PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-157208

(43)Date of publication of application: 08.06.2001

(51)Int.Cl.

HO4N 7/24 H04J 3/00

(21)Application number: 2000-300615

(71)Applicant: SAMSUNG ELECTRONICS CO LTD

(22)Date of filing:

29.09.2000

(72)Inventor: ZEN SHOKYU

(30)Priority

Priority number: 1999 9942309

Priority date: 01.10.1999

Priority country: KR

(54) MPEG TRANSPORT STREAM ENCODER AND ENCODING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a TS encoder and an encoding method that can encode video and audio signals in the unit of fields.

SOLUTION: The method of this invention is characterized by that a PES header is generated in the unit of fields of an elementary stream, a PES header valid period signal denoting a valid period of the PES header is generated in the unit of fields, the PES header and the elementary stream are recorded synchronously with the PES header valid period signal, a TS header period signal denoting a period when the TS header is recorded is generated, the PES header and the elementary stream are read synchronously with the TS header period signal, a TS header is added to the PES header and the elementary stream that are read in timing when the TS header is recorded to generate a TS packet.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-157208 (P2001-157208A)

(43)公開日 平成13年6月8日(2001.6.8)

(51) Int.Cl. ⁷		識別記号	FΙ		テーマコード(参考)
H04N	7/24		H04J	3/00 .	M
H04J	3/00		H04N	7/13	Z

審査請求 有 請求項の数10 OL (全 10 頁)

(21)出願番号	特願2000-300615(P2000-300615)	(71)出顧人	390019839
			三星電子株式会社
(22)出願日	平成12年9月29日(2000.9.29)		大韓民国京畿道水原市八達区梅雞洞416
		(72)発明者	全 鎖求
(31)優先権主張番号	199942309		大韓民国京畿道水原市八達区靈通洞964-
(32)優先日	平成11年10月1日(1999.10.1)		5番地シンナムシル住公アパート508棟
(33)優先権主張国	韓国(KR)		1304号
(00) 度几個工政國	TOPES (ILIC)	(74)代理人	100064908
		(74/10年八	
			弁理士 志賀 正武 (外1名)
		1	

(54) 【発明の名称】 MPEGトランスポートストリームエンコーダ及びエンコーディング方法

(57)【要約】

【課題】 フィールド単位にビデオ信号及びオーディオ信号を符号化するTSエンコーダ及びエンコーディング方法を提供する。

【解決手段】 本発明による方法は、エレメンタリーストリームのフィールド単位にPESへッダを発生させ、前記PESへッダの有効区間を示すPESへッダ有効区間信号をフィールド単位に発生させ、前記PESへッダ有効区間信号に同期されて前記PESへッダが記録される区間を示すTSへッダ区間信号を発生させ、前記TSへッダ区間信号に同期されて前記PESへッダ及びエレメンタリーストリームを読み出し、前記TSへッダが記録されるタイミングによって前記読み出されたPESへッダ及びエレメンタリーストリームにTSへッダを付加してTSパケットを生成させることを特徴とする。

1

【特許請求の範囲】

【請求項1】 MPEGエレメンタリーストリームを入 力してトランスポートストリームを発生するTSエンコ ーディング方法において、

前記エレメンタリーストリームのフィールド単位にPE Sヘッダを発生する過程(a)と、

前記過程(a)で発生したPESへッダの有効区間を示 すPESヘッダ有効区間信号をフィールド単位に発生す る過程(b)と、

前記過程(b)で発生したPESヘッダ有効区間信号に 10 同期されて前記過程で発生したPESヘッダ及びエレメ ンタリーストリームを記録する過程(c)と、前記TS ヘッダが記録される区間を示すTSヘッダ区間信号を発 生する過程(d)と、

前記過程(d)で発生したTSヘッダ区間信号に同期さ れて前記過程(a)で発生したPESヘッダ及びエレメ ンタリーストリームを読み出す過程(e)と、

前記TSへッダが記録されるタイミングによって前記過 程(e)で読み出されたPESヘッダ及びエレメンタリ ーストリームにTSへッダを付加してTSパケットを生 20 ことを特徴とする請求項4に記載のTSエンコーダ。 成する過程(f)とを含むTSエンコーディング方法。

