

A MATSim model for a low carbon future mobility in the UK context

David Alvarez Castro

UKRI EPSRC Supervisory team

Alistair Ford Philip James Roberto Palacín Dominik Ziemke

1. PhD project aims

To identify

- infrastructure interventions
- changing human behaviour

to **reduce GHG emissions** in urban areas in the Tyne and Wear region of England (blue area on the map) and enable the agents the use of **active modes**.

1. PhD project aims

To identify

- infrastructure interventions
- changing human behaviour

to **reduce GHG emissions** in urban areas in the Tyne and Wear region of England (blue area on the map) and enable the agents the use of **active modes**.

Four innovations to simulate transport scenarios with MATSim in the UK context:

- 1) a new, open-access and very detailed synthetic population methodology for any region in the UK;
- 2) an additional network attribute ("quietness")
- 3) a bicycle contribution code update
- 4) tailored "stick" and "carrot" scenarios

Demand

Synthetic population

Socio-demographic

Activity plan

Tools:

SPENSER platform (UoL)
Own developed codes (NU)
PAM (Arup)
OSMOX (Arup)

Datasets:

Census 2011
ONS 2019
National Travel Survey
OpenStreetMap

A simplified digital twin of the actual population (2019).

2.6 million inhabitants in area of study

Demand

Synthetic population

Socio-demographic

Activity plan

Tools:

SPENSER platform (UoL)
Own developed codes (NU)

PAM (Arup) OSMOX (Arup)

Datasets:

Census 2011 ONS 2019

National Travel Survey
OpenStreetMap

Individual characteristics

Person ID

Household ID

Age

Sex

Family dependencies

Marital status

Children dependency

Mobility access

Driving licence

Car access

Bike access

Spending power

Economic activity

Occupation

Annual Gross Income

Demand

Synthetic population

Socio-demographic

Activity plan

Tools:

SPENSER platform (UoL)
Own developed codes (NU)
PAM (Arup)
OSMOX (Arup)

Datasets:

Census 2011 ONS 2019

National Travel Survey

OpenStreetMap

Individual characteristics

Person ID

Household ID

Age

Sex

Family dependencies

Marital status

Children dependency

Mobility access

Driving licence

Car access

Bike access

Spending power

Economic activity

Occupation

Annual Gross Income

Demand

Synthetic population

Socio-demographic

Activity plan

Tools:

SPENSER platform (UoL)

Own developed codes (NU) PAM (Arup)

OSMOX (Arup)

Datasets:

Census 2011 ONS 2019

National Travel Survey

OpenStreetMap

Individual characteristics

Person ID

Household ID

Age

Sex

Family dependencies

Marital status

Children dependency

Mobility access

Driving licence

Car access

Bike access

Spending power

Economic activity

Occupation

Annual Gross Income

Similar socio-demographic attributes

National Travel Survey

Demand

Synthetic population

Socio-demographic

Activity plan

Tools:

SPENSER platform (UoL)
Own developed codes (NU)
PAM (Arup)
OSMOX (Arup)

Datasets:

Census 2011
ONS 2019
National Travel Survey
OpenStreetMap

Individual characteristics

Family dependencies

Mobility access

Spending power

PAM (Arup). Link: https://github.com/arup-group/pam
OSMOX (Arup). Link: https://github.com/arup-group/osmox
OpenStreetMap. Link: https://download.geofabrik.de/

Network

Tools:

Osmium, UK2GTFS, PUMA (Arup), GeNet (Arup)

Datasets:

OpenStreetMap UK GTFS Defra DEM Cyclestreet A simplified digital representation of the road and public transport network

Network

Tools:

Osmium,
UK2GTFS (ITS Leeds),
PUMA (Arup),
GeNet (Arup)

Datasets:

OpenStreetMap UK GTFS

Defra DEM Cyclestreet

Osmium: Link: https://osmcode.org/osmium-tool/
UK2GTFS Link: https://itsleeds.github.io/UK2GTFS/

Network

Tools:

Osmium,
UK2GTFS (ITS Leeds),
PUMA (Arup),
GeNet (Arup)

Datasets:

OpenStreetMap
 UK GTFS
 Defra DEM
 Cyclestreet

Defra DEM: Link: https://environment.data.gov.uk/DefraDataDownload/?Mode=survey

Network

Tools:

Osmium, UK2GTFS (ITS Leeds), PUMA (Arup), GeNet (Arup)

Datasets:

OpenStreetMap UK GTFS Defra DEM Cyclestreet

3. 1. Cycleability rating

Cycleability rating

Factors included:

- Road type
- Cycle infrastructure
- Path widths/quality
- Barriers, obstructions
- Land ownership
- Surface type and quality
- Kerbs

4. Bicycle contribution extension update

Bicycle contribution (Ziemke et al, (2019))

Extension of the agent-based transport simulation framework MATSim for bicycle traffic.

