A Parallel Multithreaded Sparse Triangular Linear System Solver

. İlke Çuğu, Murat Manguoğlu

Department of Computer Engineering Middle East Technical University

21.12.2019 - HPCA 2019

Outline

- Motivation
- 2 Taxonomy of the Parallel Sparse Triangular System Solvers
- 3 The Algorithm
- Performance Constraints
 - Preprocessing
 - Solution
- **5** Numerical Experiments
 - Overall Performance Comparison
 - Case Study
- 6 Conclusion and Future Work

Motivation

Sparse linear systems are found in many applications of science and engineering:

• Electromagnetics, circuit simulations, computational fluid dynamics, etc.

Sparse triangular systems arise in...

- Sparse matrix factorizations such as LU, QR, Cholesky, etc.
- Iterative solvers such as Gauss-Seidel, Successive Over Relaxations (SOR), Symmetric SOR, etc.

Parallel Sparse Triangular System Solvers

- Level-scheduling
- Self-scheduling
- Graph coloring
- Block partitioning and decoupling
 - The proposed algorithm

The Algorithm - Origins

The Spike algorithm...

- was originally designed for general and triangular banded systems
- was generalized for general sparse systems³
- is expanded and specialized for sparse triangular case by the proposed algorithm

¹Ahmed H Sameh and David J Kuck. "On stable parallel linear system solvers". In: Journal of the ACM (JACM) 25.1 (1978), pp. 81–91.

²A. Sameh and R. Brent. "Solving Triangular Systems on a Parallel Computer". In: SIAM Journal on Numerical Analysis 14.6 (1977), pp. 1101–1113.

³Ercan Selcuk Bolukbasi and Murat Manguoglu. "A multithreaded recursive and nonrecursive parallel sparse direct solver". In: Advances in Computational Fluid-Structure Interaction and Flow Simulation. Springer, 2016, pp. 283–292.

The Algorithm - The Original System

• The proposed algorithm is applicable to lower triangular case as well

The Algorithm - Splitting U Matrix

we multiply both sides of the original system Ux = b with D^{-1}

$$\underbrace{D^{-1}U}_{\text{Spike matrix}} x = \underbrace{D^{-1}b}_{g}$$

The Algorithm - Structure of the Spike Matrix

The Algorithm - The Reduced System

Construction of the reduced system

- \widehat{S} is a $d \times d$ unit diagonal triangular matrix
- Solution of the reduced system requires $\mathcal{O}(nnz(\widehat{S})-d)$ operations

The Algorithm - Dependency Elements Metaphor

The illustration of light beams as dependency mappings

The Algorithm - Preprocessing

Preprocessing phase covers operations independent from the right hand side vector *b*:

- Partitioning D matrix
- Memory allocation for dense R and S parts
- Compressing R into a dense form
- Computing the partial S matrix
- Load-balance optimization for the parallel blocks

The Algorithm - Solution

Algorithm 1 PSTRSV

Input: Partitioned and factored coefficient matrix U = DS, reduced coefficient matrix \hat{S} , together with associated dependency information and b, the right-hand side vector

```
Output: x, solution vector of Ux = b for each thread i = 1, 2, ..., t do

if hasReflection_i or isOptimized_i then

Solve the triangular system D_i^{(m;b)}g_i^{(m;b)} = b_i^{(m;b)} for g_i^{(m;b)} end if
```

Wait until all threads reach this point

for a single thread i do

Solve the reduced system $\widehat{S}\widehat{x} = \widehat{g}$ for \widehat{x}

Update the solution vector $x \leftarrow \widehat{x}$

end for

Wait until all threads reach this point

if
$$hasDependence_i$$
 then $b_i^{(t:m)} \coloneqq b_i^{(t:m)} - (\hat{R}_i x + P_i x_i^{(b)})$ end if

if $hasReflection_i$ or $isOptimized_i$ then

Solve the triangular system $D_i^{(t;m)}x_i^{(t;m)}=b_i^{(t;m)}$ for $x_i^{(t;m)}$ else

Solve the triangular system $D_i x_i = b_i$ for x_i

end if end for

return x

Performance Constraints - Preprocessing

We only need to compute S matrix parts highlighted in red

Performance Constraints - $\bar{R}_i^{(b)}$ to $\bar{R}_{dense_i}^{(b)}$

We transform the sparse $\bar{R}_i^{(b)}$ matrix to dense $\bar{R}_{dense_i}^{(b)}$ matrix

Performance Constraints - Computing $\bar{S}^{(b)}_{dense_i}$

Then, $\bar{R}_{dense_i}^{(b)}$ is used as the right hand side to compute $\bar{S}_{dense_i}^{(b)}$

Performance Constraints - Key Parameters

Two of the key performance parameters

- reflection r_i : Row index of the top-most *light beam* for each R_i
- k_i : Row index of the bottom-most dependency element for each R_i
- $nnz(\widehat{S}) d$: # of off-diagonal nonzeros in \widehat{S}

Performance Constraints - Solution

Ideal scenarios:

- for $d_i = 0, \forall i \in \{1, 2, ..., t\}$ there is no reduced system
- for $r_i > k_i, \forall i \in \{1, 2, ..., t\}, \widehat{S}$ is the identity matrix

Numerical Experiments - Environment

Hardware:

- 2 sockets
- in each an Intel(R) Xeon(R) CPU E5-2650 v3 processor
- 10 cores per processor (20 cores in total)
- 16 GB of memory

Software:

- Matrices are in Compressed Sparse Row (CSR) format
- Intel Math Kernel Library (MKL) 2018 is used
- PSTRSV is implemented in C with OpenMP
- KMP_AFFINITY = granularity = fine,compact,1,0

Numerical Experiments

In the experiments...

- 20 real world matrices are taken from SuiteSparse Matrix Collection
- METIS, Approximate Minimum Degree (AMD), ColPerm, Nested Dissection Permutation (NDP) and Reverse Cutthill-Mckee (RCM) orderings are used
- comparisons are done against a state-of-the-art multithreaded sparse triangular solver implementation in Intel Math Kernel Library (MKL) 2018
- each run is repeated 1,000 times and the average wallclock times are reported

Numerical Experiments - Solution

Overall performance comparison

Numerical Experiments - Solution

The highest speed-ups achieved by PSTRSV and MKL

- ullet PSTRSV cannot amortize the preprocessing overhead in 9/120 cases
- ullet MKL cannot amortize the preprocessing overhead in 21/120 cases

Numerical Experiments - Preprocessing

t	PSTRSV				MKL			
	min	max	avg	std	min	max	avg	std
2	1.19	37.83	13.52	9.65	4.11	251.50	78.77	60.23
4	2.28	2111.62	319.87	402.90	2.82	131.36	46.50	37.07
8	2.83	1167.28	227.06	256.19	2.17	114.80	32.89	27.84
10	2.99	824.10	197.22	210.96	2.58	118.37	31.32	27.63
16	3.03	762.25	192.87	201.35	0.19	115.57	27.41	22.40
20	3.07	770.03	188.94	199.06	0.44	264.46	35.85	35.65

Statistics of the preprocessing times of PSTRSV and MKL in milliseconds

ullet t=2 is a special condition where $r_0=0$ and $k_1=0$ (no $ar{R}_i^{(b)}$ or $ar{S}_i^{(b)}$)

finan512

Portfolio optimization, 512 scenarios, Ed Rothberg, SGI, John Mulvey, Princeton.⁴

⁴The matrix and problem descriptions are obtained from: https://www.cise.ufl.edu/research/sparse/matrices/Mulvey/finan512.html

finan512 - Preprocessing time

finan512 - Solution time speedup

shallow water1

Weather shallow water equations from the Max-Plank Institute of Meteorology.⁵

⁵The matrix and problem descriptions are obtained from: https://www.cise.ufl.edu/research/sparse/matrices/MaxPlanck/shallow_water1.html

shallow_water1 - Preprocessing time

shallow_water1 - Solution time speedup

venkat50

Unstructured 2D Euler solver, V. Venkatakrishnan NASA, Timestep=50.6

⁶The matrix and problem descriptions are obtained from: https://www.cise.ufl.edu/research/sparse/matrices/Simon/venkat50.html

venkat50 - Preprocessing time

venkat50 - Solution time speedup

Numerical Experiments - Matrix Reordering

The number of cases where the employed reordering algorithms get memory error

Summary

spike_pstrsv...

- is implemented in C with OpenMP
- benefits from METIS, AMD and NDP orderings
- is tested with matrices taken from SuiteSparse Matrix Collection
- \bullet outperforms MKL in $\sim 80\%$ of cases by a factor of 2.47 on average
- achieves best speed-ups with..
 - 9/20 cases: NDP
 - 6/20 cases: METIS
 - 3/20 cases: AMD
 - 2/20 cases: Original
- is released under MIT license at GitHub⁷

https://github.com/cuguilke/spike_pstrsv