Handout zu: Top-to-random shuffle und strong stationary times

Manuel Hinz

30.06.2020

Was bisher geschah: Definitionen aus LPW

Definition 1. A random mapping representation of a transition matrix P on state space \mathcal{X} is

- a function $f: \mathcal{X} \times \Lambda \to \mathcal{X}$
- along with a Λ -valued random variable Z
- $satisfying P\{f(x,Z) = y\} = P(x,y)$

Definition 2. The total variation distance between two probability distributions μ and ν on \mathcal{X} is defined by

$$\|\mu - \nu\|_{TV} = \max_{A \subseteq \mathcal{X}} |\mu(A) - \nu(A)|.$$
 (1)

Definition 3.

$$d(t) := \max_{x \in \mathcal{X}} \|P^{t}(x, \cdot) - \pi\|_{TV}$$
 (2)

$$\bar{d}(t) := \max_{x,y \in \mathcal{X}} \|P^t(x,\cdot) - P^t(y,\cdot)\|_{TV}$$
(3)

Definition 4. The mixing time is defined by

$$t_{mix}(\epsilon) := \min\{t : d(t) \le \epsilon\} \tag{4}$$

and

$$t_{mix} := t_{mix}(\frac{1}{4}) \tag{5}$$

Definition 5. Suppose a probability distribution π on \mathcal{X} satisfies:

$$\forall_{x,y\in\mathcal{X}}\pi(x)P(x,y) = \pi(y)P(y,x) \tag{6}$$

The equations are called the detailed balance equations.

Definition 6. The time reversal of an irreducible Markov chain with transition matrix P and stationary distribution π is the chain with matrix

$$\hat{P}(x,y) := \frac{\pi(y)P(y,x)}{\pi(x)} \tag{7}$$

The stationary equation $\pi = \pi P$ implies that \hat{P} is a stochastic matrix.

Inhalt

Top-to-random shuffle

- \bullet Ein Deck aus n Karten soll gemischt werden.
- Oberste Karte wird an eine zufällige Position im verbleibenden Deck gesteckt.
- Dieser Mischvorgang entspricht einem random walk auf der Gruppe S_n .

Proposition 1. Sei X_t ein random walk auf S_n , welcher dem top-to-random Mischvorgang entspricht. Seien zum Zeitpunkt t k Karten unter der Karte ρ , welche bei t=0 zu unterst liegt. Dann ist jede der k! möglichen Ordnung gleich wahrscheinlich. Sei τ_{top} die Zeit, welche einen Zeitschritt nach dem ρ die oberste Karte ist. Die Verteilung von $X_{\tau_{top}}$ ist dann gleichmäßig über S_n und die Zeit τ_{top} ist unabhängig von $X_{\tau_{top}}$.

Definition 2. Für eine Menge Ω ist eine σ -Algebra eine Menge \mathcal{F} von Teilmengen mit

- (i) $\Omega \in \mathcal{F}$,
- (ii) wenn $A_1, A_2, \dots \in \mathcal{F}$, dann schon $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$, und
- (iii) wenn $A \in \mathcal{F}$, dann $A^c = \Omega \setminus A \in \mathcal{F}$.

Sei A eine Menge von Mengen. Wir schreiben $\sigma(A)$ für die kleinste σ -Algebra, welche A enthält.

Definition 3. Eine Menge Ω mit einer σ -Algebra \mathcal{F} und einer Funktion $f: \Omega \to \mathbb{R}$ wird **messbar** genannt, wenn $f^{-1}(B) \in \mathcal{F}$ für alle offenen Mengen $B \subset \mathbb{R}$ gilt.

Definition 4. Sei $\{\mathcal{F}_t\}$ eine Filtration, d.h. eine Sequenz von σ -Algebraen s.d. $\mathcal{F}_t \subset \mathcal{F}_{t+1}$ für alle t gilt. $\{X_t\}$ heißt adaptiert zu $\{\mathcal{F}_t\}$, wenn X_t für alle t \mathcal{F}_t -messbar ist. Wenn $\mathcal{H}_t = \sigma(X_0, X_1, \ldots, X_t)$, dann heißt $\{\mathcal{H}_t\}$ die natürliche Filtration. Sei $\{X_t\}$ zu $\{\mathcal{F}_t\}$ adaptiert. Man nennt $\{X_t\}$ eine **Markovkette** bezüglich $\{\mathcal{F}_t\}$, wenn

$$P_x\{X_{t+1} = y | \mathcal{F}_t\} = P(X_t, y),$$

wobei P die Transitionsmatrix. Eine Markovkette erfüllt die Gleichung, wenn $\{\mathcal{F}_t\}$ die natürliche Filtration ist.

