Primal-dual interior-point methods for linear optimization problems

Erling D. Andersen MOSEK ApS

Email: e.d.andersen@mosek.com

WWW: http://www.mosek.com

November 27, 2007

History

Introduction

History

What is MOSEK Customers of MOSEK

Overview

Primal-dual interior-point methods

Software

Conclusions

Further information

■ 1940s: Linear optimization i.e.

(P) minimize
$$c^T x$$

subject to $Ax = b$,
 $x \ge 0$,

is invented by Dantzig (and Von Neuman).

- 1947: The simplex method was invented.
- 1984: Kamarkar presents a polynomial time interior-point method.
- **1**984-1999:
 - A large amount of work on interior-point methods is performed.
 - ◆ Implementations of the simplex alg. is improved a lot.
- 1999-2007: LO is employed extensively.
- 2007: You have learned about the simplex method.
- 2007: You will learn about interior-point methods.

What is MOSEK

Introduction

History

What is MOSEK

Customers of MOSEK

Overview

Primal-dual interior-point methods

Software

Conclusions

Further information

- A software package for solving large-scale optimization problems.
- Solves **linear**, **conic**, and **nonlinear** convex problems.
- Has mixed-integer capabilities.
- Stand-alone as well as embedded.
- Used to solve problems with up to millions of constraints and variables.
- Version 1 released in 1999.
- Version 5 released July 2007.
- See www.mosek.com for further info.

Customers of MOSEK

Introduction

History

What is MOSEK

Customers of MOSEK

Overview

Primal-dual interior-point methods

Software

Conclusions

Further information

- Financial institutions such as banks and investment funds.
- Companies/goverments managing forrest.
- Chip designers.
- Public transport companies.
 - ◆ Trapeze.
- ISVs such as Energy Exemplar.
- TV Commercial scheduling.

Overview

Introduction

History
What is MOSEK
Customers of

MOSEK Overview

Primal-dual interior-point methods

Software

Conclusions

Further information

- The basics of an interior-point method.
- Implementation specific details.
- Existing IPM software.
- Some computational results.
 - ◆ Comparison with the simplex algorithm.

Primal-dual interior-point methods

Outline

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

- Notation.
- The primal-dual algorithm (the infeasible variant).
 - ♦ A homogeneous model.
 - Mehrotra's predictor-corrector method.
 - Further enhancements.
 - Linear algebra issues (The Cholesky factorization).
- Other issues.

Notation

Introduction

Primal-dual interior-point methods

Outline

Notation

The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the

optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model Powell's example (Math. Prog., 93, no.

1)
Mehrotra's
predictor-corrector
method
Summary for

Primal problem:

(P) minimize
$$c^T x$$

subject to $Ax = b$,
 $x \ge 0$,

(m equalities, n variables). Dual problem:

$$\begin{array}{ll} (D) & \text{maximize} & b^T y \\ & \text{subject to} & A^T y + s = c, \\ & s \geq 0. \end{array}$$

The primal-dual algorithm

Introduction

Primal-dual interior-point methods

Outline

Notation

The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual algorithm
The homogeneous

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model Powell's example

(Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

Derivation summary:

- Step 1: Remove the inequalities from (P) using a barrier term.
- Step 2: State the Lagrange optimality conditions.
- Step 3: Apply Newton's method to the optimality conditions.

Step 1 - Introducing the barrier

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier

The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual algorithm
The homogeneous

The homogeneous model
The homogeneous algorithm
Summary for

homogeneous model Powell's example

(Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

(PB) minimize $c^T x - \rho \sum_j \ln(x_j)$ subject to Ax = b.

Notes:

- lacksquare is a positive (barrier) parameter.
- What is the relation between (P) and (PB)?
 - Feasibility?
 - ◆ Optimality?
- Could ln(x) be replaced by another function?

