

Regelungstechnik

für BEI4, BMEI4 und IBT

Prof. Dr. B. Wagner

Bild 2-16: Ortskurve des DT₁-Glieds.

Bild 3-11: Bode-Diagramm des PT₂-Glieds bei unterschiedlichen Dämpfungen

Kap. 3 Frequenzgangfunktionen, (Nyquist-)Ortskurven und Bode-Diagramme Teil a: Basis-Systeme (I, D, PT₁, PD, PT₂, Totzeit)

In Kapitel 2:

Systemtypen (P, PI, PT₂, IT₃, PDT₃, ...)?

Proportionale, integrierende, differenzierende und Totzeitsysteme

Sprungantworten und Übertragungsfunktionen

In dieser Lehreinheit:

Frequenzgangfunktionen G(jω) und deren Darstellung

- ... im Bode-Diagramm und in der (Nyquist-)Ortskurve
- 1. Basis-Elemente im Bode-Diagramm (I, PT₁, D, PD, T_t, PT₂)
- 2. Konstruktion beliebiger Frequenzgangfunktionen im Bode-Diagramm
- 3. Zusammenhänge Bode-Diagramm ⇔ Sprungantwort

**

Nachrichtentechnik

Hendrik Wade Bode Quelle: Wikipedia

Reihenschaltung mehrerer Teil-Systeme

$$G_{gesamt}(j\omega) = G_1(j\omega) \cdot G_2(j\omega) \cdot G_3(j\omega) \dots \quad \text{mit } G_1(j\omega) = |G_1(j\omega)| \cdot e^{j\varphi_1(j\omega)} \text{ folgt}$$

$$G_{gesamt}(j\omega) = |G_1(j\omega)| \cdot |G_2(j\omega)| \cdot |G_3(j\omega)| \dots \cdot e^{j(\varphi_1(j\omega) + \varphi_2(j\omega) + \varphi_3(j\omega) + \dots)}$$

Gesamt-Betrag logarithmisch

 $\log |G_{gesamt}(j\omega)| = \log |G_1(j\omega)| + \log |G_2(j\omega)| + \log |G_3(j\omega)| + ... \Rightarrow$ Summe der logarithm. Teil-Frequenzgänge

Gesamt-Phase: $\varphi_{ges}(j\omega) = \varphi_1(j\omega) + \varphi_2(j\omega) + \varphi_3(j\omega) + \cdots$ \Rightarrow Summe der Teil-Phasengänge

Was ist ein Frequenzgang?

GENERATOR

PT1

2

3

A

B

Technische Hochschule Nürnberg

Nürnberg

- ⇒ Frequenzvariables Verhalten
- \Rightarrow Z. B. PT₁-System \Leftrightarrow "Tiefpass1. Ordnung" \Leftrightarrow Beispiel $G(s) = \frac{1}{1+0.2s}$

und

(Nyquist-)Ortskurve

Wir kennen logarithmische Teilungen aus dem Alltag, z. B. Münz- und Schein-System:

Bode-Diagramm:

Logarithmische Betragsachse

⇒ Meist in Dezibel db:

$$Z_{dB} = 20 \log_{10}(Z) \Leftrightarrow Z = 10^{\left(\frac{Z_{dB}}{20}\right)}$$

Lineare Phasenachse

Logarithmische Frequenzachse

Vorteile:

- ⇒ Übersichtlich über weite Frequenzbereiche
- ⇒ Einfache Konstruktion durch Addition von Teil-Frequenzgängen

Dezibel-Kopfrechnen

Ziele:

Nicht immer einen Taschenrechner brauchen

Mit "dB – der unbekannten Einheit" etwas anfangen können

$$Z_{dB} = 20 \log_{10}(Z)$$
 $Z = 10^{\left(\frac{Z_{dB}}{20}\right)}$

$$Z=10^{\left(\frac{Z_{dB}}{20}\right)}$$

Was man wissen sollte:

0 dB , da 10⁰ x 20

20 dB, da 10¹ x 20 10

ca. 6 dB

Multiplikation von Faktoren

--> Addition von dB

Division von Faktoren

--> Subtraktion von dB

Potenzierung

--> Multiplikation von dB

Raighiali	.
Beispiel	₹.

12 dB

-6 dB 0,5

26 dB 20

74 dB 5000

24 dB

46 dB

-60 dB

78 dB

Ein Integrator = I-System im Bode-Diagramm und in der Ortskurve

$$G(j\omega) = \frac{1}{j\omega T_I}$$
 = 1/wT * 1/j --> Trennung in Betrag u. Phase

$$Betrag(j\omega) = \frac{1}{w}$$

1 Punkt wählen: entweder w = 1/T --> |G(jw)| = 1 = 0 dB

oder w = $w_min einsetzen --> 1/0,01*2 = 50 = 34 dB$

 $Phase(j\omega) = \frac{1}{j} = -j = e^{-j90^{\circ}}$

Bode-Diagramm für $G(j\omega) = \frac{1}{j\omega T_I} = \frac{1}{j\omega^2}$

(Nyquist)-Ortskurve

Ein D-System im Bode-Diagramm und in der Ortskurve

$$G(j\omega) = j\omega T_D$$

$$Betrag(j\omega) = wT$$

1/T einsetzen: Betrag = 1 = 0dB

oder w_min: Betrag = 0,01*2=0,02 = -34 dB

Bode-Diagramm für $G(j\omega) = j\omega T_D = j\omega 2$

 $Phase(j\omega) = j = e^+j90^\circ$

Ein PT $_1$ -System im Bode-Diagramm und in der Ortskurve $G(j\omega)=rac{1}{1+j\omega T}$

