Synthesizing Analytical SQL From Computation Demonstration

Xiangyu Zhou¹, Ras Bodik¹, Alvin Cheung², Chenglong Wang³

¹University of Washington, ²UC Berkeley, ³Microsoft Research

Querying databases with SQL

City	Quarter	Enrolled
Α	1	100
Α	2	200
Α	3	400
В	1	300
В	2	150
В	3	150

Analytical SQL: SQL + Analytical Function

Analytical SQL is a rich and expressive language for analytical tasks

(but it's also hard to program with)

Synthesizing Analytical SQL From Input-Output Examples?

Find a query q such that q(T) = E

T

City	Quarter	Group	Enrolled	Population
Α	1	Youth	1667	5668
Α	1	Adult	1367	5668
Α	2	Youth	256	5668
Α	2	Adult	347	5668
Α	3	Youth	148	5668
Α	3	Adult	237	5668
Α	4	Youth	556	5668
Α	4	Adult	432	5668
В	1	Youth	2578	10541
В	1	Adult	1000	10541

?

City	Quarter	Percentage
Α	1	53.5%
Α	2	64.1%
Α	3	70.9%
Α	4	88.3%
В	1	33.9%

Synthesizing Analytical SQL From Input-Output Examples?

Task: calculate the percentage of cumulative enrollment over city population

Synthesizing Analytical SQL From Input-Output Examples?

City	Quarter	Group	Enrolled	Population
Α	1	Youth	1667	5668
Α	1	Adult	1367	5668
Α	2	Youth	256	5668
Α	2	Adult	347	5668
Α	3	Youth	148	5668
Α	3	Adult	237	5668
Α	4	Youth	556	5668
Α	4	Adult	432	5668
В	1	Youth	2578	10541
В	1	Adult	1000	10541

?

City	Quarter	Percentage
Α	1	53.5%
Α	2	64.1%
Α	3	70.9%
Α	4	88.3%
В	1	33.9%

Problem 2: The example hides user intent, making the task ambiguous and hard to solve.

Synthesizing Analytical SQL From Input-Output Examples

Key: let the user demonstrate the computation process, not just the final value

Synthesizing Analytical SQL From Input-Output Examples Computation Demonstration

Synthesis Criteria for Computation Demonstration

q(T)

1

City	Quarter	Group	Enrolled	Population
Α	1	Youth	1667	5668
Α	1	Adult	1367	5668
Α	2	Youth	256	5668
Α	2	Adult	347	5668
Α	3	Youth	148	5668
Α	3	Adult	237	5668
Α	4	Youth	556	5668
Α	4	Adult	432	5668
В	1	Youth	2578	10541
В	1	Adult	1000	10541

Given T and E, find q such that exists q(T) = E

Computation Demonstration

Given T and E, find q such that q(T) is computationally consistent with E

1. Tracking of how each cell in q(T) is computed

2. Capturing the fact that **E** can be partial

E

City	Quarter	Percentage
Α	1	(1667 + 1367) / 5668 * 100%
Α	4	(1667 + + 432) / 5668 * 100%
В	1	(2578 + 1000) / 10541 * 100%

City	Quarter	Percentage
Α	1	(1667 + 1367) / 5668 * 100%
Α	2	(1667 + 1367) / 5668 * 100%
Α	3	(1667 + 1367 + 256 + 347) / 5668 * 100%
Α	4	(1667 + 1367 + 256 + 347) + 148 + 237 + 556 + 432) / 5668 * 100%
В	1	(2578 + 1000) / 10541 * 100%

3. Handling incomplete expressions e.g., (1 + 2 + 3 + 4) generalizes (1 + ... + 4)

Synthesis Algorithm: Enumerative Search with A

Looks incorrect, how can we tell?

Pruning

Operators: group, partition, arithmetic

T

City	Quarter	Group	Enrolled	Population
Α	1	Youth	1667	5668
Α	1	Adult	1367	5668
Α	2	Youth	256	5668
Α	2	Adult	347	5668
Α	3	Youth	148	5668
Α	3	Adult	237	5668
Α	4	Youth	556	5668
Α	4	Adult	432	5668
В	1	Youth	2578	10541
В	1	Adult	1000	10541

Type: the output only
Type. the output only
has 2 columns, not 3!

