DG-Enhancement of Triangulated Categories

Problems with Triangulated Categories and How to Circumvent Them

Jendrik Stelzner

By a ${f chain\ complex}$ we always mean a cochain complex, i.e. the differenital increases the degree.

1 Some Problems with Triangulated Categories

1.1 About the Abelianess of Triangulated Categories

Definition 1. An abelian category \mathcal{A} is **semisimple abelian** or simply **semisimple** if every short exact sequence in \mathcal{A} splits.

Lemma 2. In a triangulated category every epimorphism splits.

Proof. Let $f: x \to y$ be an epimorphism in a triangulated category \mathcal{T} . We may complete f to a distinguished triangle

$$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} \Sigma(x)$$
.

The composition of any two morphisms in a distinguished triangle vanishes, so gf = 0. It follows that g = 0 since f is an epimorphism. By applying the homological functor $\mathcal{T}(y, -)$ to this distinguished triangle we arrive at the following long exact sequence:

$$\cdots \to \mathcal{T}(y,x) \xrightarrow{f_*} \mathcal{T}(y,y) \xrightarrow{0} \mathcal{T}(y,z) \to \cdots$$

We find that for $id_y \in \mathcal{T}(y,y)$ there exists some $s \in \mathcal{T}(y,x)$ with $id_y = f_*(s) = fs$. \square

Corollary 3. A triangulated category that is abelian is already semisimple. \Box

We see from Corollary 3 that most triangulated categories are not abelian.

Proposition 4. For an abelian category \mathcal{A} the following conditions on \mathcal{A} and its derived category $\mathbf{D}(\mathcal{A})$ are equivalent:

- (1) The derived category $\mathbf{D}(\mathcal{A})$ is abelian.
- (2) The derived category $\mathbf{D}(\mathcal{A})$ is semisimple abelian.
- (3) The abelian category $\mathbf{D}(\mathcal{A})$ is semisimple.

If these equivalent conditions are satisfied then $\mathbf{D}(\mathcal{A}) \simeq \mathcal{A}^{\mathbb{Z}}$ via the homology functor $H_* \colon \mathbf{D}(\mathcal{A}) \to \mathcal{A}^{\mathbb{Z}}$. A quasi-inverse $\mathcal{A}^{\mathbb{Z}} \to \mathbf{D}(\mathcal{A})$ is given by regarding every objects of $\mathcal{A}^{\mathbb{Z}}$ as a chain complex with zero differential.

Proof.

(3) \Longrightarrow (1): We realize $\mathbf{D}(\mathcal{A})$ by first passing from the category of chain complexes $\mathbf{Ch}(\mathcal{A})$ to its homotopy category $\mathbf{K}(\mathcal{A})$ and then localizing $\mathbf{K}(\mathcal{A})$ at the class of quasi-equivalences.

Every chain complex $X \in \mathrm{Ob}(\mathbf{Ch}(\mathcal{A}))$ splits¹ since \mathcal{A} is semisimple, and can thus be decomposed as $X = X' \oplus X''$ where X' is split acyclic while X'' has zero differential. In the homotopy category $\mathbf{K}(\mathcal{A})$ the chain complex X' becomes zero as it is split acyclic and hence contractible. Every isomorphism class in $\mathbf{K}(\mathcal{A})$ is therefore represented by a chain complex with zero differential, i.e. an object of $\mathcal{A}^{\mathbb{Z}}$. Every nullhomotopy between such chain complexes is trivial (as the differential is zero) so no two morphisms between such chain complexes become identified in $\mathbf{K}(\mathcal{A})$. This shows that the categories $\mathbf{K}(\mathcal{A})$ and $\mathcal{A}^{\mathbb{Z}}$ are equivalent. We note that this equivalence is given by $\mathbf{H}_* : \mathbf{K}(\mathcal{A}) \to \mathcal{A}^{\mathbb{Z}}$.

