BLOXORZ

B07901020 劉昀昇

CONTENT

- Brief introduction
- Problem formulation
 - Bloxorz graph
- CNF encoding
 - Definition
 - Rules
- Experiment

BRIEF INTRODUCTION

- https://www.mathplayground.com/logic_bloxorz.html
- An online puzzle game where players move a I by I by 2 block by tilting it on a subset of the two dimensional grid. The block was moved from initial position to upright position on the destination square

BRIEF INTRODUCTION

Type of tiles

- Normal tiles
- Switches (on/off states)
- Trapdoors (close/open states) → switches and trapdoors are one-to-one mapping
- Single-use tiles

COMPLEXITY OF BLOXORZ

	1	$1 \times 1 \times 1$				
	Dec.	Opt.	Moves	Dec.	Opt.	Moves
-	Р	Р	$\Theta(n)$	Р	Р	$\Theta(n)$
Switches+Trapdoors	PSPACE-C	PSPACE-C	$2^{\Theta(n)}$ 2	Р	NP-C ³	$\Theta(n^2)$
Single-use tiles	NP-C	NP-C	$\Theta(n)$	Р	Р	$\Theta(n)$
S+T+Single-use	PSPACE-C	PSPACE-C	$2^{\Theta(n)}$ 2	NP-C ⁴	NP-C	$\Theta(n^2)$

Table 2: Complexity of various Bloxorz variants

Van Der Zanden, Tom C., and Hans L. Bodlaender. "PSPACE-completeness of Bloxorz and of games with 2-buttons." arXiv preprint arXiv:1411.5951 (2014).

- Dec.: decision problem
- Opt.: optimization problem, whether it takes less than k steps
- Here we focus on single-use tiles problem, it can be reduced from 3-CNF (NPC)

PROBLEM FORMULATION

Instance

Given a level of Bloxorz graph made up by a list of single-use tiles, and a 1 by 1 by 2 block

Question

Is there a sequence of **legal move** (**right, left, down, up**) to move from start point to up-right position on goal square

BLOXORZ GRAPH

■ Given a level of Bloxorz, suppose it has total \mathbb{T} tiles. For each tile the block can have three unique states on it (choose the closer-to-origin unit). There are total $3 \cdot |\mathbb{T}|$ vertices.

BLOXORZ GRAPH

- lacktriangle Edges (v_1,v_2) means that three is a legal move from vertex v_1 to v_2
- For each vertex, only four edges are connected to other vertices, total edge count is at most $4 \cdot 3 \cdot |\mathbb{T}|$
- Transformation between Bloxorz game and Bloxorz graph is linear to map size

CNF ENCODING

OVERALL IDEA

- Select a bunch of nodes on Bloxorz graph (these node incorporate location and state info of the block)
- 2. Check whether there exist a set of moves (edge) assigned on each selected nodes, to achieve path connection from start to end

DEFINITION

• Define state variable b_{ija} , linear growth to map size

$$b_{ija, a \in \mathbb{A}} = \begin{cases} 1, & block \ at \ position \ (i, j), and \ its \ state \ is \ a \\ 0, & otherwise \end{cases}$$

- legal move $M = \{left, right, down, up\}$
- Define move variable $move_{ijam}$, linear growth to mapsize

$$move_{ijam,\ m\in\mathbb{M}} = \begin{cases} 1, & \textit{Given original block's state } b_{ija}, \textit{take a legal move } m \\ 0, & \textit{no move is taken} \end{cases}$$

