PENGANTAR KOMPUTASI NUMERIK

By:

Bilqis Amaliah

Materi minggu ini

- 1. Pengertian Komputasi Numerik
- 2. Bilangan Berarti
- 3. Akurasi dan Presisi
- 4. Aturan Pembulatan
- 5. Pengertian Error

1. Pengertian Komputasi Numerik

Komputasi Numerik:

memformulasikan (persamaan matematika) masalah kemudian diselesaikan dengan cara matematika

Hubungan antara dunia nyata - model - solusi

Apa Itu Komputasi Numerik? (2)

Model untuk:

- Memudahkan dalam analisa masalah
- Menghemat waktu
- Mengurangi resiko
- Menirukan hal-hal yang ada di dunia nyata
- Dapat diulang kapanpun

Contoh:

- Simulasi pesawat
- Simulasi bom atom
- Perhitungan simulasi bisa menggunakan Komnum

Apa Itu Komputasi Numerik? (3)

- Menghitung sesuatu :
 - analisis : hasil sebenarnya
 - numerik : hasil mendekati sebenarnya
 - aproximasi
 - pendekatan
- Contoh:
 - V = km/jam sebenarnya kecepatan juga dipengaruhi oleh angin
 - menggunakan pendekatan karena adanya faktor luar

Apa Itu Komputasi Numerik?

<u>(4</u>)

Seorang penerjun yang memiliki bobot 68.100 gr meloncat dari sebuah pesawat terbang. Jika diketahui koefisien tahanan udara c adalah 12.500 gr/dt dan konstanta gravitasi sebesar 980 cm/dt². Hitung kecepatan penerjunan tepat sebelum penerjun membuka payungnya.

Permasalahan di atas adalah contoh sebuah persoalan yang dapat diselesaikan melalui 2 pendekatan :

- 1. Analitis
- 2. Numeris

Now let's see each approaches playing their roles!

Apa Itu Komputasi Numerik? (5)

Pendekatan Analitis

```
Jika F = m.a
Dan a = dv/dt
Maka F = m dv/dt
```

```
Jika F = F<sub>D</sub> + F<sub>U</sub>
Dan F<sub>D</sub> = m.g
Dan F<sub>U</sub> = -c.v
Maka m dv/dt = mg - cv
Atau dv/dt = g - (c/m).v
```


$$V(t) = gm/c \cdot [1 - e^{-(c/m)t}]$$

t, det	v, cm/det
0	0
2	1.640,5
4	2.776,9
6	3.564,2
8	4.109,5
10	4.487,3
12	4.749,0
∞	5.339,0

Apa Itu Komputasi Numerik? (6)

Pendekatan Numeris

Jika
$$dv/dt = [v(t_{i+1}) - v(t_i)] / (t_{i+1} - t_i)$$

Maka
$$[v(t_{i+1}) - v(t_i)] / (t_{i+1} - t_i) = g - (c/m).v(t_i)$$

atau
$$v(t_{i+1}) = V(t_i) + [g - (c/m).v(t_i)].(t_{i+1} - t_i)$$

2. Bilangan Berarti

Secara umum, sebuah bilangan dapat dibedakan menjadi 2:

- a. Bilangan Eksak $(\pi, \sqrt{2}, e, ...)$
- b. Bilangan Pendekatan (3,1416, 1,4142, 2.7183, ...)

Sementara, bilangan 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 0 masing-masing adalah bilangan BERARTI, kecuali:

- a. jika 0 hanya digunakan untuk menentukan titik desimal contoh: 0,0069 anya 6 dan 9 bilangan berarti-nya
- b. jika 0 digunakan untuk mengisi tempat dari digit yang dapat dibuang (dapat tidak ditulis).

3. Akurasi dan Presisi (2)

- Akurasi : mendekati akurat / kebenaran
- Presisi : konsisten / tetap => hasil berikutnya beda sedikit dari hasil saat ini

4. Aturan Pembulatan (1)

■Angka < 5, bulatkan ke bawah
 ■Angka >= 5, bulatkan ke atas

5. Pengertian Error

$$Et = \frac{sebenarnya - aproximasi}{sebenarnya} x100\%$$

$$Ea = \frac{aprox.sekarang - aprox.sebelumnya}{aprox.sekarang} x100\%$$

Et = Error true (sebenarnya)

Ea = Error aproximate (perkiraan)

Pengertian Error

contoh: Pengukuran panjang sebuah jembatan dan sebuah pensil memberikan hasil masing-masing 9.999 cm dan 9 cm.

Jika panjang eksak jembatan adalah 10.000 cm dan pensil 10 cm, hitunglah kesalahan true.

Kesalahan sebenarnya (true)

Jembatan: $E_{+} = (10.000 - 9.999)/10.000 \times 100\% = 0.01\%$

Pensil : $E_+ = (10-9)/10) \times 100\% = 10\%$

Dari penghitungan kesalahan sebenarnya dapat disimpulkan bahwa hasil pengukuran terhadap jembatan lebih memuaskan dibanding hasil pengukuran pada pensil.

Buku

- Chapra, S.C., Canale, R.P., "Numerical Methods for Engineers" 6th ed., McGraw-Hill, 2010;
- Munif, A., Prastyoko, A., "Penguasaan dan Penggunaan Metode Numerik", Guna Widya, 1995

No	Materi	Keterangan
	Satu titik + Newton Raphson + Secand	
	QUIZ 1	
	Jacobi dan Gauss Seidel	
	QUIZ 2	
	Newton Gregory + strilling + Bessel	
	Differensiasi	
	QUIZ 3	
	Integrasi trapesium + simpson	
	Reimann + gauss	
	Euler + Heun + Range Kutta	
	QUIZ 4	