

Attorney Docket No. P1084/20005
Customer No. 03000

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
APPLICATION FOR LETTERS PATENT

5
APPLICANTS

: Kevin E. Booth, Harry N. Popolow,
Richard R. Ford, Edward E. Johnson, Jon
S. Loftin, Lance C. Osborne and David
W. Johnson

10
POST OFFICE ADDRESS

: 232 East 400 North
Mapleton, Utah 84664,

: 1005 Robwill Pass
Cherry Hill, New Jersey 08034

: 25 Blackwood Road,
Asheville, NC 28804,

: 26 Richmond Avenue,
Asheville, NC 28806,

: 8 Dunnwoody Drive,
Arden, NC 28704,

: 13 Waters Road
Asheville, NC 28805,

: 4244 South 6000 West
West Valley City, Utah 84128
respectively,

30
INVENTION

: ELECTRONICALLY-CONTROLLED
LOCKER SYSTEM

35
ATTORNEYS

: Caesar, Rivise, Bernstein,
Cohen & Pokotilow, Ltd.
12th Floor, Seven Penn Center
1635 Market Street
Philadelphia, PA 19103-2212

10

15

20

25

30

35

40

TO ALL WHOM IT MAY CONCERN:

Be it known that we, Kevin E. Booth, Harry N. Popolow, Richard R. Ford, Edward E. Johnson, Jon S. Loftin, Lance C. Osborne and David W. Johnson, all citizens of the United States, residing in the town of Mapleton, County of Utah, State of Utah, in the town of Cherry Hill, County of Camden, State of New Jersey, in the town of Asheville, County of Buncombe, State of North Carolina, in the town of Asheville, County of Buncombe, State of North Carolina, in the town of Arden, County of Buncombe, State of North Carolina, in the town of Asheville, County of Buncombe, State of North Carolina, and in the town of West Valley City, County of Salt Lake, State of Utah, respectively, have made a certain new and useful invention in a ELECTRONICALLY-CONTROLLED LOCKER SYSTEM, of which the following is a specification:

SPECIFICATION

FIELD OF THE INVENTION

The invention generally relates to electronically-controlled lockers, and more particularly, to a system for remotely-controlling access to a plurality of lockers such as those found in schools, fitness clubs, employee lockers, airports, resorts, shopping malls, and law enforcement.

BACKGROUND OF INVENTION

There are now increased security needs in schools and commercial buildings. There is also a high degree of computer literacy among educators, and property managers. Furthermore, there is increasing use of ID cards, coded with intelligence for recording of activities and the trend now is towards large school construction budgets with more funds

being allocated to security issues. It is now common place for new construction to include extensive pre-wiring for data transmission systems. As a result, there remains a need for an electronically controlled locker system for use, especially in schools. For example, school administrators can spend up to 240 man hours setting up lockers and locks for the new school year, which does not even include the time and effort involved in handing out and returning of padlocks, combination locker assignments and accompanying paperwork.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525

the activation of the electronically-activated locks; a computer, controlled by the administrator, for maintaining a database of authorized user and locker information; a system control unit, in communication with the at least one locker control unit and with the computer, wherein the system control unit provides the at least one locker control unit with 5 the authorized user and locker information; and wherein the at least one locker control unit uses data from the at least one input device and the authorized user and locker information to provide access to corresponding lockers for the plurality of authorized users.

A method for controlling access to a plurality of lockers for a plurality of authorized users (e.g., school students, employees at a workplace, patrons at a fitness center, airport, etc.,) by an administrator. The method comprises the steps of: storing and maintaining information about the plurality of authorized users and the plurality of lockers, referred to as predetermined data, at a first location; providing an electronic lock at each one of the plurality of lockers; assigning a respective locker control unit to a respective subset of the plurality of lockers, wherein each of the locker control units communicates with every electronic lock in the subset and each of the locker control units is located in the vicinity of 10 a respective subset; coupling at least one input device to each of the locker control units for permitting the authorized users in that subset to request access to their respective lockers; loading each of the locker control units with the predetermined data from the first location; controlling access to each of the lockers in a subset by a respective locker control 15 unit based on the predetermined data and the access request by the authorized users. 20

An electronically-controlled locker system for use by a plurality of authorized users (e.g., school students, employees at a workplace, patrons at a fitness center, airport, etc.,) and managed by an administrator. The system comprises: a first plurality of lockers

wherein each locker comprises a respective electronically-activated lock; at least one input device (e.g., a card reader, keypad, proximity reader, biometric, display and/or touch screen, etc.) for allowing the plurality of authorized users to communicate with the system; at least one locker control unit, in communication with each electronically-activated lock and with the at least one input device, and wherein the at least one locker control unit controls the activation of the electronically-activated locks; a computer, controlled by the administrator, for managing at least one database of authorized user and locker information, and wherein the computer is in communication with the at least one locker control unit for providing the at least one locker control unit with the authorized user and locker information; and wherein the at least one locker control unit uses data from the at least one input device and the authorized user and locker information to provide access to corresponding lockers for the plurality of authorized users.

