SAMB for "Mn3Sn"

Generated on 2023-06-12 23:01 by MultiPie $1.1.7\,$

- Generation condition
 - model type: tight_binding
 - time-reversal type: electric
 - irrep: [A1g]
 - spinless
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -0.5 & 0.86602540378444 & 0 \end{pmatrix}$$

$$\boldsymbol{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$

• Kets: dimension = 40

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
1	$d_u@\mathrm{Mn}_1$	2	$d_v@\mathrm{Mn}_1$	3	$d_{yz}@\mathrm{Mn}_1$	4	$d_{zx}@\mathrm{Mn}_1$	5	$d_{xy}@\mathrm{Mn}_1$
6	$d_u@\mathrm{Mn}_2$	7	$d_v@\mathrm{Mn}_2$	8	$d_{yz}@\mathrm{Mn}_2$	9	$d_{zx}@\mathrm{Mn}_2$	10	$d_{xy}@\mathrm{Mn}_2$
11	$d_u@\mathrm{Mn}_3$	12	$d_v@\mathrm{Mn}_3$	13	$d_{yz}@\mathrm{Mn}_3$	14	$d_{zx}@\mathrm{Mn_3}$	15	$d_{xy}@\mathrm{Mn}_3$
16	$d_u@\mathrm{Mn}_4$	17	$d_v@\mathrm{Mn}_4$	18	$d_{yz}@\mathrm{Mn_4}$	19	$d_{zx}@\mathrm{Mn_4}$	20	$d_{xy}@\mathrm{Mn}_4$
21	$d_u@\mathrm{Mn}_5$	22	$d_v@\mathrm{Mn}_5$	23	$d_{yz}@\mathrm{Mn}_5$	24	$d_{zx}@\mathrm{Mn}_{5}$	25	$d_{xy}@\mathrm{Mn}_5$
26	$d_u@\mathrm{Mn}_6$	27	$d_v@\mathrm{Mn}_6$	28	$d_{yz}@\mathrm{Mn}_{6}$	29	$d_{zx}@\mathrm{Mn}_{6}$	30	$d_{xy}@\mathrm{Mn}_{6}$
31	d_u @Sn ₁	32	d_v @Sn ₁	33	d_{yz} @Sn ₁	34	$d_{zx}@\mathrm{Sn}_1$	35	d_{xy} @Sn ₁
36	d_u @Sn ₂	37	d_v @Sn ₂	38	d_{yz} @Sn ₂	39	d_{zx} @Sn ₂	40	d_{xy} @Sn ₂

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S_1	Mn_1	$(0.8388 0.6776 \frac{1}{4})$	[1,6,14,17]
	Mn_2	$(0.1612 0.3224 \frac{3}{4})$	[2,3,13,18]
	Mn_3	$(0.1612 0.8388 \frac{3}{4})$	[4,11,19,22]
	Mn_4	$(0.6776 0.8388 \frac{3}{4})$	[5,12,20,21]
	Mn_5	$\left(0.8388 0.1612 \frac{1}{4}\right)$	[7,10,15,23]
	Mn_{6}	$\left(0.3224 0.1612 \frac{1}{4}\right)$	[8,9,16,24]
$\overline{S_2}$	Sn_1	$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{1}{4} \end{pmatrix}$	[1,6,7,8,9,10,14,15,16,17,23,24]
	Sn_2	$\begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{3}{4} \end{pmatrix}$	[2,3,4,5,11,12,13,18,19,20,21,22]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1	b_1	Mn_5	Mn_1	1	1	$\begin{pmatrix} 0 & 0.4836 & 0 \end{pmatrix} @ \begin{pmatrix} 0.8388 & 0.9194 & \frac{1}{4} \end{pmatrix}$	[1,-7,-15,17]
	b_2	Mn_3	Mn_2	1	1	$\begin{pmatrix} 0 & -0.4836 & 0 \end{pmatrix}$ @ $\begin{pmatrix} 0.1612 & 0.0806 & \frac{3}{4} \end{pmatrix}$	[2,-4,13,-19]
	b_3	Mn_4	Mn_2	1	1	$\begin{pmatrix} -0.4836 & -0.4836 & 0 \end{pmatrix}$ @ $\begin{pmatrix} 0.9194 & 0.0806 & \frac{3}{4} \end{pmatrix}$	[3,-12,18,-21]
	b_4	Mn_4	Mn_3	1	1	$\begin{pmatrix} -0.4836 & 0 & 0 \end{pmatrix}$ @ $\begin{pmatrix} 0.9194 & 0.8388 & \frac{3}{4} \end{pmatrix}$	[-5,11,-20,22]
	b_5	${ m Mn}_6$	Mn_1	1	1	$(0.4836 0.4836 0) \ @ \ (0.0806 0.9194 \frac{1}{4})$	[6,-9,14,-24]
	b_6	Mn_{6}	Mn_5	1	1	$(0.4836 0 0) \stackrel{\circ}{@} (0.0806 0.1612 \frac{1}{4})$	[-8,10,-16,23]
$_{ m B_2}$	b_7	Sn_2	Sn_1	1	1	$\left(\frac{1}{3} \frac{2}{3} -\frac{1}{2}\right)$ @ $\left(\frac{1}{2} 0 0\right)$	[1,-3,-13,14]
	b_8	Sn_2	Sn_1	1	1	$\left(\begin{array}{ccc} \frac{1}{3} & \frac{2}{3} & \frac{1}{2} \right) \left(\begin{array}{ccc} \left(\begin{array}{ccc} \frac{1}{2} & 0 & \frac{1}{2} \end{array}\right) \right)$	[-2,6,17,-18]
	b_9	Sn_2	Sn_1	1	1	$\begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & -\frac{1}{2} \end{pmatrix}$ $\begin{pmatrix} 0 & \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \end{pmatrix}$	[-4,10,15,-22]
	b_{10}	Sn_2	Sn_1	1	1	$\left(-\frac{2}{3} -\frac{1}{3} -\frac{1}{2} \right) @ \left(0 \frac{1}{2} 0 \right)$	[-5,9,16,-21]
	b_{11}	Sn_2	Sn_1	1	1	$\left(\frac{1}{3} - \frac{1}{3} - \frac{1}{2}\right) \circ \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2}\right)$	[7,-11,-19,23]
	b_{12}	Sn_2	Sn_1	1	1	$\left(\begin{array}{cccc} -\frac{2}{3} & -\frac{1}{3} & \stackrel{\prime}{1} \end{array}\right)$ @ $\left(\begin{array}{cccc} 0 & \frac{1}{2} & \stackrel{\prime}{1} \end{array}\right)$	[8,-12,-20,24]
B_3	b ₁₃	Sn_1	Mn_1	1	1		[1,17]
	b_{14}	Sn_2	Mn_2	1	1	$\left(-0.494533333333333333333333333333333333333$	[2,13]
	b_{15}	Sn_2	Mn_2	1	1	$ \left(0.505466666666667 0.01093333333333333333333333333333333333$	[3,18]
	b_{16}	Sn_2	Mn_3	1	1		[4,19]
	b_{17}	Sn_2	Mn_4	1	1	$\left(-0.01093333333333333333333333333333333333$	[5,20]
	b_{18}	Sn_1	Mn_1	1	1	$ \left(-0.50546666666667 -0.01093333333333333 \right) \left(0 \right) \left(0.58606666666667 -0.672133333333333 \right) $	[6,14]
	b_{19}	Sn_1	Mn_5	1	1	$\left(0.494533333333333333333333333333333333333$	[7,15]
	b_{20}	Sn_1	${ m Mn}_6$	1	1		[8,16]
	b_{21}	Sn_1	${ m Mn}_6$	1	1	$ \left(0.01093333333333333333333333333333333333$	[9,24]
	b_{22}	Sn_1	Mn_5	1	1		[10,23]
	b_{23}	Sn_2	Mn_3	1	1	$\left(0.505466666666667 0.494533333333333 0\right) @ \left(0.41393333333333 0.0860666666666667 \frac{3}{4}\right)$	[11,22]
	b_{24}	Sn_2	Mn_4	1	1		[12,21]

No. 1
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_1(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 2
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_2(\mathbf{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_3 = \frac{\sqrt{2}\mathbb{X}_8[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_9[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_{2g})}]}{2}$$

$$\hat{\mathbb{Z}}_{3}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{2g})}]}{2}$$

No. 4
$$\hat{\mathbb{Q}}_{4}^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_3[\mathbb{Q}_4^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_4(\mathbf{k}) = \mathbb{X}_3[\mathbb{Q}_4^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 5
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_5 = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_{2g})}]}{2}$$

$$\hat{\mathbb{Z}}_{5}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{2g})}]}{2}$$

No. 6
$$\hat{\mathbb{Q}}_6^{(A_{1g},2)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_{6} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{2}[\mathbb{Q}_{2,0}^{(s,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{3}[\mathbb{Q}_{2,1}^{(s,E_{2g})}]}{2}$$

$$\hat{\mathbb{Z}}_{6}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{2g})}]}{2}$$

No. 7
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_7(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 8
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_8(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 9
$$\hat{\mathbb{Q}}_{4}^{(A_{1g})}$$
 [M₁, S₂]

$$\hat{\mathbb{Z}}_9 = \mathbb{X}_3[\mathbb{Q}_4^{(a,A_{1g})}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_9(\mathbf{k}) = \mathbb{X}_3[\mathbb{Q}_4^{(a,A_{1g})}] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 10
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{10}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{3}^{(u,E_{2u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(u,B_{2u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} \\ \end{split}$$

No. 11
$$\hat{\mathbb{Q}}_{2}^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{11} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{11}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} \\ \end{split}$$

No. 12 $\hat{\mathbb{Q}}_0^{(A_{1g})}$ [M₁, B₁]

$$\hat{\mathbb{Z}}_{12} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

$$\hat{\mathbb{Z}}_{12}(k) = \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{3}^{(u,E_{2u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(u,E_{2g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(u,E_{2g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_{2g})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_{2g})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_{1u})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_{2g})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_{2g})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_{2g})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,$$

No. 13 $\hat{\mathbb{Q}}_{4}^{(A_{1g})}$ [M₁, B₁]

$$\hat{\mathbb{Z}}_{13} = \mathbb{X}_3[\mathbb{Q}_4^{(a,A_{1g})}] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{13}(\textbf{\textit{k}}) &= -\frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{4}^{(a,A_{1g})}] \otimes \mathbb{U}_{11}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{4}^{(a,A_{1g})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{4}^{(a,A_{1g})}] \otimes \mathbb{U}_{15}[\mathbb{T}_{3}^{(u,E_{2u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{3}^{(u,B_{2u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{4}^{(a,A_{1g})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{4}^{(a,A_{1g})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{Q}_{4}^{(a,A_{1g})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} \\ \end{split}$$

