

# Distributed Security Risks and Opportunities in the W3C Web of Things

Michael McCool (presenting) and Elena Reshetova

NDSS DISS 2018 February 18, 2018 San Diego

https://github.com/mmccool/ndss-wot-sec

# **Outline**

#### Goals

## **W3C Web of Things**

## **Risks and Opportunities**

- 1. Local Links
- 2. Vulnerability Analysis
- 3. Endpoint Adaptation
- 4. Secure Discovery
- 5. Security Metadata

## **Summary and Conclusions**

# Goals

## Why this paper?

- Necessary to perform security review of standards under development
- Paper lists a number of problems with the proposed W3C Web of Things standard under development that need to be addressed
  - Some issues are generalizable to other Web/IoT systems with metadata: DDS, OCF, IPSO, OneM2M, OpenAPI, etc.
- The paper does not, generally, propose solutions

#### **Desired outcome:**

Discussion, collaboration, and research to find solutions to these problems.



## Working Group within W3C chartered December 2016

Based on ongoing work in an Interest Group by the same name

## Target date of December 2018 to deliver specifications for

- Thing Description: metadata for describing Things
- Scripting API: standardized mechanism to consume and expose Thing Descriptions and program the behavior of Things
- **Protocol Bindings:** mappings of WoT architecture to various concrete protocols: HTTP, CoAP, MQTT, etc.
  - Mapping from abstract Property/Event/Actions CRUDN and/or Pub/Sub



W3C: World Wide Web Consortium: https://www.w3.org

Web of Things Interest Group: <a href="https://www.w3.org/WoT/IG/">https://www.w3.org/WoT/IG/</a>

- Charter: Leverage web standards and technology to enable IoT interoperation
- Web architecture: <a href="https://www.w3.org/standards/webarch/">https://www.w3.org/standards/webarch/</a>

## Web of Things Working Group to develop standard recommendations:

- Charter: <a href="https://www.w3.org/2016/09/wot-wg-charter.html">https://www.w3.org/2016/09/wot-wg-charter.html</a>
- Co-chairs: Matthias Kovatsch (Siemens), Kazuo Kajimoto (Panasonic), Michael McCool (Intel)
- White paper on WoT architecture: <a href="http://w3c.github.io/wot/charters/wot-white-paper-2016.html">http://w3c.github.io/wot/charters/wot-white-paper-2016.html</a>

#### **WoT current practices:**

http://w3c.github.io/wot/current-practices/wot-practices.html



# W5() WoT: Deliverables/Architecture

1. WoT Thing Description (TD) with simple interaction model

> **Properties** Actions **Events** Thing Description

> > Things can be in client and/or server role: "Servient"





3. WoT Scripting API for a browser-like runtime environment

**Local Hardware** 

2. WoT Binding Templates to connect to different platforms and ecosystems

**OCF BACnet HTTP** OneM2M CoAP



# WoT Key Deliverable: Thing Description

# Standardized Semantic Metadata

- Protocol-independent description of network APIs
- Communication and security requirements
- Data models and constraints
- Semantic annotation



# Thing Description Example

"hnof" "nun"

```
W3C WoT TD
                                                                            vocabulary
              ..."@context": [
 JSON-LD
                   "http://w3c.github.io/wot/w3c-wot-td-context.jsonld",
(Linked Data)
                   { "domain": "http://example.org/actuator#" }
                 ],
                                                                       Domain-specific
                 "@type": "Thing",
                                                                         vocabulary
                 "name": "MyLEDThing",
                 "base": "coap://myled.example.com:5683/",
                 "security": {
                                                                              Security
                   "cat": "token:jwt",
                                                                             metadata
                   "alg": "HS256",
                   "as": "https://authority-issuing.example.org"
                 "interaction": [
                                                                         JSON Schema
                     "@type": ["Property", "domain:onOffStatus"],
                     "name": "status",
                     "outputData": {"valueType": {"type": "boolean"}},
                     "writable": true,
                     "links": [
                                               NDSS DISS 2018
```

```
"interaction": [
    "@type": ["Property", "domain:onOffStatus"],
    "name": "status",
    "outputData": {"valueType": {"type": "boolean"}},
    "writable": true,
    "links":
        "href": "pwr",
                                                             Property
        "mediaType": "application/exi"
      },
        "href": "http://mytemp.example.com:8080/status",
        "mediaType": "application/json"
    "@type": ["Action", "domain:fadeIn"],
    "name": "fadeIn",
    "inputData": {
      "valueType": {"type": "integer"},
      "domain:unit": "domain:ms"
                                                              Action
   },
    "links": [
        "href": "in",
        "mediaType": "application/exi"
```

```
inputvata : {
  "valueType": {"type": "integer"},
  "domain:unit": "domain:ms"
},
"links":
    "href": "out",
    "mediaType": "application/exi"
  },
    "href": "http://mytemp.example.com:8080/out",
    "mediaType": "application/json"
"@type": ["Event", "domain:alert"],
"name": "criticalCondition",
"outputData": {"valueType": {"type": "string"}},
"links": [
                                                           Event
                                                           (sources, sinks, ...)
    "href": "ev",
    "mediaType": "application/exi"
```

