Содержание

1	Модели случайных графов	2
2	Общая теория случайных подмножеств	3
3	Монотонные и выпуклые свойства	3
4	Асимптотическая эквивалентность моделей	4
5	Связь в обратную сторону	6
6	Пороговые вероятности	7
7	Малые подграфы в случайном графе	9
8	Пороговая вероятность	9
9	Метод моментов	10
10	Предельные теоремы для X_G	12
11	Эволюция случайного графа	16

1 Модели случайных графов

Определение 1. *Случайный граф* — случайный элемент со значениями в некотором конечном множестве графов.

Определение 2. Равномерная модель. K_n — полный граф, $0 \le m \le C_n^2$, \mathcal{G}_m — множество всех остовных подграфов K_n , имеющих ровно m рёбер. Случайный граф в этой модели — случайный элемент с равномерным распределением на \mathcal{G}_m .

$$P(G(n,m) = F) = \frac{1}{C_{C_2}^m} \forall F \in \mathcal{G}_m$$

Фиксировано число рёбер, но другие характеристики выглядят посложнее, скажем $\deg v$ имеет гипергеометрическое распределение.

Определение 3. Биномиальная модель. \mathcal{G} — множество всех остовных подграфов K_n , $p \in [0,1]$. Случайный граф в этой модели — случайный элемент на \mathcal{G} со следующим распределением:

$$P(G(n,p) = F) = p^{|E(F)|} (1-p)^{C_n^2 - |E(F)|} \, \forall F \in \mathcal{G}$$

Много независимых событий, из-за чего многие характеристики имеют удобное распределение, например $\deg v \sim B(n-1,P)$. Число рёбер, впрочем, случайно.

Другие модели:

- Граф G, схема Бернулли на его рёбрах. Скажем, $G = K_{n,m}$ случайный двудольный граф.
- Равномерное распределение на какой-то совокупности графов \mathcal{F} . Например, случайный d-регулярный граф
 - -d=1 случайное совершенное паросочетание
 - -d=2 случайный набор циклов
 - -d=3 можно показать, что а.п.н. это гамильтонов цикл плюс какое-то совершенное паросочетание
- Случайный процесс на графе
 - С дискретным временем: $\tilde{G}=(\tilde{G}(n,m), m=0\dots C_n^2)$, в котором на каждом шаге появляется новое случайное равномерно выбранное ребро. $\tilde{G}(n,m)\stackrel{d}{=} G(n,m)$. Можно смотреть случайные моменты
 - * $\tau_1(n) = \min\{m : \delta(\tilde{G}(n,m)) \geqslant 1\}$
 - * $\sigma_1(n) = \min\{m : \hat{G}(n,m) \text{ связен}\}$

Теорема 1 (Баллобаш, Томасон).

$$P(\tau_1(n) = \sigma_1(n)) \to 1, n \to \infty$$

— С непрерывным временем: пусть для каждого ребра e графа K_n задана случайная величина T_e . Тогда для $\forall t>0$ можно рассмотреть процесс:

$$\tilde{G}_T = \{e \mid T_e \leqslant t\}$$

Если все T_e распределены одинаково, $\tilde{G}_T(n,t) \stackrel{d}{=} G(n,p)$, где $p = P(T_e \leq t)$.

— Triangle-free process. На каждом шаге включаем одно случайное ребро так, чтобы не возникало треугольников. Можно по-казать, что в результате такого процесса α (итогового графа) = $O(\sqrt{n \ln n})$. Следствие: оценка на число Рамсея $R(3,t) \geqslant c \frac{t^2}{\ln t}$.

2 Общая теория случайных подмножеств

Пусть Γ — конечное множество, $|\Gamma| = N$.

- $\Gamma(p)$ схема Бернулли на Γ .
- $\Gamma(n)$ случайное подмножество размера n с равномерным распределением
- $\tilde{\Gamma}(m)$ случайный процесс, включающий элементы последовательно

В асимптотиских утверждениях $\Gamma = \Gamma_n, n \in \mathbb{N}$ — последовательность, притом N = N(n).

3 Монотонные и выпуклые свойства

Определение 4. Q — семейство подмножеств Γ называется возрастающим, если $A \in Q, A \subset B \to B \in Q$, убывающим, если $A \supset B \to B \in Q$, монотонным, если оно возрастающее или убывающее.

Ясно, что Q — возрастающее тогда и только тогда, когда $\overline{Q}=2^{\Gamma}\setminus Q$ — убывающее. Будем обозначать $\Gamma(p)\models Q\Leftrightarrow \Gamma(p)\in Q$ («обладает свойством Q»).

Пример 1. Γ — рёбра K_n . Возрастающие свойства:

- связность
- содержит какой-то подграф
- $\delta(G) \geqslant k$

Убывающие свойтва:

- планарность
- $\chi(G) \leqslant k$

• ацикличность

Лемма 1. Пусть Q — возрастющее свойство. Тогда $\forall p_1 \leqslant p_2, m_1 \leqslant m_2$:

$$P(\Gamma(p_1) \models Q) \leqslant P(\Gamma(p_2) \models Q)$$

$$P(\Gamma(m_1) \models Q) \leqslant P(\Gamma(m_2) \models Q)$$

Доказательство.

- $P(\Gamma(m_1) \models Q) = P(\tilde{\Gamma}(m_1) \models Q) \leqslant P(\tilde{\Gamma}(m_2) \models Q) = P(\Gamma(m_2) \models Q)$
- Пусть $\Gamma(p') \perp \Gamma(p'')$ два независимых подмножества. Тогда $\Gamma(p') \cup \Gamma(p'') \stackrel{d}{=} \Gamma(p)$, где p = p' + p'' p'p''. Тогда можно положить $p' = \frac{p_2 p_1}{1 p_1}$, а также, что $\Gamma(p') \perp \Gamma(p_1)$. Тогда

$$P(\Gamma(p_1) \models Q) \leqslant P(\Gamma(p_1) \cup \Gamma(p') \models Q) = P(\Gamma(p_2) \models Q).$$

Определение 5. Свойство Q называется $\mathit{выпуклым},$ если $A \subset C \subset B \in Q \Rightarrow C \in Q$

Пример 2.

