Introduction Modelling parallel systems Linear Time Properties **Regular Properties** regular safety properties ω -regular properties model checking with Büchi automata Linear Temporal Logic Computation-Tree Logic Equivalences and Abstraction

Regular LT properties

idea: define regular LT properties to be those languages of infinite words over the alphabet 2^{AP} that have a representation by a finite automata

Regular LT properties

idea: define regular LT properties to be those languages of infinite words over the alphabet 2^{AP} that have a representation by a finite automata

regular safety properties:
 NFA-representation for the bad prefixes

idea: define regular LT properties to be those languages of infinite words over the alphabet 2^{AP} that have a representation by a finite automata

- regular safety properties:
 NFA-representation for the bad prefixes
- representation other regular LT properties by
 - * ω -automata, i.e., acceptors for infinite words

idea: define regular LT properties to be those languages of infinite words over the alphabet 2^{AP} that have a representation by a finite automata

- regular safety properties:
 NFA-representation for the bad prefixes
- representation other regular LT properties by
 - * ω -automata, i.e., acceptors for infinite words
 - * ω -regular expressions

Regular expressions

remind: syntax and semantics of regular expressions over some alphabet $\Sigma = \{A, B, \ldots\}$

LTL/LTLMC3.2-23

$$\alpha ::= \emptyset \mid \epsilon \mid A \mid \alpha_1 + \alpha_2 \mid \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

$$\alpha ::= \emptyset \mid \epsilon \mid A \mid \alpha_1 + \alpha_2 \mid \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

$$\forall \alpha_1 \cdot \alpha_2 \mid \alpha \cdot \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

$$\forall \alpha_1 \cdot \alpha_2 \mid \alpha \cdot \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

$$\forall \alpha_1 \cdot \alpha_2 \mid \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

$$\forall \alpha_1 \cdot \alpha_2 \mid \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

$$\forall \alpha_1 \cdot \alpha_2 \mid \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

$$\forall \alpha_1 \cdot \alpha_2 \mid \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

semantics: $\alpha \mapsto \mathcal{L}(\alpha) \subseteq \Sigma^*$ language of finite words

semantics: $\alpha \mapsto \mathcal{L}(\alpha) \subseteq \Sigma^*$ language of finite words

$$\mathcal{L}(\emptyset) = \emptyset$$
 $\mathcal{L}(\epsilon) = \{\epsilon\}$ $\mathcal{L}(A) = \{A\}$
 $\mathcal{L}(\alpha_1 + \alpha_2) = \mathcal{L}(\alpha_1) \cup \mathcal{L}(\alpha_2)$ union
 $\mathcal{L}(\alpha_1.\alpha_2) = \mathcal{L}(\alpha_1)\mathcal{L}(\alpha_2)$ concatenation
 $\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$ Kleene closure

ω -regular expressions

regular expressions:

$$\alpha ::= \emptyset \mid \epsilon \mid A \mid \alpha_1 + \alpha_2 \mid \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

 ω -regular expressions:

regular expressions $+ \omega$ -operator α^{ω}

LTL/LTLMC3.2-24

ω -regular expressions

regular expressions:

$$\alpha := \emptyset \mid \epsilon \mid A \mid \alpha_1 + \alpha_2 \mid \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

 ω -regular expressions:

regular expressions $+\omega$ -operator α^{ω}

Kleene star: "finite repetition"

 ω -operator: "infinite repetition"

regular expressions:

$$\alpha := \emptyset \mid \epsilon \mid A \mid \alpha_1 + \alpha_2 \mid \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

 ω -regular expressions:

regular expressions $+\omega$ -operator α^{ω}

Kleene star: "finite repetition"

 ω -operator: "infinite repetition"

for $L \subseteq \Sigma^*$:

$$L^{\omega} \stackrel{\text{def}}{=} \left\{ w_1 w_2 w_3 \dots : w_i \in L \text{ for all } i \geq 1 \right\}$$

regular expressions:

$$\alpha ::= \emptyset \mid \epsilon \mid A \mid \alpha_1 + \alpha_2 \mid \alpha_1 \cdot \alpha_2 \mid \alpha^*$$

 ω -regular expressions:

```
regular expressions + \omega-operator \alpha^{\omega}
```

```
Kleene star: "finite repetition"
```

 ω -operator: "infinite repetition"

for
$$L \subseteq \Sigma^*$$
:

$$L^{\omega} \stackrel{\text{def}}{=} \left\{ w_1 w_2 w_3 \dots : w_i \in L \text{ for all } i \geq 1 \right\}$$

note: $L^{\omega} \subseteq \Sigma^{\omega}$ if $\varepsilon \notin L$

Syntax and semantics of ω -regular expressions Letting 3.2-25

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + ... + \alpha_n \cdot \beta_n^{\omega}$$
 where

 α_i , β_i are regular expressions over Σ s.t. $\varepsilon \notin \mathcal{L}(\beta_i)$

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + ... + \alpha_n \cdot \beta_n^{\omega}$$
 where

 α_i , β_i are regular expressions over Σ s.t. $\varepsilon \notin \mathcal{L}(\beta_i)$

$$\mathcal{L}_{\omega}(\gamma) \stackrel{\mathsf{def}}{=} \bigcup_{1 \leq i \leq n} \mathcal{L}(\alpha_i) \mathcal{L}(\beta_i)^{\omega}$$

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + ... + \alpha_{n} \cdot \beta_n^{\omega}$$
 where

 α_i , β_i are regular expressions over Σ s.t. $\varepsilon \notin \mathcal{L}(\beta_i)$

$$\mathcal{L}_{\omega}(\gamma) \stackrel{\text{def}}{=} \bigcup_{1 \leq i \leq n} \mathcal{L}(\alpha_i) \mathcal{L}(\beta_i)^{\omega} \subseteq \Sigma^{\omega}$$

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + ... + \alpha_{n} \cdot \beta_n^{\omega}$$
 where

 α_i , β_i are regular expressions over Σ s.t. $\varepsilon \notin \mathcal{L}(\beta_i)$

semantics: the language generated by γ is:

$$\mathcal{L}_{\omega}(\gamma) \stackrel{\mathsf{def}}{=} \bigcup_{1 \leq i \leq n} \mathcal{L}(\alpha_i) \mathcal{L}(\beta_i)^{\omega} \subseteq \Sigma^{\omega}$$

• language of $(A^*.B)^{\omega}$

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + ... + \alpha_n \cdot \beta_n^{\omega}$$
 where

 α_i , β_i are regular expressions over Σ s.t. $\varepsilon \notin \mathcal{L}(\beta_i)$

semantics: the language generated by γ is:

$$\mathcal{L}_{\omega}(\gamma) \stackrel{\mathsf{def}}{=} \bigcup_{1 \leq i \leq n} \mathcal{L}(\alpha_i) \mathcal{L}(\beta_i)^{\omega} \subseteq \Sigma^{\omega}$$

• language of $(A^*.B)^{\omega}$ = set of all infinite words over $\Sigma = \{A, B\}$ containing infinitely many B's

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + ... + \alpha_n \cdot \beta_n^{\omega}$$
 where

 α_i , β_i are regular expressions over Σ s.t. $\varepsilon \notin \mathcal{L}(\beta_i)$

$$\mathcal{L}_{\omega}(\gamma) \stackrel{\mathsf{def}}{=} \bigcup_{1 \leq i \leq n} \mathcal{L}(\alpha_i) \mathcal{L}(\beta_i)^{\omega} \subseteq \Sigma^{\omega}$$

- language of $(A^*.B)^{\omega}$ = set of all infinite words over $\Sigma = \{A, B\}$ containing infinitely many B's
- language of $(A^*.B)^{\omega} + (B^*.A)^{\omega}$

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + ... + \alpha_n \cdot \beta_n^{\omega}$$
 where

 α_i , β_i are regular expressions over Σ s.t. $\varepsilon \notin \mathcal{L}(\beta_i)$

$$\mathcal{L}_{\omega}(\gamma) \stackrel{\mathsf{def}}{=} \bigcup_{1 \leq i \leq n} \mathcal{L}(\alpha_i) \mathcal{L}(\beta_i)^{\omega} \subseteq \Sigma^{\omega}$$

- language of $(A^*.B)^{\omega}$ = set of all infinite words over $\Sigma = \{A, B\}$ containing infinitely many B's
- language of $(A^*.B)^{\omega} + (B^*.A)^{\omega} = \text{set of all infinite}$ words over Σ with infinitely many A's or B's

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + ... + \alpha_n \cdot \beta_n^{\omega}$$
 where

 α_i , β_i are regular expressions over Σ s.t. $\varepsilon \notin \mathcal{L}(\beta_i)$

$$\mathcal{L}_{\omega}(\gamma) \stackrel{\mathsf{def}}{=} \bigcup_{1 \leq i \leq n} \mathcal{L}(\alpha_i) \mathcal{L}(\beta_i)^{\omega} \subseteq \Sigma^{\omega}$$

- language of $(A^*.B)^{\omega}$ = set of all infinite words over $\Sigma = \{A, B\}$ containing infinitely many B's
- language of $(A^*.B)^{\omega} + (B^*.A)^{\omega} = \text{set of all infinite}$ words over Σ with infinitely many A's or B's = Σ^{ω}

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + ... + \alpha_n \cdot \beta_n^{\omega}$$
 where

 α_i , β_i are regular expressions over Σ s.t. $\varepsilon \notin \mathcal{L}(\beta_i)$

semantics: the language generated by γ is:

$$\mathcal{L}_{\omega}(\gamma) \stackrel{\mathsf{def}}{=} \bigcup_{1 \leq i \leq n} \mathcal{L}(\alpha_i) \mathcal{L}(\beta_i)^{\omega} \subseteq \Sigma^{\omega}$$

A language $L \subseteq \Sigma^{\omega}$ is called ω -regular iff there exists an ω -regular expression γ s.t.

$$L = \mathcal{L}_{\omega}(\gamma)$$

Provide an ω -regular expression for ...

alphabet $\Sigma = \{A, B\}$

 set of all infinite words over Σ containing only finitely many A's

Provide an ω -regular expression for ...

alphabet
$$\Sigma = \{A, B\}$$

 set of all infinite words over Σ containing only finitely many A's

$$(A+B)^*.B^{\omega}$$

alphabet
$$\Sigma = \{A, B\}$$

$$(A+B)^*.B^{\omega}$$

 set of all infinite words where each A is followed immediately by letter B

alphabet
$$\Sigma = \{A, B\}$$

$$(A+B)^*.B^{\omega}$$

 set of all infinite words where each A is followed immediately by letter B

$$(B^*.A.B)^*.B^{\omega} + (B^*.A.B)^{\omega}$$

alphabet
$$\Sigma = \{A, B\}$$

$$(A+B)^*.B^{\omega}$$

 set of all infinite words where each A is followed immediately by letter B

$$(B^*.A.B)^*.B^{\omega} + (B^*.A.B)^{\omega}$$

 set of all infinite words where each A is followed eventually by letter B

alphabet
$$\Sigma = \{A, B\}$$

$$(A+B)^*.B^{\omega}$$

 set of all infinite words where each A is followed immediately by letter B

$$(B^*.A.B)^*.B^{\omega} + (B^*.A.B)^{\omega}$$

 set of all infinite words where each A is followed eventually by letter B

$$(B^*.A^+.B)^*.B^{\omega} + (B^*.A^+.B)^{\omega}$$
where $\alpha^+ \stackrel{\text{def}}{=} \alpha.\alpha^*$.

alphabet
$$\Sigma = \{A, B\}$$

$$(A+B)^*.B^{\omega}$$

 set of all infinite words where each A is followed immediately by letter B

$$(B^*.A.B)^*.B^{\omega} + (B^*.A.B)^{\omega}$$

 set of all infinite words where each A is followed eventually by letter B

$$(B^*.A^+.B)^*.B^\omega + (B^*.A^+.B)^\omega \equiv (A^*.B)^\omega$$

where $\alpha^+ \stackrel{\text{def}}{=} \alpha.\alpha^*$.

 $_{\rm LTLMC 3.2 \text{-} 25B}$

Let E be an LT-property over AP, i.e., $E \subseteq (2^{AP})^{\omega}$

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

Examples for $AP = \{a, b\}$

• invariant with invariant condition $a \lor \neg b$

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

Examples for
$$AP = \{a, b\}$$

invariant with invariant condition a V ¬b

$$(\emptyset + \{\mathbf{a}\} + \{\mathbf{a}, \mathbf{b}\})^{\omega}$$

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

Examples for $AP = \{a, b\}$

invariant with invariant condition $\mathbf{a} \vee \neg \mathbf{b}$

$$(\emptyset + \{a\} + \{a,b\})^{\omega}$$

 $(\emptyset + \{a\} + \{a,b\})^{\omega}$ Each invariant is ω -regular

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

Examples for $AP = \{a, b\}$

invariant with invariant condition a ∨ ¬b

$$(\emptyset + \{a\} + \{a,b\})^{\omega}$$
 Each invariant is ω -regular

Let Φ be an invariant condition and let

$$\{A \subseteq AP : A \models \Phi\} = \{A_1, ..., A_k\}$$

Then: invariant "always Φ " $\widehat{=} (A_1 + ... + A_k)^{\omega}$

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

Examples for $AP = \{a, b\}$

• invariant with invariant condition $a \lor \neg b$

$$(\emptyset + \{a\} + \{a,b\})^{\omega}$$

Indeed: each invariant is ω -regular

"infinitely often a"

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

Examples for $AP = \{a, b\}$

invariant with invariant condition a ∨ ¬b

$$(\emptyset + \{a\} + \{a,b\})^{\omega}$$

Indeed: each invariant is ω -regular

"infinitely often a"

$$((\emptyset + \{b\})^*.(\{a\} + \{a,b\}))^{\omega}$$

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

Examples for $AP = \{a, b\}$:

- "always a" (or any other invariant)
- "infinitely often a"
- "eventually a"

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

Examples for $AP = \{a, b\}$:

- "always a" (or any other invariant)
- "infinitely often a"
- "eventually a"

$$(2^{AP})^*.(\{a\} + \{a,b\}).(2^{AP})^{\omega}$$

where
$$2^{AP} = \emptyset + \{a\} + \{b\} + \{a, b\}$$

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

Examples for $AP = \{a, b\}$:

- "always a" (or any other invariant)
- "infinitely often a"
- "eventually a"

$$(2^{AP})^*.(\{a\} + \{a,b\}).(2^{AP})^{\omega}$$

• "from some moment on a"

E is called an ω -regular property iff there exists an ω -regular expression γ over 2^{AP} s.t. $E = \mathcal{L}_{\omega}(\gamma)$

Examples for $AP = \{a, b\}$:

- "always a" (or any other invariant)
- "infinitely often a"
- "eventually a"

$$(2^{AP})^*.(\{a\} + \{a,b\}).(2^{AP})^{\omega}$$

"from some moment on a"

$$(2^{AP})^*.(\{a\}+\{a,b\})^{\omega}$$

symbolic notation for ω -regular properties

... using formulas instead of sums

Examples for
$$AP = \{a, b\}$$

• invariant with invariant condition $a \lor \neg b$

$$(\emptyset + \{a\} + \{a,b\})^{\omega}$$

Examples for
$$AP = \{a, b\}$$

invariant with invariant condition a ∨ ¬b

$$(a \vee \neg b)^{\omega} = (\emptyset + \{a\} + \{a,b\})^{\omega}$$

Examples for
$$AP = \{a, b\}$$

• invariant with invariant condition $a \lor \neg b$

$$(a \vee \neg b)^{\omega} = (\emptyset + \{a\} + \{a,b\})^{\omega}$$

• "infinitely often a"

$$((\neg a)^*.a)^{\omega} \ \widehat{=} \ ((\emptyset + \{b\})^*.(\{a\} + \{a,b\}))^{\omega}$$

• invariant with invariant condition $a \lor \neg b$

$$(a \vee \neg b)^{\omega} = (\emptyset + \{a\} + \{a,b\})^{\omega}$$

• "infinitely often a"

$$((\neg a)^*.a)^{\omega} = ((\emptyset + \{b\})^*.(\{a\} + \{a,b\}))^{\omega}$$

• "from some moment on a":

invariant with invariant condition a ∨ ¬b

$$(a \lor \neg b)^{\omega} = (\emptyset + \{a\} + \{a,b\})^{\omega}$$

• "infinitely often a"

$$((\neg a)^*.a)^{\omega} = ((\emptyset + \{b\})^*.(\{a\} + \{a,b\}))^{\omega}$$

• "from some moment on a":

• invariant with invariant condition $a \lor \neg b$

$$(a \lor \neg b)^{\omega} = (\emptyset + \{a\} + \{a,b\})^{\omega}$$

• "infinitely often a"

$$((\neg a)^*.a)^{\omega} = ((\emptyset + \{b\})^*.(\{a\} + \{a,b\}))^{\omega}$$

• "from some moment on a":

• "whenever a then b will hold somewhen later"

• invariant with invariant condition $a \lor \neg b$

$$(a \lor \neg b)^{\omega} = (\emptyset + \{a\} + \{a,b\})^{\omega}$$

"infinitely often a"

$$((\neg a)^*.a)^{\omega} = ((\emptyset + \{b\})^*.(\{a\} + \{a,b\}))^{\omega}$$

• "from some moment on a":

• "whenever **a** then **b** will hold somewhen later"

$$((\neg a)^*.a.true^*.b)^*.(\neg a)^\omega + ((\neg a)^*.a.true^*.b)^\omega$$

syntax as for **NFA**nondeterministic finite automata

syntax as for **NFA**nondeterministic finite automata

semantics: language of infinite words

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

• Q finite set of states

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

```
run for a word A_0 A_1 A_2 \ldots \in \Sigma^{\omega}:

state sequence \pi = q_0 q_1 q_2 \ldots where q_0 \in Q_0

and q_{i+1} \in \delta(q_i, A_i) for i \geq 0
```

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

```
run for a word A_0 A_1 A_2 \ldots \in \Sigma^{\omega}:

state sequence \pi = q_0 q_1 q_2 \ldots where q_0 \in Q_0

and q_{i+1} \in \delta(q_i, A_i) for i \geq 0
```

run π is accepting if $\stackrel{\infty}{\exists} i \in \mathbb{N}$. $q_i \in F$

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}_{\omega}(\mathcal{A}) \subseteq \Sigma^{\omega}$ is given by:

$$\mathcal{L}_{\omega}(\mathcal{A}) \stackrel{\mathsf{def}}{=}$$
 set of infinite words over Σ that have an accepting run in \mathcal{A}

onfinal state

final state

NBA with state space $\{q_0, q_1\}$ q_0 initial state q_1 accept state alphabet $\Sigma = \{A, B\}$

Examples for NBA over $\Sigma = \{A, B\}$

 $\mathtt{LTLMC3.2-22}$

accepted language: ?

Examples for NBA over $\Sigma = \{A, B\}$

LTLMC3.2-22

accepted language: set of all infinite words that contain infinitely many **A**'s

accepted language: set of all infinite words that contain infinitely many A's $(B^*.A)^{\omega}$

accepted language: set of all infinite words that contain infinitely many A's $(B^*.A)^{\omega}$

accepted language:

set of all infinite words that contain infinitely many **A**'s

$$(B^*.A)^{\omega}$$

AABAABAAB...

accepted words

accepted language:

set of all infinite words that contain infinitely many **A**'s

$$(B^*.A)^{\omega}$$

accepted language:

"every **B** is preceded by a positive even number of **A**'s"

AABAABAAB...

accepted words

accepted language: set of all infinite words that contain infinitely many **A**'s

$$(B^*.A)^{\omega}$$

accepted language:

"every **B** is preceded by a positive even number of **A**'s"

$$((A.A)^+.B)^{\omega} + ((A.A)^+.B)^*.A^{\omega}$$

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet \longleftarrow here: $\Sigma = 2^{AP}$
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet \longleftarrow here: $\Sigma = 2^{AP}$
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}_{\omega}(\mathcal{A})$ is an LT-property:

 $\mathcal{L}_{\omega}(\mathcal{A}) = \text{ set of infinite words over } 2^{AP} \text{ that have an accepting run in } \mathcal{A}$

$$q_0$$
 true q_1 q_2 true $\mathcal{L}_{\omega}(\mathcal{A}) = ?$

$$q_0$$
 true q_1 q_2 true $\mathcal{L}_{\omega}(\mathcal{A}) \ \widehat{=} \ \mathrm{true.} \ \neg \mathbf{a}. \ \mathrm{true}^{\omega}$

"always \mathbf{a} " $\widehat{=} \mathbf{a}^{\boldsymbol{\omega}}$

"always \mathbf{a} " $\widehat{=} \mathbf{a}^{\boldsymbol{\omega}}$

"always \mathbf{a} " $\widehat{=} \mathbf{a}^{\omega}$

LTLMC3.2-NBA-2-OMEGA-REG

"infinitely often a and ..."

"always \mathbf{a} " $\widehat{=} \mathbf{a}^{\omega}$

"infinitely often a and always $a \lor b$ "

$$\widehat{=} \left((a \lor b)^*.a \right)^{\omega}$$

"infinitely often a and always $a \lor b$ " $((a \lor b)^*.a)^{\omega}$

"infinitely often
$$a$$
"
$$((\neg a)^*.a)^{\omega}$$

"infinitely often a and always $a \lor b$ " $((a \lor b)^*.a)^{\omega}$

"infinitely often a" $((\neg a)^*.a)^{\omega}$

From NBA to ω -regular expressions

From NBA to ω -regular expressions

For each NBA \mathcal{A} there is an ω -regular expression γ with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$

Proof. Let \mathcal{A} be an NBA $(Q, \Sigma, \delta, Q_0, F)$

Proof. Let \mathcal{A} be an NBA $(Q, \Sigma, \delta, Q_0, F)$ and $q, p \in Q$.

Let $\mathcal{A}_{q,p}$ be the NFA $(Q, \Sigma, \delta, q, \{p\})$.

Proof. Let \mathcal{A} be an NBA $(Q, \Sigma, \delta, Q_0, F)$ and $q, p \in Q$.

Let $\mathcal{A}_{q,p}$ be the NFA $(Q, \Sigma, \delta, q, \{p\})$. Then:

$$\mathcal{L}_{\omega}(\mathcal{A}) = \bigcup_{q \in Q_0} \bigcup_{p \in F} \mathcal{L}(\mathcal{A}_{q,p}) \left(\mathcal{L}(\mathcal{A}_{p,p}) \setminus \{\varepsilon\} \right)^{\omega}$$

Proof. Let \mathcal{A} be an NBA $(Q, \Sigma, \delta, Q_0, F)$ and $q, p \in Q$. Let $\mathcal{A}_{q,p}$ be the NFA $(Q, \Sigma, \delta, q, \{p\})$. Then:

$$\mathcal{L}_{\omega}(\mathcal{A}) = \bigcup_{q \in Q_0} \bigcup_{p \in F} \mathcal{L}(\mathcal{A}_{q,p}) \left(\mathcal{L}(\mathcal{A}_{p,p}) \setminus \{\varepsilon\} \right)^{\omega}$$

is ω -regular as $\mathcal{L}(\mathcal{A}_{q,p})$ and $\mathcal{L}(\mathcal{A}_{p,p})\setminus\{arepsilon\}$ are regular

$$\mathcal{L}_{\omega}(\mathcal{A}) = L_{12}(L'_{22})^{\omega} \cup L_{22}(L'_{22})^{\omega}$$
 $L_{12} = \mathcal{L}(\mathcal{A}_{12})$
 $L_{22} = \mathcal{L}(\mathcal{A}_{22})$
 $L'_{22} = L_{22} \setminus \{\varepsilon\}$

NBA
$$\mathcal{A}$$
 $\mathcal{L}_{\omega}(\mathcal{A}) = L_{12}(L'_{22})^{\omega} \cup L_{22}(L'_{22})^{\omega}$ $L_{12} = \mathcal{L}(\mathcal{A}_{12})$ $L_{22} = \mathcal{L}(\mathcal{A}_{22})$ $L'_{22} = L_{22} \setminus \{\varepsilon\}$

NBA
$$\mathcal{A}$$
 $\mathcal{L}_{\omega}(\mathcal{A}) = L_{12}(L'_{22})^{\omega} \cup L_{22}(L'_{22})^{\omega}$ $L_{12} = \mathcal{L}(\mathcal{A}_{12})$ $L_{22} = \mathcal{L}(\mathcal{A}_{22})$ $L'_{22} = L_{22} \setminus \{\varepsilon\}$

language of A: $A.(B.A + A.A.A)^{\omega}$ $+ (B.A + A.A.A)^{\omega}$

language of A:

$$A.(B.A + A.A.A)^{\omega} + (B.A + A.A.A)^{\omega}$$

$$\equiv (A + \varepsilon).(B.A + A.A.A)^{\omega}$$

$$\gamma = \alpha_1.\beta_1^{\omega} + ... + \alpha_n.\beta_n^{\omega}$$

there exists an **NBA** \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$.

$$\gamma = \alpha_1.\beta_1^{\omega} + ... + \alpha_n.\beta_n^{\omega}$$

there exists an **NBA** \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$.

Proof.

$$\gamma = \alpha_1.\beta_1^{\omega} + ... + \alpha_n.\beta_n^{\omega}$$

 $\gamma = \alpha_1.\beta_1^\omega + ... + \alpha_n.\beta_n^\omega$ there exists an **NBA** $\mathcal A$ with $\mathcal L_\omega(\mathcal A) = \mathcal L_\omega(\gamma)$.

Proof. consider **NFA** \mathcal{A}_i for α_i and \mathcal{B}_i for β_i

$$\gamma = \alpha_1.\beta_1^{\omega} + ... + \alpha_n.\beta_n^{\omega}$$

 $\gamma = \alpha_1.eta_1^\omega + ... + \alpha_n.eta_n^\omega$ there exists an **NBA** $\mathcal A$ with $\mathcal L_\omega(\mathcal A) = \mathcal L_\omega(\gamma)$.

Proof. consider **NFA** \mathcal{A}_i for α_i and \mathcal{B}_i for β_i

construct **NBA** \mathcal{B}_{i}^{ω} for \mathcal{B}_{i}^{ω}

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + \dots + \alpha_n \cdot \beta_n^{\omega}$$

 $\gamma=lpha_1.eta_1^\omega+...+lpha_n.eta_n^\omega$ there exists an **NBA** ${\cal A}$ with ${\cal L}_\omega({\cal A})={\cal L}_\omega(\gamma)$.

Proof. consider **NFA** \mathcal{A}_i for α_i and \mathcal{B}_i for β_i

- construct **NBA** \mathcal{B}_{i}^{ω} for \mathcal{B}_{i}^{ω}
- construct **NBA** $C_i = A_i B_i^{\omega}$ for $\alpha_i . \beta_i^{\omega}$

$$\gamma = \alpha_1 . \beta_1^{\omega} + ... + \alpha_n . \beta_n^{\omega}$$

 $\gamma = \alpha_1.\beta_1^{\omega} + ... + \alpha_n.\beta_n^{\omega}$ there exists an **NBA** $\mathcal A$ with $\mathcal L_{\omega}(\mathcal A) = \mathcal L_{\omega}(\gamma)$.

Proof. consider **NFA** \mathcal{A}_i for α_i and \mathcal{B}_i for β_i

- construct **NBA** \mathcal{B}_{i}^{ω} for \mathcal{B}_{i}^{ω}
- construct NBA $C_i = A_i B_i^{\omega}$ for $\alpha_i . \beta_i^{\omega}$
- construct **NBA** for $\bigcup \mathcal{L}_{\omega}(\mathcal{C}_i)$

$$\gamma = \alpha_1.\beta_1^{\omega} + ... + \alpha_n.\beta_n^{\omega}$$

 $\gamma = \alpha_1 . \beta_1^{\omega} + ... + \alpha_n . \beta_n^{\omega}$ there exists an NBA $\mathcal A$ with $\mathcal L_{\omega}(\mathcal A) = \mathcal L_{\omega}(\gamma)$.

