همبستگی هشدارها (Alert Correlation)

رئوس مطالب

- انگیزه
- چه چیزی را همبسته کنیم؟
 - منابع اطلاعاتی
- سیگنال ها، رویدادها و هشدارها
 - سیاست های ثبت و هشدار
- چگونه همبستگی صورت می گیرد؟
 - هدف و مدل کلی
- (Alert Normalization) یکدست کردن هشدارها
 - کاهش هشدارها مانند همجوشی (fusion)
 - همبستگی بین هشدارها

مشكلات IDSهاى تنها

- تعداد زیاد false positive
- تعداد زیادی هشدار برای یک نفوذ
- باعث گمراهی مدیر شبکه می شود.
 - عدم وجود دید از بالا
 - نفوذگر در حال چه کاری است؟
- می توان گام های بعدی نفوذگر را پیشبینی کرد؟
- آیا حملات تأثیرات مخربی روی سیستم داشته اند؟

همبستگی

منابع اطلاعاتي

- IDSها (هشدارها)
- IDSهای مبتنی بر میزبان
- IDSهای مبتنی بر شبکه
- IDS های مبتنی بر کاربرد
 - ثبت ها
 - ميزبان: syslog
- شبكه: فايروال ها، روترها و سوئيچ
- کاربرد: Apache، IIS و MySql

سیگنال ها، رویدادها و هشدارها

سیاست های ثبت و هشدار

همبستگی هشدارها و رویدادها

تعاريف

- همبستگی رویداد
- تفسیر، ترکیب و تحلیل رویدادهای نامشخص از تمام منابع برای شناسایی و جلوگیری از نفوذ.
 - همبستگی هشدار
- تفسیر، ترکیب و تحلیل هشدارها و اطلاعات بیرونی IDSها برای پالایش هشدارها و بازسازی سناریوهای نفوذ.

جدول همبستگی رویداد

Attack	Log								
	Syslog	Firewall	Netflow	TCP	DNS	Auth	Web	Mail	FTP
Dictionary	×	×	×	X		X	×	X	×
FTP-Write	×			X		X			×
Imap	×	×	×	×				×	
Named	×		×	l .	×				
Phf	×			×			×		
Sendmail	×	×	×	X	×	X		X	
Xsnoop	×		×	l .					
Apache2	×	×	×	×			×		
Back	×			×			×		
Mailbomb	×	×	×	X				X	
SYN Flood	×	×	×	×	×				
Ping of Death		×	×	×					
Process Table		×	×	×				×	
Smurf			×	X					
Udpstorm			×	×	×				

سیاست ثبت

- چه چیزی **باید** (**نباید**) ثبت شود؟
 - اطلاعات قابل ثبت (سیگنال ها)
- فعالیت های مربوط به کاربرد، سیستم عامل، شبکه و سخت افزار
- چه سیگنال هایی به فعالیت های خرابکارانه مربوط هستند (نیستند)؟
 - شناسایی حملات شناخته شده برای ثبت ها
 - استفاده از Honeypot برای شناخت و یادگیری حملات
 - ثبت همه اطلاعات (کمک به شناسایی حملات جدید)
 - برقراری trade-off بین ثبت همه اطلاعات و هزینه های ثبت

سیاست هشدار

- چه رویداد هایی منجر به هشدار می شوند (نمی شوند)؟
- حملات روى فناورى، اطلاعات، audit logsو دارايي هاى سطح بالا
 - چه ترکیباتی از رویدادها مشخص کننده نفوذ است؟
 - بررسی حملات شناخته شده در رویدادها
 - استفاده از Honeypot برای شناخت و یادگیری حملات
- ایجاد قوانین کارشناسانه برای ثبت ها، رویدادها و هشدارهای امنیتی

هدف همبستگی هشدار

- كاهش تعداد هشدارها
- ر(Elimination) حذف
 - همجوشی (Fusion)
- (Aggregation) تجمع
 - (Synthesis) سنتز
 - بهبود تشخیص حمله
 - نوع فعالیت
 - ارتباط هشدارها
- درستی سنجی هشدارها (Verification)

