CIRCLE COMPACTIFICATION AND T-DUALITY

STRING THEORY EXAM

Giancarlo Oancia January 28, 2025

University of Bologna

Superstring lives in 10d.

Superstring lives in 10d. We live in 4d.

Superstring lives in 10d.

We live in 4d.

What to do with those extra-dimensions?

KALUZA-KLEIN COMPACTIFICATION

KALUZA-KLEIN COMPACTIFICATION: MAIN RESULTS

Compactification of a scalar field on $\mathcal{M}_D \to \mathcal{M}_{D-1} \times S^1$:

Kaluza-Klein Masses

$$m_s^2 = M^2 + \frac{s^2}{R^2}.$$

Negligible for

$$E \ll \frac{1}{R}$$
.

KALUZA-KLEIN COMPACTIFICATION: MAIN RESULTS

Compactification of a scalar field on $\mathcal{M}_D \to \mathcal{M}_{D-1} \times S^1$:

Kaluza-Klein Masses

$$m_s^2 = M^2 + \frac{s^2}{R^2}.$$

Negligible for

$$E \ll \frac{1}{R}$$
.

Compactification of Einstein gravity on $\mathcal{M}_D \to \mathcal{M}_{D-1} \times S^1$:

Result

- Decomposition $SO(1, D-1) \rightarrow SO(1, D-2)$;
- · Gauge symmetry;
- $\operatorname{Vol}(S^1) = \int_0^{2\pi R} dy \sqrt{G_{yy}^{(0)}} = e^{-(D-3)\alpha_{D-1}\phi} \cdot 2\pi R.$

Superstring

- Critical setting \mathcal{M}_{10} . Closed string;
- Bosonic X^{μ} and fermionic ψ^{μ} fields;

- Critical setting \mathcal{M}_{10} . Closed string;
- Bosonic X^{μ} and fermionic ψ^{μ} fields;
- · Lightcone gauge: $X^{\mu} \rightarrow (X^{\pm}, X^i), \, \psi^{\mu} \rightarrow (\psi^{\pm}, \psi^i);$
- $X^i = X_L^i(\tau + \sigma) + X_R^i(\tau, \sigma), \ \psi^i = \psi_L^i(\tau + \sigma) + \psi_R^i(\tau \sigma);$

- Critical setting \mathcal{M}_{10} . Closed string;
- Bosonic X^{μ} and fermionic ψ^{μ} fields;
- · Lightcone gauge: $X^{\mu} \rightarrow (X^{\pm}, X^i), \, \psi^{\mu} \rightarrow (\psi^{\pm}, \psi^i);$
- $X^i = X_L^i(\tau + \sigma) + X_R^i(\tau, \sigma), \ \psi^i = \psi_L^i(\tau + \sigma) + \psi_R^i(\tau \sigma);$
- $\cdot \text{ Mode expansion: } \psi^i_{L/R}(\xi^\pm) = \sqrt{\tfrac{2\pi}{l}} \sum_{r \in \mathbb{Z} + \phi} \overset{(\sim)}{b^i_r} e^{-\tfrac{2\pi i}{l} r \xi^\pm};$

- Critical setting \mathcal{M}_{10} . Closed string;
- Bosonic X^{μ} and fermionic ψ^{μ} fields;
- · Lightcone gauge: $X^{\mu} \rightarrow (X^{\pm}, X^{i}), \ \psi^{\mu} \rightarrow (\psi^{\pm}, \psi^{i});$
- $X^i = X_L^i(\tau + \sigma) + X_R^i(\tau, \sigma), \ \psi^i = \psi_L^i(\tau + \sigma) + \psi_R^i(\tau \sigma);$
- $\cdot \text{ Mode expansion: } \psi_{\scriptscriptstyle L/R}^i(\xi^\pm) = \sqrt{\tfrac{2\pi}{l}} \sum_{r \in \mathbb{Z} + \phi} \overset{(\sim)}{b_r^i} e^{-\tfrac{2\pi i}{l} r \xi^\pm};$
- NS sector: $\phi=1/2,\ \stackrel{(\sim)}{a}=1/2;$
- R sector: $\phi = 0$, $\overset{(\sim)}{a} = 0$;

- Critical setting \mathcal{M}_{10} . Closed string;
- Bosonic X^{μ} and fermionic ψ^{μ} fields;
- · Lightcone gauge: $X^{\mu} \rightarrow (X^{\pm}, X^i), \, \psi^{\mu} \rightarrow (\psi^{\pm}, \psi^i);$
- $X^i = X_L^i(\tau + \sigma) + X_R^i(\tau, \sigma), \ \psi^i = \psi_L^i(\tau + \sigma) + \psi_R^i(\tau \sigma);$
- $\cdot \text{ Mode expansion: } \psi_{\scriptscriptstyle L/R}^i(\xi^\pm) = \sqrt{\tfrac{2\pi}{l}} \sum_{r \in \mathbb{Z} + \phi} \overset{(\sim)}{b_r^i} e^{-\tfrac{2\pi i}{l} r \xi^\pm};$
- NS sector: $\phi = 1/2$, $\widetilde{a} = 1/2$;
- R sector: $\phi = 0$, $\overset{(\sim)}{a} = 0$;
- Level-matching condition: $M_L^2 = M_R^2$;
- · Mass-shell condition: $M_{L/R}^2 = \frac{2}{lpha'} \left(N_\perp \overset{(\sim)}{a} \right)$.

