Санкт-Петербургский Политехнический университет Петра Великого Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчет по лабораторной работе №2

Дисциплина: Вычислительная математика

Вариант: 13

Выполнил		
студент гр. 3530901/90003		Руднев А.К.
	(подпись)	
Преподаватель		Цыган В.Н.
	(подпись)	
	«»	2021 г.

Условия задачи (вариант 18):

(p-3	-4	-4	7	2	3	8	7
0	-15	-1	5	-3	6	6	-6
-4	2	-16	7	0	8	-7	6
0	8	-5	-11	1	0	4	5
8	6	-8	4	27	-7	-1	5
-4	-2	1	2	-8	10	7	0
0	-1	5	2	-8	2	-2	0
0	-8	-7	3	-7	-4	-8	5

Рисунок 1 – Матрица, зависящая от р

Для матриц, зависящих от параметра p (p= 1.0, 0.1, 0.01, 0.0001, 0.000001), используя программы DECOMP и SOLVE, исследовать связь числа обусловленности ($cond_c$) с нормой матрицы невязки R=E-A- 1A .

Решение:

Задание будет выполняться на языке C++ при помощи программного обеспечения CLion.

- 1) Создам массив pValues, который включает в себя все 5 значений параметра р. Чтобы пройти по всем значениям параметра р, основное решение будет помещено в цикл:
- 2) Создам переменные, которые будут необходимы в работе, а также введу матрицу, заданную условием.
- 3) С помощью подпрограммы DECOMP получу LU разложение матрицы A.
- 4) С помощью подпрограммы SOLVE будем N раз решаем уравнение $Ax_k = e_k$, где e_k и x_k k-ые столбцы единичной и искомой обратной матрицы.
- 5) Транспонируем полученную матрицу и получаем обратную А-1
- 6) Вычисляем матрицу $R = E A^{-1}A$: сначала вычисляем произведение $M = A^{(-1)} * A$, потом R = E M
- 7) Вычисляем норму матрицы

2. Листинг:

```
double A_ob_tr[8][8]; //Транспонированная матрица A_ob
double M[8][8]; // M = A*A^(-1)
double R[8][8]; //Матрица невязки R = E - A*A^(-1)
```

```
//R = E - M
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++)
        R[i][j] = E[i][j] - M[i][j];
}

//Вычисление нормы матрицы
for (auto & i : R){
    temp = 0;
    for (double j : i){
        temp += fabs(j);
    }

if (temp > max)
    max = temp;

//Вывод нормы матрицы в консоль
std::cout << "Норма матрицы невязки R = " << max << std::endl;

//Вывод нормы матрицы невязки R = " << max << std::endl;
```

3. Результаты работы программы:

На рисунке 1 представлена информация, которая выводится в консоль после запуска программы.

```
Параметр p = 1
Обусловленность матрицы = 1039.25
Норма матрицы невязки R = 3.06422e-14
Параметр p = 0.1
Обусловленность матрицы = 11830.2
Норма матрицы невязки R = 6.18172e-13
Параметр p = 0.01
Обусловленность матрицы = 120580
Норма матрицы невязки R = 5.96856e-12
Параметр p = 0.001
Обусловленность матрицы = 1.20818e+06
Норма матрицы невязки R = 4.41105e-11
Параметр p = 1e-06
Обусловленность матрицы = 1.20844е+09
Норма матрицы невязки R = 6.42613e-08
   Рис. 1 – Результаты работы программы
```

4. Установление связи между числом обусловленности conda и нормой матрицы невязки ${\bf R}={\bf E}-{\bf A}^{\text{-1}}{\bf A}$:

Составлю таблицу на основе полученных данных (таблица 1).

Составлю графики зависимости $cond_A$ от параметра p, а также R от параметра p. (графики представлены на рисунках 2 и 3 соответственно).

Таблица 1 – Полученные данные

P	$cond_A$	R
1	1039.25	3.06422e-14
0.1	11830.2	6.18172e-13
0.01	120580	5.96856e-12
0.001	1.20842E+07	4.41105e-11
0.000001	1.20844E+09	6.42613e-08

Исходя из построенных графиков можно сделать вывод, что при уменьшении параметра р увеличивается значение обусловленности матрицы A, а также по приблизительно такому же графику увеличивается значение нормы матрицы невязки R. Для более подробных выводов построю дополнительные графики с новыми параметрами р, лежащим в интервале [0.000001, 0.000003] с промежутком в 0.0000005.

Таблица 2 – Результаты вычислений

P	$cond_A$	R
0,000010	1208440000	6.42613e-08
0,0000015	805630000	3.11993e-08
0,0000020	604222000	3.58559e-08
0,0000025	483378000	2.79397e-08
0,0000030	402815000	2.32831e-08

На рисунках 4 и 5 представлены новые график, исходя из результатов таблицы 2, полученных для р, лежащим в интервале [0.000001, 0.000003] с промежутком в 0.0000005.

Рис. 4 – Обусловленность матрицы А

Рис. 5 – Норма матрицы невязки R

По рисункам 4 и 5 можно сказать, что график изменения обусловленности матрицы A похож на график нормы матрицы невязки — постепенно уменьшается при увеличении параметра.

Вывод: в ходе выполнения работы был проведен анализ связи обусловленности матрицы A и нормы матрицы невязки R. Исходя из полученных результатов можно сказать, что если происходит увлечении параметра p, то происходит и увлечение значения обусловленности матрицы A, а также значения нормы матрицы R, а при уменьшении параметра p происходит соответственное уменьшение обусловленности и нормы.