

Análise e desenvolvimento de Sistemas e Sistemas para internet

Aula 3: Lógica Matemática

A Essência da matemática é a sua liberdade.

Georg Cantor

Unidade 2

Lógica para Computação

- Conjuntos
- Operações com Conjuntos
- Conjuntos das Partes

Georg Cantor

O estudo mais rigoroso da teoria dos conjuntos despontou no sec. XIX, com os trabalhos do matemático Georg Cantor. Em um de seus trabalhos, ele abalou a comunidade matemática da época, provando que a cardinalidade infinita do conjunto R, dos números reais, e maior que a cardinalidade infinita do conjunto N dos números naturais.

A cardinalidade de um conjunto finito e o número de elementos deste conjunto. Cantor mostrou que ha vários tipos de conjuntos infinitos e que existem infinitos "maiores" que outros infinitos. O conjunto dos números racionais Q tem a mesma cardinalidade infinita que N, mas R tem cardinalidade maior.

Georg Cantor (1845 - 1918)

Conjuntos Numéricos

https://www.todamateria.com.br/conjuntos-numericos/

Conjuntos Numéricos

- Naturais 0, 1, 2, 3, 4, 5... Positivos inteiros a partir do 0
- Inteiros ... -2, -1, 0, 1, 2, 3... Naturais + os negativos
- Racionais ... -1, 0, 1, 2 e frações (½,¾...) Naturais + frações e dízimas periódicas
- Irracionais π , $\sqrt{2}$, $\sqrt{3}$, $-\sqrt{5}$... Raízes não inteiras e dízimas não periódicas

Conjuntos

Usaremos as seguintes notações:

- $x \in A$, $x \in A$ elemento do conjunto A ou x pertence a A.
- x ∉ A, x não é elemento do conjunto A, ou x não pertence a A.
- A ⊂ B, o conjunto A e um subconjunto do conjunto B ou A está contido em B.
- Se A ⊂ B, dizemos também que o conjunto B contém o conjunto A e denotamos B ⊃ A.
- A ⊄ B. O conjunto A não está contido no conjunto B.

Conjuntos

Especificar uma propriedade que define um conjunto, como:

$$S = \{x \mid P(x)\}:$$

$${x \in Z | -2 < x < 5}$$

$${x \in R \mid -2 < x < 5}$$

P(x) não pode ser uma propriedade qualquer.

Operações em conjuntos

União (U)

Interseção (∩)

• Diferença (-)

• Complementar (c)

União: $A \cup B = \{x \in U | x \in A \text{ ou } x \in B\}$

Notação: $A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$

Intersecção: $A \cap B = \{x \in U | x \in A \text{ e } x \in B\}$

Notação: $A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$

<u>Diferença</u>: $B - A = \{x \in U | x \in B \text{ e } x \notin A\}$

Complemento: $A^c = \{x \in U | x \notin A\}$

Operações em conjuntos

 $(2; 4) \cap (3; 5) = (3; 4) e (2; 4) \cup (3; 5) = (2; 5)$. Observe o diagrama a seguir:

Operações em conjuntos

- União (U)
- Interseção (∩)
- Diferença (-)
- Complementar (c)

Qual é o conjunto formado através [1;2] ∩ [2;5]

Exemplo pág 56.

Consideremos os conjuntos: $A = \{x \in \mathbb{N} | x < 12 \ e \ x \ \text{\'e multiplo de } 3\}$

B={0,3,5,7} sendo subconjuntos de $U = \{x \in \mathbb{N} | x \le 10\}$

- a) A^c ou A'
- b) $(A \cap B)^c$
- c) $(BUA)^c$

Exemplo pág 56. **LEMBRE-SE A É SUBCONJUNTO DE U**

Consideremos os conjuntos: $A = \{x \in \mathbb{N} | x < 12 \ e \ x \ \text{\'e multiplo de } 3\}$

B={0,3,5,7} sendo subconjuntos de $U = \{x \in \mathbb{N} | x \le 10\}$

a) A^c ou $A' = \{x \in U | x \notin A\} = \{1,2,4,5,7,8,10\}$

Exemplo pág 56.

