Low Power Consumption LDO ME6209 Series

General Description

The ME6209 series are a group of positive voltage output, three -pin regulator, that provide a high the input/output current even when Voltage differential is small. Low power consumption and high through **CMOS** accuracy is achieved technology. They allow input voltages as high as 18V.

Features

Ultra low quiescent current: 3.0uA(typ)

High input voltage (up to 18V)

Low dropout voltage:80mV@lout=40mA

 $(V_{OUT}=3.3V)$

Output voltage accuracy : ±2%

Maximum output current : 250mA

(within max.power dissipation, V = 3.3V)

Low temperature coefficient

Package: SOT23-3 TO-92 SOT89-3

Selection Guide

Typical Application

Cameras, video recorders

Voltage regulator for microprocessor

Voltage regulator for LAN cards

Wireless communication equipment

Audio/Video equipment

Typical Application Circuit

Pin Configuration

Pin Assignment

ME6209AXX

Pin Number		Din Name	Functions	
SOT89-3/TO-92	SOT23-3	Pin Name	Functions	
1	1	Vss	Ground	
2	3	Vin	Input	
3	2	Vоит	Output	

Absolute Maximum Ratings

Parameter		Symbol	Ratings	Units
Input Voltage		Vin	18	V
Output Voltage		V _{OUT}	Vss-0.3 ~ V _{IN} +0.3	V
Output Current		Іоит	500	mA
Operating Temperature Range		Topr	-40 ~ + 85	
Storage Temperature Range		Тѕтс	- 40 ~ + 125	
	SOT89-3		500	
Power Dissipation	TO-92	Po	500	mW
	SOT23-3		300	

V04 Page 2 of 8

Block Diagram

Electrical Characteristics

ME6209A33

 $(V_{IN}=V_{OUT}+1.0V$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =40mA, VIN=VOUT+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	VIN				18	V
Maximum Output Voltage	Іоит _max	Vin=Vout+1V	250			mA
Load Regulation	? V оит	VIN=VOUT+1V, 1mA lout 60mA		15	40	mV
Dropout Voltage (Note 3)	V _{DIF}	IOUT =40mA		80		mV
Supply Current	Iss	VIN=VOUT+1V		3	4	μА
Line Regulations	? V о и т ? V і м ж V о и т	louт =40mA Vouт+1V № 18V		0.1	0.2	%/V
VOUT/ Ta	Temperature Coefficient	VIN=VOUT+1V, I OUT =40mA -40 <ta<85< td=""><td></td><td>±0.7</td><td></td><td>mV/</td></ta<85<>		±0.7		mV/

V04 Page 3 of 8

ME6209A40

 $(V_{IN}=V_{OUT}+1.0V$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =40mA, VIN=VOUT+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	VIN				18	V
Maximum Output Voltage	Іоυт _max	VIN=VOUT+1V	250			mA
Load Regulation	? V оит	VIN=VOUT+1V, 1mA but 60mA		15	40	mV
Dropout Voltage (Note 3)	V _{DIF}	IOUT =40mA		70		mV
Supply Current	Iss	VIN=VOUT+1V	X	3	4	μА
Line Regulations	?Vout	Ю∪Т =40mA Vо∪Т+1V № 18V		0.1	0.2	%/V
VOUT/ Ta	Temperature Coefficient	V IN=V OUT +1V, I OUT =40mA -40 <ta<85< td=""><td></td><td>±0.7</td><td></td><td>mV/</td></ta<85<>		±0.7		mV/

Note:

- 1. V _{OUT} (T) : Specified Output Voltage
- 2.V_{OUT} (E) : Effective Output Voltage (i e. The output voltage when oʻu¬V(T)+ 1.0 V" is provided at the Vin pin while maintaining a certain I o∪⊤ value.)
- $3.V_{DIF}$: V_{IN1} – V_{OUT} (E) '

 V_{IN1} : The input voltage when $V_{\text{OUT}}(E)$ ' appears as input voltage is gradually decreased.

 V_{OUT} (E) ' =A voltage equal to 98% of the output voltage whenever an amply stabilized I out and $\{V_{OUT}(T) + 1.0V\}$ is input.

Precautions

During the test, if AC/DC power supply and the ceramic chip capacitors collocation are used, there may be serious voltage spike phenomenon instantaneously. When the power supply access to 16V, the voltage is rushed to about 30V instantaneously. Because of exceeding the limit voltage of chip, the chip is damaged. If you string a small resistance of 1 ohm in the input end during the test, the peak phenomenon can be avoided.

In the test, there is serious burr phenomenon only when the AC/DC power is used with ceramic chip capacitors. But electrolytic capacitors and tantalum capacitance won't appear above phenomenon. Please be sure to pay attention to this point when you use AC/DC power.

In normal use, when any type of capacitor is used with battery or the supply of fire power, the above phenomenon doesn toccur.

Packaging Information:

SOT23-3

DIM	Millimeters		Inches		
	Min	Max	Min	Max	
А	2.7	3.1	0.1063	0.122	
В	1.7	2.1	0.0669	0.0827	
b	0.35	0.5	0.0138	0.0197	
С	1.0	1.2	0.0394	0.0472	
С	0.1	0.25	0.0039	0.0098	
d	0.2	1	0.0079	-	
E	2.6	3.0	0.1023	0.1181	
е	1.5	1.8	0.059	0.0708	

V04 Page 5 of 8

SOT89-3

DIM	Millimeters		Inches		
DIM	Min	Max	Min	Max	
А	1.4	1.6	0.0551	0.0630	
A1	1.4	1.6	0.0551	0.0630	
а	0.36	0.48	0.0142	0.0189	
b	0.41	0.53	0.0161	0.0209	
С	0.36	0.48	0.0142	0.0189	
d	1.4	1.75	0.0551	0.0689	
В	0.38	0.43	0.015	0.0169	
С	1.4	1.6	0.0551	0.0630	
D	4.4	4.6	0.1732	0.181	
E	-	4.25	-	0.1673	
е	2.4	2.6	0.0945	0.1023	
L1	0.4	-	0.0157	-	
L2	0.8	-	0.0315	-	

V04 Page 6 of 8

TO-92

	Min	Max	Min	Max
А	3.4	3.8	0.13386	0.1496
В	0.3	0.5	0.0118	0.0197
С	4.4	4.8	0.1732	0.189
D	4.4	4.8	0.1732	0.189
E	0.9	1.5	0.0354	0.059
е	1.17	1.37	0.046	0.0539
e1	2.39	2.69	0.094	0.1059
L	12	16	0.4724	0.6299