Processing Google Takeout Fitbit Data

Genevieve Roberts

2025-08-25

Load Packages and Setup Functions and Constants

```
library(here)
library(tidyverse)

source(here::here("fitbit/takeout_fitbit_processing_functions.R"))
source(here::here("fitbit/fitbit_plotting_functions.R"))

#current path
data_path <- here::here("fitbit/sample_fitbit_takeout_data/9Aug25_groberts_fitbit_takeout/Fitbit")
print(data_path)</pre>
```

 $\verb| ## [1] "/Users/gen-omix/Documents/umass/VIGOR-surveys/fitbit/sample_fitbit_takeout_data/9Aug25_groberts_data/$

Explore some FitBit data

```
#define some constants for the nb
start_date="2025-07-07"
end_date="2025-08-09"

#add some dates of interest to highlight
dates_of_interest_start = "2025-07-29"
dates_of_interest_end = "2025-07-31"
```

Heart Rate Variablility

Table 1: Table continues below

timestamp_detail	rmssd_detail	coverage	low_frequency	high_frequency
2025-07-18 23:25:00	51.22	0.913	1476	704.5
2025-07-21 02:00:00	18.52	1	656.4	88.25
2025-08-07 06:35:00	28.13	0.971	970.2	164.4
2025-07-25 04:25:00	19.95	0.993	741.9	83.19
2025-08-03 06:00:00	38.12	1.003	773.9	432.1

file_date	$timestamp_summary$	$rmssd_summary$	nremhr	entropy
2025-07-18	2025-07-18	49.66	70.04	2.793
2025 - 07 - 21	2025-07-21	22.77	78.3	2.661
2025-08-07	NA	NA	NA	NA
2025 - 07 - 25	2025-07-25	42.24	70.28	2.695
2025-08-03	NA	NA	NA	NA

Here, I want to know if the rmssd_summary from the summary HRV files is simply the mean across all of the "detail" datapoints for that day. The plot below suggests they are not the same, but they are closely related.

```
check_if_mean_equals_summary <- hrv_data %>%
  group by(file date) %>%
  summarize(
   mean_rmssd_detail = mean(rmssd_detail, na.rm = TRUE),
   rmssd_summary = first(rmssd_summary) # summary has one value per date
 ungroup()
# Prepare data in long format for plotting
mean_detail_compare_plot_df <- check_if_mean_equals_summary %>%
  pivot_longer(cols = c(mean_rmssd_detail, rmssd_summary),
               names_to = "Type",
               values_to = "RMSSD")
ggplot(mean_detail_compare_plot_df, aes(x = file_date, y = RMSSD, color = Type)) +
  geom_line(size = 1) +
  geom_point(size = 2) +
  labs(
   title = "Comparison of RMSSD: Detail Mean vs. Summary",
   x = "Date",
   y = "RMSSD",
   color = "Measure"
  theme_bw()
```

Comparison of RMSSD: Detail Mean vs. Summary

The plot below shows how we can highlight a period of interest

```
# Example dates to highlight
highlight_start <- as.Date("2025-07-29")</pre>
highlight_end <- as.Date("2025-08-02")
#add the mean rmssd from the detailed HRV information
hrv_data <- hrv_data %>%
  group_by(file_date) %>%
 mutate(mean_rmssd_detail = mean(rmssd_detail)) %>%
  ungroup()
ggplot(hrv_data, aes(x = file_date, y = mean_rmssd_detail)) +
  geom_line(color = "blue", size = 1) +
  geom_point(color = "blue", size = 2) +
  # Highlight date range with a transparent rectangle
  annotate(
    "rect",
   xmin = highlight_start, xmax = highlight_end,
   ymin = -Inf, ymax = Inf,
   alpha = 0.2, fill = "orange"
  ) +
  labs(
   title = "HRV Over Time with Highlighted Date Range",
   x = "Date",
   y = "HRV (Mean RMSSD Detail)"
  ) +
 theme_bw()
```


Add Resting Heart Rate Data

Table 3: Table continues below

file_date	timestamp_detail	rmssd_detail	coverage	low_frequency
2025-08-01	2025-08-01 05:40:00	66.41	0.964	3073
2025-07-31	2025-07-31 08:20:00	25.63	1.003	694.9
2025-07-29	2025-07-29 02:00:00	31.3	1.003	2249
2025-07-25	2025-07-25 02:20:00	47.13	1.003	1198
2025-07-31	2025-07-31 06:05:00	43.1	0.891	3987

Table 4: Table continues below

high_frequency	$timestamp_summary$	$rmssd_summary$	nremhr	entropy
1189	NA	NA	NA	NA
130.1	2025-07-31	38.45	68.44	2.616
271.5	2025-07-29	45.26	64.95	2.941
697.8	2025-07-25	42.24	70.28	2.695
677.7	2025-07-31	38.45	68.44	2.616

mean_rmssd_detail	$resting_hr$
46.74	74.44
38.63	75.14
48.17	72.29
42.42	75.36
38.63	75.14

The plot below compares heart rate variability to resting heart rate. You can see there is a rough inverse correlation.

```
plot_dual_axis(
  data = combined,
  col1 = rmssd_detail,
  col2 = resting_hr,
  label1 = "HRV (RMSSD)",
  label2 = "Resting HR (bpm)",
  title = "Comparison of HRV and RHR",
  highlight_start = dates_of_interest_start,
  highlight_end = dates_of_interest_end
)
```

Comparison of HRV and RHR


```
### Daily Readiness Score
```

```
# Load the daily readiness score and combine it with the other data
daily_ready <- load_fitbit_daily_readiness(start_date = start_date,</pre>
                             end_date = end_date,
                             root_dir = data_path)
# Combine by day
combined <- combine_fitbit_data(combined, daily_ready)</pre>
plot_dual_axis(
  data = combined,
  col1 = daily_readiness_score,
  col2 = resting_hr,
  label1 = "Daily Readiness Score \n(Higher is Better)",
  label2 = "Resting HR \n(bpm)",
  title = "Comparison of Daily Readiness Score\nand Resting Heartrate",
  highlight_start = dates_of_interest_start,
  highlight_end = dates_of_interest_end
)
```

Comparison of Daily Readiness Score and Resting Heartrate

