qLearn: Quantum Compilers and Architecture

Michael Silver - UTQC

In Classical Computers...

Circuit Transpilation

- Purpose: Adapting a high-level circuit into a form compatible with hardware
- Key Functions**:
 - Converting abstract gates into hardware-supported gates (Universal Gateset, etc.)
 - Mapping logical qubits to physical qubits
 - Circuit optimization (Minimization)
 - Number of gates/operations
 - Circuit Depth
 - Number of Logical Qubits
- Most hardware/companies have their own proprietary transpilation methods;
 large area of research (especially privately)

**Note, not in order

Circuit Transpilation Example

Cred. IBM Quantum Introduction to Transpilation: https://docs.quantum.ibm.com/guides/transpile

Qubit Mapping

- Purpose: Mapping logical qubits to physical qubits in hardware system
- Key Actions:
 - Hardware specific: Creating/Assigning physical qubits in terms of logical qubits; accounting for hardware connectivity (e.g. limited qubit interaction in superconducting qubits due to isolation of qubits)
 - Hardware Specific: Performance Calibration; ensuring performance thresholds are met for circuit timings (e.g. coherence times, gate fidelities)
 - Gate/Operation Scheduling

Hardware-Level Compilation

- <u>Hardware Specific</u>; every type of hardware has different types of signals and data it uses to perform calculations and measurements; Re. qLearn hardware section first semester
- Purpose: Translate quantum gates and circuits into the low-level control signals needed to manipulate physical qubits
- Key actions:
 - Converting gates into control signals specific to qubit type (e.g. trapped ion uses laser pulses)
 - Optimize pulse shapes and timings to minimize errors and crosstalk
 - Synchronize multi-qubit gate operations
- The most intersectional area in QC; engineers needed for signal processing and device control, physicists needed for qubit particle interactions (and everything quantum), computer scientists needed for gate and algorithmic interactions

Execution on the Quantum Processing Unit (QPU)

- Purpose: Performing the quantum operations defined by the circuit on the physical qubits (using control signals dictated by hardware-level compilation)
- Hardware specific: Covered in Semester 1 Hardware
- E.g. microwave pulses for superconducting, laser pulses for trapped ion, etc.

Measurement and Post-Processing

 Purpose: Capture and interpret the results of the quantum computation performed on hardware

Key Actions:

- Readout pulses; Hardware dependent; signal processing used to extract state information (e.g. Digitizing resonator frequencies in superconducting devices)
- Post-processing: generally classical analysis of results to derive interpretation of algorithm (mostly seen in application, not theory)

Error Correction/Mitigation Throughout (many different techniques, stay tuned!!)