WHAT IS CLAIMED:

- 1. A method for treatment of Syndrome X or type II diabetes in a mammal, the method comprising administering to a mammal in need thereof:
 - a) a pharmaceutically effective amount of a biguanide agent; and
- b) a pharmaceutically effective amount of a PTPase inhibiting compound of formula I:

$$Z^{1}$$

$$Z^{2}$$

$$(I)$$

wherein

10 Ar is

15

5

A is hydrogen, halogen, or OH;

B and D are each, independently, hydrogen, halogen, CN, alkyl of 1-6 carbon atoms, aryl, aralkyl of 6-12 carbon atoms, hydroxyalkyl of 1-6 carbon atoms, hydroxyaralkyl of 6-12 carbon atoms, cycloalkyl of 3-8 carbon atoms, nitro, amino, -NR¹R^{1a}, -NR¹COR^{1a}, -NR¹CO₂R^{1a}, cycloalkylamino of 3-8 carbon atoms, morpholino, furan-2-yl, furan-3-yl, thiophen-2-yl, thiophen-3-yl, -COR^{1b} or OR:

R is hydrogen, alkyl of 1-6 carbon atoms, $-COR^1$, $-(CH_2)_nCO_2R^1$, $-CH(R^{1a})CO_2R^1$, $-SO_2R^1$, $-(CH_2)_mCH(OH)CO_2R^1$, $-(CH_2)_mCOCO_2R^1$, $-(CH_2)_mCH=CHCO_2R^1$, or $-(CH_2)_mO(CH_2)_oCO_2R^1$;

 R^1 is hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 6-12 carbon atoms, aryl, or $CH_2CO_2R^{1'}$;

R1' is hydrogen or alkyl of 1-6 carbon atoms

10

25

E is S, SO, SO₂, O, or NR^{1c};

X is hydrogen, halogen, alkyl of 1-6 carbon atoms, alkenyl of 2-7 carbon atoms, CN, aryl, aralkyl of 6-12 carbon atoms, hydroxyalkyl of 1-6 carbon atoms, hydroxyaralkyl of 6-12 carbon atoms, perfluoroalkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, aryloxy; arylalkoxy, nitro, amino, NR²R²a, NR²COR²a, cycloalkylamino of 3-8 carbon atoms, morpholino, alkylsulfanyl of 1-6 carbon atoms, arylsulfanyl, pyridylsulfanyl, 2-N,N-dimethylaminoethylsulfanyl, -OCH₂CO₂R²b or -COR²c;

Y is hydrogen, halogen, alkyl of 1-6 carbon atoms, aryl, aralkyl of 6-12 carbon atoms, hydroxyalkyl of 1-6 carbon atoms, hydroxyaralkyl of 6-12 carbon atoms, -OR³, SR³, NR³R^{3a}, -COR^{3b}, morpholine or piperidine;

R^{1a}, R^{1c}, R², R^{2a} R³, R^{3a} are each, independently, hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 6-12 carbon atoms, or aryl;

R^{1b} is alkyl of 1-6 carbon atoms or aryl;

15 R^{2b} is hydrogen, alkyl of 1-6 carbon atoms;

 ${\sf R}^{\sf 2c}$ and ${\sf R}^{\sf 3b}$ are each, independently, alkyl of 1-6 carbon atoms, aryl, or aralkyl of 6-12 carbon atoms;

C is hydrogen, halogen or OR⁴;

R⁵ is hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 6-12 carbon atoms, aryl, -CH₂(1H-imidazol-4-yl), -CH₂(3-1H-indolyl), -CH₂CH₂(1,3-dioxo-1,3-dihydro-isoindol-2-yl), -CH₂CH₂(1-oxo-1,3-dihydro-isoindol-2-yl), -CH₂(3-pyridyl), -CH₂CO₂H, or -(CH₂)_nG;

G is
$$NR^{6a}R^{7a}$$
, $NR^{6a}COR^{7a}$, HN $(CH_2)_{\mathbf{n}}$, HN $(CH_2)_{\mathbf{n}}$, or $(CH_2)_{\mathbf{n}}$