We also see that a quasi-isomorphism between chain complexes with zero differentials must already be an isomorphism. We therefore see that $\mathbf{D}(\mathcal{A})$ is just $\mathbf{K}(\mathcal{A})$ again. It follows that $\mathbf{D}(\mathcal{A})$ is equivalent to $\mathcal{A}^{\mathbb{Z}}$.

- $(1) \implies (2)$: This follows from Corollary 3.
- (2) \Longrightarrow (3) We first observe that an abelian category \mathcal{B} is semisimple if and only if every morphism $f\colon x\to y$ in \mathcal{B} admits a **pseudoinverse** $g\colon y\to x$ satisfying fgf=f and gfg=g: If every morphism f in \mathcal{B} admits such a pseudoinverse g then it follows for every epimorphism f from fgf=f that $fg=\operatorname{id}$ so that f splits. If on the other hand \mathcal{B} is semisimple and $f\colon x\to y$ any morphism in \mathcal{B} then we have decompositions $x=x'\oplus\ker(f)$ and $y=y'\oplus\operatorname{im}(f)$ with f inducing an isomorphism $x'\to\operatorname{im}(f)$. The inverse $\operatorname{im}(f)\to x'$ together with the projection $y\to\operatorname{im}(f)$ and the inclusion $x'\to x$ then give the desired pseudoinverse $g\colon y\to x$.

We find that by assumption every morphism in $\mathbf{D}(\mathcal{A})$ admits a pseudoinverse. Every morphism f in \mathcal{A} hence admits a pseudoinverse g in $\mathbf{D}(\mathcal{A})$ (where we regard \mathcal{A} as chain complexes concentrated in degree 0) which becomes a pseudoinverse $H_0(g)$ to f in \mathcal{A} . This shows that every morphism in \mathcal{A} admits a pseudoinverse, so that \mathcal{A} is semisimple.

¹Recall that a chain complex X is said to **split** if it can be (up to isomorphism) degreewise decomposed as $X^n = B^n \oplus H^n \oplus B_{n+1}$ such that the differential of X is with respect to this decomposition given by $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Then $Z^n(X) = B^n \oplus H^n$, $B^n(X) \cong B^n$ and $H^n(X) = H^n$. The claimed decomposition $X = X' \oplus X''$ is then given degreewise by $X'^n = B_{n+1} \oplus B^n$ with differential $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $X''^n = H^n$.

1.2 Non-Functoriality of Cones

Triangulated categories do in general not admit functorial cones. As a consequence of this, we see that for a triangulated category \mathcal{T} and a (small) index category I the diagram category $\mathbf{Fun}(I,\mathcal{T})$ does in general not inherit a triangulated structure from \mathcal{T} :

Given a morphism $f: D \to D'$ in $\mathbf{Fun}(I, \mathcal{T})$ we would otherwise like to compute its cone for the inherited triangulated structure of $\mathbf{Fun}(I, \mathcal{T})$ pointwise, i.e. via

$$cone(f)(i) = cone(f_i)$$

at every position $i \in Ob(I)$, where $f_i : D(i) \to D'(i)$.

But $\operatorname{cone}(f)$, which is supposed to be a funcor $\operatorname{cone}(f)\colon I\to \mathcal{T}$, also needs to be defined on morphisms of I. For every such morphism $e\colon i\to j$ in I we would hence need an induced morphism $\operatorname{cone}(f)(e)\colon\operatorname{cone}(f)(i)\to\operatorname{cone}(f)(j)$, i.e. an induced morphismp $\operatorname{cone}(f)(e)\colon\operatorname{cone}(f_i)\to\operatorname{cone}(f_j)$. The good thing is that there exists by the axioms of a triangulated category some morphism $\operatorname{cone}(e)\colon\operatorname{cone}(f_i)\to\operatorname{cone}(f_j)$ that makes the diagram

$$D(i) \xrightarrow{f_i} D'(i) \longrightarrow \operatorname{cone}(f_i)$$

$$D(i) \downarrow \qquad \qquad \downarrow D(j) \qquad \qquad \downarrow \downarrow$$

$$D(j) \xrightarrow{f_j} D'(j) \longrightarrow \operatorname{cone}(f_j)$$

commute. But by the missing functoriality of the cone this does in general not define a functor cone $(f): I \to \mathcal{T}$ and hence not an object of $\mathbf{Fun}(I, \mathcal{T})$.

