Istnienie i stabilność klastra cząstek Witold Gliwa January 2023

Spis treści

1	Wp	rowadz	zenie	3
	1.1	Treść	zadania	3
	1.2	Zakres	s badań	4
2	Szu	kanie i	minimów	4
	2.1	Algory	tm genetyczny	5
		2.1.1	Bez specjalnych zasad krzyżowania	5
		2.1.2	Z dostosowanymi zasadami krzyżowania	5
	2.2	Intelig	gencja roju	6
3	Wy	niki		7
	3.1	Wykr€	esy	7
		3.1.1	Najlepszy wynik	7
		3.1.2	Średni czas	8
	3.2	Tabele	· · · · · · · · · · · · · · · · · · ·	8
		3.2.1	Algorytm Genetyczny	8
		3.2.2	PSO GlobalBest	9
		3.2.3	PSO LocalBest	9
		3.2.4	Genetyczny niestandardowy	9
	3.3	Obraz	y	10
4	Wn	ioski		11
5	Źró	dła i u	żyte paczki	12

1 Wprowadzenie

1.1 Treść zadania

Za pomocą algorytmu genetycznego i algorytmu inteligencji roju znaleźć minimum energetyczne układu cząstek (klastru) za pomocą sum potencjałów Morse'a wyrażonych wzorem:

$$V_m = \sum_{i < j} e^{p_0 \cdot (1 - r_{ij})} (e^{p_0 \cdot (1 - r_{ij})} - 2)$$
 (1)

gdzie:

- r_{ij} to odległość w przestrzeni trójwymiarowej pomiędzy cząstkami iij
- $\bullet \ p_0$ to siła przyciągania się cząsteczek w klastrze dla danego materiału

Minimum oznacza potencjalnie stabilne ułożenie cząstek w klastrze. Część już znalezionych wartości minimów w tabeli:

strength	3	6	10	14
size				
5	-9.299500	-9.044930	-9.003565	-9.000283
6	-13.544229	-12.487810	-12.094943	-12.018170
7	-17.552961	-16.207580	-15.956512	-15.883113
8	-22.042901	-19.161862	-18.275118	-18.076248
9	-26.778449	-22.330837	-21.213531	-21.037957
10	-31.519768	-25.503904	-24.204958	-24.031994
11	-37.930817	-28.795153	-23.666072	NaN

Przykładowe przedstawienie graficzne 2 róznych minimów dla 8 czastek i $p_0=6$:

1.2 Zakres badań

Oba algorytmy zostały uruchomione na klastrach wielkości 5 - 11 i p_0 równego odpowiednio 3, 6, 10 i 14

2 Szukanie minimów

Oba algorytmy zostały uruchomione 10 razy dla każdego przypadku w celu unormowania średniego czasu pracy na populacji i ilości generacji równej 150. Wzorując się na poprzednich wynikach zakres współrzędnych punktów w przestrzeni został ograniczony do zakresu (-2.0, 2.0).

Do obliczania potencjału Morse'a dla danych współrzędnych zostały w obu algorytmach wykorzystane funkcje:

```
def calc3d(x):
      return np.linalg.norm(np.array([x[0], x[1], x[2]])
2
                             - np.array([x[3], x[4], x[5]]))
  def fitness_func(x, solution_idx=0):
      x = np.array_split(x, len(x) / 3)
      sum = 0
      for i in range(0, len(x)):
8
          for j in range(i + 1, len(x)):
9
               sum += pow(e, strength *
                          (1 - calc3d(np.append(x[i], x[j])))) \
                      * (pow(e, strength *
12
                              (1 - calc3d(np.append(x[i], x[j])))) - 2)
13
14
      return +/-sum
```

Przy wywołaniu funkcji fitness_func do środka jest wrzucany dany chromosom w postaci listy współrzędnych. Lista jest podzielona na kawałki wielkości 3 zawierające x, y i z punktów. Następnie w pętli zostaje obliczony potencjał Morse'a dla każdej pary punktów. Funkcja pomocnicza calc3d służy do znalezienia odległości pomiędzy punktami. Każdy z potencjałów zostaje dodany do sumy potencjału całego klastra. Na koniec suma zostaje zwrócona jako wartość fitness, odpowiednio odwrócona w przypadku algorytmu genetycznego.