- все монотонные выпуклы
- $\chi(G) = k$

4 Асимптотическая эквивалентность моделей

Хотим установить какую-то связь между моделями $\Gamma(p)$ и $\Gamma(m)$ при $pN\sim m$. Для этого введём следующий контекст:

- $\Gamma(n), n \in \mathbb{N}$ последовательность конечных множеств
- $N = N(n) \to +\infty$
- $\bullet \ Q = Q(n)$
- $p = p(n) \in [0, 1]$
- $m = m(n) \in \{0, \dots, N\}$
- $\Gamma(n,p),\Gamma(n,m)$ случайные подмножества $\Gamma(n)$

Лемма 2. Пусть Q — свойство $\Gamma(n)$. Пусть $p = p(n) \in [0,1]$ — некоторая функция. Если для любой последовательности m = m(n), такой что

$$m = Np + O(\sqrt{Npq}), q = 1 - p$$

выполнено

$$P(\Gamma(n,m) \models Q) \rightarrow a, n \rightarrow \infty$$

mo

$$P(\Gamma(n,p) \models Q) \rightarrow a, n \rightarrow \infty.$$

Доказательство. Пусть C > 0 — большая константа и положим M(C) = $\{m \mid |m-Np| \leqslant C\sqrt{Npq}\}$. Обозначим

$$m_* = \underset{m \in M(C)}{\operatorname{argmin}} P(\Gamma(n, m) \models Q)$$

$$m^* = \underset{m \in M(C)}{\operatorname{argmax}} P(\Gamma(n,m) \models Q)$$

По формуле полной вероятности:

$$P(\Gamma(n,p) \models Q) = \sum_{m=0}^{N} P(\Gamma(n,p) \models Q \mid |\Gamma(n,p)| = m) P(|\Gamma(n,p)| = m) = \sum_{m=0}^{N} P(\Gamma(n,m) \models Q) P(|\Gamma(n,p)| = m) \geqslant \sum_{m \in M(C)} P(\Gamma(n,m) \models Q) P(|\Gamma(n,p)| = m) \geqslant P(\Gamma(n,m) \models Q) P(|\Gamma(n,p)| \in M(C)|)$$

Но $|\Gamma(n,p)| \sim Bin(N,p), E|\Gamma(n,p)| = Np, D|\Gamma(n,p)| = Npq$. По неравенству Чебышева:

$$P(||\Gamma(n,p)| - Np| > C\sqrt{Npq}) \leqslant \frac{Npq}{C^2Npq} = \frac{1}{C^2}$$

Значит $P(\Gamma(n,p) \models Q) \geqslant P(\Gamma(n,m_*) \models Q) \left(1 - \frac{1}{C^2}\right)$. Аналогично

$$\begin{split} P(\Gamma(n,p) \models Q) \leqslant \sum_{m \in M(C)} P(\Gamma(n,m) \in Q) P(|\Gamma(n,p)| = m) + \sum_{m \notin M(C)} P(|\Gamma(n,p)| = m) \\ \leqslant P(\Gamma(n,m^*) \in Q) + \frac{1}{C^2} \end{split}$$

Значит $\overline{\lim_{n \to \infty}} P(\Gamma(n,p) \models Q) \leqslant a + \frac{1}{C^2}.$ Также $\lim_{n \to \infty} P(\Gamma(n,p) \models Q) \geqslant a(1 - \frac{1}{C^2}).$

Это верно для любого C>0. Тогда $\exists \lim P(\Gamma(n,p)\models Q)=a$.

5 Связь в обратную сторону

Лемма 3. Пусть Q — монотонное свойтво, $a \in [0,1]$. Если $\forall p = p(n)$ такой, что $p = \frac{m}{N} + o(\sqrt{\frac{m(N-m)}{N^3}})$ выполнено, что $P(\Gamma(n,p) \models Q) \to a$, то $P(\Gamma(n,m) \models Q) \to a$.

Докажем только ослабленный вариант, где a=0 или a=1.

Лемма 4. Пусть Q — монотонное свойство, $m=m(n), m(n)\to +\infty$ и $\overline{\lim_{n\to\infty}\frac{m}{N}}<1$. Тогда если $P(\Gamma(n,\frac{m}{N})\models Q)\to 1$, то $P(\Gamma(n,m)\models Q)\to 1$.

Доказательство.

1. Если Q — возрастающее свойство, то

$$\begin{split} P(\Gamma(n,\frac{m}{N}) \models Q) &= \sum_{k=0}^{N} P(\Gamma(n,\frac{m}{N}) \models Q \mid |\Gamma(n,\frac{m}{N})| = k) P(|\Gamma(n,\frac{m}{N})| = k) \leqslant \\ &\sum_{k=0}^{N} P(\Gamma(n,k) \models Q) P(|\Gamma(n,\frac{m}{N})| = k) \leqslant \sum_{k=0}^{m} + \sum_{k>m+1} \leqslant \\ &P(\Gamma(n,m) \models Q) P(|\Gamma(n,\frac{m}{N})| \leqslant m) + P(|\Gamma(n,\frac{m}{N})| > m) \end{split}$$

По ЦПТ (условие на скорость роста m(n) позволяет ею воспользоваться), получаем, что

$$1 \leqslant \frac{1}{2} \varliminf_n P(\Gamma(n, m) \models Q) + \frac{1}{2}$$

Значит $\exists \lim_{n} P(\Gamma(n,m) \models Q) = 1.$

2. Если Q — убывающее, то $P(\Gamma(n, \frac{m}{N}) \models Q) \leqslant P(|\Gamma(n, m)| > m)P(\Gamma(n, m) \models Q) + P(|\Gamma(n, m)| \leqslant m)$. Далее, все тоже самое.