Proof. consider NFA A_i for α_i and B_i for β_i

- construct NBA \mathcal{B}_{i}^{ω} for \mathcal{B}_{i}^{ω}
- construct NBA $C_i = A_i B_i^{\omega}$ for $\alpha_i . \beta_i^{\omega}$
- construct **NBA** for $\bigcup \mathcal{L}_{\omega}(\mathcal{C}_i)$

For each ω -regular expression

$$\gamma = \alpha_1.\beta_1^{\omega} + ... + \alpha_n.\beta_n^{\omega}$$

there exists an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$.

Proof. consider NFA A_i for α_i and B_i for β_i

- construct NBA \mathcal{B}_{i}^{ω} for β_{i}^{ω}
- construct **NBA** $C_i = A_i B_i^{\omega}$ for $\alpha_i . \beta_i^{\omega}$
- construct NBA for $\bigcup_{1 \leq i \leq n} \mathcal{L}_{\omega}(\mathcal{C}_i)$

accept states as in A_2

accept states as in A_2

For each ω -regular expression

$$\gamma = \alpha_1.\beta_1^{\omega} + ... + \alpha_n.\beta_n^{\omega}$$

there exists an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$.

Proof. consider NFA A_i for α_i and B_i for β_i

- construct **NBA** \mathcal{B}_{i}^{ω} for β_{i}^{ω}
- construct NBA $C_i = A_i B_i^{\omega}$ for $\alpha_i . \beta_i^{\omega}$
- construct NBA for $\bigcup_{1 \leq i \leq n} \mathcal{L}_{\omega}(\mathcal{C}_i)$

NFA \mathcal{A} for language $L \subseteq \Sigma^+$

NBA \mathcal{A}^{ω} for language $L^{\omega} \subseteq \Sigma^{\omega}$

NFA \mathcal{A} for language $L \subseteq \Sigma^+$

NFA \mathcal{A} for language $L \subseteq \Sigma^+$

 $\stackrel{\longleftarrow}{\sim}$ NBA $\stackrel{\mathcal{A}^{\omega}}{\sim}$ for language $\stackrel{\longleftarrow}{L^{\omega}}\subseteq \Sigma^{\omega}$

wrong!

NBA \mathcal{A}^{ω} for language $\mathcal{L}^{\omega} \subseteq \Sigma^{\omega}$

wrong!

wrong!

... correct, if $\delta(q, x) = \emptyset \quad \forall q \in F \ \forall x \in \Sigma$

NFA \mathcal{A} for language $L \subseteq \Sigma^+$

NFA \mathcal{B} for L s.t. all final states are terminal

 $\begin{array}{c} \mathsf{NFA} \ \mathcal{A} \ \text{for language} \\ L \subseteq \Sigma^+ \end{array} \implies \begin{array}{c} \mathsf{NFA} \ \mathcal{B} \ \text{for } L \ \text{s.t. all} \\ \text{final states are terminal} \end{array}$

NFA \mathcal{B} for L s.t. all final states are terminal $\downarrow \!\!\!\downarrow$

NFA \mathcal{B} for L s.t. all final states are terminal

NFA \mathcal{B} for L s.t. all final states are terminal

NFA \mathcal{B} for L s.t. all final states are terminal

$$\mathcal{L}(\mathcal{A})^{\omega} = \mathcal{L}_{\omega}(\mathcal{B}^{\omega})$$

- For each NBA \mathcal{A} there exists an ω -regular expression γ with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$
- (2) For each ω -regular expression γ there exists an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$

- For each NBA \mathcal{A} there exists an ω -regular expression γ with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$
- (2) For each ω -regular expression γ there exists an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$

Corollary:

If **E** be an LT property then:

E is ω -regular iff $\mathbf{E} = \mathcal{L}_{\omega}(\mathcal{A})$ for some **NBA** \mathcal{A}

- For each NBA \mathcal{A} there exists an ω -regular expression γ with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$
- (2) For each ω -regular expression γ there exists an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\gamma)$

Corollary:

If E be an LT property, i.e., $E \subseteq (2^{AP})^{\omega}$, then:

E is ω -regular iff $\mathbf{E} = \mathcal{L}_{\omega}(\mathcal{A})$ for some **NBA** \mathcal{A} over the alphabet 2^{AP}

remind: Kleene's theorem for regular languages:

The class of regular languages is closed under

- union, intersection, complementation
- concatenation and Kleene star

remind: Kleene's theorem for regular languages:

The class of regular languages is closed under

- union, intersection, complementation
- concatenation and Kleene star

The class of ω -regular languages is closed under union, intersection and complementation.

The class of ω -regular languages is closed under union, intersection and complementation.

union.

• intersection:

complementation:

The class of ω -regular languages is closed under union, intersection and complementation.

- union: obvious from definition of ω -regular expressions
- intersection:

complementation:

The class of ω -regular languages is closed under union, intersection and complementation.

- union: obvious from definition of ω -regular expressions
- intersection:
 will be discussed later
 relies on a certain product construction for NBA
- complementation:

The class of ω -regular languages is closed under union, intersection and complementation.

- union: obvious from definition of ω -regular expressions
- intersection:
 will be discussed later
 relies on a certain product construction for NBA
- complementation: much more difficult than for NFA, via other types of ω-automata

Nonemptiness for NBA

LTLMC3.2-NBA-EMPTINESS

Nonemptiness for NBA

given: NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

question: does $\mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset$ hold?

LTLMC3.2-NBA-EMPTINESS

Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ be an NBA. Then:

$$\mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset$$
 iff $\exists q_0 \in Q_0 \ \exists p \in F \ \exists x \in \Sigma^* \ \exists y \in \Sigma^+.$

$$p \in \delta(q_0, x) \cap \delta(p, y)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset$$
 iff $\exists q_0 \in Q_0 \ \exists p \in F \ \exists x \in \Sigma^* \ \exists y \in \Sigma^+$.
 $p \in \delta(q_0, x) \cap \delta(p, y)$

1

there exists a reachable accept state $p \in F$ that belongs to a cycle

$$\mathcal{L}_{\omega}(\mathcal{A}) \neq \varnothing$$
 iff $\exists q_0 \in Q_0 \ \exists p \in F \ \exists x \in \Sigma^* \ \exists y \in \Sigma^+$.
 $p \in \delta(q_0, x) \cap \delta(p, y)$
iff there exist finite words $x, y \in \Sigma^*$
s.t. $y \neq \varepsilon$ and $xy^\omega \in \mathcal{L}_{\omega}(\mathcal{A})$

$$\mathcal{L}_{\omega}(\mathcal{A}) \neq \varnothing \quad \text{iff} \quad \exists q_0 \in Q_0 \ \exists p \in F \ \exists x \in \Sigma^* \ \exists y \in \Sigma^+.$$

$$p \in \delta(q_0, x) \cap \delta(p, y)$$

$$\text{iff} \quad \text{there exist finite words } x, y \in \Sigma^*$$

$$\text{s.t. } y \neq \varepsilon \text{ and } xy^{\omega} \in \mathcal{L}_{\omega}(\mathcal{A})$$