SUPERSTRING: THE SECTORS

sector	G-parity	state	little group rep.	$\alpha' M_R^2/2$	statistics
NS	_	$ 0\rangle_{NS}$	$SO(9): {f 1}$	-1/2	boson
NS	+	$b_{-1/2}^i 0\rangle_{NS}$	$SO(8): 8_{oldsymbol{v}}$	0	boson
R	+	$ 0\rangle_{R}, B_{a_{1}}^{+}B_{a_{2}}^{+} 0\rangle_{R},$ $B_{1}^{+}B_{2}^{+}B_{3}^{+}B_{4}^{+} 0\rangle_{R}$	$SO(8): 8_s$	0	fermion
R	-	$B_{a_1}^+ 0\rangle_R$, $B_{a_1}^+ B_{a_2}^+ B_{a_3}^+ 0\rangle_R$	$SO(8): 8_{c}$	0	fermion

SUPERSTRING: TYPE II THEORIES

	Type IIA		Type IIB		
sector	fields	SO(8)	sector	fields	SO(8)
(NS_+, NS_+)	Φ , $B_{[\mu\nu]}$, $G_{(\mu\nu)}$	$8_v \otimes 8_v$	(NS_+,NS_+)	Φ , $B_{[\mu\nu]}$, $G_{(\mu\nu)}$	$8_v \otimes 8_v$
(R_+, R)	C_1, C_3	$8_s\otimes 8_c$	(R_+,R_+)	C_0, C_2, C_4^+	$8_s\otimes 8_s$
(NS_+, R)	$\tilde{\lambda}_a$, $\tilde{\psi}^{\mu}_a$	$8_{oldsymbol{v}}\otimes 8_{oldsymbol{c}}$	(NS_+, R_+)	$\lambda_a^{(1)}$, $\psi_a^{(1)\mu}$	$8_v \otimes 8_s$
(R_+, NS_+)	λ_a , ψ_a^μ	$8_s\otimes 8_v$	(R_+, NS_+)	$\lambda_a^{(2)}$, $\psi_a^{(2)\mu}$	$8_s\otimes 8_v$

	Type IIA					
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7⊗7	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes 1)\oplus (1\otimes 7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes 1$	1	G_{99}	
(R ₊ ,R ₋)	$8_s\otimes 8_c$	$C_{\hat{\mu}}, C_{[\hat{\mu}\hat{\nu}\hat{\rho}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$A_9, A_\mu, C_{9\mu\nu}, C_{\mu\nu\rho}$	
(NS ₊ ,R ₋)	$8_v \otimes 8_c$	$\tilde{\lambda}_a, \tilde{\psi}_a^{\hat{\mu}}$	7 ⊗8	8 ⊕ 48	$\tilde{\psi}^{\mu}_a, \tilde{\psi}^9_a$	
(NS+,K=)	$o_v \otimes o_c$	λ_a, ψ_a	$1\otimes 8$	8	$\tilde{\lambda}_a$	
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a, \psi_a^{\hat{\mu}}$	8⊗7	8 ⊕ 48	ψ_a^μ, ψ_a^9	
(K+,N3+)			8 \otimes 1	8	λ_a	
			Type IIB			
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7⊗7	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes 1)\oplus (1\otimes 7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes 1$	1	G_{99}	
(R ₊ ,R ₊)	$8_s\otimes 8_s$	$C_0, C_{[\hat{\mu}\hat{\nu}]}, C^+_{[\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$a, C_{\mu 9}, C_{\mu \nu}, C_{\mu \nu \rho 9}$	
(NS ₊ ,R ₊)	9 0 9	$\lambda_a^{(1)}, \psi_a^{(1)\hat{\mu}}$	7 ⊗8	8 ⊕ 48	$\psi_a^{(1)9}, \psi_a^{(1)\mu}$	
(113+,14)	$8_v\otimes 8_s$	$\lambda_{\hat{a}}$, $\psi_{\hat{a}}$	$1\otimes 8$	8	$\lambda_a^{(1)}$	
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a^{(2)}, \psi_a^{(2)\hat{\mu}}$	8 ⊗ 7	8 + 48	$\psi_a^{(2)9}, \psi_a^{(2)\mu}$	
(IX+,IN3+)	$o_s \otimes o_v$	λ_a , ψ_a	$8\otimes 1$	8	$\lambda_a^{(2)}$	

	Type IIA					
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7⊗7	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes 1)\oplus (1\otimes 7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes 1$	1	G_{99}	
(R ₊ ,R ₋)	$8_s\otimes 8_c$	$C_{\hat{\mu}}, C_{[\hat{\mu}\hat{\nu}\hat{\rho}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$A_9, A_\mu, C_{9\mu\nu}, C_{\mu\nu\rho}$	
(NS ₊ ,R ₋)	$8_v \otimes 8_c$	$\tilde{\lambda}_a, \tilde{\psi}_a^{\hat{\mu}}$	7 ⊗8	8 ⊕ 48	$\tilde{\psi}^{\mu}_a, \tilde{\psi}^9_a$	
(NS+,K=)	$o_v \otimes o_c$	λ_a, ψ_a	$1\otimes 8$	8	$\tilde{\lambda}_a$	
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a, \psi_a^{\hat{\mu}}$	8⊗7	8 ⊕ 48	ψ_a^μ, ψ_a^9	
(K+,N3+)			8 \otimes 1	8	λ_a	
			Type IIB			
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7⊗7	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes 1)\oplus (1\otimes 7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes 1$	1	G_{99}	
(R ₊ ,R ₊)	$8_s\otimes 8_s$	$C_0, C_{[\hat{\mu}\hat{\nu}]}, C^+_{[\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$a, C_{\mu 9}, C_{\mu \nu}, C_{\mu \nu \rho 9}$	
(NS ₊ ,R ₊)	9 0 9	$\lambda_a^{(1)}, \psi_a^{(1)\hat{\mu}}$	7 ⊗8	8 ⊕ 48	$\psi_a^{(1)9}, \psi_a^{(1)\mu}$	
(113+,14)	$8_v\otimes 8_s$	$\lambda_{\hat{a}}$, $\psi_{\hat{a}}$	$1\otimes 8$	8	$\lambda_a^{(1)}$	
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a^{(2)}, \psi_a^{(2)\hat{\mu}}$	8 ⊗ 7	8 + 48	$\psi_a^{(2)9}, \psi_a^{(2)\mu}$	
(IX+,IN3+)	$o_s \otimes o_v$	λ_a , ψ_a	$8\otimes 1$	8	$\lambda_a^{(2)}$	

