CS/ECE/ME 532

Homework 7: Convexity and the SVM

- 1. Verifying convexity. Prove that the following functions are convex.
 - a) The sum of two convex functions: f(x) = g(x) + h(x) where g and h are convex.

SOLUTION:

$$f(t\boldsymbol{x} + (1-t)\boldsymbol{y}) = g(t\boldsymbol{x} + (1-t)\boldsymbol{y}) + h(t\boldsymbol{x} + (1-t)\boldsymbol{y})$$

$$\leq (tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y})) + (th(\boldsymbol{x}) + (1-t)h(\boldsymbol{y}))$$

$$= t(g(\boldsymbol{x}) + h(\boldsymbol{x})) + (1-t)(g(\boldsymbol{y}) + h(\boldsymbol{y}))$$

$$= tf(\boldsymbol{x}) + (1-t)f(\boldsymbol{y})$$

b) A positive quadratic form: $f(x) = x^{\mathsf{T}} P x$, where $P \succ 0$.

SOLUTION: First, a little lemma. By expanding the following expression, we obtain: $(\boldsymbol{u} - \boldsymbol{v})^\mathsf{T} \boldsymbol{P} (\boldsymbol{u} - \boldsymbol{v}) = \boldsymbol{u}^\mathsf{T} \boldsymbol{P} \boldsymbol{u} + \boldsymbol{v}^\mathsf{T} \boldsymbol{P} \boldsymbol{v} - 2 \boldsymbol{u}^\mathsf{T} \boldsymbol{P} \boldsymbol{v}$. Now rearrange and obtain:

$$2u^{\mathsf{T}} P v = u^{\mathsf{T}} P u + v^{\mathsf{T}} P v - (u - v)^{\mathsf{T}} P (u - v)$$
$$\leq u^{\mathsf{T}} P u + v^{\mathsf{T}} P v$$

where we used in the last step that $P \succ 0$. Back to the original problem:

$$f(t\boldsymbol{x} + (1-t)\boldsymbol{y}) = (t\boldsymbol{x} + (1-t)\boldsymbol{y})^{\mathsf{T}}\boldsymbol{P}(t\boldsymbol{x} + (1-t)\boldsymbol{y})$$

$$= t^{2}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{P}\boldsymbol{x} + (1-t)^{2}\boldsymbol{y}^{\mathsf{T}}\boldsymbol{P}\boldsymbol{y} + 2t(1-t)\boldsymbol{x}^{\mathsf{T}}\boldsymbol{P}\boldsymbol{y}$$

$$\leq t^{2}\boldsymbol{x}^{\mathsf{T}}\boldsymbol{P}\boldsymbol{x} + (1-t)^{2}\boldsymbol{y}^{\mathsf{T}}\boldsymbol{P}\boldsymbol{y} + t(1-t)\left(\boldsymbol{x}^{\mathsf{T}}\boldsymbol{P}\boldsymbol{x} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{P}\boldsymbol{y}\right)$$

$$= t\boldsymbol{x}^{\mathsf{T}}\boldsymbol{P}\boldsymbol{x} + (1-t)\boldsymbol{y}^{\mathsf{T}}\boldsymbol{P}\boldsymbol{y}$$

$$= tf(\boldsymbol{x}) + (1-t)f(\boldsymbol{y})$$

Where the inequality follows from the lemma.

c) The pointwise maximum of several affine functions: $f(x) = \max_{i \in \{1,...,m\}} (a_i^\mathsf{T} x + b_i)$

SOLUTION:

$$f(t\mathbf{x} + (1-t)\mathbf{y}) = \max_{i \in \{1,...,m\}} (\mathbf{a}_i^{\mathsf{T}}(t\mathbf{x} + (1-t)\mathbf{y}) + b_i)$$

$$= \max_{i \in \{1,...,m\}} (t(\mathbf{a}_i^{\mathsf{T}}\mathbf{x} + b_i) + (1-t)(\mathbf{a}_i^{\mathsf{T}}\mathbf{y} + b_i))$$

$$\leq t \max_{i \in \{1,...,m\}} (\mathbf{a}_i^{\mathsf{T}}\mathbf{x} + b_i) + (1-t) \max_{j \in \{1,...,m\}} (\mathbf{a}_j^{\mathsf{T}}\mathbf{y} + b_j)$$

$$= tf(\mathbf{x}) + (1-t)f(\mathbf{y})$$

d) The definition of convexity we saw in class may also be extended to functions that take a matrix as an argument, e.g. $f: \mathbb{R}^{m \times n} \to \mathbb{R}$. Prove that $f(X) = ||X||_2$ (the induced 2-norm) is convex.