Cały algorytm zbierał dane z 10 uruchomień i zwracał listę: wielkości klastra, siły przyciągania, najmniejszego minimum, średniej czasów wykonania, czasu minimalnego, czasu maksymalnego i listy współrzędnych punktów najlepszego wyniku.

2.1 Algorytm genetyczny

Algorytm genetyczny został wykonany w 2 wersjach:

2.1.1 Bez specjalnych zasad krzyżowania

```
ga_instance = pygad.GA(gene_space=gene_space,
                          num_generations=150,
                          num_parents_mating=int(sol_per_pop / 2),
                          fitness_func=fitness_func,
                          sol_per_pop=sol_per_pop,
                          num_genes=num_genes,
                          parent_selection_type="rws",
                          keep_parents=int(sol_per_pop / 10),
                          crossover_type="scattered",
9
                          mutation_type="swap",
10
                          mutation_percent_genes=20,
12
                          crossover_probability=0.5)
13
```

Z zasadami

- Ilość krzyżujących się rodziców połowa populacji (75)
- Zasada wybierania rodziców ruletka
- Ilością rodziców do zatrzymania do kolejnej generacji 10% (15)
- Wymiennym typem mutacji
- Prawdopodobieństwem mutacji genu 20%
- Prawdopodobieństwem krzyżowania się rodziców 50%

2.1.2 Z dostosowanymi zasadami krzyżowania

Z zasadami

- Ilość krzyżujących się rodziców połowa populacji (75)
- Zasadą wybierania rodziców turniej

- Ilościa rodziców do zatrzymania do kolejnej generacji 10% (15)
- Losowym typem mutacji
- Prawdopodobieństwem mutacji genu 20%

```
def crossover(parents, offspring_size, pygad):
    offspring = []
    idx = 0

while len(offspring) != offspring_size[0]:
    parent1 = parents[idx % parents.shape[0], :].copy()
    parent2 = parents[(idx + 1) % parents.shape[0], :].copy()
    random_split_point = 3 * round(np.random.choice(range(
    offspring_size[1])) / 3)
    parent1[random_split_point:] = parent2[random_split_point:]
    offspring.append(parent1)
    idx += 1

return np.array(offspring)
```

Powyższa zasada crossover krzyżowania się niewiele odstaje od krzyżowania się w 1 punkcie z dodaną zasada że punkt krzyżowania nie może być w innym miejscu niż wielokrotność 3. Zasada została dodana z powodu typu organizacji danych - wymieniane geny pomiędzy rodzicami będą tutaj zawsze pełnymi punktami a nie ewentualnie jedna z współrzednych punktu.

2.2 Inteligencja roju

Algorytm inteligencji roju został uruchomiony w 2 wersjach:

- GlobalBest cząsteczki są przyciągane do najlepiej sprawującej się cząsteczki z calego roju (topologia gwiazdy) Z ustawieniami: $(\phi_1 = 0, 5, \phi_2 = 0, 3, \omega = 0.9)$
- LocalBest cząsteczki są przyciągane do swoich najbliższych sąsiadów (topologia pierścienia) Z ustawieniami: $(\phi_1=0,5,\phi_2=0,3,\omega=0.9,k=3,p=2)$

Gdzie:

- \bullet ϕ_1 współczynnik dążenia do najlepszego indywidualnego rozwiązania
- \bullet ϕ_2 współczynnik dążenia do najlepszego lokalnego rozwiązania
- \bullet ω współczynnik bezwładności
- ullet k ilość sąsiadów do rozpatrzenia
- $\bullet\,$ p rodzaj znajdowania sąsiadów, w tym przypadku suma bezwzględnych różnic wartości

