Systemy Operacyjne 2022

Komentarz do zadania 3 z listy 10

15 stycznia 2023

W zadaniu rozważamy program, w którym współbieżnie wykonuje się P kopii procesu total, z których każda N-krotnie inkrementuje współdzieloną zmienną tally:

```
const int N = 50
2
    const int P = 2
3
4
    shared int tally = 0;
5
6
    process total(int pid) {
7
       int acc = 0;
       for (int i = 0; i < N; i++) {
8
9
           acc = tally;
           tally = acc + 1;
10
11
    }
12
13
14
    concurrent (int pid = 1; pid <= P; pid++) {</pre>
       total(pid);
15
    }
16
```

Inkrementacja nie jest wykonywana atomowo, lecz składa się z osobnych operacji odczytu i zapisu (wiersze 9-10), które mogą zostać rozdzielone na skutek przełączenia wykonywanego procesu. W trakcie wykonania programu odbywa się $P \cdot N$ operacji odczytu i $P \cdot N$ operacji zapisu współdzielonej zmiennej tally. Przeplot jest więc ciągiem $2 \cdot P \cdot N$ operacji na zmiennej tally.

Dla ustalenia uwagi w poniższych rozważaniach przyjmujemy, że P=2 i N=50. Ze względu na symetrię zakładamy też, że jako pierwsza w przeplocie (składającym się z 200 operacji na zmiennej tally) jest wykonywana operacja odczytu (wiersz 9) w procesie o numerze pid =1.

Spośród pozostałych 199 operacji na zmiennej tally, 99 operacji jest wykonywanych przez proces 1, a pozostałe 100 — przez proces 2, zatem możliwych przeplotów jest $\binom{199}{99}$, czyli ponad 45 nonyliardów, a dokładniej:

$$\binom{199}{99} \ = \ 45274257328051640582702088538742081937252294837706668420660 \ \approx \ 4.53 \cdot 10^{58} \ \approx \ 2^{195}.$$

Ciąg operacji na zmiennej tally składa się ze 100 operacji odczytu i 100 operacji zapisu. Niech t_i oznacza zawartość zmiennej tally po wykonaniu i-tej operacji zapisu $(i=1,\ldots,100)$, oraz niech $t_0=0$. Zapisywana w wierszu 10 wartość jest o 1 większa od odczytanej wcześniej wartości w wierszu 9. Wartość ta jest albo oryginalną wartością $t_0=0$, albo jest wynikiem wcześniej wykonanej operacji zapisu, tj. wynosi t_j dla pewnego j < i. Zatem dla każdego i istnieje takie j < i, że $t_i = t_j + 1$. Przez indukcję względem i mamy więc $t_i \le i$. W szczególności $t_{100} \le 100$. Zawartość zmiennej tally po zakończeniu obliczeń jest więc nie większa niż 100.

Wartości zmiennej tally są nieujemne, a zatem wartości zapisywane w wierszu 10 są dodatnie. Rozważmy ostatnią ze 100 operacji zapisu. Jest to 50. operacja zapisu jednego z dwóch procesów. Zapisywana wartość jest o jeden większa od odczytanej podczas 50. operacji odczytu tego procesu. Ten odczyt był poprzedzony 49 operacjami zapisu w tym samym procesie i być może jakimiś operacjami zapisu drugiego procesu. Skoro na zmiennej tally przed tym odczytem wykonano operacje zapisu, to odczytana wartość jest dodatnia. Ponieważ zapisujemy wartość o 1 większą od odczytanej, to zapisana wartość wynosi co najmniej 2. Zawartość zmiennej tally po zakończeniu obliczeń jest więc nie mniejsza niż 2.

Dla wszystkich liczb z przedziału [2,100] łatwo wskazać przeplot, po zakończeniu którego zmienna tally zawiera wybraną liczbę. Niech P_1 i P_2 oznaczają procesy o numerach 1 i 2. Niech $k \in [2,50]$. Rozważmy następujący przeplot:

 \bullet P_1 wykonuje pojedynczy odczyt i zostaje wywłaszczony. Jego zmienna acc zawiera liczbę 0.

- P_2 wykonuje 51 k iteracji pętli i zostaje wywłaszczony.
- P_1 zostaje wznowiony. Ponieważ ma teraz wykonać operację zapisu z 1. iteracji, to zmienna tally przyjmuje wartość 1. Po wykonaniu tej instrukcji zapisu proces P_1 zostaje wywłaszczony.
- P_2 wykonuje pojedynczą operację odczytu. Jego zmienna acc ma wartość 1.
- P_1 wykonuje pozostałe 49 iteracji pętli.
- P_2 zapisuje do zmiennej tally wartość 2, po czym wykonuje pozostałe k-2 iteracji.

