层及其上同调

Guanyu Li 感谢Ju Tan的阅读和错误修正

1 层的基本理论

在几何中,我们经常遇到从局部性质到整体性质的过渡,例如我们在讲光滑函数时对光滑性的定义是局部的,但光滑性可以是整体的性质,任意一个流形都是局部可定向的,但一个流形并不一定是整体可定向的.在从局部到整体的过渡中,我们通常使用的方法是局部坐标,当局部坐标满足一定性质时我们可以找到更大的坐标,这个更大的坐标限制到小的坐标上与原来小的坐标有相同的性质.如果将这样的过程抽象出来就是层的构造.

1.1 预层与层的基本性质

定义. 设X是一个拓扑空间.对X的每个开集U,我们赋予其一个Abel群 $\mathcal{F}(U)$,并且对任意满足 $V \subseteq U$ 的开集U,V,存在映射 $\rho_{V}^{U}:\mathcal{F}(U)\to\mathcal{F}(V)$,满足如下条件:

- (i) $\mathscr{F}(\emptyset) = 0$;
- (ii) $\rho_U^U = \mathrm{id}_{\mathscr{F}(U)}$;
- (iii) 对所有满足 $W \subseteq V \subseteq U$ 的开集 $U, V, W, \rho_W^V \circ \rho_V^U = \rho_W^U$;

这样的在拓扑空间X上的结构 \mathscr{F} 我们称为**预层**(presheaf), $\mathscr{F}(U)$ 中的元素称为开集U的**截面**(section),映 射 $\rho_V^U:\mathscr{F}(U)\to\mathscr{F}(V)$ 称为**限制映射**(restriction map).

例1. 设X是一个复流形, \mathcal{M} 是如下定义的**亚纯函数**层(sheaf of meromorphic functions)

$$\mathcal{M}(U) := \{ f : U \to \mathbb{C} \mid f \not\in \mathbb{Z} \text{ u.e. } \},$$

且对于任意 $f \in \mathcal{M}(U)$ 和开集 $V \subseteq U$,定义 $\rho_V^U(f)$ 是f在V上的限制,则 \mathcal{M} 是X上的预层.

在上面的例子中,预层 \mathcal{M} 的限制同态确实是函数的限制——但通常而言,限制同态可以是任意的映射.对于元素 $s \in \mathcal{F}(U)$,我们也用通常的限制记号: $s|_{V} := \rho_{V}^{U}(s)$,然而这一般与真正函数的限制很不同.

注意到任意的拓扑空间X可以自然地成为一个范畴 $\mathbf{Open}(X)$,这样每个预层都是一个反变函子 $\mathbf{Open}(X)$ \Rightarrow \mathbf{Ab} ,可以想到的是,我们并不需要将函子的值域限定为 \mathbf{Ab} ,其他任意合理的范畴都可以得到有用的预层.当值域范畴为 \mathbf{Ab} 、 \mathbf{Ring} 、R — \mathbf{Mod} 时,我们分别称 \mathcal{S} 为X上的 \mathbf{Abel} 串预层、环预层和R模预层.

这种对于预层的理解还有其他的好处——我们可以非常容易地定义预层之间的**态射**(morphism)——一个预层的态射就是函子间的自然变换.如果我们显式地将预层态射 $\varphi: \mathscr{F} \to \mathscr{G}$ 的定义写出来,即是对任意X中的开集 $V \subseteq U$,我们有如下交换图

$$\mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U)
\downarrow^{\rho_V^U} \qquad \qquad \downarrow^{\theta_V^U}
\mathcal{F}(V) \xrightarrow{\varphi_V} \mathcal{G}(V),$$

其中 ρ_V^U , θ_V^U 分别是预层 \mathcal{F} 和 \mathcal{F} 的限制映射.这样对于拓扑空间X,我们得到了一个范畴**PShAb**(X),其对象是X上的Abel群预层,态射是预层的态射.

例2. 设X是任意的拓扑空间,M是任意的Abel群,对开集U定义 $M_X(U)=M$ 对于满足 $V\subseteq U$ 的开集,限制映射都是恒等映射,则 M_X 是一个预层,称为常预层 $(constant\ sheaf)$.如果N也是一个Abel群, $\varphi:M\to N$ 是群同态,则我们自然地有预层的映射

$$\varphi_X: M_X \to N_X,$$

定义为

$$(\varphi_X)_U := \varphi : M_X(U) \to N_X(U).$$

例3.