RULES - SELECT A BUNCH OF STATES b_{ija}

- Since a tile can not be passed twice, a whenever a state is taken, some of states are no longer available
- Block is originally stand at start point, and it must end standing at goal hole, these two states must be I
 Total clause number: O(map size)

$$\Lambda_{i \in (m), j \in [n]}(b_{ij}l_{x} \longrightarrow \Lambda_{a \in A}(\overline{b_{ij}a}) \Lambda_{a \in A}(\overline{b_{i+1}ja}))$$

$$\Lambda_{i \in (m), j \in [n]}(b_{ij}l_{y} \longrightarrow \Lambda_{a \in A}(\overline{b_{ij}a}) \Lambda_{a \in A}(\overline{b_{ij+1}a}))$$

$$\Lambda_{i \in (m), j \in [n]}(b_{ij}S \longrightarrow \Lambda_{a \in A}(\overline{b_{ij}a}))$$

$$\Lambda_{i \in (m), j \in [n]}(b_{ij}S \longrightarrow \Lambda_{a \in A}(\overline{b_{ij}a}))$$

$$\delta_{i \in (m), j \in [n]}(b_{ij}S \longrightarrow \Lambda_{a \in A}(\overline{b_{ij}a}))$$

$$\delta_{i \in (m), j \in [n]}(b_{ij}S \longrightarrow \Lambda_{a \in A}(\overline{b_{ij}a}))$$

$$\delta_{i \in (m), j \in [n]}(b_{ij}S \longrightarrow \Lambda_{a \in A}(\overline{b_{ij}a}))$$

RULES – CHOOSE A SET MOVES

- A state must have only one outgoing move, except end state
- If there is no moves outgoes from state b_{ija} , then b_{ija} must not be chosen, except end state

Total clause number: O(map size)

Now, we have a set of k states, and k-1 moves, each state has one outgoing move expect end node

So far, outgoing and ingoing edges are not restricted on the path

→ How to ensure these states and moves can form a single path with no sub-cycle, no branch

Reference: SAT Encoding for the Hamiltonian Cycle Problem

Definition: $U_{ijap} = 1$ iff b_{ija} 's position is $p, p \in 1,2 \dots mapsize$

Variable count : O(map size^2)

- One to one mapping between b_{ija} and U_{ijap} , that is for given $b_{ija}=1$, a unique p exists such that $U_{ijap}=1$
- If $b_{ija} = 0$, then $\mathcal{U}_{ijap} = 0$ for all p

Total clause number: O(map size^3), "unique p" is costly

P's continuality

• Each p maps to at most one state, it is costly \rightarrow **Do we need this?**

Total clause count: O(map size^3)

It accounts for more than half of total clause number

Mapsize
$$\left(\bigwedge_{i_1 \neq i_1, j_1 \neq j_2, a_i \neq a_i} \left(\frac{\overline{U_{i_1 j_1 a_1 p}}}{U_{i_2 j_2 a_2 p}} \right) \right)$$

Implication

- Initialization of start position p = 0
- Recursive implication
- Is ending condition needed ? \rightarrow No, since end state has no outgoing move, so implication can not proceed

Total clause count : O(map size)

Uistant Jstant
$$S 0 = 1$$

Uisjan $A \text{ move in jan } m \longrightarrow \text{Uisjan } p+1$

(in j.) $* \text{ End } m \in M$

Combine **P's continuality** and **Implication**, we can ensure a state's both outgoing and ingoing moves are on the path from start to end, it also prevent branch and sub-cycle

Do we need to make sure that each p maps to at most one state?

- → If we remove this constraint, **branch** may occur
- → Restricted every state's has at most one ingoing move? It is cheaper, since the graph is sparse (degree <= 4), it take O(map size) clauses
- \rightarrow Or, just make sure there is only one starting point with p=0

EXPERIMENT

Map I

```
ORIGINAL
                                         LEARNT
 Conflicts
                                                           Progress
             Clauses Literals | Clauses Literals Lit/Cl
               21270
                        45150
                                                     2.7 | 0.000 %
SAT
state U_5_3_S_0
                       step 0 : UP
state U_5_4_Ly_1
                       step 1 : LEFT
state U_4_4_Ly_2
                       step 2 : LEFT
state U_3_4_Ly_3
                       step 3 : LEFT
state U_2_4_Ly_4
                        step 4 : LEFT
state U_1_4_Ly_5
                        step 5 : DOWN
state U_1_3_S_6
Total memory usage: 5980
Total time usage: 0.036443 s
```

