Problème d'optimisation convexe

30 septembre 2024

Formulation

Forme usuelle d'un problème d'optimisation

$$\begin{aligned} \min_{\mathbf{x}} & & f(\mathbf{x}) \\ \text{tel que} & & g_i(\mathbf{x}) \leq 0, i = 1, \cdots, k \\ & & h_j(\mathbf{x}) = 0, j = 1, \cdots, m \\ & & \mathbf{x} \in \mathcal{X} \end{aligned}$$

Problème d'optimisation convexe (P)

$$\begin{aligned} \min_{\mathbf{x}} & & f(\mathbf{x}) \\ \text{tel que} & & g_i(\mathbf{x}) \leq 0, i = 1, \cdots, k \\ & & \mathbf{A}\mathbf{x} = \mathbf{b}, j = 1, \cdots, m \\ & & & \mathbf{x} \in \mathcal{X} \end{aligned}$$

où les g_i sont des fonctions convexes, et \mathcal{X} est un ensemble convexe inclut dans l'intersection des domaines de définitions des fonctions f et $\{g_i\}$. On appelle f la fonction objective et g_i les contraintes d'inégalité .

Equivalence

La maximisation d'une fonction concave sous contrainte convexe est un problème d'optimisation convexe.

Définitions et terminologie

Point admissible

On dit que \mathbf{x} est un point admissible ou un point réalisable si $\mathbf{x} \in \mathcal{X}$, $\mathbf{A}\mathbf{x} = \mathbf{b}$, et $\forall i, g_i(\mathbf{x}) \leq 0$.

Valeur optimale

Le minimum de f**x**) sur l'ensemble des points admissible est appelé la valeur optimale souvent notée f^{*}.

Optimalité

 \mathbf{x}^{\star} est dit point optimal si \mathbf{x}^{\star} est admissible et $\forall \mathbf{x}, f(\mathbf{x}^{\star}) \leq f(\mathbf{x})$. On dit également \mathbf{x}^{\star} est une solution du problème ou un minimiseur.

sous-optimalité

Si x est admissible et $f(x) \le f(x^*) + \epsilon$, on dit alors que x est ϵ -sous-optimal.

Contrainte active

Si ${\bf x}$ est admissible et $g_i({\bf x})=0$, on dit alors que g_i est une contrainte active en ${\bf x}$.

Solution d'un problème d'optimisation convexe

Soit

$$\begin{aligned} \{\mathbf{x}_{opt}\} = & & \arg\min_{\mathbf{x}} & f(\mathbf{x}) \\ & & \text{tel que} & g_i(\mathbf{x}) \leq 0, i = 1, \cdots, k \\ & & \mathbf{A}\mathbf{x} = \mathbf{b}, j = 1, \cdots, m \\ & & \mathbf{x} \in \mathcal{X} \end{aligned}$$

Propriétés

- Pour certains problèmes, on peut avoir $\{\mathbf{x}_{opt}\} = \emptyset$. Par exemple, si l'ensemble des points admissibles est vide ou si f n'est pas bornée inférieurement sur l'ensemble des points admissibles.
- L'ensemble $\{\mathbf{x}_{opt}\}$ est un ensemble convexe.
- Si f est strictement convexe, si il existe une solution, alors elle est unique. $\{\mathbf{x}_{opt}\}$ n'est constituée que d'un seul élément.

Exemple: non-negative Lasso

Soit le problème donné par $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{X} \in \mathbb{R}^{n imes d}$ et

$$\begin{aligned} \min_{\mathbf{w}} & \quad \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 \\ \text{tel que} & \quad \|\mathbf{w}\|_1 \le 1 \\ & \quad w_i \ge 0 \end{aligned}$$

- ► Est que ce problème est convexe ? quelle est la fonction objective ? quelles sont les contraintes d'inégalités ? les contraintes linéaires d'égalités ?
- Quel est l'ensemble des points admissibles?
- **E**st ce que la solution est unique, quand $n \ge d$ et n < d?
- $\,\blacktriangleright\,$ quelles sont les réponses à ces questions si on supprime les contraintes $w_i \geq 0$?

