

Praca dyplomowa inżynierska

na kierunku Fizyka Techniczna w specjalności Fizyka komputerowa

Zoptymalizowana symulacja Particle in Cell w języku Python

Dominik Stańczak

promotor dr Sławomir Jabłoński

WARSZAWA 2017

Streszczenie

Tytuł pracy: Zoptymalizowana symulacja Particle in Cell w języku Python

1 Streszczenie

Utworzono kod symulacyjny Particle-in-Cell mający modelować interakcję relatywistycznej plazmy wodorowej oraz impulsu laserowego. Kod zoptymalizowano w celu zademonstrowania możliwości użycia wysokopoziomowego języka programowania wywołującego niskopoziomowe procedury numeryczne do osiągnięcia wysokiej wydajności obliczeniowej. *Słowa kluczowe:*

python, plazma, particle in cell, symulacja, optymalizacja, elektrodynamika

Abstract

Title of the thesis: Optimised Particle in Cell simulation in Python

2 Abstract

A Python particle-in-cell plasma simulation code is developed to model the interaction between a hydrogen plasma target and a laser impulse. The code is then optimized to demonstrate the possibilities of using a high level programming language to call low level numerical procedures, thus achieving high computational efficiency. *Słowa kluczowe:*

<python, plasma, particle in cell, simulation, optimization, electrodynamics>

Oświadczenie o samodzielności wykonania pracy

Politechnika Warszawska Wydział Fizyki

Ja niżej podpisany/a:

Dominik Stańczak, 261604

student/ka Wydziału Fizyki Politechniki Warszawskiej, świadomy/a odpowiedzialności prawnej przedłożoną do obrony pracę dyplomową inżynierską pt.:

Zoptymalizowana symulacja Particle in Cell w języku Python

wykonałem/am samodzielnie pod kierunkiem

dr Sławomira Jabłońskiego

Jednocześnie oświadczam, że:

- praca nie narusza praw autorskich w rozumieniu ustawy z dnia 4 lutego 1994 o prawie autorskim i prawach pokrewnych, oraz dóbr osobistych chronionych prawem cywilnym,
- praca nie zawiera danych i informacji uzyskanych w sposób niezgodny z obowiązującymi przepisami,
- praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem dyplomu lub tytułu zawodowego w wyższej uczelni,
- promotor pracy jest jej współtwórcą w rozumieniu ustawy z dnia 4 lutego 1994 o prawie autorskim i prawach pokrewnych.

Oświadczam także, że treść pracy zapisanej na przekazanym nośniku elektronicznym jest zgodna z treścią zawartą w wydrukowanej wersji niniejszej pracy dyplomowej.

Oświadczenie o udzieleniu Uczelni licencji do pracy

Politechnika Warszawsk	а
Wydział Fizyki	

Ja niżej podpisany/a:

Dominik Stańczak, 261604

student/ka Wydziału Fizyki Politechniki Warszawskiej, niniejszym oświadczam, że zachowując moje prawa autorskie udzielam Politechnice Warszawskiej nieograniczonej w czasie, nieodpłatnej licencji wyłącznej do korzystania z przedstawionej dokumentacji pracy dyplomowej pt.:

Zoptymalizowana symulacja Particle in Cell w języku Python

			szechniani			

Warszawa, dnia 2017

(podpis dyplomanta)

^{*}Na podstawie Ustawy z dnia 27 lipca 2005 r. Prawo o szkolnictwie wyższym (Dz.U. 2005 nr 164 poz. 1365) Art. 239. oraz Ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz.U. z 2000 r. Nr 80, poz. 904, z późn. zm.) Art. 15a. "Uczelni w rozumieniu przepisów o szkolnictwie wyższym przysługuje pierwszeństwo w opublikowaniu pracy dyplomowej studenta. Jeżeli uczelnia nie opublikowała pracy dyplomowej w ciągu 6 miesięcy od jej obrony, student, który ją przygotował, może ją opublikować, chyba że praca dyplomowa jest częścią utworu zbiorowego."

Spis treści

1. WSTEP

1 Wstęp

Algorytmy Particle-in-Cell (cząstka w komórce) to jedne z najbardziej zbliżonych do fundamentalnej fizyki metod symulacji materii w stanie plazmy. Zastosowany w nich lagranżowski opis cząsteczek pozwala na dokładne odwzorowanie dynamiki ruchu elektronów i jonów. Jednocześnie, ewolucja pola elektromagnetycznego na Eulerowskiej siatce dokonywana zamiast bezpośredniego obliczania oddziaływań międzycząsteczkowych pozwala na znaczące przyspieszenie etapu obliczenia oddziaływań międzycząsteczkowych. W większości symulacji cząsteczkowych właśnie ten etap jest najbardziej krytyczny dla wydajności progamu.

W ostatnich czasach symulacje Particle-in-Cell zostały wykorzystane między innymi do

symulacji przewidywanej turbulencji plazmy w reaktorze termojądrowym ITER

TODO: źródło, grupa Hammeta

modelowania rekonekcji linii magnetycznych w polu gwiazdy

TODO: źródło

projektowania silników jonowych (Halla)

TODO: źródło

badania interakcji laserów z plazmą w kontekście tworzenia niewielkich, wysokowydajnych akceleratorów cząstek

TODO: źródło

Należy zauważyć, że w świetle rosnącej dostępności silnie równoległej mocy obliczeniowej w postaci kart graficznych możliwości algorytmów Particle-in-Cell będą rosły współmiernie, co może pozwolić na rozszerzenie zakresu ich zastosowań. Przykładem takiego projektu jest PIConGPU

TODO: źródło PIConGPU

Inżynieria oprogramowania zorientowanego na wykorzystanie możliwości kart graficznych, jak również w ogólności nowoczesnych symulacji wykorzystujących dobrodziejstwa nowych technologii jest jednak utrudniona poprzez niskopoziomowość istniejących języków klasycznie kojarzonych z symulacją numeryczną (C, FORTRAN) oraz istniejących technologii zrównoleglania algorytmów (MPI, CUDA, OpenCL).

