Module-3 RELATIONS AND FUNCTIONS

PART - 4

EQUIVALENCE CLASSES AND PARTITION SET

Equivalence Classes

Let R be an equivalence relation on a set A and $a \in A$. Then the set of all those elements x of A which are related to a by R is called the equivalence class of a w.r.t 'R'. The equivalence class of a is denoted by R(a) or [a].

i.e., R(a) or $[a] = \{x \in A \mid (x, a) \in R\}$

EXAMPLES

Let $R = \{(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)\}$ be an equivalence relation on $A = \{1, 2, 3\}$ then

$$R(I)$$
 or $[I] = {(I, I), (3, I)} = {I, 3}$

$$R(2)$$
 or $[2] = \{(2,2)\} = \{2\}$

$$R(3)$$
 or $[3] = {(1,3), (3,3)} = {1,3}$

Let $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}$ be an equivalence relation on $A = \{1, 2, 3, 4\}$ then

$$R(I)$$
 or $[I] = {(I, I), (2, I)} = {I, 2}$

$$R(2)$$
 or $[2] = \{(1, 2), (2, 2)\} = \{1, 2\}$

$$R(3)$$
 or $[3] = \{(3,3), (4,3)\} = \{3,4\}$

$$R(4)$$
 or $[4] = \{(3,4), (4,4)\} = \{3,4\}$

Let R = {(a, a), (a, b), (a, c), (b, a), (b, b), (c, a), (c, c), (d, d), (d, e), (e, d), (e, e)} be an equivalence relation on A = {a, b, c, d, e} then

$$R(a) \text{ or } [a] = \{(a, a), (b, a), (c, a)\} = \{a, b, c\}$$

$$R(b)$$
 or $[b] = \{(a, b), (b, b)\} = \{a, b\}$

$$R(c) \text{ or } [c] = \{(a, c), (c, c)\} = \{a, c\}$$

$$R(d) \text{ or } [d] = \{(d, d), (e, d)\} = \{d, e\}$$

$$R(e) \text{ or } [e] = \{(d, e), (e, e)\} = \{d, e\}$$

PARTITION OF A SET

Let A be a non-empty set. Suppose there exist non-empty subsets $A_1, A_2, ..., A_k$ of A such that

i.
$$A = A_1 \cup A_2 \cup ... \cup A_k$$
 and

ii.
$$A_i \cap A_j = \phi$$
 for $i \neq j$

Then the set $P = \{A_1, A_2, ..., A_k\}$ is called a partition of A.

EXAMPLES

Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $A_1 = \{1, 3, 5, 7\}$, $A_2 = \{2, 4\}$, $A_3 = \{6, 8\}$ be the subsets of A. Determine whether the set $P = \{A_1, A_2, A_3\}$ is a partition of A or not?

i.
$$A = A_1 \cup A_2 \cup A_3$$

ii.
$$A_1 \cap A_2 = \emptyset, A_1 \cap A_3 = \emptyset$$
 and $A_2 \cap A_3 = \emptyset$
 $\therefore P = \{A_1, A_2, A_3\}$ is a partition of A.

Let $A = \{a, b, c, ..., h\}$ and $A_1 = \{d, e\}, A_2 = \{a, c, d\}, A_3 = \{f, h\}$. Determine whether the set $P = \{A_1, A_2, A_3\}$ is a partition of A or not?

i.
$$A \neq A_1 \cup A_2 \cup A_3$$

 \therefore P = {A₁,A₂,A₃} is not a partition of A.

Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $A_1 = \{2, 3, 5\}$, $A_2 = \{4, 6\}$, $A_3 = \{6, 8\}$ and $A_4 = \{1, 7\}$ be the subsets of A. Determine whether the set $P = \{A_1, A_2, A_3, A_4\}$ is a partition of A or not?

Solution:

- i. $A = A_1 \cup A_2 \cup A_3 \cup A_4$
- ii. $A_1 \cap A_2 = \emptyset, A_1 \cap A_3 = \emptyset, A_1 \cap A_4 = \emptyset \text{ and } A_2 \cap A_3 \neq \emptyset$ $\therefore P = \{A_1, A_2, A_3\} \text{ is not a partition of A.}$

Note:

- Any equivalence relation R on set A induces a partition of A.
- Any partitions of a set A gives rise to an equivalence relation R on A.