【請求項2】 前記フィールド単位にトランスポートス トリームが生成されながら各フィールド単位に対してP CRを挿入する過程(g)をさらに含む請求項1に記載 のTSエンコーディング方法。

【請求項3】 前記フィールド単位にトランスポートス トリームが生成されながら第1番目のTSパケットにア ダブテーションフィールドを挿入し、該アダプテーショ ンフィールドにPCRを挿入する過程(h)をさらに含 む請求項2に記載のTSエンコーディング方法。

【請求項4】 MPEGエレメンタリーストリームを入 力してトランスポートストリームを発生するTSエンコ ーダにおいて、

前記エレメンタリーストリームのフィールド単位にPE Sヘッダを発生するPESヘッダ発生器と、

前記PESヘッダの有効区間を示すPESヘッダ有効区 間信号をフィールド単位に発生する制御信号発生器と、 前記PESヘッダ発生器で発生したPESヘッダ及びエ レメンタリーストリームを記録/読出しするメモリと、 前記制御信号発生器で発生したPESへッダ有効区間信 40 号に同期されて前記メモリの記録動作を制御し、TSへ ッダが記録される区間を示すTSへッダ区間信号を発生 するメモリ制御器と、

前記メモリ制御器で発生したTSヘッダ区間信号に同期 されて前記メモリの読出し動作を制御し、TSヘッダが 記録されるタイミングを示すTSへッダフラグを発生す るフラグ発生器と、

前記TSヘッダフラグに同期してメモリから読み出され たデータにTSヘッダを付加してTSパケットを出力す るTSパケット発生器とを含むTSエンコーダ。

【請求項5】 前記PESヘッダ発生器及び前記制御信 号発生器は、フィールドの先器を示すフィールドリセッ ト信号に同期されて動作することを特徴とする請求項4 に記載のTSエンコーダ。

【請求項6】 前記制御信号発生器はフィールド単位の エレメントストリームにおいて最後のデータの存否を示 すシーケンス終了信号、最後のデータの個数データを発 生し、

前記フラグ発生器はシーケンス終了信号、最後のデータ の個数データを参照してメモリを制御することを特徴と する請求項4に記載のTSエンコーダ。

【請求項7】 前記制御信号発生器はフィールド単位の エレメンタリーストリームにおいて最後のデータのアド レスを示す最終アドレス信号を発生し、

前記フラグ発生器は最終アドレス信号を参照してメモリ を制御することを特徴とする請求項6 に記載のTSエン

【請求項8】 前記TSパケット発生器は、TSパケッ トが生成されていない区間ではヌルパケットを発生する

【請求項9】 エレメントストリームのフィールド単位 にPCRデータ及びPCRが記録される区間を示すPC R区間信号を発生するPCR発生器をさらに具備し、 前記フラグ発生器はPCR区間信号に同期されてPCR が記録されるタイミングを示すPCRフラグを発生し、 前記TSパケット発生器はPCRフラグによって前記P CR発生器から与えられるPCRデータを挿入すること を特徴とする請求項4に記載のTSエンコーダ。

【請求項10】 エレメントストリームのフィールド単 30 位にPSIデータを発生するPSI発生器と、

前記PSI発生器から与えられるPSIデータに誤り訂 正コードを付加させるCRC発生器とをさらに具備し、 前記フラグ発生器はPSIデータが記録されるタイミン グを示すPSIフラグを発生し、

前記TSパケット発生器はPSIフラグによって前記C RC発生器から与えられる誤り訂正コードが付加された PSIパケットを発生することを特徴とする請求項9に 記載のTSエンコーダ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はMPEG (Moving P icture Expert Group) システムに係り、特に、MPE G-2 でエレメンタリーストリームをフィールド単位に 符号化するTS(Transport Stream)エンコーダ及びそ の方法に関する。

[0002]

