Devoir maison n°10: Droites Tropicales

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Partie A - Les droites tropicales

- (\mathcal{A}') par deux points du plan passe une droite tropicale
- (\mathcal{B}') par deux points quelconques indépendants du plan passe une et une seule droite tropicale
- (\mathcal{B}') deux droites tropicales dont les points centraux sont indépendants se coupent toujours en un unique point.

1) a)

b) On cherche à prouver (A'). Soient A et B deux points quelconques du plan. Par une translation B on se ramène au cas où :

$$\mathcal{A}(0,0)$$
 et $\mathcal{B}(x,y)$ avec $x \in \mathbb{R}$ et $y \in \mathbb{R}$

Etudions d'abord des cas particuliers :

Si x = 0 et y = 0 alors $\mathcal{A} = \mathcal{B}$, la droite tropicale de centre \mathcal{A} convient.

Si y = 0 alors la droite tropicale de centre $\mathcal{C}(\max(0, x), 0)$ convient.

Si x = 0 alors la droite tropicale de centre $\mathcal{C}(0, \max(0, y))$ convient.

Si x = y alors la droite tropicale de centre $\mathcal{C}(\min(0, x), \min(0, y))$ convient.

Attaquons nous désormais aux cas généraux :

Si x < 0 **et** y > 0

Il existe $\mathcal{C}(0,y)$. Soient les demi-droites :

 $\mathcal{H}: [\mathcal{C}, \mathcal{B})$ par construction, \mathcal{H} est parallèle à l'axe des abcisses.

 $\mathcal{V}: [\mathcal{C}, \mathcal{A})$ par construction, \mathcal{V} est parallèle à l'axe des ordonnées.

Comme $x<0,\,\mathcal{H}$ est de direction $-\vec{i}$ et comme $y>0,\,\mathcal{V}$ est de direction $-\vec{j}$. Donc \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} .

En inversant les rôles de \mathcal{A} et \mathcal{B} , on obtient la deuxième partie rayée.

Si x > 0 et y > 0 et y > x

Soit \mathcal{D}' la droite parallèle à y=x et passant par \mathcal{B} . On nomme \mathcal{C} l'intersection entre \mathcal{D}' et l'axe des ordonnées. Comme $y>x,y_{\mathcal{C}}>0$. Soient les demi-droites :

 $\mathcal{D}: [\mathcal{C}, \mathcal{B})$ par construction, \mathcal{D} est de direction $\vec{i} + \vec{j}$

 $\mathcal{V}: [\mathcal{C}, \mathcal{A})$ par construction, \mathcal{V} est de direction — \vec{j}

Donc $\mathcal A$ et $\mathcal B$ appartiennent à la droite tropicale de centre $\mathcal C.$

En inversant les rôles de \mathcal{A} et \mathcal{B} , on obtient que pour 0 > x et 0 > y et x > y, \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} , soit la deuxième zone rayée.

Si x > 0 **et** y > 0 **et** y < x

Doit \mathcal{D}' la droite parallèle à y=x et passant par \mathcal{B} . On nomme \mathcal{C} l'intersection entre \mathcal{D}' et l'axe des abcisses. Comme $y < x, x_{\mathcal{C}} > 0$. Soient les demi-droites :

 $\mathcal{D}:[\mathcal{C},\mathcal{B})$ par construction, \mathcal{D} est de direction $\vec{i}+\vec{j}$

 $\mathcal{H}: [\mathcal{C}, \mathcal{A})$ par construction, \mathcal{H} est de direction $-\vec{i}$

Donc \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} .

En inversant les rôles de \mathcal{A} et \mathcal{B} , on obtient que pour 0 > x et 0 > y et x < y, \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} , soit la deuxième zone rayée.

Conclusion

En combinant les différentes disjonctions de cas démontrées plus haut on obtient :

Le cas des lignes noires est couvert par les cas particuliers. Nous avons donc prouvé que pour tout point quelconque \mathcal{B} , il existe une droite tropicale passant par \mathcal{B} et par l'origine \mathcal{A} . Nous pouvons revenir au cas général avec deux points quelconques par la translation inverse de T.

Nous avons donc démontré (A'): par deux points du plan passe une droite tropicale.

Partie B - Addition et Multiplication tropicales

On définit sur \mathbb{R} l'addition tropicale et la multiplication tropicale tel que pour tous $a, b \in \mathbb{R}$,

$$a \oplus b = \max(a, b)$$
 et $a \otimes b = a + b$

- **1)** On a donc :

- $3 \oplus 7 = 7$ $-5 \oplus 2 = 2$ $3 \otimes 7 = 10$ $-5 \otimes 2 = -3$
- 2) \oplus est associatif et commutatif car max est associatif et commutatif.

Soient $a, b, c \in \mathbb{R}$. Supposons sans perte de généralité que $b \leq c$ car \oplus est commutatif.

On a
$$a\otimes (b\oplus c)=a\otimes c=a\otimes b\oplus a\otimes c$$
 puisque $a\otimes b\leq a\otimes c.$

3)

Voici à quoi ressemble une fonction tropicale de degré $1: a \otimes x \oplus b \otimes y \oplus c$:

$$1 \otimes x \oplus 1 \otimes y \oplus 1$$

¹Pour des raisons esthétiques, nous utilisons dans les graphiques l'opposé des valeurs de x et y.

On remarque que modifier les valeurs a,b et c « décale » l'un des « bords ».

4) Voici à quoi ressemble la fonction tropicale du second degré 2 :

$$1 \oplus (-1) \otimes x \oplus 0 \otimes y \oplus (-5) \otimes x^2$$

D'un côté :

De l'autre en prenant l'opposé pour l'axe x :

 $^{^{\}scriptscriptstyle 2}$ On prend l'opposé pour l'axe y