7.6 推理理论

定义27 设A和C是两个命题公式,当 且仅当 $A \rightarrow C$ 是一重言式,称C是A的有效结论,或称C可由A逻辑地推出,也称A 蕴含C,记为 $A \rightarrow C$,此时A是C的前提。

前提也可以有n个,设 $H_1,H_2,\cdots H_n$ 和C均为命题公式,当且仅当 $H_1 \land H_2 \land \cdots \land H_n \Rightarrow C$ 称 C 是这组前提 $H_1,H_2,\cdots H_n$ 的有效结论。

判断有效结论的过程是一个论证过程, 基本的论证方法一般有三种。

7.6.1 真值表法

设 $P_1, P_2, \cdots P_n$ 是出现在前提 H_1, H_2, \cdots, H_m 和结论C 中的全部命题变元,假设对 $P_1, P_2, \cdots P_n$ 作了全部的真值指派,得到确定的 H_1, H_2, \cdots, H_m 和C的所有真值,作出这个真值表,并从中找出 H_1, H_2, \cdots, H_m 真值均为T的行,对于每个这

样的行,若C 也有真值T,则有

$$H_1 \wedge H_2 \wedge \cdots \wedge H_n \Rightarrow C$$

或者找出C的真值为F的行,在每个这样的行

中, H_1, H_2, \dots, H_m 的真值中至少有一个为F,则

$$H_1 \wedge H_2 \wedge \cdots \wedge H_n \Rightarrow C$$

仍然成立。

例20 判断下列推理是否正确

一份统计表的错误或者是由于材料不可 靠,或者是由于计算有错误,这份统计表的错 误不是由于材料不可靠,所以这份统计表的错 误是由于计算有错误。

解 P: 统计表的错误是由于材料不可靠

Q: 统计表的错误是由于计算有错误

前提: $P \lor Q$, $\neg P$ 结论: Q 要判断 $(P \lor Q) \land \neg P \Rightarrow Q$ 作出真值表

P	Q	$P \lor Q$	$\neg P$
\overline{T}	T	T	F
\overline{T}	F	T	F
$oldsymbol{F}$	<u></u>	T	T
F	F	F	T

从表中可看出 在第三行 $P \vee Q$ 和¬P的 真值均为T, 此时Q的真值 也为T,故 $(P \lor Q) \land \neg P \Rightarrow Q$ 推理正确。

7.6.2 直接证明法

直接证明法,是由一组前提,利用一些公认的推理规则,根据已知的等值或蕴含公式,推演得到有效结论的方法。常用的推理规则如下:

P规则(前提引入规则):前提在推理过程中的任何步骤均可以引入。

T 规则(结论引入规则):推理过程中得到的中间结论,均可作为后续论证的前提引入

下面给出的蕴含式,与前面的24个等值式一样,在推理过程中的任何时候均可应用。

1.
$$P \land Q \Rightarrow P$$
; 2. $P \land Q \Rightarrow Q$
3. $P \Rightarrow P \lor Q$; 4. $Q \Rightarrow P \lor Q$
5. $\neg P \Rightarrow P \to Q$; 6. $Q \Rightarrow P \to Q$
7. $\neg (P \to Q) \Rightarrow P$; 8. $\neg (P \to Q) \Rightarrow \neg Q$
9. $P, Q \Rightarrow P \land Q$; 10. $\neg P, P \lor Q \Rightarrow Q$
11. $P, P \to Q \Rightarrow Q$; 12. $\neg Q, P \to Q \Rightarrow \neg P$

13.
$$P \rightarrow Q$$
, $Q \rightarrow R \Rightarrow P \rightarrow R$

14.
$$P \lor Q$$
, $P \to R$, $Q \to R \Rightarrow R$

15.
$$P \to R \Rightarrow (P \lor Q) \to (R \lor Q)$$

16. $P \to R \Rightarrow (P \land Q) \to (R \land Q)$

16.
$$P \to R \Rightarrow (P \land Q) \to (R \land Q)$$

要求: 熟记以上16个推理规则

例21 试证明公式 $R \lor S$ 是前提

 $\neg P \rightarrow (\neg R \rightarrow S), P \rightarrow Q, \neg Q$ 的有效结论。

即证明 $\neg P \rightarrow (\neg R \rightarrow S) \land P \rightarrow Q \land \neg Q \Rightarrow R \lor S$

 $\mathbb{E}(1) \neg Q \qquad P$

 $(5) \neg R \rightarrow S \quad T(3)(4)$

 $(2) P \to Q \qquad P$

 $(6) R \vee S \qquad T(5)$

 $(3) \neg P \qquad T(1)(2)$

证毕

 $(4) \neg P \rightarrow (\neg R \rightarrow S) \quad P$

例22 试证明由前提

 $(U \lor V) \to (M \land N), U \lor P, P \to (Q \lor S), \neg Q \land \neg S$ 可有效推出M。

证

(6) U

T(4)(5)

 $(1) \neg Q \wedge \neg S \qquad P$

 $(7) U \vee V$

T(6)

 $(2) \neg (Q \lor S) \qquad T(1) \qquad (8) (U \lor V) \rightarrow (M \land N) \quad P$

