Προγραμματισμός Σημασιολογικού Ιστού

Eνότητα 5: Resource Description Framework (RDF)

Μ.Στεφανιδάκης

13-3-2016

Τα επίπεδα του Σημασιολογικού Ιστού

RDF: Το κύριο πρότυπο του Σημασιολογικού Ιστού, χρησιμοποιεί αναγνωριστικά URIs

Resource Description Framework (RDF)

- Βασικό πρότυπο του Σημασιολογικού Ιστού
- Αν και λέμε συχνά "η RDF" (υπονοώντας "η γλώσσα RDF")
- Στην πραγματικότητα είναι ένα μοντέλο οργάνωσης δεδομένων (ή γνώσης)
 - Που επιτρέπει να κάνουμε δηλώσεις (statements)
 - σε μορφή τριάδων (triples) (και του αντίστοιχου γράφου (graph))
 - σχετικά με οντότητες (entities)
 - οι οποίες συμβολίζονται με URIs
- Από τα πρώτα πρότυπα του Σημασιολογικού Ιστού (2004)
 - Με μια πρόσφατη επανέκδοση (RDF 1.1, Φεβρουάριος 2014)

Μοντέλο δεδομένων κατά το πρότυπο RDF

- Η RDF προσδιορίζει ένα μοντέλο (αφηρημένη σύνταξη abstract syntax) βασισμένο στις τριάδες, ακριβώς όπως τις έχουμε δει ως τώρα
- υποκείμενο s κατηγόρημα p αντικείμενο ο
 - ως μέρος γράφου με δύο κόμβους (s,o) και μία κατευθυνόμενη ακμή (από το s προς το o)
- οι κόμβοι μπορούν να είναι URIs (IRIs), ανώνυμοι (blank nodes) ή απλές τιμές (literals)

Το κατηγόρημα ως διμελής σχέση

 Το κατηγόρημα p δηλώνει μια ιδιότητα (property), μια διμελή σχέση (binary relation) μεταξύ υποκειμένου s και αντικειμένου ο

URIs, blank nodes και literals

- ► Τα URIs δρουν ως σφαιρικά αναγνωριστικά οντοτήτων
 - Ένα URI δεν πρέπει ποτέ να αναφέρεται σε περισσότερες από μία οντότητα
 - Ένα URI, άπαξ και δημιουργηθεί, δεν πρέπει ποτέ να αλλάξει οντότητα, στην οποία αναφέρεται
 - Αν και δεν είναι υποχρεωτικό, ένα URI καλό θα ήταν να οδηγεί σε κάποιο έγγραφο στο web, με πληροφορία σχετική με την οντότητα του URI
- Οι ανώνυμοι κόμβοι (blank nodes) δεν αναγνωρίζουν οντότητες με ρητό όνομα
 - απλά λένε ότι κάτι (ανώνυμο) έχει τις περιγραφόμενες σχέσεις
- Οι σταθερές literal έχουν εξ'ορισμού τιμές που δεν αλλάζουν
 - Η RDF όμως τους προσδίδει τύπο δεδομένων (datatype)!

Τύποι δεδομένων: γιατί χρειάζονται;

- ► Τι θα απαντήσετε στο ερώτημα: "1" + "2" = ?
 - Σίγουρα 3!
- Η "μηχανή" όμως;
 - Κατά πάσα πιθανότητα: "1" + "2" = "12"
- Οι τύποι δεδομένων προσθέτουν ρητά τη σημασιολογία των "1" και "2"
 - που, ως άνθρωποι, δεν χρειαζόμαστε

RDF Datatypes

- Η RDF προσδίδει τύπο δεδομένων (datatype) στις απλές τιμές (literals)
 - που εμφανίζονται σε θέση αντικειμένου (ο) στις τριάδες
- Ο τύπος δεδομένων συμβολίζεται επίσης με ένα URI
 - συνήθως της μορφής: http://www.w3.org/2001/XMLSchema#xxx
 - xxx είναι ο εκάστοτε τύπος δεδομένων
 - βασίζεται στο πρότυπο XML Schema
 - συντομογραφικά: xsd:xxx