【従来の技術】MPEG-2システムは、MPEGオー ディオ、MPEGビデオストリームのシンタックスを規 定している。とのようなMPEGシステムには2種類の 50 方式がある。その一つは、プログラムストリーム(Prog

構成に際して所望の編集ができないようになっている。 その理由は、PSI情報が0.7秒毎に一度ずつ存在す

ram Stream; 以下、PSと称する)と呼ばれるものであって、一つのプログラムを構成する。もう一つは、トランスポートストリーム(TS)と呼ばれるものであって、複数のプログラムを構成する。

【0003】MPEGシステムではパケットによる多重方式を採択している。すなわち、MPEGシステムはビデオ/オーディオエレメンタリーストリーム(Elementary Stream; ES)をパケット単位のビット列に分割し、ヘッダなどの付加情報を付けて多重化する。このとき、ヘッダには、ビデオパケットとオーディオパケットとを区分けするための情報が含まれる。MPEGシステムでは各種の応用に適するようにパケットの長さを21°(64KB)に定めており、柔軟性のために、各パケット毎に固定長や可変長のどっちでも取ることができる。パケットの長さ情報はヘッダに含まれる。

【0004】PS方式では複数のパケット(MPEG-2ではパケット化したエレメンタリーストリームと称する)をグループ化してパックを構成するのに対し、TS方式では一つのPESを再分割して比較的に短い長さをもつ複数のTSパケットを構成する。このとき、TSパ 20ケットの長さは188パイトであり、4つのATMセルに分れられて伝送される。

【0005】 TSパケット内には4バイトのヘッダがあり、このヘッダの中にはそれがどんなパケットなのかを示すPID(パケットID)がある。また、このPIDはプログラム仕様情報(Program Specific Information; PSI)のPMT(Program Management Table)に記載されている。PIDが"0"であるTSパケットはPSIを伝送するために使われる。

【0006】トランスポートストリームは複数のプログ 30 ラムを伝送するため、各TSパケットがどのプログラム に属したものであるかに関する情報が必要になる。この情報を総称してPSIと呼ぶ。そしてPSIは、指定されたIDを有したTSパケットや一次的なPSIで示すパケット等により伝送される。このPSIパケットはPAT、PMT、NIT、CAT等で構成されている。PSI情報は最小限に0.7秒以内に一度は伝送される。【0007】PATはプログラムの情報を収録し、PMTを含むパケットのPIDを含んでいる。

【0008】ヘッダには同じPIDをもつバケットの連 40 続性を検査するための巡回カウンターも含まれる。

【0009】TSエンコーダはPESパケットを再分割してTSパケットで構成する。PESパケットはその長さは固定されておらず、単にPESへッダ内にその長さを示せるように16ビットのヘッダ情報を含む。

[0011]

【発明が解決しようとする課題】本発明は上記事情に鑑みて成されたものであり、その目的は、一つのPESバケットを一つのフィールドに構成し、フィールド単位にPCR(Program ClockReference)をTSバケットに挿してTSバケットを発生するエンコーダ及びエンコーディング方法を提供することにある。

るため、所望のフレームの情報が再構成し難いからであ

[0012]

【課題を解決するための手段】前記目的を達成するため に、本発明によるTSエンコーダは、MPEGエレメン タリーストリームを入力してトランスポートストリーム を発生するTSエンコーダにおいて、前記エレメンタリ ーストリームのフィールド単位にPESへッダを発生す るPESヘッダ発生器と、前記PESヘッダの有効区間 を示すPESヘッダ有効区間信号をフィールド単位に発 生する制御信号発生器と、前記PESヘッダ発生器で発 生したPESヘッダ及びエレメンタリーストリームを記 録/読出しするメモリと、前記制御信号発生器で発生し たPESヘッダ有効区間信号に同期されて前記メモリの 記録動作を制御し、TSヘッダが記録される区間を示す TSヘッダ区間信号を発生するメモリ制御器と、前記メ モリ制御器で発生したTSヘッダ区間信号に同期されて 前記メモリの読出し動作を制御し、TSヘッダが記録さ れるタイミングを示すTSヘッダフラグを発生するフラ グ発生器と、前記TSヘッダフラグに同期してメモリか ら読み出されたデータにTSヘッダを付加してTSパケ ットを出力するTSパケット発生器とを含むTSエンコ ーダである。

