Теорія чисел і криптографія: застосування конгруенцій; класична криптографія

Задачі

Блок 1. Застосування конгруенцій.

- **1.** Яку область пам'яті буде присвоєно геш-функцією $h(k) = k \mod 97$ для реєстрації страховою компанією клієнта з таким номером соцзабезпечення
 - a) 183211232
 - б) 220195744
 - в) 987255335
- **2.** Автомобільний паркінг має 31 місце, які занумеровано від 0 до 30. Користувачам призначається місце за допомогою геш-функції $h(k) = k \mod 31$, де k номерний знак. Які місця буде призначено відвідувачам з номерними знаками 317, 918, 007, 100, 111, 310? Що робити, коли призначене для парковки місце зайнято?
- **3.** Яку послідовність псевдовипадкових чисел генерує лінійний конгруентний генератор $x_{n+1} = (3x_n + 2) \text{ mod } 13$, якщо початкове значення $x_0 = 1$?
- **4.** Яку послідовність псевдовипадкових чисел генерує лінійний конгруентний генератор $x_{n+1} = (4x_n + 1)$ **mod** 7, якщо початкове значення $x_0 = 3$?
- **5.** Ствепеневий генератор це метод для генерування псевдовипадкових чисел. Для використання степеневого генератора вибирають параметри p і d, де p просте, d додатне ціле, таке, $p \nmid d$; також вибирають початкове значення x_0 . Псевдовипадкові числа x_1, x_2, x_3, \ldots генерують за рекурентною формулою $x_{n+1} = x_n^d \mod p$. Знайти послідовність псевдовипадкових чисел, генеровану степеневим генератором з p = 7, d = 3 і початковим значенням $x_0 = 2$.
- **6.** Знайти послідовність псевдовипадкових чисел, генеровану степеневим генератором з p = 11, d = 2 і початковим значенням $x_0 = 3$.
- **7.** Припустімо, що ми отримали з каналу зв'язку наведені нижче бітові рядки, де останній біт паритетний. У яких рядках *напевно* ϵ помилка?
 - a) 000001111111
 - б) 10101010101
 - в) 111111100000
 - г) 10111101111

- **8.** Перші дев'ять розрядів в коді ISBN-10 європейської версії п'ятого видання книги Kenneth H. Rosen *Discrete Mathematics and Its Applications* такі: 0-07-119881. Знайти перевірочний розряд цього коду.
- **9.** Код ISBN-10 шостого видання книги *Elementary Number Theory and Its Applications* такий 0-321-500Q1-8, де Q розряд. Знайти значення Q.
- **10.** Тринадцяти бітний код ISBN-13 сьомого видання книги Kenneth H. Rosen *Discrete Mathematics and Its Applications* має такі перші дванадцять розрядів: 978-0-07-338309. Знайти перевірочний розряд цього коду.
- **11.** Поштовий сервіс США (**United States Postal Service, USPS**) під час пересилання коштів для ідентифікації використовує 11-розрядний код $x_1x_2...x_{11}$. Перші 10 розрядів ідентифікують грошовий переказ; x_{11} перевірочний розряд, $x_{11} = x_1 + x_2 ... + x_{10}$ **mod** 9.

Знайти перевірочний розряд USPS грошового переказу, якщо перші десять розрядів такі:

- a) 7555618873
- б) 6966133421
- в) 8018927435
- г) 3289744134
- **12.** Одна з цифр у кожному з наступних ідентифікаційних номерів USPS затерта. Чи можна відновити затерту цифру, позначену Q, у кожному з наступних номерів?
 - a) 493212Q0688
 - б) 850Q9103858
 - в) 2Q941007734
 - г) 66687Q03201
- **13.** Одна з цифр у кожному з наступних ідентифікаційних номерів USPS затерта. Чи можна відновити затерту цифру, позначену Q, у кожному з наступних номерів?
 - a) Q1223139784
 - б) 6702120Q988
 - в) 27О41007734
 - г) 213279932Q1
- **14.** Визначити перевірочний розряд для коду UPC (Universal Product Code), якщо перші 11 розрядів такі:
 - a) 73232184434;
 - б) 63623991346;
 - в) 04587320720;
 - г) 93764323341.

