QR Factorization

Practical Linear Algebra | Lecture 10

Problem Setup

- Given a set of vectors, we want to find an orthonormal basis for its span
- Why...?
 - It's more natural to work with orthonormal bases
 - It's easier to see which vectors are linearly dependent

Gram-Schmidt Procedure

In words:

- Take first vector in set (call it a_1) and normalize it. Call this new vector q_1
- \bullet Project second vector in set (call it $\,a_2$) onto q_1 and subtract that from $a_2.$ Call this new vector \tilde{q}_2
- ullet Normalize $ilde{q}_2$ and call it q_2
- \bullet Project a_3 onto q_1 and q_2 and subtract both projections from a_3 . Call this new vector \tilde{q}_3
- ullet Normalize $ilde{q}_3$ and call it q_3
- Keep going...

Gram-Schmidt Procedure

Step 1
$$ilde{q}_1 = a_1$$
 $q_1 = ilde{q}_1/\| ilde{q}_1\|$ Step 2 $ilde{q}_2 = a_2 - (q_1^T a_2)q_1$ $q_2 = ilde{q}_2/\| ilde{q}_2\|$ Step 3 $ilde{q}_3 = a_3 - (q_1^T a_3)q_1 - (q_2^T a_3)q_2$ $q_3 = ilde{q}_3/\| ilde{q}_3\|$ Step i $ilde{q}_i = a_i - (q_1^T a_i)q_1 - (q_2^T a_i)q_2 - \dots - (q_{i-1}^T a_i)q_{i-1}$ $q_i = ilde{q}_i/\| ilde{q}_i\|$

Gram-Schmidt Procedure

Rearrange by solving for a_i

$$\tilde{q}_i = a_i - (q_1^T a_i)q_1 - (q_2^T a_i)q_2 - \dots - (q_{i-1}^T a_i)q_{i-1}$$

$$a_i = (q_1^T a_i)q_1 + (q_2^T a_i)q_2 + \dots + (q_{i-1}^T a_i)q_{i-1} + \tilde{q}_i$$

Remember that $\, ilde{q}_i = \| ilde{q}_i \| q_i \,$, so

$$a_{i} = (q_{1}^{T} a_{i})q_{1} + (q_{2}^{T} a_{i})q_{2} + \dots + (q_{i-1}^{T} a_{i})q_{i-1} + \|\tilde{q}_{i}\|q_{i}$$

$$a_{i} = r_{1i}q_{1} + r_{2i}q_{2} + \dots + r_{i-1,i}q_{i-1} + r_{ii}q_{i}$$

QR Factorization

We can write this in matrix form:

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{bmatrix}$$

$$A = QR$$

This is the QR factorization (or QR decomposition) of $A \in \mathbb{R}^{m \times n}$

QR Factorization

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{bmatrix}$$

$$A = QR$$

Note that $\,Q\,$ has orthonormal columns and $\,R\,$ is upper triangular

Linearly Dependent Columns

- So far we've assumed our vectors are linearly independent
- What if they're linearly dependent?
 - We can just use the same G-S procedure
 - \circ Sometimes r_{ii} will be zero this means a_i is linearly dependent!
 - o In general R won't be upper triangular anymore but it will be in upper staircase form

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

The QR we did earlier is sometimes called the "thin" or "reduced" QR

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

$$A = Q_1 R_1$$

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

ullet Q_2 describes the subspace of \mathbb{R}^m that is "missing" from the range of A

