Table of Contents

4.7 (a) and (b)
Read the image
Determine image size and calculate padded image size
Construct kernel (frequency domain) to be used for filtering
Take DFT of the image with padding specified by P and Q
Filter in frequency domain and isolate real components only
Crop Image to remove padding
Frequency Domain Unsharp Masking (a)
Frequency Domain Highboost filtering
Plotting
Some Commentary on 4.7
%Assignment 2 by Nikeet Pandit
%GS/MATH 6920 Harmonic Analysis and Image Processing
% Question List %
<pre>% 4.7a) Read in "blurry_moon" and sharpen using unsharp masking in % FREQUENCY DOMAIN %</pre>
<pre>% 4.7b) Improve sharpness using highboost filtering %</pre>
% Question List %

4.7 (a) and (b)

close all; clearvars

Read the image

```
Im = imread("blurry_moon.tif");
```

Determine image size and calculate padded image size

```
[M, N] = size(Im); P = M*2; Q = N*2;
```

Construct kernel (frequency domain) to be used for filtering

```
D0 = 10; %cut off frequency
H = kernel_construct(D0,P,Q,'Gaussian'); %function is uploaded to GitHub
```

Take DFT of the image with padding specified by P and Q

```
Im_DFT = fft2((Im),P,Q);
```

Filter in frequency domain and isolate real components only

```
Im_Filter = real(ifft2(H.*Im_DFT));
```

Crop Image to remove padding

```
Im Filter = Im Filter(1:M, 1:N);
```

Frequency Domain Unsharp Masking (a)

```
mask = double(Im) - Im_Filter;
k = 1;
G_unsharp = (1 + k*(1-H)).*Im_DFT; %Expression in frequency domain
g_unsharp = real(ifft2(G_unsharp)); %Converting back to spatial domain
```

Frequency Domain Highboost filtering

```
 k = 1.5; \\ G_highboost = (1 + k*(1-H)).*Im_DFT; \\ \&Expression in frequency domain \\ g_highboost = real(ifft2(G_highboost)); \\ \&Converting back to spatial domain \\ \&Expression in frequency domain \\ \&Expressio
```

Plotting

```
figure(1);
subplot(2,2,1);
h = surf(fftshift(H)); title('Centred Gaussian Transfer Func');
set(h,'LineStyle','none');
subplot(2,2,2);
imshow(Im); title('Original Image');
subplot(2,2,3);
imshow(uint8(Im_Filter)); title('Blurred Image');
subplot(2,2,4);
imshow(uint8(mask)); title('Filter Mask');

figure(2);
subplot(1,2,1); imshow(uint8(g_unsharp(1:M,1:N)),[]); title('Unsharp Masking');
subplot(1,2,2); imshow(uint8(g_highboost(1:M,1:N)),[]); title('Highboost Filter');
```

Centred Gaussian Transfer Func

Original Image

Blurred Image

Filter Mask

Unsharp Masking

Highboost Filter

Some Commentary on 4.7

The effect and improved sharpeness is readily apprent in high-boost filtering. Clearly, both unsharp masking and high-boost filtering are sharpened with respect to the original image, where the high frequency edge components of the images are enhanced.

Published with MATLAB® R2022a