10

W is CO_2R^6 , $CONH_2$, CONHOH, CN, $CONH(CH_2)_2CN$, 5-tetrazole, $-PO_3(R^6)_2$, $-CH_2OH$, $-CONR^{6b}CHR^{7b}$, $-CH_2NR^{6b}CHR^{7b}CO_2R^6$, $-CH_2OCHR^{7b}CO_2R^6$ $-CH_2Br$, or $-CONR^{6b}CHR^{7b}CO_2R^6$;

R⁶, R⁷, R^{7a} are each, independently, is hydrogen, alkyl of 1-6 carbon atoms, or aryl;

R^{6b} is hydrogen or -COR^{6c};

R^{6c} is alkyl of 1-6 carbon atoms or aryl;

 R^{7b} is hydrogen, alkyl of 1-6 carbon atoms, or hydroxyalkyl of 1-6 carbon atoms;

Z¹ and Z² are each, independently, hydrogen, halogen, CN, alkyl of 1-6 carbon atoms, aryl, aralkyl of 6-12 carbon atoms, cycloalkyl of 3-8 carbon atoms, nitro, amino, -NR¹R^{1a}, -NR¹COR^{1a}, cycloalkylamino of 3-8 carbon atoms, morpholino, or OR⁸, or Z¹ and Z² may be taken together as a diene unit having the formula -CH=CR⁹-CR¹⁰=CR¹¹-;

 R^8 is hydrogen, alkyl of 1-6 carbon atoms, or aryl;

15 R⁹, R¹⁰, and R¹¹ are each, independently, hydrogen, alkyl of 1-6 carbon atoms, aryl, halogen, hydroxy, or alkoxy of 1-6 carbon atoms

m is 1 to 4

n is 1 or 2;

p is 1 to 4;

20 q is 1 to 4;

or a pharmaceutically acceptable salt thereof; and

- c) optionally, a pharmaceutically effective amount of a sulfonylurea agent, or a pharmaceutically acceptable salt form thereof.
- 25 2. The method of Claim 1 wherein the PTPase inhibiting compound is as defined in Claim 1, wherein:

A is hydrogen or halogen

- B and D are each, independently, hydrogen, halogen, CN, alkyl of 1-6 carbon atoms, aryl, aralkyl of 6-12 carbon atoms, branched alkyl, cycloalkyl of 3-8 carbon atoms, nitro or OR;
- 5 R is hydrogen or alkyl of 1-6 carbon atoms;

E is S, or O;

10

25

30

- X is hydrogen, halogen, alkyl of 1-6 carbon atoms, CN, perfluoroalkyl of 1-6 carbon atoms, alkoxy of 1-6 carbon atoms, aryloxy; arylalkoxy, nitro, amino, NR²R^{2a}, NR²COR^{2a}, cycloalkylamino, morpholino, alkylsulfanyl of 1-6 carbon atoms, arylsulfanyl, pyridylsulfanyl, or 2-N,N-dimethylaminoethylsulfanyl;
- R¹, R^{1a}, R², R^{2a}, R³, and R^{3a} are each, independently, hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 6-12 carbon atoms, or aryl;

Y is hydrogen, halogen, OR³, SR³, NR³R^{3a}, or morpholine;

15 C is hydrogen, halogen, or OR4;

- 20 R⁵ is hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 6-12 carbon atoms, aryl, -CH₂(1H-imidazol-4-yl), -CH₂(3-1H-indolyl), -CH₂CH₂(1,3-dioxo-1,3-dihydro-isoindol-2-yl), or -CH₂CH₂(1-oxo-1,3-dihydro-isoindol-2-yl), or -CH₂(3-pyridyl);
 - W is CO₂R⁶, -CONH₂, -CONHOH, 5-tetrazole, or -CONR^{6b}CHR^{7b}CO₂R⁶;
 - R⁶, R^{6a}, R^{6b}, R⁷, R^{7a} , and R^{7b}are each, independently, hydrogen, alkyl of 1-6 carbon atoms, or aryl;
 - Z¹ and Z² are each, independently, hydrogen, halogen, CN, alkyl of 1-6 carbon atoms, aryl, aralkyl of 6-12 carbon atoms, cycloalkyl of 3-8 carbon atoms, nitro, amino, -NR¹R^{1a}, -NR¹COR^{1a}, cycloalkylamino of 3-8 carbon atoms, morpholino, or OR⁸, or Z¹ and Z² may be taken together as a diene unit having the formula -CH=CR⁹-CR¹⁰=CH-;

R⁹ and R¹⁰ are each, independently, hydrogen, or alkyl of 1-6 carbon atoms;

p is 1 to 4;

q is 1 to 4;

or a pharmaceutically acceptable salt thereof.

