

Факультет Бизнеса и менеджмента, кафедра Бизнес-аналитики

Сопроводительная презентация на конкурс Digital Wave от EY

РАЗРАБОТКА НОВОГО ПОДХОДА В ЗАДАЧЕ УПРАВЛЕНИЯ ПОДВИЖНЫМ СОСТАВОМ ТРАНСПОРТНОЙ ЖЕЛЕЗНОДОРОЖНОЙ КОМПАНИИ

Студент <u>Карнаух Е. С.</u> к-т физ.-мат. наук, доцент <u>Белоусов Ф. А.</u>

Описание работы

В работе решается задача поиска оптимального плана грузоперевозок на основе располагаемого парка ж/д вагонов некоторой железнодорожной логистической компании с учетом актуального списка заявок железнодорожных грузоперевозок. Критерием оптимальности плана является максимизация прибыли за месяц, в рамках которого должны быть осуществлены грузоперевозки. На вход оптимизационной программе подается, во-первых, список заявок на грузоперевозки. Каждая заявка содержит информацию о заказчике, типе перевозимого груза, пункте отправления, пункте назначения, объеме перевозимого груза, а также указывается ставка, которую заказчик готов заплатить за осуществления транспортировки одного вагона указанного груза. Во-вторых, на вход оптимизационной программе подается информация об известной на данный момент текущей и будущей дислокации подвижного состава. На выходе оптимизационная программа должна выдавать такую цепочку груженых и порожних перегонов вагонов, реализовав которую фирма сможет получить максимально возможную прибыль за расчетный месяц. Таким образом, с помощью оптимизационной программы из всего списка заявок должны выбираться наиболее выгодные для компании заявки и должен быть определен план управления парком вагонов, в соответствии с которым будут выполнены выбранные заявки.

Ключевые пункты заявки на перевозку грузов от клиентов:

- Откуда
- Куда
- Необходимое количество вагонов
- Ставка, которую готов платить заказчик за каждый перевезенный вагон с грузом
- Время движения по указанному маршруту (эта информация известна из внутренних данных логистической компании)

Объект и предмет исследования

Объект - транспортная железнодорожная компания «Х», зарегистрированная в РФ, название которой нельзя раскрывать из-за конфиденциальности информации; предмет - планирование исполнения заявок на груженые перегоны в компании «Х»

Контекст проблемы

Ежемесячно менеджеры отдела продаж транспортных железнодорожных компаний формируют список заявок на перевозку грузов в следующем месяце от различных клиентов. В последнюю неделю месяца сбор заявок закрывается и менеджеры отбирают заявки вручную с учетом интересов компании. Как известно, для транспортных компаний важно выбирать наиболее маржинальные заявки, но нельзя забывать и о том, что в некоторых ситуациях лучше сработать в убыток, чтобы в будущем извлечь наибольшую прибыль. К примеру, есть три железнодорожные станции А, Б и В. Изначально все вагоны компании находятся на станциях А и Б, при этом у компании есть заявка на перегон со станции В в Б. Именно в такой ситуации лучше сработать в убыток и перегнать вагоны с А и Б в В, чтобы в будущем извлечь прибыль. В данной работе объект исследования будет обладать парком вагонов в 30 000 штук, поэтому составление подобных цепочек исполнения заявок вручную не представляется возможным и нуждается в автоматизации.

Цель исследования

Цель работы заключается в разработке нового подхода для усовершенствования процесса планирования и выбора заявок для исполнения по грузовым перевозкам между железнодорожными станциями для логистической компании

Задачи

- Сформировать математическую модель поставленной проблемы (описать задачу линейного программирования с ограничениями)
- Создать оптимизационную модель выбора заявок на перевозки согласно математической модели выше
- Привести примеры использования результатов моделирования

Этап 1. Сбор заявок на перевозки.

Ежемесячно менеджеры отдела продаж транспортных железнодорожных компаний формируют список заявок на перевозку грузов в следующем месяце от различных клиентов.

Этап 2. Отбор заявок к исполнению.

В последнюю неделю месяца сбор заявок закрывается и менеджеры отбирают заявки вручную с учетом интересов компании. Процесс отбора заявок происходит в Excel неоптимальным образом.

Этап 3. Исполнение заявок и сбор новых заявок.

Выполнение отобранных перевозок и накопление новых заявок на перевозки в следующем месяце.

Этап 2. Необходимость в автоматизации процесса.

Процесс отбора заявок нуждается в автоматизации, в связи с чем можно создать оптимизационную модель отбора заявок на перевозки, решая задачу максимизации прибыли компании с помощью линейного программирования.

заявки на перевозку (откуда, куда, время движения, количество вагонов, прибыль с одного вагона)

модель

- 1) заявки к исполнению (в какой день месяца, откуда,
 - куда, сколько вагонов из заявки)
 - 2) вспомогательные порожние перегоны (откуда, куда, сколько вагонов, в какой день месяца)

ФОРМИРОВАНИЕ БИЗНЕС-ТРЕБОВАНИЙ

БТ1: на стадии планирования исполнения заявок на перевозки важно выбрать такое подмножество заявок, которое обеспечит логистической компании максимальную прибыль

 Max f :
 Выручка от исполненных
 –
 Расходы от вспомогательных

 груженых перегонов
 порожних перегонов

БТ2: разрабатываемый подход должен учитывать фактор времени перемещения вагона между двумя станциями

БТ3: процедура планирования исполнения заявок осуществляется на 1 месяц вперед и минимальным шагом для управления является 1 день

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ: ПОСТАНОВКА ЗАДАЧИ

$$\sum_{t=1}^{T} (\sum_{i,j \in E1} (rev_{ij} * x_{ij}^t) - \sum_{i,j \in E2} (cost_{ij} * y_{ij}^t))
ightarrow \max (x_{ij}^t, y_{ij}^t)$$
, где

T – горизонт планирования (к примеру, 30 дней);

 x_{ij}^t – число груженых перегонов по направлению от i к j станции, выполняемых оператором в момент времени t; y_{ij}^t – число груженых перегонов по направлению от i к j станции, выполняемых оператором в момент времени t;

 rev_{ij} – чистая прибыль груженого перегона по направлению от i к j станции, выполняемых оператором; $cost_{ij}$ – фиксированная себестоимость порожнего перегона по направлению от i к j станции, выполняемых оператором;

 $E1 = \{\langle i, j \rangle\}, \langle i, j \rangle$ - комбинация станций из существующих заявок на груженые перегоны; $E2 = \{\langle i, j \rangle\},$ причем $i = \overline{1, N}$ и $j = \overline{1, N}$; где N — количество железнодорожных, обслуживаемых логистическим оператором

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ: ОГРАНИЧЕНИЯ

$$\sum_{t=1}^{T} \left(\sum_{i,j \in E1} (rev_{ij} * x_{ij}^{t}) - \sum_{i,j \in E2} (cost_{ij} * y_{ij}^{t}) \right) \to \max(x_{ij}^{t}, y_{ij}^{t})$$

1) Начальное положение железнодорожного парка, которое ограничивает количество перегонов после первой временной отсечки:

$$\sum_{i=1}^{N} (x_{ij}^1 + y_{ij}^1) = NI_i^0,$$

где NI_i^0 – количество вагонов, изначально расположенных на станции i у оператора

2) Число груженых перегонов между *і* и *ј* не должно превышать значения из матрицы заявок на перевозки между *і* и *ј*

$$\sum_{t=1}^{T} x_{ij}^t <= Z_{ij}$$

3) Не отрицательность груженых и порожних перегонов:

$$x_{ij}^t \ge 0, y_{ij}^t \ge 0.$$

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ: ОГРАНИЧЕНИЯ

4) Балансирующее ограничение на число приехавших вагонов к моменту времени t на станцию j и числу уехавших со станции j числа вагонов в момент времени (t+1), а именно:

$$\left(\sum_{t=1}^{t} \sum_{i=1}^{N} (x_{ij}^{tt} + y_{ij}^{tt})\right) + NI_{j}^{t} = \sum_{i=1}^{N} (x_{ji}^{t+1} + y_{ji}^{t+1}), (10)$$

причем x_{ij}^{tt} : $tt + T_{ij}^z = t$, где T_{ij}^z – время движения груженого перегона по направлению от i к j станции; y_{ij}^{tt} : $tt + T_{ij}^p = t$, где T_{ij}^p – время движения порожнего перегона по направлению от i к j станции; t < j: NI_i^t – число вагонов, приезжающих на станцию j к моменту времени t (доступные начиная с t)

Рассмотрим пример: t = 5, следовательно tt ∈ [1; 5]

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ: ДОПОЛНЕНИЕ

$$\sum_{i,j\in E1}(rev_{ij}*x_{ij}^{t1})-\sum_{i,j\in E2}(cost_{ij}*y_{ij}^{t1}))$$
 +
$$\sum_{t2=1}^{T2}(\sum_{i,j\in E1}(rev_{ij}*x2_{ij}^{t2})-\sum_{i,j\in E2}(cost_{ij}*y2_{ij}^{t2}))\rightarrow\max\;(x_{ij}^{t1},y_{ij}^{t1},x2_{ij}^{t2},y2_{ij}^{t2}),$$
 где

T1 – первый горизонт планирования, T2 – второй горизонт планирования, где t1 момент времени из T1, а t2 – из T2;

 x_{ij}^{t1} , x_{ij}^{t2} – число груженых перегонов по направлению от i к j станции, выполняемых оператором в момент времени t1 и t2; y_{ij}^{t1} , y_{ij}^{t2} – число груженых перегонов по направлению от i к j станции, выполняемых оператором в момент времени t1 и t2;

 rev_{ij} – чистая прибыль груженого перегона по направлению от i к j станции, выполняемых оператором; $cost_{ij}$ – фиксированная себестоимость порожнего перегона по направлению от i к j станции, выполняемых оператором;

 $E1 = \{ \langle i, j \rangle \}, \langle i, j \rangle -$ комбинация станций из существующих заявок на груженые перегоны; $E2 = \{ \langle i, j \rangle \},$ причем $i = \overline{1, N}$ и $j = \overline{1, N}$; где N -количество железнодорожных, обслуживаемых логистическим оператором