Следствие. То же самое верно u для a = 0.

Следствие (Асимптотическая эквивалентность моделей). Пусть Q-603-растающее свойство, $m=m(n)\to +\infty$, $\varlimsup \frac{m}{N}\leqslant 1-\delta$. Тогда

- 1. $P(\Gamma(n, \frac{m}{N}) \models Q) \rightarrow 1 \Rightarrow P(\Gamma(n, m) \models Q) \rightarrow 1$.
- 2. $P(\Gamma(n, \frac{m}{N}) \models Q) \rightarrow 0 \Rightarrow P(\Gamma(n, m) \models Q) \rightarrow 0$.
- 3. $P(\Gamma(n,m) \models Q) \to 1 \Rightarrow \forall \varepsilon > 0 P(\Gamma(n,\frac{m}{N}(1+\varepsilon)) \models Q) \to 1$.
- 4. $P(\Gamma(n,m) \models Q) \to 0 \Rightarrow \forall \varepsilon > 0 P(\Gamma(n, \frac{m}{N}(1-\varepsilon)) \models Q) \to 0$.

Доказательство. Первые два — это лемма и следствие. Положим $\frac{m}{N}(1+\varepsilon)=p(n)$. Тогда если $m'(n)=NP+O(\sqrt{Npq})=(1+\varepsilon)m+O(\sqrt{m})$, то $m'(n)\geqslant m(n)$ начиная с какого-то момента, значит в силу возрастания Q $P(\Gamma(n,m')\models Q)\geqslant P(\Gamma(n,m)\models Q)\to 1$. Значит $P(\Gamma(n,m')\models Q)\to 1$, то есть по лемме $P(\Gamma(n,m')\models Q)\to 1$. Аналогично следует последний пункт.

6 Пороговые вероятности

Мы доказали эквивалентность моделей только в случае вероятности, стремящейся к 0 или к 1. Однако, это самый важный случай, так как имеет место эффект «пороговой вероятности».

Определение 6. Пусть Q — возрастающее свойство подмножеств $\Gamma(n)$. Функция $\hat{p} = \hat{p}(n)$ называется пороговой вероятностью для Q, если выполнено $\lim_{n \to \infty} P(\Gamma(n,p) \models Q) = 1$ при $p = \omega(\hat{p})$ и 0, если $p = o(\hat{p})$.

Определение 7. Если Q — возрастающее свойство, то функция $\hat{m} = \hat{m}(n)$ называется пороговой функцией для Q, если выполнено $\lim_{n\to\infty} P(\Gamma(n,m) \models Q) = 1$ при $m = \omega(\hat{m})$ и 0 при $m = o(\hat{m})$.

 $\it Замечание.$ Для убывающих свойств все то же самое, с точностью до наоборот.

3амечание. \hat{m} — пороговая вероятность $\Leftrightarrow \hat{p} = \frac{\hat{m}}{N}$ — пороговая функция.

Пример 3. • $\Gamma(n)=\{1,\ldots,n\},\,Q=\{$ внутри есть 3-прогрессия $\}$. Тогда $\hat{p}=n^{-\frac{2}{3}}$ — пороговая вероятность, $\hat{m}=n^{\frac{1}{3}}$ — пороговая функция.

• $\Gamma(n)$ — рёбра $K_n, Q = \{$ есть $\Delta \}$. Тогда $\hat{p} = \frac{1}{n}$ — пороговая вероятность.

Утверждение 1. Пусть Q — нетривиальное возрастающее свойство подмножеств $\Gamma(n)$. Тогда функция $f(p) = P(\Gamma(n,p) \models Q)$ является непрерывной, строго возрастающей на [0;1], f(0) = 0, f(1) = 1.

Доказательство. Возрастание следует из предыдущих лемм.

$$f(p) = \sum_{A \in Q} P(\Gamma(n, p) = A) = \sum_{A \in Q} p^{|A|} (1 - p)^{N - |A|}.$$

Это многочлен, строго возрастающая непрерывная функция.

Определение 8. Если Q — возрастающее свойство, то $\forall a \in (0,1)$ положим $p(a,n) = f_n^{-1}(a)$. Введём также $m(a,n) = \min\{m: P(\Gamma(n,m) \models Q) \geqslant a\}$.

Лемма 5. Пусть Q — возрастающее свойство, тогда $\hat{p} = \hat{p}(n)$ является пороговой вероятностью для $Q \Leftrightarrow \forall a \in (0,1)$ выполнено $\hat{p} \times p(a,n)$. И \hat{m} — пороговая вероятность для $Q \Leftrightarrow \forall a \in (0,1)$ выполнено $\hat{m} \times m(a,n)$.

Доказательство. Докажем для равномерной модели. Пусть \hat{m} — пороговая, но $\exists a :\in (0,1)$ такое, что $\hat{m} \not \asymp m(a,n)$. Тогда существует подпоследовательность \hat{m}_{n_k} такая, что отношение $\frac{\hat{m}_{n_k}}{m(a,n_k)} \to 0$ или $+\infty$.

Пусть предел нулевой. Тогда $m'=m(a,n_k)-1$ есть $\omega(\hat{m})$. В таком случае $\lim_{\substack{k\to\infty\\\text{ude}}} P(\Gamma(n,m'(n_k))\models Q)=1$. Но $P(\Gamma(n,m'(n_k))\models Q)\leqslant a<1$, противоречие.

Если же предел равен $+\infty$, то $m(n_k)=o(\hat{m})$. Тогда $\lim_k P(\Gamma(n,m(n_k))\models Q)=0$. Но для любого k выполнено $P(\Gamma(n,m(n_k))\models Q)\geqslant a>0$, противоречие.

В обратную сторону: пусть $\hat{m} = \omega(\hat{m})$. Тогда $\forall a \in (0,1) \, m = \omega(m(a,n))$, значит в силу возрастания Q $P(\Gamma(n,m) \models Q) \geqslant P(\Gamma(n,m(a,n)) \models Q) \Rightarrow \lim_{n} P(\Gamma(n,m) \models Q) \geqslant \lim_{n} P(\Gamma(n,m(a,n)) \models Q) \geqslant a$, то есть $\exists \lim_{n} P(\Gamma(n,m) \models Q) = 1$.

