17. Search and Matching Steady State

Yvan Becard PUC-Rio

Macroeconomics I, 2023

Something Is Missing

- We have studied two workhorses in macroeconomics
 - ▶ The neoclassical growth model, also known as the RBC model
 - ► The overlapping generations or OLG model
- ▶ In both environments, markets are competitive: in the labor market, the equilibrium wage ensures that labor supply always equal labor demand
- ► Thus unemployment is absent from these models

Unemployment in the United States

Unemployment in Brazil

Unemployment

- ► Unemployment is a defining feature of modern economies: at all times a sizable fraction of the working-age population is involuntary unemployed
- ▶ Unemployment is countercyclical: it goes up in bad times, down in upturns
- ► Unemployment is bad for people: it can lead to loss of income, financial distress, poverty, anxiety, stress, depression, drugs, crime
- ► Unemployment is bad for society: lost of output, waste of resources, drain on government finances, migration, social tension

Working Is Good

"Work keeps at bay three great evils: boredom, vice, and need."

 $Voltaire,\,1759,\,Candide$

Causes

- ▶ What causes unemployment? How can we reduce it?
- ► These questions have occupied economists for decades
- Many theories have been proposed over the years
- ► As of today there is no consensus

Another Workhorse

- ► Today we study what has become the dominant theory of the labor market: the so-called Diamond-Mortensen-Pissarides search and matching model
- ▶ It is a theory of equilibrium unemployment
- ► The model is named after contributions by Diamond (1982), Mortensen (1982), Pissarides (1985), and Mortensen and Pissarides (1994)
- ▶ All three economists got the 2010 Nobel Prize precisely for this theory

Lecture Outline

- 1. Model Setup
- 2. Steady-State Equilibrium
- 3. Comparative Statics
- 4. Theory Versus Data

Main Reference: Ljungqvist and Sargent. 2018. Recursive Macroeconomic Theory, Fourth Edition, Chapter 29

1. Model Setup

Workers

- ▶ There is a continuum of identical workers; normalize their measure to one
- ► Workers are infinitely-lived
- ► Workers are risk neutral

Preferences

- ► The objective of each worker is to maximize the expected discounted value of labor income and leisure
- ightharpoonup The utility of an employed worker is the wage rate w
- ► The utility of an unemployed worker is *z* which can be interpreted as leisure or unemployment benefits
- ▶ Workers' discount factor is $\beta = (1+r)^{-1}$, where r is the interest rate

Firms

- ► There is a continuum of firms
- ▶ Firms have the same discount factor as workers, $(1+r)^{-1}$
- ▶ Why? Think of the firms as being owned by the workers
- ▶ With no loss of generality, each firm employs at most one worker

Production

- ► The production technology has only one input, labor
- ▶ The production technology has constant returns to scale
- ► Each employed worker produces *y* units of output
- ▶ *y* is output per worker, ie productivity

Vacancy

- ► A firm entering the economy must post a job vacancy to find a suitable worker for the job and create a match
- ▶ To post a vacancy, the firm pays a vacancy cost *c* in each period
- ▶ Think of hiring costs: recruiters' salary, job board fees, referral program
- ▶ After a match the firm's per-period earnings are y w

Average Cost Per Hire in the United States

	25th percentile	Median	75th percentile	Mean
Non-executive	\$354	\$1,244	\$4,375	\$4,683
Executive	\$1,500	\$8,750	\$35,000	\$28,329

Source: Society for Human Resource Management (2022)

Exogenous Separation

- ▶ At each period, every match is destroyed with probability *s*
- ► We call *s* the separation rate
- ightharpoonup s is exogenous

Zero Profit

- ► We assume free entry of firms
- ► This implies that as long as expected profit is positive, there are firms entering the economy, driving expected profit until it reaches zero
- ► Thus free entry results in the expected discounted profit of a firm that posts a costly vacancy being zero

Matching Function

- ightharpoonup Let M(u, v) be a matching function
- ightharpoonup M(u,v) is a measure of successful matches in a period
- ▶ *u* is the aggregate measure of unemployed workers
- \triangleright v is the aggregate measure of vacancies
- ightharpoonup M(u,v) is increasing in both u and v, concave, homogeneous of degree one