RDF Datatypes (2)

- Η RDF περιγράφει μια σειρά συμβατών τύπων δεδομένων
 - xsd:string, xsd:boolean, xsd:integer, xsd:double, xsd:float,..
 - xsd:date, xsd:time, xsd:dateTime,...
 - K.O.K..
- Η RDF χρησιμοποιεί επίσης το URI
 - http://www.w3.org/1999/02/22-rdf-syntaxns#langString
 - για κείμενο με ένδειξη γλώσσας (π.χ. en, el, el-GR ..)

Literals και Datatypes

- Τι προσδίδει η σύνδεση ενός literal με έναν τύπο δεδομένων;
 - Προσδιορίζει τη μέθοδο χειρισμού της τιμής του literal
 - Πώς το κείμενο του literal (lexical form) θα μετατραπεί στην κατάλληλη τιμή
 - Η μετατροπή προσδιορίζεται από τον τύπο δεδομένων!
- Παράδειγμα: ο τύπος xsd:boolean
 - Διαθέτει δύο τιμές (value space): {true, false}
 - Δέχεται τα εξής strings (lexical space): {"true", "false", "1", "0"}
 - ► Μετατρέπει ως εξής (Lexical-to-value mapping): < "true" \rightarrow true >, < "false" \rightarrow false >, < "1" \rightarrow true >, < "0" \rightarrow false >

Τύποι δεδομένων: πρακτική αντιμετώπιση

- Η RDF δεν απαιτεί από τις εφαρμογές να είναι σε θέση να χειριστούν τύπους δεδομένων
 - Αρκεί να μπορούν να χειριστούν απλά strings!
 - Αν συναντήσετε άγνωστο τύπο, δεν πρέπει να απορρίψετε τα δεδομένα αυτά
 - Φυσικά χάνετε σε σημασιολογική ισχύ
- Μπορείτε να χρησιμοποιήσετε και άλλους τύπους δεδομένων εκτός του XSD
 - Η εφαρμογή σας βέβαια θα πρέπει να τους αναγνωρίζει..

Πηγές RDF και συλλογές γράφων RDF

RDF Source

- Πηγή πληροφορίας RDF, περιέχει συλλογές γράφων RDF σε δεδομένη χρονική στιγμή
- Οι γράφοι (και οι τριάδες) που περιέχει μπορούν να αλλάξουν με την πάροδο του χρόνου

RDF Dataset

- Μια συλλογή γράφων RDF, όπου
- όλοι οι γράφοι εκτός από έναν αναγνωρίζονται με ένα URI (ή blank node) και ονομάζονται επώνυμοι γράφοι (named graphs)
- Ο μοναδικός γράφος χωρίς σύνδεση με κάποιο URI είναι ο γράφος default

Επώνυμοι Γράφοι (Named Graphs)

- ▶ Εισαγωγή στο πρότυπο της RDF 1.1
 - Ένας μηχανισμός για τη διαίρεση των τριάδων RDF σε υποσύνολα
 - Χωρίς καθορισμένη σημασιολογία
 - Η χρήση τους προσδιορίζεται από την εκάστοτε εφαρμογή
- Στην τριάδα RDF προστίθεται ένα τέταρτο μέλος g (URI ή blank node)
 - Έχουμε πλέον μια τετράδα (quad)
- Για τον χωρισμό των τριάδων ανά προέλευση, χρονική στιγμή, προνόμια πρόσβασης κ.ο.κ.
- Και για δηλώσεις επί των τριάδων (reification)

