${ m CS}$ 341 Automata Theory STUDENT NAME - EID

Homework 10

Due: Tuesday, March 27

This assignment reviews Chapter 13 and covers Chapter 14 and Sections 17.1 - 17.3.

1)		r each of the following languages L , state whether L is regular, context-free but not regular, or next-free and prove your answer.	not			
	a)	$\{w: w = uu^R \text{ or } w = ua^n: n = u , u \in \{a, b\}^*\}.$				
		Answer.				
		Proof.				
	b)	$\{a^nb^{2n}c^m\}\cap\{a^nb^mc^{2m}\}.$				
		Answer.				
		Proof.				
	c)	L^* , where $L = \{0 * 1^i 0 * 1^i 0 * : i \ge 0\}$.				
		Answer.				
		Proof.				
	d)	$\neg L_0$, where $L_0 = \{ww : w \in \{a, b\}^*\}.$				
		Answer.				
		Proof.				
	e)	$\{x \in \{a,b\}^* : x \text{ is even and the first half of } x \text{ has one more a than does the second half}\}.$				
		Answer.				
		Proof.				
2)	Give a decision procedure to answer the following question: given a context-free grammar G , does generate any even length strings?					
	So	lution.				
3)	wh	Instruct a standard, one-tape Turing machine M to decide the language $L = \{x*y = z : x, y, z \in 1^+ \text{ are } x, y, \text{ and } z \text{ are viewed as unary numbers, } xy = z\}$. For example, the string $1111*11 = 1111111111 \in \text{scribe } M$ in the macro language described in Section 17.1.5.				
	So	lution.				

4)	Construct a s	standard	1-tape Turing	g machine M	to compute	the function	sub_3 , wl	hich is d	efined a	as follows
ĺ	$sub_3(n) =$	n-3	if $n > 2$							
		0	if $n < 2$.							

Specifically, compute sub_3 of a natural number represented in binary. For example, on input 10111, M should output 10100. On input 11101, M should output 11010. (Hint: you may want to define a subroutine.)

Solution. \Box