

Introducing an AR Model

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

Mathematical Decription of AR(1) Model

today value = mean + phi * yesterday's value + noise $R_t = \mu + \phi R_{t-1} + \epsilon_t$

- Since only one lagged value on right hand side, this is called:
 - AR model of order 1, or
 - AR(1) model
- AR parameter is ϕ =1 (random walk), =0(white noise)
- ullet For stationarity, $-1 < \phi < 1$ (to be stable and stationary)

Interpretation of AR(1) Parameter

R_t is a time series of stock returns

$$R_t = \mu + \phi R_{t-1} + \epsilon_t$$

phi is negative, a positive return last period, at time t-1

- ullet Negative ϕ : Mean Reversion implies that this period's return is more likely to be negative
- Positive ϕ : Momentum a positive return last period implies that this period's return is expected to be positive

Comparison of AR(1) Time Series

ullet $\phi=0.9$ close to random walk

• $\phi = -0.9$ more erratic (a large + value is usually followed by a large - value)

bottom two are similar, but are less exaggerated and closer to white noise

$$ullet$$
 $\phi=0.5$

•
$$\phi = -0.5$$

Comparison of AR(1) Autocorrelation Functions

autocorrelation decays exponentially

• $\phi = 0.9$ of phi

$$ullet$$
 $\phi=0.5$

autocorrelation function is still decays exponentialy, but the signs of acf reverse • $\phi = -0.9$ at each lag

•
$$\phi = -0.5$$

Higher Order AR Models

• AR(1)

can be extended to include more lagged values and more phi parameters.

$$R_t = \mu + \phi_1 R_{t-1} + \epsilon_t$$

• AR(2)

$$R_t = \mu + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \epsilon_t$$

• AR(3)

$$R_t = \mu + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \phi_3 R_{t-3} + \epsilon_t$$

• ...

Simulating an AR Process it is useful to work with simulated data

want to study and understand a pure AR process,

```
from statsmodels.tsa.arima process import ArmaProcess
ar = np.array([1, -0.9])
                              define order and parameters
ma = np.array([1])
AR object = ArmaProcess(ar, ma)
simulated data = AR object.generate sample(nsample=1000)
plt.plot(simulated data)
```

the convention is a little counterintuitive: must include the zero-lag coeff of 1, and sign of the other coeff is the opposite of what we have been using.

EX: AR(1) with phi=0.9 --> 2nd element of 'ar' array should be -0.9 this is consistent with the time series literature in the field of signal processing

also have to input MA parameters

Let's practice!

Estimating and Forecasting an AR Model

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

Estimating an AR Model

• To estimate parameters from data (simulated)

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(1,0))
result = mod.fit()
.
```

```
create an instance of class called mod (data, order of the model) (1,0) mean --> fit the data to AR(1) (2,0) --> AR(2) 2nd part of order is MA part
```

.fit() to estimate model

Estimating an AR Model

• Full output (true $\mu=0$ and $\phi=0.9$)

estimated parameters are very close to true parameters

print(result.summary())

Estimating an AR Model

ullet Only the estimates of μ and ϕ (true $\mu=0$ and $\phi=0.9$)

Forecasting an AR Model

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(1,0))
res = mod.fit()
res.plot_predict(start='2016-07-01', end='2017-06-01') to do forecast
plt.show()
```


plot also gives confidence intervals around the out of sample forecasts.

notice how the confidence interval gets wider, the farther out the forecast is

Let's practice!

Choosing the Right Model

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

in practice, you will ordinarily not be told the order of the model that you are trying to estimate

Identifying the Order of an AR Model

- The order of an AR(p) model will usually be unknown
- Two techniques to determine order
 - Partial Autocorrelation Function
 - Information criteria

Partial Autocorrelation Funcion (PACF)

measures the incremental benefit of adding another lag.

$$R_t = \phi_{0,1} + \phi_{1,1} R_{t-1} + \epsilon_{1t} \qquad \text{imagine running several regressions, where u regress} \\ R_t = \phi_{0,2} + \phi_{1,2} R_{t-1} + \phi_{2,2} R_{t-2} + \epsilon_{2t} \\ R_t = \phi_{0,3} + \phi_{1,3} R_{t-1} + \phi_{2,3} R_{t-2} + \phi_{3,3} R_{t-3} + \epsilon_{3t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{2,4} R_{t-2} + \phi_{3,4} R_{t-3} + \phi_{4,4} R_{t-4} + \epsilon_{4t} \\ R_t = \phi_{0,4} + \phi_{1,4} R_{t-1} + \phi_{1,4} R_{t-2} + \phi_{1,4} R_{t-3} + \phi_{1,4} R_{t-4} + \phi$$

is the lag-4 value of the partial acf, it represent how significant adding a fourth lag is when u already have 3 lags

coefficients in red boxes represent values of the partial autocorrelation function for different lags.

Plot PACF in Python

- Same as ACF, but use plot_pacf instead of plt_acf
- Import module

```
from statsmodels.graphics.tsaplots import plot pacf
```

Plot the PACF

```
plot_pacf(x, lags= 20, alpha=0.05)
```

how many lags of pacf will be plotted alpha: set the width of the confidence interval

Comparison of PACF for Different AR Models

• AR(1)

only lag-1 pacf is significantly different from zero

• AR(2)

2 lags are different from zero

• AR(3)

3 lags are different from zero

• White Noise

no lags are significantly different from zero

Information Criteria

more parameters in a model, better the model will fit the data. but this can lead to overfitting of the data

- Information criteria: adjusts goodness-of-fit for number of parameters
- Two popular adjusted goodness-of-fit meaures
 - AIC (Akaike Information Criterion)
 - BIC (Bayesian Information Criterion)

by imposing a penalty based on the no of parameters used.

Information Criteria

Estimation output

		ARMA	Mode	l Res	ults		
Dep. Variable: Model: Method: Date: Time: Sample:	ARMA(2, 0)			No. Observations: Log Likelihood S.D. of innovations AIC BIC HQIC		2500 -3536.481 0.996 7080.963 7104.259 7089.420	
	coef	std err		z	P> z	[95.0% Con	f. Int.]
ar.L1.y		0.010 0.019 0.019	-32	.243		-0.015 -0.650 -0.348	-0.576
	Real	In	agina	ry Modulus		Frequency	
	-0.9859 -0.9859	+	1.498	_	1.7935 1.7935		-0.3426 0.3426

Getting Information Criteria From statsmodels

You learned earlier how to fit an AR model

```
from statsmodels.tsa.arima_model import ARMA
mod = ARMA(simulated_data, order=(1,0))
result = mod.fit()
```

And to get full output

```
result.summary()
```

• Or just the parameters

```
result.params
```

To get the AIC and BIC

```
result.aic
result.bic
```

Information Criteria

- Fit a simulated AR(3) to different AR(p) models
- Choose p with the lowest BIC

in practice, the way to use the info crieteria is to fit several models, each with a different no of parameters, and choose the one with the lowest BIC

Let's practice!