Homework 8

1 Consider in \mathbf{E}^2 the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$.

Find the foci of this ellipse.

Define focal polar coordinates for this ellipse and write down the equation of this ellipse in polar coordinates.

2 Consider a curve in \mathbf{E}^2 defined in polar coordinates (r,φ) by the equation

$$r = \frac{p}{1 - e\cos\varphi} \,, \quad p > 0 \,. \tag{1}$$

- a) Write down the equation of this curve in Cartesian coordinates $\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}$ in the case if $p = 2, e = \frac{1}{3}$, show that this curve is an ellipse, and find the foci and the centre of this ellipse. Calculate the area of this ellipse.
- b) Justify by straighforward calculations that in the case $0 \le e < 1$ the curve (1) is indeed an ellipse with foci at the origin and at the point (2c, 0), where $c = \frac{pe}{1-e^2}$, and with semi-major axis $a = \frac{p}{1-e^2}$.
 - c) How does the curve defined by equation (1) look in the case if e = 1?
- **3** Let C be the curve defined by the intersection of the plane α : 2z x = 2 with the conic surface M: $x^2 + y^2 = z^2$.

Let C_{proj} be the orthogonal projection of this curve onto the plane z=0.

Show that the curve C_{proj} is an ellipse.

Explain why the curve C is also an ellipse.

Find the foci of the curve C_{proj} . In particular show that the vertex of the conic surface M is a focus of the ellipse C_{proj} .

Find the areas of the ellipses C and C_{proj} .

4 Let C be the curve defined by the intersection of the plane α : kx + z = 1 (where k is real parameter) with the conic surface M: $2x^2 + 2y^2 = 9z^2$.

Let C_{proj} be the orthogonal projection of this curve onto the plane z=0.

Find the values of parameter k such that the curve C and the curve C_{proj} are ellipses.

Find the values of parameter k such that the curve C and the curve C_{proj} are parabolas.

In the case if a curve C (and a curve C_{proj}) are parabolas, show that the vertex of the conic surface M, the origin, is the focus of this parabola C_{proj}

Find the directrix of this parabola.

5 Find the foci and directrix of the parabola $y = ax^2$, (a > 0).

Choose focal polar coordinates and write down the equation of this parabola in these polar coordinates.