Hand In 4 FYST85

 $\begin{array}{c} Author \\ {\rm Max~Eriksson} \\ {\rm maxerikss@gmail.com} \end{array}$

Lund University
Department of Physics

1 First Exercise

Firstly the NAND-gate looks like

Figure 1: NAND-gate and the corresponding truth table.

Now we can easily make the AND-gate

Figure 2: AND-gate and the corresponding truth table.

As well as the NOT-gate

Figure 3: AND-gate and the corresponding truth table.

And finally the XOR-gate

Figure 4: XOR-gate and the corresponding truth table.

2 Second Exercise

Firstly we have that

$$R_k = \begin{bmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{bmatrix} \tag{1}$$

We know from Nielsen & Chuang that we can decompose a controlled U-operation as $U = e^{i\alpha}AXBXC$ where ABC = 1. See Fig. 5 for the circuit decomposition.

Figure 5: Decomposition of R_k -operation.

Then we have

$$R_z(\theta) = \begin{bmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{bmatrix}$$
 (2)

and the identity $XR_z(\theta)X = R_z(-\theta)$. Thus choosing $\alpha = \pi/2^k$, A = 1, $B = R_z(-\alpha)$ and $C = R_z(\alpha)$ we get

$$ABC = \mathbb{1}R_z(-\alpha)R_z(\alpha) = R_z(\alpha - \alpha) = R_z(0) = \mathbb{1}$$
(3)

and

$$AXBXC = \mathbb{1}XR_z(-\alpha)XR_z(\alpha) = R_z(\alpha)R_z(\alpha) = R_z(2\alpha) \tag{4}$$

and finally

$$e^{i\alpha}R_z(2\alpha) = e^{i\alpha} \begin{bmatrix} e^{-i\alpha} & 0\\ 0 & e^{i\alpha} \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & e^{2\alpha i} \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & e^{2\pi i/2^k} \end{bmatrix} = R_k$$
 (5)