Applied/Numerical Qualifier Solution: January 2013

Bennett Clayton

Texas A&M University

May 15, 2021

Problem 1.

a. You may assume the inequality

$$||u||_{H^1(\hat{\tau})}^2 \le C\left(\int_{\hat{\tau}} |\nabla u|^2 d\hat{x} + \bar{u}^2\right), \text{ for all } u \in H^1(\hat{\tau}).$$

Here $\hat{\tau}$ is the reference triangle in \mathbb{R}^2 , \bar{u} denotes the mean value of u on $\hat{\tau}$ and \mathbb{P}^k denotes the polynomials of (x,y) of degree at most k. Let τ denote a general triangle in \mathbb{R}^2 . Show that

$$||u||_{H^1(\tau)}^2 \le C_\theta \left\{ \int_\tau |\nabla u|^2 dx + h^2 \bar{u}^2 \right\}, \quad \text{for all } u \in \mathbb{P}^1$$

Here θ denotes the minimum angle of τ and h its diameter. Now \bar{u} denotes the mean value of u on τ . (You may assume, without proof, standard properties involving the dependence on θ of the affine map of $\hat{\tau}$ onto τ .)

Solution: Doing the standard transformation onto the reference element, we have the following

$$\begin{aligned} ||u||_{H^{1}(\tau)}^{2} &= \int_{\tau} |u|^{2} dx + \int_{\tau} |\nabla u|^{2} dx \\ &\leq C_{\theta} \Big(\int_{\hat{\tau}} |\hat{u}|^{2} h^{2} d\hat{x} + \int_{\hat{\tau}} \frac{1}{h^{2}} |\hat{\nabla} \hat{u}|^{2} h^{2} d\hat{x} \Big) \\ &= C_{\theta} (h^{2} ||\hat{u}||_{L^{2}(\hat{\tau})}^{2} + |\hat{u}|_{H^{1}(\hat{\tau})}^{2}) \end{aligned}$$

Now using an add and subtract trick and using our hypothesis, we now have

$$\begin{aligned} ||u||_{H^{1}(\tau)}^{2} &\leq C_{\theta}(h^{2}||\hat{u}||_{L^{2}(\hat{\tau})}^{2} + h^{2}|\hat{u}|_{H^{1}(\hat{\tau})}^{2} - h^{2}|\hat{u}|_{H^{1}(\hat{\tau})}^{2} + |\hat{u}|_{H^{1}(\hat{\tau})}^{2}) \\ &= C_{\theta}(h^{2}||\hat{u}||_{H^{1}(\hat{\tau})}^{2} + (1 - h^{2})|\hat{u}|_{H^{1}(\hat{\tau})}^{2}) \\ &\leq C_{\theta}(h^{2}\int_{\hat{\tau}}|\hat{\nabla}\hat{u}|^{2}d\hat{x} + h^{2}\hat{u}^{2}) + C_{\theta}(1 - h^{2})|\hat{u}|_{H^{1}(\hat{\tau})}^{2} \\ &\leq C_{\theta}(h^{2}|u|_{H^{1}(\tau)}^{2} + h^{2}\bar{u}^{2}) + C_{\theta}(1 - h^{2})|u|_{H^{1}(\tau)}^{2} \\ &= C_{\theta}(|u|_{H^{1}(\tau)}^{2} + h^{2}\bar{u}^{2}) \end{aligned}$$

This completes the proof. ■

b. Let V_h be the space of continuous piecewise linear functions with respect to a quasi-uniform mesh $\Omega = \bigcup_{i=1}^{N} \tau_i$. Consider the one point quadrature approximation

$$Q_{\tau_i}(g) \coloneqq |\tau_i| g(b_i) \approx \int_{\tau_i} g,$$

where $|\tau_i|$ is the area of τ_i and b_i is its barycenter.

Consider the finite element problem: Find $u_h \in V_h$ satisfying

$$A_h(u_h, \phi) = F_h(\phi)$$
, for all $\phi \in V_h$.