例4.

预层的结构中蕴含了空间上"函数"的很多局部信息,对于一个预层我们有专门的结构刻画这样的信息:

定义. 设 \mathcal{S} 是拓扑空间X上的预层,那么称

$$\mathscr{F}_x := \varinjlim_{x \in U} \mathscr{F}(U)$$

为 \mathcal{F} 在点x处的茎(stalk),其中U取遍所有包含点x的开集,正向系中的态射由限制态射给定.

根据正极限的定义,对于任意包含x的开集U,存在自然的态射 $\rho_x^U: \mathscr{F}(U) \to \mathscr{F}_x$ 使得与正向系相容,即对于满足 $V \subseteq U$ 的开集,

$$\begin{array}{c|c} \mathscr{F}(U) & & \\ \rho_V^U \downarrow & & \downarrow^{\rho_x^U} \\ \mathscr{F}(V) & \xrightarrow{\rho_Y^V} \mathscr{F}_x. \end{array}$$

为简化记号,通常对于截面 $s \in \mathcal{F}(U)$,我们记 $s_x := \rho_x^U(s)$.同样地,余极限的函子性告诉我们,对于任意X中的点x,若 $\varphi: \mathcal{F} \to \mathcal{G}$ 是预层间的态射,那么有诱导的点x处茎的态射

$$\varphi_x: \mathscr{F}_x \to \mathscr{G}_x$$

使得对任意开集U有如下交换图

$$\begin{split} \mathscr{F}(U) & \stackrel{\varphi_U}{\longrightarrow} \mathscr{G}(U) \\ (\rho_{\mathscr{F}})_x^U \Big| & & \downarrow (\rho_{\mathscr{G}})_x^U \\ \mathscr{F}_x & \stackrel{\varphi_x}{\longrightarrow} \mathscr{G}_x, \end{split}$$

因此, 我们有 $\varphi_x(s_x) = \varphi_U(s)_x$.

习题1.1. 证明我们有如下的显式构造:

$$\mathscr{F}_x \cong \left(\prod_{x \in U} \mathscr{F}(U)\right) / \sim,$$

其中,若 $s \in \mathcal{F}(U)$, $t \in \mathcal{F}(V)$ 的等价关系 $s \sim t$ 定义为存在包含于 $U \cap V$ 的x的邻域W使得 $s|_{W} = t|_{W}$.

例5. 设M是给定的Abel群, $x \in X$ 是拓扑空间中的一个点, 定义预层M(x)满足

$$M(x)(U) := \begin{cases} M & x \in U \\ 0 & x \notin U, \end{cases}$$

限制态射要么是恒等映射要么是零映射.如果我们计算M(x)在点u的茎,

但是,预层并不是我们所希望的定义在拓扑空间上的代数结构.多数情况下我们希望的是从局部的信息中可以得到足够的整体信息,并且整体能够得到的信息一定程度上完全由局部信息得到,于是我们有下面的定义:

定义. 设多是拓扑空间X上的预层,如果多满足如下条件:

- (i) (局部性(locality))若 $\{U_i\}_{i\in I}$ 是开集U的一族开覆盖, $s,t\in \mathscr{F}(U)$ 满足对于任意 $i\in I$ 都有 $s|_{U_i}=t_{U_i}$ 成立,则 $s=t\in \mathscr{F}(U)$;
- (ii) (粘合条件(gluing))若 $\{U_i\}_{i\in I}$ 是开集U的一族开覆盖,一族元素 $s_i\in\mathscr{F}(U_i)$ 满足 $s_i|_{U_i\cap U_j}=s_i|_{U_i\cap U_i}$,那么存在 $s\in\mathscr{F}(U)$ 使得 $s|_{U_i}=s_i$ 成立;

则称 \mathcal{F} 为X上的层(sheaf).

定义的合理性告诉我们并不是所有的预层都是层,对于某些拓扑空间X,常预层就不是层.但是,某些定义的预层本身就是层,如下例.最重要的是层的行为形态非常类似于全体可定义的函数,因此函数的全体必然是层.

例6. 例1中的构造是一个层,更一般地,如果X是拓扑空间,

例7. 若 \mathscr{P} 是拓扑空间X上的预层,U是开集,那么我们可以定义 \mathscr{P} 在U上的限制,记为 $\mathscr{P}|_{U}$,它是U上的层,对任意U中的开集V,定义

$$\mathscr{F}|_{U}(V) = \mathscr{F}(U \cap V) = \mathscr{F}(V),$$

且对应 $W \subseteq V$ 的限制同态 $\mathscr{F}|_U(V) \to \mathscr{F}|_U(W)$ 定义为限制同态 $\mathscr{F}(V) \to \mathscr{F}(W)$.明显的事实是, $\mathscr{F}|_U(V) \to \mathscr{F}|_U(W)$ 是预层,并且如果 \mathscr{F} 是层则 $\mathscr{F}|_U(V) \to \mathscr{F}|_U(W)$ 也是层.

更抽象一些地,我们可以用图的语言描述层公理:若 $\{U_i\}_{i\in I}$ 是开集U的一族开覆盖,那么层公理等价于下图

$$\mathscr{F}(U) \to \prod_{i \in I} \mathscr{F}(U_i) \rightrightarrows \prod_{i,j \in I} \mathscr{F}(U_i \cap U_j)$$

$$s_i \mapsto s_i|_{U_i \cap U_j}$$

是一个等值子(equatlizer).

习题1.2. 证明上述等价性.

Proof.

层之间的态射与预层之间态射的定义相同,即对于层 \mathscr{F} , \mathscr{G} , \mathscr{G} : \mathscr{F} $\rightarrow \mathscr{G}$ 是层态射当且仅当 \mathscr{G} 是预层的态射.这意味着我们可以定义范畴 $\mathbf{ShAb}(X)$,且它是 $\mathbf{PShAb}(X)$ 的满子范畴.在之后的内容我们会看到,当我们选取的范畴 \mathscr{A} 是Abel范畴时, $\mathbf{PSh}\mathscr{A}(X)$ 也是一个Abel范畴.

局部性可以用茎的语言来描述:

命题1.1. 设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是拓扑空间X上层的态射,那么 φ 是同构当且仅当对于任意 $x \in X$,诱导的 $\varphi_x: \mathscr{F}_x \to \mathscr{G}_x$ 都是同构.

对层这种构造的一种理解方式是说,它是弯曲空间上满足一定性质的"函数"的全体,不同性质的选取决定了层结构的不同.

习题1.3. 设*孚*是拓扑空间*X*上的一个预层,则下面的构造给出一个拓扑空间,其中底集 $\bar{\mathscr{S}} = \coprod_{x \in X} \mathscr{F}_x = \{(x, s_x) \mid x \in X, s_x \in \mathscr{F}_x\}$ 是所有茎的不交并,并对任意给定*X*中的开集U和 $s \in \mathscr{F}(U)$ 给定如下一组拓扑基

$$(U,s) := \{(x,s_x) \mid x \in U\}.$$

求证:

- (i) 存在自然的连续映射 $\pi: \mathscr{F} \to X$,将点 (x, s_x) 映到x.并且,对任意的开集U和 $s \in \mathscr{F}(U)$,存在 π 在U上的 截面(section) $\sigma: U \to \mathscr{F}$ (截面是指连续函数 σ 使得 $\pi \circ \sigma$ 是U上的恒等函数).记对应 \mathscr{F} 的U上所有截面 为 $\Gamma(U, \mathscr{F})$.
- (ii) 反之,若 \mathcal{F} 还是层,求证任意U上的截面 σ 都是如上述方式构造的.
- (iii) 由上证明若 \mathcal{F} 是层,则 $\pi: \bar{\mathcal{F}} \to X$ 的连续函数截面层同构于 \mathcal{F} .
- (iv) 若 \mathcal{G} 也是拓扑空间X上的一个预层, $\varphi: \mathcal{F} \to \mathcal{G}$ 是预层的态射,证明 φ 诱导了 $\bar{\mathcal{F}} \to \bar{\mathcal{G}}$ 的连续映射.

空间逐称为预层多的平展空间(étale space).

Solution. (i) 根据定义, π 显然是连续的.定义 $\sigma: x \mapsto (x, s_x)$,注意到 $\sigma^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} \sigma^{-1}(A_i)$,因而为证明 σ 是连续的只需要证明对任意的X中的开集V, $\sigma^{-1}((V, t))$ 也是开集即可.但是若t = s则 $\sigma^{-1}((V, t)) = \sigma^{-1}((V, t)) = V \cap U$,若 $t \neq s$ 则 $\sigma^{-1}((V, t)) = \emptyset$.故得证.

(ii) 设 $\sigma: U \to \bar{\mathscr{F}}$ 是U上的截面,于是对于任意的 $x \in U$,存在 $s \in \mathscr{F}(U)$ 使得 $\sigma(x) = (x, s_x)$.若x, y是U中的两个点, $\sigma(x) = (x, s_x)$ 且 $\sigma(y) = (y, t_y)$.根据芽的定义,我们可以找到x, y的邻域V, W使得 $s \in \mathscr{F}(V), t \in \mathscr{F}(W)$.考虑开集

$$(V,s) = \{(z,s_z) \mid z \in V\}$$

和

$$(W,t) = \{(z,t_z) \mid t \in W\},\$$

根据 σ 的连续性, $\tilde{V}:=\sigma^{-1}((V,s))$ 和 $\tilde{W}:=\sigma^{-1}((W,t))$ 都是U中的非空开集,分别包含x和y.对于任意 $z\in \tilde{V}\cap \tilde{W}$,由 σ 的映射性 $(z,s_z)=\sigma(z)=(z,t_z)$,故存在z的一个邻域 $O\subseteq \tilde{V}\cap \tilde{W}$ 使得 $s|_O=t|_O$.但是z是任取的,故 $s|_{\tilde{V}\cap \tilde{W}}=t|_{\tilde{V}\cap \tilde{W}}$.这样我们就得到了U的一个开覆盖,且在开集重合的部分截面是相容的.根据层公理,存在唯一的 $r\in \mathscr{F}(U)$ 使得 $\sigma(x)=(x,r_x)$.

(iii) 记 \mathscr{F}' 为 $\pi: \overline{\mathscr{F}} \to X$ 的截面层.定义

$$\theta: \mathscr{F} \to \mathscr{F}'$$

$$\theta_U: \mathscr{F}(U) \to \mathscr{F}'(U)$$

$$s \mapsto \sigma(x \mapsto (x, s_x)),$$

于是我们需要验证对任意的开集U, θ_U 是群同构,且对任意满足 $V \subset U$ 的开集U,V都有图

$$\begin{array}{ccc} \mathscr{F}(U) & \stackrel{\theta_U}{\longrightarrow} \mathscr{F}'(U) \\ & & \downarrow |_V \\ & \mathscr{F}(V) & \stackrel{\theta_V}{\longrightarrow} \mathscr{F}'(V), \end{array}$$

交换,其中 $|_{V}$ 是U上函数在V的限制.

对于 $\mathscr{T}'(U)$ 中的截面 σ, τ , $\sigma + \tau$ 的定义是 $\sigma + \tau : x \mapsto (x, s_x + t_x)$,其中 $\sigma(x) = (x, s_x)$, $\tau(x) = (x, t_x)$.于是,同态性由正极限的性质保证,再根据前一部分 θ_U 是同构,其中,层公理的局部性对应 θ 的单射性,在局部性的存在下粘合条件等价于满射(充分性由前一部分证明,必要性考虑到截面本质上是映射,是自动满足粘合条件的).任取 $x \in V$ 和 $s \in \mathscr{T}(U)$,正极限保证 $s_x = (s|_V)_x$,这即是图的交换性.

(iv) 定义

$$\bar{\varphi}: \bar{\mathscr{F}} \to \bar{\mathscr{G}}$$

$$(x, s_x) \mapsto (x, \varphi_x(s_x)),$$

于是我们只要证明函数是连续的即可.对 \mathcal{G} 的任意X中的开集U,若t是 $\mathcal{G}(U)$ 中的截面,则对于(U,t)中的任意点 (x,t_x) ,若它在 $\overline{\varphi}$ 的像中,则存在 $(x,s_x)\in\mathcal{F}_x$ 使得 $\varphi_x(s_x)=t_x$.这意味着,存在x的邻域W使得 $\varphi_W(s)|_{W\cap U}=t|_{W\cap U}$.于是,开集基中的元素 $(W\cap U,s|_{W\cap U})$ 包含于 $\overline{\varphi}$ 的原像中,故

$$\varphi^{-1}((U,t)) = \coprod_{W \not= U \neq \text{ hoff} \not= \text{ }} (W,s),$$

按照定义这是一个开集.

