RÉSUMÉ DE COURS DU CHAPITRE 6

Moment d'une force

Moment d'une force

- Le bras de levier d d'une force \vec{F} correspond à la distance entre la droite d'action de la force et l'axe de rotation Δ .
- Le moment d'une force F par rapport à l'axe Δ (axe de rotation) se note $M_{\Delta}(\vec{F})$ et caractérise l'effet de rotation d'une force. Il dépend de la valeur de la force \vec{F} en Newton (N) et de son bras de levier d en mètre (m) et s'exprime en Newton-mètre (Nm).

$$M_{\Delta}(\vec{F}) = F \times d$$

Couple d'une force et de moment

Un **couple de forces** correspond à deux forces $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ de direction parallèles mais de sens opposés et de même valeur $F_1 = F_2 = F$ Il est caractérisé par **son moment**.

Le **moment d'un couple de force** traduit l'aptitude d'un couple de force à faire tourner un système mécanique autour de ce point, appelé souvent pivot. Il s'exprime en N. m (newton-mètre). Il est donné par la formule :

$$M = F.d$$

M: moment d'un couple de forces en newton-mètre (N.m)

d: distance qui sépare les deux droites d'action des forces, en mètre (m)

F: valeur commune de la force en newton (N)

Le volant tourne sous l'effet d'un couple

Travail d'un couple de force

On appelle **travail d'un couple de force** $W_{AB}(\vec{F})$ de moment M constant, lorsque son point d'application se déplace en rotation autour d'un axe fixe du point A jusqu'au point B et vaut :

$$W_{AB}(\overrightarrow{F}) = M.\theta$$

 $W_{AB}(\vec{F})$: travail du couple en Joule (J)

M: moment du couple, en Newton-mètre (N.m)

 θ : angle de rotation de l'objet (rad)

L'énergie cinétique de rotation

Lorsqu'un corps de moment d'inertie J est animé d'un mouvement de rotation à la vitesse angulaire ω , il possède une énergie appelée énergie cinétique et notée E_c telle que :

$$E_c = \frac{1}{2} J \cdot \omega^2$$

 E_c en Joule (J), J en kilogramme mètre carré ($kg.m^2$), ω en radian par seconde ($rad.s^{-1}$)

Exemples de moment d'inertie *J* :

Solide (S)	Axe de rotation (D)	Moment d'inertie (/)
Disque plein de rayon R	G:	$\frac{1}{2}mR^2$
Boule pleine de rayon R	D. A.	<u>2</u> mR²
Cylindre plein de rayon <i>R</i>	D	1/2 mR ²

Le moment d'inertie d'un solide est une grandeur traduisant la capacité du solide à poursuivre son mouvement de rotation après l'arrêt de la force d'entraînement. Il dépend de la géométrie du solide par rapport à son axe de rotation.

• Relation entre la vitesse linéaire et la vitesse de rotation

Conversion tours/min en rad/s

Pour convertir une vitesse de rotation exprimée en tours par minutes (tr/min) en radian par seconde (rad/s), on utilise la relation suivante :

$$\omega = \frac{2\pi . N}{60}$$

 ω : vitesse de rotation en rad/s

N: vitesse de rotation en tr/min