The Lagrange function

Introduction

Primal-dual interior-point methods

Outline

Notation
The primal-dual algorithm

Step 1 - Introducing the barrier

The Lagrange function

Step 2 - the

Lagrange optimality conditions Step 3 - solving the optimality conditions The primal-dual algorithm The homogeneous model The homogeneous algorithm Summary for homogeneous model Powell's example (Math. Prog., 93, no. 1)

Mehrotra's

Summary for

method

predictor-corrector

The Lagrange function:

$$L(x,y) := c^T x - \rho \sum_{j} \ln(x_j) - y^T (Ax - b)$$

where *y* is the Lagrange multipliers.

Given

then

- 1. State the Lagrange function.
- 2. State the optimality conditions.

Step 2 - the Lagrange optimality conditions

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier The Lagrange function

Step 2 - the Lagrange optimality conditions

Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model

The homogeneous algorithm

Summary for homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

Optimality conditions:

$$\nabla_x L(x,y) = c - \rho X^{-1}e - A^T y = 0,$$

$$\nabla_y L(x,y) = Ax - b = 0.$$

where

$$X := \operatorname{diag}(x) := \begin{bmatrix} x_1 & 0 & 0 & 0 \\ 0 & x_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & x_n \end{bmatrix}, \quad e := \begin{bmatrix} 1 \\ 1 \\ \vdots \\ \vdots \\ 1 \end{bmatrix}.$$

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier The Lagrange function

Step 2 - the Lagrange optimality conditions

Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

Let

$$s = \rho X^{-1}e$$

and hence

$$Xs = \rho e$$
.

Equivalent optimality conditions

$$(O) \quad Ax = b, \quad x > 0,$$

$$A^{T}y + s = c, \quad s > 0,$$

$$Xs = \rho e.$$

Observe this implies

$$x_j s_j = \rho.$$

- What is the interpretation of the optimality conditions?
- How does the optimality conditions relate to the optimality conditions for (P)?

Step 3 - solving the optimality conditions

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier The Lagrange function Step 2 - the Lagrange optimality conditions

Step 3 - solving the optimality conditions

The primal-dual algorithm

The homogeneous model
The homogeneous

The homogeneous algorithm

Summary for homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

How to solve the optimality conditions.

- They are nonlinear.
- Hence apply Newton's method:

$$\nabla f(x^k)d_x = f(x^k),
x^{k+1} = x^k + \alpha d_x.$$

where $\alpha \in]0,1]$ is step size. Solves f(x)=0.

Define:

$$F_{\gamma}(x,y,s) := \begin{bmatrix} Ax - b \\ A^{T}y + s - c \\ Xs - \gamma \mu e \end{bmatrix}, \quad \rho := \gamma \mu = \gamma x^{T} s/n.$$

($\gamma \geq 0$ is a parameter to be chosen).

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier The Lagrange function Step 2 - the Lagrange optimality conditions

Step 3 - solving the optimality conditions

The primal-dual algorithm

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method Summary for

Given

$$(x^0, s^0) > 0$$

then one step of Newton's method applied to

$$F_{\gamma}(x,y,s) = 0, \quad x,s \ge 0$$

is given by

$$\nabla F_{\gamma}(x^0, y^0, s^0) \begin{bmatrix} d_x \\ d_y \\ d_s \end{bmatrix} = -F_{\gamma}(x^0, y^0, s^0).$$

and

$$\begin{bmatrix} x^1 \\ y^1 \\ s^1 \end{bmatrix} := \begin{bmatrix} x^0 \\ y^0 \\ s^0 \end{bmatrix} + \alpha \begin{bmatrix} d_x \\ d_y \\ d_s \end{bmatrix}.$$

 $\alpha \in (0,1]$ is a step-size.

The primal-dual algorithm

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions

The primal-dual algorithm

The homogeneous model
The homogeneous algorithm
Summary for homogeneous model
Powell's example
(Math. Prog., 93, no.

