Discretized Streams

Fault-Tolerant Streaming Computation at Scale

Matei Zaharia, **Tathagata Das (TD)**, Haoyuan (HY) Li, Timothy Hunter, Scott Shenker, Ion Stoica

Motivation

Many big-data applications need to process large data streams in near-real time

Website monitoring

Challenge

- Stream processing systems must recover from failures and stragglers quickly and efficiently
 - More important for streaming systems than batch systems
- Traditional streaming systems don't achieve these properties simultaneously

Outline

- Limitations of Traditional Streaming Systems
- Discretized Stream Processing
- Unification with Batch and Interactive Processing

Traditional Streaming Systems

- Continuous operator model
 - Each node runs an operator with in-memory mutable state
 - For each input record, state is updated and new records are sent out

Mutable state is lost if node fails

Various techniques exist to make state fault-tolerant

Fault-tolerance in Traditional Systems

Node Replication [e.g. Borealis, Flux]

- Separate set of "hot failover" nodes process the same data streams
- Synchronization protocols ensures exact ordering of records in both sets
- On failure, the system switches over to the failover nodes

Fast recovery, but 2x hardware cost

Fault-tolerance in Traditional Systems

Upstream Backup [e.g. TimeStream, Storm]

- Each node maintains backup of the forwarded records since last checkpoint
- A "cold failover" node is maintained
- On failure, upstream nodes replay the backup records serially to the failover node to recreate the state

Only need 1 standby, but slow recovery

Slow Nodes in Traditional Systems

Node Replication

Upstream Backup

Neither approach handles stragglers

Our Goal

- Scales to hundreds of nodes
- Achieves second-scale latency
- Tolerate node failures and stragglers
- Sub-second fault and straggler recovery
- Minimal overhead beyond base processing

Our Goal

Scales to hundreds of nodes

Tolerate

Sub-second

Minimal

Why is it hard?

Stateful *continuous operators* tightly integrate "computation" with "mutable state"

Makes it harder to define clear boundaries when computation and state can be moved around

Dissociate computation from state

Make state *immutable* and break computation into small, deterministic, stateless tasks

Defines clear boundaries where state and computation can be moved around independently

Batch Processing Systems!

Batch Processing Systems

Batch processing systems like MapReduce divide

- Data into small partitions
- Jobs into small, deterministic, stateless map / reduce

Parallel Recovery

Failed tasks are re-executed on the other nodes in parallel

Discretized Stream Processing

Discretized Stream Processing

Run a streaming computation as a series of small, deterministic batch jobs

Store intermediate state data in cluster memory

Try to make batch sizes as small as possible to get second-scale latencies

Discretized Stream Processing

Example: Counting page views

Discretized Stream (DStream) is a sequence of immutable, partitioned datasets

 Can be created from live data streams or by applying bulk, parallel transformations on other DStreams

Fine-grained Lineage

- Datasets track fine-grained operation lineage
- Datasets are periodically checkpointed asynchronously to prevent long lineages

Parallel Fault Recovery

- Lineage is used to recompute partitions lost due to failures
- Datasets on different time steps recomputed in parallel
- Partitions within a dataset also recomputed in parallel

Comparison to Upstream Backup

How much faster than Upstream Backup?

Recover time = time taken to recompute and catch up

- Depends on available resources in the cluster
- Lower system load before failure allows faster recovery

Parallel recovery with 5 nodes faster than upstream backup

Parallel recovery with 10 nodes faster than 5 nodes

Parallel Straggler Recovery

- Straggler mitigation techniques
 - Detect slow tasks (e.g. 2X slower than other tasks)
 - Speculatively launch more copies of the tasks in parallel on other machines

 Masks the impact of slow nodes on the progress of the system

Evaluation

Spark Streaming

- Implemented using Space processing engine*
 - Spark allows datasets to be stored in memory, and automatically recovers them using lineage
- Modifications required to reduce jobs launching overheads from seconds to milliseconds

How fast is Spark Streaming?

Can process 60M records/second on 100 nodes at 1 second latency

Tested with 100 4-core EC2 instances and 100 streams of text

sliding window

How does it compare to others?

Throughput comparable to other commercial stream processing systems

System	Throughput per core [records / sec]
Spark Streaming	160k
Oracle CEP	125k
Esper	100k
StreamBase	30k
Storm	30k

[Refer to the paper for citations]

How fast can it recover from faults?

Recovery time improves with more frequent checkpointing and more nodes

How fast can it recover from stragglers?

Speculative execution of slow tasks mask the effect of stragglers

Unification with Batch and Interactive Processing

Unification with Batch and Interactive Processing

 Discretized Streams creates a single programming and execution model for running streaming, batch and interactive jobs

Combine live data streams with historic data

```
liveCounts.join(historicCounts).map(...)
```

Interactively query live streams

```
liveCounts.slice("21:00", "21:05").count()
```

App combining live + historic data

Mobile Millennium Project: Real-time estimation of traffic transit times using live and past GPS observations

- Markov chain Monte Carlo simulations on GPS observations
- Very CPU intensive
- Scales linearly with cluster size

Recent Related Work

- Naiad Full cluster rollback on recovery
- SEEP Extends continuous operators to enable parallel recovery, but does not handle stragglers
- TimeStream Recovery similar to upstream backup
- MillWheel State stored in BigTable, transactions per state update can be expensive

Takeaways

- Discretized Streams model streaming computation as series of batch jobs
 - Uses simple techniques to exploit parallelism in streams
 - Scales to 100 nodes with 1 second latency
 - Recovers from failures and stragglers very fast
- Spark Streaming is open source <u>spark-project.org</u>
 - Used in production by ~ 10 organizations!