Lecture 07 More on Householder Reflectors; Least Squares Problems

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

Householder Reflectors

2 Linear Least Squares Problems

Outline

1 Householder Reflectors

2 Linear Least Squares Problems

Householder Triangularization

- Method introduced by Alston Scott Householder in 1958
- It multiplies unitary matrices to make column triangular, e.g.,

ullet After n steps, we get a product of unitary matrices,

$$\underbrace{\mathbf{Q}_n \cdots \mathbf{Q}_2 \mathbf{Q}_1}_{\mathbf{Q}^*} \mathbf{A} = \mathbf{R}$$

and in turn we get full QR factorization $\mathbf{A} = \mathbf{QR}$.

- \mathbf{Q}_k introduces zeros below diagonal of kth column while preserving zeros below diagonal in preceding columns
- The key question is how to find \mathbf{Q}_k ?

Householder Reflectors

- First consider \mathbf{Q}_1 : $\mathbf{Q}_1\mathbf{a}_1 = \|\mathbf{a}_1\|\mathbf{e}_1$, where $\mathbf{e}_1 = (1, 0, \dots, 0)^T$. Why the length is $\|\mathbf{a}_1\|$?
- \mathbf{Q}_1 reflects \mathbf{a}_1 across hyperplane H orthogonal to $\mathbf{v} = \|\mathbf{a}_1\|\mathbf{e}_1 \mathbf{a}_1$, and there fore

$$\mathbf{Q}_1 = \mathbf{I} - 2 \frac{\mathbf{v} \mathbf{v}^*}{\mathbf{v}^* \mathbf{v}}$$

More generally,

$$\mathbf{Q}_k = \left[egin{array}{ccc} \mathbf{I} & \mathbf{0} \ \mathbf{0} & \mathbf{F} \end{array}
ight]$$

where \mathbf{I} is $(k-1)\times(k-1)$ and \mathbf{F} is $(m-k+1)\times(m-k+1)$ such that $\mathbf{F}\mathbf{x}=\|\mathbf{x}\|_2\mathbf{e}_1$, where \mathbf{x} is $(a_{k,k},a_{k+1,k},\cdots,a_{m,k})^T$.

• What is **F**? It has similar form as \mathbf{Q}_1 with $\mathbf{v} = \|\mathbf{x}\|\mathbf{e}_1 - \mathbf{x}$.

Choice of Reflectors

- We could choose **F** such that $\mathbf{F}\mathbf{x} = -\|\mathbf{x}\|\mathbf{e}_1$ instead of $\mathbf{F}\mathbf{x} = \|\mathbf{x}\|\mathbf{e}_1$ or more generally, $\mathbf{F}\mathbf{x} = z\|\mathbf{x}\|\mathbf{e}_1$ with |z| = 1 for $z \in \mathbb{C}$.
- This leads to an infinite number of possible QR factorizations of A
- If we require $z \in \mathbb{R}$, we still have two choices
- Numerically, it is undesirable for $\mathbf{v}^*\mathbf{v}$ to be close to zero for $\mathbf{v} = z \|\mathbf{x}\| \mathbf{e}_1 \mathbf{x}$, and $\|\mathbf{v}\|$ is larger if $z = -sign(x_1)$
- Therefore, $\mathbf{v} = -sign(x_1)\|\mathbf{x}\|\mathbf{e}_1 \mathbf{x}$. Since $\mathbf{I} 2\frac{\mathbf{v}\mathbf{v}^*}{\mathbf{v}^*\mathbf{v}}$ is independent of sign, clear out the factor -1 and obtain $\mathbf{v} = sign(x_1)\|\mathbf{x}\|\mathbf{e}_1 + \mathbf{x}$.
- For completeness, if $x_1 = 0$, set z to 1 (instead of 0).

```
\begin{aligned} &\text{for } k=1 \text{ to } n \\ &\mathbf{x} = \mathbf{A}(k:m,k) \\ &\mathbf{v}_k = sign(x_1)\|\mathbf{x}\|\mathbf{e}_1 + \mathbf{x} \\ &\mathbf{v}_k = \mathbf{v}_k/\|\mathbf{v}_k\| \\ &\mathbf{A}(k:m,k:n) = \mathbf{A}(k:m,k:n) - 2*\mathbf{v}_k(\mathbf{v}_k^*\mathbf{A}(k:m,k:n)) \end{aligned}
```

