Introducción

Sistemas secuenciales vs. Sistemas combinacionales

Sistemas Combinacionales:

- □ Su salida o salidas dependen exclusivamente de la combinación de las señales de entrada existentes.
- ☐ Para las mismas entradas siempre se produce la misma salida o salidas.
- □ Pueden ser representados por una tabla de verdad entre las entradas y salidas.

Sistemas Secuenciales:

- □ Su salida o salidas no dependen exclusivamente de las entradas presentes, sino también de la secuencia de entradas que se hayan dado.
- □ Para las mismas entradas, la salida puede ser diferente, indicando que la secuencia de entradas que se haya presentado en la entrada es diferente.
- No pueden ser representados por una tabla de verdad entre entradas y salidas exclusivamente.

Sistemas Secuenciales: Base de su generación

¿Qué ocurre si realimentamos algún punto intermedio o de salida del circuito combinacional, para que actúe como entrada?

Sistemas Secuenciales: Base de su generación. Análisis

¿Qué ocurre si realimentamos algún punto intermedio o de salida del circuito combinacional, para que actúe como entrada?

Las
combinaciones
de x₁,x₂,y₁,e y₂
dan una salidas
(después de ∆t)
en los puntos de
realimentación
Y₁, Y₂

y unas salidas z_1, z_2

El sistema <u>evolucionará</u> hasta que el circuito con entradas realimentadas de un determinado valor, proporcione una salida en los puntos de realimentación, de ese mismo valor.

Sistemas Secuenciales: Base de su generación. Análisis

Las combinaciones de x_1 , x_2 , y_1 , e y_2 dan una salidas (después de Δt) en los puntos de realimentación Y_1 , Y_2 y unas salidas z_1 , z_2

El sistema <u>evolucionará</u> hasta que el circuito con entradas realimentadas de un determinado valor, proporcione una salida en los puntos de realimentación, de ese mismo valor.

Las ecuaciones de Y₁, Y₂, z₁ y z₂ serán:

$$Y_{1} = \overline{y_{1} y_{2}} \overline{x_{1} x_{2}} \overline{y_{1} y_{2}} \overline{x_{1} x_{2}}$$

$$Y_{2} = \overline{x_{1} x_{2}} \overline{y_{1} y_{2}} \overline{x_{1} y_{1}} \overline{x_{2}}$$

$$Y_{3} = \overline{x_{1} x_{2}} \overline{y_{1} y_{2}} \overline{x_{1} y_{1}} \overline{x_{2}} \overline{y_{2}}$$

$$Z_{1} = \overline{y_{1} x_{2}} \overline{x_{1} x_{2}}$$

$$Z_{2} = \overline{y_{1} y_{2}} + X_{1}$$

Ecuaciones:

Variables de estado interno (siendo y_i = estado actual, Y_i = estado siguiente): Y_i = $f(y_i, x_i)$

Salida: $z_i = f(y_i, x_i)$ La salida depende de las entradas <u>y de las variables de estado interno</u>

Sistemas Secuenciales: Base de su generación. Análisis

$Y_1 = \overline{y_1 y_2} \overline{\overline{x_1} x_2}$		
$Y_2 = \overline{X_1 X_2} \cdot \overline{Y_1 Y_2}$	$\overline{\cdot x_1 y_1}$	$\overline{\cdot x_2 y_2}$
$\mathbf{Z}_1 = \overline{\overline{\mathbf{y}_1^{X_2}} \cdot \overline{\mathbf{x}_1^{X_2}}}$		
$Z_2 = \overline{y_1 \overline{y}_2 + X_1}$		

$$Y_1 = y_1 \overline{y}_2 + \overline{x}_1 x_2 + \overline{y}_1 y_2 (\overline{x}_1 + x_2)$$

 $z_1 = \overline{y}_1 x_2 + \overline{x}_1 x_2$

$$Y_{2} = \overline{X}_{1}X_{2} + \overline{y}_{1}y_{2} + X_{1}\overline{y}_{1} + X_{2}\overline{y}_{2}$$

$$Z_{2} = \overline{X}_{1}(\overline{y}_{1} + \overline{y}_{2}) = \overline{X}_{1}\overline{y}_{1} + \overline{X}_{1}y_{2}$$

Tabla de evolución de estado

y1	y2	00	01	11	10
	00	00	11	01	01
)	01	11	11	11	01
	11	00	11	00	00
	10	10	11	11	10
	•		Y.	Υ ₂	

