#### BACS2063 Data Structures and Algorithms

## Algorithms for Sorting

Chapter 8b

# Chapter 8 Part 2 Algorithms for Sorting

#### **Learning Outcomes**

At the end of this chapter, you should be able to

- Sort an array using the sorting methods:
  - Bubble sort, selection sort, insertion sort, shell sort, merge sort, quick sort and radix sort.
- Assess the time efficiencies of various sorting methods, expressed in Big-O notation.

#### Bubble sort

- The simplest and slowest algorithm as it compares 2 adjacent elements sequentially and swaps them if they are out of order. It uses iteration to move the largest element to the end of the array.
- Called bubble sort because larger values gradually "bubble" to the end of the array.
- Disadvantage: slowest algorithm.
- It makes several passes through the array.
  - On each pass, neighboring pairs of elements are compared.
    - If the pair is in increasing order, we leave the values as they are.
    - If the pair is in decreasing order, we swap the values.

#### Bubble Sort Example - 1st pass



#### Bubble Sort Example - 2<sup>nd</sup> pass



## Bubble Sort Example - 3<sup>rd</sup> pass



#### Bubble Sort Example (Cont.)



#### Bubble sort - Best & Worst Cases

 Note: The bubble sort algorithm can detect a sorted array when there is a pass with no swaps.

#### Best case:

- The bubble sort needs only the first pass to sort the array, no next pass is needed.
- Since the number of comparisons is n-1 in the first pass, the best case time is O(n).

#### Worse case:

- Inverted array maximum passes (n-1) is required.
- Each pass requires maximum comparisons, i.e. the 1<sup>st</sup> pass takes n-1 comparisons, the 2<sup>nd</sup> pass takes n-2 comparisons and so on.
- The worse case time is  $O(n^2)$ .

#### Source Code for Bubble Sort

- Chapter8\sorting\BubbleSort.java
  - Demonstrates the bubble sort algorithm on an array of integers
    - (Note: the source code can be easily amended to cater for arrays of any primitive data types).
  - However, it does not work for array of objects as objects cannot be compared using the relational operators (e.g. > and <)</li>
- Points for consideration
  - How do we compare two *objects*?

#### Bubble Sort for Objects

- Chapter8\sorting\SortArray.java
  - Examine the **bubbleSort** method's
    - Method header
    - Use of the **compareTo** method for comparing adjacent array elements (objects)
- Points for consideration
  - How do we organize methods that sort arrays in a class?
  - How do we write sorting methods that cater for an object, including objects of its superclass?

#### Organizing Methods that Sort an Array

- Create a class of static sort methods that perform the various sorting algorithms
- The methods define a generic type **T** for the objects in the array
- To sort an array of objects, the objects in that array must be Comparable.
  - To ensure this requirement, we write

```
<T extends Comparable<T>>
```

before the return type in the header of the sort method.

 We can then use T as the data type of the parameters and local variables within the methods.

#### Bounded wildcards

- When using generic types, the wild card? represents any class. It can bound or limit, the wildcard in 1 of 2 ways:
  - <? super Animal> means any superclass of animal. Animal is the lower bound of the wildcard.
  - <? extends Animal> means any subclass of animal.
    Animal is the upper bound of the wildcard.

#### Selection Sort



Fig. 11-2 Before and after exchanging shortest book and the first book.

#### Selection Sort

- How does it work?
  - Make *n-1* passes through a sequence of *n* elements.
  - In the 1<sup>st</sup> pass, find the smallest element from the subarray
     0..n-1. Then, swap the smallest element with the element at location 0.
  - In the  $2^{nd}$  pass, find the smallest element from the subarray 1..n-1. Then, swap the smallest element with the element at location 1.
  - Do the same until the  $2^{nd}$  last array location has been processed.
- Advantage of selection sort
  - It does not depend on the initial arrangement of the data
  - A bit more efficient than bubble sort only make 1 swap during each pass
- Disadvantage of selection sort
  - It is only appropriate for small size of data.

#### Selection Sort



Fig. 11-3 A selection sort of an array of integers into ascending order.

