FREENESS OF RESTRICTIONS OF FREE ARRANGEMENTS AND THE HIGHT TWO COHEN-MACAULAY PROPERTY

SATOSHI MURAI

The theory of hyperplane arrangements is one of most attractive research areas in algebraic combinatorics. In particular, freeness of an arrangement is an important property that has a lot of algebraic and combinatorial applications. In this talk, we introduce a new commutative algebra approach to study the freeness of a restriction of a free arrangement. This is a joint work with Takuro Abe (Rikkyo University).

We quickly explain freeeness of arrangements. A hyperplane arrangement in $V = \mathbb{C}^n$ is a finite collection of hyperplanes in V. We simply call a hyperplane arrangement in V an arrangement. Let $S = \text{sym}(V^*) = \mathbb{C}[x_1, \dots, x_n]$ and let $\text{Der}(S) = \bigoplus S\partial_i$ be the set of all derivations of S, where $\partial_i = \frac{\partial}{\partial x_i}$. The derivation module of an arrangement \mathcal{A} is the S-module defined by

$$Der(\mathcal{A}) = \{ \theta \in Der(S) \mid \theta \cdot \ell_H \in \ell_H \cdot S \text{ for all } H \in \mathcal{A} \},$$

where ℓ_H is a defining linear form of H. An arrangement \mathcal{A} of V is said to be free if $\operatorname{Der}(\mathcal{A})$ is a free S-module. For an arrangement \mathcal{A} and $H \in \mathcal{A}$, the deletion of H is the arrangement $\mathcal{A} \setminus H = \mathcal{A} \setminus \{H\}$ and the restriction of \mathcal{A} to H is an arrangement in $H \cong \mathbb{C}^{n-1}$ defined by

$$\mathcal{A}^H = \{ H \cap H' \mid H' \in \mathcal{A} \setminus H \}.$$

Although there are free arrangements \mathcal{A} such that its restriction \mathcal{A}^H is not free [1], people somehow experimentally know that a restriction of a free arrangement is likely to become free. For example, a typical example of free arrangements are supersolvable arrangements, but restriction of a supersolvable arrangement is again supersolvable and hence free. Also, a well-known result of Terao [2] says that, if \mathcal{A} is free, then the freeness of $\mathcal{A} \setminus H$ implies the freeness of \mathcal{A}^H . Finding a free arrangement \mathcal{A} such that \mathcal{A}^H is not free is actually not an easy problem and our motivating problem is as follows.

Problem 1. Can we explain why if \mathcal{A} is free then \mathcal{A}^H is likely to be free?

This is a little ambiguous problem, but in any case we do not have an good answer to this problem. Probably, to study such a problem, we need some nice way to study the freeness of restrictions of free arrangements. Motivated by this, we introduce the following ideal.

Definition 2. Let \mathcal{A} a free arrangement in V and let $H \in \mathcal{A}$ be the hyperplane defined by the linear form $\ell \in S$. Let $\theta_1, \ldots, \theta_n$ a free S-basis of $\operatorname{Der}(\mathcal{A})$. Write $\theta_j = \sum_{i=1}^n f_{ij}\partial_i$ and let M be the $n \times n$ matrix whose i, jth entry is f_{ij} . Write $\bar{S} = S/(\ell)$ and let \overline{M} be the natural image of M by the map $S \to \bar{S} = S/(\ell)$. Let $Q \in \bar{S}$ be the product of all defining linear forms of \mathcal{A}^H . Then it is known that any (n-1)-minors of \overline{M} is divisible by Q. We define the ideal I_A^H of \bar{S} by

$$I_{\mathcal{A}}^{H} = \{ f/Q \mid f \in I_{n-1}(\overline{M}) \}$$

where $I_{n-1}(\overline{M})$ is the ideal of (n-1)-minors of \overline{M} .

¹it is known that if Der(A) is free then it must have rank n.

