Übung 8

Aufgabe 14

Die Entropie einer Quelle sei gegeben als:

$$H(X) = -\sum_{i=1}^M p(x_i) \cdot \log_2(p(x_i))$$

Die mittlere Codewortlänge l_{C} in Abhängingkeit zu den einzelnen Codewortlängen l_{i} sein:

$$l_C = \sum_{i=1}^M l_i \cdot p(x_i)$$

Schließlich sei die Redundanz RC einer Codierung gegeben als:

$$RC(X) = l_C - H(X)$$

Sei unserer Alphabet $\{a,b,c,d,e\}$ und unsere Zeichenfolge aaaaabbccddee mit den Auftrittswahrscheinlichkeiten $\{\frac{5}{13},\frac{2}{13},\frac{2}{13},\frac{2}{13},\frac{2}{13}\}$

Fanocodierung

- 1. $\left\{\frac{5}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}\right\}$
- 2. $\left\{\frac{5}{13}, \frac{2}{13}\right\}, \left\{\frac{2}{13}, \frac{2}{13}, \frac{2}{13}\right\}$
- 3. $\left\{\frac{5}{13}\right\}$, $\left\{\frac{2}{13}\right\}$, $\left\{\frac{2}{13}, \frac{2}{13}\right\}$, $\left\{\frac{2}{13}\right\}$
- 4. $\left\{\frac{5}{13}\right\}, \left\{\frac{2}{13}\right\}, \left\{\frac{2}{13}\right\}, \left\{\frac{2}{13}\right\}, \left\{\frac{2}{13}\right\}$

Wort	Code	l_i
a	00	2
b	01	2
c	10	2
d	110	3
e	111	3

Die Fanocodierung ergibt hier eine Redundanz von RC pprox 0.1156864 [bit].

Huffmancodierung

1.
$$\left\{\frac{5}{13}\right\}$$
, $\left\{\frac{2}{13}\right\}$, $\left\{\frac{2}{13}, \frac{2}{13}\right\}$
3. $\left\{\frac{5}{13}\right\}$, $\left\{\frac{2}{13}, \frac{2}{13}\right\}$, $\left\{\frac{2}{13}, \frac{2}{13}\right\}$
4. $\left\{\frac{5}{13}\right\}$, $\left\{\frac{2}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}\right\}$
5. $\left\{\frac{5}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}\right\}$

2.
$$\left\{\frac{5}{13}\right\}$$
, $\left\{\frac{2}{13}\right\}$, $\left\{\frac{2}{13}\right\}$, $\left\{\frac{2}{13}\right\}$, $\left\{\frac{2}{13}\right\}$

3.
$$\left\{\frac{5}{13}\right\}, \left\{\frac{2}{13}, \frac{2}{13}\right\}, \left\{\frac{2}{13}, \frac{2}{13}\right\}$$

4.
$$\left\{\frac{5}{13}\right\}, \left\{\frac{2}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}\right\}$$

5.
$$\left\{\frac{5}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}\right\}$$

Wort	Code	l_i
a	0	1
b	100	3
c	101	3
d	110	3
e	111	3

Die Huffmancodierung ergibt hier eine Redundanz von $RC \approx 0.03876339 [bit]$ und ist somit redundanzarmer als die Fanocodierung.

