**Promotion Bump Case** 



| TRAIN D | DATA       | 4         |             |               |
|---------|------------|-----------|-------------|---------------|
|         | Date       | StoreCode | ProductCode | SalesQuantity |
| 1873613 | 2015-07-30 | 292       | 315         | 0             |
| 1873614 | 2015-07-31 | 12        | 315         | 1             |
| 1873615 | 2015-07-31 | 104       | 315         | 1             |
| 1873616 | 2015-07-31 | 261       | 315         | 1             |
| 1873617 | 2015-07-31 | 295       | 315         | 1             |

|   | Period | StartDate  | EndDate    |
|---|--------|------------|------------|
| 0 | Promo1 | 2/10/2015  | 2/17/2015  |
| 1 | Promo2 | 3/15/2015  | 3/22/2015  |
| 2 | Promo3 | 5/24/2015  | 6/1/2015   |
| 3 | Promo4 | 6/21/2015  | 6/28/2015  |
| 4 | Promo5 | 1/9/2015   | 6/9/2015   |
| 5 | Promo6 | 20/11/2015 | 27/11/2015 |

|   |   | Date       | StoreCode | ProductCode | SalesQuantity |
|---|---|------------|-----------|-------------|---------------|
| 1 | 0 | 2015-08-01 | 2         | 9           | 1             |
|   | 1 | 2015-08-01 | 7         | 9           | 1             |
|   | 2 | 2015-08-01 | 62        | 9           | 1             |
|   | 3 | 2015-08-01 | 181       | 9           | 1             |
|   | 4 | 2015-08-01 | 6         | 20          | 1             |
|   | Т | EST DATA   |           | 1           |               |

#### **Promotion Bump Case Description**

- Aim: Forecasting Promotion Effect on Sales
   Using Dataset, Including Sales of Each Store
   and Item in a given period
- Dataset: 340 stores, 317 products
  - Each entry represents the sale quantity of a specific product in a specific store in a day
  - **Train Data**: Sales **up to 7/15**, 1873618 rows
  - Test Data: Sales after 8/15, 1028121 rows
  - Regular Days & Promotion Days
- Methodology: Model promotion effect on stores and products using train data and predict promotion increase, test model performance on the test data

## Overview of Work Done

Figure 1: Average Weekly Sales Per Stores

## Product Modelling

• Each product Xi is represented by average weekly sale per store

Our strategy: CLUSTERING





- X is modeled by exponentially distributed random variable.
- Exponential distribution is fitted to histogram by
  - estimating the parameter  $\lambda$  using  $\hat{\mu}_{robust}$ ,  $\hat{\sigma}_{robust}$
- 1st and 3rd quartiles are used for decision threshold respectively for Slow and Fast Products

Decision Region: xslow < 0.26 < xmedium < 1.26 < xfast

- | Fast Product Cluster | = 63
- | Medium Product Cluster | =126
- | Slow Product Cluster | =128

### **Overview of Work Done**

### Store Modelling

• Each product Yi is represented by average weekly sale per product





• Y is modeled by Gaussian Mixture Model, ie mixture of 3 Gaussians

Decision Regions:

xslow < 1.45 < xmedium < 2.58 < xfast

- Y is modeled by LogNormal Random Variable
- Lognormal distribution parameters are roughly estimated from mean, median and std as

• 
$$\mu = 7e - 3 \text{ and } \sigma = 0.5$$

xslow < 0.8 < xmedium < 1.24 < xfast

**Promotion Bump Case** 







# **CLUSTERING**



PREDICT AS
MEAN OF
THE
BELONGING
CLUSTER



- Clustering Stores is efficient, ie RMSE reduced significantly.
- It is more meaningful for Slow Stores. It is better to determine Slow Stores for estimating the promotion bump.



- Clustering Products has not reduced overall RMSE compared to predicting individually for each product
- Clustering Model of Products has worked for Slow Products, but not Fast Products





#### Conclusion

- At first, a prediction is made using ratio increase ==>
   NOT yield better RMSE compared to using mean ratio
   increase of both products and stores.
- Fast products are highly probable to increase their sales than slow products(high correlation~>0.8)
- Fast stores are likely to increase their sales more than slow stores(when we exclude store 92, high correlation ~> 0.7)
- Store 92 performs exceptionally higher than all, above overall behavior(Special?, Outlier?) in TRAIN data, but NOT in test data





- CLUSTERING STORES ==> REDUCED RMSE: 15%, 70% resp.
- CLUSTERING PRODUCTS WORK FOR SLOW STORES BUT NOT OVERALL(ESP FAST)
- We should predict promotion increase INDIVIDUALLY FOR FAST PRODUCTS

# Findings, Challenges

- 160,163,165,182,226,227,228,309 are total negative products, ie returns>sales. They all returned positive(train data) from negative sales(returns) after promotion.
- · Category (A,5) AND Category (G,4) PRODUCTS RESPOND MORE SIGNIFICANTLY



- While calculating ratio promotion increase, items that have periods, ie more return prohibits the calculation.
- Test data has very FEW days of promotion periods some products have experienced NO SALE in promotion days, reduced from positive

BETTER TO INCREASE PROMOTION DAYS/REGULAR DAYS RATIO IN TEST DATA



**Promotion Bump Case** 

