

Multivariate Regression

POLS 095 | Drake University

Multivariate regression: What is it?

- The properties of linear regression are complex. But we can simplify them.
- Linear regression is a tool for understanding a phenomenon of interest as a linear function of some combination of predictor variables.
- Similar to y = mx + b, but we prefer a more malleable form

The regression equation

- $Y = \alpha + \beta_1 * X_1 + \beta_2 * X_2 + * \beta_3 * X_3 + \varepsilon$
 - Y = Dependent Variable
 - X = Independent Variable(s)
 - And/or control variables
 - α = Intercept
 - β = Coefficient (Effect)
 - What to look for: Is it positive or negative?
 - ε = Error (sometimes called the "residual")

An Example

- $Y = \alpha + \beta_1 * X_1 + \beta_2 * X_2 + * \beta_3 * X_3 + \varepsilon$
- $fedspend_scale = \alpha + \beta_1 * ft_dem + \beta_2 * polknow_{combined} + * \beta_3 * gender + \varepsilon$
- fedspend_scale = numeric scale of how many programs a respondent wants to increase/decrease spending on
 - Ranges from zero to 16
- ft_dem = feeling thermometer towards Democrats
 - Ranges from o to 100
- polknow_combined = numeric scale of how many politicians a respondent could correctly identify
 - Ranges from zero to 8
- gender = Codes for sex (1 = female, zero = male)

The Data (the first 6 lines)

Respondent	fedspend_scale	ft_dem	polknow_combined	sex
1	9	30	5	Male (o)
2	12	95	3	Female (1)
3	5	60	4	Female (1)
4	6	35	6	Female (1)
5	11	70	NA	Male (o)
6	6	85	5	Male (o)

 $fedspend_scale = \alpha + \beta_1 * ft_dem + \epsilon$

```
> mod.a <- svyglm(fedspend_scale ~ ft_dem, design=nesD, na.action="na.omit")
> summary(mod.a)
call:
svyqlm(formula = ..1, design = ..2, na.action = "na.omit")
Survey design:
survey::svydesign(id = ~1, data = nes, weights = ~wt)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.609057 0.122382 54.00 <2e-16 ***
           0.063402 0.001944 32.61 <2e-16 ***
ft_dem
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for gaussian family taken to be 8.042623)
Number of Fisher Scoring iterations: 2
> fit.svyqlm(mod.a)
                            Adjusted R-Squared
             R-Squared
                 0.291
                                         0.291
```

- Dependent variable:
 - Spending Preferences (o to 16)
- Independent variable:
 - Feeling thermometer towards Democrats (o to 100)
- What is the intercept?
 - $\alpha = \alpha$
- What is the effect of feelings towards Democrats on spending preferences?
 - $\beta_1 =$
- How much of the variance in spending preferences does the feeling thermometer explain?

 $fedspend_scale = \alpha + \beta_1 * ft_dem + \varepsilon$

•
$$\beta_1 = 0.06$$
, $\alpha = 6.61$

$$\beta = effect$$
 $\alpha = intercept$

•
$$R1: 6.61 + 0.06 * 30 + \varepsilon = 8.41$$

•
$$R2: 6.61 + 0.06 * 95 + \varepsilon = 12.31$$

•
$$R3: 5 = \frac{6.61}{0.06} + \frac{0.06}{60} + \varepsilon = 10.21$$

•
$$R4: 6 = \frac{6.61}{0.06} + \frac{0.06}{35} + \varepsilon = 8.71$$

•
$$R5: 11 = \frac{6.61}{0.06} + \frac{0.06}{70} + \varepsilon = 10.81$$

•
$$R6: 6 = \frac{6.61}{0.06} + \frac{0.06}{85} + \varepsilon = 11.71$$

<u>DATA</u>				
Respondent	fedspend_scale	ft_dem		
1	9	<mark>30</mark>		
2	12	<mark>95</mark>		
3	5	<mark>60</mark>		
4	6	<mark>35</mark>		
5	11	<mark>70</mark>		
6	6	8 ₅		

 $fedspend_scale = \alpha + \beta_1 * ft_dem + \varepsilon$

•
$$\beta_1 = 0.06$$
, $\alpha = 6.61$

$$\beta = effect \quad \alpha = intercept$$

•
$$R1: \frac{6.61}{6.61} + \frac{0.06}{0.06} \times \frac{30}{30} + \varepsilon = 8.41 + \varepsilon = \frac{9}{9}$$

•
$$R2: \frac{6.61}{6.61} + \frac{0.06}{0.06} + \frac{95}{95} + \varepsilon = 12.31 + \varepsilon = \frac{12}{12}$$

•
$$R_3: 5 = \frac{6.61}{6.61} + \frac{0.06}{60} + \frac{60}{60} + \epsilon = 10.21 + \epsilon = \frac{5}{60}$$