Po zakończeniu programu zmienna tally ma wartość k. Niech teraz $k \in [51, 100]$ i rozważmy następujący przeplot:

- \bullet P_1 wykonuje pojedynczy odczyt i zostaje wywłaszczony. Jego zmienna \mathtt{acc} zawiera liczbę 0.
- P_2 wykonuje 100-k iteracji pętli i zostaje wywłaszczony.
- P_1 zostaje wznowiony. Ponieważ ma teraz wykonać operację zapisu z 1. iteracji, to zmienna tally przyjmuje wartość 1. Proces P_1 wykonuje dalej pozostałe 49 iteracji. Zmienna tally ma wartość 50.
- P_2 wykonuje pozostałe k-50 iteracji.

Po zakończeniu programu zmienna tally ma wartość k.

Pokazaliśmy zatem, że istnieje przeplot po wykonaniu którego końcowa wartość zmiennej tally wynosi k wtedy i tylko wtedy, gdy $k \in [2,100]$, co kończy rozwiązanie zadania. Powyższe rozumowanie daje się z łatwością uogólnić na dowolne wartości P, N > 1: istnieje przeplot po wykonaniu którego końcowa wartość zmiennej tally wynosi k wtedy i tylko wtedy, gdy $k \in [2, P \cdot N]$. Ponadto dla P = 1 mamy k = N, zaś dla N = 1 mamy $k \in [1, P]$.

Ciekawsze zagadnienie, którym się teraz zajmiemy, to wyliczenie rozkładu prawdopodobieństwa otrzymanych wartości zmiennej tally. Oczywiście nie sposób przejrzeć wszystkich $\binom{199}{99}$ przeplotów. Możemy jednak symulować 200 kroków programu jednocześnie na wszystkich ścieżkach obliczeń (pomysł pochodzi od PPO i MMA). Stan procesu jest określony przez wartość jego licznika rozkazów (z przedziału [0,100]) i zawartość jego lokalnej zmiennej acc (z przedziału [0,99]). Stan programu zawiera stany obu jego procesów i zawartość zmiennej tally (z przedziału [0,100]). Dla każdego z 200 kroków programu możemy wyliczyć możliwe stany wraz z liczbą przeplotów, które do nich prowadzą. Niewielki skrypt w Pythonie pozwala w kilka minut wyznaczyć dla każdej z możliwych wartości końcowych zmiennej tally liczbę przeplotów. Wyniki przedstawia Tablica 1.

Jeśli przyjmiemy, że wszystkie przeploty są równie prawdopodobne, to najbardziej prawdopodobną wartością zmiennej tally jest 63 — będzie pojawiać się średnio raz na dziesięć uruchomień programu. Wartości skrajne — 2 i 100 — są również skrajnie nieprawdopodobne. Wartość 100 będzie się pojawiać średnio raz na 10^{30} obliczeń, a wartość 2 — raz na $11318564332012910145675522134685520484313073709426667105165 \approx <math>10^{58}$ wykonań! Spośród 45274257328051640582702088538742081937252294837706668420660 możliwych przeplotów istnieją tylko 4, których wartością końcową jest 2. Jeden opisaliśmy wyżej. Potrafisz przedstawić pozostałe trzy? Zauważmy, że nie trzeba nawet rysować histogramu rozkładu prawdopodobieństwa — druga kolumna Tablicy 1 jest takim histogramem (w skali logarytmicznej)!

Nasze obliczenia, mimo iż ciekawe, są niezbyt realistyczne. Jeśli przepiszemy nasz program w języku C i uruchomimy dwa wątki obliczeń, to praktycznie zawsze otrzymamy w wyniku liczbę 100. W rzeczywistości bowiem przełączenie kontekstu jest na tyle kosztowne, a procesów jest na tyle mało, że po wznowieniu pozwala się procesowi wykonać bardzo wiele instrukcji. Jeśli procesor wykonuje 10^8 instrukcji na sekundę, to proces wznowiony na $10 \, \mathrm{ms}$ zdąży wykonać milion instrukcji! W praktyce zaobserwujemy więc tylko jeden przeplot: najpierw w całości wykona się pierwszy proces, potem drugi. Zmodyfikujmy więc nasz skrypt w Pythonie tak, by wznowiony proces nie mógł być przerwany, zanim nie wykona M instrukcji (chyba, że się wcześniej skończy).

