TESTE INTERMÉDIO DE MATEMÁTICA A

RESOLUÇÃO - VERSÃO 1

Grupo I

1.
$$\log_a 3 + 2 \log_a 5 = \log_a (3 \times 5^2) = \log_a 75$$

Resposta C

2.
$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \left(\frac{x}{f(x)} \right) = \lim_{x \to +\infty} \frac{1}{\frac{f(x)}{x}} = \frac{1}{\frac{1}{3}} = 3$$

O gráfico de $\,h\,$ tem uma assimptota horizontal de equação $\,y=3\,$

Resposta **D**

3. Na opção A, tem-se:
$$g(-2) = -2 + f(-2) = -2 + 1 = -1$$

$$g(2) = 2 + f(2) = 2 + 3 = 5$$

Como g(-2) e g(2) têm sinais contrários e como g é contínua no intervalo [-2,2], o Teorema de Bolzano permite garantir a existência de pelo menos um zero de g no intervalo]-2,2[

Em cada uma das restantes opções, $\,g(\,-\,2)\,$ e $\,g(2)\,$ têm o mesmo sinal.

Resposta A

4.

$$\'{A}rea = \frac{base \times altura}{2} =$$

$$= \frac{1 \times sen\left(\frac{5\pi}{7}\right)}{2} \approx$$

$$\approx 0.39$$

Resposta A

5. De acordo com a Lei Binomial,
$$p={}^5C_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^3\approx 0.16$$

Resposta B

Grupo II

1. Tem-se
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Substituindo, nesta igualdade, $P(A \cup B)$ por $5P(A \cap B)$, vem:

$$5 P(A \cap B) = P(A) + P(B) - P(A \cap B)$$
, pelo que

$$6 P(A \cap B) = P(A) + P(B)$$

Como
$$P(A) = P(B)$$
, vem $6P(A \cap B) = 2P(B)$

Vem, então,
$$\ P(A|B) = \frac{P(A\cap B)}{P(B)} = \frac{2}{6} = \frac{1}{3}$$

2. De acordo com a Regra de Laplace, a probabilidade de um acontecimento é dada pelo quociente entre o número de casos favoráveis e o número de casos possíveis, quando estes são equiprováveis.

O número de casos possíveis é 6^3 pois, como em cada lançamento existem seis hipóteses, no conjunto dos três lançamentos existem $6 \times 6 \times 6$ possibilidades.

Relativamente aos casos favoráveis a «o produto dos números saídos ser igual a 6», existem duas hipóteses em alternativa, que se excluem mutuamente: ou os números saídos são 1, 2 e 3, ou são 1, 1 e 6. No primeiro caso, temos 3! possibilidades, que é o número de permutações de três elementos. No segundo caso, temos 3 possibilidades (a face 6 pode sair, ou no primeiro lançamento, ou no segundo, ou no terceiro). Portanto, o número de casos favoráveis é 3!+3.

3.1. Tem-se
$$f(0) = 100 \Leftrightarrow \frac{2000}{1+k} = 100 \Leftrightarrow k = 19$$

3.2. Tem-se
$$f(t) = 500 \Leftrightarrow \frac{2\,000}{1 + 24\,e^{-0.13\,t}} = 500 \Leftrightarrow$$
 $\Leftrightarrow 2\,000 = 500\,(1 + 24\,e^{-0.13\,t}) \Leftrightarrow \frac{2\,000}{500} = 1 + 24\,e^{-0.13\,t} \Leftrightarrow$ $\Leftrightarrow 4 = 1 + 24\,e^{-0.13\,t} \Leftrightarrow 3 = 24\,e^{-0.13\,t} \Leftrightarrow \frac{3}{24} = e^{-0.13\,t} \Leftrightarrow$ $\Leftrightarrow \frac{1}{8} = e^{-0.13\,t} \Leftrightarrow -0.13\,t = \ln\left(\frac{1}{8}\right) \Leftrightarrow -0.13\,t = -\ln 8 \Leftrightarrow$ $\Leftrightarrow 0.13\,t = \ln 8 \Leftrightarrow t = \frac{\ln 8}{0.13}$ Portanto, $t \approx 16$

4.1.1. Para
$$x \in [0,3]$$
, tem-se $f'(x) = -1 + \frac{3}{1+3x}$

A abcissa do ponto $\,A\,$ é a solução da equação $\,f^{\,\prime}\left(x
ight)=0$

$$f'(x) = 0 \Leftrightarrow \frac{3}{1+3x} = 1 \Leftrightarrow 1+3x = 3 \Leftrightarrow x = \frac{2}{3}$$

4.1.2. Tem-se:
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{e^{x} - 1 + x}{x} =$$

$$= \lim_{x \to 0^{-}} \left(\frac{e^{x} - 1}{x} + \frac{x}{x} \right) = \lim_{x \to 0^{-}} \left(\frac{e^{x} - 1}{x} + 1 \right) =$$

$$= \lim_{x \to 0^{-}} \left(\frac{e^{x} - 1}{x} \right) + 1 = 1 + 1 = 2$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[2 - x + \ln(1 + 3x) \right] = 2 - 0 + \ln(1) = 2$$

$$\mbox{Como} \quad \lim_{x \to 0^-} f(x) \ = 2 \quad \mbox{e} \quad \lim_{x \to 0^+} f(x) \ = 2, \ \mbox{tem-se} \quad \lim_{x \to 0} f(x) \ = 2$$

Uma vez que
$$f(0) = 2$$
, tem-se $\lim_{x \to 0} f(x) = f(0)$

Portanto, f é contínua no ponto 0

4.2. A abcissa do ponto B é a solução da equação f'(x) = 0.23 para $x \in [-3,0[$

Tem-se:
$$f'(x) = \frac{(e^x - 1 + x)' \cdot x - (x)' \cdot (e^x - 1 + x)}{x^2} =$$

$$= \frac{(e^x + 1) \cdot x - (e^x - 1 + x)}{x^2} = \frac{e^x \cdot x - e^x + 1}{x^2}$$

Na figura está representado o gráfico de f^{\prime} , para x entre -3 e 0, a recta de equação y=0.23 e o ponto de intersecção das duas linhas.

A solução da equação f'(x) = 0.23 é a abcissa deste ponto.

Portanto, a abcissa do ponto $\,B\,$ é $\,-\,1,23\,$

Nota: para obter o gráfico de f', não era necessário determinar a expressão que a define. Teria bastado utilizar a ferramenta apropriada da calculadora (por exemplo: nDerive numa calculadora Texas, $\frac{d}{dx}$ numa calculadora Casio, etc.).