(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-231319

(43)公開日 平成4年(1992)8月20日

(51) Int.Cl.⁵ C 0 1 B 33/148 FΙ

技術表示箇所

審査請求 未請求 請求項の数11(全 11 頁)

(21)出願番号 特願平3-128946

(22)出願日 平成3年(1991)5月31日

(31) 優先権主張番号 5 4 6 9 5 2 (32) 優先日 1990年7月2日 (33) 優先権主張国 米国(US)

(71)出願人 390037992

ナルコ ケミカル カンパニー

NALCO CHEMICAL COMP

ANY

アメリカ合衆国, イリノイ 60563-1198, ネイパービル, ワン ナルコ センター

(番地なし)

(72)発明者 チヤールズ シー. ペイン

アメリカ合衆国, イリノイ 60504, オー

ロラ, リツジ ロード 2545

(72)発明者 ロバート デイー. ジヨンズ

アメリカ合衆国, イリノイ 60565, ネイ

パービル,ケイム ドライブ 2038

(74)代理人 弁理士 青木 朗 (外4名)

(54) 【発明の名称】 高純度シリカゾルの製造方法

(57)【要約】

【構成】 Fe, Al, Na, K及び他の金属の含量の非常に低い、低金属含量高純度シリカゾルが出発けい酸ナトリウム溶液におけるしゅう酸を使ったキレート化技術を用いて製造される。この錯体は、次に陰イオン交換樹脂に通すことによって除かれ、他の不純物は陽イオン交換樹脂に通すことによって除かれる。

【効果】 得られたシリカゾルは、 SiO_2 合計量を基準としてFe, Al, Na及びK の各々が50ppm 未満でありうる。

【特許請求の範囲】

【請求項1】 次のステップを含む低金属含量のアンモ ニウムで安定化されたシリカゾルの製造方法:

- (a) 商業グレードのけい酸ナトリウムを水で希釈してSi 02 として5.0~約8.0重量%のけい酸ナトリウムを含む 希薄けい酸ナトリウム溶液を得;
- (b) 前記希薄けい酸ナトリウム溶液を、充分な量で、該 希薄けい酸ナトリウム溶液に含まれる本質的にすべての ナトリウム値を除くに充分な容量の酸型にした強酸性陽 量%の希薄けい酸溶液を形成し:次いで
- (c) この希薄けい酸溶液に、SiO2 基準で少なくとも0.10 重量%のしゅう酸及び全けい酸水溶液基準で少なくとも 0.25重量%の、H₂ SO4, H₃ PO4, HC1, HNO₃ 及び王水から 選ばれた無機強酸を加えることにより、しゅう酸含有低 pHけい酸溶液を形成し;次いで
- (d) 冷却し又は冷却せず、前記しゅう酸含有低pHけい酸 溶液を約0.5~約24時間混合し、SiO2として約5.0~約 8.0 重量%のけい酸を含み、約4.4~約16℃の温度を持 つ冷却されたしゅう酸/けい酸溶液を回収し;次いで
- (e) 上記しゅう酸/けい酸溶液を、充分な量で、該溶液 に含まれる本質的にすべての負に荷電した種を水酸化物 イオンで置換するに充分な容量の水酸化物型にした強塩 基性陰イオン交換樹脂にさらすことにより、水酸化物で 中和したけい酸溶液を形成し;次いで
- (f) この水酸化物で中和したけい酸溶液を、充分な量 で、該溶液に含まれるすべての正に荷電した種を水和し たプロトンで置換するに充分な容量の酸型にした強酸性 陽イオン交換樹脂にさらすことにより、低金属含量けい*

SiO₂:

pH:

粒径:

アルミニウム (Alとして)

鉄 (Feとして)

カリウム (Kとして)

ナトリウム (Naとして)

【請求項2】 前記ステップ(a)における希薄けい酸 ナトリウム溶液を4.4~16℃ (40°F~約60°F) の温 度に冷却し、次いでこの温度範囲をステップ(b)及び (c) を通じて保つ、請求項1の方法。

前記ステップ(c)において、ステップ 【請求項3】 (b) で形成された希薄けい酸溶液に、SiO₂を基準にし て少なくとも0.25重量%のしゅう酸と少なくとも0.5重 量%の№ SO4 とを加える、請求項1又は2の方法。

ステップ(e)と(f)の順序を逆に 【請求項4】 し、次いでステップ(g) 及びその後のステップを行な う、請求項1,2又は3の方法。

前記ステップ(h)のアンモニウム中 【請求項5】 和けい酸ヒール溶液を形成するにあたり、1~約20容量 *酸溶液を形成し;次いで

(g) 前記低金属含量けい酸溶液を約4.4℃~10℃(約40 F~50°F)に冷却し、攪拌し又は攪拌せずに1分~ 約50時間貯蔵することにより、冷却低金属含量けい酸溶 液を形成し;次いで

2

- (h) 水酸化アンモニウム溶液のpHが約8.0~約11.2の範 囲となるに充分な量の濃水酸化アンモニウムを脱イオン 水又は軟水に加えて水酸化アンモニウム溶液を予め調製 し、該予め調製した水酸化アンモニウム溶液に0~50容 イオン交換樹脂にさらして、SiO₂にして5.0~約8.0重 10 積%の冷却した低金属含量けい酸溶液を添加し、こうし て約8.0~約11.2の範囲のpHのアンモニウムで中和せる けい酸ヒール(heel)溶液を形成し;次いで
 - (i) 沸騰を妨げるに充分な圧力の下に、前記ヒール溶液 を約75℃~約 150℃の範囲の温度に加熱し、次いでこの 温度を保ち、約0.5時間~約24時間をかけて、攪拌しな がら前記冷却された低金属含量けい酸溶液の残りをゆっ くり加えることにより、これをヒール中のすでに形成さ れた又は形成されつつあるシリカゾル粒子と反応させ、 この間にpHが約8.0~約11.2の範囲に維持されるよう 20 に、必要な量の水酸化アンモニウム溶液を加えて、最終 混合物を形成し;次いで
 - (j) この最終混合物を、75℃~約 150℃の温度で、沸騰 を妨げるに充分な圧力下に、更に0.5~約8.0時間反応 させることにより、希薄低金属含量シリカゾル溶液を形 成し:次いで
 - (k) 前記希薄低金属含量シリカゾル溶液を濃縮して、次 の特性を持つ最終的な低金属含量のアンモニア安定化シ リカゾルとする:

15~55重量% (SiO₂ 基準)

8. 5~11.2

4. 0 ∼130nm

<100 ppm(SiO₂基準)

