Spontaneous Quantum Synchronization in GoldCoreX: Emergent Stability via Compressed Orbital Flipping

Eric Ruecker

April 2025

Abstract

This paper presents the discovery of spontaneous quantum synchronization across 50 individually simulated gold atom qubits under realistic physical noise conditions. Utilizing a photon-driven $RX(\pi)$ gate architecture, we demonstrate emergent convergence and phase-locking behavior in a compressed orbital lattice, without classical error correction or cryogenic support. This result suggests a path toward scalable, room-temperature quantum stability through architecture and pulse design alone.

1 Introduction

Modern quantum processors rely heavily on cryogenic infrastructure and complex error correction codes to sustain coherence. In contrast, the GoldCoreX architecture employs gold atoms embedded in a diamond lattice and operates at room temperature using photonic control to flip between compressed 5d and 6s orbitals.

In this study, we simulate a 50-qubit system where each gold atom is subjected to slightly detuned $RX(\pi)$ pulses, realistic decoherence, amplitude drift, and pulse jitter. No classical error correction is applied.

2 Methods

2.1 Simulation Framework

Each qubit is initialized in the ground state $|0\rangle$ and evolved under the Hamiltonian:

$$H = \frac{1}{2}\omega\sigma_x\tag{1}$$

where $\omega = \frac{\Delta E \cdot e}{\hbar}$, with ΔE drawn from a uniform distribution centered at 2.40 eV. Noise effects are introduced:

• Pulse jitter: $\pm 5\%$ time variation

• Amplitude drift: $\pm 2\%$ modulation of ω

- Decoherence: exponential decay factor $e^{-\gamma t}$
- Detection noise: Gaussian $\mathcal{N}(0, \sigma^2)$

No additional correction or refresh operation is applied after evolution.

2.2 Bloch Visualization and Analysis

Each qubit's trajectory is visualized on a Bloch sphere, with final Z-values recorded. Cluster convergence, orbital contraction, and stabilization behavior are observed across all qubits.

3 Results

3.1 Flip Performance

Despite detuning and noise, all 50 qubits completed RX(π) flips with final states clustering near $|1\rangle$. Final Z-values were within the range [-0.9, -0.75] for all qubits.

3.2 Bloch Sphere Synchronization

The Bloch visualization reveals:

- Coherent RX rotations
- No chaotic divergence despite detuning
- $\bullet\,$ Final states contracted and aligned in phase

This behavior indicates an emergent synchrony driven by the combination of compressed orbital control and inherent system symmetry.

3.3 Concurrence Potential

Although explicit entanglement gates were not applied, the synchronized contraction hints at a phase-aligned regime that may support passive entanglement or rapid Bell state formation.

4 Discussion

This result suggests that orbital compression and photon targeting of gold atoms introduces an inherent robustness not seen in superconducting systems.

We propose that this architecture may enable:

- Room-temperature QPU scalability
- Low-overhead memory coherence
- Passive entanglement-ready zones

This flips the paradigm: rather than correcting fragile qubits, we construct robust ones from atomic design principles.

5 Conclusion

The GoldCoreX 50-qubit flip simulation demonstrates the first signs of large-scale Bloch synchronization under realistic conditions using compressed orbital dynamics alone. This opens the door to scalable quantum hardware that is stable by design—without needing cryo or complex QEC systems.

Media and Supplement

- MP4: goldcorex_50qubit_realistic_flip.mp4
- Final Z-values table (Appendix A)
- Source code available on GitHub: https://github.com/EricRuecker/GoldCoreX
- Product line reference: PRODUCT LINEUP 2025.pdf