Álgebra Linear

Mestrado Integrado em Engenharia Informática

Número: ____

31 outubro 2018	Duração: 2 horas

Grupo I

Responda às questões deste grupo nos espaços indicados, sem apresentar os seus cálculos.

1. Considere as matrizes

$$A = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & b \\ 1 & 0 & 1 \\ 2 & a & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & c & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{e} \quad C = \begin{pmatrix} 1 & 4 & 1 & -1 \\ 0 & 2 & 0 & 3 \\ 1 & 0 & 1 & 0 \\ 2 & 4 & 2 & -1 \end{pmatrix}.$$

- a) Sabendo que C=AB, tem-se a= _______ e c= _______ e c= _______.
- **b)** A característica da matriz C é: _____
- c) Quando c=2, a matriz com a forma em escada reduzida equivalente por linhas a B é:
- d) O sistema homogéneo $A\mathbf{x} = \mathbf{0}$ é indeterminado se e só se a e b satisfizerem a condição _______
- 2. Indique, para cada alínea, se a afirmação é verdadeira ou falsa, apresentando uma pequena justificação.
 - a) Seja $A = (a_{ij})$ uma matriz quadrada de ordem n tal que $a_{ij} = i$, se $i \ge j$ e $a_{ij} = 0$, se i < j. Então, tem-se det A = n!.

A afirmação é ______, porque

- **b)** Sejam A e B duas matrizes quadradas de ordem 3 tais que det A=2 e det B=-1 e seja $M=-2(AB)^{-1}A^{\mathsf{T}}B$. Então, tem-se det M=-2. A afirmação é ______, porque
- c) Sejam A uma matriz de ordem $m \times n$ ($m \ge 5$) e B uma matriz de ordem $n \times p$. Se a primeira e quinta linhas de A são iguais, então também são iguais a primeira e quinta linhas de AB.

 A afirmação é ________, porque
- d) Se um sistema $A\mathbf{x} = \mathbf{b}$ com $A \in \mathbb{R}^{m \times n}$ é possível e determinado, então tem-se sempre car A = m. A afirmação é ______, porque

- 3. Considere um sistema de equações lineares cuja matriz ampliada é $\begin{pmatrix} 1 & \alpha & 1 & 1 \\ 0 & \alpha & 1 & 0 \\ 0 & 0 & \alpha^2 1 & \alpha 1 \end{pmatrix}$
 - a) O sistema tem uma única solução se e só se lpha ________, sendo essa solução
 - **b)** O sistema é impossível se e só se α ______.
 - c) O sistema tem uma infinidade de soluções se e só se α ______; duas dessas soluções são:
 - d) A matriz simples do sistema é invertível se e só se α ______

Grupo II

Responda às questões deste grupo numa folha de teste, apresentando os seus cálculos.

1. Considere a matriz

$$A = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & 2 & -2 & 0 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

- a) Calcule o valor do determinante de A.
- **b)** Sendo $\mathbf{b} = \begin{pmatrix} -\frac{1}{2} & 4 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}^\mathsf{T}$, justifique que o sistema $A\mathbf{x} = \mathbf{b}$ tem uma só solução e, sem resolver o sistema, diga, justificando, se essa solução é $\begin{pmatrix} -1 & 2 & -\frac{1}{2} & 1 \end{pmatrix}^\mathsf{T}$.
- c) Justifique que A^{T} é invertível e calcule a terceira linha de $(A^{\mathsf{T}})^{-1}$.
- 2. Calcule a expressão do seguinte determinante:

$$\begin{vmatrix} a+2 & a & a & a \\ b & b+2 & b & b \\ c & c & c+2 & c \\ d & d & d & d+2 \end{vmatrix}.$$

- 3. Relembre que uma matriz X quadrada de ordem n se diz idempotente se $X^2 = X$.
 - a) Mostre que, se $A \in \mathbb{R}^{n \times n}$ é uma matriz idempotente, então o mesmo sucede com a matriz $B = I_n A$.
 - **b)** Mostre que se $A \in \mathbb{R}^{n \times n}$ é tal que

$$A^{2}(I_{n}-A)=A(I_{n}-A)^{2}=\mathbf{O}_{n},$$

onde O_n designa a matriz nula de ordem n, então A é uma matriz idempotente.