IFT 6758 Final Project

Final Project Presentation

3rd December, 2019

<u>Team:</u> User13 (Tempête De Données)

Team Members:

Akshay Singh Rana Harmanpreet Singh Himanshu Arora Nitarshan Rajkumar Sreya Francis

Scoreboard

How we beat all the baselines!

AGE	GENDER	OPN	NEU	EXT	AGR	CON
0.621	0.827	0.639	0.790	0.780	0.651	0.713

Problem Statement

User modeling with multi-source user data such as text, images, and relations to arrive at accurate user profiles.

Prediction Task Overview

Classification Tasks

- Categorical age
- Gender

Regression Tasks

Régression Task:

- Personality Score
 Prediction
 - Openness
 - Conscientiousness
 - Extroversion
 - Agreeableness
 - Neuroticism

Pipeline

Feature Analysis

Features

- 1. Text: LIWC + NRC
- 2. Image: Oxford features
- 3. Graph: Users' page likes

Feature Statistics

- Number of users: 9500
- Total number of features: 65 (oxford) + 1 (relationships) + 81 (liwc) + 10 (nrc)
- Missing images for 2326 users
- Multiple faces in images of ~700 users

Personality vs Age

Personality vs User Posts

Page Likes vs User Posts

Personality Prediction Analysis

Node2Vec Classification

Node2Vec Regression

Feature Preprocessing

- Removed Outliers (using IQR)
- Scaling: Min-Max/Standard Scaling

Sideburns

Feature Selection

- Using Filter-based methods (SelectKBest)
- Using Embedded feature selection methods (Lasso LR and RandomForest)
- Important features identified:

FACIAL	LIWC	NRC
facialHair_mustache	ipron	negative
facialHair_beard	swear	anger
facialHair_sideburns	social	disgust
faceRectangle_width	negemo	fear
faceRectangle_height	feel	joy

Feature Engineering

- Merged facial features such as facial hair
- Converted raw facial coordinates into lengths and areas
- Created node embeddings for users based on page likes, text, and facial features

Feature Representation

Relation feature representation

Relations

- Multi-one hot encoding
- Like-Frequency Inverse User Frequency (similar to tf-idf)
- Weighted and Unweighted Node2vec

Multi-one hot encoding

- Creates sparse matrix containing user and likes
- Experimented with shortlisting pages with different thresholds: 0, 5, 10, 25
- Converted data into a multi-one hot encoding.

	Page 1	Page 2	Page 3	Page 4
User 1	1	0	1	1
User 2	0	0	1	0
User 3	1	0	0	1

Like-Frequency Inverse User Frequency

- Creates sparse user-like matrix
- Experimented with shortlisting pages with different thresholds: 0, 5, 10, 25
- Converted data into a multi hot encoding using approach similar to tfidf.

	Page 1	Page 2	Page 3	Page 4
User 1	0.25	0	0.2	0.4
User 2	0	0	0.4	0
User 3	0.25	0	0	0.2

Node2vec

- Optimize embeddings with biased random walks, using word2vec skip-gram model
- Learn low dimensional latent representations by projecting users and other entities as graph

Image: https://www.nature.com/articles/s41598-017-12586-y

Node2vec Heterogeneous Graph Formation

(Un)-Weighted Graph With only 2 types of nodes

(Un)-Weighted Graph With multiple types of nodes

Weighted Graph

- With multiple types of nodes
- Page weights were assigned using tfidf kind of approach
- Improve weight to pages with less number of likes

Legend:

- Users
 - Pages
 - Selected Facial Features
- Selected Text Features

Embedding dimension - 128

Number of walks - 10, 20

Walk length - 50, 60, 80

Return hyperparameter - 0.75, 0.8, 0.9, 1

Inout hyperparameter - 0.9, 1.0

Context window size - 10

Number of iterations - 1, 2, 5

Experimented Methods

Approach 1

Using Individual Data Sources

Train all data sources individually for each task to find the best algorithm

Classification Tasks Evaluation

	Classification Accuracy									
		Ger	nder		Âge					
Baseline		0.5	594		0.591					
Features Used	Oxford	Text	N2v	Page Likes	Oxford	Text	N2V	Page Likes		
Random Forests	80.00	54.10	56.26	77.80	59.91	50.11	61.79	62.50		
Linear SVM	68.11	55.10	56.05	78.50	61.47	61.47	61.79	67.56		
MNB	71.9	44.15	-	54.61	-	53.17	-	60.15		
lightGBM	80.17	55.67	55.18	76.83	60.78	61.43	61.17	62.79		
XGB	81.08	55.10	55.89	77.36	61.50	62.60	61.32	63.40		

Regression Tasks Evaluation (1/2)

				RMSE		
Algorithms	Features Used	OPN	NEU	EXT	AGR	CON
	Oxford	0.634	0.769	0.819	0.669	0.726
Linear Regression	Text	0.626	0.776	0.778	0.651	0.707
(Ridge/Elastic Net)	Page Likes	-	-	-	-	-
	N2v	0.596	0.7782	0.7697	0.6492	0.703
	Oxford	0.634	0.769	0.819	0.669	0.726
Linear Regression	Text	0.625	0.775	0.778	0.648	0.705
Lasso (L1)	Page Likes	-	-	-	-	-
	N2v	0.5963	0.7787	0.7702	0.6479	0.7029