Here for $u_h, v_h \in V_h$, A_h and F_h are given by

$$A(u_h, v_h) \coloneqq \sum_{i=1}^{N} (\mathcal{Q}_{\tau_i}(\nabla u_h \cdot \nabla v_h) + \mathcal{Q}_{\tau_i}(u_h v_h)) \text{ and } F_h(v_h) \coloneqq \sum_{i=1}^{N} \mathcal{Q}_{\tau_i}(f v_h)$$

respectively. Show that

$$Q_{\tau_i}(|\nabla u|^2) = \int_{\tau_i} |\nabla u|^2 \text{ and } Q_{\tau_i}(|u|^2) = |\tau_i|\bar{u}^2, \text{ for all } u \in \mathbb{P}^1.$$

Solution: Since u is a linear polynomial, ∇u is a constant function. Hence $\mathcal{Q}_{\tau_i}(|\nabla u|^2) = |\tau_i||\nabla u|^2(b_i) = \int_{\tau_i} |\nabla u|^2$. For $|u|^2$, since u is linear, express u in terms of the barycentric coordinates. I.e. say $u = a\lambda_1 + b\lambda_2 + c\lambda_3$. Note that the center of a triangle in barycentric coordinates is (1/3, 1/3, 1/3). Then we have

$$Q_{\tau_i}(|u|^2) = |\tau_i||u(b_i)|^2 = |\tau_i|\left|\frac{a}{3} + \frac{b}{3} + \frac{c}{3}\right|^2 = |\tau_i|\left|\frac{a+b+c}{3}\right|^2$$

Then note the identity, $\int_{\tau_i} \lambda_j dx = |\tau_i|/3$ for j = 1, 2, 3. So now look at the average \bar{u}^2 ,

$$|\tau_i|\bar{u}^2 = |\tau_i| \left(\frac{1}{|\tau_i|} \int_{\tau_i} a\lambda_1 + b\lambda_2 + c\lambda_3 dx\right)^2 = |\tau_i| \left(\frac{1}{|\tau_i|} \cdot \frac{a+b+c}{3} |\tau_i|\right)^2$$

This gives us the result.■

c. Use parts (a) and (b) above to show that the form $A_h(\cdot,\cdot)$ is V_h -elliptic, i.e.,

$$A_h(v_h, v_h) \ge c||v_h||_{H^1(\Omega)}^2, \quad \text{for all } v_h \in V_h$$
 (1)

holds with c independent of h.

Solution: From part b. we can write,

$$A_{h}(v_{h}, v_{h}) = \sum_{i=1}^{N} (\mathcal{Q}_{\tau_{i}}(|\nabla v_{h}|^{2}) + \mathcal{Q}_{\tau_{i}}(|v_{h}|^{2}))$$

$$= \sum_{i=1}^{N} (\int_{\tau_{i}} |\nabla v_{h}|^{2} dx + |\tau_{i}||\bar{u}|^{2})$$

$$\geq C \sum_{i=1}^{N} (\int_{\tau_{i}} |\nabla v_{h}|^{2} dx + h^{2}|\bar{u}|^{2}).$$

Thus from part a. we have

$$A_h(v_h, v_h) \ge C \sum_{i=1}^N ||v_h||_{H^1(\tau_i)}^2 = C ||v_h||_{H^1(\Omega)}^2.$$

Problem 2. Let Ω be a convex polygonal domain of \mathbb{R}^2 . Given $f \in L^2(\Omega)$, we denote by $u \in H_0^1(\Omega)$ the solution of the Poisson problem:

$$-\Delta u = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega.$$
 (2)

We note that u satisfies full elliptic regularity, i.e., $u \in H^2(\Omega)$.

We consider a non conforming finite element method to approximate u. Let $\{\mathcal{T}_h\}_{0 < h < 1}$ be a sequence of conforming shape regular subdivisions of Ω such that $\operatorname{diam}(T) \leq h$. Denote by X_h the spaces of continuous, piecewise linear polynomials subordinate to the subdivisions \mathcal{T}_h , 0 < h < 1.

The numerical method consists of finding $u_h \in X_h$ such that for all $v_h \in X_h$:

$$a_h(u_h, v_h) \coloneqq \int_{\Omega} \nabla u_h \cdot \nabla v_h - \int_{\partial \Omega} \partial_{\nu} u_h v_h + \frac{\alpha}{h} \int_{\partial \Omega} u_h v_h = \int_{\Omega} f v_h.$$

Here ν denotes the outward pointing unit normal (defined almost everywhere), $\partial_{\nu}u := \nabla u \cdot \nu$ and $\alpha > 0$ is a constant yet to be determined. Note that $X_h \notin H_0^1(\Omega)$ but $X_h \subset H^1(\Omega)$

a. Explain why $a_h(u, v_h)$ makes sense for any $v_h \in X_h$ and show Galerkin orthogonality, i.e.,

$$a_h(u - u_h, v_h) = 0$$
, for all $v_h \in X_h$. (3)

Proof: Since $u \in H^2(\Omega)$, ∇u on Ω is well defined, u is also in $H^1_0(\Omega)$ so the integral term of u on $\partial \Omega$ will vanish, which is fine. Lastly, we might have an issue with $\partial_{\nu}u$ on $\partial \Omega$, but since $u \in H^2$, we know the trace exists for the ∇u . I.e. $\|\nabla u\|_{L^2(\partial\Omega)} \leq C\|\nabla u\|_{H^1(\Omega)} \leq C\|u\|_{H^2(\Omega)}$. Thus $a_h(u, v_h)$ makes sense for every $v_h \in X_h$.

Now onto Galerkin orthogonality. It is enough to show that u is also a solution to the finite element problem $a_h(\cdot, v_h) = f(v_h)$. So consider

$$a_{h}(u, v_{h}) = \int_{\Omega} \nabla u \cdot \nabla v_{h} - \int_{\partial \Omega} \partial_{\nu} u v_{h} + \frac{\alpha}{h} \int_{\partial \Omega} u v_{h}$$

$$= -\int_{\Omega} \Delta u v_{h} + \int_{\partial \Omega} \partial_{\nu} u v_{h} - \int_{\partial \Omega} \partial_{\nu} u v_{h} + 0$$

$$= -\int_{\Omega} \Delta u v_{h}$$

$$= \int_{\Omega} f v_{h}$$

Thus we have Galerkin orthogonality. ■

b. For any $v_h \in X_h$, define the mesh dependent norm

$$||v_h||_h := \left(||\nabla v_h||_{L^2(\Omega)}^2 + \frac{\alpha}{h} ||v_h||_{L^2(\partial \Omega)}^2 \right)^{1/2}. \tag{4}$$

Show that there exists a constant c_0 independent of h such that for all $v_h \in X_h$

$$\int_{\partial\Omega} |\nabla v_h|^2 \le \frac{c_0}{h} \int_{\Omega} |\nabla v_h|^2. \tag{5}$$

Using this fact, deduce that for all $v_h \in X_h$,

$$a_h(v_h, v_h) \ge \frac{1}{2} ||v_h||_h^2,$$
 (6)

provided $\alpha \geq c_0$.

Solution: Let e be an edge on $\partial\Omega$, which corresponds to an edge of a triangle in \mathcal{T}_h . Then consider the following

$$\begin{split} \int_{\partial\Omega} \left| \nabla v_h \right|^2 &= \sum_{e \subset \partial\Omega} \int_e \left| \nabla v_h \right|^2 \\ &\leq c \sum_{e \subset \partial\Omega} \int_0^1 \left| \frac{1}{h} \hat{\nabla} \hat{v_h} \right|^2 h d\hat{x} \\ &\leq \frac{c}{h} \sum_{e \subset \partial\Omega} \left\| \hat{\nabla} \hat{v}_h \right\|_{L^2(0,1)}^2 \\ &\leq \frac{c}{h} \sum_{e \subset \partial\Omega} \left\| \hat{\nabla} \hat{v}_h \right\|_{L^2(\partial \hat{T})}^2. \end{split}$$

