전송계층

편집: 홍익대학교(세종) 김혜영

- 전송 계층은 데이터 링크 계층과 유사
 - 데이터 링크 계층은 물리적으로 1:1 연결된 호스트 사이의 전송
 - 전송 계층은 논리적으로 1:1 연결된 호스트 사이의 전송

그림 9-1 전송 계층과 데이터 링크 계층의 차이

❖ 전송 계층의 주요 기능

- 흐름 제어
 - 수신 호스트가 슬라이딩 윈도우 프로토콜의 윈도우 하단 값을 조정
- 오류 제어
 - 데이터 변형과 데이터 분실 : 재전송에 의한 오류 제어 기능에 의해 복구
- 분할과 병합
 - 분할 : 데이터를 전송하기 전에 적합한 크기로 나누는 과정
 - 병합 : 수신 프로세스가 수신한 데이터를 원래 크기로 다시 모으는 과정
- 서비스 프리미티브
 - 전송 계층 사용자가 전송 계층 서비스를 사용하기 위한 인터페이스

❖ 전송 계층 설계 시 고려 사항

- 주소 표현
 - TSAP : 전송 계층의 주소
 - 구조적 표현
 - 여러 개의 계층적 필드로 구성
 - 대한민국:서울:한국대학교:정보통신공학과:네트워크연구실:홍길동:50
 - www.korea.co.kr
 - 비구조적 표현
 - 초등학교의 반 번호
 - IP 주소
 - 네트워크와 호스트의 계층적인 정보 제공
 - 위치 정보와 관련해서는 비구조적 특징

- 멀티플렉싱
 - 상방향 멀티플렉싱
 - 다수의 전송 계층 연결에 대해 하부의 네트워크 계층에서 연결이 하나 형성
 - 네트워크 계층에서 만들어지는 가상 회선 연결의 개수를 줄일 수 있음
 - 하방향 멀티플렉싱
 - 하나의 전송 연결 설정을 의미하는 포트에 다수의 가상 회선을 할당
 - 전송 속도를 높이고 데이터의 특성에 따라 개별 가상 회선을 할당하여 효과적인 통신이 가능

- 연결 설정
 - Conn_Req : 프로세스의 연결 설정 요구
 - Conn_Ack : 상대편 프로세스에서 연결 수락을 의미
 - 연결 요청은 양자의 합의에 의해서만 가능

그림 9-3 개념적 연결 설정 절차

• 3단계 설정 동작 과정

그림 9-4 3단계 설정 절차

- 연결 해제
 - 일방적 연결 해제 절차 방식
 - 통신하는 한쪽 프로세스가 일방적으로 Disc_Req를 전송해 연결 종료를 선언
 - 전송이 진행중인 데이터의 처리가 완료되지 못함

그림 9-5 일방적 연결 해제 절차

- 점진적 연결 해제 절차 방식
 - 연결을 해제하려면 두 프로세스 모두 Disc_Req를 전송해함 (양쪽 합의하에 해제)

그림 9-6 점진적 연결 해제 절차

- TCP 주요 기능
 - 연결형 서비스를 제공
 - 전이중Full Duplex 방식의 양방향 가상 회선을 제공
 - 신뢰성 있는 데이터 전송을 보장

그림 9-7 TCP/IP 구조

❖ TCP 헤더 구조

• TCP는 데이터를 세그먼트Segment라는 블록 단위로 분할해 전송

0	3	}	9)				1	5	23	31
	Source Port					Destination Port					
Sequence Number											
	Acknowledgement Number										
Da	ata Offset	Reserved	E C C W E R	U R G	ACK	P S H	R S S N	S F Y I N N		Window	
	Checksum								Urgent Pointer		
Options / Padding											