1)
Mehrotra's
predictor-corrector
method
Summary for

- 1. Choose (x^0, y^0, s^0) such that $x^0, s^0 > 0$.
- 2. Choose $\gamma, \theta \in (0, 1), \varepsilon > 0$
- 3. k := 0
- 4. while $\max(\|Ax^k b\|, \|A^Ty^k + s^k c\|, (x^k)^Ts^k) \ge \varepsilon$
- 5. $\mu^k := ((x^k)^T s^k)/n$
- 6. Solve:

$$\begin{array}{rcl}
Ad_{x} & = & -(Ax^{k} - b), \\
A^{T}d_{y} + d_{s} & = & -(A^{T}y^{k} + s^{k} - c), \\
S^{k}d_{x} + X^{k}d_{s} & = & -X^{k}s^{k} + \gamma\mu^{k}e,
\end{array}$$

7. Compute:

$$\alpha^k := \theta \max\{\bar{\alpha} : x^k + \bar{\alpha}d_x \ge 0, \ s^k + \bar{\alpha}d_s \ge 0, \ \theta\bar{\alpha} \le 1\}$$

- 8. $(x^{k+1}; y^{k+1}; s^{k+1}) := (x^k; y^k; s^k) + \alpha^k(d_x; d_y; d_s)$
- 9. k := k+1
- 10. end while

Primal-dual interior-point methods

Outline

Notation
The primal-dual algorithm

Step 1 - Introducing the barrier The Lagrange function Step 2 - the Lagrange optimality conditions Step 3 - solving the optimality conditions

The primal-dual algorithm

The homogeneous

model
The homogeneous
algorithm
Summary for
homogeneous model
Powell's example
(Math. Prog., 93, no.
1)

Mehrotra's predictor-corrector method Summary for

$$\begin{bmatrix} Ax^1 - b \\ A^Ty^1 + s^1 - c \end{bmatrix} = (1 - \alpha) \begin{bmatrix} Ax^0 - b \\ A^Ty^0 + s^0 - c \end{bmatrix}$$

and

$$(x^{1})^{T}s^{1} = (1 - (1 - \gamma)\alpha)(x^{0})^{T}s^{0} + \alpha^{2}d_{x}^{T}d_{s}.$$

Given $\alpha > 0$ and $\gamma \in [0, 1)$:

- Residuals are reduced.
- \blacksquare $(x^1)^T s^1 < (x^0)^T s^0$ for sufficiently α small.
- Difficulty: $d_x^T d_s$ is not under control.
- Always interior: x, s > 0.

Observations

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions

The primal-dual algorithm

The homogeneous model
The homogeneous algorithm
Summary for homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method Summary for

- Fairly simple algorithm.
- Insensitive to degeneration.
- Few but computational expensive iterations.
- What about infeasible or unbounded problems?
- Theoretical convergence analysis is messy.

The homogeneous model

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

algorithm
Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual

The homogeneous model

algorithm

The homogeneous algorithm
Summary for homogeneous model
Powell's example
(Math. Prog., 93, no. 1)
Mehrotra's

predictor-corrector

method

Summary for

A homogeneous and self-dual model:

$$\begin{array}{rclcrcl} Ax - b\tau & = & 0, & x \ge 0, \\ A^Ty + s - c\tau & = & 0, & s \ge 0, \\ -c^Tx + b^Ty - \kappa & = & 0, & \tau, \kappa \ge 0. \end{array}$$
 (HLF)

Facts:

- A homogeneous LP.
- \blacksquare Always has a solution (0).
- Always has a SCS solution i.e.

$$x_j^* s_j^* = 0$$
 and $x_j^* + s_j^* > 0$, $j = 1, ..., n$, $\tau^* \kappa^* = 0$ and $\tau^* + \kappa^* > 0$.

