Computer Architecture & Organization (CSE2003)

(Fall 2019-20)

Prof. Anand Motwani

Faculty, SCSE, VIT Bhopal University

email-id: anand.motwani@vitbhopal.ac.in

Contents

- IEEE Standard for Floating Point Representation
- Numerical Exercise
- Quiz / Problems

Session Objectives

At the end of this session student will understand:

- to represent fixed and floating point numbers in the IEEE format
- to perform arithmetic operations with them.

By: Prof. Anand Motwani Faculty, SCSE, VIT Bhopal University

Numerical Problem (previous lecture)

- Question: Represent +0.125 if 5 bits are used to represent exponent and 6 bits for mantissa.
- Solution steps:
- 1. Calculate bias
- 2. Calculate binary of given decimal no.
- 3. Normalize the binary no.
- 4. Calculate exponent.
- 5. Calculate Mantissa
- Represent the no. With as positive (i.e. Use 0 as sign bit)

Solution

- 1. Bias = 15
- 2. Binary no. = $(0.001)_2$
- 3. Normalized value = $1.0 * 2^{-3}$
- Calculate exponent: $-3 + 15 = 12 \sim 1100$
- Mantissa: No. to right of binary point is 0. So, mantissa is 0.
- No. is positive so sign bit is 0.
- Answer =

By: Prof. Anand Motwani
Faculty, SCSE, VIT Bhopal University

0 0 1 1 00 0 0 0 0 0

- Q. Represent 52.21875 in 32-bit binary floating point format. Exponent 8 bit and Mantissa 23
- 52.21875 = 110100.00111 =
- $.11010000111 \times 2^6$.
- Normalized 23 bit mantissa = 0.11010000111000000000000.
- As excess representation is being used for exponent, it is equal to 127 + 6 = 133.
- Thus the representation is $52.21875 = 0.11010000111 \times 2^{133} = 0.110100000111 \times 2^{10000101}$.
- The 32-bit string used to store 52.21875 in a computer will thus be

 By: Prof. Anand Motwan

0 10000101 1101000011100000000000 Faculty, SCSE, VIT Bhopal University

IEEE Standard for Floating Point Representation

- Floating point binary numbers were beginning to be used in the mid 50s.
- There was no uniformity in the formats used to represent floating point numbers and programs were not portable from one manufacturer's computer to another.
- By the mid 1980s, with the advent of personal computers, the number of bits used to store floating point numbers was standardized as 32 bits.

Faculty, SCSE,
VIT Bhopal University

IEEE Standard for Floating Point Representation

- This standard, called IEEE Standard 754 for floating point numbers, was adopted in 1985 by all computer manufacturers.
- It allowed porting of programs from one computer to another without the answers being different.
- The standard was updated in 2008. The current standard is IEEE 754-2008 version. It also introduced standards for representing decimal floating point numbers.

 By: Prof. Anand Motwani

Faculty, SCSE, VIT Bhopal University

IEEE Standard for Floating Point Representation

• This standard is now used by all computer manufacturers while designing floating point arithmetic units so that programs are portable among computers.

Floating-Point Standards

- The IEEE has established a standard for floating-point numbers
- The IEEE-754 *single precision* floating point standard uses an 8-bit exponent (with a bias of 127) and a 23-bit mantissa (significand).
- The IEEE-754 *double precision* standard uses an 11-bit exponent (with a bias of 1023) and a 52-bit mantissa (significand).

- a floating point number in the IEEE Standard is
- Bias = 127
- (-1) s \times (1. f) ₂ \times 2^{ex-127}

- Thus an exponent 0 means that –127 is stored in the exponent field.
- A stored value 198 means that the exponent value is (198 127) = 71.
- The exponents –127 (all 0s) and + 128 (all 1s) are reserved for representing special numbers which we discuss later.