习题1.4. 设 $\varphi_i: \mathscr{F} \to \mathscr{G}$ 是拓扑空间X上层的态射,i=1,2,且对于任意 $x \in X$,都有 $(\varphi_1)_x = (\varphi_2)_x$,证明 $\varphi_1 = \varphi_2$.

1.2 层化

对于一个预层 \mathcal{F} 和X中的开集U,我们可以定义

$$\tilde{\mathscr{F}}(U) := \{s: U \to \coprod_{x \in U} \mathscr{F}_x \mid s$$
满足公理(i)和(ii)}

其中

- (i) 对每个U中的点x, $s(x) \in \mathcal{F}_x$;
- (ii) 对每个U中的点x,都存在开邻域 $V \subseteq U$ 和截面 $t \in \mathcal{F}(V)$ 使得对于所有的 $y \in V$ 都有 $s(y) = t_y$.

对于 \mathscr{F} 中的任意截面 $s \in \mathscr{F}(U)$,我们都可以定义一个映射 $\tilde{s}: U \to \coprod_{x \in U} \mathscr{F}_x, y \mapsto s_y$.显然 $\tilde{s} \in \tilde{\mathscr{F}}(U)$,因此我们定义了一个预层的态射 $\zeta: \mathscr{F} \to \tilde{\mathscr{F}}$.

命题1.2. 若预层 \mathscr{F} 是层、则 $\mathscr{C}:\mathscr{F}\to \mathscr{F}$ 是层的同构.

如果尽可能具体地解释层化,这个构造就是把原本没有的截面加到层的对象当中去,进而形成我们需要的足够多的粘合信息,而我们是局部来完成这个扩充的.刚刚我们介绍的层化事实上就是用一个点的局部信息(茎)去构造相应的函数,可以说层公理所描述的本质信息就是一定类型的函数.我们对于层化的定义满足如下的泛性质和函子性:

命题1.3 (函子性). 设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是预层的态射,那么存在层态射 $\tilde{\varphi}: \tilde{\mathscr{F}} \to \tilde{\mathscr{G}}$ 使得下面的图交换:

$$\begin{array}{ccc} \mathscr{F} & \stackrel{\varphi}{\longrightarrow} \mathscr{G} \\ \zeta_{\mathscr{F}} & & & \downarrow \zeta_{\mathscr{G}} \\ \tilde{\mathscr{F}} & \stackrel{\tilde{\varphi}}{\longrightarrow} \tilde{\mathscr{G}}. \end{array}$$

Proof. 对任意X中的开集U,考虑点 $x \in U$ 和截面 $s \in \tilde{\mathscr{F}}(U)$,我们定义

$$\tilde{\varphi}_U(s)(x) := \varphi_x(s(x)).$$

我们需要验证定义是层的态射,并验证图的交换性.

推论1.3.1 (泛性质). 设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是预层的态射, 若 \mathscr{G} 是层, 则存在Abel群的同构

$$\hom_{\mathbf{PShAb}(X)}(\mathscr{F},\mathscr{G}) \cong \hom_{\mathbf{ShAb}(X)}(\tilde{\mathscr{F}},\mathscr{G}).$$

事实上,我们并不需要拓扑空间X中所有开集U所对应的对象 $\mathscr{F}(U)$,如果给定X的一组基 \mathscr{B} 中所有所有开集U对应的对象 $\mathscr{F}(U)$,并且这些对象满足层公理,那么我们存在唯一的X上的层:

定理1.4 (\mathcal{B} -层). 设 \mathcal{B} 是拓扑空间X的一组开集基,对于每个 $U,V\in\mathcal{B}$,存在Abel群 $\mathcal{F}(U)$ 和限制同态 $\rho_V^U:\mathcal{F}(U)\to\mathcal{F}(V)$ 满足预层公理和层公理,那么称 \mathcal{F} 是一个 \mathcal{B} -层(\mathcal{B} -sheaf).于是