Если $m = o(\hat{m})$, то все аналогично.

Теорема 2. Каждое монотонное свойство имеет пороговую вероятность.

Доказательство. Считаем, что Q — возрастающее свойство. Надо показать, что все функции p(a,n) имеют один и тот же порядок. Возьмём $\varepsilon \in (0,\frac{1}{2})$ и такое m, что $(1-\varepsilon)^m \leqslant \varepsilon$. Рассмотрим $\Gamma^{(1)}(n,p(\varepsilon,n)),\ldots,\Gamma^{(m)}(n,p(\varepsilon,n))$ — н.о.р. случайные подмножества $\Gamma(n)$. Тогда

$$\tilde{\Gamma} = \Gamma^{(1)}(n, p(\varepsilon, n)) \cup \ldots \cup \Gamma^{(m)}(n, p(\varepsilon, n)) \stackrel{d}{=} \Gamma(n, p'),$$

где $p' = 1 - (1 - p(\varepsilon, n))^m \leqslant mp(\varepsilon, n)$.

 $P(\tilde{\Gamma} \models Q) = P(\Gamma(n, p') \models Q) \leqslant P(\Gamma(n, mp(\varepsilon, n)) \models Q).$

С другой стороны $P(\tilde{\Gamma} \not\models Q) \leqslant P(\forall i \Gamma^{(i)}(n, p(\varepsilon, n)) \not\models Q) = P^m(\Gamma^{(1)}(n, p(\varepsilon, n)) \not\models Q) = (1 - \varepsilon)^m \leqslant \varepsilon$. Тогда $P(\tilde{\Gamma} \models Q) \geqslant 1 - \varepsilon) = P(\Gamma(n, p(1 - \varepsilon, n)) \models Q)$.

Значит $\forall n \, mp(\varepsilon,n) \geqslant p(1-\varepsilon,n)$. Итого $p(\varepsilon,n) \leqslant p(\frac{1}{2},n) \leqslant p(1-\varepsilon,n) \leqslant mp(\varepsilon,n)$. Значит по лемме, $p(\frac{1}{2},n) = \hat{p}$ — пороговая вероятность для Q.

Следствие. Для \forall монотонного свойства \exists пороговая функция \hat{m} .

Определение 9. Пусть Q — выпуклое свойство. Тогда функции $\hat{p_1} \leqslant \hat{p_2}$ называются *пороговыми* для Q, если...

Пример 4. $\Gamma(n)$ — рёбра K_n .

- $Q = \{\text{обхват} = 4\}, \ \hat{p_1} = \hat{p_2} = \frac{1}{n}$
- $Q=\{$ кликовое число $=4\},\,\hat{p_1}=n^{-\frac{2}{3}},\,\hat{p_2}=n^{-\frac{1}{2}}$

Определение 10. Пусть Q — возрастающее. Тогда $\hat{p} = \hat{p}(n)$ называется точной пороговой вероятностью для Q, если $\forall \varepsilon > 0$ выполнено $\lim_{n \to \infty} P(\Gamma(n, p) \models Q) = 1$ при $p \geqslant (1 + \varepsilon)\hat{p}$ и 0 при $p \leqslant (1 - \varepsilon)\hat{p}$.

Пример 5. $\Gamma(n)$ — рёбра K_n .

- $Q = \{$ связность $\}, \hat{p} = \frac{\ln n}{n}$ точная пороговая вероятность
- $Q = \{\text{есть } \Delta\}, \ \hat{p} = \frac{1}{n}$ пороговая вероятность, но точной пороговой вероятности нет
- $Q = \{$ ацикличность $\}, \hat{p} = \frac{1}{n}$ пороговая вероятность для Q, но точна она только с одной стороны

Теорема 3 (Фридгут). Пусть Q — монотонное свойство графов, \hat{p} — пороговая u она не точная. Тогда существует конечное разбиение $N_j, j = 1, \ldots, k$ множества \mathbb{N} u рациональные числа $\alpha_1, \ldots, \alpha_k > 0$ такие, что $\forall n \in N_j$ выполнено $\hat{p}(n) \asymp n^{-\alpha_j}$.

7 Малые подграфы в случайном графе

Рассмотрим G(n, p), p = p(n). Пусть G — фиксированный. Вопросы:

- с какой вероятностью G(n,p) содержит копию G?
- X_G число копий G в G(n,p). Каково предельное распределение X_G ?

8 Пороговая вероятность

Утверждение 2 (Метод первого момента). Пусть $(X_n, n \in \mathbb{N})$ — последовательность с.в. со значениями в \mathbb{Z}_+ . Тогда $P(X_n > 0) \leqslant EX_n$. То есть если $EX_n \to 0$, то $P(X_n > 0) \to 0 \Rightarrow P(X_n = 0) \to 1$.

Утверждение 3 (Метод второго момента). Пусть $(X_n, n \in \mathbb{N})$ — последовательность с.в. со значениями в \mathbb{Z}_+ . Тогда $P(X_n = 0) \leqslant P(|X_n - EX_n| \leqslant EX_n) \leqslant \frac{DX_n}{(EX_n)^2}$. То есть если $DX_n = o(E(X_n)^2)$, то $P(X_n = 0) \to 0$, то есть $P(X_n \geqslant 1) \to 1$.

Определение 11. Плотностью графа G=(V,E) называется $\rho(G)=\frac{|E|}{|V|}$. $m(G)=\max_{H\subseteq G}\rho(H)$.

Граф G с \bar{b} алансирован, если $\rho(G)=m(G)$ и строго сbалансирован, если $\rho(H)<\rho(G) \forall H\subset G.$

Определение 12. Группой автоморфизмов Aut(G) графа G называется группа всех изоморфизмов графа с собой. aut(G) = |Aut(G)|.

