Each factor corresponds to a meaningful partition of the data

Material	Temperature (°F)									
Туре	15		7	0	1	125				
1	130	155	34	40	20	70				
	74	180	80	75	82	58				
2	150	188	136	122	25	70				
	159	126	106	115	58	45				
3	138	110	174	120	96	104				
	168	160	150	139	82	60				

Factor diagram for the battery life data, a twoway factorial completely randomized design

Looking ahead

- What the factor diagram tells you?
 - Meaningful ways to group and compare observations, essentially in terms of sets of averages
 - Like the assembly line: we regard each observed value as a sum of five pieces

 CONDITIONS

Observed value

Grand Mean

Material Type

Temperature

Interaction

Residual Error

Under the second of the secon

= Benchmark amount + Overall effect of Material Type

+ Overall effect of Temperature

Another Example

	Brown eyes	Blue eyes	
Male	CELL MEAN \overline{y}_{11} . Brown eyed males	CELL MEAN \bar{y}_{12} . Blue eyed males	MARGINAL MEAN \overline{y}_{1} of brown eyed males and blue eyed males
Female	CELL MEAN \bar{y}_{21} . Brown eyed females	CELL MEAN \bar{y}_{22} . Blue eyed females	MARGINAL MEAN \overline{y}_{2} of brown eyed females and blue eyed females
	MARGINAL MEAN $\overline{y}_{.1}$. of brown eyed males and brown eyed females	MARGINAL MEAN $\overline{y}_{.2}$. of blue eyed males and blue eyed females	GRAND MEAN 7

Interactions concern: for instance, we might be interested in whether females perform better than males depending on their eye color

A Graphical Illustration of Interaction Effects

More Illustrations

No interaction effect $\leftarrow \rightarrow$ Parallel lines means

Interaction Plot for the Example

$$\hat{\mu} = \frac{1}{abn} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk} = \bar{y}...$$

$$\hat{\alpha}_i = \frac{1}{bn} \sum_{i=1}^b \sum_{k=1}^n y_{ijk} - \hat{\mu} = \bar{y}_{i..} - \bar{y}_{...}$$

$$\hat{\beta}_{j} = \frac{1}{an} \sum_{i=1}^{a} \sum_{k=1}^{n} y_{ijk} - \hat{\mu} = \bar{y}_{.j.} - \bar{y}_{...}$$

$$\hat{\gamma}_{ij} = \hat{\mu}_{ij} - \hat{\alpha}_i - \hat{\beta}_j - \hat{\mu} = \bar{y}_{ij} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}$$

$$\hat{\sigma}^2 = \frac{1}{abn - ab} \sum_{i,j} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{ij.})^2$$

$y_{ijk} =$	μ +	α_i +	β_j	+	γ_i	$_{j}$ +	ε_{ijk}
-------------	---------	--------------	-----------	---	------------	----------	---------------------

Advantages of a balanced design:

- ➤ Simple parameter estimation
- Easy variance decomposition

Material	Temperature (°F)									
Type	1	5	7	70		125				
	130	155	34	40	20	70				
	74	180	80	75	82	58				
2	150	188	136	122	25	70				
	159	126	106	115	58	45				
3	138	110	174	120	96	104				
	168	160	150	139	82	60				

Test Main & Interaction Effects

► Test main effect of factor A:

$$\alpha_1 = \alpha_2 = \dots = \alpha_a = 0$$

► Test main effect of factor *B*:

$$\beta_1 = \beta_2 = \dots = \beta_b = 0$$

► Test interaction effect of factor A & B:

$$\gamma_{11} = \gamma_{12} = \dots = \gamma_{ab} = 0$$

Two-Way Analysis of Variance (ANOV)

For
$$i = 1, \dots, a$$
; $j = 1, \dots, b$; $k = 1, \dots, n$;
$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{...})^{2} = bn \sum_{i=1}^{a} (\overline{y}_{i..} - \overline{y}_{...})^{2} + an \sum_{j=1}^{b} (\overline{y}_{.j.} - \overline{y}_{...})^{2} + n \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{y}_{...})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{ij.})^{2}$$

$$SS_T = SS_A + SS_B + SS_{AB} + SS_E$$

df breakdown:

$$abn-1 = a-1+b-1+(a-1)(b-1)+ab(n-1)$$

	B 1	•••	Bb	
A1	\overline{y}_{11} .	•••	\bar{y}_{1b} .	\bar{y}_{1}
•••				•••
Aa	$\bar{y}_{21.}$	• • •	\bar{y}_{2b} .	\bar{y}_{a}
	<u> </u> $\bar{y}_{.1}$.		$\bar{y}_{.b.}$	<u>y</u>

A Few Facts

(1) SS_T , SS_A , SS_B and SS_E are independent;

(2)
$$SS_E/\sigma^2 \sim \chi^2_{ab(n-1)};$$

(3) if
$$\alpha_1 = \cdots = \alpha_a = 0$$
, then $SS_A/\sigma^2 \sim \chi^2_{a-1}$; a因素不影响

(4) if
$$\beta_1 = \cdots = \beta_b = 0$$
, then $SS_B/\sigma^2 \sim \chi_{b-1}^2$;

(5) if
$$\gamma_{11} = \gamma_{12} = \cdots = \gamma_{ab} = 0$$
, then $SS_E/\sigma^2 \sim \chi^2_{(a-1)(b-1)}$;

殳有交互影响

ANOVA Table

> summary(aov(Life ~ Type* Temp, data = Battery))

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
A treatments	SS_A	a-1	$MS_A = \frac{SS_A}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
B treatments	SS_B	b - 1	$MS_B = \frac{SS_B}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
Interaction	SS_{AB}	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$
Error	SS_E	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$	
Total	SS_T	abn-1		

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Type	2	10684	5342	7.911	0.00198 **
Temp	2	39119	19559	28.968	1.91e-07 ***
Temp:Type	4	9614	2403	3.560	0.01861 *
Residuals	27	18231	675		

Experiments without Replicates

- ▶ One run for each combination of A & B i.e., full factorial experiment with n = 1
- ▶ Under the full model

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$

$$SS_T = SS_A + SS_B + SS_{AB} + SS_E$$

df breakdown:

$$abn-1=a-1+b-1+(a-1)(b-1)+ab(n-1)$$

df of SS_E is 0 - you run out of degrees of freedom!

- $\triangleright \sigma^2$ is not estimable
- Thus you can't fit an interaction term and so you can't test for interaction

Example: Impurity Causes

- The impurity present in a chemical product is affected by two factors—pressure and temperature
- The data from a single replicate of a factorial experiment are shown below

				Pressui	e	
Temperature (°F)	25	30	35	40	45	y_i .
100	5	4	6	3	5	23
125	3	1	4	2	3	13
150	1	1	3	1	2	8
$y_{.j}$	9	6	13	6	10	$44 = y_{}$

Additive Model & Estimation of Main Effects

Solution: reduce the full model to additive model

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$

- > No interaction terms
- > Free parameters: 1 + (a-1) + (b-1) + 1 = a + b

$$\hat{\mu} = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij} = \bar{y}.$$

$$\hat{\alpha}_{i} = \frac{1}{b} \sum_{j=1}^{b} y_{ij} - \hat{\mu} = \bar{y}_{i}. - \bar{y}.$$

$$\hat{\beta}_{j} = \frac{1}{a} \sum_{i=1}^{a} y_{ij} - \hat{\mu} = \bar{y}_{\cdot j} - \bar{y}.$$

$$\hat{\sigma}^{2} = \frac{1}{(a-1)(b-1)} \sum_{i \in \hat{\beta}} (y_{ij} - \hat{\alpha}_{i} - \hat{\beta}_{j} - \hat{\mu})^{2}$$

ANOVA Table

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
A treatments	SS_A	a-1	$MS_A = \frac{SS_A}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
B treatments	SS_B	<i>b</i> – 1	$MS_B = \frac{SS_B}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
Interaction	$\langle SS_{AB} \rangle$	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$
Error	SS_E	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$	
Total	SS_T	abn-1		
	<i>ab</i> -1	(a-1)(b-1)	

Randomized Complete Block Design(RCBD)

▶ Elements:

- > A treatment factor A with a levels
- > A block factor B with b levels
- \triangleright Response Y

► Goals:

- > Evaluate the impact of factor A to response Y
- Remove potential impact of block factor B
- > Assume there is no interaction between A & B

