Automatic Structure Analysis

Stefan Klus and Slaven Peles

2014 TUG, Sandia National Laboratories 28 October 2014

Typical solver requires model equations, Jacobian, and sparsity pattern to be provided by the modeler.

$$W = \begin{bmatrix} \alpha & 0 & -\beta & 0 & 0 \\ 0 & \alpha & 0 & -\beta & 0 \\ \beta \lambda & 0 & \alpha & 0 & \beta x \\ 0 & \beta \lambda & 0 & \alpha & \beta y \\ \beta v & \beta w & \beta x & \beta y & 0 \end{bmatrix}$$

$$W = \alpha \frac{\partial F}{\partial \dot{x}} + \beta \frac{\partial F}{\partial x}$$

Model Equations

Epetra_Vector& f = *outArgs.get_f(); f[0] = -x_dot[0] + x[2]; f[1] = -x_dot[1] + x[3]; f[2] = -x_dot[2] - x[0]*x[4]; f[3] = -x_dot[3] - x[1]*x[4] - 1; f[4] = x[0]*x[2] + x[1]*x[3];

Jacobian

```
int i0[] = \{0, 2\};
int i1[] = {1, 3};
int i2[] = \{0, 2, 4\};
int i3[] = \{1, 3, 4\};
int i4[] = \{0, 1, 2, 3\};
double d0[] = {-alpha, beta};
double d1[] = {-alpha, beta};
double d2[] = {-beta*x[4], -alpha, -beta*x[0]};
double d3[] = {-beta*x[4], -alpha, -beta*x[1]};
double d4[] = \{beta*x[2], beta*x[3],
               beta*x[0], beta*x[1]};
crsW.ReplaceGlobalValues(0, 2, d0, i0);
crsW.ReplaceGlobalValues(1, 2, d1, i1);
crsW.ReplaceGlobalValues(2, 3, d2, i2);
crsW.ReplaceGlobalValues(3, 3, d3, i3);
crsW.ReplaceGlobalValues(4, 4, d4, i4);
```

```
int i0[] = {0, 2};
int i1[] = {1, 3};
int i2[] = {0, 2, 4};
int i3[] = {1, 3, 4};
int i4[] = {0, 1, 2, 3};
W_graph_->InsertGlobalIndices(0, 2, i0);
W_graph_->InsertGlobalIndices(1, 2, i1);
W_graph_->InsertGlobalIndices(2, 3, i2);
W_graph_->InsertGlobalIndices(3, 3, i3);
W_graph_->InsertGlobalIndices(4, 4, i4);
```

Typical solver requires model equations, Jacobian, and sparsity pattern to be provided by the modeler.

$$W = \begin{bmatrix} \alpha & 0 & -\beta & 0 & 0 \\ 0 & \alpha & 0 & -\beta & 0 \\ \beta \lambda & 0 & \alpha & 0 & \beta x \\ 0 & \beta \lambda & 0 & \alpha & \beta y \\ \beta v & \beta w & \beta x & \beta y & 0 \end{bmatrix}$$

$$W = \alpha \frac{\partial F}{\partial \dot{x}} + \beta \frac{\partial F}{\partial x}$$

Model Equations

Epetra_Vector& f = *outArgs.get_f(); f[0] = -x_dot[0] + x[2]; f[1] = -x_dot[1] + x[3]; f[2] = -x_dot[2] - x[0]*x[4]; f[3] = -x_dot[3] - x[1]*x[4] - 1; f[4] = x[0]*x[2] + x[1]*x[3];

Jacobian

```
int i0[] = {0, 2};
int i1[] = {1, 3};

Automatic

Differentiation

(Sacado)

beta*x[0], beta*x[1]};

crsW.ReplaceGlobalValues(0, 2, d0, i0);
crsW.ReplaceGlobalValues(1, 2, d1, i1);
crsW.ReplaceGlobalValues(2, 3, d2, i2);
crsW.ReplaceGlobalValues(3, 3, d3, i3);
```

crsW.ReplaceGlobalValues(4, 4, d4, i4);

```
int i0[] = {0, 2};
int i1[] = {1, 3};
int i2[] = {0, 2, 4};
int i3[] = {1, 3, 4};
int i4[] = {0, 1, 2, 3};
W_graph_->InsertGlobalIndices(0, 2, i0);
W_graph_->InsertGlobalIndices(1, 2, i1);
W_graph_->InsertGlobalIndices(2, 3, i2);
W_graph_->InsertGlobalIndices(3, 3, i3);
W_graph_->InsertGlobalIndices(4, 4, i4);
```

Typical solver requires model equations, Jacobian, and sparsity pattern to be provided by the modeler.

