305 Lecture 12.1 - Modal Tableau

Brian Weatherson

- To introduce tableau for proving things in modal logic.

Associated Reading

• Boxes and Diamonds, section 5.1

Modal Tableau

One big difference:

- On each line, we include reference to a world.
- The line says that a particular proposition is true or false at a world.
- The tableau only close if the tableau says the same proposition is both true and false at the same world.

Referring to Worlds

We refer to a world with a string of numbers, such as 1.2.1.3.

- The string tells you something (but not everything) about R relations.
- World x can always access world x.y.
- So there is an R-relation from 1.2.1 to 1.2.1.3, and indeed to 1.2.1.x for any x.
- These don't exhaust the R-relations; perhaps there is also an R-relation from 1.2.1.3 back to 1.2.1.
- But the relation from x to x.y is guaranteed.
- Note that worlds can be picked out by multiple strings we do not assume that 1.1 and 1.2 are different, though we don't assume they are the same either.

Rules

The rules for the old connectives stay as they are.

- The only difference is that you have to note which world you are in.
- So if you have that A ∧ B is true in 1.4.7, then you have to write down that A is true in 1.4.7, and that B is true in 1.4.7.
- And if A V B is true in 1.6.8 you have to have two branches, one where A is true in 1.6.8, and the other where B is true in 1.6.8.
- But otherwise things are as they were before.

If $\Box A$ is true at x, then for any x.y that is already on the tree, we can infer that A is true at x.y.

- Note: If there is no x.y on the tree, we can't assume that there is one.
- ¬A can be true at a world because that world can't access any
 other world.

Rules for □ (cont)

If $\Box A$ is false at x, then we have to add a **new** x.y, and make A false at x.y.

- It is very important that x.y be new.
- We know that A is false at some accessible world, but we don't know which one.
- For any given world, A might be true there, as long as it is false somewhere.
- · That's why we use a new number.
- Remember that it might be that multiple strings refer to the same world.

Rules for \diamondsuit

If $\diamondsuit A$ is true at x, then we have to add a **new** x.y, and make A true at x.y.

- It is very important that x.y be new.
- We know that A is true at some accessible world, but we don't know which one.
- For any given world, A might be false there, as long as it is false somewhere.
- · That's why we use a new number.
- Remember that it might be that multiple strings refer to the same world.

Rules for \diamondsuit (cont)

If $\Diamond A$ is false at x, then for any x.y that is already on the tree, we can infer that A is false at x.y.

- Note: If there is no x.y on the tree, we can't assume that there is one.
- A can be false at a world because that world can't access any other world.

$(\Box A \land \Box B) \rightarrow \Box (A \land B)$

1.
1,
$$\mathbb{F}$$
 ($\square A \wedge \square B$) $\rightarrow \square (A \wedge B)$ Assumption
2.
1, \mathbb{T} $\square A \wedge \square B$ $\rightarrow \mathbb{F}$, 1
3.
1, \mathbb{F} $\square (A \wedge B)$ $\rightarrow \mathbb{F}$, 1
4.
1, \mathbb{T} $\square A$ $\wedge \mathbb{T}$, 2
5.
1, \mathbb{T} $\square B$ $\wedge \mathbb{T}$, 2
6.
1.1, \mathbb{F} $A \wedge B$ $\square \mathbb{F}$, 3
7.
1.1, \mathbb{F} A 1.1, \mathbb{F} B $\wedge \mathbb{F}$, 6
8.
1.1, \mathbb{T} A 1.1, \mathbb{T} B $\square \mathbb{T}$, 4; $\square \mathbb{T}$, 5

$\Diamond (A \vee B) \rightarrow (\Diamond A \vee \Diamond B)$

We'll look at how to extend this approach to other logics.