Отчёт №3

Виктория Вяльцева

Март 2023

Постановка задачи

Рассматривается пластина с длиной стороны h=10 мм и центральмым почти круговым отверстием радиуса r=1 м, искривление которого задаётся через коэффициент ϵ . Пластина изготовлена из линейно-упругого, изотропного материала. Необходимо определить влияние ϵ на максимальное значение σ_{xx} в условиях плоско деформированного состояния.

Рис. 1: Четверть пластины с $\epsilon = 0.4$

Решение задачи и конечно-элементная модель

Учитывая симметрию, будем работать с четвертью пластины. Пластина изготовлена из материала с модулем Юнга $E=210\cdot 10^9$ Па и коэффициентом Пуассона $\nu=0.3$. Тип эллементов - plane183. К пластине приложено давление p=-1 Па на боковые грани. Нижняя грань ограничена в перемещениях вдоль оси Oy, правая - по Ox (из условий симметрии). Проанализируем решения (напряжение по оси Ox) с разными размерами элементов на прямых линиях (s_1) и на отверстии (s_2) с коэффициентом сгущения p=0.1. Первый вариант сетки: $s_1=0.05$ мм и $s_2=0.001$ мм, второй вариант сетки: $s_1=0.1$ мм и $s_2=0.002$ мм. Сравним полученные значения с первым приближением аналитического решения (σ_{xx}^a) .

ϵ	0.1	0.2	0.3	0.4	0.5
$\sigma^a_{xx},\Pi { m a}$	2.8333	2.7143	2.625	2.5555	2.5
$\sigma_{xx}^{1},\Pi \mathrm{a}$	3.0443	2.5876	1.9371	1.9981	2.0318
$\sigma_{xx}^{2},\Pi ext{a}$	3.0431	2.5722	1.9252	1.9984	2.0319
Отклонение σ_{xx}^2 от σ_{xx}^1	0.04%	0.6%	0.6%	-0.5%	-0.004%
Отклонение σ_{rr}^{1} от σ_{rr}^{a}	-7%	5%	26%	22%	19%

Рис. 2: σ_{xx}^a для $\epsilon=0.1$ на втором варианте сетки

Разница между решениями на разных сетках для всех рассмотренных значений ϵ менее одного процента. Будем считать что имеет место внутренняя сходимость.

Вывод

Таким образом, ϵ влияет на значение напряжений. Максимальное значение напряжения достигается при $\epsilon=0.1$ и равняется $\sigma_{xx}=3.0443$ Па, затем оно уменьшается до ≈ 2 Па и значения при $\epsilon=0.3,0.4,0.5$ отличаются между собой менее чем на 6%.

Листинг

```
/clear
/prep7
r=1
pi=4*atan(1)
E=210e9
nu=0.3
n=150
h=10
m=2
s1=0.1
s2=0.001
p1=0.1
```

```
et,1,plane183,,,1,
mp,ex,1,E
mp,prxy,1,nu
eps=0.4
analit = 1+2*(1+eps)/(1+2*eps)
j=1
*do,i,0,pi/2,0.05
k,j,r*(1+eps*cos(m*i))*cos(i),r*(1+eps*cos(m*i))*sin(i)
j=j+1
*enddo
spline,all
lcomb,all
k,j,0,h
k,j+1,h,h
k,j+2,h,0
lstr,j-1,j
lstr,j,j+1
lstr,j+1,j+2
lstr, j+2, 1
al, 1,2,3,4,5
!lesize,all,,n
lesize,5,s1,,,p1
lesize,4,s1,,,p1
lesize,3,s1,,,p1
lesize,2,s1,,,p1
lesize,1,s2
amesh,1
sfl,4,pres,-1
d1,5,,uy,
d1,2,,ux,
/solu
solve
/post1
SET, LAST
plnsol,s,x
```