Dla M=100 mamy tylko jeden przeplot (pamiętajmy, że jako pierwszy jest uruchamiany proces P_1). Dla M=99 mamy trzy przeploty, prowadzące do wartości: 50, 99 i 100 (umiesz przedstawić je wszystkie?). Wyniki dla różnych M przedstawiają kolejne tabele.

Morał. Rozkład wartości zwracanych przez program, ogólniej — zachowanie programu współbieżnego, bardzo silnie zależy od schedulera. Na przykład jeśli scheduler uruchamia procesy na co najmniej 100 instrukcji, to nasz program zachowuje się deterministycznie i zawsze zwraca wartość 100. Jeśli scheduler uruchamia procesy na co najmniej 50 instrukcji, to nasz program zwraca wartość 100 mniej więcej raz na cztery uruchomienia, a poza tym z podobnym prawdopodobieństwem pojawiają się liczby 50–99. Jeśli scheduler uruchamia procesy na co najmniej 20 instrukcji, to program zwraca liczby z przedziału 50–100 mniej więcej z równym prawdopodobieństwem (100 nie jest już wyróżnione), a może też zwrócić wartość z przedziału 30–49, ale jest to mało prawdopodobne. Jeśli scheduler przełącza procesy w dowolnym momencie, to program zwraca liczby z przedziału 2–100, przy czym najbardziej prawdopodobną (średnio raz na 10 wywołań programu) wartością jest 63, a prawdopodobieństwo otrzymania liczby spoza przedziału 40–84 jest mniejsze niż prawdopodobieństwo wygrania w Totolotka (6 z 49).

Testowanie programu pod kątem niedeterminizmu nie działa, jeśli używamy tylko jednego *schedulera*. Dlatego jeśli uruchomimy program w chmurze obliczeniowej w środowisku zwirtualizowanym, to może on nie przejść żadnego z testów, które przeszedł, gdy testowaliśmy go na maszynie rzeczywistej na swoim komputerze.

Tablica 1: Liczba przeplotów, które prowadzą do wartości końcowej $k \in [2, 100]$ zmiennej tally.

