CS 291 Homework 4

 $\begin{array}{c} {\rm Jingbo~Wang} \\ {\rm jw} 6347 @ {\rm truman.edu} \end{array}$

Section 7.3, problem 6.d Give a formal proof for each of the following tautologies by using the CP rule. Do not use the IP rule.

$$\forall x \ (p(x) \to q(x)) \to (\exists x \ p(x) \to \exists x \ q(x)).$$

Answer:

1.	$\forall x \ (p(x) \to q(x))$	P
2.	$\exists x \ p(x)$	$P [for \exists x \ p(x) \to \exists x \ q(x)]$
3.	$p(x) \to q(x)$	1, UI
4.	p(x)	2, EI
5.	q(x)	3, 4, MP
6.	$\exists x \ q(x)$	5, EG
7.	$\exists x \ p(x) \to \exists x \ q(x)$	2-6, CP
	QED	1,7, CP

Section 7.3, problem 6.f Give a formal proof for each of the following tautologies by using the CP rule. Do not use the IP rule.

$$\forall x \ (p(x) \to q(x)) \to (\forall x \ p(x) \to \forall x \ q(x)).$$

Answer:

1.	$\forall x \ (p(x) \to q(x))$	P
2.	$\forall x \ p(x)$	$P [for \forall x \ p(x) \to \forall x \ q(x)]$
3.	$p(x) \to q(x)$	1, UI
4.	p(x)	2, UI
5.	q(x)	3, 4, MP
6.	$\forall x \ q(x)$	5, UG
7.	$\forall x \ p(x) \to \forall x \ q(x)$	2-6, CP
	QED	1, 7, CP

Section 7.3, problem 7.c Give a formal proof that each of the following wffs is valid by using the CP rule and by using the IP rule in each proof.

$$\exists y \ \forall x \ p(x,y) \to \forall x \ \exists y \ p(x,y).$$

Answer:

1.	$\exists y \ \forall x \ p(x,y)$	P
2.	$\neg(\forall x \exists y \ p(x,y))$	$P[for \forall x \exists y \ p(x,y)]$
3.	$\exists x \ \forall y \ \neg p(x,y)$	2, T
4.	$\forall x \ p(x,c)$	1, EI
5.	p(d,c)	4, UI
6.	$\forall y \ \neg p(d,y)$	3, EI
7.	$\neg p(d,c)$	6, UI
8.	False	5, 7, Contr
9.	$\forall x \ \exists y \ p(x,y)$	2-8, IP
	QED	1, 9, CP

Section 7.3, problem 8.d Transform each informal argument into a formalized wff. Then give a formal proof of the wff.

Every rational number is a real number. There is a rational number. Therefore, there is a real number.

Answer:

Let D(x) mean that x is rational number, L(x) mean that x is real number. Every rational number is a real number: $\forall x(D(x) \to L(x))$ There is a rational number: $\exists x \ D(x)$ Therefore, there is a real number: $\exists x \ L(x)$

The argument can be written as the follow wff:

$$\forall x (D(x) \to L(x)) \land \exists x \ D(x) \to \exists x \ L(x).$$

1.	$\forall x (D(x) \to L(x))$	P
2.	$\exists x \ D(x)$	P
3.	D(b)	2, EI
4.	$D(b) \to L(d)$	1, UI
5.	L(d)	4, MP
6.	$\exists x \ L(x)$	5, EG
	QED	1, 2, 6, CP

Section 7.3, problem 8.e Transform each informal argument into a formalized wff. Then give a formal proof of the wff.

Some freshmen like all sophomores. No freshman likes any junior. Therefore, no sophomore is a junior.

Answer:

Let F(x) mean that x is freshmen, S(x) mean that x is sophomore, J(x) mean that x is junior, and L(x,y) mean that x likes y. A: Some freshmen like all sophomores: $\exists x \ (F(x) \land \forall y \ (S(y) \to L(x,y)))$ No freshman likes any junior: $\forall x \ (F(x) \to \forall y \ (J(y) \to \neg L(x,y)))$ B: Therefore, no sophomore is a junior: $\forall x \ (S(x) \to \neg J(x))$

Then the argument can be formalized as $A \rightarrow B$, where

$$\exists x \ (F(x) \land \forall y \ (S(y) \to L(x,y))) \land \forall x \ (F(x) \to \forall y \ (J(y) \to \neg L(x,y))) \\ \to \forall x \ (S(x) \to \neg J(x)).$$

```
\exists x \ (F(x) \land \forall y \ (S(y) \to L(x,y)))
                                                                          P
                                                                          P
        \forall x \ (F(x) \to \forall y \ (J(y) \to \neg L(x,y)))
2.
        F(c) \land \forall y \ (S(y) \to L(c,y))
3.
                                                                          1, EI
        \forall y \ (S(y) \to L(c,y))
                                                                          3, Simp
4.
        S(x) \to L(c,x)
                                                                          4, UI
5.
                                                                          P[\text{for } S(x) \to \neg J(x)]
6.
              S(x)
7.
               L(c,x)
                                                                          5, 6, MP
               F(c) \to \forall y \ (J(y) \to \neg L(c, y))
                                                                          2, UI
8.
9.
               F(c)
                                                                          3, Simp
                                                                          8, 9, MP
              \forall y \ (J(y) \to \neg L(c,y))
10.
11.
              J(x) \to \neg L(c,x)
                                                                          10, UI
              \neg J(x)
12.
                                                                          7, 11, MT
              S(x) \to \neg J(x)
                                                                          6, 12, CP
13.
        \forall x \ (S(x) \to \neg J(x))
                                                                          13, UG
14.
        QED
                                                                          1-5, 13, 14, CP
```