sector	SO(8)	10d fields
(NS ₊ ,NS ₊)	$8_v\otimes 8_v$	$\Phi, B_{[\hat{\mu}\hat{ u}]}, G_{(\hat{\mu}\hat{ u})}$
(R ₊ ,R ₋)	$8_{m{s}}\otimes 8_{m{c}}$	$C_{\hat{\mu}}, C_{[\hat{\mu}\hat{ u}\hat{ ho}]}$
(NS ₊ ,R ₋)	$8_v\otimes 8_c$	$ ilde{\lambda}_a, ilde{\psi}_a^{\hat{\mu}}$ -
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a, \psi_a^{\hat{\mu}}$ –

	Type IIA					
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			$7\otimes 7$	$1\oplus21\oplus27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes1)\oplus(1\otimes7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes 1$	1	G_{99}	
(R ₊ ,R ₋)	$8_s\otimes 8_c$	$C_{\hat{\mu}}, C_{[\hat{\mu}\hat{\nu}\hat{\rho}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$A_9, A_\mu, C_{9\mu\nu}, C_{\mu\nu\rho}$	
(NS ₊ ,R ₋)	$8_v \otimes 8_c$	$\tilde{\lambda}_a, \tilde{\psi}_a^{\hat{\mu}}$	$7\otimes 8$	8 ⊕ 48	$\tilde{\psi}^{\mu}_a, \tilde{\psi}^9_a$	
(NS+,R=)	$o_v \otimes o_c$	λ_a, ψ_a	$1\otimes 8$	8	$\tilde{\lambda}_a$	
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a, \psi_a^{\hat{\mu}}$	8 \otimes 7	8 ⊕ 48	ψ_a^μ, ψ_a^9	
(K+,N3+)	$\delta_s \otimes \delta_v$	λ_a, ψ_a	$8\otimes 1$	8	λ_a	
			Type IIB			
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7⊗7	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes1)\oplus(1\otimes7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes1$	1	G_{99}	
(R ₊ ,R ₊)	$8_s\otimes 8_s$	$C_0, C_{[\hat{\mu}\hat{\nu}]}, C^+_{[\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$a, C_{\mu 9}, C_{\mu \nu}, C_{\mu \nu \rho 9}$	
(NS ₊ ,R ₊)	$8_v \otimes 8_s$	$\lambda_a^{(1)}, \psi_a^{(1)\hat{\mu}}$	$7\otimes 8$	8 ⊕ 48	$\psi_a^{(1)9}, \psi_a^{(1)\mu}$	
(113+,11+)	$o_v \otimes o_s$	λ_a , ψ_a	$1\otimes 8$	8	$\lambda_a^{(1)}$	
(R ₊ ,NS ₊)	8, 8 8,	$\lambda_a^{(2)}, \psi_a^{(2)\hat{\mu}}$	8 ⊗ 7	8 ⊕ 48	$\psi_a^{(2)9}, \psi_a^{(2)\mu}$	
(1/+,143+)	$\circ_s \otimes \circ_v$	\wedge_a , ψ_a	$8\otimes 1$	8	$\lambda_a^{(2)}$	

	Type IIA					
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			$7\otimes 7$	$1\oplus21\oplus27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes1)\oplus(1\otimes7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes 1$	1	G_{99}	
(R ₊ ,R ₋)	$8_s\otimes 8_c$	$C_{\hat{\mu}}, C_{[\hat{\mu}\hat{\nu}\hat{\rho}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$A_9, A_\mu, C_{9\mu\nu}, C_{\mu\nu\rho}$	
(NS ₊ ,R ₋)	$8_v \otimes 8_c$	$\tilde{\lambda}_a, \tilde{\psi}_a^{\hat{\mu}}$	$7\otimes 8$	8 ⊕ 48	$\tilde{\psi}^{\mu}_a, \tilde{\psi}^9_a$	
(NS+,R=)	$o_v \otimes o_c$	λ_a, ψ_a	$1\otimes 8$	8	$\tilde{\lambda}_a$	
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a, \psi_a^{\hat{\mu}}$	8 \otimes 7	8 ⊕ 48	ψ_a^μ, ψ_a^9	
(K+,N3+)	$\delta_s \otimes \delta_v$	λ_a, ψ_a	$8\otimes 1$	8	λ_a	
			Type IIB			
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7⊗7	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes1)\oplus(1\otimes7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes1$	1	G_{99}	
(R ₊ ,R ₊)	$8_s\otimes 8_s$	$C_0, C_{[\hat{\mu}\hat{\nu}]}, C^+_{[\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$a, C_{\mu 9}, C_{\mu \nu}, C_{\mu \nu \rho 9}$	
(NS ₊ ,R ₊)	$8_v \otimes 8_s$	$\lambda_a^{(1)}, \psi_a^{(1)\hat{\mu}}$	$7\otimes 8$	8 ⊕ 48	$\psi_a^{(1)9}, \psi_a^{(1)\mu}$	
(113+,11+)	$o_v \otimes o_s$	λ_a , ψ_a	$1\otimes 8$	8	$\lambda_a^{(1)}$	
(R ₊ ,NS ₊)	8, 8 8,	$\lambda_a^{(2)}, \psi_a^{(2)\hat{\mu}}$	8 ⊗ 7	8 ⊕ 48	$\psi_a^{(2)9}, \psi_a^{(2)\mu}$	
(1/+,143+)	$\circ_s \otimes \circ_v$	\wedge_a , ψ_a	$8\otimes 1$	8	$\lambda_a^{(2)}$	

