802.11n ac80 Band Edge Middle- Chain0

Date: 02.APR.2016 05:19:14

FCC Part 15.407 Page 91 of 151

802.11a Band Edge, Left Side - Chain1

802.11a Band Edge, Right Side-Chain1

FCC Part 15.407 Page 92 of 151

802.11n ht20 Band Edge, Left Side- Chain1

Date: 02.APR.2016 06:09:15

802.11n ht20 Band Edge, Right Side-Chain1

02.HI N.2010 00.14.13

FCC Part 15.407 Page 93 of 151

802.11n ht40 Band Edge, Left Side- Chain1

Date: 02.APR.2016 05:57:14

802.11n ht40 Band Edge, Right Side- Chain1

FCC Part 15.407 Page 94 of 151

802.11n ac80 Band Edge, Middle- Chain1

Date: 02.APR.2016 06:05:46

FCC Part 15.407 Page 95 of 151

5725MHz-5850MHz:

Date: 02.APR.2016 09:36:27

802.11a Band Edge, Right Side - Chain0

FCC Part 15.407 Page 96 of 151

802.11n ht20 Band Edge, Left Side - Chain0

802.11n ht20 Band Edge, Right Side - Chain0

FCC Part 15.407 Page 97 of 151

802.11n ht40 Band Edge, Left Side - Chain0

802.11n ht40 Band Edge, Right Side - Chain0

FCC Part 15.407 Page 98 of 151

802.11n ac80 Band Edge, Middle - Chain0

FCC Part 15.407 Page 99 of 151

802.11a Band Edge, Left Side - Chain1

Date: 02.APR.2016 06:32:47

802.11a Band Edge, Right Side - Chain1

Date: 02.APR.2016 06:40:31

FCC Part 15.407 Page 100 of 151

802.11n ht20 Band Edge, Left Side - Chain1

Date: 02.APR.2016 06:55:26

802.11n ht20 Band Edge, Right Side - Chain1

Date: 02.AIN.2010 00.40.31

FCC Part 15.407 Page 101 of 151

802.11n ht40 Band Edge, Left Side - Chain1

802.11n ht40 Band Edge, Right Side - Chain1

Date: 02.APR.2016 07:03:27

FCC Part 15.407 Page 102 of 151

802.11n ac80 Band Edge, Middle - Chain1

Date: 02.APR.2016 07:08:14

FCC Part 15.407 Page 103 of 151

FCC §15.407(a) –EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH

Applicable Standard

15.407(a) (e)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2014-05-09	2015-05-09
N/A	Coaxial Cable	0.1m	N/A	2015-05-06	2016-05-06
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2015-05-06	2016-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r01

Test Data

Environmental Conditions

Temperature:			
Relative Humidity:			
ATM Pressure:	100.9 kPa		

The testing was performed by Dean Liu on 2015-04-02.

Test Result: Pass.

Please refer to the following tables and plots.

FCC Part 15.407 Page 104 of 151

Test mode: Transmitting

5150MHz-5250MHz:

Mode	Channel	Frequency MHz	26 dB Emission Bandwidth (MHz)		Result
			Chain0	Chain1	
802.11a	Low	5180	21.56	22.12	PASS
	Middle	5200	21.48	22.12	PASS
	High	5240	21.33	22.28	PASS
802.11n20	Low	5180	21.96	21.56	PASS
	Middle	5200	21.88	21.48	PASS
	High	5240	21.92	21.3	PASS
802.11n40	Low	5190	43.13	42	PASS
	High	5230	43.33	42.53	PASS
802.11ac80	Middle	5210	82.79	82.4	PASS

5725MHz-5850MHz:

Mode	Channel	Frequency MHz	6dB Emission Bandwidth (MHz)		Result
			Chain0	Chain1	
	Low	5745	16.59	16.59	PASS
802.11a	Middle	5785	16.59	16.59	PASS
	High	5825	16.59	16.59	PASS
802.11n20	Low	5745	17.8	17.72	PASS
	Middle	5785	17.8	17.8	PASS
	High	5825	17.88	17.72	PASS
802.11n40	Low	5755	36.55	36.71	PASS
602.111140	High	5795	36.71	36.71	PASS
802.11ac80	Middle	5775	75.67	75.99	PASS

FCC Part 15.407 Page 105 of 151

5150MHz-5250MHz:

