wykład 7: Rozkłady stacjonarne, zaburzenia ruchu Browna

1 Rozkłady stacjonarne

Interesować nas będzie asymptotyczne zachowanie procesów Fellera. Podobnie jak w przypadku łańcuchów Markowa w czasie dyskretnym rozkłady graniczne są niezmiennicze ze względu na funkcje przejścia. Przez Σ oznaczać będziemy σ -ciało zbiorów borelowskich S, czyli najmniejsze σ -ciało zawierające wszystkie otwarte podzbiory S. Skoro S jest ośrodkowa, to Σ jest generowane przez wszystkie kule otwarte.

Dla Procesu Fellera (\mathbf{P}, \mathbb{F}) oraz rozkładu prawdopodobieństwa μ na S definiujemy miarę probabilistyczną \mathbf{P}_{μ} na (S, Σ) wzorem

$$\mathbf{P}_{\mu}[A] = \int_{S} \mathbf{P}_{x}[A] \, \mu(\mathrm{d}x), \qquad A \in \mathcal{F}.$$

W tym miejscu zachęcamy czytelnika do wprawdzenia, że odwzorowanie $x \mapsto \mathbf{P}_x[A]$ jest mierzalne dla $A \in \mathcal{F}$. Miara \mathbf{P}_μ to rozkład procesu Markowa przy rozkładzie początkowym μ .

Definicja 0.1. Niech (\mathbf{P}, \mathbb{F}) będzie procesem Fellera Rozkład prawdopodobieństwa π na (S, Σ) nazywamy rozkładem stacjonarnym jeżeli

$$\mathbf{P}_{\pi}\left[X(t) \in A\right] = \pi(A)$$

dla każdego $A \in \Sigma$.

Chcielibyśmy wiedzieć, jak określić na podstawie generatora, czy miara prawdopodobieństwa na S jest stacjonarna dla procesu Fellera. Z tego powodu przepiszemy powyższą definicję w terminach półgrupy. Jeśli μ jest miarą prawdopodobieństwa na S, rozkład procesu w czasie t, gdy rozkład początkowy jest μ , oznaczamy przez $\mu T(t)$. Spełnia on zależność

$$\int f d(\mu T(t)) = \int T(t) f d\mu = \mathbf{E}_{\mu} [f(X(t))]$$

dla $f \in C_0(S)$. Tutaj \mathbf{E}_μ to wartość oczekiwana odpowiadająca \mathbf{P}_μ . Równoważnie

$$\mathbf{E}_{\mu}[Y] = \int_{X} \mathbf{E}_{x}[Y] \, \mu(\mathrm{d}x)$$

dla każdej ograniczonej zmiennej losowej $Y\colon\Omega\to\mathbb{R}.$

Definicja 0.2. Miara prawdopodobieństwa μ na S jest stacjonarna dla procesu Fellera z półgrupą T(t), jeśli $\mu T(t) = \mu$ dla wszystkich $t \geq 0$, tzn. jeśli

$$\int T(t)f \,\mathrm{d}\mu = \int f \,\mathrm{d}\mu \quad \text{dla wszystkich } f \in C_0(S) \text{ i } t \ge 0. \tag{1.1}$$

Będziemy używać \mathcal{I} do oznaczania klasy rozkładów stacjonarnych dla procesu Fellera. Z (1.1) wynika, że \mathcal{I} jest wypukła. Zbiór punktów ekstremalnych \mathcal{I} będzie oznaczany przez \mathcal{I}_e .

Zadanie 0.1. Pokaż, że jeśli μ jest miarą prawdopodobieństwa na S i $\mu T(t) \Rightarrow \nu$, to ν jest stacjonarna.

Twierdzenie 0.3. Miara prawdopodobieństwa μ na S jest stacjonarna dla odpowiadającego procesu wtedy i tylko wtedy, gdy

$$\int Lf \, \mathrm{d}\mu = 0 \quad \text{dla wszystkich } f \in D.$$

 $Dow \acute{o}d$. Przypuśćmy, że μ jest stacjonarna, i weźmy $f \in \mathcal{D}(L)$. Wtedy

$$\int Lf \, \mathrm{d}\mu = \int \lim_{t \to 0} \frac{T(t)f - f}{t} \, \mathrm{d}\mu = \lim_{t \to 0} \frac{\int T(t)f \, \mathrm{d}\mu - \int f \, \mathrm{d}\mu}{t} = 0.$$

Przeciwnie, przypuśćmy, że $\int Lf \, \mathrm{d}\mu = 0$ dla wszystkich $f \in \mathcal{D}(L)$ i jeśli $f \in \mathcal{D}(L)$ oraz $f - \lambda Lf = g$, to $\int f \, d\mu = \int g \, d\mu$. Iterując to, otrzymujemy

$$\int (I - \lambda L)^{-n} g \, \mathrm{d}\mu = \int g \, \mathrm{d}\mu.$$

Biorąc $\lambda = t/n$ i przechodząc z $n \to \infty$ wnioskujemy, że

$$\int T(t)g \,\mathrm{d}\mu = \int g \,\mathrm{d}\mu.$$

Oto wystarczający warunek na istnienie rozkładu stacjonarnego.

Twierdzenie 0.4. Jeśli S jest przestrzenią zwartą, to $\mathcal{I} \neq \emptyset$

 $Dow \acute{o}d.$ Rozważmy proces Fellera z dowolnym rozkładem początkowym $\mu.$ Niech ν_n będzie rozkładem zmiennej Zdefiniujmy miarę ν_n na S poprzez warunek

$$\int_{S} f(y)\nu_{n}(\mathrm{d}y) = \mathbb{E}\left[\mathbf{E}_{\mu}\left[f(X_{nU})\right]\right] = \mathbb{E}\left[\int_{S} T_{nU}f(y)\,\mu(\mathrm{d}y)\right].$$

Dla $f \in C_0(S)$, własność półgrupy daje

$$\int T(t)f(y)\,\nu_n(\mathrm{d}y) = \mathbb{E}\left[\int_S T_{nU+t}f(y)\,\mu(\mathrm{d}y)\right].$$

tak że

$$\int f \, d\nu_n - \int T(t) f \, d\nu_n = \int f \, d\nu_n - \int f \, d(\nu_n T(t))$$

$$= \frac{1}{n} \left[\int_0^t \int_S T(r) f \, d\mu \, dr - \int_n^{n+t} \int_S T(r) f \, d\mu \, dr \right]. \quad (1.2)$$

Prawa strona (1.2) dąży do zera gdy $n \to \infty$.

Teraz, ponieważ Sjest zwarty, twierdzenie Prochorowa, implikuje, że istnieje podciąg ν_{n_k} taki, że

$$\nu_{n_k} \Rightarrow \nu$$

dla pewnej miary prawdopodobieństwa ν na S. Zatem, ponieważ $T(t)f\in C(S)$, możemy przejść do granicy w (1.2) wzdłuż ciągu ν_{n_k} , aby otrzymać

$$\int f \, \mathrm{d}\nu = \int T(t) f \, \mathrm{d}\nu.$$

Ponieważ to zachodzi dla wszystkich $f \in C_0(S)$, wynika stąd, że $\nu T(t) = \nu$. \square

2 Zaburzenia ruchu Browna

Przyklad 0.5. Rozważmy ruch Browna na $[0,\infty)$ z absorpcją w 0. Niech τ będzie czasem pierwszego uderzenia w 0. Zdefiniujmy

$$X_a(t) = \begin{cases} X(t) & \text{jeśli } t < \tau, \\ 0 & \text{jeśli } t \ge \tau, \end{cases}$$

oraz oznaczmy przez L_a i $T_a(t)$ odpowiednio generator i półgrupę. Dla $f \in C_0[0,\infty)$, niech f_o będzie "nieparzystym" przedłużeniem f na \mathbb{R} :

$$f_o(x) = \begin{cases} f(x) & \text{jeśli } x \ge 0, \\ 2f(0) - f(-x) & \text{jeśli } x < 0. \end{cases}$$

Z zasady odbicia dla każdej $g \in C_0[0, \infty)$,

$$\mathbf{E}_x \left[g(X(t)) \mathbf{1}_{\{t \geq \tau\}} \right] = \mathbf{E}_x \left[g(-X(t)) \mathbf{1}_{\{t \geq \tau\}} \right].$$

Biorac $g = f_o$,

$$\mathbf{E}_x \left[f_o(X(t)) \mathbf{1}_{\{t \geq \tau\}} \right] = \mathbf{E}_x \left[f_o(-X(t)) \mathbf{1}_{\{t \geq \tau\}} \right].$$

Obie te wielkości sa równe

$$\frac{1}{2}\mathbf{E}_x\left[(f_o(X(t))+f_o(-X(t)))\mathbf{1}_{\{t\geq\tau\}}\right].$$

Ostatnie wyrażenie, z definicji f_o jest równe

$$f(0)\mathbf{P}_x(t \geq \tau)$$
.

Podsumowując dla $x \ge 0$,

$$T_a(t)f(x) = \mathbf{E}_x \left[f(X(t))\mathbf{1}_{\{t < \tau\}} \right] + f(0)\mathbf{P}_x(t \ge \tau) = \mathbf{E}_x f_o(X(t)).$$

Oczywiście $f_o \notin C(\mathbb{R})$ o ile f(0) = 0. Niemniej jednak, skoro

$$f_o''(x) = \begin{cases} f''(x) & \text{jeśli } x > 0, \\ -f''(-x) & \text{jeśli } x < 0, \end{cases}$$

wtedy $f^{\prime\prime}(0)=0$ jest potrzebne, aby $f_o^{\prime\prime}$ było ciągłe. Wynika z tego, że

$$\mathcal{D}(L_a) = \{ f \in C_0[0, \infty) : f'' \in C[0, \infty), f''(0) = 0 \},\$$

a dla $f \in \mathcal{D}(L_a)$, $L_a f = \frac{1}{2} f''$.

