Dynamic sampling pointnet notes

xyz

Feb 2018

${\bf Contents}$

1	Dee	p 3D Learning Notes 1
	1.1	potential solutions for over fitting
	1.2	Important improvements
	1.3	Theory
		1.3.1 bidxmap
		1.3.2 group sampling configuration
		1.3.3 Sparse voxel 3DCNN
		1.3.4 multi-scale classification
		1.3.5 Data Augmentation
	1.4	batch size
		1.4.1 bs=27 vs bs=81
	1.5	feed elements
	1.6	model
	1.7	integration: matterport3d
	1.8	multi scales & mat 1083
	1.9	multi scales & mat 21826
	1.10	multi scales & scannet 12887
	1.11	integration: scannet
		Semantic segmentation expamples
		1.12.1 good: 1083, train, 0.946
		1.12.2 bad: 18737,eval 0.071
	1.13	point++
		1.13.1 scannet seg
	1.14	whole room global block & multi scales & scan 305 20
	1.15	Sparse voxel net
		1.15.1 90000
		1.15.2 30000
	1.16	Charles Point++, fast distance sampling
		1.16.1 MODELNET40
	1.17	MODELNET40, My point++
		1.17.1 3m
		1.17.2 4m
		1.17.3 5m
2	res3	d 30

1 Deep 3D Learning Notes

1.1 potential solutions for over fitting

- combine auxiliary tasks:
 - 1. use nxnynz as auxiliary loss 2. boundary
 - 3. planet

- data augmentation: rotation, different size scale
- data regulation: group norm
- dropout
- combine ShapeNet data
- more powerful network to learn more systematic information:
 - 1. use large global block size
 - 2. dynamic sampling
- smaller net

1.2 Important improvements

- Generate bxmh5 online. So the randomly missing part in each epoch is different. This maybe solve the info missing problem for sparse voxel 3d cnn, especially considering that block merging cannot be applied for voxel cnn. However, on line sampling can only solve missing problom of training, test missing still need some tricks to perform block merging.
- Check this: my usage of tf.gather_nd should cost a lot of memory, maybe too much!

1.3 Theory

1.3.1 bidxmap

1.3.2 group sampling configuration

$$steps = [0.1, 0.3, 0.9, 2.7] + [-6.3]$$

 $strides = [0.1, 0.2, 0.6, 1.8] + [-3.6]$
 $voxel\ size = [, 3, 4, 4, 3]$

principles:

(1) Alignment between different scales:

$$steps[i] = steps[i-1] + strides[i-1] * (k-1) (k = voxel \ size)$$

(2) Alignment between voxels on one scale:

$$strides[i]\%steps[i-1] == 0$$

Examples:

$$0.3 = 0.1 + 0.1 * 2 \Rightarrow voxel \ size = 3$$
 $0.2 = 0.1 * 2$ $0.9 = 0.3 + 0.2 * 3 \Rightarrow voxel \ size = 4$ $0.6 = 0.3 * 2$

$$6.3 = 2.7 + 1.8 * 2$$

 $3.6 = 1.8 * 2$

1.3.3 Sparse voxel 3DCNN

1.3.4 multi-scale classification

1.3.5 Data Augmentation

- (1.1) Rotate corrdinate reference: Rotate both point and voxel box Performed by rotating points after sampling and grouping. This should only be applied to point position (cascade 0). What if also to features (upper cascades).
- (1.2) Rotae point only, or rotate voxel box only.
 - a) It can be performed by rotating points before sampling and grouping.
 - b) If rotate angle is integral times of pi/2, it can be performed by rotating point indices inside the voxel.

Rotate voxel can be applied to all cascades.

- (2.1) Rotate the global block by the same angle
- (2.2) Rotate each voxel by separate angle in each scale.

Since the features are calculated independently in each voxel, it should be fine to apply different rotatio angle for each voxel. It doesn't matter that the rotation center is voxel center or global block center. It also doesn't matter that it rotates refference or only rotates voxel.

Sparse voxel 3D CNN

Two main obstacles for performing 3D convolution on point cloud are: (1) there are too many vacant points, (2) the position of points are not aligned. The key idea of sparse voxel is to perform 3DCONV on cascades from the second. Because the positions are actually almost aligned. At the same time, the vacant rate within a small block is acceptably large. Above all, it may be possible to do apply 3D-CONV within a small block.

Centres of blocks in cascades other than first one are actually aligned to the grid. So it is possible to perform 3d convolution directly. However, the average position of points inside these blocks are not aligned. Thus it is also maybe beneficial to utilise a transform net to align them.

On the other hand, there are many vacant points in the block. I am wondering if it is beneficial to set the features of vacant points by a T-net from around existing points.

Purpose of T-Net: fix number + align + till

There are some interesting problems for Transform net:

- Only depend on position or feature.
- Should be resolution invariant.
- If it should be constant for all channels.
- If it should be constant for all local aim blocks.

Reasons that we do not need the T-Net:

- 3d-conv can till features of the vacant points.
- If the base-points are not strictly aligned, add the position to feature map. Or get a special feature of positions within the block and then add of the main feature map.