Tukey's One Degree of Freedom Test for

Addition Tukey didn't like this situation much and (being Tukey) he was able to figure out a way to get around the dilemma, at least partially

The model proposed by Tukey is to formulate it as

$$y_{ij} = \mu + \alpha_i + \beta_j + \lambda \alpha_i \beta_j + \varepsilon_{ij}$$

- Estimation of λ
 - Multiply $\alpha_i \beta_j$ on both sides of the equation, then sum over all pairs (i, j): $\sum_{i,j} \alpha_i \beta_j y_{ij} = \mu \sum_{i,j} \alpha_i \beta_j + \sum_{i,j} \alpha_i^2 \beta_j + \sum_{i,j} \alpha_i \beta_j^2 + \lambda \sum_{i,j} \alpha_i^2 \beta_j^2 + \sum_{i,j} \alpha_i \beta_j \varepsilon_{ij}$ Then

$$\lambda \approx \frac{\sum_{i,j} \alpha_i \beta_j y_{ij}}{(\sum_i \alpha_i^2) (\sum_j \beta_j^2)}$$

With
$$\hat{\alpha}_{i} = \bar{y}_{i.} - \bar{y}_{..}, \hat{\beta}_{j} = \bar{y}_{.j} - \bar{y}_{..},$$

$$\hat{\lambda} = \frac{\sum_{i,j} (\bar{y}_{i.} - \bar{y}_{..}) (\bar{y}_{.j} - \bar{y}_{..}) y_{ij}}{(\sum_{i} (\bar{y}_{i.} - \bar{y}_{..})^{2}) (\sum_{j} (\bar{y}_{.j} - \bar{y}_{..})^{2})}$$

$$y_{ij} = \mu + \alpha_i + \beta_j + \lambda \alpha_i \beta_j + \varepsilon_{ij}$$

Break down sum of squares:

$$= \sum_{i,j} (\lambda \alpha_i \, \beta_j)^2$$

$$SS_{A} = b \sum_{i=1}^{a} (\bar{y}_{i.} - \bar{y}_{..})^{2}, SS_{B} = a \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}_{..})^{2}, SS_{AB} = \frac{\left(\sum_{i,j} (\bar{y}_{i.} - \bar{y}_{..})(\bar{y}_{.j} - \bar{y}_{..})y_{ij}\right)^{2}}{\left(\sum_{i} (\bar{y}_{i.} - \bar{y}_{..})^{2}\right)\left(\sum_{j} (\bar{y}_{.j} - \bar{y}_{..})^{2}\right)}$$

$$SS_{T} = SS_{A} + SS_{B} + SS_{AB} + SS_{E}$$

$$ab - 1 = (a - 1) + (b - 1) + 1 + (ab - a - b)$$

Tukey's test of additivity:

$$H_0$$
: $\lambda = 0$ (i.e., no interaction) vs H_1 : $\lambda \neq 0$

Test statistic, F ratio:

$$F_0 = \frac{SS_{AB}/1}{MS_E} \sim F_{1,ab-a-b}$$

Decision rule: Reject H_0 if

$$F_0 > F_{1-\alpha, 1, ab-a-b}$$

It is important to remember that " $\alpha_i \beta_j$ " is a <u>covariate</u>. The test for the "significance" of $\alpha_i \beta_j$ forms the test for interaction

Impurity Causes Check

Interaction plot

- ▶ R implementation
- > library(additivityTests)
- > response <-matrix(impurity, nr = nlevels(temp))
- > tukey.test(response)

Tukey test on 5% alpha-level:

Test statistic: 0.3627 Critival value: 5.591

The additivity hypothesis cannot be rejected.

Experiments with Three Factors

► Elements:

- > Factor A with a levels
- > Factor B with b levels
- > Factor C with c levels
- Response Y

▶ Potential effects:

- > Main effects of A, B & C
- > Two-factor interactions AB, AC, BC
- > Three-factor interaction ABC

► Goals:

- > Evaluate the impact of factor A, B & C to response Y
- \triangleright Find the best combination of (A, B, C)

▶ Design Methods:

- > One factor at a time
- > Full factorial design
- > Latin square design

ANOVA Table for a General Three-Way Layout

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \delta_k + (\alpha\beta)_{ij} + (\alpha\delta)_{ik} + (\beta\delta)_{jk} + \gamma_{ijk} + \varepsilon_{ijkl}$$

