The group G is isomorphic to the alternating group A8. Ordinary character table of $G \cong A8$:

	1 <i>a</i>	2a	2b	3a	3b	4a	4b	5a	6a	6b	7a	7b	15a	15b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	7	-1	3	4	1	-1	1	2	0	-1	0	0	-1	-1
χ_3	14	6	2	-1	2	2	0	-1	-1	0	0	0	-1	-1
χ_4	20	4	4	5	-1	0	0	0	1	1	-1	-1	0	0
χ_5	21	-3	1	6	0	1	-1	1	-2	0	0	0	1	1
χ_6	21	-3	1	-3	0	1	-1	1	1	0	0	0	$-E(15)^7 - E(15)^{11} - E(15)^{13} - E(15)^{14}$	$-E(15) - E(15)^2 - E(15)^4 - E(15)^8$
χ_7	21	-3	1	-3	0	1	-1	1	1	0	0	0	$-E(15) - E(15)^2 - E(15)^4 - E(15)^8$	$-E(15)^7 - E(15)^{11} - E(15)^{13} - E(15)^{14}$
χ_8	28	-4	4	1	1	0	0	-2	1	-1	0	0	1	1
χ_9	35	3	-5	5	2	-1	-1	0	1	0	0	0	0	0
χ_{10}	45	-3	-3	0	0	1	1	0	0	0		$E(7)^3 + E(7)^5 + E(7)^6$	0	0
χ_{11}	45	-3	-3	0	0	1	1	0	0	0	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	0	0
χ_{12}	56	8	0	-4	-1	0	0	1	0	-1	0	0	1	1
χ_{13}	64	0	0	4	-2	0	0	-1	0	0	1	1	-1	-1
χ_{14}	70	-2	2	-5	1	-2	0	0	-1	1	0	0	0	0

Trivial source character table of $G \cong A8$ at p = 5:

Normalisers N_i		N_1									N_2						
p-subgroups of G up to conjugacy in G		P_1											P_2				
Representatives $n_j \in N_i$	1 <i>a</i>	2b	2a	3a	6a	3b	4b	4a	6b	7a	7b	1a	4b	2a	3a	4a	6a
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	20	4	4	5	1	-1	0	0	1	-1	-1	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	35	7	-5	5	1	2	1	-1	-2	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14}$	85	1	-3	10	-2	-2	-1	1	0	1	1	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	35	-5	3	5	1	2	-1	-1	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14}$	70	2	-2	-5	-1	1	0	-2	1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14}$	120	0	8	0	0	-3	0	0	-1	1	1	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	45	-3	-3	0	0	0	-	1		$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$		-3	-3	0	0	0	1	1	0	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	15	3	7	0	0	3	1	3	1	1	1	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	70	6	-10	-5	3	1	-2	2	-1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	70	2	14	-5	-1	1	0	2	-1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	21	1	-3	6	-2	0	-1	1	0	0	0	1	-1	1	1	-1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	56	0	8	-4	0	-1	0	0	-1	0	0	1	E(4)	-1	1	-E(4)	-1
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	56	0	8	-4	0	-1	0	0	-1	0	0	1	-E(4)	-1	1	E(4)	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	42	2	-6	-6	2	0	-2	2	0	0	0	2	0	-2	-1	0	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	7	3	-1	4	0	1	1	-1	-1	0	0	2	0	2	-1	0	-1

```
P_1 = Group([()]) \cong 1

P_2 = Group([(1, 7, 6, 3, 5)]) \cong C5
```

 $N_1 = AlternatingGroup([1..8]) \cong A8$ $N_2 = Group([(2,4,8), (1,7,6,3,5), (3,6)(5,7), (2,4)(3,7,6,5)]) \cong C15 : C4$