Transformer Model

Shusen Wang

Transformer Model

 Original paper: Vaswani et al. Attention Is All You Need. In NIPS, 2017.

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Transformer Model

- Transformer is a Seq2Seq model.
- Transformer is not RNN.
- Purely based attention and fully-connected layers.

- Much more computations than RNNs.
- Higher performance than RNNs on large datasets.

Revisit Attention

Weights: $\alpha_{it} = \text{similarity}(\mathbf{h}_i, \mathbf{s}_t)$

Weights: $\alpha_{it} = \text{similarity}(\mathbf{h}_i, \mathbf{s}_t)$

Here, \mathbf{h}_i is called "key", and \mathbf{s}_t is called "query".

Weights:
$$\alpha_{it} = \text{similarity}(\mathbf{h}_i, \mathbf{s}_t)$$

- Define $\mathbf{H} = [\mathbf{h}_1, \cdots, \mathbf{h}_m] \in \mathbb{R}^{d \times m}$.
- Compute weights: $\alpha_{:t} = \operatorname{Softmax}\left((\mathbf{W}_K\mathbf{H})^T(\mathbf{W}_Q\mathbf{s}_t)\right) \in \mathbb{R}^m$.
- α_{1t} , α_{2t} , ..., α_{mt} are the entries of vector $\mathbf{\alpha}_{:t} \in \mathbb{R}^m$.

Weights:
$$\alpha_{:t} = \operatorname{Softmax}\left((\mathbf{W}_K\mathbf{H})^T(\mathbf{W}_Q\mathbf{s}_t)\right)$$

- Define $\mathbf{H} = [\mathbf{h}_1, \cdots, \mathbf{h}_m] \in \mathbb{R}^{d \times m}$
- Compute weights: $\alpha_{:t} = \operatorname{Softmax}\left((\mathbf{W}_K\mathbf{H})^T(\mathbf{W}_Q\mathbf{s}_t)\right) \in \mathbb{R}^m$.
- α_{1t} , α_{2t} , ..., α_{mt} are the entries of vector $\mathbf{\alpha}_{:t} \in \mathbb{R}^m$.

Weights:
$$\alpha_{:t} = \operatorname{Softmax}\left((\mathbf{W}_{K}\mathbf{H})^{T}(\mathbf{W}_{Q}\mathbf{s}_{t})\right)$$

Weights:
$$\alpha_{:t} = \operatorname{Softmax}\left((\mathbf{W}_K\mathbf{H})^T(\mathbf{W}_Q\mathbf{s}_t)\right)$$

Context vector: $\mathbf{c}_t = \alpha_{1t}\mathbf{h}_1 + \cdots + \alpha_{mt}\mathbf{h}_m$.

Weights:
$$\alpha_{:t} = \operatorname{Softmax}\left((\mathbf{W}_K\mathbf{H})^T(\mathbf{W}_Q\mathbf{s}_t)\right)$$

Context vector: $\mathbf{c}_t = \alpha_{1t}\mathbf{h}_1 + \cdots + \alpha_{mt}\mathbf{h}_m$.

- Note that $\mathbf{H} \alpha_{:t} = \alpha_{1t} \mathbf{h}_1 + \cdots + \alpha_{mt} \mathbf{h}_m$.
- Thus $\mathbf{c}_t = \alpha_{1t}\mathbf{h}_1 + \cdots + \alpha_{mt}\mathbf{h}_m = \mathbf{H} \alpha_{:t}$.

$$\mathbf{H} = \begin{bmatrix} \mathbf{h} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \\ \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix}$$

```
Weights: \alpha_{:t} = \operatorname{Softmax}\left((\mathbf{W}_{K}\mathbf{H})^{T}(\mathbf{W}_{Q}\mathbf{s}_{t})\right)
```

Context vector: $\mathbf{c}_t = \mathbf{H} \, \mathbf{\alpha}_{:t}$.

Weights:
$$\alpha_{:t} = \operatorname{Softmax}\left((\mathbf{W}_K\mathbf{H})^T(\mathbf{W}_Q\mathbf{s}_t)\right)$$

Context vector: $\mathbf{c}_t = \mathbf{W}_V \mathbf{H} \, \mathbf{\alpha}_{:t}$.

A different way to computing context vector.

