Functional Analysis

github.com/dan-gc/analysis

These are preparation notes for a course on Functional Analysis at IMPA, summer 2024. They are based on Folland, *Real Analysis: Modern Techniques and Their Applications*; Bachman and Narici, *Functional Analysis*; Brezis, *Functional Analysis, Sobolev Spaces and Partial Differential Equations*.

Contents

1	1/1045410 411001	2
	1.1 σ -algebras	2
	1.2 Measures	
	1.3 Outer measures	4
	1.4 Integration	6
2		8
	2.1 Metric spaces	8
	2.2 Topological spaces	10
	2.3 Compact spaces	11
	2.4 Locally Compact Hausdorff spaces	12
	2.5 Three compactness theorems	
	2.6 The Stone-Weierstrass Theorem	13
3	Inner product spaces	15
	3.1 Inner products	15
	3.2 Orthogonal projections	16
	3.3 Riesz representation theorem	17
	3.4 Adjoint operator	17
	3.5 Spectral theorem for normal transformations	18
	3.6 Unitary and orthogonal transformations	18
4	Normed spaces	19
5	Exercises	23

1 Measure theory

A measure should surely satisfy:

1. If E_1, E_2, \ldots is a finite or infinite sequence of disjoint sets,

$$\mu(E_1 \cup E_2 \cup \ldots) = \mu(E_1) + \mu(E_2) + \ldots$$

2. If E is congruent to F,

$$\mu(E) = \mu(F)$$

3. If *Q* is the unit cube,

$$\mu(Q) = 1$$

1.1 σ -algebras

Let *X* be a nonempty set.

- An *algebra of sets* on X is a nonempty collection \mathcal{A} of subsets of X that is closed under finite unions and complements, that is,
 - 1. If $E_1, \ldots, E_n \in \mathcal{A}$, then $\bigcup_{i=1}^n E_i \in \mathcal{A}$.
 - 2. If $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$.
- A σ -algebra is an algebra of sets closed under countable unions.
- The intersection of all σ -algebras containing any subset $\mathcal{E} \subset \mathcal{P}(X)$ is the σ -algebra generated by \mathcal{E} .
- The σ -algebra generated by the open sets of a topological (or metric) space X is the *Borel algebra* \mathcal{B}_X .
- Let $\{X_{\alpha}\}_{{\alpha}\in A}$ is a collection of nonempty sets, $X=\prod_{\alpha}X_{\alpha}$ and $\pi_{\alpha}:X\to X_{\alpha}$ the coordinate functions. If \mathcal{M}_{α} is a σ -algebra on X_{α} , the *product* σ -algebra on X is the σ -algebra generated by

$$\{\pi_{\alpha}(E_{\alpha}): E_{\alpha} \in \mathcal{M}_{\alpha}, \alpha \in A\}$$

We denote this σ -algebra by $\bigotimes_{\alpha \in A} m_{\alpha}$.

Proposition 1.1. $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$ is generated by $\{\prod_{\alpha \in A} E_{\alpha} : E_{\alpha} \in \mathcal{M}\}.$

Proposition 1.2. Let X_1, \ldots, X_n be metric spaces and let $X = \prod_i X_i$ be equiped with the product metric. Then $\bigotimes_i \mathcal{B}_i \subset \mathcal{B}_X$. If every X_i is separable equality holds.

Corollary 1.3. $\mathcal{B}_{\mathbb{R}^n} = \bigotimes_{i=1}^n \mathcal{B}_{\mathbb{R}}$.

1.2 Measures

Let X be a set equipped with a σ -algebra \mathcal{M} .

- A *measure* on \mathcal{M} (or on (X,\mathcal{M}) , or simply on X) is a function $\mu:\mathcal{M}\to [0,\infty)$ such that
 - 1. $\mu(\varnothing)$.
 - 2. if $\{E_j\}_1^{\infty}$ is a sequence of disjoint sets in \mathcal{M} , then $\mu(\bigcup_1^{\infty}) = \sum_1^{\infty} \mu(E_i)$.
- If X is a set and $\mathcal{M} \subset \mathcal{P}(X)$ is a σ -algebra, (X,\mathcal{M}) is called a *measurable space* and the sets in \mathcal{M} are *measurable sets*. If μ is a measure on (X,\mathcal{M}) , then (X,\mathcal{M},μ) is called a *measure space*.
- If $\mu(X) < \infty$ (and hence $\mu(E) < \infty$ for all $E \in \mathcal{M}$), μ is called σ -finite. If $X = \bigcup_{1}^{\infty} E_{j}$, with $\mu(E_{j}) < \infty$, μ is called σ -finite. If for every $E \in \mathcal{M}$ with $\mu(E) = \infty$ there exists $F \in \mathcal{M}$ such that $F \subset E$ and $0 < \mu(F) < \infty$, μ is called *semifinite*.

Theorem 1.4 (Properties of measure spaces). Let (X, \mathcal{M}, μ) be a measure space.

- 1. **(Monotonicity.)** If $E, F \in \mathcal{M}$ and $E \subset F$, then $\mu(E) < \mu(F)$.
- 2. (Subaditivity.) If $\{E_i\}_1^{\infty} \subset \mathcal{M}$, then $\mu(\bigcup_1^{\infty} E_i) \leq \sum_1^{\infty} \mu(E_i)$.
- 3. (Continuity from below.) If $\{E_j\}_1^{\infty} \subset \mathcal{M}, E_1 \subset E_2 \subset \ldots$, then $\mu(\bigcup_{j=1}^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.
- 4. (Continuity from above.) If $\{E_j\}_1^{\infty} \subset \mathcal{M}$, $E_1 \supset E_2 \supset \ldots$, and $\mu(E_1) < \infty$, then $\mu(\bigcap_{j=1}^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.
- If $E \in \mathcal{M}$ and $\mu(E) = 0$, E es called a *null set*. If a statement about points in X is true except for points in a null set, we say it is true *almost everywhere*.
- If $\mu(E) = 0$ and $F \subset E$, then $\mu(F) = 0$ provided $F \in \mathcal{M}$. A measure whose domain contains all subsets of null sets is *complete*. Completeness may help avoid technical difficulties, and it can always be achieved by enlarging the domain of μ :

Theorem 1.5. Let (X, \mathcal{M}, μ) be a measure. Let $\mathcal{N} = \{N \in \mathcal{M} : \mu(N) = 0\}$ and $\overline{\mathcal{M}} = \{E \cup F : E \in \mathcal{M} \text{ and } F \subset N \text{ for some } N \in \mathcal{N}\}$. Then $\overline{\mathcal{M}}$ is a σ -algebra, and there is a unique extension $\overline{\mu}$ of μ to a complete measure on $\overline{\mathcal{M}}$, called the *completion of* μ .

- Excercises
 - 1. If μ_1, \ldots, μ_n are measures on (X, \mathcal{M}) and $a_1, \ldots, a_n \in [0, \infty)$, then $\sum_1^\infty a_j \mu_j$ is also a measure on (X, \mathcal{M}) .
 - 2. $\mu(E \cup F) = \mu(E) + \mu(F) \mu(E \cap F)$.
 - 3. A set $E \subset X$ is called *locally measurable* if $E \cap A \in \mathcal{M}$ whenever $A \in \mathcal{M}$ and $\mu(A) < \infty$. If \mathcal{M} equals the collection of the saturated sets $\tilde{\mathcal{M}}$, it is called *saturated*. The saturated measure $\tilde{\mu}$ on $\tilde{\mathcal{M}}$ defined by $\tilde{\mu}(E) = \mu(E)$ for $E \in \mathcal{M}$ and $\tilde{\mu}(E) = \infty$ otherwise is called the *saturation of* μ .

