

CS-C2160 Theory of Computation

Lecture 11: Rice's Theorem, General Grammars

Pekka Orponen Aalto University Department of Computer Science

Topics:

- Rice's Theorem
- Unrestricted grammars
- ... and their relationship to Turing machines
- Context-sensitive grammars
- * A glimpse beyond: Computational complexity

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

2/48

Recap

- *Church–Turing thesis:* Intuitive notion of algorithms \equiv Turing machines.
- ullet Formal language \equiv Yes/No decision problem.
- A language is semi-decidable (also called recursively enumerable) if it can be recognised by some Turing machine.
- A language is decidable (also called recursive) if it can be recognised by some machine that halts on all inputs.
- A language is undecidable if it is not decidable.
- An undecidable language may still be semi-decidable.

- The "acceptance" decision problem for Turing machines is Given a Turing machine M and a string w. Does M accept w?
- The formal language representing this is the universal language

$$U = \{c_M w \mid M \text{ is a TM and } M \text{ accepts } w\}.$$

 $\bullet\,$ The language U is semi-decidable but not decidable.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

Rice's Theorem

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

Aalto University

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

²or "specification"

11.1 Rice's theorem

enumerable) languages by RE.

Examples of semantic properties: ▶ **NE** = $\{L \subseteq \{0,1\}^* \mid L \neq \emptyset\}$

semi-decidable languages, i.e. $S \subseteq RE$. • A machine *M* has property **S** if $\mathcal{L}(M) \in \mathbf{S}$.

A semantic property is trivial if

- $ightharpoonup S = \emptyset$ (no machine has this property) or
- ightharpoonup S = RE (all machines have this property)
- A property S is *decidable* if the language

 $codes(S) = \{c_M \mid M \text{ is a Turing machine and } \mathcal{L}(M) \in S\}$

is decidable.

• In other words: A semantic property is decidable if one can algorithmically decide whether a given Turing machine has the property.3

Theorem 11.1 (Rice 1953)

All non-trivial semantic properties of Turing machines are undecidable.

³equivalently "a given computer program matches the specification"

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

Example:

• Let us consider the *non-emptiness problem* for Turing machines from Lecture 10:

• Rice's Theorem states that *all* decision problems concerning the languages recognised by Turing machines¹ are undecidable. • Let us denote the family of all semi-decidable (i.e. recursively

• A semantic property² S of Turing machines is any family of

▶ **ALLSTRINGS** = $\{L \subseteq \{0,1\}^* \mid L = \{0,1\}^*\} = \{\{0,1\}^*\}$

▶ **EVEN** = $\{L \subseteq \{0,1\}^* \mid |x| \text{ is even for all } x \in L\}$ ▶ **ONLY**_w = $\{L \subseteq \{0,1\}^* \mid x \in L \Leftrightarrow x = w\} = \{\{w\}\}$

▶ **EMPTYSET** = $\{L \subseteq \{0,1\}^* \mid L = \emptyset\} = \{\emptyset\}$

¹i.e. the input-output behaviours of computer programs

Given a Turing machine M.

Does the machine accept any strings?

- The corresponding semantic property is $NE = \{L \in RE \mid L \neq \emptyset\}$.
- The property is non-trivial because:
 - ▶ **NE** \neq 0 (witness any semi-decidable language $L \neq$ 0)
 - ▶ NE \subseteq RE (since $\emptyset \in$ RE \ NE)
- Thus by Rice's theorem, the language

$$\begin{split} \operatorname{codes}(\mathbf{NE}) &= \{c_M \mid M \text{ is a Turing machine and } \mathcal{L}(M) \in \mathbf{NE}\} \\ &= \{c_M \mid M \text{ is a Turing machine and } \mathcal{L}(M) \neq \emptyset\} \end{split}$$

is undecidable. (Note that this is precisely the result in Lemma 10.5.)

Theorem 11.1

All non-trivial semantic properties of Turing machines are undecidable.

