

Quantitative analysis of 3D MR images

Marek Kociński

1st November, 2019

Home institution

Institute of Electronics

Medical Electronics Division

Scientific interests (Biomedical engineering)

Algorithms and software for quantitative analysis of medical images

- multi-scale brain vasculature modeling

Nature of vascular system

I. Thick

II. Meso scale Medium-size blood vesse

III. Capillary

Problem

Reliable quantitative analysis each part of vasculartree

Thick vessels: reconstruct the surface vascular tree given its 3D MRA image - to aid medical diagnosis (blood flow simulation, detection of stenosis and aneurysms).

lodeling of thick blood vessels

Model of pipe-like arteries

Cross-section of 3D ToF-MRI (346 x 448 x 319 voxels, voxel size = $0.5 \times 0.5 \times 0.5$ mm³)

Short tubular segment comprising K=5 voxels.

'alidation of modeling algorithms

Numerical phantoms with noise and artifacts

Computer simulated vascular tree

Helix

Tube

Model of arteries (from ToF

Photo of 3D printed model

T2 weighted MRI slice of 3D printed model

odeling of thick blood vessels

ToF (Arteries) QSM (Veins) SWI (Veins)

3D model of arteries (red, ToF) and veins (blue, QSM), grey matter (grey, T1).

Towards multi-scale personalized modeling

Visualization of geometric models of tubular sections of the arterial (red) and venous (blue) trees superimposed over the surface of gray matter (right hemisphere)

Synthesized mesoscopic scale trees build upon cortex penetrating arteries which bifurcate from the segmented selected brain artery

A photomicrograph of microscopic blood vessels from "Portrets of the Mind", 2010, pp. 216-217. Reproduced with a kind permission of the authors: Alfonso Rodríguez-Baeza and Marisa Ortega-Sánchez from Department of Morphological Sciences, Medicine Faculty at the Universitat Autònoma de Barcelona, Spain

Medium size blood vessels

PhD thesis (in the field of computer science)

Quantitative analysis of vascular trees represented by digital images

3D confocal microscope data – rat brain (UiB, 2006)

transfected with empty vector

Tumor cells:

native state, unmanipulated

transfected with CDNA for Neuron glial-2 proteoglycan

3D texture features

Vascular tree growth computer simulation.

Parameters: blood viscosity; nr of branches; inflow; outflow (vector model)

3D raster image

2D & 3D texture features

E-Derived Blood Pharmacokinetic Maps (UiB, 2015)

Quantitative analysis and modeling of DCE images for tissue characterization of endometrial carcinoma (grade classification)

MRI-DCE

3
2

- 1 an artery
- 2 weak enhancement
- 3 endometrium

An empirical, continuous, 6-parameter mathematical model of actual DCE-MRI signal at each ROI voxel

Pharmacokinetic parameter maps

od vessel – tissue exchange model (UiB, 2006)

Simple multiphysics compartmental model

Some first steps in my MMIV resear

Enabling many interesting machine learning and deep learning projects ongoing in our group

Thank you!

Thank you!

Erasmus students from TUL in BBB, May 2015