## Cognoms i Nom:

Codi

## Examen parcial de Física - Corrent Continu i Corrent Altern Model A 15 d'abril de 2021

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** Si l'ample de banda d'una línia ADSL és de 125 MHz, quina de les següents afirmacions és CERTA?
  - a) La durada del pols més curt que es pot enviar és de 8  $\mu$ s.
  - b) La velocitat de transmissió és de 62.5 Mbit/s.
  - c) La velocitat de transmissió és de 250 Mbit/s.
  - d) La durada del pols més curt que es pot enviar és de 16  $\mu$ s.
- **T2)** Un estudiant manté encesa una bombeta-led de 0.5 W i 5 V durant 20 hores. Quanta càrrega ha circulat per la bombeta durant tota aquesta estona?
  - a) 18000 C
- b) 7200 C
- c) 21600 C
- d) 3600 C
- T3) Quina de les quatre resistències del circuit de la figura consumeix la potència més alta?
  - a)  $R_2$

b)  $R_1$ 

c)  $R_3$ 

d)  $R_4$ 



- **T4)** En el circuit de la figura, connectem l'interruptor a l'instant t=0. Podem afirmar que:
  - a) La intensitat final és 10 mA.
  - b) La constant de temps val 100  $\mu$ s.
  - c) La intensitat inicial és 10 mA.
  - d) La constant de temps val 100 ms.



- **T5)** La funció de transferència del circuit de la figura per a  $\omega = 5000$  rad/s val:
  - a) 2/3

b) 0.73

c)  $2/\sqrt{5}$ 

d)  $1/\sqrt{5}$ 



# Cognoms i Nom:

Codi

# Examen parcial de Física - Corrent Continu i Corrent Altern 15 d'abril de 2021

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Quina de les quatre resistències del circuit de la figura consumeix la potència més alta?
  - a)  $R_3$

b)  $R_4$ 

c)  $R_1$ 

d)  $R_2$ 



- **T2)** La funció de transferència del circuit de la figura per a  $\omega = 5000$  rad/s val:
  - a)  $1/\sqrt{5}$

b)  $2/\sqrt{5}$ 

c) 2/3

d) 0.73



- T3) Un estudiant manté encesa una bombeta-led de 0.5 W i 5 V durant 20 hores. Quanta càrrega ha circulat per la bombeta durant tota aquesta estona?
  - a) 21600 C
- b) 7200 C
- c) 3600 C
- d) 18000 C
- T4) Si l'ample de banda d'una línia ADSL és de 125 MHz, quina de les següents afirmacions és CERTA?
  - a) La durada del pols més curt que es pot enviar és de 8  $\mu s.$
  - b) La durada del pols més curt que es pot enviar és de 16  $\mu \mathrm{s}.$
  - c) La velocitat de transmissió és de 250 Mbit/s.
  - d) La velocitat de transmissió és de 62.5 Mbit/s.
- **T5)** En el circuit de la figura, connectem l'interruptor a l'instant t=0. Podem afirmar que:
  - a) La constant de temps val  $100~\mathrm{ms}.$
  - b) La intensitat inicial és 10 mA.
  - c) La intensitat final és 10 mA.
  - d) La constant de temps val 100  $\mu$ s.



Cognoms i Nom:

Codi

#### Examen de Física - Corrent Continu i Corrent Altern 15 d'abril de 2021

Problema: 50% de l'examen

En el circuit de la figura, la diferència de potencial entre els punts Q i P és  $V_{QP}=V_Q-V_P=4$  V.



#### Determineu:

- a) Quins són els valors de les intensitats  $I_1$ ,  $I_2$  i  $I_3$  indicades a la figura, i el de la fem desconeguda  $\varepsilon$ ?
- b) Quin és el circuit equivalent Thévenin entre els punts A i B?
- c) Canviem la font de tensió contínua de 8 V per un generador de tensió alterna  $V_g(t) = V_0 \cos(wt)$  i la font  $\varepsilon$  per un condensador de capacitat  $C = 5\mu F$ . Si  $V_0 = 20 \,\mathrm{V}$  i  $w = 1000 \,\mathrm{rad/s}$ , determineu la impedància de la branca per on circula  $I_2$  (composta per 3 elements).
- d) Trobeu el fasor de la intensitat que circula pel generador.

