Package 'RLumModel'

December 21, 2015

Type Package
Title Modelling Ordinary Differential Equations Leading to Luminescence
Version 0.1.0
Date 2016-XX-XX
Author Johannes Friedrich [aut, trl, cre], Sebastian Kreutzer [aut, ths], Christoph Schmidt [aut, ths]
Maintainer Johannes Friedrich < johannes . friedrich@uni-bayreuth.de>
Description A collection of function to simulate luminescence signals in the mineral quartz based on published models.
Contact Package Developer Team <developer@model.r-luminescence.de></developer@model.r-luminescence.de>
License GPL-3
Depends R (>= 3.2.3), utils, Luminescence (>= 0.5.0)
Imports deSolve (>= 1.12)
<pre>URL http://CRAN.R-project.org/package=RLumModel</pre>
Collate RLumModel-package.R calc_Signal.R model_LuminescenceSignals.R plot_concentrations.R read_SEQ2R.R set_ODE.R set_ODE_LM_OSL.R set_Pars.R simulate_CW_OSL.R simulate_DRT.sequence.R simulate_LM_OSL.R simulate_RL.R simulate_SAR.sequence.R simulate_TL.R simulate_heating.R simulate_illumination.R simulate_irradiation.R simulate_pause.R translate_Sequence.R
RoxygenNote 5.0.1
Suggests testthat
NeedsCompilation no
R topics documented:
RLumModel-package
Index 1

RLumModel-package

Modelling Ordinary Differential Equations Leading to Luminescence

Description

A collection of function to simulate luminescence signals in the mineral quartz based on published models.

Details

Package: RLumModel Type: Package Version: 0.1.0

Date: 2016-XX-XX License: GPL-3

Author(s)

Authors

Johannes Friedrich University of Bayreuth, Germany

Sebastian Kreutzer IRAMAT-CRP2A, Universite Bordeaux Montaigne, France

Christoph Schmidt University of Bayreuth, Germany

Supervisor

Christoph Schmidt, University of Bayreuth, Germany Sebastian Kreutzer, IRAMAT-CRP2A, Universite Bordeaux Montaigne, France

Support contact

<developers@model.r-luminescence.de>

Project source code repository

https://github.com/R-Lum/RLumModel

Related projects

http://www.r-luminescence.de

http://cran.r-project.org/package=Luminescence

http://shiny.r-luminescence.de

http://cran.r-project.org/package=RLumShiny

Package maintainer

Johannes Friedrich, University of Bayreuth, Germany <johannes.friedrich@uni-bayreuth.de>

Acknowledgement

The work of Johannes Friedrich is gratefully supported by the DFG in framework of the project 'Modelling quartz luminescence signal dynamics relevant for dating and dosimetry' (SCHM 305114-1)

ExampleData.ModelOutput

Example data (TL curve) simulated from Bailey (2001, fig. 1)

Description

Example data (TL curve) simulated from Bailey (2001, fig. 1)

Format

A RLum. Analysis object containing one TL curve as RLum. Data. Curve.

Note

This example has only one record (TL). The used sequence was sequence <- list(IRR = c(temp = 20, dose = 10, DoseRate = 1), TL = c(temp_begin = 20, temp_end = 400, heating_rate = 5))

Source

model_LuminescenceSignals()

References

Bailey, R.M., 2001. Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measurements 33, 17-45.

Examples

```
data(ExampleData.ModelOutput,envir = environment())
plot_RLum.Analysis(model.output)
```

model_LuminescenceSignals

Model Luminescence Signals

Description

This function models luminescence signals for quartz based on published physical models. It is possible to simulate TL, (CW-) OSL, RF measurements in a arbitrary sequence. This sequence is definded as a list of certain abrivations. Furthermore it is possible to load a sequence direct from the Riso Sequence Editor. The output is an RLum.Analysis object and so the plots are done by the plot_RLum.Analysis function. If a SAR sequence is simulated the plot output can be disabled and SAR analyse functions can be used.

