Actividad-1.r

MAYE MAMANI VICTOR RAUL

2024-05-15

Las interpretaciones están de color rojo

```
#LIBRERIAS NECESARIA
library(ggplot2) #PARA HACER GRAFICOS
library(forecast) #PRONOSTICO
## Warning: package 'forecast' was built under R version 4.3.3
## Registered S3 method overwritten by 'quantmod':
##
     method
                       from
##
     as.zoo.data.frame zoo
library(TTR) #metodo de media movil
library(readxl) #para Leer archivos excel
library(fpp2)
## Warning: package 'fpp2' was built under R version 4.3.3
## — Attaching packages -
pp2 2.5 —
## √ fma
               2.5 ✓ expsmooth 2.3
## Warning: package 'fma' was built under R version 4.3.3
## Warning: package 'expsmooth' was built under R version 4.3.3
##
#EJERCICIO 1
x \leftarrow c(1,2,3,4,5,6,7,8,9,10,11,12)
y <- c(2400,6200,6000,6000,9600,12400,10400,11600,15200,18000,16000,19000
datos <- data.frame(Años = x, Ventas = y)</pre>
View(datos)
Yts <- ts(datos$Ventas, start = c(1,1), frequency = 1)
print(Yts)
## Time Series:
## Start = 1
```

```
## End = 12
## Frequency = 1
## [1] 2400 6200 6000 6000 9600 12400 10400 11600 15200 18000 16000
19000
#Grafico de la serie ORIGINAL
plot(Yts, type="1", xlab = "Años", ylab="Ventas")
#MEDIA MOVIL SIMPLE
library(TTR) #metodo de media movil
k<-2 #Periodo
Yts_ma <- SMA(Yts, k)
print(Yts_ma)
## Time Series:
## Start = 1
## End = 12
## Frequency = 1
## [1] NA 4300 6100 6000 7800 11000 11400 11000 13400 16600 17000
17500
#Grafico de la serie original y la media movil simple
plot(Yts, type="1", xlab = "Años", ylab="Ventas")
lines(Yts_ma, type="1", col="red")
legend(x = "bottomright", legend = c("Yts", "Yts_ma"), col = c("black","
red"), lty=c(1,1))
```



```
# Grafico de la predicción de la media movil simple
pred <- predict(Yts_ma, h=5)</pre>
## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing val
ues
## encountered. Using longest contiguous portion of time series
summary(pred)
##
## Forecast method: ETS(A,A,N)
##
## Model Information:
## ETS(A,A,N)
##
## Call:
    ets(y = object, lambda = lambda, biasadj = biasadj, allow.multiplicat
ive.trend = allow.multiplicative.trend)
##
##
     Smoothing parameters:
##
       alpha = 0.0018
##
       beta = 0.0014
##
##
     Initial states:
##
       1 = 2711.9151
       b = 1396.1517
##
```

```
##
##
     sigma:
             1062.164
##
##
        AIC
                AICc
                           BIC
## 184.7024 196.7024 186.6919
##
## Error measures:
                              RMSE
                                                  MPE
                                                          MAPE
##
                      ME
                                       MAE
                                                                    MASE
ACF1
## Training set 9.758719 847.3138 727.044 -0.2851712 7.32242 0.5120028 -0
.04582012
##
## Forecasts:
                        Lo 80
      Point Forecast
                                  Hi 80
##
                                           Lo 95
                                                    Hi 95
## 13
            19468.14 18106.92 20829.36 17386.34 21549.94
## 14
            20864.44 19503.21 22225.66 18782.62 22946.25
            22260.73 20899.50 23621.97 20178.90 24342.57
## 15
## 16
            23657.03 22295.77 25018.29 21575.16 25738.90
            25053.33 23692.03 26414.62 22971.40 27135.25
## 17
plot(pred, col="red")
```

Forecasts from ETS(A,A,N)


```
a <- 2*Yts_ma - Yts_ma2
b \leftarrow (2/(k-1))*(Yts_ma - Yts_ma2)
p <- 5 # Periodo futuro a pronosticar
Yma2 <- a + b*p
print(Yma2)
## Time Series:
## Start = 1
## End = 12
## Frequency = 1
                 NA 16000 5450 17700 28600 13600 8800 26600 34200 19200
## [1]
           NA
20250
# Graficar la serie original y la media móvil doble
plot(Yts, type = "l", xlab="Meses", ylab=" ") # Serie original
lines(Yma2, type = "l", col = "blue") # Media móvil doble
legend(x = "bottomright", legend = c("Yts", "Yma2"), col = c('black', 'bl
ue'), lty = c(1,
1))
```



```
# Graficar La predicción de La media movil doble
pred <- predict(Yma2, h=5)

## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing val
ues
## encountered. Using longest contiguous portion of time series</pre>
```

```
summary(pred)
##
## Forecast method: ETS(A,N,N)
## Model Information:
## ETS(A,N,N)
##
## Call:
## ets(y = object, lambda = lambda, biasadj = biasadj, allow.multiplicat
ive.trend = allow.multiplicative.trend)
##
##
     Smoothing parameters:
##
       alpha = 1e-04
##
##
     Initial states:
       1 = 19039.0358
##
##
##
     sigma: 9421.452
##
                           BIC
                AICc
##
        AIC
## 209.8093 213.8093 210.7171
##
## Error measures:
##
                      ME
                             RMSE
                                        MAE
                                                  MPE
                                                          MAPE
                                                                     MASE
ACF1
## Training set 1.994431 8426.803 6730.192 -31.91832 54.52328 0.6379329 0
.1270712
##
## Forecasts:
##
      Point Forecast
                        Lo 80
                                  Hi 80
                                           Lo 95
                                                    Hi 95
            19039.04 6964.962 31113.11 573.3319 37504.74
## 13
## 14
            19039.04 6964.962 31113.11 573.3318 37504.74
            19039.04 6964.962 31113.11 573.3317 37504.74
## 15
## 16
            19039.04 6964.961 31113.11 573.3316 37504.74
## 17
            19039.04 6964.961 31113.11 573.3315 37504.74
plot(pred, col="blue")
```

Forecasts from ETS(A,N,N)


```
#GRAFICA DE AMBOS METODOS con La serie original
plot(Yts, type='l', xlab="Años", ylab="Ventas")
lines(Yts_ma, type='l', col="red")
lines(Yma2, type='l', col="blue")
legend(x = "bottomright", legend = c("Yts_ma", "Yma2"), col = c('red', 'b lue'), lty = c(1, 1))
```


