ÉCONOMÉTRIE (UGA S2) PRÉSENTATION ¹

Michal W. Urdanivia*

*Université de Grenoble Alpes, Faculté d'Économie, GAEL, e-mail: michal.wong-urdanivia@univ-grenoble-alpes.fr

26 février 2022

^{1.} Ce cours s'appuie sur les notes de cours d'Alain Carpentier à l'ENSAI en 2010-2011.

Contenu

1. Qu'est-ce que l'économétrie? A quoi (à qui) ça sert?

2. La démarche des économètres

3. Spécificités de l'économétrie (statistique)

4. Objectifs, organisation et plan du cours

5. Notations et rappels de statistique

Introduction de l'« Introduction à l'économétrie »

- 1. Qu'est-ce que l'économétrie ? A quoi (à qui) ça sert ?
- 2. La démarche des économètres
- 3. Les spécificités de l'économétrie, en tant que « domaine » de la statistique
- 4. Objectifs, organisation et plan du cours
- **5. Notations et rappels de statistique** (listés ici et rappelés par la suite en temps utile)

1. Qu'est-ce que l'économétrie ? A quoi (à qui) ça sert ?

Econométrie : Modélisation statistique des comportements économiques

- Choix individuels : micro-économétrie
 - Consommateurs : demande des biens marchands (dépenses d'alimentation, de transport, ...), choix de marques, ...
 - Firmes: investissement, main d'œuvre, localisation, ...
 - Salariés : durée de chômage, déterminants des salaires, ...
 - Ménages : épargne, portefeuille financier, ...
 - Données individuelles, panels (enquêtes répétées dans le temps)
- Grands agrégats économiques : macro-économétrie
 - PNB, importations, consommation, épargne, taux d'intérêt, taux de change, taux de salaire, ...
 - Déterminants de la croissance, du taux de chômage, ...
 - Séries temporelles, un pays ou plusieurs pays, ...

1. Qu'est-ce que l'économétrie ? A quoi (à qui) ça sert ?

Econométrie : Modélisation statistique des comportements économiques

- Choix individuels : micro-économétrie
 - Consommateurs : demande des biens marchands (dépenses d'alimentation, de transport, ...), choix de marques, ...
 - Firmes: investissement, main d'œuvre, localisation, ...
 - Salariés : durée de chômage, déterminants des salaires, ...
 - Ménages : épargne, portefeuille financier, ...
 - Données individuelles, panels (enquêtes répétées dans le temps)
- Grands agrégats économiques : macro-économétrie
 - PNB, importations, consommation, épargne, taux d'intérêt, taux de change, taux de salaire, ...
 - Déterminants de la croissance, du taux de chômage, ...
 - Séries temporelles, un pays ou plusieurs pays, ...

L'économétrie, c'est d'abord de l'économie

Rationalité des choix économiques \$\square\$

Modèles de comportement économique

- Modèles inspirés d'éléments de théorie micro-économique
 - Théorie du consommateur et du producteur
 - Equilibres de marché, concurrence ± parfaite, ...
- Modèles inspirés d'éléments de théorie macro-économique
 - Courbes IS-LM, théorie Keynésienne, ...

Ceci-dit, l'idée de « lois » de l'économie est à utiliser avec précaution.

Utilisation des techniques de la statistique

- Estimer les paramètres des modèles de comportement économique
- Tester (ou juger de) la validité des modèles de comportement économique
- **Exemple :** Modèle de consommation

 $D\'{e}penses = f(prix_biens, revenu, description_m\'{e}nage; \theta_0) + erreur$

- **Données** : Enquête de consommation (SECODIP, IPSOS, ...)
- Estimation : Estimateur $\hat{\boldsymbol{\theta}}_N$ et données \Rightarrow estimation de $\boldsymbol{\theta}_0$ et mesure de sa « précision »
- **Tests** : Tests de validité interne (« taille » des erreurs, signes des éléments de $\hat{\theta}_N$) et externe (capacité à prédire les dépenses hors échantillon)

Etudes économétriques, pour analyser

- Les données disponibles décrivent les choix passés des agents économiques
- Elles permettent d'analyser les déterminants/mécanismes de ces choix

Exemple. Plusieurs enquêtes sur la consommation de tabac, années marquées par des taxes croissantes sur le tabac

- On veut mesurer l'efficacité de la taxation. Effets « purs », hors campagnes « anti-tabac », interdictions, ... (ceteris paribus)
- Globalement, les augmentations de prix diminuent la consommation
 - Effet significatif mais limité sur les quantités consommées des fumeurs
 - Effet significatif sur les décisions d'arrêter
 - *Effet majeur* : empêche les jeunes de commencer à fumer
- Etudes récentes (avec des toxicologues): les fumeurs consomment un peu moins de tabac, mais pratiquement autant de nicotine.

Etudes économétriques, pour simuler/prédire

- Les données disponibles permettent l'analyse quantifiée des déterminants/mécanismes des choix des agents économiques
- La modélisation économétrique permet de simuler/prédire les effets de changements des déterminants des choix

Exemple: Taxation hypothétique des pesticides sur les choix des agriculteurs

- A court terme:
 - Peu de changement sur les choix pour une culture donnée
 - Effets significatifs sur les choix de cultures (en priorité les moins utilisatrices de pesticides)
- A moyen terme:
 - Effet significatif sur les choix pour une culture donnée
 - Effets significatifs sur les choix de cultures
 - Idée: Réorganisation des systèmes de production moins dépendants des pesticides

Qui utilise l'analyse économétrique ?

