MA201 - Séance 1 Estimation paramétrique ponctuelle - Approche fréquentiste Rappels et compléments

H. Piet-Lahanier - L. Meyer

Content

Introduction

- Définitions et propriétés
- **Estimateurs** empiriques
- Estimateur des moments
- 5 Estimateur du Maximum de Vraisemblance (EMV)

Estimation statistique

Contexte

- Données collectées associées à un même phénomène
- Peuvent présenter une certaine variabilité
- ⇒ représentées comme des variables aléatoires avec une loi de probabilité associée

Objectif

À partir d'un échantillon de mesures du phénomène physique, quelles informations peut-on déduire sur cette loi ?

C'est l'objectif inverse de la théorie des probabilités où la loi est connue et on cherche à donner les caractéristiques des variables qui suivent cette loi.

Estimation statistique

Problématique

- On dispose d'un ensemble de n réalisations $x_1, ..., x_n$ de n variables aléatoires $X_1, ..., X_n$ indépendantes et de même loi.
- On associe à cette loi une densité $f(x,\theta)$ ou une probabilité $\mathbb{P}_{\theta}(x)$ qui dépend d'un paramètre θ inconnu.
- lacktriangle \Rightarrow Comment calculer ou approcher θ à partir de cet ensemble de réalisations?

Exemple : Détection de défauts (1/2)

Problématique

Recherche de la proportion d'objets défectueux au sein d'un lot de N objets.

Démarche retenue :

- \blacksquare *n* tirages indépendants d'un objet parmi les N objets du lot,
- Pour chaque tirage : analyse qualité de cet objet ⇒ caractère défectueux ou non de l'objet?

Question : quelle proportion d'objets défectueux dans le lot total (de N objets)?

Exemple : Détection de défauts (2/2)

Démarche

- Soit X_i , $i \in \{1, ..., n\}$, la variable aléatoire valant 1 si l'objet issu du i-ème tirage est défectueux, 0 sinon.
- On suppose que les X_i suivent toutes la même loi, une loi de Bernouilli de paramètre $\theta: P(X = x) = \theta^x (1 \theta)^{1-x}$, avec $x \in \{0, 1\}$.
- L'espérance de cette loi est $E[X] = \theta$
- ⇒ Le calcul de la moyenne statistique des réalisations des n v.a. X_i peut fournir une estimation de θ .

Content

- 1 Introduction
- 2 Définitions et propriétés
 - Premières définitions
 - Cadre général de l'estimation paramétrique
 - Définition d'un estimateur
 - Propriétés d'un estimateur
 - Risque quadratique moyen
- 3 Estimateurs empiriques
- 4 Estimateur des moments
 - Principe
 - Exemple
 - Propriétés
- 5 Estimateur du Maximum de Vraisemblance (EMV)
 - Formulation de l'estimateur

Définitions

Definition

1 Population : ensemble d'individus.

Exemple : lot de pièces.

2 Individu: membre d'une population.

Exemple : une pièce au sein d'un lot.

- 3 Echantillon: sous-ensemble extrait d'une population Exemple : ensemble de *n* pièces extraites d'un lot.
- 4 *n*-échantillon : ensemble $(X_1, ..., X_n)$ de *n* variables (ou vecteurs) aléatoires réelles (v.a.r.) indépendantes et identiquement distribuées (i.i.d.). Tous les X_i suivent la même loi. Chaque v.a. X_i représente une caractéristique du i-ème individu de l'échantillon.

Exemple : $X_i \sim \mathcal{B}(p)$, loi de Bernouilli, et vaut 1 si la pièce i est défecteuse, 0 sinon.

5 Observation : réalisation d'une variable aléatoire. On notera xi l'observation issue de la variable aléatoire X_i .

Exemple : après avoir effectué une mesure, on détermine que la i-ème pièce est défectueuse. On a alors : $x_i = 1$.

