

ADAPTATION OF SYSTEM X COMPUTER-ASSISTED
PROJECT MANAGEMENT EXERCISES FOR USE AT
THE NAVAL POSTGRADUATE SCHOOL

Herbert Henry Joseph Nicholson

LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIF. 93940

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

ADAPTATION OF SYSTEM X COMPUTER-ASSISTED
PROJECT MANAGEMENT EXERCISES FOR USE AT
THE NAVAL POSTGRADUATE SCHOOL

by

Herbert Henry Joseph Nicholson

Thesis Advisor:

R. M. Hanna

June 1973

T15517

Approved for public release; distribution unlimited.

Adaptation of System X Computer-Assisted
Project Management Exercises For Use at
the Naval Postgraduate School

by

Herbert Henry Joseph Nicholson
Commander, United States Navy
B.S., Naval Postgraduate School, 1972

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

Th
N
S

ABSTRACT

System X is a series of project management oriented case studies supported by an interactive time-sharing computer program simulating the analysis and evaluation of a hypothetical surface-to-surface guided missile system acquisition program. The computer-assisted exercises operate from baseline data supplied by a data base, along with system parameters set by the user, in order to compute various deterministic statistics regarding system performance and system costs. The system parameter values may be readily changed and the computations repeated. A desired result may be obtained by repeated iterations of the process.

TABLE OF CONTENTS

I.	INTRODUCTION -----	6
II.	OVERALL DESCRIPTION OF SYSTEM X -----	8
III.	DESCRIPTION AND COMPOSITION OF COMPUTER PROGRAMS-----	13
	A. CONTROL PROGRAMS-----	13
	1. SYSTEM Program -----	13
	2. INCENT Program -----	15
	3. PROGPL Program -----	16
	B. ANALYTICAL MODELS-----	17
	1. Mission Simulation Model -----	17
	2. Force Structure Effectiveness Model -----	17
	3. Logistics Model -----	18
	4. Life Cycle Cost Model -----	18
	5. Availability Model-----	19
	6. Capability Model-----	20
	7. Reliability Model-----	21
	8. Contractor Incentive Contract Model -----	22
	9. Program Planning Model -----	24
	C. DATA FILES -----	27
	1. Baseline Data File -----	27
	2. Input Reports Data Files -----	28
IV.	SYSTEM IMPLEMENTATION -----	30

V.	USE OF EXERCISES IN CONJUNCTION WITH CURRICULA -----	33
VI.	CONCLUSIONS AND RECOMMENDATIONS -----	38
	APPENDIX A. EXERCISE INPUT BASELINE DATA FILES -----	40
	APPENDIX B. EXERCISE INPUT REPORTS DATA FILES -----	41
	APPENDIX C. COMMAND AND CONTROL PROGRAM (SYSTEM) -----	42
	APPENDIX D. COMMAND AND CONTROL PROGRAM (INCENT) -----	64
	APPENDIX E. COMMAND AND CONTROL PROGRAM (PROGPL) -----	76
	APPENDIX F. ANALYTICAL MODELS REQUIRED BY COMMAND AND CONTROL PROGRAMS -----	98
	APPENDIX G. TYPING CONVENTIONS AND SAMPLE EXERCISE -----	99
	LIST OF REFERENCES -----	109
	INITIAL DISTRIBUTION LIST -----	112
	FORM DD 1473 -----	113

LIST OF TABLES

I.	System X Exercises -----	9
II.	Table of Relevancy to Systems Acquisition Management Curriculum -----	36

I. INTRODUCTION

System X is a management training device based on the life cycle of a hypothetical surface-to-surface tactical missile system. A series of exercises construct situations similar to those facing Department of Defense weapon system project managers. The exercises are related to management decision-making problems encountered in organization, financial management, contract administration, technical performance, requirements changes, and personnel management. The set of related case studies is an approach to the problem of developing, within the Department of Defense, qualified and competent managers in the field of weapon system acquisition [Ref. 1]. Each case builds on the previous case in order to provide a continuous evolution in the life cycle of the missile system. The case method is designed to provide the student user with a learning tool that he may use to derive an appreciation of the effect of managerial decisions on the solution of problems in the weapons system acquisition process. The use of a "real world" scenario in the cases provides a management training technique applicable for use either in conjunction with appropriate courses in a management curriculum or as a laboratory exercise used as a supplement to an overall curriculum in systems acquisition management.

Development of System X commenced in 1967 as a result of a contract to Peat, Marwick Management Systems Company for the former

Defense Weapons System Management Center, Wright-Patterson Air Force Base. The development of the system was completed in July 1972 for use in the five-month course in Systems Management conducted at the Defense Systems Management School, Fort Belvoir, Virginia.

II. OVERALL DESCRIPTION OF SYSTEM X

System X is a continuum of 30 exercises or case studies which encompass the life cycle of the CONQUEROR surface-to-surface missile system. The missile system is comprised of an amphibious vehicle, transporter, and the surface-to-surface tactical missile. The case studies present situations during five phases of the life cycle: conceptual activities, development, production, deployment, and retirement. Of the 30 exercises, 15 make use of a computer operating in a real-time interactive mode with the user, in order that he may manipulate the large amounts of data contained in a data base maintained within computer memory. The list of exercise titles and those which are computer-assisted are shown in Table I. The remainder of this thesis will concern itself only with the computer-assisted exercises.

The computer programs have been modified for use with an IBM System/360 Model 67 Time Sharing System using the CP/CMS (Control Program/Cambridge Monitor System) set of control and service programs, interactive with an IBM 2741 Communication Terminal. The purpose of CP/CMS is to create an environment in which many users can simultaneously carry out a wide range of data processing applications on a single computing system. In addition, each user can initiate, monitor, and terminate his particular application by carrying on a command/response type dialog or conversation with the system. CP/CMS consists of two

SYSTEM X EXERCISES

<u>EXERCISE NUMBER</u>	<u>TITLE</u>
Conceptual Activities	
1	Mission Analysis
2	Measure of Effectiveness and Economy
*	3 Sensitivity Analysis
*	4 Contingency Analysis
*	5 Systems Requirement
	6 Establishment of a Program Office
7	System Specification
8	Procurement Concept
9	Project Master Plan
10	Validation Phase
11	S/PO Management Information System
*	12 System Engineering
*	13 System Support Concepts
14	System Test & Support Demonstration
Development	
*	15 Structuring Incentives
	16 Source Selection
*	17 Incentive Contract Negotiation
* computer assisted exercise	

TABLE I

<u>EXERCISE NUMBER</u>	<u>TITLE</u>
18	Development Decision
19	Contractor Management Information System
*	20 Technical Problem
*	21 Engineering Change Proposal
*	22 Production Decision
Production	
*	23 Training Requirements
	24 Production Control Systems
*	25 Reprogramming
	26 Second Source Decision
*	27 Field Support Decision
*	28 Operational Availability and Logistic Support
Deployment	
*	29 Modification Decision
Retirement	
30	Transitional Activities

* computer assisted exercise

TABLE I (cont.)

major components: a control program (CP-67) and a monitor (CMS). The control program creates the time-sharing part of the environment, which enables many users to simultaneously perform work. The monitor creates the conversational part of the environment, which enables a user to directly monitor his work by conversing with the system [Ref. 2].

All exercises require the use of a System X command and control program, a number of data sets, and a number of analytical models.

The purpose of the command and control programs is to direct the processing sequence of the analytical models, establish the exercise data bases, and to provide for interface commands between the user and the analytical models.

There are three such command and control programs used, depending on the exercise desired. They have been named SYSTEM, INCENT, and PROGPL. The SYSTEM program is used for command and control of exercises 3, 4, 5, 12, 13, 20, 23, 27, 28, and 29. The INCENT program is used for command and control of the incentive contracting models used in exercises 15 and 17. The PROGPL program is used for command and control of the program planning models utilized with exercises 21, 22, and 25. A more detailed description of the command and control programs will be given in the next section.

The analytical models receive input from the data base which can be altered at the computer terminal. When satisfactory alteration of the data is completed, an EXECUTE command is issued allowing the analytical models to be executed in the order prescribed by the exercise. Following

the execution of the analytical models, the program returns to the command level. The user can then select output reports. The output reports are printed at the computer terminal by a report generator using the data stored in the data base.

The programs used for the computer-assisted exercises make use of two types of input data files: baseline data files and reports data files. The baseline data files contain data which are read into the program COMMON arrays for use by the analytical models. More than one baseline data file may be used by an exercise. The input reports data files, containing reports formats information, cross references of variables position, and editing information are combined into one random access output report file by a control program subroutine. A more detailed description of each of the above files will be given in the next section.

III. DESCRIPTION AND COMPOSITION OF COMPUTER PROGRAMS

A. CONTROL PROGRAMS

These programs control the processing sequence and act as an interface between the user and the computational models. The control programs are arranged into a main driver program and a number of subroutines to perform specialized procedures. All subroutine calls and execution are transparent to the user.

1. SYSTEM Program

After loading the SYSTEM program into main memory and start of execution, the user is prompted for the exercise number desired. The exercise number is then validated. If valid, the position of the exercise number in a list is used as an index to determine the number of baseline input data files and the input reports data files to be read. A message will be printed if the exercise number is not one of the valid numbers in the list and the user will be prompted for another number. Subroutine DATAX is executed to read baseline input data files required. The files required for each exercise are contained in Appendices A and B.

The data is saved in COMMON arrays. The input data files have a special format in order that various types of data may be combined into a single file. Data types recognized are floating point decimal, exponential, and alphanumeric data. Messages indicating successful reading of the data files are output to the user's terminal.

The user is then prompted for a decision reply to indicate whether or not a detailed list of variables is desired. A response of YES will cause a list of parameters which the user may change to be printed. Any other response sets a switch to suppress printing of the variables.

Subroutine MAKERM is then called to prepare the reports data file for later use in the printing of exercise reports. The input to the subroutine consists of three reports data file types: (1) Formats Data, (2) Reports Cross-reference Data and (3) Editing Data. The input Reports Data Files read are written on a random access file which has been created by the computer operating system. The output consists of the Reports Data File which contains a copy of the data in each of the input data files. The first record of the random access file contains three values indicating to the control program the starting record of the three types of data. A message indicating successful reading of the input Reports Data Files and creation of the random access file is output to the user's terminal.

A call to Subroutine COMMAM is then made. Inputs to this subroutine are mainly in the form of commands. These commands enable the user to control the actions of the computer programs. Certain commands, such as DISPLAY and REPORT, cause the reading of input from the Reports Data File and the output of information on the terminal. The subroutine also performs initialization actions. Additional subroutines called by Subroutine COMMAM provide for analysis of the user's command and to provide for the necessary actions dictated by the user's command.

Examples of valid commands are REPORT, CHANGE, DISPLAY, and EXECUTE.

Detailed information concerning the commands is available in Ref. 3.

A command of EXECUTE causes return to the SYSTEM program which then calls the necessary analytical models required for the particular exercise, in the prescribed order of execution. The program is terminated by use of the command STOP. A listing of the SYSTEM program is shown as Appendix C.

2. INCENT Program

A control program similar to that used in the SYSTEM program is used with slight modifications as the Incentive Contract Negotiation program. This program, INCENT, is used with exercises 15 and 17. Files required for this program are shown in Appendices A and B. A list of variable parameters for these exercises is printed automatically, eliminating the requirement for a response from the user for such a listing. Minimum, maximum, and present value of the variable parameter may be determined by use of the DISPLAY command. Only the present value of the parameter may be changed by the use of the CHANGE command. The new value is required to be within the range indicated for that parameter.

Subroutine RUN calls the analytical model-subroutine ICM. A non-standard return is provided to enable the program to bypass the printing of a requested report if Subroutine ICM discovers an illegal set of conditions in the user's parameter settings. Additional detailed information concerning the program is available in Ref. 3. A listing of the INCENT program is shown as Appendix D.

3. PROGPL Program

The third command and control program, PROGPL, is similar in operation to the previous two. This program is used with exercises 21, 22, and 25. The main program is similar to that found in the SYSTEM program. A new subroutine, NETWRK, is included to provide initialization for the Program Evaluation and Review Technique (PERT) network. Two different networks are provided and are initialized from the baseline data base. The Engineering Change Proposal model, which forms the analytical model for exercise 21, is executed by a call to Subroutine PROCOS. Display or change of the current network may be accomplished by the command DISPLAY NET or CHANGE NET respectively. The use of the RESET command resets the network to its original value. Subroutine DATE provides for conversion of dates from calendar form to serial dates and vice versa. Provision is made for leap years. There is provision for a total of 200 activities in the PERT network. The report available is a specialized report known as an "Activity Schedule Report." Several format options are provided which are a representation of the PERT network or a part of the network. The user may request all activites be printed, only the critical path activities, or specify particular activities to be printed.

For exercises 22 and 25, execution is accomplished by a call to the Production Planning model, COSMOD. This model is similar in nature to those analytical models found with the SYSTEM program.

Additional detailed information concerning the program is available in Ref. 3. A listing of the PROGPL program is shown as Appendix E.

B. ANALYTICAL MODELS

There are ten different analytical models currently associated with the System X exercises. A brief description of the models and the command and control program for which it is available will be given below.

A list of analytical models required for each command and control program is shown in Appendix F.

1. Mission Simulation Model

The primary functions of the Mission Simulation model (MISSIM) are to evaluate the effectiveness of the vehicle, transporter, and missile (VTM) against each type of target and to evaluate the expected VTM storage/launch unit and missile requirements for each type of target that is engaged. One VTM unit consists of 6 launchers, 40 missiles, 40 warheads, and associated support equipment. The effectiveness and requirements are calculated on a per target basis. Overall levels of VTM requirements and effectiveness are subsequently calculated by the Force Structure Effectiveness model. A detailed description of the model is contained in Refs. 4 and 5.

2. Force Structure Effectiveness Model

The primary purpose of the Force Structure Effectiveness model is to extend the results of the Mission Simulation model in order to determine force level requirements for VTM units. This information is

subsequently used in the Life Cycle Cost model to produce system life cycle costs. The detailed description of the model is contained in Refs. 6 and 7.

3. Logistics Model

The Logistics model (LOG) computes a series of logistics requirements which are used to determine support costs using the Life Cycle Cost model. The model receives most of its input from the baseline data base, and from the output of the Force Structure Effectiveness model. In the model sequence, the position of the Logistics model is fixed, executing after the Force Structure Effectiveness model and before the Life Cycle Cost model. The model is divided into a series of modules, each of which computes a separate logistics support requirement for the missile system. Some of the model input is general to the extent that it is used in more than one module. Other input is module dependent, being peculiar to only one module. Additional information concerning the model is contained in Refs. 8 and 9.

4. Life Cycle Cost Model

The purpose of the Life Cycle Cost model (LIFE) is to calculate and display the time-phased cost elements of research and development, procurement, and operation and maintenance for the system life cycle. The model uses parametric cost estimating relationships, learning curves, and other cost factors which are sensitive to parameters contained in the System X case studies. The model utilizes escalating factors which cause the cost elements to increase at specific points in the life of the project.

The Life Cycle Cost model is never executed by itself in the exercises. Rather, it depends upon the output of the other models either directly or indirectly. Depending upon the exercise, the specific models to be executed are called by the control program. In the calling sequence, however, the Life Cycle Cost model is always executed last, either after the Logistics Model or the Force Structure Effectiveness model.

The model is both resource-oriented (facilities and manpower) and functionally oriented (training and support equipment). The three classes of cost are broken down further into subcategories taking into consideration the orientations mentioned above. The model calculates, for the three major cost categories, discounted life-cycle costs as well as the undiscounted cost. The detailed description of the model is contained in Refs. 10 and 11.

5. Availability Model

The Availability model (AVAIL) computes operational availability for the missile system and its sub-systems where operational availability is defined as the probability that the system (or sub-system) will be capable of operating at or above its required level of performance if called upon to do so at a random point in time [Ref. 12]. Availability, as it is addressed in this model, is degraded by operational time lost due to preventive maintenance, corrective maintenance, and overhauls.

The model receives all its input from the baseline data set and does not depend on the output of any other model. In the model sequence, the Availability model is run before the Mission Simulation model. Its

order in the sequence with regard to the Capability and Reliability models is unimportant. The availabilities computed by the model are used as input by the Force Structure Effectiveness model and the Life Cycle Cost model. A more complete description of the model and its parameters is contained in Refs. 12 and 13.

6. Capability Model

The purpose of the Capability model (CAPAB) is to provide realistic performance measurements (capabilities) of the missile and its transporter. The Capability model is subdivided into four major submodels which interact with each other.

The Missile Performance submodel is the largest and most complicated of the individual submodels. This submodel simulates the flight of the missile from launch to target, gathering performance statistics during the missile's flight. The missile's thrust profile is divided into three basic segments: boost phase, sustain phase, and glide phase.

The missile is directed toward the target through an inertial guidance system which may be assisted by laser-beam illumination of the target. During the flight of the missile, the Guidance System submodel detects deviations from the optimal trajectory and attempts to make the corresponding flight corrections. The inertial guidance system can be designed to provide a certain level of predefined targeting accuracy.

The transporter of the Conqueror missile is an integral part of the overall missile delivery system. The Transporter Speed and Distance submodel defines the vehicle cruise speed, swim speed, and cruise distance.

