L7.6. 2 punkty Jak wiadomo, język programowania PWO++ ma bogatą bibliotekę funkcji i procedur numerycznych. Wśród nich jest m.in. procedura DD_Table(x,f) znajdująca z dokładnością bliską maszynowej ilorazy różnicowe $f[x_0]$, $f[x_0,x_1]$, ..., $f[x_0,x_1,\ldots,x_n]$, gdzie x:= $[x_0,x_1,\ldots,x_n]$ jest wektorem parami różnych liczb rzeczywistych, a f – daną funkcją. Niestety procedura ta ma pewną wadę, mianowicie n musi być mniejsze niż 21. W jaki sposób, wykorzystując procedurę DD_Table tylko raz, można szybko wyznaczyć ilorazy różnicowe $f[z_0]$, $f[z_0,z_1]$, ..., $f[z_0,z_1,\ldots,z_{20}]$, $f[z_0,z_1,\ldots,z_{20},z_{21}]$, gdzie $z_i \neq z_j$ dla $i \neq j$, $0 \leq i,j \leq 21$.

Uwagi. Rozwiązania, w których **dwukrotnie** używa się procedury DD_Table lub wykorzystuje się **jawny wzór** na iloraz różnicowy **nie wchodzą w grę**.

Weny $\stackrel{\circ}{\text{ZC}}$ $\stackrel{\circ}{\text{Wort}}$ $\stackrel{\circ}{\text{ZO}}$ $\stackrel{\circ}{\text{$

Many \hat{s} $I L_{24}(x) = L_{20}(x) + k(x-x_0)...(x-x_n) - ze wzoru$ $I F(x_{24}) = L_{24}(x_{24}) - bo interpolujany wtym punktcie$

Vigeiem DD_Table oblicaomy wice $F[z_0]$, $F[z_0, z_0]$, ..., $F[z_0, z_0]$ i mony: $f(x_{21}) = L_{20}(x_{21}) + L(x_{21} - x_0) ...(x_{21} - x_0)$ co przebzłołamy by wyznaczyć k; $k = \frac{F(x_{21}) - L_{20}(x_{21})}{(x_{21} - x_0) ...(x_{2n} - x_0)}$