Transform net:

$$(b, n, g_m, 3)$$

$$(b, n, g_m, c_1)$$

$$(b, n, g_m, c_2)$$

$$/$$
 (b, n, g_m, g_i) $/$

1.4 batch size

1.4.1 bs=27 vs bs=81

batch size: 9,27,81

data: xyz-color_1norm

model: 1AG

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_2048_0d5_1_fmn1-160_32-160_0d1_step_0d1_st

 $32_12\text{-}0d2_0d6\text{-}0d2_0d6$

Figure 1: bs=9

Figure 2: bs=27

1.5 feed elements

 $\begin{array}{l} {\rm epoch~num} = 100 \\ {\rm stride_0d1_step_0d1_bmap_nh5_2048_0d5_1_fmn1-160_32-32_12-0d2_0d6-0d2_0d6} \end{array}$

Figure 3: bs=81

model	batch size	data elements	acc	loss
1AG	9	xyz color	0.890	0.356
1AG	27	xyz color	0.920	0.240
3AG	27	xyz color	0.912	0.273
2A	27	xyz color	0.908	0.294
2AG	27	xyz color	0.902	0.293
1A	27	xyz color	0.883	0.351
1AG	81	xyz color	0.978	0.072
1AG	9	xyz	0.861	0.427
1AG	27	xyz	0.907	0.257
1AG	81	xyz	0.975	0.078
1A	27	xyzmid color	0.889	0.357
3AG	27	xyzmid color	0.933	0.193
2A	27	xyzmid color	0.939	0.177
2AG	27	xyzmid color	0.929	0.208
3AG	27	xyz xyzmid color	0.924	0.230
2A	27	xyz xyzmid color	0.898	0.317
2AG	27	xyz xyzmid color	0.908	0.280
1A	27	xyz xyzmid color	0.910	0.281
1AG	27	xyz xyzmid color	0.944	0.163
1AG	81	xyz xyzmid color	0.976	0.078
2A	81	xyz xyzmid color	0.942	0.173
3AG	81	xyz xyzmid color	0.949	0.147

- 1. large batch size is better
- 2. 1AG(0.92) > 3AG(0.912) > 2A(0.908) > 2AG(0.902) > 1A(883)

1AG is much better than 1A

1AG is a bit better than 3AG???

- 3. xyz-color is only a bit better than xyz
- 4. xyzmid-color is much better than xyz-color
- $5.\,$ xyzmid-color is normally much better than xyz-xyzmid-color ???

1.6 model

batch size: 50

data: xyz_midnorm_block-color_1norm

 $epoch_num = 600$

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-600_64_24-60_16_12-0d2_0d6_1d2-0d2_0d6_1d2

model	acc	loss
3A	0.909	0.248
3AG	0.913	0.231
4AG	0.912	0.232

batch size: 32

data: xyz_midnorm_block-color_1norm

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn6-2048_256_64-32_32_16-0d2_0d6_1d2-0d1_0d3_0d6

matterport3d

feed_data_elements:['xyz_midnorm_block', 'color_1norm']

feed_label_elements:['label_category', 'label_instance']

train data shape: [362 12800 6] test data shape: [384 12800 6]

 $\max \text{ epoch} = 500$

model	acc	loss
1AG	0.944/0.431	0.161/4.633
4AG	0.835/0.401	0.520/3.644

1.7 integration: matterport3d

$stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-512_64_24-48_16_12-0d2_0d6_1d2-0d2_0d2_0d6_1d2-0d2_0d2_0d6_1d2-0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_$							
	$17D_1LX_1pX_29h_2az$						
model	batch size batch num shuffle	lr ds	data elements	epoch-acc mean-std train/eval			

1aG	30/60	0.005	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	250-0.981
1DSaG	30/60	0.001-40 'xyz_midnorm_block', 'color_1norm', 'nxnynz'		300-0.914-0.775
1DSaG	30/60	0.001-40	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.914-0.775
1DSaG kp0.5	30/60	0.001-80 300-3e-4	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.942-0.842
1DSaG kp0.2	30/60	0.001-80 300-3e-4	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.928-0.797
1DSaG kp0.5	30/60	0.005-80 300-1.7e-3	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.970-0.916
1DSaG kp0.2	30/60	0.005-80 300-1.7e-3	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.966-0.924
1DSaG kp0.8	30/60	0.005-80 300-1.7e-3	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	300-0.976-0.933 500-0.984-0.954
1aG	30/1083	0.003	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	200-0.947
1aG	30/1083	0.01	'xyz_midnorm_block', 'color_1norm'	200-0.783 500-0.791
1aG	30/1083	0.003/30 300-0.00012	'xyz_midnorm_block', 'color_1norm'	200-0.903 300-0.921
1bG	25/1083	0.001-30 100-3e-4 300-4e-5	'xyz_midnorm_block'	100-0.854 200-0.918 300-0.936
1bG	25/1083	0.001-30 100-3e-4 300-4e-5	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	100-0.914 200-0.957 300-0.966
1bG	25/1083	0.02	'xyz_midnorm_block', 'color_1norm'	200-0.655 300-0.718
1bG	25/1083	0.02	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	200-0.772 300-0.823
1bG	25/1083	0.001	'xyz'	200-0.772 90-0.553-0.210

