Urti parzialmente anelastici

Caputo, Crismale, Panteghini

Abstract

Lo scopo di questo esperimento è sviluppare un modello teorico per il fenomeno dell'urto anelastico di una pallina su una superfice piana e determinarne sperimentalmente il coefficiente ε di restituzione.

Introduzione

Dopo aver posizionato il centimetro da sarta sul muro, perpendicolarmente alla superfice d'impatto, sono stati eseguiti 6 set da 5 lanci con la pallina da ping pong ciascuno per ogni lunghezza, partendo da 130 fino a 80 cm scalando di 10 cm ogni volta.

Apparato sperimentale

In questo esperimento sono stati utilizzati una pallina da ping pong regolamentare, un centimetro da sarta e il software Audacity per la misurazione della durata dell'evento. Per la realizzazione dei grafici e per i calcoli sono stati utilizzati rispettivamente Root e Microsoft Excel.

Analisi dei dati

Per ogni lancio, schiocchiamo le dita nell'instante in cui lasciamo cadere la pallina e rileviamo con Audacity le onde sonore emesse da noi e dalla pallina durante gli urti; ricaviamo quindi il tempo t_{tot} che intercorre tra il momento in cui la pallina viene lasciata libera di cadere e quello in cui smette di rimbalzare. Nella seguente tabella vengono riportati i dati relativi ai lanci:

Altezza (cm)	t _{tot} 1 (sec)	t _{tot} ² (sec)	t _{tot} ³ (sec)	t _{tot} ⁴ (sec)	t _{tot} ⁵ (sec)
130	8.92	8.96	8.62	8.74	9.00
120	8.50	8.78	8.71	8.82	8.80
110	8.63	8.57	8.35	8.35	8.41
100	8.41	8.48	8.29	8.13	8.16
90	8.05	8.38	8.11	8.23	8.16
80	7.81	7.62	7.96	7.80	7.58

Una pallina posta ad un'altezza h dal piano d'urto ha un'energia potenziale pari a $E_n = mgh$

Cadendo, l'energia potenziale della pallina si trasforma in energia cinetica, quindi trascurando l'attrito dell'aria, si ha

$$mgh = \frac{1}{2}mv_0^2$$

Dove $v_0 = \sqrt{2gh}$ è la velocità con cui la pallina raggiunge il piano in un tempo

 $t_0 = \sqrt{\frac{2h}{g}}$. Durante l'urto viene dissipata energia a causa della deformazione subita dalla pallina, di conseguenza la velocità v_1 subito dopo l'impatto sarà minore di v_0 . Si definisce il coefficiente di restituzione $\varepsilon = \frac{v_1}{v_0}$.

Il tempo t₁, che passa dal primo al secondo urto, è $t_1 = 2\frac{v_1}{g} = 2\varepsilon \frac{v_0}{g} = 2\varepsilon \sqrt{\frac{2h}{g}}$ t_{tot} , quindi si può ricavare dalla seguente relazione

$$t_{tot} = \lim_{n \to \infty} \sum_{i=1}^{n} t_i = \sqrt{\frac{2h}{g}} \cdot \left(1 + 2 \sum_{i=1}^{\infty} \varepsilon^n\right).$$

Da questo modello teorico si constata che t_{tot} è direttamente proporzionale a \sqrt{h} ; nel seguente grafico illustriamo i dati sperimentali di t_{tot} , con i relativi errori, in funzione di \sqrt{h} . Effettuiamo il fit con una retta e osserviamo che non passa per l'origine, come previsto dal modello teorico, a

causa di errori sistematici dovuti al tempo di reazione. Infatti grazie al software Audacity sono stati minimizzati solo gli errori sistematici dovuti all'impossibilità di stabilire con certezza e uniformità rispetto alle varie misurazioni, l'istante in cui un rimbalzo può essere considerato trascurabile.

Ricaviamo il coefficiente di restituzione ε utilizzando il coefficiente angolare m fornitoci da Root

$$1 + 2\sum_{i=1}^{\infty} \varepsilon^{n} = 1 + 2\left(\frac{1}{1-\varepsilon} - 1\right) = \frac{1+\varepsilon}{1-\varepsilon}$$

poiché la serie $\sum_{i=1}^{\infty} \varepsilon^n$ è una serie geometrica.

Possiamo quindi scrivere: $m=\sqrt{\frac{2}{g}}\frac{1+\varepsilon}{1-\varepsilon}$ e ricavare il valore cercato del coefficiente di restituzione, cioè $\varepsilon=0.81$

Calcoliamo ora l'errore relativo ad ε

$$\partial \varepsilon = \sqrt{\left(\frac{\partial \varepsilon}{\partial m}\right)^2 \cdot (\partial m)^2}$$

Pertanto il valore ottenuto è 0.81±0.03

Conclusione

Si osserva che il valore ottenuto sperimentalmente con una pallina da ping pong e un tavolo di quercia si discosta dal valore campione trovato su internet (0.94 per palline lasciate cadere da un'altezza di un metro); questo è dovuto al fatto che il coefficiente di restituzione non dipende solo dal tipo di pallina utilizzata ma anche dalla superficie d'impatto. Inoltre il nostro valore di ε è il risultato di una valutazione effettuata su un set di sei altezze anziché solo una.