

西南交通大學

嵌入武券统及应用

西南交通大学 电气工程学院 孙永奎博士

E-mail: yksun@swjtu.edu.cn

第5章 三星S5P6818 简介及编程实例

- ❖5.1三星S5P6818 SOC介绍
- ❖5.2 S5P6818 SOC编程实例
- ❖2学时

5.1 三星S5P6818 SOC介绍

- ❖ 5.1.1 S5P6818 SOC概述
- ❖ 5.1.2 S5P6818 SOC功能
- ❖ 5.1.3 S5P6818 SOC最小系统
- ❖ 5.1.4 S5P6818实验系统介绍

■1、Cortex内核

■ 2、Cortex-A53应用系统架构

- ❖ Cortex-A53是采取了ARMv8-A架构、支持多核
- ❖ 支持32位的ARMv7代码和64 位代码的AArch64执行状态。
- ❖ 每个核心都必须使用DSP和 NEON SIMD扩展
- ❖ 板载VFPv4浮点单元(每个 核心)
- ❖ 功耗降低

■3、Cortex-A53处理器特点

- ❖ Cortex-A53处理器,在高性能与低功耗领域的领先 地位
- ❖Cortex-A53是全球最小的64位处理器。可独立运作或整合为ARM big. LITTLE处理器架构。能够针对智能手机、高性能服务器等需求开发系统级芯片(SoC)。

■ 3、S5P6818 SOC概述

❖内核

- 64位 ARM Cortex A53 8核处理器,32Kbyte I-Cache, 32Kbyte D-Cache per core,CPU频率为1.4Ghz,
- 1MByte L2 Cache
- VFP(Vector float-point Processor), Neon Processor per core

❖存储器

- 支持LPDDR2/3 and DDR2/3 up to 4Gbytes
- 支持SRAM, ROM and NOR flash, SLC/MLC NAND Flash, SD/MMC/eMMC

❖外设

- 6x UART, 3x SPI, PPM, 3x I2C, 3x PWM, 2x MPEG-TS
- 8x 12bit general purpose ADC等

*多媒体

- Multi-format video decoder
- H.264 video encoder
- *3D Graphic
 - Enhanced 3D graphic processor
 - Supports OpenGL|ES 1.1/2.0, Open VG

Security

- ARM TrustZone : TZPC, TZASC and TZMA
- Hardware crypto accelerator
- Supports Secure boot and Secure JTAG

■1、S5P6818 SOC功能框图

❖3、S5P6818引脚

图(FCBGA封装)

■ 有的一个引脚定 义多个功能

2.3 I/O Function Description

2.3.1 Ball List Table

Table 2-1 Ball Function Table

Ball	Name	Туре	I/O	PU /PD	Alternate Function 0	Alternate Function 1	Alternate Function 2	Alternate Function 3
A1	MIPICSI_DNCLK	S	Ю	N	MIPICSI_DNCLK			
A2	MIPICSI_DN0	S	Ю	N	MIPICSI_DN0			
A3	MIPICSI_DN1	S	Ю	N	MIPICSI_DN1			
A4	MIPICSI_DN2	S	Ю	N	MIPICSI_DN2			
A5	MIPICSI_DN3	s	Ю	N	MIPICSI_DN3			

- ■1、自举配置
- ❖ 外部静态存储器自举
- ❖ 内部ROM自举
 - ■NAND自举(具有)
 - SD/MMC/SDFS自举
 - ■SPI串行EEPROM自举
 - ■UART自举
 - ■USB自举

	Name	Pin	RST CFG	Note		100
=	BootMode[2:0]	SD[2:0]	RST_CFG[2:0]	Boot Mode Select	0 = Static Memory 1 = SDFS 3 = UART 4 = SPI 5 = SDMMC 6 = USB 7 = NAND	
		l	1	l .		1

❖ 1) 外部静态存储器自举配置

Pin Name	Function Name	Description
RST_CFG[2:0]	BOOTMODE[2:0]	Pull-down
RST_CFG[7:3]		Don't care
RST_CFG8	CfgSTLATADD	Static Latched Address (user select) 0 = None 1 = Latched
RST_CFG9	CfgSTBUSWidth	Static Bus Width (user select) 0 = 8-bit 1 = 16-bit
RST_CFG[24:10]		Don't care

