Towards linguistics with syntax-analysed data and command-line tools

Veronika Laippala veronika.laippala @utu.fi

Topic of the day

- Using syntax-analysed data as the basis of linguistic analysis
 - A lot of potential for linguistics
- Command line
 - Much more flexible than corpus software
 - Allows for more advanced and efficient processing
 - Standard solutions eventually make their way to software, but new and more complex methods are not (necessarily) available there
- Apply these to some typical linguistic research settings

Steps for today

- 1. "Theory"
- 2. "Practice"

Note:

- See the references for more information on the topics!
- Feel free to select the parts you do from the notebooks (we cannot do all of them during this session
- The practice section done on Google colab
- You'll need Google credentials

Steps for today

- "Theory"
 - a. Universal dependencies
 - b. Type A and Type B studies (Biber and Jones 2009)
 - c. Keyness (and text classification)
- 2. "Practice"
 - a. Processing data on command line in the syntax-analysed Conllu format
 - b. Keyness
 - i. "Standard"
 - ii. Text dispersion
 - iii. Linear classifier

Universal dependencies

Scheme for presenting dependency syntax

- Typed dependency relations between words
- Basic dependency representation forms a tree
- Exactly one word is the head of the sentence
- All other words are dependent on another word in the sentence

Universal dependencies

Cross-linguistically valid

Current UD Languages	-		Dutch	-		Ligurian		■ Soi
	•	洲长	English	-		Lithuanian		South Levantine Arabic
nformation about language families (and ;			Erzya			Livvi		
			Estonian	- E	5 48	Low Saxon	→ <u>°</u>	
Afrikaans	•	#	Faroese	-	•	Madi	→ ■	
Akkadian Akkadian		#	Finnish		•	Makurap	→	Swedish Sign Language
▶ S Akuntsu	_		French	- E	*	Maltese	→	Swiss German
Albanian Albanian	- 1	SS	Frisian Dutch	-	¥	Manx	>	
Mharic Amharic	•	N	Galician	_ F	-	Marathi		
Ancient Greek	1	-	German	- 1	0	Mbya Guarani		
Ancient Hebrew		#	Gothic		-	Moksha		Tatar
▶ ♦ Apurina			Greek	-	•	Munduruku	\rightarrow	Teko
Arabic		•	Guajajara Guarani	-		Naija	•	Telugu
Armenian			Hebrew		-	Nayini		Thai
> X Assyrian	-	•	Hindi		N	Neapolitan	→ S	Tupinamba
Bambara			Hindi English			North Sami	▶ ©	
Basque		O.	Hittite	-	#	Norwegian		III
			Hungarian		-	Old Church Slavonic		
Beja Belarusian		+	Icelandic		1	Old East Slavic Old French	-	Ukrainian
	•		Indonesian		***	Old French Old Turkish		Umbrian
Bengali	-		Irish			Persian	—	Upper Sorbian
Bhojpuri Bhojpuri	-	П	Italian			Polish	- C	Urdu
Breton	-	•	Japanese			Pomak	- D	Uyghur
Bulgarian			Javanese		9	Portuguese	>	
Buryat	-	◆	Kaapor			Romanian		
Cantonese	•		Kangri		-	Russian		
> Catalan	•		Karelian			Sanskrit	F	
> Cebuano	-	◆	Karo		×	Scottish Gaelic	- P	Western Armenian
Chinese	-		Kazakh	-		Serbian	→	Wolof
Chukchi	-	-	Khunsari			Skolt Sami	· •	Xibe
Classical Chinese	-	u	Kiche		· Comme	Slovak		
▶ 🐞 Coptic	-	-	Komi Permyak	-		Slovenian		Yoruba
Croatian	-		Komi Zyrian		=	Soi		
Czech	-	(0)	Korean			South Le https:/	/univer	rsaldependencies.o
Danish	-	C)	Kurmanji		-	Spanish	•	,

Design principles of the treebanks

- Needs to have a solid linguistic foundation
- Be transparent and accessible to non-specialists
- Support well downstream language understanding tasks

Disclaimer

- Despite of the common guidelines, adaptation can vary between different treebanks
 - Language-specific additions
 - Language-specific omissions
 - Treebank level annotation practices

Treebank + machine learning = parser

- 1. Segmentation
- 2. Tokenization and sentence splitting
- Morphological annotation + part-of-speech
- 4. Lemmatization
- 5. Dependency syntax

Turku-neural-parser-pipeline

http://turkunlp.org/Turku-neural-parser-pipeline/

A neural parsing pipeline for segmentation, morphological tagging, dependency parsing and lemmatization with pre-trained models for more than 50 languages. Top ranker in the CoNLL-18 Shared Task.

