Opcode Decoder

By Sidhardh Burre

CS/ECE 2330 Digital Logic Design

February 13, 2021

Table of Contents

Contents

1 Froblem Statement	т
2 Analytical Design	2
3 Numerical Verification	
4 Summary	4

Table of Figures

Figure 1: Simple CPU Instruction Format]
Figure 2: Truth Table and Logical Expressions for Opcode Decoder	
Figure 3: Circuit for Opcode Decoder	
Figure 4: Input Test Vectors	
Figure 5: Test Results (Table)	
Figure 6: Test Results (Graph)	

1 Problem Statement

Design a digital decoding circuit to decode the 3-bit opcode for the instruction format shown in Figure 1. The 8 instructions and corresponding outputs are featured in Table 1. The corresponding command should be outputted only when execute is activated.

Figure 1: Simple CPU Instruction Format

Opcode	Mnemonic	Operation
000	Load N	Load D0 with the contents at memory address = N
001	Store N	Store contents of D0 at memory address = N
010	Add N	The contents at memory address = N are added to the contents of $D0$ and then stored in $D0$
011	Sub N	The contents at memory address = N are subtracted from the contents of $D0$ and then stored in $D0$
100	Inc N	The contents at memory address = N are incremented by 1
101	Dec N	The contents are memory address = N are incremented by 1
110	Bra N	The Program Counter (PC) is loaded with the memory address $=$ N
111	Beq N	The Program Counter (PC) Is loaded with the memory address = N if the last arithmetic operation produced a result of zero (indicated by the zero
		bit of the ALU, $Z = 1$).

Table 1: Simple CPU Instructions

2 Analytical Design

The truth table for the opcode decoder is shown in Figure 2 along with the logical equations that allow the opcode input to be converted into the corresponding signal.

Figure 2: Truth Table and Logical Expressions for Opcode Decoder

The logical expressions were analyzed to form the circuit schematic shown in Figure 3.

Figure 3: Circuit for Opcode Decoder

3 Numerical Verification

Shown in Figure 4, Figure 5, and Figure 6 are the numerical verification results, where an extensive set of input test vectors (Figure 4) were applied to the circuit.

Figure 4: Input Test Vectors

Figure 5: Test Results (Table)

Figure 6: Test Results (Graph)

4 Summary

The problem requirement for this assignment was to design an opcode decoder circuit gated by an execute input that triggers a unique output for each unique value of the opcode input. When the execute produces a 0, nothing is output but when the execute is a 1, the corresponding opcode output is outputted.

The truth table and corresponding logical equations were essential to defining functionality and developing a logic expression, that was then used to specify a digital circuit solution. The digital circuit was tested with an extensive set of input vectors (16 test vectors for 9 inputs) and produced the expected output for each test vector. Therefore, the specified digital circuit design solution satisfies the problem requirements.