La media movil simple se ajusta mas a los datos originales que l a media movil doble.

```
#EJERCICIO 2
datos = read_excel("F:/777--Programacion repos/Una/r/data/02-t.xlsx")
Yts <- ts(datos$Ventas, start = c(2015,1), frequency = 12)
print(Yts)
##
           Jan
                  Feb
                         Mar
                                Apr
                                       May
                                               Jun
                                                      Jul
                                                             Aug
                                                                    Sep
0ct
## 2015 174132 161943 146195 141146 147081 168127 144123 169350 163300 18
6654
## 2016 171695 142800 156978 138780 154502 155887 161107 162323 175434 17
2045
## 2017 150419 138585 164806 141578 136450 136144 144638 118136 133284 15
8266
## 2018 167654 165798 149714 175504 156909 183660 177009 204359 194735 19
## 2019 215773 177886 222408 215793 203316 209376 203557 250105 225476 24
2739
## 2020 212658 232616 249744 231813 216286 220976 212788 195399 207013 18
7727
```

```
## Nov Dec
## 2015 182168 181453
## 2016 190468 164692
## 2017 167523 167508
## 2018 218171 213791
## 2019 217358 210469
## 2020 188220 159060

#Graficar La serie temporal
plot(Yts,type = "l", xlab="Meses",ylab="Y")
```



```
# a) Construir un promedio móvil de orden 12
k = 12
Yts_ma <- SMA(Yts,k)

# Graficar la serie temporal con la media movil
plot(Yts, type = "l", xlab = "Meses", ylab = " ") # Serie original
lines(Yts_ma, type = "l", col = "red")</pre>
```



```
# b) Construir un promedio móvil doble de orden 12
Yts_ma2 <- SMA(Yts_ma, k) # Media móvil de media móvil
a <- 2*Yts ma - Yts ma2
b \leftarrow (2/(k-1))*(Yts_ma - Yts_ma2)
p <- 5 # Periodo futuro a pronosticar
Yma2 <- a + b*p
print(Yma2)
##
                       Feb
                                                             Jun
                                                                      Jul
             Jan
                                Mar
                                          Apr
                                                   May
Aug
## 2015
                                                                       NA
              NA
                        NA
                                 NA
                                           NA
                                                    NA
                                                              NA
NA
## 2016
              NA
                        NA
                                 NA
                                           NA
                                                    NA
                                                             NA
                                                                       NA
NA
## 2017 155988.2 155269.6 157509.7 158461.9 154697.4 150622.3 147784.4 13
8719.7
## 2018 136463.4 144643.9 142872.5 152571.6 158495.4 170086.8 177359.1 19
5957.6
## 2019 230191.0 226955.8 237249.0 239602.1 243094.4 241859.7 240903.9 24
5138.7
## 2020 233032.1 241275.2 243478.6 243260.5 242746.3 242087.2 241083.3 22
5911.2
##
                       0ct
                                Nov
                                          Dec
             Sep
## 2015
              NA
                        NA
                                 NA
## 2016
              NA
                        NA 164456.8 160644.9
## 2017 130868.5 129884.1 127091.8 130285.1
## 2018 207177.3 212730.9 219628.7 224892.1
```

```
## 2019 246143.2 250184.3 244190.9 238246.8
## 2020 220177.7 206888.5 200247.2 188844.4

# Graficar La serie original y La media móvil doble
plot(Yts, type = "l", xlab="Meses", ylab=" ") # Serie original
lines(Yma2, type = "l", col = "blue") # Media móvil doble
```



```
# c) Representar gráficamente los resultados obtenidos junto con los dato
s originales
# y comparar los resultados.

plot(Yts, type='l', xlab="Años", ylab="Ventas")
lines(Yts_ma, type='l', col="red")
lines(Yts_ma2, type='l', col="blue")
```



```
# Podemos ver que la media movil doble es mas suave que la media m
ovil simple.
# Y que la media movil simple se ajusta mas a los datos originales
#EJERCICIO 3
datos = read_excel("F:/777--Programacion repos/Una/r/data/03-t.xlsx")
VENts <- ts(datos$Ventas, start = c(2010,1), frequency = 12)</pre>
print(VENts)
##
          Jan
                 Feb
                       Mar
                              Apr
                                    May
                                           Jun
                                                  Jul
                                                        Aug
                                                               Sep
## 2010 299.53 286.04 295.52 276.49 307.33 300.94 301.97 245.94 204.29 21
9.19
## 2011 274.01 258.24 271.92 293.04 313.58 298.54 308.95 273.84 249.39 25
6.90
## 2012 278.92 263.25 281.32 272.24 296.85 288.45 286.65 258.45 237.95 24
9.31
## 2013 276.85 262.53 296.28 290.02 309.90 310.98 319.38 288.26 262.63 26
## 2014 310.87 287.53 333.20 332.65 363.05 356.85 351.80 318.12 293.49 30
```

```
7.12
## 2015 362.34 329.38 356.09 358.20 404.46 380.43 374.86 341.56 304.81 31
## 2016 355.34 343.17 352.04 364.69 414.46 399.64 395.91 348.26 306.35 31
8.43
##
           Nov
                  Dec
## 2010 240.22 266.30
## 2011 267.29 268.80
## 2012 259.60 279.73
## 2013 283.52 301.79
## 2014 324.63 333.66
## 2015 327.14 328.93
## 2016 346.89 356.96
#Graficar la serie temporal
plot(VENts, type = "1", xlab="Meses", ylab="Ventas", col="black")
```



```
# HOLT WINTERS SIN PARAMETROS

VENhw_m <- HoltWinters(VENts, seasonal = "multiplicative")
plot(VENhw_m)
legend("topleft", legend = c("Original", "Prediccion"), col = c("black", "red"), lty = c(1,1))</pre>
```

