COMBINING BOTTOM-UP AND TOP-DOWN APPROACHES FOR DRUG-TARGET-INTERACTION PREDICTION

Tilman Hinnerichs tilman@hinnerichs.com

1 Recent work

- Write about how to find suitable representations for both drugs and proteins
- \bullet Recent papers (see survey paper from briefings in Bioinformatics) \rightarrow use either bottom up or top down
- best bottom up and top down results come from which papers?
- What are problems of recent approaches?
 - Lack ability to generalize (bottom-up) or are unable to spot small differences (top-down)
 - only top down or bottom-up
 - not making use of interaction networks
- They all do split over drugs and not over proteins → why is that bad? How can that be omitted?
 What consequences does that have for new drug-target pairs?
 - its feasible to engineer sophisticated representations for drugs, but not really for the proteins,
 both in bottom-up and in top-down approaches
 - Thus, we will focus on building proper representations for the proteins
- Additionally, PPI-graphs have been used in recent works to do ..., but have found no application in dti prediction. This also applies for DDI-graphs With more and more uprising Graph Learning approaches, we can learn more sophisticated representations and test more complicated hypothesis.

2 How to combine mutual exclusive approaches

2.1 Problem description

- What is dti prediction? \rightarrow problem description
- Emphasize the importance of ability to generalize

ullet Issues with data in general \to Open vs. closed world assumption. (To specific? Can we address this issue?)

•

2.2 Issues to be solved

- We are testing two hypothesis at the same time:
 - Can we use PPI and DDI graphs to learn a protein representation that generalizes better?
 - Can the built filter increase the performance of that very method? (Find better formulation)

2.3 Role of interaction networks

2.3.1 DDI

- What are DDI networks? What are they able to tell?
- Why are they important?
- Where do they come from? \rightarrow Boyce et al., Maybe repeat some ideas from their paper

2.3.2 PPI

- What are PPI networks? What can they tell? What does a link in the graph mean? Why would that be important to our problem? (Role of pathways)
- Recent work on PPIs? Add some ideas from them.
- What are we actually trying to find? (Regions within PPI network that are of interest for drug, **OR** patterns in the PPI graph that are of interest for the drug)

2.4 Finding node features for the PPI graph

2.4.1 Encoding of number of neighbours

 \bullet Encode number of neighbours in node features \to Many neighbours \implies well studied and possibly many targets

2.4.2 How to build a drug specific filter (optional)

- STITCH got 390.000 chemicals, 3.6 million proteins from over 2000 organisms
- for each drug find a motif in the target amino acid squences and query against all proteins and use the results as features for the prediction
- Why do need those filters? Why should they work (Discuss with Robert)? How do they help our prediction?
- ullet write down algorithm that is used: alignment o HMM o query

2.5 Features for drugs

Similarity scores over MedDRA data.

• Why can they be useful? How did we obtain them?

3 Models

Transductive vs inductive models

- When is what kind of model better for the model? For which one of the two hypothesis? (transductive for patterns and inductive for regions of interest)
- What architectures are used? (Plain convolution for patterns and Attention based fo regions)
- Maybe some images of model structure

4 Results