802.11a Low Channel - Chain0

802.11a Middle Channel - Chain0

FCC Part 15.407 Page 106 of 151

802.11a High Channel – Chain0

Date: 05.APR.2D16 10:02:26

802.11n ht20 Low Channel - Chain0

FCC Part 15.407 Page 107 of 151

802.11n ht20 Middle Channel - Chain0

Date: 02.APR.2D16 05:00:55

802.11n ht20 High Channel - Chain0

Date: 05.AFK.2010 10:00:2:

FCC Part 15.407 Page 108 of 151

802.11n ht40 Low Channel - Chain0

Date: 02.APR.2D16 05:07:54

802.11n ht40 High Channel - Chain0

Date: 05.APR.2D16 10:09:47

FCC Part 15.407 Page 109 of 151

802.11ac80 Middle Channel - Chain0

FCC Part 15.407 Page 110 of 151

802.11a Low Channel – Chain1

Date: 02.APR.2D16 06:22:58

802.11a Middle Channel - Chain1

Date: 02.APR.2D16 06:20:11

FCC Part 15.407 Page 111 of 151

Page 112 of 151

802.11a High Channel – Chain1

Date: 05.APR.2D16 11:52:20

802.11n ht20 Low Channel - Chain1

FCC Part 15.407

802.11n ht20 Middle Channel - Chain1

Date: 02.APR.2D16 06:10:50

802.11n ht20 High Channel - Chain1

DB(E: 05.AFK.2010 03.55.57

FCC Part 15.407 Page 113 of 151

802.11n ht40 Low Channel - Chain1

Date: 02.APR.2D16 05:55:48

802.11n ht40 High Channel - Chain1

Date: 05.APR.2D16 09:52:18

FCC Part 15.407 Page 114 of 151

802.11n ac80 Middle Channel - Chain1

FCC Part 15.407 Page 115 of 151

5725MHz-5850MHz: 6 dB Bandwidth

802.11a Low Channel - Chain0

Date: 02.APR.2016 09:34:43

802.11a Middle Channel - Chain0

FCC Part 15.407 Page 116 of 151

802.11a High Channel – Chain0

Date: 02.APR.2016 09:43:56

802.11n ht20 Low Channel - Chain0

FCC Part 15.407 Page 117 of 151

802.11n ht20 Middle Channel - Chain0

Date: 02.APR.2016 09:06:50

802.11n ht20 High Channel - Chain0

FCC Part 15.407 Page 118 of 151

802.11n ht40 Low Channel - Chain0

02.FI N.2010 03.10.30

802.11n ht40 High Channel - Chain0

FCC Part 15.407 Page 119 of 151

Date:

802.11n ac80 Middle Channel - Chain0

FCC Part 15.407 Page 120 of 151

802.11a Low Channel – Chain1

802.11a Middle Channel – Chain1

FCC Part 15.407 Page 121 of 151

802.11a High Channel – Chain1

Date: 02.APR.2016 06:38:55

802.11n ht20 Low Channel - Chain1

Date: 02.APR.2016 06:53:38

FCC Part 15.407 Page 122 of 151

802.11n ht20 Middle Channel - Chain1

FCC Part 15.407 Page 123 of 151

802.11n ht40 Low Channel - Chain1

Date: 02.APR.2016 06:57:50

802.11n ht40 High Channel - Chain1

FCC Part 15.407 Page 124 of 151

802.11 ac80 Middle Channel – Chain1

Date: 02.APR.2016 07:06:26

FCC Part 15.407 Page 125 of 151

FCC §15.407(a) -MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

Report No.:RDG160329003-00B

- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC Part 15.407 Page 126 of 151

- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

Test Equipment List and Details

		Annual Control of the			
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54210016	2015-11-03	2016-11-03
Agilent	Wideband Power Sensor	N1921A	MY54170013	2015-11-03	2016-11-03
Agilent	P-Series Power Meter	N1912A	MY5000448	2015-11-03	2016-11-03
N/A	Coaxial Cable	0.1m	N/A	2015-05-06	2016-05-06
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2015-05-06	2016-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r01

Test Data

Environmental Conditions

Temperature:	24.6 °C
Relative Humidity:	50 %
ATM Pressure:	100.9 kPa

The testing was performed by Dean Liu on 2016-04-02.

