Ministère de l'Éducation Nationale Centre National des Examens et Concours de l'Éducation

EXAMEN : Baccalauréat Général

Série: Terminale Sciences Expérimentales (TSExp)

Épreuve: Mathématiques

République du Mali Un Peuple-Un But-Une Foi

BAC 2020 SESSION : Septembre 2020

Coefficient: 3

Exercice 1.....(6 pts)

Durée: 3 h

On se propose de résoudre, dans C, l'équation

$$(E)$$
: $z^3 - (2 + i\sqrt{2})z^2 + 2(1 + i\sqrt{2})z - 2i\sqrt{2} = 0$.

- 1. Détermine le réel y tel que iy soit une solution de (E).
- 2. Détermine les réels a et b tels que, pour tout nombre complexe z, on ait :

$$z^{3} - (2 + i\sqrt{2})z^{2} + 2(1 + i\sqrt{2})z - 2i\sqrt{2} = (z - iy)(z^{2} + az + b).$$

3. Achève la résolution de(E) puis écris chacune des solutions sous forme trigonométrique.

Exercice 2......(6 pts)

On considère la suite numérique $(U_n)_{n\in\mathbb{N}}$ définie par : $U_n = e^{2n-1}$.

- 1. a. Calcule U_0 , U_1 , U_2 , U_3 et U_{n+1} .
 - b. Démontre que (U_n) est une suite géométrique dont on précisera la raison.
 - c. Exprime en fonction de n la somme $S_n = U_0 + U_1 + ... + U_n$.
 - d. Calcule $\lim_{r\to +\infty} S_n$.
 - e. Trouve la valeur minimum de n telle que $S_n \ge 10$.
- 2. Soit la suite (V_n) définie par : $\forall n \in \mathbb{N}, V_n = \ln(U_n)$. On pose $T_n = V_0 + V_1 + ... + V_n$.

Exprime le produit $P_n = U_0 \times U_1 \times ... \times U_n$ en fonction de T_n .

Problème......(8 pts)

On considère la fonction numérique f définie sur $]-\infty;+\infty[$ par $f:x\mapsto f(x)=2x+1-xe^{x-1}$ et on note (C_f) la courbe représentative de f dans le plan muni d'un repère orthonormé $(O;\vec{i},\vec{j})$ d'unité graphique 2cm.

- 1. Calcule les limites de f en $-\infty$ et en $+\infty$.
- 2. Démontre que la droite (Δ) d'équation y = 2x + 1 est asymptote à (C_f) au voisinage de $-\infty$ puis précise la position relative de (C_f) et (Δ) .
- 3. a. Etudie les variations de la fonction dérivée f' de f .
 - b. Calcule f'(1) puis en déduis le signe de f'(x) sur $]-\infty;+\infty[$.

BAC 2020/Mathématiques/TSExp

- c. Dresse le tableau de variations de f .
- 4. Démontre que l'équation f(x) = 0 admet deux solutions α et β telles que 1,9 < α < 2 et -0,6 < β < -0,5.
- 5. Calcule la limite de $\frac{f(x)}{x}$ en $+\infty$ puis en donne une interprétation géométrique.
- 6. Trace (C_f) et (Δ) .