Design and Analysis for Computer Experiments with Qualitative and Quantitative Factors

Xinwei Deng Department of Statistics, Virginia Tech

Outline

- Brief Introduction to Computer Experiments
- Marginally Coupled Design for Computer Experiments with Qualitative and Quantitative Factors
 - Review of designs for computer experiments
 - The proposed designs and their properties, constructions
- Additive Gaussian Process for Computer Experiments with Qualitative and Quantitative Factors
 - Review of the existing methods
 - The proposed model
 - Simulation and case study

Computer Experiments (CE)

- Many physical processes are difficult, expensive or impossible to observe
- Computer code exists to model the physical processes
- ightharpoonup The computer code takes input settings \mathbf{x} and produces a response $y(\mathbf{x})$

$$\mathbf{x} \longrightarrow \boxed{\mathbf{Code}} \longrightarrow y(\mathbf{x})$$

 $\mathbf{y}(\mathbf{x})$ is often deterministic; the computer code is often expensive to run

CE with Qualitative and Quantitative Factors

Computational Fluid Dynamics (CFD) Based Computer Experiment

Data Center Thermal Management @2007 IBM Corporation

Configuration Variables

The configuration variables contain both qualitative and quantitative factors.

Variable	Description	Values
X_1	CRAC unit 1 flow rate (cfm)	0 7000 8500 10000 11500 13000
X_2	CRAC unit 2 flow rate (cfm)	0 7000 8500 10000 11500 13000
X_3	CRAC unit 3 flow rate (cfm)	0 2500 4000 5500
X_4	CRAC unit 4 flow rate (cfm)	0 2500 4000 5500
X_5	Room temperature (F)	65 67 69 71 73 75
X_6	Tile distribution (location)	Layout1 Layout2 Layout3
X_7	Tile percentage open area	(0,1)

Data Center Thermal Management @2007 IBM Corporation

Design for Computer Experiments

- Space-filling designs
 - Latin hypercubes and their generalizations
 - Designs based on distances between points (Maximin; Minimax)
 - Uniform designs, etc
- Designs with good low-dimensional projection properties
- Sequential designs (for optimization, sensitivity analysis, contour estimation, quantile estimation, global fitting)

Design for CE with Mixed Inputs

How to construct a good design for computer experiments with mixed inputs (both qualitative and quantitative factors)

Latin Hypercube Design (McKay et al., 1979)

$$D = \begin{bmatrix} -1 & -1 \\ -2 & 2 \\ 0 & 1 \\ 2 & 0 \\ 1 & -2 \end{bmatrix} \Longrightarrow \begin{bmatrix} 0.29 & 0.30 \\ 0.12 & 0.91 \\ 0.57 & 0.69 \\ 0.90 & 0.52 \\ 0.64 & 0.18 \end{bmatrix}$$

For convenience, we use $-(n-1)/2, -(n-3)/2, \dots, (n-3)/2, (n-1)/2$ to represent the n levels in a Latin hypercube of n runs.

Id-projection PN Perty

Slice

Sliced Latin Hypercube Designs (Qian, 2012)

Sliced latin hypercube designs (SLHD): a special Latin hypercube design that can be partitioned into slices of smaller Latin hypercube designs.

$$B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -5 & -4 \\ 4 & 3 \\ 5 & 0 \\ 1 & -3 \\ -3 & 5 \\ ----- \\ 3 & 6 \\ 2 & 4 \\ -2 & 2 \\ 6 & -2 \\ -4 & -5 \\ -1 & -1 \end{bmatrix} \Longrightarrow \begin{bmatrix} 0.42 & 0.53 \\ 0.05 & 0.10 \\ 0.81 & 0.66 \\ 0.86 & 0.46 \\ 0.57 & 0.17 \\ 0.18 & 0.89 \\ ----- \\ 0.71 & 0.94 \\ 0.64 & 0.78 \\ 0.28 & 0.59 \\ 0.98 & 0.31 \\ 0.13 & 0.07 \\ 0.36 & 0.39 \end{bmatrix}$$

Using SLHD for CE with Mixed Inputs

- A sliced Latin hypercube design is used for quantitative factors
- A factorial design is used for qualitative factors
- Each slice of a sliced Latin hypercube design corresponds to each level combination of qualitative variables.

