Phân tích mô tả biến liên tục

Tuan V. Nguyen

Garvan Institute of Medical Research
University of New South Wales (UNSW Sydney), Australia
University of Technology, Sydney (UTS), Australia
Ton Duc Thang University, Vietnam

Phân loại biến đo lường

Phân loại biến đo lường

Interval level

- Classification + Ordering + Standard distance
- Tập hợp đối tượng có thể mô tả bằng đơn vị chỉ ra sự khác biệt ca này với ca khác
- Ex: nhiệt độ

Ratio level

- Classification + Ordering +
 Standard distance + Natural
 zero
- Biến định lượng và có "natural zero"
- Ex: thu nhập, độ tuổi, điểm thi

Biến định tính

Nominal level

- Classification
- Tập hợp đối tượng có thể phân theo nhóm không trùng hợp nhau (mutually exclusive)
- Ex: tôn giáo, giới tính, địa điểm

Ordinal level

- Classification + Ordering
- Tập hợp số có ý nghĩa thứ bậc
- Ex: trình độ học vấn, mức độ hài lòng, giai tầng xã hội, v.v.

Mô tả biến liên tục

Biến liên tục

- Trung bình (mean, average)
- Trung vị (median)
- Độ lệch chuẩn (standard deviation)
- Bách phân vị (percentile)

Trung vị (median)

Một biến với giá trị như sau:

Sắp xếp lại từ thấp đến cao. Trung vị là số chính giữa

Trung vị (median): Dùng R

```
x = c(1, 9, 6, 7, 8, 4, 5, 3, 25)
median(x)
> median(x)
[1] 6
```

Phương sai (variance)

$$s^{2} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n - 1}$$

Nghiên cứu 1: 6, 7, 8, 4, 5, và 6

$$s^{2} = \frac{(6-6)^{2} + (7-6)^{2} + (8-6)^{2} + (5-6)^{2} + (6-6)^{2}}{6-1} = \frac{10}{5} = 2$$

Nghiên cứu 2: 10, 2, 3, 9

$$s^{2} = \frac{(10-6)^{2} + (2-6)^{2} + (3-6)^{2} + (9-6)^{2}}{4-1} = \frac{50}{3} = 16.7$$

Độ lệch chuẩn (standard deviation)

Căn số bậc 2 của phương sai

$$s = \sqrt{s^2}$$

• Nghiên cứu 1: 6, 7, 8, 4, 5, và 6, phương sai là:

$$s^{2} = \frac{(6-6)^{2} + (7-6)^{2} + (8-6)^{2} + (5-6)^{2} + (6-6)^{2}}{6-1} = \frac{10}{5} = 2$$

• Nghiên cứu 2: 10, 2, 3, 9, phương sai là:

$$s^{2} = \frac{(10-6)^{2} + (2-6)^{2} + (3-6)^{2} + (9-6)^{2}}{4-1} = \frac{50}{3} = 16.7$$

Nghiên cứu 1, s = sqrt(2) = 1.41

Nghiên cứu 2, s = sqrt(16.7) = 4.1

Khoảng tin cậy 95% (95% confidence interval)

- Nếu một biến (tuân theo luật phân bố chuẩn) có trung bình là m, và độ lệch chuẩn s
- Chúng ta có thể suy luận rằng: 95% các giá trị của biến dao động trong khoảng

Khoảng tin cậy 95% (95% confidence interval)

- Chiều cao trung bình nữ giới (16-65 tuổi):
 - Trung bình: m = 163.5 cm
 - Độ lệch chuẩn: s = 6.1 cm
- Chúng ta có thể suy luận rằng: 95% phụ nữ có chiều cao dao động trong khoảng

163.5 - 1.96*6.1 đến 163.5 + 1.96*6.1

151.5 đến 175.5 cm

Phân tích mô tả với R

Ba package chính cho phân tích mô tả

- table1
- compareGroups
- DescTools

Package "table1"

```
library(table1)

table1(~ var1 + var2 + var3 ... | group, data=xxx)

table1(~ var1 + var2 + var3 ... | group, overall=F,
data=xxx)

table1(~ var1 + var2 + var3 ... | group, overall=F,
transpose=T, data=xxx)
```

Dùng package "table1"

```
library(table1)

table1(~Group + Region + Age + Height
+ Bust + Waist + Hip, data=hh)
```

	Overall			
	(n=46)			
Group				
A Hau	30 (65.2%)			
Hoa Hau	16 (34.8%)			
Region				
Central	2 (4.3%)			
North	28 (60.9%)			
South	16 (34.8%)			
Age				
Mean (SD)	19.4 (2.08)			
Median [Min, Max]	19.0 [16.0, 24.0]			
Missing	1 (2.2%)			
Height				
Mean (SD)	170 (4.49)			
Median [Min, Max]	171 [158, 180]			
Bust				
Mean (SD)	84.1 (2.78)			
Median [Min, Max]	84.5 [78.0, 87.0]			
Missing	30 (65.2%)			
Waist				
Mean (SD)	61.7 (1.99)			
Median [Min, Max]	61.0 [58.0, 65.0]			
Missing	30 (65.2%)			
Hip				
Mean (SD)	90.2 (2.97)			
Median [Min, Max]	90.5 [84.0, 95.0]			
Missing	30 (65.2%)			

library(table1)

table1(~ Region + Age + Height | Group, data=hh)