Cadre de l'estimation paramétrique

Hypothèses de l'estimation paramétrique :

- Nous supposons disposer d'un n-échantillon de vecteurs aléatoires réels $X_1, ..., X_n$ (en particulier les vecteurs aléatoires sont i.i.d.).
- Le modèle du processus aléatoire est partiellement connu : la structure de la loi est supposée connue, mais un (ou plusieurs) paramètre(s) sont supposés inconnus.

On dispose d'un modèle paramétrique donc d'un ensemble $\{\mathbb{P}_{\theta}; \theta \in \Theta \subset \mathbb{R}^{p}\}$, où \mathbb{P}_{θ} est une loi de probabilité connue, de paramètre θ inconnu, Θ étant l'ensemble connu des valeurs admissibles pour θ .

Exemples:

- $\blacksquare \ \{\mathbb{P}_{\theta}; \theta \in \Theta\} = \{\mathcal{P}(\theta); \theta \in \mathbb{R}_{+}^{*}\}, \text{ les observations sont issues de loi de Poisson,}$
- $\blacksquare \ \{\mathbb{P}_{\theta}; \theta \in \Theta\} = \{\mathcal{U}_{[-\theta;\theta]}; \theta \in \mathbb{R}_+^*\}, \text{ les observations sont issues d'une loi uniforme,}$
- $\{\mathbb{P}_{\theta}; \theta \in \Theta\} = \{\mathcal{N}(\theta_1, \theta_2); \theta = (\theta_1, \theta_2), \theta_1 \in \mathbb{R}, \theta_2 \in \mathbb{R}_+\}$, les observations sont issues d'une loi normale.

Définition d'un estimateur

Définition

Soit $(X_1,...X_n)$ un *n*-échantillon suivant une loi *connue* de paramètre $\theta \in \Theta \subset \mathbb{R}^p$ *inconnu*.

- Un estimateur du paramètre θ est un vecteur aléatoire réel $\hat{\theta}_n$, fonction du n-échantillon. On définit donc une fonction $F:\mathbb{R}^n \to \mathbb{R}^p$ telle que $\hat{\theta}_n = F(X_1,...,X_n)$. Exemple : $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$ (estimateur de la moyenne empirique du n-échantillon).
- La valeur estimée de θ est fonction des réalisations $x_1, ..., x_n$ des v.a. $X_1, ..., X_n$. C'est donc une réalisation de $\hat{\theta}_n$. Exemple : $realisation(\hat{\theta}_n) = \frac{1}{n} \sum_{i=1}^n x_i$ (estimation de la moyenne empirique du n-échantillon).

Remarque

La définition précédente est celle d'un estimateur ponctuel. On peut aussi s'intéresser à la recherche d'un intervalle de confiance tel que le paramètre s'y trouve avec une probabilité donnée -> Estimation par intervalle de confiance (hors cadre de ce cours).

Définition d'un estimateur (cont.)

Exemples

Exemples d'estimateurs pour le paramètre θ d'un n-échantillon $(X_1,...,X_n)$ qui suit une loi normale $\mathcal{N}(\theta,1)$:

- $\bullet \hat{\theta}_n^{(1)} = X_1,$
- $\hat{\theta}_n^{(2)} = -4.7,$
- $\hat{\theta}_n^{(3)} = \frac{1}{n} \sum_{i=1}^n X_i,$
- $\hat{\theta}_n^{(4)} = \frac{1}{n} \sum_{i=1}^n X_i + \frac{1}{n^2}.$

Définition d'un estimateur (cont.)

Objectif de l'estimation

Une statistique d'un n-échantillon est une variable aléatoire $F(X_1,...,X_n)$ où F est une fonction.

Un estimateur $\hat{\theta} = F(X_1,...,X_n)$ du paramètre θ est une statistique à valeurs dans le domaine de définition de θ

L'estimation consiste à déterminer l'estimateur qui associe à un n-échantillon, une variable aléatoire proche (en un sens à définir) du paramètre θ caractérisant la loi de probabilité à l'origine de la réalisation de ce n-échantillon.

Questions liées à l'estimation paramétrique ponctuelle

- Comment construire la fonction *F* ? Sur quels critères ?
- Comment évaluer la qualité d'un estimateur?
- Comment étudier les propriétés de l'erreur d'estimation $\hat{\theta} \theta$, où $\hat{\theta} = F(X_1, ..., X_n)$ est l'estimé de θ le paramètre réel?
- Quelles sont les caractéristiques principales de l'erreur d'estimation qui qualifient la qualité du choix de *F* ?

Consistance d'un estimateur

Définition

Un estimateur $\hat{\theta}_n$ est dit *consistant* pour la valeur $\theta \in \Theta \subset \mathbb{R}^p$ (ou *convergent* vers θ) si $\hat{\theta}_n$ tend vers θ presque sûrement (par rapport à la probabilité \mathbb{P}_{θ}) quand n tend vers l'infini.

Remarque

La consistance est une propriété majeure d'un estimateur ponctuel. C'est elle qui donne du sens à l'approximation de θ par $\hat{\theta}_n$ pour n grand.

Biais et variance

Rappel : L'estimateur $\hat{\theta}$ est une variable aléatoire.

Ainsi, les définitions et propriétés classiques des variables aléatoires sont applicables.

Notations

Soit X un vecteur aléatoire. On note E[X] son espérance mathématique, $Cov(X) = E[(E[X] - X)(E[X] - X)^T]$ sa matrice de covariance, et Var(X) = tr(Cov(X)).

Définition

Le *biais* d'un estimateur $\hat{\theta}_n$ de $\theta \in \Theta$ est :

$$B(\hat{\theta}_n, \theta) = E[\hat{\theta}_n] - \theta.$$

Un estimateur $\hat{\theta}_n$ est dit sans biais si $B(\hat{\theta}_n, \theta) = 0$. Sinon, il est dit biaisé.

Propriété

Un estimateur sans biais et de variance asymptotiquement nulle est convergent (consistant).

Exemples

Reprenons les exemples précédents d'estimateurs pour la loi $\mathcal{N}(heta,1)$:

- $\hat{\theta}^{(1)} = X_1,$ $E[\hat{\theta}^{(1)}] = E[X_1] = \theta => B(\hat{\theta}^1, \theta) = 0 => \text{Estimateur sans biais.}$ $Var(\hat{\theta}^{(1)}) = Var(X_1) = 1 => \lim_{n \to \infty} Var(\hat{\theta}^1) = 1 \neq 0 => \text{Variance}$ asymptotiquement non nulle.
- $\hat{\theta}^{(2)} = -4.7, \\ E[\hat{\theta}^{(2)}] = -4.7 => B(\hat{\theta}^2, \theta) = -4.7 \theta => \text{Estimateur biaisé (sauf dans le cas particulier où } \theta = -4.7). \\ Var(\hat{\theta}^{(2)}) = 0 => \text{ lim } Var(\hat{\theta}^2) = 0 => \text{Variance asymptotiquement nulle.}$
- $\hat{\theta}^{(3)} = \frac{1}{n} \sum_{i=1}^{n} X_i, \\ \mathbb{E}[\hat{\theta}^{(3)}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{1}{n} \sum_{i=1}^{n} \theta = \theta => B(\hat{\theta}^3, \theta) = 0 => \text{Estimateur sans biais.} \\ Var(\hat{\theta}^{(3)}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} 1 = \frac{1}{n} => \lim_{n \to \infty} Var(\hat{\theta}^3) = 0 => \text{Variance asymptotiquement nulle.}$

Exemples (cont.)

 $\hat{\theta}^{(4)} = \frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{n^2}, \\ \mathbb{E}[\hat{\theta}^{(4)}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] + \frac{1}{n^2} = \frac{1}{n} \sum_{i=1}^{n} \theta + \frac{1}{n^2} = \theta + \frac{1}{n^2} => B(\hat{\theta}^3, \theta) = \frac{1}{n^2} => \\ \text{Estimateur biais\'e}. \\ Var(\hat{\theta}^{(4)}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} 1 = \frac{1}{n} => \lim_{n \to \infty} Var(\hat{\theta}^4) = 0 => \text{Variance} \\ \text{asymptotiquement nulle}.$

Estimateurs sans biais à minimum de variance

Définition

Un estimateur $\hat{\theta}_n$ est dit sans biais à minimum de variance si :

- $\blacksquare \ \mathsf{E}[\hat{\theta}_n] = \theta, \qquad \forall \theta \in \Theta,$
- lacksquare pour tout estimateur $\tilde{\theta}_n$ tel que $\mathsf{E}[\tilde{\theta}_n] = \theta, \forall \theta \in \Theta$, on a :

$$Cov(\tilde{\theta}_n) \ge Cov(\hat{\theta}_n),$$
 (1)

où, pour deux matrices symétriques M et N, on note $M \ge N$ si la matrice M - N est positive.

Propriété

Si un tel estimateur existe, alors il est unique (presque sûrement).

Définition

Quand il existe, un tel estimateur est appelé estimateur efficace.

Définition de la vraisemblance

Définition

Dans un modèle paramétrique, la *vraisemblance* est une fonction de la variable θ définie pour toute réalisation $(x_1,...,x_n)$ du *n*-échantillon $(X_1,...,X_n)$ et qui associe à $\theta \in \Theta$ la valeur $f_{\theta}(x_1,...,x_n)$:

$$\theta \mapsto L_n(\theta; x_1, ..., x_n) = f_{\theta}(x_1, ..., x_n) = \prod_{i=1}^n f_{\theta}(x_i).$$
 (2)

Dans le cas discret, on a :

$$\theta \mapsto L_n(\theta; x_1, ..., x_n) = \mathbb{P}_{\theta}(x_1, ..., x_n) = \prod_{i=1} \mathbb{P}_{\theta}(X = x_i).$$
 (3)

Pour des questions pratiques, on utilisera souvent la log-vraisemblance :

$$I_n(\theta; x) = \ln(L_n(\theta; x_1, ..., x_n)) = \ln(f_{\theta}(x_1, ..., x_n)) = \sum_{i=1}^n \log f_{\theta}(x_i). \tag{4}$$

→□▶→□▶→豆▶→豆▶

Définition de la vraisemblance (cont.)

Les dernières égalités de (2) et de (3) viennent de l'indépendance des v.a. $X_1, ..., X_n$. La vraisemblance est donc une fonction du paramètre θ , alors que la densité est une fonction de la variable x

Théorème de Cramer-Rao

Théorème

Soit un *n*-échantillon $(X_1,...,X_n)$ de loi \mathbb{P}_{θ} avec $\theta \in \Theta$ paramètre inconnu.

Notons $L_n(\theta; x_1, ..., x_n)$ sa vraisemblance.

Supposons vérifiée la condition de régularité suivante : $E\left[\frac{\partial \ln L_n(\theta;X_1,\ldots,X_n)}{\partial \theta}\right] = 0$.

Alors, quel que soit l'estimateur non biaisé $\hat{\theta}_n$ de θ , sa matrice de covariance vérifie :

$$Cov(\hat{\theta}_n) \ge M_f(\theta)^{-1},$$
 (5)

où M_f est la matrice d'information de Fisher définie par :

$$M_f(\theta) = Cov\left(\frac{\partial \ln L_n(\theta; X_1, \dots, X_n)}{\partial \theta}\right) = \mathsf{E}\left[\frac{\partial \ln L_n(\theta; X_1, \dots, X_n)}{\partial \theta} \frac{\partial \ln L_n(\theta; X_1, \dots, X_n)}{\partial \theta}\right]. \tag{6}$$

Théorème de Cramer-Rao (cont.)

D

e plus, s'il existe une fonction F (indépendante de θ) telle que :

$$\frac{\partial \ln L_n(\theta; X_1, ..., X_n)}{\partial \theta} = M_f(\theta) (F(X_1, ..., X_n) - \theta), \tag{7}$$

alors on peut trouver un estimateur non biaisé qui atteint la borne (i.e. tel que $Cov(\hat{\theta}_n) = M_f^{-1}(\theta)$).

Celui-ci est donné par $\hat{\theta}_n = F(X_1, ..., X_n)$, qui est donc un estimateur *efficace*.

Exemple de recherche d'estimateur sans biais à minimum de variance

Soit un *n*-échantillon $X_1,...,X_n$ suivant une loi normale $\mathcal{N}(\theta,\sigma^2)$, avec σ supposé connu, et $\theta \in \mathbb{R}$ le paramètre inconnu.

La vraisemblance s'écrit :

$$L(\theta; x_1, ..., x_n) = \prod_{i=1}^n f_{\theta}(x_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{x_i - \theta}{2\sigma^2}).$$
 (8)

Ainsi:

$$\frac{\partial \ln f_{\theta}(X_1, ..., X_n)}{\partial \theta} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \theta). \tag{9}$$

On trouve alors $E[\frac{\partial \ln f_{\theta}(X_1,\ldots,X_n)}{\partial \theta}] = 0$, et $M_f(\theta) = Cov(\frac{\partial \ln f_{\theta}(X_1,\ldots,X_n)}{\partial \theta}) = n/\sigma^2$.

Ainsi, en appliquant le théorème précédent, la borne de Cramer-Rao vaut σ^2/n .

De plus, on a :
$$\frac{\partial \ln f_{\theta}(X_1,...,X_n)}{\partial \theta} = \frac{n}{\sigma^2} \left[\frac{1}{n} \sum_{i=1}^n X_i - \theta \right].$$

Finalement, l'estimateur sans biais de variance minimale, est donné

par $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$, (où l'on reconnait la moyenne empirique).

Risque Quadratique Moyen

Définition

Soit $\hat{\theta}_n$ un estimateur de $\theta \in \Theta \subset \mathbb{R}^p$. On appelle *Risque Quadratique Moyen (RQM)* (ou *Erreur Quadratique Moyenne (EQM)*) la valeur : $RQM(\hat{\theta}_n, \theta) = E[(\hat{\theta}_n - \theta)^T(\hat{\theta}_n - \theta)]$.

Propriété

$$RQM(\hat{\theta}_n, \theta) = B(\hat{\theta}_n, \theta)^T B(\hat{\theta}_n, \theta) + tr(Cov(\hat{\theta}_n)).$$
(10)

Ainsi, pour un estimateur sans biais : $RQM(\hat{\theta}_n, \theta) = tr(Cov(\hat{\theta}_n))$.

Exercice : calculer le risque quadratique moyen des estimateurs précédemment proposés de la loi $\mathcal{N}(\theta, 1)$.

Estimateur à RQM minimal

Définition

- Un estimateur $\hat{\theta}_n$ est dit (quadratiquement) préférable à un estimateur $\tilde{\theta}_n$ pour la valeur $\theta \in \Theta$ si $RQM(\hat{\theta}_n, \theta) \leq RQM(\tilde{\theta}_n, \theta)$.
- Un estimateur $\hat{\theta}_n$ est dit (quadratiquement) uniformément préférable à un estimateur $\tilde{\theta}_n$ s'il est quadratiquement préférable pour toute valeur de $\theta \in \Theta$.
- Un estimateur est dit admissible s'il n'existe aucun estimateur qui lui est préférable. Il est dit inadmissible dans le cas contraire.

Exemple : Recherche d'un estimateur à RQM minimal

Soit un *n*-échantillon $X_1,...,X_n$ suivant une loi normale $\mathcal{N}(\theta,\sigma^2)$, avec σ supposé connu, et $\theta \in \mathbb{R}$ le paramètre inconnu.

On se propose de chercher un estimateur sous la forme

$$\hat{\theta}_n = \frac{a}{n} \sum_{i=1}^n X_i,\tag{11}$$

avec un RQM minimal.

Il s'agit donc de déterminer la valeur de $\it a$ qui permet d'atteindre ce RQM minimal.

