4.7 Inverse Functions & Relations- Day 1 Notes

Objective: Find and graph the inverse of a function or relation

An inverse relation is the set of ordered pairs obtained by ______. If the inverse of f(x) is a function , we use inverse function notation: $f^{-1}(x)$.

Graph the relation and connect the points. Then graph the inverse. Identify the domain & range of each relation.

Relation:

X	0	1	5	8
y	2	5	6	9

Domain:

Range:

Inverse:

X		
y		

Domain:

Range:

Property of Inverses: Two functions are inverses if they 'undo' one another. Inverse functions have their points reflected across the line y=x.

To find inverses of functions:

step 1: rewrite using x & y

step 2: switch the x & y

step 3: solve for y

Write the inverse of the function. Graph both the function & its inverse (label each.)

Ex:
$$f(x) = 2x - 8$$

X	y

$$f^{-1}(x) =$$

X	y

1.
$$f(x) = -3x + 6$$

$f^{-1}(x) =$	=
---------------	---

X	y

X	y

Write and graph the inverse of each function.

Ex.
$$f(x) = 3(x-4)$$
 $f^{-1}(x) =$

$$f^{-1}(x) =$$

X	y

X	y

2.
$$f(x) = -5(x+1)$$

X	y	

$$f^{-1}(x) =$$

X	y

Write the inverse of each function.

Ex.
$$f(x) = -\frac{5}{3}x + 5$$

3.
$$f(x) = -\frac{1}{3}x + 3$$