Chapter 3

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Facts and Formulas

EXERCISE 1

Circle the correct answer:

- Derivative of e^x .
 - (A) xe^{x-1}
- (B) e^x
- (C) xe^x
- (D) $e^{x} + c$

- Derivative of $e^{ax + b}$. 2.
 - (A) $\frac{1}{a}e^{ax+b}$ (B) ae^{ax+b}
- (C) e^{ax+b}
- (D) $(ax + b)e^{ax + b}$

- 3. Derivative of $e^{f(x)}$
 - (A) $e^{f(x)}$
- (B) $\frac{e^{f(x)}}{f'(x)}$
- (C) $f'(x)e^{f(x)}$ (D) $f(x)e^{f(x)}$

- $\int e^x dx$. 4.
 - (A) $\frac{e^{x+1}}{(x+1)} + c$ (B) $\frac{e^x}{x} + c$
- (C) $e^x + c$ (D) $e^{x+1} + c$

- $\int e^{ax+b}dx.$ 5.

 - (A) $ae^{ax+b} + c$ (B) $\frac{1}{c}e^{ax+b} + c$ (C) $e^{ax+b} + c$ (D) $e^{ax+b+1} + c$

- $\int f'(x)e^{f(x)}dx.$
 - (A) $f'(x)e^{f(x)} + c$ (B) $\frac{e^{f(x)}}{f'(x)} + c$ (C) $e^x + c$ (D) $e^{f(x)} + c$

- 7. Derivative of ln x.
 - $(A) \frac{1}{x}$

- (B) e^x
- (C) e^{-x}
- (D) $\frac{1}{u^2}$

- Derivative of $\ln f(x)$. 8.
 - (A) $\frac{f(x)}{f'(x)}$
- (B) $\frac{f'(x)}{f(x)}$
- (C) $\frac{f'(x)}{\ln f(x)}$
- (D) $\frac{x}{f(x)}$

- $\int_{-\infty}^{1} dx$. 9.
 - (A) $-\frac{1}{r^2} + c$ (B) $e^x + c$
- (C) ln x + c
- (D) $-\ln x + c$

- $\int \frac{f'(x)}{f(x)} dx$. 10.
 - (A) $\ln f'(x) + c$

- (B) $e^{f(x)} + c$ (C) $e^{f'(x)} + c$ (D) $\ln f(x) + c$

- $\log_m(ab) =$ 11.
 - (A) $\log_m a \times \log_m b$
- (B) $\log_m a \log_m b$
- (C) $\log_m a + \log_m b$
- (D) $\log_m a \div \log_m b$

- $\log_m\left(\frac{a}{h}\right) =$ 12.
 - (A) $\log_m a \log_m b$ (B) $\frac{\log_m a}{\log_m b}$
- - (C) $\log_m b \log_m a$
- (D) $\log_m a + \log_m b$

- $\log_m a^b =$ 13.
- (A) $a \log_m b$ (B) $\log_m ab$ (C) $\log_m b^a$ (D) $b \log_m a$

- 14. $\log_b a =$
 - (A) $\log_a b$
- (B) $\frac{\log_m b}{\log_m a}$
- (C) $\frac{\log_m a}{\log_m b}$
- (D) $\log_m a \log_m b$

- If $y = a^x$ then 15.

- (A) $x = \log_a y$ (B) $y = \log_a x$ (C) $x = \log_y a$ (D) $a = \log_x y$
- If $y = \ln x$ then 16.
 - (A) $y = e^x$
- (B) $y = x^e$ (C) $x = e^y$ (D) $x = y^e$

- Derivative of a^x 17.
 - (A) $a^x ln a$
- (B) a^x
- (C) $a^x \ln x$
- (D) $\frac{a^x}{\ln a}$

- If $y = e^x$ then 18.
 - $(A) \quad x = e^y$

- (B) $x = \ln y$ (C) $y = \ln x$ (D) $x = y^e$

- $e^{\ln x}$ is 19.
- (A) ln x
- (B) x
- (C) e^x
- (D) ln ex

- Derivative of $\log_a x$ is 20.
 - (A) $\frac{1}{x}$
- (B) $\frac{a}{x}$
- (C) $\frac{1}{x \ln a}$ (D) $\frac{x}{a}$

- $ln e^x$ is 21.
 - (A) ln x
- (B) x
- (C) e^x
- (D) xe^x

Laws for Logarithms

EXERCISE 2

1. Given that $\log 3 = 0.4771$, $\log 5 = 0.6990$ and $\log 2 = 0.3010$, evaluate:

(a)* log 15

(b) $\log(1\frac{2}{3})$

(c) log 25

(d) log 27

(e) $\log(3\frac{1}{3})$

(f) log √5

(g) log 250

Simplify $3\log_x a + 4\log_x b - \frac{1}{3}\log_x 27$

3. Write ln8 + ln16 + ln32 + ln 64 in the form xln2

4. Write $ln\sqrt{3} + ln9 - ln\sqrt[4]{3} + ln81$ in the form xln3.

5.* Evaluate (to 2 decimal places):

(a) log₃ 8

(b) log₇ 15

- 6.* Solve for x:
 - (a) ln(x-2) + ln(x-5) = ln(x+3)

- (b) ln(x+10) ln2 = ln(x+4)
- (c) $5\ln 2 = \ln x + \ln 8$

Basic Logarithmic and Exponential Functions EXERCISE 3

- 1. Complete the following:
 - (a) The value of e to 1 decimal place is
 - (b) ln e =

 - (d) If $y = \ln x$ then $x = \frac{1}{2}$
 - (e) The graphs of $y = e^x$ and $y = \ln x$ are reflections in the line on the number plane.

- (f) Some logarithmic equations are best solved by converting them to form.

 eg. $\ln x = 8$, $\log_3(6x 7) = 2$
- 2. (a) Sketch $y=e^x$ and $y=\ln x$ on the diagram below, indicating intercepts.

- (b) The domain of $y = e^x$ is
- (c) The range of $y = e^x$ is
- (d) The domain of $y = \ln x$ is
- (e) The range of $y = \ln x$ is
- 3. State the domain of each of the following:
 - (a) $y = \ln x$
 - (b) y = ln(x-2)
 - (c) y = ln(x+3)
- 4. To solve an equation where the pronumeral is a power, e.g. $2^x = 1000$, take the of both sides.
- 5. Label each curve below using the choices given:
 - (A) $y=e^x$
- (B) $y = e^{-x}$
- (C) $y = -e^{-x}$
- (D) $y = -e^{x}$
- (E) $y = \ln x$

(c)

(d)

EXERCISE 4

- Evaluate $e^{3.6}$ (1 dec. pl.) 1.
- Evaluate $ln \cdot 6 \cdot 8$ (1 dec. pl.) 2.
- Solve for *x*: 3.

(a)
$$e^x(x+1) = 0$$

(b)
$$3e^x(x^2 + 4x) = 0$$

(c)
$$(x-5)e^{-x} = 0$$

(d)*
$$e^x - e^{-x} = 0$$

(e)
$$e^{2x} - e^x - 2 = 0$$
 (1 dec. pl.)

(f)
$$5^x = 9 \text{ (1 dec. pl.)}$$

(g)
$$e^x = 5 (3 \text{ sig.fig})$$

(h)
$$e^{2x} = 9$$
 (2 dec. pl.)

 $4^{3x} = 6$ (2 dec. pl.)

(j)
$$2^{4x-5} = 20$$
 (1 dec. pl.)

(k) $ln e^{5x-3} = 12$

(1)
$$ln x = 7$$
 (2 sig.fig)

 $200 = e^{0.02x}$ (4 sig.fig) (m)

(n)	lne^{5x+2}	=	- 3

4. (a)* Factorise $e^{2x} - 4$

(h)	Simplify	e^{2x}	- 4
(b)	Simplify	e^x	- 2

40		
1		
J.:		
10		
10		
15		
10		
(c)	Simplify	$(e^{4x})^2$

		 	 	-	 -	۰
()	Evaluate					

(e)	Expand and simplify	(e^x)	$+e^{-x}$

5. Write each of the following in exponential form:

(a)
$$\log_5 125 = y$$

(b)
$$\log_4 y = 3$$

(c)
$$\ln 2 = x$$

(d)
$$\log_x 81 = 2$$

(e)
$$\log_2 t = m$$

(f)
$$6 = ln m$$

6. Write in exponential form and hence solve

(a)	$\log_5(2$	(x - 7) = 0	2.	
3.				
1				
3).				
1				
3				
3				
1				
3				
94				

(b)
$$\log_9 \sqrt{3} = x$$

$$\log_4 8 = x$$

$$\log_{25} x = -\frac{1}{2}$$

EXERCISE 5 Complete:

2.	Equation of the normal to a curve
	2

3.	Product rule
o.	Troquetruic
	I.
	K:
	E.
	15
	17
	V.

- 5. Function of a function rule
- The first derivative is called the function.

Derivative and Integral of Exponential Functions

EXERCISE 6

- 1. Differentiate:
 - (a) e^{5x}
 - (b) $e^{\frac{2x}{3}}$
 - (c) $e^{\frac{x}{4}}$
 - (d) e^{-x}
 - (e) $e^{\frac{-x}{5}}$
 - (f) e^{2x+5}
 - (g) e^{5-4x}
 - (h) e^{3x^2}
 - (i) $3e^{2x}$
 - $(j) x^2 + 5e^x$
 - (k) $\frac{2}{e^x}$
 - $(1) \qquad \frac{1}{2e^x}$

- (m) $\frac{3}{e^{2x}}$
- $(n) \qquad \frac{e^{10x}}{5}$
- 2. If $f(x) = x^2 e^{-x}$, evaluate f'(4) (3 sig. fig.)

3. Differentiate:

(a)	xe^{2x}	
0		
5		
10		
17		
100		
00		
1		
01	•	
1		
1		
1.		

(d)	$\left(e^{3x}+1\right)^5$		
1			
i			
1			
1			
1			
4			
ĝ.			
1			

(e)	$\frac{2}{e^{2x}-1}$		
8			
ì			i
1			
i			î
1			
1			i
i			
1			1
i			j.
1			
i			î
ķ			
i			i
i			1
1			1
£		 	

6. Find the equation of the tangent to the curve $v=e^{2x}$ at the point $(2, e^4)$.

7.* The tangent to the curve $y = e^{2x}$ at the point $(2, e^4)$ meets the x axis at S and the y axis at T. Find the area of \triangle SOT.

8. Find the equation of the normal to the curve $y = e^x - 3x$ at the point (0,1).

9. Find the y value of the point whose x value is 7 if the point lies on the curve y = f(x) defined by f'(x) = f(x).

	J	()			7	J	(/	J		/		
				 -	 ~ *	-				-	-	 	
1													
i													
i													
1													
Ţ.													
A.													
X.													
1													
Ē.													
			-	 	 					-	2	 	

10.* Find the value of x for which the gradient of the tangent to the curve $y = e^{-3x}$ equals the gradient of the tangent to the curve

$$y = \frac{3}{x - 1}.$$

11.	If y=	$=e^{8-2x}$, evaluate c if $cy - y'' = 0$
12.*	For th	the curve $y = (x - 5)e^x$:
	(a)	locate turning point(s) and determine whether maximum or minimum.
	(b)	locate any points of inflexion.