<50 ppm(SiO₂基準)

<25 ppm(SiO₂基準)

<500 ppm(Si0₂基準)

た水酸化アンモニウム溶液に加えて、少なくとも0.05重 量%のNH3 と少なくとも0.10重量%のSiO2とを含むヒー ル溶液とする、請求項1,2,3又は4の方法。

40 【請求項6】 前記ステップ(i)において、ステップ (h) の前記冷却された低金属含量けい酸溶液を、1分 間あたり最終製品中の合計シリカの少なくとも0.025 重 量%の割合で添加し、更にpHを約9.5~約11.0に保つに 充分な水酸化アンモニアを添加する、請求項1,2, 3, 4又は5の方法。

【請求項7】 ステップ(j)における最終混合物の反 応を90℃~99℃の温度で、1.0~8.0時間行ない、次い でこうして形成された希薄低金属含量のアンモニアで安 定化されたシリカゾル溶液を約180,000 ~約300,000 の %の冷却された低金属含量けい酸溶液を前記予め調製し 50 分子量しゃ断を持つ限外濾過膜を通し、こうして次の特

性を持つ最終的低金属含量アンモニウム安定化シリカゾ ルを回収する、請求項1, 2, 3, 4, 5又は6の方*

SiO2

рH 粒径

アルミニウム (AIとして) 鉄 (Feとして)

カリウム (Kとして) ナトリウム (Naとして)

【請求項8】 次の特性を持つ低金属含量のアンモニウ 10 ムで安定化されたシ

リカゾル:

SiO₂ pН 粒径

> アルミニウム (AIとして) 鉄(Feとして) カリウム (Kとして) ナトリウム (Naとして)

【請求項9】 次の特性を持つ低金属含量アンモニウム

> SiO₂ Нq 粒径

> > アルミニウム (Alとして) 鉄 (Feとして) カリウム (Kとして) ナトリウム (Naとして)

【請求項10】 次の特性を持つ低金属含量アンモニウム

> SiO₂ Нq 粒径

アルミニウム (Alとして) 鉄 (Feとして) カリウム(Kとして) ナトリウム (Naとして)

【請求項11】 次の特性を持つ粒子サイズの大きい低金

> SiO2 рH 粒径

アルミニウム (Alとして) 鉄 (Feとして) カリウム (Kとして) ナトリウム (Naとして)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は高純度シリカゾルの製造 方法に関する。

[0002]

【従来の技術】シリカゾルは何十年も前から知られてい る。この用途は、製紙において滑り防止剤、耐火物を製 造するための塩基性化合物、塗被、触媒、インベストメ 50 カゾルを用いるといろいろな障害が生じた。不純なシリ

*法:

30±5重量% 8. $5 \sim 10.0$

5 ~30nm <30ppm(SiO2基準)

<25ppm(SiO2 基準) <10ppm(SiO2 基準) <100ppm (SiO₂基準)。

15~55重量%

8. $5 \sim 11.3$

4. $0 \sim 130 \text{nm}$

<100ppm (SiO2基準) <50ppm(SiO₂基準) <25ppm(SiO2 基準)

<500ppm (Si0₂基準)。

安定化シリカゾル: 30±5重量%

9. 0 ± 0.5 5~30nm

<50ppm(SiO₂基準) <25ppm(SiO₂ 基準) <15ppm(SiO₂ 基準)

<100ppm (SiO2基準)。 安定化シリカゾル:

30±2.5重量% 9. 0 ± 0.25 5~30nm

<30ppm(SiO₂基準) <15ppm(SiO2 基準) <10ppm(Si0₂基準) <80ppm(SiO₂基準)。

属含量のアンモニウム安定化シリカゾル:

30±5重量% 9. 0 ± 0.5 30~130nm <50ppm(SiO₂ 基準) <25ppm(SiO2 基準)

<15ppm(SiO2 基準) <100ppm (SiO₂基準)。

> ントの鋳造の用途、そしてエレクトロニクスを含む各種 工業における磨き剤特にウェーハーの研磨を包含する。

> 【0003】これらの各用途において、より厳密に言え ば、精密インベストメント鋳造、高温・高強度耐火物、 特殊な触媒の担体の形成において、塗被及びエレクトロ ニクス分野において、痕跡量の遷移金属、アルカリ及び アルカリ土類金属、アルミニウム等の不純物を含むシリ

カゾルを用いるとき、これらの金属が痕跡量存在する と、しばしば性能を害する。

【0004】これらの不純物金属は、Na、K のアルカリ 金属、Ca, Mg等のアルカリ土類金属及びFe, Cu, Mn, N i, Zn等の遷移金属を含んでいると特にやっかいであ る。一般に、元素周期率表の第IB, IIB, IIIB, IVB, V B, VIB, VIIB 属及び第VIII属の遷移金属はどれでも、 充分な濃度であれば、これら不純物を含むシリカゾルを 用いて作った最終製品に障害を起こす。

【0005】障害を起こす他の金属は、特に触媒の製造 においては、アルミニウムである。もしアルミニウムが 存在すると、そして特に、Fe, Ni, Cu, Mn又はCrが併存 すると、触媒であれ、耐火物であれ、インベストメント 鋳造であれ、電子ウェーハーに用いられる電子研磨剤で あれ、最終製品の必要条件を、このシリカゾルは満たさ ないことが多い。

【0006】金属不純物含量の少ないゾルを得るための 努力がこれ迄になされてきた。その内2つの日本特許公 開公報が重要である。第一に、触媒化成工業(株)の -158810号公報がある。この出願においては、けい酸塩 液をイオン交換し、無機の強酸を加え、その後限外濾過 してNH3 又はアミンを後添加し、加熱して加熱ゾルと言 われているものを作り、次いで、残っているけい酸溶液 をゆっくりと滴々加えて粒子サイズを大きくし、成長さ せることにより、言うところの高純度シリカゾルを調製 する。この日本特許公開には、Fe, Ni, Cu等の遷移金 属、アルミニウム及び上述のような他の金属の除去を助 けるために特別な錯形成剤を用いることは、全く述べら れていない。