- Road comfort (OSM tags: surface, highway, smoothness)
- Road infrastructure type (OSM tag: highway)
- Road gradient (DEM)

4. Bicycle contribution extension update

Bicycle contribution (Ziemke et al, (2019))

Extension of the agent-based transport simulation framework MATSim for bicycle traffic.

- Road comfort (OSM) (surface, highway, smoothness)
- Road infrastructure type (OSM) (highway)
- Road gradient (DEM)
- Road quietness (Cyclestreets)

Marginal utility of quietness

$$\theta_{quietness(a)} = \theta_{max quietness(a)} \cdot (1 - quietness(a))$$

5. MATSim simulation

5. MATSim simulation. Calibration

Parameter	Values
Population sample	20%
Number of iterations	1,500
Controler	Qsim
Modes	car, car passenger, bike, walk, PT (bus. rail, metro, ferry)
Car use	Only by those with access to car: considerCarAvailability (true)
PT	Deterministic, SwissRailRaptor, SBBPt, useCapacityConstraints (false), access and egress (walk)
Bicycle extension	Marginal utility of comfort (0.0), infrastructure (0.0), gradient (-0.02), quietness (-0.035)
Strategies	80%, ReRoute (0.1), TimeAllocationMutator (0.1), SubtourModeChoice (0.1), ChangeExpBeta (0.7)
ASC	Car: -0.37 Car_passenger: -1.7 Bike: -1.1 Walk: 0.0 Bus: -7.2 Rail: -0.001 Subway: -0.001 Ferry: -0.001

5. MATSim simulation. Validation results

Validation Smulated_data TSGB0108b TW only TSGB0109b TW only TSGB0109b TW only work_carALL_perc work_bike_perc work_walk_perc work_bus_perc work_subway_perc work_railway_perc

% of transport modes used (school trip only)

Average trip time (min) per transport mode

Average trip distance (km) per transport mode

5. MATSim simulation. Validation results

5. MATSim simulation. Validation results

6. Full PhD project methodology

The phrase "**stick and carrot**" is a metaphor for the use of a combination of reward and punishment to induce a desired behaviour (Wikipedia).

Preliminarily results

1. Ultimate cycle network scenario

Carrot scenario:

Duplicated network only allowed for bikes

Quietness = 1.0 (fully safe and segregated cycle paths)

Transport mode	Change
Car (all)	- 0.52 %
PT	+ 0.37%
Walk	- 0.59%
Bike	+ 0.74%

Preliminarily results

1. Ultimate cycle network scenario

Carrot scenario:

Duplicated network only allowed for bikes

Quietness = 1.0 (fully safe and segregated cycle paths)

Transport mode	Change
Car (all)	- 0.52 %
PT	+ 0.37%
Walk	- 0.59%
Bike	+ 0.74%

Stick + carrot scenario:

Carrot scenario

Flow capacity reduced proportionally (no. of lanes)
to transfer road car space to
cycle paths

Transport mode	Change
Car (all)	- 1.94%
PT	+ 1.21%
Walk	- 0.32%
Bike	+ 1.06%

Preliminarily results

2. Low Traffic Neighbourhoods scenario

Stick scenario:

Cars only allowed in motorway, trunk, primary, secondary and tertiary links (red links in the image)

Quietness = 1.0 (fully safe and segregated cycle paths) in the other links

Transport mode	Change
Car (all)	- 3.24%
PT	+ 2.95%
Walk	+ 0.98%
Bike	- 0.7%

Preliminarily results

Stick scenario:

Car users (drivers and passengers) pay a daily penalty

£10

3. Pay as you drive scenario

Transport mode	Change
Car (all)	- 8.9%
PT	+ 5.5%
Walk	+ 1.89%
Bike	+ 1.51%

Preliminarily results

Stick scenario:

Car users (drivers and passengers) **pay a** <u>daily</u> **penalty**

£10

3. Pay as you drive scenario

Stick scenario:

Car users (drivers and passengers) receive a monetary penalty per km driven.

£0.50 per km

Transport mode	Change
Car (all)	- 6.43%
PT	+ 4.72%
Walk	+ 0.6%
Bike	+ 1.0%

Work in progress

4. Active travel reward scenario

Carrot scenario:

Active travel users receive a **monetary reward** per km walked/cycled

£0.50 per km £0.20 per km

Work in progress

5. Cycle Hubs scenario (PT + AT)

Carrot scenario:

Cyclist are allowed to access and egress metro stations.

New cycle hubs set up next to metro stations.

Agents can leave the bicycles in a secure and safety place

Work in progress

Global stick and carrot scenario:

Combination of previous single policies to enable the agents to use more active travel modes instead of private motor vehicles

Suggestions and comments to improve the model and scenarios are very welcome!

Thank you for your attention

A MATSim model for a low carbon future mobility in the UK context

David Alvarez Castro

✓ d.alvarez2@newcastle.ac.uk

UKRI EPSRC Supervisory team

Alistair Ford Philip James Roberto Palacín Dominik Ziemke