# **Data Visualization and Pre-processing**

1. Download the dataset: Dataset

#### 2. Load the dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read csv('/content/chrun modelling.csv')
```

#### 3.Perform Below Visualizations

```
sns.kdeplot(data['CreditScore'], shade=True)
sns.kdeplot(data['Age'], shade=True)
sns.kdeplot(data['Balance'], shade=True)
sns.kdeplot(data['EstimatedSalary'], shade=True)
sns.kdeplot(data['Tenure'], shade=True)
<matplotlib.axes. subplots.AxesSubplot at 0x7fc73ba72d90>
```



```
from sklearn.preprocessing import StandardScaler
stand= StandardScaler()
for column in
['CreditScore','Age','Balance','EstimatedSalary','Tenure']:
    data[column] = stand.fit_transform(data[column].values.reshape(-
1,1))
```

```
sns.kdeplot(data['CreditScore'], shade=True)
sns.kdeplot(data['Age'], shade=True)
sns.kdeplot(data['Balance'], shade=True)
sns.kdeplot(data['EstimatedSalary'], shade=True)
sns.kdeplot(data['Tenure'], shade=True)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7fc73b4a6fd0>



sns.countplot(data['Exited'])

/usr/local/lib/python3.7/dist-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7fc73ac92950>



# $1. \quad \textbf{Perform descriptive statistics on the dataset} \\ \texttt{data.describe()}$

|                                                           | RowNumber     | CustomerId   | CreditScore    | Age              |   |  |  |
|-----------------------------------------------------------|---------------|--------------|----------------|------------------|---|--|--|
| Tenure                                                    | •             |              |                |                  |   |  |  |
| count                                                     |               | 1.000000e+04 | 1.000000e+04   | 1.000000e+04     |   |  |  |
| 1.000000e+04                                              |               |              |                |                  |   |  |  |
| mean 5000.50000 1.569094e+07 -4.824585e-16 2.318146e-16 - |               |              |                |                  |   |  |  |
| 1.0782                                                    |               | 7 102610 04  | 1 00005000     | 1 00005000       |   |  |  |
| std                                                       | 2886.89568    | 7.193619e+04 | 1.000050e+00   | 1.000050e+00     |   |  |  |
| 1.0000                                                    |               | 1 5565700+07 | 2 1005040+00   | 1 0040600+00     |   |  |  |
| min<br>1.7333                                             | 1.00000       | 1.3303/00+0/ | -3.1093046+00  | -1.994969e+00 -  |   |  |  |
| 25%                                                       |               | 1 5628530±07 | _6_8835866_01  | -6.600185e-01 -  |   |  |  |
| 6.9598                                                    |               | 1.3020336+07 | -0.0022006-01  | -0.0001036-01 -  |   |  |  |
| 50%                                                       |               | 1.569074e+07 | 1 522218e-02   | -1.832505e-01 -  |   |  |  |
|                                                           | 4.425957e-03  |              |                |                  |   |  |  |
| 75%                                                       |               | 1.575323e+07 | 6.981094e-01   | 4.842246e-01     |   |  |  |
|                                                           | 6.871299e-01  |              |                |                  |   |  |  |
| max                                                       | 10000.00000   | 1.581569e+07 | 2.063884e+00   | 5.061197e+00     |   |  |  |
| 1.7244                                                    | 1.724464e+00  |              |                |                  |   |  |  |
|                                                           |               |              |                |                  |   |  |  |
|                                                           | Balance       | NumOfProduct | s HasCrCard    | l IsActiveMember | \ |  |  |
| count                                                     | 1.000000e+04  | 10000.00000  | 00 10000.00000 | 10000.000000     |   |  |  |
| mean                                                      | -6.252776e-17 | 1.53020      | 0.70550        | 0.515100         |   |  |  |
| std                                                       | 1.000050e+00  |              |                |                  |   |  |  |
|                                                           | -1.225848e+00 | 1.00000      |                |                  |   |  |  |
|                                                           | -1.225848e+00 | 1.00000      |                |                  |   |  |  |
| 50%                                                       | 3.319639e-01  | 1.00000      | 1.00000        | 1.000000         |   |  |  |

| 75%                                                     | 8.199205e-01                                                                                                                                       | 2.000000                                                                                       | 1.00000 | 1.000000 |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------|----------|
| max                                                     | 2.795323e+00                                                                                                                                       | 4.000000                                                                                       | 1.00000 | 1.000000 |
| count<br>mean<br>std<br>min<br>25%<br>50%<br>75%<br>max | EstimatedSalary<br>1.000000e+04<br>-2.877698e-17<br>1.000050e+00<br>-1.740268e+00<br>-8.535935e-01<br>1.802807e-03<br>8.572431e-01<br>1.737200e+00 | Exited<br>10000.000000<br>0.203700<br>0.402769<br>0.000000<br>0.000000<br>0.000000<br>0.000000 |         |          |

