

# COMNAV OEM BOARD REFERENCE MANUAL

©2020, ComNav Technology Ltd., registered in People's Republic of China, United States of America and European Union. All other trademarks are the property of their respective owners.

# **APPROVAL SHEET**

| SUBSCRIPTION  | SIGNATURE | DATE       |
|---------------|-----------|------------|
| Prepared By   | WLD       | 2015/9/24  |
| Maintained By | Sophia    | 2022/04/20 |
| Checked By    |           |            |
| Approved By   |           |            |

| DOCUMENT NUMBER | CURRENT REVISION | RELEASE DATE |
|-----------------|------------------|--------------|
| CNT-OEM-RM001   | 2.3              | 2022/4/20    |
| CNT-OEM-RM001   | 1.9              | 2020/4/16    |
| CNT-OEM-RM001   | 1.8              | 2019/12/05   |
| CNT-OEM-RM001   | 1.5              | 2016/6/12    |

# **REVISION HISTORY**

| REVISION | М   | DDIFICATION                                                       | DATE       |
|----------|-----|-------------------------------------------------------------------|------------|
|          | 1)  | New version for K8 series boards.                                 |            |
|          | 2)  | Add definition for Galileo E6C                                    |            |
|          | 3)  | Modify SBASCONTROL command                                        |            |
|          | 4)  | update M911 messsage                                              |            |
|          | 5)  | Update GGA solution status                                        |            |
|          | 6)  | Update GPSEPHEM GPS ephemeris structure, delete RTCM0063 message。 |            |
|          | 7)  | Update PRN                                                        |            |
| 2.3      | 8)  | Update BDS frequency                                              | 2022/4/20  |
|          | 9)  | New added commands:                                               |            |
|          | - , | a) APPSCENE                                                       |            |
|          |     | b) KSXT                                                           |            |
|          |     | c) GPNAV                                                          |            |
|          |     | d) SCANSPECTRUM                                                   |            |
|          |     | e) VECTORLENMODE                                                  |            |
|          |     | f) HEADING2                                                       |            |
| 1.0      | 1)  | check errors and correcting                                       | 2020 04 16 |
| 1.9      | 2)  | Supplement the direction Angle indication in GPNAV in 0           | 2020-04-16 |
|          | 1)  | New added commands:                                               |            |
|          |     | a) MARKCONTROL in 3.2.16                                          |            |
|          |     | b) MAXVECLENERR in 3.2.17                                         |            |
|          |     | c) BD3EPHEM in 4.2.1.2                                            |            |
|          |     | d) BD3RAWNAVSUBFRAME                                              |            |
| 1.8      |     | e) BDSRAWNAVSUBFRAME                                              | 2019-12-05 |
|          |     | f) GALEPHEMERIS in 4.2.1.8                                        |            |
|          |     | g) GALFNAVRAWPAGE                                                 |            |
|          |     | h) GALINAVRAWWORD                                                 |            |
|          |     | i) QZSSRAWSUBFRAM                                                 |            |
|          |     | j) QZSSRAWEPHEM                                                   |            |
|          |     | k) RAWGPSSUBFRAME                                                 |            |

| REVISION | МС | DIF | CATION                   |                                                   | DATE       |
|----------|----|-----|--------------------------|---------------------------------------------------|------------|
|          |    | I)  | QXWZSDKINFOB             |                                                   |            |
|          | 2) | Add | I following messages:    |                                                   |            |
|          |    | a)  | Add theTable 5.          | GNSS Name and Corresponding PRN                   |            |
|          |    | b)  | Add theTable 6.          | GNSS System                                       |            |
|          |    | c)  | Add theTable 9.          | DGNSS Type                                        |            |
|          |    | d)  | Add theTable 12.         | SET Type and Parameter                            |            |
|          |    | e)  | Add the Table 15.        | Predefined Log Message                            |            |
|          |    | f)  | Add notes to the for     | m in NMEATALKER                                   |            |
|          |    | g)  | Add the parameters       | of the table in RTCMDATA1                         |            |
|          |    | h)  | Add the parameters       | of the table in GPSEPHEM                          |            |
|          |    | i)  | Add the parameters       | of the table in INTERFACEMODE                     |            |
|          |    | j)  | Add the parameters       | and notes of the table in RTKDYNAMICS             |            |
|          |    | k)  | Add the parameters       | of the table in RTKSOLUTION                       |            |
|          |    | I)  | Add the examples of      | the table in UNDULATION                           |            |
|          |    | m)  | Add the notes of the     | table in RANGECMP                                 |            |
|          | 3) | Upo | late definition of follo | wing commands:                                    |            |
|          |    | a)  | Modify the satellite     | channel number                                    |            |
|          |    | b)  | Modify the paramete      | ers of the table in IONUTC                        |            |
|          |    | c)  | Modify the format a      | nd parameters in RTKQUALITY                       |            |
|          |    | d)  | Adjust the time-dela     | y default and maximum values in RTKFIXHOLDTIME    |            |
|          |    | e)  | Adjust the time-dela     | y default values in RTKTIMEOUT                    |            |
|          | 4) | Cha | nge the contact inforr   | nation of the company                             |            |
|          | 5) | Adj | ust the document forr    | nat of whole manual, check errors and correcting  |            |
|          | 1) | Nev | v SET commands:          |                                                   |            |
|          |    | a)  | Set GPS L2 PRN code      | type setting in 3.2.32                            |            |
|          |    | b)  | Set GLONASS PRN co       | ode type setting on G1 and G2 frequency in 3.2.32 |            |
|          |    | c)  | Set Auto sending rav     | v data file in <i>3.2.32</i>                      |            |
| 1.5      |    | d)  | Set external coordinate  | ates in 3.2.32                                    | 2016-06-12 |
| 1.5      |    | e)  | Set cyclesave switch     | er fileperiod sampleint eraseint in 3.2.32        | 2010 00 12 |
|          |    | f)  | Set stationmode mo       | de portA portB interval in 3.2.32                 |            |
|          |    | g)  | Set EMMC ON/OFF i        | n <i>3.2.32</i>                                   |            |
|          |    | h)  | Set projectiontype p     | aram1 in 3.2.32                                   |            |
|          |    | i)  | Set cp smoother on a     | aa bb in <i>3.2.32</i>                            |            |

| REVISION | МС  | DIFICATION                                    | DATE      |
|----------|-----|-----------------------------------------------|-----------|
|          |     | j) Set nmeamsgformat in 3.2.32                |           |
|          |     | k) Set GLOPRBIAS gx p1 p2p14\r\n in 3.2.32    |           |
|          |     | I) Set GLOCHANPRBIAS gx chan p in 3.2.32      |           |
|          |     | m) Set GLOPRBIAS DEFAULT in 3.2.32            |           |
|          | 2)  | MARKCONTROL in 3.2.32 3.2.16                  |           |
|          | 3)  | MARKPOS in 4.2.4.1, MARKTIME in 4.2.4.2       |           |
|          | 4)  | Add NEMA data format in 3.2.11                |           |
|          | 5)  | Change command "RTKDYNAMICS mode" in 3.2.21   |           |
|          | 6)  | Add description of RTCM 1033                  |           |
|          | 7)  | Change the PPS update rate to 10 Hz in 3.2.18 |           |
|          | 8)  | Add DYNAMIC BASE and ROVER STATION SETTINGS   |           |
|          | 9)  | Add DYNAMIC BASE STATION SETTING              |           |
|          | 10) | Add RTKQUALITY command in 3.2.32              |           |
|          | 11) | Add rtcm41                                    |           |
|          | 12) | Add rtcm42                                    |           |
|          | 13) | Add descriptions about GLORAWEPHEM in 4.2.1.6 |           |
|          | 14) | Delete the reply message in the example of SJ |           |
|          | 15) | Delete the reply message in the example of FX |           |
|          | 16) | Delete the reply message in the example of FC |           |
|          | 1)  | New added commands:                           |           |
|          |     | a) HEADINGOFFSET in 3.2.10                    |           |
|          |     | b) RTKFIXHOLDTIME in 3.2.22                   |           |
|          |     | c) RTKSOURCE in 3.2.26                        |           |
|          |     | d) SBAS configuration:                        |           |
|          |     | i. SBASCONTROL in 3.2.30                      |           |
|          |     | ii. SBASECUTOFF in 错误!未找到引用源。                 |           |
| 1.4      |     | iii. SBASTIMEOUT                              | 2015-9-25 |
|          |     | e) A few SET commands in 3.2.32               |           |
|          |     | f) UNDULATION in 3.2.33                       |           |
|          | 2)  | Update definition of following commands:      |           |
|          |     | a) COM: Port ID in , Baud rate in .           |           |
|          |     | b) LOG: added keyword 'offset' in 3.2.14      |           |
|          |     | c) LOCKOUT:                                   |           |
|          |     | d) Table 5. GNSS Name and Corresponding PRN   |           |

| REVISION | МС | DDIFICATION                                                                                                                                   | DATE |
|----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
|          |    | e) LOCKOUTSYSTEM:                                                                                                                             |      |
|          |    | f) Table 6. GNSS System                                                                                                                       |      |
|          |    | g) MAGVAR in <i>3.2.15</i>                                                                                                                    |      |
|          |    | h) RTKOBSMODE in 3.2.23                                                                                                                       |      |
|          | 3) | Add <i>Table 19. Log</i> Trigger Types. Logs Supporting ONCHANGED and                                                                         |      |
|          |    | ONTRACKED                                                                                                                                     |      |
|          | 4) | Updated log messages:                                                                                                                         |      |
|          |    | a) Correct the message id of BD2RAWEPHEM from '413' to '412' in 4.2.1.4.                                                                      |      |
|          |    | b) Append the message definition table for GPSEPHEM in 4.2.1.7, which is                                                                      |      |
|          |    | also the definition of BD2EPHEM.                                                                                                              |      |
|          |    | c) RAWALM subframe description in 4.2.1.8                                                                                                     |      |
|          |    | d) SATMSG in 4.2.7.3                                                                                                                          |      |
|          |    | e) REFSTATION in 4.2.8.1  f) Resition or Velocity Type Table 26 Position or Velocity Type which is                                            |      |
|          |    | f) Position or Velocity Type Table 26. Position or Velocity Type, which is used in BESTPOS, BESTVEL, BESTXYZ, PSRPOS, PSRVEL, PSRXYZ, HEADING |      |
|          |    | and TRACKSTAT.                                                                                                                                |      |
|          | 5) | New added log messages:                                                                                                                       |      |
|          |    | a) Predefined Log in 4.2:                                                                                                                     |      |
|          |    | i. BINEX record: BINEX00DATA, BINEX0101DATA, BINEX0102DATA,                                                                                   |      |
|          |    | BINEX0105DATA, BINEX7d00DATA, BINEX7e00DATA,                                                                                                  |      |
|          |    | BINEX7f05DATA                                                                                                                                 |      |
|          |    | ii. MARKPOS in 4.2.4.1, MARKTIME in 4.2.4.2                                                                                                   |      |
|          |    | iii. Meteorograph 4.2.5: METEODATA, METEODATAEXT                                                                                              |      |
|          |    | iv. M925 in 4.2.7.2, PSRVEL in 4.2.5.6, SATXYZ in 4.2.7.5                                                                                     |      |
|          |    | v. SBAS message:                                                                                                                              |      |
|          |    | RAWSBASFRAME                                                                                                                                  |      |
|          |    | SBASO, SBAS1, SBAS2, SBAS3, SBAS4, SBAS5, SBAS6, SBAS7, SBAS9,                                                                                |      |
|          |    | SBAS10, SBAS12, SBAS17, SBAS18, SBAS24, SBAS25, SBAS26,                                                                                       |      |
|          |    | SBAS27, SBAS28 and SBAS63                                                                                                                     |      |
|          |    | b) International Standard messages:                                                                                                           |      |
|          |    | i. Self-defined NMEA 0183 Sentences: GPNAV in <i>0</i> , GPTRA in <i>0</i> , GPYBM in                                                         |      |
|          |    | 0                                                                                                                                             |      |
|          |    | ii. RTCM 3.x in :                                                                                                                             |      |

| REVISION | MODIFICATION                        |                                                                           | DATE      |
|----------|-------------------------------------|---------------------------------------------------------------------------|-----------|
|          | 63 (Test Message,                   | decoded BDS Ephemeris)                                                    |           |
|          | MSM message: 10                     | 74 in <i>4.3.2.16</i> , 1084 in <i>4.3.2.17</i> , 1124 in <i>4.3.2.20</i> |           |
|          | iii. BINEX Records: 0x00, 0         | x01-01, 0x01-02, 0x01-05, 0x7d-00, 0x7e-00,                               |           |
|          | 0x7f-05<br>c) Other Message:        |                                                                           |           |
|          |                                     |                                                                           |           |
|          | i. Trimble: PTNL,AVR; PTI           | NL,GGK in <i>4.4.1.2</i>                                                  |           |
|          | ii. Command messages fo             | r weather instrument (meteorograph) control:                              |           |
|          | ZZ11ASETDATE, ZZ                    | 11ASETTIME, ZZ11ASETID, ZZ11ASETAUTOSEND,                                 |           |
|          | ZZ11AREADDATE,                      | ZZ11AREADTIME, ZZ11AREADID,                                               |           |
|          | ZZ11AREADAUTOS                      | END                                                                       |           |
|          | 6) Add ComNav binary comma          | nd RS.                                                                    |           |
|          | 7) Adjust the document format       | of whole manual, check errors and correcting.                             |           |
|          | 2) Remove OEM Board Physica         | al Information and Technical Specifications listed                        |           |
|          | in Appendix A/B into corres         | ponding Product Specification documents. Refer                            |           |
|          | to:                                 |                                                                           |           |
|          | CNT-OEM-PS001, K500_K50.            | 1_K501G_K505 OEM Board Product Specification                              |           |
|          | CNT-OEM-PS002, K502_K50             | 8_K528 OEM Board Product Specification                                    |           |
|          | 3) Move "CHAPTER 4. BINARY (        | COMMANDS AND LOGS"                                                        |           |
|          | 4) Add or update following con      | nmands in <i>Chapter 3</i> :                                              |           |
|          | a) Update GNSS PRN in               |                                                                           |           |
|          | b) Table 5. GNSS Name               | and Corresponding PRN.                                                    |           |
| 1.3      | c) Add command NMEATA               | ALKER in Section 3.2.17.                                                  | 2012 1 10 |
| 1.5      | d) Add command RTKOBS               | MODE in Section 3.2.22.                                                   | 2013-1-19 |
|          | e) Update description of R          | TKSOLUTION in Section 3.2.25.                                             |           |
|          | 5) Clarify the classifications of I | og messages in <i>0</i> and update                                        |           |
|          | 6) Table 15. Predefined Log M       | essage.                                                                   |           |
|          | 7) Add following messages:          |                                                                           |           |
|          | a) Add GLOEPHEMERIS (B)             | ı.                                                                        |           |
|          | b) Add GLORAWEPHEM (B               | s).                                                                       |           |
|          | c) Add LOGLIST (A) in Sect          | ion                                                                       |           |
|          | d) Update REFSTATION (A             | ) to support ASCII output in Section 错误!未找到                               |           |
|          | 引用源。.                               |                                                                           |           |

| REVISION | MC | DDIFICATION                                                                   | DATE       |
|----------|----|-------------------------------------------------------------------------------|------------|
|          |    | e) Add GPRRS, GPSEH, GPURA, GPGRS, GPDRC, GPRSC, GPCLH, GPIDM, and            |            |
|          |    | GPPRR in Section 4.3.1.                                                       |            |
|          |    | f) Add RTCM2.x Message 1, 9 and 31.                                           |            |
|          |    | g) Add RTCM3.x Message 1012, 1019 and 102.                                    |            |
|          |    | h) Add JAVAD NAVPOS[NP] Message 。                                             |            |
|          | 8) | Adjust the document format of whole manual, check errors and correcting.      |            |
|          | 1) | Add velocity type "DOPPLER_VELOCITY" in <i>Table</i> 26. Position or Velocity |            |
|          |    | Type.                                                                         |            |
|          | 2) | Add description of log message "BD2RAWALM".                                   |            |
| 1.2K     | 3) | Add description of log message "HEADING".                                     | 2013-07-05 |
|          | 4) | Update the description to clarify the usage of "INTERFACEMODE".               |            |
|          | 5) | Fix cross reference errors on Solution Status, Position & Velocity type for   |            |
|          |    | BESTPOS, BESTVEL, BESTXYZ, PRSPOS and TRACKSTAT.                              |            |
|          | 1) | Correct the description of Field #5 and #6 of the log message GPNTR.          |            |
| 1.2J     | 2) | Update the Pin information of K502 and K508 OEM board $_{\circ}$              | 2013-06-21 |
|          | 3) | Rewording the description of the RTCM messages to make them more clearly.     |            |
|          | 1) | Adjust the document format of whole manual                                    |            |
|          | 2) | Update the contact information of ComNav in Sec.1.5.                          |            |
|          | 3) | Error checking and correcting:                                                |            |
|          |    | a) Words and Phrases                                                          |            |
|          |    | b) Cross References to Sections, tables, or Figures (under way)               |            |
| 1.21     |    | c) Discrepant Description between Different Sections (under way)              | 2013-06-05 |
|          | 4) | Description rewording or polishing of whole manual                            |            |
|          |    | a) Change document name from "Compass OEM Board Reference Manual"             |            |
|          |    | to "ComNav OEM Board Reference Manual"                                        |            |
|          | 5) | Release formal document number as <i>CNT-OEM-RM001</i> , based on ComNav's    |            |
|          |    | document standardization system (Under Construction).                         |            |
| 1.2H     | 1) | The Latest Card Firmware Version is 1.30D. 1.30D is not released, just in     | 2013-05-22 |
| 1.5.1    |    | testing.                                                                      | 2013 03 22 |
| 1.2G     | 1) | Add message "HEADINGB", "BESTXYZA".                                           | 2013-05-09 |
| 1.2E     | 1) | Add message "RANGEB", "RTCMDATA1B", "RANGECMPL1B".                            | 2013-01-25 |
| 1.2F     | 1) | Add message "RTCM1002B", "RTCM1010B", "RANGEA", "RANGECMPA",                  | 2013-02-20 |
|          |    | "BESTVELA", "BESTVELB", "IONUTCA", "IONUTC", "IONUTCB".                       |            |
| 1.2D     | 1) | Add K506 pin definition.                                                      | 2013-01-09 |

| REVISION | МС | DDIFICATION                                                                 | DATE       |
|----------|----|-----------------------------------------------------------------------------|------------|
| 1.2B     | 1) | Add a serial log commands to check certain configurations or parameters, in | 2013-01-04 |
|          |    | section 4.4.2.                                                              | 2010 01 01 |
| 1.2A     | 1) | Add "BD2 Elevation Mask Angle", "GLONASS Elevation Mask Angle" and          | 2012-10-16 |
| 1.2/     |    | "GALILEO Elevation Mask Angle", in section 2.3.                             | 2012 10 10 |
|          | 1) | Add "SET CPUFREQ" command, in section 3.2.32.                               |            |
| 1.2A     | 2) | Add "SET PVTFREQ" command, in section 3.2.32.                               | 2012-09-19 |
|          | 3) | Add "SET RTKFREQ" command, in section 3.2.32                                |            |
|          | 1) | Add "INTERFACEMODE" status in "SAVECONFIG" command                          |            |
|          | 2) | Add "CLOCKOFFSET" value in "SAVECONFIG" command;                            |            |
|          | 3) | Add notice of firmware updates;                                             |            |
|          | 4) | Modify pin definition;                                                      |            |
| 1.2A     | 5) | Add message "GPNTR", use command "LOG" to set output.                       | 2012-08-27 |
|          | 6) | configure GNSS cards to work on Common-view time transfer mode is           |            |
|          |    | descripted.                                                                 |            |
|          | 7) | Add message "GPHPR".                                                        |            |
|          | 8) | Add command "RTKREFMODE" in section 3.2.24.                                 |            |
|          | 1) | Add command "CLOCKOFFSET delay"                                             |            |
|          | 2) | Add command "PPSCONTROL switch polarity period width"                       |            |
|          | 3) | Add message "GPCDT", use command "LOG" to set output                        |            |
| 1.2      | 4) | Add command "RTKSOLUTION mode"                                              | 2012-07-01 |
|          | 5) | Add command "RTKDYNAMICS mode"                                              |            |
|          | 6) | Add command "RTKELEVMASK angle"                                             |            |
|          | 7) | Add command "RTKQUALITYLEVEL mode"                                          |            |

# **TABLE OF CONTENTS**

| TABLE OF | F CONTENTS                                                | 1  |
|----------|-----------------------------------------------------------|----|
| CHAPTER  | 1. PREFACE                                                | 4  |
| 1.1      | Introduction                                              | 4  |
| 1.2      | Usage of this Manual                                      | 5  |
| 1.3      | Conventions                                               | 6  |
| 1.4      | Warranty Exclusions and Disclaimer                        | 7  |
| 1.5      | Contact Us                                                | 7  |
| CHAPTER  | 2. OEM BOARD OVERVIEW                                     | 9  |
| 2.1      | Product Summary                                           | 9  |
| 2.1.1    | The introduction to OEM board                             | 9  |
| 2.1.2    | 2 ComNav GNSS Board                                       | 9  |
| 2.1.3    | Preparing for the future                                  | 10 |
| 2.2      | Typical Boards                                            | 10 |
| 2.3      | Memory Allocation Map                                     | 11 |
| CHAPTER  | 3. COMPATIBLE COMMANDS                                    | 13 |
| 3.1      | Command Formats                                           | 13 |
| 3.1.1    | L Format                                                  | 13 |
| 3.2      | Command Reference                                         | 15 |
| 3.2.1    | ASSIGN Assign a channel to a PRN                          | 15 |
| 3.2.2    | BD2ECUTOFF Set BD2 satellite elevation cut-off            | 15 |
| 3.2.3    | CLOCKOFFSET Adjust for delay in 1 PPS output              | 16 |
| 3.2.4    | 1 COM Set baud rate                                       | 16 |
| 3.2.5    | DGPSTXID DGPS transmit ID                                 | 18 |
| 3.2.6    | ECUTOFF Set satellite elevation cut-off angle             | 18 |
| 3.2.7    | 7 FIX Constrain to fixed height and position              | 19 |
| 3.2.8    | B FRESET Reset to the factory default                     | 19 |
| 3.2.9    | FLYCONTROL Detect flying point in dual antenna mode       | 19 |
| 3.2.1    | LO HEADINGOFFSET Add heading and pitch offset values      | 20 |
| 3.2.1    | I1 INTERFACEMODE Set receive or transmit modes for ports  | 20 |
| 3.2.1    | 12 LOCKOUT Prevent the board from using a satellite       | 22 |
| 3.2.1    | L3 LOCKOUTSYSTEM Prevent the receiver from using a system | 22 |
| 3.2.1    | L4 LOG Request logs from board                            | 23 |

| 3.2.15     | MAGVAR Set a magnetic variation correction                    | 24        |
|------------|---------------------------------------------------------------|-----------|
| 3.2.16     | MARKCONTROL Mark message control                              | 25        |
| 3.2.17     | MAXVECLENERR Set the directional flypoint detection threshold | 25        |
| 3.2.18     | PPSCONTROL Control the PPS output style                       | 26        |
| 3.2.19     | RESET Perform a hardware reset                                | 26        |
| 3.2.20     | RTKCOMMAND Reset or set the RTK filter to its defaults        | 27        |
| 3.2.21     | APPSCENE Set application scene                                | 27        |
| 3.2.22     | RTKFIXHOLDTIME Set maximum age of RTK fixed data              | 28        |
| 3.2.23     | RTKOBSMODE Set the observation mode of rover receiver         | 28        |
| 3.2.24     | RTKREFMODE Set the RTK ref-station position mode              | 29        |
| 3.2.25     | RTKSOLUTION Set RTK solution mode                             | 29        |
| 3.2.26     | RTKSOURCE Set RTK correction source                           | 30        |
| 3.2.27     | RTKTIMEOUT Set maximum age of RTK data                        | 31        |
| 3.2.28     | RTKQUALITYLEVEL Set RTK quality level                         | 31        |
| 3.2.29     | SAVECONFIG Save current configuration                         | 32        |
| 3.2.30     | SBASCONTROL Control the usage of SBAS corrections             | 33        |
| 3.2.31     | INSCONTROL Set onboard IMU                                    | 34        |
| 3.2.32     | SBASECUTOFF Set SBAS satellite elevation cut-off              | 错误!未定义书签。 |
| 3.2.33     | SET configure settings                                        | 34        |
| 3.2.34     | VECTORLENMODE Baseline length mode                            | 48        |
| 3.2.35     | UNDULATION Choose undulation                                  | 48        |
| 3.2.36     | SCANSPECTRUM Set Spectrum Sweep Parameters                    | 49        |
| 3.2.37     | UNLOCKOUT Reinstate a satellite in the solution               | 49        |
| 3.2.38     | UNLOCKOUTALL Reinstate a satellite in the solution            | 50        |
| 3.2.39     | UNLOCKOUTSYSTEM Reinstate previously locked out system        | 50        |
| 3.2.40     | UNLOG Remove a log from logging control                       | 51        |
| 3.2.41     | UNLOGALL Remove all logs from logging control                 | 51        |
| CHAPTER 4. | LOG MESSAGES                                                  | 53        |
| 4.1 Coi    | nventions                                                     | 53        |
| 4.1.1      | Command Format                                                | 53        |
| 4.1.2      | Binary Message Layout and Header Definition                   | 53        |
| 4.1.3      | Log Message List                                              |           |
| 4.1.4      | Trigger Types                                                 | 58        |
| 4.1.5      | Examples                                                      | 59        |
| 4.2 Pre    | edefined Log Messages                                         | 59        |
| 4.2.1      | Almanacs and Ephemeris                                        |           |
| 4.2.2      | Configuration and Status                                      |           |
| 4.2.3      | Heading, Pitch and Roll Messages                              |           |
|            | =-                                                            |           |

| 4.2.4   | Mark Event Messages                     | 85  |
|---------|-----------------------------------------|-----|
| 4.2.5   | Position and Velocity Messages          | 87  |
| 4.2.6   | Raw Observations and Corrections        | 96  |
| 4.2.7   | Satellite Measurements                  | 103 |
| 4.2.8   | Station Information                     | 113 |
| 4.2.9   | Time Messages                           | 115 |
| 4.3     | International Standard Messages         | 116 |
| 4.3.1   | NMEA sentences                          | 116 |
| 4.3.2   | RTCM 3.X message                        | 132 |
| 4.4     | Other Messages                          | 142 |
| 4.4.1   | TRIMBLE sentences                       | 142 |
| 4.4.2   | Parameter Messages                      | 144 |
| 4.4.3   | S KSXT positioning and heading Messages | 144 |
| 4.4.4   | Spectrum Messages                       | 147 |
| CHAPTER | 5. COMMON CONFIGURATION                 | 148 |
| 5.1     | Com baud rate configuration             | 148 |
| 5.2     | Stop all the output                     | 148 |
| 5.3     | Activate raw data                       | 148 |
| 5.4     | Activate BASE                           | 149 |
| 5.4.1   | RTCM 3.X                                | 149 |
| Appen   | dix A. Technical specification          | 150 |
| Appen   | dix B. Firmware update                  | 150 |

# **CHAPTER 1. PREFACE**

This preface describes the versions of K-Series OEM board and the main contents of this manual, and lists the conventions and terminology which used.

- About this Manual
- Using this Manual
- Conventions
- Warranty Exclusions and Disclaimer
- Contact Us

### 1.1 INTRODUCTION

Welcome to *ComNav OEM Board Reference Manual* released by Compass Navigation (ComNav) Technology Ltd. The purpose of this manual is to describe the K-Series OEM board and provide guidelines for developers using ComNav command set. The precise details of each command, including syntax, reply and any restrictions on its use, are described in this reference manual.

This information is of primary importance for developers to effectively use and write custom interfacing software for specific needs and applications. And it's also useful for the technique supporters and compatible program developers.

In this manual, a considerable amount of generic information is also included about the hardware architecture and ComNav software applications, although this usually needs to be supplemented by detailed implementation-specific information from the technical reference manual of the device being used, such as *K-Series board User Guide*.

This manual assumes that you are familiar with the principles of the Global Navigation Satellite System (GNSS), and with the terminology used to discuss it. For example, you should understand some terms, such as elevation mask, single point positioning and Post Processing Kinematic (PPK).

This manual also assumes that you are familiar with Microsoft Windows and know how to use a mouse, select options from menus and dialogs, make selections from lists, and refer to online help.

# 1.2 USAGE OF THIS MANUAL

The information in this manual is organized into four parts, as listed below.

### PART A - INTRODUCTION OF OEM BOARD

In Part A, we introduce the hardware architecture and working model of the ComNav OEM board. It contains following chapters:

# Chapter 2. Overview of OEM Boards

To introduce the hardware architecture of the OEM boards using figures and tables. Also some typical boards are described in this chapter. The memory map and Board's working model are given in details. From this chapter, users can realize how the board works and how the flash memory is distributed.

### PART B - COMMAND SET AND LOG MESSAGES

Part B describes the Command Set and Log Messages of ComNav Board, and it consists of Chapter 3 & 4:

# Chapter 3. Compatible Commands

Chapter 3 gives the details of commands supported by ComNav board, including ComNav commands and NovAtel® compatible commands.

### Chapter 4. Log Messages

All log messages produced ComNav OEM board are defined in Chapter 4.

### PART C - OPERATION EXAMPLES

Part C provides some examples frequently used such as set-up a base station, log raw data and so on.

### Chapter 5. Operations Frequently-Used

In Chapter 5, the operational commands of several frequently-used operations are presented in sequence.

### Chapter 6. Application Cases

Three kinds of application cases are described in Chapter 6 to provide users with a wider application perspective.

### PART D - BINARY COMMAND AND OEM BOARD PRODUCT SPECIFICATION

# Appendix A. Binary Commands

Besides the commands listed in Chapter 3, ComNav also defined some commands for special function which are presented in Appendix A.

# Appendix B. Technical Specifications

# Appendix C. Firmware Updates

Appendix B and C of this manual deliver the product specifications of ComNav OEM Board, including Physical Information, Technical Specifications and Firmware Updates, respectively.

# 1.3 CONVENTIONS

This manual employs typographic and other conventions intended to improve its ease of use.

### **GENERAL TYPOGRAPHIC CONVENTIONS**

| typewriter | Is used in the main text, including command descriptions, source code examples, |  |
|------------|---------------------------------------------------------------------------------|--|
|            | tables and lists, etc.                                                          |  |
| italic     | Highlights important notes, introduces special technical terminology, and       |  |
|            | denotes the name of device, book, etc.                                          |  |
| bold       | Is used for emphasis in descriptive lists and elsewhere, where appropriate.     |  |
| CAPITALS   | Are used for a few terms which have specific technical meanings.                |  |

### OTHER SIMPLE CONVENTIONS

The number following 0x is a hexadecimal number.

Command descriptions use the angle bracket symbols '<>' to represent obligatory parameters.

Command descriptions use the square brackets, [], to represent the optional parameters.

In tables where cells' value are missing, these cells are assumed to be reserved for future use.

### **ICON DESCRIPTIONS**



note box that contains important information you should pay attention to



usage box that contains additional information or examples to help you use your board

# 1.4 WARRANTY EXCLUSIONS AND DISCLAIMER

These warranties shall be applied only in the event and to the extent that the Products and Software are properly and correctly installed, configured, interfaced, maintained, stored, and operated in accordance with ComNav's relevant operator's manual and specifications;

The Products and Software are not modified or misused. The preceding warranties shall not apply to, and ComNav shall not be responsible for defects or performance problems resulting from:

The combination or utilization of the Product or Software with hardware or software products, information, data, systems, interfacing or devices not made, supplied or specified by ComNav;

The operation of the Product or Software under any specification other than, or in addition to, ComNav's standard specifications for its products;

The unauthorized modification or use of the Product or Software;

Damage caused by accident, lightning or other electrical discharge, fresh or salt water immersion or spray;

Normal wear and tear on consumable parts (e.g., batteries);

ComNav does not warrant or guarantee the results obtained through the use of the Product.

# 1.5 CONTACT US

Due to the uncertainty in construction of BD2, some configurations and functions of terminal units should be modified in accordance with the development of BD2, and the reference

manual should be updated at the same time, the latest version bulletin should be found in our website. If any issues are encountered, please contact us, and we are very pleased to help you to solve your problems. Because BD2 system is not totally completed yet, so some mistakes are unavoidable in the manual and relevant productions. Notice that, if these mistakes bring you inconvenience and losses, we can't afford the responsibilities.

| COMNAV TECHNOLOGY LTD. CHINA HEAD OFFICE |                                                     |                                     |
|------------------------------------------|-----------------------------------------------------|-------------------------------------|
| Address                                  | Building 2, No.618 Mid Chengliu RoadShanghai, China |                                     |
| Zip Code                                 | 201801                                              |                                     |
| Tel                                      | +86 21 39907000(China Only)                         | +86 21 64056796 (International)     |
| Fax                                      | 021 54209582                                        |                                     |
| Email                                    | comnav@sinognss.com(China Only)                     | sales@comnavtech.com(International) |
| Website                                  | www.sinognss.com (In Chinese)                       | www.comnavtech.com (In English)     |

# **CHAPTER 2. OEM BOARD OVERVIEW**

This chapter introduces the primary information of OEM cards. It contains:

- Product Summary
- Board Catalog
- Typical Board Introduction
- Memory Allocation Map

# 2.1 PRODUCT SUMMARY

### 2.1.1 The introduction to OEM board

OEM Board is the core product of ComNav. We offer a wide variety of boards for numerous precision farming applications. Our proprietary positioning technology provides users with high accuracy and a flexible solution for the most challenging applications and environments. Furthermore, OEM Boards are continually being updated with advancements in GPS correction sources and GNSS technology.

More information on ComNav products, please visit our website: <u>sinognss.com</u> (Chinese) or <u>comnavtech.com</u> (English).

## 2.1.2 ComNav GNSS Board

The ComNav GNSS board is used for a wide range of precise positioning and navigation applications. It offers centimeter-level accuracy based on RTK/OTF (Real-Time Kinematic/On-the-Fly) solutions and decimeter accuracy based on L1 C/A (Coarse/Acquisition) code phase solutions. Automatic initialization and switching between positioning modes allow for the best position solutions possible. Low latency and high update rates give the response time and accuracy required for precise dynamic applications.

Designed for reliable operation in all environments, ComNav boards provide a positioning interface to a PC, external processing device, or control system. The board can be controlled through a serial port or SPI or IIC or USB or CAN bus using a user interface. User interface lets you script the ComNav board operation with a single command. Alternatively, you can use ComNav Utilities, such as Compass Receiver Utility (CRU), to handle board configuration and controlling.