Proof

- A simple generalisation of the proof of Lemma 10.5.
- Let S be any non-trivial semantic property.
- We can assume that $\emptyset \notin S$; in other words, machines that recognise the empty language do not have the property.^a
- As S is non-trivial, there is a Turing machine M_S that has the property S, i.e. one for which $\mathcal{L}(M_S) \neq \emptyset$ and $\mathcal{L}(M_S) \in S$ hold.

 a If $\emptyset \in S$, we can first show that the property $\bar{S} = \text{RE} \setminus S$ is undecidable and then conclude that also **S** is undecidable; this is because $codes(\mathbf{\bar{S}}) = \{0, 1\}^* \setminus codes(\mathbf{S})$.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

- undecidable language U to it.
- Let (M, w) be any instance of the Turing machine acceptance problem, encoded as the string $c_M w$.

We now prove that codes(S) is undecidable by reducing the

- From input c_{MW} construct (the code for) a Turing machine M^{W} that on any input string x works as follows:
 - First run machine *M* on string *w*, and then:
 - if M accepts w, run Ms on x
 - if *M* rejects *w* (or doesn't halt), reject *x* (or don't halt)
- Now M^w recognises the language

$$\mathcal{L}(M^w) = \begin{cases} \mathcal{L}(M_{\mathbf{S}}) & \text{if } w \in \mathcal{L}(M) \\ 0 & \text{if } w \notin \mathcal{L}(M) \end{cases}$$

- Thus M accepts w if and only if M^w has the property S. That is, $c_M w \in U$ if and only if $c_{M^w} \in \operatorname{codes}(\mathbf{S})$.
- Therefore, codes(S) is an undecidable language.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

General Grammars

11.2 Unrestricted grammars

- A generalisation of context-free grammars.
- The left-hand sides of rules can now include multiple symbols.
- As will be shown, can generate all semi-decidable languages.

Definition 11.1

An unrestricted grammar is a quadruple

$$G = (V, \Sigma, R, S),$$

where

- *V* is a finite set of *variables*;
- Σ is a finite set, disjoint from V, of *terminals*;
- $R \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$ is a finite set of *rules* (also called productions), where $(V \cup \Sigma)^+ = (V \cup \Sigma)^* \setminus \{\epsilon\}$;
- $S \in V$ is the *start variable*.

A rule $(\omega, \omega') \in R$ is usually written as $\omega \to \omega'$.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

13

• A string $\gamma \in (V \cup \Sigma)^*$ *yields* a string $\gamma' \in (V \cup \Sigma)^*$ in the grammar G, denoted by

$$\gamma \Rightarrow \gamma'$$

if

- the grammar contains a rule $\omega \to \omega'$ such that $\gamma = \alpha \omega \beta$ and $\gamma' = \alpha \omega' \beta$ for some $\alpha, \beta \in (V \cup \Sigma)^*$.
- A string $\gamma \in (V \cup \Sigma)^*$ derives a string $\gamma' \in (V \cup \Sigma)^*$ in the grammar G, denoted by

$$\gamma \underset{G}{\Rightarrow}^* \gamma'$$

if there is a sequence of strings $\gamma_0, \gamma_1, \dots, \gamma_n$ for some $n \geq 0$ such that

$$\gamma = \gamma_0, \qquad \gamma_0 \underset{G}{\Rightarrow} \gamma_1 \underset{G}{\Rightarrow} \dots \underset{G}{\Rightarrow} \gamma_n, \qquad \gamma_n = \gamma'.$$

• If the grammar G is clear from the context, we can simply write $\gamma \Rightarrow \gamma'$ and $\gamma \Rightarrow^* \gamma'$ instead of $\gamma \Rightarrow \gamma'$ and $\gamma \Rightarrow^* \gamma'$, respectively.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

14/4

Example:

An unrestricted grammar for the non-context-free language $\{a^kb^kc^k\mid k\geq 0\}$:

A derivation of string aabbcc in the grammar:

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

Theorem 11.2

If a language L can be generated with an unrestricted grammar, then it can be recognised with a Turing machine.

