

Consistent Inductors

Why

We discuss inductors that produce relations consistent with their given datasets.

Definition

Let $(x_1, y_1), \ldots, (x_n, y_n)$ be a dataset in $X \times Y$. Let \mathcal{R} be the set of all relations on $X \times Y$.

A consistent inductor $\{G_n : (X \times Y)^n \to \mathcal{R}\}_n$ is one for which, for all $n \in \mathbb{N}$, for all $D_n \in (X \times Y)^n$, D is consistent with $G_n(D_n)$. In other words, a consistent inductor always produces a relation with which the dataset is consistent.

The interpretation follows. Fix a relation R^* . And let every dataset "shown" to the algorithm G_n be constructed by selecting elements from R^* . In other words, every dataset is a sequence in R^* . In this case, a dataset $D_n \in (X \times Y)^n$ is always consistent with R^* and so a consistent inductor will never "eliminate" R^* . In other words, the inductor, in order to be consistent "must eliminate" every inconsistent relation. The thinking goes, if the dataset is "large and diverse", we may have seen many of the elements in R^* , and have eliminated many smaller relations in \mathcal{R} which did not include records in the dataset.

