Esercitazione 1

Nell'impianto di Lambrate la TOOL spa produce unicamente pinze e chiavi il cui processo di produzione richiede:

1. Acciaio (materia prima), 2. Una fase di lavorazione dei singoli pezzi in acciaio, 3. Una fase di assemblaggio dei pezzi lavorati (macchina per l'assemblaggio)

Variabile di decisione

Loxa: numero di chisvi de produrre in un gierre (in miglisis) loxo: numero di pinze de produrre in un gierre (in miglisis)

Funcione objettivo

Objettivo: massimizzare guadagno totale giornalien

Guadagni: 130\$ per 1000 unité di chian 100\$ per 1000 unité di pinze

max Z=130xc+100xp

Vincoli

Accisio: prod. vichicte: 1,50:56 per ogni chique
1 libbra per ogni pinas pon in
27000: disp. gi oru aliera MIGGIAIA

1,5 xc + 1xp = 27

Machina: agni chiave e pinza richiedono un'ora di lavovazione.

21000 i disp. giornaliera NON IN MISLIAIA

""

1 xc + 1x1 621

Macchina: 0.3 ove per chiave, 0.5 per pinza, 3000 are disponibilità

0.3 Xet 0.5 Xp \(\frac{9}{2} \)

Domanda: 15000 chiavi, 16000 pinze >> xc≤15, xp €16 massima

soluzione Xc=12

PROBLEMA

La prima soluzione di base ammissibile si attiene impostando le variabili decisonali a zero

	Хc	Χρ	Sa	52	53	S 4	Ss	50 ^l .	Scelgo la variabile più
Z	-130	-100	0	ō	б	0	0	0	negativa
Sn	1.5	Л	1	D	ی	0	0	27	27/1.5=18
52	1	1	9	1	D	0	0	21	21/1=21
53	0.3	0.5	0	O	1	0	Э	9	9/03 = 30
5 4		Э	ى	٥	Ď	1	0	15	15/1 = 15 => esce
55	0	1	D	0	ð	0	1	16	16/0 = NON
								. 0	
	Хc	Χρ	Sa	52	23	S 4	S _S	<u></u> 59ℓ.	
	Xc -130	Хр -100	S1 0	5 ₂	D 23	\$4 0	S ₅	59 ^l .	
 Z S₁									
	-130	-100	D	ō	อ	0	0	0	
Sn	- <i>A30</i>)	-100 1	0 1	o o	D D	0	0	0 27	
S ₁	-330 1.5 1	-100 1	0 1 0	0 0 1	ວ ວ ວ	0	0 0	0 27 21	-

2' = -130-(-130)·1,-100-(-130)·0,0,0,0,0-(-130)·1,0,0-(-130·15) = [0,-100,0,0,0,130,0,1850]

5, - 1,5-1,5.1, 1-1,5.0 1-1,5.0,0,0,0-1,5.1,0,27-1.5.15. = [0,1,1,0,0,-1.5,0,4.5]

Esercizio 2

Obiettivo: minimizzare il costo di un pasto rispettando i vincoli nutrizionali.

Ingredienti	Proteine	Carboidrati	Grassi	Costo
1	1	4	3	3
2	3	4	2	6
3	2	3	3	5
4	3	2	4	6

Variabili decisionali

Quattro diversi ingredienti: x1, x2, x3, x4

Funzione obiettivo (colonna nella tabella)

Minimizzare costo totale: min Z = 3x1 + 6x2 + 5x3 + 6x4

Vincoli (ovvero in verticale nella tabella)

- Proteine: almeno 2hg

 $-1x1+3x2+2x3+3x4 \ge 2$

Carboidrati: almeno 4hg

 $-4x1+4x2+3x3+2x4 \ge 4$

- Grasso: almeno 3hq

 $-3x1+6x2+5x3+6x4 \ge 3$

- X1,x2,x3,x4 \geq 0

Esercizio 3

Problema dei trasporti - minimizzare il costo totale per trasportare un prodotto da diverse fonti (stabilimenti) a diverse destinazioni (centri di distribuzione), rispettando la capacità produttiva delle fonti e la domanda delle destinazioni.

Variabili decisionali

xij: quantità di computer spediti dallo stabilimento i (i=1,2,3) al centro di distribuzione j
 (j=1,2,3,4). 3x4=12 -> 12 variabili decisionali

Funzione obiettivo

Minimizzare il costo totale del trasporto.

min Z= Si & Cig · Xis = tutte le 12 variabili

vivadi: quantità totale da agui stabilinento non può superare capacità copacità EJ XIJ ES,

stab. 1: $x_{11} + x_{12} + x_{13} + x_{14} \in C_{S_1}$ stab. 2: $x_{21} + x_{21} + x_{23} + x_{24} \in C_{S_2}$ stab. 3! $x_{31} + x_{32} + x_{33} + x_{34} \in C_{S_3}$

vivadi quartité total due aniva e agui centro di disnit almen pari alle domanda domanda Ei Xis > do centro 1: XII + XII + XII > do,

Centro 1: $X_{11} + X_{21} + X_{31} > d_{c_1}$ Centro 2: $X_{12} + X_{22} + X_{32} > d_{c_2}$ Centro 3: $X_{13} + X_{23} + X_{33} > d_{c_3}$ Centro 6: $X_{14} + X_{21} + X_{31} > d_{c_1}$

Turni di lavoro

Minimizzare il numero totale di dipendenti necessari per un ristorante, rispettando il fabbisogno minimo di personale per ogni giorno della settimana.

Numero: lunedì=14, martedì=13, mercoledì=15, giovedì=16, venerdì=19, sabato=18, domenica=11 Ogni dipendente lavora 5 giorni consecutivi, e ha 2 giorni di riposo.

Variabili decisionali

Numero di dipendenti il cui turno di 5 giorni consecutivi inizia in un giorno specifico della settimana.

- x1: numero di lunedì
- X2: numero di martedì
- X3, x4, x5, x6, x7: fino a domenica

Funzione obiettivo

Minimizzare la somma di tutti i dipendenti che iniziano un turno, che rappresenta il numero totale di dipendenti

Min Z = x1+x2+x3+x4+x5+x6+x7

Vincoli

Fabbisogno minimo di dipendenti per un giorno specifico. I dipendenti che lavorano un dato

giorno sono quelli il cui turno è iniziato nei 5 giorni precedenti, incluso il giorno stesso.

Lunedì: da lunedì a venerdì Martedì: da martedì a sabato

Mercoledì: da mercoledì a domenica

Giovedì: da giovedì a lunedì Venerdì: da venerdì a martedì Sabato: da sabato a mercoledì Domenica: da domenica a giovedì

Per i vincoli, dobbiamo vedere quali sono i turni che coprono il giorno dato.

		T_{λ}	Tz	13	Ty	Ts	76	T7
Lunech	X	\checkmark	×	×	√	√	V	✓
M2Vled($ x_2^{T} $	\checkmark	\checkmark	×	×	✓	\checkmark	\checkmark
hercolecti	$ _{X_{X}}^{-} $	✓	\checkmark	√	×	×	\checkmark	\checkmark
Gjovedn	$ \chi_{i} $	\checkmark	V	✓	✓	×	×	\
Veuenli	χς	✓	/	V	\checkmark	✓	×	×
Sabato	xe	×	V	V	√ .	√	✓	×
Domewica	X3	×	×	/		✓	/	\checkmark
		L->V	M→s	Ø←K	G-L	V→H	SAM	D>G

vivoli:

Tumo lu: X1+ X2+X3+X4+X5 318

mari X2 + X3 + X4 + X5 + X6 > 18

mer: X3 + X4 + X5 + X6 + X7 3 11

80: X4+X5+X6+X7+X1314

ven: X5+ X6+ X1 + X1 + X2 > 13

50: XG+X7+X1+X2+X3> 15

dom: X2+X1 +X2+X3+X47 16

prendo l'ultimo giamo ome vindo