

大连理工大学软件学院

陈志奎 博士、教授

办公室: 综合楼405, Tel: 62274392 实验室: 综合楼一楼

Mobile: 13478461921

Email: zkchen@dlut.edu.cn

zkchen00@hotmail.com

QQ: 1062258606

离散数学

第一章 命题逻辑

回顾

- 命题变元
- 合式公式
- 重言式—永真式
- 矛盾式—永假式
- 永真蕴含式
- 代入规则
- 替换规则
- 常用逻辑恒等式(30)
- 常用永真蕴含式(16)

1.5对偶原理

• 定义:

- 注意:求对偶式并不要求将"非"变原,而且对偶式是相互的。
- 举例:
 - 求一系《②乃的对偶式

-求 $P \lor F$ 的对偶式 $P \land T$

• 定理1.5-1:

设A和A*互为对偶式, P_1, P_2, \dots, P_n 是出现于A和A*中的所有命题变元,于是有:

$$\neg A(P_1, P_2, \dots, P_n) \Leftrightarrow A^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$
 (1)

$$A(\neg P_1, \neg P_2, \cdots, \neg P_n) \Leftrightarrow \neg A^*(P_1, P_2, \cdots, P_n)$$
 (2)

- 证明:
 - 由德•摩根律

- 可知,对公式A求否定,直到¬深入到命题变元之前位置,在这个过程中,所有的∨变 $^{\land}$, $^{\land}$ ⊙ $^{\lor}$ $^{\backprime}$ $^{\iota}$ $^{\backprime}$ $^{\prime}$ $^{\prime$

• 定理1.5-2:

- 证明:
 - A⇔B 意味着 **→ B** 意味着 **→ B** 意味着
 - 于是有
 - 由定理1.5-1知,下式也永真

- 利用带入规则,以 - - - 取代 P_i ,得 永真

 $A^* \iff B^*$

例: **AROUPUP** AROUT

证明: 设APQ(R(RQ) B=RQ

由于,A

因此,

《一路

• 试证明: ①P ② (RQ=3 ②P ② (RQ=5

证明:
$$(P \leftrightarrow Q) \rightarrow (\neg P \lor Q)$$

 $\Leftrightarrow \neg (P \leftrightarrow Q) \lor (\neg P \lor Q)$ E_{27}
 $\Leftrightarrow \neg ((P \land Q) \lor (\neg P \land \neg Q)) \lor (\neg P \lor Q)$ E_{26}
 $\Leftrightarrow ((\neg P \lor \neg Q) \land (P \lor Q)) \lor (\neg P \lor Q)$ E_{11}, E_{12}
 $\Leftrightarrow ((\neg P \lor \neg Q) \lor (\neg P \lor Q)) \land ((P \lor Q) \lor (\neg P \lor Q))$ E_{8}
 $\Leftrightarrow (\neg P \lor \neg Q \lor \neg P \lor Q) \land (P \lor Q \lor \neg P \lor Q)$
 $\Leftrightarrow (\neg P \lor T) \land (Q \lor T)$ E_{17}, E_{19}
 $\Leftrightarrow T \land T$ E_{17}, E_{19}
 $\Leftrightarrow T$

证明:
$$(P\leftrightarrow Q)\land (\neg P\land Q)$$
 $\Leftrightarrow ((P\land Q)\lor (\neg P\land \neg Q))\land (\neg P\land Q)$
 E_{26}
 $E(P\leftrightarrow Q)\rightarrow (\neg P\lor Q)$
 E_{11},E_{12}
 $E(P\leftrightarrow Q)\land (\neg P\land Q)\Rightarrow (\neg P\lor Q)\Rightarrow (\neg P\lor Q)$
 $E(P\leftrightarrow Q)\land (\neg P\land Q)\Rightarrow (\neg P\lor Q)\Rightarrow (\neg P\land Q)\Rightarrow ($

• 定理1.5-3:

- 证明:
 - $A \Rightarrow B$ 意味着 $A(P_1, P_2, \dots, P_n) \rightarrow B(P_1, P_2, \dots, P_n)$ 永真
 - 由逆反律得 $\neg B(P_1, P_2, \dots, P_n) \rightarrow \neg A(P_1, P_2, \dots, P_n)$ 永真
 - 根据定理1.5-1
 - $B^*(\neg P_1, \neg P_2, \dots, \neg P_n) \rightarrow A^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ $\mathring{\mathcal{X}}$ $\mathring{\mathcal{A}}$
 - 利用带入规则,以 $\neg P_i(i=1,2\cdots,n)$ 取代 P_i ,得

 - $\exists \Box$ $B^* \Rightarrow A^*$

1.6范式和判定问题

公式的标准形式——范式 用来在有限步内判定公式永真、永假、可 满足的

• 定义:

若一个命题公式是一些命题变元及其否定的积,则称之为基本积;若这个命题公式是一些变元及其否定之和,称为基本和。

- 一个由<u>基本积的和</u>组成的公式,如果与给定的公式A等价,则称它是A的析取范式。

- 一个由基本和的积组成的公式,如果与给定的命题公式A等价,则称它是A的合取范式。

- 定理**1.6-1**: 一个基本积是永假式,当且仅当它含有 P, $\neg P$ 形式的两个因子。
- 证明:
 - -(充分性)由于 $P \sim P$ 是永假式,而 $Q \sim F \sim F$
 - ,所以含有 P 和 $\neg P$ 形式的两个因子时基本积是 永假式。
 - (必要性)用反证法。设基本积为假但不含p和 $\neg p$ 形式的因子,于是给这个基本积中的命题变元指派 真值 T,给带有否定的命题变元指派真值 F,得基本积的真值是 T,与假设矛盾。证毕。

• 定理**1.6-2**: 一个基本和是永真式,当且仅当它含有 P, $\neg P$ 形式的两个因子。

例: 求命题公式 $P \land (Q \rightarrow R)$ 的析取范式

解: $P \land (Q \rightarrow R) \Leftrightarrow P \land (\neg Q \lor R)$

/*这是一个合取范式*/

 \Leftrightarrow (P \wedge ¬ Q) \vee (P \wedge R)

/*使用与对或的分配律, 化成析取范式*/

析取范式与合取范式

例: 求命题公式 $(\neg P \land Q) \leftrightarrow (P \rightarrow Q)$ 的合取范式

解: $(\neg P \land Q) \leftrightarrow (P \rightarrow Q)$

$$\Leftrightarrow ((\neg P \land Q) \land (P \rightarrow Q)) \lor (\neg (\neg P \land Q) \land \neg (P \rightarrow Q))$$
/*消↔*/

⇔((¬P∧Q)∧(¬P ∨ Q))∨((P ∨¬Q) ∧(P ∧¬Q)) /*消→ 并且否定深入到单个变元前*/

⇔ (¬P ∧Q) ∨ (P ∧¬Q) /*析取范式*/

 $\Leftrightarrow ((\neg P \land Q) \lor P) \land ((\neg P \land Q) \lor \neg Q)$

 $\Leftrightarrow (P \lor Q) \land (\neg P \lor \neg Q)$

/*使用或对与的分配律及补余律,现在是合取范式的形式*/

13 HOUSE

$$\begin{aligned}
&\text{$\mathbb{H}: \ \neg(P\vee Q) \leftrightarrow (P\wedge Q)$} \\
&\Leftrightarrow \neg(P\vee Q) \wedge (P\wedge Q) \vee \neg(\neg(P\vee Q)) \wedge \neg(P\wedge Q)$} \\
&\Leftrightarrow (\neg P\wedge \neg Q\wedge P\wedge Q) \vee ((P\vee Q)\wedge (\neg P\vee \neg Q))$} \\
&\Leftrightarrow F\vee (P\vee Q)\wedge (\neg P\vee \neg Q)$} \\
&\Leftrightarrow (P\vee Q)\wedge (\neg P\vee \neg Q)$} \\
&\Leftrightarrow ((P\vee Q)\wedge \neg P)\vee ((P\vee Q)\wedge \neg Q)$} \\
&\Leftrightarrow P\wedge \neg P\vee \neg P\wedge Q\vee P\wedge \neg Q\vee Q\wedge \neg Q$} \\
&\Leftrightarrow F\vee \neg P\wedge Q\vee P\wedge \neg Q\vee F$} \\
&\Leftrightarrow (\neg P\wedge O)\vee (P\wedge \neg O)$}
\end{aligned}$$

