Chapter 10

Metric Spaces: Getting some distance

4/8/19 Q: Why does X have to be a metric space?

Lebesgue Number Theorem 10.24 Let $\{U_{\alpha}\}_{{\alpha}\in{\lambda}}$ be an open cover of a compact set A in a metric space X. Then there exists a $\delta>0$ such that for every point $p\in A$, $B(p,\delta)\subset U_{\alpha}$ for some α . This number δ is called a **Lebesgue number** of the cover.

Proof: Since A is compact, there exists a finite subcover $\{U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}\}$. Now suppose for the sake of contradiction that there does not exists such a δ . Then in order for this to happen, we would need that for every $B(p, \delta)$ containing p there exists a member of $U_{\alpha'} \in \{U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}\}$ such that $B(p, \delta) \not\subset U_{\alpha'}$. But since we can theoretically propose an infinite number of δ , we must have an infinite number of such U'_{α} s.

However, we cannot do this in the finite subcover, as it is finite. Therefore the contrary must be true: there exists a δ such that for every $p \in A$, $B(p, \delta) \subset U_{\alpha}$ for some α . And since this is true for the finite subcover, which is a subset of the open cover, this is definitely true for the open cover.

Theorem 10.25 Let $\gamma:[0,1] \to X$ be a **path**: a continuous map from [0,1] into the space X. Given an open cover $\{U_{\alpha}\}$ of X, show that [0,1] can be divided into N intervals of the form $I_i = \left[\frac{i-1}{N}, \frac{i}{N}\right]$ such that each $\gamma(I_i)$ lies completely in one set of the cover.

Proof: If $\{U_{\alpha}\}_{{\alpha}\in\lambda}$ is an open cover of X, then consider the set $\{\gamma^{-1}(U_{\alpha})\}_{{\alpha}\in\lambda}$. This will be an open cover of γ , since we know γ maps [0,1] into X. However, since γ is compact, we know by Lebesgue Number Theorem that there exists a δ such that $p \in B(p,\delta) \subset \gamma^{-1}(U_{\alpha})$ for all $p \in [0,1]$ where $\gamma^{-1}(U_{\alpha})$ is some set in the open cover containing p.

Let $\frac{1}{N} < \delta$ where N is a positive integer. Then observe that the sequence of intervals

$$\left[\frac{i-1}{N}, \frac{i}{N}\right] \quad 1 \le i \le N$$

will each be contained in at least one member of $\gamma^{-1}(U_{\alpha})$. Thus

$$\left[\frac{i-1}{N}, \frac{i}{N}\right] \subset \gamma^{-1}(U_{\alpha}) \implies \gamma\left(\left[\frac{i-1}{N}, \frac{i}{N}\right]\right) \subset U_{\alpha}.$$

Thus [0,1] can be divided into N intervals of the form $I_i = \left[\frac{i-1}{N}, \frac{i}{N}\right]$ such that each $\gamma(I_i)$ lies completely in one set of the cover in X, which is what we set out to show.