COMP8760

Lecture 1

Worksheet for Practice

Sanjay Bhattacherjee

This is a set of practice problems for you to solve. You will **NOT** have to submit your solutions for this Worksheet as they will **not** be **graded**. The sample solutions will be provided before Lecture 2 for you to verify your attempt yourself.

1. Sets: Membership, Subset, Cardinality

Let $A = \{1, 2, 3\}$. Fill in the blanks.

- (a) Is $1 \in A$? ____ (Yes/No)
- (b) Is $4 \in A$? ____ (Yes/No)
- (c) Is $4 \notin A$? _____ (Yes/No)
- (d) Is $100 \notin A$? _____ (Yes/No)
- (e) Is $\{1, 3\} \subseteq A$? _____ (Yes/No)
- (f) Is $\{4\} \subseteq A$? ____ (Yes/No)
- (g) Is $\{3,4\} \subseteq A$? ____ (Yes/No)
- (h) What is |A|? _____
- (i) What is $|\{1, 2, 3, 4, \dots, 100\}|$?
- (j) What is $|\{2, 4, 6, 8, \dots, 100\}|$?
- (k) Is $A \subseteq \{2, 4, 6, 8, \dots, 100\} \subseteq \mathbb{Z}$? _____ (Yes/No)

2. Division Theorem

Fill in the blanks.

- (a) $99 = \underline{\hspace{1cm}} \times 12 + \underline{\hspace{1cm}}$
- (b) $199 = \underline{\hspace{1cm}} \times 53 + \underline{\hspace{1cm}}$
- (c) $9 = \underline{\hspace{1cm}} \times 12 + \underline{\hspace{1cm}}$
- (d) $0 = \underline{\hspace{1cm}} \times 53 + \underline{\hspace{1cm}}$
- (e) $-1 = \underline{\hspace{1cm}} \times 12 + \underline{\hspace{1cm}}$
- (f) $-12 = \underline{\hspace{1cm}} \times 12 + \underline{\hspace{1cm}}$

3. \mathbb{Z}_N : Set of All Remainders of N

Fill in the blanks.

- (a) $\mathbb{Z}_2 = \{ ___ \}$
- (b) $\mathbb{Z}_5 = \{ ___ \}$

- (c) $\mathbb{Z}_{12} = \{ ___ \}$
- (d) $\mathbb{Z}_{13} = \{ \underline{\hspace{1cm}} \}$
- (e) $\mathbb{Z}_{1297} = \{ ___ \}$
- 4. Modulus operator: $a \mod N$

Fill in the blanks.

- (a) $23 \mod 11 =$ _____
- (b) $22 \mod 11 =$ ____
- (c) $23 = 34 \mod 11;$ ____ (True/False)
- (d) $-3 = 8 \mod 11; \underline{\hspace{1cm}}$ (True/False)
- (e) $-3 = -15 \mod 11;$ (True/False)
- 5. Modular Arithmetic

Write the addition and multiplication tables for all elements in \mathbb{Z}_4 .

6. Prime Numbers

Fill in the blanks.

(a) Is 63 a prime? ____ (Yes/No)

(b) Is 67 a prime? ____ (Yes/No)

(d) Using the prime factorisation technique, find the GCD and LCM of the integer pair (539,1001)?