LRA via Linear Measurements

• Recover a rank-k approximation for A:

• Measure with S_1, \ldots, S_t and output B

Non-adaptive algorithms decide upfront

Adaptive algorithms proceed in batches

How many linear measurements do we need?

Direct connections to Matrix Recovery

 \boldsymbol{A}

LRA via Linear Measurements

• Recover a rank-k approximation for A:

$$||A - B||_2 < 2\sigma_{k+1}(A)$$

- Measure with S_1, \ldots, S_t and output B
 - Non-adaptive algorithms decide upfront
 - Adaptive algorithms proceed in batches
- How many linear measurements do we need?
 - Direct connections to Matrix Recovery

$$= \langle \operatorname{vec}(S), \operatorname{vec}(A) \rangle$$

Linear Measurements vs Matrix-Vector Products