Prediction using Unsupervised ML

by: Nidisha Mandlik

From the given 'Iris' dataset, we have to predict the optimum number of clusters and represent it visually.

Data Source: https://bit.ly/3kXTdox

Importing all the libraries that required for this project.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn import datasets
```

Load the iris dataset

```
In [47]:
    df = pd.read_csv(r'C:\Users\HP\Desktop\Iris.csv')
    df.head(5)
```

Out[47]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa

```
In [48]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

```
Non-Null Count Dtype
#
    Column
0
    Ιd
                   150 non-null
                                    int64
1
    SepalLengthCm 150 non-null
                                   float64
2
    SepalWidthCm
                   150 non-null
                                   float64
3
    PetalLengthCm 150 non-null
                                   float64
4
    PetalWidthCm 150 non-null
                                   float64
    Species
                   150 non-null
                                   object
dtypes: float64(4), int64(1), object(1)
```

memory usage: 7.2+ KB

```
In [49]: df.describe()
```

Out[49]: Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

Elbow Method

Finding the optimum number of clusters for k-means classification.

Plotting the graph of elbow method

Visualising the clusters.

Out[71]: <seaborn.axisgrid.FacetGrid at 0x1700905b788>

Out[78]:

In []: