# ALGEBRA IV NOTES NICHOLAS HAYEK

Lectures by Prof. Henri Darmon

### CONTENTS

| Galois Motivation |                       | 1  |
|-------------------|-----------------------|----|
| I                 | Representation Theory | 1  |
| Characters        |                       | 10 |

In Algebra III, we studied groups, rings (& fields), and modules (& vector spaces). In this class, we consider *composite* theories, i.e. interactions between these objects. We'll spend time on representation theory (groups  $\leftrightarrow$  vector spaces) and Galois theory (fields  $\leftrightarrow$  groups).

#### GALOIS MOTIVATION

Consider  $ax^2 + bx + c = 0$ :  $a, b, c \in \mathbb{F}$ . A solution is given by the quadratic equation, which contains the root of the discriminant, i.e.  $b^2 - 4ac$ . There are similar formulas for the general cubic and quadratic, which contain cube and square roots. Is there a general solution for a  $n^{th}$  order equation? This question motivates Galois theory.

Galois was able to associate every polynomial  $f(x) = a_n x^n + ... + a_0 : a_i \in \mathbb{F}$  to a group, which encodes whether f(x) is solvable by radicals.

## I Representation Theory

We can understand a group G by seeing how it acts on various objects (e.g. a set).

A linear representation of a finite group G is a vector space V over a field  $\mathbb{F}$  DEF 1.1 equipped with a group action

$$G \times V \to V$$

that respects the vector space, i.e.  $m_g: V \to V$  with  $m_g(v) = gv$  is a linear transformation. We make the following assumptions unless otherwise stated:

- 1. *G* is finite.
- 2. *V* is finite dimensional.
- 3.  $\mathbb{F}$  is algebraically closed and of characteristic 0 (e.g.  $\mathbb{F} = \mathbb{C}$ ).

Since V is a G-set,  $\rho: G \to \operatorname{Aut}_{\mathbb{F}}(V)$  which sends  $g \mapsto m_g$  is a homomorphism. Relatedly, if  $\dim(V) < \infty$ , then  $\rho: G \mapsto \operatorname{Aut}_{\mathbb{F}}(V) = \operatorname{GL}_n(\mathbb{F})$ .

The *group ring*  $\mathbb{F}[G]$  is a (typically) non-commutative ring consisting of all linear combinations  $\{\sum_{g \in G} \lambda_g g : \lambda_g \in \mathbb{F}\}$ . It's endowed with the multiplication

$$\left(\sum_{g \in G} \alpha_g g\right) \left(\sum_{h \in G} \beta_h h\right) = \sum_{g,h \in G \times G} \alpha_g \beta_h(gh)$$

where, in particular,  $(\sum \lambda_g)v = \sum \lambda_g(gv)$ .

DEF 1.3 By G-stable, we mean  $gw \in W \ \forall w \in W, g \in G$  A representation V of G is *irreducible* if there is no G-stable, non-trivial subspace  $W \subsetneq V$ . This definition is somewhat analogous to transitive G-sets. Note, however, that V is never a transitive G-set, since  $g\vec{0} = \vec{0} \ \forall g$ .

– ♦ Examples ♣ –

E.G. 1.1

**Eg 1:** Let  $G = \mathbb{Z}_2 = \{1, \tau\} : \tau^2 = 1$ . If V is a representation of G, then V is determined by  $\rho : G \to \operatorname{Aut}_{\mathbb{F}}(V)$ , i.e.  $\rho(\tau) \in \operatorname{Aut}_{\mathbb{F}}(V)$ . What are the eigenvalues of  $\rho(\tau)$ ? It's minimal polynomial must divide  $x^2 - 1 = (x - 1)(x + 1)$ .

Supposing  $2 \neq 0$  in  $\mathbb{F}$ , we have

$$V = V_{+} \oplus V_{-}$$
  $V_{+} = \{v \in V : \tau v = v\}, V_{-} = \{v \in V : \tau v = -v\}$ 

*V* is then irreducible  $\iff$   $(\dim(V_+), \dim(V_-)) = (1, 0)$  or (0, 1).

**Eg** 2: Let  $G = \{g_1, ..., g_N\}$  be a finite abelian group. Let  $\mathbb{F}$  be algebraically closed with characteristic 0 (e.g.  $\mathbb{F} = \mathbb{C}$ ). If V is a representation of G, then  $T_1, ..., T_N$  with  $T_i = \rho(g_i) \in \operatorname{Aut}_{\mathbb{F}}(V)$  commute with eachother.

It's a fact that, if  $T_i$  commute with eachother, then they have a simultaneous eigenvector  $v \in V$ . Hence, the scalar multiples of v comprise a G-stable subspace, so the representation V is irreducible if  $\dim(V) = 1$ .

By complex, we mean (a vector space over) an algebraically closed field with characteristic 0.

#### 1.1 Finite Abelian Representation

If G is a finite abelian group, and V is irreducible representation of G over a complex field, then  $\dim(V) = 1$ .

PROOF.

 $G = \{g_1, ..., g_N\}$ . Then consider  $\rho : G \to \operatorname{Aut}(V)$ , and let  $T_j : V \to V = \rho(g_i)$ . Then,  $T_j$  and  $T_i$  pairwise commute (since G is abelian).  $T_1, ..., T_N$  have a simultaneous eigenvector v by Prop 1.1. Hence, span( $\{v\}$ ) is a G-stable subspace. Since V is irreducible, we conclude  $V = \operatorname{span}(\{v\})$ .

PROP 1.1 If  $T_1, ..., T_N$  is a collection of linear transformations on a complex vector space, then they have a simultaneous eigenvector, i.e.  $\exists v : T_j v = \lambda_j v \ \forall j$ .

PROOF.

By induction. Consider  $T_1$ . Since  $\mathbb{F}$  is complex, its minimal polynomial has a root  $\lambda$ , which is precisely an eigenvalue. Hence, an eigenvector exists.

 $n \to n+1$ . Let  $\lambda$  be an eigenvalue for  $T_{N+1}$ . Consider  $V_{\lambda} := \operatorname{Eig}_{T_{N+1}}(\lambda)$ , the eigenvectors for  $\lambda$ . We claim that  $T_j$  maps  $V_{\lambda} \to V_{\lambda}$ , i.e.  $V_{\lambda}$  is  $T_j$ -stable. For this, we have  $T_{N+1}T_jv = T_jT_{N+1}v = \lambda T_jv$ , so  $T_jv \in V_{\lambda}$ .

By induction hypothesis, there is a simultaneous eigenvector v in  $V_{\lambda}$  for

E.G. 1.2

 $T_1, ..., T_N$ . (Thinking of  $T_j$  as a linear transformation  $V_\lambda \to V_\lambda$  via its restriction).

**Eg 1:** Let  $G = S_3$  and  $\mathbb{F}$  be arbitrary with  $2 \neq 0$ . Then consider  $\rho : G \to \operatorname{Aut}_{\mathbb{F}}(V)$ , an irreducible representation. What is  $T = \rho((23))$ ?  $T^2 = I$ , so T is diagonalizable with eigenvalues in  $\{1, -1\}$ .

Case 1: -1 is the only eigenvalue of T. Then (23) acts as -I. Since (23) and (12), (13) are conjugate, (12), (13) act as -I as well (since -I, I commute with everything). What about  $\rho(123)$ ? This is  $\rho((13)(12)) = \rho(13)\rho(12) = (-I)^2 = I$ . Hence, all order 3 elements act as I.

We conclude that  $\rho(g) = \operatorname{sgn}(g)$  (i.e. 0 for even, 1 for odd permutations).

Case 2: 1 is an eigenvalue of  $T = \rho(23)$ . Let  $e_1$  be a non-zero vector fixed by T, i.e.  $Te_1 = e_1$ . Then let  $e_2 = (123)e_1$  and  $e_3 = (123)^2e_1$ . Then  $\{e_1, e_2, e_3\}$  is an  $S_3$ -stable subspace, so  $V = \text{span}(e_1, e_2, e_3)$ .

 $\hookrightarrow$  Case 2a:  $w = e_1 + e_2 + e_3 \neq 0$ . Then  $S_3$  fixes w. One checks that  $\sigma(e_i + e_j + e_k) = e_{\sigma(i)} + e_{\sigma(j)} + e_{\sigma(k)}$ . Hence,  $\sigma w = w$ .

 $\hookrightarrow$  Case 2b:  $e_1 + e_2 + e_3 = 0$ . Then  $V = \text{span}(e_1, e_2, e_3)$  as before. dim(V) ≤ 2, and  $e_1 \neq e_2 \neq e_3$ . Then (23) $e_1 = e_1$  and (23) $(e_2 - e_3) = e_3 - e_2 = -(e_2 - e_3)$ . Hence, we have two eigenvalues for  $\rho$ (23), so dim(V) ≥ 2  $\Longrightarrow$  dim(V) = 2.

Relative to the basis  $e_1$ ,  $e_2$  for V, the representation of  $S_3$  is given by

$$1 \leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad (12) \leftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad (13) \leftrightarrow \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \qquad (23) \leftrightarrow \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$$
$$(123) \leftrightarrow \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \qquad (132) \leftrightarrow \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$

Conclusion: there are essentially 3 distinct, irreducible representations of  $S_3$ :

- 1.  $\operatorname{sgn}: S_3 \to \mathbb{C}^*$
- 2. Id
- 3. A 2-dim representation

If  $V_1$ ,  $V_2$  are two representations of a group G, a G-homomorphism from  $V_1$  to  $V_2$  is a linear map  $\varphi: V_1 \to V_2$  which is compatible with the action on G, i.e.  $\varphi(gv) = g\varphi(v) \ \forall g \in G, v \in V_1$ .

DEF 1.5 If a *G*-homomorphism  $\varphi$  is a vector space isomorphism, then  $V_1 \cong V_2$  as representations.

#### 

Consider  $G = D_8$ , the symmetries of a square. We may label this group  $G = \{1, r, r^2, r^3, V, H, D_1, D_2\}$ . We want to think up some representation  $\rho: D_8 \to \operatorname{Aut}_{\mathbb{F}}(V)$ , where  $2 \neq 0$  by assumption.

Consider  $r^2$ . It commutes with everything. Then  $T = \rho(r^2) \in \operatorname{Aut}_{\mathbb{F}}(V)$  is an order 2 element, so  $T^2 = I$ . Since  $2 \neq 0$ ,  $V = V_+ \oplus V_-$ , where  $V_+ = \{v : Tv = v\}$  and  $V_- = \{v : Tv = -v\}$ .

We claim that  $V_+$  and  $V_-$  are both preserved by any  $g \in D_8$ . Take  $v \in V_+$ . Then  $Tgv = r^2gv = gr^2v = gTv = gv$ . The result follows similarly for  $v \in V_-$ . Hence, if V is an irreducible representation, then either  $V = V_+$  or  $V = V_-$ , i.e.  $\rho(r^2) = I$  or -I.

Case 1:  $\rho(r^2) = I$ , so  $\rho$  is not injective, and  $\ker(\rho) \subseteq \{1, r^2\}$ ). We can write the following, then:



Since  $2\mathbb{Z} \times 2\mathbb{Z} = K_4$  is abelian, we have 4 1-dim irreducible representations  $\varphi$  into Aut(V). Hence, we compose with  $\pi$  to yield these for  $D_8$ .

Case 2:  $\rho(r^2) = -I$ . We claim that  $\rho(H)$  has both eigenvalues -1 and 1. If  $\rho(H) = I$ , then  $\rho(V) = \rho(r^2H) = -I$ . But we also have  $V = rHr^{-1}$ , so  $\rho(rHr^{-1}) = \rho(r)\rho(H)\rho(r^{-1}) = I \implies \frac{1}{4}$ . We draw a similar contradiction by taking  $\rho(H) = -I$ . Hence, H has both eigenvalues, so  $\dim(V) \geq 2$ .

Let  $v_1, v_2 \in V$  be such that  $Hv_1 = v_1$  and  $v_2 = rv_1$ . We claim that span $(v_1, v_2)$  is preserved by  $D_8$ , and hence span $(v_1, v_2) = V$ .

Consider  $r \in D_8$ . We know  $rv_1 = v_2$  and  $rv_2 = r^2v_1 = -v_1$ , so  $\{1, r, r^2, r^3\}$  preserve span $(v_1, v_2)$ .

Consider  $H \in D_8$ .  $Hv_1 = v_1$  by construction. Also,  $Hv_2 = Hrv_1 = r^{-1}Hv_1 = r^{-1}v_1 = r^3v_1 = r^2v_2 = -v_2$ . Hence, H composed with  $\{1, r, r^2, r^3\}$ , i.e. the whole group  $D_8$  preserve span $(v_1, v_2)$ , as desired.

$$H \leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
  $r \leftrightarrow \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$  (the rest follow by composition)

Some questions to consider:

- 1. Can we describe *all* irreducible representations of *G* up to isomorphism?
- 2. How is a general representation of *G* made up of irreducible representations?

If  $V_1$ ,  $V_2$  are representations of G, then  $V_1 \oplus V_2$  is also a representation of G, with PROP 1.2  $g(v_1, v_2) = (gv_1, gv_2)$ .

#### 1.2 Maschke's Theorem

Any representation of a finite group *G* over a complex field can be expressed as a direct sum of irreducible representations.

