Sensorformer: Cross-patch attention with global-patch compression is effective for high-dimensional multivariate time series forecasting

https://arxiv.org/abs/2501.03284

O. Introduction

- 고차원 다변량 시계열 예측에서 기존 Transformer는 변수 간 동적 의존성을 충분히 포 착하지 못함
- 변수 수가 많고 데이터 길이가 길면 연산 복잡도와 메모리 문제 발생
- Sensorformer는 교차 패치 어텐션(cross-patch attention)과 글로벌 패치 압축 (global-patch compression)을 도입
- 이를 통해 변수 간 및 시간 간 상관관계를 동시에 모델링하면서 계산 효율성 확보
- 실험 결과 Sensorformer는 여러 고차원 시계열 데이터셋에서 기존 Transformer 대비 예측 정확도 향상
- 모델 설계는 계산 효율성과 예측 성능을 모두 고려, 다양한 산업 및 센서 데이터 적용 가능

1. Overview

- 고차원 다변량 시계열에서 변수 간 및 시간 간 의존성을 효과적으로 포착하는 것이 목표
- 다양한 도메인(산업 센서, 금융, 환경 등)에 적용 가능하도록 설계
- 계산 효율성과 예측 성능 동시 확보를 지향

2. Challenges

- 고차원 다변량 시계열에서는 변수 수가 많고 데이터 길이가 길어 기존 Transformer 계산 복잡도와 메모리 부담이 큼
- 변수 간 동적 의존성과 시간 간 관계를 동시에 학습하기 어려움
- 패치 단위로 입력을 나누더라도 정보 손실 가능성 존재
- 다양한 도메인과 센서 환경에서 일반화 가능한 모델 설계 필요
- 기존 Transformer 기반 모델은 일부 변수나 특정 시간 구간만 주목하는 경향이 있어 장기 예측 성능 제한
- 계산 효율성과 정확도를 동시에 만족시키는 설계가 어려움

3. Method

- 시계열 데이터를 패치 단위로 나누어 각 패치를 임베딩
- 글로벌 패치 압축(Global-patch compression)으로 전체 시계열 정보를 압축, 연산 효율성 확보
- 교차 패치 어텐션(Cross-patch attention)을 통해 변수 간과 시간 간 의존성을 동시에 학습
- 기존 Transformer 구조를 크게 변경하지 않고, 임베딩과 어텐션 모듈 중심으로 설계

- 모델은 패치 압축과 교차 어텐션을 반복하여 장기 의존성과 변수 간 상관관계를 효과적 으로 포착
- 다양한 고차원 시계열 데이터셋에서 일반화 가능하도록 설계

4. Experiments

- 여러 고차원 다변량 시계열 데이터셋에서 모델 성능 평가
- 데이터셋 도메인 산업 센서, 환경, 금융 등
- 기존 Transformer 기반 모델과 비교하여 교차 패치 어텐션과 글로벌 패치 압축 효과 분석
- Ablation study 진행 패치 압축 제거, 교차 어텐션 제거, 임베딩 방식 변경 시 성능 비교
- 장기 예측 성능, 계산 효율성, 일반화 능력 평가
- Sensorformer는 대부분 데이터셋에서 기존 모델 대비 예측 정확도 향상과 계산 효율 성 개선 확인

5. Results

Models Metric		Sensorformer (Ours)		iTransformer		ParahTST		Cressformer		TIDE		TimesNet		Dinour		SCINet		PEDformer		Stationary		Autoformer		
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTIN	96	0.329	0.369	0.334	0.368	0.334	0.374	0.404	0.426	0.364	0.387	0.338	0.375	0.345	0.372	0.418	0.438	0.379	0.419	0.386	0.395	0.505	0.475	
	192	0.371	0.389	0.374	0.389	0.376	0.393	0.45	0.451	0.398	0.404	0.374	0.387	0.38	0.389	0.439	0.45	0.436	0.441	0.459	0.444	0.553	0.496	
	336	0.4	0.41	0.426	0.42	0.404	0.413	0.532	0.515	0.428	0.425	0.41	0.411	0.413	0.413	0.49	0.485	0.445	0.459	0.495	0.464	0.621	0.537	
5	720	0.459	0.442	0.491	0.459	0.468	0.447	0.666	0.589	0.487	0.461	0.478	0.43	0.474	0.453	0.595	0.55	0.543	0.49	0.583	0.516	0.671	0.561	
	Ave	0.39	0.403	0.406	0.409	0.396	0.407	0.513	0.496	0.419	0.419	0.4	0.400	0.403	0.407	0.485	0.481	0.448	0.452	0.481	0.456	0.588	0.517	
ETTm2	96	0.176	0.263	0.18	0.263	0.176	0.262	0.287	0.366	0.207	0.305	0.197	0.267	0.193	0.292	0.286	0.377	0.260	0.287	0.192	0.274	0.255	0.334	
	192	0.246	0.306	0.25	0.309	0.243	0.306	0.414	0.492	0.29	0.364	0.249	0.309	0.284	0.362	0.399	0.445	0.269	0.328	0.28	0.339	0.281	0.34	
	336	0.311	0.351	0.311	0.348	0.306	0.346	0.597	0.542	0.377	0.422	0.321	0.351	0.369	0.427	0.637	0.591	0.325	9.366	0.334	0.361	0.339	0.372	
	720	0.413	0.406	0.412	0.406	0.407	0.405	1.73	1.042	0.558	0.524	0.406	0.403	0.554	0.522	0.96	0.735	0.421	0.415	0.417	0.413	0.433	0.432	
	Ave	0.286	0.332	0.288	0.332	0.293	0.33	0.757	0.61	0.358	0.404	0.291	0.333	0.35	0.401	0.571	0.537	0.365	0.349	0.306	0.347	0.327	0.371	
	96	0.381	0.4	0.386	0.405	0.414	0.419	0.423	0.448	0.479	0.464	0.384	0.402	0.386	0.4	0.654	0.599	0.336	0.419	0.513	0.491	0.449	0.459	
E	192	0.43	0.428	0.441	0.436	0.46	0.445	0.471	0.474	0.525	0.492	0.436	0.429	0.437	0.432	0.719	0.631	0.42	0.448	0.534	0.584	0.5	0.482	
	336	0.465	0.446	0.487	0.458	0.501	0.466	0.57	0.546	0.565	0.515	0.491	0.469	0.481	0.459	0.778	0.659	0.459	0.465	0.588	0.535	0.521	0.496	
	720	0.504	0.488	0.503	0.491	0.5	0.485	0.653	0.621	0.594	0.558	0.521	0.5	0.519	0.516	0.836	0.699	0.586	0.507	0.643	0.636	0.514	0.512	
	Ave	0.445	0.441	0.454	0.447	0.469	0.454	0.529	0.522	0.541	0.507	0.458	0.43	0.456	0.452	0.347	0.647	0.44	0.46	0.57	0.537	0.496	0.483	
	96	0.291	0.343	0.297	0.348	0.302	0.348	0.745	0.584	0.4	0.44	0.34	0.374	0.333	0.387	0.707	0.621	0.358	9.397	0.476	0.458	0.346	0.388	
