gradient

Zero Gradient:

If $\nabla f = 0$, the point is a critical point (max, min, or saddle point)

example

For $f(x, y) = x^2 + y^2$, the gradient is:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2x, 2y)$$

Find minimum (we see from image):

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{0}$$

gradient: saddle point

example

For $f(x, y) = x^2 - y^2$, the gradient is:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(2x, -2y\right)$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{0}$$

What's the solution? Is it max or min?

