Modeling Covid-19 SIR Model

Mehdy Hounkonnou and Pol Labarbarie

The SIR Model

Aim: Estimate how the number of individuals in each compartment grows

$$N = S(t) + I(t) + R(t)$$

N : Number of people in the population

S : susceptible people

I : Infected people

R: Removed people

The equations

$$\begin{cases} \frac{dS(t)}{dt} &= -\beta S(t)I(t) & (1.1) \\ \frac{dI(t)}{dt} &= \beta S(t)I(t) - \gamma I(t) & (1.2) \\ \frac{dR(t)}{dt} &= \gamma I(t) & (1.3) \end{cases}$$

$$S \xrightarrow{\beta} I \xrightarrow{\gamma} R$$

Euler's method

General case: $y'(t) = f(t,y(t)), y(t_0) = y_0$

h: the size of every step

and set $t_n = t_0 + nh$

Now one step of the Euler's method is: $y_{n+1} = y_n + hf(t_n, y_n)$

Applied here : $S_{n+1} = S_n - \Box S_n I_n$

SIR model prediction for transmission rate = 0.8 and healing rate = 0.05

Source: images.math.cnrs.fr

DECISION MAKING

How could we see the effects of decisions under the evolution of the epidemic?

Changing the transmission rate

Changing the healing rate

SIR model's limits

THANK YOU FOR YOUR ATTENTION

https://images.math.cnrs.fr/Modelisation-d-une-epidemie-partie-1.html#nb17

https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf