Analiza efikasnosti algoritama

Sadržaj:

1. Osnovne pretpostavke

RAM model

2. Asimptotske notacije

- Θ , O, Ω - notacije

3. Analiza Insertion-sort algoritma

- Provera korektnosti
- Asimptotske notacije

4. Analiza rekurentnih jednačina

- Rekurencije i načini rešavanja
- Master teorema

5. Analiza Merge-sort algoritma

- Provera korektnosti
- Asimptotske notacije

Osnovne pretpostavke analize

- RAM (random-access machine) model
 - Algoritmi se izvršavaju kao računarski programi
 - Instrukcije unutar programa se izvršavaju jedna za drugom
 - Ne postoje konkurentne operacije
 - Memorijska hijerarhija:
 - Ne uključuje virtuelnu memoriju ni cache nivoe
 - Sadrži standardne mašinske instrukcije:
 - Aritmetičke: add, sub, mul, div, reminder, floor, ceilling itd.
 - Za rad sa podacima: load, store, copy
 - Za kontrolu toka: branch, call ,ret
 - Sve instrukcije traju konstantno vreme izvršenja
 - Podaci (int i float) su predstavljeni sa lgⁿ bita
 - Niz elementa: n x lgⁿ

Asimptotske notacije

- Služe za opis vremena izvršenja algoritma T(n)
 - gde je n∈N veličina ulaznih podataka (npr. br. el. niza)
 - n dovoljno veliko da učini najdominantniji član relevantnim
- Npr. $T(n) = an^2 + bn + c$
 - gde su a, b i c konstante
- Zanemarivanjem detalja ove funkcije može se proceniti da je asimptotsko vreme izvršenja tog algoritma neka funkcija od n²
 - jer taj član najbrže raste sa n

Asimptotske notacije

- Asimptotske notacije se mogu primeniti i na druge aspekte efikasnoti algoritma
 - Npr. zauzeće memorijskog prostora
- Ako se koristi za vreme, za koje vreme?
 - Vreme u najgorem slučaju (worst-case running time)
 - Vreme bez obzira na veličinu ulaznih podataka, itd.
- Postoji pet asimptotskih notacija: Θ -notacija, O-notacija, Ω -notacija, σ -notacija i
- Mi se fokusiramo na 3 notacije: Θ-notacija, Onotacija, Ω-notacija

⊕-notacija

- Služi za određivanje vremena izvršenja algoritma u najgorem slučaju
 - Def.: Za zadatu funkciju g(n), $\Theta(g(n))$ je skup funkcija, $\Theta(g(n))=\{f(n)\}$, takvih da postoje pozitivne konstante c_1 , c_2 i n_0 za koje je: $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, za svako $n \ge n_0$
- Kažemo: g(n) je ASIMPTOTSKI USKO OGRANIČENJE za f(n)
- g(n) mora biti ASIMPTOTSKI NENEGATIVNO
- Umesto $f(n) \in \Theta(g(n))$ pišemo $f(n) = \Theta(g(n))$

⊕-notacija

 ⊕-notacija se zasniva na odbacivanju članova nižeg reda i zanemarivanju koeficijenta uz vodeći član

• Za bilo koji polinom p(n) reda d, važi da je

 $p(n)=\Theta(n^d)$

- Za $f(n)=an^2+bn+c$ je $f(n)=\Theta(n^2)$

O-notacija

- Služi za za definisanje ASIMPTOTSKI GORNJE GRANICE zadate funkcije
- Def.: za zadatu funkciju g(n), O(g(n)) je skup funkcija, $O(g(n))=\{f(n)\}$, takvih da postoje pozitivne konstante c i n_0 za koje je:
 - $0 \le f(n) \le cg(n)$, za svako $n \ge n_0$

- $f(n)=an^2+bn+c$ je u $\Theta(n^2)$, takođe je i u $O(n^2)$
 - Po teoriji skupova $\Theta(g(n))$ ⊆O(g(n))
 - Θ-notacija je jača u odnosu na O-notaciju

O-notacija

- Može biti neobično da je npr. $n=O(n^2)$
- Vreme na osnovu ukupne strukture algoritma
 - Npr. za sledeći pseudo kod sa dve petlje očigledno je da je $O(n^2)$ gornja granica vremena izvršenja:

- Ova granica se može primeniti sa svaki ulaz
 - U zavisnosti od uslova usko graničenje je $\Theta(n^2)$ ili $\Theta(n)$

Ω -notacija

- Služi za za definisanje ASIMPTOTSKI DONJE GRANICE zadate funkcije
- Def.: Za zadatu funkciju g(n), $\Omega(g(n))$ je skup funkcija, $\Omega(g(n))=\{f(n)\}$, takvih da postoje pozitivne konstante c i n_0 za koje je:

$$0 \le cg(n) \le f(n)$$
, za svako $n \ge n_0$

• $\Omega(g(n))$ daje vreme izvršenja algoritma u najboljem slučaju (best-case running time)

Teorema o asimptotskim notacijama

• Za bilo koje dve funkcije f(n) i g(n), važi da je $f(n)=\Theta(g(n))$ ako i samo ako je f(n)=O(g(n)) i $f(n)=\Omega(g(n))$

Asimptotske notacije u jednačinama i nejednačinama

- Već smo videli formulu $n=O(n^2)$
 - Slično bi mogli da napišemo $2n^2+3n+1=2n^2+\Theta(n)$
 - Kako se interpretiraju ovakve formule?
 - U n= $O(n^2)$, znak = označava: n∈ $O(n^2)$
 - U većim formulama, asim. notacija predstavlja neku nepoznatu funkciju
 - Npr. formula $2n^2+3n+1=2n^2+\Theta(n)$ znači da je $2n^2+3n+1=2n^2+f(n)$, gde je f(n) neka funkcija u skupu $\Theta(n)$

Asimptotske notacije u jednačinama i nejednačinama

- Broj anonimnih funkcija u nekom izrazu jednak broju pojava asimtotskih notacija.
 - Na primer, u izrazu Σ O(i) postoji samo jedna anonimna funkcija, koja zavisi od i
- Šta ako se asimptotska notacija pojavljuje sa leve strane jednačine?
 - Npr. $2n^2 + \Theta(n) = \Theta(n^2)$
 - Pravilo: Kako god izabrali f-iju sa leve strane, postoji izbor f-ije sa desne strane, tako da je = zadovoljena
 - Za: $2n^2 + \Theta(n) = \Theta(n^2)$: za f(n) postoji $g(n) \in \Theta(n^2)$, takva da je $2n^2 + f(n) = g(n)$ za svako n

Asimptotske notacije u jednačinama i nejednačinama

- Moguće je ulančati više ovakvih relacija
 - Npr. $2n^2+3n+1 = 2n^2 + \Theta(n) = \Theta(n^2)$
- Primenom gornjeg pravila svaka jednačina u lancu se interpretira nezavisno
 - Najpre: $2n^2+3n+1 = 2n^2 + f(n)$
 - A zatim: $2n^2 + g(n) = h(n), g(n) \in \Theta(n), h(n) \in \Theta(n^2)$
 - Zaključak: $2n^2+3n+1 = \Theta(n^2)$

Poređenje funkcija

- Relaciona svojstva Re brojeva važe i za asimptotska poređenja
 - Tranzitivnost i refleksivnost za svih 5 asim. not.
 - Simetričnost za Θ i transponovana sim O- Ω i o- ω

Zato važi:

```
-f(n)=\Theta(g(n)) je kao a=b
```

$$-f(n)=O(g(n))$$
 je kao $a \le b$

$$-f(n)$$
= $\Omega(g(n))$ je kao *a*≥*b*

$$-f(n)=o(g(n))$$
 je kao $a < b$

$$-f(n)=\omega(g(n))$$
 je kao $a>b$

Poređenje funkcija

- Kaže se da je:
 - -f(n) asimptotski manje od g(n) ako je f(n)=o(g(n)) i
 - -f(n) asimptotski veće od g(n) ako je $f(n)=\omega(g(n))$
- Trojakost ne važi!
 - Trojakost: za dva realna broja a i b, samo jedna od sledeće tri relacije može biti tačna: a<b, a=b ili a>b
 - Ali, dve funkcije f(n) i g(n) mogu biti takve da za njih ne važi ni f(n)=O(g(n)) niti $f(n)=\Omega(g(n))$

Algoritam sortiranja sa umetanjem elemenata

• Sort za ulazni niz od n brojeva $\langle a_1, a_2, ..., a_n \rangle$ na izlazu daje permutaciju $\langle a_1', a_2', ..., a_n' \rangle$:

$$a_1' \leq a_2' \leq \ldots \leq a_n'$$
 (a_i se nazivaju ključevima)

