

ETHzürich Escaping Undesired Stationary Points in Local Saddle Point Optimization

A Curvature Exploitation Approach

Leonard Adolphs

Hadi Daneshmand

Aurelien Lucchi

Thomas Hofmann

Institute of Machine Learning, ETH Zürich, Switzerland

Saddle Point Problem

$$\min_{\mathbf{x} \in \mathbb{R}^k} \max_{\mathbf{y} \in \mathbb{R}^d} f(\mathbf{x}, \mathbf{y})$$

Assumptions

- f smooth but non-convex (non-concave) in $\mathbf{x}(\mathbf{y})$
- $lackbox{\Pi}
 abla_{\mathbf{x}}^2 f(\mathbf{x}^*, \mathbf{y}^*), \
 abla_{\mathbf{y}}^2 f(\mathbf{x}^*, \mathbf{y}^*) \ ext{non-degenerate}$

Relaxed Objective

Finding a **global** saddle point of the above form is generally **infeasible**. Therefore, we aim for a solution in a local neighbourhood, i.e., a point $(\mathbf{x}^*, \mathbf{y}^*)$ s.t.

 $f(\mathbf{x}^*, \mathbf{y}) \leq f(\mathbf{x}^*, \mathbf{y}^*) \leq f(\mathbf{x}, \mathbf{y}^*) \quad \forall (\mathbf{x}, \mathbf{y}) \in \mathcal{K}_{\gamma}$ where \mathcal{K}_{γ} is a local neighbourhood around the saddle.

Local Saddle Point Conditions

- $\nabla f(\mathbf{x}^*, \mathbf{y}^*) = 0$
- $\nabla_{\mathbf{x}}^2 f(\mathbf{x}^*, \mathbf{y}^*) \succ 0$
- $\nabla_{\mathbf{v}}^2 f(\mathbf{x}^*, \mathbf{y}^*) \prec 0$

Gradient-Based Optimization

Simultaneously applying Gradient Descent on ${\bf x}$ and Gradient Ascent on ${\bf y}$:

$$egin{aligned} egin{pmatrix} \mathbf{x}^+ \ \mathbf{y}^+ \end{pmatrix} = egin{pmatrix} \mathbf{x} \ \mathbf{y} \end{pmatrix} + \eta egin{pmatrix} -
abla_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) \
abla_{\mathbf{y}} f(\mathbf{x}, \mathbf{y}) \end{pmatrix} \end{aligned}$$

If convergent, it almost surely finds a **stable** stationary point of the gradient dynamics.
But not necessarily a solution to the local saddle point problem . . .

Gradient-Based Optimization Does not Solve for Local Saddles

Even if gradient-based optimization converges, we have no (approximate) guarantee of obtaining a solution to the local saddle point problem.

Stability versus Optimality

local optimality condition

stability condition

Minimization $\nabla_{\mathbf{x}}^2 f(\mathbf{x}, \mathbf{y}) \succ 0$ \blacktriangleright $\nabla_{\mathbf{x}}^2 f(\mathbf{x}, \mathbf{y}) \succ 0$

Saddle
Point Optimization

 $\nabla_{\mathbf{x}}^{2} f(\mathbf{x}, \mathbf{y}) \succ 0 \neq \lambda \begin{bmatrix} -\nabla_{\mathbf{x}}^{2} f - \nabla_{\mathbf{x}} f \\ \nabla_{\mathbf{y}} f & \nabla_{\mathbf{y}}^{2} f \end{bmatrix}$ $\nabla_{\mathbf{y}}^{2} f(\mathbf{x}, \mathbf{y}) \prec 0 \qquad \text{negative real part}$

Table 1: Stability versus optimality condition in minimization and saddle point optimization.

 $\min_{x \in \mathbb{R}} \max_{y \in \mathbb{R}} \left[f(x, y) = 2x^2 + y^2 + 4xy + \frac{4}{3}y^3 - \frac{1}{4}y^4 \right]$

Figure 1: Gradient-based optimization converges to the minimum z_0 rather than the saddle point z_1 .

CESP - Curvature Exploitation for the Saddle Point Problem

Intuition

Simple observation: If there is positive (negative) curvature in \mathbf{x} -direction (\mathbf{y} -direction) then the local saddle point conditions are not met, because $\nabla_{\mathbf{x}}^2 f(\mathbf{x}, \mathbf{y}) \not\succ 0$ ($\nabla_{\mathbf{v}}^2 f(\mathbf{x}, \mathbf{y}) \not\prec 0$).

Following negative curvature in **x** and positive curvature in **y** helps us escape from undesired stable stationary points.

Algorithm

Let $\lambda_{\mathbf{x}}(\lambda_{\mathbf{y}})$ be the minimum (maximum) eigenvalue of $\nabla_{\mathbf{x}}^2 f(\nabla_{\mathbf{y}}^2 f)$ with its associated eigenvector $\mathbf{v}_{\mathbf{x}}(\mathbf{v}_{\mathbf{y}})$ and $\rho_{\mathbf{x}}, \rho_{\mathbf{y}} > 0$ some smoothness parameters.

$$\mathbf{v}_{\mathbf{z}}^{(-)} = 1_{\{\lambda_{\mathbf{x}} < 0\}} \frac{\lambda_{\mathbf{x}}}{2\rho_{\mathbf{x}}} \operatorname{sgn}(\mathbf{v}_{\mathbf{x}}^{\top} \nabla_{\mathbf{x}} f(\mathbf{z})) \mathbf{v}_{\mathbf{x}}$$

$$\mathbf{v}_{\mathbf{z}}^{(+)} = 1_{\{\lambda_{\mathbf{y}} > 0\}} \frac{\lambda_{\mathbf{y}}}{2\rho_{\mathbf{y}}} \operatorname{sgn}(\mathbf{v}_{\mathbf{y}}^{\top} \nabla_{\mathbf{y}} f(\mathbf{z})) \mathbf{v}_{\mathbf{y}}$$

$$egin{aligned} egin{pmatrix} \mathbf{x}^+ \ \mathbf{y}^+ \end{pmatrix} = egin{pmatrix} \mathbf{x} \ \mathbf{y} \end{pmatrix} + \eta egin{pmatrix} -
abla_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) \
abla_{\mathbf{y}} f(\mathbf{x}, \mathbf{y}) \end{pmatrix} + egin{pmatrix} \mathbf{v}_{\mathbf{z}}^{(-)} \
abla_{\mathbf{z}}^{(+)} \end{pmatrix} \end{aligned}$$

Theoretical Guarantees

Saddle Point Optimization CESP stationary points = stable points = locally optimal saddles

Toy Example

Figure 2: CESP (blue) converges to the saddle point as opposed to gradient-based optimization (red). The vector field shows the extreme curvature vector $(\mathbf{v}_{\mathbf{z}}^{(-)}, \mathbf{v}_{\mathbf{z}}^{(+)})$.

CESP in the Real World

- Theoretical guarantees hold also for *transformed* gradient steps, e.g. **ADAGRAD**.
- Cheap implementation with Power Iterations using only **Hessian-vector Products**.
- Tested on (small) Generative Adversarial
 Nets

Figure 3: CESP drives convergent solution to the desired *min-max* structure.

Many more possible applications, e.g. Robust
 Optimization for empirical risk minimization