

Machine Learning Inference In Under 5 mW

w/ a Binarized Neural Network (BNN) in an FPGA

Abdullah Raouf May, 2018

Agenda

- Why Edge Intelligence?
- Introduction to Lattice & the new Lattice sensAITM stack
 - How to enable deep learning at the edge
 - Available tools and implementation methods
 - A full system example

Intelligence at the Edge Trend

Market Need: Immediate, locally processed, ML based analytics

Why:

The cloud takes too long to determine that a person is in front of you

Users do not want information sent, stored, or processed in the cloud

By 2019, 45% of IoT-Created Data Will Be Stored, Processed, Analyzed, and Acted Upon Close to, or at the Edge of the Network - IDC

Intelligence at the Edge Trend

Market Need: Immediate, locally processed, ML based analytics

Why:

The cloud takes too long to determine that a person is in front of you

Users do not want information sent, stored, or processed in the cloud

Unit growth for edge devices with AI will explode increasing over 110% CAGR over the next five years – Semico Research

Edge Device AI – Competitive Landscape

Introducing Lattice sensAl

Introducing iCE40 UltraPlus FPGA

Embedded Memory

- NN weights/activations
- Sensor data
- Scratchpad

Low Power

- 75 uW sleep power
- sub 10 mW active power
- 5-6 mW when running NN

Programmable FPGA Fabric

128 KBytes RAM x8 Digital Signal Processing

Power Management

Timing NVCM

Flexible I/O's

Logic

- NN Engine
- FIFOs
- DMA

DSPs

- Precise convolution
- Power efficient mult
- Computation time

Timing

- PLL
- Embedded oscillator

I/Os

- Hardened SPI/I²C hardened
- Specialized I/O for I3C
- programmable up to 100MHz

Secure Configuration

- Non-readable OTP

Edge Acceleration in Lattice FPGAs

500K+ faces 500K+ non-faces

Untrained Neural Network Model

Neural Network Complier

Edge Acceleration in iCE40 UP

Small size: 2.15 mm x 2.55 mm Inferencing capability: 1.1 T

ops/W

Quantization: 1bit W & A

Activation Layer: tanh # of parallel engines: 16 # of cycles per frame: 85 K

Estimated power: 4 to 6 mW

Computation time: 10 ms

Overview of Development Flow

Real Example of using VGG with 32 x 32 RGB input

- 7 layers of BNN
- 2 class classification (Face or no Face)
- 32 x 32 RGB input

Face Detection					
Face Det	MAC	Activation (mem in KB)		Weight (mem in KB)	
Layers	# (M)	# (K)	1b	# (K)	1b
Input		3	3		
Conv1	2	66	8	2	.22
Pool1		16	2		
Conv2	9	16	2	37	4.61
Pool2		4	1		
Conv3	5	8	1	74	9.22
Pool3		2	0		
FC9	0	0	0	4	.51
Total	16	116	17	116	15

Power at 5 frame per sec speed

• iCE40UP-5K: 0.847 mW

Himax camera: 1.376 mW

• Total: <u>2.22 mW</u>

System Block Diagram & FPGA Utilization

Market Needs: Local Person Detection

Smart Home Appliance

LCD turns on when needed

Consumer Electronics

TV turns off when nobody present

Smart DoorBell

Rings automatically when needed

Vending Machine

LCD turns on when needed

Security Camera

Alerts when intruder present, not a cat

Smart Doors

Opens when person is present

Complete Face Detection Solution

iCE40 UltraPlus FPGA (2.15 mm x 2.55 mm)
Omnivision OVM7692 Camera

ExampleHuman Face Detection (Without the Cloud)

Summary of Solution

User 1 Bit Weights / Activations

0.8 mW Power Consumption at 5fps

Standalone

2.15x2.55 mm Single Chip Solution

99% Accuracy

To Learn More about Sensial

Stop by and talk to our team @ Booth 502 Visit our website @ www.latticesemi.com
Contact me @ Abdullah.Raouf@lscc.com

Summary of Results

True and False Positives with Variable Lighting Conditions

Item	Lattice Response
Detection Rate(True Positive)	>95%
Error Rate(False Positive)	<0.1%
Light condition	See plot above

