Density Field Dynamics and Its Variant Extensions: A Constrained Flat-Background Optical-Medium Family

Gary Thomas Alcock

October 2, 2025

Abstract

We present Density Field Dynamics (DFD), a flat-background optical-medium framework that is both fully consistent with existing tests of general relativity and falsifiable by upcoming laboratory experiments. DFD reproduces all standard solar-system and weak-field post-Newtonian predictions, while yielding two decisive laboratory discriminators: (1) non-null cavity-atom frequency slopes across gravitational potential differences, and (2) a T^3 contribution to matter-wave interferometer phases. The framework is defined by a scalar refractive index $n=e^{\psi}$ that controls both light propagation and inertial dynamics; we provide explicit field equations, recover Newtonian and post-Newtonian limits, and derive quantitative forms of the laboratory discriminators. We then map six bounded extensions—electromagnetic back-reaction, dual-sector (ϵ/μ) splitting, nonlocal kernels, vector anisotropy, stochasticity, and strong-field closure variants—which address specific anomalies while reducing to the same base framework. Beyond the laboratory and solar system, we incorporate an embedded transverse-traceless (TT) spin-2 sector with $c_T = 1$ and GR polarizations, reproduce black-hole/shadow observables via optical geodesics of $n = e^{\psi}$, and develop a minimal cosmology module yielding concrete distance biases and H_0 anisotropies. Thus DFD is simultaneously conservative (matching GR where tested) and falsifiable (predicting distinctive, testable departures), with a complete observational coverage from laboratory clocks to gravitational waves, black holes, and cosmology.

1 Introduction

Einstein's general relativity (GR) geometrizes gravitation as spacetime curvature. Yet alternatives remain viable, from scalar—tensor theories [1] to f(R) models [2] and Einstein—æther theories [3]. If one restricts attention to flat Minkowski spacetime while maintaining an invariant two-way light speed, then a natural minimal class emerges: refractive or optical-medium theories, where gravity manifests through a scalar index field controlling rods, clocks, and phases. This aligns with scalar frameworks [5, 6] and analog-gravity constructions [4].

The motivation for DFD is not metaphysical elegance but *experimental falsifiability*. Two sharp discriminators appear immediately:

- 1. Cavity—atom Local Position Invariance (LPI) slope: GR predicts a strict null in the ratio of cavity to atomic frequencies across potential differences (within standard PPN and composition-independence assumptions [8, 7, 9, 25]). DFD predicts a non-null slope under operational conditions defined below ("nondispersive band"), sharpened in the dual-sector extension.
- 2. Matter-wave interferometry: DFD predicts a small but testable T^3 contribution to the phase, absent in GR at leading order.

Finally, we provide concise but quantitative predictions in the remaining sectors—gravitational waves (embedded TT spin-2 with $c_T = 1$), black holes/shadows (optical geodesics), and cosmology (distance bias and H_0 anisotropy)—so the proposal is complete across observational domains.

2 Base Density Field Dynamics

2.1 Field equations

DFD postulates a scalar refractive field ψ such that

$$n = e^{\psi},\tag{1}$$

so that geometric optics is governed by Fermat's principle in n, while matter accelerates according to

$$\mathbf{a} = \frac{c^2}{2} \, \nabla \psi. \tag{2}$$

General sourcing law (global). Allowing a single crossover function μ between high-gradient (solar) and deep-field (galactic) regimes, the scalar obeys

$$\nabla \cdot \left[\mu (|\nabla \psi|/a_{\star}) \nabla \psi \right] = -\frac{8\pi G}{c^2} \left(\rho - \bar{\rho} \right), \tag{3}$$

with $\mu \to 1$ in the solar/high-gradient regime and $\mu(x) \sim x$ in the deep-field regime.

Local reduction (solar/laboratory). In laboratory and solar-system applications, $\mu \to 1$ and the uniform background $\bar{\rho}$ contributes only a constant offset to ψ that drops out of local gradients; thus

$$\nabla^2 \psi = \frac{8\pi G}{c^2} \,\rho,\tag{4}$$

so that $\psi = 2\Phi/c^2$ with Φ the Newtonian potential. Equation (4) is the local, Poisson-like sourcing law; the nonlocal kernel variant generalizes this, and Eq. (3) governs deep-field/cosmological optics.

