Machine Learning CS 165B

Prof. Matthew Turk

Monday, May 23, 2016

- Model ensembles (Ch. 11)
 - Bagging and boosting
 - Machine learning experiments (Ch. 12)

Notes

Remaining schedule

- Main topics:
 - Model ensembles
 - Machine learning experiments
 - Neural networks
 - What's hot in machine learning
- For grades:
 - Homework assignment #5
 - Due Friday, June 3
 - Final exam
 - Wednesday, June 8 (8-11am!)

- Next week
 - No class next Monday(Memorial Day holiday)
 - Final exam review... when?
 - More info soon

Model ensembles

Chapter 11 in the textbook

Model ensembles

- We've seen how combining features can be beneficial
- We can also combine models to increase performance
 - Combinations of models are known as <u>model ensembles</u>
 - Potential for better performance at the cost of increased complexity
- General approach to model ensembles:
 - Construct multiple different models from adapted versions of the training data (e.g., reweighted or resampled)
 - Combine the predictions of these models in some way (averaging, voting, weighted voting, etc.)
- Two of the best-known ensemble methods are bagging and boosting
- These are "meta" methods i.e., they are independent of the particular learning method (linear classifier, SVM, etc.)

Bagging

- Bagging = "bootstrap aggregation"
 - Create T models on different random samples of the training data set
 - Each sample is a set of training data called a bootstrap sample
 - Could be any size often |D| is used, the size of the training set
- Bootstrap samples: Sample the data set with replacement (i.e., a sample can be chosen more than once in a bootstrap sample)
 - For j = 1 to $|\mathbf{D}|$, choose with uniform probability from training data points $\mathbf{D} = \{ d_1, d_2, ..., d_{|\mathbf{D}|} \}$
 - Gather these into the bootstrap sample D_i
- Use { D_1 , D_2 , ..., D_T } to train models { M_1 , M_2 , ..., M_T }, then combine the predictions of the T models
- Differences between the *T* bootstrap samples create diversity among the models in the ensemble

Bagging

```
Algorithm \operatorname{Bagging}(D,T,\mathscr{A}) – train an ensemble of models from bootstrap samples.

Input : data set D; ensemble size T; learning algorithm \mathscr{A}.

Output : ensemble of models whose predictions are to be combined by voting or averaging.

for t=1 to T do

| build a bootstrap sample D_t from D by sampling |D| data points with replacement; run \mathscr{A} on D_t to produce a model M_t;

end

return \{M_t|1\leq t\leq T\}
```

- Train 5 binary linear classifiers by bagging
- Use majority vote (for example) to determine classification output for a new *x*
- The decision boundary is piecewise linear

Bagging with tree models

- Bagging is particularly useful for tree models (e.g., decision trees), which can be very sensitive to variations in the training data
 - E.g., build *T* decision trees, produce *T* output labels for an input, then
 vote to determine the classifier output

Also:

• Subspace sampling: Build each decision tree from a different random subset of the **features**

A bunch of trees

Bagging + subspace sampling = random[forests] method

Bagging with tree models

Algorithm RandomForest(D, T, d) – train an ensemble of tree models from bootstrap samples and random subspaces.

Input : data set D; ensemble size T; subspace dimension d.

Output: ensemble of tree models whose predictions are to be combined by

voting or averaging.

for t = 1 to T do

build a bootstrap sample D_t from D by sampling |D| data points with replacement;

select \underline{d} features at random and reduce dimensionality of D_t accordingly; train a tree model M_t on D_t without pruning;

end

return $\{M_t | 1 \le t \le T\}$

Boosting

- Boosting is similar to bagging, but it uses a more sophisticated technique to create diverse training sets
- The focus is on adding classifiers that do better on the misclassifications from earlier (Boolean) classifiers
 - By giving them a higher weight
- As with bagging, boosting attempts to create a *strong classifier* (*learner*) from a set of *weak classifiers* (*learners*)
 - The resulting ensemble model is less susceptible to overfitting
- Adaboost ("adaptive boosting")
 - As long as the performance of each classifier is better than chance $(\epsilon < 0.5)$, it is guaranteed to converge to a **better** classifier
- Can be extended to multi-class classification

Boosting intuition

Training:

To increase the influence of the misclassified points, duplicate them (i.e., increase their relative weights by 100%)

Or we could increase their weights by some other amount.

