ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 10: Sampling

William Marsh

Outline

- Aim: Understand the difference between a population and a sample and potential problems of sampling
- Populations, samples and uncertainty
- Statistical inference: estimate & uncertainty
 - Estimation: Maximum likelihood example
 - Sample distribution simulation
- Sample mean and variance
- Central limits theorem

What is a Sample?

Population and Sample

Population size N

- Sample from a population
- Measure the sample (e.g. political preference)
- Statistical inference about population

Types of Sampling

- Random
 - Select people randomly
- Stratified
 - Strata: people with common characteristics (e.g. age range)
 - Sampling from each strata
- Bias
 - Bias is a systematic (cf. random) error
 - Sample bias: sample does not represent population

Chance and Bias

How Biden and Trump are doing in the national polls

Lines represent weighted averages, points represent polls (%)

Source (26/8) https://ig.ft.com/us-election-2020/

Household Survey of Covid-19 (England)

6 week period

(15 July to 25 August)		
	Number	
	testing	Sample size
	positive	
Participants Participants	71	73,176
Tests	79	151,440
Households	68	36,348

- 1. Infections in private households; excludes hospitals, care homes etc
- 2. A small proportion of samples are excluded from this analysis due to missing age, sex or region data
- 3. This table is based on nose and throat swabs taken.

Chance Problem

- Covid-19: 71 out of 73,176
 - Sample rate is 97 in 100,000)
- What is the impact of chance? Could the population rate be e.g.
 - lower: e.g. 80 in 100,000 or
 - higher: e.g. 120 in 100,000?

Chance Problem – II

- What is the impact of chance? Could the population rate be e.g.
 - lower: e.g. 80 in 100,000 or
 - higher: e.g. 120 in 100,000?

Statistical Inference: Two Problems

- Estimate a parameter from a sample
 - The mean and variance
 - A rate (probability in a binomial)
 - A regression coefficient
- Say how certain we can be that the estimate is near the true value (in the population)

Every lecture will have a 'learning reflection' slide

Going Deeper with Python Libraries

How to get a deeper understanding of Python libraries?

Deeper Understanding of Pandas

The Challenge

- Complex libraries
- Starting from examples
 - What does it do?
 - Can I change it?
 - How do I do ... ?
- Top-down learning

Techniques

- Documentation
 - Best for Pandas
- Looking at types
 - What is the type of a column?
- Error messages
- Evaluating subexpressions

Estimates: Problem 1

Possible Approaches (Include)

- Unbiased estimate
 - Equally likely to be too low and too high
- Maximum likelihood
 - Makes probability of data highest

Others

Maximum Likelihood Example

- Bernoulli trial
 - Data: n successes in N flips
 - Parameter: success probability p
- Estimate we have used is $\hat{p} = n / N$
- Likelihood(p) = Pr(Data | p)

$$\mathcal{L}(p) = [\text{Constant}] \, p^n (1-p)^{(N-n)}$$

Note: the probability of any data low

Graph of $\mathcal{L}(p)$ (Bernoulli Trial)

• Can be shown that $\hat{p} = n / N$ is the estimate that maximises the probability of the data

Sampling Distribution

Tackling problem 2: Using simulation

Simulation Concept

Bernoulli trial – find 'p' by sampling

- Set up:
 - Assume population probability p is 1%
 - Repeatedly** take a sample N=300
 - success ~ Binomial(N, p)
 - Estimate \hat{p} (sample rate) by success / N
 - Look at the distribution of the sample rate
 - **repeated 5,000 times

Distribution of \hat{p}

- Means estimate is 1%
- Range is 0.93% to 1.07%

Smaller Sample?

Range of estimate increases

<u>Simulation</u> versus <u>Reality</u>

- Population rate known
- Repeated sampling
- Simulate sample rates

- Sample rate known
- Sample once
- Infer populate rate

We do not get exact results from a sample. We need a way to estimate the uncertainty in the sample results

Different Approaches

- Sampling distribution and confidence intervals
- Computational approaches (bootstrap)
- Bayesian inference
 - calculate Pr(parameter | data)

Quiz

Sample Mean and Variance

Sample and Population Statistics I

- Mean
 - Population mean is unknown: μ
 - Sample mean is calculated: \bar{x}
- \bar{x} is an estimate of μ
 - Unbiased: population mean just as likely to be > or <
 the sample mean

Sample and Population Statistics II

- Standard deviation
 - Population standard deviation is unknown: σ
 - Sample standard deviation is calculated: s
 - s estimates σ
- Sample deviation calculated with (n-1):

Degrees of freedom: n-1 not n

If we have samples 1 to (n-1) and the sample mean then we know that last sample value

Central Limit Theorem

Central Limit Theorem

- Sample a population with mean μ and standard deviation σ
 - If the sample is sufficiently large then
 - the distribution of the sample means will be approximately normally distributed.
- Holds even if the source population is skewed
 - ... provided the sample size is sufficiently large
- We can use the normal distribution to quantify uncertainty when inferring a population mean from the sample mean

How Many Sample?

• In general, standard deviation (breadth) of the distribution of the sample mean is:

Population standard deviation:

 The larger it is, the wider the distribution of the sample mean

 The larger it is, the smaller the distribution of the sample mean

Summary

- Usually measure only a <u>sample</u> of a population
 - Random sampling avoid possible 'sample bias'
- Estimate properties of population (a 'statistic' e.g. a mean) from the sample
- Uncertainty about true value of population statistic
 - Reduces as the sample size increases
 - Proportional to population standard deviation

 We have illustrated the problem: need a practical solution for a single sample