- Les décideurs publics: ministères et institutions internationales (UE, OCDE, Banque Mondiale, FMI, ...)
 - Analyse des effets des politiques économiques ou non économiques mises en œuvre
 - Simulation/prédiction des effets des politiques économiques envisagées
 - Calcul des indices de prix
- Les (grandes) entreprises :
 - Finance (banque/assurance): choix d'investissements financiers et gestion des contrats d'assurance
 - Marketing quantitatif
 - Entreprises spécialisées (BIPE, ...)
 - (Consultation des études économétriques macro- ou microéconométriques publiées, scientifiques ou non)

2. La démarche des économètres

- 1a. Analyse de la question posée : effets de la taxe sur le tabac
 - ⇒ Construction d'un modèle avec effets du prix du tabac
- **1b.** Analyse des données disponibles : enquêtes disponibles depuis 1990
 - \Rightarrow Attention : campagnes anti-tabac, interdictions dans les lieux publics, ...
- 2. Spécification d'un modèle mathématique des choix liés au tabac :
 - ⇒ Commencer, arrêter, quantité consommée, effets d'addiction
 - ⇒ Effets des prix et du revenu, des campagnes et interdictions
- 3. Utilisation des techniques de l'inférence statistique :
 - ⇒ Estimation des paramètres du modèle, choix de l'*estimateur approprié*
 - ⇒ Tests de la validité du modèle, interprétation des résultats
- 4. Réponse à la question posée :
 - ⇒ Décomposition des effets estimés, simulations/prédictions

3. Spécificités de l'économétrie (statistique)

- Questions posées aux économètres : analyses « contre-factuelles »
 - Que se serait-il passé si ... ?
 - Nécessité de spécifier des modèles mettant en évidence des mécanismes causaux; pas spécifique à l'économétrie mais ...
- Pas (ou très peu) de données expérimentales
 - Expérience : On veut savoir ce qui se passerait pour des sujets si
 - « Condition A » ou « Condition B ». On place des sujets en
 - « Condition A » et des sujets en « Condition B » et on compare.
 - Très difficile en économie, seulement « Condition réelle »
 - Les techniques usuelles de la statistique sont bien adaptées à l'analyse de données expérimentales:
 - Calculs de moyennes conditionnelles (tris à plat) ; régression ; ...
 - ... mais elles sont à utiliser avec précaution en économétrie.

Point de vue « technique »

- Comportement mesuré par y_i (salaire de i), déterminants d'intérêt mesurés par x_i (niveau d'études de i) et (modèle linéaire simple) :

$$y_i = \alpha_0 + b_0 x_i + u_i$$
 avec $E[u_i] = 0$

- Pour un économètre : y_i , u_i et x_i sont des variables aléatoires
 - Salaire y_i: résultat du *choix* du salarié i et de son employeur (ou de ses employeurs potentiels)
 - Niveau d'études x_i : résultat du *choix* (± contraint) de i
 - **Terme d'erreur** u_i : contient tout ce qui explique y_i et n'est pas expliqué par $\alpha_0 + b_0 x_i$
 - Le niveau d'étude x_i n'est ni fixé par un expérimentateur, ni parfaitement aléatoire. Il a été *choisi* (sous ± de contraintes) par i

$$y_i = \alpha_0 + b_0 x_i + u_i$$
 avec $E[u_i] = 0$

- Analyse économétrique :
 - L'estimateur des MCO de b_0 est en général biaisé car $Cov[x_i, u_i] \neq 0$.
 - En général : $Cov[x_i, u_i] > 0$
 - *Idée* : u_i contient les effets de nombreux facteurs expliquant x_i
 - **Problème d'endogénéité** de x_i par rapport à u_i
 - ⇒ Un autre modèle du salaire est nécessaire, lequel ?
 - ⇒ Un autre estimateur que celui des MCO doit être utilisé, lequel ?

Un des objectifs de ce cours : analyse de ces problèmes et de leurs solutions

4. Objectifs, organisation et plan du cours

Objectifs du cours : introduction à l'analyse économétrique

- La démarche des économètres
- Les *principaux modèles* utilisés : « Pièges » à éviter
- Les principales techniques d'inférence : « Astuces » utilisées
- Micro-économétrie essentiellement

Remarque : J'ai utilisé pour mes travaux tout ce je vais présenter

Organisation du cours : classique

- Cours: théorie et exemples, mais tous les résultats pas démontrés (intuition, démonstrations dans le poly)
- TD/TP: utilisation des concepts théoriques introduits et applications

Plan du cours

Partie A. Modèles (linéaires) de variables continues (y_i continue)

Mots clés: Identification, exogénéité/endogénéité, variables instrumentales Inférence statistique: Moindres carrés et Méthode des Moments (Généralisée)

Partie B. Modèles à variables latentes (y, discrète, continue/discrète)

Mots clés: Variable observée/latente, mécanisme d'observation, choix discret, variable censurée, échantillon tronqué

Inférence statistique : Maximum de Vraisemblance

Partie C. Modèles à régime et mesure des effets de traitement Synthèse : Mobilise des éléments des parties A et B

Notations et rappels de statistique particulièrement utiles pour l'économétrie

5. Notations et rappels de statistique

Convention pour l'écriture des variables, paramètres ou fonctions

scalaire

vecteur colonne

MATRICE

5.1. Echantillon

- **1.** Echantillon aléatoire: $(y_i, \mathbf{x}_i, \mathbf{z}_i)$ pour i = 1,...,N
- **2.** Les $(y_i, \mathbf{x}_i, \mathbf{z}_i)$ sont des *vecteurs de variables aléatoires*
- **3.** Les $(y_i, \mathbf{x}_i, \mathbf{z}_i)$ sont indépendants et équi-distribués pour i = 1,...,N (pas « trop » dépendants entre eux et avec des distributions par « trop » différentes)
 - **4.** *N* est grand (pour justifier des approximations asymptotiques)
- **5**. Le tirage de l'échantillon est aléatoire, *i.e.* les *N* individus de l'échantillon sont tirés aléatoirement dans la population d'intérêt des « *i* ».

- La distribution commune des (y_i, x_i, z_i) est celle de (y, x, z) le vecteur décrivant la distribution des réalisations des (y_i, x_i, z_i) dans la population puisque le tirage de l'échantillon est aléatoire (notion de représentativité de l'échantillon).
- Le modèle commun aux (y_i,x_i,z_i) est celui de (y,x,z), nommé modèle de population.
- On peut donc « inférer statistiquement » les relations entre les éléments de $(y_i, \mathbf{x}_i, \mathbf{z}_i)$ pour chacun des i à partir de l'observation des réalisations de $(y_i, \mathbf{x}_i, \mathbf{z}_i)$ pour l'ensemble des i.
- La notion d'équidistribution sous-tend celle de modèle : les (y_i, x_i, z_i) suivent le même modèle s'ils ont le même PGD.
 - Si on s'intéresse à la distribution conditionnelle des $(y_i, \mathbf{x}_i)/\mathbf{z}_i$, le PGD des \mathbf{z}_i importe peu.

Vecteur x,

$$\mathbf{X}_{i} \equiv \begin{bmatrix} x_{1,i} \\ x_{2,i} \\ \vdots \\ x_{K,i} \end{bmatrix}_{K,k}$$

 x_{ij} est généralement la variable constante : $x_{ij} = 1$

$$\mathbf{x}_{i} = \begin{bmatrix} 1 \\ x_{2j} \\ \vdots \\ x_{Kj} \end{bmatrix} = \begin{bmatrix} 1 \\ \tilde{\mathbf{x}}_{i} \end{bmatrix} \text{ avec } \tilde{\mathbf{x}}_{i} = \begin{bmatrix} x_{2j} \\ x_{3j} \\ \vdots \\ x_{Kj} \end{bmatrix} = \begin{bmatrix} \tilde{x}_{1,i} \\ \tilde{x}_{2,i} \\ \vdots \\ \tilde{x}_{K-1j} \end{bmatrix}$$

Vecteur z,

$$\mathbf{Z}_{i} \equiv \begin{bmatrix} z_{1,i} \\ z_{2,i} \\ \vdots \\ z_{L,i} \end{bmatrix}.$$

 z_{ij} est généralement la variable constante : $z_{ij} = 1$

$$\mathbf{z}_{i} = \begin{bmatrix} 1 \\ z_{2,i} \\ \vdots \\ z_{L,i} \end{bmatrix} = \begin{bmatrix} 1 \\ \tilde{\mathbf{z}}_{i} \end{bmatrix} \text{ avec } \tilde{\mathbf{z}}_{i} \equiv \begin{bmatrix} z_{2,i} \\ z_{3,j} \\ \vdots \\ z_{L,i} \end{bmatrix} \equiv \begin{bmatrix} \tilde{z}_{1,i} \\ \tilde{z}_{2,j} \\ \vdots \\ \tilde{z}_{L-1,i} \end{bmatrix}$$

5.2. Modèle linéaire

1. Modèle linéaire de y_i en x_i

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i \text{ avec } E[u_i] \equiv 0$$

2. Vecteur de paramètres à estimer : a₀

$$\mathbf{a}_0 = \begin{bmatrix} a_{10} \\ a_{2,0} \\ \vdots \\ a_{K,0} \end{bmatrix}, \text{ terme constant } a_{10} = \alpha_0 \text{ et } \mathbf{a}_0 = \begin{bmatrix} \alpha_0 \\ \mathbf{b}_0 \end{bmatrix} \text{ avec } \mathbf{b}_0 = \begin{bmatrix} a_{2,0} \\ a_{3,0} \\ \vdots \\ a_{K,0} \end{bmatrix} = \begin{bmatrix} b_{1,0} \\ b_{2,0} \\ \vdots \\ b_{K-1,0} \end{bmatrix}$$

Modèle linéaire

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i \text{ avec } E[u_i] \equiv 0$$

$$y_i = \sum_{k=1}^{K} a_{k,0} x_{ki} + u_i \text{ avec } E[u_i] \equiv 0$$

$$y_i = \mathbf{x}_i' \mathbf{a}_0 + u_i \text{ avec } E[u_i] \equiv 0$$

$$y_i = \alpha_0 + \tilde{\mathbf{x}}_i' \mathbf{b}_0 + u_i \text{ avec } E[u_i] \equiv 0$$

5.3a. Espérances, variances et covariances, cas scalaire

Définition. Espérance de
$$x_{ki}: m_{k,0} = E[x_{ki}] = \int_{X_k} x f_{xk}(x) dx$$

- X_k est le domaine de variation (commun) des X_{ki}
- $f_k(.)$ la fonction de densité de la distribution (commune) des x_{ki}
- L'intégrale définit une somme et $f_k(.)$ définit une probabilité dans le cas où les x_{ki} sont discrètes

Définition. Variance de
$$x_{ki}$$
: $v_{kk,0} = V[x_{ki}] = \int_{X_k} (x - m_{k0})^2 f_k(x) dx$

Variance et espérances :
$$V[x_{ki}] = E[(x_{ki} - m_{k0})^2] = E[x_{ki}] - E[x_{ki}]^2$$

Définition. Covariance de x_{ki} et $x_{\ell i}$:

$$v_{k\ell,0} = Cov[x_{ki}; x_{\ell i}] = \int_{X_{(k,\ell)}} (e_k - m_{k0})(e_\ell - m_{\ell 0}) f_{(k,\ell)}(e_k, e_\ell) d(e_k, e_\ell)$$

- $X_{(k,\ell)}$ est le domaine de variation (commun) des $(x_{ki}, x_{\ell i})$
- $f_{(k,\ell)}(.,.)$ la fonction de densité de la distribution (commune) des (x_{k_i}, x_{ℓ_i})