1.3 Outer measures

This is used to construct measures. The key idea is to approximate the measure of a set by simpler encosing sets, like with the Riemann integral.

- An *outer measure* on a nonempty set X is a function $\mu^*: \mathcal{P}(X) \to [0,\infty]$ that satisfies
 - 1. $\mu^*(\emptyset) = 0$,
 - 2. $\mu^*(A) \leq \mu^*(B)$ if $A \subset B$, and
 - 3. $\mu^* \left(\bigcup_{1}^{\infty} A_i \right) \leq \sum_{1}^{\infty} \mu^* (A_i)$.

Proposition 1.6. Let $\mathcal{E} \subset \mathcal{P}(X)$ and $\rho : \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}$, $X \in \mathcal{E}$ and $\rho \emptyset = 0$. For any $A \subset X$, define

$$\mu^*(A) = \inf \left\{ \sum_{1}^{\infty} \mu(E_j) : E_j \in \mathcal{E} \text{ and } A \subset \bigcup_{1}^{\infty} E_j \right\}$$
 (1)

then μ^* is an outer measure.

• A set $A \subset X$ is called μ -measurable if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$
 for all $E \subset X$

Which makes sense if we think E is a *well-behaved* set such that $A \subset E$, so that $\mu^*(A) = \mu^*(E) - \mu^*(E \cap A^c)$.

Theorem 1.7 (Carathèodory). If μ^* is an outer measure on X, the collection \mathcal{M} of μ^* -measurable sets is a σ -algebra, and the restriction of μ^* to \mathcal{M} is a complete measure.

- If $\mathcal{A} \subset \mathcal{P}(X)$ is an algebra, the function $\mu_0 : \mathcal{A} \to [0, \infty]$ is a *premeasure* if
 - $\mu_0(\emptyset) = 0,$
 - If $\{A_j\}_1^\infty$ is a sequence of disjoint sets in $\mathcal A$ such that $\bigcup_1^\infty \in \mathcal A$, then $\mu_0\left(\bigcup_1^\infty A_j\right) = \sum_1^\infty \mu_0(A_j)$.

Proposition 1.8. If μ_0 is a premeasure on \mathcal{A} and μ^* is defined by eq. (1) by taking $\rho = \mu_0$, then

- 1. $\mu^* | \mathcal{A} = \mu_0$,
- 2. every set in \mathcal{A} is μ^* measureable.

Theorem 1.9. Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, μ_0 a premeasure on \mathcal{A} and \mathcal{M} the σ -algebra generated by \mathcal{A} . There exists a measure μ on \mathcal{M} whose restriction to \mathcal{A} is μ_0 —namely $\mu = \mu^* | \mathcal{M}$, where μ^* is given by eq. (1). (This is a consequence of Carathédory's theorem and the last proposition.)

If ν is another measure on M that extends μ_0 , then $\nu(E) \leq \mu(E)$ for all $E \in M$ with equality when $\mu(E) < \infty$. If μ_0 is σ -finite, then μ is the unique estension of μ_0 to a measure on M.

• A *Borel measure on* \mathbb{R} is a measure on \mathbb{R} whose domain is the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$.

Proposition 1.10. Let $F: \mathbb{R} \to \mathbb{R}$ be increasing and right continuous. If $(a_j, b_j]$, $j = 1, \ldots, n$ are disjoint *half-open intervals*, so that $0 \le a_j, b_j \le \infty$, or (a_j, ∞) , or they are empty, define

$$\mu_0\left(\bigcup_{1}^{n}(a_j,b_j)\right) = \sum_{1}^{n}[F(b_j) - F(a_j)]$$

and let $\mu_0(\emptyset) = 0$. Then μ_0 is a premeasure on the algebra \mathcal{A} of finite disjoint unions of half-open intervals.

Theorem 1.11. If $F : \mathbb{R} \to \mathbb{R}$ is any increasing, right continuous function, there is a unique Borel measure μ_F on \mathbb{R} such that $\mu_F((a,b]) = F(b) - F(a) \ \forall a,b$.

If G is another such function, $\mu_F = \mu_G$ if and only if F - G is constant. Conversely, given a μ Borel measure on $\mathbb R$ that is finite on all bounded Borel sets we may define an increasing right continuous function F such that $\mu = \mu_F$.

• By theorem 1.9, there is a complete measure $\bar{\mu}_F$ whose domain includes $\mathcal{B}_{\mathbb{R}}$. In fact $\bar{\mu}_F$ is the completion of μ_F and its domain is strictly larger than $\mathcal{B}_{\mathbb{R}}$. This complete measure is called the *Lebesgue-Stieltjes measure* and is also denoted by μ_F .

In the following μ is the Lebesgue-Stieltjes meause associated to some increasing, right-continuous function F, and M_{μ} is the domain of μ .

Theorem 1.12. If $E \in \mathcal{M}_{\mu}$, then

$$\mu(E) = \inf \{ \mu(U) : E \subseteq U \text{ and } U \text{ is open} \}$$

= $\sup \{ \mu(K) : K \subseteq E \text{ and } K \text{ is compact} \}$

Theorem 1.13. If $E \subset \mathbb{R}$, the following are equivalent:

- 1. $E \in \mathcal{M}_{\mu}$.
- 2. $E = V \setminus N_1$ where V is a G_δ (countable intersection of open sets) and $\mu(N_1) = 0$.
- 3. $E=H\cup N_2$ where H is an F_σ (countable union of closed sets) set and $\mu(N_2)=0$.

Proposition 1.14. If $E \in \mathcal{M}_{\mu}$ and $\mu(E) < \infty$, then for every $\varepsilon > 0$, there is a set A that is a finite union of open intervals such that $\mu(E \triangle A) < \varepsilon$.

• The *Lebesgue measure* is the Lebesgue-Stieltjes measure of F(x) = x. We denote it by m and its domain by \mathcal{L} .

Theorem 1.15. Is $E \in \mathcal{L}$, then $E + s \in \mathcal{L}$ and $rE \in \mathcal{L}$ for all $s, r \in \mathbb{R}$. Moreover, m(E + s) = m(E) and m(rE) = |r|m(E).

Proposition 1.16. Let C be the Cantor set. C is compact, nowhere dense and totally disconnected (ie. the only connected subsets of C are single points). C has no isolated points. m(C) = 0. $card(C) = \mathfrak{c}$.

1.4 Integration

Now we construct integrals from simple funtions.

• (Measurable maps.) Recall that a mapping $f: X \to Y$ between two sets induces a mapping $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}X$ defined by the inverse image, which preserves unions, intersection and complements, so that if \mathcal{N} is a σ -algebra on Y, then $\{f^{-1}(E): E \in \mathcal{N}\}$ is a σ -algebra on X.

If (X,\mathcal{M}) and (Y,\mathcal{N}) are measureable spaces, a mapping $f:X\to Y$ is called *measurable* if $f^{-1}(E)\in\mathcal{M}$ for all $E\in\mathcal{N}$.

Proposition 1.17. A function whose codomain is a product measure space is measurable if precomposing with every projection is measurable.

Corollary 1.18. A function $f: X \to \mathbb{C}$ is \mathcal{M} -measurable if and only if Re f and Im f are \mathcal{M} -measurable.

Proposition 1.19. If $\mathcal N$ is generated by $\mathcal E$, then $f:X\to Y$ is measurable if and only if $f^{-1}(E)\in\mathcal M$ for all $E\in\mathcal E$.

Corollary 1.20. If X and Y are metric (or topological spaces), every continuous function is $(\mathcal{B}_X, \mathcal{B}_Y)$ -measurable.

Proposition 1.21. If $f, g: X \to \mathbb{C}$ are \mathcal{M} -measurable, then so are f + g and fg.

Proposition 1.22. If $\{f_j\}$ is a sequence of $\overline{\mathbb{R}}$ -valued measurable functions on (X, \mathcal{M}) , then the functions

$$\sup_{j} f_{j}(x) \qquad \limsup_{j \to \infty} f_{j}(x)$$
$$\inf_{j} f_{j}(x) \qquad \liminf_{j \to \infty} f_{j}(x)$$

are measurable. If

$$f(x) = \lim_{j \to \infty} f_j(x)$$

exists for every $x \in X$, then f is measurable.

Corollary 1.23. If $f, g: X \to \overline{\mathbb{R}}$ is measurable, then so are $\max(f, g)$ and $\min(f, g)$.

If $f: X \to \overline{\mathbb{R}}$ we define de *positive* and *negative* parts of f as:

$$f^{+}(x) = \max(f(x), 0)$$
 $f^{-}(x) \max(-f(x), 0)$

Then $f = f^+ - f^-$, and if f is measurable, so are f^+ and f^- by corollary 1.23.

• Let (X, M) be a measurable space. If $E \subset X$, the *characteristic or indicator function* χ_E *of* E is

$$\chi(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

A simple function is . The integral of a simple function is . The integral of a measurable function .

Theorem 1.24 (Monotone convergence). content...

Theorem 1.25 (Dominated convergence). content...

Proposition 1.26 (Aditivity of the integral). content...

• The *Lebesgue integral* is the integral we have developed then the measure is the Lebesgue measure.

Theorem 1.27 (Fubini-Tonelli).

1.

$$\int f d(\mu \times \nu) = \int \left(\int f(x,y) d\nu(y) \right) d\mu(x) = \int \left(\int f(x,y) d\mu(x) \right) d\nu(y)$$

2.

Theorem 1.28 (2.44).

$$\int \int f(x)dx = |\det T| \int f \circ T(x)dx$$

Theorem 1.29 (2.47, diffeomorphisms). content...

2 Point set topology

2.1 Metric spaces

A *metric* on a set X is a function $\rho: X \times X \to [0, \infty)$ such that

- 1. $\rho(x,x) = 0$ if and only if x = 0.
- 2. $\rho(x,y) = \rho(y,x)$ for all $x,y \in X$.
- 3. $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$.

Two metrics ρ_1 and ρ_2 on a set X are *equivalent* if $C\rho_1 \leq \rho_2 \leq C'\rho_2$ for some C, C' > 0.

Theorem 2.1. Let (X,d) and (Y,d') be metric spaces. If $f:X\to Y$, the following are equivalent conditions for f to be *continuous*:

- 1. $\forall x \in X \forall \varepsilon > 0 \exists \delta > 0 : f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x))$
- 2. $\forall x \in X \forall x_n \to x : f(x_n) \to f(x)$.
- 3. $\forall F \subseteq Y$ open, $f^{-1}(F)$ is open.
- 4. $\forall F \subseteq Y$ closed, $f^{-1}(F)$ is closed.

If $f:(X,\rho)\to (Y,\rho')$ is such that

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in X : f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x))$$

we say f is uniformly continuous.

Exercise. If (Y, ρ') is complete and $f: A \to Y$ is uniformly continuous on $A \subset X$ and $\overline{A} = X$, then f has a unique continuous extension $g: X \to Y$ which is uniformly continuous on X. Show that this is not true in general if Y is not complete.

If $f:(X,\rho)\to (Y,\rho')$ is a bijective function such that for any $x,y\in X$, $\rho(x,y)=\rho'(f(x),f(y))$ we say f is an *isometry* and the two spaces are *isometric*. A function $f:(X,\rho)\to (X,\rho)$ is a *contraction* if there exists a 0< a< 1 such that $\rho(f(x),f(y))\leq a\rho(x,y)$ for any $x,y\in X$. Every contraction is continuous, and if X is complete then any contraction has a unique fixed point.

A sequence $\{x_n\}$ in X converges to x if $\lim_{n\to\infty} \rho(x_n,x)=0$. A sequence $\{x_n\}$ in X is called *Cauchy* if $\lim_{n\to\infty} \rho(x_n,x_m)=0$, that is

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n, m > N : \rho(x_n, x_m) < \varepsilon.$$

A subset $E \subseteq X$ is *complete* if every Cauchy sequence in E converges to its limit in E. If (X, ρ) and (X^*, ρ^*) are metric spaces and

- 1. (X, ρ) is isometric to a subspace (X, ρ^*) of (X^*, ρ^*) ,
- 2. The closure of X_0 is all of X^* (X_0 is everywhere dense or simply dense),

we say (X^*, ρ^*) is the *completion* of (X, ρ) .

Theorem 2.2. Every metric space (X, ρ) has a completion (X^*, ρ^*) . If (X^{**}, ρ^{**}) is also a completion of (X, ρ^*) , then (X^*, ρ^*) is isometric to (X^{**}, ρ^{**}) ; that is, the completion of a space is unique up to isometry.

Proof. Consider equivalence classes of Cauchy sequences.

Proposition 2.3. A closed subset of a metric space is complete, and a complete subset of an arbitrary metric space is closed.

Theorem 2.4. If *E* is a subset of a metric space (X, ρ) , the following are equivalent:

- 1. E is complete and *totally bounded* (it can be covered by finitely many balls of radius ε).
- 2. **(Bolzano-Wierstrass Property.)** Every sequence in *E* has a subsequence that converges to a point in *E*.
- 3. (Heine-Borel Property) If $\{V_{\alpha}\}_{{\alpha}\in A}$ is an open cover of E, then there is a finite subset $F\subseteq A$ such that $\{V_{\alpha}\}_{{\alpha}\in F}$ covers E.

A set that satsifies any of these condition s is called *compact*.

Theorem 2.5. If (X, ρ) is a metric space and A is compact, then A is closed and bounded.

If (X, ρ) is a metric space, $A \subseteq X$ is *relatively compact* if \overline{A} is compact. If $\varepsilon > 0$, a subset $N \subset X$ is an ε -net with respect to A if $\forall x \in A \exists n \in N : \rho(x, n) < \varepsilon$. A is *totally boundad* if for any $\varepsilon > 0$ there exists a finite ε -net with respect to A.

Theorem 2.6. Let (X, ρ) be a metric space and $A \subseteq X$. If for every sequence of points from A one can select a convergente subsequence, then A is totally bounded.