- **15.** Перевірте, чи ϵ кожний із рядків 12 цифр коректним UPC кодом.
 - a) 036000291452;
 - б) 012345678903;
 - в) 782421843014;
 - г) 726412175425.
- **16.** Періодичні видання ідентифікують за допомогою **International Standard Serial Number (ISSN)**. Код ISSN містить два блоки по чотири цифри кожний. Остання цифра другого блоку перевірочна. Перевірочну цифру обчислюють за допомогою конгруенції

$$d_8 \equiv 3d_1 + 4d_2 + 5d_3 + 6d_4 + 7d_5 + 8d_6 + 9d_7 \pmod{11}$$
.

Коли $d_8 \equiv 10 \pmod{11}$, ми використовуємо букву X для репрезентації d_8 у коді.

Для кожних із наведених нижче початкових цифр коду ISSN визначити перевірочну цифру (яка може бути буквою X).

- a) 1570-868;
- б) 1553-734;
- в) 1089-708;
- г) 1383-811.
- **17.** Чи ϵ наведені нижче восьмицифрові коди коректними кодами ISSN?
 - a) 1059-1027;
 - б) 0002-9890;
 - в) 1530-8669;
 - г) 1007-120Х.

Блок 2. Класична криптографія.

Таблиця 1.

Латинська абетка

A	В	C	D	E	F	G	H	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	P	Q	R	S	Т	U	V	W	X	Y	Z
									22			

Таблиця 2.

Українська абетка

A	Б	В	Г	۲	Д	E	E	X	3	И
0	1	2	3	4	5	6	7	8	9	10
						H				
						17				
T	У	Φ	X	ц	Ч	Ш	Щ	Ь	Ю	Я
22	23	24	25	26	27	28	29	30	31	32

- **1.** Зашифрувати повідомлення DO NOT PASS GO за допомогою шифру зсуву чи афінного шифру:
 - a) f(p) = (p + 3)**mod**26 (шифр Цезаря);
 - 6) f(p) = (p + 13) mod 26;
 - B) f(p) = (3p + 7) mod 26.

2. Зашифрувати повідомлення WATCH YOUR STEP за допомогою шифру зсуву чи афінного шифру:

a)
$$f(p) = (p + 14) \text{ mod } 26;$$

6) $f(p) = (14p + 21) \text{ mod } 26;$
B) $f(p) = (-7p + 1) \text{ mod } 26.$

3. Зашифрувати повідомлення ЗУСТРІЧ ВІДМІНЕНО за допомогою шифру зсуву чи афінного шифру:

a)
$$f(p) = (p + 14) \text{ mod } 33;$$

6) $f(p) = (14p + 21) \text{ mod } 33;$
B) $f(p) = (-7p + 1) \text{ mod } 33.$

- **4.** Чому в задачах **1** і **2** використано операції за модулем 26, а в задачі **3** за модулем 33?
- 5. Розшифрувати повідомлення, зашифроване за допомогою шифру зсуву

$$f(p) = (p + 10) \text{ mod } 26$$
:

- a) CEBBOXNOB XYG;
- б) LO WI PBSOXN;
- B) DSWO PYB PEX.
- 6. Розшифрувати повідомлення, зашифроване за допомогою шифру зсуву

$$f(p) = (p + 12) \text{ mod } 33$$
:

- а) КЇРЦЇ СЇНЇЕЇ;
- б) ЩОАЮЬНУКЩЇ СВАБЯУЕ.

7*. Нехай рядок англомовного тексту зашифровано за допомогою шифру зсуву $f(p) = (p+k) \bmod 26$: DY CVOOZ ZOBMRKXMO DY NBOKW.

Дешифрувати це повідомлення.

- **8.** Зашифрувати повідомлення ORANGE з використанням шифру Віженера з ключем RED.
- **9.** Зашифрувати повідомлення SNOWFALL з використанням шифру Віженера з ключем BLUE.
- **10.** Криптотекст ОІКҮWVHBX отримано як результат шифрування певного повідомлення за допомогою шифру Віженера з ключем НОТ. Яке це повідомлення?
- **11.** Зашифрувати повідомлення СНІГОПАД з використанням шифру Віженера з ключем РІК.
- **12.** Криптотекст УМАИМДГЖШЇТЩ отримано як результат шифрування певного повідомлення за допомогою шифру Віженера з ключем СТУДЕНТ. Яке це повідомлення?