【0007】第二に日産化学工業(株)の「高純度大粒 子径シリカゾルの製造方法」という名称の特開昭63-28 5112号公報がある。この公報は、次のステップで高純 度、大粒径のシリカゾルを作る方法を述べている。即 ち、アルカリ金属けい酸塩水溶液を強酸性陽イオン交換 樹脂で処理し、活性けい酸のコロイド溶液を得、このけ い酸のpHを0~2に調節して熟成し、この溶液を強酸性 陽イオン交換樹脂で処理し、強塩基性陰イオン交換樹脂 で処理し、更に、強酸性陽イオン交換樹脂で処理する。 酸化物溶液を加えてpH7~8でこのシリカのコロイド溶 液を安定化させる。次にこの混合物を加熱し、強塩基性 陰イオン交換樹脂で処理し、更に強酸性陽イオン交換樹 脂で処理する。得られたけい酸コロイド溶液に高純度ア ルカリ金属溶液を加え、pH7~8でシリカのコロイド溶 液を安定化する。この混合物を加熱し、SiO2/M20 モル 比が4.5以下の所定のモル比の高純度アルカリ金属シリ ケート水溶液を加えて、該混合物のSiO2/M20 モル比が 20:60となるようにする。更に加熱し、反応させて粒子

アルカリ金属シリケートに由来するアルカリの当量の40 ~90%の当量の酸を加え、次いで、微孔性フィルムを通 して濃縮する。ここでもやはり、特に遷移金属の除去を

助ける錯形成剤に関しては何も述べられていないし、安 定化のためのアルカリ金属シリケート又はアルカリ金属 水酸化物の溶液を使用することを開示しているから、最

6

後に得られるゾルはアルカリ金属特にナトリウムの含量 が非常に高い筈である。

【0008】最後に、ファルベンファブリケン バイヤ 10 ー, レーベルクーセンが所有し、Dr. ヴイクトル ヘル ムントによって発明された旧ドイツ特許第815.643 号明 細書は、「シリカゾルからの重金属、特に鉄の除去方 法」という名称の方法を述べている。このドイツ特許の 方法では、シリカゾル懸濁液中に存在する鉄はもはやけ い酸に結合されていない錯体の形に変換され、イオン交 換樹脂で処理することによりシリカゾルから除かれる。 しゅう酸は鉄との好ましい錯体を作る。鉄と陰イオン錯 体を作り、この錯体は陰イオン交換樹脂の助けによって 除かれる。しかし、ドイツ特許の方法は、シリカゾルを 「高純度シリカゾルの製造方法」という名称の特開昭61 20 形成して後に鉄の除去のためにシリカゾルを処理するか ら、限られたものである。この方法では、シリカゾル粒 子中にとり込まれた不純物の鉄や他の遷移金属を除くこ とができない。この方法では、シリカゾル粒子分散体を とりかこむ均一な水相中に溶解して存在する鉄を、又は シリカゾル粒子の表面に存在する鉄を除くことができる に過ぎない。

[0009]

【発明が解決しようとする課題】本発明の目的は、特に Al, Fe, K, Na 及び上述の他の遷移金属の値が非常に低 30 いシリカゾルの製造方法を提供することである。本発明 の他の目的は、通常のNa, K 又は他の金属の陽イオンに よる安定化とは対照的に、NH4 OH 又は可能な低分子量ア ミンで安定化されたナトリウム含量の非常に少ないシリ カゾルを提供することである。

【0010】本発明の更に他の目的は、4~約130+1 メートル粒子サイズを持ち、金属含量の少ない、アンモ ニウムで安定化されたシリカゾルを提供することであ る。上記ゾルは、ばらばらに分離された球状粒子を持っ ていて、高品質のインベストメント鋳造、ハイテクノロ 得られたけい酸コロイド溶液に高純度のアルカリ金属水 40 ジー耐火物、触媒用途、エレクトロニクス用研摩剤に、 そしてハイテクノロジー塗被用途に用いることができ

[0011]

【課題を解決するための手段】本発明は、次のステップ を含む低金属含量のアンモニウムで安定化されたシリカ ゾルの製造方法である:

- 商業グレードのけい酸ナトリウムを水で希釈し てSiO₂として5.0~約8.0重量%のけい酸ナトリウムを 含む希薄けい酸ナトリウム溶液を得;次いで
- を成長させる。最後に、前記アルカリ金属水酸化物又は 50 (b) 前記希薄けい酸ナトリウム溶液を、充分な量で、該

希薄けい酸ナトリウム溶液に含まれる本質的にすべての ナトリウム値及び陽イオン値を除くに充分な容量の酸型 にした強酸性陽イオン交換樹脂にさらして、SiO2 にして 5.0~約8.0重量%の希薄けい酸溶液を形成し;次いで (c) この希薄けい酸溶液に、SiO2 基準で少なくとも0.10 重量%のしゅう酸の結晶及び全けい酸水溶液基準で少な くとも0.25重量%の、H₂SO₄, HCl, HNO₃及び王水から選 ばれた無材強酸を加えることにより、約0.5~約2.5の 範囲のpHを持つしゅう酸含有低pHけい酸溶液を形成し; 次いで

- (d) 冷却し又は冷却せず、前記しゅう酸含有低pHけい酸 溶液を約0.5~約24時間混合し、SiO₂として約5.0~約 8.0 重量%のけい酸を含む上記けい酸溶液を回収し;次 いで
- (e) 上記けい酸溶液を、充分な量で、該けい酸溶液に含 まれる本質的にすべての負に荷電した種を水酸化物イオ ンで置換するに充分な容量の水酸化物型にした強塩基性 陰イオン交換樹脂にさらすことにより、約2.5~4.0の 範囲のpHの水酸化物で中和したけい酸溶液を形成し;次 いで
- (f) この水酸化物で中和したけい酸溶液を、充分な量 で、該けい酸溶液に含まれるすべての正に荷電した種を 水和したプロトンで置換するに充分な容量の酸型にした 強酸性陽イオン交換樹脂にさらすことにより、低金属含 量けい酸溶液を形成し:次いで
- (g) 前記低金属含量けい酸溶液を約4.4℃~10℃に冷却*