	A Hau (n=30)	Hoa Hau (n=16)	Overall (n=46)
Region			
Central	0 (0%)	2 (12.5%)	2 (4.3%)
North	18 (60.0%) 10 (62.5%)		28 (60.9%)
South	12 (40.0%)	4 (25.0%)	16 (34.8%)
Age			
Mean (SD)	19.6 (2.21)	19.3 (1.88)	19.4 (2.08)
Median [Min, Max]	19.0 [16.0, 24.0]	19.2 [16.1, 22.2]	19.0 [16.0, 24.0]
Missing	1 (3.3%)	0 (0%)	1 (2.2%)
Height			
Mean (SD)	170 (3.72)	170 (5.78)	170 (4.49)
Median [Min, Max]	170 [160, 180]	171 [158, 180]	171 [158, 180]

Package DescTools

- Package "DescTools": bảng số liệu & biểu đồ
- Hàm chính: **Desc**

```
Desc(var ~ group, options)
```

Mô tả biến biến liên tục

phd = read.csv("~/Dropbox/_Conferences and Workshops/Banking
University/Data/Income and PhDs.csv")

```
> library(DescTools)
> options("scipen"=100, "digits"=6)
> Desc(phd$Salary)
phd$Salary (integer)
   length
                      NAs unique 0s
              n
                                                mean
                                                       meanCI
                                       0 53'941.89 51'030.44
       62
               62
                               = n
            100.0%
                      0.0%
                                       0.0%
                                                     56'853.33
                       .25 median
      .05
                                        .75 .90
                                                          .95
 39'141.85 41'956.80 47'492.00 53'537.50 59'415.75 68'766.70 74'050.00
    range
               sd
                     vcoef
                               mad
                                        IOR
                                               skew
                                                         kurt
 77'176.00 11'464.52 0.21 9'060.91 11'923.75
                                               -0.63
                                                         3.61
lowest: 6'327, 37'939, 38'340, 39'115, 39'652
highest: 71'219, 74'199, 74'343, 75'822, 83'503
```

Biến liên tục: So sánh 2 nhóm

Lí giải: so sánh hai nhóm

- Gọi số trung bình của nhóm 1 và 2 là μ_1 và μ_2
- Gọi khác biệt giữa hai nhóm là $\delta = \mu_1 \mu_2$
- Nếu hai nhóm có số trung bình giống nhau, thì $\delta = 0$
- Chúng ta không biết μ_1 , μ_2 và δ
- Nhưng chúng ta có dữ liệu từ mẫu: m₁, m₂, và d.

Kiểm định t

	Mẫu		Quần thể	
	Α	В	Α	В
N	n_1	n ₂	Infinite	Infinite
Mean	x_1	x_2	$\mu_1 = ?$	$\mu_2 = ?$
SD (standard deviation)	s_{1}	s ₂	$\sigma_1 = ?$	$\sigma_2 = ?$
Difference	$d = x_1 - x_1$		$\delta = \mu_1 - \mu_2$	
Status	Biết		Không biết	

Muốn dùng dữ liệu của mẫu để suy luận cho quần thể. Giả thuyết là $\delta = 0$

Kiểm định t

$$t = \frac{m_1 - m_2}{SE_{m_1 - m_2}} = \frac{signal}{noise}$$

$$SE_{m_1 - m_2} = S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$s = \sqrt{s_1^2 + s_2^2}$$

Chỉ số t gọi là "statistic"

t = tín hiệu / nhiễu; giá trị t cao có nghĩa là sự khác biệt có thể không phải ngẫu nhiên

t tuân theo luật phân bố t

khi *n > 30* và t > 2, chúng ta có thể nói rằng sự khác biệt có ý nghĩa thống kê (statistically significant)

Lí giải

• Nếu hai nhóm không khác nhau, thì d=0 (d là ước số của δ)
(Nhưng nếu hai nhóm khác nhau thì $d\neq 0$)

Kiểm định thống kê: **nếu** δ = 0 thì xác suất chúng ta quan sát t hay cao hơn t là bao nhiều? \rightarrow Trị số P

t-test được triển khai trong R: hàm "t.test"

```
> phd = read.csv("~/Dropbox/ Conferences and Workshops/Banking
University/Data/Income and PhDs.csv")
> head(phd)
  id TimeSincePhD NPubs Sex Citations Salary
                    18
                         1
                                  50
                                     51876
                     3 1
                                 26
                                     54511
  3
                                 50
                                     53425
                    17
                         0
                                 34
                                     61683
5
   5
                    11 1
                                 41
                                     52926
   6
                     6
                         0
                                 37
                                     47034
```

t-test được triển khai trong R: hàm "t.test"

```
t.test(phd$Salary ~ phd$Sex)
```

Diễn giải kết quả t test

Tính trung bình, nữ có lương thấp hơn nam \$5897 (50613 - 56510), và khoảng tin cậy 95% dao động từ \$100 đến \$50613. Sự khác biệt có ý nghĩa thống kê (P = 0.046).

Mô tả biến liên tục

- Nếu biến số tuân theo luật phân bố chuẩn
 - Trung bình, độ lệch chuẩn, n
- Nếu biến số lệch khỏi luật phân bố chuẩn
 - Trung vị, bách phân vị 25 75%
- Triển khai trong R: table1, compareGroups,
 DescTools