Usage

```
model_LuminescenceSignals(model, sequence, lab.DoseRate = 1,
    simulate_sample_history = FALSE, plot = TRUE, verbose = TRUE, ...)
```

Arguments

model character (**required**): set model to be used

sequence list (required): set sequence to model as list or as *.seq file from the Riso

sequence editor. To simulate SAR measurements there is an extra option to set the sequence list (cf. example 3): (**required**): RegDose: numeric, Test-Dose: numeric, PH: numeric, CH: numeric, OSL_temp: numeric. With default are: DoseRate: numeric, Irr_temp: numeric, optical_power: numeric,

OSL_duration: numeric, PH_duration: numeric

lab.DoseRate numeric (with default): laboratory dose rate in XXX Gy/s for calculating sec-

onds into Gray in the *.seq file.

simulate_sample_history

logical (with default): FALSE (with default): simulation begins at labour con-

ditions, TRUE: simulations begins at crystallization (all levels 0) process

plot logical (with default): Enables or disables plot output

verbose logical (with default): Verbose mode on/off

... further arguments and graphical parameters passed to plot.default. See de-

tails for further information

Details

Defining a sequence

Alaman Danasia tira

Abrivation	Description	Arguments
TL	thermally stimulated luminescence	'temp begin', 'temp end', 'heating rate'
OSL	optically stimulated luminescence	'temp', 'duration','optical power'
LM_OSL	linear modulated OSL	'temp', 'duration'
RL/RF	radioluminescence	'temp', 'dose', 'doserate'
IRR	irradiation	'temp', 'dose', 'doserate'
CH	cutheat	'temp', 'duration'
PH	preheat	'temp', 'duration'
PAUSE	pause	'temp', 'duration'

Value

This function returns an RLum. Analysis object with all TL, (LM-) OSL and RF/RL steps in the sequence. Every entry is a RLum. Data. Curve obejct and can be plotted, analysed etc. with further RLum-functions.

Function version

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, Universite Bordeaux Montaigne (France)

References

Bailey, R.M., 2001. Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measurements 33, 17-45.

Bailey, R.M., 2002. Simulations of variability in the luminescence characteristics of natural quartz and its implications for estimates of absorbed dose. Radiation Protection Dosimetry 100, 33-38.

Bailey, R.M., 2004. Paper I-simulation of dose absorption in quartz over geological timescales and it simplications for the precision and accuracy of optical dating. Radiation Measurements 38, 299-310.

Pagonis, V., Chen, R., Wintle, A.G., 2007: Modelling thermal transfer in optically stimulated luminescence of quartz. Journal of Physics D: Applied Physics 40, 998-1006.

Pagonis, V., Wintle, A.G., Chen, R., Wang, X.L., 2008. A theoretical model for a new dating protocol for quartz based on thermally transferred OSL (TT-OSL). Radiation Measurements 43, 704-708.