The Reaction Time submodel provides for a summation of the individual sub-system reaction times in terms of both initial firing and retargeting, and repeat firings. A more complete description of the parameters involved in the submodels and the equations required for calculation of the output values is contained in Refs. 14 and 15.

7. Reliability Model

The Reliability model (RELIB) computes reliability for the Conqueror missile. The missile target engagement sequence can be divided into three steps: pre-ignition, ignition, and in-flight. Reliabilities associated with the last two steps, ignition and in-flight, are addressed in this model. Pre-ignition reliability is computed as missile availability in the Availability model. The Reliability model computes: (1) missile in-flight reliability at various specified ranges, up to and including maximum range, (2) guidance subsystem in-flight reliability at maximum range, (3) propulsion subsystem in-flight reliability at maximum range, and (4) missile propulsion subsystem ignition reliability.

The Reliability model is exercised, in sequence, after the Capability model, from which time of flight data are obtained. The computed output of the Reliability model can be used directly, for example, to examine the sensitivity of life cycle cost to changes in missile subsystem mean time between in-flight failures. The output is also used as input to the Mission Simulation model, where missile reliability impacts upon the effectiveness of the missile when engaging targets. A further description of the model is contained in Refs. 16 and 17.

8. Contractor Incentive Contract Model

The purpose of the Contractor Incentive Contract model (ICM) is to perform a contractor oriented analysis of a proposed incentive contract. This analysis is done with contractor information not normally available to the government including: contractor profit strategy, contractor estimated cost to produce, and cost-performance curves on each performance parameter which is incentivized in the contract.

Utilizing this contractor supplied information, the basic incentive contract, as defined by specific parameter values supplied by the student user or instructor/monitor, is pursued according to one of five contractor oriented profit strategies: (1) the maximization of incentive fee in dollars, (2) the maximization of incentive fee as a percent of sales, (3) the maximization of performance for a given incentive fee, (4) the maximization of performance for a given fee percentage of sales (where sales is the sum of development cost and the total incentive fee), and (5) the maximization of performance for a given cost overrun. Evaluative information is supplied to the user in the form of output reports. These include costs, performance achieved, fees or profits, and the relative value of additional incentive fee on that parameter. Ten individual parameters are available as potential parameters for incentivation. The user may define which, if any, of the parameters for which he may desire to establish incentive values. The relationship between fee and performance is established by specifying the incentive fee value at minimum,

maximum, and target performance values. A linear relationship is used for the share-lines connecting target performance with the maximum and minimum values of performance.

For each of the incentivized parameters, the contractor is assumed to have knowledge of the performance value he may obtain by investing additional development dollars in the parameter. This is referred to as the contractor's cost-performance curve. The contractor must meet the specification value in the contract for all parameters.

This specification value is referred to as the minimum performance point.

The contractor's cost to obtain the minimum performance point is included in the lump sum known as the "cost to develop a minimum performance system." The cost-performance curve for the individually incentivized parameters is not defined at performance points less than the minimum performance value. From the minimum performance value, additional development dollars spent on each incentivized parameter will result in increased performance levels up to a maximum achievable performance level. At this maximum level, the contractor believes that additional development dollars will not produce any significant increase in performance. Hence, the cost-performance curve is asymptotic to the maximum performance level line. The determination of how the contractor will trade-off receivable fees is referred to as his profit strategy.

The initial baseline values for the incentive fees have all been set to zero, in effect, indicating that no parameters have been incentivized. The minimum acceptable performance has been established for each

parameter. Unless the parameter is incentivized, the contractor will produce the minimum performance value for that parameter. Minimum performance points are fixed and may not be varied during the exercise. Target performance points may be set at values within the defined ranges. Additional information concerning contract structure, contractor's structure, parameters, and graphs of the multiple incentive contract share-lines are contained in Refs. 18 and 19.

9. Program Planning Model

The Program Planning model is divided into two independent submodels. One submodel, the Schedule submodel, is PERT oriented and performs network calculations to produce time scheduling information. The user may utilize the scheduling submodel to evaluate alternative production networks encountered in the project management of the Conqueror missile system program. The Cost submodel is oriented to the production planning process and consolidates the planning costs associated with the various management decisions and provides cost reports to the user. This submodel allows the user to aggregate the many varied cost inputs from the production process to produce information-oriented reports for use in managing the production program.

The Schedule submodel (PROCOS) takes, as input, activities in a PERT-oriented network and computes, as output, the early start date, late start date, early finish date, late finish date, and the slack for each of the activities in the network. The user is not allowed to alter the activity arrangement or sequence in the network. He may,

however, alter activity durations. The basis of the network calculations is a topological sort. The critical path for the network selected is indicated by those activities which have the smallest (or largest negative) slack. Those activities on the critical path are indicated on the output reports with an asterisk.

Subroutine DATE is required to convert dates from standard notation into a serial date required for mathematical manipulation. This conversion is reversible for use in the output reports. The serial date is relative to a given zero-date which has been selected as 1 January 1950.

Three reports are available in exercise 21. The use of the command REPORT ALL will list all activities in the current network. The command REPORT CRITICAL will list all activities on the critical path in chronological order. The command REPORT n, where n represents one or more activities, allows the printing of only the selected activites.

For exercises 22 and 25, the Program Planning model uses the second independent submodel, COSMOD. In the process of production planning, the manager is faced with a variety of problems which focus upon three major types of decisions. These are: (1) production go-ahead date, (2) the delivery date of the first production unit, and (3) the procurement quantity of the units over the time frame of the production phase. An error checking routine is used to check to make sure no production orders are requested in years prior to one year after the Go-ahead Decision was given and that the production capacity is not exceeded by the production order quantity. If an error of this nature is found, an error message

is printed at the terminal indicating the current production go-ahead date and which production orders violate the production capacity constraint for each year. In order to assist in making the above decisions, the submodel accumulates costs, for later use in various output reports, in the three major categories of Research, Development, Test and Evaluation (RDT&E), Production, and Operation and Maintenance.

The unit costs exhibit an inflationary trend over the years.

There is, however, a "learning curve" associated with the production of the items which will allow fewer people and facilities to produce the same quantity of output. In later production years, the interaction of the learning curve and inflation allow optimal production of lot sizes smaller than the lot sizes in the initial production years.

Both exercise 22, the Production Decision exercise, and exercise 25, the Reprogramming exercise, use the Cost submodel as the analytical model. However, in the System X time frame, the baseline cost values used with exercise 25 have significantly changed. At this point in the life cycle, most RDT&E and certain production funds have been expended. The majority of the production engineering cost and Long Lead Time Item costs have been obligated. These items will no longer be affected by any production decisions. Procurement costs have been increased by six percent.

There are 86 parameters available to the user. Parameter 1 refers to the Production Start-up Date. Parameter 2 is the number of months between the Production Start-up Date and the first unit delivery.

The remainder of the parameters, 3 through 86, refer to the unit quantity of the six possible hardware end items to be produced in a given year. Additional detailed material concerning the Program Planning models, including tables of topological sequence numbers for the PERT networks, category cost matrices, and baseline parameter values are contained in Refs. 20 and 21.

C. DATA FILES

The input data files contain the baseline data values used as input through the COMMON arrays by the analytical models and the input reports data files which form the basis for the random access reports data file used in the printing of the various output reports.

1. Baseline Data File

One or more baseline data files are read into the computer program COMMON arrays before any analytical models are executed. The files contain initialization data values in several different formats: floating point decimal, alphanumeric, and exponential formats. After initialization of the master array, V, the values from the baseline data set are read into specific locations in the V array. Only a portion of the locations in the V array have baseline data values assigned. The remainder are reserved for values entered by the user or those values computed during execution of the analytical models. The baseline data values are therefore inviolate and allow resetting of all values to the original baseline values by use of the command RESET.

2. Input Reports Data Files

These files contain three types of data files: (1) Reports Formats Data Files, (2) Reports Cross-reference Data Files (also known as Variables Data Files), and (3) Editing Data Files. The formats used for printing the reports of an exercise are contained in the Reports Formats Data File. The format for each report are placed in the file in the sequence in which they will be used to print the report. A record placed after the final format for each report containing the characters END signify the end of the report formats.

The Reports Cross-reference Data File is used in conjunction with the Reports Formats File. The file contains data which indicate to the control program which master array location values are to be printed in each report and the appropriate formats record in the Reports Format File to be used.

The Editing Data File is used to supply information for the parameters which may be changed by the user. One record is used for each changeable parameter. Each record contains four data elements: parameter description, minimum permitted value of the parameter, maximum permitted value of the parameter, and the position of the parameter value in the master array. This data file is referenced by the command and control program each time the user attempts to change the value of one of the parameters. The new value is compared with the permitted maximum and minimum values and rejected if it is outside the permitted

range. The last record of each edits data file contains the characters END. Complete documentation concerning the data base is contained in Refs. 22 through 28.

IV. SYSTEM IMPLEMENTATION

The requirement for conversion of the computer program was due to the incompatibility of various commands in the original version, used in conjunction with a General Electric Model GE-635 computer, with the commands required by the IBM System/360 computer. The differences in FORTRAN language options allowed by the compilers used with the General Electric and IBM systems also required changes in order to make the programs compatible for use on the Naval Postgraduate School's IBM System/360 computer. A discussion of the overall types of changes along with specific examples of changes required is made below.

In the original version, the programs for a typical exercise were arranged in the form of a series of overlays, which are logically independent sections of the entire program. Each section could then be brought into computer memory as required. In the IBM System/360, as installed at the Naval Postgraduate School, each program using the system is treated as a sequence of 4096-byte units called "pages." By dividing programs into pages, processor storage can be allocated in page (4096-byte) increments. This eliminates the requirement for the program to be divided into logically independent sections. The programs were converted into main programs and associated subroutines called either by a main program or by another of the subroutines used by the main program.

In the original version, the General Electric GE-635 FORTRAN language compiler allowed each overlay to either return to the main program or for control to be passed to another overlay by the use of a CHAIN statement. All CHAIN statements have been converted to a RETURN statement, causing a return of control to the calling main program or subroutine. In the Naval Postgraduate School IBM System/360 FORTRAN compiler, initialization of variables is not automatically performed. It is, therefore, imperative that all variables be initialized in some manner prior to their use. The dimension of arrays whose values are passed as an argument in a subroutine call statement must be equivalent in both the calling program and the subroutine.

One major problem with the original version was the amount of disk storage space required to store the 43 data files required to provide the data base. The Baseline Data Files comprised the largest volume of records required to be stored. Originally, the Baseline Data Files were comprised of 5102 80-character records. By a conversion of the Baseline Data Files into a format which allows a number of data values to be used in each 80-character record, a reduction of over 82 percent, to 909 80-character records, in total record length was achieved.

The computer Operating System Library contains a number of subroutines which are available for use under CMS. The DEFINE subroutine defines FORTRAN disk files that may be accessed randomly and makes a correspondence between a CMS file and a FORTRAN logical unit number. Before each READ or WRITE (or PRINT) statement, the record number must

be set to the record desired. After the execution of the READ or WRITE statement, the record number is automatically incremented to point to the next record in the file [Ref. 2]. This Operating System Library subroutine is used to form the random access file, FT09F001, used as the output reports data file. Upon the user command STOP, a call is made to two other Operating System Library subroutines; the ERASE subroutine which removes the random access file, FT09F001, from the user's directory and to the EXIT subroutine which causes termination of the program.

Prior to conducting a computer-assisted exercise the user should familiarize himself with the material contained in the appropriate Student Exercise Booklet, Computer Operations Guide, and Computer User's Guide for the particular exercise to be conducted. Instructors/Monitors will find additional material concerning the case contained in the Instructor's Guide Booklet for the particular exercise. Appendix G presents typing conventions and sample exercise commands, reports and messages.

V. USE OF EXERCISES IN CONJUNCTION WITH CURRICULA

The case study method and management game simulation are used extensively at the Naval Postgraduate School as well as other colleges and universities. The System X project management exercises encompass both the case study and the simulation methods. The exercises consider the project manager from the viewpoint of the management scientist who utilizes mathematics, models, and computers to aid him in making optimum decisions. The exercises allow a management student who has studied the principles involved in project management to apply those principles to the decision-making involved in a hypothetical project. The case study method utilized is augmented through the use of the computer which serves as an aid to the user in order to manage the data base. The computer develops reports, makes computations, and makes data comparisons. Instructional methods and materials must include not only the cases themselves and the use of the computer but also must include lectures, seminars, discussions, and workshops.

There are a number of alternatives for use of the set of exercises comprising the life-cycle of the project. The first of these alternatives is to use the System X exercises to formulate a Directed Study course conducted over a one academic quarter time frame. This course could be conducted on either a Pass/Fail basis or as a graded course. The use of the exercises as an unstructured learning experience would lend itself

to the use of the Pass/Fail system of grading, whereas conducting the course on a graded basis would require a subjective grade to be determined by the instructor team. Within the framework of a Directed Study, the exercises may be handled in a number of ways. The simplest of these is to use the exercises as an acquisition overview with the missile system scenario as a "typical" weapon system acquisition. In this case, the computer would receive only limited use in exploring the alternative decisions available in each case. In its most elementary form, this would require only the use of the baseline data values and a limited number of iterations, changing only a limited number of parameter values in order to arrive at the general changing trend of the output values rather than continuing the process to determine a near optimum solution. This may be expanded as required to illustrate the principles and problems involved at each stage of the acquisition process.

A second alternative is to utilize specific exercises or groups of exercises in conjunction with appropriate courses throughout the curriculum. This could be accomplished during the actual period of a particular course to illustrate or provide examples of situations related to the material for which instruction is being provided. Alternatively, selected exercises could be conducted at the beginning of an academic quarter in lieu of course instruction normally conducted at that time. This alternative has the disadvantage of tending to compress the material scheduled to be taught in that quarter into a shorter time frame. If exercises are to be conducted in addition to regularly scheduled material, consideration

to assignment of laboratory-type credit for the time expended should be made. Table II depicts the relevancy of the various System X exercises for applicability to courses within the Systems Acquisition Management curriculum, as contained in the Naval Postgraduate School catalog for 1972-1974.

Thirdly, the set of exercises could be used as the basis for a group thesis project simulating the project management roles required in the operation of a project office managing the acquisition of a major weapon system. A disadvantage to this replacement of the individual thesis is that it eliminates the student's option on selection of a thesis topic. In addition, considerable modification of the scenario and cases would be required to fit the Navy environment in a manner justifying the experience as a thesis project.

It is possible to use some of the System X case exercises in other than a quantitative way. A number of the case exercises, particularly those which are not computer-assisted, may lend themselves as cases in behavioral or management theory studies. The selection of these type cases from the entire package may be found useful in studies involving organizational behavior and human factors. This relationship is shown in Table II. A synopsis of prior case material to the one selected may be required in order for the student to have sufficient background on which to evaluate the selected case. A discussion of the impact of recent political, economic, technological, and social factors on the case may be worthwhile within the selected courses of instruction.

TABLE OF RELEVANCY TO SYSTEMS
ACQUISITION MANAGEMENT CURRICULUM

<u>NPS COURSE NUMBER*</u>	<u>RELEVANT EXERCISE NUMBERS</u>
MN 4145	1, 2, 3, 4, 5
SM 3301	9, 18
SM 3302	6, 8, 9, 10, 18, 25, 30
SM 3304	18, 25
SM 3305	11, 19, 21, 24
SM 4301	7, 8, 10, 12, 14, 20, 21, 22, 29
SM 4302	9, 10
SM 4303	8, 15, 17
SM 4304	16, 26
SM 4305	13, 23, 25, 27, 28

* Naval Postgraduate School Catalog for 1972-1974.

TABLE II

There are possibilities for use of the System X case studies outside of the Systems Acquisition Management curriculum. An examination of the relevancy of the exercises to other curricula should be the subject of further investigation.

VI. CONCLUSIONS AND RECOMMENDATIONS

Based on the alternatives contained in the previous section, it is considered that the project management exercises which comprise System X are suitable for use within a management curriculum by students at the Naval Postgraduate School. Within the Systems Acquisition Management curriculum the following recommendations are made for use of the System X exercises.

The System X exercises should be used within the Systems Acquisition Management curriculum to formulate a Directed Study course to be graded on a Pass/Fail basis. The course should be conducted over at least a one academic quarter time frame in the latter third of the curriculum. The exercises to be conducted should include as a minimum those which concern themselves with the Conceptual, Development, and Production phases of the system life cycle as shown in Table I. The course must be supported by a team of instructors/monitors knowledgeable and experienced in project management to allow a wide spectrum of background, expertise, and opinion to be available to the student.

In the event that the above course of action is impracticable, it is alternatively recommended that selected exercises be used in conjunction with existing courses in the curriculum. Individual cases may be found useful in conjunction with courses in Project Management, Systems Analysis, Project Information Systems, Systems Engineering Management,

Procurement Planning and Negotiation, and Logistic Support. The relevancy of individual exercises to courses within the Systems Acquisition Management curriculum is contained in Table II.