Proof

Let $G=(V,\Sigma,R,S)$ be an unrestricted grammar generating language L. We can design a two-tape nondeterministic Turing machine M_G recognising L as follows:

- On tape 1 the machine stores a copy of the input string.
- Tape 2 holds the current string that the machine tries to rewrite to match the one on tape 1.
- In the beginning, the machine writes the start variable S on tape 2.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

The computation of machine M_G is composed of stages. In each stage, the machine:

- 1. Moves the read/write-head of tape 2 *nondeterministically* to *some* position on the tape.
- 2. Chooses *nondeterministically* a rule in G that it tries to apply at the selected position. (The rules of G are encoded in the transitions of M_G .)
- 3. If the left-hand side of the chosen rule matches the symbols on the tape, M_G rewrites these symbols with the ones in the right-hand side of the rule. Otherwise M_C rejects.
- 4. At the end of the stage, M_G compares the strings on tapes 1 and 2. If they are the same, the machine acceps and halts. Otherwise, the machine executes the next stage (loops back to step 1).

CS-C2160 Theory of Computation / Lecture 1

Theorem 11.3

If a language L can be recognised with a Turing machine, then it can be generated with an unrestricted grammar.

Proof

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rei})$ be a (deterministic one-tape) Turing machine recognising language L. We can design an unrestricted grammar G_M generating L based on the following idea.

- The variables of G_M include (among others) symbols for all the states $q \in Q$ of M.
- A configuration (q, uav) of M will be represented as a string |uqav|.
- Based on the transitions of M, G_M will have rules that ensure $[uqav] \Rightarrow [u'q'a'v']$ if and only if $(q,u\underline{a}v) \vdash_{\mathbf{u}} (q',u'\underline{a}'v')$.
- Thus M accepts the input x if and only if for some $u, v \in \Sigma^*$:

$$[q_0x] \underset{G_M}{\Rightarrow}^* [uq_{acc}v]$$

Aalto University

School of Science

The rules in G_M comprise three types:

- 1. Rules with which one can derive from the start variable S any string of form $x[q_0x]$, where $x \in \Sigma^*$ and '[', ' q_0 ' and ']' are variables in G_M .
- 2. Rules that allow one to derive from the string $[q_0x]$ a string $[uq_{acc}v]$ if and only if M accepts x.
- 3. Rules that enable one to rewrite any string of form $[uq_{acc}v]$ to the empty string.

Deriving a string $x \in \mathcal{L}(M)$ can then be done as follows:

$$S \stackrel{(1)}{\Rightarrow^*} x[q_0x] \stackrel{(2)}{\Rightarrow^*} x[uq_{acc}v] \stackrel{(3)}{\Rightarrow^*} x$$

Let us thus define the grammar $G = (V, \Sigma, R, S)$, where

$$V = (\Gamma \setminus \Sigma) \cup Q \cup \{S, T, [,], E_L, E_R\} \cup \{X_a \mid a \in \Sigma\}$$

and the rules in *R* include the following three sets:

1. Producing the initial configuration string:

2. Simulating the transitions of M ($a,b \in \Gamma$, $c \in \Gamma \cup \{ [\})$:

Transitions:

Rules:

3. Erasing an accepting configuration string:

$$\begin{array}{lll} q_{\mathrm{acc}} & \rightarrow & E_L E_R \\ q_{\mathrm{acc}}[& \rightarrow & E_R \\ a E_L & \rightarrow & E_L \\ [E_L & \rightarrow & \varepsilon \\ E_R a & \rightarrow & E_R \\ E_R] & \rightarrow & \varepsilon \end{array}$$

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

Aalto University School of Science CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

11.3 Context-sensitive grammars

- An unrestricted grammar is context-sensitive if all its rules are of form $\omega \to \omega'$, where $|\omega'| \ge |\omega|$, or $S \to \varepsilon$, where S is the start variable.
- In addition, it is required that if the grammar contains the rule $S \rightarrow \varepsilon$, then the start variable S does not occur on the right-hand side of any rule.
- A language *L* is *context-sensitive* if it can be generated with some context-sensitive grammar.
- A normal form for context-sensitive grammars: Each context-sensitive language can be generated with a grammar whose rules are of form $S \to \varepsilon$ and $\alpha A\beta \to \alpha \omega \beta$, where A is a variable and $\omega \neq \varepsilon$.
- A rule $\alpha A \beta \to \alpha \omega \beta$ can be interpreted as the application of a rule $A \rightarrow \omega$ "in the context" $\alpha _ \beta$.

Theorem 11.4

Aalto University

School of Science

A language L is context-sensitive if and only if it can be recognised with a non-deterministic Turing machine that does not use more tape space than was already allocated for the input.

