TD12-Intégration

Exercice 7

- 1. La fonction $t \mapsto \frac{1}{1+t+t^n}$ est continue sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$.
 - Si $n \ge 2$. Pour tout $t \in [1, +\infty[$ on a

$$1+t+t^n \ge t^n \quad donc \quad \frac{1}{1+t+t^n} \le \frac{1}{t^n}.$$

Les fonctions $t\mapsto \frac{1}{1+t+t^n}$ et $t\mapsto \frac{1}{t^n}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{t^n}dt$ est une intégrale de Riemann convergente car n>1. D'après le critère de comparaison pour les intégrales de fonctions positives, on en déduit que $\int_1^{+\infty}\frac{1}{1+t+t^n}dt$ converge aussi.

• Si n = 1. Pour tout $t \in [1, +\infty[$ on a

$$1+t+t^n = 1+2t \le 3t$$
 donc $\frac{1}{1+t+t^n} \ge \frac{1}{3t}$.

Les fonctions $t\mapsto \frac{1}{1+t+t^n}$ et $t\mapsto \frac{1}{3t}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{3t}dt$ est, à un facteur non nul près, une intégrale de Riemann divergente donc divergence elle-même. D'après le critère de comparaison pour les intégrales de fonctions positives, on en déduit que $\int_1^{+\infty}\frac{1}{1+t+t^n}dt$ diverge aussi.

• Si n = 0. Pour tout $t \in [1, +\infty[$ on a

$$1+t+t^n = 2+t \le 3t$$
 donc $\frac{1}{1+t+t^n} \ge \frac{1}{3t}$.

Et on conclut comme précédemment que l'intégrale $\int_1^{+\infty} \frac{1}{1+t+t^n} dt$ diverge.

2. La fonction $t \mapsto \frac{\ln(t)}{\sqrt{t}}$ est continue sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$.

De plus, pour tout $t \ge e$ on a

$$\frac{\ln\left(t\right)}{\sqrt{t}} \geq \frac{1}{\sqrt{t}}.$$

Les fonctions $t \mapsto \frac{\ln(t)}{\sqrt{t}}$ et $t \mapsto \frac{1}{\sqrt{t}}$ sont continues, positives sur $[1, +\infty[$ et $\int_1^{+\infty} \frac{1}{\sqrt{t}} dt$ est une intégrale de Riemann divergente. D'après le critère de comparaison pour les intégrales de fonctions positives, on en déduit que $\int_1^{+\infty} \frac{\ln(t)}{\sqrt{t}} dt$ diverge.

3. La fonction $t\mapsto \frac{1}{t^3\ln(t)}$ est continue sur $[2,+\infty[$. L'intégrale est donc impropre en $+\infty.$

De plus, pour tout $t \ge 2$ on a

$$\frac{1}{t^3 \ln(t)} \le \frac{1}{\ln(2)t^3}.$$

Les fonctions $t\mapsto \frac{1}{t^3\ln(t)}$ et $t\mapsto \frac{1}{t^3\ln(2)}$ sont continues, positives sur $[2,+\infty[$ et $\int_2^{+\infty}\frac{1}{t^3\ln(2)}dt$ est, à un facteur près, une intégrale de Riemann convergente donc converge elle-même. D'après le critère de comparaison pour les intégrales de fonctions positives, on en déduit que $\int_2^{+\infty}\frac{1}{t^3\ln(t)}dt$ converge aussi.

Exercice 8

1. La fonction $x \mapsto e^{-\sqrt{x^2+x}}$ est continue sur $[0,+\infty[$. L'intégrale est donc impropre en $+\infty$.

De plus, par croissance comparée, $\lim_{x \to +\infty} x^2 e^{-\sqrt{x^2+x}} = 0$.

$$Donc \, e^{-\sqrt{x^2 + x}} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2} \right).$$

Les fonctions $x \mapsto e^{-\sqrt{x^2+x}}$ et $x \mapsto \frac{1}{x^2}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty} \frac{1}{x^2} dx$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions positives, on en déduit que

$$\int_{1}^{+\infty} e^{-\sqrt{x^2+x}} dx \text{ converge aussi.}$$

Enfin, $\int_0^1 e^{-\sqrt{x^2+x}} dx$ est bien définie car $x \mapsto e^{-\sqrt{x^2+x}}$ est continue sur [0,1]. Donc finalement, $\int_0^{+\infty} e^{-\sqrt{x^2+x}} dx$ converge.

Attention! On ne peut pas appliquer directement le critère sur $[0, +\infty[$ car la fonction $x \mapsto \frac{1}{x^2}$ n'est pas continue sur $[0, +\infty[$ (elle n'est pas définie en 0!).

2. La fonction $x \mapsto \frac{\ln(x)}{\sqrt{x}}$ est continue sur]0,1] (et négative!). L'intégrale est donc impropre en 0.

De plus, par croissance comparée, $\lim_{x \to +\infty} x^{\frac{3}{4}} \frac{\ln(x)}{\sqrt{x}} = 0.$

Donc
$$\frac{\ln(x)}{\sqrt{x}} = \underset{x \to +\infty}{o} \left(\frac{1}{x^{\frac{3}{4}}}\right)$$
 et aussi $-\frac{\ln(x)}{\sqrt{x}} = \underset{x \to +\infty}{o} \left(\frac{1}{x^{\frac{3}{4}}}\right)$.

Les fonctions $x\mapsto -\frac{\ln{(x)}}{\sqrt{x}}$ et $x\mapsto \frac{1}{x^{\frac{3}{4}}}$ sont continues, positives sur]0,1] et $\int_0^1 \frac{1}{x^{\frac{3}{4}}} dx$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions positives, on en déduit que $\int_0^1 -\frac{\ln{(x)}}{\sqrt{x}} dx$ converge puis $\int_0^1 \frac{\ln{(x)}}{\sqrt{x}} dx$ converge aussi.

- 3. La fonction $t\mapsto \frac{t}{e^t-1}$ est continue sur $]0,+\infty[$. L'intégrale est donc impropre en 0 et $en+\infty.$
 - Étude au voisinage de 0. Par limite usuelle on sait que

$$\lim_{t\to 0}\frac{t}{e^t-1}=1.$$

La fonction $t \mapsto \frac{t}{e^t-1}$ est donc prolongeable par continuité en 0. D'après le cours, $\int_0^1 \frac{t}{e^t-1} dt$ est donc convergente.

• Étude au voisinage de $+\infty$. Par croissance comparée :

$$\lim_{t \to +\infty} \frac{t^3}{e^t - 1} = 0$$

 $donc \, \frac{t}{e^t - 1} = \mathop{o}_{t \to +\infty} \left(\frac{1}{t^2} \right).$

Les fonctions $t\mapsto \frac{t}{e^t-1}$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{t^2}dt$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions positives, on en déduit que $\int_1^{+\infty}\frac{t}{e^t-1}dt$ converge aussi.

- Conclusion : les intégrales $\int_0^1 \frac{t}{e^t 1} dt$ et $\int_1^{+\infty} \frac{t}{e^t 1} dt$ sont convergentes donc $\int_0^{+\infty} \frac{t}{e^t 1} dt$ converge.
- 4. Soit $k \in \mathbb{N}$. La fonction $t \mapsto t^k e^{-t^2}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$.

De plus, par croissance comparée, $\lim_{t \to +\infty} t^2 t^k e^{-t^2} = 0$.

Donc
$$t^k e^{-t^2} = \underset{t \to +\infty}{o} \left(\frac{1}{t^2}\right)$$
.

Les fonctions $t \mapsto t^k e^{-t^2}$ et $t \mapsto \frac{1}{t^2}$ sont continues, positives sur $[1, +\infty[$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions positives, on en déduit que $\int_1^{+\infty} t^k e^{-t^2} dt$ converge aussi.

Comme de plus, $t \mapsto t^k e^{-t^2}$ est continue sur [0,1] l'intégrale $\int_0^1 t^k e^{-t^2} dt$ existe.

Finalement $\int_{0}^{+\infty} t^{k} e^{-t^{2}} dt$ converge donc.

Attention! On ne peut pas appliquer directement le critère sur $[0, +\infty[$ car la fonction $t \mapsto \frac{1}{t^2}$ n'est pas continue sur $[0, +\infty[$ (elle n'est pas définie en 0!).

5. La fonction $t \mapsto \frac{1+\ln(t)}{t+t^2+3t^4}$ est continue sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$.

De plus, par croissance comparée, $\lim_{t \to +\infty} t^2 \frac{1 + \ln(t)}{t + t^2 + 3t^4} = 0$.

Donc
$$\frac{1+\ln(t)}{t+t^2+3t^4} = o_{t\to+\infty}\left(\frac{1}{t^2}\right)$$
.

Les fonctions $t\mapsto \frac{1+\ln{(t)}}{t+t^2+3t^4}$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{t^2}dt$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions positives, on en déduit que $\int_1^{+\infty}\frac{1+\ln{(t)}}{t+t^2+3t^4}dt$ converge aussi.

6. Exactement comme la question 4.

Exercice 9

1. La fonction $t\mapsto \frac{t^2+2t}{t^4+1}$ est continue sur $[0,+\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, par équivalent usuel et compatibilité des équivalents avec le quotient on a :

$$\frac{t^2 + 2t}{t^4 + 1} \underset{t \to +\infty}{\sim} \frac{1}{t^2}$$

Les fonctions $t\mapsto \frac{t^2+2t}{t^4+1}$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$. D'après le critère d'équivalence pour les intégrales de fonctions positives, on en déduit que et $\int_1^{+\infty} \frac{1}{t^2} dt$ et $\int_1^{+\infty} \frac{t^2+2t}{t^4+1} dt$ sont de même nature. Comme $\int_1^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann convergente., $\int_1^{+\infty} \frac{t^2+2t}{t^4+1} dt$ converge aussi.

Comme de plus, $t \mapsto \frac{t^2+2t}{t^4+1}$ est continue sur [0,1] l'intégrale $\int_0^1 \frac{t^2+2t}{t^4+1} dt$ existe.

Finalement $\int_0^{+\infty} \frac{t^2 + 2t}{t^4 + 1}$ converge donc.

Attention! On ne peut pas appliquer directement le critère sur $[0, +\infty[$ car la fonction $t \mapsto \frac{1}{t^2}$ n'est pas continue sur $[0, +\infty[$ (elle n'est pas définie en 0!).

- 2. La fonction $x \mapsto \frac{1}{x^2 x + 1}$ est continue sur \mathbb{R} car pour tout réel x, $x^2 x + 1 > 0$. L'intégrale est donc impropre en $-\infty$ et en $+\infty$.
 - Étude de $\int_{-\infty}^{0} \frac{1}{x^2 x + 1} dx.$

Par équivalent usuel et compatibilité des équivalents avec le quotient on a :

$$\frac{1}{x^2 - x + 1} \underset{x \to -\infty}{\sim} \frac{1}{x^2}$$

Les fonctions $x\mapsto \frac{1}{x^2-x+1}$ et $x\mapsto \frac{1}{x^2}$ sont continues, positives $\sup]-\infty,-1].$ D'après le critère d'équivalence pour les intégrales de fonctions positives, on en déduit que $\int_{-\infty}^{-1} \frac{1}{x^2} dx$ et $\int_{-\infty}^{-1} \frac{1}{x^2-x+1} dx$ sont de même nature. Comme $\int_{-\infty}^{-1} \frac{1}{x^2} dx$ est une intégrale de Riemann convergente., $\int_{-\infty}^{-1} \frac{1}{x^2-x+1} dx$ converge aussi.

Comme de plus, $x\mapsto \frac{1}{x^2-x+1}$ est continue sur [-1,0] l'intégrale $\int_{-1}^0 \frac{1}{x^2-x+1} dx \text{ existe.}$

Finalement $\int_{-\infty}^{0} \frac{1}{x^2 - x + 1} dx$ converge donc.

- On montre de la même façon que $\int_0^{+\infty} \frac{1}{x^2 x + 1} dx$ converge.
- Comme $\int_{-\infty}^{0} \frac{1}{x^2 x + 1} dx \quad \text{et} \quad \int_{0}^{+\infty} \frac{1}{x^2 x + 1} dx \quad \text{convergent} \quad \text{alors}$ $\int_{-\infty}^{+\infty} \frac{1}{x^2 x + 1} dx \quad \text{converge.}$

- 3. La fonction $t\mapsto \frac{1}{(1+t^2)\sqrt{1-t^2}}$ est continue sur] -1,1[. L'intégrale est impropre en -1 et en 1.
 - Étude de $\int_{-1}^{0} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$.

$$\frac{1}{(1+t^2)\sqrt{1-t^2}} = \frac{1}{(1+t^2)\sqrt{(1-t)(1+t)}} \underset{x \to -1^+}{\sim} \frac{1}{2\sqrt{2}\sqrt{t+1}}.$$

Les fonctions $t \mapsto \frac{1}{(1+t^2)\sqrt{1-t^2}}$ et $t \mapsto \frac{1}{2\sqrt{2}\sqrt{t+1}}$ sont continues et positives sur [-1,0].

