Licenciatura em Engenharia Informática

ANÁLISE MATEMÁTICA (2024/2025) 1ª PROVA DE AVALIAÇÃO

ISEP INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO

26 de outubro de 2024

Aluno nº:	Nome:
NOTA:	

- Não é permitida a consulta de dispositivos eletrónicos (máquina de calcular, telemóvel, etc.).
- Só poderá consultar os formulários validados no início da prova.
- Todos os cálculos que efetuar e todas as conclusões que obtiver terão de ser devidamente justicados.
- Boa sorte!

Duração: 75 minutos

Cotações:

1.1 (10)	1.2 (10)	1.3 (10)	$1.4 \\ (15)$	$\frac{2.1}{(10)}$	2.2 (5)	2.3 (10)	$2.4 \\ (15)$	$2.5 \\ (15)$	$3.1 \\ (25)$	$3.2 \\ (25)$	$4.1 \\ (25)$	$4.2 \\ (25)$	Total) (200)

- 1. Considere a função $f(x) = \arctan(e^{1-\ln(x)})$.
 - 1.1 Determine o domínio e o contradomínio da função f, sem recorrer à sua função inversa.
 - 1.2 Caracterize a função inversa da função f.
 - 1.3 Determine a equação da reta tangente à curva de f no ponto x = e.
 - 1.4 Para $x \in \left[0, \frac{\pi}{2}\right[$, simplifique a seguinte expressão:

$$S(x) = \operatorname{arctg}\left(\operatorname{tg}\left(\frac{3\pi}{4}\right)\right) + \ln\left(e^{\operatorname{arctg}\left(\sqrt{\frac{1}{\cos^2(x)}} - 1\right)}\right) + f(e).$$

- 2. Considere a função real de variáveis reais $f(x,y) = \frac{e^x}{y} + x \arctan(y) \ln(x^2 + 1) y^3$.
 - 2.1 Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$, no ponto (0,1).
 - 2.2 Determine df(0,1).
 - 2.3 Calcule a derivada $\frac{\partial^2 f}{\partial x \partial y}$.
 - 2.4 Usando o conceito de diferencial, calcule o valor aproximado de f(-0.01, 1.02).
 - 2.5 Usando a regra de derivação da função composta, determine $\frac{df}{dy}\Big|_{(0,1)}$, sabendo que x=g(y) se define implicitamente pela equação $2^{xy}+\operatorname{sen}\left(\frac{x}{y}\right)=0$.

3. Resolva os integrais seguintes:

$$3.1 \int \frac{x \sec(x^2) + x \sec(2x^2)}{1 + \cos^2(x^2)} dx.$$

$$3.2 \int \frac{1}{x\sqrt{x^2-2}} dx$$
, fazendo a substituição $\frac{1}{x}=t$.

4. Calcule os integrais seguintes:

$$4.1 \int_0^1 (x^3 - 3x) e^{x^2} dx.$$

$$4.2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\operatorname{sen}^{2}(x)\sqrt{(\cot g(x)+2)^{7}}} \ dx.$$

SOLUÇÕES: $(C \in \mathbb{R})$

1.1
$$D_f =]0, +\infty[$$
 e $D_f' =]0, \frac{\pi}{2}[$; **1.2** $f^{-1}(x) = \frac{e}{\operatorname{tg}(x)}, D_{f^{-1}} = D_f' =]0, \frac{\pi}{2}[$, $D_{f^{-1}}'(x) = D_f =]0, +\infty[$;

1.3
$$y - \frac{\pi}{4} = -\frac{1}{2e}(x - e);$$
 1.4 $S(x) = x;$ **2.1** $\frac{\partial f}{\partial x}\Big|_{(0,1)} = 1 + \frac{\pi}{4},$ $\frac{\partial f}{\partial y}\Big|_{(0,1)} = -1;$ **2.2** $df(0,1) = \left(1 + \frac{\pi}{4}\right) dx - dy;$

$$\mathbf{2.3} \ \frac{\partial^2 f}{\partial x \partial y} = -\frac{e^x}{y^2} + \frac{1}{1+y^2} - \frac{6xy^2}{x^2+1}, \ \mathbf{2.4} \ f(-0.01, 1.02) \approx 1 - \frac{12+\pi}{400}; \ \mathbf{2.5} \ \frac{df}{dy}\Big|_{(0,1)} = -1;$$

3.1
$$-\frac{1}{2} \operatorname{arctg}(\cos(x^2)) - \frac{1}{2} \ln(1 + \cos^2(x^2)) + C;$$
 3.2 $-\frac{1}{\sqrt{2}} \operatorname{arcsen}\left(\frac{\sqrt{2}}{x}\right) + C;$

4.1
$$2 - \frac{3e}{2}$$
; **4.2** $\frac{2^{-\frac{3}{2}} - 2 \times 3^{-\frac{5}{2}}}{5}$.