4 - Genome Assembly and Validation (Concepts)

Wednesday afternoon

Bernardo J. Clavijo Richard Smith-Unna Gonzalo Garcia

Assembly project workflow | Prior Knowledge

- Kariotype: Genome size, Ploidy
- Heterozygocity
- GC content
- Contaminants / Symbionts
- Data Sets:
 - Close relatives
 - Genes / ESTs / RNAseq / Markers
- Mithocondria
- Chloroplast

Experiment design (you choose the data!)

Know your biological question.

Plan your data processing (from an information perspective).

Decide on conditions and biological/technical replicas.

- Decide on technologies and coverages:
 - How will the typical bias affect your experiment?
 - Is the coverage enough? Significant results?

The genome assembly problem (WGS)

Planning and "informed guesses"

Whole genome information (unknown?)
+Bias Information (unknown)

"known error profile"

short sequences $(10^{\{2-3\}})$

large data (10X)

\

Assemble and Scaffold

Scaffolds & Contigs

Validate and release

Y≪X

small data (10^y)

long sequences (10¹⁰)

"unknown error profile"

Whole genome information (known?)
+Bias Information (unknown, reduced?)

The assembly is just a probabilistic model of a genome, condensing the information from the experimental evidence.

All the information is already present in the experimental results.

A correct assembly has:

The right *motifs,*the correct number of times,
in correct order and position.

None of which is assessed by length stats.

A modern assembler

Using SOAPdenovo2 as an example

Assembly validation

Using biological knowledge to figure out what are...

Direct experimental evidence: the reads

ACTGACTGCCTGTGTGTGTGTGTGTGTGTGTGACTGTTAAA

ACTGACTGC

structure GACTGTTAAA Sequence

Direct experimental evidence: other evidence

- Genome size, ploidy
- GC content
- Symbionts
- Plastids
- ESTs, cDNAs, peptides, genome walking

Indirect experimental evidence: genomes in general

- Genes! They have structure
- Repeats
- Chromosome macrostructure
 - (circular?, number, telomeres, ...)

Indirect experimental evidence: other species

- Close relatives: proteins, transcripts, genomes
- Distant relatives: single-copy genes, phylogeny, HGT

Questions?

