MEMS 0051 - Introduction to Thermodynamics Quiz #2

Name: Solutions

Problem #1

Consider a 100 [kg] object moving at a velocity of 2 [m/s] with an internal energy of 300 [kJ]. Ignoring potential energy, determine:

a) the kinetic energy of the car in [kJ]

$$KE = \frac{mV^2}{2} = \frac{(100 \,[\text{kg}])(2 \,[\text{m/s}])^2}{2} = 0.2 \,[\text{kJ}]$$

b) the total energy of the car in [kJ]

$$E = U + KE = 300 [kJ] + 0.2 [kJ] = 300.2 [kJ]$$

c) the specific internal energy of the car in [kJ/kg]

$$u = \frac{U}{m} = \frac{300.2 \,[\text{kJ}]}{100 \,[\text{kg}]} = 3 \,[\text{kJ/kg}]$$

Problem #2

Answer the following questions based on the T- ν diagram for H_2O given. What phase(s) of H_2O are present in the following conditions?

- a) $100 \, ^{\circ}\text{C}$, $3 \, [\text{m}^3/\text{kg}] \, \text{vapor}$
- b) 300 °C, 10^{-4} [m³/kg] liquid
- c) 1 [MPa], $0.2 \text{ [m}^3/\text{kg] liquid}+\text{vapor}$

Problem #3

- a) Determine the phase(s) for each of the following states of water:
 - i.) 50 °C, 100 [kPa] $P > P_{\rm sat}(50$ °C) \implies compressed liquid/liquid
 - ii.) 100 °C, 0.1 [m³/kg] $\nu_f(100$ °C)< $\nu<\nu_g(100$ °C) \Longrightarrow saturated water/liquid+vapor
- b) Determine the following properties for water:
 - i.) ν for saturated vapor at 100 °C saturated water, $\nu=1.67290~[\mathrm{m}^3/\mathrm{kg}]$
 - ii.) ν at 100 [kPa] and 400 °C superheated vapor, ν =3.10263 [m³/kg]