Parallel Programming With Spark

Matei Zaharia

UC Berkeley

www.spark-project.org

What is Spark?

Fast and expressive cluster computing system compatible with Apache Hadoop

Improves efficiency through:

- » General execution graphs
- » In-memory storage

Up to 10× faster on disk, 100× in memory

Improves usability through:

- » Rich APIs in Java, Scala, Python
- » Interactive shell

→ 2-5× less code

Project History

Spark started in 2009, open sourced 2010

In use at Intel, Yahoo!, Adobe, Quantifind, Conviva, Ooyala, Bizo and others

Entered Apache Incubator in June

Open Source Community

1000+ meetup members

70+ contributors

20 companies contributing

This Talk

Introduction to Spark

Tour of Spark operations

Job execution

Standalone apps

Key Idea

Write programs in terms of transformations on distributed datasets

Concept: resilient distributed datasets (RDDs)

- » Collections of objects spread across a cluster
- » Built through parallel transformations (map, filter, etc)
- » Automatically rebuilt on failure
- » Controllable persistence (e.g. caching in RAM)

Operations

Transformations (e.g. map, filter, groupBy) » Lazy operations to build RDDs from other RDDs

Actions (e.g. count, collect, save)

» Return a result or write it to storage

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
Base Transformed RDD
                                                                         Cache 1
lines = spark.textFile("hdfs://...")
                                                                     Worker
                                                            results
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
                                                               tasks
                                                                     Block 1
                                                      Driver
messages.cache()
                                                    Action
messages.filter(lambda s: "foo" in s).count()
                                                                        Cache 2
messages.filter(lambda s: "bar" in s).count()
                                                                    Worker
                                                     ✓ Cache 3
                                                   Worker
   Result: scaled to 1 TB data in 5 sec
       (vs 180 sec for on-disk data)
```

Fault Recovery

RDDs track *lineage* information that can be used to efficiently recompute lost data

```
EX: msgs = textFile.filter(lambda s: s.startsWith("ERROR"))
.map(lambda s: s.split("\t")[2])

HDFS File

Filtered RDD

Mapped RDD

filter

(func = _.contains(...))

(func = _.split(...))
```

Behavior with Less RAM

Spark in Scala and Java

```
// Scala:
val lines = sc.textFile(...)
lines.filter(x => x.contains("ERROR")).count()
// Java:
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
  Boolean call(String s) {
    return s.contains("error");
}).count();
```

Which Language Should I Use?

Standalone programs can be written in any, but interactive shell is only Python & Scala

Python users: can do Python for both

Java users: consider learning Scala for shell

Performance: Java & Scala are faster due to static typing, but Python is often fine

Scala Cheat Sheet

Variables:

Collections and closures:

```
val nums = Array(1, 2, 3)
nums.map((x: Int) => x + 2) // {3,4,5}
nums.map(x => x + 2) // same
nums.map(_ + 2) // same
nums.reduce((x, y) => x + y) // 6
nums.reduce(_ + _) // same
```

Functions:

```
def square(x: Int): Int = x*x

def square(x: Int): Int = {
   x*x  // last line returned
}
```

Java interop:

```
import java.net.URL
new URL("http://cnn.com").openStream()
```

More details: scala-lang.org

This Talk

Introduction to Spark

Tour of Spark operations

Job execution

Standalone apps

Learning Spark

Easiest way: the shell (spark-shell or pyspark) » Special Scala / Python interpreters for cluster use

Runs in local mode on 1 core by default, but can control with MASTER environment var:

```
MASTER=local ./spark-shell # local, 1 thread MASTER=local[2] ./spark-shell # local, 2 threads MASTER=spark://host:port ./spark-shell # cluster
```

First Stop: SparkContext

Main entry point to Spark functionality

Available in shell as variable sc

In standalone programs, you'd make your own (see later for details)

Creating RDDs

```
# Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
sc.textFile("file.txt")
sc.textFile("directory/*.txt")
sc.textFile("hdfs://namenode:9000/path/file")

# Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)
```

Basic Transformations

```
nums = sc.parallelize([1, 2, 3])
# Pass each element through a function
squares = nums.map(lambda x: x*x) // {1, 4, 9}
# Keep elements passing a predicate
even = squares.filter(lambda x: x \% 2 == 0) // {4}
# Map each element to zero or more others
nums.flatMap(lambda x: => range(x))
   \# \Rightarrow \{0, 0, 1, 0, 1, 2\}
```

Range object (sequence of numbers 0, 1, ..., x-1)

Basic Actions

```
nums = sc.parallelize([1, 2, 3])
# Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]
# Return first K elements
nums.take(2) # => [1, 2]
# Count number of elements
nums.count() # => 3
# Merge elements with an associative function
nums_reduce(lambda x, y: x + y) # => 6
# Write elements to a text file
nums.saveAsTextFile("hdfs://file.txt")
```

Working with Key-Value Pairs

Spark's "distributed reduce" transformations operate on RDDs of key-value pairs

Some Key-Value Operations

reduceBykey also automatically implements combiners on the map side

Example: Word Count

"to be or"
$$\longrightarrow$$
 "be" \longrightarrow (be, 1) \longrightarrow (not, 1) \longrightarrow (not, 1) \longrightarrow "not to be" \longrightarrow "to" \longrightarrow (to, 1) \longrightarrow (to, 1) \longrightarrow (to, 2) \longrightarrow "be" \longrightarrow (be, 1)

Other Key-Value Operations

