

# Срещи

N планини, номерирани от 0 до N-1 от ляво на дясно, лежат на хоризонтална линия. Височината на i-тата планина е  $H_i$  ( $0 \le i \le N-1$ ). На върха на всяка от планините живее по 1 човек.

Трябва да организирате Q срещи, номерирани от 0 до Q-1. В срещата с номер j (  $0 \le j \le Q-1$ ) ще участват хората, които живеят на планини с номера от  $L_j$  до  $R_j$  включително ( $0 \le L_j \le R_j \le N-1$ ). За провеждането на тази среща трябва да се избере планина x, като ( $L_j \le x \le R_j$ ). Цената на срещата се пресмята по следния начин:

- Цената на срещата е сума на цените, които трябва да платят участниците.
- Цената, която трябва да плати участникът, живеещ на планината с номер y (  $L_j \leq y \leq R_j$ ) е равна на височината на най-високата планина, намираща се в интервала от x до y, включително.
- В частност, цената за участника живеещ на планината x е  $H_x$  височината на планината x.

За всяка среща трябва да изберете място на провеждане така че цената да е минимална.

Забележете, че след завършването на поредната среща, всички участници се завръщат на свията планина, така че цената на всяка среща не се влияе от мястото на провеждане на предната.

### Детайли за реализацията

Напишете следната функция:

int64[] minimum costs(int[] H, int[] L, int[] R)

- ullet H: масив с дължина N, съдържащ височините на планините.
- L и R: масиви с дължина Q, съдържащи началата и краищата на интервалите от участници за съответните срещи.
- Функцията трябва да връща намерените стойности в масив (да го наречем условно C) с дължина Q. Стойността  $C_j$  ( $0 \le j \le Q-1$ ) трябва да е минималната възможна цена за провеждане на j-тата среща.
- ullet Как да получите дължините N и Q на масивите H и C е описано в таблицата

на страница "Бележки".

#### Пример

Нека 
$$N=4$$
,  $H=[2,4,3,5]$ ,  $Q=2$ ,  $L=[0,1]$ , и  $R=[2,3]$ .

Грейдърът извиква minimum\_costs([2, 4, 3, 5], [0, 1], [2, 3]).



Срещата j=0 е в интервала  $L_j=0$  and  $R_j=2$ , така че ще бъде посетена от живеещите на планините 0, 1, и 2. Ако изберете планината 0 като място на срещата, цената на срещата се пресмята както следва:

- Цената на участника от планината  $0 \in \max\{H_0\} = 2$ .
- Цената на участника от планината 1 е  $\max\{H_0,H_1\}=4$ .
- Цената на участника от планината 2 е  $\max\{H_0,H_1,H_2\}=4$ .
- ullet Следователно, цената на среща 0 е 2+4+4=10.

Не е възможоно да се продведе срещата 0 на друго място с по-ниска цена, затова цената на тази среща е 10.

Срещата j=1 е за интервала от  $L_j=1$  до  $R_j=3$  и в нея ще участвата живеещите на планините 1, 2 и 3. Ако изберем за място на срещата планината 2, цената на тази среща се пресмята както следва::

- ullet Цената на участника от планината  $1 \in \max\{H_1, H_2\} = 4.$
- Цената на участника от планината 2 е  $\max\{H_2\}=3$ .
- ullet Цената на участника от планината  $3 \ {
  m e \ max}\{H_2,H_3\}=5.$
- ullet Следователно, цената на среща 1 е 4+3+5=12.

Не е възможоно се проведе среща 1 на друго място при по-ниска цена, затова цената на тази среща е 12.

Файловете sample-01-in.txt и sample-01-out.txt в прикачения архив съответстват на този пример. В архива ще намерите и други примерни входове/изходи.

## Ограничения

- $1 \le N \le 750000$
- 1 < Q < 750000
- $1 \le H_i \le 1\,000\,000\,000\,(0 \le i \le N-1)$
- $0 \le L_j \le R_j \le N 1 \ (0 \le j \le Q 1)$
- $(L_j, R_j) \neq (L_k, R_k) \ (0 \leq j < k \leq Q 1)$

#### Подзадачи

- 1. (4 точки)  $N \leq 3\,000$ ,  $Q \leq 10$
- 2. (15 точки)  $N \leq 5\,000$ ,  $Q \leq 5\,000$
- 3. (17 точки)  $N \leq 100\,000$ ,  $Q \leq 100\,000$ ,  $H_i \leq 2~(0 \leq i \leq N-1)$
- 4. (24 точки)  $N \leq 100\,000$ ,  $Q \leq 100\,000$ ,  $H_i \leq 20~(0 \leq i \leq N-1)$
- 5. (40 points) Няма допълнителни ограничения.

## Примерен грейдър

Примерният грейдър чете вход в следния формат:

- ред 1: N Q
- ullet ред  $2 : H_0 \ H_1 \cdots H_{N-1}$
- ullet ред 3+j ( $0\leq j\leq Q-1$ ):  $L_j$   $R_j$

Примерният грейдър извежда стойностите, върнати от функцията minimum\_costs, в следния формат:

• ред 1+j ( $0 \le j \le Q-1$ ):  $C_j$