

PROGRAMMABLE LOGIC DEVICES

Electronic and Communication Engineering Department

Lec2: FPGA Structure

Dr. Wahhab R. Mousa

wahhab.albazrqa@uokufa.edu.iq

- FPGA structure
- Altera DE1 SoC board
- Summary

Introduction

• Programmable Logic Devices (PLDs) is universal logic implementers in the sense that they can be configured (actually programmed) by the user to perform a variety of specific logic functions.

WHY PLDS:

- Processors:
 - Flexibility in the programs
- ASIC (App Specific IC)
 - No flexibility
- FPGA
 - Device re-programpility

COMPUTATIONAL STRUCTURE

,

FPGA priceable

- A Field-Programmable Gate Array (FPGA) is an integrated circuit that can be configured by the user to emulate any digital circuit as long as there are enough resources
- An FPGA can be seen as an array of Configurable Logic Blocks (CLBs) connected through programmable interconnect (Switch Boxes)

COMPUTATIONAL STRUCTURE

SIMPLIFIED CLB STRUCTURE Look-Up MUX **Table** (LUT) CLR Q CLB SB CLB SB SB SB Configurable Logic Blocks CLB SB CLB **Interconnection Network** I/O Signals (Pins) COMPUTATIONAL STRUCTURE

Memory

- 4 words x 4 bits memory
- Address is n for 2^n words
- Each word is stored in a register (Ex: RAM)

Example: 4-input AND gate

Α	В	С	D	0
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Configuration bits

Example 2: Find the configuration bits for the following circuit

S	A1	A0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

INTERCONNECTION NETWORK

EXAMPLE 3

COMPUTATIONAL STRUCTURE

• Determine the configuration bits for the following circuit implementation in a 2x2 FPGA, with I/O constraints as shown in the following figure. Assume 2-input LUTs in each CLB.

CLBs Required

0

Configuration bits

Configuration bits

Input1-->

Input2

Placement: Select CLBs Input1 Input2 CLB0 SB0 CLB1 **SB1** SB2 SB3 CLB3 ←→ Output CLB2 SB4 15 COMPUTATIONAL STRUCTURE

Routing: Select path

COMPUTATIONAL STRUCTURE

SB1

Configuration bits

SB4

Configuration bits

Configuration Bitstream:

• The configuration bitstream must include ALL CLBs and SBs, even unused ones

• CLBO: 00011

• CLB1: XXXXX

• CLB2: 01100

• CLB3: XXXXX

• SB0: 000000

• SB1: 000010

• SB2: 000000

• SB3: 000000

• SB4: 000001

Altera DE1 SOC board

Cyclone Logic element (LE)

3/23/2020

https://www.youtube.com/watch?v=aPXMkTJxD_s

COMPUTATIONAL STRUCTURE

3/23/2020

Specifications

Features	Cyclone V SE SoC	Cyclone V SX SoC	Cyclone V ST SoC	
Processor	Dual-core ARM Cortex-A9 MPCore			
Processor Performance	925 MHz			
Logic Density Range	25 – 110K logic element (LE)		85 – 110K LE	
Embedded Memory	5,761 kb			
18 x 19 Multipliers	224			
Maximum Transceivers	N/A	9		
Maximum Transceiver Data Rate (Chip to Chip)	N/A	3.125 Gbps	6.144 Gbps	
Memory Devices Supported (Hard Memory Controllers)	x1 32 bit, 400 MHz DDR2/DDR3 with ECC – HPS x1 32 bit, 400 MHz, DDR2/DDR3 - FPGA			
Hard Protocol IP	x2 10/100/1000 EMAC – HPS	x2 10/100/1000 EMAC – HPS x2 PCIe Gen1 - SX x2 PCIe Gen2 - ST		

SUMMERY

- •FPGA provide the ability to implement logic design with low cost and high speed
- FPGA structure require main blocks are:
 - Configurable logic blocks
 - Interconnect networks
- Designers may need to alter the placement and routing of the selected blocks to improve the design

22

Thank you Questions?

