**6.48** Given that x is a normally distributed random variable with a mean of 28 and a standard deviation of 7, find the following probabilities.

a. 
$$P(x < 28)$$

b. 
$$P(28 < x < 38)$$

#### **Solution:**

Use formula  $z = (x - \mu)/\sigma$ :

a. 
$$P[x \le 28] = P[z \le (28 - 28)/7]$$
  
=  $P[z \le 0.00] = 0.5000$ 

b. 
$$P[28 \le x \le 38] = P[(28 - 28)/7 \le z \le (38 - 28)/7]$$
  
=  $P[0.00 \le z \le 1.43] = 0.9236 - 0.5000 = 0.4236$ 

**6.96** Find the normal approximation for the binomial probability  $P(x \le 8)$ , where n = 14 and p = 0.4. Compare this to the value of  $P(x \le 8)$  obtained from Table 2.

## **Solution:**

$$\begin{array}{ll} \textbf{6.96} & P(x \leq 8) = P(x < 8.5) = P[z < (8.5 - 5.6)/\sqrt{3.36}] \\ & = P[z < 1.58] = \underline{0.9430} \\ \\ P[x \leq 8|B(n = 14, p = 0.4)] & = P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8) \\ & = 0.001 + 0.007 + 0.032 + 0.085 + 0.155 + 0.207 + 0.207 + 0.157 + 0.092 \\ & = \underline{0.943} \ \ \text{from Table 2 (Appendix B, ES11)} \end{array}$$

- **7.35** Consider the approximately normal population of heights of male college students with mean  $\mu = 69$  inches and standard deviation  $\sigma = 4$  inches. A random sample of 16 heights is obtained.
- Describe the distribution of x, height of male college students.
- Find the proportion of male college students whose height is greater than 70 inches.
- c. Describe the distribution of  $\bar{x}$ , the mean of samples of size 16.
- d. Find the mean and standard error of the  $\bar{x}$  distribution.
- e. Find  $P(\bar{x} > 70)$ .

## **Solution:**

- 7.35 a. Heights are approximately normally distributed with a  $\mu$  = 69 and  $\sigma$  = 4.
  - b. P(x > 70) = P[z > (70 69)/4]= P[z > 0.25]= 1.0000 - 0.5987 = 0.4013
  - c. The distribution of X's will be approximately normally distributed.
  - d.  $\mu_{\overline{X}} = \underline{69}$ ;  $\sigma_{\overline{X}} = 4/\sqrt{16} = \underline{1.0}$
  - e.  $P(\overline{x} > 70) = P[z > (70 69)/1.0]$ = P[z > +1.00]= 1.0000 - 0.8413 = <u>0.1587</u>

- **8.36** A sample of 60 night-school students' ages is obtained in order to estimate the mean age of night-school students.  $\bar{x} = 25.3$  years. The population variance is 16.
- a. Give a point estimate for  $\mu$ .
- b. Find the 95% confidence interval for  $\mu$ .

## **Solution:**

8.36 a. 25.3

b. Step 1: The mean age of night school students

Step 2: a. normality assumed, CLT with n = 60.

b. z ,  $\sigma^2 = 16$  or  $\sigma = 4$  c.  $1-\alpha = 0.95$ 

Step 3:  $n = 60, \overline{X} = 25.3$ 

Step 4: a.  $\alpha/2 = 0.05/2 = 0.025$ ; z(0.025) = 1.96

b.  $E = z(\alpha/2) \cdot \sigma / \sqrt{n} = (1.96)(4/\sqrt{60})$ = (1.96)(0.516) = 1.01

c.  $\overline{X} \pm E = 25.3 \pm 1.01$ 

Step 5: 24.29 to 26.31, the 0.95 confidence interval for  $\mu$ 

- **8.106** Find the test statistic  $z \star$  and the *p*-value for each of the following situations.
- b.  $H_{o}$ :  $\mu = 200$ ,  $H_{o}$ :  $\mu < 200$ ;  $\bar{x} = 192.5$ ,  $\sigma = 40$ , n = 50

# **Solution:**

b.  $z^* = (\overline{x} - \mu)/(\sigma/\sqrt{n}) = (192.5 - 200)/(40/\sqrt{50}) = -1.33$  $p\text{-value} = P(z < -1.33) = \underline{0.0918}$  **8.158** According to the Center on Budget and Policy Priorities' article "Curbing Flexible Spending Accounts Could Help Pay for Health Care Reform" (revised June 10, 2009), flexible-spending accounts encourage the overconsumption of health care. People buy things they do not need; otherwise they lose the money. In 2007, for those who did not use all of their account (about one out of every seven), the average amount lost was \$723.

Source: http://www.cbpp.org/

Suppose a random sample of 150 employees who did not use all of their funds in 2009 is taken and an average amount of \$683 was lost. Test the hypothesis that there is no significant difference in the average amount forfeited. Assume that  $\sigma = $307$  per year. Use  $\alpha = 0.05$ .

- a. Define the parameter.
- State the null and alternative hypotheses.
- Specify the hypothesis test criteria.
- d. Present the sample evidence.
- e. Find the probability distribution information.
- Determine the results.

### **Solution:**

8.158 a. The average amount forfeited in flexible spending accounts.

b. 
$$H_0$$
:  $\mu = $723$   
 $H_a$ :  $\mu \neq $723$ 

c. normality is assumed, CLT with n = 150use z with  $\sigma = $307$ ; an  $\alpha = 0.05$  is given

d. 
$$n = 150$$
,  $\overline{X} = $683$ 

e. z = 
$$(\overline{x} - \mu)/(\sigma/\sqrt{n})$$

$$z^* = (683 - 723)/(307/\sqrt{150}) = -1.60$$



f. z\* is in the noncritical region; Fail to reject H<sub>O</sub>

At the 0.05 level of significance, there is sufficient evidence to support the contention that there is no significant difference in average amount forfeited.