TP nº 07 – Résolution d'équations simples

Ι Résolution d'équations du second ordre

L'objectif est de résoudre les équations de type (E): $ax^2 + bx + c = 0$ où a, b et c sont des réels, (donc seront des flottants dans vos programmes).

Exercice 1. Dans cet exercice, on suppose que $a \neq 0$.

Écrire une fonction solution(a,b,c) qui renvoie les solutions de (E): $ax^2 + bx + c = 0$ et précise la nature de ses solutions. Par exemple :

```
>>> solution(2,-6,4)
Deux solutions reelles x1=1.0 et x2=2.0
>>> solution(4,-4,1)
Une solution double x=0.5
>>> solution(1,-2,2)
Deux solutions complexes x1=1+1j et x2=1-1j
```

Exercice 2. Dans cet exercice, (E) n'est pas forcément une équation du second degré : a peut être nul. Ecrire une fonction solution2 pour prendre en compte tous les cas. (On commencera par construire sur feuille un algorigramme.)

Par exemple:

```
>>> solution2(1,-3,2)
Deux solutions reelles : x1=1.0 et x2=2.0
>>> solution2(0,2,0)
Une solution reelle : x=0.0
>>> solution2(0,0,1)
Pas de solution
>>> solution2(0,0,0)
Une infinite de solutions : tous les reels
```

Exercice 3. 1. Résolvez à la main l'équation suivante :

$$(E_5)$$
: $x^2 + (1 + 2^{-50})x + 0.25 + 2^{-51} = 0$

2. Résolvez cette équation à l'aide de la fonction solution. Que constatez-vous? Pourquoi?

Exercice 4. 1. Résolvez à la main les deux équations suivantes :

$$(E_3)$$
: $x^2 + 6x + 9$ (E_4) : $0.1x^2 + 0.6x + 0.9 = 0$

2. Résolvez ces équations à l'aide de la fonction solution. Que constatez-vous? Pourquoi?

TT Résolution par dichotomie

ATTENTION: vous aurez besoin de cet algorithme au TP n°10. Donc, sauvegardez proprement et au bon endroit votre programme.

Principe II.1

Soit f continue telle que f(a) et f(b) soient de signe contraire. Alors un zéro de f est dans [a,b]. On construit une suite d'intervalles $[a_n, b_n]$ qui contiennent ce zéro. A chaque étape :

on note
$$c_n = \frac{a_n + b_n}{2}$$

- on note $c_n = \frac{a_n + b_n}{2}$.

 si $f(a_n)$ et $f(c_n)$ sont de signe contraire, alors on pose : $a_{n+1} = a_n$ et $b_{n+1} = c_n$.
- sinon, on pose : $a_{n+1} = c_n$ et $b_{n+1} = b_n$.

On s'arrête quand $c_n = \frac{a_n + b_n}{2}$ est une approximation à ϵ près d'une solution, autrement dit quand :

$$b_n - a_n \leqslant 2\epsilon$$

Avantages : dès lors que f(a) et f(b) sont de signe contraire et que f est continue, la méthode converge vers une solution. On peut aussi prévoir à l'avance le nombre d'itérations nécessaires pour une précision choisie.

Inconvénient : la convergence n'est pas très rapide comparée à d'autres méthodes.

II.2 Application

Exercice 5. Écrire une fonction dicho qui prend comme entrée la fonction f à étudier, les bornes initiales a et b, la précision ϵ et qui renvoie $\frac{a_n + b_n}{2}$, approximation d'une solution à ϵ près.

Exercice 6. 1. Testez la fonction dicho sur $f(x) = x^2 - 2$ pour obtenir une approximation de $\sqrt{2}$ à $\epsilon = 0,001$ près.

- 2. Si on prend a=2 et b=3, que renvoie le programme ? Est-ce bien l'approximation d'une solution ? Pourquoi le programme renvoie cette valeur ?
- 3. Faites en sorte que votre fonction dicho affiche un message d'erreur dans ces cas là.

III Résolution avec des suites récurrentes

III.1 Principe

L'objectif est de résoudre une équation du type f(x) = x. On considère une suite définie par récurrence de la façon suivante :

$$\begin{cases} u_0 = \text{constante} \\ u_{n+1} = f(u_n) \end{cases}$$
 (*)

Dans certains cas favorables, la suite $(u_n)_{n\in\mathbb{N}}$ converge. À ce moment là, sa limite est un point fixe de f, c'est-à-dire une solution de f(x) = x.

