HW9

4.1.3

4.2.9

Let p be a prime, G have prime power order, $H \leq G$ with [G:H] = p. By corollary 4.2.5, since p is the smallest prime dividing |G|, H is normal.

Let G be a group of order p^2 . By Cauchy's theorem, there is an element of order p, say r. Then the index of $\langle r \rangle$ is $p^2/p = p$. By the above theorem, $\langle r \rangle$ is normal in G.

4.2.10

Let G be a non-abelian group of order 6. By Cauchy's theorem, G has an element of order 2, say s. Let $H = \langle s \rangle$ and consider the action of G on the left cosets of H, which we can label H, H', H'', with associated homomorphism $\phi_H \leq S_{\{H,H',H''\}} \cong S_3$. The stababilzer of H is $G_H = H$, and all the stabalizers are conjugate to G_H .

By theorem 4.2.3.3, $\ker \pi_H$ is some subgroup of H, so it is either either $\{e\}$ or H. If it is $\{e\}$ then ϕ_H is injective and there is an injective homomorphism $G \to S_3$; since both sides have size 6 we have $G \cong S_3$.

Otherwise, since $\ker \phi_H = H$ is the intersection of every stabalizer, every stabalizer must be H, so H is a normal subgroup. It remains to be shown that in this case, $G \cong C_6$.

Proof 1: Let $g \in G$ be arbitrary. Then gH = Hg, which means $\{g, gs\} = \{g, sg\}$, which means gs = sg, hence H commutes with every element of G. By Cauchy's theorem, G has an element of order 3, say r, with rs = sr. The subgroup $\langle r, s \rangle$ has order 6 (since it contains subgroups of order 2 and 3), with presentation $\langle r, s|rs = sr, r^3 = s^2 = e, \ldots \rangle$ where \ldots indicates some additional relations. Hence there is a surjective homomorphism from $C_2 \times C_3 \to \langle r, s \rangle$; since both sides have size 6 we have $G \cong C_2 \times C_3$.

Proof 2: By Cauchy's theorem, there exists an element of order 3, say r, and $\langle r \rangle$ is a normal subgroup of G (since it has index 2). Hence G has two normal subgroups N_1, N_2 of size 2 and 3. By the diamond isomorphism theorem, $G' = N_1 N_2$ is a subgroup of G of size 6 (since its size must be divisible by 2 and 3 but be less than 6). $N_1 \cap N_2 = \{e\}$ by order considerations. Hence by exercise 3.3.7, $G = G' \cong N_1 \times N_2$.

4.2.11

In the cycle representation of $\pi(x)$, consider the cycle containing e. The cycle must be $(e, x, x^2, \dots x^{n-1})$ by definition of n.

Similarly, consider an arbitrary $g \in G$ with $g \notin \{e, x, x^2 \dots x^{n-1}\}$, and consider the cycle containing g. The elements $\{g, xg, x^2g, \dots x^{n-1}g\}$ are all distinct since $x^ag = x^b \iff x^a = x^b$. Hence the cycle in $\pi(x)$ containing g must be $(g, xg, x^2g, \dots x^{n-1}g)$.

From proposition 3.5.25, $\pi(x)$ is odd \iff the number of cycles of even length is odd \iff n is even and m is odd. For the last biimplication, either n is odd (in which case there are no cycles of even length) or n is even (in which case there are m cycles of even length).

4.2.12

Let $H = \{g \in G | \pi(g) \text{ is even}\}$. It is easy to check that H is a subgroup of G. Let $k \in G$ such that $\pi(k)$ is odd. Then the bijective map $\phi : G \to G$ given by $\phi(g) = kg$ sends H to G - H and G - H to H, hence 2|H| = |G|.

4.2.13

Let G be as in the question and π be the left regular representation. By Cauchy's theorem, there is an element of order 2, say s. Since |s| is even and |G|/|s| = k is odd, by 4.2.11 $\pi(s)$ is an odd permutation. By 4.2.12, G has a subgroup of index 2.

4.3.13

Let G be a finite group with |G| = n. If n = 2 then G has 2 conjugacy classes. Now suppose G has 2 conjugacy classes, and let G act on itself by conjugation; the nonidentity elements form an orbit of size n - 1. Since the size of the orbit divides the size of the group, n - 1 divides n, hence n = 2.

4.3.23

The normalizer $N_G(M)$ is a subgroup of G containing M, that is $M \leq N_G(M) \leq G$. By maximality of M, either $N_G(M) = M$ or $N_G(M) = G$.

If M is a maximal subgroup of G and M is not normal, then $N_G(M) \neq G$ hence $N_G(M) = M$. Consider the action of G on P(G) by conjugation. The stabilizer of M is $N_G(M) = M$, hence the orbit of M has size [G:M]. Each orb (i.e. element in the image of the action, contained in the orbit) is a subgroup conjugate to M and hence the number of nonidentity elements is |M| - 1. Hence the number of nonidentity elements of G contained in conjugates of G is at most G is at most G is at most G is a function of G in G.

4.3.24

Since the subgroup lattice is a finite partial order, G is contained in some maximal subgroup $M \neq G$. It suffices to show that $G \neq \bigcup_{g \in G} gMg - 1$, since $gHg - 1 \subseteq gMg - 1$.

The number of nonidentity elements of G contained in conjugates of M is $|G|-1 \leq [G:M](|M|-1) = \frac{|G|}{|M|}(|M|-1) = |G|-\frac{|G|}{|M|} \leq |G|-2$, a contradiction. Here the first inequality follows from 4.3.23 and the second from $|G|/|M| \geq 2$ since M is a proper subgroup of G.

4.3.26