Map2 ORIGINAL Conflicts LEARNT Progress 0010 | Clauses Literals | Clauses Literals Lit/Cl | 1310 14810 31473 0111 UNSAT 1111 Total memory usage: 5104 Total time usage: 0.017157 s 1111 0210 1110 LEFT

DOWN

RIGHT

EXPERIMENT

Map3

map boundary (_m, _n) starting index = (12, ending index = (2, 3	10)	
nodes size = 225 moves size = 900 unary var size = 16875		
===== Begin to solve		
Conflicts ORIG	Literals Clauses Literals Lit/Cl	
86 519031		1
SAT		==
state U_12_10_5_0		
state U_10_10_Lx_1	step 0 : LEFT	
state U_10_9_Lx_2	step 1 : DOWN	
	step 2 : LEFT	
state U_9_9_S_3	step 3 : DOWN	
state U_9_7_Ly_4	step 4 : RIGHT	
state U_10_7_Ly_5	step 5 : DOWN	
state U_10_6_S_6	•	
state U_10_4_Ly_7	step 6 : DOWN	
state U_10_3_S_8	step 7 : DOWN	
state U 8 3 Lx 9	step 8 : LEFT	
	step 9 : LEFT	
state U_7_3_S_10	step 10 : LEFT	
state U_5_3_Lx_11	step 11 : LEFT	
state U_4_3_S_12	step 12 : UP	
state U_4_4_Ly_13	step 13 : LEFT	
state U_3_4_Ly_14	·	
state U_2_4_Ly_15	step 14 : LEFT	
state U_2_3_5_16	step 15 : DOWN	
Total memory usage: 46 Total time usage: 0.77		

Map4

Conflicts ORIGINAL	1	LEARNT	1	Progress	I		
Clauses Litera					 =		
177 7439236 150893		1019		15.763 %			
SAT					=		
state U_16_12_S_0							
ste	p 0 : UP						
state U_16_13_Ly_1	p 1 : LEFT						
state U_15_13_Ly_2							
state U_15_15_S_3	p 2 : UP						
ste	p 3 : UP						
state U_15_16_Ly_4	p 4 : LEFT						
state U_14_16_Ly_5							
state U_13_16_Ly_6	p 5 : LEFT						
	p 6 : LEFT						
state U_12_16_Ly_7	p 7 : DOWN						
state U_12_15_S_8	p / . Dome						
state U_10_15_Ly_9	p 8 : LEFT						
	9 : LEFT						
state U_9_15_Ly_10	p 10 : LEFT						
state U_8_15_Ly_11	p 10 : LEFT						
	p 11 : LEFT			L	EFT	\	
state U_7_15_Ly_12	p 12 : LEFT				1		
state U_6_15_Ly_13							
state U_6_14_S_14	p 13 : DOWN						
ste	p 14 : DOWN	DC	1WC	1 •			U
state U_6_12_Ly_15	p 15 : DOWN					l .	
state U_6_11_S_16						L	
state U_6_9_Ly_17	p 16 : DOWN				•	RIGHT	
ste	p 17 : LEFT						
state U_5_9_Ly_18	p 18 : LEFT						
state U_4_9_Ly_19							
state U_3_9_Ly_20	p 19 : LEFT						
	p 20 : DOWN						
state U_3_8_S_21							
T-+-1 F20742							

Total memory usage: 528712 Total time usage: 10.2323 s

EXPERIMENT

M5

```
map boundary (_m, _n) = (25, 25), size = 299
starting index = (22, 17)
ending index = (2, 5)

nodes size = 897
moves size = 3588
unary var size = 268203

==== Begin to solve ====

[Conflicts | ORIGINAL | LEARNT | Progress |
| Clauses Literals | Clauses Literals | Lit/Cl |
| 2352962 | 31369287 63275793 | 800163 35286400 | 44.1 | 16.919 %
```