13 RECUES EST

解:
$$\diamondsuit A \Leftrightarrow \neg (P \lor Q) \leftrightarrow (P \land Q)$$
,那么
$$\neg A \Leftrightarrow \neg (\neg (P \lor Q) \leftrightarrow (P \lor Q))$$

$$\Leftrightarrow \neg (\neg (P \lor Q) \land (P \land Q)) \lor (\neg (\neg (P \lor Q) \land \neg (P \land Q)))$$

$$\Leftrightarrow \neg ((\neg P \land \neg Q \land P \land Q) \lor ((P \lor Q) \land (\neg P \lor \neg Q)))$$

$$\Leftrightarrow \neg P \land \neg Q \lor P \land Q$$
由于 $A \Leftrightarrow \neg \neg A = \neg (\neg P \land \neg Q \lor P \land Q)$
所以 $A \Leftrightarrow (P \lor Q) \land (\neg P \lor \neg Q)$

- 定义**1.6-4**: 在含*n*个变元的基本积中,若每个变元与其否定不同时存在,而二者之一必出现且仅出现一次,则称这种基本积为极小项。
- 例:
 - 两个命题变元P、Q的极小项为

• *n*个变元,极小项个数*2*ⁿ

• 假定有P、Q、R三个变元

$\neg P \land \neg Q \land \neg R$	- 000	0	1
$\neg P \land \neg Q \land R$	<pre>- 0 0 1</pre>	1	1
$\neg P \land Q \land \neg R$	<pre>- 010</pre>	2	1 1
$\neg P \land Q \land R$	<pre>- 011</pre>	3	1
$P \wedge \neg Q \wedge \neg R$	— 100	4	1
$P \wedge \neg Q \wedge R$	— 101	5	1
$P \wedge Q \wedge \neg R$	— 110	6	1
$P \wedge Q \wedge R$	— 111	7	1

- >每个极小项只有一个真值指派使其为T
- ➤任何两个极小项的合取必为假(因为在2ⁿ 种真值指派中,只有一个极小项取值为真)
- > 所有极小项的析取必为真

• 定义**1.6-5**: 一个由极小项的和组成的公式,如果与命题公式*A*等价,则称它是公式*A*的主析取范式。

• 对任何命题公式(永假式除外)都可求得与 其等价的主析取范式,而且主析取范式的 形式唯一。

- 求主析取范式的方法:
 - 先化成与其等价的析取范式;
 - 若析取范式的基本积中同一命题变元出现多次,则将其化成只出现一次;
 - 去掉析取范式中所有为永假式的基本积,即去掉基本积中含有形如*P*N¬P的子公式的那些基本积;
 - 若析取范式中缺少某一命题变元如*P*,则可用公式 / ◇ / ◇ / ◇ / ◇ 将命题变元*P*补充进去,并利用分配律展开,然后合并相同的基本积

$$A \Leftrightarrow P \wedge Q \vee R$$

$$\Leftrightarrow$$
 $(P \land Q) \land (R \lor \neg R) \lor (P \lor \neg P) \land R$

$$\Leftrightarrow$$
 $(P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land R) \lor (\neg P \land R)$

$$\Leftrightarrow (P \land Q \land R) \lor (P \land Q \land \neg R) \lor P \land R \land (Q \lor \neg Q)$$
$$\lor (\neg P \land R) \land (Q \lor \neg Q)$$

$$\Leftrightarrow (P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land Q \land R)$$
$$\lor (P \land \neg Q \land R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$$

$$\Leftrightarrow (P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land \neg Q \land R)$$
$$\lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$$

$$\Leftrightarrow m_7 \vee m_6 \vee m_5 \vee m_3 \vee m_1$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

- 主析取范式和真值 表的关系:

P	Q	R	极小项	$P \sim Q \sim P$
0	0	0	PQI	0
0	0	1	$-R \searrow F$	1
0	1	0	-RQ-A	0
0	1	1	-R^Q\F	1
1	0	0	PQA	0
1	0	1	$P \sim Q A$	1
1	1	0	P/Q~k	1
1	1	1	$P \land Q \land K$	1

- 定义**1.6-6**: 在含*n*个变元的基本和中,若每个变元与其否定不同时存在,而二者之一必出现且仅出现一次,则称这种基本和为极大项。
- 例:
 - 两个命题变元P、Q的极大项为

• *n*个变元,极大项个数*2*ⁿ

• 假定有P、Q、R三个变元

$P \vee Q \vee R$	- 000	0	
$P \vee Q \vee \neg R$	<pre>- 0 0 1</pre>	1	
$P \vee \neg Q \vee R$	<pre>- 010</pre>	2	
$P \vee \neg Q \vee \neg R$	<pre>- 011</pre>	3	
$\neg P \lor Q \lor R$	— 100	4	
$\neg P \lor Q \lor \neg R$	— 101	5	
$\neg P \lor \neg Q \lor R$	— 110	6	
$\neg P \lor \neg Q \lor \neg R$	- 111	7	1

