Chương 9

THIẾT BỊ NHẬP XUẤT (I/O Devices)

Nội Dung Chương IX

- Tổng quan thiết bị nhập xuất
- II. Giao tiếp giữa CPU và thiết bị nhập xuất
- III. Vai trò của hệ điều hành
- IV. Từ yêu cầu nhập xuất đến thao tác phần cứng

I. Tổng quan thiết bị nhập xuất

- 1) Vai trò thiết bị nhập xuất
 - Thiết bị nhập: đưa dữ liệu vào CPU xử lý
 - Thiết bị xuất: CPU kết xuất kết quả ra thiết bị xuất
 - Thiết bị kết hợp nhập và xuất.
 - Ví dụ?

2) Kết nối giữa CPU và thiết bị nhập xuất

- Mỗi thiết bị nhập xuất có một mạch điều khiển gọi là device controller.
- CPU kết nối với các device controller thông qua hệ thống bus.

II. Giao tiếp giữa CPU và I/O Devices

1) Dữ liệu trao đổi giữa CPU và thiết bị

Ví du:

- Bàn phím:
 mã phím được nhấn
- Đĩa cứng:
 số hiệu cylinder, mặt, sector cùng với dữ liệu của sector được đọc hay ghi

Cơ chế:

- Mỗi device controller có các thanh ghi điều khiển và thanh ghi dữ liệu
- CPU giao tiếp với thiết bị bằng cách đọc hay ghi các thanh ghi này.
- Thanh ghi được đánh số hiệu là các port

Số hiệu port	Thiết bị
3F8 – 3FF	serial port (COM1, COM2)
378 – 37F	parallel port (LPT)
320 – 32F	hardisk controller

2) Cơ chế thăm dò (polling)

CPU thường xuyên kiểm tra port của thiết bị:

- Thiết bị nhập: Có tín hiệu nhập không? nếu có đọc dữ liệu
- Thiết bị xuất: Có trong trạng thái sẵn sàng không?
 Nếu có xuất dữ liêu.
- → Hao phí CPU để kiểm tra thiết bị nhập → cơ chế Interrupt.

3) Cơ chế ngắt (intterupt)

Mỗi thiết bị có một đường tín hiệu riêng gọi là đường intterupt

Khi thiết bị nhập có dữ liệu:

- a) Thiết bị gởi tín hiệu ngắt về CPU
- b) CPU tạm dừng chương trình đang thi hành
- c) CPU thi hành trình xử lý ngắt để đọc dữ liệu tại port
- d) Sau khi hoàn tất, CPU tiếp tục chương trình bị dừng

3) Cơ chế DMA (Direct Memory Access)

- Sử dụng trong trường hợp dữ liệu cần nhập lớn.
- Bộ nhớ chính là nơi lưu trữ dữ liệu sau khi nhập (buffer).
- Thiết bị DMA controller thay mặt CPU đọc dữ liệu từ device controller và ghi vào bộ nhớ.
- DMA controller sinh ra tín hiệu ngắt cho CPU báo hiệu việc nhập dữ liệu hoàn tất

III. Vai trò hệ điều hành

1) Nếu không có hệ điều hành

Chương trình ứng dụng phải trực tiếp truy cập các port để đọc ghi thiết bị

2) Mô hình quản lý thiết bị nhập xuất của HĐH

a) Lý do cần I/O Subsystem của hệ điều hành

Tổng quát hóa các loại thiết bị, cung cấp phương pháp thống nhất để phần mềm sử dụng thiết bị.

Có 2 nhóm thiết bị:

• Block I/O: thiết bị đọc ghi dữ liệu theo khối. HĐH cung cấp 3 phương thức chuẩn: read, write, seek.

Ví dụ: đĩa, file...

• Character I/O: thiết bị đọc ghi dữ liệu theo ký tự. HĐH cung cấp 2 phương thức: get, put.

Ví dụ: bàn phím, máy in, sound card...

b) Lý do cần Device Driver

- I/O Subsystem cần biết cấu trúc của từng loại thiết bị. Nếu xuất hiện thiết bị mới phải sửa đổi I/O Subsytem.
- → Nhu cầu có Device Driver
- Device Driver do mỗi nhà SX thiết bị cung cấp. Chịu trách nhiệm quản lý thiết bị của NSX.
- I/O Subsystem giao tiếp với các Device Driver theo các chuẩn do nhà SX hệ điều hành quy định.
- → Cho phép gắn thiết bị mới mà không sửa đổi HĐH, chỉ cần thêm Device Driver vào I/O Subsytem

3) Từ yêu cầu nhập xuất của phần mềm đến thao tác phần cứng

Ví dụ: Chương trình cần đọc dữ liệu từ 1 file trên đĩa

Quản lý thiết bị trong Windows:

Q & A

Câu hỏi ôn tập

- 1. Nêu nguyên tắc hoạt động của cơ chế intterupt. Cơ chế intterupt có ưu điểm gì so với cơ chế polling?
- 2. Nêu nguyên tắc hoạt động của cơ chế DMA. Mục đích của DMA là gì?
- 3. Cho biết mục đích của Kernel I/O Subsystem và Kernel Device Driver.