Entocopy for the whole data-set

Tut of 14 instances
$$\pi(Yeb) \rightarrow 8$$
 $\int_{14}^{14} Total \Rightarrow 14$
 $\pi(NO) \Rightarrow 6$ $\int_{14}^{14} Total \Rightarrow 14$
Enteropy (5) $\Rightarrow -p(yeb) \log_2 [p(yeb)] - p(NO) \log_2 [p(NO)]$
 $\Rightarrow -\left[8/_{14} \log_2 (\sqrt[9]_{14}) + \sqrt[9]_{14} \log_2 (\sqrt[9]_{14})\right]$
 $\Rightarrow -\left[4/_{7} \log_2 (\sqrt[4]_{7}) + \sqrt[3]_{7} \log_2 (\sqrt[3]_{7})\right]$
 $\Rightarrow -\left[-0.13887 - 0.15770\right]$
 $\Rightarrow -\left[-0.46134 + (-0.5236)\right]$

Total val	_	þ(NG)
Closs Stay in lastel 19702 8	2 3 2 3 1/4 3/4	1/3 1/3 3/4 1/4

thick feature is diosen as Rost Node?

Enterthy (class = 8) => -
$$p(y_{00}) log_2 [p(y_{00})] - p(n_0) log_2 [p(n_0)]$$

=> - $[2/3 log_2(2/3) + 1/3 log_2(1/3)]$
=> - $[-0.38997 + (-0.52832)]$

Enteropy [dass-10] -> 0.811 Entropy [class."] > - p(yes) lag_ (p(yes)) - p(Ne) lag_ (p(Ne)) => - [3/4 log2 (3/4) + 1/4 log2 (1/4)] Information Grain (class) = 0.1276

=> - [0.75 log2 (0.75) + 0.25 log2 (0.25)] Entropy [does = 11] => 0.811 Informain gents for the "Class feature: I(low) => (3/14 * 0.918) + (3/14 * 0.918) + (4/14 * 0.811) + (4/14 * 0.811) I(das) = 0.8574 Information Grain from the 'Class' feature: Information Gain (class) = Enteropy (class) - Information (class) = 0.985 -0.857

Enteropy (does = 9) > - | (yes) lag [| (yes)] - | (NO) lag [| (NO)]

> - [7/3 log2 (7/3) + /3 log2 (7/3)]

Entropy [Cons = 10] => - | (ME) log_ [| (yes)] - | (NO) log_2 [| (NO)]

=> - [/4 log 2 (1/4) + 3/4 log 2 (3/4)]

> - [-1/2 - 0.31127]

Extrapy [chars-9] >> 0.918

Information Grain for the Grender feature

Grenden	Stay in Rostel	n	þ(yes)	b(va)
Male	Yes=5 NO=3	8	5/8	3/8
Fenale	Yes =3 No =3	6	3/6	3/6

Enteropy (Grendon) => -p(yes) log_ [p(yes)] - p(NO) log_ [p(NO)] =) - [8/14 lag2 (8/14) + 6/14 lag2 (6/14)]

=> - [-0.46134 - 0.5238]

Enterpy (Gender) => 0.98514

14 Enteropy (Gender = 'Hale') => - | (yes) log_ [| (yes)] - | (NO) log_ [| (NO)] => - [5/8 lag = (5/8) + 3/8 lag = (3/8)] ⇒ - [-0·42379 - 0·53063] D 0 95442 Enterpy [Grendon = "Male"] => 0.95442 Enteropy [Grendon = Female?] > - | (yes) log 2 (+ (yes)) - | (NO) log 2 (+ (NO)) > - [1/2 leg2 (1/2) + 1/2 leg2 (1/2)] Entropy [Grender = 'Female'] => 1 Information from "Grendon" foature: Information (Gendon) > (8/14 * 0.953 + 6/14 * 1) Information (Gender) => 0.972 Information brain from "brender" facture: Information Gair (Grendon) => Entropy (Gendon) - Information (Grendon) ⇒ 0.98514 - 0.972,

Information Gain Grender => 0.012