Bulk RNA Sequencing:

CD CrF(creeping fat), CD MAT(mesenteric adipose tissue), control(UC, colorectal cancer) MAT의 DEG 분석 결과

DESeq2

Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution.

DESeq2 workflow

DESeq2 Normalization

To normalize for sequencing depth and RNA composition, DESeq2 uses the median of ratios method.

Step 1: creates a pseudo-reference sample (row-wise geometric mean)

gene	sampleA	sampleB	pseudo-reference sample
EF2A	1489	906	sqrt(1489 * 906) = 1161.5
ABCD1	22	13	sqrt(22 * 13) = 17.7
	•••	•••	•••

Step 2: calculates ratio of each sample to the reference

gene	sampleA	sampleB	pseudo- reference sample	ratio of sampleA/ref	ratio of sampleB/ref
EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78
ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77

DESeq2 Normalization

To normalize for sequencing depth and RNA composition, DESeq2 uses the median of ratios method.

Step 3: calculate the normalization factor for each sample (size factor)

sample 1 / pseudo-reference sample

Step 4: calculate the normalized count values using the normalization factor

gene	sampleA	sampleB	
EF2A	1489 / 1.3 = 1145.39	906 / 0.77 = 1176.62	
ABCD1	22 / 1.3 = 16.92	13 / 0.77 = 16.88	

DESeq2 Unsupervised clustering analyses

Sample-level QC

- To explore the similarity of our samples, we will be performing sample-level QC using Principal Component Analysis (PCA) and hierarchical clustering Heatmap.
- Performing sample-level QC can also **identify any sample outliers**, which may need to be explored further to determine whether they **need to be removed prior to DE analysis**.

DESeq2 Unsupervised clustering analyses

Gene-level QC

						Genes with extreme
						count outlier
	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516	
ENSG00000000003	67	44	87	40	1138	
ENSG00000000005	0	0	0	0	0	
ENSG00000000419	467	515	621	365	587	_
ENSG00000000457	260	211	263	164	245	Genes with
ENSG00000000460	2	5	1	0	1	zero counts
		Genes with low mean normalized counts ('Independent filtering')				

- Prior to DEG(differential expression genes) analysis it is beneficial to omit genes that have little or no chance of being detected as differentially expressed.
- This will increase the power to detect DEG(differential expression genes).

DESeq2 Fat tissue of Crohn's disease

Healthy bowel No inflammation No fibrosis No creeping fat

36 patients(23 CD, 13 UC & CRC)

• CD – CF : 23 sample

• CD – MAT : 23 sample

Control(UC & CRC): 13 sample

Ulcerative colitis Inflammation **Fibrosis** No creeping fat

Crohn's disease Inflammation **Fibrosis Creeping fat**

DESeq2 – DEG(Differentially expressed gene) analysis

Gene quality control

	Gene	Sample
Input data	58,204	59
(TPM ≥ 0.1) ≥ 30 & (raw read count ≥ 6) ≥ 30	20,109	59
GTF file(Human release 38)	465,027	
Chromosome 1~22, X, Y, M(mitochondria) 중 chromosome X, Y 제거	446,162	
Exon, gene, transcript 중 Exon, transcript 제거	55,290	
Protein coding, IncRNA(long non coding RNA), miRNA, rRNA 등의	34,183	
40개의 type 중 Protein coding, IncRNA 남기고 제거	01,100	
Raw read count, TPM 조건 충족 gene & GTF file gene	17,268	59
Final data	17,268	59

Study Design formula:

design= ~sex + sample type

CD CrF vs Control MAT, CD MAT vs Control, CD CrF vs CD MAT

DESeq2 – DEG(Differentially expressed gene) analysis

59 sample, 17,268 gene

PCA(principal component analysis)

Hierarchical clustering heatmap

DESeq2 – DEG(Differentially expressed gene) analysis

59 sample, 17,268 gene

PCA(principal component analysis)

Hierarchical clustering heatmap

DESeq2 - DEG analysis : CD CrF(23) vs control MAT(13)