Model Equations

Jacobian

crsW.ReplaceGlobalValues(4, 4, d4, i4);

Typical solver requires model equations, Jacobian, and sparsity pattern to be provided by the modeler.

$$W = \begin{bmatrix} \alpha & 0 & -\beta & 0 & 0 \\ 0 & \alpha & 0 & -\beta & 0 \\ \beta \lambda & 0 & \alpha & 0 & \beta x \\ 0 & \beta \lambda & 0 & \alpha & \beta y \\ \beta v & \beta w & \beta x & \beta y & 0 \end{bmatrix}$$

$$W = \alpha \frac{\partial F}{\partial \dot{x}} + \beta \frac{\partial F}{\partial x}$$

Model Equations

Epetra Vector& f = *outArgs.get f(); f[0] = -x dot[0] + x[2];f[1] = -x dot[1] + x[3];f[2] = -x dot[2] - x[0]*x[4]; $f[3] = -x_{dot}[3] - x[1]*x[4] - 1;$ f[4] = x[0]*x[2] + x[1]*x[3];

Jacobian

crsW.ReplaceGlobal 1ues(2. 3. d2. i2):

crs

crs

```
int i0[] = \{0, 2\};
                           int i1[] = {1, 3};
                                  Automatic
                                                       i0);
                                   Structure
                                                       i1);
                                                       i2);
                                    Analysis
                                                      i3);
                                                      i4);
Sparse Automatic Differentiation
```


Computing Jacobians

Evaluating derivatives of model equations accurately is key for successful simulations.

There are different ways to compute Jacobians:

- Numerical approximation:
 - First-order approximation: $\frac{\partial f}{\partial x_i} = \frac{f(x + h_i e_i) f(x)}{h_i}$
 - Requires n additional function evaluations.
 - Sensitive to choice of h_i .
 - Higher order approximations are more accurate, but also more costly.
- Analytic Jacobian:
 - Implement all derivatives manually.
 - Exact results.
 - Time-consuming and error-prone.
- Automatic differentiation:
 - The Jacobian is computed automatically every time the function f is evaluated.
 - Exact results.
 - Uses different data types (AD double objects), functions have to be rewritten to support automatic differentiation.
 - Computational cost: approximately 5 function evaluations (reverse mode AD).
 - Mature and well designed solutions such as Sacado already exist.

Limitations of Sacado

Example: Memory use of simulation of DC bus with 1000 AC loads.

Automatic sparse structure analysis

Analyze the structure of model equations and automatically create dependency graphs.

- Used to generate sparse Jacobian required for efficient simulations.
- Enables advanced analysis techniques such as index reduction, causalization, diagnostics, etc.
- Additional requirements:
 - Parameter/variable designation not known at compile time.
 - Sparsity pattern not known at compile time.
 - Model can be modified at runtime by the user.

Current Solutions

- Modelica approach: Recompile hard-wired model on the fly whenever user enters changes.
- Extended nodal analysis approach: Create dynamic model that is not hard-wired and that user can easily modify at runtime.

Comparison with Modelica-based approach

Automatic structure analysis implementation

Operator overloading approach similar to Sacado implementation.

Class definition and operators

```
class Variable
public:
    Variable();
    explicit Variable(double value);
    Variable(double value, size t variableNumber);
    Variable(const Variable& v);
    ~Variable();
    // =
    Variable& operator=(const double& rhs);
    Variable& operator=(const Variable& rhs);
    // +=
    Variable& operator+=(const double& rhs);
    Variable& operator+=(const Variable& rhs);
    Variable& operator-=(const double& rhs);
    Variable& operator-=(const Variable& rhs);
    // *=
    Variable& operator*=(const double& rhs);
    Variable& operator*=(const Variable& rhs);
    Variable& operator/=(const double& rhs);
    Variable& operator/=(const Variable& rhs);
    // ...
private:
    double value ;
    size t variableNumber ;
    bool isFixed_;
    mutable DependencyMap* dependencies ;
};
```