DESCRIPTION OF THE DRAWINGS

Fig. 1 is block diagram of the electronically-controlled locker system (ECLS) of the present invention;

Fig. 2 is a block diagram of exemplary types of input devices that may be coupled to each locker control unit (LCU);

Fig. 3 is a block diagram of the interface of a single LCU and depicting locker access stations (LASs);

Fig. 4 depicts three exemplary electronic access key cards for use in a school ECLS, a fitness center ECLS and a workplace ECLS;

Fig. 5A is a cross-sectional top view of an exemplary electronic lock mechanism that may be used for each locker in the ECLS;

Fig. 5B is a functional diagram of the single circuit used to control each electronic lock mechanism and to detect the open/closed state of each locker door in the ECLS;

Figs. 6A-6C depict exemplary single-tier, two-tier and three-tier locker frame configurations, respectively;

5 Fig. 7 is a functional diagram of alternative communication media between the system control unit (SCU) and the locker control units (LCUs);

Fig. 8 is a flowchart of the process for dynamically assigning lockers in an ECLS used, for example, in a fitness center;

10 Fig. 9 is a hardware diagram of the system control unit (SCU);

Fig. 10 is a flowchart of the system control unit (SCU) operation;

Fig. 11 is a hardware diagram of a locker control unit (LCU);

Fig. 12 is a flowchart of a locker control unit (LCU) operation;

15 Figs. 13A-13B form a flowchart of system administrator computer (SAC) operation;

and

Fig. 14 is an alternative electronically-controlled locker system (ECLS) that does not use a system control unit (SCU).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now in detail to the various figures of the drawing wherein like reference characters refer to like parts, there is shown at 20 in Fig. 1 an electronically-controlled 20 locker system (hereinafter the "ECLS") of the present invention. The ECLS 20 basically comprises a system administrator computer 22 (SAC, e.g., a personal computer having Windows-95 capability, Apple Macintosh capability, etc.), a system control unit (SCU) 24, a plurality of locker control units (LCUs) 26, a plurality of input devices (IDs) 28 that control

5

access to another plurality of electronic locks 30 for respective lockers 32. Although the ECLS 20 is primarily designed for use in schools, the ECLS 20 can be easily adapted for use in other environments such as fitness clubs, employee lockers, workplaces, airports, resorts, shopping malls, law enforcement, etc., or any environment where it is desirable to control access to banks of lockers from a remote location. The ECLS 20 provides the ability to search locker availability and to dynamically assign (see Fig. 8) lockers, e.g., in gymnasium and health club settings.

10
15

20

It should be understood that the ECLS 20 allows for the use of various types of IDs 28 such as card readers 128, keypads 228, proximity readers 328, biometrics 428, display screens 60 (including touch screen, not shown) or any other type of individual input/output device that permits the individual to provide an input into, and obtain output from, the ECLS 20 at the locker level and obtain access, if proper, to his/her corresponding locker 32. Thus, as used throughout this Specification, the terminology "ID 28, ID 28A, ID 28B, ID 28C, and ID28D (see Fig. 3)" includes all of these various input/output means and is not limited to any particular one of them. Where card readers 128 are used, and depending on the environment, Fig. 4 depicts exemplary electronic access key cards 129A (for use in a school ECLS 20), 129B (for use in a fitness center ECLS 20) and 129C (for use in a workplace ECLS 20). Furthermore, as used throughout this Specification, the term "biometric" includes any technology that identifies or verifies individuals based upon an individual's unique physical or behavioral characteristics. Devices employing these technologies match patterns of live individuals in real time against pre-stored records. Examples of biometric technologies are, but are not limited to, those that recognize and authenticate faces, hands, fingers, signatures, irises, voices, fingerprints, etc. The use of

RS-485 ports in the LCUs 26 support the interface of “smart” input devices and allow for virtually any type of input device to the LCUs 26.

In particular, the SAC 22 provides the system administrator with a non-dedicated, user interface to the ECLS 20 and maintains a database of ECLS 20 information. The SAC 22 is typically provided by the customer. The SAC 22 utilizes administrative/electronic locker software that runs on the personal computer. The software running on the personal computer manages information about the lockers 32, the electronic hardware (e.g., the SCU 24, LCUs 26), the users, passwords, locker assignments, etc., and stores this in a database. The software that runs on the SAC 22 may be coded using the JAVA programming language, or other programming languages, to provide portability to Windows, MacIntosh, and Linux operating systems. Figs. 13A-13B provide a flowchart of SAC 22 operation. The SAC 22 communicates with the SCU 24 via a communications medium, e.g., standard RS-232C serial interface. The SCU 24 is a custom-made electronic with microprocessors or micro-controllers and communication interfaces, e.g., RS-232 and/or RS-485 interfaces. The SCU 24 device comprises firmware, specific to the operation of the ECLS 20, encoded onto chips on internal hardware boards.

The SCU 24 sends data and control information to each LCU 26. The SCU 24 acts like a “master control” for the ECLS 20 and facilitates communication between LCUs 26 and uploads activity logs from each LCU 26. In particular, the SCU 24 downloads user information to each LCU 26, provides a communication link from any ID 28 to any LCU 26 in the ECLS 20, executes administrative commands throughout the ECLS 20, performs diagnostic checks on each LCU 26 and provides system alarm monitoring capability. Both the SCU 24 and the LCUs 26 may include respective battery back-up provisions (see Figs.

9 and 11, respectively) to ensure reliable access for users even in the event of power failure. The battery back-up for these devices provides operation for a predetermined period of time (e.g., up to four hours) with no external power. The SCU 24 has small onboard batteries (e.g., battery S46; see Fig. 9) to provide back-up of user information but 5 does not have full functionality without battery back-up.