Now, notice that $\hat{\nabla}\hat{v}_h$ is constant on \hat{T} so, we can apply the trace inequality. This gives us,

$$\int_{\partial\Omega} |\nabla v_h|^2 dx \le \frac{c}{h} \sum_{e \in \partial\Omega} \|\hat{\nabla} \hat{v}_h\|_{H^1(\hat{T})}^2$$

$$= \frac{c}{h} \sum_{e \in \partial\Omega} \|\hat{\nabla} \hat{v}_h\|_{L^2(\hat{T})}^2$$

$$\le \frac{c}{h} \sum_{T \in \mathcal{T}_h} \|\nabla v_h\|_{L^2(T)}^2$$

$$= \frac{c}{h} \int_{\Omega} |\nabla v_h|^2 dx$$

For the coercivity, we start by applying Cauchy-Schwartz in the reverse direction, we have

$$a_{h}(v_{h}, v_{h}) = \|\nabla v_{h}\|_{L^{2}(\Omega)}^{2} - \int_{\partial\Omega} \partial_{\nu} v_{h} v_{h} + \frac{\alpha}{h} \|v_{h}\|_{L^{2}(\partial\Omega)}^{2}$$

$$\geq \|\nabla v_{h}\|_{L^{2}(\Omega)}^{2} - \|\nabla v_{h}\|_{L^{2}(\partial\Omega)} \|v_{h}\|_{L^{2}(\partial\Omega)} + \frac{\alpha}{h} \|v_{h}\|_{L^{2}(\partial\Omega)}^{2}$$

$$\geq \|\nabla v_{h}\|_{L^{2}(\Omega)}^{2} - \sqrt{\frac{c_{0}}{h}} \|\nabla v_{h}\|_{L^{2}(\Omega)} \|v_{h}\|_{L^{2}(\partial\Omega)} + \frac{\alpha}{h} \|v_{h}\|_{L^{2}(\partial\Omega)}^{2}$$

$$\geq \|\nabla v_{h}\|_{L^{2}(\Omega)}^{2} - \frac{1}{2} \|\nabla v_{h}\|_{L^{2}(\Omega)}^{2} - \frac{\alpha}{2h} \|v_{h}\|_{L^{2}(\partial\Omega)}^{2} + \frac{\alpha}{h} \|v_{h}\|_{L^{2}(\partial\Omega)}^{2}$$

$$= \frac{1}{2} (\|\nabla v_{h}\|_{L^{2}(\Omega)}^{2} + \frac{\alpha}{h} \|v_{h}\|_{L^{2}(\partial\Omega)}^{2})$$

$$= \frac{1}{2} \|v_{h}\|_{h}^{2}.$$

This completes the proof. ■

c. Let I_h denote the Lagrange finite element interpolation operator associated with X_h . You may use the following estimate without proof: For i = 1, 2,

$$\left\| \frac{\partial (u - I_h u)}{\partial x_i} \right\|_{L^2(e)} \le C h^{1/2} \|u\|_{H^2(\tau)}. \tag{7}$$

Take $\alpha = c_0$ and derive an optimal error estimate for $||u - u_h||_h$.

Solution: We will first start by showing that a_h is continuous with respect to the norm $\|\cdot\|_h$. So consider,

$$a_{h}(v_{h}, z_{h}) = \int_{\Omega} \nabla v_{h} \cdot \nabla z_{h} - \int_{\partial \Omega} \frac{\partial v_{h}}{\partial n} z_{h} \, ds + \frac{\alpha}{h} \int_{\partial \Omega} v_{h} z_{h} \, ds$$

$$\leq |v_{h}|_{H^{1}(\Omega)} |z_{h}|_{H^{1}(\Omega)} + ||\nabla v_{h}||_{L^{2}(\partial \Omega)} ||z_{h}||_{L^{2}(\partial \Omega)} + \frac{\alpha}{h} ||v_{h}||_{L^{2}(\partial \Omega)} ||z_{h}||_{L^{2}(\partial \Omega)}$$

