SEQUENCE LISTING						
<110>	Children's Cancer Institute Australia for Medical Research KAVALLARIS, Maria VERRILLS, Nicole M.					
<120>	DETERMINING DRUG RESISTANCE					
<130>	69544-2					
<140> <141>	10/549,831 2006-11-30					
<150> <151>	2003901239 2003-03-18					
<150> <151>	PCT/AU04/00331 2004-03-18					
<160>	19					
<170>	PatentIn version 3.5					
<210> <211> <212> <213>	1 1845 DNA Homo sapiens					
<400> atggaa	l gaag agatcgccgc gctggtcatt gacaatggct ccggcatgtg caaagctggt	60				
tttgct	gggg acgacgctcc ccgagccgtg tttccttcca tcgtcgggcg ccccagacac	120				
cagggc	gtca tggtgggcat gggccagaag gactcctacg tgggcgacga ggcccagagc	180				
aagcgt	ggca tcctgaccct gaagtacccc attgagcatg gcatcgtcac caactgggac	240				
gacatg	gaga agatctggca ccacaccttc tacaacgagc tgcgcgtggc cccggaggag	300				
caccca	gtgc tgctgaccga ggcccccctg aaccccaagg ccaacagaga gaagatgact	360				
cagatt	atgt ttgagacctt caacaccccg gccatgtacg tggccatcca ggccgtgctg	420				
tccctc	tacg cctctgggcg caccactggc attgtcatgg actctggaga cggggtcacc	480				
cacacg	gtgc ccatctacga gggctacgcc ctcccccacg ccatcctgcg tctggacctg	540				
gctggc	cggg acctgaccca ctacctcatg aagatcctca ctgagcgagg ctacagcttc	600				
accacc	acgg ccgagcggga aatcgtgcgc gacatcaagg agaagctgtg ctacgtcgcc	660				
ctggac	ttcg agcaggagat ggccaccgcc gcatcctcct cttctctgga gaagagctac	720				
gagctg	cccg atggccaggt catcaccatt ggcaatgagc ggttccggtg tccggaggcg	780				
ctgttc	cago ottoottoot gggtatggaa tottgoggoa tocaogagao cacottoaao	840				
tccatc	atga agtgtgacgt ggacatccgc aaagacctgt acgccaacac ggtgctgtcg	9 0 0				
ggcggc	acca ccatgtaccc gggcattgcc gacaggatgc agaaggagat caccgccctg	960				

1020

gcgcccagca ccatgaagat caagatcatc gcacccccag agcgcaagta ctcggtgtgg

			quenceristii			
atcggtggct	ccatcctggc	ctcactgtcc	accttccagc	agatgtggat	tagcaagcag	1080
gagtacgacg	agtcgggccc	ctccatcgtc	caccgcaaat	gcttctaaac	ggactcagca	1140
gatgcgtagc	atttgctgca	tgggttaatt	gagaatagaa	atttgcccct	ggcaaatgca	1200
cacacctcat	gctagcctca	cgaaactgga	ataagccttc	gaaaagaaat	tgtccttgaa	1260
gcttgtatct	gatatcagca	ctggattgta	gaacttgttg	ctgattttga	ccttgtattg	1320
aagttaactg	ttccccttgg	tatttgttta	ataccctgta	catatctttg	agttcaacct	1380
ttagtacgtg	tggcttggtc	acttcgtggc	taaggtaaga	acgtgcttgt	ggaagacaag	1440
tctgtggctt	ggtgagtctg	tgtggccagc	agcctctgat	ctgtgcaggg	tattaacgtg	1500
tcagggctga	gtgttctggg	atttctctag	aggctggcaa	gaaccagttg	ttttgtcttg	1560
cgggtctgtc	agggttggaa	agtccaagcc	gtaggaccca	gtttcctttc	ttagctgatg	1620
tctttggcca	gaacaccgtg	ggctgttact	tgctttgagt	tggaagcggt	ttgcatttac	1680
gcctgtaaat	gtattcattc	ttaatttatg	taaggttttt	tttgtacgca	attctcgatt	1740
ctttgaagag	atgacaacaa	attttggttt	tctactgtta	tgtgagaaca	ttaggcccca	1800
gcaacacgtc	attgtgtaag	gaaaaataaa	agtgctgccg	taacc		1845