- 1. 任意 \mathcal{B} -层都可以唯一地扩张为一个X上的Abel群层.
- 2. 给定X上的两个 \mathcal{B} -层 \mathcal{F} 和 \mathcal{G} , 且对每个 \mathcal{B} 中的开集U都有群态射

$$\varphi_U: \mathscr{F}(U) \to \mathscr{G}(U)$$

与 \mathcal{B} -层的限制态射相容,那么存在唯一的层态射 $\varphi: \mathcal{F} \to \mathcal{G}$ 是 \mathcal{B} -层的扩张.

Proof. 对任意X中的开集V, 定义

$$\mathscr{F}(V) := \varprojlim_{U \in \mathscr{B} \not \equiv \mathbb{Z}} \mathscr{F}(U),$$

其中逆向系中的态射由限制态射给定.我们需要证明: (i)该定义与原定义相容; (ii) $\overline{A}V \subseteq W$,则存在 ρ_V^W : $\mathscr{F}(W) \to \mathscr{F}(V)$ 与原有的限制函数相容,且新构造的限制函数间也相容; (iii) (i)由极限的定义即可得到.(ii)可以由极限的函子性推得.

推论1.4.1 (层的粘合原理). 设U是拓扑空间X的开覆盖.若对任意U中的开集U, \mathcal{F}_U 都是U上的层, 并且

$$\varphi_{U,V}:\mathscr{F}_U|_{U\cap V}\to\mathscr{F}_V|_{U\cap V}$$

都是同构, 在 $U \cap V \cap W$ 上满足

$$\varphi_{V,W} \circ \varphi_{U,V} = \varphi_{U,W},$$

则存在唯一的X上的层 \mathcal{F} 使得有层的同构 $\psi:\mathcal{F}|_U\to\mathcal{F}_U$ 且满足如下相容性:对任意 $U,V\in\mathcal{U}$

$$\varphi_{U,V} \circ \psi_U|_{U \cap V} = \psi_V|_{U \cap V} : \mathscr{F}|_{U \cap V} \to \mathscr{F}_V|_{U \cap V}.$$

Proof. 我们将验证如下论断: (i) 被U中的开集包含的所有的开集构成X的一组拓扑基 \mathcal{B} ; (ii) 所给出的粘合条件自然地给出了一个 \mathcal{B} -层,于是根据定理1.4存在性和唯一性都得证.

(i) 这是一个单纯的拓扑问题, 我们略过证明.

引入层化后我们其实有了对于层更进一步的认识——层完全由每点上的茎完全决定,而决定的方式就是寻找连续的截面(习题1.5).在英语中,sheaf一词的含义是"a bundle of stalks",即一捆稻谷,我们想象 **习题1.5.** 设*乎*是拓扑空间*X*上的预层.证明平展空间*乎*的截面层*乎*'同构于*乎*的层化.

Proof. 在习题1.3中我们定义了预层的态射

$$\theta: \mathscr{F} \to \mathscr{F}'$$

$$\theta_U: \mathscr{F}(U) \to \mathscr{F}'(U)$$

$$s \mapsto \sigma(x \mapsto (x, s_x)),$$

于是只要证明 \mathscr{F} '的泛性质就能够说明同构.设 $\varphi:\mathscr{F}\to\mathscr{G}$ 是预层到层的态射,于是根据习题1.3我们有连续映射 $\bar{\varphi}:\bar{\mathscr{F}}\to\bar{\mathscr{G}}$,进而对于任意的截面 $s:U\to\bar{\mathscr{F}}$, $\bar{\varphi}\circ s$ 也是U上的截面,这样我们定义了

$$\begin{split} \varphi': \mathscr{F}' \to \mathscr{G}' &\cong \mathscr{G} \\ \varphi'_U: \mathscr{F}'(U) \to \mathscr{G}'(U) \\ s \mapsto \bar{\varphi} \circ s. \end{split}$$

 φ'_U 是群同态由由 φ 的预层的态射性保证,而它显然与两个层的限制态射相容,于是我们得到了层的态射. 再证明唯一性.假设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是预层到层的态射,层态射 $\tilde{\varphi}: \mathscr{F}' \to \mathscr{G}$ 满足