Holt-Winters filtering


```
VENhw_m #Muestra los valores de alpha, beta y gamma
## Holt-Winters exponential smoothing with trend and multiplicative seaso
nal component.
##
## Call:
## HoltWinters(x = VENts, seasonal = "multiplicative")
##
## Smoothing parameters:
    alpha: 0.3944988
##
##
    beta: 0
    gamma: 0.7054837
##
##
## Coefficients:
##
              [,1]
       365.8740918
## a
## b
         0.9670600
## s1
         1.0226906
## s2
         0.9563513
## s3
         1.0134063
         1.0370153
## s4
## s5
         1.1565271
         1.1032888
## s6
## s7
         1.0916615
## s8
         0.9749303
         0.8700332
## s9
## s10
         0.9032878
```

```
## s11  0.9544848
## s12  0.9706199

# HOLT WINTERS CON PARAMETROS

VENhw_m2 <- HoltWinters(VENts, seasonal = "multiplicative", optim.start = c
(0.4,0.6002,1))
plot(VENhw_m2)
legend("topleft", legend = c("Original", "Prediccion"), col = c("black", "red
"),lty = c(1,1))</pre>
```

Holt-Winters filtering


```
# Predicciones
autoplot(forecast(VENhw_m,h=5),xlab="Años",ylab="Ventas",col="red")
```

Forecasts from HoltWinters

autoplot(forecast(VENhw_m2,h=5),xlab="Años",ylab="Ventas",col="red")

