

工科数学分析

刘青青

§2.5 实数基本定理

- ▶ 确界原理
- ▶ 单调有界收敛定理
- ▶ 重要极限 $\lim_{n\to\infty} (1+\frac{1}{n})^n$
- ▶ 闭区间套定理
- ▶ 致密性定理
- ► Cauchy 收敛准则

确界原理

确界原理

有上(下)界的数集必有上(下)确界.

单调有界收敛定理

单调有界收敛定理

- ▶ 单调增加且有上界的数列必有极限.
- ▶ 单调减小且有下界的数列必有极限.

例

判断下列数列的收敛性:

$$x_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{2^2}\right) \cdots \left(1 - \frac{1}{2^n}\right),$$

$$x_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \cdots + \frac{1}{3^n+1},$$

$$x_n = 1 + \frac{1}{2^2} + \cdots + \frac{1}{n^2},$$

$$x_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}.$$

单调有界收敛定理

例

读
$$0 < x_1 < 1, x_{n+1} = 1 - \sqrt{1 - x_n}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \lim_{n \to \infty} x_n.$$

例

设
$$x_n = \sqrt{a + \sqrt{a + \sqrt{\dots + \sqrt{a}}}}$$
 (n 重根式), 求极限 $\lim_{n \to \infty} x_n$.

定理

数列 $\left\{ \left(1+\frac{1}{n}\right)^n \right\}$ 有极限, 记为

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

推论

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e, \qquad \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e.$$

例

求下列极限:

$$\lim_{n \to \infty} \left(1 - \frac{a}{n} \right)^n, \qquad \lim_{x \to \infty} \left(\frac{x+1}{x-2} \right)^x,$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x}, \qquad \lim_{x \to 0} \frac{e^x - 1}{x},$$

$$\lim_{x \to 1} \frac{x^\alpha - 1}{x - 1}, \qquad \lim_{x \to \infty} \left(\cos \frac{1}{x} + \sin \frac{1}{x} \right)^x.$$

闭区间套定理

闭区间套定理

设 $[a_n, b_n], n = 1, 2, ...$ 是一列(无穷多个)闭区间, 满足条件:

- ▶ $a_n \leq a_{n+1} < b_{n+1} \leq b_n$, $p [a_{n+1}, b_{n+1}] \subset [a_n, b_n]$,
- $\blacktriangleright \lim_{n\to\infty} (b_n a_n) = 0.$

则这一列闭区间有唯一的公共点ξ,即

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{\xi\}.$$

闭区间套定理

► 闭区间套定理中每个区间都是闭区间的条件非常重要. 对于开区间列,结论未必成立.如:

$$\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right) = \emptyset.$$

闭区间套定理

例

设 0 < a < b, $\Leftrightarrow a_1 = a, b_1 = b$,

$$a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}, \quad n = 1, 2, \dots$$

证明: $\lim_{n\to\infty} a_n$ 和 $\lim_{n\to\infty} b_n$ 均存在, 且

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n.$$

定义 (数列的子列)

在数列 {xn} 中依次任意抽出无穷多项

$$x_{n_1}, x_{n_2}, \dots, x_{n_k}, \dots, \quad (\sharp + n_1 < n_2 < \dots < n_k < \dots)$$

所构成的新数列 $\{x_{n_k}\}$ 称为数列 $\{x_n\}$ 的一个子列.

- ▶ x_{n_k} 表示子列的第 k 项, 在原数列中是第 n_k 项.
- $ightharpoonup k \leqslant n_k$.
- $n_i < n_j \Leftrightarrow i < j.$

收敛数列的子列

定理

若数列 $\{x_n\}$ 收敛,则其任意子列 $\{x_{n_k}\}$ 都收敛,且

$$\lim_{k\to\infty} x_{n_k} = \lim_{n\to\infty} x_n.$$

- ▶ 数列 $\{x_n\}$ 的某一子列 $\{x_{n_k}\}$ 收敛并不能确保原数列 $\{x_n\}$ 也收敛. 如 $\{(-1)^n\}$ 的偶子列收敛, 但其本身不收敛.
- ▶ 若数列 $\{x_n\}$ 有一个发散的子列 $\{x_{n_k}\}$,则原数列 $\{x_n\}$ 发散.
- ▶ 若数列 $\{x_n\}$ 有两个收敛的子列, 但它们的极限不同,则原数列 $\{x_n\}$ 发散.
- ▶ 若数列 $\{x_n\}$ 的奇子列 $\{x_{2k-1}\}$ 和偶子列 $\{x_{2k}\}$ 都收敛, 且有相同的极限,则原数列 $\{x_n\}$ 收敛.

Bolzano-Weierstrass 致密性定理

Bolzano-Weierstrass 致密性定理

每个有界数列都有收敛的子列.

定理

每个无界数列都有一个子列趋向于无穷.

Cauchy 收敛准则

定义

设 $\{x_n\}$ 是一个数列,

若 $\forall \varepsilon > 0, \exists N > 0$, 使得当 m, n > N 时, 恒有

$$|x_m-x_n|<\varepsilon,$$

则称数列 $\{x_n\}$ 是一个 Cauchy 数列或基本列.

Cauchy 收敛准则

数列 $\{x_n\}$ 收敛 $\Leftrightarrow \{x_n\}$ 是一个 Cauchy 列.

Cauchy 收敛准则

Cauchy 收敛准则 (等价形式)

数列
$$\{x_n\}$$
 收敛 \Leftrightarrow $\forall \varepsilon > 0, \exists N > 0, \exists n > N$ 时, $\forall p \in \mathbb{N}$, 恒有 $|x_{n+p} - x_n| < \varepsilon$.

Cauchy 收敛准则(否定形式)

数列
$$\{x_n\}$$
 发散 \Leftrightarrow $\exists \varepsilon_0 > 0, \forall N > 0, \exists n_0, p_0 > N,$ 使得 $|x_{n_0+p_0} - x_{n_0}| \ge \varepsilon_0.$

Cauchy 收敛准则

例

判断下列数列的收敛性:

$$x_n = \frac{\sin 1}{2} + \frac{\sin 2}{2^2} + \frac{\sin 3}{2^3} + \dots + \frac{\sin n}{2^n},$$

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

作业:

▶ 习题 2.5 (A)

2.

3.

习题 2.5 (B)

2. (2).

4.

