

APRENDIZAGEM POR TRANSFERÊNCIA

Aluno: Vitor Gregorio

R.A.: 1827588

Sumário

- Introdução
- Arquitetura VGG19
- Pesquisas relacionadas
- Metodologia
- Experimento
- Resultados
- Conclusão
- Referência

Introdução

- Machine Learning
- Transfer Learning
- Redes neurais

Arquitetura VGG19

Pesquisas relacionadas

 Breast Cancer Screening Using Convolutional Neural Networkand Follow-up Digital Mammography

Pesquisas relacionadas

 Application of a Novel and Improved VGG-19 Network in the Detection of Workers Wearing Masks

Metodologia

- Python 3.6
- Rede neural convolucional usando arquitetura VGG19
- Imagem pré-processada
- Classificadores:
 - Gaussian Naive Bayes
 - K-Nearest Neighbors
 - Decision Tree
- Epochs = 200
- Batch size = 32
- Taxa de aprendizado = 0.001

Experimento

- Base de dados Pap-Smear
- Imagens pré-treinadas
- Aproximadamente 80% das imagens para treino e 20% para teste
- Totalizando 1834 imagens em 7 classes diferentes

Matriz de confusão

Resultados (CNN)

Tempo de execução

	precision	recall	f1-score	support
moderate_dysplastic	0.16	0.18	0.17	60
light_dysplastic	0.18	0.21	0.19	73
normal_superficiel	0.22	0.12	0.16	58
carcinoma_in_situ	0.13	0.05	0.07	39
severe_dysplastic	0.12	0.14	0.13	28
normal_columnar	0.09	0.07	0.08	30
normal_intermediate	0.27	0.39	0.32	79
ассигасу			0.20	367
macro avg	0.17	0.17	0.16	367
weighted avg	0.19	0.20	0.18	367

Resultados (Gaussian Naive Bayes)

- Tempo de treino: 0.3182s
- Tempo de teste: 2.9561s
- Acurácia no treinamento: 0.20
- Acurácia no teste: 0.19
- Precisão: 0.14530
- Revocação: 0.19144

Resultados (K-Nearest Neighbors)

- Tempo de treino: 3.1950s
- Tempo de teste: 70.9934s
- Acurácia no treinamento: 0.38
- Acurácia no teste: 0.33
- Precisão: 0.25111
- Revocação: 0.27494

Resultados (Decision Tree)

- Tempo de treino: 20.8172s
- Tempo de teste: 0.0432s
- Acurácia no treinamento: 1.00
- Acurácia no teste: 0.22
- Precisão: 0.22632
- Revocação: 0.21740

Decision Tree Matriz de confusão

Conclusão

Referências

- Jonus Norup (2005) Classification of Pap-smear data by transductive neuro-fuzzy methods, Technical University of Denmark-DTU, Master's Thesis.
- PAPPU, Sashank.(2018). Style Transfer using Pytorch. Disponivel em: https://medium.com/@sashankpappu/style-transfer-using-pytorch-cb6225cf183e/ Acesso em: 26 de setembro de 2020.
- SAS. Machine Learning: O que é e qual sua importância?. Disponível em: https://www.sas.com/pt_br/insights/analytics/machine-learning.html#machine-learning-workings/ Acesso em: 26 de setembro de 2020.
- Xiao, Wang, Cao and Li, Bilong. (2020). Application of a Novel and Improved VGG-19 Network in the Detection of Workers Wearing Masks. 10.1088/1742-6596/1518/1/01204.
- Zheng, Yufeng & Yang, Clifford & Merkulov, Aleksey. (2018). Breast cancer screening using convolutional neural network and follow-up digital mammography. 4. 10.1117/12.2304564.