Logistic Regression

1 Classification

Classification

- → Email: Spam / Not Spam?
- Online Transactions: Fraudulent (Yes / No)?
- → Tumor: Malignant / Benign ?

$$y \in \{0,1\}$$
 0: "Negative Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor)
$$y \in \{0,1\}$$

$$y \in \{0,1,2,3\}$$

 \Rightarrow Threshold classifier output $h_{\theta}(x)$ at 0.5:

$$\Rightarrow$$
 If $h_{ heta}(x) \geq 0.5$, predict "y = 1" If $h_{ heta}(x) < 0.5$, predict "y = 0"

Classification: y = 0 or 1

$$\underline{h_{\theta}(x)}$$
 can be ≥ 1 or ≤ 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Classification

2 Hypothesis representation

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x \leftarrow

Example: If
$$\underline{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \leftarrow \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(\underline{x}) = \underline{0.7}$$

Tell patient that 70% chance of tumor being malignant

$$\frac{h_{\Theta}(x)}{y} = \underbrace{P(y=1|x;\Theta)}_{\text{or } 1} \qquad \text{"probability that } y = 1, \text{ given } x, \\ \text{parameterized by } \theta"$$

$$\Rightarrow \underbrace{P(y=0|x;\theta) + P(y=1|x;\theta) = 1}_{P(y=0|x;\theta) = 1} P(y=1|x;\theta)$$

3 Decision boundary

Logistic regression

$$\Rightarrow h_{\theta}(x) = g(\theta^{T}x) = P(y=1) \times 0$$

$$\Rightarrow g(z) = \frac{1}{1+e^{-z}}$$
Suppose predict $y = 1$ if $h_{\theta}(x) \ge 0.5$

$$\Rightarrow 0 \times 0$$

4 Cost function

Logistic regression cost function

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\text{If } y = 0$$

$$-\log(1 - x)$$

$$-\log(1 - x)$$

5 Simplified cost function and gradient descent

Logistic regression cost function

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

To make a prediction given new \underline{x} :

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent

Gradient Descent
$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$
 Want $\min_{\theta} J(\theta)$: Repeat $\{$
$$\Rightarrow \theta_{j} := \theta_{j} - \alpha \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \}$$
 (simultaneously update all θ_{j})
$$h_{\theta}(x) = \theta^{T} x$$

Algorithm looks identical to linear regression!

Andrew Ng

6 Advanced optimization

Optimization algorithm

Cost function $J(\theta)$. Want $\min_{\theta} J(\theta)$.

Given θ , we have code that can compute

$$\Rightarrow \frac{J(\theta)}{\partial \theta_j} J(\theta)$$
 (for $j = 0, 1, \dots, n$)

Gradient descent:

Repeat
$$\{$$
 $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \}$

Optimization algorithm

Given θ , we have code that can compute

Optimization algorithms:

- Gradient descent
 - Conjugate gradient
 - BFGS
 - L-BFGS

Advantages:

- No need to manually pick α
- Often faster than gradient descent.

Disadvantages:

More complex

```
Example: \theta_1 = \theta
```

7 Multi-class classification: One-vs-all

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Multi-class classification:

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class \underline{i} to predict the probability that $\underline{y}=\underline{i}$.

On a new input \underline{x} , to make a prediction, pick the class i that maximizes

$$\max_{\underline{i}} \frac{h_{\theta}^{(i)}(x)}{\uparrow}$$