"Väsyneet"
ADJ
Case: Nom, Degree: Pos, Number: Plur
Lemma: väsynyt
Postag: A

LAS 91%
Token segmentation ~99%
POS ~98%
Lemmas ~95%

SOFTWAR

pipeline for fundamental NLP tasks over 100 languages, and 90 pretrained pipelines for 56 languages.

Trankit can be easily installed via pip: pip install trankit

For more information, please check out our github repo, documentation, and technical paper.

Usage

UNIVERSITY OF OREGON

```
from trankit import Pipeline
# initialize a pipeline on English
p = Pipeline(lang='english', gpu=True, cache_dir='./cache')
doc = '''Michael helped shoot the majority of my firm's website
and we could not have been happier.'''
# perform all tasks on the input
all = p(doc)
sents = p.ssplit(doc) # sentence segmentation
tokens = p.tokenize(doc) # tokenization
```

Trankit is a light-weight Transformer-based Toolkit for multilingual Natural Language Processing (NLP). It pro

	Nominals	Clauses	Modifier words	Function Words
Core arguments	nsubj obj. iobj	csubj ccomp xcomp	1	//universaldependencie dep/all.html
Non-core dependents	obl vocative expl dislocated	advcl	advmod* discourse	aux cop mark
Nominal dependents	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
conj.	fixed flat compound	<u>list</u> parataxis	orphan goeswith reparandum	punct root dep

id wordform lemma upos pos morpho head deptype

1	They	they	PRON	PRP	Case=Nom Number=Plur	2	nsubj
2	buy	buy	VERB	VBP	Number=Plur Person=3 Tense=Pres	0	root
3	and	and	CONJ	CC	_	4	cc
4	sell	sell	VERB	VBP	Number=Plur Person=3 Tense=Pres	2	conj
5	books	book	NOUN	NNS	Number=Plur	2	obj
6			PUNCT		<u>_</u>	2	punct

https://universaldependencies.org/format.html

What to do with conllu data then?

Two research designs in corpus linguistics (see Biber & Jones 2009, Biber, Conrad & Reppen 1998)

Table 1.1 Association patterns in language use

- A. Investigating the use of a linguistic feature (lexical or grammatical)
 - (i) Linguistic associations of the feature
 - lexical associations (associations with particular words)
 - grammatical associations (associations with particular grammatical constructions)
 - (ii) Non-linguistic associations of the feature
 - distribution across registers
 - distribution across dialects
 - distribution across time periods
- B. Investigating varieties or texts (e.g., registers, dialects, historical periods)
 - (i) Linguistic association patterns
 - individual linguistic features or classes of features
 - co-occurrence patterns of linguistic features

What to do with conllu data then?

- Type A
 - Zero or pronominal subject? (Helasvuo & Kyröläinen 2016)
 - Near-synonyms (Biber, Conrad and Reppen 1998: 93)
- Type B
 - Filtering -- filter away function words etc.
 - Normalisation with lemmatisation
 - Lexico-grammatical characteristics of texts (Biber 1988)

Today focus on type B

- Characteristics of entire texts
- Focus on keyness
 - A loose theoretical framework for analyzing important characteristics of a set of texts (Scott 1997, Scott & Tribble 2006)
 - Keywords ~ a group of words that function as a key to the text
 - Tell about the style and aboutness of the texts

Transportation/ lodging	Tourism	Narrative/ description	Physical fea	atures	Places/attractions	Food/drink
airport	adventure	afternoon	beach		city	beer
biking	arrived	amazing	beaches		gardens	delicious
boat	attractions	around	cliffs		museum	dinner
booked	destination	beautiful	hills		park	lunch
bus	explore	day	island		places	restaurant
ferry	exploring	enjoyed	islands		shops	restaurants
flight	guide	famous	mountain		town	
flights	holiday	hour	mountains		village	
headed	locals	located	river		villages	
hike	photo	lovely	rocks			
hiking	photos	nearby	sea			
hostel	sights	night	trees			
hostels	tour	north	water			
hotel	tourist	scenery				
hotels	tourists	scenic	r			
journey	tours	south		Riber	2. Eghart 2019	
ride	travel	spectacular		pinel	& Egbert 2018	
road	travellers	steep		7		
streets	travelling	stunning				
trail	trip	sun				
trails	visit	sunny				
walk	visited	sunset				
walked	visiting	swimming				
walking	visitors	weather				

