AM213B Assignment #9

Problem 1 (Computational)

We use the method of characteristics to solve the 2D IVP

$$\begin{cases} \frac{\partial u(x,y,t)}{\partial t} + \nabla \cdot (\vec{a}(x,y)u(x,y,t)) = 0\\ u(x,y,0) = u_0(x,y) \equiv \sin^2(x+y) \end{cases}$$
 (IVP-2D)

where

$$\vec{a}(x,y) = \begin{pmatrix} a_1(x,y) \\ a_2(x,y) \end{pmatrix} \equiv \begin{pmatrix} \sin(x)\sin(y) \\ 1 - \exp(\sin(x+y)) \end{pmatrix}$$

The whole problem is periodic in both *x* and *y* directions with period = 2π .

We first write out the divergence and write the PDE as

$$\frac{\partial u}{\partial t} + a_1(x, y) \frac{\partial u}{\partial x} + a_2(x, y) \frac{\partial u}{\partial y} = b(x, y)u$$

where

$$b(x,y) = -\frac{\partial a_1}{\partial x} - \frac{\partial a_2}{\partial y} = -\cos(x)\sin(y) + \exp(\sin(x+y))\cos(x+y)$$

Our goal is to calculate the solution of the 2D IVP at any given point (ξ, η, T) .

The method of characteristics consists of the two steps below.

• Tracing back the C-line from (ξ, η, T) to time 0

$$\frac{dX}{dt} = a_1(X, Y)$$

$$\frac{dY}{dt} = a_2(X, Y)$$

$$X(T) = \xi, \quad Y(T) = \eta$$
(FVP-1)

We use an ODE solve to solve this FVP from t = T to t = 0.

After solution, we set $x_0 = X(0)$ and $y_0 = Y(0)$ as the starting point for next step.

• Advancing from $(x_0, y_0, 0)$ to (ξ, η, T) .

$$\frac{dx}{dt} = a_1(x, y)
\frac{dy}{dt} = a_2(x, y)
\frac{dv}{dt} = b(x, y)v
x(0) = x_0, y(0) = y_0, v(0) = u_0(x_0, y_0)$$
(IVP-1)

We use an ODE solve to solve this IVP from t = 0 to t = T.

The solution of the 2D IVP at (ξ, η, T) is $u(\xi, \eta, T) = v(T)$.

Write a code to calculate u(x, y, T) at any given point (x, y, T).

In your implementation, use RK4 with time step h = 0.01 (h = -0.01 in tracing back).

Test your code at (x, y, T) = (3.9, 2.3, 1.2). You should get $u(3.9, 2.3, 1.2) \approx 5.340824$

Part 1:

Set x_1 = 3.9. Calculate and plot $u(x_1, y, T)$ as a function of y for T = 0.75, 1.0, and 1.25 in one figure. Use about 300 points for y in $[0, 2\pi]$.

Part 2:

Set $x_1 = 2.5$. Calculate and plot $u(x_1, y, T)$ as a function of y for T = 0.75, 1.0, and 1.25 in one figure. Use about 300 points for y in $[0, 2\pi]$.

Problem 2 (Computational)

Continue with the IVP in problem 1.

Calculate $u(x_1, y_1, t)$ as a function of t for $t \in [0, 1.25]$, for 3 sets of (x_1, y_1) below

$$(x_1, y_1) = (3.9, 2.3), (2.7, 4.0), (2.0, 3.0)$$

Plot $u(x_1, y_1, t)$ vs t for the 3 sets of (x_1, y_1) in one figure.

Problem 3 (Computational)

Continue with the IVP in problem 1. Consider the numerical grid on (x, y):

$$\Delta x = \Delta y = \frac{2\pi}{N}$$
, $x_i = i \Delta x$, $0 \le i \le N$, $y_j = j \Delta x$, $0 \le j \le N$

Use N = 80 and calculate u(x, y) on the grid for T = 0.0, 0.25, 0.5, 0.75, 1.0, and 1.25.

Plot u(x, y) using contourf with colorbar (see sample code).

Plot 6 panels, one panel for each time level specified above.

Problem 4 (Computational)

Consider the general linear 1D conservation law

$$\frac{\partial u(x,t)}{\partial t} + \frac{\partial}{\partial x} (a(x)u(x,t)) = 0$$

The Lax-Wendroff method based on the Taylor expansion is

$$u_i^{n+1} = u_i^n - r \Big(F_{i+1/2} - F_{i-1/2} \Big)$$

$$F_{i+1/2} = \frac{1}{2} \Big(a_i u_i^n + a_{i+1} u_{i+1}^n \Big) - \frac{r}{2} \Big(\frac{a_i + a_{i+1}}{2} \Big) \Big(a_{i+1} u_{i+1}^n - a_i u_i^n \Big)$$

Implement the Lax-Wendroff method (see sample code) to solve

$$\begin{cases} \frac{\partial u(x,y,t)}{\partial t} + \frac{\partial}{\partial x} \left(\sin(x) \sin(y) u(x,y,t) \right) = 0 \\ u(x,y,0) = \sin^2(x+y) \end{cases}$$
 (IVPX-1D)

where y is a parameter. The whole problem is periodic with period = 2π . Select $[0, 2\pi]$ as the computational domain. Set $\Delta x = 2\pi/N$ as the grid size. Solve (IVPX-1D) for y = 1.5, 4, and 5. Use N = 300 and r = 0.5 in simulations. Plot u vs x at $T = 0.32\pi$ for y = 1.5, 4, and 5 in one figure.

Problem 5 (Computational)

Continue with (IVPX-1D) in Problem 4. Consider the numerical grid on (x, y):

$$\Delta x = \Delta y = \frac{2\pi}{N}$$
, $x_i = i \Delta x$, $0 \le i \le N$, $y_j = j \Delta x$, $0 \le j \le N$

Solve (IVPX-1D) for all y_j 's to calculate $\{u(x_i, y_j)\}$ at $T = 0.32\pi$. Use N = 300 and r = 0.5. Plot u(x, y) at $T = 0.32\pi$, using contourf with colorbar.

Remark:

This is a component in the split-operator method.