Exercise Let $\{E_{i,j}\}_{i< j}$ be the set of all elementary matrices, of this form. Prove that $E_{i,j}^{-1} = (b_{l,k})$ is $E_{i,j} = (a_{l,k})$, when we substitute $a_{i,j} = 1$ with $b_{i,j} = -1$

Proof We can see that directly from the fact that if we multiply $E_{i,j}^{-1}$ by $E_{i,j}$ from the left then $E_{i,j}$ is operating on $E_{i,j}^{-1}$ by adding row j to row i So, in the product matrix, $(c_{l,k})$, in order to have 1 on the main diagonal, we need them to exist on the main diagonal of $E_{i,j}^{-1}$, to begin with. Now, in order to have $c_{i,j} = 0$, we need to have the addition of j to i giving $c_{i,j} = a_{i,j} + b_{i,j} = 0 \Rightarrow b_{i,j} = -a_{i,j} = -1$

Exercise Prove that if $(a_{ij}) = E_{i,j}$, i < j is an elementary matrix, then $\forall m \in (N), E_{i,j}^m$ is $E_{i,j}$, but with $a_{ij} = m$

$$E_{i,j} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

$$E_{i,j}^2 = E_{i,j} \cdot E_{i,j}$$

Since $E_{i,j}$ is en elemntary matrix, then it operates on the right matrix as an addition of row j to row i

So,

$$E_{i,j}^2 = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \ddots & 2 & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

We assume this is true for all $E_{i,j}^m$, now we prove for $E_{i,j}^{m+1}$

$$E_{i,j}^{m+1} = E_{i,j} \cdot E_{i,j}^{m} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}^{m}$$

(by the assumption)

$$= \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \ddots & m & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \ddots & m+1 & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Commutators of elementary matrices

Let $\{E_{i,j}\}_{i< j}$ be the set of all elementary matrices of this form.

Exercise $(a_{l,m}) = E_{i,j}^{-1}$ is the matrix with 1 on the main diagonal, and -1 in $a_{i,j}$

Proof We can see that directly from the fact that in order to have $(c_{l,m}) = (a_{l,m}) \cdot (b_{l,m}) = E_{i,j} \cdot E_{i,j}^{-1} = I$,

we need to have $c_{i,j} = 0$, which means that adding row j to row i, in $E_{i,j}^{-1}$ (by the left multiplication of $E_{i,j}$)

must give $a_{i,j} + b_{i,j} = c_{i,j} = 0 \Rightarrow b_{i,j} = -a_{i,j} = -1$

Exercise $[E_{i,j}, E_{j,k}] = E_{i,k}$

Proof $E_{i,j}$ is operating from left on $E_{j,k}$ by addition of row j to row i, so, the product matrix, $(a_{l,m}) = E_{i,j} \cdot E_{j,k}$ has 1 on the main diagonal and in $a_{j,k}, a_{i,j}, a_{i,k}$

 $E_{i,j}^{-1}$ is operating from left on $E_{j,k}^{-1}$ by subtraction of row j from row i, so, the product matrix, $(b_{l,m}) = E_{i,j}^{-1} \cdot E_{j,k}^{-1}$ has 1 on the main diagonal and in $b_{i,k}$, and -1 in $b_{j,k}, b_{i,j}$

Multiplying $(a_{l,m}) \cdot (b_{l,m})$ yields a product matrix, $(c_{l,m})$ with 1 on the main diagonal, and,

since $a_{i,i} = a_{i,j} = a_{i,k} = 1$, with all other cells in row j being 0, and since $b_{i,k} = b_{k,k} = 1$, and $b_{j,k} = -1$, multiplying row $(a_{l,m})_i$ by column $(b_{l,m})_k$ yields the value $c_{i,k} = b_{i,k} + b_{j,k} + b_{k,k} = 1 - 1 + 1 = 1$

We can see that multiplying $(a_{l,m})_i \cdot (b_{l,m})_j$ yields $c_{i,j} = a_{i,i} \cdot b_{i,j} + a_{i,j} \cdot b_{j,j} = 1 \cdot -1 + 1 \cdot 1 = 1 - 1 = 0$

And, we can see that multiplying $(a_{l,m})_j \cdot (b_{l,m})_k$ yields $c_{j,k} = a_{j,j} \cdot b_{j,k} + a_{j,k} \cdot b_{k,k} = 1 \cdot -1 + 1 \cdot 1 = 1 - 1 = 0$