In particular, as shown most clearly in Fig. 9, the SCU 24 accepts input from the SAC 22 and distributes the information to the LCUs 26 and other devices. The SCU 24 comprises UART (Universal Asynchronous Receiver Transmitter) S31 which allows an internal processor S33 input data for transmission on different media. UART S31 is used 10 for communications to the LCUs 26. The processor S33 is the main component of the SCU 24. Through embedded firmware, the processor S33 handles all communications between the SAC 22 and the LCUs 26, memory access. The processor S33 handles all communications between the SAC 22 and the SCU 24. The information/data is then stored 15 in memory at the SCU 24 and is sent to the appropriate LCU 26. The processor S33 also handles the communication between the SCU 24 and LCU 26. The processor in the LCU 26 then takes the data that was sent by the SCU 24 and stores it in the LCU's 26 own memory. An exemplary processor is a Motorola 6809 but other processors could be used. The SCU controller board includes a High Speed 128K CMOS RAM chip S34. This chip 20 S34 is used for storing tenant access codes, configuration setups and other information. UART S35 allows the processor S33 to output data for transmission on different media and is used for communications to the SAC 22. Communications circuitry S36 allows for communications on different types of media (Power Line, RS-485, Network, etc.,). This circuitry S36 interfaces between UART S35 and the appropriate communications media.

Communications circuitry S36 is used for communications to the SAC 22. Communications circuitry S38 allows for communications also on different types of media (e.g., Power Line, RS-485, Network, etc.,). Communications circuitry S38 interfaces between UART S31 and the appropriate communications media and is used for communications to the LCUs 26.

5 The SCU 24 controller board has a normally-opened or normally-closed relay output S39. The relay S39 is rated at 10A/28VDC or 10A/20VAC. This relay S39 can be configured to interface with a siren or alarm panel. In normal situations, the relay S39 is configured to energize for a specified period of time after an alarm condition occurs. The SCU 24 includes supervisory hardware S40 to automatically restart the microprocessor S33 should it encounter power fluctuations sufficient to cause erratic operation or lock the processor S33 up but insufficient to trigger a power-on restart. The SCU 24 requires a power supply connected to the ECLS 20. The power is then distributed to appropriate places on the SCU 24 circuit board through a power input/bus. S41. In addition, the SCU 24 can have an optional battery backup device S43 which allows for the SCU 24 to operate in the event of a power failure and also operates through the power input/bus S41 which routes the power from the battery S43 to the appropriate places on the circuit board. The system controller includes a system bus port, also referred to as relay expansion board S44, which allows for expansion to other relay boards and other devices to be connected directly to the SCU 24. All ECLS 20 data is stored in nonvolatile memory powered by a lithium battery 10 S46. In addition, the battery S46 provides power for the real time clock circuit. The SCU 24 circuit board retains all configurations and access codes as well as keeps the ECLS 20 time current for approximately thirty days. This allows the ECLS 20 to resume operation 15 after an extended power outage. Although not shown, the SCU 24 controller board has 20

an onboard parallel printer output which allows for a PC-compatible printer to be connected directly to the ECLS 20; the printer allows for the user to have a real time, hard copy record of site activity. Fig. 10 provides a flowchart of SCU 24 operation.

The LCUs 26 are also custom-made electronics with microprocessors or micro-
5 controllers and communication interfaces, e.g., RS-232 and/or RS-485 interfaces. The LCU 26 devices also comprise firmware, specific to the operation of the ECLS 20, encoded onto chips on internal hardware boards and includes flash memory to provide back-up of user information. Each LCU 26 is hardwired to the electronic lock mechanism 30 in each
10 locker 32 and consequently includes the necessary electronics to supply power to the locks 30. The LCUs 26 also contain circuitry to determine if a locker door is open or closed and also includes means to detect an unauthorized entry condition and to set an alarm accordingly. Thus, the ECLS 20 is a distributed processing system since each LCU 26 has onboard processing and stores essential locker control data while logging locker activity.

In particular, as shown most clearly in Fig. 11, each LCU 26 comprises a processor L45 for handling communications between the LCU 26 and the SCU 24 and for performing locker 32 opening and locker sensing (e.g., door open/closed), as will be discussed in detail later. An exemplary processor Motorola MC68HC908GP32. The LCU 26 board contains circuitry L46 that allows the ECLS 20 to interface with the IDs 28. The LCU contains input device circuitry L46 and firmware to control four IDs 28 (as will be discussed 20 in detail later) to be connected directly to LCU 26 circuit board. Each LCU 26 also includes a LCD (liquid crystal display) port L47 capable of interfacing with LCD displays 60 up to eighty characters from several different manufacturers. The LCD port L47 provides required power, data and contrast control. Each LCU 26 comprises a UART L48 that allows

the processor L45 to output data for transmission on different media. UART L48 is used for communications to the LCU 26. Communication circuitry L49 allows for communications on different types of media (e.g., Power Line, RS-485, Network, etc..) interfaces between UART L48 and the appropriate communications media. Circuitry L49

5 is used for communications to the SCU 24. Communication circuitry L50 allows for communications on different types of media (e.g., Power Line, RS-485, Network, etc.,) and interfaces between UART L51 and the appropriate communications media.

10 Communications circuitry L50 is used for communications to other devices that are connected directly the LCU 26 board. UART L51 allows the processor L45 to output data for transmission on different media and is used for communications to other devices that are connected directly to the LCU 26 board. UART L51 allows for communication to other remotely located devices. Each LCU 26 also contains an RS232 port L52 that allows for field programming of the LCU 26 firmware. Each LCU 26 board includes a flash chip L53 which is used for storing tenant access codes, configuration setups and other information.