D'après le critère d'équivalence pour les intégrales de fonctions positives, on en déduit que $\int_{-1}^0 \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ et $\int_{-1}^0 \frac{1}{2\sqrt{2}\sqrt{1+t}} dt$ sont de même nature.

Soit A ∈] − 1, 0].*On a*

$$\int_{A}^{0} \frac{1}{2\sqrt{2}\sqrt{1+t}} dt = \frac{1}{\sqrt{2}} \left[\sqrt{1+t} \right]_{A}^{0} = \frac{1}{\sqrt{2}} - \frac{\sqrt{1+A}}{\sqrt{2}}.$$

Ainsi $\lim_{A \to -1^+} \int_A^0 \frac{1}{2\sqrt{2}\sqrt{1+t}} dt = \frac{1}{\sqrt{2}}$. En particulier, $\int_{-1}^0 \frac{1}{2\sqrt{2}\sqrt{1+t}} dt$ converge et donc $\int_{-1}^0 \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ converge aussi.

- On montre de même que $\int_0^1 \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ converge.
- Comme $\int_{-1}^{0} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ et $\int_{0}^{1} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ convergent, $\int_{-1}^{1} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ converge.
- 4. La fonction $t \mapsto e^{\frac{1}{t}}$ est continue sur $]0, +\infty[$. L'intégrale est donc impropre en 0 et $+\infty$.
 - Soit $c \in]0, +\infty[$. On a $e^{\frac{1}{t}} \sim_{x \to +\infty} 1$.

Les fonctions $t\mapsto e^{\frac{1}{t}}$ et $t\mapsto 1$ sont continues, positives sur $[c,+\infty[$. D'après le critère d'équivalence pour les intégrales de fonctions positives, on en déduit que $\int_c^{+\infty} e^{\frac{1}{t}} dt$ et $\int_c^{+\infty} 1 dt$ sont de même nature. Comme cette dernière est une intégrale divergente, $\int_c^{+\infty} e^{\frac{1}{t}} dt$ diverge aussi.

• Ainsi, pour tout $c \in]0, +\infty[$, $\int_{c}^{+\infty} e^{\frac{1}{t}} dt$ diverge. Donc $\int_{0}^{+\infty} e^{\frac{1}{t}} dt$ diverge.

5. La fonction $t \mapsto \sqrt{\frac{t}{2t^2+1}}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus

$$\sqrt{\frac{t}{2t^2+1}} \underset{x \to +\infty}{\sim} \frac{1}{\sqrt{2t}}.$$

Les fonctions $t\mapsto \sqrt{\frac{t}{2t^2+1}}$ et $t\mapsto \frac{1}{\sqrt{2t}}$ sont continues, positives sur $[c,+\infty[$ pour tout c>0. D'après le critère d'équivalence pour les intégrales de fonctions positives, on en déduit que et $\int_c^{+\infty} \sqrt{\frac{t}{2t^2+1}} dt$ et $\int_c^{+\infty} \frac{1}{\sqrt{2t}} dt$ sont de même nature. Comme cette dernière est une intégrale divergente, $\int_c^{+\infty} \sqrt{\frac{t}{2t^2+1}} dt$ diverge aussi pour tout c>0. Donc $\int_0^{+\infty} \sqrt{\frac{t}{2t^2+1}} dt$ diverge.

6. La fonction $t \mapsto \ln\left(1 + \frac{1}{t^2}\right)$ est continue sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus par équivalent usuel

$$\ln\left(1+\frac{1}{t^2}\right) \underset{x\to+\infty}{\sim} \frac{1}{t^2}.$$

Les fonctions $t\mapsto \ln\left(1+\frac{1}{t^2}\right)$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$. D'après le critère d'équivalence pour les intégrales de fonctions positives, on en déduit que et $\int_1^{+\infty} \ln\left(1+\frac{1}{t^2}\right) dt$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ sont de même nature. Comme cette dernière est une intégrale convergente, $\int_1^{+\infty} \ln\left(1+\frac{1}{t^2}\right) dt$ converge aussi.