Better than the best? Blending models and approaches in density-based clustering

Working Group on Statistical Learning

Alessandro Casa Joint work with: Luca Scrucca & Giovanna Menardi

School of Mathematics and Statistics University College Dublin

alessandro.casa@ucd.ie

Mixture modelling and clustering

- Model-based clustering offers a statistically sound formalization of the clustering problem
- Data are assumed to come from a finite mixture of K components

$$f(\mathbf{x}|\Theta) = \sum_{k=1}^{K} \pi_k \varphi_k(\mathbf{x}|\theta_k)$$

- $\Theta=(\pi_1,\ldots,\pi_{\mathit{K}-1},\theta_1,\ldots,\theta_{\mathit{K}})$ with $\pi_{\mathit{k}}>0, \ \forall \mathit{k}=1,\ldots,\mathit{K}$ and $\sum_{\mathit{k}}\pi_{\mathit{k}}=1$
- Often $\varphi_k(\cdot) = \varphi_k(\cdot)$ than $\theta_k = \{\mu_k, \Sigma_k\}$ with parsimony induced by eigen-decomposition $\Sigma_k = \lambda_k A_k D_k A_k^T$

KEY IDEA

One-to-one correspondence between clusters and components of the mixture

Model Selection in MBC

- Model selection step is essential in order to choose a model giving a good density estimate and partition of the data.
 Possible choices required are:
 - Number of clusters K
 - Parametrizations of Σ_k
 - Specification for component densities
- Single-best model paradigm

Several models are fitted \rightarrow best one is chosen according to information criteria and used to obtain a partition

Is this the best thing we can do?

We are throwing away possibly useful models (i.e. info) and neglecting selection-related uncertainty

> A new and unexpected example

o As a motivation think about the Iris data

VEV2, BIC=-561.72

VEV3, BIC=-562.55

- Our aim: propose a model averaging approach in the model-based clustering framework
 - Improve stability and robustness
 - Account for the selection step
 - More informative partitions

Model averaging in MBC

- Averaging approaches have been scarcely pursued in an unsupervised framework with respect to supervised counterpart
- Main challenge: an invariant quantity, having the same meaning across models, to average on is needed
 - → not straightforward in model-based clustering
- Relevant works in parametric clustering based on BMA:
 - Wei & McNicholas (2015) average a posteriori probabilities after a merging step
 - Russell et al. (2015) average similarity matrices obtaining partitions via hierarchical clustering

Work proposal

- o Idea: recast the problem as a density estimation one
 → the density is chosen as the invariant quantity
- New density estimate is a convex linear combination of a subset of the fitted models

$$\tilde{f}(x;\alpha) = \sum_{m=1}^{M} \alpha_m f_m(x|\hat{\Theta})$$

where $f_m(\cdot)$ are the models to average, M is their number and α_m the corresponding weights

- o Criticalities:
 - How to estimate the weights
 - How to choose M
 - How to operationally obtain a partition

> Weights estimation

- o $\tilde{\it f}(\cdot)$ is a mixture itself so $\alpha_{\it m}, m=1,\ldots, {\it M}$ are estimated maximizing the log-likelihood via EM algorithm
- Overfitting issue: complex models with larger number of components will weight more in the combination
- o Proposed solution: obtain $\hat{\alpha} = \{\hat{\alpha}_1, \dots, \hat{\alpha}_M\}$ by maximizing a penalized log-likelihood defined as

$$\ell_p(\alpha|X) = \sum_{i=1}^n \log \sum_{m=1}^M \alpha_m f_m(x_i) - \lambda \sum_{m=1}^M \alpha_m \nu_m$$

with $X = \{x_i\}_{1 \le i \le n}$ the observed sample with $x_i \in \mathbb{R}^p$ and v_m the number of parameters for the mth model

How do we select λ ?

> Penalization strength

- The strength of the penalization plays a key role in choosing which model will have a role in the ensamble
- Different strategies have been explored CV-based:
 - \circ split iteratively the dataset ${\mathcal X}$ in test and training sets
 - for λ 's in a reasonable grid compute $\tilde{f}(x_{\text{test}}|x_{\text{train}})$
 - compute the test log-likelihood

$$\ell_{\mathsf{test}} = \sum_{\mathsf{x} \in \mathcal{X}_{\mathsf{test}}} \log \tilde{\mathit{f}}(\mathsf{x}|\mathsf{x}_{\mathsf{train}})$$

then selct $\lambda_{\mathsf{CV}} = \operatorname{\mathsf{arg}} \max \, \boldsymbol{\ell}_{\mathsf{test}}(\lambda)$

IC-based: BIC and AIC-type pe nalizations respectively lead to $\lambda_{\rm BIC} = \log n/2$ and $\lambda_{\rm AIC} = 1$

> Choosing ensamble size

- o A huge number of model could have been estimated
 - \rightarrow choosing the ones entering in the ensamble could have a strong impact
- o Possible strategies:
 - · Subjective selection based on some prior knowledge
 - Build an Occam's window based on some quantity evaluating the goodness of the fitted models, e.g. using differences in BIC values
 - Set a large M and let the penalization to do the job for us

> Small intermezzo - Density-based

- o Model-based approach is widely known but what about density based clustering?
 - → generally speaking provides partitions by linking the concept of cluster to features of the density underlying the data
- O Developed following two different (diverging?) roads:
 - Model-based approach (or parametric)
 - Modal approach (or nonparametric)

clusters correspond to the domains of attraction of the modes of the density.

