國泰大數據競賽 2020

許劭廷 - 交大統研所

高季伶 - 交大統研所

蔡濬安 - 交大統研所

傅琦佳 - 交大統研所

1. 關於國泰大數據競賽

類似Kaggle競賽

· 給定資料集以及問題(Supervised)

• 以客觀指標作為排名首要依據

問題介紹

•人口學資料

• 過往保險資料、金融資料

• 目標:預測哪些人會保「重大疾病險」,為二元問題

評分標準

- •針對二元問題所產生的指標,假設模型能夠算出各筆樣本為1的機率(抑或是信心)。
- AUC: ROC線下面積
- ROC(receiver operating characteristic curve):

將同一模型每個閾值(Threshold)的(FPR, TPR) 座標都畫出來

- FPR = FP/(FP+TN) = FP/#(實際是N)
- TPR = TP/(TP+FN) = TP/#(實際是P)

		真實值		緫
		p	n	數
預測	p'	真陽性 (TP)	偽陽性 (FP)	P'
輸出	n'	偽陰性 (FN)	真陰性 (TN)	N'
總數		Р	N	

ROC

Threshold = 0.7	р	n
p'	25	25
n'	75	75
Threshold = 0.5	р	n
p'	50	50
n'	50	50
Threshold = 0.3	р	n
p'	75	100
n'	25	0

• 隨著Threshold愈小,愈多筆資料被預測成True,FPR以及TPR也 隨之變大

ROC的特性

- Threshold愈小, FPR以及TPR跟著愈高 -> ROC為一條非遞減線不同模型下:
- 1. ROC愈早衝高,代表在相對小的FPR下,我們就能有高的TPR
- 2. ROC愈早衝高,則AUC愈大

AUC

• 結論: AUC愈大 -> 模型預測準確率愈好

• 使用AUC目的:

AUC是以0, 1資料被正確預測的比例做為評判標準

-> 不因imbalnce data而對哪邊資料有所偏頗

Public & Private

• 每天有兩次上繳答案的機會

並計算Public AUC成績(部分測試資料集)

• 最後結算以Private AUC成績為主(所有測試資料集)

2. 資料介紹

資料維度

- Train: 100,000筆
- Test: 150,000筆
- Feature數量: 131
- 缺失值的feature數量:65
- •保「重大疾病險」的比例:2%有保、98%沒保

缺失值比例

3. 資料清洗

(1) 資料清理 (Data Cleaning)

- ① 紀錄缺失值資訊
- ② 以決策樹方式補缺失值

- 建模:缺失值變量 ~ 其他沒有缺失值的變量
- 以模型預測有缺失的筆項

(2)資料整合 (Data Integration)

- •由於資料乾淨,並不需要多個dataset做合併或是同個變量下不同尺度間的統一。
- · 使用程式檢查,並無重複之ID,無須根據時序重新整合資料。

(3)資料轉換 (Data Transformation)

• 尺度變換:樹結構不需要做轉換

• 刪減變數:選擇不刪除變數

删除變數的原因

- 有影響力相似(colinear)的變量
- 有因果關係的變量
- •舉「薪資~是否為理工學院 + 性別」為例:

人數	Male	Female
是工學 院	80人	20人
不是工 學院	20人	80人

薪水	Male	Female
是工學 院	\$10	\$10
不是工 學院	\$5	\$5

Male	Female
10*0.8+5*0.2 = 9	10*0.2+5*0.8 = 6

删除變數可能錯失的

• 交互作用

人數	Male	Female
是工學 院	80人	20人
不是工 學院	20人	80人

薪水	Male	Female
是工學 院	\$10	\$5
不是工學院	\$ 5	\$10

Male	Female
10*0.8+5*0.2 = 9	5*0.2+10*0.8 = 9

是工學院	不是工學院
10*0.8+5*0.2 = 9	5*0.2+10*0.8 = 9

4. 建立模型

(1) 非平衡資料問題

• SMOTE

- 1. 找出與陽性個體 x_i 的最近的 k 個陽性鄰點 (k-nearest neighbors)
- 2. 在 k 個鄰點中隨機選擇一個,稱作 x_i ,我們會利用該鄰點用來生成新樣本
- 3. 計算 \mathbf{x}_i 與 \mathbf{x}_j 的差異 $\Delta = \mathbf{x}_j \mathbf{x}_i$
- 4. 產生一個 0-1 之間的隨機亂數 η
- 5. 生成新的樣本點 $\mathbf{x}_i^{(new)} = \mathbf{x}_i + \eta \Delta$
- 使用不一樣的loss function: AUC、log-loss

(2) XGBoost

- 為Boosting算法
- · 每次迭代為預測前一棵樹的loss
- -> 確保迭代過程中,下次會比上次好
- •加入許多找樹的優化,使得繁瑣計算得以高效實現

(3) ANN類神經網路

• Universal approximation theorem:類神經網路架構可以逼近任意函數

最陡下降法、Chain rule

· 想辦法找到最低的loss function函數值發生點

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} - \gamma \nabla f(\boldsymbol{x}^{(t)})$$

· 微分怎麼算? 根據不同的層數 不一樣的activate functi 似乎每層參數找不到

固定公式

Backpropagation - Backward pass

Compute $\partial l/\partial z$ for all activation function inputs z

(4) Stacking結合模型

• 類似Bagging概念

• 以類似投票方式調整各筆資料的預測值

5. 結論

AUC和排名

• Public AUC到達0.850789,為9/244名

• Private AUC到達0.846202,為21/244名