By: Prof. Anand Motwani Faculty, SCSE, VIT Bhopal University

- Example. Represent 52.21875 in IEEE 754 32-bit floating point format.
- $52.21875 = 110100.00111 = 1.1010000111 \times 2^5$
- Normalized significand = .1010000111.
- Exponent: (e 127) = 5 or, e = 132.
- The bit representation in IEEE format is
 - 0 10000100 1010000111000000000000

IEEE 754-1985

- All 0s for the exponent is not allowed to be used for any other number. If the sign bit is 0 and all the other bits 0, the number is +0.
- If the sign bit is 1 and all the other bits 0, it is -0. Even though +0 and -0 have distinct representations they are assumed equal.
- All exponent bit 1 with all mantissa bits 0 represents infinity. Sign bit 0 then $+\sim$ and 1 then $-\sim$.
- All exponent bits 1 and mantissa bits non-zero is error.
- When an arithmetic operation is performed on two numbers which results in an indeterminate answer, it is called NaN (Not a Number)

By: Prof. Anand Motwani Faculty, SCSE, VIT Bhopal University

Computer Arithmetic

- Pseudo code for adding two nos. (say 4 bit)
- $x_3x_2x_1x_0$ and $y_3y_{2v}y_1y_0$
- int carry = 0;
- for (int i = 0; i<N; i++)
 {
 int sum = x_i + y_i + carry;
 Z_i = sum % 2;
 if (sum >=2)
 carry = 1;

Adding 2's complement No.

- Pseudo code for adding two nos. (say 4 bit)
- $x_3x_2x_1x_0$ and $y_3y_{2y}y_1y_0$
- int carry = 0;
- for (int i = 0; i < N; i++)

int sum = $x_i + y_i + carry$;

 $Z_i = sum \% 2;$ if (sum >=2)

carry = 1;

1101 (-3) 1101 (-3)

11010 (-6)

Overflow in 2s complement

Answer = -6

By: Prof. Anand Motwani Faculty, SCSE, VIT Bhopal University

Largest and Smallest Positive Floating Point Numbers:

Largest Positive Number

0	11111110	111111111111111111111111111111111111111
Sign	Exponent	Significand
1 bit	8 bits	23 bits

Significand: $1111 \dots 1 = 1 + (1 - 2^{-23}) = 2 - 2^{-23}$.

Exponent: (254 - 127) = 127.

Largest Number = $(2-2^{-23}) \times 2^{127} \cong 3.403 \times 10^{38}$.

If the result of a computation exceeds the largest number that can be stored in the computer, then it is called an *overflow*.

Smallest Positive Number

0	00000001	000000000000000000000000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

Significand = 1.0.

Exponent = 1 - 127 = -126.

The smallest normalized number is = $2^{-126} \cong 1.1755 \times 10^{-38}$.

Subnormal Numbers (IEEE standard)

- When all the exponent bits are 0 and the leading hidden bit of the significand is 0, then the floating point number is called a subnormal number.
- Thus, one logical representation of a subnormal number is $(-1)^s \times 0.f \times 2^{-127}$ (all 0s for the exponent).
- where f has at least one 1 (otherwise the number will be taken as 0).

Addition of Floating Point Numbers

Sign Exponent Fraction

- X 0 1001 110
- Y 0 0111 000
- Find Normalized scientific notation for X and Y
- X is 1.110 x 2²

(-1) s \times (1. f) ₂ \times 2 excess – bias

Y is 1.000 x 2⁰

By: Prof. Anand Motwan Faculty, SCSE, VIT Bhopal University

- In order to add, the exponents of two nos. must be same. To do so, just rewrite Y. Now Y is not being normalized but value is not changed.
- So Y can be re-written as:
- Y is $.0100 \times 2^2$. The readjusted value, call it Y'.
- Now add $(1.110)_2$ and $(0.01)_2$. The same is = $(10.0)_2$
- The exponent is same.
- Now shift the radix point to left by 1, and increase the exponent by 1. The result is 1.000×2^3
- Now represent in floating point.

Faculty, SCSE,
VIT Bhopal University

• $X + Y = 0\ 1010\ 000$

Numerical Exercises

- What is the normalized representation of
- $0.232 \times 10^3 = 23.2 \times 10^1 = 2.32 \times 10^2$
- Ans: $011101000 = 1.1101 \times 2^7$
- Calculate Binary Representation:
- What's the normalized representation of 0.0001101001110

Ans: $1.110100111 \times 2^{-4}$

• What's the normalized representation of 00101101.101

Ans: 1.01101101×2^5

By: Prof. Anand Motwani Faculty, SCSE, VIT Bhopal University

Quiz

- 1. All 1s in the exponent field is assumed to represent _____
- When all the exponent bits are 0 and the leading hidden bit of the significand is 0, then the floating point number is called ______.