

Model Development Phase Template

Date	7 JULY 2024
Team ID	685476
Project Title	Slop sense: utilising resort features for regression modelling
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
!pip install scikit-learn
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.impute import SimpleImputer

imputer=SimpleImputer(strategy='mean')
x_train=imputer.fit_transform(x_train)
x_test=imputer.transform(x_test)

LR=LinearRegression()
LR.fit(x_train,y_train)
```



```
!pip install scikit-learn
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.impute import SimpleImputer

imputer=SimpleImputer(strategy='mean')
x_train=imputer.fit_transform(x_train)
x_test=imputer.transform(x_test)

LR=LinearRegression()
LR.fit(x_train,y_train)
```

Model Validation and Evaluation Report:

Model	Classification Report	F1 Scor e	Confusion Matrix
-------	-----------------------	-----------------	------------------

LR& XGB	<pre>models.append(('times Regression',timesrugression())) models.append(('kNelghborsnegressur',kNelghborsnegressur())) models.append(('support Voctor Regression',SVR())) models.append(('Nande Porest Regressor',MARIOMFORESHegressor())) models.append(('XNG Regressor',MARREGRESSOR())) d={} tnr name,model in models: model.fit(X train,y_train) scrue-round(model.score(X_tast,y_test)*180,4) tf[name]-score</pre>	79%	cluster_assignments.value_counts() Ø 4665 3 610 4 132 2 33 1 18 Name: count, dtype: int64
KNR	for name in d: print(name,":",d[name]) Linear Regression : 99,9922 KNeighborsRegressor : 95,8936 Support Vector Regression : 59,8765 Rundom Forent Regressor : 99,8742 XNG Regressor : 99,8742	64%	2.4538768184408024