- Nota that sign(x) = 1 if $x \ge 0$, and -1 if x < 0.
- Leave R in place of A
- Matrix ${f Q}$ is not formed explicitly but reflection vector ${f v}_k$ is stored

```
for k=1 to n \mathbf{x} = \mathbf{A}(k:m,k) \mathbf{v}_k = sign(x_1)\|\mathbf{x}\|\mathbf{e}_1 + \mathbf{x} \mathbf{v}_k = \mathbf{v}_k/\|\mathbf{v}_k\| \mathbf{A}(k:m,k:n) = \mathbf{A}(k:m,k:n) - 2*\mathbf{v}_k(\mathbf{v}_k^*\mathbf{A}(k:m,k:n))
```

- Nota that sign(x) = 1 if $x \ge 0$, and -1 if x < 0.
- Leave R in place of A
- Matrix ${f Q}$ is not formed explicitly but reflection vector ${f v}_k$ is stored
- Question: Can **A** be reused to store both **R** and \mathbf{v}_k completely?

```
for k=1 to n \mathbf{x} = \mathbf{A}(k:m,k) \mathbf{v}_k = sign(x_1)\|\mathbf{x}\|\mathbf{e}_1 + \mathbf{x} \mathbf{v}_k = \mathbf{v}_k/\|\mathbf{v}_k\| \mathbf{A}(k:m,k:n) = \mathbf{A}(k:m,k:n) - 2*\mathbf{v}_k(\mathbf{v}_k^*\mathbf{A}(k:m,k:n))
```

- Nota that sign(x) = 1 if $x \ge 0$, and -1 if x < 0.
- Leave R in place of A
- Matrix ${f Q}$ is not formed explicitly but reflection vector ${f v}_k$ is stored
- Question: Can **A** be reused to store both **R** and \mathbf{v}_k completely?
- Answer: We can use lower diagonal portion of $\bf A$ to store all but one entry in each ${\bf v}_k$. So an additional array of size n is needed.

```
for k=1 to n \mathbf{x} = \mathbf{A}(k:m,k) \mathbf{v}_k = sign(x_1)\|\mathbf{x}\|\mathbf{e}_1 + \mathbf{x} \mathbf{v}_k = \mathbf{v}_k/\|\mathbf{v}_k\| \mathbf{A}(k:m,k:n) = \mathbf{A}(k:m,k:n) - 2*\mathbf{v}_k(\mathbf{v}_k^*\mathbf{A}(k:m,k:n))
```

- Nota that sign(x) = 1 if $x \ge 0$, and -1 if x < 0.
- Leave R in place of A
- Matrix \mathbf{Q} is not formed explicitly but reflection vector \mathbf{v}_k is stored
- Question: Can **A** be reused to store both **R** and \mathbf{v}_k completely?
- Answer: We can use lower diagonal portion of $\bf A$ to store all but one entry in each ${\bf v}_k$. So an additional array of size n is needed.
- Question: What happens if \mathbf{v}_k is 0 in line 3 of the loop?

• Compute $\mathbf{Q}^*\mathbf{b} = \mathbf{Q}_n \cdot \mathbf{Q}_1\mathbf{b}$

Implicit calculation of Q*b

for
$$k = 1$$
 to n

$$\mathbf{b}(k:m) = \mathbf{b}(k:m) - 2\mathbf{v}_k(\mathbf{v}_k^*\mathbf{b}(k:m))$$

• Compute $\mathbf{Q}^*\mathbf{b} = \mathbf{Q}_n \cdot \mathbf{Q}_1\mathbf{b}$

Implicit calculation of Q*b

for
$$k = 1$$
 to n

$$\mathbf{b}(k:m) = \mathbf{b}(k:m) - 2\mathbf{v}_k(\mathbf{v}_k^*\mathbf{b}(k:m))$$