A set A is *countably compact* if every infinite subset of A has a limit point in A. All compact sets are countably compact. A is *sequentially compact* if every sequence in A has a subsequence that converges to a point in A. In a metric space, compactness is equivalent to countable and sequential compactness.

Theorem 2.7. Let (X, ρ) be a metric space and $A \subseteq X$.

- 1. *A* is relatively compact if and only if a convergent subsequence can be selected from every sequence of points in *A*. (We do not claim that the limit point is a member of *A*.)
- 2. If *A* is relatively compact, it is also totally bounded.
- 3. If (X, ρ) is complete and A is totally bounded, then A is relatively compact.
- 4. If *A* is compact then *A* is closed and totally bounded.

2.2 Topological spaces

If τ_1 and τ_2 are two topologies on a set X, we say τ_1 is *weaker* (or *coarser*) and τ_2 *stronger* (or *finer*). $E \subseteq X$ is called *dense* if $\overline{E} = X$ and *nowhere dense* if \overline{E} has empty interior. X is called *separable* if it has a countable dense subset.

- T_0 If $x \neq y$, there is an open set containing x but not y, or an open set containing y but not x.
- T_1 If $x \neq y$, there is an open set containint y but not x. Equivalently, $\{x\}$ is closed for every $x \in X$.
- T_2 (Hausdorff.) If $x \neq y$ there are disjoint open sets U and V such that $x \in U$ and $y \in V$.
- T_3 (**Regular.**) X is T_1 and for any closed set $A \subset X$ and any $x \in A^c$ there are disjoint open sets U, V with $x \in U$ and $a \subseteq V$.
- $T_{3\frac{1}{2}}$ (Tychonoff, Completely regular.) X is T_1 and for each closed $A \subseteq X$ and each $x \notin A$ there exists $f \in C(X, [0, 1])$ such that f(x) = 1 and f = 0 on A.
- T_4 (Normal.) X is T_1 and for any disjoint closed sets A,B in X there are disjoint open sets U,V with $A\subseteq U$ and $B\subseteq V$.

If X is any set and $\{f_\alpha: X \to Y_\alpha\}_{\alpha \in A}$ is a family of maps from X into some topological spaces Y_α , there is a unique weakest topology τ on X that makes all the f_α continuous called the *weak topology generated by* $\{f_\alpha\}_{\alpha \in A}$. An example of this topology is the *product topology* on $X = \prod_{\alpha \in A} X_\alpha$ with the projections.

Proposition 2.8.

- If X_{α} is Hausdorff for each $\alpha \in A$ then $X = \prod_{\alpha \in A}$ is Hausdorff.
- If X_{α} and Y are topological spaces, a function $f: Y \to X = \prod_{\alpha \in A} X_{\alpha}$ is continuous if and only iff $\pi_{\alpha} \circ f$ is continuous for each α .
- If X is a topological space, A is a nonempty set and $\{f_n\}$ is a sequence in X^A , then $f_n \to f$ in the product topology if and only if $f_n \to f$ pointwise.

If X is any set and $K = \mathbb{R}$ or \mathbb{C} , denote by B(X,K) the set of bounded K-valued functions on X, C(X,K) the set of continuous K-valued functions on X, and BC(X,K) the set of bounded continuous functions on X. If no field is specified we take it to be \mathbb{C} .

For $f \in B(X)$ define the *uniform norm* of f to be

$$||f||_u = \sup\{|f(x)| : x \in X\}$$

Then the function $\rho(f,g) = |Vertf - g|Vert_u$ is a metric on B(X). Convergence in this metric is simply uniform convergence:

$$\{f_n\}_{tof}^u \iff \forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n > N \forall x \in X : |f_n(x) - f(x)| < \varepsilon$$

B(X) is complete with this metric since \mathbb{C} is complete.

Proposition 2.9. If X is a topological space, BC(X) is a closed subspace of B(X) in the uniform metric; in particular BC(X) is complete.

Lemma 2.10 (Urysohn). Let X be a normal space. If A and B are disjoint closed sets in X, there exists $f \in C(X, [0, 1])$ such that f = 0 on A and f = 1 on B.

Theorem 2.11 (Tietze Extension Theorem). Let X be a normal space. If A is a closed subset of X and $f \in C(A, [a, b])$, there exists $F \in C(X, [a, b])$ such that F|A = f.

Corollary 2.12. If X is normal, $A \subseteq X$ is closed and $f \in C(A)$, there exists $F \in C(X)$ such that F|A=f.

Urysohn's lemma shows that every T_4 space is completely regular $(T_{3\frac{1}{2}})$.

Theorem 2.13 (Dugundji). Sea X un espacio metrizable, $A = \bar{A} \subset X$ y L un espacio vectorial localmente convexo, y $V \subset L$ convexo. Entonces cualquier función $f: A \to V$ admite una extensión F.

$$A \xrightarrow{f} V$$

$$\downarrow \qquad \qquad \downarrow^{\rtimes}$$

$$Y$$

Además img $F \subset \operatorname{conv} \operatorname{img} F$.

2.3 Compact spaces

A topological space X is called *compact* if whenever $\{U_{\alpha}\}_{{\alpha}\in A}$ is an open cover of X there is a finite subset B of A such that $X=\bigcup_{{\alpha}\in B}U_{\alpha}$. A subset $Y\subseteq X$ is called *compact* if it is compact in the relative topology and *precompact* if its closure is compact.

A family $\{F_{\alpha}\}_{{\alpha}\in A}$ of subsets of X has the *finite intersection property* if $\bigcap_{{\alpha}\in B}F_{\alpha}\neq\varnothing$ for all finite $B\subseteq A$.

Proposition 2.14.

- A topological space X is compact if and only if for every family $\{F_{\alpha}\}_{{\alpha}\in A}$ of closed sets with the finite intersection property, $\bigcap_{{\alpha}\in A}F_{\alpha}\neq\varnothing$.
- A closed subset of a compact space is compact.
- If K is a compact subset of a Hausdorff space X and $x \notin K$ then there are disjoint open sets U, V such that $x \in U$ and $K \subseteq V$.
- Every compact subset of a Hausdorff space is closed.
- Every compact Hausdorff space is normal.
- If X is compact and $f: X \to Y$ is continuous then f(X) is compact.
- If X is compact, then C(X) = BC(X).
- If X is compact and Y is Hausdorff, then any continuous bijection f : X → Y is an homeomorphism.

A topological space X is *countably compact* if every countable open cover of X has a finite subcover, and *sequentially compact* if every sequence in X has a convergent subsequence. For metric spaces compactness and sequential compactness are the equivalent. There exists no general relation between compactness and sequential compactness.

2.4 Locally Compact Hausdorff spaces

A topological space is called *locally compact* if every point has a compact neighbourhood (a set $A \subset X$ such that $x \in A^o$). We call locally compact Hausdorff spaces LCH for short.

Proposition 2.15. Let *X* be a LCH space.

- If $U \subseteq X$ is open and $x \in U$, there is a compact neighbourhood K of x such that $K \subset U$.
- If $K \subseteq U \subseteq X$, with K compact and U open, there exists a precompact open V such that $K \subseteq V \subseteq \overline{V} \subseteq U$.
- (Urysohn's Lemma, Locally Compact Version.) If $K \subset U \subseteq X$, there exists $f \in C(X, [0, 1])$ such that f = 1 on K and f = 0 outside a compact subset of U.
- Every LCH space is completely regular.
- (Tietze Extension Theorem, Locally Compact Version) If $K \subseteq X$ is compact and $f \in C(K)$, there exists $F \in C(X)$ such that F|K = f. F may be taken to vanish outside a compact set.