Primal-dual interior-point methods

Outline

Notation The primal-dual

algorithm Step 1 - Introducing the barrier The Lagrange function Step 2 - the Lagrange optimality conditions Step 3 - solving the optimality conditions The primal-dual

The homogeneous model

algorithm

method

Summary for

The homogeneous algorithm Summary for homogeneous model Powell's example (Math. Prog., 93, no. Mehrotra's predictor-corrector

Let $(x^*, \tau^*, y^*, s^*, \kappa^*)$ be any SCS then

- $\tau^* > 0$ in the **feasible** case: $(x^*, y^*, s^*)/\tau^*$ is an optimal solution to (P).
- $\kappa^* > 0$ in the **infeasible** case:

$$Ax^* = 0, A^Ty^* + s^* = 0, -c^Tx^* + b^Ty^* = \kappa^* > 0.$$

If $c^T x^* < 0$, then

$$\min \quad c^T x \quad \text{s.t.} \quad Ax = 0, \quad x \ge 0$$

is unbounded implying dual infeasibility. ($b^T y^* > 0$ implies primal infeasibility.)

Conclusion: Compute a SCS solution to (HLF) using an IPM.

The homogeneous algorithm

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

algorithm
Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the

optimality conditions The primal-dual algorithm

The homogeneous model

The homogeneous algorithm

Summary for homogeneous model Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

- 1. Choose $(x^0, \tau^0, y^0, s^0, \kappa^0)$ such that $(x^0, \tau^0, s^0, \kappa^0) > 0$, $\varepsilon > 0$, and $\theta, \gamma \in (0, 1)$. k := 0.
- 2. while $(x^k)^T s^k + \tau^k \kappa^k > \varepsilon$
- 3. Solve

$$Ad_{x} - bd_{\tau} = (1 - \gamma)(b\tau^{k} - Ax^{k}),$$

$$A^{T}d_{y} + d_{s} - cd_{\tau} = (1 - \gamma)(c\tau^{k} - A^{T}y^{k} - s^{k}),$$

$$-c^{T}d_{x} + b^{T}d_{y} - d_{\kappa} = (1 - \gamma)(\kappa^{k} + c^{T}x^{k} - b^{T}y^{k}),$$

$$S^{k}d_{x} + X^{k}d_{s} = -X^{k}s^{k} + \gamma\mu^{k}e,$$

$$\kappa^{k}d_{\tau} + \tau^{k}d_{\kappa} = -\tau^{k}\kappa^{k} + \gamma\mu^{k}.$$

4. $\alpha := \text{stepsize}((x^k; \tau^k; s^k; \kappa^k), (d_x; d_\tau; d_s; d_\kappa), \theta).$

5.
$$(x^{k+1}; \tau^{k+1}) := (x^k; \tau^k) + \alpha(d_x; d_\tau),$$

$$(y^{k+1}; s^{k+1}; \kappa^{k+1}) := (y^k; s^k; \kappa^k) + \alpha(d_y; d_s; d_\kappa)$$

- 6. k := k + 1
- 7. end while

Summary for homogeneous model

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

- Fairly easy to prove polynomial convergence $O(n^{3.5}L)$.
- Works in the primal and dual infeasible case.
- Slightly more expensive per iteration than the primal-dual algorithm.
- Can be generalized.

Powell's example (Math. Prog., 93, no. 1)

Introduction

Primal-dual interior-point methods

Outline

Notation
The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange

function

Step 2 - the Lagrange optimality

conditions

Step 3 - solving the

optimality

conditions

The primal-dual

algorithm

The homogeneous

model

The homogeneous

algorithm

Summary for

homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method Summary for

Problem:

$$\max \ 0y_1 - 1y_2 \ \text{st.} \ y_1^2 + y_2^2 \le 1.$$

Discretized:

max
$$0y_1 - 1y_2$$

st. $\cos(2j\pi/n)y_1 + \sin(2j\pi/n)y_2 \ge -1,$
 $j = 1, \dots, n.$

Results from a simple implementation

r	ľ	tı	r	0	d	li	u	C	ti	(0	r	l

Primal-dual interior-point methods

Outline

Notation The primal-dual

algorithm

Step 1 - Introducing

the barrier

The Lagrange

function

Step 2 - the

Lagrange optimality

conditions

Step 3 - solving the

optimality

conditions

The primal-dual

algorithm

aigoriumi

The homogeneous

model

The homogeneous

algorithm

Summary for

homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

n	Iter.	y_1	y_2	$y_1^2 + y_2^2$
10	10	0.0000	-1.0515	1.1056
100	12	0.0000	-1.0000	1.0000
500	13	0.0000	-1.0000	1.0000
1000	14	0.0000	-1.0000	1.0000
5000	14	0.0000	-1.0000	1.0000
10000	16	0.0000	-1.0000	1.0000
50000	17	0.0000	-1.0000	1.0000
100000	18	0.0000	-1.0000	1.0000
250000	18	0.0000	-1.0000	1.0000
500000	19	0.0000	-1.0000	1.0000

