Table of Integrals.

$$\int u^n du = \frac{u^{n+1}}{n+1} + C \quad (n \neq -1) \qquad \int \frac{du}{u} = \ln|u| + C$$

$$\int e^u du = e^u + C \qquad \int \cos u \, du = \sin u + C$$

$$\int \sin u \, du = -\cos u + C \qquad \int \sec^2 u \, du = \tan u + C$$

$$\int \csc^2 u \, du = -\cot u + C \qquad \int \sec u \tan u \, du = \sec u + C$$

$$\int \csc u \cot u \, du = -\csc u + C \qquad \int \sec u \, du = \ln|\sec u + \tan u| + C$$

$$\int \csc u \, du = \ln|\csc u - \cot u| + C \qquad \int \frac{du}{\sqrt{1 - u^2}} = \sin^{-1} u + C$$

$$\int \frac{du}{1 + u^2} = \tan^{-1} u + C \qquad \int \frac{du}{u\sqrt{u^2 - 1}} \, du = \sec^{-1} |u| + C$$

Integrals Involving Inverse Hyperbolic Functions.

$$\int \frac{du}{\sqrt{u^2 + 1}} = \sinh^{-1} u + C \qquad \int \frac{du}{\sqrt{u^2 - 1}} = \cosh^{-1} u + C$$

$$\int \frac{du}{u\sqrt{1 - u^2}} = -\operatorname{sech}^{-1} |u| + C \qquad \int \frac{du}{u\sqrt{1 + u^2}} = -\operatorname{csch}^{-1} |u| + C$$

Reduction Formulas.

$$\int \sin^n u \, du = -\frac{1}{n} \sin^{n-1} u \, \cos u + \frac{n-1}{n} \int \sin^{n-2} u \, du$$

$$\int \cos^n u \, du = \frac{1}{n} \cos^{n-1} u \, \sin u + \frac{n-1}{n} \int \cos^{n-2} u \, du$$

$$\int \tan^n u \, du = \frac{\tan^{n-1} u}{n-1} - \int \tan^{n-2} u \, du.$$

$$\int \sec^n u \, du = \frac{\sec^{n-2} u \tan u}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} u \, du.$$