Least Mean Square Error

Given data

Assume a function to fit $y = a_1 + a_2x$

Assume function to fit $y = a_1 + a_2x + a_3x^2$

Residual or errors @ various points

Assume

function, $y = a_1 . e^{a_2 x}$

Residual or errors @ various points

Residual or errors @ various points

Sum of Squared errors

$$d_1^2 + d_2^2 + \cdots + d_k^2 =$$
a minimum

$$\sum_{i=1}^{K} (y_i - f(x_i))^2 \longrightarrow \text{minimize}$$

Deviation - error

- Given, x_i and y_i
- K number of data points
- Error = $y_i f(x_i)$
- How many errors?
- K errors

Root mean square error

$$RMSE = \sqrt{\frac{1}{K} \sum_{i=1}^{K} (y_i - f(x_i))^2}$$

Least MSE - Schematic

Squared error =
$$[(z(n) - f(\mathbf{w}, x(n)))^2]$$

X

Data points generated: t=2x

×	У			
15	30			
16	32			
17	34			
18	36			
19	38			
20	40			
21	42			
22	44			
23	46			
24	48			
25	50			

t=2x points plotted

$t=2x + Gaussian noise (\sigma=2)$

All the points are disturbed

Algorithm

- We have decided to fit using y=m.x
- x=[---, ---, ---,, ---]
- t=[---, ---, ---,, ---]
- Choose m

Predict y=[---, ---, ---,, ---]

Find out error

e=[---, ---, ---,, ---]

Generate squared error by squaring the elements of e

Compute the mean of se (MSE)

$$MSE = \sum se$$

- Change m; repeat 1 to 6
- Plot MSE versus m; choose the m corresponding to minimum MSE

MSE for a linear system

$$y(n) = w.x(n)$$

m is replaced by w

Cost function: J

Cost function

Observation 1

1. Cost function is a function of error

Observation 2

- Error is [z- f(w,x)]
- 1. Error is function of expected output (z)
- 2. Error is function of input (x)
- 3. Error is function of weights (w)

Inference

Cost function is a function of z, x and w

Make an adaptive system

Cost function = function of z,x, &w
x & z not in our control

$$J_w(e(n)) = E[(z(n) - f(x(n), \mathbf{w}))^2]$$

$$\frac{\partial J(e(n))}{\partial \mathbf{w}} = 0$$

$$\frac{\partial J(e(n))}{\partial \mathbf{w}} = \frac{\partial J(e(n))}{\partial e(n)} \frac{\partial e(n)}{\partial \mathbf{w}} = 0$$

How error function _ changes w.r.t to error?

How error changes w.r.t to w?

$$\frac{\partial J(e(n))}{\partial \mathbf{w}} = E\left[\frac{\partial e^2(n)}{\partial e(n)} \frac{\partial e(n)}{\partial \mathbf{w}}\right] = -2E[e(n)\mathbf{x}(n)] = 0$$

MSE condition – linear system

X	y (generated)	z (desired or expected)	e = z-y	e.X
X1	Y1	Z 1	e1	X1.e1
X2	Y2	Z 2	e2	X2.e2
X3	Y3	Z3	e3	X3.e3
•••		•••		
	•••			
	•••	•••	•••	
Xn	Yn	Zn	en	Xn.en

Expectation of last column should go to zero