k	Liczba przeplotów	$\Pr(\texttt{tally} = k$
2	4	$8.84 \cdot 10^{-59} \\ 3.46 \cdot 10^{-56}$
3 4	1568 319376	7.05.10 -54
5	44071744	$9.73 \cdot 10^{-52}$
6	4575823936	$1.01 \cdot 10^{-49}$
7	378376161440	8.36.10-48
8	25831814856048 1492774812622528	$5.71 \cdot 10^{-46}$ $3.30 \cdot 10^{-44}$
10	74370659062152976	1.64.10-42
11	3239455785870320928	$7.16 \cdot 10^{-41}$
12	124743320540577792272	2.76.10-39
13 14	4284754830050351246528 132251154579942336919872	$9.46 \cdot 10^{-38}$ $2.92 \cdot 10^{-36}$
15	3690736845459323589085856	8.15·10 ⁻³⁵
16	93611660396585319512963952	2.07.10-33
17	2167624093083054426915295040	$4.79 \cdot 10^{-32}$
18	45998275825309820494604067976	1.02.10-30
19 20	897529225906691218662881169376 $16149789189120602380678617622640$	$1.98 \cdot 10^{-29}$ $3.57 \cdot 10^{-28}$
21	268659686383296506278436886246336	5.93.10-27
22	4141225678980794529828788574419136	$9.15 \cdot 10^{-26}$
23	59265906947926048877147527707924320	$1.31 \cdot 10^{-24}$
24	788841906817160820814980945559342992	$1.74 \cdot 10^{-23}$
25 26	$9780388848813483902845246295018019392 \\ 113109320640313329997367277261328630992$	$\begin{array}{c} 2.16 \cdot 10^{-22} \\ 2.50 \cdot 10^{-21} \end{array}$
27	1221639865760291214514546269853973809120	2.70.10
28	12335462493464780562192285449425411021936	$2.72 \cdot 10^{-19}$
29	116558652097632170187211222991070769846336	$2.57 \cdot 10^{-18}$
30	1031500391476654225300291045405346427405760	2.28.10-17
31	8555450786680666732065923539539736068321376	$1.89 \cdot 10^{-16} \\ 1.47 \cdot 10^{-15}$
32 33	$66548050230471301762231632767361384066324496 \\ 485710641305023191353518104921372204928850880$	1.47.10 10
34	3327850833185280973240754317544785541760524732	$7.35 \cdot 10^{-14}$
35	21411817693593953296270115307918456436542806336	$4.73 \cdot 10^{-13}$
36	129411660516107165475637669819445024974257909152	2.86.10-12
37	734884272212544199769216870638991372801374510208	1.62.10-11
38 39	3921530844837661910155376403680848556253128441472 $19666175257980680900760110803729495419703902042688$	$\begin{array}{c} 8.66 \cdot 10^{-11} \\ 4.34 \cdot 10^{-10} \end{array}$
40	92687244733092561783630001745134981863273458421856	2.05.10-9
41	410521985691521827209325500791174284805338177365888	9.07.10-9
42	1708530333003045366916751593805797200202539590422048	3.77.10-8
43	6680446690261889523184498292876858678802127416179520	1.48.10-7
44 45	24534953354870968084790656968992067655969354964077216 84612874563885247789851707408623709372722601819026304	$5.42 \cdot 10^{-7}$ $1.87 \cdot 10^{-6}$
46	273910414414937175354451085624552072612462990275965056	6.05.10-6
47	832006632762749375973714089246651962636237148800510528	1.84.10-5
48	2370248113472892890327184027257416615249355642155642464	5.24.10-5
49	6329825787472522085170772541754774734074958948370711680	$\begin{array}{c} 1.40 \cdot 10^{-4} \\ 3.50 \cdot 10^{-4} \end{array}$
50 51	$15837450149734343993940580061717256085018559839868914816 \\ 37104388001205249448086805459265618376445105140882062080$	8.20.10
52	81349284852189971907522657955735000018208517931736272800	1.80.10-3
53	166804892713794624735623003019061765448989639419048386240	3.68.10-3
54	319690536782347424173108243793555063944275406475344689040	$7.06 \cdot 10^{-3}$
55 56	572349758207852497879912002870682565404115878364495414080 956658004741262579975130344199742969817358519960085552640	$1.26 \cdot 10^{-2}$ $2.11 \cdot 10^{-2}$
57	1492027299978280946929092515797518545515154563447684001280	3.30.10-2
58	2170153309903486992666037466530474253130312594779685361680	$4.79 \cdot 10^{-2}$
59	2942191640799778088256952683766842437615137493714433664640	$6.50 \cdot 10^{-2}$
60	3716143505107772867929501336501974639215801094033511482080	8.21.10-2
61	4370443649145131609659264402194206526449620114939019423040	$9.65 \cdot 10^{-2}$ $1.06 \cdot 10^{-1}$
62 63	4783356582401927327021856667981787902861679092732602062800 4869280693148760380296793614493293546685202500708952201920	1.08.10
64	4607407253697267039793479519756662948449260808850660678720	1.02.10-1
65	4049711723068469978539438945554685286232593697888405404800	8.94.10-2
66	3304164211522515231064236970327924648905014395798652490420	7.30.10-2
67 68	2500572168917964943955585875800117894024674670609639870240 1753886889125268510758020769749025470255024179699609486640	$\begin{array}{c} 5.52 \cdot 10^{-2} \\ 3.87 \cdot 10^{-2} \end{array}$
69	1139106679209602071476071588081359685796698488090433777920	2.52.10-2
70	684406793865380657533939625460552497369758063288047262800	$1.51 \cdot 10^{-2}$
71	380019790130476423453793567702051068889952142344645309920	8.39.10-3
72	194787652889757592778221488339226353396064487094616839280	$4.30 \cdot 10^{-3}$ $2.03 \cdot 10^{-3}$
73 74	$92058825576673058149759647549298857299722796402079862720 \\ 40065007739766749869040439772235163276477697646977702880$	8.85·10 ⁻⁴
75	16034897304991262742521199493192152104920137593747791776	$3.54 \cdot 10^{-4}$
76	5892888093188239691534494535456867379008124926616407280	1.30.10-4
77	1985459900903402018739155480702512758210091235098384640	4.39.10-5
78 79	$612236440239741131481918427170599935319481997232107920 \\ 172462278520475677474540176442450842142149361762076000$	$1.35 \cdot 10^{-5}$ $3.81 \cdot 10^{-6}$
80	44290129421821107095380028622156080191838563694574000	9.78.10
81	10346601181038916984140590071112014684129162991646400	$2.29 \cdot 10^{-7}$
82	2193375335931960786505660516576725510471479154246760	4.84.10-8
83	420814058242773081112769231353354465032074586740320	9.29.10-9
84 85	$72851544857364799574976463225324073464673963442640 \\11342664129135177568116239059779827786163529294720$	$^{1.61\cdot 10^{-9}}_{2.51\cdot 10^{-10}}$
86	1582312119552978104555894577803211215018739292240	$3.49 \cdot 10^{-11}$
87	196933576588650078968741932536553644971690349600	$4.35 \cdot 10^{-12}$
88	21760690787700916540122792125692992352809287120	4.81.10-13
89	2122667833961711440458553204977387168568435520	4.69.10-14
90	181569377546346848745296292386133649381083680	$4.01 \cdot 10^{-15}$ $2.98 \cdot 10^{-16}$
91 92	$\frac{13510898935764617370090671003794041468938720}{866141748934376526422533948340900690680080}$	2.98·10 10 1.91·10 17
93	4726300273339229416592696672671192891520	$1.04 \cdot 10^{-18}$
94	2161792084768711596607134441362445281680	$4.77 \cdot 10^{-20}$
95	81226224859475831515463940598547548320	$1.79 \cdot 10^{-21}$
96	2438540523174598171222896575776206480	$5.39 \cdot 10^{-23}$
97 98	56181536438329394753427715948421440 931700675561629594630632979373420	$1.24 \cdot 10^{-24} \\ 2.06 \cdot 10^{-26}$
	9891308288780803268118872280000	2.18.10-28
99		1.11.10-30