Aufgabe 15

LZW

1	I
2	M
3	S
4	W
5	_

$SWISS_MISS$

yield S=2

add SW=6

1	I
2	M
3	S
4	W
5	_
6	SW

$$\widehat{SWISS_MISS}$$

yield $W=4\,$

add WI=7

1	I
2	M
3	S
4	W
5	_
6	SW
7	WI

$SW \widehat{I} SS_MISS$

yield I=1

 $\mathrm{add}\; IS=8$

1	I
2	M
3	S
4	W
5	
6	SW
7	WI
8	IS

$$SWI \underbrace{S}_{S}MISS$$

yield S=3

 $\operatorname{add} SS = 9$

1	I
2	M
3	S
4	W
5	_
6	SW
7	WI
8	IS
9	SS

$$SWIS \underbrace{\hat{S}}_{-} MISS$$

yield $S=3\,$

add § $S_{-}=10$

1	I
2	M
3	S
4	W
5	_
6	SW
7	WI
8	IS
9	SS
10	S_{-}

SWISS __MISS

yield $_=5$

add $_M=11$

1	I
2	M
3	S
4	W
5	_
6	SW
7	WI
8	IS
9	SS
10	S_{-}
11	$_M$

$SWISS_{\widehat{M}}ISS$

yield M=2

add MI=12

1	I
2	M
3	S
4	W
5	_
6	SW
7	WI
8	IS
9	SS
10	S_{-}
11	$_M$

$$SWISS_M\widehat{IS}S$$

yield IS=8

add ISS=12

1	I
2	M
3	S
4	W
5	_
6	SW
7	WI
8	IS
9	SS
10	S_{-}
11	$_M$
12	ISS

yield S=3

Dann sei m=2-4-1-3-3-5-2-8-3 die Nachricht mit Länge $m_{len}=9$ sowie $l_C=\lceil \operatorname{ld}(C_{len}) \rceil=4$ die Codewortlänge zum Codebuch C mit Codebuchlänge C_{len} , so ist die für die Nachricht benötigte Anzahl an bits $l_C \cdot m_{len}=36[bit]$

Arithmetische Codierung

Für die Nachricht $SWISS_MISS$ wird das Alphabet $\Sigma=\{I,M,S,W,_\}$ mit Auftrittswahrscheinlichkeiten $\{P_I=0.2,P_M=0.1,P_S=0.5,P_W=0.1,P__=0.1\}$

Die Codewortlänge ist $\left\lceil -\mathrm{ld}(P(SWISS_MISS))
ight
ceil = 20[bit]$

Damit sind die Elementaren Intervalle:

Σ	$I(\Sigma)$	P_{Σ}
I	[0, 0.2)	0.2
M	[0.2, 0.3)	0.1
S	[0.3, 0.8)	0.5
W	[0.8, 0.9)	0.1
_	[0.9, 1)	0.1

Σ^*	$I(\Sigma^*)$	Width
SI	$[0.3, 0.3 + 0.5 \cdot 0.2 = 0.4)$	0.1
SM	$[0.4, 0.4 + 0.5 \cdot 0.1 = 0.45)$	0.05
SS	$[0.45, 0.45 + 0.5 \cdot 0.5 = 0.7)$	0.25
SW	$[0.7, 0.7 + 0.5 \cdot 0.1 = 0.75)$	0.05
S_{-}	$[0.75, 0.75 + 0.5 \cdot 0.1 = 0.8)$	0.05

\sum^*	$I(\Sigma^*)$	Width
SWI	$[0.7, 0.7 + 0.05 \cdot 0.2 = 0.71)$	0.01
SWM	$[0.71, 0.71 + 0.05 \cdot 0.1 = 0.715)$	0.005
SWS	$[0.715, 0.715 + 0.05 \cdot 0.5 = 0.74)$	0.025
SWW	$[0.74, 0.74 + 0.05 \cdot 0.1 = 0.745)$	0.005
SW_{-}	$[0.745, 0.745 + 0.05 \cdot 0.1 = 0.75)$	0.005

Σ^*	$I(\Sigma^*)$	Width
SWII	$[0.7, 0.7 + 0.01 \cdot 0.2 = 0.702)$	0.002
SWIM	$[0.702, 0.702 + 0.01 \cdot 0.1 = 0.703)$	0.001
SWIS	$[0.703, 0.703 + 0.01 \cdot 0.5 = 0.708)$	0.005
SWIW	$[0.708, 0.708 + 0.01 \cdot 0.1 = 0.709)$	0.001
SWI_{-}	$[0.709, 0.709 + 0.01 \cdot 0.1 = 0.71)$	0.001

Σ^*	$I(\Sigma^*)$	Width
SWISI	$[0.703, 0.703 + 0.005 \cdot 0.2 = 0.704)$	0.001
SWISM	$[0.704, 0.704 + 0.005 \cdot 0.1 = 0.704_5)$	0.000_5
SWISS	$[0.704_5, 0.704_5 + 0.005 \cdot 0.5 = 0.707)$	0.002_5
SWISW	$[0.707, 0.707 + 0.005 \cdot 0.1 = 0.707_5)$	0.000_5
$SWIS_$	$[0.707_5, 0.707_5 + 0.005 \cdot 0.1 = 0.708)$	0.000_5

