to amplify an 25 unwanted product is tested by means such as electronic PCR.

In the last step of the method said amplified target nucleic acid gets detected by any means standard to one skilled in the art.

In a preferred embodiment of this method the set of primer molecules is comprised of at least two primer molecules but not more than 64 primer molecules, given the number is a multiple of 2; in other words, the set is comprised of 1-32 primer pairs.

In another preferred embodiment of this method the set of primer molecules is comprised of between 2 and 32 primer molecules, given the number is a multiple of 2; in other words the set is comprised of 1-16 primer pairs.

5

20

In a preferred embodiment of this method, said primer

molecule comprises at least one nucleotide within the
last three nucleotides from the 3' end of the molecule,
wherein said nucleotide is complementary to a nucleotide
of the target sequence that, as a result of the treatment
performed in step 2) of the invention, changed its
hybridization behavior.

It is a preferred embodiment of this method, that said primer molecule comprises at least one nucleotide within the last three nucleotides from its 3' end that is complementary to a nucleotide of the target sequence that was converted by the treatment performed in step 2 of the method to another base exhibiting an alternative base pairing behavior.

- In an especially preferred embodiment said nucleotide is a cytosine prior to the treatment that converts unmethy-lated cytosines. In a preferred embodiment said treatment is bisulfite treatment. Said primer molecule comprises at least one nucleotide within the last three nucleotides from the 3' end of the molecule, wherein said nucleotide is complementary to a cytosine, that was converted by bisulfite treatment to another base exhibiting the base pairing behavior of thymine.
 - 35 This is to exclude binding of said primer molecules to the remaining untreated or un-sufficiently treated nu-

cleic acids, which might still serve as template nucleic acid in the PCR.

Furthermore it is a preferred embodiment of this invention that said primer molecules do not form loops or hairpins on their own or with each other.

In another preferred embodiment of the method said primer molecules do not form dimers with each other.

10

15

20

5

In the text the word 'hairpin' is taken to mean a secondary structure formed by a primer molecule when the 3' terminal region of said nucleic acid hybridizes to the 5' terminal region of said nucleic acid forming a double stranded stem structure and wherein only the central region of the primer is single stranded.

As described in the text the word 'loop' refers to a secondary structure formed by a primer molecule when two or more nucleotides of said molecule hybridize thereby forming a secondary structure comprising a double stranded structure one or more base pairs in length and further comprising a single stranded region between said double stranded region.

25

30

35

The binding of a primer molecules 3' end to any part of a second primer molecule in the set needs to be avoided. Otherwise the polymerase would extend the first primer using the second primer as template, which would lead to a new unwanted product, an extended primer, or rather a primer-hybrid, which would serve as the preferred template for the next round of the polymerase chain reaction and thereby prevent a sufficient amplification of the wanted product.

Therefore it is another preferred embodiment of this method that each of said primer molecules is characterized in that the last at least 5 bases at the 3' end of said primer molecule are not complementary to the sequence of any other primer molecule in the set.

5

10

15

20

30

35

It is also preferred that said primer molecules do not bind to nucleic acids which prior to treatment of step 2 contained a 5'-CG-3' site. This would lead to a binding of the primers to bisulfite treated nucleic acids, specifically depending on their cytosines methylation status. A CG corresponding primer would bind to the treated methylated version only, whereas a primer corresponding to TG would bind to the treated unmethylated version of these nucleic acids only. It is therefore preferred that said primer molecules do not contain nucleic acid sequences complementary or identical to nucleic acid sequences which prior to treatment of step 2 contained a 5'-CG-3' site.

In a preferred embodiment of this method said primer molecules are of a specified size range.

It is especially preferred that these primers are comprised of 16-50 nucleotides.

In a preferred embodiment of this method said primer molecules do not comprise sequences that are complementary to regions of the target nucleic acids that contained specified restriction enzyme recognition sites prior to the treatment that altered the unmethylated cytosines base pairing behavior. It is preferred that said primers are complementary to target sequences which prior to the treatment performed in step 2 of the invention did not contain specified restriction enzyme recognition sites.

5

10

15

20

25

30

By selecting for the right primer molecules also the amplificates sequence is determined. That is why it has to be taken into account to only use those primer molecules that lead to amplification of nucleic acids containing a reasonable high number of CpG sites to be analyzed. Due to the treatment of step 2 of this invention these CpG sites, depending on the methylation status of the cytosine, are converted and will therefore either appear as CG dinucleotides or as TG dinucleotides in the amplificate.

It is preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than eight 5'-CG-3' sites also referred to as CG dinucleotides.

It is also preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than six 5'-CG-3' sites also referred to as CG dinucleotides.

It is also preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than four 5'-CG-3' sites also referred to as CG dinucleotides and finally it is especially preferred that said primer molecules amplify regions of nucleic acids that prior to bisulfite treatment comprise of more than two 5'-CG-3' sites also referred to as CG dinucleotides.

Said primer molecules lead to amplificates within a specified size range.

It is a preferred embodiment of this sequence that said primer molecules lead to amplificates which are comprised of at least 50 bp but not more than 2000 bp.

5 Especially preferred are primer molecules that lead to amplificates which are comprised of at least 80 bp but not more than 1000 bp.

Furthermore a method is preferred wherein said primer

molecules lead to amplificates of treated nucleic acids
which prior to the treatment which altered the unmethylated cytosines base pairing behavior did not contain restriction enzyme recognition sites. Said primer molecules
lead to amplificates that are amplified regions of the

treated nucleic acids which prior to the treatment performed in step 2) of the method did not contain specified
restriction enzyme recognition sites.

20

25

30

35

A further subject of this invention is a method on how to produce said primer molecules. The main step of producing a primer molecule is determining its sequence. In the following the phrase "primer design" will be used instead of primer production, whenever it is referred to the step of determining said specific primer sequences. Designing primer molecules is a process which as such is well known to scientists skilled in the art. The programs usually used for this purpose are such as PRIMER3 or OSP (Rozen S and Skaletsky H (2000) PRIMER3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365-386; Hillier L and Green P (1991) OSP: A computer program for choosing PCR and DNA sequencing primers. PCR Methods and Applications 1: 124-128). Other primer design systems (like described in EP-A 1136932) are often based on those commonly known programs.

An embodiment of this invention takes advantage of using a program like PRIMER3 first, to then add a number of steps that finally result in an advanced method of designing primers that are specifically useful for amplify-

35

PCT/EP2003/008602

5 ing sequences of low complexity.

WO 2004/015139

10

15

20

25

30

35

In the first step of this method for designing specific primer molecules for nucleic acids of low complexity, primer pairs that amplify single products are selected by applying standard tools of primer design known in the art, like for example the program PRIMER3 (Rozen, S and Skaletsky, H (2000) Methods Mol Biol 132: 365-386).

In the second step of the method said primer pairs are tested whether or not one of its primer molecules when hybridizing to any other primer molecule in the set exceeds a specified threshold melting temperature TM. If this is the case the primer pair that comprises of said primer is excluded from the set of potentially combined pairs.

In the third step of the method the number of previously selected primer pairs, is reduced to a smaller number by implementing as new criteria a measure for the primer sequence's complexity. Primer pairs that consist of a primer molecule which does not meet said criteria are excluded.

The basic problem of finding a primer specific enough to give only one product on the little complex bisulfite DNA, is finally solved by testing each potential primer pair for hybridization across the whole bisulfite converted human genome. This requires translating the whole human genome sequence information virtually (as in "in silico") into its treated, for example bisulfite treated, version before performing a similarity search against the

primer pairs, which is based on a method like the so called e-PCR (Schuler G.D. (1997) Sequence Mapping by electronic PCR. Genome Research 7(5): 541-550). However, as the bisulfite conversion results in two different versions of the double helix whose sense and anti-sense strands are no longer mutually complementary, this in silico amplification needs to be performed on both bisul-

36

PCT/EP2003/008602

fite converted versions of the genome. In addition in most cases the template DNA is contaminated with unconverted genomic DNA. It cannot be excluded that single cytosines or longer runs of DNA remain unconverted or are only converted incompletely by the bisulfite treatment. To also exclude unwanted amplification of the unconverted DNA as template, the same hybridization test has to be performed a third time using the whole human genome se-

As this is quite some effort and requires time (CPU time) this is the fourth and last step of this design method, that is absolved prior to the final testing in a "wet",

lab based, experiment.

quence as a template.

WO 2004/015139

5

10

15

20

25

30

35

In addition to improve the specificity of said primer molecules the stringency of the selection criteria is increased: Some standard primer design tools disqualify a primer if in the template sequence, a second identical sequence, besides the target sequence, can be found. That way mispriming at rather stringent hybridization conditions is avoided. This mispriming would not necessarily lead to an additional unwanted product, but would lead to the dilution of the primer molecules available for amplification. This selection has been performed in step one already (for example by PRIMER3). However, due to the higher probability of a bisulfite primer molecule to mismatch with non-identical bisulfite treated DNA, there is still a chance for said primer molecules to misprime even

when up to 20% of the nucleotides of the primer sequence differ. Therefore it is claimed in this invention to only use primer molecules for which not even a weak sequence homology can be found. However, this would exclude primer molecules unnecessarily. Therefore they are only excluded if two primer molecules match to the template and amplify an unwanted product. This test is performed by means as, for example, the Electronic PCR. Electronic PCR (e-PCR) is an in silico virtual PCR carried out in order to asses the suitability of primers prior to in vitro PCR.

PCT/EP2003/008602

WO 2004/015139

In the fourth step of the method on how to design these primers it is therefore tested whether there are any regions of the template nucleic acid, said template being comprised of the sense and the anti-sense strand of the treated and the untreated nucleic acids, that are identical in sequence with the primer molecule to more than 80% and if those primer molecules are able to amplify an unwanted product. If this is the case, the primer pair comprising said primer molecule is excluded from the selection.

The template nucleic acid is comprised of the treated template nucleic acid and the untreated template nucleic acid. The treated nucleic acid in itself is comprised of a two strands which after treatment are not complementary to each other anymore. This virtual testing for example can be performed as described by Gregory Schuler in his article (cited above) about sequence mapping by "Electronic PCR". The primer pairs remaining can be used to specifically amplify regions of nucleic acids of low complexity, which is the aim of this invention. Hence step 4 of the design method is the virtual testing of each possible primer pair combination, under pre-specified conditions at a stringency allowing for one or more base pair mismatches, as to whether no unwanted nucleic acids are

amplified. Said virtual testing is carried out upon both untreated and treated nucleic acids. The wording "possible combinations" refers to all combinations that are possible within a set of primer pairs to be used in one amplification reaction vessel.

38

PCT/EP2003/008602

WO 2004/015139

5

10

30

In a preferred embodiment an additional step is added following the virtual testing, which is testing in a lab based single PCR assay all those pairs that remained, whether the desired amplificate can be obtained or not. If that is the case, the chosen pairs can be used to specifically amplify those regions of nucleic acids of low complexity according to the method as described before.

In a specially preferred embodiment the first step of the design method is characterized as selecting a pool of possible primer pairs per amplificate by means of a standard PCR primer design program using said nucleic acids as template that have been masked for repeats and SNPs considering the following factors:

length of amplificate, length of primer, melting temperature of the primer molecule, dimer formation parameters, loop formation parameters, exclusion of unidentified or ambiguous nucleotides in the primer sequence, exclusion of restriction enzyme recognition sites.

In a preferred embodiment of this invention this measure of complexity is a measure of linguistic complexity as defined by Bolshoy et al. (see above). Those primer pairs are excluded from the previously selected ones, which comprise of one primer that doesn't reach a set level of this linguistic complexity.

In another preferred embodiment of this invention this
measure of complexity is a measure of Shannon entropy (as
described before).

In an especially preferred embodiment of this design method, prior to performing step d) the additional step

of excluding primer pairs from the remaining primer pairs

39

PCT/EP2003/008602

WO 2004/015139

5

10

15

20

35

which consist of a primer molecule that comprises of at least one CpG site, is carried out.

In an especially preferred embodiment of this method according to the design of said primers, prior to performing step d) the additional step of excluding primer pairs from the remaining pairs when one of its primer molecules does not contain at least one nucleotide within the last three nucleotides from the 3' end of the molecule wherein said nucleotide is complementary to a nucleotide of the target sequence that was converted to a different nucleotide by bisulfite treatment, is carried out.

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step, of excluding primer pairs from the remaining primer pairs which amplify a nucleic acid that did not prior to treatment with bisulfite contain a minimum of two CpG sites, is carried out.

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding primer pairs from the remaining primer pairs when one of its primer molecules contains more than 5 bases at its 3' end that are complementary to any other primer molecules sequence in the set, is carried out.

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one

primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of the amplification method under conditions allowing for a number of mismatching nucleotides of 20% of the number of nucleotides of the primer molecule, is carried out.

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of the amplification method under conditions allowing for a number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, of up to 20% of the number of nucleotides of the primer molecule, is carried out.

20

25

15

5

10

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of the amplification method under conditions allowing for four or less mismatching base pairs, is carried out.

30

35

In an especially preferred embodiment of this method according to the production of said primers, prior to performing step d) the additional step of excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when

virtually testing according to step 3 c) of the amplification method under conditions allowing for two or less mismatching base pairs, is carried out.

5 The following example is intended to illustrate the invention:

Example

- Here we present experimental data that shows that multiplex PCRs designed with a tool according to this invention are more successful compared to multiplex PCRs not designed in this manner.
- 15 It is the aim of the experiment to amplify 40 different nucleic acids. The genomic regions of interest are given in the sequence protocol (SEQ ID 41-80). These genomic sequences were translated into their bisulfite converted versions and served as templates for amplification of specific regions with the primer sequences described as follows.

25

30

- Primer molecule pairs used for single PCRs were originally designed with the use of the standard primer design program PRIMER3 (as mentioned in the description). The criteria used in that step will not be discussed in detail. This selection however provides several possible primer pairs per amplificate. Following the present invention these primer pairs were selected further, according to the following criteria:
 - The restriction enzyme recognition site to be excluded from the genomic nucleic acid (which subsequent to bisulfite conversion becomes the template for the PCR amplification step) is: GTTTAAAC.

- The minimum length of the primer molecule is 18 nucleotides. The maximum length is 27 nucleotides. Ideally the primer consists of 22 nucleotides.
- The minimum required measure of linguistic complexity is 0.2.
 - The minimum melting temperature of a primer molecule is 54°C and the maximum melting temperature is 57°C.

 The ideal melting temperature however is 55°C.
 - The minimum length of an amplificate is 100 bp and the maximum length is 500 bp.
- The minimum number of CpG sites, that were present in the region of the nucleic acid, prior to bisulfite treatment, that was amplified is 4.
- The number of mismatch bases allowed for when virtu-20 ally testing the primer pairs according to the invention for amplification of an unwanted product with the help of e-PCR (Electronic PCR) is 2.
- The use of this invention, that is the use of either the design method, being the subject of the invention, and/or performing the steps of said method as described above (assuming a set size of 1) leads to the selection of the following 40 optimized primer molecule pairs:

30 TABLE 1:

			number	starting position of
			indicating	primer in the bisul-
	amplificate	SEQ	primer	fite converted se-
primer sequence	identifier	ID	direction	quence of the ROI
AATCCTCCAAATTCTAAAAACA	2025	81	0	1816
AGGAAAGGGAGTGAGAAAAT	2025	82	1	2138

primer sequence	amplificate identifier	SEQ ID	number indicating primer direction	starting position of primer in the bisul- fite converted se- quence of the ROI
GGATAGGAGTTGGGATTAAGAT	2044	83	0	2070
AAATCTTTTCAACACCAAAAT	2044	84	1	2483
AACCCTTTCTTCAAATTACAAA	2045	85	0	1340
TGATTGGGTTTTAGGGAAATA	2045	86	1	1687
TTGAAAATAAGAAAGGTTGAGG	2106	87	.0	1481
СТТСТАССССАААТСССТА	2106	88	1	1764
TGTTTGGGATTGGGTAGG	2166	89	0	2226
CATAACCTTTACCTATCTCCTCA	2166	90	1	2437
TTTTAGATTGAGGTTTTAGGGT	2188	91	0	101
ATCCATTCTACCTCCTTTTTCT	2188	92	. 1	598
GGAGGGAGAGGGTTATG	2191	93	0	133
TACTATACACACCCCAAAACAA	2191	94	1	506
TTTTGGGAATGGGTTGTAT	2194	95	0	1628
CTACCCTTAACCTCCATCCTA	2194	96	1	1996
TTGTTGGGAGTTTTTAAGTTTT	2212	97	0	1711
CAAATTCTCCTTCCAAATAAAT	. 2212	98	1	2063
GTAATTTGAAGAAAGTTGAGGG	2267	99	0	1709
CCAACAACTAAACAAAACCTCT	2267	100	1	2004
GGAGTTGTATTGTTGGGAGA	2317	101	0	1110
TAAAACCCCAATTTTCACTAA	2317	102	1	1388
TTTGTATTAGGTTGGAAGTGGT	2383	103	0	1
CCCAAATAAATCAACAACAACA	2383	104	1	285
GATTTTTGGAGAGGAAGTTAAG	2387	105	0	789
AAAACTAAAAACCAAACCCATA	2387	106	1	1169
TGGGGTTAGTTTAGGATAGG	2391	107	0	1353
CTTAAAAACACTAAAACTTCTCAAA	2391	108	1	1750
TTTTTGTATTGGGGTAGGTTT	2395	109	0	547
CCCAACTATCTCTCTCTCTATAA	2395	110	1	1094
ATTAGAAGTGAAAGTAATGGAATTT	2401	111	0	381
TCAATTTCCAAAAACCAAC	2401	112	1	795

			number	starting position of
			indicating	primer in the bisul-
	amplificate	SEQ	primer	fite converted se-
primer sequence	identifier	ID	direction	quence of the ROI
GGGATGGGTTATTAGTTGTAAA	2453	113	0	1867
CCTTCACACAAAACTACAAAAA	2453	114	1	2139
TAATTGAAGGGGTTAATAGTGG	2484	115	0	1861
AAAACCAAAACCAAAACTAAAA	2484	116	1	2252
AGTGGATTTGGAGTTTAGATGT	2512	117	0	1016
AACAAAATAAAAACTTCTCCCA	2512	118	1	1446
TAGGGGAAAAGTTAGAGTTGAG	2741	119	0	1413
CCCATTAACCCACAAAAA	2741	120	1	1888
ATTTTAGTTTGTGAAATGGGAT	2745	121	0	1685
TCTTAACCAATAACCCCTCAC	2745	122	1	2097
GTGGGTTTTGGGTAGTTATAGA	2746	123	0	1679
TAACCTCCTCTCCTTACCAA	2746	124	1	2163
TAGGATGGGGAGAGTAATGTTT	2747	125	0	972
ACAACTTATCCAACTTCCATTC	2747	126	1	1448
TCCCACAAAAACTAAACAATTA	2749	127	0	1370
AGGTTTTAGATGAAGGGGTTT	2749	128	1	1789
TTTGGAGGGTTTAGTAGAAGTTA	2751	129	. 0	88
CCCAATAATCACAAAATAAACA	2751	130	1	567
ATACAACCTCAAATCCTATCCA	2752	131	0	228
AGGGAGAAGGAAGTTATTTGTT	2752	132	1	712
GGAAGATGAGGAAGTTGATTAG	2755	133	0	1000
CCTACAACCCTATCCTCTAAAA	2755	134	1	1371
TTAGTAGGGGTGTGAGTGTTTT	2831	135	0	1313
CAAACAAAACTTCTATCTCAACC	2831	136	1	1499
TTATAGGGTTGAGTTTGGGAT	2850	137	0	2100
TAAACAAACAACAAATCTTCCA	2850	138	1.	2400
TGAAAATGAAGGTATGGAGTTT	2852	139	0	1262
TTAAAACCATATAATCCCTCCA	2852	140	1	1583
TATGTTTGGTTTTGTTTTGAGA	2859	141	0	1093
AACCCCATCACTTTTATTTCTT	2859	142	1	1491

			number	starting position of
			indicating	primer in the bisul-
	amplificate	SEQ	primer	fite converted se-
primer sequence	identifier	ID	direction	quence of the ROI
GGGTGTAGAAGTGTTTAGGTTT	2861	143	0	2385
TTTCTCCCCTTACAACAATAAC	2861	144	1	2732
TCCCCTTCCAACTATATCTCTC	2864	145	0	884
TGAGAGTGTTTTAGGGAAGTTT	2864	146	1	1175
AAAACCAAAACATAAACCAAAA	2867	147	0	1312
GATTAGGAGGGTTTGTTGAGAT	2867	148	1	1701
AATGGTTGATGATTTTGGTTT	2961	149	0	2039
ACTCTCTCCCTATACCCCTAA	2961	150	1	2311
AGTTAGAAGAGGAGTTAGGATGG	3511	151	0	1340
TAATTTTCCAATACCCATTTTC	3511	152	1	1711
TGTTAGTAGAGTTTTAGGGAGGTT	3532	153	0	1135
ACACTACCTATCCTTACCCCAC	3532	154	1	1592
TTTTTGTTTTTATGGGGTGTAT	3534	155	0	1909
TTAAATATCCCTTCCTTAACCA	3534	156	1	2385
TGGGTAGTATTTTTGTTGGTTT	3538	157	0	956
CCTAAAAACTCTCTCATCCTCA	3538	158	1	1414
AGTGGTTTAGGAGTATTTGGTTA	3540	159	0	659
AACTCCCTCCATCTACAATATC	3540	160	1	1064

These primer pairs lead to the amplification of specific regions (amplificates Seq IDs 1- 40) of the bisulfite converted sequences of the genomic ROIs (Seq IDs 41- 80) of interest. The ROIs can be identified by the four digit number that specifies the ROI and the corresponding amplificate - as indicated in the following table.

10 TABLE 2:

SEQ ID	Class	Identifier	Kind of DNA	SEQ ID	Class	ldentifier	Kind of DNA
		i	bisulfite se-	·			genomic se-
1	amplificate	2025	quence	41	ROI	2025	quence

SEQ ID	Class	Identifier	Kind of DNA	_	SEQ ID	Class	Identifier	Kind of DNA
			bisulfite se-					genomic se-
2	amplificate	2044	quence		42	ROI	2044	quence
			bisulfite se-					genomic se-
3	amplificate	2045	quence		43	ROI	2045	quence
			bisulfite se-					genomic se-
4	amplificate	2106	quence		44	ROI	2106	quence
			bisulfite se-					genomic se-
5	amplificate	2166	quence		45	ROI	2166	quence
			bisulfite se-					genomic se-
6	amplificate	2188	quence		46	ROI	2188	quence
			bisulfite se-		· ·			genomic se-
7	amplificate	2191	quence		47	ROI	2191	quence
			bisulfite se-					genomic se-
88	amplificate	2194	quence		48	ROI	2194	quence
			bisulfite se-					genomic se-
9	amplificate	2212	quence		49	ROI	2212	quence
,			bisulfite se-					genomic se-
10	amplificate	2267	quence	L	50	ROI	2267	quence
			bisulfite se-					genomic se-
11	amplificate	2317	quence		51	ROI	2317	quence
			bisulfite se-				:	genomic se-
12	amplificate	2383	quence	_	52	ROI	2383	quence
			bisulfite se-					genomic se-
13	amplificate	2387	quence	_	53	ROI	2387	quence
			bisulfite se-					genomic se-
14	amplificate	2391	quence	L	54	ROI	2391	quence
			bisulfite se-					genomic se-
15	amplificate	2395	quence	ļ.,	55	ROI	2395	quence
			bisulfite se-					genomic se-
16	amplificate	2401	quence	L	56	ROI	2401	quence
			bisulfite se-					genomic se-
17	amplificate	2453	quence	L	57	ROI	2453	quence

SEQ ID	Class	Identifier	Kind of DNA		SEQ ID	Class	Identifier	Kind of DNA
			bisulfite se-		,			genomic se-
18	amplificate	2484	quence	1	58	ROI_	2484	quence
			bisulfite se-					genomic se-
19	amplificate	2512	quence	\downarrow	59	ROI	2512	quence
			bisulfite se-					genomic se-
20	amplificate	2741	quence	1	60	ROI	2741	quence
			bisulfite se-					genomic se-
21	amplificate	2745	quence	1	61	ROI	2745	quence
u.		<u> </u>	bisulfite se-		,			genomic se-
22	amplificate	2746	quence	\perp	62	ROI	2746	quence
			bisulfite se-					genomic se-
23	amplificate	2747	quence		63	ROI	2747	quence
			bisulfite se-					genomic se-
24	amplificate	2749	quence		64	ROI	2749	quence
			bisulfite se-					genomic se-
25	amplificate	2751	quence		65	ROI	2751	quence
			bisulfite se-					genomic se-
26	amplificate	2752	quence	Ш	66	ROI	2752	quence
			bisulfite se-					genomic se-
27	amplificate	2755	quence		67	ROI	2755	quence
			bisulfite se-				·	genomic se-
28	amplificate	2831	quence	Ц	68	ROI	2831	quence
			bisulfite se-					genomic se-
29	amplificate	2850	quence		69	ROI	2850	quence
			bisulfite se-					genomic se-
30	amplificate	2852	quence	Ľ	70	ROI	2852	quence
			bisulfite se-					genomic se-
31	amplificate	2859	quence		71	ROI	2859	quence
			bisulfite se-					genomic se-
32	amplificate	2861	quence	L	72	ROI	2861	quence
			bisulfite se-					genomic se-
33	amplificate	2864	quence	L	73	ROI	2864	quence

SEQ ID	Class	Identifier	Kind of DNA	_	SEQ ID	Class	Identifier	Kind of DNA
			bisulfite se-					genomic se-
34	amplificate	2867	quence		74	ROI	2867	quence
			bisulfite se-				-	genomic se-
35	amplificate	2961	quence		75	ROI	2961	quence
			bisulfite se-					genomic se-
36	amplificate	3511	quence		76	ROI	3511	quence
		<u> </u>	bisulfite se-					genomic se-
37	amplificate	3532	quence	_	77	ROI	3532	quence
			bisulfite se-					genomic se-
38	amplificate	3534	quence		78	ROI	3534	quence
		<u> </u>	bisulfite se-					genomic se-
39	amplificate	3538	quence		79	ROI	3538	quence
			bisulfite se-					genomic se-
40	amplificate	3540	quence		80	ROI	3540	quence

The second task in this example is to select from these 40 primer pairs those pairs which can be combined in five multiplex PCRs to amplify eight targets simultaneously.

The following steps, as disclosed in the invention, are performed for selection of those subsets:

10

5

• The melting temperature of any combination of two of those primer molecules hybridizing to each other taking part in one multiplex experiment must be below 20°C.

15

• The last seven nucleotides from the 3' end of every primer molecule in a subset is used to check if those are complementary and/or binding to any other primer molecules' sequence used in the set.

- The number of mismatch bases allowed for when virtually testing the primer pairs for amplification of an unwanted product is 2. For this step every possible combination of 16 primer molecules in one subset is checked for its ability to amplify an unwanted product. This is done by means of e-PCR (electronic PCR).
- Having performed all these steps results in the selection of three different optimized sets of primer molecule pairs that can be used in multiplex PCRs. These sets are in the following described as a set of numbers. Each number refers to a specific amplificate and therefore also to a single primer pair (out of the list given above) which proved to be able to specifically amplify said nucleic acid in a single PCR experiment.

TABLE 3:

TABLE 3:		<u> </u>						
optimized se	t 1							
8plex1	2194	2191	2391	2025	2961	3540	2861	2188
8plex2	2484	2106	2401	2850	3532	2044	2512	2852
8plex3	2453	2741	2867	2755	2267	2387	2864	2317
8plex4	2859	2383	2752	2747	2751	3511	2212	2746
8plex5	3534	2395	2745	3538	2749	2166	2831	2045
optimized se	et 2							
8plex1	2166	2212	3511	2383	2745	2859	3534	2861
8plex2	2749	2191	2751	2395	2961	2512	2831	3538
8plex3	2850	2025	2188	2317	2391	2852	3540	2194
8plex4	2106	2387	2867	2864	2401	2747	2746	2453
8plex5	2044	2484	2267	2755	2752	2741	2045	3532
								İ
optimized s	et 3							
8plex1	2194	2391	2191	2749	2745	3538	2861	2961
8plex2	2166	2188	2859	2212	2864	2746	2383	2752
8plex3	2484	2401	2850	2852	2512	2755	2106	2044
8plex4	2867	2453	3532	2025	2741	2267	2317	2387
8plex5	3511	3534	2751	2747	2395	3540	2831	2045

Without the use of said invention, the selection would have been performed randomly and tested for successful application later. Three randomly chosen subsets are shown here.

TABLE 4:

TABLE 4:								
random set 1								
8plex1	2191	2194	2267	2741	3534	3511	2749	2747
8plex2	2391	2484	2867	2852	2453	2512	2025	3538
8plex3	2746	2212	2755	2045	2044	2188	2961	2864
8plex4	2831	2383	3540	2859	2861	2395	2401	2317
8plex5	2106	2751	2387	2745	2752	3532	2850	2166
random set 2								
8plex1	2045	2106	2212	2745	2044	2749	2752	2391
8plex2	2025	2831	2401	3540	2395	2484	2453	2961
8plex3	2194	2859	2746	2512	2267	2864	2861	2751
8plex4	2383	2166	2747	2387	3532	. 2741	2867	2852
8plex5	3534	2755	2850	2317	2191	3538	3511	2188
random set 3	3							
8plex1	2484	2850	2741	2747	2755	2745	2025	2746
8plex2	2383	3534	2861	2751	2749	2391	2188	2191
8plex3	2194	3538	2512	2961	2864	2867	2831	3532
8plex4	3511	2045	2387	2212	2166	2267	3540	. 2401
8plex5	2395	2317	2859	2453	2852	2106	2752	2044

The sequences of all of those amplificates and the according primers are given in the sequence protocol (primers SEQ IDs 81-160; amplificates SEQ IDs 1-40). SEQ IDs refer to the internal numbers used in these tables as is shown in TABLES 1 and 2.

To show if the use of the design method described herein was superior to the common method of selecting primers for simultaneous amplification randomly said multiplex PCRs were performed. This example hereby demonstrates the advantage of the method which is subject of the invention:

A total of 40 amplificates (with lengths ranging from 187 - 499 bp) were partitioned into five 8-plex PCRs using either of two strategies.

5 First: the grouping was based on the invention using said "optimised sets" ("designed group").

10

15

20

25

30

35

Second: the grouping was done without using the selection criteria established by this invention using the "random sets" ("control group").

Whether such grouping can improve the success rate of mPCRs was subsequently tested experimentally by comparing the number of true and false positives and false negatives for each of the two classes.

Each of the five mPCRs (multiplex PCRs) contained 8 primer pairs specific for 8 amplificates with one primer of each pair being labeled with a Cy-5 fluorescent tag. Only fragments that performed successfully in sPCR (singleplex PCR) using bisulfite-modified human DNA from whole blood were included in this study. Isomolar primer concentrations were used in a 20µl PCR reaction volume and cycling was done for 42 cycles using a 96-well microtiter plate thermocycler.

Group assignments for the "optimized" and "random" groups were done in triplicate and all mPCRs were run at the same time such as to minimize experimental variation in PCR performance.

A mixture of the amplificates that were expected to be generated in a specific mPCR reaction but were generated in eight corresponding sPCR reactions was called sPCR-pool. Electrophoresis of sPCR-pool amplificates and mPCR amplificates was done simultaneously using the ALFexpress

WO 2004/015139

system (Amersham Pharmacia). In order to obtain the best comparability for mPCRs with their respective sPCR standard, these products were electrophoresed next to each other on the gels.

5

Figures 1 and 2 show examples of these results as electropherograms, given as ALFexpress output files.

Success or failure scoring for each mPCR was based on assessing the number of generated or absent fragments compared to their respective pool of sPCR fragments. Only fragments with peak areas equal or larger than 8% of the largest peak within one electropherogram were included into the analysis.

15

20

25

30

35

10

Figure 1 illustrates a result of an 8-plex PCR based on a primer combination from the "optimized set". The top graph in the figure shows peaks of size standards only. The second graph in the figure shows the electrophoresed mixture of the products from 8 singleplex PCRs. The third graph shows the products resulting from a multiplex PCR employing one of the optimized sets of primer combinations. By comparing these graphs it becomes visible that, in this specific example, there is only one false negative (FN) and three false positives (FP), whereas there are eight true positives (TP).

Figure 2, however, illustrates a result of an 8-plex PCR based on a primer combination from the "control set". The top graph in the figure shows peaks of size standards only. The second graph in the figure shows the electrophoresed mixture of the products from 8 singleplex PCRs. The third graph shows the products resulting from a multiplex PCR employing one of the randomly chosen sets, as is the state of the art. This graph clearly shows that, there are eight false negative and six false positive

peaks, whereas there is only one true positive. Hence, for this specific example we have demonstrated the superiority of the design method.

5 A more comprehensive view on the results is given in **Fig- ures 3 and 4.**

By applying the Wilcoxon rank sum test for the determination of false positives or false negatives as follows, it becomes evident that the optimized set resulted in a more reliable amplification experiment:

data: False negatives (FN)
p-value = 0.02602 rejection of null hypothesis

null hypothesis (H0): true if median of designed set
equal or greater than of control set alternative hypothesis (H1): true if median of designed set less than of
control set

20 data: False positives (FP)
 p-value = 0.06711 rejection of null hypothesis
 null hypothesis (H0): true if median of designed set
 equal or less than of control set
 alternative hypothesis (H1): true if median of designed
25 set greater than of control set

data: True positives (TP)
p-value = 0.02146 rejection null hypothesis
null hypothesis (H0): true if median of designed set

gual or less than of control set
alternative hypothesis (H1): true if median of designed
set greater than of control set

Figure 3 illustrates a summary of several such comparisons (as described in detail above). Six diagrams are shown, that illustrate the numbers of false positives

10

15

20

(FP), false negatives (FN) and true positives (TP) for a number of 18 experiments. In the top row of figure 3 the results for experiments that employed the design method are shown whereas in the lower row results from experiments are shown, that did use the conventional method of random selection.

At the x-axis the occurrence of an event (like a false positive) per 8plex is given whereas the values of the y-axis indicate the frequency of an event like this occurring within the number of experiments performed.

For example, in the diagram title FN, a y-value of 0 indicates that the event did not occur in a single experiment, a y-value of four indicates that the according number of occurrences given as the x-value was found in four experiments (out of the 18 experiments considered for these analyses). The x-value indicates what kind of occurrence is counted; a x-value of three in this diagram indicates the occurrence of three false negatives. A data point with an x-value of 0 and an y-value of 9 means, that in the set of mPCR results considered, nine experiments showed 0 false negatives.

- Figure 4 gives all of the data from the 18 multiplex PCR experiments of this example in one table. The letter A, heading the four columns presented on the left side, is indicating the results from multiplex PCRs of the designed group using the five optimized sets of primer pairs that have been designed and selected according to the invention. The letter C is indicating the results from multiplex PCRs of the control group using the five randomized sets of primer pairs.
- 35 The first column lists the identifying numbers of the experiments, the second column gives the numbers of true

WO 2004/015139 PCT/EP2003/008602 56

positives (TP) within this experiment, the third column gives the numbers of false positives (FP) and the last column gives the numbers of false negatives (FN).

The average false negative rate (Ø FN) of the optimized group is significantly lower than in the control group. Complementary the average true positive rate (Ø TP) is significantly higher. The average false positive rates (Ø FP) of the two sets do not differ from each other significantly.

15

20

25

30

35

This is due to the high deviation of false positives observed between individual ALFexpress analysis runs. Those 36 sets of amplificates have been analyzed on two separate gel runs These runs were not designed to simply duplicate the results, but could be used to analyze whether the average TP, FP and FN rates are similar, independent of the run, and the sets chosen. Only three of those sets have been duplicated, as indicated by the letters a and b for sets 11, 21 and 23. It turned out that the rate of true positives as well as the rate of false negatives averaged over 18 sets per run were highly reproducible, 6.83 versus 7.33 and 1,44 versus 1.39 respectively. However, the rate of false positives was determined as 4.11 in the first run and 7.61 in the second run.

Taken together, it could be concluded that the overall success rate of amplifying 40 fragments within 5 groups of 8plex PCRs was significantly increased when the primer grouping was based on the method being subject of this invention compared to an arbitrary primer grouping. The improved success rate of only 11% failures versus 24% in the random control group clearly becomes relevant when much larger numbers of mPCRs have to be established as is the case in a high throughput laboratory.

15

20

Claims

- A method for the amplification of nucleic acids comprising the following steps
 - 1) isolating a nucleic acid sample,
- 2) treating said sample in a manner that differenti-10 ates between methylated and un-methylated cytosine bases within said sample,
 - 3) amplifying at least one target sequence, within said treated nucleic acid, by means of enzymatic amplification and a set of primer molecules, wherein said primer molecules are characterized in that
 - a) each primer molecule sequence reaches a predefined measure of complexity,
 - b) every combination of any two primer molecules in the set has a melting temperature below a specified threshold temperature,
- c) every combination of two primer molecules, under conditions allowing for one or more base mismatches per primer, does not lead to the amplification of an unwanted product when virtually tested using the treated and the untreated sample nucleic acids as template,

and

- 4) detecting said amplified target nucleic acid.
- 35 2. A method according to claim 1 wherein said primer molecules do not contain nucleic acid sequences com-

- plementary or identical to nucleic acid sequences of the target sequence which prior to treatment of step 2 contained a 5'-CG-3' site.
- 5 3. A method according to claims 1 and 2 wherein said set is comprised of at least one but not more than 32 primer pairs.
- 4. A method according to claims 1 and 2 wherein said set is comprised of at least one but not more than 16 primer pairs.
- A method according to claims 1 to 4 wherein the primer molecules are reaching a specified value of linguistic complexity.
 - 6. A method according to claims 1 to 4 wherein the primer molecules are reaching a specified value of Shannon entropy.
 - 7. A method according to claims 1 to 6 wherein the nucleic acid sample is isolated from a bodily fluid, a cell culture, a tissue sample or a combination thereof.

- 8. A method according to claims 1 to 7 wherein the nucleic acid sample is comprised of plasmid DNA, BACs, YACs or genomic DNA.
- 30 9. A method according to claims 1 to 7 wherein the nucleic acid sample is comprised of human genomic DNA
- 10. A method according to claims 1 to 9 wherein said sample is treated by means of a solution of a bisulfite,
 35 hydrogen sulfite or disulfite.

11. A method according to claims 1 to 10 wherein said primer molecule comprises of at least one nucleotide within the last three nucleotides from the 3' end of the molecule wherein said nucleotide is complementary to a nucleotide of the target sequence that was converted to a different nucleotide by the treatment performed in step 2) of claim 1.

5

20

- 12. A method according to claims 1 to10 wherein said

 primer molecule comprises of at least one nucleotide
 within the last three nucleotides from the 3' end of
 the molecule wherein said nucleotide is complementary
 to a nucleotide of the target sequence that was converted to a different nucleotide by bisulfite treatment.
 - 13. A method according to claims 1 to 12 wherein each of said primer molecules is characterized in that the last at least 5 bases at the 3' end of said primer molecule are not complementary to the sequence of any other primer molecule in the set.
 - 14. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 20% of the number of nucleotides of the primer molecule.
- ber of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, allowed for, when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 20% of the number of nucleotides of the primer molecule.

16. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 10% of the number of nucleotides of the primer molecule.

5

10

20

25

30

- 17. A method according to claims 1 to 13 wherein the number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, allowed for, when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 10% of the number of nucleotides of the primer molecule.
- 18. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 5% of the number of nucleotides of the primer molecule.

19. A method according to claims 1 to 13 wherein the number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, allowed for, when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than 5% of the number of nucleotides of the primer molecule.

- 20. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is less than seven.
- 21. A method according to claim 20 wherein the number of mismatches allowed for is less than five.

- 22. A method according to claim 20 wherein the number of mismatches allowed for is less than three.
- 23. A method according to claim 20 wherein the number of mismatches allowed for is one.

10

- 24. A method according to claims 1 to 13 wherein the number of mismatches allowed for when virtually testing the amplification of unwanted products according to step 3 c) of claim 1 is determined by a pre-specified maximum melting temperature.
- 25. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than eight 5'-CG-3' sites.
- 26. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than six 5'-CG-3' sites.
 - 27. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than four 5'-CG-3' sites.
- 28. A method according to claims 1 to 24 wherein said primer molecules are used to amplify nucleic acid sequences that prior to treatment of step 2 comprised of more than two 5'-CG-3' sites.
- 29. A method according to claims 1 to 28 wherein the ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR.

20

25

30

30. A method according to claims 1 to 28 wherein the ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR, taking as template nucleic acid the coding strand of the treated sample, the non-coding strand of the treated sample and both of the strands of the untreated sample.

PCT/EP2003/008602

- 31. A method according to claims 1 to 28 wherein the
 ability of said primer molecules to amplify an unwanted product is tested by means of electronic PCR,
 taking as template nucleic acid the coding strand of
 the bisulfite converted human genome, the non-coding
 strand of the bisulfite converted human genome and
 both of the strands of the untreated human genome.
 - 32. A method according to claims 1 to 31 wherein said primer molecules are used to amplify nucleic acids which are comprised of at least 50 bp but not more than 2000 bp.
 - 33. A method according to claims 1 to 31 wherein said primer molecules are used to amplify nucleic acids which are comprised of at least 80 bp but not more than 1000 bp.
 - 34. A method according to claims 1 to 33 wherein said primer molecules are comprised of 16 50 nucleotides.
 - 35. A method according to claims 1 to 34 wherein said primer molecules do not form dimers with each other.
- 36. A method according to claims 1 to 35 wherein said primer molecules do not form loops or hairpin structures.

