אלגוריתמים 2019א – מועד שני

הנחיות: ענו על 4 מתוך 5 שאלות. לכל שאלה 25 נקודות. לכל בעיה יש להציג את האלגוריתם היעיל ביותר. עבור כל אלגוריתם, יש להציג הוכחת נכונות וניתוח של זמן הריצה. על שאלות שמסומנות בכוכב - יש לענות בטופס השאלון במקום המוקצה (ולא במחברת הבחינה), ולקצר בהוכחת הנכונות והיעילות. אם ניתן לפתור בעיה ביעילות באמצעות הפעלה/תיקון של אלגוריתם מוכר, יש להציג פתרון שכזה (במקום להציג אלגוריתם חדש לחלוטין).

חומר עזר: אסור. דף נוסחאות מצ"ב. בהצלחה!

- שאלה 1 - הרצת FFT (25) נקי).

נביט בפולינום $p(x) = 2x^3 + 3x^2 + 4x + 5$. הציגו את כל החישובים מעל שדה המרוכבים על מקדמי ($FFT(\cdot,\omega_4)$ הרצת הרקות הרקות במסגרת הרצת הרצת הרצת (ארבות הרקורסיביות) על מקדמי הפולינום. בדקו את תשובתכם עייי <u>הצבה ישירה</u> של הערכים המתאימים בפולינום.

שאלה 2 – מסלולים מזעריים –צלעות שליליות ביעד (25 נקי).

w(e) עם מקור $s \neq t \in V$, יעד אועם משקל שלם G = (V,E) נתון גרף מכוון G = (V,E) עם מקור נתון כי בגרף אין מעגלים שליליים, וכי עבור צלעות שאינן נכנסות ליעד המשקל תמיד . $e \in E$ חיובי, כלומר w(e)>0. הציגו אלגוריתם למציאת מסלול בעל משקל מזערי מהמקור ליעד. לא $\Theta(|E|\cdot|V|)$ יתקבל שום ניקוד על אלגוריתם עם זמן ריצה

הגדרת האלגוריתם לול לגיע כן של לביע לון לוח את (ביע) עוגר ב הול בייום ארן (V.t) V 8 56 (1101 15N), 'SKN'II 2'SE(S.V) - W(V.t) P 23 V K3H . SN הוכחת נכונות מבן שאין מדגלים של ילים ביליל ללעוף) לפל (לעוף) בילטור א מוצא

07/3622 SULLY 2/2018/2018/3

(W) DIA, 2, N VE, 34 O(W+V13V) K/(0)... 5 O(W) יעילות האלגוריתם משול של

שאלן 87.58.1 M4

שאלה 3 – תכנון כפל מטריצות (25 נקי).

כזכור, המכפלה $A_1 \times A_2 \times ... \times A_n$ של סדרת מטריצות מוגדרת רק כשישנה התאמה בין מספרי כזכור, המכפלה c_i את מספר העמודות השורות והעמודות: אם מסמנים ב- r_i את מספר השורות במטריצה $A_i \times A_{i+i}$ אם מספלה שכזה כל מכפלה $A_i \times A_{i+i}$ הינה שלה, אז חייב להתקיים התנאי $r_{i+1} = c_i$ לכל $r_{i+1} = c_i$ במקרה שכזה כל מכפלה $r_{i+1} = c_i$ וניתן לביצוע מטריצה בת r_i שורות ו- r_i עמודות, והחישוב שלה (בהתאם להגדרת כפל מטריצות) ניתן לביצוע ע"יי ($r_i \times c_i \times c_{i+1}$) פעולות אלמנטריות בלבד (של כפל/חיבור מספרים). כזכור, כפל מטריצות הוא גם אסוציאטיבי, כלומר, בהכפלה של סדרת מטריצות, הננו רשאים למקם את הסוגריים $(A_1 \times A_2) \times A_3 = A_1 \times (A_2 \times A_3)$

- הציגו דוגמה של שלוש מטריצות, שבה מיקום מסוים של הסוגריים בחישוב המכפלה הציגו אלף פעולות אלמנטריות מאשר המיקום האחר. $A_{\!\scriptscriptstyle 1} \times A_{\!\scriptscriptstyle 2} \times A_{\!\scriptscriptstyle 3}$
- (ב) הציגו אלגוריתם תכנון דינאמי, שמקבל כקלט רשימה (r_1,c_1),..., (r_n,c_n) של מספרי השורות והעמודות בכל מטריצה, ומפיק כפלט מיקום אופטימלי של הסוגריים עבור ההכפלה והעמודות בכל מטריצה, ומפיק כפלט מיקום אופטימלי של הסוגריים עבור ההכפלת $A_1 \times ... \times A_n$. (שימו לב שאיננו מבצעים עדיין את הכפלת המטריצות, אלא רק מנסים לקבוע את מיקום הסוגריים, שימוער את מספר הפעולות האלמנטריות בזמן ההכפלה).

