信息技术科学学院本科生《电路基础》试卷(A卷)

专业:

年级:

学号:

姓名:

成绩:

一、选择题(本题共36分,每小题2分)

1、图 1 所示电路,设 R 为正电阻,则二端网络 N 的功率是(

A. 吸收(即消耗) B. 发出(即产生)

- C. 时发时吸 D. 不发不吸

2、图 2 所示电路中,已知 $U_s=4V$, $R_1=10\Omega$, $R_2=30\Omega$, $R_3=60\Omega$, $R_4=20\Omega$ 。 a、b 端电压 U=(

A. 3V

B. 2V

C. -1V

- D. -2V
- 3、设 R_v 为对称 Y 形电路中的一个电阻,则与其等效的 \triangle 形电路中的每个电阻等于()。

A. $\sqrt{3}R_v$

B. $3R_{y}$

C. $\frac{1}{3}R_{\gamma}$

4、理想电压源的源电压为 U_s ,端口电流为I,则其内阻为()。

A. 0

 $B. \infty$

C. $U_{\rm s}/I$

D. $I/U_{\rm s}$

5、若 RL 串联电路对基波的阻抗为 $(1+j4)\Omega$,则对二次谐波的阻抗为(

A. $(1+ j4)\Omega$ B. $(2+ j4)\Omega$

C. $(2 + i8)\Omega$ D. $(1 + i8)\Omega$

6、图 6 所示电路中, 节点 1 正确的节点电压方程为(

A. $(1/R_1 + 1/R_2)u_{n1} = i_S - i$ B. $(1/R_1)u_{n1} = i_S - i$

C. $(1/R_1)u_{n1} = i_S + i$ D. $(1/R_1 + 1/R_2)u_{n1} = i_S$

(题图6)

- 7、图 7 所示电路中,已知网孔电流方程为 $\begin{cases} 300I_1 200I_2 = 3 \\ -100I_1 + 400I_2 = 0 \end{cases}$,则 CCVS 的控制系数 r =
- ().
- Α. 100Ω
- B. -100Ω
- C. 50Ω
- D. -50Ω

- D. 可加亚人工改量八别头。 4 - (100 (+ €00) 4 · - 4
- 8、已知两个正弦量分别为 $i_1 = -4\cos(100t + 60^\circ)$ A, $i_2 = 4\sin(100t + 60^\circ)$ A,则 i_1 与 i_2 的相位差为 ()。
 - A. 0°
- B. 90°

(题图7)

- C. 180°
- D. -90°
- 9、图 9 所示电路中, $u_s=10V,R=10\Omega,R_1=8\Omega,R_2=2\Omega,R_3=1.4\Omega$,负载 R_L 获得最大功率时, $R_L=$ ()。
 - Α. 8Ω
- Β. 3Ω
- $C.10\Omega$
- D. 1.4Ω

- (题图9)
- 10、若含源二端网络 N 的伏安特性如图 10 所示,则从 A、B 端看进去的戴维宁等效电路的 u_{oc} 和 R_s 应是()。
 - A. $-4V, 2\Omega$
- B. $4V, 2\Omega$
- C. $-4 V, 0.5 \Omega$
- D. 4 V, 0.5Ω

- 11、图 11 所示电路中,已知 $i_s=2A, L=1H, R_1=20\Omega, R_2=R_3=10\Omega$ 。开关 S 打开之前电路稳定。 t=0时 S 打开,则 u(0+)=()。
 - A. 0
- B. 20V
- C. 40/3 V
- D. 40 V

(题图 11)

12、图 12 所示电路中, $u_s=20\varepsilon(t)V, L=1H, R_1=R_2=10\Omega$ 。则零状态响应电流 $i_L(t)=0$

- A. $2(1-e^{-0.2t})\varepsilon(t)$ A

- B. $2(1-e^{-5t})\varepsilon(t)$ A C. $2(1-e^{-10t})\varepsilon(t)$ A D. $2(1-e^{-0.1t})\varepsilon(t)$ A

(题图 12)

13、图 13 所示电路,已知电压源的振幅相量 $\dot{U}_{sm}=20\angle0^{\circ}V$,忽略电流表内阻的影响,则电流表的 $)_{\circ}$ 读数为(