Let V be a representation of G. Let W be a proper sub-representation of G in V. Let W' be the complementary subspace such that  $V = W \oplus W'$ , as in Prop 1.3. Then  $\dim(W)$ ,  $\dim(W') < n$ . We proceed by induction, relying on this lessening of dimension.

PROOF.

Remark 1: this is analogous to "every *G*-set is a disjoint union of transitive *G*-sets." However, this is a trivial result, but Maschke's is not.

Remark 2: the assumption  $|G| < \infty$  is essential. As a counterexample, take  $(\mathbb{Z}, +)$  and  $\rho: G \to \operatorname{GL}_2(\mathbb{C}) = \rho(n) = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ , i.e.  $ne_1 = e_1$  and  $ne_2 = ne_1 + e_2$ . Note that the line span $(e_1)$  is a G-stable subspace, i.e. an irreducible sub-representation of V. Are there any other invariant lines? Take  $ae_1 + be_2$ . WLOG assume b = 1. Consider  $W = G(ae_1 + e_2)$ . Then  $1 \cdot (ae_1 + e_2) = (1 + a)e_1 + e_2 \in W$ , so  $e_1 \in W$ .

Remark 3:  $\mathbb{C}$  is necessary. Let  $\mathbb{F} = \mathbb{Z}/3\mathbb{Z}$ ,  $G = S_3$ . Then let  $V = \mathbb{F}e_1 + \mathbb{F}e_2 + \mathbb{F}e_3$ .  $\mathbb{F}(e_1 + e_2 + e_3)$  is an irreducible representation. Let W be any G-stable subspace of V. Then  $\exists a, b, c$ , not all equal, with  $ae_1 + be_2 + ce_3 \in W$ . Multiplying by (123),  $ce_1 + ae_2 + be_3 \in W$ , and once more by (132) yields  $be_1 + ce_2 + ae_3 \in W$ . Hence,  $(a + b + c)(e_1 + e_2 + e_3) \in W$ .

We have, then, that  $(a - b)(e_1 - e_2)$ ,  $(b - c)(e_2 - e_3)$ ,  $(a - c)(e_1 - e_3) \in W$ . At least one of these must be non-zero, WLOG take  $a - b \neq 0$ . Then  $e_1 - e_2$ ,  $e_2 - e_3$ ,  $e_3 - e_1 \in W$ .

Observe now that  $(e_1 - e_2) + (e_2 - e_3) - (e_3 - e_1) = 2e_1 - BLAH$ . it works out. Show that  $e_1 + e_2 + e_3 \in W \implies W \subseteq \mathbb{F}(e_1 + e_2 + e_3)$ .

#### 1.3 Semi-Simplicity of Representations

Let V be a representation of a finite group G above a complex field. Let  $W \subseteq V$  be a sub-representation. Then W has a G-stable complement W' such that  $V = W \oplus W'$ .

Consider a projection  $\pi_0: V \to W$  with  $\pi_0^2 = \pi_0$ ,  $\operatorname{Im}(\pi_0) = W$ . Let  $\ker(\pi) = W_0'$ . Then we can write  $V = W \oplus W_0'$ . However, we have no guarantee that  $W_0'$  is G-stable.

We alter  $\pi$  by replacing it with

$$\pi = \frac{1}{\#G} \sum_{g \in G} \rho(g) \circ \pi_0 \circ \rho(g)^{-1}$$

Some properties of  $\pi$ :

- 1.  $\pi \in \operatorname{End}_{\mathbb{C}}(V)$ .
- 2.  $\pi$  is a projection onto W. See that

$$\pi^2 = \left(\frac{1}{\#G} \sum_{g \in G} g \pi_0 g^{-1}\right) \left(\frac{1}{\#G} \sum_{h \in G} h \pi_0 h^{-1}\right) = \frac{1}{\#G^2} \sum_{g,h \in G} g \pi_0 g^{-1} h \pi_0 h^{-1}$$

where, by writing g (or h), we mean its linear representation in V. Note that  $\pi_0 h^{-1}$  sends any  $v \in V$  to a vector in W. Since W is G-invariant,  $g^{-1}h\pi_0h^{-1}$  also sends v to W. But now the next  $\pi_0$  acts as the identity (since we're already in W). Hence, the above summand reduces to  $h\pi_0 h^{-1}$ , and we may write

$$\pi^2 = \frac{1}{\#G^2} \sum_{g,h \in G} h \pi_0 h^{-1} = \frac{1}{\#G} \sum_{h \in G} h \pi_0 h^{-1} = \pi$$

