EECS 349: Machine Learning

Bryan Pardo

Topic: Concept Learning and Version Spaces

Concept Learning

- Much of learning involves acquiring general concepts from specific training examples
- Concept: subset of objects from some space
- Concept learning: Defining a function that specifies which elements are in the concept set.

A Concept

- Let there be a set of objects, X.
 X = {White Fang, Scooby Doo, Wile E, Lassie}
- A concept **C** is...

A subset of **X**

A function that returns **1** only for elements in the concept

$$C(Lassie) = 1$$
, $C(Wile E) = 0$

Instance Representation

- Represent an object (or *instance*)
 as an *n*-tuple of *attributes*
- Example: Days (6-tuples)

Sky	Temp	Humid	Wind	Water	Forecast
sunny	warm	normal	strong	warm	same
sunny	warm	high	strong	warm	same
rainy	cold	high	strong	warm	change
sunny	warm	high	strong	cool	change

Example Concept Function

 "Days on which my friend Aldo enjoys his favorite water sport"

INIDIAT

INPUT						
Sky	Temp	Humid	Wind	Water	Forecast	C(x)
sunny	warm	normal	strong	warm	same	1
sunny	warm	high	strong	warm	same	1
rainy	cold	high	strong	warm	change	0
sunny	warm	high	strong	cool	change	1

Hypothesis Spaces

Hypothesis Space H: subset of all possible concepts

For learning, we restrict ourselves to H
 H may be only a small subset of all possible
 concepts (this turns out to be important – more later)

Example: MC2 Hypothesis Space

- MC2 (Mitchell, Chapter 2) hypothesis space
 - Hypothesis h is a conjunction of constraints on attributes
- Each constraint can be:
 - A specific value : e.g. Water=Warm
 - A don't care value : e.g. Water=?
 - No value allowed: e.g. Water=∅
- Instances x that satisfy the constraints of h have h(x) = 1, otherwise h(x) = 0
- Example hypotheses:

Sky	Temp	Humid	Wind	Water	Forecast
sunny	?	?	?	?	?
?	warm	?	?	?	same

Concept Learning Task

GIVEN:

- Instances X
 - E.g., days decribed by attributes:
 Sky, Temp, Humidity, Wind, Water, Forecast
- Target function c:
 E.g., EnjoySport X → {0,1}
- Hypothesis space H
 - E.g. MC2, conjunction of literals: < Sunny ? ? Strong ? Same >
- Training examples D
 - positive and negative examples of the target function: $\langle x_1, c(x_1) \rangle$,..., $\langle x_n, c(x_n) \rangle$

FIND:

A hypothesis h in H such that h(x)=c(x) for all x in D.

Concept Learning Task

GIVEN:

- Instances X
 - E.g., days decribed by attributes:
 Sky, Temp, Humidity, Wind, Water, Forecast
- Target function c:
 E.g., EnjoySport X → {0,1}
- Hypothesis space H
 - E.g. MC2, conjunction of literals: < Sunny ? ? Strong ? Same >
- Training examples D
 - positive and negative examples of the target function: $\langle x_1, c(x_1) \rangle$,..., $\langle x_n, c(x_n) \rangle$

FIND:

A hypothesis h in H such that h(x)=c(x) for all x in D.

Inductive Learning Hypothesis

- Any hypothesis found to approximate the target function well over the training examples, will also approximate the target function well over the unobserved examples.
- This might not be true. When it it isn't the hypothesis does not generalize well.

Number of Instances, Concepts, Hypotheses

- Sky: Sunny, Cloudy, Rainy
- AirTemp: Warm, Cold
- Humidity: Normal, High
- Wind: Strong, Weak
- Water: Warm, Cold
- Forecast: Same, Change

distinct instances : 3*2*2*2*2*2 = 96

distinct concepts: 2⁹⁶

syntactically distinct hypotheses in MC2: 5*4*4*4*4*4=5120 semantically distinct hypotheses in MC2: 1+4*3*3*3*3*3=973 Number of possible hypothesis spaces: $2^{2^{96}}$

Concept Generality

 A concept P is more general than or equal to another concept Q iff the set of instances represented by P includes the set of instances represented by Q.

General to Specific Order

- Consider two hypotheses:
 - $-h_1 = < Sunny,?,?,Strong,?,?>$
 - $-h_2 = < Sunny,?,?,?,?,?>$
- Definition: h_j is more general than or equal to h_k iff:

$$h_j \ge h_k \equiv \forall x \left(h_k(x) = 1 \longrightarrow h_j(x) = 1 \right)$$

This imposes a partial order on a hypothesis space.

