Chapter 53 Topologie sur les espaces vectoriels normés

53.1 Normes et espaces vectoriels normés

Exercice 53.1

Pour tout $(x, y) \in \mathbb{R}^2$, on pose $||(x, y)|| = \sup_{t \in \mathbb{R}} \left| \frac{x + ty}{1 + t^2} \right|$. Montrer que l'on définit ainsi une norme sur \mathbb{R}^2 , et dessiner la boule unité.

Exercice 53.2

Soit $p \ge 1$ un réel. Soit $n \ge 1$ un entier. Soient des réels positifs $a_1, \ldots, a_n, b_1, \ldots, b_n$. On a vu l'inégalité de Minkovski

$$\left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{1/p} \le \left(\sum_{k=1}^{n} a_k^p\right)^{1/p} + \left(\sum_{k=1}^{n} b_k^p\right)^{1/p}.$$

On pose, pour $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^n$,

$$||X||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}.$$

- **1.** Montrer que l'on définit ainsi une norme sur \mathbb{K}^n .
- **2.** Montrer que pour $a \ge 0$, $1 + a^p \le (1 + a)^p$.
- **3.** Montrer que $\sum_{k=1}^{n} a_k^p \le (\sum_{k=1}^{n} a_k)^p$.
- **4.** Étudier les variations de $||X||_p$ en fonction de p.
- **5.** Étudier $\lim_{p\to\infty} ||X||_p$.

Exercice 53.3

Soit $E = \mathbb{K}_n[X]$. Soient des scalaires distincts a_0, \dots, a_n . Montrer que

$$||P|| = \sum_{k=0}^{n} |P^{(k)}(0)|$$

est une norme.

Exercice 53.4

Soit A une partie non vide de \mathbb{R} . Pour tout polynôme $P \in \mathbb{R}[X]$, on pose $\|P\|_A = \sup_{x \in A} |P(x)|$. Quelles conditions A doit-elle satisfaire pour que l'on obtienne ainsi une norme $\|*\|_A$ sur $\mathbb{R}[X]$?

Exercice 53.5

Pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$, on pose

$$||A|| = \sum_{i,j=1}^{n} |a_{i,j}|.$$

Montrer que $\|\cdot\|$ est une norme d'algèbre, c'est-à-dire une norme sur $\mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall A,B\in\mathcal{M}_n(\mathbb{R}),\|AB\|\leq\|A\|\|B\|.$$

Exercice 53.6

Soit E l'algèbre des fonctions continues de [0,1] vers \mathbb{R} . On pose, pour $f \in E$, $||f||_1 = \int_0^1 |f(t)| dt$. Montrer que cette norme d'espace vectoriel n'est pas une norme d'algèbre.

Exercice 53.7

Soit $\|\cdot\|$ une norme sur le \mathbb{R} -espace vectoriel E. On veut prouver qu'elle est euclidienne dès que l'égalité du parallélogramme est vérifiée, c'est-à-dire

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$
 (Égalité du parallèlègramme)

En vertu de la méthode de polarisation, on pose

$$\varphi(x, y) = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$$

et on cherche à prouver que φ est un produit scalaire sur E.

- **1.** Montrer l'identité $\varphi(x, y + z) = \varphi(x, y) + \varphi(x, z)$.
- **2.** Montrer l'identité pour tout λ réel : $\varphi(x, \lambda y) = \lambda \varphi(x, y)$.
- 3. Montrer que φ est un produit scalaire tel que $\|\cdot\|$ est sa norme associée.

Exercice 53.8

Soit
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^n$$
. Montrer les inégalités

$$\begin{split} \|X\|_{\infty} & \leq & \|X\|_{1} & \leq & n\|X\|_{\infty}. \\ \|X\|_{\infty} & \leq & \|X\|_{2} & \leq & \sqrt{n}\|X\|_{\infty}. \\ \|X\|_{\infty} & \leq & \|X\|_{1} & \leq & n\|X\|_{\infty}. \end{split}$$

Prouver que les six constantes obtenues sont les meilleures, en exhibant chaque fois un vecteur $X \neq 0$ réalisant l'égalité.

Exercice 53.9

Soit
$$E = \mathscr{C}([a, b], \mathbb{R})$$
.

