

Assignatura	Codi	Data	Hora inici
Lògica	05.056	16/01/2010	18:45

Ì05.056Â16Â01Â10ÂEXFÎ

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- · Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- · No es poden adjuntar fulls addicionals.
- · No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es poc consultar cap material

- Valor de cada pregunta: Problema 1: 30%; problema 2: 20%; problema 3: 20%; problema 4: 20%; problema 5: 10%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.056	16/01/2010	18:45

Problema 1

- a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Utilitzeu els àtoms proposats.
 - 1. Si corro o parlo pel mòbil no sóc un bon conductor.

 $C \vee M \rightarrow \neg D$

2. Quan no corro sóc un bon conductor.

 $\neg C \rightarrow D$

3. Només sóc un bon conductor si quan condueixo no corro i no parlo pel mòbil.

 $\mathsf{D} \to (\mathsf{V} \to \neg \mathsf{C} \wedge \neg \mathsf{M}) \quad \mathsf{o} \quad \neg (\; \mathsf{V} \to \neg \mathsf{C} \wedge \neg \mathsf{M}) \to \neg \mathsf{D}$

4. Si descobreixo un radar, o no corro o sóc un bon conductor, però no les dues coses al mateix temps.

 $R \rightarrow (\neg C \lor D) \land \neg (\neg C \land D)$

Àtoms:

- C: Corro
- M: Parlo pel mòbil
- D: Sóc un bon conductor
- R: Descobreixo un radar
- V: Condueixo
- b) Formalitzeu utilitzant la lògica de predicats les frases següents. Utilitzeu els predicats proposats.
 - 1. En Ricard és un polític corrupte.

 $H(r) \wedge C(r)$

2. Si un polític és corrupte llavors no pot estar afiliat a cap partit polític i ha d'abandonar la política.

 $\forall x[H(x) \land C(x) \rightarrow \neg \exists y[P(y) \land A(x,y)] \land Q(x)]$

3. Hi ha polítics que no són corruptes que no estan afiliats a cap partit polític.

 $\exists x [H(x) \land \neg C(x) \land \neg \exists y [P(y) \land A(x,y)]]$

4. Només estan afiliats a un partit polític els polítics que no són corruptes.

 $\forall x [P(x) \rightarrow \forall y [H(y) \land A(y,x) \rightarrow \neg C(y)]]$

Domini: un conjunt no buit

Predicats:

- H(x): x és un polític
- C(x): x és corrupte
- P(x): x és un partit polític
- A(x,y): x està afiliat a y
- Q(x): x abandona la política

Constants:

· r: en Ricard

Assignatura	Codi	Data	Hora inici
Lògica	05.056	16/01/2010	18:45

Problema 2

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Utilitzeu només les 9 regles bàsiques (és a dir, no utilitzeu ni regles derivades ni equivalents deductius).

Problema 3

Indiqueu aplicant resolució si el següent raonament és vàlid. Indiqueu també si les premisses són consistents.

$$A \rightarrow B \land C, B \rightarrow D, \neg C \lor \neg D, A \land F \therefore A \rightarrow D$$

Cerquem les FNC:

Assignatura	Codi	Data	Hora inici
Lògica	05.056	16/01/2010	18:45

 $FNC(B \rightarrow D) = (\neg B \lor D)$

3a Premissa:

 $\neg C \lor \neg D$

 $FNC(\neg C \lor \neg D) = (\neg C \lor \neg D)$

4a Premissa:

 $A \wedge F$

 $FNC(A \land F) = A \land F$

Negació de la conclusió

conclusió

 $A \rightarrow D$

negació

 $\neg (A \rightarrow D)$

¬(¬A V D)

 $\neg\neg \ A \ \land \ \neg \ D$

 $FNC(\neg (A \rightarrow D)) = A \land \neg D$

El conjunt de clàusules obtingudes és (en negreta el conjunt de suport): $\{\neg A \lor B, \neg A \lor C, \neg B \lor D, \neg C \lor \neg D, A, F, A, \neg D\}$

Α	¬A V B
В	¬B V D
D	¬ D

Per tant el raonament és vàlid

El conjunt de clàusules obtingudes sense el conjunt de suport: $\{\neg A \lor B, \neg A \lor C, \neg B \lor D, \neg C \lor \neg D, A, F\}$

Α	¬A V B
В	¬B V D
D	¬C V ¬D
¬C	¬A V C
¬A	A

Podem veure que hem arribat a la clàusula buida sense les clàusules que provenen de la negació de la conclusió, per tant les premisses són inconsistents.

Problema 4

El següent raonament és vàlid. Demostreu-ho utilitzant el mètode de resolució.

$$\forall x \exists y [R(y) \rightarrow \neg P(y,x)]$$

Assignatura	Codi	Data	Hora inici
Lògica	05.056	16/01/2010	18:45

```
\forall x [\exists y P(x,y) \rightarrow \exists z \neg R(z)]
\forall x \exists y \neg [Q(x,y) \rightarrow \neg P(x,y)]
\therefore \exists x \exists y [\neg T(x) \lor \neg (Q(x,y) \rightarrow R(x))]
FNS - \forall x \exists y [R(y) \rightarrow \neg P(y,x)]
\forall x \exists y [\neg R(y) \lor \neg P(y,x)]
\forall x [\neg R(f(x)) \lor \neg P(f(x),x)]
\mathsf{FNS}[\forall x\exists y\; [\mathsf{R}(y) \to \neg \, \mathsf{P}(y,x)]] = \forall x\; [\neg \, \mathsf{R}(f(x)) \, \vee \, \neg \, \mathsf{P}(f(x),x)]
Clàusules: \neg R(f(x)) \lor \neg P(f(x),x)
FNS - \forall x [\exists y P(x,y) \rightarrow \exists z \neg R(z)]
\forall x [\neg \exists y P(x,y) \lor \exists z \neg R(z)]
\forall x [\forall y \neg P(x,y) \lor \exists z \neg R(z)]
\forall x \ [\forall y \neg P(x,y) \lor \neg R(g(x))]
\forall x \forall y [\neg P(x,y) \lor \neg R(g(x))]
FNS[\forall x [\exists y P(x,y) \rightarrow \exists z \neg R(z)]] = \forall x \forall y [\neg P(x,y) \lor \neg R(g(x))]
Clàusules: \neg P(x,y) \lor \neg R(g(x))
FNS - \forall x \exists y \neg [Q(x,y) \rightarrow \neg P(x,y)]
\forall x \exists y \neg [\neg Q(x,y) \lor \neg P(x,y)]
\forall x \exists y [\neg \neg Q(x,y) \land \neg \neg P(x,y)]
\forall x \exists y [Q(x,y) \land P(x,y)]
\forall x [Q(x,h(x)) \land P(x,h(x))]
FNS[\forall x\exists y\neg [Q(x,y)\rightarrow P(x,y)]] = Q(x,h(x)) \land P(x,h(x))
Clàusules: Q(x,h(x)), P(x,h(x))
FNS - \neg \exists x \exists y [\neg T(x) \lor \neg (Q(x,y) \rightarrow R(x))]
\neg \exists x \exists y [\neg T(x) \lor \neg (\neg Q(x,y) \lor R(x))]
\forall x \neg \exists y [\neg T(x) \lor \neg (\neg Q(x,y) \lor R(x))]
\forall x \forall y \neg [\neg T(x) \lor \neg (\neg Q(x,y) \lor R(x))]
\forall x \forall y [\neg \neg T(x) \land \neg \neg (\neg Q(x,y) \lor R(x))]
\forall x \forall y [T(x) \land (\neg Q(x,y) \lor R(x))]
\mathsf{FNS}[\neg\exists x\exists y[\neg\mathsf{T}(x) \lor \neg(\mathsf{Q}(x,y) \to \mathsf{R}(x))]] = \forall x\forall y \ [\mathsf{T}(x) \land (\neg\mathsf{Q}(x,y) \lor \mathsf{R}(x))]
Clàusules: T(x), (\neg Q(x,y) \lor R(x))
Conjunt de clàusules: \{\neg R(f(x)) \lor \neg P(f(x),x), \neg P(x,y) \lor \neg R(g(x)), Q(x,h(x)), P(x,h(x)), T(x), \neg Q(x,y) \lor R(x)\}
Conjunt de suport: \{ T(x), \neg Q(x,y) \lor R(x) \}
```

Clàusules troncals	Clàusules laterals	Substitucions
$\neg Q(x,y) \lor R(x)$	Q(x,h(x))	Substituïm y per h(x)
$\neg Q(x,h(x)) \lor R(x)$		
R(x)	$\neg P(x,y) \lor \neg R(g(x))$	Canviem de nom les variables
R(g(z))	$\neg P(z,y) \lor \neg R(g(z))$	x per z
		Substituïm x per g(z)
		Substituïm y per h(t)
¬P(z,y)	P(x,h(x))	Substituïm z per x
$\neg P(x,h(x))$		Substituïm y per h(x)

Assignatura	Codi	Data	Hora inici
Lògica	05.056	16/01/2010	18:45

Queda demostrat que el raonament és vàlid.

Problema 5

Quina de les següents interpretacions és un contraexemple del raonament? Raona la teva resposta.

$$\exists x [B(x) \rightarrow \forall y A(x,y)], \exists x [A(a,x) \land \neg B(x)] \therefore \forall x \exists y A(x,y)$$

- a) $\{1, 2\}, \{B(1)=F, B(2)=V, A(1,1)=V, A(1,2)=V, A(2,1)=V, A(2,2)=V\}, \{a=1\}$
- b) $< \{1, 2\}, \{B(1)=V, B(2)=F, A(1,1)=V, A(1,2)=V, A(2,1)=F, A(2,2)=V\}, \{a=1\} >$
- c) $< \{1, 2\}, \{B(1)=V, B(2)=F, A(1,1)=V, A(1,2)=V, A(2,1)=V, A(2,2)=F\}, \{a=1\} >$
- d) < {1, 2}, {B(1)=V, B(2)=F, A(1,1)=V, A(1,2)=V, A(2,1)=F, A(2,2)=F}, {a=1} >

Premissa 1:

 $\exists x [B(x) \rightarrow \forall y A(x,y)] = \exists x [B(x) \rightarrow A(x,1) \land A(x,2)] = [B(1) \rightarrow A(1,1) \land A(1,2)] \lor [B(2) \rightarrow A(2,1) \land A(2,2)]$

Premissa 2:

 $\exists x[A(a,x) \land \neg B(x)] = [A(a,1) \land \neg B(1)] \lor [A(a,2) \land \neg B(2)]$ amb a=1

 $[A(1,1) \land \neg B(1)] \lor [A(1,2) \land \neg B(2)]$

Conclusió:

 $\forall x \exists y \ A(x,y) = [\exists y \ A(1,y)] \land [\exists y \ A(2,y)] = [A(1,1) \lor A(1,2)] \land [A(2,1) \lor A(2,2)]$

B(1)	B(2)	A(1,1)	A(1,2)	A(2,1)	A(2,2)	Premissa 1	Premissa 2	Conclusió	
F	V	V	V	V	V	V	V	V	
V	F	V	V	F	V	V	V	V	
V	F	V	V	V	F	V	V	V	
V	F	V	V	F	F	V	V	F	Contraex.