To sprawia, że pisanie złożonych programów symulacyjnych, zwłaszcza przez osoby zajmujące się głównie pracą badawczą (na przykład fizyką), a nie tylko programowaniem, jest znacznie utrudnione. Należy też zauważyć, że programy takie często są trudne, jeżeli nie niemożliwe do weryfikacji działania, ponownego wykorzystania i modyfikacji przez osoby niezwiązane z oryginalnym autorem z powodów takich jak

- brak dostępności kodu źródłowego
- niedostateczna dokumentacja
- brak jasno postawionych testów pokazujących, kiedy algorytm działa zgodnie z zamiarami twórców
- zależność działania kodu od wersji zastosowanych bibliotek, sprzetu i kompilatorów

Niniejsza praca ma na celu utworzenie kodu symulacyjnego wykorzystującego metodę Particle-in-Cell do symulacji oddziaływania wiązki laserowej z tarczą wodorową w popularnym języku wysokopoziomowym Python, przy użyciu najlepszych praktyk tworzenia reprodukowalnego, otwartego oprogramowania i zoptymalizowanie go w celu osiągania maksymalnej wydajności i sprawności obliczeniowej. Może to też oczywiście pozwolić na dalsze zastosowanie kodu w celach badawczych i jego dalszy rozwój, potencjalnie z użyciem kart graficznych. Ostatecznie, jest to również test wydajnościowy możliwości Pythona w symulacjach

Zamiast ostatecznie chciałbym dać coś typu last but not least

numerycznych.

2 Część analityczno-teoretyczna

coś tutaj może?

2.1 Plazma - czwarty stan materii

Plazma, powszechnie nazywana czwartym stanem materii, to zbiór zjonizowanych cząstek oraz elektronów przejawiających jako grupa globalną obojętność elektryczną. Innymi słowy, od gazu plazmy odróżnia fakt, że cząstki są zjonizowane, więc oddziałują kolektywnie między sobą na odległość, ale ich pola elektryczne wzajemnie się neutralizują na długich dystansach.

Plazmy występują w całym wszechświecie, od materii międzygwiezdnej po błyskawice. Ich istnienie uwarunkowane jest obecnością wysokich energii, wystarczających do zjonizowania atomów gazu.

Fizyka plazmy jest stosunkowo młodą nauką, której rozwój nastąpił dopiero w ostatnim stuleciu, zaczynając od badań Langmuira (1928), który eksperymentował z jonizowaniem gazów w szklanych rurach zwanych rurami Crookesa, służących do generowania promieniowania katodowego, czyli, jak wiemy obecnie, strumieni elektronów.

Globalny wzrost zainteresowania fizyką plazmy na arenie geopolitycznej rozpoczął się w latach '50 ubiegłego wieku, gdy uświadomiono sobie, że można zastosować ją do przeprowadzania kontrolowanych reakcji syntezy jądrowej,

TODO: reference: fusion in europe history of fusion

które mogą mieć zastosowania w energetyce jako następny etap rozwoju po reakcjach rozpadu wykorzystywanych w "klasycznych" elektrowniach jądrowych. Był to jeden z elementów zimnowojennego wyścigu technologicznego między Stanami Zjednoczonymi a ZSRR, jak również jeden z projektów mających na celu ponowne nawiązanie współpracy naukowej między supermocarstwami po zakończeniu tego konfliktu.

TODO reference fusion for energy history of fusion

Poza tym ogromnym projektem plazmy mają szerokie zastosowania w obecnym przemyśle, na przykład:

- metalurgicznym cięcie metalu przy użyciu łuków plazmowych
- elektronicznym i materiałowym żłobienie powierzchni urządzeń półprzewodnikowych, powierzchniowa obróbka materiałów, depozycja aktywnych jonów pod powierzchnią czyszczenie powierzchni, depozycja cienkich warstw związków chemicznych na powierzchniach (CVD)
- kosmicznym silniki plazmowe, interakcja z rozgrzanym powietrzem podczas powtórnego wchodzenia w atmosferę
- użytkowym ekrany telewizorów, oświetlenie (świetlówki)

Należy też zwrócić uwagę, że ze względu na złożoność układów plazmowych pra-komputerowa fizyka miała ogromne problemy z merytorycznymi badaniami zachowania plazmy poza wybranymi,

mocno uproszczonymi reżimami. Postęp w badaniach plazmy, jak sugeruje rozwój technologii kontrolowanej syntezy jądrowej, jest silnie skorelowany

ref youtube wykład

z rozwojem mocy obliczeniowej oraz algorytmów symulacyjnych.

2.2 Modelowanie i symulacja plazmy

Modelowanie zjawisk z zakresu fizyki plazmy jest jednym z bardziej złożonych problemów fizyki komputerowej. Głównym, koncepcyjnie, powodem uniemożliwiającym zastosowanie prostych metod symulacji znanych z newtonowskiej dynamiki molekularnej jest mnogość oddziaływań - każda cząstka oddziałuje z każdą inną nawzajem poprzez niepomijalne oddziaływania kulombowskie, skalujące się z odległością jak $\approx r^{-2}$.

Z powodu dużej liczby cząstek w układach plazmowych, jedynymi podejściami fundamentalnymi (jako opierającymi się na fundamentalnej fizyce) są opisy kinetyczne. Wielkością opisującą plazmę jest tu funkcja dystrybucji (zwana też funkcją rozkładu) zdefiniowana jako $f_s(\vec{x}, \vec{v}, t) d\vec{x} d\vec{v}$ opisująca gęstość rozkładu danej grupy cząstek s plazmy w sześciowymiarowej przestrzeni fazowej (po trzy wymiary na położenia oraz prędkości). Ewolucja czasowa funkcji rozkładu dokonuje się poprzez rozwiązanie wariantu równania Boltzmanna zwanego równaniem Vlasova,

Włazowa?

które sprzęga gęstości ładunku i prądu otrzymywane z funkcji dystrybucji z równaniami Maxwella na ewolucję pola elektromagnetycznego. Równanie Vlasova może zostać rozszerzone do równania Fokkera-Plancka uwzględniającego bezpośrednie kolizje międzycząsteczkowe.

$$\frac{d}{dt}f_{\alpha}(\vec{x}, \vec{v}, t) - \nabla f - \nabla_{\vec{v}}(\vec{v} \times \vec{B} + \vec{E}) = f_{coll}$$
 (1)

wzór na równanie Vlasova

W praktyce równanie Vlasova jest trudne do rozwiązania poza trywialnymi przypadkami o ułatwiających problem symetriach. Jednym z powodów tej trudności jest konieczność uzyskania dobrej rozdzielczości prędkości przy jednoczesnym zachowaniu zakresów obejmujących prędkości relatywistyczne. Jako równanie różniczkowe cząstkowe, równanie Vlasova jest rozwiązywane na dyskretnych siatkach, należy zauważyć zaś, należy zauważyć, że skalowanie liczby punktów na siatce tego typu jest proporcjonalne do $N_r^3N_v^3$, gdzie N_r to liczba punktów przestrzennych, zaś N_v to liczba punktów na siatce prędkości. Jest to więc często niepraktyczne obliczeniowo, między innymi ze względu na istotne w plazmach fuzyjnych zjawisko "uciekających elektronów" o relatywistycznych prędkościach.

W modelowaniu komputerowym plazmy stosuje się trzy główne koncepcyjne podejścia:

1. modele kinetyczne rozwiązujące bezpośrednio równania typu Vlasova na dyskretnych siatkach

- 2. modele płynowe oparte na ciągłym opisie plazmy poprzez uśrednienie po dystrybucji wielkości termodynamicznych, co daje modele takie jak magnetohydrodynamikę. Jest to wciąż układ równań różniczkowych cząstkowych, lecz na mniej wymiarowej siatce. Niestety, nie nadają się one do badań plazmy daleko od równowagi z powodu czynionych przy nich założeń takich jak maxwellowski rozkład predkości.
- 3. modele dyskretne oparte na samplowaniu dystrybucji plazmy przy użyciu dyskretnych cząstek, pozwalające w prosty sposób uzyskać dobre przybliżenie faktycznego ruchu cząstek w plazmie i prądów generowanych tym ruchem.

Prawdopodobnie najpopularniejszym modelem z tej drugiej kategorii są modele Particle-in-cell.

2.3 Modele Particle-in-cell

Idea modelu particle-in-cell (PIC) jest wyjątkowo prosta i opiera się na idei przyspieszenia najbardziej złożonego obliczeniowo kroku symulacji dynamiki molekularnej, czyli obliczania sił międzycząsteczkowych. Cząstki poruszają się w ciągłej, Lagrange'owskiej przestrzeni. Ich ruch wykorzystywany jest do zebrania informacji dotyczącej gęstości ładunku i prądu na dyskretną, Eulerowską siatkę. Na siatce rozwiązane są (jako równania różniczkowe cząstkowe) równania Maxwella, dzięki którym otrzymuje się pola elektryczne i magnetyczne, które z powrotem są przekazane do położeń cząstek. Obliczeniowo, uwzględniając koszty odpowiednich interpolacji, pozwala to zredukować złożoność kroku obliczenia sił międzycząsteczkowych do $n \log n$ z n^2

wyrazić złożoność PIC przez rozmiar siatki

2.3.1 Petla obliczeniowa PIC

Obliczeniowo algorytm particle-in-cell składa się z czterech elementów powtarzających się cyklicznie:

Zbierz (Gather)

Depozycja ładunku oraz prądu z położeń cząstek do lokacji na dyskretnej siatce poprzez interpolację, co pozwala na sprawne rozwiązanie na tej siatce równań Maxwella jako układu różnicowych równań cząstkowych zamiast obliczania skalujących się kwadratowo w liczbie cząstek oddziaływań kulombowskich między nimi. W naszym elektromagnetycznym przypadku bardziej istotną jest depozycja prądu na siatkę, co szerzej tłumaczy następny fragment.

Rozwiaż (Solve)

Sprawne rozwiązanie równań Maxwella na dyskretnej, Eulerowskiej siatce. Znalezienie pól elektrycznego i magnetycznego na podstawie gęstości ładunku i prądu na siatce. Istnieją dwie główne szkoły rozwiązywania tych równań: metody globalne i lokalne. Metody globalne wykorzystują zazwyczaj równania dywergencyjne (prawo Gaussa dla pola elektrycznego)

$$\rho/\varepsilon_0 = \nabla \cdot \vec{E}0 = \nabla \cdot \vec{B} \tag{2}$$

rozwiązywane iteracyjnie (metody takie jak Gaussa-Seidela lub gradientów sprzężonych) ref

lub spektralnie, przy użyciu transformat Fouriera bądź Hankela.

ref

Metody lokalne z kolei wykorzystują równania rotacyjne (prawa Ampera-Maxwella oraz Faradaya)

$$\nabla \times \vec{E} = -\partial \vec{B} / \partial t \nabla \times \vec{B} = \mu_0 (\vec{J} + \varepsilon_0 \partial \vec{E} / \partial t$$
 (3)

Metody globalne nadają się do modeli elektrostatycznych, nierelatywistycznych. Metody lokalne pozwalają na ograniczenie szybkości propagacji zaburzeń do prędkości światła, co przybliża metodę numeryczną do fizyki zachodzącej w rzeczywistym układzie tego typu.

Rozprosz (Scatter)

Interpolacja pól z siatki do lokacji cząstek, co pozwala określić siły elektromagnetyczne działające na cząstki. Należy przy tym zauważyć, że jako że interpolacja sił wymaga jedynie lokalnej informacji co do pól elektromagnetycznych w okolicy cząstki, ta część algorytmu sprawia, że algorytmy Particle-in-cell doskonale nadają się do zrównoleglenia (problem jest w bardzo dobrym przybliżeniu "trywialnie paralelizowalny"). Z tego powodu algorytmy Particle-in-cell nadają się doskonale do wykorzystania rosnącej mocy kart graficznych i architektur GPGPU.

Porusz (Push)

iteracja równań ruchu cząstek

$$d\vec{p}/dt = \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \tag{4}$$

na podstawie ich prędkości (aktualizacja położeń) oraz działających na nie sił elektromagnetycznych (aktualizacja prędkości). Należy zauważyć, że modele PIC nie modelują bezpośrednich kolizji między cząstkami. Kolizje mogą jednak zostać dodane niebezpośrednio, na przykład poprzez metody Monte Carlo.

refka

Jako że każda cząstka, zakładając znane pola elektromagnetyczne w jej położeniu, porusza się niezależnie, jest to kolejny fragment doskonale nadający się do zrównoleglenia.

2.3.2 Makrocząstki

Należy zauważyć, że obecnie nie jest jeszcze możliwe dokładne odwzorowanie dynamiki układów plazmowych w sensie interakcji między poszczególnymi cząstkami ze względu na liczbę cząstek rzędu liczby Avogadro $\approx 10^{23}$. W tym kontekście bardzo szczęśliwym jest fakt, że wszystkie istotne wielkości zależą nie od ładunku ani masy, ale od stosunku q/m. W praktyce stosuje się więc makrocząstki, obdarzone ładunkiem i masą będące wielokrotnościami tych wielkości dla cząstek

występujących w naturze (jak jony i elektrony, pozwalając jednocześnie zachować gęstości cząstek i ładunku zbliżone do rzeczywistych.

W symulacjach elektromagnetycznych zazwyczaj ("tradycyjnie") stosuje się gęstości cząstek (rzeczywistych) rzędu jednej dziesiątej bądź setnej gęstości krytycznej plazmy n_c , która oznacza taką koncentrację elektronów, przy której fala laserowa zaczyna być tłumiona zamiast być przepuszczaną przez plazmę.

zweryfikować

$$n_c = m_e \varepsilon_0 * \left(\frac{2\pi c}{e^{\lambda}}\right)^2 \tag{5}$$

gdzie m_e to masa spoczynkowa elektronu, ε_0 to przenikalność elektryczna próżni,

przenikalność?

c to predkość światła w próżni, e to ładunek elementarny, zaś λ to długość fali.

Gęstość takiej makrocząstki, oznaczana n_{pic} , oznacza innymi słowy liczbę rzeczywistych cząstek, jakie reprezentuje sobą jedna makrocząstka.

To jest generalnie moja własna analiza i nie jestem jej w 100% pewien, ale tak 80% to dałbym.

2.4 Problem testowy

Problemem testowym, jakiego używamy do przetestowania dokładności i wydajności działania algorytmu jest interakcja impulsu laserowego z tarczą składającą się ze zjonizowanego wodoru i elektronów.

Układ ten modelowany jest jako jednowymiarowy. Jest to tak zwany w literaturze model 1D-3D. O ile położenia cząstek są jednowymiarowe ze względu na znaczną symetrię cylindryczną układu, cząstki mają prędkości w pełnych trzech wymiarach. Jest to konieczne ze względu na oddziaływania cząstek z polem elektromagnetycznym propagującym się wzdłuż osi układu.

Układ ten jest silnie zbliżony do rzeczywistych eksperymentów prowadzonych w Instytucie Fizyki Plazmy i Laserowej Mikrosyntezy.

Tu bym chciał prosić o weryfikację.

2.5 Python

Python jest wysokopoziomowym, interpretowanym językiem programowania, którego atutami są szybkie prototypowanie, bogaty zestaw bibliotek numerycznych

dopisać zalety

Python znajduje zastosowania w analizie danych, uczeniu maszynowym (zwłaszcza w astronomii). W zakresie symulacji w ostatnich czasach powstały kody skalujące się nawet w zakres superkomputerów, na przykład w mechanice płynów. Nie można tu nie wspomnieć o utworzonym ostatnio kodzie PyFR,

refka i opis PyFR

Atutem Pythona w wysokowydajnych obliczeniach jest łatwość wywoływania w nim zewnętrznych bibliotek napisanych na przykład w C lub Fortranie, co pozwala na osiągnięcie podobnych rezultatów wydajnościowych jak dla kodów napisanych w językach niskopoziomowych bez faktycznej pracy z tymi językami.

Ostatnimi czasy popularną staje się również kompilacja Just-in-time wysokopoziomowego kodu Pythona do kodu niskopoziomowego przy pierwszym uruchomieniu programu

numba

Istniejącym od niedawna kodem implementującym tą metodę jest FBPIC

refka

3 Implementacja

3.1 Całkowanie równań ruchu

Każda symulacja cząstek wymaga zastosowania integratora równań ruchu. Tradycyjnym przykładem takiego integratora jest integrator Rungego-Kutty czwartego rzędu, znajdujący zastosowanie w wielorakich symulacjach.

reference

Niestety, w bieżącym kodzie nie można go zastosować ze względu na jego niesymplektyczność: mimo ogromnej dokładności jest on niestabilny pod względem energii cząstek.

reference

W symulacjach typu Particle-in-cell konieczne jest zastosowanie innych algorytmów. Dobrym algorytmem symplektycznym jest na przykład powszechnie znany *leapfrog*, polegający na przesunięciu prędkości o połowę iteracji czasowej względem położeń.

reference

Mimo tego, że energie cząstek w ruchu obliczonym tym integratorem nie są lokalnie stałe na krótkich skalach czasowych, to jednak zachowują energię na skali globalnej.

IMAGE: chyba miałem to na coldplasma

W przypadku ruchu w polu magnetycznym nie wystarczy, niestety, użyć zwykłego algorytmu leapfrog.

READ

Używa się tutaj specjalnej adaptacji tego algorytmu na potrzeby ruchu w zmiennym polu elektromagnetycznym, tak zwanego integratora Borysa,

REFERENCE

który rozbija pole elektryczne na dwa impulsy, między którymi następują dwie rotacje polem magnetycznym. Algorytm jest dzięki temu symplektyczny i długofalowo zachowuje energię cząstek.

$$\vec{v}^{-} = \vec{v}^{n-1/2} + \frac{qdt}{2m}\vec{E}^{n}\vec{t} = \frac{qdt}{2m}\vec{B}^{n}\vec{v'} = \vec{v}^{-} + \vec{v}^{-} \times \vec{t}\vec{s} = \vec{t}/(1+t^{2})\vec{v}^{+} = \vec{v}^{-} + \vec{v'} \times \vec{s}\vec{v}^{n+1/2} = \vec{v}^{+} + \frac{qdt}{2m}\vec{E}^{n}\vec{x}^{n+1} = \vec{x}^{n} + \vec{v}^{n+1/2}dt$$
(6)

W naszym przypadku dochodzi jeszcze jedno utrudnienie związane z relatywistycznymi prędkościami osiąganymi przez cząstki (zwłaszcza elektrony) w symulacji. Przed obliczeniem korekty prędkości konieczne jest przetransformowanie prędkości z układu "laboratoryjnego" \vec{v} na prędkość w układzie poruszającym się z cząstką \vec{u} , czego dokonuje się poprzez prostą transformację:

$$\vec{u} = \vec{v}\gamma\gamma = \sqrt{1 + (u/c)^2} = 1/\sqrt{1 - (v/2)^2}$$
 (7)

3.2 Depozycja gęstości prądu

Kolejnym krokiem pętli obliczeniowej po rozwiązaniu równań ruchu na aktualizację prędkości, po której - przypomnijmy - dysponujemy położeniami cząstek x^n w chwilach n oraz ich prędkościami $v^{n+1/2}$ w chwilach n+1/2

CHECK

jest obliczenie prądów podłużnych i poprzecznych potrzebnych do obliczenia wartości pól elektromagnetycznych w kolejnej iteracji.

W bieżącym programie gęstość ładunku jest tak naprawdę niepotrzebna w trakcie symulacji. Ewolucja pola następuje poprzez znajomość gęstości prądu. Jeżeli zaś pole elektromagnetyczne spełniało warunek

prawa Gaussa

na początku, depozycja prądu w sposób zachowujący ładunek zapewni dalsze zachowanie tego warunku w koeljnych iteracjach.