No. 14 $\hat{\mathbb{Q}}_{2}^{(A_{1g})}$ [M₁, B₁]

$$\hat{\mathbb{Z}}_{14} = \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

$$\hat{\mathbb{Z}}_{14}(k) = \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{11}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{11}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{1u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{12} \\ - \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{15}[\mathbb{T}_{3}^{(u,B_{2u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{4} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{2g})}]}{12} \\ - \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{12} \\ + \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{12} \\ + \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{E}_{9}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{12} \\ + \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{E}_{9}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{12} \\ + \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{E}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}]}{12} \otimes \mathbb{E}_{9}[\mathbb{Q}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g},2)}]} \otimes \mathbb{E}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g},2)}]} \otimes \mathbb{E}_{9}[\mathbb{Q}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g},2)}]} \otimes \mathbb{E}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g},2)}]} \otimes$$

$$\begin{split} & \boxed{\text{No. 15}} \quad \hat{\mathbb{Q}}_{6}^{(A_{1g},2)} \; [M_{1},B_{1}] \\ & \hat{\mathbb{Z}}_{15} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2} \end{split}$$

$$\hat{\mathbb{Z}}_{15}(k) = \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{11}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{11}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{1u})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{12} \\ - \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{15}[\mathbb{T}_{3}^{(u,E_{2u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{16} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{4} + \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{2g})}]}{12} \\ - \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{2g})}]}{12} \\ - \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1,1}^{(u,E_{1u})}]}{12} \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]} + \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{1,1}^{(u,E_{1u})}]}{12} \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{2g})}]} \\ + \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{E}_{8}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{12} \otimes \mathbb{E}_{9}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]} \\ + \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{E}_{8}[\mathbb{Q}_{2,1}^{(u,E_{2g})}]}{12} \otimes \mathbb{E}_{9}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]} \otimes \mathbb{E}_{9}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{12} \\ + \frac{\sqrt{6}\mathbb{X}_{11}[\mathbb{Q}$$

$$\hat{\mathbb{Z}}_{16}(\boldsymbol{k}) = -\frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{13}[\mathbb{T}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{6}^{(u,A_{2g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2,0}^{(k,A_{1g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2,0}^{(k,A_{1g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2,0}^{(k,A_{2g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2,0}^{(k,A_{1g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(k,A_{2g})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2,0}^{(k,A_{1g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(k,A_{2g})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{2,0}^{(k,A_{1g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{Q}_{1}^{(k,A_{1g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{Q}_{2,0}^{(k,A_{1g})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{Q}_{2,0}$$

No. 17 $\hat{\mathbb{Q}}_{2}^{(A_{1g})}$ [M₁, B₁]

$$\hat{\mathbb{Z}}_{17} = -\frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{8}[\mathbb{T}_{2,0}^{(b,E_{2g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{9}[\mathbb{T}_{2,1}^{(b,E_{2g})}]}{2}$$

$$\hat{\mathbb{Z}}_{17}(k) = \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{3}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{13}[\mathbb{T}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{0}^{(u,A_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{0}^{(u,A_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{2g})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{12} - \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,E_{2g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{2,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1,1}^{(k,E_{1u})}]}{12} + \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{2,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{3,0}^{(k,E_{2g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1,1}^{(u,E_{2g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1,1}^{(u,E_{2g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1,1}^{(u,E_{2g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1,1}^{(u,E_{1u})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1,1}^{(u,E_{2g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1,1}^{(u,E_{2g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1,1}^{(u,E_{2g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{17}[\mathbb{Q}_{1,1}^{(u,E_{2g})}]}{12} - \frac{\sqrt{6}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{($$

No. 18 $\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$ [M₁, B₁]

$$\hat{\mathbb{Z}}_{18} = \mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{Y}_{10}[\mathbb{T}_{6}^{(b,A_{2g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{18}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{13}[\mathbb{T}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{T}_{6}^{(u,A_{2g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{M}_{3}^{(u,A_{2g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{M}_{3}^{(u,A_{2g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(u,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{M}_{3}^{(u,A_{2g})}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{3}^{(u,A_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(u,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{3}^{(u,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{3}^{(u,A_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(u,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{3}^{(u,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{3}^{(u,A_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(u,A_{2g})}] \otimes \mathbb{U}_{16}[\mathbb{Q}_{3}^{(u,A_{2g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(u,A_{2g})}] \otimes \mathbb{U}_{1$$

No. 19
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{19} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{19}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{3}^{(k,B_{1u})}]}{2}$$

No. 20 $\hat{\mathbb{Q}}_2^{(A_{1g})}$ [M₁, B₂]

$$\hat{\mathbb{Z}}_{20} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{20}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{3}^{(k,B_{1u})}]}{2}$$

No. 21 $\hat{\mathbb{Q}}_0^{(A_{1g})}$ [M₁, B₂]

$$\hat{\mathbb{Z}}_{21} = \frac{\mathbb{X}_{4}[\mathbb{Q}_{2,0}^{(a,E_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,0}^{(b,E_{1g})}]}{2} + \frac{\mathbb{X}_{5}[\mathbb{Q}_{2,1}^{(a,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{2} + \frac{\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{14}[\mathbb{Q}_{2,0}^{(a,E_{2g})}]}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Q}_{15}[\mathbb{Q}_{2,1}^{(a,E_{2g})}]}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}]}{2} + \frac{\mathbb{Q}_{9}[\mathbb{Q}_{2,1}^{(a,E_{$$

$$\begin{split} \hat{\mathbb{Z}}_{21}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{2,0}^{(a,E_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2,0}^{(k,E_{1g})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{2,0}^{(a,E_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{3,1}^{(k,E_{2u})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,1}^{(a,E_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}]}{4} \\ &- \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,1}^{(a,E_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{3,0}^{(k,E_{2u})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{V}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{V}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{2u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{V}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(u,B_{1g})}] \otimes \mathbb{V}_{18}[\mathbb{Q}_{3,1}^{(u,B_{1u})}] \otimes \mathbb{$$

No. 22 $\hat{\mathbb{Q}}_2^{(A_{1g})}$ [M₁, B₂]

$$\hat{\mathbb{Z}}_{22} = \frac{\mathbb{X}_4[\mathbb{Q}_{2,0}^{(a,E_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,0}^{(b,E_{1g})}]}{2} + \frac{\mathbb{X}_5[\mathbb{Q}_{2,1}^{(a,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{2} - \frac{\mathbb{X}_8[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} - \frac{\mathbb{X}_9[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2} - \frac{\mathbb{X}_9[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} - \frac{\mathbb{X}_9[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2} - \frac{\mathbb{X}_9[\mathbb{Q}_{2,1}^{(b,E_{2g})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2} - \frac{\mathbb{X}_9[\mathbb{Q}_{2,1}^{(b,E_{$$

$$\hat{\mathbb{Z}}_{22}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{2,0}^{(a,E_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2,0}^{(k,E_{1g})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{2,0}^{(a,E_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{3,1}^{(k,E_{2u})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,1}^{(a,E_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(k,E_{1g})}]}{4} \\ - \frac{\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{2,1}^{(a,E_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{3,0}^{(k,E_{2u})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{4} \\ - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{4} \\ - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{4} \\ - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{4} \\ - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(u,B_{1u})}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{1,0}^{(u,A_{1g})}]}{4} \\ - \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(u,B_{1g})}] \otimes \mathbb{Q}_{17}[\mathbb{Q}_{1,0}^{(u,A_{1g})}] \otimes \mathbb{Q}_{17}[\mathbb{Q}_{1,0}^{(u,A_{1g})}]}{4} \\ - \frac{\mathbb{Q}_{1,0}^{(u,A_{1g})} \otimes \mathbb{Q}_{1,0}^{(u,A_{1g})} \otimes \mathbb{Q}_{1,0}^$$

No. 23
$$\hat{\mathbb{Q}}_{4}^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{23} = \mathbb{X}_3[\mathbb{Q}_4^{(a,A_{1g})}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{23}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{4}^{(a,A_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{4}^{(a,A_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{3}^{(k,B_{1u})}]}{2}$$

No. 24 $\hat{\mathbb{Q}}_2^{(A_{1g})}$ [M₁, B₂]

$$\hat{\mathbb{Z}}_{24} = \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{4,0}^{(a,E_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,0}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(a,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{$$

$$\begin{split} \hat{\mathbb{Z}}_{24}(\boldsymbol{k}) &= \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{4,0}^{(a,E_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2,0}^{(k,E_{1g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{4,0}^{(a,E_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{3,1}^{(k,E_{2u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(a,E_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(k,E_{1g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(a,E_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3,0}^{(u,B_{1u})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{3,0}^{(k,E_{2u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{4,0}^{(a,E_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3,1}^{(u,B_{1u})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{3,1}^{(k,E_{2u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{4,1}^{(u,B_{1u})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(u,B_{1u})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{4,1}^{(u,B_{1u})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{3,0}^{(u,B_{1g})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{4,0}^{(u,A_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{Q}_{3,1}^{(u,B_{1u})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{3,1}^{(u,B_{1u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{4,1}^{(u,B_{1u})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{4,1}^{(u,B_{1u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{4,1}^{(u,B_{1u})}] \otimes \mathbb{E}_{18}[\mathbb{Q}_{3,1}^{(u,B_{1u})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{4,1}^{(u,B_{1u})}] \otimes \mathbb{E}_{18}[\mathbb{Q}_{3,1}^{(u,B_{1u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{4,1}^{(u,B_{1u})}] \otimes \mathbb{E}_{1$$

No. 25 $\hat{\mathbb{Q}}_{4}^{(A_{1g})}$ [M₁, B₂]

$$\hat{\mathbb{Z}}_{25} = -\frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{4,0}^{(a,E_{1g})}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,0}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(a,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{2,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(b,E_{1g})}]}$$

$$\begin{split} \hat{\mathbb{Z}}_{25}(\boldsymbol{k}) &= -\frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{6} \\ &= \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{Q}_{4,1}^{(a,E_{2g},2)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{4,0}^{(a,E_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2,0}^{(k,E_{1g})}]}{6} \\ &+ \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{4,0}^{(a,E_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{3,1}^{(k,E_{2u})}]}{6} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(a,E_{1g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(k,E_{1g})}]}{6} - \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{4,1}^{(a,E_{1g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3,0}^{(u,B_{1u})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{3,0}^{(k,E_{2u})}]}{6} \\ \end{split}$$

No. 26 $\hat{\mathbb{Q}}_{6}^{(A_{1g},2)}$ [M₁, B₂]

$$\hat{\mathbb{Z}}_{26} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{26}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{2} - \frac{\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,1}^{(k,E_{1u})}]}{2} \\ &+ \frac{\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{2} + \frac{\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{2} \end{split}$$

No. 27
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{27} = \mathbb{X}_{14}[\mathbb{Q}_4^{(a,B_{2g})}] \otimes \mathbb{Y}_{16}[\mathbb{Q}_4^{(b,B_{2g})}]$$

$$\hat{\mathbb{Z}}_{27}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{4}^{(a,B_{2g})}] \otimes \mathbb{U}_{17}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{4}^{(k,B_{2g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{Q}_{4}^{(a,B_{2g})}] \otimes \mathbb{U}_{18}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1}^{(k,A_{2u})}]}{2}$$

No. 28
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{28} = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_{1g})}] \otimes \mathbb{Y}_{17}[\mathbb{Q}_0^{(b, A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{28}(\boldsymbol{k}) &= \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} + \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{4} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(u,E_{2g})}]}{12} \\ &+ \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{4} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{4,1}^{(k,E_{2g},1)}]}{12} \\ &+ \mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{26}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{U}_{26}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k,E_{2g})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{4,1}^{(k,E_{2g},1)}] \\ &+ \mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{26}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k,E_{2g})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{4,1}^{(k,E_{2g},1)}] \\ &+ \mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{26}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k,E_{2g})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{4,1}^{(k,E_{2g},1)}] \\ &+ \mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{26}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k,E_{2g})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{4,1}^{(k,E_{2g},1)}] \\ &+ \mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{26}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k,E_{2g})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{4,1}^{(k,E_{2g},1)}] \\ &+ \mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{26}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k,E_{2g})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{4,1}^{(k,E_{2g},1)}] \\ &+ \mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{27}[\mathbb{T}_{1,0}^{(u,E_{1g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{1,0}^{(u,E_{2g})}] \otimes \mathbb{U}_{29}$$

