

การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 12 คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา

7 มิถุนายน 2559 เวลา 08.30 – 13.30 น.

ขอสอบภาคทฤษฎี

ศูนย์	สอวน.	 ••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
	ระจำตั					

คำชี้แจงการสอบภาคทฤษฎี

- 1. ข้อสอบภาคทฤษฎีมีคะแนนรวม 120 คะแนน คิดเป็น 60 % ของคะแนนทั้งหมด
- 2. ตรวจสอบเอกสารก่อนลงมือทำ ดังนี้
 - 2.1 ข้อสอบภาคทฤษฎี 1 ชุด จำนวน 19 หน้า (รวมปก)
 - 2.2 กระดาษคำตอบภาคทฤษฎี 1 ชุด จำนวน 30 หน้า (รวมปก)
 - 2.3 เลขประจำตัวสอบในข้อสอบภาคทฤษฎีและกระดาษคำตอบภาคทฤษฎีถูกต้องทุกหน้า
- 3. ลงมือทำข้อสอบเมื่อกรรมการคุมสอบประกาศให้ "ลงมือทำ" และเมื่อประกาศว่า "หมดเวลา" ให้หยุดทำ ข้อสอบทันที และรวบรวมกระดาษคำถามและกระดาษคำตอบใส่ในซองเอกสารตามเดิม และให้กรรมการคุมสอบ ลงนามก่อนออกจากห้องสอบ
- 4. **เขียนตอบในกระดาษคำตอบด้วยปากกาสีน้ำเงินที่จัดเตรียมให้เท่านั้น** โดยเขียนในกรอบที่กำหนดให้ตรงกับข้อ กรณีเขียนผิดให้ขีดฆ่าและเขียนใหม่ให้ชัดเจน ห้ามลบด้วยน้ำยาลบคำผิด การทดหรือขีดเขียนอย่างอื่น อนุญาต ให้ทำในกระดาษข้อสอบเท่านั้น
- 5. ใช้อุปกรณ์เครื่องเขียนและเครื่องคิดเลขที่จัดเตรียมให้เท่านั้น **ห้ามยืมผู้อื่นใช้โดยเด็ดขาด**
- 6. โจทย์คำนวณให้แสดงวิธีทำอย่างละเอียดตามที่โจทย์กำหนด กรณีคำตอบที่เป็นตัวเลข ต้องคำนึงถึง เลขนัยสำคัญและ/หรือเลขหลังจุดทศนิยมตามที่โจทย์ระบุ
- 7. ระหว่างการสอบ สามารถรับประทานอาหารว่างที่วางไว้บนโต๊ะได้ และอนุญาตให้เข้าห้องน้ำได้ในกรณีจำเป็น โดยมีเจ้าหน้าที่หรือนิสิตพี่เลี้ยงติดตามไปด้วย
- 8. ห้ามนำอุปกรณ์สื่อสารหรือเอกสารใด ๆ เข้าหรือออกจากห้องสอบโดยเด็ดขาด
- 9. ห้ามคุยหรือปรึกษากันในช่วงเวลาสอบ หากฝ่าฝืนจะถือว่าทุจริต

กรณีทูจริตใด ๆ ก็ตาม นักเรียนจะหมดสิทธิ์ในการแข่งขัน และจะถูกให้ออกจากห้องสอบทันที

ข้อมูลที่กำหนดให้

ค่าคงที่การลดลงของจุดเยือกแข็งของน้ำ (<i>K</i> _f)	= 1.86 °C m ⁻¹
ค่าคงที่ของแก๊ส (gas constant, <i>R</i>)	= 0.082 L atm mol ⁻¹ K ⁻¹
	= 8.314 J mol ⁻¹ K ⁻¹
ค่าคงที่ของริดเบิร์ก (Rydberg constant, $R_{ m H}$)	$= 2.18 \times 10^{-18} \text{ J}$
ค่าคงที่ของพลังค์ (Planck constant, <i>h</i>)	$= 6.63 \times 10^{-34} \text{ J s}$
ความเร็วของคลื่นแม่เหล็กไฟฟ้าในสุญญากาศ	$= 3.0 \times 10^8 \text{ m/s}$
1 atm	= 760 mmHg
0 ℃	= 273 K
ค่าคงที่ของฟาราเดย์ (Faraday's constant, <i>F</i>)	= 96,500 C mol ⁻¹
1 J	= 1 C V
1 watt (W)	$= 1 \mathrm{J s^{-1}}$
1 L atm	= 101.4 J
1 ไร่	= 400 ตารางวา
	= 1,600 ตารางเมตร
สภาพละลายได้ (solubility) ของ NaCl	= 36 g/100 mL ที่ 30 °C
K _{sp} ของ CaSO₄	$= 6.0 \times 10^{-4}$
K _{sp} ของ AgCl	$= 1.8 \times 10^{-10}$

ค่าศักย์ไฟฟ้ารีดักชันมาตรฐานของครึ่งเซลล์ไฟฟ้า (E°)