- It can be useful when the number of qualitative factors is small.
- Such a design needs large run size when the number of qualitative factors is moderate or large.

The Proposed Marginally Coupled Design

- Solution Consider a computer experiment with q qualitative factors and p quantitative variables. Suppose that the ith qualitative factor has s_i levels, $1 \le i \le q$.
- Let D_1 and D_2 be the design matrices for qualitative factors and quantitative factors, respectively.
- A design $D = (D_1, D_2)$ is called a marginally coupled design if D_2 is a Latin hypercube design and the rows in D_2 corresponding to each level of any factor in D_1 form a small Latin hypercube design.

Example

 D_2 continuous discrete E *Z*₁ x_1 *Z*2 x_2

Illustration

Figure 1: Scatter plots of x_1 versus x_2 where rows of D_2 corresponding to levels 0,1,2 of z_i are marked by \times , \circ , and +: (a) the levels of z_1 ; (b) the levels of z_2 .

Orthogonal Array

An orthogonal array D of strength t, denoted by $OA(n, s_1 \cdots s_k, t)$, is an $n \times k$ matrix of which the ith column has s_i levels $0, \ldots, s_i - 1$ and for every $n \times t$ submatrix of D, each of all possible level combinations appears equally often. If not all s_i 's are equal, an orthogonal array is mixed. Otherwise it is called symmetric. (Hedayat et al., 1999)

Resolvable Orthogonal Array

An $OA(n, s_1^{q_1} \cdots s_k^{q_k}, 2)$ is said to be $(\alpha_1 \times \alpha_2 \times \cdots \times \alpha_k)$ resolvable if for $1 \leq j \leq k$, its rows can be partitioned into $n/(\alpha_j s_j)$ subarrays $A_1, \ldots, A_{n/(\alpha_j s_j)}$ of $\alpha_j s_j$ rows each such that each of $A_1, \ldots, A_{n/(\alpha_j s_j)}$ is an $OA(\alpha_j s_j, s_1^{q_1} \cdots s_k^{q_k}, 1)$. If $\alpha_1 = \cdots = \alpha_k = 1$, the orthogonal array is called completely resolvable.

Resolvable Orthogonal Array

```
CROA(16,4^22^3,2)
  \alpha_1 = 1, \alpha_2 = 2
```

Properties of Marginal Coupled Design

Proposition 1. Given $D_1 = OA(n, s^q, 2)$, a marginally coupled design exists if and only if D_1 is a completely resolvable orthogonal array.

Proposition 2. Given $D_1 = OA(n, s_1^{q_1} s_2^{q_2}, 2)$ with $s_1 = \alpha_2 s_2$, a marginally coupled design exists if and only if D_1 is a $(1 \times \alpha_2)$ -resolvable orthogonal array that can be expressed as

$$\begin{pmatrix} A_{11} & A_{12} \\ \vdots & \vdots \\ A_{m1} & A_{m2} \end{pmatrix} \tag{1}$$

such that (A_{i1}, A_{i2}) is an $OA(s_1, s_1^{q_1} s_2^{q_2}, 1)$, where $m = n/s_1$, and for $1 \le i \le m$, the A_{i2} is completely resolvable.

Construction 1 (Tang, 1993)

A construction for s-level orthogonal arrays of s^2 runs

- Suppose an $OA(s_2, s_k, 2)$, say A, is available and D1 for qualitative factors is obtained by randomly taking q columns from A.
- Obtain a design, B, by randomly taking p columns from $A \setminus D_1$, where $q+p \leq k$. For each column of B, replace s positions with level i-1 by a random permutation of

$$\{(i-1)s+1\}-(s_2+1)/2,\ldots,\{(i-1)s+s\}-(s_2+1)/2,$$
 for $1\leq i\leq s$.