Single-Head & Multi-Head Attention

Context vector:
$$\mathbf{c}_t = (\mathbf{W}_V \mathbf{H}) \cdot \operatorname{Softmax} \left((\mathbf{W}_K \mathbf{H})^T (\mathbf{W}_Q \mathbf{s}_t) \right)$$
.

Single-Head Attention

Context vector:
$$\mathbf{c}_t = (\mathbf{W}_V \mathbf{H}) \cdot \operatorname{Softmax} \left((\mathbf{W}_K \mathbf{H})^T (\mathbf{W}_Q \mathbf{s}_t) \right)$$
.

Single-Head Attention:

•
$$C = Attn(Q, K, V)$$
.

query key value

The t-th column of C is:

$$\mathbf{c}_t = (\mathbf{W}_V \mathbf{V}) \cdot \operatorname{Softmax} ((\mathbf{W}_K \mathbf{K})^T (\mathbf{W}_Q \mathbf{q}_{:t})).$$

Single-Head Attention

Single-Head Attention

Multi-Head Attention

- Single-head attention: C = Attn(Q, K, V).
 - Its *t*-th column is $\mathbf{c}_t = (\mathbf{W}_V \mathbf{V}) \cdot \operatorname{Softmax} \left((\mathbf{W}_K \mathbf{K})^T (\mathbf{W}_Q \mathbf{q}_{:t}) \right)$.
 - \mathbf{W}_Q , \mathbf{W}_K , and \mathbf{W}_V are trainable parameters.
 - Output shape: $d_c \times t$. (Matrix Q has t columns.)

Multi-head attention:

- Using l single-head attentions (which do not share parameters.)
- Totally 3l parameters matrices **W**.
- Concatenating the output C matrices of the single-head attentions.
- Output shape: $(ld_c) \times t$.

Encoder of Transformer

Encoder Network

- Encoder has 6 blocks.
- 1 block = Multi-head attention + Dense.
- 6 is the result of hyper-parameter tuning; nothing magical about 6.
- Other tricks:
 - Skip connection.
 - Normalization.

Multi-Head Attention + Dense Layer

Multi-Head Attention

Multi-Head Attention + Dense Layer

 $\tilde{\mathbf{C}}$'s number of columns, t, is determined by \mathbf{Q} .

Multi-Head Attention

$$\tilde{\mathbf{C}} = [\ \tilde{\mathbf{c}}_1, \ \tilde{\mathbf{c}}_2, \ \tilde{\mathbf{c}}_3, \cdots, \ \tilde{\mathbf{c}}_t\] \in \mathbb{R}^{ld_c \times t}$$
 Concatenation
$$\mathbf{C}^{[1]} \in \mathbb{R}^{d_c \times t} \quad \mathbf{C}^{[2]} \in \mathbb{R}^{d_c \times t} \quad \cdots \quad \mathbf{C}^{[l]} \in \mathbb{R}^{d_c \times t}$$
 Attention w/ different parameter matrices.
$$(\mathbf{Q}, \quad \mathbf{K}, \quad \mathbf{V})$$

Multi-Head Attention + Dense Layer

Concatenation

$$\mathbf{C}^{[1]} \in \mathbb{R}^{d_c \times t}$$

Attention w/ different parameter matrices.

$$\mathbf{C}^{[1]} \in \mathbb{R}^{d_c imes t}$$
 $\mathbf{C}^{[2]} \in \mathbb{R}^{d_c imes t}$ \cdots $\mathbf{C}^{[l]} \in \mathbb{R}^{d_c imes t}$ eter matrices.

Encoder Network: One Block

Ignore skip connection and normalization.

- Input: $\mathbf{X} \in \mathbb{R}^{512 \times m}$; (m is the seq length.)
- Set $\mathbf{Q} = \mathbf{K} = \mathbf{V} = \mathbf{X}$.

Similar to self-attention.

Encoder Network: One Block

Ignore skip connection and normalization.

- Input: $\mathbf{X} \in \mathbb{R}^{512 \times m}$; (m is the seq length.)
- Set Q = K = V = X.
- Repeat single-head attention l=8 times:

$$\mathbf{C}^{[i]} = \operatorname{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) \in \mathbb{R}^{64 \times m}.$$

• $\tilde{\mathbf{C}} = \text{Concatenate}(\mathbf{C}^{[1]}, \dots, \mathbf{C}^{[l]}) \in \mathbb{R}^{512 \times m}$.