Definition 5. Eine **Stoppzeit** (stopping time) für eine Filtration $\{\mathcal{F}_{\perp}\}$ ist eine $\{0, 1, \ldots\}$ -wertige Zufallsgröße τ s.d. $\{\tau = t\} \in \mathcal{F}_t$. Wenn die Filtration einer Stoppzeit nicht angegeben ist, so wird die natürliche Filtration angenommen. Bsp: τ_{top} .

Sei $A \subset \mathcal{X}$. Dann ist

$$\tau_A = \min\{t \ge 0 : X_t \in A\}$$

eine hitting time un die erste Zeit zu der die Sequenz (X_t) in A ist. τ_A ist für die natural filtration eine stopping time, da $\{X_0 \not\in A, X_1 \not\in A, \dots X_{t-1} \not\in A, X_t \in A\} \subset \sigma(X_0, X_1, \dots, X_t)$.

Definition 6. Für einen Startwert x nennt man $y \in \mathcal{X}$ einen **halting state** für eine stopping time τ , falls

$$X_t = y \implies \tau \le t.$$
 (8)

(Strong) Stationary Times

Definition 7. Sei (X_t) eine irreduzible Markovkette mit Gleichgewichtsverteilung π . Sei nun $\{\mathcal{F}_t\}$ eine Filtration und $\{X_t\}$ adaptiert zu $\{\mathcal{F}_t\}$. Eine **stationary** time (Gleichgewichtszeit) τ von (X_t) ist eine $\{\mathcal{F}_t\}$ stopping time, evtl. abhängig von der Startposition x, s.d die Verteilung von X_{τ} π ist:

$$\forall y : P_x \{ X_\tau = y \} = \pi(y). \tag{9}$$

Definition 8. Sei (X_t) eine Markovkette bezüglich der Filtration $\{\mathcal{F}_t\}$, mit Gleichgewichtsverteilung π . Eine **strong stationary time** (starke Gleichgewichtszeit) von (X_t) und Anfangsposition x ist eine $\{\mathcal{F}_t\}$ -stopping time τ , s.d. für alle t und alle y folgendes gilt:

$$P_x\{\tau = t, X_\tau = y\} = P_x\{\tau = t\}\pi(y). \tag{10}$$

Mit anderen Worten ist π unabhängig von τ . Beispiel: τ_{ton} .

Remark 9. Sei τ eine strong stationary time für die Startposition x, dann gilt:

$$\begin{split} P_x\{\tau \leq t, X_t = y\} &= \sum_{s \leq t} \sum_{z} P_x\{\tau = s, X_s = z, X_t = y\} \\ &= \sum_{s \leq t} \sum_{z} P^{t-s}(z, y) P_x\{\tau = s\} \pi(z). \end{split}$$

Es folgt, da π eine Gleichgewichtsverteilung ist, dass $\sum_{z} \pi(z) P^{t-s}(z,y) P_x \{ \tau = s \} = \pi(y)$. Damit gilt für alle $t \geq 0$ und y

$$P_x\{\tau \le t, X_t = y\} = P_x\{\tau \le t\}\pi(y). \tag{11}$$

Proposition 10. Sei τ eine strong stationary time für die Startposition x, dann gilt:

$$||P^t(x,\cdot) - \pi||_{TV} \le P_x\{\tau > t\}.$$
 (12)

Definition 11. Die separation distance (Trennabstand) wird durch

$$s_x(t) := \max_{y \in \mathcal{X}} \left[1 - \frac{P^t(x, y)}{\pi(y)} \right]$$
 (13)

definiert. Sei ebenfalls:

$$s(t) := \max_{x \in \mathcal{X}} s_x(t). \tag{14}$$

Lemma 12. Sei τ eine strong stationary time für die Startposition x, dann gilt:

$$s_x(t) \le P_x\{\tau > t\}. \tag{15}$$

Proposition 13. Wenn ein halting state für den Startwert x existiert, dann ist τ eine optimal strong stationary time für x, d.h.

$$s_x(t) = P_x\{\tau > t\}$$

außerdem gilt $P_x\{\tau > t\} \le P_x\{\rho > t\}$ für jede weitere strong stationary time ρ .

Lemma 14. Für die seperation distance $s_x(t)$ gilt:

$$||P^t(x,\cdot) - \pi||_{TV} \le s_x(t),$$

und damit auch $d(t) \leq s(t)$.

Proposition 15. Sei (X_t) die Top-to-random Markovkette mit n Karten. Für jedes $\epsilon > 0$ existiert eine Konstante $\alpha(\epsilon)$ s.d. $\alpha > \alpha(\epsilon)$ impliziert, dass es für alle genügent große n

$$d_n(n\log n - \alpha n) \ge 1 - \epsilon \tag{16}$$

D.h.

$$t_{mix}(1 - \epsilon) \ge n \log n - \alpha n. \tag{17}$$