Example

$OA(9,3^4,2)$								
0	0	0	0					
$0 \\ 0$	1	1	0 2					
0	2 0	2/	1					
1	0	1	1					
1	1	$\sqrt{2}$	0					
1	2 0	$ \mathbf{\Theta} $	0 2 2	\				
$\begin{array}{ c c }\hline 1\\2\\2\\2\\\end{array}$	0	2	2					
2	1	0	1					
2	2	(1)	0					
				_				

L) 1	$\bigcap_{i=1}^{n} D_2$
0	0	$\left\langle -\frac{1}{2}\right\rangle -2$
0	1	$\begin{pmatrix} -1 \\ \end{pmatrix}$ 4
0	2	$4 \setminus 0$
1	0	0 1
1	1	2 -3
1	2	-3 3
2	0	3 / 2
2	1	-4/-1
2	2	1/-4

Construction 2

A construction for s-level orthogonal arrays of λs^2 runs, $\lambda > 1$

- Suppose an $OA\{\lambda s^2, s^k(\lambda s), 2\}$, say A, is available and D_1 for qualitative factors is obtained by randomly taking q columns from the first k columns of A.
- Denote the last column of A by a. For $1 \le j \le p$, let π_j be a random permutation of $\{0, \ldots, \lambda s 1\}$ and $\pi_j(i)$ be the ith entry of π_j . Replace the s positions having level $\pi_j(i)$ in a by a random permutation of $\{(i-1)s+1\}-(\lambda s^2+1)/2,\ldots,\{(i-1)s+s\}-(\lambda s^2+1)/2$, for $1 \le i \le \lambda s$.

Construction 3

A construction for mixed orthogonal arrays

Let L be a marginal sliced Latin hypercube for $B = OA(n, s_1^{k_1} \cdots s_v^{k_v}, 2)$ and $C = (C_{ij})$ be an $u \times p$ matrix with $C_{ij} = \pm 1$. The following steps for construction are proposed.

I. Let $T = C \otimes L = (C_{ij}L)$ where \otimes represents the usual Kronecker product.

II. Let $H=(H_{ij})$ be an $u\times k$ Latin hypercube, where $k=\sum_{i=1}^{v}k_i$. For $1\leq j\leq pk, 1\leq i\leq u$ and $1\leq r\leq n$, obtain an $nu\times pk$ matrix M by letting the $[\{(i-1)n+r\},j]$ th entry $M_{\{(i-1)n+r\},j}=T_{\{(i-1)n+r\},j}+nH_{ij}$, where $T_{\{(i-1)n+r\},j}$ is the $[\{(i-1)n+r\},j]$ th entry of T.

Analysis of CE with Mixed Inputs

Additive Gaussian Process for Analyzing Computer Experiments with Qualitative and Quantitative Factors

A Motivating Example

Figure 2: The embankment examined: (a) finite element mesh; (b) the schematic view of embankment constructed on foundation soil.

<i>z</i> ₁	embankment construction rate	qualitative	
<i>z</i> ₂	Young's modulus of columns	qualitative	
<i>Z</i> 3	reinforcement stiffness	qualitative	/
x_1	the distance from the embankment centreline to the embankment shoulder	quantitative	
Y	final embankment crest settlement		

Continous

 $\frac{1}{2} \frac{1}{2} \frac{1}$

dis crete

Analysis of CE with both Types of Inputs

- Qian, Wu and Wu (2008): use Gaussian process models with a restrictive correlation structure for the quantitative factors and employ optimization methods in the estimation to ensure that the correlation structure of the qualitative factors is positive-definite.
- Han et al. (2009): use hierarchical Bayesian Gaussian process models whose parameters at different levels to be i.i.d. draws from a prior distribution; perform well for cases where the responses have similar curvatures at different levels of the qualitative input variable.
- Zhou, Qian and Zhou (2011): use Gaussian process models with a correlation matrix being positive definite with unit diagonal elements.

Issue

- How to build an accurate surrogate model for computer experiments with qualitative and quantitative factors when
 - there can be a large number of qualitative factors.

 $y = u + (x, z_1) + (x, z_2) + \dots$ Alect $0 + 2 \dots X$

ANUVA

Additive Gaussian Process

Consider a computer experiment with the p quantitative factors $\mathbf{x} = (x_1, \dots, x_p)$ and the q qualitative factors $\mathbf{z} = (z_1, \dots, z_q)$.

