MATH 20700 Honors Analysis in \mathbb{R}^n I

Hung C. Le Tran December 15, 2023 Course: MATH 20700: Honors Analysis in \mathbb{R}^n

Section: 31

Professor: Amie WilkinsonAt: The University of Chicago

Quarter: Autumn 2023

Course materials: Real Mathematical Analysis by Pugh

Disclaimer: This document will inevitably contain some mistakes, both simple typos and serious logical and mathematical errors. Take what you read with a grain of salt as it is made by an undergraduate student going through the learning process himself. If you do find any error, I would really appreciate it if you can let me know by email at conghungletran@gmail.com.

Contents

Lectur	re 1: Construction of Reals	1
1.1	Overview of the construction of reals in 3 easy steps	1
1.2	Dedekind cuts	1
1.3	Cauchy sequences	2
		9
2.1	Metric spaces	3
2.2	Isometry and equivalence	
2.3	Convergence and limit points	9

Lecture 1

Construction of Reals

27 Sep 2023

1.1 Overview of the construction of reals in 3 easy steps

- **1.** Use set theory (axiomatic) to construct \mathbb{N} and \mathbb{Z} , with notions of $<,+,\cdot,|\cdot|$.
- 2. Construct \mathbb{Q} :

$$\mathbb{Q} = \{(p,q) : p \in \mathbb{Z}, q \in \mathbb{Z}_{\geq 0}\} / \sim$$

where $(p,q) \sim (r,s) \Leftrightarrow ps - qr = 0$.

Subsequently define $<,+,\cdot,|\cdot|$ on \mathbb{Q} . Let us note that \mathbb{Z} naturally embeds in \mathbb{Q} , with the correspondence $n \mapsto [(n,1)]$.

- **3.** Construct \mathbb{R} . There are 2 ways to perform this step:
 - Dedekind cuts. This is the natural, elegant way of doing it. It is a method adapted to extend the ordering notion < to a bigger field (\mathbb{R}) .
 - Cauchy sequences. This method is adapted to extend $|\cdot|$ to a bigger field. Overall, this is a more general method for other "completions".

Both methods "complete" \mathbb{Q} , but in a priori different ways: Cuts make < complete, and thus giving rise to the LUB property; while Cauchy sequences make $|\cdot|$ complete, and thus Cauchy sequences converge (in the field). They both produce the same isomorphic \mathbb{R} , and \mathbb{Q} is dense in \mathbb{R} in both constructions.

1.2 Dedekind cuts

The big idea of Dedekind cuts is to fill in the holes between the rationals.

Definition 1.1 (Dedekind cut)

A **Dedekind cut** is a pair $A \mid B$ with $A, B \subseteq \mathbb{Q}$ such that

- 1. $A \sqcup B = \mathbb{Q}$
- **2.** $\forall x \in A, y \in B, x < y$
- **3.** A has no greatest element in \mathbb{Q}

Example

1. $A = \{x : x < \frac{1}{2}\} \mid A^C$

Then this cut is a rational cut, since B has a least element in \mathbb{Q} , namely $\frac{1}{2}$. Generalizing this, for all $z \in \mathbb{Q}$, there exists a cut:

$$z^* = \{x : x < z\} \mid rest$$

that corresponds to that rational.

2. $A = \{x : x^2 < 2\} \mid A^C$

This is an irrational cut, since B has no least element in \mathbb{Q} .

Definition 1.2 (Reals from Dedekind cuts)

Let $\mathbb{R} = \mathbb{R}_{Ded}$ be the set of all Dedekind cuts.

Properties

- 1. $\mathbb{Q} \subset \mathbb{R}$ with the naturally embedding $z \mapsto z^*$ above.
- **2.** $<,+,\cdot$ extend naturally.

Note, that by "extending" we mean that the operation on \mathbb{R} agrees with the notion on \mathbb{Q} .

- **3.** We can also define 0, -x, so the constructed \mathbb{R} is indeed an ordered field.
- **4.** Define $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
- **5.** Lastly, it is nontrivial that \mathbb{R} has the LUB property, and that Cauchy sequences converge.
- **6.** And that \mathbb{Q} and $\mathbb{R}\backslash\mathbb{Q}$ are dense in \mathbb{R} .

Definition 1.3 (Cauchy sequences in \mathbb{R})

 $(a_n)_{n\geq 1}\subseteq \mathbb{R}$ is Cauchy if $\forall \ \varepsilon>0\in \mathbb{R}, \ \exists \ N\in \mathbb{N} \ \mathrm{such \ that} \ n,m\geq N\Rightarrow |a_n-a_m|<\varepsilon.$

1.3 Cauchy sequences

The big idea of Cauchy sequences is to "complete the voyages" in \mathbb{Q} , in which the < is not used in the construction, and only $|\cdot|$.

Definition 1.4 (Cauchy sequences in \mathbb{Q})

 $(a_n)_{n\geq 1}\subseteq \mathbb{Q}$ is Cauchy if $\forall \ \varepsilon>0\in \mathbb{Q}, \ \exists \ N\in \mathbb{N} \ \mathrm{such \ that} \ n,m\geq N\Rightarrow |a_n-a_m|<\varepsilon.$

Definition 1.5 (Reals from Cauchy sequences)

$$\mathbb{R} = \mathbb{R}_{Cau} = \{ \text{ Cauchy sequences } (a_n) \} / \sim$$

where $(a_n) \sim (b_n) \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } n \geq N \Rightarrow |a_n - b_n| < \varepsilon$.