任取 $\sigma \in \mathscr{F}'(U)$,即截面 $\sigma : U \to \bar{\mathscr{F}}$,对任意 $x \in U$,若 $\sigma(x) = (x, s_x)$,那么任取 σ_x 的代表元 τ ,于是存在 $W \subseteq U$ 使得 $\sigma|_W = \tau|_W$,因此 $\tau(x) = (x, s_x)$,于是可以定义 $\eta_x : (\mathscr{F}')_x \to \mathscr{F}_x$, $\sigma_x \mapsto s_x$.根据截面加法的定义,这显然是一个群态射.一方面,我们显然有 $\eta_x \circ \theta_x = \mathrm{id}_{\mathscr{F}_x}$.另一方面,仍然假定 $\sigma(x) = (x, s_x)$,那么由连续性 $V = \sigma^{-1}((U, s))$ 是U中的非空开集,这意味着对任意 $y \in V$, $\sigma(y) = (y, s_y)$,于是 $\sigma|_V = \theta(s)|_V$, $\theta_x(s_x) = \sigma_x$.因此, $\theta_x \circ \eta_x = \mathrm{id}_{(\mathscr{F}')_x}$.再根据习题1.4, $\tilde{\varphi}$ 是唯一确定的.

1.3 底空间变换

这一节我们考虑这样的问题,

定义. 设 $f: X \to Y$ 是拓扑空间的连续映射,如果 \mathscr{F} 是X上的预层,则如下定义的

$$f_*\mathscr{F}:\mathbf{Open}(Y)
ightrightarrows \mathbf{Ab}$$

$$U\mapsto f_*\mathscr{F}(U):=\mathscr{F}(f^{-1}(U))$$

是一个预层,称为预层 \mathcal{F} 的推出(pushfroward).

对于Y中的开集 $V \subseteq U$,我们定义限制同态 $f_*\mathscr{F}(U) \to f_*\mathscr{F}(V)$ 是 $\mathscr{F}(f^{-1}(U))$ 到 $\mathscr{F}(f^{-1}(V))$ 的限制同态,即若 $s \in f_*\mathscr{F}(U)$,则

$$s|_{V} = (s \in \mathscr{F}(f^{-1}(U)))|_{f^{-1}(V)}.$$

引理1.1. 设 $f: X \to Y$ 是拓扑空间的连续映射,如果 $\mathscr{F} \in X$ 上的层,则推出 $f_* \mathscr{F} \in Y$ 上的层.

Proof. 任取Y中的开集V,设 $\mathcal{V} = \{V_i\}_{i\in I}$ 是V的开覆盖,那么 $\mathcal{U} = \{U_i := f^{-1}(V_i)\}_{i\in I}$ 是 $\mathcal{U} := f^{-1}(V)$ 的开覆盖.于是,若给定 $s_i \in f_*\mathscr{F}(V_i) = \mathscr{F}(U_i)$,满足 $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$,于是 $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$.由 \mathscr{F} 是层得知存在唯一的 $s \in \mathscr{F}(U)$ 使得 $s|_{U_i} = s_i$.按照层推出的定义,这个s就是 $f_*\mathscr{F}(V)$ 中要找的唯一的元素,故 $f_*\mathscr{F}$ 是层. \square

如果我们还有一个X上的预层态射 $\varphi: \mathscr{F} \to \mathscr{G}$,则对于任意的Y中的开集U,同态映射 $\varphi_{\varphi^{-1}(U)}: \mathscr{F}(\varphi^{-1}(U)) \to \mathscr{G}(\varphi^{-1}(U))$ 和限制映射 $\rho_{\varphi^{-1}(V)}^{\varphi^{-1}(U)}$ 相容,于是 $\varphi_{\varphi^{-1}(U)}: \mathscr{F}(\varphi^{-1}(U)) \to \mathscr{G}(\varphi^{-1}(U))$ 自然地可以看作 $\varphi_{\varphi^{-1}(U)}: f_*\mathscr{F}(U) \to f_*\mathscr{G}(U)$,这样我们说明了 $f_*\varphi$ 是预层态势 $f_*\mathscr{F} \to f_*\mathscr{G}$.如果还有 $\psi: \mathscr{G} \to \mathscr{H}$,那么很明显地有 $f_*(\psi \circ \varphi) = f_*\psi \circ f_*\varphi$.于是 f_* 是一个函子**PShAb** $(X) \Rightarrow$ **PShAb**(Y).