عملیات همبستگی هشدار

عملیات همبستگی هشدار

یکدست کردن هشدارها

- یکدست کردن syntax و semantic هشدارها
- IDMEF/IDXP , IETF-IDWG .CIDF :Syntax
 - Bugtraq ،CVE :Semantic و آنتولوژی هشدار
- Intrusion Detection Message Exchange Format :IDMEF

مثالی از IDMEF

```
<IDMEF-Message version="0.3">
  <alert ident="12345" impact="unknown">
    <Analyzer analyzerid="Snort:1.8.6:9.8.7.6">
      <Node><name>brp-snort</name></Node>
    </Analyzer>
    <CreateTime ntpstamp="0xc12b141a.0xa5baa000"/>
    <Source><Node>
      <Address category="ipv4-addr">
        <address>1.2.3.4</address></Address>
    </Node></Source>
    <Taraet><Node>
      <Address category="ipv4-addr">
        <address>9.8.7.5</address></Address>
    </Node></Target>
    <Classification origin="vendor-specific">
    <name>ICMP PING NMAP</name></Classification>
  </Alert>
</IDMEF-Message>
```

IDXP (Intrusion Detection Exchange Protocol)

- Block Extensible Exchange Protocol :BEEP •
- IDMEF پیام های IDMEF را حمل می کند و به عنوان یک پروفایل BEEP پیاده سازی شده است.

كاهش هشدارها: همجوشي

• حذف هشدارهای بیهوده و تکراری از سنسورهای مختلف

```
f(A_1, A_2) = A_{12} with A_{12}.start time = min(A_1.start time, A_2.start time), A_{12}.end time = min(A_1.end time, A_2.end time), \forall_{\text{other attributes a}} : A_{12}.a = A_1.a \bigcup A_2.a
```

if $(|A_1.\text{start time} - A_2.\text{start time}| < t \land |A_1.\text{end time} - A_2.\text{end time}| < t \land A_1.\text{sensor} \neq A_2.\text{sensor} \land \forall \text{all other attributes a defined in both } A_1 \text{ and } A_2 : A_1.\text{a} = A_2.\text{a})$

کاهش هشدارها: درستی سنجی

- شناسایی و حذف حملات نا موفق و نا مربوط
 - منفعل
- حذف حملاتی که روی آسیب پذیری های قدیمی و رفع شده صورت می گیرند.
 - مانیتور کردن اتفاقاتی که بعد از نفوذ صورت می گیرد.
 - فعال
 - اتصال به هاست ها و چک کردن پروسس ها
 - اتصال به هاست ها و چک کردن فایل های پیکربندی

همبستگی

- دو دیدگاه برای ایجاد همبستگی:
 - خوشه بندی هشدارها
 - برقراری ارتباط بین هشدارها
- مانند anomaly detection (آماری و احتمالی)
 - تشخیص نیت نفوذگر
 - بررسى الگوهاى نفوذ
- مانند misuse detection (الگوهای از قبل تعریف شده)

بازسازی ریسمان (thread) هشدارها

- خوشه بندی هشدارها
- بسته بندی هشدارها در ریسمان ها بر اساس شباهت های زمانی و مکانی
- هشدارهای جدید به ریسمان هایی بیشتر match باشند، اضافه می شوند. یک ریسمان نشان دهنده یک حمله (نشست) است.
 - كدام خصوصيات بايد مقايسه شوند؟
 - روش مقایسه:
 - Fuzzy Matching دقیق یا Matching
 - هر خصوصیت چه وزنی دارد؟

سناریوهای حمله از قبل تعریف شده

• تشخیص نیت نفوذگر

Attack scenario	Characteristics
1 source, 1 attack, 1 target	Same src IP, dst IP, attack type
1 source, * attacks, 1 target	Same src IP, dst IP
* sources, * attacks, 1 target	Same dst IP, attack type
1 source, 1 attack, * targets	Same src IP, attack type

تحلیل پیشنیاز-پیامد

• تشخیص نیت نفوذگر

(fact, prerequisite, consequence)

- Hyper-alert •
- Fact: مشخص کننده خصوصیات یک هشدار است.
- Prerequisite: مشخص كننده شرايط لازم براى اتفاق افتادن حمله به طور موفق آميز
 - Consequence: مشخص كننده نتايج حمله است.
 - می تواند به عنوان پیشنیاز حملات دیگر باشد.
- به صورت فرمول های منطقی با استفاده از AND و OR بیان می شود.