$$\leq |v_{h}|_{H^{1}(\Omega)} |z_{h}|_{H^{1}(\Omega)} + \sqrt{\frac{c_{0}}{h}} ||\nabla v_{h}||_{L^{2}(\Omega)} ||z_{h}||_{L^{2}(\partial \Omega)} + \frac{\alpha}{h} ||v_{h}||_{L^{2}(\partial \Omega)} ||z_{h}||_{L^{2}(\partial \Omega)}$$

$$\leq ||v_{h}||_{h} |z_{h}|_{H^{1}(\Omega)} + (||\nabla v_{h}||_{L^{2}(\Omega)} + \sqrt{\frac{\alpha}{h}} ||v_{h}||_{L^{2}(\partial \Omega)}) \sqrt{\frac{\alpha}{h}} ||z_{h}||_{L^{2}(\partial \Omega)}$$

$$\leq ||v_{h}||_{h} ||z_{h}||_{H^{1}(\Omega)} + \sqrt{2} ||v_{h}||_{h} \sqrt{\frac{\alpha}{h}} ||z_{h}||_{L^{2}(\Omega)}$$

$$\leq 2||v_{h}||_{h} ||z_{h}||_{h}.$$

Note, we have used the inequality $a+b \le \sqrt{2}\sqrt{a^2+b^2}$ in the above argument. Thus a_h is continuous with respect to the norm $\|\cdot\|_h$.

Now we will derive Strang's first lemma for our problem. Using the fact that $a_h(u_h, v_h) = L(v_h)$ for all $v_h \in X_h$ where $L(v_h) := \int_{\Omega} f v_h$, we can write,

$$a_h(u_h - z_h, v_h) = a(u - z_h, v_h) + L(v_h) - a(u, v_h).$$

Then if we substitute $v_h = u_h - z_h$, we can apply coercivity and continuity to write,

$$\frac{1}{2}||u_h - z_h||_h^2 \le a_h(u_h - z_h, u_h - z_h)$$

$$\le 2||u - z_h||_h||u_h - z_h||_h + ||L(\cdot) - a(u, \cdot)||_{*,h}||u_h - z_h||_h.$$

We then divide by $||u_h - z_h||_h$ and rewrite the inequality as,

$$||u_h - z_h||_h \le 4||u - z_h||_h + 2||L(\cdot) - a(u, \cdot)||_{*,h}.$$

But from part a. we know that $a(u, v_h) = L(v_h)$ for every $v_h \in X_h$, hence $||L(\cdot) - a(u, \cdot)||_{*,h} = 0$. Therefore, our inequality becomes,

$$||u_h - z_h||_h \le 4||u - z_h||_h.$$

Using this inequality, we can estimate our error as,

$$||u - u_h||_h \le ||u - z_h||_h + ||u_h - z_h||_h \le 5||u - z_h||_h.$$

Since this holds for any $z_h \in X_h$, we can take the infimum, and our inequality becomes,

$$||u - u_h||_h \le 5 \inf_{z_h \in X_h} ||u - z_h||_h.$$

Now we can proceed using the standard methods of error estimation by using the interpolation of our solution u, i.e., we have,

$$||u - u_h||_h \le 5 \inf_{z_h \in X_h} ||u - z_h||_h \le 5||u - I_h u||_h.$$

Now consider,

$$\begin{aligned} ||u - I_h u||_h^2 &= ||\nabla (u - I_h u)||_{L^2(\Omega)}^2 + \frac{c_0}{h} ||u - I_h u||_{L^2(\partial \Omega)}^2 \\ &= \sum_{\tau \in \mathcal{T}_h} ||\nabla (u - I_h u)||_{L^2(\tau)}^2 + \frac{c_0}{h} \sum_{e \subset \partial \Omega} ||u - I_h u||_{L^2(e)}^2. \end{aligned}$$