#### Iterative algorithm for selection sort

Algorithm selectionSort (a, n)

#### Recursive algorithm for selection sort

• 3 Parameters: the array, a beginning and ending index:

```
Algorithm selectionSort (a, first, last)

if (first < last) {

indexOfSmallest = the index of the smallest value

among a[index], a[index+1], . . ., a[n-1]

Interchange the values of a[index] and a[indexOfSmallest]

selectionSort(a, first + 1, last)

}
```

#### The Efficiency of Selection Sort

- Takes  $O(n^2)$  time in these 2 cases.
- Iterative method for loop executes n 1 times
  - For each of n-1 calls, inner loop executes n-2 times
  - $-(n-1)+(n-2)+...+1 = n(n-1)/2 = O(n^2)$
- Recursive selection sort performs same operations
  - Also  $O(n^2)$

#### Insertion Sort

- Insertion Sort strategy:
  - Partition the array into two regions: sorted and unsorted
  - Take each item from the unsorted region and insert it into its correct order in the sorted region.
- How does it work?
  - Make *n-1* passes through a sequence of *n* elements
  - Each pass inserts the next element into the sub-array on its left.
- Faster than bubble sort and selection sort no swapping of elements.



#### **Insertion Sort**

- If first two books are out of order
  - Remove second book
  - Slide first book to right
  - Insert removed book into first slot
- Then look at third book, if it is out of order
  - Remove that book
  - Slide 2<sup>nd</sup> book to right
  - Insert removed book into 2<sup>nd</sup> slot, recheck first two books again



Fig. 11-4 The placement of the third book during an insertion sort.

#### **Iterative Insertion Sort**



Fig. 11-6 An insertion sort inserts the next unsorted element into its proper location within the sorted portion of an array

#### Iterative Insertion Sort (cont'd)



Fig. 11-7 An insertion sort of an array of integers into ascending order

#### Iterative algorithm for Insertion Sort

```
Algorithm insertionSort(a, n)
  for (unsorted = 1 through n-1) {
       firstUnsorted = a [unsorted]
       insertInOrder (firstUnsorted, a, unsorted - 1)
Algorithm insertInOrder(element, a, end)
// Inserts element into the sorted array elements a[o] through a[end].
   index = end
  while ((index >= o) and (element < a [index])) {
       a [index + 1] = a [index] // make room
        index - -;
   a [index + 1] = element // insert
```

#### Recursive algorithm for Insertion sort

```
Algorithm insertionSort (a, first, last)

if (the array contains more than one element) {

    Sort the array elements a [first] through a [last - 1]

    Insert the last element a [last] into its correct sorted position within the rest of the array
}
```

#### Recursive Insertion Sort



Fig. 11-8 Inserting the first unsorted element into the sorted portion of the array. (a) The element is ≥ last sorted element; (b) the element is < than last sorted element

#### Efficiency of Insertion Sort

- Best time efficiency is O(n)
- Average and Worst time efficiency is O(n²)
- If array is closer to sorted order
  - Less work the insertion sort does
  - More efficient the sort is
- Insertion sort is acceptable for small array sizes

#### Exercise

Sort the following array using bubble sort, selection sort & insertion sort. Remember to show the contents of the array after every pass.

| 77 | 44 | 22 | 88 | 99 | 55 | 33 | 66 |  |
|----|----|----|----|----|----|----|----|--|
|    |    |    |    |    |    |    |    |  |