Wyjątek stanowi początek symulacji, w której pole faktycznie musi zostać obliczone od podstaw na podstawie gęstości ładunku. PythonPIC pozwala poradzić sobie z tym problemem. Pierwszą opcją jest ustawienie początkowych położeń ładunków na identyczne między cząstkami negatywnymi i dodatnimi, co pozwala na siłowe wyzerowanie gęstości ładunku i brak pola elektrycznego w rejonie symulacji. Drugą metodą jest zebranie gęstości ładunku z początkowych położeń

Należy zauważyć, że mimo tego że gęstość ładunku nie jest konieczna w kolejnych iteracjach, jest wciąż zbierana jako wygodna diagnostyka ewolucji przestrzennej plazmy w układzie :

Depozycja ładunku odbywa się w prosty sposób, przy następujących założeniach:

• Każda makrocząstka ma własny (wspólny wewnątrz Species) ładunek q oraz parametr scaling (również)

STYLE?

decydujący o tym, ile rzeczywistych cząstek reprezentuje. Sumaryczny ładunek makrocząstki wynosi więc q*scaling

- Każda makrocząstka ma szerokość jednej komórki siatki Δx . Cząstka zlokalizowana więc środkiem w połowie długości komórki będzie w niej całkowicie zawarata.
- · W ten sposób możemy stwierdzić,

CONTINUE

Powszechnie stosowaną od zarania dziejów metod particle-in-cell

refka: Dawson

jest interpolacja liniowa, polegająca na zdepozytowaniu w i-tej komórce siatki

dokończyć

 $1 = \sum_{i} S_i$

dokończyć wzór

W naszym przypadku wymagamy również, żeby depozycja prądu była spójna z depozycją ładunku, to znaczy zachowywała ładunek.

3.2.1 Interpolacja pól elektrycznego i magnetycznego

Interpolacja pól elektrycznego i magnetycznego odbywa się na bardzo podobnej zasadzie, co depozycja. Wartosci pol sa liniowo skalowane do pozycji czastek wedlug ich wzglednych położeń wewnątrz komórek.

CONTINUE opowiadanie o interpolacji

3.2.2 Field solver

przerobić

Ewolucja pola elektromagnetycznego opisana jest poprzez równania Maxwella. Jak pokazują Buneman i Villasenor, numerycznie można zastosować dwa główne podejścia:

zredagować

1. wykorzystać równania na dywergencję pola (prawa Gaussa) do rozwiązania pola na całej siatce. Niestety, jest to algorytm inherentnie globalny, w którym informacja o warunkach brzegowych jest konieczna w każdym oczku siatki

alternatywa na słowo óczko"?

2. wykorzystać równania na rotację pola (prawa Ampera i Faradaya), opisujące ewolucję czasową pól. Jak łatwo pokazać (Buneman), dywergencja pola elektrycznego oraz magnetycznego nie zmienia się w czasie pod wpływem tak opisanej ewolucji czasowej:

Co za tym idzie, jeżeli rozpoczniemy symulację od znalezienia pola na podstawie warunków brzegowych i początkowych (gęstości ładunku), możemy już dalej iterować pole na podstawie równań rotacji. Ma to dwie znaczące zalety:

- * algorytm ewolucji pola staje się trywialny obliczeniowo, zwłaszcza w 1D ogranicza się bowiem do elementarnych operacji lokalnego dodawania i mnożenia.
- * algorytm ewolucji pola staje się lokalny (do znalezienia wartości pola w danym oczku w kolejnej iteracji wykorzystujemy jedynie informacje zawarte w tym właśnie oczku i potencjalnie jego sąsiadach

jak to faktycznie wygląda z tym algo?

co zapobiega problemowi informacji przebiegającej w symulacji szybciej niż światło oraz zapewnia stabilność na podstawie warunku Couranta.

gładsze przejście tutaj - wyprowadzenie field solvera

W 1D można dokonać dekompozycji składowych poprzecznych pola elektromagnetycznego (tutaj oznaczanych y, z) na propagujące się w przód (+) i w tył (-) obszaru symulacji. Składowe E_y , B_z są zebrane poprzez zamianę zmiennych w dwie wielkości elektrodynamiczne F^+ , F^- .

Wychodzimy z rotacyjnych równań Maxwella:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \nabla \times \vec{B} = \mu_0 (\vec{j} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t})$$
 (8)

Jako że symulacja zakłada symetrię układu wzdłuż osi propagacji lasera x, możemy przyjąć $\frac{\partial}{\partial y}=\frac{\partial}{\partial z}=0$. Jednocześnie z prawa Gaussa dla pola magnetycznego wynika $B_x=0$. Stąd równania dla pola elektrycznego podłużnego oraz pola elektromagnetycznego poprzecznego

słowo - decouple

:

$$(\nabla \times \vec{B})_x = 0 = \mu_0 (j_x + \varepsilon_0 \frac{\partial E_x}{\partial t})$$
(9)

Z kolei dla pola poprzecznego, sumując:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \nabla \times \vec{B} = \mu_0 (\vec{j} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t}) \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c = 1 / \sqrt{\mu_0 \varepsilon_0} \nabla \times (\vec{E} + \vec{B}) = -\frac{\partial (\vec{B} + \mu_0 \varepsilon_0 \vec{E})}{\partial t} + \mu_0 \vec{j} c$$

skończyć wyprowadzenie

Po dodaniu i odjęciu stronami:

$$\nabla \times (\vec{E} + c\vec{B}) = -\frac{\partial \vec{B}}{\partial t} + c\mu_0(\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}) \nabla \times (\vec{E} - c\vec{B}) = -\frac{\partial \vec{B}}{\partial t} - c\mu_0(\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t})$$
(11)

$$F^{+} = E_{y} + cB_{z}F^{-} = E_{y} - cB_{z}$$
 (12)

Analogicznie, dla składowych E_z , B_y :

zweryfikować znaki i czy c nie jest w mianowniku

$$G^{+} = E_z + cB_yG^{-} = E_z - cB_y \tag{13}$$

Wyrazem "źródłowym" dla F, G jest prąd poprzeczny. Po dyskretyzacji równania, wyrażenie na ewolucję pól F, G między iteracjami przybiera postać:

$$F_{i+1}^{+n+1} = F_n^+ + j (14)$$

sprawdzić

Z tego powodu bardzo istotnym dla dokładności i stabilności algorytmu staje się sposób depozycji ładunku - należy pilnować, aby był robiony w sposób który spełnia zachowanie ładunku.

Inaczej koniecznym staje się aplikowanie tak zwanej poprawki Borysa,

źródło - prezentacja

aby upewnić się, że warunek z równań Maxwella $\nabla \rho/\varepsilon_0 = \nabla \cdot \vec{E}$ jest wciąż spełniony. Składowa podłużna pola jest obliczana poprzez wyrażenie

$$\frac{\partial E_x}{\partial t} = -\frac{j_x}{\varepsilon_0} \tag{15}$$

czy raczej jej dyskretny odpowiednik

$$E_i^{n+1} = E_i^n - \frac{\Delta t}{\varepsilon_0} j_{x,i}^{n+1/2} \tag{16}$$

3.3 Warunki początkowe dla cząstek

W celu dobrania warunków początkowych wykorzystuje się algorytm opisany w

Birdsall Langdon

Jego działanie można łatwo zilustrować na przykładzie początkowej funkcji gęstości cząstek zadanej dowolną funkcją analityczną.

czy analityczna nie jest słowem zarezerwowanych dla tych na szeregi

Używając funkcji dystrybucji w jednym wymiarze zależnej jedynie od położenia znormalizowanej do liczby cząstek N, można wykonać całkowanie kumulatywne po siatce gęstszej niż liczba cząstek na wybranym przedziale, po czym umieścić cząstki w miejscach, gdzie obliczona dystrybuanta funkcji przybiera kolejne większe całkowite wartości.

rysunek: przykład z ipynb

Zaimplementowany algorytm jest w stanie przyjąć dowolną funkcję analityczną

czy nie przesadzam?

i zrenormalizować ją tak, aby $\int_0^L f(x) dx = N$. W praktyce wykorzystuje się wartości marginalnie większe niż N, mianowicie N+0.1, co pozwala na uniknięcie problemów ze skończoną dokładnością obliczeń na liczbach zmiennoprzecinkowych.