You can configure the ComNav board as an autonomous base station or as a rover board. Streamed outputs from the board provide detailed information, including the time, position, quality assurance (figure of merit) numbers, and the number of tracked satellites.

With the improvement of navigation technology, we keep modifying the architecture of ComNav board to meet latest industrial standards. In this section, hardware architectures will be described.

# 2.1.3 Preparing for the future

Some new Global Navigation Satellite Systems (GNSS) are under construction, such as Galileo system proposed by the European Union and the Beidou-2 System devised by China. ComNav fully supports this advancement in the GNSS market. We'll be sure to have Galileo compatible products available for our customers in the near future.

It is our goal to offer the most productive and competitive equipment that meet our customers' needs both now and in the future.

# 2.2 TYPICAL BOARDS

Following figure provides the block diagram of ComNav OEM boards, and more description on features, dimensions and pin definitions are documented in OEM board PS (refer to *Appendix B*).



Figure 1. OEM Block Diagram

# 2.3 MEMORY ALLOCATION MAP

In this section, it's introduced that how board's memory is distributed. The first 128 bytes are used to restore the board's information, including revision information, register code and operating settings, etc.

**Table 1.System Information Section** 

| ВҮТЕ     | DESCRIPTION                                    | NOTE                        |  |
|----------|------------------------------------------------|-----------------------------|--|
| 0-31     | Protocol Class, Board S/N, Date of production, | For example:                |  |
| 0-31     | Hardware Revision by a blank space.            | 1907 123456 2012-01-01 201  |  |
| 32-39    | Registration Code, 8 bytes                     |                             |  |
| 40~43    | Reserved                                       |                             |  |
| 44       | Additional symbol of Device type               |                             |  |
| 45       | Internal Oscillator                            |                             |  |
| 46~47    | Reserved                                       |                             |  |
| 48       | Static/Dynamic Flag                            | (0: static, 1: dynamic)     |  |
| 49       | Reserved                                       |                             |  |
| 50       | GPS Elevation Mask Angle                       |                             |  |
| 51       | Memory Size                                    | (16–8M bytes; 32–16M bytes) |  |
| 52 - 55  | Firmware Revision, 4 bytes.                    |                             |  |
| 56       | BD2 Elevation Mask Angle                       |                             |  |
| 57       | GLONASS Elevation Mask Angle                   |                             |  |
| 58       | GALIEEO Elevation Mask Angle                   |                             |  |
| 59 - 62  | Reserved                                       |                             |  |
| 63       | Differential Data Format                       | (CMR/CMR+/RTCM2/RTCM3/RTCA) |  |
| 64 - 89  | P/N Number, 16 bytes                           |                             |  |
| 90-95    | Reserved                                       |                             |  |
| 96       | Coordinate settings of Base Station            |                             |  |
| 97 - 127 | Reserved                                       |                             |  |



NOTE: Users can get S/N, P/N number and size information from the label on shell of board

# **CHAPTER 3. COMPATIBLE COMMANDS**

Except for those commands handled by CPU, ComNav board also support GNSS board commands. This chapter introduces GNSS board commands, including ComNav Board Commands and NovAtel® Commands.

Along with the release of GPS board developed by ComNav itself, the board command packets are issued.

The syntax of ComNav board command is similar to that of NovAtel® OEM board. But there also exist a little difference. Here, we introduce ComNav board command packets, and NovAtel® OEM Board Commands will be summarized in next section.

# 3.1 COMMAND FORMATS

In the OEM card, we adopt GNSS card produced by other company, like NovAtel®. So the board not only supports ComNav commands, but the board commands as well.

### **3.1.1** Format

The OEM card handles incoming and outgoing data in three different message formats: Abbreviated ASCII, ASCII, and Binary. This allows for a great deal of versatility in the way the OEMV family boards can be used. All NovAtel® commands and logs can be entered, transmitted, output or received in any of the three formats. The board also supports RTCM2.X, RTCM3.X, RTCM, CMR, and NMEA format message.

# **ASCII**

ASCII messages are readable by both the user and a computer. The structures of all ASCII messages follow the general conventions as noted here:

- 1) The lead code identifier for each record is '#'.
- 2) Each log or command is of variable length depending on amount of data and formats.
- 3) All data fields are delimited by a comma with two exceptions. **First exception** is the last header field which is followed by a ';' to denote the start of the data message. **Another one** is the last data field, which is followed by a \* to indicate end of message data.
- 4) Each log ends with a hexadecimal number preceded by an asterisk and followed by a line termination using the carriage return and line feed characters, for example,

\*1234ABCD[CR][LF]. This value is a 32-bit CRC of all bytes in the log, excluding the'#' identifier and the asterisk preceding the four checksum digits.

# **Example**

### **Abbreviated ASCII**

This message format is designed to make the entering and viewing of commands and logs by the user as simple as possible. The data is represented as simple ASCII characters separated by spaces or commas and arranged in an easy to understand fashion. There is also no 32-bit CRC for error detection because it is meant for viewing by the user.

# **Example Command**

```
log version
```

# **Response Log**

```
<VERSION COM1 0 60.0 UNKNOWN 0 0.000 00000000 0000 1114
< 1
<    GPSCARD "S2002" "00902165" "CARD-501AA-22" "1.10A-1.10A" "1.000"
"2012/May/ 5" "18:18:52"</pre>
```

As you can see the array of 3 logs are offset from the left hand side and start with '<'.

### **Binary**

The binary format is similar to that of ComNav format.

### **Command Format**

```
Cmd param1 ... paramN\r\n
```

The sending message is a simple ASCII string in which characters are separated by **spaces** and arranged in an easy to understand fashion. The first character is command name. And don't miss the tail, "\r\n".

# **Reply Message**

Except LOG command, other command's response is:

```
If succeed: "OK! \r\n Command Accepted!"
If failed: "Error! \r\n Unidentifiable Command!"
```

# 3.2 COMMAND REFERENCE

# 3.2.1 ASSIGN Assign a channel to a PRN

### **Format**

```
ASSIGN <channel> <prn>
```

# Description

This command may be used to aid in the initial acquisition of a satellite by allowing you to override the automatic satellite/channel assignment and reacquisition processes with manual instructions. The command specifies that the indicated tracking channel search for a specified satellite.

### **Parameters**

channel Channel number (0~11)

*prn* Satellite number (GPS:1~32,BDS:141~203,GLO:38~61,GAL:71~94, QZSS: 131-140)

# **Example**

```
ASSIGN 2 19
```

The above example shows that channel 2 is acquiring satellite PRN 19.

### 3.2.2 BD2ECUTOFF Set BD2 satellite elevation cut-off

### **Format**

```
BD2ECUTOFF <cutoff-angle>
```

# Description

This command sets the elevation cut-off angle for tracked BD2 satellites.

# **Parameters**

cutoff-angle the value of bd2 cutoff-angle(-90~90 degrees)

# **Example**

BD2ECUTOFF 10

# 3.2.3 CLOCKOFFSET Adjust for delay in 1 PPS output

### **Format**

CLOCKOFFSET <delay>

# Description

This command can be used to adjust PPS output delay in nanoseconds. In timing situations, the time delay is not a fix value attribute to two factors:

- 1. Signal path from the antenna to the RF, for example, using a cable with 10ns delay should import a 10ns extra delay in PPS output
- 2. A signal process path delay from the RF to the digital sections, in types of different circuit boards and signal processing method, a little different delay exists;

Major common delay has been compensated by default setting, but a residual delay should be adjusted by user according to different antenna and cables.

### **Parameters**

delay a positive value indicates a delay output relative to current PPS, a negative value indicates a forward output.

# **Example**

CLOCKOFFSET -200

The above command set a forward 200 nanoseconds PPS output relative to current output.

### 3.2.4 COM Set baud rate

# **Format**

COM <port> <baudrate>

# Description

This command permits you to set the baud rate of COM port.

### **Parameters**

port refer to Table 2.

baudrate valid value refer to Table 3. Default baudrate:115200.

# **Example**

COM COM1 9600

**Table 2.Port ID** 



**Table 3. Baud Rate** 

| BAUDRATE |        |  |
|----------|--------|--|
| 1200     | 57600  |  |
| 4800     | 115200 |  |
| 9600     | 230400 |  |
| 19200    | 460800 |  |
| 38400    | 921600 |  |

### 3.2.5 DGPSTXID DGPS transmit ID

### **Format**

```
DGPSTXID <type> <ID>
```

# Description

This command sets the station ID value for the receiver when it is transmitting corrections. This allows for the easy identification of which base station was the source of the data.

For example, if you want to compare RTCM and RTCMV3 corrections, you would be easily able to identify their base stations by first setting their respective DGPSTXID values.

### Parameter:

type differential data format such as RTCMV3

ID reference station ID

# Example

DGPSTXID RTCMV3 10

This command set reference station ID as 10 in RTCMV3 format.

# 3.2.6 ECUTOFF Set satellite elevation cut-off angle

### **Format**

```
ECUTOFF <cutoff-angle>
```

### Description

This command sets the elevation cut-off angle for tracked satellites. The board does not start automatically searching for a satellite until it rises above the cut-off angle. Tracked satellites that fall below the cut-off angle are no longer tracked unless they were manually assigned (see 3.2.1 ASSIGN command).

### **Parameters**

cutoff-angle the value of cut-off angle (-90 ~ 90 degrees).

# **Example**

ECUTOFF 10.0



This command permits a negative cut-off angle; it could be used in these situation:

- 1. The antenna is at a high altitude, and thus can look below the local horizon.
- 2. Satellites are visible below the horizon due to atmospheric refraction.

# 3.2.7 FIX Constrain to fixed height and position

### **Format**

```
FIX POSITION < lat> < lon> < hgt>
```

# Description

This command fixes three parameters of the board: latitude, longitude, height. For various applications, fixing these values can assist in improving acquisition times and accuracy of position or corrections.

### **Parameters**

lat latitude (-90 to 90 degrees).

lon longitude in degrees. (-180 to 180 degrees)

hgt mean sea level (MSL) height (-1,000 to 20,000,000 m).

# **Example**

FIX POSITION 30.0 150.0 50

# 3.2.8 FRESET Reset to the factory default

### **Format**

FRESET

# Description

This command is used to restore factory settings, clear all message output and parameter settings, clear all saved satellite ephemeris and almanac, and the approximate coordinates of the receiver

### **Example**

FRESET

# 3.2.9 FLYCONTROL Detect flying point in dual antenna mode

### **Format**

FLYCONTROL < parameter1> < parameter2>

# Description

This command is used to detect the flying point in dual antenna mode. When the error in the horizontal or vertical direction exceeds the threshold and the duration exceeds 2s, RTK will be automatically initialized to suppress continuous flying points.

### **Parameters**

parameter1 threshold for horizontal, default value=18cm

parameter2 threshold for vertical, default value=30cm

# **Example**

FLYCONTROL 18 30

### 3.2.10 HEADINGOFFSET

Add heading and pitch offset values

### **Format**

HEADINGOFFSET <headingoffsetindeg> <pitchoffsetindeg>

### Description

This command is used to add an offset in degree in the heading and pitch values of the HEADING, GPHDT, GPNAV, GPTRA, GPYBM and PTNL, AVR logs.

Both heading offset and pitch offset have the default values of 0 degree.

### **Parameters**

Headingoffsetindeg  $-180.0 \sim +180.0$ , default value = 0.0

*Pitchoffsetindeg* -90.0 ~ +90.0, default value = 0.0

# **Example**

HEADINGOFFSET 10 10

# 3.2.11 INTERFACEMODE Set receive or transmit modes for ports

# **Format**

INTERFACEMODE <port> <input-mode> <output-mode> <swith>

# Description

This command configures a port to detect data or output data in specified mode. **Currently output-mode is not affected by command and always in generic mode**.

### **Parameters**

port refer to Table 4

input-mode refer to Tabble 4.

output-mode always be GENERIC mode, refer to Table 4

swith on/off

# **Example**

INTERFACEMODE COM1 RTCMV3 RTCMV3

**Table 4. INTERFACEMODE** 

| MODE NAME     | DESCRIPTION                | SUPPORT |
|---------------|----------------------------|---------|
| NONE          | The port is disabled.      | Υ       |
| NOVATEL       | NovAtel® commands and logs | Υ       |
| RTCM          | RTCM corrections           | Υ       |
| RTCA          | RTCA corrections           | N       |
| CMR           | CMR corrections            | Υ       |
| OMNISTAR      | OMNISTAR corrections       | N       |
| IMU           | IMU information            | N       |
| RTCMNOCR      | RTCM with no CR/LF         | N       |
| CDGPS         | GPS *C code                | N       |
| TCOM1         |                            |         |
| TCOM2         | Tuna mada                  | N       |
| тсомз         | Tune mode                  |         |
| TAUX          |                            |         |
| RTCMV3        | RTCMV3 corrections         | Υ       |
| NOVATELBINARY | NovAtel® binary messages   | Υ       |

| MODE NAME | DESCRIPTION                             | SUPPORT |
|-----------|-----------------------------------------|---------|
| GENERIC   | No limit                                | Υ       |
| AUTO      | RTCM, RTCMV3 and CMR are auto switched. | Υ       |
| COMPASS   | ComNav commands and logs                | Υ       |
| NEMA      | NEMA correction                         | Υ       |

# 3.2.12 LOCKOUT Prevent the board from using a satellite

### **Format**

LOCKOUT <prn>

# Description

This command prevents the board from using a satellite by de-weighting its range in the solution computations. Note that the LOCKOUT command does not prevent the board from tracking an undesirable satellite. This command must be repeated for each satellite to be locked out.

# **Parameters**

*prn* PR number of satellite (refer to Table 5).

# **Example**

LOCKOUT 10

Table 5. GNSS Name and Corresponding PRN

| GNSS    | PRN     |
|---------|---------|
| GPS     | 1~32    |
| GLONASS | 38~61   |
| GALILEO | 71~203  |
| BDS     | 141~177 |
| QZSS    | 131~140 |

# 3.2.13 LOCKOUTSYSTEM Prevent the receiver from using a system

### **Format**

LOCKOUTSYSTEM <system>

# Description

This command prevents the receiver from using satellites in the specified system in the solution computation.

### **Parameters**

system the name of a specified GNSS system, refer to Table 6

### **Example**

LOCKOUTSYSTEM BD2

Table 6. GNSS System

| GNSS SYSTEM |
|-------------|
| GPS         |
| BD2         |
| GLONASS     |
| GALILEO     |
| BD3         |
| QZSS        |

# 3.2.14 LOG Request logs from board

# **Format**

LOG <message-type> [type-trigger] [period] [offset]

# Description

The board is capable of generating many different logs. Supported log messages are listed in

Table 15. Predefined Log Message ~

Table 18. Other Message. Chapter 4 will discuss the conventions and definitions on these messages.

# **Parameters**

type Choose the data types you want to generate.

trigger Choose log type triggers, refer to Table 19

period The data for synchronous logs is generated on a regular schedule.

period specify the time interval.

offset Used for period (ONTIME trigger) in seconds.

To log data at 1 second, after every minute, set the period to 60 and the offset to 1. A valid value is any integer (whole number) smaller than the period. These decimal values, on their own, are also valid: 0.1, 0.2, 0.25 or 0.5, as well as any multiple of the maximum logging rate defined by the receiver model. Values less than 1ms will be considered an offset of 0 ms. The offset cannot be smaller than the minimum measurement period supported by the model.

# **Example**

LOG VERSIONA

The above example shows the ASCII data of board version is logging to the appointed COM port.

# 3.2.15 MAGVAR Set a magnetic variation correction

# **Format**

```
MAGVAR <type> [correction [std dev]]
```

# Description

The receiver computes directions referenced to True North. Use this command (magnetic variation correction) if you intend to navigate in agreement with magnetic compass bearings. The receiver uses the magnetic variation correction 0 degree if you don't set any magnetic correction.

### **Parameters**

```
type 'AUTO' (default) or 'CORRECTION', refer to Table 7 correction As type equals to 'CORRECTION', magnitude of correction (\pm180 degrees) std dev Standard deviation of correction (\pm180 degrees, default = 0)
```

### **Example**

MAGVAR AUTO

MAGVAR CORRECTION 10 0

Table 7. MAGVAR Type

| ТҮРЕ       | DESCRIPTION                                         |
|------------|-----------------------------------------------------|
| AUTO       | Use IGRF corrections according to receiver position |
| CORRECTION | Use the value inputted                              |

# 3.2.16 MARKCONTROL Mark message control

### **Format**

MARKCONTROL signal switch [polarity] [timebias [timeguard]]

# Description

The *signal* only supports the key words "mark1"; *switch* supports the key words "enable" and "disable"; *polarity* supports the key words "positive" and "negative", which separately represent "positive pulse" and "negative pulse".

Timebias: A constant time bias in nanoseconds can be applied to each event pulse. Typically this is used to account for a transmission delay. Default=0.

Timegaurd: The time guard specifies the minimum number of milliseconds between pulses. This is used to coarsely filter the input pulses. Default=0.

The settings can be saved by *saveconfig* command and the markcontrol status can be checked by *log sysconfig* command.

### Example

markcontrol mark1 enable negative 0 0

# 3.2.17 MAXVECLENERR Set the directional flypoint detection threshold

### **Format**

MAXVECLENERR <paramater>

### Description

This instruction is used to set the threshold of baseline difference during flypoint detection in directional mode. That is, if the difference between the actual calculated baseline length and

the set baseline length is larger than the threshold value, it is considered to be a directional flying point.

### **Parameters**

paramater The threshold, The unit is cm and the default value is 8 cm.

# Example

MAXVECLENERR 12

# 3.2.18 PPSCONTROL Control the PPS output style

### **Format**

PPSCONTROL <switch><polarity><period><pulse-width>

# Description

This command can be used to set the polarity, period and pulse-width of PPS output. The PPS can't be disabled and the update rate can be up to 10 Hz.

### **Parameters**

switch 'enable' or 'disable', the switch should be set to 'enable', and 'disable' is not allowed.

polarity 'positive' and 'negative', if 'positive', it should be a high level pulse, a low level

pulse correspond to a 'negative' mode.

period in seconds, 'period' can't be configured, it is constantly 1 second temporary.

*pulse-width* in microseconds, pulse-width should be less than half of period.

# **Example**

PPSCONTROL ENABLE POSITIVE 1 1000

# 3.2.19 RESET Perform a hardware reset

# **Format**

RESET

# Description

This command performs a hardware reset. Following a RESET command, the board initiates a cold-start boot up.

# Example

RESET

# 3.2.20 RTKCOMMAND Reset or set the RTK filter to its defaults

### **Format**

RTKCOMMAND <action>

# Description

This command provides the ability to reset the RTK filter and clear any set RTK parameters. The RESET parameter causes the advance RTK algorithm to undergo a complete reset, forcing the system to restart the ambiguity resolution calculations.

### **Parameters**

action RESET

### Example

RTKCOMMAND RESET

# 3.2.21 APPSCENE Set application scene

### **Format**

SET APPSCENE <mode>

### Description

This command can be used to set application mode. In different mode, RTK engine should treat the observation data in different style to promote the performance of RTK engine.

# **Parameters**

*mode* survey/robot/car/air/space.



| Car   |
|-------|
| Air   |
| Space |

### **Example**

SET APPSCENE SURVEY

# 3.2.22 RTKFIXHOLDTIME Set maximum age of RTK fixed data

#### **Format**

RTKFIXHOLDTIME <time-delay>

### Description

This command is used to set the maximum age of RTK fixed data to use when operating as a rover station. RTK fixed data received that is older than the specified time is ignored.

#### **Parameters**

time-delay less than 200s and more than 5s, default value is 20s

#### **Example**

RTKFIXHOLDTIME 15

# 3.2.23 RTKOBSMODE Set the observation mode of rover receiver

# **Format**

RTKOBSMODE <mode>

#### Description

This command is used to set the observation mode of rover receiver. In other words, using this command can set which frequency would be involved in the RTK computation of rover receiver.

### **Parameters**

mode

- = 'AUTO': switch observation mode (RTK or RTD) automatically according to differential data type received by receiver
- = Integer number (Manual Mode), its value can be one of the followings:

#### Table 8. RTKOBSMODE Manual Mode

| MANUAL MODE | DESCRIPTION                                                                                                                                                                                           |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0           | Pseudoranges (PRs) and Carrier Phases (CPs) from GPS/BDS/GLONASS all frequencies involved; default mode. [Supporting RTCM 3.x PR&CPs correction related Message Types, RTCM 2.3 Message Types 18/19.] |  |  |
| 1           | PRs and CPs from GPS L1, BDS B1 and GLONASS G1C involved                                                                                                                                              |  |  |
| 2           | Reserved                                                                                                                                                                                              |  |  |
| 3           | PRs from GPS L1 (currently supported), BDS B1 (currently NA) and GLONASS G1C (currently NA) involved; [Supporting RTCM 2.3 Message Type 1]                                                            |  |  |
| 4           | Reserved                                                                                                                                                                                              |  |  |
| 5           | PRs and CPs from GPS L1/L2 and BDS B1/B3.                                                                                                                                                             |  |  |



- 1. RTCM 2.3 Message Type 3 is not affected by this command.
- 2. As for *manual mode 3*, this command takes higher priority of RTKSOLUTION, which means that:

As rover receiver is set a different observation mode with this command, it's not necessary to send a RTKSOLUTION command to change rover receiver's solution mode, for its solution mode will be adjusted automatically per its observation mode.

## 3.2.24 RTKREFMODE Set the RTK ref-station position mode

#### **Format**

RTKREFMODE <mode>

# Description

This command is used to configure rover station to process position of reference station as moving base station RTK mode or fixed base station RTK.

#### **Parameters**

mode 0: fixed base station RTK; 1: moving base station RTK;

# **Example**

RTKREFMODE 1

# 3.2.25 RTKSOLUTION

Set RTK solution mode

#### **Format**

RTKSOLUTION < mode>

# Description

This command provides a method to configure RTK resolution engine, which is used by Rover RTK receiver. In some situations, only RTD is needed to get a quicker initiation process and a not so accurate result, this command can be used to configure RTK engine to RTD mode.

#### **Parameters**

mode integer number, which could be one of the followings:0: Auto;

2: Extra-wide;

3: Float;

1: RTD;

# **Example**

RTKSOLUTION 1

#### 3.2.26 RTKSOURCE Set RTK correction source

#### **Format**

```
RTKSOURCE <type> [stn id]
```

# Description

This command is used to identify from which base station to accept RTK (RTCM, RTCMV3, RTCA, CMR and OmniSTAR (HP/XP)) differential corrections. This is useful when the receiver is receiving corrections from multiple base stations.

# **Parameters**

type DGNSS type string name, default value is 'AUTO', refer to

Table 9. DGNSS Type. If ANY (Default) chosen, the receiver ignores the ID string. Specify a type when using base station IDs.

stn id Base station ID

Table 9. DGNSS Type

| ID | TYPE STRING | DESCRIPTION                                               |  |
|----|-------------|-----------------------------------------------------------|--|
| 0  | RTCM        | RTCM ID: 0 <= RTCM station ID <=1023 or ANY               |  |
| 13 | RTCMV3      | RTCM Version 3.0 ID: 0 <= RTCMV3 station ID <=4095 or ANY |  |

# **Example**

```
RTKSOURCE AUTO ANY

RTKSOURCE RTCM ANY

// Specify the format before specifying base station ID

RTKSOURCE RTCMV3 5

RTKSOURCE RTCM 4
```

# 3.2.27 RTKTIMEOUT Set maximum age of RTK data

## **Format**

RTKTIMEOUT <time-delay>

## Description

This command is used to set the maximum age of RTK data to use when operating as a rover station. RTK data received that is older than the specified time is ignored.

#### **Parameters**

time-delay less than 200s, default 200s

# **Example**

RTKTIMEOUT 30

# 3.2.28 RTKQUALITYLEVEL Set RTK quality level

#### **Format**

RTKQUALITYLEVEL <normal/quick/extra-safe>

## Description

Use this command to select an RTK quality mode.

#### **Parameters**

normal/extra-safe/quick normal RTK/extra-safe RTK/quick RTK

| Efficiency first, and the fixed rate of the fixed solution is guaranteed as far as |
|------------------------------------------------------------------------------------|
| possible.                                                                          |
|                                                                                    |
| Quality first, ensuring the reliability of the fixed solution as much as possible. |
| quilibrium mode.                                                                   |
| )                                                                                  |

# **Example**

Rtkqualitylevel normal

Notice: for the geomatics application, the default setting: FFT+QUICK mode For the attitude determination application, the setting: LAND+QUICK mode.

# 3.2.29 SAVECONFIG Save current configuration

#### **Format**

SAVECONFIG

# Description

This command saves the user's present configuration, including the current log settings (type, whether output testing data, etc.), FIX settings, baud rate, and so on, refer to Table 10.

## Example

SAVECONFIG

**Table 10. Saved Configuration** 

| CONFIGURATION | DESCRIPTION                         |  |
|---------------|-------------------------------------|--|
| LOG           | All logs in all ports are saved     |  |
| FIX           | Just fix position is saved          |  |
| СОМ           | baud rates of all ports are saved   |  |
| ECUTOFF       | Cutoff-angles include BD2 are saved |  |
| PJKPARA       | Six parameters of PJK are saved     |  |
| PPSOFFSET     | configured offset is saved          |  |

| INTERFACEMODE | Ports mode status of COM1, COM2 and COM3 |
|---------------|------------------------------------------|
| OTHER         |                                          |
| CONFIGURATION |                                          |

#### 3.2.30 SBASCONTROL

# Control the usage of SBAS corrections

#### **Format**

SET PVTOBSMODE SBAS
SET SBASSYS <SBASTYPE>

### Description

This command is used to dictate how the receiver tracks and uses correction data from one of Satellite Based Augmentation Systems (SBAS). To enable the position solution corrections, issue the SBASCONTROL ENABLE command. The receiver does not, by default, attempt to track or use any SBAS signals satellites unless told to do so by the SBASCONTROL command.

When using the SBASCONTROL command to direct the receiver to use a specific correction type, the receiver begins to search for and track the relevant SBAS GEO PRNs for that correction type only.

The receiver can be forced to track a specific PRN using the ASSIGN command. The receiver can also be forced to use the corrections from a specific SBAS PRN using the SBASCONTROL command.

Tracked SBAS PRNs have been presented in log message GPGSV, SATMSG and RANGECMP.

### **Parameters**

SBASTYPE refer to Table 11.

**Table 11. SBASTYPE** 

| KEYWORD | ID | DESCRIPTION                      |
|---------|----|----------------------------------|
| NONE    | 0  | Does not use any SBAS satellites |
| WAAS    | 3  | Uses only WAAS satellites        |
| EGNOS   | 4  | Uses only EGNOS satellites       |
| MSAS    | 5  | Uses only MSAS satellites        |
| GAGAN   | 6  | Uses only GAGAN satellites       |

prn = 0: Receiver uses any PRN (default)

= 120-138: Receiver uses SBAS corrections only from this PRN

## **Example**

```
SET PVTOBSMODE SBAS
SET SBASSYS MSAS
```

# 3.2.31 INSCONTROL Set onboard IMU

#### **Format**

```
INSCONTROL <switch>
```

# Description

Use this command to enable/disable onboard IMU.

#### **Parameters**

| Switch | "enable" active onboard IMU.    |
|--------|---------------------------------|
|        | "disbale" deactive onboard IMU. |

## **Example**

IMSCONTROL ENABLE

# 3.2.32 SET configure settings

#### **Format**

```
SET <type> <param1> <param2> ...
```

# Description

This command should be used to configure some special settings such as PJK parameters, debug information output, and so on.

#### **Parameters**

type refer to Table 12. SET Type and Parameter.

param refer to Table 12. SET Type and Parameter.

## **Example**

```
SET DIFFMATCHMODE synch
SET STATIC on
SET PJKPARA 6378137.0 298.257223563 0 120 0 500000
SET WORKMODE timing
SET TIMINGREFXYZ -2844870.0 4662776.0 3282481.0
SET BD2PVTOBS B2I
SET CPUFREQ 624
SET PVTFREQ 5
SET RTKFREQ 5
SET GPSL2CODETYPE codetype
SET GLONASSCODETYPE <u>codetype</u>
SET AUTOSENDFILE switch period delay
SET EXTERNAL COORD ON
SET CYCLESAVE switcher fileperiod sampleint eraseint
SET STATIONMODE mode portA portB interval
SET EMMC ON/OFF
SET BD2PVTMAXAODC XX
SET BD2PVTMAXAODE XXSET PROJECTIONTYPE Param1
SET CP SMOOTHER aa bb
SET NMEAMSGFORMAT <KEYWORD>
SET GLOPRBIAS gx p1 p2 ..... p14
SET GLOCHANPRBIAS gx chan p
SET BLOPRBIAS DEFAULT
SET GPS OFF
SET SIGNAL L1CA/L2C/L2P/L5C/L1C ON/OFF
SET SIGNAL L2P OFF
SET SIGNAL B1C/B2a OFF
```

**Table 12. SET Type and Parameter** 

| SYNTAX                                                                                                           | PARAMETER                                                                                                                                                                                                    | DESCRIPTION                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SET DIFFMATCHMODE Param1                                                                                         | Param1: SYNCH or ASYNCH                                                                                                                                                                                      | Set RTK in synchronous mode or asynchronous mode                                                                                                                                                                             |
| SET ATOM Param1                                                                                                  | Param1:  ON = Enable atom clock  OFF = Disable atom clock                                                                                                                                                    |                                                                                                                                                                                                                              |
| SET ANTHIGH Param1                                                                                               | Param1 is known antenna height of a receiver                                                                                                                                                                 |                                                                                                                                                                                                                              |
| SET PJKPARA Param1 Param6                                                                                        | Param1 Param6: A: the long axle of the earth 1/F: F is the Earth flat rate B0: reference latitude(in degree) L0: reference longitude(in degree) N0: reference north coordinate E0: reference east coordinate | Set PJK parameters in coordinate conversion. Their default settings are:  A: 6378137.0;  F: 1.0 / 298.257223563;  B0: 0;  L0: 120 / 180 * PI  N0: 0  E0: 500000                                                              |
| SET TIMINGREFXYZ         Param1          Param1 Param3:           Param3         X (WGS84), Y (WGS84), Z (WGS84) |                                                                                                                                                                                                              | In timing mode, this command is used to set reference station coordinates as x, y and z in WGS84 coordination frame.                                                                                                         |
| SET WORKMODE Param1                                                                                              | Param1: PVT or TIMING                                                                                                                                                                                        | Set receiver work-mode: PVT mode or Timing Mode. Following a command set work-mode to timing mode, reference station coordinates should be set using command below. If switching work-mode from PVT to TIMING, two commands: |

ComNav Technology Ltd. 36 CNT-OEM-RM001, Rev 1.5

| SYNTAX               | PARAMETER                                                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                                | SET WORKMODE TIMING  SET TIMINGREFXYZ X Y Z  should be needed. If switching work-mode from TIMING to PVT, only one command is needed:  SET WORKMODE PVT                                                                                                                                                                                                                                                                               |
| SET BD2PVTOBS Param1 | Param1: B1I, B2I or B3I, AUTO                                  | This command could be used to choose signal of BD2 in PVT computation.  B1I/B2I/B3I: In PVT computation, observations, ephemeris and almanac are extracted from B1I, B2I or B3I.  AUTO: In PVT computation, observations, ephemeris and almanac are extracted from one of signals B1I, B2I and B3I, according to the quantity of each singal's observables. The signal with more observables will be used in PVT computation firstly. |
| SET PVTFREQ Param1   | Param1 is valid PVT frequency in Hz: 1, 2, 5(default), 10, 20. | ComNav board work in 5hz PVT in default setting, if a higher or lower PVT update frequency is needed, this command could configure the PVT update rate at most 20hz. But the calculation ability of CPU is not unlimited, in 5hz PVT, RTK could work on 5hz; if a 10hz PVT and 10hz RTK are needed at the same time, a higher CUP frequency at least 624Mhz is necessary.                                                             |
| SET RTKFREQ Param1   | Param1 is valid RTK frequency in                               | Notice: please keep RTK frequency is not higher than PVT frequency.                                                                                                                                                                                                                                                                                                                                                                   |

ComNav Technology Ltd. 37 CNT-OEM-RM001, Rev 1.5

| SYNTAX                                                                                 | PARAMETER                                                                                            | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                        | Hz:<br>1, 2, 5(default), 10.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                               |
| SET BASELINELENGTH Param1                                                              | Param1 is a fixed baseline length of a rover (>0)                                                    |                                                                                                                                                                                                                                                                                                                                                                                               |
| SET MODIFYCPTOPR Param1                                                                | Param1:  ON = to carry out the modulation  OFF = no modulation (default)                             | Invoke a modulation manipulation on Carrier Phase, to make CP's values close to those of corresponding Pseudorange.                                                                                                                                                                                                                                                                           |
| SET CPSMOOTHPR Param1 [Param2] [Param3]                                                | Param1: smooth enable switch, ON/OFF Param2: smoothing time contant Param3: Tracking time threshhold | Param1: ON = enable Carrier Phase to smooth Pseudorange [Default]  OFF = Disable Carrier Phase to smooth Pseudorange  Valid range of Param2 is 10 ~ 200 seconds. Its default value is 50s.  Valid range of Param3 is 0 ~ 60 seconds. Its default value is 15s. After one satellite was tracked for a time period (Param3), receiver starts to use Carrier Phase to smooth the satellite's PR. |
| SET RTKOBSMODE Param1                                                                  | Param1 is RTK Obs mode                                                                               | AUTO, MANUAL [Default]  For more information on the mode, refer to 3.2.23.                                                                                                                                                                                                                                                                                                                    |
| SET VECTORLENGTH Param1                                                                | Param1 is a vector length of a rover (>0)                                                            |                                                                                                                                                                                                                                                                                                                                                                                               |
| Param1 (codetype) is:  pcode: P code  ccode: C code  auto: Track the L2C automatically |                                                                                                      | <ul> <li>a) AUTO, MANUAL[Default]</li> <li>code type: Track L2C signal if this satellite has the L2C signals; track L2P if not.</li> <li>b) The setting status can be checked by the command: log codetype</li> </ul>                                                                                                                                                                         |