## **5** .**Handle the Missing values**

data.isnull().sum()

| RowNumber       | 0 |
|-----------------|---|
| CustomerId      | 0 |
| Surname         | 0 |
| CreditScore     | 0 |
| Geography       | 0 |
| Gender          | 0 |
| Age             | 0 |
| Tenure          | 0 |
| Balance         | 0 |
| NumOfProducts   | 0 |
| HasCrCard       | 0 |
| IsActiveMember  | 0 |
| EstimatedSalary | 0 |
| Exited          | 0 |
| dtype: int64    |   |

## 6.Find the outliers and replace the outliers

```
lowerlimit=data['Age'].quantile(0.05)
lowerlimit
data[data['Age']<lowerlimit]
upperlimit=data['Age'].quantile(0.95)
upperlimit
data[data['Age']<upperlimit]
data=data[(data['Age']>lowerlimit)&(data['Age']<upperlimit)]
data</pre>
```

|                | RowNumber | CustomerId | Surname  | CreditScore | Geography | Gender |
|----------------|-----------|------------|----------|-------------|-----------|--------|
| Age<br>0<br>42 | 1         | 15634602   | Hargrave | 619         | France    | Female |
| 1<br>41        | 2         | 15647311   | Hill     | 608         | Spain     | Female |
| 2              | 3         | 15619304   | Onio     | 502         | France    | Female |

| 42                                                                |                             |                                                                                                                                        |                                 |                                 |                              |            |                                                         |
|-------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|------------------------------|------------|---------------------------------------------------------|
| 3                                                                 |                             | 4 157                                                                                                                                  | 01354                           | Boni                            | 69                           | 9 France   | Female                                                  |
| 39                                                                |                             | - 1                                                                                                                                    | 27000                           | Mitabala 11                     | 0.5                          | 0          | F1.                                                     |
| 4<br>43                                                           |                             | 5 157                                                                                                                                  | 37888                           | Mitchell                        | 85                           | 0 Spain    | Female                                                  |
| 45                                                                |                             |                                                                                                                                        |                                 |                                 |                              |            |                                                         |
|                                                                   |                             |                                                                                                                                        |                                 |                                 |                              |            |                                                         |
| 9995<br>39                                                        | 99                          | 96 156                                                                                                                                 | 06229                           | 0bijiaku                        | 77                           | 1 France   | Male                                                    |
| 9996<br>35                                                        | 99                          | 97 155                                                                                                                                 | 69892                           | Johnstone                       | 51                           | 6 France   | Male                                                    |
| 9997                                                              | 99                          | 98 155                                                                                                                                 | 84532                           | Liu                             | 70                           | 9 France   | Female                                                  |
| 36<br>9998                                                        | 99                          | 99 156                                                                                                                                 | 82355                           | Sabbatini                       | 77                           | 2 Germany  | Male                                                    |
| 42<br>9999<br>28                                                  | 100                         | 000 156                                                                                                                                | 28319                           | Walker                          | 79                           | 2 France   | Female                                                  |
| 0<br>1<br>2<br>3<br>4<br><br>9995<br>9996<br>9997<br>9998<br>9999 | Tenure 2 1 8 1 2 5 10 7 3 4 | Baland<br>83807.8<br>159660.8<br>125510.8<br>125510.8<br>57369.6<br>75075.3<br>130142.7                                                | 0<br>6<br>0<br>0<br>2<br>0<br>1 | nOfProducts 1 1 3 2 1 2 1 1 2 1 | HasCrCard  1 0 1 0 1 1 1 0 1 | IsActiveMe | mber \     1     0     0     1      0     1     0     0 |
| 0<br>1<br>2<br>3<br>4<br><br>9995<br>9996<br>9997<br>9998<br>9999 | Estimat<br>1<br>1<br>1      | edSalary<br>101348.88<br>12542.58<br>13931.57<br>93826.63<br>79084.10<br><br>96270.64<br>101699.77<br>42085.58<br>92888.52<br>38190.78 | Exite                           |                                 |                              |            |                                                         |

[8863 rows x 14 columns]

