Few-Shot Learning

1. "标准"机器学习

2. "不标准"机器学习

3. 问题定义

1. Machine Learning: A computer program is said to learn from experience E with respect to some classes of task T and performance measure P if its performance can improve with E on T measured by P.

2.**Few-Shot Learning:** FSL is a type of machine learning problems (Specified by **E**,**T** and **P**) where **E** contains little supervised information for the target **T**.

4. FSL的典型应用场景

- 1.Few-Shot due to rare cases: 由于各种各样的原因没有数据
- 2.Few-Shot to reduce data gathering effort and computation cost: 可以帮助减轻收集数据的负担
- 3.Test bed for human-like learning: 解决小样本问题是迈向真正的人工智能的重要一步

	E		
T	supervised information	prior knowledge	P
character generation [62]	a few examples of new	pre-learned knowledge of parts	pass rate of visual
	character	and relations	Turing test
image classification [56]	supervised few labeled images	raw images of other classes, or	classification
	for each class of the target T	pre-trained models.	accuracy
drug toxicity discovery [3]	new molecule's limited assay	similar molecules' assays	classification
			accuracy

5. 符号定义

- 1. 数据集 $D = \{Dtrain, Dtrain\}, \ \$ 其中 $D^{train} = \{(x^{(i)}, y^{(i)})\}, \ \ D^{test} = \{xtest\};$
- 2. 设P(x,y)是输入x和输出y的联合分布;
- 3. o = x到y全部映射的集合,o*= e0中对目标函数的最优映射;
- 4. H是模型决定的假设空间,并使用 $h(\cdot;\theta)$ 表示参数为 θ 的假设(模型);
- 5. 使用符号ŷ表示模型的输出;
- 6. 使用符号*l*(ŷ, y)表示定义的损失函数

6. Error Decomposition

1. expected risk R on o:

$$R(o) = \int l(o(x), y) dp(x, y) = E[l(o(x), y)]$$

- 2. expected risk R on $h \in H$: R(h)
- 3. empirical risk $R_I(h)$ is used to estimate the expected risk R(h), defined as the average of the sample losses over the training data set D^{train} :

$$R_I(h) = \frac{1}{n} \sum_{i=1}^{I} l(h(x^{(i)}), y^{(i)})$$

and learning is done by empirical risk minimization.

6. Error Decomposition

- 4. $o^* = \arg\min_f R(o)$, where R attains its minima; $h^* = \arg\min_{h \in \mathcal{H}} R(h)$, where R is minimized with respect to $h \in \mathcal{H}$; $h_I = \arg\min_{h \in \mathcal{H}} R_I(h)$, where R_I is minimized with respect to $h \in \mathcal{H}$;
- 5. The *total error* of learning taken with respect to the random choice of training set can be decomposed into:

$$\mathbb{E}[R(\tilde{h}_I)] = \underbrace{\mathbb{E}[R(h^*) - o^*]}_{\mathcal{E}_{app}} + \underbrace{\mathbb{E}[R(h_I) - R(h^*)]}_{\mathcal{E}_{est}(\mathcal{H}, I)}.$$

评估所选模型的容量

评估模型可达到的效果

7. Unreliable ERM

- 1. **sample complexity:** refers to the number of training samples needed to guarantee the effort of ERM.
- 2. sample complexity increases with more complicated H chosen by the model, higher probability that learned h_I is approximately correct, and higher demand of optimization accuracy of algorithm.
- 3. $\mathcal{E}_{\text{est}}(\mathcal{H}, \infty) = \lim_{I \to \infty} \mathbb{E}[R(h_I) R(h^*)] = 0,$ $\lim_{I \to \infty} \text{Var}[R(h_I)] = 0,$
- 4. Under FSL, the number of available example is smaller than the required sample complexity, leading the ERM is **no longer reliable.**

7. Unreliable ERM

8. FSL Taxonomy

- 1. **Data:** use *prior knowledge* to augment D^{train} so as to provide an accurate $R_I(h)$ of smaller variance and to meet the sample complexity.
- 2. **Model:** design H based on *prior knowledge* in experience E to constrain the complexity of H and reduce its sample complexity.
- 3. Algorithm: take advantage of *prior knowledge* to search for the θ which parameterizes the best $h \in H$.

8. FSL Taxonomy

Fig. 3. How FSL methods solve few-shot problem from the perspectives from data (left), model (middle) and algorithm (right).

9. Algorithm

- 1. refining existing parameters θ : an initial θ learned from other tasks
- 2. refining meta-learned θ : a meta-learner is learned from a set of tasks drawn from the same task distribution as the few-shot task to output a general θ

3. learning search steps

strategy	prior knowledge	how to search θ in \mathcal{H}	
refining existing parameters $ heta^0$	learned $ heta^0$ as initialization	refine $ heta^0$ by $D^{ ext{train}}$	
refining meta-learned $ heta$	meta-learner learned from a task distribution	refine the meta-learned $ heta$ by $D^{ ext{train}}$	
learning search steps	meta-learner learned from a task distribution	search steps provided by meta-learner	

10. Few-Shot Learning VS Meta-Learning

- 1. Few-Shot Learning: tackle the problem that lacks the ability of learning from limited exemplars and fast generalizing to new tasks.
- 2. Meta-Learning: learning-to-learn, the goal of the trained model is to quickly learn a new task from a small amount of new data, and the model is trained by the meta-learner to be able to learn on a large number of different tasks.

11. Meta-learning

• In meta-learning, it learns from **a set of tasks** $T_s \sim p(T)$. Each task Ts operates on data set D_{T_s} of N classes where $D_{T_s} = \{D_{T_s}^{train}, D_{T_s}^{test}\}$. Each learner learns from $D_{T_s}^{train}$ and measures test error on $D_{T_s}^{test}$. The parameter of meta-learner learns to minimize the error across all learners by

$$\theta = \arg\min_{\theta} E_{T_s \sim p(T)} l_{\theta}(D_{T_s})$$

• Then in meta-testing, another disjoint set of tasks $T_t \sim p(T)$ is used to test the generalization ability of meta-learner. Each T_t works on D_{T_t} . Finally, learner learns from $D_{T_t}^{train}$ and test on $D_{T_t}^{test}$ to obtain the meta-learning testing error.

11. Meta-learning

12. MAML

11: end while

Algorithm 2 MAML for Few-Shot Supervised Learning

```
Require: p(\mathcal{T}): distribution over tasks
Require: \alpha, \beta: step size hyperparameters
  1: randomly initialize \theta
  2: while not done do
            Sample batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
           for all \mathcal{T}_i do
  4:
                 Sample K datapoints \mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\} from \mathcal{T}_i
                 Evaluate \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta}) using \mathcal{D} and \mathcal{L}_{\mathcal{T}_i} in Equation (2)
 6:
                or (3)
 7:
                 Compute adapted parameters with gradient descent:
                 \theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})
                 Sample datapoints \mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}\ from \mathcal{T}_i for the
  8:
                 meta-update
 9:
           end for
           Update \theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'}) using each \mathcal{D}_i'
10:
            and \mathcal{L}_{\mathcal{T}_i} in Equation 2 or 3
```

谢谢