Symétrie:
$$Cov[x_{ki};x_{\ell i}] = Cov[x_{\ell i};x_{ki}]$$

Variance et espérances :

$$Cov[x_{ki}; x_{\ell i}] = E[(x_{ki} - m_{k0})(x_{\ell i} - m_{\ell 0})] = E[x_{ki}x_{\ell i}] - E[x_{ki}]E[x_{\ell i}]$$
$$= E[(x_{ki} - m_{k0})x_{\ell i}] = E[x_{ki}(x_{\ell i} - m_{\ell 0})]$$

Variance et covariance :
$$Cov[x_{ki}; x_{ki}] = V[x_{ki}]$$

5.3b. Espérances, variances et covariances, cas vectoriel

Définition. Espérance de
$$\mathbf{x}_i$$
:
$$E[\mathbf{x}_i] = \begin{bmatrix} E[x_{1i}] \\ E[x_{2i}] \\ \vdots \\ E[x_{Ki}] \end{bmatrix} = \mathbf{m}_0 = \begin{bmatrix} m_{1,0} \\ m_{2,0} \\ \vdots \\ m_{K,0} \end{bmatrix} \text{ et } m_{1,0} = 1 \text{ si } x_{1i} = 1$$

Définition. Matrice de variance-covariance de
$$\mathbf{x}_i$$
:
$$V\begin{bmatrix} x_{ii} \end{bmatrix} = \begin{bmatrix} V[x_{1i}] & Cov[x_{1i}, x_{2i}] & \cdots & Cov[x_{1i}, x_{Ki}] \\ Cov[x_{2i}, x_{1i}] & V[x_{2i}] & \cdots & Cov[x_{2i}, x_{Ki}] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[x_{Ki}, x_{1i}] & Cov[x_{Ki}, x_{2i}] & \cdots & V[x_{Ki}] \end{bmatrix}_{K \times K} \equiv \mathbf{C}_0$$

Transposition:
$$E[\mathbf{x}_i]' = E[\mathbf{x}_i']$$

Symétrie:
$$V[\mathbf{x}_i]' = V[\mathbf{x}_i]$$

$$V[\mathbf{x}_i]$$
 est semi-définie positive, i.e. $\mathbf{r}'V[\mathbf{x}_i]\mathbf{r} \ge 0$ pour tout $\mathbf{r} \in \mathbb{R}^K$

Variance et espérances : $V[\mathbf{x}_i] = E[\mathbf{x}_i \mathbf{x}'_i] - E[\mathbf{x}_i] E[\mathbf{x}'_i]$

où $\mathbf{x}_i \mathbf{x}_i'$ est le *produit croisé de* \mathbf{x}_i

$$\mathbf{X}_{i}\mathbf{X}_{i}' = \begin{bmatrix} x_{1i}^{2} & x_{1i}x_{2i} & \cdots & x_{1i}x_{Ki} \\ x_{2i}x_{1i} & x_{2i}^{2} & \cdots & x_{2i}x_{Ki} \\ \vdots & \vdots & \ddots & \vdots \\ x_{Ki}x_{1i} & x_{Ki}x_{2i} & \cdots & x_{2i}^{2} \end{bmatrix}_{K \times K}$$

et:

$$E\begin{bmatrix} \mathbf{x}_{i} \mathbf{x}_{i}' \end{bmatrix} = \begin{bmatrix} E\begin{bmatrix} x_{1i}^{2} \end{bmatrix} & E\begin{bmatrix} x_{1i} x_{2i} \end{bmatrix} & \cdots & E\begin{bmatrix} x_{1i} x_{Ki} \end{bmatrix} \\ E\begin{bmatrix} x_{2i} x_{1i} \end{bmatrix} & E\begin{bmatrix} x_{2i}^{2} \end{bmatrix} & \cdots & E\begin{bmatrix} x_{2i} x_{Ki} \end{bmatrix} \\ \vdots & \vdots & \ddots & \vdots \\ E\begin{bmatrix} x_{Ki} x_{1i} \end{bmatrix} & E\begin{bmatrix} x_{Ki} x_{2i} \end{bmatrix} & \cdots & E\begin{bmatrix} x_{2i}^{2} \end{bmatrix} \end{bmatrix}_{K \times K}$$

Avec $x_{1i} = 1$ on a:

$$E[\mathbf{x}_{i}\mathbf{x}_{i}'] = \begin{bmatrix} 1 & E[x_{2i}] & \cdots & E[x_{Ki}] \\ E[x_{2i}] & E[x_{2i}^{2}] & \cdots & E[x_{2i}x_{Ki}] \\ \vdots & \vdots & \ddots & \vdots \\ E[x_{Ki}] & E[x_{Ki}x_{2i}] & \cdots & E[x_{2i}^{2}] \end{bmatrix} = \begin{bmatrix} 1 & E[\tilde{\mathbf{x}}_{i}'] \\ E[\tilde{\mathbf{x}}_{i}] & E[\tilde{\mathbf{x}}_{i}\tilde{\mathbf{x}}_{i}'] \end{bmatrix}$$

et:

$$V[\mathbf{x}_{i}] = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & V[x_{2i}] & \cdots & Cov[x_{2i}, x_{Ki}] \\ \vdots & \vdots & \ddots & \vdots \\ 0 & Cov[x_{Ki}, x_{2i}] & \cdots & V[x_{Ki}] \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{0} \\ \mathbf{0} & V[\tilde{\mathbf{x}}_{i}] \end{bmatrix}$$

Définition. *Matrice de covariance de* x_i *et* z_i :

$$\begin{aligned} Cov \left[\mathbf{x}_i; \mathbf{z}_i \right] &= \begin{bmatrix} Cov \left[x_{1i}; z_{1i} \right] & Cov \left[x_{1i}; z_{2i} \right] & \cdots & Cov \left[x_{1i}; z_{Li} \right] \\ Cov \left[x_{2i}; z_{1i} \right] & Cov \left[x_{1i}; z_{2i} \right] & \cdots & Cov \left[x_{2i}; z_{Li} \right] \\ &\vdots & &\vdots & \ddots & \vdots \\ Cov \left[x_{Ki}; z_{1i} \right] & Cov \left[x_{Ki}; z_{2i} \right] & \cdots & Cov \left[x_{1i}; z_{Li} \right] \end{bmatrix}_{K \times L} \end{aligned}$$