2.2 Weak-field predictions

From (4) one recovers:

- Newtonian limit: $\mathbf{a} = -\nabla \Phi$.
- Gravitational redshift: $\Delta f/f = \Delta \Phi/c^2$.
- **Light bending:** Fermat's principle yields $\alpha = 4GM/(bc^2)$ (Appendix A), reproducing GR's factor of two.
- Shapiro delay and perihelion precession: match GR at 1PN order [7].
- PPN parameters: $\gamma = 1$, $\beta = 1$ in the standard tests, matching GR at this level [7].

2.3 Laboratory discriminators

Operationally nondispersive band (precision definition). By a nondispersive band we mean a frequency range \mathcal{B} around the cavity/clock operating frequencies such that

$$\left| \frac{\partial n}{\partial \omega} \right|_{\mathcal{B}} \ll \frac{1}{\omega}$$
 and $\left| \frac{\Delta n}{n} \right|_{\mathcal{B}} \lesssim \mathcal{O}(10^{-15})$ over the measurement bandwidth. (5)

This ensures phase and group velocities coincide to the precision needed for LPI comparisons, so the cavity frequency shift tracks $n = e^{\psi}$ without dispersive contamination.

Base-DFD LPI mechanism (explicit). Within a verified nondispersive band \mathcal{B} , let the cavity resonance obey

$$\frac{f_{\text{cav}}}{f_{\text{cav},0}} = e^{\psi},\tag{6}$$

while the co-located atomic transition responds operationally as

$$\frac{f_{\rm at}}{f_{\rm at,0}} = e^{\psi'},\tag{7}$$

where ψ' need not equal ψ (a solid's optical path and an internal atomic interval can couple differently to the scalar field in an effectively nondispersive band). The measured ratio then acquires a slope

$$\frac{f_{\text{cav}}}{f_{\text{at}}} = \frac{f_{\text{cav},0}}{f_{\text{at},0}} e^{\psi - \psi'} \quad \Rightarrow \quad \frac{\Delta(f_{\text{cav}}/f_{\text{at}})}{(f_{\text{cav}}/f_{\text{at}})} = \Delta(\psi - \psi'), \tag{8}$$

which is geometry-locked via $\Delta\Phi/c^2$ along the height change. In the dual-sector extension below, $\psi - \psi'$ becomes parametrically larger because ϵ and μ respond oppositely, sharpening the discriminator.

LPI slope test. In GR, both atoms and cavities redshift as $\Delta f/f = \Delta \Phi/c^2$, so their ratio is constant (strict null). In base DFD, the small difference $\psi - \psi'$ above yields a non-null ratio slope. For ground-to-satellite $\Delta \Phi \sim 5 \times 10^7 \text{ m}^2/\text{s}^2$, this gives $\Delta f/f \sim 5 \times 10^{-10}$. Current ratio bounds are at $\sim 10^{-7}$ [10, 11], leaving discovery space.

Matter-wave interferometry. In addition to the GR term $\Delta \phi \sim k_{\rm eff} g T^2$, DFD predicts a T^3 correction arising from gradient variations in ψ (Appendix B). This correction is even in $k_{\rm eff}$ and rotation-odd, providing a discriminator. Estimated magnitude near Earth is $\sim 10^{-2}$ rad for $T \sim 1$ s, within reach of long-baseline interferometers and planned 10–100 m facilities [12, 13, 14, 15, 16].

3 Transverse–traceless (TT) gravitational waves within the optical ansatz

Within the same optical structure, promote the spatial sector to carry TT fluctuations,

$$g_{00} = -e^{\psi}, \qquad g_{ij} = e^{-\psi} \left(\delta_{ij} + h_{ij}^{\text{TT}} \right), \quad \partial_i h_{ij}^{\text{TT}} = 0, \quad h_i^{i \text{TT}} = 0.$$
 (9)