III.2 Application

Exercice 7. Écrire une fonction rec qui prend comme entrée f, u_0, n et qui renvoie u_n , le nième terme de la suite définie par récurence en (*).

Exercice 8. Tester votre function rec avec $f(x) = \frac{1}{2} \left(x + \frac{2}{x} \right)$ et $u_0 \in \mathbb{R}^*$.

On peut montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge et que les points fixes de f sont : $\sqrt{2}$ et $-\sqrt{2}$.

Exercice 9. Avec la fonction dicho appliquée à g(x) = f(x) - x, on retrouve les solutions de f(x) = x. Testez-le avec la fonction f de l'exercice précédent.

Entre dicho et rec, quel est l'algorithme le plus rapide?

IV Annexe: les complexes

Un complexe se note : z=1+2j.

Attention : si vous voulez le complexe z = j, il faut écrire z=1j et non pas z=j car Python considère alors j comme une variable et non comme le complexe j.

Quelques fonctions :

 $\begin{array}{ll} {\tt z.conjugate()} & {\tt conjugu\'e de} \ z \\ {\tt abs(z)} & {\tt module de} \ z \\ \end{array}$

Correction TP nº 07 – Résolution d'équations simples

Solution 1.

Solution 2.

```
def solution2(a,b,c):
           if a != 0:
2
                    return(solution(a,b,c))
            else:
                    if b!=0:
                            return "Une solution reelle", -c/float(b)
                    else :
                             if c!=0:
                                     return "pas de solution"
9
10
                             else:
                                     return "Une infinite de solutions : tous les reels."
12
   print solution(0,0,0)
13
```

Solution 3. 1. $\Delta = 1 + 2^{-49} + 2^{-100} - 1 - 2^{-49} = 2^{-100} \neq 0$.

On trouve deux solutions réelles distinctes.

- 2. solution(1,(1+2**(-50)),0.25+2**(-51)) renvoie une unique solution. En effet, dans la représentation des nombres, on a vu que Python admet une limite de précision pour les flottants. 2^{-100} dépasse cette limite et Python évalue Δ à zéro.
- **Solution 4.** 1. Dans les deux cas, on trouve une solution double : x = -3
 - 2. solution(1,6,9) renvoie l'unique solution -3. Mais solution(0.1,0.6,0.9) renvoie deux solutions complexes.

Dans le premier cas, Δ est un entier. Python le compare à zéro sans erreur. Dans le deuxième cas, Δ est un flottant qui vaut $\approx -5.10^{-17}$. Le comparer à zéro n'est plus exact.

Solution 5.

Solution 6.

```
11. def carre(x):
2 return(x**2-2)

2 Sur [2 2] f no g'annula pag Dana dang l'algorithme en aura touiques f(a) f(a) > 0 dana are
```

2. Sur [2, 3], f ne s'annule pas. Donc dans l'algorithme, on aura toujours f(a)f(c) > 0, donc a=c. Le programme renvoie donc $3 - \epsilon$.

```
13. def dicho(f,a,b,eps):
2    if f(a)*f(b)>0:
3         return('nous ne savons pas si f s annule entre a et b')
4    while (b-a)>2*eps:
5         c=(float(a)+b)/2
6         if f(a)*f(c)<0:
7         b=c
8         else:
9         a=c
10    return((a+b)/2)</pre>
```

Solution 7.

```
def rec(f,u,n):
    for i in range(n):
        u=f(u)
        return(u)
```

Solution 8. Selon le choix de $u_0 \neq 0$, la suite converge vers $\sqrt{2}$ ou $-\sqrt{2}$.

Solution 9. Avec dicho(g,1,2,0.001), on trouve une approximation de $\sqrt{2}$ à 0,001 près. Pour comparer les deux programmes, on ajoute un compteur à la fonction dicho pour compter le nombre d'itérations effectuées par l'algorithme :

Par exemple, pour dicho(g,1,2,0.001), on obtient les trois premiers chiffres de $\sqrt{2}$ en 9 itérations. Avec rec(f,1,9), on obtient les 12 premiers chiffres de $\sqrt{2}$. La fonction rec est donc plus rapide que dicho.