4bG	25/1083	0.001-30 100-3e-4 200-1e-4 300-4e-5	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	100-0.752 200-0.816 300-0.832
2 1DSaG	30/1083	0.002-80	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	200-0.930-0.830/0.450 460-0.952-0.881/0.471
1aG	30/19755	0.001-30 50-7e-4 100-3e-4	'xyz_midnorm_block', 'color_1norm','nxnynz'	50-0.752/0.580 100-0.843/0.574 (NoShuf) 102-0.806/0.570 (Shufle)
1bG	25/19755	0.001-30	'xyz_midnorm_block', 'color_1norm','nxnynz'	38-0.719/0.587 80-0.823/0.583 (NoShuf) 81-0.782/0.587 (Shufle)
1aG	30/19755	0.02	'xyz_midnorm_block', 'color_1norm'	56-0.562
1aG	30/19755	0.02 127-0.00483	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	87-0.616 127-0.686
1bG	25/18737	0.001 N	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	24-0.682/0.509 70-0.858/0.509
1bG	25/18737	0.001 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	24-0.738/0.573 70-0.876/0.563 90-0.897 /0.561
4bG	25/18737	0.001 Y	'xyz_midnorm_block', 'nxnynz'	24-0.576/0.545
4bG	25/18737	0.001 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	24-0.594/0.569
1DSaG	30/18737	0.002-80 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	20-0.688-0.394/0.428-0.224 36-0.742/0.395
1DSaG	30/18737	0.007-80 Y	'xyz_midnorm_block', 'color_1norm', 'nxnynz'	20-0.725-0.453/0.435-0.206 38-0.783/0.396

- Conclusion:
 1: nxnynz helps a lot
 2: 1bG is much deeper than 1aG, why worse than 1aG
 3: learning rate is important, cannot be too large

1.8 multi scales & mat 1083

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/17D_1LX_1pX_29h_2az bxmh5: $0d2_0d6_1d2-0d2_0d6_1d2-3A1$ model bs/bn lrelements loss epoch-pacc-cacc train/eval decay weight indrop4bG_111 20/1083 2-40 xyz_midnorm_blEck-110-0.898-0.763 color_1norm-160-0.931-0.827 nxnynz 300-0.967-0.915 4bG_444 15/1083 3-40 xyz_midnorm_blEck-60-0.729-0.614 color_1norm- $100 \hbox{-} 0.857 \hbox{-} 0.721$ nxnynz $160 \hbox{-} 0.920 \hbox{-} 0.834$ 260-0.952-0.890 300-0.958-0.913 4bG_444 15/1083 2-40 xyz_midnorm_blEck-60-0.778-0.608 color_1norm-100-0.878-0.758 nxnynz 160-0.930-0.838 260-0.957-0.901 300-0.964-0.912 4bG_144 18/1083 2-40 xyz_midnorm_blEck-60-0.786-0.637 color_1norm-100-0.876-0.767 nxnynz $160 \hbox{-} 0.926 \hbox{-} 0.820$ 260-0.959-0.885 300-0.962-0.906 20/1083 4bG_114 2-40 xyz_midnorm_blEck-60-0.772-0.611 color_1norm-100-0.874-0.764 nxnynz 160-0.926-0.851 260-0.958-0.893 /par 300-0.963-0.904 3aG_444 45/1083 2-40 xyz_midnorm_blEck-60-0.893-0.737 color_1norm-100-0.908-0.786 /par 160-0.934-0.833 nxnynz 260-0.950-0.868 /par 300-0.952-0.8822aG_144 30/1083 2-40 xyz_midnorm_blEck-60-0.890-0.754 color_1norm-100-0.922-0.820 /par 160-0.942-0.858: nxnynz 260-0.957-0.897 /par 300-0.960-0.911

1.9 multi scales & mat 21826

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/

 $0d2_0d6_1d2-0d2_0d6_1d2-3A1\\ eval:\ 17D_1LX_1pX_29h_2az$

model	bs/bn	lr-	elements	loss	epoch-pacc-cacc train/eval	
		decay		weight		
				in drop		
4bG_114	20/1080	1-30	xyz midnorm	Е	40-0.784-0.545/0.579-0.451	
			color	N	80-0.883-0.699/0.584-0.439	
			nxnynz		140-0.925-0.795/0.575-0.429	
4bG_111	20/1080	2-30	xyz midnorm	E	40-0.737-0.489/0.587-0.412	
			color	N	80-0.836-0.614/0.582-0.411	
			nxnynz		95-0.867/0.588	
4bG_144	20/1200	2-30	xyz midnorm	Е	40-0.761-0.543/0.601-0.416	
			color	N	80-0.864-0.693/0.602-0.426	
			nxnynz		95-0.888/0.597	

Conclusion:

⁽¹⁾ Nein 114 is better than 111

1.10 multi scales & scannet 12887

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/

 $0d2_0d6_1d2-0d2_0d6_1d2-3A1$

eval: test

C vai. ocse					
model	bs/bn	lr-	elements	loss	epoch-pacc-cacc train/eval
		decay		weight	
				in	
				drop	
2aG_144	30/420	2-30	xyz midnorm	Е	40-0.833-0.546/0.686-0.89
				N	100-0.926-0.727/0.683-0.326
3aG_144	48/260	2-30	xyz midnorm	Е	40-0.841-0.530/0.668-0.346
				N	100-0.924-0.709/0.673-0.327
					200-0.949-0.782/0.673-0.332
					300 - 0.955 - 0.802 / 0.671 - 0.330
4bG_111	22-580	2-30	xyz midnorm	Е	60-0.738-0.434/0.706-0.344
				N	100-0.796-0.506/0.699-0.315
					180-0.863-0.589/0.695-0.308
4bG_111	22-580	7-30	xyz midnorm	Е	60-0.705-0.378/0.684-0.362
				N	
4bG_144	18-700	2-30	xyz midnorm	Е	40-0.714-0.470/0.6910.433
				N	100-0.794-0.481/0.682-0.393
					160-0.849-0.582/0.676-0.362
4aG_1a4	55-220	2-30	xyz midnorm	CN	40-0.775-0.482/0.654-0.304
				N	100-0.877-0.637/0.661-0.298
					160-0.901-0.690/0.660-0.311
					220-0.908-0.707/0.655-0.334
4aG_1a4	55-220	2-30	xyz midnorm	Е	40-0.819-0.527/0.684-0.333
				N	100-0.923-0.706/0.681-0.304

Conclusion:

- (1) 3aG is much better than 4bG. Potential reasons:(a) 4bG is too wide and deep, so that needs more time to train. (b) The batch size of 4bG is too small
- (2) nein 144 seems is not better than 111
- (3)Learning rate 0.002 is better than 0.007
- (4)Loss weight CN does not help

1.11 integration: scannet

$stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-256_48_16-56_8_8-0d2_0d6_1d2-0d2_0d6_0d2_0d6_0d2_0d6_0d2_0d6_0d2-0d2_0d6_0d2_0d6_0d2-0d2_0d6_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2_0d2$								
scannet train								
model	loss: E,N,C input drop (No)	batch size batch num shuffle	lr ds	data elements	epoch-point ac-class ac train/eval			
1bG	Е	25/12887 test Y	0.001 40	xyzmid	23-0.732-0.326/0.664-0.260 25-0.746-0.340/0.669-0.273			
1bG	N	25/12887 Y	0.001 40	xyzmid	25-0.733-0.390/0.666-0.252			
1bG	С	25/12887 Y	0.001 40	xyzmid	25-0.703-0.356/0.655-0.252			
1bG	CN	25/12887 Y	0.001 40	xyzmid	25-0.681-0.366/0.611-0.237			
1DSaG	E idp9	30/12887 Y	0.003 80	xyzmid	40-0.738-0.376/0.513-0.228 90-0.832/0.496			
1bG	Е	25/13091 train_300 Y	0.002 80	xyzmid	60-0.765-0.389/0.700-0.252			
1bG	Е	25/13091 Y	0.003 80	xyzmid	10-0.646/0.689 60-0.753-0.349/0.691-0.234 100-0.833-0.480/0.672-0.261			
1bG	CN	25/13091 Y	0.002 80	xyzmid	60-0.738-0.409/0.670-0.237			
1bG	E idp9	25/13091 Y	0.003 80	xyzmid	10-0.641/0.585 16-0.646/0.633			
1DSaG	Е	30/13091 Y	0.003 80	xyzmid	40-0.794-0.456/0.420-0.154 100-0.872-0.602/0.417-0.153			
Conclusion:								
4bG	CN	25/2998- 3521 Y	0.001 40	xyzmid	142-0.726-0.445/0.625-0.242			
4bG	Е	25/2998- 3521 Y	0.001 40	xyzmid	145-0.792-0.506/0.656-0.257			

1.12 Semantic segmentation expamples

1.12.1 good: 1083, train, 0.946

```
log: log-model_1bG-gsbb_3B1-bs25-lr1-ds_30-xyz_midnorm_block-color_1norm-nxnynz-12800-mat_1083
    model: 1bG
    sampling & grouping:
    stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-512_64_24-48_16_12-0d2_0d6_1d2-0d2_0d6_1d2
    batch size: 25
    learning rate: 0.001000
    decay_epoch_step: 30
    matterport3d
    feed_data_elements:['xyz_midnorm_block', 'color_1norm', 'nxnynz']
    feed_label_elements:['label_category', 'label_instance']
    train data shape: [ 1083 12800 9]
```


 $Figure~4:~17DRP5sb8fy_1_2_a946$

Figure 5: $17DRP5sb8fy_0_25_a946$

1.12.2 bad: 18737,eval 0.071

model: 1bG

sampling & grouping: stride_0d1_step_0d1_bmap_nh5_12800_1d6_2_fmn3-512_64_24-48_16_12-0d2_0d6_1d2-0d2_0d6_1d2

batch size: 25

learning rate: 0.001000 decay_epoch_step: 50

epoch 0 train IsShuffleIdx: True

epoch 0 train IsShuffleIdx: True matterport3d feed_data_elements:['xyz_midnorm_block', 'color_1norm', 'nxnynz'] feed_label_elements:['label_category', 'label_instance'] train data shape: [18737 12800 9]

 $Figure \ 6: \ qoi_r1Q_r47_rPc_rqf_2_3_a0d071 \ (raw,gt,pred,err,crt)$

1.13 point++

1.13.1 scannet seg

	each room as a block, total 40 block							
batch size batch num	lr ds	data elements	epoch-point ac-class ac train/eval/eval whole scene					
30/40	0.001	xyzmid	200-0.675/0.757-0.54/0.799-0.52					
25	0.001	xyzmid	200-0.689/0.787-0.556/0.815-0.517i					