(c) determine x and y intercepts.

13.	
14.	

(d)	cor ext	nsider what happens to <i>y</i> for reme values of <i>x</i> .	
(e)	ske	tch the curve.	
(f)		e the domain for which the ve is monotonic increasing	
$4e^{4x}$	-2. Fig. if $(2,$	It function of a curve is ind the equation of the e^8-1 is a point on the	
Integr	ate eac	ch of the following:	
(a)	e^{4x}		
(b)	e^{-x}		
(c)	$e^{\frac{1}{2}x}$	est up	

(g)	$\frac{1}{3}e^{6x}$		 	
		ì		

$$\frac{e^{4x}}{2}$$

(i)	πe^{2x}	1	
(1)	116	ji	
		1	
		!	
		()	
		i i	

(j)
$$16e^{8x}$$

$$\frac{e^{2x}+5}{e^x}$$

			_
			1
	0.55	1	1
(1)	$e^{0.75x}$	1	1
(1)	e	X.	1
()		X.	1
		T.	1
		X	í
		i e	11
		Ĭ.	ı,
		£ 12	Н
			1
		A .	IJ
		4)	1
			. 1
			Ö

(m)
$$12xe^{6x^2}$$

(n)	$40xe^{10x^2}$		

15.	Evaluate $\int_{-1}^{2} (e^x + 4) dx$

16.	Find the area bounded by the curve
	$y=e^{4x}$, the x axis and the lines $x=0$
	and $x = 2.(1 \text{ dec.pl.})$

17. Find the area enclosed by the curve $x=e^y$, the y axis and the lines y=1 and y=5. (1 dec.pl.)

!			
i			
i			
i			
!			
1			
i			
1			
!			
i			

18.

Find the exact area of the (a) rectangle ABCD.

Hence find the exact shaded (b)

area CDE.

19.

Find the exact area of ABCDE. (a)

Find the exact area between the curve 20. $y = -e^{-x}$, the x axis and the lines x = 1

If $f(x) = (e^x + e^{-x})^2$ 21.*

determine whether the function is even, odd or neither.

Calculate the area bounded by (b) the curve $f(x) = (e^x + e^{-x})^2$, the x axis and the lines x = -3 and

Find f(x) given that $f''(x) = 5 + e^{-x}$, 22. and when x = 0, f'(x) = 4 and f(x) = 9.

Derivative and Integral of **Logarithmic Functions**

EXERCISE 7

4.

Find the gradient of the tangent to the 1. curve $y = \ln x$ when x = 4.

Find the gradient of the normal to the 2. curve y = ln(x - 2) when x = 5.

Find the gradient of the tangent to the 3. curve y = ln(3x+6) when x = -1.

Find: the equation of the tangent to (a)

the curve $y = 3 \ln(2x - 4)$ when x = 3.

the equation of the normal to the (b) curve $y = \frac{1}{2}ln(3x)$ when x = 2.

5. The tangent to the curve $y = 2 \ln x$ at the point where x = 4, meets the y axis at P. Find the coordinates of P.

EXERCISE 8

1. Differentiate:

$$y = \ln(6 - 2x)$$

 $y = \frac{\ln 3x}{4}$

$$(c) y = (\ln x)^2$$

- (d) $y = x \ln x$
- $y = (2x+5)\ln x$

$$y = \frac{5x}{\ln x}$$

$$(g) y = lne^x$$

$$y = 2\ln e^{3x}$$

$$(i) y = ln(2x+7)^5$$

$$(j)^* \qquad y = [ln(2x+7)]^5$$

Differentiate: (Hint: use logarithm laws first)

(a) y = ln[(x+2)(x+3)]

(b)	$\nu =$	ln(2	x+3)4		
1					 	 ì
ř						1
X						1
1						1
						1
3						Ì
						1
1						1
7						1
						3
						3
1						1
2						S
						i
1						ĕ
ì						Ġ
i .						ì
î .						Ą
û						ľ
1						ĕ
1						d
i .						1
1					 	

 $(c)^* \quad y = ln\left(\frac{3x+2}{2x+1}\right)$

$(d)^* y = ln \left(\frac{(2x+6)^7}{x} \right)$	

3.	Evaluate	f'(4)	if	f(x)=	$ln(x^2)$	+8)
	L Correction) ()) ()	()	- /

1:			
2			
*			
30			
3			
10			
i)			
2			
Q			
2			
*			
1			
36			
1			
1			
(2)			
4			
(5)			
3.			
1			
Acres in the last	 	 	

Find the point on the curve $y = 6 \ln x$ 4.

†	
1	
î	
1	
i	
i	
i	
1	
i	
1	
1	
1	
1	
)	

Find the point on the curve y = ln(2x+4)5. at which the tangent is parallel to the line x - y + 2 = 0.

· ·	
(i)	
U\$2	
i e	
√ ₿	
- K	
The second secon	
Ç.	
5	
t e	
i	
1	

(a) Sketch the curve $y = ln(x^2 + 3)$.

х	-3	-2	+1	0	1	2	3
У							

(b) Use the trapezoidal rule with 4 strips to approximate the area bounded by the curve $y = ln(x^2 + 3)$, the x axis and the lines x = -3 and x = 1.