Σ^*	$I(\Sigma^*)$	Width
SWISSI	$[0.704_5, 0.745_3 + 0.002_5 \cdot 0.2 = 0.705)$	0.000_5
SWISSM	$[0.705, 0.705 + 0.002_5 \cdot 0.1 = 0.705_25)$	0.000_25
SWISSS	$[0.705_25, 0.705_25 + 0.002_5 \cdot 0.5 = 0.706_5)$	0.001_25
SWISSW	$[0.706_5, 0.706_5 + 0.002_5 \cdot 0.1 = 0.706_75)$	0.000_25
$SWISS_{-}$	$[0.706_75, 0.706_75 + 0.002_5 \cdot 0.1 = 0.707)$	0.000_25

Σ^*	$I(\Sigma^*)$	Width
$SWISSI_{-}$	$[0.70675, 0.70675 + 0.000_25 \cdot 0.2 = 0.7068)$	0.000_05
$SWISS_M$	$[0.706_8, 0.706_8 + 0.000_25 \cdot 0.1 = 0.706_825)$	0.000_025
$SWISS_S$	$[0.706_825, 0.706_825 + 0.000_25 \cdot 0.5 = 0.706_95)$	0.000_125
$SWISS_W$	$[0.706_95, 0.706_95 + 0.000_25 \cdot 0.1 = 0.706_975)$	0.000_025
$SWISS__$	$[0.706_975, 0.706_975 + 0.000_25 \cdot 0.1 = 0.707)$	0.000_025

Σ^*	$I(\Sigma^*)$	Width
$SWISS_MI$	$[0.706_8, 0.706_8 + 0.000_025 \cdot 0.2 = 0.706_805)$	0.000_005
$SWISS_MM$	$ [0.706_805, 0.706_805 + 0.000_025 \cdot 0.1 = \\ 0.706_807_5) $	0.000_002_5
$SWISS_MS$	$egin{aligned} [0.706_807_5, 0.706_807_5 + 0.000_025 \cdot \ 0.5 = 0.706_82) \end{aligned}$	0.000_012_5
$SWISS_MW$	$[0.706_82, 0.706_82 + 0.000_025 \cdot 0.1 = 0.706_822_5)$	0.000_002_5
$SWISS_M_$	$egin{aligned} [0.706_822_5, 0.706_822_5 + 0.000_025 \cdot \ 0.1 = 0.706_825) \end{aligned}$	0.000_002_5

Σ^*	$I(\Sigma^*)$	Width
$SWISS_MII$	$[0.706_8, 0.706_8 + 0.000_005 \cdot 0.2 = 0.706_801)$	0.000_001
$SWISS_MIM$	$ [0.706_801, 0.706_801 + 0.000_005 \cdot 0.1 = \\ 0.706_801_5) $	0.000_000_5
$SWISS_MIS$	$[0.706_801_5, 0.706_801_5 + 0.000_005 \cdot \ 0.5 = 0.706_804)$	0.000_002_5
$SWISS_MIW$	$[0.706_804, 0.706_804 + 0.000_005 \cdot 0.1 = 0.706_804_5)$	0.000_000_5
$SWISS_MI_$	$[0.706_804_5, 0.706_804_5 + 0.000_005 \cdot 0.1 = 0.706_805)$	0.000_000_5

Σ^*	$I(\Sigma^*)$	Width
$SWISS_MISI$	$egin{array}{l} [0.706_801_5, 0.706_801_5 + \ 0.000_002_5 \cdot 0.2 = 0.706_802) \end{array}$	0.000_000_5
$SWISS_MISM$	$[0.706_802, 0.706_802 + 0.000_002_5 \cdot \ 0.1 = 0.706_802_25)$	0.000_000_25
$SWISS_MISS$	$egin{array}{l} [0.706_802_25, 0.706_802_25 + \ 0.000_002_5 \cdot 0.5 = 0.706_803_5) \end{array}$	0.000_001_25
$SWISS_MISW$	$egin{array}{l} [0.706_803_5, 0.706_803_5 + \ 0.000_002_5 \cdot 0.1 = 0.706_803_25) \end{array}$	0.000_000_25
$SWISS_MIS_$	$[0.706_803_25, 0.706_803_25 + \ 0.000_002_5 \cdot 0.1 = 0.706_804)$	0.000_000_25

Damit ist die codierte Nachricht c=1000011011001111111010100001. Wie bereits *(siehe oben)* vorher berechnet werden 20[bit] für die Übertragung benötigt.