If $f \in C(X)$, the *support of* f is the closure of $\{x \in X : f(x) \neq 0\}$ and denote $C_c(X) := \{f \in C(X) : \text{supp } f \text{ is compact}\}$. We say f *vanishes at infinity* if for every $\varepsilon > 0$ the set $\{x : |f(x)| \geq \varepsilon\}$ is compact and define $C_0(X) := \{f \in C(X) : f \text{ vanishes at infinity}\}$.

Proposition 2.16. If X is an LCH space, $C_0(X)$ is the closure of $C_c(X)$ in the uniform metric.

If X is a topological space, there are many ways of topologizing \mathbb{C}^X . One way is the product topology, that is, the topology of pointwise convergence. Another is the *topology of uniform convergence*, which is generated by the sets

$$\left\{ g \in \mathbb{C}^X : \sup_{x \in X} |g(x) - f(x)| < n^{-1} \right\} \qquad n \in \mathbb{N}, f \in \mathbb{C}^X.$$

In view of a previous proposition (cite?), we know C(X) is a closed subset of \mathbb{C}^X with the topology of uniform convergence. Another topology is the *topology of uniform convergence on compact sets*, generated by the sets

$$\left\{g \in \mathbb{C}^X : \sup_{x \in K} |g(x) - f(x)| < n^{-1}\right\} \qquad n \in \mathbb{N}, f \in \mathbb{C}^X, K \subseteq X \text{ compact.}$$

Proposition 2.17. Let *X* be an LCH space.

- If $E \subseteq X$, then E is closed if and only if $E \cap K$ is closed for every compact $K \subseteq X$.
- C(X) is a closed subspace of \mathbb{C}^X in the topology of uniform convergence on compact sets.
- If $\{U_j\}_{j=1}^n$ is an open cover of a compact subset K of X, then there is a partition of unity on K subordinate to $\{U_j\}_{j=1}^n$ soncisting of compactly supported functions.

Theorem 2.18 (Urysohn Metrization Theorem). Every second countable normal space is metrizable.

2.5 Three compactness theorems

Recall that if $X = \prod_{\alpha \in A} X_{\alpha}$, an element $x \in X$ is just a mapping from A to $\bigcup_{\alpha \in A} X_{\alpha}$, with $x(\alpha)$ the α th coordinate of x.

Theorem 2.19. If $\{X_{\alpha}\}_{{\alpha}\in A}$ is a family of compact topological spaces, then $X=\prod_{{\alpha}\in A}X_{\alpha}$ is compact with the produc topology.

Let X be a topological space and $\mathcal{F} \subseteq C(X)$ a family of complex-valued continuous functions on X. We say \mathcal{F} is *equicontinuous at* $x \in X$ if for every $\varepsilon > 0$ there is a neighbourhood U of x such that $|f(x) - f(y)| < \varepsilon$ for all $y \in U$ and all $f \in \mathcal{F}$; and *equicontinuous* if it is equicontinuous at every $x \in X$. Also, \mathcal{F} is *pointwise bounded* if $\{|f(x)|: f \in \mathcal{F}\}$ is bounded for all $x \in X$.

Theorem 2.20 (Arzelá-Ascoli I). Let X be a compact Housdorff space. If $\mathcal F$ is an equicontinuous, pointwise bounded subset of C(X), then $\mathcal F$ is totally bounded in the uniform metric, and the closure of $\mathcal F$ in C(X) is compact.

Theorem 2.21 (Arzelá-Ascoli II). Let X be a locally compact Housdorff space. If $\{f_n\}$ is an equicontinuous, pointwise bounded sequence in C(X), then there exists $f \in C(X)$ and a subsequence of $\{f_n\}$ that converges to f uniformly on compact sets.

2.6 The Stone-Weierstrass Theorem

Recall that the Weierstrass theorem states that any continuous function on a compact interval [a,b] is the uniform limit of polynomials on [a,b]. Throughout this subsection, X will denote a compact Hausdorff space, and C(X) is equipped with the uniform metric.

A subset \mathcal{A} of $C(X,\mathbb{R})$ of C(X) is said to *separate points* if for every $x,y\in X$ with $x\neq y$ there exists $f\in \mathcal{A}$ such that $f(x)\neq f(y)$. \mathcal{A} is called an *algebra* if it is a real (resp. complex) vector subspace of $C(X,\mathbb{R})$ (resp. C(X)) such that $fg\in \mathcal{A}$ whenever $f,g\in \mathcal{A}$. \mathcal{A} is called a *lattice* if $\max(f,g)$ and $\min(f,g)$ are in \mathcal{A} whenever $f,g\in \mathcal{A}$. If \mathcal{A} is an algebra or a lattice, so is its closure in the uniform metric.

Theorem 2.22 (Stone-Weierstrass Theorem). Let X be a compact Hausdorff space. If \mathcal{A} is a closed subalgebra of $C(X,\mathbb{R})$ that separates points, then either $A=C(X,\mathbb{R})$ of $\mathcal{A}=\{f\in C(X,\mathbb{R}): f(x_0)=0\}$ for some $x_0\in X$. The first alternative holds if and only if \mathcal{A} contains the constant functions.

Corollary 2.23. Suppose \mathcal{B} is a subalgebra of $C(X,\mathbb{R})$ that separates points. If there exists $x_0 \in X$ such that $f(x_0) = 0$ for all $f \in \mathcal{B}$, then \mathcal{B} is dense in $\{f \in C(X,\mathbb{R}) : f(x_0) = 0\}$. Otherwise, \mathcal{B} is dense in $C(X,\mathbb{R})$.

The classical Weierstrass approximation theorem is the special case of this corollary where X is the compact subset of \mathbb{R}^n and \mathcal{B} is the algebra of polynomials on \mathbb{R}^n (restricted to X); here \mathcal{B} contains the constant functions, so it is dense in $C(X,\mathbb{R})$.

The Stone-Weirstrass theorem, as stated, is false for complex-valued functions. We may show that $f(z) = \bar{z}$ cannot be approximately uniformly by polynomials on the unit circle.

Theorem 2.24 (Complex Stone-Weirstrass Theorem). Let X be a compact Hausdorff space. If \mathcal{A} is a closed complex subalgebra of C(X) that separates points and is closed under complex conjugation, then either A = C(X) of $\mathcal{A} = \{f \in C(X) : f(x_0) = 0\}$ for some $x_0 \in X$.

Finally, there is a version of the Stone-Weirstrass theorem for noncompact LCH spaces. We state for real functions; the complex analogue is an immediate consequence.

Theorem 2.25 (LCH Stone-Weirstrass Theorem). Let X be a noncompact LCH space. If \mathcal{A} is a closed complex subalgebra of $C_0(X,\mathbb{R})$ that separates points, then either $A=C_0(X,\mathbb{R})$ of $\mathcal{A}=\{f\in C_0(X,\mathbb{R}): f(x_0)=0\}$ for some $x_0\in X$.

