Домашнее задание от 26.10. Теоретическая информатика. 2 курс. Решения.

Глеб Минаев @ 204 (20.Б04-мкн)

28 октября 2021 г.

Содержание		Следствие 2.1	2
- · · · -		Лемма 3	
Задача 2	1	Задача 4	2
Лемма 1	1	Задача 5	3
Лемма 2			

Задача 2. Пусть даны грамматика $G = (\Sigma, N, R, S)$ и ДКА $A = (\Sigma, Q, q_0, \delta, F)$. Давайте рассмотрим следующий алгоритм.

Будем всё время хранить некоторое семейство $\Omega = \{T_{q,A}\}_{\substack{q \in Q \\ A \in N}}$ подмножеств Q (т.е. $T_{q,A} \subseteq Q$). Мы хотим сделать так, чтобы

$$T_{q,A} = \{ p \in Q \mid \exists w \in L_G(A) : \delta^*(q, w) = p \}.$$

Для этого рассмотрим Ω_0 , где

$$T^0_{q,A}:=\{\delta^*(q,w)\mid w\in \Sigma^*\wedge (A\to w)\in R\}.$$

Далее по каждому Ω_n будем строить Ω_{n+1} по правилу

$$T_{q,A}^{n+1} := \left\{ p \middle| \begin{array}{l} \exists u_0, \dots, u_m \in \Sigma^* : \\ \exists B_1, \dots, B_m \in N : \\ \exists q_0, p_0, \dots, q_m, p_m \in Q : \\ (A \to u_0 B_1 \dots B_m u_m) \in R \\ \land \forall i \ \delta^*(q_i, u_i) = p_i \\ \land \forall i \ q_{i+1} \in T_{p_i, B_{i+1}}^n \\ \land q_0 = q \land p_m = p \end{array} \right\}.$$

Лемма 1. $T_{q,A}^n \subseteq T_{q,A}^{n+1}$.

Доказательство. Докажем по индукции по n.

Если n=0, то для всякого $p\in T^n_{q,A}$ есть $w\in \Sigma^*$, что $(A\to w)\in R$ и $\delta^*(q,w)=p$. Следовательно, $(A\to u_0)\in R$, где $u_0=w,\, m=0,\, q_0=q,\, p_0=p,\, \delta^*(q_0,u_0)=p_0$. Таким образом $p\in T^{n+1}_{q,A}$. Следовательно, $T^n_{q,A}\subseteq T^{n+1}_{q,A}$. Если n>0, то для всякого $p\in T^n_{q,A}$ есть $(A\to u_0B_1\dots B_mu_m)\in R$, где $u_0,\dots,u_m\in \Sigma^*$, $B_1,\dots,B_m\in N$, и $q_0,p_0,\dots,q_m,p_m\in Q$, что для вского i верно $\delta^*(q_i,u_i)=p_i$ и $q_{i+1}\in T^{n-1}_{p_i,B_{i+1}}$, а теримо $g_i=g_i$, $g_i=g_i$

также $q_0=q,\ p_m=p.$ Так как $T^{n-1}_{p_i,B_{i+1}}\subseteq T^n_{p_i,B_{i+1}}$ по предположению индукции, то $q_{i+1}\in T^n_{p_i,B_{i+1}},$ а значит $p\in T^{n+1}_{q,A}.$ Следовательно, $T^n_{q,A}\subseteq T^{n+1}_{q,A}.$

Лемма 2. Если $\Omega_n = \Omega_{n+1}$, то $\Omega_m = \Omega_{m+1}$ для всякого $m \geqslant n$.

Доказательство. Докажем утверждение по индукции по m.

