Aritmética em Corpos Finitos

Ranieri Althoff

¹Universidade Federal de Santa Catarina Departamento de Informática e Estatística Segurança em Computação

1. Algoritmo de Euclides

O algoritmo de Euclides é um método simples de encontrar o máximo divisor comum (GCD) entre dois números inteiros diferentes de zero. Foi desenvolvido pelo matemático homônimo por volta de 300 a.C. e é baseado no princípio de que o GCD entre dois números não muda quando um é subtraído pelo outro.

É fácil verificar esta propriedade: suponha dois números a e b com um máximo divisor comum n (gcd(a,b)=n, então a=kn e b=ln, sendo todas as variáveis números inteiros. Ao subtrair a por b, temos que a-b=kn-ln=(k-l)n, ou seja, o resultado continua sendo múltiplo de n.

De forma análoga, é possível encontrar que r=a-qb, ou seja, subtraímos de a a maior quantidade possível de b (pela propriedade acima descrita gcd(a,b)-gcd(b,a%b) e usamos o resto r para aplicar o GCD utilizando valores menores. Esse procedimento é repetido até que um dos valores seja zero, indicando que o outro é o GCD entre a e b.

A versão extendida do algoritmo, além de calcular o GCD, também encontra dois inteiros α e β tal que $gcd(a,b)=a\alpha+b\beta$, chamados de coeficientes da **identidade de Bézout**. Esse algoritmo é útil para encontrar o inverso multiplicativo de um número: se a e b são relativamente primos, $a\alpha \equiv 1 \pmod{b}$ e $b\beta \equiv 1 \pmod{a}$.

1.1. Exemplos

a) Algoritmo de Euclides para gcd(9907321467, 941).

$$9907321467 = 941 \times 10528503 + 144$$

$$941 = 144 \times 6 + 77$$

$$144 = 77 \times 1 + 67$$

$$77 = 67 \times 1 + 10$$

$$67 = 10 \times 6 + 7$$

$$10 = 7 \times 1 + 3$$

$$7 = 3 \times 2 + 1$$

$$3 = 1 \times 3 + 0$$

Sendo no próximo passo b=0, o valor final de a e, portanto, o GCD entre os dois números, 1. É possível ver que, logo no primeiro passo, o maior número diminuiu por várias ordens de grandeza.

b) A identidade de *Bézoit* pode ser encontrada se revertendo os passos do algoritmo de Euclides, encontrando a inversa multiplicativa de a e b módulo b e a, respectivamente:

$$1 = 7 - 3 \times 2 = 7 - 6$$

$$1 = 7 - (10 - 7) \times 2$$

$$1 = 21 - 10$$

$$1 = 21 - (67 - 7)$$

2. Grupos, anéis e corpos

2.1. Grupo

Um grupo G é um conjunto, finito ou infinito, de elementos acompanhado de uma operação binária * (chamada de operação do grupo) que satisfazem as seguintes propriedades fundamentais:

Associatividade: o agrupamento dos fatores não altera o resultado da operação.

$$\forall a, b, c \in G, \quad (a * b) * c = a * (b * c)$$

Identidade: existe um elemento identidade e ou 1 em G tal que todo elemento a em G aplicado com e resulte no próprio a.

$$\forall a \in G, \quad a * e = e * a = a.$$

Inversa: existe uma inversa a^{-1} para cada elemento tal que todo elemento a em G aplicado com sua inversa resulte na identidade e.

$$\forall a \in G. \quad a * a^{-1} = a^{-1} * a = e$$

Um exemplo de grupo pode ser o conjunto 0, 1 sob a operação lógica \wedge .

2.2. Anel

Mais restritivo que um grupo, um anel é um conjunto G acompanhado de duas operações + e * (interpretados como adição e multiplicação) que satisfazem as seguintes propriedades fundamentais:

Associatividade aditiva: tal qual como a associatividade em grupos, o agrupamento dos fatores não altera o resultado da adição.

$$\forall a, b, c \in G$$
, $(a+b)+c=a+(b+c)$

Comutatividade aditiva: a ordem dos fatores não altera o resultado da adição.

$$\forall a, b \in G$$
, $a+b=b+a$

Identidade aditiva: tal qual a identidade em grupos, existe um elemento 0 tal que todo elemento a em G adicionado a 0 resulte no próprio a.

$$\forall a \in G, \quad a+0 = 0 + a = a$$

Inversa aditiva: tal qual a inversa em grupos, existe uma inversa a^{-1} para cada elemento tal que todo elemento a em G adicionado a sua inversa resulte na identidade 0.

$$\forall a \in G, \quad a + (-a) = (-a) + a = 0$$

Distributividade: a operação de multiplicação deve ser distributiva sobre a operação de adição.

$$\forall a, b, c \in G, \quad a * (b + c) = (a * b) + (a * c) \land (b + c) * a = (b * a) + (c * a)$$

Associatividade multiplicativa: a operação de multiplicação também é associativa:

$$\forall a, b, c \in G, \quad (a * b) * c = a * (b * c)$$

Um exemplo de anel infinito é o conjunto de números inteiros \mathbb{Z} , já que há a operação de adição e multiplicação que satisfaz todas as condições acima sobre esse conjunto.

