Assignment 3: Sentiment Analysis with Transformer Models

Final Submission Report

Submitted by: Yarra Mahidhar

Date: July 9, 2025

1. Overview

This project focuses on building a sentiment classification pipeline for customer reviews using transformer-based models. The objective was to compare a traditional baseline model (TF-IDF + Logistic Regression) with a fine-tuned transformer model (DistilBERT), and deploy the best model through an interactive web interface using Streamlit.

The pipeline includes:

- Data preprocessing
- Model training (baseline and transformer)
- Evaluation and comparison
- Web app development
- Optional Dockerization for deployment

2. Dataset and Preprocessing

Source: Amazon Customer Reviews Dataset

Initial Columns:

- ➤ Id
- Product Id
- User Id
- Profile Name
- > Helpfulness Numerator
- > Helpfulness Denominator
- Score
- > Time
- Summary
- > Text

Preprocessing Steps

Removed rows with missing Score and Text

Removed neutral reviews (Score = 3)

Applied binary labeling:

1 for positive sentiment (Score \geq 4)

0 for negative sentiment (Score \leq 2)

Created a balanced dataset of 10,000 positive and 10,000 negative samples

Feature Engineering (Baseline)

Used TF-IDF vectorization on the Text column for the baseline model

3. Models Implemented

Baseline Model: TF-IDF + Logistic Regression

- Vectorized text using TfidfVectorizer
- Trained LogisticRegression classifier

Evaluated using:

Classificatio	n Report:			
	precision	recall	f1-score	support
negative	0.84	0.85	0.85	20000
positive	0.85	0.84	0.85	20000
accuracy			0.85	40000
macro avg	0.85	0.85	0.85	40000
weighted avg	0.85	0.85	0.85	40000

> Fine-Tuned Transformer: DistilBERT

Used DistilBERT from Hugging Face's Transformers library

Tokenization:

- via DistilBertTokenizer into input IDs and attention masks
- Model: DistilBertForSequenceClassification (binary classification)

Training Config:

- Applied weight decay and learning rate scheduler
- Tuned epochs, batch size, and learning rate

Evaluation Metrics:

✓ Accuracy: 0.9125
 ✓ Precision: 0.9141
 ✓ Recall: 0.9125
 ✓ F1 Score: 0.9123

4. Evaluation and Results

Key Findings:

The DistilBERT model significantly outperformed the baseline across all metrics

Similar studies have shown:

LSTM models:up 84.71% accuracy and 84.71% F1-score **DistilBERT:** up to 91.25% accuracy and 91.23% F1-score

5. Streamlit Web Application

Developed an interactive Streamlit app to demonstrate the model's performance. **Features:**

- Text input area for user reviews
- Real-time sentiment prediction (Positive/Negative)
- Confidence score display
- Integrated with the fine-tuned DistilBERT model
 - Before Input

 Where X is taking X is model, fracting X is Sectioner Analysis X + - X

 Where X is taking X is model, fracting X is Sectioner Analysis X + - X

 Coulty 1

 Country 1

6. Conclusion and Future Work

Accomplishments:

- Implemented both a baseline and a transformer-based sentiment analysis model
- Demonstrated that DistilBERT outperforms traditional models
- Built an interactive and user-friendly Streamlit web app
- Successfully containerized the project using Docker for seamless deployment

Future Enhancements:

- Try other transformer models (e.g., BERT, RoBERTa, ALBERT)
- Add multi-class emotion detection (happy, angry, sad, etc.)
- Integrate with real-time data sources (Twitter API, Reddit comments, etc.)
- Add feedback loop or model retraining with user inputs