| Bubble Sort |              |    |              |                |                |     |           |           |           |     |           |           |     |
|-------------|--------------|----|--------------|----------------|----------------|-----|-----------|-----------|-----------|-----|-----------|-----------|-----|
| Original    | 77           | 44 |              | Salaction Sort |                |     |           |           | 4         |     |           |           |     |
|             | <b>'</b>     |    | Original     | <u>77</u>      | Insertion Sort |     |           |           |           |     |           |           |     |
| After       | 44           | 22 |              |                | Original       | 77  | <u>44</u> | 22        | 88        | 99  | 55        | 33        | 66  |
| Pass 1      |              |    | After Pass 1 | 22             | A 51           | 4.4 |           | 0.0       | 0.0       | 0.0 |           | 0.0       | 0.0 |
| After       | 22           | 44 | After Pass 2 |                | After          | 44  | 77        | <u>22</u> | 88        | 99  | 55        | 33        | 66  |
| Pass 2      |              |    |              | 22             | Pass 1         |     |           |           |           |     |           |           |     |
| After       | 22           | 44 | After Pass 3 |                | After          | 22  | 44        | 77        | <u>88</u> | 99  | 55        | 33        | 66  |
| Pass 3      |              |    |              |                | Pass 2         |     |           |           |           |     |           |           |     |
| After       | 22           | 44 |              |                | After          | 22  | 44        | 77        | 88        | 99  | 55        | 33        | 66  |
| Pass 4      |              |    | After Pass 4 | 22             | Pass 3         |     |           |           |           |     |           |           |     |
| After       | 22           | 33 |              | 22             | After          | 22  | 44        | 77        | 88        | 99  | <u>55</u> | 33        | 66  |
| Pass 5      |              |    | After Pass 5 |                | Pass 4         |     |           |           |           |     |           |           |     |
| After       | 22           | 33 | After Pass 6 | 22             | After          | 22  | 44        | 55        | 77        | 88  | 99        | <u>33</u> | 66  |
| Pass 6      |              |    |              |                | Pass 5         |     |           |           |           |     |           |           |     |
|             | After Pass 7 |    | 22           | After          | 22             | 33  | 44        | 55        | 77        | 88  | 99        | <u>66</u> |     |
|             |              |    | 7            |                | Pass 6         |     |           |           |           |     |           |           |     |
|             |              |    |              |                | After          | 22  | 33        | 44        | 55        | 66  | 77        | 88        | 99  |
|             |              |    |              |                | Pass 7         |     |           |           |           |     |           |           |     |

#### **Quick Sort**

- A recursive divide-and-conquer strategy for sorting an array.
  - Divide the array into 2 segments separated by a single element PIVOT.
  - Recursively sort each of the 2 segments (left & right).
- Quick sort use pivot element and rearranges the array elements:
  - The pivot is in its final position in sorted array
  - Elements in positions before pivot are less than the pivot
  - Elements after the pivot are greater than the pivot.
  - This arrangement is called a partition of the array.
- Analysis
  - quicksort is usually extremely fast in practice
  - Even if the worst case occurs, quicksort's performance is acceptable for moderately large arrays

#### **Quick Sort**

View <u>Quick Sort algorithm</u>



Fig. 12-5 A partition of an array during a quick sort.

#### Quick sort algorithm

```
Algorithm quickSort (a, first, last)

// Sorts the array elements a[first] through a[last] recursively.

if (first < last) {

Choose a pivot

Partition the array about the pivot

pivot Index = index of pivot

quickSort (a, first, pivotIndex - 1) // sort Smaller

quickSort (a, pivotIndex + 1, last) // sort Larger

}
```

#### Efficiency of Quick Sort

- The choice of pivots affects quick sort's efficiency.
- Quick sort is O(n log n) in the average case
- O(n²) in the worst case.
- Worst case can be avoided by careful choice of the pivot. Some pivot selection schemes can lead to worst-case behavior if the array is already sorted or nearly sorted.
- Quick sort is faster than merge sort in practice and does not require the additional memory that merge sort needs for merging.

#### Quick Sort - partition strategy



Fig. 12-6 A partition strategy for quick sort ... continued→

### Quick Sort - partition strategy



Fig. 12-6 (ctd.) A partition strategy for quick sort.

#### **Quick Sort**

- Quick sort rearranges the elements in an array during partitioning process
- After each step in the process
  - One element (the pivot) is placed in its correct sorted position
- The elements in each of the two sub arrays
  - Remain in their respective subarrays
- Note sort methods in java.util for Arrays class

#### Quick Sort: Sample Code

• Chapter8\sorting\SortArray.java methods

```
- quickSort(T[] a, int n)
- quickSort(T[] a, int first, int last)
- partition(T[] a, int first, int last)
```

 See Appendix 8.1 for trace of quickSort and partition methods

#### Exercise

- (b) Using Quicksort ,arrange the data. 55 99 44 77 88 33 22 66 Suppose an array contains the following initial values:
- Assume that the *pivot value is the first array element*.
- Show the array after each swap and briefly explain the steps that were carried out.