APPENDIX A. EXERCISE INPUT BASELINE DATA FILES

<u>EXERCISE NUMBER</u>	<u>FILETYPE IDENTIFIER</u>		
3	FT03F001	FT03F002	
4	FT03F001	FT03F002	
5	FT03F001	FT03F002	
12	FT03F001	FT03F002	
13	FT03F001	FT03F002	FT03F003
15			FT10F001
17			FT10F001
20	FT03F001	FT03F002	
21			FT10F002
22			FT10F003
23	FT03F001	FT03F002	FT03F003
25			FT10F004
27	FT03F001	FT03F002	
28	FT03F001	FT03F002	
29	FT03F001	FT03F002	

APPENDIX B. EXERCISE INPUT REPORTS DATA FILES

<u>EXERCISE NUMBER</u>	<u>FILETYPE IDENTIFIER</u>		
3	FT02F001	FT02F002	FT02F003
4	FT02F001	FT02F002	FT02F003
5	FT02F001	FT02F002	FT02F003
12	FT02F004	FT02F005	FT02F006
13	FT02F007	FT02F008	FT02F009
15	FT01F001	FT01F002	FT01F003
17	FT01F001	FT01F002	FT01F003
20	FT02F010	FT02F011	FT02F012
21	FT04F001	FT04F002	FT04F003
22	FT04F004	FT04F005	FT04F006
23	FT02F013	FT02F014	FT02F015
25	FT04F007	FT04F008	FT04F009
27	FT02F016	FT02F017	FT02F018
28	FT02F019	FT02F020	FT02F021
29	FT02F022	FT02F023	FT02F024

APPENDIX C COMMAND AND CONTROL PROGRAM (SYSTEM)


```

7 PRINT 7,NX !*** INVALID EXERCISE NUMBER - 1,15/1
8 KCOUNT=KCOUNT+1
9 GCTC 54
10
11 INX=I
12 INX=I
13 CCNTINUE
14 C+1 SW=1
15 C+2 SW=1
16 PRINT 16, DO YOU WANT TO SEE THE LIST OF VARIABLES?
17 1, (YES CR NC) ? */
18 READ(5,116)ANS
19 FCRNAT(44)ANS.GOTO 14
20 IF(ANS.EQ.'A')GOTO 14
21 C+1 SW=2
22 C+2 SW=2 NUMBER OF REPORT FILE TO READ
23 NREP=REPNAME(I)-1
24 CALL MAKEFN(NREP)
25 CALL CCNTC(345,345,12C,120,200,13C,13C,29C),INX
26 C+**# FCRCR EXERCISES 3, 4, 5
27 CALL FCRCRE
28 CALL LLFE
29 GCTO 99 FCRCR EXERCISE 12
30 CALL ECAPAB
31 CCNTINUE
32 CALL RELIE
33 CALL AVAIL
34 GCTO 99 FCRCR EXERCISES 13, 23, 27, 28
35 CALL MISSIM
36 CALL LLGE
37 CALL LLFE
38 GCTC 99 FCRCR EXERCISE 20
39 CALL CAPAB
40 CALL RELIE

```



```

C ***# FCTO 130 EXERCISE 29
C 29C CALL MISSEIM
C CALL FORCE
C GCTC 99
C END

```

```

C
C
SUBROUTINE MAKERM( IUN )
***#***#***#***#***#***#***#
CCMNCN REFCR
CCMNCN LIN
DIMENSION FORM(16),IV(16),FMAT(10),FV(2)
IIN=1
CALL DEFINE(9,'FILE
IF(IUN.EQ.0)GCTO 10
IEN=IUN*3
IOD=0
5 READ(2,11,END=6)
5 GCTC 5
6 IOD=IOD+1
IF(IOD.NE.IEN) GOTC 5
1C NPCSFN=2
LINE=2
6 READ(4,11,END=20) FCRM
11 WRITE(9) FCRM
1C NPCSVR=LIN
2C READ(2,24,END=60) IV
24 FCRMAT(1615) IV
2C WRITE(9) 26
6C NPCSED=LIN
61 READ(2,62,END=70) FMAT,FV,IC
62 FCRMAT(1X10A4,2F1C.2,15) FMAT,FV,IC
63 COTO 61
7C LIN=1
64 WRITE(9) NPCSFN,NPCSVR,NPOSED
71 PRINT(71,1, ' CREATED REPORT FILE FT09FO01: ')
71 FCRMAT(/, RETURN
END

```

```

SY S000920
SY S000930
SY S000940
SY S000950
SY S000960
SY S000970
SY S000980
SY S000990
SY S001000
SY S001010
SY S001020
SY S001030
SY S001040
SY S001050
SY S001060
SY S001070
SY S001080
SY S001090
SY S001100
SY S001110
SY S001120
SY S001130
SY S001140
SY S001150
SY S001160
SY S001170
SY S001180
SY S001190
SY S001200
SY S001210
SY S001220
SY S001230
SY S001240
SY S001250
SY S001260
SY S001270
SY S001280
SY S001290
SY S001300
SY S001310
SY S001320
SY S001330
SY S001340

```



```

SUBROUTINE DATA(X,IFL)
C C C M O N   R E P O R T ! N X ! I N X
CCMUN V(4500),VERE,AUTC,NPCSEF,NPCSVR,NPCSED,REPSSW,
1 CCHSWN,CH2SWNERR,IPAR,AMIN,AMAX,AINC,IVARCA
1 CINERSIGN FMT(4)
IEFF=0
LAST=0
1 CC N=1
200 READ(3,2149,END=333) ISKIP,IC,FMT
215 FORMAT(1215,4A4)
1 IF(ISKIP.EQ.0)GOTC. 250
1 LAST=1
1 IF(IC.EQ.0)GOTO 200
1 READ(3,FMT)(NPOSS,V(NPOS+N-1),II=1,IC)
1 GCTO2CO
1 GEF=IEF+1
1 GCTO2CO
1 IEF=IEF+1
1 PRIMAT(55,IEF
1 FFORMAT(7,BASE DATA READ FROM FILE FT03FOC:,I,1)
1 IF(IEF.LT.IFL) GOTC 100
1 RETURN
333
55

```

```

SUBROUTINE COMMAND
***** **** **** ****
* * * * * * * * * *
CCNAINS LUGIC FOR USER DIALOGUE
SUB-ELEMENTS ARE: XTRACT SUBROUTINE
                   REPR SUBROUTINE
                   CHAI SUBROUTINE
                   CHA2 SUBROUTINE
                   SET SUBROUTINE
                   INX
COMMON REPORT,NX,AUTC,NPCSFN,NPCSVR,NFCSED,REPSH,
COMMON V(450C),VERB,AUTC,NPCSFN,NPCSVR,NFCSED,AIR
COMMON CH2SW,NERR,IVARCN,IPAR,AMIN,AMAX,AIR
COMMON LIN,DIMENSION LIST(50),LIST2(100),LINE(72)
COMMON REPORT,FILE,CH1SW,CH2SW
LOGICAL VERB,AUTC
CALL DEFINE(9,FILE   • , 'FTC9F001',LIN,8C)
CALL DEFV(2)
IF(CH1SW.EQ.3.OR.CH2SW.EQ.3) GOTC 15
FIRST TIME THRU-INITIALIZE -
INITIALIZE VERBOSE/BRIEF SWITCH

```

四
〇


```

C *** VERB=.TRUE. SWITCH PER EXERCISE
C *** INIT GCCTC(6,7,7,7,7,7),INX
C *** ALTC=.TRUE.
C   6 GCCTC 8
C   7 ALTC=.FALSE.
C   8 SETCCNFG(2)
C   9 CONFIG=V(2)
C  10 CALL CCNFG(CONFIG)
C  11 PRINT 120,V(1)

LINE=1 READ(1,REPERITNPSSFM,NPCSVR,NPCSE) CALL TO CHANGE SUBS
C *** PROCESSES ARE NOT USED IN FIRST CALL
C   12 GCCTC(12,13,12,12,12,12)INX
C *** READ EDITS FILE(S) AND SAVE PARAMETER POINTERS
C   13 CALL ECHAN(NFNC,L1,LIST1)
C   14 IF(LNX.NE.3)GOTO 15
C   15 CALL CHA2(NFNC,L1,LIST1)
C *** REQUEST USER COMMAND
C   16 GETLNVARCN(NE.0) CALL VARY
C   17 IF(NERR.EQ.5)PRINT 11
C   18 FORMAT(1$ AWM C:MCN YOU HAVE MADE FIVE INPUT ERRORS. /)
C   19 IF(SYSTEM(X)WERE OPERATIONAL YOU WOULD HAVE WIPED OUT /)
C   20   . MONT MCKEESPORT PENNSYLVANIA=1/)
C   21 IF(NERR.EQ.5)NERR=6
C   22 PRINT 14
C   23 FORMAT(1$ COMMAND ? : )
C   24 READ(16,LINE)
C   25 READUSER(CCOMMAND)
C   26 FCRNAT(72A1)
C   27 CALL XTRACT(LINE,72,LI,LIST1,L2,LIST2,NFNC,NREP,115)
C   28 IF(NFNC.EQ.0)GOTC 17
C   29 GCCTC(12,25,30,35,40,45,50,55,6C,7C,70,75,EC),NFNC
C   30   . REPCRT(PTION)***
C   31   . IF(NREP.LT.1)GOTO 15
C   32   . PRINT REPCRT HEADING
C   33 PRINT 120,V(1)
C   34 GCCTC(21,22,23,224,225,228,230,231,232,233),INX
C   35 EXERCISE 3
C   36 PRINT 121
C   37 GCCTC 24
C   38 EXERCISE 4
C   39 PRINT 122
C   40 GCCTC 24

```



```

C *** EXERCISE 5
C 22 PRINT 24
C *** EXERCISE 12
C 224 PRINT 124
C *** EXERCISE 13
C 225 PRINT 24
C *** EXERCISE 20
C 22E PRINT 24
C *** EXERCISE 23
C 22C PRINT 24
C *** EXERCISE 27
C 231 PRINT 131
C *** EXERCISE 28
C 222 PRINT 24
C *** EXERCISE 29
C 233 PRINT 24
C *** PRINT REPORT WITH REPORT SUBROUTINE
C 24 CALL REPORT(15)
C *** REPORT HEADINGS
C 12C FORMAT(1H-'EXERCISE ',F3.0)
C 121 FORMAT(1H-'SENTINEL ANALYSIS: ',/1X,43(1H-')/)
C 122 FORMAT(1H-'SYSTEM REQUIREMENTS: ',/1X,43(1H-')/)
C 123 FORMAT(1H-'SYSTEMS ENGINEERING: ',/1X,43(1H-')/)
C 124 FORMAT(1H-'SYSTEM SUPPORT CONCEPTS: ',/1X,43(1H-')/)
C 125 FORMAT(1H-'SYSTEMICAL PROBLEMS: ',/1X,43(1H-')/)
C 126 FORMAT(1H-'TECHNICAL REQUIREMENTS: ',/1X,43(1H-')/)
C 131 FORMAT(1H-'FIELD SUPPORT DECISIONS: ',/1X,43(1H-')/)
C 132 FORMAT(1H-'OPERATIONAL AVAILABILITY AND LOGISTIC SUPPORT.',/
C 133 FORMAT(1H-'MODIFICATION DECISION.')/
C *** CHANGE CPTIONN ***
C 25 GOTO(26,27,28,29,26,26,26,26),INX
C 26 CALL CHAINFNC,L1,LIST1
C 27 CALL CHA2(NFNC,L1,LIST1)
C IF(NFNC.EQ.6)GOTO 15

```



```

CC TO 15
RESET OPTION ***  

GOTO(81,84,82,82,82,82,82,82,82,82,82,82),INX  

AC RESET IN EXERCISE 3  

PRNT 82  

FORMAT(/! INVALID FIELD - RES!)  

NERR=NERR+1  

GCC 15
CONTINUE NE.16)CALL CHAI(NFNC,L1,LIST1)  

IF(CINX.NE.3)GOTO 15
CONTINUE NE.3) CALL .CHA2(NFNC,L1,LIST1)  

IF(CCFIG.NE.Q.V(2)) .GOTC 15
CCFIG=V(2)
CALL CCFIG(CONFIG)
GOTO 15
END

```



```

C *** END OF FIELD *** IDENTIFY, IF NUMERIC SAVE IN LIST
C   IF(ALPHA) GOTO 100
C   IF(ALPHA) GOTO 100
C   5C NVERIC FIELD *** TO SAVE IT IN
C   DECIDE WHICH LIST MEANS SECOND LIST
C   YEAR=.NOT.YEAR) GOTO 80
C   *IF(.NOT.(NL+1) GOTO 70
C   SAVE IN SECOND LIST
C   IF(THR IS SET INSERT INCLUSIVE VALUES
C   IF(.NOT.(NL+1) GOTO 70
C   K=LIST(NL)+1
C   IF(K-EQ-LT-K) GOTO 151
C   IF(K-NVAL.LT-K) GOTO 151
C   CC E6 J=K, NVAL
C   NL=NL+1
C   LIST(NL)=J
C   CCNTINUE
C   TTR=.FALSE.
C   GOTO 190
C   IF(THR IS NOT SET, SAVE SINGLE VALUE
C   NL=NL+1
C   LIST(NL)=NVAL
C   GOTO 190
C   ** SAVE IN FIRST LIST INSERT INCLUSIVE VALUES
C   7C IF(.NOT.(LV) GOTO 85
C   LVAR(LV)+1
C   K=LVAR(LV)+1
C   IF(K-EQ-LT-K) GOTO 151
C   IF(K-EQ-LT-K) GOTO 151
C   IF(K-EQ-LT-K) GOTO 151
C   IF(K-EQ-LT-K) GOTO 151
C   DIFF(LV-E6.5C) GOTO 300
C   LV=LV+1
C   LVAR(LV)=J
C   TTR=.FALSE.
C   GOTO 190
C   IF(THR IS NOT SET, SAVE SINGLE VALUE
C   85 LV=LV+1
C   LVAR(LV)=NVAL GOTO 300
C   GOTO 190
C   IF(FIELD IFY
C   10C DC150 J=11 NE.LETA(J) GOTC150
C   IF(IN(IFST) EQ.ISP.AND.I.EQ.IFST+1) GOTO 150
C   IF(IFST+1) EQ.I.FLTB(J) GOTC150
C   IF(IFST+2) EQ.LETC(J) GOTC150
C   CCNTINUE

```



```

I1=J
IF(J.GT.5.AND.J.LE.19) I1=6
IF(J.GT.19) I1=7
IFTO(101,1C2,103,1C4,1C5,106,107),I1
1C1 GCTC19C
1C2 CCNTINUE
1C3 GCTC190
1C4 CCNTINUE
THR=.FALSE.
GCTC190
1C5 PRINT(1,105 LINE ABORTED*)
FORMAT(1,105
RETURN 1
SET CPTN INDICATOR ***
C *** NFNC=J-5
1C6 GCTC19C
SET REPORT INDICATOR ***
C *** NREP=J-15
1C7 IF(J.EQ.26)YEAR=.FALSE.
GCTC19C
1C8 CCNTINUE
1C9 PRINT(1,52 INVALID FIELD-,3AI),IN(IFST+2)
1C10 FCRMAT(1,52,1,ERR+1
1C11 NERR=ERR+1
1C12 RETURN 1
ALPHA=.FALSE.
FCUND=.FALSE.
VAL=0
1C13 CCNTINUE
1C14 RETURN
END

```

```

SUBROUTINE REPRT(N)
*** **** *** ****
CCMN CN FEPRT NX INX
CCMN V(4500),VER,AUTC,NPCSFM,NPCSVR,NPCSED,REPSW,
1,CH1SW,CH2SW,NERR,IVARCN,IPAR,AMIN,AMAX,AINC,
1,CCMN$CN FM(16) IVARS(16)
DIVERGENSI CN REPORT,FILE,CH1SW,CH2SW
INTEGER VERB,AUTO
LOGICAL VERB,FILE
CALL DEFINE(S,FILE
      ,FTC9FC01,LIN,EC)
DATA END/3HEND/
SY S04670
SY S04650
SY S04700
SY S04710
SY S04720
SY S04730
SY S04740
SY S04750
SY S04760
SY S04770
SY S04790
SY S04800
SY S04810
SY S04820
SY S04830
SY S04840
SY S04850
SY S04860
SY S04870
SY S04880
SY S04890
SY S04900
SY S04910
SY S04920
SY S04930
SY S04940
SY S04950
SY S04960
SY S04970
SY S04980
SY S04990
SY S05000
SY S05010
SY S05020
SY S05030
SY S05040
SY S05050
SY S05060
SY S05070
SY S05080
SY S05090
SY S05100
SY S05110
SY S05120

```



```

C *** TEST REPORT NUMBER FOR VALIDITY
PRINTN 61,0,AND,N,LT,21,GOTO 1
C ***GET RECORD CONTAINING POSITION CF FORMATS AND VARIABLES
1 IIREK=NPC$VR+N-1
LIN=IIREK
READ(REPCT) NVARS
IR=NVARS(2)
INITIALIZE PCINTER TC FORMAT RECCRD
IF(IR.LT.1) GOTO 6C
NF=IR+NPOSFM-1
INITIALIZE PCINTER TC VARIABLES RECCRD
LV=IV+NPOSVR-1
L=IV+FIRST VARIABLES RECORD
5 READ(LV) NVARS
GET POSITION OF RECORD IN REPORT FILE
LINE=NVARS(1)+NPOSFM-1
GOTO 7
C *** NF=NFM+1
READ(NF+1) NFNEXT FORMAT RECCRD
LINE=NF
READ(REPCT) FM
IF(THISSEND.OF.REPCT) FM
IF(FM(1).EQ.END) GOTO 50
C *** ARE THERE VARIABLES WITH THIS FORMAT
IF(CLNE.EQ.NF) GOTO 10
PRINT 7
C *** LINE=NF+1
PRINT FM,(V(NVARS(J)),J=3,NC)
LINE=LV
READ(NEXT VARIABLES RECORD
C *** LINE=LV
READ(REPCT) NVARS
GET POSITION CF NEXT RECORD IN REPCT FILE
LINE=NVARS(1)+NPOSFM-1
IF(LINE.NE.NF) GOTO 6
GOTO 10
5C COUNTINUE
C *** RETURN
6C PRINT 61, REPORT UNKNOWN //'
GOTO 50
END

```



```

SUBROUTINE CHAI(N,L,LIS)
*****  

COMMON REPORT,NX,INX  

COMMON V(4500),VERB,AUTC,NPCSFM,NPCSVR,NPCSED,REPSW  

1,CHLSE,CH2SW,NERR,IVARCN,IPAR,AMIN,AMAX,AINC  

COMMON LIN RANGE(2),F(10),FDUM(1),IDUM(1)  

DIMENSION LIS(50)  

INTEGER REPORT,FILE,CH1SW,CH2SW  

LOGICAL VERB,AUTO  

DATA END/2HEND/  

IDSTT=4200  

IDSTT=4250  

IF (CH1SW.EQ.3) GOTO 5  

1 FORMAT(//,THE STUDENT 5 MAY VARY THE FOLLOWING SYSTEM PARAMETERS)  

2 AREK=NUM+NPCSED-1  

LINE=INRE  

READ(IREPOT,1,F1 RANGE, ID  

IF(F(1).EQ.2) GOTO 3  

V(1+IVSTT)=V(ID)  

V(1+IDSTT)=ID  

ALV=NUM+1  

GOTO 2  

3 NUM=NUM-1  

IF(INX.EQ.5)PRINT 70  

IF(INX.NE.5)PRINT 50  

70 FORMAT(//,ENTER VALUES USING THE FOLLOWING MAINTENANCE CATEG.,  

1      CODES //, 0 =NOT REQUIRED),/(3.=DEPOT  

2      /, ( N=6  

L=NUM  

DC 4 I=1,NUM  

4 GOTO 10  

5 CONTINUE  

NUM=V(4200)  

IF(N.EQ.13)GOTO 6  

IF(.NOT.AUTO)GOTO 10  

IF(N.EQ.6)GOTO 10  

DO 7 I=1,NUM  

SAV=V(I+IVSTT)  

NED=V(I+IDSTT)

```



```

7 V(NED)=SAV
8 PRINT 8, SYSTEM PARAMETERS RESET ' / '
8 FCRMAT( /, SYSTEM PARAMETERS RESET ' / ')
8 IF( N.EQ.13) GOTO 5C
10 IF( I.FL.EQ.0) GOTO 60
10 IF( (CH1$W.EQ.1) GCTC 101
10 IF( (V(1).EQ.3.0.AND.N.NE.6) L=1
101 CONTINUE
101 DC 40 S(I)
101 NC=LIS(I)
101 ACCUM=NC
101 IF(V(1).EQ.29..AND.NG.GT.1) NCDUN=2
101 IF(V(1).NE.5..AND.CH1$W.EQ.1) PRINT 11, NODUN
101 IF(V(1).EQ.5..AND.CH1$W.EQ.1) PRINT 12, NO
101 IF( (CH1$W.EQ.3) PRINT 12
12 FCRMAT( / )
12 IF( (NC.LT.1.CR.NO.GT.NUM) GCTC 60
11 FCRMAT( //, PARAMETER :I3,I3)
12 FCRMAT( //, PARAMETER C:I3,I3)
12 NAB=V(NC+IDSTT)
12 GET EDIT INFO.
12 AREK=NC+NPCSED-1
12 IF( (CH1$W.NE.3) GOTO 14
12 NED=V(I.DST+1)
12 NED=V(I.DST+1)
12 NED.VEG.10.AND.NC.EG.2)NREK=NO+V(NED)+NPCSED-2
14 LIN=INREK
14 READ(REPCRT) F,RANGE
14 IF( .NOT.VERB) GOTO 18
14 PRINT F
14 PRINT 15, RANGE, NC, V(NAB)
14 PRINT 15, MIN=I,F9.2, MAX=I,F9.2, PRESENT VALUE(' ,12,
14 I,F9.3)=I,F9.3)
14 GCTC 20, NO, V(NAB)
18 FCRMAT( :, PRESENT VALUE(' ,12, :) ,FS.3)
18 IF( CHANGE REQUEST NEW VALUE
2C 2C IF( N.EQ.2) GOTO 40
2C PRINT( ,ENTER NEW VALUE)
2C READ( ,24) VAL
24 FCRMAT( F15.3)
24 IF( VERB) FERINT 26
24 IF( .NOT.VERB) PRINT 27, RANGE
26 FCRMAT( :, VALUE OUTSIDE RANGE. RETRY IS : ,F1C.2, TO ;F10.2)
27 FCRMAT( :, PERMITTED RANGE OF VALUE IS : ,F1C.2, TO ;F10.2)
27 NERR=NERR+1

```



```

3C V(NAB)=VAL
  IF(INX•NE•1)GOTO 40
  IF(INC•NE•1)GOTO 40
  NED=V(1DSIT+2)
  SAV=V(IVSIT+2)
  V(NE)=SAV
  PRINT 32
  FCRMAT(1, MAXIMUM RANGE RESET')
  CCNTINUE
3C RETURN
4C PRINT 61, NUM
5C FFORMAT(1, VALID ITEMS ARE 1 THRU *,I3/)
6C NERR=NERR+1
7C GCTC 50
END

SUBROUTINE SET(N,L,LIS)
  *****
  COMMON FEPCRT,NX,INX
  COMMON V(4500),VERB,AUTC,NPCSVR,NPCSFM,AINC
  1 INERR,IVARN,IPAR,AMIN,AMAX,AINC
  1 DIVERSE,LIS(50)
  IF(L•EQ•0)RETURN
  IF(L•GT•50)L=50
  CC=LIS(1)
  NC=INC•LT•1•CR•NO•GT•4500)GOTO 30
  PRINT 5,NO,V(NO)
  FFORMAT(1,ITEM(1,14,"")=*,F15.2)
  5 IF(IN•EQ•1)GOTO 30
  PRINT 6
  FFORMAT(1, NEW VALUE*)
  READ(5,7) VAL
  V(NO)=VAL
  7 FFORMAT(F12.3)
  CCNTINUE
  RETURN
END

```

C


```

SUBROUTINE CHA2(N,L,LIS)
C
*** REPCRT, NX, LIN
CCMNON V(4500), VERB,AUTC,NPCSFM,NPCSVR,NPCSED,REPSW,
CCHSW,CH2SW,NERR,IVARCN,IPAR,AMIN,AMAX,AINC
CINNSCN RANGE(2),F(10),FDLM(L),IDUM(L)
CINNSCN LIS(16)
CINNEASER RERB,AUTO
LOGICAL VERB,AUTO
DATA END/3HEND/
NUM=V(4220)
IVSTT=4320
I5C2 FORMAT(2F10.2) GCTC 5 MAY VARY THE FOLLOWING THREAT PARAMETERS
1 IF(CH2SW:EQ.3) GCTC 5
2 IF(CM(//:THE STUDENT 5 MAY VARY THE FOLLOWING THREAT PARAMETERS)
3 NUM=1
4 REAL RECORDS FOLLOWING THE $ FOR CONFIG-HANLED BY CHAI
5 NREK=NUM+NPOSED-1+10
LIN=NREK
READ(CREPCRT) F1 RANGE,IC
IF(IC.EQ.1)GOTC 3
V(NUM+IVSTT)=V(ID)
V(NUM+IDSTT)=ID
NUM=NUM+1
GCTC 2
NUM=NUM-1
234 FURMAT(F10.2)
V(4300)=NUM
IF(CH2SW.EQ.2)GOTO 5C
PRINT 1
N=6
L=NUM
DC 4 I=1,NUM
4 LIS(1)=1
5 V(3)=1.0
6 NUM=V(4300)
IF(N.EQ.1) GOTO 6
IF(.NOT.AUTC)GOTO 10
IF(N.EQ.6)NUM
IF(I=1)NUM
IF(I=7)V(I+IDSTT)
NEC=V(I+IDSTT)
7 V(NED)=SAV
C 7 V(NEC) RESET THREAT INDICATOR

