3000788 Intro to Comp Molec Biol

Lecture 3: DNA sequencing techniques and applications

Fall 2025

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's agenda

- DNA sequencing platforms
- Applications of DNA sequencing as molecular assays

DNA polymerization

deoxynucleotide (dNTP)

http://www.onlinebiologynotes.com/sangers-method-genesequencing/

https://www.khanacademy.org

ddNTP terminate polymerization

Dideoxynucleotide (ddNTP)

Deoxynucleotide (dNTP)

https://www.khanacademy.org

Sanger sequencing

What is the sequence?

Fluorescence-labeled ddNTP

Images from https://en.wikipedia.org/wiki/Sanger_sequencing

Next-Generation Sequencing (NGS)

High throughput with parallel reactions

Roche & Ion Torrent wells

1) Adapter-ligated ssDNA library

2) Clonal amplification on 28 micron beads ... emulsion PCR

3) Beads deposited on PicoTiterPlate wells

Illumina's flow cell

Paired-end sequencing

- Add adapters to both ends of a DNA fragment
 - Improve mappability
 - Identify splice junction
 - Identify genomic translocation
 - Useful in chromatin conformation capture

DNA amplication for sequencing

- Amplified DNA molecules into clusters of identical sequences
 - Improve signal-to-noise / sensitivity
 - Can introduce amplification bias

 Resulting covalentlybound DNA fragments are bound to the flow cell surface in a random pattern Single-strand flops over to hybridize to adjacent adapter, forming a bridge

 dsDNA synthesized from primer in hybridized adapter

 dsDNA bridge is denatured

- Single strands flop over to hybridize to adjacent adapters, forming bridges
- dsDNA synthesized by polymerases

 Bridge amplification cycles repeated many times

454 Pyrosequencing

a) A pyrosequencing reaction

Limitation of 454 pyrosequencing and Ion Torrent

Illumina / Solexa

Pros and cons of NGS techniques

Platform	Read Length	Run Time	Gb/ Run	Advantage	Disadvantage
454 Pyrosequencing	400+	1 day	0.7	Long read length	Homopolymer error
Illumina	50-300	5 days	600	Low cost per base	Short read length Long run time
Ion Torrent	200-400	2 hrs	100	Fast run times	Homopolymer error

Tradeoffs

Sanger

- 1000 bp, low throughput
- Use to validate small DNA

(454) and Ion Torrent

- 400+ bp, medium throughput
- Use when fast turn-around time is needed

Illumina

- <300 bp, high throughput
- Primary technology today

3rd Generation Sequencing (Long-Read)

Single-Molecule Real-Time (SMRT) sequencing

Zero-mode waveguide (ZMW)

Phospholinked nucleotide

Images from Pacific Biosciences

- Faster, more durable DNA polymerase
- Very small wells each containing a single DNA molecule
 - Zero-mode waveguide = nanophotonic confinement structure
 - Allow monitoring of fluorescence signal from individual reaction
- No amplification = direct quantification of DNA/RNA abundance

Video data from SMRT-seq

- Compared to image data from Illumina platform
- Video gives time information → identification of modified DNA/RNA

High (random) error rate

ICCGGAGCGACGCGTACGATTAAAGCACGTACTGCGTATGCGTATCCCTAGCTTGCTAGGCTAGTATGCTAGATTAAAGCTCGTAC1 ${\tt PCCGGATCG{\tt C}GCGTA{\tt T}GATTAAAGCTCGTAC{\tt C}GCGTATGCGTATG{\tt C}{\tt C}CAGGTAGGCTAGGCTAGTATGCTAGCTAGCTAGCTAGGC$ ${\tt FCCGGATCGACGTGTACGATTATAGCTCTTACTGCGTATACGTATGCCTAGGTAGCTAGGCTAGTATGCTAGATTAAAGCTCGAAC1}$ PCTGGATCGACGCGTACGATCAAAGCTCGTACTGTGTATGCGTATGCCTAGCTCGCTACGCTAGTATGCTCGATTATAGCTCGTAC1 ${ t PCC}{ t CGATCGACGCGT}{ t DGATTAAAGCTCGT}{ t CCTGCGTATGC}{ t TTATG}{ t CCTAGGCTAGGCTAGGCTAGTATGCTAGATTAAAGCTCT}{ t TTACTAGACTCGACGCGACGCTAGGCTAGATTAAAGCTCTTACTACTAGACTAGGCTAGATTAAAGCTCTTACTAGATTAAAGCTCTTACTAGACT$ PCCGGATCGGCGCGTACGATTAAAGCTCGTACTGCGGATGCGTATGCCTAGCTGGCTAGGCGAGTATGCTAGATGAAAGGTCGTAC1

- 5-15% error compared to 0.01% of Illumina
- How to solve this problem?

