

Lecture outlook

- Introduction to particle accelerators and detectors
 - Basic principles of particle accelerators
 - Fixed target and collider experiments
 - Luminosity
 - Basic building blocks of a particle physics experiments
- Data analysis tools:
 - Variables in the laboratory frame
 - Momentum conservation:
 - Transverse momentum and missing mass
 - Examples: two jets events, three jet events, W discovery
 - Method of invariant mass

Laboratory frame

- The momentum of each particle produced in a collision can be decomposed in:
 - Component parallel to the beams (longitudinal, parallel to z)
 - Component perpendicular to the beams (transverse, in x-y plane)
 - The transverse component is: $P_T = P \sin(\theta_{CM})$
- Example:
 - Longitudinal and transverse momentum in proton-antiproton scattering

Pseudorapidity

To measure the longitudinal angle of the emerging particle jet one usually uses a variable called **pseudo-rapidity**

- The pseudorapidity (η) is **Lorentz invariant under longitudinal boosts**
- Momenta in the transverse plane are also invariant under longitudinal relativistic transformations
- Distance between particles or jets is usually measured in the (η,φ) plane

Pseudorapidity

- Particles produced at θ =90° have zero pseudorapidity
- High |η| values are equivalent to very shallow scattering angles
- Typical coverage of central detectors extends to $|\eta|$ ~3.
 - Coverage of high rapidities (θ <5°) achieved with detectors at large z positions

$$\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right],$$

Collider physics

- Experiments in hadron colliders usually deal with particles at high transverse momentum
- Reasons:
 - Incoming particles collide head-on (no transverse momentum)
 - Final state particles must have zero total transverse momentum
 - Hard processes (large momentum transfer) produce particles in the center of the detector
- Example: proton + antiproton → jet + jet

Two jets events in eta, phi plane

Two jets events

Figure 2.19 Schematic representation of a two jet event at D0. The shading represents the scale of energy deposited in the calorimeters. The first compartment is the electromagnetic calorimeter followed by two hadronic compartments. This is a projection in polar angle ([8] – D0 – with permission).

Three jets in e+e- annihilation

- Electron-proton pairs can annihilate producing quark pairs (e.g. at LEP)
- In some cases, a gluon can be radiated from the out-coming quark

- In the latter case one observes three particle jets in the final state:
 - Two quark jets and one gluon jet
- If no particle escapes the detector the three jets must have total transverse energy equal to zero

Missing mass

- A collision is characterized by an initial total energy and momentum (E_{in}, **p**_{in})
- In the final state we have n particles:
 - $E = \sum_{i} E_{i}$, $p = \sum_{i} p_{i}$
 - Sometime we measure E<E_{in} and p≠p_{in}
- In this case one of more particles have not been detected
 - Typically: **neutral particles**
 - Most often neutrinos, but also neutrons, π^0 , K^0 _L (the latter for long decay time)
- We define the concept of **missing mass**:

Missing mass =
$$[(E_{in}-E)^2-(p_{in}-p)^2]^{1/2}$$

If the spectrum of the missing mass has a well-defined peak one particle has escaped our detector

10

W boson decays

The W boson is produced in proton collisions mainly via the following process:

- A u-quark collides with a anti-d quark producing a W+ boson
- The W+ decays into lepton (muon) and neutrino pairs
- The muon is detected and its momentum can be measured
- The neutrino escapes the detector undetected:
- The total sum of the transverse momenta is not zero!
 - In other words, the experimental signature of the neutrino in the experiment is the missing transverse momentum

11

Example: W boson discovery

Fig. 2.8. One of the first events attributed to production and decay of a W boson, $W^+ \rightarrow e^+ + \nu_e$. The picture shows a reconstruction of the drift chamber signals in a large detector, UA1, surrounding the beam pipe of the CERN proton-antiproton collider. These signals originated in the collision of a 270 GeV proton (from the right) with a 270 GeV antiproton (from the left). Among the 66 tracks observed, one, shown by the arrow, is a very energetic (42 GeV) positron identified in a surrounding electromagnetic calorimeter. The transverse momentum of the positron is 26 GeV/c, while the missing transverse momentum in the whole event is 24 GeV/c, consistent with that of the neutrino (from Arnison et al. 1983).

Invariant mass

- The **invariant mass** is a characteristic of the total energy and momentum of an object or a system of objects that is the same in all frames of reference.
- When the system as a whole is at rest, the invariant mass is equal to the total energy of the system divided by c². If the system is one particle, the invariant mass may also be called the **rest mass**.

$$(mc^2)^2 = E^2 - \|\mathbf{p}c\|^2$$
 natural units (c=1): $m^2 = E^2 - \|\mathbf{p}\|^2$.

For a system of N particles:

$$(Wc^2)^2 = \left(\sum E\right)^2 - \left\|\sum \mathbf{p}c\right\|^2$$

- where W is the invariant mass of the decaying particle
- In a two body decay $M\rightarrow 1+2$:

$$M^2 = (E_1 + E_2)^2 - \|\mathbf{p}_1 + \mathbf{p}_2\|^2 = m_1^2 + m_2^2 + 2(E_1 E_2 - \mathbf{p}_1 \cdot \mathbf{p}_2).$$

Invariant mass: applications

- Particles like ρ , ω , φ have average lifetime of 10-22-10-23 s
 - How do we know of their existence if they live so shortly?
- Example: reaction pp→ppπ⁺π⁻
 - We identify all four particles in the final state and measure their momentum
 - Let's focus on the pion pair, the total energy & momentum are:

$$E=E_++E_ p=p_++p_-$$

The invariant mass is:

$$M = (E^2 - \mathbf{p}^2)^{1/2}$$

The event distribution for the variable M will look like:

Fvidence

for p

Example: Z discovery

Example: π⁰ reconstruction

- Neutral pions decay in photon pairs
 - Measuring the angle and energy of the emitted photons one can reconstruct the mass of the decaying pion

Exercise: calculate invariant mass formula for massless decay products (e.g. photons)

Invariant mass: 3 body decay

In case of a 3-body decay:

$$R \Rightarrow 1 + 2 + 3$$
.

We can construct three invariant masses:

$$m_{12}^2 \equiv (\mathcal{P}_1 + \mathcal{P}_2)^2,$$

 $m_{13}^2 \equiv (\mathcal{P}_1 + \mathcal{P}_3)^2,$
 $m_{23}^2 \equiv (\mathcal{P}_2 + \mathcal{P}_3)^2$

For the three body case one finds:

$$m_{12}^2 + m_{13}^2 + m_{23}^2 = m_1^2 + m_2^2 + m_3^2 + (\mathcal{P}_1 + \mathcal{P}_2 + \mathcal{P}_3)^2$$

= $m_1^2 + m_2^2 + m_3^2 + M^2$.

Only two independent invariant masses

Example: Dalitz plot

As an example, let's study the reaction:

$$K^-p \to \Lambda \pi^+\pi^- (\Lambda \to \pi^-p),$$

We can measure two invariant masses

Let
$$m_{12} \equiv m(\Lambda \pi^-)$$
 be $m_{13} \equiv m(\Lambda \pi^+)$

The so-called "Dalitz plot" shows the relation between $(m_{13})^2$ and $(m_{12})^2$

The Σ[±] resonance appears as two bands in the Dalitz plot around 1.4 GeV

$$\Sigma^{\pm}(1387) \to \Lambda \pi^{\pm}$$
.