Adjusted p-value < 0.05, | Log₂ fold change | > 1.5

DEG: 463 gene (Down-regulation: 136 gene, Up-regulation: 327 gene)

> PCA (principal component analysis)

Hierarchical clustering heatmap

Volcano plot

DESeq2 - DEG analysis : CD MAT(23) vs control MAT(13)

Adjusted p-value < 0.05, | Log₂ fold change | > 1.5

DEG: 130 gene (Down-regulation: 81 gene, Up-regulation: 49 gene)

PCA(principal component analysis)

Hierarchical clustering heatmap

Volcano plot

DESeq2 - DEG analysis : CD CrF(23) vs CD MAT(23)

Adjusted p-value < 0.05, | Log₂ fold change | > 1.5

DEG: 101 gene (Down-regulation: 16 gene, Up-regulation: 85 gene)

PCA(principal component analysis)

Hierarchical clustering heatmap

Volcano plot

DESeq2 - DEG analysis volcano plot

> CD CrF(23) vs CD MAT(23)

DEG: 101 gene

> CD MAT(23) vs control MAT(13)

DEG: 130 gene

> CD CrF(23) vs control MAT(13)

DEG: 463 gene

DESeq2 - DEG analysis conclusion

DEG: 436 gene

80 gene

DESeq2 - DEG analysis: various Log 2 fold change threshold

	CD MAT vs control (up/down)	CD CrF vs control (up/down)	CD CrF vs CD MAT (up/down)
_{Log 2} fold change > 1.0	277(121/156)	948(612/336)	297(236/61)
_{Log 2} fold change > 1.2	195(79/116)	696(464/232)	188(155/33)
_{Log 2} fold change > 1.5	130(49/81)	463(327/136)	101(85/16)
_{Log 2} fold change > 2.0	69(27/42)	221(166/55)	33(26/7)

Chengen Wang et al., *ScienceDirect*, 2020
Xuanwen Bao et al., *Cancer Immunol Immunother*, 2021
Lianghe Yu et al., *Frontiers in Immunology*, 2022
https://www.researchgate.net/post/What_is_an_ideal_threshold_for_log2Fold_Change, 2023-08-02

DESeq2 - DEG analysis: various Log 2 fold change threshold

> CrF vs Control

> CrF vs CD

DESeq2 - DEG analysis: various Log 2 fold change threshold

> |Log₂ fold change| > 1.0

➤ |Log₂ fold change| > 1.5

➤ |Log₂ fold change| > 1.2

➤ |Log₂ fold change| > 2.0

DESeq2 - DEG analysis : CD CrF(23) vs CD MAT(23) PCA

> |Log₂ fold change| > 1.0

➤ |Log₂ fold change| > 1.5

> |Log₂ fold change| > 1.2

 \triangleright |Log₂ fold change| > 2.0

DESeq2 - DEG analysis : CD CrF(23) vs control(13) PCA

➤ |Log₂ fold change| > 1.0

➤ |Log₂ fold change| > 1.5

➤ |Log₂ fold change| > 1.2

 \triangleright |Log₂ fold change| > 2.0

DESeq2 - DEG analysis : CD MAT(23) vs control(13) PCA

> |Log₂ fold change| > 1.0

► |Log₂ fold change| > 1.5

➤ |Log₂ fold change| > 1.2

► |Log₂ fold change| > 2.0

DESeq2 - DEG analysis : CD CrF(23) vs CD MAT(23) heatmap

➤ |Log₂ fold change| > 1.0

 \triangleright |Log₂ fold change| > 1.5

➤ |Log₂ fold change| > 1.2

 \triangleright |Log₂ fold change| > 2.0

DESeq2 - DEG analysis : CD CrF(23) vs control(13) heatmap

> |Log₂ fold change| > 1.0

 \triangleright |Log₂ fold change| > 1.5

➤ |Log₂ fold change| > 1.2

DESeq2 - DEG analysis : CD MAT(23) vs control(13) heatmap

➤ |Log₂ fold change| > 1.0

➤ |Log₂ fold change| > 1.2

► |Log₂ fold change| > 2.0