- Eng. "insertion sort" je efikasan algoritma za sortiranje malog broja elemenata
 - Imitira način na koji čovek sorira karte u levoj ruci
- Karta u desnoj ruci se poredi sa kartama u levoj
 - s desna u levo

Algoritam sortiranja sa umetanjem elemenata (2/4)

- Karte u levoj ruci su sve vreme sortirane!
- Pripada klasi INKREMENTALNIH algoritama
- Procedura Isertion-Sort
 - Ulazni niz brojeva u nizu A[1..n]
 - Broj elemenata n je zadat atributom niza
 A.length
 - Sortira brojeve u istom tom nizu (eng. in place)
 - Na kraju procedure niz A sadrži sortiran niz brojeva

Algoritam sortiranja sa umetanjem elemenata (3/4)

```
INSERTION-SORT (A)

1 for j = 2 to A. length

2     key = A[j]

3     // Insert A[j] into the sorted sequence A[1..j-1].

4     i = j-1

5     while i > 0 and A[i] > key

6     A[i+1] = A[i]

7     i = i-1

8     A[i+1] = key
```

- Indeks j odgovara tekućoj karti u desnoj ruci
- Elementi u A[1..j-1] odgovaraju sortiranim kartama u levoj ruci
- Elementi u A[j+1..n] odgovaraju kartama u špilu na stolu
- Osobina da je A[1..j-1] uvek sortiran se zove INVARIJANTA PETLJE

Provera koreknosti algoritma

- Invarijanta petlje se koristi za dokaz da je algoritam korektan
- Potrebno pokazati tri osobine invarijante petlje:
 - Inicijalizacija: Istinita je pre prve iteracije petlje
 - Održavanje: Ako je istinita pre iteracije petlje, ostaje istinita posle iteracije
 - Završetak: Kada se petlja završi, invarijanta daje korisnu osobinu za dokazivanje korektnosti
- Velika sličnost sa matematičkom indukcijom
 - Ovde se postupak zaustavlja kada se petlja završi

Provera korektnosti procedure Insertion-Sort

Inicijalizacija:

- Pre prve iteracije j = 2, podniz A[1..j-1] je A[1], koji je sortiran

Održavanje:

- Povećanje indeksa j za sledeću iteraciju ne utiče na već sortiran podniz A[1..j-1]

Završetak:

- Uslov da je j > A.length = n, izaziva završetak **for** petlje
 - Tada j mora imati vrednost j = n + 1
 - Zamenom u invarijantu: A[1..j-1] = A[1..(n+1-1)] = A[1..n], a to je ceo niz!
 - Pošto je ceo niz sortiran, algoritam je korektan

Analiza algoritma

- Vreme izvršenja zavisi od veličine ulaza
 - sortiranje 10³ brojeva traje duže od sortiranja 3 broja
- Vremena za dva niza brojeva iste veličine
 - zavisi koliko dobro su oni već sortirani
- Vreme izvršenja = broj operacija, tj. koraka
 - KORAK što je moguće više mašinski nezavistan
 - Npr. za svaku liniju pseudo koda potrebna neka konstantna količina vremena
 - Neka je c_i konstantno vreme potrebno za i-tu liniju

Analiza procedure Insertion-Sort

```
INSERTION-SORT (A) cost times

1 for j = 2 to A.length c_1 n

2 key = A[j] c_2 n-1

3 // Insert A[j] into the sorted sequence A[1..j-1]. 0 n-1

4 i = j-1 c_4 n-1

5 while i > 0 and A[i] > key c_5 \sum_{j=2}^{n} t_j \sum_{j=2}^{n} t_j \sum_{j=2}^{n} t_j = 1

7 i = i-1 c_7 \sum_{j=2}^{n} (t_j - 1)

8 A[i+1] = key c_8 n-1
```

- t_i je broj ispitivanja uslova **while** petlje u liniji 5
- Ispitivanje uslova petlje se izvršava jednom više nego telo petlje
- Vreme izvršenja T(n) se dobija sabiranjem proizvoda:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Analiza procedure Insertion-Sort

- Vreme izvršenja zavisi od toga kakav ulaz te veličine je zadat
- Najbolji slučaj se dobija kada je ulaz već sortiran
- Tada je $A[i] \le key$, za svako j, u liniji 5, pa je t_j = 1, i najbolje (najkraće) vreme izvršenja je:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1) =$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8) = an + b$$

- Ako je ulazni niz sortiran u obratnom redosledu, dobija se najgore (najduže) vreme izvršenja
- Svaki A[j] se mora porediti sa celim podnizom A[1..j-1], pa je t_i = j
- Uzimajući u obzir:

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \qquad \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

Analiza procedure Insertion-Sort

sledi da je najgore vreme izvršenja:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1) =$$

$$= an^2 + bn - c$$

 Najgore vreme izvršenja je dakle kvadratna funkcija veličine ulaza an2 + bn - c, gde konstante a, b i c zavise od cena iskaza

Analiza najgoreg slučaja i prosečnog slučaja

- Najčešće je od interesa samo vreme izvršenja algoritma u najgorem slučaju. 3 razloga:
 - To je gornja granica izvršenja za bilo koji ulaz nikada se neće izvršavati duže
 - Najgori slučaj se dešava veoma često, npr. kod DB najgori slučaj je da tražena informacija nije u DB
 - Prosečan slučaj je često loš skoro kao najgori slučaj
- Npr. za slučajno generisan niz brojeva
 - polovina elemenata u A[1..j-1] je manja od A[j], a polovina elemenata je veća, pa je $t_i = j/2$
 - vreme izvršenja takođe kvadratna funkcija n

Asimptotsko ponašanje algoritma

- Niz uprošćenja
 - Prvo su zanemarene cene iskaza, putem konstanti c_i
 - Zatim se prešlo na konstante a, b, c
- Dalje uprošćenje asimptotske notacije
 - Procenjivanje stope rasta, ili VELIČINE RASTA, vremena izvršenja algoritma
 - Ranije je izveden zaključak da asimptotski uska granica za funkciju $f(n) = an^2 + bn c$ iznosi $\Theta(n^2)$
 - Dakle, asimptotski uska granica za vreme izvršenja algoritma sortiranja sa umetanjem elemenat, u najgorem slučaju, je jednaka $\Theta(n^2)$

Rekurencije

- Rekurencije idu ruku pod ruku sa podeli-i-zavladaj algoritmima
- Rekurencije su jednačine ili nejednakosti koje definišu vrednost funkcije u odnosu na manje vrednosti ulaza
- Opšta rekurentna jednačina za T(n) algoritma zasnovanog na pristupu *podeli-i-zavladaj*:

$$T(n) = \begin{cases} \Theta(1), & n \le c \\ aT\left(\frac{n}{b}\right) + D(n) + C(n), & inače \end{cases}$$

Rekurencije

- Rekurzije mogu imati različite oblike:
 - $T(n) = T(2n/3) + T(n/3) + \Theta(n)$
 - Rekurzivni algoritam deli posao na podprobleme različite veličine
 - Podela na dva zadatka: 2/3 i 1/3 od ukupnog ulaza n
 - $-\mathsf{T}(n)=\mathsf{T}(n\text{-}1)+\Theta(1)$
 - Algoritam pravi samo jedan podproblem koji sadrži samo jedan element manje u odnosu na početni ulaz
 - Svaki rekurzivni poziv traje konstantno vreme plus vreme izvršenja funkcije za ulaz n-1

Načini rešavanja rekurencije

- Uopšteno postoje tri metode za rešavanje rekurencija, tj. za određivanje Θ i O rešenja:
 - Metod zamene (subtitution method)
 - Pretpostavi se rešenje i matematičkom indukcijom se ono dokaže ili opovrgne
 - Metod rekurzivnog stabla (recursion-tree method)
 - Rekurencija se konvertuje u stablo čiji čvorovi na svakom nivou stabla predstavljaju utrošak potreban za rešavanje podproblema
 - Master metoda (master method)
 - Određuje granice za rekurencije oblika T(n) = aT(n/b) + f(n)

Master metoda

- Recept za rešavanje rekurentne jednačine oblika
 T(n) = aT(n/b) + f(n)
 a≥1 i b >1, f(n) neka asimptotski pozitivna funkcija
- Master metoda razlikuje tri slučaja
 - Lako rešavanje mnogih rekurentnih jednačina
- Jednačina opisuje vreme izvršenja algoritma
 - koji deli problem veličine n na a podproblema
 - svaki veličine n/b se rešava rekurzivno
 - vreme rešavanja podproblema je T(n/b)
 - -f(n) pokriva cenu deljenja problema na podprobleme i kombinovanja rešenja tih podproblema

