Input to to eval Returnics >= empty list VSCS loop forener (for each episode s. A. R.S.A. St. A. R. R. R. A. R. S. A. R. loop for each state in the ep, t=T-1, T-Z, in, O.

Vales St in So, S., St.,

Append G to Returns (St)

V(St) F average (Returns (St)) Simulate many games using a policy with an MC approach then average the returns for each starte No need to pre-comp probs I only one slep toursitions policy improvement ruse greedy 2me (s, akuls) = que (s, any max que (s,a)) = max gax (s, a) ≥ 20 (S, 1, (S)) 11, 70 no 0 11, -> (1, ->

> 7 × ~> 9×

 $\frac{2}{14(0)} = \frac{2}{14(0)} \frac{1}{14(0)} \frac$

Off policy Me
weed to behave non-optimally to learn but mont to act optimally
Turo pelicnes o Tareset o behavior
thigh can law convenegance more power b (hehavion), Ti (tanget)
Tr(als) >0 => 6(als)>0 Pr(A+, Sty), Aty, Aty, Styles Att. 273
= Ti (A+ 13c) p (Sty 18c, Ac) Ti (A++18ty) - p(S-18-1, A-1)
Importance sampling ratio establing experted values
Pt: T-1 = TIME TO (Aulsk) p (SK-11 Sk, Ay) = TIT-1 TO (Ak Sk) b (Aulsk) p (Sk-11 Sk, Ay) = They b (Aylsk)
ECG+ ()+=0 = V, Cs) - mont give us = Ti E[p+: 7- G+ (S+=)] = V_7(S)

Ti ghen beter V(2) = 2 + + > > P+ + T(+) - + C+ reighted version V()) = Tecting Pritition by Word V EWEGE (Cars weight of reights Vn+1 = Vn + 2 (an - Vn) Cn+1 = Cn+Wn+1

MCTS
1) lelection: lollow the tree policy to a leaf
2.) Expansion expand the tree by adding a new leaf
3.) Simulation: From the celected node or new child run a MC epude with the rolland policy
H.) Backup: Return the generaled episode and its return
Rollant Alyos
Estimate action values by averaging the remards of many trayetonies that start with a given action.
Unlike MC ne don't estimate 2* 0- 2"
Instead they unly get values for only the actions associated with the current stake.
Planning
7 policy actory
farring of
Ret experience
model
1. Sa Min

Tab Dyna Q
lint Q(s,a), Model(s,a) UseS, acAcss
ODO.
35 cannot start
Table action A: observe resultant remard B, 8' ()(S,A) = (OCS,A) + 2[R+ maxa Q(S;a)-C(C),A)
O(S,A) = CO(S,A) + 2[R+ max, Q(S',a)-C(S,A))' Model (S,N) = R,S' (assums determine steeper) loop n times:
SE random previous slate A = random consumovala telanta in S
SE random previous slate A = random action previously talmen in S R,S' = Model (SA) Q(S,A) & O(S,A) + L(R+ ymaxa Q(S',a)-Q(S,A)