- 1. 用反三角函数的形式表示一个角. 这是学习反三角函数内容的一个难点, 解此类问题的关键是正确理解反三角函数的定义, 熟练掌握反三角函数的定义域和值域, 把握角的范围. (1) 只有在 $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ 时, 才可由 $\sin x = a(|a| \le 1)$ 直接得到 $x = \arcsin a$. 若 $x \notin [-\frac{\pi}{2}, \frac{\pi}{2}]$, 则可利用公式 $\sin(2k\pi + x) = \sin x$ 或 $\sin[2k\pi + (\pi x)] = \sin x (k \in \mathbf{Z})$ 确定一个角,使这个角在 $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 范围内,然后用反正弦形式表示.
- 2. 已知 $\sin x = -\frac{1}{3}(\pi < x < \frac{3\pi}{2})$,用反正弦形式表示 x. 解 $\sin(\pi x) = \sin x = -\frac{1}{3}$,且由 $\pi < x < \frac{3\pi}{2}$ 知, $-\frac{\pi}{2} < \pi x < 0$, $\pi x = \arcsin(-\frac{1}{3}) = -\arcsin\frac{1}{3}$,于是 $x = \pi + \arcsin\frac{1}{3}$. (2) 只有在 $0 \le x \le \pi$ 时,才可由 $\cos x = a(|a| \le 1)$ 直接得到 $x = \arccos a$. 若 $x \in [0, \pi]$,则可利用公式 $\cos(2k\pi \pm x) = \cos x(k \in \mathbf{Z})$ 确定一个角,使这个角在 $[0, \pi]$ 范围内,然后用反余弦形式表示.
- 3. 若 $\cos x = \frac{1}{3}(-\frac{\pi}{2} < x < 0)$,用反余弦形式表示 x. 解 $\cos(-x) = \cos x = \frac{1}{3}$,且由 $-\frac{\pi}{2} < x < 0$ 知, $0 < -x < \frac{\pi}{2}$, $-x = \arccos\frac{1}{3}$,故 $x = -\arccos\frac{1}{3}$. (3) 只有在 $-\frac{\pi}{2} < x < \frac{\pi}{2}$ 时,才可由 $\tan x = a(a \in \mathbf{R})$ 直接得到 $x = \arctan a$. 若 $x \notin (-\frac{\pi}{2}, \frac{\pi}{2})$,则可利用公式 $\tan(k\pi + x) = \tan x(k \in \mathbf{Z})$ 确定一个角,使这个角在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 内,然后用反正切形式表示. (4) 只存在 $0 < x < \pi$ 时,才可由 $\cot x = a(a \in \mathbf{R})$ 直接得到 $x = \operatorname{arccot} a$. 若 $x \in (0, \pi)$,则可利用公式 $\cot(k\pi + x) = \cot x(k \in \mathbf{Z})$ 确定一个角,使这个角在 $(0, \pi)$ 内,然后用反余切形式表示.
- 4. 求含反三角形式的角的三角函数值. 解此类问题的要点可以概括为 "一令、二则、三范围". 例如, 求 $\cot[\arcsin(-\frac{\sqrt{3}}{3})]$ 的值. "一令"——令 $\alpha = \arcsin(-\frac{\sqrt{3}}{3})$, "二则"——则 $\sin \alpha = -\frac{\sqrt{3}}{3}$, "三范围"—— $\alpha \in (-\frac{\pi}{2}, 0)$. 有了以上三步之后, 余下的问题就不难解决了.
- 5. 求值: $(1)\tan[\frac{1}{2}\arcsin(\frac{-2\sqrt{6}}{5})]$. $(2)\cos[\arctan\frac{3}{4}+\arccos(-\frac{2}{3})]$. \mathbf{M} (1) 令 $\alpha=\arcsin(\frac{-2\sqrt{6}}{5})$, 则 $\sin\alpha=\frac{-2\sqrt{6}}{5}$, $\alpha\in(-\frac{\pi}{2},0)$, 于是 $\cos\alpha=\frac{1}{5}$.. 原式 $=\tan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{1-\frac{1}{5}}{-\frac{2\sqrt{6}}{5}}=-\frac{\sqrt{6}}{3}$. (2) 令 $\alpha=\arctan\frac{3}{4}$, 则 $\tan\alpha=\frac{3}{4}$, $\alpha\in(0,\frac{\pi}{2})$, 于是 $\sin\alpha=\frac{3}{5}$, $\cos\alpha=\frac{4}{5}$. 再 $\beta=\arccos(-\frac{2}{3})$, 则 $\cos\beta=-\frac{2}{3}$, $\beta\in(\frac{\pi}{2},\pi)$, 于是 $\sin\beta=\frac{\sqrt{5}}{3}$. 原式 $=\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta=\frac{4}{5}\times(-\frac{2}{3})-\frac{3}{5}\times\frac{\sqrt{5}3=-\frac{8}{3}\sqrt{5}}{15}$. 注意一般地, 对于含有反三角形式的计算问题,都可利用"一令、二则、三范围"的方法来解决.
- 6. 两组重要的恒等式. 根据反三角函数的定义,可以得到下列两组重要的恒等式: $(1)\sin(\arcsin x) = x, x \in [-1,1];\cos(\arccos x) = x, x \in [-1,1];\tan(\arctan x) = x, x \in \mathbf{R};\cot(\arccos x) = x, x \in \mathbf{R}.$ $(2)\arcsin(\sin x) = x, x \in [-\frac{\pi}{2},\frac{\pi}{2}];\arccos(\cos x) = x, x \in [0,\pi];\arctan(\tan x) = x, x \in (-\frac{\pi}{2};\frac{\pi}{2});\arccos(\cot x) = x, x \in (0,\pi).$ 第 (1) 组恒等式是不难掌握的,它们在各自定义域内成立. 如何运用第 (2) 组恒等式是一个难点,以 $y = \arcsin(\sin x)$ 为例,它的定义域为 R,值域为 $[-\frac{\pi}{2},\frac{\pi}{2}]$,周期是 2π ,只有在 $x \in [-\frac{\pi}{2},\frac{\pi}{2}]$ 时,才有 $\arcsin(\sin x) = x$,当 $x \in [-\frac{\pi}{2},\frac{\pi}{2}]$ 时,求 $\arcsin(\sin x)$ 的值是一类必须掌握但又有一定难度的问题.
- 7. 求值: (1) $\arcsin(\sin 2)$. (2) $\arccos(\cos \frac{6}{5}\pi)$. (3) $\arctan(\cot \sqrt{3})$. (4) $\arccos(-\cot \frac{\pi}{7})$. 解 (1) $\sin 2 = \sin(\pi 2)$, 且 $\pi - 2 \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, 原式 = $\arcsin[\sin(\pi - 2)] = \pi - 2$. (2) $\cos \frac{6}{5}\pi = \cos \frac{4}{5}\pi$, 且 $\frac{4}{5}\pi \in [0, \pi]$, 原式 = $\arccos(\cos \frac{4}{5}\pi) = \frac{4}{5}\pi$. (3) $\cot \sqrt{3} = \tan(\frac{\pi}{2} - \sqrt{3})$, 且 $\frac{\pi}{2} - \sqrt{3} \in (-\frac{\pi}{2}, \frac{\pi}{2})$, 原式 = $\arctan[\tan(\frac{\pi}{2} - \sqrt{3})] = \frac{\pi}{2}$

 $\frac{\pi}{2} - \sqrt{3}$. (4) $-\cot\frac{\pi}{7} = \cot(-\frac{\pi}{7}) = \cot[\pi + (-\frac{\pi}{7})] = \cot\frac{6}{7}\pi$, 且 $\frac{6}{7}\pi \in (0,\pi)$, 原式 = $\operatorname{arccot}(\cot\frac{6}{7}\pi) = \frac{6}{7}\pi$ 注意解此类问题的关键是: (1) 恒等变形, 即利用诱导公式, 使 $\arcsin(\sin x)$ 恒等变形为 $\arcsin(\sin \alpha)$. (2) 紧 扣 α 的范围,即选用诱导公式时,必须使 $\alpha \in [-\frac{\pi}{2},\frac{\pi}{2}]$. 满足了以上两个要求, α 便是所要求的值.对于解 $\arccos(\cos x)$, $\arctan(\tan x)$, $\operatorname{arccot}(\cot x)$ 的问题, 方法雷同. 有兴趣的读者不妨对 $y = \arcsin(\sin x)$ 等四个 函数的性质(定义域、值域、单调性、奇偶性、周期性)及图像、一般表达式作进一步研究.

- 8. 有关反三角恒等式的证明.
- 9. 若 $|x| \leq 1$, 求证: $\arcsin x + \arccos x = \frac{\pi}{2}$. 证法 $\longrightarrow \sin(\frac{\pi}{2} \arccos x) = \cos(\arccos x) = x$, 其中 $-1 \leq x \leq 1$, 又由 $\arccos x \in [0,\pi]$, 得 $(\frac{\pi}{2} \arccos x) \in [-\frac{\pi}{2},\frac{\pi}{2}]$, 根据反正弦函数的定义,得 $\frac{\pi}{2} \arccos x = \arcsin x$,即 $\arcsin x + \arccos x = \frac{\pi}{2}$. 证法二设 $\arcsin x = \alpha$, 则 $\sin \alpha = x$, $\alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.. 再设 $\arccos x = \beta$, 则 $\cos \beta = x$, $\beta \in [0, \pi]$. $\sin \alpha = x$, $\sin(\frac{\pi}{2} - \beta) = \cos \beta = x$, $\sin \alpha = \sin(\frac{\pi}{2} - \beta)$. $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$, $-\frac{\pi}{2} \le \frac{\pi}{2} - \beta \le \frac{\pi}{2}$ $\alpha = \frac{\pi}{2} - \beta$, $\mathbb{P} \alpha + \beta = \frac{\pi}{2}$, $\arcsin x + \arccos x = \frac{\pi}{2}$
- 10. 求证: $\arctan\frac{1}{3} + \arctan\frac{1}{5} + \arctan\frac{1}{7} + \arctan\frac{1}{8} = \frac{\pi}{4}$. 证明设 $\alpha = \arctan\frac{1}{3}, \ \beta = \arctan\frac{1}{5}, \ \gamma = \arctan\frac{1}{7},$ $\delta = \arctan\frac{1}{8}, \ \text{则} \ \tan\alpha = \frac{1}{3}, \ \tan\beta = \frac{1}{5}, \ \tan\gamma = \frac{1}{7}, \ \tan\delta = \frac{1}{8} \ \text{且} \ \alpha, \beta, \gamma, \delta \in (0, \frac{\pi}{4})$. 于是 $\tan(\alpha + \beta) = \arctan\frac{1}{3}$ $\frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{1}{3} + \frac{1}{5}}{1 - \frac{1}{2} \times \frac{1}{5}} = \frac{4}{7}, \ \tan(\gamma + \delta) = \frac{\tan \gamma + \tan \delta}{1 - \tan \gamma \tan \delta} = \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{2} \times \frac{1}{2}} = \frac{3}{11}. \ \tan(\alpha + \beta + \gamma + \delta) = \frac{\tan \alpha + \tan \beta}{1 - \frac{1}{2} \times \frac{1}{2}} = \frac{3}{11}.$ $\frac{\frac{4}{7} + \frac{3}{11}}{1 - \frac{4}{7} \times \frac{3}{11}} = 1.$ $0 < \alpha + \beta + \gamma + \delta < \pi$, $\alpha + \beta + \gamma + \delta = \frac{\pi}{4}$, 原命题得证. 注意有关反三角恒等式的证明需 , 两点: (1) 证明等式两边 (或先作恒等变形) 的同一个三角函数值相等. (2) 证明等式两边都在所取三角 函数的同一个一一对应的区间内(千万不能忽视这一点). 5, 解简单的反三角不等式. 只要依据反三角函数的 单调性, 并切记反三角函数的定义域, 解此类不等式就不会感到困难.
- 11. 求下列不等式中 x 的取值范围: $(1)\arcsin x < 1$. $(2)\arccos(2x^2 1) < \arccos x$. 解 (1) $\begin{cases} -1 \le x \le 1, \\ \arcsin x < \arcsin(\sin 1), \end{cases}$ 于是 $\begin{cases} -1 \le x \le 1, \\ x < \sin 1, \end{cases} -1 \le x < \sin 1. \ (2)$ 由已知条件,得 $\begin{cases} -1 \le 2x^2 - 1 \le 1, \\ -1 \le x \le 1, \\ 2x^2 - 1 > x, \end{cases}$

即
$$\begin{cases} -1 \leq x \leq 1, \\ 2x^2 - x - 1 > 0, \end{cases}$$
 也即
$$\begin{cases} -1 \leq x \leq 1, \\ x < -\frac{1}{2}x > 1, \end{cases}$$
 $-1 \leq x < -\frac{1}{2}.$ 【训练题】 $(-)$ 反正弦函数

12. 若 $\pi \leq \alpha \leq \frac{3\pi}{2}$, 且 $\sin \alpha = -\frac{1}{4}$, 则用反三角形式表示 α 是(). A. $\pi - \arcsin \frac{1}{4}$ B. $\pi + \arcsin \frac{1}{4}$ C. $\frac{3\pi}{2} - \arcsin \frac{1}{4}$ D. $\frac{3\pi}{2} + \arcsin \frac{1}{4}$

exin
$$\frac{1}{4}$$
 B. $\pi + \arcsin \frac{1}{4}$ C. $\frac{3\pi}{2} - \arcsin \frac{1}{4}$ D. $\frac{3\pi}{2} + \arcsin \frac{1}{4}$

13. 函数 $y = \arcsin(\cot x)$ 的定义域是 ().

