NFC 近場通訊技術之應用-以點名系統為例 The Implementation of NFC-Based Roll-Calling Application System

郭家旭¹ 李文廷¹ 王三元² 汪瑞勛¹ ¹國立高雄師範大學 軟體工程與管理學系 ²義守大學 資訊工程學系

Chia-Hsu Kuo¹, Wen-Tin Lee¹, San-Yuan Wang², and Jui-Hsun Wang¹

¹Department of Software Engineering, National Kaohsiung Normal University, Kaohsiung, Taiwan

² Department of Information Engineering, I-Shou University, Kaohsiung, Taiwan

Email: kuoch@nknu.edu.tw and david1234012@gmail.com

摘要

目前智慧型手機多數支援 NFC 技術,使用 NFC 技術具有成本低、無需耗費配對時間與體積小的特性。目前實際應用包含交通及金融領域,例如,電子車票、門禁卡和電子錢包[1],未來的發展相當具有潛力。本論文以 NFC 為研究主題。利用具有 NFC 的裝置讀取 NFC Tag 後,後端軟體系統分析及處理讀取到的 NFC Tag 之相關資訊,並執行對應的工作程序。目前大多數以 NFC 行動裝置之應用程式系統僅處理資料的讀寫、聯絡人的資訊交換、網址的連結與開關機等基本工作。

本論文以 NFC 為基礎的點名系統為例,著重於後端資料處理,進行規劃細部功能與系統分析,並結合 NFC Tag 以及 NFC 行動裝置,以軟體工程開發流程為基礎,實作 NFC 點名服務系統。未來,可以延伸提供相關 NFC 的服務組成(composition of services)應用。

關鍵字:NFC 技術,服務組成(composition of services),應用系統。

一、前言

近場通訊(Near Field Communication ,簡稱NFC)是近年來許多國際大廠發展近端交易通訊平台採用的重要技術,這項技術起初只是將無線射頻辨識(Radio Frequency Identification,簡稱RFID)和網路技術簡單地結合,後來演變成一種近距離的無線通訊技術,並在近15年迅速發展。NFC技術是以RFID為基礎建立的新興技術,2003年被納入ISO/IEC標準,2004年NXP、Nokia、Philips、Sony等國際知名通訊大廠建立了一個非營利性的NFC論壇[2],此論壇推廣NFC技術應用及制定NFC標準。至2013年為止,NFC論壇擁有全球超過190成員,此後NFC技術也開始蓬勃發展,也成為NFC相關技術的最大組織。

2006 年第一個 NFC 裝置出現,行動通訊廠商開始投入於 NFC 在行動支付與智慧型海報的應用。2007 年 Nokia 推出了第一支支援 NFC 技術的手機(Nokia 6131)[3],為 NFC 技術與手持行動通訊

裝置結合的開端,以至於今日 NFC 技術能廣泛普及於智慧型手機。2009 年,NFC 論壇也發表了點對點模式的標準,讓兩個有 NFC 功能的行動通訊裝置能夠交換聯絡人與網址連結等資訊。直到2010 年 Samsung 推出了第一支有 NFC 功能的智慧型手機(Samsung Nexus S),為現今 NFC 應用建立了基礎。2014 年 Apple 公司推出的 iPhone6、iPhone6 Plus 及 Apple Watch 也開始支援 NFC 功能。

NFC 技術乃是利用 13.56 MHz 頻帶的高頻無線通訊技術,讓電子裝置能以非接觸方式在 10 公分左右的短距離內,獲得另一台設備或是電子標籤(NFC Tag)中的資料,並將辨識後的資訊送回後端的資訊系統,以便於分析、追蹤與監控。其主要系統架構為電子裝置、NFC Tag 及系統軟體。電子裝置為電腦、嵌入式裝置、微控制器等底端的實體層,負責 CPU 與射頻控制電路之間的溝通;NFC Tag 負責資料封包化與傳輸;系統軟體則為分析及處理 NFC 資料交換格式(NFC Data Exchange Format,簡稱 NDEF)訊息的應用程式[4]。

