1 Equivalência de enunciados

Na prática, dependendo de como entendemos o significado de um enunciado, ele pode ser simbolizado de mais de uma maneira.

Exemplo 1 O enunciado

pode ser interpretado como

e, portanto, pode ser simbolizado diretamente como

$$\neg \neg p$$
,

de acordo com a legenda

$$p$$
: 2 é par.

Mas, levando em conta que dizer que 2 não é par é o mesmo que dizer que 2 é ímpar, e que dizer que 2 não é ímpar é o mesmo que dizer que 2 é par, temos que (1) quer dizer, simplesmente, que 2 é par. Assim, uma outra simbolização <u>mais simples</u> para ele, de acordo com a mesma legenda, pode ser

p.

Observe que (1) e

são enunciados completamente distintos, por exemplo, o primeiro é uma negação e o segundo é atômico. Agora, quando estamos analisando estes enunciados levando em conta apenas a semântica dos conectivos, podemos considerar que eles expressam a mesma informação.

Do que foi dito acima, surge, então, a questão de

decidir se dois enunciados simbolizados de maneira distinta expressam ou não o mesmo conteúdo.

2 Interpretações para dois enunciados e Método das Tabelas para Equivalência

Vamos ver agora como a questão levantada ao final da Seção 1 pode ser resolvida com o uso de tabelas, quando os enunciados em questão têm apenas ocorrências dos conectivos. Da mesma forma que na Seção 3 da Parte 1 do Texto da Semana 3, o passo essencial é: identificar os contextos relevantes para a determinação dos valores dos enunciados com suas interpretações, ou seja, atribuições de valores aos enunciados atômicos a partir dos quais eles são formados.

Interpretações para dois enunciados

Sejam φ e ψ dois enunciados simbolizados, não necessariamente distintos.

Uma interpretação para φ e ψ é uma atribuição de valores, V ou F, para todas as variáveis que ocorrem em φ e ψ , de modo que a cada variável seja atribuído um único valor.

Exemplo 2 (a) Os enunciados p e $\neg \neg p$ só têm ocorrências de p. Portanto, possuem duas interpretações:

$$\frac{p}{V}$$
 F .

(b) Os enunciados $\neg(p \land q)$ e $\neg p \lor \neg q$ só têm ocorrências de p, q. Portanto, possuem quatro interpretações:

$$\begin{array}{c|cc} p & q \\ \hline V & V \\ V & F \\ F & V \\ F & F. \end{array}$$

(c) Os enunciados $p \to (q \to r)$ e $(p \to q) \to r$ só têm ocorrências de p, q, r. Portanto, possuem oito interpretações:

Observe que, para cada interpretação para a variável p, os enunciados p e $\neg \neg p$ assumem os mesmos valores, como vemos ao comparar a primeira e a terceira colunas da tabela (*):

$$\begin{array}{c|cccc} p & \neg p & \neg \neg p \\ \hline V & F & V \\ F & V & F \\ \uparrow & & \uparrow \end{array}$$

Analogamente, para cada interpretação para as variáveis p, q, os enunciados $\neg(p \land q)$ e $\neg p \lor \neg q$ assumem os mesmos valores, como vemos ao comparar a quarta e a sétima <u>colunas</u> da tabela (**):

p	\boldsymbol{q}		$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
\overline{V}	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V
			1			1

Método das Tabelas para Equivalência

Sejam φ e ψ enunciados simbolizados.

Dizemos que φ e ψ são equivalentes se, para cada interpretação para φ e ψ , os valores de φ e ψ são iguais.

Surge, então, o *Problema da Equivalência* de enunciados, isto é, o problema de dados dois enunciados, classificá-los como equivalentes ou não.

Vamos ver, agora, como esta questão pode ser resolvida com o uso de tabelas, quando o argumento só envolve enunciados construídos por aplicação dos conectivos.

Exemplo 3 (a) A tabela (*) na página 17 mostra que os enunciados p e $\neg \neg p$ são equivalentes. Esta equivalência garante que não precisamos escrever duas aplicações sucessivas do conectivo \neg .

- (b) A tabela (**) na página 17 mostra que os enunciados $\neg(p \land q)$ e $\neg p \lor \neg q$ são equivalentes. Esta equivalência garante que a negação de uma conjunção pode ser reescrita como uma disjunção de negações.
- (c) Vamos agora verificar que os enunciados $p \to (q \to r)$ e $(p \to q) \to r$ não são equivalentes. Isto é, que a maneira como agrupamos os enunciados componentes em aplicações iteradas do conectivo \to é relevante para a determinação do valor do enunciado.

Para mostrar isto, devemos mostrar que

 $n\~ao$ é o caso que para cada interpretação para p,~q,~r, os valores de $p\to (q\to r)$ e $(p\to q)\to r$ são iguais.

