Optimisation de requête (Documents de cours)

Fabrice Jouanot

Optimisation par règles Règles de transformation (1/3)

```
1) \sigma(p \wedge q \wedge r)R = \sigma p(\sigma q(\sigma r(R)))
2) \sigma_p(\sigma_q(R)) = \sigma_q(\sigma_p(R)) (commutativité)
3) \pi L \pi M ... \pi N(R) = \pi L(R)
4) \pi A_1,...,A_n(\sigma p(R)) = \sigma p(\pi A_1,...,A_n(R)) si p \in \{A_1...A_n\}
5) R *_p S = S *_p R et R \times S = S \times R
6) \sigma_p(R *r S) = \sigma_p(R) *r S \text{ si } p \in Attribut(R)
           et
     \sigma_{P \wedge q}(R *r S) = \sigma_{P}(R) *r \sigma_{q}(S)
       si p \in Attribut(R) et q \in Attribut(S)
```

Optimisation par règles Règles de transformation (1/3)

```
7) \pi_{L1 \cup L2}(R *r S) = (\pi_{L1}(R)) *r (\pi_{L2}(S))

\text{si } L1 \in \text{Attr}(R) \text{ et } L2 \in \text{Attr}(S)

\pi_{L1 \cup L2}(R *r S) = \pi_{L1 \cup L2}((\pi_{L1 \cup M1}(R)) *r (\pi_{L2 \cup M2}(S)))

\text{si } M=M1 \cup M2 \text{ avec } M1 \in \text{Attr}(R), M1 \not\in L1, M \in R

M2 \in \text{Attr}(S), M2 \not\in L2, M \in R

8) R \cup S = S \cup R \text{ et } R \cap S = S \cap R

9) \sigma p(R \cup S) = (\sigma p(R) \cup \sigma p(S)) (idem avec \cap et -)

10) \pi_{L}(R \cup S) = (\pi_{L1}(R) \cup \pi_{L2}(S))
```

Optimisation par règles Règles de transformation (1/3)

```
11) (R * S) * T = R * (S * T)

(R * S) \times T = R \times (S \times T)

(R * p S) * q \wedge r T = R * p \wedge r (S * q T) \text{ si } q \in Attr(S) \cap Attr(T)

\text{si } r \in Attr(R) \cap Attr(T)

12) (R \cup S) \cup T = S \cup (R \cup T) \text{ idem avec } \cap
```

Optimisation par règles Heuristiques

- H1: Appliquer les opérations de sélection au plus tôt
 - Réduire la cardinalité des tables pour optimiser les opérateurs suivants
 - Généralement règle 1, puis 2,4,6 et 9 pour déplacer les sélections
- H2: Combiner les produits cartésiens avec des sélections pour construire des jointures
- H3: Utiliser l'associativité des opérateurs binaires pour que les opérations réduisant la cardinalité (les plus sélectives) s'appliquent en premier
 - Règles 11 et 12
 - L'ordre des jointures peut devenir important
- H4: Appliquer les projections le plus tôt possible
 - Réduire la taille des tuples pour optimiser la mémoire
- Ne calculer qu'une seule fois les expressions redondantes.

Optimisation par règles Exemple

- On part d'une requête déclarative
 Select i,numPropriete, i.rue
 from client c, visite v, proprieteALouer i
 where c.typePref='Appart' and c.numclient=v.numclient and
 v.numPropriete=i.numPropriete and c.loMax>=i.location and
 c.typePref=i.type and i.numPropritaire='CP93';
- Et sa version algèbrique avant optimisation

$$\sigma \pi \land \cap \cup \times * \in$$

 $\pi_{i.numpropriete,i.rue}(\sigma_{c.typePref=`Appart' \land c.numclient=v.numclient \land v.numPropriete=i.numPropriete \land c.locMax>=i.location \land c.typePref=i.type \land i.numProprietaire=`CP93`((C \times V) \times P))$

Optimisation par règles Exemple

On suppose qu'il existe moins de biens pour CP93 que de locations potentiels

Optimisation par règles Exemple

On suppose qu'il existe moins de biens pour CP93 que de locations potentiels