Exemple: Recherche d'un estimateur à RQM minimal

On a : $E[\hat{\theta}_n] = a\theta$, et $Var(\hat{\theta}_n) = a^2\sigma^2/n$. D'où :

$$RQM(\hat{\theta}_n, \theta) = (a-1)^2 \theta^2 + \frac{a^2 \sigma^2}{n}.$$
 (12)

Ainsi:

$$a_{opt} = argmin_a RQM(\hat{\theta}_n) = \frac{\theta^2}{\theta^2 + \sigma^2/n},$$
 (13)

qui dépend de θ inconnu!

Avec ce choix d'estimateur, on a :

$$B(\hat{\theta}_n, \theta) = \frac{\theta \sigma^2}{n\theta^2 + \sigma^2}, \quad Var(\hat{\theta}_n) = \frac{\theta^4 n\sigma^2}{(N\theta^2 + \sigma^2)^2}, \quad RQM(\hat{\theta}_n) = \frac{\theta^2 \sigma^2}{n\theta^2 + \sigma^2}. \tag{14}$$

(ロ) (型) (量) (量) (型) (の)

Meilleurs estimateurs?

Quel(s) critère(s) pour le choix d'un estimateur?

- (Rappel) Un bon estimateur est nécessairement consistant.
- Deux approches possibles (selon le critère à optimiser) :
 - si cela est possible, on cherche en priorité un estimateur (possiblement biaisé)
 à minimum d'erreur quadratique moyenne => idéal mais pas toujours possible,
 - estimateur sans biais à minimum de variance => plus facile à mettre en place en pratique.

Remarque

Il existe des estimateurs biaisés meilleurs (au sens de l'EQM) que des estimateur sans biais.

Content

- 1 Introduction
 - Définitions et propriétés
 - Premières définitions
 - Cadre général de l'estimation paramétrique
 - Définition d'un estimateur
 - Propriétés d'un estimateur
 - Risque quadratique moyen
- 3 Estimateurs empiriques
- 4 Estimateur des moments
 - Principe
 - Exemple
 - Propriétés
- 5 Estimateur du Maximum de Vraisemblance (EMV)
 - Formulation de l'estimateur

Estimateurs empiriques

Principe

- Estimateurs basés sur les caractéristiques empiriques de l'échantillon.
- Grande importance pratique : de nombreux problèmes résolus de façon plus efficace par un estimateur empirique que par aucun autre des estimateurs présentés dans la suite
- Dans ce cours : nous nous limitons aux deux estimateurs empiriques de base : moyenne et variance empiriques.

Moyenne empirique

Définition

Soit un n-échantillon $(X_1, ..., X_n)$ suivant une loi $\mathbb P$ de moyenne et de variance inconnues. L'estimateur de la moyenne empirique s'écrit :

$$\widehat{moy}_n = \frac{1}{n} \sum_{i=1}^n X_i \tag{15}$$

Il correspond à la moyenne des variables aléatoires composant l'échantillon.

Propriété

L'espérance de \widehat{moy}_n vaut :

$$\mathsf{E}[\widehat{moy}_n] = \mathsf{E}[X_i], \qquad \forall i \in \{1, ..., n\}. \tag{16}$$

C'est donc un estimateur sans biais de l'espérance de la loi \mathbb{P} (ou de manière équivalente de l'espérance de la variable X_i , pour tout $i \in \{1, ..., n\}$.

Variance empirique

Définition

Soit un n-échantillon $(X_1,...,X_n)$ suivant une loi $\mathbb P$ de moyenne et de variance inconnues. L'estimateur de la moyenne empirique s'écrit :

$$\widehat{var}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \widehat{moy}_n)^2$$
 (17)

Il correspond à la moyenne des variables aléatoires composant l'échantillon.

Propriété

■ L'espérance de \widehat{var}_n vaut :

$$\mathsf{E}[\widehat{\mathsf{var}}_n] = \frac{n-1}{n} \mathsf{Var}(X_i), \qquad \forall i \in \{1, ..., n\}. \tag{18}$$

C'est donc un estimateur biaisé de la variance de la loi \mathbb{P} (ou de manière équivalente de la variance de la variable X_i , pour tout $i \in \{1, ..., n\}$.

