ET3230 Điện tử tương tự l

Bài giảng: Khuếch đại công suất

Nội dung

- 10.1 Giới thiệu
- 10.2 Khuếch đại chế độ A
- 10.3 Khuếch đại chế độ B
- 10.4 Khuếch đại chế độ C, D
- 10.5 Các thiết bị và mạch công suất thực tế

10.1 Giới thiệu

- 10.1.1 Đặc điểm chung
- 10.1.2 Các chế độ làm việc của mạch KĐCS
- 10.1.3 Hiệu suất

10.1.1 Đặc điểm chung

• KĐCS

- Tầng KĐ cuối, có tín hiệu vào lớn, làm việc trong miền không tuyến tính
- Cung cấp tín hiệu ra đủ lớn đáp ứng yêu cầu của tải, với độ méo cho phép
- Đảm bảo hiệu suất cao
- Không dùng sơ đồ tương đương tín hiệu nhỏ mà dùng đồ thị để nghiên cứu

10.1.2 Các chế độ làm việc của mạch KĐCS

- Tùy vào chế độ công tác của transistor, tầng KĐCS có thể làm việc ở các chế độ A, B, AB, C, D.
 - Chế độ A: KĐ cả tín hiệu vào, hiệu suất thấp, méo phi tuyến nhỏ
 - Chế độ B: KĐ một nửa tín hiệu vào, có hiệu suất lớn, có méo xuyên tâm
 - Chế độ AB: có tính chất chuyển tiếp giữa chế độ A và
 B, giảm méo khi tín hiệu vào có biên độ nhỏ
 - Chế độ C: KĐ tín hiệu ra bé hơn nửa hình sin, hiệu suất cao, méo lớn, dùng trong các mạch KĐ cao tần
 - Chế độ D: transistor làm việc như 1 khóa điện tử đóng mở

10.1.3 Hiệu suất

- Hiệu suất
 - = công suất xoay chiều trên tải/ công suất cung cấp từ nguồn DC

$$\eta = \frac{P_o(ac)}{P_i(dc)} \times 100\%$$

So sánh giữa các chế độ

	А	AB	В	С	D
Chu kỳ hoạt động	360 ⁰	180º - 360º	180º	<1800	Pulse
Hiệu suất	25% - 50%	25(50%) - 78.5%	<78.5%		Typ >90%

10.2 KĐCS chế độ A

- 10.2.1 KĐCS đơn chế độ A sử dụng tải điện trở
- 10.2.2 KĐCS đơn chế độ A tải ghép biến áp

$$I_{B} = \frac{V_{CC} - 0.7V}{R_{B}}$$

$$I_{C} = \beta I_{B} \qquad V_{CE} = V_{CC} - I_{C}R_{C}$$

• AC

Dòng điện $I_{\scriptscriptstyle C}: \ 0 \to V_{\scriptscriptstyle CC}/R_{\scriptscriptstyle C}$

Điện áp $V_{\scriptscriptstyle CE}:~0 {\,\rightarrow\,} V_{\scriptscriptstyle CC}$

- Công suất vào
 - công suất 1 chiều $P_i(dc) = V_{CC}I_{C_O}$
- Công suất ra
 - công suất xoay chiều trên tải

$$P_{o}(ac) = V_{CE}(rms)I_{C}(rms) = I_{C}^{2}(rms)R_{C} = \frac{V_{CE}^{2}(rms)}{R_{C}}$$

$$P_{o}(ac) = \frac{V_{CE}(p)I_{C}(p)}{2} = \frac{I_{C}^{2}(p)}{2}R_{C} = \frac{V_{CE}^{2}(p)}{2R_{C}}$$

$$P_{o}(ac) = \frac{V_{CE}(p-p)I_{C}(p-p)}{8} = \frac{I_{C}^{2}(p-p)}{8}R_{C} = \frac{V_{CE}^{2}(p-p)}{8R_{C}}$$

Hiệu suất

$$\eta = \frac{P_o(ac)}{P_i(dc)} \times 100\%$$

Hiệu suất cực đại

$$\eta_{\text{max}} = \frac{P_{o \,\text{max}}(ac)}{P_{i \,\text{max}}(dc)} \times 100\% = \frac{V_{CC}^2/8R_C}{V_{CC}^2/2R_C} \times 100\% = \frac{25\%}{25\%}$$

- Ví dụ
 - Tính công suất vào, công suất ra, và hiệu suất khi $I_{\scriptscriptstyle R}(p) = 10 mA$

10.2.2 KĐCS đơn chế độ A tải ghép b/áp

- Dùng ghép biến áp
 - Tăng hiệu suất
 - Hỗ trợ việc phối hợp trở kháng

10.2.2 KĐCS đơn chế độ A tải ghép b/áp

Dùng ghép biến áp

* Đường tải 1 chiều song song với trục tung

$$P_o(ac) = \frac{\left(V_{CE_{\text{max}}} - V_{CE_{\text{min}}}\right)\left(I_{C_{\text{max}}} - I_{C_{\text{min}}}\right)}{8}$$

$$P_{i}(dc) = V_{CC}I_{C_{O}}$$

=> Hiệu suất cực đại là 50%

$$\eta = 50 \left(\frac{V_{CE_{\text{max}}} - V_{CE_{\text{min}}}}{V_{CE_{\text{max}}} + V_{CE_{\text{min}}}} \right) \%$$

10.3 Khuếch đại chế độ B

- 10.3.1 Những vấn đề chung
- 10.3.2 Mạch KĐCS đẩy kéo ghép biến áp
- 10.3.3 Mạch KĐCS bù đối xứng
- 10.3.4 Mạch đấy kéo giả bù