A. [-1, 1] B.
$$[k\pi + \frac{\pi}{4}, k\pi + \frac{3\pi}{4}](k \in \mathbb{C}. [-\frac{\pi}{4}, \frac{\pi}{4}]]$$
 D. $[k\pi - \frac{\pi}{4}, k\pi + \frac{\pi}{4}](k \in \mathbb{Z})$

14. 函数 $y = \sin(\arcsin x)$ 的图像是 (

15. 函数 $f(x) = 2\arcsin(x-1)$ 的反函数是 (

A.
$$y = \frac{1}{2}\sin(x-1)(-\frac{\pi}{2} < x < \frac{\pi}{2})$$

A.
$$y = \frac{1}{2}\sin(x-1)(-\frac{1}{2} < x < \frac{1}{2})$$

C. $y = 1 + \sin\frac{x}{2}(-\pi \le x \le \pi)$

B. $y = 1 + \sin \frac{x}{2} \left(-\frac{\pi}{2} \le x \le \frac{\pi}{2} \right)$ D. $y = \sin(\frac{x}{2} + 1)(-\pi \le x \le \pi)$

16. 函数
$$y = \arcsin(x^2 - x)$$
 为减函数的区间是 ().

- B. $\left[\frac{1}{2}, \frac{1}{2}(1+\sqrt{5})\right]$ C. $\left(-\frac{\pi}{4}, +\infty\right)$
- D. $\left[\frac{1}{2}(1-\sqrt{5}), \frac{1}{2}\right]$
- 17. 若 0 < a < 1, 则在 $[0, 2\pi]$ 内满足 $\sin x \ge a$ 的 x 的取值范围是 (
 - A. $[0, \arcsin a]$
- B. $[\arcsin a, \pi \arcsin a]$
- C. $[\pi \arcsin a, \pi]$
- D. $\left[\arcsin a, \frac{\pi}{2} + \arcsin a\right]$

- 18. 若 $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$, 则 $\arcsin(\sin x)$ 的值等于 ().

- C. $x-\pi$
- D. $x + \pi$

- 19. 已知 $\arcsin x \ge 1$, 则 x 的取值范围是 (
 - A. [0, 1]
- C. $[\sin 1, 1]$
- D. [-1, 1]

- 20. 若函数 $y = \arcsin(\cos x)$ 的定义域是 $(-\frac{\pi}{3}, \frac{2\pi}{3})$, 则值域是 (
 - A. $\left(-\frac{\pi}{6}, \frac{\pi}{3}\right]$
- B. $(-\frac{\pi}{6}, \frac{\pi}{2}]$
- C. $(\frac{\pi}{6}, \frac{\pi}{2}]$
- D. $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$
- 21. 求下列函数的定义域与值域: $(1)y = \sqrt{\arcsin x}, \ x \in _____, \ y \in _____.$ $(2)y = \arcsin(\lg \frac{x}{2}),$ $x \in \underline{\qquad}, y \in \underline{\qquad}... (3)y = \frac{1}{2}\arcsin\frac{1}{x-2}, x \in \underline{\qquad}, y \in \underline{\qquad}... (4)y = \arcsin(x-1)$ x^2), $x \in \underline{\hspace{1cm}}$, $y \in \underline{\hspace{1cm}}$. $(5)f(x) = \log_2(\arcsin\frac{x}{2})$, $x \in \underline{\hspace{1cm}}$, $y \in \underline{\hspace{1cm}}$
- 22. 计算下列各式: $(1)\arcsin[\sin(-\frac{5\pi}{4})] =$ ______. $(2)\arcsin(\sin 3) =$ _____. $(3)\arcsin(\cos 2) =$ _____. (4) $\arcsin(\cos 5) =$ ______. (5) $\arcsin(\sin \pi^2) =$ ______
- 23. 求函数 $y = (\arcsin x)^2 2\arcsin x 2$ 的最大值与最小值, 并求取得最大值、最小值时的 x 值.
- 24. 已知 a,b,c 依次为直角三角形的两直角边和斜边,且满足 $\arcsin\frac{1}{a} + \arcsin\frac{1}{b} = \frac{\pi}{2}$, 求证: c = ab.
- 25. (1) 已知 $\alpha = \frac{9\pi}{8}$,求 $\arcsin(\frac{\sin\alpha + \cos\alpha}{\sqrt{2}})$ 的值. (2) 已知 $\frac{\pi}{4} < \theta < \frac{5\pi}{4}$,求证 $\arcsin(\frac{\sin\theta + \cos\theta}{\sqrt{2}}) = \frac{3\pi}{4} \theta$.
- 26. 根据条件求函数 $f(x) = \sin(x \frac{\pi}{4})\cos(x + \frac{\pi}{4})$ 的反函数: $(1) \frac{\pi}{4} \le x \le \frac{\pi}{4}$. $(2) \frac{\pi}{4} \le x \le \frac{\pi}{2}$. (二) 反余弦函数

27. 下列各式正确的是(

A.
$$\arcsin(-\frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$$

B.
$$\sin(\arcsin\frac{\pi}{3}) = \frac{\pi}{3}$$

C.
$$\arcsin(\sin\frac{5\pi}{4}) = \frac{\pi}{4}$$

A.
$$\arcsin(-\frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$$
 B. $\sin(\arcsin\frac{\pi}{3}) = \frac{\pi}{3}$ C. $\arcsin(\sin\frac{5\pi}{4}) = \frac{\pi}{4}$ D. $\sin[\arccos(-\frac{\sqrt{2}}{2})] = \frac{\sqrt{2}}{2}$

28. 在 $[-1, \frac{3}{2}]$ 上与函数 y = x 相同的函数是 ().

A.
$$y = \arccos(\cos x)$$

B.
$$y = \arcsin(\sin x)$$

C.
$$y = \sin(\arcsin x)$$

D.
$$y = \cos(\arccos x)$$

29. 若 $f(\cos x) = \frac{x}{2}$, $x \in [0, \pi]$, 则 $f(-\frac{1}{2})$ 等于 ().