2.3. Corpo

Um corpo é um conjunto G, satisfazendo todas as condições de um anel e adicionalmente todo elemento $a \in G$ diferente de zero possui inversa multiplicativa. Essa característica é conhecida como álgebra de divisão, porque é a propriedade que permite que um certo conjunto possua uma operação de divisão.

Um corpo com uma quantidade finita de elementos é conhecido como um **corpo de Galois**. Os exemplos mais usados de corpos finitos são os conjuntos de números relativamente primos a n, denotados \mathbb{Z}_n .

3. Corpos primos e binários

Corpos finitos sempre tem um número de elementos primo ou potência de um primo, e para cada potência de primo p^n existe apenas um (considerando corpos isomórficos como iguais) corpo finito \mathbb{F}_{p^n} .

3.1. Corpo primo

Um corpo finito \mathbb{F}_p , onde p é um número primo, é chamado de corpo primo de ordem p e contém as classes de congruencia módulo p, sendo os p elementos denominados $0, 1, \ldots, p-1$. a=b em \mathbb{F}_p significa $a\equiv b\pmod{p}$.

O corpo finito \mathbb{F}_2 é um corpo primo que consiste dos elementos 0 e 1 e satisfaz as seguintes operações:

3.2. Corpo binário

Um corpo finito de ordem 2^m , onde $m \ge 1$, é chamado de corpo binário. Em geral, são corpos cujos elementos são polinômios, cujos coeficientes são 0 ou 1 com grau máximo m-1 (e.g. $x^4+x^3+x^1+1$ para m=5).

O corpo finito \mathbb{F}_{2^3} é composto pelos seguintes polinômios:

$$\{x^2 + x + 1, x^2 + x, x^2 + 1, x^2, x + 1, x, 1, 0\}$$

4. Polinômios irredutíveis

Um polinômio é dito irredutível se não puder ser fatorado em polinômios não-triviais em um mesmo grupo. A irredutibilidade de um polinômio depende do grupo no qual está sendo trabalhado, portanto.

No corpo finito \mathbb{F}_{2^3} , o polinômio x^2+x+1 é irredutível, mas x^2+1 não é, pois $(x+1)(x+1)=x^2+2x+1\equiv x^2+1\pmod{2}$.

4.1. Aritmética em corpos finitos

Para se realizar aritmética em corpos finitos, se realiza a operação entre os termos de mesmo grau, depois dividindo por um polinômio irredutível que define o corpo. Por exemplo:

$$p = x^{3} + x + 1$$

$$q = x^{3} + x^{2}$$

$$p + q = 2x^{3} + x^{2} + x + 1$$

No entanto, para corpos binários, a operação de adição convenientemente é equivalente a operação de ou-exclusivo sobre os bits do polinômio. Pelo mesmo exemplo, convertendo os termos dos polinômios para 0 ou 1 no corpo \mathbb{F}_{2^3} .

$$p = 1011_2$$

$$q = 1100_2$$

$$p + q = p \oplus q \equiv 0111_2 \pmod{1011} = x^2 + x + 1 \pmod{x^3 - x - 1}$$

A operação de multiplicação em um corpo finito é a multiplicação módulo um polinômio irredutível que define o corpo, o que também pode ser feito se convertendo os termos para uma representação binária, o que facilita o uso por computadores:

$$p * q = x^6 + x^5 + x^4 + 2x^3 + x^2 = 1110100_2$$
$$p * q = 1110100_2 \equiv 110_2 \pmod{1011} = x^2 + x \pmod{x^3 - x - 1}$$

5. Encontrando x

$$\mathbf{a}) \ 9x \equiv 8 \pmod{7}$$
$$= 9x \equiv 1 \pmod{7}$$
$$x = 4 + 7n$$

b)
$$x \equiv 5 \pmod{3}$$

= $x \equiv 2 \pmod{3}$
 $x = 2 + 3n$

c)
$$x \equiv 5 \pmod{-3}$$

= $x \equiv -1 \pmod{-3}$
 $x = -1 - 3n$

e)
$$x \equiv -5 \pmod{-3}$$

= $x \equiv -2 \pmod{-3}$
 $x = -2 - 3n$

f)
$$x \equiv 1234^{-1} \pmod{4321} \ x \times 1234 = 1 \pmod{4321}$$

g)
$$x \equiv -24140 \pmod{40902} = x \equiv 16762 \pmod{40902}$$
 $x = 16762 + 40902n$

6. Inversas multiplicativas do conjunto \mathbb{Z}_{11}

O conjunto Z_n é o conjunto dos números relativamente primos a n. Como 11 é um número primo, todos os números inferiores a ele são relativamente primos, portanto o conjunto compreende $1, 2, \ldots, 10$. As inversas multiplicativas podem ser encontradas se multiplicando os números deste conjunto de forma a encontrar $ab = 1 \pmod{11}$, sendo a a inversa multiplicativa de b e vice-versa.

*	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	2	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	2	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

É possível concluir, portando, que os pares de inversas multiplicativas de \mathbb{Z}_{11} são (1,1),(2,6),(3,4) e (5,9).