Lauritzen: Undergraduate Convexity

Danny Nygård Hansen

10th November 2022

2 • Affine subspaces

General notes

REMARK 2.1: Linear subspaces are null spaces.

In the proof of Proposition 2.6 we use the fact that every linear subspace W of \mathbb{R}^d is the null space for some $m \times d$ matrix A with $m \le d$. We prove a more general claim:

Let V be a vector space, and let U be a complemented subspace of V. Then U is the kernel of some surjective linear map $\varphi: V \to W$.

Recall that U is a complemented subspace of V if V has a subspace U' such that $V = U \oplus U'$. In this case V is the coproduct of U and U', so if $0: U \to U'$ is the the map sending every element of U to 0, then the coproduct map $\varphi = [0, \mathrm{id}_{U'}]: U \oplus U' \to U'$ is a linear map with kernel U. To prove this last claim, note that we clearly have $U \subseteq \ker \varphi$, and conversely of $u + u' \in \ker \varphi$ then

$$0 = \varphi(u + u') = 0(u) + id_{U'}(u') = u',$$

so $u + u' = u \in U$. Also, φ is clearly surjective.

In the case of Proposition 2.6, since \mathbb{R}^d is finite-dimensional every subspace is complemented (e.g. by basis considerations), so there is a φ as above with $\ker \varphi = W$. Since φ is surjective its codomain has dimension $m \le d$. To obtain A, simply take the standard matrix representation of φ .

Exercises

EXERCISE 2.4

Prove that $M = \{v \in \mathbb{R}^d \mid Av = b\}$ is an affine subspace of \mathbb{R}^d , where A is an

 $m \times d$ matrix and $b \in \mathbb{R}^m$.

SOLUTION. For $u, v \in \mathbb{R}^d$ and $t \in \mathbb{R}$ we have

$$A((1-t)u + tv) = (1-t)Au + tAv = (1-t)b + tb = b.$$

EXERCISE 2.9

Prove that f(x) = h(x) + b is an affine map if $h: \mathbb{R}^d \to \mathbb{R}^m$ is a linear map and $b \in \mathbb{R}^m$. Prove that h(x) = f(x) - f(0) is a linear map if $f: \mathbb{R}^d \to \mathbb{R}^m$ is an affine map.

SOLUTION. First assume that h is linear, and let $u, v \in \mathbb{R}^d$ and $t \in \mathbb{R}$. Then

$$f((1-t)u + tv) = h((1-t)u + tv) + b$$

$$= (1-t)h(u) + th(v) + (1-t)b + t(b)$$

$$= (1-t)(h(u) + b) + t(h(v) + b)$$

$$= (1-t)f(u) + tf(v),$$

so f is affine. Next assume that f is affine, and let $u, v \in \mathbb{R}^d$ and $\beta \in \mathbb{R}$. If $\beta = -1$ then

$$h((-1)u) = f((-1)u) - f(0) = f(2 \cdot 0 + (-1)u) - f(0)$$

= $2f(0) - f(u) - f(0) = -h(u)$.

If instead $\beta \neq -1$, then

$$\begin{split} h(\beta u + v) &= f(\beta u + v) - f(0) \\ &= f\Big(\frac{\beta}{\beta + 1}(\beta + 1)u + \frac{1}{\beta + 1}(\beta + 1)v\Big) - f(0) \\ &= \frac{\beta}{\beta + 1}f((\beta + 1)u) + \frac{1}{\beta + 1}f((\beta + 1)v) + \Big(\frac{\beta^2}{\beta + 1} + \frac{\beta}{\beta + 1} - (\beta + 1)\Big)f(0) \\ &= \beta\Big(\frac{1}{\beta + 1}f((\beta + 1)u) + \frac{\beta}{\beta + 1}f(0)\Big) + \Big(\frac{1}{\beta + 1}f((\beta + 1)v) + \frac{\beta}{\beta + 1}f(0)\Big) - (\beta + 1)f(0) \\ &= \beta f(u) + f(v) - (\beta + 1)f(0) \\ &= \beta (f(u) - f(0)) + (f(v) - f(0)) \\ &= \beta h(u) + h(v). \end{split}$$

EXERCISE 2.10

Prove that you can have no more than d+1 affinely independent vectors in \mathbb{R}^d .

SOLUTION. Let $\{v_1, ..., v_n\} \subseteq \mathbb{R}^d$ be affinely independent. By Proposition 2.9, the n-1 vectors $v_2 - v_1, ..., v_n - v_1$ vectors are linearly independent. But then we must have $n-1 \le d$, i.e. $n \le d+1$.

EXERCISE 2.11

Let $v_0, ..., v_d$ be affinely independent points in \mathbb{R}^d . Prove that

$$f(x) = (\lambda_0, \lambda_1, \dots, \lambda_d)$$

is a well defined affine map $f: \mathbb{R}^d \to \mathbb{R}^{d+1}$, where

$$x = \lambda_0 v_0 + \dots + \lambda_d v_d$$

with $\lambda_0 + \cdots + \lambda_d = 1$.

SOLUTION. If also $x = \mu_0 v_0 + \cdots + \mu_d v_d$ with $\mu_0 + \cdots + \mu_d = 1$, then

$$(\lambda_0 - \mu_0)v_0 + \dots + (\lambda_d - \mu_d)v_d = 0,$$

so since the v_i are affinely independent we have $\lambda_i = \mu_i$ by Proposition 2.9. Hence f is well-defined.

Next we show that *f* is affine. Let

$$x = \lambda_0 v_0 + \dots + \lambda_d v_d$$
 and $y = \mu_0 v_0 + \dots + \mu_d v_d$

with $\lambda_0 + \dots + \lambda_d = 1$ and $\mu_0 + \dots + \mu_d = 1$, and let $t \in \mathbb{R}$. Then

$$\sum_{i=0}^{d} ((1-t)\lambda_i + t\mu_i) = (1-t)\sum_{i=0}^{d} \lambda_i + t\sum_{i=0}^{d} \mu_i = (1-t) + t = 1.$$

Therefore, since

$$(1-t)x + ty = \sum_{i=0}^{d} ((1-t)\lambda_i + t\mu_i)v_i,$$

we have

$$f((1-t)x + ty) = ((1-t)\lambda_0 + t\mu_0, ..., (1-t)\lambda_d + t\mu_d)$$

= $(1-t)(\lambda_0, ..., \lambda_d) + t(\mu_0, ..., \mu_d)$
= $(1-t)f(x) + tf(y),$

so *f* is affine.

EXERCISE 2.12

Prove that a non-empty open subset $U \subseteq \mathbb{R}^d$ has dimension dim U = d. Show that a subset $S \subseteq \mathbb{R}^d$ with dim S = d contains a non-empty open subset.

SOLUTION. Let $x \in U$, and let $(e_1, ..., e_d)$ be the standard basis for \mathbb{R}^d . Since U is open there is some $\delta > 0$ such that $x + \delta e_i \in U$ for all i. The linear subspace $-x + \operatorname{aff} U$ has dimension d, so U has dimension d.

The latter claim is in fact false, since if S is e.g. the collection of points δe_i along with the origin, then S has dimension d (since aff S contains each of the coordinate axes, hence the entire \mathbb{R}^d) but clearly contains no non-empty open subset.