Type IIA		
SO(7)	SO(7) irrep	9d fields
$7\otimes 7$	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$
$(7\otimes1)\oplus(1\otimes7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$
${f 1}\otimes{f 1}$	1	G_{99}
$8\otimes 8$	$oxed{1 \oplus 7 \oplus 21 \oplus 35}$	$A_9, A_\mu, C_{9\mu\nu}, C_{\mu\nu\rho}$
7 ⊗8	8 ⊕ 48	$ ilde{\psi}^{\mu}_a, ilde{\psi}^9_a$
$1\otimes 8$	8	$ ilde{\lambda}_a$
8 \otimes 7	8 ⊕ 48	ψ^{μ}_a, ψ^9_a
8 \otimes 1	8	λ_a

	Type IIA					
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7⊗7	$1\oplus21\oplus27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes 1)\oplus (1\otimes 7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes 1$	1	G_{99}	
(R ₊ ,R ₋)	$8_s\otimes 8_c$	$C_{\hat{\mu}}, C_{[\hat{\mu}\hat{\nu}\hat{\rho}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$A_9, A_\mu, C_{9\mu\nu}, C_{\mu\nu\rho}$	
(NS ₊ ,R ₋)	$8_v \otimes 8_c$	$\tilde{\lambda}_a, \tilde{\psi}_a^{\hat{\mu}}$	7⊗8	8 ⊕ 48	$\tilde{\psi}^{\mu}_a, \tilde{\psi}^9_a$	
(NS+,K=)	$o_v \otimes o_c$	λ_a, ψ_a	1 ⊗ 8	8	$\tilde{\lambda}_a$	
(R ₊ ,NS ₊)	9 0 9	$\lambda_a, \psi_a^{\hat{\mu}}$	8⊗7	8 ⊕ 48	ψ_a^μ, ψ_a^9	
(K+,N3+)	$8_s\otimes 8_v$	λ_a, ψ_a	8 \otimes 1	8	λ_a	
			Type IIB			
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7 ⊗ 7	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes 1)\oplus (1\otimes 7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes1$	1	G_{99}	
(R_{+},R_{+})	$8_s\otimes 8_s$	$C_0, C_{[\hat{\mu}\hat{\nu}]}, C^+_{[\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$a, C_{\mu 9}, C_{\mu \nu}, C_{\mu \nu \rho 9}$	
(NS ₊ ,R ₊)	$8_v \otimes 8_s$	$\lambda_a^{(1)}, \psi_a^{(1)\hat{\mu}}$	7⊗8	8 ⊕ 48	$\psi_a^{(1)9}, \psi_a^{(1)\mu}$	
(113+,114)	$o_v \otimes o_s$	λ_a , ψ_a	$1\otimes 8$	8	$\lambda_a^{(1)}$	
(R ₊ ,NS ₊)	8, 8 8,	$\lambda_a^{(2)}, \psi_a^{(2)\hat{\mu}}$	8 ⊗ 7	8 + 48	$\psi_a^{(2)9}, \psi_a^{(2)\mu}$	
(11+,113+)	$\circ_s \otimes \circ_v$	\wedge_a , ψ_a	$8\otimes 1$	8	$\lambda_a^{(2)}$	