Master teorema

Neka je data rekurentna jednačina oblika:

$$T(n) = aT(n/b) + f(n)$$

 $a \ge 1$ i $b > 1$, $f(n)$ neka asimptotski pozitivna funkcija

- Tada T(n) ima sledeće asimptotske granice:
 - Ako je $f(n) = O(n^{\log_b a \varepsilon})$ za neku konstantu $\varepsilon > 0$, onda je $T(n) = \Theta(n^{\log_b a})$
 - Ako je $f(n) = \Theta(n^{\log_b a})$, onda je $T(n) = \Theta(n^{\log_b a} \log_a \log_a n)$, lg je $\log_2 n$
 - Ako je $f(n) = \Omega(n^{\log_b a + \varepsilon})$ za neku konstantu ε >0, i ako je $af(n/b) \le cf(n)$ za neku konstantu c<1 i za sva dovoljno velika n, onda je $T(n) = \Theta(f(n))$

Tumačenje master teoreme

- U sva tri slučaja f(n) se poredi sa $n^{\log_b a}$
 - Veća od ove dve funkcije određuje rešenje
- Prilikom upoređivanja voditi računa o sledećem:
 - U slučaju 1, f(n) mora biti polinomijalno manja, za faktor n^{ε}
 - U slučaju 3, f(n) mora biti polinomijalno veća i mora zadovoljiti tzv. uslov regularnosti $af(n/b) \le cf(n)$
- Tri slučaja ne pokrivaju sve mogućnosti!
 - Postoje procepi između slučaja 1 i 2, i slučaja 2 i 3

Korišćenje master metode

- Prepozna se koji slučaj iz master teoreme važi, a onda se jednostavno napiše odgovor
- Primer 1: T(n) = 9T(n/3) + n
 - Rešenje: a=9, b=3, f(n)=n, $\log_b a=2$, $n^{\log_b a}=\Theta(n^2)$. Pošto je $n=O(n^{2-\varepsilon})$ za $\varepsilon=1$, u pitanju je slučaj 1, i rešenje je $T(n)=\Theta(n^2)$
- Primer 2: T(n) = T(2n/3) + 1
 - Rešenje: a=1, b=3/2, f(n)=1, $\log_b a=0$, $n^{\log_b a}=1$, Pošto je $1=\Theta(n^0)=\Theta(1)$, u pitanju je drugi slučaj i rešenje je $T(n)=\Theta(\lg n)$

Korišćenje master metode

- Primer 3: $T(n) = 3T(n/4) + n \lg n$
 - Rešenje: a=3, b=4, f(n)=n lgn, log $_b a=0.793$, $n^{\log_b a}=\Theta(n^{0.793})$. Pošto je n lg $n=\Omega(n^{0.793+\epsilon})$ za $\epsilon\approx 0.2$, u pitanju je slučaj 3, ako je zadovoljen uslov regularnosti. Za dovoljno veliko n je: $af(n/b)=3(n/4)\lg(n/4)\le(3/4)n$ lgn=cf(n) za c=3/4. Pošto je uslov regularnost ispunjen, rešenje je $T(n)=\Theta(n \lg n)$.

Algoritam sortiranja sa spajanjem podnizova

- Koristi pristup PODELI I ZAVLADAJ
 - Ti algoritmi su rekurzivni
- Na svakom nivou rekurzije sledeća 3 koraka:
 - Podeli problem na nekoliko podproblema, koji su manje instance istog problema
 - Zavladaj podproblemima rešavajući ih rekurzivno. Ako su podproblemi dovoljno mali, reši ih direktno
 - Kombinuj rešenja podproblema u ukupno rešenje originalnog problema

Algoritam sortiranja sa spajanjem podnizova

- Ovaj konkretan algoritam radi na sledeći način:
 - Podeli: Podeli niz od n elemenata u dva podniza od po n/2 elemenata
 - Zavladaj: Sortiraj dva podniza rekurzivno korišćenjem istog aloritma
 - Kombinuj: Spoj dva sortirana podniza da bi proizveo sortiran niz
- Rekurzija se spušta do dna, do niza dužine
 1, a niz sa jednim elementom već je sortiran