5

10

3. The method of Claim 2 wherein the PTPase inhibiting compound is defined in Claim 2, wherein

A is hydrogen;

B and D are each, independently, halogen, alkyl of 1-6 carbon atoms, aryl, aralkyl of 6-12 carbon atoms, or cycloalkyl of 3-8 carbon atoms;

E is S or O;

X is hydrogen, halogen, alkyl of 1-6 carbon atoms, perfluoroalkyl of 1-6 carbon atoms, CN, alkoxy of 1-6 carbon atoms, aryloxy, arylalkoxy of 6-12 carbon atoms, arylsulfanyl;

15 Y is hydrogen, -NR¹R², or morpholine;

R¹ and R² are each, independently, hydrogen or alkyl of 1-6 carbon atoms, aralkyl of 6-12 carbon atoms, or aryl;

C is OR4;

R⁴ is hydrogen, alkyl of 1-6 carbon atoms, -CH(R⁵)W, or 5-thiazolidine-2,4-dione;

20 R⁵ is hydrogen, alkyl of 1-6 carbon atoms, aralkyl of 6-12 carbon atoms, aryl, -CH₂(3-1H-indolyl), -CH₂CH₂(1,3-dioxo-1,3-dihydro-isoindol-2-yl), or -CH₂CH₂(1-oxo-1,3-dihydro-isoindol-2-yl);

W is $-CO_2R^6$, $-CONH_2$, -CONHOH, 5-tetrazole, $-PO_3(R^6)_2$, or $-CONR^6CHR^6CO_2R^6$;

25 R⁶ is hydrogen or alkyl of 1-6 carbon atoms;

 Z^1 and Z^2 are taken together as a diene unit having the formula -CH=CH-H=CH-; or a pharmaceutically acceptable salt thereof.

4. The method of Claim 1 wherein the PTPase inhibiting compound is (2R)-2-[4-30 (9-Bromo-2,3-dimethyl-naptho[2,3-b]thiophen-4-yl)-2,6-dimethyl-phenoxy]-3-phenyl-propionic acid, or a pharmaceutically acceptable salt form thereof.

- 5. The method of Claim 1 wherein the PTPase inhibiting compound is selected from the group of:
- (R)-2-[2,6-dibromo-4-(9-bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]-3-phenyl-propionic acid;
- (R)-2-[2-bromo-4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-6-ethyl-phenoxy]-3-phenyl-propionic acid;
- (R)-2-[4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2, 6-dimethyl-phenoxy]-3-phenyl-propionic acid;
- 10 (R)-2-[4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2-fluoro-phenoxy]-3-phenyl-propionic acid;
 - [4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2, 6-diisopropyl-phenoxy]-acetic acid; or a pharmaceutically acceptable salt form thereof.

25

- 6. The method of Claim 1 wherein the PTPase inhibiting compound is selected from the group of:
- (R)-2-[2-bromo-4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-6-sec-butyl-phenoxy]-3-phenyl-propionic acid;
- 20 (R)-2-[2-bromo-4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-6-isopropyl-phenoxy]-3-phenyl-propionic acid;
 - (R)-2-[2-bromo-4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2-cyclopentyl-phenoxy]-3-phenyl-propionic acid;
 - (R)-2-[4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-6-isopropyl-phenoxy]-3-phenyl-propionic acid;
 - (R)-2-[4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2-cyclopentyl-phenoxy]-3-phenyl-propionic acid; or a pharmaceutically acceptable salt thereof.
- 7. The method of Claim 1 wherein the PTPase inhibiting compound is selected 30 from the group of:
 - (R)-2-[2,6-dibromo-4-(2,3-dimethyl-9-phenylsulfanyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]-3-phenyl-propionic acid;