FCC Part 15.407 Page 127 of 151

Test Mode: Transmitting

5150-5250 MHz band

Mode	Channel	Frequency	Maximum	Dogult			
		MHz	Chain 0	Chain 1	Total	Limits	Result
	Low	5180	12.94	12.39	15.68	24	PASS
802.11a	Middle	5200	12.57	12.73	15.66	24	PASS
	High	5240	12.84	13.27	16.07	24	PASS
802.11n20	Low	5180	11.59	11.19	14.4	24	PASS
	Middle	5200	11.47	11.56	14.53	24	PASS
	High	5240	11.31	12.37	14.88	24	PASS
802.11n40	Low	5190	11.22	11.62	14.43	24	PASS
	High	5230	11.17	11.92	14.57	24	PASS
802.11ac80	Middle	5210	9.9	10.35	13.14	24	PASS

5725-5850 MHz band

Mode	Channel	Frequency	Maximum	Dogult			
	Channel	MHz	Chain 0	Chain 1	Total	Limits	Result
802.11a	Low	5745	13.12	13.11	16.13	30	PASS
	Middle	5785	13.05	12.96	16.02	30	PASS
	High	5825	12.93	12.66	15.81	30	PASS
	Low	5745	11.51	11.24	14.39	30	PASS
802.11n20	Middle	5785	11.22	11.1	14.17	30	PASS
	High	5825	11.46	11.82	14.65	30	PASS
802.11n40	Low	5755	11.98	11.51	14.76	30	PASS
	High	5795	11.31	11.97	14.66	30	PASS
802.11ac80	Middle	5775	9.98	9.82	12.91	30	PASS

Note: the device is a client device. both antenna maximum atenna gain are 5dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power measurements on IEEE 802.11 devices:

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4 ;

So:

Directional gain = GANT + Array Gain = 5dBi

The power limit no need reduce.

FCC Part 15.407 Page 128 of 151

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

Report No.:RDG160329003-00B

- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC Part 15.407 Page 129 of 151

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r01

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
R&S	Spectrum Analyzer	FSP 38	100478	2014-05-09	2015-05-09			
N/A	Coaxial Cable	0.1m	N/A	2015-05-06	2016-05-06			
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2015-05-06	2016-05-06			

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	22.9 °C
Relative Humidity:	54 %
ATM Pressure:	101 kPa

The testing was performed by Dean Liu on 2015-04-12.

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plot.

FCC Part 15.407 Page 130 of 151

5150MHz-5250MHz:

Mode	Channel	Frequency	(PSD dBm/MHz)	Limit	Result	
		MHz	Chain0	Chain1	Total	(dBm/MHz)	
	Low	5180	2.31	1.72	5.04	15	PASS
802.11a	Middle	5200	2.11	2.64	5.39	15	PASS
	High	5240	2.47	3.06	5.79	15	PASS
	Low	5180	0.72	0.58	3.66	15	PASS
802.11n20	Middle	5200	0.89	1.48	4.21	15	PASS
	High	5240	1.3	1.97	4.66	15	PASS
802.11n40	Low	5190	-2.78	-1.32	1.02	15	PASS
	High	5230	-2.72	-0.82	1.34	15	PASS
802.11ac80	Middle	5210	-6.19	-5.49	-2.82	15	PASS

Note: the device is a client device. Both antenna maximum atenna gain are 5dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array $Gain = 10 \log(NANT/NSS) dB$.

So:

Directional gain = GANT + Array Gain = 5+10*log(2) = 8 dBiThe Power density Limits was reduce 2dB

5725MHz-5850MHz:

Mode	Channel	Frequency		Power Spectral Density (dBm/300kHz)		Power Spectral Density (dBm/500kHz)		
		MHz	Chain 0	Chain 1	Chain0 Integrated Value	Chain 1 Integrated Value	Total	(dBm/500kHz)
	Low	5745	-1.32	-1.11	0.9	1.11	4.02	28
802.11a	Middle	5785	-1.58	-1.31	0.64	0.91	3.79	28
	High	5825	-1.29	-1.59	0.93	0.63	3.79	28
	Low	5745	-2.98	-2.57	-0.76	-0.35	2.46	28
802.11n20	Middle	5785	-2.96	-3.05	-0.74	-0.83	2.23	28
	High	5825	-3.31	-2.58	-1.09	-0.36	2.3	28
802.11n40	Low	5755	-5.85	-4.99	-3.63	-2.77	-0.17	28
	High	5795	-5.81	-4.7	-3.59	-2.48	0.01	28
802.11n40	Middle	5775	-8.67	-9.97	-6.45	-7.75	-4.04	28

Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10\log(500\text{kHz/RBW})$ to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

Note: the device is a client device. Both antenna maximum atenna gain are 5dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array $Gain = 10 \log(NANT/NSS) dB$.

