Database Systems Lecture #4 FD

Guifeng Zheng SYSU

Agenda

- Last time: relational model
- This time:
- Functional dependencies
 - Keys and superkeys in terms of FDs
 - Finding keys for relations
- 2. Rules for combining FDs
- Next time: anomalies & normalization

Where are we going, where have we been?

- Goal: manage large amounts of data effectively
 - Use a DBMS
 - must define a schema

- DBMSs use the relational model
 - But initial design is easier in E/R
 - Must design an E/R diagram
 - Must then convert it to rel. model

Where are we going, where have we been?

- At this pt, often find problems redundancy
 - How to fix?
- Convert the tables to a special "normal" form
 - How to do this?
- First step is: check which FDs there are
 - look at all true FDs of the table
 - □ Then do *decompositions*

Next topic: Functional dependencies

- FDs are constraints
 - Logically part of the schema
 - can't tell from particular relation instances
 - FD may hold for some instances "accidentally"

- Finding all FDs is part of DB design
 - Used in normalization

Functional dependencies

Definition:

If two tuples agree on the attributes

$$|A_1, A_2, ..., A_n|$$

then they must also agree on the attributes

$$B_1, B_2, ..., B_m$$

- Notation: $A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$
- Read as: A_i functionally determines B_j

Typical Examples of FDs

- Product
 - □ name → price, manufacturer
- Person
 - □ ssn → name, age
 - □ father's/husband's-name → last-name
 - □ zipcode → state
 - □ phone → state (notwithstanding inter-state area codes?)
- Company
 - □ name → stockprice, president
 - □ symbol → name
 - □ name → symbol

Functional dependencies

To check A → B, erase all other columns; for all rows
 t1, t2

- i.e., check if remaining relation is many-one
 - no "divergences"
 - □ i.e., if A →B is a well-defined function
 - thus, functional dependency

FD example

Product(name, category, color, department, price)

Consider these FDs:

name → color category → department color, category → price

What do they say?

FD example

FDs as properties:

- On some instances they hold
- On others they don't

name → color category → department color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Does this instance satisfy all the FDs?

FD example

name → color category → department color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

What about this one?

Recognizing FDs

• Q: Is Position→Phone an FD here?

EmpID	Name	Phone	Position
E0045	Smith	1234 —	Clerk
E1847	John	9876 —	Salesrep
E1111	Smith	9876 —	Salesrep
E9999	Mary	1234 ←	Lawyer

- A: It is for this instance, but no, presumably not in general
- Others FDs?
- EmpID → Name, Phone, Position
- but Phone → Position

Keys (candidate key) of relations

- $\{A_1A_2A_3...A_n\}$ is a key for relation R if
 - □ A₁A₂A₃...A_n functionally determine all other atts
 - Usual notation: $A_1A_2A_3...A_n \rightarrow B_1B_2...B_k$
 - rels = sets → distinct rows can't agree on all A_i
 - □ A₁A₂A₃...A_n is minimal (candidate key)
 - No proper subset of A₁A₂A₃...A_n functionally determines all other attributes of R

Primary key: chosen if there are several possible keys

Keys example

- Relation: Student(ssn,Name, Address, DoB, Email, Credits)
- Which (/why) of the following are keys?
 - SSN
 - Name, Address (on reasonable assumptions)
 - Name, SSN
 - Email, SSN
 - Email

NB: minimal != smallest

Superkeys

- Df: A set of attributes that contains a key
- Satisfies first condition: determination
- Might not satisfy the second: minimality
 - Some superkey attributes may be superfluous
 - keys are superkeys
- key are special case of superkey
 - superkey set is superset of key set
- name;ssn is a superkey but not a key

Discovering keys for relations

- Relation ← entity set
 - Key of relation = (minimized) key of entity set
- Relation ← binary relationship
 - Many-many: union of keys of both entity sets
 - Many(M)-one(O): only key of M (why?)
 - One-one: key of either entity set (but not both!)

Review: entity sets

Key of entity set = key of relation

Student(Name, Address, DoB, <u>SSN</u>, Email, Credits)

Review: many-many

Many-many key: union of both ES keys

Enrolls(SSN,CourseID)

Review: many-one

- Key of the many ES but not of the one ES
 - keys from both would be non-minimal

MeetsIn(CourseID,RoomNo)

Review: one-one

- Keys of both ESs included in relation
- Key is key of either ES (but not both!)

Married(<u>HSSN</u>, WSSN) *or* Married(HSSN, W<u>SSN</u>)

Review: multiway relships

- Multiple ways may not be obvious
- R:F,G,H→E is many-one → E's key is included
 - but not part of key
 - Recall that relship atts are implicitly many-one

Next topic: Combining FDs

If some FDs are satisfied, then others are satisfied too

If all these FDs are true:

name → color
category → department
color, category → price

Then this FD also holds:

name, category → price

Why?

