$$2\pi \text{ (radians)} \equiv 360^{\circ} \equiv 1 \text{ revolution}$$

$$\theta = \frac{S}{\pi}$$
 (radians)

$$v = \frac{S}{t} = r\omega = r\frac{\theta}{t}$$

$$\theta = \frac{s}{r}$$
 (radians) $v = \frac{s}{t} = r\omega = r\frac{\theta}{t}$ $\omega = \frac{\theta}{t} = \frac{v}{r} = \frac{s}{rt} = \frac{v\theta}{s}$

$$3600 \ rev / minute = \frac{3600 \ rev}{1 \ min} \frac{2\pi \ (radians)}{1 \ rev} \frac{1 \ min}{60 \ sec} = \frac{120\pi \ (radians)}{1 \ sec}$$

$$r = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$$
 $(x - h)^2 + (y - k)^2 = r^2$

$$(x-h)^2 + (y-k)^2 = r^2$$

SOHCAHTOA

A way of remembering how to compute the sine, cosine, and tangent of an angle.

SOH stands for Sine equals Opposite over Hypotenuse.

CAH stands for Cosine equals Adjacent over Hypotenuse.

TOA stands for Tangent equals Opposite over Adjacent.

SOH
$$\sin \theta = \frac{Opposite}{Hypotenuse} = \frac{opp}{hyp}$$

$$CAH \qquad \cos \theta = \frac{Adjacent}{Hypotenuse} = \frac{adj}{hyp}$$

TOA
$$\tan \theta = \frac{opposite}{adjacent} = \frac{opp}{adj} = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{adj}{opp} = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta} \qquad \sec \theta = \frac{hyp}{adj} = \frac{1}{\cos \theta} \qquad \csc \theta = \frac{hyp}{opp} = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{hyp}{adj} = \frac{1}{\cos \theta}$$

$$\csc\theta = \frac{hyp}{opp} = \frac{1}{\sin\theta}$$

Angle θ in <i>degree</i>	Angle θ in <i>radian</i>	$sin \theta$	$\cos \theta$	$tan \theta$	cot θ	sec θ	csc θ
0°	0	0	1	0	∞ (undefined)	1	∞ (undefined)
30°	π/6	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
45°	$\pi/4$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	π/3	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
90°	$\pi/2$	1	0	$\pm \infty$	0	$\pm \infty$	1
120°	$2\pi/3$	$\frac{\sqrt{3}}{2}$	- 1 /2	- √3	$-\frac{\sqrt{3}}{3}$	-2	$\frac{2\sqrt{3}}{3}$
135°	$3\pi/4$	$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$	$-\frac{\sqrt{2}}{2}$	-1	-1	- √2	$\sqrt{2}$
150°	5π/6	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	-√3	$-\frac{2\sqrt{3}}{3}$	2
180°	π	0	-1	0	± ∞	-1	± ∞

Function	Domain $(n \in \mathbb{Z})$	Range	I	II	III	IV
$y = \sin t$	$\{t \mid -\infty < t < \infty\}$	$-1 \le y \le 1$	+	+	-	-
y = cos t	$\{t \mid -\infty < t < \infty\}$	$-1 \le y \le 1$	+	-	-	+
y = tan t	$\{t \mid -\infty < t < \infty, t \neq (2n+1) \pi/2\}$	$-\infty < y < \infty$	+	•	+	-
$y = \cot t$	$\{t \mid -\infty < t < \infty, t \neq n\pi\}$	$-\infty < y < \infty$	+	ı	+	-
y = csc t	$\{t \mid -\infty < t < \infty, t \neq n\pi\}$	$y \le -1, y \ge 1$	+	+	-	-
y = sec t	$\{t \mid -\infty < t < \infty, t \neq (2n+1) \pi/2\}$	$y \le -1, y \ge 1$	+	-	-	+

$$\cos^2 \alpha + \sin^2 \alpha = 1$$

$$1 + \tan^2 \alpha = \sec^2 \alpha$$

$$1 + \cot^2 \alpha = \csc^2 \alpha$$

$$\cos(-\alpha) = \cos\alpha$$

$$\sin(-\alpha) = -\sin\alpha$$

$$tan(-\alpha) = -tan\alpha$$

$$cos(90^{\circ} - \alpha) = sin\alpha$$

$$\sin(90^{\circ} - \alpha) = \cos\alpha$$

$$tan(90^{\circ} - \alpha) = cot\alpha$$

$$cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$$

$$cos(\alpha + \beta) = cos\alpha cos\beta - sin\alpha sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

Double-Angle

$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ $= 1 - 2\sin^2 \alpha$ $= 2\cos^2 \alpha - 1$	$\sin 2\alpha = 2\sin \alpha \cos \alpha$	$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$
$\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}$	$\sin^2\alpha = \frac{1 - \cos 2\alpha}{2}$	$\tan^2 \alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}$

Half-Angle:

$$\cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos\alpha}{2}} \qquad \qquad \sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos\alpha}{2}} \qquad \qquad \tan\left(\frac{\alpha}{2}\right) = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha}$$

Product-to-Sum:

$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right]$	$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin (\alpha + \beta) - \sin (\alpha - \beta) \right]$
$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos (\alpha + \beta) + \cos (\alpha - \beta) \right]$	$\sin \alpha \sin \beta = \frac{1}{2} \left[\cos (\alpha - \beta) - \cos (\alpha + \beta) \right]$

Sum-to-Product:

$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

$$\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

$$a\sin x + b\cos x = k\sin(x+\alpha) \quad \text{where } k = \sqrt{a^2 + b^2} \text{, } \sin \alpha = \frac{b}{\sqrt{a^2 + b^2}} \text{, and } \cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$$

$$y = \cos^{-1} x \quad \text{iff} \quad x = \cos y \quad \text{where } -1 \le x \le 1 \quad \text{and} \quad 0 \le y \le \pi$$

$$y = \sin^{-1} x \quad \text{iff} \quad x = \sin y \quad \text{where } -1 \le x \le 1 \quad \text{and} \quad -\pi/2 \le y \le \pi/2$$

Law of Sines:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

Law of Cosines:

$a^2 = b^2 + c^2 - 2bc\cos A$	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	$A = \cos^{-1}\left(\frac{b^2 + c^2 - a^2}{2bc}\right)$
$b^2 = a^2 + c^2 - 2ac\cos B$	$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$	$B = \cos^{-1}\left(\frac{a^2 + c^2 - b^2}{2ac}\right)$
$c^2 = a^2 + b^2 - 2ab\cos C$	$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$	$C = \cos^{-1}\left(\frac{a^2 + b^2 - c^2}{2ab}\right)$

Vectors:

Magnitude:
$$|V| = \sqrt{a^2 + b^2}$$

Dot Product:
$$U \bullet V = (ai + bj) \bullet (ci + dj) = ac + bd$$

Angle:
$$\cos \theta = \frac{U \bullet V}{|U||V|}$$

$$z = r(\cos\theta + i\sin\theta) = r\cos\theta \qquad r = \sqrt{x^2 + y^2} \qquad \cos\theta = \frac{x}{r}, \sin\theta = \frac{y}{r}, and \tan\theta = \frac{y}{x}$$
$$\left(r_1 cis\theta_1\right) \left(r_2 cis\theta_2\right) = r_1 r_2 cis\left(\theta_1 + \theta_2\right) \qquad \frac{r_1 cis\theta_1}{r_2 cis\theta_2} = \frac{r_1}{r_2} cis\left(\theta_1 - \theta_2\right)$$

De Moivre's *Theorem***:**
$$[rcis\theta]^n = r^n(cisn\theta)$$

$$[rcis\theta]^{1/n} = \sqrt[n]{r}cis\alpha$$
 $\alpha = \frac{\theta}{n} + \frac{360^{\circ}k}{n}$

The graphs of $y = k + A\sin(Bx + C)$ and $y = k + A\cos(Bx + C)$, where B > 0, will have the following characteristics:

Amplitude = |A| Period = $\frac{2\pi}{B}$ Phase Shift = $\phi = -\frac{C}{B}$ One cycle: $0 \le argument \le 2\pi$ Vertical Shift: y = k

To graph "Sine or Cosine"

- 1- Find the Amplitude
- 2- Find the Period
- 3- Construct a table

Х	$y = k + A\cos(Bx + C)$	$y = k + A\sin(Bx + C)$
ϕ	k + A	k
$\phi + \frac{P}{4}$	k	k + A
$\phi + \frac{P}{2}$	k-A	k
$\phi + \frac{3P}{4}$	k	k-A
$\phi + P$	k + A	k

- 4- Graph One Cycle
- 5- Extend the graph, if necessary

The graphs of $y = k + A \tan(Bx + C)$ and $y = k + A \cot(Bx + C)$, where B > 0, will have the following characteristics:

No Amplitude Period = $\frac{\pi}{B}$ Phase Shift = $-\frac{C}{B}$ One cycle: $0 \le argument \le \pi$

Vertical Shift: y = k

х	$y = k + A \tan(Bx + C)$	$y = k + A\cot(Bx + C)$
ϕ	k	8
$\phi + \frac{P}{4}$	k + A	k + A
$\phi + \frac{P}{2}$	∞	k
$\phi + \frac{3P}{4}$	k-A	k-A
$\phi + P$	k	8

	sin	cos
0°	0	4
30°	1	3
45°	2	2
60°	3	1
90°	4	0

0°	$\frac{0}{4}$	$\frac{4}{4}$
30°	$\frac{1}{4}$	<u>3</u>
45°	$\frac{2}{4}$	$\frac{2}{4}$
60°	<u>3</u>	$\frac{1}{4}$
90°	$\frac{4}{4}$	$\frac{0}{4}$

0°	$\sqrt{\frac{0}{4}}$	$\sqrt{\frac{4}{4}}$
30°	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{3}{4}}$
45°	$\sqrt{\frac{2}{4}}$	$\sqrt{\frac{2}{4}}$
60°	$\sqrt{\frac{3}{4}}$	$\sqrt{\frac{1}{4}}$
90°	$\sqrt{\frac{4}{4}}$	$\sqrt{\frac{0}{4}}$

	sin	cos
0°	0	1
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
90°	1	0

