

EK2360 Hands on Micro-Electro-Mechanical Systems Engineering

Fabrication Lecture

Time Schedule EK 2360, 2015

Phase Content

1 meetings 1-3 (introduction, MEMS actuators, FEM simulation)
2 design week 1: concepts, FEM; meeting 4: CAD layout, design rules, fabrication
2 design week 2: FEM simulations, device design
2 design week 3: device design, CAD layouting
design deadline; intermediate report
3, 4 fabrication week; evaluation work
4 evaluation work
(4) (evaluation work), time for report+presentation writing; deadline for report
final presentation (8-12, Q2)

IMPORTANT DATE for the fabrication: mask layout deadline: Monday, Nov 30, 11:59, Lab 1

Lab (two fabrication days in Kista; 8.30 – 16.30; with lunch break)

Lab 1	3 rd and 4 rd of December
Lab 2	11 th and 14 th of December
Lab 3	15 th and 16 th of December
Lab 4	17 th and 18 th of December
Lab 5	21 th and 22 th of December

Examples

Fabrication of Silicon wafers

- starting material: quartz sand
- · chemical reduction to metallurgical grade silicon
- electronic grade silicon (99.99999999%)
- mono-crystalline silicon growing

Silicon-on-Insolater (SOI)

- SOI substrates used in microelectronics and MEMS
 - reduced parasitic capacitance
 - · RF MEMS, co-planar wave guides
 - heterogeneous integration approaches
- SIMOX, direct wafer bonding, Smart Cut

^[1] Fabrication of Ultra-thin Silicon-on-Insulator (SOI) Using Soitec Smart Cut® Technology

^[2] CELLER, G. K.; CRISTOLOVEANU, Sorin. Frontiers of silicon-on-insulator. Journal of Applied Physics, 2003, 93. Jg., Nr. 9, S. 4955-4978.

Device fabrication (1)

- Starting material
 - · silicon-on-insolator (SOI) wafer
- quartz mask (patterned)

Device fabrication (2)

Process flow

- _{1.} oxidation
- patterning of the oxide mask
- etching of the silicon device layer
- 4. releasing of movable elements
- metallization

Characterization

- scanning electron microscope (SEM)
- energy dispersive X-ray spectroscopy (EDX)
- optical profilometer

Oxidation

- Thermal grow of SiO₂
- Wet or Dry
- Diffusion limited process
- Si + $2H_2O \rightarrow SiO_2 + 2H_2$
- Temp: 900 1150°C

http://www.veonis.com

oxide layer SiO_2 (1µm) device layer Si (30 µm) buried oxide (BOX) (2µm) handle wafer Si (500µm)

Cross-section of an silicon-on-insolater (SOI) wafer after thermal oxidation.

Patterning of the oxide mask (lithography)

- application of photo-resist
- · soft bake
- · exposure
- post exposure bake (PEB)
- development
- · hard bake

Dry etching of silicon dioxide

Reactive Ion Etching (RIE)

- gas solid interface
- formation of plasma
- dissociation of molecules to radicals, atoms and ions
- CF₄, H₂, CHF₃, Ar

$$\begin{aligned} &\mathsf{CF_4} \to \mathsf{2F} + \mathsf{CF_2} \\ &\mathsf{H_2} \to \mathsf{2H} \\ &\mathsf{H} + \mathsf{F} \to \mathsf{HF} \\ &\mathsf{SiO_2} + \mathsf{2CF_2} \to \mathsf{SiF_4} + \mathsf{2CO} \end{aligned}$$

[1] van Roosmalen, Alfred J. "Review: dry etching of silicon oxide." Vacuum 34.3 (1984): 429-436.

[2] Jansen, Henri, et al. "A survey on the reactive ion etching of silicon in microtechnology." Journal of micromechanics and microengineering 6.1 (1996): 14.

Dry etching of silicon

Deep Reactive Ion Etching (DRIE)

- high density plasma (ICP)
- time multiplexed alternating process
- passivation / etching
- etch:

$$SF_6 \rightarrow SF_{6-x} + xF$$

Si + 4F \rightarrow SiF₄

passivation:

$$C_4F_8 \rightarrow (C_xF_y)_n (s)$$

[1] Bhardwaj, Jy K., and Huma Ashraf. "Advanced silicon etching using high-density plasmas." Micromachining and Microfabrication. International Society for Optics and Photonics, 1995.

Formation of the devices (dry etching)

- Dissoziation in plasma
 - $SF_6 + e^- \rightarrow S\dot{F_5} + \dot{F} + e^- \rightarrow S\dot{F_4} + \dot{F} + 2e^-$
 - $C_4F_8 + e^- \rightarrow C_3F_6 + CF_2 + e^-$
- Reaction on the surface
 - $Si + 4\dot{F} \rightarrow SiF_4(\uparrow)$
 - $nC\dot{F}_2 \rightarrow n\dot{C}F_{2(ads)} \rightarrow nCF_{2(s)}$

[1] Laerme, F., et al. "Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications." *Micro Electro Mechanical Systems, 1999. MEMS'99. Twelfth IEEE International Conference on.* IEEE, 1999.

Etching issues of silicon using DRIE process

- Aspect Ratio Dependence Etching (ARDE)
- Under etching of silicon at the buried oxide (BOX) layer

Release of movable elements (Wet etching) Wet etching of silicon dioxide

- Removal of the oxide mask
- Locally removal of BOX layer
- **Isotropic etch**
- **6HF + SiO2** → **H2O + H2SiF6** (aq.)

Super critical Drying

Critical Point Drying

Stiction results device failure

Drying from the solid to the gaseous phase

Metallization (Physical Vapour Deposition)

Sputtering of gold

- lgnition of an Ar+ plasma
- Acceleration towards the target
- Physical removal of Au
- Re-deposition on the substrate

EK2360 Fabrication lab

Safety instruction and lab behavior

Why Cleanroom

- Controlled Laboratory atmosphere
 - Minimizing amount and size of particles
 - Offering laminar air flow
 - Constant temperature
 - Constant humidity
- Critical dimensions in MEMS:
 - Hair diameter:

Cleanroom Behavior

- Effective particle reduction
 - Wearing of cleanroom garments
 - Wearing of gloves
 - Slow walking (no running)
 - No eating
 - Objects have to be cleaned
 - No regular paper

PEOPLE ACTIVITY	Particles/Minute (0.3 um and larger)
Motionless (Standing or Seated)	100,000
Walking about 2 mph	5,000,000
Walking about 3.5 mph	7,000,000
Walking about 5 mph	10,000,000

Safety Instruction

- Cleanroom garments protect the cleanroom environment from particles.
- Goggles and gloves must be worn all times in the cleanroom.
- All actions, such as handling of objects, samples or chemicals must be performed under supervision of

the lab assistant.

Safety Instruction

- On stage safety instruction will be given by the lab assistant to inform about
 - Code of behavior in case of an emergency
 - Eye rinsing station
 - Emergency showers
 - Calciumgluconate (BHF Antidote) gel
 - Emergency exit

Chemicals

Flammable

Harmful

Corrosive

Dangerous to the Environment

Toxic

Oxidizing