"ultimatively periodic words"

$$\mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset$$
 iff $\exists q_0 \in Q_0 \ \exists p \in F \ \exists x \in \Sigma^* \ \exists y \in \Sigma^+$.
 $p \in \delta(q_0, x) \cap \delta(p, y)$
iff there exist finite words $x, y \in \Sigma^*$
s.t. $y \neq \varepsilon$ and $xy^{\omega} \in \mathcal{L}_{\omega}(\mathcal{A})$

The emptiness problem for NBA is solvable by means of graph algorithms in time $\mathcal{O}(poly(A))$

- A has a unique initial state,
- $|\delta(q, A)| \le 1$ for all $q \in Q$ and $A \in \Sigma$

- A has a unique initial state,
 i.e., Q₀ is a singleton
- $|\delta(q, A)| \leq 1$ for all $q \in Q$ and $A \in \Sigma$

- A has a unique initial state,
 i.e., Q₀ is a singleton
- $|\delta(q, A)| \le 1$ for all $q \in Q$ and $A \in \Sigma$

notation:
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
 if $Q_0 = \{q_0\}$

- A has a unique initial state, i.e., Q₀ is a singleton
- $|\delta(q, A)| \le 1$ for all $q \in Q$ and $A \in \Sigma$

notation:
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
 if $Q_0 = \{q_0\}$

alphabet
$$\Sigma = \{A, B\}$$

- A has a unique initial state, i.e., Q₀ is a singleton
- $|\delta(q, A)| \le 1$ for all $q \in Q$ and $A \in \Sigma$

notation:
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
 if $Q_0 = \{q_0\}$

DBA for "infinitely often B"

alphabet
$$\Sigma = \{A, B\}$$

Determinization by powerset construction

well-known:

the powerset construction for the determinization (and complementation) of finite automata (NFA)

Determinization by powerset construction

well-known:

the powerset construction for the determinization (and complementation) of finite automata (NFA)

question:

does the powerset construction also work for Büchi automata (NBA)?

e.g.,
$$\delta(q_0, \mathbf{a}) = \{q_0, q_F\}$$
 and $\delta(q_0, \neg \mathbf{a}) = \{q_0\}$

e.g.,
$$\delta(q_0, \mathbf{a}) = \{q_0, q_F\}$$
 and $\delta(q_0, \neg \mathbf{a}) = \{q_0\}$

powerset construction

DBA for "infinitely often a"

DBA for "infinitely often a"

Complementation of DBA

LTLMC3.2-83

Complementation of DBA

well-known:

DFA can be complemented by complementation of the acceptance set

question:

does this also work for DBA?

DBA for "infinitely often ¬a"

Complementation of DBA

complement automaton

DBA for "infinitely often ¬a"

Complementation of DBA

complement automaton

DBA for "infinitely often ¬a"

DBA for "infinitely often a"

Complementation ← fails for DBA

DBA for "infinitely often ¬a"

complement automaton

DBA for "infinitely often **a**"

Complementation

DBA for "infinitely often ¬a"

complement automaton

DBA for "infinitely often **a**"

There is **no DBA** for the LT-property "eventually forever a"

Hence: there is no DBA for the LT-property "eventually forever a"

Hence: there is no DBA for the LT-property

"eventually forever a"

Proof: apply the above theorem for $A = \{a\}$, $B = \emptyset$

Hence: there is no DBA for the LT-property

"eventually forever a"

Proof: apply the above theorem for $A = \{a\}$, $B = \emptyset$

The class of **DBA**-recognizable languages is a proper subclass of the class of ω -regular languages

Hence: there is no DBA for the LT-property

"eventually forever a"

Proof: apply the above theorem for $A = \{a\}$, $B = \emptyset$

The class of **DBA**-recognizable languages is a proper subclass of the class of ω -regular languages and is not closed under complementation.

The class of **DBA**-recognizable languages is a proper subclass of the class of ω -regular languages and is not closed under complementation.

 $(A^*.B)^{\omega}$ "infinitely many B's" DBA-recognizable $(A+B)^*.A^{\omega}$ "only finitely many B's" not DBA-recognizable

Generalized NBA (GNBA)

LTLMC3.2-40

Generalized NBA (GNBA)

A generalized nondeterministic Büchi automaton is a tuple

$$\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$$

where Q, Σ, δ, Q_0 are as in NBA, but \mathcal{F} is a set of accept sets, i.e., $\mathcal{F} \subseteq 2^Q$.

A generalized nondeterministic Büchi automaton is a tuple

$$\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$$

where Q, Σ, δ, Q_0 are as in NBA, but \mathcal{F} is a set of accept sets, i.e., $\mathcal{F} \subseteq 2^Q$.

A run $q_0 q_1 q_2 \ldots$ for some infinite word $\sigma \in \Sigma^{\omega}$ is called accepting if each accept set is visited infinitely often

A generalized nondeterministic Büchi automaton is a tuple

$$\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$$

where Q, Σ, δ, Q_0 are as in NBA, but \mathcal{F} is a set of accept sets, i.e., $\mathcal{F} \subseteq 2^Q$.

A run $q_0 q_1 q_2 \dots$ for some infinite word $\sigma \in \Sigma^{\omega}$ is called accepting if each accept set is visited infinitely often, i.e.,

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} i \in \mathbb{N} \text{ s.t. } q_i \in F$$

GNBA
$$\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$$
 as NBA, but $\mathcal{F} \subseteq 2^Q$

A run $q_0 \ q_1 \ q_2 \ \dots$ for some infinite word $\sigma \in \Sigma^\omega$ is accepting if

$$\forall F \in \mathcal{F} \stackrel{\infty}{\exists} i \in \mathbb{N} \text{ s.t. } q_i \in F$$

accepted language:

$$\mathcal{L}_{\omega}(\mathcal{G}) \stackrel{\mathsf{def}}{=} \left\{ \sigma \in \Sigma^{\omega} : \sigma \text{ has an accepting run in } \mathcal{G} \right\}$$

GNBA G over $\Sigma = 2^{AP}$ where $AP = \{\text{crit}_1, \text{crit}_2\}$

$$\mathcal{F} = \left\{ \left\{ \mathbf{q}_1 \right\}, \left\{ \mathbf{q}_2 \right\} \right\}$$

GNBA
$$G$$
 over $\Sigma = 2^{AP}$ where $AP = \{\text{crit}_1, \text{crit}_2\}$

specifies the LT-property

"infinitely often crit1 and infinitely often crit2"

GNBA
$$G$$
 over $\Sigma = 2^{AP}$ where $AP = \{\text{crit}_1, \text{crit}_2\}$

crit₁

$$q_0$$
crit₂
 $\mathcal{F} = \left\{ \{q_1\}, \{q_2\} \right\}$
note: $q_0 \xrightarrow{A} q_1$ implies $A \models \text{crit}_1$
 $q_0 \xrightarrow{A} q_2$ implies $A \models \text{crit}_2$