```
visits = sc.parallelize([ ("index.html", "1.2.3.4"),
                          ("about.html", "3.4.5.6"),
                          ("index.html", "1.3.3.1") ])
pageNames = sc.parallelize([ ("index.html", "Home"),
                             ("about.html", "About") ])
visits.join(pageNames)
# ("index.html", ("1.2.3.4", "Home"))
# ("index.html", ("1.3.3.1", "Home"))
# ("about.html", ("3.4.5.6", "About"))
visits.cogroup(pageNames)
# ("index.html", (["1.2.3.4", "1.3.3.1"], ["Home"]))
# ("about.html", (["3.4.5.6"], ["About"]))
```

Setting the Level of Parallelism

All the pair RDD operations take an optional second parameter for number of tasks

```
words.reduceByKey(lambda x, y: x + y, 5)
words.groupByKey(5)
visits.join(pageViews, 5)
```

Using Local Variables

Any external variables you use in a closure will automatically be shipped to the cluster:

```
query = sys.stdin.readline()
pages.filter(lambda x: query in x).count()
```

Some caveats:

- » Each task gets a new copy (updates aren't sent back)
- » Variable must be Serializable / Pickle-able
- » Don't use fields of an outer object (ships all of it!)

Closure Mishap Example

```
class MyCoolRddApp {
  val param = 3.14
  val log = new Log(...)
  ...

def work(rdd: RDD[Int]) {
   rdd.map(x => x + param)
        .reduce(...)
  }
}
NotSerializableException:
  MyCoolRddApp(or Log)
```

```
How to get around it:

class MyCoolRddApp {
    ...

def work(rdd: RDD[Int]) {
    val param_ = param
    rdd.map(x => x + param_)
        .reduce(...)
}
```

References only local variable

instead of this.param

Other RDD Operators

map reduce sample

filter count take

groupBy fold first

sort reduceByKey partitionBy

union groupByKey mapWith

join cogroup pipe

leftOuterJoin cross save

rightOuterJoin zip ...

More details: spark-project.org/docs/latest/

This Talk

Introduction to Spark

Tour of Spark operations

Job execution

Standalone apps

Software Components

Spark runs as a library in your program (1 instance per app)

Runs tasks locally or on cluster » Mesos, YARN or standalone mode

Accesses storage systems via Hadoop InputFormat API

» Can use HBase, HDFS, S₃, ...

Task Scheduler

General task graphs

Automatically pipelines functions

Data locality aware

Partitioning aware to avoid shuffles

Advanced Features

Controllable partitioning

» Speed up joins against a dataset

Controllable storage formats

» Keep data serialized for efficiency, replicate to multiple nodes, cache on disk

Shared variables: broadcasts, accumulators

See online docs for details!

This Talk

Introduction to Spark

Tour of Spark operations

Job execution

Standalone apps

Add Spark to Your Project

Scala / Java: add a Maven dependency on

groupld: org.spark-project

artifactId: spark-core_2.9.3

version: 0.7.3

Python: run program with our pyspark script

Create a SparkContext

```
import spark.SparkContext
import spark.SparkContext._
val sc = new SparkContext("url", "name", "sparkHome", Seq("app.jar"))
                     Cluster URL, or
                                                              List of JARs with
import spark.api.j
                     local / local[N]
                                              path on cluster
                                                             app code (to ship)
                                      name
JavaSparkContext sc = new JavaSparkContext(
    "masterUrl", "name", "sparkHome", new String[] {"app.jar"}));
from pyspark import SparkContext
```

sc = SparkContext("masterUrl", "name", "sparkHome", ["library.py"]))

Example: PageRank

Good example of a more complex algorithm » Multiple stages of map & reduce

Benefits from Spark's in-memory caching » Multiple iterations over the same data

Basic Idea

Give pages ranks (scores) based on links to them

- » Links from many pages → high rank
- » Link from a high-rank page → high rank

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

Scala Implementation

```
val sc = new SparkContext("local", "PageRank", sparkHome,
                          Seq("pagerank.jar"))
val links = // load RDD of (url, neighbors) pairs
var ranks = // load RDD of (url, rank) pairs
for (i <- 1 to ITERATIONS) {</pre>
  val contribs = links.join(ranks).flatMap {
    case (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
  ranks = contribs.reduceByKey(_ + _)
                  .mapValues(0.15 + 0.85 * _)
ranks.saveAsTextFile(...)
```

PageRank Performance

Other Iterative Algorithms

Getting Started

Download Spark: spark-project.org/downloads

Documentation and video tutorials:

www.spark-project.org/documentation

Several ways to run:

» Local mode (just need Java), EC2, private clusters

Local Execution

Just pass local or local[k] as master URL

Debug using local debuggers

- » For Java / Scala, just run your program in a debugger
- » For Python, use an attachable debugger (e.g. PyDev)

Great for development & unit tests

Cluster Execution

Easiest way to launch is EC2:

```
./spark-ec2 -k keypair -i id_rsa.pem -s slaves \
   [launch|stop|start|destroy] clusterName
```

Several options for private clusters:

- » Standalone mode (similar to Hadoop's deploy scripts)
- » Mesos
- » Hadoop YARN

Amazon EMR: tinyurl.com/spark-emr

Conclusion

Spark offers a rich API to make data analytics fast: both fast to write and fast to run

Achieves 100x speedups in real applications

Growing community with 20+ companies contributing

www.spark-project.org