for the Dirichlet form associated to sticky Brownian motion. Denoting $a_0 = \frac{1}{2+\omega L}$ and $b_0 = \omega a_0$, for all s > 0 we have

$$\int f^{2} d\mu = a_{0}(f(0)^{2} + f(L)^{2}) + b_{0} \int_{0}^{L} f^{2} dx,$$

$$\leq a_{0}(f(0)^{2} + f(L)^{2}) + b_{0}s \int_{0}^{L} (f')^{2} dx + b_{0}\beta(s) \left(\int_{0}^{L} |f| dx \right)^{2},$$

$$\leq b_{0}s \int_{0}^{L} (f')^{2} dx + b_{0} \max(b_{0}^{-2}, a_{0}^{-1})\beta(s) \left(\int |f| d\mu \right)^{2}.$$

Therefore the sticky Brownian satisfies a super Poincaré inequality. Then by [Wan00, Th. 5.1], it has an empty essential spectrum. Now, by [BGL14, Th. A.6.4], the resolvent is compact and thus the generator has discrete spectrum.

Corollary 19. Choosing $T = m^{-1/2}$, the transition semigroup of the RTP process is exponentially contractive in T-average with rate

$$\nu = \Omega\left(\frac{\omega}{1 + (\omega L)^2}\right).$$

Note that the relaxation time corresponding to this decay rate is of the same order as the mixing time obtained in [GHM24]. It reveals the existence of two regimes controlled by the parameter ωL . In the ballistic regime $\omega L \ll 1$, velocity flips are rare, leading to a fast exploration of the position space \mathcal{S} and a comparatively slow exploration of the velocity space \mathcal{V} . This results in the scaling $\nu \propto \omega$. On the contrary, in the diffusive regime $\omega L \gg 1$, the high frequency of velocity flips makes the exploration of \mathcal{V} faster than the exploration of \mathcal{S} . This leads to the scaling $\nu \propto \omega^{-1} L^{-2}$.

Proof. We begin by verifying Assumption (A). Recall that $\text{Dom}(\mathcal{L}_{C^0})$ is a core of \mathcal{L} by Theorem 7. For all $f \in \text{Dom}(\mathcal{L}_{C^0})$ we have $\hat{\mathcal{L}}_v(f \circ \pi) = 0$ hence $\hat{\mathcal{L}}_{\text{tr}}$ is a lift of \mathcal{L} by Remark 8. Furthermore, for $f \in \text{Dom}(\mathcal{L}_{C^0})$ one has

$$\hat{\mathcal{L}}_{\mathrm{tr}}^*(f \circ \pi)(x, v) = -v 1_{\{0 < x < L\}} f'(x) = -\hat{\mathcal{L}}_{\mathrm{tr}}(f \circ \pi)(x, v).$$

A straightforward computation yields

$$\int_{\mathcal{V}} \hat{\mathcal{L}}_v f(x, v) \, \mathrm{d}\kappa_x(v) = 0 \text{ for all } x \in \mathcal{S} \text{ and } f \in \mathrm{Dom}(\hat{\mathcal{L}}).$$

Finally, we prove $||f - \Pi_v f||_{L^2(\hat{\mu})}^2 \leq \frac{1}{m_v} \mathcal{E}_v(f)$ with $m_v = 2$. Define the matrices

$$S = \begin{pmatrix} 1/4 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/4 \end{pmatrix}, \qquad \mathcal{Q} = \begin{pmatrix} -2 & 2 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & -2 \end{pmatrix},$$

as well as the scalar product $\langle x,y\rangle_S=x^\top Sy$ and let Π be the orthogonal projection on the kernel of $\mathcal Q$ with respect to $\langle\cdot,\cdot\rangle_S$. The matrix $\mathcal Q$ is symmetric w.r.t. the scalar