Rules for FDs (quickly)

- Reasoning about FDs: given a set of FDs, infer other FDs – useful
 - \Box E.g. A \rightarrow B, B \rightarrow C \rightarrow A \rightarrow C
- Definitions: for FD-sets S and T
 - T follows from S if all relation-instances satisfying S also satisfy T.
 - S and T are equivalent if the sets of relationinstances satisfying S and T are the same.
 - I.e., S and T are equivalent if S follows from T, and T follows from S.

Splitting & combining FDs (quickly)

Splitting rule:

$$A_1A_2...A_n \rightarrow B_1B_2...B_m$$

Note: doesn't apply to the left side

$A_{1}, A_{2}, ..., A_{n} \rightarrow B_{1}$ $A_{1}, A_{2}, ..., A_{n} \rightarrow B_{2}$ $A_{1}, A_{2}, ..., A_{n} \rightarrow B_{m}$

Combining rule:

Q: Can you split and combine the A's, too?

	A1	 Am	B1	 Bm	
t1					
t2					

Reflexive rule: trivial FDs (quickly)

$$A_1, A_2, ..., A_n \rightarrow A_i$$

with i in 1..n is a trivial FD

- FD $A_1A_2...A_n \rightarrow B_1B_2...B_k$ may be
 - Trivial: Bs are a subset of As
 - Nontrivial: >=1 of the Bs is not among the As
 - Completely nontrivial: none of the Bs is among the As
- Trivial elimination rule:
 - Eliminate common attributes from Bs, to get an equivalent completely nontrivial FD

Transitive rule (quickly)

If

$$|A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m|$$

and

$$B_1, B_2, ..., B_m \rightarrow C_1, C_2, ..., C_p$$

then

$$A_1, A_2, ..., A_n \rightarrow C_1, C_2, ..., C_p$$

Augmentation rule (quickly)

$$A_1, A_2, ..., A_n \rightarrow B$$

then

$$A_1, A_2, ..., A_n, C \rightarrow B, C, for any C$$

Rules summary (quickly)

- 1. $A \rightarrow B \rightarrow AC \rightarrow B$ (by definition)
- Separation/Combination
- 3. Reflexive
- Augmentation
- 5. Transitivity
- Last 3 called Armstrong's Axioms
 - Complete: entire closure follows from these
 - Sound: no other FDs follow from these
- Don't need to memorize details...

Inferring FDs example (quickly)

Start from the following FDs:

1. name → color

2. category → department

3. color, category → price

Infer the following FDs:

Inferred FD	Which Rule did we apply?
4. name, category → name	Reflexive rule
5. name, category → color	Transitivity(4,1)
6. name, category → category	Reflexive rule
7. name, category → color, category	combine(5,6) or Aug(1)
8. name, category → price	Transitivity(3,7)

Problem: infer all FDs

Given a set of FDs, infer all possible FDs

How to proceed?

- 1. Try all possible FDs, apply all rules
 - 1. E.g. R(A, B, C, D): how many FDs are possible?
- 2. Drop trivial FDs, drop augmented FDs
 - Still way too many

1. Better: use the Closure Algorithm...

Closure of a set of Attributes

Given a set of attributes A₁, ..., A_n

The **closure**, $\{A_1, ..., A_n\}^+ = \{B \text{ in Atts: } A_1, ..., A_n \rightarrow B\}$

Example:

name → color category → department color, category → price

Closures:

```
{name}* = {name, color}
{name, category}* = {name, category, color, department, price}
{color}* = {color}
```


Closure Algorithm

Start with $X=\{A_1, ..., A_n\}$.

Repeat:

if $B_1, ..., B_n \rightarrow C$ is a FD and $B_1, ..., B_n$ are all in X then add C to X.

until X doesn't change

Example:

name → color category → department color, category → price

{name, category}* =
 {name, category, color,
 department, price}

Example

In class:

$$A, B \rightarrow C$$
 $A, D \rightarrow E$
 $B \rightarrow D$
 $A, F \rightarrow B$

Compute
$$\{A,B\}^+$$
 $X = \{A, B,$

}

Compute
$$\{A, F\}^+ X = \{A, F,$$

}

What are the keys?

Example: How to find keys

What are the keys?

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & B \\ B & \rightarrow & D \end{array}$$

Compute X⁺, for every *set* X (*AB* is shorthand for {*A*,*B*}):

$$A^+ = A$$
, $B^+ = BD$, $C^+ = C$, $D^+ = D$
 $AB^+ = ABCD$, $AC^+ = AC$, $AD^+ = ABCD$, $BC^+ = BC$, $BD^+ = BD$, $CD^+ = CD$
 $ABC^+ = ABD^+ = ACD^+ = ABCD$ (no need to compute—why?)
 $BCD^+ = BCD$, $ABCD^+ = ABCD$

Closure alg e.g.

Product(name, price, category, color)
 name, category → price
 category → color

FDs are:

Keys are: {name, category}

2. Enrollment(student, address, course, room, time)

student → address room, time → course student, course → room, time

FDs are:

Keys are:

Next time

- 1. Check course homepage for homework
- 2. Read ch.19, sections 4-5