Consideremos os conjuntos: $A = \{x \in \mathbb{N} | x < 12 \ e \ x \ é \ multiplo \ de \ 3\}$

B={0,3,5,7} sendo subconjuntos de $U = \{x \in \mathbb{N} | x \le 10\}$

b)
$$(A \cap B)^c = \{x \in U | x \notin (A \cap B)\} = \{1,2,4,5,6,7,8,9,10\}$$

- 1. $\{a\} \subset \{c, a, b\} \in \{c, a, b\}$ são armações verdadeiras;
- 2. $\{a\} \in \{c, a, b\}$ e a $\subset \{c, a, b\}$ são armações falsas;
- 3. O correto é $\emptyset \subset \mathbb{N}$, enquanto que a proposição $\emptyset \in \mathbb{N}$ é falsa;
- 4. Seja A = $\{1, \{1\}, \{2\}, 3\}$, temos:

$$\begin{aligned} 1 \in A, & \{1\} \in A, & \{1\} \subset A, & \{\{1\}\} \subset A, \\ 2 \notin A, & \{2\} \in A, & \{2\} \not\subset A, & \{\{2\}\} \subset A, \\ 3 \in A, & \{3\} \notin A, & \{3\} \subset A, & \{\{3\}\} \not\subset A. \end{aligned}$$

Relação Algébrica e Diagrama de Venn

Expressão	Símbolo	Diagrama de Venn	Expressão Algébrica		Tabela Verda	
				Α	В	Output
				0	0	0
AND	-		A·B	0	1	0
				1	0	0
				1	1	1
				A	В	Output
			A + B	0	0	0
OR				0	1	1
				1	0	1
				1	1	1
		No.		A	В	Output
			A⊕B	0	0	0
XOR				0	1	1
				1	0	1
				1	1	0
	\>		\overline{A}	A		Output
NOT				()	1
ALTERNIA				1	L	0

Conjunção

Disjunção

Disjunção Exclusiva

Negação

Relação Algébrica e Diagrama de Venn

			No.	A	В	Output
				0	0	1
NAND)o- (())		$\overline{A \cdot B}$	0	1	1
				1	0	1 1 0
				1	1	0
				Α	В	Output
	→ C			0	0	1
NOR		(() }	$\overline{A+B}$	0	1	0
				1	0	0 0
				1	1	0
XNOR				A	В	Output
		$\overline{A \oplus B}$	0	0	1	
			0	1	0	
				1	0	0 0 1
				1	1	1
BUF				11	1	Output
			A	C	1	0
				1	3	1

Não E

Não OU

Não (A e B, mas não ambos)

Diagrama de Venn

Seja a expressão (a.b)+(a.c), determine:

- a) A tabela Verdade
- b) O diagrama de Venn

Seja a expressão (a.b)+(a.c), determine:

a) A tabela Verdade

а	b	С	(a.b)	(a.c)	(a.b)+(a.c)
V	V	V	V	V	V
V	V	F	V	F	V
V	F	V	F	V	V
V	F	F	F	F	F
F	V	V	F	F	F
F	V	F	F	F	F
F	F	V	F	F	F
F	F	F	F	F	F

Seja a expressão (a.b)+(a.c), determine:

b) O diagrama de Venn

а	b	С	(a.b)	(a.c)	(a.b)+(a.c)
V	V	V	V	V	V
V	V	F	V	F	V
V	F	V	F	V	V
V	F	F	F	F	F
F	V	V	F	F	F
F	V	F	F	F	F
F	F	V	F	F	F
F	F	F	F	F	F

Conjunto das Partes

Dado um conjunto E, o conjunto das partes de E é o conjunto cujos elementos são todos os subconjuntos de E.

O conjunto das partes de E será denotado P(E), assim:

$$P(E) = \{A; A \subset E\}$$

Na prática, devemos ter em mente as seguintes relações:

- $A \subset E \iff A \in P(E)$
- $b \in E \iff \{b\} \subset E \iff \{b\} \in P(E)$

Conjunto das Partes

- 1. $(\forall E)(\emptyset \in P(E) \in E \in P(E));$
- 2. Se E = $\{a, b\}$ então $P(E) = \{\emptyset, \{a\}, \{b\}, E\}$;
- 3. Se E = {a, b, c} então P(E) = { Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, E}
- 4. Se n(E) = k então $n(P(E)) = 2^k$;

P(E) = {A; A ⊂ E} Na prática, devemos ter em mente as seguintes relações:

- $A \subset E \iff A \in P(E)$
- b ∈ E ⇐⇒ {b} ⊂ E ⇐⇒ {b} ∈
 P(E)

Conjunto das Partes

Seja o conjunto A = {-5, 7, 11, 14}. Indique a quantidade de elementos do conjunto das partes de A

$$P(A) = 2^n = 2^4 = 16$$

Se A = $\{2, 3, 5, 6, 7, 8\}$, B = $\{1, 2, 3, 6, 8\}$ C = $\{1, 4, 6, 8\}$, determiname:

a)
$$(B \cup A) - C = \{1,2,3,5,6,7,8\} - \{1,4,6,8\} = \{2,3,5,7\}$$

b)
$$(B \cap A) - C = \{2,3,6,8\} - \{1,4,6,8\} = \{2,3\}$$

c)
$$(B \cap A) \cap C = \{2,3,6,8\} \cap \{1,4,6,8\} = \{6,8\}$$

Em um colégio, foi realizado uma pesquisa com a intenção de determinar a preferência dos alunos em relação a determinados tipos de salgados. Os tipos foram denominados em A, B e C para que ficasse melhor a classificação e foram dispostos segundo a tabela.

