### Minutes of the last meet

Modulation Spectrogram Approach :CV approach

- SSIM AVERAGED IMAGE ANALYSIS over different partitions
- This week: Inspiration from ideas of discussion with Professor.
- Multichannel input considering images with different window sizes.

### BEST SO FAR USING SSIM



TRAIN ACCURACY: 94.37751004016064

TEST ACCURACY: 77.6824034334764



TRAIN ACCURACY: 91.96787148594377

TEST ACCURACY: 74.2489270386266









# Window sizes used in Extracting Spectrogram Images from Audio

```
# FUNCTIONS FOR MODULATION SPECTROGRAM

def modSpec(x, fs,win_size_sec=0.04):
    # win_size_sec = 0.04 # window length for the STFFT (seconds)
    win_shft_sec = 0.01 # shift between consecutive windows (seconds)

stft_modulation_spectrogram = ama.strfft_modulation_spectrogram(
    x,
    fs,
    win_size=round(win_size_sec * fs),
    win_shift=round(win_shft_sec * fs))

return stft_modulation_spectrogram
```

## Multichannel approach using 3 Images with Different Window sizes



STACKED OVER AXIS 0

**NEW INPUT DIM:** 

(1440, 640, 3)

#### **RESNET 50**

TRAIN ACCURACY: 100

TEST ACCURACY: 82.4

## TRAIN



#### **TEST**



#### **RESNET 18**

TRAIN ACCURACY:

TEST ACCURACY: 81.1159





#### RESNET 152

TRAIN ACCURACY: 99.59

TEST ACCURACY:

66.52