Partition de $Cov[\mathbf{x}_i; \mathbf{z}_i]$:

$$Cov[\mathbf{x}_{i}; \mathbf{z}_{i}] = [Cov[\mathbf{x}_{i}; z_{1i}] \quad Cov[\mathbf{x}_{i}; z_{2i}] \quad \cdots \quad Cov[\mathbf{x}_{i}; z_{Li}]] = \begin{bmatrix} Cov[x_{1i}; \mathbf{z}_{i}] \\ Cov[x_{2i}; \mathbf{z}_{i}] \\ \vdots \\ Cov[x_{Ki}; \mathbf{z}_{i}] \end{bmatrix}$$

Covariance et espérances :
$$Cov[\mathbf{x}_i; \mathbf{z}_i] = E[\mathbf{x}_i \mathbf{z}_i'] - E[\mathbf{x}_i]E[\mathbf{z}_i']$$

$$Cov[\mathbf{x}_i; \mathbf{z}_i]' = Cov[\mathbf{z}_i; \mathbf{x}_i] = E[\mathbf{z}_i \mathbf{x}_i'] - E[\mathbf{z}_i]E[\mathbf{x}_i']$$

• Avec $x_{1i} = 1$ et $z_{1i} = 1$ on a :

$$Cov[\mathbf{x}_i; \mathbf{z}_i] = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & Cov[x_{l_i}; z_{2i}] & \cdots & Cov[x_{2i}; z_{Li}] \\ \vdots & \vdots & \ddots & \vdots \\ 0 & Cov[x_{K_i}; z_{2i}] & \cdots & Cov[x_{l_i}; z_{Li}] \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{0} \\ \mathbf{0} & Cov[\tilde{\mathbf{x}}_i; \tilde{\mathbf{z}}_i] \end{bmatrix}$$

et:

$$E\begin{bmatrix} \mathbf{x}_{i}\mathbf{z}_{i}' \end{bmatrix} = \begin{bmatrix} 1 & E\begin{bmatrix} z_{2i} \end{bmatrix} & \cdots & E\begin{bmatrix} z_{Li} \end{bmatrix} \\ E\begin{bmatrix} x_{2i} \end{bmatrix} & Cov\begin{bmatrix} x_{1i}; z_{2i} \end{bmatrix} & \cdots & Cov\begin{bmatrix} x_{2i}; z_{Li} \end{bmatrix} \\ \vdots & \vdots & \ddots & \vdots \\ E\begin{bmatrix} x_{Ki} \end{bmatrix} & Cov\begin{bmatrix} x_{Ki}; z_{2i} \end{bmatrix} & \cdots & Cov\begin{bmatrix} x_{1i}; z_{Li} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & E\begin{bmatrix} \tilde{\mathbf{z}}_{i}' \end{bmatrix} \\ E\begin{bmatrix} \tilde{\mathbf{x}}_{i} \end{bmatrix} & E\begin{bmatrix} \tilde{\mathbf{x}}_{i}\tilde{\mathbf{z}}_{i}' \end{bmatrix} \end{bmatrix}$$

5.4. Résultats essentiels de la statistique asymptotique

- La plupart des estimateurs présentés dans le cours n'ont pas de propriétés connues à distance finie, *i.e.* pour *N* fixe (beaucoup d'entre eux sont même biaisés à distance finie).
- On étudie leurs propriétés asymptotiques, i.e. pour N → +∞, et on approxime les propriétés de ces estimateurs en considérant que « N est grand mais (tout de même) pas infini ».
- Un estimateur est une fonction (explicite ou non, compliquée ou non) de moyennes, de variances et de covariances empiriques de variables aléatoires.
 - Lois des Grands Nombres (LGN) ⇒ Convergence des estimateurs
 - *Théorème Central Limite* (TCL) ⇒ Distribution as. des estimateurs

Propriété 1a. Loi Forte des Grands Nombres

(Convergence presque sûre)

Soit $\{\mathbf{w}_i; i = 1, 2, ...\}$ une suite de vecteurs aléatoires tels que les \mathbf{w}_i sont iid pour i = 1, 2, ... avec $E[\mathbf{w}_i] = \mathbf{\mu}_0 < +\infty$ et $V[\mathbf{w}_i] = \mathbf{\Omega}_0 < +\infty$. On a :

$$N^{-1} \sum\nolimits_{i=1}^{N} \mathbf{w}_i \xrightarrow[N \to +\infty]{p.s.} E[\mathbf{w}_i] = \boldsymbol{\mu}_0.$$

Si, de plus, $V[vech(\mathbf{w}_i, \mathbf{w}_i')] = \Psi_0 < +\infty$, alors :

$$N^{-1} \sum\nolimits_{i=1}^{N} \mathbf{w}_i \mathbf{w}_i' \xrightarrow[N \to +\infty]{p.s.} E \left[\mathbf{w}_i \mathbf{w}_i' \right] = \mathbf{\Omega}_0 + \mathbf{\mu}_0 \mathbf{\mu}_0'.$$

Fonction $vech(\mathbf{M})$: \mathbf{M} est une matrice symétrique, $vech(\mathbf{M})$ renvoie le vecteur des éléments non redondants de \mathbf{M} .

