# CS7641 Fall 2018 Assignment1 Supervised learning

Xiaoxi Wang (xwang738)

email: xwang738@gatech.edy

| Su | m | m | a | ry |
|----|---|---|---|----|
|----|---|---|---|----|

### **Datasets**

# Why they are interesting

Nontrival, allows tuning and comparing of different algorithms

|           | Task           | #Instances         | #Attributes      |      |  |  |  |
|-----------|----------------|--------------------|------------------|------|--|--|--|
| HTRU2     | Binary         |                    |                  |      |  |  |  |
|           | Classification |                    |                  |      |  |  |  |
| Breast    | Binary         | 683 <sup>[1]</sup> | 9 <sup>[2]</sup> | Real |  |  |  |
| Cancer    | Classification |                    |                  |      |  |  |  |
| Wisconsin |                |                    |                  |      |  |  |  |

### Table 1.

- [2] Removed 16 instances with missing data
- [3] ID number attribute was dropped

### Scaling

Splitting into training (70%) and testing (30%)

## **Results and Discussion**

#### 1. Decision Tree



Figure 1. Decision Tree: Validation curve and learning curve (5 folds cross validation. Error bars represent standard deviation)

### 2. k-Nearest Neighbors



Figure 2. k-Nearest Neighbors: Validation curve and learning curve (5 folds cross validation. Error bars represent standard deviation)

The effects of different values of k
The HTRU2 dataset

### 3. Support Vector Machine

### 3.1 linear kernel

The HTRU2 dataset



Figure 3.1. SVM with linear kernel: Validation curve and learning curve (5 folds cross validation. Error bars represent standard deviation)

#### 3.2 RBF kernel



Figure 3.2. SVM with RBF kernel: Validation curve and learning curve (5 folds cross validation. Error bars represent standard deviation)

### 4. Boosting

Base classifier: decision tree with more aggressive pruning (max depth 3 for HTRU2 and 1 for breast cancer data set)



Figure 4. Adaboosting: Validation curve and learning curve

(5 folds cross validation. Error bars represent standard deviation)

#### 5. Neural Networks



Figure 5. Neural Networks: Validation curve and learning curve (5 folds cross validation. Error bars represent standard deviation)

1 hidden layer # of hidden unites the value of alpha, activation function

### 6. Compare and contrast the different algorithms.

| Learning        | Test      | Test     | Test        | Training      | Test Time  | Hyperparameters    |  |  |  |
|-----------------|-----------|----------|-------------|---------------|------------|--------------------|--|--|--|
| Algorithms      | AUC Score | Accuracy | F Score     | Time          |            |                    |  |  |  |
| HTRU2 Data Set  |           |          |             |               |            |                    |  |  |  |
| Decision Tree   | 0.89898   | 0.97821  | 0.85921     | 0.0132626     | 0.00346114 | Max depth = 5      |  |  |  |
| k-Nearest       | 0.90994   | 0.97952  | 0.86967     | 0.0091312     | 0.126501   | k=5                |  |  |  |
| Neighbor        |           |          |             |               |            |                    |  |  |  |
| SVM             | 0.90952   | 0.98063  | 0.87560     | 3.70600       | 0.0311281  | C=100              |  |  |  |
| (linear kernel) |           |          |             |               |            |                    |  |  |  |
| SVM             | 0.91270   | 0.98082  | 0.87753     | 0.454213      | 0.0916295  | C=100              |  |  |  |
| (RBF kernel)    |           |          |             |               |            | gamma=0.01         |  |  |  |
| Boosting        | 0.91762   | 0.98045  | 0.87691     | 6.54262       | 0.102999   | Decision tree with |  |  |  |
|                 |           |          |             |               |            | max_depth = 3      |  |  |  |
|                 |           |          |             |               |            | 200 estimators     |  |  |  |
|                 |           |          |             |               |            | Learning rate 0.05 |  |  |  |
| Neural          | 0.91987   | 0.98082  | 0.87953     | 4.57695       | 0.00571682 | alpha=0.001        |  |  |  |
| Networks        |           |          |             |               |            | 1 hidden layer     |  |  |  |
|                 |           |          |             |               |            | with 100 nodes     |  |  |  |
|                 |           | Breast ( | Cancer Wisc | onsin Data Se |            |                    |  |  |  |
| Decision Tree   | 0.94077   | 0.94634  | 0.92617     | 0.0006914     | 0.00035675 | Max depth = 5      |  |  |  |
| k-Nearest       | 0.95128   | 0.95610  | 0.93960     | 0.0007125     | 0.00180639 | k=6                |  |  |  |
| Neighbor        |           |          |             |               |            |                    |  |  |  |
| SVM             | 0.94744   | 0.95122  | 0.93333     | 0.0027717     | 0.00044157 | C=1                |  |  |  |
| (linear kernel) |           |          |             |               |            |                    |  |  |  |
| SVM             | 0.96744   | 0.96585  | 0.95425     | 0.0023225     | 0.00058448 | C=100              |  |  |  |
| (RBF kernel)    |           |          |             |               |            | gamma=0.001        |  |  |  |
| Boosting        | 0.93795   | 0.94634  | 0.92517     | 0.309154      | 0.0149498  | Decision tree with |  |  |  |
|                 |           |          |             |               |            | max_depth = 1      |  |  |  |
|                 |           |          |             |               |            | 200 estimators     |  |  |  |
|                 |           |          |             |               |            | Learning rate 0.05 |  |  |  |
| Neural          | 0.93795   | 0.94634  | 0.92517     | 1.75296       | 0.00088109 | alpha=0.01         |  |  |  |
| Networks        |           |          |             |               |            | 1 hidden layer     |  |  |  |
|                 |           |          |             |               |            | with 300 nodes     |  |  |  |

**Table 2. Comparison of different learning algorithms** 

Which algorithm performed best? How do you define best?

What sort of changes might you make to each of those algorithms to improve performance? How fast were they in terms of wall clock time? Iterations?

How much performance was due to the problems you chose? How about the values you chose for learning rates, stopping criteria, pruning methods, and so forth (and why doesn't your analysis show results for the different values you chose?)?

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

### Reference

W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993. [Web Link]

O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995. [Web Link]