Filling a Vacancy

- Let $\theta \equiv v/u$ be labor market tightness
- ▶ The higher is θ , the more difficult it is for a firm to find a worker
- Let $q(\theta)$ be the probability that a vacancy is filled

$$q(\theta) \equiv \frac{M(u,v)}{v} = M\left(\frac{u}{v},1\right) = M(\theta^{-1},1)$$

- The probability of filling a vacancy is
 - ▶ Increasing in the number of unemployed workers *u*
 - ightharpoonup Decreasing in the number of vacancies v

Finding a Job

The probability that an unemployed worker is matched is

$$\theta q(\theta) = \frac{v}{u} \frac{M(u, v)}{v} = \frac{M(u, v)}{u} = M\left(1, \frac{v}{u}\right)$$

- The probability of finding a job is
 - ightharpoonup Increasing in the number of vacancies v
 - Decreasing in the number of unemployed workers u

In the Real World – Heterogeneity

- ► Finding a job or filling a vacancy is no easy task: it is typically decentralized, uncoordinated, time-consuming, costly, and uncertain
- ► It is nontrivial because of heterogeneity and frictions among workers and firms, which come from several sources
 - Skills offered by workers versus those required by firms
 - Information about jobs and candidates (insiders versus outsiders)
 - Location of jobs and workers
 - Timing of jobs' and workers' availability

In the Real World – Uncertainty

- ► In the real world there is also uncertainty about the arrival of good jobs (workers) or goods workers (firms)
- Workers and firms have to decide whether to accept what is available or wait for a better alternative
- ▶ They can influence the arrival process itself by
 - Acquiring more information
 - ► Investing in education, retraining employees
 - Changing location

Matching

- ► The matching function is a modeling device that captures the implications of the costly and lengthy job hiring process
- ▶ But without the need to make frictions and heterogeneity explicit
- ► The matching function gives the outcome of the investment of resources by firms and workers as function of the inputs
- ▶ It is similar to an aggregate production function

Matching Function – Flows Into Employment

Functional Form

ightharpoonup A common example of a matching function M(u,v) is the Cobb-Douglas form

$$M(u,v) = Au^{\alpha}v^{1-\alpha}, \qquad A > 0, \ \alpha \in (0,1)$$

► This implies constant elasticities

$$\frac{\partial M(u,v)/M(u,v)}{\partial u/u} = -q'(\theta)\frac{\theta}{q(\theta)} = \alpha \quad \text{and} \quad \frac{\partial M(u,v)/M(u,v)}{\partial v/v} = 1 - \alpha$$

▶ A rise in *u* increases matches by α ; a rise in *v* increases matches by $1 - \alpha$

2. Steady-State Equilibrium

Steady State

- Let us study first the stationary case
- ▶ In a steady state, the following two measures must be equal

Employed workers being laid off = Unemployed workers finding a job $s(1-u) \ = \ \theta q(\theta) u$

Unemployment

▶ The steady-state unemployment rate is thus

$$s(1-u) = \theta q(\theta)u \implies u = \frac{s}{s + \theta q(\theta)}$$
 (1)

- All other things being equal, the unemployment rate is
 - Increasing in the job separation rate s
 - ▶ Decreasing in labor market tightness $\theta = v/u$
 - ightharpoonup Decreasing in the number of vacancies v

Beveridge Curve

- ► The negative relationship between unemployment and job vacancies is called the Beveridge curve or UV curve
- ► The Beveridge curve was developed by Dow and Dicks-Mireau (1958) and named after British economist William Beveridge
- ▶ Beveridge never plotted the curve himself but was the first to discuss the link between *u* and *v* in 1944

Beveridge Curve in the US

The Beveridge Curve typically shows that when unemployment falls, job vacancies increase

The relationship between the U.S. unemployment rate and the job openings rate,

Source: Equitable Growth (2022)