ETTRE	192	0.373	0.394	0.38	0.4	0.388	0.4	0.877	0.656	0.528	0.509	0.402	0.414	0.477	0.476	0.86	0.689	0.429	0.439	0.512	0.493	0.456	0.452	
	336	0.426	0.45	0.428	0.432	0.426	0.433	1.043	0.731	0.643	0.571	0.452	0.452	0.594	0.541	1	0.744	0.496	0.487	0.552	0.551	0.482	0.486	
	720	0.432	0.448	0.431	0.448	0.432	0.445	1.104	0.763	0.874	0.679	0.462	0.468	0.831	0.657	1.249	0.818	0.463	0.474	0.562	0.56	0.515	0.511	
	Ave	0.381	0.404	0.384	0.407	0.387	0.407	0.942	0.684	0.611	0.55	0.414	0.427	0.559	0.515	0.954	0.723	0.432	0.449	0.526	0.516	0.45	0.455	
ECL	96	0.19	0.279	0.157	0.268	0.193	0.251	0.219	0.314	0.237	0.329	0.168	0.272	0.197	0.292	0.247	0.345	0.193	0.308	0.169	0.273	0.201	0.317	
	192	0.195	0.295	0.394	0.278	0.196	0.285	0.231	0.322	0.236	0.33	0.184	0.299	0.196	0.285	0.257	0.355	0.281	0.315	0.182	0.255	0.222	0.334	
	336	0.212	0.102	0.212	0.296	0.212	0.301	0.266	0.337	0.349	0.344	0.198	0.3	0.209	0.300	0.369	0.769	0.214	0.329	0.2	0.304	0.231	0.338	
	720	0.254	0.334	0.256	0.332	0.254	0.334	0.28	0.363	0.284	0.373	0.22	0.32	0.245	0.333	0.299	0.39	0.246	0.355	0.222	0.321	0.254	0.361	
	Ave	0.213	0.3	0.212	0.294	0.214	0.3	0.244	0.334	0.251	0.344	0.192	0.295	0.212	0.3	0.268	0.365	0.214	9.327	0.193	0.296	0.227	0.338	
	96	0.096	0.204	0.065	0.205	0.087	0.206	0.256	0.367	0.094	0.218	0.107	0.234	0.055	0.218	0.267	0.796	0.145	9.276	0.111	0.237	0.197	0.323	
Exchange	192	0.184	0.362	0.176	0.302	0.179	0.301	0.47	0.509	0.184	0.307	0.226	0.344	0.176	0.315	0.351	0.459	0.271	0.315	0.219	0.335	0.3	0.369	
	336	0.334	0.418	0.336	0.422	0.339	0.422	1,268	0.883	0.349	0.431	0.367	0.448	0.313	0.427	1.324	0.853	0.46	0.427	0.421	0.436	0.509	0.524	
	720	0.851	0.697	0.847	0.693	0.855	0.697	1.767	1.068	0.852	0.698	0.964	0.746	0.839	0.685	1.058	0.797	1,195	0.695	1.092	0.769	1.447	0.941	
	Ave	0.364	0.406	0.361	0.406	0.365	0.406	0.94	0.707	0.37	0.413	0.416	0.443	0.354	0.434	0.75	0.626	0.539	0.429	0.461	0.454	0.613	0.534	
-	96	0.507	0.339	0.511	0.345	0.548	0.353	0.811	0.500	0.805	0.493	0.593	0.321	0.65	0.396	0.788	0.499	0.587	0.366	0.612	0.331	0.613	0.388	
	192	0.506	0.338	0.519	0.348	0.534	0.345	0.817	0.509	0.756	0.474	0.617	0.336	0.598	0.37	0.789	0.505	0.684	0.373	0.613	0.34	0.616	0.382	
g g	336	0.521	0.343	0.539	0.359	0.546	0.349	0.83	0.517	0.782	0.477	0.629	0.336	0.605	0.373	0.797	0.506	0.621	0.383	0.615	0.328	0.622	0.337	
