Estructura de computadores-Práctica 2

Laura Álvarez Flórez 100363965 Grupo 82 Laura Yunta García 100363785 Grupo 82

Grado en ingeniería informática

Contenido

1.	Ejercicio 1	2
	Ejercicio 2	
3.	Ejercicio 3	8
4.	Ejercicio 4	. 11
5.	Conclusiones y problemas encontrados.	. 13

1. Ejercicio 1.

1.

1.						
Instrucción	Ejemplo		Esta	ado modificado)	
	li \$t0 2 li \$t1 1 add \$t2 \$t0 \$t1	Type cpu cpu cpu	Identification PC R2 R3	Clipboard state = 0x8000 = 0 = 0	Selected state 0x800c 0x2 0x1	
		cpu	R5	= 0	0x3	
add R1 R2 R3	li \$t0 2 li \$t1 -7 add \$t2 \$t0 \$t1	Type cpu cpu cpu cpu cpu	Identification PC R8 R9 R10 SR	Clipboard state = 0x8000 = 0 = 0 = 0 = 0	Selected state 0x800c 0x2 0xfffffff9 0xfffffffb 0x20000000	Sí
	li \$t0 -2 li \$t1 -10 add \$t2 \$t0 \$t1	Type cpu cpu cpu cpu cpu	Identification PC R8 R9 R10 SR	Clipboard state = 0x8000 = 0 = 0 = 0 = 0 = 0	Selected state 0x800c 0xfffffffe 0xfffffff6 0xfffffff4 0xa0000000	

		Type	Identification	Clipboard state	0x800c 0x2 0x1	
	li \$t0 2	cpu	PC	= 0x8000	0x800c	
sub R1 R2 R3		cpu	R8	= 0	0x2	Si
	R2 R3 $\begin{vmatrix} \text{li } \$t1 \ 1 \\ \text{sub } \$t2 \ \$t0 \ \$t1 \end{vmatrix}$ cpu R8 = 0 0x2					
		cpu	R10	= 0	0x1	

		Туре	Identification	Clipboard state	Selected state
		cpu	PC	=0x8000	0x800c
	li \$t0 -2 li \$t1 1	cpu	R8	= 0	0xfffffffe
	sub \$t2 \$t0 \$t1	cpu	R9	= 0	0x1
		cpu	R10	= 0	Oxfffffffd
		cpu	SR	= 0	0x20000000
		Туре	Identification	clipboard state	selected state
	li \$t0 -2 li \$t1 -1 sub \$t2 \$t0 \$t1	cpu	PC	=0x8000	0x800c
		cpu	R8	= 0	0xfffffffe
		cpu	R9	= 0	Oxffffffff
		cpu	R10	= 0	0xffffffff
		cpu	SR	= 0	0xa0000000

3.

3.						, ,
	li \$t0 2	Type	Identification	Clipboard state	Selected state	
		cpu	PC	= 0x8000	0x800c	
	li \$t1 1 mul \$t2 \$t0 \$t1	cpu	R8	= 0	0x2	
		cpu	R9	= 0	0x1	
		cpu	R10	= 0	0x2	
		Type	Identification	Clipboard state	Selected state	
mul R1 R2 R3	li \$t0 -2 li \$t1 1 mul \$t2 \$t0 \$t1	cpu	PC	= 0x8000	0x800c	
		cpu	R8	= 0	0xfffffffe	Si
		cpu	R9	= 0	0x1	
		cpu	R10	= 0	0xfffffffe	
		cpu	SR	= 0	0x20000000	
		Type	Identification	Clipboard state	Selected state	
	li \$t0 -2	cpu	PC	=0x8000	0x800c	
	li \$t1 -1 mul \$t2 \$t0 \$t1	cpu	R8	= 0	0xfffffffe	
		cpu	R9	= 0	0xffffffff	
		cpu	R10	= 0	0x2	

	li \$t0 2	Type	Identification	Clipboard state	Selected state	
	li \$t1 0x0004 sw \$t0 (\$t1)	cpu	PC	=0x8000	0x8010	
	lb \$t2 (\$t1)	cpu	R8	= 0	0x2	
		cpu	R9	= 0	0x4	
		cpu	R10	= 0	0x2	
		memory	0x4	= 0	0x2	
lb R1 (R2)	li \$t0 -2 li \$t1 0x0004	Type	Identification	Clipboard state	Selected state	Si
						
	sw \$t0 (\$t1)	cpu	PC	= 0x8000	0x8010	
	sw \$t0 (\$t1) lb \$t2 (\$t1)	cpu cpu	PC R8	= 0x8000 = 0	0x8010 0xfffffffe	
		_				
		cpu	R8	= 0	0xfffffffe	