Source	df	Sum of Squares
A	I-1	$\sum_{i=1}^{I} nJK(\hat{\alpha}_i)^2$
В	J-1	$\sum_{j=1}^{J} nIK(\hat{\beta}_j)^2$
C	K-1	$\sum_{k=1}^{K} nIJ(\hat{\delta}_k)^2$
$A \times B$	(I-1)(J-1)	$\sum_{i=1}^{I} \sum_{j=1}^{J} nK(\widehat{(\alpha\beta)}_{ij})^{2}$
$A \times C$	(I-1)(K-1)	$\sum_{i=1}^{I} \sum_{k=1}^{K} n J(\widehat{\alpha \delta})_{ik})^{2}$
$B \times C$	(J-1)(K-1)	$\sum_{j=1}^{J} \sum_{k=1}^{K} n I(\widehat{\beta \delta})_{jk})^{2}$
$A \times B \times C$	(I-1)(J-1)(K-1)	$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} n(\hat{\gamma}_{ijk})^2$
residual	IJK(n-1)	$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{n} (y_{ijkl} - \overline{y_{ijk}})^{2}$
total	IJKn-1	$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=1}^{n} (y_{ijkl} - \overline{y}_{})^{2}$

Example: The Soft Drink Bottling Problem

- A bottler is interested in obtaining more uniform fill heights in the bottles
- The filling machine is expected to fill each bottle to the correct target height. The bottler would like to <u>understand the sources of the variability better and eventually reduce it</u>
- The process engineer can control three variables during the filling process:
 - the percent carbonation (A), difficult to control, 3 levels
 - the operating pressure in the filler (B), 2 levels
 - the bottles produced per minute or the line speed (C), 2 levels
- ► Two replicates are run of a factorial design in these three factors, with all 24 runs taken in random order
- ► The response variable observed is the average deviation from the target fill height

Experiment Result

Positive	Operating Pressure (B)									
deviations a	are		25 _]	psi			30	psi		
fill heights	Percent		Line Sp	eed (C)			Line S _I	peed (C)		
above the	Carbonation (A)	2	00	25	0	2	00	25	50	y_{i}
target, when	reas	-3 -1	<u>4</u>	-1 0		-1 0		1	2	-4
deviations a	are ₁₂	0		2 1	3	2 3	(5)	6 5	11	20
fill heights below the	14	5 4	9	7 6	13	7 9	16	10 11	21	59
target	$B \times C$ Totals $y_{.jk.}$		6	15	5	4	20	3	4	75 = y
The circled	y.j		2	1			5	54		
numbers ar			$A \times B$ Totals				$A \times C$	Totals		
the three-w			у _{іј} В				У,	i.k.	C	
cell totals		A	25	30			A	200	250	
		10	-5	1			10	-5	1	
		12	4	16			12	6	14	
		14	22	37			14	25	34	

Plots of Factor Effects & Interactions

清华大学统计学研究中心

ANOVA Result

> summary(aov(deviation ~ carbonation * pressure * speed, data=Bottle))

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
carbonation	2	252.75	126.38	178.412	1.19e-09 ***
pressure	1	45.38	45.38	64.059	3.74e-06 ***
speed	1	22.04	22.04	31.118	0.00012 ***
carbonation:pressure	2	5.25	2.63	3.706	0.05581 .
carbonation:speed	2	0.58	0.29	0.412	0.67149
pressure:speed	1	1.04	1.04	1.471	0.24859
carbonation:pressure:speed	. 2	1.08	0.54	0.765	0.48687
Residuals	12	8.50	0.71		

Don't forget analysis of the residuals

Plot for a Specific Setting

- Since high level of line speed (250 bpm) is preferred to maximize the production rate, and the percent carbonation is difficult to control, we recommend the low level of operating pressure (25 psi)
- Average fill height deviation at high speed and low pressure for different carbonation levels

Better have a small percent carbonation, and control the variability in its levels