Tablica 2: Liczba przeplotów dla M=10ora
z $M=20.\,$

k	Liczba przeplotów	$\Pr(\mathtt{tally} = k)$
2	0	0
3 4	0	0
5	0	0
6 7	0	0
8	0	0
9	0 0	0
11 12	0 0	0
13	0	0
14 15	0	0
16	1	$3.76 \cdot 10^{-15}$
17 18	6 20	$\begin{array}{c} 2.26 \cdot 10^{-14} \\ 7.53 \cdot 10^{-14} \end{array}$
19	50	1.88.10-13
20 21	105 336	$3.95 \cdot 10^{-13}$ $1.26 \cdot 10^{-12}$
22	1296	$4.88 \cdot 10^{-12}$
23 24	4172 10998	$1.57 \cdot 10^{-11} \\ 4.14 \cdot 10^{-11}$
25	24848	$9.35 \cdot 10^{-11}$ $2.16 \cdot 10^{-10}$
26 27	57322 148085	5.57·10 ⁻¹⁰
28	392910	1.48.10-9
29 30	977924 2217799	3.68·10 ⁻⁹ 8.35·10 ⁻⁹
31	4772698	1.80.10-8
32 33	10281991 22501459	$3.87 \cdot 10^{-8}$ $8.47 \cdot 10^{-8}$
34	48946664	1.84.10-7
35 36	102974081 208185556	$3.88 \cdot 10^{-7}$ $7.84 \cdot 10^{-7}$
37	408891909	$1.54 \cdot 10^{-6}$
38 39	789674411 1505462839	$2.97 \cdot 10^{-6}$ $5.67 \cdot 10^{-6}$
40	2821463640	1.06.10-5
41 42	5169933077 9242478529	$1.95 \cdot 10^{-5}$ $3.48 \cdot 10^{-5}$
43 44	16136748857 27565218214	$6.07 \cdot 10^{-5}$ $1.04 \cdot 10^{-4}$
45	46115148504	$1.74 \cdot 10^{-4}$
46 47	75545687739 121122495653	$2.84 \cdot 10^{-4}$ $4.56 \cdot 10^{-4}$
48	189993625527	$7.15 \cdot 10^{-4}$
49 50	291590341752 2222910835907	$1.10 \cdot 10^{-3}$ $8.37 \cdot 10^{-3}$
51	1140479412436	$4.29 \cdot 10^{-3}$
52 53	1273657848162 1521740068877	$4.79 \cdot 10^{-3}$ $5.73 \cdot 10^{-3}$
54	1903354111012	7.17.10-3
55 56	4324269511239 4990911640631	$1.63 \cdot 10^{-2}$ $1.88 \cdot 10^{-2}$
57	5462808191873	2.06.10-2
58 59	5843743543496 6229427619273	$2.20 \cdot 10^{-2}$ $2.35 \cdot 10^{-2}$
60	7428572443638	2.80·10-2
61 62	8581783401470 9544351287464	$\begin{array}{c} 3.23 \cdot 10^{-2} \\ 3.59 \cdot 10^{-2} \end{array}$
63	10251558872660	$3.86 \cdot 10^{-2}$ $4.03 \cdot 10^{-2}$
64 65	10703801926212 11106304083916	$4.18 \cdot 10^{-2}$
66 67	11462201250620 11735392925431	$\begin{array}{c} 4.32 \cdot 10^{-2} \\ 4.42 \cdot 10^{-2} \end{array}$
68	11876453915738	$4.47 \cdot 10^{-2}$
69 70	11844726575910 11648173066388	$\begin{array}{c} 4.46 \cdot 10^{-2} \\ 4.39 \cdot 10^{-2} \end{array}$
71	11318766971039	4.26.10-2
72 73	10897139393062 10408261921117	$\begin{array}{c} 4.10 \cdot 10^{-2} \\ 3.92 \cdot 10^{-2} \end{array}$
74	9846013482547	$3.71 \cdot 10^{-2}$
75 76	9183328004968 8412448590196	$3.46 \cdot 10^{-2}$ $3.17 \cdot 10^{-2}$
77	7591012681968	2.86.10-2
78 79	6816514091352 6157332840001	$2.57 \cdot 10^{-2}$ $2.32 \cdot 10^{-2}$
80	5589241687580	2.10.10-2
81 82	4979622489077 4241916485733	$1.87 \cdot 10^{-2}$ $1.60 \cdot 10^{-2}$
83	3447644226493	$1.30 \cdot 10^{-2}$
84 85	2752726593907 2327446436021	$1.04 \cdot 10^{-2}$ $8.76 \cdot 10^{-3}$
86	2142989480208	8.07.10-3
87 88	1931190809134 1577660163116	$7.27 \cdot 10^{-3}$ $5.94 \cdot 10^{-3}$
89	1094608832524	4.12.10-3
90 91	619528968551 458435550039	$2.33 \cdot 10^{-3}$ $1.73 \cdot 10^{-3}$
92	489667857836	$1.84 \cdot 10^{-3}$
93 94	495336772560 458115185161	$1.86 \cdot 10^{-3}$ $1.72 \cdot 10^{-3}$
95	249887585155	$9.41 \cdot 10^{-4}$
96 97	24209852020 31041309560	$9.11 \cdot 10^{-5}$ $1.17 \cdot 10^{-4}$
98	39573772300	$1.49 \cdot 10^{-4}$ $1.89 \cdot 10^{-4}$
99 100	50172740270 110967837771	4.18·10 ⁻⁴
Razem	265627833812591	1