	<i>E</i> ° (∨)
$K^+ + e^- \longrightarrow K(s)$	-2.93
$Ca^{2+} + 2e^{-} \longrightarrow Ca(s)$	-2.87
$Na^+ + e^- \longrightarrow Na(s)$	-2.71
$Mg^{2+} + 2e^{-} \longrightarrow Mg(s)$	-2.36
$2H_2O(l) + 2e^- \longrightarrow H_2(g) + 2OH^-$	-0.83
$Zn^{2+} + 2e^{-} \longrightarrow Zn(s)$	-0.76
$2H^+ + 2e^- \longrightarrow H_2(g)$	0.00
$O_2(g) + 4H^+ + 4e^- \longrightarrow 2H_2O(l)$	+1.23
$Cl_2(g) + 2e^- \longrightarrow 2Cl^-$	+1.36
$S_2O_8^{2-} + 2e^- \longrightarrow 2SO_4^{2-}$	+2.01

ตารางธาตุ

1																	2
H																	He
Hydrogen																	Helium
1.00794	2																4.003
3	4		Atomic	number	1							5	6	7	8	9	10
Li	Be		Sym	ıbol								В	C	N	O	\mathbf{F}	Ne
Lithium	Beryllium		Na	me								Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
6.941	9.012182		Atomic	weight								10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.989770	24.3050											26.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	${f V}$	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.0983	40.078	44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	$\mathbf{A}\mathbf{g}$	Cd	In	Sn	Sb	Te	I	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
85.4678	87.62	88.90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
cesium	barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.90545	137.327	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

โจทย์ข้อที่ 1 (14 คะแนน)

น้ำทะเลในอ่าวไทยมีความหนาแน่น 1.020 kg/L มีองค์ประกอบหลักของตัวละลายดังนี้

	Chloride	Sodium	Sulphate	Magnesium	Calcium	Potassium
ร้อยละโดยน้ำหนัก	55.29	30.74	7.75	3.69	1.18	1.14
ความเข้มข้น (mmol/L)	557	478	29	54	10.5	10.4

การทำนาเกลือ เริ่มจากการกักเก็บน้ำทะเลไว้ใน**นาขัง**เพื่อให้สารแขวนลอยและสิ่งปนเปื้อนตกตะกอน จากนั้นสูบน้ำที่ ได้เข้าสู่**นาตาก**เพื่อให้น้ำระเหยด้วยความร้อนจากแสงแดด เมื่อความเข้มข้นของเกลือพอเหมาะจึงปล่อยน้ำที่ได้เข้าสู่ นาเชื้อ ตากแดดให้น้ำระเหยซึ่งจะเกิดผลึกของสารเจือปนก่อน จากนั้นจึงปล่อยน้ำเข้าสู่<u>นาปลง</u> ตากแดดต่ออีก 3-5 วัน เกลือจึงตกผลึก

กำหนดให้ ความเค็ม (salinity) = มวลรวมในหน่วยกรัมของของแข็งที่ละลายได้ในน้ำทะเล 1 กิโลกรัม

- 1.1 (3 คะแนน) จงหาค่าความเค็มของน้ำทะเลข้างต้น
- 1.2 (2.5 คะแนน) ถ้าต้องการหาความเข้มข้นของคลอไรด์ไอออนในน้ำทะเลในนาขังโดยการไทเทรตแบบทำให้ ตกตะกอนด้วยสารละลายซิลเวอร์ไนเทรตเข้มข้น 0.1 mol/L หากต้องการปริมาตรของไทแทรนต์ที่จุดยุติ ประมาณ 20 mL และต้องการปิเปตสารตัวอย่าง 25.00 mL จะต้องเจือจางน้ำทะเลก่อนการไทเทรตเป็นกี่เท่า
- 1.3 (5 คะแนน) หากความสูงของน้ำทะเลในนาขังเริ่มต้นเท่ากับ h ต้องตากแดดให้ความสูงของน้ำทะเลในนาเชื้อ เหลือเป็นกี่เท่าของ h สารเจือปนจึงเริ่มตกผลึก สมมติว่า น้ำที่หายไปเกิดจากการระเหยเท่านั้น
- 1.4 (3.5 คะแนน) ถ้าระดับความสูงของน้ำทะเลในนาขังเท่ากับ 50 cm นาแต่ละแปลงมีพื้นที่ 10 ไร่ ตากแดด จนเหลือระดับน้ำทะเลในนาปลงสูงเท่ากับ 1 cm จะได้เกลือกี่ตัน สมมติว่า เกลือที่เกิดขึ้นเป็นเกลือโซเดียม คลอไรด์เท่านั้น และอุณหภูมิของน้ำทะเลเท่ากับ 30 °C

โจทย์ข้อที่ 2 (7 คะแนน)

กำหนดให้ $H_2CO_3: K_{a1} = 4.200 \times 10^{-7}$ และ $K_{a2} = 5.600 \times 10^{-11}$