NFC Tag 為一個含有極小儲存空間的電子設備,可利用具有讀卡機功能的電子裝置讀取或更改內容, NFC Tag 接收到啟動端傳來的無線感應訊號,透過啟動端建立的連線回傳給啟動端,啟動端再進行資料處理。NFC Tag 在出廠時分配一組UID,NFC Tag的 UID通常為一組4 bytes或7 bytes的不可更改的辨識碼,以16 進位表示,用來辨識不同NFC Tag。依據NFC論壇的規範,可將NFC標籤分為五類,為 Type1、Type2、Type3、Type4、Type5,採用標準分別為 ISO/IEC 14443A、ISO/IEC 14443A、IISO/IEC 14443、ISO/IEC 15693,每類標籤的使用權限以及容量不同[5]。

NFC 根據應用可分為三種不同的工作模式: 讀寫模式、點對點模式、卡片模擬模式[6][15]。

■ 讀寫模式:NFC 終端具有非接觸式讀卡機的功能,可讀寫非接觸式 IC 中的資訊,例如,讀取 NFC Tag 中的資訊。

- 點對點模式:NFC 裝置可互相交換資料,例如, 聯絡人的資訊傳輸與交換[11]。
- 卡片模擬模式:將 NFC 裝置模擬成非接觸式 IC 卡並與讀卡機互動,以取代實體卡片,常以 IC 卡的 UID 作為辨識基準,例如,信用卡、捷運卡[12]。

本論文針對 NFC 之讀寫模式深入研究,並配合 NFC Tag 及 NFC 裝置,以 NFC 不重複的 UID 作為系統設計的核心,實作 NFC 點名服務系統。目前常見的點名方式為點名者一一唱名,再記錄出缺席者、統計及分析出缺席資料,對點名者而言將耗時冗長,隨著人數增加,花費時間變得更長,也容易出錯,並缺乏效率及影響準確率。

因此本系統目的為簡化點名過程,以減少人力及時間的耗費,以 NFC Tag 作為身分識別,並以 NFC 裝置配合應用程式讀取,藉由 NFC 技術讀取資料迅速的優勢,蒐集及記錄出缺席者,在系統中自動將資料分析及記錄,並結合事件驅動(event driven)的方式,將 NFC 技術應用於教學領域。

本論文以 NFC 為基礎的點名系統為例,著重於後端資料處理,進行規劃細部功能與系統分析,並結合 NFC Tag 以及 NFC 行動裝置,以軟體工程開發流程為基礎,實作 NFC 點名服務系統。未來,可以延伸提供相關 NFC 的服務組成(composition of services)應用。

二、NFC 規範標準和系統架構

本節將詳細說明 NFC 的國際規範標準與 NFC 系統架構。

■ NFC 規範標準

規範 NFC 技術標準的組織有 ISO、ECMA International 以及 ETSI。ISO 為國際標準,是訂定各種國際認證標準的公信組織 [7]。 ECMA International 前身為歐洲計算機製造商協會(European Computer Manufacturers Association),是一個國際性會員制度的訊息和電信標準組織,[8]。 ETSI 標準制定的領域主要是電信業,並與其他組織合作的信息及廣播技術領域[9]。

NFC 技術相關的標準規範主要有 ISO 14443、 ISO14443A、ISO14443B、ISO 18092 (ECMA 340) 與 ISO 21481 (ECMA 352), 說明如下:

- ISO 14443:為非接觸式 IC 卡的標準,定義了兩種卡的類型: Type A 及 Type B, 兩者均在 13.56 MHz 無線頻率下工作。
- ISO 14443A:屬於非接觸式短距離(約 7~15cm) 辨識,多使用在大眾運輸票價卡與感應卡等。
- ISO 1444B:用途和 ISO1443A 類似,但更具完