Przyklad 0.6. Rozważmy ruch Browna na $[0,\infty)$ z odbiciem w 0. Proces ten jest zdefiniowany jako

$$X_r(t) = |X(t)|,$$

a jego generator i półgrupa będą oznaczane odpowiednio przez L_r i $T_r(t)$. Jeśli $f \in C_0[0,\infty)$, niech f_e będzie parzystym przedłużeniem f na \mathbb{R} :

$$f_e(x) = \begin{cases} f(x) & \text{jeśli } x \ge 0, \\ f(-x) & \text{jeśli } x < 0. \end{cases}$$

Wtedy

$$T_r(t)f(x) = \mathbf{E}_x [f(|X(t)|)] = \mathbf{E}_x f_e(X(t))$$
 dla $x \ge 0$.

Zatem,

$$f \in \mathcal{D}(L_r) \iff f_e \in \mathcal{D}(L).$$

Wynika z tego, że

$$\mathcal{D}(L_r) = \{ f \in C[0, \infty) : f', f'' \in C[0, \infty), f'(0) = 0 \},$$

a dla $f \in \mathcal{D}(L_r)$, $L_r f = \frac{1}{2} f''$.

Przyklad 0.7. Zaprezentujemy teraz ruch Browna na $[0,\infty)$ z lepkim 0. Dla c>0, rozważmy operator L_c zdefiniowany jako $L_cf=\frac{1}{2}f''$ na

$$\mathcal{D}(L_c) = \{ f \in C_0[0, \infty) : f'' \in C[0, \infty), f'(0) = cf''(0) \}.$$

Zauważmy, że graniczne przypadki $c\downarrow 0$ i $c\uparrow \infty$ odpowiadają odpowiednio odbiciu i absorpcji w 0. Jest to generator prawdopodobieństwa — dowód jest pozostawiony jako ćwiczenie. Oto weryfikacja własności (d) w Definicji ??: Dla $g\in C_0[0,\infty)$ i $\lambda>0$, musimy rozwiązać $f-\lambda L_c f=g$ dla $f\in \mathcal{D}(L_c)$. Niech $f_a\in \mathcal{D}(L_a)$ oraz $f_r\in \mathcal{D}(L_r)$ będą rozwiązaniami

$$f_a - \lambda L_a f_a = g$$
 oraz $f_r - \lambda L_r f_r = g$.

Ponieważ wszystkie trzy generatory są równe $\frac{1}{2}f''$ na swoich dziedzinach,

$$f = \gamma f_a + (1 - \gamma) f_r$$

jest wymaganym rozwiązaniem, pod warunkiem że f'(0) = cf''(0). Ma to miejsce, gdy γ spełnia

$$\gamma f_a'(0) = c(1 - \gamma)f_r''(0).$$

Aby znaleźć wartość $\gamma, f_a'(0)$ i $f_r''(0)$ muszą mieć ten sam znak. Aby to sprawdzić, rozważmy $h=f_a-f_r$. Wtedy $h-\frac{\lambda}{2}h''\equiv 0$, więc, ponieważ h jest ograniczone,

$$h(x) = h(0)e^{-x\sqrt{2/\lambda}}.$$

Wynika z tego, że

$$f_a'(0) = -\sqrt{2/\lambda}h(0)$$

oraz

$$f_r''(0) = -\left(\frac{2}{\lambda}\right)h(0),$$

więc mają ten sam znak, i

$$\gamma = \frac{2c}{2c + \sqrt{2\lambda}}.$$

Aby powiedzieć coś o zachowaniu tego procesu, gdy odwiedza 0, napiszmy

$$f = \alpha U_c(\alpha)g,$$

gdzie $\alpha=\lambda^{-1}$, a U_c jest rozwiązaniem dla procesu $X_c(t)$ z generatorem L_c . Można to zapisać jako

$$f(x) = \frac{2cf_a(x) + \sqrt{2\lambda}f_r(x)}{2c + \sqrt{2\lambda}} = \alpha \int_0^\infty e^{-\alpha t} \mathbf{E}_x g(X_c(t)) dt.$$

Zastosujmy tę tożsamość do ciągu funkcji g, które są nieujemne i rosną do $1_{(0,\infty)}$. Odpowiadające im f, f_a , oraz f_r rosną odpowiednio do

$$\alpha \int_0^\infty e^{-\alpha t} \mathbf{P}_x(X_c(t) > 0) \, \mathrm{d}t, \quad \alpha \int_0^\infty e^{-\alpha t} \mathbf{P}_x(X_a(t) > 0) \, \mathrm{d}t,$$

oraz 1. Biorąc x = 0, otrzymujemy

$$\mathbf{E}_0 \int_0^\infty \alpha e^{-\alpha t} 1_{\{X_c(t) > 0\}} \, \mathrm{d}t = \frac{1}{1 + c\sqrt{2\alpha}}.$$

Zatem miara Lebesgue'a zbioru $\{t \geq 0: X_c(t)=0\}$ jest dodatnia, w przeciwieństwie do przypadku procesu odbijanego, który odpowiada c=0.