Stats 141 Final Project

Tsz Him Brian Ng 2/10/2018

Contents

Packages	1
Functions	2
AccuracyCutoffInfo	2
ConfusionMatrixInfo	3
ROCInfo	4
delete dup	6
Classify	7
cv.error	8
Standarize	9
Data Import	9
Data Cleaning	10
CNP Data	10
Cleaning ID Column	10
Merging Data With Demographic Data	11
Dropping Unwanted Subject Types	11
Merging Data into One Data	12
COBRE Data	12
Cleaning ID Column	12
Cleaning Phenotypic Data	13
Merging Data	13
Mapping and Dropping Unwanted Subject Types	14
Recoding Patients to Schizophrenia	15
Merging Data into One Data	15
Data Analysis	17
CNP Data Modeling	17
COBRE Data Modeling	28
Fitting Data into Model Based on the Other Study	39

Combing CNP and COBRE Data	40
Combined Data Modeling	42
Plots	53
Hypothesis Testings	57

Packages

```
library(readxl, warn.conflicts = FALSE, quietly = TRUE)
library(stringr, warn.conflicts = FALSE, quietly = TRUE)
library(dplyr, warn.conflicts = FALSE, quietly = TRUE)
library(readr, warn.conflicts = FALSE, quietly = TRUE)
library(randomForestSRC, warn.conflicts = FALSE, quietly = TRUE)
library(ggplot2, warn.conflicts = FALSE, quietly = TRUE)
library(ggthemes, warn.conflicts = FALSE, quietly=TRUE)
library(caret, warn.conflicts = FALSE, quietly = TRUE)
library(tidyr, warn.conflicts = FALSE, quietly = TRUE)
library(scales, warn.conflicts = FALSE, quietly = TRUE)
library(data.table, warn.conflicts = FALSE, quietly = TRUE)
library(effects, warn.conflicts = FALSE, quietly = TRUE)
library(gridExtra, warn.conflicts = FALSE, quietly = TRUE)
library(ggRandomForests, warn.conflicts = FALSE, quietly = TRUE)
library(ROCR, warn.conflicts = FALSE, quietly=TRUE)
library(ggpubr, warn.conflicts = FALSE, quietly=TRUE)
library(grid, warn.conflicts = FALSE, quietly=TRUE)
library(maxent, warn.conflicts = FALSE, quietly = TRUE)
```

Functions

AccuracyCutoffInfo

```
# Obtain the accuracy on the trainining and testing dataset.
# for cutoff value ranging from .4 to .8 ( with a .05 increase )
# @train : your data.table or data.frame type training data ( assumes you have the predict
# Otest : your data.table or data.frame type testing data
# Opredict : prediction's column name (assumes the same for training and testing set)
# @actual : actual results' column name
# returns : 1. data : a data.table with three columns.
                        each row indicates the cutoff value and the accuracy for the
                        train and test set respectively.
             2. plot : plot that visualizes the data.table
AccuracyCutoffInfo <- function( train, test, predict, actual )</pre>
  # change the cutoff value's range as you please
 cutoff \leftarrow seq( .05, 1, by = .025 )
  accuracy <- lapply( cutoff, function(c)</pre>
    train_prediction <- as.factor(as.numeric( train[[predict]] > c ))
    test_prediction <- as.factor(as.numeric( test[[predict]] > c ))
    levels(train_prediction) <- c(levels(train[[actual]][1]),levels(train[[actual]])[2])</pre>
    levels(test_prediction) <- c(levels(test[[actual]][1]),levels(test[[actual]])[2])</pre>
    # use the confusionMatrix from the caret package
    cm_train <- confusionMatrix( train_prediction, train[[actual]] )</pre>
    cm_test <- confusionMatrix( test_prediction, test[[actual]] )</pre>
    dt <- data.table( cutoff = c,</pre>
                      train = cm_train$overall[["Accuracy"]],
                       test = cm_test$overall[["Accuracy"]] )
    return(dt)
```

```
# visualize the accuracy of the train and test set for different cutoff value
# accuracy in percentage.
accuracy_long <- gather( accuracy, "data", "accuracy", -1 )

plot <- ggplot( accuracy_long, aes( cutoff, accuracy, group = data, color = data ) ) +
    geom_line( size = 1 ) + geom_point( size = 3 ) +
    scale_y_continuous( label = percent ) +
    ggtitle( "Train/Test Accuracy for Different Cutoff" ) +
    scale_x_continuous(breaks=seq(0, 1, 0.1)) +
    theme_bw()

return( list( data = accuracy, plot = plot ) )
}</pre>
```

ConfusionMatrixInfo

```
plot <- ggplot( result, aes( actual, predict, color = type ) ) +
    geom_violin( fill = "white", color = NA ) +
    geom_jitter( shape = 1 ) +
    geom_hline( yintercept = cutoff, color = "blue", alpha = 0.6 ) +
    scale_y_continuous( limits = c( 0, 1 ) ) +
    scale_color_discrete( breaks = c( "TP", "FN", "FP", "TN" ) ) + # ordering of the legend
    guides( col = guide_legend( nrow = 2 ) ) + # adjust the legend to have two rows
    ggtitle( sprintf( "Confusion Matrix with Cutoff at %.2f", cutoff ) )

return( list( data = result, plot = plot ) )
}</pre>
```

ROCInfo

```
# Pass in the data that already consists the predicted score and actual outcome.
# to obtain the ROC curve
          : your data.table or data.frame type data that consists the column
             of the predicted score and actual outcome
# @predict : predicted score's column name
# @actual : actual results' column name
# @cost.fp : associated cost for a false positive
# @cost.fn : associated cost for a false negative
# return : a list containing
                            : a side by side roc and cost plot, title showing optimal cutofj
             1. plot
                              title showing optimal cutoff, total cost, and area under the c
                           : optimal cutoff value according to the specified fp/fn cost
             2. cutoff
             3. totalcost : total cost according to the specified fp/fn cost
                           : area under the curve
             4. auc
             5. sensitivity : TP / (TP + FN)
             6. specificity : TN / (FP + TN)
ROCInfo <- function( data, predict, actual, cost.fp, cost.fn )</pre>
{
  # calculate the values using the ROCR library
  # true positive, false postive
 pred <- prediction( data[[predict]], data[[actual]] )</pre>
```

```
perf <- performance( pred, "tpr", "fpr" )</pre>
roc_dt <- data.frame( fpr = perf@x.values[[1]], tpr = perf@y.values[[1]] )</pre>
# cost with the specified false positive and false negative cost
# false postive rate * number of negative instances * false positive cost +
# false negative rate * number of positive instances * false negative cost
cost <- perf@x.values[[1]] * cost.fp * sum( data[[actual]] == 0 ) +</pre>
  ( 1 - perf@y.values[[1]] ) * cost.fn * sum( data[[actual]] == 1 )
cost_dt <- data.frame( cutoff = pred@cutoffs[[1]], cost = cost )</pre>
# optimal cutoff value, and the corresponding true positive and false positive rate
best_index <- which.min(cost)</pre>
best_cost <- cost_dt[ best_index, "cost" ]</pre>
           <- roc_dt[ best_index, "tpr" ]</pre>
best_tpr
best_fpr <- roc_dt[ best_index, "fpr" ]</pre>
best_cutoff <- pred@cutoffs[[1]][ best_index ]</pre>
# area under the curve
auc <- performance( pred, "auc" )@y.values[[1]]</pre>
# normalize the cost to assign colors to 1
normalize <- function(v) ( v - min(v) ) / diff( range(v) )</pre>
# create color from a palette to assign to the 100 generated threshold between 0 \sim 1
# then normalize each cost and assign colors to it, the higher the blacker
# don't times it by 100, there will be 0 in the vector
col_ramp <- colorRampPalette( c( "green", "orange", "red", "black" ) )(100)</pre>
col_by_cost <- col_ramp[ ceiling( normalize(cost) * 99 ) + 1 ]</pre>
roc_plot <- ggplot( roc_dt, aes( fpr, tpr ) ) +</pre>
  geom\_line(color = rgb(0, 0, 1, alpha = 0.3)) +
  geom_point( color = col_by_cost, size = 4, alpha = 0.2 ) +
  geom_segment( aes( x = 0, y = 0, xend = 1, yend = 1 ), alpha = 0.8, color = "royalblue"
  labs( title = "ROC", x = "False Postive Rate", y = "True Positive Rate" ) +
  geom_hline( yintercept = best_tpr, alpha = 0.8, linetype = "dashed", color = "steelblue4
  geom_vline( xintercept = best_fpr, alpha = 0.8, linetype = "dashed", color = "steelblue4
```

```
theme_bw()
cost_plot <- ggplot( cost_dt, aes( cutoff, cost ) ) +</pre>
  geom_line( color = "blue", alpha = 0.5 ) +
  geom_point( color = col_by_cost, size = 4, alpha = 0.5 ) +
  ggtitle( "Cost" ) +
  scale_y_continuous( labels = comma ) +
  geom_vline( xintercept = best_cutoff, alpha = 0.8, linetype = "dashed", color = "steelbl
  theme_bw()
# the main title for the two arranged plot
sub_title <- sprintf( "Cutoff at %.2f - Total Cost = %.2f, AUC = %.3f",</pre>
                       best_cutoff, best_cost, auc )
# arranged into a side by side plot
plot <- arrangeGrob( roc_plot, cost_plot, ncol = 2,</pre>
                      top = textGrob( sub_title, gp = gpar( fontsize = 16, fontface = "bold
return( list( plot
                             = plot,
                        = best_cutoff,
              cutoff
              totalcost = best_cost,
              auc
                           = auc,
              sensitivity = best_tpr,
              specificity = 1 - best_fpr ) )
```

