Grammar

$$e ::= \mathbf{x} \mid \mathbf{c} \mid \lambda x.e \mid e \ e \mid \forall p : \tau.e \mid e \ @ \mid \forall \alpha.e \mid e \ [\tau]$$

 $B ::= int | bool | \alpha$

 $T ::= \{v : B \mid e\} \mid x : T \to T$

 $P ::= T \mid \forall p : \tau . P$

 $S ::= P | \forall \alpha.S$

 $v ::= \mathbf{x} \mid \mathbf{c} \mid \lambda x.e \mid \forall p : \tau.v \mid \forall \alpha.v$

Operational Semantics

 $e \hookrightarrow e$

$$\frac{e_1 \hookrightarrow e'_1}{e_1 \ e_2 \hookrightarrow e'_1 \ e_2} \quad \text{S-PAPPL}$$

$$\frac{e_2 \hookrightarrow e'_2}{v \ e_2 \hookrightarrow v \ e'_2} \quad \text{S-PAPPR}$$

$$\frac{e \hookrightarrow e'}{v \ e_2 \hookrightarrow e'_2} \quad \text{S-PTYPE-AP}$$

$$\frac{e \hookrightarrow e'}{e[\tau] \hookrightarrow e'[\tau]} \text{ S-PType-App}$$

$$\frac{e \hookrightarrow e'}{e @ \hookrightarrow e' @} \text{ S-PPRED-APP}$$

$$\lambda x.e \ v \hookrightarrow e [x \mapsto v]$$
 S-EAPP

$$c v \hookrightarrow [|c|](v)$$
 S-EAPP-Con

Rules

 $\Gamma \vdash e : S$

$$\frac{\Gamma \vdash e : S_2 \quad \Gamma \vdash S_2 <: S_1}{\Gamma \vdash e : S_1} \quad \text{T-Sub}$$

$$\frac{\Gamma(x) = \{v : B \mid e\}}{\Gamma \vdash x : \{v : B \mid e \land v = x\}} \quad \text{T-Var-Base}$$

$$\frac{\Gamma(x) \neq \{v : B \mid e\}}{\Gamma \vdash x : \Gamma(x)} \quad \text{T-Var}$$

$$\frac{\Gamma \vdash c : tc(\mathbf{c})}{\Gamma \vdash c : tc(\mathbf{c})} \quad \text{T-Con}$$

$$\begin{array}{c|c} \Gamma, x: T_x \vdash e: T & \Gamma \models x: T_x \to T \\ \hline \Gamma \vdash \lambda x. e: x: T_x \to T \\ \hline \hline \Gamma \vdash e_1: x: T_x \to T & \Gamma \vdash e_2: T_x \\ \hline \Gamma \vdash e_1 e_2: T \left[x \mapsto e_1\right] \end{array} \text{ T-App}$$

$$\frac{\Gamma, p: T_p \vdash e: S \quad \text{Schema}\left(T_p\right) = \tau \to \text{bool} \quad p \notin \text{FreeVars}\left(e\right)}{\Gamma \vdash \forall p: \tau.e: \forall p: \tau.S} \quad \text{T-PGen}$$

$$\frac{\Gamma \vdash e : \forall p : \tau.S \qquad \Gamma \vdash v : T \qquad \text{Schema} \ (T) = \tau \to \text{bool} \qquad \Gamma \models T}{\Gamma \vdash e : @ : S \ [p \mapsto v]} \qquad \qquad \text{T-PInst}$$

$$\frac{\Gamma \vdash e : S \qquad \alpha \notin \Gamma}{\Gamma \vdash \forall \alpha.e : \forall \alpha.S} \qquad \text{T-Gen}$$

$$\frac{\Gamma \vdash \forall \alpha.e : \forall \alpha.S}{\Gamma \vdash e : \forall \alpha.S \quad \text{Schema} (T) = \tau \quad \Gamma \models T}{\Gamma \vdash e [\tau] : S [\alpha \mapsto T]} \quad \text{T-Inst}$$

 $\Gamma \models \rho$

$$- \emptyset \models \emptyset$$
 WS-Empty

$$\frac{\Gamma \models \rho \quad \emptyset \vdash v : \rho S}{\Gamma; x : S \models \rho; [x \mapsto v]} \quad \text{WS-EXT}$$

define type sub, $\operatorname{\mathtt{Schema}}(T)=\tau,$ sub τ on exprs and T on types

