2021 NFL Weekly Report

Stephan Teodosescu

Last updated: 2021-09-27

Contents

Welcome	-
Team Level Performance	
Quarterback Performance	(
Fourth Downs	٤
Resources and Inspiration	(

Welcome

This report is a season-to-date look at how the NFL season has transpired, according to advanced analytics. We use play-by-play data from Ben Baldwin and Sebastian Carl's fantastic nflfastR package to tell the story of the 2021 season thus far. nflfastR is an extension of the original work done by the nflscrapR team (Maksim Horowitz, Ron Yurko, and Sam Ventura).

Football analytics have taken a huge leap forward in the past half decade or so. The NFL has embraced analytics, and data-driven decision making in general, at a rapid pace. Advanced stats have also become much more accessible to the average fan as we now have a wealth of information previously unavailable to the public. A lot of that has to do with the work of the aforementioned groups.

Below you'll find figures showing key advanced metrics I'm tracking as the season goes on using these public resources.

Team Level Performance

Current Rankings

Offensive and defensive rankings, according to various advanced metrics. Click a column header to sort by that statistic.

SEARC	H FOR A TE	EAM								
	Team	Overall EPA/Play	Off EPA/Play		EPA/Pass	EPA/Rush	Def EPA/Pass	Def EPA/Rush		Rush SR
-	ARI			-0.115371 12918910 3			-0.164659 01359977 7		0.5	0.4358974 35897436
F	ATL						0.1814274 91414294			
4	BAL			50859597	0.1026943 50676074		0.2618979 5329461		0.5044247 78761062	
<i>≈</i>	BUF			-0.227146 40392173 4			-0.189313 51261785 4			
A	CAR				0.2411580 66007403		-0.191559 34394699 3		0.5163934 42622951	
C	CHI						0.0332353 53313596 8			
113	CIN						0.0154004 41004203 9			
G €s	CLE	0.0657289 13780827 3					0.2021748 35826165			
*	DAL						0.0958646 33719855 3		0.56	0.5
*	DEN						-0.225362 24221881 8			
*	DET					54486873	0.4672710 45557298		0.5	0.4090909 09090909
•	GB						0.2758996 79400057			
\$>	HOU				0.2868567 65699806		0.1113311 9740349		0.5137614 67889908	
U	IND						0.3257224 8822295			
***	JAX						0.3299995 58091412			
(%)	кс						0.2849521 63962342			
4	LA	0.2188027 76684285	0.2173302 02472538	-0.001472 57421174 76	0.4771240 25773447	-0.157515 17114734 7	-0.006087 92304023 196	0.0110548 01179852 8	0.5346534 65346535	0.3571428 57142857
	LAC	0.0779685 61264300 4					0.0529807 06639687 2			
7	LV			28937414			0.0786592 97572235 2	53023432		0.35
	MIA	02195407 9	43372643 4	88227645 2	09406828 3	92112999	0.1216929 01505466	68759170 71	62162162	27586207
*	MIN	70358507 3	13558292	43199784 6	30238777	87983767 7	0.1335106 45633106	93469826 32	40740741	97590361
~	NE						-0.139732 43767565			
4	NO						-0.136064 01548885 3			
ny	NYG	-0.073160 39635438 49	0.0759082 32534881	0.1490686 28889266	0.1114381 81923554	0.0009005 61603237 061	0.2143932 11658942	0.0154044 82606698 6	0.4812030 07518797	0.4285714 28571429
•	NYJ	-0.303233 28499440 4	-0.309380 20517026 7	-0.006146 92017586 285	-0.389945 08341409 5	-0.137684 56301129	0.1496631 60243637	-0.199501 59828680 9	0.3692307 69230769	0.3606557 37704918
43	PHI	0.2053431 41583571	0.1127284 93448518	-0.092614 64813505 32	0.2749782 01899465	-0.106609 07538331 7	-0.102324 57675381 5	-0.079991 74093066 26	0.5479452 05479452	0.5185185 18518518
⊕	PIT	-0.088640 05295486 11	67226138	80693477	90860036	-0.255177 08200966 3	0.1592677 01086837	-0.219590 33429466 5	0.4149659 86394558	0.1702127 65957447
- = ≥>	SEA	0.0534250 44138389 7	0.1519547 88319193	0.0985297 44180803 6	0.2134702 39513327	0.0366133 17330193 2	0.2609449 71357136	-0.114344 58270079 6	0.4666666 66666667	0.4821428 57142857
•	SF	0.0858013 94537021 2	0.1576959 6928494	0.0718945 74747918 7	0.3169499 84449856	-0.061278 30156682 02	0.1429685 78213699	-0.070253 43218364 15	0.5272727 27272727	0.4125
*	ТВ						0.1521475 8518521			
***	TEN						0.1500143 64134971		0.56	0.3548387 09677419
w	WAS	-0.211129 09037734 1	-0.042119 28543613 72	0.1690098 04941204	0.0011919 81886901 05	-0.119944 21890722 2	0.2709021 80061408	-0.019099 19528071 23	0.4347826 08695652	0.421875