3 Wyniki

3.1 Wykresy

- \bullet PSO_G Global Best PSO
- PSO L LocalBest PSO
- $\bullet~$ GEN Algorytm Genetyczny
- SCIENTIST Wyniki naukowców?
- GEN2 Algorytm genetyczny z niestandardową regułą krzyżowania

3.1.1 Najlepszy wynik

Poniżej zostały przedstawione 4 wykresy dla każdej z sił przyciągania i ich odpowiadające wyniki

3.1.2 Średni czas

Poniżej zostały przedstawione 4 wykresy dla każdej z sił przyciągania i ich odpowiadające czasy wykonania

3.2 Tabele

3.2.1 Algorytm Genetyczny

strengt	h 3	6	10	14	strength	3	6	10	14
siz	e				size	·	٠	10	
5	-7.019020	-4.397432	-3.351963	-3.407595	5	-2.280480	-4.647498	-5.651602	-5.592688
6	-7.320105	-4.757172	-2.926122	-2.953002	6	-6.224124	-7.730638	-9.168821	-9.065168
7	-10.086451	-5.423284	-4.209104	-4.621444	7	-7 466510		-11.747408	
8	-10.358348	-5.900441	-5.677644	-3.053355	8	-11.684553	-13.261421		
9	-12.922751	-7.795724	-5.106053	-3.683217	9	-13.855698	-14.535113	-16.107478	-17.354740
10	-14.547740	-7.216919	-5.175406	-4.165866	10	-16.972028	-18.286985	-19.029552	-19.866128
11	-15.846790	-9.259666	-6.067997	-4.673248	11	-22.084027	-19.535487	-17.598075	NaN
	(a) Na	ijlepsze	wyniki			(b) Rózi	nica z na	ukowcam	ıi

3.2.2 PSO GlobalBest

strength	3	6	10	14	strength	3	6	10	14
size					size				
5	-9.299497	-9.044771	-8.820133	-6.978604	5	-0.000003	-0.000159	-0.183432	-2.021679
6	-13.544056	-11.507746	-8.671867	-7.261647	6	-0.000173	-0.980064	-3.423076	-4.756523
7	-17.224570	-14.185112	-10.004062	-8.213925	7	-0.328391	-2.022468	-5.952450	-7.669188
8	-21.463751	-14.710338	-10.419723	-8.064092	8	-0.579150	-4.451524	-7.855395	-10.012156
9	-25.818440	-14.901252	-11.990945	-7.620893	9	-0.960009	-7.429585	-9.222586	-13.417064
10	-29.038532	-15.517282	-11.317686	-7.995260	10	-2.481236	-9.986622	-12.887272	-16.036734
11	-33.959362	-14.745030	-10.531785	-7.473845	11	-3.971455	-14.050123	-13.134287	NaN

(a) Najlepsze wyniki

(b) Róznica z naukowcami

3.2.3 PSO LocalBest

strer	ngth	3	6	10	14	strength	3	6	10	14
	size					size				
5		-9.281168	-8.694257	-6.247303	-6.265649	5	-0.018332	-0.350673	-2.756262	-2.734634
6		-13.401194	-10.695470	-7.618372	-6.748812	6	-0.143035	-1.792340	-4.476571	-5.269358
7		-16.888065	-12.523764	-6.881275	-8.779186	7	-0.664896	-3.683816	-9.075237	-7.103927
8		-19.279571	-11.180575	-7.668592	-6.993494	8	-2.763330	-7.981287	-10.606526	-11.082754
9		-23.372072	-12.593219	-8.290908	-6.741712	9	-3.406377	-9.737618	-12.922623	-14.296245
10		-28.052590	-13.074072	-9.416607	-6.332480	10	-3.467178	-12.429832	-14.788351	-17.699514
11		-27.906037	-12.689516	-11.820280	-7.814554	11	-10.024780	-16.105637	-11.845792	NaN

