$\ensuremath{\mathsf{ME591}}$ - Assignment 9

 $\begin{array}{c} {\rm Herman~Kolstad~Jakobsen} \\ 20196493 \end{array}$

December 11, 2019

ME 591	Assignment 9	Herman K. Jakobsen 20196493		
Problem Ta)				
Given α :	zero mean Gaussiar	n Input, so	- <u> V </u>	
	$\frac{\langle x \rangle}{ x } = \frac{p(x=\sqrt{ y })}{ x } = \frac{1}{ x }$		Gaussian probability	
distribution.		240		
Rw(0) = 0	$5\sqrt{2} + \mu_{V}^{2} = 0$	= [(v- h^)] =	E[v²]	
Further				
₽ [√²]=	E[x x x x] = E[x	4]		
Define				
X ₁ , X ₂ , X				
	hint for the fourt		of the 250	
E[×4]=	E[x, x2 x3 x4]			
1	$E[x_1 \times_2] E[x_3 \times_4] +$	$E[x_1x_3]E[x_2]$	\times_{4}] + $E[\times_{1}\times_{4}]$ + $E[\times_{2}\times_{3}]$	
	3 E[x2] E[x2]	v		
2	3 E [(x - \(\rho_x)^2\) E [((x - u _x) ²		
	3 $\sigma_{\bar{\chi}}^2 \sigma_{\bar{\chi}}^2$			
7	3 o _x 4			

Minimization of the mean square extor yields	
dQ = 40x3 2 + 2a ox2 = 0	
$\Rightarrow a = 2\sigma_{\chi} \sqrt{\frac{2}{\pi}}$	
Ultimately	
$V(t) = x(t) x(t) \approx 2\sigma_x \sqrt{\frac{2}{\pi}} \times$	
16)	-
Given that	-
w' = ax	
Then	
$R_{w,w}(0) = E\left[w^2\right] = E\left[(ax)^2\right] = E\left[a^2x^2\right] = a^2E\left[x^2\right]$	
$=a^2\sigma_x^2$	
$= 4 \sigma_{x}^{2} \cdot \frac{2}{\pi} \sigma_{x}^{2}$	
= 8 0x 4 \approx 2,54 0x4	
The ratio between the approximated value and the true	
value is	
⁸ / ₂ ≈ 0,85	-
The approximation differs by about 15% from the correct	
result. The first-order approximation can therefore be regarded	
as a decent approximation.	
Increasing the order of the approximation will give a drastical	
improvement in the accuracy.	Mokeur
	Keux
Scanned by CamScanne	++ er

Scanned by CamScanner

	a2=1	, a	6 = 1 ,	a 7 =	-1			
while				ual to	zero,	The pul	se Eunctic	on can
then	be	state	d as					
	x (+)=	ψ (2t)	+ 4 (4-	4-2)-	ψ (4t-3)			
which	corres	ponds f	o the	given ,	olot,			

Problem 4

Code used to solve this problem is available at https://github.com/hermanjakobsen/Random-Data/tree/master/HW9

4a)

The data x(i) is shown in fig. 1, while the spectrogram of the data is shown in fig. 2.

Figure 1: Driver impact sound data

4b)

A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies with time. As time passes, fig. 2 shows that the spectrum consists of gradually higher frequency components. This can be somewhat verified by looking at fig. 1, where the start of the data can be compared to the end of the data. The tail can be characterized as more noisy, which reflects higher frequency components.

Due to large amplitude variations in fig. 1, it can be concluded that the ball was hit at around 50 ms. At the same time instance in fig. 2, the power of the higher frequency components starts to increase. This is due to the sound of the hit consisting of higher frequency components. After some time, only the high frequency components prevails and characterizes the spectrum. Looking at fig. 1, the high frequency components can be because of noise, since the sound of the hit only lasts for about 100 ms.

Figure 2: Spectrogram of driver impact sound data