- (R)-2-[2,6-dibromo-4-(9-bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]-4-phenyl-butyric acid;
- (S)-2-[2,6-dibromo-4-(9-bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]-4-phenyl-butyric acid;
- 5 2-[2,6-dibromo-4-(9-bromo-3-methyl-2-morpholin-4-ylmethyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]-3-phenyl-propionic acid;
 - (R)-2-[2,6-dibromo-4-(2,3-dimethyl-9-phenylsulfanyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]-propionic acid; or a pharmaceutically acceptable salt thereof.
- 10 8. The method of Claim 1 wherein the PTPase inhibiting compound is selected from the group of:

[2-bromo-4-(9-bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2-nitro-phenoxy]-3-phenyl-propionic acid;

- 2, 6-dibromo-4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-phenol; 2-bromo-4-(9-bromo-2, 3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-6-nitrophenol;
 - (R)-2-[2,6-dibromo-4-(9-bromo-2-diethylaminomethyl-3-methyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]-3-phenyl-propionic acid;
- (R)-2-[2,6-dibromo-4-(2,3-dimethyl-naphtho[2,3-b]furan-4-yl)-phenoxy]-3-20 phenyl-propionic acid; or a pharmaceutically acceptable salt thereof.
 - 9. The method of Claim 1 wherein the PTPase inhibiting compound is selected from the group of:
- (2R)-2-[4-9-bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2,6-diisopropyl-25 phenoxy]-3-phenyl-propionic acid,
 - (R)-2-[4-(9-bromo-2-,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2,6-diethyl-phenoxy]-3-phenyl-propionic acid;
 - {(2R)-2-[4-(9-bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2,6-dimethyl-phenoxy]-3-phenyl-propionylamino}-acetic acid;
- 30 {(2R)-2-[4-(9-bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2,6-diethyl-phenoxy]-3-phenyl-propionylamino}-acetic acid;
 - (2R)-2-[4-(9-Bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]-3-phenyl-propionic acid; or a pharmaceutically acceptable salt thereof.

- 10. The method of Claim 1 wherein the PTPase inhibiting compound is selected from the group of:
- (2S)-2-[4-(9-Bromo-2-,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2,6-dimethyl-phenoxy]-3-phenyl-propionic acid;
- {(2R)-2-[4-(2,3-Dimethyl-naphtho[2,3-b]thiophen-4-yl)-2,6-diethyl-phenoxy]-3-phenyl-propionylamino}-acetic acid;
- (R)-2-[4-(9-Bromo-2-,3-dimethyl-naphtho[2,3-b]furan-4-yl)-2,6-diethyl-phenoxy]-3-phenyl-propionic acid;
- 10 (R)-2-[2-Cyclopentyl-4-(2-,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]-propionic acid;
 - (R)-2-[4-(9-Bromo-2-,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2-cyclopentyl-phenoxy]-propionic acid; or a pharmaceutically acceptable salt thereof.
- 15 11. The method of Claim 1 wherein the PTPase inhibiting compound is selected from the group of:
 - (R)-2-[4-(2-,3-Dimethyl-naphtho[2,3-b]thiophen-4-yl)-2-ethyl-phenoxy]-3-phenyl-propionic acid;
 - 2-Bromo-4-(2-,3-dimethyl-naphtho[2,3-b]furan-4-yl)-6-ethyl-phenol;
- 20 (R)-2-[2-Bromo-4-(2-,3-dimethyl-naphtho[2,3-b]furan-4-yl)-6-ethyl-phenoxy]-3-phenyl-propionic acid;
 - (R)-2-[4-(9-Bromo-2-,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2-propyl-phenoxy]-3-phenyl-propionic acid;
- (2R)-2-[4-(9-Bromo-2-diethylaminomethyl-3-methyl-naphtho[2,3-b]thiophen-4-25 yl)-2,6-diisopropyl-phenoxy]-3-phenyl-propionic acid;
 - or a pharmaceutically acceptable salt thereof.
 - 12. The method of Claim 1 wherein the biguanide agent is metformin, or a pharmaceutically acceptable salt thereof.
 - 13. The method of Claim 1 wherein the optional sulfonylurea agent is selected from group of glyburide, glyburide, glipizide, glimepiride, chlorpropamide, tolbutamide, or tolazamide, or a pharmaceutically acceptable salt form thereof.