k	Liczba przeplotów	$\Pr(\mathtt{tally} = k)$
2	0	0
3	0	0
4 5	0	0
6	0	0
7 8	0	0
9	0	0
10 11	0	0
12	0	0
13 14	0	0
15	0	0
16 17	0 0	0
18	0	0
19 20	0	0 0
21	0	0
22 23	0	0
24	0	0
25 26	0	0
27	0	0
28	0	0
29 30	0 0	0
31	1	2.97.10-9
32 33	6 20	$1.78 \cdot 10^{-8}$ $5.95 \cdot 10^{-8}$
34	50	1.49.10-7
35 36	105 196	$3.12 \cdot 10^{-7}$ $5.83 \cdot 10^{-7}$
37	336	9.99.10-7
38 39	540 825	$1.61 \cdot 10^{-6}$ $2.45 \cdot 10^{-6}$
40	1210	3.60.10-6
41	1796	5.34.10-6
42 43	2896 5127	$\begin{array}{c} 8.61 \cdot 10^{-6} \\ 1.52 \cdot 10^{-5} \end{array}$
44	9483	2.82.10-5
45 46	17388 30729	$5.17 \cdot 10^{-5}$ $9.14 \cdot 10^{-5}$
47	51869	1.54.10-4
48 49	83640 129316	$2.49 \cdot 10^{-4}$ $3.84 \cdot 10^{-4}$
50	11256206	$3.35 \cdot 10^{-2}$
51	2914105	$\begin{array}{c} 8.66 \cdot 10^{-3} \\ 7.68 \cdot 10^{-3} \end{array}$
52 53	2583372 2330646	6.93.10-3
54	2161528	6.43.10-3
55 56	2085349 2114835	$6.20 \cdot 10^{-3}$ $6.29 \cdot 10^{-3}$
57	2265435	6.74.10-3
58 59	2554348 2999285	$7.59 \cdot 10^{-3}$ $8.92 \cdot 10^{-3}$
60	10385167	3.09.10-2
61 62	11666164 12387658	$3.47 \cdot 10^{-2}$ $3.68 \cdot 10^{-2}$
63	12603099	3.75.10-2
64 65	12380455 11804598	$3.68 \cdot 10^{-2}$ $3.51 \cdot 10^{-2}$
66	10980360	3.26.10-2
67	10035408	2.98.10-2
68 69	9122802 8423100	$\begin{array}{c} 2.71 \cdot 10^{-2} \\ 2.50 \cdot 10^{-2} \end{array}$
70	9144084	2.72.10-2
71 72	10304138 11460785	$\begin{array}{c} 3.06 \cdot 10^{-2} \\ 3.41 \cdot 10^{-2} \end{array}$
73	12392394	3.68.10-2
74 75	12982380 13125647	3.86·10 ⁻² 3.90·10 ⁻²
76	12734554	$3.79 \cdot 10^{-2}$
77 78	11746129 10130641	$\begin{array}{c} 3.49 \cdot 10^{-2} \\ 3.01 \cdot 10^{-2} \end{array}$
79	7901640	2.35.10-2
80 81	5546940 4948551	$\begin{array}{c} 1.65 \cdot 10^{-2} \\ 1.47 \cdot 10^{-2} \end{array}$
81	5405163	1.61.10-2
83	5886331	1.75.10-2
84 85	6367660 6816255	$1.89 \cdot 10^{-2}$ $2.03 \cdot 10^{-2}$
86	7189281	2.14.10-2
87 88	7432353 7477746	$\begin{array}{c} 2.21 \cdot 10^{-2} \\ 2.22 \cdot 10^{-2} \end{array}$
89	7242415	2.15.10-2
90 91	4181985 446730	1.24·10 ⁻² 1.33·10 ⁻³
92	517950	1.54.10
93 94	599400 692510	$1.78 \cdot 10^{-3}$ $2.06 \cdot 10^{-3}$
94 95	692510 798710	2.37.10-3
96	919430	2.73.10-3
97 98	1056100 1210150	$3.14 \cdot 10^{-3}$ $3.60 \cdot 10^{-3}$
99	1383010	4.11.10-3
100	4936491	1.47.10-2
Razem	336367006	1

Tablica 3: Liczba przeplotów dla $M=31,\,32,\,33$ i 40.

	M = 31										
k	n	Pr									
47	2	0.000		M = 32			1				
48	10	0.000	k	n	Pr		M = 33				
49	30	0.000	49	1	0.000	k	n	Pr			
50	20625	0.031	50	14332	0.028	50	10287	0.026			
51	7955	0.012	51	6248	0.012	51	5244	0.013			
52	7507	0.011	52	5902	0.012	52	4950	0.012			
53	7113	0.011	53	5581	0.011	53	4664	0.012			
54	6775	0.010	54	5275	0.010	54	4388	0.011			
55	6485	0.010	55	4982	0.010	55	4124	0.010		14 40	
56	6215	0.009	56	4704	0.009	56	3874	0.010		M = 40	
57	5967	0.009	57	4443	0.009	57	3640	0.009	k	n	Pr
58	5743	0.009	58	4201	0.008	58	3424	0.009	50	3330	0.055
59	5545	0.008	59	3980	0.008	59	3228	0.008	51	1120	0.019
60	5375	0.008	60	3782	0.007	60	3054	0.008	52	1010	0.017
61	5235	0.008	61	3609	0.007	61	2904	0.007	53	900	0.015
62	5129	0.008	62	3463	0.007	62	2780	0.007	54	790	0.013
63	5094	0.008	63	3346	0.007	63	2684	0.007	55	680	0.011
64	5190	0.008	64	3260	0.006	64	2618	0.007	56	570	0.009
65	13975	0.021	65	3215	0.006	65	2584	0.006	57	460	0.008
66	23525	0.035	66	16162	0.032	66	7992	0.020	58	350	0.006
67	25048	0.037	67	17140	0.034	67	13243	0.033	59	240	0.004
68	24556	0.036	68	16657	0.033	68	13543	0.034	60	130	0.002
69	22010	0.033	69	16512	0.033	69	13956	0.035	61	76	0.001
70	21580	0.032	70	16874	0.033	70	14327	0.036	62	80	0.001
71	21960	0.033	71	17191	0.034	71	14654	0.037	63	89	0.001
72	22288	0.033	72	17461	0.034	72	14935	0.037	64	105	0.002
73	22562	0.033	73	17682	0.035	73	15168	0.038	65	130	0.002
74	22780	0.034	74	17852	0.035	74	15351	0.038	66	166	0.003
75	22940	0.034	75	17969	0.035	75	15482	0.039	67	215	0.004
76	23040	0.034	76	18031	0.036	76	15559	0.039	68	279	0.005
77	23078	0.034	77	18036	0.036	77	15580	0.039	69	360	0.006
78	23055	0.034	78	17982	0.035	78	15543	0.039	70	2775	0.046
79	22981	0.034	79	17867	0.035	79	15446	0.039	71	2949	0.049
80	22961	0.034	80	17689	0.035	80	15287	0.038	72	3100	0.051
81	23231	0.034	81	17448	0.034	81	15064	0.038	73	3226	0.053
82	23842	0.035	82	17533	0.035	82	14776	0.037	74	3325	0.055
83	24658	0.037	83	18092	0.036	83	14535	0.036	75	3395	0.056
84	25440	0.038	84	11877	0.023	84	833	0.002	76	3434	0.057
85	2250	0.003	85	1810	0.004	85	1139	0.003	77	3440	0.057
86	2650	0.004	86	2160	0.004	86	1445	0.004	78	3411	0.057
87	3050	0.005	87	2510	0.005	87	1751	0.004	79	3345	0.055
88	3450	0.005	88	2860	0.006	88	2057	0.005	80	1995	0.033
89	3850	0.006	89	3210	0.006	89	2363	0.006	81–89	170	0.003
90	4250	0.006	90	3560	0.007	90	2669	0.007	90	280	0.005
91	4650	0.007	91	3910	0.008	91	2975	0.007	91	390	0.006
92	5050	0.007	92	4260	0.008	92	3281	0.008	92	500	0.008
93	5450	0.008	93	4610	0.009	93	3587	0.009	93	610	0.010
94	5850	0.009	94	4960	0.010	94	3893	0.010	94	720	0.012
95	6250	0.009	95	5310	0.010	95	4199	0.011	95	830	0.014
96	6650	0.010	96	5660	0.011	96	4505	0.011	96	940	0.016
97	7060	0.010	97	6010	0.012	97	4811	0.012	97	1050	0.017
98	7490	0.011	98	6368	0.013	98	5117	0.013	98	1160	0.019
99	7940	0.012	99	6734	0.013	99	5423	0.014	99	1270	0.021
100	36946	0.055	100	36946	0.073	100	24107	0.060	100	5606	0.093
Σ	674341	1.000	Σ	507257	1.000	Σ	399043	1.000	Σ	60361	1.000
	0.1011	1.000		551201	1.000		000010	1.000		00001	1.000

