

01. Паросочетание на дереве 64 megabytes / 1 second / stdin / stdout

Дерево — это связный ациклический граф. Паросочетанием в графе называется множество ребер, попарно не имеющих общих вершин. Требуется найти максимальное по размеру паросочетание в дереве.

Входные данные:

В первой строке содержится N — количество вершин в дереве $(1 \le N \le 10^5)$.

В следущих N-1 строках задается по два целых числа U_i V_i — ребра дерева ($1 \le U_i, V_i \le U_i$). N).

Выходные данные:

Выведите размер максимального паросочетания.

Пример ввода	Пример вывода
12	5
1 2	
2 3	
4 2	
4 5	
5 6	
5 7	
7 8	
4 9	
9 10	
4 11	
11 12	

02. Рельефная местность

64 megabytes / 1 second / stdin / stdout

Дана рельефная местность. Местность разделена на $N \times M$ квадратов и описывается двумерной матрицей A, где A_{ij} высота в квадрате (i,j). Определить максимальный объем воды, который может остаться после дождя. Вода распространяется на небОльшую по высоте местность в четырех направлениях (по вертикали и горизонтали). Считается, что за край местности может утечь сколь угодно много воды.

Входные данные:

В первой строке содержится T — количество тестов ($T \leq 20$). Далее описываются T тестов.

В первой строке теста задаются два целых числа N и M — размеры местности (1 $\leq N, M \leq 50$). Далее задаются A_{ij} — высоты местрости в квадратах (1 $\leq A_{ij} \leq 10000$).

Выходные данные:

Для каждого теста выведите максмальный объем воды, который может остаться на местности.

Пример ввода	Пример вывода
1	5
3 6	
3 3 4 4 4 2	
3 1 3 2 1 4	
7 3 1 6 4 1	

Пояснение:

После проливного дождя уровень воды в клетка (2;2), (2;4) и (2,5) будет высотой 3.

03. Максимальный неподпалиндром

64 megabytes / 1 second / stdin / stdout

В заданной строке S найти максимальную по длине подстроку, которая не является палиндромом.

Входные данные:

На вход задается строка S, состоящая из строчных букв латинского алфавита $(1 \le |S| \le 10^5)$.

Выходные данные:

Выведите одно целое число — длина максимального непалиндрома. Если такой подстроки не существует, то выведите -1.

Пример ввода	Пример вывода
aba	2

04. Инверсии

64 megabytes / 2 seconds / stdin / stdout

Перестановкой чисел $1,2,3\dots N$ назовем такую последовательность длины N, что $1\le A_i\le N,$ и все числа последовательности различны.

Инверсией в перестановке A размера N называется всякая пара индексов (i,j) такая, что i < j и $A_i > A_j$.

В данной задаче необходимо найти число инверсий в заданной перестановке.

Входные данные:

В первой строке задано число N ($1 \le N \le 10^6$). Во второй строке задана перестановка чисел.

Выходные данные:

Выведите одно целое число — количество инверсий во входной перестановке.

Пример ввода	Пример вывода
5	1
1 2 3 5 4	
3	3
3 2 1	

05. Високосный

64 megabytes / 1 second / stdin / stdout

Високосный год — год в юлианском и григорианском календарях, продолжительность которого равна 366 дням — на одни сутки больше продолжительности обычного, невисокосного года. В юлианском календаре високосным годом является каждый четвёртый год, в григорианском календаре из этого правила есть исключения. Год в григорианском календаре является високосным, если он кратен 4 и при этом не кратен 100, либо кратен 400. Определите, является ли заданный год високосным в григорианском календаре.

Входные данные:

В первой и единственной строке задается целое число Y — год, который нужно проверить (2000 $\leq Y \leq$ 9999).

Выходные данные:

Если заданный год високосный, то выведите YES, иначе — NO.

Пример ввода	Пример вывода
2001	NO
2000	YES

06. Кратчайший путь

64 мегабайта / 1 секунда / Стандартный ввод / Стандартный вывод

Задан связный неориентированный взвешенный граф G. В графе возможно наличие нескольких ребер между одной и той же парой вершин. Найдите вес кратчайшего пути между двумя заданными вершинами A и B.

Входные данные:

Первая строка содержит целое число N $(1 \le N \le 10^5)$ — количество вершин графа. Вторая строка содержит целое число M $(1 \le M \le 10^6)$ — количество ребер графа.

В каждой из следующих M строк содержатся ровно три числа $A,\,B,\,C$ $(1\leq A,B\leq N,\,1\leq C\leq 10^6)$. Эти числа описывают ребро, соединяющее вершины с номерами A и B и имеющее вес C.

Последние две строки содержат целые числа A и B ($1 \le A, B \le N$) - начальную и конечную вершины пути. Вершины нумеруются последовательными натуральными числами от 1 до N.

Выходные данные:

Единственная строка выходного файла должна содержать одно целое число, равное весу кратчайшего пути между вершинами A и B в графе G.

Пример ввода	Пример вывода
3	2
3	
1 2 3	
1 3 1	
2 3 1	
1	
2	

07. Добавление

64 мегабайта / 1 секунда / Стандартный ввод / Стандартный вывод

Дан неориентированный граф. Определить минимальное количество ребер, после добавления которых граф станет связным. Вывести -1 если ответа не существует.

Входные данные:

В первой строке два числа N $(1 \le N \le 10^4)$ и M $(1 \le M \le 10^5)$ — количество вершин и ребер соответственно.

Следующие M описывают ребра: пара чисел U, V — номера вершин, соединенных ребром.

Выходные данные:

Вывести ответ на задачу. Если ответа не существует, то вывести -1.

Пример ввода	Пример вывода
4 2	1
1 2	
3 4	

08. Простая задача

64 megabytes / 1 second / stdin / stdout

Дана последовательность целых чисел. Найти максимальное число, которое может быть получено путем перемножения двух любых чисел последовательности.

Входные данные:

В первой строке содержится число N — количество чисел в последовательности ($2 \le N \le 10^5$).

Во второй строке содержатся числа A_1 A_2 ... A_N — элементы последовательности, разделенные пробелом ($|A_i| \leq 10^9$).

Выходные данные:

Выведите максимальное число, которое может быть получено путем перемножения двух любых чисел последовательности.

Пример ввода	Пример вывода
5	20
1 2 3 4 5	

09. Выравнивание

64 megabytes / 1 second / stdin / stdout

Дана последовательность A_i , состоящая из N целых чисел. За одно действие можно зафиксировать произвольный промежуток одинаковых элементов последовательности и увеличить все элементы этого промежутка на 1. Необходимо за минимальное количество действий уравнять все элементы.

Входные данные:

В первой строке вводится число N $(1 \le N \le 10^5)$. Во второй строке вводятся элементы последовательности A_i $(0 \le A_i \le 10^9)$.

Выходные данные:

В единственной строке выведите одно число — минимальное количество действий, которое необходимо выполнить для того, чтобы уравнять все элементы последовательности.

Пример ввода	Пример вывода
4	3
3 1 2 4	

10. RMQ наоборот

64 megabytes / 1 second / stdin / stdout

Дано M троек чисел L_i, R_i, V_i . Необходимо найти такую последовательность A_i , состоящую из N целых чисел, у которой минимум на отрезке $[L_j, R_j]$, будет равен V_j (для всех $1 \le j \le M$).

Входные данные:

В первой строке вводится пара чисел $N, M \ (1 \le N, M \le 10^5).$

В следующих M строках вводятся тройки чисел L_i, R_i, V_i ($1 \le L_i \le R_i \le N, 0 \le V_i < 10^9$).

Выходные данные:

Выведите любую последовательность A_i , удовлетворяющую заданным ограничениям. Гарантируется, что такая последовательность будет существовать.

Пример ввода	Пример вывода
5 4	5 4 2 1 3
1 4 1	
3 5 1	
2 3 2	
1 2 4	

11. Максимальное К-произведение

64 megabytes / 1 second / stdin / stdout

Дана последовательность N целых чисел $(1 \le N \le 10^5, |A_i| \le 2 \cdot 10^9)$ и число K $(1 \le K \le N)$. Найти K чисел последовательности, произведение которых максимально.

Входные данные:

В первой строке содержатся два целых числа N и K.

Во второй строке через пробел перечислены N элементов последовательности A.

Выходные данные:

Выведите максимальное произведение. Так как ответ может быть достаточно большим, выведите его по модулю $10^9 + 7$.

Пример ввода	Пример вывода
3 2	6
-2 -3 3	

12. Большой куш

64 megabytes / 1 second / stdin / stdout

Известный фокусник Донни разбогател на очень простой игре. Он играл в нее на деньги с самыми богатыми и знаменитыми личностями, но никто ни разу не смог его обхитрить. И тут очередь дошла до вас. Вы белорусский бизнесмен и хотите удвоить свое состояние. Обыграйте Донни и сорвите куш! Так же вы можете отказаться от игры, если, при виде начальной позиции, на вас нападет плохое предчувствие.

