

F: X ->> y YBCY (F(F-1(B)) = B) F-1(B) = {xeX: F(x) e B}

F(A) = Eyey: AxeA(F(x)=y)}

Lef $b \in F(F^{-1}(B))$. By definition of range, three exists a $x \in F^{-1}(B)$ such that F(x) = b.

Since $x \in F^{-1}(B)$, $F(x) \in B$ but b = F(x) so $b \in B$. $F(F^{-1}(B)) \subset B$

Let be B. Since F is anto, there exists $x \in X$ such that F(x) = b. Since $F(x) = b \in B$, $x \in F^{-1}(B)$. So there exists $x \in F^{-1}(B)$ such that b = F(x) and $b \in F(F^{-1}(B))$.

BCF($F^{-1}(B)$).

 $F: X \hookrightarrow Y; \forall A \subset X (F'(F(A)) = A)$

e, g.
$$f: \mathbb{R} \to (0, \infty)$$

 $f(x) := e^{x}$
 $f(1) = e$
 $f(\mathbb{R}) = (0, \infty)$
 $f([-1,0) \cup (1,2]) = [1/2,1) \cup (e,e^{2}]$

 $f: N \times N \times N \longrightarrow N$

$$(x,0,1) = x$$

3
$$f(x,0,2) = 0$$

(5)
$$f(x,y,z) = f(x,w,z-1)$$
 where $w = f(x,y-1,z)$
 $y \ge 1$ and $z \ge 1$

$$f(2,2,2) = f(2,w,1) = f(2,2,1) = f(2,w_3,0)$$

= $w_3+1=3+1=4$ but $w_3=f(2,2-1,1)$

$$w_3 = f(2,1,1) = f(2,w_4,0) = 2+1=3$$
 where $w_4 = 2$

$$w_4 = f(2,0,1) = 2$$

$$W_1 = f(2, 0, 1) = f(2, 0, 1) = f(2, 0, 1) = 2$$

 $W_2 = f(2, 0, 2) = 0$

D element wethod

then $x \in A - B$.

Hen $x \in A$ and $x \notin B$.

by specialization, $x \notin B$. So $x \in B^{c}$.

Hun by specialization $x \in A$. So $x \in A$ and $x \in B^{c}$ by

by specialization.

@ Theorem 6.2.2

 $A-B = A \cap B^{c}$

0 ACB 3 A=B

Then READBC by

def of intraction

Show 4et A it empty.
Assume A 70 so
There exists some $\alpha \in A$.

f: X-y

g: y-> Z

g. f is one-to-one

must g be one-to-one? No

Let $X = \{x_1, x_2, y_1 = \{y_1, y_2, x_3, Z = \{3, \}\}.$ Define $f(x_1) = y_1, g(y_1) = \{3, g(y_2) = \{3, g(y_2) = \}\}, \text{ and}$ So $\{g \circ f\}(x_1) = \{3, g(y_1) = \}, g(y_2) = \{3, g(y_2) = \}, g(y_2) = \{$

one-to-one

onto

onto

one-to-one

one-to

e.g. For any set X, define $id_X: X \rightarrow X$ such that $\forall x \in X (id_X(x) = x)$. Then id_X is called the identity function on X.

e.g. Suppose X = Z.

(a) Is it true that $\forall x,y \in \mathbb{Z}(id_{\mathbb{Z}}(x+y) = id_{\mathbb{Z}}(x) + id_{\mathbb{Z}}(y))$?

let xyeZ. idz(x+y) = x+y = idz(x)+idz(y)

(b) Is it the that $\forall x,y \in \mathbb{Z} \left(id_{\mathbb{Z}}(xy) = id_{\mathbb{Z}}(x) id_{\mathbb{Z}}(y) \right)^{2}$ Let $x,y \in \mathbb{Z}$. $id_{\mathbb{Z}}(xy) = xy = id_{\mathbb{Z}}(x) id_{\mathbb{Z}}(y)$

© Suppose $f: \mathbb{Z} \to \mathbb{Z}$ is any function with the property $\forall x,y \in \mathbb{Z} (f(x+y) = f(x) + f(y))$. Why is f(0) = 0?

Let $x_{i}y \in \mathbb{Z}$. Suppose f(x+y) = f(x)+f(y). f(0) = f(0+0) = f(0)+f(0) -f(0)0 = f(0)

$$f: X \rightarrow Y$$

$$id_{X}: X \rightarrow X$$

$$id_{Y}: Y \rightarrow Y$$

$$f \cdot id_{X} = f$$

$$id_{Y} \cdot f = f$$

$$f:A \longrightarrow B$$
 $T \subset B$

 $f^{-1}(T) = \{x \in A : \exists t \in T(f^{-1}(t) = x)\}$ (range) image of $T \subset B$ under inverse knowtish f^{-1}

$$f(a_1) = f(a_2) = b$$

$$f^{-1}(5b3) = \{a_1, a_2\}$$