Aufgabe 16

Gegeben sei ein Alphabet $\Sigma=\{X,Y,Z\}$ mit den Wahrscheinlichkeiten $\{P(X)=0.7,P(Y)=0.1,P(Z)=0.2\}$ mit dem Codewort $c=010111_{bin}=0.34375_{dec}$ in Arithmetischercodierung.

Ferner sei $I:\Sigma^*\mapsto [x_i,x_j)$ für $x_i,x_j\in [0,1)$ die Intervallfunktion

Die elementaren Intervalle sind damit:

Symbol	Interval	Width
X	[0, 0.7)	0.7
Y	[0.7, 0.8)	0.1
Z	[0.8, 1)	0.2

 $c \in I(X)$

Symbol	Interval	Width
XX	$[0,0+0.7\cdot 0.7=0.49)$	0.49
XY	$[0.49, 0.49 + 0.1 \cdot 0.7 = 0.56)$	0.07
XZ	$[0.56, 0.56 + 0.2 \cdot 0.7 = 0.7)$	0.14

$c\in I(XX)$

Symbol	Interval	Width
XXX	$[0,0+0.49\cdot 0.7=0.343)$	0.343
XXY	$[0.343, 0.343 + 0.1 \cdot 0.49 = 0.392)$	0.049
XXZ	$[0.392, 0.392 + 0.2 \cdot 0.49 = 0.49)$	0.098

$c \in I(XXY)$

Symbol	Interval	Width
XXYX	$[0.343, 0.343 + 0.049 \cdot 0.7 = 0.3773)$	0.0343
XXYY	$[0.3773, 0.3773 + 0.1 \cdot 0.049 = 0.3822)$	0.049
XXYZ	$[0.3822, 0.3822 + 0.2 \cdot 0.049 = 0.392)$	0.098

$c \in I(XXYX)$

Symbol	Interval	Width
XXYXX	$[0.343, 0.343 + 0.0343 \cdot 0.7 = 0.36701)$	0.02401
XXYXY	$0.36701, 0.36701 + 0.1 \cdot 0.0343 = 0.37044)$	0.00343
XXYXZ	$[0.37044, 0.37044 + 0.2 \cdot 0.0343 = 0.3773)$	0.00686

$c \in I(XXYXX)$

Symbol	Interval	Width
XXYXXX	$[0.343, 0.343 + 0.02401 \cdot 0.7 = 0.359807)$	0.016807
XXYXXY	$0.359807, 0.359807 + 0.1 \cdot 0.02401 = 0.362208)$	0.002401
XXYXXZ	$[0.362208, 0.362208 + 0.2 \cdot 0.02401 = 0.36701)$	0.004802

 $c\in I(XXYXXX)$ aber $-\mathrm{ld}(P(X)^4\cdot P(Y))pprox 5.8948 < 6[bit] < -\mathrm{ld}(P(X)^5\cdot P(Y))pprox 6.40937$ womit das Abbruchkriterium erreicht wurde. Damit ist c dekodiert das Wort XXYXX.

Aufgabe 17

Die Decodierung erfolt über die folgenden Schritte:

- 1. yield a=1
- 2. add ab=3
- 3. yield b=2
- 4. add ba=4
- 5. yield ab=3
- 6. add aba=5
- 7. yield aba=5
- 8. add abab=6
- 9. yield ba=4
- 10. add bab=7
- 11. yield bab=7
- 12. add baba = 8
- 13. yield abab=6
- 14. add ababa = 9
- 15. yield ababa = 9
- 16. add Nothing
- 17. yield baba=8

Codebuch

1	a
2	b
3	ab
4	ba
5	aba
6	abab
7	bab
8	baba
9	ababa