- >每个极大项只有一组真值指派使其为F
- ▶任何两个极大项的析取必为真(因为在2ⁿ 种真值指派中,只有一个极大项取值为假)
- ▶所有极大项的合取必为假。

• 定义**1.6-7**: 一个由极大项的积组成的公式,如果与命题公式*A*等价,则称它是公式*A*的主合取范式。

• 对任何命题公式(永真式除外)都可求得与 其等价的主合取范式,而且主合取范式的 形式唯一。

$$A \Leftrightarrow P \land Q \lor R$$

$$\Leftrightarrow (P \vee R) \wedge (Q \vee R)$$

$$\Leftrightarrow ((P \lor R) \lor (Q \land \neg Q)) \land ((Q \lor R) \lor (P \land \neg P))$$

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor Q \lor R)$$

$$\wedge (\neg P \vee Q \vee R)$$

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$$

$$\Leftrightarrow M_0 \wedge M_2 \wedge M_4$$

$$\Leftrightarrow \prod (0,2,4)$$

- 主合取范式和真值 表的关系:

P	Q	R	极大项	$P \wedge Q \wedge F$
0	0	0	PQK	0
0	0	1	PQ-F	1
0	1	0	P-QA	0
0	1	1	R/Q/A	1
1	0	0	-RQA	0
1	0	1	ROH	1
1	1	0	-R-QI	1
1	1	1	R/Q/I	1

极小项和极大项的关系

• 极小项 和极大项 有下列的关系:

$$M \Leftrightarrow m_t$$
 $m \Leftrightarrow M$

由合取(析取)范式求主析取(合取)范式

- 二者可以互相转化
- · 已知公式A的主合取范式为:

- 求主析取范式。
- 解:
 - A的主合取范式为M₁ΛM₃,可知A的主析取范 式为 **2024**567
 - 于是可直接写出A的主析取范式

主析取范式和主合取范式

- 一个命题公式是永真式,它的命题变元的 所有极小项均出现在其主析取范式中,不 存在与其等价的主合取范式;
- 一个命题公式是水假式,它的命题变元的 所有极大项均出现在其主合取范式中,不 存在与其等价的主析取范式;
- 一个命题公式是可满足的,它既有与其等价的主析取范式,也有与其等价的主合取范式.

主析取范式和主合取范式

例:求下列公式的主范式:

$$(P \rightarrow \neg Q) \rightarrow \neg R$$

解**:**
$$(P \rightarrow \neg Q) \rightarrow \neg R$$

$$\Leftrightarrow \neg (\neg P \lor \neg Q) \lor \neg R$$

$$\Leftrightarrow (P \land Q) \lor \neg R$$

$$\Leftrightarrow$$
 (P $\vee \neg$ R) \wedge (Q $\vee \neg$ R)

$$\Leftrightarrow (P \lor \neg R \lor (Q \land \neg Q)) \land (Q \lor \neg R \lor (P \land \neg P))$$

$$\Leftrightarrow (P \lor Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)) \land (P \lor Q \lor \neg R) \land (\neg P \lor Q \lor \neg R)$$

$$\Leftrightarrow \Pi M_{1,3,5}$$
 /*其中 Π 表示求合取*/

⇔
$$\sum$$
m_{0,2,4,6,7} /*即该公式是可满足的,应存在与其等价的主析取范式*/

34/36

主析取范式和主合取范式

例: 求下列命题公式的主范式: $(P \land \neg Q \land R) \lor (\neg P \land Q \land \neg S)$ 解: $(P \land \neg Q \land R) \lor (\neg P \land Q \land \neg S)$ $\Leftrightarrow (P \land \neg Q \land R \land S) \lor (P \land \neg Q \land R \land \neg S)$ $\vee (\neg P \land Q \land R \land \neg S) \lor (\neg P \land Q \land \neg R \land \neg S)$ $\Leftrightarrow \Sigma m_{11}, 10, 6, 4/*$ 这里 Σ 代表析取*/ $\Leftrightarrow \prod_{0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15}$

⇔ IIM_{0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15} 从上面的解题过程中我们可以看出,如果与 一个命题公式等价的一种主范式一经求出, 另一种形式立刻可以得出,除非是永真 (或永假)式。

作业

P28

- 16、17(1)(3)、18(2)(4)