น้ำทะเลมี pH ประมาณ 8–8.1 ซึ่งเป็นเบสเล็กน้อย การเปลี่ยนแปลง pH ขึ้นกับหลายปัจจัย เช่น การสังเคราะห์แสง ของพืชในน้ำ การหายใจของสัตว์น้ำ รวมทั้งปริมาณแก๊สคาร์บอนไดออกไซด์ในบรรยากาศที่ละลายลงในทะเล

- 2.1 (3 คะแนน) ถ้าน้ำทะเลบริเวณบางแสนมี pH 8.0000 และมีคาร์บอนไดออกไซด์ละลายอยู่ในรูปไฮโดรเจน คาร์บอเนตและคาร์บอเนต โดยมีความเข้มข้นของไฮโดรเจนคาร์บอเนตและคาร์บอเนตรวมเป็น 2.300 × 10⁻³ mol/L จงหาความเข้มข้นของไอออนแต่ละชนิดโดยถือว่า ไอออนชนิดอื่น ๆ ในน้ำทะเลมีผลต่อ pH น้อยมาก
- 2.2 (4 คะแนน) แก๊สคาร์บอนไดออกไซด์ในบรรยากาศที่มีปริมาณมาก จะละลายในน้ำทะเลได้มากขึ้น ทำให้มี ความเป็นกรดมากขึ้น เรียกว่า ปรากฏการณ์ทะเลกรด (ocean acidification) ซึ่งส่งผลกระทบต่อการ ดำรงชีวิตของพืชและสัตว์น้ำ

สมมุติให้อากาศบริเวณบางแสนมีปริมาณแก๊สชนิดต่าง ๆ ดังตาราง

แก๊ส	ในโตรเจน	ออกซิเจน	อาร์กอน	คาร์บอนไดออกไซด์	อื่น ๆ
ร้อยละโดยปริมาตร	78.05	20.90	0.92	0.12	0.01

pH ของน้ำทะเลที่บางแสนจะเปลี่ยนเป็นเท่าใด ถ้าการละลายของแก๊สคาร์บอนไดออกไซด์ในอากาศในน้ำ ทะเลเป็นไปตามกฎของเฮนรี (Henry's law) ดังนี้

$$C_{g} = kP_{g}$$

เมื่อ $C_{\rm e}$ คือ ค่าการละลายของแก๊ส (mol/L)

 $P_{\rm g}$ คือ ค่าความดันย่อยของแก๊ส (atm)

k คือ ค่าคงที่ของเฮนรี = $1.6 \times 10^{-2} \text{ mol L}^{-1} \text{ atm}^{-1}$ สำหรับแก๊ส CO_2

โจทย์ข้อที่ 3 (10 คะแนน)

กำหนดให้ น้ำทะเลมีความหนาแน่นเท่ากับ 1.020 kg/L ประกอบด้วยไอออนชนิดต่าง ๆ โดยมี pH 8.00

- 3.1 (3 คะแนน) ปลาทะเลชนิดหนึ่งสามารถรักษาความเข้มข้นของเกลือในเลือดให้มีความดันออสโมติก (osmotic pressure) เท่ากับน้ำทะเลซึ่งมีจุดเยือกแข็ง –2.4 °C ได้โดยไม่มีการสูญเสียน้ำออกสู่ภายนอกโดยวิธีออสโมซิส ถ้าต้องการนำมาเลี้ยงในพิพิธภัณฑ์สัตว์น้ำ (aquarium) ที่ใช้น้ำทะเลเทียม (artificial seawater, ASW) ความดันออสโมติกของน้ำทะเลเทียมต้องมีค่าเท่าใดที่อุณหภูมิ 27.0 °C
 - สมมุติว่า เกลือทั้งหมดในน้ำทะเลและน้ำทะเลเทียมอยู่ในรูปของ sodium chloride และ van't Hoff factor (i) เป็นไปตามทฤษฎี
- 3.2 (7 คะแนน) ใน ค.ศ. 1973 มีข้อเสนอให้กู้เรือไททานิกซึ่งจมในมหาสมุทรแอตแลนติกที่ความลึก 2 ไมล์ ซึ่งมี ความดันสูงมากถึง 300 atm ไม่สามารถสูบอากาศลงไปยกเรือให้ลอยขึ้นได้ จึงมีข้อเสนอให้ใช้วิธีแยกสลาย น้ำทะเลด้วยไฟฟ้า (electrolysis) ซึ่งจะแยกสลายน้ำทะเลทำให้เกิดแก๊สไฮโดรเจน โดยประมาณว่า ต้องใช้ แก๊สไฮโดรเจน 7.0 × 10⁸ mol ที่ 25 °C เพื่อให้เกิดแรงลอยตัวเพียงพอที่จะยกเรือไททานิกขึ้นสู่ผิวน้ำได้ (ที่มา: Journal of Chemical Education, vol. 50, p. 61, 1973)
 - 3.2.1 การแยกสลายน้ำทะเลด้วยไฟฟ้าเพื่อให้ได้แก๊สไฮโดรเจนตามต้องการนี้ต้องใช้ประจุไฟฟ้ากี่คูลอมบ์
 - 3.2.2 ถ้าเรือจมอยู่ที่ความลึก 2 ไมล์ ซึ่งมีความดัน 300 atm ศักย์ไฟฟ้าต่ำสุดที่ต้องใช้แยกสลายน้ำทะเล ทำให้เกิด H₂ และ O₂ เป็นเท่าใด
 - 3.2.3 งานทางไฟฟ้าต่ำสุด (ΔG, J) ที่ต้องใช้ในการยกเรือไททานิกโดยการแยกสลายน้ำทะเลด้วยไฟฟ้าเป็น เท่าใด
 - 3.2.4 ค่าใช้จ่ายต่ำสุดของพลังงานไฟฟ้าในการผลิต H₂ เป็นเท่าใด ถ้าอัตราค่าไฟฟ้าสำหรับกิจการชั่วคราว เป็น 6.3434 บาทต่อหน่วย (kilowatt-hour)

