Central Limit Theorem

By Anish Mukherjee, Ashwani Rajan, Yanan Cao

Outline

- What is the Central Limit Theorem?
- Interactive demonstration
- Application in Linear regression (hypothesis testing)

What Central Limit Theorem is?

Given a large sample size the distribution of sample averages approaches a normal distribution irrespective of the population.

Central Limit Theorem

The averages of samples have approximately normal distributions

Central Limit Theorem conditions

- The parent distribution should have a finite mean and variance
- The individual observations are randomly selected and the sample is representative of the population
- The sample size should be at least 30 and less than 10 % of the population

- Height of all people in the US: Normal Distribution!
- Samples: Randomly select N data points from the population
- Calculate the average of the points in a sample
- Repeat the process a few thousand times

- Height of all people in the US: Normal Distribution!
- Samples: Randomly select N data points from the population
- Calculate the average of the points in a sample
- Repeat the process a few thousand times

- Height of all people in the US: Normal Distribution!
- Samples: Randomly select N data points from the population
- Calculate the average of the points in a sample
- Repeat the process a few thousand times

- Height of all people in the US: Normal Distribution!
- Samples: Randomly select N data points from the population
- Calculate the average of the points in a sample
- Repeat the process a few thousand times

- Height of all people in the US: Normal Distribution!
- Samples: Randomly select N data points from the population
- Calculate the average of the points in a sample
- Repeat the process a few thousand times

- Height of all people in the US: Normal Distribution!
- After 1000 iterations: Sample means are normally distributed.
 - E[Sample Means] = PopulationMean
 - Sampling distribution is narrower:
 Lower variance

- Height of all people in the US: Normal Distribution!
- After 1000 iterations: Sample means are normally distributed.
 - E[Sample Means] = PopulationMean
 - Sampling distribution is narrower:
 Lower variance

Interactive Demonstration

"Only extreme departure of distribution of Y from normality yield suspicious results."

Dr. David Kleinbaum

A simulation:

$$y = 3 + 5 \cdot x + \varepsilon$$

- Where ε is independent and identically exponentially distributed.
- Steps:
 - Generate a sample set with 100 observations and do regression
 - Generate 5000 sample sets
 - Do histogram of 5000 $\widehat{\beta}_1$

A simulation:

$$y = 3 + 5 \cdot x + \varepsilon$$

- Where ε is independent and identically exponentially distributed.
- Steps:
 - Generate a sample set with 100 observations and do regression
 - Generate 5000 sample sets
 - Do histogram of 5000 $\widehat{eta_1}$

Hypothesis test with known variance:

- H_0: Beta_1 = 0
- H_1: Beta_1 ≠ 0
- $t_{0.975} = 0.0335$
- test statistics = 0.04 > 0.0335
- Reject H_0 and accept H_1 at a 5% level of significance

Overview

- What is Central Limit Theorem?
 - Parent distribution with finite mean and variance
 - Randomly selected samples
 - Large enough sample size at least larger than 30
- Interactive demonstration
- Application in hypothesis test

Q&A

Thanks for listening!