Aby uniknąć problemu w przypadku dwóch Species cząstek o identycznej liczbie makrocząstek i przeciwnym znaku które według powyższego algorytmu zostałyby rozłożone w identycznych miejscach z powodu niezależnego stosowania algorytmu dla każdej grupy cząstek, co prowadziłoby do neutralizacji ładunku na całej symulacji, na położenia cząstek nakłada się dodatkowy gaussowski szum o niewielkiej intensywności.

Analogiczny algorytm znajduje zastosowanie w obliczaniu początkowych wartości prędkości dla cząstek. Wykorzystuje się relatywistyczny rozkład Maxwella

$$f(p) = \frac{N}{2\pi} \frac{mc^2}{T} \frac{1}{1 + T/mc^2} \exp\left(\frac{-mc^2}{T}(\gamma - 1)\right) \gamma = \sqrt{1 + p^2}$$
 (17)

Należy wspomnieć, że aby cząstki były prawidłowo ztermalizowane

czy to jest słowo

należy zadbać o zdekorelowanie ich prędkości między sobą. Naiwne zastosowanie algorytmu na położenia prowadzi zaś do rozłożenia cząstek rosnąco numeracją w kierunku rosnącego położenia x.

Rozwiązaniem tego problemu jest losowa zamiana prędkości między losowo wybranymi cząstkami.

dopisać jak będzie zrobione.

3.4 Opis i treść kodu

Cały kod programu w celu reprodukowalności wyników tworzony był i jest dostępny na platformie Github

link

3.5 Wykorzystane biblioteki i technologie

3.5.1 Numpy

numpy to biblioteka umożliwiająca wykonywanie złożonych obliczeń na n-wymiarowych macierzach bądź tablicach, utworzona w celu umożlwiienia zastąpienia operacjami wektorowymi iteracji po tablicach, powszechnie stosowanych w metodach numerycznych i będących znanym słabym punktem Pythona.

REFERENCE źródło na powolność pętli

Pod zewnętrzną powłoką zawiera odwołania do znanych, wypróbowanych i sprawdzonych w numeryce modułów LAPACK, BLAS napisanych w szybkich, niskopoziomowych językach C oraz FORTRAN. Jest to *de facto* standard większości obliczeń numerycznych w Pythonie.

Należy zauważyć, że operacje matematyczne w Numpy są automatycznie zrównoleglane

refka intel MKL

tam, gdzie pozwala na to niezależność obliczeń.

Numpy jest oprogramowaniem otwartym, udostępnianym na licencji BSD.

refka

3.5.2 scipy

Kolejną podstawową biblioteką w numerycznym Pythonie jest scipy, biblioteka zawierająca wydajne implementacje wielu podstawowych algorytmów numerycznych służących między innymi całkowaniu, optymalizacji, algebrze liniowej czy transformatom Fouriera. W naszym przypadku stosujemy zawarte w tej bibliotece funkcje całkujące do określenia początkowego profilu gęstości

plazmy.

czy stosuję scipy gdzieś jeszcze

3.5.3 Numba

numba to biblioteka służąca do kompilacji just-in-time kodu.

Przerobić wyjaśnienie działania Numba

W wielu przypadkach pozwala na osiągnięcie kodem napisanym w czystym Pythonie wydajności marginalnie niższej bądź nawet równej do analogicznego programu w C bądź Fortranie.

refka

Jednocześnie należy zaznaczyć prostotę jej użycia:

fragment kodu. @jit przed kodem

3.5.4 HDF5

HDF5 jest wysokowydajnym formatem plikow służącym przechowywaniu danych liczbowych w drzewiastej, skompresowanej strukturze danych, razem z równoległym, wielowątkowym zapisem tych danych. W Pythonie implementuje go biblioteka h5py.

reference h5py

Używa się go na przykład w

lista miejsc gdzie używają hdf5

https://github.com/PPPLDeepLearning/plasma-python

W bieżącej pracy wykorzystuje się go do przechowywania danych numerycznych dotyczących przebiegu symulacji, pozwalających na ich dalsze przetwarzanie i analizę poprzez wizualizację.

3.5.5 matplotlib

Do wizualizacji danych z symulacji (oraz tworzenia schematów w sekcji teoretycznej niniejszej pracy) użyto własnoręcznie napisanych skryptów w uniwersalnej bibliotece graficznej matplotlib. matplotlib zapewnie wsparcia zarówno dla grafik statycznych w różnych układach współrzędnych (w tym 3D), jak również dla dynamicznie generowanych animacji przedstawiających przebiegi czasowe symulacji.

Matplotlib również jest oprogramowaniem otwartym, udostępnianym na licencji

matplotlib license, reference

3.5.6 py.test

Przy pracy nad kodem użyto frameworku testowego py.test

refenrece

Obsługa testów jest trywialna:

przykład testu z programu

Należy zaznaczyć, że w numeryce, gdzie błędne działanie programu nie objawia się zazwyczaj błędem wykonywania programu, a jedynie błędnymi wynikami, dobrze zautomatyzowane testy jednostkowe potrafią zaoszczędzić bardzo dużo czasu na debugowaniu poprzez automatyzację uruchamiania kolejnych partii kodu i lokalizację błędnie działających części algorytmu. Dobrze napisane testy są praktycznie koniecznością w dzisiejszych czasach, zaś każdy nowo powstały projekt numeryczno-symulacyjny powinien je wykorzystywać, najlepiej do weryfikacji każdej części algorytmu z osobna.

