PROBABILIDADE E DISTRIBUIÇÕES

INTRODUÇÃO À ESTATÍSTICA

Propósito

Organizar e resumir dados para fazer afirmações sobre populações com base em amostras.

Aplicação

A estatística está presente em toda parte, auxiliando na tomada de decisões.

Análise

Gráficos e tabelas de frequência são essenciais para a primeira análise dos dados.

TIPOS DE DADOS

Variáveis Qualitativas

Nominais: sem ordem (cor dos olhos)

Ordinais: com ordem (grau de instrução)

Resumidas em proporções ou porcentagens

Visualizadas em gráficos de barras

Variáveis Quantitativas

Discretas: contagens (número de irmãos)

Contínuas: medições (peso corporal)

Resumidas por média, mediana, desvio padrão

CONCEITOS FUNDAMENTAIS DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS

Definição

Função que associa valores numéricos a resultados de um experimento aleatório.

Tipos

Discretas: valores enumeráveis

Contínuas: valores em um intervalo

Funções

Função de Probabilidade (discretas)

Função Densidade de Probabilidade (contínuas)

Função de Distribuição Acumulada (ambas)

Random Variables 0

DISTRIBUIÇÃO UNIFORME E BINOMIAL

Uniforme Discreta

Cada resultado tem mesma probabilidade (dado ideal)

Parâmetros Binomial

n (número de ensaios) e p (probabilidade de sucesso)

Uniforme Contínua

Densidade constante sobre um intervalo

Binomial

Modela resultados binários em ensaios independentes

DISTRIBUIÇÃO NORMAL

Forma de Sino

Distribuição simétrica e unimodal

Parâmetros

Média e Desvio Padrão definem completamente a distribuição

Normal Padrão

Média 0 e Desvio Padrão 1, obtida pela transformação Z

Relevância

Crucial para aproximar incertezas e variabilidades

Normal Distribution

OUTRAS DISTRIBUIÇÕES IMPORTANTES

Poisson

Modelagem de eventos por unidade de tempo ou espaço

t de Student

Similar à normal, com caudas mais "gordas"

Exponencial

Modelagem de tempos de vida ou entre eventos

FERRAMENTAS GRÁFICAS

Histogramas

Mostram distribuição de frequência, forma, centro e dispersão dos dados.

Box Plots

Visualizam distribuição, quartis e outliers.

Gráficos Q-Q

Comparam quantis da amostra com quantis teóricos.

IDENTIFICANDO DISTRIBUIÇÕES EM DADOS REAIS

Análise Exploratória

Utilize técnicas gráficas e numéricas para primeira análise dos dados.

Medidas-Resumo

Calcule medidas de posição e dispersão para caracterizar a distribuição.

Testes de Aderência

Aplique testes como Qui-Quadrado ou Kolmogorov-Smirnov.

Conhecimento do Domínio

Use conhecimento sobre o fenômeno para escolher a distribuição apropriada.

Unlock your data potential

Explore datasets