Figure 3-1 External Static Memory Boot

❖ 2)内部ROM自举自举配置

iROMBOOT						
Pins	SDFS	UART	SPI Serial Flash	SDMMC	USB Device	NANDBOOT with Error Correction
RST_CFG[2:0]	BOOTMODE=1 BOOTMODE=3		BOOTMODE=4	BOOTMODE=5	BOOTMODE=6	BOOTMODE=7
RST_CFG[12:11]						NANDTYPE[1:0]
RST_CFG[13, 10]	Don't care				PAGESIZE[1:0]	
RST_CFG[3]	SELCS					
RST_CFG[17]	Don't care OTG Session Check					Don't care
RST_CFG[6]	Don't care	Baud Rate	Speed		Don	t care
RST_CFG[5:4]	Don't care		ADDRWIDTH[1:0]	Should be Zero	Don't care	
RST_CFG[19, 3]	Port Number					
RST_CFG[14]	DECRYPT					
RST_CFG[15]	I-CACHE					
RST_CFG[8]	LATADDR					
RST_CFG[9]	Should be Zero (BUSWIDTH)					

SPIBOOT

UARTBOOT

USB Boot

SDHC Boot

NANDBOOT with Error Correction

■2、主时钟

- ❖ 5种时钟
 - FCLK——CPU, HCLK——CPU BUS,
 - MCLK—— Memory
 - BCLK—— SYSTEM BUS
 - PCLK—— PERIPHERAL BUS CLOCK

- ❖4↑PLLs(X-TAL input of 24MHz)
 - PLL0—— 40 to 2500 MHz
 - PLL1—— 40 to 2500 MHz
 - PLL2 ——35 to 2200 MHz
 - PLL3—— 35 to 2200 MHz

■ **3**、实时时钟(RTC)

❖特点:

- 使用external 32.768 kHz Crystal
- 32-bit Counter
- Alarm Function: Alarm Interrupt or Wake Up from Power Down Mode
- Independent power pin (VDD_RTC)
- Supports 1 Hz Time interrupt for Power Down Mode
- Generates Power Management Reset signal

RTC 框图

■4、复位

- ❖4种复位
 - **Power on Reset**
 - **Watchdog Reset**
 - Software Reset(GPIO Reset)
 - Wake up(Idle, Stop)

■ 5、中断控制器 (GIC)

❖GIC支持中断类型

- 16 Software Generated Interrupt (SGIs)
- 6 external Private Peripheral Interrupt (PPIs) for each processor
- 1 internal PPI for each processor
- 128 Shared Peripheral Interrupt (SPIs)
- ❖中断处理模式
 - ■SGIs 使用N-N模式
 - ■硬件中断使用1-N模式

每个CUP可以看到1020个中断,

■6、存储器控制器

- ❖ 统一存储体系结构(UMA)
 - MCU-A: DDR3/LVDDR3 (Low Voltage DDR3)/LPDDR3/LPDDR2
 - MCU-S: Static Memory

❖MCU-A特点

- 支持8/16/32-bit SDRAM of 2 Gbyte
- Single Bank of Memory (32-bit data bus width)
- 支持 Power down mode
- 支持 Self Refresh mode

❖MCU-S特点

- Two Static Memory Chip Selects
- NAND Flash Interface
- 23-bit address supports using latch address
- SLC NAND, MLC NAND with ECC (Supports BCH-algorithm)
- Static Memory Map Shadow

■存储器映射

❖ 存储器分为SDRAM库(MCU-A)
和static 库(MCU-S)

例: 32位SDRAM

与MCU-A库接口

■ 7、GPIO

❖特征

- ■可编程上拉
- ■边缘/电平检测
- 160个GPIOs

8. GPIO

- *特征
 - ■12位分辨率
 - ■1M最大采用率
 - 0~1.8V模拟输入、DC~100kHz的输入频率
 - ■8个输入通道

■A/D转换表

Index	ADC Input (V)	Digital Output	
0	~ 1 × LSB	0000_0000_0000	1.12
1	1 × LSB ~ 2 × LSB	0000_0000_0001	
2	2 × LSB ~ 3 × LSB	0000_0000_0010	
~	~	I/O Chart	1LSB = (VREF - AGND)/4096
2047	2047 × LSB ~ 2048 × LSB	0111_1111_1111	≒ 0.43945 mV
2048	2048 × LSB ~ 2049 × LSB	1000_0000_0000	
2049	2049 × LSB ~ 2050 × LSB	1000_0000_0001	VREF = 1.8 V (Typ.)
~	~	~	AGND = 0.0 V (Typ.)
4093	4093 × LSB ~ 4094 × LSB	1111_1111_1101	
4094	4094 × LSB ~ 4095 × LSB	1111_1111_1110	
4095	4095 × LSB ~ 4096 × LSB	1111_1111_1111	

■ 9、 串口(UART)

❖特点:

- ■6个独立串口(Channel 0 to 5)
- ■所有串口支持基于中断操作
- ■串口1~串口5支持基于DMA的操作
- ■除串口2外,其他串口支持自动流控
- ■支持硬件握手操作