Circular consensus sequencing

- Circular extension of each DNA molecule
- Read the extended molecules = multiple resequencing of the original sequence
- Take the consensus (majority vote)
- P(correct base in >k of N passes) \sim Binomial

Images from Pacific Biosciences

Long read length >> 10kb

Nanopore

Basecalling with deep neural networks

- Trained using data from synthetic DNA (known sequences)
- 14% baseline error
- Improved to 1-5% using bioinformatics and machine learning
- Require computer with GPU

Consensus sequencing with UMI

- Attach unique molecular identifier (**UMI**) tag to DNA molecules
- Amplify and sequence
- Cluster reads with the same UMI and call consensus sequences

Zurek, P.J. et al. Nature Communications 11:6023 (2020)

Detection of modified nucleotides

Geralde et al. Nature Methods 15, 201-206 (2017)

- Modified nucleotides = different 3D structure = different change in ionic flow
- Trained using synthetic nucleotides

Very long read length up to Mb

Portability & fastest turn-around time

	Flongle	MinION	GridION (5 flow cells)	PromethION (48 flow cells)
		mman and a second	OF ELECTION	Parellion 0
Maximum run time	16 hours	72 hours	72 hours	64 hours
Theoretical 1D maximum yield	Up to 3.3 Gb	Up to 40 Gb	Up to 200 Gb	Up to 15 Tb
Current 1D maximum yield	Up to 2 Gb	Up to 30 Gb	Up to 150 Gb	Up to 8.6 Tb
Available channels	Up to 126	Up to 512	Up to 2,560	Up to 144,000

Real-time data with Nanopore

- Real time ionic flow signals
- Ability to manipulate individual pore and terminate unwanted reads
- Rapid decision making (no need to wait for the full 16-72hr run)

Adaptive sampling

https://nanoporetech.com/document/adaptive-sampling

- Nanopore signal can be decoded in real-time to control the pores

Long read resolves repetitive regions

- As much as 20% of human genome is like this!

Long read resolves haplotype

Combining short and long read data

Pros and cons of NGS/long-read techniques

Platform	Read Length	Run Time	Advantage	Disadvantage
Illumina	50-300	5 days	Low cost per base High throughput	Short read length
PacBio SMRT-seq	10-25kb	10 days	Long read with high accuracy	Expensive Low throughput
Nanopore	30-100kb	<10 hours	Quick turn-around time Portable Ultra-long read Low instrument cost	Low accuracy

Choosing the right platform for your task

- Identify low frequency variants (mutations)
- Gene expression
- Targeted sequencing
- Assemble new genomes
- Clinical service time-scale
- Field study
- Structural variant, gene copy number
- Identify new transcript (RNA) splice isoforms

Illumina

Mixed

Nanopore

PacBio

Applications of DNA sequencing

Sequencing cost breakdown

Cost = Base Pair = Scope x Depth

Reduced scope

- Exome sequencing = exons only
- Amplicon sequencing = selected loci
 - 16S rRNA, RDRP gene
 - Cancer gene panels

Reduced depth

- Ultra-low pass
 - Detect chromosomal copy alternation
 - Estimate tumor fraction

Euskirchen, P. et al. Acta Neuropathol 134:691-703 (2017)

Exon enrichment for exome sequencing

rRNA amplicon sequencing

- **Bacteria**: 16S rRNA
- **Fungi**: internal transcribed spacer (ITS) located between rRNA genes
- Provide taxonomy, composition details

Chromatin immunoprecipitation

Park et al. Nat Rev Genet 10:669-680 (2009)

DNA-bound protein / histone modification

DNA sequencing coupled with molecular techniques (labeling, modification)

DNA adenine methylatransferase (DamID)

https://marshall-lab.org/damid/

- Dam attached to protein of interest
- Methylation of GATC
- DpnI/DpnII enzymes

Bisulfite sequencing

Targetting bound or unbound chromatin

Bounded DNA

Unbounded DNA

Unbounded DNA + 1-2 nucleosomes

DNAse I cuts free chromatin → size-selection

https://en.wikipedia.org/wiki/DNase_I_hypersensitive_site

MNase

- Micrococcal nuclease = endoexonuclease from S. aureus
- Target free chromatin more efficiently than DNase (smaller molecule)
- Less able to digest nucleosome-bound
 DNA than DNase
- Good for mapping nucleosome locations

Chereji, R.V. et al. Molecular Cell 65:565-577 (2017)

Assay for transposase-accessible chromatin (ATAC)

Transposase Tn5 inserts sequencing adapter on open chromatin

Chromatin conformation capture

Cross-link proximal DNA \rightarrow join ends from different regions \rightarrow sequencing

Probing RNA secondary structure

Any question?

- See you next time