Chapter 1 Number Systems

Agenda

- Some preliminaries on how to convert between decimal, binary and hex.
- 8-bit unsigned number
- 8-bit signed number
- 2's complement: how to do 2'complement quickly?
- Overflow in signed arithmetic
- Multiplication
- Division

Positional Number Systems

- Positional system → "value" is based on the symbol and its position in the number
- Base-r number system
 - r unique symbols
 - represent 0 to r-1
 - e.g., decimal has 10 symbols, 0 to 9
 e.g., binary has 2 symbols, 0 to 1
 e.g., hexadecimal has 16 symbols, 0 to 9 and A to F

Base-r number systems

 The position of each digit indicates the magnitude of the quantity presented and can be assigned a weight, e.g., in decimal,

 In general, a number XYZ in base-r number system has the value of:

$$X \times r^2 + Y \times r^1 + Z \times r^0$$

 Positional systems must have the concept of "zero", e.g., in decimal, 26 or 206?

Notation systems

	written	ARM	Intel
decimal	10 ₁₀	10	10
hexadecimal	A_{16}^{10}	0xA	0AH
binary	1010_{2}	0b1010	1010B

- Computer system bases:
 2 (binary) and 16 (hexadecimal)
- Assembly language uses either a prefix notation system (e.g., ARM) or a suffix notation system (e.g., Intel)
- Syntax varies by assembly language and the development environment

Conversions between number systems

- 1) any base to decimal
 - expand the number into positional notation and evaluate

e.g.,
$$110_2 = 1x2^2 + 1x2^1 + 0x2^0$$

= $4+2+0 = 6_{10}$
e.g. $A01_{16} = Ax16^2 + 0x16^1 + 1x16^0$
= $10x256 + 0 + 1 = 2561_{10}$

Conversions between number systems

2) b) decimal to any base r
 → integer portion – successive divide by r

e.g.,
$$18_{10} = 2$$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10010$
 $= 10$

e.g.,
$$2561_{10} = ?_{16}$$

 $2561/16 = 160 R = 1$
 $160/16 = 10 R = 0$
 $10/16 = 0 R = 10 A$

Conversions between number systems

3) binary ↔ hexadecimal4 binary digits ≡ 1 hexadecimal digit (a nibble)

e.g.
$$001110110011_2 = ?_{16}$$

3 B 3

e.g.
$$46A1_{16} = ?_2$$

0100011010100001

- A number is stored in a register or a memory location
- Assembly language fixes the length of the register and the memory location to a specific length n
- For ARM,
 n = 32 bits

1) Unsigned

 number is assumed to be non-negative and no bits are used to represent the sign

e.g.,
$$00000001_2 = 1_{10}$$

 $10000001_2 = 1 \times 2^7 + 1 \times 2^0$
 $= 128 + 1 = 129_{10}$

– Range of an n-bit register:

Most significant bit Least significant bit
$$0 \rightarrow 2^{n} - 1$$

2) Signed

- numbers must have the following characteristics to be useful for calculations:
- 1. positive and negative numbers
- 2. sign test easy way to determine if the number is positive or negative
- 3. zero test easy way to identify zero with preferably only one representation of zero.
- 4. easy implementation of arithmetic operations.

Ways to represent signed numbers:

1. sign-magnitude

```
in general: SXX ... X e.g., 00000001_2 = +1
10000001_2 = -1
```

- both sign and magnitude are immediately obvious
- two zeros (i.e, 00000000 and 10000000)
- Addition and subtraction require different behaviors depending on the sign bit (e.g., adding two positive numbers require different operations from adding numbers with opposite signs)

2. Two's complement

- Positive number: Same as unsigned number representation
- Negative number:
 - Write the magnitude of the number as an unsigned number
 - Invert each bit
 - Add 1 to it
 - e.g., -127₁₀ → Magnitude = 01111111
 Invert → 10000000
 +1 → 10000001
 - Quick way to do 2's complement in hex
 - Magnitude = 01111111 = 7F
 - Inversion is equivalent to subtracting F from the most (MSN) and least significant nibble (LSN):
 - MSN: F-7 = 8; LSN: F-F = 0. The result is 80.
 - -80 + 1 = 81

8-bit signed number representation

Decimal	Binary	Hex
+127	0111 1111	7F
+2	0000 0010	02
+1	0000 0001	01
0	0000 0000	00
-1	1111 1111	FF
-2	1111 1110	FE
****	••••	••••
-127	1000 0001	81
-128	1000 0000	80

32-bit signed number representation

Decimal	Binary	Hex
-2,147,483,648	100000000000000000000000000000000000000	80000000
-2,147,483,647	100000000000000000000000000000000000000	80000001
-2,147,483,646	100000000000000000000000000000000000000	80000002
***		•••
-2	111111111111111111111111111111111111111	FFFFFFE
-1	111111111111111111111111111111111111111	FFFFFFF
0	000000000000000000000000000000000000000	00000000
+1	000000000000000000000000000000000000000	00000001
+2	000000000000000000000000000000000000000	00000002
+2,147,483,646	011111111111111111111111111111111111111	7FFFFFE
+2,147,483,647	011111111111111111111111111111111111111	7FFFFFF

Range of signed number:

$$-(2^{n-1})$$
 to $(2^{n-1}-1)$

where n is the number of bits

Two's complement

- one zero (i.e., 00000000)
- Sign immediately obvious: Most significant bit =
 1 → negative; Most significant bit = 0 →
 positive
- Addition and subtraction require the same operation

Addition of signed numbers

Both numbers positive:

$$00000111$$
 7 $+ 00000100$ $+ 4$ 00001011 11

The sum is positive and is therefore in true (uncomplemented) binary.

Positive number with magnitude larger than negative number:

$$\begin{array}{r}
00001111 & 15 \\
+ 11111010 & + -6 \\
\hline
 Discard carry \longrightarrow 1 00001001 & 9
\end{array}$$

The final carry bit is discarded.

Negative number with magnitude larger than positive number:

$$\begin{array}{rrr}
00010000 & 16 \\
+ 11101000 & + -24 \\
\hline
11111000 & -8
\end{array}$$

The sum is negative and therefore in 2's complement form.

Both numbers negative:

$$\begin{array}{rrr}
 & 11111011 & -5 \\
 & + 11110111 & + -9 \\
\hline
 & 1 & 11110010 & -14
\end{array}$$

The final carry bit is discarded. The sum is negative and therefore in 2's complement form.

Overflow condition

- Overflow occurs when two numbers are added and the number of bits required to represent the sum exceeds the number of bits available in the representation
- Can happen when both numbers are positive or both numbers are negative
- Overflow is indicated if:
 - Correct result is out of the range between -2^{n-1} and $2^n 1$, where n is the number of bits (e.g., -127 and 128 for 8 bit)
 - the sum of two positive numbers is a negative number
 - the sum of two negative numbers is a positive number

125₁₀ 01111101 Correct result =
$$183_{10}$$

+ 58_{10} 00111010 \rightarrow Out of range 10110111

Subtraction

- Subtraction is a special case of addition
- a b = a + (-b)
- -b is obtained by taking the 2's complement of b

```
3F 	 3F 	 23 	 +DD 	 (2's complement) 	 Carry = 1; Discard carry from result; 	 Result = 1C 	 23 	 23 	 -3F 	 +C1 	 (2's complement) 	 E4 	 Carry = 0 	 Result = E4
```

- Note that Carry = 1 if result is positive and Carry = 0 if result is negative
- This is important for establishing whether a and b is greater