So:

Directional gain = GANT + Array Gain = 5+10*log(2) = 8 dBi

The Power density Limits was reduce 2dB

FCC Part 15.407 Page 131 of 151

5150MHz-5250MHz:

Date: 02.APR.2016 04:45:21

802.11a Middle Channel - Chain0

Date: 02.APR.2016 04:49:22

FCC Part 15.407 Page 132 of 151

802.11a High Channel – Chain0

Date: 02.APR.2016 04:53:41

802.11n ht20 Low Channel - Chain0

Date: 02.APR.2016 05:04:19

FCC Part 15.407 Page 133 of 151

802.11n ht20 Middle Channel – Chain0

Date: 02.APR.2016 05:01:36

802.11n ht20 High Channel - Chain0

FCC Part 15.407 Page 134 of 151

802.11n ht40 Low Channel - Chain0

Date: 02.APR.2016 05:08:34

802.11n ht40 High Channel - Chain0

Date: 02.APR.2016 05:12:08

FCC Part 15.407 Page 135 of 151

Date:

802.11 ac80 Middle Channel – Chain0

FCC Part 15.407 Page 136 of 151

802.11a Low Channel – Chain1

Date: 02.APR.2016 06:23:39

802.11a Middle Channel - Chain1

Date: 02.APR.2016 06:20:52

FCC Part 15.407 Page 137 of 151

802.11a High Channel – Chain1

Date: 02.APR.2016 06:17:33

802.11n ht20 Low Channel - Chain1

Date: 02.APR.2016 06:08:30

FCC Part 15.407 Page 138 of 151

802.11n ht20 Middle Channel – Chain1

Date: 02.APR.2016 06:11:31

802.11n ht20 High Channel - Chain1

Date: 02.APR.2016 06:13:28

FCC Part 15.407 Page 139 of 151

802.11n ht40 Low Channel – Chain1

Date: 02.APR.2016 05:56:29

802.11n ht40 High Channel - Chain1

FCC Part 15.407 Page 140 of 151

802.11 ac80 Middle Channel – Chain1

FCC Part 15.407 Page 141 of 151

5725MHz-5850MHz:

000 44 150 111 61

FCC Part 15.407 Page 142 of 151

802.11a High Channel – Chain0

Date: 02.APR.2016 09:44:47

802.11n ht20 Low Channel - Chain0

Date: 02.APR.2016 09:12:08

FCC Part 15.407 Page 143 of 151

802.11n ht20 Middle Channel - Chain0

Date: 02.APR.2016 09:07:39

802.11n ht20 High Channel - Chain0

FCC Part 15.407 Page 144 of 151

802.11n ht40 Low Channel - Chain0

Date: 02.APR.2016 09:17:47

802.11n ht40 High Channel - Chain0

Date: 02.APR.2016 09:21:53

FCC Part 15.407 Page 145 of 151

802.11 ac80 Middle Channel – Chain0

Date:

FCC Part 15.407 Page 146 of 151

802.11a Low Channel - Chain1

Date: 02.APR.2016 06:31:55

802.11a Middle Channel - Chain1

Date: 02.APR.2016 06:35:20

FCC Part 15.407 Page 147 of 151

802.11a High Channel – Chain1

Date: 02.APR.2016 06:39:37

802.11n ht20 Low Channel - Chain1

Date: 02.APR.2016 06:54:27

FCC Part 15.407 Page 148 of 151

802.11n ht20 Middle Channel – Chain1

802.11n ht20 High Channel - Chain1

FCC Part 15.407 Page 149 of 151

802.11n ht40 Low Channel - Chain1

802.11n ht40 High Channel - Chain1

FCC Part 15.407 Page 150 of 151

802.11 ac80 Middle Channel – Chain1

***** END OF REPORT *****

FCC Part 15.407 Page 151 of 151