Если m=n, то утверждение вырождается в условие. Тогда m>n. Тогда по предположению индукции $T^m_{p,B}=T^{m-1}_{p,B}$ для всех $p\in Q$ и $B\in N$. Тогда для всякого $p\in T^{m+1}_{q,A}$ есть $(A\to u_0B_1\dots B_ku_k)\in R$, где $u_0,\dots,u_k\in \Sigma^*,\,B_1,\dots,B_k\in N,$ и $q_0,p_0,\dots,q_k,p_k\in Q,$ что для вского i верно $\delta^*(q_i,u_i)=p_i$ и $q_{i+1}\in T^m_{p_i,B_{i+1}},$ а также $q_0=q,\,p_k=p$. Но тогда $q_{i+1}\in T^{m-1}_{p_i,B_{i+1}}.$ Следовательно, $p\in T^m_{q,A}$. Т.е. $T^{m+1}_{q,A}\subseteq T^m_{q,A}$ для всех $q\in Q$ и $A\in N$.

Следствие 2.1. Если $\Omega_n = \Omega_{n+1}$, то $\Omega_m = \Omega_n$ для всех $m \geqslant n$.

Лемма 3. $T_{q,A} = \bigcup_{n=0}^{\infty} T_{q,A}^n$.

Доказательство. Сначала покажем по индукции по n, что $T_{q,A}^n \subseteq T_{q,A}$.

Если n=0, то утверждение очевидно. Если n>0, то для всякого $p\in T^n_{q,A}$ есть $(A\to u_0B_1\dots B_mu_m)\in R$, где $u_0,\dots,u_m\in \Sigma^*,\, B_1,\dots,B_m\in N,$ и $q_0,p_0,\dots,q_m,p_m\in Q,$ что для вского i верно $\delta^*(q_i,u_i)=p_i$ и $q_{i+1}\in T^{n-1}_{p_i,B_{i+1}},$ а также $q_0=q,\, p_m=p.$ При этом $q_{i+1}\in T^{n-1}_{p_i,B_{i+1}}\subseteq T_{p_i,B_{i+1}}.$ Значит есть $v_i\in L_G(B_{i+1}),$ что $\delta^*(p_i,v_i)=q_{i+1}.$ Следовательно,

$$p_m = \delta^*(q_0, u_0 v_1 \dots v_m u_m).$$

При этом $u_0v_1...v_mu_m \in L_G(A)$. Таким образом $p \in T_{q,A}$. Следовательно, $T_{q,A}^n \subseteq T_{q,A}$. Следовательно, $\bigcup_{n=0}^{\infty} T_{q,A}^n \subseteq T_{q,A}$.

Теперь покажем по индукции по размеру дерева разбора $w \in L_G(A)$, что $\delta(q,w) \in \bigcup_{n=0}^{\infty} T_{q,A}^n$. Рассмотрим первую подстановку у $w : A \to u_0 B_1 \dots B_m u_m$. Следовательно, $w = u_0 v_1 \dots v_m u_m$, где $v_i \in L_G(B_i)$. Определим $q_i := \delta^*(q, u_0 v_1 \dots v_i)$, $p_i := \delta^*(q, u_0 v_1 \dots v_i u_i)$. Тогда $p_i = \delta^*(q_i, u_i)$, $q_{i+1} = \delta^*(p_i, v_{i+1})$. Так как деревья разборов всех v_i меньше изначального, то по предположению индукции $q_{i+1} \in \bigcup_{n=0}^{\infty} T_{p_i, B_{i+1}}^n$, а значит $q_{i+1} \in T_{p_i, B_{i+1}}^{n_i}$ для некоторого n_i . Пусть $N := \max_i n_i$. Тогда $q_{i+1} \in T_{p_i, B_{i+1}}^N$. Следовательно $\delta^*(q, w) \in T_{q, A}^{N+1}$. А тогда $\delta^*(q, w) \in \bigcup_{n=0}^{\infty} T_{q, A}^n$. Следовательно, $T_{q, A} \subseteq \bigcup_{n=0}^{\infty} T_{q, A}^n$.

