Analyzing the Impact of Car Features on Price and Profitability

Project Description: This data analysis project focuses on assisting a car manufacturer in optimizing pricing and product development decisions to maximize profitability and meet consumer demand. Using the "Car Features and MSRP" dataset, it aims to analyze car features, market categories, and pricing relationships. The project involves data cleaning, preprocessing, and advanced Excel skills to answer key questions. Insights from this analysis will enable the manufacturer to adapt to changing consumer preferences, enhance competitiveness, and improve profitability in the dynamic automotive industry.

Approach: The following steps have been implemented to analyze the dataset:

1) The first step involves Data Cleaning.

I used MODE to replace NULL values with Qualitative data and MEDIAN for Quantitative data.

2) Popularity of the Car Model in different Market Categories: A Pivot Table has been created to summarize the number of car models in each market category and their corresponding popularity scores. Then, a combo chart has been created to visualize the relationship.

	Α	В	С
1	Row Labels	▼ Sum of Popularity	Count of Model
2	Crossover	1715242	1110
3	Crossover,Diesel	6111	7
4	Crossover, Exotic, Luxury, High-Performance	238	1
5	Crossover, Exotic, Luxury, Performance	238	1
6	Crossover,Factory Tuner,Luxury,High-Performance	47410	26
7	Crossover, Factory Tuner, Luxury, Performance	13037	5
8	Crossover,Factory Tuner,Performance	840	4
9	Crossover,Flex Fuel	132720	64
10	Crossover,Flex Fuel,Luxury	11732	10
11	Crossover,Flex Fuel,Luxury,Performance	9744	6
12	Crossover, Flex Fuel, Performance	33942	6
13	Crossover, Hatchback	120650	72
14	Crossover, Hatchback, Factory Tuner, Performance	12054	6
15	Crossover, Hatchback, Luxury	1428	7
16	Crossover, Hatchback, Performance	12054	6
17	Crossover, Hybrid	107662	42
18	Crossover,Luxury	362665	410
19	Crossover,Luxury,Diesel	73080	34
20	Crossover,Luxury,High-Performance	9335	9
21	Crossover,Luxury,Hybrid	15142	24
22	Crossover,Luxury,Performance	151968	113
23	Crossover,Luxury,Performance,Hybrid	7832	2
24	Crossover,Performance	178431	69
25	Diesel	145396	84
26	Diesel,Luxury	116025	51
27	Exotic,Factory Tuner,High-Performance	21974	21
28	Exotic,Factory Tuner,Luxury,High-Performance	26912	52
29	Exotic,Factory Tuner,Luxury,Performance	1560	3
30	Exotic,Flex Fuel,Factory Tuner,Luxury,High-Performanc	e 6760	13
31	Exotic,Flex Fuel,Luxury,High-Performance	5720	11
32	Exotic, High-Performance	331818	261
33	Exotic,Luxury	1352	12
34	Exotic,Luxury,High-Performance	36899	79
35	Exotic,Luxury,High-Performance,Hybrid	204	1
36	Exotic,Luxury,Performance	7813	36

A	В	С			
36 Exotic, Luxury, Performance	7813	36			
Exotic,Performance 13910					
Factory Tuner, High-Performance 205790					
9 Factory Tuner,Luxury 1234					
40 Factory Tuner, Luxury, High-Performance	458674	215			
41 Factory Tuner, Luxury, Performance	43816	31			
42 Factory Tuner, Performance	156004	92			
43 Flex Fuel	1933488	872			
44 Flex Fuel,Diesel	90512	16			
45 Flex Fuel, Factory Tuner, Luxury, High-Performance	258	1			
46 Flex Fuel, Hybrid	310	2			
47 Flex Fuel,Luxury	29115	39			
48 Flex Fuel,Luxury,High-Performance	29004	33			
49 Flex Fuel,Luxury,Performance	38642	28			
50 Flex Fuel,Performance	146201	87			
51 Flex Fuel,Performance,Hybrid	310	2			
52 Hatchback	845393	641			
53 Hatchback, Diesel	12222	14			
54 Hatchback,Factory Tuner,High-Performance	15667	13			
55 Hatchback,Factory Tuner,Luxury,Performance	7982	9			
56 Hatchback,Factory Tuner,Performance	47499	22			
57 Hatchback,Flex Fuel	39599	7			
58 Hatchback, Hybrid	152730	72			
59 Hatchback,Luxury	63457	46			
60 Hatchback,Luxury,Hybrid	1362	3			
61 Hatchback,Luxury,Performance	59513	38			
62 Hatchback,Performance	261991	252			
63 High-Performance	362468	199			
64 Hybrid	258985	123			
65 Luxury	942772	855			
66 Luxury, High-Performance	557118	334			
67 Luxury, High-Performance, Hybrid	6826	12			
68 Luxury,Hybrid	35029	F2			
69 Luxury,Performance	869930	Vertical (
70 Luxury,Performance,Hybrid	25665	11			
71 N/A	6274920	3742			
72 Performance	810673	601			
73 Performance,Hybrid	155	1			
74 Grand Total	18525212	11914			

