

Machine Learning and Pattern Recognition A High Level Overview

Prof. Anderson Rocha

(Main bulk of slides kindly provided by **Prof. Sandra Avila** and largely based on other materials as well (e.g., Andrew Ng's))

Institute of Computing (IC/Unicamp)

\$ 70 000

\$ 160 000

Linear Regression

Today's Agenda

- Linear Regression with One Variable
 - Model Representation
 - Cost Function
 - Gradient Descent
- Linear Regression with Multiple Variables
 - Gradient Descent for Multiple Variables
 - Feature Scaling
 - Learning Rate
 - Features and Polynomial Regression
 - Normal Equation

Model Representation

Housing Prices

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

housing prices	2104	
	1416	
	1534	
	852	
Notation:		

Size in feet $^{2}(x)$

Price (\$) in 1000's (y)

460

232

315

178

m = Number of training examples x's = "input" variable / features

Training set of

y's = "output" variable / "target" variable

Training set

Training set

Learning algorithm

How do we represent h?

How do we represent h?

How do we represent h?

Linear regression with one variable.

Univariate linear regression.

Cost Function

Training Set

Siz	ze in	feet ²	(x)
	2.1	104	

1416

1534

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

i's: Parameters

How to choose θ s?

232 315 178

Price (\$) in 1000's (y)

Idea: Choose θ_{\emptyset} θ_{1} so that $h_{\theta}(x)$ close to y for our training examples (x,y)

 θ_0, θ_1

Choose θ_0 θ_1 so that Idea: $h_{\theta}(x)$ close to y for our training examples (x,y)

Idea: Choose
$$\theta_0$$
 θ_1 so that $h_{\theta}(x)$ close to y for our training examples (x,y)

minimize
$$(h_{\theta}(x) - y)^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}}$$

$$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Idea: Choose θ_0 θ_1 so that $h_{\theta}(x)$ close to y for our training examples (x,y)

Idea: Choose
$$\theta_{\theta}$$
 θ_{1} so that $h_{\theta}(x)$ close to y for our training examples (x,y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Idea: Choose θ_0 θ_1 so that $h_{\theta}(x)$ close to y for our training examples (x,y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

Idea: Choose θ_{0} θ_{1} so that $h_{\theta}(x)$ close to y for our training examples (x,y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
ose to v for our

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

$$J(\theta_{0}, \theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Choose θ_0 θ_1 so that Idea: $h_{\theta}(x)$ close to y for our training examples (x,y)

(Squared error function)

minimize $J(\theta_0, \theta_1)$ θ_0,θ_1 Cost function

Cost Function Intuition I

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_1$$
 $h(x)$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $\underset{\theta_1}{\text{minimize }} J(\theta_I)$

$h_{ heta}(x)$ (for fixed $heta_1$, this is a function of x)

 $J(\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_1) = J(1) = ?$

$$J(\theta_1)$$

$$h_{\theta}(x)$$

$$J(\theta_1) = J(1) = 0$$

$$h_{\theta}(x)$$

 $J(\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_1)$

$$h_{\theta}(x)$$

Cost Function Intuition II

$$h_{\theta}(x)$$
(for fixed θ_0 , θ_1 , this is a function of x)
$$500 \atop 400 \atop 400 \atop 1000$$
Price (\$) in 300
$$1000 \atop 2000 \atop 1000 \atop 2000 \atop 3000}$$
Size in feet²(x)
$$\theta_0 = 50$$

$$\theta_1 = 0.06$$

$$h_{\theta}(x) = 50 + 0.06x$$

$$f(unction of the parameters)$$

 $J(\theta_0,\theta_1)$

(for fixed
$$\theta_0$$
, θ_1 , this is a function of x)

Price (\$) in 300

1000's 200

1000 2000 3000

Size in feet²(x)