The proposed model is

$$Y(\mathbf{x},z_1,\ldots,z_q) = \mu + G_1(z_1,\mathbf{x}) + \cdots + G_q(z_q,\mathbf{x}),$$
 where μ is the overall mean, $G_j \sim \mathsf{GP}(0,\phi_j)$ and G_j 's are independent.

Similar idea to maginal couple doing

Gaussian Process (GP) Models

Model:
$$Y(\mathbf{x}) = \sum_{j} \beta_{j} f_{j}(\mathbf{x}) + Z(\mathbf{x})$$

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{pmatrix} = \begin{pmatrix} x_{11} & \dots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{np} \end{pmatrix}$$

- $Z(\mathbf{X}) = (Z(\mathbf{x}_1), \dots, Z(\mathbf{x}_n))^T \sim MVN(0_n, \sigma_Z^2 \mathbf{R})$
- $P(x_i, x_j; \theta) = \prod_{k=1}^p \exp\{-\theta_k (x_{ik} x_{jk})^2\}$

Gaussian Process (GP) Models

Prediction:

$$\hat{y}(x_0) = \sum_{j} f_j(x_0) \hat{\beta}_j + r_0^T \hat{R}^{-1} (y - \sum_{j} f_j(\mathbf{x}) \hat{\beta}_j)$$

$$s^{2}(x_{0}) = \sigma^{2}(1 - r_{0}^{T}\hat{R}^{-1}r_{0} + \frac{1 - \mathbf{1}^{T}\hat{R}^{-1}r_{0}}{\mathbf{1}^{T}\hat{R}^{-1}\mathbf{1}})$$

where $r_0 = (\hat{R}(x_0 - x_1), \dots, \hat{R}(x_0 - x_n))^T$

Additive Gaussian Process

Consider a computer experiment with the p quantitative factors $\mathbf{x} = (x_1, \dots, x_p)$ and the q qualitative factors $\mathbf{z} = (z_1, \dots, z_q)$.

$$Y(\mathbf{x}, z_1, \dots, z_q) = \mu + G_1(z_1, \mathbf{x}) + \dots + G_q(z_q, \mathbf{x}),$$
 (3)

where μ is the overall mean, $G_j \sim \mathsf{GP}(0, \phi_j)$ and G_j 's are independent.

$$y=u+4,(2,x)$$
 $+4,(2,x)$
 $+4,(2,x)$
 $+4,(2,x)$

$$= \sum_{i=1}^{n} Z_i = i \quad Z_i = i \quad Z_i = i$$

Proposed Covariance Function

Proposed covariance:

$$\phi(Y(\mathbf{w}_{1}), Y(\mathbf{w}_{2})) = \operatorname{cov}(Y(\mathbf{x}_{1}, \mathbf{z}_{1}), Y(\mathbf{x}_{2}, \mathbf{z}_{2}))$$

$$= \sum_{j=1}^{q} \sigma_{j}^{2} \operatorname{cor}(G_{j}(z_{1j}, \mathbf{x}_{1}), G_{j}(z_{2j}, \mathbf{x}_{2}))$$

$$= \sum_{j=1}^{q} \sigma_{j}^{2} R(\mathbf{x}_{1}, \mathbf{x}_{2} | \boldsymbol{\theta}^{(j)}) \tau_{z_{1j}, z_{2j}}^{(j)}.$$
(4)

where

 $P(\mathbf{x}_1, \mathbf{x}_2 | \mathbf{\theta}^{(j)})$ quantifies the correlation between inputs \mathbf{x}_1 and \mathbf{x}_2 associated with the jth qualitative factor.

 $\sigma^{(j)}_{z_{1j},z_{2j}}$ represents the correlation between level z_{1j} and level z_{2j} of the jth qualitative factor.

Ah qualitative factor 2; l. 2.3. $(/ , 2) \longrightarrow (/2$ (), 3) \rightarrow $\overline{()}$

Correlation Function for Qualitative Factors

- Suppose the *j*th qualitative factor having m_j levels, j = 1, ..., q.
- Let $\mathbf{T}_j = (\tau_{r,s}^{(j)})$ be a correlation matrix of the m_j levels of the jth qualitative factor, $j=1,\ldots,q$.
- Model T_j such that T_j is a matrix with positive definiteness and unit diagonal element (PDUDE).