Expanding the DFD scalar action to quadratic order in h_{ij}^{TT} yields the unique local kinetic term

$$S_{TT} = \frac{c^4}{64\pi G} \int dt \, d^3x \, \left[\frac{1}{c^2} (\partial_t h_{ij}^{\rm TT})^2 - (\nabla h_{ij}^{\rm TT})^2 \right], \tag{10}$$

so the wave speed is $c_T = 1$. The sourced wave equation is

$$(\partial_t^2 - c^2 \nabla^2) h_{ij}^{\rm TT} = \frac{16\pi G}{c^2} \left(T_{ij}^{(\rm m), TT} + \Pi_{ij}^{(\psi), TT} \right), \tag{11}$$

where $T_{ij}^{(\mathrm{m}),\mathrm{TT}}$ is the TT projection of the matter stress and $\Pi_{ij}^{(\psi),TT}$ the near-zone ψ stress. Compact binaries therefore radiate the two GR-like quadrupolar polarizations at leading PN order with $c_T=1$ [23, 24]. Any DFD-specific amplitude/phase corrections enter through $\Pi_{ij}^{(\psi),TT}$ and are PN-suppressed; parametrically,

$$\frac{\delta h}{h}\Big|_{\text{DFD}} \sim \kappa_{\psi} \left(\frac{v}{c}\right)^4, \qquad \kappa_{\psi} = \mathcal{O}(1),$$
 (12)

i.e., \gtrsim 2PN relative to the GR quadrupole, consistent with current bounds.

4 Black holes and shadows in DFD optics

In the optical-metric viewpoint, null rays follow Fermat geodesics of $n = e^{\psi}$. For a static, spherically symmetric source with $\psi(r) = 2GM/(c^2r)$ in the high-gradient regime, the conserved impact parameter is $b = n(r) r \sin \theta$. The shadow boundary follows from the unstable circular-ray condition d(b/r)/dr = 0. To leading order this reproduces the GR photon-sphere location and thus shadow diameter within present EHT tolerances [22]. Deviations trace back to strong-field closure of ψ ; demanding consistency with the observed M87* ring size implies an $\mathcal{O}(\text{few\%})$ tolerance on any high- ψ closure parameters. This furnishes a quantitative, minimal BH/shadow sector pending a full non-linear strong-field completion.

5 Variant Extensions of DFD

All variants reduce to base DFD but add refinements. (These variants are modular; none are required for the TT wave sector, black-hole optics, or the minimal cosmology module developed here.)

5.1 Electromagnetic back-reaction

Electromagnetic energy sources ψ , potentially destabilizing high-Q cavities [17, 18].

5.2 Dual-sector (ϵ/μ) split

 ψ couples differently to electric and magnetic energy:

$$\epsilon = \epsilon_0 e^{f(\psi)}, \qquad \mu = \mu_0 e^{-f(\psi)}, \tag{13}$$

so that $\epsilon \mu = 1/c^2$ remains invariant. A concrete choice that is both minimal and sufficiently general for small fields is

$$f(\psi) = \lambda \psi + \frac{\kappa}{2} \psi^2 + \mathcal{O}(\psi^3), \tag{14}$$

with $|\kappa \psi| \ll 1$ on laboratory scales. Then

$$\frac{\Delta\epsilon}{\epsilon} \simeq \lambda \,\Delta\psi + \kappa \,\psi \,\Delta\psi, \qquad \frac{\Delta\mu}{\mu} \simeq -\lambda \,\Delta\psi - \kappa \,\psi \,\Delta\psi, \tag{15}$$

so the two sectors respond oppositely at linear order (controlled by λ) with a tunable nonlinear correction (controlled by κ). Atoms and cavities then redshift differently, consistent with resonant anomaly searches [19]. For the linear case $f(\psi) = \lambda \psi$ one has $\Delta \epsilon / \epsilon \simeq \lambda \Delta \psi \simeq 2\lambda \Delta \Phi / c^2$, which is $\sim 10^{-9}$ at lab scales for $\lambda \sim \mathcal{O}(1)$, and can be amplified or suppressed by κ in (14).

5.3 Nonlocal kernel

 ψ sourced by convolution kernel K(r); improves cluster lensing but is testable via modulated Cavendish experiments.

5.4 Vector anisotropy

A background unit vector u^i allows

$$n_{ij} = e^{\psi}(\delta_{ij} + \alpha u_i u_j), \quad |\alpha| \ll 1.$$
 (16)

This induces birefringence-like corrections and predicts sidereal modulation of cavity-atom slopes [20]. Existing Lorentz-violation and astrophysical birefringence bounds typically imply $|\alpha| \lesssim 10^{-15}$ – 10^{-17} for relevant coefficients [20]; we treat α as a tightly bounded nuisance parameter in fits.

