# Wykład 1

Co to są bazy danych? Skąd się wziąt SQL?

# Co to sa bazy danych?



modelowanie pojęciowe



modelowanie logiczne













reprezentacja fizyczna







(0,1); (1,2) (2,0); (2,0) ... truduo dodaí, tatuig znale 20







modelowanie pnypadków uzycia

Kto zarabia najwięcej! Co jest stolice Tanzanii? Jak dojechać z Barre do Bari?

Na urlopie zabier premię. Astana to teraz Nur-Suttan. Spredaj bilet Lublin-Reeszów









$$A := A \setminus \{(3, b)\}$$

realizacia transakqi

plany zapytań





# Relacyjna rewolucja

#### 1959-69: COBOL

- · Bezpośrednia praca z fizyczną reprezentacją danych.
- · Zapytania zalezve od reprezentacji; pregladanie plików, chodzenie po wskaźnikach.

### 1970: Edgar F. Codd

- · Ustalmy jeden wspólny model danych: relacje.
- · Metadone (schemet bazy): zbiór nazu relagi z arnościami.
  {Film(4), Seans(3), Kino(2)}
- · Dane (instancja bazy): zawartość relacji, tzn. zbiory krotek.

## Logika pierwszegonędy (FO)

Formuly atomowe:  $R(x_1, x_2, ... x_n)$ , X=y, golzie  $R^{(n)}$  jest w schemacie (sygnature)

Spójniki:  $\varphi \wedge \psi$ ,  $\varphi \vee \psi$ ,  $\neg \varphi$ ,  $\varphi \rightarrow \psi$ ,  $\varphi \leftrightarrow \psi$ .

Kwantyfikatory:  $\exists x. \varphi(x), \forall x. \varphi(x)$ .

 $\varphi(x,y) = \exists z \ Seans(z, Dragówka,y) \wedge Kino(z,x)$ 

$$\varphi^{I} = h(a,b) \in adom(I)^{2} | I \models \varphi(a,b)^{2}$$

$$= h(Solidarności, 17:00)^{2}$$

adom (I) to <u>dziedzina</u> <u>aktywna</u> I, czyli wszystkie wartości utyte w I.

# Algebra relagi (RA)

Wyrazenia atomowe: 1(a1,az, an)}, R, gdzie R jest w schemacie.

Selekcja: 
$$\sigma_{i=j}(S) = \{(a_1,...,a_m) \mid (a_1,...,a_m) \in S, a_i = a_j\}$$

$$\sigma_{i=c}(S) = \{(a_1,...,a_m) \mid (a_1,...,a_m) \in S, a_i = c\}$$

Rzut (permutacja, duplikacja):  $\Pi_{i_1,i_2,\cdots,i_k}(S) = \{(a_{i_1},a_{i_2,\cdots},a_{i_k}) \mid (a_{i_1},a_{i_2,\cdots},a_{i_k}) \mid (a_{i_2},a_{i_2,\cdots},a_{i_k}) \mid (a_{i_1},a_{i_2,\cdots},a_{i_k}) \in S \}$ 

Proclukt (hartezjański):  $S \times T = \{(a_1, ..., a_m, b_1, ..., b_m) | (a_1, ..., a_m) \in S, (b_1, ..., b_m) \in T\}$ 

Suma: SUT =  $\frac{1}{2} (a_1 a_2, ..., a_n) (a_1, a_2, ..., a_n) \in S \text{ lub } (a_1, a_2, ..., a_n) \in T$ 

Rózvica:  $S \setminus T = \frac{1}{2} (a_1, a_2, ..., a_n) (a_1, a_2, ..., a_n) \in S$ ,  $(a_1, a_2, ..., a_n) \notin T$ 

Wyrazenie  $E = T_{5,3} \sigma_{1=4} \sigma_{2=Drogówko} (Seans × Kino) nei I daje velacje <math>E = T_{5,3} \sigma_{1=4} \sigma_{2=Drogówko} (Seans × Kino I)$ .

SELECT adres, godzina FROM Seams, Kino
WHERE Seans. kino = Kino nazwa AND Seans. film = "Dragówka";

## Twierdzenie Codda (1972)

# FO=RA

Ten w logice pierwszego nædu i w algebre relagion da sie myrazió doktadnie te same zapytama.

## Od RA do FO

| E                          | φ <sub>ε</sub>                                                                                              |
|----------------------------|-------------------------------------------------------------------------------------------------------------|
| R                          | R(x1,, Xh)                                                                                                  |
| {(a1,, an)}                | $X_1 = a_1 \wedge \dots \wedge X_n = a_n$                                                                   |
| $\sigma_{i=j}(\mathbf{E})$ | $\varphi_{\mathbf{E}}(\mathbf{x}_{1},,\mathbf{x}_{\mathbf{h}}) \wedge \mathbf{x}_{i} = \mathbf{x}_{j}$      |
| TT. (E)                    | ]y, ]yη φε(yη,,yη) η χη=yi,η η χκ=yiκ                                                                       |
| E×F                        | φ <sub>ε</sub> (x <sub>1</sub> ,, x <sub>n</sub> ) 1 φ <sub>ε</sub> (x <sub>n+1</sub> ,, x <sub>n+m</sub> ) |
| EUF                        | φε(x1,, xn) ν φε(x1,, xn)                                                                                   |
| E-F                        | φε(x1,, xn) Λ ¬ φε(x1,, xn)                                                                                 |

## Od FO do RA

$$adom = \bigcup_{R^{(n)} \in \Sigma} \bigcup_{i=1}^{n} \overline{I_{i}}(R)$$