Задание №6

Рассмотрим ряд:

$$f(x) = \sum_{n=1}^{\infty} \frac{n\sqrt{x}}{1 + n^2 x} \ln\left(1 + \frac{1}{n\sqrt{x}}\right)$$

Докажем, что данный ряд равномерно сходится на $x \in [\delta, \infty)$, где $\delta > 0$.

Для этого введем мажоранту. Рассмотрим выражение:

$$\frac{n\sqrt{x}}{1+n^2x}\ln\left(1+\frac{1}{n\sqrt{x}}\right)$$

Покажем, что это выражение можно ограничить сверху другой функцией, которая будет мажорантой и для которой можно доказать сходимость.

Рассмотрим логарифм:

$$\ln\left(1 + \frac{1}{n\sqrt{x}}\right) \le \frac{1}{n\sqrt{x}}$$

Используя это, получим:

$$\frac{n\sqrt{x}}{1+n^2x}\ln\left(1+\frac{1}{n\sqrt{x}}\right) \le \frac{n\sqrt{x}}{1+n^2x} \cdot \frac{1}{n\sqrt{x}} = \frac{1}{1+n^2x}$$

Заметим, что для $x \geq \delta$:

$$\frac{1}{1+n^2x} \le \frac{1}{n^2\delta}$$

Таким образом, введем мажоранту:

$$M_n(x) = \frac{1}{n^2 \delta}$$

Теперь рассмотрим ряд мажорант:

$$\sum_{n=1}^{\infty} M_n(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 \delta} = \frac{1}{\delta} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Так как ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, то и ряд мажорант $\sum_{n=1}^{\infty} M_n(x)$ сходится для любого $x \geq \delta$.

Следовательно, по признаку Вейерштрасса исходный ряд сходится равномерно на $x \in [\delta, \infty)$.

Область определения и непрерывность

Исходная функция f(x) сходится на промежутке $(0, \infty)$, что и является областью определения.

Вследствие равномерной сходимости рядов получаем, что функция f(x) непрерывна на области определения.

Таким образом, ряд $f(x) = \sum_{n=1}^{\infty} \frac{n\sqrt{x}}{1+n^2x} \ln\left(1+\frac{1}{n\sqrt{x}}\right)$ равномерно сходится на $x \in [\delta, \infty), \, \delta > 0$, и функция f(x) непрерывна на $(0, \infty)$.