SiO2

*し、攪拌し又は攪拌せずに1分~約50時間貯蔵すること により、冷却低金属含量けい酸溶液を形成し; 次いで

- (h) 濃水酸化アンモニウムを脱イオン水又は軟水に加え て、予め調製した水酸化アンモニウム溶液とし、この際 前記水酸化アンモニウムは、該予め調製した水酸化アン モニウム溶液のpHが約8.0~約11.2の範囲となるに充分 な量とし、こうして約8.0~約11.2の範囲のpHのアンモ ニウム中和けい酸ヒール(heel)溶液を形成し;次いで
- (i) 沸騰を妨げるに充分な圧力の下に、前記ヒール溶液 10 を約75℃~約 150℃の範囲の温度に加熱し、次いでこの 温度を保ち、約0.5時間~約24時間保ち、この間に連続 的に又は漸増的に、攪拌しながら前記低金属含量けい酸 溶液の残りをゆっくり加えることにより、これをすでに 形成された又は形成されつつあるシリカゾル粒子と反応 させ、この間に同時に連続的に又は漸増的に、pHが約8. 0~約11.2の範囲に維持されるように、充分な量の水酸 化アンモニウム溶液を加えて、最後に希薄アンモニウム 安定化低金属含量シリカゾル混合物を形成し; 次いで
- (j) この最終混合物を、75℃~約 150℃の温度で、沸騰 20 を妨げるに充分な圧力下に、更に0.5~約8.0時間反応 させることにより、SiO2として約2.0~約6.0重量%の シリカを含む希薄低金属含量シリカゾル溶液を形成し; 次いで
 - (k) 前記希薄低金属含量シリカゾル溶液を濃縮して、次 の特性を持つ濃縮された低金属含量のアンモニア安定化 シリカゾルとする:

Нa : 8. $5 \sim 11.2$

粒子径 : 4. 0~100nm Al含量

: <100 ppm(SiO₂ 基準) Fe含量 : <50 ppm(SiO₂ 基準) Na含量 : <500 ppm(SiO2 基準)。

:15.0~55.0重量% (SiO2基準)

【0012】本発明の低金属含量アンモニア安定化シリ カゾルの好ましい製造方法においては、けい酸ナトリウ ム含量約25~30重量%の商業グレードけい酸ナトリウム 溶液を水で希釈し、けい酸ナトリウム濃度を約6~約7. 0 とすることにより、比重約1.04~約1.08の希薄けい酸 ナトリウム溶液を形成する。この希薄けい酸ナトリウム 溶液を強酸性陽イオン交換樹脂、例えばDowex-HGR-W2 (商標)(これは酸型にして使う) 又はDowex-650C(商 標)(これも又酸型にして使う)と反応させる。この希薄 けい酸ナトリウム溶液を約1~2ガロン/分/集められ たイオン交換樹脂立方フィートの速度でイオン交換樹脂 のカラムに通すのが好ましい。絶対に必要な条件ではな いが、このイオン交換ステップを、約4.4~16℃、好ま しくは約4.4~10℃の冷却された温度で行なうのが好ま しい。強酸性イオン交換樹脂と接触させた後に集められ た物質は、SiO2にして、約5~8重量%、好ましくは約 6~7重量%のけい酸を含む希薄けい酸溶液である。次

温度、即ち約4.4~約60℃に冷却して、これにしゅう酸 の結晶を加え、溶解する。その後に、又は同時に無材の 強酸を加え、この酸ゾルのpHを2.0未満、好ましくは、 約0.5~約2.0 に維持する。この強酸は、好ましくは、 Lb SO4 である。もっともこの強酸は、Hb SO4, HC1, Hb PO 4, ENO3 、王水又はこれらの混合物から選んでもよい。

【0013】前記しゅう酸の結晶は、SiO2を基準とし て、しゅう酸濃度が少なくとも0.01重量%、好ましくは 0.25重量%、最も好ましくは約0.5 重量%以上となるよ うに加える。前記強酸は、SiO₂を基準として、少なくと も0.25重量%、好ましくは少なくとも0.50重量%、最も 好ましくは1.0重量%の割合で加える。最も好ましく は、本発明の好ましい態様において用いられる前記H2 SO 4 は、酸性にされる出発酸ゾル溶液の全重量を基準にし て1%を占めるように加える。この時点での酸ゾルのpH は典型的には約1.0~約1.8であるが、約0.5~2.0で あってもよい。硫酸と金属キレート化有機酸(しゅう いでこのいわゆる酸性ゾルを攪拌し、必要に応じて上記 50 酸)の添加は、逆にしてもよく、そうしても全く害がな

W.

【0014】しゅう酸を加えると希薄けい酸溶液である 酸ゾルは黄緑に変わる。更に、H2 SO4 又は他の強酸を加 えると緑色が濃くなる。この緑色は、金属のしゅう酸錯 体がもたらしていると考えられる。この錯体は負に荷電 しているようである。好ましくは、このしゅう酸で処理 した酸ゾルは、温度が4.4~16℃好ましくは4.4~10℃ の範囲の温度に保たれるように冷却しながら、熟成す る。この熟成過程は約0.5~約24時間行なってよいが、 好ましくは1~約5時間、最も好ましくは約1~3時間 である。このしゅう酸含有けい酸溶液は、熟成後、好ま しくは、充分な量で、このしゅう酸で安定化したけい酸 溶液中に存在する本質的に全ての負に荷電した種を除き かつ水酸化物イオンと置換するに充分な容量の、水酸化 物型にした非常に強い塩基性の陰イオン交換樹脂と接触 させる。こうして水酸化物中和けい酸溶液を形成する。 弱酸性陰イオン交換樹脂も使用できる。

【0015】好ましくは、陰イオン交換樹脂はDowex SA R(商標) 樹脂、水酸化物型にしたDowex-SBR(商標) 樹脂 又は水酸化物型にしたDowex 550A (商標) 樹脂である。 前記しゅう酸含有けい酸溶液は、1~2ガロン/分/樹 脂立方フィートに匹敵する速度でこの陰イオン交換樹脂 に通す。陰イオン交換樹脂と接触させた後に集められた けい酸溶液は、本質的に、しゅう酸塩陰イオン金属錯体 が無く、通常45~60℃の温度で集められ、pHが約2.5~ 約4.0 である。陰イオン交換樹脂から出て来たこの物質 は、本発明の低金属含量シリカゾルを形成するのに直接 用いてもよい。しかし、好ましくは、この物質はすぐに 陽イオン交換樹脂に通す。この溶液を脱陰イオンの後陽 イオン交換樹脂による脱陽イオンにさらす迄の残余時間 は、好ましくは15分以下、より好ましくは10分未満であ る。この陽イオン交換樹脂は、水素型にしたDowex HGR-W2 (商標)、又はDowex 650C (商標) 樹脂でありうる。

【0016】前記溶液は、陰イオン交換樹脂床及び陽イオン交換樹脂床の両方を、約1~2ガロン/分/樹脂立方フィートの速度で通す。前記しゅう酸塩/けい酸溶液の脱アニオンは脱カチオンの前に行なうのが好ましいが、これらのプロセスの順序は逆にすることができ、それによっても非常に金属含量の低い最終シリカゾル製品とすることができる。