Conclusion

$$[E_{j,k}, E_{i,j}] = E_{j,k} \cdot E_{i,j} \cdot E_{j,k}^{-1} \cdot E_{i,j}^{-1} = ((E_{i,j}^{-1})^{-1} \cdot (E_{j,k}^{-1})^{-1} \cdot E_{i,j}^{-1} \cdot E_{j,k}^{-1})^{-1} = (E_{i,j} \cdot E_{j,k} \cdot E_{i,j}^{-1} \cdot E_{j,k}^{-1})^{-1} = [E_{i,j}, E_{j,k}]^{-1}$$

For example, n = 4,

$$E_{1,2} \cdot E_{2,3} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$E_{1,2}^{-1} \cdot E_{2,3}^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$[E_{1,2} \cdot E_{2,3}] = E_{1,2} \cdot E_{2,3} \cdot E_{1,2}^{-1} \cdot E_{2,3}^{-1} =$$

$$= \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = E_{1,3}$$

Exercise $[E_{i,j}, E_{l,k}] = I$, where $j \neq l$

Proof $E_{i,j}$ is operating from left on $E_{l,k}$ by addition of row j to row i, so, the product matrix, $(a_{n,m} = E_{i,j} \cdot E_{l,k})$ has 1 on the main diagonal and in $a_{l,k}, a_{i,j}$

 $E_{i,j}^{-1}$ is operating from left on $E_{l,k}^{-1}$ by subtraction of row j from row i, so, the product matrix, $(b_{n,m} = E_{i,j}^{-1} \cdot E_{l,k}^{-1})$ has 1 on the main diagonal, and -1 in $b_{l,k}, b_{i,j}$

We can see that multiplying $(a_{n,m})_i \cdot (b_{n,m})_j$ yields $c_{i,j} = a_{i,i} \cdot b_{i,j} + a_{i,j} \cdot b_{j,j} = 1 \cdot -1 + 1 \cdot 1 = 1 - 1 = 0$

And, we can see that multiplying $(a_{n,m})_l \cdot (b_{n,m})_k$ yields $c_{l,k} = a_{l,l} \cdot b_{l,k} + a_{l,k} \cdot b_{k,k} = 1 \cdot -1 + 1 \cdot 1 = 1 - 1 = 0$

For example, n = 4,

$$E_{1,2} \cdot E_{3,4} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$E_{1,2}^{-1} \cdot E_{3,4}^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$[E_{1,2} \cdot E_{3,4}] = E_{1,2} \cdot E_{3,4} \cdot E_{1,2}^{-1} \cdot E_{3,4}^{-1} =$$

$$= \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = I$$

Conclusion

$$\begin{aligned} [E_{i,j}, [E_{j,k}, E_{k,l}]] &= [E_{i,j}, E_{j,l}] = E_{i,l} \\ [E_{i,j}, [E_{j,k}, E_{m,l}]], & m \neq k = [E_{i,l}, I] = I \\ [E_{i,m}, [E_{j,k}, E_{k,l}]], & m \neq j = [E_{i,m}, E_{j,l}] = I \end{aligned}$$

$$\Rightarrow [E_{i_1,i_2},[E_{i_3,i_4},...[E_{i_{n-2},i_{n-1}},E_{i_{n-1},i_n}]] = \begin{cases} E_{i_1,i_n}, & i_{2k} = i_{2k+1}, \forall 1 \leq k \leq \frac{n}{2} - 1 \\ I, & \text{otherwise} \end{cases}$$

Exercise

$$\#\{E_{i,j} \in M_n(\mathbb{Z})\}_{i < j} = \binom{n}{2}$$

Proof

 $(a_{i,j} = E_{i,j})$. We need to count the options for 1 above the main diagonal. $a_{l,l} = 1, \forall 1 \leq l \leq n$, so, if i = l, we have n - l = n - i options to choose the column index j.

So, the total number of options for i, j is $\sum_{k=1}^{n-1} = \frac{(1+n-1)\cdot(n-1)}{2} = \frac{n\cdot(n-1)}{2} = \binom{n}{2}$

This means that we have $\binom{n}{2}^2$ commutators of the form $[E_{i,j}, E_{l,k}]$.

Exercise

$$\#\{[E_{i,j}, E_{l,k}] \neq I \in M_n(\mathbb{Z})\}_{i < j} = 2 \cdot \binom{n}{3}$$

Proof

As shown above, $[E_{i,j}, E_{l,k}] \neq I \Leftrightarrow j = l$

Which means we're counting all the commutators of the form $[E_{i,j}, E_{j,k}]$. So, the count of such commutators is based on the number of options to choose

ordered triples $\{i, j, k\}$ out of the ordered set $[n] = \{1, 2, ..., n\}$, which is $\binom{n}{3}$ But, as already shown above, $[E_{l,k}, E_{i,j}] = [E_{i,j}, E_{l,k}]^{-1}$, so, for each triple $\{i, j, k\}$, we have two commutators, $[E_{i,j}, E_{j,k}]$ and its inverse, which sum up to $\binom{n}{3}$ pairs of commutators.

For example, n = 5,

$$(a_{l,k}) = E_{i,j} = \begin{pmatrix} 1 & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ 0 & 1 & a_{2,3} & a_{2,4} & a_{2,5} \\ 0 & 0 & 1 & a_{3,4} & a_{3,5} \\ 0 & 0 & 0 & 1 & a_{4,5} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Where $a_{i,j} = 1$, and all other $a_{l,k} = 0$

The number of options for choosing i, j, in this case, are 1+2+3+4=10=

so, we have $10^2 = 100$ commutators. The number of triples we can choose from $[5] = \{1, 2, 3, 4, 5\}$ is

$$\#\{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\},\{1,4,5\},\{2,3,4\},\{2,3,5\},\{2,4,5\},\{3,4,5\}\} = 10 = \binom{5}{3},$$

so we have 10 commutators that are not the unit matrix, and their inverse, total $20 = 2 \cdot 10 = 2 \cdot {5 \choose 3}$.

Exercise

Given the set of commutators of elementary matrices of the form

$$\{[E_{i,j}, E_{j,k}] \in M_n(\mathbb{Z})\}_{i < j < k},$$

we can divide this set to subsets of the form

$$\{\{[E_{i_1,j_{1,1}},E_{j_{1,1},k_1}],[E_{i_1,j_{1,2}},E_{j_{1,2},k_1}],...,[E_{i_1,j_{1,l_1}},E_{j_{1,l_1},k_1}]\},...,\\\{[E_{i_m,j_{m,1}},E_{j_{m,1},k_1}],...,[E_{i_m,j_{m,l_m}},E_{j_{m,l_m},k_1}]\}\}$$

 $\{[E_{i_m,j_{m,1}},E_{j_{m,1},k_1}],...,[E_{i_m,j_{m,l_m}},E_{j_{m,l_m},k_1}]\}\}$ These subsets are equivalence classes, trivially, since the relation is equality (i.e. $[E_{i_l,j_{l,m_1}}, E_{j_{l,m_1},k_l}] = [E_{i_l,j_{l,m_2}}, E_{j_{l,m_2},k_l}], i_l < j_{l,m_1}, j_{l,m_2} < k_l).$

Fix $i, k, 1 \le i \le n-1, 3$ leq $k \le n$, then all the triples of the form $\{i, j, k\}, i \le n-1$ $i+1 \le k-1$ are in the same equivalence class,

due to the above equality. So, the number of these equivalence classes is $2 \cdot \binom{n-1}{2}$

Proof

By induction on n. For n = 3, we have only one triple, namely $\{1, 2, 3\}$, so $\binom{3-1}{2} = \binom{2}{2} = 1$

For n+1, we shall observe that if we add one to the upper bound (i.e. $n \rightarrow n' = n + 1$,

then we add one more equivalence class, for each one of the lower bounds of n'-1=n (i.e., the index i).

But we also add a new equivalence class, whose lower bound is i = n + 1 - 2 =n-1=n'-2, which was not in any equivalence class

for n = n' - 1, since we consider only the triples where $i \le n - 2$. So, if we mark m_n as the number of equivalence classes

for n, then we have $m_{n'} = m_{n+1} = m_n + (n-2) + 1 = m_n + n - 1$. But, by the assumption, $m_n = \binom{n-1}{2}$,

so
$$m_{n'} = m_{n+1} = m_n + n - 1 = \binom{n-1}{2} + n - 1 = \frac{(n-1)\cdot(n-2)}{2} + n - 1 = \frac{n^2 - 3n + 2 + 2n - 2}{2} = \frac{n^2 - n}{2} = \frac{n \cdot (n-1)}{2} = \binom{n}{2} = m_{n+1} = m_{n'}$$
, and

we proved the assumption