- The machines in Theorem 11.4 are called linear bounded automata.
- It is an open problem whether the non-determinism in Theorem 11.4 is necessary or not. (The "LBA ?= DLBA" problem.)

11.4 Recap: The Chomsky hierarchy

A classification of grammars, languages generated by grammars and recogniser automata classes:

Type-0: unrestricted grammars / semi-decidable languages / Turing machines

Type-1: context-sensitive grammars / context-sensitive languages / linear bounded automata

Type-2: context-free grammars / context-free languages / pushdown automata

Type-3: right and left linear grammars / regular languages / finite automata

* A Glimpse Beyond: Computational Complexity

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

ne

School of Science

Aalto University

CS-C2160 Theory of Computation / Lecture 11
Aalto University / Dept. Computer Science

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

to University / Dept. Computer Sc

25/48

* Computational complexity

- So far: only what is decidable (solvable with computers) and what is not.
- But some problems are "more decidable than others".
- For instance, finding a smallest element in an array is/seems much easier than solving sudokus.

- In fact, the set of decidable problems can be divided in many smaller complexity classes:
- P problems that can be solved in polynomial time (≈ always efficiently) with deterministic Turing machines / algorithms.
- NP problems that can be solved in polynomial time with non-deterministic Turing machines.
- PSPACE problems that can be solved with a polynomial amount of extra space (possibly in exponential time).
- EXPTIME problems that can be solved in exponential time.
- and many more...

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, \dots, u_n\}$,

 $V = \{v_1, \dots, v_n\}$, and $E \subseteq U \times V$.

QUESTION: Does *B* have a *perfect matching*, i.e. a 1-1 pairing of vertices?

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, \dots, u_n\}$,

 $V = \{v_1, \dots, v_n\}$, and $E \subseteq U \times V$.

QUESTION: Does *B* have a *perfect matching*, i.e. a 1-1 pairing of vertices?

We can solve a PERFECT MATCHING instance by

1. Polynomial-time reducing it to a MAXFLOW instance so that: the MAXFLOW instance has a flow of n units if and only if the PERFECT MATCHING instance has a perfect matching.

CS-C2160 Theory of Computation / Lecture 1

Aalto University / Dept. Computer Science

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, \dots, u_n\}$, $V = \{v_1, \dots, v_n\}$, and $E \subseteq U \times V$.

QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

We can solve a PERFECT MATCHING instance by

- 1. Polynomial-time reducing it to a MAXFLOW instance so that: the MAXFLOW instance has a flow of n units if and only if the PERFECT MATCHING instance has a perfect matching.
- Solving the resulting MAXFLOW instance.
- 3. The reduction is linear-time and Edmonds-Karp alg. works in $O(VE^2)$

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science Example

 $(x) \land (\neg x \lor y) \land (\neg x \lor \neg z) \land (\neg x \lor \neg y \lor \neg z)$ is satisfiable with $\{x \mapsto \mathbf{true}, y \mapsto \mathbf{true}, z \mapsto \mathbf{false}\}$.

Example: a not-so efficiently solvable problem

QUESTION: Is there a truth assignment that satisfies ϕ ?

INSTANCE: A Boolean formula ϕ in conjunctive normal form.

Definition (propositional satisfiability, SAT)

 $(x) \land (\neg x \lor y) \land (\neg x \lor \neg z) \land (\neg x \lor \neg y \lor z)$ is unsatisfiable.

- Even the best known SAT algorithms, with sophisticated pruning techniques can perform very badly on some instances (although they can solve many relevant problems efficiently).
- No polynomial-time algorithm for SAT is known despite several decades of effort in trying to find one.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

Problem class NP (Non-deterministic Polynomial time)

Two alternative ways to characterise problems in NP:

- 1. Problems that can be solved in *polynomial time* with non-deterministic Turing machines (≈ algorithms that can guess perfectly).
- 2. Problems whose solutions (when they exist) are
 - reasonably small (i.e., of polynomial size), and
 - easy to check (i.e., in polynomial time).

but not necessarily easy to find (or prove non-existent)!

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

Aalto University

NP-complete problems

• A problem A in **NP** is **NP**-complete if every other problem B in **NP** can be reduced to it with a polynomial time computable reduction.