 $\Gamma \models \theta$

$$\emptyset \models \emptyset$$
 WTS-Empty

$$\frac{\Gamma \models \theta \quad \emptyset \models \theta S}{\Gamma \models \theta; [a \mapsto S]} \text{ WTS-EXT}$$

Proves

Definition 1 (Constants). Each constant c has type tc(c), such that

- 1. $\emptyset \vdash c : tc(c)$
- 2. if $tc(c) \equiv x : T_x \to T$ then for all values $v \in T_x$, [|c|](v) is defined and $\emptyset \vdash [|c|](v) : T[x \mapsto v]$.
- 3. if $tc(c) \equiv \forall \alpha.S$ then for all types τ if $Schema(T) = \tau$ and $\emptyset \models T$, $[|c|][\tau]$ is defined and $\emptyset \vdash [|c|][\tau] : S[\alpha \mapsto T]$.
- 4. if $tc(c) \equiv \forall p : \tau.S$ then for all values v, if $\emptyset \vdash v : T$, where $\mathit{Schema}(T) = \tau \rightarrow \mathit{bool}$ and $\emptyset \models T$, $[|c|] @ is defined and <math>\emptyset \vdash [|c|] @ : S[p \mapsto v]$.

Lemma 1. If $e \hookrightarrow e'$ and $\emptyset \vdash e : S_e$ and $\emptyset \vdash e' : S_e$ then $\Gamma \vdash S[x \mapsto e'] <: S[x \mapsto e]$

ProofIdea. $[|\star|]$ is defined to preserve operational semantics

Lemma 2 (Value Substitution). If $\Gamma \models \rho$ then if Γ ; $\Gamma' \vdash e : S$ then $\rho\Gamma' \vdash \rho e : \rho S$ **ProofIdea.** Pat-Ming Lemma 10

Lemma 3 (Type Substitution). If $\Gamma \models \theta$ then if $\Gamma; \Gamma' \vdash e : S$ then $\rho\Gamma' \vdash \theta e : \theta S$ **ProofIdea.** ???

Theorem 1 (Preservation). If $\emptyset \vdash e : S$ and $e \hookrightarrow e'$ then $\emptyset \vdash e' : S$

Proof. By induction on the typing derivation $\emptyset \vdash e : S$. We split cases on the rule used on the top of the derivation.

• T-Sub

$$\emptyset \vdash e : S$$
 $e \hookrightarrow e'$

By inversion, there exists an S' such that

$$\emptyset \vdash e : S' \tag{1}$$

$$\emptyset \vdash S' <: S \tag{2}$$

By IH and 1

$$\emptyset \vdash e' : S' \tag{3}$$

Which, with 2 and rule T-Sub gives

$$\emptyset \vdash e' : S \tag{4}$$

- T-VAR-BASE, T-VAR, T-CON, T-FUN T-PGEN, T-GEN cases are trivial, since there can be no e' such that $e \hookrightarrow e'$
- T-App

$$\emptyset \vdash e_1 \ e_2 : S$$
 $e_1 \ e_2 \hookrightarrow e'$

By inversion, there exist x and T_x such that

$$\emptyset \vdash e_1 : x : T_x \to T \tag{5}$$

$$\emptyset \vdash e_2 : T_x \tag{6}$$

$$S \equiv T \left[x \mapsto e_1 \right] \tag{7}$$

- exits e'_1 so that $e_1 \hookrightarrow e'_1$, so $e' \equiv e'_1 \ e_2$ From IH,

$$\emptyset \vdash e'_1 : x : T_x \to T$$

Which, with 6 and rule T-APP gives

$$\emptyset \vdash e_1' \ e_2 : T \left[x \mapsto e_1' \right] \tag{8}$$

From Lemma 1 we get

$$\emptyset \vdash T[x \mapsto e_1'] <: T[x \mapsto e_1]$$

Which with 8 and T-Sub gives

$$\emptyset \vdash e' : S$$

.

- $-e_1$ is a value, $e_1 \equiv v$
 - * exits e'_2 so that $e_2 \hookrightarrow e'_2$, so $e' \equiv v \ e'_2$ From IH and 6, $\emptyset \vdash e'_2 : T_x$. Which, whith 5 and T-APP gives $\emptyset \vdash e' : S$.
 - * e_2 is a value, so $e_2 \equiv v_2$. Since e_1 is a value, it can not be variable, as e_1 is closed, and can not be of the form $\forall p : \tau . e'$ nor $\forall \alpha . e'$, as these values can not have the desired type.
 - $e_1 \equiv \lambda x. e_{11}$, so $e' \equiv e_{11} [x \mapsto v_2]$ By inversion of the rule 5, and if we push the T-Sub rules down in the derivation tree we get

$$x: T_x \vdash e_{11}: T \tag{9}$$

From 6 and WS-EXT we get $x: T_x \models [x \mapsto v_2]$. Which, with 9 and Lemma 2 gives $\emptyset \vdash e_{11}[x \mapsto v_2]: T[x \mapsto v_2]$, or $\emptyset \vdash e': S$.

- $e_1 \equiv c$, so $e' \equiv [|c|](v)$ By rule 5 and T-Con we have $tc(c) \equiv x : T_x \to T$. Which, with 1 gives us $\emptyset \vdash [|c|](v_2) : T[x \mapsto v_2]$, or $\emptyset \vdash e' : S$.
- T-INST There exist e_1, S_1, α and τ such that

$$e \equiv e_1 [\tau]$$
 $S \equiv S_1 [\alpha \mapsto T]$

By inversion, we have

$$\emptyset \vdash e_1 : \forall \alpha . S_1 \tag{10}$$

$$Schema(T) = \tau \tag{11}$$

$$\emptyset \models T \tag{12}$$

If there exists e_1' , such that $e_1 \hookrightarrow e_1'$, then $e' \equiv e_1' [\tau]$. By IH and 10, we have $\emptyset \vdash e_1' : \forall \alpha.S_1$. This, with 11, 12 and T-INST gives $\emptyset \vdash e_1' [\tau] : S_1 [\alpha \mapsto T]$, or $\emptyset \vdash e' : S$.

Otherwise, e_1 is a value. From 10 there are two cases:

* $e_1 \equiv \forall \alpha. v_1$, so $e' \equiv v_1 [\alpha \mapsto \tau]$. By inverting the rule T-GEN and if we push the T-SUB rules down in the derivation tree, we get

$$\emptyset \vdash v_1 : S_1 \tag{13}$$

By WTS-Extand 12 we have $\emptyset \models [\alpha \mapsto T]$. Which, by 13 and 3 gives $\emptyset \vdash v_1 [\alpha \mapsto \tau] : S_1 [\alpha \mapsto T]$ or $\emptyset \vdash e' : S$.

- * $e_1 \equiv c$, so $e' \equiv [|c|][\tau]$ By rule 5 and T-Con we have $tc(\mathbf{c}) \equiv \forall \alpha.S_1$. Which, with 1 gives us $\emptyset \vdash [|c|][\tau]: S_1[\alpha \mapsto T]$, or $\emptyset \vdash e': S$.
- T-PINST There exist e_1, S_1, p and v such that

$$e \equiv e_1 @ S \equiv S_1 [p \mapsto v]$$

By inversion, we have

$$\emptyset \vdash e_1 : \forall p : \tau.S_1 \tag{14}$$

$$\emptyset \vdash v : T \tag{15}$$

$$\mathtt{Schema}\left(T\right) = \tau \to \mathtt{bool} \tag{16}$$

$$\emptyset \models T \tag{17}$$

If there exists e_1' , such that $e_1 \hookrightarrow e_1'$, then $e' \equiv e_1'$ @. By IH and 14, we have $\emptyset \vdash e_1' : \forall p : \tau.S_1$. This, with 15- 17 and T-PINST gives $\emptyset \vdash e_1'$ @: $S_1[p \mapsto v]$, or $\emptyset \vdash e' : S$.

Otherwise, e_1 is a value. From 14 there are two cases:

 $-e_1 \equiv \forall p : \tau.v_1$, so $e' \equiv v_1$. By inverting the rule T-PGEN and if we push the T-SuB rules down in the derivation tree, we get

$$p: T_p \vdash v_1: S_1 \tag{18}$$

$$Schema(T_p) = \tau \to bool \tag{19}$$

$$p \notin \text{FreeVars}(v_1)$$
 (20)

By WS-Extand 18 we have $p:T_p \models [p \mapsto v]$, also by 20 we get $v_1 \equiv v_1 [p \mapsto v]$ Which, by 18 and Lemma 2 gives $\emptyset \vdash v_1 [p \mapsto v]: S_1 [p \mapsto v]$ or $\emptyset \vdash e': S$.

 $-e_1 \equiv c$, so $e' \equiv [|c|]$ @

By rule 14 and T-Con we have $tc(c) \equiv \forall p : \tau.S_1$. Which, with Definition 1 and 15 - 17, gives us $\emptyset \vdash [|c|] @: S_1[p \mapsto v]$, or $\emptyset \vdash e' : S$.