ComNav Technology Ltd. 38 CNT-OEM-RM001, Rev 1.5

Chapter 3. Compatible Commands

| SYNTAX                                    | PARAMETER                                                                                                                                                                                                                                                | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                                                                                                                                                                                                                                                          | c) Example: set gpsl2codetype auto  For the GPS L2 automatically choose the PRN code type to track.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SET GLONASSCODETYPE  Param1               | Param1 (codetype) is: pcode: P code ccode: C code Auto: N/A                                                                                                                                                                                              | <ul> <li>a) Default mode: pcode</li> <li>b) Example: set glonasscodetype ccode;</li> <li>In this command, the PRN tracking code type is: C code.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |
| SET EXTERNALCOORD ON                      | Externalcoord:the external coordinates.                                                                                                                                                                                                                  | This function uses the external coordinates as base station position and send these coordinates for differential operation. This function can be inquired by the command <i>log sysconfig</i> , and can be saved by <i>saveconfig</i> .                                                                                                                                                                                                                                                                                                                        |
| SET STATIONMODE mode portA portB interval | Mode: set the station style, the parameter is string. "master" is the base station, "slave" is the rover station.  PortA: set the communication port for receiving the differential data from the base station. The parameter is "com1", "com2", "com3". | (1)example: set stationmode master com2 com3 0.2  In this command, the OEM board is set as master station. It receives the correction data from com2 and sending out the correction message to the rover station from com3; the message sending interval is 0.2 seconds.  Additionally, after receiving the command as in the example, the OEM board will automatically check the current frequencies of the PVT and RTK according to the <i>interval</i> parameter. The frequencies will be tuned automatically if the PVT/RTK frequencies are lower than the |

ComNav Technology Ltd. 39 CNT-OEM-RM001, Rev 1.5

| SYNTAX | PARAMETER                           | DESCRIPTION                                                               |
|--------|-------------------------------------|---------------------------------------------------------------------------|
|        | PortB: set the communication port   | message sending frequency.                                                |
|        | for sending differential messages   | For example, assuming the PVT/RTK frequency is 5 Hz, while                |
|        | from base station. The parameter is | receiving the command "set stationmode master com2 com3 0.1", the         |
|        | "com1", "com2", "com3".             | PVT/RTK frequencies are set with 10 Hz. However, the frequency of         |
|        | Interval: set the time interval for | the CPU cannot be set automatically. If needed, please set manually.      |
|        | sending the differential messages.  | The command as former example will execute the following                  |
|        | The parameter is float pointing.    | commands internally:                                                      |
|        |                                     | Set pvtfreq 5                                                             |
|        |                                     | Set rtkfreq 5                                                             |
|        |                                     | Interfacemode com2 auto auto on                                           |
|        |                                     | Interfacemode com3 auto auto on                                           |
|        |                                     | Log com3 rtcmcompassb ontime 0.2                                          |
|        |                                     | (2) set stationmode slave com3 com3 0.2                                   |
|        |                                     | In the above example, the OEM board is set as slave station, where the    |
|        |                                     | messages from the master are received from com3 and attitude results      |
|        |                                     | are sent back to com3. 0.2 is the interval time which is used to check if |
|        |                                     | the PVT and RTK frequencies are under the requirement. The function       |
|        |                                     | is same as the master station.                                            |
|        |                                     | The above command is realized by the following commands:                  |
|        |                                     | set pvtfreq 5                                                             |
|        |                                     | set rtkfreq 5                                                             |
|        |                                     | interfacemode com3 auto auto on                                           |

| SYNTAX                    | PARAMETER                        | DESCRIPTION                                                            |
|---------------------------|----------------------------------|------------------------------------------------------------------------|
|                           |                                  | log com3 rtcmcompass3b ontime 0.2                                      |
|                           |                                  | set diffmatchmode synch                                                |
|                           |                                  | rtkrefmode 1                                                           |
|                           |                                  | The adding commands are used for the setting related to the attitude   |
|                           |                                  | determination. For the requirement from the master station, it needs   |
|                           |                                  | to be set additionally. For example, the command settings for a master |
|                           |                                  | station are as:                                                        |
|                           |                                  | set stationmode master com2 com3 0.2                                   |
|                           |                                  | log gpgga ontime 0.2                                                   |
|                           |                                  | log gptra ontime 0.2                                                   |
|                           |                                  | for the slave station:                                                 |
|                           |                                  | set stationmode master com3 com3 0.2.                                  |
|                           |                                  | This command is used to set the AODC value for the Beidou PVT          |
| SET BD2PVTMAXAODC XX      | XX: is the AODC value            | solution. The default value is: 1. It can be inquired and saved in the |
|                           |                                  | sysconfig command.                                                     |
|                           |                                  | This command is used to set the AODE value for the Beidou PVT          |
| SET BD2PVTMAXAODE XX      | XX: is the AODE value            | solution. The default value is: 2. It can be inquired and saved in the |
|                           |                                  | sysconfig command.                                                     |
|                           | Param1 can be set with gauss and | Gauss: means setting the projection type as Gauss-Boaga projection     |
| SET PROJECTIONTYPE Param1 | utm.                             | type.                                                                  |
|                           |                                  | utm: universal transverse Mercator projection.                         |

ComNav Technology Ltd. 41 CNT-OEM-RM001, Rev 1.5

| SYNTAX                          | PARAMETER                                                                                                                                    | DESCRIPTION                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Set GLOCHANPRBIAS gx chan p     | gx: same as in above.  chan: RF channel number. Value is  from -7 ~ 6 with respect to the 14  channels of GLONASS.  p: corrections as above. | Example:  Set glochanprbias 1 -6 300  The example means set the G1 frequency in -6 channel of GLONASS with 300mm.                                                                                                                                              |
| Set GLOPRBIAS gx p1 p2p14       | Gx: GLONASS frequency index, valid value=1, 2 P1: channel 1 frequency correction P14: +6 RF settings, unit is mm                             | Gx=1 rfer to G1 Gx=2 refer to G2 Example: set gloprbias 1 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 set gloprbias 2 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 Set both corrections of G1 and G2 in all channels to be 0. |
| set relayrtcmv3 on/off comX     | on/off:switch<br>comX:serial port                                                                                                            | Forwarding RTCMV3 differential data                                                                                                                                                                                                                            |
| set drtimeout XXX               | GNSS+IMU Calculation Duration                                                                                                                | Set the calculation time of the GNSS+IMU solution. After the satellite signal loses lock and exceeds the set threshold, the board will exit the combined solution.                                                                                             |
| set imuaxestype 1/2/3/4/5/6/7/8 | 1: The front of the OEM module faces up, the y-axis faces the front of the vehicle.                                                          | Set axes of OEM module                                                                                                                                                                                                                                         |

ComNav Technology Ltd. 42 CNT-OEM-RM001, Rev 1.5

| SYNTAX                 | PARAMETER                           | DESCRIPTION                     |
|------------------------|-------------------------------------|---------------------------------|
|                        | 2: Axes 1 rotates 90 degrees        |                                 |
|                        | counterclockwise horizontally.      |                                 |
|                        | 3: Axes 1 rotates 180 degrees       |                                 |
|                        | counterclockwise horizontally.      |                                 |
|                        | 4: Axes 1 rotates 180 degrees       |                                 |
|                        | counterclockwise horizontally.      |                                 |
|                        | 5: The front of the K8 module faces |                                 |
|                        | down, the y-axis faces the front of |                                 |
|                        | the vehicle.                        |                                 |
|                        | 6: Axes 5 rotates 90 degrees        |                                 |
|                        | counterclockwise horizontally.      |                                 |
|                        | 7: Axes 5 rotates 180 degrees       |                                 |
|                        | counterclockwise horizontally.      |                                 |
|                        | 8: Axes 5 rotates 270 degrees       |                                 |
|                        | counterclockwise horizontally.      |                                 |
|                        | Param1:                             |                                 |
|                        | 0: disable anti-jamming, default    |                                 |
| SET CWI AUTO Param1    | 1: active anti-jamming, channel 1   | Setup anti-jamming mode as auto |
| JET CWI ACTO F GIGIIII | 2: active anti-jamming, channel 2   | Secup and Jamining mode as auto |
|                        | 3: active anti-jamming, channel 1   |                                 |
|                        | and 2                               |                                 |

ComNav Technology Ltd. 43 CNT-OEM-RM001, Rev 1.5

| SYNTAX                       | PARAMETER                                  | DESCRIPTION                      |              |  |
|------------------------------|--------------------------------------------|----------------------------------|--------------|--|
|                              |                                            | Setup anti-jamming mode as manua | al           |  |
|                              |                                            | Channel id                       | frequency    |  |
|                              | Param1:                                    | 0                                | L5/E5a/B2a   |  |
|                              | Channel ID, refer to right table.          | 1                                | B2/E5b/B2b   |  |
| SET CWI MANUAL Param1 Param2 | Param2:                                    | 2                                | B1           |  |
| Param3                       | 0: CWI channel 1, default 1: CWI channel 2 | 3                                | L1CA/E1C/B1C |  |
| Paramis                      | 1: CWI channel 2 Param3:                   | 4                                | G1           |  |
|                              | 0: close, default                          | 5                                | L2           |  |
|                              | 1: open                                    | 6                                | G2           |  |
|                              |                                            | 7                                | B3           |  |
|                              |                                            | 8                                | L-Band       |  |
|                              | Param1:                                    |                                  |              |  |
| SET AE Param1                | OFF: close AE                              | Satur AF                         |              |  |
| JEI AL Falaill               | 25M: 25M AE                                | Setup AL                         |              |  |
|                              | Param1: OFF: close AE Setup AE             |                                  |              |  |
|                              | Param1:                                    |                                  |              |  |
| SET SIGNAL Param1 OFF        | GPS/GLO/GAL/BD2/BD3/SBAS                   | Close GPS/GLONASS/GALILEO/BD2/   | /BD3/SBAS    |  |
|                              | OFF: close                                 |                                  |              |  |
|                              | Param1:                                    |                                  |              |  |
| SET SIGNAL Param1 ON/OFF     | L1CA/L2C/L2P/L5C/L1C;                      | Open/close GPS signal            |              |  |
| SET SIGNALT GRAITE ON OTT    | B1I/B2I/B3I;                               | Open/close BD2 signal            |              |  |
|                              | B1C/B2b/B2a/B2                             | Open/close BD3 signal            |              |  |

ComNav Technology Ltd. 44 CNT-OEM-RM001, Rev 1.5

| SYNTAX                 | PARAMETER                 | DESCRIPTION               |
|------------------------|---------------------------|---------------------------|
|                        | E1C/E5b/E5a/E5/E6C;       | Open/close Galileo signal |
|                        | S1C/S5C;                  | Open/close SBAS signal    |
|                        | G1C/G2C/G3C;              | Open/close Glonass signal |
|                        | ON/OFF: open/close signal |                           |
|                        | Param1:                   |                           |
|                        | L2C、L2P、L5C、L1C;          | Close one GPS signal      |
|                        | B2I、B3I;                  | Close one BD2 signal      |
| SET SIGNAL Param1 OFF  | B1C、B2b、B2a、B2;           | Close one BD3 signal      |
| SET SIGNAL PATAITT OFF | E5b、E5a、E5、E6C;           | Close one Galileo signal  |
|                        | S5C;                      | Close one SBAS signal     |
|                        | G2C、G3C;                  | Close one Glonass signal  |
|                        | OFF: close the signal     |                           |
| SET SIGNAL B1C/B2a OFF |                           | Close BD3 signal          |

ComNav Technology Ltd. 45 CNT-OEM-RM001, Rev 1.5

Table 13. Description of NMEAMSGFORMAT keyword

| COMNAV                                    | Default setting : NE                      | Default setting: NEMA message format for current OEM board output                                                                                                                                                          |             |               |              |                                                                                                                           |                                       |  |  |
|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| Standard STANDARD NMEA0183 message format | ·                                         |                                                                                                                                                                                                                            | ces the GPG |               |              | and the message only output comma.  ata accuracy adjusts according to the  Differential delay  N/A  Integer number with 2 |                                       |  |  |
|                                           |                                           | positioning positioning mode a                                                                                                                                                                                             | utomatical  | ly. The decim | al number is | :                                                                                                                         | digit(receiving<br>differential data) |  |  |
|                                           |                                           | Non-single positioning: RTD, SBAS, HDT manual setting or simulation input, etc.  3.when working in single positioning mode, the differential delay of GPGGA and station number are N/A.                                    |             |               |              |                                                                                                                           |                                       |  |  |
| NORMAL                                    | NMEA message<br>normal accuracy<br>format | 1. no position case: GGA, RMC, VTG, HDT corresponding data are not output but only comma.  2. this key word only influences the GPGGA data accuracy. The data output accuracy is fixed and the decimal part is defined as: |             |               |              |                                                                                                                           |                                       |  |  |

ComNav Technology Ltd. 46 CNT-OEM-RM001, Rev 1.5

|              |                         |                                                                    |             | latitude      | longitude     | height                                                                                                                   | Undulation                         | Differential delay |
|--------------|-------------------------|--------------------------------------------------------------------|-------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|
|              |                         |                                                                    | NORMAL      | 4-bits        | 4-bits        | 2-bits                                                                                                                   | 2-bits                             | 2 digits integer   |
| NMEA message | message                 | LONG                                                               | 7-bits      | 7-bits        | 4-bits        | 3-bits                                                                                                                   | xx.x (2 digits integer, 1 decimal) |                    |
| LONG         | high accuracy<br>format | <ul><li>3. when working in s</li><li>4. for the LONG mod</li></ul> | single posi | tioning mode, | the different | r simulation input, etc.  cial delay of GPGGA and station  ill reserved, and same as Nove  sition Precision of NMEA Logs | Atel GPGGALONG.                    |                    |

# 3.2.33 VECTORLENMODEBaseline length mode

#### **Format**

VECTORLENMODE <para>

# Description

If the baseline length in the scene is fixed, it is recommended to choose mode 2, which can reduce the flying point and improve the fixed rate.

If the baseline length in the scenario is not fixed, select mode 1 and the fixed rate will decrease to some extent.

#### **Parameters**

1: moving base mode, baseline length is not fixed;

2: moving base move, baseline length is fixed.

### **Example**

VECTORLENMODE 1

# 3.2.34 UNDULATION Choose undulation

#### **Format**

UNDULATION <opt> [sep]

#### Description

This command permits user to either enter a specific geoidal undulation value. The undulation values reported in the position logs are in reference to the ellipsoid of the chosen datum.

#### **Parameters**

opt Geoidal height model option, refer to Table 14 Default value is 'EGM96'.

sep Undulation value required for the USER option, default value = 0.000.

**Table 14. Geoidal Height (Undulation) Model** 

| OPTION | ID | DESCRIPTION                                       |
|--------|----|---------------------------------------------------|
| table  | 0  | Use the internal undulation table (same as EGM96) |

| USER   | 1 | Use the user specified undulation value     |
|--------|---|---------------------------------------------|
| OSU89B | 2 | Use the OSU89B undulation table             |
| EGM96  | 3 | Use global geoidal height model EGM96 table |

### **Example**

UNDULATION EGM96

UNDULATION OSU89B

UNDULATION USER 10.00000000

UNDULATION table

# 3.2.35 SCANSPECTRUM Set Spectrum Sweep Parameters

#### Format 1

SCANSPECTRUM <center-freq> <scan-range> <scan-times>

#### Format 2

SCANSPECTRUM < mode>

## Description

This command is used to setup spectrum sweep parameters.

#### **Parameters**

Center-freq: Set scan center frequency

Scan-range: set scan range

Scan-times: Set the number of scan points

Mode: L1/L2/L5, the center frequency is L1, L2, L5 frequency points, the scanning range is 8000KHz, and 200 points are scanned.

## **Example**

SCANSPECTRUM 1575420 8000 200

## 3.2.36 UNLOCKOUT Reinstate a satellite in the solution

#### **Format**

UNLOCKOUT <prn>

# Description

This command allows a satellite which has been previously locked out (LOCKOUT command) to be reinstated in the solution computation. If more than one satellite is to be reinstated, this command must be reissued for each satellite reinstatement.

#### **Parameters**

prn PR number of satellite, refer to

Table 5. GNSS Name and Corresponding PRN.

# **Example**

UNLOCKOUT 10

# 3.2.37 UNLOCKOUTALL Reinstate a satellite in the solution

#### **Format**

UNLOCKOUTALL

## Description

This command allows all satellites which have been previously locked out (LOCKOUT command) to be reinstated in the solution computation.

## **Example**

UNLOCKOUTALL

# 3.2.38 UNLOCKOUTSYSTEM Reinstate previously locked out system

### **Format**

UNLOCKOUTSYSTEM <system>

## Description

This command allows a system which previously locked out to be reinstated in the solution computation.

#### **Parameters**

system the name of a specified GNSS system, refer to

Table 6. GNSS System.

# **Example**

UNLOCKOUTSYSTEM BD2

# 3.2.39 UNLOG Remove a log from logging control

#### **Format**

```
UNLOG <message-type>
```

## Description

This command permits you to remove a specific log request from the system.

### **Parameters**

```
message-type refer to
```

Table 15. Predefined Log Message ~

Table 18. Other Message.

# **Example**

UNLOG VERSIONB

# 3.2.40 UNLOGALL Remove all logs from logging control

# **Format**

```
UNLOGALL <port>
```

## Description

This command disables all logs on the port if port is specified, if no port is specified, all logs of all ports would be disabled.

#### **Parameters**

port refer to Table 2.

## **Example**

UNLOGALL COM1

UNLOGALL

# **CHAPTER 4. LOG MESSAGES**

Many different types of data can be logged using LOG command. This chapter covers all types of data logs supported by ComNav board.

## 4.1 CONVENTIONS

#### 4.1.1 Command Format

#### Send

LOG <message-type> [trigger] [period] [offset]

Refer to Section 3.2.14.

## Reply

The format of reply message is Binary, which is quite different from sending message. The board also supports NMEA string.

# 4.1.2 Binary Message Layout and Header Definition

#### **FORMAT**

**Header** 3 Sync bytes plus 25 bytes of header information. The header length is variable as fields may be appended in the future. Always check the header length.

**Data** variable

**CRC** 32-bit CRC performed on all data including the header.

# **HEADER**

| Field# | Field Name  | Field Type | Description           | Binary<br>Byte | Binary<br>Offset |
|--------|-------------|------------|-----------------------|----------------|------------------|
| 1      | Sync        | Char       | Hexadecimal 0xAA.     | 1              | 0                |
| 2      | Sync        | Char       | Hexadecimal 0x44.     | 1              | 1                |
| 3      | Sync        | Char       | Hexadecimal 0x12.     | 1              | 2                |
| 4      | Header Lgth | Uchar      | Length of the header. | 1              | 3                |
| 5      | Message ID  | Ushort     | Message ID            | 2              | 4                |
| 6      | Reserved    |            |                       | 1              | 6                |

53

| Field# | Field Name              | Field Type | Description                                                                                    | Binary<br>Byte | Binary<br>Offset |
|--------|-------------------------|------------|------------------------------------------------------------------------------------------------|----------------|------------------|
| 7      | Reserved                |            |                                                                                                | 1              | 7                |
| 8      | Message<br>Length       | Ushort     | The length in bytes of the body of the message.  This does not include the header nor the CRC. | 2              | 8                |
| 9      | Reserved                |            |                                                                                                | 2              | 10               |
| 10     | Reserved                |            |                                                                                                | 1              | 12               |
| 11     | Reserved                |            |                                                                                                | 1              | 13               |
| 12     | Week                    | Ushort     | GPS week number.                                                                               | 2              | 14               |
| 13     | ms                      | GPS time   | Milliseconds from the beginning of the GPS week.                                               | 4              | 16               |
| 14     | Reserved                |            |                                                                                                | 4              | 20               |
| 15     | Reserved                | Ushort     | Reserved for internal use.                                                                     | 2              | 24               |
| 16     | Receiver S/W<br>Version | Ushort     | This is a value (0 - 65535) that represents the receiver software build number.                | 2              | 26               |

#### **NOTE:**

In current version, the length of header is always 28 bytes.

The length of data block is variable.

# 4.1.3 Log Message List

Currently supported messages are listed in alphabetical order below.

# 4.1.3.1 Predefined Log Message List

**Table 15. Predefined Log Message** 

| NO | ID  | LOG MESSAGE | FORMAT   | DESCRIPTION                       | REFER TO |
|----|-----|-------------|----------|-----------------------------------|----------|
| 1  | 71  | BD2EPHEM    | В        | BD2 decoded ephemeris information | 4.2.1.1  |
| 2  | 72  | врзернем    | В        | BD3 decoded ephemeris information | 4.2.1.2  |
| 3  | 741 | BD2RAWALM   | В        | BD2 raw almanac                   | 4.2.1.3  |
| 4  | 412 | BD2RAWEPHEM | В        | BD2 Raw ephemeris                 | 4.2.1.4  |
| 5  | 42  | BESTPOS     | А, В     | Best position data                | 4.2.5.1  |
| 6  | 99  | BESTVEL     | A,B, Abb | Best velocity data                | 4.2.5.2  |

| NO | ID   | LOG MESSAGE  | FORMAT   | DESCRIPTION                                                                                   | REFER TO |
|----|------|--------------|----------|-----------------------------------------------------------------------------------------------|----------|
| 7  | 241  | BESTXYZ      | А, В     | Position information in xyz.                                                                  | 4.2.5.3  |
| 8  | 317  | COMCONFIG    | А, В     | COM configuration Information in ASCII Format                                                 |          |
| 9  | 792  | GLORAWEPHEM  | В        | GLONASS raw ephemeris message.                                                                | 4.2.1.6  |
| 10 | 71   | GPSEPHEM     | В        | A single set of decoded GNSS ephemeris whose message ID is different from NovAtel® definition | 4.2.1.7  |
| 11 | 1122 | GALEPHEMERIS | В        | Galileo ephemeris parameters                                                                  | 4.2.1.8  |
| 12 | 971  | HEADING      | А, В     | Heading angle message                                                                         | 4.2.3.1  |
| 13 | 1335 | HEADING2     | А, В     | Multi-rover heading information                                                               | HEADING2 |
| 14 | 8    | IONUTC       | A,B, Abb | Ionosphere and UTC parameters                                                                 | 4.2.7.1  |
| 15 | 5    | LOGLIST      | А        | Log settings in each port.                                                                    | 4.2.2.2  |
| 16 | 925  | M925         | В        | Extended Satellite Information                                                                | 4.2.7.2  |
| 17 | 181  | MARKPOS      | А, В     | Position at time of mark input event                                                          | 4.2.4.1  |
| 18 | 231  | MARKTIME     | А, В     | Time of mark input event                                                                      | 4.2.4.2  |
| 19 | 174  | PSRDOP       | В        | DOP of SVs currently tracking                                                                 | 4.2.5.4  |
| 20 | 47   | PSRPOS       | A,B, Abb | Pseudorange Position                                                                          | 4.2.5.5  |
| 21 | 100  | PSRVEL       | А, В     | Pseudorange Velocity                                                                          | 4.2.5.6  |
| 22 | 43   | RANGE        | A,B, Abb | Detailed range information                                                                    | 4.2.6.1  |
| 23 | 140  | RANGECMP     | A,B, Abb | Compressed version of the RANGE log                                                           | 4.2.6.2  |
| 24 | 74   | RAWALM       | В        | Raw almanac                                                                                   | 4.2.1.9  |
| 25 | 41   | RAWEPHEM     | В        | Raw ephemeris                                                                                 | 4.2.1.10 |
| 26 | 175  | REFSTATION   | А, В     | Base station Position                                                                         | 4.2.8.1  |
| 27 | 911  | SATMSG       | В        | Satellite status (defined by ComNav)                                                          | 4.2.7.3  |
| 28 | 48   | SATVIS       | В        | Satellite visibility                                                                          | 4.2.7.4  |
| 29 | 270  | SATXYZ       | А, В     | Satellite positions in ECEF Cartesian coordinates                                             | 4.2.7.5  |
| 30 | 101  | TIME         | В        | Board time information                                                                        | 4.2.9.1  |
| 31 | 83   | TRACKSTAT    | В        | Satellite tracking status                                                                     | 4.2.2.3  |
| 32 | 37   | VERSION      | A,B, Abb | Board software and hardware version                                                           | 4.2.2.4  |

# 4.1.3.2 International Standard Message List

ComNav boards also support NMEA, RTCM 2.X, RTCM 3.X messages. Please reference the NMEA and RTCM protocol manual for details.

**Table 16. NMEA Message** 

| NO   | ID        | LOG MESSAGE | DESCRIPTION                                             |  |  |  |
|------|-----------|-------------|---------------------------------------------------------|--|--|--|
| Stan | Standard  |             |                                                         |  |  |  |
| 1    | 218       | GPGGA       | GPS Fix Data and Undulation                             |  |  |  |
| 2    | 219       | GPGLL       | Latitude and Longitude of Present Vessel Position       |  |  |  |
| 3    | 221       | GPGSA       | GPS DOP and Active Satellites                           |  |  |  |
| 4    | 222       | GPGST       | Only Dop Values are Valid Currently                     |  |  |  |
| 5    | 223       | GPGSV       | GPS Satellites in View                                  |  |  |  |
| 6    | 228       | GPHDT       | Actual Vessel Heading in Degrees True                   |  |  |  |
| 7    | 225       | GPRMC       | GPS Specific Information                                |  |  |  |
| 8    | 226       | GPVTG       | The Track Made Good and Speed Relative to the Ground    |  |  |  |
| 9    | 227       | GPZDA       | UTC Time and Date                                       |  |  |  |
| Com  | Nav Propi | rietary     |                                                         |  |  |  |
| 1    | 237       | GPHPR       | Parameters of Attitude Angles                           |  |  |  |
| 2    | 209       | GPNTR       | Information about navigating to reference station.      |  |  |  |
| 3    | 207       | GPTRA       | Heading, Pitch and Roll (reserved) Message              |  |  |  |
| 4    | 87        | GPYBM       | Position, Velocity,, Heading, Pitch and PJK information |  |  |  |
| 5    | 264       | GPNAV       | ComNav Navigation Information Message                   |  |  |  |

Table 17. RTCM Message

| NO   | ID       | LOG MESSAGE | FORMAT | DESCRIPTION                                       |  |  |
|------|----------|-------------|--------|---------------------------------------------------|--|--|
| RTCI | RTCM 3.X |             |        |                                                   |  |  |
| 1    | 787      | RTCM1004    | В      | Extended L1/L2 GPS RTK Observables                |  |  |
| 2    | 788      | RTCM1005    | В      | RTK Base Station ARP                              |  |  |
| 3    | 789      | RTCM1006    | В      | Base Station ARP with Height                      |  |  |
| 4    | 856      | RTCM1007    | В      | Extended Antenna Descriptor and Setup Information |  |  |
| 5    | 857      | RTCM1008    | В      | Extended Antenna Descriptor and Setup Information |  |  |
| 6    | 898      | RTCM1010    | В      | Extended L1-OnlyGLONASS RTK Observables           |  |  |
| 7    | 900      | RTCM1012    | В      | Extended L1 & L2 GLONASS Observables              |  |  |
| 8    | 893      | RTCM1019    | В      | GPS Ephemerides                                   |  |  |
| 9    | 895      | RTCM1020    | В      | GLONASS Ephemerides                               |  |  |
| 10   | 999      | RTCM1033    | В      | Receiver and Antenna Descriptors                  |  |  |

| 11 | 781 | RTCM1104 | В | Extended B1, B2 or B3 BD2 RTK Observables     |
|----|-----|----------|---|-----------------------------------------------|
| 12 | 624 | RTCM1074 | В | GPS MSM4 — Full PRs and Phase Ranges plus CNR |
| 13 | 644 | RTCM1084 | В | GLO MSM4 — Full PRs and Phase Ranges plus CNR |
| 14 | 674 | RTCM1124 | В | BDS MSM4 — Full PRs and Phase Ranges plus CNR |
| 15 | 684 | RTCM1114 | В | QZSS MSM4                                     |
| 16 |     | RTCM4078 | В | A RTCM 3.x Proprietary Message for ComNav     |

# 4.1.3.3 Other Message List

**Table 18. Other Message** 

| NO   | ID                                         | LOG MESSAGE            | FORMAT | DESCRIPTION                                           |  |  |
|------|--------------------------------------------|------------------------|--------|-------------------------------------------------------|--|--|
| Trim | ble Pro                                    | prietary Messages      |        |                                                       |  |  |
| 1    | 224                                        | PTNLAVR                | А      | Time, yaw, tilt, range, mode, PDOP, and number of SVs |  |  |
| _    | 224                                        | TINEAVI                | Α      | for Moving Baseline RTK                               |  |  |
| 2    | 76                                         | PTNLGGK                | Α      | Time, position, position type, and DOP values         |  |  |
| 3    | 229                                        | PTNLPJK                | А      | PJK Position                                          |  |  |
| Para | meter I                                    | Messages               |        |                                                       |  |  |
| 1    | 2001                                       | BD2ECUTOFF             |        | BD2 cutoff angle.                                     |  |  |
| 2    | 2002                                       | ECUTOFF                |        | GPS cutoff angle.                                     |  |  |
| 3    | 2017                                       | GLOECUTOFF             |        | GLONASS cutoff angle.                                 |  |  |
| 4    | 2018                                       | MAGVAR                 |        | Magnetic variation correction.                        |  |  |
| 5    | 2013                                       | PJKPARA                |        | PJK Parameters Used in PTNLPJK Message                |  |  |
| 6    | 2019                                       | PVTFREQ                |        | PVT frequency.                                        |  |  |
| 7    | 2003                                       | REFMODE                |        | Reference mode, auto-started, SPP or fixed position.  |  |  |
| 8    | 2022                                       | REFPJKXYH              |        | Ref-Station position in PJK mode.                     |  |  |
| 9    | 2015                                       | REGLIST                |        | Registered functions list                             |  |  |
| 10   | 2020                                       | RTKFREQ                |        | RTK frequency.                                        |  |  |
| 11   | 2008                                       | RTKTIMEOUT             |        | Time thresh of differential data could be used.       |  |  |
| 12   | 2021                                       | SYSCONFIG              |        | Main system configuration parameters.                 |  |  |
| KSXT | Position                                   | oning and Heading Data | 3      |                                                       |  |  |
| 1    | 230 KSXT KSXT positioning and heading data |                        |        | KSXT positioning and heading data                     |  |  |
| Freq | Frequency Spectrum Data                    |                        |        |                                                       |  |  |

|   | NO | ID   | LOG MESSAGE             | FORMAT | DESCRIPTION             |
|---|----|------|-------------------------|--------|-------------------------|
| 2 |    | 2260 | frequency spectrum data |        | Frequency spectrum data |

# 4.1.4 Trigger Types

The receiver is capable of generating many different logs. These logs are divided into three types: synchronous, asynchronous, and polled.

- The data for synchronous logs is generated on a regular schedule.
- Asynchronous data is generated at irregular intervals. If asynchronous logs were collected on a regular schedule, they would not output the most current data as soon as it was available.
- The data in polled logs is generated on demand. An example would be RXCONFIG. It would be polled because it changes only when commanded to do so. Therefore, it would not make sense to log this kind of data ONCHANDED, or ONNEW.

The following table outlines the log types and the valid triggers to use:

**Table 19. Log Trigger Types** 

| ТҮРЕ   | RECOMMENDED TRIGGER | ILLEGAL TRIGGER  |
|--------|---------------------|------------------|
| Synch  | ONTIME              | ONNEW, ONCHANGED |
| Asynch | ONCHANGED           | -                |
| Polled | ONCE or ONTIME      | ONNEW, ONCHANGED |

**Table 20. Logs Supporting ONCHANGED and ONTRACKED** 

| NO | ID  | LOG MESSAGE  | REFER TO |
|----|-----|--------------|----------|
| 1  | 8   | IONUTC       | 4.2.7.1  |
| 2  | 41  | RAWEPHEM     | 4.2.1.10 |
| 3  | 71  | BD2EPHEM     | 4.2.1.1  |
| 4  | 175 | REFSTATION   | 4.2.8.1  |
| 5  | 412 | BD2RAWEPHEM  | 4.2.1.4  |
| 6  | 712 | GPSEPHEM     | 4.2.1.7  |
| 7  | 723 | GLOEPHEMERIS | 4.2.1.3  |

| 8  | 792 | GLORAWEPHEM | 4.2.1.6  |
|----|-----|-------------|----------|
| 9  | 893 | RTCM1019    | 4.3.2.8  |
| 10 | 895 | RTCM1020    | 4.3.2.9  |
| 11 | 150 | RTCM1042    | RTCM1042 |
| 12 | 901 | RTCM1044    | RTCM1044 |
| 13 | 152 | RTCM1045    | RTCM1045 |
| 14 | 154 | RTCM1046    | RTCM1046 |

#### **NOTE for Table 20:**

- (1) Most log messages listed in this table are relevant to GNSS satellite almanacs or ephemeris.
- (2) As for each log message listed in this table, if 'ONTIME' trigger is chosen for it, receiver/OEM board will output the message which only contains ONE satellite's data (e.g. one satellite ephemeris) for each sending.
- (3) If ONCHANGED/ONTRACKED trigger is used, receiver/OEM board will output the message containing all valid satellites' data for the first time sending. After first sending, only those valid satellites data which have changed or just be tracked since last sending, will be output.

## 4.1.5 Examples

For example, if the receiver supports 5 Hz logging, the minimum logging period is 1/5 Hz or 0.2 s. The following are valid examples for a synchronous or asynchronous log, on a receiver that can log at rates up to 5 Hz:

| log bestposk | 0.2    |    | [5 Hz]   |
|--------------|--------|----|----------|
| log bestposk | 0.5    |    | [2 Hz]   |
| log bestposk | ontime | 1  | [1 Hz]   |
| log bestposk | ontime | 2  | [0.5 Hz] |
| log bestposk | ontime | 10 | [0.1 Hz] |

# 4.2 PREDEFINED LOG MESSAGES

# 4.2.1 Almanacs and Ephemeris

This section defines those log messages which contains raw or decoded almanacs and ephemeris of GNSS satellites.

Attention please, user can refer to **Table** 20. Logs Supporting ONCHANGED and ONTRACKED **to get more information on how to properly use ONCHANGED/ONTRACKED trigger for almanacs and ephemeris log messages.** 

#### 4.2.1.1 BD2EPHEM

**BD2** Ephemeris

## Description

This message contains the BD2 ephemeris parameters.

Message ID71Recommended Inputlog bd2ephemb onchangedSupported Formatbinary

# Reply (Binary)

Refer to 4.2.1.7.

#### 4.2.1.2 BD3EPHEM

**BD3 Ephemeris** 

# Description

This message contains the BD3 ephemeris parameters.