Property: x has a solution in B if and only if R(x) has a solution in A.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

NP-complete problems

• A problem A in **NP** is **NP**-complete if every other problem B in **NP** can be reduced to it with a polynomial time computable reduction.

Property: x has a solution in B if and only if R(x) has a solution in A.

- If an NP-complete problem A can be solved in polynomial time, then all the problems in NP can.
- NP-complete problems are the *most difficult ones* in NP!
- We do not know(!!!) whether NP-complete problems can be solved efficiently or not.

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

Aalto University School of Science

The Cook-Levin theorem

Theorem (S. A. Cook 1971, L. Levin 1973)

SAT is NP-complete.

Stephen Cook (1939-)

Leonid Levin (1948-)

Richard Karp (1935-)

- R. Karp soon (1972) listed the next 21 NP-complete problems.
- Since then, 1000's of problems have been shown NP-complete.
- E.g. TRAVELLING SALESPERSON, GENERALISED SUDOKUS etc. are NP-complete.
- Classic text: Garey and Johnson (1979): Computers and Intractability: A Guide to the Theory of NP-Completeness.

How to prove a new problem NP-complete?

Given: a new problem *C* that you suspect **NP**-complete. To prove that *C* is **NP**-complete:

- 1. show that C is in **NP**,
- 2. take any existing NP-complete problem A, and
- 3. reduce A to your problem C.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

How to prove a new problem NP-complete?

Given: a new problem C that you suspect **NP**-complete. To prove that C is **NP**-complete:

- 1. show that C is in **NP**,
- 2. take any existing NP-complete problem A, and
- 3. reduce *A to your problem C*.

Polynomial time reductions compose: any *B* in **NP** reduces to *C*! Your problem C is **NP**-complete.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

How to prove a new problem NP-complete?

Given: a new problem *C* that you suspect **NP**-complete. To prove that C is **NP**-complete:

- 1. show that C is in **NP**.
- 2. take any existing NP-complete problem A, and
- 3. reduce *A to your problem C*.

Polynomial time reductions compose: any *B* in **NP** reduces to *C*!

- Your problem C is **NP**-complete.
- If your problem C can be solved in polynomial time, then so can A and all the problems in **NP**.

Aalto University School of Science

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

Aalto University School of Science

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

CS-C2160 Theory of Computation / Lecture 11
Aalto University / Dept. Computer Science

Aalto University / Dept. Computer Scie 4'

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

Definition (INDEPENDENT SET)

INSTANCE: An undirected graph G = (V, E) and an integer K. QUESTION: Is there an independent set $I \subseteq V$ with |I| = K?

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

ity / Dept. Computer Scie

Theorem

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ : The corresponding graph G with K = 3:

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

- 1. If ϕ is satisfiable, then G has an independent set of size K.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- \Rightarrow ϕ is satisfiable if and only if G has an independent set of size K.

If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

CS-C2160 Theory of Computation / Lecture 11
Aalto University / Dept. Computer Science

| | A!

Theorem

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ : The corresponding graph G with K = 3:

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

- 1. If ϕ is satisfiable, then G has an independent set of size K.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- \Rightarrow ϕ is satisfiable if and only if G has an independent set of size K.

If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

Theorem

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ :

 $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$

The corresponding graph G with K=3:

- 1. If ϕ is satisfiable, then G has an independent set of size K.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- \Rightarrow ϕ is satisfiable if and only if G has an independent set of size K.

If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science 45/48

Theorem

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ :

The corresponding graph G with K=3:

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

- 1. If ϕ is satisfiable, then G has an independent set of size K.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- \Rightarrow ϕ is satisfiable if and only if G has an independent set of size K.

If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

46/4

NP-completeness: Significance

• Can NP-complete problems be solved in polynomial time?

One of the seven 1M\$ Clay Mathematics Institute Millenium Prize problems, see

http://www.claymath.org/millennium-problems/

- What to do when a problem is **NP**-complete?
 - Attack special cases that occur in practice
 - Develop backtracking search algorithms with efficient heuristics and pruning techniques
 - Develop approximation algorithms
 - Apply incomplete local search methods

...

Some further courses:

- CS-E3190 Principles of Algorithmic Techniques
- CS-E4530 Computational Complexity Theory
- CS-E4340 Cryptography
- and so on...