GNBA
$$\mathcal{G}$$
 over $\Sigma = 2^{AP}$ where $AP = \{\text{crit}_1, \text{crit}_2\}$

rite
$$\begin{array}{cccc} \operatorname{crit}_1 & \operatorname{crit}_2 & \mathcal{F} = \left\{ \{q_1\}, \{q_2\} \right\} \\
 & \operatorname{note:} & q_0 \xrightarrow{A} q_1 & \operatorname{implies} & A \models \operatorname{crit}_1 \\
 & q_0 \xrightarrow{A} q_2 & \operatorname{implies} & A \models \operatorname{crit}_2 \\
 & \operatorname{hence:} & \operatorname{if} & A_0 & A_1 & A_2 & \ldots & \in \mathcal{L}_{\omega}(\mathcal{G}) & \operatorname{then} \\
 & \exists & i \geq 0. & \operatorname{crit}_1 \in A_i & \wedge & \exists & i \geq 0. & \operatorname{crit}_2 \in A_i \\
\end{array}$$

GNBA
$$G$$
 over $\Sigma = 2^{AP}$ where $AP = \{\text{crit}_1, \text{crit}_2\}$

all words $A_0 A_1 A_2 ... \in \Sigma^{\omega}$ s.t. $\exists i \geq 0$. $\text{crit}_1 \in A_i$ and $\exists i \geq 0$. $\text{crit}_2 \in A_i$ have an accepting run of the form:

$$q_0 \dots q_0 q_1 q_0 \dots q_0 q_2 q_0 \dots q_0 q_1 q_0 \dots q_0 q_2 \dots$$

$$\mathcal{F} = \left\{ \left\{ \mathbf{q}_1 \right\}, \left\{ \mathbf{q}_2 \right\} \right\}$$

GNBA
$$\mathcal{G}$$

$$q_0 \qquad A \qquad \qquad A$$

$$q_1 \qquad B \qquad q_2$$

$$\mathcal{F} = \left\{ \left\{ q_1 \right\}, \left\{ q_2 \right\} \right\}$$
 $\mathcal{L}_{\omega}(\mathcal{G}) =$?

GNBA
$$\mathcal{G}$$

$$q_0 \xrightarrow{A} \xrightarrow{q_1} \xrightarrow{B} q_2$$

$$\mathcal{F} = \{\{q_1\}, \{q_2\}\}$$

$$\mathcal{L}_{\omega}(\mathcal{G}) = \emptyset$$

GNBA \mathcal{G}' with $\mathcal{F}' = \{\{q_1, q_3\}, \{q_2, q_4\}\}$

GNBA
$$\mathcal{G}$$

$$q_0 \xrightarrow{A} \xrightarrow{q_1} \xrightarrow{B} q_2$$

$$\mathcal{F} = \{\{q_1\}, \{q_2\}\}$$

$$\mathcal{L}_{\omega}(\mathcal{G}) = \varnothing$$

GNBA \mathcal{G}' with $\mathcal{F}' = \left\{ \left\{ q_1, q_3 \right\}, \left\{ q_2, q_4 \right\} \right\}$

accepted language: ?

GNBA
$$\mathcal{G}$$

$$q_0 \xrightarrow{A} \xrightarrow{q_1} \xrightarrow{B} q_2$$

$$\mathcal{F} = \{\{q_1\}, \{q_2\}\}$$

$$\mathcal{L}_{\omega}(\mathcal{G}) = \varnothing$$

GNBA \mathcal{G}' with $\mathcal{F}' = \{\{q_1, q_3\}, \{q_2, q_4\}\}$

accepted language: $A.B^{\omega} + A.B^{+}.A.(A.B)^{\omega}$

acceptance set $F = \emptyset$

GNBA G over $\Sigma = \{A, B\}$:

set of acceptance sets $\mathcal{F} = \mathcal{O}$

acceptance set $F = \emptyset$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$$

GNBA G over $\Sigma = \{A, B\}$:

$$\mathcal{F} = \emptyset$$

acceptance set $F = \emptyset$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$$

GNBA \mathcal{G} over $\Sigma = \{A, B\}$:

$$\mathcal{F} = \emptyset$$

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{G}$$

acceptance set $F = \emptyset$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$$

GNBA G over $\Sigma = \{A, B\}$:

$$\mathcal{F} = \emptyset$$

$$\mathcal{L}_{\omega}(\mathcal{G}) = \left\{ A^{\omega}
ight\}$$

acceptance set $F = \emptyset$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$$

GNBA \mathcal{G} over $\Sigma = \{A, B\}$:

$$\mathcal{F} = \emptyset$$

$$\mathcal{L}_{\omega}(\mathcal{G}) = \left\{ A^{\omega}
ight\}$$

$$\mathcal{L}_{\omega}(\mathcal{G}) = \begin{cases} \text{ set of all infinite words} \\ \text{that have an infinite run} \end{cases}$$

For every GNBA \mathcal{G} there exists a GNBA \mathcal{G}' such that

- $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{G}')$
- the set of acceptance sets of G' is nonempty

For every GNBA \mathcal{G} there exists a GNBA \mathcal{G}' such that

- $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{G}')$
- the set of acceptance sets of G' is nonempty

correct

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$$

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$$

Proof. Let
$$\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$$
 with $\mathcal{F} = \{F_1, \dots, F_k\}$

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$$

Proof. Let
$$\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$$
 with $\mathcal{F} = \{F_1, \dots, F_k\}$ and $k \geq 1$

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$$

Proof. Let
$$\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$$
 with $\mathcal{F} = \{F_1, \dots, F_k\}$ and $k \geq 1$

note: if k = 1 then G is an NBA

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$$

Proof. Let
$$\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$$
 with $\mathcal{F} = \{F_1, \dots, F_k\}$ and $k \geq 2$

note: if k = 1 then G is an NBA

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$$

Proof. Let $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ with $\mathcal{F} = \{F_1, ..., F_k\}$ and $k \geq 2$. NBA \mathcal{A} results from k copies of \mathcal{G} :

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$$

Proof. Let $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ with $\mathcal{F} = \{F_1, ..., F_k\}$ and $k \geq 2$. NBA \mathcal{A} results from k copies of \mathcal{G} :

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$$

Proof. Let $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ with $\mathcal{F} = \{F_1, ..., F_k\}$ and $k \geq 2$. NBA \mathcal{A} results from k copies of \mathcal{G} :

size of the NBA: $size(A) = \mathcal{O}(size(G) \cdot |F|)$

alphabet
$$\Sigma = 2^{AP}$$
 where $AP = \{ crit_1, crit_2 \}$

infinitely often crit1 and infinitely often crit2

Closure properties of ω -regular properties

The class of ω -regular languages is closed under union, intersection and complementation.

Closure properties of ω -regular properties

The class of ω -regular languages is closed under union, intersection and complementation.

- union: obvious from definition of ω -regular expressions
- intersection:via some product construction
- complementation:
 via other types of ω-automata
 (not discussed here)

Closure properties of ω -regular properties

The class of ω -regular languages is closed under union, intersection and complementation.