■ L'estimateur $\frac{n}{n-1}\widehat{var}_n$ est un estimateur sans biais de la variance de la loi \mathbb{P} .

Content

- - Définitions et propriétés
- **Estimateurs** empiriques
- Estimateur des moments
 - Principe
 - Exemple
 - Propriétés
- 5 Estimateur du Maximum de Vraisemblance (EMV)

Estimateur des moments

Principe

Soit un n-échantillon d'observations $(X_1,...,X_n)$ suivant une loi \mathbb{P}_{θ} de paramètre $\theta \in \Theta$ inconnu.

L'estimateur des moments d'ordre $k \in \mathbb{N}^*$ $\hat{\theta}_n^{(k)}$ s'obtient en résolvant l'équation :

$$m_k(\hat{\theta}_n^{(k)}) = \hat{m}_k, \tag{19}$$

avec pour tout $k \ge 0$:

- $m_k(\theta) = \mathsf{E}_{\theta}[X_i^k], \ \forall i \in \{1,...,n\}$ (v.a. i.i.d.), le moment théorique et
- $\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$, le moment empirique.

Exemple

Exemple : soit un *n*-échantillon $(X_1,...,X_n)$ suivant une loi de Poisson $\mathcal{P}(\theta)$ de paramètre θ .

Calculons l'estimateur des moments de θ :

■ A l'ordre 1 :

$$\mathsf{E}_{\theta}[X] \approx \frac{1}{n} \sum_{i=1}^{n} X_{i}. \tag{20}$$

Or : $\mathsf{E}_{\theta}[X] = \theta$

Ainsi : $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$ est un estimateur des moments de θ .

■ Mais, à l'ordre 2 :

$$Var_{\theta}(X) = E[X^{2}] - E[X]^{2} \approx \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - (\frac{1}{n} \sum_{i=1}^{n} X_{i})^{2}.$$
 (21)

Or : $Var_{\theta}(X) = \theta$

Ainsi : $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i^2 - (\frac{1}{n} \sum_{i=1}^n X_i)^2$ est aussi un estimateur des moments de θ .

Conclusion : non unicité de l'estimateur des moments d'un paramètre donné.

Propriété

Questions:

- Choix des moments à utiliser!
- Existence (et calcul) des solutions

Propriété

Si $E[|X|^k] < \infty$, et si $m_k(\theta) = f(\theta)$, avec f une fonction inversible continue, alors l'estimateur $\hat{\theta}_n = f^{-1}(\hat{m}_k)$, est un estimateur consistant de θ .

Extension

Soit $g: \mathbb{R} \to \mathbb{R}$, une fonction continue. Alors la méthode des moments se généralise par la résolution en $\hat{\theta}_n$ de l'équation :

$$\mu(\hat{\theta}_n) = \hat{\mu},\tag{22}$$

avec :

- $\blacksquare \ \mu(\theta) = E_{\theta}[g(X_1)],$
- $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} g(X_i).$

Propriété

Si $E[|g(X)|] < \infty$, et si $\mu(\theta) = f(\theta)$, avec f une fonction inversible continue, alors l'estimateur $\hat{\theta}_n = f^{-1}(\hat{\mu})$, est un estimateur consistant de θ .

Content

- 1 Introduction
 - 2 Définitions et propriétés
 - Premières définitions
 - Cadre général de l'estimation paramétrique
 - Définition d'un estimateur
 - Propriétés d'un estimateur
 - Risque quadratique moyen
- 3 Estimateurs empiriques
- 4 Estimateur des moments
 - Principe
 - Exemple
 - Propriétés
- 5 Estimateur du Maximum de Vraisemblance (EMV)
 - Formulation de l'estimateur

Estimateur du Maximum de Vraisemblance

Intuition : Choisir comme estimateur la valeur du paramètre qui rend les réalisations du n-échantillon les plus probables.