- **1.** Montrer l'inégalité $||f||_1 \le (b-a)||f||_{\infty}$.
- 2. Montrer l'inégalité $||f||_2 \le \sqrt{b-a}||f||_{\infty}$
- 3. Montrer l'inégalité $||f||_1 \le \sqrt{b-a}||f||_2$.
- **4.** Montrer que, pour $f \neq 0$, les quotients suivants non sont pas majorés

$$\frac{\|f\|_{\infty}}{\|f\|_{1}}, \quad \frac{\|f\|_{\infty}}{\|f\|_{2}}, \quad \frac{\|f\|_{2}}{\|f\|_{1}}.$$

Exercice 53.10 Soit
$$E = \mathbb{Q}\left[\sqrt{2}\right] = \left\{ a + b\sqrt{2} \mid (a, b) \in \mathbb{Q}^2 \right\}.$$

- **1.** Montrer que E est un \mathbb{Q} -espace vectoriel de dimension 2.
- 2. Montrer que les applications

$$a + b\sqrt{2} \mapsto |a| + |b|$$
 et $a + b\sqrt{2} \mapsto |a + b\sqrt{2}|$

définissent deux normes sur E.

3. À l'aide de $u_n = \left(1 - \sqrt{2}\right)^n$, montrer qu'elle ne sont pas équivalentes.

Exercice 53.11

On note $E=\mathscr{C}([0,1],\mathbb{R})$ et pour $\varphi\in E,N_{\varphi}:E\to\mathbb{R}$ l'application définie par

$$\forall f \in E, N_{\varphi}(f) = \|f\varphi\|_{\infty}.$$

- **1.** Montrer que N_{φ} est une norme sur E si, et seulement si $(\varphi^{-1}(\{0\}))^{\circ} = \emptyset$.
- **2.** Montrer que N_{φ} et $\|*\|_{\infty}$ sont des normes sur E équivalentes si, et seulement si $\varphi^{-1}(\{0\}) = \emptyset$.

Exercice 53.12 Oral Mines-Pont PSI 2023

Soient E un \mathbb{R} -espace vectoriel, N_1 et N_2 deux normes sur E.

- 1. Soit (u_n) une suite qui converge dans (E, N_1) . On suppose que N_1 et N_2 sont équivalentes. Montrer que (u_n) converge dans (E, N_2) .
- **2.** On suppose qu'une suite (u_n) converge dans (E, N_1) si, et seulement si (u_n) converge dans (E, N_2) . Montrer que N_1 et N_2 sont équivalentes.
- **3.** On prend $E = \mathbb{R}[X]$, $a \in \mathbb{R}$, et

$$N_a(P) = |P(a)| + \int_0^1 |P'(t)| dt.$$

Montrer que si $a, b \in [0, 1]$, N_a et N_b sont équivalentes.

- **4.** Soit, pour $n \in \mathbb{N}$, $P_n = \frac{X^n}{2^n}$. Trouver les valeurs de a telles que (P_n) converge pour N_a et déterminer alors la limite.
- **5.** En déduire que N_a et N_b ne sont pas équivalentes si $0 \le a < b$ et b > 1.

53.2 Suites d'éléments d'un espace vectoriel normé

Exercice 53.13

Soit Q un polynôme de $\mathbb{R}[X]$. Construire une norme sur $\mathbb{R}[X]$ telle que la suite $(X^n)_{n\in\mathbb{N}}$ converge vers Q pour cette norme.

53.3 Topologie d'un espace normé

Exercice 53.14

Si deux boules fermées $B_f(a,r)$ et $B_f(a',r')$ d'un espace vectoriel normé $E \neq \{0\}$ sont égales, montrer que a=a' et r=r'.

Exercice 53.15

Soient E, F, G trois espaces vectoriels normés, A un ouvert de $E \times F, B$ un ouvert de $F \times G$. On définit

$$B \circ A = \{ (x, z) \in E \times G \mid \exists y \in F, (x, y) \in A \text{ et } (y, z) \in B \}.$$

Montrer que $B \circ A$ est un ouvert de $E \times G$.

Exercice 53.16

Soient U_1, \ldots, U_p des parties ouvertes d'un espace vectoriel normé E.

1. Montrer que $U = U_1 \cap \cdots \cap U_p$ est une partie ouverte.

2. Que dire de la réunion d'un nombre fini de parties fermées?

Exercice 53.17

Montrer que les points intérieurs à une boule fermée sont ceux de la boule ouverte de même rayon (donc aucune boule fermée n'est ouverte).

Exercice 53.18

Soit A, B deux partie d'un espace vectoriel normé E. Montrer que

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
 et $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

Donner un exemple dans lequel $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.

Exercice 53.19

Soit A, B deux ouverts disjoints d'un espace vectoriel normé E. Montrer que les intérieurs de \overline{U} et \overline{V} sont disjoints.

Exercice 53.20

Soient A et B des parties d'un espace vectoriel normé E. Montrer que

1.
$$\overline{(A)} = \overline{A}$$
 et $A = A$.

2.
$$A \subset B \implies \overline{A} \subset \overline{B}$$
 et $A \subset B \implies \overset{\circ}{A} \subset B$.

3.
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
 et $A \cap B = \overset{\circ}{A} \cap \overset{\circ}{B}$.

4.
$$\overline{A \cap B} \subset \overline{A} \cap \overline{B}$$
 et $A \overset{\circ}{\cup} B \subset \overset{\circ}{A} \cup \overset{\circ}{B}$.

Trouver un exemple où l'inclusion est stricte.

5.
$$(A \stackrel{\circ}{\setminus} B) = \stackrel{\circ}{A} \setminus \overline{B}$$
.

$$\frac{\circ}{\circ} \quad \frac{\circ}{\circ} \quad \frac{\circ}{\circ} \quad \frac{\circ}{\circ}$$

$$A = A \text{ et } A = A$$

6.
$$A = A$$
 et $A = A$.

Exercice 53.21

Soit E l'espace des fonctions f de classe \mathscr{C}^1 de [0,1] dans \mathbb{R} . On le munit des normes

$$N_{\infty}(f) = \sup_{t \in [0,1]} |f(t)| \qquad \qquad N_{1}(f) = \int_{0}^{1} |f(t)| \, \mathrm{d}t \qquad \qquad N_{d}(f) = |f(0)| + \left\| f' \right\|_{\infty}.$$

$$N_1(f) = \int_0^1 |f(t)| \, \mathrm{d}t$$

$$N_d(f) = |f(0)| + ||f'||_{\infty}$$

- 1. Comparer ces trois normes.
- 2. Étudier pour chacune si

$$\Omega = \{ f \in E \mid \forall t \in [0, 1], f(t) > 0 \}$$

est une partie ouverte.

Exercice 53.22

Montrer que si F est un sous-espace vectoriel d'un espace vectoriel normé E, alors son adhérence \overline{F} est aussi un sous-espace vectoriel de E.

Exercice 53.23

On suppose que A est une partie convexe d'un espace vectoriel normé E, c'est-à-dire

$$\forall (x, y) \in A^2, \forall \lambda \in [0, 1], (1 - \lambda)u + \lambda v \in A.$$

- 1. Montrer que \overline{A} est convexe.
- 2. La partie $\overset{\circ}{A}$ est-elle convexe?

Exercice 53.24

1. Soit $P = X^3 + aX^2 + bX + c$ un polynôme réel. Vérifier que les racines ξ de P satisfont

$$|\xi| \le \max\{1, |a| + |b| + |c|\}.$$

2. On note \mathcal{D} l'ensemble des $(a,b,c) \in \mathbb{R}^3$ tels que le polynôme $P=X^3+aX^2+bX+c$ soit scindé sur \mathbb{R} .

Montrer que \mathcal{D} est une partie fermée de \mathbb{R}^3 .

53.4 Parties compactes d'un espace vectoriel normé

Exercice 53.25

1. Soit $P = X^3 + aX^2 + bX + c$ un polynôme réel. Vérifier que les racines ξ de P satisfont

$$|\xi| \le \max\{1, |a| + |b| + |c|\}.$$

2. On note \mathscr{D} l'ensemble des $(a,b,c)\in\mathbb{R}^3$ tels que le polynôme $P=X^3+aX^2+bX+c$ soit scindé sur \mathbb{R}

Montrer que \mathcal{D} est une partie fermée de \mathbb{R}^3 .