Практическое занятие №11 Изолированные особые точки

Краткие теоретические сведения

Определение 1. Точка z_0 называется изолированной особой точкой однозначного характера для функции f(z), если существует проколотая окрестность точки z_0 : $0 < |z - z_0| <$ ρ , в которой функция f(z) является однозначной и аналитической, а в самой точке z_0 функция f(z) либо не определена, либо не является однозначной и аналитической.

Аналогично, точка $z=\infty$ называется изолированной особой точкой однозначного характера для функции f(z), если функция f(z) является однозначной и аналитической в некотором кольце $\rho < |z| < \infty$. \blacktriangle

В зависимости от поведения функции f(z) в окрестности точки z_0 различают 3 типа особых точек.

Определение 2. Изолированная особая точка однозначного характера z_0 функции f(z)называется:

- а) устранимой особой точкой, если \exists конечный $\lim_{z \to z_0} f(z)$;
- б) полюсом, если $\lim_{z\to z_0}f(z)=\infty;$ в) существенной особой точкой, если не $\exists\lim_{z\to z_0}f(z)$. \blacktriangle

Примеры

а)
$$z_0=0$$
 — устранимая особая точка для функций
$$\frac{\sin z}{z}\;;\;\frac{e^z-1}{z}\;;\;\frac{1-\cos z}{z^2}\;;$$

- б) z = -1 полюс для функции $f(z) = \frac{z}{(z+1)^2}$;

в)
$$z=0$$
 – существенно особая точка для функций $e^{\frac{1}{z}}$; $e^{\frac{1}{z^2}}$; $sin\frac{2}{z}$; $cos\frac{1}{z}$.

Определение 3. Пусть функция f(z) аналитична в кольце $K: 0 < |z-z_0| < \rho$. Тогда в этом кольце функцию f(z) можно разложить в ряд Лорана:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n.$$
 (11.1)

Ряд (11.1) называется рядом Лорана функции f(z) в окрестности точки z_0 , а ряды

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n, \tag{11.2}$$

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n,$$

$$\sum_{n=1}^{\infty} \frac{c_{-n}}{(z - z_0)^n}$$
(11.2)

называются соответственно правильной и главной частью ряда (11.1). 🛦

Определение 4. Пусть функция f(z) представляется в области $R < |z| < \infty$ сходящимся рядом

$$\sum_{n=1}^{\infty} c_n z^n. \tag{11.4}$$

Ряд (11.4) называется рядом Лорана функции f(z) в окрестности бесконечно удаленной точки, а ряды

$$\sum_{n=1}^{\infty} c_n z^n, \tag{11.5}$$

$$\sum_{n=1}^{\infty} c_n z^n,$$

$$c_0 + \sum_{n=1}^{\infty} \frac{c_{-n}}{z^n}$$
(11.5)

называются соответственно главной и правильной частью ряда (11.4). 🛦

Замечание. Рядом Лорана функции f(z) в окрестности точки $z=\infty$ называется также ряд

$$\sum_{n=-\infty}^{\infty} c_n (z - z_0)^n, (11.4a)$$

 $\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n,$ сходящийся к f(z) в области $R<|z-z_0|<\infty$. При этом $\sum_{n=1}^{\infty} c_n (z-z_0)^n$

$$\sum_{n=1}^{\infty} c_n (z - z_0)^n \tag{11.5a}$$

называют главной частью ряда (11.4а), а

$$c_0 + \sum_{n=1}^{\infty} \frac{c_{-n}}{(z - z_0)^n} \tag{11.6a}$$

— правильной частью. ▲

Определение типа особой точки по главной части ряда Лорана

Таблица 1

1 dostitiça 1	
Тип особой точки z_0 функции $f(z)$	Главная часть ряда Лорана функции $f(z)$ в
	окрестности точки z_0
Устранимая	отсутствует
Полюс	содержит конечное число членов
Существенно особая	содержит бесконечное число членов

