R-CNN Object Detection Summary

extract and explain contents

The document "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation" by Ross Girshick et al. introduces R-CNN (Regions with CNN features) for object detection. Here's a summary and explanation of the key points from the paper:

1. Introduction to R-CNN

- Traditional object detection models (e.g., using HOG, SIFT) had slow progress on datasets like PASCAL VOC.
- The paper introduces a new approach combining region proposals with CNNs (R-CNN).
- **Key Idea**: Apply deep learning to object detection using region proposals.
- R-CNN achieves **53.3% mAP on VOC 2012**, significantly better than previous models.

2. R-CNN Pipeline

The method works in four steps:

- 1. **Input Image** → Processed for detection.
- 2. **Region Proposals (~2000 regions per image)** → Identify potential objects.
- 3. **Feature Extraction using CNN** → Compute deep features.
- 4. **Classification using SVMs** → Determine object categories.

This method significantly outperformed previous sliding-window techniques like **OverFeat**.

3. Innovations in R-CNN

- Region Proposals: Uses Selective Search to generate category-independent object proposals.
- CNN Feature Extraction: Extracts 4096-dimensional vectors from proposals.
- Fine-Tuning Strategy: Uses pre-training on ImageNet and then fine-tunes on smaller datasets like PASCAL VOC.
- **Bounding Box Regression**: Reduces localization errors, improving accuracy.

4. Comparison with Previous Methods

Model	mAP on VOC 2010
Deformable Part Models (DPM)	33.4%
OverFeat (CNN-based sliding window)	24.3%
R-CNN (without bounding box regression)	50.2%
R-CNN (with bounding box regression)	53.7%

5. Key Observations

- Fine-tuning CNNs on **domain-specific datasets** improves accuracy.
- R-CNN is scalable and can be extended to thousands of object classes.
- Limitations:
 - Computationally expensive (requires feature extraction for each region).
 - Runs slowly, taking seconds per image.

6. Applications & Future Improvements

- Semantic Segmentation: The method can be adapted for pixel-wise segmentation.
- Future Work:
 - Reduce computation time (later solved by Fast R-CNN & Faster R-CNN).
 - Improve localization further.

Would you like a deeper breakdown of any section? 🚀

step by step process with example

Step-by-Step Process of R-CNN with an Example

Let's break down **R-CNN** (**Regions with CNN features**) step by step using an example of detecting objects in an image.

Step 1: Input Image

📌 Example: Suppose we have an image of a street with a car, person, and dog.

Example Image

📌 Goal: Identify and classify objects in the image.

Step 2: Generate Region Proposals

- Instead of analyzing the whole image, R-CNN first generates potential object regions (around 2000).
- This is done using Selective Search, which identifies areas that might contain objects.

Image with Region Proposals

Example:

Selective Search generates 2000 regions in our image:

- A box around the car
- A box around the person
- A box around the dog
- Several other background regions (false positives)

Step 3: Feature Extraction using CNN

- Each of these **2000 region proposals** is resized to **227×227 pixels** and fed into a **pre-trained CNN** (like AlexNet).
- The CNN extracts features (4096-dimensional vector) from each region.

📌 Example:

- Car region → Feature Vector 1
- Person region → Feature Vector 2
- Dog region → Feature Vector 3
- Background region → Feature Vector 4 (useless)

Feature Vectors for Regions

- **←** → [0.2, 0.7, 0.1, ..., 0.3]
- $\uparrow \rightarrow [0.5, 0.3, 0.8, ..., 0.2]$
- $\frac{4}{3}$ → [0.1, 0.6, 0.9, ..., 0.4]

Step 4: Object Classification using SVM

The 4096-dimensional feature vectors are classified using Support Vector Machines
(SVMs) trained for each object class.

📌 Example:

- Feature Vector 1 → ← Car (Yes), Person (No), Physical Property (No)
- Feature Vector $3 \rightarrow \triangle$ Car (No), \$ Person (No), \$ Dog (Yes)
- ✓ R-CNN correctly classifies the regions.

Step 5: Bounding Box Refinement (Regression)

• The initial bounding boxes may not be perfect, so **bounding box regression** fine-tunes them for better localization.

📌 Example:

The car's bounding box is slightly off → Regression shifts it slightly to center it correctly.

Step 6: Non-Maximum Suppression (NMS)

- Many regions overlap, so Non-Maximum Suppression (NMS) keeps only the most relevant ones.
- It removes duplicate detections and keeps the highest confidence box.

Example:

- Car Region 1 (90% confidence) ✓ → Kept
- Car Region 2 (75% confidence) X → Removed
- Car Region 3 (60% confidence) X → Removed

Step 7: Final Output

After all steps, the final detected objects are:

- Car (a) at (x1, y1, x2, y2)
- **V** Person ([♣]) at (x1, y1, x2, y2)
- Dog (%) at (x1, y1, x2, y2)

Final Output Image with Bounding Boxes

Summary of R-CNN Steps

Step	Process	Example Output
1	Input Image	
2	Region Proposals (~2000)	Multiple boxes (some around objects, some background)
3	CNN Feature Extraction	Extracts features from each region
4	SVM Classification	Assigns labels (Car, Person, Dog)
5	Bounding Box Regression	Adjusts box position
6	Non-Maximum Suppression	Removes duplicate boxes
7	Final Object Detection	🚗, 🧍 , 🐕 with correct bounding boxes

Limitations of R-CNN

- **X Slow:** Running CNN on 2000 regions per image is **computationally expensive**.
- X Not End-to-End: Requires separate training for CNN and SVMs.
- **X** Large Storage: Needs to store CNN features for all regions, consuming memory.

✓ Solution?

- Fast R-CNN (single pass, no redundant feature extraction)
- Faster R-CNN (introduces Region Proposal Network, much faster)

Would You Like a Comparison with Fast R-CNN & Faster R-CNN? 🚀