Propriété 1b. Loi faible des Grands Nombres (Convergence en probabilité)

Soit $\{\mathbf{w}_i; i = 1, 2, ...\}$ une suite de vecteurs aléatoires tels que les \mathbf{w}_i sont iid pour i = 1, 2, ... avec $E[\mathbf{w}_i] = \mathbf{\mu}_0 < +\infty$ et $V[\mathbf{w}_i] < +\infty$. On a :

$$N^{-1} \sum_{i=1}^{N} \mathbf{w}_{i} \xrightarrow{p.} E[\mathbf{w}_{i}] = \boldsymbol{\mu}_{0}.$$

Si, de plus, $V[\mathbf{w}_i] = \Omega_0 < +\infty$ et $V[vech(\mathbf{w}_i \mathbf{w}_i')] < +\infty$, alors :

$$N^{-1} \sum\nolimits_{i=1}^{N} \mathbf{w}_i \mathbf{w}_i' \xrightarrow[N \to +\infty]{p.} E[\mathbf{w}_i \mathbf{w}_i'] = \mathbf{\Omega}_0 + \mathbf{\mu}_0 \mathbf{\mu}_0'.$$

Rmq. Loi Forte \Rightarrow loi faible

Rmq. Les conditions de régularité, celles qui portent sur la variance des \mathbf{w}_i , indiquent que les LGN ne s'appliquent qu'à des variables aléatoires à variation « limitée », *i.e.* pas trop « explosives ».

Propriété 2. Théorème Central Limite

(Convergence en loi ou en distribution après $\times \sqrt{N}$)

Soit $\{\mathbf{w}_i; i = 1, 2, ...\}$ une suite de vecteurs aléatoires tels que les \mathbf{w}_i sont iid pour i = 1, 2, ... avec $E[\mathbf{w}_i] = \mathbf{\mu}_0 < +\infty$ et $V[\mathbf{w}_i] = \mathbf{\Omega}_0 < +\infty$. On a :

$$\sqrt{N}\left(N^{-1}\sum_{i=1}^{N}\mathbf{w}_{i}-\mathbf{\mu}_{0}\right) \xrightarrow{L} \mathcal{N}(\mathbf{0},\mathbf{\Omega}_{0}).$$

Rmq. Si $\{\mathbf{w}_i; i = 1, 2, ...\}$ est une suite de vecteurs aléatoires tels que les \mathbf{w}_i sont iid pour i = 1, 2, ..., alors pour toute fonction $\mathbf{g}(.)$ des \mathbf{w}_i on a : $\{\mathbf{g}(\mathbf{w}_i); i = 1, 2, ...\}$ est une suite de vecteurs aléatoires tels que les $\mathbf{g}(\mathbf{w}_i)$ sont iid pour i = 1, 2, ...

Ce résultat s'applique en particulier pour tout sous-vecteur de \mathbf{w}_i .

Rmq. Si on a $E[\mathbf{w}_i] = \mu_0 < +\infty$, on n'a pas toujours $E[\mathbf{g}(\mathbf{w}_i)] = \gamma_0 < +\infty$.

5.5. Propriétés des estimateurs

Un estimateur de \mathbf{a}_0 , $\hat{\mathbf{a}}_N$, est construit à partir des $\mathbf{w}_i = (y_i, \mathbf{x}_i, \mathbf{z}_i)$: $\hat{\mathbf{a}}_N = \mathbf{f}(\mathbf{w}_i; i = 1, ..., N)$.

C'est une variable aléatoire puisque \mathbf{w}_i contient des termes aléatoires.

<u>A distance finie</u> (N fixe et $< +\infty$)

Définition. L'estimateur $\hat{\mathbf{a}}_N$ est sans biais si :

$$E[\hat{\mathbf{a}}_{N}] = \mathbf{a}_{0} = E_{(\mathbf{w}_{i}; i=1,...,N)} [\mathbf{f}(\mathbf{w}_{i}; i=1,...,N)]$$

La distribution de $\hat{\mathbf{a}}_N$ est celle de $\mathbf{f}(\mathbf{w}_i; i = 1,...,N)$

- Nécessite : 1) des hypothèses sur la distribution de $(\mathbf{w}_i; i = 1,...,N)$
 - 2) une forme simple et explicite de $\mathbf{f}(\mathbf{w}_i; i = 1,...,N)$

Point de vue asymptotique $(N \rightarrow +\infty)$

Définition. $\hat{\mathbf{a}}_N$ est convergent si :

$$\hat{\mathbf{a}}_{N} \xrightarrow{p.} \mathbf{a}_{0} \text{ ou } p \lim_{N \to +\infty} \hat{\mathbf{a}}_{N} = \mathbf{a}_{0}$$

Définition. $\hat{\mathbf{a}}_N$ est fortement convergent si $\hat{\mathbf{a}}_N \xrightarrow[N \to +\infty]{p.s.} \mathbf{a}_0$

Définition. $\hat{\mathbf{a}}_N$ est as. normal (convergent en \sqrt{N}) si :

$$\sqrt{N}(\hat{\mathbf{a}}_{N} - \mathbf{a}_{0}) \xrightarrow{L} \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{0})$$

et:

 $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_0)$ est la distribution asymptotique de $\hat{\mathbf{a}}_N$ et $\mathbf{\Sigma}_0$ est sa matrice de variance-covariance asymptotique.

- Dans le cas de modèles linéaires, on utilise le fait que $\hat{\mathbf{a}}_N$ est une fonction d'éléments de :

$$N^{-1} \sum_{i=1}^{N} \mathbf{w}_{i} , N^{-1} \sum_{i=1}^{N} \mathbf{w}_{i} \mathbf{w}'_{i} , \dots$$

- La normalité as. de $\hat{\mathbf{a}}_N$ ne repose pas sur la normalité des \mathbf{w}_i , c'est une conséquence du TCL.

Interprétation des notions de convergence de $\hat{\mathbf{a}}_N$ vers \mathbf{a}_0 :

- Si $\hat{\mathbf{a}}_N$ est convergent pour \mathbf{a}_0 alors l'évènement $\hat{\mathbf{a}}_N = \mathbf{a}_0$ survient avec une probabilité approchant 1 lorsque $N \to +\infty$.
- Si â_N est fortement convergent pour a₀ alors l'évènement â_N = a₀ survient presque sûrement lorsque N → +∞.

