	_	_		_	_	_			_	

Amrita Vishwa Vidyapeetham

B.Tech. Second Assessment Examinations – September 2017

Third Semester

Computer Science and Engineering

15MAT201 Discrete Mathematics

[Time: Two hours Maximum: 50 Marks]

Answer all the questions

 $PART - A (11 \times 2 = 22)$

- 1. Let $R_1 = \{(1, 2), (2, 1), (2, 2), (2, 3), (3, 1)\}$ and $R_2 = \{(1, 2), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$. Find the matrices that represent $R_1 \cup R_2$ and $R_2 \circ R_1$.
- 2. Determine whether the relation R on the set of all real number is symmetric and transitive, where $R = \{ (x, y) / x y = 0 \}$.
- 3. How many reflexive relations are there with a set of *n* elements? Justify your answer.
- 4. Find a recurrence relation for the number of ways to climb *n* stairs if the person climbing the stairs can take one stair or two stairs at a time. Write the initial conditions?
- 5. Find f(n) when $n = 2^k$, where f satisfies the recurrence relation f(n) = f(n/2) + 1 with f(1) = 1.
- 6. Find the generating function for the finite sequence 5, 5, 5, 5, 5.
- 7. Prove that the relation $R = \{(x, y) / x^2 = y^2, \text{ where } x, y \in \mathbb{Z} \}$ is an equivalence relation on a set of integers \mathbb{Z} .
- 8. Let R be the relation $\{(a, b) \mid a \text{ divides } b\}$ on the set of integers. What is the symmetric closure of R?
- 9. A survey of households in a country reveals that 96% have at least one television set, 98% have telephone service, and 95% have telephone service and at least one television set. What percentage of households in the country has neither telephone service not a television set?
- 10. Find the error in the proof of the following theorem. **Theorem**: Let R be a relation on a set A that is symmetric and transitive. Then R is reflexive.
 - **Proof**: Let $a \in A$. Take an element $b \in A$ such that $(a, b) \in R$. Because R is symmetric, we also have $(b, a) \in R$. Now using the transitive property, we can conclude that $(a, a) \in R$ because $(a, b) \in R$ and $(b, a) \in R$.
- 11. Show that the relation R on a set A is symmetric if and only if $R = R^{-1}$, where R^{-1} is the inverse relation of R.

 $PART - B (4 \times 7 = 28)$

- 12. Solve the recurrence relation $S_n 3S_{n-1} 4S_{n-2} = n^2 + n$, $S_0=1$ and $S_1=3$.
- 13. Using the generating function, solve the recurrence relation $P_n 7P_{n-1} + 12 P_{n-2} = 0$, $P_0=3$ and $P_1=5$.
- 14. Write the Warshall's algorithm. Using the algorithm find the transitive closure of the relation $\{(1, 2), (2, 1), (2, 3), (3, 4), (4, 1)\}$ on a set $A = \{1, 2, 3, 4\}$.
- 15. Prove that the relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1,2,3,...
