

Pontificia Universidade Católica de Minas Gerais Instituto de Informática - Curso de Ciência da Computação Disciplina: Processamento de Imagens Digitais Prof. Alexei Machado

Lista de Exercícios No. 2

- 1. Dada a função $f(x) = \cos \omega x$, definida no intervalo $0 \le x \le 2$:
- a) Gere um vetor contendo a amostragem da função nos pontos x=0 e x=1.
- b) Calcule a DFT sobre o vetor
- c) Baseado nos coeficientes encontrados, desenhe os componentes da série e a função reconstituída.
- 2. Faça o mesmo procedimento do item anterior para a função $f(x)=\cos 2\omega x$, definida no intervalo $0 \le x \le 4$ e amostrada nos pontos x=0, 1, 2 e 3. Compare os resultados obtidos.
- 3. Dados os espectros de Fourier abaixo, determine a imagem correspondente.

Α	3.0	-0.5 + 0.69i	-0.5 +	-0.5 -	-0.5 -	В	
	3.0	0.69i	0.16i	0.16i	0.69i		

1.5 | -0.25 - | 0 | -0.25 + | 0.25i

4. Dadas as imagens abaixo, calcule a DFT correspondente. Calcule a IDFT sobre o resultado e compare com a imagem original.

A	1	3	2	4	1	
---	---	---	---	---	---	--

5. Dadas as imagens abaixo, calcule a DFT correspondente. Compare as imagens e comente os resultados à luz da propriedade da translação.

A	0	1	0	0	0
---	---	---	---	---	---

6. Dadas as imagens abaixo, considerando pontos externos como possuindo valor 0:

A 1 2 0 2	1
-----------	---

B 3 2 1 2 3

C	1	2	
	2	3	

D	1	2	1
	2	8	2
	1	2	1

- a) Calcule A * B
- b) Calcule B * A
- c) Calcule C * D
- d) Calcule D * C
- e) Calcule a DFT para as imagens A e B. Calcule a DFT inversa sobre o resultado.
- f) Aplique filtros passa-baixa nas imagens **A e B** com frequência de corte |u|<2.
- g) Aplique filtros passa-alta nas imagens A e B com frequência de corte |u|>1.

Pontificia Universidade Católica de Minas Gerais Instituto de Informática - Curso de Ciência da Computação Disciplina: Processamento de Imagens Digitais Prof. Alexei Machado

7. Para cada imagem abaixo, considerando pontos externos como indefinidos:

4	3	5	2	1	1
	1	4	6	2	1
	1	1	5	6	2
	1	1	1	1	1
	1	2	2	2	1

1	1	9	1	1
1	1	9	8	7
9	9	9	2	1
1	1	2	8	8
1	2	2	8	9

C

- a) Determine o histograma de freqüências
- b) Aplique um filtro de suavização 3x3 pela média
- c) Aplique um filtro de suavização 3x3 pela mediana
- d) Altere o contraste da imagem através da equalização do histograma. As novas intensidades devem variar entre 0 e 255.
- e) Realce as bordas da imagem, através de filtros de Sobel.
- 8. O gráfico abaixo representa a função de transformação de histograma aplicada à imagem A.

- a) Caracterize a imagem de saída quanto ao seu tamanho e conteúdo.
- b) Para que são usadas as funções de transformação de histograma?
- c) É possível aplicar uma transformação de histograma na qual 2 pixels de tons de cinza diferentes da imagem de entrada passem a ter o mesmo valor após a transformação? Justifique.

Pontificia Universidade Católica de Minas Gerais Instituto de Informática - Curso de Ciência da Computação Disciplina: Processamento de Imagens Digitais Prof. Alexei Machado

9. Considere a imagem original A e as imagens B, C e D obtidas a partir de A:

- a) Indique os elementos de baixa freqüência presentes na imagem original A.
- b) Indique os elementos de alta frequência presentes na imagem original A.
- c) Descreva o processo aplicado a A para se obter B. Justifique a resposta.
- d) Descreva o processo aplicado a A para se obter C. Justifique a resposta.
- e) Descreva o processo aplicado a A para se obter D. Justifique a resposta.