EECS240 - Spring 2010

Lecture 4: Design-Driven Small Signal Models

Elad Alon Dept. of EECS

Small Signal Model

· Never really changes:

$$\begin{split} i_{ds} &= \frac{\partial I_{ds}}{\partial V_{gs}} v_{gs} + \frac{\partial I_{ds}}{\partial V_{bs}} v_{bs} + \frac{\partial I_{ds}}{\partial V_{ds}} v_{ds} \\ i_{ds} &= g_m V_{gs} + g_{mb} V_{bs} + g_{ds} V_{ds} \end{split}$$

- · Just need to know the coefficients...
 - · Look at design-driven methods to figure out what r_o , g_m , etc. are
 - · And what values you want to choose for them

EECS240 Lecture 4

MOSFET Models for Design

- · SPICE (BSIM)
 - For verification
 - Device variations
- · Hand analysis
 - Velocity-sat model (good mostly for intuition)
 - Small-signal model
- - How to accurately design when hand analysis models may be way off?

EECS240 Lecture 4

Output Resistance r 8.00 5.0H 4.0H 2.0K Hopeless to model this with a simple equation (e.g. $g_{ds} = \lambda I_D$)

Lecture 4

Parameters Designers Care About

- · Layout designer:
 - · Mostly care about just W and L
- · Circuit designer:
 - Gain → g_m, r_o
 - Bandwidth \rightarrow g_m, C_{GS}, C_{GD}, ...
 - Power → I_D
 - Voltage swing → minimum V_{DS}
 - Noise
- · Can get many of the circuit parameters without resorting to BSIM
 - Or rather, by just using BSIM as a look-up table

EECS240 Lecture 4

What You Really Care About: Gain a_{vo}

EECS240

- Represents maximum attainable gain from a transistor
 - Often more useful than r_0
- Simulation Notes:

 - Bias current i_{dc} sets V_{GS} V_T Use feedback to find correct V_{GS}
 - while sweeping V_{DS} Use relatively small gain (100) for fast DC convergence

EECS240 Lecture 4

Weak Inversion g_m

• In weak inversion we have bipolar behavior

$$\begin{split} I_{ds} \approx & \frac{W}{L} I_{ds,0} e^{\frac{q(Vgs-V_T)}{nkT}} \\ g_m = & \frac{\partial I_{DS}}{\partial V_{GS}} = \frac{\frac{W}{L} I_{ds,0} e^{\frac{q(Vgs-V_T)}{nkT}}}{n\frac{kT}{q}} \end{split}$$

· Good model if transistor is actually used in weak

$$g_m = \frac{I_{DS}}{n\frac{kT}{a}} \propto I_{DS}$$

EECS240

Substitute for g_m/I_D : V*

• Define:

$$V^* = \frac{2I_D}{g_m} \quad \Leftrightarrow \quad \frac{g_m}{I_D} = \frac{2}{V^*}$$

e.g. $V^* = 200 \text{mV} \rightarrow g_m/I_D = 10 \text{ V}^{-1}$

Square-law devices: V* = V_{GS}-V_{TH} = V_{od}

Square law: $g_m = \frac{2I_D}{V_{GS} - V_{TH}} = \frac{2I_D}{V^*}$

Remember: real devices do not obey the square

EECS240 Lecture 4

${ m V}_{ m od}$ vs ${ m V}^{\star}$

- Overdrive voltage V_{od}
 - · Cannot be measured
 - Complex equations
- "Long channel" devices:
 - $V_{od} = V_{dsat} = V^*$ $I_D \sim V^{*2}$

 - Boundary between triode and saturation
 - r_o "large" for V_{DS} > V*
 - C_{GS}, C_{GD} change
- $V^* = 2I_D/g_m$ Measure (simulate) easily
- Complex equations
- "Short channel" devices:

 - All interpretations of V* are approximations
 Except V* = 2 I_D / g_m (but V* ≠ V_{dsat})

EECS240 Lecture 4

Efficiency as a Design Parameter

- Why not use g_m/I_D for design?
- Can always determine value (from I_D and g_m)
 - Can do this "independently" of short channel effects (using simulator)
- Units (V-1) and physical interpretation a little strange
 - · But we'll just redefine things slightly to fix this

EECS240 Lecture 4 15

Design Example

Example: Common-source amp $a_{v0} > 70$, $f_{ij} = 100$ MHz for $C_{ij} = 5$ pF

- $a_{v0} > 70 \rightarrow L = 0.35 \mu m$

EECS240 Lecture 4

Common Source Verification To an To

SPICE Charge Model • Charge conservation • MOSFET: • 4 terminals: S, G, D, B • 4 charges: Q_S + Q_G + Q_D + Q_B = 0 (3 free variables) • 3 independent voltages: V_{GS}, V_{DS}, V_{SB} • 9 derivatives: C_{ij} = dQ_i / dV_j, e.g. C_{G,GS} ~ C_{GS} • C_{ij} != C_{ji} Ref: HSPICE manual, "Introduction to Transcapacitance", pp. 15:42, Metasoft, 1996.

Lecture 4

EECS240

	Weak inversion	Strong inversion linear	Strong inversion saturation
C _{GS}	C _{ol}	C _{GC} /2 + C _{ol}	2/3 C _{GC} + C _{ol}
C _{GD}	C _{ol}	C _{GC} /2 + C _{ol}	C _{ol}
C _{GB}	C _{GC} C _{CB}	0	0
C _{SB}	C _{jSB}	C _{jsB} + C _{CB} /2	C _{jsB} + 2/3 C _{CB}
C _{DB}	C _{jDB}	C _{jDB} + C _{CB} /2	C _{jDB}

$$\begin{split} C_{GC} &= C_{ox}WL \\ C_{CB} &= \frac{\varepsilon_{si}}{x_d}WL \end{split} \qquad \begin{array}{l} O.35 \text{u Process} \\ O.35 \text{u Process} \\ C_{olN} &= 0.24 \text{ fF/}\mu\text{m} \\ C_{olP} &= 0.48 \text{ fF/}\mu\text{m} \end{split}$$

EECS240 Lecture 4 24

Source/drain Parasitics and HSPICE

- ACM=3 model (not in our current library)
 - HDIF = half of heavily doped diffusion length

GEO = 0: No sharing
GEO = 1: Drain shared
GEO = 2: Source shared
GEO = 3: Both shared

EECS240 Lecture 4 26

Dynamic Figure of Merit

Unity current-gain bandwidth

$$\begin{split} \omega_T &= \frac{g_m}{C_{gs} + C_{gd}} \\ \omega_T &= \frac{3 \, \mu V_{od}}{2 \, L^2} = \frac{3}{2} \omega_0 \quad \text{(Long channel model, C_{gd}=0)} \end{split}$$

· For degenerate short channel device

$$\omega_T = \frac{3}{2} \frac{\nu_{sat}}{L} = \frac{3}{2} \frac{1}{\tau_{sat}}$$

EECS240 Lecture 4 27

Small Signal Design Summary

- Determine g_m (from design objectives)
- - Short channel → high f_T
 Long channel → high r_o, a_{v0}, better matching
- Pick V* = 2I_D/g_m based on qualitative interpretation
 Small V* → large signal swing, high current efficiency
 High V* → high f_τ, lower device parasitics
 Also affects noise (see later)
- Determine I_D (from g_m and V^*)
- Determine W (SPICE / plot) ← takes care of short channel
- Accurate for short channel devices → key for design

Lecture 4