 $\theta_0 = 50$
 $\theta_1 = 0.06$

 $h_{\theta}(x)$

 $J(\theta_0,\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

Gradient Descent

Have some function $J(\theta_0, \theta_1)$ want θ_0, θ_1 Want θ_0, θ_1

Outline:

- Start with some θ_0, θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Gradient Descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update)}  j = 0 \text{ and } j = 1)
```

Gradient Descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 } Learning rate

(simultaneously update j = 0 and j = 1)

Derivative term

Gradient Descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad (\text{for } j = 0 \text{ and } j = 1)$ }

Correct: Simultaneous update
$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

Gradient Descent algorithm

 $\theta_0 := \text{temp0}$

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad (\text{for } j = 0 \text{ and } j = 1)$

Correct: Simultaneous update
$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

Correct: Simultaneous update
$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := \theta_0 = \theta_0$$

 $\theta_1 \in \mathbb{R}$

$$\theta_1 \in \mathbb{R}$$

$$\theta_1 := \theta_{1-} \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 \in \mathbb{R}$$

$$\theta_1 := \theta_{1-} \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 \in \mathbb{R}$$

$$\theta_1 := \theta_{1-} \alpha \frac{d}{d\theta_1} J(\theta_1) \stackrel{>}{\blacktriangleright} \stackrel{\geq}{\bullet} 0$$

$$\theta_1 := \theta_{1-} \alpha$$
. (positive number)

$$\theta_1 \in \mathbb{R}$$

$$\theta_1 \in \mathbb{R}$$

$$\theta_1 := \theta_{1-} \alpha \frac{d}{d\theta_1} J(\theta_1) \stackrel{>}{\blacktriangleright} \stackrel{\geq}{\bullet} 0$$

$$\theta_1 := \theta_{1-} \alpha$$
 (positive number)

$$\theta_1$$

$$\theta_1 := \theta_{1-} \alpha \frac{d}{d\theta_1} J(\theta_1) \stackrel{>}{\blacktriangleright} \stackrel{\geq}{\bullet} 0$$

$$\theta_1 := \theta_{1-} \alpha$$
. (positive number)

$$\theta_1 := \theta_{1-} \alpha \frac{d}{d\theta_1} J(\theta_1) \stackrel{\geq 0}{}$$

$$\theta_1 := \theta_{1-} \alpha \cdot \text{(positive number)}$$

$$\theta_1 := \theta_{1-} \alpha \frac{d}{d\theta_1} J(\theta_1) \stackrel{\leq 0}{\longrightarrow} 0$$

$$\theta_1 := \theta_{1-} \alpha \cdot \text{(negative number)}$$

$$\theta_1 := \theta_{1-} \alpha \frac{d}{d\theta_1} J(\theta_1) \qquad \geq 0$$

$$\theta_1 := \theta_{1-} \alpha \frac{d}{d\theta_1} J(\theta_1) \stackrel{\leq 0}{\longrightarrow} 0$$

$$\theta_1 := \theta_{1-} \alpha \cdot \text{(negative number)}$$

$$\theta_1 := \theta_{1-} \alpha$$
 (positive number)

$$\theta_1 := \theta_{1-} \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_{1-} \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too large, gradient descent can be ...

$$\theta_1 := \theta_{1-} \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too large, gradient descent can be ...

$$\theta_1 := \theta_{1-} \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

What will one step of gradient descent $\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1 \theta_0)$?

What will one step of gradient descent $\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1 \theta_0)$?

$$\theta_1 := \theta_1 - \alpha \frac{\overline{d}}{d\theta_1} J(\theta_1)$$

$$\theta_1$$
 at local optima

$$=0$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

Gradient Descent algorithm

Linear Regression Model

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for j = 0 and j = 1)

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

 $h_{\theta}(x) = \theta_0 + \theta_1 x$

Gradient Descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$(\text{for } j = 0 \text{ and } j = 1)$$

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize } J(\theta_0,\theta_1)}$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\overline{\partial \theta_j}^{J(\theta_0,\theta_1)} = \overline{\partial \theta_j} \cdot \overline{2m} \sum_{i=1}^m (n_{\theta}(x^{(i)}) - y^{(i)})$$

$$= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (\theta_{0+} \theta_1 x^{(i)} - y^{(i)})^2$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

 $\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$

 $= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^{n} (\theta_{0} + \theta_1 x^{(i)} - y^{(i)})^2$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

 $\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$

 $= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^{n} (\theta_{0} + \theta_1 x^{(i)} - y^{(i)})^2$

Gradient Descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

update θ_0 and θ_1 simultaneously

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0 θ_1

$$h_{\theta}(x) = \theta_0 + \theta_1 x \implies y = b + mx$$

$$y = b + mx$$

Credit: https://alykhantejani.github.io/a-brief-introduction-to-gradient-descent/

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

- Stochastic Gradient Descent
- Mini-batch Gradient Descent

"Batch" Gradient Descent

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})$$

$$\theta_{1} := \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

update θ_0 and θ_1 simultaneously

Stochastic Gradient Descent

Each step of gradient descent uses one training example.