Offensive vs. Defensive EPA

Expected Points Added: The change in Expected Points (EP) from one play to the next. EPA yields a single measure of the value of every play. Expected Points was created by the nflfastR team using a statistical model trained on historical data, and takes into account features like down, distance, whether the game is being plated indoors, etc. It helps answer the question "How good of a position is my team in to score as of now?" Higher EPA on offense is better, while a lower EPA on defense is more desirable.

EPA helps provide better context around what plays are more valuable. For example, a five-yard completion on third-and-4 is better than an eight-yard completion on third-and-9, despite the fact that the latter resulted in more yards.

EPA per Dropback by Team

The below isolates Expected Points Added for pass plays only to get a sense of how each team's quarterback is performing on a per-dropback basis.

EPA vs CPOE per dropback by team

This below is another way to look at quarterback efficiency using EPA and Completion Percentage Over Expectation (CPOE) as measures. CPOE is simply the difference between a quarterback's expected completion percentage and actual completion percentage. Expected completion percentage is a stat measuring the likelihood of a given pass being completed which factors in features like depth of target (air yards). It's a better measure of accuracy than traditional completion percentage because it takes into account the location of where passes are being thrown.

Explosive Plays

Some teams are better than others at getting chunk plays. We're defining explosive plays as those gaining 15 yards or more on rushes and 20 yards+ on passes. We're highlighting the Bears simply because I'm a Bears fan and want to easily track how they stack up using this metric. Spoiler: they've been near the bottom of the league in explosive plays the past few years.

Quarterback Performance

QB Success Rate

Success rate is defined as the percentage of plays that were successful for the offense – in other words, the percentage of plays with positive EPA. It's meant to measure the consistency of a team's performance from play to play. One thing to note is it doesn't provide context for what happened on a play as it is just a binary indicator of whether a play was successful or not. For example, success rate will classify both an interception and a harmless incomplete pass as unsuccessful plays for the offense, even though the former is far less desirable.

Here we focus on quarterback play only as the QB position is the most valuable position on the field. As the quarterback goes, the team goes.

Difference in Expected and Actual Yards

The below shows what quarterbacks have completed a either higher percentage or lower percentage of their passes than expected, according to the nflfastR model.

Fourth Downs

Teams are going for it on 4th Down more often nowadays. The below table shows each team's go-for-it rates on fourth-and-short over the last decade. From 2000-17, teams went for it on fourth-and-1, fourth-and-2, or fourth-and-3 just XX% of the time. In 2018, that rate jumped to 45%. We will track how each team fares on its fourth-down decision making throughout the season.

4th Down Decison Making

Percentages shown are how often a team went for it when it on 4th & short, defined as when win probability was between 20% and 80% (game-neutral situations). 2021 data is

	team	2010	2011	2012
<pre></pre>	CIN	25.0	15.8	35.7
$<\!\!\mathrm{img\ src}="\mathrm{https:}//\mathrm{a.espncdn.com/i/teamlogos/nfl/500/cle.png"\ style}="\mathrm{height:25px;"}>$	CLE	16.7	11.1	20.0
$<\!\!\mathrm{img\ src}="\mathrm{https:}//\mathrm{a.espncdn.com/i/teamlogos/nfl/500/det.png"\ style}="\mathrm{height:}25\mathrm{px;}">$	DET	50.0	28.6	14.3
	IND	9.5	10.0	18.8
<pre></pre>	NYJ	25.0	10.5	25.0
$<\!\!\mathrm{img\ src}="\mathrm{https:}//\mathrm{a.espncdn.com/i/teamlogos/nfl/500/den.png"\ style}="\mathrm{height:25px;"}>$	DEN	42.9	4.3	15.4
	ATL	57.1	25.0	5.9
	BAL	33.3	28.6	20.0
	BUF	31.6	25.0	9.1
$<\!\!\mathrm{img\ src}="\mathrm{https:}//\mathrm{a.espncdn.com/i/teamlogos/nfl/500-dark/car.png"\ style}="\mathrm{height:25px;"}\!\!>$	CAR	10.0	10.0	54.5

