Lecture Week 2

CLI, Git, & GitHub

- · basic commands in CLI
- what is Git
- · what is GitHub
- learn how to submit your excerise in GitHub classes.

2.1 What is a GUI and CLI?

- GUI: Graphical User Interface
- CLI: Command-Line Interface

GUI: Graphical User Interface	CLI: Command-Line Interface
Visual interface	Text-based interface
Suitable for beginners	Preferred by advanced users
Simple and intuitive	Requires command knowledge
	Precise control and flexibility

What advantages does it have to use the CLI?

- Speed:
 - The console allows for quick execution of commands
 - making it efficient for performing tasks rapidly.
- · Scripting and automation:
 - Console commands can be combined into scripts,
 - automating repetitive tasks and saving time.
- Remote management:
 - The console enables remote access and management of systems,
 - which can be particularly useful for servers or headless machines (without GUI).
- Reproducibility:
 - Console commands can be easily documented and shared,

• ensuring consistent results across different systems or users.

Disadvantages?

- Steeper learning curve
- Lack of visual representation
- Command memorization

Commands example

You can find the example video here (12:11min).

Description
List files and directories in the current directory
Change directory to the specified directory
Print the current working directory
Create a new directory
Copy files or directories
Move or rename files or directories
Remove files or directories (use -r for recursive deletion)
Display the contents of a file
Search for a pattern in a file
Display real-time system resource usage
Display the manual page for a command
View a list of previously executed commands
Interrupt or terminate the current command or process
Creates a new file

Terminal / Console

- Linux
 - Terminal / Terminator
- Windows
 - Bash Shell / Git Bash (Recommended)
- Mac
 - Terminal

2.2 Git

- Who already worked with Git?
- For what did you use it?

How does it look like?

- previously:
 - main.py, main_2.py, main_3_notworking.py, main_final.py,
 main_final_final.py

Small Overview

- previously:
 - main.py, main_2.py, main_3_notworking.py, main_final.py,
 main_final_final.py

• Git

- version control system for tracking software changes
- efficiently tracks code history and allows easy reverting to previous versions
- supports branching for independent feature development
- facilitates merging of code changes back into the main codebase
- provides command-line and GUI (e.g. git-scm.com, gitkraken.com, VS Studio)

Image: VS using Git Graph

Command	Description
git init	Initializes a new Git repository
git add .	Adds all changes the staging area
<pre>git commit -m "[message]"</pre>	Commits changes with a descriptive message
git checkout -b [branch	create new branch and switch to it
<pre>git checkout [branch]</pre>	Switches to a different branch
git branch	Lists branches in the repository
<pre>git merge [branch]</pre>	Merges [branch] into the current branch
git status	Displays the current repository status
git log	Shows the commit history

Hint: https://www.w3schools.com/git/

See example here (13:16min).

2.3 GitHub / GitLab

Why do you use GitHub / GitLab?

- share code with other people (open source)
 - get code from other people
- save your code on the cloud
 - access your data from different computers
- develeop your program with different developers

How to use it for yourself?

Command	Description
<pre>git clone [repository]</pre>	Creates a local copy of a remote repository
git pull	Fetches and merges changes from a remote repository
git push	Pushes local commits to a remote repository

Server

GitHub

Server

How to use it with other developers?

Remark

- you will hand in your excersie via GitHub
- important: set up everything so you can use it
 - install Git
 - set up SSH Key (4:26min)
 - register for the GitHub class and clone your repository on your computer (example (5:10min))

 see your points on the automated grading system (under Actions, see example (0:49min))

1.4 Examples Summary

- Console / Terminal (12:11min)
- Git (13:16min)
- set up SSH Key (4:26min)
- GitHub Classes (5:10min)
- Automated Grading System (0:49min)