See Also

```
plot, RLum. Analysis, RLum. Data. Curve
```

Examples

```
## Example 1: Simulate sample history of Bailey2001
## (cf. Bailey, 2001, Fig. 1)
##==============##
##set sequence with the following steps
\#\# (1) Irradiation at 20 deg. C with a dose of 10 Gy and a dose rate of 1 Gy/s
## (2) TL from 20-400 deg. C with a rate of 5 K/s
sequence <-
 list(
   IRR = c(20, 10, 1),
   TL = c(20, 400, 5)
##model sequence
model.output <- model_LuminescenceSignals(</pre>
 sequence = sequence,
 model = "Bailey2001",
## Not run:
## Example 2: Simulate sequence at labour without sample history
##set sequence with the following steps
## (1) Irraditation at 30 deg. C with a dose of 100 Gy and a dose rate of 1 Gy/s
```

```
## (2) Preheat to 2000 deg. C and hold for 10 s
## (3) LM-OSL at 125 deg. C. for 1000 s
## (4) OSL at 20 deg. C for 100 s with 90 % optical power
## (5) Cutheat at 220 deg. C
\#\# (6) Irradiation at 20 deg. C with a dose of 10 Gy and a dose rate of 1 Gy/s
## (7) Pause at 200 deg. C for 100 s
## (8) TL from 20-400 deg. C with a heat rate of 5 K/s
## (9) Radiolumiescence at 20 deg. C with a dose of 20 Gy and a dose rate of 1 Gy/s
sequence <-
list(
  IRR = c(20, 100, 1),
  PH = c(200, 10),
  LM_{OSL} = c(125, 100),
  CH = c(200),
  IRR = c(20, 10, 1),
  PAUSE = c(200, 100),
  OSL = c(125, 100, 90),
  PAUSE = c(200, 100),
  TL = c(20, 400, 5),
  RF = c(20, 200, 0.01)
)
# call function "model_LuminescenceSignals", set sequence = sequence,
# model = "Pagonis2008" (palaeodose = 200 Gy) and simulate_sample_history = FALSE (default),
# because the sample history is not part of the sequence
model.output <- model_LuminescenceSignals(</pre>
  sequence = sequence,
  model = "Pagonis2008"
## Example 3: Simulate SAR sequence
##set SAR sequence with the following steps
## (1) RegDose: set regenerative dose [Gy] as vector
## (2) TestDose: set test dose [Gy]
## (3) PH: set preheat temperature in deg. C
## (4) CH: Set cutheat temperature in deg. C
## (5) OSL_temp: set OSL reading temperature in deg. C
## (6) OSL_duration: set OSL reading duration in s
sequence <- list(</pre>
RegDose = c(0,10,20,50,90,0,10),
TestDose = 5,
PH = 240.
CH = 200,
OSL_{temp} = 125,
OSL_duration = 70)
# call function "model_LuminescenceSignals", set sequence = sequence,
# model = "Pagonis2007" (palaeodose = 20 Gy) and simulate_sample_history = FALSE (default),
# because the sample history is not part of the sequence
```

```
model.output <- model_LuminescenceSignals(</pre>
 sequence = sequence,
model = "Pagonis2007",
plot = FALSE
# in environment is a new object "model.output" with the results of
# every step of the given sequence.
# Plots are done at OSL and TL steps and the growth curve
# call "analyse_SAR.CWOSL" from RLum package
results <- analyse_SAR.CWOSL(model.output,
                         signal.integral.min = 1,
                         signal.integral.max = 15,
                        background.integral.min = 601,
                         background.integral.max = 701,
                         fit.method = "EXP",
                        dose.points = c(0,10,20,50,90,0,10))
## Example 4: generate sequence from *.seq file and run SAR simulation
# call function "model_LuminescenceSignals", load *.seq file for sequence,
# set model = "Bailey2002" (palaeodose = 10 Gy)
# and simulate_sample_history = FALSE (default),
# because the sample history is not part of the sequence
model.output <- model_LuminescenceSignals(</pre>
 sequence = "inst/extdata/sample_SAR_cycle.SEQ",
 model = "Bailey2002",
 plot = FALSE
## call RLum package function "analyse_SAR.CWOSL" to analyse the simulated SAR cycle
results <- analyse_SAR.CWOSL(model.output,
                          signal.integral.min = 1,
                          signal.integral.max = 10,
                          background.integral.min = 601,
                          background.integral.max = 701,
                          dose.points = c(0,5,10,20,50,5,0),
                          fit.method = "EXP")
print(get_RLum(results))
## Example 5: compare different optical powers of stimulation light
##===========================##
# call function "model_LuminescenceSignals", model = "Bailey2004"
# and simulate_sample_history = FALSE (default),
```

8 plot_concentrations

```
# because the sample history is not part of the sequence
# the optical_power of the LED is varied and then compared.
optical_power <- seq(from = 0, to = 100, by = 20)
model.output <- lapply(1:length(optical_power), function(x){</pre>
sequence \leftarrow list(IRR = c(20, 50, 1),
                  PH = c(220, 10, 5),
                  OSL = c(125, 50, optical_power[x])
return(model_LuminescenceSignals(
       sequence = sequence,
       model = "Bailey2004",
       plot = FALSE
       ))
})
##combine output curves
model.output.merged <- merge_RLum(model.output)</pre>
##plot
plot_RLum(
 object = model.output.merged,
 xlab = "Illumination time [s]",
 ylab = "OSL signal [a.u.]",
 main = "OSL signal dependency on optical power of stimulation light",
 legend.text = paste("Optical power density", 20*optical_power/100, "mW/cm^2"),
 combine = TRUE)
## End(Not run)
```

plot_concentrations

Plot concentrations of electrones respectively holes of all levels from a energy-band-model against time.

