## Технология восстановления особых областей на основе данных акустической томографии

#### Гонта Ксения Алексеевна

Научный руководитель: д. ф.-м. н., профессор кафедры системного программирования СПбГУ Граничин О. Н.

Рецензент: к. ф.-м. н., старший научный сотрудник ИПМаш РАН Иванский Ю. В.

Санкт-Петербургский Государственный Университет Кафедра системного программирования 10 июня 2019г.

### Акустическая томография

• Акустическая томография — это метод получения послойного изображения внутренней структуры объекта посредством просвечивания объекта акустическими волнами в различных направлениях.

### Устройство аппарата





2048 датчиков

### Данные одного слоя



## Среднее значение скорости звука в различных тканях

| Ткань                                                   | Среднее значение<br>скорости звука (м/с) |
|---------------------------------------------------------|------------------------------------------|
| Жир                                                     | 1478                                     |
| Молочная железа                                         | 1510                                     |
| Доброкачественная опухоль                               | 1513                                     |
| Злокачественная опухоль                                 | 1548                                     |
| Среднее значение жира и молочной железы в пременопаузе  | 1468                                     |
| Среднее значение жира и молочной железы в постменопаузе | 1510                                     |
| Паренхима молочной железы                               | 1487                                     |
| Киста молочной железы                                   | 1568                                     |
| Фиброаденома молочной железы                            | 1584                                     |

# Время прихода сигнала (Time-of-Flight)

Типовые значения показаний на принимающих датчиках:





## Время прихода сигнала (Time-of-Flight)



Красным: ToF

Синим: время прихода

максимальной

амплитуды

Типовой график значений амплитуд на датчике

### Цель работы

Разработка прототипа системы восстановления особых областей на основе данных акустической томографии.

Для этого необходимо было решить следующие задачи:

- Разработать архитектуру решения
- Провести анализ экспериментальных данных
- Реализовать прототип системы восстановления особых областей

## Восстановление особых областей



### Информационный критерий Акаике

k = 1, ..., N, где N – количество показаний в окне

$$AIC(k) = k * log(var(S(1, k))) + (N - k - 1) * log(var(S(k + 1, N)))$$

$$var(S(i,j)) = \delta_{j-1}^2 = 1/(j-1) * \sum_{l=i}^{j} (S(l,l) - \overline{S})^2, i \le j; i, j = 1..N$$

 $\overline{S}$  – среднее значение S (i,j) – сигнала на промежутке от i до j

Точка минимума AIC выбирается в качестве искомого ToF

## Графики тактов прихода максимальной амплитуды



При испускании из датчика №1



При испускании из датчика №513



## Графики тактов прихода максимальной амплитуды





Синий: при испускании из датчика №1 Оранжевый: при испускании из датчика №513

- 1. Задать массив значений пикселя восстановленного изображения, заполнить его нулями
- 2. Выбрать испускающий датчик, который еще не рассматривался
- 3. Для всех принимающих датчиков сравнить ожидаемое время прихода сигнала и фактическое
- 4. В случае, если время различается более чем на заранее заданную константу, увеличить значение пикселей, лежащих на прямой между испускающим и принимаемым датчиком
- 5. Повторить шаги 2-4 для всех испускающих датчиков
- 6. Во всех пикселях провести отсечение по заранее определенному порогу

### Вычисление скоростей

Случай падения луча на объект под прямым углом:



### Компоненты системы



### Хранение данных

#### • Особенности:

Большой объем исследуемых данных — один слой эксперимента занимает 32Гб.

#### • Реализация:

FTP-сервер с авторизованным доступом.

### Хранение кода

#### • Особенности:

Разработка на языке Python. Необходимость совместного доступа.

#### • Реализация:

Распределенная система управления версиями Git.

### Визуализация результата восстановления особых областей

DSM-платформа для диаграммных языков



## Апробация: построение карты препятствий



## Апробация: построение карты препятствий



### Апробация: расчёт значения скорости звука в объекте

| Испускающий датчик | Принимающий датчик | Скорость звука |
|--------------------|--------------------|----------------|
|                    |                    | в объекте      |
| 15                 | 1039               | 1609.33264     |
| 33                 | 1057               | 1607.26334     |
| 1000               | 2024               | 1609.33264     |
| 1700               | 676                | 1609.33264     |



### Результаты работы

- Была разработана архитектура системы восстановления особых областей и реализован ее прототип.
- В рамках работы были проанализированы экспериментальные данные и проверены гипотезы о свойствах регистрирующей системы.
- Была проведена апробация системы для восстановления карты препятствий и скоростей.

### Вычисление скоростей

Случай падения луча на объект под произвольным углом:









### Апробация: расчёт значения скорости звука в объекте

| Испускающий датчик | Принимающий датчик | Скорость звука |
|--------------------|--------------------|----------------|
|                    |                    | в объекте      |
| 513                | 1537               | 1632.451629    |
| 510                | 1534               | 1607.26334     |
| 511                | 1535               | 1611.407274    |



## Графики значений максимальной амплитуды





При испускании из датчика №1

При испускании из датчика №513