Правила игры следующие: Изначально дано число X. За один ход разрешается отнять от числа X любую цифру, кроме 0, которая входит в число X. Проигрывает тот, кто не может ходить, то есть когда будет получено число 0.

Входные данные:

В первой строке задается число X — начальное число для игры $(0 \le X \le 10^{10})$.

Выходные данные:

Выведите цифру первого хода, которая приведет вас к победе, иначе выведите NO, если хотите отказаться от игры.

Пример ввода	Пример вывода
11	1
10	NO

Пояснение:

В первом тесте вам можно походить только 1, после чего Донни достается число 10, из которого он тоже может отнять только 1, оставив вам 9, из которого вы можете походить в 0.

13. Сумма на дереве 64 мегабайта / 1 секунда / Стандартный ввод / Стандартный вывод

Дано дерево. Определить сумму весов всех кратчайших расстояний между каждой парой вершин.

Входные данные:

В первой строке число $N~(1 \le N \le 10^5)$ — количество вершин.

Следующие N-1 строк описывают ребра: тройка чисел A, B, C — номера вершин, соединенных ребром и вес ребра соответственно $(0 \le C \le 10^6)$.

Выходные данные:

Вывести ответ на задачу по модулю $10^7 + 7$.

Пример ввода	Пример вывода
3	20
1 2 3	
2 3 2	

14. Следующее

64 megabytes / 1 second / stdin / stdout

Дано число X. Надо найти наименьшее число большее, чем X, которое может быть получено из X перестановкой цифр.

Входные данные:

В первой строке задается целое число X ($1 \le X < 10^6$).

Выходные данные:

Если ответ не существует, то выведите -1, иначе искомое число.

Пример ввода	Пример вывода
9	-1
465	546

15. Инвертирование

64 megabytes / 1 second / stdin / stdout

Дана строка S и Q запросов. Запрос представляет собой пару чисел L и R — промежуток строки S, на котором нужно инвертировать регистр символов. Требутеся найти строку S после выполнения всех запросов.

Входные данные:

В первой строке задается строка S, состоящая из строчных и прописных букв латинского алфавита $(1 \le |S| \le 10^5)$.

Во второй строке задается число Q — количество запросов ($0 \le Q \le 10^6$).

В следующих Q строках задаются запросы парой целых чисел L_i R_i $(1 \le L_i, R_i \le N)$.

Выходные данные:

Выведите строку S после выполнения всех запросов.

Пример ввода	Пример вывода
bsuirolympiadguyschool	BSUIROlympiadGuySchool
10	
1 5	
5 9	
11 16	
11 13	
15 16	
15 19	
15 16	
18 19	
5 6	
6 9	

16. Количество способов

64 мегабайта / 2 секунда / Стандартный ввод / Стандартный вывод

Дан неориентированный граф. Определить количество маршрутов (по ребрам можно перемещаться несколько раз) длиной L между вершинами U и V.

Входные данные:

В первой строке два числа N ($1 \le N \le 100$) и M ($1 \le M \le 10^5$) — количество вершин и ребер соответственно.

Во второй строке вводятся $U\ V\ L\ (1 \le U, V \le N,\ 0 \le L \le 10^9).$

Следующие M строк описывают ребра: пара чисел A, B — номера вершин, соединенных ребром.

Выходные данные:

Вывести ответ на задачу по модулю $10^9 + 7$.

Пример ввода	Пример вывода
4 4	2
1 4 2	
1 2	
2 4	
1 3	
3 4	
1 1	2
1 1 1	
1 1	

17. Шахматная игра

64 megabytes / 1 second / stdin / stdout

Дано поле $N \times M$. На нем расположены две ладьи, координаты каждой (X_1, Y_1) и (X_2, Y_2) соответственно. Ладья ходит по классическим правилам шахмат: за один ход может переместиться в любую клетку, расположенную на одной вертикали либо горизонтали. Одна ладья может сбить другую, если та находится с ней на одной горизонтали либо вертикали.

