Bayesian Inference using Sequential Monte-Carlo Algorithms for Dynamical Systems Models

Chaolin Han

Supervised by Mark Bull and Linus Schumacher

- Zebrafish spinal cord repair
- Hypothesis: dynamically control by immune cells and molecules

- Dynamic systems can be modelled as ODEs
- We wish to find the best parameters given the observed data
- Method: Bayesian inference

$$posterior \propto likelihood \times prior$$
$$p(\theta|D) \propto l(\theta|D) \times p(\theta)$$

• Find the best parameter values by measuring the posterior distribution of parameters θ

- Hard to write down an expression for likelihood
 - → likelihood-free numerical approximation
- Approximate Bayesian Computation (ABC)

ABC-SMC (Sequential Monte-Carlo)

5

Models

$$\frac{dN}{dt} = \lambda_N + \kappa_{N\beta}\beta - \mu_N N - \nu_{N\Phi}N\Phi$$

$$\frac{d\Phi}{dt} = \lambda_{\Phi} + \kappa_{\Phi\beta}\beta - \mu_{\Phi}\Phi$$

$$\frac{d\beta}{dt} = \frac{s_{\beta N}N}{1 + i_{\beta\Phi}\Phi} - \mu_{\beta}\beta$$

$$\frac{d\alpha}{dt} = s_{\alpha\Phi}\Phi - \mu_{\alpha}\alpha$$

Model 2 exponential decaying $\lambda_{\rm N}$ $\lambda_{\rm N} e^{-at}$

Model 1

Model 3 remove $i_{\beta\Phi}$

Implementations

- pyABC (modified) in Python
- Experiments
 - implementation options, algorithm hyperparameters
 - parameter inference
 - model comparison

Implementations

- Implementation options, algorithm hyperparameters
 - use synthetic data with know parameter values
 - compare efficiency and their influence on the goodness of fit
 - suggest proper setting for later parameter inference

Model 3

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = s_{\alpha\Phi}\Phi - \mu_{\alpha}\alpha$$

Model 5

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \left(s_{\alpha\Phi} + f_{\beta\alpha}\beta\right)\Phi - \mu_{\alpha}\alpha$$

ODE 1

Performance

Performance

- High variance observed in required number of samples of different runs
 - related to local optima
- Execution time for each sample is not fixed

Conclusions

- ABC SMC performed well in our parameter inference and model comparison task
 - with model 5 being the best model and its parameters being wellinferred
- Scaling-up performance is reasonable
 - However, further analysis was affected by the uncertainties

Thanks!

• Questions?