delete dup

```
#Some varaibles are forced into the model regardless of variable section result
#If the forced variable ended up being selected, this model will removed the duplicated variable.

delete_dup <- function(subset, data){
   remove <- c()
   for(i in 1:length(subset)){
      result <- str_detect(subset[i],names(data))
      for(j in 1:length(result)){</pre>
```

```
if(result[j]){
    remove <- c(remove,i)
    }
}

if(is.null(remove))
    return(subset)

subset <- subset[-c(remove)]
    return(subset)
}</pre>
```

Classify

```
#data = data file
#Predition: predicted result
#response: The name of response variable
#cut_off: probabilty cut off point
Classify <- function(data, prediction, response, cut_off ){</pre>
  for(i in 1:length(prediction)){
    if(prediction[i] < cut_off){</pre>
      prediction[i] <- levels(data[[response]])[1]</pre>
    } else{
      prediction[i] <- levels(data[[response]])[2]</pre>
    }
  }
 prediction <- as.factor(prediction)</pre>
  levels(prediction) <- c(levels(data[[response]])[1],levels(data[[response]])[2])</pre>
  confuseion_matrix <- table(data[[response]],prediction)</pre>
  print(confuseion_matrix)
  Accuracy <- (confuseion_matrix[1,1] + confuseion_matrix[2,2])/sum(confuseion_matrix)</pre>
 TPR <- confuseion_matrix[2,2] / (confuseion_matrix[2,2] + confuseion_matrix[2,1])</pre>
 return(cat(paste("The accuracy is", round(Accuracy*100,3),"%.\nThe True positive rate is",
```

cv.error

```
#data = data using for prediction
#response = name of the response variable
#cut off = probability cut off point
#interaction = you can type addition interaction term in text
#Example
#cv.error(CNP_logi_subset, "Subject_Type", "+Age*Auditory.global_eff", 0.8)
cv.error <- function(data, response, interaction = "", cut_off = 0.5){</pre>
  #generate random seeds
  r \leftarrow runif(1,0,9999)
  set.seed(r)
  folds <- createFolds(data[[response]],k = 10)</pre>
  Accuracy <- rep(NA,10)
  TPR \leftarrow rep(NA, 10)
  for(i in 1:10){
    #training and testing
    train <- data[-folds[[i]],]</pre>
    test <- data[folds[[i]],]</pre>
    levels(test[[response]]) <- c(levels(data[[response]])[1],levels(data[[response]])[2])</pre>
    logi_cv <-glm(paste(response,"~.",interaction), data = train, family = "binomial")</pre>
    prediction <- predict(logi_cv, test, type = "response")</pre>
    for(j in 1:length(prediction)){
      if(prediction[j] < cut_off){</pre>
        prediction[j] <- levels(test[[response]])[1]</pre>
      } else{
        prediction[j] <- levels(test[[response]])[2]</pre>
      }
```

```
prediction <- as.factor(prediction)
  levels(prediction) <- c(levels(data[[response]])[1],levels(data[[response]])[2])

  confuseion_matrix <- table(test[[response]],prediction)
  Accuracy[i] <- (confuseion_matrix[1,1] + confuseion_matrix[2,2])/sum(confuseion_matrix)
  TPR[i] <- confuseion_matrix[2,2] / (confuseion_matrix[2,2] + confuseion_matrix[2,1])
}
return(list(Accuracy, TPR))
}</pre>
```

Standarize

```
#Standardized variable

Standarize <- function(data){
  for(i in 1:ncol(data)){
    if(is.numeric(data[1,i])){
      data[,i] <- (data[,i] - mean(data[,i]))/sd(data[,i])
    }
  }
  return(data)
}</pre>
```

Data Import

```
#Load data

#load CNP data

CNP_between <- read.table("A:/Winter 2018/Stats 141SL/project/CNP_between_nets.txt", header
CNP_within <- read.table("A:/Winter 2018/Stats 141SL/project/CNP_within_nets.txt", header =
CNPDemographic <- read_excel("A:/Winter 2018/Stats 141SL/project/CNPDemographicMeasures.xlsx
#load COBRE data</pre>
```

```
COBRE_between <- read.table("A:/Winter 2018/Stats 141SL/project/COBRE_between_nets.txt", hea
COBRE_within <- read.table("A:/Winter 2018/Stats 141SL/project/COBRE_within_nets.txt", heade
COBREDemographic <- read_excel("A:/Winter 2018/Stats 141SL/project/COBRE INDI Additional dat
COBRE_phenotypic <- read_csv("A:/Winter 2018/Stats 141SL/project/COBRE_phenotypic_data.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##
    X1 = col_integer(),
     `Current Age` = col_character(),
##
     Gender = col_character(),
##
##
    Handedness = col_character(),
##
     `Subject Type` = col_character(),
##
     Diagnosis = col_character()
## )
```

Data Cleaning

CNP Data

Cleaning ID Column

```
# Removed character string

pattern <- "[a-z]*-"

CNP_within$Subject_ID <- as.numeric(str_replace_all(CNP_within$Subject_ID, pattern,""))

CNP_between$Subject_ID <- as.numeric(str_replace_all(CNP_between$Subject_ID, pattern,""))</pre>
```

Merging Data With Demographic Data

```
CNP_within_merge <- left_join(CNP_within,CNPDemographic, by = c("Subject_ID" = "PTID"))
#summary(CNP_within_merge)
CNP_between_merge <- left_join(CNP_between,CNPDemographic, by = c("Subject_ID" = "PTID"))
#summary(CNP_between_merge)</pre>
```

Dropping Unwanted Subject Types

```
CNP_within_merge <- CNP_within_merge %>%
  filter(Subject_Type == "Control" | Subject_Type == "Schizophrenia")
## Warning: package 'bindrcpp' was built under R version 3.4.2
table(CNP_within_merge$Subject_Type)
##
##
            ADHD
                        Bipolar
                                      Control Schizophrenia
                                          115
                                                          42
CNP_between_merge <- CNP_between_merge %>%
  filter(Subject_Type == "Control" | Subject_Type == "Schizophrenia")
table(CNP_between_merge$Subject_Type)
##
##
            ADHD
                        Bipolar
                                      Control Schizophrenia
##
               0
                              0
                                          115
                                                          42
CNP_within_merge$Subject_Type <- droplevels(CNP_within_merge$Subject_Type)</pre>
levels(CNP_within_merge$Subject_Type)
## [1] "Control"
                        "Schizophrenia"
CNP_between_merge$Subject_Type <- droplevels(CNP_between_merge$Subject_Type)</pre>
levels(CNP_between_merge$Subject_Type)
## [1] "Control"
                        "Schizophrenia"
```

Merging Data into One Data

```
#CNP between
#remove 96:98, 112
CNP_between_merge <- CNP_between_merge %>%
    select(-c(96:98,112))

#CNP within get rid of
#75 #76 #91
CNP_within_merge <- CNP_within_merge %>%
    select(-c(75:77,91))

#Merge both between and within data into CNP
CNP <- merge(CNP_between_merge,CNP_within_merge, all = TRUE)
CNP_RF_subset <- CNP %>%
    select(-c(1,5:41))
```

COBRE Data

Cleaning ID Column

```
#Revmove character string

COBRE_between$Subject_ID <- as.numeric(str_replace_all(COBRE_between$Subject_ID
, pattern,""))

COBRE_within$Subject_ID <- as.numeric(str_replace_all(COBRE_within$Subject_ID
, pattern,""))

#remove 00

pattern <- "^00"

COBREDemographic$ID <- as.numeric(str_replace_all(COBREDemographic$ID, pattern,""))</pre>
```