Sistemas Secuenciales: Base de su generación. Análisis

$$Y_{1} = y_{1}y_{2} + \overline{x}_{1}x_{2} + \overline{y}_{1}y_{2}(\overline{x}_{1} + x_{2})$$

$$Y_{2} = \overline{x}_{1}x_{2} + \overline{y}_{1}y_{2} + \overline{x}_{1}\overline{y}_{1} + \overline{x}_{2}\overline{y}_{2}$$

$$Z_{1} = \overline{y}_{1}x_{2} + \overline{x}_{1}x_{2}$$

$$Z_{2} = \overline{x}_{1}(\overline{y}_{1} + y_{2}) = \overline{x}_{1}\overline{y}_{1} + \overline{x}_{1}y_{2}$$

El sistema <u>evolucionará</u> hasta que el estado siguiente (Y₁,Y₂) sea igual al estado actual (y₁, y₂).

Cuando esto ocurre, se ha llegado a un ESTADO ESTABLE

Tabla de evolución de estado

x1x2				
y1y2	00	01	11	10
00	01	11	10	00
01	01	11	10	00
11	01	11	00	00
10	00	10	00	00
'		Z ₁	Z ₂	·

Tabla de salida

Sistemas Secuenciales: Base de su generación. Análisis

$$Y_{1} = y_{1}\overline{y}_{2} + \overline{x}_{1}x_{2} + \overline{y}_{1}y_{2}(\overline{x}_{1} + x_{2})$$

$$Y_{2} = \overline{x}_{1}x_{2} + \overline{y}_{1}y_{2} + x_{1}\overline{y}_{1} + x_{2}\overline{y}_{2}$$

$$Z_{1} = \overline{y}_{1}x_{2} + \overline{x}_{1}x_{2}$$

$$Z_{2} = \overline{x}_{1}(\overline{y}_{1} + y_{2}) = \overline{x}_{1}\overline{y}_{1} + \overline{x}_{1}y_{2}$$

El sistema <u>evolucionará</u> hasta que el estado siguiente (Y_1, Y_2) sea igual al estado actual (y_1, y_2) .

Cuando esto ocurre, se ha llegado a un <u>ESTADO</u> <u>ESTABLE</u>

Para una misma entrada el sistema puede evolucionar a distintos estados internos estables y por tanto a distintas salidas.

Tabla de evolución de estado

x1x2				
y1y2	00	01	11	10
00	01	11	10	00
01	01	11	10	00
11	01	11	00	00
10	00	10	00	00
z_1z_2				

Tabla de salida

La salida depende de las entradas y <u>de los estados internos actuales</u>, los cuales dependen de la evolución del sistema, que <u>depende de la secuencia con que se hayan</u> cambiado las entradas

Sistemas Secuenciales: Base de su generación. Análisis

$$Y_{1} = y_{1} \overline{y}_{2} + \overline{x}_{1} x_{2} + \overline{y}_{1} y_{2} (\overline{x}_{1} + x_{2})$$

$$Y_{2} = \overline{x}_{1} x_{2} + \overline{y}_{1} y_{2} + x_{1} \overline{y}_{1} + x_{2} \overline{y}_{2}$$

$$Z_{1} = \overline{y}_{1} x_{2} + \overline{x}_{1} x_{2}$$

$$Z_{2} = \overline{x}_{1} (\overline{y}_{1} + y_{2}) = \overline{x}_{1} \overline{y}_{1} + \overline{x}_{1} y_{2}$$

El sistema <u>evolucionará</u> hasta que el estado siguiente (Y_1,Y_2) sea igual al estado actual (y_1,y_2) .

Cuando esto ocurre, se ha llegado a un ESTADO ESTABLE

Problemas:

- Para alguna combinación de entrada, puede no existir estado estable (ej.: para $x_1,x_2 = 1$, 1). Estará recorriendo un ciclo continuamente.
 - Si en ese ciclo se cambia las entradas es imposible predecir el estado final al que irá el sistema (no podemos predecir en que estado interno hemos cambiado las entradas)
- □ Es imposible cambiar de forma real e instantánea, tanto los estados internos como las entradas, entre estados no adyacentes (ej.: no se puede cambiar de x₁, x₂ = 0, 0 a x₁, x₂ = 1, 1 sin pasar por 0, 1 o por 1, 0.) Esto hace imprevisible la evolución del sistema.

