

PHYSICS

ASESORÍA

4th SECONDARY

TOMO 5

1 Un cuerpo de 0,8 m^3 de volumen se encuentra sumergido en agua totalmente. Determine modulo de la fuerza de empuje que soporta.

 $(g = 10 \text{ m/s}^2)$

RESOLUCIÓN

D.C.L. del cuerpo

$$E = \rho_{Liq} g.V_{Sum}$$

$$E = 1000 \frac{kg}{m^3} \times 10 \frac{m}{s^2} \times 0.8 \text{ m}^3$$

$$E = 8000 \text{ N}$$

Finalmente:

$$E = 8 \text{ KN}$$

La esfera homogénea mostrada en la figura tiene un volumen de 12 m³. Determine el módulo de la

fuerza de empuje, si . (g = 10)

 $\frac{\mathrm{m}}{\mathrm{s}^2}$)

RESOLUCIÓN

D.C.L. de la Esfera

De la figura:

V sum =
$$\frac{1}{2}$$
. V_{esf} = 6 m³

$$E = \rho_{Liq} g.V_{Sum}$$

$$\mathbf{E} = 1000 \, \frac{kg}{m^3} \times 10 \frac{m}{s^2} \times 6 \, \mathrm{m}^3$$

$$E = 60 000 N$$

$$E = 60 \text{ KN}$$

Se pretende recuperar una estatua antigua de 700 kg que se encuentra en el fondo de un lago. Su volumen es de $0,03 m^3$. ¿Cuál es el módulo de la fuerza de empuje sobre la misma? (g = $10 m/s^2$)

RESOLUCIÓN

D.C.L. de la Estatua

$$\mathbf{E} = 1000 \, \frac{kg}{m^3} \mathbf{x} \, 10 \frac{m}{s^2} \, \mathbf{x} \, 0.03 \, m^3$$

$$E = 300 \text{ N}$$

En el sistema, las partículas A, B y C están electrizadas tal que B atrae a C con una fuerza eléctrica de módulo 50 N y A repele a la partícula C con una fuerza eléctrica de módulo 80 N. Determine el módulo de la fuerza eléctrica resultante sobre C.

Fuerzas eléctricas sobre la carga C:

La resultante sobre C:

Determine el módulo de fuerza de atracción electrostática entre un electrón y un protón cuando se encuentran separados 10^{-10} m (radio medio del átomo de hidrógeno)

Por la ley de Coulomb :

$$F_{Electrica} = K_{vacío} \frac{|Q_1||Q_2|}{d^2}$$

$$F_{\text{Eléctrica}} = \left(9.10^9 \frac{\text{Nm}^2}{\text{C}^2}\right) \frac{(1,6.10^{-19}\text{C})(1,6.10^{-19}\text{C})}{(10^{-10}\text{m})^2}$$

RESOLUCIÓN

$$Q_1$$
= + 1,6. 10^{-19} C Q_2 = - 1,6. 10^{-19} Q_2 = - 1,6. 10^{-19} Q_2 = - 1,6. Q_2 = -

$$Q_2 = -1.6. \ 10^{-19} \ C$$
 $F_{Eléctrica} = \left(9.10^9 \frac{Nm^2}{C^2}\right) \frac{(2.56. 10^{-38} C^2)}{10^{-20} m^2}$

$$\therefore F_{El\acute{e}ctrica} = 23.10^{-9} N$$

El módulo de la fuerza eléctrica de repulsión entre dos partículas cargadas es 120 N. Si la distancia entre ellas se duplica, calcular el módulo de la nueva fuerza de repulsión.

RESOLUCIÓN

Por la ley de Coulomb :

$$F_{Elect} = K_{vacío} \frac{|Q_1||Q_2|}{d^2}$$

1° CASO:

$$120 N = K_{\text{vac\'io}} \frac{Q.q}{d^2} \dots (\alpha)$$

2° CASO:

$$F = K_{\text{vacío}} \frac{Q.q}{4.d^2}$$

$$F = \frac{120}{4} N$$

$$\therefore F = 30 \text{ N}$$

Si la intensidad de campo eléctrico de la partícula, electrizada positivamente con carga q_1 , en P tiene módulo 40 N/C, determine el módulo de la intensidad resultante en dicho punto si esta a 1 m de q_2 .

RESOLUCIÓN

Graficando en P los vectores:

$$E = K|Q|$$

$$d^2$$

$$E_2 = 9.10^9 \frac{\text{N m}^2}{\text{C}^2} \frac{5.10^{-9} \text{ C}}{1 \text{ m}^2}$$

$$E_2 = 45 N/C$$

$$E_P^{Resul} = 45 \text{ N/C} - 40 \text{ N/C}$$

$$: E_P^{Resul} = 5 N/C$$

Si $Q_1 = -4 \times 10$ -8 C y $Q_2 = +6 \times 10$ -8 C, determine el módulo de la intensidad de campo eléctrico resultante en el punto P.

RESOLUCIÓN

$$Q_1 = -4 \times 10^{-8} \, \text{C}$$
 y $Q_2 = +6 \times 10^{-8} \, \text{C}$

$$E_{P}^{Q} = K_{\text{vacio}} \frac{|Q|}{d^{2}}$$

$$E_{P}^{Q_1} = 9.10^9 \frac{\text{N m}^2}{\text{C}^2} \frac{4.10^{-8} \text{ C}}{16 \text{ m}^2} = 90 \text{ N/C}$$

$$E_P^{Q2} = 9.10^9 \frac{\text{N m}^2}{\text{C}^2} \frac{6.10^{-8} \text{ C}}{1 \text{ m}^2} = 540 \text{ N/C}$$

$$E_P^{Resul} = 90 \text{ N/C} + 540 \text{ N/C}$$

$$\therefore E_{P}^{Resul} = 630 \text{ N/C}$$

Si el módulo de la intensidad del campo eléctrico en A es de 450 N/C; determine el modulo de la intensidad de campo eléctrico en B, que se encuentra al triple de distancia que A.

$$E_A = K \frac{Q}{d^2} = 450 \text{ N/C}$$

$$E_{\rm B} = K \frac{Q}{(3d)^2} = K \frac{Q}{9d^2} = \frac{450}{9} \,\text{N/C}$$

$$\therefore E_{\rm B} = 50 \, N/C$$

Determine la veracidad (V) o falsedad (F) de las siguientes proposiciones. En las inmediaciones de un cuerpo cargado eléctricamente:

Se modifica la región del espacio que le rodea ya que produce un campo eléctrico:

En cada punto de la región que rodea a dicha partícula, la dirección del campo eléctrico dependerá del signo de la carga que posee.

Las líneas de fuerza se emplean para representar geométricamente al campo eléctrico.