Total memory usage: 2810064

Total time usage: 18511.1 s

M6

Conflicts 	ORIGINAL Clauses Literals		EARNT terals Lit	Prog /Cl	ress
314	35802368 7225202	4 313	1336	4.3 14.4	====== 443 %
SAT					
state U_22_15	step 0	: UP			
state U_22_16	step 1	: LEFT			
state U_21_16	step 2	: UP			
state U_21_18	step 3	: UP			
state U_21_19	step 4	: LEFT			
state U_20_19	step 5	: DOWN			
state U_20_18	step 6	: LEFT			
state U_18_18	step 7	: LEFT			
state U_17_18	step 8	: LEFT			
state U_16_18	step 9	: LEFT			
state U_15_18	step 1	0 : LEFT			
state U_14_18	step 1	1 : LEFT			
state U_13_18	step 1	2 : LEFT			
state U_12_18	step 1	3 : LEFT			
state U_11_18	step 1	4 : DOWN			
state U_11_17		5 : DOWN			
state U_11_15		6 : DOWN			
state U_11_14		7 : LEFT			
state U_9_14_	Ly_18 step 1	8 : UP			
state U_9_16_		9 : LEFT			
state U_7_16_		0 : LEFT			
state U_6_16_		1 : LEFT			
state U_5_16_	Ly_22	2 : DOWN			
state U_5_15_		3 : DOWN			
state U_5_13_		4 : LEFT			
state U_4_13_	Ly_25 step 2	5 : UP			
state U_4_15_		6 : LEFT			
state U_2_15_	Ly_27 step 2				
state U_2_17_	S_28	B : RIGHT			
state U_3_17_	Ly_29	9 : RIGHT			
state U_4_17_	Ly_30	0 : DOWN			
state U_4_16					
	usage: 2376840 age: 49.5189 s				

Conflicts |

ORIGINAL

LEARNT

| Progress |

IMPROVEMENT

- How about do not maintain successor property, just make sure that every node has one input and output edge
- → Sub-cycles may occur
- New requirement

Each node except start and end node has one output edge to selected nodes and one input edge from selected nodes

Start node has no edge input, end node has no edge output

Using while loop to construct the path from start point to end point

EXPLAATION

A bloxorz map is reachable from input to output

Iff

The CNF formula is satisfiable

"→" The connected single path satisfies all CNF constraint.

" \leftarrow " Start from start node, since for each non-terminal node u, it has one and only one edge (u, v) output, and v is also selected. Because every node except start node can has one and only one input edge (start node has no input), v can not be the traversed nodes, this recursion must end at end point, which has no edge output. To satisfies these constraints, there must be a simple path from start node to the end node

COMPARISON

	Map I (6x6)	Map2(7×4)	Map3(15×15)	Map4(20×20)	Map5(25×25)	Map6(25×25)
	SAT	UNSAT	UNSAT	SAT	UNSAT	SAT
Clauses	21270	14810	463310	7439236	31369287	35802368
	613	881	1894	7135	10454	13319
Literals	45150	31473	952257	15079283	63275793	72252024
	1540	2036	4739	17615	25872	32630
Conflicts	6	0	139	177	2352962	314
	0	0	48	1039	25	39
Memory use	5980	5104	43440	528712	2810064	2376840
	6836	6836	6836	6836	6836	6836
Time use (s)	0.036	0.17	0.74	10.23	18511	49.5
	0.0025	0.0017	0.007	0.070	0.027	0.029

: Encode without successor function : Encode with successor function

FURTHER TESTING

Improvement	Map7(50×50)	Map8(50×50)	Map9(70×70)	Map10(70×70)	Map11(100×100)	Map 12(100×100)
	SAT	UNSAT	SAT	SAT	SAT	SAT
Clauses	36787	35665	89543	91104	167413	190554
Literals	91181	88416	221206	225023	415220	470979
Conflicts	1517	22991	1801428	15387	3374571	582
Memory use	10796	12560	209988	21020	352504	37160
Time use (s)	0.21	2.41	1059.1	1.68	3932.6	0.64