The missing functoriality of the cone of \mathcal{T} can in general not be fixed, as the following result asserts:

Proposition 5. Let \mathcal{T} be an idempotent complete triangulated category. If \mathcal{T} admits functorial cones then \mathcal{T} is abelian and semisimple.

1.3 (Non-)Existence of Limits and Colimits

A triangulated category \mathcal{T} is in general neither complete nor cocomplete.

1.4 Difference between $\mathbf{D}(\mathcal{A})^I$ and $\mathbf{D}(\mathcal{A}^I)$

One might suspect that for $\mathcal{T} = \mathbf{D}(\mathcal{A})$, where \mathcal{A} is some abelian category, the above problems can be fixed by using an equivalence $\mathbf{D}(\mathcal{A})^I \simeq \mathbf{D}(\mathcal{A}^I)$. (Note that the category \mathcal{A}^I is again abelian.) The problem is that there is in general no such equivalence.

Take for example $\mathcal{A} = k\text{-}\mathbf{Vect}$ and let $I = (\bullet \to \bullet)$ be the category consisting of two objects 0 and 1 and one non-identity morphism $0 \to 1$. The abelian category \mathcal{A} is semisimple whence $\mathbf{D}(\mathcal{A})^I$ is again abelian by Proposition 4. But the functor category $\mathcal{A}^I = \mathbf{Fun}(I, \mathcal{A})$ is equivalent to the category of representations of the quiver $\bullet \to \bullet$ and therefore not abelian. The derived category $\mathbf{D}(\mathcal{A}^I)$ is thus not again abelian. This shows that $\mathbf{D}(\mathcal{A})^I$ is abelian but $\mathbf{D}(\mathcal{A}^I)$ is not abelian, which entails that these categories are not equivalent.

2 Towards Derivators

3 Towards DG-Enhancement

In the following we denote by k some commutative ring.

A dg enhancement of category \mathcal{T} is, roughly speaking, a dg-category \mathcal{A} together with an equivalence $\mathcal{T} \simeq H^0(\mathcal{A})$. If the category \mathcal{T} carries additional structures which we want to be respected by this equivalence, then we need to make sure than the homotopy category $H^0(\mathcal{A})$ does carry such a structure itself. If \mathcal{T} is a triangulated category then this leads us to the notion of a pretriangulated dg-category.

3.1 Review on DG-Categories

The k-linear category $\mathbf{Ch}(k)$ together with the tensor product of chain complexes becomes a symmetric monoidal category. A **dg-category** is an enriched category oever $\mathbf{Ch}(k)$. More precisely, a dg-category \mathcal{A} consists of a class of objects $\mathrm{Ob}(\mathcal{A})$, for any two objects $x, y \in \mathcal{A}$ a chain complex $\mathcal{A}(x, y)$, for any three objects $x, y, z \in \mathrm{Ob}(\mathcal{A})$ a morphism of chain complexes

$$(-)\circ(-)\colon \mathcal{A}(y,z)\otimes\mathcal{A}(x,y)\to\mathcal{A}(x,z)$$

satisfying the usual associativity diagram, and for every object $x \in \text{Ob}(\mathcal{A})$ an element $1_x \in \text{Z}^0(\mathcal{A}(x,y))$ satisfying the usual identity diagrams. As an example we enrich $\mathbf{Ch}(k)$ into a dg-category $\mathbf{Ch}(k)$ with $\mathbf{Ch}(k)(X,Y) = \underline{\text{Hom}}(X,Y)$ being the usual Hom-chain complex.