โจทย์ข้อที่ 4 (9 คะแนน)

พิจารณาข้อมูลต่อไปนี้

- ก. ธาตุ Q เป็นของแข็งที่อุณหภูมิห้อง ผิวเป็นมันวาว นำไฟฟ้าได้ดี อยู่ในคาบไม่เกิน 4 และมีเลขออกซิเดชัน สูงสุดเท่ากับ +4 การเตรียมในอุตสาหกรรมทำได้โดยรีดิวซ์สารประกอบคลอไรด์ QCl₄ ด้วยแมกนีเซียมที่ อุณหภูมิสูงในบรรยากาศของแก๊สอาร์กอน อย่างไรก็ตาม ถ้ารีดิวซ์ QCl₄ ด้วยสังกะสีในกรดไฮโดรคลอริกจะได้ QCl₃ ซึ่งถูกรีดิวซ์ต่อไปเป็น QCl₂ (ไม่ได้ ธาตุ Q) และ QCl₂ จะถูกออกซิไดส์กลายเป็น QCl₃ เมื่อทิ้งไว้ในอากาศ QCl₄ เป็นของเหลวที่อุณหภูมิห้อง เมื่อสัมผัสน้ำหรือความชื้นจะเกิดปฏิกิริยาทันที เห็นเป็นควันสีขาวซึ่งเป็น
 - QCl₄ เป็นของเหลวที่อุณหภูมิห้อง เมื่อสัมผัสน้ำหรือความชื้นจะเกิดปฏิกิริยาทันที เห็นเป็นควันสีขาวซึ่งเป็น อนุภาคเล็ก ๆ ของสารประกอบออกไซด์ที่มีน้ำผลึกอยู่ เมื่อนำสารที่เกิดขึ้นไปอบให้แห้งจะได้ผลึกสีขาวที่มี จุดหลอมเหลวสูง
- ข. **ธาตุ R** อยู่คนละหมู่กับ Q และมีมวลอะตอมน้อยกว่า สารประกอบ RCl_4 เป็นของเหลวที่อุณหภูมิห้อง และ ถูกไฮโดรไลส์ในน้ำอย่างรวดเร็วคล้าย QCl_4
- ค. **ธาตุ Z** เป็นของแข็งที่ไม่ระเหิดง่าย อยู่ในกลุ่ม p เป็นธาตุองค์ประกอบหนึ่งในสิ่งมีชีวิต สารประกอบคลอไรด์ ชนิดหนึ่งของ Z มีสูตร ZCl_5 ในสถานะของแข็ง ผลึก ZCl_5 ประกอบด้วยไอออนประจุ +1 และ -1 โดย แต่ละไอออนมีพันธะโคเวเลนต์ Z-Cl และเลขออกซิเดชันของ Z ไม่เปลี่ยนแปลง

<u>กำหนด</u> ค่าศักย์ไฟฟ้ารีดักชันมาตรฐาน (E°) ในสารละลายกรดเพิ่มเติมดังนี้

	E° (V)
(*) $QO^{2+} + 2H^{+} + e^{-} \longrightarrow Q^{3+} + H_2O(l)$	0.15
$Q^{3+} + e^{-} \longrightarrow Q^{2+}$	-0.37
$Q^{2+} + 2e^{-} \longrightarrow Q(s)$	-1.63

- (*) เป็นฟอร์มที่เสถียรของเลขออกซิเดชันนี้เมื่ออยู่ในสารละลาย
- 4.1 (2 คะแนน) เหตุใด Zn/HCl จึงไม่สามารถรีดิวซ์ QCl $_4$ ไปเป็นธาตุ Q อธิบายโดยใช้การคำนวณประกอบ
- 4.2 (2 คะแนน) จงเขียนสมการแสดงปฏิกิริยาที่เกิดขึ้นในข้อ ก. มา 4 สมการเท่านั้น โดยใช้สัญลักษณ์ของธาตุ ตามที่ปรากฏในตารางธาตุ
- 4.3 (2 คะแนน) จงหาค่า E° ของครึ่งปฏิกิริยา $Q^{3+} + 3e^- \longrightarrow Q(s)$
- 4.4 (1 คะแนน) R ควรเป็นธาตุอะไร และ 1 อะตอมมีอิเล็กตรอนเดี่ยวจำนวนเท่าใด
- 4.5 (2 คะแนน) ไอออนในข้อ ค. มีสูตรเคมีและรูปทรงเป็นอย่างไรตามหลัก VSEPR (ตอบโดยใช้สัญลักษณ์ของ ธาตุตามตารางธาตุ)

โจทย์ข้อที่ 5 (10 คะแนน)

แกรไฟต์และเพชรเป็นอัญรูปของธาตุคาร์บอนโดยทั้งสองอัญรูปมีโครงสร้างแบบ covalent network

โครงสร้างของเพชร

โครงสร้างแกรไฟต์

สารที่มีความเป็นผลึกประกอบด้วยระนาบของอะตอมที่เรียงตัวกันอย่างเป็นระเบียบ และมี pattern ซ้ำที่สม่ำเสมอ (periodic arrays) สามารถทำให้เกิดการเลี้ยวเบนของรังสีเอกซ์ (X-ray diffraction) เมื่อมุมที่รังสีเอกซ์ตกกระทบ ระนาบเท่ากับมุมการเลี้ยวเบน (θ) และทำให้เกิดการแทรกสอดแบบเสริม (constructive interference) ส่งผลให้ เกิดสัญญาณที่สามารถวัดได้

นักเรียนสามารถคำนวณหาระยะห่างระหว่างระนาบของอะตอม (d) จากมุม heta และความยาวคลื่นของรังสีตกกระทบ (λ) โดยใช้ Bragg's Law:

$$2d \sin \theta = n\lambda$$
 เมื่อ n เป็นเลขจำนวนเต็ม

หลักการเลี้ยวเบนของรังสีเอกซ์ (Powder X-ray Diffraction, PXRD) นี้ถูกนำมาใช้ในเทคนิควิเคราะห์สารที่มี ความเป็นผลึก โดยให้สเปกตรัมซึ่งเป็นสัญญาณที่แสดงความสัมพันธ์ระหว่างมุม 2 θ และความเข้ม (intensity) การวัด PXRD ของสารตัวอย่างแกรไฟต์ชนิดหนึ่งให้สัญญาณที่ 27.0°

- 5.1 (1 คะแนน) ถ้าความยาวคลื่นของรังสีเอกซ์ที่ใช้เท่ากับ 1.54 × 10⁻¹⁰ m ระยะห่างระหว่างระนาบคาร์บอนที่ ใกล้กันที่สุดของแกรไฟต์เป็นกี่เมตร
- 5.2 (3.5 คะแนน) ภาพล่างซ้ายแสดงการจัดเรียงอะตอมในแกรไฟต์ซึ่งมีประเภท packing แบบ ABABAB...
 ภาพล่างขวาแสดง unit cell ของแกรไฟต์ ซึ่งเป็นแบบ hexagonal unit cell โดยความยาวของ unit cell
 เป็นดังนี้

และมุมของ unit cell เป็นดังนี้

ปริมาตรของ unit cell หาได้จากสมการ :

$$V = a^2 \times c \times \sin 120^\circ$$

การจัดเรียงอะตอมในแกรไฟต์

unit cell ของแกรไฟต์

จงหาจำนวนอะตอม C ต่อ unit cell ของแกรไฟต์ และปริมาตรของ unit cell ของแกรไฟต์ในหน่วย m² โดย แสดงวิธีคำนวณให้ชัดเจน

กำหนดให้ รัศมีของอะตอม C (r) มีค่าเท่ากับ $0.710 \times 10^{-10} \text{ m}$ (0.710 Å) และใช้คำตอบที่ได้ในข้อ 5.1 ประกอบการคำนวณ

5.3 (3 คะแนน) จากภาพด้านล่างแสดง unit cell ของเพชรที่เป็นแบบ cubic และอะตอมที่ชิดกันที่สุด ได้แก่ อะตอม C ที่มุมของ unit cell และอะตอม C ที่ใกล้ที่สุดภายใน unit cell (หรืออะตอม C ที่อยู่ภายใน โครงสร้าง tetrahedron ดังแสดงในรูปด้านขวา)

จงหาจำนวนอะตอม C ต่อ unit cell ของเพชร และปริมาตรของ unit cell นี้ในรูปของ r เมื่อ r คือรัศมีของ อะตอม C โดยแสดงวิธีคำนวณให้ชัดเจน

5.4 (2.5 คะแนน) จงหาค่าร้อยละประสิทธิภาพการบรรจุอะตอมใน unit cell (% packing efficiency) ของ เพชรและแกรไฟต์

โจทย์ข้อที่ 6 (10.5 คะแนน)