•
$$R4: 6 = \frac{6.61}{6.61} + \frac{0.06}{0.06} * \frac{35}{35} + \varepsilon = 8.71 + \varepsilon = \frac{6}{6}$$

•
$$R5: 11 = \frac{6.61}{6.61} + \frac{0.06}{0.06} * \frac{70}{70} + \varepsilon = 10.81 + \varepsilon = \frac{11}{10.00}$$

•
$$R6: 6 = \frac{6.61}{6.61} + \frac{0.06}{0.06} * \frac{85}{65} + \varepsilon = 11.71 + \varepsilon = \frac{6}{6}$$

	<u>DATA</u>	
Respondent	fedspend_scale	ft_dem
1	9	<mark>30</mark>
2	<mark>12</mark>	<mark>95</mark>
3	<u>5</u>	<mark>60</mark>
4	<mark>6</mark>	<mark>35</mark>
5	<mark>11</mark>	<mark>70</mark>
6	<mark>6</mark>	<mark>85</mark>

 $fedspend_scale = \alpha + \beta_1 * ft_dem + \varepsilon$

•
$$\beta_1 = 0.06$$
, $\alpha = 6.61$

$$\beta = effect$$
 $\alpha = intercept$

•
$$R1: \frac{6.61}{6.61} + \frac{0.06}{0.06} \times \frac{30}{30} + \varepsilon = \frac{8.41}{9} + \varepsilon = \frac{9}{9}$$

•
$$R2: \frac{6.61}{6.61} + \frac{0.06}{0.06} + \frac{95}{95} + \varepsilon = \frac{12.31}{12.31} + \varepsilon = \frac{12}{12.31}$$

•
$$R_3: 5 = \frac{6.61}{6.61} + \frac{0.06}{0.06} * \frac{60}{60} + \varepsilon = \frac{10.21}{60} + \varepsilon = \frac{5}{60}$$

•
$$R4: 6 = \frac{6.61}{6.61} + \frac{0.06}{0.06} * \frac{35}{35} + \varepsilon = \frac{8.71}{5} + \varepsilon = \frac{6}{5}$$

•
$$R5: 11 = \frac{6.61}{6.61} + \frac{0.06}{0.06} * \frac{70}{70} + \varepsilon = \frac{10.81}{10.81} + \varepsilon = \frac{11}{10.81}$$

•
$$R6: 6 = \frac{6.61}{0.06} + \frac{0.06}{85} + \varepsilon = 11.71 + \varepsilon = \frac{6}{8}$$

<u>DATA</u>				
Respondent	Fedspend _scale	Effect Explained	Error	
1	9	8.41	0.59	
2	<mark>12</mark>	12.31	0.31	
3	5	10.21	5.21	
4	<mark>6</mark>	8.71	2.71	
5	<mark>11</mark>	10.81	0.19	
6	<mark>6</mark>	11.71	5.71	

Is that good?

- The Adj. R2 tells us we've explained 29% of the variance in federal spending preferences based on feelings towards the Democratic Party
- But we also want to control for other factors that might affect spending preferences
- And reduce our error

- Let's say there's reason to believe that knowledgeable people will have higher spending preferences because they're more aware of government problems
- So we should add a control for political knowledge:
 - polknow_combined
 - Ranges from zero to 8

Multivariate Relationship $fedspend_scale = \alpha + \beta_1 * ft_dem + \beta_2 * polknow_combined + \epsilon$

```
> mod.b <- svyglm(fedspend_scale ~ ft_dem + polknow_combined, design=nesD, na.action="na.omit")
> summary(mod.b)
call:
svyqlm(formula = ..1, design = ..2, na.action = "na.omit")
Survey design:
survey::svydesign(id = ~1, data = nes, weights = ~wt)
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
             7.325183 0.257525 28.445 < 2e-16 ***
              ft_dem
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for gaussian family taken to be 8.100271)
Number of Fisher Scoring iterations: 2
> fit.svyqlm(mod.b)
                        Adjusted R-Squared
           R-Squared
               0.308
                                   0.308
```

- What is the intercept?
 - $\alpha =$
- What is the effect of feelings towards Democrats on spending preferences?
 - $\beta_1 =$
- What is the effect of political knowledge on spending preferences?
 - $\beta_2 =$
- How much of the variance in spending preferences does the feeling thermometer explain?

Multivariate Relationship

 $fedspend_scale = \alpha + \beta_1 * ft_dem + \beta_2 * polknow_combined + \beta_3 * gender + \varepsilon$

```
> mod.c <- svyglm(fedspend_scale ~ ft_dem + polknow_combined + gender, design=nesD, na.action="na.omit")
> summary(mod.c)
call:
svyqlm(formula = ..1, design = ..2, na.action = "na.omit")
Survey design:
survey::svydesign(id = ~1, data = nes, weights = ~wt)
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               7.256750 0.270424 26.835 < 2e-16 ***
ft_dem
                0.061959 0.002371 26.136 < 2e-16
genderFemale
                0.102194 0.126426 0.808
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 8.097754)
Number of Fisher Scoring iterations: 2
> fit.svyglm(mod.c)
            R-Squared
                          Adjusted R-Squared
                0.309
                                      0.308
```

- What is the intercept?
 - α =
- What is the effect of feelings towards Democrats on spending preferences?
 - $\beta_1 =$
- What is the effect of political knowledge on spending preferences?
 - $\beta_2 =$
- What is the effect for females on spending preferences?
 - $\beta_3 =$
- How much of the variance in spending preferences does the feeling thermometer explain?

