

planetmath.org

Math for the people, by the people.

proof of Choquet's capacitability theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfChoquetsCapacitabilityTheorem}$

Date of creation 2013-03-22 18:47:51 Last modified on 2013-03-22 18:47:51

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282)

Entry type Proof

Classification msc 28A05 Classification msc 28A12 Let (X, \mathcal{F}) be a paved space such that \mathcal{F} is closed under finite unions and finite intersections, and let I be an \mathcal{F} -http://planetmath.org/ChoquetCapacitycapacity. We prove the capacitability theorem, which states that all \mathcal{F} -http://planetmath.org/AnalyticSe sets are (\mathcal{F}, I) -http://planetmath.org/ChoquetCapacitycapacitable. The idea is to deduce it from the following special case.

Lemma. With the above notation, every set in $\mathcal{F}_{\sigma\delta}$ is (\mathcal{F}, I) -capacitable.

Recall that $\mathcal{F}_{\sigma\delta}$ is the collection of countable intersections of countable unions in \mathcal{F} and, since countable unions and intersections of analytic sets are analytic, all such sets are analytic. According to the capacitability theorem they should then be capacitable, and the lemma is indeed a special case.

Supposing that the lemma is true, then the capacitability theorem can be deduced as follows. For an \mathcal{F} -analytic set $A \subseteq X$, there is a http://planetmath.org/PavedSpacece paved space (K, \mathcal{K}) and $S \in (\mathcal{F} \times \mathcal{K})_{\sigma \delta}$ such that $A = \pi_X(S)$, where π_X is the projection map from $X \times K$ to X. Letting \mathcal{G} be the closure under finite unions and finite intersections of the paving $\mathcal{F} \times \mathcal{K}$, then the composition $I \circ \pi_X$ is a \mathcal{G} -capacity, and the projection of any $(\mathcal{G}, I \circ \pi_X)$ -capacitable set onto X is itself (\mathcal{F}, I) -capacitable (see http://planetmath.org/ExtendingACapacityToACartesianProductexte a capacity to a Cartesian product). In particular, $S \in \mathcal{G}_{\sigma \delta}$ so, by the lemma, is $(\mathcal{G}, I \circ \pi_X)$ -capacitable. Therefore, $A = \pi_X(S)$ is (\mathcal{F}, I) -capacitable. It only remains to prove the lemma.

Proof of lemma. If $S \in \mathcal{F}_{\sigma\delta}$ then there exists $S_{m,n} \in \mathcal{F}$ such that

$$S = \bigcap_{n} \bigcup_{m} S_{m,n}.$$

For any positive integers m_1, m_2, \ldots, m_k let us write

$$S(m_1, m_2, \dots, m_k) \equiv \left(\bigcap_{n \le k} \bigcup_{m \le m_n} S_{m,n}\right) \cap \left(\bigcap_{n > k} \bigcup_{m} S_{m,n}\right).$$

In particular, S() = S and, I(S()) = I(S). For any $\epsilon > 0$ and $k \in \mathbb{N}$ suppose that we have chosen positive integers m_1, \ldots, m_{k-1} such that $I(S(m_1, \ldots, m_{k-1})) > I(S) - \epsilon$. Since I is a capacity and $S(m_1, \ldots, m_k)$ increases to $S(m_1, \ldots, m_{k-1})$ as m_k increases to infinity,

$$I(S(m_1,\ldots,m_k)) \to I(S(m_1,\ldots,m_{k-1}))$$

as m_k tends to infinity. So, by choosing m_k large enough, we have

$$I(S(m_1,\ldots,m_k)) > I(S) - \epsilon.$$

Then, by induction, we can find an infinite sequence m_1, m_2, \ldots such that this inequality holds for every k. Setting

$$A_{k} \equiv \bigcap_{n \leq k} \bigcup_{m \leq m_{n}} S_{m,n} \in \mathcal{F},$$

$$A \equiv \bigcap_{n} \bigcup_{m \leq m_{n}} S_{m,n} = \bigcap_{k} A_{k} \in \mathcal{F}_{\delta},$$

then $A \subseteq S$. Furthermore, A_k contains $S(m_1, \ldots, m_k)$ and decreases to A as k tends to infinity. As I is an \mathcal{F} -capacity this gives

$$I(A) = \lim_{k \to \infty} I(A_k) \ge \lim_{k \to \infty} I(S(m_1, \dots, m_k)) \ge I(S) - \epsilon.$$

So S is (\mathcal{F}, I) -capacitable, as required.