Основное отличие от классических правил: ладья не может переместиться в клетку, если во время передвижения к ней она станет на клетку, которая находится под боем другой ладьи. У первого игрока в распоряжении первая ладья, а у второго — вторая. Игроки ходят по очереди, ход пропускать нельзя. Первым ходит первый игрок. Проигрывает тот, кому некуда ходить (куда бы ни пошел — собьют). Определите кто победит при оптимальной игре обоих.

Входные данные:

В первой строке через пробел вводятся 6 целых чисел N M X_1 Y_1 X_2 Y_2 $(2 \le N, M \le 50, 1 \le X_1, X_2 \le N, 1 \le Y_1, Y_2 \le M, X_1 \ne X_2$ или $Y_1 \ne Y_2)$.

Выходные данные:

Выведите YES, если победит первой игрок, иначе NO.

Пример ввода	Пример вывода
2 2 1 1 2 2	NO
3 3 1 1 3 3	NO
4 4 1 1 2 4	YES

18. Удаление

64 мегабайта / 1 секунда / Стандартный ввод / Стандартный вывод

Дан неориентированный граф. Определить минимальное количество ребер, после удаления которых между каждой парой вершин будет существовать только один маршрут (без повторений в нем ребер). Вывести -1, если ответа не существует.

Входные данные:

В первой строке два числа N $(1 \le N \le 10^4)$ и M $(1 \le M \le 10^5)$ — количество вершин и ребер соответственно.

Следующие M описывают ребра: пара чисел U, V — номера вершин, соединенных ребром.

Выходные данные:

Вывести ответ на задачу. Если ответа не существует, то вывести -1.

Пример ввода	Пример вывода
5 6	2
1 2	
2 3	
3 1	
3 4	
4 5	
5 3	

19. 1087388483

64 megabytes / 1 second / stdin / stdout

Дана последовательность из N целых положительных чисел. Требуется определить можно ли путем перемножения некоторых чисел последовательности получить число 1087388483.

Входные данные:

В первой строке содержится число N ($1 \le N \le 10^5$).

В следующих N строках содержатся A_i — элементы последовательности ($0 \le A_i \le 2 \times 10^9$).

Выходные данные:

Если можно получить данное число, тогда выведите YES, иначе NO.

Пример ввода	Пример вывода
6	YES
1019	
1021	
1031	
1033	
1039	
1049	

20.~ Количество различных строк 64~ megabytes /~1~ seconds /~ stdout

Для заданной строки S требуется найти количество различных подстрок в ней.

Входные данные:

В единственной строке находится данная строка S, которая состоит только из маленьких латинских букв $(1 \le |S| \le 10^5)$.

Выходные данные:

Выведите одно число — искомую сумму.

Пример ввода	Пример вывода
aaaa	4
abcdef	21
abacabadabacaba	85

21. Путешествие с конём

64 megabytes / 1 second / stdin / stdout

Размеры прямоугольной размеченной квадратами доски $n \times m$. В нижнем левом квадрате доски (1,1) находится шахматный конь. Конь может ходить только согласно шахматным правилам — движение может быть двумя квадратами горизонтально и затем одним вертикально, или двумя квадратами вертикально и одним горизонтально. Например, если n=4 и m=3, и конь находится в квадрате (2,1), то следующим может быть ход (1,3) или (3,3) или (4,2). Для заданных положительных целых значений n,m,i и j требуется определить минимальное необходимое количество ходов коня для перемещения из начальной позиции (1,1) в квадрат (i,j).

Входные данные:

В единственной строке заданы четыре целых числа $n\ m\ i\ j$ — размеры доски и координаты конечного квадрата $(1 \le n, m \le 100,\ 1 \le i \le n,\ 1 \le j \le m).$

Выходные данные:

В единственной строке выведите минимальное количество ходов для перемещения или "NEVAR" если это невозможно.

Пример ввода	Пример вывода
3 3 2 2	NEVAR
15 79 13 47	24

22. Не содержащие строки

64 мегабайта / 1 секунда / Стандартный ввод / Стандартный вывод

Определить количество строк длины M из строчных букв латинского алфавита, в которых не содержится ни одна из заданной строки W_i .

Входные данные:

В первой строке задается два целых число N M — количество строк и длина искомых строк соответственно ($1 \le N, M \le 100$).

В следующих N строках задаются W_i — заданные строки $(1 \le |W_i| \le 100)$.

Выходные данные:

Выведите количество строк длины M, не содержащие в себе подстрок из W. Ответ выведите по модулю 10^9+7 .

Пример ввода	Пример вывода
3 1	23
z	
d	
b	