In practice

- Two corpora: target + reference
- Comparison of the words in the target corpus and in the reference corpus
- Keywords the ones that are over- or underrepresented in the target corpus
- Result a list of keywords
- Filtering + lemmatisation useful in the preprocessing

Methods used to extract keywords

"The standard":

Frequency list of target corpus words

Frequency list of reference corpus words

Challenges with keyword analysis

- Text should be the unit of observation!
- (Can you think of why?)
- How to evaluate the keywords?

Text dispersion (Egbert & Biber 2019)

Document frequencies of the target corpus words

Document frequencies of the reference corpus words

Challenges with keyword analysis

- How to evaluate globally how well the keywords reflect the target and reference corpora?
- How to evaluate locally how well the keywords reflect individual documents?
- One possible solution to these challenges is to set up the task as text classification between the target and reference corpora

Text classification

Manually annotated training data - texts with class labels

Machine learning algorithm

Machine learning model / Classifier

Text classification in keyword analysis

- Answers many of the challenges listed previously
 - Text as a unit of observation
 - Global evaluation: model performance
 - Local evaluation: how confident is the classifier about the text?
- Machine learning not new in linguistics
 - Random forests are often applied to study e.g. the geographical preference of -ing or to complements (e.g. Dehors & Gries 2016)

Support vector machines

- Good with sparse data (such as texts)!
- Feature importance often used to explain predictions in NLP (e.g. Sharoff et al. 2010)

Text classification

- Split data to train and test sets
 - ML focuses on *predicting* new instances
 - Evaluation done on the test set that has not been seen during the training
- Typical evaluation measures precision, recall, f1-score (balanced and harmonized mean of precision+recall)
- Featurization how are the data represented to the classifier?
 - Words, but also lemmas, syntactic information, etc.
 - → Comparison of the importance of words / other features for the classes in the data (see e.g. Laippala et al. 2021)

References

Biber, D., Conrad, S. and Reppen, R (1998). Corpus Linguistics: Investigating Language Structure and Use. Cambridge.

Biber, D., & Jones, J. K. (2009). Quantitative methods in corpus linguistics. In Corpus Linguistics: An International Handbook (Vol. 2, pp. 1286-1304). De Gruyter Mouton.

Biber, D., Egbert, J. (2018) Register Variation Online. Cambridge.

Deshors, Sandra & Gries, Stefan. (2016). 2016. Deshors, Sandra C. & Stefan Th. Gries. Profiling verb complementation constructions across New Englishes: A two-step random forests analysis of -ing vs. to- complements. International Journal of Corpus Linguistics 21(2): 192-218. International Journal of Corpus Linguistics. 21. 10.1075/ijcl.21.2.03des.

Egbert, Jesse & Biber, Doug. (2019). Incorporating text dispersion into keyword analyses. Corpora. 14. 77-104. 10.3366/cor.2019.0162.

Helasvuo, Marja-Liisa and Kyröläinen, Aki-Juhani. "Choosing between zero and pronominal subject: modeling subject expression in the 1st person singular in Finnish conversation " Corpus Linguistics and Linguistic Theory, vol. 12, no. 2, 2016, pp. 263-299.

Laippala, Veronika, Jesse Egbert, Douglas Biber, Aki-Juhani Kyröläinen (2021) Exploring the roleof lexis and grammar for the stable identification of register in an unrestricted corpus of web documents. Language resources and evaluation.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič, Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, Daniel Zeman. Universal Dependencies v1: A Multilingual Treebank Collection. In Proceedings of LREC. 2016.

Marie-Catherine de Marneffe, Christopher D. Manning, Joakim Nivre, Daniel Zeman. Universal Dependencies. Computational Linguistics. 2021.

Mike Scott, Chris Tribble (2006): Textual Patterns: Key Words and Corpus Analysis in Language Education

Sharoff, S., Z. Wo, and K. Markert. 2010. The web library of babel: evaluating genre collections. Proceedings of the Seventh Conference on International Language Resources and Evaluation. 3063–3070.