HW 3 - Cason Konzer

Saturday, February 6, 2021 10:53 PM

MTH 470/570 Winter 2021 Assignment 3.

This assignment is due before class on Tuesday, February 9. Please submit your solutions via Blackboard. Solutions are required – answers must be justified.

p.62, #3.1. Show that if $f(z)=\frac{az+b}{cz+d}$ is a Mobius transformation, then $f^{-1}(z)=\frac{dz-b}{-cz+a}.$

#3.7. Show that the Mobius transformation $f(z) = \frac{1+z}{1-z}$ maps the unit circle (minus the point z = 1) onto the imaginary axis.

#3.14. Find Mobius transformations satisfying each of the following. Write your answers in standard form, as $\frac{az+b}{cz+d}$

- (a) $1 \to 0$, $2 \to 1$, $3 \to \infty$.
- (b) $1 \rightarrow 0$, $1 + i \rightarrow 1$, $2 \rightarrow \infty$
- (c) $0 \to i$, $1 \to 1$, $\infty \to -i$.

3.30. Prove that $\overline{\sin(z)} = \sin(\overline{z})$ and $\overline{\cos(z)} = \cos(\overline{z})$.

3.32. Prove that the zeros of sin z are all real numbers. Conclude that they are precisely the integer multiples of π .

Problem I. Let C be the circle with center a and radius r. Suppose that 0 does not lie on C. (In other words, 0 could be inside or outside of the circle.) Show that the image of C under the function f(z)=1/z is the circle with center $\frac{\overline{a}}{|a|^2-|r|^2}$ and radius $\frac{r}{|a|^2-r^2|}$.

Hints: This is an exercise in complex algebra. Start by writing down the equations for both circles. Use the fact that, for any complex number w, $w\overline{w} = |w|^2$, to eliminate all of the complex norms in both equations. Starting from the equation of the second circle, clear all of the fractions and factor out a common term to work toward the equation of the first circle.

P.62 #3.1 Let $f(z) = \frac{az+b}{(z+d)}$ suffice ad-bc/0 Thus, f is a möbius transform.

Let f(z) = w Now $w = \frac{az+b}{(z+d)}$ $\frac{z}{(z+d)}$

#3.14/ frall
$$(w-w_1)(w_2-w_3) = (z-z_1)(z_2-z_3)$$

a) $z_1 = 1$ $w_1 = 0$ $(w-\omega)(1-\omega) = \omega = \frac{(z-1)(2-3)}{(z-2)(2-1)}$
 $z_2 = 2$ $w_2 = 1$ $(w-\omega)(1-\omega) = \omega = \frac{(z-1)(2-3)}{(z-3)(2-1)}$
 $z_3 = 3$ $w_3 = \infty$
 $z_4 = 1$ $w_1 = 0$ $z_2 = 1$ $z_3 = 0$ $z_4 = 1$

b) $z_1 = 1$ $z_3 = 0$ $z_4 = 1$ $z_3 = 0$ $z_4 = 1$
 $z_2 = 1$ $z_3 = 0$ $z_4 = 1$
 $z_3 = 2$ $z_3 = 0$ $z_4 = 1$
 $z_3 = 2$ $z_4 = 1$
 $z_4 = 1$ $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 $z_4 = 1$
 z_4

#3.30 | Prove
$$\sin(\bar{z}) = \sin(\bar{z})$$
 | $\cos(\bar{z}) = \cos(\bar{z})$
 $e^{i\bar{z}} = e^{x}e^{i\bar{y}} = e^{x}(\cos y + i\sin y)$ | $\sin z : = e^{i\bar{z}} - e^{i\bar{z}}$
 $e^{i\bar{z}} = e^{y}e^{i\bar{x}} = e^{y}(\cos x + i\sin x)$ | $\cos z : = e^{i\bar{z}} + e^{i\bar{z}}$
 $e^{i\bar{z}} = e^{y}e^{i\bar{x}} = e^{y}(\cos x + i\sin x)$ | $\cos z : = e^{i\bar{z}} + e^{i\bar{z}}$
 $\sin z : = \left(\frac{e^{y}e^{i\bar{x}} - e^{y}e^{i\bar{x}}}{2i}\right) = \left(\frac{e^{y}(\cos x + i\sin x) - e^{y}(\cos x + i\sin x)}{2i}\right)$
 $\sin z : = \left(\frac{e^{y}e^{i\bar{x}} - e^{y}e^{i\bar{x}}}{2i}\right) = e^{i\bar{x}-y} - e^{i\bar{x}-y} = e^{i(\bar{x}-iy)}$
 $\sin z : = \frac{e^{y}e^{i\bar{x}} - e^{y}e^{i\bar{x}}}{2i}$ | $\cos z : = e^{i\bar{z}-y} - e^{i\bar{x}-y}$ | $e^{i(\bar{x}-iy)} - e^{y}(\cos x + i\sin x)$ | $e^{y}e^{y} - e^{i\bar{x}-y}$ | $e^{y}e^{y} - e^{y}e^{y}$ | $e^$

HW Page 4

$$= \left(\frac{e^{\gamma}(\cos x - i\sin x) + e^{\gamma}(\cos x - i\sin x)}{2}\right) = \left(\frac{e^{\gamma}e^{ix} + e^{\gamma}e^{ix}}{2}\right)$$

$$= \left(\frac{e^{ix-\gamma} + e^{ix+\gamma}}{2}\right) = \left(\frac{e^{i(4x-\gamma i)} + e^{i(-x+\gamma i)}}{2}\right)$$

$$= \left(\frac{e^{i(x-\gamma i)} + e^{-i(x-\gamma i)}}{2}\right) = \frac{e^{iz} + e^{iz}}{2}$$

$$= \frac{e^{iz} + e^{iz}}{2} = \cos z$$

$$= \frac{e^{iz} + e^{iz}$$

Zeros of sin(Z) = TIN NEZ integer multiples of to "Toblem I" C= Circle w/ center @ a 1 radius r. O does not lie on C. $f(z) = \frac{1}{z}$ $w\overline{w} = |w|^2$ f(t)=w; the image of C is centeral @ \frac{a}{|a|^2-|v^2|} \w/ rudius \frac{r}{||a|^2-v^2|} $\frac{r}{|a\bar{a}-r^2|} = \frac{r}{(a\bar{a}-r^2)(a\bar{a}+r^2)}$ $\frac{a}{aa-rr}$ $r = \frac{r}{a^2a^2 - r^2}$ $f = r(a^2a^2 - r^4)$ a = some x + y= X-yi x2+y2-12 = 2 x - 1 + a = (x -y;)(x2+y2-12) = (x+/1) (x-x,2) -14 9=x+yx-1x-yix-yi+1yi V = x + + y + - r 4