5.

	li \$t0 100	Type cpu cpu	Identification PC R8	Clipboard state = 0x8000 = 0	Selected state 0x8004 0x64	
li R inm	li \$t0 -100	Type cpu cpu	Identification PC R8	Clipboard state = 0x8000 = 0	Selected state 0x8004 0xffffff9c	Sí

U.						
lb R1 (R2) li \$t0 0x0004 li \$t1 1 sw \$t1 (\$t0) lbu \$t2 (\$t0)	Type	Identification	Clipboard state	Selected state		
	li \$t0 0x0004	cpu	PC	=0x8000	0x8010	
lb R1 (R2)		cpu	R8	= 0	0x4	Sí
		cpu	R9	= 0	0x1	
		cpu	R10	= 0	0x1	
		memory	0x4	= 0	0x1	

	Type	Identification	Clipboard state	Selected state
li \$t0 0x0004	cpu	PC	=0x8000	0x8010
li \$t1 -1 sw \$t1 (\$t0)	cpu	R8	= 0	0x4
lbu \$t2 (\$t0)	cpu	R9	= 0	0xfffffff
	cpu	R10	= 0	0xff
	memory	0x4	= 0	Oxffffffff

7.

7.						
lbu R1 (R2)		Type	Identification	Clipboard state	Selected state	
	li \$t0 0x0004	cpu	PC	= 0x8000	0x800c	
	li \$t1 1 sb \$t1 (\$t0)	cpu	R8	= 0	0x4	Sí
		cpu	R9	= 0	0x1	
		memory	0x4	= 0	0x1	
IDU KI (KZ)	li \$t0 0x0004 li \$t1 -1 sb \$t1 (\$t0)					
		Type	Identification	Clipboard state	Selected state	
		cpu	PC	=0x8000	0x800c	
		cpu	R8	= 0	0x4	
		cpu	R9	= 0	0xffffffff	
		memory	0x4	= 0	0xff	

8.

0.								
Sb R1 (R2)	b 0x0004	Type cpu	Identification PC	Clipbo		Selected state 0x4		
		Type	Identificati	on Cli	pboard sta	te Selected sta	ate	Sí
	B 0xffff	cpu	PC	= 0	= 0x8000 Oxffff			
		memor	ry 0x8000	= 0)x3000800	0 0x30007ffb)	

9.						
	li \$t0 0 li \$t1 3 li \$t2 1 bucle:	Type	Identification	Clipboard state	Selected state	
		cpu	PC	= 0x8000	0x801c	
	beq \$t0 \$t1 fin	cpu	R8	= 0	0x3	
	add \$t0 \$t0 \$t2	cpu	R9	= 0	0x3	
	b bucle	cpu	R10	= 0	0x1	
	fin:					

beq R1	li \$t3 1	cpu	R11	= 0	0x1		
R2							
addr	11 0 0 1						
	li \$t0 1 li \$t1 1 li \$t2 1	Type	Identification	Clipboard state	Selected state		
	bucle:	cpu	PC	= 0x8000	0x801c		
	beq \$t0 \$t1 fin	cpu	R8	= 0	0x1		
	add \$t0 \$t0 \$t2	cpu	R9	= 0	0x1		
	b bucle	cpu	R10	= 0	0x1		
	fin: li \$t3 1	cpu	R11	= 0	0x1		
	11 \$13 1						
	li \$t0 3 li \$t1 1 li \$t2 1	Type	Identification	Clipboard state	Selected state		
	bucle:	cpu	PC	=0x8000	0x8014		
	beq \$t0 \$t1 fin	cpu	R8	= 0	0xc7		
	add \$t0 \$t0 \$t2	cpu	R9	= 0	0x1		
	b bucle	cpu	R10	= 0	0x1		
	fin: li \$t3 1			za un bucle infini strucción hasta qu		r contenido en t0 se ria es utilizada.	

- En este primer ejercicio hemos analizado una a una las instrucciones propuestas, las comprobaciones para detectar si el funcionamiento es el correcto se basan en el uso de diferentes valores (tanto positivos como negativos) para comprobar que las instrucciones se ajustaban de forma correcta a todos los casos posibles.
- El micro código no ha sido modificado durante la realización de este ejercicio.