Лемма 6. Пусть G — фиксированный. X_G — число копий G в G(n,p). Тогда

$$EX_G = C_n^v \frac{v!}{aut(G)} p^{|E|} = \Theta_G(n^v p^{|E|}).$$

Посчитаем дисперсию. Введём $\Phi_G = \min\{EX_H : H \subset G, H \neq \varnothing\}$. Тогда

$$\Phi(G) \asymp \min_{H \subset G, |E(H)| > 0} n^{|V(H)|} p^{|E(H)|}$$

.

Лемма 7.

$$DX_G \simeq (1-p) \sum_{H \subset G} n^{2v-v_H} p^{2e-e_H} \simeq (1-p) \sum_{H \subset G} \frac{(EX_G)^2}{EX_H} \simeq (1-p) \frac{(EX_G)^2}{\Phi_G}.$$

Доказательство. Пусть G' — копия G в $K_n,\,I_{G'}=I\{G'\subset G(n,p)\}.$ Тогда $X_G=\sum_{C'}I_{G'}.$

Тогда
$$DX_G = cov(X_G, x_G) = \sum_{G', G''} cov(I_{G'}, I_{G''}) = \sum_{G', G'', |E(G' \cap G'')| > 0} cov(I_{G'}, I_{G''}).$$

Это можно переписать как

$$\sum_{H \subset G} \sum_{G',G'',G'' \subseteq H} (p^{2e-e_H} - p^{2e}) \asymp \sum_{H \subset G} n^{2v-v_H} p^{2e-e_H} (1 - p^{e_H})$$

C точки зрения порядка $1-p^{e_H} \asymp 1-p,$ что даёт требуемое. \square

Теорема 4. Пороговая вероятность наличия графа G равна $\hat{p} = n^{-\frac{1}{m(G)}}$.

Доказательство. Пусть $p=p(n)=o(n)^{-\frac{1}{m(G)}}$. Возьмём $H\subset G, \rho(H)=m(G)$. По лемме $P(G(n,p)\models G)\leqslant P(G(n,p)\models H)\leqslant EX_H=\Theta(n^{v_H}p^{e_H})$. При данном p получаем $\Theta((np^{\rho(H)})^{v_H})\to 0$.

Пусть наоборот, $p=p(n)=\omega(n^{-\frac{1}{m(G)}})$. Тогда $\Phi(G)=\min_{H\subset G}EX_{H}\asymp\min_{H}n^{v_{H}}p^{e_{H}}=\min_{H}(np^{\rho(H)})^{v_{H}}\to+\infty$. По лемме, $P(G(n,p)\not\models G)=P(X_{G}=0)\leqslant\frac{DX_{G}}{(EX_{G})^{2}}=o(\frac{1}{\Phi_{G}})\to 0$.

Теорема 5. Для любого непустого графа G вероятность $P(G(n,p) \not\models G) \leqslant \exp(-\Theta(\Phi_G))$.

A что будет, если $np^{m(G)} \rightarrow c > 0$?

Теорема 6 (Пуассоновская предельная теорема). Если G строго сбалансирован и $np^{m(G)} \to c > 0$, то $X_G \to Pois(\lambda)$, где $\lambda = \frac{c^v G}{aut(G)}$.

9 Метод моментов

Определение 13. Последовательность вероятностных мер $\{P_n, n \in \mathbb{N}\}$ на метрическом пространстве S слабо сходится к мере P, если $\forall f: S \to \mathbb{R}$ — ограниченной непр. функции выполнено:

$$\int_{S} f(x)P_n(dx) \to \int_{S} f(x)P(dx).$$

Обозначение: $P_n \stackrel{w}{\to} P$.

Определение 14. Семейство вероятностных мер $\{P_{\alpha}\}$ на метрически пространстве S называется *плотным*, если $\forall \varepsilon \exists K_{\varepsilon}$ — компакт, такой что $\forall \alpha P_{\alpha}(S \setminus K_{\varepsilon}) \leq \varepsilon$.

Семейство мер называется *относительно компактным*, если в любой последовательности мер из семейства найдётся сходящаяся подпоследовательность.

Теорема 7 (Прохоров). В полном сепарабельном простравнстве семейство мер плотно тогда и только тогда, когда оно относительно компактно.

Следствие. Пусть есть плотная последовательность мер на полном сепарабельном метрическом пространстве. Пусть кроме того любая слабо сходящаяся подпоследовательность слобо сходится к одной и той же мере Q. Тогда $P_n \stackrel{w}{\longrightarrow} Q$.

Определение 15. Распределение случайной величины X однозначно определяется своими моментами, если из того, что выполнено $\forall k \ EX^k = EY^k$ следует $X \stackrel{d}{=} Y$.

Лемма 8. Пусть $\exists \varepsilon > 0$, такое что Ee^{tX} конечно $\forall t \in (-\varepsilon, \varepsilon)$. Тогда распределние однозначно определено своиоми моментами.

Доказательство. Рассмотрим $f(z) = E \exp(zX)$ как функцию комплексного переменного. В области $|\operatorname{Re} z| < \varepsilon$ она голоморфна. Тогда f(z) раскладывается в ряд Тейлора в окрестности нуля:

$$f(z) = \sum_{k=0}^{\infty} \frac{EX^k}{k!} z^k.$$

Пусть Y — другая с.в., такая что $EY^k = EX^k$. Составим функцию $g9z) = E \exp(zY)$. g(z) аналитична в той же полосе и g(z) раскладывается в такой же ряд Тейлора в окрестности 0. По теореме о единственности они совпадают полностью, значит характестические функции у них одинаковые, то есть и распределения.

Пример 6.

