Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчет по дисциплине «Вычислительные комплексы» по лабораторной работе №2 «Сечение тела вращения»

Выполнил студент группы 3630102/60201

Чепулис М.А.

Преподаватель: Баженов А.Н.

Санкт-Петербург

Оглавление

Постановка задачи	3
Теория	Ошибка! Закладка не определена.
Реализация	3
Результаты	4
Вычисление Расстояния Фреше для незамкнутых кривых	Ошибка! Закладка не определена.
Вычисление Расстояния Фреше для «звёздных» множеств	Ошибка! Закладка не определена.
Обсуждение	10
Литература	11
Приложение	Ошибка! Закладка не определена.
Код программы на Python	Ошибка! Закладка не определена.

Постановка задачи

Построить фигуру вращения (тор), как дискретный набор точек в трёхмерном пространстве

[2]

Построить сечение фигуры плоскостью х = Н

Т.к. одно из сечений хорошо описывается лемнискатой Бернулли, то нужно построить лемнискату и сравнить её с соответствующим сечением

Варьируя параметры лемнискаты и тора минимизировать расстояние (Фреше) между ними

Теория

Сечение тела вращения

Сечение задаётся в плоскости XOZ. Само тело получается путем вращения всех точек сечения по окружности вокруг от Z [2]

Так как сечение тела представляет в виде дискретного набора точек, причем каждая из них движется по окружности, то нужно для каждой точки найти пересечение её окружности и плоскостих = Н

Для этого нужно решить систему:

$$\begin{cases} x^2 + y^2 = R^2 \\ x = H \\ z = z' \end{cases}$$

Решением данной системы будет: $(H, \pm \sqrt{(R^2 - H^2)}, z')$

Если подкоренное выражение меньше нуля, то пересечения нет

Лемниската Бернулли

Параметрическое уравнение лемнискаты Бернулли:

[2]

$$\begin{cases} y = c\frac{t+t^3}{1+t^4} \\ x = c\frac{t-t^3}{1+t^4}, \text{где } t = tg(\varphi), c-\text{переметр} \\ z = z' \end{cases}$$

Реализация

Все задания были выполнены на языке программирования Python в среде разработки PyCharm

[1]

Работа с числами и массивами данных осуществлялась при помощи библиотеки Python – NumPy

Графики строились функциями библиотеки Python – matplotlib

Трехмерные графики строились при помощи библиотеки Python - mpl_toolkits.mplot3d

Модель тела вращения – пары (z, r), где z – координата z, r – радиус вращения точки вокруг оси Z

Результаты

Построение сечений

Рассматривается тор со следующими характеристиками:

R = 20 – радиус вращения

r = 10 –радиус образующей

рассматриваемы плоскости сечения х = Н:

 $H = \{0, 5, 10, 15, 20, 30\}$

на графиках оси Y и Z могут иметь различный масштаб

Figure 1 сечение тора плоскость x = 0

Figure 2 сечение тора плоскость x = 5

Figure 3 сечение тора плоскость x = 10

Figure 4 сечение тора плоскость x = 15

Figure 5 сечение тора плоскость x = 20

Figure 6 сечение тора плоскость x = 25

Figure 7 сечение тора плоскость x = 30

Figure 7 все сечения на одном графике

Сравнение сечений с леминискатой Бернулли

Рассматривается тор со следующими характеристиками:

R = 20 – радиус вращения

r = 5 –радиус образующей

Параметр лемнискаты с = 20

Сечение плоскостью x = R - r (= 15) похоже на лемнискату Бернулли.

Для их сравнения воспользуемся расстоянием Фреше

Расстояние Фреше = 5.3732

Figure 8 расстояние Фреше между лемнискатой и сечением тора x = 15

Путем подбора параметров тора и лемнискаты добьёмся их практического совпадения:

R = 20 - радиус вращения

r = 10 -радиус образующей

сечение плоскость х = 10

Параметр лемнискаты с = 28

Расстояние Фреше = 0.2381

Обсуждение

По результатам видно, что общем случае сечение плоскость x=R-r действительно похоже на лемнискату Бернулли, но не совпадает с ним.

Можно подобрать параметры тора и лемнискаты так, чтобы сечение практически совпадало с лемнискатой (расстояние Фреше мало, но не равняется нулю из-за дискретизации фигур)

Для совпадения радиус образующей тора (r) должен быть в 2 раза меньше его радиуса вращения (R)

Параметр лемнискаты – параметр масштаба (не влияет на её форму), следовательно, от него не зависит необходимое соотношение между r и R

Литература

- [1] Документация библиотеку Python numpy [Электронный ресурс] Режим доступа: http://www.numpy.org/ (дата обращения сентябрь 2019)
- [2] Пособие к Лабораторным работам [электронный ресурс, облачное хранилище] Режим доступа: https://cloud.mail.ru/public/4ra6/5wwqBzMBC/LabPractics.pdf (дата обращения сентябрь 2019)

Приложение

Код программы на Python

Lab_1.py

```
import pylab
class TorPoint:
   def generate points(self, num points):
            self.points.append(point)
   def get tor points(self):
def get y array(points):
```

```
data.append(point.y)
         data.append(point.z)
def get intersection tor plane(tor, x plane):
    left_jump_2_3_flag = False
left_jump_1_4_flag = False
    right_jump_2_3_flag = False
right_jump_1_4_flag = False
                   right1.append(tmp[0])
                   right4.append(tmp[0])
                    right3.append(tmp[1])
                    left4.append(tmp[2])
                    left3.append(tmp[3])
```

```
right1.reverse()
right4.reverse()
left1.reverse()
            z1.append(elem.z)
        y = np.matrix(y)
fig.savefig(filename, dpi=300, format='png', bbox inches='tight')
fig.show()
plt.close(fig)
```

```
z.append(elem.z)
left.append([x, y])
```

```
fig.show()
        x.append(elem[0])
ax.set title(name + "\n")
        data.append([elem.y, elem.z])
        tmp.append([elem.y, elem.z])
    data_arr.append(tmp)
```

```
print("frechet distance = ", dist1)
else:
    if ind2[0] > -1 and ind2[1] > -1:
        ax.plot([temp_lemn[1][ind2[0]][0], temp_data[1][ind2[1]][0]],
[temp_lemn[1][ind2[0]][1], temp_data[1][ind2[1]][1], label="dist")
    print("frechet distance = ", dist1)

""
# box = ax.get_position()
# ax.set position([box.x0, box.y0, box.width * 0.9, box.height])
leg = fig.legend()
fig.legend()
fig.savefig(filename, dpi=300, format='png', bbox_inches='tight')

fig.show()
plt.close(fig)

def main():
    R = 20
    r1 = 10
    numpoints = 360

    tor = Tor(0, R, r1)
    tor.generate_points(100)
#    if = np.array([i for i in range(0, R + r1)])
#    plane_research(tor, H)
    H = [0, 5, 10, 15, 20, 25, 30]
    plane_research(tor, H)
    process_lemniscate(tor, R - r1, R + r1 - r1 / 6)
    print("plane = ", R - r1, "c = ", 28)

if __name__ == "__main__":
    main()
```

frechet.py

```
def get ind(self, index):
```

```
def frechet(self):
        x.append(elem[0])
        x.append(data[elem[0]])
        y.append(data[elem[1]])
plt.close(fig)
tmp Q = Q.copy()
```

```
(P[d index[0]]):
    tmp P.remove(P[d index[0]])
        x.append(elem[0])
fig.show()
```