# COMENCEU LA RESOLUCIÓ DEL PROBLEMA EN AQUEST MATEIX FULL

#### Respostes correctes de les questions del Test

| Qüestió | Model A | Model B |
|---------|---------|---------|
| T1)     | b       | c       |
| T2)     | b       | a       |
| T3)     | b       | b       |
| T4)     | a       | d       |
| T5)     | d       | c       |

#### Resolució del Model A

- T1) La durada del pols més curt que es pot enviar és  $\tau=1/f_b=8\times 10^-9$  s. La velocitat de transmissió és  $v=f_b/2=62.5\,\mathrm{Mbit/s}.$
- **T2)** La intensitat que passa per la bombeta és  $I = P/V = 0.5/5 = 0.1\,$  A. Per tant, en 20 hores hi haurà circulat una càrrrega total  $Q = I\Delta t = 0.1 \times 20 \times 3600 = 7200\,$ C.
- **T3)** La intensitat a cada resistència és  $I_1 = I_2 = 2I_3 = 2I_4$ . Com que la potència dissidada ve donada per  $P = RI^2$ , la resistència que consumeix una potència més alta és  $R_1$ .
- **T4)** La intensitat en un instant  $t \ge 0$  és  $I(t) = \varepsilon/R \left(1 e^{-1/\tau_L}\right)$ . Per tant, la intensitat inicial vol zero i la final  $I_f = \varepsilon/R = 0.01 \, \text{A} = 10 \, \text{mA}$ . La constant de temps val  $\tau_L = L/R = 10 \, \mu \, \text{s}$ .
- **T5** La funció de transferència és  $F(\omega)=Vout(\omega)/Vin(\omega)=L\omega/\sqrt{R^2+(L\omega)^2}=5/\sqrt{10^2+5^2}=1/\sqrt{5}.$

#### Resolució del Problema

- a) De la dada  $V_{QP}=V_Q-V_P=4$  V deduim que  $I_3=4/200=0.020$  A. També tenim que  $V_{QP}=V_Q-V_P=4\Rightarrow (150+50)$   $I_1-8=4\Rightarrow I_1=0.060$  A. Aplicant la llei de nusos trobem  $I_2=I_1+I_3=0.080$  A. També tenim que  $V_{QP}=V_Q-V_P=4\Rightarrow -200$   $I_2+\varepsilon=-16+\varepsilon=4\Rightarrow \varepsilon=20$  V
- b) Busquem  $V_{Th} \equiv V_A V_B$  en circuit obert:  $V_A V_B = -100 \ I_2 + \varepsilon = -8 + 20 = 12 \ (V)$ . Trobarem la resistència equivalent de Thévenin considerant l'esquema de connexions entre A i B, negligint les fonts de tensió.

  Les resistències de les dues branques Q-P més a l'esquerra estan en paral·lel i trobem  $R_{eq} = (200^{-1} + 200^{-1})^{-1} = 100 \ (\Omega)$ . Aquest conjunt està en sèrie amb una primera resistència també de  $100 \ \Omega$ , resultant  $R'_{eq} = 100 + 100 = 200 \ (\Omega)$ . Finalment aquest conjunt es troba connectat en paral·lel amb la segona resistència de  $100 \ \Omega$ , resultant  $R_{Th} = (200^{-1} + 100^{-1})^{-1} = 66.7 \ (\Omega)$ .
- c) La branca per on circula  $I_2$  té 3 elements en sèrie: dues resistències de 100  $\Omega$  cada una i un condensador de reactància  $|X_C|=1/(C\,w)=200$ , per tant trobem  $\bar{Z}(I_2)=(200-200\,j)\,\Omega$ .
- d) Aquesta impedància es troba connectada en paral·lel amb una resistència de 200  $\Omega$ , resultant  $\bar{Z}' = ((200^{-1} + (200 200 \, j)^{-1})^{-1}) \Omega = (120 40 \, j) \Omega$ . Finalment, hi ha dues resistències de 50  $\Omega$  i 100  $\Omega$  associades en sèrie amb  $\bar{Z}'$ , i la impedància total del circuit és doncs  $\bar{Z}_{tot} = (320 40 \, j) (\Omega) = 322.5 |\underline{-7.12^o}, (\Omega)$ .
  - El fasor de la intensitat del generador és doncs  $\bar{I}_{gen} = 20|\underline{0}/(322.5|\underline{-7.12^o}) (V/\Omega) = 62.0|\underline{+7.12^o} \text{ (mA)}.$