สารกลุ่มพอร์ไฟริน (porphyrin) เป็น conjugated heterocyclic macrocycle ที่มีบทบาทสำคัญ เช่น เป็น ส่วนประกอบของฮีโมโกลบินในเม็ดเลือดแดงที่ทำหน้าที่ขนส่งออกซิเจน หรือคลอโรฟิลล์ในพืชที่ทำหน้าที่สังเคราะห์แสง การวาดรูปสารเชิงซ้อนของพอร์ไฟรินนิยมใช้รูปวงรีแทนวงแมโครไซเคิล

ปฏิกิริยาอย่างง่ายที่ใช้ในการสังเคราะห์พอร์ไฟรินจากแอลดีไฮด์และ pyrrole แสดงได้ดังนี้

พอร์ไฟราซีน (porphyrazine หรือ tetraazaporphyrin) เป็นอนุพันธ์หนึ่งของพอร์ไฟรินที่มีอะตอมไนโตรเจน แทนที่ตำแหน่งของคาร์บอนซึ่งเชื่อมระหว่างวง pyrrole ความสามารถในการแทนที่ไฮโดรเจนบนวง pyrrole ของ พอร์ไฟราซีนด้วยอะตอมหรือหมู่ฟังก์ชันอื่น ๆ ทำให้นำพอร์ไฟราซีนไปใช้ประโยชน์ได้หลายอย่าง เช่น เซนเซอร์ สารย้อมสี เป็นต้น สูตรของสารเชิงซ้อนของพอร์ไฟราซีนนิยมใช้ตัวย่อ Pz แทนพอร์ไฟราซีนในสูตร

ในการศึกษาสารประกอบโคออร์ดิเนชัน X ของพอร์ไฟราซีน Y ซึ่งไม่มีหมู่แทนที่พบว่า สารประกอบนี้ประกอบไปด้วย พอร์ไฟราซีน เหล็ก และ pyridine (py) ชนิดละ 1 equivalent

- 6.1 (1 คะแนน) วาดรูปโครงสร้างของพอร์ไฟราซีน **Y**
- 6.2 (5 คะแนน) วาดรูปโครงสร้างโดยใช้วงรีแทนพอร์ไฟราซีน เขียนสูตร และชื่อเป็นภาษาอังกฤษของไอโซเมอร์ ที่เป็นไปได้ทั้งหมดของสารประกอบโคออร์ดิเนชัน X โดยแสดงส่วนที่เป็นสารเชิงซ้อนให้ชัดเจน
- 6.3 (2 คะแนน) หากสารละลาย **X** 0.010 M 50.00 mL สามารถทำปฏิกิริยากับ $AgNO_3$ ได้ จะต้องใช้ $AgNO_3$ กี่กรัมละลายในน้ำ 75.00 mL จึงจะทำปฏิกิริยากันพอดี สารละลายของ **X** มีค่าการนำไฟฟ้าใกล้เคียงกับ สารใดต่อไปนี้ที่ความเข้มข้นเท่ากันระหว่าง KNO_3 , $K_3Cr(CN)_6$, $CaCl_2$ และ glucose
- 6.4 (1.5 คะแนน) หากนำ X ไปทำรีดักชันที่โลหะอะตอมกลางแล้วได้สารประกอบโคออร์ดิเนชัน W ที่มีเลข โคออร์ดิเนชันลดลง มวลโมเลกุลของ W จะเปลี่ยนไปอย่างไรเมื่อเทียบกับ X เพราะเหตุใด
- 6.5 (1 คะแนน) พอร์ไฟราซีน Z เกิดจากการนำ Y ไปแทนที่ไฮโดรเจนด้วยหมู่ CN⁻ 2 หมู่บนวง pyrrole วงหนึ่ง และด้วยหมู่ CH₃ 2 หมู่บนวง pyrrole ถัดไป สารเชิงซ้อนของ Co(II) กับ Z คลอไรด์ และ pyridine มี จำนวนไอโซเมอร์ได้ทั้งหมดก็ไอโซเมอร์

โจทย์ข้อที่ 7 (15 คะแนน)

กำหนดให้ สัดส่วนของคาร์บอนในธรรมชาติมี C-12 = 99.0 % และ C-14 = 1.0 % ค่าครึ่งชีวิตของ C-14 = 5,730 ปี

Average Bond Enthalpies (kJ/mol)

C–H	413	C-O	358	О-Н	463
C-C	348	C=O	799	0-0	146
C=C	614	C≡O	1072	0=0	495
C≡C	839	C-N	293	N-H	391
		C=N	615	N-N	163
		C≡N	891	N=N	416
				N≡N	941