# Problem 1: Local Links

#### Risks

- WoT is predicated on Web standards being useful for IoT
  - For example, being able to use web browsers as IoT device user interfaces
- However...
  - Web is oriented towards browsers and human-readable information.
  - IoT is oriented towards machine-to-machine communications
  - Web browsers assume an active full internet connection
  - IoT devices may only have local network connectivity

### One major pain point:

- Browser assumptions about certificate revocation checking under HTTPS
- Primarily affects use of HTTPS for "local" user interfaces

# Problem 2: Vulnerability Analysis

#### Risks

 Pervasive metadata allows attacker to analyze a system in detail to find vulnerabilities and plan an attack

## **Opportunity**

 Pervasive metadata allows a system owner to analyze a system in detail to find vulnerabilities and prevent attacks

→ Metadata needs to be made available only to trusted users.

**Note:** Semantic annotation makes this more powerful, as we can also automate interferencing, and also get more information about the physical installation and use of the device.

# Problem 3: Endpoint Adaptation

#### **Risks**

 Protocol conversion bridges are vulnerable to attack, as protocol conversion may require "unpacking" data in flight, making it available to interception

# **Opportunity**

 A system wishing to talk to a WoT Thing can access the metadata for a thing and set up an end-to-end encrypted channel directly to that thing, bypassing intermediate payload translation steps



# Problem 4: Semantic Discovery

#### **Risks**

- Semantic search is relatively expensive
  - Pathological semantic queries can be created that can consume an unreasonable amount of resources
- If semantic discovery services are "open", then they will be subject to denial of service attacks

## **Opportunity**

- Semantic discovery is a powerful capability we would like to make available to users
- **→** How to manage trust?

# Problem 5: Security Metadata

#### **Opportunity**

- A Thing Description can provide information that can be useful for enabling distributed and/or decentralized security mechanisms
- → How can we make validated and authenticated TDs available in a decentralized fashion?
- → What security mechanisms should we support and what information do they need?

#### Examples:

- Payments/deposits for services: Interledger address
- Web of Trust: References
- Access Control: Management Thing API
- Discovery: Distributed discovery services and Thing Directories
- Caching and proxies: Encrypted state and expected lifetime of cached data
- Firewalls: Network policy, including expected incoming and outgoing traffic

# Summary

#### Main W3C WoT deliverable and differentiator:

 Universal metadata format ("Thing Description") for IoT services ("Things") and associated common Thing abstraction

## Use of Web Standards for IoT has some specific issues:

Local links, HTTPS, and certificates

## Use of semantic metadata has specific risks and opportunities:

- Vulnerability analysis
- Endpoint adaptation vs. link-by-link translation
- Preventing denial-of-service attacks on semantic discovery services
- Securing metadata and providing it only to trusted entities

# Follow-up Actions

- WoT Plugfest Prague, March 24-25, 2018
- WoT Interest Group
- WoT Working Group
  - W3C Web of Things Security and Privacy Considerations
- Collaborations
- WoT Security Validation

NDSS DISS 2018 17/37



# Web of Things: Interest Group Members



**Cable**Labs<sup>®</sup>



























Fraunhofer



























































































NDSS DISS 2018

18

# To add to the paper...

- Expanded list of security metadata given in "Problem 5" slide on this presentation
- Reference to Michal Krol's paper at NDSS DISS using cryptocurrency deposits to support offload markets; this is one possible solution to how to provide open access to discovery services.
- Discussion of "endpoint adaptation" issues wrt filtering proxies (eg what if proxies require access to headers etc. to do packet filtering?)

NDSS DISS 2018 19/37