Mathematical functions

```
// math functions
#define DEFINE FUN 1(fun)
    Variable fun(const Variable& x);
DEFINE FUN 1(sin)
DEFINE_FUN_1(cos)
DEFINE_FUN_1(tan)
DEFINE FUN 1(acos)
DEFINE FUN 1(asin)
DEFINE FUN 1(atan)
DEFINE_FUN_1(cosh)
DEFINE_FUN_1(sinh)
DEFINE_FUN_1(tanh)
DEFINE FUN 1(exp)
DEFINE FUN 1(log)
DEFINE_FUN_1(log10)
DEFINE_FUN_1(sqrt)
DEFINE_FUN_1(abs)
#undef DEFINE FUN 1
#define DEFINE FUN 2(fun)
    Variable fun(const Variable& x, const Variable& y);
    Variable fun(const Variable& x, double y);
    Variable fun(double x,
                                    const Variable& v);
DEFINE_FUN_2(pow)
DEFINE_FUN_2(atan2)
DEFINE FUN 2(min)
DEFINE FUN 2(max)
#undef DEFINE_FUN_2
```

Example

```
void residualFunction(VariableVector& f,
                      VariableVector& x,
                      VariableVector& x dot)
    f[0] = -x_{0} + x[2];
    f[1] = -x_{dot}[1] + x[3];
   f[2] = -x_{dot}[2] - x[0]*x[4];
    f[3] = -x_{dot}[3] - x[1]*x[4] - 1;
    f[4] = x[0]*x[2] + x[1]*x[3];
int main()
    const size t n = 5;
    StdVector<Variable> x(n), x_dot(n), f(n);
    for (size_t i = 0; i < n; ++i)</pre>
        x[i].setVariableNumber(i);
        x dot[i].setVariableNumber(i);
    residualFunction(f, x, x dot);
    printIncidenceMatrix(f);
```

Result

```
A = [1 0 1 0 0;
0 1 0 1 0;
1 0 1 0 1;
0 1 0 1 1;
1 1 1 1 0];
```


Automatic Jacobian computation

Dense vs. block sparse vs. sparse.

- Sacado could be used to compute dense Jacobians on a component-by-component basis. This results in a "block sparse" Jacobians.
- For large components, the overhead can be significant and will slow down the solver.
- Sparse Jacobians maximize utilization of state-of-theart solvers in NOX and improve simulation speed.

Automatic Jacobian computation

Dense vs. block sparse vs. sparse.

- Sacado could be used to compute dense Jacobians on a component-by-component basis. This results in a "block sparse" Jacobians.
- For large components, the overhead can be significant and will slow down the solver.
- Sparse Jacobians maximize utilization of state-of-theart solvers in NOX and improve simulation speed.

Automatic Jacobian computation

Dense vs. block sparse vs. sparse.

- Sacado could be used to compute dense Jacobians on a component-by-component basis. This results in a "block sparse" Jacobians.
- For large components, the overhead can be significant and will slow down the solver.
- Sparse Jacobians maximize utilization of state-of-theart solvers in NOX and improve simulation speed.

Capability demonstration

Automatic Jacobian computation and simulation of a vapor compression system.

Problem Size

1298 Residual equations

15 Finite elements in each evaporator model

- Accuracy of Jacobian computation verified against dense numerical Jacobian (1st order finite difference).
- Preliminary scaling results show smaller overhead than for a block sparse Jacobian computation.
- All model configurations such as parameter and variable designation done at *runtime*.
- Redundant vapor compression system used as a test case.

Performance comparison with dense method

Open questions and next steps

- For the computation of sparse Jacobians using automatic differentiation, the two data types *Variable* and Sacado's *DoubleAD* should be combined.
- The Variable class does not require any other files or libraries (except for boost::foreach, which can be replaced) and could be easily integrated.
- Code not optimized. More profiling required to further improve performance scaling.
- Physics based models need to support automatic differentiation. Some practices used in legacy codes need to be revised for this approach to work.
 - How to incorporate look-up tables?
 - How can conditional statements be handled if different branches depend on different variables?
 - Currently, dependencies for different branches are added manually.
 - This process should be automated, i.e. equations should be written in such a way that dependencies are tracked automatically.
 - How to handle (eliminate?) embedded solvers in component models?
- Epetra does not support DoubleAD vectors or matrices, that means that entries need to be copied. This introduces additional overhead. Tpetra?