Χώροι ονομάτων RDF

- Η RDF (και το συνοδευτικό RFDS που θα δούμε σε επόμενα) χρησιμοποιούν δικά τους (built-in) λεξιλόγια (vocabularies)
 - Για την "οντολογική" περιγραφή των διαφόρων οντοτήτων
 - Και για μια σειρά πρόσθετων βοηθητικών εννοιών (utilities)
- Οι χώροι ονομάτων για τα λεξιλόγια αυτά είναι
 - http://www.w3.org/1999/02/22-rdf-syntax-ns# (συντομογραφικό πρόθεμα rdf)
 - http://www.w3.org/2000/01/rdf-schema# (συντομογραφικό πρόθεμα rdfs)
- ► Παράδειγμα: rdfs:label
 - Χρησιμοποιείται για να συνδέσει μια ετικέτα αναγνώσιμη από τον άνθρωπο σε μια οντότητα
 - (http://ex.com/A, rdfs:label, "Semantic Web"@en)

Αναπαράσταση δεδομένων RDF

- Η RDF εκτός από το αφηρημένο μοντέλο οργάνωσης, περιγράφει και διάφορες συγκεκριμένες συντάξεις (concrete syntaxes, μορφότυπα αποθήκευσης) των τριάδων σε αρχεία κειμένου
- Το απλούστερο από τα μορφότυπα αυτά ονομάζεται N-Triples
 - Ξεκίνησε ως "η γλώσσα των παραδειγμάτων" της RDF
 - Αλλά πολύ γρήγορα χρησιμοποιήθηκε για μαζική ανταλλαγή δεδομένων RDF
 - Πολύ απλή επεξεργασία, δεν χρειάζονται εξειδικευμένες βιβλιοθήκες
 - Κάθε γραμμή του αρχείου είναι ακριβώς μια τριάδα
 - Σήμερα υποστηρίζει Unicode χαρακτήρες (κωδικοποίηση utf-8)
 - Αρχικά, μόνο ASCII χαρακτήρες: όλοι οι άλλοι χρειάζονταν ειδική κωδικοποίηση

N-Triples: βασική σύνταξη

- Κάθε γραμμή του αρχείου περιέχει ακριβώς μία τριάδα
 - Στη μορφή s p o . (κενά/tab μετά από κάθε ένα s,p,o, στη συνέχεια ακολουθεί τελεία και newline)
 - Στη συνιστώμενη κανονική μορφή: ακριβώς ένα κενό
- ► Τα URIs γράφονται μεταξύ < και >
 - <http://ex.com/A>
 - σε πλήρη μορφή, χωρίς συντομογραφικά προθέματα
- ► Τα literals γράφονται μεταξύ " και "
 - "Semantic Web"
 - Προαιρετικά ακολουθεί ο τύπος δεδομένων ή η γλώσσα

[&]quot;Semantic Web"@en

[&]quot;1.663E-4"^^<http://www.w3.org/2001/XMLSchema#double>

N-Triples: βασική σύνταξη (2)

- ► Οι ανώνυμοι κόμβοι (blank nodes) έχουν πρόθεμα _:
 - ▶ :b1234
 - Μετά το _: ακολουθεί η ετικέτα του ανώνυμου κόμβου
 - Η τελεία δεν μπορεί να είναι στην αρχή ή το τέλος της ετικέτας
 - Το δεν μπορεί να είναι στην αρχή της ετικέτας

Η απλότητα της μορφής N-Triples

- Κάθε γραμμή περιέχει ακριβώς μια τριάδα και είναι αυτοδύναμη
 - Δεν χρειάζεται να αναλύσετε άλλες γραμμές, ούτε να περιμένετε να ολοκληρωθεί η σάρωση του αρχείου για να μάθετε την τριάδα της τρέχουσας γραμμής
 - Με άλλα λόγια: δεν χρειάζεται να κρατάτε μεγάλο μέρος του αρχείου στη μνήμη κατά την ανάλυσή του
 - Βασικό πλεονέκτημα όταν ένα αρχείο περιέχει εκατομμύρια τριάδες!
- Πολύ εύκολη σύνταξη
 - Η ανάλυση των τριάδων μπορεί να γίνει ακόμα και "στο χέρι"
 - Χωρίς πρόσθετες βιβλιοθήκες κώδικα