Tabla de evolución de estado

Sistemas Secuenciales: Base de su generación. Análisis

Sistemas Secuenciales: Base de su generación. Análisis

Sistemas Secuenciales: Base de su generación. Análisis

DIAGRAMA DE FLUJO

Recordando.....Problemas:

- Para alguna combinación de entrada, puede no existir estado estable (ej.: para x₁,x₂ = 1, 1). Estará recorriendo un ciclo continuamente.
 - Si en ese ciclo se cambia las entradas es imposible predecir el estado final al que irá el sistema (no podemos predecir en que estado interno hemos cambiado las entradas)
- □ Es imposible cambiar de forma real e instantánea, tanto los estados internos como las entradas, entre estados no adyacentes (ej.: no se puede cambiar de x₁, x₂ = 0, 0 a x₁, x₂ = 1, 1 sin pasar por 0, 1 o por 1, 0.) Esto hace imprevisible la evolución del sistema.

Sistemas Secuenciales: Conceptos y definiciones

Sistema secuencial asíncrono:

El sistema evoluciona desde el momento de cambio de las entradas hasta buscar un estado estable, que a su vez hace estable las salidas. No presenta señal de sincronismo (de reloj).

Sistemas Secuenciales: Conceptos y definiciones

$$Y_{1} = y_{1}\overline{y}_{2} + \overline{x}_{1}x_{2} + \overline{y}_{1}y_{2}(\overline{x}_{1} + x_{2})$$

$$Y_{2} = \overline{x}_{1}x_{2} + \overline{y}_{1}y_{2} + \overline{x}_{1}\overline{y}_{1} + \overline{x}_{2}\overline{y}_{2}$$

$$Z_{1} = \overline{y}_{1}x_{2} + \overline{x}_{1}x_{2}$$

$$Z_{2} = \overline{x}_{1}(\overline{y}_{1} + y_{2}) = \overline{x}_{1}\overline{y}_{1} + \overline{x}_{1}y_{2}$$

DIAGRAMA DE FLUJO

Sistema secuencial tipo Mealy:

La salida del sistema depende de los estados internos y de las entradas. $z_i = f(y_i, x_i)$

Sistema secuencial tipo Moore:

La salida del sistema depende solo de los estados internos. $z_i = f(y_i)$

Sistemas Secuenciales Asíncronos

Recordando.....Problemas:

- Para alguna combinación de entrada, puede no existir estado estable (ej.: para x₁,x₂ = 1, 1). Estará recorriendo un ciclo continuamente.
 - Si en ese ciclo se cambia las entradas es imposible predecir el estado final al que irá el sistema (no podemos predecir en que estado interno hemos cambiado las entradas)
- Es imposible cambiar de forma real e instantánea, tanto los estados internos como las entradas, entre estados no adyacentes (ej.: no se puede cambiar de x₁, x₂ = 0, 0 a x₁, x₂ = 1, 1 sin pasar por 0, 1 o por 1, 0.) Esto hace imprevisible la evolución del sistema.

DIAGRAMA DE FLUJO

Dados los problemas de diseño que presentan los sistemas secuenciales asíncronos, solo se utilizan de forma general los sistemas secuenciales asíncronos más sencillos:

Concretamente los circuitos que dan lugar al latch (o cerrojo) RS (reset-set)

Sistemas Secuenciales Asíncronos:

Latch o cerrojo R-S

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0

Q = variable de estado

QN = variable de estado (normalmente Q negado)

16

Z = salida = Q

 \Box Con R = 0, S = 1 la salida Q se pone a 1 y QN a 0 (se realiza un set, o puesta a 1).

(b)

- □ Con R = 1, S = 0 la salida Q se pone a 0 y QN a 1 (se realiza un reset, o puesta a 0).
- □ Con R = 0 , S = 0 la salida Q anterior se mantiene y QN también (se mantiene o memoriza el estado anterior).
- □ Con R = 1 , S =1 las salidas Q y QN se ponen a 0 (no se utiliza, no funciona QN como inversa de Q y no se puede prever la situación al pasar de esta situación a R = 0 , S = 0 por no ser combinaciones adyacentes).

Sistemas Secuenciales Sistemas Secuenciales Asíncronos:

Latch o cerrojo R-S: Parámetros de temporización

salida sea segura.

Sistemas Secuenciales Sistemas Secuenciales Asíncronos:

Latch o cerrojo R-S: Realizado con puertas NAND

(b)

- ☐ Presenta las entradas negadas con respecto al Latch con puertas NOR.
- ☐ Es el que se utiliza más frecuentemente por ser más fácil su integración.

(a) Active-HIGH input S-R latch

(b) Active-LOW input \$\overline{S}\$-\$\overline{R}\$ latch

(a) Active-HIGH input S-R latch

(b) $\underline{\underline{Active}}$ -LOW input $\underline{\underline{S}}$ - \underline{R} latch

Sistemas Secuenciales Sistemas Secuenciales Asíncronos:

Latch o cerrojo R-S: Aplicación antirebote

(a) Switch contact bounce

(b) Contact-bounce eliminator circuit

Elimina los cambios que se producen en la conmutación mecánica, debidos a los rebotes mecánicos de los contactos, puesto que conmuta entre la entrada deseada y la entrada de memorización. En este caso, con cerrojo R/-S/ al conmutar de 1 a 2 pasa de R/,S/ = 0,1 pasando por R/,S/ = 1,1 a R/,S/ = 1,0 realizando un SET y a pesar de que a continuación se den rebotes haciendo R/,S/ = 1,1 ésto solo hará mantener o memorizar el estado anterior que seguirá siendo de SET. Se han eliminado los rebotes.

Sistemas Secuenciales Asíncronos:

Latch o cerrojo R-S: Circuito MSI 74LS279

(a) Logic diagram

Sistemas Secuenciales Asíncronos:

Latch o cerrojo R-S con habilitación.

- □ Las entradas S R solo son sensibles mientras la entrada C es activa (C = 1).
- ☐ Permite "cerrar" el sistema memorizando el estado actual, haciendo no activa la entrada C.

Sistemas Secuenciales Asíncronos:

Latch o cerrojo D

- □ Consiste en un latch R-S en el que solo se puede dar SET o un RESET como entrada de dato y se puede memorizar o "cerrar" la salida haciendo la entrada de habilitación inactiva.
- ☐ Elimina el problema de R = S = 1
- ☐ Con C = 1 se convierte en un cerrojo "transparente".
- □ No presenta situaciones indeterminadas por cambio en las entradas.

Sistemas Secuenciales Asíncronos:

Latch o cerrojo D: Temporización

activa la entrada C.

Sistemas Secuenciales Asíncronos:

Latch o cerrojo D: Temporización

Sistemas Secuenciales Asíncronos:

Latch o cerrojo D: Circuito MSI 74LS75

(a) Logic symbol

Inputs		Out	puts	
D	EN	Q	Q	Comments
0	1	0	1	RESET
1	1	1	0	SET
X	0	Q_0	\bar{Q}_0	No change

Note: Q_0 is the prior output level before the indicated input conditions were established.

(b) Truth table (each latch)

Sistemas Secuenciales Síncronos:

Flip-flop o biestable D disparado por flanco

- □ Sus salidas Q y QN cambian únicamente según la entrada D existente en el instante de producirse el flanco (en este caso ascendente) de la entrada de reloj.
- ☐ Es un flip-flop o biestable SíNCRONO.
- No existe posibilidad de imprecisión en el funcionamiento por cambio de entradas.

Flip-flop o biestable D disparado por flanco Temporización

Flip-flop o biestable D disparado por flanco ♥

Flip-flop o biestable D disparado por flanco T con entradas asíncronas de Preset y Clear

Las entradas asíncronas de Preset y Clear son entradas que prevalecen sobre el valor de la entrada D y no dependen de la señal de reloj para forzar a la salida.

Flip-flop o biestable D disparado por flanco Tcon entradas asíncronas de Preset y Clear. Circuito MSI 74LS74

(a) Individual logic symbols

(b) Single block logic symbol Note: The S and R inside the block indicate that \overline{PRE} SETS and \overline{CLR} RESETS.

Flip-flop o biestable D disparado por flanco T con habilitación

- ☐ Cuando la entrada de habilitación EN está a 1 el Flip-Flop funciona como D activado por flanco ascendente.
- ☐ Cuando La entrada EN está a 0 el sistema mantiene las salidas, independientemente del cambio de la entrada D.

Flip-flop o biestable D disparado por flanco T con entradas para testeo.