【0017】最後の脱イオン樹脂カラムからの流出液は、好ましくは、約4.4~10℃に冷却し、この冷却温度で0分~48時間貯蔵できるが、好ましくは5分~24時間、最も好ましくは約5分から約8~10時間までの間貯蔵する。上述の連結された脱アニオン及び脱カチオンのステップを経て得られた、冷却された低金属含量けい酸溶液は、金属含量が非量に低く、反応ヒール(heel)を形成するのに用いられ、更にシリカゾル粒子成長ステップに用いられる。そして本発明の最終の低金属含量アンモニウム安定化シリカゾルを得る。

10 【0018】ヒールは次のようにして作る。即ち、濃水 酸化アンモニウムを充分な量の脱イオン水に加えてpHが 約8.0~約11.2となるようにして作った予め調製した水 酸化アンモニウム溶液に、0~50容量%、好ましくは約 1~約20容量%の冷却された低金属含量けい酸溶液加え て作る。ヒールを作るために用いる予め調製した水酸化 アンモニウム溶液のpHは、好ましくは、約9.0~約11.2 であり、最も好ましくは約10.0~約11.2である。具体的 な態様において、pH約10.8±0.5の水酸化アンモニウム 10 溶液から始めるのが特に好ましい。このアンモニウム溶 液は、蒸留水又は脱イオン水に約1.6~1.8 重量%の水 酸化アンモニウムを含む。この水酸化アンモニウム溶液 に、室温以上で、好ましくは40°F~50°F(約4℃~ 10℃) で貯蔵された0~約50容量%の冷却された低金属 含量けい酸溶液を加え、かくして「ヒール」を作る。次 いでこのヒールを75℃~約 150℃に加熱し、沸騰しない ようにその圧力を保つ。好ましくは、このヒールを沸騰 を妨げるに充分な圧力下に約90℃~ 110℃に加熱する。 最も好ましくは、常圧前後で、但し好ましくは沸騰させ 20 ないようにして約97℃±2℃に加熱する。これらの温度 を約0.5~約24時間、好ましくは約1~10時間、攪拌し ながら保ち、アンモニウムで安定化され、成長したシリ カゾルを形成し、これに漸増的に又は連続的に、残り の、上記脱アニオン、脱カチオン工程を経て集められ、 貯蔵された低金属含量けい酸溶液を加える。低金属含量 けい酸溶液をアンモニウムで安定化されたシリカゾルヒ ールに添加するのに要する時間は約1~約48時間であっ てよいが、通常は、約4~約24時間である。低金属含量 けい酸ゾルの添加の間、温度は、好ましくは、95℃~99 30 ℃に保たれる。pHは水酸化アンモニウム溶液の添加によ って約8.0~11.2、好ましくは約9.0~11.2に保たれ る。ヒールに酸ゾルを加えるに従ってpHが下がるから、 追加のアンモニア又は水酸化アンモニウムを加えてpHを 8.0~11.2、好ましくは約9.0~11.2、最も好ましくは 9.5~11.0に保つのである。全ての酸ゾルを加えた後、 反応混合物を、更に0.5~約8.0時間、沸騰を妨げる圧 力下に約75℃~約 150℃に、好ましくは95℃~99℃に加 熱し、かくして最後の粒子サイズの成長及びシリカゾル 粒子の形成を行なう。この工程で、後述のように全金属 含量の極めて低い、分離した主としてアモルファスな球

【0019】ヒールを作るのに始めに用いられた酸性ゾルの量、残りの酸ゾルの添加速度、各pH、各pHを維持するために用いられたアンモニアの量、等を含むがこれらに限定されない多数の変数いかんによって、生成するアンモニウムで安定化された低金属含量ゾルは、その粒子サイズが、約4~約130nm、好ましくは約5~約50nmにわたりうる。しかし、前記ゾルは、上記変数いかんによって約30~約100nmにわたりうる。所望の粒子サイズいかんによって約30~約100nmにわたりうる。所望の粒子サイズいかんによって約2~約24時間の添加時間を要しうる、予

状シリカゾルが生ずる。

め調製されたヒールへの低金属含量けい酸溶液の添加が 終ったら、最終混合物は、再び、攪拌しながら好ましく は95℃~99℃に、約0.5~約8.0時間保つ。この最終反 応時間は所望の最終粒子サイズ及び粒子サイズ分布を得 るために、どれくらい必要であるかが決まる。好ましく は、この時間は約1~約6時間であり、約5~約30nmに わたる粒子サイズが望まれるならば、特にそうである。

【0020】前記希薄低金属含量のアンモニウムで安定 化されたシリカゾルは、好ましくは、既知の方法で濃縮 %とする。前記濃縮方法は、蒸発、限外濾過及び他の濃 縮工程を含みうる。好ましい方法は、前記希薄低金属含 量のアンモニウムで安定化されたシリカゾルを、約30,0 00~約1,000,000 、好ましくは約100,000 ~約500,000

、最も好ましくは約180,000 ~約300,000 にわたる分 子量しゃ断(cut-off) を持つ半透膜に通すことである。

【0021】この工程で形成された分離した球状粒子 は、非常に低金属含量のシリカゾルを得ようとする他の 方法で形成される鎖状粒子とは異なっている。水酸化ア

SiO

Ha

粒径

ンモニウムを用いて安定化することにより、そして本発*20 ことができる:

*明のしゅう酸塩キレート化剤を用いることにより、好ま しくは限外濾過による、濃縮後に、次の特性を有するシ リカゾルが形成される:

12

シリカ(SiO₂ として) :15~50重量% pH(アンモニアで調整して) : 8. 5 \sim 11. 3 粒子径 : 4. 0 ~130nm

これらの特性は、これらのシリカゾルがSiO₂に基づいて 100 ppm 未満のAI、50ppm 未満のFe、500ppm未満のNaを 含むことによって、更にそして根本的に高められる。好 して SiO_2 として $15\sim55$ 重量%、好ましくは約 $20\sim40$ 重量 10 ましくは、そして比較的低い粒子サイズを形成する条件 下では、SiOz 濃度約30±5重量%、pH約9.0±0.5、粒 径約5~約30nm、及びSiO2を基準として下記の金属含量 のシリカゾル得ることが可能であり、我々は実際に得 た:

> アルミニウム (AIとして) <50ppm 鉄 (Feとして) <25ppm ナトリウム (Naとして) <500ppm。

【0022】本発明方法により、次の特性を持ち、低金 属含量のアンモニウムで安定化されたシリカゾルを作る

25~35重量%

8. $5 \sim 9.5$

3. 0 ∼100nm

<90ppm(SiO2 基準)

<50ppm(Si0₂ 基準)

【0023】好ましくは、本発明は、次の特性を持った

鉄 (Feとして)

