HW8

秦君豪 10204804421计算机系统结构

5.2.1

Word Address	Binary Address	Tag	index	Hit/Miss	
3	0000 0011	0	3	MISS	
180	1011 0100	11	4	MISS	
43	0010 1011	2	11	MISS	
2	0000 0010	0	2	MISS	
191	1011 1111	11	15	MISS	
88	0101 1000	5	8	MISS	
190	1011 1110	11	14	MISS	
14	0000 1110	0	14	MISS	
181	1011 0101	11	5	MISS	
44	0010 1100	2	12	MISS	
186	1011 1010	11	10	MISS	
253	1111 1101 15		13	MISS	

5.2.2

Word Address	Binary Address	Tag index		Hit/Miss	
3	0000 0011	0	1	MISS	
180	1011 0100	11	2	MISS	
43	0010 1011	2	5	MISS	
2	0000 0010	0	1	Hit	
191	1011 1111	11	7	MISS	
88	0101 1000	5	4	MISS	
190	1011 1110	11	7	Hit	
14	0000 1110	0	7	MISS	
181	1011 0101	11	2	MISS	

Word Address	Binary Address	Tag	index	Hit/Miss	
44	0010 1100	2	6	MISS	
186	1011 1010	11	5	MISS	
253	1111 1101	15	6	MISS	

5.2.3

3	0000 0011	0	3	M	1	M	0	М
180	1011 0100	22	4	М	2	M	1	М
43	0010 1011	5	3	М	1	M	0	М
2	0000 0010	0	2	M	1	M	0	М
191	1011 1111	23	7	М	3	M	1	М
88	0101 1000	11	0	М	0	М	0	М
190	1011 1110	23	6	М	3	Н	1	Н
14	0000 1110	1	6	М	3	M	1	М
181	1011 0101	22	5	М	2	Н	1	М
44	0010 1100	5	4	М	2	M	1	М
186	1011 1010	23	2	M	1	M	0	М
253	1111 1101	31	5	М	2	М	1	М

Cache 1 miss rate = 100%

Cache 1 total cycles = $12 \times 25 + 12 \times 2 = 324$

Cache 2 miss rate = 10/12 = 83%

Cache 2 total cycles = $10 \times 25 + 12 \times 3 = 286$

Cache 3 miss rate = 11/12 = 92%

Cache 3 total cycles = $11 \times 25 + 12 \times 5 = 335$

Cache 2 provides the best performance.

5.2.4

totalsize = datasize + (validbitsize + tagsize) x blocks

totalsize = 41984

datasize = blocks x blocksize x wordsize

wordsize = 4

tagsize = 32 - log2(blocks) - log2(blocksize) - log2(wordsize)

validbitsize = 1

增加从2字的块到16字的块将会将标签大小从17位减少到14位。

为了确定块的数量, 我们解这个不等式:

41984 <= 64 x blocks + 15 x blocks

解这个不等式得到531个块,并且四舍五入到下一个2的幂次,给我们一个1024块的缓存。

5.2.5

相关联缓存(Associative caches)被设计用来减少冲突未命中的比率。因此,一连串带有相同12位索引字段但不同标签字段的读请求会产生很多未命中。对于上面描述的缓存,序列0, 32768, 0, 32768, ...,将会在每次访问时都未命中,而一个使用最近最少使用(LRU)替换策略的2路组关联缓存,即使总容量显著更小,也会在首两次访问后每次都命中。

5.2.6

使用这个函数来索引缓存是可能的,但必须包括更多的标签位来识别缓存中的地址。

5.3

(5.3.1)

8

(5.3.2)

32

(5.3.3)

1+(22/8/32) = 1.086

(5.3.4)

3

(5.3.5)

0.25

(5.3.6)

<Index, tag, data>

<000001,0001, mem[1024]>

<000001,0011, mem[16]>

<001011,0000, mem[176]>

<001000,0010, mem[2176]>

<001110,0000, mem[224]>

<001010,0000,mem[160]>