No. 29
$$\hat{\mathbb{Q}}_2^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{29} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_{1g})}] \otimes \mathbb{Y}_{17}[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\begin{split} \hat{\mathbb{Z}}_{29}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{6} + \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{4} + \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{2,0}^{(k,E_{2g},1)}]}{12} \\ &+ \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{4} + \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{23}[\mathbb{Q}_{4,1}^{(k,E_{2g},1)}]}{12} + \mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{26}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \\ &\otimes \mathbb{F}_{25}[\mathbb{T}_{1,0}^{(k,E_{1u})}] \left(-\frac{1}{4} + \frac{\sqrt{3}}{12}\right) + \mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{26}[\mathbb{T}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k,E_{1u},1)}] \left(\frac{\sqrt{3}}{12} + \frac{1}{4}\right) + \mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{27}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \\ &\otimes \mathbb{F}_{26}[\mathbb{T}_{1,1}^{(k,E_{1u})}] \left(-\frac{1}{4} + \frac{\sqrt{3}}{12}\right) + \mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{27}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{30}[\mathbb{T}_{5,1}^{(k,E_{1u},1)}] \left(\frac{\sqrt{3}}{12} + \frac{1}{4}\right) - \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{30}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{3}^{(k,B_{1u})}]}{6} \right] \\ &\otimes \mathbb{F}_{26}[\mathbb{T}_{1,1}^{(k,E_{1u})}] \left(-\frac{1}{4} + \frac{\sqrt{3}}{12}\right) + \mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{27}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{30}[\mathbb{T}_{5,1}^{(k,E_{1u},1)}] \left(\frac{\sqrt{3}}{12} + \frac{1}{4}\right) - \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{30}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{3}^{(k,B_{1u})}]}{6} \right] \\ &\otimes \mathbb{F}_{26}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \left(-\frac{1}{4} + \frac{\sqrt{3}}{12}\right) + \mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{27}[\mathbb{T}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{30}[\mathbb{T}_{5,1}^{(k,E_{1u},1)}] \left(\frac{\sqrt{3}}{12} + \frac{1}{4}\right) - \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{Q}_{2}^{(a,A_{1g})}] \otimes \mathbb{U}_{30}[\mathbb{T}_{3}^{(u,E_{2g})}] \otimes \mathbb{T}_{30}[\mathbb{T}_{3}^{(u,E_{2g})}] \otimes \mathbb{T}_{30}[\mathbb{T}_{3,1}^{(u,E_{2g})}] \otimes \mathbb{T}_{30}[\mathbb{T}_{3,1}^{(u,E_{2g})}] \otimes \mathbb{T}_{30}[\mathbb{T}_{3,1}^{(u,E_{2g})}] \otimes \mathbb{T}_{30}[\mathbb{T$$

No. 30
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{30} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{18}[\mathbb{Q}_{2,0}^{(b,E_{2g})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{2,1}^{(b,E_{2g})}]}{2}$$

$$\begin{split} & \hat{\mathbb{Z}}_{30}(k) = \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{0}^{(a,E_{2g})}]}{6} \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]} + \frac{\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g})}]}{2} \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g})}]} \otimes \mathbb{F}_{19}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{8} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g})}]}}{8} \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(k,E_{2g})}]} + \mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,1}^{(u,E_{2g})}]}}{8} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{1,0}^{(u,E_{2g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}]}{8} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(u,E_{2g})}]}}{12} + \mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{23}[\mathbb{U}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{1,0}^{(k,E_{2g})}]} - \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(u,E_{2g})}]}}{12} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}]} \otimes \mathbb{U}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{12} + \mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{1,0}^{(k,E_{1u})}]} - \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{1,0}^{(k,E_{1u})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}]}{12} \otimes \mathbb{U}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{V}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}]}{12} \otimes \mathbb{U}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{V}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}]}{12} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}]}{12} \otimes \mathbb{U}_{23}[\mathbb{Q}_{1,1}^{(u,E_{1u})}]} \otimes \mathbb{V$$

$$\begin{split} & \boxed{\text{No. 31}} \quad \hat{\mathbb{Q}}_{6}^{(A_{1g},2)} \ [M_{1},B_{3}] \\ & \hat{\mathbb{Z}}_{31} = \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{20}[\mathbb{Q}_{4,0}^{(b,E_{2g},1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{2,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{4,1}^{(b,E_{2g},1)}]}{2} \end{split}$$

$$\begin{split} & 2_{21}(k) = \frac{\sqrt{3}X_8[Q_{2,0}^{(a_1,b_2)_1}] \otimes U_{12}[Q_{2,0}^{(a_1,b_2)_1}] \otimes P_{22}[Q_{2,0}^{(a_1,b_2)_2}]}{6} \otimes P_{22}[Q_{2,0}^{(a_1,b_2)_2}] + \frac{\sqrt{3}X_8[Q_{2,0}^{(a_1,b_2)_2}] \otimes U_{22}[Q_{2,0}^{(a_1,b_2)_2}] \otimes U_{22}[Q_{2,0}^{(a_1,b_2)_2}]}{8} \otimes P_{22}[Q_{2,0}^{(a_1,b_2)_2}] \otimes P_{22}[Q_{2,0}^{(a_1,b_2)_2}]$$

$$\begin{split} & \begin{bmatrix} N_0 \cdot 33 & \hat{Q}_2^{(A_{1},2)} & [M_{1},B_{3}] \\ \hat{Z}_{33} &= \frac{\sqrt{2}X_{12}[Q_{4,0}^{(a_{1},E_{2},2)}]}{2} & V_{18}[Q_{2,0}^{(a_{1},E_{2},2)}] + \frac{\sqrt{2}X_{13}[Q_{4,1}^{(a_{1},E_{2},2)}]}{2} & V_{19}[Q_{2,0}^{(a_{1},E_{2},2)}] \\ \hat{Z}_{33}(k) &= \frac{\sqrt{3}X_{12}[Q_{4,0}^{(a_{1},E_{2},2)}]}{4} & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{2,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] \\ &+ \frac{\sqrt{2}X_{12}[Q_{4,0}^{(a_{1},E_{2},2)}]}{8} & V_{12}[Q_{2,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] \\ &+ \frac{\sqrt{2}X_{12}[Q_{4,0}^{(a_{1},E_{2},2)}]}{8} & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] \\ &+ \frac{\sqrt{2}X_{12}[Q_{4,0}^{(a_{1},E_{2},2)}]}{8} & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] \\ &+ \frac{\sqrt{2}X_{12}[Q_{4,0}^{(a_{1},E_{2},2)}]}{12} & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] \\ &+ V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] \\ &+ V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] \\ &+ V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] \\ &+ V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] \\ &+ V_{12}[Q_{4,0}^{(a_{1},E_{2},2)}] & V_{12}[Q_{4,0}^{(a_{1},E_{2$$

$$\begin{split} \hat{\mathbb{Z}}_{34}(k) &= \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{0}^{(a,E_{2g},1)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{2g},1)}]}{6} + \frac{\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g},1)}]}{4} + \frac{\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{2g},1)}]}{24} \\ &+ \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g},1)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{4,0}^{(k,E_{2g},1)}]}{8} - \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(k,E_{2g},1)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(k,E_{2g},1)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(k,E_{2g},1)}]}{8} \\ &+ \mathbb{E}_{25}[\mathbb{T}_{1,0}^{(k,E_{10})}] \left(-\frac{1}{8} + \frac{\sqrt{3}}{24} \right) + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(k,E_{2g},1)}]}{12} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}]}{12} + \mathbb{E}_{25}[\mathbb{T}_{1,0}^{(k,E_{10})}] \otimes \mathbb{E}_{25}[\mathbb{T}_{1,0}^{(k,E_{10})}]} \otimes \mathbb{E}_{25}[\mathbb{T}_{1,0}^{(k,E_{10})}] \otimes \mathbb{E}_{25}[\mathbb{T}_{1,0}^{(k,E_{2g},1)}] \otimes \mathbb$$

No. 35 $\hat{\mathbb{Q}}_0^{(A_{1g})}$ [M₁, B₃]

$$\hat{\mathbb{Z}}_{35} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{20}[\mathbb{Q}_{4,0}^{(b,E_{2g},1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{4,1}^{(a,E_{2g},1)}] \otimes \mathbb{Y}_{21}[\mathbb{Q}_{4,1}^{(b,E_{2g},1)}]}{2}$$

$$\hat{\mathbb{Z}}_{35}(k) = \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g},1)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g},1)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g},1)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}]}{8} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}]}{2} + \frac{24}{4} + \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{1,0}^{(a,E_{2g},1)}]}{2} \otimes \mathbb{U}_{22}[\mathbb{Q}_{1,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}]}{2} + \frac{24}{8} \right) + \frac{24}{4} + \frac{24}{8}$$

$$- \frac{\mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{T}_{1,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{T}_{1,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{T}_{1,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{T}_{1,0}^{(a,E_{2g},1)}]}{2} + \frac{24}{4} + \frac{24}{8} + \frac{24}{4} + \mathbb{X}_{10}[\mathbb{Q}_{4,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{T}_{1,0}^{(a,E_{2g},1)}] \otimes \mathbb{U}_{22}[\mathbb{T}_{1,0}^{(a,E_{2g},1$$

$$\begin{split} \hat{\mathbb{Z}}_{36}(\mathbf{k}) &= -\frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_{0}^{(a_{i}A_{1g})}] \otimes \mathbb{P}_{22}[\mathbb{Q}_{4,0}^{(k_{i}E_{2g},1)}]}{6} - \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{U}_{22}[\mathbb{Q}_{2,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{P}_{22}[\mathbb{Q}_{4,0}^{(k_{i}E_{2g},1)}]}{2} \\ &+ \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(a_{i}E_{2g},2)}] \otimes \mathbb{P}_{22}[\mathbb{Q}_{2,0}^{(k_{i}E_{2g},1)}]}{8} \\ &+ \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(a_{i}E_{2g},2)}] \otimes \mathbb{P}_{21}[\mathbb{Q}_{2,1}^{(k_{i}E_{2g},2)}]}{8} \\ &+ \mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(a_{i}E_{2g},2)}] \otimes \mathbb{P}_{21}[\mathbb{Q}_{2,1}^{(k_{i}E_{2g},2)}]} \\ &+ \mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(a_{i}E_{2g},2)}] \otimes \mathbb{P}_{21}[\mathbb{Q}_{2,1}^{(k_{i}E_{2g},2)}]} \\ &+ \mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(a_{i}E_{2g},2)}]} \\ &+ \mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(a_{i}E_{2g},2)}] \otimes \mathbb{P}_{22}[\mathbb{Q}_{4,0}^{(k_{i}E_{2g},2)}]} \\ &+ \mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{U}_{23}[\mathbb{Q}_{2,1}^{(a_{i}E_{2g},2)}] \otimes \mathbb{P}_{24}[\mathbb{Q}_{4,0}^{(k_{i}E_{2g},2)}]} \\ &+ \mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{P}_{23}[\mathbb{Q}_{4,1}^{(k_{i}E_{1u})}] \\ &+ \mathbb{X}_{12}[\mathbb{Q}_{4,0}^{(a_{i}E_{2g},2)}] \otimes \mathbb{P}_{23}[\mathbb{Q}_{4,1}^{(k_{i}E_{2g},2)}] \otimes \mathbb{P$$

$$\begin{split} \hat{\mathbb{Z}}_{37}(\textbf{\textit{k}}) &= \mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1,1}^{(k,E_{1u})}] \left(\frac{\sqrt{3}}{12} + \frac{1}{4}\right) + \mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{30}[\mathbb{T}_{5,1}^{(k,E_{1u},1)}] \left(\frac{1}{4} - \frac{\sqrt{3}}{12}\right) + \mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k,E_{1u},1)}] \left(-\frac{1}{4} + \frac{\sqrt{3}}{12}\right) - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{24}[\mathbb{Q}_{3}^{(u,E_{1u})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{6}^{(k,A_{2g})}]}{6} + \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{28}[\mathbb{T}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{12} - \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{28}[\mathbb{T}_{2,0}^{(k,E_{2g},1)}]}{4} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{12} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(k,E_{2g},1)}]}{4} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{12} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(k,E_{2g},1)}]}{4} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{2g})}]}{12} + \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(k,E_{2g},1)}]}{4} \\ - \frac{\sqrt{6}\mathbb{X}_{15}[\mathbb{M}_{1}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}]}{12} \\ - \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(u,E_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{M}_{1}^{(u,E_{2g})}]}{12} \\ - \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{M}_{1}^{(u,E_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{M}_{1}^{(u,E_{2g})}]}{12} \\ - \frac{\mathbb{X}_{15}[\mathbb{M}_{1}^{(u,E_{2g})}] \otimes \mathbb{X}_{15}[\mathbb{M}_{1}^{(u,E_{2g})}]}{12} \\ + \frac{\mathbb{X}_{15}[\mathbb{M}_{1}^{(u,E_{2g})}] \otimes$$