We remark that the definition of $I_{\mathcal{A}}^H$ does not depend on the choice of a basis of $\operatorname{Der}(S)$ so we may assume that H is the hyperplane defined by $x_1 = 0$, and in that case the first row of \overline{M} is zero. Hence $I_{n-1}(\overline{M})$ is actually the ideal of (n-1)-minors of an $(n-1) \times n$ matrix.

Example 3. Let $\mathcal{A} = \{H = H_x, H_y, H_z, H_{x-y}, H_{x-z}\}$, where H_ℓ is the hyperplane defined by $\ell = 0$. Then $\text{Der}(\mathcal{A})$ is a free $\mathbb{C}[x, y, z]$ -module generated by $x\partial_x + y\partial_y + z\partial_z, x^2\partial_x + y^2\partial_y + z^2\partial_z, x^2\partial_x + xy\partial_y + z^2\partial_z$. Thus

$$M = \begin{pmatrix} x & x^2 & x^2 \\ y & y^2 & xy \\ z & z^2 & z^2 \end{pmatrix} \quad \text{and} \quad \overline{M} = \begin{pmatrix} 0 & 0 & 0 \\ y & y^2 & 0 \\ z & z^2 & z^2 \end{pmatrix}.$$

The ideal $I_A^H \subset \overline{S} = \mathbb{C}[x, y, z]/(x)$ is given by

$$I_{\mathcal{A}}^{H} = \frac{1}{yz}(yz^{2} - zy^{2}, yz^{2}, y^{2}z^{2}) = (y, z).$$

Our starting point is the following observation, which easily follows from known results in hyperplane arrangement theory.

Observation Assume that \mathcal{A} is free and $H \in \mathcal{A}$. Then \mathcal{A}^H is free if and only if $\operatorname{pd}_{\bar{S}}(\bar{S}/I_{\mathcal{A}}^H) \leq 2$.

Now Problem 1 is equivalent to the following more comuutative algebraic problem

Problem 4. Can we show that if \mathcal{A} is free then $\bar{S}/I_{\mathcal{A}}^H$ is likely to have projective dimension ≤ 2 ?

Again, we do not have a good answer to this problem, but as a first step to study this problem we discuss basic properties of the ideal $I_{\mathcal{A}}^{H}$. Our first result is the conbinatorial description of the radical of this ideal. Let

$$L_{\mathcal{A}} = \{H_1 \cap \cdots \cap H_k \mid H_1, \dots, H_k \in \mathcal{A}\}$$

be the intersection lattice of an arrangement \mathcal{A} . For $X \in L_{\mathcal{A}}$, the arrangement $\mathcal{A}_X = \{H \in \mathcal{A} \mid H \supset X\}$ is called the localization of \mathcal{A} at X.

Theorem 5. Let A be a free arrangement in V and $H \in A$. Let NFT(A, H) consist of $X \in L(A^H)$ such that $A_X \setminus \{H\}$ is not free. Then

$$\sqrt{I_{\mathcal{A}}^{H}} = \bigcap_{X \in NFT(\mathcal{A}, H)} I_{X},$$

where I_X is the defining ideal of the subspace X.

If I have time, I also discuss the primary decomposition of $I_{\mathcal{A}}^{H}$, the radicalness of $I_{\mathcal{A}}^{H}$ as well as a connection to (Alexander dual of) Fröberg's theorem on edge ideals with linear resolutions.

References

- [1] P.H. Edelman and V. Reiner, A counterexample to Orlik's conjecture. Proc. Amer. Math. Soc., 118 (1993), 927–929.
- [2] H. Terao, Arrangements of hyperplanes and their freeness I, II. J. Fac. Sci. Univ. Tokyo 27 (1980), 293–320.

Satoshi Murai, Department of Mathematics Faculty of Education Waseda University, 1-6-1 Nishi-Waseda, Shinjuku, Tokyo 169-8050, Japan

Email address: s-murai@waseda.jp