

Food and Drug Administration 10903 New Hampshire Avenue Document Control Center - WO66-G609 Silver Spring, MD 20993-0002

June 26, 2015

Scientia Vascular, LLC % Mr. Mark Job Third Party Reviewer Regulatory Technology Services, LLC 1394 25th St., NW Buffalo, MN 55313

Re: K143398

Trade/Device Name: Plato MICROCATH 27B Microcatheter

Regulation Number: 21 CFR 870.1200

Regulation Name: Diagnostic Intravascular Catheter

Regulatory Class: Class II Product Code: DQO, KRA

Dated: June 5, 2015 Received: June 12, 2015

Dear Mr. Job,

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820); and if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

If you desire specific advice for your device on our labeling regulation (21 CFR Part 801), please contact the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638-2041 or (301) 796-7100 or at its Internet address http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to

http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.htm for the CDRH's Office of Surveillance and Biometrics/Division of Postmarket Surveillance.

You may obtain other general information on your responsibilities under the Act from the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638 2041 or (301) 796-7100 or at its Internet address http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm.

Sincerely yours,

Bram D. Zuckerman -S

Bram D. Zuckerman, M.D.
Director
Division of Cardiovascular Devices
Office of Device Evaluation
Center for Devices and Radiological Health

Enclosure

DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

Indications for Use

Form Approved: OMB No. 0910-0120 Expiration Date: January 31, 2017 See PRA Statement on last page.

510(k) Number (if known) K143398				
Device Name Plato MICROCATH® 27B Microcatheter				
Indications for Use (Describe) The Plato MICROCATH 27B Microcatheter is intended for the introductherapeutic agents to the peripheral system. The catheter is not intended.	duction of interventional devices and infusion of diagnostic or ed for use in either the coronary or neuro vasculature.			
Type of Use (Select one or both, as applicable) Prescription Use (Part 21 CFR 801 Subpart D)	Over-The-Counter Use (21 CFR 801 Subpart C)			
PLEASE DO NOT WRITE BELOW THIS LINE – CONTINUE ON A SEPARATE PAGE IF NEEDED.				
FOR FDA USE ONLY				
Concurrence of Center for Devices and Radiological Health (CDRH) (Signature)				
Bram D. Zuckerman S				

Brain D. Zuckerman - 3 2015.06.26 11:47:00 -04'00' This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

510(K) SUMMARY (21 CFR 807.92)

SCIENTIA VASCULAR LLC PLATO MICROCATH® 27B MICROCATHETER

510(k) Owner:

Scientia Vascular LLC

3487 West 2100 South Suite 100 West Valley City, UT 84119

Tel: (775) 657-6330 Fax: (888) 503-6529

Contact Person:

Sharon Rockwell

Tel: (714) 695-9269 Fax: (714) 779-0406

E-mail: srockwell@writeme.com

Date Prepared:

October, 2014

Trade Name:

Plato MICROCATH® 27B Microcatheter

Common Name:

Microcatheter

Classification Name: Diagnostic Intravascular Catheter per 21 CFR 870.1200, DQO

Continuous Flush Catheter per 21 CFR 870.1210, KRA

Predicate Devices:

ev3 Marksman[™] Catheter, K111490, K091559

Scientia Vascular, LLC Plato MICROCATH 27 Microcatheter.

K121734

Device Description:

The Plato MICROCATH® 27B Microcatheter is a single lumen microcatheter constructed with a flexible polymer shaft of varying stiffness to aide in accessing vasculature. The catheter is designed to be used with a guide catheter and a steerable guidewire for accessing the vasculature. The proximal end of the catheter has a diameter of 3.4F, tapering to a distal OD of 3.2F, which can be inserted into a 5F guide catheter. The inner diameter is constant throughout the shaft length and accommodates up to a 0.025" guidewire. The catheter is 150 cm in length with a straight tip configuration which can be steam-shaped to the doctor's preferred shape. A steam shaping mandrel is included in the packaging. The microcatheter has hydrophilic coating on the outer distal shaft to reduce friction during manipulation in vessels and has one radiopaque tip marker to facilitate fluoroscopic visualization.

Indications for Use:

The Plato MICROCATH 27B Microcatheter is intended for the introduction of interventional devices and infusion of diagnostic or therapeutic agents to the peripheral system. The catheter is not intended for use in either the coronary or neuro vasculature.

The indications for use are identical to those of the ev3 Marksman Catheter, with the exception that the Marksman Catheter is also indicated for neurovascular and coronary use. The MICROCATH 27B has not been evaluated for these indications. This difference does not affect the safety and effectiveness of the device for its intended application in the peripheral vasculature.

Technological Characteristics:

The Plato MICROCATH 27B Microcatheter is a single lumen, variable stiffness microcatheter designed to provide increased flexibility for accessing the vasculature. The proximal end of the catheter incorporates a polycarbonate Luer adapter to facilitate the attachment of accessories. The distal end has a polymeric skeletal support for improved distal navigation. The device is compatible with 5 F or larger guiding catheters and can be advanced over guidewires up to 0.025" in diameter. The distal shaft has a hydrophilic coating for lubricity and is shapeable.

The technological characteristics are comparable to the predicate device, the ev3 Marksman Catheter. The Marksman Catheter is a single lumen, variable stiffness catheter designed to be introduced over a steerable guidewire into the vasculature. The proximal end of the catheter incorporates a standard Luer adapter to facilitate the attachment of accessories. The distal end has a coiled support structure and the device is compatible with 4 F or larger guiding catheters and can accommodate guidewires up to 0.021" in diameter. The Marksman catheter has an embedded braid to impart strength and stiffness to the proximal end and a coiled The Plato MICROCATH 27B structure in the distal end. Microcatheter uses and embedded stainless steel braid on the proximal end and uses a polymeric skeletal support in the distal end to support the lumen and prevent collapse in tortuous vessels. The outer surface of the distal end of the catheter is coated to increase lubricity, and the catheter is shapeable. The technological differences between the Plato MICROCATH 27B Microcatheter and the ev3 Marksman Catheter do not raise new questions of safety or efficacy.

The technological differences between the Plato MICROCATH 27B and the marketed Plato MICROCATH 27 models include 1) the rigid hypotube at the proximal end has been replace with a braided coil to increase flexibility, 2) the outer diameter has been reduced to allow the microcatheter to be advanced into small vasculature, 3) the distal end of the catheter has been modified with a replacement thermoplastic elastomer, a polymer microstructure and alternate lubricious coating to improved usability, 4) a polycarbonate hub replaces the polymethylpentene hub based on physician preferences and, 5) a platinum marker replaces the platinum marker coil. These technological differences do not raise new questions of safety or efficacy.

Non-Clinical Performance Data:

Non-clinical testing included biocompatibility testing of the assembled device as defined in ISO 10993, functional testing as defined in ISO 10555-1:2013, the FDA guidance for Short-Term and Long-Term Intravascular Catheters, dated March 16, 1995 and the FDA Special Controls Document for PTCA Catheters (Part VIII, section 13), dated September 8, 2010. Functional testing performed on the proposed device included:

Test	Test Method Summary	Results
Cytotoxicity	MEM elution test per ISO 10993-5.	Non-cytotoxic. Test article scores were 0 at 48 hours.
Sensitization	Kligman Maximization per ISO 10993-10	Negative for dermal sensitization. Test articles sensitization scores were all 0.
Irritation/Intracutaneous Reactivity	Irritatino/Intracutaneous reactivity test per ISO 10993-10.	Non-irritating. Extracts of the test article did not show a significantly greater biological reaction than sites injected with control article.
Acute systemic toxicity	Acute systemic injection test in mice per ISO-10993-11.	Non-toxic. Test articles showed no toxicity or animal weight loss for both cottonseed oil and saline extracts for 72 hour test period.
Materials mediated pyrogenicity	Rabbit pyrogen test per ISI 10993-11.	Non-pyrogenic. No increases in Individual temperatures.
Hemocompatibility – hemolysis by direct contact and extract	Direct contact method and extract method per modified ASTM 758-08.	Non-hemolytic. Corrected hemolysis index was 0.15% by direct method, 0.23% by extract.

Test	Test Method Summary	Results
Partial Thromboplastin	Partial thromboplastin	Both test article and predicate
Time	time per ASTM F2382.	were minimal activators.
		Difference in clotting times
		between test article and
		predicate was 3 seconds.
Complement activation	C3a and SC5b-9 levels	Complement activation by the
of C3a and SC5b-9	tested per ISO 10993-4.	test article was less than that of
	·	the predicate device.
Thrombogenicity in	Thrombogenicity test in	Thrombosis grade comparable
Dogs	dogs per ISO 10993-4.	to predicate. Weight changes of
		the implants comparable
		between test and control
		articles.
Visual/Dimensional	Visual inspection for	No surface defects or visible
Inspection	extraneous matter, process	droplets of coating on catheters.
	and surface defects or	All catheters met dimensional
	defects that may cause	specifications.
	trauma to vessels.	
	Dimensional inspection	
	per drawings.	
Air Ingress/Negative	Tests per ISO 10555.	Hub fittings do not allow air
Collapse	1	ingress and no evidence of
_		lumen collapse.
Kink Resistance	Tests for kinks after distal	Device was resistant to kinking
	tip of catheter is wrapped	around small diameter turns per
	around a 0.25" diameter	specification.
	peg.	
Tensile	Tensile testing performed	All catheters met minimum
Strength/Elongation	per ISO 10555-1 on distal,	force breakage based on tube
	mesial and proximal	diameters specified in ISO
	catheter sections after	10555-1.
	simulated use.	
Liquid Leakage under	Test for leakage at 300-	No leakage from hub or catheter
Pressure/Leakage at	320 kPa per ISO 10555-1.	body.
Hub		
Tip Stiffness	Test for stiffness per	Tip stiffness was comparable
	ASTM D747-10.	that of the predicate devices.
Pressure vs. Flow	Flow rates measured at	Flow rates reported in
Characterization	two typical pressures: 100	Instructions for Use at 1.00 and
	and 300 psi.	300 psi.
Static Burst Pressure	Burst pressure tested per	Maximum peak pressures all
	ISO 10555-1.	exceeded 300 psi.
Dynamic Flow	Product used with power	No leaks, breaks or occluded
	injection to 750 psi.	lumens at 750 psi.

Test	Test Method Summary	Results
Flexibility Fatigue and	Worst case bend of 90°	All catheters showed no signs of
Profile	with an 8-fold safety factor	cracks or breakage post worst
	for repetitions.	case simulated use.
Shape Retention	Catheters must maintain a	All catheters maintained
	specified % of initial angle	specified tip angle after steam
	after water-bath	shaping, water bath
	conditioning and insertions	conditioning and simulated use
	and withdrawals of a	of guidewires. Tensile testing
	guidewire. Tensile strength	after tip shaping passed
	must meet original specs	minimum tensile strength
	after shaping.	requirements.
Torque to Failure	Torque turns to failure in	All catheters showed no signs of
	an anatomical model to	breakage, twists or collapsed
	provide a 4-fold safety	lumens after specified number
	factor.	of torque turns.
Coating Lubricity and	Frictional force of	All catheters met specified
Durability	uncoated and coated	frictional forces.
Duraomity	catheters determined.	metional forces.
Coating Integrity	Coating uniformity and	All samples showed acceptable
	integrity visually	coating coverage post simulated
	examined on dyed samples	use.
	after simulated use in a	use.
	tortuous path.	
Particulates	Particulates counted in	The test and predicate catheters
ratteulates	sizes ≥10µm, 25 µm, 50	had comparable numbers of
	μm, 65 μm, 100 μm, 200	particles in each size range.
	1 '	particles in each size range.
	μm and 500 μm after inserting a guidewire and	
	advancing the catheter	
	through a guide catheter multiple times.	
Chamical compatibility		All authorage showed no signs of
Chemical compatibility	Catheters were exposed to	All catheters showed no signs of
	saline and contrast	degradation, corrosion or
	agent/saline solutions and	physical decomposition.
	examined for degradation.	N. 14 and 14 and Chair
Latex Content	Tested for trace latex	No detectable traces of latex
	proteins per ASTM	found.
O . B .	D6499-07.	
Corrosion Resistance	Test for corrosion	No signs of corrosion on
	resistance per ISO 10555-	metallic components of
n !: ::	1.	catheters.
Radiopacity	Catheters and predicates	Both test and predicate catheters
	evaluated by physicians	had acceptable radiopacity.
	under simulated use in	
	human cadavers.	

Test	Test Method Summary	Results
MRI Compatibility	Catheters contain conducting and magnetic materials and should not have exposure to MRI.	Catheters are labeled MRI Unsafe on IFU.
Simulated Use	Anatomical model designed for tortuous anatomy used for simulated use testing.	Catheters and predicate devices had comparable Likert scores in terms of Guidewire tracking and guide catheter movement. Interventional devices successfully deployed.
Cadaver Testing	Cadaver used to evaluate catheter and predicate devices by physicians for performance, access time, and ability to deploy and retrieve interventional devices.	Test and predicate devices both exhibited comparable performance with similar access time to the designated target.
Packaging Testing	Packaging evaluated for pouch seal strength per ASTM F 88-00 and leak tests (bubble test) per ASTM F 2096-04.	All sterile barrier pouches met minimum seal strength and showed no bubbles under leak test conditions.
Shelf Life Testing	Functions testing repeated post accelerated aging and room temperature confirmatory storage.	Shelf life testing in progress. Expiration date will be advanced as aging data are available to demonstrate package and product continues to meet specifications.

Conclusions:

Scientia Vascular, LLC has demonstrated that the Plato MICROCATH 27B Microcatheter is substantially equivalent in fundamental design, technology, function, device materials, packaging, sterilization, operating principles and the indications for use as the ev3 predicate device, and represents a modification in design and materials to the existing MICROCATH 27 family of products. The testing supports a determination of substantial equivalence to products previously cleared by FDA.