To any dg-category \mathcal{A} we can associated the k-linear categories $Z^0(\mathcal{A})$ and $H^0(\mathcal{A})$ that are given by $Ob(Z^0(\mathcal{A})) = Ob(H^0(\mathcal{A}))$ and

$$Z^{0}(\mathcal{A})(x,y) = Z^{0}(\mathcal{A}(x,y))$$
 and $H^{0}(\mathcal{A})(x,y) = H^{0}(\mathcal{A}(x,y))$.

The composition of morphisms in $Z^0(\mathcal{A})$ and $H^0(\mathcal{A})$ is induced by the compositions in \mathcal{A} . As an example we have $Z^0(\underline{\mathbf{Ch}}(k)) = \mathbf{Ch}(k)$ and $H^0(\underline{\mathbf{Ch}}(k)) = \mathbf{K}(k)$.

This examples motivates that one should think about $Z^0(A)$ as the "underlying k-linear category of A", and as the elements of $Z^0(A(x,y))$ as the "actual morphisms" from x to y.

For two dg-categories \mathcal{A}, \mathcal{B} a **dg-functor** $F \colon \mathcal{A} \to \mathcal{B}$ is given by a map $F \colon \mathrm{Ob}(\mathcal{A}) \to \mathrm{Ob}(\mathcal{B})$ together with morphisms of chain complexes $F_{x,y} \colon \mathcal{A}(x,y) \to \mathcal{B}(F(x),F(y))$ for any two objects $x,y \in \mathrm{Ob}(\mathcal{A})$, satisfying the usual axioms. Every dg-functor $F \colon \mathcal{A} \to \mathcal{B}$ induces k-linear functors $Z^0(\mathcal{A}) \to Z^0(\mathcal{B})$ and $H^0(\mathcal{A}) \to H^0(\mathcal{B})$.

A dg-natural transformation $\alpha \colon F \Rightarrow G$ between dg-functors $F, G \colon \mathcal{A} \to \mathcal{B}$ assigns to is a family $\alpha = (\alpha_x)_{x \in \mathrm{Ob}(\mathcal{A})}$ of "actual morphisms" $\alpha_x \in \mathrm{Z}^0(\mathcal{B}(F(x), G(x)))$ with $\alpha_y \circ F(f) = G(f) \circ \alpha_x$ for every $f \in \mathcal{A}(x,y)$. We get a k-linear abelian category $\mathrm{dgFun}(\mathcal{A},\mathcal{B})$ whose objects are dg-functors $\mathcal{A} \to \mathcal{B}$ and whose morphisms are dg-natural transformations. This category can be enriched into a dg-category $\mathrm{dgFun}(\mathcal{A},\mathcal{B})$

with

$$\underline{\mathbf{dgFun}}(\mathcal{A},\mathcal{B})(F,G)^{i} = \left\{ (\alpha_{x})_{x \in \mathrm{Ob}(\mathcal{A})} \middle| \begin{array}{l} \alpha_{x} \in \mathcal{B}(F(x),G(x))^{i} \text{ with} \\ \alpha_{y} \circ F(f) = (-1)^{ij}G(f) \circ \alpha_{x} \\ \text{for every } f \in \mathcal{A}(x,y)^{j} \end{array} \right\}$$

being a subcomplex of $\prod_{x \in Ob(A)} \mathcal{B}(F(x), G(x))$. Then in particular

$$Z^{0}(\mathbf{dgFun}(\mathcal{A},\mathcal{B})) = \mathbf{dgFun}(\mathcal{A},\mathcal{B}),$$

so that $\mathbf{dgFun}(\mathcal{A}, \mathcal{B})$ is the underlying k-linear category of $\mathbf{dgFun}(\mathcal{A}, \mathcal{B})$.