```
repeat until convergence {

for i = 1, ..., m {

\theta_0 := \theta_{0-} \alpha(h_{\theta}(x^{(i)}) - y^{(i)})

\theta_1 := \theta_{1-} \alpha(h_{\theta}(x^{(i)}) - y^{(i)})x^{(i)}
}
```

Mini-batch Gradient Descent

Each step of gradient descent uses **b** training examples.

Say
$$b = 10$$
, $m = 1000$.
repeat until convergence {

for $i = 1, 11, 21..., 991$ {

 $\theta_0 := \theta_{0-} \alpha \frac{1}{10} \sum_{\substack{i=k \ i+9}}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)})$
 $\theta_1 := \theta_{1-} \alpha \frac{1}{10} \sum_{\substack{i=k \ i+9}}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)}) x^{(k)}$
}

Linear Regression with multiple variables

Multiple Variables Features

Size in feet $^{2}(x)$	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	
852	178	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple Variables Features

Size in feet ² x_I	Number of bedrooms x_2	Number of floors x_3	Age of home (years) x_4	Price (\$) in 1000's
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	2	36	178

Notation:

n = number of features $x^{(i)} = \text{input (features) of } i \text{ training example}$ $x_i^{(i)} = \text{value of features } j \text{ in } i \text{ training example}$

Hypothesis

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Hypothesis

Previously:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

Hypothesis

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$h_{\theta}(x) = 80 + 0.1^{x_1} + 10^{x_2} + 3^{x_3} - 2^{x_4}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

For convenience of notation, define \mathcal{X}_{\emptyset}

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

For convenience of notation, define \mathcal{X}_{\emptyset}

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

For convenience of notation, define \mathfrak{X}_{\emptyset} .

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

For convenience of notation, define \mathfrak{X}_{\emptyset} .

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$h_{\theta}(x) = \theta^T x \leftarrow \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Multivariate linear regression.

Parameters:
$$\theta_0, \theta_1, ..., \theta_n$$

Cost Function: $J(\theta_0, \theta_1, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

 $h_{\theta}(x) = \theta^{T}x = \theta_{0}x_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \cdots + \theta_{n}x_{n}$

Hypothesis:

repeat { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1, ..., \theta_n)$

(simultaneously update for every
$$j = 0, 1, ..., j^n$$

Gradient Descent

Previously (n = 1):

repeat { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$

 $\theta_{1} := \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$ (simultaneously update $\theta_{0} \theta_{1}$

Gradient Descent

 $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$

 $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$

(simultaneously update $\theta_0 \theta_1$

Previously (n = 1):

repeat {

 $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update θ_j for j = 0, 1, ..., n)

repeat {

New Algorithm $(n \ge 1)$:

Gradient Descent

Previously
$$(n = 1)$$
: repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}))$$

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) -$$

$$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$-\alpha \frac{1}{m} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$
(simultaneously update $\theta_0 \theta_1$

$$\frac{y^{(t)}x^{(t)}}{\theta_0\theta_1}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

repeat {

$$\theta_{\rm o}$$
 α