10

20

- 37. A method according to claims 1 to 36 wherein said primer molecules are complementary to target sequences which prior to the treatment performed in step 2) of claim 1 did not contain specified restriction enzyme recognition sites.
- 38. A method according to claims 1 to 37 wherein said primer molecules amplify regions of the treated nucleic acids which prior to the treatment performed in step 2) of claim 1 did not contain specified restriction enzyme recognition sites.
- 39. A method for designing primers according to claim 1,15 comprising the steps of
 - a) selecting a pool of possible primer pairs per amplificate by means of a standard PCR primer design program using said nucleic acids as template
 - b) excluding those primer pairs which comprise of a primer that in combination with another primer molecule in the same set exceeds a threshold melting temperature
 - c) excluding those primer pairs which comprise of a primer that does not reach a specified level of complexity
- d) excluding those primer pairs which comprise of a primer that in combination with another primer molecule in the same set, under conditions allowing for one or more base mismatches per primer, amplifies an unwanted product when virtually tested using the treated and the untreated sample nucleic acid as template.

25

- 40. A method for designing said primer molecules according to claim 1 and 43, adding the step of
- e) excluding from the remaining confirmed primer pairs those pairs which in said amplification step do not result in the amplification of the intended product when performing a single PCR experiment.
- 10 41. A method for designing primers according to claims 39 and 40, wherein said template nucleic acids are masked for repeats and SNPs before designing said primer molecules and wherein said standard PCR primer design program considers one or more of the following factors
 - length of amplificate, length of primer, melting temperature of the primers, dimer formation parameters, loop formation parameters, exclusion of unidentified or ambiguous nucleotides in the primer sequence, exclusion of restriction enzyme recognition sites.
 - 42. A method according to claims 39 to 41 wherein said measure of complexity is a measure of linguistic complexity.
 - 43. A method according to claims 39 to 41 wherein said measure of complexity is a measure of Shannon entropy.
 - 44. A method according to claims 39 to 43 wherein the following step is carried out prior to performing step d)
- 35 excluding from the remaining primer pairs those

35

pairs, which consist of a primer molecule that comprises of at least one CpG site.

- 45. A method according to claims 39 to 44 wherein the following step is carried out prior to performing step d)
- excluding from the remaining primer pairs those pairs, which consist of a primer molecule that does not contain at least one nucleotide within the last three nucleotides from the 3' end of the molecule wherein said nucleotide is complementary to a nucleotide of the target sequence that was converted to a different nucleotide by the treatment performed in step 2) of claim 1.
 - 46. A method according to claims 39 to 45 wherein the following step is carried out prior to performing step d)
- excluding from the remaining primer pairs those pairs, which consist of a primer molecule that contains more than 5 bases at its 3' end that are complementary to any other primer molecules' sequence in the set.
 - A method according to claim 39 to 46 wherein the following step is carried out prior to performing step d)
 - excluding from the remaining primer pairs those pairs, which amplify a nucleic acid that did not, prior to the treatment in step 2 of claim 1, contain at least two CpG sites

48. A method according to claim 39 to 47 wherein the following step is added before performing step d)

excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for a number of mismatching nucleotides of 20% of the number of nucleotides of the primer molecule.

5

10

15

20

25

30

35

49. A method according to claim 39 to 47 wherein the following step is added before performing step d)

excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for a number of nucleotides creating one gap, when aligning the primer molecule sequence with the template sequence, of up to 20% of the number of nucleotides of the primer molecule.

50. A method according to claim 39 to 47 wherein the following step is added before performing step d)

excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for four or less mismatching base pairs.

51. A method according to claim 39 to 47 wherein the following step is added before performing step d)

5

10

excluding from the remaining primer pairs those pairs, which comprise of one primer molecule that in combination with another primer molecule in the set amplifies an unwanted product, when virtually testing according to step 3 c) of claim 1 under conditions allowing for two or less mismatching base pairs.

1/112

Sequence listing

•	<110> Epigenomics AG	
5	<120> Method for amplification of nucleic acids of low complexity	
	<160> 160 _.	
	<210> 1	
10	<211> 322	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
15	<223> 2025	
	<400> 1	
	aatootocaa attotaaaaa cataaaaata acgcaacoca aaaacaaaaa acccotoogo	60
20	ccattaatta ctatacacta acgaaacttt cccgacccac aacgacgaaa ataaaaacaa	120
	togotaacgo taaaaaacat caaaaacact acccaaccca aatatogoog cogottocac	180
	aaaactctac taaacgccgc cgccgccgct accaccgcct ctaatccaaa ccacctcccg	240
	ccaaataaac cccgaaatcc taactcaaat atatatctct ccctccctct ccctccattc	300
	gtcattttct cactcccttt cc	322
25		
	<210> 2	
	<211> 413	
	<212> DNA	
	<213> Artificial Sequence	
30		
	<220>	
	<223> 2044	
	44005 2	
25	<400> 2	
35		_
	ggataggagt tgggattaag attttcggtt agtttcgtat tttttcgtat tttttagtat	61

	cgtttcgtat ttttcgtatt tttttcggg ttattacgtt ttttatgtga ttcgtttggg	120
	taacgtcgaa tttagtcgcg tagcgttgta gtgaattttt tttttaaatt gtaataagtc	180
	gttttttaag gtaattacgt tttttttgtt tttttttaa aaaataaaaa taaaaaattt	240
	atagaaaaaa attcgcgagt ttagaaaaaa gaagtaattg gtagaaggtt ttaattaa	300
5	taaagagttg taaggcgaag ttaagaaaat gtaggtattt aaaaaatgta ggtaattttt	360
	ataagggttt ttggggagag gtatatagag ggattttggt gttgaaaaag att	413
	<210> 3	
	<211> 347	
10	<212> DNA	
	<213> Artificial Sequence	
•	<220>	
	<223> 2045	
15		
	<400> 3	
	aaccetttet teaaattaca aacettetta eetteaaace tegaeteeaa eaccaateeg	60
	acaaaaaaac ccaatctaat aaaatacgct cccttcctac cattctctat tccattaacc	120
20	tatttcgtaa taaacgtaaa actaatcctc caaaattacc ttattaatta acttacatat	180
	ttattatcta tctatcccac caaaatacaa atttccgaaa aacaaaaatt taaaaaaaatc	240
	tattttatto tatataattt toocatacca aacacegtac cegacacaaa ctaaaatcce	300
	aatacacatc togaaacgaa aaaaccgtat ttooctaaaa cocaatc	347
25	<210> 4	
	<211> 283	
	<212> DNA	
	<213> Artificial Sequence	
30	<220>	
	<223> 2106	
	<400> 4	
0.5	A LONG THE RESERVE AND A STATE OF THE PARTY	60
35	ttgaaaataa gaaaggttga ggtagagagg ataatatagt tttagtttat tttttagtat	120
	tttgttaatt ttttttaatt tttagttata aattcgagat ataacgtttt ttttttaaag	120

	the state of the s	tta 180
	aggtcgcgtt ttttttgtgg tggtttttag ggattcgttt tagttttttt ttcgttt	
	gttttatata ttgggattat taggtattta agattttatt ttttaggtgg tatttt	
	gtaggttgtt atttagtttt tttttaggga tttggggtag aag	283
5	<210> 5	
	<211> 211	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> 2166	
	<400> 5	
15	tgtttgggat tgggtagggt tatcggggtt gggggggggg	ggc 60
	ggaggcgtgg attittcgtt cgatgatagg gttggaggag gaaggggcgg gttgaag	gaag 120
	gggaaggţgg gaagagttta gṭcggggtta taaattgggt gaagcgttga ggtttta	agta 180
	ttttcgtttg aggagatagg taaaggttat g	211
20	<210> 6	
	<211> 497	
	<212> DNA	
	<213> Artificial Sequence	
	1	
25	<220>	
	<223> 2188	
	<400> 6	
30	ttttagattg aggttttagg gttaaaggat tattttttt tttagcgttg gttcgg	gaaa 60
	ggtaagtttc gggcgggagc gtacgtcgcg ttttcgaagt ttggtttttt cgttac	gttt 120
	attttttgtt tttatttcgc gtttttttag gtttttttc ggtgaatcgg atgttt	tgtt 180
	agttttttat tttgcgtttt cggtcgcggt tcgggttttt cgtaaagtcg ttgtta	tttc 240
	ggagggttta gttagcgggt tttcggaggt tggtcgggta ggcgtggtgc gcggta	ggag 300
35	ttgggcgcgt acggttatcg cgcgtggagg agatattgtt ttgtcgcgat gggggt	tcgg 360
	ggcgtttttt tacgtcgtag gtaagcgggg cggcggttgc ggtatttgtt tatcgg	gagt 420

	ttttttttt ttttttgtt gttgttgttt tgtatttagt tcgggggagg atagaagaaa	480
	aaggaggtag aatggat	497
	<210> 7	
5	<211> 373	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
10	<223> 2191	
	<400> 7	
	•	
	ggaggggaga gggttatgcg attttatttt tggttagggt cggggaggtt tttgtttttc	60
15	gggagttttg ttcgggtttt ttggtcgtag ggttgttggg ttttaggtag gaacgagagg	120
	gtgaggttta tatgtggttc ggcggtttag ggcggtttgt agcgttttta ttgtttcggt	180
	tgttaggggt tgcggcgacg cggttagtta gtagcgagtt taggtcgcgt agattttatt	240
	gatgagtttt gatttttagt attttttta agttaagaag agtttagcgt atttttcggt	300
	tgttttattt tagtttttt gttttagttt tttagtttta tttttttt	360
20	gggtgtgtat agt	373
•	<210> 8	
	<211> 368	
	<212> DNA	
25	<213> Artificial Sequence	
	<220>	
	<223> 2194	
30	<400> 8	
	·	
	ttttgggaat gggttgtatc gagaggttcg attagtttta gggttttagt gagggggtag	60
	tggaatttag cgagggattg agagttttat agtatgtacg agtttgatgt tagagaaaaa	120
	gtcgggagat aaaggagtcg cgtgttatta aattgtcgtc gtagtcgtag ttatttaagt	180
35	gtcggatttg tgagtatttt gcgtttttag ttttcggata gaagttggag aatttttttg	240
	gagaattttt cgagttagga gacgagattt tttaataatt attattttt tttgcgtttt	300

WO 2004/015139 PCT/EP2003/008602

5/112

<pre></pre>		ttatttgtcg ttcgttggga taaacgatag ttatagtttt tttgacgata ggatggaggt taagggta	360 368
15			
<pre><212> DNA <213> Artificial Sequence <220> 10</pre>		<210> 9	
<pre><213> Artificial Sequence <220> 10</pre>	5	<211> 352	
<pre> <220> <223> 2212 <400> 9 ttgttgggag tttttaagtt ttgtgagaat tttgggagtt ggtgatgtta gattagttgg 60 gttatttgaa ggttagtagt tcgggtaggg tttatcgaaa gtttattcgt atatattagg 120 taatttaatt ttttattttg tgtgatagaa gtagtaggaa gtgagttgt tagaggtagg 180 agggtttatt ttttgttaaa ggggggatta gaatttttt atgcgagttg tttgaggatt 240 gggatgtcga gaacgcgagc gattcgagta gggtttgtt ggggtatgtt tagaggtag 300 tcggaacgta ttcggaaggt tttttgtaag tattatttg ggaaggagaat tt 220 <210> 10 <211> 295 <212> DNA <213> Artificial Sequence 25 <220> <223> 2267 <400> 10 gtaatttgaa gaaagttgag gggaggcggt agatgtttg atttattagg gaaaacgtgg 60 acgttttttg ttgttatttt gtgaattgt gtgatttgat tatttttgag taatatttg 120 gagcgaggaa tttttgagtg gtggggggg gcggtgaggg gtagttgaaa gtcggttaaa 180 gttttcggag gggttgttt aggaaatatg attggagtt acgagaggt taggggtgg 240 gttttcggag gggttggttt aggaaatatg attggagtt acgagaggt taggggtgg 240 gttttcggag gggttggttt aggaaatatg attggagtt acgagaggt taggggtgg 240 gttttcggag gggttggttt aggaaatatg attggagtt acgagaggt taggggttga 240 </pre>		<212> DNA	
<pre>10</pre>		<213> Artificial Sequence	
<pre>10</pre>			
ttgttgggag tttttaagtt ttgtgagaat ttttgggagtt ggtgatgtta gattagttgg 60 gttatttgaa ggttagtagt tcgggtaggg tttatcgaaa gtttattcgt atatattagg 120 taatttaatt ttttattttg tgtgatagaa gtagtaggaa gtgagttgtt tagaggtagg 180 agggtttatt ttttgttaaa ggggggatta gaatttttt atgcgagttg tttgaggatt 240 gggatgtcga gaacgcgagc gattcgagta gggttgttt ggggtacgtc ggggtaggat 300 tcggaacgta ttcggaaggt tttttgaag tattatttg gaaggagaat tt 20 <210		<220>	
ttgttgggag tttttaagtt ttgtgagaat tttgggagtt ggtgatgta gattagttgg 60 gttatttgaa ggttagtagt tcgggtaggg tttatcgaaa gtttattcgt atatattagg 120 taatttaatt ttttattttg tgtgatagaa gtagtaggaa gtgagttgt tagaggtagg 180 agggtttatt ttttgttaaa ggggggatta gaatttttt atgcgagttg tttgaggatt 240 gggatgtcga gaacgcgagc gattcgagta gggttgttt ggggtatgct ggggtaggat 300 tcggaacgta ttcggaaggt tttttgaag tattatttg gaaggagaat tt 352 20 <210> 10 <210> 10 <211> 295 <212> DNA <213> Artificial Sequence 25 <220> <220> <223> 2267 <400> 10 30 gtaatttgaa gaaagttgag gggaggcggt agatgtttg attattagg gaaaacgtgg 60 acgtttttg ttgttattt gtgaattgt tgtatttagt tattttgag taaatatttg 120 gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagtgaaa gtcggttaaa 180 gttttcggag gggttggttt aggaaatatg attgtagtt acgagagagt taggggttgg 240	10	<223> 2212	
ttgttgggag tttttaagtt ttgtgagaat tttgggagtt ggtgatgta gattagttgg 60 gttatttgaa ggttagtagt tcgggtaggg tttatcgaaa gtttattcgt atatattagg 120 taatttaatt ttttattttg tgtgatagaa gtagtaggaa gtgagttgt tagaggtagg 180 agggtttatt ttttgttaaa ggggggatta gaatttttt atgcgagttg tttgaggatt 240 gggatgtcga gaacgcgagc gattcgagta gggttgttt ggggtatgct ggggtaggat 300 tcggaacgta ttcggaaggt tttttgaag tattatttg gaaggagaat tt 352 20 <210> 10 <210> 10 <211> 295 <212> DNA <213> Artificial Sequence 25 <220> <220> <223> 2267 <400> 10 30 gtaatttgaa gaaagttgag gggaggcggt agatgtttg attattagg gaaaacgtgg 60 acgtttttg ttgttattt gtgaattgt tgtatttagt tattttgag taaatatttg 120 gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagtgaaa gtcggttaaa 180 gttttcggag gggttggttt aggaaatatg attgtagtt acgagagagt taggggttgg 240		•	
15 gttattgaa ggttagtagt tcgggtaggg tttatcgaaa gtttattcgt atatattagg 120 taatttaatt ttttattttg tgtgatagaa gtagtaggaa gtgagttgtt tagaggtagg 180 agggtttatt ttttgttaaa ggggggatta gaatttttt atgcgagttg tttgaggatt 240 gggatgtcga gaacgcgagc gattcgagta gggtttgtt gggtatcgtc ggggtaggat 300 tcggaacgta ttcggaaggt tttttgaag tattatttg gaaggagaat tt 352 20		<400> 9	
15 gttattgaa ggttagtagt tcgggtaggg tttatcgaaa gtttattcgt atatattagg 120 taatttaatt ttttattttg tgtgatagaa gtagtaggaa gtgagttgtt tagaggtagg 180 agggtttatt ttttgttaaa ggggggatta gaatttttt atgcgagttg tttgaggatt 240 gggatgtcga gaacgcgagc gattcgagta gggtttgtt gggtatcgtc ggggtaggat 300 tcggaacgta ttcggaaggt tttttgaag tattatttg gaaggagaat tt 352 20			
taatttaatt ttttattttg tgtgatagaa gtagtaggaa gtgagttgtt tagaggtagg 180 agggtttatt ttttgttaaa ggggggatta gaatttttt atgcgagttg tttgaggatt 240 gggatgtcga gaacgcgagc gattcgagta gggtttgtt gggtatcgtc ggggtaggat 300 tcggaacgta ttcggaaggt tttttgtaag tatttatttg gaaggagaat tt 352 20 <210> 10 <211> 295 <212> DNA <213> Artificial Sequence 25 <220> <400> 10 30 dtagaacgta gaaagttgag gggagggt agatgtttg atttattag gaaaacgtgg 60 acgtttttg ttgttattt gtgaattgt tgtatttagt tatttttgag taaatatttg 120 gagcgaggaa ttttgagtg gtgtgggagg gcggtgaggg gtagttgaaa gtcggttaaa 180 gttttcggag gggttggttt aggaaatatg attgstagtt acgagagagt taggggttgg 240			
agggtttatt ttttgttaaa ggggggatta gaatttttt atgcgagttg tttgaggatt 240 gggatgtcga gaacgcgagc gattcgagta gggtttgtt gggtatcgtc ggggtaggat 300 tcggaacgta ttcggaaggt tttttgtaag tatttattg gaaggagaat tt 352 20 <210> 10 <211> 295 <212> DNA <213> Artificial Sequence 25 <220> <223> 2267 <400> 10 gtaatttgaa gaaagttgag gggaggcggt agatgtttg atttattagg gaaaacgtgg 60 acgtttttg ttgttattt gtgaattgt gtatttagt tatttttgag gaaaacgtgg 60 acgtttttg ttgttatttt gtgaattgt gtatttagt tatttttgag taaatatttg 120 gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagttgaaa gtcggttaaa 180 gttttcggag gggttggttt aggaaatatg attggtagtt acgagaggt taggggttgg	15		
gggatgtcga gaacgcgagc gattcgagta gggtttgttt gggtatcgtc ggggtaggat 300 tcggaacgta ttcggaaggt tttttgtaag tatttatttg gaaggagaat tt 352 20 <210> 10 <211> 295 <212> DNA <213> Artificial Sequence 25 <220> <223> 2267 <400> 10 30 gtaatttgaa gaaagttgag gggaggcggt agatgtttg atttattag gaaaacgtgg 60 acgtttttg ttgttatttt gtgaattgt tgtatttagt tatttttgag taaatatttg 120 gagcgaggaa tttttgagtg gtgtggagg gcggtgaggg gtagttgaaa gtcggttaaa 180 gttttcggag gggttggttt aggaaatat attggtagtt acgagagat taggggttgg 240		<i>;</i>	
tcggaacgta ttcggaaggt tttttgtaag tattatttg gaaggagaat tt 20 <pre></pre>			
20 <pre></pre>			
<pre></pre>	0.0	tcggaacgta ttcggaaggt tttttgtaag tatttatttg gaaggagaat tt	352
<pre></pre>	20		
<pre></pre>			
<pre> <pre> <213> Artificial Sequence 25 </pre> <pre> <220> <223> 2267 </pre> <pre> <400> 10 30 gtaatttgaa gaaagttgag gggaggcggt agatgtttg atttattagg gaaaacgtgg 60</pre></pre>			
<pre>25</pre>			
<pre><220> <223> 2267 2267 2267 2400> 10 30 gtaatttgaa gaaagttgag gggaggcggt agatgttttg atttattagg gaaaacgtgg 60 acgtttttg ttgttatttt gtgaattgtg tgtatttagt tatttttgag taaatatttg 120 gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagttgaaa gtcggttaaa 180 gttttcggag gggttggttt aggaaatatg attggtagtt acgagagagt taggggttgg 240</pre>	25	CZ13> MICTITETAL Sequence	
<pre><223> 2267 <400> 10 30 gtaatttgaa gaaagttgag gggaggcggt agatgttttg atttattagg gaaaacgtgg 60 acgttttttg ttgttatttt gtgaattgtg tgtatttagt tatttttgag taaatatttg 120 gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagttgaaa gtcggttaaa 180 gtttcggag gggttggttt aggaaatatg attggtagtt acgagagagt taggggttgg</pre> 240	25	<220>	
<pre><400> 10 30 gtaatttgaa gaaagttgag gggaggcggt agatgttttg atttattagg gaaaacgtgg 60 acgtttttg ttgttatttt gtgaattgtg tgtatttagt tatttttgag taaatatttg 120 gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagttgaaa gtcggttaaa 180 gtttcggag gggttggttt aggaaatatg attggtagtt acgagagagt taggggttgg</pre> 240			
gtaatttgaa gaaagttgag gggaggcggt agatgttttg atttattagg gaaaacgtgg 60 acgtttttg ttgttatttt gtgaattgtg tgtatttagt tatttttgag taaatatttg 120 gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagttgaaa gtcggttaaa 180 gttttcggag gggttggttt aggaaatatg attggtagtt acgagagagt taggggttgg 240			
gtaatttgaa gaaagttgag gggaggcggt agatgttttg atttattagg gaaaacgtgg 60 acgttttttg ttgttatttt gtgaattgtg tgtatttagt tatttttgag taaatatttg 120 gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagttgaaa gtcggttaaa 180 gttttcggag gggttggttt aggaaatatg attggtagtt acgagagagt taggggttgg 240		<400> 10	
gtaatttgaa gaaagttgag gggaggcggt agatgttttg atttattagg gaaaacgtgg 60 acgttttttg ttgttatttt gtgaattgtg tgtatttagt tatttttgag taaatatttg 120 gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagttgaaa gtcggttaaa 180 gttttcggag gggttggttt aggaaatatg attggtagtt acgagagagt taggggttgg 240	30		
acgtttttg ttgttattt gtgaattgtg tgtatttagt tatttttgag taaatatttg gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagttgaaa gtcggttaaa gttttcggag gggttggttt aggaaatatg attggtagtt acgagagagt taggggttgg 240		gtaatttgaa gaaagttgag gggaggcggt agatgttttg atttattagg gaaaacgtgg	60
gagcgaggaa tttttgagtg gtgtgggagg gcggtgaggg gtagttgaaa gtcggttaaa 180 gttttcggag gggttggttt aggaaatatg attggtagtt acgagagagt taggggttgg 240			120
gttttcggag gggttggttt aggaaatatg attggtagtt acgagagagt taggggttgg 240			180
35 acgtcgagga gagggagaag gttttcgggc ggagagaggt tttgtttagt tgttg 295			240
	35	acgtcgagga gagggagaag gttttcgggc ggagagaggt tttgtttagt tgttg	295

	•	
	<210> 11	
	<211> 278	
	<212> DNA	
	<213> Artificial Sequence	
5		
	<220>	
	<223> 2317	
	<400> 11	
10		
	ggagttgtat tgttgggaga tttgggtgta gatgatgggg atgttaggat tattcgaatt	60
	taaagttgaa cgtttaggta gaggagtgga gttttgggga attttgagtc ggtttaaagc	120
	gtattttttt gtatatttat toggtgttgg gogtagggaa tttttgaaat aaaagatgta	180
	taaagtattg aggtttgaga tttttggatt tcgaaatatt gagaatttat agttgtatat	240
15	tttagagttt atggtatttt agtgaaaatt ggggtttt	278
	<210> 12	
	<211> 285	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
	<223> 2383	
25	<400> 12	
23	(400) 12	
	tttgtattag gttggaagtg gtcgttagtt tttcgtgtaa ttttattttt tggaaaagtg	6
	gaattagttg gtattgttta gcgtgatttg tgaggttgag ttttaatagt ttaaagaagt	120
	aaatgggatg ttattttcgc ggggttcgtt tttcgcgagg tgtttatttc gtatttgtta	18
30	tgtaaaacga gggagcgtta ggaaggaatt cgttttgtaa agttattggt tttggttatt	24
	agtttttatt taatgttttc gtgatgttgt tgttgattta tttgg	28
	<210> 13	
	<211> 380	
35	<212> DNA	
	<213> Artificial Seguence	

<220> <223> 2387 5 <400> 13 gatttttgga gaggaagtta agtgtttttt tgttttttt cggtatttta tttaaggcga 60 ttagtttaga attggttttc ggaagcgttc gggtaaagat tgcgaagaag aaaagatatt 120 180 tggcggaaat ttgtgcgttt ggggcggtgg aattcgggga ggagagggag ggattagata 240 10 ggagagtggg gattattttt tttgttttta aattggggta gttttttggg ttttcgattt ttttattttc gtgggtaaaa aattttgttt ttatcgggtt tacgtaattt ttttaagggg 300 agaggaggga aaaatttgtg gggggtacga aaaggcggaa agaaatagtt atttcgttat 360 380 atgggtttgg tttttagttt 15 <210> 14 <211> 397 <212> DNA <213> Artificial Sequence 20 <220> <223> 2391 <400> 14 tggggttagt ttaggatagg cgttcggggg acgcgtgttt ttattttacg gggacggtgg 60 25 aggagagtta gcgagggttc gaggggtagg tattttaacg aatggttttt ttggtgtttt 120 ttgcgtttcg tcggtttatt tttttttta taaaacgggt ttagttttta gtatttattt 180 ttcgttatta attaggtatt tcgggagatt agttcgttcg aaagtttttg cgttatttcg 240 cgggtttttt taggtggttt ttttagtttc gttttttttc gggatgtttg ttgattattt 300 360 30 cgagttcgcg tggcgtaaga gtacgagcgt cgagttcgtg cgcgttaagg ttgcgtgggc 397 gggtatcgat ttttttgaga agttttagtg tttttaa <210> 15

<211> 547

35 <212> DNA

<213> Artificial Sequence

<220> <223> 2395 5 <400> 15 60 tttttgtatt ggggtaggtt tcggtaggtg tatgggagga agtacggaga atttataagt 120 ttttcgattt tttagtttag acgttgttgg gtttttttcg ttggagatcg cgtttttttt aaatttttgt gagcgttgcg gaagtacgcg gggttcgggt cgttgagcgt tgtaagatag 180 10 gggagggagt cgggcgggag agggaggggc ggcgtcgggg cgggttttga tatagagtag 240 300 qcqtcqcqqq tcgtagtata gtcggagatc gtagttcgga gttcgggtta gggtttattt gttttcgtag cgtcggttcg cgtttttttg tcgtagttat cggtgagtgt cgcggttttg 360 420 agattttcgg gtcggatgcg cggcggtttt agttttcgag cgtttgtttg tttcgttttg ggttgttcgg gttttttggg tttttcggcg gttgtacgga gttaaggcgt ttcgtttcgg 480 15 gcgtttttcg cgggtgtcga tttaggttgt tcggagttcg gagtttatag aggagagaga 540 5**47** tagttgg <210> 16 <211> 414 20 <212> DNA <213> Artificial Sequence <220> <223> 2401 25 <400> 16 60 attagaagtg aaagtaatgg aatttcgatg taaatataat attattttt tgtagagtta ttttgagtat aataaatttg aattgtgtta atgttgggag aaaaaattta aaagaagaac 120 30 180 ggagcgaata gtagtttttt cgttcgttga ttagaaatag taggacgata ttttttcgat tggaggagag cgtttgcgtt cgtatttagt tggcgttcgt ttttttgttt ttttttagt 240

> cgttttttt tttttttc gcgttttagt tattcgggaa ggtattgcgg tagttgggtt ttgattggtt gtttgaaag tttacgggtt attcgattgg tgaattcggg gttttttagc

gcggtgagtt tgaaattgtt cgtatttggt tttaaagttg gtttttggaa attg

300

360 414

WO 2004/015139 PCT/EP2003/008602 9/112

<211> 272 <212> DNA

<213> Artificial Sequence

5 <220>

<223> 2453

<400> 17

gggatgggtt attagttgta aatcgtggaa ttttttttga tataatgaaa agatgagggt 60
gtataagttt tttagtaggg tgatgatata aaaagttatc ggagtatttt ataaggtata 120
aatttttaga gatagtagag tatataagtt tttaggataa gagttaggaa gaaattatcg 180
gaaggaatta ttttattgtg tgtaaatatg atttttaagt tggtcgtggt ttttttggta 240
gtttttttga ttttgtagt tttgtggaa gg

15

<210> 18

<211> 391

<212> DNA

<213> Artificial Sequence

20

<220>

<223> 2484

<400> 18

25

	taattgaagg	ggttaatagt	ggaatttggt	tgggtgtttg	ttaaattttt	ttttttggtt	60
	ttgttttggg	ttttttttg	aagggatttt	ttttcgtttt	tgtaataaga	tttttataa	120
	agtatagatt	ttttatttta	tttcgcggta	tttgtatcgg	gttttattgg	ttttaggagt	180
	tgaatatttt	tttaggtata	tataggtggg	atataaataa	gggttttgga	attattattt	240
30	ttttattacg	atagtaattt	aaaatgtttg	ggaagatggt	cgtgattttt	ggagttttaa	300
	atatattttg	gataatgttt	gtagtttgta	agttattttt	ttttatttgt	tttaaatgtt	360
	agtatttaat	tttagttttg	gttttggttt	t			391

<210> 19

35 <211> 430

<212> DNA

<213> Artificial Sequence

<220>

<223> 2512

5

<400> 19

	agtggatttg	gagtttagat	gtaatataat	gattgatatt	ggtatagtat	atttattttg	60
	tttttgtaaa	taaaatggta	tatgtgatgt	tttttttgt	ttttttgtat	ataaaataat	120
10	atttgtttt	atttattatg	tatttatgtt	tttattttgt	atgttaggag	ttaagtattt	180
	tgtatgtatt	aatttatttt	gtttttataa	taatttttat	atgtaggaat	tattatagtt	240
	attttatgaa	tgagtcgagg	aaggtattga	gacgttaagt	aatttgttta	aggttacgta	300
	gttagtaagt	ggtagagtaa	gaattattat	ggttttataa	gtttaggaaa	aagtttgaaa	360
	gaattaaaat	gttaatagcg	gggattttaa	ggaagtattg	aagaggttat	gggagaagtt	420
15	tttattttgt						430

<210> 20

<211> 475

<212> DNA

20 <213> Artificial Sequence

<220>

<223> 2741

25 <400> 20

. 60	gggcggggat	tttggatatc	gcgcgacgag	agaggttggg	gttagagttg	taggggaaaa
120	aggaaatgtt	ggaaggcgtg	gttttttta	taataattgt	ttcgtttagt	ttaagttttt
180	ttattgtaaa	attttttat	tttgggttgt	ttttttggaa	tttgtatttt	ttaattaatt
240	gtgtttattt	agcggtttcg	gtttgtttt	tttttttagt	tatttagggg	ttttataatt
300	ttttttcgcg	ttttagtttt	tgcgttttag	ttcgtaagat	tttttttt	attagtgttg
360	tgtttgtttt	ggcggaatcg	ggtttaggga	attattttcg	aaatcgtttt	ggtgttttt
420	acgcgagatg	tcgcggtttg	ttttttagag	cggttttatt	taagaggcgt	tcggttttt
475	aatgg	tttgtgggtt	taagcgtttt	tttatgtaaa	gttcggtatg	atagtaacga

35

WO 2004/015139 PCT/EP2003/008602

11/112

<211> 412 <212> DNA <213> Artificial Sequence 5 <220> <223> 2745 <400> 21 10 attttagttt gtgaaatggg atttaggatt taggtagagg tgcgttttcg gtttggggat 60 120 cgagtatttt gtgcgtttcg gtaacgtagg aagatagcgt tattgatatt ttagagatta 180 gcgggtatcg tttggaggcg tttttattat ttggcggttt cgggttcgcg ttttatcgcg 240 gcgcgtcgtt ttcggtaggg gcggaaagcg gaagtgtggg agggtttgcg gggcgggttt 300 15 aggaggttcg cgggaggatg gagtagtgag cgggtttggg cggttgttgg tagcgttatg 360 412 qaqacqqtat agttgaggaa ttcgtcgcgt cggtgagggg ttattggtta ag <210> 22 <211> 484 20 <212> DNA <213> Artificial Sequence <220> <223> 2746 25 <400> 22 60 gtgggttttg ggtagttata gaagttatcg cgttggcggg gaggaggggg atcgatgcgg 120 tttatgtttc gggtagtttt atttttttg tttgcgaagg gtttttgttc ggcgggagga 30 gagaggcgcg ttttattcgg gttttttat atttgtcgtc gtttgggtcg atttcgcggg 180 240 tttcgttcgg cgttttagtc gattttcgtt tagtttcggg tttatgggcg cggttagtag 300 ggcgggttag ggcggcgggg cgcgatattg ggaggaagtg cgggtcgttt gttcgggcgc 360 gttaaggaag ttgtttaaaa tgaggaagag tcgcgggttc ggcggttgag gttatttcgg cggcggttgg agagcgagga ggagcgggtg gtttcgcgtt gcgttcgttt tcgttttatt 420 35 480 tggcgtaggt aggtgtggtc gcgtttttta ttcggtcggg attttttggt aaggagaga 484 ggtt

<210> 23 <211> 476 <212> DNA 5 <213> Artificial Sequence <220> <223> 2747 10 <400> 23 60 taggatgggg agagtaatgt tttcgagtag aatagggtgg ggtttttaga ttatttttt ttttttatag ttggttttat tttatcgatt ttattaaagt ttttttggga gtattttaga 120 gaagagttac gtttaggtcg ggttttggtt gtttggttta cggcggaatt tttagtatta 180 15 cgtttcgtac gtcgggttta aagtatgttt agtgaaggag taggtattta ttgttagatg 240 gagttatttt tttagatttg gggttttttt ataacgatgg ttatgtttgg tatggaagtt 300 360 tttttagaag ttaatagtag gaaataaggg ttaatagtat ttaattgtgg agtaaggttt aaattttagt tttgttattt aatcgtttcg aatttgttt tttattgtag aggcgaaaag 420 476 gttaatatta ttttatttcg gagggttatc gtggagaatg gaagttggat aagttg 20 <210> 24 <211> 419 <212> DNA <213> Artificial Sequence 25 <220> <223> 2749 <400> 24 30 tcccacaaaa actaaacaat tattacaaat tcaaaaaaacc ccgaccaatt tttcaaaaaat 60 120 ttctcctcct cttttccccc taaaactcgt aatactttta ctctactttc aaaatacatt aaatctccta ctttataact actttaaaac caacaaatac tctaatatat ataattcaaa 180

ttatacaaat ttcacgaata aatttaatct tattttttaa attaattaaa aaacaaataa

tatttaaaaa aatattaact tataattatt tcaccctttt tactttaaac atttttatta

cttctcgacc ttttaactaa aatcaaatat atactttaaa catttttaa aataaaaata

35

240

WO 2004/015139 PCT/EP2003/008602

tccttttaat ttaataaaaa aacaaaattc tacataaaaa aaccccttca tctaaaacc 419

<210> 25 . <211> 479 5 <212> DNA <213> Artificial Sequence <220> <223> 2751 10 <400> 25 tttggagggt ttagtagaag ttattttagg ggagggttcg ataggaagga aggtaggttt 60 gtcggagggg tatataggag ttttttttt cgttatagtg tttagggtta attgttttag 120 15 tttttaggtt gggttaatag gatgggatag tttaggcgga aggaaatttg tggggaggga 180 tatttcgtag atagaagtag ggatatgggg tggggagagg taggaagagt tgtcgggttg 240 ttgagttggc gtttttttag tagatttagg aggggcggtg ataggaggtt atttttttt 300 tattttcgta gttttgggtt tttttggttt tggttaatag tattattatt attattattg 360 ttgttgttcg ttagtttggg ttttagatat attagaaaaa aattatcgga agatacgtat 420 20 agtattggta gtttttaaaa gaattaattt tttttttgtg tttattttgt gattattgg 479 <210> 26 <211> 484 <212> DNA 25 <213> Artificial Sequence <220> <223> 2752 30 <400> 26 atacaacctc aaatcctatc caaaccccca aaacatcaca ctcgaaactt attctacata 60 tttttacttt tacctccac taatactaat tcttccgtaa aacaacctaa atcccttcaa 120 atacttaata ttttttctca aatactacca taaaaccaaa tctccaccgt cttaaaacat 180 35 tcctttttaa aaataaaaaa tatatatcgc tccttttata taatttacat tctatcttaa 240 ataatttaac catcaccqta attcattcaa atctatttaa atcctaccca tctcaacttc 300

•	aatccatttc attctttaa atctaatcga caattacctc caacaacttc atcacaaatc	360
	actcacaaaa ataaccttaa tootaaaatt tatttacgaa aaacacactt actaaatata	420
	taacaaatat acaaaaaaca caaaataaaa caacaaatct aaaaacaaat aactteette	480
	tccc	484
5		
	<210> 27	
	<211> 371	
	<212> DNA	
	<213> Artificial Sequence	
10	•	
	<220>	
	<223> 2755	
	<400> 27	
15		
	ggaagatgag gaagttgatt agatattaag gatgagcgga tgatttaata ggtttttttg	60
	ttaagatttg gttgggtagg tgaaagataa agtcgaggag tggttatggt gtggtataga	120
	agaagggtta gaggacggtt tttgttattt ttttatgttt gagttttttt ttttgtgaaa	180
	tggggataat aagagtcgtt atatagggaa ttgttgttag gattaaatga gataatgtat	240
20	gtgaaacgtt ttggttgtag gttttttagt aaatgggtac gatttgcgga gtggggattt	300
	gaatttacgt ttggcgggat gtttaagttg ttattttgat cgttagggag ttttagagga	360
	tagggttgta g	371
	<210> 28	
25	<211> 186	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
30	<223> 2831	
	<400> 28	
	ttagtagggg tgtgagtgtt ttgattagaa ttatttttt ttgttagaat ttgatgtaat	60
35	tcgaatgttt ttatttttgt ttgaagggtt taaataataa attaggtttt gtcgtgttat	120
	tatgggggtg gttatatttt gtatttagga aataggtacg gtagggttga gatagaagtt	180

	ttgttt	186
		•
	<210> 29	
	<211> 300	
5	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> 2850	
10		
	<400> 29	
	ttatagggtt gagtttggga tcgaggtgag agtcgtcggg ttgggagtga gggagatggg	60
	aataaggtcg tcggtgggcg aggggagtcg agggaattcg ggggattggg aggtttgggg	120
15	cggcgcggtt tggtcgggtt gggatcggtt tttcggttta gacgttcgcg atgttggtat	180
	tttttgttat tttttatttg ggttttaggg gttcgttttt gggtagtttg gagtttttcg	240
	aggtgggagg atcgggcgga ggtggaggaa gtttttttt qgaagatttg ttgtttgttt	300
	·	
	<210> 30	
20	<211> 321	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> 2852	
	<400> 30	
	·	
	tgaaaatgaa ggtatggagt ttggtgttaa aagaaatttt ttttaaaaat taaataataa	60
30	tattagagta aagtttttag ggcgagataa ggagttgtaa taaaataagc ggaaattcga	120
	gaagcgttaa tgttttaaag ggttaatgat tatatataat ttacgtagtt aacgtgttaa	180
	aatatattaa cgtatttttt ttttttaaat aaagtaggaa agcggatttt gtatgagggg	240
	cgggttgtcg atttagtagt ttttttcgga tagttcgttt tgatttttt tggttggtcg	300
	tggagggatt atatggtttt a	321
35		

<210> 31

WO 2004/015139 PCT/EP2003/008602

<211> 398 <212> DNA <213> Artificial Sequence 5 <220> <223> 2859 <400> 31 10 60 tatgtttggt tttgtttga gatagagttt cgttttgtcg tttaggttgg ttaaaagata gggttttagt cgggtgcggt ggtttacgtt tgtaatttta gtattttggg aggtcgaggc 120 gggcggatta tttgaggttc ggagttcgag attagtttgg gttaatatgg cgaaacgttg 180 240 tttttattaa aaataataaa aattatttag gcgtggtggc gcgtatttgt aattttagtt 300 attcgggagg ttgaggtagg agaattattt gaatttagga ggtagacgtt gtagtgagtc 15 360 gagatcgcgt tattgtattt tagtttgggc gatagaggga gatttcgttt taaaaaaagg 398 aaaaaaaaaa aaaagaaaag aaataaaagt gatggggt <210> 32 <211> 347 20 <212> DNA <213> Artificial Sequence <220> <223> 2861 25 <400> 32 60 gggtgtagaa gtgtttaggt tttttttcgt tggggttggg agtttgggta ggttagtttt atttttttta agttcgtttt tggttttcgg gtttagtttc ggttattatg tttcgttaga 120 180 30 ttatttttgt gggttttagt tgtttggatt tgtggaggga aaagaatgat cggttcgttc 240 gataggttaa ggtaatacgg ttgttggtat tttcggtttg tagttttaag atttttgaaa 300

agaaatgatt ggagaatgta ttttttgtta ttgttgtaag gggagaa

347

35 <210> 33 <211> 291

WO 2004/015139 PCT/EP2003/008602 17/112

	<212> DNA	
	<213> Artificial Sequence	
	<220>	
5	<223> 2864	
	<400> 33	
		60
1.0	toccottoca actatatoto toaccoaaaa ataacttota actotogtat toatotaaaa	120
1.0	ctcctccttc catataccaa caattaacta taacccctcc aaaaacgctc catctccaaa	180
	tatactecca catecaaace aegaaceeet caeeegatea catactteat acaeetataa eteegaacte eecaaatata eetetaaegt acaaetatta eeeetteeee egattataae	240
	cctataactc gccacataca actataacta aaacttccct aaaacactct c	291
	Contabacto godacataca accaetacea addoreces addicates	
15	<210> 34	
	<211> 389	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<223> 2867	
	<400> 34	
25	aaaaccaaaa cataaaccaa aaaccaaact cgaaccgaaa acaataaccg caacgcccga	60
	aaactaaacc cacgacgcgc taacaacgcg aaccgaacta cgaaaacgat cacgtcaacg	120
	teegtteeaa acegaetaae aateteegtt etacattaae gteaacaete eegttaaaaa	180
	taatacatct ctcccatacc aaaaaaactt aaatactact aaaaaccaac cctccgaata	240
~ ~)	ctaccaaacc gacgctcacc cgccaccttc atcttccctt ctcctttacc ccaaaacaac	300 360
30 '	cgaaaatata taattaaatt ccccctaccc ataaaaaaac caaaaataaa aaactaacga	389
	cctactcgat ctcaacaaac cctcctaat	50.
	<210> 35	
	<210> 33 <211> 272	
35	<2112 272 <212> DNA	
J J	<213> Artificial Sequence	

