$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$Cov(X, Y)$$

$$\rho_{XY}$$

$$f$$
 $N(\mu, \sigma^2)$

$$U(a,b) P(B \mid A) = \frac{P(AB)}{P(A)}$$

二维离散型随机变量 § 3. 2

- 1. 什么是二维离散型随机变量?
- 2. 边缘分布律
- 3. 条件分布律

$$\frac{Z_{\alpha}}{\varphi(x)} = \frac{P(z<1.58) = .9429}{P(z \ge 1.58)} = 1.0000 - .9429 = .0571$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$f_X * f_Y$$

$$f(x) = \grave{o}_{-?}^{x} f(t)dt$$

$$\pi(\lambda)$$

$$E(\theta)$$

$$F(x) = P\{X \le x\}$$

定义

如果二维随机变量 (X, Y) 所有可能取的值是有限对或可列无限多对,则称(X, Y) 是二维离散型随机变量。

类比一维

联合分布律

$$p_{ij} = P\{ X = x_i, Y = y_j \}$$

\boldsymbol{x}_1	\boldsymbol{x}_2	• • •	$\boldsymbol{\mathcal{X}}_i$	• • •
p_{11}	p_{21}	• • •	p_{i1}	• • •
p_{12}	p_{22}	• • •	p_{i2}	• • •
•	•		•	
p_{1j}	p_{2j}	• • •	p_{ij}	• • •
•	•		•	
	<i>p</i> ₁₁ <i>p</i> ₁₂	p_{11} p_{21} p_{12} p_{22}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

例题1

$$p_{ij} = P\{ X = i, Y = j \} = P\{ X = i \} P\{Y = j / X = i \}$$
$$= 1/4 \cdot 1/i \ (j \le i = 1, 2, 3, 4)$$

设随机变量 X 在1, 2, 3,

4 四个整数中等可能地取

值,另一个随机变量 Y 在

 $1\sim X$ 中等可能地取一整数

值。试求:

(1)(X, Y)的分布律;

(2) 概率 P{X>Y}。

Y	1	2	3	4
1	1/4	1/8	1/12	1/16
2	0	1/8	1/12	1/16
3	0	0	1/12	1/16
4	0	0	0	1/16

联合分布律的基本性质

(1)
$$p_{ij} \ge 0$$
 ($i, j = 1, 2, \cdots$) (非负性)

$$(2) \sum \sum p_{ij} = 1 (正则性)$$

联合分布律与 联合分布函数间的关系

$$F(x,y) = \sum_{x_i \le x} \sum_{x_j \le y} P\{X = x_i, Y = y_j\}$$

$$= \sum_{x_i \le x} \sum_{x_j \le y} p_{ij}$$

定义

设
$$p_{ij} = P \{ X = x_i, Y = y_j \}$$
 $(i, j = 1, 2, \dots)$

是二维离散型随机变量 (X, Y) 的分布律,则随机变量 X 和 Y 各自的分布律

$$P\{X = x_i\} \quad (i = 1, 2, \dots)$$
 $P\{Y = y_i\} \quad (j = 1, 2, \dots)$

依次称为二维离散型随机变量 (X, Y)关于 X 和关于 Y 的边缘分布律。

2. 边缘分布律

边缘分布律与联合分布律间的关系

$$P\{X = x_i\}$$

$$= P\{X = x_i, -\infty < Y < \infty\}$$

$$= P\{X = x_i, \bigcup_{j=1}^{\infty} (Y = y_j)\}$$

$$= P\{\bigcup_{j=1}^{\infty} (X = x_i, Y = y_j)\}$$

$$= \sum_{j=1}^{\infty} P\{X = x_i, Y = y_j\} = \sum_{j=1}^{\infty} p_{ij}$$

(1)(X, Y)关于X的边缘分布律

$$P\{X=x_i\}=\sum_{j=1}^{\infty}p_{ij}=p_{i\bullet}$$

(2)(X,Y)关于 Y的边缘分布律

$$P{Y=y_j}=\sum_{i=1}^{\infty}p_{ij}=p_{\bullet j}$$

注记

二维离散型随机变量(X, Y)的联合分布律

$$p_{ij} = P\{X = x_i, Y = y_j\} (i, j = 1, 2, \dots)$$
可以决定

它关于X 和关于Y的边缘分布律

$$p_{i} = P\{X = x_i\} \ (i = 1, 2, \cdots)$$

$$p_{.j} = P\{Y = y_j\} \quad (j = 1, 2, \cdots)$$

即联合分布律决定边缘分布律、反之、不一定。

例题 2

的边缘分布律。

设随机变量 *X* 在1, 2, 3, 4 四个整数中等可能地取值,另 一个随机变量 *Y* 在 1~*X* 中 等可能地取一整数值。试求: (1)(*X*, *Y*)的分布律;

(2) (X, Y)关于 X 和关于Y

Y	1	2	3	4	$p_{\cdot j}$
1	1/4	1/8	1/12	1/16	25/48
2	0	1/8	1/12	1/16	13/48
3	0	0	1/12	1/16	7/48
4	0	0	0	1/16	3/48
p_i .	1/4	1/4	1/4	1/4	

例题 3

已知随机变量 X, Y的分布律分别为

且 $P{XY=0}=1$,试求 X和Y 的联合分布律。

若对固定的j, 若 $P{Y = y_i} > 0$,

设 $p_{ij} = P\{X = x_i, Y = y_j\}$ ($i, j = 1, 2, \cdots$) 是二维离散型随机变量(X, Y)的联合分布律,则在事件{ $Y = y_j$ }已发生的条件下,事件{ $X = x_i$ }发生的条件概率

$$P\{ X = x_i / Y = y_i \}$$
 ($i = 1, 2, \dots$)

称为在 $Y = y_i$ 的条件下随机变量 X 的条件分布律。

在事件 $\{X=x_i\}$ 已发生的条件下,事件 $\{Y=y_j\}$ 发生的条件概率

$$P\{Y = y_i / X = x_i\} \quad (j = 1, 2, \dots)$$

称为在 $X = x_i$ 的条件下随机变量Y的条件分布律。

条件分布律的计算公式

在 $Y = y_i$ 的条件下随机变量 X 的条件分布律

$$P\{X = x_i \mid Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{\bullet j}} \ (i = 1, 2, \cdots)$$

在 $X = x_i$ 的条件下随机变量 Y 的条件分布律

$$P{Y = y_j | X = x_i} = \frac{P{X = x_i, Y = y_j}}{P{X = x_i}} = \frac{p_{ij}}{p_{i\bullet}}, j = 1, 2, \cdots$$

注 记

- (1) 条件分布律计算公式成立的条件。
- (2)条件分布律由联合分布律确定。
- (3) 联合分布律由边际分布律和条件分布律确定。

$$P{X = x_i, Y = y_j} = P{X = x_i}P{Y = y_j | X = x_i}$$

$$P{X = x_i, Y = y_j} = P{Y = y_j}P{X = x_i | Y = y_j}$$

例题 3

一射手进行射击,击中目标的概率为p(0 ,射击到击中目标两次为止,设<math>X以表示首次击中目标所进行的射击次数,以Y表示总共进行的射击次数,试求X和Y的联合分布律、边缘分布律及条件分布律。

Y	1	2	3	4	• • •
2	p^2	0	0	0	• • •
3	$p^2(1-p)$	$p^2(1-p)$	0	0	• • •
4	$p^2 (1-p)^2$	$p^2 (1-p)^2$	$p^2 (1-p)$	p) ² 0	• • •
•	•	•	•	•	

练习十 A类 1, 2 练习十一 A类 4