| 0                     | 1                                                               | 2                                                                                                                 | 3                                                                                                                                                    | 4                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 55                    | 99                                                              | 44                                                                                                                | 77                                                                                                                                                   | 88                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                         | 22                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                                                                 |                                                                                                                   |                                                                                                                                                      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                                                                 |                                                                                                                   |                                                                                                                                                      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0                     | 1                                                               | 2                                                                                                                 | 3                                                                                                                                                    | 4                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55                    | 99                                                              | 44                                                                                                                | 77                                                                                                                                                   | 88                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                         | 22                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                                                                 |                                                                                                                   |                                                                                                                                                      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                            | <b>•</b>                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                                                                 |                                                                                                                   |                                                                                                                                                      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                            | iFR                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9 with 22             |                                                                 |                                                                                                                   |                                                                                                                                                      |                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0                     | 1                                                               | 2                                                                                                                 | 3                                                                                                                                                    | 4                                                                        |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55                    | 22                                                              | 44                                                                                                                | 77                                                                                                                                                   | 88                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                                                                 |                                                                                                                   | <b>↑</b>                                                                                                                                             |                                                                          | <b>↑</b>                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Swap 77 with 33       |                                                                 |                                                                                                                   | iFL                                                                                                                                                  |                                                                          | iFR                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0                     | 1                                                               | 2                                                                                                                 | 3                                                                                                                                                    | 4                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55                    | 22                                                              | 44                                                                                                                | 33                                                                                                                                                   | 88                                                                       | 77                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                                                                 |                                                                                                                   | <b>+</b>                                                                                                                                             | <b>+</b>                                                                 |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                                                                 |                                                                                                                   | iFR                                                                                                                                                  | iFL                                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0                     | 1                                                               | 2                                                                                                                 | 3                                                                                                                                                    | 4                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55                    | 22                                                              | 44                                                                                                                | 33                                                                                                                                                   | 88                                                                       | 77                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Swap pivot 55 with 33 |                                                                 |                                                                                                                   | <b>↑</b>                                                                                                                                             | <b>↑</b>                                                                 |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                                                                 |                                                                                                                   | iFR*                                                                                                                                                 | iFL                                                                      | *dividing point                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             | oint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0                     | 1                                                               | 2                                                                                                                 | 3                                                                                                                                                    | 4                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 33                    | 22                                                              | 44                                                                                                                | 55                                                                                                                                                   | 88                                                                       | 77                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                                                                 |                                                                                                                   | <b>1</b>                                                                                                                                             | <b>↑</b>                                                                 |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                                                                 |                                                                                                                   | iFR*                                                                                                                                                 | iFL                                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | 55 f = 0, 1 = 0 55 9 with 2: 0 55 7 with 3: 0 55 0 55 ivot 55 w | 55 99  f = 0, I = 7, piwn 0 1  55 99  iFL 9 with 22, when 0 1  55 22  7 with 33  0 1  55 22  ivot 55 with 33  0 1 | f = 0, I = 7, pivIndex = 0 0 1 2 55 99 44  † iFL 9 with 22, when iFL & iR 0 1 2 55 22 44  7 with 33  0 1 2 55 22 44  0 1 2 55 22 44  ivot 55 with 33 | 55 99 44 77  f = 0, I = 7, pivIndex = 0, pivot = 0 1 2 3  55 99 44 77  1 | 55 99 44 77 88  f = 0, I = 7, pivIndex = 0, pivot = 55 0 1 2 3 4 55 99 44 77 88  ↑ iFL 9 with 22, when iFL & iRL stop 0 1 2 3 4 55 22 44 77 88  ↑ iFL 0 1 2 3 4 55 22 44 33 88 ↑ iFR iFR iFL 0 1 2 3 4 55 22 44 33 88  ↑ iFR iFR iFR iFL 0 1 2 3 4 55 22 44 33 88  ↑ iFR* iFL 0 1 2 3 4 55 22 44 33 88  ↑ iFR* iFL 0 1 2 3 4 55 88  ↑ iFR* iFL 0 1 2 3 4 55 88  ↑ iFR* iFL | 55 99 44 77 88 33  f = 0, I = 7, pivndex = 0, pivot = 55 0 1 2 3 4 5 55 99 44 77 88 33  f = 0, I = 7, pivndex = 0, pivot = 55 0 1 2 3 4 5 1 | 55 99 44 77 88 33 22  f = 0, I = 7, pivIndex = 0, pivot = 55 0 1 2 3 4 5 6 55 99 44 77 88 33 22  ↑ iFL iFR 9 with 22, when iFL & iRL stop 0 1 2 3 4 5 6 55 22 44 77 88 33 99  ↑ ↑ ↑ ↑  7 with 33 iFL iFR  0 1 2 3 4 5 6 55 22 44 33 88 77 99  ↑ iFR iFL  0 1 2 3 4 5 6 55 22 44 33 88 77 99  ivot 55 with 33 ↑ ↑  iFR* iFL *dividing potential of the stop of the |