```



```

V(3)=1.C
PRINT(*,THREAT PARAMETERS RESET*)
```

- 8 FORMAT(*,13)GOTO 50
- 9 IF(L.EQ.0)GOTO 60
- 10 DC=LIS(1)
- 11 IF((CH2\$W.EQ.3))GOTC 110
- 12 IF((V(1).EQ.4.C)PRINT 11,NO
- 13 IF((V(1).EQ.5.C)AND.NE.1)PRINT 13,NO
- 14 CNTINUE
- 15 IF(NC.LT.1.CR.NO.GT.16)GOTC 60
- 16 FORMAT(//,PARAMETER *13)
- 17 C*# CHECK CHANGES FOR CONSISTENCE WITH THREAT
- 18 IF((CH2\$H.EQ.1))GOTC 17
- 19 IF((NO.EQ.1.AND.V(1).EQ.5.0)GOTO 7C
- 20 C*# GET PRESENT THREAT INDICATOR
- 21 NTF=V(3)
- 22 GCTC((12*14*16),NTH
- 23 IF(TREAT IS NUM - CHANGE TC 2 CR 3 DEP. ON GROUP
- 24 12 IF(NO.GT.i.AND.NO.LT.12)V(3)=2.C
- 25 IF(NO.GT.ii)V(3)=3.0
- 26 GOTO 17
- 27 RESTRICT CHANGES TC 2 THRU 11
- 28 IF(NO.ONE.1.AND.NO.GT.11)GOTO 65
- 29 GCTC 17
- 30 RESTRICT CHANGES TC 12 THR 16
- 31 IF(NO.ONE.1.AND.NO.LT.12)GOTO 65
- 32 CNTINUE
- 33 IF((NO.EQ.1.AND.V(1).EQ.5.0)GOTO 4C
- 34 NAB=V(1)*ESTT)
- 35 GET EDIT INFO
- 36 NREK=NREK
- 37 READ(REPRT) F,RANGE
- 38 IF(.NOT.VERB)GOTO 18
- 39 PRINT 15,RANGE,NC,V(NAB)
- 40 PRINT 15,MIN=,F9;3,,MAX=*,F9.3,,PRESENT VALUE(*,12,
- 41 15 FFORMAT(,*=,F9.3);
- 42 GOTO 20
- 43 PRINT 219,NC,V(NAB)
- 44 FORMAT(*,PRESENT VALUE(*,12,*),F9.3)
- 45 C*# CHANGE REQUEST NEW VALUE
- 46 IF(NEQ.6)GOTO 40
- 47 PRINT 22


```

22 FORMAT('ENTER NEW VALUE')
23 FORMAT(F15.3)
24 IF(VAL.GE.RANGE(1).AND.VAL.LE.RANGE(2))GOTO 30
25 IF(VERB)PRINT 26
26 IF(.NOT.VERB)PRINT 27 RANGE
27 FCRMAT('PERMITTED RANGE OF VALUE IS ',F10.2,*,TO ,',F10.2)
      NERR=NERR+1
      GCTC=50
      V(NAB)=VAL
      24C CCAINUE
      25C CH2SW=3
      26C RETURN
      27C IF(V(1).EQ.5.0)PRINT 61,NUM
      61 FCRMAT('VALID ITEMS ARE 2 THRU ',I4/)
      62 FCRMAT('VALID ITEMS ARE 1 THRU ',I4/)
      63 FCRMAT('USER RESET ',I4)
      64 FCRMAT('CHANGES INCONSISTENT BETWEEN GROUPS: //')
      65 PRINT 66
      66 FCRMAT('CHANGE 2 THRU 11, CR 12 THRU 16
      1 NERR=NERR+1
      GCTC=50
      67C PRINT 71
      71 FCRMAT(' USE SYSTEM PARAMETERS TC CHANGE CONFIGURATION')
      72C END
      73C
      74C
      75C
      76C
      77C
      78C
      79C
      80C
      81C
      82C
      83C
      84C
      85C
      86C
      87C
      88C
      89C
      90C
      91C
      92C
      93C
      94C
      95C
      96C
      97C
      98C
      99C
      100C
      101C
      102C
      103C
      104C
      105C
      106C
      107C
      108C
      109C
      110C
      111C
      112C
      113C
      114C
      115C
      116C
      117C
      118C
      119C
      120C
      121C
      122C
      123C
      124C
      125C
      126C
      127C
      128C
      129C
      130C
      131C
      132C
      133C
      134C
      135C
      136C
      137C
      138C
      139C
      140C
      141C
      142C
      143C
      144C
      145C
      146C
      147C
      148C
      149C
      150C
      151C
      152C
      153C
      154C
      155C
      156C
      157C
      158C
      159C
      160C
      161C
      162C
      163C
      164C
      165C
      166C
      167C
      168C
      169C
      170C
      171C
      172C
      173C
      174C
      175C
      176C
      177C
      178C
      179C
      180C
      181C
      182C
      183C
      184C
      185C
      186C
      187C
      188C
      189C
      190C
      191C
      192C
      193C
      194C
      195C
      196C
      197C
      198C
      199C
      200C
      201C
      202C
      203C
      204C
      205C
      206C
      207C
      208C
      209C
      210C
      211C
      212C
      213C
      214C
      215C
      216C
      217C
      218C
      219C
      220C
      221C
      222C
      223C
      224C
      225C
      226C
      227C
      228C
      229C
      230C
      231C
      232C
      233C
      234C
      235C
      236C
      237C
      238C
      239C
      240C
      241C
      242C
      243C
      244C
      245C
      246C
      247C
      248C
      249C
      250C
      251C
      252C
      253C
      254C
      255C
      256C
      257C
      258C
      259C
      260C
      261C
      262C
      263C
      264C
      265C
      266C
      267C
      268C
      269C
      270C
      271C
      272C
      273C
      274C
      275C
      276C
      277C
      278C
      279C
      280C
      281C
      282C
      283C
      284C
      285C
      286C
      287C
      288C
      289C
      290C
      291C
      292C
      293C
      294C
      295C
      296C
      297C
      298C
      299C
      300C
      301C
      302C
      303C
      304C
      305C
      306C
      307C
      308C
      309C
      310C
      311C
      312C
      313C
      314C
      315C
      316C
      317C
      318C
      319C
      320C
      321C
      322C
      323C
      324C
      325C
      326C
      327C
      328C
      329C
      330C
      331C
      332C
      333C
      334C
      335C
      336C
      337C
      338C
      339C
      340C
      341C
      342C
      343C
      344C
      345C
      346C
      347C
      348C
      349C
      350C
      351C
      352C
      353C
      354C
      355C
      356C
      357C
      358C
      359C
      360C
      361C
      362C
      363C
      364C
      365C
      366C
      367C
      368C
      369C
      370C
      371C
      372C
      373C
      374C
      375C
      376C
      377C
      378C
      379C
      380C
      381C
      382C
      383C
      384C
      385C
      386C
      387C
      388C
      389C
      390C
      391C
      392C
      393C
      394C
      395C
      396C
      397C
      398C
      399C
      400C
      401C
      402C
      403C
      404C
      405C
      406C
      407C
      408C
      409C
      410C
      411C
      412C
      413C
      414C
      415C
      416C
      417C
      418C
      419C
      420C
      421C
      422C
      423C
      424C
      425C
      426C
      427C
      428C
      429C
      430C
      431C
      432C
      433C
      434C
      435C
      436C
      437C
      438C
      439C
      440C
      441C
      442C
      443C
      444C
      445C
      446C
      447C
      448C
      449C
      450C
      451C
      452C
      453C
      454C
      455C
      456C
      457C
      458C
      459C
      460C
      461C
      462C
      463C
      464C
      465C
      466C
      467C
      468C
      469C
      470C
      471C
      472C
      473C
      474C
      475C
      476C
      477C
      478C
      479C
      480C
      481C
      482C
      483C
      484C
      485C
      486C
      487C
      488C
      489C
      490C
      491C
      492C
      493C
      494C
      495C
      496C
      497C
      498C
      499C
      500C
      501C
      502C
      503C
      504C
      505C
      506C
      507C
      508C
      509C
      510C
      511C
      512C
      513C
      514C
      515C
      516C
      517C
      518C
      519C
      520C
      521C
      522C
      523C
      524C
      525C
      526C
      527C
      528C
      529C
      530C
      531C
      532C
      533C
      534C
      535C
      536C
      537C
      538C
      539C
      540C
      541C
      542C
      543C
      544C
      545C
      546C
      547C
      548C
      549C
      550C
      551C
      552C
      553C
      554C
      555C
      556C
      557C
      558C
      559C
      560C
      561C
      562C
      563C
      564C
      565C
      566C
      567C
      568C
      569C
      570C
      571C
      572C
      573C
      574C
      575C
      576C
      577C
      578C
      579C
      580C
      581C
      582C
      583C
      584C
      585C
      586C
      587C
      588C
      589C
      590C
      591C
      592C
      593C
      594C
      595C
      596C
      597C
      598C
      599C
      600C
      601C
      602C
      603C
      604C
      605C
      606C
      607C
      608C
      609C
      610C
      611C
      612C
      613C
      614C
      615C
      616C
      617C
      618C
      619C
      620C
      621C
      622C
      623C
      624C
      625C
      626C
      627C
      628C
      629C
      630C
      631C
      632C
      633C
      634C
      635C
      636C
      637C
      638C
      639C
      640C
      641C
      642C
      643C
      644C
      645C
      646C
      647C
      648C
      649C
      650C
      651C
      652C
      653C
      654C
      655C
      656C
      657C
      658C
      659C
      660C
      661C
      662C
      663C
      664C
      665C
      666C
      667C
      668C
      669C
      670C
      671C
      672C
      673C
      674C
      675C
      676C
      677C
      678C
      679C
      680C
      681C
      682C
      683C
      684C
      685C
      686C
      687C
      688C
      689C
      690C
      691C
      692C
      693C
      694C
      695C
      696C
      697C
      698C
      699C
      700C
      701C
      702C
      703C
      704C
      705C
      706C
      707C
      708C
      709C
      710C
      711C
      712C
      713C
      714C
      715C
      716C
      717C
      718C
      719C
      720C
      721C
      722C
      723C
      724C
      725C
      726C
      727C
      728C
      729C
      730C
      731C
      732C
      733C
      734C
      735C
      736C
      737C
      738C
      739C
      740C
      741C
      742C
      743C
      744C
      745C
      746C
      747C
      748C
      749C
      750C
      751C
      752C
      753C
      754C
      755C
      756C
      757C
      758C
      759C
      760C
      761C
      762C
      763C
      764C
      765C
      766C
      767C
      768C
      769C
      770C
      771C
      772C
      773C
      774C
      775C
      776C
      777C
      778C
      779C
      770C
      771C
      772C
      773C
      774C
      775C
      776C
      777C
      778C
      779C
      780C
      781C
      782C
      783C
      784C
      785C
      786C
      787C
      788C
      789C
      780C
      781C
      782C
      783C
      784C
      785C
      786C
      787C
      788C
      789C
      790C
      791C
      792C
      793C
      794C
      795C
      796C
      797C
      798C
      799C
      800C
      801C
      802C
      803C
      804C
      805C
      806C
      807C
      808C
      809C
      800C
      801C
      802C
      803C
      804C
      805C
      806C
      807C
      808C
      809C
      810C
      811C
      812C
      813C
      814C
      815C
      816C
      817C
      818C
      819C
      810C
      811C
      812C
      813C
      814C
      815C
      816C
      817C
      818C
      819C
      820C
      821C
      822C
      823C
      824C
      825C
      826C
      827C
      828C
      829C
      830C
      831C
      832C
      833C
      834C
      835C
      836C
      837C
      838C
      839C
      830C
      831C
      832C
      833C
      834C
      835C
      836C
      837C
      838C
      839C
      840C
      841C
      842C
      843C
      844C
      845C
      846C
      847C
      848C
      849C
      840C
      841C
      842C
      843C
      844C
      845C
      846C
      847C
      848C
      849C
      850C
      851C
      852C
      853C
      854C
      855C
      856C
      857C
      858C
      859C
      850C
      851C
      852C
      853C
      854C
      855C
      856C
      857C
      858C
      859C
      860C
      861C
      862C
      863C
      864C
      865C
      866C
      867C
      868C
      869C
      860C
      861C
      862C
      863C
      864C
      865C
      866C
      867C
      868C
      869C
      870C
      871C
      872C
      873C
      874C
      875C
      876C
      877C
      878C
      879C
      870C
      871C
      872C
      873C
      874C
      875C
      876C
      877C
      878C
      879C
      880C
      881C
      882C
      883C
      884C
      885C
      886C
      887C
      888C
      889C
      880C
      881C
      882C
      883C
      884C
      885C
      886C
      887C
      888C
      889C
      890C
      891C
      892C
      893C
      894C
      895C
      896C
      897C
      898C
      899C
      890C
      891C
      892C
      893C
      894C
      895C
      896C
      897C
      898C
      899C
      900C
      901C
      902C
      903C
      904C
      905C
      906C
      907C
      908C
      909C
      900C
      901C
      902C
      903C
      904C
      905C
      906C
      907C
      908C
      909C
      910C
      911C
      912C
      913C
      914C
      915C
      916C
      917C
      918C
      919C
      910C
      911C
      912C
      913C
      914C
      915C
      916C
      917C
      918C
      919C
      920C
      921C
      922C
      923C
      924C
      925C
      926C
      927C
      928C
      929C
      920C
      921C
      922C
      923C
      924C
      925C
      926C
      927C
      928C
      929C
      930C
      931C
      932C
      933C
      934C
      935C
      936C
      937C
      938C
      939C
      930C
      931C
      932C
      933C
      934C
      935C
      936C
      937C
      938C
      939C
      940C
      941C
      942C
      943C
      944C
      945C
      946C
      947C
      948C
      949C
      940C
      941C
      942C
      943C
      944C
      945C
      946C
      947C
      948C
      949C
      950C
      951C
      952C
      953C
      954C
      955C
      956C
      957C
      958C
      959C
      950C
      951C
      952C
      953C
      954C
      955C
      956C
      957C
      958C
      959C
      960C
      961C
      962C
      963C
      964C
      965C
      966C
      967C
      968C
      969C
      960C
      961C
      962C
      963C
      964C
      965C
      966C
      967C
      968C
      969C
      970C
      971C
      972C
      973C
      974C
      975C
      976C
      977C
      978C
      979C
      970C
      971C
      972C
      973C
      974C
      975C
      976C
      977C
      978C
      979C
      980C
      981C
      982C
      983C
      984C
      985C
      986C
      987C
      988C
      989C
      980C
      981C
      982C
      983C
      984C
      985C
      986C
      987C
      988C
      989C
      990C
      991C
      992C
      993C
      994C
      995C
      996C
      997C
      998C
      999C
      990C
      991C
      992C
      993C
      994C
      995C
      996C
      997C
      998C
      999C
      1000C
      1001C
      1002C
      1003C
      1004C
      1005C
      1006C
      1007C
      1008C
      1009C
      1000C
      1001C
      1002C
      1003C
      1004C
      1005C
      1006C
      1007C
      1008C
      1009C
      1010C
      1011C
      1012C
      1013C
      1014C
      1015C
      1016C
      1017C
      1018C
      1019C
      1010C
      1011C
      1012C
      1013C
      1014C
      1015C
      1016C
      1017C
      1018C
      1019C
      1020C
      1021C
      1022C
      1023C
      1024C
      1025C
      1026C
      1027C
      1028C
      1029C
      1020C
      1021C
      1022C
      1023C
      1024C
      1025C
      1026C
      1027C
      1028C
      1029C
      1030C
      1031C
      1032C
      1033C
      1034C
      1035C
      1036C
      1037C
      1038C
      1039C
      1030C
      1031C
      1032C
      1033C
      1034C
      1035C
      1036C
      1037C
      1038C
      1039C
      1040C
      1041C
      1042C
      1043C
      1044C
      1045C
      1046C
      1047C
      1048C
      1049C
      1040C
      1041C
      1042C
      1043C
      1044C
      1045C
      1046C
      1047C
      1048C
      1049C
      1050C
      1051C
      1052C
      1053C
      1054C
      1055C
      1056C
      1057C
      1058C
      1059C
      1050C
      1051C
      1052C
      1053C
      1054C
      1055C
      1056C
      1057C
      1058C
      1059C
      1060C
      1061C
      1062C
      1063C
      1064C
      1065C
      1066C
      1067C
      1068C
      1069C
      1060C
      1061C
      1062C
      1063C
      1064C
      1065C
      1066C
      1067C
      1068C
      1069C
      1070C
      1071C
      1072C
      1073C
      1074C
      1075C
      1076C
      1077C
      1078C
      1079C
      1070C
      1071C
      1072C
      1073C
      1074C
      1075C
      1076C
      1077C
      1078C
      1079C
      1080C
      1081C
      1082C
      1083C
      1084C
      1085C
      1086C
      1087C
      1088C
      1089C
      1080C
      1081C
      1082C
      1083C
      1084C
      1085C
      1086C
      1087C
      1088C
      1089C
      1090C
      1091C
      1092C
      1093C
      1094C
      1095C
      1096C
      1097C
      1098C
      1099C
      1090C
      1091C
      1092C
      1093C
      1094C
      1095C
      1096C
      1097C
      1098C
      1099C
      1100C
      1101C
      1102C
      1103C
      1104C
      1105C
      1106C
      1107C
      1108C
      1109C
      1100C
      1101C
      1102C
      1103C
      1104C
      1105C
      1106C
      1107C
      1108C
      1109C
      1110C
      1111C
      1112C
      1113C
      1114C
      1115C
      1116C
      1117C
      1118C
      1119C
      1110C
      1111C
      1112C
      1113C
      1114C
      1115C
      1116C
      1117C
      1118C
      1119C
      1120C
      1121C
      1122C
      1123C
      1124C
      1125C
      1126C
      1127C
      1128C
      1129C
      1120C
      1121C
      1122C
      1123C
      1124C
      1125C
      1126C
      1127C
      1128C
      1129C
      1130C
      1131C
      1132C
      1133C
      1134C
      1135C
      1136C
      1137C
      1138C
      1139C
      1130C
      1131C
      1132C
      1133C
      1134C
      1135C
      1136C
      1137C
      1138C
      1139C
      1140C
      1141C
      1142C
      1143C
      1144C
      1145C
      1146C
      1147C
      1148C
      1149C
      1140C
      1141C
      1142C
      1143C
      1144C
      1145C
      1146C
      1147C
      1148C
      1149C
      1150C
      1151C
      1152C
      1153C
      1154C
      1155C
      1156C
      1157C
      1158C
      1159C
      1150C
      1151C
      1152C
      1153C
      1154C
      1155C
      1156C
      1157C
      1158C
      1159C
      1160C
      1161C
      1162C
      1163C
      1164C
      1165C
      1166C
      1167C
      1168C
      1169C
      1160C
      1161C
      1162C
      1163C
      1164C
      1165C
      1166C
      1167C
      1168C
      1169C
      1170C
      1171C
      1172C
      1173C
      1174C
      1175C
      1176C
      1177C
      1178C
      1179C
      1170C
      1171C
      1172C
      1173C
      1174C
      1175C
      1176C
      1177C
      1178C
      1179C
      1180C
      1181C
      1182C
      1183C
      1184C
      1185C
      1186C
      1187C
      1188C
      1189C
      1180C
      1181C
      1182C
      1183C
      1184C
      1185C
      1186C
      1187C
      1188C
      1189C
      1190C
      1191C
      1192C
      1193C
      1194C
      1195C
      1196C
      1197C
      1198C
      1199C
      1190C
      1191C
      1192C
      1193C
      1194C
      1195C
      1196C
      1197C
      1198C
      1199C
      1200C
      1201C
      1202C
      1203C
      1204C
      1205C
      1206C
      1207C
      1208C
      1209C
      1200C
      1201C
      1202C
      1203C
      1204C
      1205C
      1206C
      1207C
      1208C
      1209C
      1210C
      1211C
      1212C
      1213C
      1214C
      1215C
      1216C
      1217C
      1218C
      1219C
      1210C
      1211C
      1212C
      1213C
      1214C
      1215C
      1216C
      1217C
      1218C
      1219C
      1220C
      1221C
      1222C
      1223C
      1224C
      1225C
      1226C
      1227C
      1228C
      1229C
      1220C
      1221C
      1222C
      1223C
      1224C
      1225C
      1226C
      1227C
      1228C
      1229C
      1230C
      1231C
      1232C
      1233C
      1234C
      1235C
      1236C
      1237C
      1238C
      1239C
      1230C
      1231C
      1232C
      1233C
      1234C
      1235C
      1236C
      1237C
      1238C
      1239C
      1240C
      1241C
      1242C
      1243C
      
```



```

12 FORMAT(//; ' EXERCISE ', F3.0)
13 FORMAT(//; ' SENSITIVITY ANALYSIS. ' /1X, 43'(1H-)/)
14 FORMAT(//; ' VARY CCST VS ')
15 FORMAT(//; ' COMMAND USED ONLY IN EXERCISE 3, /)

1CSST=4250
1IV=(V(1).EQ.3.)GOTC 70
PRINT 15
GC TO 1CCC
CONTINUE
7C ACPAR=V(IPAR+IDSTT) GC TC 200
IF (IVARCN*NE.0) GO TC 200
NUM =V(4200) GO TC 100
IF (.NOT.AUTO) GO TC 100
IF (.SO.I=1,NUM C8960
EC SAV =V(I+IDSTT)
NED=V(I+IDSTT)
SC V(NED)=SAV
PRINT 2
1CC CONTINUE
IF((IPAR.GE.1).AND.(IPAR.LE.NUM)) GO TO 110
PRINT 3
GC TO 1CCO
NAB=V(IPAR+IDSTT)
NREK=IPAR+NPCSD - 1
LIN=NREK
READ (REPORT) F, RANGE
PRINT F
PRINT 4, RANGE, IPAR, V(NAB)
PRINT 5,IPAR
READ(5,LINE,RANGE(1)).AND.(AMIN.LE.RANGE(2)))
IF ((AMIN.GE.RANGE(1)).AND.(AMAX.LE.RANGE(2))) GO TC 140
PRINT 6,RANGE
PRINT 7,IPAR
READ(5,1)AMAX
IF((AMIN.GE.RANGE(1)).AND.(AMAX.LE.RANGE(2)))
PRINT 8,AMAX
PRINT 9,LINE
PRINT 10,AMIN.LE.AMAX) GC TO 160
PRINT 11,AMIN.LE.AMAX) GC TO 160
PRINT 12,AMIN.LE.AMAX) GC TO 160
PRINT 13,V(1)AINC
PRINT 14,V(1)AINC
PRINT 15,V(1)AINC
PRINT 16,V(1)AINC
PRINT 17,V(1)AINC
PRINT 18,V(1)AINC
PRINT 19,V(1)AINC
PRINT 20,V(1)AINC
PRINT 21,V(1)AINC
PRINT 22,V(1)AINC
PRINT 23,V(1)AINC
PRINT 24,V(1)AINC
PRINT 25,V(1)AINC
PRINT 26,V(1)AINC
PRINT 27,V(1)AINC
PRINT 28,V(1)AINC
PRINT 29,V(1)AINC
PRINT 30,V(1)AINC

```



```

PRINT FC,IPAR
PRINT 1C,IPAR
GC TO 210
CC AT INUE
PRINT 1I,V(ADPAR),V(1534),V(1535)
210 CC AT INUE
IF (IVARCN.GT.10) GC TO 1000
21C AIN = AMIN + (IVARCN * AINC)
IVARCN = IVARCN + 1
IF (AM.GT.AMAX) GC TO 1000
V(ADPAR)=AV
22C GC TO 200
IVARCN=0
RETURN
END

```



```

TEMP = 95 - V(2513+I) TEMP = .35
IF(TEMP .GT. .15)
TEMP = TEMP - .15
TEMP = 1. + .2 * (TEMP / .20)
CC TO 55
TEMP = .95 - V(2513+I)
51 TEMP = TEMP / 15
V(1675+I) = V(1675+I) + V(1675+I) * TFA * TEMP
55 CC AT INUE
IF(V(2) .EQ. 2.) GO TC 60
IF(V(2125) .LE. .25.) GO TO 70
TEMP = V(2125) - .25.
IF(TEMP .GT. 20.)
TEMP = V(1680) + V(1680) * (TEMP / 15.)
V(1685) = 200.
CC TC 70
60 V(1685) = 200.
70 RETURN
END

```


APPENDIX D COMMAND AND CONTROL PROGRAM (INCENT)

```

C **** * **** * **** * **** * **** *
C ** INCENT PROGRAM **
C **** * **** * **** * **** * **** *
1 DIMENSION LIST1(66),LIST2(10),LINE(72)
1 CCNONERR,NX
1 CCNONVERB,AUTC,CHASW
1 CCNLYEAR(10)
1 CCNLYEAR/4H1976,4H1977,4H1978,4H1979,4H1980,
1 CCNONDAY/LIN
1 CCNONDA/LIN
1 VERB=.TRUE.
1 ALTC=.FALSE.
1 CHASW=.T.,4500
1 V(I)=I
1 V(I+40)=YEAR(I)
1 CALL MAKER
1 DATA(10)
1 LIN=1
1 READ(9,224)NPOSFM,NPOSSVR,NPOSED
1 FCRMAT(1615)
1 PRINT(998)
1 PRINT("EXERCISE NUMBER? (15. OR 17.)!")
1 READ(9,97,EXNO
1 FCRMAT(F10.0)
1 V(1)=EXNO
1 CALL START
1 CHASW=2
1 CCNTINUE
15 PRINT(14,"COMMAND ?")
15 READ(16,LINE)
16 FCRMAT(72A1)
16 CALL XTRAC(LINE,72,L1,LIST1,L2,LIST2,NFNC,NREP,15)
16 CIF(NFNC.EQ.0)GOTC17
16 CIF(NFNC.EQ.1)GOTC15
16 CIF(NREP.EQ.1)GOTC15
16 CIF(CHASW.EQ.1)GOTC23
16 CIF(V(1).EQ.17.)GOTC23
16 FORMAT(1,"EXERCISE ",F3.0)
16 FORMAT(1,"EXERCISE ",F3.0)

