Using MaxSAT for Efficient Explanations of Tree Ensembles

Alexey Ignatiev¹, Yacine Izza², Peter J. Stuckey¹, Joao Marques-Silva³

¹Monash University, Melbourne, Australia ²University of Toulouse, France ³IRIT, CNRS, Toulouse, France

Abductive Explanations and Boosted Trees

Idea and Contributions

XAI Explanation

SMT

This is a cat.

Current Explanation

reach logic, can handle *linear constraints*directly reason about:

 $\mathcal{H} \wedge \left(\sum_{\iota} \geq \sum_{i}\right)$

high decimal point precision

foreach $j \in X$:

return X

 $\mathcal{X} \leftarrow \mathcal{X} \setminus \{j\}$

MaxSAT

maximize $\sum_{\iota} - \sum_{i}$ subject to \mathcal{H}

- pure propositional logic
- prediction as objective function
- weighted soft clauses keep precision
- core-guided MaxSAT
- incremental MaxSAT calls
- MiniSat-like assumptions interface!
- unsatisfiable core reuse

j unneeded?

If so, drop it

#X is AXp

- early termination
- novel weight stratification

Encoding BT Operation

 \mathcal{F} — set of features $\forall_{j \in \mathcal{F}} \ D_j$ — domain of feature j \mathfrak{E} — tree ensemble $\mathcal{H} = \bigwedge_{j \in \mathcal{F}} \mathcal{H}_{D_j} \wedge \bigwedge_{T_i \in \mathfrak{E}} \mathcal{H}_{T_i}$

\mathcal{H}_{D_i} encodes feature domain D_j

- feature threshold values $s_{i,k}$ from \mathfrak{E}
- variable $o_{j,k} = 1$ iff $x_j < s_{j,k}$
- variable $l_{j,k} = 1$ iff $x_j \in [s_{j,k-1}, s_{j,k})$
- order encoding of D_i with $l_{i,k}$ and $o_{i,k}$
- instance is expressed by $l_{j,k}$ -variables

\mathcal{H}_{T_i} encodes paths of T_i

- \mathcal{P}_i is the set of paths of T_i
- given a $P_r \in \mathcal{P}_i$, t_r denotes its leaf
- encode each path $P_r \in \mathcal{P}_i$:

$$\left(\bigwedge_{(x_j < s_{j,k}) \in P_r} o_{j,k} \land \bigwedge_{(x_j \ge s_{j,k}) \in P_r} \neg o_{j,k}\right) \longleftrightarrow t_r$$

• $\sum_{P_r \in \mathcal{P}_i} t_r = 1$

1000

"Optimizing" Model Predictions

more robust than SMT and Anchor

Computing an AXp

Function EntCheck($\langle \mathcal{H}, \mathcal{S} \rangle$, v, c_i, \mathcal{X}) **Input:** \mathcal{H} : Hard clauses, \mathcal{S} : Objective functions, v: Input instance, c_i : Prediction, i.e. $\tau(\mathbf{v}) = c_i$, X: Candidate explanation Output: true or false foreach $S_{i,i} \in S$: # all relevant objective functions for c_i $\mu \leftarrow \text{MaxSAT}(\mathcal{H} \land \bigwedge_{j \in \mathcal{X}} l[[x_j = v_j]], \mathcal{S}_{i,l})$ if ObjValue(μ) ≥ 0 : # non-negative objective? return false # misclassification reached # X indeed entails prediction c_i return true Function ExtractAXP(\mathfrak{E} , \mathbf{v} , c_i) **Input:** \mathfrak{E} : TE computing $\tau(\mathbf{x})$, \mathbf{v} : Input instance, c_i : Prediction, i.e. $\tau(\mathbf{v}) = c_i$ **Output:** X: abductive explanation $\langle \mathcal{H}, \mathcal{S} \rangle \leftarrow \text{Encode}(\mathfrak{E})$ # MaxSAT encoding s.t. $S \triangleq \bigcup S_{i,i}$ $X \leftarrow \mathcal{F}$ #X is over-approximation

if EntCheck($\langle \mathcal{H}, \mathcal{S} \rangle$, v, $c_i, \mathcal{X} \setminus \{j\}$):

Incremental Core-Guided MaxSAT Solver

Function MaxSAT(ϕ , \mathcal{A}) **Input:** ϕ : Partial CNF formula, A: Set of assumption literals **Output:** μ : MaxSAT model $cost \leftarrow 0$ # initially, cost is 0 $C \leftarrow \text{ValidCores}(\phi, \mathcal{A})$ # get valid unsatisfiable cores foreach $\kappa \in C$: # iterate over known cores κ $cost \leftarrow cost + CoreWt(\kappa)$ # add its weight to cost $\phi \leftarrow \text{Process}(\phi, \kappa)$ # process κ and update ϕ **while** SAT (ϕ, \mathcal{A}) = false: # iterate until ϕ gets satisfiable $\kappa \leftarrow \text{GetCore}(\phi)$ # new unsatisfiable core $cost \leftarrow cost + CoreWt(\kappa)$ # add its weight to cost $\phi \leftarrow \text{Process}(\phi, \kappa)$ # process κ and update ϕ $Record(\phi, \mathcal{A}, \kappa)$ # record κ for the future return GetModel(ϕ) # ϕ is now satisfiable

Experimental Results

up to 2 orders of magnitude performance improvement