$$\begin{split} & \boxed{\text{No. 38}} \quad \hat{\mathbb{Q}}_{2}^{(A_{1g})} \ [\text{M}_{1}, \text{B}_{3}] \\ & \hat{\mathbb{Z}}_{38} = -\frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,E_{2g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,E_{2g})}]}{2} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{38}(k) &= \mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{1,0}^{(k,E_{1u})}] \left(-\frac{1}{8} + \frac{\sqrt{3}}{24} \right) + \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{3}^{(k,E_{1u})}]}{4} + \mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E_{1u})}] \\ &= \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k,E_{1u},1)}] \left(-\frac{1}{8} - \frac{\sqrt{3}}{24} \right) + \mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1,1}^{(k,E_{1u})}] \left(\frac{1}{8} - \frac{\sqrt{3}}{24} \right) - \frac{\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{3,0}^{(k,E_{1u})}] \\ &+ \mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{30}[\mathbb{T}_{5,1}^{(k,E_{1u},1)}] \left(\frac{\sqrt{3}}{24} + \frac{1}{8} \right) - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{24}[\mathbb{Q}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1,1}^{(k,E_{1u})}] \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{24}[\mathbb{Q}_{3}^{(u,E_{1u})}] \otimes \mathbb{F}_{30}[\mathbb{T}_{5,1}^{(k,E_{1u},1)}]}{\mathbb{U}_{2}} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{2g})}] \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{24}[\mathbb{Q}_{3}^{(u,E_{1u})}] \otimes \mathbb{F}_{30}[\mathbb{T}_{5,1}^{(k,E_{1u},1)}]}{\mathbb{U}_{2}} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{2g})}] \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{25}[\mathbb{Q}_{4,0}^{(k,E_{2g})}]} \\ &+ \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{25}[\mathbb{Q}_{4,0}^{(k,E_{2g})}]} \\ &+ \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{Q}_{4,0}^{(k,E_{2g})}]} \\ &+ \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{Q}_{4,0}^{(u,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{Q}_{4,0}^{(k,E_{2g})}]} \\ &+ \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{Q}_{4,0}^{(k,E_{2g})}]} \\ &+ \frac{\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{Q}_{4,0}^{(u,E_{2g})}]} \otimes \mathbb{U}_$$

$$\begin{split} & \boxed{\text{No. 39}} \quad \hat{\mathbb{Q}}_{6}^{(A_{1g},2)} \; [\text{M}_{1}, \text{B}_{3}] \\ & \hat{\mathbb{Z}}_{39} = -\frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a,E_{2g})}] \otimes \mathbb{Y}_{24}[\mathbb{T}_{4,0}^{(b,E_{2g},1)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{18}[\mathbb{M}_{3,1}^{(a,E_{2g})}] \otimes \mathbb{Y}_{25}[\mathbb{T}_{4,1}^{(b,E_{2g},1)}]}{2} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{39}(k) &= \mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u_i,E_{1u})}] \otimes \mathbb{F}_{25}[\mathbb{T}_{1,0}^{(k_i,E_{1u})}] \left(\frac{\sqrt{3}}{24} + \frac{1}{8}\right) - \frac{\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u_i,E_{1u})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{3}^{(k_i,E_{2u})}]}{4} + \mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u_i,E_{1u})}] \\ &= \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k_i,E_{1u},1)}] \left(-\frac{1}{8} + \frac{\sqrt{3}}{24}\right) + \mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u_i,E_{1u})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1,1}^{(k_i,E_{1u})}] \left(-\frac{1}{8} - \frac{\sqrt{3}}{24}\right) - \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{24}[\mathbb{Q}_{1,1}^{(u_i,E_{1u})}] \otimes \mathbb{F}_{27}[\mathbb{T}_{3,0}^{(k_i,E_{1u},1)}] \\ &+ \mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{24}[\mathbb{Q}_{3}^{(u_i,E_{1u})}] \otimes \mathbb{F}_{30}[\mathbb{T}_{5,1}^{(k_i,E_{1u},1)}] \left(\frac{1}{8} - \frac{\sqrt{3}}{24}\right) + \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{24}[\mathbb{Q}_{3}^{(u_i,E_{1u})}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{24}[\mathbb{Q}_{3}^{(u_i,E_{1u},1)}] \otimes \mathbb{F}_{30}[\mathbb{T}_{5,1}^{(k_i,E_{1u},1)}]}{12} - \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{T}_{0}^{(u_i,E_{1u})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(k_i,E_{2g},1)}]}{12} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{24}[\mathbb{Q}_{3}^{(u_i,E_{1u},1)}]}{12} - \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{T}_{0}^{(u_i,E_{2g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(k_i,E_{2g},1)}]}{12} \\ &+ \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{T}_{0}^{(u_i,E_{2g})}]}{12} \otimes \mathbb{E}_{25}[\mathbb{Q}_{3,0}^{(k_i,E_{2g},1)}] \otimes \mathbb{E}_{25}[\mathbb{Q}_{3,0}^{(k_i,E_{2g},1)}]}{12} \\ &+ \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{M}_{3,0}^{(a_i,E_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{Q}_{0}^{(u_i,E_{2g},1)}]}{12} \otimes \mathbb{E}_{25}[\mathbb{Q}_{3,0}^{(k_i,E_{2g},1)}]} \otimes \mathbb{E}_{25}[\mathbb{Q}_{3,0}^{(k_i,E_{2g},1)}]}{12} \\ &+ \mathbb{E}_{3}[\mathbb{Q}_{3,0}^{(u_i,E_{2g},1)}] \otimes \mathbb{E}_{25}[\mathbb{Q}_{3,0}^{(u_i,E_{2g},1)}] \otimes \mathbb{E}_{25}[\mathbb{Q}_{3,0}^{(k_i,E_{2g},1)}]}{12} \\ &+ \mathbb{E}_{3}[\mathbb{Q}_{3,0}^{(u_i,E_{2g},1)}] \otimes \mathbb{E}_{25}[\mathbb{Q}_{3,0}^{(u_i,E_{2g},1)}] \otimes \mathbb{E}_{25}[\mathbb{Q}_{3,0}^{(u_i,E_{2g},1)}]} \otimes \mathbb{E}_{25}[\mathbb{Q}$$

$$\begin{array}{|c|c|} \hline \text{No. 40} & \hat{\mathbb{Q}}_6^{(A_{1g},2)} \ [M_1,B_3] \\ \\ \hat{\mathbb{Z}}_{40} = \mathbb{X}_{16}[\mathbb{M}_3^{(a,A_{2g})}] \otimes \mathbb{Y}_{26}[\mathbb{T}_6^{(b,A_{2g})}] \\ \end{array}$$

$$\begin{split} \hat{\mathbb{Z}}_{40}(\boldsymbol{k}) &= \mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{26}[\mathbb{T}_{1,1}^{(k,E_{1u})}] \left(-\frac{1}{4} - \frac{\sqrt{3}}{12}\right) + \mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E_{1u})}] \otimes \mathbb{F}_{30}[\mathbb{T}_{5,1}^{(k,E_{1u},1)}] \left(-\frac{1}{4} + \frac{\sqrt{3}}{12}\right) + \mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E_{1u})}] \otimes \mathbb{F}_{29}[\mathbb{T}_{5,0}^{(k,E_{1u},1)}] \left(\frac{1}{4} - \frac{\sqrt{3}}{12}\right) + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{24}[\mathbb{Q}_{3}^{(u,E_{1u})}] \otimes \mathbb{F}_{28}[\mathbb{T}_{3}^{(k,B_{2u})}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{25}[\mathbb{T}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{24}[\mathbb{Q}_{6}^{(k,A_{2g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{28}[\mathbb{T}_{2,0}^{(u,E_{2g})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_{2g})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{28}[\mathbb{T}_{2,0}^{(k,E_{2g},1)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{4,0}^{(k,E_{2g},1)}]}{4}}{12} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(k,E_{2g},1)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,0}^{(u,E_{2g})}]}{12} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(k,E_{2g},1)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}]}{12} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(k,E_{2g},1)}]}{4} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}]}{12} - \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{M}_{3}^{(a,A_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}]}{12} \otimes \mathbb{F}_{22}[\mathbb{Q}_{4,0}^{(k,E_{2g},1)}]} \\ &+ \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{M}_{3}^{(u,E_{2g})}]}{12} \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}]}{12} \otimes \mathbb{U}_{29}[\mathbb{T}_{2,1}^{(u,E_{2g})}]} \\ &+ \frac{2}\mathbb{X}_{16}[\mathbb{M}_{3}^{(u,E_{2g})}] \otimes \mathbb{U}_{29}[\mathbb{M}_{29}[\mathbb{M}_{29}[\mathbb{M}_{29}]] \otimes \mathbb{U}_{29}[\mathbb{M}_{29}[\mathbb{M}_{29}[\mathbb{M}_{29}]}]}{12}$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$d_u, d_v, d_{yz}, d_{zx}, d_{xy}$	$d_u, d_v, d_{yz}, d_{zx}, d_{xy}$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_{1g})}$	M_1	$\begin{pmatrix} \frac{\sqrt{5}}{5} & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{5}}{5} & 0 & 0 & 0\\ 0 & 0 & \frac{\sqrt{5}}{5} & 0 & 0\\ 0 & 0 & 0 & \frac{\sqrt{5}}{5} & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{5}}{5} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{Q}_2^{(a,A_{1g})}$	$ m M_1$	$\begin{pmatrix} \frac{\sqrt{14}}{7} & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{14}}{7} & 0 & 0 & 0\\ 0 & 0 & \frac{\sqrt{14}}{14} & 0 & 0\\ 0 & 0 & 0 & \frac{\sqrt{14}}{14} & 0\\ 0 & 0 & 0 & 0 & -\frac{\sqrt{14}}{7} \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_3	$\mathbb{Q}_4^{(a,A_{1g})}$	M_1	$ \begin{bmatrix} \frac{3\sqrt{70}}{35} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{70}}{70} & 0 & 0 & 0 \\ 0 & 0 & -\frac{2\sqrt{70}}{35} & 0 & 0 \\ 0 & 0 & 0 & -\frac{2\sqrt{70}}{35} & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{70}}{70} \end{bmatrix} $
\mathbb{X}_4	$\mathbb{Q}_{2,0}^{(a,E_{1g})}$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{14}}{14} & 0 \\ 0 & 0 & 0 & \frac{\sqrt{42}}{14} & 0 \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{42}}{14} \\ \frac{\sqrt{14}}{14} & \frac{\sqrt{42}}{14} & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{42}}{14} & 0 & 0 \end{pmatrix} $
\mathbb{X}_{5}	$\mathbb{Q}_{2,1}^{(a,E_{1g})}$	M_1	$\begin{bmatrix} 0 & 0 & \frac{14}{14} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{42}}{14} & 0 & 0 \\ \frac{\sqrt{14}}{14} & -\frac{\sqrt{42}}{14} & 0 & 0 & 0 \end{bmatrix}$
\mathbb{X}_6	$\mathbb{Q}_{4,0}^{(a,E_{1g})}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{21}}{7} & 0\\ 0 & 0 & 0 & -\frac{\sqrt{7}}{14} & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{7}}{14}\\ \frac{\sqrt{21}}{7} & -\frac{\sqrt{7}}{14} & 0 & 0 & 0\\ 0 & 0 & \frac{\sqrt{7}}{14} & 0 & 0 \end{pmatrix}$
\mathbb{X}_7	$\mathbb{Q}_{4,1}^{(a,E_{1g})}$	M_1	$\begin{bmatrix} 0 & 0 & \frac{\sqrt{7}}{14} & 0 & 0\\ \frac{\sqrt{21}}{7} & \frac{\sqrt{7}}{14} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{\sqrt{7}}{14}\\ 0 & 0 & 0 & \frac{\sqrt{7}}{14} & 0 \end{bmatrix}$
\mathbb{X}_8	$\mathbb{Q}_{2,0}^{(a,E_{2g})}$	$ m M_1$	$\begin{pmatrix} 0 & -\frac{\sqrt{14}}{7} & 0 & 0 & 0 \\ -\frac{\sqrt{14}}{7} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{42}}{14} & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{42}}{14} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
X 9	$\mathbb{Q}_{2,1}^{(a,E_{2g})}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{14}}{7} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{42}}{14} & 0 \\ 0 & 0 & -\frac{\sqrt{42}}{14} & 0 & 0 \\ -\frac{\sqrt{14}}{7} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{10}	$\mathbb{Q}_{4,0}^{(a,E_{2g},1)}$	M_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{X}_{11}	$\mathbb{Q}_{4,1}^{(a,E_{2g},1)}$	M_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{12}	$\mathbb{Q}_{4,0}^{(a,E_{2g},2)}$	M_1	$\begin{pmatrix} 0 & \frac{\sqrt{42}}{14} & 0 & 0 & 0\\ \frac{\sqrt{42}}{14} & 0 & 0 & 0 & 0\\ 0 & 0 & -\frac{\sqrt{14}}{7} & 0 & 0\\ 0 & 0 & 0 & \frac{\sqrt{14}}{7} & 0\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{13}	$\mathbb{Q}_{4,1}^{(a,E_{2g},2)}$	M_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{42}}{14} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{14}}{7} & 0 \\ 0 & 0 & -\frac{\sqrt{14}}{7} & 0 & 0 \\ \frac{\sqrt{42}}{14} & 0 & 0 & 0 & 0 \end{pmatrix}$
X ₁₄	$\mathbb{Q}_4^{(a,B_{2g})}$	M_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 0 \end{pmatrix}$