For a dg-category \mathcal{A} a **(right) dg-\mathcal{A}-module** is a dg-functor $M: \mathcal{A}^{\mathrm{op}} \to \underline{\mathbf{Ch}}(k)$. This means that at every object $x \in \mathrm{Ob}(\mathcal{A})$ we have a chain complex M_x , and for every $f \in \mathcal{A}(x,y)^i$ we have associated a map $M(f): M(y) \to M(x)$ of degree i such that $M(g \circ f) = (-1)^{ij} M(f) \circ M(g)$ for all $f \in \mathcal{A}(x,y)^i$ and $g \in \mathcal{A}(y,z)^j$. The category of dg- \mathcal{A} -modules is given by $\mathbf{dgMod}_{\mathcal{A}} = \mathbf{dgFun}(\mathcal{A}^{\mathrm{op}}, \underline{\mathbf{Ch}}(k))$, and its dg-enrichement by $\underline{\mathbf{dgMod}}_{\mathcal{A}} = \underline{\mathbf{dgFun}}(\mathcal{A}^{\mathrm{op}}, \underline{\mathbf{Ch}}(k))$. The category $\mathbf{dgMod}_{\mathcal{A}}$ is abelian, complete and cocomplete, and all (co)limits are computed pointwise.

3.2 Review on Frobenius Exact Structures

The abelian category $\mathbf{Ch}(k)$ admits a Frobenius exact structure \mathcal{S} whose associated \mathcal{S} -stable triangulated category is precisely $\mathbf{K}(k)$. For every chain complex X its \mathcal{S} -injective envelope is given by the chain complex

$$IX = \left(X \oplus X[1], \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right)$$

which fits into the short exact sequence

$$0 \to X \xrightarrow{i_X} IX \xrightarrow{p_X} X[1] \to 0 \tag{1}$$

belonging to \mathcal{S} , where

$$i_X = \begin{bmatrix} 1 \\ d_X \end{bmatrix}$$
 and $p_X = \begin{bmatrix} -d_X & 1 \end{bmatrix}$.

The k-linear functors $I, [1]: \mathbf{Ch}(k) \to \mathbf{Ch}(k)$ and natural transformations $i: 1 \Rightarrow I$ and $p: I \Rightarrow [1]$ extends to a dg-functors $I, [1]: \underline{\mathbf{Ch}}(k) \to \underline{\mathbf{Ch}}(k)$ and dg-natural transformations $i: 1 \Rightarrow I$ and $p: I \to [1]$. By applying $\mathbf{dgFun}(\mathcal{A}^{\mathrm{op}}, -)$ these in turn induce a k-linear functors

$$I,[1]: \mathbf{dgMod}_A \to \mathbf{dgMod}_A$$

together with natural transformations $i\colon 1\Rightarrow I$ and $p\colon I\Rightarrow [1]$. We get for every dg- \mathcal{A} -module M a short exact sequence of dg- \mathcal{A} -modules

$$0 \to M \xrightarrow{i_M} IM \xrightarrow{p_M} M[1] \to 0 \tag{2}$$

that gives at every point $x \in \mathrm{Ob}(\mathcal{A})$ the short exact sequence of chain complexes

$$0 \to M_x \xrightarrow{i_{M_x}} IM_x \xrightarrow{p_{M_x}} M_x[1] \to 0$$

from (1) with $X = M_x$. The short exact sequence (2) belongs to a Frobenus exact structure \mathcal{S} on $\mathbf{dgMod}_{\mathcal{A}}$ whose stable triangulated category is precisely the homotopy category $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$, with $i_M : M \to IM$ being an \mathcal{S} -injective envelope of M for every $\mathrm{dg-}\mathcal{A}$ -module M. This description of $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ and its triangulated structure has two consequences we will need:

(1) A morphsim $f: M \to N$ in $\mathbf{dgMod}_{\mathcal{A}}$ vanishes in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ if and only it factors through some \mathcal{S} -injective object I of $\mathbf{dgMod}_{\mathcal{A}}$, i.e. if there exists in $\mathbf{dgMod}_{\mathcal{A}}$ a commutative diagram of the following form:

The morphism $M \to I$ factors through the morphism $i_M \colon M \to IM$ since we have by the definition of an S-injective object the following diagram:

$$0 \longrightarrow M \xrightarrow{i_M} IM \xrightarrow{p_M} M[1] \longrightarrow 0$$

It follows that f already factors through $i_M : M \to IM$.