3 Inner product spaces

Let *X* be a real or complex vector space.

3.1 Inner products

An *inner product* on *X* is a mapping

$$\langle -, - \rangle : X \times X \to F$$

with the following properties:

- (I₁) if $x, y \in X$ then $\langle x, y \rangle = \overline{\langle x, y \rangle}$;
- (I₂) if α, β are scalars, $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$;
- (I₃) $\langle x, x \rangle \ge 0$ for all $x \in X$ and equal to zero if and only if x is the zero vector. (Since, by I₁, $\langle x, x \rangle$ must be real.)

Examples.

1. Let X=C[a,b] be complex-valued continuous functions on the closed interval [a,b] with pointwise addition and scalar product. As the inner product of any two vectors f and g in this space take

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx$$

2. Let $X = l_2$, the set of all sequences of complex numbers $(a_1, a_2, ...)$ with the property that $\sum_{i=1}^{\infty} |a_i|^2 < \infty$. As the inner product of any two vectors $x = (a_i)$ and $y = (b_i)$ in this space take

$$\langle f, g \rangle = \sum_{i=1}^{\infty} a_i \overline{b}_i$$

which converges by the Hölder inequality.

3. Let Y be the closed interval [a,b], S the Lebesgue measurable sets and μ the Lebesgue measure. Then, for the equivalence clasess of square-integrable functions (complex-valued) on [a,b] we can take as the inner product of two clases f and g,

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx$$

where the integral is the Lebesgue integral. This space is denoted by $L_2(a, b)$.

Theorem 3.1 (Cauchy-Schwarz inequality). Let X be an inner product space and let $x, y \in X$. Then

$$|\langle x, y \rangle \le ||x|| ||y||$$

with equality holding if and only if x and y are linearly independent.

3.2 Orthogonal projections

Two vectors $x, y \in X$ are *orthogonal* if $\langle x, y \rangle = 0$.

Examples.

1. In $L_2(-\pi,\pi)$, the collection (or any subset thereof)

$$x_n = \frac{1}{\sqrt{2\pi}}e^{int}, \qquad n = 0, \pm 1, \dots$$

is an orthonormal set of vectors.

Proof. For any $n \in \mathbb{Z}$,

$$\int_{-\pi}^{\pi} x_n \overline{x}_n dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{int} \overline{e^{int}} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} ||e^{int}||^2 dt = 1,$$

and if m is another integer,

$$\int_{-\pi}^{\pi} x_n \overline{x}_m dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{int} \overline{e^{imt}} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{(n-m)it} dt = \frac{1}{2\pi} \left[\frac{e^{(n-m)it}}{(n-m)i} \right]_{-\pi}^{\pi} = 0.$$

2. If we restric out attention to only real-valued functions that are square-integrable on the interval $[-\pi, \pi]$, then the collection (or any subset thereof)

$$\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos t, \frac{1}{\sqrt{\pi}}\cos 2t, \dots$$
$$\frac{1}{\sqrt{\pi}}\sin t, \frac{1}{\sqrt{\pi}}\sin 2t, \dots$$

is an orthonormal set.

Theorem 3.2. If *S* is an orthonoromal subset of an inner product space, then it is linearly independent (where linear independence is defined as finite sums).

Theorem 3.3 (Gram-Schmidt process). Let X be an inner product space. If $\{y_1, y_2, \ldots\}$ is a linearly independent set of vectors, then there exists an orthonormal set of vectors $\{x_1, x_2, \ldots\}$ such that, for any n,

$$\langle y_1, y_2, \dots, y_n \rangle = \langle x_1, x_2, \dots, x_n \rangle$$

where the brackets indicate the subspace spanned by the vectores enclosed.

If S is any subset of X, the *orthogonal complement of* S *in* X is the linear space $S^{\perp} := \{x \in X : x \perp s \text{ for all } s \in S\}.$

Theorem 3.4. If M is a finite-dimensional subspace of X, then $X = M \oplus M^{\perp}$.

3.3 Riesz representation theorem

Theorem 3.5 (Riesz). If X is a finite-dimensional inner product space and f is a linear functional on X, then there exists a unique vector $y \in X$ such that $f(x) = \langle x, y \rangle forall x \in X$.

Proof. Given an orthonormal basis e_i of X, consider $y = \sum_i \overline{f(e_i)} e_i$.

In Riemannian geometry this is called *raising an index* of a 1-form. Indeed, $\omega_p \in \Lambda^1(T_pM)$ is just a linear functional on T_pM , and $(\omega)^\sharp = g^{ij}\omega_jE_i$ at p is just a vector y such that $\omega_p(x) = \langle x,y \rangle$ for all $x \in T_pM$. So the former theorem may also be stated as " $y = f^\sharp$ exists". Recall this is given by viewing the inner product as a nonsingular matrix.

3.4 Adjoint operator

Let $A: X \to X$ be a linear transformation in a finite-dimensional inner product space X. For a given $y \in X$, define the linear functional

$$f^y: X \to F$$

 $x \mapsto \langle Ax, y \rangle$

which, by the Riesz representation theorem yields a unique $z \in X$ such that

$$f^y(x) = \langle x, z \rangle$$

Then the *adjoint of A* is the linear map

$$A^*: X \to X$$
$$y \mapsto z$$

so that $\langle Ax, y \rangle = \langle x, A^*y \rangle$.

Proposition 3.6 (Properties of the adjoint).

- 1. $(\alpha A)^* = \overline{\alpha} A^*$.
- 2. $(A+B)^* = A^* + B^*$.
- 3. $(AB)^* = B^*A^*$.
- 4. $(A^*)^* = A$.

If $A = A^*$ we say A is *self-adjoint*, and if $AA^* = A^*A$ we say A is *normal*.

Theorem 3.7. If *A* is self-adjoint, its eigenvalues are real. Eigenvectors associated to distinct eigenvalues of a self-adjoint operator are orthogonal.

Theorem 3.8. If M is an invariant subspace of X under A, then M^{\perp} is invariant under A^* .

Theorem 3.9. If A is a linear transformation on a finite-dimensional inner product space X, then $\operatorname{range}(A)^{\perp} = \operatorname{null}(A^*)$.

3.5 Spectral theorem for normal transformations

Theorem 3.10. Let A be a self-adjoint transformation in a finite-dimensional inner product space X. Then there exists an orthonormal basis of X consistinf of eigenvectors of A.

Lemma 3.11. Let A be a normal transformation in a finite-dimensional inner product space X. Then $||Ax|| = ||A^*x||$ for all $x \in X$.

Theorem 3.12. Let A be a normal transformation in a complex finite-dimensional inner product space X. Then there exists an orthonormal basis of X consistinf of eigenvectors of A.

Theorem 3.13. If A is a normal transformation on a finite-dimensional inner product space. Eigenvectors associated to distinct eigenvalues of a self-adjoint operator are orthogonal.

Recall that the notation $X=M_1\oplus\ldots\oplus M_k$ means that X is the *direct sum* of the M_i , which means that $X=M_1+\ldots+M_k$ and $M_i\cap\{M_1+\ldots\hat{M}_i+\ldots+M_k\}=\{0\}$, (every element in X is expressed as a unique sum of elements in M_i). If $M_i\perp M_j$ for all $i\neq j$, we say this is an *orthogonal direct sum decomposition of* X, and the *orthogonal projection to* M_j is just taking the corresponding component of a given element in its decomposition.

