Wydział	Imię i nazwisko 1. 2.			Rok		Grupa	Zespół
PRACOWNIA FIZYCZNA WFiIS AGH	Temat:						Nr ćwiczenia
Data wykonania	Data oddania	Zwrot do popr.	Dat	a oddania	Dat	a zaliczenia	OCENA

Ćwiczenie nr 96: Dozymetria promieniowania γ

Cel ćwiczenia

Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Sprawdzenie prawa osłabienia promieniowania γ .

Zagadnienia kontrolne	Ocena i podpis
1. Przedstaw i omów prawo rozpadu promieniotwórczego.	
2. Rozpad β. Jakie znasz rodzaje rozpadu β, jakie jądro powstaje w wy każdego z nich (wyjaśnij na przykładzie ¹³⁷ Cs)? Na czym polega wychw (wyjaśnij na przykładzie ¹³³ Ba)?	
3. Zdefiniuj pojęcie aktywności źródła promieniowania i podaj jedno Przestaw i zinterpretuj zależność między aktywnością a liczbą j radionuklidu.	
4. Jakie znasz rodzaje promieniowania jonizującego. Zaproponuj jakie os (materiał oraz grubość) powinno się stosować w celu ochrony człow przed tym promieniowaniem.	•
5. Przedstaw prawo osłabienia promieniowania γ w materii – co to współczynnik osłabienia.	jest
6. Omów przyczyny występowania naturalnego tła promieniowania.	
7. Zdefiniuj pojęcie dawki pochłoniętej oraz dawki skutecznej (efektywnej podaj ich jednostki. Do czego służy dozymetr?	() i

1. Układ pomiarowy

Komora pomiarowa (rys. w1), w której znajdują się:

- dozymetr PM-1203,
- źródło promieniowania γ,
- podstawka, na której umieszczane są płytki absorbentu.

Rys. w1. Schemat komory pomiarowej

Tabela w1. Źródła promieniowania γ używane w ćwiczeniu *

Radionuklid	Czas połowicznego rozpadu [lata]	Główne energie promieniowania γ [keV]	Równoważna wartość stałej ekspozycyjnej [cGy m² h-1 GBq-1];
⁶⁰ Co	5,3	1173 1333	8,0·10-3
¹³⁷ Cs	30	662	30,8·10 ⁻³

^{*} Aktywność stosowanych źródeł wynosi około kilkadziesiąt kBq

W ćwiczeniu wykorzystywany jest dozymetr mikroprocesorowy PM–1203 (rys. w2), przeznaczony między innymi do pomiaru mocy dawki skutecznej \dot{E} wyrażonej w $\mu Sv/h$. Jako detektor promieniowania zastosowano licznik Geigera-Müllera. Łączna gęstość powierzchniowa ścianki nad objętością czynną licznika wynosi 1 g/cm³. Czas pomiaru ustawia się automatycznie w przedziale $1 \div 36$ s, np. dla pomiaru naturalnego tła promieniowania (moc dawki około 0,1 $\mu Sv/h$) wynosi 36 s. Jako czas pomiaru rozumie się czas, po jakim należy odczytać wynik pomiaru, pomimo że wartość na wyświetlaczu dozymetru odświeżana jest co około 1 s.

Rys. w2. Dawkomierz PM -1203

Wybrane przyciski i wskaźniki na płycie czołowej dozymetru:

- (1) przycisk "mode", służący do wyboru trybu pracy np. pomiaru mocy dawki,
- (2) wskaźnik, informujący o wyświetlaniu przez dozymetr wartości mocy dawki (μSv/h),
- (3) wskaźnik, informujący o pracy w trybie dozymetru

Moc dawki skutecznej wokół nieosłoniętego źródła promieniowania γ w wykonywanym ćwiczeniu określa wzór, powstały w wyniku przekształcenia wzoru (8):

$$\dot{E} = \frac{E}{t} = \frac{\Gamma_{\rm r} \cdot A}{0.087 \cdot 10^{-7} \cdot r^2} \,, \tag{w1}$$

gdzie:

 Γ_r – tzw. równoważna wartość stałej ekspozycyjnej, charakterystyczna dla danego radionuklidu [cGy m² h-1 GBq-1]; por. Tab. w1,

A – aktywność źródła promieniotwórczego,

t – czas narażenia.

r – odległość między źródłem a miejscem, dla którego obliczamy dawkę,

0,087·10⁻⁷ – stała związana z przeliczaniami wielkości i jednostek, gdy dawka skuteczna wyrażona jest w μSv/h, aktywność w GBq, czas w godzinach, a odległość w centymetrach.

W przedstawionym powyżej wzorze r oznacza rzeczywistą odległość między źródłem a dozymetrem. Jest ona równa sumie odległości odczytywanej z linijki umieszczonej w komorze pomiarowej i odległości r_0 , gdzie r_0 to odległość źródło – detektor, odpowiadająca sytuacji, gdy odległość odczytana na linijce wynosi 0 cm.

2. Wykonanie ćwiczenia

- 1. Zapoznaj się z zasadami pomiaru mocy dawki skutecznej. Jako wynik pomiaru przyjmij wartość odczytaną na wyświetlaczu po 20 ÷ 40 sekundach od rozpoczęcia pomiaru.
- 2. Wyznacz 10-krotnie tło promieniowania na stanowisku pomiarowym, a wyniki wpisz do tabeli 2. Czas pomiaru 40 s. Odczytaj wynik pierwszego pomiaru po 40 s od jego rozpoczęcia, drugiego pomiaru po kolejnych 40 s itd.
- 3. Prowadzący zajęcia umieszcza źródło promieniowania w komorze pomiarowej. Zanotuj, źródło jakiego radionuklidu znajduje się w komorze.
- 4. Wykonaj pomiary zależności mocy dawki skutecznej od odległości źródło dozymetr. Dla każdej odległości, wskazanej w tabeli 3, wykonaj 5 pomiarów, a wyniki wpisz do tej tabeli. Czas pomiaru 20 s.
 - Pamiętaj, że r oznacza rzeczywistą odległość między źródłem a dozymetrem. Jest ona równa sumie odległości odczytywanej z linijki umieszczonej w komorze pomiarowej oraz odległości r_0 .
- 5. Wyznacz zależność osłabienia promieniowania γ od grubości absorbentu, dla jednego materiału, wskazanego przez prowadzącego*:
 - Uwaga: w wykonywanym ćwiczeniu, nieco upraszczając, przyjmujemy, że prawo osłabienia promieniowania γ (wzór 9) można stosować również do mocy dawki skutecznej. Wobec tego, aby stosować ten wzór w ćwiczeniu, natężenie promieniowania I należy zastąpić przez moc dawki skutecznej \dot{E} .
 - a) wybierz 5 ÷ 7 blaszek, następnie umieść je razem w układzie pomiarowym; odległość źródło dozymetr dobierz tak, by była jak najmniejsza, zapisz jej wartość i nie zmieniaj jej w dalszej części ćwiczenia,
 - b) wykonaj 5-krotnie pomiar mocy dawki bez absorbentu i wpisz wyniki do tabeli 5; czas pomiaru 20 s,
 - c) zmierz grubość pierwszej płytki; pomiar wykonaj 3-krotnie, w kilku różnych miejscach płytki, a wyniki wpisz do tabeli 4; przyjmij niepewność wyznaczenia grubości u(d) = 0.2 mm,
 - d) umieść płytkę na podstawce między źródłem a dozymetrem, wykonaj 5-krotnie pomiar mocy dawki i wpisz wyniki do tabeli 5,
 - e) zmierz grubość drugiej płytki, połóż ją na pierwszej płytce, znajdującej się w komorze pomiarowej i wykonaj pomiar mocy dawki,
 - f) powtórz te czynności dla kolejnych płytek.

^{*} Prawo osłabienia promieniowania obowiązuje dla skolimowanej wiązki promieniowania. W niniejszym ćwiczeniu stosowana jest szeroka wiązka, tak więc część ćwiczenia dotycząca absorpcji promieniowania ma charakter poglądowy, a nie ścisły.

3. Wyniki pomiarów

Tabela 2. Tło promieniowania na stanowisku pomiarowym

Tło					
$[\mu Sv/h]$					

Tabela 3. Moc dawki skutecznej [μ Sv/h] dla źródła, r_0 =

Odległość	Odległość		N	lumer pomiai	ru	
na linijce [cm]	Rzeczywista r [cm]	1	2	3	4	5
0						
0,5						
1,0						
1,5						
2,0						
2,5						
3,0						
4,0						
5,0						
6,0						
7,0						
8,0						
9,0						
10,0						
11,0						
12,0						
14,0						

Tabela 4. Grubość płytek, materiał

Grubość płytki		Numer pomiaru		
[mm]	1	2	3	Średnia
d_1				
d_2				
d_3				
d ₄				
d_5				
d_6				
d_7			_	