• Compute $\mathbf{Q}\mathbf{x} = \mathbf{Q}_1 \cdot \mathbf{Q}_n \mathbf{x}$

Implicit calculation of Qx

for
$$k = n$$
 downto 1
 $\mathbf{x}(k:m) = \mathbf{x}(k:m) - 2\mathbf{v}_k(\mathbf{v}_{k}^*\mathbf{x}(k:m))$

• Compute $\mathbf{Q}^*\mathbf{b} = \mathbf{Q}_n \cdot \mathbf{Q}_1\mathbf{b}$

Implicit calculation of Q*b

for
$$k = 1$$
 to n

$$\mathbf{b}(k:m) = \mathbf{b}(k:m) - 2\mathbf{v}_k(\mathbf{v}_k^*\mathbf{b}(k:m))$$

• Compute $\mathbf{Q}\mathbf{x} = \mathbf{Q}_1 \cdot \mathbf{Q}_n \mathbf{x}$

Implicit calculation of Qx

for
$$k=n$$
 downto 1
$$\mathbf{x}(k:m)=\mathbf{x}(k:m)-2\mathbf{v}_k(\mathbf{v}_k^*\mathbf{x}(k:m))$$

• Question: How to form \mathbf{Q} and $\hat{\mathbf{Q}}$, respectively?

• Compute $\mathbf{Q}^*\mathbf{b} = \mathbf{Q}_n \cdot \mathbf{Q}_1\mathbf{b}$

Implicit calculation of Q*b

for
$$k=1$$
 to n
$$\mathbf{b}(k:m) = \mathbf{b}(k:m) - 2\mathbf{v}_k(\mathbf{v}_k^*\mathbf{b}(k:m))$$

• Compute $\mathbf{Q}\mathbf{x} = \mathbf{Q}_1 \cdot \mathbf{Q}_n \mathbf{x}$

Implicit calculation of Qx

for
$$k = n$$
 downto 1
 $\mathbf{x}(k:m) = \mathbf{x}(k:m) - 2\mathbf{v}_k(\mathbf{v}_k^*\mathbf{x}(k:m))$

- Question: How to form \mathbf{Q} and $\hat{\mathbf{Q}}$, respectively?
- Answer: Apply $\mathbf{x} = \mathbf{I}^{m \times m}$ or first n columns of \mathbf{I} , respectively.

Operation Count

Most work done at step

$$\mathbf{A}(k:m,k:n) = \mathbf{A}(k:m,k:n) - 2 * \mathbf{v}_k(\mathbf{v}_k^* \mathbf{A}(k:m,k:n))$$

- Flops per iteration:
 - $\sim 2(m-k)(n-k)$ for dot product $\mathbf{v}_k^*\mathbf{A}(k:m,k:n)$
 - $\sim (m-k)(n-k)$ for outer product $2\mathbf{v}_k(\cdots)$
 - $\sim (m-k)(n-k)$ for subtraction
 - $\sim 4(m-k)(n-k)$ total
- Including outer loop, total flops is

$$\sum_{k=1}^{n} 4(m-k)(n-k) \sim 2mn^2 - \frac{2}{3}n^3$$

If $m \approx n$, it is more efficient than Gram-Schmidt method, but if $m \gg n$, similar to Gram-Schmidt

Givens Rotations

- Instead of using reflection, we can rotate \mathbf{x} to obtain $\|\mathbf{x}\|\mathbf{e}_1$
- A Given rotation $\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ rotates $\mathbf{x} \in \mathbb{R}^2$ counterclockwise by θ
- ullet Choose heta to be angle between $(x_i,x_j)^T$ and $(0,1)^T$, and we have

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_i \\ x_j \end{bmatrix} = \begin{bmatrix} \sqrt{x_i^2 + x_j^2} \\ 0 \end{bmatrix}$$

where

$$\cos \theta = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \quad \sin \theta = \frac{-x_j}{\sqrt{x_i^2 + x_j^2}}$$

