

ЭТИКЕТКА

 $\underline{\text{УП3.487.309 ЭТ}}$ Микросхема интегральная 564 ЛА9В Функциональное назначение – Три 3-х входовых элемента «И-НЕ»

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход	8	Вход
2	Вход	9	Выход
3	Вход	10	Выход
4	Вход	11	Вход
5	Вход	12	Вход
6	Выход	13	Вход
7	Общий	14	Питание, U _{и.п.}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Цанманаранна параматра админиа намаранна размим намаранна	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5,0 \; B$ $U_{CC} = 10,0 \; B$	U _{он}	4,99 9,99	
2. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5.0 \; B$; $U_{CC} = 10.0 \; B$	U_{OL}	-	0,01
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC} = 5,0 B, U_{IH} = 3,5 B U_{CC} = 10,0 B, U_{IH} = 7,0 B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5,0 B, U_{IL} = 1,5 B U_{CC} = 10,0 B, U_{IL} = 3,0 B	U_{OHmin}	4,2 9,0	
5. Ток потребления, мкА, при: $U_{CC} = 5,0 \; B \\ U_{CC} = 10,0 \; B \\ U_{CC} = 15,0 \; B$	I_{CC}	- - -	0,05 0,1 1,0
6. Входной ток низкого уровня, нА, при: $U_{CC} = 15,0~\mathrm{B}$	$I_{\rm IL}$	-	/-100/
7. Входной ток высокого уровня, нА, при: $U_{\rm CC} = 15,0~{\rm B}$	I_{IH}	-	100

Продолжение таблицы 1			
1	2	3	4
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5,0 \text{ B, } U_{OH} = 4,5 \text{ B} \\ U_{CC} = 10,0 \text{ B, } U_{OH} = 9,5 \text{ B}$	I_{OH}	/-0,5/ /-1,0/	-
9. Выходной ток низкого уровня, мА, при: $U_{CC} = 5.0 \; B, \; U_{OL} = 0.5 \; B$ $U_{CC} = 10.0 \; B, \; U_{OL} = 0.5 \; B$	I_{OL}	0,5 1,0	- -
10. Время задержки распространения при выключении, н C , при: $U_{CC}=5,0$ B, $C_L=50$ п Φ $U_{CC}=10,0$ B, $C_L=50$ п Φ	t _{PLH}		150 90
11. Время задержки распространения при включении, н C , при: $U_{CC}=5,0$ B, $C_L=50$ п Φ $U_{CC}=10,0$ B, $C_L=50$ п Φ	$t_{ m PHL}$		140 90
12. Время перехода при выключении, нС, при: $U_{CC}=5,0$ В, $C_{L}=50$ пФ $U_{CC}=10,0$ В, $C_{L}=50$ пФ	t _{TLH}	-	200 100
13. Время перехода при включении, нС, при: $U_{CC}=5,0$ В, $C_{L}=50$ пФ $U_{CC}=10,0$ В, $C_{L}=50$ пФ	t _{THL}	-	200 100
14. Входная емкость, пФ	C_{I}	-	5

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото	Γ,
в том числе:	
золото	Γ/MM
на 14 выводах, длиной	MM.
Цветных металлов не содержится.	

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5$ В \pm 10% - не менее $120000\,$ ч.

Гамма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при $\gamma = 95\%$ и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 - 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

3.1 Гарантии предприятия – изготовителя – по ОСТ В 11 0398 – 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

10	PET	ЕНИЯ	$I \cap I$	TDIAL	MKE
7 0	DDD	LHI	$1 \cup 1$	II PIL	VIIVE

Микросхемы 564 ЛА9В соответствуют техническим условиям бК0.347.064 ТУ 21 и признаны годными для эксплуатации.

Приняты по	ОТ		
(извещение, акт и др.)		(дата)	
Место для штампа ОТК			Место для штампа ВП
Место для штампа «Перепроверка г	троиз	ведена	» (дата)
Приняты по (извещение, акт и др.)	от	(дата)	
Место для штампа ОТК			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.