```



```

1   "STRUCTURING INCENTIVES"
1   IX,43{,_})
1   GCTC 24
22  PRINT 22; V(1)
22  FCRMAT{/; EXERCISE 'F3.0//'
22  INCENTIVE CONTRACT NEGOTIATION'
1   IX,52{,_})
24  CCATINUE
24  CALL REPORT(NREP)
24  CHASW=.FALSE.
24  GCTC 15
25  CALL CHANGE(INFNC,L1,LIST1,NREP)
25  CHASW=.TRUE.
25  GCTC 15
30  CALL ERASE('FILE      ', 'FT09FO01')
30  CALL EXIT
C ** GC VERBSE
35  PRINT 36
35  FCRMAT{. VERBOSE MODE')
36  FCRMAT 15
36  GCTC 15
36  GC BRIEF
36  4C VERB=.FALSE.
41  PRINT 41
41  FCRMAT{. BRIEF MODE')
45  GCTC 15
45  CALL CHANGE(INFNC,L1,LIST1,NREP)
50  CCATINUE
50  AUTO=.FALSE.
55  GCTC 15
55  ALTC=.TRUE.
55  SEE GR SET VALUES IN 'V'
6C  CALL SET(INFNC,L1,LIST1)
65  CHASW=.FALSE;
65  CALL RUN($15);
C ** RESET
C 70  CALL RESET
C 70  GCTC 15
END

```



```

V(JNUM+JSTRT)=ID
      GCTC2
      PRINT10//'* CONTRACT DATA*'/
      PRINT10//'* PERFORMANCE AND/OR FEE (P OR F)*'
      PRINT11//'* TOTAL DEVELOPMENT COST*'/
      FCRTM{(*1) RANGE ERROR/*/
              (*2) REFLECTION ERROR/*/
              (*3) AVAILABILITY/*/
              (*4) RELIABILITY/*/
              (*5) MISSING WEIGHT/*/
              (*6) MAXIMUM RANGE/*/
              (*7) SWIN SPEED/*/
              (*8) CRUISE SPEED/*/
              (*9) CRUISE RADUIS/*/
              (*10) SCHEDULE/*/
              (*11) CONTRACTOR DATA(C)/*6X!*( 1) CONTRACTOR STRATEGY(3,4,5)*/
              (*12) STRATEGY GIVEN/*/
              (*13) MINIMUM SYSTEM DEVELOPMENT COST*///)
      RETURN
END

SUBROUTINE REPT( N )
*****
CCMVN V(4500),VERE,AUTC,NPOSFM,NPCSVR,NPCSED,CH1SWICH2SW
1  DIMENSION IR(16),NVAR(16)
2  DIMENSION VERB,AUTC
3  CANNON/DAT/LIN
4  READ FIRST 20 RECORDS CONTAINING REPORT POSITIONS
      IREK=1
      LIN=IREK
      READ(9,24) IR(1),IV(1)
      FCRTM{(*1) RANGE ERROR/*/
              (*2) REFLECTION ERROR/*/
              (*3) AVAILABILITY/*/
              (*4) RELIABILITY/*/
              (*5) MISSING WEIGHT/*/
              (*6) MAXIMUM RANGE/*/
              (*7) SWIN SPEED/*/
              (*8) CRUISE SPEED/*/
              (*9) CRUISE RADUIS/*/
              (*10) SCHEDULE/*/
              (*11) CONTRACTOR DATA(C)/*6X!*( 1) CONTRACTOR STRATEGY(3,4,5)*/
              (*12) STRATEGY GIVEN/*/
              (*13) MINIMUM SYSTEM DEVELOPMENT COST*///)
      CCONTINUE
      IF(IR(N).LT.1)GOTO 60
      NF=IR(N)+NPOSFM-1
      *****
      CCONTINUE
      IF(IR(N).LT.1)GOTO 60
      INC1750
      INC1780
      INC1770
      INC1760
      INC1730
      INC1740
      INC1720
      INC1710
      INC1690
      INC1680
      INC1670
      INC1650
      INC1640
      INC1630
      INC1620
      INC1610
      INC1600
      INC1590
      INC1580
      INC1570
      INC1560
      INC1550
      INC1540
      INC1530
      INC1520
      INC1510
      INC1500
      INC1490
      INC1480
      INC1470
      INC1460
      INC1450
      INC1440
      INC1430
      INC1420
      INC1410
      INC1400
      INC1390
      INC1380
      INC1370
      INC1360
      INC1350
      INC1340

```



```

C *** INITIALIZE POINTER TO VARIABLES RECORD
C *** LV=IV(N)+NPOSVR-1
C *** READ FIRST VARIABLES RECORD
C *** READ(9,24)INVARS
C *** GET POSITION OF RECCRD IN REPORT FILE
C LINE=INVARS(1)+NPUSFM-1
C GOTO 7
C *** AF=NF+1
C READ(NF+1) FORMAT RECCRD
C 7 READ(9,11)FM
C 11 FCRMAT(1X,16A4)
C *** IS THIS END OF REPORT
C IF(FM(1)•EQ. END) GOTO 50
C *** NERR=NERR+1
C ARE THERE VARIABLES WITH THIS FORMAT
C IF(LINE•EQ.NF) GOTO 10
C PRINT FM
C GOTO 6
C NC=INVARS(2)+2
C PRINT FM,(V(IVARS(J)),J=3,NC)
C LV=LV+1
C READ NEXT VARIABLES RECORD
C LIAFLV
C READ(9,24)INVARS
C *** GET POSITION OF NEXT RECORD IN REPORT FILE
C LINE=INVARS(1)+NPOSFM-1
C IF(LINE•NE.NF) GOTO 6
C GOTO 10
C RETURN
C 5C ERROR
C 6C PRINT 61, REPORT UNKNOWN'//R
C 61 FCRMAT(1, FM)
C END

C *** SUBROUTINE CHANGE(N,L,LIS,NREP)
C *** ****
C COMMON V(4500), VERB,AUTO,NPCSFM,NPCSVR,NFCSED,CH1SW,CH2SW
C 1 DIMENSION NERR,NX
C 1 DIMENSION RANGE(2),F(10),LIS(66)
C DIMENSION VERB,AUTO
C REAL TP(6)/FEE/,F*,PER*,P/
C COMMON/DAT/LIN
C *** INITIALIZE

```



```

I$TRT=4200
J$TRT=4300
NUM=V(I$TRT)
NFER=13
NFEE=6
NCCN=3
NC1=0
NC2=0
1 IS LIST EMPTY GOTO 60
C *** REPEAT FOR EACH PAR
C *** 3
DC 40
NC=LIS(I)
IF(NC.LT.1.OR.NO.GT.12) GOTO 60
IF(NREP.EQ.NCCN)GCTC5
IF(NREP.EQ.NPER)GCTC5
IF(NREP.EQ.NFEE)GOTO 5
GCTC70
CONTINUE
IF(NREP.EQ.NFEE.AND.NO.GT.11)GOTC60
IF(NREP.EQ.NPER.AND.NO.GT.11)GOTC60
IF(NREP.EQ.NCCN.AND.NO.GT.3)GOTC60
GCTC10
PRINT(71,FEE(F),PERFORMANCE(P),CR CONTRACTCR(C))
5
FCRMA1,TYP
READ1,A4)
1 FCRMA1,TYP
NREP=0
IF(TYP.EQ.TP(1).OR.TYP.EQ.TP(2)) NREP=NFE
IF(TYP.EQ.TP(3).OR.TYP.EQ.TP(4)) NREP=NPER
IF(TYP.EQ.TP(5).OR.TYP.EQ.TP(6)) NREP=NCCN
IF(NREP.EQ.0)GOTO 50
GCTC10
NP=0
IF(NREP.EQ.NFEE) NP=33
IF(NREP.EQ.NCCN)NP=66
REPEAT FOR MIN,TGT,MAX
NZZ=11
IF(NREP.E6.NCON)NZZ=35
DC 30 NZ=133,NZZ
NREK=NPOSED+NO+NP+NZ-2
LINE=NREK
READ(9,62)F,RANGE
IF(EQ.0)PRINT(1X,10A4,2F10.2,15)
18 FCPRINT(F)
NPCS=JSIRT+NO+NP+NZ-1

```



```

NAB=V(NPOS)
IF(VERB)PRINT 20,RANGE,V(NAB)
IF((NOT V(VERB))PRINT 21,V(NAB))
20  FCRNAT(2,MIN VALUE=1,F8.2,MAX VALUE=.F8.2,PRESENT VALUE=. )
21  FCRNAT(2,PRESENT VALUE=1,F8.2)
IF(NEQ.6)GOTO 30
PRINT 26
FCRNAT(2,ENTER NEW VALUE)
26  READ 2,VAL
2  FCRNAT(2,VAE)
IF(VAL.LT.RANGE(1).CR.VAL.GT.RANGE(2))GOTC 85
IF(V(NAB)=VAE)
IF(NCON.EQ.NCON.AND.NO.EQ.1)AND VAL.GT.2.CINC1=VAL
IF(NREP.EQ.NCON.AND.NO.EQ.2)NC2=1
30  CCNTINUE
IF(NC1.EQ.0)GOTO 50
IF(NC(5)50,42,44,46),NC1
42  PRINT 43
43  FCRNAT(43,RESET STRATEGY GIVEN TC FEE VALUE '')
44  PRINT 45
45  FCRNAT(45,RESET STRATEGY GIVEN TC FEE VALUE '')
46  PRINT 47
47  FCRNAT(47,RESET STRATEGY GIVEN TC FEE VALUE '')
48  L=1
LIS(1)=2
LISTC 3
50  RETURN
51  PRINT 61 INVALID PARAMETER NUMBER ''
61  FCRNAT(61,VALUE IS OUTSIDE LIMITS,RETRY')
62  FCRNAT(50,COMMON V(4500),VERB,AUTC,NPOSFM,NPOSVR,NPCSED,CH1SW,CH2SW
63  FCRNAT(50,NERR,NC3100,NC3030,NC3040,NC3050,NC3060,NC3070,NC3080,NC3090,NC3110,NC3120,NC3130,NC3140,INC03150,INC03160,INC03170,INC03180,INC03190)
SUBROUTINE DATA(CFILE)
*** SUBROUTINE TO READ BASELINE DATA FROM CFILE
*** COMMON V(4500),VERB,AUTC,NPOSFM,NPOSVR,NPCSED,CH1SW,CH2SW

```



```

      INTEGER DFILE
      DATA NBLK /4H
      DATA NREAL /4HREAL/, NETYPE /4HETYP/, NALPHA /4HALPH/
      LAST=0
      NTYPE=1
      5   GCTC(10,14,18),NTYPE DFILE
      C ** READ A RECORD FROM DFILE
      1C  READ(DFILE,11,END=50) NAME,NSIZE,NPCS,VAL
      11  FCRMAT(1X,A4,2X,15,15,F15.3)
      14  GCTC(20,15,END=50) NAME,NSIZE,NPCS,VAL
      15  FCKNA(1X,A4,2X,15,15,E15.7)
      18  GCTC(20,19,END=50) NAME,NSIZE,NPCS,VAL
      19  FCRMAT(1X,A4,2X,15,15,F15.4)
      20  IF(NAME.NE.NBLK) GCTC(25,15,1X,A4)
      21  IF(NEW.ARRAY) GO TO 25
      22  SAVE VALUE IN V
      23  V(NPOS+N-1)=VAL
      24  GCTC(5,15,1X,A4)
      25  IF(LAST.NE.0) GOTO 30
      26  LAST=NSIZE
      27  GCTC(5,15,1X,A4)
      28  IF(NAME.NE.NREAL) GCTO 32
      29  GCTC(5,15,1X,A4)
      30  IF(NAME.NE.NETYPE) GCTO 34
      31  GCTC(5,15,1X,A4)
      32  IF(NAME.NE.NETYPE) GCTO 34
      33  GCTC(5,15,1X,A4)
      34  IF(NAME.NE.NALPHA) GCTO 40
      35  GCTC(5,15,1X,A4)
      36  GCTC(5,15,1X,A4)
      37  GCTC(5,15,1X,A4)
      38  GCTC(5,15,1X,A4)
      39  GCTC(5,15,1X,A4)
      40  GCTC(5,15,1X,A4)
      41  GCTC(5,15,1X,A4)
      42  GCTC(5,15,1X,A4)
      43  GCTC(5,15,1X,A4)
      44  GCTC(5,15,1X,A4)
      45  GCTC(5,15,1X,A4)
      46  GCTC(5,15,1X,A4)
      47  GCTC(5,15,1X,A4)
      48  GCTC(5,15,1X,A4)
      49  GCTC(5,15,1X,A4)
      50  END OF FILE ON DFILE
      51  ECATINUE MESSAGE
      52  PRINT 55
      53  FCRMAT(15, BASE DATA READ FROM FILE)
      54  RETURN
      55

```


۶۰


```

IF(•ALPHA) GOTO 200
IF(•NOT•FOUND) IF$T=I
FCUND=•TRUE
NVAL=NVAL*10+J-1
GOTO 200
25 CCAT INUE ALPHA
IF(FOUND) GOTO 35
ALPHA=•TRUE.
IF$T=I
GOTC 200
35 IF(•NOT•ALPHA) GOTC 151
GOTC 200
5C IF(•ALPHA) GOTC 100
IF(•NOT•YEAR) GOTO 80-
K=LIST(NL)+1
IF(NVAL•LT•K) GOTO 151
CC 60 J=K+NVAL
NL=NL+1
LIST(NL)=J
CCNTINUE.
GOTC 190
6C NL=NL+1
LIST(NL)=NVAL
GOTC 190
8C IF(•NOT•THR) GOTO 85
K=LVAR(LV)+1
IF(NVAL•LT•K) GOTC 151
CC 83 J=K+NVAL
IF(LV•EG•50) GOTO 300
LV=LV+1
LVAR(LV)=J
THR=•FALSE.
GOTC 190
85 LV=LV+1
LVAR(LV)=NVAL
GOTO 300
1CC GOTC 150 J=1 N
IF(IN(I$T)•NE•LETA(J)) GOTC 150
IF(LETB(J)•EQ•ISP•AND•I•EQ•IF$T+1) GOTC 150
IF(IN(IF$T+1)•NE•LETB(J)) GOTO 150
IF(IN(IF$T+2)•NE•LETC(J)) GOTO 150
55 CCNTINUE
I=J

```



```

IF(J.GT.5 AND J.LE.19) II=6
IF(J.GT.19) II=7
IF(J.LT.101,102,103,104,105,106,107),II
1C1 CCNTINUE
1C2 GCTC190
103 GCTC19C
1C4 YEAR=.TRUE..
1C5 FCNTR1105
PRINT1105 LINE ABORTED*
1C5 RETURN 1
106 GCTC190
1C7 IF(J.EQ.26)YEAR=.FALSE.
1C8 CCNTINUE
151 PRINT152,IN(IFST),IN(IFST+1),IN(IFST+2)
152 FCRMAT(,INVALID FIELD-,3AI)
NERR=NERR+1
153 RETURN 1
154 ALPHA=.FALSE.
FCUND=.FALSE.
155 VAL=0
200 CCNTINUE
300 END

```

```

SUBROUTINE SET(N,L,LIS)
*** **** *** **** *** ****
CCMNON V(4500),VERE,AUTC,NPCSFN,APCSVR,NPCSED,CH1SW,CH2SW
L DYNENR,NX(LIS(50))
IF(L.LT.1)GOTO 40
IF(L.LT.50)GOTO 3
PRINT 2, MAXIMUM NUMBER OF ITEMS IS 50"
2 L=50
3 CCNTINUE
DC20 I=1,L
NC=LIS(I)
PRINT 5,V(NC)

```

C


```

5 FORMAT( ' VALUE=' , F12.3 )
6 IF( N .EQ. 11 ) GOTO 30
7 PRINT 6
8 FCRNAT( ' NEW VALUE=' )
9 V( NO ) = VAL
10 FCRNAT( F12.3 )
11 CONTINUE
12 RETURN
13 END

```

SUBROUTINE RUN(*).
CALL ICN(1)
IF (N.EQ. 1) RETURN
END

```

SUBROUTINE RESET
*** CCMON V(4500), VERB, AUTO, NPOSFM,
1 ISTRT=4200
JNUM=V(ISTRT)
DC10,I=1,JNUM
NAB=V(I+J*ISTRT)
V(NAB)=V(I+ISTRT)
CCNTINUE
PRINT 15
RETURN
END

```

۸

APPENDIX E

COMMAND AND CONTROL PROGRAM (PROGPL)

```

C **** PROGRAM PLANNING MCDEL ****
C **** MCDEL FOR EXERCISES 21,22, AND 25 ****
C **** READS DATA BASE AND CALLS OTHER SUBROUTINES ****
C **** COMMON AX,V(6965),VERB,AUTO,NPOSFV,NPOSVR,NPOSED,REP$W,CH1SW
1    CH2SW,NERR,NEX(3)/21,22,25/,BAS(3)/21,22,25/,CFILE
    INTEGER VERB,AUTO
    LOGICAL VERO
    PRINT 4
    FORMAT('1 EXERCISE NUMBER ?')
4    READ(5,5) EXNO
5    FORMAT(F5.2)
    * ** INITIALIZE FIRST TIME THROUGH
    NERR=0
    VERB=.TRUE.
    CC3:I=0.C
    CC6:I=1,3
    IF(NX.EQ.NEX(I)) GOTO 8
    CCNTINUE
6    PRINT7!** INVALID EXERCISE NUMBER - 1,157)
7    GC TO 55
    READ DATA FILES
8    REAS=I+1
    CALL DATAY(NBAS)
    CH2SW=2
    SET NAME OF REPORT FILE
    REP=I-1
    CALL MAKER(NREP)
    IF(I.EQ.1) CALL COMM21
    IF(I.GT.1) CALL COMM22
    END