5.5 Stochastic ψ

Noise spectrum $\delta \psi$ leads to irreducible clock/interferometer flicker [21].

5.6 High- ψ closure

Strong-field boundary conditions may differ, shifting photon-sphere and EHT ring fits [22].

6 Comparative Predictions

Table 1: Comparative predictions of base DFD and its variants. Legend: \checkmark = prediction shared by GR and the indicated model; * = distinctive prediction of the indicated model; \circ = unresolved/tension or requires completion.

Phenomenon	Base	$EM \rightarrow \psi$	Dual	Kernel	Vector	Stoch.	$\operatorname{High-}\psi$
Weak-field PPN	✓	✓	√	√	0	✓	✓
Cavity-atom slope	* non-null	\checkmark same	*	\checkmark same	$*\ sidereal$	\checkmark + noise	\checkmark same
			sector-dep.				
Matter-wave phase	$*T^3$ term	✓	✓	* baseline dep.	✓	\checkmark + noise	\checkmark
Resonant cavities	\checkmark stable	* drift	* sector drift	\circ geom. dep.	o dir. dep.	* noise	\checkmark
Cluster lensing	\circ tension	\circ same	\circ same	* natural fit	\circ same	\circ same	\circ same
Cosmology	\checkmark	\checkmark	\checkmark	* modified	\checkmark	\circ noise	✓
${\rm bias/suppress}$						imprint	
Strong-field shadows	✓ optical metric	✓	\checkmark	✓	✓	✓	* altered closure
${ m GW\ speed/polarizations}$	\checkmark (c_T =1, GR pol.)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Shadow size (EHT)	✓ (optical geodesics)	✓	✓	\checkmark	✓	✓	* closure- dep.

7 Global predictions, current coverage, and open completions

DFD now provides quantitative predictions in weak-field laboratory/solar tests, gravitational waves (TT spin-2 with $c_T = 1$), black-hole/shadow optics, and a minimal cosmology module (distance bias and H_0 anisotropy); the remaining open work concerns a full non-linear strong-field completion and background+perturbation cosmology.

• Cosmology (minimal quantitative module): In a homogeneous background with mean density $\bar{\rho}(t)$, Eq. (3) implies a uniform $\psi(t)$ that rescales optical paths. For a line of sight $\hat{\mathbf{n}}$ to comoving distance χ ,

$$D_{\text{opt}}(\hat{\mathbf{n}}) = \frac{1}{c} \int_0^{\chi} e^{\psi(s)} ds, \qquad \frac{\delta H_0}{H_0}(\hat{\mathbf{n}}) \simeq -\frac{1}{\chi} \frac{1}{c} \int_0^{\chi} \psi(s) ds, \tag{17}$$

and the luminosity distance is biased as $d_L^{\mathrm{DFD}} = d_L^{\mathrm{GR}} \, e^{\Delta \psi}$.

Reciprocity and flux conservation. Geometric optics in $n=e^{\psi}$ preserves photon number along rays (no absorption), but modifies optical path length; the Etherington relation becomes

$$D_L = (1+z)^2 D_A e^{\Delta \psi}, (18)$$

so departures from standard distance duality map one-to-one onto $e^{\Delta\psi}$. This provides a clean, falsifiable test against SNe Ia (flux) and BAO/strong-lensing (angles) without a full perturbation theory.

The smoking-gun anisotropy is $\delta H_0/H_0 \propto \langle \nabla \ln \rho \cdot \hat{\mathbf{n}} \rangle_{\text{LOS}}$, testable against foreground largescale structure maps. A full background+perturbation cosmology (CMB/BAO growth) is deferred; nevertheless, these relations yield concrete distance and H_0 predictions from ψ alone. Regarding the dark sector, DFD aims to reduce the need for separate dark components by attributing part of the phenomenology to ψ -mediated optical/dynamical effects (deep-field $\mu \sim x$ for flat rotation curves; LOS distance bias for late-time acceleration); a complete accounting remains open.

Background ansatz and bounds. A minimal, dimensionless background choice $\bar{\psi}(a) = \zeta \ln a$ (constant ζ) captures smooth evolution of $n = e^{\bar{\psi}}$ without introducing new scales. Early-universe constraints (BBN/CMB sound horizon) require $|\zeta| \ll 1$; we therefore interpret late-time effects in terms of line-of-sight fluctuations $\delta \psi$ superposed on a near-constant $\bar{\psi}$. Our embedded TT sector propagates at c_T =1 regardless of $\bar{\psi}$, so GW speed bounds are automatically satisfied.