Spajanje dva sortirana podniza

- Spajanje obavlja procedura Merge(A, p, q, r)
 - A je niz, a p, q i r su indeksi niza: $p \le q < r$
 - Pretpostavka: A[p..q] i A[q+1..r] već sortirani
 - Merge ih spaja u jedan sortiran niz A[p..r]
- Potrebno $\Theta(n)$ vremena, n = r p + 1, to je broj elemenata koje treba spojiti
 - Dve gomile karata na stolu, okrenute licem na gore
 - Već sortirane, najmanja karta je na vrhu gomile
 - Spojiti u jednu sortiranu gomilu na stolu, okrenutu licem na dole

Osnovi korak procedure Merge

- Osnovni korak se sastoji od:
 - izbor manje karte sa vrhova dve polazne gomile,
 - Uklanjanje te karte sa vrha gomile (karta ispod nje postaje vidljiva)
 - Smeštanje karte dole na izlaznu gomilu
- Osnovni korak se ponavlja sve dok se jedna ulazna gomila ne isprazni; onda
 - 2-gu gomilu stavimo, licem na dole, na izlaznu gomilu
- Korak uzima $\Theta(1)$, pošto se samo porede 2 karte
 - -n koraka ukupno uzima $\Theta(n)$ vremena

Specijalna karta

- Da li je neka od polaznih gomila ispražnjena?
 - Zamena: Da li se došlo do specijalne karte?
- U pseudo kodu ta specijalna vrednost je ∞
 - ona ne može biti manja ili jednaka (≤) karta
 - osim ako se došlo do dna obe gomile
 - kad se to desi, sve karte pre specijalne karte su već prebačene na izlaznu gomilu
- Ukupno ima r-p+1 običnih karata
 - Procedura ponavlja osnovni korak toliko puta

Pseudo kod procedure Merge

```
MERGE(A, p, q, r)

    1: računa dužinu n₁ podniza A[p..q]

1 \quad n_1 = q - p + 1
                                  • 2: računa dužinu n<sub>2</sub> podniza
2 n_2 = r - q
3 let L[1...n_1 + 1] and R[1...n_2 + 1]
                                     A[q+1..r]
4 for i = 1 to n_1
5 	 L[i] = A[p+i-1]
                                  • 3: pravi nizove L i R (levi i desni),
6 for j = 1 to n_2
                                      dužine n_1+1 i n_2+1
  R[j] = A[q+j]
                                  • 4-5: kopira niz A[p..q] u niz
8 L[n_1 + 1] = \infty
                                     L[1..n_1]
9 R[n_2 + 1] = \infty
10 i = 1
                                  • 6-7: kopira niz A[q+1..r] u niz
11 i = 1
                                      R[1..n_2]
12 for k = p to r
                                  • 8-9: smeštaju specijalnu vrednost
       if L[i] \leq R[j]
13
           A[k] = L[i]
14
                                      ∞ na kraj nizova L i R
          i = i + 1
15
                                     10-17: ponavljaju osnovni korak
16 else A[k] = R[j]
                                      r -p+1 puta
17
           j = j + 1
```

Invarijanta petlje

- Na početku svake iteracije **for** petlje, lin. 12-17, A[p..k-1] sadrži k-p najmanjih elemenata iz $L[1..n_1+1]$ i $R[1..n_2+1]$, u sortiranom redosledu
 - Pored toga, L[i] i R[j] sadrže najmanje elemente njihovih nizova koji još nisu kopirani nazad u niz A
- Da se podsetimo: Provera korektnosti?
 - Odgovor: inicijalizacija, održavanje, završetak

Provera korektnosti algoritma

Provera tri svojstva:

– Inicijalizacija:

Pre I iteracije petlje, k = p, pa je niz A[p..k-1] prazan.
 Prazan niz sadrži k - p = 0 min elem iz L i R; kako je i = j = 1, L[1] i R[1] su min elementi

– Održavanje:

• I deo: pp da je $L[i] \le R[j]$, L[i] je min elem. A[p..k-1] sadrži k -p min elem, a nakom kopira-nja L[i] u A[k], A[p..k] će sadržati k -p+1 min elem. II deo: Ako je L[i] > R[j], onda lin. 16-17 održavaju inv.

– Završetak:

• Na kraju je k = r + 1. A[p..k-1], postaje A[p..r], i sadrži k - p = r - p + 1 min elem. L i R zajedno sadrže $n_1 + n_2 + 2 = r - p + 3$ elem, i svi oni su kopirani nazad u niz A, osim 2 spec. elem.