15 A power input L54 routes the power from a power supply and/or a battery to the appropriate places on the LCU 26 circuit board. The LCU 26 board also contains an input point L55 that allows the ECLS 20 to be connected to a button B. The button B (adjacent the LCD display 60) can be used for user input (e.g., reserving a locker). As will be discussed next, each LCU 26 has the ability to control a predetermined number (e.g., 48)

20 of lockers 32. The LCU 26 control circuitry L56 handles the energizing of the actuator 61 (e.g., solenoid, motor, etc.,) in each locking mechanism 30. The LCU 26 control circuitry also handles the sensing of the current status of the locker 32 door (e.g., whether the door is open or closed). Locker control circuitry L56 in each LCU 26 connects to each locking

mechanism 30 with two wires W1 and W2. The two wires W1/W2 allow for control of the locking mechanism 30 (e.g., open the lock 30) and also allows for sensing of the current status of the door (e.g., is the locker 32 door opened or closed). Fig. 12 provides a flowchart of LCU operation.

5 As mentioned previously, each LCU 26 controls access to a predetermined number of lockers 32 (e.g., forty-eight lockers) based on user input from a corresponding input device ID 28. These lockers 32/input devices 28 can be distributed over different areas of the school, fitness center, etc., as desired by the customer into locations known as locker access stations (LASs). As shown most clearly in Fig. 3, four LASs 25A-25D are shown under the control of one LCU 26. For example, users having lockers at LAS 25A would communicate with the corresponding input device 28A and, if access is granted, the user would be able to go to his/her corresponding locker 32 at LAS 25A and insert or remove contents from the locker 32. The particular input device ID 28 for a LAS is located in the vicinity of the lockers 32 (e.g., in the middle of, or at the end of, the bank of lockers 32 at the LAS; these lockers 32 having the ID 28 are also known as a "cluster") to permit users to communicate with the ECLS 20 and then to proceed to the particular locker 32 in that LAS; the LCU 26 itself can be located within one of the four LASs 25A-25D. Therefore, in its broadest sense, an LAS may not even comprise the LCU 26. As a result, in its broadest sense, an LAS defines the location where a user provides input to the ECLS 20

10 20 in order to gain access to a particular locker 32.

If the lockers 30 are operating in an "assign-on-demand" mode (e.g., in a locker room or health club) as opposed to the mode where each user has a pre-assigned "permanently" assigned locker (e.g., as in a school corridor), then the LAS contains the

input device 28 (e.g., the card reader 128 which includes an LCD display, not shown).

When the user activates the card reader 128 (e.g., a magnetic card reader that meets the

ISO Specification 7810ID-1,7811/2) by swiping his/her card (e.g., see Fig. 4, card 129B),

the ECLS 20 verifies that the card is valid, searches for an available locker, and then opens

5 the electronic lock 30 corresponding to that locker 32. On subsequent swipes of the card

129B (e.g., 30-mil PVC laminated card, in accordance with the ISO specification, and

wherein each card comes encoded with a respective user ID), the LCD display 60 provides

a message asking if the user wants to keep the locker 32. The user then pushes the button

B to indicate that the locker 32 is to be kept; or, in the alternative, the user takes no action

10 at all. This cycle is repeated until the user takes no action at which point the locker 32 then

becomes available after a time-out period. Fig. 8 provides a flowchart of this locker

assignment process in more detail.

As mentioned earlier, each lock 30 is an electronic lock mechanism and it should

be understood that the ECLS 20 may use any locking mechanism that can be activated

15 electrically (see Fig. 5A, e.g., solenoid-operated; a motor-operated mechanism may be

used as an alternative, etc.,); thus, each locker 32 is devoid of handles, knobs or other

hardware devices; see Figs. 6A-6C which depict exemplary lockers configurations where

Fig. 6A depicts a single tier locker configuration, Fig. 6B depicts a two-tier locker

configuration and Fig. 6C depicts a three-tier locker configuration, all by way of example

20 only.

Also, by way of example only, the ECLS 20 incorporates a lock design that

comprises a pin 34 that is float-mounted to the locker door 33 (Fig. 5A) and a lock portion

35 (Fig. 5A) that is mounted to the locker body 37 and whereby the lock portion 35

captures and releases the pin 34. This arrangement provides for easy concealment of wiring used to connect the locking device 30 to the LCU 26. The locking mechanism 30 allows the locker door 33 to latch automatically when the locker door 33 is closed. Once activated, the lock mechanism 30 releases and the locker door 33 pops open. The locking mechanism 30 is a multi-function device. When the user pushes the locker door 33 closed, it automatically latches. No signal from the LCU 26 is required to accomplish this action. As shown in Figs. 5A-5B, the lock mechanism 30 incorporates an actuator 61 (e.g., a solenoid, a motor, etc.,) that latches upon command from the LCU 26. The automatic latch mode of operation supports environments where the locker 32 is normally closed. The latch on command mode of operation supports environments where the locker 32 is in a normally open condition (e.g., a gymnasium or health club locker room where lockers are not permanently assigned).

In particular, the pin 34 is float-mounted in a receiver portion 36 that is mounted on a bracket 39 to the locker door 33. The pin 34 comprises a head 68 that gets trapped against a latching plate 65 whose movement is controlled by the actuator 61 and a spring 66. When the locker door 33 is closed, the underside 70 of the head 68 is trapped against surface 71 of the latching plate 65; the latching plate 65 can move in the direction of the arrow 72 (right) or in the direction of the arrow 73 (left). With the door 33 closed, the head 68 compresses a driver member 69 against the action of a coaxial spring 64. Additionally, in this position, the head 68 also closes a contact 62 of a switch 63. As can be seen most clearly in Fig. 5B, closure of the contact 62/switch 63 completes a circuit 74 comprising electrical conductors W1, W2 and W3.

When the LCU 26 commands a locker door 33 opening using a current pulse (e.g., 7 amps @ 0.25 seconds) into the circuit 74, the actuator 61 momentarily moves the latching plate 65 in the direction of the arrow 73, thereby permitting the driver member 69 (under the action of the coaxial spring 64) to forcefully drive the head 68 through a hole 67 in the latching plate 65 and "pop" the locker door 33 open; this action also "opens" the switch 63 since the contact 62 is no longer closed and therefore "opens" circuit 74. This movement of the latching plate 65 in the direction of the arrow 73 causes another spring 66 to compress. Following the LCU command pulse duration, the actuator 61 is deactivated and the spring 66 is free to drive the latching plate 65 in the direction of the arrow 72 which moves the hole 67 slightly out of alignment of the head 68 movement. Conversely, when the user closes the door 33, the head 68 "finds" a portion of the slightly mis-aligned hole 67 and pushes the latching plate 65 in the direction of the arrow 73, against the action of the spring 66. Once the head 68 passes through the hole 67, the spring 66 is free to move the latching plate 65 in the direction of the arrow 72 until one side of the hole 67 contacts the shank 76 of the pin 34; this action traps the underside 70 of the head 68 against the surface 71 of the latching plate 65, while simultaneously closing the contact 63 of the switch 62.

The circuit 74 also provides the LCU 26 with the means for detecting the open or closed condition of the locker door 33. The LCU 26 polls all of the locker doors 33 using another current pulse (e.g., 36 mA @ 1ms) and can determine if the circuit 74 is open or closed. An “open” circuit (e.g., no return pulse to the LCU 26) indicates that the locker door 33 is open since the contact 62/switch 63 is not closed; a “closed” circuit (e.g., return pulse detected by the LCU 26) indicates that the locker door 33 is closed since the contact

62/switch 63 is closed. It should be noted that the LCU 26 can poll all of the locker doors 33 in less than a second. As a result, the function of detecting locker door 33 condition (open/closed) and supplying power to the actuator 61 are both accomplished using the circuit 74. This is in contrast to the common approach of running two wires to a locker door sensing device and another two wires to a lock actuator. Thus, this electronic configuration between the LCUs 26 and lockers 32 allows the system administrator to open each locker 32 door as well as detect when each locker door has been opened or closed. Each time the locker 32 door is opened, the user, locker number and time and date are recorded in the central database.

Information from the database required for system function is downloaded from the SAC 22 to the SCU 24. The SCU 24 downloads portions of this information to each LCU 26. Each LCU 26 stores data related to inputs, lock openings and closings, and alarm conditions for its corresponding lockers 32 and uploads this information to the SCU 24. The SCU 24 then reports this information back to the SAC 22. The SCU 24 also sends each LCU 26 the access codes for each locker hooked directly to a corresponding LCU 26. Each LCU 26 also stores transaction information. Furthermore, all LCUs 26 in the ECLS 20 communicate with each other through the SCU 24. Thus, the SCU 24 and LCUs 26 can be disconnected and the user can gain access to his/her locker from any LAS. Under normal operation the access code is verified at the LCU 26 for lockers and IDs 28 wired directly to the LCU 26. If the ID 28 is attached to a different LCU 26, then the LCU 26 requests verification from the SCU 24 and, if verified, passes the open command through the SCU 24 to the appropriate LCU 26. If the connection to the SCU 24 were severed, then this functionality would be severed but users can still gain access to the

locker 32 from a LAS attached to the LCU 26 that his/her locker is attached to. The SCU 24 maintains the access codes for each locker 32 and also stores transaction information. The SCU 24 does not need to be connected to the SAC 22 for system operation.

The SCU 24 and LCU 26 are in constant communication so that if the connection 5 between the two is severed, system function can continue.

The SCU 24 can operate without connection to the SAC 22 for long periods of time even if new or changed information has not been sent to the SCU 24.

The SCU 24, LCUs 26, IDs 28 and electronic locks 30 are all connected via low voltage wiring. The SCU 24 and LCU 26 connections can be over a variety of communication interfaces, such as a standard RS-485 interface specification by way of example only. Furthermore, the LCUs 26 may even be connected in a daisy chain configuration to reduce the number and length of wiring runs. As shown in Fig. 7, the ECLS 20 provides the ability to communicate between the SCU 24 and the LCUs 26 over different media, e.g., wireless technology 200 , RS 485 Daisy Chain 300, modulated power line 400, etc. The wireless technology 200 eliminates the need to run wiring required by the RS-485 communication protocol. Where modulated power line 400 communication is utilized, the SCU 22 and the LCU 24 can be equipped with power line modem modules that are selectable for use with 110VAC or 240VAC systems.

It should further be noted that it is within the broadest scope of the present 20 invention 20 to include an ECLS 20 that operates over the Internet. In particular, every component, or a select group of components, of the ECLS 20 may comprise an Internet

address and wherein control and monitoring of the ECLS 20 is accomplished using a TCP/IP network.

As mentioned earlier, the system administrative user is a user that has access to and periodically uses the administrative software to configure, control and assign users to (students, members, etc.) the system 20. The system administrative user can possibly have limited access to the software depending on the security level that he/she has been assigned. The system administrative user of the ECLS 20 has management capabilities and more privileges and can lock out a particular locker. The administrator may deny access to one or all (selectable by various groups); the administrator may open one or all (selectable by groups). The administrative user is provided with a set of tools for setting up and controlling the system. Several reports are available to the administrator as well. The administrator can add, change, and delete individual users and can organize and identify individual users by various groupings. Access to lockers by individual users can also be restricted to specific time periods. The administrator can assign identification and location information to each locker and can also track maintenance needs for each locker. A card management feature gives the administrator full control over the management of individual user cards and is highly automated to make management of cards a simple task. Reports provide the administrator information on locker inventory, available lockers, users not assigned, repairs required, and various activity reports.