 SiO_2

pΗ

粒径

アルミニウム (A1として)

アルミニウム (Alとして)

カリウム (Kとして)

ナトリウム (Naとして)

鉄 (Feとして)

カリウム (Kとして)

ナトリウム (Naとして)

【0024】最も好ましくは、次の特性を持ったシリカ

 SiO_2

Нq

粒径

アルミニウム (Alとして)

鉄 (Feとして)

カリウム (Kとして)

ナトリウム (Naとして)

【0025】次の特性をもった大粒子サイズのシリカゾ

 SiO_2

pН 粒径

アルミニウム (Alとして)

鉄 (Feとして)

カリウム (Kとして)

<25ppm(SiO₂基準)

<900ppm (SiO₂基準)。

シリカゾルを作ることができる:

30±2.5 重量%

9. 0 ± 0.25

5 ~30 nm

<30ppm(SiO₂基準)

<15ppm(SiO2 基準)

<10ppm(SiO₂基準)

<100ppm (SiO2基準)。

ゾルを作ることができる:

30±2.5重量%

9. 0 ± 0.25

30~100nm

<30ppm(SiO2 基準)

<15ppm(SiO2 基準)

<10ppm(SiO₂基準)

<100ppm (SiO2基準)。

ルも作ることができる:

30±5重量%

9. 0 ± 0.5

30~130nm

<50ppm(SiO₂基準)

<25ppm(SiO₂ 基準)

<15ppm(SiO₂基準)

ナトリウム (Naとして)

[0026]

【実施例】本発明を更に具体的に説明するために以下の 実験例を示す。

(1) 軟水を使って希薄けい酸ナトリウム溶液を作った。 この溶液はSiO₂として6~7%のけい酸ナトリウムを含 み、1.07~1.08の比重を持っていた。この溶液を4.4~ 7.2℃の温度に冷却し、Dowex 650C(商標) 水素型強酸 性陽イオン交換樹脂に、1~2ガロン/分/樹脂立方メ ートルの速度で通した。このイオン交換ステップによっ て得られたけい酸溶液を集め、この溶液を4.4~7.2℃ の温度に冷却できるタンクに貯蔵した。得られた酸性ゾ ルは高い鉄及びアルミニウム値で示される不純物を含 み、1.036 ~1.042 の比重を持ち、SiO2 としてけい酸 6 ~7%を含んでいた。この比重は、次の処理の前に、脱 イオン水の添加により約1.030(Si0₂にして約5%)に下 げた。

【0027】この溶液にしゅう酸結晶を加えて混合し た。このしゅう酸は酸性ゾル溶液中に存在するシリカを 20 基準にして0.5重量%となるようにこの溶液に加えた。 この混合物は黄緑色に変わり、この混合物に濃Ha SO4 を 加えるとこの色は更に濃くなった。このH2SO4 は、これ が加えられるべき出発酸性ゾルの全重量を基準にして1 重量%となるように加えた。

【0028】上記実験において、5ガロンの金属含有酸 ゾルを16.8gのしゅう酸及び195 gの濃៤SO4 でそれぞ れ処理した。最終的なpHは、標準pHメーターで定期的に チェックしたところ、1.5~約1.8であった。このしゅ がら約2時間熟成させた。この混合物を、冷却及び熟成 の後、水酸化物型にしたDowex 550A(商標)陰イオン交 換樹脂カラムに通し、次いで直ちにDowex 650C(商標) 水素型陽イオン交換樹脂カラムに注ぎ、1~2ガロン/ 分/樹脂立方フィートの速度で通した。この脱アニオン 及び脱カチオンは溶解されキレート化したすべての金属 及び始めから存在した又は樹脂との接触を通じて混入し てきたすべてのナトリウムを除去した。決定的であると までは思えないが、金属の最も効果的な除去は、しゅう いで陽イオン交換樹脂に通すことによって達せられると 考えられる。しかしながら、これらのステップを逆にし ても優れた結果が得られる。従って本発明は、しゅう酸 塩含有けい酸溶液を始めに陽イオン交換樹脂に、次いで 陰イオン交換樹脂に通すことを予想する。実際陰イオン 交換樹脂だけでも良好な結果が得られる。

【0029】前記酸性ゾルを陰イオン交換樹脂に通すと pHに影響が現われ、陰イオン交換樹脂を出た溶液のpHは 約3~約5.0である。この溶液は、好ましくは約4.4~ 約16 $^{\circ}$ の冷却された温度で、直ちに陽イオン交換樹脂に 50 測定した。その後 1 時間毎にサンプルを採った。観察し

<100ppm (SiO₂基準)。

加えるべきであると考えられる。そうすることによっ て、上記第2の陽イオン交換ステップで起こりうるゲル 化の問題を避けることができる。この時点での比較的高 い温度又は高いシリカ濃度はゲル化問題を引き起こしう るので、このゲル化を避けるように諸ステップを踏まな ければならない。

14

【0030】前に述べたタイプの陰イオン及び陽イオン 交換樹脂の両方を含む1つの層を1つの操作と共に用い るように、混合陰イオン/陽イオン交換樹脂層を形成す るのは全く実施可能なことである。この方法によれば上 述の別々のステップを踏む方法と異なりゲル化の問題を 避けることができる。しかしこの方法は、混合層の樹脂 の再生の時の後の複雑さを引き起こす。

【0031】しゅう酸塩含有酸ゾルを陰イオン及び陽イ オン交換樹脂カラムの両方を再度通した後、その温度を 約4.4~7.2℃に冷却してこの溶液を後の使用のために 貯蔵した。水酸化アンモニウムを脱イオン水に加えて反 応ヒールを作った。水酸化アンモニウム溶液の全容量 は、加えられるべき低金属含量けい酸溶液の約1~約20 容量%の範囲とすることができる。水酸化アンモニウム 溶液を作るのに用いられた脱イオン水のpHを測定したと ころ、典型的に、5.8~約6.0であった。この水に充分 な濃水酸化アンモニウムを加えて10.8±0.5の範囲のpH を持つ水酸化アンモニウム溶液を作った。陰イオン及び 陽イオン交換樹脂の両方を通して形成した低金属含量け い酸溶液を前記アンモニウム溶液に加える前に比重が1. 03となるように調整した。約 720gの30%水酸化アンモ ニウムを2400gの脱イオン水に加えて、アンモニアで安 う酸で処理した酸性ゾルは、約7.2 $^{\circ}$ の温度に冷却しな 30 定化された成長ゾルヒールを調製した。この希薄水酸化 アンモニウム溶液に、94,722gの金属のない比重1,030 のけい酸を攪拌しながら加えた。前記ヒールに加えられ たシリカの計算量はSiO2として 512gであった。アンモ ニアの計算量は、NH3 として0.194 重量%であった。次 いでこの出発ヒールを約45分かけて96℃~99℃に加熱し た。コンデンサーを備えた反応器中でヒールの温度を約 97℃~98℃に保ち、排気システムへガス抜きした。その ような設備を持ったこの反応器中の物質に残り酸ゾルを ゆっくり加えた。加えられたシリカの量はSi0₂として4, 酸塩含有けい酸溶液を、始めに陰イオン交換樹脂に、次 40 698 g であり、このシリカは前に述べた脱カチオン及び 脱アニオンのステップを経て形成された5重量%の酸性 ゾルに由来する。このシリカは 486分(8.1時間) かけて 加えられ、SiO2の添加速度は9.67gSiO2/分である。加 えられた酸性ゾルの比重は約1,026 と約1,032 の間で変