ar-Energy Weather Tia	720	0.555	0.149	0.565	0.378	0.582	0.366	0.839	0.524	0.719	0.449	0.64	0.38	0.645	0.394	0.541	0.523	0.636	0.382	0.653	0.355	0.66	0.408	
	Ave	0.523	0.345	0.534	0.358	0.533	0.353	0.824	0.513	0.76	0.473	0.62	0.336	0.623	0.363	0.904	0.509	0.61	0.376	0.624	0.54	0.628	0.379	
	96	0.186	0.223	0.189	0.229	0.184	0.224	0.19	0.265	0.202	0.261	0.172	0.22	0.196	0.255	0.221	0.306	0.217	0.296	0.173	0.223	0.266	0.336	
	192	0.232	0.263	0.235	0.266	0.232	0.263	0.236	0.266	0.242	0.298	0.219	0.261	0.237	0.296	0.261	0.34	0.276	0.336	0.245	0.285	0.307	0.367	
	336	0.285	0.302	0.255	0.306	0.295	0.303	0.292	0.323	0.287	0.335	0.28	0.306	0.283	0.335	0.309	0.378	0.339	0.38	0.321	0.338	0.359	0.395	
	720	0.358	0.35	0.369	0.353	0.361	0.351	0.39	0.412	0.351	0.386	0.365	0.359	0.345	0.381	0.377	0.427	0.489	0.428	0.414	0.41	0.419	0.429	
		0.356	0.285	0.27	0.289	0.266	0.285	0.277	0.812	0.271	0.32	0.359	0.287	0.265	0.317	0.292	0.363	0.389	0.36	0.288	0.314	0.338	0.382	
	Avg			0.27				0.31	0.331	0.312			9.292			9.237					0.249	0.338	0.711	
	96 192	0.233	0.276	0.279	0.276	0.239	0.281	0.734	0.725	0.339	0.399	0.25	0.318	0.29	0.378	0.25	0.344	0.242	0.342	0.215	0.272	0.554	0.692	
	336		0.312	0.311	0.325	0.303		0.734	0.725	0.359	0.416	0.319	0.33	0.353	0.415	0.304	0.38	0.282	0.376	0.254	0.296	0.941	0.092	
	720	0.292	0.312	0.311	0.325		0.321	0.769		0.308	0.425	0.339	0.337	0.356	0.413	0.308	0.388	0.357	0.427	0.285	0.295	0.941	0.723	
	120	0.292	0.313	9311	0.325	0.304	4319	0,705	0.765	0.57	0.425	0.338	4.337	0.336	0.413	0.308	0.388	0.357	9.427	0.283	0.299	9.352		
ŝ	Avg	0.271	0.3	0.284	0.308	0.281	0.307	0.641	0.639	0.347	0.417	0.301	0.319	0.33	0.401	0.282	0.375	0.291	0.381	0.261	0.381	0.885	0.711	
1st Count		16	19	- 3	7	7	9	0	- 0	0	0	5.	- 8	- 5	1	0	0	- 4	0	- 5	- 5	- 0	- 0	
2nd Count		15	14	16	17	- 8	- 11	0	0			- 3	- 11	2	- 3	0	- 0			- 5	- 3	0	- 0	
am of list and 2nd		64		40		35		0			2		30		11		0		5		19.			

- Sensorformer는 다양한 고차원 시계열 데이터셋에서 기존 Transformer 대비 예측 정확도 향상
- 교차 패치 어텐션과 글로벌 패치 압축이 장기 의존성과 변수 간 상관 관계 학습에 기여
- Ablation study에서 패치 압축이나 교차 어텐션 제거 시 성능 하락, 설계 중요성 확인
- 계산 효율성 측면에서도 기존 Transformer보다 메모리 사용량과 연산량 감소
- 도메인별 분석에서 산업 센서와 금융 데이터에서 가장 큰 성능 향상, 일부 환경 데이터에 서는 개선폭 작음

6. Insight

- Sensorformer는 교차 패치 어텐션과 글로벌 패치 압축으로 변수 간과 시간 간 의존성을 동시에 학습 가능
- 장기 예측에서 안정적 성능과 계산 효율성을 동시에 확보
- 패치 압축과 교차 어텐션 설계가 예측 성능에 큰 영향
- 도메인 특성에 따라 성능 차이 존재 산업 센서와 금융 데이터에서 효과가 특히 큼
- 향후 발전 가능성으로 더 다양한 데이터 유형과 센서 환경 확장, 실시간 예측, 다중 시계 열 적용 연구 가능