continued ...

Table 6

symbol	type	group	form
\mathbb{X}_{15}	$\mathbb{M}_1^{(a,A_{2g})}$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{10}i}{5} \\ 0 & 0 & 0 & \frac{\sqrt{10}i}{10} & 0 \\ 0 & 0 & -\frac{\sqrt{10}i}{10} & 0 & 0 \\ 0 & -\frac{\sqrt{10}i}{5} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{16}	$\mathbb{M}_3^{(a,A_{2g})}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{17}	$\mathbb{M}_{3,0}^{(a,E_{2g})}$	M_1	$\begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} & 0 & 0 & 0 \\ \frac{\sqrt{2}i}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
X ₁₈	$\mathbb{M}_{3,1}^{(a,E_{2g})}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{2} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	$\left(rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} ight)$
\mathbb{Y}_2	$\mathbb{Q}_{2,0}^{(s,E_{2g})}$	S_1	$\left(\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} -\frac{\sqrt{3}}{6} -\frac{\sqrt{3}}{6} -\frac{\sqrt{3}}{6} -\frac{\sqrt{3}}{6} \right)$
\mathbb{Y}_3	$\mathbb{Q}_{2,1}^{(s,E_{2g})}$	S_1	$\begin{pmatrix} 0 & 0 & -rac{1}{2} & rac{1}{2} & -rac{1}{2} & rac{1}{2} \end{pmatrix}$
\mathbb{Y}_4	$\mathbb{Q}_0^{(s,A_{1g})}$	S_2	$\left(rac{\sqrt{2}}{2} - rac{\sqrt{2}}{2} ight)$
\mathbb{Y}_5	$\mathbb{Q}_0^{(b,A_{1g})}$	B_1	$\left(\begin{array}{cccc} \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{array}\right)$

Table 7

14010 1			
symbol	type	cluster	form
\mathbb{Y}_6	$\mathbb{Q}_{2,0}^{(b,E_{2g})}$	B_1	$\left(\begin{array}{cccc} \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{3} \end{array}\right)$
\mathbb{Y}_7	$\mathbb{Q}_{2,1}^{(b,E_{2g})}$	B_1	$\left(-rac{1}{2} -rac{1}{2} rac{1}{2} 0 rac{1}{2} 0 ight)$
\mathbb{Y}_8	$\mathbb{T}_{2,0}^{(b,E_{2g})}$	B_1	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_9	$\mathbb{T}_{2,1}^{(b,E_{2g})}$	B_1	$ \begin{pmatrix} \frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{3} & -\frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{3} \end{pmatrix} $
\mathbb{Y}_{10}	$\mathbb{T}_6^{(b,A_{2g})}$	B_1	$\left(\begin{array}{ccc} \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{6} & -\frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{6} & -\frac{\sqrt{6}i}{6} & \frac{\sqrt{6}i}{6} \end{array}\right)$
\mathbb{Y}_{11}	$\mathbb{Q}_0^{(b,A_{1g})}$	B_2	$\left(rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} - rac{\sqrt{6}}{6} ight)$
\mathbb{Y}_{12}	$\mathbb{Q}_{2,0}^{(b,E_{1g})}$	B_2	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$ $\begin{pmatrix} \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} \end{pmatrix}$
\mathbb{Y}_{13}	$\mathbb{Q}_{2,1}^{(b,E_{1g})}$	B_2	$\begin{pmatrix} \sqrt{3} & -\sqrt{3} & -\sqrt{3} & -\sqrt{3} & \sqrt{3} & \sqrt{3} \\ \frac{\sqrt{3}}{3} & \sqrt{3} & -\sqrt{6} & -\sqrt{3} & -\sqrt{3} & -\sqrt{3} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} \end{pmatrix}$
\mathbb{Y}_{14}	$\mathbb{Q}_{2,0}^{(b,E_{2g})}$	B_2	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \left(\frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} \\ \left(\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} \end{pmatrix} \end{pmatrix}$
\mathbb{Y}_{15}	$\mathbb{Q}_{2,1}^{(b,E_{2g})}$	B_2	$\begin{pmatrix} 0 & 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_{16}	$\mathbb{Q}_4^{(b,B_{2g})}$	B_2	
\mathbb{Y}_{17}	$\mathbb{Q}_0^{(b,A_{1g})}$	B_3	
\mathbb{Y}_{18}	$\mathbb{Q}_{2,0}^{(b,E_{2g})}$	B_3	$\begin{pmatrix} \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 -\frac{\sqrt{2}}{4} & 0 \end{pmatrix}$
\mathbb{Y}_{19}	$\mathbb{Q}_{2,1}^{(b,E_{2g})}$	B_3	$\left(-\frac{\sqrt{6}}{12} - \frac{\sqrt{6}}{12} - \frac{\sqrt{6}}{12} - \frac{\sqrt{6}}{6} - \frac{\sqrt{6}}{12} + \frac{\sqrt{6}}{12} - \frac{\sqrt{6}}{6} - \frac{\sqrt{6}}{12} - \frac{\sqrt{6}}{6} - \frac{\sqrt{6}}{12} - $
\mathbb{Y}_{20}	$\mathbb{Q}_{4,0}^{(b,E_{2g},1)}$	B_3	$ \begin{pmatrix} \frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{6} \end{pmatrix}^{12} $
\mathbb{Y}_{21}	$\mathbb{Q}_{4,1}^{(b,E_{2g},1)}$	B_3	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{22}	$\mathbb{T}_{2,0}^{(b,E_{2g})}$	B_3	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{23}	$\mathbb{T}_{2,1}^{(b,E_{2g})}$	B_3	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{24}	$\mathbb{T}_{4,0}^{(b,E_{2g},1)}$	B_3	$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{25}	$\mathbb{T}_{4,1}^{(b,E_{2g},1)}$	B_3	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{26}	$\mathbb{T}_{6}^{^{1}4,1}$	B_3	$ \begin{pmatrix} 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4$

Table 8: Uniform SAMB.

		1 .	
symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_2	$\mathbb{Q}_{2,0}^{(s,E_{2g})}$	S_1	$\begin{pmatrix} \frac{\sqrt{3}}{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_3	$\mathbb{Q}_{2,1}^{(s,E_{2g})}$	S_1	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{U}_4	$\mathbb{Q}_0^{(s,A_{1g})}$	S_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$

Table 8

Table 8			
symbol	type	cluster	form
\mathbb{U}_5	$\mathbb{Q}_0^{(u,A_{1g})}$	В1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0 & 0\\ 0 & 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0\\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0\\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 $
\mathbb{U}_6	$\mathbb{Q}_{1,0}^{(u,E_{1u})}$	В1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0\\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 $
\mathbb{U}_7	$\mathbb{Q}_{1,1}^{(u,E_{1u})}$	В1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_8	$\mathbb{Q}_{2,0}^{(u,E_{2g})}$	В1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$

Table 8

Table 8			
symbol	type	cluster	form
\mathbb{U}_9	$\mathbb{Q}_{2,1}^{(u,E_{2g})}$	В1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$
\mathbb{U}_{10}	$\mathbb{Q}_3^{(u,B_{1u})}$	В1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_{11}	$\mathbb{T}_{1,0}^{(u,E_{1u})}$	В1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{12} & \frac{\sqrt{6}i}{12} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}i}{12} & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}i}{12} & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}i}{12} & \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}i}{12} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 \\ -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_{12}	$\mathbb{T}_{1,1}^{(u,E_{1u})}$	В1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$

Table 8

Table 8			
symbol	type	cluster	form
			$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
			$\begin{bmatrix} 0 & 0 & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 \end{bmatrix}$
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{U}_{13}	$\mathbb{T}_{2,0}^{(u,E_{2g})}$	$_{ m B_1}$	$ \begin{bmatrix} 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{bmatrix} $
013	¹ 2,0	D ₁	/0:
			$\begin{bmatrix} \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
			$ \begin{bmatrix} 0 & 0 & -\frac{\sqrt{6}i}{12} & \frac{\sqrt{6}i}{12} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 \end{bmatrix} $
			$0 \frac{\sqrt{6}i}{12} 0 \frac{\sqrt{6}i}{6} 0 0 0 0$
\mathbb{U}_{14}	$\mathbb{T}_{2,1}^{(u,E_{2g})}$	B_1	$\begin{bmatrix} 1 & 0 & -\sqrt{6}i & -\sqrt{6}i & 0 & 0 & 0 & 0 \end{bmatrix}$
014			$\begin{bmatrix} \frac{12}{\sqrt{6}i} & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 \\ -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 \end{bmatrix}$
			$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & 0 & 0 \end{pmatrix}$
			$ \begin{pmatrix} 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 \end{pmatrix} $
		В1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
\mathbb{U}_{15}	$\mathbb{T}_3^{(u,B_{2u})}$		$\begin{bmatrix} 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 \end{bmatrix}$
- 15	-3		$1 1 \sqrt{3}i 0 0 0 \sqrt{3}i 0 0$
			$\begin{bmatrix} -\frac{1}{6} & 0 & 0 & 0 & 0 & -\frac{1}{6} & 0 & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{bmatrix}$
			$\begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & 0 & 0 \end{pmatrix}$
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			$ \begin{bmatrix} 0 & 0 & -\frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 \end{bmatrix} $
\mathbb{U}_{16}	$\mathbb{T}_6^{(u,A_{2g})}$	$_{ m B_1}$	$\begin{bmatrix} 0 & -\frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 \end{bmatrix}$
- 10	0		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 8

symbol	type	cluster	form
\mathbb{U}_{17}	$\mathbb{Q}_0^{(u,A_{1g})}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{U}_{18}	$\mathbb{T}_3^{(u,B_{1u})}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{U}_{19}	$\mathbb{Q}_0^{(u,A_{1g})}$	В3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{U}_{20}	$\mathbb{Q}_{1,0}^{(u,E_{1u})}$	В3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$