- Để thu được cả chu kỳ tín hiệu đầu ra cần sử dụng 2 transistor, mỗi transistor được sử dụng ở mỗi nửa chu kỳ khác nhau của tín hiệu
- 1 phần của mạch đẩy tín hiệu lên cao trong ½ chu kỳ, 1 phần khác của mạch kéo tín hiệu xuống thấp trong ½ chu kỳ còn lại => mạch "đẩy kéo"

Công suất nguồn cung cấp

$$P_{i}(dc) = V_{CC}I_{dc} = V_{CC}\left(\frac{2}{\pi}I(p)\right)$$

Công suất đầu ra xoay chiều

$$P(ac) = \frac{V_L^2(p)}{2R_L}$$
 $P(ac) = \frac{V_L^2(rms)}{R_L} = \frac{V_L^2(p-p)}{8R_L}$

Hiệu suất

$$\eta = \frac{P_o(ac)}{P_i(dc)} \times 100\% = \frac{\pi V_L(p)}{4 V_{CC}} \times 100\% \quad \eta_{\text{max}} = \frac{\pi}{4} \times 100\% = 78,5\%$$

Công suất tổn hao trên transistor

$$P_{2Q} = P_i(dc) - P_o(ac) \qquad P_Q = P_{2Q}/2$$

- Mắc bộ KĐ đẩy kéo với tải sử dụng
 - 2 nguồn cung cấp DC
 - 1 nguồn cung cấp DC

- Mạch KĐ chế độ B phải dùng ít nhất 2 transistor cùng loại hoặc khác loại
- Khi cần tăng c/suất ra, thường dùng 2 transistor ở mỗi vế mắc kiểu Darlington
- Khi tầng KĐCS dùng 2 transistor cùng loại thì tầng kích phải là tầng đảo pha để cấp 2 tín hiệu ngược pha

10.3.2 Mạch KĐCS đẩy kéo ghép biến áp

10.3.3 Mạch KĐCS bù đối xứng

10.3.3 Mạch KĐCS bù đối xứng

- Dùng các transistor Darlington
 - Dòng điện đầu ra cao hơn
 - Trở kháng ra thấp hơn

10.3.4 Mạch đẩy kéo giả bù

Tăng c/suất ra; thông dụng nhất

10.4 Khuếch đại CS chế độ C và D

- 10.4.1 Khuếch đại CS chế độ C
- 10.4.2 Khuếch đại CS chế độ D

10.4.1 Khuếch đại chế độ C

- Hoạt động trong khoảng dưới ½ chu kỳ tín hiệu
- Hiệu suất lớn
- Thường được sử dụng trong mạch thông tin vô tuyến, ví dụ như ở tầng trộn tần

10.4.2 Khuếch đại chế độ D

- Được thiết kế để làm việc với tín hiệu xung hoặc số
- Hiệu suất trên 90%

Méo trong tầng KĐ

- Méo
 - Méo phi tuyến hay méo biên độ
 - Méo tần số
- Méo hài bậc n

$$\% D_n = \frac{|A_n|}{|A_1|} \times 100\%$$

 $\left|A_{_{n}}
ight|$ Biên độ của hài bậc n

 $\left|A_{1}\right|$ Biên độ của thành phần tần số cơ bản

Méo hài tổng

%THD =
$$\sqrt{D_2^2 + D_3^2 + D_4^2} \times 100\%$$

- Linh kiện công suất
 - Điốt
 - BJT công suất
 - MOSFET công suất
 - Thyristor (SCR-silicon controled rectifier)
 - Insulated-Gate Bipolar Transistor (IGBT)
 - Gate Turn-Off Thyristors
 - MOS-Controlled Thyristor (MCT)

Đặc tính

- Điốt công suất: khả năng chịu dòng thuận lớn (n100 A)
- BJT công suất : P=nW n*100 KW, f = 10KHz, npn
- => Transistor Darlington công suất: dòng bazơ nhỏ
- MOSFET công suất : điều khiển bằng điện áp vào (chuyển mạch)
- 65 W at 25°C Case Temperature
- 6A Continuous Collector Current
- 10A Peak Collector Current
- 100V Collector-Emitter Voltage
- Isolated transistor package available on request
- Custom selections possible

PN2222A

MMBT2222A

PZT2222A

NPN General Purpose Amplifier

- This device is for use as a medium power amplifier and switch requiring collector currents up to 500mA.
- Sourced from process 19.

Tản nhiệt trong transistor công suất

Kiến trúc tầng KĐCS

Loại 2 tầng

- Tầng "transconductance"
- Tầng 2: kết hợp tầng khuếch đại điện áp và đệm ra

Kiến trúc tầng KĐCS

Loại 3 tầng:

- Tầng "Transconductance": điện áp vào, dòng điện ra
- Tầng "transimpedance": dòng điện vào, điện áp ra, tầng khuếch đại điện áp
- Tầng ra: tầng đệm, hệ số khuếch đại điện áp bằng 1

- IC công suất
 - Nhỏ gọn, dễ lắp ráp, cân chỉnh đơn giản và độ tin cậy cao
 - Tính năng đặc trưng:
 - Nguồn nuôi nhỏ
 - Hệ số KĐ rất lớn
 - Tổng trở vào lớn
 - Tổng trở ra nhỏ
 - Độ trôi nhiệt nhỏ
 - Hiệu suất cao

LM1877 Dual Audio Power Amplifier

Tóm tắt

- Các chế độ làm việc của mạch KĐCS: A,
 B, AB, C, D
- Các mạch KĐCS

Bài tập

- Đọc chương 14, 15 (Các bộ KĐ thuật toán và ứng dụng [1])
- Bài tập [1]:
 - Chương 16: 1, 3, 4, 5, 12, 16, 18, 23