| left                                          |                 |          |    |       | right              |     |           |          |
|-----------------------------------------------|-----------------|----------|----|-------|--------------------|-----|-----------|----------|
| quickSort(a, 0, 3)                            |                 |          |    |       | quickSort(a, 4, 7) |     |           |          |
| f = 0, $I = 3$ , $pivIndex = 0$ , $pivot = 0$ |                 |          |    | 33    | Pivot =            |     |           | -88      |
| 0                                             | 1               | 2        | 3  |       | 4                  | 5   | 6         | 7        |
| 33                                            | 22              | 44       | 55 |       | 88                 | 77  | 99        | 66       |
|                                               | <b>†</b>        | <b>†</b> |    |       |                    |     | <b></b>   | <b>↑</b> |
|                                               | iFR             | iFL      |    |       | swap 66 & 99       |     | iFL       | iRL      |
|                                               |                 |          |    |       |                    |     |           |          |
|                                               | 1               | 2        | 3  |       |                    |     | Pivot =88 |          |
| 33                                            | 22              | 44       | 55 |       | 4                  | 5   | 6         | 7        |
|                                               | <b>↑</b>        | <b>↑</b> |    |       | 88                 | 77  | 66        | 99       |
|                                               | iFR*            | iFL      |    |       |                    |     | <b></b>   | <b>↑</b> |
| *di                                           | *dividing point |          |    |       |                    | iRL | iFL       |          |
| 0                                             | 1               | 2        | 3  |       | 4                  | 5   | 6         | 7        |
| 22                                            | 33              | 44       | 55 |       | 66                 | 77  | 88        | 99       |
|                                               |                 |          |    |       |                    |     |           |          |
|                                               |                 |          |    | Merge |                    |     |           |          |
| 0                                             | 1               | 2        | 3  | 4     | 5                  | 6   | 7         |          |
| 22                                            | 33              | 44       | 55 | 66    | 77                 | 88  | 99        |          |

#### **Quick Sort - Pivot Selection**

- The pivot should be the median value in the array, so that the subarrays Smaller and Larger each have the same – nearly the same – number of elements.
- One way to find the median value is to find the median of 3 elements in the array: first, middle and the last element.
  - Median-of-three-pivot selection avoid worst-case performance by quick sort when the given array is already sorted / nearly sorted.

# Quick Sort - Median-of-three pivot selection:



Fig. 12-7 Median-of-three pivot selection:

- (a) the original array;
- (b) the array with its first, middle, & last elements sorted

# Quick Sort - Median-of-three pivot selection:



Fig. 12-8 (a) The array with its first, middle & last elements sorted; (b) The array after positioning the pivot & just before partitioning.