<210> 2 <211> 1845

<212> DNA <213> Homo sapiens

<400> 2

60 atggaagaag agatcgccgc gctggtcatt gacaatggct ccggcatgtg caaagctggt 120 tttgctgggg acgacgctcc ccgagccgtg tttccttcca tcgtcgggcg ccccagacac cagggcgtca tggtgggcat gggccagaag gactcctacg tgggcgacga ggcccagagc 180 240 aagcgtggca tcctgaccct gaagtacccc attgagcatg gcatcgtcac caactgggac 300 gacatggaga agatctggca ccacaccttc tacaacgagc tgcgcgtggc cccggaggag cacccattgc tgctgaccga ggcccccctg aaccccaagg ccaacagaga gaagatgact 360 cagattatgt ttgagacctt caacaccccg gccatgtacg tggccatcca ggccgtgctg 420 tccctctacg cctctgggcg caccactggc attgtcatgg actctggaga cggggtcacc 480 cacacggtgc ccatctacga gggctacgcc ctccccacg ccatcctgcg tctggacctg 540 gctggccggg acctgaccga ctacctcatg aagatcctca ctgagcgagg ctacagcttc 600 660 accaccacgg ccgagcggga aatcgtgcgc gacatcaagg agaagctgtg ctacgtcgcc ctggacttcg agcaggagat ggccaccgcc gcatcctcct cttctctgga gaagagctac 720 gagctgcccg atggccaggt catcaccatt ggcaatgagc ggttccggtg tccggaggcg 780 ctgttccagc cttccttcct gggtatggaa tcttgcggca tccacgagac caccttcaac 840

tccatcatga agtgtgacgt		quenceListir aaagacctgt		ggtgctgtcg	900
ggcggcacca ccatgtaccc	gggcattgcc	gacaggatgc	agaaggagat	caccgccctg	960
gcgcccagca ccatgaagat	caagatcatc	gcacccccag	agcgcaagta	ctcggtgtgg	1020
atcggtggct ccatcctggc	ctcactgtcc	accttccagc	agatgtggat	tagcaagcag	1080
gagtacgacg agtcgggccc	ctccatcgtc	caccgcaaat	gcttctaaac	ggactcagca	1140
gatgcgtagc atttgctgca	tgggttaatt	gagaatagaa	atttgcccct	ggcaaatgca	1200
cacacctcat gctagcctca	cgaaactgga	ataagccttc	gaaaagaaat	tgtccttgaa	1260
gcttgtatct gatatcagca	ctggattgta	gaacttgttg	ctgattttga	ccttgtattg	1320
aagttaactg ttccccttgg	tatttgttta	ataccctgta	catatctttg	agttcaacct	1380
ttagtacgtg tggcttggtc	acttcgtggc	taaggtaaga	acgtgcttgt	ggaagacaag	1440
tctgtggctt ggtgagtctg	tgtggccagc	agcctctgat	ctgtgcaggg	tattaacgtg	1500
tcagggctga gtgttctggg	atttctctag	aggctggcaa	gaaccagttg	ttttgtcttg	1560
cgggtctgtc agggttggaa	agtccaagcc	gtaggaccca	gtttcctttc	ttagctgatg	1620
tctttggcca gaacaccgtg	ggctgttact	tgctttgagt	tggaagcggt	ttgcatttac	1680
gcctgtaaat gtattcattc	ttaatttatg	taaggttttt	tttgtacgca	attctcgatt	1740
ctttgaagag atgacaacaa	attttggttt	tctactgtta	tgtgagaaca	ttaggcccca	1800
gcaacacgtc attgtgtaag	gaaaaataaa	agtgctgccg	taacc		1845
<210> 3 <211> 1845 <212> DNA <213> Homo sapiens					
<400> 3 atggaagaag agatcgccgc	gctggtcatt	gacaatggct	ccggcatgtg	caaagctggt	60
tttgctgggg acgacgctcc	ccgagccgtg	tttccttcca	tcgtcgggcg	ccccagacac	120
cagggcgtca tggtgggcat	gggccagaag	gactcctacg	tgggcgacga	ggcccagagc	180
aagcgtggca tcctgaccct	gaagtacccc	attgagcatg	gcatcgtcac	caactgggac	240
gacatggaga agatctggca	ccacaccttc	tacaacgagc	tgcgcgtggc	cctggaggag	300
cacccagtgc tgctgaccga	ggcccccctg	aaccccaagg	ccaacagaga	gaagatgact	360
cagattatgt ttgagacctt	caacaccccg	gccatgtacg	tggccatcca	ggccgtgctg	420
tccctctacg cctctgggcg	caccactggc	attgtcatgg	actctggaga	cggggtcacc	480
cacacggtgc ccatctacga	gggctacgcc	ctccccacg	ccatcctgcg	tctggacctg	540
gctggccggg acctgaccga	ctacctcatg	aagatcctca	ctgagcgagg	ctacagcttc	600
accaccacgg ccgagcggga	aatcgtgcgc	gacatcaagg	agaagctgtg	ctacgtcgcc	660
			_		

ctggacttcg	agcaggagat	ggccaccgcc	gcatcctcct		gaagagctac	720
gagctgcccg	atggccaggt	catcaccatt	ggcaatgagc	ggttccggtg	tccggaggcg	780
ctgttccagc	cttccttcct	gggtatggaa	tcttgcggca	tccacgagac	caccttcaac	840
tccatcatga	agtgtgacgt	ggacatccgc	aaagacctgt	acgccaacac	ggtgctgtcg	900
ggcggcacca	ccatgtaccc	gggcattgcc	gacaggatgc	agaaggagat	caccgccctg	960
gcgcccagca	ccatgaagat	caagatcatc	gcacccccag	agcgcaagta	ctcggtgtgg	1020
atcggtggct	ccatcctggc	ctcactgtcc	accttccagc	agatgtggat	tagcaagcag	1080
gagtacgacg	agtcgggccc	ctccatcgtc	caccgcaaat	gcttctaaac	ggactcagca	1140
gatgcgtagc	atttgctgca	tgggttaatt	gagaatagaa	atttgcccct	ggcaaatgca	1200
cacacctcat	gctagcctca	cgaaactgga	ataagccttc	gaaaagaaat	tgtccttgaa	1260
gcttgtatct	gatatcagca	ctggattgta	gaacttgttg	ctgattttga	ccttgtattg	1320
aagttaactg	ttccccttgg	tatttgttta	ataccctgta	catatctttg	agttcaacct	1380
ttagtacgtg	tggcttggtc	acttcgtggc	taaggtaaga	acgtgcttgt	ggaagacaag	1440
tctgtggctt	ggtgagtctg	tgtggccagc	agcctctgat	ctgtgcaggg	tattaacgtg	1500
tcagggctga	gtgttctggg	atttctctag	aggctggcaa	gaaccagttg	ttttgtcttg	1560
cgggtctgtc	agggttggaa	agtccaagcc	gtaggaccca	gtttcctttc	ttagctgatg	1620
tctttggcca	gaacaccgtg	ggctgttact	tgctttgagt	tggaagcggt	ttgcatttac	1680
gcctgtaaat	gtattcattc	ttaatttatg	taaggttttt	tttgtacgca	attctcgatt	1740
ctttgaagag	atgacaacaa	attttggttt	tctactgtta	tgtgagaaca	ttaggcccca	1800
gcaacacgtc	attgtgtaag	gaaaaataaa	agtgctgccg	taacc		1845

<210> 4 <211> 1845 <212> DNA

<400> 4 60 atggaagaag agatcgccgc gctggtcatt gacaatggct ccggcatgtg caaagctggt tttgctgggg acgacgctcc ccgagccgtg tttccttcca tcgtcgggcg ccccagacac 120 cagggcgtca tggtgggcat gggccagaag gactcctacg tgggcgacga ggcccagagc 180 aagcgtggca tcctgaccct gaagtacccc attgagcatg gcatcgtcac caactgggac 240 300 gacatggaga agatctggca ccacaccttc tacaacgagc tgcgcgtggc cccggaggag cacccagtgc tgctgaccga ggcccccctg aaccccaagg ccaacagaga gaagatgact 360 cagattatgt ttgagacctt caacaccccg gccatgtacg tggccatcca ggccgtgctg 420 tccctctacg cctctgggcg caccactggc attgtcatgg actctggaga cggggtcacc 480

<213> Homo sapiens

540

660

720

780 840

900

960

```
cacatggtgc ccatctacga gggctacgcc ctcccccacg ccatcctgcg tctggacctg
gctggccggg acctgaccga ctacctcatg aagatcctca ctgagcgagg ctacagcttc
accaccacgo ccgagcggga aatcgtgcgc gacatcaagg agaagctgtg ctacgtcgcc
ctggacttcg agcaggagat ggccaccgcc gcatcctcct cttctctgga gaagagctac
gagctgcccg atggccaggt catcaccatt ggcaatgagc ggttccggtg tccggaggcg
ctgttccagc cttccttcct gggtatggaa tcttgcggca tccacgagac caccttcaac
tccatcatga agtgtgacgt ggacatccgc aaagacctgt acgccaacac ggtgctgtcg
ggcggcacca ccatgtaccc gggcattgcc gacaggatgc agaaggagat caccgccctg
                                                                      1020
gcgcccagca ccatgaagat caagatcatc gcacccccag agcgcaagta ctcggtgtgg
                                                                      1080
atcggtggct ccatcctggc ctcactgtcc accttccagc agatgtggat tagcaagcag
                                                                      1140
gagtacgacg agtcgggccc ctccatcgtc caccgcaaat gcttctaaac ggactcagca
                                                                      1200
gatgcgtagc atttgctgca tgggttaatt gagaatagaa atttgcccct ggcaaatgca
                                                                      1260
cacacctcat gctagcctca cgaaactgga ataagccttc gaaaagaaat tgtccttgaa
                                                                      1320
gcttgtatct gatatcagca ctggattgta gaacttgttg ctgattttga ccttgtattg
                                                                      1380
aagttaactg ttccccttgg tatttgttta ataccctgta catatctttg agttcaacct
                                                                      1440
ttagtacgtg tggcttggtc acttcgtggc taaggtaaga acgtgcttgt ggaagacaag
                                                                      1500
tctgtggctt ggtgagtctg tgtggccagc agcctctgat ctgtgcaggg tattaacgtg
tcagggctga gtgttctggg atttctctag aggctggcaa gaaccagttg ttttgtcttg
                                                                       1560
cgggtctgtc agggttggaa agtccaagcc gtaggaccca gtttcctttc ttagctgatg
                                                                       1620
                                                                       1680
tctttggcca gaacaccgtg ggctgttact tgctttgagt tggaagcggt ttgcatttac
                                                                       1740
gcctgtaaat gtattcattc ttaatttatg taaggttttt tttgtacgca attctcgatt
ctttgaagag atgacaacaa attttggttt tctactgtta tgtgagaaca ttaggcccca
                                                                       1800
                                                                       1845
gcaacacgtc attgtgtaag gaaaaataaa agtgctgccg taacc
```

<400>

Met Glu Glu Glu Ile Ala Ala Leu Val Ile Asp Asn Gly Ser Gly Met

Ser Ile val Gly Arg Pro Arg His Gln Gly val Met Val Gly Met Gly Page 5

<210> 375 <212> PRT

<213> Homo sapiens

Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg Gly Ile 50 60 Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Thr Asn Trp Asp $65 \hspace{0.5cm} 70 \hspace{0.5cm} 70 \hspace{0.5cm} 10 \hspace{0.5cm}$ Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val $85 \hspace{0.5cm} 90 \hspace{0.5cm} 95$ Ala Pro Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn Pro 100 105 110 Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr Phe Asn 115 120 125Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Ala 130 135 140 Ser Gly Arg Thr Thr Gly Ile Val Met Asp Ser Gly Asp Gly Val Thr 145 150 155 160 His Thr Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu 165 170 175 Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr His Tyr Leu Met Lys Ile $180 \hspace{1cm} 185 \hspace{1cm} 190$ Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Ala Glu Arg Glu Ile 195 200 205 Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu 210 225 220 Gln Glu Met Ala Thr Ala Ala Ser Ser Ser Ser Leu Glu Lys Ser Tyr 225 230 235 240 Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg Phe Arg 245 250 255 Cys Pro Glu Ala Leu Phe Gln Pro Ser Phe Leu Gly Met Glu Ser Cys 260 265Gly Ile His Glu Thr Thr Phe Asn Ser Ile Met Lys Cys Asp Val Asp 275 280 285 SequenceListing69544.txt Ile Arg Lys Asp Leu Tyr Ala Asn Thr Val Leu Ser Gly Gly Thr Thr 290 295 Met Tyr Pro Gly Ile Ala Asp Arg Met Gln Lys Glu Ile Thr Ala Leu 305 310 315 320 Ala Pro Ser Thr Met Lys Ile Lys Ile Ile Ala Pro Pro Glu Arg Lys 325 330 335 Tyr Ser Val Trp Ile Gly Gly Ser Ile Leu Ala Ser Leu Ser Thr Phe 340 345 350 Gln Gln Met Trp Ile Ser Lys Gln Glu Tyr Asp Glu Ser Gly Pro Ser 355 360 365 Ile val His Arg Lys Cys Phe 370 375 <210> <210> 0 <211> 375 <212> PRT <213> Homo sapiens <400> 6 Met Glu Glu Ile Ala Ala Leu Val Ile Asp Asn Gly Ser Gly Met $1 \hspace{1cm} 10 \hspace{1cm} 15 \hspace{1cm} 15$ Cys Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val Phe Pro 20 25 30 Ser Ile Val Gly Arg Pro Arg His Gln Gly Val Met Val Gly Met Gly 35 40 45 Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg Gly Ile 50 55 60 Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Thr Asn Trp Asp 65 70 80 Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val 85 90 95 Ala Pro Glu Glu His Pro Leu Leu Leu Thr Glu Ala Pro Leu Asn Pro 100 105 110

Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr Phe Asn 115 $$ 125

SequenceListing69544.txt Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Ala 130 140 Ser Gly Arg Thr Thr Gly Ile Val Met Asp Ser Gly Asp Gly Val Thr 145 150 160 His Thr Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu 165 170 175 Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr Asp Tyr Leu Met Lys Ile 180 185 190 Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg Glu Ile 195 200 205 Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu 210 215 220 Gln Glu Met Ala Thr Ala Ala Ser Ser Ser Ser Leu Glu Lys Ser Tyr 225 230 235 240 Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg Phe Arg Cys Pro Glu Ala Leu Phe Gln Pro Ser Phe Leu Gly Met Glu Ser Cys 260 265 270 Gly Ile His Glu Thr Thr Phe Asn Ser Ile Met Lys Cys Asp Val Asp 275 280 Ile Arg Lys Asp Leu Tyr Ala Asn Thr Val Leu Ser Gly Gly Thr Thr 290 300 Met Tyr Pro Gly Ile Ala Asp Arg Met Gln Lys Glu Ile Thr Ala Leu 305 310 315 320 Ala Pro Ser Thr Met Lys Ile Lys Ile Ile Ala Pro Pro Glu Arg Lys 325 330 335 Tyr Ser Val Trp Ile Gly Gly Ser Ile Leu Ala Ser Leu Ser Thr Phe $\frac{340}{340}$ Gln Gln Met Trp Ile Ser Lys Gln Glu Tyr Asp Glu Ser Gly Pro Ser 355 360 365Ile Val His Arg Lys Cys Phe 370 375

Page 8

<210> <211> <212> <213> 375 PRT Homo sapiens <400> 7 Met Glu Glu Glu Ile Ala Ala Leu Val Ile Asp Asn Gly Ser Gly Met 1 10 15 Cys Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val Phe Pro Ser Ile val Gly Arg Pro Arg His Gln Gly Val Met Val Gly Met Gly 45Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg Gly Ile 50 60 Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Thr Asn Trp Asp 65 70 80Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val 85 90 95 Ala Leu Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn Pro $100 \ 105 \ 110$ Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr Phe Asn $115 \ \ \, 120 \ \ \, 125$ Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Ala 130 140 Ser Gly Arg Thr Thr Gly Ile Val Met Asp Ser Gly Asp Gly Val Thr $145 \\ 150 \\ 150$ His Thr Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu 165 170 175 Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr Asp Tyr Leu Met Lys Ile 180 185 190 Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg Glu Ile $195 \ \ \, 200 \ \ \, 205$ Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu

Gln Glu Met Ala Thr Ala Ala Ser Ser Ser Ser Leu Glu Lys Ser Tyr 225 230 235 240 Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg Phe Arg 245 250 255 Cys Pro Glu Ala Leu Phe Gln Pro Ser Phe Leu Gly Met Glu Ser Cys 260 265 270Gly Ile His Glu Thr Thr Phe Asn Ser Ile Met Lys Cys Asp Val Asp 275 280 Ile Arg Lys Asp Leu Tyr Ala Asn Thr Val Leu Ser Gly Gly Thr Thr 290 295 300 Met Tyr Pro Gly Ile Ala Asp Arg Met Gln Lys Glu Ile Thr Ala Leu 305 310 315 Ala Pro Ser Thr Met Lys Ile Lys Ile Ile Ala Pro Pro Glu Arg Lys 325 330 335 Gln Gln Met Trp Ile Ser Lys Gln Glu Tyr Asp Glu Ser Gly Pro Ser Ile Val His Arg Lys Cys Phe 370 375

