Normed Vector Spaces

Vector Spaces

Throughout, $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A **vector space** over \mathbb{F} is a nonempty set V equipped with two operations: vector addition and scalar multiplication.

$$\begin{array}{c} V\times V\xrightarrow{+}V\\ (v,w)\mapsto v+w & \text{Vector Addition}\\ F\times V\to V\\ (\alpha,v)\mapsto \alpha v & \text{Scalar Multiplication} \end{array}$$

The vector space is an Abelian group, where $u, v, w \in V$ and $\alpha, \beta \in \mathbb{F}$, we have:

- (i) u + (v + w) = (u + v) + w
- (ii) $\exists 0_v \in V$ with $\forall v \in V$, $0_v + v = v + 0_v = v$
- (iii) $(\forall v \in V)(\exists w \in V)$ with $v + w = 0_v$
- (iv) $\forall v, w \in V, v + w = w + v$
- (v) $\alpha(v+w) = \alpha v + \alpha w$, $(\alpha + \beta)v = \alpha v + \beta v$
- (vi) $\alpha(\beta w) = (\alpha \beta) w$
- (vii) $1 \cdot v = v$

Remarks:

- (a) 0_v is unique and known as the zero vector.
- (b) The vector w in (iii) is unique, and denoted -v.
- (c) $0 \cdot v = 0_v$
- (d) $(-1) \cdot v = -v$
- (e) Property (iv) follows from all the other axioms.
- (f) For $n \in \mathbb{N}$, $n \cdot v = \underbrace{v + v + \dots + v}_{n \text{ times}}$

Subspaces

Let V be a vector space over \mathbb{F} . A **subspace** is a nonempty subset $W \subseteq V$ satisfying the following:

- (i) $w \in W, \alpha \in \mathbb{F} \to \alpha w \in W$.
- (ii) $w_1, w_2 \in W \Rightarrow w_1 + w_2 \in W$.

Remark: 0_v is always a member of any subspace; a subspace is also a vector space.

Proposition: Intersection of Subspaces

If $\{W_i\}_{i\in I}$ is a family of subspaces of V, then, $\bigcap W_i$ is a subspace of V.

Proposition: Union of Subspaces

It is not the case that the union of subspaces of V also a subspace. For example, consider \mathbb{R}^2 with the traditional vector space operations:

$$\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$

$$\alpha \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix}$$

If $W_1, W_2 \in V$ are subspaces such that $W_1 \cup W_2$ is a subspace, then $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Generated Subspaces

Let $S \subseteq V$ be any subset of a vector space V. Then,

$$\operatorname{span}(S) = \left\{ \sum_{j=1}^{n} \alpha_{j} v_{j} \mid \alpha_{1}, \dots, \alpha_{n} \in \mathbb{F}, v_{1}, \dots, v_{n} \in S \right\}$$

Remarks:

- $\operatorname{span}(S) \subseteq V$ is a subspace.
- span(S) = $\bigcap W$, where $S \subseteq W$ and $W \subseteq V$ is a subspace. Thus, span(S) is the "smallest" subspace containing S, or the subspace generated by S.

Proposition: Quotient Group on Vector Space

Let V be a vector space, and let $W \subseteq V$ is a subspace. Define $u \sim_W v \leftrightarrow u - v \in W$.

- (1) \sim_W is an equivalence relation.
- (2) If $[v]_W$ denotes the equivalence class of v, then $[v]_W = v + W = \{v + w | w \in W\}$.
- (3) $V/W := \{[v]_W | v \in V\}$ is a vector space with $[v_1]_W + [v_2]_W = [v_1 + v_2]_W$ and $\alpha[v]_W = [\alpha v]_W$.

Proof of (1):

- Reflexive: $u \sim_W u$, since $u u = 0 \in W$.
- Transitive: Suppose $u \sim_W v$, and $v \sim_W z$. Then, $u v \in W$, and $v z \in W$. So, $(u v) + (v z) \in W$, so $u z \in W$. Whence, $u \sim_W z$.
- Symmetric: If $u \sim_W v$, then $u v \in W$, so $-1 \cdot (u v) \in W$, so $v u \in W$. Whence, $v \sim_W u$.

Proof of (2):

$$[v]_{W} = \{ u \in V \mid u \sim_{W} v \}$$

$$= \{ u \in V \mid u - v \in W \}$$

$$= \{ u \in V \mid u = v + w \text{ some } w \in W \}$$

$$= \{ v + w \mid w \in W \}$$

$$= v + W$$

Proof of (3): Prove that the operation is well-defined.

Bases

Let V be a vector space and $S \subseteq V$ be a subset.

- (1) S is said to be spanning for V if span(S) = V.
- (2) S is linearly independent if, for $\sum_{j=1}^{n} \alpha_j v_j = 0_v$ with $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$, $v_1, \ldots, v_n \in S$, then $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.
- (3) S is a basis for V if S is linearly independent and spanning for V.

Proposition: Existence of Basis

Every vector space admits a basis. If $S \subseteq V$ is linearly independent, $\exists B \subseteq V$ such that B is a basis and $S \subseteq V$.

Zorn's Lemma: