Introduction to Audio Content Analysis

Module 3.3: Audio Pre-processing

alexander lerch

overview

corresponding textbook section

Section 3.3

■ lecture content

- audio pre-processing for feature extraction
- **■** learning objectives
 - list possible pre-processing options
 - explain potential use cases

overview

corresponding textbook section

Section 3.3

■ lecture content

audio pre-processing for feature extraction

■ learning objectives

- list possible pre-processing options
- explain potential use cases

audio pre-processing introduction

pre-processing: audio is treated before feature extraction (task dependent)

possible goals

- reduce amount of data (e.g., down-sampling)
- remove irrelevant information (e.g., surround channels of multi-channel signal)
- remove redundant information
- make the signal invariant to irrelevant information
- increase robustness (e.g., normalization)

pre-processing: audio is treated before feature extraction (task dependent)

possible goals

- reduce amount of data (e.g., down-sampling)
- remove irrelevant information (e.g., surround channels of multi-channel signal)
- remove information that might impact analysis (e.g., DC offset)
- remove redundant information
- make the signal invariant to irrelevant information
- increase robustness (e.g., normalization)

Every pre-processing which improves the algorithm's accuracy or its robustness, or minimizes its complexity or computational workload is beneficial

pre-processing: audio is treated before feature extraction (task dependent)

possible goals

- reduce amount of data (e.g., down-sampling)
- remove irrelevant information (e.g., surround channels of multi-channel signal)
- remove information that might impact analysis (e.g., DC offset)
- remove redundant information
- make the signal invariant to irrelevant information
- increase robustness (e.g., normalization)

Every pre-processing which improves the algorithm's accuracy or its robustness, or minimizes its complexity or computational workload is beneficial

⇒ improve accuracy/robustness and reduce complexity/workload

down-mixing

$$x(i) = \frac{1}{\mathcal{C}} \sum_{c=0}^{\mathcal{C}-1} x_c(i)$$

• variants: different channel weights, $\pi/2$ phase shift in one channel, ...

audio pre-processing

Georgia Center for Music Tech College of Pesign

■ dc removal

$$x(i) = x_{\text{DC}}(i) - \frac{1}{\mathcal{I}} \sum_{i=0}^{\mathcal{I}-1} x_{\text{DC}}(i)$$

■ variants: high pass, IIR

audio pre-processing normalization

Georgia Center for Music Tech Technology

normalization

$$x(i) = \frac{x_s(i)}{\max_{\forall i} (|x_s(i)|)}$$

- variants: RMS, LUFS normalization
- real-time?

audio pre-processing other pre-processing options

■ filtering

- low pass: remove noise, high frequencies
- high pass: remove rumble

■ sample rate conversion

- ensure all input files have identical sample rate
- bandwidth reduction

quality enhancement

- denoising
- bandwidth reduction

pre-processing goals

- remove irrelevant data
- clean relevant data
- reduce amount of data

pre-processing examples

- down-mixing
- dc removal
- normalization
- sample rate conversion