 $t1 \leftarrow \text{group}(1, \square, \square, \square)$ $t2 \leftarrow \text{arithmetic}(t1, \square, \square)$

 $t1 \leftarrow partition(T, \Box, \Box, \Box)$

 $t2 \leftarrow arithmetic(t1, \square, \square)$

 $t1 \leftarrow group(T, [City], \square, \square)$

t1 \leftarrow partition(T, [City], \square , \square)

 $t1 \leftarrow group(T, [City, Quarter], \square, \square)$

 $t2 \leftarrow arithmetic(t1, \square, \square)$

t1 ← group(T, [Quarter], □, □) t2 ← arithmetic(t1, □, □)

t1 \leftarrow group(\overline{T} , [City, Quarter,], \square , \square)

partition(t1, \square , \square , \square) \leftarrow arithmetic(t2, \square , \square)

Value: he output can not produce values "A", "B" required by E!

up(T, [City, Quarter,], □, □) tition(t1, □, □, □)

hmetic(t2, □, □)

τι ← group(T, [City, Quarter, Population], □, □)

 $t2 \leftarrow partition(t1, \square, \square, \square)$

 $t3 \leftarrow arithmetic(t2, \Box, \Box)$

t1 \leftarrow group(T, [City, Quarter], \square , \square) t2 \leftarrow arithmetic(t1, \square , \square)

City	Quarter	Percentage
Α	1	(1667 + 1367) / 5668 * 100%
Α	2	(1667 + 1367) / 5668 * 100%
Α	3	(1667 + 1367 + 256 + 347) / 5668 * 100%
Α	4	(1667 + 1367 + 256 + 347) (+ 148 + 237 + 556 + 432) / 5668 * 100%
В	1	(2578 + 1000) / 10541 * 100%

 $t1 \leftarrow group(T, [City, Quarter, Population], sum, Enrolled)$

t2 ← partition(t1, [City], cumsum, C1)

t3 \leftarrow arithmetic(t2, λx , y.x/y * 100%, [C2, Population])

t1 ← group(T, [City, Quarter], sum, Enrolled)

t2 ← partition(t1, [City], sum, C1)

 $t3 \leftarrow arithmetic(t2, \square, \square)$

t1 ← group(T, [City, Quarter], sum, Population)

t2 ← partition(t1, [City], sum, C1)

 $t3 \leftarrow arithmetic(t2, \Box, \Box)$

City	Quarter	Percentage
Α	1	(1667 + 1367) / 5668 * 100%
Α	4	(1667 + + 432) / 5668 * 100%
В	1	(2578 + 1000) / 10541 * 100%

Pruning with Abstract Provenance Analysis

q t1 ← group(T, [City, Quarter, Population], \Box , \Box) t2 ← arithmetic(t1, \Box , \Box)

Observation

E demonstrates how values in *T* flows to *E*.

Let's analyze if q(T)'s data provenance (flow) is consistent with E

Over-approximates data provenance

E

City	Quarter	Percentage	
Α	1	(1667 + 1367) / 5668 * 100%	
Α	4 ((1667 + + 432) / 5668 * 100%	•
В	1	(2578 + 1000) / 10547 ~ 100%	

	City	Quarter	Population	Aggregated Value
araun	А	1	5668	{Youth, 1667, Adult, 1367}
group	Α	2	5668	{Youth, 256, Adult, 347}
=====	Α	3	5668	{Youth, 148, Adult, 237}
	A	4	5668	{Youth, 556, Adult, 432}
	В	1	10541	{Youth, 2578, Adult, 1000}

arithmetic

q(T)

City	Quarter	Population	Aggregated Value	Arithmetic Output
Α	1	5668	{Youth, 1667, Adult, 1367}	{A, 1, 5668, Youth, 1667, Adult, 1367}
Α	2	5668	{Youth, 256, Adult, 347}	{A, 2, 5668, Youth, 256, Adult, 347}
Α	3	5668	{Youth, 148, Adult, 237}	{A, 3, 5668. Youth, 148, Adult, 237}
Α	4	5668	{Youth, 556, Adult, 432}	{A, 4, 5668, Youth, 556, Adult, 432}
В	1	10541	{Youth, 2578, Adult, 1000}	{B, 1, 5668, Youtn, 2578, Adult, 1000}
				<u>.i.</u> .

Contradiction! q(T) does not allow 1667 to flow into the arithmetic output for city A quarter 4!

Synthesizing Analytical SQL From Computation Demonstration

Experiment: Synthesis Efficiency

Benchmarks

60 online posts + 20 queries extracted from TPC-DS

- 43 easy (1-3 operators)
- 37 hard (4-6 operators)

Pruning AbstractionType, Value, Provenance

Setup

Demonstration generated by sampling from query output

Experiment: Number of Queries Visited

Observation 3:

Provenance abstraction significantly reduces programs to be visited

User Experience Study: 6 analytical tasks with 13 participants

User Specification Method

- Concrete values (PBE)
- Computation demonstration without partial expression
- Computation demonstration

Computation demonstration:

- is faster to create for harder tasks, slower for easier tasks
- increases user confidence
- does not suit all operators (RANK, COUNT).

Partial expression

- Reduces spec effort
- some participants find it hard to master.

Synthesizing Analytical SQL From Computation Demonstration

Criteria: q(T) is computation consistent with E

Position: design new specifications for better usersynthesizer communication

