

WHY IS POPULARITY IMPORTANT IN RECOMMENDATION ENGINES?

WHAT IS POPULARITY OF RECOMMENDATION ENGINES

As our mind, popularity in recommendation system means that the rank of each features of products in the dataset when we analysis a new customer behavior based on our dataset. According to the rank, we could recommend corresponding product to our customer, so popularity is important in recommendation engines.

RECOMMENDATIONS BY POPULARITY

Pros:

- Show trend by time, location, culture...etc (Explicit data).
- Easy to apply when you have no detail data (Implicit data).
- High probability to recommend good item since it is liked by most of people.

Cons

Recommendations might be same or similar for all users.

VISITOR COLD START

- When a new user added in, and we have no historical data of new user. It's called Visitor Cold Start.
- Recommend the most popular items first (could be recently overall or regionally). After users show their preference, following recommendation will be easier.
- A good first step!

HOT PLAYLIST

精選排行榜

- X Sometimes user/service provider want to know the trend
- X For people who have no particular preference
- X Trend observing

EVALUATION METRICS FOR RECOMMENDER SYSTEMS

Precision

Recall

$$Precision = \frac{tp}{tp + fp}$$

tp represents the number of items recommended to a user that he/she likes

tp+fp represents the total items that a user like

$$Recall = \frac{tp}{tp + fn}$$

tp+fn represents the total items recommended to a user

Mean Averaged Precision

- @ K
- Averaged Precision& K from 1 to K

$$MAP_i = \frac{1}{|R_i|} \sum_{k=1}^{|R_i|} P(R_i[k])$$

Mean Averaged

Recall @ K

Averaged Recall

@ K from 1 to K

MEAN RECIPROCAL RANK (MRR)

$$\text{MRR} = \frac{1}{\mathbf{n}} \cdot \sum_{i=1}^{\mathbf{n}} \frac{1}{\mathbf{r}\left(\mathbf{Q}_i\right)}$$

Larger the mean reciprocal rank, better the recommendations

Normalized Discounted Cumulative Gain(NDCG @ k)

DCG:
$$\sum_{j=0}^{n-1} \frac{rel_{D_i}(R_i(j))}{\ln(j+1)}$$

$$rel_D(r) = \begin{cases} 1 & \text{if } r \in D, \\ 0 & \text{otherwise.} \end{cases}$$

n: min(max(|R|, |D|), k)

IRI: length of recommended items

IDI: length of ground truth

Ideal DCG:
$$\sum_{j=0}^{\min(|D|,k)-1} \frac{1}{\ln(j+1)}$$

NDCG: DCG/Ideal DCG, for each user

PREDICTION ACCURACY METRICS

RMSE

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$