Análisis de varianza

Dr. Marco Aurelio González Tagle

23 /09/ 2021

Índice

Ejercicio	1.												 	 											1
Ejercicio	2.												 	 											2

Ejercicio 1

Se examinaron cinco tipos diferentes de suelo para detectar la aparición de nematodos. En cada caso se realizaron cinco replicas para su evaluación.

Cuadro 1: Cantidad de nematodos encontrados en cinco tipos de suelo diferente. Cada suelo contiene cinco muestras.

j=1 j=2 j=3 j=4 j=5 127 162 155 124 169 166 156 140 95 147 136 123 125 88 166 182 136 115 97 157 133 127 117 98 169					
166 156 140 95 147 136 123 125 88 166 182 136 115 97 157	j=1	j=2	j=3	j=4	j=5
136 123 125 88 166 182 136 115 97 157	127	162	155	124	169
182 136 115 97 157	166	156	140	95	147
	136	123	125	88	166
133 127 117 98 169	182	136	115	97	157
	133	127	117	98	169

- Introduce los datos en R creando las 2 variables: una que incluya la cantidad de nematodos encontrados y otra que será un factor, que nos proporcionará información sobre la cantidad de nematodos presentes en cinco muestras de suelo diferentes.
- Explora los datos de la muestra mediante gráficos y descriptivos. ¿Observamos diferencias en los valores promedios y de variabilidad por grupos?

- Aplique la función tapply y encuentre las varianzas de los cinco tratamientos. ¿Cuántas veces es la diferencia entre la varianza más pequeña y la más grande?
- Realiza un test F (ANOVA) para comparar las medias de las 5 muestras ¿Cuáles serían las hipótesis

nula y alternativa?

- Describe los resultados obtenidos indicando cuál es el valor del estadístico de contraste (F), los grados de libertad del factor, los grados de libertad residuales y el valor de P.
- También indica cuál sería el valor crítico de F bajo la hipótesis nula, que nos proporcionará la definición de una región de aceptación y rechazo (consideramos un nivel de significación alfa = 0.05).
- Tras evaluar la tabla ANOVA, ¿cuál sería tu conclusión en el contexto del problema?

Ejercicio 2

Se examino el crecimiento de una especie bajo diferentes regímenes de riego. Cada tratamiento contiene seis observaciones.

Cuadro 2: Crecimiento de la especie bajo diferentes regímenes de riego (Bajo, Medio y Alto). Cada tipo de riego contiene seis observaciones.

Bajo	Medio	Alto
9	14	28
11	17	31
6	19	32
7	14	44
6	17	38
5	15	37

- Introduce los datos en R creando las 2 variables: una que incluya el crecimiento de las plantas y otra que será un factor, que nos proporcionará información sobre los diferentes regímenes de riego que se aplicarón.
- Explora los datos de la muestra mediante gráficos y descriptivos. ¿Observamos diferencias en los valores promedios y de variabilidad por grupos?

- Aplique la función tapply y encuentre las varianzas de los cinco tratamientos. ¿Cuántas veces es la diferencia entre la varianza más pequeña y la más grande?
- Realiza un test F (ANOVA) para comparar las medias de las 5 muestras ¿Cuáles serían las hipótesis nula y alternativa?
- Describe los resultados obtenidos indicando cuál es el valor del estadístico de contraste (F), los grados de libertad del factor, los grados de libertad residuales y el valor de P.
- También indica cuál sería el valor crítico de F bajo la hipótesis nula, que nos proporcionará la definición de una región de aceptación y rechazo (consideramos un nivel de significación alfa = 0.05).
- Tras evaluar la tabla ANOVA, ¿cuál sería tu conclusión en el contexto del problema?