<220> <223> 2961 5 <400> 35 aatggttgat gattttggtt ttttttcgtc gtcggagagc ggtgtttcgg aggcggcgga 60 ggaggattcg gcggtcgttt ttttggttta gtaggagagc gagattgtag gtatagagaa 120 cgacgagggt ttcggggtat ttgtcggtag ttatgcggtt ttcgcgtagt cgggttttac 180 10 gagtgggggt gagttagcgc ggggtttgga gaggggttta gggcgcgtat tcggggggatt 240 272 tcggtcgggg tttaggggta tagggaagag ag <210> 36 <211> 371 15 <212> DNA <213> Artificial Sequence <220> <223> 3511 20 <400> 36 agttagaaga ggagttagga tgggtttcgg gtagtttaat agtatagttg aagttttaat 60 tattatgtta atagtttttt ggttttatat attttatggg aagaggaaaa taaaaaggta 120 tttatttgta tatttttta tttttgatat aagaagtaga attttttta tatgatttat 180 25 gtttatttaa tacgttattt tgaaatttat taataaaatt ttttaagcgt tagaaaattg 240 300 ttagaaggtt gtcggaatag taaatattta ttgatatgtt ataattattg gaaaatgggt 360 371 attggaaaat t 30 <210> 37 <211> 457 <212> DNA <213> Artificial Sequence 35

<220>

<223> 3532

<400> 37

5	tgttagtaga	gttttaggga	ggttttattt	tttatttta	tttaaagttt	tatttgttgg	60
	ggtgggggtt	ttgtttggaa	ggggaaggtt	taaggttgtt	tttagcgtgt	tttttattt	120
	tgattgtttt	tggcggggcg	ggggtgtttt	tgttatttag	ttgtataacg	gttaggaagg	180
	gtttaaatta	tttttagggt	taatttaagg	tcgttttttg	ggtttgtata	tttttgtgtt	240
	gagtgcggat	cgggagaggt	tgttgaagat	aggaggggat	aaatggggga	cgaaggggtt	300
10	cgagggaggg	gattgaagga	tttgggttaa	gtcgggagtt	ttcgagggcg	gagttaaaac	360
	gtatttggat	tttgttagtt	ttaaattttg	tttttattgt	tgtaagtttt	ttagatcgag	420
	gattttcggg	ttgagggtgg	ggtaaggata	ggtagtg			457

<210> 38

15 <211> 476

<212> DNA

<213> Artificial Sequence

<220>

20 <223> 3534

<400> 38

	tttttgtttt	tatggggtgt	atatttaagt	agttgaaata	gatagtgaat	aaataaaaaa	60
25	ggataataat	tttaaataat	aatgatgtta	tcggttaggt	gtggtggttt	atgtttataa	120
	ttttagtatt	ttgggaagtt	aagttaagcg	gattatttga	ggttaggagt	ttaagaatag	180
	tttggttagt	atggtgaaat	tttattttta	ttaaaaatat	aaaaattagt	tagatatggt	240
	ggtatatatt	tgtaatttta	gttatttggg	aggttgacgt	aggagaattg	tttgagttcg	300
	ggaggtggag	gttgtagtga	gttaagattt	gataggtttt	tagtattatt	gtattttaga	360
30	ttggttgata	gagcgagatt	ttgttaaaaa	aaaaaaagtt	ataaatagat	tttaataggg	420
	taatatgata	gggagggagg	gataggggag	tagggtggtt	aaggaaggga	tattta	476

<210> 39

<211> 458

35 <212> DNA

<213> Artificial Sequence

<220> <223> 3538 5 <400> 39 60 tgggtagtat ttttgttggt tttttttat attataaggt tacgtagagt tggcggaggg 120 ttatggtttt atttatgtta ggtgttttta atttggtaag gaaatgtaat ttacgtgaat tttaataggt agtgaagtat cgttttttt tgattttagg tagggtgaag aaaatgggat 180 agtagtacgg ggtgcgggta taaacgtata attttgtttt tttagacgta gagttgtggg 240 10 300 gttgtgagaa tgttaggagg aggtaagaaa gggcggtttt atgggggggtt tgtagggtgg 360 gataagttta agaggttttt atatttaggt ttggtggggg aggtgagttt ttggtttatc 420 gagggggttt ttttttgttt tcggaaatat tgtagttttt atttttatcg ttttttcgtt 458 gcggggattt aggggcgtga ggatgagaga gtttttag 15 <210> 40 <211> 405 <212> DNA <213> Artificial Sequence 20 <220> <223> 3540 <400> 40 25 agtggtttag gagtatttgg ttattttcgg gaaaaatcgg tttggtaaag gttttttcga 60 120 gggtacgcgt ttttcggata gtgaggtagg atttaaattt tttcgttaat attatattt 180 tcgtattttt gtagtgtttg tatttttagg ttttattatt ttttcgtatt ttttagggag aagttttcga cgttttattt tttttggaag ggtgttgttt ttagagattt ttaggttaat 240 300 ggtttaattt tagtgttttt aggggagagg ggggtgtaga aaaatagttt gggttataaa 30 360 agaggtgcga gggttgtgag atttcggagg tatcgacggg aagcgagacg gagaatagga 405 qqqtaggacg ggttggaggt gggggatatt gtagatggag ggagt <210> 41

35

<211> 2501 <212> DNA

<213> Homo Sapiens

<400> 41

5	ccagttccag	tcccgggtcc	tgtggccgcc	ctgccggcga	ccctgcggag	agcgagtctt	60
	agatacccag	tecceagece	cgagttgtta	ttccctcgct	gtagttaaga	aggaggagat	120
	caattaaggg	catcttagaa	gttaggcgtt	cccgctgcct	cctttgagca	cggaggccac	180
	caacccccta	gggggaagag	atgtagcgcg	aggcaggggt	gtcgtgctaa	gaaatttcga	240
	cgcttctggg	gactgaggac	aaaggtgcgg	acacgacccc	ggggtacctg	gagttccgtg	300
10	actcgcgcca	cggacggcac	acctaggggc	taatttctgc	tctgcctcaa	agaacctcaa	360
	gctagagtcc	ttgcctccgc	ccacagcccc	gggatgccgc	tgctgcgctc	accgcacagg	420
	cagcgcccgg	accggctgca	gcagatcgcg	cgctgcgcgt	tccaccggga	gatggtggag	480
	acgctgaaaa	gcttctttct	tgccactctg	gacgctgtgg	gcggcaagcg	ccttagtccc	540
	tacctctgct	gagctgaacg	ctcaggcaca	gtggaactga	aacceggttc	tgcgggatgt	600
15	gagagctgtt	gaggtcacgc	gtaattgggt	gtgatggagg	gcgcctgttc	gtgatgtgtg	660
	caggtttgat	gcaagcaggt	catcgtcgtg	cgagtgtgtg	gatgcgaccg	cccgagagac	720
	tcggaggcag	gcttgggaca	cgtttgagtg	aacacctcag	gatactcttc	tggccagtat	780
	ctgtttttta	gtgtctgtga	ttcagagtgg	gcacatgttg	ggagacagta	atgggtttgg	840
	gtgtgtgtaa	atgagtgtga	ccggaagcga	gtgtgagctt	gatctaggca	gggaccacac	900
20	agcactgtca	cacctgcctg	ctctttagta	gaggactgaa	gtgcgggggt	gggggtacgg	960
	ggccggaata	gaatgtctct	gggacatctt	ggcaaacagc	agccggaagc	aaaggggcag	1020
	ctgtgcaaac	ggctcaggca	ggtgatggat	ggcagggtag	gaaggggag	gtccagaggt	1080
	ctggatggag	gcttccgcat	ctgtaccttg	caactcaccc	ctcaggccca	gcaggtcatc	1140
	ggccccctcc	tcacacatgt	aatggatctg	aagagtaccc	cgggacagtc	cggggagatg	1200
25	gagattcgga	aagtatccat	ggagatctta	cagaatcccc	tgtgcggacc	aggaaactct	1260
	tgtagatccc	tgcctatctg	aggcccaggc	gctgggctgt	ttctcacaat	attccttcaa	1320
	gatgagattg	tggtccccat	ttcaaagatg	agtacactga	gcctctgtga	agttacttgc	1380
	ccatgatcac	acaaccagga	attgggccaa	ctgtaattga	actcctgtct	aacaaagttc	1440
	ttgctcccag	ctccgtctct	tgtttcccac	gagecetgge	: cctctgtggg	taataccagc	1500
30	tactggagtc	agatttcttg	ggcccagaac	: ccacccttag	gggcattaac	ctttaaaatc	1560
	tcacttgggc	aggggtctgg	gatcagagtt	ggaagagtco	ctacaatcct	ggaccctttc	1620
	cgccaaatcg	tgaaaccagg	ggtggagtgg	ggcgagggtt	: caaaaccagg	ccggactgag	1680
	aggtgaaatt	caccatgacg	tcaaactgcc	ctcaaattco	: cgctcacttt	aagggcgtta	1740
	cttgttggtg	ccccaccat	ccccaccat	ttccatcaat	gacctcaatg	caaatacaag	1800
35	tgggacggto	ctgctggato	ctccaggttc	: tggaagcatq	g agggtgacgc	aacccagggg	1860
	caaaggacco	ctccgcccat	: tggttgctgt	gcactggcg	g aactttcccg	acccacageg	1920

WO 2004/015139 PCT/EP2003/008602 22/112

gcgggaataa	gagcagtcgc	tggcgctggg	aggcatcaga	gacactgccc	agcccaagtg	1980
tcgccgccgc	ttccacaggg	ctctgctgga	cgccgccgcc	gccgctgcca	ccgcctctga	2040
tccaagccac	ctcccgccag	gtgagccccg	agatcctggc	tcaggtatat	gtctctccct	2100
ccctctccct	ccattcgtca	ttttctcact	ccctttcctc	ctctccctct	ctctccgtta	2160
gtctcttcat	cagatagtct	ctgttagtcc	gcgatttata	ccaggctcgt	gccctaggtt	2220
ggatcggaca	gtctcaatcc	cccggctcgc	tcttcctgct	cggctgcgga	ctccagtctt	2280
actctctcgc	actgcacaca	ggcttaggcc	agtctcggga	cactcaggct	ccccagggac	2340
cgcgcacaga	gcctgaggca	agagaaactt	tccgcagacg	gtgcgatcag	ggacggcgtc	2400
tggagcccag	cagtcccagg	gaaattggtt	cagaacctgg	aacagagcgg	atgggtggca	2460
aataggcacg	acgactgagg	gacaagcagc	cctaaactgc	a		2501

<210> 42

5

10

<211> 2501

<212> DNA

15 <213> Homo Sapiens

<400> 42

agatttactc aaatttaaga atgagaatac aaatccacat cttgaagtgt ttcacagaaa 60 ggtctatctt aatgtctgga gtatatattt caatgaacat tcattttatt ttatttctct 120 20 180 ccattcctga atcaagcaat cttgaatcta aagttgctat gattagcact gaaaagacca ctggactatt aattgtgtga ctttgggaca gtaactttct gcaccttagt ttgtttacat 240 gttatacatg aaggttgaag totgattotg ototgtgact atcattotaa acatotgatg 300 aaatcaaatt tcagtgtttg gaatggtagt acaataaatt tactaagaat aaataattca 360 ctgcaaaaac acattgattt ccaaatgatg taactgacag ttatattact gcagagggct 420 25 gataaataac aaaagaaatg aaagatgcac atggtgagaa ctgaaattat cctgacaagt 480 cttctacctg tttatcactt aaaatcaatg accatgctga atgcctacaa attacaaaat 540 ataaaagaaa tottataaat gogoatgtac aggagtotaa gttactaaaa gttttaaago 600 ataagtttaa accaaactaa tcaaagaagt tgagaggaaa aattggcttt catctttaat 660 cactactgtt ttgaggtcct atgtttaata taattttcta agtagaggct tcagagagaa 720 30 gagttgtgag gatactttca tatttgtgta gaaggaaaag tttgccatcc attctagtat 780 ccctagtgtt atactgatgt gcaccttgga tttattttgt tcctattgta taaactcata 840 cttgacttca aagaaaagga aaatccaaag tccctctttt ctaaggggac agaaatcctt 900 tgtgtcaact gtttgaccct tttctctgta aggtcctatt ggaaatcttt tgtaacacaa 960 tgcaggggac tcttccatgt gttgatgctg tttacacagt ggggtgggcc tgactgaaga 1020 35 1080 . aaaaaaatcg catatacgca tgaaagatta tggtcttatt tccggaaagc atgaaaggtg

	attgatactt	ccaagaagtc	cctgttactc	aggaaaatta	tcaaatattc	tactcagaga	1140
	tacttggaaa	gactgaagga	aaggaagaac	gaagaaagca	gaatctagac	ttatgtgggg	1200
	agagatttgt	ggcagaggaa	aagtattctc	tttgaatccg	acaagggatt	tgcctggggg	1260
	aatttcctgt	ccagcctttt	attaccaggg	tcttttgaag	ccgggctccc	cattgggcag	1320
5	ttccctggga	gtgcagtggg	gaattcttac	actttccctc	taggtccccg	aaggatctcg	1380
	ttttctcagt	gtctctttca	ggttggcagg	agccttgagc	ctgacacttc	cctttgatgg	1440
	gacaggcaag	ctctgtgggc	gcgtaaacac	gctgtaacca	agttctttgc	tgattttaca	1500
	gttttgtgtg	ctcccgagaa	gaagtgatcg	tactcaattg	tctattgctg	gcctgccccc	1560
	taagagcctg	ggggctcctt	tcccctaacc	cagaactagc	tgcacggggg	gcggggaaat	1620
10	gggggtgggg	aaggagtggg	agggcagtgg	tttccgcgag	cagagcgatg	ttactgagtg	1680
	agtccctgaa	tggggagcgc	tgctgtcccc	aagccgattg	gtacttcttg	tcaggaagaa	1740
	acgccaagag	gtgggagtgc	ctggggaggg	aggcaggcgg	tecetacege	aggcgcgggg	1800
	agctgccttt	ccgcccctcc	gcctgctttc	caagcctgga	ctcttaggag	tggctgaagc	1860
	tgcggagcgc	ttttggagcc	tgtgaatgaa	ccctcctcct	ctccctcctc	cttcttctcg	1920
15	ctgagtctcc	tcctcggctc	tgacggtaca	gtgatataat	gatgatgggt	gtcacaaccc	1980
	gcatttgaac	ttgcaggcga	gctgccccga	gcctttctgg	ggaagaactc	caggcgtgcg	2040
	gacgcaacag	ccgagaacat	tağgtgttgt	ggacaggagc	tgggaccaag	atcttcggcc	2100
	agccccgcat	cctcccgcat	cttccagcac	cgtcccgcac	cctccgcatc	cttccccggg	2160
	ccaccacgct	tcctatgtga	cccgcctggg	caacgccgaa	cccagtcgcg	cagcgctgca	2220
20	gtgaattttc	ccccaaact	gcaataagcc	gccttccaag	gtaatcacgt	ttcttttgtt	2280
	cccccttaa	aaaacaaaaa	caaaaaactt	atagaaaaaa	acccgcgagc	ttagaaaaaa	2340
	gaagcaattg	gtagaaggct	ttaattaagg	caaagagctg	taaggcgaag	ttaagaaaat	2400
	gtaggcactt	aaaaaatgca	ggtaactttc	ataagggctt	ttggggagag	gcatacagag	2460
	ggaccttggt	gttgaaaaag	attcagacaa	aagaaaccca	g		2501
25							
	<210> 43						
	<211> 2501			•		•	
	<212> DNA	•					
	<213> Homo	Sapiens					
30							
	<400> 43						
				•		gtggctcacg	60
	cctgtaatco	c cagcactgtg	ggaggccgag	r ccgggaggat	cacctgaggt	caggagttca	120

agaccagcct gaccaacatg gtgaaaccac gtctctacta aaaatacaaa attagccggg

catagtcaca tgcctgtaat cccagctact gggtagcctg aggcaggaga atcgcttgaa

35

180

	cccgggaggc	ggaggcggag	tttgcagtga	gccaagattt	cacaactgca	ctccagtctg	300
	ggccacaaga	gcgaaaaccc	gtctcaaaaa	aaaaaaaaag	actaggattt	gacataaggc	360
	ctgaggggta	ttcttttgtt	ttgttttgcc	ttgttttcaa	gaggccaaaa	tcttcacagt	420
	tgaaaatttc	tgttgaacca	cagagatttg	aaccaactca	gtttagaaag	cctggggatt	480
5	tgaacaacgg	tatggatcgg	aaatctcttc	atctgtcagt	tttcatcatt	ctaggcagta	540
	aaatagattt	ccctttagga	gcttttcacc	gtttggggtt	ctccagcagt	gggatgtggg	600
	gaatcaaccc	ttcttcgtct	ccacccaaac	attaggtggg	agcaaggggt	gggaagtaga	660
	gaaagtggat	agaggtctcc	agtggatatg	ggatctttgt	gtagaccagc	acagtcctca	720
•	gaaatctcat	gcaagcaaca	taggtactgt	tatattttct	agtggccacc	ttttaaaaag	780
10	taaacaggtg	aggccgggcg	cggtcgtcac	gcctgtaatc	ccagcacttt	gggaggccca	840
	ggcgggcgga	tcacgaggtc	aagagatgga	gaccatcctg	gtcgacacgg	tgaaaccccg	900
	tctctactaa	aaatacaaaa	attagctggg	catggtgacg	cgcgactgta	gtcctagcta	960
	ctggggaggc	cgaggcagga	gaatcacttg	aaccctggag	gtggaggttg	ccacgctcca	1020
	ctacactcca	gcctggcgac	agagtgagac	tccgtctcaa	aaaaaagaaa	gtaaacaggt	1080
15	gaaattaatt	. ttaataatat	attttgttta	acccaacgta	tccaaaatac	tatcatttga	1140
	aagtgtaatg	aatataaaaa	tattcatgag	atattttca	ttctcatatc	catactgtct	1200
	tggactctaa	tgtgtatttt	acacttacag	cacaattaat	ttgggactag	ctacatttca	1260
	gctcaacaat	agccaatago	: atatgggata	gegeaaataa	actctgcgtc	tctgttgctt	1320
	ctttgggtct	cggagaccto	aaccetttct	tcagattgca	aaccttcttg	ccttcaagcc	1380
20	teggetecaa	a caccagtccg	g gcagaggaac	: ccagtctaat	gaggtacgct	cccttcctgc	1440
	cattctctat	tccattaaco	tgtttcgtgg	taaacgtagg	actgatccto	: caaaattacc	1500
	ttattaatta	a gcttacatat	ttattatcta	tctgtcccac	: cagaatgcag	gtttccggaa	1560
	ggcagggati	t taaaaaaato	tgttttgttc	: tatgtgattt	tcccatacca	agcaccgtgc	1620
	ccggcacaa	g ctgggatcc	c agtacacato	tcgggacgga	agaaccgtgt	: ttccctagaa	1680
25	cccagtcag	a gggcagctt	a gcaatgtgto	acaggtgggg	cgcccgcgtt	ccgggcggac	1740
	gcactggct	c cccggccgg	c gtgggtgtg	g ggcgagtggg	tgtgtgcggg	gtgtgcgcgg	1800
	tagagcgcg	c cagcgagcc	c ggagcgcgga	a gctgggagga	gcagcgagc	g ccgcgcagaa	1860
	cccgcagcg	c cggcctggc	a gggcagctc	g gaggtgggtg	ggccgcgcc	g ccagcccgct	1920
	tgcagggtc	c ccattggcc	g cctgccggc	c gadatacgad	caaaaggcg	g caaggagccg	1980
30	agaggctgc	t tcggagtgt	g aggaggaca	g ccggaccgag	g ccaacgccg	g ggactttgtt	2040
	ccctccgcg	g aggggactc	g gcaactcgc	a gcggcagggt	ctggggccg	g cgcctgggag	2100
	ggatctgcg	c cccccactc	a ctccctage	t gtgttcccg	c cgcgccccg	g ctagtctccg	2160
	gcgctggcg	c ctatggtcg	g cctccgaca	g cgctccggaq	g ggaccgggg	g agctcccagg	2220
	cgcccgggt	g agtagccag	g cgcggctcc	c cggtccccc	c gacccccgg	c gccagctttt	2280
35	gctttccca	g ccagggcgc	g gtggggttt	g tccgggcagt	t gcctcgagc	a actgggaagg	2340
						g aggetteece	2400

	agccccgcgg gccgggtga	g aacaggtgg	gccggcccga	ccaggcgctt	tgtgtcgggg	2460
	cgcgaggatc tggagcgaa					2501
	<210> 44					
5	<211> 2501					
	<212> DNA					
	<213> Homo Sapiens					
1.0	<400> 44			•		
10						
	gatgtgaaaa gagaaataa					60
	tttaaagaaa caacattct					120
	gcaccagtac ccctgagta					180
1 6	tgaacattct gtcttccag					240
15	gtgttgtata cattagggg					300
	aaaaacactg gggagtgaa					360
	tatatatata tatatatat					420
	tggaaaacgc tatttccat					480
20	cttaaatcca tgctggctc					540
20	aaacggagag gctaaacaa					600
	tgcctgtgtt ctctgcttg					660
	aactctgttg tggagacat					720
	catcttactc catgtctca					780
25	ctaaaaacct aatgatgaa					840
23	aagctaccag gttaaatga					900
	gaaagggggc ccaatactg					960
	tgggatccgg cgttcctat					1020
	ttgcacacca ggtacccac					1080
30	gaatggtgag cccatgagc					1140
30	tgccgtattt ctagatcaa					1200
	tgaaagttcc aacattttac					1260
	atgttataca gccctggct					1320
	atctgttgcc accaaatgga					1380
35	caacacaagg aacaagcaga					1440
33	acagacagca ctgatgttac					1500
	aggcagagag gataatatag	ctccagccta	tctcccagca	ccttgttaaț	ttctctcaac	1560

WO 2004/015139 PCT/EP2003/008602 26/112

	ctccagccac	aaatccgaga	cacaacgctc	ttcctccaaa	gaggtcgcgc	cttctctgtg	1620
	gtggttctca	gggatccgcc	ccagctcctt	ctccgttccc	agccccacac	actgggatca	1680
	ccaggcaccc	aagatcccac	ctctcaggtg	gtatcttcag	cgcaggctgc	cactcagccc	1740
	ccctccaggg	atctggggca	gaaggcgaat	atcccagagt	ctcagagtcc	acaggagtta	1800
5	ctctgaaggg	cgaggcgcgg	gctgcatcag	tggaccccca	caccccaccc	gcaccccaag	1860
	cgctccaccc	tgggggcggg	gccgtcgcct	tccttccgga	ctcgggatcg	atctggaact	1920
	ccgggaattt	ccctggcccg	ggggctccgg	gctttccagc	cccaaccatg	cataaaaggg	1980
	gttcgcggat	ctcggagagc	cacagagccc	gggccgcagg	cacctcctcg	ccagctcttc	2040
	cgctcctctc	acagccgcca	gacccgcctg	ctgagcccca	tggcccgcgc	tgctctctcc	2100
10	geegeeeeca	gcaatccccg	gctcctgcga	gtggcgctgc	tgctcctgct	cctggtagcc	2160
	gctggccggc	gcgcagcagg	tgggtaccgg	cgccctgggg	tccccgggcc	ggacgcggct	2220
	ggggtaggca	cccagcgccg	acagcctcgc	tcagtcagtg	agtctcttct	tccctaggag	2280
	cgtccgtggc	cactgaactg	cgctgccagt	gcttgcagac	cctgcaggga	attcacccca	2340
	agaacatcca	aagtgtgaac	gtgaagtccc	ccggacccca	ctgcgcccaa	accgaagtca	2400
15	tgtaagtccc	gccccgcgct	gcctctgcca	ccgccggggt	cccagaccct	cctgctgccc	2460
	caaccctgtc	cccagcccga	cctcctgcct	cacgagattc	С		2501

<210> 45

<211> 2501

20 <212> DNA

<213> Homo Sapiens

<400> 45

25	ggcgacagag	caagactccc	tcttaaaaaa	aaaaaaaaaa	aaagattctg	agtcaaagtg	60
	ctcaagttga	atgcattttg	tcatccacaa	gacaaatcgt	gttaacccct	tgtggtttac	120
	tttatctata	aaatagagat	aacaatagtt	cctgcttcta	gggttgttgt	gggaattaaa	180
	gacttagaat	aatgttcagc	ctctaatcag	tgctgtcaca	actgtctgat	acaattgtat	240
	tatatttgtg	tactttgtag	attgatatta	aatcatactt	ttaaaaatag	gtgcttaatg	300
30	ttccactcaa	ttaccttaaa	acatgtttaa	ttatgtctct	atcctactct	tataacactt	360
	ctataaaaac	tttttacata	tagcgtccac	ttttggttca	gtttcttagg	aaaataactt	420
	tgagagtcag	ctatctgaac	caaagaaaca	ttaacattac	cagactatat	tgggattttt	480
	gagactggct	tttatcaatt	ctttagctac	gggctcttgt	catcatctct	accagtgacc	540
	taagtgtcaa	acccaaatgc	cttgtatctg	tcccattaaa	gagatgcagc	atctgctcct	600
35 '	ttcttactgt	ttccatttcc	tctgccatgc	ctcctcttac	aaccataaat	atccaggtct	660
	cttaggtttt	aaacggggca	tctctcaacc	cccacattct	tttccttggt	tattcccttc	720

WO 2004/015139 PCT/EP2003/008602 27/112

	cctccaacag	ttcaattcac	ctagatcccc	acgcctgaaa	ttatcctaga	tgtcctagag	780
	gcgcctcatc	attacaatgg	tacattattc	tccactcctt	tacatgtcac	gccagctttc	840
	aaactgaaaa	tctgagcgtt	catccctggt	gcatcacctt	taaattccag	atctccaaaa	900
	tccagggtca	tgtaacctta	aaaaattttt	accetetett	ctccactgcc	cttgttcagg	960
5	ccttatctct	tccagcagct	gttccaaagg	cctactctgt	tttcctttcg	gagtgctaac	1020
	ctccaccgaa	gcctccaccc	agttgccaat	tctgccccat	gcctgataat	ttgctcgtgc	1080
	gttgacatac	ataaaatttc	taagacaaaa	attttttaat	aatggtaaat	gaaccttggg	1140
	aactgcatac	agatcataca	gatccataat	aagagaaaag	gtcccagatt	aacacggaaa	1200
	actttccatt	taactaacat	ttgcactggt	aaacttcatc	aagcaagacc	ctacttaatc	1260
10	ccacattacc	ttctactgaa	gaggttgtgg	tcattctctg	gaaatatctg	aattcattcc	1320
	tacaagttag	agaaacagcg	ttactcgaaa	cattatccct	tgggctcgag	ctctaaggca	1380
	cctgacaaac	ggagcgctgt	gggtaggggt	gaggtgtttt	ctccagggct	gggactttgc	1440
	cctgggcgag	ggcgccgcag	ggcaaagacc	tcaccgggca	gcagaatccg	ggcagaaatc	1500
	agcaactggg	cctcccgcgc	agcagaaaag	gggaatccag	tcggggccca	cccttcctgc	1560
15	cagegeagae	cgcaagtctg	gccccatcct	ctcgccggga	gtcggcctgg	cgcgtcccgc	1620
	ccaggtaccc	cgaccgtggg	cagcctgcgc	ccgtttgggt	cccatcgccc	cggcccggca	1680
	gatacctgag	cggtggccag	ggcaggtccc	cgttcttgcc	gatgcccatg	ttctgggaca	1740
	cagcgacgat	gcagtttagc	gaaccaacca	tgacagcagc	gggaggacct	ccgagcccgc	1800
	tcgttacagc	agaacgcgcg	gtcaagtttg	gcgcgaaatt	gtggccgccc	cgccccctcg	1860
20	tccctatttg	tgcaggcgag	gccccgcccc	cccgccccgg	cgcacgcagg	gtcgcggcgt	1920
	gctcgcgccc	gcagacgcct	gggaactgcg	gccgcgggtt	cgcgctcctc	gccgggccct	1980
	gccgccgggc	tgccatcctt	gccctgccat	gtctcgccgg	aagcctgcgt	cgggcggcct	2040
	cgctgcctcc	agctcagccc	ctgcgaggca	agcggttttg	agccgattct	tccagtctac	2100
	gggaagcctg	aaatccacct	cctcctccac	aggtgcagcc	gaccaggtgg	accctggcgc	2160
25	tgcagcggc	gcagcgcccc	cagegeeege	cttcccgccc	cagctgccgc	cgcacgtagt	2220
	aggttctgtc	: tgggactggg	cagggccatc	ggggctgggg	gggcggggct	tgtgggtaag	2280
	gcgggcggag	gcgtggaccc	: tccgcccgat	gatagggctg	gaggaggaag	gggcgggctg	2340
	aagaagggg	aggtgggaag	agcccagccg	gggctacaaa	ttgggtgaag	cgctgaggtt	2400
	ttagtactto	cgtttgagga	gataggcaaa	ggttatgcag	gtttttaatg	gcaggcctga	2460
30	gacaggaact	: caggtctcct	gactcccatt	: ctgatgaggg	g		2501

<210> 46

<211> 1092

<212> DNA

35 <213> Homo Sapiens

WO 2004/015139 PCT/EP2003/008602 28/112

<400> 46

	aagcttcccc ttcatcatcc aagaaggcat tcaggtcttt ctgtgctagg ccccaggtaa	60
	agtgctggac tacccagtaa ttgggttcag tagcaggatg gcctcagatt gaggtcccag	120
5	ggccaaagga ccacteetet eeteageget ggteegggaa aggcaagete egggegggag	180
	cgcacgccgc gcccccgaag cctggctccc tcgccacgcc cacttcctgc ccccatcccg	. 240
	cgcctttcca ggtcttctcc cggtgaaccg gatgctctgt cagtctccta ctctgcgtcc	300
	teggeegegg ecegggteee tegeaaagee getgeeatee eggagggeee ageeageggg	360
	ctcccggagg ctggccgggc aggcgtggtg cgcggtagga gctgggcgcg cacggctacc	420
10	gegegtggag gagacactge eetgeegega tgggggeeeg gggegeteet teaegeegta	480
	ggcaagcggg gcggcggctg cggtacctgc ccaccgggag ctttcccttc cttctcctgc	540
	tgctgctgct ctgcatccag ctcgggggag gacagaagaa aaaggaggta gaatggatcc	600
	ccttggcctt cccctgtggt cgggggcggg ccagggtggg ccgcgttgcc caggcagccc	660
	tgccgtgttg ctaggcagcc tggtcgccgg cgtgggcgat gccggcgctg gggcgggagc	720
15	cgcgagggtg ggaggccctg gggcgtttcc gggacgtgga gttagcaggg ttctgacttg	780
	aaaaacgacg gcaaagcgtg ttcttgactg cttctgagca cctcacacct ttcagaccca	840
	gggcgccttt attcccagct ggaagcccag cttagagcaa tggtgccact aaaaggggtg	900
	tgttggatgt gaaaataccc tttggaagta tttataagcc tgcaggaaat atgttttcct	960
	tattttctta ctctgctccc ttcattaccc atttcaagaa gcaacagaac ctgtgcagag	1020
20	tgtgttttaa gttacactgt atgtttattt ttgtttatgt tgaactcggt gtatacttgt	1080
	gagaataagc tt	1092
	<210> 47	
	<211> 2501	
25	<212> DNA	i
	<213> Homo Sapiens	
	•	
	<400> 47	
		•
30	cgaaatgaaa cctcgcccag gaggccgcgg acctggacac ccggcgccac ctccttcacc	60
	tetgacceag gttteeteee ggegetgega geteeegggg aagggttaga geeggeagee	120
	ctccccagcc cggggagggg agagggttat gcgaccccac ctctggctag ggccggggag	180
	gcctttgctt cccgggagcc ctgcccgggc tccttggtcg cagggctgct gggtcccagg	240
	caggaacgag agggtgaggc ccacatgtgg cccggcggcc cagggcggct tgcagcgtcc	300
35	teactgteec ggctgccagg ggctgcggcg acgcggccag teagcagcga gttcaggtcg	360
	cgcagatttt attgatgagc tctgactttc agcactttcc ctaagtcaag aagagtctag	420

480 cgtaccette ggetgettea ttteageete cetgeeteag etetteagee etatteeece tegecetgte etggggtgtg tacageagee caggeettee tteteettee eggeteegtg 540 gcccgaagec gccgagagag ctcgggacag cgcaggacca ggcagccgct cgctctcctg 600 660 toaccttaac tgcaggctcc gaggggcgcc tttggagtgt actgaggtgt gtcctaatcg tgcggcattc aacaaatgga cttctggtgt gtggtcagaa gagaaaagcc atttacttac 720 5 tttcctcccc ggttttctgg caacagctga aggggagctg cctccgtgga ctgagcagac 780 ccaggagagg gagtcgtggt gcggagacac acgcaccaca cacagatgac cggtggcaca 840 900 cacgacacac gctgacatac cgacatcgcc agtgggacac acacacacac acacacacac 960 acacacaca acacagagag agagagagaa tccctcccag cattggtcat ccgcccccc acccaggett ccacteece teccetetta teteccetgg etteccetee tetegggege 1020 10 tgcgaaaagc agccgcactt agtcaacaaa tggcacgtgg gagaagttgg tgagtgtttg 1080 1140 gtgaggactc ttcagggctt ttcacaagaa ccctctgtac acaaagtaag tggcgtgttt 1200 actogggcot otocagocag agotgtgcot otgotocgot gogcacogog gottocgaaa ggagaaagga gagaagaaag ggcggggaga gcggggtgga ggatttggac aggccctgga 1260 ggcttgggct ggggaggcct ctggcctcgt ttagttctcg gcccggcaac ctcctctcgg 1320 15 1380 cctaggette geegeggeet eegeagetgg aatggagetg eeaggaceea gtgaegetee 1440 cgcccctttc ctcttcttcc aaggggccag gtgggctggg gtgcggccgc cgctgtgctc tgtgtcttgg ggccccggct gggatggggt gggggcgggc gggggcgggg cggcaggcca 1500 cgctgtcctg gagttggcaa gaaaggacag cacagaaact tgcaccctcc gaggactggg 1560 1620 agtcccgagt ccagcttagg gggagtgggg gcgcgacccc caacccagaa accttcactt 20 1680 gaccyctcaa gttcycygca ycaggycygy ccycyccyaa tctcygcyty cycygaycyg ggagatgcag gcgagcgcca gagcccgggc tcgggggccc tgcgccgggg agaggagccg 1740 ggacccaccg gcggagccga aaacaagtgt attcatattc aaacaaacgg accaattgca 1800 ccaggcgggg agagggagca tccaatcggc tggcgcgagg ccccggcgct gctttgcata 1860 aagcaatatt ttgtgtgaga gcgagcggtg catttgcatg ttgcggagtg attagtgggt 1920 25 ttgaaaaggg aaccgtggct cggcctcatt tcccgctctg gttcaggcgc aggaggaagt 1980 gttttgctgg aggatgatga cagaggtcag gcttcgctaa tgggccagtg aggagcggtg 2040 gaggcgaggc cgggcgccgg cacacacaca ttaacacact tgagccatca ccaatcagca 2100 taggtgtgct ggctgcagcc acttccctca cccacactct ttatctctca ctctccagcc 2160 2220 gctgacagcc cattttattg tcaatctctg tctccttccc aggaatctga gaattgctct 30 cacacaccaa cccagcaaca tccgtggaga aaactctcac cagcaactcc tttaaaacac 2280 cgtcatttca aaccattgtg gtcttcaagc aacaacagca gcacaaaaaa ccccaaccaa 2340 2400 acaaaactct tgacagaagc tgtgacaacc agaaaggatg cctcataaag gtgagtccgc 2460 ttctttcttc tcgctttatt tttattgcaa tattcagaca ggtctccccc ttcctccccc 2501 cttccttcct cccctctcgc cggtcccctc ccccactgct a 35

<210> 48

<211> 2501

<212> DNA

<213> Homo Sapiens

5

<400> 48

						•	
	tgatggttgc a	acaactctga	gtacatgaaa	aatcaatgaa	ctgatacttt	gagtgagctg	60
	tatgatactg (gaattacacc	tcaataaagc	atggtaactg	ttttaagata	ggctggaaag	120
10	agaaagcctg a	aaacaacaa	taatgatatt	aataaattag	tttacttctc	tagtctcata	180
	tacttctgtg (cccacacttg	ctcctgttct	attcataatg	gtccccttgc	agttgccata	240
	ttatatcctg (ccatttgatg	cccggtgaac	attctatacc	tgcttcccag	aattctcttt	300
	acctttcctc	tatctgccta	acttccacat	atctaaaatt	aatcagagta	aactatttac	360
	tagaacaacc	aactccaaat	cctagtaacc	taacatgata	aaggtttgtt	tctcactcat	420
15	atagcccctc	cccagatgat	cgaggggtcc	aggctcctta	cctctagtgg	ctccccacc	480
	ttctggagtc	ttctgcattc	tttatacatg	gttgagataa	actatgagtc	attagcacag	540
	ctagaccttg	aggtcctaca	agaaaatttg	caaatcattc	actctgtttt	gaacaaggta	600
	tatttaagat	gatgttaaaa	tacccaatgg	tcttgggtca	aatacagttt	atgactgtgt	660
	atctaaaata	tatattgcaa	tattcttccc	tttttctact	gacttcatga	atttagcggg	720
20	gatccatttt	ataagctcaa	agataattac	ttttcagact	aagaatattt	agggtaaaaa	780
	gtactgttca	acatctctac	tgaggatgtt	atgatgtagc	acactgtata	agctggagct	840
	aaaggaaact	ttccttaaag	tgctatttac	taaaaattgg	aacacattcc	ttaagacaaa	900
	tcgaagtgtg	gcacacaaca	tccaaacttc	catcatagat	acagaggtgt	taccatctcc	960
	cactcccaaa	tttctttgtc	acgctgagga	tactcaagag	gagcaggaca	tgttggtcgc	1020
25	agcaggagaa	acttgaaagc	attcactttt	atggaactca	taagggagag	aatttcttat	1080
	tttagtatcg	tccttgatac	atttattatt	ttaaaagata	atgtagccaa	atgtcttcct	1140
	ctgtgttaaa	tctttacaaa	actgaaatct	taaaatggtg	acaaaaatto	tacttctgat	1200
	agaatctatt	catttttcca	attagatagg	gcataattct	taatttgcaa	aacaaaacgt	1260
	aatatgctta	tgaggttcca	tcccaaagaa	cctgctattg	agagtagcat	tcagaataac	1320
30	gggtggaaat	gccaactcca	gagtttcaga	tcctaccggt	aattggggta	gggaggggct	1380
	ttgggcgggg	cctccctaga	ggaggaggcg	ttgttagaaa	gctgtctggc	: cagtccacag	1440
	ctgtcactaa	tcggggtaag	ccttgttgta	tttgtgcgtg	, tgggtggcat	tctcaatgag	1500
	aactagcttc	acttgtcatt	tgagtgaaat	: ctacaacccg	g aggcggctag	f tgctcccgca	1560
	ctactgggat	ctgagatctt	cggagatgac	: tgtcgcccgc	agtacggagc	: cagcagaagt	1620
35	ccgacccttc	ctgggaatgg	gctgtaccga	a gaggteegad	tagececage	g gttttagtga	1680
	gggggcagtg	gaactcagcg	agggactgag	g agcttcacaç	g catgcacgac	g tttgatgcca	1740