<210> <211> <211> <212> <213> 375

PRT Homo sapiens

<400> 8

Met Glu Glu Glu Ile Ala Ala Leu Val Ile Asp Asn Gly Ser Gly Met 1 10 15 Cys Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val Phe Pro

Ser Ile Val Gly Arg Pro Arg His Gln Gly Val Met Val Gly Met Gly $35 \hspace{0.5cm} 40 \hspace{0.5cm} 45$ Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg Gly Ile

Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Thr Asn Trp Asp 65 70 75 80 Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val Ala Pro Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn Pro 100 105 110Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Ala 130 140 Ser Gly Arg Thr Thr Gly Ile Val Met Asp Ser Gly Asp Gly Val Thr 145 150 155 160 His Met Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu 165 170 175 Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr Asp Tyr Leu Met Lys Ile $180 \ \ \, 180 \ \ \, 185 \ \ \,$ Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg Glu Ile 195 200 205 Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu 210 215 220Gln Glu Met Ala Thr Ala Ala Ser Ser Ser Ser Leu Glu Lys Ser Tyr 225 230 235Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg Phe Arg 245 250 255 Cys Pro Glu Ala Leu Phe Gln Pro Ser Phe Leu Gly Met Glu Ser Cys 260 265 270Gly Ile His Glu Thr Thr Phe Asn Ser Ile Met Lys Cys Asp Val Asp 275 280 285 Ile Arg Lys Asp Leu Tyr Ala Asn Thr Val Leu Ser Gly Gly Thr Thr 290 300 Met Tyr Pro Gly Ile Ala Asp Arg Met Gln Lys Glu Ile Thr Ala Leu $305 \hspace{0.25cm} 310 \hspace{0.25cm} 310 \hspace{0.25cm} 320$ Page 11

```
Ala Pro Ser Thr Met Lys Ile Lys Ile Ile Ala Pro Pro Glu Arg Lys
Tyr Ser Val Trp Ile Gly Gly Ser Ile Leu Ala Ser Leu Ser Thr Phe
Gln Gln Met Trp Ile Ser Lys Gln Glu Tyr Asp Glu Ser Gly Pro Ser 355 \\ 360 \\ 365
Ile Val His Arg Lys Cys Phe
<210> 9
<211> 8
<212> PRT
<213> Homo sapiens
<400> 9
Asp Leu Thr His Tyr Leu Met Lys
1 5
<210> 10
<211> 18
<212> PRT
<213> Homo sapiens
<400> 10
Val Ala Pro Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn 10 15
Pro Leu
<210> 11
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> PROBE
<400> 11
                                                                                        17 .
gggtgttcaa ggtctca
<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> PROBE
```

400> 12 tcagcagca atgggtgctc 20				
<210> 13 <211> 17 <212> DNA <213> Artificial Sequence				
<220> <223> PROBE				
<400> 13 tgctcctca gggccac	17			
<210> 14 <211> 18 <212> DNA <213> Artificial Sequence				
<220> <223> PROBE				
<400> 14 gatgggcacc atgtgggt	18			
<210> 15 <211> 20 <212> DNA <213> Artificial Sequence				
<220> <223> PRIMER				
<400> 15 atggaagaag agatcgccgc 20				
<210> 16 <211> 17 <212> DNA <213> Artificial Sequence				
<220> <223> PRIMER				
<400> 16 tcggccgtgg tggtgaa	17			
<210> 17 <211> 8 <212> PRT <213+ Homo sapiens				
<400> 1.7				
Asp Leu Thr Asp Tyr Leu Met Lys				

<210> 18 <211> 18 <212> PRT <213> Homo sapiens

<400> 18

Val Ala Pro Glu Glu His Pro Leu Leu Leu Thr Glu Ala Pro Leu Asn 1 10 15

Pro Lys

<210> 19 <211> 18 <212> PRT <213> Homo sapiens <400> 19

Pro Lys