Set Cover – programowanie liniowe

Musimy stworzyć macierz z takim przypisaniem, żeby każda kolumna była opisana przez oddzielny podzbiór, natomiast wiersz przez każdy element z uniwersum. Jeśli dany element znajduje się w podzbiorze to w macierzy będzie 1, jeśli nie to dajemy 0.

Mając tak wypełnioną macierz, wystarczy ją zminimalizować: $\sum_{i=1}^{n} x_i$

Przykład:

$$U = \{1, 2, 3, 4, 5, 6, 7\}$$

$$S_1 = \{1, 3, 4\}$$

$$S_2 = \{1, 2, 4\}$$

$$S_3 = \{2, 3, 4\}$$

$$S_4 = \{1, 2, 3\}$$

$$S_5 = \{5\}$$

$$S_6 = \{6, 7\}$$

$$S_7 = \{7\}$$

Zaczynamy wypełnianie macierzy od S₁. Wypełniamy kolumnę od góry na dół. Sprawdzamy czy S₁ zawiera element '1', ten element jest w podzbiorze więc w macierzy ląduje 1. Następnie sprawdzamy '2', okazuje się, że brak tego elementu w S₁, więc w macierzy ląduje 0. Proces kontynuujemy do całkowietego wypełnieni macierzy.

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇
1	1	1	0	1	0	0	0
2	0	1	1	1	0	0	0
3	1	0	1	1	0	0	0
4	1	1	1	0	0	0	0
5	0	0	0	0	1	0	0
6	0	0	0	0	0	1	0
7	0	0	0	0	0	1	1

Można to także przedstawić w postaci równań:

Mając wypełnioną macierz wystarczy skorzystać z jakiegokolwiek solvera, np. https://comnuan.com/cmnn03/cmnn03004/.

$$f(x) = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

Otrzymane wyniki są następujące:

$$x_1 = 0.3333 x_2 = 0.3333 x_3 = 0.3333 x_4 = 0.3333 x_5 = 1 x_6 = 1 x_7 = 0$$

 $f(x) = 3.3333$

Interpretacja wyników jest następująca:

Jeśli w wyniku otrzymaliśmy 1 to podzbiór o zadanym indeksie jest naszym rozwiązaniem. W naszym przypadku będą to podzbiory: S_5 , S_6 . Dodatkowo możemy dostać także wynik w postaci ułamkowej w takim wypadku do rozwiązania wędrują kombinacje podzbiorów. U nas będą to: S_1 , S_2 , S_3 , S_4 .

Ostateczne możliwe wyniki:

 S_1 , S_2 , S_5 , S_6

 S_1 , S_3 , S_5 , S_6

 S_1 , S_4 , S_5 , S_6

 S_2 , S_3 , S_5 , S_6

S₃, S₄, S₅, S₆