 $<sup>7.</sup> Check \ for \ Categorical \ columns \ and \ perform \ encoding$ 

```
x = pd.get dummies(x)
x.head()
   RowNumber
               CustomerId
                            CreditScore
                                                        Tenure
                                                                  Balance
                                                Age
                 15634602
                               -0.326221
                                           0.293517 -1.041760 -1.225848
            1
            2
1
                 15647311
                               -0.440036
                                           0.198164 -1.387538
                                                                 0.117350
2
            3
                 15619304
                               -1.536794
                                           0.293517
                                                      1.032908
                                                                 1.333053
3
            4
                 15701354
                                0.501521
                                           0.007457 -1.387538
                                                                -1.225848
4
            5
                 15737888
                                2.063884
                                           0.388871 -1.041760
                                                                 0.785728
   NumOfProducts
                                    Surname_Abbie
                   Surname Abazu
                                                     Surname Abbott
                                                                            \
0
1
                1
                                 0
                                                 0
                                                                   0
2
                3
                                 0
                                                 0
                                                                   0
3
                2
                                 0
                                                 0
                                                                   0
4
                1
                                 0
                                                  0
                                                                   0
                      Surname Zubareva
                                          Surname Zuev
   Surname Zubarev
                                                         Surname Zuyev
0
1
                  0
                                      0
                                                      0
                                                                       0
2
                                                                       0
                  0
                                      0
                                                      0
3
                  0
                                      0
                                                      0
                                                                       0
4
                  0
                                      0
                                                      0
                                                                       0
   Surname_Zuyeva Geography_France Geography_Germany
Geography Spain
                 0
                                     1
                                                          0
0
1
                 0
                                     0
                                                          0
1
2
                 0
                                     1
                                                          0
0
3
                 0
                                     1
                                                          0
0
4
                 0
                                     0
                                                          0
1
   Gender Female
                   Gender Male
0
                1
                1
                               0
1
2
                1
                               0
3
                1
                               0
4
                1
```

[5 rows x 2944 columns]

### 8. Split the data into dependent and independent variables

```
x = data.iloc[:,0:10]
y = data.iloc[:,10]
print(x.shape)
print(y.shape)
(10000, 10)
(10000.)
9. Scale the independent variables
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test=
train_test_split(x,y,test_size=0.25,random_state=0)
sc = StandardScaler()
x train=sc.fit transform(x train)
x test = sc.fit transform(x test)
x train = pd.DataFrame(x train)
x train.head()
                 1
                           2
                                     3
                                                4
                                                          5
                                                                    6
0 -0.702176 -1.343330 -0.735507 0.015266
                                           0.008860 0.673160
2.535034
1 -1.485722
            1.558330 1.024427 -0.652609
                                           0.008860 -1.207724
0.804242
2 -0.524522 -0.655156  0.808295 -0.461788
                                           1.393293 -0.356937
0.804242
3 -1.167396
            1.200594 0.396614 -0.080145
                                           0.008860 -0.009356 -
0.926551
4 -1.451159
             0.778798 -0.467915 1.255605
                                           0.701077 -1.207724
0.804242
             8
                     9
                                    2934
                                          2935
                                                    2936
                                                               2937
2938 \
0 -0.016332
              0.0 -0.0231 ... -0.011548
                                           0.0 -0.011548 -0.011548 -
0.016332
1 -0.016332
              0.0 -0.0231 ... -0.011548
                                           0.0 -0.011548 -0.011548 -
0.016332
              0.0 -0.0231 ... -0.011548
                                           0.0 -0.011548 -0.011548 -
2 -0.016332
0.016332
                          ... -0.011548
                                           0.0 -0.011548 -0.011548 -
3 -0.016332
              0.0 -0.0231
0.016332
                          ... -0.011548
4 -0.016332
              0.0 - 0.0231
                                           0.0 -0.011548 -0.011548 -
0.016332
       2939
                 2940
                           2941
                                     2942
                                                2943
0 -1.015588
             1.760216 -0.574682
                                 1.087261 -1.087261
1 0.984651 -0.568112 -0.574682 1.087261 -1.087261
```

```
2 -1.015588 -0.568112 1.740094 1.087261 -1.087261
3 -1.015588 -0.568112 1.740094 -0.919743 0.919743
4 0.984651 -0.568112 -0.574682 -0.919743 0.919743
[5 rows x 2944 columns]
```

#### 10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test=
train_test_split(x,y,test_size=0.25,random_state=0)
print(' x_train.shape : ',x_train.shape)
print(' y_train.shape : ',y_train.shape)
print(' x_test.shape : ',x_test.shape)
print(' y_test.shape : ',y_test.shape)

x_train.shape : (7500, 10)
y_train.shape : (7500,)
x_test.shape : (2500,)
```