 $\textbf{Tabela 5.} \ Moc \ dawki \ skutecznej \ [\mu Sv/h] \ dla \ absorbentu \, źródła \ i \ odległości \ źródło - detektor \ \ cm$

Grubość absorbantu [mm]	Numer pomiaru						
Grubość absorbentu [mm]	1	2	3	4	5		
$d = 0^*$							
$d_1 = \dots$							
$d_1 + d_2 = \dots$							
$d_1 + d_2 + d_3 = \dots$							
$d_1 + d_2 + d_3 + d_4 = \dots$							
$d_1 + d_2 + d_3 + d_4 + d_5 = \dots$							
$d_1 + d_2 + d_3 + d_4 + d_5 + d_6 = \dots$							
$d_1 + d_2 + d_3 + d_4 + d_5 + d_6 + d_7 = \dots$							

^{*} bez absorbentu

4. Opracowanie wyników

Zależność mocy dawki skutecznej od odległości źródło – dozymetr

- 1. Wyznacz średnie tło promieniowania na stanowisku pomiarowym tło wynosi $\mu Sv/h$.
- 2. Wpisz do tabeli 6 średnie wartości mocy dawki skutecznej, wyznaczone na podstawie danych zamieszczonych w tabeli 3, a następnie wylicz średnią moc dawki skutecznej po odjęciu tła oraz niepewność tych wartości.
- 3. Wykonaj, na podstawie danych z tabeli 6; wykres zależności mocy dawki od odległości źródło dozymetr; za niepewność pomiaru odległości przyjmij u(r) = 0,2 cm. Do otrzymanych punktów pomiarowych dopasuj zależność $\dot{E} = a/r^2$. Oceń jakość dopasowania tej funkcji do danych pomiarowych; skorzystaj z wartości współczynnika korelacji r. Jakie znaczenie fizyczne ma stała a?

Tabela 6. Zależność mocy dawki skutecznej od odległości źródło - dozymetr

Odległość na linijce [cm]	Odległość rzeczywista r [cm]	Średnia moc dawki skutecznej [μSv/h]	Niepewność standardowa [μSv/h]	Średnia moc dawki skutecznej po odjęciu tła [μSv/h]	Niepewność standardowa [μSv/h]
0				-1	
0,5					
1,0					
1,5					
2,0					
2,5					
3,0					
4,0					
5,0					
6,0					
7,0					
8,0					
9,0					
10,0					
11,0					
12,0					
14,0					

Prawo osłabienia promieniowania

- 4. Wpisz do tabeli 7 średnie wartości mocy dawki skutecznej, wyznaczone na podstawie danych zamieszczonych w tabeli 5, a następnie wylicz średnią moc dawki skutecznej po odjęciu tła oraz niepewność tych wartości.
- 5. Dane zestawione w tabeli 7 wykorzystaj do wyznaczenia, na podstawie wzoru 9, liniowego współczynnika osłabienia μ. Podstaw za *I* średnią moc dawki, a za *x* grubość absorbentu. Skorzystaj z programu "regresja eksponencjalna".

Wartość μ można również wyznaczyć korzystając z programu "regresja linowa"; za x przyjmij grubość absorbentu, a za y logarytm naturalny wartości średniej mocy dawki (odpowiada to formule $\ln I = -\mu x + \ln I_o$).

Uwaga: wyznaczanie wartości μ, osobno dla każdego wiersza w tabeli 7, a następnie wyliczenie średniej wartości μ jest niepoprawne.

Oblicz wartość μ_m

Wyznaczone wartości μ i μ_m oraz ich niepewności umieść w tabeli 8.

Tabela 7. Średnia moc dawki w zależności od grubości absorbentu

Grubość absorbentu - wartość średnia [cm]	Średnia moc dawki skutecznej [μSv/h]	Niepewność standardowa [μSv/h]	Średnia moc dawki skutecznej po odjęciu tła [μSv/h]	Niepewność standardowa [μSv/h]

6. Porównaj uzyskane wartości masowego współczynnika osłabienia μ_m z wartościami przedstawionymi na rys. 1. Wartości energii promieniowania γ emitowanego przez stosowane źródło znajdziesz w tabeli w1; pamiętaj, że 1 MeV = 1000 keV. Za wartość μ_m dla mosiądzu i żelaza można przyjąć z dobrym przybliżeniem wartość dla miedzi.

Tabela 8. Wartości współczynników osłabienia, absorbent

Wartość zmierzona, niepewność	Wartość tablicowa
μ=	-
$\mu_m ==$	

Wnioski: