MLS	Dataset	PLS(AIC)	PLS(AICc)	PLS(BIC)	PLS(HQIC)	PLS(GMDL)
Ridge	abalone	47.20(3)	47.20(3)	47.20(3)	47.20(3)	47.20(3)
	airfoil_self_noise	49.31(2)	49.31(2)	49.31(2)	49.31(2)	59.59(5)
	auto_mpg	19.26(3)	18.82(1)	19.26(3)	19.26(3)	19.26(3)
	automobile	17.65(4)	17.60(3)	17.34(1)	17.65(4)	17.34(1)
	concrete_data	39.04(3)	39.04(3)	39.04(3)	39.04(3)	39.04(3)
	crime	2.82e + 20(3)	2.82e + 20(3)	2.82e + 20(3)	2.82e+20(3)	2.82e + 20(3)
	fertility	104.75(2)	105.73(5)	104.75(2)	104.75(2)	104.75(2)
	flow	68.36(4)	68.36(4)	64.46(1)	68.36(4)	64.46(1)
	forest	101.49(3)	101.49(3)	101.49(3)	101.49(3)	101.49(3)
	qsar	43.07(3)	43.07(3)	43.07(3)	43.07(3)	43.07(3)
	servo	60.01(2)	60.01(2)	61.79(4)	60.01(2)	61.79(4)
	slump	86.68(2)	90.71(5)	86.68(2)	86.68(2)	86.68(2)
	traffic	44.10(2)	43.42(1)	44.47(4)	44.10(2)	44.47(4)
	wine_red	65.93(3)	65.93(3)	65.93(3)	65.93(3)	65.93(3)
	wine_white	73.91(3)	73.91(3)	73.91(3)	73.91(3)	73.91(3)
Avg. Rank	k	(3.00)	(2.97)	(2.93)	(3.00)	(3.10)
SVR	abalone	43.84(2)	43.84(2)	43.84(2)	43.84(2)	50.52(5)
	airfoil_self_noise	74.33(3)	71.87(1)	74.33(3)	74.33(3)	74.33(3)
	auto_mpg	20.20(2)	19.14(1)	21.51(4)	20.20(2)	28.54(5)
	automobile	20.27(1)	22.73(5)	20.54(2)	22.17(4)	20.68(3)
	concrete_data	29.69(3)	29.26(1)	29.69(3)	29.69(3)	29.69(3)
	crime	35.67(3)	35.67(3)	35.67(3)	35.67(3)	35.67(3)
	fertility	119.83(3)	127.47(5)	119.83(3)	119.83(3)	107.00(1)
	flow	247.34(4)	247.34(4)	66.91(1)	247.34(4)	70.72(2)
	forest	109.60(3)	109.60(3)	109.60(3)	109.60(3)	109.60(3)
	qsar	39.45(3)	39.45(3)	39.45(3)	39.45(3)	39.45(3)
	servo	16.76(3)	16.49(1)	16.76(3)	16.76(3)	18.05(5)
	slump	81.24(4)	81.24(4)	77.99(1)	81.24(4)	77.99(1)
	traffic	46.74(3)	46.60(1)	47.11(5)	46.74(3)	46.65(2)
	wine_red	58.82(1)	58.82(1)	60.62(4)	60.62(4)	60.62(4)
	wine_white	59.79(3)	58.99(1)	59.79(3)	59.79(3)	59.79(3)
Avg. Rank	k	(2.97)	(2.47)	(3.03)	(3.33)	(3.20)
	abalone	44.89(2)	44.89(2)	49.43(4)	44.89(2)	49.43(4)
RFR	airfoil_self_noise	12.37(2)	12.29(1)	12.90(4)	12.37(2)	17.47(5)
	auto_mpg	13.98(3)	13.71(2)	13.65(1)	13.98(3)	16.24(5)
	automobile	18.92(3)	21.63(4)	18.11(2)	21.63(4)	15.66(1)
	concrete_data	11.29(2)	11.29(2)	11.29(2)	11.29(2)	14.33(5)
	crime	37.63(3)	37.09(1)	37.63(3)	37.63(3)	37.63(3)
	fertility	113.98(4)	113.98(4)	99.36(2)	113.98(4)	98.27(1)
	flow	77.71(4)	83.91(5)	63.68(2)	73.75(3)	59.79(1)
	forest	118.57(3)	118.57(3)	108.17(1)	118.57(3)	118.57(3)
	qsar	39.93(2)	39.65(1)	40.84(4)	39.93(2)	40.84(4)
	servo	21.18(4)	19.41(2)	21.18(4)	19.13(1)	19.67(3)
	slump	84.99(3)	87.86(5)	79.54(1)	84.99(3)	80.62(2)
	traffic	53.58(5)	52.33(4)	50.01(2)	50.01(2)	46.89(1)
	wine_red	60.12(3)	59.26(1)	60.12(3)	60.12(3)	60.12(3)
	wine_white	60.29(2)	60.29(2)	66.12(4)	60.29(2)	66.12(4)
Avg. Rank		(3.30)	(2.70)	(2.87)	(2.93)	(3.20)
Mean Ran		(3.09)	(2.71)	(2.94)	(3.09)	(3.17)
		(- 00)	()	("-)	(- 00)	()

Table 3: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when PLS, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RFR) and the GS sampling strategy.