Заметим, что Ω_0 строится алгоритмически, а Ω_{n+1} строится по Ω_n алгоритмически. Заметим, что последовательность $(\Omega_n)_{n=0}^{\infty}$ стабилизируется, так как при переходе от Ω_n к Ω_{n+1} каждое $T_{q,A}^n$ сохраняет все старые элементы и, возможно, подбирает новые, значит бесконечно "расти" данная последовательность не может. Поэтому чтобы построить Ω достаточно начать строить последовательность $(\Omega_n)_{n=0}^{\infty}$ и строить, пока последние два члена не совпадут. Тогда получится последовательность $(\Omega_n)_{n=0}^k$, что с Ω_{k-1} бесконечная последовательность стабилизируется. Тогда понятно, что

$$T_{q,A} = \bigcup_{n=0}^{k-1} T_{q,A}^n.$$

Таким образом можно алгоритмически построить Ω .

Как только мы построили Ω , вся задача заключается в проверке того, что $T_{q_0,S}\subseteq F$. Эта задача, очевидно, алгоритмически разрешима, а значит и вся задача алгоритмически разрешима.

Задача 4.

(a) Предъявим алгоритм, который распознаёт свойство $L(G_1) \neq L(G_2)$.

Действительно, давайте просто будем перебирать все слова подряд (это, понятно, алгоритмически разрешимо) и для каждого слова запустим алгоритм алгоритм Кокка—Касами—Янгера сначала на G_1 , а потом на G_2 . Если на каком-то слове ответы алгоритма Кокка—Касами—Янгера не совпали, то скажем "да". Иначе будем идти дальше.

Если $L(G_1) \neq L(G_2)$, то есть слово $w \in L(G_1) \triangle L(G_2)$. Тогда алгоритм рано или поздно дойдёт до него, получит разные ответы алгоритма Кокка—Касами—Янгера на нём и каждой из грамматик G_1 и G_2 и скажет "да". Если же $L(G_1) = L(G_2)$, то для всех слов ответы будут совпадать, а значит алгоритм просто не закончит свою работу.

Следовательно, свойство $L(G_1) \neq L(G_2)$ распознаётся. Следовательно, свойство $L(G_1) = L(G_2)$ не распознаётся, так как иначе бы $L(G_1) = L(G_2)$ было бы разрешимым. Но мы доказали на лекции обратное.

(b) Предъявим алгоритм, который распознаёт свойство $L(G_1) \cap L(G_2) \neq \emptyset$.

Действительно, давайте просто будем перебирать все слова подряд (это, понятно, алгоритмически разрешимо) и для каждого слова запустим алгоритм алгоритм Кокка—Касами—Янгера сначала на G_1 , а потом на G_2 . Если на каком-то слове ответы алгоритма Кокка—Касами—Янгера оба будут "да то скажем "да". Иначе будем идти дальше.

Если $L(G_1) \cap L(G_2) \neq \emptyset$, то есть слово $w \in L(G_1) \cap L(G_2)$. Тогда алгоритм рано или поздно дойдёт до него, получит оба ответа "да"и скажет "да". Если же $L(G_1) \cap L(G_2) = \emptyset$, то алгоритм не будет находить такого слова и не закончит свою работу.

(c) Предъявим алгоритм, который распознаёт свойство неоднозначности G_1 .

Действительно, давайте просто будем перебирать все слова подряд (это, понятно, алгоритмически разрешимо) и для каждого слова запустим алгоритм алгоритм Кокка—Касами—Янгера на G_1 . Далее по полученной таблице каждого слова будем восстанавливать все возможные деревья. Если на каком-то слове получилось два различных дерева разбора, то скажем "да". Иначе будем идти дальше.

Если G_1 неоднозначно, то есть слово w, которое неоднозначно задаётся грамматикой G_1 . Тогда алгоритм рано или поздно дойдёт до него, получит два разных дерева по модификации алгоритма Кокка—Касами—Янгера на нём и грамматике G_1 и скажет "да". Если же G_1 однозначна, то для всех слов двух деревьев не найдётся, а значит алгоритм просто не закончит свою работу.