- 善,例如:調變深度(modulation depth)可達 10%、 資料傳送速度更快可達 847kHz,此類型逐漸成 為讀卡機生產商採用標準,目前也為日本、美國 採用之標準。
- ISO 18092:說明耦合裝置在 13.56 MHz 頻率下運作,定義 NFC 兩種規格模式:主動模式及被動模式[10][16]。如圖 1所示,被動模式下 NFC 的啟動端產生無線感應訊號,將要傳輸的訊息發送到 NFC 的接收端,接收端本身不需要有電源供應,使用啟動端產生的無線感應訊號回覆訊息;如圖 2所示,主動模式下 NFC 的兩端設備都必須要支援全雙向的資料交換,皆需有電源供應。
- ISO 21481:提供通訊模式的選擇機制,此機制 的設計是為了不妨礙任何以 13.56MHz 頻率通訊 的裝置。對於不同標準所選擇的通訊模式其對應 的實作方式[14]。

圖1、NFC 主動模式示意圖

圖2、NFC被動模式示意圖

■ 系統架構

模式1:如圖3所示, NFC讀寫模式的基本系統架構主要是由電子標籤(NFC Tag)、NFC 行動裝置和系統應用程式軟體。

圖3、NFC 讀寫模式基本架構圖

模式 2:如圖 4所示,NFC 點對點模式中,兩個NFC 行動裝置以主動模式利用自行產生的無線感應訊號互相傳送訊息。

圖4、NFC 點對點模式基本架構圖

模式3:如圖5所示,卡片模擬模式中將NFC行動裝置模擬為IC卡以代替傳統IC卡,此模式系統架構主要由NFC行動裝置、NFC讀卡機組成。

圖5、NFC卡片模擬模式基本架構圖

本論文將以 NFC 的讀寫模式作為基礎,配合 Android 智慧型手機,撰寫應用程式作為研究與實驗,表 1為 Sony NT1 智慧標籤,表 2為 Samsung Galaxy S4(i9500)手機。

表1、Sony NT1 智慧型標籤

外觀尺寸	直徑:28mm/厚度:3.2mm
重量	2.2g
製造商	NXP(恩智浦半導體)
類型	MIFARE Ultralight (MF0CU1)
NFC 規範類型	Type 2
記憶體容量	64 bytes
資料傳輸速率	106 Kbit/s
最大傳輸範圍	10 cm
採用標準	ISO 14443A

表2、Samsung Galaxy S4(i9500)手機

外觀尺寸	136.6 x 69.8 x 7.9 mm
重量	130g
螢幕技術	5 吋 1920 x 1080
	S-AMOLED
作業系統	Android 4.2
處理器	雙四核 Exynos 5 Octa 5410
記憶體	2GB RAM
儲存空間	16GB
是否支援 NFC 技術	是

三、系統需求規劃、分析、設計與實作

電子標籤儲存容量極小,能存放的資料類型也有限,如何讓 NFC 行動裝置在讀取電子標籤後,能夠有效處理更多的工作,高效能的系統軟體是本系統架構中關鍵的一環。在實作 NFC 行動裝置應用程式之前,須仔細考慮其中每一個環節,並妥善規劃整體流程,有助於整個系統之完整性。系統開發流程分為三個階段,系統需求規劃、系統分析及系統設計與實作。

■ 系統需求規劃

系統規劃為開發專案的起始,並描述分析傳統點名方式的問題,以及如何使用 NFC 系統改善。本系統為 NFC 點名系統,目的為改善傳統點名不便之處,簡化點名的程序,讓點名者能更輕鬆完成,並將資料電子化,並進一步分析統計資料。將規劃細分為下述五點:

1. 問題分析

在課堂中,最常見的傳統點名方式為授課老師一一唱名,並將出席者或是缺席者記錄在紙本或是電子表格中。此方法有下列缺失,若成員數量極多時,執行並不易,完成點名也需花費非常長的時間,要統計、整合與分析每次出缺席資料時相當不便[13]。