Multivariate Relationship $fedspend_scale = \alpha + \beta_1 * ft_dem + \beta_2 * polknow_combined + \beta_3 * gender + \beta_4 * pid_3 + \varepsilon$

```
> mod.d <- svyglm(fedspend_scale ~ ft_dem + polknow_combined + gender + as.numeric
(pid_3), design=nesD, na.action="na.omit")
> summary(mod.d)
call:
svyqlm(formula = ..1, design = ..2, na.action = "na.omit")
Survey design:
survey::svydesign(id = ~1, data = nes, weights = ~wt)
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.607208 0.420126 20.487 < 2e-16
               0.053465 0.003229 16.558 < 2e-16
ft_dem
polknow_combined -0.179636 0.040809 -4.402 1.10e-05 ***
genderFemale 0.095423 0.125862 0.758
                                             0.448
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 8.023211)
Number of Fisher Scoring iterations: 2
> fit.svyqlm(mod.d)
                         Adjusted R-Squared
            R-Squared
                                     0.315
                0.315
```

- What is the intercept?
 - α =
- What is the effect of feelings towards Democrats on spending preferences?
 - β₁ =
- What is the effect of political knowledge on spending preferences?
 - β, =
- What is the effect for females on spending preferences?
- What is the effect of partisanship on spending preferences?
- How much of the variance in spending preferences does the feeling thermometer explain?

A nicer R table

```
> mod.d <- svyglm(fedspend_scale ~ ft_dem + polknow_combined + gender + as.numeric
(pid_3), design=nesD, na.action="na.omit")
> summary(mod.d)
call:
svyqlm(formula = ..1, design = ..2, na.action = "na.omit")
Survey design:
survey::svydesign(id = ~1, data = nes, weights = ~wt)
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                             0.420126 20.487 < 2e-16
                   8.607208
                             0.003229 16.558 < 2e-16
ft dem
                  0.053465
polknow_combined -0.179636
                             0.040809 -4.402 1.10e-05 ***
                  0.095423
                             0.125862 0.758
genderFemale
                             0.104396 -4.466 8.21e-06 ***
as.numeric(pid_3) -0.466212
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for gaussian family taken to be 8.023211)
Number of Fisher Scoring iterations: 2
> fit.svyqlm(mod.d)
                            Adjusted R-Squared
              R-Squared
                  0.315
                                         0.315
```

```
> library(broom)
> tidy.mod.d <- tidy(mod.d)
> tidy.mod.d
# A tibble: 5 x 5
  term
                    estimate std.error statistic p.value
  <chr>
                        <db7>
                                  <db7>
                                             <db7>
                                                      \langle db 7 \rangle
                      8.61
1 (Intercept)
                                0.420
                                           20.5
                                                  1.65e-88
                                0.00323
2 ft_dem
                      0.0535
                                           16.6
                                                  1.72e-59
3 polknow_combined
                     -0.180
                                0.0408
                                           -4.40 1.10e- 5
4 genderFemale
                      0.0954
                                0.126
                                           0.758 4.48e- 1
5 as.numeric(pid_3)
                     -0.466
                                0.104
                                           -4.47 8.21e- 6
```

A nicer R table

```
> library(broom)
> tidy.mod.d <- tidy(mod.d)</pre>
> tidy.mod.d
# A tibble: 5 x 5
                     estimate std.error statistic p.value
  term
                        <db7>
                                   <db7>
                                             <db7>
                                                       <db1>
  <chr>
1 (Intercept)
                       8.61
                                0.420
                                            20.5
                                                   1.65e-88
                       0.053<u>5</u> 0.003<u>23</u>
                                                   1.72e-59
2 ft_dem
                                            16.6
3 polknow_combined
                                            -4.40 1.10e- 5
                      -0.180
                                0.0408
4 genderFemale
                      0.0954
                                0.126
                                            0.758 4.48e- 1
5 as.numeric(pid_3)
                      -0.466
                                0.104
                                            -4.47 8.21e- 6
```

Variable	Coef.	Std. Err.	p-value
Feeling Thermometer: Dems	0.05	(0.00)	0.00
Political Knowledge	-0.18	(0.04)	0.00
Gender	0.10	(0.13)	0.45
Party Identification	-0.47	(0.10)	0.00
Intercept	8.61	(0.42)	0.00
Adjusted R ²	0.32		