- 3.  $\operatorname{Im}(\pi) = W$ .  $\operatorname{Im}(\pi) \subseteq W$ . But let  $w \in W$ . Then  $\pi(w) = w$  (check it).
- 4.  $\pi(hv) = h\pi(v) \ \forall h \in G$ . See that

$$\pi(hv) = \frac{1}{\#G} \sum_{g \in G} g \pi g^{-1} hv = \frac{1}{\#G} \sum_{g \in G} g \pi (h^{-1}g)^{-1} v$$

Now, let  $\tilde{g} = h^{-1}g$ . Then  $g = h\tilde{g}$ , and we write

$$=\frac{1}{\#G}\sum_{\tilde{g}\in G}h\tilde{g}\pi\tilde{g}v=h\pi(v)$$

We can now take  $W' = \ker(\pi)$  and write  $V = W \oplus W'$ . We have that W' is G-stable, now, since  $w \in W' \implies \pi(gw) = g\pi(w) = g0 = 0 \implies gw \in W'$ .

We'll now give a second proof of Thm 1.2. Consider

A Hermitian inner product of V is a Hermitian, bilinear mapping

**DEF 1.6** 

$$V \times V \to \mathbb{C}$$

satisfying  $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$  and  $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle$ . On the second coordinate, we have  $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$  and  $\langle v, \lambda w \rangle = \overline{\lambda} \langle v, w \rangle$ . This "skew linearity" in the second argument allows us to impose  $\langle v, v \rangle \in \mathbb{R}^+$  and  $\langle v, v \rangle = 0 \iff v = 0$ .

One can think of  $\langle v, v \rangle$  as the square of the "length" of v.

#### 1.4 Hermitian Pairing on Representation

If V is a complex representation of a finite group G, then there is a Hermitian inner product on V such that

$$\langle gv, gw \rangle = \langle v, w \rangle \ \forall g \in G, v, w \in V$$

Let  $\langle , \rangle_0$  be an arbitrary Hermitian inner product on V. To do so, choose a basis  $(e_1, ..., e_n)$  be a complex basis for V, and define

PROOF.

$$\langle e_i, e_j \rangle_0 = 0$$
 if  $i \neq j, 1$  o.w.

Then  $\left\langle \sum_{i=1}^{n} \alpha e_i, \sum_{i=1}^{n} \beta e_i \right\rangle = \alpha_1 \overline{\beta_1} + ... + \alpha_n \overline{\beta_n} \in \mathbb{C}$ . Similar to the proof for <u>Prop</u> 1.3, we will take an average. Consider another inner product

$$\langle v, w \rangle = \frac{1}{\#G} \sum_{g \in G} \langle gv, gw \rangle_0$$

This has some nice properties. In particular,  $\langle \ , \ \rangle$  is Hermitian linear, positive definite, and G-equivalent.

We'll verify positiveness:

$$\langle v, v \rangle = \frac{1}{\#G} \sum_{g \in G} \langle gv, gv \rangle_{0} \ge 0$$

Suppose  $\langle v,v\rangle=0$ . Then  $\sum\limits_{g\in G}\langle gv,gv\rangle_0=0$ , so  $\langle gv,gv\rangle_0=0$   $\forall g\in G$ . In particular, for g=1,  $\langle v,v\rangle_0=0\iff v=0$ .

And to verify *G*-equivariant, we have  $\langle hv, hw \rangle = \langle v, w \rangle$ .

Let  $G = S_3$ . We saw there is a unique 2-dim representation of  $S_3$ , where we construct  $e_1, e_2, e_3 \in V$  with  $e_1 + e_2 + e_3 = 0$  such that  $\sigma$  simply permutes the vectors. However, they are not necessarily the same "length."

Now, to Thm 1.2, if W is a sub-representation, let  $W^{\perp} = \{v \in V : \langle v, w \rangle = 0\}$  over the Hermitian inner product outlined in Thm 1.4.

Then we may write  $V = W \oplus W^{\perp}$ . The *G*-stability of  $W^{\perp}$  follows from equivariance of the inner product.  $v \in W^{\perp} \implies \langle gv, w \rangle = \langle v, g^{-1}w \rangle = 0 \implies gv \in W^{\perp}$ .

This "semi-simple" structure of representations is a rare sight: abelian groups, and especially groups generally, are not necessarily made of irreducible components.

We ask the following 2 questions:

- 1. Given *G*, produce the complete list of irreducible representations up to isomorphism.
- 2. Given a general, finite dimensional representation V of G, generate

$$V = V_1^{m_1} \oplus V_2^{m_2} \oplus ... \oplus V_t^{m_t}$$
  $V_i$  irreducible

If V and W are two G-representations, we may investigate  $\operatorname{Hom}_G(V,W)=\{T: T\to W: T \text{ linear s.t. } T(gv)=gT(v)\}$ . Note that  $\operatorname{Hom}_G(V,W)$  is a  $\mathbb C$ -vector space.

#### 1.5 Schur's Lemma

Let *V*, *W* be irreducible representations of *G*. Then

$$\operatorname{Hom}_{G}(V,W) = \begin{cases} 0 & V \ncong W \\ \mathbb{C} & V \cong W \end{cases}$$

where  $\operatorname{Hom}_G(V,W)$  is the space of G-equivariant homomorphisms from  $V \to W$ .

PROOF.

Suppose that  $V \ncong W$ , and let  $T \in \operatorname{Hom}_G(V, W)$ .  $\ker(T) \subseteq V$  is a subrepresentation of G, since  $v \in \ker(T) \Longrightarrow T(gv) = gT(v) = 0$ . Hence, since V is irreducible,  $\ker(T)$  may be trivial or V itself. If it were trivial, then  $\operatorname{Im}(T) \cong V$ . But  $\operatorname{Im}(T) \subseteq W$ , so by irreducible of W we yield a contradiction. Hence,  $\ker(T) = V$ , so T = 0.

Suppose that  $V \cong W$ . Let  $T \in \operatorname{Hom}_G(V, W) = \operatorname{End}_G(V)$ . Since  $\mathbb C$  is algebraically closed, T has an eigenvalue  $\lambda$ . Then  $T - \lambda I \in \operatorname{End}_G(V)$ .  $\ker(T - \lambda I)$  is a non-trivial sub-representation of V, and hence  $\ker(T - \lambda I) = V \implies T = \lambda I$ .

Recall question (2) from above. As a corollary of Schur's Lemma, we see that  $m_i = \dim_{\mathbb{C}} \operatorname{Hom}_G(V_i, V)$ .

PROOF.

$$\begin{split} \operatorname{Hom}_G(V_j,V) &= \operatorname{Hom}_G(V_j,V_1 \oplus \ldots \oplus V_{t'}) = \bigoplus_{i \in I} \operatorname{Hom}(V_j,V_i) : V_i \cong V_j \ \forall i \in I \\ &= \underbrace{\mathbb{C} \oplus \ldots \oplus \mathbb{C}}_{|I| = m_j \text{ times}} \implies \dim \operatorname{Hom}_G(V_j,V) = m_j \quad \Box \end{split}$$

For an endomorphism  $T: V \to V$ , the *trace*  $\operatorname{tr}(T) = \operatorname{tr}([T]_{\beta})$ , where  $\beta$  is some basis. This is well-defined, since basis representations  $[T]_{\alpha}$ ,  $[T]_{\beta}$  are conjugate, and  $\operatorname{tr}(AB) = \operatorname{tr}(BA) \Longrightarrow \operatorname{tr}$  is conjugate-invariant.

Let  $W \subseteq V$  be a subspace and  $\pi$  be a function  $V \to W$  such that  $\pi^2 = \pi$  and PROP 1.3  $\text{Im}(\pi) = W$ . Then  $\text{tr}(\pi) = \text{dim}(W)$ .

Let  $v_1, ..., v_d$  be a basis for W and  $v_{d+1}, ..., d_n$  be a basis for  $\ker(\pi)$ . Then, since we can write  $V = W \oplus \ker(\pi)$  (recall projection properties),  $\beta = d_1, ..., d_n$  is a basis for V. In this basis,  $\pi(v_i) = v_i$  for  $1 \le i \le d$ . Hence

PROOF.

$$[\pi]_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ & \vdots & & \ddots \end{bmatrix}$$

As for the rest of the matrix,  $\pi(v_i)$  for i > d will be mapped to a linear combination of basis vectors  $v_i : i \le d$ , so, in particular, they will not have diagonal 1 entries. Since  $d = \dim(W)$ , we conclude  $\operatorname{tr}(\pi) = \dim(W)$ .

Let  $V_1 = \mathbb{C}$  have the trivial action of G. Then  $\operatorname{Hom}_G(V_1,V) = V^G = \{v \in V : gv = v \mid g \in G\}$ .

$$V^G = \bigcap_{g \in G} (1\text{-eigenspaces for } \rho(g))$$
 Prop 1.4

#### 1.6 "Burnside"

If V is a complex representation of a finite G, then

$$\dim(V^G) = \frac{1}{\#G} \sum_{g \in G} \operatorname{tr}(\rho(g))$$

PROOF.

