QDCS: Diagrammatic Calculus and Error Correction

Renaud Vilmart

TD 6

1 Stabilisers and Normalisers

Question 1. Show that any subgroup of \mathcal{P}_n that does not contain $-I \otimes ... \otimes I$ is abelian. Hint: First show that any element in the subgroup is involutive.

Question 2. Let $S \in \mathcal{N}(\mathcal{G})$ and $|\psi\rangle \in \mathcal{C}(\mathcal{G})$. Show that $S|\psi\rangle \in \mathcal{C}(\mathcal{G})$.

Question 3. Let $S \in \mathcal{P}_n \setminus \mathcal{N}(\mathcal{G})$ and $|\psi\rangle \in \mathcal{C}(\mathcal{G})$. Show that $S |\psi\rangle \in \mathcal{C}(\mathcal{G})^{\perp}$.

2 Syndrome Decoding

Let \mathcal{G} be an admissible subgroup of \mathcal{P}_n , and $S \in \mathcal{G}$. We define $S_1 := \frac{I+S}{2}$ and $S_{-1} := \frac{I-S}{2}$.

Question 1. Show that $S = S_1 - S_{-1}$ defines a projective measurement.

Question 2. Show that for all $|\psi\rangle \in \mathcal{C}(\mathcal{G})$: $S_1 |\psi\rangle = |\psi\rangle$ and $S_{-1} |\psi\rangle = 0$.

Suppose an error $E \in \mathcal{P}_n$ occurs on the codestate $|\psi\rangle \in \mathcal{C}(\mathcal{G})$, and we apply the above projective measurement on the system.

Question 3. Show that if E commutes with S then outcome -1 has probability 0. If instead E does not commute with S, show that outcome 1 has probability 0.

3 A Small Stabiliser Code

Let $\mathcal{G} := \langle ZXX, XZX, XXZ \rangle$.

Question 1. Is \mathcal{G} admissible? What are its length and dimension?

Question 2. Build a ZX encoder for the state that spans $\mathcal{C}(\mathcal{G})$.

Suppose we had instead $\mathcal{G} := \langle ZXX, XZX \rangle$.

Question 3. Is \mathcal{G} still admissible? What are its length and dimension?

Question 4. Complete the stabiliser tableau as you see fit, then create a ZX encoder for this code.

4 5-Qubit Code

Let \mathcal{G} be the subgroup of \mathcal{P}_5 generated by the following tableau:

$$\begin{pmatrix} I & Z & X & X & Z \\ Z & I & Z & X & X \\ X & Z & I & Z & X \\ X & X & Z & I & Z \end{pmatrix}$$

Question 1. Is \mathcal{G} admissible? What are its length and dimension?

Question 2. We can encode the logical Z operator as ZZZZZ and the logical X operator as XXXXXX. From this, can we deduce a way to complete the code into a maximal one?

Question 3. Build a ZX encoder for the original code, using the above completion.

Question 4. Show that the minimal distance of this code is 3.