- 7.1 (3 คะแนน) ปะการังดูดซับแคลเซียมไอออน (Ca²⁺) และไฮโดรเจนคาร์บอเนตไอออน (HCO₃⁻) จากน้ำทะเล มาทำปฏิกิริยาเป็นแคลเซียมคาร์บอเนตเพื่อใช้เป็นโครงสร้างเปลือกแข็งของปะการัง ถ้าปะการังชิ้นหนึ่ง ประกอบด้วย C-12 อยู่ 99.9 % ปะการังนี้มีอายุอย่างน้อยกี่ปี
- 7.2 (3.5 คะแนน) เอทานอล (C₂H₅OH) ใช้เป็นเชื้อเพลิงและเป็นองค์ประกอบของแก๊สโซฮอล์ โดยเกิดการสันดาป ดังปฏิกิริยาต่อไปนี้

$$C_2H_5OH(g)+O_2(g)\longrightarrow CO_2(g)+H_2O(g)$$
 (สมการยังไม่คุล)

กำหนดให้ การสันดาปเอทานอลด้วยเงื่อนไขต่าง ๆ ที่อุณหภูมิคงที่ เป็นเวลา 10 วินาที ได้ผลดังตาราง

การทดลองที่	ความเข้มข้น C ₂ H ₅ OH เริ่มต้น (M)	ความเข้มข้น O ₂ เริ่มต้น (M)	ความเข้มข้น CO ₂ ที่เกิดขึ้น (M)
1	а	b	Х
2	а	2b	У
3	3a	b	Z

- 7.2.1 จงหาอันดับของปฏิกิริยาการสันดาปของเอทานอลในรูปของตัวแปร
- 7.2.2 จงหาค่าคงที่อัตราการเกิดปฏิกิริยา (k) ของปฏิกิริยานี้ในรูปของตัวแปรโดยใช้ข้อมูลจากการทดลองที่ 1

- 7.3 (5 คะแนน) การสันดาป **เอทานอล** และ **1-โพรพานอล** สารใดให้ความร้อนต่อน้ำหนักของสารสูงกว่ากัน เท่าใด ให้แสดงตัวอย่างการคำนวณหาพลังงานที่ได้จากการเผาไหม้ของ **เอทานอล** หรือ **1-โพรพานอล** ภายใต้ สภาวะบรรยากาศ (ออกซิเจนมากเกินพอ) มา 1 ตัวอย่าง
- 7.4 (3.5 คะแนน) หากเปลวไฟที่เกิดจากการสันดาปเอทานอลเป็นแสงสีแดงและมีความยาวคลื่นเท่ากับ 656 nm แสงสีแดงนี้จะกระตุ้นให้อิเล็กตรอนในอะตอมไฮโดรเจนเปลี่ยนระดับพลังงานจากระดับพลังงานใด (n_i) ไปยัง ระดับพลังงานใด (n_t)

โจทย์ข้อที่ 8 (15 คะแนน)

8.1 (4.5 คะแนน) แบตเตอรี่อากาศเป็นพัฒนาการของแบตเตอรี่ที่ใช้ในรถยนต์ซึ่งเป็นเซลล์ที่ใช้ออกซิเจนใน อากาศเป็นตัวออกซิไดส์ร่วมกับขั้วไฟฟ้าโลหะ เช่น แบตเตอรี่อากาศอะลูมิเนียม ใช้อะลูมิเนียมและแท่ง คาร์บอนเป็นขั้วไฟฟ้าจุ่มอยู่ในสารละลาย OH¯ ซึ่งเป็นอิเล็กโทรไลต์ และเกิดปฏิกิริยาของเซลล์ดังนี้

Al(s) +
$$O_2(g) \longrightarrow [Al(OH)_4]^-(aq)$$
 $E^\circ = 2.0 \text{ V}$ (สมการยังไม่ดุล)

- 8.1.1 จงเขียนปฏิกิริยาที่ขั้วแอโนด ขั้วแคโทด และปฏิกิริยาของเซลล์ที่ดุลแล้ว
- 8.1.2 ถ้าศักย์ไฟฟ้าของเซลล์เพิ่มขึ้น 1.0 imes 10 $^{ ext{-4}}$ imes เมื่ออุณหภูมิเพิ่มขึ้นทุก ๆ 1 $^{\circ}$ C และ $\Delta S = nFx$

เมื่อ *n* คือ จำนวนอิเล็กตรอนในปฏิกิริยา

F คือ Faraday's constant

x คือ การเพิ่มขึ้นของศักย์ไฟฟ้าต่อ 1 หน่วยอุณหภูมิ

จงคำนวณ ΔG° , ΔS° และ ΔH° ของเซลล์แบตเตอรี่อากาศอะลูมิเนียมที่อุณหภูมิ 25 $^\circ$ C

8.2 (6 คะแนน) Adiabatic expansion หมายถึง การเปลี่ยนแปลงที่ไม่มีการถ่ายเทความร้อนหรือพลังงาน ระหว่างระบบกับสิ่งแวดล้อม (q=0) โดยมีความสัมพันธ์ระหว่างความดัน (P) กับปริมาตร (V) ดังนี้

$$P_1V_1^{\gamma} = P_2V_2^{\gamma}$$

เมื่อ
$$\gamma = \frac{C_p}{C_p}$$

 C_P และ C_V คือ ความจุความร้อนเมื่อความดันและปริมาตรคงที่ตามลำดับ ซึ่งกำหนดให้มีค่าคงที่