- □ Presenta dos entradas TE y TI añadidas al biestable D activado por flanco ascendente estandar
- ☐ La entrada TE actúa como entrada de un multiplexor que selecciona con 0 la entrada D y con 1 la entrada TI como entrada efectiva al biestable D
- □ La entrada D será la entrada normal de funcionamiento (con TE = 0)
- ☐ La entrada TI se utilizarían para testear el biestable (con TE = 1)

Flip-flop o biestable D disparado por flanco T con entradas para testeo. Cadena de exploración de 4 FF.

- Para testear los biestables:
- Se mantiene a 1 la entrada TE
- ☑ Se aplica una secuencia (vector de prueba) de n bits en la entrada Tl (n = 4 en la figura) .
- Al cabo de n flancos de reloj (n ciclos de reloj) el vector aparecerá en la salida TO

Sistemas Secuenciales Síncronos Flip-flop o biestable S-R maestro/esclavo

- ☐ Permite tener entradas independientes de SET y RESET a diferencia del FF D
- ☐ Además permite que la salida cambie solo con el flanco descendente de C.
- ☐ El valor que presentará en la salida, dependerá de los valores de las entradas, durante el intervalo en que C está a 1, antes del flanco descendente.

Se simboliza la característica de que la salida depende de la secuencia de entradas como en un latch RS estandar, y que esa salida se hace efectiva con el flanco descendente de C.

Sistemas Secuenciales Síncronos Flip-flop o biestable R-S maestro/esclavo

El funcionamiento del biestable R-S maestro/esclavo es imprevisible si en el flanco descendente de C, las entradas S y R son 1.

35

Flip-flop o biestable J-K maestro/esclavo

- □ El biestable J-K maestro/esclavo funciona como el biestable R-S maestro/esclavo pero elimina la indefinición en el funcionamiento cuando ambas entradas J y K son 1.
- ☐ Presenta captura de de datos durante todo el nivel 1 de la señal C.

Flip-flop o biestable J-K disparado por flanco

- Las entradas solo son efectivas en el momento del flanco activo (ascendente en este caso).
- Su salida (que coincide con su variable de estado) sigue la ecuación: $Q_{t+1} = J \cdot Q_t' + K' \cdot Q_t$ y se hace efectiva en el flanco activo de la señal de reloj

Flip-flop o biestable J-K disparado por flanco T Circuito MSI 74LS109

Flip-flop o biestable J-K disparado por flanco ▼ Circuito MSI 74HC112

(a) Individual logic symbols

(b) Single block logic symbol

Flip-flop o biestable T (toggle = conmutación)

Cambia de estado en cada flanco de reloj activo (ascendente en este caso)

Se puede realizar a partir de biestables D o biestables J-K activos a flanco de reloj

Flip-flop o biestable T (toggle = conmutación)

Cambia de estado en cada flanco de reloj activo (ascendente en este caso)

Obtención de un biestable T a partir de un biestable J-K y su funcionamiento

Flip-flop o biestable T disparado por flanco con habilitación

- ☐ Solo cambia (conmuta) la salida si la entrada EN está activa (EN = 1)
- □ Se puede realizar mediante biestable D o mediante biestable J-K en ambos casos disparados mediante flanco de reloj

Aplicaciones de los biestables síncronos. Introducción

REGISTROS

Memorización (captación) de datos en paralelo.

Los datos D0, D1, D2, Y D3 son memorizados (enclavados) en los biestables D (registros) mediante un flanco de reloj ascendente.

43

Aplicaciones de los biestables síncronos. Introducción

Divisor de frecuencia por 2

Aplicaciones de los biestables síncronos. Introducción

Divisor de frecuencia por 2 y por 4

Aplicaciones de los biestables síncronos. Introducción

Divisor de frecuencia por 8

Aplicaciones de los biestables síncronos. Introducción

Contador binario de dos bits (en anillo)

(En anillo significa que una vez cubierta su capacidad vuelve a 0 para seguir contando)

Cuenta número de flancos activos

Aplicaciones de los biestables síncronos. Introducción

Contador binario de tres bits (en anillo)

(En anillo significa que una vez cubierta su capacidad vuelve a 0 para seguir contando)

Cuenta número de flancos activos descendentes

Aplicaciones de los biestables síncronos. Introducción Registros de desplazamiento

(El dato de entrada va desplazándose, a ritmo de reloj, de uno al siguiente biestable)

Aplicaciones de los biestables síncronos. Introducción

Registros de desplazamiento

(El dato de entrada va desplazándose, a ritmo de reloj, de uno al siguiente biestable)