Message ID72Recommended Inputlog bd3ephemb onchangedSupported Formatbinary

# Reply (Binary)

| Field<br># | Field Type           | Data Description                                     | Format | Binary<br>Byte | Binary<br>Offset |
|------------|----------------------|------------------------------------------------------|--------|----------------|------------------|
| 1          | BD3EPHEMEM<br>Header | Log Header                                           | uchar  | н              | 0                |
| 2          | Prn                  | Satellite PRN number (1-63)                          | uchar  | 1              | Н                |
| 3          | Valid                | Ephemeris reception ID                               | uchar  | 1              | H+1              |
| 4          | sattype              | Satellite Orbit Type 01 : GEO , 10 : IGOS , 11 : MEO | uchar  | 1              | H+2              |

| Field<br># | Field Type | Data Description                                                                                                                          | Format | Binary<br>Byte | Binary<br>Offset |
|------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|------------------|
| 5          | health     | Satellite health indicator                                                                                                                | uchar  | 1              | H+3              |
| 6          | URAI       | User distance accuracy index                                                                                                              | uchar  | 1              | H+4              |
| 7          | IODE       | Issue of data                                                                                                                             | uchar  | 1              | H+5              |
| 8          | IODC       | Issue of data clock                                                                                                                       | uchar  | 1              | H+6              |
| 9          | BRsv0      | Reserved                                                                                                                                  | uchar  | 1              | H+7              |
| 10         | SIF        | Signal integrity identification (0 : normal state , 1 : abnormal state)                                                                   | uchar  | 1              | H+8              |
| 11         | AIF        | System warning sign (0 : This signal SISMAI is effective , 1 : This signal SISMAI is invalid)                                             | uchar  | 1              | H+9              |
| 12         | BRsv1      | Reserved                                                                                                                                  | uchar  | 1              | H+10             |
| 13         | BRsv2      | Reserved                                                                                                                                  | uchar  | 1              | H+11             |
| 14         | BRsv3      | Reserved                                                                                                                                  | uchar  | 1              | H+12             |
| 15         | BRsv4      | Reserved                                                                                                                                  | uchar  | 1              | H+13             |
| 16         | BRsv5      | Reserved                                                                                                                                  | uchar  | 1              | H+14             |
| 17         | BRsv6      | Reserved                                                                                                                                  | uchar  | 1              | H+15             |
| 18         | toe        | Eph time                                                                                                                                  | uint   | 4              | H+16             |
| 19         | toc        | Time of clock-para                                                                                                                        | uint   | 4              | H+20             |
| 20         | Delt_A     | The deviation of the major axis at the reference time from the reference value                                                            | double | 8              | H+24             |
| 21         | Dot_A      | Rate of change of the major axis                                                                                                          | double | 8              | H+32             |
| 22         | Delt_n0    | The difference between the average angular velocity of the satellite and the calculated value at the reference time                       | double | 8              | H+40             |
| 23         | Dot_n0     | The rate of change of the difference between the average angular velocity of the satellite and the calculated value at the reference time | double | 8              | H+48             |
| 24         | M0         | The Angle of the plane near the reference moment                                                                                          | double | 8              | H+56             |
| 25         | е          | Eccentricity ratio                                                                                                                        | double | 8              | H+64             |
| 26         | w          | Near-geocentric amplitude                                                                                                                 | double | 8              | H+72             |

| Field<br># | Field Type | Data Description                                                              | Format | Binary<br>Byte | Binary<br>Offset |
|------------|------------|-------------------------------------------------------------------------------|--------|----------------|------------------|
| 27         | Omega0     | Longitude of ascending node of orbit plane at weekly epoch                    | double | 8              | H+80             |
| 28         | i0         | Inclination angle at ref. times.                                              | double | 8              | H+88             |
| 29         | Omega_dot  | The rate of the right ascension                                               | double | 8              | H+96             |
| 30         | i_dot      | The rate of the orbit inclination                                             | double | 8              | H+104            |
| 31         | Cuc        | Amplitude of the cosine harmonic correction term to the augument of latitude  | double | 8              | H+112            |
| 32         | Cus        | Amplitude of the sine harmonic correction term to the augument of latitude    | double | 8              | H+120            |
| 33         | Crc        | Amplitude of the cosine harmonic correction term to the orbit radius          | double | 8              | H+128            |
| 34         | Crs        | Amplitude of the sine harmonic correction term to the orbit radius            | double | 8              | H+136            |
| 35         | Cic        | Amplitude of the cosine harmonic correction term to the angle of inclination. | double | 8              | H+144            |
| 36         | Cis        | Amplitude of the sine harmonic correction term to the angle of inclination.   | double | 8              | H+152            |
| 37         | a0         | Deviation coefficient of satellite clock                                      | double | 8              | H+160            |
| 38         | a1         | Drift coefficient of satellite clock                                          | double | 8              | H+168            |
| 39         | a2         | Drift rate coefficient of satellite clock                                     | double | 8              | H+176            |
| 40         | tgdB1Cp    | Group delay differential of the B1C pilot component                           | double | 8              | H+184            |
| 41         | tgdB2ap    | Group delay differential of the B2a pilot component                           | double | 8              | H+192            |
| 42         | tgdB1Cd    | Group delay differential between the B2C data and pilot components            | double | 8              | H+200            |
| 43         | CRC        | 32-bit CRC Code                                                               | Hex    | 4              | H+208            |

# 4.2.1.3 BD2RAWALM

**Raw BD2 Almanac** 

# Description

This message contains raw almanac sub frames received from BDS satellites.

Message ID741Recommended Inputlog bd2rawalmb ontime 1Supported Formatbinary

## Reply (Binary)

| Field#   | Field Type                                      | Data Description                   | Format | Binary<br>Byte | Binary Offset |  |
|----------|-------------------------------------------------|------------------------------------|--------|----------------|---------------|--|
| 1        | BD2RAWALM header                                | Log header                         |        | Н              | 0             |  |
| 2        | Ref week                                        | Almanac reference week number      | Ulong  | 4              | Н             |  |
| 3        | Ref secs                                        | Almanac reference time (s)         | Ulong  | 4              | H+4           |  |
| 4        | Subframes                                       | Number of subframes to follow      | Ulong  | 4              | H+8           |  |
| 5        | svid                                            | SV ID (satellite vehicle ID)       | UShort | 2              | H+12          |  |
| 6        | data                                            | Subframe page data Note            | Hex    | 40             | H+14          |  |
| 7        | Next subframe offset = H + 12 + (subframe * 42) |                                    |        |                |               |  |
| variable | xxxx                                            | 32-bit CRC (ASCII and Binary only) | Hex    | 4              | H+12+(42 *    |  |
|          |                                                 |                                    |        |                | subframes)    |  |
| variable | [CR][LF]                                        | Sentence terminator (ASCII only)   | -      | -              | -             |  |

\*\*Note. Length of one subframe almanac is 10 words (30 bits per word, MSB first).

\*\*Subframe 4 Page 1~24 and Subframe 5 Page 1~6 contain 30 frames BDS

\*\*satellites' almanac (Refer to Beidou-ICD-1.0 table 5-11-1 and 5-11-2). One word

(30 bits) is split into 4 bytes data (first two bits of 1st byte is unused), then one almanac subframe data is expressed in 40 bytes as following Figures shows:



## 4.2.1.4 BD2RAWEPHEM

Raw BD2 Ephemeris

## Description

This log contains the raw ephemeris of BD2 satellites, and each raw ephemeris message is 400 bytes long. Each ephemeris page is 300 bits long, and the log contains all bits, although some bits are not used in current definition. For GEO satellites, ephemeris bits are all in sub frame 1, which is composed of 10 pages, each page is 10 words long and there are 30 bits in each word. Notice, just higher 150 valid bits are used in page, so all pages are needed to be decoded. For IGSO and MEO satellites, ephemeris bits are in sub frame 1, 2 and 3 and each sub frame is 10 words long and all 300 bits are valid, the other sub frames are invalid in the log. The page or sub frame structure in bytes arrays are showed in the below figure. If detailed information needed, please refer to BD2 ICD.



## Reply (Binary)

| Field# | Field Type            | Data Description                   | Format | Binary<br>Byte | Binary<br>Offset |
|--------|-----------------------|------------------------------------|--------|----------------|------------------|
| 1      | BD2RAWEPHEM header    | Log header                         |        | Н              | 0                |
| 2      | prn                   | Satellite PRN number               | Ulong  | 4              | Н                |
| 3      | ref week              | Ephemeris reference week number    | Ulong  | 4              | H+4              |
| 4      | ref secs              | Ephemeris reference time (s)       | Ulong  | 4              | H+8              |
| 5      | Subframe1 or page1    | Sub-frame 1 or page1 data          | Hex    | 40             | H+12             |
| 6      | subframe2 or page2    | Sub-frame 2 or page2 data          | Hex    | 40             | H+52             |
| •••    |                       |                                    |        | •••            |                  |
| 7      | Subframe10 or page 10 | Sub-frame 10 or page10 data        | Hex    | 40             | H+372            |
| 8      | xxxx                  | 32-bit CRC (ASCII and Binary only) | Hex    | 4              | H+412            |
| 9      | [CR][LF]              | Sentence terminator (ASCII only)   | -      | -              | -                |

#### 4.2.1.5 GLOEPHEMERIS

#### **Decoded GLONASS Ephemeris**

#### Description

This log contains GLONASS ephemeris information. GLONASS ephemerides are referenced to the PZ90.02 geodetic datum. No adjustment between the GPS and GLONASS reference frames are needed to perform PVT solution. Messages are grouped and transmitted. One message per satellite ID.

Message ID723Recommended InputLog gloephemerisb onchangedSupported FormatASCII,binary

| Field# | Field Type              | Data Description                                                                                               | Format | Binary<br>Byte | Binary<br>Offset |
|--------|-------------------------|----------------------------------------------------------------------------------------------------------------|--------|----------------|------------------|
| 1      | GLOEPHEME<br>RIS header | Log header                                                                                                     |        | Н              | 0                |
| 2      | sloto                   | Slot information offset - PRN identification (Slot + 37).                                                      | Ushort | 2              | Н                |
| 3      | freqo                   | Frequency channel offset in the range 0 to 20                                                                  | Ushort | 2              | H+2              |
| 4      | sat type                | Satellite type where  0 = GLO_SAT  1 = GLO_SAT_M (M type)  2 = GLO_SAT_K (K type)                              | Uchar  | 1              | H+4              |
| 5      | Reserved                |                                                                                                                |        | 1              | H+5              |
| 6      | e week                  | Reference week of ephemeris (GPS reference time)                                                               | Ushort | 2              | H+6              |
| 7      | e time                  | Reference time of ephemeris (GPS reference time) in ms                                                         | Ulong  | 4              | H+8              |
| 8      | t offset                | Integer seconds between GPS and GLONASS time. A positive value implies GLONASS is ahead of GPS reference time. | Ulong  | 4              | H+12             |
| 9      | Nt                      | Calendar number of day within 4 year interval starting at Jan 1 of a leap year                                 | Ushort | 2              | H+16             |
| 10     | Reserved                |                                                                                                                |        | 1              | H+18             |
| 11     | Nesel veu               |                                                                                                                |        | 1              | H+19             |
| 12     | issue                   | 15 minute interval number corresponding to ephemeris reference time                                            | Ulong  | 4              | H+20             |
| 13     | health                  | Ephemeris health where  0-3 = GOOD  4-15 = BAD                                                                 | Ulong  | 4              | H+24             |

| Field# | Field Type  | Data Description                                                                                                                                         | Format | Binary<br>Byte | Binary<br>Offset |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|------------------|
| 14     | pos x       | X coordinate for satellite at reference time (PZ-90.02), in meters                                                                                       | Double | 8              | H+28             |
| 15     | pos y       | Y coordinate for satellite at reference time (PZ-90.02), in meters                                                                                       | Double | 8              | H+36             |
| 16     | pos z       | Z coordinate for satellite at reference time (PZ-90.02), in meters                                                                                       | Double | 8              | H+44             |
| 17     | vel x       | X coordinate for satellite velocity at reference time (PZ-90.02), in meters/s                                                                            | Double | 8              | H+52             |
| 18     | vel y       | Y coordinate for satellite velocity at reference time (PZ-90.02), in meters/s                                                                            | Double | 8              | H+60             |
| 19     | vel z       | Z coordinate for satellite velocity at reference time (PZ-90.02), in meters/s                                                                            | Double | 8              | H+68             |
| 20     | LS acc x    | X coordinate for lunisolar acceleration at reference time (PZ-90.02), in meters/s/s                                                                      | Double | 8              | H+76             |
| 21     | LS acc y    | Y coordinate for lunisolar acceleration at reference time (PZ-90.02), in meters/s/s                                                                      | Double | 8              | H+84             |
| 22     | LS acc z    | Z coordinate for lunisolar acceleration at reference time (PZ-90.02), in meters/s/s                                                                      | Double | 8              | H+92             |
| 23     | tau_n       | Correction to the nth satellite time t_n relative to GLONASS time t_c, in seconds                                                                        | Double | 8              | H+100            |
| 24     | delta_tau_n | Time difference between navigation RF signal transmitted in L2 sub-band and navigation RF signal transmitted in L1 sub-band by nth satellite, in seconds | Double | 8              | H+108            |
| 25     | gamma       | Frequency correction, in seconds/second                                                                                                                  | Double | 8              | H+116            |
| 26     | Tk          | Time of frame start (since start of GLONASS day), in seconds                                                                                             | Ulong  | 4              | H+124            |
| 27     | Р           | Technological parameter                                                                                                                                  | Ulong  | 4              | H+128            |
| 28     | Ft          | User range                                                                                                                                               | Ulong  | 4              | H+132            |
| 29     | age         | Age of data, in days                                                                                                                                     | Ulong  | 4              | H+136            |
| 30     | Flags       | Information flags, refer to 18                                                                                                                           | Ulong  | 4              | H+140            |
| 31     | xxxx        | 32-bit CRC (ASCII and Binary only)                                                                                                                       | Hex    | 4              | H+144            |

| Field# | Field Type | Data Description                 | Format | Binary<br>Byte | Binary<br>Offset |
|--------|------------|----------------------------------|--------|----------------|------------------|
| 32     | [CR][LF]   | Sentence terminator (ASCII only) | -      | -              | -                |

**Table 21. GLOEPHEMERIS Info Flags** 

| NIBBLE# | BIT#    | MASK       | DESCRIPTION                                        | RANGE VALUE        |  |
|---------|---------|------------|----------------------------------------------------|--------------------|--|
|         | 0 (LSB) | 0x0000001  |                                                    | 00: 0 minutes      |  |
|         | 1       | 0x00000002 | P1 Flag: Time Interval between adjacent ilssue(fb) | 01: 30 minutes     |  |
|         |         |            | values                                             | 10: 45 minutes     |  |
| NO      |         |            |                                                    | 11: 60 minutes     |  |
|         | 2       | 0x00000004 | P2 Flag: Oddness or Evenness of ilssue (fb) value  | 0 = Even, 1 = Odd  |  |
|         | 3       | 0,0000000  | P3 Flag: Number of Satellites with almanac         | 0 Favor 1 Five     |  |
|         | 3       | 0x00000008 | information within current subframe                | 0 = Four, 1 = Five |  |
| N1 – N7 | 4 - 31  |            | Reserved                                           |                    |  |

## 4.2.1.6 GLORAWEPHEM Raw GLONASS Ephemeris

## Description

This log contains the raw ephemeris of GLONASS satellites.

Message ID792Recommended Inputlog glorawephemb onchangedSupported FormatBinary

| Field# | Field Type             | Data Description                                          | Format | Binary<br>Byte | Binary<br>Offset |
|--------|------------------------|-----------------------------------------------------------|--------|----------------|------------------|
| 1      | GLORAWEPH<br>EM header | Log header                                                |        | Н              | 0                |
| 2      | sloto                  | Slot information offset - PRN identification (Slot + 37). | Ushort | 2              | Н                |
| 3      | freqo                  | Frequency channel offset in the range 0 to 20             | Ushort | 2              | H+2              |
| 4      | sigchan                | Signal channel number                                     | Ulong  | 4              | H+4              |
| 5      | week                   | GPS reference week, in weeks                              | GPSec  | 4              | H+8              |

| Field#   | Field Type     | Data Description                                                         | Format  | Binary<br>Byte | Binary<br>Offset    |
|----------|----------------|--------------------------------------------------------------------------|---------|----------------|---------------------|
| 6        | time           | GPS reference time, in milliseconds (binarydata) or seconds (ASCII data) | Ulong   | 4              | H+12                |
| 7        | #recs          | Number of records to follow                                              | Ulong   | 4              | H+16                |
| 8        | string         | GLONASS data string                                                      | Uchar[] | 11             | H+20                |
| 9        | Reserved       |                                                                          | Uchar   | 1              | H+31                |
| 10       | Next record of | fset = H+20+(#recs x 12)                                                 |         |                |                     |
| variable | xxxx           | 32-bit CRC (ASCII and Binary only)                                       | Hex     | 4              | H+20+(#r<br>ecsx12) |
| variable | [CR][LF]       | Sentence terminator (ASCII only)                                         | -       | -              | -                   |

#### Notice:

- 1. GLORAWEPH message includes four GLONASS raw ephemeris string, which is shown in the following figure.
- 2. Each of the first four strings is from m4 to KX8 including 84-bits. The corresponding string is set with Bit84  $\sim$  Bit1 from higher-order to lower-order bit.
- 3. According to the GLORAWEPHEM message, the 8<sup>th</sup> data field "string GLONASS data string" includes 88 bits of 11 bytes. The first 4-bits is 0000, and the left 84-bits are reserved to store the Bit84~Bit1 of one GLONASS raw ephemeris string. After the 11<sup>th</sup> byte, GLORAWEPHEM message is reserved with 1 byte as shown in the following figure.



## **4.2.1.7 GPSEPHEM**

**GPS Ephemeris** 

## Description

A single set of decoded GNSS ephemeris whose message ID is different from NovAtel® definition.

Message ID71Recommended Inputlog gpsephemb onchangedSupported Formatbinary

| Field<br># | Field Type                      | Data Description                                                   | Format            | Binary<br>Byte | Binary<br>Offset |
|------------|---------------------------------|--------------------------------------------------------------------|-------------------|----------------|------------------|
| 1          | GPSEPHEMEM B/BD2EPHEME M Header | Log Header                                                         |                   | Н              | 0                |
| 2          | wSize                           | Struct size                                                        | unsigned<br>short | 2              | H+0              |
| 3          | blFlag                          | Eph valid flag                                                     | BYTE              | 1              | H+2              |
| 4          | bHealth                         | Satellite health flag                                              | BYTE              | 1              | H+3              |
| 5          | ID                              | Satellite prn id (1~203), GPS: 1~32, BDS: 141~203, Galileo: 71~106 | ВУТЕ              | 1              | H+4              |
| 6          | bReserved                       | reserved                                                           | BYTE              | 1              | H+5              |
| 7          | uMsgID                          | ignored                                                            | unsigned<br>short | 2              | H+6              |
| 8          | m_wldleTime                     | ignored                                                            | short             | 2              | H+8              |
| 9          | iodc                            | Issue of data clock                                                | short             | 2              | H+10             |
| 10         | accuracy                        | Reference to URA of GPS ICD IS-GPS-200-VD                          | short             | 2              | H+12             |
| 11         | week                            | Gps week                                                           | unsigned<br>short | 2              | H+14             |
| 12         | iode                            | Issue of data                                                      | int               | 4              | H+16             |
| 13         | tow                             | time of eph be sent                                                | int               | 4              | H+20             |
| 14         | toe                             | Eph time                                                           | double            | 8              | H+24             |
| 15         | toc                             | Time of clock-para                                                 | double            | 8              | H+32             |
| 16         | af2                             | Time drift (s)                                                     | double            | 8              | H+40             |

| Field<br># | Field Type | Data Description                                                              | Format | Binary<br>Byte | Binary<br>Offset |
|------------|------------|-------------------------------------------------------------------------------|--------|----------------|------------------|
| 17         | af1        | Time speed (s)                                                                | double | 8              | H+48             |
| 18         | af0        | Time offset (s)                                                               | double | 8              | H+56             |
| 19         | Ms0        | Mean Anomaly                                                                  | double | 8              | H+64             |
| 20         | deltan     | Mean motion difference from computed value                                    | double | 8              | H+72             |
| 21         | es         | Eccentricity                                                                  | double | 8              | H+80             |
| 22         | roota      | square root                                                                   | double | 8              | H+88             |
| 23         | omega0     | Longitude of ascending node of orbit plane at weekly epoch                    | double | 8              | H+96             |
| 24         | i0         | Inclination angle at ref. times.                                              | double | 8              | H+104            |
| 25         | ws         | Argument of perigee                                                           | double | 8              | H+112            |
| 26         | omegaot    | Rate of right ascension                                                       | double | 8              | H+120            |
| 27         | itoet      | Rate of inclination angle                                                     | double | 8              | H+128            |
| 28         | Cuc        | Amplitude of the cosine harmonic correction term to the augument of latitude  | double | 8              | H+136            |
| 29         | Cus        | Amplitude of the sine harmonic correction term to the augument of latitude    | double | 8              | H+144            |
| 30         | Crc        | Amplitude of the cosine harmonic correction term to the orbit radius          | double | 8              | H+152            |
| 31         | Crs        | Amplitude of the sine harmonic correction term to the orbit radius            | double | 8              | H+160            |
| 32         | Cic        | Amplitude of the cosine harmonic correction term to the angle of inclination. | double | 8              | H+168            |
| 33         | Cis        | Amplitude of the sine harmonic correction term to the angle of inclination.   | double | 8              | H+176            |
| 34         | tgd        | Reference to GPS ICD IS-GPS-200-VD                                            | double | 8              | H+184            |
| 35         | tgd2       | Only used in BD2 satellite, refer to BD2-ICD.                                 | double | 8              | H+192            |
| 36         | tgd3       | B1C pilot component (BD3 only)                                                | double | 8              | H+200            |
| 37         | tgd4       | B1a pilot component (BD3 only)                                                | double | 8              | H+208            |
| 38         | tgd5       | B2b full latency (BD3 only)                                                   | double | 8              | H+216            |
| 39         | CRC        | 32-bit CRC Code                                                               | Hex    | 4              | H+224            |

#### 4.2.1.8 GALEPHEMERIS

## **Galileo Ephemeris**

## Description

This message contains the Galileo ephemeris parameters.

Tips: Currently the onchanged mode is not supported, only the ontime mode is supported.

Message ID1122Recommended Inputlog galephemb ontime 60Supported Formatbinary

| Field<br># | Field Type              | Data Description                                                                                                   | Format | Binary<br>Byte | Binary<br>Offset |
|------------|-------------------------|--------------------------------------------------------------------------------------------------------------------|--------|----------------|------------------|
| 1          | GALEPHEMERISB<br>Header | Log Header                                                                                                         |        | Н              | 0                |
| 2          | SatId                   | Satellite identifier(1-36)                                                                                         | Ulong  | 4              | Н                |
| 3          | FNAVReceived            | Indicates FNAV almanac data received  0: No F/NAV ephemeris has been received  1: F/NAV ephemeris data is received |        | 4              | H+4              |
| 4          | INAVReceived            | Indicates INAV almanac data received  0: No I/NAV ephemeris has been received  1: I/NAV ephemeris data is received | BOOL   | 4              | H+8              |
| 5          | E1BHealth               | E1B health status bits (only valid if INAVReceived is TRUE)                                                        | Uchar  | 1              | H+12             |
| 6          | E5aHealth               | E5a health status bits(only valid if FNAVReceived is TRUE)                                                         | Uchar  | 1              | H+13             |
| 7          | E1bHealth               | E5b health status bits (only valid if INAVReceived is TRUE)                                                        | Uchar  | 1              | H+14             |
| 8          | E1BDVS                  | E1B data validity status (only valid if INAVReceived is TRUE)                                                      | Uchar  | 1              | H+15             |
| 9          | E5aDVS                  | E5a data validity status (only valid if FNAVReceived is TRUE)                                                      | Uchar  | 1              | H+16             |
| 10         | E5bDVS                  | E5b data validity status (only valid if                                                                            | Uchar  | 1              | H+17             |

| Field<br># | Field Type | Data Description                                                                       | Format | Binary<br>Byte | Binary<br>Offset |
|------------|------------|----------------------------------------------------------------------------------------|--------|----------------|------------------|
|            |            | INAVReceived is TRUE)                                                                  |        |                |                  |
| 11         | SISA       | Signal inspace accuracy (unitless)                                                     | Uchar  | 1              | H+18             |
| 12         | Reserved   |                                                                                        | Uchar  | 1              | H+19             |
| 13         | IODNav     | Issue of data ephemeris                                                                | Ulong  | 4              | H+20             |
| 14         | T0e        | Ephemeris reference time (s)                                                           | Ulong  | 4              | H+24             |
| 15         | RootA      | square root                                                                            | Double | 8              | H+28             |
| 16         | DeltaN     | Mean motion difference from computed value                                             | Double | 8              | H+36             |
| 17         | M0         | Mean anomaly at ref time (radians)                                                     | Double | 8              | H+44             |
| 18         | Ecc        | Eccentricity (dimensionless)                                                           | Double | 8              | H+52             |
| 19         | Omega      | Argument of perigee (radians)                                                          | Double | 8              | H+60             |
| 20         | Cuc        | Amplitude of the cosine harmonic correction term to the augument of latitude           | Double | 8              | H+68             |
| 21         | Cus        | Amplitude of the sine harmonic correction term to the augument of latitude (radians)   | Double | 8              | H+76             |
| 22         | Crc        | Amplitude of the cosine harmonic correction term to the orbit radius (m)               | Double | 8              | H+84             |
| 23         | Crs        | Amplitude of the sine harmonic correction term to the orbit radius (m)                 | Double | 8              | H+92             |
| 24         | Cic        | Amplitude of the cosine harmonic correction term to the angle of inclination (radians) | Double | 8              | H+100            |
| 25         | Cis        | Amplitude of the sine harmonic correction term to the angle of inclination (radians)   | Double | 8              | H+108            |
| 26         | 10         | Inclinationangle at ref time (radians)                                                 | Double | 8              | H+116            |
| 27         | IDot       | Rate of inclinationangle (radians/s)                                                   | Double | 8              | H+124            |
| 28         | Omega0     | Longitude of ascending node of orbital plane at weekly epoch(radians)                  | Double | 8              | H+132            |
| 29         | OmegaDot   | Rate of right ascension(radians/s)                                                     | Double |                | H+140            |

| Field<br># | Field Type | Data Description                                                               | Format | Binary<br>Byte | Binary<br>Offset |
|------------|------------|--------------------------------------------------------------------------------|--------|----------------|------------------|
| 30         | FNAVT0c    | Clock difference parameter reference time(only valid if FNAV Received is TRUE) | Double | 8              | H+148            |
| 31         | FNAVAf0    | SV clock bias correctioncoefficient from the F/NAV message (s)                 | Ulong  | 4              | H+152            |
| 32         | FNAVAf1    | SV clock drift correctioncoefficient from the F/NAV message (s/s)              | Double | 8              | H+160            |
| 33         | FNAVAf2    | SV clock drift rate correctioncoefficient from the F/NAV message (s/s^2)       | Double | 8              | H+168            |
| 34         | INAVT0c    | Clock difference parameter reference time(only valid if INAV Received is TRUE) | Double | 8              | H+176            |
| 35         | INAVAf0    | SV clock bias correctioncoefficient from the I/NAV message (s)                 | Double | 8              | H+180            |
| 36         | INAVAf1    | SV clock drift correctioncoefficient from the I/NAV message (s/s)              | Double | 8              | H+188            |
| 37         | INAVAf2    | SV clock drift rate correctioncoefficient from the I/NAV message (s/s^2)       | Double | 8              | H+196            |
| 38         | E1E5aBGD   | E1, E5a broadcast group delay                                                  | Double | 8              | H+204            |
| 39         | E1E5bBGD   | E1, E5b broadcast group delay(only valid if INAV Received is TRUE)             | Double | 8              | H+212            |
| 40         | xxxx       | 32-bit CRC (ASCII and Binary only)                                             | Hex    | 4              | H+220            |
| 41         | [CR][LF]   | Sentence terminator (ASCII only)                                               | -      | -              | -                |

Table 22. Signal Type

| ASCII | SIGNAL TYPE | DESCRIPTION     |
|-------|-------------|-----------------|
| 10433 | GALE1       | Galileo E1      |
| 10466 | GALE5A      | Galileo E5A     |
| 10499 | GALE5B      | Galileo E5B     |
| 10532 | GALALTBOC   | Galileo ALT-BOC |
| 10565 | GALE6C      | Galileo E6C     |
| 10572 | GALE6B      | Galileo E6B     |

| ASCII | SIGNAL TYPE | DESCRIPTION       |
|-------|-------------|-------------------|
| 14753 | QZSS L1CA   | QZSS L1 C/A -code |
| 14760 | QZSS L1Cp   | QZSS L1C P-code   |
| 14787 | QZSS L2CM   | QZSS L2 C/A-code  |
| 14891 | QZSS L6P    | QZSS L6P          |

## 4.2.1.9 **RAWALM**

#### **Raw Almanac Information**

## Description

This message contains raw almanac sub frames received from GPS satellite.

Message ID74Recommended Inputlog rawalmbSupported Formatbinary

## Reply (Binary)

| Field#   | Field Type                                      | Data Description Format Binary Byte |                                   | Binary<br>Offset |              |
|----------|-------------------------------------------------|-------------------------------------|-----------------------------------|------------------|--------------|
| 1        | RAWALM header                                   | Log header                          |                                   | Н                | 0            |
| 2        | ref week                                        | Almanac reference week number       | Ulong                             | 4                | Н            |
| 3        | ref secs                                        | Almanac reference time (s)          | Imanac reference time (s) Ulong 4 |                  | H+4          |
| 4        | subframes                                       | Number of subframes to follow       | Ulong                             | 4                | H+8          |
| 5        | svid                                            | SV ID (satellite vehicle ID)        | UShort                            | 2                | H+12         |
| 6        | data                                            | Subframe page data                  | Hex                               | 30               | H+14         |
| 7        | Next subframe offset = H + 12 + (subframe x 32) |                                     |                                   |                  |              |
| variable | yogo,                                           | 22 hit CBC (ASCII and Binary only)  | Цоу                               | 4                | H + 12 + (32 |
| variable | variable xxxx 32-bit CRC (ASCII and Binary      | 32-bit CRC (ASCII and Binary only)  | Hex                               | 4                | x subframes) |
| variable | [CR][LF]                                        | Sentence terminator (ASCII only)    | -                                 | -                | -            |

# 4.2.1.10 RAWEPHEM Raw Ephemeris Information

#### Description

This message contains raw ephemeris information received from GPS satellite.

Message ID41Recommended Inputlog rawephemb onchangedSupported Formatbinary

## Reply (Binary)

| Field# | Field Type      | Data Description                         | Format | Binary<br>Byte | Binary<br>Offset |
|--------|-----------------|------------------------------------------|--------|----------------|------------------|
| 1      | RAWEPHEM header | Log header                               |        | Н              | 0                |
| 2      | prn             | Satellite PRN number                     | Ulong  | 4              | Н                |
| 3      | ref week        | Ephemeris reference week number          | Ulong  | 4              | H+4              |
| 4      | ref secs        | Ephemeris reference time (s)             | Ulong  | 4              | H+8              |
| 5      | subframe1       | Subframe 1 data, refer to following NOTE | Hex    | 30             | H+12             |
| 6      | subframe2       | Subframe 2 data, refer to following NOTE | Hex    | 30             | H+42             |
| 7      | subframe3       | Subframe 3 data, refer to following NOTE | Hex    | 30             | H+72             |
| 8      | xxxx            | 32-bit CRC (ASCII and Binary only)       | Hex    | 4              | H+102            |
| 9      | [CR][LF]        | Sentence terminator (ASCII only)         | -      | -              | -                |

## MOTE. Subframe 1 ~ 3 data layout

Subframe 1: GPS Ephemeris Word1 -Word10

Subframe 2: GPS Ephemeris Word11-Word20

Subframe 3: GPS Ephemeris Word21-Word30

Each Word has 24 bits data which take three bytes of subframe in order. Each

subframe has 30 bytes to hold 10 GPS ephemeris words.

## 4.2.2 Configuration and Status

## 4.2.2.1 COMCONFIG COM Port Configuration

#### Description

This message contains configurations of ports such as baud rate, COM ID and so on.

| Message ID        | 37             |
|-------------------|----------------|
| Recommended Input | log comconfigb |
| Supported Format  | ASCII, binary  |

## Reply (Binary)

| Field# | Field Type           | Data Description                                                                                    | Format | Binary<br>Bytes | Binary<br>Offset    |
|--------|----------------------|-----------------------------------------------------------------------------------------------------|--------|-----------------|---------------------|
| 1      | COMCONFI<br>G header | Log header                                                                                          |        | Н               | 0                   |
| 2      | #port                | Number of ports with information to follow                                                          | Long   | 4               | Н                   |
| 3      | port                 | Serial port identifier                                                                              | Enum   | 4               | H+4                 |
| 4      | baud                 | Communication baud rate                                                                             | Ulong  | 4               | H+8                 |
| 5      | parity               | Parity                                                                                              | Enum   | 4               | H+12                |
| 6      | databits             | Number of data bits                                                                                 | Ulong  | 4               | H+16                |
| 7      | stopbits             | Number of stop bits                                                                                 | Ulong  | 4               | H+20                |
| 8      | handshake            | Handshaking                                                                                         | Enum   | 4               | H+24                |
| 9      | echo                 | When echo is on, the port is transmitting any input characters as they are received. 0 = OFF 1 = ON | Enum   | 4               | H+28                |
| 10     | breaks               | Breaks are turned on or off 0 = OFF 1 = ON                                                          | Enum   | 4               | H+32                |
| 11     | rx type              | The status of the receive interface mode                                                            | Enum   | 4               | H+36                |
| 12     | tx type              | The status of the transmit interface mode                                                           | Enum   | 4               | H+40                |
| 13     | response             | Responses are turned on or off 0 = OFF 1 = ON                                                       | Enum   | 4               | H+44                |
| 14     | next port offs       | set = H + 4 + (#port x 44)                                                                          |        |                 |                     |
| 15     | xxxx                 | 32-bit CRC (ASCII and Binary only)                                                                  | Hex    | 4               | H+4+(#po<br>rt x44) |
| 16     | [CR][LF]             | Sentence terminator (ASCII only)                                                                    | -      | -               | -                   |

## 4.2.2.2 LOGLIST List all System Logs

## Description

This log outputs a complete list of all log entries available in the system. The following tables show the binary and ASCII output.