В ДИАГРАММА ПОТОКОВ ДАННЫХ

В СТРУКТУРА ДАННЫХ (ПРИМЕР МАЛОЙ РАЗМЕРНОСТИ)

Входные данные

Выходные данные

price_p.xslx (расходы на пустой перегон)

Порожние

Станции	1	2	3
1	0	0,12	0,19
2	0,12	0	0,2
3	0,19	0,2	0

time _p.xslx (время движения)

Станции	1	2	3
1	0	2	1
2	2	0	2
3	1	2	0

Переменная решения у (для каждого дня). Сколько вагонов, откуда и куда

	1	2	3		1	2	3		1	2	3
1	0	1	1	1	0	0	1	1	0	0	0
2	0	0	0	2	0	0	2	2	0	0	0
3	1	0	0	3	1	1	0	3	1	1	0

расположении

start.xslx				
Станция				
1	9			
2	0			
3	0			

ni.xslx

Станции	1	2	3
1	0	0	0
2	0	1	0
3	0	1	0

1 день

2 день

3 день

price_z.xslx

(доходы от груженого перегона)

		—	
Станции	1	2	3
1	0	1,20	1,9
2	1,2	0	2
3	1,9	2	0

quantity _z.xslx (количество вагонов)

Станции	1	2	3
1	0	2	2
2	3	0	2
3	1	1	0

time _z.xslx (время движения)

Станции	1	2	3
1	0	3	2
2	3	0	4
3	2	4	0

Переменная решения х (для каждого дня). Сколько вагонов, откуда и куда

МОДЕЛИРОВАИЕ В IBM ILOG CPLEX

МОДЕЛИРОВАИЕ В IBM ILOG CPLEX

ПРИМЕР ИСПОЛЬЗОВАНИЯ РЕЗУЛЬТАТОВ 1

Экспорт данных в Excel груженых перегонов

День / Откуда / Куда / Количество

1	1	2	2
1	1	3	1
1	1	5	3
2	4	2	1
3	4	2	1
3	5	2	1
3	5	3	2
4	1	3	1
4	3	2	1
4	4	3	1
4	5	4	1
5	2	3	2
5	2	5	1
5	5	2	2
6	3	5	1
6	5	4	1
7	3	4	1
7	4	5	1
8	2	1	1
8	3	5	2
9	2	1	1
9	4	1	3
10	2	1	1
10	2	4	1
10	3	1	1
10	3	4	1
10	5	1	4

Приведен пример вывода груженых перегонов к исполнению в первый день планируемого периода времени

Эффект: работа менеджера отдела планирования автоматизирована. Оптимизационная модель выводит план управления гружеными перегонами. Пример: груженые перегоны в 1-ый день

День 1

Сумма по полю (число вагонов)	Куда (номер станции)					
Откуда (номер станции)		2	3	5	Общий итог	
1		2	1	3		6
Общий итог		2	1	3		6

ПРИМЕР ИСПОЛЬЗОВАНИЯ РЕЗУЛЬТАТОВ 2

Экспорт данных в Excel порожних перегонов

День /	Откуда	/ Куда	/ Количество
		/	

1	1	1	18
1	1	4	1
2	1	1	15
2	1	5	3
3	1	1	15
4	1	1	13
4	1	5	1
4	5	5	2
5	1	1	13
6	1	1	12
6	1	4	1
6	2	5	1
7	1	1	13
7	3	3	2
8	1	1	13
9	1	1	13
9	3	3	1
10	1	1	13
10	3	3	1

Приведен пример вывода порожних перегонов к исполнению в первый день планируемого периода времени

Эффект: работа менеджера отдела планирования автоматизирована. Оптимизационная модель выводит план управления порожними перегонами. Пример: порожние перегоны в 1-ый день. (На первой станции остается 18 вагонов, с 1-ой станции на 4-ую станцию отправляется 1 вагон).

Паш	1	
День	1	

Сумма по полю (число вагонов)	Куда			Общий
Откуда		1	4	ИТОГ
1		18	1	19
Общий итог		18	1	19

Решенные задачи

- составлена и описана математическая модель предлагаемого подхода для оптимизации процесса планирования перевозок;
- реализована оптимизационная модель в системе IBM ILOG CPLEX Optimization Studio на основе разработанного подхода;
- приведены примеры использования результатов моделирования в системе IBM ILOG CPLEX Optimization Studio.

Автоматизация процесса планирования

С помощью разработанной оптимизационной модели можно автоматизировать процесс планирования управления подвижным составом в железнодорожной логистической компании.

Дальнейшее исследование

В качестве дальнейшей перспективы исследования может быть рассмотрено и доказано предположение о том, что разработанная модель может быть применима в процессе планирования исполнения заявок на перевозки и в других логистических железнодорожных компаниях.

СПАСИБО ЗА ВНИМАНИЕ

УНИВЕРСИТЕТ

E-mail: egorkarnaukh@yandex.ru E-mail: fbelousov@hse.ru