习题1.6. 设 $f: X \to Y$ 和 $g: Y \to Z$ 是两个连续映射,那么

$$(g \circ f)_* = g_* \circ f_*.$$

定义. 设 $f: X \to Y$ 是拓扑空间的连续映射,如果 \mathcal{G} 是Y上的预层,则如下定义的

$$\begin{split} f_P\mathscr{G}:\mathbf{Open}(X) &\rightrightarrows \mathbf{Ab} \\ V \mapsto f_P\mathscr{G}(U) := \varinjlim_{\substack{V \in \mathbf{Open}(Y) \\ f(U) \subseteq V}} \mathscr{G}(V) \end{split}$$

是一个预层, 称为预层9的拉回(pullback).

引理1.2. 设X和Y是拓扑空间, $f: X \to Y$ 是连续映射, 那么下面的同构关于 \mathcal{G} 和 \mathcal{G} 是自然的:

$$\hom_{\mathbf{PShAb}(X)}(f_P\mathscr{G},\mathscr{F})\cong \hom_{\mathbf{PShAb}(Y)}(\mathscr{G},f_*\mathscr{F}).$$

Proof. 我们首先证明同构.设 $\varphi \in \text{hom}_{\mathbf{PShAb}(X)}(f_P \mathcal{G}, \mathcal{F})$,于是任意给定X中的开集,按照极限的定义, $\varphi_U: f_P \mathcal{G}(U) \to \mathcal{F}(U)$ 完全由一族相容的态射

 φ_V :

其中V取遍所有包含f(U)的开集.

与推出不同的是,即使 \mathcal{G} 是Y上的层, $f_P\mathcal{G}$ 也可能并不是一个层,但作为预层,层的拉回也有很好的函子性质.我们称 $f_D^{-1}\mathcal{G}$ 的层化为 \mathcal{G} 的**逆象层**(inverse sheaf),记为 $f^{-1}\mathcal{G}$.

定义,设X是拓扑空间, \mathcal{F} 是X上的层

1.4 层范畴及其中的正合性

设 φ : \mathscr{F} → \mathscr{G} 是空间X上预层的态射,

习题1.7 (层的零扩张). 设X是拓扑空间,Z是X的闭集, $i:Z\to X$ 是嵌入映射.令U:=X-Z是Z在X中的补集, $j:U\to X$ 是嵌入映射.

1. 设 \mathcal{F} 是Z上的层,证明

$$(i_* \mathscr{F})_P = \begin{cases} \mathscr{F}_P & P \in Z \\ 0 & P \notin Z. \end{cases}$$

于是我们称 i_* 罗是 \mathcal{F} 在X上的零扩张.

2 **Č**ECH上同调 10

2. 设 \mathcal{G} 是U上的层,定义X上的层 \mathcal{G} 满足对任意X中的开集V,

$$j_! \mathscr{G}(V) := egin{cases} \mathscr{G}(V) & V \subseteq U \\ 0 & \text{其他情况.} \end{cases}$$

证明

$$(j_!\mathcal{G})_x = \begin{cases} \mathcal{G}_x & x \in U \\ 0 & 其他情况, \end{cases}$$

并且证明 $j_{:}$ 罗是满足以上条件且限制在U上是 \mathcal{G} 的唯一一个层.

3. 现在假设 \mathcal{F} 是X上的层,证明我们有如下层的正合列:

$$0 \to j_!(\mathscr{F}|_U) \to \mathscr{F} \to i_*(\mathscr{F}|_Z) \to 0.$$

2 Čech上同调

之前的理论中我们建立了层的上同调理论,但我们面临一个相当严重的问题——对于一个给定的层,它的上同调几乎是不可计算的. Čech上同调的主要思想是我们考虑拓扑空间中开覆盖所包含的组合信息,

设X是拓扑空间, \mathscr{F} 是X上的层, $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in \Gamma}$ 是X的一族开覆盖.