Définition

Soit un n-échantillon $(X_1,...,X_n)$. On appelle estimateur du maximum de vraisemblance la v.a. $\hat{\theta}(X_1,...,X_n)$ telle que :

$$\hat{\theta}(x_1,...,x_n) = argmax_{\theta \in \Theta} L_n(\theta;x_1,...,x_n) = argmax_{\theta \in \Theta} I_n(\theta;x_1,...,x_n). \tag{23}$$

Exemple 1

Supposons que $X_i \sim \mathcal{B}(p)$ avec $p \in [0; 1]$ (loi de Bernouilli).

On cherche l'estimateur du maximum de vraisemblance pour le paramètre p.

On a, pour tout $i \in \{1, ..., n\}$:

$$f_p(x_i) = \mathbb{P}_p(X = x_i) = p^{x_i}(1-p)^{(1-x_i)}$$
 (24)

La log-vraisemblance s'écrit :

$$I_{n}(p; x_{1}, ..., x_{n}) = \sum_{i=1}^{n} \log f_{p}(x_{i})$$

$$= \sum_{i=1}^{n} (x_{i} \log p + (1 - x_{i}) \log(1 - p))$$

$$= (\sum_{i=1}^{n} x_{i}) \log p + (n - (\sum_{i=1}^{n} x_{i})) \log(1 - p)$$
(25)

On recherche ensuite p tel que :

$$\frac{\partial I_n(p; x_1, \dots, x_n)}{\partial p} = 0, \tag{26}$$

et on trouve finalement :

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i. \tag{27}$$

Exemple 2

Supposons que $X_i \sim \mathcal{E}(\lambda)$ avec $\lambda > 0$ (loi exponentielle).

On cherche l'estimateur du maximum de vraisemblance pour le paramètre λ .

On a, pour tout $i \in \{1,...,n\}$:

$$f_{\lambda}(x_i) = \lambda \exp^{-\lambda x_i} \tag{28}$$

La log-vraisemblance s'écrit :

$$I_n(p; x_1, ..., x_n) = \sum_{i=1}^n \log f_p(x_i)$$

$$= \sum_{i=1}^n \left(\log \lambda - \lambda x_i \right)$$

$$= n \log \lambda - \lambda \sum_{i=1}^n x_i$$
(29)

On recherche ensuite λ tel que :

$$\frac{\partial I_n(\lambda; x_1, ..., x_n)}{\partial \lambda} = 0, \tag{30}$$

et on trouve finalement :

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} X_i}.$$
(31)

Propriétés

Définition

Un modèle dominé est dit homogène si le support de $f_{\theta}(.)$ ne dépend pas de θ .

Propriété

Dans un modèle dominé homogène, lorsque la vraie valeur de θ appartient à l'intérieur de Θ , alors l'estimateur du Maximum de Vraisemblance est consistant.

Discussion

- Avantages
 - Méthode universelle
 - L'estimateur prend ses valeurs dans l'espace des paramètres
 - Bonnes propriétés asymptotiques
- Limites (liées aux difficultés de rechercher un maximum)
 - Existence non nécessairement assurée
 - Existence de plusieurs maximum locaux
 - Instabilité numérique
 - Paramètres cachées... Cf. modèles de mélange

Content

- 1 Introduction
- 2 Définitions et propriétés
 - Premières définitions
 - Cadre général de l'estimation paramétrique
 - Définition d'un estimateur
 - Propriétés d'un estimateur
 - Risque quadratique moyen
- 3 Estimateurs empiriques
- 4 Estimateur des moments
 - Principe
 - Exemple
 - LXCITIPIC
 - Propriétés
- 5 Estimateur du Maximum de Vraisemblance (EMV)
 - Formulation de l'estimateur

Résumé

Durant ces séances les principaux points abordés ont été les suivants :

- Cadre de l'estimation fréquentiste ponctuelle
- Définition d'un estimateur
- Principales propriétés d'un estimateur : biais, variance, consistance, Risque Quadratique Moyen (RQM)
- Classes d'estimateur : Sans Biais à minimum de Variance / à RQM minimal
- Estimateurs empiriques
- Méthode des moments pour la construction d'estimateurs
- Estimateur du Maximum de Vraisemeblance (EMV)