- ullet union: obvious from definition of ω -regular expressions
- intersection: ← using GNBA
 via some product construction
- complementation:
 via other types of ω-automata
 (not discussed here)

$$\begin{array}{l} \mathcal{A}_1 = (Q_1, \Sigma, \delta_1, Q_{0,1}, F_1) \\ \mathcal{A}_2 = (Q_2, \Sigma, \delta_2, Q_{0,2}, F_2) \end{array} \right\} \text{ two NBA}$$
 goal: define an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$

$$\begin{array}{l} \mathcal{A}_1 = (Q_1, \Sigma, \delta_1, Q_{0,1}, F_1) \\ \mathcal{A}_2 = (Q_2, \Sigma, \delta_2, Q_{0,2}, F_2) \end{array} \right\} \text{ two NBA}$$
 goal: define an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$

recall:

intersection for finite automata **NFA** A_1 and A_2 is realized by a product construction that

- runs A_1 and A_2 in parallel (synchronously)
- checks whether both end in a final state

$$\begin{array}{l} \mathcal{A}_1 = \left(Q_1, \Sigma, \delta_1, Q_{0,1}, F_1\right) \\ \mathcal{A}_2 = \left(Q_2, \Sigma, \delta_2, Q_{0,2}, F_2\right) \end{array} \right\} \text{ two NBA}$$
 goal: define an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$

idea: define $A_1 \otimes A_2$ as for **NFA**, i.e.,

- A_1 and A_2 run in parallel (synchronously)
- and check whether both are accepting

$$\begin{array}{l} \mathcal{A}_1 = \left(Q_1, \Sigma, \delta_1, Q_{0,1}, F_1\right) \\ \mathcal{A}_2 = \left(Q_2, \Sigma, \delta_2, Q_{0,2}, F_2\right) \end{array} \right\} \text{ two NBA}$$
 goal: define an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$

idea: define $A_1 \otimes A_2$ as for **NFA**, i.e.,

- A_1 and A_2 run in parallel (synchronously)
- and check whether both are accepting

i.e., both \emph{F}_1 and \emph{F}_2 are visited infinitely often

$$egin{aligned} \mathcal{A}_1 &= \left(Q_1, \Sigma, \delta_1, Q_{0,1}, F_1
ight) \ \mathcal{A}_2 &= \left(Q_2, \Sigma, \delta_2, Q_{0,2}, F_2
ight) \end{aligned} \end{aligned} ext{two NBA}$$

idea: define $A_1 \otimes A_2$ as for **NFA**, i.e.,

- A_1 and A_2 run in parallel (synchronously)
- and check whether both are accepting

i.e., both \emph{F}_{1} and \emph{F}_{2} are visited infinitely often

 \rightsquigarrow product of A_1 and A_2 yields a GNBA

$$\begin{array}{l} \mathcal{A}_1 = (Q_1, \Sigma, \delta_1, Q_{0,1}, F_1) \\ \mathcal{A}_2 = (Q_2, \Sigma, \delta_2, Q_{0,2}, F_2) \end{array} \right\} \text{ two NBA}$$
 goal: define an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$

GNBA
$$G = A_1 \otimes A_2$$

$$\begin{array}{l} \mathcal{A}_1 = (Q_1, \Sigma, \delta_1, Q_{0,1}, F_1) \\ \mathcal{A}_2 = (Q_2, \Sigma, \delta_2, Q_{0,2}, F_2) \end{array} \right\} \text{ two NBA}$$
 goal: define an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$

GNBA
$$G = A_1 \otimes A_2$$

• state space $Q = Q_1 \times Q_2$

$$\begin{array}{l} \mathcal{A}_1 = (Q_1, \Sigma, \delta_1, Q_{0,1}, F_1) \\ \mathcal{A}_2 = (Q_2, \Sigma, \delta_2, Q_{0,2}, F_2) \end{array} \right\} \text{ two NBA}$$
 goal: define an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$

GNBA
$$G = A_1 \otimes A_2$$

- state space $Q = Q_1 \times Q_2$
- alphabet Σ

$$A_1 = (Q_1, \Sigma, \delta_1, Q_{0,1}, F_1)$$

$$A_2 = (Q_2, \Sigma, \delta_2, Q_{0,2}, F_2)$$
two NBA

GNBA
$$G = A_1 \otimes A_2$$

- state space $Q = Q_1 \times Q_2$
- alphabet Σ
- set of initial states: $Q_0 = Q_{0,1} \times Q_{0,2}$

$$egin{aligned} \mathcal{A}_1 &= \left(Q_1, \Sigma, \delta_1, Q_{0,1}, F_1\right) \ \mathcal{A}_2 &= \left(Q_2, \Sigma, \delta_2, Q_{0,2}, F_2\right) \end{aligned} \end{aligned}$$
 two NBA goal: define an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$

GNBA
$$G = A_1 \otimes A_2$$

- state space $Q = Q_1 \times Q_2$
- alphabet Σ
- set of initial states: $Q_0 = Q_{0,1} \times Q_{0,2}$
- acceptance condition: $\mathcal{F} = \{F_1 \times Q_2, Q_1 \times F_2\}$

$$A_1 = (Q_1, \Sigma, \delta_1, Q_{0,1}, F_1)$$

 $A_2 = (Q_2, \Sigma, \delta_2, Q_{0,2}, F_2)$ two NBA

GNBA
$$G = A_1 \otimes A_2$$

- state space $Q = Q_1 \times Q_2$
- alphabet Σ
- set of initial states: $Q_0 = Q_{0,1} \times Q_{0,2}$
- acceptance condition: $\mathcal{F} = \{F_1 \times Q_2, Q_1 \times F_2\}$
- transition relation:

$$\delta(\langle q_1, q_2 \rangle, A) = \{\langle p_1, p_2 \rangle : p_1 \in \delta_1(q_1, A), p_2 \in \delta_2(q_2, A)\}$$

$$A_1 = (Q_1, \Sigma, \delta_1, Q_{0,1}, F_1)$$

 $A_2 = (Q_2, \Sigma, \delta_2, Q_{0,2}, F_2)$ two NBA

GNBA
$$G = A_1 \otimes A_2$$
 \longleftrightarrow equivalent NBA A

- state space $Q = Q_1 \times Q_2$
- alphabet Σ
- set of initial states: $Q_0 = Q_{0,1} \times Q_{0,2}$
- acceptance condition: $\mathcal{F} = \{F_1 \times Q_2, Q_1 \times F_2\}$
- transition relation:

$$\delta(\langle q_1, q_2 \rangle, A) = \{\langle p_1, p_2 \rangle : p_1 \in \delta_1(q_1, A), p_2 \in \delta_2(q_2, A)\}$$

 ${\tt LTLMC3.2-45C}$

The class of ω -regular languages agrees with

- the class of languages given by ω -regular expressions
- the class of **NBA**-recognizable languages
- the class of **GNBA**-recognizable languages

The class of ω -regular languages agrees with

- the class of languages given by ω -regular expressions
- the class of **NBA**-recognizable languages
- the class of GNBA-recognizable languages

but **DBA** are strictly less expressive

The class of ω -regular languages agrees with

- the class of languages given by ω -regular expressions
- the class of **NBA**-recognizable languages
- the class of **GNBA**-recognizable languages

but DBA are strictly less expressive

The class of ω -regular languages is closed under union, intersection and complementation.