- Make sure the input shape and output shape are the same.
- Otherwise, skip connection cannot be applied.

Encoder Network: One Block

Ignore skip connection and normalization.

- Input: $\mathbf{X} \in \mathbb{R}^{512 \times m}$; (m is the seq length.)
- Set Q = K = V = X.
- Repeat single-head attention m=8 times:

$$\mathbf{C}^{[i]} = \operatorname{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) \in \mathbb{R}^{64 \times m}.$$

• $\tilde{\mathbf{C}} = \text{Concatenate}(\mathbf{C}^{[1]}, \dots, \mathbf{C}^{[l]}) \in \mathbb{R}^{512 \times m}$.

Encoder Network

Encoder Network

Encoder

Decoder of Transformer

Decoder Network: One Block

Encoder

- Similar to encoder.
- Set $\mathbf{Q} = \mathbf{K} = \mathbf{V} = \mathbf{X}'$.

Output

Decoder Network: One Block

Encoder

- Set $\mathbf{Q} = \mathbf{S} \in \mathbb{R}^{512 \times t}$.
- $\mathbf{K} = \mathbf{V} = \mathbf{X}_{(6)} \in \mathbb{R}^{512 \times m}$
- Multi-head attention outputs a $512 \times t$ matrix.

- Similar to encoder.
- Set Q = K = V = X'.

Output

Decoder Network

Decoder Network

- Output a distribution over the vocabulary.
- Compare the distribution with the one-hot encode of the label.
- Loss, e.g., cross-entropy.
- Gradient.
- Dpdate model parameters.

Summary

Summary

- Transformer model is not RNN.
- Transformer is based on attention and self-attention.
- Upside: Outperform all the state-of-the-art RNN models.
- Downside: Much more expensive than RNN models.

- Read the original paper: Vaswani et al. Attention Is All You Need. In NIPS, 2017.
- Google "transformer model explained" and read the articles.

Key Concept: Multi-Head Attention

- Inputs: query Q, key K, and value V.
- Linear maps: $\widetilde{\mathbf{Q}} = \mathbf{W}_O \mathbf{Q}$, $\widetilde{\mathbf{K}} = \mathbf{W}_K \mathbf{K}$, and $\widetilde{\mathbf{V}} = \mathbf{W}_V \mathbf{V}$.
- Single-head attention:

$$\mathbf{C} = \operatorname{attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \widetilde{\mathbf{V}} \cdot \operatorname{softmax}(\widetilde{\mathbf{K}}^T \widetilde{\mathbf{Q}}).$$

Key Concept: Multi-Head Attention

- Inputs: query Q, key K, and value V.
- Linear maps: $\widetilde{\mathbf{Q}} = \mathbf{W}_{Q}\mathbf{Q}$, $\widetilde{\mathbf{K}} = \mathbf{W}_{K}\mathbf{K}$, and $\widetilde{\mathbf{V}} = \mathbf{W}_{V}\mathbf{V}$.
- Single-head attention:

$$\mathbf{C} = \operatorname{attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \widetilde{\mathbf{V}} \cdot \operatorname{softmax}(\widetilde{\mathbf{K}}^T \widetilde{\mathbf{Q}}).$$

- Multi-head attention:
 - Repeat attn(\mathbb{Q} , \mathbb{K} , \mathbb{V}) using different parameters \mathbb{W}_Q , \mathbb{W}_K , \mathbb{W}_V .
 - Get $\mathbf{C}^{[1]}$, $\mathbf{C}^{[2]}$, \cdots , $\mathbf{C}^{[l]} \in \mathbb{R}^{d_c \times t}$.
 - Concatenate the m matrices to get $\tilde{\mathbf{C}} \in \mathbb{R}^{ld_c \times t}$.

Attention in the encoder:

• Q = K = V = encoder_input.

1st attention in the decoder:

• Q = K = V = decoder_input.

2nd attention in the decoder

- Q = decoder_input
- K = V = encoder_output.

Attention in the encoder:

1st attention in the decoder:

 $ullet \mathbf{Q} = \mathbf{K} = \mathbf{V} = \mathtt{decoder}_\mathtt{input}.$

2nd attention in the decoder

- Q = decoder_input
- K = V = encoder_output.

Attention in the encoder:

1st attention in the decoder:

• Q = K = V = decoder_input.

2nd attention in the decoder

- Q = decoder input
- K = V = encoder_output.