(a) Najlepsze wyniki

(b) Róznica z naukowcami

3.2.4 Genetyczny niestandardowy

streng	gth 3	6	10	14	strength	3	6	10	14
S	ize				size				
5	-7.734039	-6.148184	-5.044700	-4.037571	5	-1.565461	-2.896746	-3.958865	-4.962712
6	-10.782255	-7.821588	-5.761345	-5.025583	6	-2.761974	-4.666222	-6.333598	-6.992587
7	-11.920447	-8.601497	-5.719240	-4.853453	7	-5.632514	-7.606083	-10.237272	-11.029660
8	-16.558138	-11.085490	-6.373818	-5.398010	8	-5.484763	-8.076372	-11.901300	-12.678238
9	-20.567594	-9.416199	-7.604074	-6.190765	9	-6.210855	-12.914638	-13.609457	-14.847192
10	-19.898133	-10.654868	-8.269752	-6.393808	10	-11.621635	-14.849036	-15.935206	-17.638186
11	-21.094210	-10.727311	-7.678765	-6.476099	11	-16.836607	-18.067842	-15.987307	NaN

(a) Najlepsze wyniki

(b) Róznica z naukowcami

3.3 Obrazy

Rysunek 7: Przykładowy wynik Global Best PSO dla wielkości 6 i siły $3\,$

Rysunek 8: Przykładowy wynik Global Best PSO dla wielkości 9 i siły 3

Z powodu konieczności wykonania syzyfowej pracy potrzebnej do umieszczenia animacji w pliku PDF wszystkie klastry o sile 3 są animowane w plikach GIF na githubie.

4 Wnioski

Analizując dane z wykresów i tabel wyraźnie widać ze algorytm inteligencji roju radzi sobie lepiej z szukaniem minima od algorytmu genetycznego, osiągając niemalże te same wyniki co naukowcy dla niskiej wartości p_0 , jednocześnie osiągając niewiele gorsze wynik czasowo niż algorytm genetyczny. Wyjątkiem jest pierwszy algorytm genetyczny, który działa znacznie szybciej, co było testowane na 2 próbach, więc nie jest to wina czynników zewnętrznych. Jest to prawdopodobnie spowodowane ustawianiami algorytmu, prawdopodobnie system wybierania rodziców ma niewielką złożoność czasową. Nadal algorytm ten osiąga zbyt słabe wyniki żeby miało sens badać go dalej.

Wszystkie algorytmy osiągają znacznie gorsze wyniki w przypadku wyższych wartości p_0 . Jest to prawdopodobnie spowodowane składnią równania Morse'a

i znalezienie dobrych minimów wymagałoby większej ilości pokoleń i populacji. Istotą tego dokumentu było jednak badanie różnych typów algorytmów a nie pobicie wyników naukowców. Cytując wpis ze strony o klastrach:

The location of all the global minimum at $\rho_0=3$, 6, 10 and 14 for clusters with up to 80 atoms would be a significant achievement and one which no unbiased global optimization algorithm has yet managed.

Nie pomaga fakt że w badaniach zostały użyte zwykłe Pythonowe floaty więc ekstremalnie dokładne wyniki i tak nie były do osiągnięcia. *Osobiście* uważam że przy większej dokładności i mocy obliczeniowej jest możliwe pobicie tych wyników algorytmem PSO ale *osobiście* nie wiem jaką miałoby to wartość.

5 Źródła i użyte paczki

- Dokument z projektami
- Strona o klastrach
- The effect of the range of the potential on the structures of clusters
- Algorytm Genetyczny paczka PyGAD
- Algorytm Inteligencji Roju paczka PySwarms
- Obliczenia, zbieranie danych Numpy, Pandas
- Generowanie wykresów i tabel Matplotlib
- Generowanie klastrów w 3D Plotly