Givens QR

Introduce zeros in column bottom-up, one zero at a time

- To zero a_{ij} , left-multiply matrix ${\bf F}$ with ${\bf F}(i:i+1,i:i+1)$ being rotation matrix and $F_{kk}=1$ for $k\neq i,i+1$.
- Flop count of Givens QR is $3mn^2-n^3$, which is about 50% more expensive than Householder QR

Outline

Householder Reflectors

2 Linear Least Squares Problems

Linear Least Squares Problems

- Overdetermined system of equations $\mathbf{A}\mathbf{x} \approx \mathbf{b}$, where \mathbf{A} has more rows than columns and has full rank, in general has no solutions
- Example application: Polynomial least squares fitting
- In general, minimize the residual $\mathbf{r} = \mathbf{b} \mathbf{A}\mathbf{x}$
- In terms of 2-norm, we obtain linear least squares problem: Given $\mathbf{A} \in \mathbb{C}^{m \times n}, \ m \geqslant n$, and $\mathbf{b} \in \mathbb{C}^m$, find $\mathbf{x} \in \mathbb{C}^n$ such that $\|\mathbf{b} \mathbf{A}\mathbf{x}\|_2$ is minimized.
- If A has full rank, the minimizer x is the solution to the normal equation

$$\mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{A}^*\mathbf{b}$$

or in terms of the pseudoinverse \mathbf{A}^+ ,

$$\mathbf{x} = \mathbf{A}^+ \mathbf{b}$$
, where $\mathbf{A}^+ = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^* \in \mathbb{C}^{n \times m}$

Geometric Interpretation

- $\mathbf{A}\mathbf{x}$ is in $range(\mathbf{A})$, and the point in $range(\mathbf{A})$ closest to \mathbf{b} is its orthogonal projection onto $range(\mathbf{A})$
- Residual ${\bf r}$ is then orthogonal to $range({\bf A})$, and hence ${\bf A}^*{\bf r}={\bf A}^*({\bf b}-{\bf A}{\bf x})={\bf 0}$
- $\mathbf{A}\mathbf{x}$ is orthogonal projection of \mathbf{b} , where $\mathbf{x} = \mathbf{A}^+\mathbf{b}$, so $\mathbf{P} = \mathbf{A}\mathbf{A}^+ = \mathbf{A}(\mathbf{A}^*\mathbf{A})^{-1}\mathbf{A}^*$ is orthogonal projection.

Solution of Lease Squares Problems

- One approach is to solve normal equation $\mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{A}^*\mathbf{b}$ directly using Cholesky factorization
 - Is unstable, but is very efficient if $m\gg n\ (mn^2+\frac{1}{3}n^3)$
- More robust approach is to use QR factorization $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$
 - **b** can be projected onto $range(\mathbf{A})$ by $\mathbf{P} = \hat{\mathbf{Q}}\hat{\mathbf{Q}}^*$, and therefore $\hat{\mathbf{Q}}\hat{\mathbf{R}}\mathbf{x} = \hat{\mathbf{Q}}\hat{\mathbf{Q}}^*\mathbf{b}$
 - Left-multiply by $\hat{\mathbf{Q}}^*$ and we get $\hat{\mathbf{R}}\mathbf{x} = \hat{\mathbf{Q}}^*\mathbf{b}$ (note $\mathbf{A}^+ = \hat{\mathbf{R}}^{-1}\hat{\mathbf{Q}}^*$)

Least squares via QR Factorization

Compute reduced QR factorization $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$ Compute vector $\mathbf{c} = \hat{\mathbf{Q}}^*\mathbf{b}$ Solve upper-triangular system $\hat{\mathbf{R}}\mathbf{x} = \mathbf{c}$ for \mathbf{x}

- Computation is dominated by QR factorization $(2mn^2-\frac{2}{3}n^3)$
- Question: If Householder QR is used, how to compute $\hat{\mathbf{Q}}^*\mathbf{b}$?