Model Beveridge Curve

▶ The search and matching model in steady state features a Beveridge curve

$$u = \frac{s}{s + \theta q(\theta)} = \frac{s}{s + M(1, \frac{v}{u})} \tag{1}$$

► All other things being equal, this equation predicts a negative relationship between *u* and *v*

Equilibrium Wage

- ightharpoonup How do we determine the equilibrium value of the wage w?
- We turn to the situations faced by firms and workers
- ▶ We impose the no-profit condition for vacancies
- ▶ We impose Nash bargaining between a matched firm and worker

Nash Bargaining

- Nash bargaining refers to the solution of a simple two-player bargaining problem or game
- ▶ It is widely used in economics and game theory
- ▶ It was developed by US mathematician John Nash (1950, *Econometrica*)
- ▶ Nash won the economics Nobel prize in 1994 for his work on game theory (when he was a graduate student; see the movie *A Beautiful Mind* 2001)

Value Functions of Firms

► The firm's value of a filled job is

$$J = y - w + \beta[sV + (1 - s)J]$$

- A filled job turns into a vacancy with probability s
- ► The firm's value of a vacancy is

$$V = -c + \beta \{q(\theta)J + [1 - q(\theta)]V\}$$

lacksquare A vacancy turns into a filled job with probability $q(\theta)$

Job Creation

- ▶ Vacancies earn zero profits due to free entry, V = 0
- ► Therefore the previous equation becomes

$$J = \frac{c}{\beta q(\theta)}$$

▶ Plug this into the equation for *J* and solve for *w*

$$w = y - \frac{(r+s)c}{q(\theta)} \tag{2}$$

► This equation is referred to as the job creation condition

Cost Equals Benefit

- ightharpoonup The wage rate w ensures that firms with vacancies break even in an expected present-value sense
- A firm's match surplus must be equal to $J = \frac{c}{\beta q(\theta)}$ in order for the firm to recoup its average cost of filling a vacancy
- ▶ We obtain the same condition if we equalize cost and expected benefit

$$c = \frac{q(\theta)}{1+r} \sum_{t=0}^{\infty} \left(\frac{1-s}{1+r}\right)^t (y-w) = q(\theta) \frac{y-w}{r+s}$$

Labor Demand

Repeat the job creation condition

$$w = y - \frac{(r+s)c}{q(\theta)} \tag{2}$$

- The job creation condition in the search-and-matching model replaces the usual labor demand equation in competitive labor market models, $w = F_L$
- Firms can afford to pay a higher wage the
 - ► Higher the productivity of a worker *y*
 - ightharpoonup Lower the vacancy cost c or interest rate r
 - ▶ Higher the probability of filling the vacancy $q(\theta)$
 - ightharpoonup Lower labor market tightness θ

Value Function of Workers

► The value of an employed worker is

$$E = w + \beta[sU + (1-s)E]$$

- ▶ An employed worker loses her job with probability *s*
- ► The value of an unemployed worker is

$$U = z + \beta \{\theta q(\theta)E + [1 - \theta q(\theta)]U\}$$

▶ An unemployed worker finds a job with probability $\theta q(\theta)$

Match Surplus

- ▶ The match between a firm and a worker generates a surplus
- ▶ The worker's share of the match surplus is E U
- ▶ The firm's share of the match surplus is J V = J (free entry means V = 0)
- ▶ Let *S* be the total match surplus

$$S = (E - U) + J$$

▶ Let's see how *S* is shared between firm and worker

Nash Product

- ► The product of the two excess utilities is the Nash product
- ▶ The total surplus is shared according to the Nash product

$$\max_{(E-U),\,J} (E-U)^\phi J^{1-\phi}$$
 subject to $S=E-U+J$

 $lackloss \phi \in (0,1)$ is the worker's bargaining strength, ie her weight in the Nash product; if $\phi=1$ all the bargaining power goes to the worker

Nash Solution

▶ Solving the Nash bargaining problem, ie deriving with respect to E-U and J, gives us the Nash solution

$$E - U = \phi S$$
 and $J = (1 - \phi)S$

Or equivalently

$$E - U = \frac{\phi}{1 - \phi} J$$

Wage

Solve equation $E = w + \beta[sU + (1-s)E]$ for E

$$E = \frac{(1+r)w + sU}{r+s}$$

Solve equation $J = y - w + \beta[sV + (1-s)J]$ for J

$$J = \frac{(1+r)(y-w)}{r+s}$$

▶ Plug these two into the Nash solution $E - U = \phi/(1 - \phi)J$

$$w = \frac{r}{1+r}U + \phi\left(y - \frac{r}{1+r}U\right)$$

Annuity

- ► An annuity is a fixed sum of money paid to someone each year, typically for the rest of their life (life annuity)
- ightharpoonup Suppose that X is an asset that pays annuity x each year

$$X = \sum_{t=0}^{\infty} \left(\frac{1}{1+r}\right)^t x \quad \Longrightarrow \quad x = \frac{r}{1+r}X$$

▶ Therefore, $\frac{r}{1+r}U$ is the annuity value of being unemployed

Interpretation

▶ Repeat the equation for the equilibrium wage

$$w = \underbrace{\frac{r}{1+r}U}_{\text{Outside option}} + \underbrace{\phi\left(y - \frac{r}{1+r}U\right)}_{\text{Worker's share of match surplus}}$$

▶ The wage is equal to the outside option, ie the annuity $\frac{r}{1+r}U$, plus the worker's share ϕ of the one-period surplus

Annuity Value of Unemployment

Solve $U = z + \beta \{\theta q(\theta)E + [1 - \theta q(\theta)]U\}$ for E - U

$$E - U = \frac{rU - (1+r)z}{\theta q(\theta)}$$

► Combine it with the solution $E - U = \frac{\phi}{1 - \phi} J = \frac{\phi}{1 - \phi} \frac{(1 + r)c}{q(\theta)}$

$$\frac{r}{1+r}U = z + \frac{\phi\theta c}{1-\phi}$$

► This is the annuity value of being unemployed

Recap of the Model

Firms' problem

(3)
$$J = y - w + \beta[sV + (1-s)J] \implies J = \frac{1+r}{r+s}(y-w)$$

(3)
$$J = y - w + \beta [sV + (1 - s)J] \implies J = \frac{1 + r}{r + s} (y - w)$$
(4)
$$V = -c + \beta \{q(\theta)J + [1 - q(\theta)]V\} \implies J = \frac{(1 + r)c}{q(\theta)}$$

Workers' problem

(5)
$$E = w + \beta[sU + (1-s)E] \implies E = \frac{(1+r)w + sU}{r+s}$$

(5)
$$E = w + \beta[sU + (1-s)E] \implies E = \frac{(1+r)w + sU}{r+s}$$

(6) $U = z + \beta\{\theta q(\theta)E + [1-\theta q(\theta)]U\} \implies E - U = \frac{rU - (1+r)z}{\theta q(\theta)}$

Nash bargaining

(7)
$$E - U = \frac{\phi}{1 - \phi} J$$

Equilibrium

► Combine (3) and (4) to retrieve the job creation condition

$$w = y - \frac{(r+s)c}{q(\theta)} \tag{8}$$

► Combine (3), (5), and (7)

$$w = \frac{r}{1+r}U + \phi\left(y - \frac{r}{1+r}U\right) \tag{9}$$

Combine (4), (6), and (7)

$$\frac{r}{1+r}U = z + \frac{\phi\theta c}{1-\phi} \tag{10}$$

Wage Curve

► Combine the last two equations, (9) and (10), to obtain a wage curve

$$w = z + \phi(y - z + \theta c) \tag{11}$$

- Nash bargaining results in the worker being compensated for
 - ► Lost leisure z
 - ightharpoonup A fraction ϕ of the firm's output in excess of z
 - A fraction ϕ of the vacancy cost c per unemployed worker that was saved due to the match

Labor Supply

▶ The wage curve is a positive relationship between w and θ

$$w = z + \phi(y - z + \theta c) \tag{11}$$

► Thus it can be seen as a labor supply equation: the more vacancies, the higher the wage demanded by workers

