Summarizing and Manipulating Data

PSS SUMMER SCHOOL

Anton Badev, Daniel Nikolic, Justin Skillman

June 26, 2017

Badev Nikolic Skillman 1/19

Outline

- Subsetting
- Summarizing
- ▶ dplyr verbs
- Merging
- Reshaping
- Regressions

Badev Nikolic Skillman 2/19

Subsetting review

- ► Subset by index: df[row_index, col_index]
- ► Subset by name: df["rowname", "colname"]
- ► Subset by logic: df[boolean_rows, boolean_cols]
- Example:
 - ▶ df[1:10,]
 - ▶ df[, c(T,F,F,T)]
 - df[, c("var1,"var2")]

Badev Nikolic Skillman 3/19

Summarizing and grouping

► Calculate summary statistics for data by different subgroups

- ► First we use the group_by function to designate the variables by which we want to aggregate (combine unique values)
- ► Then we specify what functions to run over which columns as well as the column name of the new variable formed from the result

Badev Nikolic Skillman 4/19

Salaries

► Consider the following dataset *banks*: Loan amounts for a select group of American banks

bankID	type	district	IoanID	amount
1347	Commercial	Dallas	J1	22.05
2499	Savings	Chicago	J2	400.00
1612	Commercial	Atlanta	G1	11.10
2270	Commercial	Atlanta	G1	15.00
1288	Credit Union	Dallas	J1	35.00
1863	Credit Union	Chicago	G2	0.50
2952	Commercial	Atlanta	J2	10.00
1130	Savings	Dallas	J1	28.50

Badev Nikolic Skillman 5/19

Summarizing and grouping with dplyr: example

► Goal: to find the mean and sum of commercial bank loans in each district

► Result:

district	count	tloan	mloan
Atlanta	3	36.10	12.03
Dallas	1	22.05	22.05

Badev Nikolic Skillman 6/19

Do() function in dplyr

- ▶ do() is a generic function that works well with group_by()
- Can be used to call and apply any function to each group of a dataset, not just data reductions like with summarise()

```
>by_bank <- group_by(banks, bankID)</pre>
>
>filler <- data.frame(matrix(ncol = ncol(banks), nrow = 2))</pre>
>names(filler) <- names(banks)</pre>
>
>rep_banks <- do(by_bank, bind_rows(., filler))</pre>
>head(rep_banks)
  bankID
                type district loanID amount
   <dbl>
                <chr>
                        <chr>
                               <chr>
                                      <dbl>
1
   1130
             Savings Dallas
                                  .T1
                                       28.5
     NA
                <NA>
                         <NA>
                                <NA>
                                         NΑ
3
     NΑ
               <NA>
                         <NA> <NA>
                                         NA
4
    1288 Credit Union Dallas
                                  J1
                                       35.0
5
     NΑ
                <NA>
                         <NA>
                                <NA>
                                         NΑ
6
     NA
                <NA>
                         <NA>
                                <NA>
                                         NA
```

Badev Nikolic Skillman 7/19

More dplyr verbs

Base R	dplyr Equivalent*	
df[rows,]	filter()	
<pre>df[, cols]</pre>	${ t select}(\dots)$	
df\$new.var	$\mathtt{mutate}(\ldots)$	

- ► The pipe operator in dplyr is %>%
- Example:
 - \rightarrow x %>% f(y) is equivalent to f(x,y)

*Does **not** always behave the same as base R

Badev Nikolic Skillman 8/19

setting Summarizing Other dplyr verbs **Merging** Reshaping Linear regression

Merge function

- Related data can often be combined to help you address your questions in meaningful ways
- Combine two data frames by matching a set of common identifiers that link them

```
merge(x, y, ...)
```

Badev Nikolic Skillman 9/19

Merge function: example 1

loans

loanID	length	intrate
J1	1	.0005
J2	5	.075
J3	10	.09
G1	30	.15
G2	40	.17

Badev Nikolic Skillman 10/19

Merge function: example 1

► What kind of join is this?