	LV	43.8	40.0	13.3
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/wsh.png"\ style} = \text{"height:25px;"} > $	WAS	14.3	22.2	35.3
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/chi.png" style} = \text{"height:25px;"} > $	CHI	33.3	30.0	44.4
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/gb.png"\ style} = \text{"height:25px;"} > $	GB	27.8	26.7	15.4
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/lac.png"\ style} = \text{"height:25px;"} > \\$	LAC	0.0	22.2	30.8
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/mia.png"\ style} = \text{"height:25px;"} > $	MIA	13.6	20.0	21.4
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/ari.png"\ style} = \text{"height:25px;"} > $	ARI	30.8	27.3	25.0
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/sf.png"\ style} = \text{"height:25px;"} > $	SF	25.0	28.6	7.1
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/tb.png"\ style} = \text{"height:25px;"} >$	TB	35.0	35.7	36.4
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/dal.png"\ style} = \text{"height:25px;"} > \\$	DAL	35.3	9.1	23.5
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/hou.png"\ style} = \text{"height:25px;"} > $	HOU	50.0	15.4	11.8
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/jax.png"\ style} = \text{"height:25px;"} > \\$	JAX	61.5	33.3	21.4
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/kc.png"\ style} = \text{"height:25px;"} > $	KC	36.4	11.8	40.0
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/lar.png"\ style} = \text{"height:25px;"} > \\$	LA	25.0	22.2	26.1
$<\!\!\operatorname{img\ src}="\operatorname{https:}//\operatorname{a.espncdn.com/i/teamlogos/nfl/500/min.png"\ style}="\operatorname{height:25px;"}>$	MIN	26.7	25.0	13.3
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/ne.png"\ style} = \text{"height:25px;"} >$	NE	44.4	14.3	16.7
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/no.png"\ style} = \text{"height:25px;"} >$	NO	27.3	41.7	20.0
$<\!\!\operatorname{img\ src}="\operatorname{https:}//\operatorname{a.espncdn.com/i/teamlogos/nfl/500/nyg.png"\ style}="\operatorname{height:25px;"}>$	NYG	11.1	14.3	10.0
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/phi.png"\ style} = \text{"height:25px;"} >$	PHI	37.5	29.4	44.4
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/pit.png"\ style} = \text{"height:25px;"} > \\$	PIT	16.7	27.3	34.8
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/sea.png"\ style} = \text{"height:25px;"} > $	SEA	15.8	23.1	15.8
$<\!\!\mathrm{img\ src} = \text{"https://a.espncdn.com/i/teamlogos/nfl/500/ten.png"\ style} = \text{"height:25px;"} > $	TEN	8.3	50.0	37.5

DATA: nflfastRTABLE: @steodosescu

Resources and Inspiration

The below resources were used to create the above plots within this document. Many thanks to all the authors of these fantastic resources:

Title/Link	Author	Description
R for Data	Hadley	A great overview of the tidyverse, covers everything from reading
Science	Wickham, Garret Grolemund	data in, data manipulation/summarization, data viz, and general programming in R
nflfastR Graphics Cookbook	Thomas Mock	As step-by-step guide on how to improve your nflfastR graphics.
Beginner's Guide to nflfastR	Ben Baldwin	Covers introductory examples of how to get started with the nflfastR package, and more broadly, how to use R and the tidyverse.
R Markdown Intro Guide	R Studio	Intro primer to authoring R Markdown documents.:
ggplot2 Cookbook	Winston Chang	Quick cookbook of ggplot2 plots
R Markdown Book	Yihui Xie, J. J. Allaire, Garrett Grolemund	The definitive guide outlining what you can do with the rmarkdown package (Allaire, Xie, McPherson, et al. 2021), which was first created in early 2014. The package has steadily evolved into a complete ecosystem for authoring documents in a variety of output formats including the output of this document that you're reading.