3) Relationship between Car's Engine Power and Price: To understand this, a scatter plot has been created and a trendline is added for better visualization purposes.

4) Relationship between Car Features and Price Level: To understand this, I have performed regression analysis to understand the importance of each car feature on the price level and further created a bar chart between each variable's coefficient to visualize their relative importance.

	. <u>-</u>	-	<u>-</u>		<u>-</u>			
1 SUMMARY OUTPUT for Engine HP								
2								
3 Regression Statistics								
4 Multiple R	0.650095344							
5 R Square	0.422623957							
6 Adjusted R Square	0.422575486							
7 Standard Error	45675.97852							
8 Observations	11914							
9								
10 ANOVA								
11	df	SS	MS	F	Significance F			
12 Regression	1	1.8191E+13	1.8191E+13	8719.26819	0			
13 Residual	11912	2.48519E+13	2086295014					
14 Total	11913	4.30429E+13						
15								
16	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0
17 Intercept	-47080.0158	1027.962929	-45.799332	0		-45065.041	-49094.9908	
18 Engine HP	353.6102858	3.786909018	93.3770218		346.1873262	361.033245		361.0332
	333.0102838	3.780909018	93.3770218	0	340.18/3202	301.033243	340.18/3202	301.0332
19								
20								
21 SUMMARY OUTPUT for Engine Cylinders								
22								
23 Regression Statistics								
24 Multiple R	0.526274107							
25 R Square	0.276964436							
26 Adjusted R Square	0.276903738							
27 Standard Error	51113.81652							
28 Observations	11914							
29								
30 ANOVA								
31	df	SS	MS	F	Significance F			
32 Regression	1	1.19214E+13	1.1921E+13	4562.98491	0			
33 Residual	11912		2612622239					
34 Total	11913	4.30429E+13						
35								
36	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0
37 Intercept	-58048.9261	1533.555224	-37.852518	3.563E-296	-61054.9446	-55042.908	-61054.9446	-55042.90
38 Engine Cylinders	17568.96241	260.0887681	67.5498698	0	17059.14599	18078.7788	17059.14599	18078.77
39								
40 SUMMARY OUTPUT for No. of Doors								
41								
42 Regression Statistics								
43 Multiple R	0.128626626							
44 R Square	0.016544809							
45 Adjusted R Square	0.016462249							
46 Standard Error	59612.28492							
47 Observations	11914							
48								
49 ANOVA								
50	df	SS	MS	F	Significance F			
51 Regression	1	7.12137E+11	7.1214E+11	200.397298	3.96943E-45			
52 Residual	11912		3553624513					
53 Total	11913	4.30429E+13						
54	22320							
55	Coofficient	Standard Error	t Stat	P-value	Lower 95%	Unna-OF9	Lawer OF OC	Hone- OF
	Coefficients					Upper 95%	Lower 95.0%	Upper 95.0
56 Intercept	70616.70992	2189.961808	32.2456354		66324.02748	74909.3924		
57 Number of Doors	-8741.64247	617.5144279	-14.156175	3.9694E-45	-9952.0715	-7531.2134	-9952.0715	-/531.213

SUMMARY OUTPUT for Highway MPG								
Regression Statistics								
Multiple R	0.160042679							
R Square	0.025613659							
Adjusted R Square	0.02553186							
Standard Error	59336.79348							
Observations	11914							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	1.10249E+12	1.1025E+12	313.13032	3.47759E-69			
Residual	11912	4.19404E+13	3520855061					
Total	11913	4.30429E+13						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	69507.42705	1721.963252	40.3652209		66132.09813		66132.09813	72882.756
highway MPG	-1085.41364	61.3384385	-17.695489	3.4776E-69		-965.1803	-1205.64699	-965.180297
SUMMARY OUTPUT for City MPG								
Regression Statistics								
Multiple R	0.157675722							
R Square	0.024861633							
Adjusted R Square	0.024779772							
Standard Error	59359.68696							
Observations	11914							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	1.07012E+12	1.0701E+12	303.702313	3.49385E-67			
Residual	11912	4.19728E+13	3523572436					
Total	11913	4.30429E+13						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	61403.70291	1312.071577	46.7990497	0	58831.82855	63975.5773	58831.82855	63975.5773
city mpg	-1054.51259	60.51007904	-17.427057	3.4939E-67	-1173.12222	-935.90296	-1173.12222	-935.902965
SUMMARY OUTPUT for Popularity								
Regression Statistics								
Multiple R	0.048476232							
R Square	0.002349945							
Adjusted R Square	0.002349943							
Standard Error	60040.95554							
Observations	11914							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	1.01148E+11	1.0115E+11	28.0584821	1.19801E-07			
Residual	11912		3604916343					
Total	11913	4.30429E+13						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	43737.07584	809.0095601	54.0624957	0	42151.28511	45322.8666	42151.28511	45322.8666
Popularity	-2.02091207	0.381518263	-5.2970258	1.198E-07	-2.76875012	-1.273074	-2.76875012	-1.27307403

5) Average price of cars across different manufacturers: To understand this, I have used a Pivot Table and a Bar Chart between both variables for visualization purposes.

Row Labels	Average of MSRP
Acura	34887.5873
Alfa Romeo	61600
Aston Martin	197910.3763
Audi	53452.1128
Bentley	247169.3243
BMW	61546.7634
Bugatti	1757223.66
Buick	28206.61224
Cadillac	56231.31738
Chevrolet	28350.3855
Chrysler	26722.9625
Dodge	22390.0591
Ferrari	238218.840
FIAT	22670.24194
Ford	27399.26674
Genesis	46616.6666
GMC	30493.2990
Honda	26674.34070
HUMMER	36464.41170
Hyundai	24597.0363
Infiniti	42394.21212
Kia	25310.1731
Lamborghini	331567.307
Land Rover	67823.21678
Lexus	47549.0693
Lincoln	42839.8292
Lotus	69188.2758
Maserati	114207.7069
Maybach	546221.87
Mazda	20039.3829
McLaren	23980
Mercedes-Ben	
Mitsubishi	21240.5352
Nissan	28583.4319
Oldsmobile	11542.54
Plymouth	3122.902439
Pontiac	19321.54839
Porsche	101622.397
Rolls-Royce	351130.6452
Saab	27413.5045
Scion	19932.5
Spyker	213323.333
Subaru	24827.5039
Suzuki	17907.2079
Tesla	85255.5555
Toyota	29030.01609
Volkswagen	28102.38072
Volvo	28541.16014
Grand Total	40594.7370

6) Relationship between Fuel Efficiency and No. of Cylinders used: A scatter plot has been created for visualization purposes and a trendline is added to determine the slope. Further, correlation coefficients between the variables are determined to quantify the strength.

Formula:

=CORREL(Car_data!F2:F11915,Car_data!M2:M11915)

Result:

- 7) To understand these further relations, a dashboard has been created.
 - Distribution of car prices by their Body and Style
 - Body Style and their MSRP
 - Different features and their MSRP
 - Efficiency of cars with different models
 - Distribution of car's HP, MPG, and Price across different brands

Tech-Stack Used: For this project, I have used MS Excel (2019 version) due to its user-friendly interface and my expertise in it.

Insights:

- The maximum number of cars do not belong to any such market category and the popularity of these cars is the highest.
- 42.26% variance of the MSRP can be explained by Engine HP indicating a moderate correlation between these variables.
- A car's Engine HP has the highest relation with its MSRP as compared to other variables.
- The highest average MSRP is observed in "Bugatti" with up to \$1757223.67 and the lowest average MSRP is observed in "Plymouth" with up to \$3122.90.
- There is no predictable relationship found between Highway MPG and the Number of Cylinders used.
- To get further insights, Filters of each chart on the Dashboard can be used to get the required insights.

Result: This project helped me to learn and implement various concepts of Advanced Statistics. The dataset has considered a few of the factors used in determining the price and further market research will be helpful.

Link:

Car data.xlsx