Санкт-Петербургский политехнический университет имени Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и физики

Математическая статистика Отчёт по лабораторной работе №9

Выполнил:

Студент: Попов Иван Группа: 5030102/90201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание

1.	Постановка задачи	2
2	Теория	3
	2.1. Представление данных	
	2.2. Линейная регрессия	
	2.2.1. Описание модели	
	2.2.2. Метод наименьших модулей	
	2.3. Предварительная обработка данных	
	2.4. Коэффициент Жаккара	
	2.5. Процедура оптимизации	
	2.6. Процедура оптимизации	0
3.	Реализация	5
4.	Результаты	5
5.	Обсуждение	8
6.	Ссылка на репозиторий	8
Сп	исок литературы	8
\mathbf{C}	писок иллюстраций	
1.	Схема установки для исследования фотоэлектрических характеристик	2
2.	Исходные данные из экспериментов	
3.	Интервальное представление исходных данных	
	Линейная модель дрейфа данных	
	Гистограммы значений множителей коррекции w	
6.	Скорректированные модели данных	
7.	Гистограммы скорректированных данных	
8.	Значение коэффициента Жаккара от калибровочного множителя от R_{21}	
	Гистограмма объединнённых данных при оптимальном значении R_{21}	

1. Постановка задачи

Исследование из области солнечной энергетики [1]. На рис 1 показана схема установки для исследования фотоэлектрических характеристик.

Рис. 1. Схема установки для исследования фотоэлектрических характеристик.

Калибровка датчика $\Phi\Pi1$ производится по эталону $\Phi\Pi2$. Зависимость между квантовыми эффективностями датчиков предполагается одинаковой для каждой пары измерений

$$QE_2 = \frac{I_2}{I_1} * QE_1 \tag{1}$$

 QE_2, QE_1 - эталонная эффективность эталонного и исследумого датчика, а I_2, I_1 - измеренные точки. Данные с датчиков находятся в файлах $Ch2_800$ nm $_2$ m.csv и $Ch1_800$ nm $_2$ m.csv.

Треубется определить коэффициент калибровки

$$R_{21} = \frac{I_2}{I_1} \tag{2}$$

при помощи линейной регрессии на множестве интервальных данных и коэффициента Жаккара.

2 ТЕОРИЯ 3

2. Теория

2.1. Представление данных

В первую очередь представим данные таким образом, чтобы применить понятия статистики данных с интервальной неопределенностью.

Один из распространённых способов получения интервальных результатов в первичных измерениях - это "обинтерваливание" точечных значений, когда к точечному базовому зачению \dot{x} , которое считывается по показаниям измерительного прибора, прибавляется интервал погрешности ϵ :

$$\mathbf{x} = \dot{x} + \epsilon \tag{3}$$

Интервал погрешности зададим как

$$\epsilon = [-\epsilon; \epsilon]$$

В конкретных измерениях примем $\epsilon = 10^{-4} \ {\rm MB}.$

Согласно терминологии интервального анализа, рассматриваемая выборка - это вектор интервалов, или интервальный вектор $x = (x_1, x_2, ..., x_n)$.

2.2. Линейная регрессия

2.2.1. Описание модели

Линейная регрессия - регрессионная модель зависимости одной переменной от другой с линейной функцией зависимости:

$$y_i = X_i \beta_i + \epsilon_i$$

где X - заданные значения, у - параметры отклика, ϵ - случайная ошибка модели. В случае, если у нас y_i зависит от одного параметра x_i , то модель выглядит следующим образом:

$$y_i = \beta_0 + \beta_1 * x_i + \epsilon_i \tag{4}$$

В данной можели мы пренебрегаем прогрешностью и считаем, что она получается при измерении y_i .

2.2.2. Метод наименьших модулей

Для наиболее точного приближения входных с фотоприемников данных y_i линейной регрессией $f(x_i)$ используется метод наименьших квадратов. Этот метот основывается на минимизации нормы разности последовательности:

4 2 *ТЕОРИЯ*

$$||f(x_i) - y_i||_{l^1} \to min \tag{5}$$

В данном случае ставится задача линейного программирования, решение которой дает нам коэффициенты β_0 и β_1 , а также вектор множителей коррекции данных w. По итогу получается следующая задача линейного программирования

$$\sum_{i=1}^{n} |w_i| \to min \tag{6}$$

$$\beta_0 + \beta_1 * x_i - w_i * \epsilon \le y_i, i = 1..n \tag{7}$$

$$\beta_0 + \beta_1 * x_i + w_i * \epsilon \le y_i, i = 1..n \tag{8}$$

$$1 \le w_i, i = 1..n \tag{9}$$

2.3. Предварительная обработка данных

Для оценки постоянной, как можно будет увидет далее, необходима предварительная обработка данных. Займемся линейной моделью дейфа.

