

AKADEMIA GÓRNICZO-HUTNICZA
IM. STANISŁAWA STASZICA W KRAKOWIE

Realizacja frontalnego solwera MES z wykorzystaniem technologii OpenCL

Paweł Wal

Promotor: dr inż. Łukasz Rauch

Wydział Inżynierii Metali i Informatyki Przemysłowej

Motywacja i cele projektu

- Wykorzystanie ducha pracy Ironsa
 - Rozłożenie problemu na szereg mniejszych, częściowo zależnych problemów
 - Ograniczona pamięć operacyjna
 - Rosnący rozmiar problemów
- Wykorzystanie możliwości urządzeń obliczeniowych
 - Rozwiązanie wykorzystujące możliwości równoległości masowej w GPGPU
- Stworzenie rozwiązania uniwersalnego
 - Czarna skrzynka
 - Brak konieczności integracji z programem MES
 - Możliwość rozwiązywania układów równań z różnych klas problemów
 - Przenośność między systemami operacyjnymi
 - Przenośność między urządzeniami obliczeniowymi

Metoda wydzielania frontów rozwiązania

Równoległy wariant metody Gaussa

- Operacje elementarne na macierzach
 - Mnożenie i dodawanie wierszy
 - Zamiana wierszy
- Przywracanie formy macierzy schodkowej
 - Unikalny pierwszy wyraz niezerowy w wierszu
 - Koncepcja mapy
 - Pozwala na szybką weryfikację unikalności
 - Informuje względem którego wiersza prowadzić eliminację
 - Uniknięcie kosztownej, fizycznej zamiany wierszy

Równoległy wariant metody Gaussa

Równoległy wariant metody Gaussa

r1	x1
r4	x2
r3	х3
r5	x4
?	x5

r1	x1
r4	x2
r3	хЗ
r5	x4
?	x5

Masowo równoległy wariant metody Gaussa

- Wewnątrz części macierzy (frontu) wydzielane są grupy robocze
 - Wynika to z architektury urządzeń obliczeniowych
- Przedstawiony algorytm działa w obrębie grupy
 - Pewność, iż nie ma konfliktujących wierszy w obrębie grupy
 - Co z konfliktami w obrębie całego frontu?
 - Co z konfliktami w obrębie całej macierzy?
- Rozwiązanie problemu
 - Dodatkowy kernel na urządzeniu obliczeniowym
 - Dodatkowa faza przetwarzania na CPU

Masowo równoległy wariant metody Gaussa: przykład jednego frontu

- Tyle lokalnych map, ile grup roboczych
- Konflikty w obrębie grup zostały rozwiązane
- Istnieją konflikty w obrębie frontu

Masowo równoległy wariant metody Gaussa: przykład jednego frontu

- Drugi kernel trawersuje mapy wierszami (traktuje je jak macierz)
- Konflikty w obrębie frontu zostały rozwiązane
- Poczyniono zmiany, więc należy się upewnić czy nie powstały nowe konflikty w obrębie grup roboczych

Masowo równoległy wariant metody Gaussa: przykład jednego frontu

- Kernele wykonywane naprzemiennie, dopóki drugi z kerneli nie zgłosi zerowej ilości wykonanych operacji
- Kiedy wszystkie części skończą przetwarzanie, analogiczna operacja jest powtarzana po stronie hosta

Badania wydajności: optymalna liczba wątków dla badanych urządzeń

Czas w kernelach OpenCL od lokalnej ilości wątków na karcie Tesla M2090

Badania wydajności: przyspieszenie w zależności od globalnej ilości wątków

Czas w kernelach OpenCL od globalnej ilości wątków przy lokalnej ilości wątków 256 na karcie Tesla M2090

Badania wydajności: skalowalność

Stosunek czasu rozwiązania do rozmiaru macierzy dla optymalnej lokalnej ilości wątków na karcie Tesla M2090

Podsumowanie

- Solwer dość dobrze skaluje się wraz ze wzrostem rozmiaru problemu
 - Zachowuje podobny czas działania na element macierzy
- Solwer nie osiąga zakładanego przyspieszenia
 - Dla idealnych rozmiarów grup roboczych wyznaczonych w eksperymentach, dla rozmiarów frontów zależnych od ilości procesorów na urządzeniu, nie występuje spodziewane przyspieszenie
- Solwer nie dorównuje popularnym solwerom GPGPU (np. z pakietu ViennaCL)
- Możliwa jest dalsza optymalizacja
 - Zmniejszenie rozmiaru danych
 - Wykorzystanie większej ilości urządzeń
 - Uniknięcie niektórych "pustych" przebiegów
 - Zmniejszenie udziału części wykonywanej na CPU