Interprétation de la normalité as. de $\hat{\mathbf{a}}_{\scriptscriptstyle N}$:

Avec $\sqrt{N}(\hat{\mathbf{a}}_N - \mathbf{a}_0) \xrightarrow{L} \mathcal{N}(\mathbf{0}, \Sigma_0)$, lorsque « N est grand mais pas infini » on a :

$$\hat{\mathbf{a}}_{N} \sim_{app} \mathcal{N}(\mathbf{a}_{0}, N^{-1}\boldsymbol{\Sigma}_{0})$$

Rmq. $\hat{\mathbf{a}}_N$ est as. normal $\Rightarrow \hat{\mathbf{a}}_N$ est convergent.

Rmq. La précision *approchée* de $\hat{\mathbf{a}}_N$, mesurée par $N^{-1}\Sigma_0$, croît « mécaniquement » en N.

Rmq. L'efficacité as. (la précision lorsque N est grand) de $\hat{\mathbf{a}}_N$ est d'autant plus élevée que Σ_0 est petite dans le pré-ordre des matrices semi-définies positive

Shématiquement: précision = éléments de la diagonale de Σ_0 « petits »

Attention. Σ_0 est la variance as. de l'estimateur $\hat{\mathbf{a}}_N$, $N^{-1}\Sigma_0$ est sa variance approchée.

Rmq. On a besoin d'un estimateur convergent de $\Sigma_0: \hat{\Sigma}_N \xrightarrow{p} \Sigma_0$ pour calculer des statistiques de test ou des intervalles de confiance.

Utilisation de la normalité as. de $\hat{\mathbf{a}}_N$:

$$\text{On a: } \boldsymbol{\Sigma}_0 = \begin{bmatrix} \sigma_{1,0}^2 & c_{12,0} & \cdots & c_{1K,0} \\ c_{12,0} & \sigma_{2,0}^2 & \cdots & c_{2K,0} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1K,0} & c_{2K,0} & \cdots & \sigma_{K,0}^2 \end{bmatrix} \text{et } \hat{\boldsymbol{\Sigma}}_N = \begin{bmatrix} \hat{\sigma}_{1,N}^2 & \hat{c}_{12,N} & \cdots & \hat{c}_{1K,N} \\ \hat{c}_{12,N} & \hat{\sigma}_{2,N}^2 & \cdots & \hat{c}_{2K,N} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{c}_{1K,N} & \hat{c}_{2K,N} & \cdots & \hat{\sigma}_{K,N}^2 \end{bmatrix}$$

Sortie typique de logiciel:

Paramètre	Estimation	Estimation de l'écart- type de l'estimateur $\hat{\mathbf{a}}_N$	Statistiques de test,
$a_{1,0}$	$\hat{a}_{\scriptscriptstyle 1,est}$	$\hat{\sigma}_{1,est}/\sqrt{N}$	•••
$a_{2,0}$	$\hat{a}_{2,est}$	$\hat{\sigma}_{2,est}/\sqrt{N}$	•••
:	:	:	•••
$a_{K,0}$	$\hat{a}_{_{K,est}}$	$\hat{\sigma}_{K,est}/\sqrt{N}$	•••

Intervalles de confiance de $\hat{a}_{k,est}$. Avec $\hat{a}_{k,N} \sim_{app} \mathcal{N}(\mathbf{a}_{k,0}, N^{-1}\sigma_{k,0}^2)$ on a :

$$\left[\hat{a}_{k,est} - 1{,}96 \times \hat{\sigma}_{k,est} / \sqrt{N}; \hat{a}_{k,est} + 1{,}96 \times \hat{\sigma}_{k,est} / \sqrt{N}\right] \grave{a} 5\%$$

et:

$$\left[\hat{a}_{k,est} - 2,58 \times \hat{\sigma}_{k,est} / \sqrt{N}; \hat{a}_{k,est} + 2,58 \times \hat{\sigma}_{k,est} / \sqrt{N}\right] \grave{\text{a}} \ 1\%$$

Attention. Significativité statistique (/0) de $\hat{a}_{k,est} \neq$ importance dans le modèle de $a_{k,0}$

- Les $\hat{\sigma}_{k,est}/\sqrt{N}$ mesurent la capacité des données à fournir des estimations précises des $a_{k,0}$ dans le modèle considéré.
- Un paramètre important d'un point de vue économique peut être « non différent de 0 statistiquement » parce qu'il est mal mesuré : N petit, trop peu de variation de variable explicative associée, ...
- Lorsque N est très très grand, tout est « différent de 0 statistiquement»

5.6. La notion d'espérance conditionnelle

- La notion d'espérance conditionnelle est essentielle dans toute la statistique, elle l'est également en économétrie

Définition. Espérance de y_i conditionnelle à (sachant) $\mathbf{x}_i = \mathbf{x}$ où $\mathbf{x} \in X$:

$$E[y_i/\mathbf{x}_i = \mathbf{x}] = E_{y_i/\mathbf{x}_i = \mathbf{x}}[y_i] = \int_{Y} yf(y;\mathbf{x})dy = \mu(\mathbf{x})$$

- X est le domaine de variation (commun) des \mathbf{x}_i
- Y est le domaine de variation (commun) des y_i
- f(.;x) la fonction de densité de la distribution (commune) des y_i conditionnelle à x_i = x.
- Le terme $\mu(\mathbf{x}) = E[y_i/\mathbf{x}_i = \mathbf{x}]$ est un réel.

- On utilisera également souvent la notion d'espérance conditionnelle :

$$E[y_i/\mathbf{x}_i] = E_{y_i/\mathbf{x}_i}[y_i] = \mu(\mathbf{x}_i),$$

i.e. « sans choisir » de valeur pour la réalisation de \mathbf{x}_i .