Tablica 4: Liczba przeplotów dla $M=49\text{--}52,\,81$ i 90–100.

M = 49					
k	n	Pr			
50	77	0.027			
51	28	0.010			
52-73	27	0.010			
74	58	0.021			
75	110	0.039			
76–98	54	0.019			
99	55	0.020			
100	651	0.231			
Σ	2815	1.000			

M = 50					
k	n	Pr			
50-74	25	0.010			
75	75	0.029			
76–99	50	0.020			
100	651	0.255			
Σ	2551	1.000			

M = 51					
k	n	\Pr			
50-75	25	0.010			
76–99	50	0.020			
100	601	0.245			
Σ	2451	1.000			

M = 52					
k	n	Pr			
50-74	24	0.010			
76–99	48	0.020			
100	601	0.255			
Σ	2353	1.000			

	M = 81					
k	n	Pr				
50-59	10	0.026				
90	10	0.026				
91-99	20	0.052				
100	91	0.239				
Σ	381	1.000				

$$\begin{array}{c|c|c|c} M = 90 \\ \hline k & n & \Pr \\ \hline 50-55 & 5 & 0.045 \\ 95-99 & 10 & 0.090 \\ 100 & 31 & 0.279 \\ \hline \Sigma & 111 & 1.000 \\ \hline \end{array}$$

M = 91						
k	n	\Pr				
50-54	5	0.055				
95	5	0.055				
96-99	10	0.110				
100	21	0.231				
Σ	91	1.000				

M = 92					
k	n	Pr			
50-54	4	0.055			
96-99	8	0.110			
100	21	0.288			
Σ	73	1.000			

M = 93					
k	n	Pr			
50-53	4	0.070			
96	4	0.070			
97-99	8	0.140			
100	13	0.228			
Σ	57	1.000			

M = 94		
k	n	\Pr
50-53	3	0.070
97–99	6	0.140
100	13	0.302
Σ	43	1.000

M = 95		
k	n	\Pr
50-52	3	0.097
97	3	0.097
98-99	6	0.194
100	7	0.226
Σ	31	1.000

M = 96		
k	n	Pr
50-52	2	0.095
98–99	4	0.190
100	7	0.333
Σ	21	1.000

M = 97		
k	n	\Pr
50-51	2	0.154
98	2	0.154
99	4	0.308
100	3	0.231
Σ	13	1.000

M = 98		
k	n	Pr
50-51	1	0.143
99	2	0.286
100	3	0.429
Σ	7	1.000

M = 99		
k	n	Pr
50	1	0.333
99	1	0.333
100	1	0.333
Σ	3	1.000

M = 100		
k	n	\Pr
100	1	1.000
Σ	1	1.000