Key idea: Cholesky

de Composition

Step 1: find a lower triangular matrix with strictly positive diagonal entries $\mathbf{L}_j = (l_{r,s}^{(j)})$ through a Cholesky-type decomposition, that is, $\mathbf{T}_j = \mathbf{L}_j \mathbf{L}_j^T$ for $j = 1, \dots, q$.

Step 2: each row vector $(l_{r,1}^{(j)}, \dots, l_{r,r}^{(j)})$ in \mathbf{L}_j is specified in the following way: for $r = 1, l_{j,1,1} = 1$ and for $r = 2, \dots, m_j$,

$$\begin{cases} l_{r,1}^{(j)} = \cos(\varphi_{j,r,1}) \\ l_{r,s}^{(j)} = \sin(\varphi_{j,r,1}) \cdots \sin(\varphi_{j,r,s-1}) \cos(\varphi_{j,r,s}), \text{for } s = 2, \dots, r-1 \\ l_{r,r}^{(j)} = \sin(\varphi_{j,r,1}) \cdots \sin(\varphi_{j,r,r-2}) \sin(\varphi_{j,r,r-1}), \end{cases}$$

where $\varphi_{j,r,s} \in (0,\pi)$ and $\tau_{r,r}^{(j)} = \sum_{s=1}^r (l_{r,s}^{(j)})^2 = 1$ for $r = 1, \dots, m_j$.

Zhou et al. (2011)

$$Y(\mathbf{x}, z_1, \dots, z_q) = \mu + G(\mathbf{x}, \mathbf{z})$$

where μ is the overall mean, $G \sim \mathsf{GP}(0, \phi)$.

ightharpoonup For any two inputs $\mathbf{w}_1=(\mathbf{x}_1,\mathbf{z}_1)$ and $\mathbf{w}_2=(\mathbf{x}_2,\mathbf{z}_2)$, Zhou et al. (2011) defined

$$\phi(Y(\mathbf{w}_1), Y(\mathbf{w}_2)) = \sigma^2 \operatorname{cor}(Z(\mathbf{w}_1), Z(\mathbf{w}_2))$$

$$= \sigma^2 R(\mathbf{x}_1, \mathbf{x}_2 | \theta) \prod_{j=1}^{q} \tau_{z_{1j}, z_{2j}}^{(j)}, \qquad (5)$$

where

- $R(\mathbf{x}_1, \mathbf{x}_2 | \theta)$ quantifies the correlation between inputs \mathbf{x}_1 and \mathbf{x}_2 ,
- $\tau_{z_{1j},z_{2j}}^{(j)}$ represents the correlation between level z_{1j} and level z_{2j} of the jth qualitative factor.

Comparison of Covariance Functions

Proposed covariance function:

$$\phi(Y(\mathbf{w}_{1}), Y(\mathbf{w}_{2})) = \text{cov}(Y(\mathbf{x}_{1}, \mathbf{z}_{1}), Y(\mathbf{x}_{2}, \mathbf{z}_{2}))$$

$$= \sum_{j=1}^{q} \sigma_{j}^{2} \text{cor}(G_{j}(z_{1j}, \mathbf{x}_{1}), G_{j}(z_{2j}, \mathbf{x}_{2}))$$

$$= \sum_{j=1}^{q} \sigma_{j}^{2} R(\mathbf{x}_{1}, \mathbf{x}_{2} | \theta^{(j)}) \tau_{z_{1j}, z_{2j}}^{(j)}.$$
(6)

Zhou, Qian and Zhou (2011):

$$\phi(Y(\mathbf{w}_1), Y(\mathbf{w}_2)) = \sigma^2 \operatorname{cor}(Z(\mathbf{w}_1), Z(\mathbf{w}_2))$$

$$= \sigma^2 R(\mathbf{x}_1, \mathbf{x}_2 | \theta) \prod_{i=1}^{q} \tau_{z_{1i}, z_{2i}}^{(j)}.$$
(7)

