

Automotive-grade N-channel 40 V, 0.82 mΩ typ., 120 A, STripFET™ F7 Power MOSFET in a PowerFLAT™ 5x6 DSC package

PowerFLAT™ 5x6 dual side cooling

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STLD257N4F7AG	40 V	1.1 mΩ	120 A

- AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- · High avalanche ruggedness
- · Wettable flank package

Applications

· Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low on-state resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Product status link

STLD257N4F7AG

Product summary			
Order code STLD257N4F7AG			
Marking	257		
Package	PowerFLAT™ 5x6		
	dual side cooling		
Packing	Tape and reel		

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	40	V
V _{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾⁽²⁾	Drain current (continuous) at T _C = 25 °C	120	Α
I _D ⁽¹⁾⁽²⁾	Drain current (continuous) at T _C = 100 °C	120	Α
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	480	Α
P _{TOT} ⁽²⁾	Total power dissipation at T _C = 25 °C	158	W
T _J	Operating junction temperature range	FF to 47F	
T _{stg}	Storage temperature range	-55 to 175	°C

- 1. Limited by package
- 2. The value is rated according to $R_{\mbox{\scriptsize thj-case bottom side}}$
- 3. Pulse width limited by safe operating area

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-c top side}	Thermal resistance junction-case top side	2.90	
R _{thj-c bottom side}	Thermal resistance junction-case bottom side	0.95	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	31.3	

^{1.} When mounted on an 1-inch² 2 Oz, Cu board, $t \le 10 \text{ s}$

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AV}	Avalanche current, repetitive or not repetitive (pulse width limited by maximum junction temperature)	50	Α
E _{AS}	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AV} , V_{DD} = 25 V)	608	mJ

DS12565 - Rev 4 page 2/13

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	40			V
lana	I _{DSS} Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 40 V			1	μA
IDSS		V _{GS} = 0 V, V _{DS} = 16 V, Tj = 125 °C ⁽¹⁾			300	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = 20 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
P	Static drain-source	V _{GS} = 10 V, I _D = 60 A		0.82	1.1	mΩ
R _{DS(on)}	on-resistance	V _{GS} = 6.5 V, I _D = 60 A		3.1	4.8	11152

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	5400	-	pF
C _{oss}	Output capacitance	V_{DS} = 25 V, f = 1 MHz, V_{GS} = 0 V	-	1870	-	pF
C _{rss}	Reverse transfer capacitance		-	45	-	pF
Qg	Total gate charge	V _{DD} = 20 V, I _D = 120 A,	-	66.5	-	nC
Q _{gs}	Gate-source charge	$V_{GS} = 0$ to 10 V	-	33.5	-	nC
Q_{gd}	Gate-drain charge	(see Figure 13. Test circuit for gate charge behavior)	-	13	-	nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, I_D = 60 \text{ A},$	-	28	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	19	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 12. Test circuit for resistive load switching times and Figure 17. Switching time waveform)	-	58	-	ns
t _f	Fall time		-	32	-	ns

DS12565 - Rev 4 page 3/13

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		120	Α
I _{SDM} ⁽¹⁾⁽²⁾	Source-drain current (pulsed)		-		480	Α
V _{SD} (3)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 90 A	-		1.1	V
t _{rr}	Reverse recovery time	I _{SD} = 120 A, di/dt = 100 A/μs,	-	54		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 20 V	-	53		nC
I _{RRM}	Reverse recovery current	(see Figure 14. Test circuit for inductive load switching and diode recovery times)	-	1.9		А

- 1. Limited by package.
- 2. Pulse width is limited by safe operating area.
- 3. Pulse test: pulse duration = 300 μ s, duty cycle 1.5%

