Fundamental Techniques and Measurements

- Mass Measurements
- Volume Measurements
- Preparation of a solution of known concentration
- UV-Visible Spectrophotometer

Electronic Balance

- What does an electronic balance measure?
- If you took an electronic balance with a capacity of 100 g to the moon what would its range be?

Why do good electronic balances have bubble level indicators?

Mass: Electronic Balance

- Accuracy
 - 4 to 6 significant digits
- Calibration
 - Use known mass
 - · Check weekly or when balance is moved
- è Sources of error
 - È Balance must be calibrated and maintained in same orientation in field
 - è hydroscopic chemicals: dry to constant mass first (will increase in mass rapidly as they reabsorb water on the balance!)
 - È When preparing a solution of a given concentration it may be difficult to get the exact mass desired
 - è evaporation of wet samples

Electronic Balance

Model	Capacity	Resolution
DI-100	100 g	0.0001 g
DI-800	800 g	0.01 g
DI-5000	5000 g	0.1 g

- For maximum accuracy use balance with resolution possible!
- Don't forget to clean the balance if you spill any chemicals!!!!!!

Volume

- Volumetric flask
 - accuracy of _____/100 mL
- Graduated cylinder
 - accuracy of /100 mL
- Beaker
 - accuracy of /100 mL
- solution be if you use pipette, volumetric flask, and electronic balance?

What will accuracy of

What controls the accuracy?

- Pipette
 - accuracy of ± _____ for 100-1000 μL
 - accuracy of ± _____ for 10-100 μl

Digital Pipettes

- Air displacement
- Do not directly contact fluid volume
 - avoids contamination of pipette
 - avoids sample carryover
- Require air tight connection between tip and body

Pipette Workings

Preparation of Solutions

- Example: Prepare 100 mL of a 30 mM solution of methylene blue.
- The molecular weight of methylene blue (C₁₆H₁₈N₃SCI) is 319.87 g.

$$CV = M$$

$$\frac{30 \times 10^{-3} \text{ mole MB}}{L} \bullet \frac{319.87 \text{ g MB}}{\text{mole MB}} \bullet 100 \times 10^{-3} \text{ L} = 0.9596 \text{ g MB}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
concentration conversion volume mass

Preparation of Dilutions

- \bullet Prepare 100 mL of a 300 μM solution from the 30 mM solution
- Conservation of _____

$$M \dots = M$$

$$C_{dilute}V_{dilute} = C_{concentrate}V_{concentrate}$$

$$V_{concentrate} = \frac{C_{dilute}V_{dilute}}{C_{concentrate}}$$

$$V_{concentrate} = \frac{(300 \,\mu\text{M})(100 \,\text{mL})}{(30 \,\text{mM})}$$

Preparation of Solutions

- Fill volumetric flask half way with distilled water
- Add reagent (could be solid or liquid)
- Mix
- Fill volumetric flask to the line
- Mix
- Verify that volume didn't change (if necessary refill to line)

UV-Visible Spectrophotometer

- Theory
- Instrument
- Sample requirements
- Software

Light Attenuation by an Aqueous Solution

$$\int_{P_0}^{P} \frac{dP}{p} = -\int_{0}^{x} k dx$$

P is light intensity (photons/s)

$$\ln\left(\frac{P}{P_0}\right) = -kx$$

Theory: Light Attenuation = f(?)

- For a given excitation process, a molecule absorbs only one discrete amount of energy: expect very narrow absorption lines.
- Different vibrational and rotational states yield absorption lines.
- First order decay with distance

$$\ln\left(\frac{P}{P_0}\right) = -kx \qquad A = \log\frac{P_o}{P} = \varepsilon bc$$

$$A = \log \frac{P_o}{P} = \varepsilon b c$$

$A = \varepsilon bc$

- Po light intensity
- P light intensity after passing through sample
- b __
- coefficient (function of wavelength and molecule)

Absorption Spectra

- Absorption Spectra for Methylene Blue
 - Broad peaks
 - Absorbs __ _, looks ___

Instrument Light Path

Sample Requirements

- Sipper cell
 - peristaltic pump draws sample into sipper cell
 - requires a few mL to displace previous cell contents

Software

- Reference (single sample)
- measures absorbance of sample cell and reference solution
- usually distilled water or reagent blank
- Standards (multiple samples)
- used to create a
- Samples (multiple samples)
 - after sampling, standards can be used to estimate the concentration of samples

Absorbance Measurement Limitations

- P_o is a function of the _____.
- If absorbance is high what is P? _____
- Suppose A = 3, what is P_o/P? ___
- Suppose I create samples of higher and higher concentration. What will happen to the absorbance measurements?

$$A = \log \frac{P_o}{P} = \varepsilon$$
bc There is a _____ (non zero) P that can be measured by an instrument.

A _____ keep increasing!

Maximum Absorbance: P_o is measured as reference!

Standards

your name general description

> rinse time sample time

sample concentrations

select number of samples by moving this control