Forecasts from HoltWinters

print(forecast(VENhw_m,h=5))

```
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
##
                375.1650 362.7145 387.6155 356.1236 394.2063
## Jan 2017
## Feb 2017
                351.7539 338.1061 365.4016 330.8814 372.6263
## Mar 2017
                373.7192 358.5460 388.8924 350.5138 396.9245
## Apr 2017
                383.4285 366.9607 399.8962 358.2432 408.6137
## May 2017
                428.7354 410.1895 447.2813 400.3719 457.0990
print(forecast(VENhw_m2, h=5))
           Point Forecast
                           Lo 80
                                    Hi 80
                                            Lo 95
## Jan 2017
                375.1650 362.7145 387.6155 356.1236 394.2064
## Feb 2017
                351.7539 338.1061 365.4017 330.8813 372.6264
## Mar 2017
                373.7191 358.5459 388.8923 350.5137 396.9245
## Apr 2017
                383.4284 366.9606 399.8962 358.2431 408.6138
                428.7355 410.1895 447.2814 400.3718 457.0991
## May 2017
# Podemos ver que ambos metodos de Holt Winters se ajusta
n a los datos originales.
#EJERCICIO 4
datos = read_excel("F:/777--Programacion repos/Una/r/data/04-t.xlsx")
Yts <- ts(datos$Ventas, start = c(2016,1), frequency = 4)
print(Yts)
       Otr1 Otr2 Otr3 Otr4
## 2016 190 370 300 220
## 2017 280 420
                310
                      180
## 2018 270 360 280
                     190
## 2019 300 430
                290
                     200
## 2020 320 440
                320
                     220
#Graficar la serie temporal
plot(Yts,type = "l", xlab="Trimestres",ylab="Ventas")
```



```
# (a) Realice el pronóstico utilizando métodos de promedios móviles y det
ermine que método es
# mejor, evaluar gráficamente y utilizando los estadísticos del error.

# Promedio móvil simple
k = 4
Yts_ma <- SMA(Yts,k)

# Graficar la serie temporal original con la media movil
plot(Yts, type = "l", xlab = "Trimestres", ylab = " ") # Serie original
lines(Yts_ma, type = "l", col = "red")</pre>
```



```
# Estadísticos del error
print('Error promedio móvil simple')
## [1] "Error promedio móvil simple"
error <- Yts - Yts_ma
error_cuadrado <- error^2
mse <- mean(error_cuadrado, na.rm = TRUE)</pre>
print(paste("MSE:", mse))
## [1] "MSE: 5868.75"
rmse <- sqrt(mse)</pre>
print(paste("RMSE:", rmse))
## [1] "RMSE: 76.6077672302228"
# Promedio móvil doble
Yts_ma2 <- SMA(Yts_ma, k) # Media móvil de media móvil
a <- 2*Yts_ma - Yts_ma2
b \leftarrow (2/(k-1))*(Yts_ma - Yts_ma2)
p <- 5 # Periodo futuro a pronosticar
Yma2 <- a + b*p
print(Yma2)
##
            Qtr1
                      Qtr2
                               Qtr3
                                         Qtr4
## 2016
               NA
                        NA
                                  NA
                                           NA
```

```
## 2017 NA NA 367.0833 283.9583
## 2018 267.9167 215.0000 212.9167 250.6250
## 2019 304.1667 375.8333 356.6667 337.5000
## 2020 334.3750 334.1667 355.2083 360.2083
## Graficar La serie original y La media móvil doble
plot(Yts, type = "l", xlab="Trimestres", ylab=" ") # Serie original
lines(Yma2, type = "l", col = "blue") # Media móvil doble
```



```
# Estadísticos del error

print('Error promedio móvil doble')

## [1] "Error promedio móvil doble"

error_2 <- Yts - Yts_ma2
error_2_cuadrado <- error_2^2

mse_2 <- mean(error_2_cuadrado, na.rm = TRUE)
print(paste("MSE:", mse_2))

## [1] "MSE: 6234.84933035714"

rmse_2 <- sqrt(mse_2)
print(paste("RMSE:", rmse_2))

## [1] "RMSE: 78.9610621151789"</pre>
```

```
# Grafica comparativa entre los 2 metodos con la serie original
plot(Yts, type = "l", xlab="Trimestres", ylab="Ventas") # Serie original
lines(Yts_ma, type = "l", col = "red") # Media móvil simple
lines(Yma2, type = "l", col = "blue") # Media móvil doble
```


Concluimos que el método de promedio móvil doble es mej or que el método de promedio móvil simple, # ya que el error cuadrático medio es menor en el método de promedio móvil doble.

```
# (b) Si se utiliza un suavizamiento exponencial simple con una constante
de suavizamiento de 0.4,
# ¿Cuál es el pronóstico para el IV trimestre del 2020?

Yses <- ses(Yts, alpha = 0.4, h = 4)
plot(Yts, type = "l", xlab="Trimestre", ylab=" ")
lines(Yses$fitted, type = "l", col = "red")
legend(x = "bottomright", legend = c("Yts", "Yses"), col = c('black', 're d'), lty = c(1,
1))</pre>
```



```
Yses$fitted
##
            Qtr1
                     Qtr2
                             Qtr3
## 2016 267.2871 236.3723 289.8234 293.8940
## 2017 264.3364 270.6018 330.3611 322.2167
## 2018 265.3300 267.1980 304.3188 294.5913
## 2019 252.7548 271.6529 334.9917 316.9950
## 2020 270.1970 290.1182 350.0709 338.0426
# El pronóstico para el IV trimestre del 2020 es 338.0426
# (c) Utilice el método de suavizamiento multiplicativo de Holt-Winters c
on las constantes de
# suavizamiento alpha = beta = gamma = 0.5.
Yhw_m <- HoltWinters(Yts, seasonal = "multiplicative", optim.start = c(0.5
,0.5,0.5))
plot(Yhw_m)
legend("topleft",legend = c("Original","Prediccion"),col = c("black","red
"), lty = c(1,1))
```

Holt-Winters filtering

El metodo de Holt Winters se ajusta muy bien a los dato s originales.

```
#EJERCICIO 5
# La Tabla 5 indica el número de terremotos severos anuales (aquellos con
una magnitud en la escala
# de Richter de 7 grados o más) de 1900 a 1999.
datos = read_excel("F:/777--Programacion repos/Una/r/data/05-t.xlsx")
Yts <- ts(datos$Numero, start = c(1900,1), frequency = 1)
print(Yts)
## Time Series:
## Start = 1900
## End = 1999
## Frequency = 1
    [1] 13 14 8 10 16 26 32 27 18 32 36 24 22 23 22 28 25 21 21 14 8 1
1 14 23 18
## [26] 17 19 20 22 19 13 26 13 14 22 24 21 22 26 21 23 24 27 41 31 27 3
5 26 28 36
## [51] 39 21 17 22 17 19 15 34 10 15 22 18 15 20 15 22 19 16 30 27 29 2
3 20 16 21
```

```
## [76] 21 25 16 18 15 18 14 10 15 8 15 6 11 8 7 12 11 23 16 15 25 2
2 20 16 23
#Graficar La serie temporal
plot(Yts,type = "l", xlab="Años",ylab="Numero de terremotos")
```



```
# (a) Utilice R-Studio para suavizar los datos de terremotos con promedio
s móviles de órdenes de k
# = 5, 10 y 15. Describa la naturaleza de la suavización conforme el orde
n del promedio móvil se
# incrementa. ¿Cree usted que podría haber un ciclo en estos datos? Si es
así, dé un estimado de
# la duración (en años) del ciclo.

# Promedio móvil simple k = 5
k = 5
Yts_ma <- SMA(Yts,k)

# Graficar la serie temporal con la media movil
plot(Yts, type = "l", xlab = "Años", ylab = "Terremotos") # Serie origina
l
lines(Yts_ma, type = "l", col = "red")</pre>
```



```
# Promedio móvil simple k = 10
k = 10
Yts_ma2 <- SMA(Yts,k)

# Graficar La serie temporal con la media movil
plot(Yts, type = "l", xlab = "Años", ylab = "Terremotos") # Serie origina
l
lines(Yts_ma2, type = "l", col = "blue")</pre>
```



```
# Promedio móvil simple k = 15
k = 15
Yts_ma3 <- SMA(Yts,k)

# Graficar La serie temporal con la media movil
plot(Yts, type = "l", xlab = "Años", ylab = "Terremotos") # Serie origina
l
lines(Yts_ma3, type = "l", col = "green")</pre>
```



```
# Grafica comparativa entre los 3 promedios móviles
plot(Yts, type = "l", xlab = "Años", ylab = "Terremotos") # Serie origina
l
lines(Yts_ma, type = "l", col = "red")
lines(Yts_ma2, type = "l", col = "blue")
lines(Yts_ma3, type = "l", col = "green")
legend("topleft",legend = c("Original","Promedio móvil k=5","Promedio móv
il k=10","Promedio móvil k=15"),col = c("black","red","blue","green"),lty
= c(1,1))
```


