18BAMO4

HIMADRI MANDAL

November 9, 2021

§1 Solution

Solution. Take a prime $p \mid abc$ and let $x = \nu_p(a)$, $y = \nu_p(b)$, $z = \nu_p(c)$. It is enough to prove $x + y + z \equiv 0 \pmod{3}$.

Notice that if x=y=z we are done, so assume this is not true. Then $\nu_p(a/b)=x-y$, $\nu_p(b/c)=y-z$, $\nu_p(c/a)=z-x$. One of them have to be negative, which is not possible. But we have $\nu_p(a/b+b/c+c/a)\geq 0$, so we conclude that the two smallest numbers among $\{x-y,y-z,z-x\}$ must be equal.

To finish WLOG assume that if x - y = y - z, then 2y = x + z and so $x + y + z \equiv 0 \pmod{3}$.