Parameter Estimation

The log-likelihood function is

$$l(\mu, \theta, \sigma^2, \mathbf{T}) = -\frac{1}{2} \left[\log |\Phi(\theta, \sigma^2, \mathbf{T})| + (\mathbf{y} - \mu \mathbf{1})^T \Phi^{-1} \right] (\theta, \sigma^2, \mathbf{T}) (\mathbf{y} - \mu \mathbf{1}) \right]. \tag{8}$$

Sestimation of μ given $(\theta, \sigma^2, \mathbf{T})$,

$$\hat{\boldsymbol{\mu}} = (\mathbf{1}^T \boldsymbol{\Phi}^{-1} \mathbf{1})^{-1} \mathbf{1}^T \boldsymbol{\Phi}^{-1} \mathbf{y}.$$
 $\uparrow \boldsymbol{\chi}$

Solution Estimation of θ, σ^2, T :

$$[\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\sigma}}^2, \hat{\boldsymbol{\mathsf{T}}}] = \mathrm{argmin} \frac{1}{2} \big[\log |\boldsymbol{\Phi}(\boldsymbol{\theta}, \boldsymbol{\sigma}^2, \boldsymbol{\mathsf{T}})| + (\boldsymbol{\mathsf{y}}^T \boldsymbol{\Phi}^{-1} \boldsymbol{\mathsf{y}}) - (\boldsymbol{\mathsf{1}}^T \boldsymbol{\Phi}^{-1} \boldsymbol{\mathsf{1}})^{-1} (\boldsymbol{\mathsf{1}}^T \boldsymbol{\Phi}^{-1} \boldsymbol{\mathsf{y}})^2 \big].$$

Prediction and Interpolation

ightharpoonup The prediction of y at a new location \mathbf{w}_0 is

$$\hat{y}(\mathbf{w}_0) = \hat{\mu} + \phi(\mathbf{w}_0)^T \Phi^{-1}(\hat{\theta}, \hat{\sigma}^2, \hat{\mathbf{T}})(\mathbf{y} - \hat{\mu}\mathbf{1}). \tag{10}$$

When $\mathbf{w}_0 = \mathbf{w}_i$, the coefficient $\phi(\mathbf{w}_0)^T \Phi^{-1}(\hat{\theta}, \hat{\sigma}^2, \hat{\mathbf{T}})$ in (10) is an n-dimensional vector with the ith entry being 1 and otherwise 0. Thus, $\hat{y}(\mathbf{w}_0) = y_i$, achieving the property of interpolation.

Viewed as a Sequential Predictor

Sequential prediction

$$\hat{y}_{seq}(\mathbf{w}_0) = \sum_{j=1}^{q} \hat{y}_j(\mathbf{w}_0). \tag{11}$$

where

$$\hat{y}_1(\mathbf{w}_0) = \hat{\mu} + \phi_1^{\mathsf{T}}(\mathbf{w}_0) (\sum_{j=1}^q \Phi_j)^{-1} (\mathbf{y} - \hat{\mu} \mathbf{1}), \quad \mathbf{e}_1 = \mathbf{y} - \hat{\mathbf{y}}_1;$$

$$\hat{y}_2(\mathbf{w}_0) = \phi_2^{\mathsf{T}}(\mathbf{w}_0)(\sum_{j=2}^q \Phi_j)^{-1}\mathbf{e}_1, \quad \mathbf{e}_2 = \mathbf{y} - \hat{\mathbf{y}}_1 - \hat{\mathbf{y}}_2;$$

:

$$\hat{y}_q(\mathbf{w}_0) = \phi_q^{\mathsf{T}}(\mathbf{w}_0) \Phi_q^{-1} \mathbf{e}_{q-1}.$$

Joint prediction:

$$\hat{y}(\mathbf{w}_0) = \hat{\mu} + (\phi_1(\mathbf{w}_0) + \dots + \phi_q(\mathbf{w}_0))^T (\sum_{j=1}^q \Phi_j)^{-1} (\mathbf{y} - \mu \mathbf{1}), \tag{12}$$

where
$$\Phi_j = \sigma_j^2 \mathbf{R}_j \circ \mathbf{H}_j$$
, $\mathbf{R}_j = \left(R(\mathbf{x}_i, \mathbf{x}_{i'} | \boldsymbol{\theta}^{(j)}) \right)_{n \times n}$ and $\mathbf{H}_j = \left(\tau_{z_{ij}, z_{i'j}}^{(j)} \right)_{n \times n}$.