Se observa que conforme el orden del promedio móvil se incrementa, la suavización de los datos es mayor.
En este caso, el promedio móvil de orden 15 es el que s uaviza más los datos. Se observa que hay un ciclo # en los datos, ya que se observan picos y valles en la s erie temporal. La duración del ciclo es de # aproximadamente 50 años.

```
# (b) Use R-Studio para suavizar los datos de los terremotos usando la su
avización exponencial
# simple. Almacene los residuos y genere un pronóstico para el número de
terremotos severos en
# el año 2000. ¿La suavización exponencial simple ofrece un ajuste razona
ble de estos datos?
# Explique.

# Suavización exponencial simple

Yses <- ses(Yts,alpha = 0.5,h = 1)

plot(Yts,type="l", xlab="Años",ylab=" ")
lines(Yses$fitted, type ="l", col="red")</pre>
```

```
legend(x = "bottomright", legend = c("Yts","Yses"),col = c('black','red')
,lty = c(1,1))
```



```
# Residuos
residuos <- Yts - Yses$fitted
print(residuos)
## Time Series:
## Start = 1900
## End = 1999
## Frequency = 1
##
     [1]
           0.015000000
                          1.007500000
                                       -5.496250000
                                                      -0.748125000
                                                                     5.6259
37500
          12.812968750
                         12.406484375
                                        1.203242187
                                                      -8.398378906
                                                                     9.8008
##
     [6]
10547
## [11]
           8.900405273
                         -7.549797363
                                       -5.774898682
                                                      -1.887449341
                                                                     -1.9437
24670
## [16]
           5.028137665
                         -0.485931168
                                       -4.242965584
                                                      -2.121482792
                                                                    -8.0607
41396
## [21] -10.030370698
                         -2.015185349
                                        1.992407326
                                                       9.996203663
                                                                    -0.0018
98169
## [26]
          -1.000949084
                          1.499525458
                                        1.749762729
                                                       2.874881364
                                                                    -1.5625
59318
## [31]
          -6.781279659
                          9.609360171
                                        -8.195319915
                                                      -3.097659957
                                                                     6.4511
70021
## [36]
           5.225585011
                         -0.387207495
                                        0.806396253
                                                       4.403198126
                                                                    -2.7984
00937
```

## [41] 50029	0.600799532	1.300399766	3.650199883	15.825099941	-2.0874
## [46] 67187	-5.043725015	5.478137493	-6.260931254	-1.130465627	7.4347
## [51] 63525	6.717383593	-14.641308203	-11.320654102	-0.660327051	-5.3301
## [56] 67610	-0.665081763	-4.332540881	16.833729559	-15.583135220	-2.7915
## [61] 36488	5.604216195	-1.197891903	-3.598945951	3.200527024	-3.3997
## [66] 58235	5.300131756	-0.349934122	-3.174967061	12.412516470	3.2062
## [71] 95570	3.603129117	-4.198435441	-5.099217721	-6.549608860	1.7251
## [76] 87638	0.862597785	4.431298892	-6.784350554	-1.392175277	-3.6960
## [81] 02739	1.151956181	-3.424021910	-5.712010955	2.143994523	-5.9280
## [86] 50086	4.035998631	-6.982000685	1.508999658	-2.245500171	-2.1227
## [91] 35940	3.938624957	0.969312479	12.484656239	-0.757671880	-1.3788
## [96] 11377	9.310582030	1.655291015	-1.172354493	-4.586177246	4.7069
<pre># Pronósticos plot(Yses)</pre>					

Forecasts from Simple exponential smoothing

El pronóstico para el año 2000 es 20.64654. # La suavización exponencial simple ofrece un ajuste razonable de los datos, ya que los pronósticos # se ajustan a la serie temporal. Se observa que los pronósticos s iguen la tendencia de los datos # originales.

(c) ¿Existe un componente cíclico en los datos del terremoto? ¿Por qué?
ggAcf(Yts)

Se observa que no hay un componente cíclico en los datos del ter remoto, ya que no hay picos # significativos en la función de autocorrelación. Por lo tanto, n o hay un patrón cíclico en # los datos del terremoto.

Lag