WO 2004/015139 PCT/EP2003/008602 31/112

	gagaaaaagt	cgggagataa	aggagccgcg	tgtcactaaa	ttgccgtcgc	agccgcagcc	1800
	actcaagtgc	cggacttgtg	agtactctgc	gtctccagtc	ctcggacaga	agttggagaa	1860
	ctctcttgga	gaactccccg	agttaggaga	cgagatctcc	taacaattac	tactttttct	1920
	tgcgctcccc	acttgccgct	cgctgggaca	aacgacagcc	acagttcccc	tgacgacagg	. 1980
5	atggaggcca	agggcaggag	ctgaccagcg	ccgccctccc	ccgcccccga	cccaggaggt	2040
	ggagatccct	ccggtccagc	cacattcaac	acccactttc	tcctccctct	gcccctatat	2100
	tcccgaaacc	ccctcctcct	tcccttttcc	ctcctccctg	gagacggggg	aggagaaaag	2160
	gggagtccag	tcgtcatgac	tgagctgaag	gcaaagggtc	cccgggctcc	ccacgtggcg	2220
	ggcggcccgc	cctcccccga	ggtcggatcc	ccactgctgt	gtcgcccagc	cgcaggtccg	2280
10	ttcccgggga	gccagacctc	ggacaccttg	cctgaagttt	cggccatacc	tatctccctg	2340
	gacgggctac	tcttccctcg	gccctgccag	ggacaggacc	cctccgacga	aaagacgcag	2400
•	gaccagcagt	cgctgtcgga	cgtggagggc	gcatattcca	gagctgaagc	tacaaggggt	2460
	gctggaggca	gcagttctag	tcccccagaa	aaggacagcg	g		2501
15	<210> 49						
	<211> 2501						
	<212> DNA						
	<213> Homo	Sapiens					
20	<400> 49	•					
				agtgtgtgcg			60
	accacaagtg	ccacttagca	actccactag	acagggcagt	gtttcagcat	ggggtggggt	120
				tgccaatgca			180
25				attgggcaag			240
				attacaagta			300
	-			gtttccttta			360
				tagattggct			420
				ctatecttet			480
30				gtgtgagaga			540
				ggcaggggct		•	600
			•	: cagtttacaa			660
				ggcaaccaac			720
				tggactttca			780
35	gtcacagctc	tgagctgtgt	gaecttgggt	aggtctcatc	tccccggggt	tttgtttcac	840
	cagttgaaca	gtatgaggat	gagtcacago	: taacatttgt	tccatgatat	ttacccagca	900

	ccatacaagt gttatttctg tcctcccagt taacactgac gtgggtagta ttatatgccc	960
	attttacaga tgaggaaact gaagcctgaa gaagttaaat acttatccca gaacacacag	1020
	ctggtaagtg gcagacctgg aattggaatc tagttcagtt tgattcccca acccatgctc	1080
	ttgaccacta tactgttttt tcaagtccag atctgaaatc tcattttctg tgtggctgtg	1140
5	tgtttgggac aggggtaacc aattcctgac tactctatat gctgcataga acctggagag	1200
	gatttttcaa agtaaatgaa tctcgaaagc tggattgcag agcaaacgag tgcagtcaat	1260
	tcagccaggg gcttgcaaga gggagaaaga gaaaaagact gtggaatgga aagtttccca	1320
	acccaageet tteccaaggg gtageeatte tetgttetae agtttaggge ttgcatgtge	1380
	tttttctgga gtggaaaaat acataagtta taaggaattt aacagacaga aaggcgcaca	1440
10	gaggaattta aagtgtgggc tggggggcga ggcggtgggc gggaggcgag cgggcgcagg	1500
	cggaacaccg ttttccaagc taagccgccg caaataaaaa ggcgtaaagg gagagaagtt	1560
	ggtgctcaac gtgagccagg agcagcgtcc cggctcctcc cctgctcatt ttaaaagcac	1620
	ttcttgtatt gtttttaagg tgagaaatag gaaagaaaac gccggcttgt gcgctcgctg	1680
	cctgcctctc tggctgtctg cttttgcagg gctgctggga gtttttaagc tctgtgagaa	1740
15	tootgggagt tggtgatgtc agactagttg ggtcatttga aggttagcag cocgggtagg	1800
	gttcaccgaa agttcactcg catatattag gcaattcaat ctttcattct gtgtgacaga	1860
	agtagtagga agtgagctgt tcagaggcag gagggtctat tctttgccaa aggggggacc	1920
	agaattcccc catgcgagct gtttgaggac tgggatgccg agaacgcgag cgatccgagc	1980
	agggtttgtc tgggcaccgt cggggtagga tccggaacgc attcggaagg ctttttgcaa	2040
20	gcatttactt ggaaggagaa cttgggatct ttctgggaac cccccgcccc ggctggattg	2100
	gccgagcaag cctggaaaat ggtaaatgat catttggatc aattacaggc ttttagctgg	2160
	cttgtctgtc ataattcatg attcggggct gggaaaaaga ccaacagcct acgtgccaaa	2220
	aaaggggcag agtttgatgg agttgggtgg acttttctat gccatttgcc tccacaccta	2280
	gaggataagc acttttgcag acattcagtg caagggagat catgtttgac tgtatggatg	2340
25	ttctgtcagt gagtcctggg caaatcctgg atttctacac tgcgagtccg tcttcctgca	2400
	tgctccagga gaaagctctc aaagcatgct tcagtggatt gacccaaacc gaatggcagc	2460
	atcggcacac tgctcaatgt aggtttattt ttttcccttc t	2501

<210> 50

30 <211> 2501

<212> DNA

<213> Homo Sapiens

<400> 50

	agáaaagcat	atggtgccaa	gagaacgtgt	aatacaagat	ctactcatgg	aggtgaggga	120
	aagcttgccc	atcaaagaag	ttatgattca	atccacgaag	accaggagtt	ggctgggtga	180
	agaaaaaaag	gtcagaggaa	ggaagtccac	actggggaag	gctctaagca	taaagggtag	240
	gaggattaca	gaggcatatt	cacgaaattt	ggagaaggct	ttcagtaagc	aaggagaagc	300
5	caaatgaaag	tttacgggag	agttggaggc	ttgaagacac	gttcaaggat	ctggttttta	360
	tcttctcttt	atctcaagag	cagtgggaag	ccattaaatg	attttaatca	gagggttggt	420
	ataactagtt	ttgtattttg	aaaagctgaa	ttcagctctc	gtttgagaaa	ctgagtgaaa	480
	gagcccagaa	cggccgtggc	tgagggtgac	tcgtgggaga	ctcctacaca	agccatggca	540
	gtggcatggg	ctggtggcag	aagagggaat	agggagaaga	tttggaactc	aatcttcctc	600
10	cattgacaaa	gtcactccag	ctttggcaag	gcaattaatt	ggtgggaaag	aagatgccta	660
	gccctcctga	tttcactgca	ctttctgcat	cttcaacatg	agtactggga	agtggcaaaa	720
	catccagagg	cagcttgggt	gctaggtgga	gcatgagtta	aaattccagg	atgaagcaaa	780
	tgaacactta	gaatgacagg	aaagatttgg	gagttgggtt	tgggggaggg	ctatttacct	840
	ttattccctg	gagaccctgg	cacaaaccct	tgcctctgca	atcttcctct	caggtaaagg	900
15	aattcattaa	atgaattgct	agaagatcta	ctgaccagag	ggctgtacag	aatcatatct	960
	ttgagagtgg	gaagtaggtt	gatcacatag	tttattatcc	aatcaggaca	tatctgaaag	1020
	agaaaggggg	ttctattaat	atttaaacta	caaaacatgt	acaccaggaa	tgtcttgggc	1080
	aaatctggtt	gccctagcaa	gaaaggaaat	ttgaaagttt	atactgttct	gctcccatgt	1140
	taccccgttt	gcacatgaga	gggtaagtat	tctctttctt	cacctgcatt	aagggaataa	1200
20	aagcacaagc	attcaggtga	ctcccaaccc	acttttaatt	ttacagtttc	tgctatactc	1260
	tatacattct	gaaaattaca	tttcccacca	ctatcacttc	gtgataggtg	atcatttaca	1320
	attactcact	gactcagtcc	cgggaagagg	cggtgcaaaa	tgggacgctc	tatccaggtg	1380
	ctcattagaa	atgcagaatc	tetgeetgee	tcctagacct	actgaattag	aatctgcatt	1440
	tttaaataag	atttccaggt	gatcaatatg	tacattaaaa	cttgagaaaa	acctctagac	1500
25	ttcgacctaa	agaaaaacat	tttacaactt	gacagtgtat	gcacatacat	acatgcatat	1560
	agacacaact	gaagcacaaa	tttaatgaag	tagaatttac	cgttactatt	ttatttggga	1620
	aagaaatgtg	, ctcgcgactc	aatagattgg	agtattcact	cctggatctc	aacttgcaat	1680
	ttgaaaacgo	atctctaaag	cacctaggag	caatctgaag	aaagctgagg	ggaggcggca	1740
	gatgttctga	tctactaggg	aaaacgtgga	cgttttctgt	tgttactttg	tgaactgtgt	1800
30	gcacttagto	attcttgagt	aaatacttgg	agcgaggaac	: tcctgagtgg	tgtgggaggg	1860
	cggtgaggg	g cagctgaaag	teggecaaag	cteteggagg	ggctggtcta	ggaaacatga	1920
	ttggcagcta	a cgagagagct	aggggctgga	cgtcgaggag	, agggagaagg	ctctcgggcg	1980
	gagagaggto	c ctgcccagct	gttggcgagg	, agtttcctgt	: ttcccccgca	gcgctgagtt	2040
	gaagttgagi	t gagtcactcg	cgcgcacgga	a gcgacgacac	ccccgcgcgt	gcacccgctc	2100
35	gggacagga	g ccggactcct	gtgcagctto	cctcggccgc	cgggggcctc	cccgcgcctc	2160
	gccggcctc	c aggccccctc	: ctggctggcg	g agegggeged	acatctggcc	cgcacatctg	2220

WO 2004/015139 PCT/EP2003/008602 34/112

							•
,	cgctgccggc	ccggcgcggg	gtccggagag	ggcgcggcgc	ggaggcgcag	ccaggggtcc	2280
	gggaaggcgc	cgtccgctgc	gctgggggct	cggtctatga	cgagcagcgg	ggtctgccat	2340
	gggtcggggg	ctgctcaggg	gcctgtggcc	gctgcacatc	gtcctgtgga	cgcgtatcgc	2400
	cagcacgatc	ccaccgcacg	ttcagaagtc	gggtgagtgg	tccccagccc	gggctcggcg	2460
5	gggcgccggg	ggtcttcctg	gggtccccgc	ctctccgctg	С		2501
	<210> 51						
	<211> 2500						
	.040						

<212> DNA

10 <213> Homo Sapiens

<400> 51

	ttcccatcaa gccctagggc tcc	tcgtggc tgctgggagt	tgtagtctga	acgcttctat	60
15	cttggcgaga agcgcctacg ctc	cccctac cgagtcccgc	ggtaattctt	aaagcacctg	120
	caccgccccc ccgccgcctg cag	agggcgc agcaggtctt	gcacctcttc	tgcatctcat	180
	tctccaggct tcagacctgt ctc	cctcatt caaaaaatat	ttattatcga	gctcttactt	240
	gctacccagc actgatatag gca	ctcagga atacaacaat	gaataagata	gtagaaaaat	300
	tctatatcct cataaggctt acg	tttccat gtactgaaag	caatgaacaa	ataaatctta	360
20	tcagagtgat aagggttgtg aag	gagatta aataagatgg	tgtgatataa	agtatctggg	420
	agaaaacgtt agggtgtgat att	acggaaa gccttcctaa	aaaatgacat	tttaactgat	480
	gagaagaaag gatccagctg aga	gcaaacg caaaagcttt	cttccttcca	cccttcatat	540
	ttgacacaat gcaggattcc tcc	caaaatga tttccaccaa	ttctgccctc	acagetetgg	600
•	cttgcagaat tttccacccc aaa	atgttag tatctacggc	accaggtcgg	cgagaatcct	660
25	gactctgcac cctcctcccc aac	ctccattt cctttgcttc	ctccggcagg	cggattactt	720
	gecettaett gteatggega etg	gtccagct ttgtgccagg	agcctcgcag	gggttgatgg	780
	gattggggtt ttcccctccc atq	gtgctcaa gactggcgct	aaaagttttg	agcttctcaa	840
	aagtctagag ccaccgtcca ggg	gagcaggt agctgctggg	ctccggggac	actttgcgtt	900
	cgggctggga gcgtgctttc cac	cgacggtg acacgcttcc	ctggattggg	taagctcctg	960
30	actgaacttg atgagtcctc tct	tgagtcac gggctctcgg	ctccgtgtat	tttcagctcg	1020
	ggaaaatcgc tggggctggg gg	tggggcag tggggactta	gcgagtttgg	gggtgagtgg	1080
	gatggaagct tggctagagg ga	tcatcata ggagttgcat	tgttgggaga	cctgggtgta	1140
	gatgatgggg atgttaggac ca	tccgaact caaagttgaa	cgcctaggca	gaggagtgga	1200
	gctttgggga accttgagcc gg	cctaaagc gtacttcttt	gcacatccac	ccggtgctgg	1260
35	gcgtagggaa tccctgaaat aa	aagatgca caaagcattg	aggtctgaga	cttttggatc	1320
	togaaacatt gagaactcat ag	ctgtatat tttagagccc	atggcatcct	agtgaaaact	1380

WO 2004/015139 PCT/EP2003/008602 35/112

	ggggctccat tccgaaatga tcatttgggg gtgatccggg gagcccaagc tgctaag	ggtc 1440
	ccacaacttc cggacctttg tccttcctgg agcgatcttt ccaggcagcc cccggc	tccg 1500
	ctagatggag aaaatccaat tgaaggctgt cagtcgtgga agtgagaagt gctaaac	ccag 1560
	gggtttgccc gccaggccga ggaggaccgt cgcaatctga gaggcccggc agccct	gtta 1620
5	tigttigget ccacatttac attictgeet ettgeageag cattleeggt tiett	ttgc 1680
	cggagcagct cactattcac ccgatgagag gggaggagag agagagaaaa tgtcct	ttag 1740
	gccggttcct cttacttggc agagggaggc tgctattctc cgcctgcatt tctttt	tctg 1800
	gattacttag ttatggcctt tgcaaaggca ggggtatttg ttttgatgca aacctc	aatc 1860
	cctcccttc tttgaatggt gtgccccacc ccccgggtcg cctgcaacct aggcgg	acgc 1920
10	taccatggcg tagacaggga gggaaagaag tgtgcagaag gcaagcccgg aggcac	tttc 1980
	aagaatgagc atatctcatc ttcccggaga aaaaaaaaa agaatggtac gtctga	gaat 2040
	gaaattttga aagagtgcaa tgatgggtcg tttgataatt tgtcgggaaa aacaat	ctac 2100
	ctgttatcta gctttggget aggccattcc agttccagac gcaggctgaa cgtcgt	gaag 2160
	cggaaggggc gggcccgcag gcgtccgtgt ggtcctccgt gcagccctcg gcccga	.gccg 2220
15	gttcttcctg gtaggaggcg gaactcgaat tcatttctcc cgctgcccca tctctt	agct 2280
	cgcggttgtt tcattccgca gtttcttccc atgcacctgc cgcgtaccgg ccactt	tgtg 2340
	ccgtacttac gtcatctttt tcctaaatcg aggtggcatt tacacacagc gccagt	gcac 2400
	acagcaagtg cacaggaaga tgagttttgg cccctaaccg ctccgtgatg cctacc	aagt 2460
	cacagaccct tttcatcgtc ccagaaacgt ttcatcacgt	2500
20		
	<210> 52	
	<211> 286	
	<212> DNA	
	<213> Homo Sapiens	
25		
	<400> 52	
	tttgcactag gctggaagtg gccgccagtc ccccgtgcaa ttccattctc tggaaa	aagtg 60
	gaatcagctg gcattgccca gcgtgatttg tgaggctgag ccccaacagt ccaaa	gaagc 120
30	aaatgggatg ccacctccgc ggggctcgct cctcgcgagg tgctcacccc gtatc	tgcca 180
	tgcaaaacga gggagcgtta ggaaggaatc cgtcttgtaa agccattggt cctgg	
	agcetetace caatgettte gtgatgetge tgetgateta tttggg	286
	<210> 53	
35	<211> 1400	
	<212> DNA	

<213> Homo Sapiens

<220>

<221> unsure

5 <222> (1371)

<223> unknown base

<400> 53

ttccagctgt caaaatctcc cttccatcta attaattcct catccaacta tgttccaaaa 60 10 cgagaataga aaattagccc caataagccc aggcaactga aaagtaaatg ctatgttgta 120 ctttgatcca tggtcacaac tcataatctt ggaaaagtgg acagaaaaga caaaagagtg 180 aactttaaaa ctcgaattta ttttaccagt atctcctatg aagggctagt aaccaaaata 240 300 atccacgcat cagggagaga aatgccttaa ggcatacgtt ttggacattt agcgtccctg caaattctgg ccatcgccgc ttcctttgtc catcagaagg caggaaactt tatattggtg 360 15 accegtggag ctcacattaa ctatttacag ggtaactgct taggaccagt attatgagga 420 gaatttacct ttcccgcctc tctttccaag aaacaaggag ggggtgaagg tacggagaac 480 agtatttctt ctgttgaaag caacttagct acaaagataa attacagcta tgtacactga 540 aggtagctat ttcattccac aaaataagag ttttttaaaa agctatgtat gtatgtgctg 600 catatagagc agatatacag cctattaagc gtcgtcacta aaacataaaa catgtcagcc 660 20 tttcttaacc ttactcgccc cagtctgtcc cgacgtgact tcctcgaccc tctaaagacg 720 tacagaccag acacggcggc ggcggcggga gaggggattc cctgcgcccc cggacctcag 780 ggccgctcag attcctggag aggaagccaa gtgtccttct gccctccccc ggtatcccat 840 ccaaggcgat cagtccagaa ctggctctcg gaagcgctcg ggcaaagact gcgaagaaga 900 960 aaagacatct ggcggaaacc tgtgcgcctg gggcggtgga actcggggag gagagggagg 25 gatcagacag gagagtgggg actaccccct ctgctcccaa attggggcag cttcctgggt 1020 ttccgatttt ctcatttccg tgggtaaaaa accctgcccc caccgggctt acgcaatttt 1080 tttaagggga gaggagggaa aaatttgtgg ggggtacgaa aaggcggaaa gaaacagtca 1140 tttcgtcaca tgggcttggt tttcagtctt ataaaaagga aggttctctc ggttagcgac 1200 caattgtcat acgacttgca gtgagcgtca ggagcacgtc caggaactcc tcagcagcgc 1260 30 ctccttcagc tccacagcca gacgccctca gacagcaaag cctacccccg cgccgcgccc 1320 1380 tgcccgccgc tgcgatgctc gcccgcgccc tgctgctgtg cgcggtcctg ncgctcagcc 1400 atacaggtga gtacctggcg

35 <210> 54 <211> 2501

<212> DNA <213> Homo Sapiens

<400> 54

5						
	gataatcttt tcatacaag	a tgcattctgc	ttttgtgggc	ctcttgcagc	cctcaagccc	. 60
	ccatctgatt tgtacacaa	t gatccagtgg	gccagaggag	cccagagcca	tgagcggccc	120
	atccctccaa gaactattt	c tgactgtcca	gtatcatgga	gcaagtggaa	agaagaaaaa	180
	aaaaacccaa ttacttttc	g aagagcaaga	tgaatgctgt	agaaggagaa	ggaagggag	240
10	ggagatggat gggtgccga	t tccagaatct	tcagatctgc	ttggatgaat	cattacctat	300
	gatttgcggg acaagaatc	t gattttattc	atcaaccagt	agaaactttt	ctttctgcct	360
	cccaacatct gaaatccaa	c aaacatgtgc	cttaggaaca	taccggtcat	cttttagagg	420
	cattttatat acatattga	g taactagaaa	acactctttc	cgtaatacac	acacacacac	480
	acacacacac acaccatct	t gtcatacaac	actcccacgc	aagaaaagcg	aaactgctgt	540
15	ttgatgaatg taaacactt	g gctgtttgca	gcagtcggga	gtcctgccag	gtttaagtgc	600
	taagatggga ggtgaacco	c aggggtttcc	ccctgcccgt	gctgagatcc	ttatttggtc	660
	aagettetae etatgeeet	g geeteggage	gagcccgata	gcgctggatc	acagcagagg	720
	gagegaggeg getgaegte	c catcccgaag	agatgaatgg	aattccagga	agctagagtc	780
	atgctggctt gggacagtg	g cttggagacc	agacttcaat	gacagaagca	ctaggcagcg	840
20	gcactcatgg caatgtgtg	c acccacagaa	atgtaaccca	cacctcgggt	tcaggagccg	900
	aaaaatgaaa agaacgttt	a gggaggaaaa	agggaaatac	aataataggc	agagagtaat	960
	ttattactct atgggtctg	c tctgtaaata	gctgaagact	ctggagccag	atggttctgc	1020
	aaattctcca aacaggagt	c acgttaagaa	gcacgagtgg	gcacaaaaac	tgtttttcaa	1080
	gacacaattt caatttggc	t tgtggaaact	ggatacgagt	aagtttcctt	aaaattcgag	1140
25	tagaaagcag ctgtcctc	c cgggcccctt	gatgagaata	cgcacaccgc	ccccaagcgg	1200
	ccggccgagg gagcgccgc	g gcagcgggag	aggcgtctct	gtgggccccc	tggcagccgc	1260
	ggcaggaaag ggcccgaag	g, cagcgaaggo	gaacgcggcg	caccaacctg	ceggeeeege	1320
	cgacgccgcg ctcacctc	c teeggggegg	gcgtggggcc	agctcaggac	aggcgctcgg	1380
	gggacgcgtg tcctcacco	c acggggacgg	tggaggagag	tcagcgaggg	cccgaggggc	1440
30	aggtacttta acgaatgg	t ctcttggtgt	cccctgcgcc	ccgtcggccc	atttttcttt	1500
	ttacaaaacg ggcccagto	ct ctagtatcca	cctctcgcca	tcaaccaggc	attccgggag	1560
	atcagctcgc ccgaaagc	c ctgcgccaco	ccgcgggccc	tcctaggtgg	tctccccagc	1620
	cccgtccctt ttcgggate	gc ttgctgatca	ccccgagccc	gcgtggcgca	agagtacgag	1680
	cgccgagccc gtgcgcgc	ca aggctgcgtg	ggcgggcacc	gacttttctg	agaagttcta	1740
35	gtgctcccaa gccccgac	cc ccgccccctt	. cactttctag	ctggaaagtt	gcgcgccagg	1800
	cagcgggggg cggagaga	gg agcccagact	ggccccacc	tecegettee	tgcccggccg	1860

WO 2004/015139 PCT/EP2003/008602 38/112

ccgcccattg gccggaggaa tccccaggaa tgcgagcgcc cctttaaaag cgcgcggctc ctccgccttg ccagccgtg cgcccgagct ggcctgcgag ttcagggctc ctgtcgctct ccaggagcaa cctctactcc ggacgcacag gcattccccg cgcccctcca gccctcgccg ccctcgccac cgctcccggc cgccgcgctc cggtacacac aggtaagtcg cccccggcgg 5 ccgccgagga ccaaagctgc ccgggacatc cacctggagc gctgaggctt cagtccctct	
ccaggagcaa cctctactcc ggacgcacag gcattccccg cgcccctcca gccctcgccg	1920
coctogocae egetecegge egecgegete eggtacaeae aggtaagteg eeeeeggegg	1980
	2040
5 ccgccgagga ccaaagctgc ccgggacatc cacctggagc gctgaggctt cagtccctct	2100
	2160
ggtggacccc ggaacctaca ctctccccgc tcgcctaccc cagcccgctc ctctcagccg	2220
ctggaggact cttcagggca aggctccaga gccatcctct ccagccttga ggttcacaaa	2280
ccaactcatc aggacacccc aagattteet tactetetga agteeteett aageetttgt	2340
atcagcacte cagggaagag tetgtactte eeetgeeete eetgcaacee caaactacag	2400
10 ttectgatet tgeteacett egaetteeca aaageeecea aattgttggt ettgegeece	2460
ccacacttta aaaccagcat ctctttcctc cacctctctc t	2501

<210> 55

<211> 7258

15 <212> DNA

<213> Homo Sapiens

<400> 55

20	ttcaatagga	agcaccaaca	gtttatgccc	taggactttg	ttcccacaat	cctgtaacat	60
	catatcacga	cacctaaccc	aatccttatc	aagccctgtc	aaaaacggac	tttaaaccaa	120
	gctgcaaatt	ttcagtaatc	tggccttgcc	tttccccctc	tgatagcacc	atcaaacaaa	180
	ccccttact	gccgaaagca	ataagcccgg	ctttgttcca	tccactggtt	gtgttggtga	240
	tatctgggga	ctgccactga	acagacgcac	agagggagcc	cctacaggca	ggggtttttc	300
25	tgtctgtgct	tcttgggaga	gtatgtctcg	tacatttgtc	gcgtgatgaa	gacttcacag	360
	ctccatccag	cgaccagact	cacagctcca	tccagctgcg	gcaagggggt	ctgaggcagt	420
	cttaggcaag	ttggggccca	gcgggagaag	ttgcagaaga	actgattaga	ggacccagga	480
	ggcttcagag	ctgggctgag	gtagagagtc	tcctgtgcgc	cttctctcct	ctctgcaatt	540
		ttgcactggg					600
30		tcgattcctc					660
		tctttgtgag					720
		agggagccgg					780
		ccgcgggtcg					840
		cccgcagcgc					900
35		teceegggee					960
		tqcccqqqct					.1020

	gteeegggeg teeeeegegg gtgeegatee aggetgeeeg gagteeggag eecatagagg	1080
	agagagacag ctggggagcc tggtcaccgc gggcatctcc cctgcgctgc agtcgcccgc	1140
	ctggcctgcc ttcccgttcc tccgcctctt gccctgactt ctccttcctt tgcagagccg	1200
	ccgtctagcg ccccgacctc gccaccatga gagccctgct ggcgcgcctg cttctctgcg	1260
5	tcctggtcgt gagcgactcc aaagtgagtg cgctcttgct ttgactgatg ctgcccaagg	1320
	acctctgatc agcaccaggg gagaggaggg gctgctcagg gagctggggt ctccggattc	1380
	catccacage agggccagae tetececagg aaatgggaca gggtggcage ggaggettga	1440
	gaaccacggg ggttggcact ggctggcaag ggaggaagag ggccaccggg actgccccag	1500
	cctgcgggca tctggtagat gaagcttaat ccatttctcc tggctggaaa ccatggtctt	1560
10	ccatttgaga actagatacg aacagggtga ggcgagaggg agagggaaga gtgggttttg	1620
	ggattggggc cagtttaccc tcaccctgga tccctggagc atgggacctt tgatgaagcc	1680
	tectecegaa tetettecag ggeageaatg aactteatea agtteeatgt gagtateeae	1740
	ccctacaaca gttggctgca cagacaagtt gggaaggctt caggggacac tcccctccct	1800
	gccctctgct gcagcgtgcg ccacccctta ccacttccac tccccctcgc ttaccccacc	1860
15	tttgttctct ccagcgaact gtgactgtct aaatggagga acatgtgtgt ccaacaagta	1920
	cttctccaac attcactggt gcaactgccc aaagaaattc ggagggcagc actgtgaaat	1980
	aggtatgggg atctccactg caactgggag agaaatttgg ggacagggag ggatgggtgg	2040
	gaggcaagag caggcaggag ttaggagctg gaggtagggt gggtgacatc ttcatcccta	2100
	tgtgacaagc ataaacacac acacacgctc acgaaacagt ggccacacaa atgtgaggtg	2160
20	gggttggaag gagaccctgt ccagtcttct ggcaggtctg aaacgacatc tttaaaatgt	2220
	ccgttggcag ccgggcatgg tggctcacgc ttgtaatccc agcattttga gaggtcaagt	2280
	ttgagtggat catttaggtc aggagttcaa gaccagcctg gacaacatgg tgtaaccctg	2340
	cctctactaa aaatgcaaaa atcagcctgg catggtggtg gatgcctgta gtcccagcta	2400
	cttgggaggc tgaggcagga gaattgcttg aacatgggag gccagatctc agtgagctga	2460
25	gatcacacca ctgcactcca actgggcgac agagcaagac tccatctcaa aaaaaaaaaa	2520
	. aaataaaagt tagttggaat gttcttctct ttctcatatt ctctcatcct cctgtcccct	2580
	tgtagataag tcaaaaacct gctatgaggg gaatggtcac ttttaccgag gaaaggccag	2640
	cactgacace atgggcegge cetgeetgee etggaactet gecactgtee tteageaaac	2700
	gtaccatgcc cacagatctg atgctcttca gctgggcctg gggaaacata attactgcag	2760
30	gtgaggtggg ggcaacaagg accaaaagcc ctccctacag cttcccagaa accttgttac	2820
	catcccttc tcccagaggg ctggccatag cacaagagaa gtgcggcctc tggttgagtc	2880
	ttccctgagg ggaggaggca gggaaggccc tctgggttgg aatgacatcc cctatctttc	2940
	tgtgttgtgc caggaaccca gacaaccgga ggcgaccctg gtgctatgtg caggtgggcc	3000
	taaagccgct tgtccaagag tgcatggtgc atgactgcgc agatggtgag catcactgac	3060
35	ctgctgatga caggtgggtg gaaggggaca aacttacatg tccccttatt ccatcacagg	3120
	aggactgagg aggtgggggg tgcccgagag ggatgctttc tcctacctgc ctccctaaga	3180

	catecetetg titgteetee aggaaaaaag eeeteetete eteeagaaga attaaaattt	3240
	cagtgtggcc aaaagactct gaggccccgc tttaagatta ttgggggaga attcaccacc	3300
	atcgagaacc agccctggtt tgcggccatc tacaggaggc accggggggg ctctgtcacc	3360
	tacgtgtgtg gaggcagcct catgagccct tgctgggtga tcagcgccac acactgcttc	3420
5	atgtacggcc ctgggtttct cctcttcgac tcttctgccc caccccaagc acatcccttt	3480
	cteetteeca geaaagtgtt eegeeteatt teteeeteat etgeeeetgt eeatgegeee	3540
	atggccttgg ggacaagtcg tgctttgagg cctctaggga gggaaggaag aagtggcatg	3600
	atttcatggg actaagctgt ttgatgggta tcttcttcca cagtgattac ccaaagaagg	3660
	aggactacat cgtctacctg ggtcgctcaa ggcttaactc caacacgcaa ggggagatga	3720
10	agtttgaggt ggaaaacctc atcctacaca aggactacag cgctgacacg cttgctcacc	3780
	acaacgacat tggtgagggg gaacgcccgc gactactgtg gccataatgg cttggggaga	3840
	gtgggaccca gggagagact ggagctgagt tgaagctgcc ggtggggcag gggtggggcg	3900
	agggaccttg aagcctcgat atacatgaca aaggatggca gggaagagtt ccatgaagtc	3960
	tgaggggcct ggtgctcctc tggagagacc ctgaatttcc ccaacaagta gccctcttgc	4020
15	gagtggaaac agccctgtgg gtatatggct tgggctggga aggccctgtt tatatgaatt	4080
	agaaaaagac acaccttcct ttgtgggatg cagcctctgt ctgtgctagg atatagaact	4140
	tggagaatgg agccttggga tggattccag cctaactacc tcagggggat cctctagagt	4200
	gcagctggga gtttttgcag aaacgacctg tacagctgta tgcagtggct ctggccatcc	4260
	aagccttttt caacacctgg aacaaagccc ttggggcatg gggcagggga ggtttccagg	4320
20	tgataagcga ccagcagacc tccctggatg actgacctag ggataggcat agctacttcc	4380
	teggeacttg gaggggacag atggggaceg cetaaccagt agtgatettt etectetgac	4440
	cctctgtcct cccccagcct tgctgaagat ccgttccaag gagggcaggt gtgcgcagcc	4500
	atcccggact atacagacca tctgcctgcc ctcgatgtat aacgatcccc agtttggcac	4560
	aagctgtgag atcactggct ttggaaaaga gaattctagt aagtgacaat tgcgactgac	4620
25	ttagaaggtc ctgaggagtg ttttgacctg aaaatgagcc cagtgtgatc aagggaagac	4680
	tgcagagtta gaggtgggag cactgaggcg gtggcagatg ggtccaggga tggatgaaga	4740
	ytgttgttta gggagcgatg ggctgcaaag gtaaatagat ggtaggggct ataggtggag	4800
	gtaaatggct cagatttgca tggagagaga ataatgggcc tctccctggg tgatgatact	4860
	ttatggtgtc ccctctctgg cgagacgtcc cacgtggagg cagataaatc ttgatgcaaa	4920
30	cgcctccctg ttttctccac ctagccgact atctctatcc ggagcagctg aaaatgactg	4980
	ttgtgaagct gatttcccac cgggagtgtc agcagcccca ctactacggc tctgaagtca	5040
	ccaccaaaat gctgtgtgct gctgacccac agtggaaaac agattcctgc caggtgagtg	5100
	ttccaagcat ctctctccac ctcttccata tctccccaga gctcctgggc ttgttccagc	5160
	cagettaagg gtgtetetet etageeaaag eeetaagtag eeagaateag gageteaggt	5220
35	ctttgagggt ttaaaccagt ccttatgtgt ttgccagaca ttaccaaaaa aatcccagct	5280
	ctgcgctagt cacttcagac tgggggcacg agatcctaga aagaggaaac agtaaaagac	5340

WO 2004/015139 PCT/EP2003/008602 41/112

	aatgtaactc	agtgcccagg	gtgtgttgtg	aactataaat	gatcaggtgt	tcaggagagg	5400
	gaggtgagtg	ccaacctgag	ggtcagggag	gggaggcttt	aaaggaaatg	tgacttgata	5460
	ggcatttgaa	gaggcagagg	gaagaaagga	aggtgtttca	gttgaaagat	acaaaactga	5520
	gaaggaggct	ggcatattcc	gggtggggag	gagaactagg	gtctgggagt	gtggatggaa	5580
5	tagtggcaga	tgacagggct	tttaaagcca	agcaggggat	tttccaactt	cgatgtggta	5640
	gaaatggggc	tgcgtcaggc	acagtggctc	atgcctgtaa	teccageatt	gggctaggcc	5700
	gtagtcgatg	gatcattgag	gccagagttg	agaccggcct	ggaccaacat	ggtgaaaccc	5760
	tgtgtctact	aaaaaatgca	aaaaaaaaa	ttagccaggt	gtggtggtgc	ctgcctgtaa	5820
	tcccagctaa	tçaggaggct	gagacatgga	atcgcttgag	cacaggaggc	aagtttgacg	5880
10	tgagctgaga	tcacgtcatt	gcacgccagc	ctgggcgaca	gagcgagatt	ctgtcctccc	5940
	gccgaaaaaa	gaaagaaaat	gggaagtcgc	taaggacttt	gactgggaaa	ctcttccctc	6000
	tctctggtat	ggttgggtga	tgggatcaga	aatcccctcc	tcacttctct	agggctcatc	6060
	ttttgtatct	ttggcgtcac	agggagactc	agggggaccc	ctcgtctgtt	ccctccaagg	6120
	ccgcatgact	ttgactggaa	ttgtgagctg	gggccgtgga	tgtgccctga	aggacaagcc	6180
15	aggcgtctac	acgagagtct	cacacttctt	accctggatc	cgcagtcaca	ccaaggaaga	6240
	gaatggcctg	gccctctgag	ggtccccagg	gaggaaacgg	gcaccacccg	ctttcttgct	6300
	ggttgtcatt	tttgcagtag	agtcatctcc	atcagctgta	agaagagact	gggaagatag	6360
	gctctgcaca	gatggatttg	cctgtgccac	ccaccagggt	gaacgacaat	agctttaccc	6420
	tcaggcatag	gcctgggtgc	tggctgccca	gacccctctg	gccaggatgg	aggggtggtc	6480
20	ctgactcaac	: atgttactga	ccagcaactt	gtctttttct	ggactgaagc	ctgcaggagt	6540
	taaaaagggc	agggcatctc	ctgtgcatgg	gtgaagggag	agccagctcc	cccgacggtg	6600
	ggcatttgtg	, aggcccatgg	ttgagaaatg	aataatttcc	caattaggaa	gtgtaacagc	6660
	tgaggtctct	: tgagggagct	tagccaatgt	gggagcagcg	gtttggggag	cagagacact	6720
	aacgacttca	a gggcagggct	ctgatattco	: atgaatgtat	: caggaaatat	atatgtgtgt	6780
25	gtatgtttgd	acacttgtgt	gtgggctgtg	agtgtaagtg	, t g agtaagag	ctggtgtctg	6840
	attgttaagt	ctaaatattt	: ccttaaactg	tgtggactgt	gatgccacac	agagtggtct	6900
	ttctggagag	g gttataggto	actcctgggg	cctcttgggt	: cccccacgtg	acagtgcctg	6960
	ggaatgtaci	t tattctgcag	g catgacctgt	gaccagcact	gtctcagttt	cactttcaca	7020
	tagatgtcc	tttcttggc	agttatccct	tccttttag	ctagttcato	caatcctcac	7080
30	tgggtgggg	t gaggaccact	ccttacacto	, aatatttata	a tttcactatt	tttatttata	7140
	tttttgtaa	t tttaaataaa	a agtgatcaat	: aaaatgtgat	ttttctgatg	acaaatctcc	7200
	ctggtgctt	g tatgggaagg	g agttggagta	a cataaaaag	g agaaaataac	aaaggtgg	7258

<210> 56

35 <211> 852

<212> DNA

<213> Homo Sapiens

5	cagetgeget ggaggetgag geogattget tgageceagg atttggagge eageatgege	60
	aacataatga gacccagtct ctaaatgcat gcctctctat atattaaaat tctgatgtga	120
	aaatatttta aaatttaata catttcaaat gtttttaatt gtataataaa caaaatgtaa	180
	ataataaaat aatttaatat taaattcaaa aatgaggtag aaacaaagca cagcgatata	240
	aataataaa't tttcctttac atttttgagg cggtcttttg agttttggat ttccttctta	300
10	ggtcactgaa atgtgctcct tggagccagc ccgcaaatca cgcatttaga aaaacataac	360
	tatacactcc taaccctaag tattagaagt gaaagtaatg gaatctcgat gtaaacacaa	420
	tatcactttt ttgtagagct attttgagta taataaattt gaactgtgcc aatgctggga	480
	gaaaaaattt aaaagaagaa cggagcgaac agtagcttcc tcgtccgctg actagaaaca	540
	gtaggacgac actotocoga otggaggaga gogottgogo togcactoag ttggogocog	600
15	ccctcctgct ttttctctag ccgccctttc ctctttcttt cgcgctctag ccacccggga	660
	aggcactgcg gtagctgggc totgattggc tgctttgaaa gtctacgggc tacccgattg	720
	gtgaatccgg ggccctttag cgcggtgagt ttgaaactgc tcgcacttgg cttcaaagct	780
	ggctcttgga aattgagcgg agagcgacgc ggttgttgta gctcgctgcg gccgccgcgg	840
	aataataagc cg	852
20		
	<210> 57	
	<211> 2501	
	<212> DNA	
	<213> Homo Sapiens	
25		
•	<400> 57	

	tcttgtcact	ccatgcactg	tgttccgtat	gctaaatagt	ttgagaaacc	caaatgggcc	60
	atgttcgcct	acatttcatt	gtcctgtact	tcctgtcctg	tactagcaaa	gcagtcccat	120
30	tggtctttct	tetectcatt	aacaataaag	gtaacacttt	tgatgttgtt	tcttcagaaa	180
	accttcattc	atcaaaactg	cctcaaagat	catgtttgtt	tgattccaga	acttcctgta	240
	attacctgtt	attgtaacac	tcatcactgt	attttactta	cttgtgtaac	taattttcca	300
	tattctgcac	tagacaacaa	agtcctttaa	gtcaggtact	atatctattt	acatagcatt	360
	cacatctcct	acaataaggg	acattagcag	ataaacaaca	catattaaat	gaataatgaa	420
35	gtttctgaaa	tactacagtt	gaaaactata	ggagctacat	tatatagaat	aaacatttac	480
	tttgctatag	aattcagtgt	aacccaggca	ttattttatc	ctcaagtctt	aggttggttg	540

WO 2004/015139 PCT/EP2003/008602 43/112

	gagaaagata	acaaaaagaa	acatgattgt	gcagaaacag	acaaaccttt	ttggaaagca	600
	tttgaaaatg	gcattccccc	tccacagtgt	gttcacagtg	tgggcaaatt	cactgctctg	660
	tcgtactttc	tgaaaatgaa	gaactgttac	accaaggtga	attatttata	aattatgtac	720
	ttgcccagaa	gcgaacagac	ttttactatc	ataagaaccc	ttccttggtg	ctctttatct	780
5	acagaatcca	agacctttca	agaaaggtct	tggattcttt	tcttcaggac	actaggacat	840
	aaagccacct	ttttatgatt	tgttgaaatt	tctcactcca	tecettttge	tagtgatcat	900
	gggtcctcag	aggtcagact	tggtgtcctt	ggataaagag	catgaagcaa	cagtggctga	960
	accagagttg	gaacccagat	gctctttcca	ctaagcatac	aactttccat	tagataacac	1020
	ctccctccca	ccccaaccaa	gcagctccag	tgcaccactt	tctggagcat	aaacatacct	1080
10	taactttaca	acttgagtgg	ccttgaatac	tgttcctatc	tggaatgtgc	tgttctcttt	1140
	catcttcctc	tattgaagcc	ctcctattcc	tcaatgcctt	gctccaactg	cctttggaag	1200
	attctgctct	tatgcctcca	ctggaattaa	tgtcttagta	ccacttgtct	attctgctat	1260
	atagtcagtc	cttacattgc	tttcttcttc	tgatagacca	aactctttaa	ggacaagtac	1320
	ctagtcttat	ctatttctag	atcccccaca	ttactcagaa	agttactcca	taaatgtttg	1380
15	tggaactgat	ttctatgtga	agcacatgtg	ccccttcact	ctgttaacat	gcattagaaa	1440
	actaaatctt	ttgaaaagtt	gtagtatgcc	ccctaagagc	agtaacagtt	cctagaaact	1500
	ctctaaaatg	cttagaaaaa	gatttattt	aaattacctc	cccaataaaa	tgattggctg	1560
	gcttatcttc	accatcatga	tagcatctgt	aattaactga	aaaaaaataa	ttatgccatt	1620
	aaaagaaaat	catccatgat	cttgttctaa	cacctgccac	tctagtacta	tatctgtcac	1680
20	atggtactat	gataaagtta	tctagaaata	aaaaagcata	caattgataa	ttcaccaaat	1740
	tgtggagctt	cagtatttta	aatgtatatt	aaaattaaat	tattttaaag	atcaaagaaa	1800
	actttcgtca	tactccgtat	ttgataagga	acaaatagga	agtgtgatga	ctcaggtttg	1860
	ccctgagggg	atgggccatc	agttgcaaat	cgtggaattt	cctctgacat	aatgaaaaga	1920
	tgagggtgca	taagttctct	agtagggtga	tgatataaaa	agccaccgga	gcactccata	1980
25	aggcacaaac	tttcagagac	agcagagcac	acaagcttct-	aggacaagag	ccaggaagaa	2040
	accaccggaa	ggaaccatct	cactgtgtgt	aaacatgact	tccaagctgg	ccgtggctct	2100
	cttggcagcc	ttcctgattt	ctgcagctct	gtgtgaaggt	aagcacatct	ttctgaccta	2160
	cagcgttttc	ctatgtctaa	atgtgatcct	tagatagcaa	agctattctt	gatgctttgg	2220
	taacaaacat	cctttttatt	cagaaacaga	atataatctt	agcagtcaat	taatgttaaa	2280
30	ttgaagattt	agaaaaaact	atatataaca	cttaggaaag	tataaagttt	gatcaatata	2340
	gatattctgc	tttataatt	tataccatgt	agcatgcata	tatttaacgt	aaataagtaa	2400
	tttatagtat	gtcctattga	gaaccacggt	tacctatatt	atgtattaat	attgagttga	2460
	gcaaggtaac	tcagacaatt	ccactccttg	tagtatttca	t		2501