1.14 $\,$ whole room global block & multi scales & scan 305

nh5: stride_0d1_step_0d1_pl_nh5-1d6_2/

0d2_0d6_1d2-0d2_0d6_1d2-3A1 eval: 17D 1LX 1pX 29h 2az

eval: 17D_1LX_1pX_29h_2az							
model	bs/bn	lr-	elements	loss	epoch-pacc-cacc train/eval		
		decay		weight			
				in drop			
5bG_114	6/40	2-30	xyz midnorm	Е	100-0.805-0.645		
			color	N	200-0.865-0.708		
					300-0.880-0.773		
5aG_114	2/140	2-30	xyz midnorm	Е	100-0.802-0.619		
			color	N	200-0.873-0.694		
					300-0.895-0.784		
5aG_114	2/140	2-30	xyz midnorm	Е	100-0.807-0.687		
			color	idp5	200-0.877-0.729		
					300-0.895-0.778		

Conclusion:

⁽¹⁾ Nein 114 is better than 111

1.15 Sparse voxel net

1.15.1 90000

nh5: 90000_gs-3d6_-6d3/

bxmh5: 90000_gs-3d6_-6d3_fmn1444-6400_2400_320_32-32_16_32_48-0d1_0d3_0d9_2d7-

 $0d1_0d2_0d6_1d8-pd3-mbf-4A1$

eval: test

model	bs/bn	lr-	elements	norm in-	loss	epoch-pacc-cacc train/eval
		decay		net	weight	
				aug	in drop	
5VaG_114	16/113	1-50	xyz mid	No	Num lw	20-0.764-0.556/0.645-0.362
					dp:3N5	40-0.864-0.695/0.675-0.351
					N shuffle	100-0.935-0.842/0.682-0.380
						200-0.961-0.897/0.671-0.374
						300-0.969-0.920/0.676-0.360
5VaG_114	30/40	2-40	xyz mid	No	Num lw	20-0.605-0.443/0.577-0.381
			color		dp:466	40-0.668-0.490/0.544-0.372
					Y shuffle	100-0.795-0.581/0.653-0.384
						120-0.805-0.594/0.676-0.377
5VaG_114	30/40	2-40	xyz mid	No	Num lw	20-0.677-0.520/0.607-0.373
	,		color		dp:4N6	40-0.801-0.624/0.659-0.373
					Y shuffle	100-0.906-0.754/0.687-0.368
						120-0.911-0.776/0.692-0.421
5VaG_114	30/40	2-40	xyz mid	No	Num lw	20-0.614-0.457/0.566-0.344
	,		color		dp:N66	40-0.685-0.500/0.552-0.356
					Y shuffle	60-0.741-0.552/0.650-0.357
						80-0.770-0.564/0.649-0.392
						98-0.797-/0.675
5VaG_114	30/40	2-40	xyz mid	Mid	Num lw	100-0.746/0.649
			color		dp:555	300-0.823-0.608/0.682-0.377
					Y shuffle	·
5VaG_114	39/40	2-40	xyz mid	Mid	Num lw	40-0.839-0.649/0.656-0.353
	,		color		dp:5N5	100-0.918-0.771/0.681-0.381
					Y shuffle	,
5VaG_114	36/40	1-40	xyz mid	Mid	Num lw	40-0.833-0.655/0.628-0.329
			color		dp:NN5	100-0.916-0.772/0.682-0.339
					Y shuffle	178-0.941/0.686
5VaG_114	7/240	2-40	xyz mid	Mid	Num lw	40-0.664/0.577
	'		color	Group	dp:NN5	100-0.816-0.586
				Norm	Y shuffle	150-0.869-0.592
5VaG_114	9	2-40	xyz mid	Rotate	Num lw	40-0.787-0.620/0.662-0.401
			color	Ref	dp:NN5	100-0.907-0.755/0.699-0.410
					Y shuffle	200-0.939-0.816/0.6990.430
						300-0.950-0.845/0.691-0.430
-				1	I.	

Conclusion:

Mid norm in sub block seems worse than no.

The infuence of input drop seems not obvious.

Dropout of cnn (0.5) makes the net really hard to train. Seems no good for overfitting.

Group norm is poor.