Theorem 3.14 (Spectral decomposition theorem for normal transformations). To every normal transformation A on a complex finite-dimensional inner product space there correspond scalar $\lambda_1, \ldots, \lambda_k$, the distinct eigenvalues of A, and orthogonal projections E_1, \ldots, E_k with $k \leq \dim X$, such that

- 1. E_i is the orthogonal projection on $Null(A \lambda_i)$ for i = 1, ..., k.
- 2. $E_i \neq 0$ and $E_i E_j = 0$ for i, j = 1, ..., k.
- 3. $\sum_{i=1}^{k} E_i = 1$.
- 4. $\sum_{j=1}^{k} \lambda_j E_j = A.$

If *A* was self-adjoint, we could weaken the hypotheses to a real inner product space.

3.6 Unitary and orthogonal transformations

Let X be a finite-dimensional inner product space, and $U: X \to X$ a linear transformation with $U^*U = 1$. We say U is **unitary** if X is complex and **orthogonal** if X is real. The condition $U^*U = 1$ implies that $UU^* = 1$.

Theorem 3.15. Let X be a finite-dimensional inner product space, and $U: X \to X$ a linear transformation. The following statements are equivalent:

- 1. $U^*U = 1$.
- 2. $\langle Ux, Uy \rangle = \langle x, y \rangle$.

3. ||Ux|| = ||x|| for all $x \in X$.

Theorem 3.16. If U is a unitary transformation on the finite-dimensional inner product space X, then each of the eigenvalues of U must have an absolute value equal to 1.

To summarize:

Theorem 3.17. Let A be a normal transformation on a complex finite-dimensional inner product space. Then

- 1. *A* is self-adjoint is and only if each eigenvalue of *A* is real.
- 2. *A* is unitary if and only if each eigenvalue of *A* has absolute value equal to 1.

4 Normed spaces

Let X be a real or complex vector space. A *norm* on X is a function $\|\cdot\|: X \to \mathbb{R}$ such that

- 1. $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0.
- 2. $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and $\lambda \in \mathbb{R}$.
- 3. (Triangle inequality.) $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X$.

Every normed space is a metric space with the distance function $\rho(x,y) = \|x-y\|$. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are called *equivalent* if there exist $C_1, C_2 > 0$ such that

$$C_1 ||x||_1 \le ||x||_2 \le ||x||_1 \qquad \forall x \in X$$

Equivalent norms define the same topology and the same Cauchy sequences.

A normed space that is complete is called a *Banach space*.

Theorem 4.1. For every normed linear space X there is a complete normed linear space X^* such that X is *congruent* (isomorphic and isometric) to a dense subset of X^* and the norm on X^* extends the norm on X.

If $\{x_n\}$ is a sequence in X, the series $\sum_{n=1}^{\infty} x_n$ converges to x if $\sum_{n=1}^{N} \to x$ as $N \to \infty$, and it is absolutely convergent is $\sum_{n=1}^{\infty} \|x_n\| < \infty$.

Theorem 4.2. A normed vector space *X* is complete if and only if every absoultely convergent series in *X* converges.

Examples.

- If X is a topological space, B(X) and BC(X) are Banach spaces with the uniform norm $||f||_u = \sup_{x \in X} |f(x)|$.
- If (X, \mathcal{M}, μ) is a measure space, $L^1(\mu)$ is a Banach space with the norm $||f||_1 = \int |f| d\mu$. (Observe that $||\cdot||_1$ is only a seminorm if we do not identify functions that are equal a.e.)

If X and Y are normed vector spaces, $X \times Y$ is a normed vector space with the *product norm*, $\|(x,y)\| = \max(\|x\|,\|y\|)$. If M is a vector subspace of X, the quotient space X/M consisting of equivalence classes under $x \sim y$ iff $x - y \in M$ is a normed space with the *quotient norm*, $\|x + M\| = \inf_{y \in M} \|x + y\|$.

A linear map $T:X\to Y$ between two normed vector spaces is *bounded* if there exists $C\geq 0$ such that

$$||Tx|| \le C||x|| \quad \forall x \in X$$

Proposition 4.3. If X and Y are normed vector spaces and $T: X \to Y$ is a linear map, then T is continuous if and only if it is bounded.

Proof. (\Longrightarrow) There exists $\delta > 0$ such that $||x|| \le \delta$ implies $||Tx|| \le 1$. For any nonzero $x \in X$,

$$||Tx|| = \left\| \frac{||x||}{\delta} T\left(\delta \frac{x}{||x||}\right) \right\| \le \frac{1}{\delta} ||x||.$$

 (\longleftarrow) If $||x-y|| < \frac{\varepsilon}{C}$,

$$||T(x) - T(y)|| = ||T(x - y)|| \le C||x - y|| < \varepsilon.$$

In fact, if *T* is bounded it is uniformly continuous and even Lipschitz continuous.

We denote by L(X,Y) the space of bounded linear maps from X to Y, which is a normed vector space with the *operator norm*

$$\begin{split} \|T\| &= \sup\{ \|Tx\| : \|x\| = 1 \} \\ &= \sup\left\{ \frac{\|tx\|}{\|x\|} : x \neq 0 \right\} \\ &= \inf\{ C : \|Tx\| \le C \|x\| \text{ for all } x \in X \} \end{split}$$

Proposition 4.4. If Y is complete, so is L(X, Y).

Proof. If $\{T_n\}$ is a Cauchy sequence in L(X,Y), the sequence $\|T_nx\|$ is Cauchy in Y since $\|T_nx - T_mx\| \le \|T_n - T_m\| \|x\|$. Define pointwise $Tx = \lim_{n \to \infty} T_nx$.

T is *invertible* if it bijective and T^{-1} is bounded. It is called an isometry if ||Tx|| = ||x|| for all $x \in X$. An isometry is injective but not necessarily surjective.

If X is a vector space over $K = \mathbb{R}, \mathbb{C}$, a *linear functional*. is a linear map from X to K. The space $X^* := L(X, K)$ is called the *dual space* of X. Since K is complete, X^* is complete with the operator norm.

Proposition 4.5 (Relationship between real and complex linear functionals). Let X be a vector space over \mathbb{C} . If f is a complex linear functional on X, $u := \operatorname{Re} x$ is a real linear functional and f(x) = u(x) - iu(ix). Conversely, if u is a real functional on X, then f(x) := u(x) - iu(ix) is a complex linear functional, and if X is normed, $\|u\| = \|f\|$.

It is not obvious that there are any nonzero bounded linear functionals on an arbitrary normed vector space. If X is a real vector space, *sublinear* or *Minkoswky functional* on X is a map $p:X\to\mathbb{R}$ such that

$$p(\lambda x) = \lambda p(x) \quad \forall x \in X \text{ and } \lambda \ge 0$$
 (2)

$$p(x+y) \le p(x) + p(y) \qquad \forall x, y \in X \tag{3}$$

Theorem 4.6 (Helly-Hahn-Banach). Let E be a vector space over $\mathbb R$ and $p:E\to\mathbb R$ a sublinear functional. If $G\subseteq E$ is a linear subspace and $g:G\to\mathbb R$ is a linear functional such that

$$g(x) \le p(x) \quad \forall x \in E,$$

then there exists a linear functional f defined on all of E that extends g, that is, $g(x) = f(x) \ \forall x \in G$ and such that

$$f(x) \le p(x) \quad \forall x \in E.$$

For a proof first recall that a partial order P is *inductive* if every totally ordered subset Q in P has an upper bound, and that

Lemma 4.7 (Zorn). Every nonempty order set that is inductive has a maximal element.

