Assignment 1

Group Number 32

Software used: Matlab

Sanit Prashant Bhatkar (173109003) Omkar Pawar(173106001)

1. Bisection Method

Code	Output
<pre>fprintf('\n\nBisection Method\n\n'); string=input('Function f(x): ','s'); fun=inline(string); a=input('Start interval value a = '); b=input('End interval value b = '); c=(a+b)/2.0; e(1)= b-c; array(1)=c; i=1; if fun(a)*fun(b)>0 disp('wrong interval')</pre> else while b-c >= 10^-6	a) For x-cos(x) Output: Bisection Method Function f(x): x-cos(x) Start interval value a = 0 End interval value b = 1 Root = 0.739085197448730
<pre>if fun(a)*fun(c)<0</pre>	Iteration = 20 b) For x^6-x-1 Output:
<pre>end Root= c Iteration=i array=array(1:i); e=e(1:i); figure subplot(2,1,1) plot(e,'r-o'); title('Error vs Iterations') grid on; xlim([0 i+1]); ylim([-0.1 e(1)+0.2]); subplot(2,1,2) plot(array,'-o') title('Root vs Iterations') grid on; xlim([0 i+1]);</pre>	Bisection Method Function f(x): x^6-x-1 Start interval value a = 1 End interval value b = 2 Root = 1.1347 Iteration =

	Root	Number of Iterations
a) x-cos(x)	0.739085197448730	20
b) x^6-x-1	1.134724617004395	20

Fig (1): Bisection method convergence graph for f(x) =x-cos(x)

Fig (2): Bisection method convergence graph for $f(x) = x^6-x-1$

2. Newton Method

Code	Output
<pre>fprintf('\n\n\nNewton Raphson Method\n'); string1=input('\n\nEnter f(x): ','s'); f=inline(string1); string2=input('Enter df(x): ','s'); df=inline(string2); xk(1)=input('Enter initial guess: '); array(1)=xk(1); it=0; e=10^-6; for i=2:1000</pre>	a) For x-cos(x) Output: Newton Raphson Method Enter f(x): x-cos(x) Enter df(x): 1+sin(x) Enter initial guess: 0.5 root = 0.739085133215161 Iterations = 4 b) For x^6-x-1 Output: Newton Raphson Method Enter f(x): x^6-x-1 Enter df(x): 6*x^5-1 Enter initial guess: 1.5 root = 1.134724138401520 Iterations =
	Iterations = 6

	Root	Number of Iterations
a) x-cos(x)	0.739085133215161	4
b) x^6-x-1	1.134724138401520	6

Fig (3): Newton method convergence graph for $f(x) = x - \cos(x)$

Fig (4): Newton method convergence graph for $f(x) = x^6-x-1$

3. Secant Method

Code	Output
<pre>fprintf('\n\nSecant Method\n\n'); string=input('Function f(x): ','s'); f=inline(string);</pre>	a) For x-cos(x)
<pre>xk(1)=input('Enter start of interval: '); array(1)=xk(1);</pre>	Output:
<pre>xk(2)=input('Enter end interval: '); array(2)=xk(2);</pre>	Secant Method
err(2) = abs((xk(2) - xk(1))/xk(2)); $e=10^-6;$	Function f(x): x-cos(x)
it=0; for i=3:1000	Enter start of interval: 0 Enter end interval: 1
xk(i) = xk(i-1) - (f(xk(i-1)))*((xk(i-1) - xk(i-2)))/(f(xk(i-1)) - f(xk(i-2)));	Enter end interval: 1
array(i)=xk(i); err(i)=abs((xk(i)-xk(i-1))/xk(i));	root =
it=it+1; if abs((xk(i)-xk(i-1))/xk(i))*100 <e< td=""><td>0.739085133215161</td></e<>	0.739085133215161
root= xk(i) Iterations =it-1	
break end	Iterations =
end array=array(1:it);	5
err=err(2:it+1);	
figure subplot(2,1,1)	c) For x^6-x-1
<pre>plot(err,'r-o'); title('Relative error vs Iterations')</pre>	Output:
<pre>xlim([0 it+1]); ylim([-0.1 1.2]);</pre>	Secant Method
<pre>grid on; subplot(2,1,2)</pre>	
<pre>plot(array,'-o') title('Root vs Iterations')</pre>	Function f(x): x^6-x-1 Enter start of interval: 1
<pre>grid on; xlim([0 it+1]);</pre>	Enter end interval: 2
	root =
	1.134724138401519
	Iterations =
	8

	Root	Number of Iterations
a) x-cos(x)	0.739085133215161	5
b) x^6-x-1	1.134724138401519	8

Fig (5): Secant method convergence graph for $f(x) = x - \cos(x)$

Fig (6): Secant method convergence graph for $f(x) = x^6 - x - 1$

Conclusion:

$\mathbf{F}(\mathbf{x}) = \mathbf{x} \cdot \mathbf{cos}(\mathbf{x})$	Root	Iterations
Bisection method	0.739085197448730	20
Disection method	0.739083197448730	20
Newton Raphson method	0.739085133215161	4
Secant method	0.739085133215161	5

$\mathbf{F}(\mathbf{x}) = \mathbf{x}^{\wedge} 6 - \mathbf{x} - 1$	Root	Iterations
Bisection method	0.739085197448730	20
Newton Raphson method	0.739085133215161	6
Secant method	0.739085133215161	8

Number of iterations for convergence

Bisection method > Secant method > Newton Raphson method