Pre - Calculus Mathematics 405

Standards Test Practice Exam Logarithms

1. An investment earns interest at a rate of 4% compounded quarterly. How long, in years, will it take for the investment to double?

2. Solve the equation $2^{x+1} = 3(4^x)$ algebraically

3. If $\log_a 4 = p$ and $\log_a 7 = q$, determine an expression for $\log_a 28$ in terms of p and q

- **4.** Given $f(x) = e^x$, determine the function after a reflection across the line y = x
- **5.** Solve for *x*: $\log_2(\log_{16} x) = -2$

6. Solve for x: $\left(\frac{1}{2}\right)^{2x-1} = 4^x$

7. Solve algebraically: $3^{2x-1} = 5^{x+4}$

8. In April 1994, the population of a small town in Manitoba was estimated at 2500 people. The population can be represented by the equation $A = Pe^{rt}$, where r is the annual rate of increase, and t is the time in years. Determine the annual rate of increase if there were 3900 people in April 1999. State your answer to three decimal places.

9. If $\log_a x = 16$, find the value of $\log_a \sqrt{x}$

- **10.** If $f(x) = \log x$, determine the equation of the inverse function
- **11.** Solve for *x*: $\log_4(\log_9 x) = \frac{1}{2}$

12. Determine the x-intercepts in the following equation: $y = \log(5 - 4x) - 2\log x$

13. Solve for *x* algebraically: $2^{x+4} = 3^{2x+1}$

14. If $\log_a 4 = 1.2619$ and $\log_a 5 = 1.4650$, show that $\log_a 20 = 2.7269$

- **15.** A new automobile costs \$32,000. The value of the auto after t years is given by $V = 32000(0.8)^t$
- a) Determine the value after 9 years

b) How many years will it take for the value to decrease to one-eighth the initial value? One-eighth \$32,000 is \$4000

16. Solve for $x \log_2(x+4) + \log_2(x-3) = 3$

17. State the range of $f(x) = 2^{-x}$

18. Solve for x: $\left(\frac{1}{3}\right)^{2x} = 27^{x-5}$

19. Solve the equation: $2^{3x+1} = 9^{x+3}$. Express your answers to three decimal places

20. Determine the domain of the function $y = \ln(x-3)$

21. Solve for *x*: $2^{4x-1} = 4^{x+1}$

22. Given $f(x) = \log(x+100) + 5$, evaluate f(0)

23. Evaluate $(\log_3(\log_2 8))$

24. The point (64, 3) lies on the graph of $y = \log_b x$. The exact value of b is

25. Sketch a clearly labeled graph of $y = e^x + 3$

26. Given $f(x) = \log_2(x-5)$, find an equation for $f^{-1}(x)$

27. Solve the equation: $\log(x+2) + \log(x-1) = 1$

28. Solve the following equation algebraically: $4(10^x) = 6^{(2-x)}$

29. The initial population of a city was 4000 and grew exponentially to 8000 in 7 years. The population growth can be modeled by the equation $A = Pe^{rt}$, where r is the annual rate of increase, and t is the time in years. Find the growth rate for this city to three decimal places.

- **30.** Evaluate $\ln e^5$
- **31.** Solve for x in the equation $4^x = \frac{1}{64}$

32. Express $\frac{1}{3} \log M - 5 \log N$ as a single logarithm

33. The population of bacteria grows exponentially according to the equation $A = 4e^{rt}$, where P is the population at time t, r is the hourly rate of increase, and t is the time in hours. If there are 100 bacteria after 2 hours, what is the population after 8 hours?

34. Solve for *x*: $3(2^x) = 7^{1-x}$

35. Simplify $\log_a(4x) - \log_a(2x)$

- **36.** The graph of $y = \ln x$ is obtained by reflecting the graph of $y = e^x$ over the line _____.
- **37.** Evaluate $\log_7\left(\frac{1}{7}\right)$

38. Determine the numerical value of $\log_3 81 - \log_3 3$

39. Solve for *x*: $\log_3(2x+1) - \log_3(x-1) - 1 = 0$

40. Evaluate $\ln e^4 - 1$