Software-Based Gaze Tracking Čistě softwarové sledování směru pohledu

Adam Dominec

Motivace

- · Směr pohledu lidského oka je jasně vidět
- · Webkamera je v každém tabletu a laptopu
- · Každý uživatel počítače umí hýbat očima

Zadání úlohy

- · Analýza možností sledování směru pohledu z běžné webkamery
- · Uživatel:
 - · je zabíraný zpříma
 - mírně spolupracuje

Zaměření obličeje

- Cíl: stanovit pozici hlavy (6 DoF)
- Hlavní tracker + menší trackery
- a)Několik bodů zájmu b)Souvislá mřížka

Obrázek a video

Obrázek a video

Tracker

- · Lokálně hledá zadaný vzor v obrázku
- · Přípustné transformace:

a)Posuv a rotace

b)Afinita (určená maticí/určená třemi body)

c)Homografie – perspektiva

Perspektivní mřížka

- · Transformace popisující pohyb tuhých těles
- · Analytické derivace

Umělé video

Reálné video

Zaměření očí

- Cíl: najít střed duhovky (2 DoF)
- · Známe: pozici a průměr oční bulvy
- · Potíž: zakrytí a odlesky
- · Možnosti:
 - a) Okraj duhovky je výrazný
 - b) Vnitřek duhovky je tmavý a symetrický
 - c...) Kombinované přístupy

Algoritmy zaměřování očí

Klasické

- Houghova transformace
- Kros-korelace s kruhem/s bitmapou

· Vlastní

- · Rotační symetrie
- · Lokální optimalizace k okraji duhovky
- · Hlasování více metod

Rotační symetrie duhovky

- · Algoritmus předpokládá:
 - Duhovka je výrazně rotačně symetrická
 - → porovnáváme barvu pixelu a příslušné kružnice
 - Víčka zakrývají duhovku od kraje
 - → výseče bez výrazného okraje ignorujeme

Výsledky

- ProgramDatové sadyMěření

Datové sady

- · 840 ručně anotovaných očí (různá kvalita fotografie)
- Několik videí s hardwarovým nástrojem Tobii EyeX

tobii*eyeX*

Výsledky zaměřování očí

· Vlastní software na vyhodnocení

Obtíže při zaměřování očí

	světlost duhovky	zakrytí	odlesk	make-up
Hough → optimalizace	0,02	0,23	-0,06	0,04
Hough	-0,01	0,25	-0,07	0,04
radiální symetrie	0,06	0,09	0,09	0,14
hlasování → optimalizace	0,06	-0,03	0,03	0,11
kros-korelace s kruhem	0,24	0,00	0,11	0,31
kros-korelace s bitmapou	0,00	-0,05	0,06	0,08
optimalizace (samotná)	0,05	-0,05	0,04	0,05

Korelace chyby rozpoznání s vlastnostmi obrázků

Celková přesnost

· Přesnost závisí na kalibraci, a ta je nestabilní a náročná

Doplnit data!

Přínosy

- · Analýza rozpoznávání
- Datové sady
- · Program (knihovna) na github:

github.com/addam/lokeye

Další vývoj programu

- · Najít a zabudovat robustnější algoritmy
- · Optimalizovat perspektivní mřížku
- · Usnadnit pro běžného uživatele

Otázky

Optimalizace okraje

- Střed $c = \operatorname{argmax} \int_{|x-c|=r} (x-c)^T \cdot \nabla I(x) dx$
- · Lze použít složitější funkce (neosvědčily se)

Program

Obtíže při zaměřování očí

·!korelace na datech <3px chyba