New Algorithm $(n \ge 1)$:

 $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$

 $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$

$$\operatorname{date}^{\theta_j} \operatorname{for}^j =$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$
(simultaneously update θ_{j} for $j = 0, 1, ..., n$)

$$i = 0, 1, ...,$$

Idea: Make sure features are on similar scale.

E.g.
$$x_1$$
= size (0–2000 feet²)
 x_2 = number of bedrooms (1–5)

Idea: Make sure features are on similar scale.

E.g.
$$x_1$$
= size (0-2000 feet²)
 x_2 = number of bedrooms (1-5)

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Idea: Make sure features are on similar scale.

E.g.
$$x_1 = \text{size } (0-2000 \text{ feet}^2)$$

 $x_2 = \text{number of bedrooms } (1-5)$
 $\theta_2 \uparrow$
 0

Get every feature into approximately a $-1 \le \le^{x} 1^{i}$ range.

Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{\text{size} - 1000}{2000}$$
 $\longrightarrow -0.5 \le x_1 \le 0.5$ $x_2 = \frac{\text{\#bedrooms} - 2.5}{5}$ $\longrightarrow -0.5 \le x_2 \le 0.5$

Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{\text{size} - 1000}{2000}$$
 $\longrightarrow -0.5 \le x_1 \le 0.5$ $x_2 = \frac{\text{\#bedrooms} - 2.5}{5}$ $\longrightarrow -0.5 \le x_2 \le 0.5$

$$x_1 = \frac{x_1 - \mu_1}{s_1}$$
 $x_2 = \frac{x_2 - \mu_2}{s_2}$

Learning Rate

Gradient Descent

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Gradient descent not working. Use smaller α .

Gradient descent not working. Use smaller α .

Gradient descent not working. Use smaller α .

- For sufficiently small $\alpha, J(\theta)$ should decrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

Summary

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try

..., 0.001, ..., 0.01, ..., 0.1, ..., 1, ...

Features and Polynomial Regression

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \qquad x_2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \qquad x_2$$

Area x = frontage \times depth

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$\begin{matrix} \downarrow \\ x_1 \end{matrix}$$

Area
$$x$$
 = frontage × depth
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Choice of Features

Choice of Features

Normal Equation

Gradient Descent

Normal equation: Method to solve analytically.

Intuition: If 1D ($\theta \in \mathbb{R}$)

$$J(\theta) = a\theta^2 + b\theta + c$$

Intuition: If 1D ($\theta \in \mathbb{R}$)

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{d}{d\theta}J(\theta) = \cdots = 0$$
 Solve for θ

$$\in \mathbb{R}$$

Intuition: If 1D
$$(\theta \in \mathbb{R})$$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{d}{d\theta}J(\theta) = \cdots = 0$$
 Solve for θ

$$\theta$$

$$\theta \in \mathbb{R}^{n+1}$$
 $J(\theta_0, \theta_1, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

$$\frac{\partial}{\partial \theta_i} J(\theta) = \dots = 0 \quad \text{Solve for } \theta_0, \theta_1, \dots, \theta_n$$

Examples: m = 4.

Number of bedrooms x_2	Number of floors x_3	Age of home (years)	Price (\$) in 1000's
5	1	45	460
3	2	40	232
3	2	30	315
2	1	36	178
	bedrooms	bedrooms of floors	bedrooms of floors (years) x_2 x_3 x_4 5 1 45 3 2 40 3 2 30

Examples: m = 4.

x_0	Size (feet ²) x ₁	Number of bedrooms x_2	Number of floors	Age of home (years)	Price (\$) in 1000's
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

Examples: m = 4.

x_0	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

x_0	Size (feet		Numb pedro	om		Number of floors x_3		e of home (years) x ₄	Price (\$) in 1000's	l
1	2104	4	5	;	7	1	i	45	460	
1	1416	6	3			2		40	232	
1	1534	4	3			2		30	315	
1	852	$2 \mid 2 \mid$		1		36	178			
