

Force

- A force is an interaction between two objects.
- Even though the force of gravity can be neglected in Zero Robotics, forces exist between satellites and objects.
- Friction is another force that is ubiquitous on Earth but not present in Zero Robotics.
- Newton's Laws of Motion describe the core principles of force.

Newton's First Law

- Newton's First Law is more commonly known as **The Law of** Inertia.
- An object at rest remains at rest until acted on by an outside force; an object in motion remains in motion until acted on by an outside force.
- On Earth, the outside forces that stop objects in motion are usually friction and air resistance.
- In frictionless space, your satellite will remain in motion until it fires its thrusters in the opposite direction.
- Air resistance is not considered in the simulations, but is a factor on the ISS. However, the satellites move at such low speeds that it will not drastically alter their performance.

Newton's Second Law

 Newton's Second Law is one of the most important equations in physics:

F = ma

Force = mass x acceleration

- Mass is a scalar quantity and acceleration is a vector. Since a scalar times a vector is a vector, force is a vector.
- To maximize acceleration, you need to maximize the force exerted on the object and minimize the mass of the object.

Newton's Third Law

- Every action has an equal and opposite counterreaction.
- On Earth, if you exert a force of 1500 N on the ground, the ground pushes up with a **normal force** of exactly 1500 N. This keeps you in place.
- If opposing forces are unbalanced, the object will accelerate.
 - ex: If you push a box with 5 N to the right and your friend pushes the box with 10 N to the left, the box will accelerate to the left.

Controlling SPHERES

- All motion is controlled by forces. Every function you have used to control your satellite relates to force.
- When you set a position target, your thrusters fire in the opposite direction; by Newton's Third Law, the satellite accelerates toward the target.
- When you set a position, velocity, or attitude target, you are controlling forces in a **closed loop** system. This means that the satellite auto-adjusts its forces to meet your target.

