

e-Edge Education Centre

Time -2hr. Sub-Maths Class-X M.M- 80

- **1.** Prove that $\sqrt{5}$ is irrational. [4]
- **2**.Check whether 6n can end with the digit 0 for any natural number n. [4]
- **3.** Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. [4]
 - (i) $x^2 2x 8$ (ii) $4s^2 4s + 1$ (iii) $6x^2 3 7x$
- **4.** Obtain all other zeroes of $3x^4 + 6x^3 2x^2 10x 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
- **5.** A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km down-stream. Determine the speed of the stream and that of the boat in still water. [4]
- 6. Draw the graphs of the equations 5x y = 5 and 3x y = 3. Determine the co-ordinates of the vertices of the triangle formed by these lines and the y axis.
- 7. Find the roots of the following quadratic equations by factorisation:

(iii)
$$\sqrt{2} x^2 + 7x + 5\sqrt{2} = 0$$
 (iv) $2x^2 - x + \frac{1}{8} = 0$ [4]

- **8.** Find the roots of the equation $5x^2 6x 2 = 0$ by the method of completing the square. [4]
- **9.** Find the 20th term from the last term of the AP : 3, 8, 13, ..., 253. [4]
- 10. The sum of the third and the seventh terms of an AP is 6 and their product is 8. Find the sum of first sixteen terms of the AP. [4]
- 11. In what ratio does the point (-4, 6) divide the line segment joining the points A (-6, 10) and B(3, -8)? [4]
- **12.** If $\sin (A B) = \frac{1}{2}$, $\cos (A + B) = \frac{1}{2}$, $0^{\circ} < A + B \le 90^{\circ}$, A > B, find A and B. [4]
- **13..** Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

(i)
$$\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \cos ecA + \cot A$$
 using the identity $\csc^2 A = 1 + \cot^2 A$. [4]

- .14. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m. [4]
- **15.** A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Fig. 10.14). Find the sides AB and AC. [4]

Fig. 10.14

e-Edge Education Centre

- **16.** Let ABC be a right triangle in which AB = 6 cm, BC = 8 cm and \angle B = 90°. BD is the perpendicular from B on AC. The circle through B, C, D is drawn. Construct the tangents from A to this circle. [4]
- 17.A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle.

(Use
$$\pi = 3.14$$
 and $\sqrt{3} = 1.73$)

- **18. 2.** A right triangle, whose sides are 3 cm and 4 cm (other than hypotenuse e) is made to revolve about its hypotenuse. Find the volume and surface area of the double cone so formed. (Choose value of π as found appropriate.)
- 19. The following table shows the ages of the patients admitted in a hospital during a year:

Age (in years)	5 - 15	15 - 25	25 - 35	35 - 45	45 - 55	55 - 65
Number of patients	6	11	21	23	14	5

Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency. [4]

- **20.** A bag contains 3 red balls and 5 black balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is (i) red? (ii) not red? [4]
- 21. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm [4] and 3 cm. Then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.