Marcas consumidas	Nº de consumidores	
A	150	
В	120	
С	80	
AeB	60	
AeC	20	
BeC	40	
A, B e C	15	

Com isso determine:

a) Quantos alunos foram entrevistados nesse dia?

b) Dentre os alunos de A, B e C, quantos consomem apenas duas dessas marcas?

c) Quantos não consomem o tipo C?

d) Quantos não consumiram o tipo B ou C?

Marcas consumidas	Nº de consumidores	
Α	150	
В	120	
С	80	
A e B	60	
A e C	20	
BeC	40	
A, B e C	15	

U

Nº de consumidores
150
120
80
60
20
40
15

U

Marcas consumidas	Nº de consumidores
Α	150
В	120
С	80
AeB	60
AeC	20
BeC	40
A, B e C	15

 \boldsymbol{U}

	Marcas consumidas	Nº de consumidores		
	Α	150		
	В	120		
	С	80		
	AeB	60		
	A e C	20		
l	J BeC	40		
_	A, B e C	15		

a) Quantos alunos foram entrevistados nesse dia?

$$n(A \cup B \cup C)$$
= $n(A) + n(B) + n(C) - n(A \cap B)$
- $n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$
150+120+80-60-20-40+15=245

b) Dentre os alunos de A, B e C, quantos consomem apenas duas dessas marcas?

$$T = 45 + 25 + 5 = 75$$

c) Quantos não consomem o tipo C?

$$T=245 - 80 = 165 \rightarrow n(U - C) \rightarrow n(C^{c})$$

d) Quantos não consumiram o tipo B ouC?

$$T = 85 \rightarrow n(U - (B \cup C)) = (B \cup C)^{C}$$

Decida se as afirmações são verdadeiras ou falsas e justifique:

- (a) $\emptyset = \{\emptyset\};$
- (b) O número O, 123456789101112 · · · é irracional;
- (c) Uma afirmação coerente sobre elementos de um conjunto A deve, necessariamente, definir um subconjunto de A.
- (d) A expressão: "A é um elemento do conjunto B" é equivalente a "A ⊂ B";

Decida se as afirmações são verdadeiras ou falsas e justifique:

- (e) As afirmações são equivalentes:
- "Este é o bolo de aniversário de Pedro ou de João";
- "Este bolo de aniversário pertence a exatamente um dos dois, Pedro ou João".

Decida se as afirmações são verdadeiras ou falsas e justifique:

(a)
$$\emptyset = \{\emptyset\};$$

Falsa. O conjunto vazio, no primeiro membro, é caracterizado por não ter nenhum elemento. Por outro lado, o conjunto do segundo membro é unitário, de fato, seu único elemento é o conjunto vazio. Por isso os conjuntos não podem ser iguais. Uma afirmação verdadeira é $\emptyset \in \{\emptyset\}$ que significa em palavras: o conjunto vazio é elemento do conjunto $\{\emptyset\}$.

Decida se as afirmações são verdadeiras ou falsas e justifique:

(b) O número O, 123456789101112 · · · é irracional;

Verdadeira. Apesar de ter uma regra clara para os dígitos da dízima, ela não é periódica, portanto, o número não é racional. Como o número é real ele é um elemento de R – Q, o conjunto dos números irracionais.

Decida se as afirmações são verdadeiras ou falsas e justifique:

(c) Uma afirmação coerente sobre elementos de um conjunto A deve, necessariamente,

definir um subconjunto de A.

Verdadeira. De fato, define o conjunto $\{a \in A \mid a \text{ satisfaz a afirmação }\} \subset A$.

Decida se as afirmações são verdadeiras ou falsas e justifique:

(d) A expressão: "A é um elemento do conjunto B" é equivalente a "A ⊂ B";

Falsa. A expressão adequada para "A é um elemento do conjunto B" é "A ∈ B". A expressão "A \subset B" significa "A é um subconjunto de B". Uma mnemônica útil é ∈ lembra a letra "e" de "é elemento de", enquanto que \subset lembra a letra "c" de " é subconjunto de".

Decida se as afirmações são verdadeiras ou falsas e justifique:

- (e) As afirmações são equivalentes:
- "Este é o bolo de aniversário de Pedro ou de João"; "Este bolo de aniversário pertence a exatamente um dos dois, Pedro ou João".

Falsa. Seja:

A: "Este é o bolo de aniversário de Pedro" e B: "Este é o bolo de aniversário de João". A primeira afirmação é equivalente a A \cup B, enquanto a segunda afirmação é equivalente a (A - B) \cup (B - A). Lembre-se, em lógica "ou" significa união, portanto, se x está em A ou B, então pode ser que $x \in A$ e $x \in B$.