Определение порядка полюса для точки $z_0 \neq \infty$

Таблица 2	
Точка $z_0 \neq \infty$ является полюсом порядка m для функции $f(z)$ тогда и только тогда, когда	1) в некоторой проколотой окрестности $\mathring{\mathbb{U}}_{\rho}(z_0)$ точки z_0 , т.е. в области $0< z-z_0 <\rho$, функция $f(z)$ представляется рядом: $f(z)=\sum_{n=-m}^{\infty}c_n(z-z_0)^n, m>0, c_{-m}\neq 0.$ 2) $f(z)\sim\frac{A}{(z-z_0)^m}$ при $z\to z_0$, где A — некоторое отличное от нуля комплексное число. 3) $f(z)=\frac{h(z)}{(z-z_0)^m}$, где функция $h(z)$ аналитична в точке z_0 и $h(z_0)\neq 0$.
	TJ

$$g(z) = \begin{cases} \frac{1}{f(z)}, z \neq z_0, \\ 0, z = z_0, \end{cases}$$
 T.e.
$$g(z_0) = g'(z_0) = \cdots = g^{(k-1)}(z_0) = 0$$

$$0, g^k(z_0) \neq 0.$$

Определение порядка полюса для бесконечно удаленной точки

Таблица 3

Точка $z = \infty$ является полюсом порядка mдля функции f(z) тогда и только тогда, когда

1) в области $\rho < |z| < \infty$, функция f(z)представляется рядом:

$$f(z) = \sum_{n=-\infty}^{m} c_n z^n, m > 0, c_m \neq 0.$$

$$2) f(z) \sim Az^m \quad \text{при } z \to \infty,$$

где A — некоторое отличное от нуля комплексное число.

3) $f(z) = h(z)z^m$,

функция h(z) аналитична в некоторой области $\rho < |z| < \infty$ и $\lim_{z \to \infty} h(z) \neq 0$.

Контрольные вопросы по теоретической части

- 1) Дайте определение изолированной особой точки однозначного характера для функции f(z) (конечной и бесконечной).
- 2) Какие типы изолированных особых точек существуют? Дайте определение для каждого типа изолированных особых точек.
- 3) Дайте определение ряда Лорана функции f(z) в окрестности конечной точки z_0 . Что такое главная и правильная части этого ряда?
- 4) Дайте определение ряда Лорана функции f(z) в окрестности точки $z = \infty$. Что такое главная и правильная части этого ряда?
- 5) Как определить тип особой точки по главной части ряда Лорана в окрестности этой точки?
- 6) Как определить порядок полюса для конечной точки z_0 ?
- 7) Как определить порядок полюса для точки $z = \infty$?

Практические задания

Указать все конечные особые точки заданных ниже функций и определить их характер:

1)
$$f(z) = \frac{z+2}{z(z+1)(z-1)^3}$$

2)
$$a) f(z) = \frac{1}{\sin z}$$
; $\delta) f(z) = \frac{1}{1 - \cos 2z}$

3)
$$f(z) = \frac{z}{(z+1)^3 (e^z - 1)}$$

4) $f(z) = \frac{z(\pi - z)}{\sin 2z}$

4)
$$f(z) = \frac{z(\pi - z)}{\sin 2z}$$

$$5) \ f(z) = \frac{z - \frac{\pi}{4}}{tgz - 1}$$

$$6) \ f(z) = tg \frac{1}{z-1}$$

7)
$$f(z) = \frac{tg(z-1)}{z-1}$$

8)
$$f(z) = \frac{\sin z}{z^5}$$

9)
$$f(z) = \frac{1}{e^z - 3}$$

Для заданных ниже функций выяснить характер бесконечно удаленной точки (устранимую точку считать правильной)

10)
$$f(z) = \frac{z^2}{5 - 2z^2}$$

11)
$$f(z) = \frac{3z^5 - 5z + 2}{z^2 + z - 4}$$

Указать все конечные особые точки заданных ниже функций, определить их характер и выяснить характер бесконечно удаленной точки

12)
$$f(z) = e^{\frac{1}{z}} + 2z^2 - 5$$

13)
$$f(z) = \frac{1}{z^3(2-\cos z)}$$

14)
$$f(z) = \frac{e^{\frac{1}{z-1}}}{e^z - 1}$$

Домашнее задание: №№ 13.382, 13.385, 13.386, 13.390, 13.392, 13.400, 13.406, 13.407. (Первые две цифры соответствуют номеру главы «Ряды и их применение»)