Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Agrupamento IV

17/01/2023 $2^{\underline{O}}$ Teste Duração: 1h45min

Justifique detalhadamente todas as respostas. Apresente todos os cálculos.

- (5.0) 1. Considere o subconjunto $S = \{(x, y, z) \in \mathbb{R}^3 : y + z = 0\}$ do espaço vetorial \mathbb{R}^3 .
 - (a) Mostre que S é um subespaço vetorial de \mathbb{R}^3 .
 - (b) Determine uma base ordenada B de S e indique a dimensão de S.
 - (c) Determine a projeção ortogonal de v = (3, 0, 2) em S.
- (4.0) 2. Considere os vetores u = (1, a, -1), v = (-1, 1, -a) e w = (1, a, 2), onde a é um parâmetro real. Seja $C_3 = ((1, 0, 0), (0, 1, 0), (0, 0, 1))$ a base canónica de \mathbb{R}^3 e $\mathcal{B} = (u, v, w)$.
 - (a) Determine todos os valores de a para os quais \mathcal{B} é uma base de \mathbb{R}^3 .
 - (b) Seja a = 0, determine a matriz $M = M(\mathcal{C}_3, \mathcal{B})$ de mudança da base canónica de \mathbb{R}^3 , \mathcal{C}_3 , para a base \mathcal{B} .
- (5.0) 3. Considere que A é uma matriz 3×3 que verifica as igualdades

$$AX = 2X$$
, $AY = 2Y$ e $AZ = -3Z$.

onde
$$X = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $Y = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ e $Z = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

- (a) Identifique os valores próprios de A e verifique que A é diagonalizável.
- (b) Assuma que a matriz A é simétrica.
 - i. Determine uma matriz ortogonal P e uma matriz diagonal D tal que $D = P^{\top}AP$.
 - ii. Considere em \mathbb{R}^3 a quádrica de equação $X^TAX=4$. Determine uma equação reduzida e classifique a quádrica.
- (2.0) 4. Seja A uma matriz quadrada $n \times n$. Mostre que se $A^3 = I_n$, então A tem um único valor próprio e esse valor próprio é $\lambda = 1$.
- (4.0) 5. Considere a transformação linear $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\phi(X) = AX$, com $A = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix}$. Seja $\mathcal{B} = ((1,0),(1,-1))$ uma base de \mathbb{R}^2 e $\mathcal{C}_2 = ((1,0),(0,1))$ a base canónica de \mathbb{R}^2 .
 - (a) Determine o núcleo de ϕ e a sua dimensão.
 - (b) Verifique se ϕ é injetiva e se ϕ é sobrejetiva.
 - (c) Determine a matriz de representação de ϕ , $M = M(\phi, \mathcal{C}_2, \mathcal{B})$.