Proof. (Of theorem 4.6) Consider the set

$$P = \left\{ h: D(h) \subseteq E \to \mathbb{R} : \begin{array}{c} D(h) \text{ is a linear subspace of } E, \\ h \text{ is linear,} G \subseteq D(h), \\ h \text{ extends } g, \text{ and } h(x) \leq p(x) \ \forall x \in D(h) \end{array} \right\}$$

Then *P* is a partial order with

$$h_1 \leq h_2 \iff D(h_1) \subseteq D(h_2)$$
 and h_2 extends h_1

P is nonempty since $g \in P$. To show it is inductive, take $Q \subseteq P$ a partially order subset and write $Q = (h_i)_{i \in I}$. Then define

$$D(h) = \bigcup_{i \in I} D(h_i), \qquad h(x) = h_i(x) \quad \text{if } x \in D(h_i) \text{ for some } i \in I$$

which is an upper bound of Q, so that there is a maximal element f in P by Zorn's Lemma. To finish it suffices to show that D(f) = E.

For a contradiction suppose that $D(f) \neq E$ and choose $x_0 \notin D(f)$. We shall construct a function $h \in P$ such that f < h. Define $D(h) = D(f) + \mathbb{R}x_0$ and, for every $x \in D(f)$, set

$$h(x + \lambda x_0) = f(x) + t\alpha \quad \forall \lambda \in \mathbb{R}$$

where α is a constant that we choose as follows. We must ensure that

$$h(x + \lambda x_0) = f(x) + \lambda \alpha \le p(x + tx_0) \quad \forall x \in D(f) \quad \text{and} \quad \forall \lambda \in \mathbb{R}$$

For any $x, y \in D(f)$,

$$f(x) + f(y) = f(x+y) \le p(x+y) \le p(x+x_0) + p(y-x_0)$$

$$\implies f(x) - p(y-x_0) \le p(x+x_0) - f(y)$$

So let α satisfy

$$\sup_{y \in D(f)} \{ f(y) - p(y - x_0) \} \le \alpha \le \inf_{x \in D(f)} \{ p(x + x_0) - f(x) \}$$

If $\lambda = 0$, then $h(x) = f(x) \le p(x)$. If $\lambda \ne 0$ we must be careful since sublinear functionals only satisfy eq. (2) for positive scalars.

If $\lambda > 0$, then

$$h(x + \lambda x_0) = \lambda \cdot h(x/\lambda + x_0)$$

$$= \lambda \cdot (f(x/\lambda) + \alpha))$$

$$\leq \lambda \cdot (f(x/\lambda) + p(x/\lambda + x_0) - f(x/\lambda))$$

$$< p(x + \lambda x_0)$$

and if $\lambda = -\mu < 0$,

$$\begin{split} h(x+tx_0) &= (-\lambda) \cdot h(-x/\lambda - x_0) \\ &= \mu \cdot (f(x/\mu) - \alpha)) \\ &\leq \mu \cdot (f(x/\mu) - f(x/\mu) + p(x/\mu + x_0)) \\ &\leq p(x - \mu x_0) \\ &= p(x + \lambda x_0). \end{split}$$

Then h extends f and $D(f) \subseteq D(h)$ but f is maximal.

5 Exercises

Exercise 5.1. Let $A:(C[-1,1],\|\cdot\|_{\infty})\to\mathbb{R}$ be defined by

$$Ax = x(0)$$

Show A is linear, bounded and find its norm.

Solution.

- 1. $A(x + \lambda y) = (x + \lambda y)(0) = x(0) + \lambda y(0) = Ax + \lambda Ay$.
- 2. $|Ax| = |x(0)| \le ||x||_{\infty}$, so 1 is a bound.
- 3. The bound is attained with $||1||_{\infty} = 1$, so ||A|| cannot be lower than 1.

Exercise 5.2. Let $A:(C[0,1],\|\cdot\|_{\infty})\to\mathbb{R}$ be defined by

$$Ax = \int_{a}^{b} x(t)\varphi(t)dt$$

where $\varphi \in C[a,b]$ is a fixed function. Show that $\|A\| = \int_a^b |\varphi(t)| dt = \|\varphi(t)\|_1$.

Solution. See here. First we show *A* is bounded:

$$\begin{split} |Ax| &= \left| \int_a^b x(t) \varphi(t) dt \right| \\ &\leq \int_a^b |x(t)| |\varphi(t)| dt \\ &\leq \|x\|_\infty \int_a^b |\varphi(t)| dt \\ &= \|x\|_\infty \|\varphi(t)\|_1. \end{split}$$

Which proves that $||A|| \le ||\varphi||_1$. To show the reverse inequality, define the sequence

$$x_n(t) := \frac{\varphi(t)}{|\varphi(t)| + \frac{1}{n}}$$

so that

$$||x_n||_{\infty} = \frac{||\varphi||_{\infty}}{||\varphi||_{\infty} + \frac{1}{n}} \longrightarrow 1$$

And also

$$Ax_n = \int_a^b \frac{\varphi(t)^2}{|\varphi(t)| + \frac{1}{n}} dt \longrightarrow \int_a^b |\varphi(t)| dt$$

since

And since $Ax_n = |Ax_n| \le ||x_n||_{\infty} ||A||$, we have

$$||A|| \ge \frac{Ax_n}{||x_n||_{\infty}} \longrightarrow \frac{\int_a^b |\varphi(t)| dt}{1} = ||\varphi||_1,$$

so $||A|| \ge ||\varphi||_1$ and we are finished.

Exercise 5.3. Sejam $(C([0,1]),\|\cdot\|_{\infty})$ um espaço vetorial normado com $\|f\|_{\infty}=\max_{x\in[0,1]}|f(x)|$ e $T:(C([0,1])\to(C([0,1])$ dado por

$$(Tf)(x) = x \int_0^x f(y)dy$$

- 1. Mostre que T é linear, limitado e calcule ||T||.
- 2. Mostre que $T^{-1}:\mathcal{R}(T)\to C([0,1])$ existe mais não é limitado.

Solução.

1. T é linear, pois $T(f+\lambda g)=x\int_0^1(f(y)+\lambda g(y))dy=x\int_0^1f(y)dy+\lambda x\int_0^1g(y)dy$. T é limitado, pois

$$Tf(x) = x \int_0^1 f(y) dy \le x \int_0^x ||f||_{\infty} dy = x ((x - 0)||f||_{\infty}) = ||f||_{\infty} x^2$$

$$\implies ||Tf||_{\infty} \le ||f||_{\infty} ||x^2||_{\infty} = ||f||_{\infty}$$

Assim que 1 é uma cota. Para ver que de fato ||T||=1, basta considerar a função constante $f\equiv 1$, caso em que a cota é alcançada: $||Tf||_{\infty}=||x^2||_{\infty}=1=||f||_{\infty}$.

2.