Instance, Hypotheses and "generality"

x₁=< Sunny, Warm, High, Strong, Cool, Same>

x₂=< Sunny,Warm,High,Light,Warm,Same>

Find-S Algorithm

- 1. Initialize **h** to the most specific hypothesis in **H**
- 2. For each positive training instance x:
 - For each attribute constraint a_i in h
 - If the constraint is satisfied by x, do nothing
 - else replace a_i in h by the next more general constraint that is satisfied by x
- 3. Output hypothesis *h*

Hypothesis Space Search by Find-S

x₁=<Sunny,Warm,Normal,Strong,Warm,Same>+

x₂=<Sunny,Warm,High,Strong,Warm,Same>+

x₃=<Rainy,Cold,High,Strong,Warm,Change> -

x₄=<Sunny,Warm,High,Strong,Cool,Change> +

 $h_0 = < \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, >$ $h_1 = < Sunny, Warm, Normal,$ Strong, Warm, Same >

h_{2,3}=< Sunny,Warm,?, Strong,Warm,Same>

h₄=< Sunny,Warm,?, Strong,?,?>

Properties of Find-S

- When hypothesis space described by constraints on attributes (e.g., MC2)
 - Find-S will output the most specific hypothesis within
 H that is consistent with the positive training examples

Complaints about Find-S

- Ignores negative training examples
- Why prefer the most specific hypothesis?
- Can't tell if the learner has converged to the target concept, in the sense that it is unable to determine whether it has found the *only* hypothesis consistent with the training examples.

Version Spaces

 Hypothesis h is consistent with a set of training examples D of the target concept c iff h(x)=c(x) for each training example <x,c(x)> in D.

Consistent
$$(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) h(x) = c(x)$$

• A **version space**: all the hypotheses that are consistent with the training examples.

$$VS_{H,D} = \{h \in H \mid Consistent(h, D)\}$$

 Imposing a partial order (like the ≥ one) on the version space lets us learn concepts in an organized way.

List-Then Eliminate Algorithm

- VersionSpace ← a list containing every hypothesis in H
- 2. For each training example $\langle x, c(x) \rangle$ remove from *VersionSpace* any hypothesis that is inconsistent with the training example $h(x) \neq c(x)$
 - 3. Output the list of hypotheses in *VersionSpace*

Example Version Space

```
S:
                  {<Sunny,Warm,?,Strong,?,?>}
<Sunny,?,?,Strong,?,?>
                         <Sunny, Warm,?,?,?,> <?, Warm,?, Strong,?,?>
               {<Sunny,?,?,?,?>, <?,Warm,?,?,?>, }
          x_1 = \langle Sunny Warm Normal Strong Warm Same \rangle +
          x_2 = \langle Sunny Warm High Strong Warm Same \rangle +
          x_3 = \langle Rainy Cold High Strong Warm Change \rangle -
          x_4 = \langle Sunny Warm High Strong Cool Change \rangle +
```

Representing Version Spaces

- The **general boundary**, G, of version space $VS_{H,D}$ is the set of maximally general members.
- The **specific boundary**, S, of version space $VS_{H,D}$ is the set of maximally specific members.
- Every member of the version space lies between these boundaries

$$VS_{H,D} \equiv \{h \in H \mid \exists (s \in S), \exists (g \in G) \ g \ge h \ge s\}$$

Candidate Elimination Algorithm

Initialize G to the set of maximally general hypotheses in H Initialize S to the set of maximally specific hypotheses in H For each training example d, do

- If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - h is consistent with d, and some member of G is more general than h
 - \bullet Remove from S any hypothesis that is more general than another hypothesis in S
- If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - Remove g from G
 - Add to G all minimal specializations h of g such that
 - h is consistent with d, and some member of S is more specific than h
 - \bullet Remove from G any hypothesis that is less general than another hypothesis in G

Candidate-Elimination Algorithm

- -When does this halt?
- If S and G are both singleton sets, then:
 - if they are identical, output value and halt.
 - if they are different, the training cases were inconsistent. Output this and halt.
- Else continue accepting new training examples.

 $x_1 = \langle Sunny Warm Normal Strong Warm Same \rangle +$

S: {< Sunny Warm Yormal Strong Warm Same >}

 $x_2 = \langle Sunny Warm High Strong Warm Same \rangle +$

S: {< Sunny Warm ? Strong Warm Same >}

```
{< Sunny Warm ? Strong Warm Same >}
      G: {<?,?,?,?,?>}
x_3 = \langle Rainy Cold High Strong Warm Change \rangle -
     {< Sunny Warm ? Strong Warm Same >}
{<Sunny,?,?,?,?,?, <?,Warm,?,?,?,?, <?,?,?,?
 x_4 = <Sunny Warm High Strong Cool Change> +
       {< Sunny Warm ? Strong ? ? >}
     {<Sunny,?,?,?,?,>, <?,Warm,?,?,?>}
```

- Instance space: integer points in the x,y plane with $0 \le x,y \le 10$
- hypothesis space : rectangles. That means hypotheses are of the form $a \le x \le b$, $c \le y \le d$

Classification of Unseen Data

```
S: {<Sunny,Warm,?,Strong,?,?>}

<Sunny,?,?,Strong,?,?> <Sunny,Warm,?,?,?> <?,Warm,?,Strong,?,?>

G: {<Sunny,?,?,?,?>, <?,Warm,?,?,?>, }
```

```
x_5 = <Sunny Warm Normal Strong Cool Change> + 6/0 x_6 = <Rainy Cold Normal Light Warm Same> - 0/6 x_7 = <Sunny Warm Normal Light Warm Same> ? 3/3 x_8 = <Sunny Cold Normal Strong Warm Same> ? 2/4
```

Deductive reasoning

- Tries to show a conclusion MUST follow from a set of premises (axioms)
- What we typically think of as "Logic" (1st order, 2nd order, etc.)
- Covered in EECS 348.
- Example
 - All men are mortal
 - Socrates is a man
 - Therefore, Socrates is mortal

Inductive reasoning

- The premises of an inductive argument indicate support (often probabilistic support) but do not ensure the conclusions are true.
- Example
 - 93% of students are right-handed.
 - Will is a student.
 - Therefore, Will is right-handed.

Inductive Bias

- NOT the same as bias in a statistical estimator
- DEFINITION: The set of axioms that would need to be added to the knowledge of the system so that a deductive reasoner would make the same inference as the inductive reasoner.
 - Example: Will does whatever the majority does.

Inductive Bias

CHOICE OF PERFORMANCE MEASURE IS A KIND OF BIAS:

Means squared error (linear regression)

Maximum margin between classes (SVM)

Fitness function (Genetic algorithm)

Inductive Leap

- + <Sunny Warm Normal Strong Cool Change>
- + <Sunny Warm Normal Light Warm Same>

S: <Sunny Warm Normal???>
new example <Sunny Warm Normal Strong Warm Same>

How can we justify classifying the new example as positive? Since S is the specific boundary all other hypotheses in the version space are more general. So if the example satisfies S it will also satisfy every other hypothesis in VS.

inductive bias: Concept **c** can be described by a conjunction of literals.

What Example to Query Next?

- What would be a good query for the learner to pose at this point?
- Choose an instance that is classified positive by some of the hypotheses and negative by the others.
 - <Sunny, Warm, Normal, Light, Warm, Same>
- If the example is positive S can be generalized, if it is negative G can be specialized.

Biased Hypothesis Space

 Our hypothesis space is unable to represent a simple disjunctive target concept :

```
(Sky=Sunny) v (Sky=Cloudy) x_1 = \langle Sunny \ Warm \ Normal \ Strong \ Cool \ Change \rangle + \\ S_1 : \{ \langle Sunny, \ Warm, \ Normal, \ Strong, \ Cool, \ Change \rangle \} x_2 = \langle Cloudy \ Warm \ Normal \ Strong \ Cool \ Change \rangle +
```

S₂: { <?, Warm, Normal, Strong, Cool, Change> }

 x_3 = <Rainy Warm Normal Strong Cool Change> - S_3 : {} The third example x_3 contradicts the already overly general hypothesis space specific boundary S_2 .

Unbiased Learner

- Idea: Choose H that expresses every teachable concept, that means H is the set of all possible subsets of X
- $|X| = 96 = |H| = 2^{96} \sim 10^{28}$ distinct concepts
- H = disjunctions, conjunctions, negations
 <Sunny Warm Normal ? ? ?> v <? ? ? ? ? Change>
- H surely contains the target concept.

Unbiased Learner

Assume positive examples (x_1, x_2, x_3) and negative examples (x_4, x_5)

$$S: \{ (x_1 \lor x_2 \lor x_3) \} G: \{ \neg (x_4 \lor x_5) \}$$

How would we classify some new instance x_6 ?

For any instance not in the training examples half of the version space says + the other half says –

=> To learn the target concept one would have to present *every* single instance in X as a training example (Rote learning)

Three Learners with Different Biases

- Rote learner: Store examples, classify x if and only if it matches a previously observed example.
 - No inductive bias
- Version space candidate elimination algorithm.
 - Bias: Hypothesis space contains target concept.
- Find-S
 - Bias: The hypothesis space contains the target concept & all instances are negative instances unless the opposite is entailed by other knowledge.

Summary

- Concept learning as search.
- General-to-Specific partial ordering of hypotheses
- Inductive learning algorithms can classify unseen examples only because of inductive bias
- An unbiased learner cannot make inductive leaps to classify unseen examples.