Cleaning Phenotypic Data

```
COBRE_phenotypic$Gender <- as.factor(COBRE_phenotypic$Gender)

COBRE_phenotypic <- COBRE_phenotypic %>%
  filter(!(COBRE_phenotypic$Gender == "Disenrolled"))

COBRE_phenotypic$Gender <- droplevels(COBRE_phenotypic$Gender)

colnames(COBRE_phenotypic)[1:2] <- c("Subject_ID", "Age")</pre>
```

Merging Data

```
COBRE_within_merge <- left_join(COBRE_within, COBREDemographic, by = c("Subject_ID" = "ID"))
#summary(COBRE_within_merge)
COBRE_between_merge <- left_join(COBRE_between, COBREDemographic, by = c("Subject_ID" = "ID")
#summary(COBRE_between_merge)
COBRE_between_merge <- merge(COBRE_between_merge,COBRE_phenotypic, all = TRUE)
COBRE_within_merge <- merge(COBRE_within_merge,COBRE_phenotypic, all = TRUE)
table(COBRE_between_merge$Diagnosis)
##
##
                   290.3
                                          295.1
                                                                 295.2
                                              3
##
                                                                     1
                                                                 295.7
##
                   295.3
                                          295.6
##
                      41
                                             12
                                                                     5
     295.70 bipolar type 295.70 depressed type
                                                                 295.9
##
##
                                                                     5
                                              1
##
                  295.92
                                         296.26
                                                                 296.4
##
                       1
                                              1
                                                                     1
##
                     311
                                           None
##
                       1
                                             72
```

```
table(COBRE_within_merge$Diagnosis)
##
##
                    290.3
                                            295.1
                                                                    295.2
##
                        1
                                                3
                                                                        1
                    295.3
                                            295.6
                                                                    295.7
##
                       41
                                                                        5
##
                                               12
##
     295.70 bipolar type 295.70 depressed type
                                                                    295.9
##
                                                1
                                                                        5
                        1
##
                   295.92
                                           296.26
                                                                    296.4
##
                        1
                                                1
                                                                        1
##
                      311
                                             None
##
                        1
                                               72
```

Mapping and Dropping Unwanted Subject Types

```
COBRE_between_merge <- COBRE_between_merge %>%
  filter(!(Diagnosis == 290.3 | Diagnosis == 296.26 | Diagnosis == 296.4 | Diagnosis == 311)
COBRE_within_merge <- COBRE_within_merge %>%
  filter(!(Diagnosis == 290.3 | Diagnosis == 296.26 | Diagnosis == 296.4 | Diagnosis == 311)
table(COBRE_between_merge$Diagnosis)
##
##
                   295.1
                                          295.2
                                                                 295.3
##
                       3
                                                                    41
                                              1
                   295.6
                                          295.7
                                                  295.70 bipolar type
##
##
                                              5
                                                                295.92
## 295.70 depressed type
                                          295.9
                                              5
##
                       1
                                                                     1
##
                    None
                      72
table(COBRE_within_merge$Diagnosis)
##
                   295.1
                                          295.2
                                                                 295.3
##
```

```
##
                        3
                                                                       41
                                                1
                    295.6
##
                                            295.7
                                                    295.70 bipolar type
##
                                                5
## 295.70 depressed type
                                            295.9
                                                                   295.92
##
                                                5
                                                                        1
##
                     None
##
                       72
```

Recoding Patients to Schizophrenia

Merging Data into One Data

```
#Merge both between and within into COBRE
COBRE <- merge(COBRE_between_merge, COBRE_within_merge, all = TRUE)

#Use only the fMRI, MRI, and Age, keep global EFF

COBRE_RF_subset<- COBRE %>%
select(-c(1,5:111))
```

Data Cleaning

COBRE_RF_subset\$Subject_Type <- as.factor(COBRE_RF_subset\$Subject_Type)</pre>

Data Analysis

CNP Data Modeling

```
#CNP data modeling
set.seed(4321)
rfsrc_m1 <- rfsrc(as.factor(Subject_Type)~.,data = CNP_RF_subset, na.action = c("na.omit"),
max_var <- max.subtree(rfsrc_m1, conservative = TRUE)</pre>
max_var$topvars
## [1] "Ventral_Attention.Uncertain"
## [2] "Cingulo.opercular_Task_Control.mod"
#delete duplicate entity
#Logistic Regression Model
subset1 <- as.vector(max_var$topvars)</pre>
subset1 <- delete_dup(subset1,CNP_RF_subset[,c(1,137:150)])</pre>
CNP_logi_subset <- CNP_RF_subset[,c("Subject_Type",names(CNP_RF_subset[,c(1,137:150)]), subs
#Using a previously grown forest, identify pairwise interactions for all pairs of variables
#method="maxsubtree"
#This invokes a maximal subtree analysis.
CNP_logi_subset <- na.omit(CNP_logi_subset) %>%
  Standarize()
#Find interaction
gg_int <- gg_interaction(find.interaction(rfsrc_m1,</pre>
                                            xvar.names = names(CNP_logi_subset[,-c(1)]),
```


#Minimal depth variable interaction plot for all variables of interest.
#Higher values indicate lower interactivity with target variable marked in red.

#No interactioin found base on the result, we don't have to add interaction term

```
#Correlation check
high_cor <- findCorrelation(cor(CNP_logi_subset[,-c(1:2)]),cutoff = 0.75) + 2
#No potential multicollinearity problem
index <- sample(1:nrow(CNP_logi_subset), size = round(nrow(CNP_logi_subset)*0.7,0),replace =</pre>
CNP_train <- CNP_logi_subset[index,]</pre>
CNP_test <- CNP_logi_subset[-index,]</pre>
logi_m1 <-glm(Subject_Type~. , data = CNP_train, family = "binomial")</pre>
write.csv(CNP logi_subset, file = "Data_CNP_Logi.csv", row.names = FALSE)
save.model(logi_m1, file = "logistic_model_cnp.RData")
summary(logi_m1)
##
## Call:
## glm(formula = Subject_Type ~ ., family = "binomial", data = CNP_train)
##
## Deviance Residuals:
       Min
##
                 1Q
                     Median
                                   3Q
                                            Max
## -1.6210 -0.6679 -0.3474 0.5809
                                        3.0634
##
## Coefficients:
##
                                              Estimate Std. Error z value
## (Intercept)
                                              -1.73948
                                                          0.36956 - 4.707
## Age
                                               0.83260
                                                          0.34036
                                                                    2.446
## Auditory.global_eff
                                              -0.09186
                                                          0.35094 -0.262
## Cerebellar.global_eff
                                                          0.27872
                                                                    0.560
                                               0.15612
## Cingulo.opercular_Task_Control.global_eff 0.03363
                                                          0.33229
                                                                    0.101
## Default_mode.global_eff
                                               0.87062
                                                          0.42690
                                                                    2.039
## Dorsal_attention.global_eff
                                                          0.31808
                                                                    1.378
                                               0.43827
## Fronto.parietal_Task_Control.global_eff
                                                          0.42524
                                                                    0.917
                                               0.38999
## Memory_retrieval.global_eff
                                              -0.02610
                                                          0.29618 -0.088
## Salience.global_eff
                                               0.36833
                                                          0.34606
                                                                    1.064
## Sensory.somatomotor_Hand.global_eff
                                               0.30430
                                                          0.50027
                                                                    0.608
```

```
## Sensory.somatomotor_Mouth.global_eff
                                             -0.40188
                                                          0.37858 -1.062
## Subcortical.global_eff
                                              0.56609
                                                          0.36193
                                                                    1.564
## Uncertain.global_eff
                                              0.78505
                                                          0.34559
                                                                    2.272
## Ventral_attention.global_eff
                                             -0.20361
                                                          0.31489 -0.647
## Visual.global_eff
                                              0.49797
                                                          0.38277
                                                                    1.301
## Ventral_Attention.Uncertain
                                             -2.28226
                                                          0.67824 -3.365
## Cingulo.opercular_Task_Control.mod
                                              0.88433
                                                          0.32735
                                                                    2.701
##
                                             Pr(>|z|)
## (Intercept)
                                             2.51e-06 ***
                                             0.014436 *
## Age
## Auditory.global_eff
                                             0.793522
## Cerebellar.global_eff
                                             0.575381
## Cingulo.opercular_Task_Control.global_eff 0.919375
## Default_mode.global_eff
                                             0.041408 *
## Dorsal_attention.global_eff
                                             0.168252
## Fronto.parietal_Task_Control.global_eff
                                             0.359080
## Memory_retrieval.global_eff
                                             0.929783
## Salience.global_eff
                                             0.287175
## Sensory.somatomotor_Hand.global_eff
                                             0.543008
## Sensory.somatomotor_Mouth.global_eff
                                             0.288451
## Subcortical.global_eff
                                             0.117797
## Uncertain.global_eff
                                             0.023110 *
## Ventral_attention.global_eff
                                             0.517884
## Visual.global_eff
                                             0.193274
## Ventral_Attention.Uncertain
                                             0.000766 ***
## Cingulo.opercular_Task_Control.mod
                                             0.006903 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 130.826 on 109
                                       degrees of freedom
## Residual deviance: 91.494 on 92
                                       degrees of freedom
## AIC: 127.49
##
## Number of Fisher Scoring iterations: 6
```

round(exp(coef(logi_m1)),3)

```
##
                                   (Intercept)
                                         0.176
##
##
                                           Age
                                         2.299
##
                          Auditory.global_eff
##
##
                                         0.912
##
                        Cerebellar.global_eff
##
                                         1.169
   Cingulo.opercular_Task_Control.global_eff
##
                                         1.034
##
                      Default_mode.global_eff
##
                                         2.388
##
                  Dorsal_attention.global_eff
##
                                         1.550
##
     Fronto.parietal_Task_Control.global_eff
##
                                         1.477
                  Memory_retrieval.global_eff
##
                                         0.974
##
##
                          Salience.global_eff
##
                                         1.445
##
         Sensory.somatomotor_Hand.global_eff
##
                                         1.356
##
        Sensory.somatomotor_Mouth.global_eff
##
                                         0.669
##
                       Subcortical.global_eff
##
                                         1.761
##
                         Uncertain.global_eff
##
                                         2.193
##
                 Ventral_attention.global_eff
##
                                         0.816
                            Visual.global_eff
##
##
                                         1.645
                  {\tt Ventral\_Attention.Uncertain}
##
##
                                         0.102
##
          Cingulo.opercular_Task_Control.mod
```

2.421

##

```
anova(logi_m1, test = "Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: Subject_Type
##
## Terms added sequentially (first to last)
##
##
##
                                               Df Deviance Resid. Df Resid. Dev
## NULL
                                                                  109
                                                                         130.826
## Age
                                                1
                                                    3.5821
                                                                  108
                                                                         127.244
## Auditory.global_eff
                                                1
                                                    0.3403
                                                                  107
                                                                         126.903
## Cerebellar.global_eff
                                                1
                                                    0.2195
                                                                  106
                                                                         126.684
## Cingulo.opercular_Task_Control.global_eff
                                                    0.0091
                                                                  105
                                                                         126.675
## Default_mode.global_eff
                                                    0.0117
                                                                  104
                                                                         126.663
## Dorsal_attention.global_eff
                                                1
                                                    0.2303
                                                                  103
                                                                         126.433
## Fronto.parietal_Task_Control.global_eff
                                                    0.6998
                                                                  102
                                                                         125.733
                                                1
## Memory_retrieval.global_eff
                                                    0.0689
                                                                  101
                                                                         125.664
                                                1
## Salience.global_eff
                                                1
                                                    0.0166
                                                                  100
                                                                         125.647
## Sensory.somatomotor_Hand.global_eff
                                                1
                                                    1.5916
                                                                   99
                                                                         124.056
## Sensory.somatomotor_Mouth.global_eff
                                                    6.0241
                                                                   98
                                                                         118.032
                                                1
## Subcortical.global_eff
                                                1
                                                    0.0072
                                                                   97
                                                                         118.025
## Uncertain.global_eff
                                                1
                                                    1.8716
                                                                   96
                                                                         116.153
## Ventral_attention.global_eff
                                                1
                                                    1.1439
                                                                   95
                                                                         115.009
## Visual.global_eff
                                                    0.1207
                                                                   94
                                                                         114.888
## Ventral_Attention.Uncertain
                                                1
                                                  13.8856
                                                                   93
                                                                         101.003
## Cingulo.opercular_Task_Control.mod
                                                    9.5089
                                                                   92
                                                                          91.494
##
                                                Pr(>Chi)
## NULL
## Age
                                               0.0584057 .
## Auditory.global_eff
                                               0.5596684
## Cerebellar.global_eff
                                               0.6394285
## Cingulo.opercular_Task_Control.global_eff 0.9240192
```

```
## Default_mode.global_eff
                                              0.9137170
## Dorsal_attention.global_eff
                                              0.6313287
## Fronto.parietal_Task_Control.global_eff
                                              0.4028610
## Memory_retrieval.global_eff
                                              0.7929193
## Salience.global_eff
                                              0.8975062
## Sensory.somatomotor_Hand.global_eff
                                              0.2071033
## Sensory.somatomotor_Mouth.global_eff
                                              0.0141116 *
## Subcortical.global_eff
                                              0.9321680
## Uncertain.global_eff
                                              0.1712969
## Ventral_attention.global_eff
                                              0.2848198
## Visual.global_eff
                                              0.7282840
## Ventral_Attention.Uncertain
                                              0.0001943 ***
## Cingulo.opercular_Task_Control.mod
                                              0.0020447 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#R-squared
R_squared <- 1 - (summary(logi_m1)[[4]]/summary(logi_m1)[[8]])</pre>
R_squared
## [1] 0.3006434
#70/30 CV check
#Train
CNP_train$prediction <- predict(logi_m1, CNP_train, type = "response")</pre>
#Test
CNP_test$prediction <- predict(logi_m1, CNP_test, type = "response")</pre>
prop.table(table(CNP$Subject_Type))
##
##
         Control Schizophrenia
                     0.2675159
##
       0.7324841
accuracy_info <- AccuracyCutoffInfo( train = CNP_train, test = CNP_test,</pre>
                                      predict = "prediction", actual = "Subject_Type" )
```

accuracy_info\$plot

Classify(CNP_train, CNP_train*prediction, "Subject_Type", 0.75)

```
## prediction
## Control Schizophrenia
## Control 79 0
## Schizophrenia 22 9
## The accuracy is 80 %.
## The True positive rate is 29.032 %
```

```
Classify(CNP_test, CNP_test$prediction, "Subject_Type", 0.75 )
##
                     prediction
##
                      Control Schizophrenia
##
     Control
                            36
                                              0
     Schizophrenia
                            10
##
                                              1
## The accuracy is 78.723 %.
## The True positive rate is 9.091 \%
set.seed(4321)
\# \mathit{CNP}\ \mathit{ROC}\ \mathit{search}\ \mathit{for}\ \mathit{better}\ \mathit{True}\ \mathit{positive}\ \mathit{rate}.
\# cutoff: Optimal\ cutoff\ value\ according\ to\ the\ specified\ FP\ and\ FN\ cost .
#totalcost : Total cost according to the specified FP and FN cost.
#auc : Area under the curve.
\#sensitivity: TP / (TP + FN) for the optimal cutoff.
\#specificity: TN / (FP + TN) for the optimal cutoff.
cm_info <- ConfusionMatrixInfo(data = CNP_test, predict = "prediction", actual = "Subject_Ty")</pre>
cm_info$plot
```


[1] 0.6933646

grid.draw(roc_info\$plot)

Cutoff at 0.69 - Total Cost = 13500.00, AUC = 0.641


```
#CNP model k fold CV check
set.seed(4321)

#Optimal cutoff for Accuracy
result <- cv.error(CNP_logi_subset, "Subject_Type",cut_off = roc_info$cutoff)
Accuracy.k <- result[[1]]
mean(Accuracy.k)

## [1] 0.7263725

TTP.k <- result[[2]]
mean(TTP.k)

## [1] 0.15</pre>
```

```
#Optimal cutoff for True positive rate
result <- cv.error(CNP_logi_subset, "Subject_Type",cut_off = roc_info$cutoff)
Accuracy.k <- result[[1]]
mean(Accuracy.k)</pre>
```

```
## [1] 0.7401716

TTP.k <- result[[2]]

mean(TTP.k)

## [1] 0.195
```