Dobrym przykładem skutecznego testu jednostkowego jest porównanie wyników z fragmentu algorytmu (na przykład depozycji ładunku, który to test zawarty jest w pliku) pythonpic/tests/test_current_deposition.py

sprawdzić urla

z wynikami z poprzedniego, zweryfikowanego programu, bądź z obliczeniem ręcznym.

py.test jest oprogramowaniem otwartym, dostępnym na licencji

sprawdzić licencję

3.5.7 Travis CI

Nieocenionym narzędziem w pracy nad kodem był system ciągłej integracji (*continuous integration*) Travis CI

refka

dostępny za darmo dla projektów open-source. Travis pobiera aktualne wersje kodu przy każdej aktualizacji wersji dostępnej na serwerze GitHub i uruchamia testy, zwracając komunikat o ewentualnym niepowodzeniu i pozwalając na jednoczesne uruchamianie bieżących, intensywnych symulacji przy jednoczesnym uruchamianiu lżejszych, acz wciąż zasobożernych

to słowo

symulacji testowych i testów algorytmicznych.

3.5.8 snakeviz

W optymalizacji przydatny okazał się program snakeviz dostępny na licencji opensource i pozwalający na wizualizację wyników z profilowania symulacji. Pozwala w wygodny sposób zbadać, które fragmenty kodu najbardziej spowalniają symulację, które są najlepszymi kandydatami do optymalizacji, oraz jak skuteczne (bądź nieskuteczne) okazują się próby polepszenia ich wydajności.

refka

grafika snakeviz

3.6 Struktura i hierarchia kodu

Program ma obiektową strukturę zewnętrzną, którą w celu łatwości zrozumienia jego działania nakrywa wewnętrzną warstwę składającą się głównie z n-wymiarowych tablic numpy.ndarray oraz zwektoryzowanych operacji na nich.

Część symulacyjna kodu składa się z kilku prostych koncepcyjnie elementów:

3.6.1 Grid

Klasa reprezentująca dyskretną siatkę Eulera, na której dokonywane są obliczenia dotyczące pól elektromagnetycznych oraz gęstości ładunku i prądu. Zawiera:

- x_i tablice położeń lewych krawędzi komórek siatki
- N_G liczbę komórek siatki
- T sumaryczny czas trwania symulacji
- Δx krok przestrzenny siatki $N_G * \Delta x$ daje długość obszaru symulacji
- ρ_i tablice gestości ładunku na siatce.
- $\vec{j}_{i,j}$ tablice gestości prądu na siatce.
- $E_{i,j}$ tablicę pola elektrycznego na siatce.
- $B_{i,j}$ tablicę pola magnetycznego na siatce.
- c, ε_0 stałe fizyczne prędkość światła oraz przenikalność elektryczną próżni.
- Δt krok czasowy symulacji, obliczony jako $\Delta t = \Delta x/c$.
- N_T liczbę iteracji czasowych symulacji.
- BC Boundary Condition, funkcję czasu określającą wartość warunku brzegowego dotyczącego natężenia fali elektromagnetycznej (laserowej) wchodzącej do pola symulacji z lewej strony. Istotne metody klasy Grid, o których należy wspomnieć, to:
- apply_bc aktualizuje krańcowe wartości tablic E, B w oparciu o podany warunek brzegowy.
- gather_current

finish these

- · gather charge
- solve
- · field solve
- electric_field_function, magnetic
- save_to_h5py

3.6.2 Species

Klasa reprezentująca pewną grupę makrocząstek o wspólnych cechach, takich jak ładunek bądź masa. Przykładowo, w symulacji oddziaływania lasera z tarczą wodorową jedną grupą są protony,

zaś drugą - elektrony. Do zainicjalizowania wymaga instancji Grid, z której pobiera informacje takie jak stałe fizyczne c, ε_0 , liczbę iteracji czasowych N_T i czas trwania iteracji Δt .

Zawiera skalary:

- N liczba makrocząstek
- q ładunek cząstki
- *m* masa cząstki
- scaling liczba rzeczywistych cząstek, jakie reprezentuje sobą makrocząstka. Jej sumaryczny ładunek wynosi q*scaling, masa m*scaling.
- N_alive liczba cząstek obecnie aktywnych w symulacji. Zmniejsza się w miarę usuwania cząstek przez warunki brzegowe.

Poza skalarami zawiera tablice rozmiaru N:

- jednowymiarowych położeń makrocząstek x^n , zapisywanych w iteracjach n, n+1, n+2...
- trójwymiarowych prędkości makrocząstek $\vec{v}^{n+\frac{1}{2}}$, zapisywanych w iteracjach $n+\frac{1}{2}, n+32, n+52...$
- stanu makrocząstek (flagi boolowskie oznaczające cząstki aktywne bądź usunięte z obszaru symulacji)

Poza tym, zawiera też informacje dotyczące zbierania danych diagnostycznych dla cząstek, niepotrzebnych bezpośrednio w czasie symulacji:

- · name słowny identyfikator grupy cząstek, dla potrzeb legend wykresów
- N_T liczbę iteracji czasowych w symulacji
- ullet N_T^s zmniejszoną liczbę iteracji, w których następuje pełne zapisanie położeń i prędkości cząstek. Dane te są wykorzystywane do tworzenia diagramów fazowych cząstek.
- odpowiadające poprzednio wymienionym tablice rozmiaru $(N_T^s, N), (N_T^s, N, 3)$.
- jedną tablicę rozmiaru (N_T,N_G) dotyczącą zebranym podczas depozycji ładunku informacjom diagnostycznym o przestrzennej gęstości cząstek.
- ullet trzy tablice rozmiaru (N_T) dotyczącą średnich prędkości, średnich kwadratów prędkości i odchyleń standardowych prędkości.

Jeżeli liczba makrocząstek lub iteracji przekracza pewną stałą, dane zapisywane są jedynie dla co n-tej cząstki, gdzie n jest najniższą liczbą całkowitą która pozwala na zmniejszenie tablic poniżej tej stałej.

Warto wspomnieć o metodach klasy Species:

push

fill these

3.6.3 Simulation

Klasa zbierająca w całość Grid oraz dowolną liczbę Species zawartych w symulacji, jak również pozwalająca w prosty sposób na wykonywanie iteracji algorytmu i analizy danych. Jest tworzona tak przy uruchamianiu symulacji, jak i przy wczytywaniu danych z plików .hdf5.

- \Delta t krok czasowy
- N_T liczba iteracji w symulacji

- · Grid objekt siatki
- list_species lista grup makrocząstek w symulacji

metody simulation

Przygotowanie warunków początkowych do danej symulacji polega na utworzeniu nowej klasy dziedziczącej po Simulation, która przygotowuje siatkę, cząstki i warunki brzegowe zgodnie z założeniami eksperymentu i wywołuje konstruktor Simulation. Należy również przeciążyć metodę grid_species_init, która przygotowuje warunki początkowe. Domyślna wersja tej metody wykonuje pierwszą, początkową iterację równań ruchu, która pozwala na zachowanie symplektyczności integratora równań ruchu,

stylistyka?

co pomaga zachować energię cząstek w symulacji.