Message ID5Recommended Inputlog loglista onceSupported FormatASCII

# Reply (ASCII)

#LOGLISTA, COM1, 0, 60.0, FINESTEERING, 1776, 125044.700, 00000000, 0000, 1114;
COM1, GPGGA, ABBASCII, ONTIME, 1.000,
COM3, GPGSV, ABBASCII, ONTIME, 5.000,
COM3, RTCM1019, BINARY, ONTRACKED, 1.000,

| Field# | Field Type             | Data Description                           | Format |
|--------|------------------------|--------------------------------------------|--------|
| 1      | LOGLIST (ASCII) header | Log header                                 |        |
| 2      | #logs                  | Number of messages to follow, maximum = 64 | Long   |
| 3      | port                   | Output port see Table 2.Port ID            | Enum   |
| 4      | message                | Message name of log                        | Char[] |
| 5      | message types          | ASCII, ABBASCII, BINARY                    | Char[] |
| 6      | trigger                | ONCHANGED, ONTIME, ONTRACKED               | Enum   |
| 7      | period                 | Log period for ONTIME                      | Double |
|        | Next port              |                                            | Enum   |
|        | xxxx                   | 32-bit CRC                                 | Hex    |
|        | [CR][LF]               | Sentence terminator (ASCII only)           | -      |

#### 4.2.2.3 TRACKSTAT Tracking State

## Description

This log provides channel tracking status information for each of the receiver parallel channels.

Message ID83Recommended Inputlog trackstatb ontime 1Supported Formatbinary

| Field# | Field Type          | Data Description                           | Format | Binary<br>Byte | Binary<br>Offset |
|--------|---------------------|--------------------------------------------|--------|----------------|------------------|
| 1      | TRACKSTAT<br>header | Log header                                 |        | Н              | 0                |
| 2      | sol status          | Solution status (refer to <i>Table25</i> ) | Enum   | 4              | н                |

| Field# | Field Type                               | Data Description                                                                                                                                                                                    | Format | Binary<br>Byte | Binary<br>Offset          |
|--------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|---------------------------|
| 3      | pos type                                 | Position type (refer to <i>Table26</i> )                                                                                                                                                            | Enum   | 4              | H+4                       |
| 4      | cutoff                                   | Tracking elevation cut-off angle                                                                                                                                                                    | Float  | 4              | H+8                       |
| 5      | # chans                                  | Number of hardware channels with information to follow                                                                                                                                              | Long   | 4              | H+12                      |
| 6      | PRN/slot                                 | Satellite PRN number of range measurement (refer to Table 5.)                                                                                                                                       | Short  | 2              | H+16                      |
| 7      | glofreq                                  | Only used in GLONASS, null yet                                                                                                                                                                      | Short  | 2              | H+18                      |
| 8      | ch-tr-status                             | Channel tracking status (refer to Table 29)                                                                                                                                                         | ULong  | 4              | H+20                      |
| 9      | psr                                      | Pseudorange (m) - if this field is zero but the channel tracking status in the previous field indicates that the card is phase locked and code locked, the pseudorange has not been calculated yet. | Double | 8              | H+24                      |
| 10     | Doppler                                  | Doppler frequency (Hz)                                                                                                                                                                              | Float  | 4              | H+32                      |
| 11     | C/No                                     | Carrier to noise density ratio (dB-Hz)                                                                                                                                                              | Float  | 4              | H+36                      |
| 12     | locktime                                 | Number of seconds of continuous tracking (no cycle slips)                                                                                                                                           | Float  | 4              | H+40                      |
| 13     | psr res                                  | Pseudorange residual from pseudorange filter (m)                                                                                                                                                    | Float  | 4              | H+44                      |
| 14     | reject                                   | Range reject code from pseudorange filter                                                                                                                                                           | Enum   | 4              | H+48                      |
| 15     | psr weight                               | Pseudorange filter weighting                                                                                                                                                                        | Float  | 4              | H+52                      |
| 16     | Next PRN offset = H + 16 + (#chans x 40) |                                                                                                                                                                                                     |        |                |                           |
|        | xxxx                                     | 32-bit CRC (ASCII and Binary only)                                                                                                                                                                  | Hex    | 4              | H+16+<br>(#chans<br>x 40) |
|        | [CR][LF]                                 | Sentence terminator (ASCII only)                                                                                                                                                                    | -      | -              | -                         |

4.2.2.4 VERSION Version Information

# Description

This log contains the version information of aboard.



## Reply (Abbreviated ASCII)

| Field# | Field Type     | Data Description                            | Format | Binary<br>Byte | Binary<br>Offset |
|--------|----------------|---------------------------------------------|--------|----------------|------------------|
| 1      | VERSION Header | Log Header                                  |        | Н              | 0                |
| 2      | #comp          | Number of components, value =1              | Long   | 4              | Н                |
| 3      | type           | Component type, value = 0                   | Enum   | 4              | H+4              |
| 4      | model          | Model Information (refer to figure 5)       | Char[] | 16             | H+8              |
| 5      | PSN            | Product serial number (refer to Figure 6.)  | Char[] | 16             | H+24             |
| 6      | Hw version     | Hardware version (refer to figure 7)        | Char[] | 16             | H+40             |
| 7      | Sw version     | Software <i>version</i> (refer to figure 8) | Char[] | 16             | H+56             |
| 8      | Boot version   | Boot code version                           | Char[] | 16             | H+72             |
| 9      | Comp date      | Firmware compile date (refer to table 24)   | Char[] | 12             | H+88             |
| 10     | Comp time      | Firmware compile time (refer to table 24)   | Char[] | 12             | H+100            |
| 11     | CRC            | 32-bit CRC                                  | Hex    | 4              | H+112            |



Figure 5. Model



Figure 6. Product Serial No.



Figure 5. Model

Figure 7. Hardware (HW) Version



Figure 8. Software (SW) Version

**Table 23. Serial Port Type** 

| SERIAL PORT FLAG | PORT CONFIGURATION       |
|------------------|--------------------------|
| 2                | RS232                    |
| 4                | RS422                    |
| Т                | LV TTL                   |
| х                | Selectable configuration |

**Table 24. Compile Date and Time** 

| YYYY/MM/DD | YYYY: Year |
|------------|------------|
| , ,        | MM: Month  |
|            | DD: Day    |
| HH:MM:SS   | HH:Hour    |
|            | MM:Minute  |
|            | SS:Second  |

# 4.2.3 Heading, Pitch and Roll Messages

## 4.2.3.1 HEADING Heading Information

## Description

The heading is the angle from True North of the base to rover vector in a clockwise direction.

Message ID971Recommended Inputlog headinga ontime 1Supported FormatASCII and Binary

| Field<br># | Field type     | Data Description                                   | Format  | Binary<br>Bytes | Binary<br>Offset |
|------------|----------------|----------------------------------------------------|---------|-----------------|------------------|
| 1          | HEADING header | Log header                                         |         | Н               | 0                |
| 2          | sol stat       | Solution status, see <i>Table25</i>                | Enum    | 4               | н                |
| 3          | pos type       | Position type, see <i>Table26</i>                  | Enum    | 4               | H+4              |
| 4          | length         | Baseline length (0 to 3000 m)                      | Float   | 4               | H+8              |
| 5          | heading        | Heading in degrees (0 to 360.0 degrees)            | Float   | 4               | H+12             |
| 6          | pitch          | Pitch (±90 degrees)                                | Float   | 4               | H+16             |
| 7          | Reserved       |                                                    | Float   | 4               | H+20             |
| 8          | hdg std dev    | Heading standard deviation in degrees              | Float   | 4               | H+24             |
| 9          | ptch std       | Pitch standard deviation in degrees                | Float   | 4               | H+28             |
| 10         | stn ID         | Station ID string                                  | Char[4] | 4               | H+32             |
| 11         | #SVs           | Number of observations tracked                     | Uchar   | 1               | H+36             |
| 12         | #solnSVs       | Number of satellites in solution                   | Uchar   | 1               | H+37             |
| 13         | #obs           | Number of satellites above the elevation mask      | Uchar   | 1               | H+38             |
| 14         | #multi         | Number of satellites above the mask angle with L2  | Uchar   | 1               | H+39             |
| 15         | Reserved       |                                                    | Uchar   | 1               | H+40             |
| 16         | ext sol stat   | Extended solution status (default: 0)              | Uchar   | 1               | H+41             |
| 17         | Reserved       |                                                    | Uchar   | 1               | H+42             |
| 18         | sig mask       | Signals used mask - if 0, signals used in solution | Uchar   | 1               | H+43             |

| Field<br># | Field type | Data Description                   | Format | Binary<br>Bytes | Binary<br>Offset |
|------------|------------|------------------------------------|--------|-----------------|------------------|
|            |            | are unknown. See <i>Table27</i>    |        |                 |                  |
| 19         | xxxx       | 32-bit CRC (ASCII and Binary only) | Hex    | 4               | H+44             |
| 20         | [CR][LF]   | Sentence terminator (ASCII only)   | -      | -               | -                |

#### 4.2.3.2 **HEADING2**

#### **Multi-rover Heading Information**

## Description

This message contains the heading information between the base station and the rover station, and is often used in dual board heading RTK. This message command is similar to the HEADING message, but has an additional rover ID field. HEADING2 refers to the heading between the dual antenna receiver's master antenna (Master ANT) and the base station's GNSS antenna.

Message ID1335Recommended Inputlog heading2a ontime 1Supported FormatASCII and Binary

| Field<br># | Field type     | Data Description                        | Format  | Binary<br>Bytes | Binary<br>Offset |
|------------|----------------|-----------------------------------------|---------|-----------------|------------------|
| 1          | HEADING header | Log header                              |         | Н               | 0                |
| 2          | sol stat       | Solution status, see <i>Table25</i>     | Enum    | 4               | н                |
| 3          | pos type       | Position type, see <i>Table26</i>       | Enum    | 4               | H+4              |
| 4          | length         | Baseline length (0 to 3000 m)           | Float   | 4               | H+8              |
| 5          | heading        | Heading in degrees (0 to 360.0 degrees) | Float   | 4               | H+12             |
| 6          | pitch          | Pitch (±90 degrees)                     | Float   | 4               | H+16             |
| 7          | Reserved       |                                         | Float   | 4               | H+20             |
| 8          | hdg std dev    | Heading standard deviation in degrees   | Float   | 4               | H+24             |
| 9          | pitch std      | Pitch standard deviation in degrees     | Float   | 4               | H+28             |
| 10         | rover stn ID   | Base station ID string                  | Char[4] | 4               | H+32             |
| 11         | Master stn ID  | Master station ID string                | Char[4] | 4               | H+36             |
| 12         | #SVs           | Number of observations tracked          | Uchar   | 1               | H+40             |
| 13         | #solnSVs       | Number of satellites in solution        | Uchar   | 1               | H+41             |

| Field<br># | Field type Data Description                                                        |                                                   | Format | Binary<br>Bytes | Binary<br>Offset |
|------------|------------------------------------------------------------------------------------|---------------------------------------------------|--------|-----------------|------------------|
| 14         | #obs                                                                               | Number of satellites above the elevation mask     | Uchar  | 1               | H+42             |
| 15         | #multi                                                                             | Number of satellites above the mask angle with L2 | Uchar  | 1               | H+43             |
| 16         | Reserved                                                                           |                                                   | Uchar  | 1               | H+44             |
| 17         | ext sol stat                                                                       | Extended solution status (default: 0)             | Uchar  | 1               | H+45             |
| 18         | Reserved                                                                           |                                                   | Uchar  | 1               | H+46             |
| 19         | Signals used mask - if 0, signals used in solution are unknown. See <i>Table27</i> |                                                   | Uchar  | 1               | H+47             |
| 20         | xxxx                                                                               | 32-bit CRC (ASCII and Binary only)                | Hex    | 4               | H+48             |
| 21         | [CR][LF]                                                                           | Sentence terminator (ASCII only)                  | -      | -               | -                |

## 4.2.4 Mark Event Messages

# 4.2.4.1 MARKPOS Position at time of mark input event

#### Description

This log message contains the estimated position of the antenna when a pulse is detected at a mark input. It's generated when a pulse occurs on the event input from receiver EVENT interface.

Message ID181Recommended Inputlog markposa onnewSupported FormatASCII, Binary

| Field# | Field Type        | Data Description                           | Format | Binary<br>Byte | Binary<br>Offset |
|--------|-------------------|--------------------------------------------|--------|----------------|------------------|
| 1      | MARKPOS<br>header | Log header                                 |        | Н              | 0                |
| 2      | sol status        | Solution status (refer to <i>Table25</i> ) | Enum   | 4              | н                |
| 3      | pos type          | Position type (refer to <i>Table26</i> )   | Enum   | 4              | H+4              |
| 4      | lat               | Latitude                                   | Double | 8              | H+8              |
| 5      | lon               | Longitude                                  | Double | 8              | H+16             |

| Field# | Field Type                                                                         | d Type Data Description                                                      |         | Binary<br>Byte | Binary<br>Offset |
|--------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|----------------|------------------|
| 6      | hgt                                                                                | Height above mean sea level                                                  | Double  | 8              | H+24             |
| 7      | undulation                                                                         | Undulation - the relationship between the geoids and the WGS84 ellipsoid (m) | Float   | 4              | H+32             |
| 8      | datum id#                                                                          | Datum ID number                                                              | Enum    | 4              | H+36             |
| 9      | lat σ                                                                              | Latitude standard deviation                                                  | Float   | 4              | H+40             |
| 10     | lon σ                                                                              | Longitude standard deviation                                                 | Float   | 4              | H+44             |
| 11     | hgt σ                                                                              | Height standard deviation                                                    | Float   | 4              | H+48             |
| 12     | stn id                                                                             | Base station ID                                                              | Char[4] | 4              | H+52             |
| 13     | diff_age                                                                           | Differential age in seconds                                                  | Float   | 4              | H+56             |
| 14     | sol_age                                                                            | Solution age in seconds                                                      | Float   | 4              | H+60             |
| 15     | #SVs                                                                               | Number of satellite vehicles tracked                                         | Uchar   | 1              | H+64             |
| 16     | #solnSVs                                                                           | Number of satellite vehicles used in solution                                | Uchar   | 1              | H+65             |
| 17     |                                                                                    |                                                                              | Uchar   | 1              | H+66             |
| 18     | Reserved                                                                           |                                                                              | Uchar   | 1              | H+67             |
| 19     |                                                                                    |                                                                              | Uchar   | 1              | H+68             |
| 20     | ext sol stat                                                                       | Extended solution status (default: 0)                                        | Hex     | 1              | H+69             |
| 21     | Reserved                                                                           |                                                                              | Hex     | 1              | H+70             |
| 22     | Signals used mask - if 0, signals used in solution are unknown. See <i>Table27</i> |                                                                              | Hex     | 1              | H+71             |
| 23     | XXXX                                                                               | 32-bit CRC (ASCII and Binary only)                                           | Hex     | 4              | H+72             |
| 24     | [CR][LF]                                                                           | Sentence terminator (ASCII only)                                             | -       | -              | -                |

#### **4.2.4.2 MARKTIME**

Time of mark input event

## Description

This message includes the time of the leading edge of the detected mark input pulse. It's generated when a pulse occurs on the event input from receiver EVENT interface. The message setting can be saved in the *saveconfig*, and the message status can be checked by *log loglista*.

Message ID231Recommended Inputlog marktimea onnewSupported FormatASCII, Binary

| Field# | Field Type         | Data Description                                                                                                                                                                                                                                                                                                                                                              | Format | Binary<br>Byte | Binary<br>Offset |
|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|------------------|
| 1      | MARKTIME<br>header | Log header                                                                                                                                                                                                                                                                                                                                                                    |        | Н              | 0                |
| 2      | week               | GPS reference week number                                                                                                                                                                                                                                                                                                                                                     | Long   | 4              | Н                |
| 3      | seconds            | Seconds into the week as measured from the receiver clock, coincident with the time of electrical closure on the Mark Input port                                                                                                                                                                                                                                              | Double | 8              | H+4              |
| 4      | offset             | Receiver clock offset, in seconds. A positive offset implies that the receiver clock is ahead of GPS reference time. To derive GPS reference time, use the following formula:  GPS reference time = receiver time - (offset)                                                                                                                                                  | Double | 8              | H+12             |
| 5      | offset std         | Standard deviation of receiver clock offset (s)                                                                                                                                                                                                                                                                                                                               | Double | 8              | H+20             |
| 6      | utc offset         | This field represents the offset of GPS reference time from UTC time (s), computed using almanac parameters. UTC time is GPS reference time plus the current UTC offset plus the receiver clock offset.  UTC time = GPS reference time + offset + UTC offset (0 indicates that UTC time is unknown because there is no almanac available in order to acquire the UTC offset.) | Double | 8              | H+28             |
| 7      | status             | Clock model status, see <i>Table35</i> .                                                                                                                                                                                                                                                                                                                                      | Enum   | 4              | H+36             |
| 8      | xxxx               | 32-bit CRC (ASCII and Binary only)                                                                                                                                                                                                                                                                                                                                            | Hex    | 4              | H+40             |
| 9      | [CR][LF]           | Sentence terminator (ASCII only)                                                                                                                                                                                                                                                                                                                                              | -      | -              | -                |

# 4.2.5 Position and Velocity Messages

Log messages mainly related to Position and velocity information are defined in this section.

#### 4.2.5.1 BESTPOS Best Position

## Description

This log contains the best available GNSS position (in meter) computed by the board. In addition, it reports several status indicators, including differential age, which is useful in predicting anomalous behavior brought about by outages in differential corrections. A differential age of 0 indicates that no differential correction was used.

Message ID42Recommended Inputlog bestposb ontime 1Supported Formatbinary

| Field# | Field Type     | Data Description                                                         | Format  | Binary<br>Byte | Binary<br>Offset |
|--------|----------------|--------------------------------------------------------------------------|---------|----------------|------------------|
| 1      | Bestpos Header | Log Header                                                               |         | Н              | 0                |
| 2      | Sol stat       | Solution status (refer to <i>Table25</i> )                               | Enum    | 4              | Н                |
| 3      | Pos type       | Position type (refer to <i>Table26</i> )                                 | Enum    | 4              | H+4              |
| 4      | Lat            | Latitude                                                                 | Double  | 8              | H+8              |
| 5      | Lon            | Longitude                                                                | Double  | 8              | H+16             |
| 6      | hgt            | Height above mean sea level                                              | Double  | 8              | H+24             |
| 7      | undulation     | the ralationship between the geoid and the ellipsoid of the chosen datum | Float   | 4              | H+32             |
| 8      | Datum id#      | Datum id number                                                          | Enum    | 4              | H+36             |
| 9      | Lat σ          | Latitude standard deviation                                              | Float   | 4              | H+40             |
| 10     | Lon σ          | Longitude standard deviation                                             | Float   | 4              | H+44             |
| 11     | Hgt σ          | Height standard deviation                                                | Float   | 4              | H+48             |
| 12     | Stn id         | Base station id                                                          | Char[4] | 4              | H+52             |
| 13     | Diff_age       | Differential age in seconds                                              | Float   | 4              | H+56             |
| 14     | Sol_age        | Solution age in seconds                                                  | Float   | 4              | H+60             |
| 15     | #SVs           | Number of satellite tracked                                              | UCHAR   | 1              | H+64             |
| 16     | #solnSVs       | SV number used in solution                                               | UCHAR   | 1              | H+65             |
| 17     | #ggL1          | L1 number                                                                | UCHAR   | 1              | H+66             |
| 18     | #ggL1L2        | L1 &L2 number                                                            | UCHAR   | 1              | H+67             |
| 19     | reserved       | Reserved bytes                                                           | UCHAR   | 1              | H+68             |
| 20     | ext sol stat   | Extended solution status                                                 | UCHAR   | 1              | H+69             |
| 21     | reserved       | Reserved bytes                                                           | UCHAR   | 1              | H+70             |
| 22     | sig mask       | Signals used mask - if 0, signals used in solution                       | UCHAR   | 1              | H+71             |

| Field# | Field Type | Data Description                | Format | Binary<br>Byte | Binary<br>Offset |
|--------|------------|---------------------------------|--------|----------------|------------------|
|        |            | are unknown. See <i>Table27</i> |        |                |                  |
| 23     | CRC        | 32-bit CRC Code                 | Hex    | 4              | H+72             |

**Table 25. Solution Status** 

| SOLUTION STATUS |                  | DESCRIPTION                                                             |
|-----------------|------------------|-------------------------------------------------------------------------|
| (BINARY)        | (ASCII)          |                                                                         |
| 0               | SOL_COMPUTED     | Solution computed                                                       |
| 1               | INSUFFICIENT_OBS | Insufficient observations                                               |
| 6               | COLD_START       | Not yet converged from cold start                                       |
| 19              | INVALID_FIX      | The fixed position, entered using the FIX positioncommand, is not valid |

**Table 26. Position or Velocity Type** 

| TYPE (BINARY) | TYPE (ASCII)          | DESCRIPTION                                            |
|---------------|-----------------------|--------------------------------------------------------|
| 0             | NONE                  | No solution                                            |
| 1             | FIXEDPOS              | Position has been fixed by the FIX POSITION command    |
| 8             | DOPPLER_VELOCITY Note | Velocity computed using instantaneous Doppler          |
| 16            | SINGLE                | Single point position                                  |
| 17            | PSRDIFF               | Pseudorange differential solution                      |
| 18            | SBAS                  | Solution calculated using corrections from an SBAS     |
| 34            | NARROW_FLOAT          | Floating narrow-lane ambiguity solution                |
| 35            | FIX_DERIVATION        | Derivation solution                                    |
| 49            | WIDE_INT              | Integer wide-lane ambiguity solution                   |
| 50            | NARROW_INT            | Integer narrow-lane ambiguity solution                 |
| 51            | SUPER WIDE-LANE       | Super wide-lane solution                               |
| 64            | OMNISTAR_HP           | Positioning solution                                   |
| 65            | OMNISTAR_XP           | Positioning solution                                   |
| 68            | PPP_CONVERGING        | Converging TerraStar-C, TerraStar-C PRO or TerraStar-X |
| 00            | FFF_CONVERGING        | solution                                               |
| 69            | PPP                   | Converged PPP solution                                 |

| 70 | OPERATIONAL   | Solution accuracy is within UA Loperational limit                           |
|----|---------------|-----------------------------------------------------------------------------|
| 71 | WARNING       | Solution accuracy is outside UAL operational limit but within warning limit |
| 72 | OUT_OF_BOUNDS | Solution accuracy is outside UAL limits                                     |

Note. Herein, the instantaneous doppler used for velocity computation comes directly from the tracking loop of OEM board, which means this doppler velocity has not nearly latency. In theory, its latency is smaller than the timing accuracy of OEM board.

**Table 27. Signal-Used Mask** 

| BIT | MASK | DESCRIPTION                 |  |  |
|-----|------|-----------------------------|--|--|
| 0   | 0x01 | GPS L1 used in Solution     |  |  |
| 1   | 0x02 | GPS L2 used in Solution     |  |  |
| 2   | 0x04 | GPS L5 used in Solution     |  |  |
| 3   | 0x08 | BDS B1 used in Solution     |  |  |
| 4   | 0x10 | GLONASS L1 used in Solution |  |  |
| 5   | 0x20 | GLONASS L2 used in Solution |  |  |
| 6   | 0x40 | BDS B2 used in Solution     |  |  |
| 7   | 0x80 | BDS B3 used in Solution     |  |  |

#### **4.2.5.2 BESTVEL**

#### **Best Available Velocity Data**

#### Description

This message contains the best available velocity information computed by the receiver. In addition, it reports a velocity status indicator, which is useful in indicating whether or not the corresponding data is valid. The velocity measurements sometimes have a latency associated with them. The time of validity is the time tag in the log minus the latency value.

| Message ID        | 99                    |
|-------------------|-----------------------|
| Recommended Input | log bestvelb ontime 1 |
| Supported Format  | ASCII, Binary         |

Direction of motion over ground in this log is derived from north speed and east speed, so the direction error is related to motion status. Higher speed means less direction error, and lower speed means more direction error. For example, in Doppler frequency velocity mode, we could assume a typical velocity error of 0.2m/s, and carrier velocity is 70km/hour, or 19.4m/s, the maximum direction error is:

$$Dir_error = arctan (0.2/19.4) = 0.59 degree.$$

#### Reply

| Field# | Field Type        | Data Description                                                                                                                                      | Format | Binary<br>Bytes | Binary<br>Offset |
|--------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|------------------|
| 1      | BESTVEL<br>header | Log header                                                                                                                                            |        | н               | 0                |
| 2      | sol status        | Solution status, see <i>Table25</i>                                                                                                                   | Enum   | 4               | н                |
| 3      | vel type          | Velocity type, see <i>Table26</i>                                                                                                                     | Enum   | 4               | H+4              |
| 4      | latency           | A measure of the latency in the velocity time tag in seconds. It should be subtracted from the time to give improved results.                         | Float  | 4               | H+8              |
| 5      | age               | Differential age in seconds                                                                                                                           | Float  | 4               | H+12             |
| 6      | hor spd           | Horizontal speed over ground, in meters per second                                                                                                    | Double | 8               | H+16             |
| 7      | trk gnd           | Actual direction of motion over ground (track over ground) with respect to True North, in degrees                                                     | Double | 8               | H+24             |
| 8      | vert spd          | Vertical speed, in meters per second, where positive values indicate increasing altitude (up) and negative values indicate decreasing altitude (down) | Double | 8               | H+32             |
| 9      | Reserved          |                                                                                                                                                       | Float  | 4               | H+40             |
| 10     | xxxx              | 32-bit CRC (ASCII and Binary only)                                                                                                                    | Hex    | 4               | H+44             |
| 11     | [CR][LF]          | Sentence terminator (ASCII only)                                                                                                                      | -      | -               | -                |

#### 4.2.5.3 BESTXYZ

#### **Best Available Cartesian Position and Velocity**

## Description

This log contains the receiver's best available position and velocity in ECEF coordinates. The position and velocity status fields indicate whether or not the corresponding data is valid.

Message ID241Recommended Inputlog bestxyzb ontime 1Supported FormatASCII, Binary

| Field# | Field Type     | Data Description                                                                                                              | Format  | Binary<br>Bytes | Binary<br>Offset |
|--------|----------------|-------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|------------------|
| 1      | BESTXYZ header | Log header                                                                                                                    |         | Н               | 0                |
| 2      | P-sol status   | Solution status, see <i>Table25</i>                                                                                           | Enum    | 4               | Н                |
| 3      | pos type       | Position type, see <i>Table26</i>                                                                                             | Enum    | 4               | H+4              |
| 4      | P-X            | Position X-coordinate (m)                                                                                                     | Double  | 8               | H+8              |
| 5      | P-Y            | Position Y-coordinate (m)                                                                                                     | Double  | 8               | H+16             |
| 6      | P-Z            | Position Z-coordinate (m)                                                                                                     | Double  | 8               | H+24             |
| 7      | Ρ-Χ σ          | Standard deviation of P-X (m)                                                                                                 | Float   | 4               | H+32             |
| 8      | Ρ-Υ σ          | Standard deviation of P-Y (m)                                                                                                 | Float   | 4               | H+36             |
| 9      | Ρ-Ζ σ          | Standard deviation of P-Z (m)                                                                                                 | Float   | 4               | H+40             |
| 10     | V-sol status   | Solution status, see <i>Table25</i>                                                                                           | Enum    | 4               | H+44             |
| 11     | vel type       | Velocity type, see <i>Table26</i>                                                                                             | Enum    | 4               | H+48             |
| 12     | V-X            | Velocity vector along X-axis (m/s)                                                                                            | Double  | 8               | H+52             |
| 13     | V-Y            | Velocity vector along Y-axis (m/s)                                                                                            | Double  | 8               | H+60             |
| 14     | V-Z            | Velocity vector along Z-axis (m/s)                                                                                            | Double  | 8               | H+68             |
| 15     | V-X σ          | Standard deviation of V-X (m/s)                                                                                               | Float   | 4               | H+76             |
| 16     | V-Y σ          | Standard deviation of V-Y (m/s)                                                                                               | Float   | 4               | H+80             |
| 17     | V-Z σ          | Standard deviation of V-Z (m/s)                                                                                               | Float   | 4               | H+84             |
| 18     | stn ID         | Base station identification                                                                                                   | Char[4] | 4               | H+88             |
| 19     | V-latency      | A measure of the latency in the velocity time tag in seconds. It should be subtracted from the time to give improved results. | Float   | 4               | H+92             |
| 20     | diff_age       | Differential age in seconds                                                                                                   | Float   | 4               | H+96             |
| 21     | sol_age        | Solution age in seconds                                                                                                       | Float   | 4               | H+100            |
| 22     | #SVs           | Number of satellite vehicles tracked                                                                                          | Uchar   | 1               | H+104            |

| Field# | Field Type   | Data Description                                                                   | Format | Binary<br>Bytes | Binary<br>Offset |
|--------|--------------|------------------------------------------------------------------------------------|--------|-----------------|------------------|
| 23     | #solnSVs     | Number of satellite vehicles used in solution                                      | Uchar  | 1               | H+105            |
| 24     | #ggL1        | Number of GPS plus BDS L1 used in solution                                         | Uchar  | 1               | H+106            |
| 25     | #ggL1L2      | Number of GPS plus BDS L1 and L2 used in solution                                  | Uchar  | 1               | H+107            |
| 26     | Reserved     |                                                                                    | Char   | 1               | H+108            |
| 27     | ext sol stat | Extended solution status                                                           | Hex    | 1               | H+109            |
| 28     | Reserved     |                                                                                    | Hex    | 1               | H+110            |
| 29     | sig mask     | Signals used mask - if 0, signals used in solution are unknown. See <i>Table27</i> | Hex    | 1               | H+111            |
| 30     | xxxx         | 32-bit CRC (ASCII and Binary only)                                                 | Hex    | 4               | H+112            |
| 31     | [CR][LF]     | Sentence terminator (ASCII only)                                                   | -      | -               | -                |

#### 4.2.5.4 PSRDOP Pseudorange DOP

#### Description

The dilution of precision data is calculated using the geometry of only those satellites that are currently being tracked and used in the position solution by the board. This log is updated once every 60 seconds or whenever a change in the satellite constellation occurs. Therefore, the total number of data fields output by the log is variable and depends on the number of SVs that are being tracked.

| Message ID        | 174                  |
|-------------------|----------------------|
| Recommended Input | log psrdopb ontime 1 |
| Supported Format  | binary               |

| Field# | Field Type    | Data Description                                   | Format | Binary<br>Byte | Binary Offset |
|--------|---------------|----------------------------------------------------|--------|----------------|---------------|
| 1      | PSRDOP Header | Log Header                                         |        | Н              | 0             |
| 2      | gdop          | Geometric dilution of precision                    | Float  | 4              | Н             |
| 3      | Pdop          | Position dilution of precision                     | Float  | 4              | H+4           |
| 4      | Hdop          | horizontal dilution of precision                   | Float  | 4              | H+8           |
| 5      | Htdop         | Horizontal position and time dilution of precision | Float  | 4              | H+12          |

| Field# | Field Type                      | Data Description                    | Format | Binary<br>Byte | Binary Offset |
|--------|---------------------------------|-------------------------------------|--------|----------------|---------------|
| 6      | Tdop                            | Time dilution of precision          | Float  | 4              | H+16          |
| 7      | Cutoff                          | Elevation cut-off angle             | Float  | 4              | H+20          |
| 8      | #prn                            | Number of satellites PRNs to follow | Long   | 4              | H+24          |
| 9      | Prn                             | PRN of SV PRN tracking              | Ulong  | 4              | H+28          |
| 10     | Next prn offset = H+28+(#prn*4) |                                     |        |                |               |
| 11     | CRC                             | 32-bit CRC                          | Hex    | 4              | H+28+(#prn*4) |

## 4.2.5.5 PSRPOS Pseudorange Position

## Description

This message includes position calculated using pseudorange and other information such as differential age, station id and so on.

Message ID47Recommended Inputlog psrposb ontime 1Supported Formatbinary

| Field# | Field Type    | Data Description                                                             | Format  | Binary<br>Byte | Binary<br>Offset |
|--------|---------------|------------------------------------------------------------------------------|---------|----------------|------------------|
| 1      | PSRPOS header | Log header                                                                   |         | Н              | 0                |
| 2      | sol status    | Solution status (refer to <i>Table25</i> )                                   | Enum    | 4              | Н                |
| 3      | pos type      | Position type (refer to <i>Table26</i> )                                     | Enum    | 4              | H+4              |
| 4      | lat           | Latitude                                                                     | Double  | 8              | H+8              |
| 5      | lon           | Longitude                                                                    | Double  | 8              | H+16             |
| 6      | hgt           | Height above mean sea level                                                  | Double  | 8              | H+24             |
| 7      | undulation    | Undulation - the relationship between the geoids and the WGS84 ellipsoid (m) | Float   | 4              | H+32             |
| 8      | datum id#     | Datum ID number                                                              | Enum    | 4              | H+36             |
| 9      | lat σ         | Latitude standard deviation                                                  | Float   | 4              | H+40             |
| 10     | lon σ         | Longitude standard deviation                                                 | Float   | 4              | H+44             |
| 11     | hgt σ         | Height standard deviation                                                    | Float   | 4              | H+48             |
| 12     | stn id        | Base station ID                                                              | Char[4] | 4              | H+52             |
| 13     | diff_age      | Differential age in seconds                                                  | Float   | 4              | H+56             |

| Field# | Field Type   | Data Description                                                                     | Format | Binary<br>Byte | Binary<br>Offset |
|--------|--------------|--------------------------------------------------------------------------------------|--------|----------------|------------------|
| 14     | sol_age      | Solution age in seconds                                                              | Float  | 4              | H+60             |
| 15     | #SVs         | Number of satellite vehicles tracked                                                 | Uchar  | 1              | H+64             |
| 16     | #solnSVs     | Number of satellite vehicles used in solution                                        | Uchar  | 1              | H+65             |
| 17     |              |                                                                                      | Uchar  | 1              | H+66             |
| 18     | Reserved     |                                                                                      | Uchar  | 1              | H+67             |
| 19     |              |                                                                                      |        |                | H+68             |
| 20     | ext sol stat | Extended solution status (default: 0)                                                | Hex    | 1              | H+69             |
| 21     | Reserved     |                                                                                      | Hex    | 1              | H+70             |
| 22     | sig mask     | Signals used mask - if 0, signals used in solution are unknown. See <i>Table27</i> . | Hex    | 1              | H+71             |
| 23     | XXXX         | 32-bit CRC (ASCII and Binary only)                                                   | Hex    | 4              | H+72             |
| 24     | [CR][LF]     | Sentence terminator (ASCII only)                                                     | -      | -              | -                |

## 4.2.5.6 PSRVEL Pseudorange Velocity

#### Description

In the PSRVEL log the actual speed and direction of the receiver antenna over ground is provided. The velocity measurements sometimes have a latency associated with them. The time of validity is the time tag in the log minus the latency value.