- Operationally requires:
 - a density estimate
 - a method to locate the modal regions of the density

> Small intermezzo - Modal clustering

 Kernel density estimator (KDE) is usually considered to obtain a nonparametric density estimate

$$\hat{f}_{H}(x) = \frac{1}{nh_{1}\cdots h_{p}} \sum_{i=1}^{n} \left\{ \prod_{j=1}^{p} K\left(\frac{x_{j} - x_{ij}}{h_{j}}\right) \right\}$$

- $H = diag(h_1, ..., h_p)$ is the bandwidth matrix
- $K(\cdot)$ is the kernel function
- o How to obtain partitions?
 - · Mode-searching algorithm
 - · Level-set methods

Obtaining partitions

- o The obtained estimate $\tilde{f}(\cdot;\hat{\alpha})$ has a mixture structure but the correspondence clusters-components is lost
- o Idea: blend together the two formulations of density-based clustering by shifting the concept of cluster itself

 → partitions are obtained drawing the correspondence between groups and modal regions
- **o** Use of gradient ascent algorithm to explore modality of $\tilde{f}(\cdot;\hat{\alpha})$

Modal EM algorithm: EM-like algorithm, exploiting the mixture structure, searching for local maxima of the density

> Some results - Syntethic data

n=500

			,	3		
		MISE	ARI	MISE	ARI	
	SB	0.666 (0.714)	0.677 (0.125)	0.057 (0.035)	0.680 (0.067)	
	SB-NP	-	0.690 (0.119)	-	0.720 (0.012)	
	λ_{AIC}	0.809 (0.435)	0.687 (0.063)	0.072 (0.044)	0.719 (0.013)	
	λ_{BIC}	0.714 (0.522)	0.683 (0.129)	0.057 (0.035)	0.720 (0.012)	
	$\lambda_{ extit{CV}}$	0.687 (0.402)	0.688 (0.064)	0.058 (0.036)	0.720 (0.012)	

Skewed unimodal

n=5000	
--------	--

n=5000

		MISE	ARI	MISE	ARI
Ī	SB	0.626 (0.235)	0.000 (0.000)	0.087 (0.032)	0.000 (0.000)
	SB-NP	-	0.520 (0.501)	-	0.725 (0.448)
	λ_{AIC}	0.441 (0.181)	0.440 (0.498)	0.059 (0.024)	0.915 (0.280)
	$\lambda_{ extit{BIC}}$	0.438 (0.167)	0.705 (0.457)	0.074 (0.030)	0.965 (0.184)
	$\lambda_{\scriptscriptstyle CV}$	0.436 (0.172)	0.440 (0.498)	0.059 (0.026)	0.850 (0.358)

> Some results - Real data

	SB	SB-NP	λ_{AIC}	$\lambda_{ extit{BIC}}$	$\lambda_{\scriptscriptstyle CV}$
ARI	0.401	0.867	0.909	0.910	0.912
Ŕ	7	4	4	4	4

DLBCL data

- o d = 8 chemical variables n = 572 olive oils
- o $\hat{K}_{true} = 9$ regions of Italy
- Hierarchical structure in the data

	SB	SB-NP	λ_{AIC}	λ_{BIC}	λ_{CV}
ARI	0.782	0.792	0.902	0.892	0.902
Ê	6	6	8	8	8

Olive Oil data

> Remarks, directions and open questions

- Post-selection inference usually ignored in clustering
 → this approach may be inferentially more appropriate
- Proposed as a solution to single-best model
 → what about bootstrap replications or **initialization** issues?
- o Bayesian approaches with **shrinkage priors** on the ensamble weights may be useful to select ensemble size
- o **Penalization** scheme is still density estimation oriented \rightarrow choosing λ in a clustering-oriented fashion
- Some strong contact points with merging approaches and with deep Gaussian mixture models

> Remarks, directions and open questions

Modal and model-based clustering are two sides of the density-based coin

- Two perspectives:
 - Solution to the single-best model paradigm in the parametric framework
 - Solution to the density estimation issues in the nonparametric framework
- Density estimator lies in the semi-parametric realm
- Blending them together we reduce their weaknesses while mixing their strengths

Some references

Check the paper out on arXiv

https://arxiv.org/pdf/1911.06726.pdf

Other references

- O CHACÒN, J.E. (2019) Mixture model modal clustering, Advances in Data Analysis and Classification, 13(2), 379–404.
- O RUSSELL, N., MURPHY, T.B. & RAFTERY, A.E. (2015) Bayesian model averaging in model-based clustering and density estimation. arXiv preprint arXiv:1506:09035.
- SCRUCCA, L. (2016) Identifying connected components in Gaussian finite mixture models for clustering. Computational Statistics and Data Analysis, 93, 5–17.
- O SMYTH, P. & WOLPERT, D. (1999) Linearly combining density estimators via stacking. Machine Learning, 36, 59–83
- O WEI, Y. & MCNICHOLAS, P.D. (2015) Mixture model averaging for clustering. Advances in Data Analysis and Classification, 9(2), 197–217.