Aby uruchomić symulację, należy wywołać jedną z metod:

- run podstawowy cykl obliczeń, używany do pomiarów wydajności programu
- test_run obliczenia oraz obróbka danych na potrzeby analizy, głównie stosowana w testach
- lazy_run test_run z zapisem do pliku oraz wczytaniem z pliku .hdf5, jeżeli początkowe warunki
 oraz wersja kodu zgadzają się. W przeciwnym razie symulacja zostaje uruchomiona na
 nowo.

3.6.4 Pliki pomocnicze

Poza powyższymi program jest podzielony na pliki:

aktualizacja

- algorithms_grid zawiera algorytmy dotyczące rozwiązywania równań Maxwella na dyskretnej siatce
- algorithms_interpolation zawiera algorytmy interpolujące pola z cząstek na siatkę i odwrotnie
- · algorithms pusher zawiera algorytmy integrujące numerycznie równania ruchu cząstek
- · animation tworzy animacje dla celów analizy danych
- static_plots tworzy statyczne wykresy dla celów analizy danych
- plotting zawiera ustawienia dotyczące analizy danych

czy to można przenieść do simulation czy gdzieś?

Przygotowane konfiguracje istniejących symulacji są zawarte w plikach configs/run_*:

przeformułować

- run_coldplasma
- · run_twostream
- · run wave
- · run_beam
- run_laser

Algorytmiczne testy jednostkowe są zawarte w katalogu tests.

4 Część weryfikacyjna

Niniejsza analiza przeprowadzona została na "finalnej" w chwili pisania niniejszej pracy wersji programu. W repozytorium Git na Githubie jest to commit "placeholder"

uzupełnić commita

identyfikowany również jako wersja 1.0.

4.1 Przypadki testowe

Kod przetestowano w dwojaki sposób. Pierwszym z nich są testy jednostkowe. Automatyczne testy jednostkowe uruchamiane po każdej wymiernej zmianie kodu pozwalają kontrolować działanie programu znacznie ułatwiają zapobieganie błędom.

Poszczególne algorytmy podlegały testom przy użyciu ogólnodostępnego pakietu pytest

pytest reference.

i w większości były uruchamiane na platformie TravisCI.

4.1.1 Testy algorytmiczne

Testy algorytmiczne polegały na przeprowadzeniu fragmentu symulacji - w przypadku testów algorytmów było to na przykład wygenerowanie pojedynczej cząstki o jednostkowej prędkości oraz zdepozytowanie jej gęstości prądu na siatkę, co pozwala porównać otrzymany wynik z przewidywanym analitycznie dla danego rozmiaru siatki i położenia cząstki.

sprawdzić listę testów

- Gather
 - (a) Depozycja prądu z pojedynczej cząstki na niewielką siatkę
 - (b) Depozycja prądu z dwóch pojedynczych cząstek na niewielką siatkę i porównanie z sumą prądów dla obu pojedynczyczh cząstek
 - (c) Depozycja prądu z dużej ilości równomiernie rozłożonych cząstek
- Solve
 - (a) Symulacja fali sinusoidalnej, obwiedni impulsu i złożenia tych dwóch propagujących się w próżni
- Scatter
 - (a) ...

write these

Push

4. WERYFIKACJA

- □ Ruch w jednorodnym polu elektrycznym wzdłuż osi układu
- □ Ruch w jednorodnym polu magnetycznym z polem magnetycznym

4.1.2 Testy symulacyjne

Testy symulacyjne polegały na uruchomieniu niewielkiej symulacji testowej z różnymi warunkami brzegowymi i ilościowym, automatycznym zweryfikowaniu dynamiki zjawisk w niej zachodzących.

Zastosowano kod do symulacji kilku znanych problemów w fizyce plazmy:

4.1.3 oscylacje zimnej plazmy

Jest to efektywnie fala stojąca. Jednorodne rozmieszczenie cząstek z zerową prędkością początkową (stąd określenie źimna plazma"jako nietermalna)

czy ja ruszam prędkości czy położenia i czy to nie powinno zmienić fazy

jednego typu na okresowej siatce z jednoczesnym wysunięciem ich z położeń równowagi o $\Delta x = A \sin(kx)$, gdzie $k = n2\pi/L$, pozwala na obserwację oscylacji cząstek wokół ich stabilnych położeń równowagi. W przestrzeni fazowej x, V_x cząstki zataczają efektywnie elipsy, co pozwala wnioskować że ruch ten jest harmoniczny.

Jest to, oczywiście, spełnione jedynie dla niewielkich odchyleń; dla $A \rightarrow dx$

dx

obserwuje się nieliniowy reżim

i co

Jest to też łoże testowe

sformułowanie

dla innych przypadków, takich jak efekt Kaiser-Wilhelm

sformułowanie z BL

oraz

czegoś jeszcze.

4.1.4 niestabilność dwóch strumieni

przeformułować

Różnice między tym a poprzednim przypadkiem to obecność dwóch jednorodnie rozłożonych strumieni cząstek z przeciwnie skierowanymi prędkościami wzdłuż osi układu.

Dla niewielkich prędkości

sparametryzować

obserwuje się liniowy reżim

bunchingu

Dla dużych prędkości

sprawdzić

obserwuje się nieliniowe zachowanie cząstek, które zaczynają się mieszać ze sobą, zaś cały układ się termalizuje.

opisać dalej

4.2 Symulacja oddziaływania lasera z tarczą wodorową

Jako warunki początkowe przyjęto plazmę z liniowo narastającą funkcją rozkładu gęstości (jest to tak zwany obszar prejonizacji)

preplazmy?

Gęstość rozkładu plazmy przyjęto jako

Początkowe prędkości cząstek przyjęto jako zerowe.

wylosowano z relatywistycznego rozkładu Maxwella w kierunkach y, z

Za moc lasera przyjęto $10^{23}W/m^2$,

ASK: czy to nie jest za dużo?

zaś za jego długość fali 1.064 μ m (jest to laser Nd:YAG)

Długość obszaru symulacji to

wstawić

Prędkość światła c, stałą dielektryczną ε_0 , ładunek elementarny e, masy protonu i elektronu m_p , m_e przyjęto według tablic, jak obrazuje następująca tabela:

zrobić tabelke na stałe

4.3 Benchmarki - szybkość, zasobożerność

fix

Do przeprowadzenia testów wydajności kodu użyto

cProfile

4.4 Problemy napotkane w trakcie pisania kodu

5. ZAKOŃCZENIE

5 Zakończenie

Utworzono kod symulacyjny implementacyjny algorytm particle-in-cell w Pythonie przy użyciu wszystkich dostępnych możliwości, jakie daje ekosystem open-source. Kod zoptymalizowano przy użyciu Otrzymane wyniki benchmarków pozwalają sądzić, że

dokończyć