2. Ejercicio 2.

strlen_1:				
	Type	Identification	Values in the clipboard state	Values in the selected state
	cpu	PC	=0x8000	0x8034
	cpu	R2	= 0	0x4
Ejemplo utilizado: cadena "hola"	cpu	R4	= 0	0x1000
	cpu	R10	= 0	0x1
	cpu	R11	= 0	0x4

		D12	0		01004	
	cpu	R12	=0	11 (lugar donde tenemo	0x1004	no ol
				nemos un 4 que es el núm		
	CLK t	icks 21	5			
	Туре	Identifica	tion	Values in the clipboard state	Values in the selected state	
	cpu	PC		=0x8000	0x8034	
	cpu	R2		= 0	0xb	
	cpu	R4		= 0	0x1000	
	cpu	R10		= 0	0x1	
	cpu	R11		= 0	0xb	
Ejemplo utilizado:	cpu	R12		= 0	0x100b	
"ensamblador"	número que es o	de caracte el número e	res) obto sperado	11 (lugar donde tenemo enemos una b, lo que cor en la ejecución.		
	CLK t	icks	481			
skipspaces_1		X1	** 1			
				ues in the clipboard state		ate
	cpu			x8000	0x8030	
	cpu	R2	= 0		0x1002	
	cpu	R4	= 0		0x1000	
	cpu	R8	= 0		0x68	
	cpu	R9	= 0		0x20	
	cpu	R10	= 0		0x1	
	cpu	R12	= 0		0x1002	
	corresp comien	ondiente a	\$v0 es cción 10	or, se puede observar que 1002, la dirección de in 2000 y conteniendo est	nicio de la cadena. Sien	do el
Ejemplo utilizado:	CLK ticks 129					
" hola"		añadiremos iientes resul		cio más a la cadena, siend	lo el input "hola" obten	iemos
				ues in the clipboard state	Values in the selected sta	ate
	cpu	PC	= 0	x8004	0x8030	
	cpu	R2	= 0		0x1003	
	cpu	R8	= 0		0x68	

cpu	R9	= 0	0x20
cpu	R10	= 0	0x1
cpu	R12	= 0	0x1003
	do el nuevo esp	ncrementado en 1, lo que no pacio y lo ha saltado correctam	os indica que el programa ha ente.

• Comparando los datos de los ciclos de reloj del ejercicio 2 y el 3 obtenemos que en el ejercicio 2 para realizar la misma operación se utilizan un número muy superior de ciclos al de las instrucciones del ejercicio 3. Por tanto deducimos que las instrucciones que hemos microprogramado en el ejercicio 3 son mucho más eficaces que las programadas en el ejercicio 2

3. Ejercicio 3.

• strlen 2 reg

Esta función lee cada uno de los bytes y los analiza independientemente, el algoritmo sabe que la cadena ha finalizado una vez encuentra un numero negativo, ya que el valor más pequeño de la tabla ascii es el 0, el mismo que indica que la cadena ha finalizado (por convenio).

C0: R2→RT2 #La dirección es almacenada

C1: RT2→MAR #Se guarda la misma para su posterior lectura

BUCLE:

C2: MP→MBR #Se realiza la lectura de la direccion puntual C3: MBR→RT1 #Se almacena el contenido de la misma

C4: RT1-1 #Se resta uno a la misma y la ALU analiza el resultado

dándose dos casos posibles:

#Si el resultado >0

C5: RT2→RT1 #Se mueve el contenido C6: RT1+1→RT2 #Incrementamos en 1 la dir.

C7: RT2→MAR #Colocamos la dirección para su posterior lectura

C8: B BUCLE #Repetimos el proceso

#Si el resultado es <0

C5': RT2→RT1

C6': RT1-RT2→R1 #Restamos la dirección actual menos la inicial para calcular cuantos char hemos leido

• skipasciicode_2 \$r1 \$r2 n

Con esta función se leen de nuevo uno a uno os caracteres de la cadena, dado un char obtenido por valor, cuando se detecta que son iguales (la resta de ambos es 0) se continua a la siguiente dirección mientras que si son diferentes se desvia el flujo hacia el final del programa donde se devuelve la dirección en la que nos encontramos en ese instante.

C0: R2→RT1 #Almacenamos la dirección

C1: RT1→MAR #Colocamos la misma para su posterior lectura

C2: Val→k1 #Guardamos el valor en un registro auxiliar k1

Bucle:

C3:MAR→MP #Realizamos la lectura del carácter

MP→MBR

C4:MBR→RT2 #Lo almacenamos en r2

C5:k1-RT2 #Restamos el valor y el carácter dado y procedemos al análisis

#Si son iguales

C6:RT1+1→RT1 #Aumentamos uno el valor donde esta la dir

C7:RT1→MAR #Lo colocamos para la posterior lectura

B bucle #Repetimos el proceso

#Si son distintos

Fin:

C6':RT1→R1 #Devolvemos la dirección encontrada

Microinstrucción strlen_2 reg reg

	Type	Identification	Values in the clipboard state	Values in the selected state
	cpu	PC	= 0x8000	0x800c
Eigmalo o	cpu	R9	= 0	0x4
Ejemplo a comprobar: "hola"	cpu	R10	= 0	0x1000
		nple los requisi	tos esperados ya que obteno dena y viene reflejado en el r	-
	Type	Identification	Values in the clipboard state	Values in the selected state
	cpu	PC	=0x8000	0x800c
Fiample a	cpu	R9	= 0	0xb
Ejemplo a comprobar:	cpu	R10	= 0	0x1000

"ensamblador"	
	CLK ticks 116
	Se cumple los requisitos esperados ya que obtenemos que nos cuenta todos
	los caracteres de la cadena y viene reflejado en el registro R9 en este caso 11
	(Equivalencia decimal a b).

Microinstrucción: skipasciicode_2 \$r1 \$r2 n

				Values in
TO: 1	Type	Identification	the clipboard state	the selected state
Ejemplo: Cadena "llaura"	cpu	PC	= 0x8000	0x800c
value:"l"	cpu	R9	= 0	0x1002
	cpu	R10	= 0	0x1000
	cpu	R27	= 0	0x6c
	detecta	a instrucción el a una primera 'l' también ignora	resultado que obtenemos en ² , se salta y posteriormente e . Posicionados en la direcció l resultado de esa dirección.	ncontramos una segunda
Cadena: " hola" Value: ""	Туре	Identification	Values in the clipboard state	Values in the selected state
	cpu	PC	= 0x8000	0x800c
	cpu	R9	= 0	0x1002
	cpu	R10	= 0	0x1000
	cpu	R27	= 0	0x20
	cpu	SR	= 0	0x60000000
	CLK	ticks 38		

4. Ejercicio 4.

	Palabra	Ensamblador	Microprogramado
Strlen	'hola'	215	60
	'ensamblador'	481	116
SkipSpace	' hola'	129	38

• Gracias a estas comparaciones podemos ver que son más eficientes las microprogramaciones de las instrucciones que las programaciones en ensamblador debido a que se han obtenido unos valores de tiempo de ejecución mucho menores en los primeros que en los segundos, por tanto se recomienda el uso del microprogramado para futuros programas y proyectos empresariales ya que asegura un tiempo para el trabajo y el proceso mucho menor. Ya que aunque en estas prácticas con un número pequeño de datos y de pruebas no sea muy notable la diferencia, en el ámbito laboral (con un alto nivel de datos utilizados) sí que puede llegar a se un inconveniente el mal uso de uno u otro. Por tanto siempre recomendaremos el uso del microprogramado.

Para llegar a esta conclusión hemos analizado las dos funciones Strlen realizadas, primero con la palabra hola y finalmente con la palabra ensamblador, como se infiere de la tabla en ambos casos el resultado es proporcional. Cuanto mayor es la palabra mayor es el resultado de ambas opciones siendo siempre inferior el tiempo en el método de la instrucción micro programada. Para el caso de SkipSpace hemos usado la función de ejercicio dos correspondiente a la misma y además para aprovechar la microinstrucción SkipAsciiCode, hemos analizado el caso ayudándonos de esta introduciendo la misma cadena y un espacio ' como valor. Llegamos a la misma conclusión que con la primera función.

Para finalizar, siendo la voluntad de la empresa un mínimo de una reducción al 20% de los ciclos para optar por la opción microprogramada, se puede observar que en todos los casos los ciclos

reducen su número en más de un 50%. Dado que hemos superado el porcentaje con creces se recomienda a la institución el uso de la microprogramación incluso siendo esta más costosa.

5. Conclusiones y problemas encontrados.

• Es importante destacar que las instrucciones de Strlen en los ejercicios tanto en el 2 como en el tres solo paran cuando la cadena ha terminado, es decir cuando llega a un 0 por tanto los espacios entre palabras también los tiene en cuenta como carácteres.

Según llevábamos acabo el desarrollo de las microinstrucciones hemos llegado a la conclusión de que aun siendo una mejor opción como hemos determinado en el punto número 4, sí que es cierto que es una programación más lenta y más compleja, la cual dificulta el manejo de excepciones en comparación con la programación con instrucciones en ensamblador.

Otra dificultad a comentar, surgió durante el desarrollo de las instrucciones del punto 3, ya que inicialmente realizábamos el bucle de manera incorrecta y el programa WepSIM nunca salía de este, por lo que se colapsaba constantemente la página. Finalmente resolvimos este incidente.