	Type IIA					
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7⊗7	$1\oplus21\oplus27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes 1)\oplus (1\otimes 7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes 1$	1	G_{99}	
(R ₊ ,R ₋)	$8_s\otimes 8_c$	$C_{\hat{\mu}}, C_{[\hat{\mu}\hat{\nu}\hat{\rho}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$A_9, A_\mu, C_{9\mu\nu}, C_{\mu\nu\rho}$	
(NS ₊ ,R ₋)	$8_v \otimes 8_c$	$\tilde{\lambda}_a, \tilde{\psi}_a^{\hat{\mu}}$	7⊗8	8 ⊕ 48	$\tilde{\psi}^{\mu}_a, \tilde{\psi}^9_a$	
(NS+,K=)	$o_v \otimes o_c$	λ_a, ψ_a	1 ⊗ 8	8	$\tilde{\lambda}_a$	
(R ₊ ,NS ₊)	9 0 9	$\lambda_a, \psi_a^{\hat{\mu}}$	8⊗7	8 ⊕ 48	ψ_a^μ, ψ_a^9	
(K+,N3+)	$8_s\otimes 8_v$	λ_a, ψ_a	8 \otimes 1	8	λ_a	
			Type IIB			
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7 ⊗ 7	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes 1)\oplus (1\otimes 7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes1$	1	G_{99}	
(R_{+},R_{+})	$8_s\otimes 8_s$	$C_0, C_{[\hat{\mu}\hat{\nu}]}, C^+_{[\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}]}$	8 ⊗ 8	$1 \oplus 7 \oplus 21 \oplus 35$	$a, C_{\mu 9}, C_{\mu \nu}, C_{\mu \nu \rho 9}$	
(NS ₊ ,R ₊)	$8_v \otimes 8_s$	$\lambda_a^{(1)}, \psi_a^{(1)\hat{\mu}}$	7⊗8	8 ⊕ 48	$\psi_a^{(1)9}, \psi_a^{(1)\mu}$	
(113+,114)	$o_v \otimes o_s$	λ_a , ψ_a	$1\otimes 8$	8	$\lambda_a^{(1)}$	
(R ₊ ,NS ₊)	8, 8 8,	$\lambda_a^{(2)}, \psi_a^{(2)\hat{\mu}}$	8 ⊗ 7	8 + 48	$\psi_a^{(2)9}, \psi_a^{(2)\mu}$	
(11+,113+)	$\circ_s \otimes \circ_v$	\wedge_a , ψ_a	$8\otimes 1$	8	$\lambda_a^{(2)}$	

sector	SO(8)	10d fields
(NS ₊ ,NS ₊)	$8_{oldsymbol{v}}\otimes 8_{oldsymbol{v}}$	$\Phi, B_{[\hat{\mu}\hat{ u}]}, G_{(\hat{\mu}\hat{ u})}$
(R_+,R_+)	$8_s\otimes 8_s$	$C_0, C_{[\hat{\mu}\hat{ u}]}, C^+_{[\hat{\mu}\hat{ u}\hat{ ho}\hat{\sigma}]}$
(NS ₊ ,R ₊)	$8_v\otimes 8_s$	$\lambda_a^{(1)}, \psi_a^{(1)\hat{\mu}}$
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a^{(2)}, \psi_a^{(2)\hat{\mu}}$

	Type IIA					
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7 ⊗ 7	$1\oplus21\oplus27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes1)\oplus(1\otimes7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes 1$	1	G_{99}	
(R ₊ ,R ₋)	$8_s\otimes 8_c$	$C_{\hat{\mu}}, C_{[\hat{\mu}\hat{\nu}\hat{\rho}]}$	8 ⊗ 8	$\textbf{1} \oplus \textbf{7} \oplus \textbf{21} \oplus \textbf{35}$	$A_9, A_\mu, C_{9\mu\nu}, C_{\mu\nu\rho}$	
(NS ₊ ,R ₋)	$8_v \otimes 8_c$	$\tilde{\lambda}_a, \tilde{\psi}_a^{\hat{\mu}}$	7 ⊗8	8 ⊕ 48	$\tilde{\psi}^{\mu}_a, \tilde{\psi}^9_a$	
(NS+,K=)	$o_v \otimes o_c$	λ_a, ψ_a	$1\otimes 8$	8	$\tilde{\lambda}_a$	
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a, \psi_a^{\hat{\mu}}$	8⊗7	8 ⊕ 48	ψ_a^μ, ψ_a^9	
(K+,N3+)	$\delta_s \otimes \delta_v$	λ_a, ψ_a	8 \otimes 1	8	λ_a	
			Type IIB			
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields	
			7⊗7	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$	
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes 1)\oplus (1\otimes 7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$	
			$1\otimes 1$	1	G_{99}	
(R ₊ ,R ₊)	$8_s\otimes 8_s$	$C_0, C_{[\hat{\mu}\hat{\nu}]}, C^+_{[\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}]}$	8 ⊗ 8	$\textbf{1} \oplus \textbf{7} \oplus \textbf{21} \oplus \textbf{35}$	$a, C_{\mu 9}, C_{\mu \nu}, C_{\mu \nu \rho 9}$	
(NS ₊ ,R ₊)	0 00	$\lambda_a^{(1)}, \psi_a^{(1)\hat{\mu}}$	7 ⊗8	8 ⊕ 48	$\psi_a^{(1)9}, \psi_a^{(1)\mu}$	
(113+,14)	$8_v\otimes 8_s$	λ_a , ψ_a	1 ⊗ 8	8	$\lambda_a^{(1)}$	
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a^{(2)}, \psi_a^{(2)\hat{\mu}}$	8 ⊗ 7	8 ⊕ 48	$\psi_a^{(2)9}, \psi_a^{(2)\mu}$	
(IX+,IN3+)	$o_s \otimes o_v$	λ_a , $\psi_{\dot{a}}$.	8 \otimes 1	8	$\lambda_a^{(2)}$	