$$Lin_i(n) = A_i + B_i * n, n = 1, 2, ...N$$
 (10)

Поставив и решив задачу линейного программирования, найдем коэффициенты A_i , B_i и вектор w_i множителей коррекции данных (где i=1 соответствует данным с $\Phi\Pi 1$, а i=2 соответственно $\Phi\Pi 2$). В последствии множитель коррекции данных необходимо применить к погрешностям выборки, чтобы получить данные, которые согласовывались с линейной моделью дрейфа:

$$I_i^f(n) = \dot{x}(n) + \epsilon * w_i(n), n = 1, 2, ...N$$
(11)

По итоге необходимо построить "спрямленные" данные выборки: получить их можно путем вычитания из исходных данных линейную компоненту:

$$I_i^c(n) = I_i^f(n) - B_i * n, n = 1, 2, ...N$$
 (12)

2.4. Коэффициент Жаккара

Коэффициент Жаккара - мера сходства множеств. В интервальных данных рассматривается некоторая модификация этого коэффициента: в качестве меры множества (в данном случае интервала) рассматривается его длина, а в качестве пересечения и оъединения - взятие минимума и максимума в интервальной арифметике Каухера соответственно. Можно заметить, что в силу возможности минимума по включению быть неправильным инервалом, коэффициент Жаккара может достишать значения только в интервале [-1; 1].

$$JK(x) = \frac{width(\wedge x_i)}{width(\vee x_i)}$$
(13)

2.5. Процедура оптимизации

Чтоб найти оптимальный параметр калиброфки R_{21} необходимо поставить и решить задачу максимизации коэффициента Жаккара, зависящего от парамертра калибровки:

$$JK(I_1^c(n) * R \cup I_2^c(n)) = \rightarrow max \tag{14}$$

где I_1^c и I_2^c - полученные спрямленные выборки, а R - параметр калибровки. Найденный таким образом R и будет искомым оптимальным R_{21} в силу наибольшего совпадения, оцененного коэффицентом Жаккара.

3. Реализация

Лабораторная работа выполнена на языке программирования Python(3.7) с использованием следующих библиотек: Numpy, Scipy, Tabulate, Statsmodels, Matplotlib.

Отчет написан в онлайн редакторе LaTeX - Overleaf.

4. Результаты

Рис. 2. Исходные данные из экспериментов

6 *4 РЕЗУЛЬТАТЫ*

Рис. 3. Интервальное представление исходных данных

Рис. 4. Линейная модель дрейфа данных

Рис. 5. Гистограммы значений множителей коррекции w

4 РЕЗУЛЬТАТЫ

Рис. 6. Скорректированные модели данных

Рис. 7. Гистограммы скорректированных данных

Рис. 8. Значение коэффициента Жаккара от калибровочного множителя от R_{21}

Рис. 9. Гистограмма объединнённых данных при оптимальном значении R_{21}

5. Обсуждение

Множители коррекции w. На гистограммах значений множителей коррекции (Puc.5), видно, что половина (для эталлоного фотопередатчика даже больше) не требует коррекции. Этот факт свидетельстует о том, что линейная модель дрейфа данных является разумным приближением.

Коэффициент Жаккара На рис.8 видно, что оптимальным множителем R_{21} является число, равное 1.091815343531. Однако видно, что коэффициент Жаккара при оптимальном значении едва-едва превышает 0, а интервал, при котором JK >= 0, соизмерим с точкой (длина интервала оценивается $10^{-9} - 10^{-10}$). Это показывает на то, что исходные данные имеют ряд неточностей, которые сложно устранить.

Гистограмма объединённых данных при оптимальном значении ${\bf R.}$ Рассматривая гистограммы скорректированных данных(Рис. 7), можно заметить, что выборки I_1^f и I_2^f имеют характерные "пики"около центра, что имеет отражение на гисстограмме объединённых данных(Рис. 9).

6. Ссылка на репозиторий

https://github.com/PopovIV/MathematicalStatistics

Список литературы

[1] А.Н.Баженов Введение в анализ данных с интервальной неопределенностью. 2022.