Optimization Methods - Convex Optimization Problems

Bolei Zhang

November 24, 2024

1 Solutions

Theorem 1: Any locally optimal point is also (globally) optimal in the convex optimization problem.

Proof: Suppose that x is locally optimal for a convex optimization problem, i.e., x is feasible and

$$f_0(x) = \inf f_0(z)|z$$
 feasible, $||z - x||_2 \le R$,

for some R > 0. Now suppose that x is not globally optimal, i.e., there is a feasible y such that $f_0(y) < f_0(x)$. Evidently $||y - x||_2 > R$, since otherwise $f_0(x) \le f_0(y)$. Consider the point z given by

$$z = (1 - \theta)x + \theta y, \theta = \frac{R}{2||y - x||_2}.$$

Then we have $||z - x||_2 = R/2 < R$, and by convexity of the feasible set, z is feasible. By convexity of f0 we have

$$f_0(z) \le (1 - \theta)f_0(x) + \theta f_0(y) < f_0(x),$$

which is contradiction. Hence, there exists no feasible y with $f_0(y) < f_0(x)$, i.e., x is globally optimal.

Problem 1: Consider the following optimization problem:

min
$$f_0(x_1, x_2)$$

s.t. $2x_1 + x_2 \ge 1$
 $x_1 + 3x_2 \ge 1$ $x_1 \ge 0, x_2 \ge 0$, (1)

Get the feasible set of the above problem. And get the optimal solution set and optimal value w.r.t. different objective functions.

- (1) $f_0(x_1, x_2) = x_1 + x_2;$
- (2) $f_0(x_1, x_2) = -x_1 x_2;$
- (3) $f_0(x_1, x_2) = x_1$;
- (4) $f_0(x_1, x_2) = \max\{x_1, x_2\};$
- (5) $f_0(x_1, x_2) = x_1^2 + 9x_2^2$;

Solution: The feasible set is $\{(x_1, x_2) | 2x_1 + x_2 \ge 1, x_1 + 3x_2 \ge 1, x_1 \ge 0, x_2 \ge 0\}$.

- (1) This is a linear programming problem, the optimal solution is at one of the vertices of the feasible set. The optimal solution is (2/5, 1/5). The optimal value is 3/5;
 - (2) The optimal solution is (∞, ∞) . The optimal value is $-\infty$;
 - (3) The optimal solution set is $\{(x_1, x_2) | x_1 = 0, x_2 \ge 1\}$. The optimal value is 0;
- (4) When $x_1 \ge x_2$, the optimal value is the intersection of $x_1 = x_2$ and $2x_1 + x_2 = 1$, which is (1/3, 1/3), the optimal value is 1/3; When $x_1 \le x_2$, the optimal value and optimal solution is the same.
- (5) As this is a quadratic programming with linear constraints, the optimal solution must be at the border. When $x_2 = 0$, the optimal value is 1. When $x_1 = 0$, the optimal value is 9. When $x_1 + 3x_2 = 1$, the optimal value is 1/2. When $2x_1 + x_2 = 1$, the optimal solution does not satisfy the constraint. Therefore, the optimal solution set is (1/2, 1/6). The optimal value is 1/2.

Problem 2: The Traveling Salesman Problem: A traveling salesman wants to start from home and visit the other (n-1) cities at the lowest cost and finally return home. Denote the traveling cost from city i to city j as d_{ij} , and use x_{ij} to represent whether he travels from city i to city j. Please find the path with the minimum cost such that the traveling salesman visits each city exactly once.

Solution: (1) MTZ formulation

Use dummy variable u_i to represent the visiting order of each city. Count from city $1u_i < u_j$ indicates that city i is visited before city j.

$$\min \sum_{i=1}^{n} \sum_{j=1, j\neq i}^{n} d_{ij}x_{ij}$$
s.t. $x_{ij} \in \{0, 1\}$

$$\sum_{j=1, j\neq i}^{n} x_{ij} = 1, i = 1, ..., n$$

$$\sum_{i=1, i\neq j}^{n} x_{ij} = 1, j = 1, ..., n$$

$$u_{i} - u_{j} + 1 \leq (n - 1)(1 - x_{ij}), i \neq j, 2 \leq i \leq n, 2 \leq j \leq n.$$

$$2 \leq u_{i} \leq n, 2 \leq i \leq n$$

(2) DFJ formulation

$$\begin{aligned} & \min \quad \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} d_{ij} x_{ij} \\ & \text{s.t.} \quad x_{ij} \in \{0, 1\} \\ & \sum_{j=1, j \neq i}^{n} x_{ij} = 1, i = 1, ..., n \\ & \sum_{i=1, i \neq j}^{n} x_{ij} = 1, j = 1, ..., n \\ & \sum_{i \in Q} \sum_{j \neq i, j \in Q} x_{ij} < |Q| - 1, \forall Q \subset \{1, ..., n\}, |Q| \ge 2 \end{aligned}$$

Problem 3: The Max Flow Problem: Given a directed connected graph G = (V, E), the non-negative number c_{ij} on each edge (v_i, v_j) of G is called the capacity of the edge. For any edge (v_i, v_j) in G, there is a flow f_{ij} , and the flow cannot exceed the capacity of the edge. Find the maximum flow from the source node s to the target node t. Except for the source node and the target node, the inflow of each vertex is equal to the outflow.

Solution: Denote the set of incoming edges to vertex v as $E^-(v)$ and the set of outgoing edges from vertex v as $E^+(v)$.

$$\begin{aligned} & \max & & \sum_{(s,v) \in E^+(s)} f_{sv}, \\ & \text{s.t.} & & 0 \leq f_{ij} \leq c_{ij}, \forall (v_i,v_j) \in E, \\ & & \sum_{(u,v) \in E^-(v)} f_{uv} = \sum_{(v,w) \in E^+(v)} f_{vw}, \forall v \in V / \left\{s,t\right\} \end{aligned}$$