7. Integrate each of the following:

(a)	$\int_{-\infty}^{2} dx$			
1		 	 	
1				
1				:
1				:
I				:
I				:

- $\int \frac{1}{2x} dx$
- (c) $\int \frac{2}{3x} dx$
- $\int 5x^{-1} dx$
- (e) $\int_{-1}^{2} \frac{3}{(3x+5)} dx$

(f) $\int \frac{dx}{(x+6)}$

$$\int \frac{4x}{\left(x^2 + 8\right)} dx$$

(1)	$\int \frac{(16x+3)}{x} dx$
(1)	$\int (8x^2 + 3x)^{2x}$

(m)
$$\int \frac{(7-20x)}{(10x^2-7x)} dx$$

(n)
$$\int \frac{(6x-2)}{(6x^2-4x)} dx$$

(o)*
$$\int \frac{(12x-8)}{(9x^2-12x)} dx$$

$$(p) \qquad \int \frac{2e^{2x}}{\left(e^{2x}+3\right)} dx$$

(q)
$$\int \frac{(3x^5 - 4x^2 + 2x - 5)}{x^2} dx$$

<u> </u>		
(r)	$\int \frac{\left(e^{2x}+6\right)}{\left(e^{2x}+12x\right)} dx$	
[
1		
1		

Evaluate: 8.

(a)
$$\int_{1}^{3} \frac{2x}{x^2 + 3} dx$$

(c)*
$$\int_{1}^{2} 3xe^{x^2} dx$$

(d)	$\int_{1}^{2} (3x^{2})^{2}$	$\left(\frac{2}{x} + \frac{2}{x}\right) dx$
	1	x

(e)
$$\int_{1}^{3} \frac{\left(5x^3 + 4\right)}{x} dx$$

Area and Volume

EXERCISE 9

1. (a) Find the exact area bounded by the curve $y = \frac{2}{(2x - 6)}$, the x axis and the lines x = 5, x = 6.

Find the volume of the solid of revolution formed by rotating the curve y = ln x,

from y = -1, to y = 3, about the waying

3.* Use Simpson's rule with 5 function values to approximate the area bounded by the curve y = ln(x + 2), the x axis and the line x = 3. (3 dec. pl.)

5.

Find the exact area bounded by the curve

4.* Use Simpson's rule with 5 function values to approximate the volume of the solid formed by rotating the curve y = ln x from x = 1 to x = 5, around the x axis.(3 dec. pl)

6.	Calculate the volume of the solid formed				
	by rotating the curve $y = \frac{2}{\sqrt{(x-1)}}$				
	around the x axis, from $x = 2$ to $x = 5$.				
	(correct to 4 sig. fig.)				

FORMULAS

1.
$$\frac{d}{dx}(e^x) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$2. \quad \frac{d}{dx}(e^{ax+b}) = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$

$$3. \quad \frac{d}{dx}(e^{f(x)}) = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$

$$4. \qquad \int e^x dx = \left[\begin{array}{c} \\ \end{array} \right]$$

$$\int e^{ax+b} dx =$$

$$\mathbf{6.} \qquad \int f'(x)e^{f(x)}\,dx = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

7.
$$\frac{d}{dx}(\ln x) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$8. \qquad \frac{d}{dx}[\ln f(x)] =$$

9.
$$\int \frac{1}{x} dx = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$10. \qquad \int \frac{f'(x)}{f(x)} dx =$$

11.
$$\log_m(ab) = \int_a^a dab$$

12.
$$\log_m\left(\frac{a}{b}\right) = \left[$$

13.
$$\log_m a^b = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

14.
$$\log_b a =$$
 (change of base rule)

15. Exponential form of
$$y = \log_a x$$

16. Exponential form of
$$y = ln x$$

17.
$$\frac{d}{dx}(a^x) =$$

18. Logarithmic equation for
$$y=e^x$$

19.
$$e^{\ln x} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$20. \ \frac{d}{dx}(\log_a x) = \left[$$

21.
$$ln e^x =$$

- 9. $A \cong \frac{h}{2} [f(a) + f(b) + 2(f(x_2) + f(x_3)....)], \frac{b-a}{n}$
- 10. $\frac{h}{3} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right], \frac{b-a}{2}$
- 11. $A \cong \frac{h}{3} [f(a) + f(b) + 4(f(x_2) + f(x_4)...)]$ $+2(f(x_3)+f(x_5)...)$, $\frac{b-a}{a}$

Summary (page 52)

- 1. primitive 2. integrating 3. indefinite
- **4.** definite **5.** F(b) F(a) **6.(a)** area
- (b) volume 7.(a) Trapezoidal Rule
- (b) Simpson's Rule 8. 1 more than 9. integrate
- 10. sections 11. below 12. to the left of
- $13. \quad \int_a^b [f(x) g(x)] dx$

Exponential and Logarithmic Functions

Exercise 1 (page 53)

- 1. B 2. B 3. C 4. C 5. B 6. D
- 7. A 8. B 9. C 10. D 11. C 12. A
- 13. D 14. C 15. A 16. C 17. A 18. B
- 19. B 20. C 21. B

Exercise 2 (page 55)

- 1.(a) *
- **(b)** 0.2219
- (c) 1·398
- (d) 1·4313
- **(e)** 0.5229
- (f) 0·3495

- (g) 2·398
- 2. $\log_x \left(\frac{a^3 b^4}{3} \right)$ 3. $18 \ln 2$ 4. $\frac{25 \ln 3}{4}$

5. * 6. *

Exercise 3 (page 56)

- **1.(a)** 2.7 **(b)** 1 **(c)** 0 **(d)** e^y **(e)** y = x
- (f) exponential
- 2.