SOLUTION:

$$f(t\mathbf{X} + (1-t)\mathbf{Y}) = ||t\mathbf{X} + (1-t)\mathbf{Y}||_2$$

$$\leq t||\mathbf{X}||_2 + (1-t)||\mathbf{Y}||_2$$

$$= tf(\mathbf{X}) + (1-t)f(\mathbf{Y})$$

where the inequality follows from the triangle inequality.

2. Gradient Descent and Stochastic Gradient Descent. Suppose we have training data $\{x_i, y_i\}_{i=1}^m$, with $x_i \in \mathbb{R}^n$ and y_i is a scalar label. Derive gradient descent and SGD algorithms to solve the following ℓ_1 -loss optimization:

$$\min_{oldsymbol{w} \in \mathbb{R}^n} \sum_{i=1}^m \bigl| y_i - oldsymbol{x}_i^\mathsf{T} oldsymbol{w} \bigr| \; .$$

a) Simulate this problem as follows. Generate each x_i as random points in the interval [0,1] and generate $y_i = w_1x_i + w_2 + \epsilon_i$, where w_1 and w_2 are the slope and intercept of a line (of your choice) and $\epsilon_i = \text{randn}$, a Gaussian random error generated in Matlab. With m = 10. Repeat this experiment with several different datasets (with different random errors in each case).

SOLUTION: This is quite straightforward. Here is sample code.

```
m = 10;
x = rand(m,1);
e = randn(m,1);
w = [1;-1];  % choice of slope and intercept
y = w(1)*x + w(2) + e;
plot(x, y,'b.', 'MarkerSize', 15)
```

b) Implement the GD or SGD algorithm for the ℓ_1 -loss optimization. Compare the solution to this optimization with the LS line fit.

SOLUTION: Here is an implementation of gradient descent for solving the ℓ_1 -norm minimization problem. The code also finds the least-squares solution and plots both lines.

```
% use GD to compute the solution
w = rand(2,1); % random initialization
MAX_ITER = 100000;
for j = 1:MAX_ITER
if mod(j,10000) == 0; disp(j); end % progress indicator
eta = 1/sqrt(j+1); % diminishing stepsize
delta = 0;
for i = 1:m
delta = delta + sign(y(i)-w(1)*x(i)-w(2))*[x(i); 1];
end
w = w + eta*delta;
end
% compute least-squares solution
A = [x ones(m,1)];
wLS = A\y;
```


The ℓ_1 solution touches two points perfectly because of the nature of the ℓ_1 cost function.

c) Now change the simulation as follows. Instead of generating ϵ_i as Gaussian, now generate the errors according to a Laplacian (two-sided exponential distribution) using laprnd(1,1). Compare the LS and ℓ_1 -loss solution compare in this case. Repeat this experiment with several different datasets (with different random errors in each case).

SOLUTION: The code is very similar in this case; simply change the noise e=randn(m,1) to e=laprnd(m,1) instead.

3. Error Bounds using Hinge Loss. State the SGD algorithm for solving the hinge-loss optimization

$$\min_{\boldsymbol{w}} \sum_{i=1}^{m} f_i(\boldsymbol{w}) \quad \text{where:} \quad f_i(\boldsymbol{w}) = (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w})_+.$$

a) Derive a bound on the average error $\frac{1}{T}\sum_{t=1}^{T} \left(f_{i_t}(\boldsymbol{w}_t) - f_{i_t}(\boldsymbol{w}^*)\right)$ using Theorem 1 from the lecture notes (on moodle). Assume that $\boldsymbol{w}_1 = \boldsymbol{0}$ and $\|\boldsymbol{w}^*\| \leq 1$, and that the features are normalized so that $\|\boldsymbol{x}_i\| \leq 1$ for all i. Assume a constant stepsize of $\gamma = 1/\sqrt{T}$ as in Corollary 1.

SOLUTION: Corollary 1 from the notes states that:

$$\frac{1}{T} \sum_{t=1}^{T} (f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{w}^*)) \leq \frac{\|\boldsymbol{w}_1 - \boldsymbol{w}^*\|_2^2 + G^2}{2\sqrt{T}} \quad \text{for all } T$$

Since $\mathbf{w}_1 = \mathbf{0}$ and $\|\mathbf{w}^*\| \le 1$, we have $\|\mathbf{w}_1 - \mathbf{w}^*\|_2^2 \le 1$. As for the gradient,

$$\|\nabla f_i(\boldsymbol{w})\| = \left\| \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{w}} (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w})_+ \right\| \le \|y_i \boldsymbol{x}_i\| = \|\boldsymbol{x}_i\| \le 1$$

Therefore G = 1 and the bound we seek is:

$$\frac{1}{T} \sum_{t=1}^{T} \left(f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{w}^*) \right) \leq \frac{1}{\sqrt{T}} \quad \text{for all } T$$

b) How many iterations are required to guarantee that the average error is less than 0.01?

SOLUTION: For the average error to be less than 0.01, we must have $1/\sqrt{T} \le 0.01$. This implies that $T \ge 100^2 = 10,000$. Every time we want to reduce the error by a factor of 10, we have to do 100 times more iterations... So for an error of 0.001, we could require up to 1,000,000 iterations. That's a lot of iterations!

4. Classification and the SVM. Revisit the iris data set from Homework 3. For this problem, we will use the 3rd and 4th features to classify whether an iris is *versicolor* or *virginica*. Here is a plot of the data set for this restricted set of features.

We will look for a linear classifier of the form: $x_{i3}w_1 + x_{i4}w_2 + w_3 \approx y_i$. Here, x_{ij} is the measurement of the j^{th} feature of the i^{th} iris, and w_1 , w_2 , w_3 are the weights we would like to find. The y_i are the labels; e.g. +1 for versicolor and -1 for virginica.

a) Reproduce the plot above, and also plot the decision boundary for the least squares classifier.

SOLUTION: See solution of part (b).

b) This time, we will use a regularized SVM classifier with the following loss function:

minimize
$$\sum_{i=1}^{m} (1 - y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w})_+ + \lambda (w_1^2 + w_2^2)$$

Here, we are using the standard hinge loss, but with an ℓ_2 regularization that penalizes only w_1 and w_2 (we do not penalize the offset term w_3). Solve the problem by implementing gradient descent of the form $\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \gamma \nabla f(\boldsymbol{w}_t)$. For your numerical simulation, use parameters $\lambda = 0.1$, $\gamma = 0.003$, $\boldsymbol{w}_0 = \boldsymbol{0}$ and T = 20,000 iterations. Plot the decision boundary for this SVM classifier. How does it compare to the least squares classifier?

SOLUTION: Here is the plot of the data, the least-squares classifier (black) and the SVM classifiers (magenta).

We can observe that both classifiers seem reasonable, though the SVM classifier does a better job (at least visually) of separating the data, and also achieves a slightly better classification error (4 incorrect classifications as opposed to 5 incorrect classifications for the LS classifier). Here is the code that produced these plots:

```
load fisheriris
inds = ~strcmp(species, 'setosa');
A = meas(inds, [3 4]);
A = [A \text{ ones}(size(A,1),1)];
 = species(inds);
b = zeros(size(y));
% get blues
figure(1); clf;
ib = find(strcmp(y,'versicolor'));
plot( A(ib,1), A(ib,2), 'b.', 'MarkerSize', 10 )
b(ib) = 1;
% get reds
ir = find(strcmp(y,'virginica'));
b(ir) = -1;
hold on
plot( A(ir,1), A(ir,2), 'r.', 'MarkerSize', 10 )
ax = axis;
legend('versicolor','virginica','Location','northwest')
xlabel('feature 3 (petal length)')
ylabel('feature 4 (petal width)')
axis equal; hold on;
%% solve using LS classifier
```

```
what = A \setminus b;
plot( [0 -what(3)/what(1)], [-what(3)/what(2) 0], 'k-');
% solve using SVM
w = [0;0;0];
lambda = .1;
N = 2e4;
tau = 0.003;
m = size(A,1);
wr = zeros(3,N);
fv = zeros(1,N);
for i = 1:N
    if ~mod(i,1e3)
                     % display iterations progress
        disp(i)
    end
    wr(:,i) = w;
    dir = 2*lambda*diag([1,1,0])*w;
                                      % find descent direction
    for j = 1:m
        if b(j)*A(j,:)*w < 1
            dir = dir - b(j)*A(j,:)';
        end
    end
    fv(i) = sum(max(0,1-b.*(A*w)));
    w = w - tau*dir;
end
%% figs
plot( [0 - w(3)/w(1)], [-w(3)/w(2) 0], 'm-');
figure(2); clf; plot(wr');  % plot trajectories as well
title('trajectories for \gamma = 0.003'); xlabel('iteration number')
```

c) Let's take a closer look at the convergence properties of w_t . Plot the three components of w_t on the same axes, as a function of the iteration number t. Do the three curves each appear to be converging? Now produce the same plots with a larger stepsize ($\gamma = 0.01$) and a smaller stepsize ($\gamma = 0.0001$). What do you observe?

SOLUTION: See below for the three plots. We observe that the trajectories converge and settle nicely for $\gamma = 0.003$. When $\gamma = 0.01$, the trajectories oscillate (stepsize is too big). When $\gamma = 0.0001$, the trajectories still appear to be converging, but just much more slowly (stepsize can be increased).