Hyper Alert Type

- (fact, prerequisite, consequence)
- SadmindBufferOverflow =
 ({VictimIP, VictimPort},
 ExistHost(VictimIP) AND
 VulnerableSadmind(VictimIP)
 {GainRootAccess(VictimIP)})

ارتباط بین هشدار ها

- یک هشدار A آماده سازی برای یک هشدار B را انجام می دهد \mathbb{P} اگر:
 - یش نیاز های هشدار B را فراهم کند A
 - قبل از هشدار ${f B}$ اتفاق بیافتد.

گراف همبستگی

- یک گراف جهت دار بدون دور (Dirercted Acylic Graph) است که گره های آن هشدار ها و لبه های آن ارتباط "آماده سازی-برای" هشدار ها است.
 - این گراف که از هشدار ها ساخته می شود می تواند بسیار بزرگ باشد.
 - با تجمیع هشدار ها می تواند کاهش داده شود.
 - برای هشدار ها در یک محدود زمانی نزدیک ایجاد شود.

تجزیه گراف

- با استفاده از مشخصه های خاص مانند آدرس فرستنده و گیرند، هشدار ها خوشخ بندی می شوند و برای هر خوشه یک گراف جداگانه درست می شود
 - مشخصه ها توسط آنالیز کننده هشدار ها تعریف می شود

یک گراف تجریه شده و خلاصه شده

Hyper-alert

(a) A hyper-alert correlation graph HG

(b) $PG = precedent(h_{SadmindBOF}, HG)$

(d) CG = correlated(h_{SadmindBOF}, HG)

تطبیق سناریو های حمله

- با در نظر گرفتن محدویت های زمانی برای هشدار ها و در نظر گرفتن مثلا آدرس IP مقصد می توان گراف هشدار ها را با سناریو های حمله های شناخته شده تطبیق داده و نوع حمله را معلوم کرد.
 - تطبیق بااستفاده از شباهت گراف ها انجام می شود.

مراجع

- 1. P. Ning, Y. Cui, D. Reeves, "Constructing Attack Scenarios through Correlation of Intrusion Alerts", In CCS 2002
- 2. P. Ning, D. Reeves, Y. Cui, "Correlating Alerts Using Prerequisites of Intrusions", Technical Report, TR-2001-13, North Carolina State University, Department of Computer Science, December 2001
- 3. P. Ning, Y. Cui, D. Reeves, "<u>Analyzing Intensive Intrusion Alerts via Correlation</u>", In Recent Advances in Intrusion Detection, 2002
- 4. P. Ning, D. Xu, "Learning Attack Strategies from Intrusion Alerts", In CCS 2003
- 5. P. Ning, D. Xu, C. Healey, R. St. Amant, "<u>Building Attack Scenarios through Integration of Complementary Alert Correlation Methods</u>", NDSS, February 2004
- 6. Y. Zhai, P. Ning, P. Iyer, D. Reeves, "<u>Reasoning about Complementary Intrusion Evidence</u>", 20th Annual Computer Security Applications Conference, December 2004
- 7. D. Xu, P. Ning, "<u>Alert Correlation Through Triggering Events and Common Resources</u>", 20th Annual Computer Security Applications Conference, December 2004
- 8. P. Ning, D. Xu, "<u>Hypothesizing and Reasoning about Attacks Missed by Intrusion Detection Systems</u>", ACM Transactions on Information and System Security, 2004