Ou seja, devemos mostrar que

para ao menos uma interpretação para $p,\,q,\,r,$ os valores de $p\to(q\to r)$ e $(p\to q)\to r$ são diferentes.

De fato, comparando a quinta e a sétima colunas da tabela:

p	q	r	$q \to r$	$p \to (q \to r)$		$(p \to q) \to r$	
V	V	V	V	V	V	V	
V	V	F	F	F	V	F	
V	F	V	V	V	F	V	
V	F	F	V	V	F	V	
F	V	V	V	V	V	V	
F	V	F	F	V	V	F	\Leftarrow
F	F	V	V	V	V	V	
F	F	F	V	V	V	F	
				1		1	

observamos que na sexta linha (descontando a linha de referência),

quando
$$p \in F,\, q \in V$$
e $r \in F,$ o enunciado $p \to (q \to r) \in V$ e o enunciado $(p \to q) \to r \in F.$

Como os valores de $p \to (q \to r)$ e $(p \to q) \to r$ são diferentes para pelo menos uma interpretação, eles não são equivalentes.

O método que usamos para resolver o problema da equivalência de enunciados simbolizados pode ser resumido em 5 passos:

Método das Tabelas para Equivalência:

Sejam φ e ψ enunciados simbolizados nos quais ocorrem (exatamente) as variáveis p_1, \ldots, p_m .

A verificação da equivalência de φ e ψ pode ser feita mediante a execução dos seguintes passos, que constroem a tabela conjunta de φ e ψ :

- (1) Em uma linha de referência, escrevemos as variáveis p_1, \ldots, p_m .
- (2) Abaixo da linha de referência, escrevemos, como usual, todas as interpretações para p₁,..., p_m.
- (3) Utilizando as tabelas dos conectivos, calculamos gradativamente todos os valores de cada enunciado simbolizado utilizado na formação de φ , até obter o valor de φ .
- (4) Utilizando as tabelas dos conectivos, calculamos gradativamente todos os valores de cada enunciado simbolizado utilizado na formação de ψ que ainda não foram avaliados, até obter o valor de ψ .
- (5) Comparamos a coluna rotulada com φ com a coluna rotulada com ψ . Se elas são iguais, φ e ψ são equivalentes. Caso contrário, não são.

2.1 Observações

Observação 1 Construir a tabela conjunta de φ e ψ e comparar se as colunas rotuladas com φ e com ψ nesta tabela são iguais ou não, é o mesmo que construir a tabela do enunciado $\varphi \leftrightarrow \psi$ e verificar se na última coluna desta tabela ocorre somente V.

Assim, temos:

O problema da equivalência de dois enunciados φ e ψ pode ser resolvido tanto pela construção e exame da sua tabela conjunta, quanto pela verificação de se a bi-implicação $\varphi \leftrightarrow \psi$ é V em todas as suas interpretações.

Observação 2 Existe uma infinidade de pares de enunciados equivalentes. De fato, uma lista infinita trivial é:

Mas, como veremos adiante, alguns pares de enunciados equivalentes são mais importantes do que outros, pois expressam propriedades dos conectivos que (1) exclarecem as interrelações existentes entre eles; (2) apontam semelhanças e diferenças que eles possuem com relação a partículas de outros domínios da Matemática como, por exemplo, as operações aritméticas.

2.2 Exercícios

Exercício 1 Determine, usando tabelas, se os enunciados dados são equivalentes.

- (i) $p \wedge (\neg q)$ e $(\neg p) \wedge q$
- (ii) $p \leftrightarrow q$ e $(p \to q) \land (q \to p)$
- (iii) $p \to (q \land r)$ e $(p \to q) \land (p \to r)$
- (iv) $p \to (q \lor r)$ e $(p \to q) \lor (p \to r)$
- (v) $(p \land q) \lor r$ e $p \land (q \lor r)$

Exercício 2 Determinar a equivalência de enunciados é uma habilidade que todo estudante de Matemática deve possuir pois, muitas vezes, uma afirmação matemática não é feita de uma forma direta (ou seja, da maneira que o leitor espera) mas, sim, na forma de um enunciado equivalente. Neste exercício, vemos vários exemplos desta situação.

Verifique se os seguintes enunciados são equivalentes ou não. Isto é, simbolizeos e utilize tabelas para decidir se são equivalentes. (Usualmente, empregamos os sinais de pontação — principalmente, ponto e vírgula e dois pontos — na tentativa de deixar a estrutura do enunciado mais clara.)

- não é o caso que: x é primo se, e somente se, x é ímpar
 e
 x é primo ou ímpar
- (ii) se r é perpendicular a s e s é perpendicular a t, então r é perpendicular a t e se r não é perpendicular a s e s não é perpendicular a t, então t não é perpendicular a t
- s é perpendicular a t segue de: r é paralela a s e perpendicular a t e r é paralela a s e s não é perpendicular a t acarreta em r não é perpendicular a t