Intermediate Functional Programming in Haskell

Universität Bielefeld, Sommersemester 2015

Jonas Betzendahl & Stefan Dresselhaus

Übersicht I

- Typen
- 2 Typklassen
- Typklassen auf Maybe
- Typklassen auf Either
- Typklassen auf Listen
- 6 Praktische Arbeit

Primitive Datentypen sind eine Annotation, wie die Bits im Speicher interpretiert werden sollen.

Primitive Datentypen sind eine Annotation, wie die Bits im Speicher interpretiert werden sollen.

Einige primitive Datentypen sollten euch aus anderen Programmiersprachen schon bekannt sein:

- Zahlen (z.B. Int, Integer, Float, Double, ...)
- Zeichenketten (z.B. String, UTF-8-Strings, ...)
- Bool

Es gibt auch Datentypen höherer Ordnung. Diese zeichnen sich dadurch aus, dass sie alleine nicht vollständig sind.

Es gibt auch Datentypen höherer Ordnung. Diese zeichnen sich dadurch aus, dass sie alleine nicht vollständig sind.

Auch hier sollten schon einige bekannt sein:

(a,k,v steht hier jeweis für einen (primitiven) Datentypen)

- Liste von a
- Hashmap von k und v
- Vektor von a
- Tree von a
- Zusammengesetzte Typen (z.B. Structs in C/C++)

Es gibt auch Datentypen höherer Ordnung. Diese zeichnen sich dadurch aus, dass sie alleine nicht vollständig sind. Auch hier sollten schon einige bekannt sein:

(a,k,v steht hier jeweis für einen (primitiven) Datentypen)

- Liste von a
- Hashmap von k und v
- Vektor von a
- Tree von a
- Zusammengesetzte Typen (z.B. Structs in C/C++)

Im folgenden gehen wir auf 2 wesentliche zusammengesetzte Typen in Haskell ein: Maybe und Either.

Einen neuen Datentypen definieren wir in Haskell mit dem Keyword data:

Einen neuen Datentypen definieren wir in Haskell mit dem Keyword data:

Was hat das für einen Sinn?

Einen neuen Datentypen definieren wir in Haskell mit dem Keyword data:

Was hat das für einen Sinn?

Maybe gibt das Ergebnis einer Berechnung an, die fehlschlagen kann.

In klassischen Sprachen wird hier meist ein "abgesprochener" Fehlerzustand zurückgegeben (0, -1, null, ...). In Haskell wird dies über den Rückgabetyp deutlich gemacht.

Nachteile

• Ein neuer Datentyp, den man kennen muss

Nachteile

• Ein neuer Datentyp, den man kennen muss

Vorteile

- keine Absprachen, die man vergessen kann
- einheitliche Behandlung aller Fälle
- mehrere möglicherweise fehlschlagende Operationen gruppieren und nur solange evaluieren, bis die erste fehlschlägt oder alle erfolgreich sind

Beispiel: Finden eines Elementes in einer Liste

```
Beispiel: Finden eines Elementes in einer Liste
```

Beispiel: Finden eines Elementes in einer Liste

Da wir 1000 in der Liste der Zahlen von 1-10 nicht finden können, haben wir keinen gültigen Index, daher bekommen wir ein Nothing.

Beispiele Maybe Either

Was hat das für einen Sinn?

Was hat das für einen Sinn?

Either benutzt man, wenn man ein erwartetes Ergebnis Right b vom Typen b hat **oder** einen Fehlerzustand Left a vom Typen a.

Einfach zu merken: "Right" ist der "richtige" Fall.

Beispiele für eine Benutzung von Either:

```
parse5 :: String -> Either String Int
parse5 "5" = Right 5
parse5 _ = Left "Could not parse 5"

parse5 "5" -- Right 5
parse5 "abc" -- Left "Could not parse 5"
```

Beispiele Functor Applicative Monad do-notation

Viele Typen haben ähnliche oder gleiche Eigenschaften. Diese Eigenschaften fasst man zu Typklassen zusammen.

Viele Typen haben ähnliche oder gleiche Eigenschaften. Diese Eigenschaften fasst man zu Typklassen zusammen.

- Zahlen kann man alle verrechnen, auch wenn z.B. Int und Double verschiedene Typen haben
- Listen, Vektoren, Arrays haben alle Elemente, über die man z.B. iterieren kann
- Maybe, Either, Listen, etc. haben (vielleicht) Elemente, die man verändern kann

Viele Typen haben ähnliche oder gleiche Eigenschaften. Diese Eigenschaften fasst man zu Typklassen zusammen.

- Zahlen kann man alle verrechnen, auch wenn z.B. Int und Double verschiedene Typen haben
- Listen, Vektoren, Arrays haben alle Elemente, über die man z.B. iterieren kann
- Maybe, Either, Listen, etc. haben (vielleicht) Elemente, die man verändern kann

Warnung: Typklassen haben nichts mit den Klassen der Objektorientierung zu tun, sondern eher mit Templates und abstrakten Klassen

```
class Eq a where
    (==) :: a -> a -> Bool
--or (/=) :: a -> a -> Bool

class Eq a => Ord a where
    (<=) :: a -> a -> Bool
-- definiert automatisch: compare, >=, <, >, max, min
```

Beispiele Functor Applicative Monad do-notation

Functor Applicative Monad

Functor Applicative Monad List-Comprehension

Functor Applicative Monad List-Comprehension

Functor Applicative Monad List-Comprehension

Functor Applicative Monad List-Comprehension

Case-Split Maybe Either

Wie kriege ich sachen aus einem f a? -> Alle Fälle behandeln mit case.

Case-Split Maybe Either

Wie kriege ich sachen aus einem Maybe a? case x of Just a -> foo; Nothing -> bar

Wie kriege ich sachen aus einem Either a? case x of Left a -> foo; Right b -> bar