Université Libre de Bruxelles – Département de Mathématique

Titulaire: Paul Godin

Assistants: Julie Distexhe et Robson Nascimento

Exercices de Calcul Différentiel et Intégral 2 - 2013/2014

Séances 1 et 2 - Convergence simple et convergence uniforme

Exercice 1. On considère les fonctions

$$f_n(x) = (1 - x^4)^n$$
, pour tout $n \in \mathbb{N}$.

- a) La suite (f_n) converge-t-elle sur [-1,1]? Si oui, vers quelle fonction?
- b) La suite (f_n) converge-t-elle uniformément sur [0,1]?
- c) La suite (f_n) converge-t-elle uniformément sur tout compact de [0,1]?

Exercice 2. On considère une suite de fonctions définie par

$$f_n(x) = \begin{cases} 0, & \text{pour } \frac{1}{n} \le x \le 1, \\ 1, & \text{pour } x = 0, \\ 1 - nx, & \text{pour } 0 < x < \frac{1}{n}. \end{cases}$$

- a) La suite (f_n) converge-t-elle sur [0,1]? Si oui, vers quelle fonction?
- b) La suite (f_n) converge-t-elle uniformément sur [0,1]? Et sur [0,1]?
- c) La suite (f_n) converge-t-elle uniformément sur tout compact de]0,1]?

Exercice 3. Soit

$$f_n(x) = \begin{cases} 1, & \text{pour } n < x < n+1, \\ 0, & \text{sinon.} \end{cases}$$

- a) La suite (f_n) converge-t-ell sur \mathbb{R} ?
- b) La suite (f_n) converge-t-elle uniformément sur \mathbb{R} ?
- c) La suite (f_n) converge-t-elle uniformément sur tout compact de \mathbb{R} ?

Exercice 4. Etudier la convergence sur [0, 1] de la suite définie par

$$f_n(x) = nxe^{-nx^2}$$
, pour tout $n \in \mathbb{N}$.

Calculer

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx \quad \text{et} \quad \int_0^1 \lim_{n \to \infty} f_n(x) \, dx$$

Exercice 5. Soit $f_n:[0,1]\to\mathbb{R}$ définie par

$$f_n(x) = \frac{n^2 x}{1 + n^2 x^2}$$
, pour tout $n \in \mathbb{N}$.

- a) Montrer que la suite $(f_n(x))$ converge pour tout $x \in \mathbb{R}$ et déterminer la fonction limite.
- b) La suite (f_n) converge-t-ell sur \mathbb{R} ?
- c) La suite (f_n) converge-t-ell sur $]0, \infty[?]$
- d) La suite (f_n) converge-t-elle uniformément sur tout compact de $]0,\infty[?]$

Exercice 6. Etudier la convergence sur $]0,\pi[$ de la suite de fonctions définie par

$$f_n(x) = \frac{1 - \cos nx}{nx^2}$$
 pour tout $n \in \mathbb{N}$.

Exercice 7. Montrer que la fonction de Riemann

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$

est C^{∞} pour x > 1.

Exercice 8. Etudier la convergence de la série

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^x}.$$

Exercice 9. Sur [1/2, 1], étudier la convergence de la série

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{x-1}{x} \right)^n.$$

Etudier la convergence de la série dérivée; en déduire que

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \ln 2.$$