```



```

SUBROUTINE DATA(Y(IFL))
C
*** CCMNON NX,V(6965),VERB,AUTC,NPOSFM,NPOSVR,NPCSED,REPSW,CH1SW
1,REAL FMT(4)
      N=1
      LAST=0
      IF(IFL.EQ.1) GO TO 5
      2 READ(10,219,END=1)
      219 GC TO 2
      1 IENS=IENS+1
      5 IF(IENS*NE*IFL) GO TO 2
      5 READ(10,215,END=333) SKIP,IC,FMT
      215 FFORMAT(215,4A4)
      N=N+LAST
      LAST=SKIP
      1 IF(IC.EQ.0) GO TO 5
      READ(10,FMT)(NPOS,V(NPOS+N-1),II=1,IC)
      333 WRITE(6,55) IFL
      55 FFORMAT(7, BASE DATA READ FROM FILE FT10FCO,11/)

      END
C
SUBROUTINE MAKER(IUN)
C
*** DIMENSION FORM(16),IV(16),FMAT(10),FV(2)
*** CALL DEFINE(9,FILE CCMNON/DATA/LIN
      LIN=2
      IF(IUN.EQ.0) GO TO 10
      IEN=IUN#3
      1 DD=0
      5 READ(4,11,END=6)
      6 GCD=IDD+1
      6 IF(IDD*NE*IEN) GO TO 5
      10 NPCSFM=2
      8 READ(4,11,END=20) FCRM
      11 FFORMAT(9,11,6A4)
      8 GC TO 8
      26 NPCSVR=LIN
      26 READ(4,24,END=60) IV

```



```

24 FORMAT(16I5)
      WRITE(9,24) IV
      GC TO 26
      AFCSED=LIN
      READ(4,62,END=70) FMAT,FV, ID
      FMAT(1X,10A4,2F10.2;15)
      WRITE(9,21) FMAT,FV, ID
      GC TO 61
      LINE1=1
      WRITE(9,24) NPOSFW,NPCSVR,NPOSED
      WRITE(6,71)
      FORMAT(1,CREATED REPORT FILE FTC9F001*)
      RETURN
      END

```

```

SUBROUTINE SET(N,L,LIS)
*** **** *** **** *** ****
CCMN NMON NX,V(6965),VERB,AUTC,NPCSFN,NPCSVR,NPCSED,REP$W,CH1SW
1 C1C2SW? NERR LIS(250)
2 IF(LSEQ=0) RETURN
3 IF(LGT*50) L=50
4 NN=6965
5 IF(V(1):GT.21.) NN=45CO
6 NC=LIS(1)
7 IF((NO.LT.1.OK.NO.GT.NNN) GOTO 30
8 PRINT$'ITEM(,14,)=',F15.3)
9 IF(NEQ.11) GOTO 30
10 PRINT 6
11 FFORMAT('NEW VALUE')
12 READ 7,VAL
13 V(NC)=VAL
14 FFORMAT(F12.3)
15 CONTINUE
16 RETURN
17 END

SUBROUTINE DATE (MM, ID, IY)
*** **** *** ****
** SUBROUTINE FOR CONVERSION MM DD YY TO SERIAL, N OR BACK
** DIMENSION MAB(12)
** DIMENSION LEN(12)
PROC00990
PROC01000
PROC01020
PROC01030
PROC01040
PROC01050
PROC01060
PROC01070
PROC01080
PROC01090
PROC01100
PROC01110
PROC01120
PROC01130
PROC01140
PROC01150
PROC01160
PROC01170
PROC01180
PROC01190
PROC01200
PROC01210
PROC01220
PROC01230
PROC01240
PROC01250
PROC01260
PROC01270

```



```

18 IF( IN(1) .NE. 1 SL SH ) GOTO 20
2C NSP=0
DC 25 J=1,10
IF( IN(1) .NE. NDIG(J) ) GOTO 25
IF( ALPHA ) GOTO 200
IF( *NC1 .EQ. FOUND ) IFST=1
FCUND=TRUE*
NVAL=NVAL*10+J-1
GOTO 200
25 CALL INUE
MUST BE ALPHA GOTO 35
C IF( FCUND ) GOTO 35
ALPHA=TRUE*
IFST=100
GOT( *NOT*ALPHA ) GOTO 151
35 GOT( *200 )
GOT( *ALPHA ) GOTO 100
5C IF( *NOT*YEAR ) GOTO 80
IF( *NOT*THR ) GOTO 70
K=LIST(NL)+1
IF( K .EQ. 1 ) GOTO 151
IF( NVAL .LT. K ) GOTO 151
CC 60 J=K, NVAL
NL=NL+1
LIST(NL)=J
60 CALL INUE
7C AL=AL+1
GOTO 190
LIST(NL)=NVAL
8C IF( *NOT*THR ) GOTO 85
K=LVAR(LV)+1
IF( K .EQ. 1 ) GOTO 151
IF( NVAL .LT. K ) GOTO 151
CC 83 J=K, NVAL
IF( LV .EQ. 50 ) GOTO 300
83 LV=LV+1
THRE=FALSE*
GOTO 190
85 LV=LV+1
LVAR(LV)=NVAL GOTO 300
GOT( *EG .50 )

```



```

100 CC 150 J=1) NE•LETA(J) GOTO 150
    IF(LETB(J)•EQ•ISP•AND•I) GOTO 99
    IF(LIN(IFST+1)•NE•LETB(J)) GOTO 150
    IF(LIN(IFST+2)•NE•LETC(J)) GOTO 150
99  CCNTINUE
    IF(J•GT•5•AND•J•LE•19) II=6
    IF(J•GT•19) II=7
    GCTO(101,102,103,1C4,105,106,107),II
101  CCNTINUE
1C2  GCTO 19C
    CCNTINUE
1C3  GCTO 19C
    TFR=.TRUE.
104  CCNTINUE
    TFR=.FALSE.
    GCTO 19C
1C5  PRINT 1105 FFORMAT(1 LINE ABORTED)
11C5  RETURN 1
    NFAC=J-5
    GCTO 19C
107  NREP=J-19
    IF(J•EQ•26) YEAR=.FALSE.
    GCTO 19C
1C5C  PRINT 152 LIN(IFST) LIN(IFST+1), LIN(IFST+2)
1152  FFORMAT(1 INVALID FIELD--,3A1) NRERR+1
    RETURN 1
    ALPFA=.FALSE.
    FCFLAD=.FALSE.
    NVAL=0
200  CCNTINUE
3CC  RETURN
END

```

```

PROC02680
PROC02700
PROC02710
PROC02720
PROC02730
PROC02740
PROC02750
PROC02760
PROC02770
PROC02780
PROC02790
PROC02800
PROC02810
PROC02820
PROC02830
PROC02840
PROC02850
PROC02860
PROC02870
PROC02880
PROC02890
PROC028E0
PROC02910
PROC02920
PROC02930
PROC02940
PROC02950
PROC02960
PROC02970
PROC02980
PROC02990
PROC03010
PROC03020
PROC03030
PROC03040
PROC03050

```

```

SUBROUTINE COMM21
***** ****
COMMON NX,V(6965),VERB,AUTC,NPCSFN,NPCSVR,NFCSED,REPSW,CH1SW
1 C2SW,NERR
1 CCNMON/D LIN LIST1(250),LIST2(10),RUNSW
DIMENSION VERB,AUTO,RUNSW
LICGICAL

```



```

CALL PROCOS
RLNSW=.TRUE.
GCTC 15
SET OR SEE VALUES IN ARRAY V
SET (NFC,L1,LIST1)
CALL GCTC 15
CONTINUE
CALL GCTC 15
CALL NETWRK(NCON)
CALL GCTC 15
END

```


26

```
NCLE=0
FCRNAT(415)
CALL DATE(NMES,NDES,NYES)
CALL DATE(NMLS,NDLS,NYLE)
CALL DATE(NMEE,NDEE,NYEE)
CALL DATE(NMLE,NDLE,NYLE)
NCFLAG=NBLK
IF(CRITP(NAC).EQ.1.0)NCFLAG=NSTAR
NCFP=NBLK
IF(LE(NAC).LE.TODAY)NCOMP=NCE
PRINT 28,NAC,NCOMP,TIMEN(NAC),NYES,NDES,NYES,
      NMES,NDLS,NYLS,NMLE,NDLE,NYLE
      SLACK(NAC),NCFLAG
FORMAT(14,A1,F10.0,4(2X,12,2(0/1,12)),F7.0,C,A1)
1     28
      RETURN
30
      RETURN
4C
      *   PRINT 62, INVALID ACTIVITY NUMBER//)
      62
      RETURN
END
```

C

```
SUBROUTINE CHAI(N,L,LIS)
***** ****
      CCMNON NX,V(6965),VERB,AUTO,NPOSFM,NPOSVR,NPOSED,REP$W,CH1SW
1    CCMNSW,ERR,RANGE(2),F(10),FDUM(1),IDUM(1)
      CCMNSIGN LIS(250),VERB,AUTO
      LOCLICE(1)=0.0
      RANGE(2)=100.
      RICSTT=V(4)
      TCCDAY=V(2)
      TIF(L.LE.0)GOTO 60
      LCC401=1,L
      NC=LIS(1)
      TIF((NC.LT.1).OR.NO.GT.NUM)GOTO 60
      NAE=NC+IDSIT
18    IF(VERB)PRINT 19,NC,V(NAB)
      IF((NOT VERB)PRESENT VALUE(13,0),F9.3)
      15  FORMAT(1 PRESENT REQUEST NEW VALUE
      2C  IF(CHANGE 40
      IF(VC(NC+1)>0).LT.TCDAY)GOTO 35
```



```

1 IF(VERB)PRINT 22,NO
22 FCRNAT(1,13,0)=F5.0
23 READ 24,VAL
24 FCRNAT(F15.3)
25 IF(VAL.GE.RANGE(1).AND.VAL.LE.RANGE(2))GTC 30
26 PRINT 27,PERMITTED RANGE OF VALUE IS ',F5.0, TO ',F5.0)
27 FCRNAT(1,NERR+1
      NERR=NERR+1
      GTC 50
28 PRINT 36,NC
29 FCRNAT(1,ACTIVITY,14,' IS COMPLETED')
30 FCRNAT(1/
31 FCRNAT(1/
32 FCRNAT(1/
33 FCRNAT(1/
34 FCNTINUE
35 CFINAB)=VAL
36 RETURN
37 FCRNAT(1,NUM
38 FCRNAT(1,VALID ITEMS ARE 1 THRU *,13/)
39 FCRNAT(1,NERR+1
40 FCRNAT(1/
41 FCRNAT(1,NERR+1
42 FCRNAT(1/
43 FCRNAT(1/
44 FCRNAT(1/
45 FCRNAT(1/
46 FCRNAT(1/
47 FCRNAT(1/
48 FCRNAT(1/
49 FCRNAT(1/
50 FCRNAT(1/
END

```

```

SUBROUTINE COMM22
***** ****
C COMMON /DA/LIN
C DIMENSION LINLIST(250),LIST2(10),LINE(72),
C LOGICAL VERB,AUTO
C TEST FOR FIRST TIME THROUGH
C IF (CH2SK.EQ.3) GTC 15
C IF (CH2SK.EQ.3) GTC 15
C FIRST TIME THRU-INITIALIZE
C INITIALIZE VERB=TRUE,VERB=SWITCH
C INIT=ALTC=FALSE,SWITCH PER EXERCISE
10 PRINT 120,V(1)
LINE=1
READ(9,100)NPOSFM,NPCSVR,NPOSED
100 FCRNAT(1,15)
C **** PROCESSSES SECTS FILE WITH INITIAL CALL TO CHANGE SUBS
C **** ARGUMENTS ARE NOT USED IN FIRST CALL

```



```

41 FORMAT(' BRIEF MODE')
C      GOTO 15 DISPLAY OPTION (USES CHANGE SUBROUTINE)
C *** NFNC=6 GOTO 25
C      GCNT INUE
C *** NFNC=7 MANUAL OPTION
C      AUTC=.FALSE.
C      GOTO 15
EE=   GCNT INUE
AUTC=.TRUE.
C *** RUN OPTION NFNC=9
C      60 CALL CUSMCD
C *** SET OR SEE VALUES IN ARRAY V
C      70 CALL SET(NFNC,LI,LIST1)
    75 GCNT INUE
    80 GCNT 15
    85 GCNT 25
END

```

```

SUBROUTINE REPT(N)
C *** **** **** **** **** **** ****
COMMON NX,V(6965),VERB,AUTC,NPOSFM,NPOSVR,NFCSED,REPSW,CH1SW
1,C12SW,NERR
C      COMMON/DATLIN
DIMENTION FM(16),INVAR(16)
LOGICAL VERB,AUTC
DATA END/3HEND/
IFLAG=0
IFLAG=TEST REPORT NUMBER FOR VALIDITY
PRINT GT.O.AND.N.LT.21)GOTO 1
PRINT 61
RETURN
C *** GET POSITIONS OF FORMATS AND VARIABLES
1 IREK=NPCSVR+N-1
LIN=IREK
READ(9,103) IR,IV
103 FCNFORMAT(1615) INITIALIZE FCINTER TO FORMAT RECORD
C *** INITAILIZE FCINTER TO FORMAT RECORD
IIF(IR+NPUSFM-1)GOTO 60
NF=IR+NPUSFM-1
C *** INITIALIZE POINTER TO VARIABLES RECORD
LV=IV+NPOSVR-1
C *** READ FIRST VARIABLES RECORD

```



```

LINE=LV
READ(9,103) NVARS
GET POSITION OF RECORD IN REPORT FILE
LINE=NVARS(1)+NPOS$FM-1
GOTO 7

C *** READ NEXT FORMAT RECORD
C *** LIN=NF
LIN=NF
READ(9,104) FM
FORMAT THIS END OF REPORT 50
IF (FM(1) = EQ.) END GOT TO 50
IF (THERE ARE VARIABLES WITH THIS FORMAT
      SEE LINE.EQ.NF) GOTO 10
PRINT FM
GOTO 6

NC=NVARS(2)+2
IF (IFLAG.EQ.1) GOT C 2
IF (IFLAG=1)
PRINT FM, (V(NVARS(J)), J=3, NC)

C *** READ NEXT VARIABLES RECORD
LV=LV+1
READ(9,103) NVARS
GET POSITION OF NEXT RECORD IN REPORT
LINE=NVARS(1)+NPOS$FM-1
LINE=LINE.NF) GOTO 6
GOT C 10

C *** RETURN
RETURN 61, REPORT UNKNOWN //'
C *** EC
C *** ERRCR
FORMAT 50
GOTO 50
END

```

```

SUBROUTINE CHA2(N,L,LIS)
*** C N Y N X , V(6965) , VERB , AUTO , NPOSFR , NPOSSVR , INFOED , REPSW , CH1SW
1 CH2SW , NERR
1 CMMUN/CALIN
CIVENSIC/RANGE(2),F(10),FDUM(1),IDUM(1),LEUM(10)
DIMENSION NDATE(20),LDATE(250)
DIMENSION LIS(250)
LOGICAL VERB,AUTO
DATA END/3END/

```



```

IVSTT=5500
IF (CH1$W.EQ.3) GOTO 5
NUM=1 NREK=NUM+NPOSED-1
2 LINE=NREK
READ(9,101) F,RANGE,ID
FCRMA(1X,10A4,2F10.2)
101 IF(FEQ1) EQEND GOTO 3
V(1NUM+1)IVSTT)=V(ID)
V(1NUM+1)IVSTT)=ID
GOTO 2
NUM=NUM+1
3 V(1IVSTT)=NUM
4 GOTO 50
5 GCTC50
NUM=V(1IVSTT)
IF(N.EQ.13)GOTO 6
IF(.NOT.AUTO)GOTO 10
IF(N.EQ.6)GOTO 10
6 DC7 I=1,NUM
SAV=V(1+IVSTT)
NED=V(I+IDSTT)
7 V(NED)=SAV
PRINT 8
8 FCRMA(/,PARAMETERS RESET/)
9 IF(N.EQ.13) GOTO 5C
10 IF(L.EQ.0) GOTO 60
DC=LI$S(I),L
NC=LI$O(L,I)LOOR(ND.GT.NUM)GOTC 140
11 IF(140>I) L=I+1,L
12 FCRMA(/)
13 VAB=V(1NC+1)DC
GET EDIT INFO.
C **** NREK=ND+NPOSED-1
14 LINE=NREK
READ(9,102) F,RANGE
FCRMA(1X,10A4,2F10.2)
152 IF(N.OEQ.1)GOTO 34
IF(.NOT.VERBOSE)GOTO 18
PRINT F
PRINT 15,RANGE,NO,V(NAB)
MAX=1,F9.3,1
15 FCRMA(1,MIN=1,F9.3,1)=1,F9.3
PRESENT VALUE('' ,13,
16 GCTC20
17 GCTC20
18 CONTINUE

```


61 FORMAT('VALID ITEMS ARE 1 THRU 13, CR 1574 THRU 1987')
NERR=NERR+1
GCTC 50
END


```

IF( (NSP .GT. 5) ) GOTO 300
15 IF( (NQ .EQ. 1) .AND. (NQ .LT. 5) ) GOTO 200
      GOTO 50
      NSP=0
      DC 25 J=1 N0
      IF( IN(1) .NE. *NCIG(J) ) GOTO 25
      IF( ALPHA ) GOTO 200
      IF( *NCND ) IFST=1
      FCUND=.TRUE.
      AVAL=NVAL*10+J-1
      GOTO 200
      CCNTINUE
      NLST BE ALPHA
      IF( FCUND ) GOTO 35
      ALPFA=.TRUE.
      4 LPFA=.
      IFST=1
      GOTO 200
      25 IF( *NOT*ALPHA ) GOTO 151
      GOTO 200
      50 IF( ALPHA ) GOTO 100
      IF( *NOT*YEAR ) GOTO 80
      IF( *NOT*THR ) GOTO 70
      K=LIST(NL)+1
      IF( K .EQ. 1 ) GOTO 151
      IF( NVAL .LT. K ) GOTO 151
      DC 60 J=K, NVAL
      NL=NL+1
      LIST(NL)=J
      CCNTINUE
      IFK=.FALSE.
      60 LIST(NL)=NVAL
      GOTO 190
      70 NL=NL+1
      GOTO 190
      80 K=LVAR(LV)+1
      IF( K .EQ. 1 ) GOTO 151
      IF( NVAL .LT. K ) GOTO 151
      DC 63 J=K NVAL
      IF( LV .EQ. 50 ) GOTO 300
      LV=LV+1
      LVAR(LV)=J
      T+R=.FALSE.
      85 LV=LV+1
      GOTO 190

```


APPENDIX F. ANALYTICAL MODELS REQUIRED BY
COMMAND AND CONTROL PROGRAMS

<u>CONTROL PROGRAM</u>	<u>ANALYTICAL MODEL TITLE</u>	<u>SUBROUTINE NAME</u>
SYSTEM	Mission Simulation	MISSIM
	Force Structure Effectiveness	FORCE
	Life Cycle Cost	LIFE
	Logistics	LOG
	Availability	AVAIL
	Capability	CAPAB
	Reliability	RELIB
INCENT	Incentive Contract	ICM
PROGPL	Engineering Change Proposal	PROCOS
	Program Planning	COSMOD

APPENDIX G. TYPING CONVENTIONS AND SAMPLE EXERCISE.