Procedura Merge-Sort

```
MERGE-SORT (A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT (A, p, q)

4 MERGE-SORT (A, q+1, r)

5 MERGE (A, p, q, r)
```

- Procedura Merge-Sort(A, p, r) sortira podniz A[p..r].
- Ako je $p \ge r$, taj podniz ima najviše jedan element, pa je on već sortiran.
- U suprotnom slučaju, korak **podeli** jednostavno računa indeks q, koji deli A[p..r] na dva podniza: A[p..q] i A[q+1..r]
 - Prvi podniz sadrži ⌊n/2⌋ a drugi ⌈n/2⌉ elemenata
- Inicijalni poziv: Merge-Sort(A, 1, A.length)

Rad procedure Merge-Sort

- Ulazni niz (na dnu):<5,2,4,7,1,3,2,6>
- algoritam
 započinje
 spajanjem nizova
 sa po 1 elem u
 sortirane nizove
 dužine 2, itd.
- sve do spajanja dva niza dužine n/2 u konačnan niz dužine n

Analiza rekurzivnih algoritama

- Kada algoritam sadrži rekurzivne pozive, vreme izvršenja se opisuje rekurentnom jednačinom, ili kratko rekurencijom
- Npr. podeli i zavladaj
 - Direktno rešenje za $n \le c$ uzima $\Theta(1)$ vreme
 - Podela problema na a podproblema, veličina 1/b
 - Podproblem uzima $\Theta(n/b)$ vremena
 - -a podproblema uzima $a \Theta(n/b)$ vremena
 - Podela problema na podprob. uzima D(n) vremena
 - Kombinovanje rešenja uzima C(n) vremena

Analiza rekurzivnih algoritama

• Opšta rekurentna jednačina za *T*(*n*) algoritma zasnovanog na pristupu podeli i zavladaj:

$$T(n) = \begin{cases} \Theta(1), & n \le c \\ aT\left(\frac{n}{b}\right) + D(n) + C(n), & inače \end{cases}$$

Analiza procedure Merge-Sort

- Vremena po koracima
 - **Podeli:** računa sredinu podniza, pa je $D(n) = \Theta(1)$
 - **Zavladaj:** dva podproblema, svaki veličine n/2, što daje doprinos ukupnom vremenu izvršenja od 2T(n/2)
 - Kombinuj: Merge nad nizom od n elemenata uzima $\Theta(n)$ vremena, pa je $C(n) = \Theta(n)$
- Pošto je $C(n)+D(n)=\Theta(n)$, rekurentna jednačina za T(n) za proceduru Merge-Sort glasi:

$$T(n) = \begin{cases} \Theta(1), & n = 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n), & n > 1 \end{cases}$$

Rešenje

- Primenom master metode, slučaj 2, dobija se rešenje $T(n) = \Theta(n \lg n)$
- Intuitivno razumevanje rešenja $T(n) = \Theta(n \lg n)$ bez master teoreme
 - Napišimo gornju jednačinu ovako:

$$T(n) = \begin{cases} c, & n = 1\\ 2T\left(\frac{n}{2}\right) + cn, & n > 1 \end{cases}$$

- c je vreme za problem veličine 1, kao i vreme po elementu niza za korake podeli i kombinuj
- Sledi grafičko rešenje poslednje jednačine
 - Pretpostavka: n je neki stepen za osnovu 2

Rešenje

- Rekurzivno stablo za T(n) = 2T(n/2)+cn
- (a): T(n), koji se na (b) proširuje u stablo prema rekurenciji
- cn je cena na najvišem nivou, a dva podstabla su rekurencijeT(n/2)
- (c): rezultat proširenja T(n/2)
- (d): celo rekurzivno stablo

Rešenje

- Dalje se sabiraju cene za svaki nivo stabla
 - najviši nivo: cena cn
 - sledeći novo: cena c(n/2) + c(n/2) = cn
 - sledeći novo: c(n/4)+c(n/4)+c(n/4)+c(n/4)=cn, itd.
 - najniži nivo: n čvorova x cena c = cn. Uvek cn.
- Ukupno nivoa u stablu: $\lg n + 1$, n broj listova
- Ukupna cena rekurencije:
 - Br nivoa x Cena nivoa = $(\lg n + 1)$ $cn = cn \lg n + cn$
 - Zanemarujući niži član cn, kao i konstantu c, dobijamo: $T(n) = \Theta(n \lg n)$

Metod zamene

• Metodom zamene naći O rešenje za:

$$-\mathsf{T}(n)=2\mathsf{T}(*n/2)+n$$

*foor