Spazi proiettivi

Carte affini. Poniamo $\mathbb{K} = \mathbb{R}$ o \mathbb{C} . Per i = 0, ..., n definiamo

$$H_i \stackrel{\mathrm{def}}{=} \{[x_0,\ldots,x_n] \in \mathbb{K}\mathsf{P}^n \mid x_i=0\} \cong \mathbb{K}\mathsf{P}^{n-1}$$
 iperpiano proiettivo

$$U_i \stackrel{ ext{def}}{=} \mathbb{K}\mathsf{P}^n - H_i = \{[x_0, \dots, x_n] \in \mathbb{K}\mathsf{P}^n \mid x_i
eq 0\}$$
 aperto denso

$$\varphi_i: U_i \stackrel{\cong}{\to} \mathbb{K}^n$$
 omeo (carta affine)

$$arphi_i([x_0,\ldots,x_n])=\left(rac{x_0}{x_i},\ldots,rac{x_{i-1}}{x_i},rac{x_{i+1}}{x_i},\ldots,rac{x_n}{x_i}
ight)$$

$$arphi_i^{-1}(y_1,\ldots,y_n) = [y_1,\ldots,y_i,1,y_{i+1},\ldots,y_n]$$

Oss. $U_i \cong \mathbb{K}^n$ è uno spazio affine e $\mathbb{K}P^n = U_0 \cup \cdots \cup U_n$.

Oss. $\mathbb{K}\mathsf{P}^n = U_0 \cup H_0$ compattificazione di $\mathbb{K}^n \cong U_0 \ (n \geqslant 1)$.

Oss. Per n=1, $H_0=\{[0,1]\}$ è un punto $\Rightarrow \mathbb{K}\mathsf{P}^1=U_0\cup\{[0,1]\}\cong \hat{\mathbb{K}}$ compattificazione di Alexandrov di \mathbb{K} .

Retta proiettiva reale. $\mathbb{RP}^1 \cong \mathbb{R} \cong S^1$.

Retta proiettiva complessa. $\mathbb{CP}^1 \cong \widehat{\mathbb{C}} \cong \widehat{\mathbb{R}}^2 \cong S^2$.

N.B. $\mathbb{R}P^n$ e $\mathbb{C}P^n$ non sono omeomorfi a sfere per n > 1.

Lezione 16 Spazi connessi

Spazi connessi

Def. Uno spazio topologico X è *connesso* se gli unici sottoinsiemi aperti e chiusi di X sono \emptyset e X. Uno spazio non connesso è detto *sconnesso*.

Prop. X sconnesso $\Leftrightarrow \exists \emptyset \neq U \subsetneq X$ aperto e chiuso $\Leftrightarrow X$ è unione di due aperti non vuoti disgiunti.

Dim. Primo ⇔ per definizione. Dimostriamo il secondo.

 $\Rightarrow \emptyset \neq U \subsetneq X$ aperto e chiuso $\rightsquigarrow V := X - U \neq \emptyset$ aperto.

 $X = U \cup V$ con $U, V \subset X$ aperti non vuoti disgiunti $\Rightarrow \emptyset \neq U \subsetneq X$ aperto e chiuso.

Cor. X connesso $\Leftrightarrow \forall U, V \subset X$ aperti t.c. $U \cup V = X$ e $U \cap V = \emptyset$ si ha $U = \emptyset$ oppure $V = \emptyset$.

Esempi.

- 1) $[0,1] \cup [2,3] \subset \mathbb{R}$ sconnesso.
- 2) \mathbb{R}_{ℓ} sconnesso: $\mathbb{R}_{\ell} =]-\infty$, $0[\cup [0, +\infty[$ aperti non vuoti disgiunti.
- 3) $\forall X_{\text{ban}}$ connesso.
- 4) X_{dis} connesso $\Leftrightarrow |X_{\text{dis}}| = 1$.
- 5) $\bigsqcup_{\alpha \in A} X_{\alpha}$ connesso $\Rightarrow |A| = 1$ (unione banale).

Teor. I = [0, 1] è connesso con la topologia Euclidea.

Dim. Per assurdo $I = U \cup V$ aperti non vuoti disgiunti $\Rightarrow U, V$ chiusi limitati. Sia $0 \in U \rightsquigarrow \nu = \min V > 0 \Rightarrow [0, \nu[\subset U \Rightarrow \operatorname{Cl}_I[0, \nu[= [0, \nu] \subset U \Rightarrow \nu \in U \cap V \neq \emptyset] \text{ contraddizione.}$

Teor. $f: X \to Y$ continua suriettiva e X connesso $\Rightarrow Y$ connesso.

Dim. $\forall \emptyset \neq V \subset Y$ aperto e chiuso $\rightsquigarrow \emptyset \neq U := f^{-1}(V) \subset X$ aperto e chiuso $\Rightarrow U = X \Rightarrow V = f(U) = f(X) = Y \Rightarrow Y$ connesso.

