

X-38 TPS SEAL STATUS

Donald M. Curry
National Aeronautics and Space Administration
Johnson Space Center
Houston, Texas

X -38 TPS Seal Status

Donald M. Curry
NASA Johnson Space Center

1999 NASA Seal/Secondary Air System Workshop
NASA Glenn Research Center
October 28-29, 1999

X38 - Crew Return Vehicle

- An element of the International Space Station (ISS)
- Three Scenarios
 - ISS catastrophe
 - Emergency medical evacuation
 - Period of Space Shuttle unavailability
- X-38 Program Purpose:
 - To greatly reduce the costs and schedule for the development of Crew Return Vehicles (CRV's) and Crew Transfer Vehicles (CTV's) through the use of the rapid development methodology associated with an X-project
 - Ground Testing
 - Atmospheric Testing
 - Space Flight Testing

X-38 TPS Configuration

X38 - TPS Seals

General Seal Requirements

- 1) Single Flight Capability
- 2) High Temperature, Oxidative Environment
- 3) Combined Convective and Radiation Heating
- 4) Different Thermal Expansion of Seal Parts
- 5) Mechanical Load Plus Vibration/acoustic Loads
- 6) Component Movement and Rotation
- 7) Wear Resistant
- 8) Low Pressure Environment (at Peak Heating)
- 9) Low Permeability to Minimize Leakage

Specific X-38 Design Considerations

- 1) Use a Seal With Flight Heritage (Orbiter)
- 2) Operational Temperature - 1500 - 3000°F
- 3) Permeability - $1 \times 10^{-10} - 1 \times 10^{-11}$ Sq. M
- 4) Coefficient of Friction - 1.09 - 1.17
- 5) Installation Force Limit of 3 LB/in (Installed With 20-30% Seal Deflection)
- 6) Differential Pressures of 350 - 450 PSF During Peak Heating

Fin & Rudder Seals

Rudder - Fin Structure Seal Routing

Fin/Rudder Seal

Rudder/Fin Shelf Seal

Section B-B

X-38 TYPICAL SPRING TUBE SEAL

AS FABRICATED

10/22/99

10/22/99

Rudder Hingeline Seal

Section A-A

Folding Fin

Bodyflap Configuration

X - 38 Bodyflap

Body Flap Hinge Line Seal

Bodyflap - Undeflected

**Stowed
Position**

Body Flap - Full Deflection

**Full
Deflection**

Body Flap Bridge Beam Seal

3M Nextel 440
(wrapped around the Bridge)

Forward Trunion Pin

Trunion Pin

X-38 Forward Trunion Pin Retracted Showing Seal

Backup Charts
Showing Additional Seal Locations

Seal Design

- **Chute line TPS**
 - To protect for blanket failure, a redundant system is incorporated to protect the parachute lines

Nosecap TPS

Interface Between Nose Cap and Nose Skirt With Rigid and Flexible Seal

Fixation Concept of the Rigid Seal Between NC and NSK

Chin Panel / Slide Panel

I/F NSK/Thruster Tile