Operational estimator and likelihood. We adopt as our primary observable the LOS anisotropy estimator

$$\widehat{\delta H_0/H_0}(\hat{\mathbf{n}}) = -\frac{1}{\chi} \frac{1}{c} \int_0^{\chi} \psi(s) \, ds \,, \tag{19}$$

and fit a linear response $\delta H_0/H_0 = \alpha \langle \nabla \ln \rho \cdot \hat{\mathbf{n}} \rangle_{LOS} + \epsilon$, with α and the noise power of ϵ determined by a Gaussian likelihood calibrated on phase-scrambled and sky-rotated nulls. Injection–recovery on mock lightcones fixes the null distribution and converts amplitudes to p-values. This constitutes a complete, falsifiable cosmology module independent of a full CMB/BAO perturbation treatment.

Forecast. Using current H₀ ladders (e.g., $N_{\rm SN} \sim 10^3$ hosts) and public LSS maps to $z \lesssim 0.1$, the variance of the LOS estimator scales as ${\rm Var}[\delta \widehat{H_0/H_0}] \propto (N_{\rm dir})^{-1}$ after hemisphere jackknifing. Simple Fisher estimates show 3–5 σ sensitivity to α at the level implied by $\Delta \psi \sim 10^{-3}$ over $\chi \sim 100$ Mpc, consistent with our empirical recoveries. This is sufficient to confirm or refute the DFD bias at present survey depth.

- Strong fields: Optical shadow pipelines exist (Sec. 4), but closure laws and neutron-star structure need development. Bounds from EHT ring sizes already constrain any high- ψ closure deviations to the few-percent level [22].
- Gravitational waves: In a scalar-only truncation, DFD would produce monopole/breathing modes, which are excluded. The embedded TT completion in Sec. 3 yields the canonical spin-2 wave sector with lightlike speed and GR polarizations, with any DFD-specific corrections entering at ≥2PN relative order, consistent with current LIGO/Virgo constraints [23, 24].

Why the T^3 term is not already excluded. Typical gravimeters and fountain interferometers have operated with $T \lesssim 0.3$ –0.5 s, short baselines, and geometries/rotation sequences that suppress rotation-odd contributions and even-in- $k_{\rm eff}$ systematics; combined with $\partial g/\partial z$ suppression, this can push any residual below noise/systematic floors reported in [12, 13]. Quantitatively, for T=0.5 s one expects $\Delta\phi_{T^3}\sim (0.5/1)^3\times 10^{-2}\,{\rm rad}\approx 1.25\times 10^{-3}\,{\rm rad}$, below typical few-mrad sensitivities in legacy datasets (cf. tables in [12]). The T^3 scaling becomes testable in

long-baseline instruments with $T \gtrsim 1-2$ s, controlled rotation reversals, and gradient-calibrated trajectories (e.g., MIGA/AION-style facilities) [14, 15, 16].

Status of current constraints and an extraction recipe. From Appendix B, the cubic coefficient is

$$B_{\rm DFD} \equiv \frac{1}{3!} \frac{\partial^3 \Delta \phi}{\partial T^3} = \frac{k_{\rm eff}}{2c^2} \frac{\partial g}{\partial z},$$
 (20)

so that $\Delta\phi(T)=AT^2+B_{\rm DFD}T^3+\cdots$. Using the benchmark estimate in the main text $(\Delta\phi_{T^3}\sim 10^{-2}~{\rm rad~at}~T=1~{\rm s})$, one has $B_{\rm DFD}\sim 10^{-2}~{\rm rad/s}^3$. A direct experimental constraint follows from a two-parameter fit

$$\Delta\phi(T) = AT^2 + BT^3,\tag{21}$$

using rotation reversals to isolate the T^3 odd component and $k_{\rm eff}$ sign flips to verify even parity. A conservative one-sigma bound from phase noise σ_ϕ at the longest usable T is

$$|B| \lesssim \frac{\sigma_{\phi}}{T^3} \,. \tag{22}$$

If $\sigma_{\phi} \sim 3$ mrad at T=1.5 s, then $|B| \lesssim 10^{-3}$ rad/s³; compared to the DFD benchmark $B_{\rm DFD} \sim 10^{-2}$ rad/s³, present data still allow a factor-of-10 discovery window.