Blocking in a Factorial Design

- ► We usually treat nuisance factors as blocks
- Sometimes, it is not practical to completely randomize all of the runs in a factorial

$$y_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ij}$$

For example, the presence of a nuisance factor may require that the

experiment be run in blocks

We should assume that interaction between blocks and treatments is negligible

Sp	lit plot w	ith 4 block	s , Factor	A is 2 levels, F	actor B is 5 levels
B1	B5	B2	B4	В3	Mainplot A1
В3	B2	B4	B1	B5	Mainplot A2
B1	B5	B2	B4	В3	Mainplot A2
В3	B2	B4	B1	B5	Mainplot A1
B1	B5	B2	B4	В3	Mainplot A1
В3	B2	B4	B1	B5	Mainplot A2
B1	B5	B2	B4	В3	Mainplot A2
B3	B2	B4	B1	B5	Mainplot A1

Latin Square Design

- ightharpoonup A Latin square design of order k
 - > k Latin letters (i.e., treatments)
 - > Each appears once in each row and once in each column

A	В	C
В	C	A
C	A	В

- ► Latin square design
 - > It is used to eliminate two nuisance sources of variability
 - > One treatment factor + two blocking factors
 - > It is an extension of RBD to accommodate two blocking factors
 - > Randomization applied to assignments to rows, columns, treatments

Example: Wear Experiment

- ▶ Testing the abrasion resistance of rubber-covered fabric
- ightharpoonup Y = loss in weight over a period of time
- ▶ One treatment factor: Material type A, B, C, D
- ► Two blocking factors
 - > Four positions on the tester
 - > Four applications(four different times for setting up the tester)

	Position			
Application	1	2	3	4
1	С	D	В	A
2	A	В	D	C
3	D	\mathbf{C}	A	В
4	В	A	C	D

ANOVA Table for Latin Square Design

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \varepsilon_{ijk}$$

	Degrees of	Sum of
Source	Freedom	Squares
row	k-1	$k\sum_{i=1}^{k} (\overline{y_{i}} - \overline{y})^{2}$
column	k-1	$k\sum_{j=1}^{k} (\bar{y}_{\cdot j} - \bar{y}_{\cdots})^2$
treatment	k-1	$k\sum_{l=1}^{k} (\bar{y}_{l} - \bar{y}_{})^2$
residual	(k-1)(k-2)	$\sum_{(i,j,l)\in S} (y_{ijl} - \bar{y_{i}} - \bar{y_{i}} - \bar{y_{i}} - \bar{y_{i}})^2$
total	$k^2 - 1$	$\sum_{(i,j,l)\in S} (y_{ijl} - \overline{y}_{})^2$

Graeco-Latin Square Design for Four Factors

- ► Two Latin squares are orthogonal if each pair of letters appears once in the two squares, when superimposed
- ► The superimposed square is called a Graeco-Latin square

Αα	Вβ	$C\gamma$
Βγ	$C\alpha$	$A\beta$
Сβ	$A\gamma$	$B\alpha$

Αα	Вγ	Сδ	D β
Вβ	Αδ	Dγ	$\mathbf{C}\alpha$
Сγ	Dα	Αβ	Вδ
D δ	Сβ	Βα	Αγ

Αα	Вδ	Сβ	Dε	Εγ
вβ	Сε	Dγ	Εα	Αδ
Сγ	Dα	Εδ	Αβ	Βε
Dδ	Εβ	Αε	Βγ	Сα
Εε	Αγ	Βα	Сδ	Dβ

- ► Useful for studying four factors (1 treatment, 3 blocking factors; or 2 treatment, 2 blocking factors, etc.) allowing one more factor to be studied
- ► They are restricted, however, to the case in which all the factors have the same number of levels

ANOVA Table for Graeco-Latin Square Design

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \tau_l + \varepsilon_{ijkl}$$

	Degrees of	Sum of
Source	Freedom	Squares
row	k-1	$k\sum_{i=1}^{k} (\overline{y_i}\overline{y_i})^2$
column	k-1	$k\sum_{j=1}^{k} (\overline{y}_{\cdot j} - \overline{y}_{\cdot \cdot \cdot})^2$
Latin letter	k-1	$k \sum_{l=1}^{k} (\bar{y}_{l.} - \bar{y}_{})^2$
Greek letter	k-1	$k\sum_{m=1}^{k} (\overline{y}_{\cdots m} - \overline{y}_{\cdots})^2$
residual	(k-3)(k-1)	by subtraction
total	$k^2 - 1$	$\sum_{(i,j,l,m)\in S} (y_{ijlm} - \overline{y_{\cdots}})^2$