A Simple Example

$$f_{eg}^{z}(\beta, x, z) = -0.5*v_{ego} + 1.1*z_{age}v_{ego} + 1.0*sim^{z}$$

	Linear	Age	sım²	Sum
Stay at 1	5 * 1 =5	1.1 * 1 = 1.1	1*0.95=0.95	1.45
Decrease behavior to 0	5 * 0 = 0	1.1 * 0 = 0	1*0.35=0.35	0.35
Increase behavior to 2	5 * 2 = -1	1.1 * 2 = 2.2	1*-0.55=-0.55	0.65

$$\sum_{j} x_{ij} (sim_{ij}^{Z} - \overline{sim}^{Z}) \qquad sim_{ij}^{Z} = 1 - |z_{i} - z_{j}| / \Delta_{Z}$$

$$\Delta_{Z} = \max_{ij} |z_{i} - z_{j}| = 2$$

$$\overline{sim}^{Z} = \text{similarity expected by chance}$$

(1) Dyad
$$sim_{ij}^{Z}$$
 $x_{ij}(sim_{ij}^{Z} - sim^{Z})$

Ego, j_1 $1 - |1 - 1|/2 = .5$ $1 (.5 - .05) = .45$

Ego, j_2 $1 - |1 - 1|/2 = .5$ $1 (.5 - .05) = .45$

Ego, j_3 $1 - |1 - 0|/2 = 0$ $1 (0 - .05) = .05$

Ego, j_4 $1 - |1 - 2|/2 = 0$ $0 (0 - .05) = 0$

Do this for all possible dyads to compute $\overline{sim^z} = .05$

Given the current state of the network, ego is most likely to stay at level 1.

 $j_1(1)$

0(-.5 - .05) = 0sum = .35

change to 2

Dyad

Ego, j₁

Ego, j₂

Ego, j₃

Ego, j₄

(1) Dyad	sim_{ij}^{Z}	$x_{ij}(sim_{ij}^{Z} - \overline{sim^{Z}})$
Ego, j_1 Ego, j_2 Ego, j_3 Ego, j_4	1 - 2 - 1 / 2 = 0 1 - 2 - 1 / 2 = 0 1 - 2 - 0 / 2 =5 1 - 2 - 2 / 2 = .5	1 (005) =05 $1 (005) =05$ $1 (505) =45$ $0 (.505) = 0$
Ego, J_4	1 - 2 - 2 / 25	$\frac{0(.303) - 0}{\text{sum} = -55}$

1 - |0 - 2| / 2 = -.5