- TCP 헤더의 필드
 - Source Port/Destination Port(송신 포트/수신 포트) : TCP로 연결되는 가상 회선 양단의 송수신 프로세스에 할당된 네트워크 포트 주소
 - Sequence Number(순서 번호) : 송신 프로세스가 지정하는 순서 번호
 - Acknowledgement Number(응답 번호) : 수신 프로세스가 제대로 수신한 바이트 의 수를 응답하기 위해 사용
 - Data Offset(데이터 옵셋) : TCP 세그먼트가 시작되는 위치를 기준으로 데이터의 시작 위치, TCP 헤더의 크기
 - Reserved(예약): 예약 필드
 - Window(윈도우): 수신 윈도우의 버퍼 크기를 지정하려고 사용
 - Checksum(체크섬) : TCP 세그먼트에 포함되는 프로토콜 헤더와 데이터 모두에 대한 변형 오류를 검출하려고 사용
 - Urgent Pointer(긴급 포인터) : 긴급 데이터를 처리하기 위한 것

- TCP 헤더의 플래그 비트
 - TCP 헤더에는 플래그 비트가 8개 정의, 처음 2개 비트는 혼잡 제어 용도로 사용
 - 나머지 6개 필드는 값이 1이면 다음과 같은 의미를 갖음
 - URG : Urgent Pointer 필드가 유효한지를 나타냄
 - ACK: Acknowledgment Number 필드가 유효한지를 나타냄
 - PSH: 현재 세그먼트에 포함된 데이터를 상위 계층에 즉시 전달하도록 지시할 때 사용
 - RST: 연결의 리셋이나 유효하지 않은 세그먼트에 대한 응답용으로 사용
 - SYN: 연결 설정 요구를 의미하는 플래그 비트, 가상 회선 연결을 설정하는 과정에서 사용
 - FIN : 한쪽 프로세스에서 더는 전송할 데이터가 없어 연결을 종료하고 싶다는 의사 표시를 상대방에게 알리려고 사용

- 혼잡 제어
 - ECNEXPlicit Congestion Notification 기능 : 라우터가 송신 프로세스에 명시적으로 혼잡 발생을 알려주어 송신 프로세스 스스로 트래픽을 완화하는 기술
 - CWR : ECE 비트를 수신한 송신 프로세스가 전송 윈도우 크기를 줄였음을 통지함
 - ECE : ECN-Echo로도 약칭되며, 네트워크 트래픽이 많아질 때 라우터가 송신 프로세스에 명시적으로 혼잡을 알리려고 사용
- 캡슐화 : IP 헤더에 캡슐화되어 데이터 링크 계층으로 보내짐

그림 9-9 TCP 세그먼트의 캡슐화

❖ 포트 번호

- TCP와 UDP가 상위 계층에 제공하는 주소 표현 방식
- Well-known 포트 : 인터넷 환경에서 많이 사용하는 포트 번호

표 9-1 Well-known 포트

세비스	포트 번호
FTP(데이터 채널)	20
FTP(제어 채널)	21
Telnet(텔넷)	23
SMTP	25
DNS	53
TFTP	69
HTTP	80
rlogin	513
rsh	514
portmap	111

- TCP 프로토콜 : 전이중 방식의 양방향 통신을 지원
 - 전송 데이터와 응답 데이터를 함께 전송하는 피기배킹 기능을 사용
 - 데이터 전송시 연결 설정, 데이터 전송, 연결 해제라는 3단계를 순차적으로 진행

❖ 연결 설정

- 3단계 설정Three-Way Handshake 방식
 - A 프로세스가 전송할 데이터가 없을 때 처리하는 방식

그림 9-10 TCP 연결 설정

❖ 데이터 전송

- 정상적인 데이터 전송
 - [그림 9-10]의 세 번째 단계에서 데이터를 전송한다고 가정

그림 9-11 TCP 데이터 전송

- 데이터 전송 오류
 - A 프로세스가 TCP 세그먼트 세 개를 연속으로 전송, 이 중 세 번째 세그먼트에
 오류가 발생했다고 가정한 경우

그림 9-12 전송 오류

❖ 연결 해제

- 연결을 해제하고자 하는 쪽에서 FIN 플래그를 지정해 요구
 - 양쪽 프로세스의 동의하에 진행됨

그림 9-13 TCP 연결 해제

❖ 혼잡 제어

- ECN^{Explicit Congestion Notification} 기능 : TCP의 혼잡 제어 기능을 지원
 - ECN 기능을 사용 : (a)처럼 SYN, ACK, ECE 플래그를 지정하여 응답
 - ECN 기능을 사용 안함 : (b)처럼 SYN, ACK 플래그만 지정하여 응답