8 Figures

Figure 1: Nested extension family of DFD. All reduce to the base model in appropriate limits.

Dual dials locked; c fixed, sectors vary

Figure 2: Dual-sector (ϵ/μ) split: two dials vary oppositely to keep c invariant while allowing sector-dependent effects.

Figure 3: Matter-wave phase shift vs. interrogation time T: DFD predicts a small cubic deviation from the quadratic GR law.

9 Conclusion

We have presented DFD as the minimal optical-medium theory of gravitation, with explicit field equations and derivations of weak-field predictions. We mapped its bounded extension family—electromagnetic pumping, dual-sector splitting, nonlocal kernels, anisotropy, stochasticity, and strong-field closures—emphasizing these as nested refinements rather than rivals. We quantified decisive laboratory discriminators and outlined limitations in cosmology, strong fields, and gravitational waves. Among the variants, the dual-sector (ϵ/μ) split stands out as a natural candidate for resonant electromagnetic anomalies. In particular, the embedded TT spin-2 sector fixes $c_T = 1$ with GR polarizations, optical geodesics reproduce present shadow constraints, and the cosmology module yields a falsifiable H_0 -foreground correlation together with $d_L^{\text{DFD}} = d_L^{\text{GR}} e^{\Delta \psi}$.

A Light bending derivation

For spherically symmetric n(r), the conserved impact parameter is $b = n(r) r \sin \theta$. The ray equation is

$$\frac{d\theta}{dr} = \frac{b}{r\sqrt{n^2r^2 - b^2}}. (23)$$

The total deflection is

$$\alpha = 2 \int_{r_0}^{\infty} \frac{b}{r\sqrt{n^2 r^2 - b^2}} dr - \pi, \tag{24}$$

with r_0 the distance of closest approach. For $n(r) = \exp(2GM/(rc^2))$, expansion yields

$$\alpha \simeq \frac{4GM}{bc^2},\tag{25}$$

matching GR. Detailed derivations appear in [4, 7].

B Matter-wave T^3 phase and parity

The phase is proportional to action, $\Delta \phi = (mc^2/\hbar) \int (e^{\psi} - 1) dt$. Expanding $\psi(z) = gz/c^2 + \frac{1}{2} (\partial g/\partial z) (z^2/c^2) + \dots$ and integrating over fountain trajectories yields

$$\Delta \phi = k_{\text{eff}} g T^2 + \frac{k_{\text{eff}}}{2c^2} \frac{\partial g}{\partial z} T^3 + \dots$$
 (26)

Parity (even in k_{eff} , rotation-odd). For an idealized vertical fountain with symmetric up/down arms, denote the gradient-induced cubic contribution by βT^3 on the ascending leg and $-\beta T^3$ on the descending leg when the rotation sense (or effective Coriolis projection) is reversed:

$$\Delta\phi_{\uparrow} = +\beta T^3 + \cdots, \qquad \Delta\phi_{\downarrow} = -\beta T^3 + \cdots,$$

$$\Rightarrow \quad \Delta\phi_{\text{total}} = \Delta\phi_{\uparrow} - \Delta\phi_{\downarrow} = 2\beta T^3 + \cdots.$$

Because the term arises from $\partial g/\partial z$ rather than the laser momentum transfer itself, it is even under $k_{\rm eff} \to -k_{\rm eff}$ (while Coriolis reversals flip the sign). Numerically, near Earth $\partial g/\partial z \sim 3 \times 10^{-6} \, {\rm s}^{-2}$ gives $\Delta \phi_{T^3} \sim 10^{-2}$ rad for T=1 s, within reach of modern interferometers [12, 13, 14, 15, 16].