Assumption: we have a classifier model that takes into account the **weights** of data points

Final classifier is a weighted combination of weak classifiers

Majority vote of classifiers shown; however, weighted average is typically used

Boosting

Procedure:

- Train a classifier; assign it a confidence factor α_i based on the error rate ϵ_i

$$\alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}$$

- Give misclassified instances a higher weight
 - Assign half of the total weight to the misclassified examples
- Repeat for *T* classifiers
- The ensemble predictor is a weighted average of the models (rather than majority vote)

$$M(x) = \sum_{t=1}^{T} \alpha_t M_t(x)$$

Threshold for binary output

$$w' = \frac{w}{2\epsilon_i}$$

$$w' = \frac{w}{2\epsilon_i} \qquad w' = \frac{w}{2(1 - \epsilon_i)}$$

Weights will sum to 0.5+0.5=1

Boosting example

Round 1:

$$2 + 4 = 6$$
 errors

$$\epsilon_1 = \frac{6}{29} = 0.21$$

$$\alpha_1 = \frac{1}{2} \ln \frac{1 - \epsilon_1}{\epsilon_1} = 0.67$$

$$w' = \{ 2.42w, 0.63w \}$$

Round 2:

$$2 + 5 = 7$$
 errors

$$\epsilon_2 = \frac{7}{29} = 0.24$$

$$\alpha_2 = \frac{1}{2} \ln \frac{1 - \epsilon_2}{\epsilon_2} = 0.58$$

$$w' = \{ 2.07w, 0.66w \}$$

Continue for *T* iterations or until $\epsilon \ge 0.5$

Boosting

Algorithm Boosting(D, T, \mathscr{A}) – train an ensemble of binary classifiers from reweighted training sets.

```
Input: data set D; ensemble size T; learning algorithm \mathscr{A}.
Output: weighted ensemble of models.
w_{1i} \leftarrow 1/|D| for all x_i \in D;
                                                                                 // start with uniform weights
for t = 1 to T do
     run \mathscr{A} on D with weights w_{ti} to produce a model M_t;
     calculate weighted error \epsilon_t;
     if \epsilon_t \ge 1/2 then
          set T \leftarrow t - 1 and break
     end
     \alpha_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t};
                                                                                  // confidence for this model
     w_{(t+1)i} \leftarrow \frac{w_{ti}}{2\epsilon_t} for misclassified instances x_i \in D;
                                                                                                 // increase weight
     w_{(t+1)j} \leftarrow \frac{w_{tj}}{2(1-\varepsilon_t)} for correctly classified instances x_j \in D;
                                                                                                          // decrease
end
return M(x) = \sum_{t=1}^{T} \alpha_t M_t(x)
```

Boosting vs. bagging

Boosting

Can achieve zero training error by focusing on the misclassifications

Bagging

With relatively large bootstrap sample sets, there tends to be little diversity in the learned models

Ensemble methods: summary

- Model ensemble methods are meta-methods: they are ways to combine ML models via supervised learning, but they are agnostic to the kind of model being used
 - Simple linear classifier, Perceptron, SVM, neural network, etc.
 (weighted versions)
- They provide an opportunity to improve performance and (mostly) avoid over-fitting to the training data
 - Typically using randomization of some sort
- Bagging is essentially a variance-reduction technique (increase consistency), while boosting is essentially a bias reduction technique (increase accuracy)
- There are many other ensemble approaches in machine learning

Machine learning experiments

Machine learning experiments

- While there is a lot of important theory in machine learning (e.g., algorithms, proving convergence, proving performance bounds, establishing computability, etc.), it is a practical field, applying algorithms to data for practical use
- ML experiments are critical for confirming the various assumptions in a ML problem and establishing realistic expectations for performance
- Some key questions for ML experiments in a domain *D*:
 - How does a specific model perform on data from D?
 - Which of a set of models has the best performance on D?
 - How do models from learning algorithm A perform on D?
 - Which learning model A produces the best model(s) for domain D?
- How do we define performance?

False positive rate (FPR) =
$$\frac{FP}{N}$$
 = α

Accuracy =
$$\frac{TP + TN}{P + N} = \left(\frac{P}{P + N}\right)TPR + \left(\frac{N}{P + N}\right)TNR$$

False negative rate (FNR) =
$$\frac{FN}{P} = \beta$$

Error rate =
$$\frac{FP + FN}{P + N}$$

True positive rate (TPR) =
$$\frac{TP}{P}$$
 = Sensitivity = Recall = 1 - β

Precision =
$$\frac{TP}{\hat{p}}$$

True negative rate (TNR) =
$$\frac{TN}{N}$$
 = Specificity = 1 - α

Accuracy + error rate = 1

Contingency table:

Actual class

Average recall = $\frac{TPR + TNR}{2}$

		1	0	
Predicted class	1	TP	FP	Estimated positive P
Ĉ	0	FN	TN	Estimated \widehat{N}
		Positives P	Negatives N	TOTAL

Example

		<i>C</i>		
		1	0	
ĉ	1	50	0	
	0	50	10	
		P=100	N=10	

Accuracy =
$$60/110 = 0.55$$

Error rate = $1 - 0.55 = 0.45$

Average recall = (0.5+1.0)/2 = 0.75

		C		
		1	0	
ĉ ·	1	50	0	
	0	50	100	
		P=100	N=100	

Accuracy =
$$150/200 = 0.75$$

Error rate = $1 - 0.75 = 0.25$

Average recall =
$$(0.5+1.0)/2 = 0.75$$

Performance measure

- If we choose accuracy (or error rate) as the measure of performance, we're making an assumption that the class distribution of the test set is representative of the real problem domain
- If we choose average recall, we're making an assumption that the real problem consists of uniform class distributions (equally likely)
- In general, when running an experiment, we should keep a record of a sufficient set of measurements to enable reproduction of the contingency table in order to compute additional values later on if needed
 - Need four of the independent values (e.g., FP, FN, P, N)

How to measure performance

- So we decide on a performance measure (e.g., accuracy) and we evaluate it on test data, resulting in acc
 - How confident are we that our classifier really has an accuracy of acc?
 - I.e., if we repeated it on (different sets of) representative data an infinite number of times, what would the variance be?
 - We don't know, but we can estimate it by assuming certain things about the true distribution of the variable *acc*
- If we can estimate the performance measure k times, we reduce the sample variance by a factor of $1/\sqrt{k}$
- This is typically done in the experimental process of *cross-validation*

Cross-validation

- The cross-validation process for experimental evaluation:
 - Randomly partition the experimental data into k parts ("folds")
 - Train the model on k-1 folds
 - Evaluate it on the remaining test fold
 - Repeat for a total of k times, evaluating on each test fold
 - Average the performance measure (e.g., accuracy), over the k trials
- This is k-fold cross-validation
 - Typically, k = 10, but other values are also used
 - k = 2 is quite common
 - Rule of thumb: folds should contain at last 30 instances
 - Implying \geq 300 instances in the data set for k = 10
 - If k = n (the number of data points), this is leave-one-out cross-validation (a.k.a. the jackknife)

Example: 10-fold cross-validation

 $acc = Average(acc_i)$

Example: 2-fold cross-validation

$$acc = \frac{1}{2}(acc_1 + acc_2)$$