Rozwiązywanie układów równań liniowych metodą eliminacji Gaussa

Maciej Chudziński

Celem otrzymanego zadania było określenie wpływu typu danych oraz wyboru metody na poziom otrzymanych błedów jak i czas trwania rozwiązywania macierzowych układów równań.

Do przetestowania powyższych zagadnień użyć miałem 3 różnych typów danych-

float, double oraz własnego typu ułamkowego. Z powodu ograniczeń dokładnościowych, można wywnioskować, że typ float zwróci najmniej dokładne wyniki, double okaże się precyzyjniejszy, a nieograniczony typ ułamkowy będzie bezbłędny. Im bardziej dokładny typ wybierzemy, tym większą cenę w postaci czasu zapłacimy.

Na precyzję także ma wpływ użyta metoda rozwiązywania- tradycyjna metoda Gaussa jest najmniej dokładna, za to metody z częściowym i pełnym przeszukiwaniem znacznie redukują błędy. Także w tym przypadku ceną dokładności jest czas wykonywania.

Tabela norm błędu, gdzie n-rozmiar macierzy, $||X|| = \sum_{1}^{n} (|x - x_0|)^2$

	Float			Double		
n	G	PG	FG	G	PG	FG
100	5,764061E-07	8,705037E-12	3,741016E-10	5,24639539036E-24	7,39865247E-30	1,86038362E-27
200	6,465232E-07	1,581704E-10	4,106937E-12	5,065398934725E-24	9,98402083E-29	6,56849963E-29
300	4,214166E-05	1,547562E-11	5,912071E-11	7,947884553666E-25	1,08912109E-28	1,5186805E-28
400	0,05823374	4,855E-09	1,72594E-09	4,848998229871E-22	8,88605587E-28	5,85778526E-28
500	46,68747	1,592909E-07	9,680576E-10	2,0820431811E-19	5,91952595E-27	6,84181035E-26
600	0,04952518	1,229097E-10	7,781296E-10	5,584606081745E-23	2,29996834E-26	1,7778965E-26
700	0,1558852	5,562785E-08	8,645884E-11	1,337870807895E-22	1,14211479E-25	2,80300029E-26
800	1,240341	9,538305E-08	9,725387E-07	2,495824944138E-21	2,21489986E-26	7,66832342E-26
900	3,861349	1,540419E-07	2,018746E-08	1,682751400402E-21	6,85343126E-26	1,21050829E-26
1000	0,04139776	2,357501E-08	4,5533E-10	4,564272868426E-21	2,21655246E-26	9,66354609E-30

Tabele czasu:

	Float			Double		
n	G	PG	FG	G	PG	FG
100	00:00:00.0537910	00:00:00.0331824	00:00:00.0824665	00:00:00.0470408	00:00:00.0283800	00:00:00.1116612
200	00:00:00.1996502	00:00:00.2106042	00:00:00.8876784	00:00:00.1614627	00:00:00.1568693	00:00:00.5402964
300	00:00:00.5670067	00:00:00.5688840	00:00:01.9012103	00:00:00.5853087	00:00:00.6114950	00:00:01.8359283
400	00:00:01.3246157	00:00:01.2317150	00:00:04.1998474	00:00:01.4559066	00:00:01.3058010	00:00:04.3863757
500	00:00:02.8786603	00:00:02.6875975	00:00:09.2181289	00:00:02.9135035	00:00:02.7147472	00:00:08.7421754
600	00:00:04.7891143	00:00:04.5625805	00:00:14.6914216	00:00:04.6424248	00:00:05.1389842	00:00:15.7660484
700	00:00:08.0961024	00:00:07.7096561	00:00:24.6082472	00:00:08.0391337	00:00:08.3010973	00:00:24.7190758
800	00:00:11.9630220	00:00:12.0476249	00:00:39.1440822	00:00:12.1858739	00:00:11.7714648	00:00:36.8682096
900	00:00:16.0172085	00:00:16.3785818	00:00:54.7870285	00:00:17.1427892	00:00:17.1993186	00:00:51.8289997
1000	00:00:22.3175020	00:00:22.5035280	00:01:12.4899371	00:00:25.9973969	00:00:25.0022898	00:01:11.9311022

	Typ własny					
n	G	PG	FG			
100	00:00:24.4118945	00:00:27.4803751	00:00:26.6651833			
200	00:09:10.9481776	00:08:52.9068497	00:09:28.6096781			
300	00:58:45.9794024	01:00:23.6042550	00:59:25.8165899			

Wnioski:

- Zwiększenie macierzy zwiększa błędy
- Zwiększanie macierzy dynamicznie wydłuża czas trwania obliczeń
- Metody G, PG mają porównywalny czas, natomiast FG znacznie wydłuża czas trwania
- Użycie coraz bardziej precyzyjnych typów wydłuża czas obliczeń, ale redukuje błędy
- Metoda G produkuje olbrzymie błędy dla typów zmiennoprzecinkowych względem reszty metod
- Metody PG i FG generują podobne, bardzo małe błędy
- Nie ma reguły kiedy PG jest lepsze od FG
- Typ własny zawsze generuje zerowe błędy, natomiast wzrost czasu przez rozszerzenie operacji jest ogromny względem reszty typów