Message ID100Recommended Inputlog psrvela ontime 1Supported FormatASCII, Binary

## Reply (ASCII)

#PSRVELA,COM1,0,60.0,FINESTEERING,1865,486344.000,00000000,0000,1114;S
OL\_COMPUTED,DOPPLER\_VELOCITY,0.000,0.000,0.0329,132.511867,0.0907,0.0\*
e24644e1

| Field# | Field Type       | Data Description                                     | Format | Binary<br>Bytes | Binary<br>Offset |
|--------|------------------|------------------------------------------------------|--------|-----------------|------------------|
| 1      | PSRVEL<br>header | Log header                                           |        | н               | 0                |
| 2      | sol status       | Solution status, see <i>Table25</i>                  | Enum   | 4               | Н                |
| 3      | vel type         | Velocity type, see <i>Table26</i>                    | Enum   | 4               | H+4              |
| 4      | latency          | A measure of the latency in the velocity time tag in | Float  | 4               | H+8              |

| Field# | Field Type | Data Description                                                                                                                                      |        | Binary<br>Bytes | Binary<br>Offset |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|------------------|
|        |            | seconds. It should be subtracted from the time to give improved results.                                                                              |        |                 |                  |
| 5      | age        | Differential age in seconds                                                                                                                           | Float  | 4               | H+12             |
| 6      | hor spd    | Horizontal speed over ground, in meters per second                                                                                                    | Double | 8               | H+16             |
| 7      | trk gnd    | Actual direction of motion over ground (track over ground) with respect to True North, in degrees                                                     | Double | 8               | H+24             |
| 8      | vert spd   | Vertical speed, in meters per second, where positive values indicate increasing altitude (up) and negative values indicate decreasing altitude (down) | Double | 8               | H+32             |
| 9      | 9 Reserved |                                                                                                                                                       | Float  | 4               | H+40             |
| 10     | xxxx       | 32-bit CRC (ASCII and Binary only)                                                                                                                    | Hex    | 4               | H+44             |

#### 4.2.6 Raw Observations and Corrections

This section presents a set of log messages which contain GNSS raw observables and corrections for RTK and Pseudorange differential positioning, generally broadcasted by reference station.

#### 4.2.6.1 RANGE Detailed Observation Information

## Description

This message includes detailed observation information such as pseudorange, carrier phase, Doppler, signal to noise ration and so on. At the same time, detailed channel states are involved.

| Message ID        | 43                  |  |  |
|-------------------|---------------------|--|--|
| Recommended Input | log rangeb ontime 1 |  |  |
| Supported Format  | Binary              |  |  |

| Field# | Field Type      | Description                                         | Format | Binary<br>Byte | Binary<br>Offset |
|--------|-----------------|-----------------------------------------------------|--------|----------------|------------------|
| 1      | RANGE<br>header | Log header                                          |        | Н              | 0                |
| 2      | # obs           | Number of observations with information to follow a | Long   | 4              | н                |

| Field# | Field Type                            | Description                                                   | Format | Binary<br>Byte | Binary<br>Offset       |
|--------|---------------------------------------|---------------------------------------------------------------|--------|----------------|------------------------|
| 3      | PRN/ slot                             | Satellite PRN number of range measurement                     | UShort | 2              | H+4                    |
| 4      | glofreq                               | (GLONASS Frequency + 7)                                       | UShort | 2              | H+6                    |
| 5      | psr                                   | Pseudorange measurement (m)                                   | Double | 8              | H+8                    |
| 6      | psrstd                                | Pseudorange measurement standard deviation (m)                | Float  | 4              | H+16                   |
| 7      | adr                                   | Carrier phase, in cycles (accumulated Doppler range)          | Double | 8              | H+20                   |
| 8      | adrstd                                | Estimated carrier phase standard deviation (cycles)           | Float  | 4              | H+28                   |
| 9      | dopp                                  | Instantaneous carrier Doppler frequency (Hz)                  | Float  | 4              | H+32                   |
| 10     | C/No                                  | Carrier to noise density ratio C/No = 10[log10(S/N0)] (dB-Hz) | Float  | 4              | H+36                   |
| 11     | locktime                              | # of seconds of continuous tracking (no cycle slipping)       | Float  | 4              | H+40                   |
| 12     | ch-tr-stat<br>us                      | Tracking status (see table 29)                                | ULong  | 4              | H+44                   |
| 13     | Next PRN offset = H + 4 + (#obs x 44) |                                                               |        |                |                        |
|        | xxxx                                  | 32-bit CRC (ASCII and Binary only)                            | Hex    | 4              | H+4+<br>(#obs x<br>44) |
|        | [CR][LF]                              | Sentence terminator (ASCII only)                              | -      | -              | -                      |

# 4.2.6.2 RANGECMP Compressed Range Information

## Description

This message contains the channel measurements for the currently tracked satellites.

Message ID140Recommended Inputlog rangecmpb ontime 1Supported Formatbinary

| Field# | Field Type | Description | Format | Binary Byte | Binary Offset |
|--------|------------|-------------|--------|-------------|---------------|
| 1      | RANGECMP   | Log header  |        | Н           | 0             |

| Field# | Field Type                            | Description                                                | Format | Binary Byte | Binary Offset    |
|--------|---------------------------------------|------------------------------------------------------------|--------|-------------|------------------|
|        | header                                |                                                            |        |             |                  |
| 2      | # obs                                 | Number of observations with information                    | Ulong  | 4           | н                |
| 3      | 1st range record                      | Compressed message format see Annotation a (RANGECMP only) | Hex    | 4           | H+4              |
| 4      | Next PRN offset = H + 4 + (#obs x 44) |                                                            |        |             |                  |
| 5      | xxxx                                  | 32-bit CRC (ASCII and Binary only)                         | Hex    | 4           | H+4+ (#obs x 24) |
| 6      | [CR][LF]                              | Sentence terminator (ASCII only)                           | -      | -           | -                |

#### Annotation:

## a. Compressed Message Format

| DATA                                         | BIT(S) FIRST TO LAST | LENGTH (BITS)           | SCALE FACTOR     | UNITS  |
|----------------------------------------------|----------------------|-------------------------|------------------|--------|
| Channel Tracking Status                      | 0-31                 | 32                      | See table 29     | -      |
| Doppler Frequency                            | 32-59                | 28                      | 1/256            | Hz     |
| Pseudorange (PSR)                            | 60-95                | 36                      | 1/128            | m      |
| Accumulated Doppler Range (ADR) <sup>a</sup> | 96-127               | 32                      | 1/256            | cycles |
| StdDev-PSR                                   | 128-131              | 4                       | See Annotation   | m      |
| StdDev-ADR                                   | 132-135              | 4                       | (n + 1)/512      | cycles |
| PRN/Slot <sup>c</sup>                        | 136-143              | 8                       | 1 (See Table 28) | -      |
| Lock Time <sup>d</sup>                       | 144-164              | 21 (maximum: 2,097,151) | 1/32             | S      |
| C/No <sup>®</sup> (valid range: 20-51 dB-Hz) | 165-169              | 5                       | (20 + n)         | dB-Hz  |
| Reserved                                     | 170-191              | 22                      |                  |        |

b.ADR (Accumulated Doppler Range) is calculated as follows:

ADR\_ROLLS = (RANGECMP\_PSR / WAVELENGTH + RANGECMP\_ADR) / MAX\_VALUE

Round to the closest integer

IF (ADR\_ROLLS  $\leq$  0)

ADR\_ROLLS = ADR\_ROLLS - 0.5

ELSE

ADR ROLLS = ADR ROLLS + 0.5

At this point integerise ADR\_ROLLS

CORRECTED\_ADR = RANGECMP\_ADR (MAX\_VALUE\*ADR\_ROLLS)

ADR has units of cycles, MAX\_VALUE= 8388608

GPS L1:WAVELENGTH = 0.1902936727984

GPS L2:WAVELENGTH = 0.2442102134246

GLONASS satellites emit L1and L2 carrier waves at a satellite-specific frequency, refer to the GLONASS section of AnIntroduction GNSS available on our website

æ

#### c. StdDev-PSR Values

| CODE | STDDEV-PSR (M) |
|------|----------------|
| 0    | 0.050          |
| 1    | 0.075          |
| 2    | 0.113          |
| 3    | 0.169          |
| 4    | 0.253          |
| 5    | 0.380          |
| 6    | 0.570          |
| 7    | 0.854          |
| 8    | 1.281          |
| 9    | 2.375          |
| 10   | 4.750          |
| 11   | 9.500          |
| 12   | 19.000         |
| 13   | 38.000         |
| 14   | 76.000         |
| 15   | 152.000        |

- d.Number of seconds of continuous tracking (no cycle slipping) This field is constrained to a maximum value of 2,097,151which represents a lock time of 65535.96875s (2097151/32).
- e.Carrier to noise density ratio The C/No is constrained to a value between 20-51dB-Hz. Thus, if it is reported that C/No = 20dB-Hz, the actual value could be less. Likewise, if it is reported that C/No = 51, the true value could be greater.

**Table 28. PRN Definition in Binary Message** 

| GNSS    | PRN     | OFFSET |
|---------|---------|--------|
| GPS     | 1~32    | 0      |
| GLONASS | 38~61   | 37     |
| SBAS    | 120~138 | 0      |
| BD2     | 141~177 | 140    |
| Galileo | 1~36    | 0      |
| QZSS    | 131~140 | -62    |

**Table 29. Tracking State** 

| STATE | DESCRIPTION                   | STATE | DESCRIPTION           |
|-------|-------------------------------|-------|-----------------------|
| 0     | Idle                          | 7     | Frequency-lock loop   |
| 2     | Wide frequency band pull-in   | 9     | Channel alignment     |
| 3     | Narrow frequency band pull-in | 10    | Code search           |
| 4     | Phase lock loop               | 11    | Aided phase lock loop |

**Table 30. Correlator Type** 

| STATE | DESCRIPTION                           |
|-------|---------------------------------------|
| 0     | N/A                                   |
| 1     | Standard Correlator: spacing = 1 chip |
| 2     | Narrow Correlator: spacing < 1 chip   |
| 3     | Reserved                              |
| 4     | Pulse Aperture Correlator (PAC)       |
| 5-6   | Reserved                              |

**Table 31. Channel Tracking** 

| NIBBLE# | BIT# | MASK       | DESCRIPTION    | RANGE VALUE       |  |  |
|---------|------|------------|----------------|-------------------|--|--|
| 0 1     | 0    | 0x0000001  | Tracking state |                   |  |  |
|         | 1    | 0x00000002 |                |                   |  |  |
| N0      | 2    | 0x00000004 |                | Refer to Table 29 |  |  |
|         | 3    | 0x00000008 |                |                   |  |  |
| N1      | 4    | 0x0000010  |                |                   |  |  |

| NIBBLE# | BIT#         | MASK        | DESCRIPTION                                                 | RANGE VALUE                                                       |  |  |  |
|---------|--------------|-------------|-------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
|         | 5            | 0x00000020  |                                                             |                                                                   |  |  |  |
|         | 6            | 0x00000040  |                                                             | 0-n (0 means first, n means last)                                 |  |  |  |
|         | 7            | 0x00000080  | SV channel number                                           | The value of n depends on the                                     |  |  |  |
|         | 8            | 0x00000100  |                                                             | receiver                                                          |  |  |  |
|         | 9            | 0x00000200  |                                                             |                                                                   |  |  |  |
| N2      | 10           | 0x00000400  | Phase lock flag                                             | 0 = Not locked,<br>1 = Locked                                     |  |  |  |
|         | 11           | 0x00000800  | Parity known flag                                           | 0 = Not known1 = Known                                            |  |  |  |
|         | 12           | 0x00001000  | Code locked flag                                            | 0 = Not locked<br>1 = Locked                                      |  |  |  |
| N3      | 13           | 0x00002000  |                                                             |                                                                   |  |  |  |
|         | 14           | 0x00004000  | Correlator type                                             | 0-7, refer to Table 30                                            |  |  |  |
|         | 15           | 0x00008000  |                                                             |                                                                   |  |  |  |
|         | 16           | 0x00010000  |                                                             | 0 = GPS                                                           |  |  |  |
|         | 17           | 0x00020000  | Satellite system                                            | 1= GLONASS                                                        |  |  |  |
| N4      | 18           | 0x00040000  |                                                             | 2 = SBAS<br>3 = GALILEO<br>4 = BD2<br>5-6 = Reserved<br>7 = Other |  |  |  |
|         | 19           | 0x00080000  | Reserved                                                    |                                                                   |  |  |  |
|         | 20           | 0x00100000  | Grouping                                                    | 0 = Not grouped,<br>1 = Grouped                                   |  |  |  |
| N5      | 21           | 0x00200000  |                                                             | Dependent on satellite system                                     |  |  |  |
|         | 0            | 0x00400000  |                                                             | above:                                                            |  |  |  |
|         | 1            | 0x00800000  |                                                             | GPS:                                                              |  |  |  |
|         | 2            | 0x01000000  |                                                             | 1= L1 C/A                                                         |  |  |  |
| N6      | 3 0x02000000 | Signal type | 2= L5<br>5= L2 P<br>9= L2 P codeless<br>14= L5Q<br>17 = L2C |                                                                   |  |  |  |
|         |              |             |                                                             | GLONASS:                                                          |  |  |  |

| NIBBLE # | BIT# | MASK       | DESCRIPTION               | RANGE VALUE                  |
|----------|------|------------|---------------------------|------------------------------|
|          |      |            |                           | 0= L1 C/A                    |
|          |      |            |                           | 1= L2 C/A                    |
|          |      |            |                           | 5= L2 P                      |
|          |      |            |                           | Galileo:                     |
|          |      |            |                           | 1=E1B                        |
|          |      |            |                           | 2+E1C                        |
|          |      |            |                           | 7=E6C                        |
|          |      |            |                           | 12=E5a Q                     |
|          |      |            |                           | 17=E5b Q                     |
|          |      |            |                           | 20=AltBOC Q                  |
|          |      |            |                           | BDS:                         |
|          |      |            |                           | 0= B1 C/A                    |
|          |      |            |                           | 17= B2 C/A                   |
|          |      |            |                           | 2= B3 C/A                    |
|          |      |            |                           | 8= B1C                       |
|          |      |            |                           | 12= B2a                      |
|          |      |            |                           | 17= B2b                      |
|          |      |            |                           | QZSS:                        |
|          |      |            |                           | 0= L1 C/A                    |
|          |      |            |                           | 14= L5Q                      |
|          |      |            |                           | 17 = L2C                     |
|          |      |            |                           | SBAS:                        |
|          |      |            |                           | 0 = L1 C/A                   |
|          |      |            |                           | 6=L5I                        |
|          |      |            |                           | Other:                       |
|          |      |            |                           | 19 = OmniSTAR                |
|          | 4    | 0x04000000 | Forward Error Correction  | 0 = Not FEC, 1 = FEC         |
|          | 5    | 0x08000000 | Primary L1 channel        | 0 = Not primary, 1 = Primary |
|          | 6    | 0x10000000 | Carrier phase measurement | 0 = Half Cycle Not Added,    |
|          |      | 0x10000000 | Carrier phase measurement | 1 = Half Cycle Added         |
| N7       | 7    | 0x20000000 | Reserved                  |                              |
|          | 8    | 0x40000000 | DPN lock floa             | 0 = PRN Not Locked Out       |
|          | 8    | 0X4000000  | PRN lock flag             | 1 = PRN locked Out           |

| NIBBLE# | BIT# | MASK       | DESCRIPTION        | RANGE VALUE               |
|---------|------|------------|--------------------|---------------------------|
|         | 9    | 0x80000000 | Channel assignment | 0 = Automatic, 1 = Forced |

## 4.2.7 Satellite Measurements

Log messages containing GNSS satellite measurements and information are defined in the following sections.

# 4.2.7.1 IONUTC Ionospheric and UTC Data

## Description

The Ionospheric Model parameters (ION) and the Universal Time Coordinated parameters (UTC) are provided.

Message ID8Recommended Inputlog ionutcb onchangedSupported FormatASCII, Binary and Abb-ASCII

# Reply

| Field# | Field Type    | Data Description                               | Format | Binary<br>Byte | Binary<br>Offset |
|--------|---------------|------------------------------------------------|--------|----------------|------------------|
| 1      | IONUTC header | Log header                                     |        | Н              | 0                |
| 2      | a0            | Alpha parameter constant term                  | Double | 8              | Н                |
| 3      | a1            | Alpha parameter 1st order term                 | Double | 8              | H+8              |
| 4      | a2            | Alpha parameter 2nd order term                 | Double | 8              | H+16             |
| 5      | a3            | Alpha parameter 3rd order term                 | Double | 8              | H+24             |
| 6      | b0            | Beta parameter constant term                   | Double | 8              | H+32             |
| 7      | b1            | Beta parameter 1st order term                  | Double | 8              | H+40             |
| 8      | b2            | Beta parameter 2nd order term                  | Double | 8              | H+48             |
| 9      | b3            | Beta parameter 3rd order term                  | Double | 8              | H+56             |
| 10     | utc wn        | UTC reference week number                      | Ulong  | 4              | H+64             |
| 11     | tot           | Reference time of UTC parameters               | Ulong  | 4              | H+68             |
| 12     | A0            | UTC constant term of polynomial                | Double | 8              | H+72             |
| 13     | A1            | UTC 1st order term of polynomial               | Double | 8              | H+80             |
| 14     | wn Isf        | Future week number                             | Ulong  | 4              | H+88             |
| 15     | dn            | Day number (the range is 1 to 7 where Sunday = | Ulong  | 4              | H+92             |

| Field# | Field Type | Data Description                      | Format | Binary<br>Byte | Binary<br>Offset  |
|--------|------------|---------------------------------------|--------|----------------|-------------------|
|        |            | 1 and Saturday = 7)                   |        |                |                   |
| 16     | deltat ls  | Delta time due to leap seconds        | Long   | 4              | H+96              |
| 17     | deltat lsf | Future delta time due to leap seconds | Long   | 4              | H+100             |
| 18     | deltat utc | Time difference                       | Ulong  | 4              | H+104             |
| 19     | xxxx       | 32-bit CRC (ASCII and Binary only)    | Hex    | 4              | H+4+(#p<br>rn*44) |
| 20     | [CR][LF]   | Sentence terminator (ASCII only)      | -      | -              | -                 |

#### 4.2.7.2 M925

#### **Extended Satellite Information**

# Description

This log provides extended information of satellites, like PRN numbers, elevation, azimuth, and some board's information, including signal strength and battery status.

For integrative receivers, much information should be collected from numbers of messages to display in screen or other media, so this message involved nearly all the information you need is strongly recommended.

It's an updating version of SATMSG, and could replace the latter.

Message ID925Recommended Inputlog m925bSupported Formatbinary

#### Reply (Binary)

| Field<br># | Field Type             | Data Description                                                                      | Format | Binary<br>Byte | Binary<br>Offset |
|------------|------------------------|---------------------------------------------------------------------------------------|--------|----------------|------------------|
| 1          | M925 Header1           | Log Header, its length H = 28                                                         |        | Н              | 0                |
| 2          | M925 Header2<br>Length | Header2 Length = 64 (Ver: 0x13)                                                       | Byte   | 1              | н                |
| 3          | Sat Number             | Satellite number                                                                      | Byte   | 1              | H+1              |
| 4          | GPRS Str               | GPRS signal strength: 4(type) - 4(strength)                                           | Byte   | 1              | H+2              |
| 5          | Bluetooth Str          | Bluetooth signal strength: 4(type) - 4(strength)                                      | Byte   | 1              | H+3              |
| 6          | Battery Status         | Refer to following NOTE on Field#6, Battery Status (i.e. electric quantity), one byte | Byte   | 1              | H+4              |
| 7          | Rcvr Temp              | Receiver tempature, or other status parameters                                        | Byte   | 1              | H+5              |

| Field<br># | Field Type       | Data Description                                                                        | Format | Binary<br>Byte | Binary<br>Offset |
|------------|------------------|-----------------------------------------------------------------------------------------|--------|----------------|------------------|
|            |                  | which might be sent with an interval, controlled by a flag                              |        |                |                  |
| 8          | Fre Flag         | Frequence Flag1, refer to Table 32                                                      | Byte   | 1              | H+6              |
| 9          | Fre Flag2        | Frequence Flag2, refer to Table 33Table 32. Frequency Flag (Version 4)                  | Byte   | 1              | H+7              |
| 10         | Data-link status | Radio status: type, on-off, strength, TxD or RxD                                        | Byte   | 1              | H+8              |
| 11         | Diff Data Type   | Differential data type                                                                  | Byte   | 1              | H+9              |
| 12         | Work Mode        | Receiver work mode: fixed or movable ref station, rover reveiver or single positioning. | Byte   | 1              | H+10             |
| 13         | Fix Status       | Position Type, refer to Table 26                                                        | Byte   | 1              | H+11             |
| 14         | Diff Age         | Differential data age in second                                                         | Byte   | 1              | H+12             |
| 15         | PDOP             | Scale factor: 0.1                                                                       | Byte   | 1              | H+13             |
| 16         | RMS              | Postiong Accuracy RMS, scale factor: 0.1                                                | Byte   | 1              | H+14             |
| 17         | Reserved         | -                                                                                       | Byte   | 1              | H+15             |
| 18         | Latitude         | In degree                                                                               | Double | 8              | H+16             |
| 19         | Longitude        | In degree                                                                               | Double | 8              | H+24             |
| 20         | Height           | Ellipsoidal height of fix (antenna height above ellipsoid), in meter                    | Double | 8              | H+32             |
| 21         | Undulation       | Height undulation, in meter                                                             | Float  | 4              | H+40             |
| 22         | Covariance E     | Postion Error Cov in East direction (m)                                                 | Float  | 4              | H+44             |
| 23         | Covariance N     | Postion Error Cov in North direction (m)                                                | Float  | 4              | H+48             |
| 24         | Covariance V     | Postion Error Cov in Vertial direction (m)                                              | Float  | 4              | H+52             |
| 25         | FreqHealth1      | Signal Frequency Helth Flag 1, refer to <i>Table</i> 33.  Frequency Health Flag 1       | Byte   | 1              | H+56             |
| 26         | FreqHealth2      | Signal Frequency Helth Flag 2, refer to <i>Table 34</i> .  Frequency Health Flag 2      | Byte   | 1              | H+57             |
| 27         | Use Sats         | Satellite Number used in solution                                                       | Byte   | 1              | H+58             |
| 28         | Tracking Sats    | Satellite Number continuously tracked                                                   | Byte   | 1              | H+59             |

| Field<br># | Field Type         | Data Description                                                           | Format | Binary<br>Byte | Binary<br>Offset           |
|------------|--------------------|----------------------------------------------------------------------------|--------|----------------|----------------------------|
| 29         | GPRS status        | GPRS connection status, refer to <i>Table</i> 35. GPRS Connection Status   | Byte   | 1              | H+60                       |
| 30         | Reserved           |                                                                            | Byte   | 1              | H+61                       |
| 31         | Reserved           |                                                                            | Byte   | 1              | H+62                       |
| 32         | Reserved           |                                                                            | Byte   | 1              | H+63                       |
| 33         | Reserved           | 24 bytes reserved                                                          |        |                | H+64                       |
| 34         | PRN                | Satellite ID, Refer to Table 5                                             | Byte   | 1              | H1(=<br>H+88)              |
| 35         | Azimuth            | Degree (°)                                                                 | Short  | 2              | H1+1                       |
| 36         | Elevation          | Degree (°)                                                                 | Byte   | 1              | H1+3                       |
| 37         | L1 Status          | Frequency status about L1, refer to Table                                  | Byte   | 1              | H1+4                       |
| 38         | L1 SNR             | L1 signal noise ratio                                                      | Byte   | 1              | H1+5                       |
| 39         | L1 RMS             | L1 RMS                                                                     | Byte   | 1              | H1+6                       |
| 40         | L1 Lost Counter    | L1 track lost counter                                                      | Byte   | 1              | H1+7                       |
| 41         | Next Fre Infor     | May be L2 Infor, according to fre-flag                                     |        | 4              | H1+8                       |
| 42         | Next Fre Infor     | May be L5 infor, according to fre-flag                                     |        | 4              | H1+12                      |
| 43         | Next Sat Offset: H | $1 + \text{Sat} \times (4 + \text{Fre No*4})$ , where H1 = H+64 (Ver: 0x03 | )      |                |                            |
| 44         | CRC                | 32-bit CRC Code                                                            | Hex    | 4              | H1+Sat<br>×(4+Fr<br>eNo*4) |



NOTE: Field#6, battery status (i.e. electric quantity), one byte

|  | ВІТ7 | віт6 | віт5 | BIT4 | ВІТ3 | BIT2 | BIT1 | віто |  |
|--|------|------|------|------|------|------|------|------|--|
|--|------|------|------|------|------|------|------|------|--|

BIT7: Battery #2

BIT6: Battery #1

**BIT5-BIT0**: Electric quantity of Battery #1 or Battery #2 which is subject to the value of BIT7 and BIT6. The battery electric quantity percent  $(0\% \sim 100\%)$  is represented by 64 numbers  $(0 \sim 63)$ . An exception is that the number '0' represents the battery is not available or not mounted, since it's impossible a battery has a %0 electric quantity.

The electric quantity of Battery #1 and #2 is presented in each M925 and SATMSG log message alternately. If BIT7 is set as 1, the value of BIT5-BIT0 represents Battery #2's electric quantity, and a zero value of BIT5-BIT0 means that Battery #2 is not available. Similarly, if BIT6 is set as 1, the value of BIT5-BIT0 represents Battery #1's electric quantity, and a zero value of BIT5-BIT0 means that Battery #1 is not available. It's definitely impossible that both BIT7 and BIT6 are set to as 1 at the same time.

If Field#6 is extracted, battery electric quantity can be calculated as:

#### Battery electric quantity = Round up the value of ((Field#6 & 0x3F) × 101 / 0x40)

Attention please, once battery electric quantity decreases down to 10%, it would drop down steeply and a warning for changing a new battery is necessary.

**Table 32. Frequency Flag (Version 4)** 

| BIT  | DESCRIPTION    |
|------|----------------|
| BIT7 | Reserved       |
| BIT6 | Reserved       |
| BIT5 | Reserved       |
| BIT4 | B2A            |
| BIT3 | B1C            |
| BIT2 | L5 /B3I/G3/E5a |
| BIT1 | L2 /B2I/G2/E5b |
| BIT0 | L1 /B1I/G1/E1  |

Table 33. Frequency Health Flag 1

| BIT  | DESCRIPTION | VALUE        |
|------|-------------|--------------|
| BIT7 | GLONASS G2  |              |
| BIT6 | GLONASS G1  | O. baalth    |
| BIT5 | BDS B3      | 0: healthy   |
| BIT4 | BDS B2      | 1: unhealthy |
| BIT3 | BDS B1      |              |

| BIT  | DESCRIPTION | VALUE |
|------|-------------|-------|
| BIT2 | GPS L5      |       |
| BIT1 | GPS L2      |       |
| BIT0 | GPS L1      |       |

**Table 34. Frequency Health Flag 2** 

| BIT  | DESCRIPTION | VALUE        |
|------|-------------|--------------|
| BIT7 | QZSS Q3     |              |
| BIT6 | QZSS Q2     |              |
| BIT5 | QZSS Q3     |              |
| BIT4 | BD3 B2A     | 0: healthy   |
| BIT3 | BD3 B1C     | 1: unhealthy |
| BIT2 | Galileo E3  |              |
| BIT1 | Galileo E2  |              |
| BIT0 | Galileo E1  |              |

**Table 35. GPRS Connection Status** 

| BIT  | DESCRIPTION         | STATUS                           |
|------|---------------------|----------------------------------|
| BIT7 | Reserved            |                                  |
| BIT6 | Reserved            |                                  |
| BIT5 | Reserved            |                                  |
| BIT4 | Reserved            |                                  |
| BIT3 | CORS Status         | 0: not connected; 1: connected   |
| BIT2 | Net Register Status | 0: not registered; 1: registered |
| BIT1 | SIM Card Status     | 0: not ready; 1: ready           |
| ВІТО | Module Status       | 0: not ready; 1: ready           |

#### 4.2.7.3 SATMSG

## **Satellite Information**

# Description

This log provides both the information of satellites, like PRN numbers, elevation, azimuth, and some board's information, including signal strength and battery status.

For integrative receivers, much information should be collected from numbers of messages to display in screen or other media, so this message involved nearly all the information you need is strongly recommended.

Message ID911Recommended Inputlog satmsgbSupported Formatbinary

# Reply (Binary)

| Field# | Field Type         | Data Description                                                                                        | Format | Binary<br>Byte | Binary<br>Offset |
|--------|--------------------|---------------------------------------------------------------------------------------------------------|--------|----------------|------------------|
| 1      | SATMSG Header      | Log Header                                                                                              |        | Н              | 0                |
| 2      | Sat Number         | Satellite number                                                                                        | Byte   | 1              | Н                |
| 3      | Version Number     | From Version Number: 8, frequency flag and frequency status become effective                            | Byte   | 1              | H+1              |
| 4      | GPRS Str           | GPRS signal strength                                                                                    | Byte   | 1              | H+2              |
| 5      | Bluetooth Str      | Bluetooth signal strength                                                                               | Byte   | 1              | H+3              |
| 6      | Battery Status     | Refer to the NOTE on Field#6, Battery Status (i.e. electric quantity), one byte defined in 4.2.7.2 M925 | Byte   | 1              | H+4              |
| 7      | Fre Flag           | Frequency flag, refer to Table 36                                                                       | Byte   | 1              | H+5              |
| 8      | PRN                | Satellite ID (1~177), Refer to Table 5                                                                  | Byte   | 1              | H+6              |
| 9      | Azimuth            | Degree (°)                                                                                              | Short  | 2              | H+7              |
| 10     | Elevation          | Degree (°)                                                                                              | Byte   | 1              | H+9              |
| 11     | L1 Status          | Frequency status about L1, refer to Table 37                                                            | Byte   | 1              | H+10             |
| 12     | L1 SNR             | L1 signal noise ratio                                                                                   | Byte   | 1              | H+11             |
| 13     | L1 RMS             | L1 RMS                                                                                                  | Byte   | 1              | H+12             |
| 14     | L1 Lost Counter    | L1 track lost counter                                                                                   | Byte   | 1              | H+13             |
| 15     | Next Fre Infor     | May be L2 Infor, according to fre-flag                                                                  |        | 4              | H+14             |
| 16     | Next Fre Infor     | May be L5 infor, according to fre-flag                                                                  |        | 4              | H+18             |
| 17     | Next Sat Offset: H | + 6 + Sat × (4 + Fre No*4)                                                                              |        |                |                  |
| 18     | CRC                | 32-bit CRC Code                                                                                         | Hex    | 4              | H+10+Sat*        |

| Field# | Field Type | Data Description | Format | Binary<br>Byte | Binary<br>Offset |
|--------|------------|------------------|--------|----------------|------------------|
|        |            |                  |        |                | (4+FreNo*        |
|        |            |                  |        |                | 4)               |

**Table 36. Frequency Flag (Version 2)** 

| BIT  | DESCRIPTION                                |
|------|--------------------------------------------|
| BIT7 | Reserved                                   |
| BIT6 | Reserved                                   |
| BIT5 | Reserved                                   |
| BIT4 | Reserved                                   |
| BIT3 | Reserved                                   |
| BIT2 | L3 information involved (GPS: L5; BD2: B3) |
| BIT1 | L2 information involved (GPS: L2; BD2: B2) |
| BIT0 | L1 information involved (GPS: L1; BD2: B1) |

**Table 37. Frequency Status** 

| BIT  | DESCRIPTION                                           | VALUE                         |             |  |
|------|-------------------------------------------------------|-------------------------------|-------------|--|
| BIT7 | In RTK calculation, if reference satellite            | 1: reference satellite 0: not |             |  |
| BIT6 | Reserved                                              |                               |             |  |
| BIT5 | Reserved (Lockout status of the satellite)            |                               |             |  |
| BIT4 | In RTK calculation, if involved in combined ambiguity | 1: used                       | 0: not used |  |
| BIT3 | In RTK calculation, if ambiguity fixed                | 1: used                       | 0: not used |  |
| BIT2 | In RTK calculation, if carrier-phase used             | 1: used                       | 0: not used |  |
| BIT1 | In RTK calculation, if pseudorange used               | 1: used                       | 0: not used |  |
| BIT0 | This frequency information if valid                   | 1: valid                      | 0: invalid  |  |

# 4.2.7.4 SATVIS Satellite Visibility

This message contains satellite visibility information such as Mask angle and azimuth.

Message ID48Recommended Inputlog satvisb ontime 5Supported Formatbinary

## Reply (Binary)

| Field<br># | Field Type         | Data Description                                   | Format | Binary<br>Byte | Binary<br>Offset   |
|------------|--------------------|----------------------------------------------------|--------|----------------|--------------------|
| 1          | SATVIS Header      | Log Header                                         |        | Н              | 0                  |
| 2          | Sat vis            | Is satellite visibility valid: 0 = false, 1 = true | Enum   | 4              | Н                  |
| 3          | Comp alm           | Complete GPS almanac used? 0=false, 1= true        | Enum   | 4              | H+4                |
| 4          | #sat               | Number of satellites                               | Ulong  | 4              | H+8                |
| 5          | PRN/slot           | PRN of range measurement (GPS: 1-32)               | Short  | 2              | H+12               |
| 6          | glofreq            | Not used                                           | Short  | 2              | H+14               |
| 7          | health             | Satellite health                                   | Ulong  | 4              | H+16               |
| 8          | Elev               | Elevation (degrees)                                | Double | 8              | H+20               |
| 9          | Az                 | Azimuth (degrees)                                  | Double | 8              | H+28               |
| 10         | True dop           | Theoretical Doppler of satellite                   | Double | 8              | H+36               |
| 11         | App dop            | Apparent Doppler for this board                    | double | 8              | H+44               |
| 12         | Next satellite off | set = H+12+(#sat*40)                               |        |                |                    |
| 13         | CRC                | 32-bit CRC                                         | Hex    | 4              | H+12+(#s<br>at*40) |

#### 4.2.7.5 SATXYZ Satellite Positions in ECEF Cartesian Coordinates

#### Description

This message contains the decoded healthy satellite information which necessary to compute the solution: satellite coordinates(ECEF WGS84), satellite clock correction, ionospheric corrections and tropospheric correction.