Mehrotra's predictor-corrector method

Introduction

Primal-dual interior-point methods

Outline

Notation
The primal-dual algorithm

Step 1 - Introducing the barrier

The Lagrange

function

Step 2 - the

Lagrange optimality

conditions

Step 3 - solving the

optimality

conditions

The primal-dual

algorithm

The homogeneous

model

The homogeneous

algorithm

Summary for

homogeneous model

Powell's example (Math. Prog., 93, no.

1)

Mehrotra's predictor-corrector method

Summary for

Problem: Better choice of γ .

Define (d_x^a, d_y^a, d_s^a) by

$$Ad_{x}^{a} = -(Ax^{k} - b),$$

$$A^{T}d_{y}^{a} + d_{s}^{a} = -(A^{T}y^{k} + s^{k} - c),$$

$$S^{k}d_{x}^{a} + X^{k}d_{s}^{a} = -X^{k}s^{k}.$$

Let

$$\hat{\alpha} \equiv \text{step-size}((x^k; s^k), (d_x^a; d_s^a), 1).$$

Reduction for $\gamma = 0$:

$$1 - \hat{\alpha}$$
.

Heuristic choice:

$$\hat{\gamma} \equiv (1 - \hat{\alpha})^2 \min(0.1, 1 - \hat{\alpha}).$$

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier The Lagrange function Step 2 - the Lagrange optimality conditions Step 3 - solving the

optimality conditions The primal-dual algorithm

The homogeneous model The homogeneous algorithm

Summary for homogeneous model Powell's example (Math. Prog., 93, no.

Mehrotra's predictor-corrector method

Summary for

Want to solve

$$(x_j^k + d_{x_j})(s_j^k + d_{s_j}) = \gamma \mu^k$$

implies

$$x_j^k d_{s_j} + s_j^k d_{x_j} = -x_j^k s_j^k - d_{x_j} d_{s_j} + \gamma \mu^k.$$

Mehrotra's high-order estimate:

$$d_{x_j}d_{s_j} = d_{\tau}^a d_{\kappa}^a.$$

"Final" direction:

$$Ad_{x} = -(Ax^{k} - b),$$

$$A^{T}d_{y} + d_{s} = -(A^{T}y^{k} + s^{k} - c),$$

$$S^{k}d_{x} + X^{k}d_{s} = -X^{k}s^{k} + \hat{\gamma}\mu^{k}e - D_{x}^{a}d_{s}^{a},$$

where $D_r^a = \operatorname{diag}(d_r^a)$.

Summary for Mehrotra's predictor-corrector method

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model Powell's example

(Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method

Summary for

- A high-order method.
- Reuses a matrix factorization of the Newton equations system.
- Increases the number of solves by 1.
- \blacksquare Reduces the number of iterations significantly (> 20%).
- Is a heuristic.

Linear algebra

Introduction

Primal-dual interior-point methods

Outline

Notation
The primal-dual algorithm

algorithm
Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality

conditions
The primal-dual algorithm

The homogeneous model
The homogeneous

The homogeneous algorithm

Summary for homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

The Newton equations system:

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} d_x \\ d_y \\ d_s \end{bmatrix} = \begin{bmatrix} \hat{r}_p \\ \hat{r}_d \\ \hat{r}_{xs} \end{bmatrix}.$$