(2) We get a description of the distinguished triangles in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ from Happel's theorem: Let

$$0 \longrightarrow M \xrightarrow{i_M} IM \xrightarrow{p_M} M[1] \longrightarrow 0$$

$$\downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow N \xrightarrow{g} P \xrightarrow{h} M[1] \longrightarrow 0$$

be be a commutative diagram in $\mathbf{dgMod}_{\mathcal{A}}$ whose rows are contained in \mathcal{S} and where the left hand square is a pushout square. Then the resulting sequence

$$M \xrightarrow{f} N \xrightarrow{g} P \xrightarrow{h} M[1]$$

in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ is a distinguished triangle. (And every distinguished triangle is up to isomorphism of this form.)

3.3 Pretriangulated DG-Categories

Definition 6. A dg-functor $F: \mathcal{A} \to \mathcal{B}$ is **dg-fully faithful** if for every two objects $x, y \in \mathcal{A}$ the morphism of chain complexes $F_{x,y}: \mathcal{A}(x,y) \to \mathcal{B}(F(x), F(y))$ is an isomorphism.

Proposition 7 (dg-Yoneda embedding). Let \mathcal{A} be a dg-category. Then the mapping

$$\mathcal{A} \to \underline{\mathbf{dgMod}}_{\mathcal{A}} \,, \quad x \mapsto \mathcal{A}(-,x) = \mathcal{A}^{\mathrm{op}}(x,-)$$

extends (in the usual way) to a dg-fully faithful dg-functor.

Definition 8. A dg-category A is **pretriangulated** if the fully faithful k-linear functor

$$\operatorname{H}^0(\mathcal{A}) \to \operatorname{H}^0(\operatorname{\mathbf{\underline{dgMod}}}_{\operatorname{\Delta}})$$

induces by the Yoneda embedding $\mathcal{A} \to \underline{\mathbf{dgMod}}_{\mathcal{A}}$ identifies \mathcal{A} with a triangulated subcategory of $\mathrm{H}^0(\mathbf{dgMod}_{\mathcal{A}})$.

The above definition ensures that for a pretriangulated dg-category \mathcal{A} its homotopy category $H^0(\mathcal{A})$ does carry in a canonical way the structure of a triangulated category.

Definition 9. A **dg-enhancement** of a triangulated category \mathcal{T} is a pretriangulated category \mathcal{A} together with an equivalence of triangulated categories $\mathcal{T} \simeq H^0(\mathcal{A})$.

A dg-enhancement of a triangulated category \mathcal{T} allows us to identity \mathcal{T} with a full triangulated subcategory of $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ for some dg-category \mathcal{A} . We can then try to understand the original triangulated category \mathcal{T} through the "higher structure" of the dg-category \mathcal{A} .

3.4 Cones as Derived Cokernels

Recall that if $f: x \to y$ is a morphism in an (pre)additive category \mathcal{A} then its cokernel (which does not need to exists) can be thought of in two equivalent ways:

- A morphism $\operatorname{coker}(f) \to z$ into any other object is "the same" as a morphism $g \colon y \to z$ with gf = 0.
- The cokernel coker(f) is the pushout of the following diagram:

$$\begin{array}{c}
x \xrightarrow{f} y \\
\downarrow \\
0
\end{array}$$

In a triangulated category \mathcal{T} we do in general have neither cokernels nor pushouts. But given a dg-enhancement $\mathcal{T} \simeq H^0(\mathcal{A})$ for some pretriangulated dg-category \mathcal{A} we can identify \mathcal{T} with a full triangulated subcategory of $H^0(\underline{\mathbf{dgMod}}_{A})$. We can then

do the desired calculations in the abelian category $\mathbf{dgMod}_{\mathcal{A}} = Z^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ wich admits all (small) colimits and limits.

More precisely, given a fixed morphism $f \colon M \to N$ in $\mathbf{dgMod}_{\mathcal{A}}$ try to understand all morphisms $g \colon N \to P$ in $\mathbf{dgMod}_{\mathcal{A}}$ for which the composition $g \circ f$ vanishes in $\mathrm{H}^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$. We have previously seen that $g \circ f$ vanishes if and only if $g \circ f$ factors through $i_M \colon M \to IM$. We are hence interested in the pushout of the diagram

$$M \xrightarrow{f} N$$

$$i_{M} \downarrow \qquad \qquad IM$$

in $\mathbf{dgMod}_{\mathcal{A}}$. This pushout is computed pointwise, hence we want to compute for every $x \in \mathrm{Ob}(\mathcal{A})$ the pushout

$$M_{x} \xrightarrow{f_{x}} N_{x}$$

$$\downarrow i_{M_{x}} \downarrow IM_{x}$$

in the category $\mathbf{Ch}(k)$ where

$$IM_x = \left(M_x \oplus M_x[1], \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right) \quad \text{and} \quad i_{M_x} = \begin{bmatrix} 1 \\ d_{M_x} \end{bmatrix} \,.$$

Lemma 10. For every morphism of chain complexes $f: X \to Y$ the pushout of

$$X \xrightarrow{f} Y$$

$$i_X \downarrow \qquad \qquad IX$$

in $\mathbf{Ch}(k)$ is given by

$$X \xrightarrow{f} Y$$

$$\downarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$IX \xrightarrow{\begin{bmatrix} -d_X & 1 \\ f & 0 \end{bmatrix}} C^f$$

where C^f denotes the usual mapping cone

$$C^f = \left(X[1] \oplus Y, \begin{bmatrix} -d_X & 0 \\ f & d_Y \end{bmatrix} \right).$$

Proof. We calculate the pushout as

$$\begin{pmatrix} X \oplus X[1] \oplus Y, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & d_Y \end{bmatrix} \end{pmatrix} / \left\langle \begin{bmatrix} x \\ d(x) \\ -f(x) \end{bmatrix} \middle| x \in X \right\rangle$$

$$\cong \begin{pmatrix} X[1] \oplus Y, \begin{bmatrix} -d_X & 0 \\ f & d_Y \end{bmatrix} \end{pmatrix}$$

$$= C^f$$

as claimed. \Box

Remark 11. The above results is (a posteri) not surprising: It is a standard statement from homological algebra that for a morphism of chain complexes $f: X \to Y$ the data of a morphism $h: C^f \to Z$ is the same as that of a morphism $g: Y \to Z$ together with a nullhomotopy of the composition $g \circ f: X \to Z$. Whence C^f corepresents morphisms going out of Y whose composition with f are zero "up to homotopy".

We hence find that the pushout

$$\begin{array}{ccc} M & \stackrel{f}{\longrightarrow} N \\ i_M \downarrow & & \downarrow \\ IM & \longrightarrow C^f \end{array}$$

is given by $(C^f)_x = C^{f_x}$ at every $x \in \text{Ob}(\mathcal{A})$, i.e. the dg- \mathcal{A} -module C^f is pointwise the usual mapping cone of chain complexes.

We can see that C^f is actually the cone of f in the triangulated category $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$: We have the following commutative diagram in which the left hand side is a pushout, and where the upper row is exact and contained in the Frobenius exact structure of $\underline{\mathbf{dgMod}}_{\mathcal{A}}$:

It follows from the standard lemma of homological algebra that we can extend the above diagram to a commutative diagram

whose row are exact. It follows from the axioms of a Frobenius exact structure that the lower row in this diagram is again contained in the Frobenius exact structure of \mathbf{dgMod}_{A} . We have seen in the previous review on Frobenius exact structures that

$$M \xrightarrow{f} N \to C^f \to M[1]$$

is therefore a distinguished triangle in $\mathrm{H}^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$. This entails that C^f is a cone

of f in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$.

We have thus seen that one can think about the cone in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ as a kind of "derived cokernel" of f, coming from a pushout in $\mathbf{dgMod}_{\mathcal{A}}$ that was choosen as a "cokernel up to homotopy".

3.5 Extending to $\underline{\mathrm{dgMod}}_{\mathcal{A}}$