Solution of Lease Squares Problems

- One approach is to solve normal equation $\mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{A}^*\mathbf{b}$ directly using Cholesky factorization
 - Is unstable, but is very efficient if $m\gg n\ (mn^2+\frac{1}{3}n^3)$
- More robust approach is to use QR factorization $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$
 - **b** can be projected onto $range(\mathbf{A})$ by $\mathbf{P} = \hat{\mathbf{Q}}\hat{\mathbf{Q}}^*$, and therefore $\hat{\mathbf{Q}}\hat{\mathbf{R}}\mathbf{x} = \hat{\mathbf{Q}}\hat{\mathbf{Q}}^*\mathbf{b}$
 - Left-multiply by $\hat{\mathbf{Q}}^*$ and we get $\hat{\mathbf{R}}\mathbf{x} = \hat{\mathbf{Q}}^*\mathbf{b}$ (note $\mathbf{A}^+ = \hat{\mathbf{R}}^{-1}\hat{\mathbf{Q}}^*$)

Least squares via QR Factorization

Compute reduced QR factorization $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$ Compute vector $\mathbf{c} = \hat{\mathbf{Q}}^*\mathbf{b}$ Solve upper-triangular system $\hat{\mathbf{R}}\mathbf{x} = \mathbf{c}$ for \mathbf{x}

- Computation is dominated by QR factorization $(2mn^2 \frac{2}{3}n^3)$
- Question: If Householder QR is used, how to compute $\hat{\mathbf{Q}}^*\mathbf{b}$?
- Answer: Compute $\mathbf{Q}^*\mathbf{b}$ (where \mathbf{Q} is from full QR factorization) and then take first n entries of resulting $\mathbf{Q}^*\mathbf{b}$

Solution by SVD

- Using $\mathbf{A} = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^*$, \mathbf{b} can be projected onto $range(\mathbf{A})$ by $\mathbf{P} = \hat{\mathbf{U}}\hat{\mathbf{U}}^*$ and therefore $\hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^*\mathbf{x} = \mathbf{U}\hat{\mathbf{U}}^*\mathbf{b}$
- Left-multiply by $\hat{\mathbf{U}}^*$ and we get $\hat{\mathbf{\Sigma}}\mathbf{V}^*\mathbf{x} = \hat{\mathbf{U}}^*\mathbf{b}$

Least squares via SVD

```
Compute reduced SVD factorization \mathbf{A} = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^*
Compute vector \mathbf{c} = \hat{\mathbf{U}}^*\mathbf{b}
Solve diagonal system \hat{\mathbf{\Sigma}}\mathbf{w} = \mathbf{c} for \mathbf{w}
Set \mathbf{x} = \mathbf{V}\mathbf{w}
```

- Set $\mathbf{x} = \mathbf{V}\mathbf{w}$
 - Work is dominated by SVD, which is $\sim 2mn^2 + 11n^3$ flops, very expensive if $m \approx n$
 - Best numerical stability
 - Question: If **A** is rank deficient, how to solve $\mathbf{A}\mathbf{x} \approx \mathbf{b}$?

Solution by SVD

- Using $\mathbf{A} = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^*$, **b** can be projected onto $range(\mathbf{A})$ by $\mathbf{P} = \hat{\mathbf{U}}\hat{\mathbf{U}}^*$ and therefore $\hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^*\mathbf{x} = \mathbf{U}\hat{\mathbf{U}}^*\mathbf{b}$
- Left-multiply by $\hat{\mathbf{U}}^*$ and we get $\hat{\Sigma}\mathbf{V}^*\mathbf{x} = \hat{\mathbf{U}}^*\mathbf{b}$

Least squares via SVD

Compute reduced SVD factorization $\mathbf{A} = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^*$ Compute vector $\mathbf{c} = \hat{\mathbf{U}}^* \mathbf{b}$ Solve diagonal system $\hat{\Sigma} \mathbf{w} = \mathbf{c}$ for \mathbf{w} Set $\mathbf{x} = \mathbf{V}\mathbf{w}$

- - Work is dominated by SVD, which is $\sim 2mn^2 + 11n^3$ flops, very expensive if $m \approx n$
 - Best numerical stability
 - Question: If A is rank deficient, how to solve Ax ≈ b?
 - Answer: x is no longer unique. Constrain x to be orthogonal to null space of **A**.