> 【0032】希薄水酸化アンモニウムとしてのアンモニ アはpHを約8.0~約10.0に保つに必要なだけ添加し、温 度は96℃~99℃に保った。この添加/反応開始後4時間 経ったところで、生成物をサンプリングして粒径とpHを

た反応期間にわたって粒径は約8 nmから約12.5nmに変わ った。全ての酸性ゾルを添加した後、成長しているゾル 粒子上への酸性ゾルの全ての析出を保証するため反応混 合物を約1時間加熱した。24時間迄のより長い反応時間 であってもよく、それによって困難は生じない。

【0033】次いで、この生成物を、約300,000 の分子 量しゃ断を持つ限外濾過膜を用いて、SiO₂にして30重量 %のシリカに濃縮した。限外濾過膜を通しての濃縮の間 pHは約10.0から9.0へ落ちた。pHを望みの範囲に保つた めに追加の水酸化アンモニウムを加えてもよい。上記過 10 加えた。 程を用いて実験室で得られた最終製品は、比重1.212、 シリカ含量31.3% (SiO2 として)、pH9.15、導電率2350 μモー、粘度31cps 及び平均粒径12.5nm(滴定により測 定)であった。この製品は、又SiO2を基準として鉄を4. 3ppm 、ナトリウムを25ppm 、塩素は検出されず、硫酸 塩を21ppm 及びアルミニウムを134ppm含んでいた。後 で、限外濾過段階で用いられたある器具からの汚染のた めにアルミニウム含量が劇的に増加したことが確認され た。早めの分析によれば、限外濾過前のアルミニウム含 量は約15ppm(SiO₂基準) であった。

*【0034】本発明を更に説明するために以下の実施例 を示す:次の表1に載せた全ての実験は、機械的攪拌 機、コンデンサー及び酸性ゾル供給口(ラップポンプ経 由)を備えた51三つ口丸底フラスコ中で行われた。全 ての調製品は約98.4±0.3℃に加熱した。出発ヒール は、重量により又は予め調製されたpHとなるように水酸 化アンモニウムを加えることにより、水酸化アンモニウ ムを加えた750ml の水であった。このアンモニア化水ヒ ールに、酸性ゾルを、室温又は約98±1℃までの温度で

16

【0035】低金属含量実験1~19

前述のようにして全ての金属を除く処理をした酸性ゾル を、与えられた温度で調整された速度で、反応混合物が SiO₂ 合計量157.9 gを含むように加えた。全ての酸性ゾ ルを加えた後、容器内容物を反応温度(98±1°C)に、 少なくとも4時間加熱した。実験1~19の結果を表1に 示す。

[0036]

【表1】

* 20

実験室実験データ(希薄溶液)

		700 E 700 F 100 F						
実験No.	ヒール pli	ヒール中 の酸ゾル %	最終 pH	最終電導率 (μモー)	最終比重	最終粒径 (nm)		
1 2 3 4 5 6 7 8 9 10 11 12 0 11 15 0 0 11 18 0 18 0 18 0 18 0 0 18 0 0 18 0 0 18 0 0 18 0 0 18 0 0 18 0 0 18 0 0 18 0 0 18 0 0 0 18 0 0 0 18 0 0 0 18 0 0 0 0	10.4 11.0 10.9 10.9 10.9 10.9 10.9 10.9 10.9	0 0 0 20 40 50 40 30 25 25 10 10 10 5.68	8.44 9.50 9.19 9.67 9.20 9.76 9.72 9.76 9.50 9.26 9.26 9.26 9.50 9.26 9.26 9.26 9.27 9.26 9.27 9.26 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27	190 471 350 348 576 516 399 341 629 647 560 464 301 310 584 477 442 460	1.0264 1.024 1.019 1.0195 1.0215 1.0215 1.0215 1.0205 1.0205 1.0235 1.025 1.025 1.0205 1.0205 1.0205 1.0205 1.0205	23.3 27.4 20.4 12.2 10.0 7.0 10.3 11.0 10.8 11.6 16.6 16.6 18.4 20.1 17.4 68 13.7		

- ⑥ 脱イオン水に代えて軟水を使用した
- ② 1.94nmの粒子のSiOz
- ③ 18時間の供給時間

【0037】一般に、

- (1) 出発ヒールが高い程、粒径が大きい。
- (2) ヒールシリカの量が大きい程、最終粒子サイズが小 さい。
- (3) 軟水と脱イオン水は、粒子サイズに影響を与えるこ となく相互に取り換えて使用できる。
- (4) ヒールシリカを室温で加えても、反応温度で加えて も本質的に粒子サイズに何ら影響がない。
- (5) 酸ゾルの添加速度を0.29gSiO₂/分~ 0.146gSiO₂ 50 を用意した。酸ゾルを、計量ポンプを経由させて反応器
- **/分の範囲で変えても最終粒子サイズに何ら影響がない** (反応時間9~18時間)。
- (6) 2段階成長プロセスは、より大きな粒子サイズをも たらす (実験No.17 参照)。

【0038】低金属含量大規模実験20~25

攪拌機と、スチーム加熱チューブ及びシェル型熱交換器 を備えた再循環ループとを備えた、エポキシで内張りし た40ガロンの反応器中にパイロットスケールの6バッチ

-109-

の頂上から反応器へ加えた。

【0039】全てのケースにおいて、ヒールはpH約10.9 0 ~10.95(典型的には0.5kgの28%NH。を水に溶したも の) に調整された脱イオン水から構成されていた。アン モニア化水を室温で反応器中で循環させつつ、これに予 め調整された量の酸ゾルを加えて出発ヒールを作った。 次いで、出発ヒールを97.0~99.2℃に加熱し、合計約1 時間この温度に保った。