Table 8

symbol	type	cluster	form
			$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{bmatrix}$
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\mathbb{U}_{21}	$\mathbb{Q}_{1,1}^{(u,E_{1u})}$	$_{ m B_3}$	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \end{bmatrix}$
021	₹1,1		$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} & 0 \end{bmatrix}$
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} & 0 \end{bmatrix}$
			$ \begin{bmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{12} & 0 & 0 \end{bmatrix} $
			$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
			$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{bmatrix}$
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\mathbb{U}_{22}	$\mathbb{Q}_{2,0}^{(u,E_{2g})}$	В3	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} \end{bmatrix}$
022	$\mathbb{Q}_{2,0}$		$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} & 0 \end{bmatrix}$
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			(0 0 0 0 0 0 0 0)
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \end{bmatrix}$
πт	$\mathbb{Q}_{2,1}^{(u,E_{2g})}$	D	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \end{bmatrix}$
\mathbb{U}_{23}		B_3	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \end{bmatrix}$
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \end{bmatrix}$
			$\begin{bmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & 0 & 0 \end{bmatrix}$
			$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \end{pmatrix}$
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \end{bmatrix}$
			$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \end{bmatrix}$
шт	$a(u, R_1)$		$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \end{bmatrix} $
\mathbb{U}_{24}	$\mathbb{Q}_3^{(u,B_{1u})}$	B_3	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \end{bmatrix}$
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
			$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 8

Table 8	1		
symbol	type	cluster	form
\mathbb{U}_{25}	$\mathbb{T}_0^{(u,A_{1g})}$	В3	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & 0 & 0 \\ 0 & \frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{U}_{26}	$\mathbb{T}_{1,0}^{(u,E_{1u})}$	В3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{U}_{27}	$\mathbb{T}_{1,1}^{(u,E_{1u})}$	B_3	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{U}_{28}	$\mathbb{T}_{2,0}^{(u,E_{2g})}$	В3	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 8

symbol	type	cluster				form			
			/0	0 0	0	0	0	0	0 \
			0	0 0	0	0	0	0	0
			0	0 0	0	0	0	0	$\frac{\sqrt{2}i}{4}$
\mathbb{U}_{29}	$\mathbb{T}^{(u,E_{2g})}$	B_3	0	0 0	0	0	0	0	$ \begin{array}{c c} \frac{\sqrt{2}i}{4} \\ -\frac{\sqrt{2}i}{4} \end{array} $
€29	¹¹ 2,1	ъ3	0	0 0	0	0	0	$-\frac{\frac{\sqrt{2}i}{4}}{\frac{\sqrt{2}i}{4}}$	0
			0	0 0	0	0	0	$-\frac{\sqrt{2}i}{4}$	0
			0	0 0		$-\frac{\sqrt{2}i}{4}$	$\frac{\sqrt{2}i}{4}$	0	0
			\int_0	0	$\frac{\sqrt{2}i}{4}$ $\frac{\sqrt{2}i}{4}$	0	0	0	0 /
			/ 0	0	0	0	0	0 -	$\frac{\sqrt{3}i}{6}$ 0
			0	0	0	0	0	0	$0 \frac{\sqrt{3}i}{6}$
			0	0	0	0	0	0	$0 \qquad \frac{\sqrt{3}i}{6}$
πт	$\mathbb{T}_3^{(u,B_{1u})}$	D	0	0	0	0	0	0	$ \begin{array}{ccc} 0 & \frac{\sqrt{3}i}{6} \\ 0 & \frac{\sqrt{3}i}{6} \\ 0 & \frac{\sqrt{3}i}{6} \end{array} $
\mathbb{U}_{30}	1 3	B_3	0	0	0	0	0	0 -	$\begin{array}{ccc} \frac{\sqrt{3}i}{6} & 0 \\ \frac{\sqrt{3}i}{6} & 0 \end{array}$
			0	0	0	0	0	0 -	$\frac{\sqrt{3}i}{6}$ 0
			$\frac{\sqrt{3}i}{6}$	0	0	0	$\frac{\sqrt{3}i}{6}$	$\frac{\sqrt{3}i}{6}$	0 0
				$-\frac{\sqrt{3}i}{6}$	$-\frac{\sqrt{3}i}{6}$	$-\frac{\sqrt{3}i}{6}$	0	0	0 0)

Table 9: Structure SAMB.

symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_{1g})}$	B_1	$\frac{\sqrt{6}c_{001}}{3} + \frac{\sqrt{6}c_{003}}{3} + \frac{\sqrt{6}c_{004}}{3}$
\mathbb{F}_2	$\mathbb{Q}_{2,0}^{(k,E_{2g})}$ $\mathbb{Q}_{2,1}^{(k,E_{2g})}$	B_1	$\frac{\sqrt{3}c_{001}}{3} + \frac{\sqrt{3}c_{003}}{3} - \frac{2\sqrt{3}c_{004}}{3}$
\mathbb{F}_3	$\mathbb{Q}_{2,1}^{(k,E_{2g})}$	B_1	$-c_{001} + c_{003}$
\mathbb{F}_4	$ \begin{array}{c} \mathbb{T}_{1,0}^{(k,E_{1u})} \\ \mathbb{T}_{1,1}^{(k,E_{1u})} \\ \mathbb{T}_{1,1}^{(k,B_{2u})} \end{array} $	B_1	$\frac{\sqrt{3}s_{001}}{3} + \frac{\sqrt{3}s_{003}}{3} + \frac{2\sqrt{3}s_{004}}{3}$
\mathbb{F}_5	$\mathbb{T}_{1,1}^{(k,E_{1u})}$	B_1	$-s_{001} + s_{003}$
\mathbb{F}_6	$\mathbb{T}_3^{(k,B_{2u})}$	B_1	$\frac{\sqrt{6}s_{001}}{3} + \frac{\sqrt{6}s_{003}}{3} - \frac{\sqrt{6}s_{004}}{3}$
\mathbb{F}_7	$\mathbb{Q}_0^{(k,A_{1g})}$	B_2	$\frac{\sqrt{3}c_{007}}{3} + \frac{\sqrt{3}c_{008}}{3} + \frac{\sqrt{3}c_{009}}{3} + \frac{\sqrt{3}c_{010}}{3} + \frac{\sqrt{3}c_{011}}{3} + \frac{\sqrt{3}c_{012}}{3}$
\mathbb{F}_8	$\mathbb{Q}_{2,0}^{(k,E_{1g})}$	B_2	$\frac{\sqrt{2}c_{009}}{2} - \frac{\sqrt{2}c_{010}}{2} - \frac{\sqrt{2}c_{011}}{2} + \frac{\sqrt{2}c_{012}}{2}$
\mathbb{F}_9	$\mathbb{Q}_{2,0}^{(k,E_{1g})} \\ \mathbb{Q}_{2,1}^{(k,E_{1g})}$	B_2	$\frac{\sqrt{6}c_{007}}{3} - \frac{\sqrt{6}c_{008}}{3} - \frac{\sqrt{6}c_{009}}{6} - \frac{\sqrt{6}c_{010}}{6} + \frac{\sqrt{6}c_{011}}{6} + \frac{\sqrt{6}c_{012}}{6}$