The administration software and database allows the administrator to assign each locker 32 to several different user-defined groups. (e.g., Area-Upper Campus; Building-Student Center; Hall A; etc.) Likewise, each user (e.g., student, member) can be assigned to one or more user-defined groups (e.g., sophomore, junior, senior; football

team; drill team, band; Mrs. Thompson's home room, Mr. Green's home room; etc.). This ability to assign both lockers 32 and users to groups (also referred to as "virtual grouping capabilities") gives the administrator a powerful tool to manage lockers and users in the system. For example, the administrator can select all members of Mr. Green's home room class and automatically assign them lockers 32 in Hall A with a very minimal amount of input. Lockers 32 can be locked down, unlocked, or opened based on their group assignment (e.g., geographical location).

The software allows the administrator to create an unlimited number of time zone assignments that grant access to the user during specific day and time periods. Using the virtual grouping capabilities the administrator can apply these time zone assignments to groups of students instantly giving the administrator tremendous control over locker use. For example, the administrator can grant nominal access to the lockers 32 around standard school hours (e.g., Monday - Friday 8:00 a.m. to 4:00 p.m.) but allow members of the football team and drill team to have access to lockers following a late Friday night game.

Since the groups are user-defined, the ECLS 20 can be readily configured to meet the needs of any facility or organization.

As mentioned earlier, the administrative software comprises a central database. This database may comprise several databases (e.g., Tables 1-16) that are discussed next by way of example only and are not limited in any way to only those shown.

A "user database" is used to store locker user information. Depending on the environment that the software is used in, a user may be a student if the software is used

in a school setting, or a client if the software is used in a health club setting. The following user information is stored in this database.

Table 1: User Database Structure

Field Name	Description	Length	Type	Comments
FirstName	User first name	20	Alphanumeric	
LastName	User last name	20	Alphanumeric	
5	HomePhone	User Primary phone number		
	ContactName	Parent/Guardian Name	20	Alphanumeric
	ParentPrimPhone	Parent/Guardian Primary Telephone		
	ParentSecPhone	Parent/Guardian Secondary Telephone		
10	UserID	User ID Number	6	Alphanumeric
	Gender	Gender	1	M or F
	Locker1	Assigned Locker Number One	6	Alphanumeric
	Locker1 Access	Locker One Combination	10	Numeric
	Locker2	Assigned Locker Number Two	6	Alphanumeric
	Locker2 Access	Locker Two Combination	10	Alphanumeric
15	Grade	Grade	1	Alphanumeric
	HomeRoom	Home Room	2	Alphanumeric Selected from home room data base. This field references the data stored in home room database.

GymPeriod	Gym Glass Period	2	Alphanumeric	1 - 99
Birthday	Members B Day		Date	
VideoImage	Picture of Member			
UsageCount	Usage		Numeric	Counter for number of usages remaining
LockerRoom	Locker Room	2	Alphanumeric	1 - 99
UserOne	User Group One	2	Alphanumeric	Selected from the user group database. This field references the data stored in the User Group database.
UserTwo	User Group Two	2	Alphanumeric	Selected from the user group database. This field references the data stored in the User Group database.
TimeZone	Time Zone	2	Alphanumeric	Time Zone that the user is allowed to access the locker. This field references the time zone database.
Comment	Comment	200	Memo Field	Allows for comments to be entered about student.

The administrative software allows for the configuration of the institution name, address and telephone number. The system administrator creates this information during initial setup and customization of the software:

Table 2: Institution Name Setup

5

Field Name	Description	Length	Type	Comments
SiteName	Name of Institution or organization	20	Alphanumeric	
Address1		20	Alphanumeric	
Address2		20	Alphanumeric	
City		30	Alphanumeric	
State			Alphanumeric	
PostalCode			Alphanumeric	
Phone	Phone number for institution			
Fax	Fax number for institution			

10
15
20

The administrative software also allows the system administrator to define certain security levels. These security levels allow the system administrator to designate others as "administrative users" and which limits these administrative users to access of certain functions and options.

20

Table 3: Security Levels

Field Name	Description	Length	Type	Comments
ID	Security Level ID			Unique ID for each record
Description	Security Level description	15	Alphanumeric	Alpha description of security level
User		1	Boolean	Ability to perform functions on individual users

The administrative software also allows for the creation of user names, passwords and security levels. The user name and password is used to log onto the administrative software and perform functions. Depending on the security level that is selected for the individual, user functionality within the software is limited. Each administrative user can also be assigned a card number that they can use with the ECLS 20.

Table 4: Administrator User Setup

Field Name	Description	Length	Type	Comments
UserID	User identification that is used to access the administrative software	4	Alphanumeric	Used in conjunction with the password below by administrative user to log into the software
5	Password	This password is used in conjunction with the userID above to access the administrative software	4	Used in conjunction with the userID above to log into the software
UserFirstName	First name of user	20	Alphanumeric	
UserLastName	Last name of user	20	Alphanumeric	
10	SecurityLevel	Security level in administrative software that user has	2	Alphanumeric This is the security level for the user. Security levels are predefined.
AccessNumber	Magnetic card access number	10	Alphanumeric	This is the magnetic stripe card of the user
TimeZone	Time Zone for user	2	Alphanumeric	

The administrative user creates the locker database during initial setup and customization of the software. The locker database records information about every locker 32 in the ECLS 20. The locker database is used to assign locker users to specific databases.

