Эволюционная теория игр и равновесие Нэша

Золотов Борис Алексеевич, аспирант МКН СП6ГУ

6 октября 2022 г.

«Лига Лекторов», 3 сезон

Содержание

- Битва в море Бисмарка
- Золотые шары (дилемма заключённого)
- Уступить или проехать (Ястребы и голуби)
- Смешанные стратегии
- Эволюционная теория игр

Битва в море Бисмарка

Битва в море Бисмарка

Генерал Имамура может послать конвой северным маршрутом (2 дня) или южным маршрутом (3 дня).

Генерал Кенни хочет бомбить конвой; если он отправит свои самолёты *не туда,* у него будет на это полдня меньше. Peters (2015)

Запись игры с помощью таблицы

Кенни выбирает строку таблицы, Имамура выбирает столбец. Их выигрыши записаны в соотв. клетках таблицы напротив их выбора.

Имамура

		Cei	вер	К	Эг
Кенни	Север		-2		-2.5
	Сев	2		2.5	
	Юг		-1.5		-3
	ਨ	1.5		3	

Доминирующая стратегия

При любом действии Кенни Имамуре выгоднее выбирать север (см. строчки).

У Имамуры есть домин. стратегия, у Кенни нет.

	Имаі	мура
		ı

		Север	Юг
-	Север	<u>-2</u>	≥ -2.5
НИ	Сев	2	2.5
Кенни	L	-1.5	≥ -3
	Юг	1.5	3

Равновесие Нэша

Умный Кенни тоже выберет север. Позиция (Север, Север) — *равновесие Нэша*: действие каждого — лучший ответ на действие другого.

		Имамура			
		Сев	ер	K	Эг
	Север		-2	>	-2.5
Кенни	Сев	2		2.5	
Кен		W	–1.5		-3
	Ю	1.5		3	

Равновесие Нэша

Равновесие Нэша — это устойчивое состояние общества, такой закон, который никто не будет хотеть нарушить даже при отсутствии какого-либо контроля.

Золотые шары (дилемма

заключённого)

Что такое дилемма заключённого?

Известная игра, где равновесие Нэша находится не в позиции, которая кажется предпочтительной для обоих игроков. Peters (2015); Maschler et al. (2013)

Адаптирована в качестве телешоу «Золотые шары» на британском канале *ITV*. Darai and Grätz (2010)

Таблица выигрышей для «3. Ш.»

Оба делятся — выигрыш делится поровну.

Один делится — всё забирает другой.

Оба хотят забрать — остаются ни с чем.

Игрок 2

		Дел	ИТЬ	Заб	рать
	Делить		5		10
0K 1	Дел	5		0	
Игрок 1	ать		0		0
	Забрать	10		0	

Что тут происходит?

У обоих игроков есть доминирующая стратегия: забирать деньги.

Она всегда даёт не меньший выигрыш.

Игрок 2

		Делить	Забрать
	ИТЬ	5	≤ 10
0K 1	Делить	5	0
Игрок .	ать	0	≤ 0
	Забрать	10	0

Равновесие Нэша

В этой игре три равновесия Нэша, но ни одно из них— не (Делить, Делить).

		Игрок 2			
		Делі	⁄ΙТЬ	Забр	оать
JK 1	Делить	5	5	<	10
Игрок 1	Забрать	10	0	0	0

Парето-оптимум

Участники пытаются разработать такую систему контроля, которая бы заставила их гарантированно находиться в позиции, оптимальной по Парето:

Нельзя улучшить чей-либо выигрыш, не ухудшив суммарного выигрыша и справедливости его распределения. Уступить или проехать (Ястребы и

голуби)

Уступить или проехать: выигрыши

Оба уступают — заминка на одном месте Один уступает — оба счастливы Оба едут — попадают в ДТП

Игрок 2

		Усту	ПИТЬ	Exa	ать
	Уступить		-1		2
0K 1	Усту	-1		1	
Игрок	Ехать		1		–11
	Exa	2		-11	

Доминирующая стратегия

Ни у одного из игроков нет доминирующей стратегии. (Игра симметрична, поэтому покажем только для первого.)

Игрок 2

		Уступить	Ехать
JK 1	Уступить		≤ 2
Игрок 1	Ехать	2	≥ -11-11

Два равновесия Нэша и светофор

Есть два симметричных равновесия Нэша, от которых игрокам невыгодно отступать, если им указать, в какой они играют.

		Игрок 2				
		Уступить	Ехать			
	ПИТЬ	<u> </u>	≤ 2			
0K 1	Уступить	– 1	1			
Игрок 1	ать	1	✓/ −11			
	Ехать	2	_11			

Два равновесия Нэша и светофор

Прибор, который это указывает, называется *светофор*. Но предлагается поискать равновесие ещё кое-где.

Игрок 2 Уступить Ехать Уступить Игрок 1 -11

Смешанные стратегии

Суть смешанных стратегий

Пусть абстрактный коллективный первый игрок уступает с вероятностью *p*, а второй — с вероятностью *q*.

Равновесие Нэша — позиция, когда действие каждого игрока — *лучший ответ* на действие другого.

Найдём, какая q будет лучшим ответом в зависимости от p.

Ожидаемый выигрыш второго игрока

$$-1 \cdot pq + 2 \cdot p(1-q) + 1 \cdot (1-p)q - 11 \cdot (1-p)(1-q) =$$

$$= (12 - 15p) \cdot q + 13p - 11$$

Лучшая q- либо 0, либо 1, либо все возможные.

Игрок 2

		Устуі	ПИТЬ	Exa	ать
	Уступить		-1		2
0K 1	Усту	-1		1	
Игрок	Tb		1		-11
	Ехать	2		-11	

Три равновесия Нэша

$$p<rac{4}{5}$$
, тогда $q=1$ $p=rac{4}{5}$, тогда q любое, выигрыш от него не зависит $p<rac{4}{5}$, тогда $q=0$

Эволюционная теория игр

Список литературы

Darai, D. and Grätz, S. (2010). Golden balls: A prisoner's dilemma experiment. Technical Report 1006, Socioeconomic Institute, University of Zurich.

Maschler, M., Solan, E., and Zamir, S. (2013). Game Theory. Cambridge University Press.

Peters, H. (2015). *Game Theory: A Multi-Leveled Approach.* Springer Texts in Business and Economics. Springer-Verlag Berlin Heidelberg, second edition.