K-NN

Data Mining

Ester Vidaña Vila

K-NN

La idea es clasificar dependiendo de la distancia entre muestras vecinas.

K-NN

¿Cómo se implementa en Python?

- Función: sklearn.neighbors.KNeighborsClassifier
- Documentación:
- https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

MBD Data Mining Page 4

Cross validation

- Cross-validation es la técnica de dividir de forma aleatoria nuestros datos en K grupos.
- Un grupo se utiliza como test, y el resto de grupos se utilizan como train.
- El modelo se entrena con los datos de train y se evalúa con los datos de test.
- El proceso se repite hasta que todos los grupos se han utilizado como test.

https://towards datascience.com/building-a-k-nearest-neighbors-k-nn-model-with-scikit-learn-51209555453a

Función sklearn: cross_val_score

¿Se puede usar para problemas de regresión?

- ¡Sí! En este caso, asignaríamos (por ejemplo) el promedio de las variables numéricas de los vecinos.
- Ejemplo:

Age	Loan	House Price Index	Distance				
25	\$40,000	135	102000				
35	\$60,000	256	82000				
45	\$80,000	231	62000				
20	\$20,000	267	122000				
35	\$120,000	139	22000	2			
52	\$18,000	150	124000				
23	\$95,000	127	47000				
40	\$62,000	216	80000				
60	\$100,000	139	42000	3			
48	\$220,000	250	78000				
33	\$150,000	264	8000	1			
		1					
48	\$142,000	?					
$D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$							

Vecino más próximo:

$$D = \sqrt{(48 - 33)^2 + (142000 - 150000)^2} = 8000.01 \rightarrow HPI = 264$$

$$HPI = (264+139+139)/3 = 180.7$$

¿Se puede usar para problemas de regresión?

- ¡Problema! ¿Qué pasa si las unidades entre variables son muy distintas?
- Deberíamos estandarizarlas:

Loan	House Price Index	Distance
\$40,000	135	102000
\$60,000	256	82000
\$80,000	231	62000
\$20,000	267	122000
\$120,000	139	22000
\$18,000	150	124000
\$95,000	127	47000
\$62,000	216	80000
\$100,000	139	42000
\$220,000	250	78000
\$150,000	264	8000
	Ţ	
\$142,000	?	
	\$40,000 \$60,000 \$80,000 \$20,000 \$120,000 \$18,000 \$95,000 \$62,000 \$100,000 \$220,000	\$40,000 135 \$60,000 256 \$80,000 231 \$20,000 267 \$120,000 139 \$18,000 150 \$95,000 127 \$62,000 216 \$100,000 139 \$220,000 250 \$150,000 264

$$D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Age	Loan	House Price Index	Distance
0.125	0.11	135	0.7652
0.375	0.21	256	0.5200
0.625	0.31	<u></u> 231 ←	0.3160
0	0.01	267	0.9245
0.375	0.50	139	0.3428
0.8	0.00	150	0.6220
0.075	0.38	127	0.6669
0.5	0.22	216	0.4437
1	0.41	139	0.3650
0.7	1.00	250	0.3861
0.325	0.65	264	0.3771
0.7	0.61	. ←	

$$X_{s} = \frac{X - Min}{Max - Min}$$

¿Cómo se implementa en Python?

- Función: sklearn.neighbors.KNeighborsRegressor
- Documentación:
- https://scikitlearn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor
- ¿Cómo transformamos los datos en Python?
- Función: sklearn.preprocessing.StandardScaler
- ¿Qué hace?
- Hace que cada feature tenga media 0 y desviación estándar 1 [z = (x u) / s].
- https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

