El cálculo de la inversa de una matriz de 6×6 es una actividad laboriosa. Los siguientes resultados (redondeados a tres cifras decimales) se obtuvieron usando MATLAB:

$$(I-A)^{-1} \begin{pmatrix} 1.234 & 0.014 & 0.007 & 0.064 & 0.006 & 0.017 \\ 0.017 & 1.436 & 0.056 & 0.014 & 0.019 & 0.032 \\ 0.078 & 0.467 & 1.878 & 0.036 & 0.044 & 0.031 \\ 0.752 & 0.133 & 0.101 & 1.741 & 0.065 & 0.123 \\ 0.061 & 0.045 & 0.130 & 0.083 & 1.578 & 0.059 \\ 0.340 & 0.236 & 0.307 & 0.315 & 0.376 & 1.349 \end{pmatrix}$$

Por lo tanto el vector de la salida "ideal" está dado por

$$\mathbf{x} = (I - A)^{-1} \mathbf{e} \simeq \begin{pmatrix} 131\ 033.21 \\ 120\ 458.90 \\ 80\ 680.56 \\ 178\ 732.04 \\ 66\ 929.26 \\ 431\ 562.04 \end{pmatrix}$$

Esto significa que se requería aproximadamente de 131 033 unidades (equivalentes a \$131 033 millones) de productos no metálicos terminados, 120 459 unidades de productos metálicos terminados, 80 681 unidades de productos metálicos básicos, 178 732 unidades de productos no metálicos básicos, 66 929 unidades de energía y 431 562 unidades de servicios, para manejar la economía de Estados Unidos y cumplir con las demandas externas en 1958.

En la sección 1.1 se encontró la primera forma del teorema de resumen (teorema 1.1.1). Ahora se puede mejorar. El siguiente teorema establece que varias afirmaciones sobre la inversa, la unicidad de las soluciones, la equivalencia por renglones y los determinantes son equivalentes. En este momento, se puede probar la equivalencia de los incisos i), ii), iii), iv) y v). La prueba concluirá después de desarrollar cierta teoría básica sobre determinantes (vea el teorema 3.3.4).

Teorema 2.4.7 Teorema de resumen (punto de vista 2)

Sea A una matriz de $n \times n$, por lo que las seis afirmaciones siguientes son equivalentes. Es decir, cada una de ellas implica a las otras cinco (de manera que si se cumple una, todas se cumplen, y si una es falsa, todas son falsas).

- i) A es invertible.
- ii) La única solución al sistema homogéneo Ax = 0 es la solución trivial (x = 0).
- iii) El sistema $A\mathbf{x} = \mathbf{b}$ tiene una solución única para cada vector \mathbf{b} de dimensión n.
- iv) A es equivalente por renglones a la matriz identidad I_n , de $n \times n$; es decir, la forma escalonada reducida por renglones de A es I_n .
- v) La forma escalonada por renglones de A tiene n pivotes.
- vi) det $A \neq 0$ (hasta ahora sólo se ha definido det A si A es una matriz de 2×2).