$$\omega \ll \frac{1}{T_{y/y}}$$
 G(jw) = ca. 1 = 0 dB, 0°

$$\omega \gg \frac{1}{T_{y}}$$
 G(jw) = ca. 1/jwT --> siehe Integrator --> Phase -90°

$$\omega = \frac{1}{T_{\star}}$$
 G(jw) = 1/(1+j) = 1/sqrt(2) * e^-j45° --> 1/sqrt(2) = -3 dB

Bode-Diagramm für
$$G(j\omega) = \frac{1}{1+j\omega T} = \frac{1}{1+j\omega^2}$$

$$G(j\omega) = 1 + j\omega T_V$$

Bode-Diagramm für $G(j\omega) = (1 + j\omega T_V) = (1 + j\omega 2)$

(Nyquist)-Ortskurve

$$\omega \ll \frac{1}{T_V} : G(j\omega) \approx 1$$

$$\frac{Betrag = 1 = 0dB, \ Phase = 0^{\circ}}{1. \ Asymptote}$$

 $\omega \gg \frac{1}{T_V} : G(j\omega) \approx j\omega T_V$ wie Differenzierer

$$Betrag = +\frac{20dB}{dek}$$
 $Phase = +90^{\circ}$

2. Asymptote

$$\omega = \frac{1}{T_V} : G(j\omega) = 1 + j$$

 $Betrag = \sqrt{2} = +3dB$; $Phase = +45^{\circ}$ Hilfspunkt

Ein nichtminimalphasiges PD-System im Bode-Diagramm und in der Ortskurve

$$G(j\omega) = 1 - j\omega T_V$$

$$\omega \ll \frac{1}{T_V}$$
: $G(j\omega) = 1$

 $Betrag \approx 0 \text{ dB}$ $Phase \approx 0^{\circ}$

$$\omega \gg \frac{1}{T_V}$$
: $G(j\omega) = -jwT$

$$Betrag = wT$$
 $Phase = -90^{\circ}$

$$\omega = \frac{1}{T_V}$$
: $Betrag = sqrt(2)Phase = -45^\circ$

Bode-Diagramm für $G(j\omega)=1-j\omega T_V$ = $1-j\omega 2$

(Nyquist)-Ortskurve

Ein Totzeit-System im Bode-Diagramm und in der Ortskurve

$$G(j\omega) = e^{-j\omega T_t}$$

Betrag = 1 = 0 dB

 $Phase = -w^*T$

Zwei Hilf spunkte:

$$\omega = \frac{1}{T_t} \quad --> \text{phi} = -1 \text{ (rad)} = -57^\circ$$

Bode-Diagramm für $G(j\omega)=e^{-j\omega T_t}=e^{-j\omega 2}$

(Nyquist)-Ortskurve

Allpass, weil Betragsgang konstant und Ortskurve ein Kreis ist

Ein PT₂-System im Bode-Diagramm und in der Ortskurve => für den Schwingfall: 0 < D < 1

falls D >= 1 --> PT2 als Reihenschaltung von 2 PT1-Gliedern konstruierbar

$$G(j\omega) = \frac{1}{1 + j\omega \frac{2D}{\omega_0} + (j\omega)^2 \frac{1}{\omega_0^2}}$$

$$\omega \ll \omega_0 - G(j\omega) \approx 1$$

 $Betrag \approx 0 \text{ dB}$ $Phase \approx 0^{\circ}$

1. Asymptote bis w_0

$$\omega \gg \omega_0 ~~G(j\omega) \approx (w_0 / w)^2 * -1$$

 $Betrag \approx$ -40 dB/Dek. $Phase \approx$ -180°

2. Asymptote ab w_0

$$\omega = \omega_0$$
 $G(j\omega) = -j * 1/2D$

$$Betrag = \frac{1}{2D}$$
 $Phase = -90^{\circ}$ --> im Bsp 8 dB

(Nyquist)-Ortskurve

PT₂-System im Bode-Diagramm und in der Ortskurve – D < 1 – die Resonanzüberhöhung

Wir haben gesehen: Bei $\omega = \omega_0$ gilt für den Betrag 1/2D.

Das ist aber nicht das Maximum des Betragsgangs!

