Lineaarialgebran jatkoa

- **1. a)** Oletetaan, että vektoreille $\overline{v}, \overline{w} \in \mathbb{R}^n$ pätee $||\overline{v}|| = 3$, $||\overline{w}|| = 4$ ja $\overline{v} \cdot \overline{w} = -3$. Määritä $||2\overline{v} \overline{w}||$.
 - b) Määritä matriisin $A = \begin{bmatrix} 1 & 4 \\ 2 & 1 \end{bmatrix}$ kaikki ominaisarvot ja ominaisvektorit.
- **2.** Oletetaan, että $\overline{v}, \overline{w}, \overline{u} \in \mathbb{R}^n$ ja $\overline{w} \neq \overline{0}$. Oletetaan lisäksi, että vektori \overline{u} on yhdensuuntainen vektorin \overline{w} kanssa. Osoita, että $\operatorname{proj}_{\overline{w}}(\overline{v}) = \operatorname{proj}_{\overline{u}}(\overline{v})$. Tulkitse tulos geometrisesti avaruudessa \mathbb{R}^2 .
- 3. Merkitään $\overline{w}_1 = (1, 2, 0), \overline{w}_2 = (1, 1, -1)$ ja $\overline{w}_3 = (1, 4, 2).$
 - a) Kuuluuko vektori $\overline{v} = (1, 1, 0)$ aliavaruuteen span $(\overline{w}_1, \overline{w}_2, \overline{w}_3)$?
 - **b)** Muodostavatko vektorit \overline{w}_1 , \overline{w}_2 , \overline{w}_3 avaruuden \mathbb{R}^3 kannan?
- **4.** Olkoot a, b ja c positiivisia reaalilukuja. Tetraedrin kolme kärkeä ovat koordinaattiakseleiden pisteissä (a,0,0), (0,b,0) ja (0,0,c), ja neljäs kärki on origossa (0,0,0). Kärkien vastaisten tetraedrin tahkojen pinta-aloja merkitään samassa järjestyksessä kirjaimilla A, B, C ja D, jossa D tarkoittaa origon vastaisen tahkon pinta-alaa.

Määritä D ristitulon avulla ja osoita, että

$$A^2 + B^2 + C^2 = D^2.$$

