1 Introduction to Rings

1.1 Basic Definitions and Examples

Definition.

- 1. A ring R is a set together with two binary operations + and \times (called addition and multiplication) satisfying the following axioms:
 - (a) (R, +) is an abelian group,
 - (b) \times is associative: $(a \times b) \times c = a \times (b \times c)$ for all $a, b, c \in R$,
 - (c) the distributive laws hold in R: for all $a, b, c \in R$,

$$(a+b) \times c = (a \times c) + (b \times c)$$
 and $a \times (b+c) = (a \times b) + (a \times c)$.

- 2. The ring R is *commutative* if multiplication is commutative.
- 3. The ring R is said to have an *identity* (or *contain a 1*) if there is an element $1 \in R$ with

$$1 \times a = a \times 1 = a$$
 for all $a \in R$.

Note.

- 1. We shall write ab rather than $a \times b$ for $a, b \in R$.
- 2. The additive identity of R will be denoted by 0
- 3. The additive of an element a will be denoted -a.

Note. $R = \{0\}$ is called the *zero ring*, denoted R = 0. R = 0 is the only ring where 1 = 0. We will often exclude this ring by imposing the condition $1 \neq 0$.

Definition. A ring R with identity $1 \neq 0$, is called a *division ring* (or *skew field*) if every nonzero element $a \in R$ has a multiplicative inverse, i.e., there exists $b \in R$ such that ab = ba = 1. A commutative division ring is called a *field*.

Proposition 1. Let R be a ring. Then

- 1. 0a = a0 = 0 for all $a \in R$.
- 2. (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- 3. (-a)(-b) = ab for all $a, b \in R$.
- 4. If R has an identity 1, then the identity is unique and -a = -1(a).

Definition. Let R be a ring

- 1. A nonzero element a of R is called a zero divisor if there is a nonzero element b of R such that either ab = 0 or ba = 0.
- 2. Assume R has an identity $1 \neq 0$. An element u of R is called a *unit* in R if there is some v in R such that vu = uv = 1. The set of units in R is denoted R^{\times} .

Note.

- 1. R^{\times} forms a group under multiplication and will be referred to as the *group of units* of R.
- 2. Using the above terminology a field is a commutative ring F with identity $1 \neq 0$ in which every nonzero element is a unit, i.e., $F^{\times} = F \{0\}$.

Definition. A commutative ring with identity $1 \neq 0$ is called an *integral domain* if it has no zero divisors.

Proposition 2. Assume a, b and c are elements of any ring with a not a zero divisor. If ab = ac then either a = 0 or b = c (i.e., if $a \neq 0$ we can cancel the a's). In particular, if a, b, c are elements in an integral domain and ab = ac, then either a = 0 or b = c.

Corollary 3. Any finite integral domain is a field.

Definition. A subring of the ring R is a subgroup of R that is closed under multiplication.

Note. To show that a subset of a ring R is a subring it is enough to show that it is nonempty and closed under subtraction and under multiplication.

1.2 Examples: Polynomial Rings, Matrix Rings, and Group Rings