2.5 Boolean Functions

Venn Diagrams of Some Basic Functions

4-Input AND Functions

2,4 (c) Reduce to one literal A'B(D'+C'D) + B(A+A'CD) Factor A'BD' + A'BC'D + BA + BACD factor OCTB B (A'D'+A'C'D+A+A'CD) factorat A'D B(A'D'+A'D(C'+C)+A) B(AD +AD +A) Factor out A B(A'(D'+D)+A

2.6 Canonical and Standard forms Minterms/maxterms

- A shorthand notation for describing functions
- Any Boolean function can be represented by a truth table with 2^N rows (N variables)
- The literal combinations for 1's are called minterms and are grouped together with OR functions
- The complemented literal combinations for 0's are called maxterms and are grouped together with AND functions

2.6 Minterms/maxterms

Inp	uts	Output
A	В	X
0	0	0
0	1	1
1	0	1
1	1	0

The minterms of the XOR gate are:

A'B + AB'
Can be written as
$$m_1 + m_2$$

$$X = m_1 + m_2$$
 (minterm 1 OR minterm 2) (product of sums)

The maxterms of the XOR gate are: (Note how maxterms are written: don't sum the zeros)

$$(A + B) (A' + B')$$

Can be written as M_0M_3

$$X = M_0M_3$$
 (maxterm 0 AND maxterm 3) (sum of products)

2.6 Minterms/maxterms

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

			М	interms	Maxte	erms
x	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

2.6 Minterms/maxterms

Table 2.4 *Functions of Three Variables*

X	y	Z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$f_1 = m_1 + m_4 + m_7$$
 $f_1 = M_0 M_2 M_3 M_5 M_6$ $= x'y'z + xy'z' + xyz$ $= (x+y+z)(x+y'+z')(x'+y+z')(x'+y+z')$

$$f_2 = m_3 + m_5 + m_6 + m_7$$

 $f_2 = M_0 M_1 M_2 M_4$
 $= x'yz + xyz' + xyz' + xyz$
 $= (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)$

2.6 Canonical and Standard forms minterms/maxterms

	Example	of a	digital logic function interlock system
	W X	[=	w-foot on brake
all	00	0	X - drive seat kelt on
combinations	01	0	
of two variables	10	0	
	F 100 -	()) (
	F=M3=	wx	
II	Both a		
			belt most be on
	W)—F	

2.6 Canonical and Standard forms Minterms/maxterms

Example of a digital logic function seat-belt interlock system

WXYZ F	x - door shut	w-foot on brake
00000		X - driven scat kelt on
00100	belt on	
01000	N=4 variables	
01010	ZN rows of the	
01110	truth table	
10000	The for the cante start	_
10010		
0100	truth table = representation of function	
11000	minterms = F=mis = wxyz	
11010	circuit w	
11100/	X	
	2.	

2.8 Digital Logic Gates

Name	Graphic symbol	Algebraic function	Truth table				x y	F
AND	<i>x</i>	$F = x \cdot y$	x y F 0 0 0 0 1 0	NAND	<i>yF</i>	F = (xy)'	$egin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ \end{array}$	1 1 1 0
	,		1 0 0 1 1 1		x —	n / . u	x y 0 0	F 1
OR	<i>x</i>	F = x + y	$ \begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \end{array} $	NOR	yF	F = (x + y)'	0 1 1 0 1 1	0 0
	у		1 0 1 1 1 1	Exclusive-OR	x — 	F = xv' + x'v	x y 0 0	F 0
Inverter	x F	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $	(XOR)	y — F	$F = xy' + x'y$ $= x \oplus y$	0 1 1 0 1 1	1 1 0
Buffer	x	F = x	$\begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$	xclusive-NOR or equivalence	$y \longrightarrow F$	$F = xy + x'y'$ $= (x \oplus y)'$	0 0 0 1 1 0	1 0 0
							1 1	1

FIGURE 2.5
Digital logic gates

Truth Table

	truth t	alde -defines afunction	
		Z' rows for N variables	
	ABC	minterns	
mo	000	$0 \qquad Y = \sum (m_1 m_2)$	
MS	000	1	
Mo	010	$= m_1 + m_2 \qquad (01)$	
Ma	011	0 = ABC + ABC	
ma	100	0	
Ms	101	0 maxterms	
M6	110	/ A I W/ I A I A I A I	VD)
Ma	[11]	0 = MOMONO MOMO	
-	-	= (A+B+C)(A+B+C)(A+B+C)	
		(change operation Mo M3 M4	
		É complement	
		E complement 'Variable)	

Convert Representations of a Function

2.17a Obtain the troth table Y = (b + cd)(c + bd)

bcd	Led	(btcd)	[bd	(C+6d)	1
000	0	0	0	0	O
001	0	0	0	0	0
010	0	0	0	1	0
011	1	1	0	1	1
100	0	t	0	0	0
101	0	1	1	l l	1
110	0	1	0	1	1
(11	(1	1	1	1
		1		AND	7

1						
bcd	cd	bc	bd1	(cd+b'c+ba')	(b+d)	LY
000	0	0	10	0	0	Ó
001	0	0	0	0	l	0
010	0	1	0		0	0
011		1	0		((
100	0	0	1	1	l	1
101	0	0	0	0	l	0
110	0	0	1	1	1	1
111	1	-	0	1	1	1
	•				1 1 AND	
					11111	

tro	44	ta	ble		_	,		
a	Ь	C	d	e	(bcd)	ae	ae(bcd)	
0	0	0	0	0	1	0	0	
0	0	0	0	1	1	0	0	
0	0	0	1	0	1	0	0	
0	0	0	1	1	1	0	0	
0	0	1	0	0	1	0	0	
0	0	1	0	l	li	0	0	
0	0	1	1	0	1	0	0	
0	0	1	1	1	- 1	0	0	
0	1	0	O	0	1	0	0	
0	1	0	0	1	i	0	0	
D	1	0	1	0	l	0	0	
D	1	0	١	((0	0	
			5		1	1		
			40					

2.20 Find the complement of the following functions in sum-of-minterns form

A B C D | F | F | F |
$$(3,5,6)$$
 | $(5,7)$ | (6) | (6) | (6) | $(7,7)$

True or false

Use Boolean algebra

$$X'Y' + X'Z + X'Z' = X'Z' + Y'Z' + X'Z$$
 $X'(Y'+Z+Z') = X'Z' + Y'Z' + X'Z$
 $X'(Z'+Z) + Y'Z'$
 $X' = X' + Y'Z'$ Not equal

Or a truth table

XYZ	X	1/2	X+4'Z'
000		1	1
001	1.1	0	t
010	1 1	0	l
011	1	0	l
100	0	t l	1
101	0	0	0
1101	0	0	0
1111	0	0	0
,	1	1	1
	n	ot equ	a l

Boolean Expressions from Circuits

Boolean Expressions from Circuits

2 13 Draw the logic diagram to implement the following Boolean expressions. y = (v + x') (y' + z) Bad notation – y should not be used as and input and output Y= (UDY) +X

$$Z.13(c) \quad Y = (U' + X') (Y + Z')$$

$$X \quad D$$

$$Y \quad Z$$

$$Z.13(0) \quad Y = U(X \oplus Z) + Y'$$

$$Z \quad Z$$

$$Z \quad Z$$

2.13(e)
$$Y = U + Y = V + V \times Y$$

U Y Z X

2.13(f) $Y = U + X + X'(U+Y')$

U X Y

U X Y