TP 4.1 – Saponification d'une matière grasse

Objectifs:

- Comprendre la réaction de saponification.
- Calculer le rendement d'une réaction de saponification.

Contexte: En ajoutant une base forte comme la soude dans une matière grasse, on peut transformer la matière grasse en savon, c'est la **saponification**.

→ Quelle réaction décrit la formation d'un savon à partir d'une matière grasse?

Document 1 - Réaction de saponification

La saponification est l'hydrolyse d'un triglycéride en milieu basique. Cette réaction va transformer le triester en glycérol et en 3 ions carboxylate.

$$\begin{array}{c} \begin{array}{c} O \\ H_2C - O - C - C_{17}H_{33} \\ \hline \\ O \\ HC - O - C - C_{17}H_{33} \\ \hline \\ O \\ H_2C - O - C - C_{17}H_{33} \\ \end{array} \\ \begin{array}{c} H_2C - OH \\ \hline \\ H_2C - OH \\ \end{array} \\ \begin{array}{c} O \\ H_2C - OH \\ \hline \\ O^- \end{array}$$

triglycéride ions hydroxydes

glycérol

ions carboxylates (savon)

Les ions carboxylate R—CO₂ sont **amphiphile** : ils possèdent une tête ionique hydrophile et une chaîne carbonée hydrophobe.

Grâce à leur caractère amphiphile, les ions carboxylate vont venir se placer à l'interface entre les matière grasse et l'eau, ce qui permet d'enlever les résidus graisseux et en fait de bon détergents.

Document 2 – Réalisation pratique

En pratique on réalise du savon en mélangeant une base forte avec une matière grasse et en chauffant à reflux. Le **chauffage à reflux** à deux intérêts :

- chauffer le milieu réactionnel pour accélérer la réaction de saponification;
- ne pas perdre de matière en condensant les vapeurs qui s'échappent du ballon avec le réfrigérant.

Le plus souvent on utilise de la soude NaOH ou de la potasse KOH comme base forte.

D'après la réaction de saponification du document 1, pour 1 mole de triglycéride, on produira 3 moles de savon, soit

$$n_{\rm savon} = 3 \times n_{\rm triglyc\acute{e}ride}$$

En pratique la réaction n'est pas totale et on perd un

peu de matière avec le chauffage au cours de la réaction, on a donc un **rendement** η (« eta ») inférieur à 100 %. On calcule le rendement en divisant la quantité de matière obtenue sur celle attendue, ou de manière équivalente avec les masses :

$$\eta = rac{n_{
m savon~obtenu}}{n_{
m savon~th\acute{e}orique}} \qquad {
m ou} \qquad \eta = rac{m_{
m savon~obtenu}}{m_{
m savon~th\acute{e}orique}}$$

Document 3 - Savon de Marseille et huile d'olive

Le savon de Marseille est fabriquée à partir d'huile d'olive historiquement.

On va considérer que l'huile d'olive est constituée à $70\,\%$ en masse de trioléine, un acide gras composé de trois acides oléique.

La masse molaire de la trioléine est $M = 884 \,\mathrm{g \cdot mol}^{-1}$.

1 — Expliquer pourquoi on utilise un chauffage à reflux, au lieu de laisser les vapeurs s'échapper du ballon.
2 — On introduit 10 g d'huile d'olive dans un ballon. Calculer la masse de trioléine m_o introduite dans le ballon.
3 — Calculer la quantité de matière de trioléine n_o introduite dans le ballon.
4 — Calculer la quantité de matière de savon n_{savon} que l'on s'attendrait à produire avec la réaction de saponification de la trioléine.
5 — Expérimentalement, on obtient une quantité de matière de savon $n_{\rm exp}=1.9\times 10^{-2}{\rm mol}$. Calculer le rendement η de cette réaction.
6 — Proposer une hypothèse qui expliquerait pourquoi le rendement n'est pas de 100 %.