Demand and Supply

▶ Labor demand: from the firm's problem we derived a job creation condition, ie a negative relation between w and θ

$$w = y - \frac{(r+s)c}{q(\theta)} \tag{2}$$

▶ Labor supply: from the two problems and Nash bargaining we got a wage curve, ie a positive relation between w and θ

$$w = z + \phi(y - z + \theta c) \tag{11}$$

Labor Market Equilibrium

Combine labor demand and supply

$$y - z = \frac{r + s + \phi \theta q(\theta)}{(1 - \phi)q(\theta)}c$$

This equation determines equilibrium tightness θ and ensures that firms' and workers' shares of the match surplus are the outcome of Nash bargain

Stationary Equilibrium

A stationary equilibrium is a set of value functions $\{J, V, E, U\}$, a wage w, vacancies v, unemployed workers u, and tightness $\theta \equiv v/u$ such that

1. $\{J, V, E, U\}$ satisfy

$$\begin{split} J &= y - w + \beta[sV + (1-s)J] \\ V &= -c + \beta\{q(\theta)J + [1-q(\theta)]V\} \\ E &= w + \beta[sU + (1-s)E] \\ U &= z + \beta\{\theta q(\theta)E + [1-\theta q(\theta)]U\} \end{split}$$

Stationary Equilibrium

2. The wage w is determined through Nash bargaining

$$\max_{(E-U),J} (E-U)^{\phi} J^{1-\phi} \quad \text{subject to} \quad S = E-U+J$$

- 3. There is free entry of firms, V = 0
- 4. Workers finding a job equal workers losing their job

$$\theta q(\theta)u = s(1-u)$$

Non-Clearing Wage

- ► The wage no longer serves as the adjustment variable that clears the market, ie that equalizes demand and supply
- ► In other words, labor demand is not equal to labor supply: there are workers who don't find a job (and firms who don't find workers)
- ► The labor market is not competitive or Walrasian
- ▶ This is a model of equilibrium unemployment

Summary of Key Equilibrium Conditions

- ▶ The stationary equilibrium is a triple $\{u, \theta, w\}$ that satisfies three equations
- A. Job creation or labor demand

$$w = y - \frac{(r+s)c}{q(\theta)} \tag{2}$$

B. Wage curve or labor supply

$$w = z + \phi(y - z + \theta c) \tag{11}$$

C. Beveridge curve

$$u = \frac{s}{s + \theta q(\theta)} = \frac{s}{s + M(1, \frac{v}{u})} \tag{1}$$

Labor Market Equilibrium

- ▶ We want to plot the previous these curves; for this we use two diagrams
- ▶ The first diagram is the tightness-wage chart (θ, w) : job creation A and the wage curve B together determine the wage w and the ratio θ of v to w
- ▶ Job creation A slopes down (demand), it implies a negative θ -w relation
- The wage curve B slopes up (supply), it is a positive linear θ -w relation
- **Equilibrium** (θ, w) is at the intersection of the two curves and is unique
- ▶ The figure shows that the equilibrium θ is independent of unemployment

Labor Market Equilibrium

Beveridge Curve

- ▶ The second diagram is the Beveridge diagram (u, v)
- ► The Beveridge curve C implies a negative *u-v* relation and is convex to the origin by the properties of the matching technology
- ▶ Job creation is a line through the origin with positive slope θ
- \blacktriangleright To obtain θ , substitute the wage curve B into the job creation condition A

$$(1 - \phi)(y - z) - \frac{r + s + \phi\theta q(\theta)}{q(\theta)}c = 0$$

Beveridge Curve

3. Comparative Statics

Experiments

- ▶ We are going to use the model to make some experiments
- ► We are in steady state, so a change in a parameter or variable brings us to another steady state, hence the term comparative statics
- ► As opposed to comparative dynamics where we shock the model and study its off-steady state properties

- Let's consider an increase in unemployment benefits z
- ▶ The increase in *z* directly affects the wage curve

$$w = z + \phi(y - z + \theta c) \implies \frac{\partial w}{\partial z} = 1 - \phi \ge 0$$

▶ The increase in z shifts the wage curve up as long as $\phi < 1$

- ightharpoonup The outside option of workers z increases
- Workers ask for a higher wage, the wage curve shifts up
- ► Firms respond by reducing vacancies, creating fewer jobs
- ► Equilibrium tightness is lower, ie unemployment is higher

- Let's now consider an increase in the separation rate s
- ightharpoonup The increase in s directly affects job creation by reducing w

$$w = y - \frac{(r+s)c}{q(\theta)} \implies \frac{\partial w}{\partial s} = -\frac{c}{q(\theta)} < 0$$

► The increase in *s* also shifts the Beveridge curve rightward

$$u = \frac{s}{s + \theta q(\theta)} \implies \frac{\partial u}{\partial s} = \frac{\theta q(\theta)}{[s + \theta q(\theta)]^2} > 0$$

- ► More jobs are destroyed at each period
- Unemployment goes up, tightness goes down
- ► Firms have to post vacancies more often to refill jobs and thus must pay a higher cost upfront
- ► Thus they offer lower wages
- ► The effect on vacancies is ambiguous

Increase in Productivity

- We turn to an increase in productivity y
- ▶ This affects both job creation and the wage curve

$$w = y - \frac{(r+s)c}{q(\theta)};$$
 $w = z + \phi(y-z+\theta c)$

▶ The increase in *y* shifts both curves upward

$$\frac{\partial w}{\partial y} = 1; \qquad \frac{\partial w}{\partial y} = \phi$$

Increase in Productivity

Increase in Productivity

Increase in Productivity

- ► Workers are more productive
- Wages increase
- ► Firms open more vacancies
- Unemployment goes down
- ► Tightness goes up as a result

4. Theory Versus Data

Attractive Framework

- Search and matching theory is attractive for many reasons
 - ► It nicely describes how the labor market functions
 - ► It is analytically tractable
 - ▶ It has rich and intuitive comparative statics
 - ► It can easily be adapted to study labor market policy issues such as unemployment insurance
- ▶ But does the model fit the data?

The Shimer Puzzle

- ► Shimer (2005, *AER*) famously argues that the model cannot generate factual unemployment and vacancy fluctuations
- ▶ These are two central elements of the model
- ► This critique has been referred to as the Shimer puzzle

Model Versus Data

- Shimer collects data on US unemployment and vacancies
 - ► He detrends the data using a Hodrick-Prescott filter
 - ► He computes simple business-cycle statistics
- ► He extends the model to allow for aggregate fluctuations
 - He computes labor productivity shocks using US data
 - ► He feeds these shocks to the model out of steady state
 - ► He computes the same statistics implied by the model

Results

▶ Shimer reports results for US quarterly data, 1951–2003

		u	v	$\theta = v/u$
Data, standard deviation Model, standard deviation		$0.190 \\ 0.009$	$0.202 \\ 0.027$	$0.382 \\ 0.035$
Data, autocorrelation Model, autocorrelation		0.936 0.939	$0.940 \\ 0.835$	$0.941 \\ 0.878$
Data, correlation with	$egin{array}{c} u \\ v \\ v/u \end{array}$	1.000 _ _	$-0.894 \\ 1.000 \\ -$	$-0.971 \\ 0.975 \\ 1.000$
Model, correlation with	$egin{array}{c} u \ v \ v/u \end{array}$	1.000 - -	$-0.927 \\ 1.000 \\ -$	$-0.958 \\ 0.996 \\ 1.000$

Comovements

- ► The model performs well along some dimensions
- ▶ The Beveridge curve holds, ie the negative *u-v* correlation is well captured
- Serial correlations are high as in the data

Volatility

- ▶ But the model fails dramatically on other aspects
- ▶ The volatility of u, v, and v/u is one order of magnitude too low
- ► The model provides little amplification: productivity shocks induce very small movements along the Beveridge curve
- ightharpoonup Shimer also shows that shocks to the separation rate imply positive correlation between u and v, at odds with the data

Mechanism

- ▶ Why do *u* and *v* move so little after a productivity shock?
- ► Higher productivity increases the value of work versus leisure and thus makes unemployment less attractive
- ► It also decreases the relative cost of advertising a vacancy and thus increases the number of job postings by firms
- ightharpoonup The result is higher v, lower u, as we observe in the data
- ▶ But that is not the end of the story

It's All in the Wage

- ► The increase in hiring shortens unemployment duration
- lacktriangle Worker's bargaining power rises, they negotiate a higher w
- Higher wages absorb most of the productivity increase
- ▶ This in turn eliminates the incentives for new vacancies
- ► The overall result is a large and positive effect on wages, but little impact on unemployment, vacancies, and job-finding rates

Lively Debate

- ▶ The Shimer puzzle sparked a lively debate in the literature
- ► Several papers have proposed "fixes" to the search and matching model so that it fits the data better
- ▶ The main issue is that the model wrongly generates
 - Volatile and procyclical wages
 - ► Nonvolatile unemployment and vacancies

US Wages Are Not Really Procyclical

Sticky Wages

- ightharpoonup One solution proposed by the literature is to model rigid wages that respond less to shocks, sot that quantities (u, v) become more volatile
- ▶ Hall (2005) posits a wage norm \hat{w} that must be paid to workers
- ▶ Menzio (2005) studies "firm-wage policy" where firms offer different wages to workers and strategically choose to be a low or high paying employers
- ► Hall and Milgrom (2008) replace Nash bargaining with alternating-offer bargaining in which firms and workers take turn making wage offers
- ▶ Gertler and Trigari (2009) propose staggered multiperiod wage contracting

Different Calibration

- ▶ Another solution is to change the calibration of the model
- ► Hagedorn and Manovskii (2008, *AER*) propose a new calibration strategy for the model's two central parameters
 - ightharpoonup The value of leisure z
 - ightharpoonup The worker's bargaining power ϕ

Shimer's Calibration

- Normalize productivity to unity, y = 1
- Shimer (2005) interprets z as an unemployment benefit and uses data on income replacement rates to set z=0.4y
- ▶ To calibrate ϕ , Shimer estimates a matching function on monthly job finding and filling rates: he finds $\alpha = 0.72$ and sets $\phi = 0.72$

Non-Market Activity

- ▶ Hadegorn and Manovskii argue *z* should be much higher for three reasons
- 1. *z* represents the entire value of not working: leisure, home production, self-employment, unemployment benefits, welfare benefits
- 2. In a model with indivisible labor, a family chooses who works and who produces at home, so y = z in equilibrium
- 3. Large and procyclical flows out-of-the-labor-force into employment suggest y is close to z for many people
- ▶ Based on all this they set z = 0.95y

Bargaining Power

- ► Hadegorn and Manovskii compute in the data
 - ► The capital and labor cost of posting vacancies
 - ► The elasticity of wages with respect to productivity
- They use these targets to calibrate the bargaining power of workers ϕ , which they set to $\phi = 0.052$

Results

▶ Hagedorn and Manovskii (2008) find for 1951–2004 data

		u	v	$\theta = v/u$
Data, standard deviation		0.125	0.139	0.259
Model, standard deviation		0.145	0.169	0.292
Data, autocorrelation		0.870	0.904	0.896
Model, autocorrelation		0.830	0.575	0.751
Data, correlation with	u	1.000	-0.919	-0.977
	v	_	1.000	0.982
	v/u	_	_	1.000
Model, correlation with	u	1.000	-0.724	-0.916
	v	_	1.000	0.940
	v/u	_	_	1.000

Puzzle Solved

- ► Data values differ because Hagedorn and Manovskii use a different smoothing parameter for the HP filter
- ▶ With this new calibration, the model generates factual volatility of unemployment, vacancy, and market tightness

Shimer's Calibration

Shimer's Calibration

Hagedorn and Manovskii's Calibration

Hagedorn and Manovskii's Calibration

To Be Continued

▶ More about search and matching in lecture 18