State Space Variable Definitions and Equations

1/20/2020 Revision 3.0

Input Vector, u

Mariable	Variable Name	Definition	Relative information /
Variable	variable name	Delimition	Diagrams
t	Throttle	Control Surface Deflection	Depends on the RC F-16
e	Elevator	Control Surface Deflection	Depends on the RC F-16
a	Aileron	Control Surface Deflection	Depends on the RC F-16
r	Rudder	Control Surface Deflection	Depends on the RC F-16
W_N	Wind (x component)	A derivative of the Wind Velocity Component	Needed to be included in the Input vector for calculation of the vehicle velocity relative to the surrounding air
W_E	Wind (y component)	A derivative of the Wind Velocity Component	Needed to be included in the Input vector for calculation of the vehicle velocity relative to the surrounding air
W_D	Wind (z component)	A derivative of the Wind Velocity Component	Needed to be included in the Input vector for calculation of the vehicle velocity relative to the surrounding air

State Vector, x in the body axis

Variable	Variable Name	Definition	Relative information / Diagram
P_N	Position (x component)	A part of the local geographic system,	Overview on pg 27 of the text

		the north axis is aligned geographically true north	
P_E	Position (y component)	A part of the local geographic system, the East axis is aligned geographically true east	Overview on pg 27 of the text
P_D	Position (z component)	A part of the local geographic system, the Down axis is aligned with the geocentric position vector.	Overview on pg 27 of the text
ф (Phi)	Euler Angle (Bank (roll) - x component)	Bank Angle	
θ	Euler Angle (Pitch - y component)	Pitch Angle	
Ψ	Euler Angle (Yaw - z component)	Yaw Angle	
U	Velocity in the body (x component)	The velocity of the body relative to the air in the x-direction	
V	Velocity in the body (y component)	The velocity of the body relative to the air in the y-direction	

W	Velocity in the body (z component)	The velocity of the body relative to the air in the z-direction	
P	Angular Velocity (x component)	Euler's Equations of motion angular velocity in the x direction	
Q	Angular Velocity (y component)	Euler's Equations of motion velocity in the y direction	
R	Angular Velocity (z component)	Euler's Equations of motion velocity in the z direction	

Variable	Equation	Relative information/diagram
t	[Lower Limit, Upper Limit] expressed in radians	Related to propulsion effects, we will need to define later: $F = u_i * m * g$; where ui is the index of the input vector
е	[Lower Limit, Upper Limit] expressed in radians	$F = u_i * m * g$
а	[Lower Limit, Upper Limit] expressed in radians	$F = u_i * m * g$
r	[Lower Limit, Upper Limit] expressed in radians	$F = u_i * m * g$
W_N	$V_{w/e}$	Velocity of wind with respect to the earth
W_E	$V_{w/e}$	Velocity of wind with respect to the earth
W_D	$V_{w/e}$	Velocity of wind with respect to the earth

i i	I
1	
i i	<u> </u>
1	
1	

State Vector, x, related equations in the body axis

Variable	Equation	Relative information / Diagram
P_N	$\dot{\mathbf{P}}_{N} = Uc\theta c\psi + V(-c\phi s\psi + s\phi s\theta c\psi) + W(s\phi s\psi + c\phi s\theta c\psi)$	c = cosine s = sine
P_E	$\dot{\mathbf{P}}_E = Uc\theta s\psi + V(c\phi c\psi + s\phi s\theta s\psi) + W(-s\phi c\psi + c\phi s\theta s\psi)$	c = cosine s = sine
P_D	$\dot{\mathbf{P}}_D = -h, \ h = Us\theta - Vs\varphi c\theta - Wc\varphi c\theta$	c = cosine s = sine
ф (Phi)	$= P + t\Theta(Qs\phi + Rc\phi)$	c = cosine s = sine t = tangent
θ	$= Qc\phi - Rs\phi$	c = cosine s = sine
Ψ	$= (Qs\phi + Rc\phi)/c\theta$	c = cosine s = sine
U	$\mathbf{U} = RV - QW - g_d s\theta + (X_A + X_T)/m$	$s = sine$ $X_A =$ Aerodynamic force in the x component $X_T = Thrust$ force in the x component
V	$\mathbf{V} = -RU + PW + g_d s \phi c \theta + (Y_A + Y_T)/m$	$s = sine$ $c = cosine$ $Y_A =$ Aerodynamic force in the y component $Y_T = Thrust$ force in the y component

W	$\mathbf{W} = QU - PV + g_d c \phi c \theta + (Z_A + Z_T)/m$	$s = sine$ $c = cosine$ $Z_A =$ Aerodynamic force in the z component $Z_T = Thrust$ force in the z component
P	$\Gamma \mathbf{P} = J_{xz} [J_x - J_y + J_z] P Q - [J_z (J_z - J_y) + J_{xz}^2] Q R + J_z l + J_{xz} n$	J is part of an inertia matrix
Q	$J_{y} \mathbf{Q} = (J_{z} - J_{X})RP - J_{xz}(P^{2} - R^{2}) + m$	J is part of an inertia matrix (see equation 1.7-9 in the text. It is on pg 38)
R	$\Gamma \mathbf{R} = -J_{xz}(J_x - J_y + J_z)QR + [J_x(J_x - J_y) + J_{xz}^2]QR + J_zl + J_{xz}n$	J is part of an inertia matrix (see equation 1.7-9 in the text. It is on pg 38)

Reference: pg 111 of the textbook "Aircraft Control and Simulation" by Brian L Stevens.

Inertia

Note: this is in the stability axis and will need to be transformed into the body axis.

 $J'x = Jx\cos 2\alpha + Jz\sin 2\alpha - Jxz\sin 2\alpha$

J'y = Jy

 $J'z = Jx\sin 2\alpha + Jz\cos 2\alpha + Jxz\sin 2\alpha$

 $J'xz = 1/2(Jx - Jy) \sin 2\alpha + Jxz \cos 2\alpha$

Figure 2.3-1 Definitions of axes and aerodynamic angles.