>merge(banks, loans)

```
loanID bankID
                         type district amount length intrate
      G1
           1612
                  Commercial
                               Atlanta
                                        11.10
                                                   30
                                                       0.1500
1
2
           2270
                  Commercial
      G1
                               Atlanta
                                        15.00
                                                   30
                                                       0.1500
3
      G2
           1863 Credit Union
                                        0.50
                                                       0.1700
                              Chicago
                                                   40
4
      J1
           1347
                  Commercial
                                Dallas 22.05
                                                       0.0005
                                                    1
5
           1288 Credit Union
                              Dallas
                                        35.00
      J1
                                                       0.0005
6
      J1
           1130
                      Savings Dallas
                                        28.50
                                                       0.0005
7
      J2
           2499
                      Savings
                               Chicago 400.00
                                                       0.0750
8
      J2
                               Atlanta
           2952
                  Commercial
                                        10.00
                                                       0.0750
```

Badev Nikolic Skillman 11/19

Merge function: example 2

>merge(banks, loans, all.y = TRUE)

	loanID	bankID	type	district	${\tt amount}$	length	intrate
1	G1	1612	Commercial	Atlanta	11.10	30	0.1500
2	G1	2270	Commercial	Atlanta	15.00	30	0.1500
3	G2	1863	Credit Union	Chicago	0.50	40	0.1700
4	J1	1347	Commercial	Dallas	22.05	1	0.0005
5	J1	1288	Credit Union	Dallas	35.00	1	0.0005
6	J1	1130	Savings	Dallas	28.50	1	0.0005
7	J2	2499	Savings	Chicago	400.00	5	0.0750
8	J2	2952	Commercial	Atlanta	10.00	5	0.0750
9	.13	NΔ	<na></na>	< N A >	NΔ	10	0.0900

Badev Nikolic Skillman 12/19

In-class exercise

- ▶ Using **banks** and **loans** complete the following tasks:
 - Calculate aggregate revenue on loans for banks within each of the districts
 - ► Calculate proportions of the district revenue held by each bank
 - ▶ Return the largest contributor to revenue in each district

Badev Nikolic Skillman 13/19

setting Summarizing Other dplyr verbs Merging **Reshaping** Linear regression

Reshaping data

Data may be represented in wide form (left) or long form (right).

stocks_w

Stock	2007	2008	2009
AAPL	400	450	500
ADBE	30	10	40
AMZN	200	150	200

stocks_l

Stock	Year	Price
AAPL	2007	400
AAPL	2008	450
AAPL	2009	500
AMZN	2007	200
AMZN	2008	150
AMZN	2009	200
ADBE	2007	30
ADBE	2008	10
ADBE	2009	40

Badev Nikolic Skillman 14/19

Reshaping data: example 1

```
>library(reshape2)
> dcast(stocks_1, Stock ~ Year)

stock 2007 2008 2009
1 ADBE 30 10 40
2 AMZN 200 150 200
3 APPL 400 450 500
```

Badev Nikolic Skillman 15/19

Reshaping data: example 2

```
>library(reshape2)
> melt(stock_w, id.vars=c('stock'),
        variable.name='year', value.name='Price')
  stock year Price
  ADBE 2007
               30
  AMZN 2007
              200
  APPL 2007
              400
  ADBE 2008
             10
  AMZN 2008
              150
  APPL 2008
              450
  ADBE 2009
             40
  AMZN 2009
              200
  APPL 2009
              500
```

Badev Nikolic Skillman 16/19

ubsetting Summarizing Other dplyr verbs Merging Reshaping **Linear regression**

Regression analysis

- ▶ Data manipulation techniques are necessary to get to the end goal: data analysis
- Regression analysis:
 - Purpose: find (potentially) meaningful relationships in your data
 - ▶ Estimation of the relationship between 2 or more variables
 - Potential pitfalls: omitted variables, reverse causality, mismeasurement

Badev Nikolic Skillman 17/19

Linear models

- ► A linear model is a useful first pass at understanding the relationships between variables in your data
- ► They are straightforward to run using the lm() function from the base package

►
$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + ... + \epsilon$$

>formula <- y ~ x1 + x2 + x3
>est <- lm(data,formula)
>summary(est)

Badev Nikolic Skillman 18/19

Linear models: example

```
data(ToothGrowth)
> est <- lm(data=ToothGrowth, len ~ supp + dose)
> summary(est)
Call:
lm(formula = len ~ supp + dose, data = ToothGrowth)
Residuals:
  Min
         10 Median
                       30
                            Max
-6.600 -3.700 0.373 2.116 8.800
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2725
                      1.2824 7.231 1.31e-09 ***
           -3.7000
                      1.0936 -3.383 0.0013 **
suppVC
dose
           9.7636
                       0.8768 11.135 6.31e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 4.236 on 57 degrees of freedom
Multiple R-squared: 0.7038, Adjusted R-squared: 0.6934
F-statistic: 67.72 on 2 and 57 DF, p-value: 8.716e-16
```

Badev Nikolic Skillman 19/19