Therefore,

$$d_s = X^{-1}(\hat{r}_{xs} - Sd_x).$$

Hence,

$$A^{T}d_{y} + X^{-1}(\hat{r}_{xs} - Sd_{x}) = \hat{r}_{d},$$

$$Ad_{x} = \hat{r}_{p}.$$

Leading to

$$S^{-1}(XA^Td_y + \hat{r}_{xs}) - d_x = S^{-1}X\hat{r}_d$$

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier The Lagrange function Step 2 - the Lagrange optimality

conditions
Step 3 - solving the optimality conditions
The primal dual

The primal-dual algorithm

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model Powell's example

(Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method Summary for

i.e.

$$d_x = S^{-1}(XA^Td_y - \hat{r}_{xs}) - S^{-1}X\hat{r}_d$$

But

$$Ad_x = A(S^{-1}(XA^Td_y + \hat{r}_{xs}) - S^{-1}X\hat{r}_d)$$

and finally we reach at

$$AS^{-1}XA^{T}d_{y} = \hat{r}_{p} - AS^{-1}(\hat{r}_{xs} - X\hat{r}_{d})$$

or

$$Md_y = \dots$$

where

$$M := A(S)^{-1}XA^T = ADA^T = \sum_{j=1}^n \frac{x_j}{s_j} A_{:j} A_{:j}^T.$$

The Cholesky factorization

Introduction

Primal-dual interior-point methods

Outline

Notation
The primal-dual algorithm

Step 1 - Introducing the barrier The Lagrange function Step 2 - the

Lagrange optimality conditions
Step 3 - solving the

optimality

conditions

algorithm

The primal-dual algorithm

The homogeneous model
The homogeneous

Summary for homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

- lacksquare M is symmetric and positive definite.
- \blacksquare A Cholesky decomposition (*L*) exists

$$M = LL^T$$
.

Notes:

- \blacksquare Works if M is positive definite.
- \blacksquare $\frac{1}{6}m^3 + O(m^2)$ complexity.
- Cholesky = Gaussian elimination using diagonal pivots.
- Numerically stable without pivoting.
- \blacksquare Problem: M is only P.S.D. occasionally.

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

algorithm

Step 1 - Introducing the barrier

The Lagrange function

Step 2 - the

Lagrange optimality conditions

Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous

algorithm

Summary for homogeneous model Powell's example

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

Modified algorithm:

1.
$$for j = 1, ..., m$$

2. $if l_{jj} \le \varepsilon$
3. $l_{jj} := \delta$
4. $l_{jj} := \sqrt{l_{jj}}$
5. $l_{(j+1:m)j} := l_{(j+1:m)j}/l_{jj}$
6. $for k = j + 1, ..., m$
7. $l_{(k+1:m)k} := l_{(k+1:m)k} - l_{kj}l_{(k+1:m)j}$

- Choice: $\varepsilon = 1.0e 12$, $\delta = 1.0e30$.
- Corresponds to removing dependent rows in $A(XS^{-1})^{\frac{1}{2}}$.
- Analyzed by Y. Zhang and S. Wright.

The sparse Cholesky decomposition

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous algorithm
Summary for homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

Observations:

- lacksquare A is very sparse in practice.
- lacktriangleq M is usually very sparse.
- lacksquare L is usually very sparse.
- \blacksquare Only nonzeros in L are stored.
- lacksquare Sparsity pattern of M and L is constant over all iterations.

An example

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier The Lagrange function Step 2 - the

Lagrange optimality conditions

Step 3 - solving the optimality

conditions

The primal-dual algorithm

The homogeneous model

The homogeneous algorithm

Summary for homogeneous model Powell's example (Math. Prog., 93, no.

1)

Mehrotra's predictor-corrector method Summary for

Notes:

- Pivot order is important for **fill-in** and **work**.
- M is represented by an undirected graph.

Ordering methods:

- (Multiple) minimum-degree (George and Liu; Liu).
- Minimum-local fill (better but is expensive).