5

Table 5: Locker Database

Field Name	Description	Length	Type	Comments
RegNumber	Locker Registration Number	10	UniqueID	
Number	Locker Number	6	Alphanumeric	
Size	Locker Size			
Occupancy	Locker Occupancy	6		Single or shared
Status	Locker status	2	Alphanumeric	Available, occupied, need repair, not available or other user defined. Status fields can be defined by user
Location	Location where locker is located	2	Alphanumeric	Location descriptions are stored in location description database. This field refers to this database

	Cluster	Cluster where locker is located	2	Alphanumeric	Cluster descriptions are stored in cluster description database. This field refers to this database.
	Zone	Zone where locker is located	2	Alphanumeric	Zone descriptions are stored in zone description database. This field refers to this database
	Area	Area where locker is located	2	Alphanumeric	Area descriptions are stored in area description database. This field refers to this database.
	Building	Building where locker is located	2	Alphanumeric	Building descriptions are stored in building description database. This field refers to this database.
5	Lock Type	Describes the type of lock installed on the locker opening		Alphanumeric	Solenoid, Motorized
	LastTran	Last transaction			
	LastAlarm	Last alarm			

	Supervisor assignment			Supervisor or maintenance group
Maintenance	Last maintenance date		Date Field	Date of last maintenance on locker
	Combination			????
LCU				LCU number
Slot				Slot number of LCU
Comment		200	Memo	Comment Field

The administrative user creates a holiday database during initial setup and customization of the administrative software. The holiday database is used in conjunction with the time zone database to determine the hours of access a user may have on a holiday.

Table 6: Holiday Database

Field Name	Description	Length	Type	Comments
HolidayID		2	Alphanumeric	Auto assigned ID
StatusDescrip		20	Alphanumeric	Locker status description

The administrative user creates the locker status database during initial setup and customization of the administrative software. The locker status database contains descriptions of locker status. The locker status database is referenced by the status field in the locker database. The default options for this database are “available, occupied, need repair, not available.” The administrative user may also define other locker status descriptions.

Table 7: Locker Status Database

Field Name	Description	Length	Type	Comments
StatusID		2	Alphanumeric	Auto assigned ID
StatusDescrip		20	Alphanumeric	Locker status description

The administrative user creates the locker location database during initial setup and customization. This database allows for segregation of lockers into different locations.

Table 8: Locker Location Database

Field Name	Description	Length	Type	Comments
LocationID		2	Alphanumeric	Auto assigned ID
LocationDescrip		20	Alphanumeric	Locker location description

The administrative user creates a locker cluster database during initial setup and customization. This database allows for segregation of lockers into different clusters.

Table 9: Locker Cluster Database

Field Name	Description	Length	Type	Comments
ClusterID		2	Alphanumeric	Auto assigned ID
ClusterDescrip		20	Alphanumeric	Locker cluster description

The administrative user creates a locker zone database during initial setup and customization. This database allows for segregation of lockers into different zones.

Table 10: Locker Zone Database

Field Name	Description	Length	Type	Comments
ZoneID		2	Alphanumeric	Auto assigned ID
ZoneDescrip		20	Alphanumeric	Locker zone description

The administrative user creates a locker building database during initial setup and customization. This database allows for segregation of lockers into different buildings.

Table 11: Locker Building Database

Field Name	Description	Length	Type	Comments
BldgID		2	Alphanumeric	Auto assigned ID
BldgDescrip		20	Alphanumeric	Locker building description

The administrative user creates a locker area database during initial setup and customization. This database allows for segregation of lockers into different areas.

Table 12: Locker Area Database

Field Name	Description	Length	Type	Comments
AreaID		2	Alphanumeric	Auto assigned ID
AreaDescrip		20	Alphanumeric	Locker area description

The administrative user creates a user group database during initial setup and customization. This database allows for segregation of lockers into different groups.

Table 13: User Group Database

Field Name	Description	Length	Type	Comments
GroupID		2	Alphanumeric	Auto assigned ID
GroupDescrip		20	Alphanumeric	Group description

The administrative user creates a home room database during initial setup and customization. This database allows for segregation of lockers into different home rooms.

Table 14: Home Room Database

Field Name	Description	Length	Type	Comments
HomeRoomID		2	Alphanumeric	Auto assigned ID
Description		20	Alphanumeric	Home Room description

The administrative user creates a time zone database during initial setup and customization. This database allows for the ability to give specific locker users limited times during the day for access to their lockers.

Table 15: Time Zone Database

5

14
13
12
11
10
9
8
7
6
5
4
3
2
1

15

Field Name	Description	Length	Type	Comments
Time Zone ID	Time zone id	2	Alphanumeric	Auto assigned ID
TZDescrip		20	Alphanumeric	Time zone description
SunOpen		7	Alphanumeric	Open time for Sundays
SunClose		7	Alphanumeric	Close time for Sundays
MonOpen		7	Alphanumeric	Open time for Mondays
MonClose		7	Alphanumeric	Close time for Mondays
TueOpen		7	Alphanumeric	Open time for Tuesdays
TueClose		7	Alphanumeric	Close time for Tuesdays
WedOpen		7	Alphanumeric	Open time for Wednesday
WedClose		7	Alphanumeric	Close time for Wednesday
ThuOpen		7	Alphanumeric	Open time for Thursday
ThuClose		7	Alphanumeric	Close time for Thursday
FriOpen		7	Alphanumeric	Open time for Friday

FriClose		7	Alphanumeric	Close time for Friday
SatOpen		7	Alphanumeric	Open time for Saturday
SatClose		7	Alphanumeric	Close time for Saturday
HolOpen		7	Alphanumeric	Open time for Holidays
HolClose		7	Alphanumeric	Close time for Holidays

5 This database is used to track when and what an administrative user has done in the software.

Table 16: Administrative Transaction Log Database

Field Name	Description	Length	Type	Comments
RecordNum			Unique ID	Automatic record ID
Administrator ID		4	Alphanumeric	Administrator id who performed the action
User ID		20	Alphanumeric	User ID action performed on
User Name		20	Alphanumeric	User name action performed on
Locker ID		6	Alphanumeric	Locker action performed on
Date			Date	Date action performed
Time			Time	Time action performed
Action		2	Alphanumeric	Action Performed

15 The ECLS 20 also includes an option for importing/exporting data using a comma separated file (CSF) format. The data import/export option also processes the following formats:

20 -Administrative Software Interface: The Schools Interoperability Framework (SIF) is an industry standard designed to provide data integration and maintain data accuracy across various K-12 educational administrative and curriculum systems. Programs that are SIF compliant allow for data to be entered once and automatically updated in all connected systems;

5 -Another option provides for an ASCII file transfer option between the administrative software and the electronic locker software. This option provides a linked, interactive interface to other software packages, such as a school administration software package. Using this option, when data is updated in one program, the related field in the other program is automatically updated as well. This option eliminates the need for data import/export (i.e., it operates this function dynamically) and eliminates the need for inputting the same information in two different programs. This saves work and improves data integrity and enhances accuracy, since the data needs to be maintained in one place only.

10

15 -Furthermore, the ECLS 20 also provides means to download data from the locker control software to a Palm Pilot® device and can even provide the system administrator with the ability to perform all administrative functions remotely via the Internet; where the ECLS 20 is used in a fitness center setting, a software option is available that meets the specific requirements of the health club industry.

20 As mentioned earlier, the ECLS 20 includes monitoring and alarm functionality. In particular, the lock mechanism 30 contains a sensor device (not shown) to determine when the locker 32 door is opened. If the door is opened without, e.g., the user card 129A (129B or 129C) being swiped through the card reader 128, or without an administrative command being issued, an alarm is detected on the locker 30. A visible and audible signal will sound the SAC 22 when an alarm condition is triggered.

25 Furthermore, it is possible to interface other security devices to the ECLS 20 such as cameras, and alert devices. These can be integrated to selectively activate when an alarm condition is triggered.

30 Where electronic access keys are used (e.g., such as the cards 129A-129C shown in Fig. 4), these cards can be used in the particular ECLS 20 for a variety of functions. For example, in a school setting, the card can not only be used for opening a locker 32, but also for tracking attendance at school, as a library card, and in a lunch program; similarly, in a work place setting, these cards can be used for building access, time keeping, locker

access, and equipment check-out. In a fitness center, these cards can be used for admission, assigning and opening lockers, workout schedule and for purchasing refreshments, etc. Furthermore, with regard to the computer records of locker activity, these locker records can be unified with user records such as a student's class schedule.

5 The ECLS 20 provides quick, accurate and safe locker administration in that:

- it provides for the re-assignment of lockers and access thereto which can be accomplished instantly by computer control;
- it is compatible with current database software packages;
- it uses computerized records of electronic locker locations and users that can be integrated with existing administration software;
- its central administrative SAC 22 has complete control of locker opening parameters and access;
- it provides for unified user and locker assignment records;
- it provides for instant user re-populations;
- it provides for recorded history of locker usage;
- it alerts the administrator of attempted locker intrusions and records location, date and time.
- during times when there is no user activity or when a manager or administrator does not want a user or users to access lockers (e.g., off-hours, sporting events, night school and vacations) any locker user can be locked out by the system administrator;
- individual locations, or groups of lockers, can be opened for inspections, cleaning or maintenance.
- all of the information in the administration software is password protected. Managers or administrators can choose who has access to locker information and how much information each user can view.

Thus, as described, the ECLS 20 provides secure storage with easy access for individual users and simple but powerful management tools for the system administrator.

30 The ECLS 20 provides a safe, secure, convenient, accountable, centralized and time saver locker control system.

It should be understood that it is within the broadest scope of the present invention to include an ECLS 20 that combines the functionality of the SCU 24 within the SAC 22.

Fig. 14 illustrates such an ECLS 20 that does not require a SCU 24 and wherein a modified SAC 22' comprises the functionality of the SCU 24 therein. One of the advantages of having the SCU 24 is that the SAC 22 may comprise any type of conventional PC (as mentioned earlier) that is not dedicated to the ECLS 20. In other words, the SAC 22 may administer the ECLS 20 while supporting other normal business functions. On the other hand, where the ECLS 20 does not utilize a SCU 24, the SAC 22' is dedicated to ECLS 20 operation. However, in all other respects, the ECLS 20 that does not include the SCU 24 (Fig. 14) operates similarly to the ECLS 20 that does include the SCU 24 (Fig. 1) and provides all of the operations regarding locker access control, locker monitoring and virtual grouping, administrator control, etc., discussed earlier.

Without further elaboration, the foregoing will so fully illustrate our invention that others may, by applying current or future knowledge, readily adopt the same for use under various conditions of service.