Table 9

symbol	type	cluster	form
\mathbb{F}_{10}	$\mathbb{Q}_{2,0}^{(k,E_{2g})}$	B_2	$\frac{\sqrt{6}c_{007}}{3} + \frac{\sqrt{6}c_{008}}{3} - \frac{\sqrt{6}c_{009}}{6} - \frac{\sqrt{6}c_{010}}{6} - \frac{\sqrt{6}c_{011}}{6} - \frac{\sqrt{6}c_{012}}{6}$
\mathbb{F}_{11}	$\mathbb{O}^{(k,E_{2g})}$	B_2	$-rac{\sqrt{2}c_{009}}{2}+rac{\sqrt{2}c_{010}}{2}-rac{\sqrt{2}c_{011}}{2}+rac{\sqrt{2}c_{012}}{2}$
\mathbb{F}_{12}	$\mathbb{Q}_4^{(k,B_{2g})}$	B_2	$\frac{\sqrt{3}c_{007}}{3} - \frac{\sqrt{3}c_{008}}{3} + \frac{\sqrt{3}c_{009}}{3} + \frac{\sqrt{3}c_{010}}{3} - \frac{\sqrt{3}c_{011}}{3} - \frac{\sqrt{3}c_{012}}{3}$
\mathbb{F}_{13}	$\mathbb{T}_1^{(k,A_{2u})}$	B_2	$\frac{\sqrt{3}s_{007}}{3} - \frac{\sqrt{3}s_{008}}{3} + \frac{\sqrt{3}s_{009}}{3} + \frac{\sqrt{3}s_{010}}{3} - \frac{\sqrt{3}s_{011}}{3} - \frac{\sqrt{3}s_{012}}{3}$
\mathbb{F}_{14}	$\mathbb{T}_{1,0}^{(k,E_{1u})}$	B_2	$\frac{\sqrt{2}s_{009}}{2} - \frac{\sqrt{2}s_{010}}{2} + \frac{\sqrt{2}s_{011}}{2} - \frac{\sqrt{2}s_{012}}{2}$
\mathbb{F}_{15}	$\mathbb{T}^{(k,E_{1u})}$	B_2	$\frac{\sqrt{6s_{007}}}{3} + \frac{\sqrt{6s_{008}}}{3} - \frac{\sqrt{6s_{009}}}{6} - \frac{\sqrt{6s_{010}}}{6} - \frac{\sqrt{6s_{011}}}{6} - \frac{\sqrt{6s_{012}}}{6}$
\mathbb{F}_{16}	$\mathbb{T}_3^{(k,B_{1u})}$	B_2	$\frac{\sqrt{3}s_{007}}{3} + \frac{\sqrt{3}s_{008}}{3} + \frac{\sqrt{3}s_{009}}{3} + \frac{\sqrt{3}s_{010}}{3} + \frac{\sqrt{3}s_{011}}{3} + \frac{\sqrt{3}s_{012}}{3}$
\mathbb{F}_{17}	$\mathbb{T}_{3,0}^{(k,E_{2u})}$	B_2	$\frac{\sqrt{6s_{007}}}{3} - \frac{\sqrt{6s_{008}}}{3} - \frac{\sqrt{6s_{009}}}{6} - \frac{\sqrt{6s_{010}}}{6} + \frac{\sqrt{6s_{011}}}{6} + \frac{\sqrt{6s_{012}}}{6}$
\mathbb{F}_{18}	$\mathbb{T}_{3,1}^{(k,E_{2u})}$	B_2	$-rac{\sqrt{2}s_{009}}{2}+rac{\sqrt{2}s_{010}}{2}+rac{\sqrt{2}s_{011}}{2}-rac{\sqrt{2}s_{012}}{2}$
\mathbb{F}_{19}	$\mathbb{Q}_0^{(k,A_{1g})}$	B_3	$\frac{\sqrt{3}c_{013}}{3} + \frac{\sqrt{3}c_{015}}{3} + \frac{\sqrt{3}c_{016}}{3} + \frac{\sqrt{3}c_{017}}{3} + \frac{\sqrt{3}c_{021}}{3} + \frac{\sqrt{3}c_{022}}{3}$
\mathbb{F}_{20}	$\mathbb{Q}_{2,0}^{(k,E_{2g})}$	B_3	$rac{\sqrt{2}c_{013}}{2} + rac{\sqrt{2}c_{015}}{2} - rac{\sqrt{2}c_{017}}{2} - rac{\sqrt{2}c_{022}}{2}$
\mathbb{F}_{21}	$\mathbb{Q}_{2,1}^{(k,E_{2g})}$	B_3	$-rac{\sqrt{6}c_{013}}{\frac{1}{6}}+rac{\sqrt{6}c_{015}}{\frac{1}{6}}-rac{\sqrt{6}c_{016}}{\frac{1}{3}}+rac{\sqrt{6}c_{017}}{\frac{1}{6}}+rac{\sqrt{6}c_{021}}{\frac{1}{3}}-rac{\sqrt{6}c_{022}}{\frac{1}{6}}$
\mathbb{F}_{22}	$\mathbb{Q}_{4,0}^{(k,E_{2g},1)}$	B_3	$\frac{\sqrt{6}c_{013}}{6} + \frac{\sqrt{6}c_{015}}{6} - \frac{\sqrt{6}c_{016}}{3} + \frac{\sqrt{6}c_{017}}{6} - \frac{\sqrt{6}c_{021}}{3} + \frac{\sqrt{6}c_{022}}{6}$
\mathbb{F}_{23}	$\mathbb{Q}_{4,1}^{(k,E_{2g},1)}$	B_3	$\frac{\sqrt{2c_{013}}}{2} - \frac{\sqrt{2c_{015}}}{2} + \frac{\sqrt{2c_{017}}}{2} - \frac{\sqrt{2c_{022}}}{2}$
\mathbb{F}_{24}	$\mathbb{Q}_{6}^{(k,A_{2g})}$	B_3	$\frac{\sqrt{3}c_{013}}{3} - \frac{\sqrt{3}c_{015}}{3} - \frac{\sqrt{3}c_{016}}{3} - \frac{\sqrt{3}c_{017}}{3} + \frac{\sqrt{3}c_{021}}{3} + \frac{\sqrt{3}c_{022}}{3}$
\mathbb{F}_{25}	$\mathbb{T}_{1,0}^{(k,E_{1u})}$	B_3	$\frac{\sqrt{3}s_{013}}{\frac{6}{6}} + \frac{s_{013}}{2} + \frac{\sqrt{3}s_{015}}{6} + \frac{s_{015}}{2} - \frac{\sqrt{3}s_{016}}{\frac{3}{2}} - \frac{s_{017}}{2} + \frac{\sqrt{3}s_{017}}{6} - \frac{\sqrt{3}s_{021}}{\frac{3}{2}} - \frac{s_{022}}{2} + \frac{\sqrt{3}s_{022}}{\frac{6}{2}}$
\mathbb{F}_{26}	$\mathbb{T}_{1,1}^{(k,E_{1u})}$	B_3	$-\frac{\sqrt{3}s_{013}}{6} + \frac{s_{013}}{2} - \frac{s_{015}}{2} + \frac{\sqrt{3}s_{015}}{6} - \frac{\sqrt{3}s_{016}}{3} + \frac{\sqrt{3}s_{017}}{6} + \frac{s_{017}}{2} + \frac{\sqrt{3}s_{021}}{3} - \frac{s_{022}}{2} - \frac{\sqrt{3}s_{022}}{6}$
\mathbb{F}_{27}	$\mathbb{T}_3^{(k,B_{1u})}$	B_3	$\frac{\sqrt{3}s_{013}}{3^3} - \frac{\sqrt{3}s_{015}}{3^3} - \frac{\sqrt{3}s_{016}}{3^3} - \frac{\sqrt{3}s_{017}}{3^3} + \frac{\sqrt{3}s_{021}}{3^3} + \frac{\sqrt{3}s_{022}}{3^3}$
\mathbb{F}_{28}	$\mathbb{T}_3^{(k,B_{2u})}$	B_3	$ \begin{array}{c} \frac{\sqrt{3}s_{013}}{3} + \frac{\sqrt{3}s_{015}}{3} + \frac{\sqrt{3}s_{016}}{3} + \frac{\sqrt{3}s_{017}}{3} + \frac{\sqrt{3}s_{021}}{3} + \frac{\sqrt{3}s_{022}}{3} \end{array} $
\mathbb{F}_{29}	$\mathbb{T}_{5,0}^{(k,E_{1u},1)}$	B_3	$-\frac{\sqrt{3}s_{013}}{6} + \frac{s_{013}}{2} - \frac{\sqrt{3}s_{015}}{6} + \frac{s_{015}}{2} + \frac{\sqrt{3}s_{016}}{2} - \frac{s_{017}}{2} - \frac{\sqrt{3}s_{017}}{6} + \frac{\sqrt{3}s_{021}}{2} - \frac{s_{022}}{2} - \frac{\sqrt{3}s_{022}}{6}$
\mathbb{F}_{30}	$\mathbb{T}_{5,1}^{(k,E_{1u},1)}$	B_3	$-\frac{s_{013}}{2} - \frac{\sqrt{3}s_{013}}{6} + \frac{\sqrt{3}s_{015}}{6} + \frac{s_{015}}{2} - \frac{\sqrt{3}s_{016}}{2} - \frac{s_{017}}{6} + \frac{\sqrt{3}s_{017}}{6} + \frac{\sqrt{3}s_{021}}{3} - \frac{\sqrt{3}s_{022}}{6} + \frac{s_{022}}{2}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_{1g})}$	0	A_{1g}	_	_	1
2	$\mathbb{Q}_1^{(A_{2u})}$	1	A_{2u}	_	_	z

Table 10

1001	3 10					
No.	symbol	rank	irrep.	mul.	comp.	form
3	$\mathbb{Q}_{1,0}^{(E_{1u})}$	1	E_{1u}	_	0	x
4	$\mathbb{Q}_{1,1}^{(\widetilde{E}_{1u})}$	1	E_{1u}	_	1	y
5	$\mathbb{Q}_{2}^{(A_{1g})}$	2	A_{1g}	_	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
6	$\mathbb{Q}_{2,0}^{(E_{1g})}$	2	E_{1g}	_	0	$\sqrt{3}xz$
7	$\mathbb{Q}_{2,1}^{(E_{1g})}$	2	E_{1g}	_	1	$\sqrt{3}yz$
8	$\mathbb{Q}_{2,0}^{(D_{2g})}$	2	E_{2g}	_	0	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
9	$\mathbb{Q}_{2,1}^{(E_{2g})}$	2	E_{2g}	_	1	$-\sqrt{3}xy$
10	$\mathbb{Q}_{3}^{(B_{1u})}$	3	B_{1u}	_	_	$\frac{\sqrt{10}y(3x^2-y^2)}{4}$
11	$\mathbb{Q}_3^{(B_{2u})}$	3	B_{2u}	_	_	$\frac{\sqrt{10y(3x^2-y^2)}}{\sqrt{10x(x^2-3y^2)}}$ $\frac{\sqrt{15}z(x-y)(x+y)}{\sqrt{15}z(x-y)(x+y)}$
12	$\mathbb{Q}_{2,0}^{(E_{2u})}$	3	E_{2u}	_	0	$\frac{\sqrt{15}z(x-y)(x+y)}{2}$
13	$\mathbb{Q}_{3,1}^{(E_{2u})}$	3	E_{2u}	_	1	$-\sqrt{15}xyz$
14	$\frac{\mathbb{Q}_{3,1}^{(E_{2u})}}{\mathbb{Q}_{4}^{(A_{1g})}}$	4	A_{1g}	_	_	$\frac{3x^4}{8} + \frac{3x^2y^2}{4} - 3x^2z^2 + \frac{3y^4}{8} - 3y^2z^2 + z^4$
15	$\mathbb{Q}_4^{(B_{2g})}$	4	B_{2g}	_	_	$\frac{\sqrt{70}yz(3x^2-y^2)}{4}$
16	$\mathbb{Q}_{4,0}^{(E_{1g})}$	4	E_{1g}	_	0	$\frac{\sqrt{70}yz(3x^2-y^2)}{2}$ $-\frac{\sqrt{10}xz(3x^2+3y^2-4z^2)}{4}$ $-\frac{\sqrt{10}yz(3x^2+3y^2-4z^2)}{4}$ $\frac{\sqrt{35}(x^2-2xy-y^2)(x^2+2xy-y^2)}{8}$ $\frac{8}{\sqrt{35}xy(x-y)(x+y)}$
17	$\mathbb{Q}_{4,1}^{(E_{1g})}$	4	E_{1g}	_	1	$-\frac{\sqrt{10}yz(3x^2+3y^2-4z^2)}{4}$
18	$\mathbb{Q}_{4,0}^{(E_{2g},1)}$	4	E_{2g}	1	0	$\frac{\sqrt{35}(x^2-2xy-y^2)(x^2+2xy-y^2)}{\sqrt{35}(x^2+2xy-y^2)}$
19	$\mathbb{Q}_{4,1}^{(E_{2g},1)}$	4	E_{2g}	1	1	$\sqrt{35}xy(x-y)(x+y)$
20	$\mathbb{Q}_{4,0}^{(E_{2g},2)}$	4	E_{2g}	2	0	$-\frac{\sqrt{35}xy(x-y)(x+y)}{2}(x-y)(x^2+y^2-6z^2)}{4}$
21	$\mathbb{Q}_{4,1}^{(E_{2g},2)}$	4	E_{2g}	2	1	$\frac{\sqrt{5}xy(x^2+y^2-6z^2)}{2}$
22	$\mathbb{Q}_{5,0}^{(E_{1u},1)}$	5	E_{1u}	1	0	$3\sqrt{14x}(x^4-10x^2y^2+5y^4)$
23	$\bigcirc^{(E_{1u},1)}$	5	E_{1u}	1	1	$\frac{16}{3\sqrt{14}y(5x^4-10x^2y^2+y^4)}$
24	$\mathbb{Q}_{6}^{(A_{2g})}$	6	A_{2g}		_	$\frac{16}{\sqrt{462}xy(x^2-3y^2)(3x^2-y^2)}$
24	₹6	U	712g			16

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_1^{(A_{2g})}$	1	A_{2g}	-	_	Z
2	$\mathbb{G}_3^{(A_{2g})}$	3	A_{2g}	_	_	$-\frac{Z(3X^2+3Y^2-2Z^2)}{2}$
3	$\mathbb{G}_{3,0}^{(E_{2g})}$	3	E_{2g}	_	0	$\sqrt{15}XYZ$
4	$\mathbb{G}_{3,1}^{(E_{2g})}$	3	E_{2g}	_	1	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$

 \bullet Group info.: Generator = $\{3^+_{\ 001}|0\},\ \{2_{001}|00\frac{1}{2}\},\ \{2_{110}|0\},\ \{-1|0\}$

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{001} 00\frac{1}{2}\}$	$\{2_{001} 00\frac{1}{2}\}$
$\{2_{100} 0\}$	$\{2_{100} 0\}, \{2_{010} 0\}, \{2_{110} 0\}$
$\{2_{120} 00\frac{1}{2}\}$	$\{2_{120} 00\frac{1}{2}\}, \{2_{210} 00\frac{1}{2}\}, \{2_{1-10} 00\frac{1}{2}\}$
$\{3^{+}_{001} 0\}$	$\{3^{+}_{001} 0\}, \{3^{-}_{001} 0\}$
$\{6^{+}_{001} 00^{\frac{1}{2}}\}$	$\{6^{+}_{001} 00^{\frac{1}{2}}\},\ \{6^{-}_{001} 00^{\frac{1}{2}}\}$
${\{-1 0\}}$	$\{-1 0\}$
${\{m_{100} 0\}}$	$\{m_{100} 0\}, \{m_{010} 0\}, \{m_{110} 0\}$
$\{m_{001} 00\frac{1}{2}\}$	$\{m_{001} 00\frac{1}{2}\}$
$\{m_{120} 00\frac{1}{2}\}$	$\{m_{120} 00\frac{1}{2}\}, \{m_{210} 00\frac{1}{2}\}, \{m_{1-10} 00\frac{1}{2}\}$
${\{-3^{+}_{001} 0\}}$	$\{-3^{+}_{001} 0\}, \{-3^{-}_{001} 0\}$
$\{-6^{+}_{001} 00^{\frac{1}{2}}\}$	$\{-6^{+}_{001} 00^{\frac{1}{2}}\}, \{-6^{-}_{001} 00^{\frac{1}{2}}\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{2_{001} 00\frac{1}{2}\}$	3	$\{2_{100} 0\}$	4	$\{2_{010} 0\}$	5	$\{2_{110} 0\}$
6	$\{2_{120} 00\frac{1}{2}\}$	7	$\{2_{210} 00\frac{1}{2}\}$	8	$\{2_{1-10} 00\frac{1}{2}\}$	9	$\{3^{+}_{001} 0\}$	10	$\{3^{-}_{001} 0\}$
11	$\{6^{+}_{001} 00^{\frac{1}{2}}\}$	12	$\{6^{001} 00\frac{1}{2}\}$	13	$\{-1 0\}$	14	$\{m_{100} 0\}$	15	$\{m_{010} 0\}$
16	$\{m_{110} 0\}$	17	$\{m_{001} 00\frac{1}{2}\}$	18	$\{m_{120} 00\frac{1}{2}\}$	19	$\{m_{210} 00\frac{1}{2}\}$	20	$\{m_{1-10} 00\frac{1}{2}\}$
 21	$\{-3^{+}_{001} 0\}$	22	$\{-3^{-}_{001} 0\}$	23	$\{-6^{+}_{001} 00^{\frac{1}{2}}\}$	24	$\{-6^{-}_{001} 00\frac{1}{2}\}$		

Table 14: Character table (point-group part).