Message ID270Recommended Inputlog satxyzb ontime 5Supported FormatASCII, Binary

# Reply (ASCII)

#SATXYZA, COM3, 0, 60.0, FINESTEERING, 1865, 474754.000, 00000000, 0000, 1114; 0.0, 22,

15,-15084222.3606,6578111.4367,20797324.0055,-82716.737,1.939505301,3. 250863906,0.000000000,0.000000000,

18,331939.5836,16396859.9411,21377137.9648,132303.811,2.181498551,3.18 3969806,0.000000000,0.000000000,

- 14,14332302.7311,22342874.5826,2543349.8588,8761.333,5.964851393,11.68 3728685,0.000000000,0.000000000,
- 20,-20937088.1269,13183406.6559,9607131.0245,108446.846,1.734673649,2.886741179,0.000000000,0.000000000,
- 21,-561165.7287,24827903.5557,9661802.3609,-145528.329,2.153225620,3.0 19855033,0.000000000,0.000000000,
- 12,-21186097.7357,10768124.0658,-11738353.6757,100528.613,3.932592236, 11.646636609,0.000000000,0.000000000,
- 24,-14558949.4706,19131262.1052,11076165.7393,-1804.985,1.658385230,2.465761340,0.000000000,0.000000000,
- 142,7261670.7669,41527286.5505,-117059.2936,-22006.452,6.492729818,4.4 53330966,0.000000000,0.000000000,
- 143,-14811002.3199,39447763.4671,-956706.2550,-25834.066,4.676105362,3 .131226458,0.000000000,0.000000000,
- 144, -39628887.7279, 14486292.9577, -346788.5894, 59380.037, 5.782862006, 4. 233089765, 0.000000000, 0.000000000,
- 145,21933086.9619,35994587.1747,-551147.5582,52360.344,10.164416051,9.510727002,0.000000000,0.000000000,
- 146,-18423459.0520,21354484.3222,31373249.6331,-34315.885,3.442801813, 2.601635931,0.000000000,0.000000000,
- 147, -21638134.9976, 36315776.2488, -1833791.2176, 28313.409, 4.622843134, 3 .110330994, 0.000000000, 0.000000000,
- 149,-732990.3528,24461063.7700,34401050.0440,110974.229,3.870875851,3.
  011551144,0.000000000,0.000000000,150,-11016086.5712,37999666.2144,-14
  874307.5423,37494.950,7.398493056,4.994304421,0.000000000,0.000000000,
- 141, -32334540.2436, 27078823.6741, -499709.4237, -56949.895, 4.730575008, 3.259515751, 0.000000000, 0.000000000,
- 43,-1458650.9146,11004205.3443,22954676.5578,-22871.512,2.315825486,3.515196014,0.000000000,0.000000000,
- 42,-19512711.3525,4690307.7077,15742060.7042,-2453.082,2.128749742,3.6 05844930,0.000000000,0.000000000,
- 53,-17722019.9252,17620756.8073,5323458.1164,-5538.798,1.813382812,2.7 96211254,0.000000000,0.000000000,
- 58,10706156.5231,22641811.6824,4741145.3140,-9878.178,4.497215083,6.81 0739645,0.000000000,0.000000000,

46,-9937718.8939,20466356.2848,-11454304.7735,-4963.400,4.041715928,7.585728332,0.000000000,0.000000000,

52,-14342256.7827,2476448.5517,20935199.3460,-16602.556,2.329772824,4.018819136,0.000000000,0.000000000\*15FB91FA

| Field<br># | Field Type         | Data Description                           | Format | Binary<br>Byte | Binary<br>Offset   |
|------------|--------------------|--------------------------------------------|--------|----------------|--------------------|
| 1          | SATXYZ Header      | Log Header                                 |        | Н              | 0                  |
| 2          | Reserved           | Reserved                                   | Double | 8              | Н                  |
| 3          | #sat               | Number of satellites                       | Ulong  | 4              | H+8                |
| 4          | PRN/slot           | PRN of range measurement, refer to Table 5 | ULong  | 4              | H+12               |
| 5          | X                  | Satellite X co-ordinates (ECEF,m)          | Double | 8              | H+16               |
| 6          | Υ                  | Satellite Y co-ordinates (ECEF,m)          | Double | 8              | H+24               |
| 7          | Z                  | Satellite Z co-ordinates (ECEF,m)          | Double | 8              | H+32               |
| 8          | clk corr           | Satellite clock correction (m)             | Double | 8              | H+40               |
| 9          | iono delay         | Ionosphere delay (m)                       | Double | 8              | H+48               |
| 10         | tropo delay        | Troposphere delay (m)                      | Double | 8              | H+56               |
| 11         | Reserved1          | Reserved                                   | Double | 8              | H+64               |
| 12         | Reserved2          | Reserved                                   | Double | 8              | H+72               |
| 13         | Next satellite off | set = H+12+(#sat*68)                       |        |                |                    |
| 14         | xxxx               | 32-bit CRC (ASCII and Binary only)         | Hex    | 4              | H+12+<br>(#sat*68) |
| 15         | [CR][LF]           | Sentence terminator (ASCII only)           | -      | -              | -                  |

#### 4.2.8 Station Information

#### 4.2.8.1 REFSTATION Base Station Position and Health

## Description

This message includes base station position and health information received from differential messages.

| Message ID        | 175                       |
|-------------------|---------------------------|
| Recommended Input | log refstationb onchanged |
| Supported Format  | ASCII, Binary             |

# Reply (ASCII)

#REFSTATIONA, COM1, 0, 60.0, UNKNOWN, 1776, 107978.450, 00000000, 0000, 1114;00 0000000, 0.000, 0.000, 0.000, 0, 0, "0000"\*b7e5bd12

| Field# | Field Type        | Data Description                                          | Format  | Binary<br>Byte | Binary<br>Offset |
|--------|-------------------|-----------------------------------------------------------|---------|----------------|------------------|
| 1      | REFSTATION header | Log header                                                |         | Н              | 0                |
| 2      | status            | Status of the base station information (refer toTable 38) | ULong   | 4              | н                |
| 3      | Х                 | ECEF X value                                              | Double  | 8              | H+4              |
| 4      | Υ                 | ECEF Y value                                              | Double  | 8              | H+12             |
| 5      | Z                 | ECEF Z value                                              | Double  | 8              | H+20             |
| 6      | health            | Base station health(0: Health OK)                         | Ulong   | 4              | H+28             |
| 7      | stn type          | Base station type (refer to  Table 39)                    | Enum    | 4              | H+32             |
| 8      | stn ID            | Base station ID                                           | Char[5] | 8ª             | H+36             |
| 9      | xxxx              | 32-bit CRC (ASCII and Binary only)                        | Hex     | 4              | H+44             |
| 10     | [CR][LF]          | Sentence terminator (ASCII only)                          | -       | -              | -                |

a. In binary format messages, add an extra 3 bytes of padding to keep 8 bytes aligned.

**Table 38. Base Station Status** 

| Bit# | Mask      | Description                   | Bit = 0 | Bit = 1 |
|------|-----------|-------------------------------|---------|---------|
| 0    | 0x0000001 | Validity of the base station. | Valid   | Invalid |

**Table 39. Base Station Type** 

| Base St | ation Type<br>(ASCII) | Description              |
|---------|-----------------------|--------------------------|
| 0       | NONE                  | Base station is not used |
| 1       | RTCM                  | Base station is RTCM     |
| 2       | RTCA                  | Base station is RTCA     |

| 3 | CMR    | Base station is CMR    |
|---|--------|------------------------|
| 4 | RTCMV3 | Base station is RTCMV3 |

# 4.2.9 Time Messages

#### 4.2.9.1 TIME Time Data

## Description

This log provides several time related pieces of information including board clock offset and UTC time and offset. It can also be used to determine any offset in the PPS signal relative to GPS time.

Message ID101Recommended Inputlog timeb ontime 1Supported Formatbinary

# Reply (Binary)

| Field# | Field Type   | Data Description                                | Format | Binary<br>Byte | Binary<br>Offset |
|--------|--------------|-------------------------------------------------|--------|----------------|------------------|
| 1      | TIME Header  | Log Header                                      |        | Н              | 0                |
| 2      | Clock status | Clock model status, refer to Table 40.          | Enum   | 4              | Н                |
| 3      | Offset       | Board clock offset                              | Double | 8              | H+4              |
| 4      | Offset std   | Board clock offset standard deviation.          | Double | 8              | H+12             |
| 5      | Utc offset   | The offset of GPS time from UTC time            | Double | 8              | H+20             |
| 6      | Utc year     | UTC year                                        | Ulong  | 4              | H+28             |
| 7      | Utc month    | UTC month (0-12)                                | Uchar  | 1              | H+32             |
| 8      | Utc day      | UTC day (0-31)                                  | Uchar  | 1              | H+33             |
| 9      | Utc hour     | UTC hour (0-23)                                 | Uchar  | 1              | H+34             |
| 10     | Utc min      | UTC minute (0-59)                               | Uchar  | 1              | H+35             |
| 11     | Utcms        | UTC millisecond (0-60999)                       | Ulong  | 4              | H+36             |
| 12     | Utc status   | UTC status: 0 = Invalid, 1 = Valid, 2 = Warning | Enum   | 4              | H+40             |
| 13     | CRC          | 32-bit CRC                                      | Hex    | 4              | H+44             |

**Table 40. Clock Model Status** 

| Value       | Clock Status | Description                                   |  |
|-------------|--------------|-----------------------------------------------|--|
| 0           | VALID        | The clock model is valid                      |  |
| 1           | CONVERGING   | The clock model is near validity              |  |
| 2 ITERATING |              | The clock model is iterating towards validity |  |
| 3           | INVALID      | The clock model is not valid                  |  |
| 4           | ERROR        | Clock model error                             |  |

## 4.3 INTERNATIONAL STANDARD MESSAGES

# 4.3.1 NMEA sentences

#### 4.3.1.1 Standard NMEA sentences

#### 4.3.1.1.1 GPGGA GNSS Fix Data

#### Description

This message is a standard NMEA log, but a little different from the standard one in position precision. The position precision of this log is the same as GPGGARTK, in order to be used in greater conditions. The header of GPGGA is always "GP" regardless if other GNSS information involved in solution computation.

| Message ID        | 218                |
|-------------------|--------------------|
| Recommended Input | log gpgga ontime 1 |
| Supported Format  | ASCII              |

## Reply (ASCII)

\$GPGGA,024941.00,3110.4693903,N,12123.2621695,E,1,16,0.6,57.0924,M,0.0 00,M,99,AAAA\*55

| Field# | Structure | Description                                                  | Symbol        | Example      |
|--------|-----------|--------------------------------------------------------------|---------------|--------------|
| 1      | \$GPGGA   | Log header                                                   |               | \$GPGGA      |
| 2      | utc       | UTC time of position (hours/minutes/seconds/decimal seconds) | hhmmss.ss     | 202134.00    |
| 3      | lat       | Latitude (DDmm.mm)                                           | 1111.1111111  | 3110.4693903 |
| 4      | latdir    | Latitude direction (N = North, S = South)                    | a             | N            |
| 5      | lon       | Longitude (DDDmm.mm)                                         | ууууу.ууууууу | 121232621695 |
| 6      | londir    | Longitude direction (E = East, W = West)                     | a             | W            |

| Field# | Structure  | Description                                                                                                                                                                                                                                                                                                                                                             | Symbol | Example                       |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|
| 7      | GPS qual   | GPS Quality indicator  0 = fix not available or invalid  1 = GPS fix  2 = C/A differential GPS, OmniSTAR HP,  OmniSTAR XP, OmniSTAR VBS, or CDGPS  4 = RTK fixed ambiguity solution (RT2)  5 = RTK floating ambiguity solution (RT20),  OmniSTAR HP or OmniSTAR XP  6 = Dead reckoning mode  7 = Manual input mode (fixed position)  8 = Super wide-lane mode  9 = SBAS | x      | 1                             |
| 8      | # sats     | Number of satellites in use. May be different to the number in view                                                                                                                                                                                                                                                                                                     | xx     | 10                            |
| 9      | hdop       | Horizontal dilution of precision                                                                                                                                                                                                                                                                                                                                        | x.x    | 1.0                           |
| 10     | alt        | Antenna altitude above/below mean sea level                                                                                                                                                                                                                                                                                                                             | x.x    | 1062.22                       |
| 11     | a-units    | Units of antenna altitude (M = meters)                                                                                                                                                                                                                                                                                                                                  | М      | M                             |
| 12     | undulation | Undulation - the relationship between the geoid and the WGS84 ellipsoid                                                                                                                                                                                                                                                                                                 | x.x    | -16.271                       |
| 13     | u-units    | Units of undulation (M = meters)                                                                                                                                                                                                                                                                                                                                        | М      | M                             |
| 14     | age        | Age of Differential GPS data (in seconds) b                                                                                                                                                                                                                                                                                                                             | xx     | (empty when no                |
| 15     | stn ID     | Differential base station ID, 0000-1023                                                                                                                                                                                                                                                                                                                                 | xxxx   | differential data is present) |
| 16     | *xx        | Checksum                                                                                                                                                                                                                                                                                                                                                                | *hh    | *48                           |
| 17     | [CR][LF]   | Sentence terminator                                                                                                                                                                                                                                                                                                                                                     |        | [CR][LF]                      |

# 4.3.1.1.2 GPGLL Geographic Position

## Description

This message is a standard NMEA log, include information such as time, latitude, longitude and so on. Be different from GPGGA, if BD2or other GNSS information is involved in, the header of GLL would become "GN" instead of "GP" which is outputted in only GPS information used in solution computation. If only BD2 information is used, header becomes "BD".

Message ID

Recommended Input | log gpg|| ontime 1

Supported Format | ASCII

## Reply (ASCII)

\$GPGLL,3110.4705303,N,12123.2635741,E,031544.00,A,A\*68

| Field# | Structure   | Description                                   | Format        | Example       |
|--------|-------------|-----------------------------------------------|---------------|---------------|
| 1      | \$GPGLL     | Log header                                    |               | \$GPGLL       |
| 2      | lat         | Latitude (DDmm.mm)                            | 1111.1111111  | 3110.4702936  |
| 3      | latdir      | Latitude direction                            | а             | N             |
|        |             | (N = North, S = South)                        |               |               |
| 4      | lon         | Longitude (DDDmm.mm)                          | ууууу.ууууууу | 12123.2629222 |
| 5      | londir      | Longitude direction                           | a             | W             |
|        |             | (E = East, W = West)                          |               |               |
| 6      | utc         | UTC time of position (hours/minutes/          | hhmmss.ss     | 220152.50     |
|        | utc         | seconds/decimal seconds)                      | 1111111133.33 | 220132.30     |
| 7      | data status | Data status: A = Data valid, V = Data invalid | Α             | Α             |
| 8      | mode ind    | Positioning system mode indicator             | a             | Α             |
| 9      | *xx         | Checksum                                      | *hh           | *1B           |
| 10     | [CR][LF]    | Sentence terminator                           |               | [CR][LF]      |

#### 4.3.1.1.3 GPGSA GNSS DOP and Available Satellite

# Description

This message contains available satellites used in solution computation and DOP values.

Message ID221Recommended Inputlog gpgsa ontime 1Supported FormatASCII

#### Reply (ASCII) GPS and BD2

\$GNGSA,M,3,25,14,15,18,31,27,09,21,22,12,,,0.8,0.6,0.5\*2A \$GNGSA,M,3,141,143,144,146,147,148,149,150,,,,0.8,0.6,0.5\*2C

## Reply (ASCII) GPS only

\$GPGSA,M,3,25,14,15,18,31,27,09,21,22,12,,,1.5,0.9,1.3\*30

## Reply (ASCII) BDS only

\$BDGSA,M,3,141,143,144,146,147,148,149,150,,,,,2.7,1.7,2.2\*2B

| Field# | Structure | Description                                                                                                | Symbol | Example                                           |
|--------|-----------|------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------|
| 1      | \$GPGSA   | Log header                                                                                                 |        | \$GPGSA                                           |
| 2      | mode MA   | A = Automatic 2D/3D M = Manual, forced to operate in 2D or 3D                                              | М      | М                                                 |
| 3      | mode 123  | Mode: 1 = Fix not available; 2 = 2D; 3 = 3D                                                                | х      | 3                                                 |
| 4 - 15 | prn       | PRN numbers of satellites used in solution (null for unused fields), total of 12 fields, refer to table 5. | xx,xx, | 25,14,<br>15,18,<br>31,27,<br>09,21,<br>22,12,,,, |
| 16     | pdop      | Position dilution of precision                                                                             | x.x    | 1.5                                               |
| 17     | hdop      | Horizontal dilution of precision                                                                           | x.x    | 0.9                                               |
| 18     | vdop      | Vertical dilution of precision                                                                             | x.x    | 1.2                                               |
| 19     | *xx       | Checksum                                                                                                   | *hh    | *3F                                               |
| 20     | [CR][LF]  | Sentence terminator                                                                                        |        | [CR][LF]                                          |

## 4.3.1.1.4 GPGST Pseudorange Measurement Noise Statistics

## Description

This message is a standard NMEA log. Pay attention to that rms, smjrstd, smnrstd and orient values are absent in the message currently.

Message ID222Recommended Inputlog gpgst ontime 1Supported FormatASCII

## Reply (ASCII)

| Field# | Structure | Description                                                   | Symbol    | Example   |
|--------|-----------|---------------------------------------------------------------|-----------|-----------|
| 1      | \$GPGST   | Log header                                                    |           | \$GPGST   |
| 2      | utc       | UTC time of position (hours/minutes/seconds/ decimal seconds) | hhmmss.ss | 173653.00 |

| Field# | Structure | Description                                                                                                                               | Symbol | Example  |
|--------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| 3      | rms       | RMS value of the standard deviation of the range inputs to the navigation process. Range inputs include pseudorange and DGPS corrections. | x.x    |          |
| 4      | smjrstd   | Standard deviation of semi-major axis of error ellipse (m)                                                                                | x.x    |          |
| 5      | smnrstd   | Standard deviation of semi-minor axis of error ellipse (m)                                                                                | x.x    |          |
| 6      | orient    | Orientation of semi-major axis of error ellipse (degrees from true north)                                                                 | x.x    |          |
| 7      | latstd    | Standard deviation of latitude error (m)                                                                                                  | x.x    | 2.51     |
| 8      | lonstd    | Standard deviation of longitude error (m)                                                                                                 | x.x    | 1.94     |
| 9      | alt std   | Standard deviation of altitude error (m)                                                                                                  | x.x    | 4.30     |
| 10     | *xx       | Checksum                                                                                                                                  | *hh    | *6E      |
| 11     | [CR][LF]  | Sentence terminator                                                                                                                       |        | [CR][LF] |

## Reply (ASCII) GPS and BDS

\$GNGST,035330.00,,,,0.22,2.37,1.44,\*54

## Reply (ASCII) GPS only

\$GPGST,035330.00,,,,0.22,2.37,1.44,\*54

#### Reply (ASCII) BDS only

\$BDGST,035330.00,,,,0.22,2.37,1.44,\*54

## 4.3.1.1.5 GPGSV GNSS Satellites in View

#### Description

This is a standard NMEA message which includes PRN numbers, elevation, azimuth, and SNR values of satellites in view. Messages of GPS satellites use header "GP" and BD2 use "BD".

Message ID223Recommended Inputlog gpgsv ontime 1Supported FormatASCII

## Reply (ASCII)

\$GPGSV, 3, 1, 09, 14, 67, 095, 51, 31, 55, 331, 50, 25, 38, 041, 50, 22, 25, 188, 46\*70 \$GPGSV, 3, 2, 09, 30, 43, 228, 49, 29, 29, 096, 47, 32, 29, 303, 45, 16, 17, 219, 43\*7B \$GPGSV,3,3,09,20,07,318,41,,,,,,,\*4A \$BDGSV,2,1,08,141,49,145,47,143,36,237,45,144,34,122,45,146,13,196,39\* 6E \$BDGSV,2,2,08,147,63,004,50,148,39,173,45,149,25,222,42,150,51,324,46\* 6D

| Field# | Structure | Description                                                                                   | Symbol | Example  |
|--------|-----------|-----------------------------------------------------------------------------------------------|--------|----------|
| 1      | \$GPGSV   | Log header                                                                                    |        | \$GPGSV  |
| 2      | # msgs    | Total number of messages (1-9)                                                                | х      | 3        |
| 3      | msg #     | Message number (1-9)                                                                          | х      | 1        |
| 4      | # sats    | Total number of satellites in view. May be different than the number of satellites in use     | xx     | 09       |
| 5      | prn       | Satellite PRN number, refer to table 5.                                                       | xx     | 03       |
| 6      | elev      | Elevation, degrees, 90 maximum                                                                | xx     | 51       |
| 7      | azimuth   | Azimuth, degrees True, 000 to 359                                                             | xxx    | 140      |
| 8      | SNR       | SNR (C/No) 00-99 dB, null when not tracking                                                   | xx     | 42       |
| 9      |           | Next satellite PRN number, elev, azimuth, SNR, Last satellite PRN number, elev, azimuth, SNR, |        |          |
| 10     | *xx       | Checksum                                                                                      | *hh    | *72      |
| 11     | [CR][LF]  | Sentence terminator                                                                           |        | [CR][LF] |

# 4.3.1.1.6 GPHDT Vessel Heading

#### Description

This message is a standard log which includes actual vessel heading for True North in degrees.

Message ID228Recommended Inputlog gphdt ontime 1Supported FormatASCII

# Reply (ASCII) GPS and BD2

\$GNHDT,89.2769,T\*20

#### Reply (ASCII) GPS

\$GPHDT, 154.6566, T\*06

## Reply (ASCII) BD2

\$BDHDT, 47.8506, T\*2C

| Field# | Structure | Description         | Symbol | Example  |
|--------|-----------|---------------------|--------|----------|
| 1      | \$GPHDT   | Log header          |        | \$GPHDT  |
| 2      | heading   | Heading in degrees  | x.x    | 89.2769  |
| 3      | True      | Degrees True        | Т      | Т        |
| 4      | *xx       | Checksum            | *hh    | *36      |
| 5      | [CR][LF]  | Sentence terminator |        | [CR][LF] |

#### 4.3.1.1.7 GPRMC

# **GNSS Specification Information**

# Description

## This is a standard NMEA message which includes time, date, speed and true heading.

| Message ID        | 225                |
|-------------------|--------------------|
| Recommended Input | log gprmc ontime 1 |
| Supported Format  | ASCII              |

## Reply (ASCII) GPS and BDS

\$GNRMC,065029.00,A,3110.4722495,N,12123.2644026,E,0.456,330.1,050512,-0.0,W,A\*12

## Reply (ASCII) GPS

\$GPRMC,065141.00,A,3110.4723882,N,12123.2636328,E,0.657,140.7,050512,-0.0,W,A\*00

## Reply (ASCII) BDS

\$BDRMC,064944.00,A,3110.4700351,N,12123.2651820,E,0.862,89.6,050512,-0.0,W,A\*26

| Field# | Structure  | Description                                        | Symbol    | Example      |
|--------|------------|----------------------------------------------------|-----------|--------------|
| 1      | \$GPRMC    | Log header                                         |           | \$GPRMC      |
| 2      | utc        | UTC of position                                    | hhmmss.ss | 065029.00    |
| 3      | pos status | Position status:  A = data valid, V = data invalid | A         | A            |
| 4      | lat        | Latitude (DDmm.mm)                                 | 1111.11   | 3110.4722495 |
| 5      | latdir     | Latitude direction:                                | a         | N            |

| Field# | Structure  | Description                                | Symbol   | Example       |
|--------|------------|--------------------------------------------|----------|---------------|
|        |            | N = North, S = South                       |          |               |
| 6      | lon        | Longitude (DDDmm.mm)                       | ууууу.уу | 12123.2644026 |
| 7      | londir     | Longitude direction:<br>E = East, W = West | a        | E             |
| 8      | speed Kn   | Speed over ground, knots                   | x.x      | 0.456         |
| 9      | track true | Track made good, degrees True              | x.x      | 330.1         |
| 10     | date       | Date: dd/mm/yy                             | xxxxxx   | 050512        |
| 11     | mag var    | Magnetic variation, degrees                | x.x      | 0.0           |
| 12     | vardir     | Magnetic variation direction E/W           | a        | W             |
| 13     | mode ind   | Positioning system mode indicator          | a        | А             |
| 14     | *xx        | Checksum                                   | *hh      | *12           |
| 15     | [CR][LF]   | Sentence terminator                        |          | [CR][LF]      |

## 4.3.1.1.8 GPVTG Track Make Good and Ground Speed

# Description

This is a standard NMEA message which includes track and ground speed.

Message ID226Recommended Inputlog gpvtg ontime 1Supported FormatASCII

## Reply (ASCII) GPS and BD2

\$GNVTG,304.723,T,304.723,M,0.365,N,0.677,K,A\*3B

## Reply (ASCII) GPS only

\$GPVTG,213.710,T,213.710,M,0.304,N,0.563,K,A\*24

## Reply (ASCII) BD2 only

\$BDVTG,29.710,T,29.710,M,0.836,N,1.548,K,A\*37

| Field# | Structure  | Description                   | Symbol | Example |
|--------|------------|-------------------------------|--------|---------|
| 1      | \$GPVTG    | Log header                    |        | \$GPVTG |
| 2      | track true | Track made good, degrees True | x.x    | 213.710 |

| Field# | Structure | Description                                                                      | Symbol | Example  |
|--------|-----------|----------------------------------------------------------------------------------|--------|----------|
| 3      | Т         | True track indicator                                                             | Т      | Т        |
| 4      | track mag | Track made good, degrees Magnetic;  Track mag = Track true + (MAGVAR correction) | x.x    | 213.710  |
| 5      | М         | Magnetic track indicator                                                         | М      | М        |
| 6      | speed Kn  | Speed over ground, knots                                                         | x.x    | 0.304    |
| 7      | N         | Nautical speed indicator (N = Knots)                                             | N      | N        |
| 8      | speed Km  | Speed, kilometers/hour                                                           | x.x    | 0.563    |
| 9      | К         | Speed indicator (K = km/hr)                                                      | К      | K        |
| 10     | mode ind  | Positioning system mode indicator                                                | a      | Α        |
| 11     | *xx       | Checksum                                                                         | *hh    | *24      |
| 12     | [CR][LF]  | Sentence terminator                                                              |        | [CR][LF] |

## 4.3.1.1.9 GPZDA UTC Time and Date

# Description

This message is a standard NMEA log which includes UTC time and date.

Message ID276Recommended Inputlog gpzda ontime 1Supported FormatASCII

# Reply (ASCII)

\$GPZDA,071642.00,05,05,2012,,\*61

| Field# | Structure | Description                                    | Symbol    | Example          |
|--------|-----------|------------------------------------------------|-----------|------------------|
| 1      | \$GPZDA   | Log header                                     |           | \$GPZDA          |
| 2      | utc       | UTC time                                       | hhmmss.ss | 071642.000       |
| 3      | day       | Day, 01 to 31                                  | xx        | 05               |
| 4      | month     | Month, 01 to 12                                | xx        | 05               |
| 5      | year      | Year                                           | xxxx      | 2012             |
| 6      | null      | Local zone description - not available         | xx        | (empty when no   |
| 7      | null      | Local zone minutes description - not available | xx        | data is present) |
| 8      | *xx       | Checksum                                       | *hh       | *6F              |
| 9      | [CR][LF]  | Sentence terminator                            |           | [CR][LF]         |

## 4.3.1.2 ComNav Proprietary NMEA sentences

## 4.3.1.2.1 GPHPR Parameters of Attitude Angles

## Description

This message is a non-standard message, which includes heading, pitch or roll angle of carrier on which two antennas are placed on.

Message ID237Recommended Inputlog gphpr ontime 1Supported FormatASCII

# Reply (ASCII)

\$GPHPR,070901.00,090.10,000.20,000.00,4,14,1.00,0004\*42

| Field# | Structure | Description                                                                                                                                                                                                                                                            | Symbol    | Example   |
|--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 1      | \$GPHPR   | Log header                                                                                                                                                                                                                                                             |           | \$GPHPR   |
| 2      | utc       | UTC time                                                                                                                                                                                                                                                               | hhmmss.ss | 070901.00 |
| 3      | heading   | Heading, 0~360 degree                                                                                                                                                                                                                                                  | hhh.hh    | 090.10    |
| 4      | pitch     | Pitch, -90~90 degree                                                                                                                                                                                                                                                   | ррр.рр    | 000.20    |
| 5      | roll      | Roll, -90~90 degree                                                                                                                                                                                                                                                    | rrr.rr    | 000.00    |
| 6      | QF        | GPS Quality indicator  0 = fix not available or invalid  1 = GPS fix  2 = C/A differential  4 = RTK fixed ambiguity solution  5 = RTK floating ambiguity solution  6 = Dead reckoning mode  7 = Manual input mode (fixed position)  8 = Super wide-lane mode  9 = SBAS | q         | 4         |
| 7      | sat No.   | satellite number                                                                                                                                                                                                                                                       | n         | 14        |
| 8      | age       | differential age                                                                                                                                                                                                                                                       | dd.dd     | 1.00      |
| 9      | stn ID    | reference station ID                                                                                                                                                                                                                                                   | xxxx      | 0004      |
| 10     | *xx       | Checksum                                                                                                                                                                                                                                                               | *hh       | *42       |
| 11     | [CR][LF]  | Sentence terminator                                                                                                                                                                                                                                                    |           | [CR][LF]  |

4.3.1.2.2 GPNTR Information on How to navigate to Reference Station

#### Description

This self-defined NMEA message includes distance between reference station and rover station, distance in east, distance in north, and in vertical dimension.

Message ID209Recommended InputLog gpntr ontime 1Supported FormatASCII

# Reply (ASCII)

\$GPNTR,024404.00,1,17253.242,+5210.449,-16447.587,-49.685,0004\*40

| Field# | Structure                      | Description                                                                                                                                                                                                                                                                                                                                                                           | Symbol    | Example    |
|--------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|
| 1      | \$GPNTR                        | Log header                                                                                                                                                                                                                                                                                                                                                                            |           | \$GPNTR    |
| 2      | utc                            | UTC of position                                                                                                                                                                                                                                                                                                                                                                       | hhmmss.ss | 024404.00  |
| 3      | pos status                     | GPS Quality indicator  0 = fix not available or invalid  1 = Single point position  2 = C/A differential GPS, OmniSTAR HP,  OmniSTAR XP, OmniSTAR VBS, or CDGPS  4 = RTK fixed ambiguity solution (RT2)  5 = RTK floating ambiguity solution (RT20),  OmniSTAR HP or OmniSTAR XP  6 = Dead reckoning mode  7 = Manual input mode (fixed position)  8 = Super wide-lane mode  9 = SBAS | I         | 1          |
| 4      | distance                       | In meters                                                                                                                                                                                                                                                                                                                                                                             | dddd.ddd  | 17253.242  |
| 5      | distance in north              | direction: +:North, -: South                                                                                                                                                                                                                                                                                                                                                          | dddd.ddd  | +5210.449  |
| 6      | distance in east               | direction: +:East, -: West                                                                                                                                                                                                                                                                                                                                                            | dddd.ddd  | -16447.587 |
| 7      | Distance in Vertical direction | direction: +:Up, -: Down                                                                                                                                                                                                                                                                                                                                                              | dddd.ddd  | -49.685    |
| 8      | Station ID                     | 0~1023, or AAAA(No ref-station)                                                                                                                                                                                                                                                                                                                                                       | I         | 0004       |
| 9      | *xx                            | Checksum                                                                                                                                                                                                                                                                                                                                                                              | *hh       | *12        |
| 10     | [CR][LF]                       | Sentence terminator                                                                                                                                                                                                                                                                                                                                                                   |           | [CR][LF]   |

#### 4.3.1.2.3 GPTRA Heading, Pitch and Roll (reserved) Message

## Description

This self-defined NMEA message includes heading, pitch and roll (reserved) angles of the baseline vector between two antennas, as which are used with dual GNSS RF input receiver for attitude determination.

| Message ID        | 207                |
|-------------------|--------------------|
| Recommended Input | Log gptra ontime 1 |
| Supported Format  | ASCII              |

# Sentence (ASCII)

\$GPTRA, hhmmss.ss, hhh.hh, ppp.pp, rrr.rr, l, n, dd.dd, xxxx\*CC<CR><LF>

# Example

\$GPTRA,063027.30,101.78,071.19,-00.00,4,10,0.00,0004\*51

| Field# | Structure  | Description                                                                                                                                                                                                                                                                   | Symbol    | Example   |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 1      | \$GPTRA    | Log header                                                                                                                                                                                                                                                                    |           | \$GPTRA   |
| 2      | utc        | UTC of position                                                                                                                                                                                                                                                               | hhmmss.ss | 063027.30 |
| 3      | heading    | 0 ~ 360 degree                                                                                                                                                                                                                                                                | hhh.hh    | 101.78    |
| 4      | pitch      | -90 ~ 90 degree                                                                                                                                                                                                                                                               | ррр.рр    | 071.19    |
| 5      | roll       | [Reserved]                                                                                                                                                                                                                                                                    | rrr.rr    | -00.00    |
| 6      | sol status | solution indicator  0 = fix not available or invalid  1 = Single point position  2 = C/A differential GPS, OmniSTAR HP, OmniSTAR  XP, OmniSTAR VBS, or CDGPS  4 = RTK fixed ambiguity solution (RT2)  5 = RTK floating ambiguity solution (RT20),  OmniSTAR HP or OmniSTAR XP | I         | 4         |
| 7      | # sats     | Number of satellites in use. May be different to the number in view                                                                                                                                                                                                           | n         | 10        |
| 8      | age        | Age of Differential GPS data (in seconds)                                                                                                                                                                                                                                     | dd.dd     | 0.00      |
| 9      | stn ID     | Differential base station ID, 0000-1023                                                                                                                                                                                                                                       | xxxx      | 0004      |

| Field# | Structure | Description         | Symbol | Example  |
|--------|-----------|---------------------|--------|----------|
| 10     | *xx       | Checksum            | *hh    | *12      |
| 11     | [CR][LF]  | Sentence terminator |        | [CR][LF] |

#### 4.3.1.2.4 GPYBM

Position, Velocity, Heading, Pitch and PJK information

## Description

This message is a non-standard message, which includes position, velocity, PJK information, and also heading and pitch angles output as dual antennas are used.