因此,本系統利用 Android 裝置作為讀卡機, 讀取 NFC Tag 後將資料利用網路傳送到 MySQL 資料庫,也可查看資料庫紀錄的出席資訊。

本研究目標為利用 NFC 技術的特性在短時間

內完成登記出席者,並能夠將每次點名資料整理、統計,再回饋給使用者。在眾多無線傳輸方式中,使用 NFC 之前無須配對裝置,因此啟動速度快,在 NFC 點名系統中能夠快速完成登錄出席程序。雖然,NFC 被動模式之下有傳輸距離 10cm 之限制,對於一般無線傳輸而言通常為一大阻礙,啟動端和接收端之間要在極短距離內才能完成傳輸。在本系統中,此限制確能保證學生出現於課堂教室中(即實際出席者)才能完成登錄出席程序,若採用其他較長距離傳輸的無線通訊方式,則無法保障登錄成功。

表 3為 NFC 與其他無線通訊技術比較,NFC 擁有低成本、不需配對時間、啟動速度快的優勢。在本系統中利用 NFC Tag 的 UID (Unique Identification Number)當作辨識學生身分的方式,UID 為每張 IC 晶片卡獨特身分辨識碼,因此對於NFC Tag 種類的限制極低,而現今學生證多結合 IC卡功能,我們將利用學生證使用此系統。為了擴大本系統使用範圍,讓不同授課老師的課堂都能使用,為了在不同裝置間使用,在資料儲存端使用主從式架構資料庫,選擇 MySQL 資料庫,MySQL資料庫具有下列優點:

- MySQL 語法簡單,容易學習且提供不同資料 格式彈性的介面。
- MySQL 提供資料保護措施,能設定資料存取 權限,並易於備份資料,也可加密資料,。
- MySQL 可運作在許多不同作業系統,如 Linux, Windows 等。

± 2.	NEC	由甘ル	与 始 深	+11 14 45	比較表
表 1、	NEC	翅且伽	無線で用	目記技術	比較表

• •		- //// //		126 7 -
	NFC	藍芽	Wi-Fi	IR
無線電頻	13.56M	2.4G	2.4/5G	38K
率(Hz)				
Max.傳輸	0.1m	100m	300m	1m
距離				
啟動速度	<0.1s	1-6s	5s	0.5s
配對難度	不需	需要	複雜	需要
成本	低	中	中	低

2.系統描述

每位學生擁有一個獨特的 NFC Tag,用其 UID 辨識每一個學生的身分,利用點名者的 NFC 行動 裝置讀取後,完成登錄出席程序,該筆學生資料被 新增至出席者資料表中,並寫入至資料庫,同時也 能顯示資料庫的出席資料。

3. 系統目標與架構:

本研究採用被動式 NFC 硬體架構,希望從「NFC 的技術與標準」切入,利用 NFC Tag 結合 Android 手機,研究及探討讀寫模式之下 NFC 技術的應用,實作完成點名系統的設計。

系統目標:

本論文擬設計一個 NFC 點名系統,此系統使用 Java 程式語言開發,並強調完整性及系統之簡 易性,使系統設計更符合使用者之需求。使用 Java 程式語言開發可達到下列特性:

- 簡易性: Java 在開發 Android 應用程式,在設計 及撰寫程式碼相對容易。
- ■普遍性:Java 為多數軟體工程開發者了解的程式 語言,故採用 Java 語言便於軟體工程開發者維 護此系統。
- 安全性: Java 可針對不同安全需求設定安全等級,本系統中含有大量個人資料,因此安全性也是者量的一大因素。

系統架構:

如圖 6所示,NFC 讀寫模式中,應用程式是 NFC 行動裝置讀取 NFC Tag 之後,執行動作的關鍵;如圖 7所示,由於本系統須將讀取 NFC Tag 的 紀錄儲存,因此在架構中加入資料庫,以達到統計 與分析的功能。

圖6、NFC 讀寫模式結合應用程式架構圖

圖7、NFC點名系統架構圖

4.系統範圍:

表 4為系統開發所需完成的工作與資源。 表4、系統開發範圍表

項目	說明		
功能	- 讀取 Tag UID		
概述	- 過濾 UID		
	- 找出 UID 對應資料		
	- 存取資料庫		
	- 分析收集資訊		
所需	参 NFC Documentation		
資源	考 NFC Forum Tag Type Technical		
	文 Specifications		
	件 NFC Digital Protocol Technical Specification		
	人 PM:1		
	カ PG:1		
	硬 NFC Tag		
	體 Android Device (Android API Level 10 Up)		
備註	在分析階段彈性增修系統功能		

