Laboratory Manual of Computer Organization and Architecture

EXPERIMENTS 1 – ALU

Circuit Diagram

New Concept

Pin: The single wire connector between the device or the component and the peripheral circuit.

Port: A set of pins with the same function of the device.

Enabling Pin: The pin to control the device.

Device List

74LS181: Arithmetic Logic Unit

Mode Select Inputs				Active LOW Operands & F _n Outputs		Active HIGH Operands & F _n Outputs	
S3	S2	S1	S0	Logic (M = H)	Arithmetic** (M = L) (C _n = L)	Logic (M = H)	Arithmetic** (M = L) (C _n = H)
L	L	L	L	Ā	A minus 1	Ā	Α
L	L	L	H	ĀB	AB minus 1	$\overline{A + B}$	A + B
L	L	Н	L	$\overline{A + B}$	AB minus 1	ĀB	$A + \overline{B}$
L	L	Н	Н	Logic 1	minus 1	Logic 0	minus 1
L	Н	L	L	$\overline{A + B}$	A plus $(A + \overline{B})$	ĀB	A plus AB
L	Н	L	L H	B	AB plus $(A + \overline{B})$	B	$(A + B)$ plus $A\overline{B}$
L	Н	Н	L	A ⊕ B	A minus B minus 1	A B	A minus B minus 1
L	Н	Н	Н	A + B	$A + \overline{B}$	AB	AB minus 1
Н	L	L	L	ĀB	A plus (A + B)	$\overline{A} + B$	A plus AB
Н	L	L	Н	A \oplus B	A plus B	A ⊕ B	A plus B
H	L	Н	L	В	AB plus (A + B)	В	(A + B) plus AB
Н	L	Н	Н	A + B	A + B	AB	AB minus 1
Н	Н	L	L	Logic 0	A plus A*	Logic 1	A plus A*
H	Н	L	Н	AB	AB plus A	$A + \overline{B}$	(A + B) plus A
Н	Н	Н	L	AB	AB minus A	A + B	$(A + \overline{B})$ plus A
Н	Н	Н	H.	Α	A	Α	A minus 1

^{*}Each bit is shifted to the next most significant position.

^{**}Arithmetic operations expressed in 2s complement notation.

74LS244: Octal Buffers/Line Drivers with Tristate Outputs

U1:A	U1:B
2 A0 Y0 A1 Y1 A2 Y2 A3 Y3 OE	18 11 A0 Y0 7 7 14 15 A2 Y2 A3 Y3 OE
74LS244	74LS244

Function Table

Inp	Inputs		
G	Α	Y	
L	L	L	
L	Н	Н	
Н	X	Z	

L = LOW Logic Level

H = HIGH Logic Level

X = Either LOW or HIGH Logic Level

Z = High Impedance

74LS373: Octal D-Type Transparent Latches with Tristate Outputs

SN54/74LS373 • SN54/74LS374

LS373					
D _n	LE	OE	On		
H	Н	L	Н		
L	Н	L	L		
Х	L	L	Q ₀		
Х	X	Н	Z*		

TRUTH TABLE

LS374					
Dn	LE	OE	On		
Н	7	L	Н		
L	۲	L	L		
X	X	Н	Z*		

DIPSWC_8: Interactive DIP Switch 8 Common elements

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

^{*} Note: Contents of flip-flops unaffected by the state of the Output Enable input (OE).

RESPACK-8: 8 way resistor pack witn common

SW-SPDT: Interactive SPDT(Single-Pole Double-Throw) Switch

Table of Experiment Data Record

C2 C2 C1 C0	Data1	Data2	Arithmetic Ope	Logic Operation	
S3 S2 S1 S0			CN = 1 (No Carry)	CN = 0 (Carry)	(M = 1)
0000	0AAH	55H			
0001	0AAH	55H			
0010	0AAH	55H			
0011	0AAH	55H			
0100	OFFH	01H			
0101	OFFH	01H			
0110	OFFH	01H			
0111	OFFH	01H			
1000	OFFH	0FFH			
1001	OFFH	0FFH			
1010	OFFH	0FFH			
1011	OFFH	OFFH			
1100	55H	01H			
1101	55H	01H			
1110	55H	01H			
1111	55H	01H			

Steps of the Experiment

- (1) Reset all the enabling pins of 74LS181. Set all the enabling pins of other devices;
- (2) Lock data 0AAH to DR1 and data 55H to DR2. Disable the output of SW-BUS;
- (3) Set the enabling pins $S_3S_2S_1S_0$ into 0000. Reset the enabling pin M and set the enabling pin CN. Record the output data of 74LS181;
- (4) Keep the state of enabling pins $S_3S_2S_1S_0$ and the enabling pin M. Reset the enabling pin CN. Record the output data of 74LS181;
- (5) Keep the state of enabling pins $S_3S_2S_1S_0$. Set the enabling pin M. Record the output data of 74LS181;
- (6) Set the enabling pins S₃S₂S₁S₀ into the next state and redo the step (2) to (5).

EXPERIMENTS OF CPU 1 - ALU

