

planetmath.org

Math for the people, by the people.

limit inferior

Canonical name LimitInferior

Date of creation 2013-03-22 12:22:01 Last modified on 2013-03-22 12:22:01

Owner rmilson (146) Last modified by rmilson (146)

Numerical id 10

Author rmilson (146)
Entry type Definition
Classification msc 26A03
Synonym liminf

Synonym infimum limit Related topic LimitSuperior Let $S \subset \mathbb{R}$ be a set of real numbers. Recall that a limit point of S is a real number $x \in \mathbb{R}$ such that for all $\epsilon > 0$ there exist infinitely many $y \in S$ such that

$$|x-y|<\epsilon$$
.

We define $\liminf S$, pronounced the *limit inferior* of S, to be the infimum of all the limit points of S. If there are no limit points, we define the limit inferior to be $+\infty$.

The two most common notations for the limit inferior are

 $\liminf S$

and

 $\lim S$.

An alternative, but equivalent, definition is available in the case of an infinite sequence of real numbers x_0, x_1, x_2, \ldots For each $k \in \mathbb{N}$, let y_k be the infimum of the k^{th} tail,

$$y_k = \inf_{j \ge k} x_j.$$

This construction produces a non-decreasing sequence

$$y_0 \leq y_1 \leq y_2 \leq \dots$$

which either converges to its supremum, or diverges to $+\infty$. We define the limit inferior of the original sequence to be this limit;

$$\liminf_{k} x_k = \lim_{k} y_k.$$