New ordering methods

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

algorithm
Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the

conditions The primal-dual algorithm

optimality

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model

Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

- Approximate minimum degree (Amestoy, Davis and Duff).
- Approximate minimum local fill (Mészáros; Rothberg; Rothberg and Eisenstat).
- Graph partitioning (Kumar et al.; Hendrickson and Rothberg; Gupta).

$$M = \begin{bmatrix} M_{11} & 0 & M_{31}^T \\ 0 & M_{22} & M_{32}^T \\ M_{31} & M_{32} & M_{33} \end{bmatrix}.$$

(used recursively).

Summary for the normal equation system

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model Powell's example

(Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

■ Iteration 0:

- Find sparsity pattern of AA^T .
- Choose a sparsity preserving ordering.
- lacktriangle Find sparsity pattern of L.

At iteration k:

- Form $M = ADA^T$.
- lacktriangle Factorize M.
- ◆ Do solves.

Efficient implementation of Cholesky computation

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous algorithm
Summary for

Summary for homogeneous model Powell's example (Math. Prog., 93, no.

Mehrotra's predictor-corrector method
Summary for

- Exploit hardware cache.
- Do loop unrolling.
- Can be implemented efficiently for shared memory parallel
- \blacksquare Dense columns in A leads to inefficiency.

$$M = \sum_{j} \frac{x_j}{s_j} A_{:j} A_{:j}^T$$

Basis identification

Introduction

Primal-dual interior-point methods

Outline

Notation
The primal-dual algorithm

algorithm
Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model Powell's example (Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

- Problem: An optimal basic and nonbasic partition of the variables is required.
- Reasons:
 - Easy sensitivity analysis.
 - ◆ Integer programming.
 - Efficient warm-start.

An example:

minimize
$$e^T x$$

subject to $e^T x \ge 1$, $x \ge 0$.

Basic sol.:
$$x^* = (0, ..., 0, 1, 0, ..., 0)$$
.
IP sol.: $x^* = (1/n, ..., 1/n)$.

Summary for basis identification

Introduction

Primal-dual interior-point methods

Outline

Notation The primal-dual algorithm

Step 1 - Introducing the barrier
The Lagrange function
Step 2 - the
Lagrange optimality conditions
Step 3 - solving the optimality conditions
The primal-dual algorithm

The homogeneous model
The homogeneous algorithm

Summary for homogeneous model Powell's example

(Math. Prog., 93, no. 1)

Mehrotra's predictor-corrector method
Summary for

- Has a primal and dual phase (symmetric).
- \blacksquare Requires at most n simplex type pivots.
- May need some simplex clean-up iterations.
- Implementation can exploit problem structure to gain computational efficiency.
- Combined approach leads to a highly reliably optimization package.

Software

What is available

Introduction

Primal-dual interior-point methods

Software

What is available

Observations Computational results

The results

Conclusions

Further information

	Features					
				Den.	Pre.	NLO
Name	PD	Homo.	BI	col.	slv.	
BPMPD	D	-	N	Y	Y	QO
Coin	D	-	?	?	Y	?
CPLEX	D	O	Y	Y	Y	QO/CQO
FortMP	D	-	Y	?	Y	QO
Lindo	_	D	Y	Y	Y	QO/CQO
MATLAB	D	-	N	Y	Y	N
MOSEK	_	D	Y	Y	Y	QO/CQO/CO
XPRESS-MP	D	-	Y	Y	Y	QO
HOPDM	D	-	N	Y	Y	QO/?
LIPSOL	D	-	N	Y	N	-
LOQO	D	-	N	Y	(N)	CO
PCx	D	-	N	Y	Y	-
SeDuMi	_	D	N	Y	N	SDO

Notation: (D=default, O=optional, Y=yes, N=no).

Observations

Introduction

Primal-dual interior-point methods

Software

What is available

Observations

Computational results

The results

Conclusions

- Most codes use the primal-dual method.
- All codes use Mehrotra's predictor-corrector.
- Only commercial software can compute an optimal basis.
- Matlab TB is based on LIPSOL.
- Presolve facility is common.

Computational results

Introduction

Primal-dual interior-point methods

Software

What is available

Observations

Computational results

The results

Conclusions

- Taken from Mittlemans benchmark results.
- See http://plato.asu.edu/bench.html.
- Problem size: Up to a million constraints and variable.