Exemple: Séparateur à vaste marge

Soit le problème donné par $y\in\{+1,-1\}$, $\mathbf{X}\in\mathbb{R}^{n\times d}$, dont les lignes sont les exemples d'apprentissage

$$\begin{array}{ll} \min_{\mathbf{w},w_0} & \frac{1}{2} \|\mathbf{w}\|_2^2 \\ \text{tel que} & y_i(\mathbf{x}_i^\top \mathbf{w} + w_0) \geq 1 \end{array}$$

- ► Est que ce problème est convexe ? quelle est la fonction objective ? quelles sont les contraintes d'inégalités ? les contraintes linéaires d'égalités ?
- ➤ Sous quelles conditions sur les exemples d'apprentissage le problème admet une solution ?

Local = Global

Optimum local

Pour un problème d'optimisation, on dit qu'un point admissible ${\bf x}$ est un optimum local si il existe R tel que :

$$f(\mathbf{x}) \le f(\mathbf{x}')$$
 pour tout \mathbf{x}' tel que $\|\mathbf{x} - \mathbf{x}'\|_2 \le R$

- Pour un problème convexe, un optimum local est également un optimum global, donc solution du problème.
- cette propriété n'est généralement pas vraie pour des problèmes d'optimisation non-convexes.

Convex

Nonconvex

Reformulation des contraintes

Le problème

$$\begin{aligned} \min_{\mathbf{x}} & f(\mathbf{x}) \\ \text{tel que} & g_i(\mathbf{x}) \leq 0, i = 1, \cdots, k \\ & \mathbf{A}\mathbf{x} = \mathbf{b}, j = 1, \cdots, m \\ & \mathbf{x} \in \mathcal{X} \end{aligned}$$

peut se ré-écrire

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 sous contraintes $\mathbf{x} \in \mathcal{S}$

où
$$S = \{\mathbf{x} : g_i(\mathbf{x}) \le 0, \forall i = 1, \dots, k, \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathcal{X}\}.$$

Une forme non-contrainte de ce problème peut également s'obtenir :

$$\min_{\mathbf{x}} f(\mathbf{x}) + I_{\mathcal{S}}(\mathbf{x})$$

où $I_{\mathcal{S}}(\mathbf{x}) = 0$ si $\mathbf{x} \in \mathcal{S}$ et $I_{\mathcal{S}}(\mathbf{x}) = \infty$ sinon. On appelle $I_{\mathcal{S}}$ la fonction indicatrice de \mathcal{S} .

Condition d'optimalité du premier ordre

Cas des fonctions convexes et différentiables

Pour un problème convexe

$$\min_{\mathbf{x}} f(\mathbf{x}) \text{ sous contraintes } \mathbf{x} \in \mathcal{S}$$

le point admissible \mathbf{x}^{\star} est optimal si et seulement si

$$\nabla f(\mathbf{x}^{\star})^{\top}(\mathbf{y} - \mathbf{x}^{\star}) \ge 0 \quad \forall \mathbf{y} \in \mathcal{S}$$

- ► Toute direction admissible à partir de x* est aligné avec un gradient croissant.
- ightharpoonup si $S = \mathbb{R}^d$, cette condition équivaut à $\nabla f(\mathbf{x}^*) = 0$

Exemple: optimisation quadratique

Soit le problème de minimisation d'une fonction quadratique

$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x} + c$$

où ${\bf A}$ est une matrice définie positive (DP). La condition d'optimalité du premier ordre est

$$\nabla f(\mathbf{x}^{\star}) = \mathbf{A}\mathbf{x}^{\star} + \mathbf{b} = 0$$

Etude de cas

- $lack si\ {f A}$ est strictement DP alors ${f A}$ est inversible, on a une solution unique ${f x}^\star = -{f A}^{-1}{f b}$
- ▶ si A n'est pas inversible, on peut avoir soit aucune solution soit une infinité de solution.

Exemple: optimisation quadratique sous constrainte

Soit le problème d'optimisation dans $\mathbb R$

$$\min_{x} \frac{1}{2} x^2 \qquad \text{sc } x \in \mathcal{S}$$

- ▶ quel est la solution du problème si S = [-1, 1]?
- quel est la solution du problème si S = [1, 2]?
- quel est la solution du problème si S = [-2, -1]?

La condition d'optimalité du premier ordre

$$\nabla f(\mathbf{x}^{\star})^{\top}(\mathbf{y} - \mathbf{x}^{\star}) \ge 0 \quad \forall \mathbf{y} \in \mathcal{S}$$

Transformation monotone

Forme standard

$$\begin{aligned} \min_{\mathbf{x}} & f(\mathbf{x}) \\ \text{tel que} & g_i(\mathbf{x}) \leq 0, i = 1, \cdots, k \\ & \mathbf{A}\mathbf{x} = \mathbf{b}, j = 1, \cdots, m \\ & \mathbf{x} \in \mathcal{X} \end{aligned}$$

- $lackbox{$\psi$}_0:\mathbb{R}\mapsto\mathbb{R}$ est une fonction monotone croissante
- lacksquare $\psi_i: \mathbb{R} \mapsto \mathbb{R}$ est telle que $\psi_i(u) \leq 0$ si et seulement si $u \leq 0$
- $h(\mathbf{x}) = 0$ si et seulement si $\mathbf{x} = 0$.

Forme transformée

$$\begin{aligned} \min_{\mathbf{x}} & & \psi_0(f(\mathbf{x})) \\ \text{tel que} & & \psi_i(g_i(\mathbf{x})) \leq 0, i = 1, \cdots, k \\ & & h(\mathbf{A}\mathbf{x} - \mathbf{b}) = 0, j = 1, \cdots, m \\ & & \mathbf{x} \in \mathcal{X} \end{aligned}$$

Exemple de transformation

Exemple

$$\min_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2 \qquad \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

- les deux problèmes sont équivalents par la transformation $\psi_0(x)=\frac{1}{2}x^2$
- ▶ l'ensemble des solutions sont donc identiques
- le premier problème n'est pas différentiable
- le deuxième est différentiable et admet une solution analytique

Transformation: Variable de relachement

Inégalité devient égalité

$$\min_{\mathbf{x}}$$
 $f(\mathbf{x})$
tel que $g_i(\mathbf{x}) \leq 0, i = 1, \cdots, k$
 $\mathbf{A}\mathbf{x} = \mathbf{b}, j = 1, \cdots, m$

Les contraintes d'inégalité peuvent être ré-écrite comme

$$\begin{aligned} \min_{\mathbf{x}} & & f(\mathbf{x}) \\ \text{tel que} & & g_i(\mathbf{x}) + s_i = 0, i = 1, \cdots, k \\ & s_i \geq 0, i = 1, \cdots, k \\ & & \mathbf{A}\mathbf{x} = \mathbf{b}, j = 1, \cdots, m \end{aligned}$$

Perte de convexité

Si $g_i(\mathbf{x})$ n'est pas affine, c-a-d $g_i(\mathbf{x}) \neq \mathbf{a}_i^\top \mathbf{x} + b_i$ alors cette transformation casse la convexité du problème.

Transformation epigraphique

Forme standard : valeur optimale p^{\star}

$$egin{array}{ll} \min_{\mathbf{x}} & f(\mathbf{x}) \\ ext{tel que} & g_i(\mathbf{x}) \leq 0, i = 1, \cdots, k \\ & \mathbf{A}\mathbf{x} = \mathbf{b}, j = 1, \cdots, m \end{array}$$

Forme épigraphique

$$\begin{aligned} \min_{\mathbf{x},t} & & t \\ & & f(\mathbf{x}) - t \leq 0 \\ \text{tel que} & & g_i(\mathbf{x}) \leq 0, i = 1, \cdots, k \\ & & \mathbf{A}\mathbf{x} = \mathbf{b}, j = 1, \cdots, m \end{aligned}$$

les solutions \mathbf{x}^{\star} pour les deux problèmes sont les mêmes et $t^{\star} = p^{\star}$.

Transformation epigraphique: intuition

si on definit les courbes de niveau $L_t = \{\mathbf{x} : f(\mathbf{x}) \leq t\}$ $t \in \mathbb{R}$, On cherche le plus petit t pour lequel l'intersection entre L_t et l'ensemble définit par les contraintes est non-vide.