- **(b)** all real x
- (c) y > 0
- (d) x > 0

- (e) all real v
- 3.(a) x > 0
- **(b)** x > 2
- (c) x > -3

- 4. logarithm
- 5.(a) E
- **(b)** B

- (c) D
- (d) A
- (e) C

Exercise 4 (page 57)

- 1. 36.6
- 2. 1.9
- 3.(a) -1

- **(b)** 0, -4
- (c) 5
- (d) *

- (e) ln2
- **(f)** 1.4
- **(g)** 1.61

- **(h)** 1·10
- (i) 0.43
- (j) 2.3

- (k) 3
- **(I)** 1100
- (m) 264·9

- (n) -1
- 4.(a) *
- **(b)** $e^x + 2$

- (c) e^{8x}
- **(d)** 7
 - (e) $e^{2x} + e^{-2x} + 2$
- **5.(a)** $125 = 5^y$ **(b)** $y = 4^3$
- (c) $2 = e^x$
- (d) $81 = x^2$ (e) $t = 2^m$ (f) $m = e^6$

- 6.(a) 16 (b) $\frac{1}{5}$ (c) 1.5 (d) $\frac{1}{5}$

Exercise 5 (page 58)

- 1. $y y_1 = f'(x_1)(x x_1)$
- 2. $y-y_1 = \frac{-1}{f'(x_1)}(x-x_1)$
- 3. y' = vu' + uv' 4. $y' = \frac{vu' uv'}{v^2}$
- 5. $y' = n[f(x)]^{n-1} \times f'(x)$ 6. gradient

Exercise 6 (page 59)

- **1.(a)** $5e^{5x}$ **(b)** $\frac{2}{3}e^{\frac{2x}{3}}$ **(c)** $\frac{1}{4}e^{\frac{x}{4}}$

- (d) $-e^{-x}$ (e) $-\frac{1}{5}e^{\frac{-x}{5}}$ (f) $2e^{2x+5}$
- **(g)** $-4e^{5-4x}$ **(h)** $6xe^{3x^2}$ **(i)** $6e^{2x}$
- (j) $2x + 5e^x$ (k) $-2e^{-x}$ (l) $\frac{-1}{2e^x}$
- (m) $\frac{-6}{e^{2x}}$ (n) $2e^{10x}$ 2. 8.02

- **3.(a)** $e^{2x}(2x+1)$ **(b)** $e^{4x}(12x+11)$

(c)
$$\frac{2(3xe^{6x} - e^{6x} - 1)}{x^3}$$
 (d) $15e^{3x}(e^{3x} + 1)^4$

(e)
$$\frac{-4e^{2x}}{(e^{2x}-1)^2}$$

4. 20·1 **5.**
$$-0.06$$
 6. $y = 2e^4x - 3e^4$

7. *
$$8_{*}$$
 $x - 2y + 2 = 0$

9.
$$e^{7}$$

13.
$$y = e^{4x} - 2x + 3$$
 14.(a) $\frac{e^{4x}}{4} + c$

(b)
$$-e^{-x} + c$$
 (c) $2e^{\frac{x}{2}} + c$ **(d)** $3e^{\frac{x}{3}} + c$

(d)
$$3e^{\frac{x}{3}} +$$

(e)
$$\frac{5}{4}e^{\frac{4x}{5}} + c$$
 (f) $-\frac{e^{4-2x}}{2} + c$ (g) $\frac{e^{6x}}{18} + c$

(g)
$$\frac{e^{6x}}{18} + c$$

(h)
$$\frac{e^{4x}}{8} + c$$
 (i) $\frac{\pi e^{2x}}{2} + c$ **(j)** $2e^{8x} + c$

(k)
$$e^x - 5e^{-x} + c$$
 (l) $\frac{4e^{0.75x}}{3} + c$

(m)
$$e^{6x^2} + c$$
 (n) $2e^{10x^2} + c$ (o) $\frac{e^{8x^2}}{2} + c$

15.
$$e^2 - e^{-1} + 12$$
 16. 745.0 units²

17.
$$145.7 \text{ units}^2$$
 18.(a) $4e^7$ (b) $(3e^7 + e^3) \text{ units}^2$

(b)
$$(3e^7 + e^3)$$
 units

19.(a)
$$\left(2 - \frac{1}{e} - \frac{1}{e^3}\right)$$
 units²

(b)
$$\pi \left(1 - \frac{1}{2e^2} - \frac{1}{2e^6}\right) \text{ units}^3$$

20.
$$\left(\frac{1}{e} - \frac{1}{e^4}\right)$$
 units² **21.** *

22.
$$f(x) = \frac{5x^2}{2} + e^{-x} + 5x + 8$$

Exercise 7 (page 64)

1.
$$\frac{1}{4}$$
 2. -3 **3.** 1 **4.(a)** $y = 3x + 3 \ln 2 - 9$

(b)
$$y = -4x + \frac{1}{2}\ln 6 + 8$$
 5. $(0, 2\ln 4 - 2)$

Exercise 8 (page 65)

1.(a)
$$\frac{1}{x-3}$$
 (b) $\frac{1}{4x}$ (c) $\frac{2 \ln x}{x}$

(d)
$$1 + \ln x$$
 (e) $2 + \frac{5}{x} + 2 \ln x$ (f) $\frac{5 \ln x - 5}{(\ln x)^2}$

(g) 1 (h) 6 (i)
$$\frac{10}{2x+7}$$
 (j) *

2.(a)
$$\frac{2x+5}{(x+2)(x+3)}$$
 (b) $\frac{8}{2x+3}$

5.
$$(-1, \ln 2)$$

6.(a)
$$y = 2.5, 1.9, 1.4, 1.1, 1.4, 1.9, 2.5$$

(b) 6.37 units² 7.(a)
$$2 \ln x + c$$
 (b) $\frac{1}{2} \ln x + c$

(c)
$$\frac{2}{3} \ln x + c$$
 (d) $5 \ln x + c$ (e) $\ln 5.5$

(f)
$$\ln(x+6)+c$$
 (g) $-\ln(5-3x)+c$

(h)
$$2\ln(8x-3)+c$$
 (i) $\frac{1}{4}\ln(12x+5)+c$

(j)
$$\frac{3}{2}\ln(2x-6)+c$$
 (k) $2\ln(x^2+8)+c$

(I)
$$\ln(8x^2 + 3x) + c$$
 (m) $-\ln(10x^2 - 7x) + c$

(n)
$$\frac{1}{2}\ln(6x^2-4x)+c$$
 (o) *

(p)
$$\ln(e^{2x} + 3) + c$$
 (q) $\frac{3x^4}{4} - 4x + 2\ln x + \frac{5}{x} + c$