The results

Introduction

Primal-dual interior-point methods

Software

What is available Observations Computational results

The results

Conclusions

========	======	=========	======	:========	=====	======
s problem (CPLEX-B	CPLEX-D/P	MOSEK-B	MOSEK-D/P	LOQO	LIPSOL
========	======	=========	======	:=======:	=====	======
2 cont1	1186	2622/1640	3163	3658/3729	_	_
2 cont11	2471	72727/22679	1746	/	_	_
2 cont4	4334	3668/787	6262	/9566	_	_
2 cont1_l	f		1803			
2 cont11_1	3246		2011			
1 dano3mip	17	42/25	24	80/76	85	14
4 dbic1	127	142/25	110	1120/714	156	104
3 dfl001	15	23/43	12	39/99	152	13
2 fome12	191	168/429	53	>5100/1215	485	88
2 fome13	97	775/1263	96	778/2738	963	85
5 gen4	35	3/77	22	9/119	33	233
7 ken-18	12	14/74	17	31/115	274	25
5 130	f	32/80	3	96/258	3	1691
4 lp22	7	47/77	8	94/315	62	9
4 mod2	11	99/214	15	154/614	61	25
2 neos	128	32/166	140	1866/250	754	321
2 neos1	35	930/18	27	39/8	153	37
2 neos2	25	532/31	24	75/13	92	29
2 neos3	229	4046/6350	395	7008/59	1505	502
4 nsct2	77	2/2	53	6/5	840	131
4 nug15	85	3704/1379	108	6955/>7800	1855	118
2 nug20	1406		1792		26402	3092
2 nug08-3rd	1579	3314/	1345	>16000/>17000		2004
2 pds-40	159	45/180	130	94/1131	15908	252
2 pds-100	827	193/1762	907	946/>25000		1673
3 qap12	11	240/119	16	368/386	201	17
3 qap15	83	3557/1315	140	7917/4807	1978	145
2 rail4284	295	6827/6923	306	8064/744	4123	534
4 rlfprim	5	1/7	4	27/3	64	7
8 self	82	146/106	3604	652/>7700	85	3194

Introduction

Primal-dual interior-point methods

Software

What is available Observations Computational results

The results

Conclusions

Further information

2	sgpf5y6	13	4/2	24	8/7	fail	23
2	spal_004	m		5242		m	
4	stat96v1	456	259/682	188	fail/>20000		
4	stat96v2		44446/fail		/		
4	stat96v4	10	507/587	16	548/fail		
6	storm-125	22	18/29	52	77/110	35	62
2	storm_1000	383	768/1608	754	6583/7538	1269	802
1	stp3d	188	1295/12834	180	3365/>16000	2347	218
2	watson_2	58	225/385	52	237/891	313	70
4	world	12	111/271	20	146/912	44	28

"m": memory exceeded

Conclusions

Summary

Introduction

Primal-dual interior-point methods

Software

Conclusions

Summary

Observations about interior-point methods

- Interior-point methods are stable and fast.
- Implementations are mature.
- Even public domain codes are quite good.
- For cold start and large models interior-point methods tend dominate the simplex methods.

Observations about interior-point methods

Introduction

Primal-dual interior-point methods

Software

Conclusions

Summary

Observations about interior-point methods

- Highly reliable using default options.
 - ♦ Insensitive to degeneration.
 - Insensitive to the problem size.
- Few but expensive iterations.
- No generally efficient warm-start is known (at least to my knowledge).
- Formulation:
 - Search direction is a function of c, A, and b.
 - Avoid large numbers.

Links

Introduction

Primal-dual interior-point methods

Software

Conclusions

Further information

Links

- An unfinished book:
 - http://www.mosek.com/fileadmin/homepages/e.d.andersen/papers/linopt.pdf.
- Student projects at MOSEK:

http://mosek.com/studentprojects.

■ Work at MOSEK: http://mosek.com/career.