Typing Conventions

The following typing conventions apply to the use of all computer-assisted exercises. Input is accepted from the user's terminal only at certain points of the computer exercise. Every user input line must be terminated by pressing the RETURN key. No data transmission of the line typed will take place until the RETURN signal has been received by the computer. If errors are noticed in the line being typed before the RETURN key is pressed, the errors can be corrected by the user. The @ character is interpreted to mean "delete the last character typed"; @@ will delete the last two characters, and so on. Spaces are counted as characters. The BACKSPACE key should not be used. The user may delete the entire current line being typed by typing the ¢ character and pressing the RETURN key. The new line may then be restarted.

If more than one data value is to be typed on a single line, the values must be separated by a comma or a blank character. Data items may not be separated by more than five blank characters. Numeric data may contain only the digits 0-9, an optional preceding plus or minus sign, and a decimal point. Commas may not be used to group thousands or millions. The comma is interpreted as a delimiter between two data values. All numeric input data to the program requires a decimal point. Alphanumeric data may contain all letters, numbers, and punctuation characters except a blank character, a comma, or the @ and ¢ characters.

Where percentages are requested from the user, they should be typed as whole numbers and not as their fractional equivalents, e. g. six and one-half percent would be entered as 6.5, not as 0.065. The percent sign should not be used.

Program commands

Use of the computer models is initiated by typing in the model name after the log-in procedure has been completed, e.g. SYSTEM, INCENT, or PROGPL. This command will cause the model routines required by the exercise to be loaded into working storage and will provide access to the exercise data files. Operation of the computer models during the exercise is controlled by the user's choice of a number of commands.

When the computer program types the message COMMAND ? on a line, it is at command level. At this point, the user may enter any of the command words allowed by the particular exercise, plus other information that may be required to execute the selected command. After the requested command, with the exception of the command STOP, has been completed, the program will return to the command level.

Examples of various program commands are as follows. It is only necessary to type the first three characters of each command. The remaining characters are optional. Commands may be typed in either upper or lower case letters. Responses will always be printed in upper case letters.

system (program name)

EXERCISE NUMBER ?

3. (exercise number desired)

BASE DATA READ FROM FILE FT03F001

BASE DATA READ FROM FILE FT03F002

DO YOU WANT TO SEE THE LIST OF VARIABLES (YES OR NO) ?

yes

CREATED REPORT FILE FT09F001

EXERCISE 3.

THE STUDENT MAY VARY THE FOLLOWING SYSTEM PARAMETERS

PARAMETER 1

SYSTEM X AVAILABILITY

MIN= 0.750 MAX= 0.990 PRESENT VALUE(1)= 0.800

PARAMETER 2

SWIM SPEED (KNOTS)

MIN= 1.000 MAX= 6.000 PRESENT VALUE(2)= 4.000

PARAMETER 3

LAND CRUISE SPEED (MPH)

MIN= 20.000 MAX= 70,000 PRESENT VALUE(3)= 50.000

PARAMETER 4

CRUISE RANGE (MILES)

MIN= 50.000 MAX= 300.000 PRESENT VALUE(4)= 200.000

PARAMETER 5

RATE OF FIRE

MIN= 0.200 MAX= 5.000 PRESENT VALUE(5)= 0.500

(the program response has been
edited for this example)

The command DISPLAY permits the user to obtain the current values of selected exercise input parameters. The command DISPLAY n will cause the magnitude of the n th parameter to be printed at the terminal.

Examples of variations of the command are shown below:

display 1

SYSTEM X AVAILABILITY

MIN= 0.750 MAX= 0.990 PRESENT VALUE(1)= 0.800

COMMAND ?

display 2 3

SWIM SPEED (KNOTS)

MIN= 1.000 MAX= 6.000 PRESENT VALUE(2)= 4.000

LAND CRUISE SPEED (MPH)

MIN= 20.000 MAX= 70.000 PRESENT VALUE(3)= 50.000

COMMAND ?

dis 4,5

CRUISE RANGE (MILES)

MIN= 50.000 MAX= 300.000 PRESENT VALUE(4)= 200.000

RATE OF FIRE

MIN= 0.200 MAX= 5.000 PRESENT VALUE(5)= 0.500

dis 6 thr 8

REACTION TIME (MINS)

MIN= 1.000 MAX= 30.000 PRESENT VALUE(6)= 10.000

RANGE ERROR

MIN= 5.000 MAX= 200.000 PRESENT VALUE(7)= 40.000

DEFLECTION ERROR

MIN= 5.000 MAX= 200.000 PRESENT VALUE(8)= 30.000

The command CHANGE n allows the user to revise the current stored value of input parameter n. The program will indicate the current value of the parameter and will request that the user enter the revised value of the parameter. The program also indicates the permitted maximum and minimum values for the particular parameter. A request to change a parameter value outside its stated limits will result in an error message.

Examples of variations of the command are shown below:

change 1

SYSTEM PARAMETERS RESET

SYSTEM X AVAILABILITY

MIN= 0.750 MAX= 0.990 PRESENT VALUE(1)= 0.800
ENTER NEW VALUE

.87

COMMAND ?

cha

SYSTEM PARAMETERS RESET

VALID ITEMS ARE 1 THRU 9

change 10

SYSTEM PARAMETERS RESET

VALID ITEMS ARE 1 THRU 9

COMMAND ?

change 1

SYSTEM PARAMETERS RESET

SYSTEM X AVAILABILITY

MIN= 0.750 MAX= 0.990 PRESENT VALUE(1)= 0.800
ENTER NEW VALUE

.50

VALUE OUTSIDE RANGE. RETRY.

The EXECUTE command is used to initiate the execution of the analytical models based on the current set of input values. When execution of the analytical models has been completed, the message COMMAND ? will be printed. No inputs may be entered on the terminal console while the analytical models are being executed. An example of the EXECUTE command is shown below:

COMMAND ?

execute

COMMAND ?

The BRIEF command sets a program switch that causes messages to be printed in an abbreviated format. The VERBOSE command sets the switch causing messages to be printed in a detailed format. The program is initially set to the verbose mode. After a command has been issued to set the program into the brief mode messages will continue to be printed in an abbreviated format until a VERBOSE command is issued.

Examples of the BRIEF and VERBOSE commands is shown below:

brief

BRIEF MODE

COMMAND ?

dis 1

PRESENT VALUE(1) 0.800

COMMAND ?

verbose

VERBOSE MODE

COMMAND ?

dis 1

SYSTEM X AVAILABILITY

MIN= 0.750 MAX= 0.990 PRESENT VALUE(1)= 0.800

The command VARY n allows the user in Exercise 3. to make the System X analytical models perform up to ten iterations of the model cycle, each with a different value for the specified parameter. The program will request an initial value for parameter n. This value is used for the first iteration. A maximum or final value is then requested. The program will then ask for the incremental value, which is the value to be added to the initial value at each iteration. A maximum of ten iterations will be performed, even if the final value is not reached. However, if the final value condition is reached in less than ten iterations, execution will stop. With each iteration a report line is printed showing

the parameter value, Life Cycle Cost, and Discounted Life Cycle Cost.

An example of the VARY command is shown below:

vary 4

SYSTEM PARAMETERS RESET

CRUISE RANGE (MILES)

MIN= 50.000 MAX= 300.000 PRESENT VALUE (4) = 200.000

ENTER INITIAL VALUE FOR PARAMETER 4

60.

ENTER FINAL VALUE FOR PARAMETER 4

180.

ENTER INCREMENT (MAX OF 10 ITERATIONS)

30.

COST VS
CRUISE RANGE (MILES)

PARAMETER 4 VALUE	LIFE CYCLE COST	DISCOUNTED LIFE CYCLE COST
80.000	1767084	791759.
90.000	1767084	791759.
120.000	1767084	791759.
150.000	1767084	791759.
180.000	1767084	791759.

The command REPORT a permits the user to print the standard report with the report identification code a. Varying reports are available depending upon the exercise number being executed. There is a maximum of eleven reports available identified by the letters A through K. A REPORT command, with an appropriate identifier must be typed in for each report selected. An example of the REPORT command is shown below:

report k

EXERCISE 3.

SENSITIVITY ANALYSIS.

VTM SUMMARY REPORT
(\$000)

DEPLOYMENT LEVEL (YEAR 10)	230.
TOTAL LIFE CYCLE COST	1767084.
DISCOUNTED LIFE CYCLE COST	791759.
AVERAGE VTM SINGLE-SHOT EFFECTIVENESS	0.419
LAUNCHER SURVIVABILITY (BASED ON 30 DAY WAR)	0.216

The STOP command should be entered when the user desires to terminate the current exercise. After giving the STOP command, a new exercise can be initiated by entering the program name. The STOP

command must be given before the user can logout from the terminal console. An example of the STOP command is shown below:

COMMAND ?

stop

LIST OF REFERENCES

1. Smith, J. R., "The Conqueror Missile System," Defense Management Journal, v. 8, no. 3, p. 80, October 1972.
2. IBM Corporation, Control Program-67/Cambridge Monitor System (CP-67/CMS) Version 3.1, User's Guide.
3. Defense System Management School, System X, Systems Programming Documentation, Command and Control Programs, Fort Belvoir, Virginia.
4. Defense Systems Management School, System X, Mission Simulation Model, Computer Model User's Guide, Fort Belvoir, Virginia.
5. Defense Systems Management School, System X, Mission Simulation Model, Computer Model Design and Programmer's Guide, Fort Belvoir, Virginia.
6. Defense Systems Management School, System X, Force Structure Effectiveness Model, Computer Model User's Guide, Fort Belvoir, Virginia.
7. Defense Systems Management School, System X, Force Structure Effectiveness Model, Computer Model Design and Programmer's Guide, Fort Belvoir, Virginia.
8. Defense Systems Management School, System X, Logistics Model, Computer Model User's Guide, Fort Belvoir, Virginia.
9. Defense Systems Management School, System X, Logistics Model, Computer Model Design and Programmer's Guide, Fort Belvoir, Virginia.
10. Defense Systems Management School, System X, Life Cycle Cost Model, Computer Model User's Guide, Fort Belvoir, Virginia.
11. Defense Systems Management School, System X, Life Cycle Cost Model, Computer Model Design and Programmer's Guide, Fort Belvoir, Virginia.
12. Defense Systems Management School, System X, Availability Model, Computer Model User's Guide, Fort Belvoir, Virginia.
13. Defense Systems Management School, System X, Availability Model, Computer Model Design and Programmer's Guide, Fort Belvoir, Virginia.

14. Defense Systems Management School, System X, Capability Model, Computer Model User's Guide, Fort Belvoir, Virginia.
15. Defense Systems Management School, System X, Capability Model, Computer Model Design and Programmer's Guide, Fort Belvoir, Virginia.
16. Defense Systems Management School, System X, Reliability Model, Computer Model User's Guide, Fort Belvoir, Virginia.
17. Defense Systems Management School, System X, Reliability Model, Computer Model Design and Programmer's Guide, Fort Belvoir, Virginia.
18. Defense Systems Management School, System X, Contractor Incentive Contract Model, Computer Model User's Guide, Fort Belvoir, Virginia.
19. Defense Systems Management School, System X, Contractor Incentive Contract Model, Computer Model Design and Programmer's Guide, Fort Belvoir, Virginia.
20. Defense Systems Management School, System X, Program Planning Model, Computer Model User's Guide, Fort Belvoir, Virginia.
21. Defense Systems Management School, System X, Program Planning Model, Computer Model Design and Programmer's Guide, Fort Belvoir, Virginia.
22. Defense Systems Management School, System X, Data Base Specifications and Definitions, Fort Belvoir, Virginia.
23. Defense Systems Management School, System X, Data Base Documentation, PMBAS1 Input Data, Fort Belvoir, Virginia.
24. Defense Systems Management School, System X, Data Base Documentation, PMBAS2 Input Data, Fort Belvoir, Virginia.
25. Defense Systems Management School, System X, Data Base Documentation, PMBAS3 Input Data, Fort Belvoir, Virginia.
26. Defense Systems Management School, System X, Data Base Input, BAS1517, Incentive Contract Model, Fort Belvoir, Virginia.
27. Defense Systems Management School, System X, Base Data Input, BAS2122, BAS21, BAS21A, BAS22, Program Planning Model, Fort Belvoir, Virginia.

28. Defense Systems Management School, System X, Data Base Definition, Program Planning Model, Fort Belvoir, Virginia.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2. Library, Code 0212 Naval Postgraduate School Monterey, California 93940	2
3. CDR R. M. Hanna, Code 53Hq Department of Mathematics Naval Postgraduate School Monterey, California 93940	1
4. CDR H. H. J. Nicholson Weapons Department USS America (CVA-66) FPO, New York, New York 09501	1
5. Professor M. B. Kline, Code 55Kx Department of Operations Research and Administrative Sciences Naval Postgraduate School Monterey, California 93940	1
6. Naval Postgraduate School, Code 55 Department of Operations Research and Administrative Sciences Monterey, California 93940	1
7. Sharon D. Raney W. R. Church Computer Center Naval Postgraduate School Monterey, California 93940	1

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)		2a. REPORT SECURITY CLASSIFICATION Unclassified	
Naval Postgraduate School Monterey, California 93940		2b. GROUP	
3. REPORT TITLE Adaptation of System X Computer-assisted Project Management Exercises For Use at the Naval Postgraduate School			
4. DESCRIPTIVE NOTES (Type of report and, inclusive dates) Master's Thesis; June 1973			
5. AUTHOR(S) (First name, middle initial, last name) Herbert Henry Joseph Nicholson			
6. REPORT DATE June 1973		7a. TOTAL NO. OF PAGES 114	7b. NO. OF REFS 28
8. CONTRACT OR GRANT NO.		9a. ORIGINATOR'S REPORT NUMBER(S)	
b. PROJECT NO.		9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
c.			
d.			
10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited			
11. SUPPLEMENTARY NOTES		12. SPONSORING MILITARY ACTIVITY Naval Postgraduate School Monterey, California 93940	
13. ABSTRACT System X is a series of project management oriented case studies supported by an interactive time-sharing computer program simulating the analysis and evaluation of a hypothetical surface-to-surface guided missile system acquisition program. The computer-assisted exercises operate from baseline data supplied by a data base, along with system parameters set by the user, in order to compute various deterministic statistics regarding system performance and system costs. The system parameter values may be readily changed and the computations repeated. A desired result may be obtained by repeated iterations of the process.			

~~UNCLASSIFIED~~

Security Classification

KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
NAGEMENT TRAINING						
OJECT MANAGEMENT						
STEM X						
TEMS ACQUISITION SIMULATION						

J 6 AUG 81

27201

Thesis

N49
c.1

Nicholson

145280

Adaptation of system
x computer-assisted pro-
ject management exercises
for use at the Naval
Postgraduate School.

J 6 AUG 81

27201

Thesis

N49
c.1

Nicholson

145280

Adaptation of system
x computer-assisted pro-
ject management exercises
for use at the Naval
Postgraduate School.

thesN49
Adaptation of system X computer-assisted

3 2768 001 94656 9
DUDLEY KNOX LIBRARY