EXAMPLES

Let $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}$ be an equivalence relation on $A = \{1, 2, 3, 4\}$ then determine the partition induced by R.

First we find all the equivalence classes

$$R(1)$$
 or $[1] = \{(1,1),(2,1)\} = \{1,2\}$

$$R(2)$$
 or $[2] = \{(1,2), (2,2)\} = \{1,2\}$

$$R(3)$$
 or $[3] = \{(3,3), (4,3)\} = \{3,4\}$

$$R(4)$$
 or $[4] = \{(3,4), (4,4)\} = \{3,4\}$

 \therefore Partition set P induced by R = {[1], [3]} = {{1,2}, {3,4}}.

Let $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)\}$ be an equivalence relation on $A = \{1, 2, 3, 4, 5\}$ then determine the partition induced by R.

First we find all the equivalence classes

$$R(I)$$
 or $[I] = {(I, I)} = {I}$

$$R(2)$$
 or $[2] = \{(2, 2), (3, 2)\} = \{2, 3\}$

$$R(3) \text{ or } [3] = \{(2,3), (3,3)\} = \{2,3\}$$

$$R(4)$$
 or $[4] = \{(4,4), (5,4)\} = \{4,5\}$

$$R(5)$$
 or $[5] = \{(4,5), (5,5)\} = \{4,5\}$

... Partition set P induced by $R = \{[1], [2], [4]\}$ = $\{\{1\}, \{2, 3\}, \{4, 5\}\}.$ If A = {1, 2, 3, 4, 5} and partition set P = {{1, 2}, {3, 4}, {5}}. Find an equivalence relation R on A.

From the partition set P, we find that

$$R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5)\}$$

If $A = \{1, 2, 3, 4, 5, 6, 7\}$ and partition set $P = \{\{1, 2\}, \{3\}, \{4, 5, 7\}, \{6\}\}\}$. Find an equivalence relation R on A.

From the partition set P, we find that

$$R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (4, 7), (5, 4), (5, 5), (5, 7), (7, 4), (7, 5), (7, 7), (6, 6)\}$$

Theorem:

Let R be an equivalence relation on set A and a, $b \in A$ then the following are equivalent:

- (i) $a \in [a]$
- (ii) a R b iff [a] = [b]
- (iii) If $[a] \cap [b] \neq \emptyset$ then [a] = [b]

Proof:

Given that R is an equivalence relation.

i.e., R is reflexive, symmetric and transitive.

(i)
$$\forall a \in A \Rightarrow (a, a) \in R$$
 [by reflexive]

$$\Rightarrow$$
 a \in [a]

(ii) Let a R b

i.e.,
$$(a, b) \in R$$

Case I:

Let
$$x \in [a]$$

$$\Rightarrow$$
 (x, a) \in R

Now, (x, a), $(a, b) \in R \Rightarrow (x, b) \in R$ [by transitive]

$$\Rightarrow x \in [b]$$

$$\therefore$$
 [a] \subseteq [b]

Case 2:

Let
$$x \in [b]$$

$$\Rightarrow$$
 (x, b) \in R

Now, (x, b), $(a, b) \in R$

$$\Rightarrow$$
 (x, b), (b, a) \in R [by symmetric]

 \Rightarrow (x, a) \in R [by transitive]

$$\Rightarrow x \in [a]$$

$$\therefore$$
 [b] \subseteq [a]

By combining both the cases, we have

$$[a] = [b]$$

Conversely, let [a] = [b]

From (i), we have

$$a \in [a]$$

- \Rightarrow a \in [b] (by using (ii))
- \Rightarrow (a, b) \in R
- \Rightarrow a R b

(iii) Given that, [a] \cap [b] \neq ϕ

Let $x \in [a] \cap [b]$

- \Rightarrow x \in [a] and x \in [b]
- \Rightarrow (x, a) \in R and (x, b) \in R
- \Rightarrow (a, x) \in R and (x, b) \in R [by symmetric]
- \Rightarrow (a, b) \in R
- \Rightarrow a R b
- \Rightarrow [a] = [b] (from (ii))