For $\|\nabla(u-I_h u)\|_{L^2(\tau)}^2$ we use the normal methods of transfering to the reference element and applying Bramble-Hilbert to get that, $\|\nabla(u-I_h u)\|_{L^2(\tau)}^2 \leq Ch^2|u|_{H^2(\tau)}^2$. So lets look at the boundary term,

$$\frac{c_0}{h} \sum_{e \subset \partial \Omega} ||u - I_h u||^2_{L^2(e)} \leq \frac{c_0}{h} \sum_{e \subset \partial \Omega} Ch ||\hat{u} - \hat{I}_h \hat{u}||^2_{L^2(\hat{e})}
\leq C \sum_{e \subset \partial \Omega} ||\hat{u} - \hat{I}_h \hat{u}||^2_{L^2(\hat{\tau})}
\leq C \sum_{\tau \in \mathcal{T}_h} |\hat{u}|^2_{H^2(\hat{\tau})}
\leq Ch^2 \sum_{\tau \in \mathcal{T}_h} |u|^2_{H^2(\tau)}
= Ch^2 |u|^2_{H^2(\Omega)}.$$

Therefore,

$$||u - I_h u||_h \le Ch|u|_{H^2(\Omega)}.$$

Thus,

$$||u - u_h||_h \le Ch|u|_{H^2(\Omega)}.$$

Problem 3. Given the boundary value problem: find u(x,t) such that

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} - b(x) \frac{\partial u}{\partial x} + f(x), \ 0 < x < 1, \ 0 < t \le T,$$

$$u(0,t) = 0, \ u(1,t) = 0, \ 0 < t \le T$$

$$u(x,0) = v(x), \ 0 \le x \le 1,$$

where $\kappa = const > 0$, $b(x) \in C^0[0,1]$, v(x), and f(x) are given smooth functions Let $x_i = ih$ with h = 1/N and $t_n = n\tau$, with n = 0, 1, ..., J and (time step size) $\tau = T/J$.

a. Write down a forward (explicit) Euler fully discrete scheme for the above problem based on a finite difference discretization in space which upwinds the b(x) term.

Solution: Let $U_j^n = u(x_j, t_n)$. Then our finite difference discretization is

$$\frac{U_j^{n+1} - U_j^n}{\tau} = \kappa \frac{U_{j+1}^n - 2U_j^n + U_{j-1}^n}{h^2} - \left(b^+(x)\frac{U_j^n - U_{j-1}^n}{h} + b^-(x)\frac{U_{j+1}^n - U_j^n}{h}\right) + f(x) \tag{8}$$

where we have

$$b^{+}(x) = \begin{cases} b(x) & \text{if } b(x) \ge 0 \\ 0 & \text{otherwise} \end{cases}, \quad b^{-}(x) = \begin{cases} b(x) & \text{if } b(x) \le 0 \\ 0 & \text{otherwise} \end{cases}$$

b. Find a Courant (CFL) condition and show that if this condition is satisfied,

$$||U^{n+1}||_{\infty} \le ||U^n||_{\infty} + \tau ||f(t_n)||_{\infty}.$$

Here U^n is the approximation at t_n of part a.

Solution: Let's rewrite our discretization in a. as follows,

$$U_{j}^{n+1} = \left(\frac{\tau\kappa}{h^{2}} - \frac{\tau b^{-}(x_{j})}{h}\right)U_{j+1}^{n} + \left(1 - \frac{2\tau\kappa}{h^{2}} - \frac{\tau b^{+}(x_{j})}{h} + \frac{\tau b^{-}(x_{j})}{h}\right)U_{j}^{n} + \left(\frac{\tau\kappa}{h^{2}} + \frac{\tau b^{+}(x_{j})}{h}\right)U_{j-1}^{n} + \tau f(x_{j}).$$