A.
$$\cos \frac{1}{2}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{4}$$

D.
$$\frac{2\pi}{3}$$

30. 函数 $y = \arccos(-x)$ 的图像与 $y = \arccos x$ 的图像 (

$$A$$
 关于 r 轴对称

A. 关于
$$x$$
 轴对称 B. 关于 y 轴对称

D. 关于直线 y = x 对称

31. 函数 $y = \arccos(x^2 - 2x)$ 为减函数的区间是 (

A.
$$[1, +\infty]$$

B.
$$[-1, 1+\sqrt{2}]$$

C.
$$[1 - \sqrt{2}, 1 + \sqrt{2}]$$

D.
$$[1, 1 + \sqrt{2}]$$

- 32. 求下列函数的定义域与值域: $(1)y = \sqrt{\arccos x}, \ x \in _____, \ y \in _____.$ $(2)y = \arccos(\sqrt{2}\sin x), \ x \in ______.$ $x \in \underline{\hspace{1cm}}, y \in \underline{\hspace{1cm}}. (3)y = \arccos \frac{2}{x}, x \in \underline{\hspace{1cm}}, y \in \underline{\hspace{1cm}}. (4)y = \arccos(2x^2 - x),$ $x \in \underline{\hspace{1cm}}, y \in \underline{\hspace{1cm}}. (5)y = \sqrt{\frac{2\pi}{3} - \arccos(\frac{1}{2}x - 1)}, x \in \underline{\hspace{1cm}}, y \in \underline{\hspace{1cm}}.$
- 33. (1) 已知 $\cos x = -\frac{1}{3}$, $\pi \le x \le 2\pi$ 则 x =______. (2) 函数 $f(x) = \frac{1}{2}\arccos(x+2)$ 的反函数是_____.
- 34. 根据条件填空: $(1)\sin(\arccos x) = \frac{\sqrt{3}}{2}$, 则 x =______. (2) 已知 $\arccos(\cos x) = \frac{\pi}{6}$, 则 x =_____. (3) 已知 $\cos[\arccos(x+1)] = x+1$, 则 x 的取值范围是______
- 35. 计算下列各式: (1) $\arcsin(\sin\frac{3\pi}{4}) + \arccos(\cos\frac{3\pi}{4}) =$ ______. (2) $\arccos[\cos(-\frac{\pi}{6})] =$ _____. (3) $\arccos(\sin\frac{\pi}{7}) =$ _____. (4) $\arcsin(\cos \pi^2) =$ ______. (5) $\tan(\frac{1}{2}\arccos\frac{2\sqrt{2}}{3}) =$ _____. (6) $\cos[\frac{1}{2}\arccos(-\frac{3}{5})] =$ _____.
- 36. 根据下列条件求 x 的取值范围: $(1)2\arccos x \arccos(-x) > 0$:______. $(2)\arccos 3x < \arccos(2 x)$ 5x):______. (3)arccos($2x^2 - 1$) < arccos x:______. (4)arccos x > arcsin x:_____.
- 37. 已知 $f(x) = \arccos x + 1$, 且 f(a) = a, 求 f(-a) 的值.
- 38. 设 f(x) 为奇函数, 且当 x > 0 时, $f(x) = \pi \arccos(\sin x)$, 则当 x < 0 时, f(x) 的解析式为 (

A.
$$\arccos(\sin x)$$

$$B_{\cdot} - \arccos(\sin x)$$

B.
$$-\arccos(\sin x)$$
 C. $\pi + \arccos(\sin x)$ D. $-\pi - \arccos(\sin x)$

$$D = \pi - \arccos(\sin x)$$

39. 下列四个命题中正确的是().

A. 若
$$\sin f(x)$$
 是奇函数, B. 若 $\cos f(x)$ 是奇函数,

B. 若
$$\cos f(x)$$
 是奇函数,

C. 若
$$\arcsin f(x)$$
 是奇函

D. 若
$$\arccos f(x)$$
 是奇函

则
$$f(x)$$
 是奇函数

则
$$f(x)$$
 是奇函数

数,则
$$f(x)$$
 是奇函数

数,则
$$f(x)$$
 是奇函数

40. 函数 $f(x) = \frac{\arcsin x}{\frac{\pi}{2} - \arccos x}$ ().

B. 是偶函数, 但不是奇函 A. 是奇函数, 但不是偶函 C. 即不是奇函数, 也不是 D. 奇偶性无法确定 偶函数

41. 若函数 $f(x) = -\arccos x + \varphi$ 是奇函数, 则 φ 等于 (

A. π

D. $-\frac{\pi}{2}$

42. (1) 用一个反正弦形式表示 $\frac{12}{13} + \arccos \frac{4}{5}$. (2) 用一个反余弦形式表示 $\arcsin \frac{15}{17} - \arcsin \frac{4}{5}$.

43. 求值: (1) $\arcsin \frac{2\sqrt{2}}{3} + \arcsin \frac{1}{3}$. (2) $\arccos (-\frac{11}{14}) - \arccos \frac{1}{7}$.

44. 已知 $\arccos \frac{x}{a} = 2 \arcsin \frac{y}{a}$, 求证: $a^2 = ax + 2y^2$.

45. 求值: $(1)\sin(\arcsin\frac{3}{5} + \arcsin\frac{8}{17})$. $(2)\tan[\arcsin\frac{1}{3} + \arccos(-\frac{1}{5})]$. $(3)\cos[\arccos\frac{4}{5} - \arccos(-\frac{5}{13})]$. $(4)\arcsin(\cos 4)$ $\arccos(\sin 5)$

46. (1) 已知 $-\frac{\pi}{3} < \theta < \frac{2\pi}{3}$,求证: $\arccos \frac{\sqrt{3}\sin\theta - \cos\theta}{2} + \theta = \frac{2\pi}{3}$. (2) 若 $\arcsin(\sin\alpha + \sin\beta) + \arcsin(\sin\alpha - \sin\beta)$ $\sin \beta$) 是 $\frac{\pi}{2}$ 的奇数倍, 求证: $\sin^2 \alpha + \sin^2 \beta = \frac{1}{2}$

47. (1) 求函数 $y = (\arccos x)^2 - 5\arccos x(|x| \le 1)$ 的值域. (2) 已知函数 $f(x) = \cos(2\arccos x) + 4\sin(\arcsin\frac{x}{2})$, 求它的最大值与最小值. (三) 反正切函数与反余切函数

48. 记 $M = \arcsin(-\frac{1}{3}), P = \arctan(-\sqrt{2}), Q = \arccos(-\frac{2}{3}), 则 M, P, Q$ 的大小关系是 (

A. M < P < Q B. M < Q < P

C. P < M < Q D. P < Q < M

49. 计算 $\arctan(\tan\frac{3}{5}\pi)$ 的值是 ().

A. $-\frac{3}{5}\pi$

B. $\frac{2}{5}\pi$

C. $-\frac{2}{5}\pi$

D. $\frac{3}{5}\pi$

50. 若 x < 0, 则 $\arctan x$ 等于 ().

A. $\operatorname{arccot} \frac{1}{x}$ B. $-\operatorname{arccot} \frac{1}{x}$

C. $\pi - \operatorname{arccot} \frac{1}{x}$ D. $\operatorname{arccot} \frac{1}{x} - \pi$

51. 函数 $f(x) = \frac{\pi}{2} + \arctan x$ 的反函数是 ().