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

- How do we compute Q_2 ?
 - \circ Pick any full-rank matrix $ilde{A}$ with the same number of rows as A
 - \circ Then just compute the thin QR factorization of $egin{bmatrix} A & ilde{A} \end{bmatrix}$
 - lacksquare For example, use $egin{bmatrix} A & I \end{bmatrix}$
 - \circ The matrix Q we get is just $egin{bmatrix} Q_1 & Q_2 \end{bmatrix}$ for the original matrix A

```
import numpy as np

m = 5  # number of rows of A
n = 3  # number of columns of A

# Thin QR
A = np.random.rand(m, n)
Q, R = np.linalg.qr(A)
```

```
# Full QR
A_extended = np.hstack((A, np.eye(m)))
Q, R = np.linalg.qr(A_extended)
```

```
Thin QR:
A:
[[0.98 0.11 0.22]
 [0.7 0.16 0.54]
 [0.93 0.54 0.98]
 [0.89 0.19 0.35]
 [0.52 0.27 0.61]]
Q:
[[-0.53 -0.53 0.27]
 [-0.38 -0.15 -0.82]
 [-0.51 0.73 0.27]
 [-0.48 -0.24 0.26]
 [-0.28 0.32 -0.33]]
R:
[[-1.84 -0.56 -1.15]
 [ 0. 0.35 0.63]
 [ 0. 0. -0.23]]
```

```
Full QR:
A extended:
[[0.98 0.11 0.22 1. 0. 0.
                            0.
[0.7 0.16 0.54 0. 1. 0.
                            0. 0.
[0.93 0.54 0.98 0. 0. 1.
                            0. 0.
 [0.89 0.19 0.35 0. 0. 0. 1.
                                 0.
[0.52 0.27 0.61 0. 0.
                            0.
                                 1.
Q:
[[-0.53 -0.53 0.27 0.6
[-0.38 -0.15 -0.82 -0.1 -0.38]
[-0.51 0.73 0.27 0.08 -0.37]
 [-0.48 -0.24 0.26 -0.77 0.21]
[-0.28 0.32 -0.33 0.19 0.82]]
R:
[[-1.84 -0.56 -1.15 -0.53 -0.38 -0.51 -0.48 -0.28]
[ 0.
       0.35 0.63 -0.53 -0.15 0.73 -0.24 0.32]
  0.
            -0.23 0.27 -0.82 0.27 0.26 -0.33]
  0.
                             0.08 -0.77 0.19]
        0.
             0.
                  0.6 -0.1
  0.
                       -0.38 -0.37 0.21 0.82]]
                   0.
```

```
Full QR:
A_extended:
[[0.98 0.11 0.22
 [0.7 0.16 0.54
 [0.93 0.54 0.98
 [0.89 0.19 0.35
 [0.52 0.27 0.61
Q:
[[-0.53 -0.53 0.27 0.6
 [-0.38 -0.15 -0.82 -0.1 -0.38]
 [-0.51 0.73 0.27 0.08 -0.37]
 [-0.48 -0.24 0.26 -0.77 0.21]
 [-0.28 0.32 -0.33 0.19 0.82]]
R:
[[-1.84 -0.56 -1.15
  0.
        0.35 0.63
  0.
             -0.23
        0.
  0.
              0.
  0.
         0.
              0.
```

$$rank(A) + nullity(A) = n$$

$$A \in \mathbb{R}^{m \times n}$$

- Let U_1 be a matrix whose p columns form an orthonormal basis for the nullspace of A (i.e., $\mathbf{nullity}(A) = p$)
- ullet Perform full QR on $\,U_1\,$ to get $\,Q_1$, $\,Q_2\,$ and $\,R_1\,$
 - \circ Turns out $Q_1=U_1$. Why? Because U_1 already has orthonormal columns!
 - \circ For consistency, let's rename $\,Q_2\,$ to $\,U_2\,$
- ullet Note that U_2 has n-p columns...hm...

• Idea: since the columns of $\begin{bmatrix} U_1 & U_2 \end{bmatrix}$ form an orthonormal basis for \mathbb{R}^n , we can express any vector $x \in \mathbb{R}^n$ as

$$x = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = U_1 x_1 + U_2 x_2$$

for some $x_1 \in \mathbb{R}^p$, $x_2 \in \mathbb{R}^{n-p}$

- ullet Any vector in the range of A can be expressed as Ax for some $x\in\mathbb{R}^n$
- Combining, we get $Ax = AU_1x_1 + AU_2x_2 = AU_2x_2$ (since $AU_1 = 0$)

- ullet For simplicity, let $\,V = AU_2 \in \mathbb{R}^{m imes (n-p)}$, so $\,Ax = Vx_2$
- lacksquare This means the columns of $\,V\,$ span the range of $\,A$... but is $\,V\,$ a basis?
- ullet Yes turns out the columns of $\,V\,$ are independent!
 - \circ Let's find some $z \in \mathbb{R}^{n-p}$ such that $Vz = AU_2z = 0$
 - \circ This means $U_2z\in \mathbf{null}(A)$, so $U_2z=U_1w$ for some $w\in\mathbb{R}^p$
 - \circ But $z=U_2^TU_1w=0$, so $Vz=0\Rightarrow z=0$ and the columns of V are independent
- ullet Columns of V are a basis for A, so

$$rank(A) = n - p \Rightarrow rank(A) + nullity(A) = n$$

QR DECOMPOSITION-BASED ALGORITHM FOR BACKGROUND SUBTRACTION

Mahmood Amintoosi^{1,2}, Farzam Farbiz^{1,3}, Mahmood Fathy¹, Morteza Analoui¹, Naser Mozayani¹

Figure 1. Sample frames of a traffic movie¹.

Figure 5. From top to bottom: original frames, foreground object detection using GMM (taken from [11]) and the proposed approach.

Next Time

Eigenvectors