(r)
$$\frac{1}{2}\ln(e^{2x}+12x)+c$$
 8.(a) $\ln 3$ (b) $\frac{e^8-1}{2}$

(c) * (d)
$$7 + 2 \ln 2$$
 (e) $43\frac{1}{3} + 4 \ln 3$

Exercise 9 (page 69)

1.(a)
$$\ln 1.5$$
 (b) $\frac{\pi}{6}$ units³ **2.** $\frac{\pi}{2} (e^6 - e^{-2})$ units³

3. * 4. * 5.
$$\left(1 - \frac{1}{e}\right)$$
 units²

Formulas (page 71)

1.
$$e^x$$
 2. ae^{ax+b}

1.
$$e^x$$
 2. ae^{ax+b} **3.** $f'(x)e^{f(x)}$ **4.** $e^x + c$

5.
$$\frac{e^{ax+b}}{a}+c$$

6.
$$e^{f(x)} + e^{f(x)}$$

5.
$$\frac{e^{ax+b}}{a} + c$$
 6. $e^{f(x)} + c$ 7. $\frac{1}{x}$ 8. $\frac{f'(x)}{f(x)}$

9.
$$\ln x + c$$

9.
$$\ln x + c$$
 10. $\ln f(x) + c$ **11.** $\log_m a + \log_m b$

12.
$$\log_m a - \log_m b$$
 13. $b \log_m a$

13.
$$b \log_{10} a$$

14.
$$\frac{\log_m a}{\log_m b}$$
 15. $x = a^y$ **16.** $x = e^y$

15.
$$x = a^y$$

16.
$$x = e^{x}$$

17.
$$a^x \cdot \ln a$$
 18. $x = \ln y$ 19. x

18.
$$r = \ln \nu$$

20.
$$\frac{1}{x \ln a}$$

20.
$$\frac{1}{x \ln a}$$
 21. x 22. 0 23. 1

Trigonometric functions

Exercise 1 (page 72)

Exercise 2 (page 73)

1. 57 2.
$$\pi$$
 3. $\frac{180}{\pi}$

4.
$$\frac{\pi}{180}$$

4.
$$\frac{\pi}{180}$$
 5. small, radians **6.** a, $\frac{2\pi}{n}$

6.
$$a, \frac{2\pi}{n}$$

7.
$$a, \frac{2\pi}{n}$$
 8. $\frac{\pi}{n}$

8.
$$\frac{\pi}{n}$$

Exercise 3 (page 74)

1.(a)
$$\frac{13\pi}{36}$$

(b)
$$\frac{3\pi}{20}$$

(b)
$$\frac{3\pi}{20}$$
 (c) $\frac{7\pi}{6}$

(d)
$$\frac{29\pi}{36}$$
 (e) $\frac{16\pi}{9}$

(e)
$$\frac{16\pi}{9}$$

4.(a)
$$36^{\circ}$$

(d)
$$120^{\circ}$$
 (e) 300°

5.(a)
$$\frac{\pi}{4}, \frac{\pi}{4}$$

5.(a)
$$\frac{\pi}{4}, \frac{\pi}{4}$$
 (b) $\frac{\pi}{3}$ (base angle), $\frac{\pi}{6}$ **6.(a)** 1.5

(b)
$$\frac{\sqrt{6}}{2}$$
 (c) 0 **(d)** $\frac{2}{3}$

$$(\mathbf{d})^{-2}$$

(e)
$$\frac{\sqrt{2}}{4}$$
 (f) 5

(e)
$$\frac{\sqrt{2}}{4}$$

8.
$$\pi$$
, 2π , quadrant 9. (a) * (b) $\frac{-\sqrt{2}}{2}$

b)
$$\frac{-\sqrt{2}}{2}$$

(h) * (i) 0.5 (j) -1 (k) * (l) $\frac{\sqrt{2}}{2}$

11.
$$\sqrt{3}$$

(d)
$$-1.02$$
 11. $\sqrt{3}$ 12.(a) $0.795, 5.488$

Exercise 4 (page 77)

1.(a)
$$\frac{\pi}{3}, \frac{2\pi}{3}$$
 (b) $\frac{\pi}{4}, \frac{7\pi}{4}$ (c) $\frac{\pi}{6}, \frac{7\pi}{6}$

(b)
$$\frac{\pi}{4}, \frac{7\pi}{4}$$

(c)
$$\frac{\pi}{6}, \frac{7\pi}{6}$$

(d)
$$\frac{\pi}{6}, \frac{5\pi}{6}$$

(e)
$$\frac{\pi}{3}, \frac{5\pi}{3}, \frac{3\pi}{2}$$

(d)
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$ (e) $\frac{\pi}{3}$, $\frac{5\pi}{3}$, $\frac{3\pi}{2}$ 2.(a) 0.4115, 2.7301

3(a)
$$\frac{\pi}{18}$$
, $\frac{5\pi}{18}$, $\frac{13\pi}{18}$, $\frac{17\pi}{18}$ **(b)** $-\pi_* - \frac{3\pi}{4}$, $0, \frac{\pi}{4}, \pi$