Recall, for a projection  $\pi: V \to W$  (i.e.  $\text{Im}(\pi) = W, \pi^2 = \pi$ , we have  $\text{tr}(\pi) = \text{dim}(W)$  (Prop 1.3). Consider

$$\pi = \frac{1}{\#G} \sum_{g \in G} \rho(g) \in \operatorname{End}_{\mathbb{C}}(V)$$

Note that  $\operatorname{Im}(\pi) \subseteq V^G$ . Let  $h \in G$  and  $v \in V$ . Then

$$h\pi(v) = \frac{1}{\#G} \sum_{g \in G} hgv = \pi(v)$$

Conversely, if  $v \in V^G$ , then  $\pi(v) = v$ . Hence,  $V^G = \text{Im}(\pi)$  exactly. This also shows that  $\pi^2(v) = \pi(v)$ . We conclude that  $\pi$  projects  $V \to V^G$ .

$$\dim(V^G) = \operatorname{tr}(\pi) = \operatorname{tr}\left(\frac{1}{\#G} \sum_{g \in G} \rho(g)\right) = \frac{1}{\#G} \sum_{g \in G} \operatorname{tr}(\rho(g))$$

PROP 1.5 Thm 1.6  $\Longrightarrow$  Burnside's Lemma.

PROOF. Consider later.

#### **CHARACTERS**

DEF 1.9 If V is a finite dimensional, complex representation of G, then the *character* of V is the function  $\chi_V : G \to \mathbb{C}$  such that

$$\chi_V(g) = \operatorname{tr}(\rho(g))$$

PROP 1.6  $\chi_V$  is constant on conjugacy classes, i.e.  $\chi_V(hgh^{-1}) = \chi_V(g)$ .

PROOF. 
$$\operatorname{tr}(\rho(hgh^{-1})) = \operatorname{tr}(\rho(h)\rho(g)\rho(h)^{-1}) = \operatorname{tr}(g)$$

E.G. 1.4  $\blacktriangleright$  Examples  $\clubsuit$  Eq. 1: Let  $G = S_3$ . We discovered 3 distinct representations of  $S_3$ : the trivial

**Eg 1:** Let  $G = S_3$ . We discovered 3 distinct representations of  $S_3$ : the trivial action  $\rho(g) = 1$  on  $V = \mathbb{C}$ ; the sgn function  $\rho(g) = \operatorname{sgn}(g)$  on  $V = \mathbb{C}$ ; and the two-dimensional representation given by

$$\operatorname{Id} \leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad (12) \leftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad (13) \leftrightarrow \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \qquad (23) \leftrightarrow \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$$

$$(123) \leftrightarrow \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \qquad (132) \leftrightarrow \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$

Denote these representations by "triv," "sgn," and 2, respectively.

The conjugacy classes and associated traces are hence given by

**Eg 2:** Recall  $G = D_8 = \{1, r, r^2, r^3, V, H, D_1, D_2\}$ . We have 4 1-dim irreducible representations given by  $D_8/\langle 1, r_2 \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2$ . Denote these by  $\chi_{\text{triv}}, ..., \chi_4$ . We also have the unique 2-dim irreducible representation given by

$$Id \leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad r \leftrightarrow \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad r^{2} \leftrightarrow \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad r^{3} \leftrightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$V \leftrightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \quad H \leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad D_{1} \leftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad D_{2} \leftrightarrow \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

$$\frac{\parallel 1 \mid \{r^{2}\} \mid \{r, r^{3}\} \mid \{V, H\} \mid \{D_{1}, D_{2}\}\}}{\chi_{\text{triv}} \parallel 1 \mid 1 \quad 1 \quad 1 \quad 1}$$

$$\chi_{2} \quad 1 \quad 1 \quad 1 \quad -1 \quad -1$$

$$\chi_{3} \quad 1 \quad 1 \quad -1 \quad 1 \quad -1$$

$$\chi_{4} \quad 1 \quad 1 \quad -1 \quad -1 \quad 1$$

$$\chi_{5} \quad 2 \quad -2 \quad 0 \quad 0 \quad 0$$

From these two examples, it seems that the number of irreducible representations coincides with the number of conjugacy classes h(G) of G (also called the *class number* of G). It *also* seems that the sum of squares of the rows, weighted by class size, is the cardinality of the group.

$$\frac{1}{\#G} = \sum_{g \in G} \chi_i(g) \chi_j(g) = \delta_{ij}$$

**Eg 3:** The Monster Group, # $G \approx 8 \cdot 10^{53}$ , has a smallest non-trivial representation of dimension d = 196,883.  $\rho_V$  then is given as a collection of  $8 \cdot 10^{53}$  196,883 × 196,883 matrices. This is too much information to ever contain in a computer. However, G has only 194 conjugacy classes, and so  $\chi_V$ , with 194 complex numbers, defines V.

 $\chi_V(1) = \dim(V)$  PROP 1.7

#### 1.7 Character Determines Representation

If  $V_1$ ,  $V_2$  are two representations for G, then  $V_1 \cong V_2 \iff \chi_{V_1} = \chi_{V_2}$ .

The passage from  $\rho_V \to \chi_V$  seems to involve a great deal of "loss of information." (See Eg 3 above).

PROOF.

Recall that we can write  $V = V_1^{m_1} \oplus ... \oplus V_t^{m_t}$ , where  $V_1, ..., V_t$  is a complete list of the irreducible representations of G. (Note that some  $m_i$  may be 0). Hence, V is determined completely by the tuple  $(m_1, ..., m_t)$ .

By convention, we take  $V_1=\mathbb{C}$  with  $gv=v\ \forall g\in G$ . Then  $V^G=\mathrm{Hom}_G(\mathbb{C},V)=\mathrm{Hom}_G(V_1,V)=\mathbb{C}^{m_1}$ , where  $m_1=\dim(V^G)=\frac{1}{\# G}\sum_{g\in G}\chi(g)$ .

Recall, by Schur's Lemma, that we can write

$$\begin{aligned} \operatorname{Hom}_{G}(V_{j}, V) &= \operatorname{Hom}_{G}(V_{j}, V_{1}^{m_{1}} \oplus ... \oplus V_{t}^{m_{t}}) \\ &= \operatorname{Hom}_{G}(V_{i}, V_{1})^{m_{1}} \oplus ... \oplus \operatorname{Hom}_{G}(V_{i}, V_{t})^{m_{t}} \cong \mathbb{C}^{m_{j}} \end{aligned}$$

Note that for representations V, W,  $\operatorname{Hom}(V, W)$  is also a vector space over  $\mathbb C$ . In fact, it is a representation on G: for  $T \in \operatorname{Hom}(V, W), g \in G$ , we have  $gT(v) = T(g^{-1}v)$ , exploiting the action of G on V. Similarly, we could define an action by  $gT(v) = g \cdot T(v)$ , exploiting the action of G on W. Respectively, these actions lead to  $\operatorname{Hom}(V, W) = \operatorname{Hom}(V, \mathbb C)^{\dim(W)}$  and  $\operatorname{Hom}(V, W) = W^{\dim(V)}$ .

A last action we could consider is  $gT(v) = gT(g^{-1}v)$ . Then  $\text{Hom}(V, W)^G = \{T : gT = T\} = \text{Hom}_G(V, W)$ . Then

$$\dim_{\mathbb{C}} \operatorname{Hom}_{G}(V_{j}, V) = \dim_{\mathbb{C}} \operatorname{Hom}(V_{j}, V)^{G} = \frac{1}{\#G} \sum_{g \in G} \chi_{\operatorname{Hom}(V_{j}, V)}(g)$$

PROP 1.8 Given two *G*-representations V, W, then  $V \oplus W$  is a representation with g(v, w) = (gv, gw). Then

$$\chi_{V \oplus W} = \chi_V + \chi_W$$

1.8 wer

$$\chi_{\text{Hom}(V,W)} = \overline{\chi_V} \chi_W$$

Let  $g \in G$ . Then  $\rho_V(g)$  acting on V is diagonalizable. Let  $e_1, ..., e_m$  be a basis of eigenvectors for  $\rho(g)$ , with  $m = \dim(V)$ .

Similarly, let  $f_1$ , ...,  $f_n$  be a basis of eigenvectors for  $\rho_W(g)$ .

Let  $T_{ij} \in \text{Hom}(V, W)$ , where  $1 \le i \le m$  and  $1 \le j \le n$ , be the following transofmrations

$$T_{ij}(e_k) = \begin{cases} 0 & k \neq i \\ f_j & k = i \end{cases}$$

We claim that  $T_{ij}$  is a basis for Hom(V, W). We have

$$(gT_{ij})(e_k) = gT(g^{-1}e_k) = gT(\lambda_k^{-1}e_k) = \lambda_k^{-1}gT_{ij}e_k$$
$$= \lambda_k^{-1} \begin{cases} 0 & j \neq i \\ \lambda_k^{-1}\beta_i f_j & j = i \end{cases} \Longrightarrow gT_{ij} = \lambda_j^{-1}\beta_j T_{ij}$$