I Semestre del 2011 Total: 35 puntos Tiempo: 2 horas y 30 minutos.

SEGUNDO PARCIAL

Instrucciones: Trabaje en forma ordenada y clara en su cuaderno de examen. Escriba todos los procedimientos que utilice para resolver los ejercicios propuestos. Se permite el uso de calculadora científica o de menor potencia. Apague el celular.

1. Considere el conjunto $(Z_2 \times Z_3, \oplus)$ en donde se define

$$(a,b) \oplus (c,d) = (a+c,b+d)$$

Demuestre que:

(a) Es un grupo abeliano.

(3 puntos)

(b) Halle todos los elementos del Grupo

(2 puntos)

- 2. Asuma que las matrices de 2×2 es un conjunto asociativo con la suma y el producto, y que el producto es distributivo respecto a la suma. Demuestre que:
 - (a) Las matrices de 2×2 es un anillo.

(3 puntos)

(b) Justifique si tiene o no divisores de cero.

(2 puntos)

- 3. Sea G un grupo, con H y K subgrupos de G. Demuestre que $H\cap K$ es subgrupo de G. (4 puntos)
- 4. Sea (G, \cdot) un grupo. Demuestre que $x \cdot x = e, \forall x \in G \iff G$ es abeliano. (4 puntos)

- 5. Se $(R, +, \cdot)$ un anillo. Demuestre que $0 \cdot r = r \cdot 0 = 0$ donde 0 es el neutro de +. (3 puntos)
- 6. Determine si H_1 y H_2 son subespacios vectoriales del espacio vectorial real V indicado.
 - (a) $H_1 = \{f(x)/\int_a^b f(x) dx = 1\}$ en V, donde V es el espacio vectorial sobre IR de todas las funciones continuas en el intervalo [a, b]. (3 puntos)
 - (b) $H_2 = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0 \land x + y z = 0\}$ en V, donde $V = \mathbb{R}^3$. (3 puntos)
- 7. Sea W el conjunto de todas las combinaciones lineales de los vectores u,v,w es decir $W=Cl\{u,v,w\},$ con $u=(-3,4),v=(\frac{-6}{5},\frac{8}{5}),w=(4,\frac{-16}{3}).$
 - (a) Halle una base para W. (3 puntos)
 - (b) Halle la dimensión de W. (2 puntos)
- 8. Suponga que $\{v_1, ..., v_n\}$ es un conjunto de vectores l.i. de un espacio vectorial V y sea v un vector que pertenece al conjunto de todas las combinaciones lineales de $v_1, ..., v_n$ es decir $v \in Cl\{v_1, ..., v_n\}$. Demuestre que $\{v_1, ..., v_n, v\}$ es l.d. (3 puntos)