그림 9-14 TCP 연결 설정(ECN)

- ECN의 동작 원리
 - 수신 프로세스의 중개^{Echo}를 거쳐 간접적으로 송신 프로세스에 혼잡을 통지
 - 혼잡을 인지한 라우터 다음의 라우터들이 ECN 기능을 반복적으로 수행하지 못하도록 함

그림 9-15 ECN의 동작 원리

- UDP^{User Datagram Protocol} : 프로토콜 중 구조가 가장 간단
- ■특징
 - 비연결형 서비스를 제공
 - 헤더와 전송 데이터에 대한 체크섬 기능을 제공
 - Best Effort 전달 방식을 지원
- 신뢰성이 떨어지지만 프로토콜을 처리하는 기능이 작아 TCP보다 데이터 처리가 빠르므로 데이터 전송 시간에 민감한 응용 환경에서는 UDP를 사용하는 것이 유리

❖ UDP 헤더 구조

■ 프로토콜의 오버헤드가 작은 편임

C	1	5 31
	Source Port	Destination Port
	Length	Checksum

그림 10-1 UDP 헤더의 구조

- Source Port/Destination Port(송신 포트/수신 포트) : 송수신 프로세스에 할당된 네트워크 포트 번호
- Length(길이) : 프로토콜 헤더를 포함한 UDP 데이터그램의 전체 크기
- Checksum(체크섬) : 프로토콜 헤더와 데이터에 대한 체크섬 값을 제공

❖ UDP의 데이터그램 전송

- 비연결형 서비스를 이용하여 데이터그램을 전송
- 흐름 제어 기능이 없어 버퍼 오버플로Buffer Overflow에 의한 데이터 분실 오류
 가 발생할 수 있음
- 오류 유형
 - 데이터가 목적지에 도착하지 못하는 데이터그램 분실과
 - 데이터그램의 도착 순서가 바뀌는 도착 순서 변경
- UDP에서의 데이터그램 분실 : 데이터의 순서 번호 기능이 없음

- UDP에서의 데이터그램 도착 순서 변경
 - 데이터의 순서 번호 기능이 없음

그림 10-3 도착 순서 변경

03_OSI TP 프로토콜

- OSI TP 프로토콜이 제공하는 서비스
 - 클래스 0이 구조가 가장 단순, 클래스 번호가 커질수록 기능이 추가

표 10-3 OSI TP 프로토콜이 제공하는 서비스

클래스	제공하는 서비스				
클래스 ()	기본 기능				
클래스 1	기본 오류 복구 기능				
클래스 2	멀티플렉싱 기능				
클래스 3	오류 복구, 멀티플렉싱 기능				
클래스 4	오류 검출, 오류 복구, 멀티플렉싱 기능				

03_OSI TP 프로토콜

❖ OSI TP의 서비스 프리미티브

- 연결형 서비스 : 연결 설정(T-CONNECT), 연결 해제(T-DISCONNECT) 일반 데이터(T-DATA), 긴급 데이터(T-EXPEDITED-DATA)
- 비연결형 서비스 : 데이터 전송을 위한 T-UNITDATA 프리미티브만 존재

표 10-4 OSI TP의 서비스 프리미티브

프리미티브	제공 서비스	프리미티브	제공 서비스
T-CONNECT,request	연결 설정	T-DATA.request	데이터 전송
T-CONNECT.indication	연결 설정	T-DATA.indication	데이터 전송
T-CONNECT.response	연결 설정	T-EXPEDITED-DATA.request	긴급 데이터 전송
T-CONNECT.confirm	연결 설정	T-EXPEDITED-DATA,indication	긴급 데이터 전송
T-DISCONNECT.request	연결 해제	T-UNITDATA.request	비연결형 데이터 전송
T-DISCONNECT.indication	연결 해제	T-UNITDATA.indication	비연결형 데이터 전송

03_OSI TP 프로토콜

❖ OSI TP의 데이터 전송

- T-DISCONNECT(연결 해제)
 - 어느 한쪽이라도 연결 해제를 원하면 해제
 - 네트워크 내부에 특별한 상황이 발생시 해제

그림 10-8 OSI 프리미티브