Theorem 1. With the same parameter values, the "joint prediction" in (12) and "sequential prediction" in (11) are equivalent.

Simulation Study

Four correlation functions for qualitative factors are compared.

- **EC**: the exchangeable correlation function $\tau_{r,s} = c$ (0 < c < 1) for $r \neq s$ (Joseph and Delaney, 2007; Qian et al., 2008);
- MC: the multiplicative correlation function $\tau_{r,s} = \exp\{-(\theta_r + \theta_s)\}$ $(\theta_r > 0, \theta_s > 0)$ for $r \neq s$ (McMillian et al. 1999; Qian et al., 2008);
- **UC**: the unrestrictive correlation function $\tau_{r,s}$ in Zhou, Qian and Zhou (2011);
- AD: the proposed correlation function.

The four methods are evaluated using the root mean square error (RMSE) given by

$$\mathsf{RMSE} = \sqrt{\frac{1}{|\mathcal{W}_{pred}|} \sum_{\mathbf{w} \in \mathcal{W}_{pred}} (\hat{y}(\mathbf{w}) - y(\mathbf{w}))^2},\tag{13}$$

where $\hat{y}(\mathbf{w})$ and $y(\mathbf{w})$ are the predicted response and the true response at the new input \mathbf{w} in the hold-out set \mathcal{W}_{pred} .

Training data

Janta

Model Ostimation

Numerical Example

Consider the computer code with p=7 quantitative factors (x_1,\ldots,x_p) and q=6 qualitative factors (x_{p+1},\ldots,x_{p+q}),

$$y = \sum_{i=1}^{p} \exp\{-x_i\} \cos(4x_{p+q-i}) \sin(4x_{i+2}), \tag{14}$$

where $0 < x_i < 1$ for i = 1, ..., p, $x_j = \{0.3, 0.8\}$ for j = p + 1, p + 2, $x_j = \{0.1, 0.5, 0.9\}$ for j = p + 3, p + 4, p + 5 and $x_{p+6} = \{0.05, 0.35, 0.55, 0.95\}$.

Training data (for estimation):

- two replications of a 72-run mixed-level orthogonal array are used for qualitative factors
- a random Latin hypercube design of 144 runs for quantitative factors

Test data (for prediction):

- five replications of a full factorial design for qualitative factors
- a random Latin hypercube design of 2160 runs for quantitative factors

Figure 3: Boxplots of the RMSEs associated with 'EC', 'MC', 'UC' and 'AD' for the computer model in (14) over 100 simulations.

Real Application

Each of the three qualitative factors z_1, z_2, z_3 has three levels: the levels of z_1 are 1, 5, 10 m/month; the levels of z_2 are 50, 100, 200 MPa; and the levels of z_3 are 1578, 4800, 8000 kN/m.

- Arrange Training data: The quantitative factor x_1 takes the 29 values uniformly from the interval [0,14].
 - For each value of the quantitative factor, a three-level fractional factorial design of 9 runs is used for the qualitative factors.
- Fest data: The test data set contains 29 input settings in which the values of quantitative factor x_1 are taken uniformly from the interval [0, 14], and the setting of the qualitative factors is $(z_1, z_2, z_3) = (5, 100, 4800)$.
- Make prediction at randomly chosen 20 input settings out of those 29 ones and compute the corresponding RMSE. Repeat this procedure 100 times.

Real Application

Figure 4: Boxplots of the RMSEs associated with 'EC', 'MC', 'UC' and 'AD' for the fully 3D coupled finite element model over 100 randomly chosen prediction sets of 20 input settings: (a) RMSE; (b) logarithm of RMSE.

Summary

- Design and analysis of computer experiments with both quantitative and qualitative factors are challenging.
- The proposed marginally coupled design enables that the design for quantitative factors is a sliced Latin hypercube design with respect to each qualitative factor.
- The proposed design is useful when there are a large number of qualitative factors.
- We propose a new model, additive Gaussian process model, for prediction with better accuracy.

Thank You!

