Properties of Poincaré Waves, Inertial Oscillations

Shallow Water Equations, f-plane, linearized

$$u_t - fv = -gmx$$

mass
$$\eta_t + H(u_x + v_y) = 0$$

solutions have the form $M = \text{Re}\{\hat{M}\exp i(kx + ly - \omega t)\}$

with dispersion relation $\omega = (K^2 C_0^2 + f^2)^{\frac{1}{2}} (*), \quad K^2 = k^2 + k^2$

Fire of
$$Q = const$$

 $\Rightarrow M = const.$
"wave crest,"

recall phase speed $C_p = \frac{\omega}{16}$ in direction \bot to wave crests energy moves at "group velocity" $Cg = (\frac{1}{2}\omega, \frac{2}{3}\omega)$

Poincaré waves are dispersive | Cp | 7 | Cal

What are
$$u + v \stackrel{?}{=} 0$$
 assume no mean flow
from [mass] $u = \frac{-1}{H} \left(M_t \, dx + convt \right)$
 $= \frac{-M_0(-\omega)}{H} \cos \varphi = \frac{M_0(\omega)}{H} \cos \varphi = U$

derivatives and integrals
of sine (s) & cosine (c)

Derivative moves clockwise around direle

Integral " counter-clockwise "

also note that $\int u dt = \Delta x$ so $[amm] \Rightarrow \Delta v = -f \Delta x$ In the absence of other forces Coriolis turns

small displacements into large velocities!