(b)
$$-\pi - \frac{3\pi}{4}, 0, \frac{\pi}{4}, \pi$$

(c) 3.3657, 6.0591, 1.5708 (d)
$$\frac{3\pi}{4}, \frac{11\pi}{4}$$

(d)
$$\frac{3\pi}{4}, \frac{11\pi}{4}$$

Exercise 5 (page 79)

1.(a)
$$5.2 \text{ cm}$$
, 10.4 cm^2 , 2.69 cm^2

(b)
$$2\pi$$
 cm, 10π cm², 2.03 cm²

(c)
$$\frac{7\pi}{3}$$
 cm, 14π cm², 2.68 cm²

(d)
$$\frac{120}{\pi}$$
, 286.48 cm², 7.31 cm²

(d)
$$675 \text{ cm}^2$$
 (e) $226 \cdot 1 \text{ cm}^2$ (f) $2601 \cdot 3 \text{ cm}^2$

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Exercise 2

1(a)
$$\log 15 = \log (3 \times 5)$$

= $\log 3 + \log 5$
= $0.4771 + 0.6990$
= 1.1761

5(a) Let
$$x = \log_3 8$$

= $\frac{\ln 8}{\ln 3}$
= $1 \cdot 89$

(b) Let
$$x = \log_7 15$$

= $\frac{\ln 15}{\ln 7}$
= $1 \cdot 39$

6(a)

$$\ln(x-2) + \ln(x-5) = \ln(x+3)$$

$$\ln((x-2)(x-5)) = \ln(x+3)$$

$$(x-2)(x-5) = x+3$$

$$x^2 - 7x + 10 = x+3$$

$$x^2 - 8x + 7 = 0$$

$$(x-7)(x-1) = 0$$

$$x = 7,1 \text{ But } x = 1 \to \ln(\text{negative})$$

$$\therefore x = 7$$

(b)
$$\ln(x+10) - \ln 2 = \ln(x+4)$$

 $\ln((x+10) \div 2) = \ln(x+4)$
 $\ln \frac{x+10}{2} = \ln(x+4)$
 $\frac{x+10}{2} = x+4$
 $x+10 = 2x+8$
 $2 = x$
 $x = 2$

(c)
$$\ln 2^5 = \ln 8x$$

 $2^5 = 8x$
 $8x = 32$
 $x = 4$

Exercise 4

3(d)

$$e^{x} - e^{-x} = 0$$

$$e^{-x}(e^{2x} - 1) = 0 \text{ but } e^{-x} \neq 0$$

$$\therefore e^{2x} - 1 = 0$$

$$e^{2x} = 1 \Rightarrow 2x = 0$$

$$x = 0$$

$$e^{2x} - 4 = 0$$

$$(e^x)^2 - 2^2 = 0$$

$$(e^x - 2)(e^x + 2) = 0$$

Exercise 6

7

$$y = e^{2x}$$

 $\frac{dy}{dx} = 2e^{2x}$
at $(2, e^4)$ $\frac{dy}{dx} = 2e^{2(2)} = 2e^4$

Eq. of tangent :
$$(2, e^4)$$
, $m = 2e^4$
 $y - y_1 = m(x - x_1)$
 $y - e^4 = 2e^4(x - 2)$
 $y - e^4 = 2e^4x - 4e^4$
 $y = 2e^4x - 3e^4$
When $y = 0:0 = 2e^4x - 3e^4$
 $-2e^4x = -3e^4$
 $x = \frac{3}{2} :: S(\frac{3}{2}, 0)$
When $x = 0: y = 2e^4(0) - 3e^4$
 $y = -3e^4 :: T(0, -3e^4)$
Area = $\frac{1}{2} \times$ base \times height

rea =
$$\frac{1}{2}$$
 × base × height
= $\frac{1}{2}$ × OS × OT
= $\frac{1}{2}$ × $\frac{3}{2}$ × $3e^4$ (Dist. OT = $\left|-3e^4\right|$)
= $\frac{9}{4}e^4$ units²

$$y = e^{-3x}$$

$$\frac{dy}{dx} = -3e^{-3x}$$

$$= \frac{-3}{e^{3x}}$$

$$y = \frac{3}{x-1} = 3(x-1)^{-1}$$

$$\frac{dy}{dx} = -3(x-1)^{-2}$$

$$= \frac{-3}{(x-1)^2}$$
Condinate equal

$$\frac{-3}{e^{3x}} = \frac{-3}{(x-1)^2} \quad (\div -3)$$

$$\frac{1}{e^{3x}} = \frac{1}{(x-1)^2}$$

$$e^{3x} = (x-1)^2$$

By inspection
$$x = 0$$

12(a)
$$y = (x - 5)e^{x}$$

 $y' = vu' + uv'$
 $y' = e^{x}(1) + (x - 5)e^{x}$
 $y' = e^{x}(1+x-5)$
 $y'' = (x - 4)e^{x} + e^{x}(1)$
 $y'' = e^{x}(x - 4 + 1)$
 $y'' = e^{x}(x - 3)$
St. Pts. when $y' = 0$
∴ $e^{x}(x-4) = 0$ but $e^{x} \neq 0$
 $x - 4 = 0$
 $x = 4 \Rightarrow y = (4 - 5)e^{4} = -e^{4}$
St. Pt. $(4, -e^{4})$
Check nature
When $x = 4 : y'' = e^{4}(4-3)$
 $= e^{4} > 0$
∴ Min Turn. Pt. at $(4, -e^{4})$

(b) Possible pts. of inflex. y'' = 0i.e. $e^{x}(x-3) = 0$: but $e^{x} \neq 0$ $\therefore (x-3) = 0$ $x = 3 \Rightarrow y = (3-5)e^{3} = -2e^{3}$ i.e. $(3, -2e^{3})$