In short, $\mathbb{R} = \{ [(a_n)] : a_n \text{ Cauchy } \}$

Properties

We then check the operations:

- 1. $+, \cdot : [(a_n)] + [(b_n)] = [(a_n + b_n)]$
- **2.** $|\cdot|:|[(a_n)]|=[(|a_n|)]$
- **3.** < takes work: $[(a_n)] < [(b_n)]$ if $a_n < b_n$ for infinitely many n.

Lecture 2

Metric Spaces

29 Sep 2023

2.1 Metric spaces

The goal of metric spaces is to generalize the notion of distance, which can just be a function that takes in 2 arguments and returns the distance between them, such that this distance satisfies certain reasonable properties.

Definition 2.1 (Metric spaces)

A **metric space** is a pair (M, d) where M is a set and $d: M \times M \to \mathbb{R}_{\geq 0}$ such that for all $x, x', y, z \in M$:

- 1. (Positive definite) $d(x, x') \ge 0$, equality holds iff x = x'.
- **2.** (Symmetry) d(x, x') = d(x', x).
- **3.** (Triangle inequality) $d(x,y) + d(y,z) \ge d(x,z)$.

Example

- **1.** $M = \mathbb{R}, d(x, y) = |x y|.$
- **2.** $M = \mathbb{R}^n$, d(x,y) = ||x-y|| where $||v|| = (v \cdot v)^{1/2}$. This d is the usual Euclidean distance.
- **3.** (Induced metric) $X \subseteq (M, d)$, and define $d_X(x, x') = d_M(x, x')$. The metric on X is induced by the metric on M.
- **4.** Using $M = \mathbb{R}^n$ (with appropriate choice of n in the examples below, the set M can really be anything): insert figure
- **5.** (Discrete metric)

$$d(x, x') = \begin{cases} 1 & \text{if } x \neq x' \\ 0 & \text{otherwise} \end{cases}$$

2.2 Isometry and equivalence

When are (X, d_X) and (Y, d_Y) the same?

Definition 2.2 (Isometry)

 $f: X \to Y$ is an **isometry** if f is bijective and

$$d_X(x, x') = d_Y(fx, fx')$$

We say that (X, d_X) and (Y, d_Y) are **isometric** if there exists such an isometry.

This is an equivalence relation!

Remark

Fix a metric space (X, d_X) , the isometries $f: X \to X$ are (sometimes) interesting! They form a group! For example, on the circle $S^1 \subset \mathbb{R}^2$, its isometries are rotations and line reflections.

Remark

Consider $\mathbb{Z} \subset \mathbb{R}$. Are $(\mathbb{Z}, d_{discrete})$ and $(\mathbb{Z}, d_{\mathbb{R}})$ isometric? Clearly no. Because if there exists $f: (\mathbb{Z}, d_{discrete}) \to (\mathbb{Z}, d_{\mathbb{R}})$ then $d_{discrete}(f^{-1}(0), f^{-1}(2)) = d_{\mathbb{R}}(0, 2) = 2, \Rightarrow \Leftarrow$

2.3 Convergence and limit points

An important point (pun intended) of consideration, perhaps the most as I recognized it so far, for metric spaces is *convergence*. This consideration takes place in many shapes and forms. Does a sequence

converge in the metric space at all? If it does, and the points of the sequence are from a certain subset of the metric space, is this point of convergence in the subset? If a sequence doesn't converge, does then exist a convergent subsequence? And many, many more.

Definition 2.3 (Convergence)

A sequence $(x_n)_{n\geq 1}$ in (X,d) converges if $\exists x\in X$ such that

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } n \geq N \Rightarrow d(x_n, x) < \varepsilon$$

We write $x_n \xrightarrow{n \to \infty} x$.

Definition 2.4 (Limit point)

Given $Y \subseteq X$. Say $x \in X$ is a **limit point** of Y if there exists a sequence $(y_n) \subseteq Y$ such that $y_n \xrightarrow{n \to \infty} x$.

A word of caution: The limit point might not be in Y itself!

Example

The set of limit points of S^1 in \mathbb{R}^2 S^1 itself. The set of limit points of (0,1) is [0,1].

Definition 2.5 (Closed set)

 $K \subseteq X$ is **closed** if it contains (and therefore equals to) all of its limit points.

Definition 2.6 (Open set)

 $U \subseteq X$ is **open** if $\forall x \in U$, $\exists r > 0$ such that $\forall x' \in X, d(x, x') < r \Rightarrow x' \in U$.

In words, it is open if we can draw a positive-radius open ball around every point of the set, so that this ball is wholly contained in the set U.

Notation

In (X, d), $x \in X$, r > 0, denote:

$$B_X(x,r) = \{x' : d(x,x') < r\}$$

Then as mentioned, U open if $\forall x \in U, \exists r > 0$ such that $B_X(x,r) \subseteq U$.

Here comes the first non-trivial statement:

Proposition 2.7

fdfsd

Proof

 \Box

Proof (Name)

 \Box