【0013】前記目的を達成するために、本発明による TSエンコーディング方法は、MPEGエレメンタリー ストリームを入力してトランスポートストリームを発生 するTSエンコーディング方法において、前記エレメン タリーストリームのフィールド単位にPESへッダを発 生する過程(a)と、前記過程(a)で発生したPES ヘッダの有効区間を示すPESヘッダ有効区間信号をフ ィールド単位に発生する過程(b)と、前記過程(b) で発生したPESヘッダ有効区間信号に同期されて前記 過程で発生したPESヘッダ及びエレメンタリーストリ ームを記録する過程(c)と、前記TSヘッダが記録さ れる区間を示すTSヘッダ区間信号を発生する過程 (d)と、前記過程(d)で発生したTSヘッダ区間信 号に同期されて前記過程(a)で発生したPESヘッダ 及びエレメンタリーストリームを読み出す過程(e) と、前記TSヘッダが記録されるタイミングによって前 記過程(e)で読み出されたPESヘッダ及びエレメン

を生成する過程(f)とを含むTSエンコーディング方 法である。

[0014]

【発明の実施の形態】以下、添付した図面に基づき本発 明の構成及び動作を詳細に説明する。

【0015】図1は、MPEG-2のPESパケット及 びTSパケットの構成図である。図1の(a)はPES パケットの構成図であり、図1の(b)はTSパケット の構成図である。図1に示されたPESパケット及びT SパケットはMPEG-2のシステムに係るスペックで 10 において各構成要素の内容は次の通りである。 ある ISO/IEC 13818-1 に明記されている。*

*【0016】一つのPESパケットはヘッダ及びペイロ ードで構成され、その長さは可変的である。PESパケ ットの長さ情報はヘッダに含まれる。

【0017】一つのTSパケットは4バイトのヘッダと nバイトのアダプテーションフィールド、そして(18 4-n)バイトのペイロードで構成され、その総長さは 188バイトである。

【0018】図2は、図1の(a) に示されたPESパ ケットの詳細図である。図2に示されたPESパケット

pes start code prefix \rightarrow "0x000001" stream id \rightarrow "11110 xxxxx" : ISO/IEC 11172 -2 video stream number xxxx

"110x xxxxx": ISO/IEC 11172-3 audio s tream number xxxx

pes packet length → "0x00": PESパケットの長さ が正確に明記されていない。

pes scrambling control → "00"

pes priority - "1"

data alignment indicator → "0"

copy right \rightarrow "0"

PTS DTS flag → "10"

ESCR FLAG → "0": Elementary Stream Cloc

k Reference Flag

ES rate flag → "0"

DSM trick mode flag → "0": Digital Stora

ge Media トリックモードフラグ

additional copy info flag → "0"

PES CRC frag → "0"

PES extension flag → "0"

PES header data length → "0x05"

PTS → "Ox xxxx xxxx xxxx xxx (5パイト)": Prog ram Time Stamp

【0019】図3は、図1に示されたTSパケットの詳 ※成要素は次の通りである。 細図である。図3に示されたTSパケットにおいて各構※

syncbyte \rightarrow "0 x 4 7"

transport error indicator \rightarrow "0"

payload unit start indicator → "0"

transport priority → "0"

 $PID \rightarrow "1 1111 1111 1111"$

transport scrambling control → "00"

adaptation field control \rightarrow "01"

continuity counter → "00"

adaptaion field

る。PATパケットはPID="0"によって伝送される 特殊な情報であり、各プログラム番号(16ピット)毎★

【0020】図4は、PATバケットの詳細構成図であ ★にそのプログラムの構成要素を記述するテーブル(Prog ram Map Table)を伝送する。図4に示された各構成要 素の内容は次の通りである。

table id \rightarrow "0 x 0 0"

section syntax indicator → "l"