Notice the coefficients of U_{j+1}^n and U_{j-1}^n are both positive. So if we have,

$$\tau \left(\frac{2\kappa}{h^2} + \frac{b^+(x_j)}{h} - \frac{b^-(x_j)}{h}\right) \le 1,$$

then,

$$|U_{j}^{n+1}| \leq \left(\frac{\tau \kappa}{h^{2}} - \frac{\tau b^{-}(x_{j})}{h}\right) ||U^{n}||_{\infty} + \left(1 - \frac{2\tau \kappa}{h^{2}} - \frac{\tau b^{+}(x_{j})}{h} + \frac{\tau b^{-}(x_{j})}{h}\right) ||U^{n}||_{\infty} + \left(\frac{\tau \kappa}{h^{2}} + \frac{\tau b^{+}(x_{j})}{h}\right) ||U^{n}||_{\infty} + \tau ||f||_{\infty},$$

which simplifies to

$$||U^{n+1}||_{\infty} \le ||U^n||_{\infty} + \tau ||f||_{\infty}.$$

Now note that $b^+(x_j) - b^-(x_j) = |b(x_j)|$. So we can derive our CFL condition, so we can write,

$$\tau \left(\frac{2\kappa}{h^2} + \frac{|b(x_j)|}{h}\right) \le 1.$$

This can be rewritten as,

$$\tau \le \frac{h^2}{2\kappa + h|b(x_j)|}.$$

Since this needs to hold for every x_j , our CFL condition must be,

$$\tau \le \frac{h^2}{2\kappa + h||b||_{\infty}}.$$

c. Define the fully discrete method but with backward (implicit) Euler time stepping and show that this scheme is unconditionally stable, i.e., prove that for any positive τ ,

$$||U^{n+1}||_{\infty} \le ||U^n||_{\infty} + \tau ||f(t_{n+1})||_{\infty}.$$
(9)

Solution: The backward Euler is given by,

$$\frac{U_j^{n+1} - U_j^n}{\tau} = \kappa \frac{U_{j+1}^{n+1} - 2U_j^{n+1} + U_{j-1}^{n+1}}{h^2} - b^+(x_j) \frac{U_j^{n+1} - U_{j-1}^{n+1}}{h} - b^-(x_j) \frac{U_{j+1}^{n+1} - U_j^{n+1}}{h} + \tau f(x_j).$$

This can be rewritten as,

$$\left(1 + \frac{2\kappa\tau}{h^2} + \frac{\tau|b_j|}{h}\right)U_j^{n+1} - U_j^n = \left(\frac{\kappa\tau}{h^2} - \frac{\tau b_j^-}{h}\right)U_{j+1}^{n+1} + \left(\frac{\kappa\tau}{h^2} + \frac{\tau b_j^+}{h}\right)U_{j-1}^{n+1} + \tau f(x_j).$$

Now applying triangle inequality, we have,

$$\left(1 + \frac{2\kappa\tau}{h^2} + \frac{\tau|b_j|}{h}\right) |U_j^{n+1}| \le |U_j^n| + \left(\frac{\kappa\tau}{h^2} - \frac{\tau b_j^-}{h}\right) |U_{j+1}^{n+1}| + \left(\frac{\kappa\tau}{h^2} + \frac{\tau b_j^+}{h}\right) |U_{j-1}^{n+1}| + \tau |f_j|$$

$$\le ||U^n||_{\infty} + \left(\frac{\kappa\tau}{h^2} - \frac{\tau b_j^-}{h}\right) ||U^{n+1}||_{\infty} + \left(\frac{\kappa\tau}{h^2} + \frac{\tau b_j^+}{h}\right) ||U^{n+1}||_{\infty} + \tau ||f||_{\infty}$$

$$= ||U^n||_{\infty} + \left(\frac{2\kappa\tau}{h^2} + \frac{\tau |b_j|}{h}\right) ||U^{n+1}||_{\infty} + \tau ||f||_{\infty}$$

Since this must hold for every j, we thus have,

$$||U^{n+1}||_{\infty} \le ||U^n||_{\infty} + \tau ||f||_{\infty}$$