■ 系統分析

根據本論文的系統需求規劃描述,繪出系統使用者案例圖,如圖 8,在系統中使用者(User)可選擇查看資料,依照選擇的資料類型檢視資料庫儲存的出席名單。也可讀取一個 NFC Tag,系統將檢查此標籤 UID 是否存在學生/UID 對照表資料內,學生/UID 對照表存放學生資料以及對應的 NFC Tag之 UID,若不存在,可在學生/UID 對照表新增此UID 資料;若存在,可在出席名單新增此 UID 對應的學生姓名、學號及時間,也可利用手動新增的方式新增記錄至出席名單。

圖8、使用者案例圖

下圖為 NFC 點名系統的流程圖,擬定一個使用者情境來操作本系統。

如圖 9所示,當使用者使用此系統時,首先必須選擇課堂,每一堂課都會有一個獨立的學生/UID 對照表及出席名單,學生/UID 對照表紀錄 NFC Tag的 UID 對應的學生學號;系統會依照日期選擇或新增一筆出席名單。接著使用者可輸入學生資料並新增至出席名單,也可讀取 NFC Tag,系統會檢查此 UID 是否存在於學生/UID 對照表中,若存在,可讓使用者新增此 UID 及對應學生資料不學生/UID 對照表中;若存在,可讓使用者將此 UID 及學生/UID 對照表中對應之學號,以及學號在學生資料表中對應的姓名新增至出席名單。

圖9、新增功能流程圖

使用者也可以選擇一筆出席名單,系統將此名單資料呈現給使用者,如圖 10所示。

圖10、檢視功能流程圖

如圖 11 所示, NFC 點名系統軟體框架 (Software Framework)的定義與說明如下,其運作 核心細分為 3 個層級,說明如下。

■ NFC Adapter:

NFC 轉換介面,為 NFC Tag 與 NFC 裝置溝通層級,用以定義一個 Intent 使系統在偵測到 NFC Tag 時,通知使用者所定義的 Activity,在本系統中觸發的 Activity 為解析 NFC Tag 之 UID。

APIs :

負責處理系統中 NFC 裝置所需執行的工作, 例如:讀寫資料庫等,API 在實作本系統為重要關鍵,需分析所需功能並謹慎設計。

Data Filter :

為 NFC 裝置和資料庫互動的前置作業,包含在 APIs 當中,負責處理從 NFC Tag 中接收到的 UID,過濾並產生要寫入資料庫之資料。

■ 系統設計與實作

Android Developer 提供了許多 NFC 相關的 APIs,資料庫連線、使用也能找到許多相關資訊,為求程式完整性,故將其部分 API 修改,更符合本系統需求。系統中其他資料處理相關 APIs 需針對系統所需功能設計,部分重要 APIs,如表 5所示。

表5、系統部分 API

Main Class		
Method	Description	
checkID(String uid)	檢查讀取到的 UID 是否在學生	
	/UID 對照表中	
getHexString(byte[] uid)	解譯 UID	
selectStandard(String class)	選擇課程	
checkSheet(String condition)	檢視出席表	
StandardData Class		
Method	Description	
addStandard(String number,String uid,String name)	新增 NFC Tag UID、學號至學生/UID 對照表	
getName(String uid)	取得 UID 對應之姓名	
getNumber(String uid)	取得 UID 對應之學號	
Attendance Class		

Method	Description
addAttendence(String uid)	新增出席資料
getSheet(String date)	取得出席表
createSheet(DateFormat dateFormat)	新增出席表

資料庫設計為保護個人資料隱私,以及簡化資料表,並減少錯誤,需符合資料庫設計正規化,以及資料隱蔽性,如圖 12所示,資料表說明如下。

- Tag: 紀錄 NFC UID 及學生學號,用以辨識 NFC Tag 對應之學生身分。
- UserInformation:記錄學生個人資料,如電話號碼、年級等。
- Attendance:紀錄出席者姓名、學號、NFC Tag 之 UID 及出席時間。