Check concavity either side of
$$x = 3$$

when
$$x = 4$$
: $y'' = e^4(4-3)$
= $e^4 > 0$

when
$$x = 2$$
: $y'' = e^2(2-3)$

 $=-e^4<0$

Concavity changes

- \therefore Pt. of inflex. at $(3, -2e^3)$
- (c) x intercepts when y = 0 $0 = (x - 5)e^x$ but $e^x \ne 0$

$$\therefore (x-5) \Rightarrow x=5$$

x intercept (5,0)

y intercept when x = 0

$$y = (0-5)e^0$$

$$\therefore y = (-5)(1) \Rightarrow y = -5$$

y intercept (0, -5)

(d) As $x \to \infty$:

Both
$$(x-5) \rightarrow \infty$$

and
$$e^x \to \infty$$

So as
$$x \to \infty$$
, $y \to \infty$

As
$$x \to -\infty$$
, $y \to 0$

(f) Monotonic increasing x > 4

21(a)
$$f(x) = (e^x + e^{-x})^2$$

 $f(a) = (e^a + e^{-a})^2$
 $f(-a) = (e^{-a} + e^{-(-a)})^2$
 $= (e^{-a} + e^{a})^2$
 $= (e^a + e^{-a})^2$

f(a) = f(-a) : Even Function

(b) 415.4 units²

Exercise 8

1(j)
$$y = [\ln(2x+7)]^5$$

 $y' = 5[\ln(2x+7)]^4 \cdot \left(\frac{2}{2x+7}\right)$
 $= \frac{10[\ln(2x+7)]^4}{2x+7}$

$$2(c) \quad y = \ln\left(\frac{3x+2}{2x+1}\right)$$

i.e.
$$y = \ln(3x + 2) - \ln(2x + 1)$$

$$y' = \frac{3}{3x+2} - \frac{2}{2x+1}$$

or
$$y' = \frac{3(2x+1) - 2(3x+2)}{(3x+2)(2x+1)}$$

$$=\frac{6x+3-6x-4}{6x^2+7x+2}$$

$$= \frac{-1}{6x^2 + 7x + 2}$$

(d)
$$y = \ln\left(\frac{\left(2x+6\right)^7}{x}\right)$$

i.e.
$$y = \ln(2x+6)^7 - \ln x$$

$$\therefore y = 7\ln(2x+6) - \ln x$$

$$y' = 7 \times \frac{2}{2x+6} - \frac{1}{x}$$

$$y' = 7 \times \frac{2}{2(x+3)} - \frac{1}{x}$$

$$y' = \frac{7}{x+3} - \frac{1}{x}$$

or
$$y' = \frac{7x - x - 3}{(x+3)x}$$

$$y' = \frac{6x - 3}{x^2 + 3x}$$

7(o)
$$\int \frac{12x - 8}{9x^2 - 12x} dx$$
$$= \int \frac{4(3x - 2)}{3(3x^2 - 4x)} dx$$

$$= \frac{4}{3} \int \frac{3x - 2}{3x^2 - 4x} \ dx$$

Now,
$$\frac{dy}{dx}$$
 of denominator = $6x - 4$

Need numerator to be this format

$$= \frac{2}{3} \int \frac{6x - 4}{3x^2 - 4x} dx$$
$$= \frac{2}{3} \ln(3x^2 - 4x) + c$$

8(c)

$$\int_{0}^{2} 3xe^{x^{2}} dx \quad \text{Note} \frac{d(e^{x^{2}})}{dx} = 2xe^{x^{2}}$$

$$\int_{0}^{2} 3xe^{x^{2}} dx = \int_{0}^{2} \frac{3}{2} \times 2xe^{x^{2}} dx$$

$$= \frac{3}{2} \int_{0}^{2} 2xe^{x^{2}} dx$$

$$= \left[\frac{3}{2}e^{x^{2}} \right]_{1}^{2}$$

$$= \frac{3}{2}e^{(2)^{2}} - \frac{3}{2}e^{(1)^{2}}$$

$$= \frac{3}{2}e^{4} - \frac{3}{2}e$$

$$= \frac{3}{2}e(e^{3} - 1)$$

Exercise 9

3 $y = \ln(x+2)$ 3 x

050	()	*			
х	-1	0	1	2	3
у	ln1	ln2	ln3	ln4	ln5

$$A \cong \frac{1}{3} \{ 0 + \ln 5 + 4 [\ln 2 + \ln 4] + 2 \ln 3 \}$$

\approx 4 \cdot 041 \quad \text{units}^2

$$V = \pi \int_{a}^{b} y^{2} dx$$

$$y = \ln x$$

$$y^{2} = (\ln x)^{2}$$

$$V = \pi \int_{a}^{b} (\ln x)^{2} dx$$

Simpson's Rule is used to find an approximation for $\int_{0}^{6} (\ln x)^{2} dx$

$$f(x) = (\ln x)^{2}$$

$$x \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$f(x) \quad 0 \quad (\ln 2)^{2} \quad (\ln 3)^{2} \quad (\ln 4)^{2} \quad (\ln 5)^{2}$$

$$A \cong \frac{1}{3} \left\{ 0 + (\ln 5)^2 + 4 \left[(\ln 2)^2 + (\ln 4)^2 \right] + 2 \left[(\ln 3)^2 \right] \right\}$$

$$\cong \frac{1}{3} \left(14 \cdot 61324859 \right)$$

$$\cong 4 \cdot 871082865$$

$$\therefore V \cong \pi \times 4 \cdot 871082865$$

$$= 15 \cdot 303 \text{ units}^3 \text{ (to 3 dec. pl.)}$$