Beispiel:
$$\frac{1}{1+j\omega 0,8+(j\omega)^2} \Leftrightarrow \omega_0=1, D=0,4$$

Maximalwert bei Resonanzfrequenz $\omega_{res} = \omega_0 \sqrt{1-2D^2}$

Resonanzüberhöhung tritt nur auf für $D < 1/\sqrt{2}!$

Beim Maximalwert: Resonanzüberhöhung $\ddot{U} = \frac{1}{2D\sqrt{1-D^2}}$

Achtung!

$$egin{aligned} \omega_0 \ \omega_E &= \omega_0 \sqrt{1 - D^2} \ \omega_{res} &= \omega_0 \sqrt{1 - 2D^2} \end{aligned}$$

Kennkreisfrequenz

Schwingkreisfrequenz

Resonanzkreisfrequenz

Schwingfähig für D<1 ⇔ relative Überschwingweite ü>0 Resonanz für D<0,71 ⇔ Resonanzüberhöhung Ü>0

Für den Dämpfungsfall: D ≥ 1 :

- ⇒ "Im Prinzip" gelten die Regeln (Asymptoten etc.) für den Schwingfall D < 1 auch für D ≥ 1
- ⇒ Jedoch: genaueres Bode-Diagramm, wenn man das PT2-System als Reihenschaltung zweier PT1-Systeme konstruiert

Bode-Diagramme für $\omega_0 = 1$ und unterschiedliche Werte der Dämpfung D:

Übersichtstabelle der Grund-Systeme zum Nachschlagen (=> Moodle!)

Basis-System	G(jω)	Konstruktion d für ω⇒0	l.Frequenzgangs für ω⇒∞	Charakteris- tischer Punkt	Einheits- Sprungantwort	Ortskurve	Bode-Betragsgang	Bode-Phasengang
1	$rac{1}{j\omega T_I}$	$^{1}/_{j\omega T_{I}}$ -20 dB/dek -90°		$\omega = 1/T_I$ 0 dB -90°	1 t=T, t	0 	0 dB ω=1/T ₁	-90°
PT ₁	$\frac{1}{1+j\omega T}$	1 0 dB/dek 0° 1. Asymptote	$^{1}/_{j\omega T}$ -20 dB/dek -90° 2. Asymptote	$\omega = 1/T$ -3 dB -45°	t=T t	0 ∞⇒∞ 1	0 dB/dek 0=1/T 0 -3dB 20dB/dek	0=1/T 0 45° -90°
D	$j\omega T_{D}$	$j\omega T_D$ +20 dB/dek +90°		$\omega = 1/T_D$ 0 dB +90°	$T_D \cdot \delta(t)$	+1• ω=1/T ω=0 01	+20dB/dek 0 dB	+90°
PD	$1 + j\omega T_V$	1 = 0dB 0 dB/dek 0° 1. Asymptote	$j\omega T_V$ +20 dB/dek +90° 2. Asymptote	$\omega = 1/T_V$ +3 dB +45°	$1 = T_V \cdot \delta(t)$	+1 \(\phi = +45^\circ\ \omega = 1/\text{T}_V \\ \omega = 0 \\ 0 \\ 1 \\ \end{array}	+3dB +20dB/del	+90° +45°
PD nichtmini- malphasig	$1 - j\omega T_V$	1 = 0dB 0 dB/dek 0° 1. Asymptote	$-j\omega T_V$ +20 dB/dek -90° 2. Asymptote	$\omega = 1/T_V$ +3 dB -45°	$\begin{array}{c c} 1 & & \\ \hline \\ -T_V \cdot \delta(t) & & \end{array}$	-1 φ=45 ω=1/T	+3dB +20dB/del 0 dB/dek =1/T _V (wie PD minimalphasig)	ω=1/T _ν ω 45° -90° (wie PT ₁)
T _L	$e^{-j\omega T_L}$	Betrag = 1 = konstant Phase = $-\omega T_L$		$\omega = \frac{1}{T_L};$ $\varphi = -57^{\circ}$ $\omega = \frac{\pi}{T_L};$ $\varphi = -180^{\circ}$	1 t=T _L t	ω=π/T _L ω=0 p=-180 ω=1 _L φ=-57°	0 dB	0=1/T _L
PT ₂	$\frac{1}{1+j\omega\frac{2D}{\omega_0}+\frac{(j\omega)^2}{{\omega_0}^2}}$	1 = 0dB 0 dB/dek 0° 1. Asymptote	$-\frac{\omega_0^2}{\omega^2}$ -40 dB/dek 180° 2. Asymptote	$\omega = \omega_0$ Betrag= $^1\!\!/_{2D}$ Phase=-90°	1 / January	ω=ω φ=-90	0 dB	-90°

Bisher: Verstärkungswert V = 1

Falls V ≠ 1: Verschieben des Frequenzgangs durch Addition von V_{dB}

⇒ Beispiel eines PT2-Systems mit V ≠ 1

$$G(j\omega) = \frac{25}{2+1,2\,j\omega+18(j\omega)^2}$$

- \Rightarrow Bestimmen Sie V, D, ω_0 und V_{dB}
- \Rightarrow Bestimmen Sie die Resonanzparameter ω_{res} und $\ddot{\mathsf{U}}$
- ⇒ Konstruieren Sie den asymptotischen Verlauf des Frequenzgangs
- \Rightarrow Skizzieren Sie den wahren Verlauf des Frequenzgangs unter Nutzung von Hilfspunkten bei ω_{res} und ω_0
- ⇒ Kontrollieren Sie mit LISA!