เมื่อนำแก๊ส He ซึ่งเป็น ideal gas จำนวน 1 โมล มาทำให้ขยายตัวแบบ adiabatic ที่อุณหภูมิเริ่มต้น 300 K โดยมีความดันเริ่มต้นและความดันสุดท้ายเป็น 10.0 และ 1.0 atm ตามลำดับ จงคำนวณปริมาตรเริ่มต้น ปริมาตรสุดท้าย อุณหภูมิสุดท้าย และงานจากการขยายตัวนี้

8.3 (4.5 คะแนน) ของเหลวชนิดหนึ่งมีสมบัติดังนี้

ความหนาแน่น = 1.2 g/cm³

ความร้อนแฝงของการเกิดไอ = 40,000 J/mol

จุดเดือดที่ 1 atm = 115 °C

เมื่อนำของเหลวชนิดนี้ 2 โมล ทำให้กลายเป็นไอจนหมดที่ 115 °C, 1 atm จงคำนวณปริมาตรไอ ปริมาตร ของเหลว และพลังงานของการเปลี่ยนแปลง (ΔE)

กำหนดให้ ของเหลวมีมวลโมเลกุลเท่ากับ 30 และไอของของเหลวมีพฤติกรรมเป็น ideal gas

Problem 9 (14.5 points)

Having had a very bad toothache for a week, Lily went to see a dentist. She was put under a local anesthetic (pain killer) procaine. A decayed tooth was treated with a root canal procedure and the dentist prescribed her with some medicine. Chloramphenicol was prescribed to prevent bacterial infection while Naproxen sodium was for her pain. Synthetic routes for the chloroprocaine (a derivative of procaine), chloramphenicol, and Naproxen sodium are as follows:

9.1 Synthesis of chloroprocaine

Toluene was converted to products A and B. Compound A was further treated with Reagent 1 to afford C. The rest of the scheme is shown below.

Scheme 1. A synthetic route for chloroprocaine (F).

9.2 Synthesis of chloramphenicol

Scheme 2. A synthetic route for chloramphenicol.

9.3 Synthesis of (S)-Naproxen sodium

Scheme 3. A synthetic route for Naproxen sodium.

Questions:

- 9.1 (6 points) From the synthetic pathway for chloroprocaine shown in Scheme 1, write structural formula of compounds A, B, C, D, E, F and Reagents 1 and 2.
- 9.2 (5 points) From the synthetic pathway for chloramphenical shown in Scheme 2, write structural formula of compounds **G**, **H**, **J**, **K** and **Reagent 3**.
- 9.3 (3.5 points) From the synthetic pathway for (*S*)-Naproxen sodium shown in Scheme 3, write structural formula of compounds L, M, N, P and Naproxen sodium (Q).

Problem 10 (9 points)

Nucleic acids are a class of important biomolecules found in all living organisms and have an important role of storing genetic information. They are categorized into deoxyribonucleic acids (DNA) and ribonucleic acids (RNA), differing by the structures of the sugar units.

In essence, biomolecules like this can be considered as "biopolymers", which are bio-synthesized from three parts of monomer units, ribose or deoxyribose (five-carbon sugar), a nucleobase, and a phosphate group. The structure of adenosine monophosphate (AMP), a monomer unit of RNA, is shown below.

Adenosine monophosphate (AMP)

10.1 (3 points) Suggest the major structure of AMP at pH 3 and 14 using the following p K_a data.

Group	pK _a
phosphate	0.9, 6.05
adenine	3.74
ribose	13.06

- 10.2 (1 point) From the structure given in the answer sheet, identify all stereogenic centers by writing an asterisk (*) next to the stereogenic atoms.
- 10.3 (2 points) DNA usually forms a stable double helix with another DNA strand, a finding that made James Watson and Francis Crick won the Noble Prize in medicine in 1962. The nucleobase unit of DNA plays a critical role in maintaining this orientation as each standard nucleobase has a specific nucleobase partner that can reproducibly form hydrogen bonds with.

The hydrogen bonding patterns of common partners (A-T and C-G) are shown below.

Standard partners. A is paired with T and C is paired with G.

Inosine, a special nucleobase, can from hydrogen bonds with several standard bases. Suggest a possible hydrogen bonding pattern between inosine and adenine in <u>the DNA double helix structure</u>.

- 10.4 (1 point) Tautomerism, an isomerization process commonly found in carbonyl compound, can also occur to the nucleobases with nitrogen replacing the α -carbon. Suggest the structure of tautomer of inosine.
- 10.5 (2 points) Write the hydrogen bonding pattern between a standard base (A, T, C, or G as shown above) and tautomeric form of inosine (structure of your answer to question 10.4).

Problem 11 (6 points)

Based on the following scheme, write structural formula of compounds A, B, C, D, and E. Also identify Reagents 1 and 2.