- 14. A method of treating metabolic disorders mediated by insulin resistance or hyperglycemia in a mammal, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a pharmaceutically effective amount of a PTPase inhibiting compound, as described in Claim 1, a pharmaceutically effective amount of a biguanide agent and, optionally, a sulfonylurea agent and or a pharmaceutically acceptable salt thereof.
- 15. The method of Claim 14 wherein the biguanide agent is metformin, or a pharmaceutically acceptable salt thereof.
 - 16. The method of Claim 14 wherein the optional sulfonylurea agent is selected from group of glyburide, glyburide, glipizide, glimepiride, chlorpropamide, tolbutamide, or tolazamide, or a pharmaceutically acceptable salt form thereof.

20

25

- 17. The method of Claim 14 wherein the PTPase inhibiting compound is (2R)-2-[4-(9-Bromo-2,3-dimethyl-naptho[2,3-b]thiophen-4-yl)-2,6-dimethyl-phenoxy]-3-phenyl-propionic acid, or (R)-2-[2,6-Dibromo-4-(9-bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]3-phenyl-propionic acid, or (R)-2-[4-(9-Bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2,6-diethyl-phenoxy]-3-phenyl-propionic acid, or a pharmaceutically acceptable salt form thereof.
- 18. A method of modulating blood glucose levels in a mammal, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a pharmaceutically effective amount of a PTPase inhibiting compound, as described in Claim 1, a pharmaceutically effective amount of a biguanide agent and, optionally, a sulfonylurea agent and or a pharmaceutically acceptable salt thereof.
- 19. The method of Claim 18 wherein the biguanide agent is metformin, or a 30 pharmaceutically acceptable salt thereof.

- 20. The method of Claim 18 wherein the optional sulfonylurea agent is selected from group of glyburide, glyburide, glipizide, glimepiride, chlorpropamide, tolbutamide, or tolazamide, or a pharmaceutically acceptable salt form thereof.
- 5 21. The method of Claim 18 wherein the PTPase inhibiting compound is (2R)-2-[4-(9-Bromo-2,3-dimethyl-naptho[2,3-b]thiophen-4-yl)-2,6-dimethyl-phenoxy]-3-phenyl-propionic acid, or (R)-2-[2,6-Dibromo-4-(9-bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]3-phenyl-propionic acid, or (R)-2-[4-(9-Bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2,6-diethyl-phenoxy]-3-phenyl-propionic acid, or a pharmaceutically acceptable salt form thereof.
 - 22. A pharmaceutical composition comprising a pharmaceutically acceptable carrier or excipient and:
 - a) a pharmaceutically effective amount of metformin, or a pharmaceutically acceptable salt thereof; and
 - b) a pharmaceutically effective amount of a PTPase inhibiting compound of Claim 1, or a pharmaceutically acceptable salt form thereof; and
 - c) optionally, a pharmaceutically effective amount of a sulfonylurea agent.

- 23. The pharmaceutical composition of Claim 22 comprising a pharmaceutically acceptable carrier or excipient and:
- a) a pharmaceutically effective amount of metformin, or a pharmaceutically acceptable salt thereof; and
- b) a pharmaceutically effective amount of (2R)-2-[4-(9-Bromo-2,3-dimethyl-naptho[2,3-b]thiophen-4-yl)-2,6-dimethyl-phenoxy]-3-phenyl-propionic acid, or (R)-2-[2,6-Dibromo-4-(9-bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-phenoxy]3-phenyl-propionic acid, or (R)-2-[4-(9-Bromo-2,3-dimethyl-naphtho[2,3-b]thiophen-4-yl)-2,6-diethyl-phenoxy]-3-phenyl-propionic acid, or a pharmaceutically acceptable salt form thereof; and
 - c) optionally, a pharmaceutically effective amount of a sulfonylurea agent selected from the group of glyburide, glyburide, glipizide, glimepiride,

chlorpropamide, tolbutamide, or tolazamide, or a pharmaceutically acceptable salt form thereof.