Type IIA								
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields			
(NS ₊ ,NS ₊)	$8_v \otimes 8_v$	$\Phi, B_{[\hat{\mu}\hat{\nu}]}, G_{(\hat{\mu}\hat{\nu})}$	7 ⊗ 7	$1\oplus21\oplus27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$			
			$(7\otimes1)\oplus(1\otimes7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$			
			$1\otimes 1$	1	G_{99}			
(R ₊ ,R ₋)	$8_s\otimes 8_c$	$C_{\hat{\mu}}, C_{[\hat{\mu}\hat{\nu}\hat{\rho}]}$	8 ⊗ 8	$\textbf{1} \oplus \textbf{7} \oplus \textbf{21} \oplus \textbf{35}$	$A_9, A_\mu, C_{9\mu\nu}, C_{\mu\nu\rho}$			
(NC D)	$8_v \otimes 8_c$	$\tilde{\lambda}_a, \tilde{\psi}_a^{\hat{\mu}}$	7 ⊗8	8 ⊕ 48	$\tilde{\psi}^{\mu}_a, \tilde{\psi}^9_a$			
(NS ₊ ,R ₋)			$1\otimes 8$	8	$\tilde{\lambda}_a$			
(D. NC.)	$8_s\otimes 8_v$	$\lambda_a, \psi_a^{\hat{\mu}}$	8⊗7	8 ⊕ 48	ψ_a^μ, ψ_a^9			
(R ₊ ,NS ₊)			8 \otimes 1	8	λ_a			
	Type IIB							
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields			
			7⊗7	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$			
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes 1)\oplus (1\otimes 7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$			
			$1\otimes 1$	1	G_{99}			
(R ₊ ,R ₊)	$8_s\otimes 8_s$	$C_0, C_{[\hat{\mu}\hat{\nu}]}, C^+_{[\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}]}$	8 ⊗ 8	$\textbf{1} \oplus \textbf{7} \oplus \textbf{21} \oplus \textbf{35}$	$a, C_{\mu 9}, C_{\mu \nu}, C_{\mu \nu \rho 9}$			
(NS ₊ ,R ₊)	$8_v \otimes 8_s$	$\lambda_a^{(1)}, \psi_a^{(1)\hat{\mu}}$	7 ⊗8	8 ⊕ 48	$\psi_a^{(1)9}, \psi_a^{(1)\mu}$			
			1 ⊗ 8	8	$\lambda_a^{(1)}$			
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a^{(2)}, \psi_a^{(2)\hat{\mu}}$	8 ⊗ 7	8 ⊕ 48	$\psi_a^{(2)9}, \psi_a^{(2)\mu}$			
			8 \otimes 1	8	$\lambda_a^{(2)}$			

Type IIB		
SO(7)	SO(7) irrep	9d fields
$7\otimes 7$	$1 \oplus 21 \oplus 27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$
$(7\otimes1)\oplus(1\otimes7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$
$1\otimes 1$	1	G_{99}
8 ⊗ 8	$oxed{1 \oplus 7 \oplus 21 \oplus 35}$	$a, C_{\mu 9}, C_{\mu \nu}, C_{\mu \nu \rho 9}$
7 ⊗8	8 ⊕ 48	$\psi_a^{(1)9}, \psi_a^{(1)\mu}$
$1\otimes 8$	8	$\lambda_a^{(1)}$
8 \otimes 7	8 ⊕ 48	$\psi_a^{(2)9}, \psi_a^{(2)\mu}$
8 \otimes 1	8	$\lambda_a^{(2)}$

Type IIA								
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields			
			$7\otimes 7$	$1\oplus21\oplus27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$			
(NS_+,NS_+)	$8_v \otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$(7\otimes1)\oplus(1\otimes7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$			
			$1\otimes 1$	1	G_{99}			
(R ₊ ,R ₋)	$8_s\otimes 8_c$	$C_{\hat{\mu}}, C_{[\hat{\mu}\hat{\nu}\hat{\rho}]}$	8 ⊗ 8	$\textbf{1} \oplus \textbf{7} \oplus \textbf{21} \oplus \textbf{35}$	$A_9, A_\mu, C_{9\mu\nu}, C_{\mu\nu\rho}$			
(NS ₊ ,R ₋)	$8_v \otimes 8_c$	$\tilde{\lambda}_a, \tilde{\psi}_a^{\hat{\mu}}$	$7\otimes 8$	$8 \oplus 48$	$\tilde{\psi}^{\mu}_a, \tilde{\psi}^9_a$			
			$1\otimes 8$	8	$\tilde{\lambda}_a$			
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a, \psi_a^{\hat{\mu}}$	$8\otimes 7$	$8 \oplus 48$	ψ_a^μ, ψ_a^9			
(11+,115+)			$8\otimes 1$	8	λ_a			
	Type IIB							
sector	SO(8)	10d fields	SO(7)	SO(7) irrep	9d fields			
(NS ₊ ,NS ₊)	$8_v\otimes 8_v$	Φ , $B_{[\hat{\mu}\hat{\nu}]}$, $G_{(\hat{\mu}\hat{\nu})}$	$7\otimes 7$	$1\oplus21\oplus27$	$\phi, B_{[\mu\nu]}, G_{(\mu\nu)}$			
			$(7\otimes1)\oplus(1\otimes7)$	7 ⊕ 7	$G_{\mu 9}, B_{\mu 9}$			
			$1\otimes 1$	1	G_{99}			
(R_{+},R_{+})	$8_s\otimes 8_s$	$C_0, C_{[\hat{\mu}\hat{\nu}]}, C^+_{[\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}]}$	8 ⊗ 8	$\textbf{1} \oplus \textbf{7} \oplus \textbf{21} \oplus \textbf{35}$	$a, C_{\mu 9}, C_{\mu \nu}, C_{\mu \nu \rho 9}$			
(NS ₊ ,R ₊)	$8_v \otimes 8_s$	$\lambda_a^{(1)}, \psi_a^{(1)\hat{\mu}}$	$7\otimes 8$	8 ⊕ 48	$\psi_a^{(1)9}, \psi_a^{(1)\mu}$			
			$1\otimes 8$	8	$\lambda_a^{(1)}$			
(R ₊ ,NS ₊)	$8_s\otimes 8_v$	$\lambda_a^{(2)}, \psi_a^{(2)\hat{\mu}}$	8 \otimes 7	8 48	$\psi_a^{(2)9}, \psi_a^{(2)\mu}$			
			$8\otimes 1$	8	$\lambda_a^{(2)}$			

Is This a Coincidence?
IS This a Feature of the Massless Spectrum?