【0040】反応器中のこの加熱されたヒールに本発明 に出発処理された酸性ゾルを、全てのSiO₂酸性ゾルの添 10 て行なった。 加が終了する迄 9.873gSiO₂/分の速度で供給した。こ の反応混合物を追加の6時間反応温度に保った。その結 果得られた希薄製品はSiO₂にして約25~35wt%に濃縮で きる。その結果を表2に示す。

[0041]

【表2】

実験番号	ヒール	ヒール シリカ	本 体シリカ	合 計 シリカ	粒 子サイズ
	pH	(kg)	(kg)	(nm)	
20	10.9	0.426	4.871	5.297	16.2
21	10.9	0.426	5.244	5.670	19.4
22	10.9	0.426	4.658	5.084	16.6
23	10.9	0.533	4.829	5.362	14.0
24	10.9	0.426	4.510	4.936	15.5
25	10.9	0.533	4.798	5.331	11.9
26	10.9	0.512	4.697	5.209	12.5

【0042】これらのスケールアップした実験から次の 所見を得た:

- (1) 出発ヒールのSiO₂含量を増し、他の全ての変数を一 定にすれば、最終平均粒子サイズが小さくなる。
- (2) 本体供給シリカ (ヒール形成後に反応温度で供給さ れる酸ゾルに由来する) の量を増し、他の全ての変数を 一定にすれば、最終平均粒子サイズが大きくなる。

*【0043】(3) バッチ20~23及び26のための酸ゾル は、0.5%しゅう酸(w/w)及び0.5%H2SO4(w/ w)をプラントで調製した酸性ゾルに加えることにより 調製した。最少限1時間経過した後、処理された酸ゾル は陰イオン交換カラム、次いで陽イオン交換カラムに通 してイオン交換した。

18

(4) 実験例24及び25の酸性ゾルの調製は、処理された酸 性ゾルを始めに陽イオン交換カラムに、次いで陰イオン 交換カラムに通した他は、上述の方法と同じ過程に従っ

【0044】先行技術との比較

ドイツ特許第 815,643号

特許の工程:

- 1. Na-安定化シリカゾルを水素型の陽イオン交換樹脂 に通す。
- 2. しゅう酸及び/又は鉱酸を加えてpHを1~2にす る。2~3時間放置する。
- 3. 再び水素型陽イオン交換樹脂に通す。
- 4. 水酸化物型陰イオン交換樹脂に通す。
- 20 5. アンモニアをNH₃ として0.1%加えて安定化させ る。

実際の試験

- 1. 40%の Na-安定化シリカゾルを水素型及び水酸化物 型のイオン交換樹脂に通す。
- 2. 生成物基準で0.5%のしゅう酸及び1%のH₂SO₄を 加える。pH:1.5。
- 3. 室温で2~3時間待つ。
- 4. 水素型及び水酸化物型のイオン交換樹脂に通す。
- 5. 粘度(製品基準)調整のための炭酸アンモニウムと 30 濃水酸化アンモニウムを
 - 0.1%加えて再度アルカリ性にし、pH=9.2とする。
 - 6. 金属含量を決定する。

試験2 シリカ基準の DDI 930 110

陽イオン交換樹脂に通す。

【0045】金属含量を表3に示す。この結果は、本発 明の実例の結果よりも相当に劣っている。

表 3

ドイツ特許815,643 の方法で調製したNE3-安定化シリカゾルの金属分析

	試験 1	
金属	シリカ基準の	
	pp m	
Na	820	
Al	120	
Fe	32	

特開昭63-285112号

特開昭63-285112号の工程:

- 1. 2~6%のけい酸ナトリウム溶液を調製する。
- 2. 陽イオン交換樹脂に通す。
- 3. 鉱酸を加えてpH0~2.0にする。
- 4. 熟成

- 26 5. 陽イオン交換樹脂に、次に陰イオン交換樹脂、次に
- 6. 上記処理された酸ゾルを試薬用苛性アルカリに加 え、pH7~8でSiO2/Na2O比 100~ 300/1 (モル比) の亜鉛で安定化された酸ゾルにする。
- 50 7. 上記処理された酸ゾルを試薬用苛性アルカリに加え

 $CSiO_2/Na_2O比20\sim60/1$ (モル比)で8%(wt)未満のシリカを含む金属シリケートとし、ヒールを調製する

- 8. 90~ 150℃の温度で、ステップ6の物質をステップ7の物質に加えてゾルを作る。
- 9. このゾルをpH2~5で熟成する。
- 10. 得られたゾルをUF (限外濾過) を用いて濃縮する。 【0046】試験過程:
- 1. 5%けい酸ナトリウム溶液を調製する。
- 2. Dowex HGR-W2 (商標)、 H+に通す。
- 3. 試薬用Lb SO4 を加えてpH1.5 にする。
- 4. 1時間熟成する。
- 5. 次のものに通す: HGR-W2 (商標)、 H+、次いでSB R-OH(商標)、次いでHGR-W2 (商標)、 H+。ここに、H GR-W2は陽イオン交換樹脂、SBR-OHは陰イオン交換樹脂である。
- 6. 上記の処理された酸ゾルに試薬用NaOHを加えてpH7

20

~8にする。SiO₂/Na₂Oモル比 100~300 / 1。

- 7. 上記処理された酸ゾルを試薬級NaOHに加えて SiO_2 / Na_2O モル比を $2O\sim6O$ / 1 としてヒールを調製する。
- 8. 95~97℃の温度でステップ6の物質をステップ7の 物質に加えてゾルを作る。
- 9. 試薬用H₂SO₄ を熱ゾルに加えてpH=2とする。1時間熟成し次いで50℃に冷却する。
- 10. MWCO (分子量しゃ断) 300,000 UF膜を通す。
- 11. 金属含量を測定する。

10 結果:

結果を表4に示す。低金属含量が得られているが、この方法は複雑であり、時間がかかり、コスト高であり、各ステップで用いる材料の純度への依存性が高い。加えてナトリウムの水準が極めて高く(SiO2を基準にして800ppmを越える)、何らの応用もきかない結果である。

[0047]

※ ≛ 特開昭63-285112号の方法を用いて調製したシリカゾルの金属分析

	ICP 分析	試験1	試験2
	日産の	シリカに	シリカに
金属	_シリカゾル_	_基づくppm_	基づくppm
A1	51	39.6	37.8
Fe	17.7	25.8	32. 1