Tweets Sentiment Analysis

Kuo-Wei Ho¹, Hao-Chien Wang²

¹NTUEE

²NTUPhys

Data Science Programing, July 2019

Table of Contents

- Problem
- 2 Results
- Key tools
- 4 Steps
- 5 Difficulties encountered

Problem

Given a set of data containing 1,600,000 tweets and the sentiment of each tweets. Create a model that can analyze sentiment of new tweets.

Table: Data example

sentiment	Post ID	User ID	tweets
0	1467814192	Ljelli3166	blagh class at 8 tomorrow
0	1467821455	CiaraRenee	I need a hug
4	1677796507	FoodAllergyBuzz	Ootibml Thx for the tweet!
4	1677796519	lakido	SunshineI LOVE this weather!!!

0: Negative

4: Positive

Data: https://www.kaggle.com/kazanova/sentiment140

Github link: https://github.com/b07901135/2019dsp-summer-project

title

Key Tools

- Vectorizing text: GloVe (Global Vectors for Word Representation by Standford University.)
- Neural network: RNN (Recurrent Neural Network)

Steps: Overview

- Olean the data: remove non-UTF8 symbols, numbers and URLs.
- Combine all tweets into one string and tokenize.
- Feed the tokens to GloVe to generate word vectors.
- tokenize all tweets and search each words in the vectors to transform it into a list of matrices.
- Train RNN with the list of word vectors.

Steps: Overview

CHART (1)

Steps: Data Cleaning and Vectorization

- Replace URLs as "url"
- Replace name tags (e.g. @allen1234) as "names"
- Remove other non-UTF8 characters (stri_enc_toutf8() doesn't help)
- Combine tweets into a string, tokenize and remove stopwords.
- Generate TCM, feed it to the neural network to fit the model.
- Generate word vectors (Dim = 200).

Table: Word vectors

"peanuts"	-0.55638	0.04843	-0.14483	-0.47563	
"permission"	0.15835	0.06962	0.04398	-0.27275	
•					
"beast"	-0.20607	0.16818	-0.17708	-0.26557	
"eva"	0.32598	0.04554	-0.72075	-0.04571	
"pounding"	0.67231	0.00862	-0.07067	-0.15407	

Steps: Tweets Vectorization

- Discard data other than sentiment and tweets text
- Tokenize tweets and lookup the tokens in the word vectors.
- Discard tweets containing more than 30 tokens so that the matrices will not contain too much zeros.
- Due to the limitation of RAM size, we are only able to use 50,000 tweets data.

Table: Data manipulation

	sentiment	tweets			
•	0	blagh class at 8 tomorrow			
	0	I need a hug		=	>
	4	@otibml Thx for the tweet!			
	4	Sunshine! I LOVE thi	ather!!!		
sentiment		tweets		sentiment	tweets
0	blagh class at num tomorrow			0	$\mathbf{A}_{30\times20}$
0	I need a hug		\Rightarrow	0	$\mathbf{B}_{30 \times 20}$
4	name Thx for the tweet			4	$\mathbf{C}_{30 \times 20}$
4	Sunshine! I LOVE this weather!!!			4	$\mathbf{D}_{30 \times 20}$

Steps: RNN Fitting

Difficulties Encountered

- Hardware limitations (Ram size, CPU/GPU speed): Kill X session, gc()/remove()
- Package problems (Tensorflow)
- Oarelessness on manipulating data, leading to incorrect results.
- Large data size causing difficulties checking results and big waste of time.

Dark Magic Functions

- save()/load()
- pbapply
- gc()
- rm()
- abind()