A. $f^{-1}(x) = \tan(x - B)$. $f^{-1}(x) = C$. $f^{-1}(x) = -\frac{1}{\tan x}(0 < D)$. $f^{-1}(x) = \tan x(0 < \frac{\pi}{2})(0 < x < \pi)$ $-\cot x(-\frac{\pi}{2} < x < \frac{\pi}{2})$ $x < \pi$

52. 若 $\arctan(x+1) - \arctan(x-1) = \frac{\pi}{4}$, 则 $\arcsin \frac{1}{x^2}$ 等于 (

A. $\frac{\pi}{6}$

B. $\frac{\pi}{4}$

C. $\frac{\pi}{3}$. (1)) $\frac{4\pi}{3}$.

D. $y = \arctan(\tan x)$

53. 下列函数中, 同时满足条

件 "① 定义域是 R, ② 是

奇函数, ③ 是周期函数"

的函数是().(A)y =

 $\arcsin(\sin x)$. (B)y =

 $\cos(\arcsin x)$. (C)y =

 $\tan(\arctan x)$

54. 在"① $\arcsin(\sin\frac{5}{6}\pi) = \frac{5}{6}\pi$,② $\arctan(\tan\frac{7}{6}\pi) = \frac{\pi}{6}$,③ $\cos(\arccos\pi) = \pi$,④ $\tan(\arccos0) = 0$ " 这四个式子 中, 正确的有().

A. 0 个

B. 1 个

C. 2 个

D. 3 个

- 55. 计算下列各式: (1) $\arctan \frac{1}{3} + \arctan 3 + \arcsin \frac{1}{5} \arccos(-\frac{1}{5}) = _____.$ (2) $\arctan(\cot 1) = _____.$ (3) $\arctan(\cot \frac{10}{7}\pi) = _____.$ (4) $\arctan \frac{1 \tan 25^{\circ}}{1 + \tan 25^{\circ}} = ____.$ (5) $\arctan 7 + \arccos \frac{3}{4} = ____.$ (6) $\arctan(3+2\sqrt{2}) - \arctan\frac{\sqrt{2}}{2} =$ ______. (7) $\arctan\frac{1}{2} + \arctan\frac{1}{5} + \arctan\frac{1}{8} =$ ______. (8) $\arcsin(\sin 4) + \arctan\frac{1}{2} =$ ______. $\arccos(\cos 3) + \arctan(\tan 2) + \operatorname{arccot}(\cot 1) = \underline{\hspace{1cm}}$
- 57. 在下列各组函数中, 图像不相同的是(

 $y = \cot(\arctan x)$ $y = \cos(\arcsin x)$

A. $y = \sin(\arccos x)$ 与 B. $y = \tan(\arccos x)$ 与 C. $y = \arcsin(\sin x)$ 与 D. $y = \arctan(\tan x)$ 与

 $y = \arccos(\cos x), x \in y = \arctan(\cot x), x \in$ $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

58. 若将函数 $y=\arctan x$ 的图像沿 x 轴正方向平移 2 个单位长度所得到的图像记为 C, 又图像 C' 与 C 关于 原点对称, 则与 C' 对应的函数是(

A. $y = -\arctan(x-2)$ B. $y = \arctan(x-2)$

C. $y = -\arctan(x+2)$ D. $y = \arctan(x+2)$

0

59. 若 $\arctan x + \operatorname{arccot} y = \pi$, 则点 (x, y) 组成的图像是 (

A.

В.

D.

60. 求下列函数的定义域与值域: $(1)y = \arctan(\sin x), x \in _____, y \in _____.$ $(2)y = \frac{1}{3}\arcsin 3x + ____.$ $\arctan \sqrt{3}x, x \in \underline{\hspace{1cm}}, y \in \underline{\hspace{1cm}}. (3)y = \operatorname{arccot} \sqrt{\cos x}, x \in \underline{\hspace{1cm}}, y \in \underline{\hspace{1cm}}. (4)y = \underline{\hspace{1cm}}$

$$\arctan \frac{1}{x^2 - 1}, x \in \underline{\hspace{1cm}}, y \in \underline{\hspace{1cm}}.$$

- 61. (1) 已知方程 $x^2 + 3\sqrt{3}x + 4 = 0$ 的两个实根为 x_1 与 x_2 , 记 $\alpha = \arctan x_1$, $\beta = \arctan x_2$, 求 $\alpha + \beta$ 的值. (2) 已知实数 a,b 满足 (a+1)(b+1) = 2, 求 $\arctan a + \arctan b$ 的值. (3) 已知 $|x| \le 1$, 求 $\csc^2(\arctan x) \tan^2(\arccos x)$ 的值. 二、简单三角方程【典型题型和解题技巧】
- 62. 主要的三角方程类型. $(1)a\sin^2 x + b\sin x + c = 0 (a \neq 0)$ 型.
- 63. 解方程 $2\sin^2 x + 3\sin x 2 = 0$. 解原方程即 $(2\sin x 1)(\sin x + 2) = 0$, $\sin x = \frac{1}{2}$ 或 $\sin x = -2$ (含去). $x = k\pi + (-1)^k \frac{\pi}{6} (k \in \mathbf{Z})$. $(2)a\sin x + b\cos x + c = 0(a^2 + b^2 \neq 0, c \neq 0)$ 型. 此类方程可将两边同除以 $\sqrt{a^2 + b^2}$, 变形为 $\sin(x + \varphi) = \frac{-c}{\sqrt{a^2 + b^2}}$.
- 64. 解方程 $2\sin x \cos x = 1$. 解原方程即 $\sin x \cdot \frac{2}{\sqrt{5}} \cos x \cdot \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}}$,即 $\sin(x \varphi) = \frac{1}{\sqrt{5}}$ (其中 $\varphi = \arctan \frac{1}{2}$), $x = k\pi + (-1)^k \arcsin \frac{1}{\sqrt{5}} + \arctan \frac{1}{2}(k \in \mathbf{Z})$. 注意方程 $\sin x = a$, $\cos x = a$ 有解的条件是 $|a| \le 1$. (3) 齐次型. $a\sin x + b\cos x = 0$, $a\sin^2 x + b\sin x\cos x + c\cos^2 x = 0$. 此类方程可将两边同除以 $\cos x$ 或 $\cos^2 x$,转化为 $\tan x$ 的一次或二次方程. 后者也可采用"降次",转化为 $A\sin 2x + B\cos 2x = C$ 的形式.
- 65. 解方程 $\sin^2 x 3 \sin x \cos x + 1 = 0$. 解法一原方程即 $2 \sin^2 x 3 \sin x \cos x + \cos^2 x = 0$. 显然 $\cos^2 x \neq 0$, 则有 $2 \tan^2 x 3 \tan x + 1 = 0$, 即 $(2 \tan x 1)(\tan x 1) = 0$, $\tan x = \frac{1}{2}$ 或 $\tan x = 1$, $x = k\pi + \arctan \frac{1}{2}$ 或 $x = k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$. 解法二原方程即 $\frac{1 \cos 2x}{2} \frac{3}{2} \sin 2x + 1 = 0$. 整理,得 $3 \sin 2x + \cos 2x = 3$,于是 $\sin(2x + \varphi) = \frac{3}{\sqrt{10}}($ 其中 $\varphi = \arctan \frac{1}{3})$, $2x + \varphi = k\pi + (-1)^k \arcsin \frac{3}{\sqrt{10}}$,故 $x = \frac{k\pi}{2} + \frac{1}{2}(-1)^k \arcsin \frac{3}{\sqrt{10}} \frac{1}{2}\arctan \frac{1}{3}(k \in \mathbf{Z})$. (4) 同名三角函数相等型.① $\sin f(x) = \sin \varphi(x)$;② $\cos f(x) = \cos \varphi(x)$;③ $\tan f(x) = \tan \varphi(x)$;④ $\cot f(x) = \cot \varphi(x)$. 在这四种类型的方程中,① 可化为 $f(x) = 2k\pi + \varphi(x)$ 或 $f(x) = 2k\pi + \pi \varphi(x)$;② 可 化为 $f(x) = 2k\pi \pm \varphi(x)$;③,④ 可化为 $f(x) = k\pi + \varphi(x)(k \in \mathbf{Z})$.
- 66. 解方程 $\tan 5x = \tan 4x$. 解由已知,得 $\begin{cases} 5x \neq m\pi + \frac{\pi}{2}, \\ 4x \neq n\pi + \frac{\pi}{2}, \\ 5x = k\pi + 4x \end{cases} \quad (m, n, k \in \mathbf{Z}), \ x = k\pi(k \in \mathbf{Z}). \quad (5) \ \mathbf{\hat{S}} \sin x \pm \cos x, \\ t^2 1$

 $\sin x \cos x$ 的三角方程. 此类方程宜用换元法, 即令 $\sin x \pm \cos x = t(|t| \le \sqrt{2})$, 则 $\sin x \cos x = \pm \frac{t^2 - 1}{2}$.

- 67. 解方程 $\sin 2x 12(\sin x \cos x) + 12 = 0$. 解令 $\sin x \cos x = t(|t| \le \sqrt{2})$, 则 $\sin 2x = 1 t^2$, 原方程可化为 $1 t^2 12t + 12 = 0$, 即 $t^2 + 12t 13 = 0$, 也即 (t + 13)(t 1) = 0. t = -13(舍去), 或 t = 1. $\sin x \cos x = 1$, 即 $\sin(x \frac{\pi}{4}) = \frac{\sqrt{2}}{2}$, 故 $x = k\pi + (-1)^k \frac{\pi}{4} + \frac{\pi}{4} (k \in \mathbf{Z})$. (4) 其他.
- 68. 解方程 $\sin^2 x + \sin^2 2x = \sin^2 3x$. 解原方程即 $(\sin^2 3x \sin^2 x) \sin^2 2x = 0$, $(\sin 3x + \sin x)(\sin 3x \sin x) \sin^2 2x = 0$, 即 $4 \sin 2x \cos x \cos 2x \sin x \sin^2 2x = 0$, $2 \sin^2 2x \cos 2x \sin^2 2x = 0$. 于是 $\sin^2 2x (2 \cos 2x 1) = 0$, $\sin 2x = 0$ 或 $\cos 2x = \frac{1}{2}$, 故 $x = \frac{k\pi}{2}$ 或 $x = k\pi \pm \frac{\pi}{6} (k \in \mathbf{Z})$. 注意因式分解以及和差与积的互化,是解三角方程的重要手段.

- 69. 三角方程解的讨论. (1) 利/用 $|\sin x| \le 1$ 与 $|\cos x| \le 1$. . 例 7 求实数 m 的取值范围,使关于 x 的 方程 $2\sin^2 x + 2\sin x \cos x \cos^2 x 1 m = 0$ 有解. 解原方程即 $\sin^2 x + 2\sin x \cos x 2\cos^2 x = m$, $\frac{1-\cos 2x}{2} + \sin 2x 2 \cdot \frac{1+\cos 2x}{2} = m$, 即 $2\sin 2x 3\cos 2x = 2m + 1$, $\sin(2x \varphi) = \frac{2m+1}{\sqrt{13}}$ (其中 $\varphi = \arctan \frac{3}{2}$). 欲使方程有解,只需 $-\sqrt{13} \le 2m + 1 \le \sqrt{13}$, $\frac{-1-\sqrt{13}}{2} \le m \le \frac{-1+\sqrt{13}}{2}$. 注意例 7 也可 将原方程化为 $\tan x$ 的二次方程,再利用 $\triangle \ge 0$ 求解,请读者试一试. (2) 利用函数图像.
- 70. 关于 x 的方程 $\sin x + \sqrt{3}\cos x + a = 0$ 在 $(0, 2\pi)$ 内有两个相异的实数解 α, β , 求实数 a 的取值及 $\alpha + \beta$ 的 值.

解原方程即 $\sin(x+\frac{\pi}{3})=-\frac{a}{2}$. 令 $y_1=\sin(x+\frac{\pi}{3})(0< x< 2\pi),\ y_2=-\frac{a}{2}$. 只需 y_2 的图像 (一条和 y 轴垂直的直线) 和 y_1 的图像在 $(0,2\pi)$ 内有两个交点即可. 观察图 1,得 $\begin{cases} -1<-\frac{a}{2}<1,\\ -\frac{a}{2}\neq\frac{\sqrt{3}}{2},\end{cases}$ 即 -2< a< 2 且 $a\neq -\sqrt{3}$. 利用中点知识,易得 $\alpha_1+\beta_1=2x_1=\frac{\pi}{2},\ \alpha_2+\beta_2=2x_2=\frac{7}{3}\pi,$ 即 $\alpha+\beta=\frac{\pi}{3}$ 或 $\alpha+\beta=\frac{7\pi}{3}$.

71. 就实数 a 的取值范围,讨论关于 x 的方程 $\cos 2x + 2\sin x + 2a - 3 = 0$ 在 $[0, 2\pi]$ 内解的情况.解原方程即 $\sin^2 x - \sin x = a - 1$,配方,得 $(\sin x - \frac{1}{2})^2 = a - \frac{3}{4}$.令 $y_1 = (\sin x - \frac{1}{2})^2$, $y_2 = a - \frac{3}{4}$.观察图 2,得: (1) 当 $a - \frac{3}{4} > \frac{9}{4}$ 或 $a - \frac{3}{4} < 0$,即 a > 3 或 $a < \frac{3}{4}$ 时,方程无解. (2) 当 $a - \frac{3}{4} = \frac{9}{4}$,即 a = 3 时,方程有一解 $x = \frac{3}{2}\pi$. (3) 当 $\frac{1}{4} < a < -\frac{3}{4} < \frac{9}{4}$ 或 $a - \frac{3}{4} = 0$,即 1 < a < 3 或 $a = \frac{3}{4}$ 时,方程有两解. (4) 当 $a - \frac{3}{4} = \frac{1}{4}$,即 a = 1 时,方程有三解: $x = 0, \frac{\pi}{2}, \pi$. (5) 当 $0 < a - \frac{3}{4} < \frac{1}{4}$,即 $\frac{3}{4} < a < 1$ 时,方程有四解.