- Все распределения с конечным носителем
- Все распределения с экспоненциально убывающими хвостами: экспоненциальные, гамма, нормальные, пуассоновские
- Пример плохого распределения: $X^3, X \sim N(0,1)$

Определение 16. Последовательность ξ_n называется равномерно интегрирумой, если

$$\lim_{c \to \infty} \sup_{n} E(|\xi_n|I(|\xi_n| \geqslant c)) = 0.$$

Теорема 8. Пусть $\{\xi_n, n \in \mathbb{N}\}$, $\xi \geqslant 0$, $\xi_n \stackrel{d}{\to} \xi$. Тогда $E\xi_n \to E\xi \Leftrightarrow \{\xi_n\}$ равномерно интегрируема.

Теорема 9 (Метод моментов). Пусть распределение X однозначно определяется своими моментами. Тогда если $\forall k \in \mathbb{N}$ $EX_n^k \to EX^k$, то $X_n \stackrel{d}{\to} X$.

Доказательство. Хотим проверить, что наша последовательность плотная, удостовериться, что частичный предел может быть только один и получить требуемое.

Итак, пусть P_n — распределние с.в. X_n . Пусть $M_k = \sup_n EX_n^k$. Тогда $\forall R>0$ $P_n(\mathbb{R}\setminus [-R;R])=P(|X_n|>R)\leqslant \frac{E|X_n|^2}{R^2}\leqslant \frac{M_2}{R^2}\to 0$ равномерно по n с ростом R.

По теореме Прохорова P_n содерит слабо сходящуюся подпоследовательность P_{n_k} . Покажем, что $P_{n_k} \stackrel{d}{\to} P_X$. Если $P_{n_k} \stackrel{w}{\to} Q$, то $X_{n_k} \stackrel{d}{\to} Y$, где Y — какая-то с.в. Заметим, что $X_{n_k}^s$ — равномерно интегрируема:

$$\sup_k E(|X^s_{n_k}|I(|X^s_{n_k}|\geqslant c))\leqslant \sup_k E\frac{X^{2s}_{n_k}}{c}\leqslant \frac{M_{2s}}{c}\to 0.$$

По теореме о равномерной интегрирумости $EX^s_{n_k}\to EY^k$. По условию $EX^s_{n_k}\to EX^s$, то есть $EX^s=EY^s$. Зрачит $X\stackrel{d}=Y$ и $P_{n_k}\to P_X$.

По следствию из теоремы Прохорова $P_n \stackrel{w}{\to} P_X$, то есть $X_n \stackrel{d}{\to} X$.

Определение 17. Пусть Z — случайный вектор. Его распределение однозначено определяется своими моментами, если из того, что $\forall \alpha(\alpha_1,\dots,\alpha_k)\ EZ^\alpha=EZ_1^{\alpha_1}\dots Z_m^{\alpha_m}=EY^\alpha$ следует, что $Z\stackrel{d}{=}Y$.

Теорема 10 (Метод моментов). Пусть распределение случайного ветора Z однозначно определяется своими моментами. Тогда если $\forall \alpha \in \mathbb{Z}_+^n EX_n^\alpha \to EX^\alpha$, то $Z_n \stackrel{d}{\to} Z$.

10 Предельные теоремы для X_G

Доказательство пуассоновской предельной теоремы. Воспользуемся методом моментов. Факториальные моменты $Y \sim Pois(\lambda)$ равны $E(Y)_k = EY(Y-1)\dots(Y-k+1) = \lambda^k$. Достаточно показать, что $E(X_G)_k \to \lambda^k$ при $n \to \infty$. Пусть G_1,\dots,G_N — копии G в $K_n,\,I_{G_i} = I\{G_i \subset G(n,p)\}$. Тогда $X_G = \sum_{i=1}^N I_{G_i}$ и

$$(X_G)_k = \sum_{i_1,\dots,i_k} I_{G_{i_1}} \dots I_{G_{i_k}}.$$

$$E(X_G)_k = \sum_{i_1,\dots,i_k} EI_{G_{i_1}} \dots I_{G_{i_k}} = E'_k + E''_k,$$

где E'_k — сумма по тем наборам, где все G_{i_k} попарно не имеют общих вершин, E_k'' — остальные слагаемые.

$$E'_{k} = (p^{e_{G}})^{k} \sum 1 = (p^{e_{G}})^{k} C_{n}^{v_{G}} \frac{v_{G}!}{\operatorname{aut}(G)} C_{n-v_{G}}^{v_{G}} \frac{v_{G}!}{\operatorname{aut}(G)} \dots C_{n-(k-1)v_{G}}^{v_{G}} \frac{v_{G}!}{\operatorname{aut}(G)} \sim (p^{e_{G}} \frac{n^{v_{G}}}{\operatorname{aut}(G)})^{k} \to (\frac{c^{v_{G}}}{\operatorname{aut}(G)})^{k} = \lambda^{k}$$

Нужно показать, что $E_k''=o(1)$. Для каждого t рассмотрим $e(t)=\min\{|E(G_1\cup\ldots\cup G_k)|\mid |V(G_1\cup\ldots G_k)|=t\}.$

Утверждение 4. Пусть $k \geqslant 2, 2 \leqslant t < kv_G$, тогда e(t) > tm(G).

Доказательство. Пусть F — любой граф. Положим $f_F = m(G)v_F - e_F$. Тогда $f_G = 0$ и $f_H > 0$ для любого собственного подргафа $H \subset G$.

Покажем, что если $F=G_1\cup\ldots G_k$, то $f_F<0$. Заметим, что $f_{F_1\cup F_2}=$ $f_{F_1}+f_{F_2}-f_{F_1\cap F_2}$. Если k=2, то $F=G_1\cup G_2$ и $|V(G_1\cap G_2)|>0$. Тогда

 $f_{G_1\cup G_2}=f_{G_1}+f_{G_2}-f_{G_1\cap G_2}=0+0-f_{G_1\cap G_2}<0.$ Работаем по индукции: пусть $F'=G_1\cup\ldots\cup G_{k-1}$ и считаем, что $f_{F'}<0.$ Тогда $f_{G_1 \cup \dots G_k} = f_{F'} + f_{G_k} - f_{F' \cap G_k} < 0.$ Это и означает, что $|E(G_1 \cup \dots G_k)| > tm(G).$

Это и означает, что
$$|E(G_1 \cup \dots G_k)| > tm(G)$$
.

Применим утверждение к оценке E_k'' . Если A(k,t) — это число способов разместить k копий на t вершинах.

$$\begin{split} E_k'' \leqslant \sum_{t=k}^{kv_G-1} C_n^t A(k,t) p^{e(t)} &= o\left(\sum_{t=k}^{kv_G-1} n^t p^{e(t)}\right) = \\ & o\left(\sum_{t=k}^{kv_G-1} (n^t p^{tm(G)}) p^{e(t)-tm(G)}\right) \to 0 \end{split}$$

Теорема 11 (Многомерный случай). Пусть G_1, \ldots, G_s — различные строго сбалансированные графы одной и той же плотности $m = m(G_i)$. Тогда если $np^m \to c > 0$, то $(X_{G_1}, \dots, X_{G_s}) \xrightarrow{d} (Z_1, \dots, Z_s)$, где Z_j — независимые случайные величины, $Z_j \sim Pois(\lambda_j), \lambda_j = \frac{c^{V_{G_j}}}{\operatorname{aut}(G)}$.

Пример 7. Всюду $m(G) = 1, np \to c > 0$

- $G=C_3\sqcup C_3$ два неперсекающихся треугольника. Тогда $X_G\stackrel{d}{\to} \frac{1}{2}Z(Z-1)$, где $Z\sim Pois(\frac{c^3}{6})$. Тогда $P(X_G=0)\to (1+\frac{c^3}{6})\exp(-\frac{c^3}{6})$
- $G=C_3\sqcup C_4$. $X_G\stackrel{d}{ o} Z_1Z_2,\ Z_i$ независимые, $Z_1\sim Pois\left(\frac{c^3}{6}\right),Z_2\sim$ $Pois\left(\frac{c^4}{8}\right)$. Тогда $P(X_G=0) \to 1 - (1 - e^{-\frac{c^3}{6}})(1 - e^{-\frac{c^4}{8}})$

• G — треугольник с висячей вершиной. Тогда $X_G \stackrel{d}{\to} \sum_{i=1}^W Z_i$, где Z_i — независимые Pois(3c), W — независима с ними, $W \sim Pois\left(\frac{c^3}{6}\right)$. $P(X_G = 0) \to \exp\left(-(1 - e^{-3c})\frac{c^3}{6}\right)$

Итого, ясно, что $np^{m(G)} \to 0 \Rightarrow X_G \stackrel{d}{\to} 0$ и $np^{m(G)} \to c \Rightarrow X_G \stackrel{d}{\to} Pois$. Утверждение состоит в том, что в случае, если $np^{m(G)} \to \infty \Rightarrow X_G \stackrel{d}{\to} N$.

Теорема 12 (ЦПТ для X_G). Пусть G — непустой фиксированный граф, $np^{m(G)} \to \infty$, $n^2(1-p) \to \infty$. Тогда

$$\frac{X_G - EX_G}{\sqrt{DX_G}} \stackrel{d}{\to} N(0,1).$$

Доказательство. Работаем по методу моментов. Вспомним, что если $Y \sim N(0,1)$, то $EY^k = (k-1)!!$ при чётных k и 0 при нечётных.

Пусть G_1,\dots,G_N — копии G в $K_n,\,I_{G_i}$ — соответствующие индикаторы. Тогда $X_G=\sum I_{G_i}$ и обозначим $T(G_{i_1},\dots,G_{i_k})=E\prod_i (I_{G_{i_j}}-EI_{G_{i_j}})$. Тогда

$$E(X_G - EX_G)^k = \sum_{i_1, \dots, i_k} T(G_{i_1}, \dots, G_{i_k}).$$

Для набора копий $(G_1,\ldots G_K)$ введём граф $L(G_1,\ldots G_k)$ с вершинами $\{1,\ldots,k\}$ и (j,m) — ребро $\Leftrightarrow G_{i_j}$ и G_{i_m} имеют общее ребро. Тогда сумму перепишем как:

$$E(X_G - EX_G)^k = \sum_{L \subset K_k} \sum_{i_1, \dots, i_k} T(G_{i_1}, \dots, G_{i_k}).$$

Разбираем три случая. Если L — совершенное паросочетание. Вспомним, что $Dx_G = \sum\limits_{H \subset G, e_H > 0} C_n^{v_H} C_{n-v_H}^{v_G-v_H} C_{n-v_G}^{v_G-v_H} A(G,H) \cdot (p^{2e_G-e_H}-p^{2e_G}) = d(n,p).$ Положим рёбра L равными $\{(1,2),\ldots,(k-1,k)\},\ k$ — чётное.

$$\sum T = \sum_{i_1, \dots, i_k} \prod_{j=1}^{\frac{k}{2}} \operatorname{cov}(I_{G_{2j-1}}, I_{G_{2j}})$$

$$\leqslant \sum \prod_{j=1}^{\frac{k}{2}} \sum_{G_{2j-1} \cap G_{2j}} \operatorname{cov}(I_{G_{2j-1}}, I_{G_{2j}}) = (DX_G)^{\frac{k}{2}}.$$

С другой стороны

$$\sum T \geqslant \sum \prod_{j=1}^{\frac{k}{2}} \operatorname{cov}(I_{G_{2j-1}}, I_{G_{2j}})$$

$$= \sum_{i_1, i_2} \operatorname{cov}(G_{i_1}, G_{i_2}) \sum_{G_{i_3} \cup G_{i_4} \not \cap G_{i_1} \cup G_{i_2}} \operatorname{cov}(G_{i_3}, G_{i_4}) \sum \dots$$

$$\geqslant d(n, p) d(n - 2v_G, p) \dots \sim (d(n, p))^{\frac{k}{2}} = (DX_G)^{\frac{k}{2}}$$

Таким образом, первый случай даёт вклад $(k-1)!!(DX_G)^{\frac{k}{2}}$.