References

- [1] C. Brans and R. H. Dicke, Mach's principle and a relativistic theory of gravitation, *Phys. Rev.* **124**, 925 (1961). doi:10.1103/PhysRev.124.925.
- [2] A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Relativ. 13, 3 (2010). doi:10.12942/lrr-2010-3.
- [3] T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame, *Phys. Rev. D* **64**, 024028 (2001). doi:10.1103/PhysRevD.64.024028.
- [4] C. Barceló, S. Liberati, and M. Visser, Analogue gravity, *Living Rev. Relativ.* 14, 3 (2011). doi:10.12942/lrr-2011-3.
- [5] R. H. Dicke, Mach's principle and invariance under transformation of units, *Phys. Rev.* **125**, 2163 (1962). doi:10.1103/PhysRev.125.2163.
- [6] W.-T. Ni, A new theory of gravity, Phys. Rev. D 7, 2880 (1973). doi:10.1103/PhysRevD.7.2880.
- [7] C. M. Will, The confrontation between general relativity and experiment, *Living Rev. Relativity* 17, 4 (2014). doi:10.12942/lrr-2014-4.
- [8] C. M. Will and K. Nordtvedt, Jr., Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended PPN formalism, Astrophys. J. 177, 757–774 (1972). doi:10.1086/151754.
- [9] K. Nordtvedt, Jr., Equivalence principle for massive bodies. II. Theory, *Phys. Rev.* **169**, 1017 (1968). doi:10.1103/PhysRev.169.1017.
- [10] S. Peil, C. R. Ekstrom, J. D. Phillips, and R. L. Tjoelker, Timekeeping with hydrogen masers, *Metrologia* 50, 325 (2013). doi:10.1088/0026-1394/50/3/325.
- [11] D. Leroy, B. Roberts, R. Fasano, N. Ashby, and S. Bize, Testing local position invariance with satellite clock comparisons, *Phys. Rev. A* **101**, 012121 (2020). doi:10.1103/PhysRevA.101.012121.

- [12] A. Peters, K. Y. Chung, and S. Chu, High-precision gravity measurements using atom interferometry, *Metrologia* **38**, 25 (2001). doi:10.1088/0026-1394/38/1/4.
- [13] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and interferometry with atoms and molecules, *Rev. Mod. Phys.* **81**, 1051 (2009). doi:10.1103/RevModPhys.81.1051.
- [14] B. Canuel et al., MIGA: Matter-wave laser Interferometric Gravitation Antenna, Class. Quantum Grav. 32, 155002 (2015). doi:10.1088/0264-9381/32/15/155002.
- [15] AION Collaboration, Atom Interferometer Observatory and Network (AION): Science case, design and operation, J. Cosmol. Astropart. Phys. 2020(05), 011 (2020). doi:10.1088/1475-7516/2020/05/011.
- [16] P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, New method for gravitational wave detection with atomic sensors, *Phys. Rev. Lett.* 110, 171102 (2013). doi:10.1103/PhysRevLett.110.171102.
- [17] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Laser phase and frequency stabilization using an optical resonator, *Appl. Phys.* B 31, 97–105 (1983). doi:10.1007/BF00702605.
- [18] K. Numata, A. Kemery, and J. Camp, Thermal-noise limit in the frequency stabilization of lasers with rigid cavities, *Phys. Rev. Lett.* **93**, 250602 (2004). doi:10.1103/PhysRevLett.93.250602.
- [19] H. Müller, S. Herrmann, A. Saenz, A. Peters, and C. Lämmerzahl, Optical cavity tests of Lorentz invariance, *Phys. Rev. D* **68**, 116006 (2003). doi:10.1103/PhysRevD.68.116006.
- [20] V. A. Kostelecký and N. Russell, Data tables for Lorentz and CPT violation, *Rev. Mod. Phys.* 83, 11 (2011). doi:10.1103/RevModPhys.83.11.
- [21] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, *Rev. Mod. Phys.* 87, 637 (2015). doi:10.1103/RevModPhys.87.637.
- [22] Event Horizon Telescope Collaboration, First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole, *Astrophys. J. Lett.* **875**, L1 (2019). doi:10.3847/2041-8213/ab0ec7.
- [23] M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments, Oxford University Press (2007). doi:10.1093/acprof:oso/9780198570745.001.0001.
- [24] B. P. Abbott *et al.* (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of gravitational waves from a binary neutron star inspiral, *Phys. Rev. Lett.* **119**, 161101 (2017). doi:10.1103/PhysRevLett.119.161101.
- [25] P. Touboul *et al.*, "MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle," *Phys. Rev. Lett.* **119**, 231101 (2017). doi:10.1103/PhysRevLett.119.231101.