Regression Tasks Evaluation (2/2)

				RMSE		
Algorithms	Features Used	OPN	NEU	EXT	AGR	CON
	Oxford	0.638	0.782	0.831	0.673	0.736
Dandon Faresta	Text	0.627	0.780	0.779	0.653	0.710
Random Forests	Page Likes	0.621	0.778	0.80	0.64	0.71
	N2v	0.6082	0.7866	0.7889	0.6527	0.713
	Oxford	0.631	0.768	0.823	0.665	0.728
VCD Do avecació	Text	0.623	0.778	0.778	0.648	0.701
XGB Regressor	Page Likes	0.621	0.773	0.791	0.65	0.712
	N2v	0.609	0.781	0.787	0.652	0.708

Approach 1

What worked - In a nutshell

Best Results

Gender Classification

Oxford Features using XGB

Age Classification

LIWC Features using XGB

Personality Prediction

LIWC Features using XGB

Approach 2

Multi Modal Fusion

Stack data sources for each task to find the best algorithm

Model Agnostic Approaches

Model-free approaches

- Early Fusion
- Late Fusion
- Hybrid Fusion

Multi Modal Fusion

Image: https://ift6758.github.io/lectures/multimodal_learning.pdf

Classification Tasks Evaluation

	Classification Accuracy									
		Gend	er			Â	ge			
Features Used	Oxford + Text	Oxford + N2V	Oxford + Text + N2V	Oxford + Text + Occurrence Matrix	Oxford + Text	Oxford + N2V	Oxford + Text + N2V	Oxford + Text + Occurrence Matrix		
	EARLY FUSION	EARLY FUSION	EARLY FUSION	LATE FUSION	EARLY FUSION	EARLY FUSION	EARLY FUSION	LATE FUSION		
Random Forests	83.11	84.368	84.526	82.13	61.947	61.947	62.684	61.11		
Linear SVM	79.79	85.526	85.684	84.123	61.526	71.368	70.842	70.66		
lightGBM	82.89	84.00	85.105	83.87	62.632	65.632	67.158	68.19		
XGB	83.74	84.94	86.316	85.178	63.316	67.474	68.632	68.66		

Regression Tasks Evaluation (1/2)

Algorithms	Features Used	Fusion Techniques	OPN	NEU	EXT	AGR	CON
	Oxford + Text	EARLY FUSION	0.633	0.790	0.814	0.659	0.708
	Oxford + N2V	EARLY FUSION	0.602	0.780	0.779	0.642	0.704
Linear Regression	Oxford + Co-Occurrence Matrix	LATE FUSION	0.612	0.782	0.789	0.652	0.709
	Oxford +Text +N2V	EARLY FUSION	0.613	0.780	0.780	0.645	0.707
	Oxford + Text + CO-Occurrence Matrix	LATE FUSION	0.607	0.788	0.781	0.648	0.705
	Oxford + Text	EARLY FUSION	0.631	0.791	0.804	0.656	0.716
1.222.41.6	Oxford + N2V	EARLY FUSION	0.600	0.780	0.769	0.640	0.700
Lasso (L1)	Oxford +Text +N2V	EARLY FUSION	0.599	0.779	0.764	0.638	0.697
	Oxford + Text + CO-Occurrence Matrix	LATE FUSION	0.605	0.782	0.785	0.644	0.709

Regression Tasks Evaluation (2/2)

					RMSE		
Algorithms	Features Used	Fusion Technique	OPN	NEU	EXT	AGR	CON
Random	Oxford + N2V	EARLY FUSION	0.611	0.785	0.783	0.649	0.710
Forests	Oxford + Text + N2V	EARLY FUSION	0.609	0.689	0.779	0.644	0.703
	Oxford + Text	EARLY FUSION	0.618	0.785	0.792	0.650	0.701
XGB Regressor	Oxford + N2V	EARLY FUSION	0.611	0.786	0.779	0.646	0.707
	Oxford + Text + N2V	EARLY FUSION	0.609	0.777	0.7877	0.641	0.702

Best Results

Gender Classification

Oxford Features + Node2Vec Relation Features using SVM

Age Classification

Oxford Features + Text + Node2Vec Relation Features using SVM

Personality Prediction

Did not improve results with multiple data sources

Approach 3

Multi Modal Fusion

Stacking predictions as input to predict other tasks

Using predictions as features

Using previous predictions like gender, age as input to predict other tasks.

X	y1	X	y1	y2	X	у1	y2	у3
x 1	0	x1	0	1	x1	0	1	1
x2	1	x2	1	0	x2	1	0	0
хЗ	0	x3	0	1	x3	0	1	0
Cla	ssifier 1	Cla	ssifie	r 2	Cla	ssifie	r 3	

X	y1	y2	уЗ	y4
x1	0	1	1	0
x2	1	0	0	0
хЗ	0	1	0	0
Cla	ssifie	r 4		

Regressor Chaining

What Next? Approach 4

Combining all the approaches

Stack models built on individual data source, multiple data sources and train using classifier/regression chaining at all levels.