Type II String: Compactification on S^{1}

Setting and Main Results

Lightcone quantization:

•
$$\mathcal{M}_{10} \to \mathcal{M}_9 \times S^1, X^9 \simeq X^9 + 2\pi R;$$

•
$$X^{i}(\tau, \sigma + l) = X^{i}(\tau, \sigma);$$

Type II String: Compactification on S^{1}

Setting and Main Results

Lightcone quantization:

•
$$\mathcal{M}_{10} \to \mathcal{M}_9 \times S^1, X^9 \simeq X^9 + 2\pi R;$$

•
$$X^{i}(\tau, \sigma + l) = X^{i}(\tau, \sigma);$$

•
$$X^9(\tau, \sigma + l) = X^9(\tau, \sigma) + 2\pi R\omega;$$

•
$$p_9 = s/R, s \in \mathbb{Z}$$
.

Type II String: Compactification on S^1

Setting and Main Results

Lightcone quantization:

•
$$\mathcal{M}_{10} \to \mathcal{M}_9 \times S^1, X^9 \simeq X^9 + 2\pi R;$$

•
$$X^{i}(\tau, \sigma + l) = X^{i}(\tau, \sigma);$$

•
$$X^9(\tau, \sigma + l) = X^9(\tau, \sigma) + 2\pi R\omega$$
;

•
$$p_9 = s/R, s \in \mathbb{Z}$$
.

Mode decomposition:

$$\cdot \ X_{L/R}^{9}(\xi^{\pm}) = \frac{x^{9}}{2} + \frac{\alpha'\pi}{l} p_{L/R} \xi^{\pm} + i \sqrt{\frac{\alpha'}{2}} \sum_{n \neq 0} \frac{\alpha_{n}^{9}}{n} e^{-\frac{2\pi i}{l} n \xi^{\pm}};$$

•
$$p_L = \left(\frac{s}{R} + \frac{\omega R}{\alpha'}\right), p_R = \left(\frac{s}{R} - \frac{\omega R}{\alpha'}\right);$$

Type II String: Compactification on S^{1}

Setting and Main Results

Lightcone quantization:

•
$$\mathcal{M}_{10} \to \mathcal{M}_9 \times S^1, X^9 \simeq X^9 + 2\pi R;$$

•
$$X^{i}(\tau, \sigma + l) = X^{i}(\tau, \sigma);$$

•
$$X^9(\tau, \sigma + l) = X^9(\tau, \sigma) + 2\pi R\omega;$$

•
$$p_9 = s/R, s \in \mathbb{Z}$$
.

Mode decomposition:

$$\cdot \ X_{L/R}^{9}(\xi^{\pm}) = \frac{x^{9}}{2} + \frac{\alpha'\pi}{l} p_{L/R} \xi^{\pm} + i \sqrt{\frac{\alpha'}{2}} \sum_{n \neq 0} \frac{\alpha_{n}^{(9)}}{n} e^{-\frac{2\pi i}{l} n \xi^{\pm}};$$

•
$$p_L = \left(\frac{s}{R} + \frac{\omega R}{\alpha'}\right), p_R = \left(\frac{s}{R} - \frac{\omega R}{\alpha'}\right);$$

•
$$M_L^2 = \frac{p_L^2}{2} + \frac{2}{\alpha'} \left(\tilde{N}_{\perp} - \tilde{a} \right), \quad M_R^2 = \frac{p_R^2}{2} + \frac{2}{\alpha'} \left(N_{\perp} - a \right);$$

•
$$M_L^2 = M_R^2$$
, $M^2 = M_L^2 + M_R^2$.

T-Duality: Introduction

Mass-Shell Condition

$$\begin{split} M^2 &= \frac{s^2}{R^2} + \frac{\omega^2 R^2}{\alpha'^2} + \frac{2}{\alpha'} (\tilde{N}_\perp + N_\perp - a - \tilde{a}), \\ p_{\!\scriptscriptstyle L} &= \left(\frac{s}{R} + \frac{\omega R}{\alpha'} \right), \, p_{\!\scriptscriptstyle R} = \left(\frac{s}{R} - \frac{\omega R}{\alpha'} \right). \end{split}$$

Mass-Shell Condition

$$M^{2} = \frac{s^{2}}{R^{2}} + \frac{\omega^{2}R^{2}}{\alpha'^{2}} + \frac{2}{\alpha'}(\tilde{N}_{\perp} + N_{\perp} - a - \tilde{a}),$$
$$p_{L} = \left(\frac{s}{R} + \frac{\omega R}{\alpha'}\right), p_{R} = \left(\frac{s}{R} - \frac{\omega R}{\alpha'}\right).$$

