Often, we want to break input data into categories called "buckets" or "bins", then do stats (e.g., median) on each bucket

all data

Year	ID	Speed
2014	Α	123
2015	В	120
2015	С	140
2016	D	100
2015	Е	130
2016	F	200

Often, we want to break input data into categories called "buckets" or "bins", then do stats (e.g., median) on each bucket

bin for 2014 Year ID Speed all data 123 2014 Α Year **Speed** ID 123 2014 Α bin for 2015 2015 В 120 Year ID Speed 2015 C 140 2015 120 2016 D 100 2015 140 Ε 2015 130 2015 Ε 130 F 2016 200 bin for 2016 Year ID **Speed**

2016

2016

D

F

100

200

Often, we want to break input data into categories called "buckets" or "bins", then do stats (e.g., median) on each bucket

Often, we want to break input data into categories called "buckets" or "bins", then do stats (e.g., median) on each bucket


```
bin for 2014
                                   bin2014 = [
      all data
                                      [2014, "A", 123],
rows = [
  [2014, "A", 123],
                                     bin for 2015
  [2015, "B", 120],
                                   bin2015 = [
  [2015, "C", 140],
                                     [2015, "B", 120],
  [2016, "D", 100],
                                     [2015, "C", 140],
  [2015, "E", 130],
                                     [2015, "E", 130],
  [2016, "F", 200],
                                     bin for 2016
                                   bin2016 = [
                                     [2016, "D", 100],
                                     [2016, "F", 200],
```

```
bin for 2014
                                   bin2014 = [
      all data
                                      [2014, "A", 123],
rows = [
  [2014, "A", 123],
                                     bin for 2015
  [2015, "B", 120],
                                   bin2015 = [
  [2015, "C", 140],
                                     [2015, "B", 120],
  [2016, "D", 100],
                                     [2015, "C", 140],
  [2015, "E", 130],
                                     [2015, "E", 130],
  [2016, "F", 200],
                                     bin for 2016
                                   bin2016 = [
                                     [2016, "D", 100],
                                     [2016, "F", 200],
```

how to keep track of all the lists?

all data

```
rows = [
    [2014, "A", 123],
    [2015, "B", 120],
    [2015, "C", 140],
    [2016, "D", 100],
    [2015, "E", 130],
    [2016, "F", 200],
]
```



```
bins = {
  2014: [
     [2014, "A", 123],
  2015: [
     [2015, "B", 120],
     [2015, "C", 140],
     [2015, "E", 130],
  2016: [
     [2016, "D", 100],
     [2016, "F", 200],
```

```
bins = {
      all data
                                            2014: [
                                               [2014, "A", 123],
rows = [
  [2014, "A", 123],
                                             2015: [
  [2015, "B", 120],
                                               [2015, "B", 120],
  [2015, "C", 140],
                                               [2015, "C", 140],
  [2016, "D", 100],
                                               [2015, "E", 130],
  [2015, "E", 130],
  [2016, "F", 200],
                                             2016: [
                                               [2016, "D", 100],
                                               [2016, "F", 200],
```

Demo: Median Tornado Speed per Year

Goal: print median speed of tornados for each year

Input:

Tornado CSV

Output:

Median within each year

Example:

prompt> python tornados.py

- - -

2015: 130

2016: 123

2017: 90

name	X	у
Alice	30	20
Bob	5	11
Cindy	-2	50

list of list representation

```
header = ["name", "x", "y"]
rows = [
    ["Alice", 30, 20],
    ["Bob", 5, 11],
    ["Cindy", -2, 50],
]
```

name	X	у
Alice	30	20
Bob	5	11
Cindy	-2	50

list of list representation

list of dict representation

```
header = ["name", "x", "y"]

rows = [
    ["Alice", 30, 20],
    ["Bob", 5, 11],
    ["Cindy", -2, 50],
]
["cindy", -2, 50],
```

```
{"name":"Alice", "x":30, "y":20"},
{"name":"Bob", "x":5, "y":11"},
{"name":"Cindy", "x":-2, "y":50"},
]
```

name	X	у
Alice	30	20
Bob	5	11
Cindy	-2	50

list of list representation

list of dict representation

```
header = ["name", "x", "y"]

rows = [
    ["Alice", 30, 20],
    ["Bob", 5, 11],
    ["Cindy", -2, 50],
]
```

```
{"name":"Alice", "x":30, "y":20"},
{"name":"Bob", "x":5, "y":11"},
{"name":"Cindy", "x":-2, "y":50"},
]
```

name	X	у
Alice	30	20
Bob	5	11
Cindy	-2	50

list of list representation

list of dict representation

```
header = ["name", "x", "y"]
rows = [
    ["Alice", 30, 20],
    ["Bob", 5, 11],
    ["Cindy", -2, 50],
]
```

```
{"name":"Alice", "x":30, "y":20"},
{"name":"Bob", "x":5, "y":11"},
{"name":"Cindy", "x":-2, "y":50"},
]
```

rows[2][header.index("y")]

name	X	у
Alice	30	20
Bob	5	11
Cindy	-2	50

list of list representation

list of dict representation

```
header = ["name", "x", "y"]
rows = [
    ["Alice", 30, 20],
    ["Bob", 5, 11],
    ["Cindy", -2, 50],
]
```

```
{"name":"Alice", "x":30, "y":20"},
{"name":"Bob", "x":5, "y":11"},
{"name":"Cindy", "x":-2, "y":50"},
```

rows[2][header.index("y")]

rows[2]["y"]

Demo: Table Transform

Goal: create function that transforms list of lists table to a list of dicts table

Input:

List of lists (from a CSV)

Output:

List of dicts

Example:

```
>>> header = ["x","y"]
>>> rows = [[1,2], [3,4]]
>>> transform(header, rows)
[{"x":1, "y":2}, {"x":3, "y":4}]
```