1.15.2 30000

bxmh5: $0d1_0d2_0d6_1d2-pd3-mbf-4B1$ eval: test Void point id deleted model lrelements bs norm inloss epoch-pacc-cacc train/eval weight decay net in drop aug 5VaG_114 2-40xyz mid Rotate Num lw 20-0.749/0.645 color Ref dp:5N530-0.810/0.705 Y shuffle 40-0.870/0.744 80-0.917-0.737/0.7540.422 120 - 0.929 - 0.765200-0.953-0.774 300-0.962/0.774 train[200-280] t(d,c):[4.1 25.5 79.6] loss: 0.337 acc: 0.954-0.041 acc histgram: [0.000e+00 0.000e+00 0.000e+00 0.000e+00 3.084e-04 1.850e-03 8.973e-02 8.668e-01 4.009e-02] weighted class pre/rec/IOU: 0.962 0.954 0.918 N=97.290000M points ave/std: 0.954 0.041 class ave pre/rec/IOU: 0.825/ 0.948/ 0.799 class_pre: -0.000, 0.98, 0.98, 0.98, 0.98, 0.83, 0.91, 0.88, 0.88, 0.76, 0.81, 0.76, 0.79, 0.79, 0.77, 0.71, 0.80, 0.84, 0.57, 0.84, class_rec: -0.00, 0.90, 0.93, 0.96, 0.91, 0.94, 0.98, 0.98, 0.95, 0.92, 0.98, 0.96, 0.97, 0.94, 0.96, 0.94, 0.97, 0.96, 0.96, 0.94, class_IOU: -0.00, 0.89, 0.91, 0.90, 0.84, 0.81, 0.91, 0.88, 0.86, 0.72, 0.80, 0.76, 0.78, 0.76, 0.76, 0.69, 0.78, 0.82, 0.56, 0.80, number(K): 0.34786,31997, 5563, 4131, 1808, 2598, 1901, 3002, 278, 272, 223, 880, 631, 2163, 815, 113, 462, 432, 2761, classname: unann, wall,floor,chair,table, desk, bed,books, sofa, sink,batht,toile,curta,count, door,windo,showe,refri,pictu,cabin,o eval[200-79] t(d,c):[4.0 11.6 81.8] loss: 22.747 acc: 0.774-0.179 acc histgram: [0.007 0.007 0.011 0.015 0.038 0.064 0.141 0.207 eval[200-79] t(d,c):[4.0 11.6 81.8] loss: 22.747 acc: 0.772-0.178 acc histgram: [0.005 0.006 0.012 0.013 0.042 0.072 0.148 0.207 weighted class pre/rec/IOU: 0.822 0.772 0.703 N=28.290000M points ave/std: 0.772 0.178 class ave pre/rec/IOU: 0.429/ 0.344/ 0.278 class_pre: -0.00, 0.82, 0.94, 0.68, 0.58, 0.45, 0.60, 0.43, 0.57, 0.37, 0.44, 0.52, 0.11, 0.42, 0.20, 0.07, 0.28, 0.33, 0.03, 0.4 class_rec: -0.00, 0.88, 0.92, 0.68, 0.52, 0.30, 0.51, 0.38, 0.55, 0.20, 0.36, 0.38, 0.03, 0.30, 0.06, 0.00, 0.15, 0.16, 0.00, 0.3 class_IOU: -0.00, 0.74, 0.88, 0.54, 0.43, 0.24, 0.43, 0.27, 0.41, 0.16, 0.28, 0.30, 0.02, 0.22, 0.05, 0.00, 0.11, 0.13, 0.00, 0.2 number(K): 0,10626, 8669, 1584, 1231, 587, 725, 460, 888, 66, 47, 62, 222, 243, 675, 100, 16, 94, 54, 86 classname: unann, wall,floor,chair,table, desk, bed,books, sofa, sink,batht,toile,curta,count, door,windo,showe,refri,pictu,cabi Model saved in file: model.ckpt-200 Conclusion:

1.16 Charles Point++, fast distance sampling

1.16.1 MODELNET40

config	epoch-train acc/eval acc-eval cls
	acc
batch_size=32, decay_rate=0.7, decay_step=200000,	4-0.746/0.819-0.748
learning_rate=0.001, log_dir='log', max_epoch=251,	10-0.802/0.848-0.788
model='pointnet2_cls_ssg', momentum=0.9, nor-	40-0.886/0.875-0.858
mal=False, num_gpus=2, num_point=1024, opti-	60-0.916/0.892-0.859
mizer='a dam	
aug=True, batch_size=32, decay_rate=0.7, de-	10-0.806/0.853-0.817
cay_step=200000, gpu=1, indrop=True, learn-	60-0.939/0.8946/0.868
ing_rate=0.001, log_dir='log', max_epoch=251,	100-0.971/0.9036-0.883
model='pointnet2_cls_ssg', momentum=0.9, nor-	
mal=True, num_point=8 192, optimizer='adam',	
shuffle=True	