	1	2001	2100	2120	3 ⁺ ₀₀₁	6 ⁺ ₀₀₁	-1	m ₁₀₀	m ₀₀₁	m ₁₂₀	-3^{+}_{001}	-6^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	1	-1	1	-1	1	1
B_{1g}	1	-1	-1	1	1	-1	1	-1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1	-1	1	1	-1	-1	1	-1
E_{1g}	2	-2	0	0	-1	1	2	0	-2	0	-1	1
E_{2g}	2	2	0	0	-1	-1	2	0	2	0	-1	-1
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	1	1	-1	1	-1	1	-1	-1
B_{1u}	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
B_{2u}	1	-1	1	-1	1	-1	-1	-1	1	1	-1	1
E_{1u}	2	-2	0	0	-1	1	-2	0	2	0	1	-1
E_{2u}	2	2	0	0	-1	-1	-2	0	-2	0	1	1

Table 15: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_{1g} (A_{1u})$	$A_{2g} (A_{2u})$	B_{1g} (B_{1u})	$B_{2g} (B_{2u})$	E_{1g} (E_{1u})
$E_{2g} (E_{2u})$	$A_{1u} (A_{1g})$	$A_{2u} (A_{2g})$	$B_{1u} (B_{1g})$	$B_{2u} (B_{2g})$
$E_{1u} (E_{1g})$	E_{2u} (E_{2g})			

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{1g}	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{2g}		A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_{1u}	E_{2u}
B_{1g}			A_{1g}	A_{2g}	E_{2g}	E_{1g}	B_{1u}	B_{2u}	A_{1u}	A_{2u}	E_{2u}	E_{1u}
B_{2g}				A_{1g}	E_{2g}	E_{1g}	B_{2u}	B_{1u}	A_{2u}	A_{1u}	E_{2u}	E_{1u}
E_{1g}					$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$	E_{1u}	E_{1u}	E_{2u}	E_{2u}	$A_{1u} + A_{2u} + E_{2u}$	$B_{1u} + B_{2u} + E_{1u}$
E_{2g}						$A_{1g} + E_{2g}$	E_{2u}	E_{2u}	E_{1u}	E_{1u}	$B_{1u} + B_{2u} + E_{1u}$	$A_{1u} + A_{2u} + E_{2u}$
A_{1u}							A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}
A_{2u}								A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}
B_{1u}									A_{1g}	A_{2g}	E_{2g}	E_{1g}
B_{2u}										A_{1g}	E_{2g}	E_{1g}
E_{1u}											$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$
E_{2u}												$A_{1g} + E_{2g}$

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
_	_	_	_	A_{2g}	A_{2g}	_	_	_	_	A_{2g}	A_{2g}

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 1+\sqrt{3} & -1+\sqrt{3} & 1 \end{pmatrix}$	2	$\left(-\sqrt{3}-1 1-\sqrt{3} 1\right)$	3	$\begin{pmatrix} 2 & 1 - \sqrt{3} & -1 \end{pmatrix}$	4	$\left(-\sqrt{3}-1 -2 -1\right)$
5	$\begin{pmatrix} -1 + \sqrt{3} & 1 + \sqrt{3} & -1 \end{pmatrix}$	6	$\begin{pmatrix} -2 & -1 + \sqrt{3} & -1 \end{pmatrix}$	7	$\begin{pmatrix} 1+\sqrt{3} & 2 & -1 \end{pmatrix}$	8	$\begin{pmatrix} 1 - \sqrt{3} & -\sqrt{3} - 1 & -1 \end{pmatrix}$
9	$\begin{pmatrix} 1 - \sqrt{3} & 2 & 1 \end{pmatrix}$	10	$\begin{pmatrix} -2 & -\sqrt{3} - 1 & 1 \end{pmatrix}$	11	$\begin{pmatrix} 2 & 1 + \sqrt{3} & 1 \end{pmatrix}$	12	$\begin{pmatrix} -1 + \sqrt{3} & -2 & 1 \end{pmatrix}$
13	$\left(-\sqrt{3}-1 1-\sqrt{3} -1\right)$	14	$\begin{pmatrix} -2 & -1 + \sqrt{3} & 1 \end{pmatrix}$	15	$\begin{pmatrix} 1+\sqrt{3} & 2 & 1 \end{pmatrix}$	16	$\begin{pmatrix} 1 - \sqrt{3} & -\sqrt{3} - 1 & 1 \end{pmatrix}$
17	$\begin{pmatrix} 1 + \sqrt{3} & -1 + \sqrt{3} & -1 \end{pmatrix}$	18	$\begin{pmatrix} 2 & 1 - \sqrt{3} & 1 \end{pmatrix}$	19	$\left(-\sqrt{3}-1 -2 1\right)$	20	$\begin{pmatrix} -1 + \sqrt{3} & 1 + \sqrt{3} & 1 \end{pmatrix}$
21	$\begin{pmatrix} -1 + \sqrt{3} & -2 & -1 \end{pmatrix}$	22	$\begin{pmatrix} 2 & 1+\sqrt{3} & -1 \end{pmatrix}$	23	$\begin{pmatrix} -2 & -\sqrt{3} - 1 & -1 \end{pmatrix}$	24	$\begin{pmatrix} 1 - \sqrt{3} & 2 & -1 \end{pmatrix}$

Table 19: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_0^{(A_{1g})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_1^{(A_{2u})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{1,0}^{(E_{1u})}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
(E ₄)	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$		<i>(</i> 6 <i>(</i> 6	<u></u>	/S /G	<u> </u>	<u> </u>
$\mathbb{Q}_{1,1}^{(E_{1u})}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
$\mathbb{Q}_{2,0}^{(E_{1g})}$	$\frac{-\frac{\sqrt{6}}{12}}{\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}}$	$\frac{\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}}{-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24} - \frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\frac{\sqrt{6}}{12}}{\frac{\sqrt{6}}{12}}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
$\mathbb{Q}_{2,0}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$ $-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$ $\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{3}}{24}$ $\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$ $-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{3}}{12}$ $-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{8} + \frac{\sqrt{2}}{24}$ $\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$ $-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$ $-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{6}}{8}$ $-\frac{\sqrt{6}}{12}$		$\frac{1}{24} + \frac{1}{8}$ $-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\frac{1}{8}}{8} - \frac{\frac{1}{24}}{24}$ $\frac{\sqrt{6}}{12}$	12	$-\frac{1}{24} + \frac{1}{8}$	$-\frac{1}{8} - \frac{1}{24}$	$\frac{1}{24} + \frac{1}{8}$	- 12	$-\frac{1}{8} + \frac{1}{24}$
$\mathbb{Q}_{2,1}^{(E_{1g})}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24} - \frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{12}{\sqrt{6}}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
$\Psi_{2,1}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{8}{8} + \frac{24}{24}$ $-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$ $-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{8}{8}$ $\frac{\sqrt{6}}{12}$	$-\frac{8}{8} + \frac{24}{24}$ $-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{12}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{-\sqrt{6}}{8} - \frac{\sqrt{2}}{24}$
	$ \begin{array}{c cccc} 24 & 8 \\ \hline & \sqrt{6} \\ \hline & 12 \end{array} $	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{24}{\sqrt{6}} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	12	8 24	8 24	8 24	12	24 8
$\mathbb{Q}_{2,0}^{(E_{2g})}$	1/4	1/4	1/4	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	$-\frac{1}{4}$
-,-	$-\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$
	0	$-\frac{1}{4}$	$-\frac{1}{4}$	0						
$\mathbb{Q}_{2,1}^{(E_{2g})}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\frac{\sqrt{3}}{6}}{\frac{\sqrt{6}}{12}}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_3^{(B_{1u})}$		$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_3^{(B_{2u})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$

Table 19

symbol	1	2	3	4	5	6	7	8	9	10
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,0}^{(E_{2u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$
	0	$\frac{1}{4}$	$\frac{1}{4}$	0						
$\mathbb{Q}_{3,1}^{(E_{2u})}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
(B ₁₋)	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>
$\mathbb{Q}_4^{(B_{1g})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
$\overline{\mathbb{Q}_{4}^{(B_{2g})}}$	$\frac{\frac{\sqrt{6}}{12}}{\frac{\sqrt{6}}{12}}$	$-\frac{\frac{\sqrt{6}}{12}}{-\frac{\sqrt{6}}{12}}$	$-\frac{\sqrt{6}}{12}$ $\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$ $\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
\mathbb{Q}_4	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$ $-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$ $\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$ $\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$ $-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$ $-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{12}{12}$ $\frac{\sqrt{6}}{12}$	$-\frac{1}{12}$ $\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	12	12	$-{12}$	$-\frac{12}{12}$	- 12	$-{12}$
$\mathbb{Q}_{4,0}^{(E_{2g},1)}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{12}{\frac{\sqrt{3}}{12}}$	$-\frac{12}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
4 ,0	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	Ü	12	12	12	Ü	12
$\mathbb{Q}_{4,1}^{(E_{2g},1)}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$
	0	$-\frac{1}{4}$	$-\frac{1}{4}$	0						
$\mathbb{Q}_{5,0}^{(E_{1u},1)}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{12}$	$\frac{\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}}{\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{5,1}^{(E_{1u},1)}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$		$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
(Eq.: 1)	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$. /2	. /9	√2	. /9	. /9	√2
$\mathbb{Q}_{5,0}^{(E_{2u},1)}$	$\frac{\sqrt{3}}{12}$ $\sqrt{3}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$ $\sqrt{3}$	$\frac{\sqrt{3}}{6}$ $\sqrt{3}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$ $\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$ $\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\frac{\sqrt{3}}{12}}{\frac{\sqrt{3}}{6}}$	$-\frac{\sqrt{3}}{6}$ $-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$ $-\frac{\sqrt{3}}{12}$	$\frac{\frac{\sqrt{3}}{12}}{\frac{\sqrt{3}}{6}}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt[4]{5}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{5}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
$\mathbb{Q}_{5,1}^{(E_{2u},1)}$		$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{5}}{12}$ $\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	$-\frac{1}{4}$
₹5,1	$\overline{4}$	4	4		4	4		4		$\overline{4}$

Table 19

symbol	1	2	3	4	5	6	7	8	9	10
	$-\frac{1}{4}$	0	$-\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$
	0	$\frac{1}{4}$	$\frac{1}{4}$	0						
$\mathbb{Q}_6^{(A_{2g})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{6,0}^{(E_{1g},1)}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{6,1}^{(E_{1g},1)}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_7^{(A_{1u})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$							
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						