### Comparing the Sorting Algorithms

| Technique      | Best case  | Average Case         | Worst Case                                 |
|----------------|------------|----------------------|--------------------------------------------|
| Selection sort | O(n²)      | O(n²)                | O(n²)                                      |
| Insertion sort | O(n)       | O(n²)                | O(n²)                                      |
| Bubble sort    | O(n)       | O(n²)                | O(n²)                                      |
| Quick sort     | O(n log n) | O(n log n)           | O(n²)                                      |
| Merge sort     | O(n log n) | O(n log n)           | O(n log n)                                 |
| Radix sort     | O(n)       | O(n)                 | O(n)                                       |
| Shell sort     | O(n)       | O(n <sup>1.5</sup> ) | O(n <sup>1.5</sup> ) or O(n <sup>2</sup> ) |

#### Selection for a suitable sorting methods

#### **Factors:**

- Speed
- Consistency of performance
- Memory requirements
- Stability.
- Versatility of handling various data types
- Complexity of coding and others programming language used
- Nature of the datasets

### The Comparator Interface

- For comparing objects according to an order other than their natural ordering.
- A comparator is an object that is external to the class of the keys it compares.
- Provides multiple/alternative sorting sequence,
   i.e. you can sort the elements based on any data member.
- Method: compare(a, b)

#### int compare(Object o1, Object o2)

- Compares the first object with second object
- Returns an integer with similar meaning to the compareTo method of the Comparable interface.

#### void sort(List list, Comparator c)

- The **Collections** class provides static methods for sorting the elements of collections.
- The sort method is used to sort the elements of List by the given comparator

#### Sample Code

#### In Chapter8\sorting\

- Course.java
- CreditHoursComparison.java
- TestComparators.java
- TitleComparator.java

- A recursive standard sorting algorithm
- Gives the same performance, regardless of the initial order of the array items.
- Strategy
  - Divide an array into 2 halves
  - Sort each half
  - Merge the sorted halves into one sorted array
- Referred to as a divide and conquer algorithm.





The entire second array has been copied to the new array Copy the rest of the first array to the new array

Fig. 12-1 Merging two sorted arrays into one

sorted array.



Fig. 12-2 The major steps in a merge sort.

- A disadvantage of merge sort is the need for the temporary array during merge step.
- Advantage
  - It is an extremely efficient algorithm with respect to time

## Algorithm for merge Sort

```
Algorithm mergeSort(a, first, last)

// Sorts the array elements a[first] through a[last] recursively.

if (first < last) {

    mid = (first + last)/2

    mergeSort(a, first, mid)

    mergeSort(a, mid+1, last)

    Merge the sorted halves a[first..mid] and a[mid+1..last]

}
```

## Algorithm for merge

```
Algorithm merge (a, tempArray, first, mid, last)
// Merges the adjacent subarrays a[first..mid] and a[mid + 1..last].
   beginHalf1 = first
                                 endHalf1 = mid
   beginHalf2 = mid + 1 endHalf2 = last
   /* While both subarrays are not empty, compare an element in 1 subarray
   with an element in the other; then copy the smaller item into the temporary
   array */
   index = o // next available location in tempArray
   while ((beginHalf1 <= endHalf1) and (beginHalf2 <= endHalf2)) {
       if (a [beginHalf1] < a [beginHalf2]) {</pre>
        tempArray [index] = a [beginHalf1]
         beginHalf1++}
                tempArray [index] = a [beginHalf2]
       else {
                beginHalf2++
       index++
   } // Assertion: 1 subarray has been completely copied to tempArray
```



Fig. 12-3 The effect of the recursive calls and the merges during a merge sort.

### Merge Sort Efficiency

- Merge sort is O(n log n) in all cases
  - It's need for a temporary array is a disadvantage
- Merge sort in the Java Class Library
  - The class Arrays has sort routines that uses the merge sort for arrays of objects

```
public static void sort(Object[] a);
public static void sort
    (Object[] a, int first, int last);
```

## Merge Sort Efficiency



Fig. 12-4 A worst-case merge of two sorted arrays

#### Review of learning outcomes

#### You should now be able to:

- Sort an array using the sorting methods:
  - Selection sort, insertion sort, bubble sort, shell sort, merge sort, quick sort and radix sort.
- Assess the time efficiencies of various sorting methods, expressed in Big O notation.

#### To Do

- Review the slides and source code for this chapter.
- Read up the relevant portions of the recommended text.

#### References

- Carrano, F. M., 2019, Data Structures and Abstractions with Java, 5th edn, Pearson
- Liang, Y.D., 2018. Introduction to Java Programming and Data Structures.11th ed.United Kingdom:Pearson