Если L имеет изолированную вершину, то $T=E(I_{G_{i_1}}-EI_{G_{i_1}})\ldots=0,$ то есть вклад таких слагаемых равен 0.

В противном случае в L строго меньше, чем $\frac{k}{2}$ компонент связности. Пронумеруем его так, чтобы компоненты имели вид $\{1,\ldots,r_1\},\{r_1+1,\ldots,r_2\},\ldots$ Пусть также число компонент равно $c(L)<\frac{k}{2}$, а также $\forall i\notin\{1,r_1+1,\ldots,r_{c-1}+1\}\exists j:(j,i)\in E(L)$.

Пусть G_{i_1},\ldots,G_{i_k} — набор копий, такой что $L(G_{i_1},\ldots,G_{i_k})=L$. Обозначим $G^{(j)}=\bigcup\limits_{s=1}^{j}G_{i_s},\,F_j=G^{(j-1)}\cap G_{i_j}.\,e_{F_j}=0\Leftrightarrow j\in\{1,r_1+1,\ldots,r_{c-1}+1\}.$ Если $p\leqslant\frac{1}{2}$, то

$$|T| \le E \prod_{i=1}^{k} (I_{G_{i_j}} + EI_{G_{i_j}}) \le 2^k EI_{G_{i_1}} \dots I_{G_{i_k}} = 2^k p^{e_{G^{(k)}}}.$$

Если же $p > \frac{1}{2}$, то оставим в каждой компоненте по одному множителю.

$$|T| \leqslant E \prod_{s=1}^{c} |I_{G_{i_{r_s}}} - EI_{G_{i_{r_s}}}| = (E|I_{G_1} - EI_{G_1}|)^c =$$

$$(2(1-p)^{e_G} p^{e_G})^c \leqslant (2e_G(1-p))^c$$

Итого,
$$|T(G_{i_1},\ldots,G_{i_k})|=o(p^{e_{G^{(k)}}}(1-p)^c)$$
. Далее $e_{G^{(k)}}=ke_G-\sum\limits_{i=1}^k e_{F_i}$.

Тогда при заданных графах F_1,\dots,F_k число наборов (G_{i_1},\dots,G_{i_k}) с условием $G^{(j-1)}\cap G_{i_j}\cong F_j$ в K_n есть $o(n^{kv_G-\sum\limits_{j=1}^k v_{F_j}}).$

$$\sum_{i_1,...,i_k,L(...)=L,F_1,...F_k \ -\ \text{фикс}} T = O\left(n^{kv_G - \sum\limits_{j=1}^k v_{F_j}} p^{ke_G - \sum\limits_{j=1}^k e_{F_j}} (1-p)^c\right).$$

Если $e_{F_j}=0$, то $n^{v_{F_j}}p^{e_{F_j}}=n^{v_{F_j}}\geqslant 1$. Таких F_j ровно c. Остальные F_j имеют рёбра, значит $n^{v_{F_j}}p^{e_{F_j}}\geqslant EX_{F_i}\geqslant \Phi_G$.

Значит

$$\sum T = O\left((n^{v_G} p^{e_G})^k \frac{(1-p)^c}{(\Phi_G)^{k-c}} \right) = O\left((DX_G)^{\frac{k}{2}} \frac{(1-p)^{c-\frac{k}{2}}}{(\Phi_G)^{\frac{k}{2}-c}} \right).$$

Осталось показать, что $((1-p)\Phi_G)^{c-\frac{k}{2}} \to 0$, но $c-\frac{k}{2} < 0$, то есть $(1-p)\Phi_G \to +\infty$.

Если $p\leqslant \frac{1}{2}$, то $\Phi_G(1-p)\asymp \Phi_G$, но по условию $np^{m(G)}\to\infty\Rightarrow \Phi_G\to\infty$. Если же $p>\frac{1}{2}$, то $\Phi_G\asymp \min_{H\subset G,e_H>0} n^{v_H}p^{e_H}\asymp \min_{H\subset G,e_H>0} n^{v_H}=n^2$.

По условию $n^2(1-p) \to \infty \Rightarrow \Phi_G \to \infty$.

Итого, по методу моментов, теорема доказана.

11 Эволюция случайного графа

- \bullet $p = o\left(\frac{1}{n^2}\right) \Rightarrow$ в графе а.п.н. нет рёбер
- $p = \frac{c}{n^2} \Rightarrow$ число рёбер равно $Pois(\frac{c}{2})$
- $p = o\left(\frac{1}{n}\right) \Rightarrow ?$

Утверждение 5. $p=o\left(\frac{1}{n}\right)\Rightarrow$ случайный граф — а. п. н. лес

Доказательство. X — число простых циклов в G(n,p). Будем оценивать $P(X\geqslant 1)\leqslant EX$.

$$EX = \sum_{k=3}^{n} C_n^k \frac{(k-1)!}{2} p^k \leqslant \sum_{k=3}^{n} \frac{n^k (k-1)! p^k}{2k!} \leqslant \sum_{k=3}^{\infty} n^k p^k \leqslant \frac{(np)^3}{1-np} \to 0.$$

Утверждение 6. $\forall c > 0P(G(n,p) \text{ содержит компоненту размера } \geqslant c \ln n) \to 0.$

Доказательство. X — число древесных компонент размера $\geqslant c \ln n - 1$.

$$EX = \sum_{k=c\ln n-1}^{n} C_n^k k^{k-2} p^{k-1} (1-p)^{C_k^2 - k + 1 + k(n-k)} \leqslant \sum_{k=c\ln n-1}^{n} C_n^k k^{k-2} p^{k-1} \leqslant \sum_{k=c\ln n-1}^{n} \left(\frac{en}{k}\right)^k k^{k-2} p^{k-1} = en \sum_{k=c\ln n-1}^{n} \left$$

$$A(e^{\frac{1}{c}}np)^{c\ln n} \to 0$$