

Model Development Phase Template

Date	15 March 2024
Team ID	738193
Project Title	Hospital Readmission Prediction Using Machine Learning
Maximum Marks	6 Marks

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Selection Report:

Model	Description	Hyperparameters	Performance Metric (e.g., Accuracy, F1 Score)
Logistic regression	In this study, we employed logistic regression, a widely-used algorithm for binary /multiclass classification tasks, to develop a predictive model for hospital readmission.	Multinomial logistic regression	Accuracy = 53 %

	Logistic regression was chosen due to its interpretability and suitability for binary /multiclass outcomes		
Decision tree	In our study, we employed a decision tree model for hospital readmission prediction. Decision trees were chosen for their simplicity, interpretability, and ability to capture complex relationships in the data without requiring extensive feature engineering	Criterion='entropy'	Accuracy = 45 %
XGBClas sifier	In our research, we employed the XGBoost classifier (XGBClassifier) for hospital readmission prediction. XGBoost was chosen for its	For k_fold=5 objective='multi:softm ax', max_depth=10, learning_rate=0.1, n_estimators=1000	Accuracy = 57 %

	i	i	
superior			
performance,			
scalability, and			
ability to			
handle complex			
relationships in			
the data. We			
optimized the			
XGBoost model			
through			
hyperparamete			
r tuning and			
leveraged its			
feature			
importance			
analysis to			
identify key			
predictors of			
readmission			
risk. XGBoost's			
regularization			
techniques			
helped prevent			
overfitting and			
enhance			
generalization			
performance,			
making it a			
robust choice			
for predictive			
modeling in			
healthcare.			