COBRE Data Modeling

```
set.seed(4321)
#Random Forest variable section
rfsrc_m2 <- rfsrc(Subject_Type~.,data = COBRE_RF_subset, na.action = c("na.omit"), ntree= 10</pre>
max_var2 <- max.subtree(rfsrc_m2, conservative = TRUE)</pre>
max_var2$topvars
## [1] "Visual.Subcortical"
#delete duplicate entity
subset2 <- as.vector(max_var2$topvars)</pre>
subset2 <- delete_dup(subset2,COBRE_RF_subset[,c(1,137:150)])</pre>
#Logistic Regression model
COBRE_logi_subset <- COBRE_RF_subset[,c("Subject_Type",names(COBRE_RF_subset[,c(1,137:150)])</pre>
COBRE_logi_subset <- na.omit(COBRE_logi_subset) %>%
  Standarize()
#Find interaction
gg_int <- gg_interaction(find.interaction(rfsrc_m2,</pre>
```

```
xvar.names = names(COBRE_logi_subset[,-c(1)]),
                                                   sorted = FALSE,
                                                   verbose = FALSE))
plot(gg_int)
  0.95 -
  0.90 -
  0.95
  0.90 -
Interactive Minimal Depth
  0.85
  0.95 -
  0.90 -
  0.95 -
  0.90 -
#No interactioin fund base on the result, we don't have to add interaction term
#Correlation check
high_cor <- findCorrelation(cor(COBRE_logi_subset[,-c(1:2)]),cutoff = 0.75) + 2
```

```
#No potential multicollinearity problem
index <- sample(1:nrow(COBRE_logi_subset), size = round(nrow(COBRE_logi_subset)*0.7,0),repla</pre>
COBRE_train <- COBRE_logi_subset[index,]</pre>
COBRE_test <- COBRE_logi_subset[-index,]</pre>
logi_m2 <-glm(Subject_Type~. , data = COBRE_train, family = "binomial")</pre>
write.csv(COBRE_logi_subset, file = "Data_COBRE_Logi.csv", row.names = FALSE)
save.model(logi_m2, file = "logistic_model_cobre.RData")
summary(logi_m2)
##
## Call:
## glm(formula = Subject_Type ~ ., family = "binomial", data = COBRE_train)
##
## Deviance Residuals:
##
       Min
                      Median
                                   3Q
                                            Max
                 10
## -1.7740 -0.8927 -0.3029
                               0.8723
                                         2.7946
##
## Coefficients:
##
                                              Estimate Std. Error z value
## (Intercept)
                                              -0.13280
                                                          0.24848 -0.534
                                              -0.47861
## Age
                                                          0.31704 - 1.510
## Auditory.global_eff
                                               0.27499
                                                          0.28158 0.977
## Cerebellar.global_eff
                                              -0.02965
                                                          0.27095 -0.109
## Cingulo.opercular_Task_Control.global_eff -0.64555
                                                          0.33684 -1.916
## Default_mode.global_eff
                                                          0.35894 -1.142
                                              -0.41007
                                                          0.28377 -0.586
## Dorsal_attention.global_eff
                                              -0.16624
## Fronto.parietal_Task_Control.global_eff
                                              -0.59059
                                                          0.28493 - 2.073
## Memory_retrieval.global_eff
                                                          0.27979 - 0.485
                                              -0.13569
## Salience.global_eff
                                              -0.20282
                                                          0.31132 -0.652
## Sensory.somatomotor_Hand.global_eff
                                               0.10884
                                                          0.36779 0.296
## Sensory.somatomotor_Mouth.global_eff
                                              -0.30390
                                                          0.31851 - 0.954
## Subcortical.global_eff
                                              -0.27574
                                                          0.29112 -0.947
```

```
## Uncertain.global_eff
                                              0.35474
                                                          0.28462
                                                                    1.246
## Ventral_attention.global_eff
                                              0.40859
                                                          0.29147
                                                                    1.402
## Visual.global_eff
                                              -0.74487
                                                          0.38911
                                                                   -1.914
## Visual.Subcortical
                                                          0.34568
                                               1.09163
                                                                    3.158
##
                                             Pr(>|z|)
## (Intercept)
                                              0.59303
## Age
                                              0.13114
## Auditory.global_eff
                                              0.32877
## Cerebellar.global_eff
                                              0.91286
## Cingulo.opercular_Task_Control.global_eff
                                              0.05530 .
## Default_mode.global_eff
                                              0.25327
## Dorsal_attention.global_eff
                                              0.55801
## Fronto.parietal_Task_Control.global_eff
                                              0.03820 *
## Memory_retrieval.global_eff
                                              0.62769
## Salience.global_eff
                                              0.51472
## Sensory.somatomotor_Hand.global_eff
                                              0.76728
## Sensory.somatomotor_Mouth.global_eff
                                              0.34001
## Subcortical.global_eff
                                              0.34356
## Uncertain.global_eff
                                              0.21263
## Ventral_attention.global_eff
                                              0.16097
## Visual.global_eff
                                              0.05559 .
## Visual.Subcortical
                                              0.00159 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 136.42 on 98 degrees of freedom
## Residual deviance: 105.62 on 82 degrees of freedom
## AIC: 139.62
##
## Number of Fisher Scoring iterations: 5
round(exp(coef(logi_m2)),3)
                                  (Intercept)
##
##
                                       0.876
##
                                         Age
```

```
0.620
##
##
                          Auditory.global_eff
                                         1.317
##
##
                        Cerebellar.global_eff
##
                                        0.971
   Cingulo.opercular_Task_Control.global_eff
##
                                        0.524
##
##
                      Default_mode.global_eff
##
                                        0.664
##
                 Dorsal_attention.global_eff
##
                                         0.847
     Fronto.parietal_Task_Control.global_eff
##
##
                                        0.554
##
                 Memory_retrieval.global_eff
##
                                        0.873
##
                          Salience.global_eff
##
                                        0.816
##
         Sensory.somatomotor_Hand.global_eff
##
                                         1.115
##
        Sensory.somatomotor_Mouth.global_eff
##
                                        0.738
##
                       Subcortical.global_eff
                                        0.759
##
##
                         Uncertain.global_eff
##
                                         1.426
##
                Ventral_attention.global_eff
##
                                         1.505
##
                            Visual.global_eff
                                        0.475
##
                           Visual.Subcortical
##
##
                                        2.979
anova(logi_m2, test = "Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
```

```
## Response: Subject_Type
##
## Terms added sequentially (first to last)
##
##
                                               Df Deviance Resid. Df Resid. Dev
##
## NULL
                                                                   98
                                                                          136.42
                                                    0.0417
                                                                   97
                                                                          136.38
## Age
## Auditory.global_eff
                                                1
                                                    0.3108
                                                                   96
                                                                          136.07
## Cerebellar.global_eff
                                                    1.8761
                                                                   95
                                                                          134.19
## Cingulo.opercular_Task_Control.global_eff
                                                                   94
                                                                          130.24
                                                    3.9597
## Default_mode.global_eff
                                                    1.2625
                                                                   93
                                                                          128.97
## Dorsal_attention.global_eff
                                                1
                                                    0.4660
                                                                   92
                                                                          128.51
## Fronto.parietal_Task_Control.global_eff
                                                    1.0467
                                                                   91
                                                                          127.46
                                                1
## Memory_retrieval.global_eff
                                                1
                                                    0.4759
                                                                   90
                                                                          126.98
## Salience.global_eff
                                                1
                                                    0.0280
                                                                   89
                                                                          126.96
## Sensory.somatomotor_Hand.global_eff
                                                    0.0038
                                                                   88
                                                                          126.95
                                                1
## Sensory.somatomotor_Mouth.global_eff
                                                1
                                                    1.9567
                                                                   87
                                                                          125.00
## Subcortical.global_eff
                                                1
                                                    0.0634
                                                                   86
                                                                          124.93
## Uncertain.global_eff
                                                1
                                                    1.4932
                                                                   85
                                                                          123.44
## Ventral_attention.global_eff
                                                    2.6970
                                                                   84
                                                                          120.74
                                                1
## Visual.global_eff
                                                1
                                                    2.0923
                                                                   83
                                                                          118.65
## Visual.Subcortical
                                                  13.0328
                                                                   82
                                                                          105.62
##
                                                Pr(>Chi)
## NULL
## Age
                                               0.8382831
## Auditory.global_eff
                                               0.5771834
## Cerebellar.global_eff
                                               0.1707794
## Cingulo.opercular_Task_Control.global_eff 0.0466033 *
## Default_mode.global_eff
                                               0.2611782
## Dorsal_attention.global_eff
                                               0.4948425
## Fronto.parietal_Task_Control.global_eff
                                               0.3062618
## Memory_retrieval.global_eff
                                               0.4902644
## Salience.global_eff
                                               0.8671524
## Sensory.somatomotor_Hand.global_eff
                                               0.9505287
## Sensory.somatomotor_Mouth.global_eff
                                               0.1618715
## Subcortical.global_eff
                                               0.8011719
## Uncertain.global_eff
                                               0.2217196
```

```
## Ventral_attention.global_eff
                                              0.1005368
## Visual.global_eff
                                              0.1480421
## Visual.Subcortical
                                              0.0003061 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#R-squared
R_squared <- 1 - (summary(logi_m2)[[4]]/summary(logi_m2)[[8]])</pre>
R_squared
## [1] 0.2258151
#70/30 CV check
#Train
COBRE_train$prediction <- predict(logi_m2, COBRE_train, type = "response")</pre>
#Test
COBRE_test$prediction <- predict(logi_m2, COBRE_test, type = "response")</pre>
prop.table(table(COBRE$Subject_Type))
##
##
         Control Schizophrenia
       0.5070423
                    0.4929577
##
accuracy_info <- AccuracyCutoffInfo( train = COBRE_train, test = COBRE_test,</pre>
                                      predict = "prediction", actual = "Subject_Type" )
accuracy_info$plot
```


