

ALGORITHMIC SEARCH FOR FAIR AND SUCCESSFUL COLLABORATIVE TEAMS

HAMED LOGHMANI

University of Windsor ghasrlo@uwindsor.ca

GABRIEL RUEDA

University of Windsor ruedag@uwindsor.ca

HOSSEIN FANI

University of Windsor hfani@uwindsor.ca

INTRODUCTION

Team formation aims to automate forming teams of experts who can successfully solve difficult tasks which have firsthand effects on creating an organizational performance. Forming a successful team is challenging due to the immense number of candidates with diverse backgrounds and personality traits. Fairness breeds innovation and increases teams' success by enabling a stronger sense of community, reducing conflict, and stimulating more creative thinking. However, there is little to no fairness-aware algorithmic method that considers fairness in team formation.

OBJECTIVE

Q1: Do state-of-the-art neural team formation models produce fair teams of experts in terms of popularity bias?

Q2: Do state-of-the-art deterministic greedy re-ranking algorithms improve the fairness of neural team formation models while maintaining their accuracy?

POPULARITY LABELING:

METHODOLOGY:

Required Skills Expert Predic	tion Top-5	Reranking			
$ \begin{array}{c c} 1 \\ 0_2 \\ 1_3 \\ \theta_1 \end{array} $ $ \begin{array}{c} \theta_2 \\ 5 \end{array} $	5 4 1 2	None The Non	Upside Down	Interleaving 4 6 1	Optimum 4 6 5
	II	tility 7 1/5	2/5	3/5	3/5
7		on-popular	4/5	2/5	2/5
Variational Bayesian m					

IMDB DATASET:

	imdb	
	raw	filtered
$\# \mathrm{movies}$	507,034	32,059
#unique casts and crews	876,981	2,011
#unique genres	28	23
average #casts and crews per team	1.88	3.98
average #genres per team	1.54	1.76
average #movie per cast and crew	1.09	62.45
average #genre per cast and crew	1.59	10.85
#team w/ single cast and crew	322,918	0
#team w/ single genre	$315,\!503$	15,180

NORMALIZED DISCOUNTED CUMULATIVE KL-DIVERGENCE

Q(X): distribution of popularity in a team

P(x): desired distribution of popularity

$$KL(Q||P) = -\sum_{x} P(x) * \log(\frac{Q(x)}{P(x)})$$

Kullback-Leibler Divergence

FUTURE REMARKS

- Experimenting on learning-to-rank models
- Including additional fairness metrics
- Including new datasets

() FANI-LAB/ADILA

