

M.Tech Digital Manufacturing

BITS Pilani
Pilani Campus

Jayakrishnan J Guest Faculty

DMZG521- Design for Additive Manufacturing Session 4 & Lecture 7-8

Eight stages of AM process

AM Process Planning

- Part Orientation
- Support Generation
- Slicing
- Path Planning
- Print the Model
- Post Processing

Part Orientation

Part accuracy

Surface finish

Build time

Part strength

Support structure

Effects of part orientation

- Cost
- Build Time
- Stair step error
- Trapped Volume
- Support structure
- Curling and Warpage
- Assembly consideration

Which is best orientation?

Design guidelines for Part Orientation

Curling and Warpage

Bottom surface

Corner of the part

Avoid highly curved surfaces in the design

Vertical

Highly curved surfaces causes 'stair-step effect' due to

finite layer thickness during slicing

Orient axis of cylindrical surfaces perpendicular to the

building plane.
Staircase effect

Mismatch of features

Non-uniform shrinkage

Mismatch of features

Avoid large flat area as the first layer

Deviation for a flat bottom of a part oriented to be the first layer

Assembly Consideration

Assembly Consideration:

If two cylindrical parts are to be assembled, orient the part axes parallel in build chamber.

Good Orientation

Bad Orientation

Due to stair step effect, clearance of a bush and shaft is high, when their axes are not oriented parallel in the build chamber.

e

Add chamfers or fillets to overhanging geometry to make it self-supporting

Angles 30°-45°: self-supporting with rough surface finish

Angles >45°: selfsupporting with smooth surface finish

ill Lattice

Offset

Gusset

Design rules

Force from the roller may cause tall, narrow parts to shift in the build

Support structures prevent parts from shifting in the build

Overhang geometry may require support structures to successfully build using DMLS:

Horizontal surfaces

Large holes on the horizontal axis

Arches and overhangs

Example of warping on a tall, thin part without support structures

Examples of potential design improvements to prevent warping

part orientation in early design stage

Optimum orientation using Autodesk Netfabb

Slicing Strategy

Slicing software

innovate achieve lead

- Cura
- Slice3r
- Autodesk Netfabb
- Meshmixer
- Meshlab
- MatterControl 2.0

Path Planning

Raster

Continuo us

Zig-Zag

Contour

Hybrid

Spiral

Part Consolidation

<u>Part consolidation</u> is nothing but reducing the no of parts by grouping the different parts with out compromising the functionality of the system.

Benefits of Part Consolidation

- Lower overall production costs
- Less material
- Lower overall risk
- Better performance
- Reduction in supply chain

Source:

https://3dprinting.com/tips-tricks/designing-for-additive-manufacturing-dfam/

Part Consolidation rules

- (1) **Relative motion (R1)**: "CF_RelativeM";
 - (2) Material variance (R2): "CF_MaterialV";
 - (3) Assembly access (R3): "CF_AssemblyX"
- (4) **High-quality electronic/standard device (R4)**: "CF StandardD
 - (5) Size limitation (R5): "CF_SizeLimit"
 - (6) Material availability (R6): "CF_Material0"
 - (7) Maintenance frequency difference (R7): "CF_MaintenanceDiff"

Rule for Part Consolidation

Case studies

GE Turboprop engine 855 to 12 Parts

Source: http://www.leolane.com/blog/multiple-singular-consolidating-parts-additive-manufacturing/

Throttle Pedal PC

Source:

https://asmedigitalcollection.asme.org/mechanicaldesign/article/140/3/031702/367606/Additive-Manufacturing-Enabled-Part-Count

Function-Function carrier view

Level 1 Screening

C1 – Steering Handle, C2- Cap, C3- Base, C4- Upper triple clamp C5- Fork Tubes, C6-Lower Triple clamp, C7- Main Frame

Consolidated Part

End of Lecture 7-8