35 <210> 58 <211> 2501

WO 2004/015139 PCT/EP2003/008602 44/112

<212> DNA

<213> Homo Sapiens

<400> 58

	attaattctg	caaattttaa	taaatgcttt	attttaagct	aaatgctgag	atgaaaaaat	60
	gaaaccatat	gagttagcaa	agtagaaaat	ataggcatat	taatcagtaa	atgcagaatg	120
	ataaatgctc	catcaatatg	cacttgttgt	agtgaggcca	ccgaggaggg	tgcaatcctc	180
	tcaacctggg	aggagcaggt	aggacttcag	atgtcatcca	actcaaagat	atagtgaggg	240
10	acttgatcaa	acatttgcca	agaccactat	gagttaaatg	aatagattag	gcatttctcc	300
	aatgttgcaa	gcttcgaatc	atatccaaac	tcagaacaac	atagcttggt	cataatgatc	360
	ccaaggatcc	tattggccat	tgtctttgag	cctcaaagga	acatattaaa	actccataat	420
	acccttttga	tctattctga	agttaagtag	tgaatttaca	tgatgatgac	acaaacactg	480
	taaaggacct	ctgggttact	tgtttataag	ctagtatttc	ctgaatcaat	ttttctgatc	540
15	cctagatatt	tggtaggtga	agtcatacct	atatatcccc	acaccctaga	acagcatctc	600
	caacttattt	ttccctcctt	gtcttttagt	gggagccaca	tcagtatcca	agaggagatc	660
	cagaagcctc	tccaaccagg	tagggacagt	tatagattcc	agacctcagc	tatggccttt	720
	gttacagagt	acaaatgtta	tatagtacaa	gtttattgta	cacatcccat	tgagtctctg	780
	agctttagaa	ttttcttgta	gaatttaaca	gttttttcat	gccgtattta	catattattg	840
20	ctagtattta	gaattttctt	ctccaaatgt	ataacgttta	ttattgcatt	ttttgtatcc	900
	actaagtgga	aaatcatgca	ttagatattg	tagaagtaga	tacaacaatg	aacaagaact	960
	ggtcctgacc	atgagaggaa	ctgatgatcc	aatgggggag	atagacctgc	acgtgtttaa	1020
	taaaaggaag	tggctattcc	ggtttctttt	tgatgggcaa	gcattttgca	aggccttggg	1080
	ctatgtgtgt	gcaaggctaa	gccagttagt	taattgggat	ttttttaaaa	aggcacttca	1140
25	ctggggggaa	aaggaacata	gagttggtta	ttgtcccctt	gcctataata	aaaacctatt	1200
	atttttaatt	ttttaactgg	gtttgcggtt	aaatctcaca	gcccaagaga	tttgccactt	1260
	cagatggatt	ccatacactt	gcatttaagt	atgcaaaaaa	attccaatta	tccagcaatt	1320
	taaccaaatt	attggtaact	tttctaaaac	aaaaaaaat	tgtttccctt	gttttggcag	1380
	caatttcagt	tacagtcctt	tactttctac	tcaagaaaat	agtttcaaaa	agttgatgtt	1440
30	tgttgctaaa	agaactattt	ttatgaataa	atataaaact	aagaagttat	ggtgtccctt	1500
	ttttaaaaaa	tgactcatca	aaagaaataa	ctttttcctt	tctcttgtaa	gagaaaaaaa	1560
	ttaatctctt	ttagaattgc	aaacatattt	ccttgatgga	gaaaatcaat	tcacatggca	1620
	tagtcgttat	ttatccagtt	caaaaaccag	agtagaattt	actactctgt	ctccattttt	1680
	tetetececa	ccccttaac	ccacattgga	ttcagaaagc	ttcattctgc	aatcagcatt	1740
35	gtcctttatc	tttccagtaa	agatagcctt	ttggagtcga	agatgaggaa	aagcctgtat	1800
	tttatagtct	tggaagtgtc	ttcttttgcc	aggacagaga	gaggagcttc	agcagtgaga	1860

WO 2004/015139 PCT/EP2003/008602 45/112

				45/112			
							1000
		gggttaatag					1920
		gtttcccctt	- '				1980
		tttctatttc					2040
	ctgaataccc	tcccaggcac	acacaggtgg	gacacaaata	agggttttgg	aaccactatt	2100
5	ttctcatcac	gacagcaact	taaaatgcct	gggaagatgg	tcgtgatcct	tggagcctca	2160
	aatatacttt	ggataatgtt	tgcagcttgt	aagttatttc	ccttcatctg	tttcaaatgt	2220
	tagcattcaa	ttttagccct	ggttttggct	tcagtcagtt	ttgcgatagt	agtgaagtaa	2280
	agacactagg	attttaaaca	gtaggaaaag	ttaatttagt	ctaactttta	atatgcaatt	2340
	gagttttgct	atataccatt	gtactgtcat	agttagagct	gaaaattgat	gtttttggta	2400
10	tcttttttc	caaaggcaat	tgagtaattt	ggattctgtc	tctagtcggt	ctgtctcttt	2460
	agtttcctat	acttgacaat	gaggtcaaac	ttagcaaata	a		2501
	<210> 59						
	<211> 2501						
15	<212> DNA						
	<213> Homo	Sapiens					
	<400> 59						
20	ataaaaaaag	acatgaaatg	aatcggggaa	aatatttgct	acataactaa	gaatgaaggc	. 60
	ccttaataaa	atctgtaaaa	ctatacacac	ttttaggaat	gaatcaacaa	ataatttcta	120
	tgaattagaa	aaaagtgaca	atccaactaa	aaaatgaata	agggatataa	gcaatgtgtt	180
	tcacagaaaa	aataaaaatt	gacaatgaag	ttatgaaaaa	atgttcagtc	tccttagtaa	240
	ttgcacaaaa	caaactaaaa	caatgagaca	ttacccctaa	gattagtaaa	tgttaaagaa	300
25	aaataataat	tggtgagggt	gtggggaagt	gggcacttac	acctatgttt	ggaaatataa	360
	attggtgcaa	ccttataggg	agagcaatct	cacaacattt	tccaaagact	tacatgcaca	420
	accctatggc	: agagaaattt	attectette	caggatttt	tttccttcaa	aaacagtgat	480
							5.40

gtggatgaaa aacacatgtt cactactgca cagggtataa cagctgaaaa ctggaaacga

taatactcac attcccttca gtaggggaat ggttaaataa attttacaag ccatctggta

gataccaggc atgagctaaa agttagggtc cagttagaga tggaaagcac accagtaatt

tgaaagggaa aatgtaatat gaagaattat taactagtaa aagaaggcta actgctaaag

gtacaagagc actcaagctg tetgcagtca gcaggccccg gctggtgagc aggaagctgc ccgctgggag gctgccaaag ttccctgaag gtgagcacca ctggttctac aagctgctgg

cagtcatggc gttaagagca ggaagagaag caccagaacc cggaagagaa atccagtcct

ctgctaggcc ttgcaccgtc cctctggcgc cctctactga caaagccagt aaaattgtgc

cgctagcaaa ggagatcttt ttatgggatg tagcttggtg tcaccaaaga gaacagagtg

30

35

540

600

660

720

780

900

960

WO 2004/015139 PCT/EP2003/008602 46/112

	•	
	gacttggagc tcagatgcaa cacaatgatt gatactggca cagtatactt accetgcttt	1080
	tgtaaacaaa atggtatatg tgatgtctct ctttgtctct ctgtatataa aacaatattt	1140
	gtttctactt attatgtatt tatgtcttta ctctgcatgc caggagctaa gtattttgca	1200
	tgtattaact cattttgttc tcataataac cttcacatgc aggaatcatt atagctactt	1260
5	tatgaatgag ccgaggaagg cactgagacg ttaagtaact tgcccaaggt cacgcagcta	1320
	gtmagtggca gagcaagaat tactatggct ttataagcct aggaaaaagt ctgaaagaat	1380
	caaaatgtta acagcgggga cctcaaggaa gcattgaaga ggccatggga gaagttttca	1440
	ctttgttaaa aaatcagtcc ttcaaataaa taaatacagt gaggcttccc cagaagcaga	1500
	tgtcactatg cttcctgtac agcctgtgga actgtgagcc agttaaacct cttttcttta	1560
10	taaattatcc agtcttaggt atttctttat aacagtgcta ggatgagctg atacagtttc	1620
	ctacactgta acctaaggca atgctttgca caaagggatg agccagattg cttagtaatt	1680
	aaaacgcaaa tacaaaccac aagcatatcc attcatgaat tggggggctg ctttgtgtgc	1740
	atagataagg tatattttt aaaaaaatta tttttccaag aagaaaataa accagttaat	1800
	aaacgacaac tcacagtgcc aggaagtgag aaacaagtgt gtgataaacg gtggagaatg	1860
15	ggagcactet cegeagtggg egggaggaga egaggaggge gtteeetggg gagtggeagt	1920
	ggttggagca aaggtttgga ggaggtaagt catgtgctct gagtttttgg tttctgtttc	1980
	accttgtgtc tgagctggtc tgaaggctgg ttgttcagac tgagcttcct gcctgcctgt	2040
	accccgccaa cagcttcaga agaaggtgac tggtggctgc ctgaggaata ccagtgggca	2100
	agagaattag catttctgga gcatctgctg tctgtgagat taagcactat gtatattgct	2160
20	ttattcactc cccacagcaa ccttaccaag cagttctttt ccacgtgaaa agatggaggc	2220
	tgggtggagc aaaaggaggt atttagagtc ctcagcaagt gagaggcaga gctgggattt	2280
	gaatccagat ctgcctgata ctgaagtcta ggctggttcc acctctccgg actgctttcc	2340
	agggagtaga agacagatat tttaccttag ctggctgctt ctagaagtct gaccctgctg	2400
	gctcaaaacg actttagttc cttgcccaga ggctgcgggc tgcgggtcaa gacatcagta	2460
25	gaaggagggc ccagccagag aggctgacat gggcttctac t	2501
	<210> 60	
	<211> 2501	
	<212> DNA	
30	<213> Homo Sapiens	
	<400> 60	
	cgggcaggaa taatcactge eteccateee ettaaacatg ecaagatget ttateeetag	60
35	gatgaggtga cttactccag gtaactccta ttgcctaacc actgaccaat tactctgccc	120

tttagtcttt atgtcattaa atctgcatta agaatttcat ggaataggcc cggcatggtg

120 180

WO 2004/015139 PCT/EP2003/008602 47/112

	gctcatgcct	gtaatcccag	caccttggga	gaccgaggtg	ggaggatcac	ttgaggtcag	240
	cagttcgaga	ccagcctgga	caacatggcg	aaaccccatc	tctactaaaa	acacaaaata	300
	actagccagg	tgtggtggtg	ggcacctgta	atcccagcta	tttgggaagc	tgaggcagca	360
	ggagaatcgc	ttgaactggg	gaggcagagg	ttgcagtgag	tcgagatcgt	gccagtgcac	420
5	tccagcctgg	gcgacagagc	gagactctgt	ctcaaaaaaa	aaaaaaaaa	aaactcaggg	480
	aatggatagc	agcattgatg	aatattgcgt	ctggagagat	cagatcactt	gtcacttgtt	540
	tccaggcaca	gggcttacca	agaggcagat	tccagattta	aataattctg	taacagcaaa	600
	gtccaagcta	ttttcactgc	tttggagaaa	agacccagac	ccagagcttg	aacctcactt	660
,	tgcagcaccc	cagttctaat	cttttaagtt	tttttttt	tttttttt	tttctgctgg	720
10	gcacggtggt	tcatgcctat	aatcccagca	ctttgggaag	ccgaggggga	aggatcgctt	780
	gaggccagga	gttcgaaacc	agtctgggca	acatggcaaa	accccatctc	tacaaaaaat	840
	acaaaaatta	ggccagagtg	gtggcgcgca	cctgtagttc	cagctacgtg	agaggcggag	900
	gtgggagaat	cgcttgaacc	cgggaggcag	aggttgcaat	gagctcagat	cccgccactg	960
	cactccaggt	tgggcgacag	agcgataccc	tgtgtgaaac	tttttttt	ttctccaacg	1020
15	ggctttccag	agaagtgtgt	gtatgtgcgt	gtgtgtgcgc	gagcgtgctt	gcttgggctt	1080
	aaactttctg	tcgggccaca	ctttcccaag	tctttgcact	ggctgtaggg	tgggctttat	1140
	cctcgggacg	tectectece	caagtccagc	ctgcagctgg	aagtcttcac	tgatctccat	1200
	ctctcctccc	tgatctccgt	ctctcctccc	tgcccgcctc	aggactggga	ggccgatctc	1260
	tctctctcgc	cctcccctcc	accagccttt	tccagatgta	tgtctgccaa	agacccccca	1320
20	gtgcagagga	tgatgaatga	agatcctcga	gccagcccgg	tgggaaagtt	tcgtcgccta	1380
	caaaagcgag	ggaaagggaa	gggaagttgg	gggtagggga	aaagttagag	ctgagaggct	1440
	ggggcgcgac	gagtctggac	accgggcggg	gacccaagct	ctctccgctc	agccaataac	1500
	tgtgcctccc	: ttaggaaggc	gtgaggaaat	gctccaatca	atccctgcac	tcctcccttg	1560
	gaatttgggc	: tgtattttt	tatttactgc	aaaccccaca	atccacccag	gggtttcccc	1620
25	agtgtttgcc	tccageggte	ccggtgccca	tttactagtg	ctgctccctc	tcttccgcaa	1680
	gactgcgctc	cagteceage	: ctccttctcc	gcgggtgcct	cccaaaccgt	tctatcattc	1740
	togggttcag	ggaggcggaa	tegtgeetge	tctccggttc	ctttaagagg	cgtcggctcc	1800
	acccctctca	a gagtcgcggt	ctgacgcgag	atgacagcaa	cgagttcggt	atgtctatgc	1860
	aaataagcgo	cctcttgtgg	gccaatgggg	agcggaggtg	ccggaaccac	ggaccaatgg	1920
30	ggcgggggcg	g ctggggctca	a ccatataagg	ageggeeteg	ccataaaagg	aaacattgta	1980
	tctctttata	a tggggggaag	ggtcggggga	teceteegee	gecagegegt	ggtcccggcc	2040
	ccctccacco	c gccgtctcg	g ccgcggccag	cageceetge	ccccggggg	acgctgacgg	2100
	ccgcccggc	g cgccgcccta	a gcagacggad	agggggcgct	gegegegge	: tggggcaacc	2160
	cgggccacaq	g gggcaggaaa	a gtgagggcc	aggtcggcc	gggcgtgcag	gggccccggg	2220
35	ttcgcagcgg	g cggccgcgg	agcgatagcg	gcactagcag	g cagcgggagt	gccgggttga	2280
	gccgggaag	c cgatggcgg	ggetgegge	gctccgattc	c ctcgctgact	gcccgtccgc	2340

60

cctcctgcat	cgagcgccat	gttaccgacc	caagctgggg	ccgcggcggc	tctgggccgg	2400
ggctcggccc	tggggggcag	cctgaaccgg	accccgacgg	ggcggccggg	cggcggcggc	2460
gggacacgcg	gggctaacgg	gggccgggtc	cccgggaatg	g		2501

5 <210> 61 <211> 2501 <212> DNA

<213> Homo Sapiens

10 <400> 61

15

20

25

30

35

120 qqttqtattq qtqqacccat gcagctcaaa cccttgttgt tcccaggtca actgtatatc 180 cagagettat aggaaaatac eteteceagt aaccetgete accatteete tettaageta ttattatgat tagccacggt ttgctattta aatttaaatt taaataaaaa tgtggccttt 240 cagttatgct agccacattt aaagtgctca atagccatat gtggctaatg gttactattt 300 cggacagcac atatttagaa cattcccatc atttcagaaa ttttcattgg gaacactctg 360 cggaaaaagg gggccatcat aatgtgagtc catcttctgg aaaaatcctg ggaaggggac 420 480 aaaggaggtc tgtttggcat tgtgtaatgg taatttggta tttaattttc aaaaatgttt 540 acceaattce tattcatcag ccaggtgtgg tggctcttgc ctgtaatccc agcactctgg 600 gaggccgagg tgggaggact gctgcagccc aggagtttga gaccagcctg ggtaataata gggagateet gtttetacaa aacaccaaaa acaaaacaac aactttgatg ttgtggagte 660 aggacagtcc tgggttaaaa cctttgctct ccttagctgt gtaaaccgtg ggtctcagct 720 780 ttcttatctq ttaacqqtaq gtacttcttc ctagggctqt tttgaggatt aagtgaaaqt 840 ccaagattqt qtctqqcaca cagtagcttc tcagcaaatg ttttcctcct atgtcaggga 900 atggctcctt tatcccgttt tgggcccatg ggtggccctg aagggtgggt gctcaggtgt taagttctgt agatggcata tccttgggaa aagcaaggca attaaaaaca gtgagaggtt 960 getetggtta agttttetee tataacttte eccatgggte aattgggtag aatetgeeat 1020 1080 tttcctaata cttactgatg gtagtggcat tcggaagcac aatagctgaa gccggagctc 1140 tgagtggaga gaaaggtctg tttctcaggc ccaaaaagag gttacacacc catggctgtc cagtttggtg gtgcaggccc tgaaatcaga ccaaactgga tttaaatccc caaacctata 1200 ctctaagcta tgtgaccttg ggctagatac ttcacctctc tggccttatg aagtaggaat 1260 1320 aataataata ccgtctaggt tgttaggagt attaaatgag gtaaagcact gaaaacgttt 1380 agggactgtg ttaaatcatt aaataaataa aaacggggat gaccttatcg gcttgacaca 1440 ggggattaaa tgagataata tatgaagaca agtacacggc aaatgcttaa ttaatgttgc 1500 ttatttttat gtctgcaaac tgacttaaag gggaggcctt taagaaagac agtggggcaa

WO 2004/015139 PCT/EP2003/008602 49/112

	tttgcgcgtt ga	tgcattgt a	aggagaaaat	gtgcaggggg	cccgttggga	ccagagttca	1560
	accaggtaag cg	gcagaaaa o	ccacaaatac	ctccaggcgt	tcctggggca	gegeegeete	1620
	cccaaaatca cg	caaaactt (ggtttgctaa	gaattgtcag	ctcttctaaa	ggaggcgctt	1680
	cacgcatctc ag	gtctgtgaa :	atgggaccca	ggacccaggt	agaggtgcgt	tctcggcctg	1740
5	gggaccgagt at	tttgtgcg	ctccggtaac	gcaggaagac	agcgccactg	acactctaga	1800
	gaccagcggg ca	accgcctgg	aggcgccttc	accacttggc	ggttccgggt	ccgcgcccca	1860
	ccgcgccaca ag	gactcacgc	ccgaaccacg	tgatcagggc	cgtggctccg	ccccgctccc	1920
	gegeegegeg ee	cgcttccgg	taggggcgga	aagcggaagt	gtgggagggt	ctgcggggcg	1980
	ggctcaggag gt	tccgcggga	ggatggagca	gtgagcgggt	ctgggcggct	gctggcagcg	2040
10	ccatggagac gg	gtacagctg	aggaacccgc	cgcgccggtg	aggggccact	ggctaagagg	2100
	acgggcatgg gg	gtcagggga	agaaaaggcg	ggaactggtt	gaggggatac	acctgtgtgg	2160
	gagtccccgg ag	gctaagcga	cccagccgat	ggggcacctg	ctgagtgagg	ggggggacgt	2220
	ctggtgggtg ag	gggtccggc	tgaggggagc	atctgctaag	gaggttagac	ttgggaccgg	2280
	ttagagggag ca	actcgctgt	ggtgagactg	tgctgaggaa	cgtggggaca	agttagggag	2340
15	agtacctgct ga	aggccgggc	cactcggggg	aacgctatcc	aagcagggac	tcacggaggt	2400
	gggggcgaat g	ctgaagcag	ggtgagaatc	tgtgagggat	ctctttaagg	gggtggatcg	2460
	agaactggcc a	agaggaagg	ccgggtggac	tttctaaggg	t		2501
	<210> 62						
20	<211> 2501						
	<212> DNA						
	<213> Homo S	Sapiens					
	<400> 62						
25						•	
	gcatggtggc t	cacgcctgt	aatcccagca	ttttgggagg	ccaaggcagg	cagatcacga	. 60
	ggtcaggaga t	cgagaccat	cctggcgaac	acggtgaaac	cccgtctcta	ctaaaaatac	120
	aaaaaattag o	cgggcatgg	tggcgggcgc	ctatagtccc	agctactcgg	gaggctgagg	180
	caggagaatg g	gcgtgagccc	aggaggcaga	gcttgcggtg	agctgagatg	atcgggccac	240
30	tgtactccag o	cctgggcaac	agagtgaggc	: tccgtctcaa	aaaaaaaaa	aattactaca	300
	tgatactaag t	taatgcggaa	ggtgactcaa	agggggaaag	gaacacagca	gtgtaaagga	360
	aggaggttgt a	agatggatct	agaatttccc	cctcatttcc	: atcaggtgaa	agcctgagaa	420
	aactgcaatc t	tttgtgcagg	ctgggtttgc	: tttgtacaca	ctggtcccct	agtgttcatc	480
	tccaataatg d	ctgacaactc	tgaaaaccat	; ctgtagacat	: tctgcaggct	ccatctcagg	540
35	aacaatggct a	attttttcgg	gtagttgaag	, caaaattaag	, tccaatgata	agcaaatata	600
	accattatca a	aaatcttcca	tttatgttt	, ttaaagcaac	: ctaagtatga	tctgagaagg	660

WO 2004/015139 PCT/EP2003/008602 50/112

	actctgtatt	ctatatttga	gtccttgtgg	atgaactgta	acctagctta	ataggcagac	720
	aagattgaaa	acctaattta	ggagtatgtg	cctttaacaa	tagctgagtc	ttggccaatc	780
	ccagtggcca	tacttcaacc	attcatacac	tgctgagtgt	tcaaactgtg	ttcaaagaag	840
	gcaaaagcca	acctgtaacc	aatccagttg	tttctctgcc	ttacctccaa	tttctgtatg	900
5	tcacttccct	ttttttgtct	ataaatatgt	tctgaccatg	aggcatccct	ggagtctctg	960
	aatccgctgt	gattctggaa	gctgccccat	tcgcaaatca	ttcattactc	aattaaactg	1020
	ctttaaattt	aattctgctg	aagttttctt	ttaacaggtt	tagaaaaaat	aatggcaaaa	1080
	atgaatgaaa	atccaataac	cctggaagca	gaaaaggctg	ggggctccaa	taagtgtaaa	1140
	tagtcccatc	cctatatttt	ctccatggca	attacaatcc	agcacattat	atatatattt	1200
10	ttttgcttct	cgcattttgg	cttagggtaa	agctttttaa	aacaggcact	gccaaccagt	1260
	gttatcaaga	aggtctggat	gccgttttgt	gggaacattt	taaagaggaa	tgtccaaaag	1320
	gaaaaggggg	atgggttggg	agaagggtat	caggcgggta	tctcaaaacc	attcttaggg	1380
	ctataggttt	aatttatttg	gttgtggacg	tcagagccgt	catggtaaga	aggaagcaaa	1440
	gccttttgta	ataattaaag	ccttcagaag	cagcgtgccc	cattgcccac	tagtgcgccg	1500
15	tgaagtctgg	tgttcaccta	cagggtccct	ctcagcactg	cccaggcctc	ccgagtgctc	1560
	cagcacagta	gcttggagct	tgttggtttg	gtgaccaaga	tacactccag	ggaatatgcc	1620
	atgcagtgga	gtctcttccc	cggcactgca	tagcaaaagg	aaagggccgc	tgggtgtctg	1680
	tgggtcctgg	gcagtcacag	aagccaccgc	gctggcgggg	aggagggga	ccgatgcggt	1740
	ccatgtcccg	ggcagcccca	ctttctctgc	ctgcgaaggg	cccttgtccg	gcgggaggag	1800
20	agaggcgcgc	cccacccggg	ctcctctaca	cctgccgccg	cctgggccga	ttccgcgggc	1860
	ctcgcccggc	gcttcagccg	attcccgccc	agctccgggc	tcatgggcgc	ggtcagcagg	1920
	gcgggccagg	geggegggge	gcgacactgg	gaggaagtgo	gggccgcctg	cccgggcgcg	1980
	ttaaggaagt	tgcccaaaat	gaggaagagc	cgcgggcccg	gcggctgagg	ccaccccggc	2040
	ggcggctgga	gagcgaggag	gagcgggtgg	cecegegetg	cgcccgccct	cgcctcacct	2100
25	ggcgcaggta	ggtgtggccg	cgtcccctac	ccggccggga	ctttctggta	aggagaggag	2160
	gttacgggga	acgacgcgct	gctttcatgo	cetttettgt	tctaccttca	tcggccgagg	2220
	taaaagtgct	gaaaccatgt	gaataaaata	a caggtgggtt	ccgccagctt	cgctcctgaa	2280
	cctacccgcg	ctcgggatco	: agaagctgcq	g ccgggagaga	ggggctcagg	cctgggcgga	2340
	ggggacggag	gtcagaccgt	gcggaaagtg	g accegggead	: cccagggcg	ccaggccccc	2400
30	agggagcgcg	gaaagtgcgg	tegeggeee	g gccctcggga	gacgcgggat	tgggatcagg	2460
	cacagegega	a ggaagtcgat	: cttggagcta	a gaacatttto	c c		2501

<210> 63

<211> 2501

35 <212> DNA

<213> Homo Sapiens

	cccaaaagat	acaaaggggt	ataaggtgaa	aaattattct	aacccatccc	tcagtgacct	60
5	agttcccttc	ctctgaggtg	accaatttct	tgtgtatctt	tcctgagata	atctatacat	120
	atagcaccat	atacaagcaa	atgaaatatg	ttttatttat	ttttttgaga	ctgggtctca	180
	ctctatcacc	caggctggag•	tgcagtgaca	ccatcttggc	tctccgcaac	ctctgcctcc	240
	tgggctcagg	tgatcctccc	accttaacct	ccagagtagc	tgggactaca	cgctcacacc	300
	accacaccca	cctaatttt	gtttttttgt	agagacgggg	tttcaccatg	ttgcccaggc	360
10	tggtctcaaa	ctcctgagtt	caagtgatct	gcccacctcg	gcctcccaaa	gtgctgagat	420
	tacaggcgtg	agcctccacg	cccggcccca	aaatctgttt	taaaagcaga	catttcttgg	480
	tgattctaat	aaagggggtt	ctcagacata	tttggaaaaa	tatatcccta	cttttatgcc	540
	agaccctgtg	ctgggtcccc	gggctgtgtg	acctgacact	gcacagtcct	gcttagaatg	600
	cttaaagaga	gttaataagg	taccaccttc	tatgccatag	gcggggagca	aaggggctcc	660
15	agtgggccct	gcctaggagg	cctgaagcta	gagctgctga	gggcagggct	gtgctgcaaa	720
	gaaaatgtct	gagagctgca	ggcgtttcat	cttctgtcat	cagctgtggc	acctggcaga	780
	cactggatag	gcttgtagac	aaagacctgg	taactcaagg	agctgcttgg	ccttcctgcc	840
	cagtcccatc	ccagaggcac	tgtacatctc	tggtttcttc	agggggccct	gtgtggaagt	900
	atcttttgtc	ttcctggtgt	cagggatatc	atcacgtgcc	tgttggctag	gcgagcccgg	960
20	cgcccagtct	cctaggatgg	ggagagtaat	gttcccgagc	agaacagggt	ggggctttca	1020
	gactactccc	: tttcctttac	agctggcttc	attccatcga	cctcatcaaa	gccttcctgg	1080
	gagcacccta	gagaagagtt	acgtccaggc	cgggccctgg	ctgcctggtt	cacggcggaa	1140
	tccccagcac	cacgeetege	acgtcgggct	caaagcatgt	ttagtgaagg	agtaggtacc	1200
	tactgctaga	tggagccatc	tctctagact	tggggtttcc	ctataacgat	ggctatgttt	1260
25	ggcatggaag	g cctctttaga	agtcaatagt	. aggaaataag	ggctaacagc	acctaattgt	1320
	ggagtaaggt	: tcaaatccta	gctctgccac	: ttaaccgttc	: cgaacctgtt	ccctcactgc	1380
** -	agaggcgaaa	aggctaacac	tatttcacct	: cggagggtta	ccgtggagaa	tggaagctgg	1440
	acaagctgta	a tcagttcagt	agtaaaacac	acacacaca	gegeeceace	cccaccccac	1500
	cccacccca	g gaatgaacac	acacacccgo	gcgcgcacat	acacctcagg	aatgaacaca	1560
30	 cgcgcgtaca	a cacacacgca	gecececea	ı ggagtgaaca	cacacacaca	cgccccgttc	1620
	tgttgttcc	c aggaacacac	acagagacgo	acacactcgo	ccggttttgt	tttttccagg	1680
	ctttttaac	t ggggtctttc	e actcggctta	a gggcaccgct	gcctgaaaga	cctttctagg	1740
	ccagtcggg	g teeggeaced	c agttgacga	g acagcgcgg	gctttcagag	ctggggagag	1800
	gcgaaaact	c ttccggccc	c ccgatcccc	ggccagccg	ccccggcagc	: tccttgccgc	1860
35	ctcccggcc	t gggcccgcc	c agccgttcto	ggcctgccgt	caggcgatct	cggcggccag	1920
	cccagccgc	g atgtgacgc	c gegegeeee	g gggtcctcg	g cgcctgcgcd	ctctcctata	1980

WO 2004/015139 PCT/EP2003/008602 52/112

	aagcagacgc	cgcgccgcgc	tgcgacgctg	tagtggcttc	gtcttcggtt	tttctcttcc	2040
	ttcgctaacg	cctcccggct	ctcgtcagcc	tcccgccggc	cgtctcctta	acaccgaaca	2100
	ccgtgagtag	ccgcccactg	aactggaaag	ggtcgtggct	accggattgc	gtgccggctg	2160
	gcctcaccgc	tgcggtttgg	gcctgcccgc	ggcgggcggt	gactgggcct	ggccttcttt	2220
5	cgggcccggt	ggatcgcgtt	gtcgaccctg	ttcttcggga	gacactacca	ggttccgttc	2280
	acctgccccg	ccccgactc	agcgaggcct	cctctggccg	ggcgtcctca	cggcgctcca	2340
	taagtgagcc	gaaccccggg	ctgggccttc	tctgcaccgg	ccgagcgtca	gccggcgcgg	2400
	agctcggctg	caaggcccag	gctgcggccg	ggggcctctc	ttggtcttaa	gcctgctgtc	2460
	ccggggacca	gggcgggggt	ggcggcgggg	ttgtgaatgg	g		2501
10							
	<210> 64						
	<211> 2501						
	<212> DNA						
	<213> Homo	Sapiens					
15							
	<400> 64						
					•		
	gatctgacag	gttaaaggtg	tacacttatt	ttctctgtaa	gaagcgtcat	ctggtaagat	60
	gatcaagaat	ggtgcaaagc	aggatgggga	gtttaaaatt	gtttccaaat	gtgggaatgt	120
20	aaatgaatat	aaacatgtaa	gattttaata	taccaaactg	atcagattct	gtgtaatttc	180
	caagtttctt	ttttctttca	aaactcctct	gaaatctgac	tgtccacaaa	aacttacttt	240
	atagaatttt	atgtgattta	tttactcaga	tattatactg	acctcacatc	cagtagtgaa	300
	aacagatttt	attgtagaat	ctggaaagat	agagggccat	ataggttgta	ttttcagttt	360
	tgtttatact	: aacacgtgtt	tacaacccag	tttaatttac	accctgtatt	gtattattgt	420
26			, , ,			1 1 4 4 a a a a a a a	400

25 tgtcatatct ctgtatgcat gtaagtataa tatgtgttgg caaaggaaaa ttttgagtaa 480 gaagaagctc tctgatctat ttgattcaat atgtatttga gtgtctaaca gacactgttt 540 tagacactgg tgatacaaca ctgaacggag caccaaatac tttacagcgt ctcctggagc 600 660 tgttgtcaag acatactttc caaggggaat atttcagaat aggtgataac tagtcaacga 720 aggaaaagta ccttagtcat ctaggagagt tgtacttaga gtgaactgaa ataaactaag 30 ctcacgaaag acagagattt tttgtttggc ttttgtctgt tgcattcact actgtatctc 780 840 cagggcccaa aatagtgctc ggctcataat aagtattcag caaatatatg ttgttgattg 900 gagtgtttgt tttgaatttc tgtaatcaaa cacatacctt ggtaaattat ctttacatct tgctagttga aaattttatc tcagttgctt tgtttttaat gttaccttgc tttttgtttc 960 tacttgtgcc atacatcagg atgctggaaa agcttattaa tattgacagt catatggtta 1020

tctgatattg aaaagaatag atttggaaag gaacctaaga ggtcatcttt tgttcagctt

cctgcctagg aaaactaagt aagatgatta ggtatgtata tttaattagt catttaaaaa

1080

1140

WO 2004/015139 PCT/EP2003/008602 53/112

	aaaaccagga	caacataatt	gagttccctc	ttgagaaaat	ggagaaaggt	acttaaccct	1200
	agctataaag	ggactaacct	ggaaatttta	gaacttctgt	gtgggaaagt	ggaaaaaaaa	1260
	aaaaagcaca	actaagctgc	tctttgttga	tatcagaaat	gggcctgtca	ttcattttgg	1320
	cattgaagca	tagcctccta	tctcggggca	ggactgggac	attttttcc	tcccacaaga	1380
5	gctggacagt	tattacaggt	tcaaaaagcc	ccgaccagtt	tttcaagagt	ttctcctcct	1440
	cttttccccc	tgaaactcgt	ggtgcttttg	ctctgctttc	aagatgcatt	aagtctcctg	1500
	ctttgtgact	gctttggagc	cagcagatac	tctgatatgt	ataattcaaa	ttatgcaggt	1560
	ttcacgagta	agtttaatct	tatttttaa	gttagttaaa	aggcaagtga	tatttagaaa	1620
	aatgttaact	tgtagttatt	tcaccctttt	tactttaagc	atttttattg	cttctcggcc	1680
10	ttttggctaa	gatcaagtgt	gtactttaag	cattttttaa	aataaaaata	tccttttaat	1740
	ttaataagaa	aacaaggttc	tacatagaaa	agccccttca	tctaagacct	gcacttttca	1800
	atttcttttg	agatgtcttt	gttgtaaaca	gtattcatat	gtcttttgaa	agccagttaa	1860
	ctaaacagtt	ttcttgagca	tctttttagt	tttactgaga	agtattttaa	attgagcttt	1920
	tctgagctcg	attgcttacg	tctgacacag	tctcaagttt	ccactgaatg	gtaacaaaga	1980
15	ctgtagaatg	ttgttggtac	tgcagtgaga	ggcatgcttc	cttagaccag	gtaagagaga	2040
	tcagtttgtt	tctcactgct	gggtgagttt	ttacagctct	tattttatat	tctttaagca	2100
	gcagcaatat	taaattgata	aatagccagg	agcacgctga	tttcaagacg	tccttgcttg	2160
	ttgcagacag	aaaaactaca	gggttatgta	tgggggttgg	gafaaaaaaa	gaggggaaga	2220
	attagtttat	tactcagtta	cttatataaa	ttaattaaaa	tgtgaaaata	attctggagc	2280
20	tcagttttct	taattcagga	actaaagcag	cagttgagga	aatcagtaat	tttaaaggta	2340
	cttcatggtt	attacttgtg	aaagcaatto	aaaggatagt	ttttactttc	attttttcc	2400
	ccagtagtta	ataaaataag	ctttgccctt	aactaaacat	tttttccact	tacgaaaact	2460
	tttaaattgc	caacagcaaa	atatacttcc	caaggatcct	t		2501
		•					
25	<210> 65						
	<211> 2501						
	<212> DNA				•		
	<213> Homo	Sapiens					
30	<400> 65						
			•				
						gcaggcccca	60
•						accccagggg	120
						tecteteceg	180
35						tgggacagcc	240
	caggcggaag	g gaaacctgto	g gggagggaca	ccccgcagac	: agaagcaggg	acatggggtg	300

	gggagaggca	ggaagagctg	ccgggctgct	gagctggcgc	ctctccagca	gactcaggag	360
	gggcggtgac	aggaggccat	tccctcctca	tccccgcagc	cctgggcctc	tctggtcctg	420
	gccaacagta	ttactatcat	tattattgct	gttgttcgct	agcctgggcc	ttagatacat	480
	tagaaaaaaa	ccatcggaag	atacgcatag	cattggcagt	ttctaaaaga	attaattccc	540
5	ttcctgtgtt	cattctgtga	ttactgggat	agaaatgcta	tttgcattac	cagcctttca	600
•	ttcagttaca	gagacgtgag	tgctcgaagg	agagacagtg	atttttgcct	taaattcagc	660
	ctgtccaaat	cggataagat	ctccgatttg	ctttaagccc	cgttatcact	gccttcctct	720
	ccaacaacag	ctgctgtgat	cacgcacaaa	cggccaaacg	ggggcaaatc	cgtgccaaag	780
	cagggccatg	ggctttcctg	atcagaaggc	ctagccccag	ccccaggcg	cagcacacgg	840
LO	gcggcttcct	ttcagaaacc	cagcctgcct	cccaccagct	ggagtgggtg	ggtgggggg	900
	tagtggtgcc	agtttcaggg	aacggccggc	aaacccacct	ccaggcgtgc	tccagcggga	960
	gcctggagac	cctaggagag	ccctccccac	aagcggcttc	caggcaggac	gcttccagag	1020
	gtcttggtcc	aggggtgggg	gtgaggtggg	gtctaccttt	gaaacagcta	caatttaaac	1080
	ttcagctaca	ccgagctcaa	actcgattcc	gcagccgagt	gtcggcgcca	gagaaggata	1140
15	aaaactcggg	tctacggctc	cccaccacgc	ccctggtccg	gtcctctggg	cttccaggag	1200
•	tcctcacgcc	atcctctggg	ttgcccagga	ggaaggatgg	gcggggcggg	caggcgctgc	1260
	gggcgctgca	gatggggagg	gcgagcccgc	ggcacggcgt	gagcggggga	gaggcgcgcg	1320
	agcaggtgtc	ggctccgtga	cagggtcccc	catecegege	cccagtgctc	cccgaggctt	1380
	agtgaggcaa	aacccagcaa	atgcttcaga	aatgcagctc	agtcggtcac	cgggttctgc	1440
20	ttcctcatca	gacgcgcaag	aggatggcgc	ttccaatgca	aatctcttgg	ctccggcccc	1500
	ttggctggca	geegeegegt	cccccgcctg	cctggcgtcc	cgcccactcc	gtggcgggct	1560
	gagacgaggo	ccggcgcgga	ggggacgggg	cggagcgggc	atccctcccc	acccccacg	1620
	tggggctggc	cctccgcagt	gcctgggcgc	gctgcagtcg	ccgcgcctcc	ccggccgcgg	1680
	caccgcctct	ctaggcaggg	gcgggggacg	aggggcaagg	agtgggcgag	gggtgggcga	1740
25	ggggcgggg	g gcgtcactca	atcaggtggc	ctctggagtt	cccggggca	gggcagaggg	1800
	aacacgctg	c cggggattgt	gtacacgete	: cactgacaco	: agcttcacgc	tgccgggcag	1860
	tegeegatea	a cgcgtggccd	cgcgagccca	ttggccggcg	cctcacacac	ctttgccgtt	1920
	gattggccg	g cctcaggctc	: cgcccccacc	: cccgcccgcg	gcgcggggca	ggctgagcgg	1980
	ctacctgaat	t ggggagggg	cagacggcgc	: tgagcgcggc	: ggcggcggga	gcggcgtcga	2040
30	gtgtctccgt	t gcgcccgtct	gtggccaago	agccagcago	ctagcagcca	gtcagcttgc	2100
	caccaacaa	c caagcagcca	accatgctca	acttcggtg	ctctctccag	cagactgcgg	2160
	taagtcatt	t ggggatgccd	ctgtgcttcc	tegeetggte	ttgtctgggg	ggccaaaggg	2220
	ggcgcgaac	c ccgagcccc	gacatcage	atgcctgaga	a attggggctg	g cagcggagtc	2280
	gtggggaag	g aaagggctto	ctgcctgcag	g actatgggca	a ttagtgaggg	g cgtgtgtgtt	2340
35	ggggagggg	g togaaccago	g gggctgggat	cttcagacac	g ggacaggggt	cttgctctag	2400
•	atgtactga	g gggaagggad	c aactccgcat	ggagacccga	a gagggctggt	gaggaggagg	2460

55/112

atgacgagcg ggggaggagt ggggaggggg ccgttgccct g 2501 <210> 66 <211> 2501 5 <212> DNA <213> Homo Sapiens <400> 66 60 10 ggggctgtag aaatggcggc cccatctccc aacaacttgg gcattgtgaa tatcacctcc 120 ttaaaqqqqa tctcctttqq tcatcccqtc tagaqcaqcc accataactt ctgaqcqttt 180 attgctagct gatatatatc agaaaaatac aaattccaca aaagcaggga ctggtctgct 240 tctctccctg cagggcccag gttctggcac atagttggtg cagaaagtgt gcagcctcag gtcctatcca agcccccagg gcatcacact cgggacttgt tctgcatatt tttacttttg 300 15 cctcccactg gtactagttc ttccgtggaa cagcctgagt cccttcagat acttaatgtt 360 ttttctcaag tgctgccatg aagccagatc tccaccgtct tggggcattc ctttttaggg 420 atgggaagta tatgtcgctc cttttatgtg atttacattc tatcttggat aatttggcca 480 tcaccgtagt tcattcagat ctgtttggat cctgcccatc tcagcttcag tccatttcat 540 600 tcttttaaat ctgatcgaca gttacctcca acagcttcat cacaaatcac tcacaaaaat 20 ggccttaatc ctgaagttta tttacggaga gcacacttgc taggtgtgtg gcagatatac 660 aggaagcaca agatgaggca gcagatctag aggcaaatga cttccttctc cctgcctagt 720 780 ggtgactgcc agcatcacgc cctcccggga gaggtgagaa acccctccac gcaagcactg 840 gaacetteac agteaagagt ggcaacaget ceggttactg gacttgggcc tgttgaatte 900 taatactctq tqactccaca tctqqqctga atttttgctg agtatgatgg aatttacatg cttcctccct agcccctact tgtctgtata gttggaatat ttggttgcct cctctggagg 960 25 1020 gatctagtac gtttagagtc tagacgctgg aactgtcaaa gttcagagga aagagctcca 1080 gctgcaaagc aagagaaatg ggctggaatt ctagcttcac cccttaatga atgcttctga 1140 ttttttttt tttttttt ttgagacgta gtctcactct atcgcccagg ctggattgca 1200 gtggccacga totcagotca otgcaacoto ogcotoccag actoaagoga ttotogtgco 1260 30 tgagcctcct gagtagctgg gattacaggc gtgcgctacc acgcccggct aatttttgta 1320 tttttagtag agacagtttt tggccatgtt ggtcaggctg gtcttgaact catgacctca agtgatctac cttcctcggc ctccgaaagt gctgggatta caggcccgag ccaccgcgcc 1380 1440 cagccgcttc tgatcattaa aaaaaaattt tttttttggc ggggggaacg aagtgtccct 1500 ctgttgctca ggctggagtg cagtgcagtg atctcggctc actgcaatct ctgcctccca ggttcaagcg attttcctgc ctcagcctcc tgagtagctg ggaatacggg tgcccccac 1560 35

cacacccage taatttttge atttttagta gegatggggt ttegecatgt tggccaagge

WO 2004/015139 PCT/EP2003/008602 56/112

	tggtctcgaa	cttctggcct	caggtgatct	gccttccttg	gcctcccaaa	gtgctgggat	1680
	tacaggcgtg	agccaccgtg	cctggccaaa	aaatttatgt	tttaaaaaga	ctagtcaagt	1740
	gcagtagtga	gaaggggga	aagagtagag	caaggagtta	tatctgttgc	ttctgaccat	1800
	tttgaacaag	ttacctaatt	ctctgaggac	aagctcggag	aatgggagag	acagttatct	1860
5	atttgcaggg	ttgttgggag	gaataagtga	catcatgagt	gtgtgccagg	tgtctgatta	1920
	cagaaggtgt	tcaattaatc	tgcaatcatt	aattaaccct	tcagtcgctg	gtattatttg	1980
	ccatccatcc	tccgagtgtt	gccaagttat	gggtgcgttc	tgccagcgtc	ctagcagtgg	2040
	taaggcttct	ggctgccagc	ggcgaacctc	tcccttcgag	tatttctcct	cttgctgaga	2100
	tgaaatgcga	ccgggtctct	ttaagggcca	ggcgccggga	tccaggcggc	gcccaacggc	2160
10	tggactagca	gtcgtccgcg	ccgactcgca	caagaaggaa	ccccgggcct	ctggatccgc	2220
	tcgcccggct	atgctgctgt	ggccgctgcg	gggctgggcc	gcccgggcgc	tgcgctgctt	2280
	tgggccggga	agtcgcggga	geceggeete	aggccccggg	ccgcggaggg	tgcagcgccg	2340
	ggcctggcct	cccggtaacg	cgcgtcttgg	tecegeetee	caggagcccc	tatgegeeca	2400
	cctactcccg	gcccctcggc	ttccggaacc	cgcccgagcc	cgaagcgcct	cttccgaggc	2460
15	gcgggatttc	ctccccggct	gcggctggga	cgggggcggc	С		2501

<210> 67

<211> 2501

<212> DNA

20 <213> Homo Sapiens

	atggtctcga	tttcctgacc	tcatgatccg	cccacctcgg	cctcccaaag	tgctgggatt	60
25	acaggcgtga	gccactgtgc	ccggcctcta	tcagcatttt	ctttctttt	ctttttcttt	120
	tttttttt	gagacagagt	ttagctcttg	ttgcccaggc	tgaagggcaa	tggtgtgatc	180
	tcggctcact	gcaacttctg	cctcccaagt	tcaagcgatt	ctcctgcctc	agcctcctga	240
	atagctggga	ttacaggtgc	ccaccaccat	gcccagctaa	tttttgcatt	tttagtagag	300
	acagggtttc	accatgttgg	ccagtctggt	cttgaactcc	tgacctcagg	tgatccgccc	360
30	gcctccacct	cccaaagtgc	tgggattaca	ggtgtgaaag	agaccattcc	cgatctcttt	420
	cagcattttc	atactgaatg	tccacagctg	ccctgtgagg	aggcttttta	cccatatttt	480
	ctgactcaga	gagaagcagc	cacatgtccc	ttggccatgg	cagttaagac	caactccatg	540
	gagctgggtg	tcttagctca	catctgtaat	cccagcactt	tggaaagcca	aggcaggatg	600
	attgcttgag	gccagaagtt	caagaccagc	ctgggcaaca	tagccagacc	ccatctctac	660
35	aaaaatttaa	aaattagcca	caaaatttaa	aaattaacaa	caaaagggcc	gggtgcggtg	720
	gctcacgcct	gtaatcccag	cgctttggga	gggtggatca	cgaggtcagg	agttcgagac	780

WO 2004/015139 PCT/EP2003/008602 57/112

	cagcctggcc	aagatggtga	aatcccatct	ctactaaaaa	tacaaaaatt	agccgggcgt	840
	ggtggcgggc	gcctgttgtc	ccagctaccc	aggaggctga	ggcaggagaa	tcgcttgaat	900
•	ccgggagtct	gaggttgcag	tgagccgaga	tcgcagcatt	gcactccagc	ctgggcgaca	960
	agagcgaaac	tccatcttaa	aaaaaaaaa	aaaaaaagt	ggaagatgag	gaagttgatc	1020
5	agacatcaag	gatgagcgga	tgacttaata	ggcttctttg	ctaagacttg	gctgggcagg	1080
	tgaaagacaa	agtcgaggag	tggttatggt	gtggcacaga	agaagggtca	gaggacggtc	1140
	tttgttacct	cttcatgcct	gagtttcttc	ctctgtgaaa	tggggataat	aagagccgcc	1200
	atacagggaa	ttgctgctag	gatcaaatga	gataatgtat	gtgaaacgct	ctggctgtag	1260
	gcttctcagc	aaatgggcac	gacttgcgga	gtggggattt	gaattcacgt	ctggcgggat	1320
10	gtccaagctg	ctaccctgac	cgctagggag	cttcagagga	cagggctgca	ggtgatcagg	1380
	aagaggactg	gggcaggtgg	gcgaggaatg	cctcccagga	gtgaaggagg	gggaattcta	1440
	gtcagcagga	tggagtcggc	caggtagaaa	cgagggaaag	gagacaggac	cggatggaac	1500
	ggggaagcca	aagggcaggg	cgtcggaggg	ttgaatggtg	gccggtgcag	ctttgaacac	1560
	cgaggtgagg	acatgcagct	gtgtcctagg	gtcaggaccg	tacacgcctg	acccaattcc	1620
15	acagcacgga	ggggaactcc	aggatccggc	cgcgttgccc	acacacttcg	ctctccctcc	1680
	cgcctctcgc	aagcccctcc	cccgtctccg	tccaccgagt	gccagccaat	agcagaagcg	1740
	acagcgcatc	tgggtgccga	ctcagccaat	cgcggctgag	tgacgaatga	gccccaggac	1800
	caatgagagt	gccgccacca	tggcaaaaaa	aaaaaaatcc	aatggtgacg	agcagggaga	1860
	acagagcagc	tgccaatggg	cgtgtgcgtt	tcaggcggcc	aatgggagga	ggcgtctcgg	1920
20	cgggggacaa	gcagtagcta	cccgcgggag	cggggagggg	tccgggttcg	agcttgtgtt	1980
	cccccggaag	ggtgagtctg	gacgcgggcg	cggaaggagc	gcggccggag	gtcctcagga	2040
	agaagccgcg	gggactggct	gcgcttgaca	ggctgcactt	ggatgggagc	acctggtgcc	2100
	tcgggactgc	tccgatgccc	ggtgggtgca	catcccagtt	cccgccgttg	ccggccgggt	2160
	ttagaggttt	tggggggagg	acatgggggc	gtgcagcctt	cccagttgca	aacttcactc	2220
25	cgaccctgtc	ttcaaagctg	ggtctgggtc	cagtggggac	gagaaaggag	gaaggaggaa	2280
	gtaggctccg	cgaaagcccc	atccccggga	tctcatctat	aacatgaata	ggtattaatg	2340
	gcaaaggcta	attaagcgct	tactgtatac	caggcacttt	ctctgcctcc	tcgcgttaaa	2400
	tecteccage	agccttttga	ggtagacact	gttacatgcc	cattttccag	atgaggaaac	2460
	cagcaacatg	ggtggaagtg	acageceete	cacttccata	С		2501
30							

<210> 68

<211> 2455

<212> DNA

<213> Homo Sapiens

35

		ggagtgcaag	aacacagaac	taaaacagag	cttgaaactt	aaagaaaggg	agagacttgg	60
		gggaggagtg	gggtggagtg	acgtgatgtg	ctgctggaaa	ccagcagttg	gtggtttcct	120
		cttgtgcttc	ctcttctgtg	ggttttctcc	tgcttgtggg	agggcctttt	teteteetee	180
	5	cgacagaaag	gctatctttg	gtgttcgttc	ccttgaactg	taacatcctg	taagggtatg	240
		attccatgcc	tctgtgtggg	tgtgaattcc	ctcatggtga	ccctcaaaat	ctgcacacag	300
		gaccccttcc	cattgagggg	aggggatcaa	aacaactcta	cttctcaggg	tcctctcctg	360
		ttccaactgg	tctgtgtcca	agagaagcct	taggtaaatg	gggccagctt	gaagatcaaa	420
		caggtttggc	agcctctccc	ggcctctctt	ttctctccta	cagctttata	gctacagctg	480
1	0	ccttgatatc	aatattgact	ttggctggct	ggcatgacta	cccacagggt	atcgtgcctt	540
		aatttaccag	gtgacaggca	acgctgccct	ctcctggaac	catccagcag	agccagggct	600
		gtacccccaa	atcctgcaac	agaggtttcc	ctccatctca	cctccctgtc	cctgcatttc	660
		tcctatctca	gtagctcctc	tttccctctc	tgggcttctc	tttccactcc	ctcccttcc	720
		tgggcttggt	aaactagtcc	ctaatctctt	cacaccccag	attggaaggt	gggtccctcc	780
1	.5	ctgacactcc	ccagagctgt	caccaacctc	ctccaagttt	ctatagctcc	attgctcaac	840
		agatttgcca	ggggtaacca	ttaacccagc	ccttaactct	gttcccccac	ctttcttgct	900
		ggaggggatt	ttccaattac	tggttagcac	agctaggtca	tctcaccccc	accatctttc	960
		ctaacttctt	gggttggggg	gctggggagg	aatctcccca	tctcagggta	ctaggaacaa	1020
		agctggggag	gatggtgcat	ttaaagggat	tatatatata	tatatatata	tttttttct	1080
2	20	ttctccctca	taaccccacc	cccgcaacac	acacacacac	acacacacac	acacacacac	1140
		acacacacac	: agacgcacaa	ataagcttta	tggagcagtg	acttcattat	gttcaccgct	1200
		ttgagtccaa	cccctggccc	aaaataggca	ctaaatagtt	gccgaatgca	. tgaatgatag	1260
		atacctctct	gtcttcaggg	gtgtgtagaa	gtgcgaaggg	gtatgggcat	gtcccagtag	1320
		gggtgtgagt	gttctgatca	gaactacttc	tctctgccag	aatttgatgt	aattcgaatg	1380
2	25	cttccacctc	tgcttgaagg	gtttaaataa	taaattaggc	cctgtcgtgc	cattatgggg	1440
		gtggtcatac	cctgtaccca	ggaaacaggc	acggtagggc	tgagacagaa	gtcctgcttg	1500
		ttccgctta	tttatttgaa	acaccgctca	tttaggtctt	actttgtttg	ccaggcactg	1560
		. ttctaagcto	tgtataaata	ttaactcaga	gggtacaaat	attaacttaa	gagttgttgc	1620
		aggaaaaaa	a ataagcgcct	ctggctcttt	aagtttggcc	tcccctcaa	aacccccgca	1680
;	30	acggtcccaa	a accccttcca	gggactggga	ctacggaccc	tggtccgaco	ttctcgcggg	1740
		cttcccacto	g cgccaatcaa	atcccagaaa	cagtgagtgc	tagaggcccg	gctgctaagc	1800
		aacggcagag	g ggcgggaagt	: ttgaacgttc	: tggacccgcc	ccgaaggcaa	ataggccaat	1860
		cagcgtccag	g actcttcago	: tacggcagtc	: cgcttctcct	cctcgccctg	tcggatctct	1920
		aggctggato	c cgggcctctc	caatcaacag	g cggctaggag	ggcggggcgc	gtgcgcgcgc	1980
	35 .	acctcgctca	a cgcgccggc	g cgctcctttt	gcaggctcgt	ggcggtcggt	cageggggeg	2040
		ttctcccac	c tgtagcgact	: caggttacto	g aaaaggcggg	aaaacgctgo	gatggcggca	2100

WO 2004/015139 PCT/EP2003/008602 50/110

				59/112			
	gctgggggag	gaggaagata	agcgcgtgag	gctggggtcc	tggcgcgtgg	ttggcagagg	2160
				acagggccct			2220
	ggtaacctcc	gcgtgacagg	aatgagggtg	gggcgcgtgg	agtttcccac	aatctgtact	2280
	ttagttaaat	acccgagaat	tcacctcctg	tgtccacagc	tctccacgcc	cctcagccct	2340
5	gccccgcagc	cctgtagcag	aagtacttag	tgctttgcat	tctgcgcgcc	accctacccc	2400
	ggcctcctct	gtgaatcgtt	gcttccgaac	cgccctcact	ttttgcatcc	gcaga	2455
	<210> 69						
	<211> 2625					•	
10	<212> DNA						
	<213> Homo	Sapiens					
	<400> 69						
15	ttttaaacga	gaagtgatgt	ttccggagca	ttaaaactga	agtgatttca	aaaccatgtt	. 60
	gcactcacac	gaacaggtgt	gcacttaatg	gactaaacta	gttcagctga	catgtcttct	120
	tcattaggaa	cagtgtggag	actgaaaaac	taatttagcc	tagagcagct	atttaattgt	180
	aaagtctcct	ttctcaaata	ttgatttact	atgtgaggaa	atatttactt	tgtatagaag	240
	tgtgtggaat	tggacgaggg	ggttgaccta	cacatgtggt	ttggtataca	catatcctca	300
20	ttacagaggg	tgtaatgaag	atataggtgg	ttcagcacca	taggaaaggg	aaaaaagaaa	360
	aaaaaaagac	ggtagaggtg	gcctcccaag	catccactcc	cactcctctt	gttaatgatt	420
	cacaatttgt	tgttattgtt	gtcatttact	gttctccaca	cctttccaca	aggcctgtgt	480
	gctttgaaaa	aatatgtctc	tactccggat	agaagtgggg	cacacagggc	caggcgcggt	540
						caaggtcagg	600
25	agttcgagat	cagcctggcc	aatatggtga	aaccccatct	ctactaaaaa	tacaaaaatt	660

25

agcctggcgt ggtggcacgt gcctgtagtc ccagatactt gggaggctga ggcagaagaa 720 tcacttgaac ccgggaggca gaggttgcag tgagccgaga tggtaccact gcactccagc 780 840 agtaagtggg gcacacgatt caggcctaag ctaaccagac caacctcatt cctgatggtt 900

30

gttaatgttt cagatacggg cccgcagccc tacgtagaga agaggccaag gtagaaaaca 960 1020 tgaatctgag gtaaaaagaa atgaggtact tgtttgcctc atcaagcctc tcaattaaac taaccttgaa gcctgtctta cctttggact tctagtgatg tcacccggta aagcccattt 1080 1140 gtttcaggac gtaagagttg ggttttctgt gacttggaac caaaaccatt ccaatttaca 1200 aaatgagcaa ctttaatatt acccatgaga aatacttcat tggtatatgc tctttcctag

35

cgtttttgaa aactaaacta ggtgggtgaa aagtatatct ttgcatgaaa ctttttcatt 1260 ccagaaaaca ttttgtcatc ttgataataa tggccaatgc tactatatcc aaatttttgt. 1320

WO 2004/015139 PCT/EP2003/008602 60/112

	ctttttttt ttttgagaca gagtctcgct ctgccgctca ggtgtgatgg cgcgatctcg	1380
•	gctcactgca acctctgcct ccctggttca agcgattctc ctgcctcagc ctccctgagt	1440
	agetgggatt acaggeatge gecaceaeae etggetaatt titgtatitt taetgtagae	1500
	ggggtttcac cattitggcc aggctggtct cgaactcccg acttccagtg atcctcctgc	1560
5	ctacctcaaa aagcaacttg ataaatccac aggeteggta tattttaaaa attettttaa	1620
	atacagtata cttttctctt tttttccaga attaaccatg aatcgcacac acagccagag	1680
	gcttttaacc cgagaacgga caaaggggcc tgcttgtgca atacaattat ttttaatggt	1740
	taaacaaatt aatacataag accagcttta cctaatataa taataacgaa ccaaagttta	1800
	caacagacaa gaaaagcacc agctgtcccc gccaccccgg agcgatctcc aaggggacgc	1860
10	gggagagcgc cgcgggggac gcggaagtct gacgtcacag gaactggggg cggggcgggg	1920
	aggcccgcac accetattge geatgeteec geeteecegg eegeggeetg gegeagtgeg	1980
	cacgcgcgcg ggtgggcggg tttgactggc cgtagagtct gcgcagttgg tgaatggcgt	2040
	tggtggcggg aaagttgagt ctctcctgcg ccgagccttc ggggcgatgt gtagtgcctt	2100
	ccatagggct gagtctggga ccgaggtgag agccgccggg ttgggagtga gggagatggg	2160
15	aacaaggccg ccggtgggcg aggggagccg agggaacccg ggggattggg aggcttgggg	2220
	cggcgcggcc tggccgggct gggaccggcc tctcggccta gacgcccgcg atgctggcac	2280
	cctctgccac ctctcacctg ggccccaggg gtccgcccct gggcagcctg gagtcctccg	2340
	aggtgggagg accgggcgga ggtggaggaa gtctttcttt ggaagacttg ctgcctgccc	2400
	agatogatat aacataogag gtototooto ocaagagtta tggtotaaaa accootoaca	2460
20	aattaactac cgttggaaat gtcaagctat gcaagaaaag ctagaaaagg ggaggggtcg	2520
	cccgttggag catttggagc ttttctggaa caggtggtgt ttgcggaggt tgcctcacct	2580
	ccctgtagcc cacgtgtete tgcttagggc agctggccct cgcca	2625
	<210> 70	
25	<211> 2540	
	<212> DNA	
•	<213> Homo Sapiens	
	<400> 70	
30		
	tagtcccagc tactcgggag gctgaggcag gagaattgct tgaacccagg aagcagaggt	. 60
	tgcagtgagc tgagattatg ccactgcact ccagcctggg caacagaggg agactccatc	120
	tcaaaaaaaa aaaaaatcat taaaatacag taattcaggt ttattaagtc attaccattg	180
	ggttacctca caaataaact aagtttagat gcgaactcaa agatactgag acactaatcc	240
35	atttettaag etgetaagtt ageettettg aaaceteaet tegtagetet geaaacaatg	300

tacttttgac atcccaagct cacaggaata aaaaaccacc tgccagttgt ttccgttttc

WO 2004/015139 PCT/EP2003/008602 61/112

	cacctatgtc	taatttatgt	acttatattt	ataagaaaca	aatcactaag	tcttatttca	420
	tccttagtta	tgttgtgttt	ctatcgataa	cagcatgaag	atttcgggga	cctggacatt	480
	aaaataagtt	tgagtactgg	ctttacaatc	tactaggtgt	gatccgaggc	aagtcagtct	540
	cttcatgttt	cacttctttc	acttgtaaac	atctattcag	aagttgctgt	gaacttgata	600
5	tttccatgct	tataaactga	ttttttgaaa	agagcctggt	acataggacg	tgataataaa	660
	tgaaagcatt	tgctactttt	ggaaaaacaa	gcatgacaag	atagtttata	tactgttgat	720
	cttaagcaca	gtatatgcat	cttattttta	gctagtctga	cagtgagata	ataaaaagag	780
	ttatctttga	cttgcactac	gagtagaaga	attcaacttc	agtttctaga	aagatgtata	840
	agaattaaga	gtggcagtct	tcctagtctc	aactgccatc	ttcccaccag	gtggtaaatt	900
10	cgtccagaga	agaaaatgaa	ttattgctat	atgggattct	gcagcaactt	ctgtgaacat	960
	aggctcataa	tttttcacca	tggagactca	agctttttgg	agtcatagtt	gtttttgggt	1020
	ctatttgcag	gcatgcatcc	tttgtccaga	aatatacata	acatttggca	catggacctg	1080
	gaggtaaaag	aggaggaagg	cctgaggcta	gacaccactc	caataagtac	attaagctcc	1140
	tagaagggca	atccaccttt	gcagagaact	cttaactatt	aaaacctata	gcttgtaaag	1200
15	cagcattttc	aaagttaaga	gaagaaggtg	gaagggtctt	gagaggctac	tgactaaaca	1260
	gatgaaaatg	aaggtatgga	gtttggtgcc	aaaagaaact	cccccaaaa	atcaaacaat	1320
	aacaccagag	taaagcccct	agggcgagat	aaggagttgc	aacaaaacaa	gcggaaactc	1380
	gagaagcgct	aatgcttcaa	agggtcaatg	accacacata	atctacgtag	ccaacgtgtt	1440
	aaaacacacc	aacgcatttt	tttttcctaa	acaaagtagg	aaagcggact	ttgcatgagg	1500
20	ggcgggctgc	: cgacccagca	gtcttcctcg	gacagtccgt	cctgattctc	tctggttggc	1560
	cgtggaggga	ccacatggct	ccaaggcctc	tcagctccgg	gcccacacac	cccgggctgc	1620
	cgcacaaact	ccagccctag	tctagatcca	caaccccttc	tcgaagatca	accgcgacct	1680
	gggagcccca	cttcttacca	tagcgaggco	ggcgatgccg	cagccacatc	acccttccgg	1740
	ggctcaggc	gaagaggctg	catgtcccgt	ctgcccttct	cgccctctcc	agccgtccgg	1800
25	ttgggcttgt	cacggcaccg	cctaccaaga	cgggcggtta	agacactagg	ataggctcct	1860
	ctccaccgga	a aaaggcggga	tttagatcac	gtcccgcagg	ccggcggaag	tagctgatac	1920
	tctcattggt	tgcaaaacct	tgatctgtga	a aagcgggcgt	tttggaagat	accggaagta	1980
,	gagtcacgga	a gaggtaggat	ccggaagtg	g ggctgcctct	ttaaataaca	aaaatctgag	2040
	gttctgttct	ttttatctt	ttgctttct1	tttaaaaaag	ttccctgcta	cttaccccta	2100
30	gaactccac	a atgcgagaat	cccctcaat	t ttgtgagctc	ccgcgacttc	ctcttgtggg	2160
	cttttgggg	a tgctagggt	t ctcggcatta	a tootcagggt	gcgacctgtt	cacccccttt	2220
	tcagtttct	c cgtttgcat	c tgagggatte	ttgggaatgd	gaagcacttt	tgaaatgctc	2280
	tgtgttggt	t gtgggattg	g gaggacggt	t gaatccagag	ggtagtgtt	g agtaggctgt	2340
	ttgagcatt	t ccccagcac	t ggcctgtcc	t ttcaatccc	agatattggt	: aaactgtggg	2400
35						a aagaactttc	2460
	tgtggtaac	c aatgggaag	g aactgccgt	t tgcggac t go	agcgattgat	: taggtacttt	2520

2540 aaagagatca actggcaaga

<210> 71

<211> 2610

5 <212> DNA

<213> Homo Sapiens

10	ctacaggctc	gtgtcaccac	actgggcaat	acaaaaaata	caaaaaaaaa	attttgtatt	60
	ttttgtagag	acgaggtctt	gccatattgc	ccaggctgga	attcttacct	ttgttactgt	120
	atttaacgta	tctttttcct	ccggccatct	tcatggtttt	ctctctgatt	tccacagttt	180
	gaatacactg	catgtgtcag	gcaggggctc	atatttatca	agttttgtgt	gtgctctgag	240
	ctcaggtctt	tcattatttt	gggaaaatta	ttggtaattt	tctcttcaaa	cattttttat	300
15	gatttgttct	ttcttcttct	tttgggagtc	ctattacatg	catatgatat	catttgatat	360
	tttcccacag	ttcttggatg	ctttttttaa	aaaaaaactt	ttttcttct	ttattttcca	420
	acgtgggtaa	ttcctatttt	tctcagctgt	gttgatccta	ctgctgcccc	atcagaaaaa	480
	ttacctgtta	tcagcgttct	tcctttctta	taatttgatg	agtttcctcc	tcatgcatat	540
	tgttcacctt	tcgtacaaga	gacctccaca	tattaatcac	agttaattta	aatttccagc	600
20	ctgtttcaat	ttctcgatca	cctctgagtc	tagtcctgtt	aattgcttag	tgttatttt	660
	tgtttttgaa	acagggtctt	gctctgttgc	ccaggctgga	gtgcagcggc	gcgatctcag	720
	gctgttccct	gagttcacac	catccccctc	aaccagcaga	ttgcaaagtg	tccgagtcgg	780
	gccgtgcagg	agtctttgtg	ggggtttcat	ggactccgaa	ttctcatttc	tgctccatcc	840
	ccatctcatg	aatccaaggc	cccactctgt	gcctcggctc	ttcgtttgtg	gtgctgaacg	900
25	tcatctacgt	catctacgcc	atctacgtaa	tcaacacaat	aaagacgcct	gccgggaacg	960
	cggcccttcg	gctgaatccc	ttcggtggtt	ccaaggccac	tgccagagga	tgcggacggg	1020
	tctccagggc	ctctacttac	ccaggacttt	gaggcacatt	agcttcgcct	aggcactcgc	1080
	ttttacgaat	tcttatgttt	ggttttgttt	tgagacagag	tctcgctctg	ccgcccaggc	1140
	tggttaaaag	atagggtctc	agccgggtgc	ggtggctcac	gcctgtaatc	ccagcacttt	1200
30	gggaggccga	ggcgggcgga	tcacctgagg	tccggagttc	gagactagcc	tgggccaaca	1260
	tggcgaaacg	ctgtctctac	taaaaataac	: aaaaatcato	: caggcgtggt	ggcgcgcacc	1320
•	tgcaatccca	gctactcggg	aggctgaggc	: aggagaatca	cctgaaccca	ggaggcagac	1380
	gttgcagtga	a gccgagatcg	cgccactgca	ctccagcctg	ggcgacagag	ggagactccg	1440
	tctcaaaaaa	a aggaaaaaa	aaaaaaagaa	aagaaacaaa	agtgatgggg	tctcgctctg	1500
35	ttgcccagg	c tagtctggaa	ttcctgggct	caagcgacco	tccagcctcg	gcctcccaaa	1560
	gcgctgggaa	a tacaggcgcg	gctaccgcgc	ggtctccgg	tgccgaaaca	ccgccctgcg	1620

WO 2004/015139 PCT/EP2003/008602 63/112

	cgcggaccgt t	teggeegeeg	ggaggaacag	cggctgcccg	gagctcagag	gcgcgcgg	1680
	ctttgcgctc (cccgcggcgc	tctgagcctg	cctcggcttg	gttggccagg	tggtctcttc	1740
	aggaccaacc o	ccagtcattc	ccggcaggaa	ccacgcttga	ggggcggcag	tctgcccgcg	1800
	cgagacgccc (ccgcggacta	caccgcggcg	gcaaagccaa	acgcaaaaac	tacctcaccg	1860
5	cgcgcaggcg (cctcccccag	gaccaacatg	gccacgacgc	aaggcctcga	cctgaggggc	1920
	gtggcctggc (cgccgccagc	caacgggtgt	gcgcgcctgg	ccgcagccaa	taggaaggca	1980
	gcgcgggctc	gggcgcaggg	agccgccgcc	ggggctgtag	gcgccaaggc	catgtccgac	2040
	tcgtgggtcc	cgaactccgc	ctcgggccag	gacccagggg	gccgccggag	ggcctgggcc	2100
	gagctgctgg (gtaggtgggc	gcggcaggcc	gcgggagtgg	gcggcgtccg	gcccgggacg	2160
10	gtttcgccgg	ttccccgatc	ccttcccgcc	agagcctccg	ccggtcggat	ccccggacgc	2220
	cgcgcccggg	gggctgtgcg	gggtgggcgc	ccggctgggg	cggcgcggct	gcctcggacc	2280
	cggcccctcc	tgcgcctggg	cggacgccca	ccagaccgcc	gcccgcgggg	cgctcccttc	2340
	tttcccgaac	gccgcccccg	ccggccgccc	tgtcaggcgg	gcctggggtg	cgcggcctgg	2400
	ggctcccctc	agcgcagagg	cegeceeteg	ccagccgtcc	ccgggctccc	ctgcctcggg	2460
15	ccctcctggg	ccgtcttccc	cggcgtccgc	ggtggggccg	tctccgttag	tttcccgaga	2520
	cctgcgccct	ggggaggagc	cccggcccct	cttcgggagg	gtgtcgctgg	tgggtttctc	2580
	cgcggcgtcc	acctgcgcgt	cgggccgggg				2610
			•				
	<210> 72						
20	<211> 3076						•
	<212> DNA						
	<213> Homo	Sapiens					
,	<400> 72						
25							
	gctgggatta	caggcataac	atggcccggc	cctggccatg	tttttaactg	tgtttctcta	60
	atagctaata	atgccgagca	tctttttatg	tgtttcttag	ccattagtag	atctttttg	120
	gtaaaatgtc	tttttttt	tttttggtcc	atcttaaaat	tgttttttgt	tttgttttga	180
	gacagggtct	cactttgttg	cccacgctgg	agtgcagtgg	ctcaatcatg	gctcactgca	240
30	gcttcgacat	ccctgagctc	aggtgatcct	cccacctaag	tttcccgagt	agatgggact	300
	acaggtgtgt	gccaccatgc	ccagctaatt	tttgtatttt	ttttgtagag	gtggggtttt	360
	_				atgatectee		420
	tcccaaagtg	ctgggataac	aggcatgaac	: caccacacco	: agctaagatt	gtttttaaaa	480
					taccagtece		540
35	tataattagc	aagtagttto	: tcccactctg	, tgactgtgac	: ctttctttt	ttgaggcagg	600

gtctcactct gttactcagg ctggagggca gtggtgtgat catggctcac tgcaacctgg

	aactcctagg	ctcaagggct	cctcccacct	cagoctocca	agtagctggg	tctacaggtg	720
	tgttattgtg	ccagggttaa	tgttttaaat	tttttgtaga	gataatgtct	ctacaaaaga	780
	caccatcttt	gttgcctagg	ctggtcttga	actcctggct	tcagggaatc	ctccagcctc	840
	agcctcccaa	agtgctggga	ttacagcatg	agccacatcc	agcctatgat	ttttcttctt	900
5	ttcttttctt	ttctttttt	tttttttga	gatggagtct	cgctgttgcg	caggctggag	960
	tgcagtgggg	cgatctcggc	tcactgcagg	ctctggcccg	cggggttcac	gcctttctcc	1020
	tgcctcagcc	tcccgagtag	ctgggactac	aggcgcccgc	cacategece	ggctaatttt	1080
	ttgtattttt	agtagagacg	gggtttcacc	gtgttagcca	tgatggtctc	gatctcctga	1140
	cctcgtgatc	cgcccgcctc	ggtctcccaa	agtgctggga	tcgcaggcgt	gagccacggc	1200
10	gcccggcccc	agcgtatgac	ttcttaatga	tgtctttgta	gtacaagagt	ttttaatttt	1260
	aataaagtta	acttttttt	aaattgtaca	agcttttagt	gctgtgtcta	acaacttgtt	1320
	gccaaaccca	aggtcataaa	gctgttctct	tacgttttct	tttttttt	tttttgagac	1380
	ggagtctcac	tctgtcaccc	aggctggagt	gcaatggcac	gatgtcggct	cactgcaacc	1440
	teegecacce	gggttcaagc	gattcttccg	cctcagcctc	cggggtagct	gggattacag	1500
15	gcgcacgaca	ccacgccctg	ctaatttttg	tatttttgta	gagaaggttt	caccatgtta	1560
	gttaggctgc	tttacgtttt	cttttagaag	ttttatattt	ttggctctta	tatttagttt	1620
-	gtgatccatt	gagttgattt	tatgtacgta	tgtatggtcg	cgttcttttc	tttcctgtct	1680
	tttttttt	ttttttttg	catatggata	ttcaattctc	ctagctccat	ttaatttgaa	1740
	atgattgggc	: aggtactttt	gagcagtgca	agtacagagc	ggcactgcca	gcagactaca	1800
20	cgcggtagaa	agccgacctt	ggtgagcgtg	ttggtgctcg	acagtgagca	gagaaaggat	1860
	ggacgattac	ggagcgccct	cgtctccagt	taccgctttc	tggaaacacc	atccgccggg	1920
	gcggagctgt	: tccgccccgg	tgcggtacta	cgactcccag	catgcacctc	gcagtcggcc	1980
	ctcggtggaa	a gegggaace	aggaggacct	: gggggtgtgg	cagcgaggaa	gggccgagcc	2040
	acggactgt	g gggccgaaac	tegetecege	ccaccctttc	tcgaggctgt	ggcctccgcg	2100
25	agagccgag	gggccgcaco	geeggeegte	g cgactgcccc	agtcagacac	gaccccggct	2160
	tetagecege	c ctaagcctgt	ttggggttgd	tgactcgttt	cctccccgag	tttcccgcgg	2220
	yaactaacto	c ttcaagagga	a ccaaccgca	g cccagagctt	cgcagacccg	g gccaaccaga	2280
	ggcgaggtt	g agagecegge	gggccgcgg	g gagagagcgt	cccatctgto	ctggaaagcc	2340
	tgggcgggt	g gattgggac	ccgagagaa	g caggggagct	cggcggggt	g cagaagtgcc	2400
30	caggcccct	c cccgctggg	ttgggagcti	t gggcaggcca	gcttcaccct	tcctaagtcc	2460
	gcttctggt	c teegggeee	a gcctcggcc	a ccatgtccc	g ccagaccaco	tctgtgggct	2520
	ccagctgcc	t ggacctgtg	g agggaaaag	a atgaccggct	cgttcgacaq	g gccaaggtaa	2580
	cacggttgc	t ggcaccctc	g gtttgcagc	c tcaagatcc	tgaaagcgg	g tttgcagtgg	2640
	atttacccc	a acagatggg	g agggactga	g cttgaccaaa	a gagccagaa	a tgactggaga	2700
35	atgcatccc	t tgccactgc	t gcaagggga	g aaaaaaggat	tgatcctca	g tgacaacccc	2760
						a gcagttggct	2820
	_	•					

WO 2004/015139 PCT/EP2003/008602 65/112

		-					
	caggatgcac	tggaagggct	cagagggctc	ctccatagtc	tgcaaggtag	gcgggtcctc	2880
	cccaggatgg	tcagttcccc	tcttccatag	ccagagaaac	atccgctcct	gcgtttttgg	2940
	gatcgatata	attactcggg	gcagggagtc	ctgtttaagg	cacagaggag	actggagtgg	3000
	aatcatcttt	gtacaggcaa	atccctctct	tccttacaca	ctcacagagt	ggcatttgaa	3060
5	aaatggtttc	caagat			•		3076
	<210> 73						
	<211> 2567						
	<212> DNA						
10	<213> Homo	Sapiens					
	<400> 73						
	cacaccatct	cttgctccgt	gagtatcttt	gtctctctag	ctcctcttct	tctctcagta	60
15	catgtccctc	cttgactccc	gcctctctgc	aaggtgtatt	tggctgcctc	agttggcctc	120
	tccccctctg	catctctggg	tggggtgttc	tctgcccgtc	tcccacccac	acccaccccc	180
	ggtgctcccc	ttccccccag	caggacagcg	gctcaggttc	acgcacccca	cggcgggccg	240
	gctgggcgca	cgcacgtcct	tgcacacaag	ccgcacgtag	ctgtacttga	gcacgtcgat	300
	gagcgtgtag	agcgggggcg	cactggccca	gcggcagcgc	gccaggtgca	tggagctctt	360
20	gacgaagaag	agegeeagee	gctgctggca	ccacgcgtcg	aagaagcggc	tgaactcggc	420
	ccacgagaag	aaggcccgct	cccgcagctc	ctgctcctcc	tgccccgcag	ccgtgccggg	480
	tgggggctcc	ggccgctcca	tcctgggggc	ctgcgtggag	gaggggagaa	caggtggata	540
	tcagacccat	teccaceegg	ggtatctcat	ctactccatt	cttggcctgc	cccgtcggtt	600
	gctggtgcct	ctatcgaggt	gggtagcccg	gggtcggacg	tgcctgtttt	tctccaaata	660
25	tataaatato	aacctccatc	ctatctttgg	cctcctccca	ccgccttatc	cctggttcac	720
	ttggagcctg	tcatcttgat	tcctaattcc	aactcgtctc	ctcctccgca	gatgtgaccc	780
	ttaggtacag	ttggaatctc	tcctcccaaa	atacgaccct	taagctcaga	tgttccttaa	840
	ggacatetee	: tcaaatgtgt	tctcaaattc	cagctaaaac	ctcctcccct	tccagctgtg	900
	tctctcaccc	: aagagtaact	tctaactctc	gtattcatct	ggaactcctc	cttccatgtg	960
30	ccaacagtto	gctgtaaccc	ctccaaagac	gctccatctc	cagatgtgct	cccacatcca	1020
	ggccacggac	ccctcacccg	gtcacatgct	tcatgcacct	gtggctccgc	actccccaga	1080
	tgtgcctctg	gcgtgcagct	gttgcccctt	cccccgatta	tgaccctatg	gctcgccaca	1140
	tgcagctgta	gctggggctt	ccctgagaca	ctctcatctc	cagatgtact	ccccacatgc	1200
	agttatccac	gcttcgccta	caggtgtgtg	ccccacttgt	ggctagttct	cctcggaagt	1260
35	gtcaccagta	ttcacctgtg	gtcccctcct	cctcagatgo	ggcccccagt	ccagctgtgg	1320

gcccctcctc ccagttacat ccaccatccc ccgcaatatg catcttcgtt ctagacatgg

WO 2004/015139 PCT/EP2003/008602 66/112

	cccctcgtcc	tcggatgggc	tccttcaccc	cagatgctcc	cccacgtcc	agctgcgcgt	1440
	ctcccctcga	gcagccccat	ccagcccgct	cccgacgctc	ctactccccc	cctccccgcc	1500
	cgctgcggca	ccttccagcc	ccgccgtccc	acctagctgt	gcctctcccc	tccccaagat	1560
	gtgcaccctt	cccgcccctc	cccactcacc	tacccgcccc	ggagcggcgt	ccacctccca	1620
5	caatgccccg	cgcccaggcc	tggcccggcc	cttgctcccg	ggatgccccg	cgcggtctcc	1680
	cgcctctctt	cccgccgtgc	ctcgcggggg	cgcttccacc	gattcctcct	ctttccctgc	1740
	cagtcactcc	tcagaccctc	agccacaccc	gctcatccag	ggcgagggaa	agcgcgggca	1800
	ttttcccagt	gtgctctgcg	ggagggctcg	ccccacttca	ccccttttcc	cgccctcctc	1860
	ccattcggga	gactacgact	cccagtgtcc	tccgcgcgac	ggcggcggtg	cggacggtgc	1920
10	ccaggtcccg	cccctaggct	ctgccccgcc	cccgcccgca	gacgtctgcg	cgcgaatgcc	1980
	gtggcgcgaa	cttgggactg	cagaggcgcg	cctggcggat	ctgagtgtgt	tgcccgggca	2040
	gcggcgcgcg	ggaccaacgc	aaggcaagtg	gggccgtccg	caagcagatg	ggaggcggag	2100
	ggcggcgggt	gcgccgaatg	cttggggcct	atgcttcgcc	atgtcggggt	gtctgcagag	2160
	gagtgggcgt	ggggacgctg	aggctgccga	gagcgcggtg	gagacggaag	agcgcgggct	2220
15	gcgggccgcc	ggagagtgca	gagaggtgtc	tcccagaggg	aggggggcca	ggtagagggt	2280
	agacgagaga	cagagacagt	tggacaggtc	ctctgagaag	aggccttgag	gtgcgagttc	2340
	acctggaagg	gggagaggcc	aaatggaact	gaggggcggg	gcggggggg	ggaaaactgt	2400
	gtgggcgggg	ccagctggaa	atcggaaggc	ccccgaggg	ggcggggcta	tctgggaggg	2460
	ggaggggctg	aagggagcta	aggggcgggg	ccggggaaaa	gattgcgtgt	gggcggggcc	2520
20	acctggaagg	gggaggtgcc	aagggtgggg	ctggctggga	accggaa		2567

<210> 74

<211> 2278

<212> DNA

25 <213> Homo Sapiens

	tcacagaagt	caaagctcag	gaaaagcccc	tcgagggttt	ttgtgcggca	gaggtgggtt	60
30 .	gtggggtggg	attgtgcctg	ccacagtgga	ggggccctgc	agacccagat	aaaccttcaa	120
	gtggccagaa	gcgggggatg	gctctgctgg	gtgctggggc	tgccatgggc	cgtgggagcc	180
	agcagtgtgc	ccagctccct	cagggcccgt	cccctaggcc	cttccgtcca	ctgggccaag	240
	caccgtccct	gcccctccct	aggggcatgg	atctgacttg	agaggttgtg	agagcttaca	300
	ggcgctgggc	cgtcggggag	gcctcagaag	cgtaggacgg	ctgcgcactg	ccgggccgtg	360
35	ttcagccctg	gtctggcctc	ggcctctaga	ggaggctgcc	tgcgctccag	caggcccaac	420
	ccagaacgtg	ggcgagctcc	cttcagcatc	cctgggcgga	aagagggatg	ggggctctgc	480

•							
	tgcagaggca	gaatccgcgc	cgctccctcc	ttccttcccc	cgaccagcct	gtgacaaccc	540
	cggccagggg	cgggggcctc	cgcacaagcc	tggcgtccac	ttcctggata	aggactcccc	600
	ggcccactcc	ggaccagggc	tggggcggcc	tcccaggcgc	tcactccgct	ggcaccccac	660
	cggaaaacac	gtctgcggcc	cgccccctcc	cccaaagcac	gaccactccg	cccgggcccc	720
5	tcgaggatcc	actcaggttc	acgacgggcc	cgtcctctcg	gtggtctgac	caccggctgg	780
	tggagtgggc	tctggggccg	ccaggcgacc	agggcgcagg	cgggggcgga	cagctcattg	840
	ggaggggcgc	cggggcacag	tgcggggctc	gcccacccc	caggtgcccc	ttccccgctc	900
	tegeetegea	ggcaccgcat	cgggcccggg	aatcggtccg	gacctggcgg	tgggcgctgg	960
	gaagaggatc	cacctccacg	tggcccgccc	cgcccgggg	gcgcagccag	ttcccggcgc	1020
10	tcactgcccc	ccttctcccg	gcttccgtcc	ccttctgcgc	aggcgccgct	ccgccccggt	1080
	cctaggggtg	cttccgtggt	cggcggctgc	tgggctccgc	gccggggtcc	gagtcccacg	1140
	aagccccggc	ccgagccgcc	ggatgcccgc	gcgcagcggg	gcccaggtga	gegegegeet	1200
	cggccgcccc	gcggaacaga	cgcgcccacc	cccaggcgca	gcagcgagcg	cggccgcggg	1260
	agcgggagtg	ccggggacgg	gcgtagcgcc	caccgccccg	agggttcggg	gcagagccag	1320
15	agcataggcc	aagggccaag	ctcgggccga	gagcagtggc	cgcagcgccc	gggggctgaa	1380
	cccacggcgc	gctggcagcg	cgggccgagc	tgcggagacg	gtcacgtcag	cgtccgttcc	1440
	aggccgactg	gcagtctccg	ttctacatta	acgtcagcac	tcccgttaaa	aataatgcat	1500
	ctctcccatg	ccaggaggac	ttaggtgctg	ctaaagacca	gccctccggg	tgctgccagg	1560
	ccggcgctca	cccgccacct	tcatcttccc	ttctcctttg	ccccaggaca	gccgaggatg	1620
20	tgtggttagg	ttccccctac	ccatggggag	gccagaggtg	ggaggctggc	ggcctgctcg	1680
	gtctcagcag	accctcctag	tccctcagga	gaccttgcct	ttgccccact	tgctcgttat	1740
	ccagcctggg	ccatgaagca	gaggacagtt	agggaccctg	agcacgcggt	ggtcaccccg	1800
	gtgctcaccc	ctccctgtgt	gtccgacctt	ggccctgcta	agatcctgtg	ttttgaattc	1860
	tggcaagggt	tggatgaaag	ggcagggctc	cagaaaccag	ctcagacgtt	tgcttgggac	1920
25	ctgcatgatg	agtgggaatc	ggagggcacc	agccctgctg	tcccaggctc	aggcccccat	1980
	ctgctcccca	ggtcatgcag	cctgggcccc	catgccgtgc	agctcgcaca	tatgtggggc	2040
	agagcagcca	ccctgccccc	agcagcagco	gtccatcgtc	agacgtgatc	atttcctgag	2100
	gcctcgagtg	tgtcagggtg	tttgtgcctc	ataacaaccc	acaggatggt	cacccccgct	2160
	ttgcagatga	agaaaccaaa	gcaggtggtc	agatccagtc	cttgcacttc	ctgagcctga	2220
30	ccttaccaca	cagctgtctc	ctattcggat	gcttatttat	ttttttccc	attacagt	2278

<210> 75

<211> 2401

<212> DNA

35 <213> Homo Sapiens

	tcatgcctgt aatcctaaca cttt	gggaag ccaaggtggg	aggactgctt gaggccagga	60
	gttcaatact agcctgggca acac	agcaag atctcatctc	taccaagaaa aacaaaggat	120
5	agaggagtca actgaaaaag atcc	cagtga ctaaagctcg	aacaatttta gcaataaaat	180
	aaatacgcat gatataaata catg	gctgaa taaataaact	ggggagaata gaaaaatatc	240
	ctgtgcagaa gaattccaag taac	ttatat agatatttta	cctttacctt caaggaagta	300
	gaacataact tttcattcct tccc	aggatg ggctaggcat	gatgacttcc ttccaaagag	360
	tacagaacgg aaacagggca gggg	gattaa cagtggagaa	acctgaccaa cgctactgca	420
· 10	gctaggtgat caaggccaaa acat	cgacag tgataaagca	tgctgagagc acctttgatt	480
	tgatgtagtg aaaatcgtgc ttta	cctctg taatcttcct	gccaaaaacc cataatccca	540
	gccccaatta tgagagaaac atta	ggcaaa tatcaattga	gaaatattct acaaaatacc	600
	tgactggtac tcctgaaaac tgtc	aaggtc accaaaaaca	ataaaagctc aagaaactgt	660
	cacageceag aggaacetaa gate	rtgacta ctaaatggca	tgtagtaccc taaatgggat	720
15	cctggaacac aaaaagagta tcag	gtaaaa actaagagaa	tcagaataaa gaaaggactt	780
	ttgttaataa tagtgtatca atat	tggttc atcaattttg	acaagtgtac catactaata	840
	atgcaaggtg ttaataagaa acat	tcagca tgagatttt	aggaattttc tatattatct	900
	tcacaatttc ctgttaatct aaat	ctctcc taatgacaag	tttatttaaa aagtaaaaca	960
	aaacttgaag gagggaggaa acaa	agaaggg aggaaacatt	ggagacagaa ccagcttggc	1020
20	aagttgacag ataaggtctg agaa	agtaggc aggggaaaga	tcattcattt caggcaatat	1080
	ttttccattt tacctgtata agaa	accatat gagccctatt	tttctttctt tctttttct	1140
	ttctttcttt tcttttttt ttt	tttttgt agagatgaag	atttcactat gttgaacagg	1200
	ctggtctcaa actcctggcc tca	agcaatc ctcccacctc	agcctcccaa agcatgagcc	1260
	accatggtgg gcctgtatga agg	aactttt taaaaaatgc	tacaagccgg gtgcagtggc	1320
25	tcattacctg taatcccagc att	ctgggag gccaaggtaa	gaggatcact tgggcccaga	1380
	agttcaagac catcctgaac aac	atagcaa gaccctgttc	tctgcttaaa aaaaacaaaa	1440
	acaagctggg cgtggtggat cac	gcctgta atcccagcac	tttgggaggc tgaggtgggc	1500
	agatcatgag gtcaggagtt cga	gaccaga ctgaccaaca	tggtgaaacc ccatctctac	1560
	taaaaataca aaaattagct ggg	cacggtg gtgtgcgcct	gtgatcccag ctactcagga	1620
30	ggctgaggca ggagaatcgc ttg	aacccgg gagacggagg	ttgcagtgag ctgagaaagc	1680
	agtgagctga gatagcacca ctg	tgctcta gcctgggaga	cggagtgaga ctctgtttca	1740
	aaaaaatcag cctgcccagt cag	agcgcct cagcgccgtg	ctcgggacat cccgccctgc	1800
	ggccagcccc cgcgtgacgt cac	cgcattc cggctccgct	cetecegeeg eggegeeege	1860
	accgcagtga cagccagccg ggc	ccggtgc cggagaggaa	gtgcggtccg cgccaagccc	1920
35	gteccegeeg acgeeggete ecc	gcggctc gggtgacago	gtegeggeeg eeggaegeag	1980
	cgcggggcag gcgcgggcag agc	cgagcgc agcggaggct	ccggcggagg cgcggggaaa	2040

WO 2004/015139 PCT/EP2003/008602

				69/112			
	atggctgatg	actttggctt	cttctcgtcg	tcggagagcg	gtgccccgga	ggcggcggag	2100
	gaggacccgg	cggccgcctt	cctggcccag	caggagagcg	agattgcagg	catagagaac	2160
	gacgagggct	tcggggcacc	tgccggcagc	catgcggccc	ccgcgcagcc	gggccccacg	2220
	agtgggggtg	agtcagcgcg	gggcctggag	aggggctcag	ggcgcgcacc	cgggggaccc	2280
5	cggccggggc	ccaggggcac	agggaagaga	gcctgctcta	ggccacccgg	ggcaggagct	2340
	gggagacgtg	gggaagaatc	ttcttggaga	tctccatgta	ggacttccga	gctggggatg	2400
	a						2401
	<210> 76						
10	<211> 2501						
	<212> DNA						
	<213> Homo	Sapiens					
	<400> 76						
15							
	ccagcctggg	ccgcagagtg	agaccctgtc	tcaaaaaaag	aacctactag	tctacatacc	60
	acacttcctc	atccccatct	gagactatat	atatttttc	taacatgagg	caatgccaaa	120
	aagaggggct	ggtgagtgaa	agtaagaaca	gaaagacatg	gaggcaagtc	ťtatagaata	180
	atagccaaca	cttaaactta	cacttaacag	cgtgataggt	attgttccaa	acacattaaa	240

ttcatttaat ggtccttaca tgtctatgta tttggtgatt attatcctta ttattcacat 300 20 tgctgagtgt attattctgt tctcatgatg ctgatagaga catacccgag actggataac 360 ttattaaaaa aaaaaaggtt taatggactc acagttccac gtggatgggg agtcctcaca 420 atcatggtag aaagcaaaag acacgtctta catggcagca gggaagagag agaaatgaga 480 540 accaaacaaa aggggtttcc ccttataaaa ccatcagctc tcatgcgact tattcactac catgagaaca gtatggggga aaccaccccc atgattcaat gatctaccag gtgcctccca 600 25 caacctgtgg gaattatggg agctacaatt ccagatgaga tttgggtggg gacacagcca 660 aaccacatca ctgaggaaac tgagttatag ggagattagt aacgcccaac acagctggta 720 780 ggtggtggag ccaggcagtc tgactctagg gtctggactc tgaactgcat catgctgcca 840 agaagtteet cattttttee tetetetaag ttteeettat teecetacag teatteette 900 30 tcccaaattc caacgtgcaa atgcagcctt atatacccta attcatcttt acctttagac 960 1020 tttcttccaa tgtttctact tcattccatt ttaaatttat ccatgagatg cctatttaca 1080 agctgtaacc atcatgaagt gaatgaagaa taatacctac tactgtacaa tagaattcca agagtataaa taggagttat ggctttctga cttgaaacta aatacttgat acttgatttt 1140 gctgtctgag atcaatctga aaagtaataa taatcactaa catttgttga gcatcaattg 1200 35 tgggccaagt gtcatttcaa tcactctgta catattaact catttcatcc tacaacaacc 1260

WO 2004/015139 PCT/EP2003/008602 70/112

		cggtgaggca	agttctgtta	ttctgtttta	cagttgagga	aacagaggca	tagagagctt	1320
		aagtagtttg	cccagtagat	agccagaaga	ggagccagga	tgggtctcgg	gcagtttaac	1380
		agcacagctg	aagtcttaac	cactatgcca	acagcttttt	ggtcctacac	atcccatggg	1440
		aagaggaaaa	taaaaaggta	tctatttgta	taccttttta	tttctgatat	aagaagcaga	1500
	5	attcctttca	catgacctat	gtctatttaa	tacgtcattt	tgaaacttac	caataaaatt	1560
		tcccaagcgc	cagaaaactg	ttagtggctt	tttccatttc	tctctatttt	tttttgtgct	1620
		actaattttg	cttctttccc	tcagaaggct	gccggaatag	taaacattca	ctgacatgtc	1680
		ataattactg	gaaaatgggc	actggaaaat	cacattgtaa	ttaattcaaa	gcatgttttc	1740
		caaatgtact	actttaaatt	ggagcttata	tcataatcca	aggaaacctt	tgtgtgtgta	1800
1	LO	ctgttcccac	attgctcagc	ctgggatatc	caggagtaat	tcaccttgcg	cctgcctcca	1860
		gaccatcttc	catggaaggg	ggtgacccct	tgcctcttgg	caaccacțat	ttctaagctg	1920
		ccaacattac	tcttgcatta	tcaacattct	aacttcatgg	gaagggctgt	ggtgagtttc	1980
		tggaatgtga	ataggaagtt	gtttttctaa	acagcctgac	actgagggga	ggcagtgaga	2040
		ctgtaagcag	tctgggttgg	gcagaaggca	gaaaaccagc	agagtcacag	aggagatggt	2100
•	15	gagtttattt	tttctgcat	gggaagtggt	tgaagtgagt	tggagtggta	tggagtaaag	2160
		tcaggcaggt	aaaggttcag	aaagtgagga	acagcgatag	ccatggagtt	ttatgttgaa	2220
		ttgcctatta	gattttgtga	gtacttttaa	acttgctgtc	cactttgacc	ctcccaacac	2280
		ccttgtgagt	tgaggttgct	atttctattt	tacaaataaa	gccatcgtgg	tttacagagg	2340
		ctgtgtttta	tctaagcttc	actgttaggc	: tacatgatgt	tgggatctgg	ggcctgtcct	2400
	20	ctggctccgc	agctgctgtt	cctcctacta	gaatttatag	gggctctctg	, agaatagatc	2460
		atggtaaaco	tgtcacccca	ttttccaaga	ctgtacttct	. с		2501
		<210> 77						

<210> 77

<211> 2501

25 <212> DNA

<213> Homo Sapiens

30	cctgggtcct	ctcttccagc	tcccaaaatg	tactctattt	ttatctgttt	cacgaacgct	60
	ggtccagata	gtcttccatc	ccccactgac	tgttagaagt	gactctcagc	ttttgtccat	120
	ctcgaagttt	ctgtgctcag	tgtgcctctc	agactaaagg	cttcctttgg	gaagccccga	180
	ctctcgcttc	tcaggacaga	gatccagggg	ttgggggagg	aaaaggttga	ccagaagcca	240
	tagcggagca	gggagagaga	gtgtgaaaga	cagacccgcg	gccaggctcc	cagttctcca	300
35	gctcgtagag	ggcccaagtg	gccgctataa	tctgaaagag	cagatatcgt	aatcccatag	360
	tacttcctat	tggctgcagg	acacagttct	gtcctgacac	tgaaatttgg	gtgtgtcagg	420

WO 2004/015139 PCT/EP2003/008602 71/112

	gttctgggaa t	tcacaacgc	tcacaacttg	tgaagcagct	gtggggtggg	ggatggggag	480
	ggtttcagca ç	gaggaagtga	ggtcagtcaa	taattgatgc	ctgtctgagc	ttttagccat	540
	tatctcccc a	agcctctatt	cctgtcaaaa	ggtggggcgg	ggcaggagga	ggggtccctg	600
	gctcatcttg t	tagaatcccc	atattagagt	aagacacctt	agaggtctac	tectgettet	660
5	aatacccacg t	tctttccaag	tgtctctgag	gccaccccct	ccccagcctt	ttcatttatt	720
	catttaatta a	acgaacgcct	tcattgaggg	cctcctctga	gtcaggctca	gccagccagc	780
	atctttgcta i	tgagctgaga	taagcatcat	ttccgtctat	tctcacaacc	accctatgag	840
	gctggcacgg 1	tttactatgc	ctatttagca	gatgggggac	tgaagcatgg	agaggtgtca	900
	ctagcctacg (gtaacacaac	cagcctgcat	tcctagtagg	tagtttgact	tcagagtctc	960
10	tgtggataac	caggaggcta	ggactaagac	cagagtcctg	caggtactta	gatggttgga	1020
	gcaaagcagg (gcagtgaggt	cagtgctccc	agcctgtgca	ggagcatcag	gaagagtctg	1080
	tgtcccctc	ccctgccggt	atgaagccat	tetgetteee	tccccagctg	ccttgtgtca	1140
	gcagagttcc	agggaggctc	cattccccac	ctctatctaa	agctccattt	gctggggtgg	1200
	gggccctgcc	tggaagggga	aggtccaagg	ctgctcccag	cgtgtccctc	catcctgact	1260
15	gtccctggcg	gggcgggggt	gtctttgtca	cccagctgca	caacggccag	gaagggctca	1320
	aaccatcctc	agggctaacc	caaggccgtc	ctctgggcct	gtatacccct	gtgctgagtg	1380
	cggatcggga	gaggctgctg	aagacaggag	gggacaaatg	ggggacgaag	gggcccgagg	1440
	gaggggactg	aaggatttgg	gccaagtcgg	gagttcccga	gggcggagtc	aaaacgcatc	1500
	tggattttgc	tagccccaaa	ctctgccctc	attgctgcaa	gcctcctaga	ccgaggaccc	1560
20	ccgggctgag	ggtggggtaa	ggataggtag	tgtccctccc	cgtcccaccc	ccgcctgtcc	1620
	cttcctcggt	ggccccttcc	cggcgccccg	attccaggcg	gcccctccgc	tgctgccagc	1680
	cgateccect	ctacccccac	ccactactcc	ggccgccaga	cgttgcctac	agtctcggct	1740
	ctgtctccca	cggctgtggg	teeggaeeee	acgggacccc	tatgggaccc	ccacaggacc	1800
	cccacggcct	gagtccaagg	cccgccccct	cggggaggcg	gatgtgggag	gcccggcccg	1860
25	ggtgcgggcc	agcgacccgg	gagctgcggg	cggctgggag	gggaggccgc	cctgaggggc	1920
	tgggagcggc	gcgggggtgg	gtcccggtcc	tgcagcccca	gcgaggggcg	agcggcggcc	1980
	agtcggcgag	ctgggcaata	aggaaacggt	ttattaggag	ggagtggtgg	agctgggcca	2040
	ggcaggaaga	cgctggaata	agaaacattt	ttgctccagc	ccccatccca	gtcccgggag	2100
	gctgccgcgc	cagctgcgcc	gagegageee	ctccccggct	ccagcccggt	ccggggccgc	2160
30	geceggacee	cagcccgccg	tccagcgctg	gcggtgcaac	tgcggccgcg	cggtggaggg	2220
	gaggtggccc	cggtccgccg	aaggctagcg	ccccgccacc	cgcagagcgg	gcccagaggt	2280
	gagtcgaggt	ccgcggacgg	gaccgggtgg	cgggcggcct	gacccccgct	tcagtgggcc	2340
	cttccttcgg	gcggacccca	gagtcaccgc	: agagtggtcg	cgggaggcto	agtcccagct	2400
	cattagaaag	gcaagctgct	cctggctgac	: cacgcacago	tcccatgaco	: ctacctgaga	2460
35	cttggagggg	aatggacgag	actggactgg	aaatcagaaa	С		2501

<210> 78

<211> 2501

<212> DNA

<213> Homo Sapiens

5

caaaactgaa aggattggac tagtcacccc ttgtttecct acagccact cccaggacac tggcccttgc tttgtccaga aattcagcta taactccaca catctgatgg ccctttctgg 420 caagcaggac tttccatcag gaccctcage tgccagacac atttactgga ggtcacttat 480 caagcaggac tttccatcag gaccctcage tgccagacac atttactgga ggtcacttat 480 ccccttctca tagaggaaag atctctctgt cctgcagggt tggcagtcag cgccaagtaa 600 agggaattta gctcttggcc caagatccct gcccaggaaa ggtacttgcg cctgctggaa 660 actttgggct gaagtatact cctttccaaa aactcaggtc tgatatttac acaaagtctg 720 aaattaatgc agagaaaact tccaagtgct tggactggag cagaaggctg agaacaggaa 780 ggggctggtc cctggtacta gttttggttt tttggtggtt ttttttttc ttgtttttc 840 tcacagaaca gggcaaagct gagtgtccct ggatgagta agcaggagga ttaatcatgc 900 ccagtgcttc tccactttaa actggtttc ctgggaattt gcaattgag gtggggaggg gtaagaaacg 1020 gtaagaatcg tgggaaaagg ctgatggtt tcagcaaat tcatccttca cgtgcccacc 1020 25 cttctacagg cacatgcttt ggggccatcc acggctgcag ccaccccatc cttaggaagc 1140 agccttcatt cagcacacag ctcagctcg agttcgtt ttgtcctag atgtctctgg 1200 ggtcacctac tactccctgc ttggtggccc aggcccatcc ttcccactct ttgcacctct 1260 ggtcacctac tactccctgc ttggtgccc aggcccatcc ttctccact ttgcacctct 1260 tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttatgtg ttctaaggct 1380 ccctgacagc cgggcagat ggctcacgcc tgaaatccca acactttggg aggccgagc 1500 agggcagcac cgagatcagg agatcaagac catcctggct aacacagtta acaccgtct 1560 aggccagcac cgagatcagg agatcaagac catcctggct aacacagtga aacccgtct 1560 ctactaaaaaa tacaaaaaat tagccaggcg tggtggggg cacctgtagt cccagctact 1560 ctactaaaaaa tacaaaaaat tagccaggcg tggtggggg cacctgtagt cccagctact 1560 ctactaaaaaa tacaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctact 1560 ctactaaaaaa tacaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctact 1560 ctactaaaaaa tacaaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctact 1560		tggctaattt	tttgtatttt	tagtagagac	ggggtttctc	catgttgagg	ctagtctcga	60
ctggaatcag gggttgcaat tagggtcaa ataatgaggt tggactacag ataacccatc tcctttctta cctttgacta gatccaagga ctaaactcca agaacccgag catctgtccc caaaactgaa aggattggac tagtcaccc ttgtttccct acagccacat cccaggcacc ttggccttgc tttgtccaga aattcagcta taactccaac catctgatgg cctttctgg 420 caagcaggca tttccatcag gaccctcagc tgccagacac atttactgga ggtcacttat taaacctggg ctcaatttcc acacagggag gctactgaag catcacactg ggtctcccag cccttctca tagaggaaag atctctctgt cctgcaggat tggcagtcag cgccaagtaa agggaattta gctcttggcc caagatccct gcccaggaaa ggtacttgc cctgctggaa actttgggct gaagtatact cctttccaaa aactcaggtc tgatatttac acaaagtctg ggggctggtc cctggtacta gttttggttt tttggtggt ttttttttt ttgtttttc tcacagaaca gggcaaagct gagtgccct ggatgagta agcaggagg gtaggaggagg gtaagaatcg tgggaaaagg ctgatggtt cctggaatt gcaattgaga gtggggaggg gtaagaatcg tgggaaaagg ctgatggtt caggcaaat tcatcctca cgtgcccacc ccagtgcttc tccactttaa actggtttc ctgggaattt gcaattgaga gtggggaggg gtaagaatcg tgggaaaagg ctgatggtgt tcagccaaat tcatccttca cgtgcccacc ctttacaag cacatgcttt ggggccatcc acggctgcag ccaccccatc cttaggaagc ggtaacctact tccactttca gtacctgga tcagcacaat tcatccttca cgtgcccacc ctttacaaga aaggatgaa atgggtcact gagtcacac tcccagcctc ttggaaggc ggtacctact tacccctgc ttggtggcc aggccaacc tcccagcctc ttggaaggc ggcaccacacaca ctcagcctc aggcccacc tccagcctc ttggaagag accctcatt cagcacacaa ctcagctct agttctgtt ttgtccctag atgtctctgg ggtcacctac tactccctgc ttggtggcc aggccaatcc ttcccagcct ttggaagac accctgacac tcacccacac ctccaggcc ttccttacaga gaacgagaa aatggatatt tccatgggcc gtgtgtgcac tcccggctac ccctgacagc tctactcaag gctaccctcc ctcctggggc ttcttatgt ttctaaggct gaggcaggaa gactgtgaga tcaggtgaac ctcaacagtt atgatcggt ttaagattaa cagtcctggc cggggcagt ggctcacgcc tgtaatccaa acactttggg aggccgaggc aggcagaaca cgagatcagg agatcaagac caccctggc aacacctgac ttaagattaa cagtcctggc cggggcagt ggctcacgcc tgtaatccaa acactttggg aggccgagc ctactaaaaa tacaaaaaaa tagcaaggc tggtgggggg cacctgagc aacacctgtac tcaccagtac ttactaaaaa tacaaaaaaa tagcaaggc gggtggggg cacctggag cacctgtagt cccagctact		actcctgacc	tcaggtgatc	tgcccgcctc	agcctcccaa	agtgctggga	ttacaggcgt	120
teetttetta cetttgacta gatecaagga etaaaeteea agaaecegag catetgteee 300 caaaaetgaa aggattggae tagteaecee ttgttteeet acagecaat eccaggeace 360 tggeeettge tttgteeaga aatteageta taaeteeaca catetgatgg ecetttetgg 420 caageaggae ttteeateag gaceeteage tgeeagacaa atttaetgga ggteaettat 480 taaaeetggg eteaattee acacagggag getaetgaag cateacactg ggteteeag 540 eccettetea tagaggaaag atetetetgt eetgeagggt tggeagteag egceaagtaa 600 agggaattta getettggee caagateeet geecaggaaa ggtaettgee eetgetggaa actttggget gaagtataet eetteeaa aaeteaggte tgatattae acaaagtetg 720 aaattaatge agagaaaact teeaagtget tggaetggag eagaaggetg agaaeaggaa 780 ggggetggte eetggtaeta gttttggtt tttggtggt ttttttte ttgttttte 840 eccagtgete teeaaggae gggaeagget gagaaggaga 780 eccagtgete teeaattaa actggttte etgggaattg geaagtagaggaggaggaggaggaggaggaggaggaggagga	10	gagccaccac	gcctggccgc	taactacatg	tgttctatga	ggtgaggtcc	ttcccagacc	180
caaaactgaa aggattggac tagtcacccc ttgtttecct acagccact cccaggacacc tggcccttgc tttgtccaga aattcagcta taactccaca catctgatgg ccctttctgg 420 caagcaggac tttccatcag gaccctcage tgccagacac atttactgga ggtcacttat 480 caagcaggac tttccatcag gaccctcage tgccagacac atttactgga ggtcacttat 480 ccccttctca tagaggaaag atctctctgt cctgcagggt tggcagtcag cgccaagtaa 600 agggaattta gctcttggcc caagatccct gcccaggaaa ggtacttgcg cctgctggaa 660 actttgggct gaagtatact cctttccaaa aactcaggtc tgatatttac acaaagtctg 720 aaattaatgc agagaaaact tccaagtgct tggactggag cagaaggctg agaacaggaa 780 ggggctggtc cctggtacta gttttggttt tttggtggtt ttttttttc ttgtttttc 840 tcacagaaca gggcaaagct gagtgtccct ggatgagta agcaggagga ttaatcatgc 900 ccagtgcttc tccactttaa actggtttc ctgggaattt gcaattgag gtggggaggg gtaagaatacg tgggaaaagg ctgatggtt tcagcaaat tcatccttca cgtgcccacc 1020 25 cttctacagg cacatgcttt ggggcatca acggctgaag ccaccccatc cttaggaagc 1140 agccttcatt cagcacacag ctcagctcg agttcgtt ttgtcctaggatca tcccagcctc ttggaagtc 1140 agccttcatt cagcacacag ctcagctcg agttcgtt ttgtcctag atgtctctgg 1200 ggtcacctac tactccctgc ttggtggccc aggcccatcc ttcccactc ttgcacctct 1260 tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttatgtg ttctaaggct 1380 ccctgacagc cgggcagat gctcacccc ctcctggggc ttcttatgtg ttctaaggct 1380 agggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggc ttaagattaa 1440 cagtcctggc cgggcgcagt ggctcacgc tgtaatccca acactttggg aggccgaggc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aacccgtct 1560 ctactaaaaaa tacaaaaaat tagccaggcg tggtggggg cacctgtagt cccagctact 1560 ctactaaaaaa tacaaaaaat tagccaggcg tggtggggg cacctgtagt cccagctact 1560 ctactaaaaaa tacaaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctact 1560 ctactaaaaaa tacaaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctact 1560 ctactaaaaaa tacaaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctact 1560		ctggaatcag	gggttgcaat	tagggtccaa	ataatgaggt	tggactacag	ataacccatc	240
tggccettgc tttgtccaga aattcagcta taactccaca catctgatgg ccctttctgg 420 caagcaggca tttccatcag gaccctcage tgccagacac atttactgga ggtcacttat 480 taaacctggg ctcaatttcc acacagggag gctactgaag catcacactg ggtctcccag 540 ccccttctca tagaggaaag atctctctgt cctgcaggt tggcagtcag cgccaagtaa 600 agggaattta gctcttggcc caagatccct gcccaggaa ggtacttgcg cctgctggaa 660 actttgggct gaagtatact cctttccaaa aactcaggtc tgatatttac acaaagtctg 720 aaattaatgc agagaaaact tccaagtgct tggactggag cagaaggctg agaacaggaa 780 ggggctggtc cctggtacta gttttggttt tttggtggtt tttttttt ttgtttttc ttgtttttc tcacagaaca gggaaaagct gagtgtccct ggatgagtga agcaggagga ttaatcatgc 900 ccagtgcttc tccactttaa actggtttc ctgggaattt gcaattgaga gtggggaggg 960 gtaagaatcg tgggaaaagg ctgatggtg tcagccaaat tcatccttca cgtgcccacc 1020 25 cttctacagg cacatgcttt ggggcaatcc acggctgcag ccaccccatc cttaggaagc 1140 accactggcc ttcctttccg gtacctggac tcagcacac tcccagcctc ttggaagtg 1140 agccttcatt cagcacacag ctcagctctg agttctgtt ttgtccctag atgtctctgg 1200 ggtcacctac tactccctgc ttggtggcc aggcccatcc ttctccactc ttgcacctct 1260 tttagcagaa aaggagtgag aatggatatt tccatggggc gtgtgtgcac tcccggctac 1320 30 ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttatgtg ttctaaggct 1380 gaggcaggaa gactgtgaga tcaggtgac ctcaccactc acacctttggg aggccgagc 1300 aggcagacca cgagatcagg agatcacgc tgtaatccca acactttggg aggccgagc 1560 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aacccgtct 1560 ctactaaaaa tacaaaaaat tagccaggc tggtggggg cacctgtagt cccagctct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggggg cacctgtagt cccagctct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctct 1560 ctactaaaaaa tacaaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctct 1560 ctactaaaaaa tacaaaaaaat tagccaggcg tggtgggggg cacctgtagt cccagctct 1560		tcctttctta	cctttgacta	gatccaagga	ctaaactcca	agaacccgag	catctgtccc	300
caagcaggca tttecateag gacecteage tgecagacae atttactgga ggteacttat taaacetggg cteaatttee acacagggag getactgaag catecacaetg ggteteceag ceeettetea tagaggaaag ateteetetg cetgeagggt tggeagteag egecaagtaa agggaattta getettggee caagateeet geecaggaaa ggtaettgee cetgetggaa actttggget gaagtataet cetttecaaa aacteaggte tggtatttee acaaagteetg ggggetggte cetggtaeta gtttteggtt tttggtggt ttttttte ttgttttee teacagaaca gggcaaaget gagtgeeet ggatgaggag agaacaggaa gtaateagg ceagtgette tecactttaa actggttte etgggaatt geaattgaga gtggggaggg gtaagaateg tgggaaaage etgatggtt teagecaaat teateettee egggagggg gtaagaateg tgggaaaagg etgatggtt teagecaaat teateettee egggagggg gtaagaateg tgggaaaagg etgatggtt teagecaaat teateettee egggagggg gtaagaateg tgggaaaagg etgatggtt teagecaaat teateettee egggecace 25 ettetacagg cacatgettt ggggecatee aeggetgeag ecaceceate ettaggaage 1146 ageetteatt eageacacag eteagetetg agttetgtt ttggteett ttggaggte 1146 ageetteatt eageacacag eteagetetg agttetgtt ttggteett ttggagatge 1120 ggteacetae tacteeetge ttggtggee aggeecatee ttetecaete ttgeacetet 1260 tttageagaa aaggagtgag aatggatatt teeatgggee gtgtgtgeae teeeggetae 1320 30 ecetgacage tetacteaga getaceetee eteetggge ttetatatgg ttetaagget 1380 gaggcaggaa gactgtgaga teaggtgaea eteacaagtt atgateggte ttaagattaa 1440 eagteetgge egggegeagt ggeteacgee tgtaateeca acaetttggg aggeegagge 1500 aggcagacca egagateagg agateaagae eateetgget aacaetttggg aggeegagge 1500 aggcagacca egagateagg agateaagae eateetgget aacaetttggg aggeegagge 1500 aggcagacca egagateagg agateaagae eateetgget aacaecttgga aaceeegtet 1560 ctactaaaaaa tacaaaaaat tagecaggeg tggtggeggg eaceetgagt eccagcateet 1560 ctactaaaaaa tacaaaaaaa tagecaggeg tggtggeggg eaceetgage eccacegtet 1560 ctactaaaaaa tacaaaaaaa tagecaggeg tggtgggggg eaceetgage eccacegtet 1560 ctactaaaaaa tacaaaaaaa tagecaggeg tggtgggggg eaceetggag eaceetgtag eccacegtet 1560		caaaactgaa	aggattggac	tagtcacccc	ttgtttccct	acagccacat	cccaggcacc	360
taaacctggg ctcaatttcc acacagggag gctactgaag catcacactg ggtctcccag ccccttctca tagaggaaag atctctctgt cctgcagggt tggcagtcag cgccaagtaa agggaattta gctcttggcc caagatccct gcccaggaaa ggtacttgcg cctgctggaa actttgggct gaagtatact cctttccaaa aactcaggtc tgatatttac acaaagtctg 20 aaattaatgc agagaaaact tccaagtgct tggactggag cagaaggctg agaacaggaa ggggctggtc cctggtacta gttttggttt tttggtggtt ttttttttc ttgtttttc tcacagaaca gggcaaagct gagtgccct ggatgagtga agcaggagga ttaatcatgc ccagtgcttc tccactttaa actggtttc ctgggaattt gcaattgaga gtggggaggg gtaagaatcg tggggaaaagg ctgatggtg tcagccaaat tcatccttca cgtgcccacc cttctacagg cacatgcttt ggggccatca acggctgcag ccaccccatc cttaggaagc agccttcatt cagcacacag ctcagctctg agttetgtt ttgtccctag atgtctctg ggtcacctac tactccctgc ttggtggccc aggcccatcc tcccagcctc ttggagatgc tttagcagaa aaggagtgag aatggatatt tccatgggc gtgtgtgcac tcccggctac tttagcagaa aaggagtgag actgatgatat tccatgggc ttcttatatgt ttctaaggct ttcatcaga cactgttt tccacctcc ctcctgggc ttcttatatgt ttctaaggct agcctcact tactccctgc ttggtggccc aggcccatcc ttctccacct ttgcacctct tttagcagaa aaggagtgag actggtgaca ctcaacagtt atgatcggc ttcaagatca ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttatatgt ttctaaggct aggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggc ttaagattaa cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgagc aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aacccgtct ttactaaaaaa tacaaaaaat tagccaggc tggtggcggg cacctgtagt cccagcatct 1560 ctactaaaaaa tacaaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagcatct 1620		tggcccttgc	tttgtccaga	aattcagcta	taactccaca	catctgatgg	ccctttctgg	420
ccccttctca tagaggaaag atctctctgt cctgcagggt tggcagtcag cgccaagtaa 600 agggaattta gctcttggc caagatcct gcccaggaaa ggtacttgcg cctgctggaa 660 actttgggct gaagtatact cctttccaaa aactcaggtc tgatatttac acaaagtctg 720 aaattaatgc agagaaact tccaagtgct tggactggag cagaaggctg agaacaggaa 780 ggggctggtc cctggtacta gttttggttt tttggtggtt ttttttttc ttgtttttc 840 ccagtgctte tccacttaa actggtttc ctggaatgg agcaggagga ttaatcatgc 900 gtaagaatcg tgggaaaagg ctgatggtgt caggaaggtg agaacaggag 960 gtaagaatcg tgggaaaagg ctgatggtgt tcagccaaat tccatcttca cgtgcccacc 1020 accactggct ttcctttccg gtacctggat tcagccaaat tccatccttca cgtgcccacc 1020 accactggcc ttcctttccg gtacctggac tcagcatcac tcccagcctc ttggaaggc 1140 agccttcatt cagcacacag ctcagctctg agttctgtt ttgtcctag atgtctctgg ggtcacctac tactcctcgc ttggtggcc aggcccatcc ttccacctct ttggagatgc 1220 ggtcacctac tactccctgc ttggtggcc aggcccatcc ttcctcacct ttgcacctct 1260 tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctaccctcc ctcctgggc ttcttatgtg ttctaaggct 1320 gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa 1440 cagtcctgc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgagc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aacccgtct 1560 ctactcaaaaa tacaaaaaat tagccaggc tggtggcgg cacctgtagt cccagctact 1560 ctactcaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1560 ctactcaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactcaaaaa tacaaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactcaaaaaa tacaaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactcaaaaaa tacaaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactcaaaaaa tacaaaaaaat tagccaggcg tggtgggcggg cacctgtagt cccagctact 1620 ctactcaaaaaa tacaaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	15	caagcaggca	tttccatcag	gaccctcagc	tgccagacac	atttactgga	ggtcacttat	480
agggaattta gctcttggcc caagatccct gcccaggaaa ggtacttgcg cctgctggaa 660 actttgggct gaagtatact cctttccaaa aactcaggtc tgatatttac acaaagtctg 720 aaattaatgc agagaaaact tccaagtgct tggactggag cagaaggctg agaacaggaa 780 ggggctggtc cctggtacta gttttggttt tttggtggtt ttttttttc ttgtttttc 840 tcacagaaca gggcaaagct gagtgtccct ggatgagtga agcaggagga ttaatcatgc 900 ccagtgcttc tccactttaa actggtttc ctgggaattt gcaattgaga gtggggaggg 960 gtaagaatcg tgggaaaagg ctgatggtg tcagccaaat tcatccttca cgtgccacc 1020 accactggcc ttcctttccg gtacctggac tcagcatcac tcccagcctc ttggagatgc 1140 agccttcatt cagcacacag ctcagctct agttctgtt ttgtccctag atgtctctgg ggtcacctac tactccctgc ttggtggccc aggcccatcc ttctccactc ttgcacctc 1260 tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctaccctcc ctcctgggc ttcttatgtg ttctaaggct 1380 gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa 1440 cagtcctgc cgggcgcagt ggctcacgc tgtaatccca acactttggg aggccgagc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcgg cacctgtagt cccagctact		taaacctggg	ctcaatttcc	acacagggag	gctactgaag	catcacactg	ggtctcccag	540
actttgggct gaagtatact cctttccaaa aactcaggtc tgatatttac acaaagtctg 20 aaattaatgc agagaaaact tccaagtgct tggactggag cagaaggctg agaacaggaa 780 ggggctggtc cctggtacta gttttggttt tttggtggtt ttttttttt ttgtttttc 840 tcacagaaca gggcaaagct gagtgtccct ggatgagtga agcaggagga ttaatcatgc 900 ccagtgcttc tccactttaa actggttttc ctgggaattt gcaattgaga gtggggaggg 960 gtaagaatcg tgggaaaagg ctgatggtg tcagccaaat tcatccttca cgtgccacc 1020 accactggcc ttcctttccg gtacctggac tcagcatcac tcccagcctc ttggaagtc 1140 agccttcatt cagcacacag ctcagctctg agttctgtt ttgtccctag atgtctctgg 1200 ggtcacctac tactccctgc ttggtggccc aggcccatcc ttcccagcctc ttgcacctct 1260 tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttatgtg ttctaaggct 1380 gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa 1440 cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgaggc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact		ccccttctca	tagaggaaag	atctctctgt	cctgcagggt	tggcagtcag	cgccaagtaa	600
aaattaatgc agagaaaact tccaagtgct tggactggag cagaaggctg agaacaggaa 780 ggggctggtc cctggtacta gttttggttt tttggtggtt ttttttttc ttgtttttc 840 tcacagaaca gggcaaagct gagtgtccct ggatgagtga agcaggagga ttaatcatgc 900 gtaagaatcg tgggaaaagg ctgatggtgt tcagccaaat tcatccttca cgtgccacc 1020 gtaagaatcg tgggaaaagg ctgatggtgt tcagccaaat tcatccttca cgtgcccacc 1020 accactggcc ttcctttccg gtacctggac tcagcatcac tcccagcct ttggagatgc 1140 agccttcatt cagcacacag ctcagctctg agttctgtt ttgtccctag atgtctctgg ggtcacctac tactccctgc ttggtggccc aggcccatce ttccacctc ttggagatgc 1200 ggtcacctac tactccctgc ttggtggccc aggcccatce ttctccacct ttgcacctct 1260 tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctaccctcc ctcctgggc ttctatatgt ttctaaggct 1380 gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgaggc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactaaaaaa tacaaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactaaaaaa tacaaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactaaaaaa tacaaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactaaaaaa tacaaaaaaa tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactaaaaaa tacaaaaaaa tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactaaaaaa tacaaaaaaa tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactaaaaaaa tacaaaaaaa tagccaggcg tggtggcggg cacctgtagt cccagctact 1620 ctactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		agggaattta	gctcttggcc	caagatccct	gcccaggaaa	ggtacttgcg	cctgctggaa	660
ggggctggtc cctggtacta gttttggtt tttggtggtt ttttttttc ttgtttttc 840 tcacagaaca gggcaaagct gagtgtccct ggatgagtga agcaggagga ttaatcatgc 900 ccagtgcttc tccactttaa actggtttc ctgggaattt gcaattgaga gtggggaggg 960 gtaagaatcg tgggaaaagg ctgatggtg tcagccaaat tcatccttca cgtgcccacc 1020 25 cttctacagg cacatgcttt ggggccatcc acggctgcag ccaccccatc cttaggaagc 1080 accactggcc ttcctttccg gtacctggac tcagcatcac tcccagcctc ttggagatgc 1140 agccttcatt cagcacacag ctcagctctg agttctgtt ttgtccctag atgtctctgg 1200 ggtcacctac tactccctgc ttggtggccc aggcccatcc ttctccactc ttgcacctct 1260 tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 30 ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttatgtg ttctaaggct 1380 gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa 1440 cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgaggc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact		actttgggct	gaagtatact	cctttccaaa	aactcaggtc	tgatatttac	acaaagtctg	720
tcacagaaca gggcaaagct gagtgtccct ggatgagtga agcaggagga ttaatcatgc gcagtgcttc tccactttaa actggttttc ctgggaattt gcaattgaga gtggggaggg 960 gtaagaatcg tgggaaaagg ctgatggtgt tcagccaaat tcatccttca cgtgcccacc 1020 accactggcc ttcctttccg gtacctggac tcagcatcac tcccagcctc ttggagatgc 1140 agccttcatt cagcacacag ctcagctctg agttctgtt ttgtccctag atgtctctgg ggtcacctac tactccctgc ttggtggcc aggcccatcc tttgcacctct 1260 tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctacctcc ctcctgggcc ttcttattgg gtacctgc ttccagggcc ttctattaggagac aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttattgtg ttctaaggct 1380 gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa 1440 cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgaggc 1560 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620	20	aaattaatgc	agagaaaact	tccaagtgct	tggactggag	cagaaggctg	agaacaggaa	780
ccagtgette tecaetttaa actggttte etgggaattt geaattgaga gtggggaggg gtaagaateg tgggaaaagg etgatggtg teagecaaat teateettea egtgeecaee 1020 ettetaeagg eacatgettt ggggceatee acggetgeag eeaceceate ettaggaage 1140 ageetteatt eageacaeag eteagetetg agttetgtt ttgteeetag atgetetetg ggteacetee teetaggage eggteacete tageacete ttggagatge 1200 ggteacetae taeteeetge ttggtggeee aggeecatee tteeteaete ttgeacetet 1260 tttageagaa aaggagtgag aatggatatt teeatgggee gtgtgtgeae teeeggetae 1320 ecctgaeage tetaeteaga getaeeetee eteetagggee gtgtgtgeae teeeggetae 1320 gaggeaggaa gaetgtgaga teaggtgaea eteaaeagtt atgateggte ttaagattaa 1440 eagteetgge egggegeagt ggeteaegee tgtaateeea acaetttggg aggeegagge 1500 aggeagaeea egagateagg agateaagae eateetgget aacaeagtga aaceeegtet 1560 etaetaaaaa taeaaaaaat tageeaggeg tggtggeggg eacetgtagt eccagetaet 1620		ggggctggtc	cctggtacta	gttttggttt	tttggtggtt	tttttttc	ttgttttttc	840
gtaagaatcg tgggaaaagg ctgatggtg tcagccaaat tcatccttca cgtgcccacc 1020 cttctacagg cacatgcttt ggggccatcc acggctgcag ccaccccatc cttaggaagc 1080 accactggcc ttcctttccg gtacctggac tcagcatcac tcccagcctc ttggagatgc 1140 agccttcatt cagcacacag ctcagctctg agttctgttt ttgtccctag atgtctctgg 1200 ggtcacctac tactccctgc ttggtggccc aggcccatcc tttgcacctct 1260 tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctaccctcc ctcctgggc ttcttatgtg ttctaaggct 1380 gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa 1440 cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgagc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620		tcacagaaca	gggcaaagct	gagtgtccct	ggatgagtga	agcaggagga	ttaatcatgc	900
cttctacagg cacatgcttt ggggccatce acggctgcag ccaccccatc cttaggaagc 1080 accactggcc ttcctttccg gtacctggac tcagcatcac tcccagcctc ttggagatgc 1140 agccttcatt cagcacacag ctcagctctg agttctgttt ttgtccctag atgtctctgg ggtcacctac tactccctgc ttggtggccc aggcccatcc ttcccactc ttgcacctct tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttatgtg ttctaaggct gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa 1440 cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgaggc 1560 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620		ccagtgcttc	tccactttaa	actggttttc	ctgggaattt	gcaattgaga	gtggggaggg	960
accactggcc tteettteeg gtacetggae teageateae teceageete ttggagatge ageetteatt cageacacag eteagetetg agttetgttt ttgteeetag atgtetetgg ggteacetae tacteeetge ttggtggeee aggeeeatee tteeteeaete ttgeacetet tttageagaa aaggagtgag aatggatatt teeatgggee gtgtgtgeae teeeggetae 1320 ceetgacage tetacteaga getaceetee eteetggge ttettatgtg ttetaagget gaggeaggaa gactgtgaga teaggtgaea eteaaeagtt atgateggte ttaagattaa cagteetgge egggegeagt ggeteaegee tgtaateea acaetttggg aggeegagge aggeagaca egagateagg agateaagae cateetgget aacaeagtga aaceeegtet ctactaaaaa tacaaaaaat tageeaggeg tggtggeggg cacetgtagt eecagetaet 1620		gtaagaatcg	tgggaaaagg	ctgatggtgt	tcagccaaat	tcatccttca	cgtgcccacc	1020
agcetteatt cageacacag eteagetetg agttetgttt ttgtecetag atgtetetgg ggteacetae tactecetge ttggtggeec aggeecatee ttetecaete ttgeacetet tttageagaa aaggagtgag aatggatatt teeatgggee gtgtgtgeae teeeggetae 1260 ceetgacage tetacteaga getaceetee eteetgggge ttettatgtg ttetaagget gaggeaggaa gaetgtgaga teaggtgaca eteaacagtt atgateggte ttaagattaa cagteetgge egggegeagt ggeteaegee tgtaateea acaetttggg aggeegagge aggeagaca egagateagg agateaagae eateetgget aacaeagtga aaceeegtet ctactaaaaa tacaaaaaat tageeaggeg tggtggeggg caeetgtagt eccagetaet 1620	25	cttctacagg	cacatgcttt	ggggccatcc	acggctgcag	ccaccccatc	cttaggaagc	1080
ggtcacctac tactccctgc ttggtggccc aggcccatcc ttctccactc ttgcacctct tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 30 ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttatgtg ttctaaggct gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgaggc aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1626		accactggco	ttcctttccg	gtacctggac	tcagcatcac	tcccagcctc	ttggagatgc	1140
tttagcagaa aaggagtgag aatggatatt tccatgggcc gtgtgtgcac tcccggctac 1320 ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttatgtg ttctaaggct 1380 gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa 1440 cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgaggc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620		agccttcatt	cagcacacag	ctcagctctg	agttctgttt	ttgtccctag	atgtctctgg	1200
ccctgacagc tctactcaga gctaccctcc ctcctggggc ttcttatgtg ttctaaggct 1380 gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa 1440 cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgaggc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620		ggtcacctac	: tactccctgc	ttggtggccc	aggcccatcc	ttctccactc	ttgcacctct	1260
gaggcaggaa gactgtgaga tcaggtgaca ctcaacagtt atgatcggtc ttaagattaa 1440 cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgaggc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620		tttagcagaa	aaggagtgag	aatggatatt	tccatgggcc	gtgtgtgcac	teceggetae	1320
cagtcctggc cgggcgcagt ggctcacgcc tgtaatccca acactttggg aggccgaggc 1500 aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620	30	ccctgacago	tctactcaga	gctaccctcc	ctcctggggc	ttcttatgtg	ttctaaggct	1380
aggcagacca cgagatcagg agatcaagac catcctggct aacacagtga aaccccgtct 1560 ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620		gaggcaggaa	ı gactgtgaga	tcaggtgaca	ctcaacagtt	atgatcggtc	: ttaagattaa	1440
ctactaaaaa tacaaaaaat tagccaggcg tggtggcggg cacctgtagt cccagctact 1620		cagtcctgg	cgggcgcagt	ggctcacgcc	: tgtaatccca	acactttggg	aggccgaggc	1500
Continuate of the continuation of the continua		aggcagacca	a cgagatcagg	g agatcaagac	: catcctggct	aacacagtga	aaccccgtct	1560
35 caggaggetg aggeaggaga atggegtgaa ceeaggagge ggagettgea gtaageeaag 168		ctactaaaa	a tacaaaaaat	tagccaggcg	ı tggtggcggg	cacctgtagt	cccagctact	1620
Caggadaca addendar negaciona companya 12 2	35	caggaggct	g aggcaggaga	atggcgtgaa	cccaggaggo	ggagcttgca	gtaagccaag	1680
attgcgccac tgcactcccg ggtgacagag cgagactccg tctcaaaaaa aaaaacaaca 174		attgcgcca	c tgcactccc	g ggtgacagag	g cgagactccg	tctcaaaaa	a aaaaacaaca	1740

	acaacaacaa aaaga	ttaac actccttcta	cttccaaacc	taatacaaag	ggacattgcc	1800
	tagtgattaa gagaa	attcat tcattcaaca	aatacttgtt	gagcacctac	tatgtgccaa	1860
	gcactgttct aggca	accgga aatacagcag	tgagaaaaac	caaaaaaact	ccctgccctc	1920
	atggggtgta tatto	caagta gctgaaacag	acagtgaaca	aacaaaaaag	gacaataatt	1980
5	tcaaataata atgat	gctat cggccaggtg	tggtggctca	tgcctataat	cccagcattt	2040
	tgggaagcca agtca	aagcgg attacctgag	gtcaggagtt	caagaacagc	ctggccagca	2100
	tggtgaaacc ccato	ctctac taaaaataca	aaaattagcc	agacatggtg	gcacacacct	2160
	gtaatcccag ctact	ttggga ggctgacgca	ggagaattgc	ttgagcccgg	gaggtggagg	2220
	ttgcagtgag ccaa	gatctg acaggcctto	agcaccactg	cactctagac	tggctgacag	2280
10	agcgagactc tgtca	aaaaaa aaaaaagcta	taaatagact	ttaacagggt	aacatgatag	2340
	ggagggaggg atag	gggagc agggtggtca	aggaagggac	atttaaacag	gctagaatga	2400
	caatggccag cgag	ggaaag atccagaagt	gtgtgctgga	agaagaaaga	gcaagcacaa	2460
	aacccttagg acaa	aatcag ctcgtgtggt	caaggcacag	С		2501
15	<210> 79					
-	<211> 2501					
	<212> DNA					
	<213> Homo Sapi	ens				
20	<400> 79					
		ggctgc agcctaatg				60
		tgcccc gacatcctc				120
		gcaacc ctatgggtg				180
25		ttggtg tatggttct				240
		agtgtg gggaggggg				300
		gaaccag ggtccaatg				360
	tcattacgtc tact	cctaaa tggaggaaa	c gacccctcag	ctacacagca	cctgagccag	420
	aatgtcacca tggt	gctgct ccacaggat	g acagetacet	ggtttgtgag	ggcccctatt	480
30	ctagggacag ctac	ettcatt ctgccctcc	c agagcagcaa	gcaacaaccc	tatgccagga	540
	ggccaattgg cac	stcaagt gccagctcc	a atcgattgat	agtagctgcc	tggctctgaa	600
	aggcagctgg gate	gattca ccatgctgc	c agcacacaga	tggacccagc	ggtggtccca	660
	gcagtgagtt cttq	geettgg geeatttea	t tttctttgtc	: ctggccaagg	aatgattgga	720
	tgaacacact ggad	ctcccaa tatgggtgg	a taagacaaga	gtgtctggtc	acacccctcc	780
35	accactcata agos	atggttg tgggcagtt	t ggttccccag	geggeettgg	agaatgcaat	840
	gagccgagga act	ggtcatc tccaggtgc	a tecagggeag	gaaaggatga	cagcatgcgt	900

7.4	14	4	•
- /4	π,	ı	Z

	gagccagggt cactggct	aa gaagtcatct	caggacetee	ccctagaaaa	gcccactggg	960
	cagcatccct gctggtt	cc ccctacacca	caaggttacg	cagagctggc	ggagggtcat	1020
	ggtcccactc atgtcage	gtg ctcttaatct	ggcaaggaaa	tgtaacctac	gtgaatctca	1080
	acaggcagtg aagcacc	gtt tcttcctgac	tccaggtagg	gtgaagaaaa	tgggacagta	1140
5	gtacggggtg cgggcat	aáa cgcacaactc	tgcctcccca	gacgcagagc	tgtggggctg	1200
	tgagaatgcc aggagga	ggt aagaaagggc	ggccccatgg	ggggcctgca	gggtgggaca	1260
	agcccaagag gtctcta	cat ccaggcctgg	tgggggaggt	gagcccctgg	tttaccgagg	1320
	gggtcccttc ctgccct	cgg aaatactgca	gctcctacct	ccatcgtctc	cccgctgcgg	1380
	ggacccaggg gcgtgag	gat gagagagcco	ccaggcccca	gggtcagacg	actgtgttca	1440
10	agcaagtgag aacctct	ctg aggctgttt	ccaactgtaa	aatggggata	gcagcagaac	1500
	tctctctcgc ggcttgc	gtg aagaatacaa	ttcgatgtcg	acaggaggga	gcggcgcgca	1560
	gcgcgcagcg agtagca	ggc gctgaagaaq	g gatacctgtg	aactgggagt	ggtggcggag	1620
	gctacgcggc cagagto	cgg ggaaggggc	g ccggctctgc	cagtccctgc	tcggggctgg	1680
	atggtcgggg gatgttc	tcg taagtcggc	gggagggagc	ggtcccgcgt	accctgccac	1740
15	cgccgccgca gaggtto	ggg caggtgcgg	g geegeggeee	ctccgcgagg	gggccggtca	1800
	tccgccggga ctgacat	ccc ggaggccca	a tggcaagccg	tcatctccgc	gcatccgccc	1860
	aatcggcgcc ggttgcc	gtg ccgcgccgg	g tetetegace	: aatgggaaaa	tttgctgtca	1920
	gatggggcgg ggcggag	att cgcgtcgcc	g gcccggtccg	ctttgcgcac	gggccgcgtg	1980
	agggcgggag ggctgg	ccg gggtctcgg	g ttgcgcgctg	ggcctggagg	gagggggcgg	2040
20	cccccgcacc ggtccga	agtt gcggccgcg	t _. ggactgcgac	: cegegeegeg	ccgcaccgcg	2100
	ccgcgccctg ggaacg	ege teccegege	g ccaacggacc	cggggaagc	cttctggggt	2160
	ccgaggccgc gctgcg	ggge egeecaege	t gcgctccagg	g taagcctgag	g ccagtgggcg	2220
	gggtgtggga cccggg	getg gggeetegg	g teggageegg	g gactggggg	ggggctgcag	2280
	atatgggacg cattco	gggc agcggtccg	g acagggtcct	atccctggag	g tcgagatccg	2340
25	ggcgagggtc tgggcc	ggac gtcggagcc	a atctccgccc	cacccgcgt	ttgtccgcgc	2400
	gctctgcggc gtccga	gacc ccgggccgg	c gggggcgggt	ctctttgtg	gtggccttgg	2460 .
	ggccctaccc tacccg	teeg ggegtettg	c actgagcact	t c		2501

<210> 80

30 <211> 2501

<212> DNA

<213> Homo Sapiens

<400> 80

	tagtttgcag	ggctccagga	tcgttcctag	atcctggtct	tgcagccttg	acaaggggaa	120
	ggagggaggc	agcagaagga	gggcagaaca	atccatgcca	ggctgtgatt	tgccaagtga	180
	ccatctggga	agaatgggct	ctcagaccag	ggacagggag	cagaggcaag	cccgcatctg	240
	ccctggttgc	agaacccgga	ttcagactca	gggccccgat	ttctgcctgg	atcgctccac	300
5	tgggcggagg	agtgactgtg	gacacatcca	gggttctctc	caagtcggct	tcctcatctg	360
	ccaaatagag	accgcagacc	accagctccc	aggcaggtgc	tactcttccg	gcccctccca	420
	aggcaggagg	gccaggcgta	ctcgagacac	aggtgtgctg	ggggcccagg	tgggccagcc	480
	agcagcatcc	tgcagggtaa	tgggagcagg	tgggcacccc	gaggctggca	gtaaacactg	540
	gctatctgcc	cccaggctcc	caggaggggt	cttgggcctc	acctcctccg	gccggaacag	600
10	gaaagcagct	ccaggcagct	gggtccacaa	aaatctccgt	tccctgaggt	ctcagaggca	660
	gtggcccagg	agcatctggt	caccttcggg	aaaaaccggc	ttggcaaagg	ctcccccgag	720
	ggcacgcgtt	tcccggacag	tgaggcagga	cctaaactct	tccgttaaca	ctacattttt	780
	cgcatttctg	cagtgtttgc	actctcaggc	cccaccattt	ccccgcatct	cttagggaga	840
	agttctcgac	gtcccacctc	ccctggaagg	gtgctgctcc	cagagacctt	caggccaatg	900
15	gcccaatctc	agtgccctca	ggggagaggg	gggtgcagaa	aaacagcctg	ggtcacaaaa	960
	gaggtgcgag	ggctgtgaga	tcccggaggc	accgacggga	agcgagacgg	agaacaggag	1020
	ggcaggacgg	gctggaggtg	ggggatactg	cagatggagg	gagccacggt	gggggagggc	1080
	gtggacctga	ccgtcctggc	acaaggcggt	cgggtgcaga	cctccaggcc	ctccgggtta	1140
	aggtgccgcc	cagageeete	aggccggggg	cgcacggaaa	ccacaggcag	ggtgcgcgtg	1200
20	gagggacggg	gaaagcgggg	cgggttgggg	aaggcgcccc	gggaacctga	acctcccacc	1260
	ccgcctcagt	ctcgaccact	ccttaagccc	caccccgccc	caggtaaggc	gcagtccacc	1320
	cccattccca	gtagattaac	gcacaggtgg	gggcgcgctc	gggacatagc	tgcgctaggg	1380
	gacagcgcgc	ccagcccagt	cgcgggggcg	aggagcaggg	cggggcccag	caggaaccca	1440
	gctttgttag	g cgatgctccc	: cgtgagccac	gcgccacgcg	tacgcgcttc	ctcaatgggg	1500
25	ccgggcgtgg	g agccgcgccc	: tgcgcgattg	gccaaacggg	tggcccacga	ttggctgaga	1560
	ccctggccc	cgcctcctcg	gccccaggag	ggtggggcgt	gggtgtgggc	tgcgcggcgc	1620
	gtgctgccc	coggggatett	gegegeetee	: cgaacagccg	tgttgtcgcc	agggccgcgc	1680
	cttccctccc	c acagegegeg	ctgcgcgtgc	gaaggtctgg	cggctcttgg	gactggcggg	1740
	gctgcgcgcg	g gggttagggt	gggggtacgg	gaaggctcaa	cccaggacct	gcgtaccttg	1800
30	ctttggggg	e gcactaagca	cctgccggga	a gcagggggcg	caccgggaac	: tcgcagattt	1860
	cgccagttg	g gcgcactggg	g gatctgtgga	a ctgcgtccgg	gggatgggct	agggggacat	1920
	gcgcacgcti	t tgggccttad	agaatgtgat	: cgcgcgaggg	ggagggcgaa	gegtggeggg	1980
	agggcgagg	c gaaggaagga	a gggcgtgaga	a aaggcgacgg	cggcggcgcg	gaggagggtt	2040
	atctatacai	t ttaaaaacca	a gccgcctgc	g cogogootgo	ggagacctgo	gagagtccgg	2100
35	ccgcacgcg	c gggacacgaq	g cgtcccacgo	tecetggege	gtacggccto	ccaccactag	2160
	gcctcctate	c cccgggctc	c agacgaccta	a ggacgcgtgc	cctggggagt	tgcctggcgg	2220

76/112

	·	
	cgccgtgcca gaagccccct tggggcgcca cagttttccc cgtcgcctcc ggttcctctg	2280
	cctgcacctt cctgcggcgc gccgggacct ggagcgggcg ggtggatgca ggcgcgatgg	2340
	acggcggcac actgcccagg tecgcgcccc etgcgccccc cgtccctgtc ggctgcgctg	2400
	cccggcggag acccgcgtcc ccggaactgt tgcgctgcag ccggcggcgg cgaccggcca	2460
5	ccgcagagac cggaggcggc gcagcggccg tagcgcggcg c	2501
	<210> 81	
	<211> 22	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> primer	
15	<400> 81	
	aatcctccaa attctaaaaa ca	22
	<210> 82	
20	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
0.5	<220>	
25	<223> primer	
	<400> 82	
	aggaaaggga gtgagaaaat	20
30	aggadayyya yeyayaadat	
50	<210> 83	
	<211> 22	
•	<211	
	<213> Artificial Sequence	
35	7270. Incarage poduomo	
55	<220>	

<223> primer <400> 83

5 ggataggagt tgggattaag at

22

<210> 84 <211> 22 <212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 84

aaatcttttt caacaccaaa at

22

<210> 85
20 <211> 22
<212> DNA
<213> Artificial Sequence

<220>

25 <223> primer

<400> 85

aaccctttct tcaaattaca aa

22

30

35

<210> 86 <211> 21 <212> DNA <213> Artificial Sequence

<223> primer <400> 86 21 5 tgattgggtt ttagggaaat a <210> 87 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 87 22 ttgaaaataa gaaaggttga gg <210> 88 20 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer 25 <400> 88 19 cttctacccc aaatcccta 30

<210> 89 <211> 18. <212> DNA

<213> Artificial Sequence

<220>

35

<223> primer <400> 89 18 5 tgtttgggat tgggtagg <210> 90 <211> 23 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 90 23 cataaccttt acctatctcc tca <210> 91 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 91 22 ttttagattg aggttttagg gt 30 <210> 92 <211> 22

<212> DNA

<220>

35

<213> Artificial Sequence

<223> primer <400> 92 22 5 atccattcta cctccttttt ct <210> 93 <211> 18 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 93 18 ggaggggaga gggttatg <210> 94 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 94 22 tactatacac accccaaaac aa 30

<210> 95 <211> 19 <212> DNA

<213> Artificial Sequence

<220>

35

<223> primer

<400> 95

5 ttttgggaat gggttgtat

19

<210> 96

<211> 21

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 96

ctaccettaa cetecateet a

21

<210> 97

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 97

ttgttgggag tttttaagtt tt

22

30

<210> 98

<211> 22

<212> DNA

<213> Artificial Sequence

35

<223> primer <400> 98 22 5 caaattctcc ttccaaataa at <210> 99 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 99 22 gtaatttgaa gaaagttgag gg <210> 100 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 100 22 ccaacaacta aacaaaacct ct 30 <210> 101

<211> 20

<212> DNA

<213> Artificial Sequence

35

<223> primer

<400> 101

5 ggagttgtat tgttgggaga

20

<210> 102

<211> 21

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 102

taaaacccca attttcacta a

21

<210> 103

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 103

tttgtattag gttggaagtg gt

22°

30

<210> 104

<211> 22

<212> DNA

<213> Artificial Sequence

35

WO 2004/015139		PCT/EP2003/008602
•	84/112	

<223> primer
<400> 104

5 cccaaataaa tcaacaacaa ca 22

<210> 105 <211> 22

<212> DNA

10 <213> Artificial Sequence

<220>
<223> primer

15 <400> 105

gatttttgga gaggaagtta ag 22

<210> 106 20 <211> 22

<212> DNA
<213> Artificial Sequence

<220>
25 <223> primer

<400> 106

aaaactaaaa accaaaccca ta 22

30 <210> 107

<211> 20
<212> DNA
<213> Artificial Sequence

35

<220>

<223> primer <400> 107 20 5 tggggttagt ttaggatagg <210> 108 <211> 25 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 108 25 cttaaaaaca ctaaaacttc tcaaa <210> 109 20 <211> 21 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 109 21 tttttgtatt ggggtaggtt t 30 <210> 110 <211> 24 <212> DNA <213> Artificial Sequence 35

<213> Artificial Sequence

35

<220>

<223> primer <400> 110 24 5 cccaactatc tctctcctct ataa <210> 111 <211> 25 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 111 25 attagaagtg aaagtaatgg aattt <210> 112 20 <211> 19 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 112 19 tcaatttcca aaaaccaac 30 <210> 113 <211> 22 <212> DNA

<223> primer

<400> 113

5 gggatgggtt attagttgta aa 22

<210> 114 <211> 22

<212> DNA

10 <213> Artificial Sequence

<220>
<223> primer

15 <400> 114

ccttcacaca aaactacaaa aa . 22

<210> 115 20 <211> 22

<212> DNA <213> Artificial Sequence

<220>
25 <223> primer

, <400> 115

taattgaagg ggttaatagt gg 22

<212> DNA

<220>

35

<213> Artificial Sequence

<223> primer <400> 116 22 5 aaaaccaaaa ccaaaactaa aa <210> 117 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 117 22 agtggatttg gagtttagat gt <210> 118 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 118 22 aacaaaataa aaacttctcc ca 30 . <210> 119 <211> 22

WO 2004/015139	PCT/EP2003/008602

<220>

<223> primer <400> 119 22 5 taggggaaaa gttagagttg ag <210> 120 <211> 18 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 120 18 cccattaacc cacaaaaa <210> 121 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 121 22 attttagttt gtgaaatggg at 30 <210> 122 <211> 21 <212> DNA <213> Artificial Sequence 35

<223> primer

<400> 122

5 tettaaccaa taaccetca c

21

<210> 123

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 123

22

gtgggttttg ggtagttata ga

<210> 124

20 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 124

20

taacctcctc tccttaccaa

30,

<210> 125

<211> 22

<212> DNA

<213> Artificial Sequence

35

	<223> primer	
	<400> 125	
5	taggatgggg agagtaatgt tt	22
	<210> 126	
	<211> 22	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
	<223> primer	
15	<400> 126	
	acaacttatc caacttccat tc	22
	<210> 127	
20	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> primer	
	<400> 127	
30	tcccacaaaa actaaacaat ta	22
	<210> 128	
	<211> 21	
	<212> DNA	
	<213> Artificial Sequence	
35		

WO 2004/015139 P	PCT/EP2003/008602
------------------	-------------------

<223> primer <400> 128 21 5 aggttttaga tgaaggggtt t <210> 129 <211> 23 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 129 23 tttggagggt ttagtagaag tta <210> 130 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 130 22 cccaataatc acaaaataaa ca 30 <210> 131 <211> 22

<212> DNA

<220>

35

<213> Artificial Sequence

<213> Artificial Sequence

35

<220>

<223> primer <400> 131 5 atacaacctc aaatcctatc ca 22 <210> 132 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 132 22 agggagaagg aagttatttg tt <210> 133 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 133 ggaagatgag gaagttgatt ag 22 30 <210> 134 <211> 22 <212> DNA

WO 2004/015139		PCT/EP2003/008602
	94/112	

<223> primer

<400> 134

5 cctacaaccc tatcctctaa aa 22

<210> 135

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 135

ttagtagggg tgtgagtgtt tt 22

<210> 136

20 <211> 23

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 136

caaacaaaac ttctatctca acc 23

30

<210> 137

<211> 21

<212> DNA

<213> Artificial Sequence

35

<223> primer <400> 137 21 5 ttatagggtt gagtttggga t <210> 138 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 138 22 taaacaaaca acaaatcttc ca <210> 139 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer 25 <400> 139 22 tgaaaatgaa ggtatggagt tt 30 <210> 140

<211> 22

<212> DNA

<213> Artificial Sequence

35

22

<223> primer <400> 140 5 22 ttaaaaccat ataatccctc ca <210> 141 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 141 22 tatgtttggt tttgttttga ga · <210> 142 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 142

30

<210> 143 <211> 22

<212> DNA

<213> Artificial Sequence

aaccccatca cttttatttc tt

35

<223> primer <400> 143 5 22 gggtgtagaa gtgtttaggt tt <210> 144 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 144 22 tttctcccct tacaacaata ac <210> 145 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 145 22 tccccttcca actatatctc tc 30 <210> 146 <211> 22 <212> DNA <213> Artificial Sequence 35

WO 2004/015139			PCT/EP2003/008602
	98/112	•	

<223> primer <400> 146 22 5 tgagagtgtt ttagggaagt tt <210> 147 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 147 22 aaaaccaaaa cataaaccaa aa

<210> 148

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 148

22 gattaggagg gtttgttgag at

30

<210> 149

<211> 21

<212> DNA

<213> Artificial Sequence

35

<223> primer <400> 149 21 5 aatggttgat gattttggtt t <210> 150 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 150 22 actctcttcc ctatacccct aa <210> 151 20 <211> 24 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 151 24 tgttagtaga gttttaggga ggtt 30

<210> 152 <211> 22 <212> DNA

<213> Artificial Sequence

<223> primer

<400> 152

5 acactaccta teettaccee ac

22

<210> 153

<211> 22

<212> DNA

10 <213> Artificial Sequence

<220>

<223> primer

15 <400> 153

tttttgtttt tatggggtgt at

22

<210> 154

20 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

25 <223> primer

<400> 154

ttaaatatcc cttccttaac ca

22

30

<210> 155

<211> 23

<212> DNA

<213> Artificial Sequence

35

WO 2004/015139	PCT/EP2003/008602
----------------	-------------------

<213> Artificial Sequence

35

<220>

<223> primer <400> 155 5 agttagaaga ggagttagga tgg 23 <210> 156 <211> 22 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 156 taattttcca atacccattt tc 22 <210> 157 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 157 tgggtagtat ttttgttggt tt 22 30 <210> 158 <211> 22 <212> DNA

aactccctcc atctacaata tc

30

<223> primer <400> 158 5 22 cctaaaaact ctctcatcct ca <210> 159 <211> 23 <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 159 23 agtggtttag gagtatttgg tta <210> 160 20 <211> 22 <212> DNA <213> Artificial Sequence <220> 25 <223> primer <400> 160

22

Figure 1

Figure 2

Figure 3

Figure 4

A			
7.	TP	FP	FN
11-a	9	8	0
11-6	9	7	0
12 +38g	7	9	0
13	7	6	1
14	9	11	1
15	7	5	1
21-a	8	4	2
21-b	8	4	0
22	8	9	2
23-a	7	5	0
23·b	7	10	1
23-b 24	10	17	0
25	8	0	0
31	9	3	0
32	4	7	4
33	6	9	2
34	8	3	0
35	7	4	2

	TP	FΡ	FN
Ø	7,67	6,72	0,89
STABW	1,37	3,86	1,13

С			
	TP	FP	FN
11-a	8	7	1
11-b	8	4	1
12	7	6	1
13	8	6	0
14	6	6	2
. 15 🗃	4	9	5
21-a	7	3	0
21-b 22	8	. 4	0
22,	4	6	3
23-a	6	4	3
23-b	8	5	1
24 25	8	10	4
3.2	5	1	3
31	7	2	1
32	8	3	1
33 33	2	3	7
.34	7	8	1
35	6	3	1

ŀ	16 Ag 37	TP	FP	FN
	Ø	6,5	5	1,94
		1.76	2.45	1.89

INTERNATIONAL SEARCH REPORT

Internation pplication No PCT/EP 03/08602

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 °C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, EMBASE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	WO 01 62960 A (BERLIN KURT ; EPIGENOMICS AG (DE); OLEK ALEXANDER (DE)) 30 August 2001 (2001-08-30) page 10, line 9 - line 12; claims 1-26 page 13, line 10 - line 29	1-51		
X	HERMAN J G ET AL: "METHYLATION-SPECIFIC PCR: A NOVEL PCR ASSAY FOR METHYLATION STATUS OF CPG ISLANDS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 93, 1 September 1996 (1996-09-01), pages 9821-9826, XP002910406 ISSN: 0027-8424 cited in the application page 9821 -page 9823	1-51		

CV Established documents are listed in the continuation of her O	
X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but 	 *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
later than the priority date claimed Date of the actual completion of the international search	*&* document member of the same patent family
10 December 2003	Date of mailing of the international search report 02/01/2004
Name and malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nł.	Authorized officer
Fax: (+31-70) 340-3016	Favre, N

INTERNATIONAL SEARCH REPORT

Internation pplication No
PCT/EP 03/08602

		PCT/EP 03/08602
C.(Continue Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
Category	Chanon of document, with indication, where appropriate, or the relevant passages	Helevan to dain No.
X	US 5 786 146 A (HERMAN JAMES G ET AL) 28 July 1998 (1998-07-28) page 6, line 1 -page 7, line 6; claim 1	1-51
X	WO 01 44504 A (FOX JAYNE CATHERINE ;HAQUE KEMAL (GB); LITTLE STEPHEN (GB); ASTRAZ) 21 June 2001 (2001-06-21) page 6, line 26 -page 8, line 7; figure 1	1-51
X	WO 98 56952 A (UNIV SOUTHERN CALIFORNIA) 17 December 1998 (1998-12-17) page 9, line 20 -page 10, line 2; claims 9,10	1-51
X	REIN ET AL: "Identifying 5-methylcytosine and related modifications in DNA genomes" NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 26, no. 10, 1998, pages 2255-2264, XP002143106 ISSN: 0305-1048 cited in the application abstract; figure 2	1-51
X	WO 00 70090 A (UNIV SOUTHERN CALIFORNIA) 23 November 2000 (2000-11-23) page 13, line 29 -page 14, line 34; claim 1	1-51
X	ZESCHNIGK M ET AL: "A SINGLE-TUBE PCR TEST FOR THE DIAGNOSIS OF ANGELMAN AND PRADER-WILLI SYNDROME BASED ON ALLELIC METHYLATION DIFFERENCES AT THE SNRPN LOCUS" EUROPEAN JOURNAL OF HUMAN GENETICS, KARGER, BASEL, CH, vol. 5, no. 2, 1997, pages 94-98, XP009011533 ISSN: 1018-4813 cited in the application abstract; figure 1	1~51
A	GRIFFIN HG AND GRIFFIN AM (EDS.): "PCR TECHNOLOGY: Current Innovations" 1994, CRC PRESS, BOCA RATON XP008025537 page 5 -page 11	1-51
А	US 6 007 231 A (BISHOP ROBERT ET AL) 28 December 1999 (1999-12-28) the whole document	1–51
	-/	

INTERNATIONAL SEARCH REPORT

Internation pplication No
PCT/EP 03/08602

		PCT/EP 03/08602			
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	SEIJEN A M ET AL: "Systematic design of mouse Vh gene family-specific oligonucleotides" JOURNAL OF IMMUNOLOGICAL METHODS, ELSEVIER SCIENCE PUBLISHERS B.V., AMSTERDAM, NL, vol. 254, no. 1-2, 1 August 2001 (2001-08-01), pages 161-168, XP004245450 ISSN: 0022-1759 the whole document	1-51			
Α	WO 00 49177 A (DU PONT ;ROUVIERE PIERRE (US)) 24 August 2000 (2000-08-24) the whole document	1-51			
А	SCHULER G D: "SEQUENCE MAPPING BY ELECTRONIC PCR" GENOME RESEARCH, COLD SPRING HARBOR LABORATORY PRESS, US, vol. 7, 1997, pages 541-550, XP000872176 ISSN: 1088-9051 cited in the application the whole document	1-51			
А	ENGELS W R: "Contributing software to the internet: the Amplify program" TRENDS BIOCHEM. SCI., vol. 18, 1993, pages 448-450, XP001161002 the whole document	1-51			
Ρ,Χ	US 2003/068625 A1 (BARRETT WADE A ET AL) 10 April 2003 (2003-04-10) claims 1-32; figures 1-4	39-51			

International application No. PCT/EP 03/08602

Box I Observations where certain claims were found unsear	chable (Continuation of Item 1 of first sheet)
This International Search Report has not been established in respect of cer	rtain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched see FURTHER INFORMATION sheet PCT/ISA/2	•
Claims Nos.: because they relate to parts of the International Application that d an extent that no meaningful International Search can be carried a	o not comply with the prescribed requirements to such out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accord	ance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of Invention is lacking (Con	tinuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this inter	mational application, as follows:
As all required additional search fees were timely paid by the app searchable claims.	licant, this International Search Report covers all
As all searchable claims could be searched without effort justifyin of any additional fee.	g an additional fee, this Authority did not invite payment
3. As only some of the required additional search fees were timely properties only those claims for which fees were paid, specifically claims for which fees were paid, specifically claims for which fees were paid.	paid by the applicant, this international Search Report nims Nos.:
No required additional search fees were timely paid by the application of the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the invention first mentioned in the claims; it is covered to the claims.	ant. Consequently, this International Search Report is ed by claims Nos.:
-	al search fees were accompanied by the applicant's protest.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Insofar as they include the step of isolating a nucleic sample, i.e. a step which could be performed on the living human or animal body, claims 1-38 relate to a method of treatment and/or diagnostic performed on the living human or animal body, the search has been carried out and restricted on in vitro methods.

INTERMATIONAL SEARCH REPORT

information on patent family members

Internation pplication No PCT/EP 03/08602

					C 1 / L1	03/ 00002
Patent document alted in search report		Publication date		Patent family member(s)		Publication date
WO 0162960	Α	30-08-2001	DE	10010282	A1	06-09-2001
0102300	••	00 00 1001	ΑŪ	4227701		03-09-2001
			CA	2401233		30-08-2001
			WO	0162960		30-08-2001
			EP	1257670		20-11-2002
		,	ĴΡ	2003525041		26-08-2003
			US	2003525041		21-08-2003
						21-00-2003
US 5786146	Α	28-07-1998	CA	2257104		11-12-1997
			EP	0954608		10-11-1999
			ΙL	127342	Α	25-07-2002
			JP	2000511776	T	12-09-2000
			MO	9746705	A1	11-12-1997
			US	6200756		13-03-2001
			US	6265171		24-07-2001
			US	6017704		25-01-2000
	Α	21-06-2001	 AU	2194801	Δ	25-06-2001
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	21 00 2001	WO	0144504		21-06-2001
WO 9856952	 А	17-12-1998	AU	7829398		30-12-1998
WO 3030332	^	17 12 1990	US	6251594		26-06-2001
				9856952		
			WO			17-12-1998
			US	2002177154		28-11-2002
	- 		US 	2003211473	A1	13-11-200:
WO 0070090	Α	23-11-2000	US	6331393		18-12-2003
			AU	4712200	Α	05-12-2000
			CA	2372665	A1	23-11-2000
			EP	1185695	A1	13-03-2002
			JР	2002543852	T	24-12-2002
			WO	0070090		23-11-2000
			US	2002086324		04-07-2002
US 6007231	Α	28-12-1999	AU	3632097	Α	06-03-1998
			CA	2263731		19-02-1998
			EP	0925372		30-06-1999
			ΜO	9806872		19-02-1998
WO 0049177	A	24-08-2000	CA	2359645	 Δ1	24-08-200
	• • •	L- 00 E000	EP	1153141		14-11-200
			WO	0049177		24-08-200
						19-06-200
			US	2003113886		
			US	6365376		02-04-2002
		·	US 	2002127666 		12-09-2002
	A1	10-04-2003	WO	03021259		13-03-2003
US 2003068625	,,,					
US 2003068625			US US.	2003108919 2003073093		12-06-2003 17-04-2003