圖12、資料庫架構關係圖(schema diagram)

四、系統測試、整合與評估

NFC系統根據將讀取到 NFC Tag 之 UID 傳送至應用程式,應用程式再做資料處理,應用程式正確地蒐集及分析資料,同時也須確保資料庫資料儲存處沒有發生問題,才能達到系統最大的效益,因此必須做精確的測試。系統在應用及實作時需注意的問題如下:

■ NFC 功能與網路功能: NFC 行動裝置需開啟 NFC 及網路功能,因此應用程式會偵測是否網路 及 NFC 功能,提醒使用者開啟相關功能,如圖 13所示。

圖13、NFC點名系統測試介面

- 日期及時間設定:系統使用日期區別不同出席資料,為正確保存資料,須確保 NFC 裝置日期及時間設定正確。
- 資料庫連線:在應用程式程式碼中資料庫連線部 分加入例外處理(Exception Handling),應對應用

程式發生的例外,測試資料庫連線是否正常。

以30位學生及1位老師作為本系統測試對 象,整體NFC點名系統的效益評估如下:

- 使用傳統點名方式需花費大約 180 秒;使用 NFC 點名系統僅需 90 秒,確實達到節省時間的系統目標。
- 使用 NFC 點名系統無須點名者唱名,節省人力資源。
- NFC Tag 及電子名單可達到重複利用的環保特性。
- ■簡易的系統使用方式,成本相當低,也不須特別的硬體設施,僅需 NFC 行動裝置以及 NFC Tag, 多數學校學生證也結合符合 NFC 功能之 IC 卡晶片,可用此代替 NFC Tag。

五、結論

本論文以 NFC 為基礎的點名系統為例,著重於後端資料處理,進行規劃細部功能與系統分析,並結合 NFC Tag 以及 NFC 行動裝置,以軟體工程開發流程為基礎,實作 NFC 點名服務系統。現今多數手機也支援 NFC 技術,對於一個新興的技術而言,應還有許多發展及應用空間。

未來,可以延伸提供相關 NFC 的服務組成 (composition of services)應用。

参考文獻

- [1] Smart Card Alliance, "The Mobile Payments and NFC Landscape: A U.S. Perspective: A Smart Card Alliance Payments Council White Paper," 2011.
- [2] NFC Forum http://nfc-forum.org/
- [3] Sascha Segan, "Nokia Intros NFC Phone That Doubles As Credit Card," 2007.
- [4] "NFC Data Exchange Format (NDEF), Technical Specification," NFC Forum, 2006.
- [5] "NFC Forum Type Tag, White Paper V1.0," NXP Semiconductors, April 1, 2009.
- [6] Ekta Desai and Mary Grace Shajan, "A Review on the Operating Modes of Near Field Communication," 2012.

- [7] ISO http://www.iso.org/iso/home.html
- [8] Ecma International http://www.ecma-international.org/
- [9] ETSI http://www.etsi.org/
- [10] ISO/IEC 18092:2013, "Information technology - Telecommunications and exchange between systems - Near Field Communication - Interface and Protocol (NFCIP-1)," March 15, 2013.
- [11] Erick Macias and Josh Wyatt, "NFC Active and Passive Peer-to-Peer Communication Using the TRF7970A", 2014.
- [12] Erick Macias, Ralph Jacobi, and Josh Wyatt, "NFC Card Emulation Using the TRF7970A", 2014.
- [13] Laura Quinonez, "Taking Attendance in College is Ineffective and Inconvenient", The Arkansas Traveler, 2014.
- [14] ISO/IEC 21481:2005, "Information technology Telecommunications and information exchange between systems Near Field Communication Interface and Protocol -2 (NFCIP-2)," 2005.
- [15] Ekta Desai and Mary Grace Shajan, "A Review on the Operating Modes of Near Field Communication," *International Journal of Engineering and Advanced Technology (IJEAT)*, December, 2012.
- [16] 一手掌握Android NFC開發技術, 趙波, 佳魁, 2014。