Message ID87Recommended Inputlog gpybm ontime 1Supported FormatASCII

# Reply (ASCII)

\$GPYBM, \$N00520429,070326.00,+31.170243388,+121.398934274,15.286,346.84 0,1.290,0.000,-0.002,0.003,0.002,3449917.897,538032.213,-451.861,1088. 741,4,4,12,1,,,,\*4B

| Field# | Structure  | Description                                                                                     | Format                                 |
|--------|------------|-------------------------------------------------------------------------------------------------|----------------------------------------|
| 1      | \$GPYBM    | Log header                                                                                      |                                        |
| 2      | Serial NO. | Serial Number of OEM board                                                                      | SNxxxxxxxx, x = 0 ~ 9                  |
| 3      | utc        | UTC time                                                                                        | HHMMSS.SS                              |
| 4      | Lat        | Latitude, in degrees                                                                            | +: north, -: south;<br>ddd.mmmmmmmmmmm |
| 5      | Lon        | Longitude, in degrees                                                                           | +: east, -: west;<br>ddd.mmmmmmmmmm    |
| 6      | ElpHeight  | Ellipsoidal height of fix (antenna height above ellipsoid)                                      | .xxx (m)                               |
| 7      | Heading    | Heading, The angle between true North and Heading (from true north to heading clockwise)        | 0~360 degree<br>.xxx (deg)             |
| 8      | Pitch      | Pitch, positive from horizontal surface to zenith, negative from horizontal surface to downword | -90~90 degree<br>.xxx (deg)            |
| 9      | Vel N      | Velocity North                                                                                  | .xxx (m/s)                             |
| 10     | Vel E      | Velocity East                                                                                   | .xxx (m/s)                             |
| 11     | Vel D      | Velocity down                                                                                   | .xxx (m/s)                             |

| Field# | Structure              | Description                                                                                                                                                                                                                                                                                   | Format                          |
|--------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 12     | Vel G                  | Velocity Ground                                                                                                                                                                                                                                                                               | .xxx (m/s)                      |
| 13     | Coordinate<br>Northing | refer to PTNL,PJK                                                                                                                                                                                                                                                                             | .xxx (m)                        |
| 14     | Coordinate<br>Easting  | refer to PTNL,PJK                                                                                                                                                                                                                                                                             | .xxx (m)                        |
| 15     | North<br>Distance      | Distance to Ref station in North direction, refer to GPNTR                                                                                                                                                                                                                                    | +: north, -: south;<br>.xxx (m) |
| 16     | East<br>Distance       | Distance to Ref station in East direction, refer to GPNTR                                                                                                                                                                                                                                     | +: east, -: west;<br>.xxx (m)   |
| 17     | Position<br>Indicator  | receiver RTK positioning quality indicator:  0 = fix not available or invalid  1 = GNSS fix  2 = C/A differential  4 = RTK fixed ambiguity solution  5 = RTK floating ambiguity solution  6 = Dead reckoning mode  7 = Manual input mode (fixed position)  8 = Super wide-lane mode  9 = SBAS | x                               |
| 18     | Attitude<br>Indicator  | receiver RTK heading and pitch quality indicator, refer to GPTRA, PTNL,AVR                                                                                                                                                                                                                    | х                               |
| 19     | Sat NO<br>Used         | satellite number used in solution                                                                                                                                                                                                                                                             | xx                              |
| 20     | Diff Age               | differential age                                                                                                                                                                                                                                                                              | xx                              |
| 21     | Station ID             | reference station id                                                                                                                                                                                                                                                                          | 0000                            |
| 22     | Baseline<br>length     | distance between master station and slave station (baseline length between two antennas)                                                                                                                                                                                                      | .xxx (m)                        |
| 23     | solution sv            | number of satellites that anticipate in calculation of slave station                                                                                                                                                                                                                          |                                 |
| 24     | rolling                | Only supported by board and overall units which contain inertial module                                                                                                                                                                                                                       | .xxx (deg)                      |
| 25     | *xx                    | Checksum                                                                                                                                                                                                                                                                                      | *hh                             |
| 26     | [CR][LF]               | Sentence terminator                                                                                                                                                                                                                                                                           |                                 |

#### 4.3.1.2.5 GPNAV ComNav Navigation Information Message

#### Description

This message is a non-standard message, which includes position, velocity, position and tracking information, and also heading, pitch and roll (reserved) angles output while dual antennas are used.

Message ID264Recommended Inputlog gpnav ontime 1Supported FormatASCII

## Reply (ASCII)

\$GPNAV,20151003,123707.00,17,3,,31.17432494563,121.38795557054,41.7907,10.7811,176.628,0.000,0.000,,0.000,-0.002,-0.010,0.002,1,NN,7,0.000,8,5,9,,,8,5,9,,,,,\*6F

| Field# | Structure       | Description                                                                                         | Symbol       | Example         |
|--------|-----------------|-----------------------------------------------------------------------------------------------------|--------------|-----------------|
| 1      | \$GPNAV         |                                                                                                     |              | \$GPNAV         |
| 2      | Date            | Date: year, month, day                                                                              | yyyymmdd     | 20141110        |
| 3      | UTC Time        | UTC Time: hour minute second                                                                        | hhmmss.ss    | 072033.00       |
| 4      | GPS leap second | GPS vs UTC, empty as invalid                                                                        | х            | 16              |
| 5      | BDS leap second | BDS vs UTC, empty as invalid                                                                        | х            | 2               |
| 6      | Reserved        | leap second (XXX vs UTC)                                                                            | х            | XX              |
| 7      | Latitude        | WGS84, Latitude, in degree; +: north, -: south                                                      | .xxxxxxxxxx  | 39.97577397443  |
| 8      | Longitude       | WGS84, Longitude, in degrees; +: east, -: west                                                      | .xxxxxxxxxxx | 116.36426309103 |
| 9      | Altitude        | height above sea level (WGS84), (m)                                                                 | .xxxx        | 69.4144         |
| 10     | separation      | Geoidal separation (m)                                                                              | .xxxx        | -9.5116         |
| 11     | Tracking angle  | 0~360 degree, tracking angle, same as GPRMC                                                         | .xxx         | 354.549         |
| 12     | Heading         | Heading, The angle between true North and Heading (from true north to heading clockwise), 0~360 deg | .xxx         | 42.916          |
| 13     | Pitch           | Pitch, positive from horizontal surface to zenith,                                                  | .xxx         | 58.991          |

| Field# | Structure      | Description                                                                                                                                                                                                                                                                                                                                                                                               | Symbol | Example |
|--------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|
|        |                | negative from horizontal surface to downword, -90~90 deg                                                                                                                                                                                                                                                                                                                                                  |        |         |
| 14     | Roll           | -90~90 deg, empty as invalid [Reserved]                                                                                                                                                                                                                                                                                                                                                                   | .xxx   |         |
| 15     | Ve             | Velocity North (m/s)                                                                                                                                                                                                                                                                                                                                                                                      | .xxx   | -0.001  |
| 16     | Vn             | Velocity East (m/s)                                                                                                                                                                                                                                                                                                                                                                                       | .xxx   | 0.012   |
| 17     | Vu             | Velocity Universe (m/s)                                                                                                                                                                                                                                                                                                                                                                                   | .xxx   | 0.055   |
| 18     | Vg             | Velocity Ground (m/s)                                                                                                                                                                                                                                                                                                                                                                                     | .xxx   | 0.012   |
| 19     | Status1        | receiver RTK positioning quality indicator:  0 = fix not available or invalid  1 = GNSS fix  2 = C/A differential  4 = RTK fixed ambiguity solution  5 = RTK floating ambiguity solution  6 = Dead reckoning mode  7 = Manual input mode (fixed position)  8 = Super wide-lane mode  9 = SBAS                                                                                                             | X      | 4       |
| 20     | Status2        | Heading solution indicator (The first letter is the master station and the second is the slave station. The two states are not left blank whether the message is output from the master station or from the slave station. V: Valid, N: Not Valid): NV, VN, NN, VV                                                                                                                                        | xx     | NV      |
| 21     | System<br>Mask | GNSS systems used in solution  GPS: 1(0x01, 00000001), GLO: 2(0x02, 00000010)  BDS: 4(0x04, 00000100), GAL: 8(0x08, 00001000)  GPS+GLO: 3 (0x01 + 0x02 = 0x03, 00000011)  GPS+BDS: 5 (0x01 + 0x04 = 0x05, 00000101)  GPS+GAL: 9 (0x01 + 0x08 = 0x09, 00001001)  GLO+BDS: 6 (0x02 + 0x04 = 0x06, 00000110)  GPS+GLO+BDS: 7 (0x01 + 0x02 + 0x04= 0x07, 00000111)  GPS+GLO+BDS+GAL: 15 (0x01 + 0x02 + 0x04 + | x      | 5       |

| Field# | Structure      | Description                                           | Symbol  | Example  |
|--------|----------------|-------------------------------------------------------|---------|----------|
|        |                | 0x08 = 0x0F, 00001111)                                |         |          |
| 22     | Baseline       | Baseline length (m)                                   | .xxx    | 3.898    |
| 23-27  | #SV Used       | Satellite Number used from GPS/GLONASS/BDS/XXX/XXX    | x,x,x,, | 5,6,8, , |
| 28-32  | #SV<br>Tracked | Satellite Number tracked from GPS/GLONASS/BDS/XXX/XXX | x,x,x,, | 5,6,8,,  |
| 33     | Reserved       |                                                       |         |          |
| 34     | Reserved       |                                                       |         |          |
| 35     | Reserved       |                                                       |         |          |
| 36     | Reserved       |                                                       |         |          |
| 37     | *xx            | Checksum                                              | *hh     |          |
| 38     | [CR][LF]       | Sentence terminator                                   |         |          |

#### 4.3.2 RTCM 3.X message

#### 4.3.2.1 RTCM1004 Extended L1/L2 GPS Observables

# Description

This message is a standard log of RTCM3 which contains extended L1 and L2 GPS observables of reference station.

| Message ID        | 787                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1004b ontime 1 |
| Supported Format  | Binary                 |

# Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.2 RTCM1005 Base Station Position

## Description

This message is a standard log of RTCM3 which includes position information of reference station.

| Message ID        | 788                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1005b ontime 5 |
| Supported Format  | binary                 |

#### Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.3 RTCM1006 Base Station Position and Antenna Height

#### Description

This message is a standard log of RTCM3 which includes position information and antenna height of reference station.

| Message ID        | 789                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1006b ontime 5 |
| Supported Format  | binary                 |

## Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.4 RTCM1007 Extended Information about Base Station

#### Description

This message is a standard log of RTCM3 which includes position, antenna height and descriptions of reference station.

| Message ID        | 856                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1007b ontime 5 |
| Supported Format  | binary                 |

#### Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.5 RTCM1008 Extended Information about Base Station

#### Description

This message is a standard log of RTCM3 which includes position, antenna height and descriptions of reference station.

Message ID857Recommended Inputlog rtcm1008b ontime 5Supported Formatbinary

# Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

# 4.3.2.6 RTCM1010 Extended L1-Only GLONASS Observations

#### Description

This message is a standard log of RTCM3 which contains extended L1 GLONASS observables of reference station.

| Message ID        | 898                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1010b ontime 1 |
| Supported Format  | Binary                 |

#### Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.7 RTCM1012 Extended L1 & L2 GLONASS Observations

#### Description

This message is a standard log of RTCM3 which contains extended L1 & L2 GLONASS observables of reference station. It supports dual-frequency RTK operation, and includes an indication of the satellite carrier-to-noise (CNR) as measured by the reference station.

| Message ID        | 900                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1012b ontime 1 |
| Supported Format  | Binary                 |

#### Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.8 RTCM1019 GPS Ephemerides

#### Description

This message is a standard log of RTCM3 which contains GPS satellite ephemeris information.

| Message ID        | 893                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1019b ontime 5 |
| Supported Format  | Binary                 |

## Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

## 4.3.2.9 RTCM1020 GLONASS Ephemerides

# Description

This message is a standard log of RTCM3 which contains GLONASS satellite ephemeris information.

| Message ID        | 895                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1020b ontime 5 |
| Supported Format  | Binary                 |

## Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.10 RTCM1042 BDS Ephemerides

#### Description

This message is a standard log of RTCM3 which contains BDS satellite ephemeris information.

| Message ID        | 150                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1042b ontime 5 |
| Supported Format  | Binary                 |

## Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.11 RTCM1044 QZSS Ephemerides

## Description

This message is a standard log of RTCM3 which contains QZSS satellite ephemeris information.

| Message ID        | 901                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1044b ontime 5 |
| Supported Format  | Binary                 |

#### Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

# 4.3.2.12 RTCM1045 Galileo F/NAV Ephemerides

#### Description

This message is a standard log of RTCM3 which contains Galileo F/NAV satellite ephemeris information.

| Message ID        | 152                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1045b ontime 5 |
| Supported Format  | Binary                 |

#### Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

## 4.3.2.13 RTCM1046 Galileo I./NAV Ephemerides

#### Description

This message is a standard log of RTCM3 which contains GLONASS satellite ephemeris information.

| Message ID        | 154                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1046b ontime 5 |
| Supported Format  | Binary                 |

#### Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.14 RTCM1033 Receiver and antenna information

#### Description

This message is a standard log of RTCM3 which contains receiver and antenna information.

| Message ID        | 999                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1033b ontime 5 |
| Supported Format  | Binary                 |

#### Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

| 4.3.2.15 | RTCM1104 | BD2 RTK Message |
|----------|----------|-----------------|
|----------|----------|-----------------|

#### Description

Because no available message could be applied to involve BD2 observables in RTCM3, a non-standard message is defined for currently applications. The message might be disabled if a standard RTCM3 message which includes BD2 observables is published. Just like messages about GPS RTK, a similar message style is adopted to encode information of BD2 satellites.

| Message ID        | 781                    |
|-------------------|------------------------|
| Recommended Input | log rtcm1104b ontime 1 |
| Supported Format  | binary                 |

#### Reply (Binary)

Each frequency of BD2 is independent of the others, so an indicator should be defined to reflect which frequency is involved. Be different from standard RTCM3 message header, an additional 3 bits are added to descript the involved frequency.

Table41. BD2 RTK Message

| Message Type | Message Contents         | ID   |
|--------------|--------------------------|------|
| Observations | BD2 B1/B2/B3 observables | 1104 |

Table 42. BD2 RTK Message Data Field

| DF#   | DF Name  | DF Range | DF<br>Resolution | Data<br>Type | DF Notes |
|-------|----------|----------|------------------|--------------|----------|
| DF001 | Reserved |          |                  |              |          |

| DF#   | DF Name                                   | DF Range             | DF<br>Resolution | Data<br>Type | DF Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|-------------------------------------------|----------------------|------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DF002 | Message Number                            | 0-4095               |                  | uint12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DF003 | Reference Station ID                      | 0-4095               |                  | uint12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DF004 | BD2 Epoch Time(TOW)                       | 0-604,799,<br>999 ms | 1 ms             | uint30       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DF005 | Synchronous GNSS<br>Message Flag          |                      |                  | bit(1)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DF006 | No. of BD2 Satellite<br>Signals Processed | 0-31                 |                  | uint5        | The Number of BD2 Satellite Signals Processed refers to the number of satellites in the message. It does not necessarily equal the number of satellites visible to the Reference Station.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DF007 | BD2 Divergence-free Smoothing Indicator   |                      |                  | bit(1)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DF008 | Smoothing Interval                        |                      |                  | bit(3)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DF009 | BD2 B1/B2/B3 Indicator                    |                      |                  | bit(3)       | Indicator CombineB1B2B3 B1=0 No B1 Observations B2=0 No B1 Observations B3=0 No B1 Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DF010 | BD2 Satellite ID                          | 0-63                 |                  | uint6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DF011 | BD2 Code Indicator                        |                      |                  | bit(2)       | 0= C/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DF012 | BD2 Pseudorange                           | 0-299,792.<br>46 m   | 0.02 m           | uint24       | The BD2 B1/B2/B3 Pseudorange field provides the raw pseudorange measurement at the reference station in meters, modulo one light-millisecond (299,792.458 meters). The BD2 B1/B2/B3 pseudorange measurement is reconstructed by the user receiver from the B1/B2/B3pseudorange field by: (BD2 B1/B2/B3 pseudorange measurement) = (BD2 B1/B2/B3 pseudorange measurement) = (BD2 B1/B2/B3 pseudorange field) modulo (299,792.458 m) + integer as determined from the user receiver's estimate of the reference station range, or as provided by the extended data set. If DF013 is set to 80000h, this field |

| DF#   | DF Name                                            | DF Range        | DF<br>Resolution     | Data<br>Type | DF Notes                                                                                                                                                                               |
|-------|----------------------------------------------------|-----------------|----------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                    |                 |                      |              | does not represent a valid BD2 B1/B2/B3 pseudorange.                                                                                                                                   |
| DF013 | BD2 B1/B2/B3 Phase Range – B1/B2/B3 Pseudorange    | ± 262.1435<br>m | 0.0005 m             | int20        |                                                                                                                                                                                        |
| DF014 | BD2 B1/B2/B3 Time Indicator                        |                 |                      | uint7        |                                                                                                                                                                                        |
| DF015 | BD2 Integer B1/B2/B3 Pseudorange Modulus Ambiguity |                 | 299,792.45<br>8<br>m | uint8        | The BD2 Integer B1/B2/B3 Pseudorange Modulus Ambiguity represents the integer number of full pseudorange modulus divisions (299,792.458m) of the raw B1/B2/B3 pseudorange measurement. |
| DF016 | BD2 B1/B2/B3 CNR                                   |                 | 0.25 dB-Hz           | uint8        |                                                                                                                                                                                        |
| DF017 | BD2 BLOCK                                          |                 |                      |              | Refer to Table                                                                                                                                                                         |

The 1104 message supports single-frequency, dual-frequency and triple-frequency RTK operation.

Table 43. Contents of BD2 RTK Message Header

| DATA FIELD                                   | DF NUMBER | DATA TYPE | BIT NO. |
|----------------------------------------------|-----------|-----------|---------|
| Message Number (e.g.,"1001"= 0011 1110 1001) | DF002     | Uint12    | 12      |
| Reference Station ID                         | DF003     | uint12    | 12      |
| BD2 Epoch Time (TOW)                         | DF004     | Uint30    | 30      |
| Synchronous GNSS Flag                        | DF005     | bit(1)    | 1       |
| No. of BD2 Satellite Signals Processed       | DF006     | uint5     | 5       |
| BD2 Divergence-free Smoothing Indicator      | DF007     | bit(1)    | 1       |
| BD2 Smoothing Interval                       | DF008     | bit(3)    | 3       |
| BD2 B1/B2/B3 Indicator                       | DF009     | bit(3)    | 3       |
| TOTAL                                        |           |           | 67      |

Table 44. Contents of the Satellite-Specific Portion, Each Satellite

| DATA FIELD                    | DF NUMBER | DATA TYPE | NO. OF BITS |
|-------------------------------|-----------|-----------|-------------|
| BD2 Satellite ID              | DF010     | Uint6     | 6           |
| BD2 Block(according to DF009) | DF017     |           | 69          |
| BD2 Block(according to DF009) | DF017     |           | 69          |
| BD2 Block(according to DF009) | DF017     |           | 69          |
| TOTAL                         |           |           | 6+69*n      |

Table 45. DF017 (BD2 Block)-Frequency Contents of BD2 Satellite

| DATA  | FIELD                                 | DF NUMBER | DATA TYPE | BIT NO. |
|-------|---------------------------------------|-----------|-----------|---------|
| BD2   | Code Indicator                        | DF011     | bit(2)    | 2       |
| BD2   | Pseudorange                           | DF012     | uint24    | 24      |
| BD2   | Phase Range – Pseudorange             | DF013     | int20     | 20      |
| BD2   | Lock time Indicator                   | DF014     | uint7     | 7       |
| BD2   | Integer Pseudorange Modulus Ambiguity | DF015     | uint8     | 8       |
| BD2   | CNR                                   | DF016     | uint8     | 8       |
| TOTAL |                                       |           |           | 69      |

4.3.2.16 RTCM1074 GPS MSM4 — Full PRs and Phase Ranges plus CNR

# Description

This message is a standard log of RTCM 3.x MSM4 (Multiple Signal Message) which includes full pseudoranges, phase ranges and CNR (carrier-no-noise ratio) for GPS signals.

Message ID624Recommended Inputlog rtcm1074b ontime 1Supported Formatbinary

# Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

4.3.2.17 RTCM1084 GLONASS MSM4 — Full PRs and Phase Ranges plus CNR

#### Description

This message is a standard log of RTCM 3.x MSM4 (Multiple Signal Message) which includes full pseudoranges, phase ranges and CNR (carrier-no-noise ratio) for GLONASS signals.

| Message ID        | 644                    |  |
|-------------------|------------------------|--|
| Recommended Input | log rtcm1084b ontime 1 |  |
| Supported Format  | binary                 |  |

# Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

4.3.2.18 RTCM1094 Galileo MSM4 — Full PRs and Phase Ranges plus CNR

#### Description

This message is a standard log of RTCM 3.x MSM4 (Multiple Signal Message) which includes full pseudoranges, phase ranges and CNR (carrier-no-noise ratio) for Galileo signals.

| Message ID        | 654                    |  |
|-------------------|------------------------|--|
| Recommended Input | log rtcm1094b ontime 1 |  |
| Supported Format  | binary                 |  |

# Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

4.3.2.19 RTCM1114 QZSS MSM4 — Full PRs and Phase Ranges plus CNR

#### Description

This message is a standard log of RTCM 3.x MSM4 (Multiple Signal Message) which includes full pseudoranges, phase ranges and CNR (carrier-no-noise ratio) for QZSS signals.

| Message ID        | 684                    |  |
|-------------------|------------------------|--|
| Recommended Input | log rtcm1114b ontime 1 |  |
| Supported Format  | binary                 |  |

#### Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.20 RTCM1124 BDS MSM4 — Full PRs and Phase Ranges plus CNR

#### Description

This message is a standard log of RTCM 3.x MSM4 (Multiple Signal Message) which includes full pseudoranges, phase ranges and CNR (carrier-no-noise ratio) for BDS signals.

| Message ID        | 674                    |  |
|-------------------|------------------------|--|
| Recommended Input | log rtcm1124b ontime 1 |  |
| Supported Format  | binary                 |  |

# Reply (Binary)

If detailed information about this message is needed, please refer to standard RTCM SC104 3.X document.

#### 4.3.2.21 RTCM4078 ComNav Proprietary Message

#### Description

This message is a RTCM 3.X proprietary message of ComNav Technology Ltd, which is assigned by RTCM SC-104. RTCM4078 would be defined for miscellaneous applications by ComNav or ComNav's customers.

If someone or some organization would like to share its sub-messages, please contract ComNav for more information.

| Message ID        | xxx                          |  |  |
|-------------------|------------------------------|--|--|
| Recommended Input | log rtcm4078smXXXXb ontime 1 |  |  |
| Supported Format  | binary                       |  |  |

#### 4.4 OTHER MESSAGES

#### 4.4.1 TRIMBLE sentences

4.4.1.1 PTNL,AVR Time, yaw, tilt, range, mode, PDOP, and number of SVs for Moving Baseline RTK

#### Description

This message is a standard log defined by Trimble Navigation Ltd. to output time, yaw, tilt, range, mode, PDOP, and number of SVs for moving baseline RTK. For more details, please refer to **Trimble's document.** 

The output of yaw and tilt values is under the control of command 'SET RECEIVERROLE' defined in Table 12 9.

| Message ID        | 224                  |  |
|-------------------|----------------------|--|
| Recommended Input | log ptnlavr ontime 1 |  |
| Supported Format  | ASCII                |  |

## Reply (ASCII)

\$PTNL, AVR, 095548.82, +0.0000, Yaw, +0.0000, Tilt,,,0.000,1,1.4,20\*3E

#### 4.4.1.2 PTNL,GGK

#### Time, position, position type, and DOP values

#### Description

This message is a standard log defined by Trimble Navigation Ltd. to output time, position, position type and DOP values. For more details, please refer to **Trimble's document.** 

The type of height value in PTNL,GGK message can be configured using command 'SET PTNLGGKHEIGHT' as defined in Table 12.

| Message ID        | 76                   |  |
|-------------------|----------------------|--|
| Recommended Input | log ptnlggk ontime 1 |  |
| Supported Format  | ASCII                |  |

#### Reply (ASCII)

\$PTNL,GGK,090845.00,092815,3110.45948454,N,12123.27659269,E,1,21,0.7,E HT54.187,M\*42

#### 4.4.1.3 PTNL,PJK

## **Local Coordinates Calculated in Specified Parameters**

#### Description

This message is used to make local measurement in specified PJK parameters configured by user such as AO, F, NO, EO, BO, LO. (Refer to Table 12)

| Message ID        | 229                  |  |
|-------------------|----------------------|--|
| Recommended Input | log ptnlpjk ontime 1 |  |
| Supported Format  | ASCII                |  |

## Reply (ASCII)

\$PTNL, PJK, 090856.00, 050712, +3451152.262, N, +632295.897, E, 1, 13, 0.9, EHT+5 8.181, M\*7D

## 4.4.2 Parameter Messages

# Description

Some log commands are designed for requesting and checking system configuration parameters, such as cut-angle, reference mode and so on.

Key words listed in

*Table 18. Other* **Message**6 could be added after key word 'log' to request the corresponding parameters.

#### 4.4.2.1 PJKPARA

#### Parameters Used in Message PTNLPJK

## Description

This message is used to check the six parameters used in PTNLPJK message; for detailed information and definition please refer to Table 12.

| Message ID        | 2013        |
|-------------------|-------------|
| Recommended Input | log pjkpara |
| Supported Format  | ASCII       |

# Reply (ASCII)

A:6378137.000, 1/F:298.257, B0:0.000000deg, L0:120.000000, N0:0.000, E0:500000.000

#### 4.4.3 KSXT positioning and heading Messages

#### **Description**

This message includes GNSS receiver information such as time, location, positioning and heading.

| Message ID        | 230               |  |
|-------------------|-------------------|--|
| Recommended Input | log ksxt ontime 1 |  |
| Supported Format  | ASCII             |  |

# Reply (ASCII)

\$KSXT,20210906104914.00,121.29239578,31.34996850,33.3672,276.66,43.34,83.17,0.102,0.00,1,3,39,42,,,,0.101,0.012,0.143,95,94,\*21

| Field# | Structure        | Description                                                                                                                                   | Format                     | Demonstration     |
|--------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|
| 1      | \$KSXT           | Log header                                                                                                                                    |                            | \$KSXT            |
| 2      | utc              | UTC time                                                                                                                                      | yyyy/mm/dd/hh/m<br>m/ss    | 20210906104914.00 |
| 3      | Lon              | Longitude, in degrees, keep 8 significant digits after the decimal point                                                                      | xxx.xxxxxxx                | 121.29239578      |
| 4      | Lat              | Latitude, in degrees, keep 8 significant digits after the decimal point                                                                       | xx.xxxxxxx                 | 31.3499685 0      |
| 5      | Height           | Altitude of fix, keep 4 significant digits after the decimal point                                                                            | xx.xxxx                    | 33.3672           |
| 6      | Heading          | Azimuth, The angle between true  North and Heading (from true north to heading clockwise), keep 2  significant digits after the decimal point | 0~360 degree .xx (deg)     | 276.66            |
| 7      | Pitch            | Pitch, positive from horizontal surface<br>to zenith, negative from horizontal<br>surface to downword                                         | -90~90 degree<br>.xx (deg) | 43.44             |
| 8      | Track true       | True north track angle, keep 2 significant digits after the decimal point                                                                     | 0~360 degree<br>.xx (deg)  | 83.17             |
| 9      | Vel              | Velocity, keep 3 significant digits after the decimal point                                                                                   | .xxx(km/h)                 | 0.102             |
| 10     | Roll             | Roll angle, keep 3 significant digits after the decimal point                                                                                 | -90~90 degree<br>.xx (deg) | 1.12              |
| 11     | Position<br>qual | Receiver RTK positioning quality indicator:  0 = fix not available or invalid  1 = GNSS fix  2 = RTK float  4 = RTK fixed ambiguity solution  | х                          | 1                 |
| 12     | Heading<br>qual  | Receiver RTK heading and pitch quality indicator:  0 = fix not available or invalid                                                           | х                          | 1                 |

| Field# | Structure    | Description                                    | Format     | Demonstration |
|--------|--------------|------------------------------------------------|------------|---------------|
|        |              | 1 = GNSS fix                                   |            |               |
|        |              | 2 = RTK float                                  |            |               |
|        |              | 4 = RTK fixed ambiguity solution               |            |               |
| 12     | #G L - G) /- | Number of satellites that anticipate in        |            | 28            |
| 13     | #SsoInSVs    | calculation of slave station                   | X          | 20            |
| 14     | #MsolnSVs    | Number of satellites that anticipate in        | X          | 28            |
| 17     | #1V13O1113V3 | calculation of master station                  | ^          | 20            |
|        |              | East position coordinates: the east            |            |               |
|        |              | position in the geographic coordinate          |            |               |
| 15     | Pos East     | system with the base station as the            | .xxx (m)   |               |
|        |              | origin, keep 3 significant digits after        |            |               |
|        |              | the decimal point                              |            |               |
|        |              | North position coordinates: the north          |            |               |
|        |              | position in the geographic coordinate          |            |               |
| 16     | Pos North    | system with the base station as the            | .xxx (m)   |               |
|        |              | origin, keep 3 significant digits after        |            |               |
|        |              | the decimal point                              |            |               |
|        |              | Zenithal position coordinates: the             |            |               |
|        |              | zenithal position in the geographic            |            |               |
| 17     | Pos up       | coordinate system with the base                | .xxx (m)   |               |
|        |              | station as the origin, keep 3 significant      |            |               |
|        |              | digits after the decimal point                 |            |               |
|        |              | Easting Velocity: Easting velocity in          |            |               |
| 18     | Vel E        | geographic coordinate system, keep 3           | .xxx (m/s) |               |
|        |              | significant digits after the decimal           |            |               |
|        |              | point  Northing Velocity: Northing velocity in |            |               |
|        |              | geographic coordinate system, keep 3           |            |               |
| 19     | Vel N        | significant digits after the decimal           | .xxx (m/s) |               |
|        |              | point                                          |            |               |
|        | Vel Z        | Zenithal velocity: the zenithal velocity       | .xxx (m/s) |               |
|        |              | in the geographic coordinate system,           |            |               |
| 20     |              | keep 3 significant digits after the            |            |               |
|        |              | decimal point                                  |            |               |
| L      |              | · r····                                        |            |               |

| Field# | Structure | Description                                                    | Format                                                                          | Demonstration                               |
|--------|-----------|----------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|
| 21     | M SNR     | The current carrier-to-noise ratio value of the master antenna | 95~100: Excellent<br>90~94: Good<br>85~89: Moderate<br>80~84: Fair<br><80: Poor | Data quality metrics for the master antenna |
| 22     | S SNR     | The current carrier-to-noise ratio value of the slave antenna  | 95~100: Excellent<br>90~94: Good<br>85~89: Moderate<br>80~84: Fair<br><80: Poor | Data quality metrics for the slave antenna  |
| 23     | *xx       | Checksum                                                       | *hh                                                                             | *21                                         |
| 24     | [CR][LF]  | Sentence terminator                                            | -                                                                               | [CR][LF]                                    |

# 4.4.4 Spectrum Messages

# **Description**

This message includes spectrum information.

| Message ID        | 2260                  |  |
|-------------------|-----------------------|--|
| Recommended Input | log spectrum ontime 1 |  |
| Supported Format  | Binary                |  |

# Reply

| ID | Field      | Description                         | Symbol | Byte number | Example  |
|----|------------|-------------------------------------|--------|-------------|----------|
| 1  | Header     | Log header                          |        | Н           | 0        |
| 2  | CentFreq   | Scan center frequency,khz           | int    | 4           | Н        |
| 3  | ScanRange  | Scan range                          | int    | 4           | H+4      |
| 4  | ScanTimes  | Scan point number N, less than 200  | int    | 4           | H+8      |
| 5  | ScanStart  | Scan start frequency, khz           | int    | 4           | H+12     |
| 6  | ScanSample | Step length of the scan result, khz | int    | 4           | H+16     |
| 7  | ScanRatio  | N, Scan point number                | Ushort | 2*N         | H+20     |
| 8  | CRC        | 32 bit CRC check                    | Hex    | 4           | H+20+2*N |

# **CHAPTER 5. COMMON CONFIGURATION**

#### **5.1 COM BAUD RATE CONFIGURATION**

Command 1: com port baudrate

Note:

**Com type:** COM1/COM2/BLUETOOTH/GPRS, the default is COM1

Baud rate: 4800/9600(BLUETOOTH 9600)/19200/38400/57600/115200, the default is

Com1

#### 5.2 STOP ALL THE OUTPUT

Command1: unlogall

Note:

Stop all the output

Modify the dynamic correction data format

# **5.3 ACTIVATE RAW DATA**

Command1: ecutoff y

Command2: log port rangecmpb ontime z

Command3: log port rawephemb onchanged

Command3: log port bd2rawephemb onchanged

Command4: log port rawalmb onchanged

Note:

port type: COM1/COM2/COM3/BLUETOOTH

ONTIME Z: MAX = 10HZ, normally is 0.5/1/5/10/15/30/60 s

#### **5.4 ACTIVATE BASE**

Command1: Log port obsdata ontime x

Command2: Log port refdata ontime x

Command3: Fix position / Refautosetup on

Command4: Saveconfig

#### Note:

Com type: COM1/COM2/COM3, current default port

ONTIME X: MAX = 5HZ, normally is 0.2/1/5/10/15/30/60 s

Observation data type: RTCM1074B /RTCM1124B

BASE data type: RTCM1005B

#### 5.4.1 RTCM 3.X

#### Output the RTCM 3.X data of Base to Com 2:

Command1: LOG COM2 RTCM1124B ONTIME 1

Command2: LOG COM2 RTCM1074B ONTIME 1

(Output message 1124 and 1074 to com2 per second)

Command3: LOG COM2 RTCM1005B ONTIME 5

(Output 1005 message to com 2 every five-second)

Command4: FIX AUTO

(Fix the Base coordinate automatically)

Command5: SAVECONFIG

(Save all the configuration)

#### **Description:**

Same as the above case, the configuration command of base rtcm3 is as follows:

| Message type | Command                               | Description                     |  |
|--------------|---------------------------------------|---------------------------------|--|
|              | interfacemode com2 none rtcm          | COM configuration               |  |
| Recommend    | fix position 30.123 121.456<br>50.789 | Set the base coordinates        |  |
| command      | log com2 rtcm1005b ontime             | Output the position information |  |
|              | log com2 rtcm1124b ontime 1           | Output the BDS observation data |  |
|              | log com2 rtcm1074b ontime 1           | Output the GPS observation data |  |

# APPENDIX A. TECHNICAL SPECIFICATION

Please refer to <K8 Series OEM Board specification> in ComNav official website (www.comnavtech.com)

#### APPENDIX B. FIRMWARE UPDATE

We will release the firmware in our official website after fully test, you can download and update the firmware to optimize the performance.

Note:

You should wait about 3 seconds to fully complete the update configuration after it prompt a completed in the update tool. And after that, you can close the power and restart the board to use the new firmware! You can send command "log version" to check the current firmware.