Description

The functions provides a plot of all changes in time of the electron respectively hole concentration in electron traps, hole centres, in the condunction and valence band.

Usage

```
plot_concentrations(object, record.step, ...)
```

Arguments

```
object RLum. Analysis (required): S4 object of class RLum. Analysis, e.g. the values of model_LuminescenceSignals.

record.step numeric (required): step of the simulated record which is to plot.

further arguments and graphical parameters passed to plot. default. See details for further information
```

plot_concentrations 9

Details

The function produces a multiple plot output and uses in main parts the Luminescence function "Luminescence::plot_RLum". A file output is recommended (e.g., pdf).

Value

Returns multiple plots for the concentrations of electrones respectively holes.

Function version

0.1.0

Author(s)

Johannes Friedrich, University of Bayreuth (Germany),

References

Bailey, R.M., 2001. Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measurements 33, 17-45.

Bailey, R.M., 2002. Simulations of variability in the luminescence characteristics of natural quartz and its implications for estimates of absorbed dose. Radiation Protection Dosimetry 100, 33-38.

Bailey, R.M., 2004. Paper I-simulation of dose absorption in quartz over geological timescales and it simplications for the precision and accuracy of optical dating. Radiation Measurements 38, 299-310.

Pagonis, V., Chen, R., Wintle, A.G., 2007: Modelling thermal transfer in optically stimulated luminescence of quartz. Journal of Physics D: Applied Physics 40, 998-1006.

Pagonis, V., Wintle, A.G., Chen, R., Wang, X.L., 2008. A theoretical model for a new dating protocol for quartz based on thermally transferred OSL (TT-OSL). Radiation Measurements 43, 704-708.

See Also

```
plot, plot_RLum. Analysis
```

Examples

10 read_SEQ2R

read_SEQ2R	Parse a Risoe SEQ-file to a sequence neccessary for simulating quartz luminescence

Description

A SEQ-file created by the Risoe Sequence Editor can be imported to simulate the sequence written in the sequence editor.

Usage

```
read_SEQ2R(file, lab.DoseRate = 1, txtProgressBar = TRUE)
```

Arguments

file character (required): a *.seq file created by the Risoe Sequene Editor

lab.DoseRate character (with default): set the doserate of the radiation source in the laboratory [Gy/s]. Default: 1 Gy/s

txtProgressBar logical: enables or disables the txtProgressBar

further arguments and graphical parameters passed to plot.default. See details for further information

Details

Supported versions

Supppored and tested: version 4.36.

Value

This function returns a list with the parsed *.seq file and the required steps for model_LuminescenceSignals

Function version

0.1.0

Author(s)

Johannes Friedrich, University of Bayreuth (Germany),

See Also

```
plot, model_LuminescenceSignals, readLines
```

Examples

```
#so far no example available
```

Index

```
*Topic datasets
    ExampleData.ModelOutput, 3
*Topic package
    RLumModel-package, 2
character, 4, 10
{\tt ExampleData.ModelOutput, 3}
list, 4
logical, 4, 10
model.output (ExampleData.ModelOutput),
model_LuminescenceSignals, 3, 8, 10
numeric, 4, 8
pdf, 9
plot, 5, 9, 10
plot.default, 4, 8, 10
plot_concentrations, 8
{\tt plot\_RLum.Analysis}, {\color{red} 9}
read_SEQ2R, 10
readLines, 10
RLum.Analysis, 5, 8
RLum.Data.Curve, 5
{\tt RLumModel-package}, \color{red} 2
```