Image Classification Project

Objective

The goal of this project is to develop, improve, and optimize neural network models for image classification across two different datasets: CIFAR-10 and Fashion MNIST.

Project Phases

Phase 1: Base Model Evaluation

Evaluate a baseline Deep neural network (DNN) with intentionally limited complexity to demonstrate the importance of model design and optimization.

Base Model Specifications:

- A simple DNN architecture was used with:
 - One convolutional layer.
 - Two fully connected layers with minimal neurons.
 - Basic activation functions.
 - No regularization.
- The model has low initial accuracy to provide room for improvement.
- You should **evaluate** the base model and compare it to all improved ones.
- You **MUST** use the base model provided in the 'Starter Code Template' in Phase-1 section.

Starter Code Template (Python with TensorFlow/Keras)

Please refer to the Jupyter notebook 'HW4ML project starter code template.ipynb'

Phase 2: Model Enhancement Challenge

Students will be required to improve the base model's performance by implementing optimization techniques. The below techniques are examples where the student may use others as well:

- 1. Increase network depth
- 2. Add more convolutional layers
- 3. Implement dropout regularization
- 4. Use batch normalization
- 5. Experiment with different activation functions
- 6. Adjust learning rate

7. Get advantage of previous labs.

While improving the model, students must consider the below hardware efficiency metrics:

- 1. $\frac{\textit{Test accuracy}}{\textit{number of model's parameters}}.$
- 2. $\frac{Test\ accuracy}{training\ time}$
- 3. Final inference time.
- 4. Total number of parameters

Phase 3: Model Compression Techniques

This phase assumes that the model will be deployed on a constraint device. Implement and compare with one or more model compression techniques. You should at least use one of the below two techniques:

- 1. Pruning
- 2. Quantization

Deliverables by 3 May 2025 11:59p.m.

- 1. **Script Submission**: Complete Python script with:
 - Base model implementation
 - Enhanced model implementation
 - Model compression techniques
- 2. **Report Submission**: Comprehensive report including:
 - Results table with the hardware efficiency metrics mentioned in phase 2 for:
 - Base Model
 - Enhanced Model
 - Compressed Model
 - Clear presentation of all used hyperparameters for each phase.
 - Comparative analysis of different approaches
 - Visualization of model performance and provide a proper results discussion.
 - Insights and observations
 - The report should contain at least ~1200-1500 words and at most ~2500-3000 words.

You may have multiple submission attempts, however, only the last attempt will be graded.

Evaluation Criteria

- Test accuracy improvement from base model. Also, test accuracy per number of model's parameters is considered.
- Effectiveness of enhancement techniques.
- Quality of model compression
- Code quality and documentation
- Depth of analysis and main concepts understanding in the report.

Submission Guidelines

- Submit a single ZIP file containing:
 - 1. Complete Python script
 - 2. Detailed report (PDF) as described in deliverable point 2.
 - 3. Any additional visualization or analysis files.
- The single ZIP file is named as: Name<studentFirst>_<LastName>_V<versionnumber>.rar. An example would be: Abdullah_AlMohammed_V2.rar

Grading Rubric

- Base Model Evaluation: 10%.
- Model Enhancement: 30%
- Model Compression: 25%
- Documentation and Analysis: 35%