שאלה 4 – בעיית הספיקות (25 נקי).

נתונה נוסחת 3CNF, שבה כל אחד מהמשתנים $x_1,...,x_n$ מופיע בדיוק בשלוש פסוקיות שונות, וכל פסוקית כוללת בדיוק שלושה משתנים שונים. הוכיחו כי הנוסחה ספיקה. הציגו עבור נוסחאות כאלו אלגוריתם למציאת השמה מספקת. הדרכה: העזרו במשפט Hall.

תוזכורת: נוסחת 3CNF היא נוסחה מהצורה $\varphi_1 \wedge \varphi_2 \wedge ... \wedge \varphi_m$ היא נוסחה מהצורה 3CNF היגו הצורה (תוזכורת: $\varphi_i = (z_{i,1} \vee z_{i,2} \vee z_{i,3})$ הינו אחד מהליטרלים $\varphi_i = (z_{i,1} \vee z_{i,2} \vee z_{i,3})$ הינו אחד מהליטרלים 3CNF השמה הינה פונקציה שמתאימה $\varphi = (x_1 \vee -x_2 \vee x_3) \wedge (x_2 \vee x_4 \vee -x_5)$ לכל משתנה z_i ערך "אמת" z_i או "שקר" z_i בהינתן השמה מסוימת, אזי הליטרל z_i מסופק אמ"מ ההשמה מקיימת $z_i \leftarrow T$ והליטרל z_i מסופק אמ"מ $z_{i,1}, z_{i,2}, z_{i,3}$ מסופק. $z_{i,1}, z_{i,2}, z_{i,3}$ מסופקת אמ"מ לפחות אחד מהליטרלים שבה $z_{i,1}, z_{i,2}, z_{i,3}$ מסופקות. הנוסחא כולה $z_i \leftarrow \varphi_1 \wedge ... \wedge \varphi_m$ מסופקת אמ"מ לפחות אחת מבין $z_i \wedge \varphi_1 \wedge ... \wedge \varphi_m$ מסופקת אותה).

w(e)>0 שאיננו עץ, ונתונים משקלים שלמים וחיוביים G=(V,E) נתון גרף קשיר ולא מכוון לכל הצלעות. קבוצת צלעות $F \subseteq E$ נקראת "מנתקת-מעגלים", אם לאחר הסרתה לא נותרים מעגלים בגרף, כלומר הגרף $G' = (V, E \setminus F)$ חסר-מעגלים. משקלה של קבוצת צלעות הינו סכום -משקלי הצלעות בקבוצה $w(F) = \sum\limits_{e \in F} w(e)$ הציגו אלגוריתם למציאת קבוצת צלעות מנתקת מעגלים בעלת משקל מזערי. עליכם להיעזר בהדרכה שמופיעה להלן.

טענה מרכזית: אם F הינה קבוצה מנתקת-מעגלים מזערית אז $G' = (V, E \setminus F)$ אינ $G' = (V, E \setminus F)$ טענה מרכזית אם אם F הינה קבוצה מנתקת-מעגלים מזערית אז און אינה אם Fהוכחת הטענה המרכזית: ל. 28: 1 חפר 4 לב 2 ים יאחת אצי מנתות בשבצים. די פינה 7425 1 3410, 8 1 34 1.1 1.1. 1.1.1.1. 25, 25, 1 341 13,2 1 3751 #5845 171.4 Re 13116 805. LE 652 .. 1224 E, Da. 56 19,165 U.T. 18:50 mT 4:15:59 m= Fm = Fm Do: 350 FE 328 22,000 F'= N(E)-M(ID)>W(E)-W(IM)=W(FM) 4505", 84 37 = D 28 612 41/63] N 41/64 30 841/1 35 33 5 (17/4 8 18/1) 84 (2) 339 (17/4 8 18/8/11 68/8) אלגוריתם למציאת קבוצת צלעות מנתקת-מעגלים במשקל מזערי <u>(637 1311)? ה לעות מנתקת-מעגלים במשקל מזערי (637 181)</u> 15616 31 4 4 6) 1:981 1 116/11 9 2) 1965 34 6/143/10/1 32 15/34/11 32] 739 (3)W = (3)W, LUE) 864 6 D (LS14 89 61.4) LUE1 40 cl 113010 SINESIN 67 XXS 6113 48 6113 NX

(WTH18H) 20 /0

בהצלחה!

My las Mishir wishir of 12 Nav B 12 1 C 122011 VIR(1 200) 20 1/2 1/11/1