From Spectrum

$$R \to R' = \alpha'/R,$$

 $(s,\omega) \to (s',\omega') = (\omega,s).$

Mass-Shell Condition

$$M^{2} = \frac{s^{2}}{R^{2}} + \frac{\omega^{2}R^{2}}{\alpha'^{2}} + \frac{2}{\alpha'}(\tilde{N}_{\perp} + N_{\perp} - a - \tilde{a}),$$
$$p_{L} = \left(\frac{s}{R} + \frac{\omega R}{\alpha'}\right), p_{R} = \left(\frac{s}{R} - \frac{\omega R}{\alpha'}\right).$$

From Spectrum

$$R \to R' = \alpha'/R,$$

 $(s,\omega) \to (s',\omega') = (\omega,s).$

From Full Theory

$$\begin{split} p_L &\to p_L, \, p_R \to -p_R, \\ X_L^9 &\to X_L^9, \, X_R^9 \to -X_R^9. \end{split}$$

Mass-Shell Condition

$$M^{2} = \frac{s^{2}}{R^{2}} + \frac{\omega^{2}R^{2}}{\alpha'^{2}} + \frac{2}{\alpha'}(\tilde{N}_{\perp} + N_{\perp} - a - \tilde{a}),$$
$$p_{L} = \left(\frac{s}{R} + \frac{\omega R}{\alpha'}\right), p_{R} = \left(\frac{s}{R} - \frac{\omega R}{\alpha'}\right).$$

From Spectrum

$$R \to R' = \alpha'/R,$$

 $(s,\omega) \to (s',\omega') = (\omega,s).$

From Full Theory

$$\begin{split} p_L &\to p_L, \, p_R \to -p_R, \\ X_L^9 &\to X_L^9, \, X_R^9 \to -X_R^9. \end{split}$$

from Worldsheet Supersymmetry

$$\psi_L^9 \to \psi_L^9, \ \psi_R^9 \to -\psi_R^9.$$

T-DUALITY: CONSEQUENCE

T-Duality

Transformation:

$$X^{9}(\tau,\sigma) = X_{L}^{9}(\xi^{+}) + X_{R}^{9}(\xi^{-}) \to X^{9}(\tau,\sigma) = X_{L}^{9}(\xi^{+}) - X_{R}^{9}(\xi^{-}),$$

$$\psi^{9}(\tau,\sigma) = \psi_{L}^{9}(\xi^{+}) + \psi_{R}^{9}(\xi^{-}) \to \psi^{9}(\tau,\sigma) = \psi_{L}^{9}(\xi^{+}) - \psi_{R}^{9}(\xi^{-}).$$

T-DUALITY: CONSEQUENCE

T-Duality

Transformation:

$$X^{9}(\tau,\sigma) = X_{L}^{9}(\xi^{+}) + X_{R}^{9}(\xi^{-}) \to X'^{9}(\tau,\sigma) = X_{L}^{9}(\xi^{+}) - X_{R}^{9}(\xi^{-}),$$

$$\psi^{9}(\tau,\sigma) = \psi_{L}^{9}(\xi^{+}) + \psi_{R}^{9}(\xi^{-}) \to \psi'^{9}(\tau,\sigma) = \psi_{L}^{9}(\xi^{+}) - \psi_{R}^{9}(\xi^{-}).$$

On the modes:

$$\begin{split} \tilde{b}_r^9 \to \tilde{b}_r'^9 &= \tilde{b}_r^9, \quad b_r^9 \to b_r'^9 = -b_r^9, \\ B_4^\pm &= \frac{1}{\sqrt{2}} \left(b_0^8 \pm i b_0^9 \right) \to \frac{1}{\sqrt{2}} \left(b_0^8 \mp i b_0^9 \right) = B_4^\mp. \end{split}$$

T-DUALITY: CONSEQUENCE

T-Duality

Transformation:

$$X^{9}(\tau,\sigma) = X_{L}^{9}(\xi^{+}) + X_{R}^{9}(\xi^{-}) \to X^{9}(\tau,\sigma) = X_{L}^{9}(\xi^{+}) - X_{R}^{9}(\xi^{-}),$$

$$\psi^{9}(\tau,\sigma) = \psi_{L}^{9}(\xi^{+}) + \psi_{R}^{9}(\xi^{-}) \to \psi^{9}(\tau,\sigma) = \psi_{L}^{9}(\xi^{+}) - \psi_{R}^{9}(\xi^{-}).$$

On the modes:

$$\tilde{b}_r^9 \to \tilde{b}_r'^9 = \tilde{b}_r^9, \quad b_r^9 \to b_r'^9 = -b_r^9,$$

$$B_4^{\pm} = \frac{1}{\sqrt{2}} \left(b_0^8 \pm i b_0^9 \right) \to \frac{1}{\sqrt{2}} \left(b_0^8 \mp i b_0^9 \right) = B_4^{\mp}.$$

On the sectors:

$$(R_+, R_\pm) \rightarrow (R_+, R_\mp),$$

$$(NS_+, R_\pm) \rightarrow (NS_+, R_\mp).$$

T-DUALITY: CONCLUSION

Type IIB on S^1 with $R\cong \text{Type IIA on } S'^1$ with $R'=\frac{\alpha'}{R}.$

T-DUALITY: CONCLUSION

$$X^{9}(\tau,\sigma) = X_{L}^{9}(\xi^{+}) + X_{R}^{9}(\xi^{-}),$$

$$X^{9}(\tau,\sigma) = X_{L}^{9}(\xi^{+}) - X_{R}^{9}(\xi^{-}).$$

THEN, WHAT REALLY IS SPACETIME?