DS12565 - Rev 4 page 4/13

2.1 Electrical characteristics (curves)

Figure 3. Output characteristics

(A) V_{GS} =7, 8, 9, 10 V

250 V_{GS} =6 V

100 V_{GS} =5 V

100 V_{GS} =5 V

200 V_{GS} =4 V

DS12565 - Rev 4 page 5/13

Figure 7. Capacitance variations C (pF) GIPG240420181307CVR 10 4 C_{ISS} Coss 10³ f = 1 MHz10² C_{RSS} 10 ¹ 10 20 30 40 $\overline{V}_{DS}(V)$

Figure 8. Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GADG060820180915VTH $I_D = 250 \, \mu A$ 1.2 8.0 0.6 0.4 0.2 -25 25 75 125 175 $\overline{\mathsf{T}}_{\mathsf{j}}\,(^{\circ}\mathsf{C})$

Figure 9. Normalized on-resistance vs temperature R_{DS(on)} (norm.) GADG060820180915RON V_{GS} = 10 V I_D = 60 A 1.8 1.6 1.4 1.2 1.0 0.8 -25 25 75 125 175

DS12565 - Rev 4 page 6/13

3 Test circuits

Figure 12. Test circuit for resistive load switching times

Figure 13. Test circuit for gate charge behavior

Figure 14. Test circuit for inductive load switching and diode recovery times

Figure 15. Unclamped inductive load test circuit

Figure 16. Unclamped inductive waveform

Figure 17. Switching time waveform

DS12565 - Rev 4 page 7/13

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 PowerFLAT™ 5x6 dual side cooling package information

Figure 18. PowerFLAT™ 5x6 dual side cooling package outline

0340700_2

DS12565 - Rev 4 page 8/13

Table 8. PowerFLAT™ 5x6 dual side cooling mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	0.66	0.71	0.76
A1	0.60		0.75
b	0.33	0.43	0.53
С	0.15	0.203	0.30
D		5.00 BSC	
D1	4.06	4.21	4.36
D2		2.40 BSC	
D3	2.80	3.30	3.80
E	6.00 BSC		
E1	3.525	3.675	3.825
E2	1.05	1.20	1.35
E3		3.80 BSC	
E4	4.20	4.70	5.20
е		1.27 BSC	
I			0.15
L	0.15	0.25	0.35
L1	0.925	1.05	1.175
L2	0.45	0.575	0.70
ϑ		12° BSC	
8 1		7° BSC	
j		0.20 BSC	

Figure 19. PowerFLAT™ 5x6 dual side cooling recommended footprint (dimensions are in mm)

DS12565 - Rev 4 page 9/13

4.2 PowerFLAT™ 5x6 dual side cooling packing information

Figure 20. PowerFLAT™ 5x6 dual side cooling tape (dimensions are in mm)

8548087_REV1

Figure 21. PowerFLAT™ 5x6 dual side cooling reel (dimensions are in mm)

DS12565 - Rev 4 page 10/13

Revision history

Table 9. Document revision history

Date	Revision	Changes
02-May-2018	1	Initial release.
26-Jul-2018	2	Document status promoted from preliminary to production data. Updated <i>Table 4. On/off states</i> . Updated <i>Section 2.1 Electrical characteristics (curves)</i> . Minor text changes
6-Aug-2018	3	Updated <i>Table 5. Dynamic</i> . Updated <i>Section 2.1 Electrical characteristics (curves)</i> Minor text changes
21-Mar-2019	4	Modified Table 4. On/off states. Modified Figure 1. Safe operating area, Figure 4. Transfer characteristics, Figure 6. Static drain-source on-resistance and Figure 9. Normalized on-resistance vs temperature. Minor text changes.

DS12565 - Rev 4 page 11/13

Contents

1	Elec	trical ratings	2
2		trical characteristics	
		Electrical characteristics (curves)	
3	Test	circuits	7
4	Pacl	kage information	8
	4.1	PowerFLAT™ 5x6 dual side cooling package information	8
	4.2	PowerFLAT™ 5x6 dual side cooling packing information	9
Rev	ision	history	11

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS12565 - Rev 4 page 13/13