X =	1	2104 1416 1534 852	5 3 3 2	1 2 2 1	45 40 30 36		1			

x_0	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years) x_4	Price (\$) in 1000's
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

x_0	Size (feet ²) x ₁	Number of bedrooms x_2	Number of floors	Age of home (years)	Price (\$) in 1000's
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
X =	1 210 1 14 1 153 1 85	16 3 2 4 34 3 2 3	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ \mathcal{Y}	$= \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$	

x_0	Size (feet ²)	Number of bedrooms x_2	Number of floors	Age of home (years)	Price (\$) in 1000's
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix} m \times (n+1)$$

x_0	Size (feet ²)	Number of bedrooms x_2	Number of floors	Age of home (years)	Price (\$) in 1000's
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix} \qquad \theta = (X^T X)^{-1} X^T y$$

$$\theta = (X^T X)^{-1} X^T y$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} ----- \\ \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} ---- \\ ---- (x^{(2)})^{\mathrm{T}} ---- \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} - ---- \\ ---- (x^{(2)})^{\mathrm{T}} - ----- \\ ---- \vdots \\ ---- (x^{(m)})^{\mathrm{T}} - ------ \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} - --- \\ ---- (x^{(2)})^{\mathrm{T}} - --- \\ ---- (x^{(m)})^{\mathrm{T}} - --- \\ ---- (x^{(m)})^{\mathrm{T}} - --- \end{bmatrix}$$

$$E.g. \quad x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} - --- \\ ---- (x^{(2)})^{\mathrm{T}} - --- \\ ---- (x^{(2)})^{\mathrm{T}} - --- \\ ---- (x^{(m)})^{\mathrm{T}} - --- \end{bmatrix}$$

$$\begin{bmatrix} x_n^{(i)} \end{bmatrix} \qquad \qquad \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$
E.g. $x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix} \qquad X = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ x_m^{(1)} \end{bmatrix}_{m \times 2}$

$$X = \begin{bmatrix} --- (x^{(1)})^{\mathrm{T}} - --- \\ --- (x^{(2)})^{\mathrm{T}} - --- \\ --- \vdots - --- \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

$$--- (x^{(m)})^{\mathrm{T}} - --- \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

$$\theta = (X^T X)^{-1} X^T y$$

$$\theta = (X^T X)^{-1} X^T y$$

$$(X^T X)^{-1}$$
 is inverse of matrix $X^T X$

$$\theta = (X^T X)^{-1} X^T y$$

$$(X^T X)^{-1}$$
 is inverse of matrix $X^T X$

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

$$\theta = (X^T X)^{-1} X^T y$$

$$(X^T X)^{-1}$$
 is inverse of matrix $X^T X$

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

What if $X^T X$ is noninvertible?

What if $X^T X$ is noninvertible?

The common causes might be having:

- Redundant features, where two features are very closely related (i.e. they are linearly dependent).
- Too many features (e.g. $m \le n$). In this case, delete some features or use "regularization".

Gradient Descent

- \triangleright Need to choose α .
- Needs many iterations.

Normal Equation

- $\stackrel{\text{def}}{=}$ No need to choose α .
- Don't need to iterate.

m examples and *n* features

Gradient Descent

- \triangleright Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- $\stackrel{\text{def}}{=}$ No need to choose α .
- Don't need to iterate.
- Need to compute $(X^T X)^{-1} \rightarrow O(n^3)$.
- \odot Slow if n is very large.

m examples and *n* features

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 & 4
- Pattern Recognition and Machine Learning, Chap. 3
- Machine Learning: a Probabilistic Perspective, Chap. 7

Machine Learning Courses

https://www.coursera.org/learn/machine-learning, Week 1 & 2