Maximum Power Transfer Theorem

Department of Electrical Engineering Indian Institute of Technology Kharagpur

Autumn 2020

Objective: Verification of Maximum Power Transfer theorem.

Theory

Maximum power is transferred from a source of given voltage and an initial impedance to the load impedance $Z_L = R_L + jX_L$ in a circuit (Figure 1) under three different conditions.

When only X_L is adjustable

Under this condition the power consumed by the load (I^2R_L) is maximum, when I the RMS current is maximum, since R_L is constant.

$$I = \frac{V_s}{(R_i + jX_i) + (R_L + jX_L)} \tag{1}$$

$$I = \frac{V_s}{(R_i + jX_i) + (R_L + jX_L)}$$

$$\Rightarrow |I|_{max} = \frac{V_S}{R_i + R_L} \text{ when } X_L = -X_i.$$
(2)

This means that if the load reactance X_L is made equal in magnitude and opposite in sign to the internal reactance X_i , the power transferred is maximum.

1.2 When only R_L is adjustable:

From Equation 1 in Section 1.1, one may write,

$$P = |I|^{2} R_{L}$$

$$= \frac{V_{s}^{2} R_{L}}{(R_{i} + R_{L})^{2} + (X_{i} + X_{L})^{2}}.$$
(3)

Figure 1: Circuit 1.

Differentiating Equation 3 w.r.t. R_L and equating to zero, one obtains,

$$R_L = \sqrt{R_i^2 + (X_i + X_L)^2}. (4)$$

1.3 When both R_L and X_L are adjustable:

Under this condition, both Equations 2 and 4 are valid simultaneously and one obtains,

$$R_L = R_i, X_L = -X_i. (5)$$

2 Procedure

2.1 First Part

- 1. Take a suitable set of values of V_s , R_i and X_i as shown in Figure 2. You can choose X_i to be inductive (assume the resistive loss of the coil to be negligible).
- 2. Next choose a suitable load resistance R_L and a variable capacitance C_L such that the critical value C_0 of C_L , $(C_0 = \frac{1}{4\pi^2 f^2 L_i})$ falls within the range of the values of C_L , available (decade box) in steps. This is to ensure that for a particular frequency, we can obtain the condition:

$$|X_C| = |X_L|, \text{ or }, \frac{1}{\omega C_L} = \omega L_i,$$
 (6)

for some value of C_L within the range provided.

Now for different value of C_L note down V_3 and V_1 ,

$$P_L = I^2 R_L = I \cdot I R_L = \frac{V_1}{100} \cdot V_3 = K \cdot V_1 V_3, \text{ where } K = \frac{1}{100} = \frac{1}{R_i}.$$
 (7)

Enter the values of the voltage for different 8 values of C_L and obtain the set corresponding to the maximum value of (V_1V_3) . Verify that for this set $V_2 = V_4$.

Figure 2: Circuit 2.

Enter the data in the following table:

Sl. No.	C_L	V_1	V_3	$(V_1 \cdot V_3)$	Maximum $(V_1 \cdot V_3)$
1					
2					
3					
4					
5					
6					
7					
8					

Table 1: Experiment observation table.

2.2 Second Part

Repeat the procedure of Section 2.1, with C_L fixed and R_L varied. At the point of maximum power, check

$$R_L = \sqrt{R_i^2 + (X_i + X_L)^2}. (8)$$

2.3 Third Part

Repeat the procedure of Section 2.2, varying both R_L & C_L and obtain the maximum power condition. Check under this condition:

$$V_{RL} = V_{Ri} \quad i.e. \quad V_1 = V_3 \tag{9}$$

and,
$$V_{XL} = V_{Xi}$$
 i.e. $V_2 = V_4$. (10)