

Deep Painting

an amalgamation of Cell Painting and Machine Learning

Aishvarya Tandon, PhD student CzodrowskiLab | Waldmann Group

- aishvarya.tandon@tu-dortmund.de
- aishvarya.tandon@mpi-dortmund.mpg.de

RDKit UGM 2020 6th to 8th October 2020

A quick introduction to Cell Painting Assay

- Developed by the Carpenter group from Broad Institute (Bray et. al 2016)
- This assay involves staining of different cellular components by different dyes with distinct excitation-emission range
- Result: an unbiased, multiparametric, high-throughput and high-resolution image-based cell assay where changes in cells' morphology caused by different treatments are quantitatively recorded

Good to read: Bray, M., Singh, S., Han, H. *et al.* Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. *Nat Protoc* **11**, 1757–1774 (2016).

The MPI Cell Painting Dataset

CellProfiler extracts numerical features from microscope images, MPI pipeline calculates morphological features per test compound.

The MPI Cell Painting Dataset: About

- 25,000 measurements of 14,000 compounds
- 4000 reference compounds, 10,000 internal research compounds

Compound_Id	Container_Id	Well_ld	Producer	Conc_uM	ls_Ref	Activity	Toxic	Pure_Flag	Rel_Cell_Count	 $Median_Nuclei_Texture_SumVariance_Ph_golgi_10_00$	Median_Nuclei_Texture_SumVariance_Ph_golgi_3_00
394146	394146:01:08	394146:01:08_10.00	PAHL	10.0	False	38.3	False	Ok	87	 -0.423	-0.636
393986	393986:01:09	393986:01:09_10.00	PAHL	10.0	False	13.6	False	Ok	97	 0.556	0.312
406439	406439:01:03	406439:01:03_10.00	PAHL	10.0	False	12.1	False	Ok	107	 1.123	0.761
406430	406430:01:04	406430:01:04_10.00	PAHL	10.0	False	7.9	False	Ok	104	 2.020	1.071
406435	406435:01:03	406435:01:03_10.00	PAHL	10.0	False	6.4	False	Ok	103	 0.621	-0.216
393982	393982:01:10	393982:01:10_10.00	PAHL	10.0	False	6.2	False	Ok	96	 1.107	0.628
406437	406437:01:04	406437:01:04_10.00	PAHL	10.0	False	5.0	False	Ok	110	 -1.030	-0.897

Metadata (data about data)

579 most relevant Cell Painting features

The MPI Cell Painting Dataset: CP Profile

Heatmaps are the most convenient way to visualize the entire

Cell Painting (CP) profile of a compound

Ongoing Project: Deep Painting

 Develop machine learning models which can help predicting the CP profile of a compound

(Few) Applications of the Cell Painting assay

- Performing various types of clustering
- Exploring compounds with similar CP profiles
- Bioactivity prediction
- Exploration of chemical space using CP profiles

for deep learning enthusiasts
;)

Models

Outlook

Prediction of Cell Painting profiles is challenging:

- Biochemical assay
- Most of the compounds have low-induction value

Acknowledgements

My supervisors:

Prof. Dr. Paul Czodrowski and Prof. Dr. Herbert Waldmann

My mentors:

Dr. Axel Pahl
Dr. Jose-Manuel Gally

My colleagues at:

CzodrowskiLab

Max-Planck Institute of Molecular Physiology

COMAS

Special thanks to:

Dr. Michael Beck