"O"

reserved → "ll"

section length \rightarrow "0x0d"

transport stream id → "0x01":使用者によって再び 定義できる。

reserved → "ll"

version number \rightarrow "0x00"

current next indicator \rightarrow "1"

section number \rightarrow "0x00"

program number → 使用者が指定する外部入力プログラム番号

reserved → "lll"

program map PID → 外部入力 PMT_PID

【0021】図5はPMTパケットの詳細図である。P

MTはプログラム識別番号及びプログラムを構成するビ デオ、オーディオなどの個別ビット列が伝送されている トランスポートパケットのPIDリスト及び付属情報を*

*記述している。

【0022】図5に示された構成要素の各内容は次の通 りである。

table id \rightarrow "0x02"

section syntax indicator → "l"

"0"

reserved → "ll"

section length \rightarrow "0x0d"

program number → "0x01":使用者によって再び定義でき

る。

 $\texttt{reserved} \rightarrow \texttt{"11"}$

version number \rightarrow "0 x 0"

current next indicator → "l"

section number \rightarrow "0x00"

last section number: "0x00"

 $\texttt{reserved} \rightarrow \texttt{"1111"}$

PCR PID → 外部入力 PCR PID 13ビット

reserved → "llll"

program info length \rightarrow "0x000"

stream type → MPEGテーブル2-36によってストリームタイ

プ指定

reserved → "lll"

elementary PID → 外部入力 VTS PID

reserved \rightarrow "0 x f"

【0023】図6は、ヌル(NULL)パケットの構成 図である。TSエンコーダは基本的に複数のプログラム は伝送速度が60Mbpsなら、通常ビデオが9Mbp sであり、オーディオが384Kbpsであるため、ビ デオ及びオーディオを伝送しない間にはヌルパケット (4バイト+184バイト)を伝送する。

【0024】図7は、本発明によるTSエンコーダの詳 細構成図である。図7に示された装置はPESパケット 発生器10、制御信号発生器12、メモリ制御器14、 ビデオメモリ16、オーディオメモリ18、PCR発生 器20、フラグ発生器22、PSI発生器24、CRC 発生器26、そしてTSパケット発生器28を具備す

る。

【0025】PESパケット発生器10は、クロック信 をマルチプレクシングできる。例えば、TSエンコーダ 40 号clk、リセットreset、フィールドリセットf ield_rst、パスイネーブル信号bus_enaに よりフィールド単位にPESパケットへッダを発生す る。PESパケット発生器10はフィールドリセット信 号field_rstによりエレメンタリーストリーム でフィールドが開始されることが分かり、またフィール ドリセット信号field_rstからNクロック以降 に毎フィールドに対して図2に示されたようなPESへ ッダを発生する。PESパケット発生器10はビデオ及 びオーディオに対して別々にヘッダ信号vpes_hd 50 r、apes_hdrを発生させる。

10

【0026】次に、PESパケット発生器10は、PE Sヘッダにエレメンタリーストリームを挿入してPES パケットを発生する。

【0027】制御信号発生器12は、クロックclk、リセットreset、フィールドリセットfield_rst、バスイネーブルbus_ena、データdata8によりPESバケット発生器10で発生したPESへッダの有効区間を示すビデオ及びオーディオ有効区間信号vpes_vld、apes_vldを発生する。フィールドリセットfield_rstからNクロック以降にPESバケットへッダが発生するため、制御信号発生器12はそれぞれのフィールドに対してオーディオ及びビデオの有効な区間を指示する。また、制御信号発生器12は、PSI情報を挿入するための区間を表示するPSI信号psi_stを発生して毎フィールドにPSIパケットを挿入する。

【0028】メモリ制御器14は、オーディオ及びビデオメモリ16及び18にデータを書き込むための制御信号とTSパケットを発生させるための制御信号を生成する。先ず、メモリ制御器14は、オーディオ及びビデオ 20 データをオーディオ及びビデオメモリ16及び18に記録するために各々アドレスvwr_address、awr_addressとイネーブルvwr_ena、awr_ena信号を生成する。

【0029】オーディオ及びビデオはそれぞれのPID が存在するため、他のTSパケットで生成されなければ ならない。

【0030】各フィールドの最初に開始されるパケットはPCRを付加することになり、該PCRを付加するためのアダプテーションフィールドが具備される。このP30伝送する。CRは各フィールドに具備されたアダプテーションフィールドに一度ずつ挿入される。したがって、メモリ制御 fielc ケットを当まして、レデオ及びオーディオデータのアダプテーションフィールドにPCRを挿入するためのオーディオ及びビデオストリーム信号vts_st、ats_stを発生する。

【0031】メモリ制御器14は、PESパケット発生器10で発生するPESパケットから1フィールドの最後のデータを示すシーケンスエンドコードを検出すれば、そのときのデータ個数情報 datnumをフラグ発 40生器22に出力する。このとき、メモリ制御器14は、実際に記録される有効アドレスval_addrまで伝送することになる。

【0032】 このときにも、1フィールドの最後のデータとして1TSバケットが構成されない場合(例えば、1トランスポートバケットのデータ量が184バイトよりも小さい場合)、スタッフィングデータを挿入すべきアダプテーションフィールドを具備しなければならない。このスタッフィングデータはシーケンスエンドコードを用いてアダプテーションフィールドに挿入される。

【0033】PCR発生器20は、0口ック信号 c1 k 及びフィールドリセット信号 $field_rst$ により PCRを生成するためのPCR信号 pcr_st を生成する。PCRは、符号化器と復号化器との間に同じ時間 条件を維持させるための信号であって、27 MH z 0口ックで生成される。

【0034】フラグ発生器22は、メモリ制御器14及 びPCR発生器20から入力されるオーディオ及びビデ オストリーム信号vts_st、ats_st、PCR信 10 号pcr_st、シーケンスエンド信号seq_end、 データ個数情報 datnum、有効アドレス valid _a d d r を参照してビデオ及びオーディオメモリ 1 6 及び18に格納されたビデオ及びオーディオデータを読 み出すためのオーディオ及びビデオアドレス信号 v_a ddr、a_addr及びTSパケットを発生するため のPAT及びPMTフラグpat_flag、pmt_f lagを生成する。しかし、フラグ発生器22は、内部 で1~188個のカウンターを用いてビデオパケットが 生成される間にオーディオパケットを生成せずに、逆に オーディオパケットが生成される間にビデオパケットを 生成しないように調整される。このとき、フラグ発生器 22は、PSIデータを生成できるタイミングを確保し てPAT及びPMTフラグpat_flag、pmt_f lagを生成することになる。このPAT及びPMTフ ラグpat_flag、pmt_flagはPSI発生器 24に入力されて実際のPSIデータを発生させる。 【0035】またフラグ発生器22は8個のフラグ8f lagsと5個のラン5run、そしてTSカウント信 号ts_cntを発生させてTSパケット発生器28に

【0036】PSI発生器24は、フィールドリセットfield_resetからフィールド単位にPSIパケットを生成する。このとき、PSIパケットは、図4及び図5に示されたようにPATパケット及びPMTパケットで構成され、これらはProgram Number(PN)、PCR PID(PCR_PID)、PMT PID(PMT_PID)、VTS(VTS_PID)、ATS PID(ATS_PID)として生成される。プログラムナンパー(PN)及びPMT PID(PMT_PID)はPATパケットで使われる。

【0038】TSパケット発生器28は、フラグ発生器22で発生する8個のフラグ8flags及びプログラムナンバー(PN)、PCR PID(PCR_PID)、PMT PID(PMT_PID)、VTS(VT S_PID)、ATS PID(ATS_PID)を入力

ンコーダは、一つのPESパケットが1フィールドに構 成されるTSパケットを生成する。これにより、一つの PESパケットの単位が一定でなく、かつ、PESパケ ットの長さが16ビットで表現できないサイズのビット

されてビデオメモリ16及びオーディオメモリ18から 読み出されたデータv_data、a_dataにTSへ ッダを付加してTSパケットを発生する。このとき、8 個のフラグ8flagsはTSパケットを形成するのに 重要な信号である。それぞれのフラグは次の通りであ る。

ストリームに対して遥かに小さいハードウェアで構成で きる。 【0041】また、1フィールド単位にPCRを挿入す

12

1) PCRフラグpcr_flagはTSパケットを生 成する時にPCRを挿入すべきタイミングを示す。TS パケットはPCRフラグpcr_flagが存在する時 にアダプテーションフィールドを有する。

るので、フィールドリセット信号でTSパケットのタイ ミングを解決できる。1フィールド単位にPESパケッ 10 トが構成される場合、TSパケットのPUSI (Pavloa d Unit Start Indicator) によって1フィールド単位に TSパケットを編集できる。

2) PTSフラグpts_flagはPESパケット内 に実際にディスプレーされるべき時間を示す値であるP TSを挿入すべきタイミングを示す。このとき、PTS はTSパケットが生成される時間にPCR値+Nを加え る。

【0042】1フィールド単位に符号化されたエレメン タリーストリームはsequence start co deから始まってsequence end codeで 終わる。したがって、1フィールドの最後のデータで1 TSパケットが構成されない場合、スタッフィングデー タをアダプテーションフィールドに挿入しなければなら ない。このとき、sequence end codeが 20 入力されると、アダプテーションデータは1フィールド メモリの代りに512バイトのメモリを使ってアダプテ ーションフィールドに挿入できる。

3) PESフラグvpes_flagはビデオTSパケ vhOpayloadunit start indic atorが毎PESパケットが開始するTSパケットに 対して"1"にセットされるタイミングを示す。

【図面の簡単な説明】

4) PESフラグapes_flagはオーディオTS パケットのpayload unit start in dicatorが毎PESパケットが開始するTSパケ ットに対して"1"にセットされるタイミングを示す。

> 【図1】 MPEG-2のPESパケット及びTSパケ ットの構成図である。

5) PATフラグpat_flagは、図4のPATパ ケットを生成するタイミングを示す。このPMTパケッ FOpayload unit start indic atorは"1"にセットされなければならない。

【図2】 図1のPESパケットの詳細構成図である。

6) PMTフラグpmt_flagは、図5のPMTパ ケットを生成するタイミングを示す。このPMTパケッ FOpayload unit start indic atorは"1"にセットされなければならない。

【図3】 図1のTSパケットの詳細構成図である。

7) ATSフラグats_flagは、オーディオパケ ットを生成するタイミングを示す。

【図4】 PATバケットの詳細構成図である。 【図5】 PMTパケットの詳細構成図である。

8) VTSフラグvts_flagは、ビデオパケット を生成するタイミングを示す。

ヌルパケットの構成図である。 【図6】 30

【0039】5個のランはそれぞれのパケット、すなわ ち、PAT、PMT、ビデオ、オーディオパケットが同 時に生成されないように制御する。オーディオ及びビデ オストリーム信号vts_st、ats_st、PSI信 号psi_stによってTSパケットが生成される区間 40 22 フラグ発生器 の以外には、図6に示されたようなヌルパケットが生成 される。

【図7】 本発明によるTSエンコーダの詳細ブロック 図である。

[0040]

【符号の説明】

[発明の効果] 以上述べたように、本発明によるTSエ

- 10 PESパケット発生器
- 12 制御信号発生器
- 14 メモリ制御器
- 16 ビデオメモリ
- 18 オーディオメモリ
- 20 PCR発生器
- - 24 PSI発生器
 - 26 CRC発生器
 - 28 TSパケット発生器

【図1】

【図2】

【図3】

syncbyte transport start transport PID scrambing 8 (0x47) error indicator indicator priority control	odaption field continuity adaption control counter field 4
adoption field discountinuity frondom access elemen length indicator indicator priorit	tary stream flags PCR stuffing y indicator 5 42+6 bytes 1 m2

[図4]

【図6】

[図5]

[図7]

