Улучшение робастности динамической системы в продольном канале управления с применением обратной динамики

А.Е. Пащенко

Московский авиационный институт

Цель дипломной работы

Цель дипломной работы

Задачи

- Расчет ЛТХ, ВПХ, а также характеристик маневренностик
- Синтез системы автоматического управления
- Рассмотреть один из основных способов улучшения робастности динамической системы с применением обратной динамики при помощи PI-котроллера.

Цель дипломной работы

Задачи

- Расчет ЛТХ, ВПХ, а также характеристик маневренностик
- Синтез системы автоматического управления
- Рассмотреть один из основных способов улучшения робастности динамической системы с применением обратной динамики при помощи PI-котроллера.

Фишечки

- Все расчеты проводились при помощи языков программирования MATLAB, Python.
- Работа с моделью САУ и её анализ проводились при помощи «Simulink».
- Отчёт оформлен с применением языка разметки Latex.

Объект исследования

В расчёт ЛТХ входит

В расчёт ЛТХ входит

• Расчёт области возможных полётов

В расчёт ЛТХ входит

- Расчёт области возможных полётов
- 2 Расчёт траектории полёта

В расчёт ЛТХ входит

- Расчёт области возможных полётов
- 2 Расчёт траектории полёта
- Расчёт транспортных возможностей самолёта

Расчёт области возможных полётов

Основные ограничения

- ullet Ограничение по $M_{min\ P}$
- ullet Ограничение по $M_{max\ P}$

Дополнительные ограничения

- ullet Ограничение по C_y доп
- ullet Ограничение по $M_{
 m nped}$
- ullet Ограничение по q_{maxs}

Расчёт области возможных полётов

Расчёт области возможных полётов

Определение области

- $M_{min} = \max\{M_{min\ p},\ M_{C_{y\ pon}}\}$
- $M_{max} = min\{M_{max\ P},\ M_{npeg},\ M_{q_{max}}\}$

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}$

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}$ $H_{\rm T}=19.8$ км

Потолки

Расчёт теоретического и практического потолка производится по $V_{y_{max}}$

$$H_{\rm T} = 19,8$$
 км

$$H_{\mathsf{np}} = 19,5$$
 км

Расчёт траектории полёта

Траектория

Расчёт траектории полёта

Траектория

Траеткорию полёта принято разделять на три этапа

- Набор высоты
- Крейсерский полёт
- Снижение

Благодарность

Спасибо за внимание