Classify(COBRE_train, COBRE_train\$prediction, "Subject_Type", 0.425)

```
## prediction
## Control Schizophrenia
## Control 37 17
## Schizophrenia 8 37
## The accuracy is 74.747 %.
## The True positive rate is 82.222 %
```

```
Classify(COBRE_test, COBRE_test$prediction, "Subject_Type", 0.425)
##
                  prediction
##
                   Control Schizophrenia
                          9
##
     Control
                                        9
     Schizophrenia
                          5
                                       20
##
## The accuracy is 67.442 %.
## The True positive rate is 80 \%
#COBRE ROC search for better True positive rate.
\# cutoff: Optimal\ cutoff\ value\ according\ to\ the\ specified\ FP\ and\ FN\ cost .
#totalcost : Total cost according to the specified FP and FN cost.
#auc : Area under the curve.
#sensitivity : TP / (TP + FN) for the optimal cutoff.
#specificity : TN / (FP + TN) for the optimal cutoff.
cm_info2 <- ConfusionMatrixInfo(data = COBRE_test, predict = "prediction", actual = "Subject</pre>
cm_info2$plot
```


[1] 0.4276777

grid.draw(roc_info2\$plot)

Cutoff at 0.43 - Total Cost = 15000.00, AUC = 0.682


```
False Postive Rate cutoff

#COBRE model k fold CV check

set.seed(4321)

#Optimal cutoff for Accuracy
result <- cv.error(COBRE_logi_subset, "Subject_Type", cut_off = 0.425)
Accuracy.k <- result[[1]]
mean(Accuracy.k)

## [1] 0.6185714

TTP <- result[[2]]
mean(TTP)

## [1] 0.7285714

#Optimal cutoff for True postitive rate
result <- cv.error(COBRE_logi_subset, "Subject_Type", cut_off = roc_info$cutoff)
Accuracy.k <- result[[1]]
mean(Accuracy.k)
```

```
## [1] 0.597619

TTP <- result[[2]]
mean(TTP)

## [1] 0.3571429

#When we want optimize True positive rate, we gave up about 10% of accuracy.</pre>
```

Fitting Data into Model Based on the Other Study

```
set.seed(4321)
#Fit Data into model build base on other study to test how it handles data from different st
#Fit COBRE data into CNP Model
Fit_COBRE_logi_subset <- COBRE_RF_subset[,c("Subject_Type",names(COBRE_RF_subset[,c(1,137:15
  Standarize()
Fit_COBRE_test <- Fit_COBRE_logi_subset</pre>
invisible(rm(Fit_COBRE_logi_subset))
Fit_COBRE_test$prediction <- predict(logi_m1, Fit_COBRE_test, type = "response")
Classify(Fit_COBRE_test, Fit_COBRE_test$prediction, "Subject_Type", 0.17 )
##
                  prediction
##
                   Control Schizophrenia
##
     Control
                         39
                         38
                                       32
##
     Schizophrenia
## The accuracy is 50 %.
## The True positive rate is 45.714 \%
#Fit CNP data into COBRE model
Fit_CNP_logi_subset <- CNP_RF_subset[,c("Subject_Type",names(CNP_RF_subset[,c(1,137:150)]),
  Standarize()
Fit_CNP_test <- Fit_CNP_logi_subset</pre>
```

```
invisible(rm(Fit_CNP_logi_subset))
Fit_CNP_test$prediction <- predict(logi_m2, Fit_CNP_test, type = "response")</pre>
Classify(Fit_CNP_test, Fit_CNP_test$prediction, "Subject_Type", cut_off = 0.69 )
##
                  prediction
##
                   Control Schizophrenia
##
     Control
                        84
                                       31
     Schizophrenia
                        29
                                       13
##
## The accuracy is 61.783 %.
## The True positive rate is 30.952 \%
#When we introduce data from the other study, the both model has a a low testing accuracy.
#This hint us that the two studys are different.
```

Combing CNP and COBRE Data

```
#Further data cleaning to merge CNP and COBRE data
Study <- rep("CNP",nrow(CNP))

CNP <- data.frame(CNP,Study)

CNP <- CNP %>%
    select(-c(7:41))

colnames(CNP)[5:6] <- c("Ethnicity","Education")

levels(CNP$Gender) <- c("Female","Male")

Study <- rep("COBRE",nrow(COBRE))
COBRE <- data.frame(COBRE,Study)

COBRE <- COBRE %>%
    select(-c(5,8:111))
```

```
# CNP Ethinicty
#1=Hispanic origin
#2=Not of Hispanic origin
#COBRE Ethinicty
\#Caucasian = 1
#African-American
                   = 2
#Hispanic = 3
#Recoding required
table(COBRE$Ethnicity)
##
## 1 2 3
## 69 9 53
for(i in 1:length(COBRE$Ethnicity)){
  if(!is.na(COBRE$Ethnicity[i])){
    if(COBRE$Ethnicity[i] == 1 | COBRE$Ethnicity[i] == 2)
      COBRE$Ethnicity[i] <- 4
  }
}
COBRE$Ethnicity <- COBRE$Ethnicity - 2</pre>
table(COBRE$Ethnicity)
##
## 1 2
## 53 78
Data <- merge(CNP,COBRE, all = TRUE) %>%
  select(-c(1))
Data$Ethnicity <- as.factor(Data$Ethnicity)</pre>
levels(Data$Ethnicity) <- c("Hispanic", "non-Hispanic")</pre>
write.csv(Data, file = "Stats_141_Combined_Data.csv", row.names = FALSE)
```

Combined Data Modeling

```
set.seed(4321)
# Combine Data modeling
#Random Forest variable selection
rfsrc_m3 <- rfsrc(Study~.,data = Data, na.action = c("na.omit"), ntree= 1000)
max_var <- max.subtree(rfsrc_m3, conservative = TRUE)</pre>
max_var$topvars
##
    [1] "Age"
##
    [2] "Education"
   [3] "Cingulo.opercular.Cerebellar"
##
   [4] "Fronto.parietal.Dorsal_Attention"
## [5] "Subcortical.Cerebellar"
## [6] "Visual.Fronto.parietal"
## [7] "Uncertain.char_path_length"
## [8] "Cingulo.opercular_Task_Control.mod"
## [9] "Uncertain.mod"
## [10] "Subcortical.global_eff"
## [11] "Uncertain.global_eff"
## [12] "Subcortical.clust_coef"
#delete duplicate entity
subset3 <- as.vector(max_var$topvars)</pre>
subset3 <- delete_dup(subset3,Data[,c(1:5,139:152)])</pre>
```



```
#No interactioin fund base on the result, we don't have to add interaction term
#check correlation
high_cor <- findCorrelation(cor(Data_logi[,-c(1,3:5)]),cutoff = 0.75) + 4

#Remove variables to prevent multicollinearity problem
Data_logi <- Data_logi %>%
    select(-c(high_cor))
```

```
index <- sample(1:nrow(Data_logi), size = round(nrow(Data_logi)*0.7,0),replace = FALSE)</pre>
Data_train <- Data_logi[index,]</pre>
Data_test <- Data_logi[-index,]</pre>
logi_m3 <-glm(Study~. + Subject_Type*Age , data = Data_train, family = "binomial")</pre>
save.model(logi_m3, file = "logistic_model.RData")
summary(logi_m3)
##
## Call:
## glm(formula = Study ~ . + Subject_Type * Age, family = "binomial",
##
       data = Data_train)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                    3Q
                                            Max
## -2.7700 -0.6746 -0.3092
                               0.7643
                                        2.4375
##
## Coefficients:
##
                                              Estimate Std. Error z value
## (Intercept)
                                              -0.53169
                                                          0.42039 -1.265
## Age
                                               0.36891
                                                          0.31853
                                                                    1.158
## GenderMale
                                               0.46669
                                                          0.43638
                                                                    1.069
## Subject_TypeSchizophrenia
                                               0.38913
                                                          0.47163
                                                                    0.825
## Ethnicitynon-Hispanic
                                              -0.21121
                                                          0.44299 -0.477
## Education
                                              -0.48969
                                                          0.24136 -2.029
## Auditory.global_eff
                                               0.22337
                                                          0.23506
                                                                    0.950
## Cerebellar.global_eff
                                              -0.29040
                                                          0.23386 -1.242
## Cingulo.opercular_Task_Control.global_eff 0.33690
                                                          0.26957
                                                                    1.250
## Default_mode.global_eff
                                              -0.09649
                                                          0.28185 -0.342
## Dorsal_attention.global_eff
                                               0.25471
                                                          0.24005
                                                                    1.061
## Fronto.parietal_Task_Control.global_eff
                                               0.01053
                                                          0.23382
                                                                    0.045
## Memory_retrieval.global_eff
                                              -0.11565
                                                          0.21575 -0.536
## Salience.global_eff
                                               0.33326
                                                          0.24352
                                                                    1.368
## Sensory.somatomotor_Hand.global_eff
                                               0.03733
                                                          0.30262
                                                                    0.123
## Sensory.somatomotor_Mouth.global_eff
                                              -0.12186
                                                          0.25212 - 0.483
## Subcortical.global_eff
                                               0.35924
                                                          0.26237
                                                                    1.369
```

##	Uncertain.global_eff	-0.33765	0.24043	-1.404
##	Ventral_attention.global_eff	-0.11511	0.22425	-0.513
##	Visual.global_eff	-0.17071	0.26198	-0.652
##	Cingulo.opercular.Cerebellar	-0.59461	0.28980	-2.052
##	Subcortical.Cerebellar	-0.31993	0.31572	-1.013
##	Visual.Fronto.parietal	0.15127	0.31430	0.481
##	Cingulo.opercular_Task_Control.mod	0.40354	0.23812	1.695
##	Uncertain.mod	0.39313	0.24439	1.609
##	Subcortical.clust_coef	0.50978	0.23507	2.169
##	Age:Subject_TypeSchizophrenia	-0.09416	0.42299	-0.223
##		Pr(> z)		
##	(Intercept)	0.2060		
##	Age	0.2468		
##	GenderMale	0.2849		
##	Subject_TypeSchizophrenia	0.4093		
##	Ethnicitynon-Hispanic	0.6335		
##	Education	0.0425	*	
##	Auditory.global_eff	0.3420		
##	Cerebellar.global_eff	0.2143		
##	${\tt Cingulo.opercular_Task_Control.global_eff}$	0.2114		
##	Default_mode.global_eff	0.7321		
##	Dorsal_attention.global_eff	0.2887		
##	Fronto.parietal_Task_Control.global_eff	0.9641		
##	Memory_retrieval.global_eff	0.5919		
##	Salience.global_eff	0.1712		
##	Sensory.somatomotor_Hand.global_eff	0.9018		
##	Sensory.somatomotor_Mouth.global_eff	0.6289		
##	Subcortical.global_eff	0.1709		
##	Uncertain.global_eff	0.1602		
##	Ventral_attention.global_eff	0.6077		
##	Visual.global_eff	0.5146		
##	Cingulo.opercular.Cerebellar	0.0402	*	
##	Subcortical.Cerebellar	0.3109		
##	Visual.Fronto.parietal	0.6303		
##	Cingulo.opercular_Task_Control.mod	0.0901		
##	Uncertain.mod	0.1077		
##	Subcortical.clust_coef	0.0301	*	
##	Age:Subject_TypeSchizophrenia	0.8239		

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
##
       Null deviance: 265.96 on 193 degrees of freedom
## Residual deviance: 178.00 on 167 degrees of freedom
## AIC: 232
##
## Number of Fisher Scoring iterations: 5
round(exp(coef(logi_m3)),3)
##
                                  (Intercept)
                                        0.588
##
##
                                          Age
                                        1.446
##
##
                                  GenderMale
##
                                        1.595
                   Subject_TypeSchizophrenia
##
##
##
                       Ethnicitynon-Hispanic
##
                                        0.810
##
                                   Education
##
                                        0.613
##
                         Auditory.global_eff
##
                                        1.250
##
                       Cerebellar.global_eff
##
                                        0.748
##
   Cingulo.opercular_Task_Control.global_eff
##
                                        1.401
##
                     Default_mode.global_eff
##
                                        0.908
##
                 Dorsal_attention.global_eff
##
                                        1.290
     Fronto.parietal_Task_Control.global_eff
##
##
                                        1.011
```

Memory_retrieval.global_eff

##

```
##
                                         0.891
                          Salience.global_eff
##
                                         1.396
##
##
         Sensory.somatomotor_Hand.global_eff
##
##
        Sensory.somatomotor_Mouth.global_eff
                                         0.885
##
##
                       Subcortical.global_eff
##
                                         1.432
##
                         Uncertain.global_eff
##
                                         0.713
                Ventral_attention.global_eff
##
##
                                         0.891
##
                            Visual.global_eff
##
                                         0.843
##
                Cingulo.opercular.Cerebellar
##
                                         0.552
##
                       Subcortical.Cerebellar
##
                                         0.726
##
                       Visual.Fronto.parietal
##
                                         1.163
##
          Cingulo.opercular_Task_Control.mod
                                         1.497
##
##
                                Uncertain.mod
##
                                         1.482
##
                       Subcortical.clust_coef
##
                                         1.665
##
               Age:Subject_TypeSchizophrenia
##
                                         0.910
anova(logi_m3, test = "Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: Study
##
```

```
## Terms added sequentially (first to last)
##
##
                                               Df Deviance Resid. Df Resid. Dev
##
                                                                   193
## NULL
                                                                           265.96
                                                     3.3371
## Age
                                                 1
                                                                   192
                                                                           262.63
## Gender
                                                     6.2191
                                                 1
                                                                   191
                                                                           256.41
## Subject_Type
                                                     7.2228
                                                                           249.19
                                                 1
                                                                   190
## Ethnicity
                                                 1
                                                     0.5869
                                                                   189
                                                                           248.60
## Education
                                                    12.7223
                                                 1
                                                                   188
                                                                           235.88
## Auditory.global_eff
                                                 1
                                                     3.6053
                                                                   187
                                                                           232.27
## Cerebellar.global_eff
                                                     6.4624
                                                                   186
                                                                           225.81
## Cingulo.opercular_Task_Control.global_eff
                                                     0.2843
                                                                   185
                                                                           225.52
                                                1
## Default_mode.global_eff
                                                 1
                                                     3.6685
                                                                   184
                                                                           221.86
## Dorsal_attention.global_eff
                                                 1
                                                     1.5829
                                                                   183
                                                                           220.27
## Fronto.parietal_Task_Control.global_eff
                                                     0.0726
                                                                   182
                                                                           220.20
## Memory_retrieval.global_eff
                                                     0.0668
                                                                           220.13
                                                 1
                                                                   181
## Salience.global_eff
                                                 1
                                                     3.7711
                                                                   180
                                                                           216.36
## Sensory.somatomotor_Hand.global_eff
                                                     0.0170
                                                 1
                                                                   179
                                                                           216.34
## Sensory.somatomotor_Mouth.global_eff
                                                 1
                                                     0.4466
                                                                   178
                                                                           215.90
## Subcortical.global_eff
                                                     3.5802
                                                                   177
                                                                           212.32
                                                 1
## Uncertain.global_eff
                                                 1
                                                     5.7028
                                                                   176
                                                                           206.62
## Ventral_attention.global_eff
                                                 1
                                                     0.4207
                                                                   175
                                                                           206.19
## Visual.global_eff
                                                     2.0756
                                                                   174
                                                                           204.12
                                                 1
## Cingulo.opercular.Cerebellar
                                                 1
                                                    14.1765
                                                                   173
                                                                           189.94
## Subcortical.Cerebellar
                                                 1
                                                     1.8643
                                                                   172
                                                                           188.08
## Visual.Fronto.parietal
                                                 1
                                                     0.0379
                                                                   171
                                                                           188.04
## Cingulo.opercular_Task_Control.mod
                                                 1
                                                     2.3040
                                                                   170
                                                                           185.74
## Uncertain.mod
                                                 1
                                                     2.3636
                                                                   169
                                                                           183.37
## Subcortical.clust_coef
                                                 1
                                                     5.3243
                                                                   168
                                                                           178.05
## Age:Subject_Type
                                                 1
                                                     0.0495
                                                                   167
                                                                           178.00
                                                Pr(>Chi)
##
## NULL
## Age
                                               0.0677343 .
## Gender
                                               0.0126379 *
## Subject_Type
                                               0.0071985 **
## Ethnicity
                                               0.4436360
                                               0.0003613 ***
## Education
```