- A. 2*A*

- B. $2\sqrt{2}A$ C. 1*A* D. $\sqrt{2}A$

(题图 13)

14、图 14 所示电路中,已知 $L = 0.2H, u_s = (5\sin 50t + 10\sin 100t)V, 则 i(t) = ($

- A. $[0.5\sin(50t-90^\circ)+0.5\sin(100t-90^\circ)]A$
- B. $[0.5\sin(50t-90^\circ)+\sin(100t-90^\circ)]A$

C. $[0.5\sin(50t) + 0.5\sin(100t)]A$

D. $[0.5\sin(50t) + \sin(100t)]A$

(题图 14)

15、电路如图所示,若 $i_1 = I_m \sin \omega t$, $i_2 = 0$,则 $u_2 = ($)。

- A. $\omega MI_m \cos \omega t$
- B. $-\omega MI_m \cos \omega t$ C. $\omega MI_m \sin \omega t$ D. $-\omega MI_m \sin \omega t$

16、图 16 所示电路中,二端口网络 N 中只含电阻和受控源,在电流源 i_s 作用下,u=10V。欲

使u增大到40V,则电流源电流应为(

- B. $\frac{1}{2}i_{s}$ C. $2i_{s}$
- D. $4i_s$

17、图 17 所示正弦稳态电路,已知 $\dot{U}_1 = U_1 \angle 0^\circ$, $\dot{U}_2 = U_2 \angle 60^\circ$,则可求得比值 $\frac{U_2}{U_1} = 0^\circ$

- A. $\frac{1}{\sqrt{3}}$ B. $\frac{\sqrt{3}}{2}$ C. $\frac{1}{3}$ D. $\frac{1}{2}$

18、已知非正弦周期电流 $i(t) = [4+2.5\cos\omega t + 1.5\cos(2\omega t + 90^\circ) + 0.8\cos3\omega t]A$,则其有效值I =()。

A.
$$\sqrt{4^2 + 2.5^2 + 1.5^2 + 0.8^2} A$$

B.
$$\frac{1}{\sqrt{2}}\sqrt{4^2+2.5^2+1.5^2+0.8^2}$$
 A

C.
$$\sqrt{4^2 + \frac{2.5^2}{2} + \frac{1.5^2}{2} + \frac{0.8^2}{2}} A$$

D.
$$\sqrt{4+2.5+1.5+0.8} A$$

二(本题 16 分)分别求图示电路中 A 点的电位。

三(本题 16 分)图示电路中,开关 S 闭合前已处稳态,已知 $R_1=R_2=R_3=4\Omega, L=0.5H, U_S=32V$ 。 求t > 0时的u(t)。

四(本題 16 分)求图示一端口的戴维宁等效电路。已知 $\omega L_1=\omega L_2=10\Omega,\,\omega M=5\Omega,$ $R_1=R_2=6\Omega,\,\dot{U}_s=60\angle0^\circ\!V~.$

五 (本题 16 分) 计算如图一端口的谐振频率,已知 N 的 z 参数矩阵为 $Z = \begin{bmatrix} 7 & 3 \\ 3 & 3 \end{bmatrix} \Omega$ 。

参考答案

3. B.
$$3R_y$$

5. D.
$$(1+j8)\Omega$$

6. B.
$$(1/R_1)u_{n1} = i_S - i$$

7. A.
$$100\Omega$$

9. B.
$$3\Omega$$

10. B.
$$4V$$
, 2Ω

12. *B*.
$$2(1-e^{-5t})\varepsilon(t)$$
 A

14. A.
$$[0.5\sin(50t-90^\circ)+0.5\sin(100t-90^\circ)]A$$

15. B.
$$-\omega MI_m \cos \omega t$$

$$\equiv$$
, $i_L = 4.8 + 1.2e^{-10t}$ $u = 4i + 0.5\frac{di}{dt} = 19.2 - 1.2e^{-10t}$

四、30V,
$$3+j7.5\Omega$$

$$\pm 1.5\sqrt{2}$$
 rad/sec