Следовательно, свойство неоднозначности G_1 распознаётся. Следовательно, свойство однозначности G_1 не распознаётся, так как иначе бы однозначаность G_1 была бы разрешима. Но мы доказали на лекции обратное.

Задача 5. Пусть дана грамматика $G = (\Sigma, N, R, S)$. Рассмотрим грамматику $G' = (\Sigma, N', R', S')$, гле

- $N':=N\cup\{S_A\}_{A\in N}\cup\{S'\}$, где S_A копия S для каждого $A\in N,$
- R' состоит из правил
 - все правила из R,
 - $-S_A \to qS_B p$ для всякого $(B \to pAq) \in R$ и всяких $A, B \in N$,
 - $-S' \rightarrow qS_Ap$ для всякого $(A \rightarrow pq) \in R$ и всякого $A \in N$,

$$-S_S \to \varepsilon$$
.

Покажем по индукции по размеру дерева w, что если $w \in L_{G'}(S_A)$, то есть некоторое разбиение w = vu, что uAv порождается S в G.

Рассмотрим первую подстановку. Если это подстановка $S_S \to \varepsilon$, то действительно, S порождается символом S в G. Тогда это $S_A \to qS_B p$, где $(B \to pAq) \in R$. Далее по дереву p реализует некоторое слово u, а q-v. Причём поддерево S_B имеет меньший размер, чем размер дерева S_A , значит по предположению индукции S_B реализует какое-то слово v'u', что u'Bv' реализуется символом S в G. Тогда w=vv'u'u, а применяя правило $B \to pAq$, получаем что S в G также реализует u'pAqv'. Прикрепляя к p и q поддеревья, порождающие u и v, получаем, что S в G порождает ещё и u'uAvv'. Следовательно, w=(vv')(u'u) — искомое разбиение, а (u'u)A(vv') действительно порождается.

Теперь покажем по индукции по размеру дерева uAv, что для всякого выражения uAv $(u, v \in \Sigma^*)$, порождаемого из S в G, $vu \in L_{G'}(S_A)$.

Если uAv = S, то, действительно, $\varepsilon \in L_{G'}(S_S)$, так как есть правило $S_S \to \varepsilon$. Иначе дерево uAv нетривиально (состоит из > 1 вершин, а значит имеет хотя бы второй уровень). Тогда рассмотрим подстановку, которой получается A в uAv: $(B \to pAq) \in R$. Тогда p порождает некоторое слово u, q - v, а строка uAv разбивается как u'uAvv'. Тогда S в G порождает u'Bv'. Следовательно, $v'u' \in L_{G'}(S_B)$. Также в G' из S_A можно получить qS_Bp . Следовательно, qv'u'p получается из S_A . Вставляя поддеревья для p и q, получаем, что $vv'u'u \in L_{G'}(S_A)$.

Теперь заметим, что если $w \in L_{G'}(S')$, то w — циклический сдвиг слова из $L_G(S)$. Действительно, первая подстановка — $S' \to qS_Ap$, где $(A \to pq) \in R$. Значит p порождает какое-то слово u, а q = v, т.е. uv порождается A в G. При этом S_A порождает какое-то слово v'u', где u'Av' порождается S в G. Значит $u'uvv' \in L(S)$. При этом w = vv'u'u.

А если $uv \in L_G(S)$, то $vu \in L_{G'}(S')$. Действительно, рассммотрим первый (нижний) нетерминал в дереве uv, который разрывается границей между u и v, — A. Тогда A порождает слева от границы u', а справа v' и тогда u = u''u', v = v'v''. Причём пусть на место данной A была подставлена строка pq, где p реализует u', а q - v'. Тогда S' реализует qS_Ap , а значит и v'v''u''u' = vu, так как S_A раелизует v''u'' (так как S в G реализует u''Av'').

Следовательно, $L(G') = L_{G'}(S')$ — циклический сдвиг $L_G(S) = L(G)$.