Exercise 2 - Decision Tree Classifier

-- Requirement

Implement the Binary Decision Tree Classifier with the Car Evaluation Data Set.

Download URL: https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

Fill in the function of the attachment "DecisionTree.py"

--Coding(85%)

- implement _entropy (5%)
- implement feature split(10%)
- implement _build_tree (10%)
- implement fit (5%)
- implement predict (5%)
- implement find leaves (5%)
- implement _error_before_cut (5%)
- Implement compute alpha (10%)
- Implement _find_min_alpha (20%)
- Implement prune(10%)

-- Report(15%)

- 1. Design _feature_split, _build_tree, _find_min_alpha, _prune, and then explain the goal of each fun ction.
- 2. Decision tree before post-pruning accuracy
- 3. Decision tree after post-pruning accuracy
- 4. The effect of different parameters (Ex: prune tree times, max_depth)
- 5. A brief discussion of the results(Ex: After pruning the tree, will the testing accuracy be better, if ye s, why would it be better? if not, why would it be worse?)

- Please upload the zip file, zip file should include

- code_<your_id>.zip
 - your zip file should include
 - code_<your_id>.py
 - car.data
 - code <your id>.pdf (your report)

- Ex: if your student id is 109522026, then you should upload

code_109522026.zip file (which must include code_109522026.py, car.data, code_109522026.pdf)