- ▶ 10、其他通信接口
- 网口(10/100/1000 Mbps)
- ■SD/MMC接口
- I2C接口、I2S接口
- ■SPI/SSP接口
- USB2.0 OTG/ USB2.0 host

■其他外设: DMA、PWM、AC97、HDMI等请见数据手册和参考手册

- 11、S5P6818典型应用
- 平板电脑
- 智能手机

5.1.3 S5P6818 SOC最小系统

- S5P6818最小系统
- ■电源
- 复位电路
- 存储器
- 时钟电路(外部晶振)
- Boot启动模式选择电路

5.1.3 S5P6818 SOC最小系统

电源电路

5.1.3 S5P6818 SOC最小系统

存储器电路(SD/MMC)

Boot启动模式选择电路

S5P6818核心板(最小系统)

■1、实验系统组成

◆ 微处理器标配ARMCortex-A53 (S5P6818)

■1、实验系统组成

	功能部件	型号参数
Co	CPU	- Samsung s5p6818(八核处理器) - 28nm HKMG - 1.4GHz+
rte	GPU	- Mali-400 MP4
Cortex-A53 核心配置	屏幕	- RGB 40 Pin 显示接口 - 7 寸 1024 x 600 IPS 高分辨率显示屏 - 多点电容触摸屏
核心	RAM容量	- 2GB DDR3
配	ROM容量	- 8GB eMMC
置	多启动方式	- eMMC 启动、 MicroSD(TF)/SD 卡启动 - 通过控制拨码开关切换启动方式 - 可以实现双系统启动
		I ST I IESSUA

	功能部件	型号参数
00	存储卡接口	- 1 个 MicroSD(TF)卡接口 - 1 个 SD 卡接口 - 最高可扩展至 64GB
rtex	摄像头接口	- 20Pin接口,支持OV5460 500万像素自动对焦摄像头
Cortex-A53	HDMI接口	HDMI A 型接口 HDMI v1.4a 最高 1080p@60fps 高清数字输出
板载接口	JTAG接口	- 20 Pin 标准 JTAG 接口 独家支持详尽的 ARM 裸机程序
接口	ROM容量	- 8GB eMMC
	USB接口	- 1 路 USB OTG - 3 路 USB HOST 2.0(可扩展 USB-HUB)

	功能部件	型号参数
Cortex-A53	音频接口	- 1 路 Mic 接口 - 1 路 Speaker 耳机输出 - 1 路 Speaker 立体声功放输出(外置扬声器)
X-A	网卡接口	- DM9000 10M/100M/1000M 网卡
	总线接口	- 1 路 RS485 总线接口 - 1 路 CAN 总线接口
板 载 接	串口接口	- 3 路 5 线 RS232 串口
女 口	扩展接口	- 2路 扩展10PinGPIO接口

第5章 三星S5P6818 简介及编程实例

- ❖ 5.1三星S5P6818 SOC介绍
- ❖5.2 S5P6818 SOC编程实例
- ❖2学时

5.2 S5P6818 SOC编程实例

- ❖ 5.2.1 RGB彩灯编程实例
- ❖5.2.2 按键中断控制RGB彩灯编程实例

- ❖GPIO端口输出模式配置寄存器
 - (1) GPIOxALTFN0\ GPIOxALTFN1 开启/关闭复用
 - (2) GPIOxOUTENB 端口输出使能
 - (3) GPIOxOUT 端口输出高/低电平

❖GPIOxALTFN0 端口复用寄存器(pin0~pin15)

- Base Address: C001_A000h (GPIOA)
- Base Address: C001_B000h (GPIOB)
- Base Address: C001_C000h (GPIOC)
- Base Address: C001_D000h (GPIOD)
- Base Address: C001_E000h (GPIOE)
- Address = Base Address + A020h, B020h, C020h, D020h, E020h, Reset Value = 0x0000_0000

该寄存器共32位宽,每一个pin的复用状态由两个位控制, 所以可以控制pin0~pin15端口,以pin2为例,如下如所示

Name	Bit	Туре	Description	Reset Value
GPIOXALTFN0_2	[5:4]	RW	GPIOx[2]: Selects the function of GPIOx 2pin. 00 = ALT Function0 01 = ALT Function1 10 = ALT Function2 11 = ALT Function3	2'b0

❖GPIOxALTFN1 端口复用寄存器(pin16~pin31)

- Base Address: C001_A000h (GPIOA)
- Base Address: C001_B000h (GPIOB)
- Base Address: C001_C000h (GPIOC)
- Base Address: C001_D000h (GPIOD)
- Base Address: C001_E000h (GPIOE)
- Address = Base Address + A024h, B024h, C024h, D024h, E024h, Reset Value = 0x0000_0000

该寄存器共32位宽,每一个pin的复用状态由两个位控制,所以可以控制pin16~pin31端口,以pin31为例,如下如所示

		Type	Description	Reset Value
GPIOXALTFN1_31 [[31:30]	RW	GPIOx[31]: Selects the function of GPIOx 31pin. 00 = ALT Function0 01 = ALT Function1 10 = ALT Function2 11 = ALT Function3	2'b0

❖GPIOxOUTENB 端口输出使能寄存器

Base Address: C001_A000h (GPIOA)

Base Address: C001 B000h (GPIOB)

Base Address: C001_C000h (GPIOC)

Base Address: C001 D000h (GPIOD)

Base Address: C001_E000h (GPIOE)

Address = Base Address + A004h, B004h, C004h, D004h, E004h, Reset Value = 0x0000_0000

Name	Bit	Туре	Description	Reset Value
GPIOXOUTENB	[31:0]	RW	GPIOx[31:0]: Specifies GPIOx In/Out mode. The Open drain pins are operated in Input/Output mode by the GPIOxOUTPUT register (GPIOxOUT) and not by this bit. 0 = Input Mode 1 = Output Mode	32'h0

❖ GPIOxOUT

端口输出寄存器

Base Address: C001_A000h (GPIOA)

Base Address: C001_B000h (GPIOB)

Base Address: C001_C000h (GPIOC)

Base Address: C001_D000h (GPIOD)

Base Address: C001 E000h (GPIOE)

Address = Base Address + A000h, B000h, C000h, D000h, E000h, Reset Value = 0x0000_0000

Name	Bit	Туре	Description	Reset Value
GPIOXOUT	[31:0]	RW	GPIOx[31:0]: Specifies the output value in GPIOx output mode. This bit should be set as "1" (Input mode) or "0" (Output mode) to use the Open drain pins in Input/Output mode. 0 = Low Level 1 = High Level	32'h0

❖硬件连接

name	pin
LED_R	GPIOA28
LED_G	GPIOE13
LED_B	GPIOB_12

❖代码讲解

(1) 定义各寄存器起始地址

#define #define #define	GPIOA28ALTFN1 GPIOA28OUTENB GPIOA28OUT	(*(volatile unsigned int*)0xC001A024) (*(volatile unsigned int*)0xC001A004) (*(volatile unsigned int*)0xC001A000)
#define	GPIOE13ALTFN0	(*(volatile unsigned int*)0xC001E020)
#define	GPIOE13OUTENB	(*(volatile unsigned int*)0xC001E04)
#define	GPIOE13OUT	(*(volatile unsigned int*)0xC001E000)
#define	GPIOB12ALTFN0	(*(volatile unsigned int*)0xC001B020)
#define	GPIOB12OUTENB	(*(volatile unsigned int*)0xC001B004)
#define	GPIOB12OUT	(*(volatile unsigned int*)0xC001B000)

定义GPIOAxALTFN1寄存器起始地址 定义GPIOAxOUTENB寄存器起始地址

定义APIOAxOUT寄存器起始地址

❖代码讲解

(2) 初始化各IO端口

```
void rgb init(void)
         unsigned int reg = 0;
         /* r */
         reg = GPIOA28ALTFN1;
         reg &= \sim(0x3 << 28);
                                           禁止复用
         GPIOA28ALTFN1 = reg;
         reg = GPIOA28OUTENB;
         reg &= \sim(0x1 << 28);
         reg = (0x1 << 28);
                                            配置为输出模式
         GPIOA28OUTENB = reg;
         /* g */
         reg = GPIOE13ALTFN0;
         reg &= \sim(0x3 << 26);
         GPIOE13ALTFN0 = reg;
         reg = GPIOE13OUTENB;
         reg &= \sim(0x1 << 13);
         reg = (0x1 << 13);
         GPIOE13OUTENB = reg;
```


- ❖代码讲解
 - (3) 输出高低电平控制灯的亮灭

```
void main(void)
          unsigned int reg = 0;
          int i = 0, j = 0;
          rgb_init();
          while (1) {
                   reg = GPIOA28OUT;
                   reg &= \sim(0x1 << 28);
                   reg |= (0x1 << 28);
                   GPIOA28OUT = reg;
                   for (i = 0; i < 5000; i++)
                             for (j = 0; j < 1500; j++);
                   reg = GPIOA28OUT;
                                                  输出低电平
                    reg &= ~(0x1 << 28);
                    GPIOA28OUT = reg;
                    /************************************/
```


作业

- ❖简述下S5P6818 SOC最小系统组成
- ❖设计编写一个4×4按键按轮询读取按键状态的原理图, 并编写相应的程序(不限定具体芯片型号)。

