CS 3313 Foundations of Computing:

Pushdown Automata

http://gw-cs3313-2021.github.io

Formal Definition: Pushdown Automaton (PDA)

- A NFA with a stack storage is a Pushdown Automaton (PDA).
 - PDA is an automaton equivalent to the CFG in language-defining power.
 - Proof/Conversion algorithm covered in lecture today
 - Only the nondeterministic PDA defines all the CFL's.
 - Deterministic PDAs accept a subset of CFLs
 - Most programming languages have deterministic PDA's.
- Next: quick review of definitions and examples, including using JFLAP to simulate and test

Intuition: PDA

- Think of an λ-NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
 - 1. The current state (of its "NFA"),
 - 2. The current input symbol (or ϵ), and
 - 3. The current symbol on top of its stack.

Intuition: PDA – (2)

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
 - 1. Change state, and also
 - 2. Replace the top symbol on the stack by a sequence of zero or more symbols.
 - Zero symbols = "pop."
 - Many symbols = sequence of "pushes."

PDA Formalism

- A PDA M= (Q, Σ, Γ,δ, q_0 , Z_0 , F) is described by:
 - 1. A finite set of *states* Q (same as before).
 - 2. An *input alphabet* Σ (same as before).
 - 3. A *stack alphabet* Γ (typically assume Γ disjoint from Σ).
 - 4. A transition function δ
 - δ: (Q × (Σ∪λ) ×Γ) \rightarrow 2^(Q×Γ*) (subset of Q ×Γ*)
 - 5. A *start state* q_0 , in Q (same as before).
 - 6. A *start symbol* Z_0 , in Γ (to indicate bottom of stack).
 - 7. A set of *final states* $F \subseteq Q$

Pushdown Automaton: Definitions

- There is a specific stack alphabet Γ
 - You could always make it equal to Σ
 - Better to keep it separate but can have a 1-1 mapping
 - Ex: $\Sigma = \{a,b\} \Gamma = \{X,Y\}$ where X corresponds to a and Y to b.
- PDA by default is non-deterministic
 - δ(q,a,x) has a number of choices of (p,y) where p is a state and y is a stack symbol
 - A deterministic PDA is known as a DPDA (less powerful than PDA)
 - λ-transitions are allowed as the default
- Can also push/pop λ onto stack = push/pop nothing
- Can define a transition graph for a pda
 - each edge is labeled with the input symbol, the stack top, and the string that replaces the top of the stack
 - But cumbersome to model as a graph....so use Parse trees formalism

Actions of the PDA

- δ takes three arguments: state, input, top of stack
- $\delta(q, a, Z)$ is a set of possible moves of the form (p, α) .
 - p is a state; α is a string of stack symbols.
- If $\delta(q, a, Z)$ contains (p, α) among its actions, then PDA in state q, with a as input, and Z on top of the stack:
 - 1. Changes the state to p.
 - 2. Remove a from the front of the input (but a may be λ).
 - 3. Replace Z on the top of the stack by α .
 - Pop Z and Push α
 - Note: (3) above implies that you always pop from TOS therefore to push onto TOS, you have to push the original TOS followed by the new stack symbol

Instantaneous Descriptions

- current configuration of the PDA specified by instantaneous description (ID)
- An ID is a triple (q, w, α), where:
 - 1. q is the current state.
 - w is the remaining input.
 - 3. α is the stack contents, top at the left.
- In one "move" (step), a PDA goes from one ID to another
 - A move is denoted by the symbol ⊢ ("yields")
- Formally: (q, aw, Xα)⊦(p, w, βα) for any w and α, if δ(q, a, X) contains (p, β).
- Extend + to +*, meaning "zero or more moves," by:
 - Basis: I+*I.
 - Induction: If I+*J and J+K, then I+*K.

Language of a PDA

- The common way to define the language of a PDA is by final state.
 - set of strings that cause the PDA to halt in a final state, after starting in q₀ with an empty stack denoted by Z₀ start stack symbol at TOS.
 - The final contents of the stack are irrelevant
 - Since PDA is nondeterministic, the string is accepted if any of the computations cause it to halt in a final state
- If M is a PDA, then L(M) is the set of strings w such that $(q_0, w, Z_0) \vdash^* (f, \lambda, \alpha)$ for final state f and any $\alpha \in \Gamma^*$
- acceptance of a language by a PDA by empty stack.
- If M is a PDA, then N(M) is the set of strings w such that (q₀, w, Z₀) ⊦* (q, λ , λ) for any state q.

Example 1: L = { w | w has equal number of a's and b's}

Logic:

- Stack symbols X for input a, Y for input b
- For every a in the input, there is a b that cancels it out
- Push X if you read an a, with Z₀ or X at TOS
- Push Y if you read a b, with Z₀ or Y at TOS
- If you read a and Y is TOS, then "pop" (cancel a with a previous b)
- If you read b and X is TOS, then "pop" (cancel b with a previous a)
- · If you have an equal number then at the end of input you will have
 - Empty string to read on input
 - Start stack on TOS
 - (q, λ, Z_0) is the ID

Example 2: $L = \{ a^m b^n | n=m \text{ or } n=2m \}$

- Strings of the form aaabbb or aaabbbbbb
- Use non-determinism to design the PDA:
 - PDA1 accepts n=m or
 - PDA2 accepts n=2m
 - Start PDA and jump non-deterministically on empty string input to PDA1 or PDA2
- PDA1 starts in q₁
 - For every a in input, push X. For every b, pop one X
- PDA2 starts in q₂
 - For every a in input, push 2 X's. For every b, pop one X
- If either PDA1 or PDA2 accept then PDA M accepts.
- Observation: turns out there is no Deterministic PDA for this language – can prove it later.

Example 3: $L = \{ w w^R \mid w \text{ in } \{a,b\}^* \}$

- Recognizing wcw^R was "easy"
 - Keep pushing input until you read c
 - After reading c, compare input with TOS
 - The location of c gives you the 'midpoint' (the middle of the string)
- In ww^R there is no *c* in input to denote midpoint
- So "guess" non-deterministically
 - If it is the midpoint then input you read = last input you read (i.e. TOS)
 - After midpoint, "match" input with TOS (read a, X is TOS; read b with Y as TOS)...until you hit end of string and Z₀ as TOS
- Ex: abbbba
 - a ↑ bbbba can this be the midpoint?
 - ab†bbba can this be the midpoint?
 - abb ↑ bba can this be midpoint?
 - abbb↑ ba can this be midpoint?

Example/Exercise 3: ww^R

Build the PDA for ww^R