Cor. $f: X \to Y$ continua e X connesso $\Rightarrow f(X) \subset Y$ connesso.

Oss. Immagine continua di un connesso è connessa.

Teor. $X = \bigcup_{\alpha \in A} X_{\alpha} \text{ con } X_{\alpha} \text{ connesso } \forall \alpha \in A \text{ e } \bigcap_{\alpha \in A} X_{\alpha} \neq \emptyset \Rightarrow X \text{ connesso.}$

 $Dim. \ x_0 \in \bigcap_{\alpha \in A} X_\alpha$. Per assurdo $X = U \cup V$ aperti non vuoti disgiunti con $x_0 \in U, \ x_1 \in V \leadsto x_1 \in X_{\alpha_1} \Rightarrow U' = X_{\alpha_1} \cap U, \ V' = X_{\alpha_1} \cap V$ aperti non vuoti disgiunti in X_{α_1} t.c. $X_{\alpha_1} = U' \cup V'$ contraddizione.

Prop. $Y \subset X$ sottospazio connesso $\Rightarrow Cl_X Y$ connesso.

 $Dim. \ \forall \emptyset \neq U \subset Cl_XY$ aperto e chiuso in $Cl_XY \Rightarrow U$ chiuso in X e $\exists \tilde{U} \subset X$ aperto in X t.c. $U = \tilde{U} \cap Cl_XY \Rightarrow U \cap Y = \tilde{U} \cap Y \neq \emptyset$ aperto e chiuso in $Y \Rightarrow U \cap Y = Y \subset U \Rightarrow Cl_XY \subset U \Rightarrow Cl_XY = U$.

Lezione 16 Spazi connessi

Componenti connesse.

Def. Dato uno spazio topologico X, la componente connessa di $x \in X$ è

$$C_x(X) \stackrel{\text{def}}{=} \bigcup_{\substack{x \in C \subset X \\ C \text{ conn.}}} C$$

Teor. Valgono le seguenti proprietà:

- 1) $x \in C_x(X) \neq \emptyset$, $\forall x \in X$;
- 2) $C_x(X)$ è il più grande sottospazio connesso di X che contiene x;
- 3) $\forall x, y \in X$, $C_x(X) \cap C_y(X) \neq \emptyset \Leftrightarrow C_x(X) = C_y(X)$;
- 4) $C_x(X)$ chiuso in $X, \forall x \in X$.

Dim.

- 1) $\{x\}$ connesso quindi è nell'unione.
- 2) $C_x(X)$ connesso perché unione di connessi con intersezione non vuota.
- 3) \Leftarrow Ovvio. \Rightarrow $x, y \in C_x(X) \cup C_y(X)$ connesso $\Rightarrow C_x(X) \cup C_y(X) \subset C_x(X) \Rightarrow C_y(X) \subset C_x(X)$ e similmente per l'altra inclusione.

4)
$$x \in \operatorname{Cl}_X(\mathcal{C}_x(X))$$
 connesso $\Rightarrow \operatorname{Cl}_X(\mathcal{C}_x(X)) \subset \mathcal{C}_x(X) \Rightarrow$
 $\operatorname{Cl}_X(\mathcal{C}_x(X)) = \mathcal{C}_x(X)$ chiuso.

Def. $C(X) \stackrel{\text{def}}{=} \{C_x(X) \mid x \in X\}$ insieme delle componenti connesse di X.

Oss. C(X) è una partizione di X in sottospazi chiusi disgiunti.

Oss. X connesso \Leftrightarrow X ha un'unica componente connessa.

Oss. C(X) finito $\Rightarrow C_x(X)$ aperto in X, $\forall x \in X \Rightarrow X$ unione topologica delle sue componenti connesse.

Def. Uno spazio topologico X è *localmente connesso* se $\forall x \in X$, $\exists \mathcal{J}_x$ base di intorni aperti connessi di x in X.

Teor. X loc. connesso $\Rightarrow C_x(X)$ aperto in $X, \forall x \in X$.

Dim. $\forall y \in C_x(X), \exists J \subset X$ intorno conn. di $y \Rightarrow J \subset C_y(X) = C_x(X)$.

Cor. X loc. conn. \Rightarrow X unione topologica delle sue componenti connesse.

Oss. Connesso e loc. connesso sono proprietà topologiche.

Esempi.

1)
$$X = [0, 1] \cup [2, 3] \subset \mathbb{R}$$
, $C_3(X) = [2, 3]$, $C(X) = \{[0, 1], [2, 3]\}$.

2)
$$X = \{0\} \cup \left\{ \frac{1}{n} \mid n \in \mathbb{N} - \{0\} \right\} \subset \mathbb{R}$$
, $C_0(X) = \{0\}$ non è aperto in X .