Sign extension of signed number

- Positive number: e.g., extending the 8-bit number of 56₁₆ to a 32-bit number will result in 00000056₁₆
- Negative number: e.g., extending the 8-bit number of 82₁₆ to a 32-bit number will result in FFFFF82₁₆
 - -82_{16} is $-7E_{16}$
 - With 32-bit, this number is represented as the 2'complement of $0000007E_{16}$ → FFFFF82₁₆
- Thus, signed extension involves copying the signed bit (D7) to the upper 24 bits of the 32-bit register.
- Similar in extending to other number of bits > 8:
 Copy the signed bit into the additional bits in the new formats
 - 82₁₆, when extending to 16 bits, becomes FF82₁₆
 - -56_{16} , when extending to 16 bits, becomes 0056_{16}

Multiplication

 Multiplication of unsigned number by partial product

```
10 \times 13
             Multiplier
                           = 1101_{2}
             Multiplicand = 1010_2
    1010
    1101
    1010
             Step 1 first multiplier bit
                                           = 1, write down multiplicand
             Step 2 second multiplier bit = 0, write down zeros shifted left
   0000
             Step 3 third multiplier bit
  1010
                                          = 1, write down multiplicand shifted left
             Step 4 fourth multiplier bit
 1010
                                           = 1, write down multiplicand shifted left
             Step 5 add together four partial products
10000010
```

n-bit × n-bit → 2n-bit result

High-speed multiplication

FIGURE 2.3

An algorithm for multiplication

- **Step a.** Set a counter to *n*.
- **Step b.** Clear the 2*n*-bit partial product register.
- **Step c.** Examine the rightmost bit of the multiplier (initially the least-significant bit). This bit is underlined in Table 2.3. If it is one, add the multiplicand to the *n* most-significant bits of the partial product.
- Step d. Shift the partial product one place to the right.
- **Step e.** Shift the multiplier one place to the right (the rightmost bit is, of course, lost).
- **Step f.** Decrement the counter and repeat from step c until the count is 0 after *n* cycles. The product is in the partial product register.

© Cenaage Learning 2

TABLE 2.3

Mechanizing Unsigned Multiplication from Figure 2.3

	Multiplie	er = 1101 ₂	Multiplica	ind = 1010 ₂
Cycle	Step	Counter	Multiplier	Partial Product
	a and b	4	1101	00000000
1	c	4	110 <u>1</u>	10100000
1	d and e	4	0110	01010000
1	f	3	0110	01010000
2	С	3	0110	01010000
2	d and e	3	0011	00101000
2 2 3	f	2	0011	00101000
3	c	2	001 <u>1</u>	11001000
3	d and e	2	0001	01100100
3	f	1	0001	01100100
4	c	1	000 <u>1</u>	10000010
4	d and e	1	0000	10000010

Division

- Dividend = 103_{10} = 01100111_2
- Divisor = 9_{10} = 1001_2
- Expected Result:
 - Quotient = 11_{10}
 - Reminder $= 4_{10}$

Restoring division

	01011
1001	01100111
	0000
/	1001
	0000
	1001
	01101
	00100

Description	Partial Dividend	Divisor	Quotient
	01100111	00001001	00000000
Align	01100111	10010000	00000000
Subtract divisor from partial dividend	-00101001	10010000	00000000
Restore divisor, shift 0 in quotient	01100111	10010000	00000000
Test for end	01100111	01001000	00000000
Shift divisor one place right Subtract divisor from partial dividend	00011111	01001000	0000000
Result positive—shift in 1 quotient	00011111	01001000	0000000
Test for end	00011111	01001000	0000001
	00011111	00100100	00000001
Shift divisor one place right	00011111	00100100	00000001
Subtract divisor from partial dividend	-00000101	00100100	00000001
Restore divisor, shift in 0 in quotient	00011111	00100100	00000010
Test for end			
Shift divisor one place right	00011111	00010010	00000010
Subtract divisor from partial dividend	00001101	00010010	00000010
Result positive—shift in 1 in quotient	00001101	00010010	00000101
Test for end			
Shift divisor one place right	00001101	00001001	00000101
Subtract divisor from partial dividend	00000100	00001001	00000101
Result positive—shift in 1 in quotient	00000100	00001001	00001011
Test for end	<u> </u>	<u> </u>	

Restoring division