注意 $(1)x \in [0,2\pi]$ 时, 若以 $\sin x$ 为横轴, 则函数 $y = a \sin^2 x + b \sin x + c (a \neq 0)$ 的图像是在 [-1,1] 上的一段曲线. (2) 本例的曲线 y_1 的对称轴是固定的. 如果对称轴不定, 问题的讨论就比较复杂. 但就问题的实质而言, 方程 $a \sin^2 x + b \sin x + c = 0 (a \neq 0)$ 的讨论, 也就是对一元二次方程 $at^2 + bt + c = 0 (a \neq 0)$ 在区间 [-1,1] 上解的讨论. 读者可参看第一章的例题. 【训练题】(一) 最简单的三角方程

72.	72. 若关于 x 的方程 $\sin x = 2a - 1$ 有解, 则 a 的取值范围是 ().				
	A. $0 < a < 1$	B. $a < 0$ 或 $a > 1$	C. $a \le 0$ 或 $a \ge 1$	D. $0 \le a \le 1$	
73.	73. 满足 $\cos(2x + 45^{\circ}) = \sin(30^{\circ} - x)$ 的最小正角是 ().				
	A. 5°	B. 15°	C. 30°	D. 37.5°	
74.	记方程 $\cos 2x = 1$ 的解集为	M , 方程 $\sin 4x = 0$ 的解集为	$oldsymbol{h}\ P,oldsymbol{p}\ M\ oldsymbol{5}\ P\ oldsymbol{6}\ oldsymbol{5}\ \mathcal{S}$ 是().	
	A. $M \subset P$	B. $M \supset P$	C. $M = P$	D. $M \not\subset P$ <u>H</u> $M \not\supset P$	
75.	方程 $\cos x^2 = 1$ 的解集是 ().			
	A. $\{x x=2k\pi, k\in\mathbf{Z}\}$	B. $\{x x=\pm\sqrt{2k\pi}, k\in\mathbf{Z}\}$	C. $\{x x = \pm \sqrt{2k\pi}, k \in \mathbb{N}\}$	D. $\{x x = \pm \sqrt{2k\pi}, k \in \mathbb{N}\} \cup \{0\}$	
76. 方程 $\sin^2 x = \cos^2 x$ 的解集是 ().					
	A. $\{x x = 2k\pi + \frac{\pi}{4}, k \in \mathbb{Z}\}$	B. $\{x x = k\pi + \frac{\pi}{4}, k \in \mathbf{Z}\}$	C. $\{x x = \frac{k\pi}{2} + \frac{\pi}{4}, k \in \mathbf{Z}\}$	D. $\{x x = \frac{k\pi}{4} + \frac{\pi}{4}, k \in \mathbf{Z}\}$	
	I56. 方程 $\sqrt{1-\sin^2 x} = \sin x$ 的解集是 ().				
	A. $\{x x = k\pi + (-1)^k \frac{\pi}{4}, k \in \mathbf{Z}\}$	B. $\{x x = k\pi + \frac{\pi}{4}, k \in \mathbf{Z}\}$	C. $\{x x=k\pi\pm\frac{\pi}{4}, k\in\mathbf{Z}\}$	D. $\{x x = 2k\pi \pm \frac{\pi}{4}, k \in \mathbf{Z}\}$	
77.	方程 $\tan(2x+\frac{\pi}{3})=\frac{\sqrt{3}}{3}$ 在 $[0,2\pi)$ 范围内的解的个数是 ().				
	A. 5	B. 4	C. 3	D. 2	
78.	(1) 若方程 $2\cos x = (\frac{1}{2})^a$ 是 (3) 方程 $\sin x$	无解,则实数 a 的取值范围 $2x \cdot \cot x = 0$ 的解集是		$ax = -\cos\frac{2\pi}{5}$ 的解集	
79.	$f(x) = \sin(2x + 5\theta)$ 的图像关于 y 轴对称, 则 θ 的值等于 (2) 若方程 $\sin x = a$ 在 $[\frac{2\pi}{3}, \frac{5\pi}{3}]$ 中恰有两个不同的实数解, 则 a 的取值范围是				
80.	(1) 若 $-6 < \log \frac{1}{\sqrt{2}}$ $x < -2$, 求方程 $\cos \pi x = 1$ 的解集. (2) 求方程 $\log x = \cos 2x$ 解的个数. $(二)$ 简单的三角 方程				
81.	方程 $\frac{\cos 2x}{1+\sin 2x}=0$ 的解集			,	
	A. $\{x x = 2k\pi \pm \frac{\pi}{4}, k \in \mathbb{Z}\}$	B. $\{x x = k\pi \pm \frac{\pi}{4}, k \in \mathbf{Z}\}$	C. $\{x x = k\pi + \frac{\pi}{4}, k \in \mathbf{Z}\}$	D. $\{x x = \frac{\kappa \pi}{2} + \frac{\pi}{4}, k \in \mathbf{Z}\}$	
82.	方程 $\frac{2\sin x}{\sin 2x} = 1$ 在 $-2\pi \le x$	$x \le 2\pi$ 范围内 ().			
	A. 有一个解	B. 有两个解	C. 有三个解	D. 无解	
83.	下列方程中,与方程 $\sin x = \cos x$ 的解集相同的是 ().				
	$A. \sin 2x = 2\sin^2 x$	B. $\cos x = \sqrt{1 - \cos^2 x}$	$C. \sin^2 x = \cos^2 x$	$D. \frac{\cos 2x}{\sin x + \cos x} = 0$	

- 84. 写出下列方程的解集: $(1)\lg_2 tgx = 1 + \log_2 \sin x$:_______. $(2)\sin x + \sqrt{3}\cos x = 2$:______. $(3)\sin x \sqrt{3}\cos x = a, \ |a| \le 2$:______. $(4)\cos(x + \frac{2\pi}{3})\cos(x + \frac{\pi}{3}) = -\frac{1}{4}$:_____. $(5)\cos^2(\frac{x 30^\circ}{2}) + \cos^2(\frac{x + 30^\circ}{2}) = 1$:_____. $(6)\sin x \cos x + 1 = \sin x + \cos x$:_____. $(7)\sqrt{2}\sin x = \sin 2x + \cos 2x$:_____. $(8)\sin(x \frac{\pi}{6})\sin(x + \frac{\pi}{6}) = \frac{1}{2}$:_____.
- 85. 解下列方程: $(1)\sin 3x \sin 2x + \sin x = 0$. $(2)\cos 2x\cos 3x = \cos x\cos 4x$. $(3)\sin 4x\cos 3x = \sin 6x\cos x$. $(4)\sin 5x \sin 3x = \sqrt{2}\cos 4x$. $(5)\sin x + \sin 2x + \sin 3x = 1 + \cos x + \cos 2x$.
- 86. 若方程 $\sin x + \cos x = m(m \in \mathbf{R})$ 在 $0 \le x \le \pi$ 范围内有两个不同的实数解, 则 ().

A.
$$-1 \le m \le \frac{\sqrt{2}}{2}$$
 B. $-1 < m \le 1$ 或 $m =$ C. $1 \le m < \sqrt{2}$ D. $-\sqrt{2} < m < \sqrt{2}$

87. 方程 $\sin^2 x + 2 \sin x - a = 0$ 有解的条件为 ().

A.
$$a \in \mathbf{R}$$
 B. $a \in [-1,3]$ C. $a \in [-1,\infty)$ D. $a \in (-\infty,3]$

88. 若方程 $\cos^2 x - |\sin x| + 1 = 0$ 在 $-\pi < x < \pi$ 范围内的解之和是 p, 解之积是 q, 则下列结论正确的是 (

A.
$$p = -1$$
 B. $p = 0$ C. $q = 1$ D. $q = 2$

- 89. 设 $f(x) = \cos(x a) + \sin(x + a)$ 是偶函数, 求 a 的值.
- 90. 解下列方程: $(1)8\sin^2 x = 3\sin 2x 1$. $(2)(\sin x + \cos x)^2 = 2\cos 2x$.

91. 解下列方程:
$$(1)\frac{1+\tan x}{1-\tan x} = 1+\sin 2x$$
. $(2)\tan(\frac{\pi}{3}+x)+\tan(\frac{\pi}{6}-x) = \frac{4}{\sqrt{3}}$.

- 92. 解下列方程: $(1)\sin x + \cos x + \sin x \cos x = 1$. $(2)\sin 2x 12(\sin x \cos x) + 12 = 0$. $(3)\sqrt{2}(\sin x + \cos x) = \tan x + \cot x$. $(4)\sin x + \cos x + \tan x + \cot x + \sec x + \csc x + 2 = 0$.
- 93. (1) 已知方程 $2x^2 4x \sin \theta + 3 \cos \theta = 0 (0 \le \theta \le \pi)$ 有相等的实根, 求 θ 的值, 并解此方程. (2) 已知方程 $x^2 (\sin \alpha + \cos \alpha)x + \sin^2 \alpha \sin \alpha \cos \alpha 1 = 0$ 有两个相等的实根, 求实数 α 和相成的 x 的值. (3) 已知 方程 $x^2 4x \cos 2\theta + 2 = 0$ 和方程 $2x^2 + 4x \sin 2\theta 1 = 0$ 有一根互为倒数, 求角 θ 的值 $(0 < \theta < \pi)$.
- 94. (1) 已知关于 x 的方程 $\sin^2 x + \cos x + a = 0$ 有解, 求实数 a 的取值范围. (2) 已知 $\cos^2 x \sin x + a = 0$ 在 $0 < x \le \frac{\pi}{2}$ 范围内有解, 求实数 a 的取值范围. (3) 求实数 k 的取值范围, 使关于 x 的方程 $\sin^2 x \sin x + k = 0$ 在 $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 上, ① 无解; ② 恰有一解; ③ 有两解.
- 95. (1) 若关于 x 的方程 $\cos 2x \sin x + 1 + m = 0$ 有解, 求实数 m 的取值范围. I(2) 若关于 x 的方程 $\sin^2 x + 4 \sin x \cos x 2 \cos^2 x = a$ 恒有实数解, 求实数 a 的取值范围.
- 96. 将下列各组数从小到大排列: $(1)\frac{1}{2},\sin\frac{1}{2},\arcsin\frac{1}{2}.$ $(2)\frac{1}{3},\cos\frac{1}{3},\arccos\frac{1}{3}.$ $(3)\arcsin\frac{1}{4},\arctan\sqrt{5},\arccos(-\frac{1}{3}).$
- 97. (1) 已知 0 < x < 1, 求证: $2\arctan\frac{1+x}{1-x} + \arcsin\frac{1-x^2}{1+x^2} = \pi$. (2) 已知 a,b,c > 0, 求证: 若 $\arctan a + \arctan b + \arctan c = \pi$, 则 a+b+c = abc, 反过来也成立.

- 98. (1) 画出函数 $y = \arctan x + \arctan \frac{1-x}{1+x}$ 的图像. (2) 在不同坐标系内分别画出 $y = \arcsin(\sin x)(-\frac{\pi}{2} \le x \le \frac{3\pi}{2})$ 和 $y = \arcsin(\sin x)(x \in \mathbf{R})$ 的图像.
- 99. 解下列方程: $(1)x = \arcsin(\sin 2x)$. $(2)\cos(\pi \sin x) = \sin(\pi \cos x)(0 \le \pi < 2\pi)$. $(3)x^2 + 2x\cos(xy) + 1 = 0(x, y \in \mathbf{R})$.
- 100. 已知 α, β 是关于 x 的方程 $a\cos x + b\sin x = c$ 的两个实根 $(a^2 + b^2 \neq 0, \ a \neq 2k\pi + \beta, \ k \in \mathbf{Z})$, 求证 $\cos^2 \frac{\alpha \beta}{2} = \frac{c^2}{a^2 + b^2}$.
- 101. 已知 $\triangle ABC$ 的两内角 A,B 满足方程 $8\sin^2 x + 3\sin 2x 4 = 0$, 且 A > B, 求此三角形三边长之比.
- 102. 解方程 $\tan(x + \frac{\pi}{4}) + \tan(x \frac{\pi}{4}) = 2\cot x$.
- 103. 已知关于 x 的方程 $x = a \sin x + b(0 < a < 1, b \in \mathbb{R})$ 有实根, 求证: 该方程只有一个实根.
- 104. (1) 已知方程 $\sin^2 x + 3a^2 \cos x 2a^2 (3a 2) 1 = 0$ 有实数解, 求实数 a 的取值范围. (2) 已知关于 x 的方程 $2\cos 2x + 4(a 1)\sin x 4a + 1 = 0$ 在 $0 \le x \le 2\pi$ 范围内有相异两个实根, 求 a 的取值范围.
- 105. 已知关于 x 的方程 $\cos 2x 2(2a+1)\cos x + 2a^2 + 2a + 1 = 0$ 在 $[0,2\pi)$ 范围内有两个不同的解, 求实数 a 的取位范围.