Poisson Regression

12.01.2021

Hannah Do

o. Introduction

Linear Regression

Logistic Regression

Poisson Regression predicts

Continuous Values

Multiple Classes

Count / Rate at which an event occurs

I. Dataset - Count Data

COUNT BASED DATA

Count based data contains events that occur at a certain rate.

Distribution of counts is discrete, not continuous, and limited to non-negative values.

Modeling counts / rates requires expected number of events over a given time period (Poisson distribution)

2. Dataset Example

Weekly epidemic incidence by gender (Ebola) (https://www.repidemicsconsortium.org/incidence/)

Incidence Rate

= Number of events / person-time

Person-time can be

- Person-days
- person-week
- person-years

3. Distribution Function

Distribution of Poisson processes

Model for a series of discrete event where the average time between events is known

$$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$$

Probability Density Function of a Poisson distribution

- e : Euler's number (e = 2.71828...)
- x : Number of occurrences
- λ : Expected value of x when equal to its variance

PDF depicts probability functions in terms of continuous random variable values presenting in between a clear range of values.

Poisson probability density distribution for different values of λ . Marked as μ in the image above.

4. Estimating the best mean

Maximum Likelihood Method

Poisson distribution is a discrete probability distribution, its likelihood function for a set of *n* measurements can be written as the following :

$$egin{array}{ll} L(\mu) &= \prod_{i=1}^n f(x_i, \mu) \ &= \prod_{i=1}^n \left[rac{\mu^{x_i} \; \mathrm{e}^{-\mu}}{x_i!}
ight] \ &= rac{\mu \sum x_i \; \mathrm{e}^{-n\mu}}{x_1! x_2! \ldots x_n!}. \end{array}$$

The log-likelihood function of $L(\mu)$ is

$$l \equiv \ln(L) = (\sum_{i=1}^n x_i) \ln(\mu) - n\mu - \ln(x_1! x_2! ... x_n!)$$

Following the maximum likelihood method ($\delta l/\delta \mu$ =0), we get

$$\frac{\partial}{\partial \mu} [(\sum_{i=1}^{n} x_i) \ln(\mu) - n\mu - \ln(x_1! x_2! \dots x_n!)] = 0$$

$$\frac{1}{\mu^*} \sum_{i=1}^{n} x_i - n = 0$$

$$\mu^* = \frac{1}{n} \sum_{i=1}^{n} x_i.$$
(9.3.34)

which shows that the *simple mean* is the most probable value of a Poisson distributed variable.

5. Estimating the error around the mean

Following equation also determines the error in the previous equation (μ):

$$egin{array}{ll} rac{\partial^2 l}{\partial \mu^2} &= -rac{1}{\mu} \sum_{i=1}^n x_i \ \Delta \mu &= \left[-rac{\partial^2 l}{\partial \mu^2}
ight]^{-1/2} \ &= \left[-rac{\mu^{*2}}{\sum_{i=1}^n x_i}
ight]^{-1/2} \ &= rac{1}{n} [\sum_{i=1}^n x_i]^{-1/2}. \end{array}$$

The result implies that the statistical error we can expect is simply the square root of the measured quantity.

6. Implementation of Poisson Regression

Predict Volume (count) of Dow Jones (S&P index)

```
df = pd.read_csv('dow_jones_index.data', header=0, \
    infer_datetime_format=True, parse_dates=[0], index_col=['date'])
```

	high	low	volume	percent_change_price		
date						
1/7/2011	16.72	15.78	239655616	3.79267		
1/14/2011	16.71	15.64	242963398	-4.42849		
1/21/2011	16.38	15.60	138428495	-2.47066		
1/28/2011	16.63	15.82	151379173	1.63831		
2/4/2011	17.39	16.18	154387761	5.93325		

6. Implementation of Poisson Regression

Data conversion to **Poisson distribution**

IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set. For example, by minimizing the least absolute errors rather than the least square errors.

```
expr = """volume ~ DAY + DAY OF WEEK + MONTH + high + low + percent change price"""
#Set up the X and y matrices
y_train, X_train = dmatrices(expr, df_train, return_type='dataframe')
y_test, X_test = dmatrices(expr, df_test, return_type='dataframe')
#Using the statsmodels GLM class, train the Poisson regression model on the training data set.
poisson_training_results = sm.GLM(y_train, X_train, family=sm.families.Poisson()).fit()
#Print the training summary.
print(poisson_training_results.summary())
```

Generalized Linear Model Regression Results

Dep. Variable:	volume	No. Observations:	375							
Model:	GLM	Df Residuals:	368							
Model Family:	Poisson	Df Model:	6							
Link Function:	log	Scale:	1.0000							
Method:	IRLS	Log-Likelihood:	-1.0248e+10							
Date:	Wed, 01 Dec 2021	Deviance:	2.0496e+10							
Time:	06:20:40	Pearson chi2:	2.97e+10							
No. Iterations:	8									
Covariance Type:	nonrobust									

coef		std err	z	P> z	[0.025	0.975]			
Intercept	16.9084	0.000	3.86e+04	0.000	16.908	16.909			
DAY	-0.0070	5.93e-07	-1.17e+04	0.000	-0.007	-0.007			
DAY_OF_WEEK	0.9134	0.000	8361.876	0.000	0.913	0.914			
MONTH	-0.1665	4.5e-06	-3.7e+04	0.000	-0.166	-0.166			
high	0.2534	6.47e-06	3.92e+04	0.000	0.253	0.253			
low	-0.3024	6.73e-06	-4.5e+04	0.000	-0.302	-0.302			
percent_change_price	-0.0195	1.48e-06	-1.32e+04	0.000	-0.020	-0.020			

6. Implementation of Poisson Regression

Predictions with mean & confidence intervals

Predicted Dow Jones Volume (XOM) counts

$$Y = b_0 + b_1 x_1 + b_1 x_1 + \dots + b_n x_n$$

$$\ln(Y) = b_0 + b_1 x_1 + b_1 x_1 + \dots + b_n x_n$$

Regular linear regression equation

Poisson regression equation

7. Summary

Poisson Distribution

- 1. Closely portrays count or rate data
- 2. Skewed depending on lambda value
- 3. Mean is equal to Variance

Poisson Regression

- I. Count/rate data must be converted to Poisson Distribution
- 2. Model returns Prediction of the Means and its Confidence Intervals

I. References

- 1. Poisson Regression Part I | Statistics for Applied Epidemiology | Tutorial 9 https://www.youtube.com/watch?v=oXfXHYDYoBA
- 2. Poisson distribution (ScienceDirect), Mathematical Modeling (Fourth edition), 2013. https://www.sciencedirect.com/topics/mathematics/poisson-distribution
- 3. Time Series Analysis, Regression and Forecasting

https://timeseriesreasoning.com/contents/poisson-regression-model/