1. Design

本次作業主要設計一個十字路口的紅綠燈,分別設為東西方向及南北方向,主要情況分為4種:東西方向紅燈時,南北方向可能是綠燈或黃燈,而當東西方向變綠燈時,南北方向會轉為紅燈,最後東西方向會進入黃燈,再轉為綠燈。另一種特殊情況是當 reset 訊號輸入時,會將狀態回到初始狀態(idle),然後再接著將東西方向設為紅燈,南北方向設為綠燈。

2. I/O specifications

Pin name	Input/ Output	Bit Width	Description
clk	Input	1	system clock signal
reset	Input	1	active high synchronous
			reset signal
EW_Red	Output	1	東西方向紅燈
EW_Green	Output	1	東西方向綠燈
EW_Yellow	Output	1	東西方向黃燈
NS_Red	output	1	南北方向紅燈
NS_Green	output	1	南北方向綠燈
NS_Yellow	output	1	南北方向黄燈

^{&#}x27;define G_time 6'd6

3. Testbench

reset	一開始先 reset (100ns)
clk	週期為 100ns(50ns 翻轉 clk 的值)
信號顯示	negedge clk
	display 當前燈號狀態(如 EW_Red 表示東西方向紅燈亮起)
\$finish	在 6000ns (6us)時結束

^{&#}x27;define Y_time 6'd2

4. State diagram

5. Simulation results

VCS Simulation Report|
Time: 6000000 ps
CPU Time: 0.340 seconds; Data structure size: 0.0Mb
Mon Oct 28 11:19:17 2024
CPU time: .353 seconds to compile + .427 seconds to elab + .296 seconds to link + .381 seconds in simulation

state	Explanation	
Idle	一開始的 reset 訊號(第一個 cycle)	
EW_Red_NS_Green	東西方向紅燈、南北方向綠燈個7個 cycle	
EW_Red_NS_Yellow	東西方向紅燈、南北方向黃燈 3 個 cycle	


```
# Wait
# Wait
# EW_Red & NS_Green
# EW_Red & NS_Yellow
# EW_Red & NS_Yellow
# EW_Red & NS_Yellow
# EW_Red & NS_Yellow
```

state	Explanation	
	1	
EW_Red_NS_Yellow	東西方向紅燈、南北方向黃燈 3 個 cycle	
NS_Red_EW_Green	南北方向紅燈、東西方向綠燈個7個 cycle	
NS_Red_EW_Yellow	南北方向紅燈、東西方向綠燈個3個 cycle	
EW_Red_NS_Green	東西方向紅燈、南北方向綠燈7個 cycle	

6. Discussion

原本在燈光控制時(切換燈的狀態)是使用 posedge clk 來控制,會出現延遲一個 cycle 的狀況,後來發現是因為這個 state 在 posedge clk 才會更新,而燈光控制會吃不到這個 state 這次換的值,所以燈光控制會在下一個 cycle 才被更新,而不會跟 state 一起更換。所以現在把它用組合邏輯 (always @ (*))來根據 state 更換燈光控制的訊號,讓 state、counter、燈光顯示同步。