Estructura y expresión de los genes (Transcripción I)

MARÍA DEL PILAR MÁRQUEZ DEPARTAMENTO DE BIOLOGÍA

¿Cómo se expresa el material genético?

Un vistazo al Dogma Central de la Biología Molecular

¿Cuáles regiones del genoma se expresan (transcriben)?

Las regiones codificantes del genoma (GENES)

¿Qué es un gen?

Es una secuencia ordenada de nucleótidos en la molécula de **ADN** (o ARN en el caso de algunos virus), que contiene la información necesaria para la <u>síntesis de una macromolécula</u> con función celular específica, ARN (codificantes y no codificantes)

Estructura general de un gen

¿Son todos los genes así?

Estructura general de un gen

Estructura general de un gen bacteriano

Estructura general de un gen <u>bacteriano</u>

reguladores

Gen bacteriano: región reguladora

Gen bacteriano: región estructural

Gen bacteriano: regiones estructural y terminadora

Estructura general de un gen eucariota

Los genes eucariotas son monocistrónicos

Estructura general de un gen eucariota

Unidad Transcripcional

Dogma Central de la Biología Molecular

La replicación y la transcripción: dos procesos similares

SIMILITUDES

- Participan enzimas (polimerasas)
- Síntesis de una cadena nueva de ácido nucléico
- Se requiere un molde

DIFERENCIAS

- Transcripción: ribonucleótidos
- RNA polimerasa NO necesita de primer o iniciador
- RNA no permanece apareado al molde de DNA
- Transcripción es menos precisa que la replicación (tasa de error: 1c/10.000nt)
- La transcripción solo copia ciertas partes del genoma

¿Qué es la transcripción?

Proceso mediante el cual la información contenida en el DNA es transferida a una molécula de RNA, sintetizada por la acción de la enzima RNA polimerasa

Tipos de RNA

CODIFICANTES

- Intermediarios de polipéptidos
- Transcrito primario
- Procariotas: mRNA
- Eucariotas: Pre-mRNA

NO CODIFICANTES

- No llevan a polipéptidos
- Productos finales
- -rRNA
- -tRNA
- -Otros RNA

En el RNA hay una relación directa entre secuencia, forma y función

La transcripción es asimétrica porque solo se copia una de las cadenas de DNA

Se genera una secuencia de RNA "copia" que es complementaria y antiparalela a la secuencia molde de DNA (3'-5') e idéntica a la cadena 5' – 3' excepto por el contenido de timinas

Asimetría de la Transcripción

Cadena codificante: 5' --- 3'

Cadena molde: 3' --- 5'

RNA: 5' --- 3'

https://www.biointeractive.org/es/classroom-resources/transcripcion-del-adn-version-detallada

EUCARIOTAS

Compartimentación de la transcripción y la traducción

BACTERIAS

A medida que la hebra mRNA va saliendo INMEDIATAMENTE se acopla un ribosoma para iniciar la traducción

- RNA polimerasa
- Promotor
- Elongación 3´OH libre
- Factor de terminación

http://mol-biol4masters.masters.grkraj.org/html/Gene_Expression_I2-RNA_Polymerases.htm

https://en.wikipedia.org/wiki/File:TATA_box_mechanism.png

RNA polimerasa

Necesitan como molde

Requieren un ADN desenrollado

 La síntesis se realiza en sentido

5' **⇒** 3'

- Utilizan 4 NTPs como sustrato
- No requieren de un *primer* de RNA
- Necesitan un ión metálico divalente Mg²⁺

El proceso produce siempre un RNA

RNA polimerasa procariota

- Bacteria
- •Un tipo para todos los genes procariotas
- Reconoce la caja de Pribnow (-10 región reguladora)
- Terminación por repeticiones invertidas (terminadores intrínsecos) o por interacción con proteína rho (ρ)
- •Holoenzima consta de subunidades σ , α , β y β '

σ está unida débilmente a las otras subunidades

Regula el reconocimiento de la cadena molde (promotores)

RNA polimerasa procariota

<u>Bacteria</u>

Núcleo de la polimerasa

Subunidad	Función
β	Formación del enlace fosfodiéster, centro catalítico de la enzima
β'	Unión al DNA molde, centro catalítico de la enzima
α	Ensamblaje de la enzima, reconoce el promotor, enlaza algunos activadores
σ	Regula el reconocimiento de la cadena molde (promotores)

Bacterial RNA polymerase

RNA polimerasa eucariota

Eucariotas: existen varios tipos de RNA polimerasas

Polimerasa	Localización	Tipo de RNA que transcribe
I	Núcleo / nucleolo	rRNA 28S, 18S y 5.8S
II	Núcleo	Pre-mRNA y snRNA
III	Núcleo	tRNA, snRNA y 5S RNA

RNA pol IV y V en plantas: RNA de interferencia pequeños

RNA polimerasa eucariota

Requiere un promotor núcleo o central para la iniciación de la transcripción

Se identifica por secuencias diana cerca del sitio de iniciación (+1 de la transcripción) de muchos genes eucariotas

Especifica el sitio de inicio de la transcripción y la dirección de la transcripción

Etapas de la transcripción

- > Reconocimiento de la cadena molde The Three Steps of Transcription
- Iniciación
- Elongación
- > Terminación

PROCARIOTAS

1. Reconocimiento de la cadena molde

Reconocimiento del promotor por parte del factor sigma σ

Sigma σ está unida débilmente a las otras subunidades por lo que regula el reconocimiento de la cadena molde

Separación de las hebras de DNA cerca de la secuencia promotora

Burbuja de transcripción

2. Iniciación

La polimerasa se une al promotor después del reconocimiento por parte de la subunidad sigma σ

Bacteria: caja de Pribnow

No requiere iniciador o *primer*

Figure 11-6 Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)

2. Iniciación

Se transcriben los 10 primeros nucleótidos de la cadena molde La disociación de sigma σ finaliza la iniciación

3. Elongación

- Desplazamiento de la burbuja de transcripción
- Formación del complejo de elongación
- ■Formación de híbrido DNA RNA (10pb)
- ■La RNA polimerasa se desplaza a lo largo de la cadena de DNA sobre un molde 3′ 5′ con la burbuja de transcripción

4. Terminación

Detención de la RNA polimerasa:

Dependiente de rho p

Presencia de una secuencia rica en C y pobre en G (50-90pb) en el RNA naciente

ρ reconoce la secuencia específica y rompe la unión RNA – RNA polimerasa, haciendo que el híbrido DNA-RNA se separe

Reconocimiento de sitio *Rut* en el RNA

Unión de *rho* al sitio *Rut* en el RNA

Rho suelta el RNA de la RNA polimerasa

4. Terminación

Desestabilización híbrido DNA-RNA:

Independiente de ρ (*rho*)

- Aparición de una secuencia repetitiva y autocomplementaria en el DNA molde que es transcrita al RNA naciente: terminadores intrínsecos
- el RNA forma una horquilla que hace que el híbrido ADN-RNA se separe

Para llevar a casa...

Estructura general de un gen

La transcripción solo copia ciertas partes del genoma... los genes

El molde siempre es una cadena en sentido 3' – 5' – El sentido de polimerización es 5' – 3'

La RNA polimerasa NO necesita de un primer

RNA polimerasa procariota: holoenzima – diferentes subunidades: $\sigma \beta \beta' \alpha$

Etapas: iniciación,

elongación y terminación

Continuará...

https://www.youtube.com/watch?v=qOA25GbUkdA&t=41s

https://www.khanacademy.org/science/ap-biology/gene-expression-and-regulation/transcription-and-rna-processing/v/molecular-structure-of-rna