Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ

Отчет к лабораторной работе №2 По дисциплине численные методы

Выполнил: Рассохов Е.П., гр. 421703

Проверил: Князева Л.П.

Решение систем линейных алгебраических уравнений

Задание 1. Исследование погрешности решения СЛАУ прямыми методами.

Цель задания: убедиться в том, что решения двух систем с хорошо и плохо обусловленными матрицами коэффициентов по-разному реагируют на возмущение правой части системы - на точность решения влияют два фактора: число обусловленности матрицы и эквивалентые возмущения.

1 условие:

1)
$$a_{ij} = \begin{cases} 1, & i > j, \\ i+1, & i=j, \\ 2, & i < j, \end{cases}$$
 $b_i = 2ki - i^2;$

где
$$i=\overline{1,7}, \quad j=\overline{1,7}, \quad k=13$$

1. Создание матрицы А по заданным условиям:

3. Вычисление числа обусловленности матрицы А в норме-максимум:

Print[normA]

печатать

14

Print[normAT]

печатать

25

14

condA := normA * normAT

Print[condA]

печатать

25

4. Решение системы АХ=В:

5. Решение возмущенных систем:

5.1. 0.01%:

$$B1 = B$$

$$B1[7] = B1[7] * 1.0001$$

{25, 48, 69, 88, 105, 120, 133}

133.013

5.2. 0.1%:

$$B2 = B$$

$$B2[7] = B2[7] * 1.001$$

{25, 48, 69, 88, 105, 120, 133}

133.133

5.3.1%:

B3 = B

$$B3[7] = B3[7] * 1.01$$

{25, 48, 69, 88, 105, 120, 133}

134.33

6. Норма векторов абсолютной ошибки:

7. Норма векторов относительной ошибки:

8. Норма векторов связки:

2 Условие:

1. Создание матрицы А по заданным условиям:

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} & \frac{1}{11} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} & \frac{1}{11} & \frac{1}{12} \\ \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} & \frac{1}{11} & \frac{1}{12} & \frac{1}{13} \\ \end{pmatrix}$$

После повторения предыдущего алгоритма:

Норма векторов абсолютной ошибки:

Норма векторов относительной ошибки:

Норма векторов связки:

Результаты вычислений отображены в таблице:

Cond(A)	«возмущение»	Норма	Норма	Норма
	,%	вектора	вектора отн.	вектора
		абс. ошибки	ошибки	невязки
Хорошо обусл.	0.01	0.0019	0.00005931	0.013
	0.1	0.019	0.0005931	0.133
	1	0.19	0.005931	1.330
Плохо обусл.	0.01	190000	0.005009	0.0005
	0.1	189189	0.05009	0.005
	1	1891890	0.5009	0.05

Вывод:

Исходя из вычислений, можно сказать, что даже при небольших возмущениях плохо обусловленной матрицы могут возникнуть большие погрешности, в то время как хорошо обусловленная матрица более стойкая к этому.

Задание 3. Решить систему n-ого порядка AX=B методом Якоби и методом Зейделя с точностью $\varepsilon=10$ -3 при n=10 и n=20. Сравнить число итераций, необходимых для достижения точности ε этими методами. A — матрица с диагональным преобладанием, B — вектор-столбец.

$$a_{ij} = \begin{cases} 1, & i \neq j, \\ 2n, & i = j, \end{cases} \qquad b_i = (2n-1)i + \frac{n(n+1)}{2} + (3n-1)(k-1),$$

где
$$i=\overline{1,n}, j=\overline{1,n}, k=13$$

Реализация метода Якоби:

Реализация метода Зейделя:

Вычисление норм абсолютной, относительных ошибок, а также вектора связок:

Действуя по данному алгоритму, проводится расчет для методов Якоба и Зейделя для n=10 и n=20. Все значения вносятся в таблицу:

Порядок	Количество	Норма	Норма	Норма			
системы	итераций	вектора абс.	вектора отн.	вектора			
	•	погрешности	погрешности	невязки			
Якоби							
n=10	14	0.000250128	0.00000436	1.000001434			
n=20	15	0.000320992	0.000003064	0.999999277			
Зейдель							
n=10	6	0.000064846	0.000001303	1.000000102			
n=20	7	0.000017327	0.000000165	0.99999996			

Вывод:

Метод Зейделя обеспечивает немного большую точность вычислений, а также меньшее количество итераций, что может повлиять на дальнейшие расчеты.