Cette espérance conditionnelle est une *variable aléatoire*, puisque c'est une fonction de la variable aléatoire \mathbf{x}_i .

- Ces notions d'espérance conditionnelle se généralisent directement au cas de vecteurs (et de matrices) aléatoires.
- Les espérances conditionnelles ont plusieurs propriétés importantes.

Propriété 3. Espérance conditionnelle et prédiction

Soit (y, \mathbf{x}) un vecteur de variables aléatoires sur \mathbb{R}^{1+K} tel que $V[y] < +\infty$ et $\mu(\mathbf{x}) : \mathbb{R}^K \to \mathbb{R}$ est une fonction telle que $E[y/\mathbf{x}] = \mu(\mathbf{x})$, alors :

$$\mu(\mathbf{x}) = \min_{m(\mathbf{x}) \in F_K} E[(y - m(\mathbf{x}))^2]$$

où F_K est l'ensemble des fonctions $m(\mathbf{x}): \mathbb{R}^K \to \mathbb{R}$ telles que $V[m(\mathbf{x})] < +\infty$.

Interprétation. L'espérance de y conditionnelle en x est une fonction de x, $\mu(x)$ ici, qui prédit y au mieux au sens de l'erreur quadratique moyenne, i.e. au sens des Moindres Carrés.

Rmq. La condition $V[y] < +\infty$ assure l'existence de $\mu(\mathbf{x})$, ce qui a été supposé jusqu'à présent dans les définition des espérances, variances, ...

Propriété 5. Espérance conditionnelle et résidu

Soit (y, \mathbf{x}) un vecteur de variables aléatoires réelles, on a :

$$E[y/\mathbf{x}] = \mu(\mathbf{x}) \iff y = \mu(\mathbf{x}) + \varepsilon \text{ avec } E[\varepsilon/\mathbf{x}] = 0$$

puisque
$$\varepsilon = y - \mu(\mathbf{x}) = y - E[y/\mathbf{x}].$$

Interprétation et utilisation.

- Toute variable aléatoire peut être décomposée en la somme de son espérance (conditionnelle ou non) et d'un terme d'erreur d'espérance (conditionnelle ou non) nulle.
- Cette décomposition permet parfois d'écrire des modèles. Par exemple :

$$y_i = \mathbf{a}_0' \mathbf{x}_i + u_i \text{ avec } E[u_i/\mathbf{x}_i] = 0 \iff E[y_i/\mathbf{x}_i] = \mathbf{a}_0' \mathbf{x}_i$$

Propriété 6. Caractérisation de $E[\varepsilon/\mathbf{x}] = 0$

Soit $(\varepsilon, \mathbf{x})$ un vecteur de variables aléatoires réelles, on a :

$$E[\varepsilon/\mathbf{x}] = 0$$

$$\Omega$$

 $E[\mathbf{g}(\mathbf{x})\varepsilon] = \mathbf{0}$ pour toute fonction $\mathbf{g}(.)$ telle que $E[\mathbf{g}(\mathbf{x})\varepsilon]$ existe

Interprétation et utilisation.

- $E[\varepsilon/\mathbf{x}] = 0$ ssi ε n'est corrélée avec aucune fonction de \mathbf{x} .
- En corollaire on a :

$$E[\varepsilon/\mathbf{x}] = 0 \implies E[\mathbf{x}\varepsilon] = \mathbf{0}$$

mais la réciproque n'est pas nécessairement vraie.

Propriété 7. Loi des conditionnements successifs

Soit $(y, \mathbf{x}, \mathbf{q})$ un vecteur de variables aléatoires réelles tel que $\mathbf{x} = \mathbf{g}(\mathbf{q})$, on a alors :

$$E[y/x] = E[E[y/q]/x] = E[E[y/x]/q].$$

Interprétation (Astuce : chercher à prédire y).

- x = g(q) implique que l'information contenue dans x l'est déjà dans q,
 i.e. l'information apportée par x pour prédire y est entièrement contenue dans q. La variable x n'est qu'une transformation de q et x = g(.) n'est pas nécessairement bijective.
- Cette propriété indique que « c'est l'ensemble d'information le plus petit » qui domine après une succession de conditionnements.
 Ici l'information apportée par q non contenue dans x est « perdue » pour prédire y.
- Deux exemples importants d'application de cette propriété :

Espérance et espérance conditionnelle.

On a:

$$E[y_i] = E[E[y_i/\mathbf{x}_i]]$$

car (avec
$$\mu_{y}(\mathbf{x}_{i}) = E[y_{i}/\mathbf{x}_{i}]$$
)
$$E[y_{i}] = E_{y_{i}}[y_{i}] = E_{(y_{i},\mathbf{x}_{i})}[y_{i}] = E_{\mathbf{x}_{i}}[E_{y_{i}/\mathbf{x}_{i}}[y_{i}]] = E_{\mathbf{x}_{i}}[\mu_{y}(\mathbf{x}_{i})].$$

Variance et variance conditionnelle, cas d'un terme d'erreur.

Si $E[u_i] = 0$ on a:

$$V[u_i] = E[V[u_i/\mathbf{x}_i]]$$

car:

$$V\left[u_{i}\right] = E_{u_{i}}\left[u_{i}^{2}\right] = E_{(u_{i},\mathbf{x}_{i})}\left[u_{i}^{2}\right] = E_{\mathbf{x}_{i}}\left[E_{u_{i}/\mathbf{x}_{i}}\left[u_{i}^{2}\right]\right] = E_{\mathbf{x}_{i}}\left[V_{u_{i}/\mathbf{x}_{i}}\left[u_{i}\right]\right].$$

Rmq. Cette propriété est utile pour exploiter des conditions d'homoscédasticité de termes d'erreurs, ce qu'on fera souvent dans la suite.