Departamento de Matemática, Universidade de Aveiro Matemática Discreta 2024/2025

Folha 0 (revisão de Lógica Proposicional)

- 1. Determine valores de verdade para as variáveis proposicionais p, q e r, para os quais o valor de verdade da fórmula bem formada $(p \lor q \to r) \land p \to (r \to q)$ seja falso.
- 2. Prove que as fórmulas $\neg ((\neg p \land q) \lor (p \land \neg q))$ e $(\neg p \land \neg q) \lor (p \land q)$ são logicamente equivalentes:
 - a) usando uma tabela de verdade;
 - b) usando equivalências lógicas conhecidas.
- 3. Prove as seguintes equivalências lógicas (conhecidas por leis da absorção):
 - a) $p \lor (p \land q) \leftrightarrow p$;
 - b) $p \land (p \lor q) \leftrightarrow p$.
- 4. Sem usar tabelas de verdade mostre que:
 - a) $((p \lor q) \land \neg p) \to q$ é uma tautologia;
 - b) $(\neg(p \rightarrow q)) \land (q \land \neg r)$ é uma contradição;
 - c) $((p \to q) \lor (q \to r)) \to (p \to \neg r)$ é uma contingência.
- 5. Usando tautologias apropriadas, transforme as seguintes fórmulas na forma normal conjuntiva.
 - a) $p \lor (q \land (\neg p));$
 - b) $\neg((\neg p) \land (\neg q));$
 - c) $(p \wedge q) \vee (p \wedge (\neg q))$.
 - d) $(q \land \neg p \land r) \lor (\neg p \land \neg q)$.
- 6. Escreva cada uma das seguintes afirmações na forma "se p então q".
 - a) Chove sempre que o vento sopra de Sul.
 - b) É necessário caminhar 20 quilómetros para chegar ao topo do Everest
 - c) As rosas florirão se estiver calor durante uma semana,

- d) A garantia está ativa só se tiveres comprado o computador há menos de um ano.
- e) Para ser aprovado na disciplina, é suficiente obter 10 valores na nota final.

- 7. Sejam p, q, r variáveis que representam as proposições
 - p: Sou responsável;
 - q: Passo a Matemática Discreta;
 - r: Vou de férias para as Bermudas.

Traduza as afirmações seguintes por meio de fórmulas proposicionais.

a) Se passar a Matemática Discreta, vou de férias para as Bermudas.

b) Para ir de férias para as Bermudas é suficiente que eu seja responsável.

c) Passo a Matemática Discreta só se for responsável,

d) Para passar a Matemática Discreta é necessário que eu seja responsável.

e) Se passar a Matemática Discreta então vou de férias para as Bermudas caso seja

- 8. Escreva a negação das afirmações das alíneas a) e e) do exercício anterior.
- 9. Utilizando o método de resolução, justifique que
 - a) $p, p \rightarrow q \models q$ (regra de inferência "Modus ponens");
 - b) $p \to q$, $\neg q \models \neg p$ ("Modus tollens");
 - c) $p \lor q, p \to r, q \to r \models r$.
- 10. Utilizando o método de resolução, verifique a correção de cada uma das seguintes deduções:
 - a) Chove se e só se levo guarda-chuva. Hoje não levo guarda-chuva. Logo, hoje não chove.
 - b) Chove se levo guarda-chuva. Hoje não levo guarda-chuva. Logo, hoje não chove.
 - c) Se o mordomo cometeu o crime, então ele vai estar nervoso quando interrogado. O mordomo estava nervoso quando interrogado. Logo, o mordomo cometeu o crime.
 - d) r é uma condição suficiente para q. Além disso, verifica-se r ou a negação de p. Logo, se q não for verdadeiro, não se verifica p.
 - e) De $\neg (p \lor q)$ deduz-se $\neg p$.

Algumas soluções

5 a) $p \vee q$; b) $p \vee q$; c) p; d) $\neg p \wedge (\neg q \vee r)$.

7 a) $q \to r$; b) $p \to r$; c) $q \to p$; d) $q \to p$; e) $q \to (p \to r)$.