 $(3) P \rightarrow (Q \lor S) P$

 $(9) M \wedge N \qquad T(7)(8)$

 $(4) \neg P$

T(2)(3) (10) M

T(9)

(5) $U \vee P$

 \boldsymbol{P}

证毕

7.6.3 间接证明法

1、附加前提证明法(CP规则)

若要证明的结论以蕴含式的形式出现,即

$$H_1 \wedge H_2 \wedge \cdots \wedge H_m \Rightarrow A \rightarrow B$$

也就是要证明 $H_1 \wedge H_2 \wedge \cdots \wedge H_m \rightarrow (A \rightarrow B) \Leftrightarrow T$

化简如下

$$H_1 \wedge H_2 \wedge \cdots \wedge H_m \rightarrow (A \rightarrow B)$$

$$\Leftrightarrow \neg (H_1 \land H_2 \land \cdots \land H_m) \lor (\neg A \lor B)$$

$$\Leftrightarrow \neg (H_1 \land H_2 \land \cdots \land H_m) \lor \neg A \lor B$$

$$\Leftrightarrow \neg (H_1 \land H_2 \land \cdots \land H_m \land A) \lor B$$

$$\Leftrightarrow (H_1 \land H_2 \land \cdots \land H_m \land A) \to B$$

原推理形式转化为要证明

$$(H_1 \wedge H_2 \wedge \cdots \wedge H_m \wedge A) \to B \Leftrightarrow T$$

例23 证明由前提 $P \rightarrow (Q \rightarrow R), Q, P \lor \neg S$ 可有效推出 $S \rightarrow R$ 。

证 利用附加前提证明

$$(2) P \vee \neg S \qquad P \qquad \qquad (6) Q \qquad P$$

(3)
$$P$$
 $T(1)(2)$ $(7) R$ $T(5)(6)$

$$(4) P \to (Q \to R) \quad P \qquad (8) S \to R \qquad CP$$

$$(5) Q \rightarrow R \qquad T(3)(4) \qquad \qquad 证毕$$

例24 试给出以下推理论证

- 一个科室指定出差的人,有以下要求:
 - (1) 如果李去,则王必须去;
 - (2) 张和王不能同时去。

结论:如果张去,则李不能去。

证 将前提和结论符号化,令

Z: 张去; L: 李去; W: 王去

证明
$$(L \rightarrow W) \land \neg (Z \land W) \Rightarrow Z \rightarrow \neg L$$

证 (1)Z P (附加前提)

$$(2) \neg (Z \wedge W) \quad P$$

$$(3) \neg Z \vee \neg W \quad T(2)$$

(4)
$$\neg W$$
 $T(1)(3)$

$$(5) L \to W \qquad P$$

(6)
$$\neg L$$
 $T(4)(5)$

$$(7) Z \rightarrow \neg L$$
 CP 证毕

2、归谬法(反证法)

定义28 设 H_1,H_2,\dots,H_m 是m个命题公式, H_1, H_2, \dots, H_m 是相容的, 否则称它们不相容。 假设推理形式为 $H_1 \wedge H_2 \wedge \cdots \wedge H_m \Rightarrow C$ 即要证明 $H_1 \wedge H_2 \wedge \cdots \wedge H_m \rightarrow C \Leftrightarrow T$ 化简如下:

$$H_{1} \wedge H_{2} \wedge \cdots \wedge H_{m} \rightarrow C$$
 $\Leftrightarrow \neg (H_{1} \wedge H_{2} \wedge \cdots \wedge H_{m}) \vee C$
 $\Leftrightarrow \neg (H_{1} \wedge H_{2} \wedge \cdots \wedge H_{m} \wedge \neg C)$
要证 $H_{1} \wedge H_{2} \wedge \cdots \wedge H_{m} \rightarrow C \Leftrightarrow T$
即 $H_{1} \wedge H_{2} \wedge \cdots \wedge H_{m} \wedge \neg C \Leftrightarrow F$
也就是 $H_{1}, H_{2}, \cdots, H_{m}$ 与 $\neg C$ 不相容,即将 $\neg C$ 作为附加前提进行演算,最后得出矛盾。

例25 试用归谬法证明 $W \lor S$ 可由前提 $S \lor U, U \to (Q \land R), Q \to W$ 有效推出。

证
$$(1) \neg (W \lor S)$$
 P (否定结论)
$$(2) \neg W \land \neg S$$
 $T(1)$

$$(3) \neg W$$
 $T(2)$

$$(4) \neg S$$
 $T(2)$

$$(5) S \lor U$$
 P

$$(6) U$$
 $T(4)(5)$

数理逻辑

$$(7) U \to (Q \land R) \quad P$$

$$(8) Q \wedge R \qquad T(6)(7)$$

$$(9) Q T(8)$$

$$(10) Q \to W \qquad P$$

(11)
$$W T(9)(10)$$

$$(12)$$
 $W \wedge \neg W$ $T(3)(11)$ 矛盾

证毕

内容小结

(真值表法(不常用)
论证方法 (直接证明法)
间接证明法

课下练习 P143 习题7.6 1,2,3,4