1.17 MODELNET40, My point++

After fix shuffle problem

1.17.1 3m

No block		nn1444-1024 teplicate red			_	
model	bs	lr	elements	norm in-	loss	epoch-pacc-cacc train/eval
		bn de-	group pos	net	weight	
		cay		aug	in drop	
$3\mathrm{m}$	36	1-30	xyzg	Rotate	E, NN5	1-0.707/0.775
		7-7	bc	Ref		2-0.744/0.804
						4-0.785/0.817
						10-0.831/0.826
						30-0.906/0.857
						60-0.967/0.852
3m	36	1-30	xyzg	Rotate	E, NN5	1-0.704/0.754
		7-7	mean	Ref		2-0.747/0.781
						4-0.783/0.810
						10-0.839/0.835
						60-0.969/0.865
3m	36	1-30	xyzrsg	Rotate	E, NN5	10-0.844/0.830
		7-7	mean	Ref	•	60-0.978/0.868
3m	36	1-30	xyzrsg,	Rotate	E, NN5	10-0.887/0.881
		7-7	nxnynz	Ref	, -	60-0.985/0.890
			mean			,
bymh5·40	096 os3 3 fm	nn 1444-1024	1	d2_0d4-0d1_0	d2-pd3-2M	2
		deplicate red		a2_0a1 0a1_0	az pas zwi	2
3m	28	1-30	xyzg	Rotate	E, NN5	1-0.698/0.795
0111	20	7-7	mean	Ref	E, 11110	10-0.834/0.853
		' '	incan			60-0.962/0.874
3m	28	1-30	xyzg	Rotate	E, NN5	1-0.703/0.786
0111	20	7-7	bc	Ref	Д, 11110	10-0.832/0.847
		'-'	be	Tite!		60-0.957/0.867
3m	28	1-30	xyzrsg	Rotate	E, NN5	1-0.695/0.764
0111	20	7-7	mean	Ref	Д, 11110	10-0.840/0.847
		'-'	Incan			60-0.976/0.880
3m	28	1-30	xyzrsg,	Rotate	E, NN5	1-0.747/0.814
5111	20	7-7	nxnynz	Ref	Д, 11110	10-0.882/0.879
		'-'	mean	1001		60-0.985/0.897
			inean			160-0.998/0.905
1 15 4	000 1	0 0 f 1 4	1 1004 0	10 1 40 07 16	0.010.014.0	*
	บ96_mgs1_gs	32_2_rmn14_r	nvp1-1024_24	10_1-48_27_16	v-vaz_va4-($0d1_{-}0d2$ -pd3-mbf-neg-
2M2p						
3Vm	58	1-30	WWW.C.C.	Rotate	E, NN5	1-0.549/0.635
O A III	100	5-5	xyzrsg	Rotate	E, ININO	10-0.852/0.812
		9-9	nxnynz	nei		,
			mean			30-0.961/0.840
						60-0.984/0.837
27.7	F0	1.00	-	D / /	E ONE	100-0.994/0.828
3Vm	58	1-30	xyzrsg	Rotate	E, 3N5	1-0.543/0.614
		5-5	$ \frac{\text{nxnynz}}{26} $	Ref		10-0.852/0.798
			mean			20-0.926/0.825
						27-0.955/0.800
0	52	1-30	xyzrsg	RotateRef	E, NN5	10-9.763/0.803
3m	"-					
3m	"-	5-5	nxnynz			60-0.879-0.876 100-0.921/0.872

Conclusion:

⁽⁰⁾ The performance of pointnet++ based on farest distance sampling is better. The reason may be on line sampling, the lost part is each exact is different.

1.17.2 4m

 $0d0_0d1_0d4\text{-pd3-mbf-neg-3M1}$ model bs lr elements loss epoch-pacc-cacc train/eval aug weight bn degroup pos in drop cay 4m16 1-30 RotateRef Е 10-0.688/0.755 xyzrsg-60-0.845/0.859 nxnynz NN5100-0.873/0.875 200-0.914/0.880 1-30 10-0.635/0.680 16 RotateRef Ε $4 \mathrm{m}$ xyzg NN560-0.784/0.807 120-0.837/0.830 241-0.878/0.846 Ε 10-0.623/0.671 16 1-30 RotateRef 4mxyzrsg-3N560 - 0.766 / 0.793nxnynz 120-0.821/0.810 1-30 RotateRef 10-0.691/0.726 4m16 Е xyzgnxnynz NN560-0.840/0.853 1100-0.874/0.862 120-0.886/0.861 4Vm 1-30 Е 10-0.894/0.817 56 xyzg-RotateRef nxnynz NN560-0.993/0.834 79-0.997/0.842

bxmh5:4096_mgs1_gs2_2d2_fmn1444_mvp1-3200_1024_48_1-18_24_56_56-0d1_0d2_0d6-							
$0d0_0d1_0d4-pd3-neg-3M1$							
No Block Merging							
4m	16	1-30	xyzg-	RotateRef	E	10-0.711/0.705	
			nxnynz		NN5	60-0.878/0.850	
						100-0.912/0.869	
4m	16	1-30	xyzg	RotateRef	Е	10-0.644/0.682	
					NN5	60-0.778/0.802	
						100-0.816/0.827	
4m	16	1-30	xyzs	RotateRef	Е	10-0.637/0.676	
					NN5	60-0.784/0.792	
						100-0.821/0.828	
4m	16	1-30	xyzr	RotateRef	E	10-0.658/0.698	
					NN5	60-0.801/0.821	
						70-0.815/0.819	
4Vm	30	1-30	xyzg-	RotateRef	E	10-0.890/0.830	
			nxnynz		NN5	51-0.992/0.841	
						100-0.999/0.847	
						113-0.999/0.853	
						129-0.999/0.847	
4Vm	30	1-30	xyzg-	RotateRef	Е	10-0.846/0.796	
			nxnynz		575	49-0.982/0.841	
4Vm	30	1-30	xyzg-	RotateRef	E	10-0.848/0.824	
			nxnynz		N75	60-0.989/0.831	
4Vm	28	1-30	xyzg	RotateRef	Е	10-0.884/0.821	
					NN5	60-0.994/0.838	
						80-0.996/0.842	
4Vm	30	1-30	xyzg	RotateRef	E	10-0.752/0.663	
			nxnynz	RotateVox	NN5	60-0.949/0.828	
						79-0.969/0.814	

Conclusion:

- (1) Input drop out increase overfitting here. This is not reasonable!
- (2) Learns much slower than 3m?
- (3) The variance is greater, maybe because of small bacth size.
- (4) Block merge is a little bit helpful for pointnet++ (5) xyzs is a little bit better than xyzg for pointnet++

No Block 1 4Vm-S2	30	3-30	xyzs	RotateRef	E	10-0.885/0.815
4 V III-52	30	3-30	XyZS	RotateVox	NN5	30-0.979/0.847
				notate vox	11110	40-0.982/0.855
4Vm-S2	30	3-30		RotateRef	E	10-0.889/0.843
4 V III-52	30	3-30	xyzs	RotateVox	E NN5	30-0.980/0.843
			nxnynz	notate vox	11110	60-0.995/0.848
4Vm-S3	30	3-30	xyzs	RotateRef	E	10-0.894/0.838
4 V III-33	30	3-30	nxnynz	RotateVox	NN5	30-0.981/0.851
			IIXIIYIIZ	notate vox	11110	60-0.996/0.853
4Vm-S4	30	3-30		RotateRef	E	10-0.888/0.862
4 V III-54	30	3-30	xyzs	RotateVox	E NN5	30-0.976/0.865
			nxnynz	Rotatevox	GMM	,
						48-0.989/0.850
4Vm-S3	50	1-20	xyzg	RotateRef	Е	10-0.930/0.829
normal				RotateVox	NN5	30-0.983/0.841
label						50-0.991/0.847
						69-0.998/0.861
						80-0.998/0.855
4Vm-S3	50	1-20	xyzrsg	RotateRef	Е	10-0.923/0.847
normal				RotateVox	NN5	30-0.981/0.837
label						52-0.996/0.865
						53-0.993/0.856
4Vm-	29	1-30	xyzs	RotateRef	E	10-0.900/0.841
S2L2			nxnynz	RotateVox	NN5	30-0.981/0.838
						60-0.996/0.851
4Vm-	29	1-30	xyzs	RotateRef	Ε	10-0.899/0.841
S3L3			nxnynz	RotateVox	NN5	30-0.992/0.847
						60-0.996-0.854
Conclusion	1:	-				
bvmh5.400)6 mgc1 gc	2 2d2 fmn1	444 myn1 2	200 1024 48 1	.18 24 56	56-0d1_0d2_0d6-
	m d4-pd3-neg		. 1 14 my p1-0	200_1024_40_1-	10_24_00_	.50 0d1_0d2_0d0-
No Block 1		OTATT				
$\frac{100 \text{ Block I}}{4\text{Vm}1}$	24	1-10	xyzs	RotateIn	E	10-0.862/0.859
- T V 1111	2'±	1-10	nxnynz	1000acm	ப	10-0.002/0.003
4Vm1-S3	24	1-10	xyzs	RotateIn	E	10-0.874/0.867
4 v 1111-33	24	1-10		notatem	ட	11-0.883/0.873
	1		nxnynz			,
						20-0.952/0.868

1.17.3 5m

$bxmh5:10000_gs3_3d5_fmn1444_mvp1-2560_1024_80_16_1-24_32_48_27_48-0d0_0d2_0d5_1d1-24_32_48_27_48-0d0_0d2_0d5_1d1-24_32_48_27_48-0d0_0d2_0d5_1d1-24_32_48_27_48-0d0_0d2_0d5_1d1-24_32_48_27_48-0d0_0d2_0d5_1d1-24_32_48_27_0d0_0d2_0d5_1d1-24_32_0d0_0d2_0d5_0d0_0d2_0d5_1d1-24_32_0d0_0d2_0d0_0d2_0d0_0d0_0d0_0d0_0d0_0d$									
0d0_0d1_0d3_0d6-pd3-mbf-neg-4M1									
ode-ode-ode pas inst neg mit									
model	bs	lr lr	elements	aug	loss	epoch-pacc-cacc train/eval			
		bn de-	group pos		weight				
		cay			in drop				
5m1	32	1-30	xyzg	RotateRef	Е	60-0.956/0.843			
						200-0.998/0.845			
5m	48	1-30	xyzrsg-	RotateRef	E	60-0.852/0.837			
			nxnyznz			100-0.894/0.866			
						119-0.923-0.878			
						150-0.938-0.867			
5Vm	32	1-30	xyzr	N	E	10-0.853/0.802			
						60-0.985/0.829			
						160-0.998/0.831			
Conclusion:									
(0)									

$2 \quad res3d$

$Merged_tfrecord/6_mgs1_gs2_2-mbf-neg_fmn14_mvp1-1024_s$	240_1-64_27_256-0d2_0d4-0d1_0d2-pd3-
2M2pp	
model bs feed aug lr0 bnd optimizer filters0	train/eval
pl34m 64 xyzg-nxnynz none 0.01 0.5 adam 32	0-?/0.12
	5-0.337/0.175
	10-0.425/0.368
	30-0.544/0.625
pl34m 64 xyzg-nxnynz none 0.01 0.997 adam 32	0-?/0.033
	5-0.073/0.048
	10-0.056/0.044
	20-0.099/0.119
pl34m 64 xyzg-nxnynz none 0.001 0.5 adam 32	0-?/0.580
	5-0.781/0.756
	15-0.854/0.818
pl34m 64 xyzg-nxnynz none 0.001 0.997 adam 32	0-?/0.041
	5-0.491/0.687
	10-0.712/0.503
Conclusion:	
(0)Learning rate too high leads to no convergence	
(1)Batch norm decay seems always better. Especially can	allow high learning rate.