```
## Auditory.global_eff
                                             0.0575963 .
## Cerebellar.global_eff
                                             0.0110179 *
## Cingulo.opercular_Task_Control.global_eff 0.5938826
## Default_mode.global_eff
                                             0.0554491 .
## Dorsal_attention.global_eff
                                             0.2083497
## Fronto.parietal_Task_Control.global_eff
                                             0.7875658
## Memory_retrieval.global_eff
                                             0.7959919
## Salience.global_eff
                                             0.0521457 .
## Sensory.somatomotor_Hand.global_eff
                                             0.8961752
## Sensory.somatomotor_Mouth.global_eff
                                             0.5039533
## Subcortical.global_eff
                                             0.0584732 .
## Uncertain.global_eff
                                             0.0169375 *
## Ventral_attention.global_eff
                                             0.5165702
## Visual.global_eff
                                             0.1496697
## Cingulo.opercular.Cerebellar
                                             0.0001664 ***
## Subcortical.Cerebellar
                                             0.1721237
## Visual.Fronto.parietal
                                             0.8457015
## Cingulo.opercular_Task_Control.mod
                                             0.1290434
## Uncertain.mod
                                             0.1241928
## Subcortical.clust coef
                                             0.0210304 *
## Age:Subject_Type
                                             0.8239025
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#R-squared
R_squared <- 1 - (summary(logi_m3)[[4]]/summary(logi_m3)[[8]])</pre>
R_squared
## [1] 0.3307403
#Effect plot
plot(Effect(c("Subject_Type", "Age"), logi_m3),ask = FALSE)
```


#Train Data_train\$prediction <- predict(logi_m3, Data_train, type = "response") #Test Data_test\$prediction <- predict(logi_m3, Data_test, type = "response") prop.table(table(Data\$Study))</pre>

```
##
##
         CNP
                 COBRE
## 0.5250836 0.4749164
accuracy_info <- AccuracyCutoffInfo( train = Data_train, test = Data_test,</pre>
                                      predict = "prediction", actual = "Study" )
accuracy_info$plot
```


Classify(Data_train, Data_train\$prediction, "Study", 0.55)

prediction

```
CNP COBRE
##
     CNP
            95
                  14
##
     COBRE 22
                  63
##
## The accuracy is 81.443 %.
## The True positive rate is 74.118 \%
Classify(Data_test, Data_test$prediction, "Study", 0.55)
##
          prediction
           CNP COBRE
##
##
     CNP
            30
                   9
     COBRE 16
                  28
##
## The accuracy is 69.88 %.
## The True positive rate is 63.636 \%
#Combine data model k fold CV check
set.seed(4321)
Accuracy.k <- cv.error(Data_logi, "Study", cut_off = 0.55)[[1]]</pre>
Accuracy.k
    [1] 0.7142857 0.7857143 0.8518519 0.8571429 0.7500000 0.8214286 0.7777778
##
   [8] 0.6666667 0.6428571 0.5714286
##
mean(Accuracy.k)
## [1] 0.7439153
Plots
```

```
par(mfrow = c(2,2))

ggplot(data = na.omit(Data), aes(x = Gender, fill = Study)) +
  geom_bar() +
  theme_bw()
```



```
ggplot(data = na.omit(Data), aes(x = Ethnicity, fill = Study)) +
  geom_bar() +
  theme_bw()
```



```
plot1 <- ggplot(data = na.omit(Data), aes(x = Study, y = Age)) +
    geom_boxplot(fill = "steelblue") +
    theme_bw()

plot2 <- ggplot(data = na.omit(Data), aes(x = Age, fill = Study)) +
    geom_density(alpha = 0.4) +
    theme_bw()

grid.arrange(plot1,plot2, nrow = 1, ncol = 2)</pre>
```



```
plot3 <- ggplot(data = na.omit(Data), aes(x = Study, y = Education)) +
    geom_boxplot(fill = "steelblue") +
    theme_bw()

plot4 <- ggplot(data = na.omit(Data), aes(x = Education, fill = Study)) +
    geom_density(alpha = 0.4) +
    theme_bw()

grid.arrange(plot3,plot4, nrow = 1, ncol = 2)</pre>
```


Hypothesis Testings

```
#Recall the anova output for the combined data set logistic model
anova(logi_m3, test = "Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: Study
##
## Terms added sequentially (first to last)
##
##
##
                                              Df Deviance Resid. Df Resid. Dev
## NULL
                                                                 193
                                                                         265.96
                                                   3.3371
## Age
                                                                 192
                                                                         262.63
```

##	Gender	1	6.2191	191	256.41		
##	Subject_Type	1	7.2228	190	249.19		
##	Ethnicity	1	0.5869	189	248.60		
##	Education	1	12.7223	188	235.88		
##	Auditory.global_eff	1	3.6053	187	232.27		
##	Cerebellar.global_eff	1	6.4624	186	225.81		
##	${\tt Cingulo.opercular_Task_Control.global_eff}$	1	0.2843	185	225.52		
##	Default_mode.global_eff	1	3.6685	184	221.86		
##	Dorsal_attention.global_eff	1	1.5829	183	220.27		
##	Fronto.parietal_Task_Control.global_eff	1	0.0726	182	220.20		
##	Memory_retrieval.global_eff	1	0.0668	181	220.13		
##	Salience.global_eff	1	3.7711	180	216.36		
##	Sensory.somatomotor_Hand.global_eff	1	0.0170	179	216.34		
##	${\tt Sensory.somatomotor_Mouth.global_eff}$	1	0.4466	178	215.90		
##	Subcortical.global_eff	1	3.5802	177	212.32		
##	Uncertain.global_eff	1	5.7028	176	206.62		
##	Ventral_attention.global_eff	1	0.4207	175	206.19		
##	Visual.global_eff	1	2.0756	174	204.12		
##	Cingulo.opercular.Cerebellar	1	14.1765	173	189.94		
##	Subcortical.Cerebellar	1	1.8643	172	188.08		
##	Visual.Fronto.parietal	1	0.0379	171	188.04		
##	Cingulo.opercular_Task_Control.mod	1	2.3040	170	185.74		
##	Uncertain.mod	1	2.3636	169	183.37		
##	Subcortical.clust_coef	1	5.3243	168	178.05		
##	Age:Subject_Type	1	0.0495	167	178.00		
##		Pr	(>Chi)				
##	NULL						
##	Age	0.0677343 .					
##	Gender	0.0126379 *					
##	Subject_Type	0.0071985 **					
##	Ethnicity	0.4	0.4436360				
##	Education	0.0	0.0003613 ***				
##	Auditory.global_eff	0.0575963 .					
##	Cerebellar.global_eff	0.0110179 *					
##	${\tt Cingulo.opercular_Task_Control.global_eff}$	0.5938826					
##	Default_mode.global_eff	0.0554491 .					
##	Dorsal_attention.global_eff	0.2083497					
##	Fronto.parietal_Task_Control.global_eff	0.7	7875658				

```
## Memory_retrieval.global_eff
                                             0.7959919
## Salience.global_eff
                                             0.0521457 .
## Sensory.somatomotor_Hand.global_eff
                                             0.8961752
## Sensory.somatomotor_Mouth.global_eff
                                             0.5039533
## Subcortical.global_eff
                                             0.0584732 .
## Uncertain.global_eff
                                             0.0169375 *
## Ventral_attention.global_eff
                                             0.5165702
## Visual.global_eff
                                             0.1496697
## Cingulo.opercular.Cerebellar
                                             0.0001664 ***
## Subcortical.Cerebellar
                                             0.1721237
## Visual.Fronto.parietal
                                             0.8457015
## Cingulo.opercular_Task_Control.mod
                                             0.1290434
## Uncertain.mod
                                             0.1241928
## Subcortical.clust_coef
                                             0.0210304 *
## Age:Subject_Type
                                             0.8239025
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#Hypothesis testing for demographic variables in the combined data set
t.test(Age~Study, data = Data_logi)
##
## Welch Two Sample t-test
##
## data: Age by Study
## t = -2.8159, df = 227.22, p-value = 0.005292
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.5820745 -0.1028142
## sample estimates:
##
     mean in group CNP mean in group COBRE
            -0.1594777
##
                                 0.1829667
t.test(Education~Study, data = Data_logi)
##
##
   Welch Two Sample t-test
##
```

```
## data: Education by Study
## t = 4.5959, df = 272.59, p-value = 6.597e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3046507 0.7612365
## sample estimates:
    mean in group CNP mean in group COBRE
##
             0.2481939
                                -0.2847496
#Pearson's chi-squared test
#H_{0} = there is no difference between the distributions
#H_{1} = there is a difference between the distributions
chisq.test(table(Data_logi$Study, Data_logi$Gender))
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(Data_logi$Study, Data_logi$Gender)
## X-squared = 9.9677, df = 1, p-value = 0.001593
chisq.test(table(Data_logi$Study, Data_logi$Ethnicity))
##
  Pearson's Chi-squared test with Yates' continuity correction
##
##
## data: table(Data_logi$Study, Data_logi$Ethnicity)
## X-squared = 1.2223e-30, df = 1, p-value = 1
chisq.test(table(Data_logi$Study, Data_logi$Subject_Type))
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(Data_logi$Study, Data_logi$Subject_Type)
## X-squared = 16.988, df = 1, p-value = 3.762e-05
```