Outer measures of Vitali's nonmeasurable sets

Jeffry L. Hirst Jonathan E. Loss

July 20, 2007

Abstract

We use transfinite recursion and diagonalization to construct a Vitali nonmeasurable set of outer measure r for each $r \in (0, 1]$.

In 1905, Vitali proved the existence of a subset of [0,1] with no Lebesgue measure [2]. His construction can be summarized in two sentences. For $x,y \in [0,1]$, define an equivalence relation by saying $x \sim y$ precisely when x-y is rational. Any set consisting of exactly one real from each equivalence class is nonmeasurable. We call a set constructed in this fashion a *Vitali nonmeasurable set*.

The Lebesgue outer measure of a set A, denoted by $\mu^*(A)$, is defined by

$$\mu^*(A) = \inf_{A \subset \bigcup_{n \in \mathbb{N}} (a_n, b_n)} \sum_{n \in \mathbb{N}} (b_n - a_n)$$

where the infimum is taken over all possible countable sequences of open intervals $\langle (a_n, b_n) \mid n \in \mathbb{N} \rangle$ such that $A \subset \bigcup_{n \in \mathbb{N}} (a_n, b_n)$. If X is any Vitali nonmeasurable subset of [0,1] and \overline{X} is its relative complement, then it is easy to show that $\mu^*(\overline{X}) = 1$. (See the discussion following the theorem and proof.) The outer measure of X is more varied. At the extremes, since every set of zero outer measure has zero Lebesgue measure and X is nonmeasurable, we have $\mu^*(X) > 0$. Also, $\mu^*([0,1]) = 1$, so $\mu^*(X) \leq 1$. In fact, $\mu^*(X)$ can be any value in (0,1], as shown in the following theorem.

Theorem 1. For every $r \in [0,1)$ there is a Vitali nonmeasurable set with $\mu^*(X) = r$.

Proof. We will prove the theorem for r=1 and generalize in the last paragraph. If $\mu^*(X) < 1$, then there is a family $I = \langle (a_n, b_n) \mid n \in \mathbb{N} \rangle$ of open intervals with rational endpoints such that $X \subset \cup_{n \in \mathbb{N}} (a_n, b_n)$ and $\sum_{n \in \mathbb{N}} (b_n - a_n) < 1$. Let \mathfrak{c} denote the cardinality of the reals and let $\langle I_\alpha \mid \alpha < \mathfrak{c} \rangle$ be an enumeration of all countable families of open intervals with rational endpoints whose lengths sum to a value less than 1. We will use transfinite recursion to construct a Vitali nonmeasurable set X so that for each $\alpha < \mathfrak{c}$, I_α is not a cover of X. Our construction can be characterized as a diagonalization argument.

Let x_0 be any element not in the union of the intervals in I_0 , so that $x_0 \in \overline{\cup I_0}$. Using the equivalence relation from Vitali's construction, let $[x_0] = \{y \in [0,1] \mid y \sim x_0\}$. If x_α is defined for all $\alpha < \beta < \mathfrak{c}$, let x_β be any element of $\overline{\cup I_\beta} - \bigcup_{\alpha < \beta} [x_\alpha]$. Such an x_β always exists by the following cardinality argument. The set $\overline{\cup I_\beta}$ is a Lebesgue measurable subset of [0,1] with positive measure, and therefore has cardinality \mathfrak{c} . (See the discussion following the proof for more on this.) For each α , $[x_\alpha]$ is countable, so $|\bigcup_{\alpha < \beta} [x_\alpha]| = \sup\{\aleph_0, |\beta|\} < \mathfrak{c}$. Thus $\overline{\cup I_\beta} - \bigcup_{\alpha < \beta} [x_\alpha]$ is nonempty and x_β can be selected.

From the construction, if $\alpha \neq \beta$ then $x_{\alpha} \not\sim x_{\beta}$. Let X be any Vitali nonmeasurable set containing $\{x_{\alpha} \mid \alpha < \mathfrak{c}\}$. Since no countable sequence of intervals in $\langle I_{\alpha} \mid \alpha < \mathfrak{c} \rangle$ covers X, we have $\mu^*(X) \not< 1$, and so $\mu^*(X) = 1$.

To generalize the result, fix $r \in (0, 1]$. Carry out the preceding construction in [0, r]. Since every Vitali equivalence class of [0, 1] contains a Vitali equivalence class of [0, r], the resulting set is a Vitali nonmeasurable subset of [0, 1] with outer measure r.

The preceding proof uses the fact that every subset of [0,1] of positive Lebesgue measure has cadinality \mathfrak{c} . This is a trivial consequence of the countable additivity of measure and the continuum hypothesis, but can also be proved directly in ZFC. By Theorem B of §16 in Halmos [1], if S is a set of positive Lebesgue measure, then the difference set $D = \{x - y \mid x, y \in S\}$ contains an open interval. Thus, $|D| = \mathfrak{c}$. Since S is infinite, |S| = |D|, so $|S| = \mathfrak{c}$.

This same theorem from Halmos can be applied to show that if X is a Vitali nonmeasurable set then $\mu^*(\overline{X}) = 1$. Suppose by way of contradiction that $\mu^*(\overline{X}) < 1$ and let $\langle (a_n, b_n) \mid n \in \mathbb{N} \rangle$ be an open cover of \overline{X} with $\sum_{n \in \mathbb{N}} (b_n - a_n) < 1$. The complement of the union of the cover is a subset of X with positive Lebesgue measure. By the theorem of Halmos, the difference set for this subset of X must contain an interval, and therefore X must

contain two elements that differ by a nonzero rational. This contradicts the fact that X contains exactly one element from each Vitali equivalence class.

Bibliography

- [1] Paul R. Halmos, *Measure Theory*, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR **0033869** (11,504**d**)
- [2] Giuseppe Vitali, Sul problema della misura dei gruppi di punti di una retta (1905); reprinted in Giuseppe Vitali, Opere sull'analisi reale e complessa, Edizioni Cremonese, Florence, 1984. Carteggio. [Correspondence]; Edited and with an introduction by Luigi Pepe, Carlo Pucci, Arturo Vaz Ferreira and Edoardo Vesentini; With a biographical essay by Pepe. MR 777329 (86e:01077).