# Ch5. Routing

● Created @Jun 16, 2020 2:56 PM※ Tags 컴망

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/680cd8 5d-fc71-4451-8e12-3f47e902d9b5/Chapter\_5\_Routing.pptx

#### Introduction

라우팅 프로토콜(라우팅 알고리즘): 라우팅 테이블을 만드는 방법

Link state 프로토콜

Distance vector 프로토콜

Path vector 프로토콜

Control Plane의 라우팅: 두 접근

Per-router control (전통적 방법)

Logically centralized control

라우팅 알고리즘의 분류

Link state 알고리즘 중 하나 : 다익스트라

Distance vector 알고리즘 중 하나 : 벨만-포드

LS와 DV 알고리즘의 비교

Scalable Routing

Inter-AS: 서로 다른 AS간 라우팅

**BGP** (Border Gateway Protocol)

BGP 경로 선택 옵션

Intra-AS = IGP (Interior Gateway Protocols)

SDN: Software Defined Networking

ICMP: Internet Control Message Protocol

ICMP를 이용하는 예시 1 : ping

ICMP를 이용하는 예시 2: traceroute

SNMP: 네트워크 관리에 사용

### Introduction

IP계층(Network Layer)을 두 Plane으로 나눌 수 있다.

• Control plane - 라우팅 테이블을 어떻게 만들 것인지와 관련. Routing.

• Data plane - 목적지 주소를 보고, 라우팅 테이블을 참조해서, 어느 곳으로 보낼지 Forwarding.

#### **라우팅**이란?

- Source → Destination 길 찾아가기.
- 어떤 라우터를 거쳐서 갈 것인가?
- 어떻게 길을 찾는가? Routing table을 참조한다. 그럼 이 라우팅 테이블을 어떻게 만 들까?

# 라우팅 프로토콜(라우팅 알고리즘) : 라우팅 테이블을 만드는 방법

라우팅 테이블을 만드는 방법에는 세 가지가 있다.



프로토콜 자체는 복잡한데, 개념을 알아둬라.

#### Link state 프로토콜



Link : 노드 간 직접적으로 연결된 것

Link state : 이 라우터와 연결된 다른 라우터들의 Link 정보. (cost(거리, 시간 돈 등), ...)

라우터 R1 기준의 Link state를 Flooding한다.

= 링크 정보를 나머지 라우터들에게 다 보낸다. 모든 라우터들이 이를 수신한다.

R2 기준의 Link state도 Flooding한다. R3도, R4도, ...

→ 시간이 지나면, 어느 라우터에서든 모든 라우터의 연결 관계를 그래프로 그릴 수 있다. 그럼 이제 임의의 두 노드 간에 데이터를 전달할 때, 어느 경로가 제일 빠를지 바로 알 수 있다.

#### Distance vector 프로토콜



사거리 A, B가 있는 도로.

**A의 이정표를 보고, B의 이정표를 업데이트**한다. B에는 B의 원래 내용에 추가로 A에만 있고 B에는 없는 내용까지 추가된다.

A의 입장에서도, 업데이트된 B의 이정표를 보고 자신 걸 다시 업뎃할 수 있다.

R1이 **주변의 라우터에게 라우팅 테이블을 전달**하면, **주변 라우터의 라우팅 테이블이 업데 이트**된다. 라우팅 테이블이 변경됐다면 전달해준 라우터에게 변경된 라우팅 테이블을 다시 넘겨준다.

→ 이런 식으로 진행하면 모든 정보로 업데이트된 라우팅 테이블을 모든 라우터가 갖게 된다.

### Path vector 프로토콜

R1을 거치면 X까지 도달할 수 있다. R2를 거치면 X까지 도달할 수 있다.

→ 이러한 **경로 정보를 라우터끼리 전달**하면서 라우팅 테이블을 완성한다.

### Control Plane의 라우팅: 두 접근

### Per-router control (전통적 방법)

- 라우터들끼리 서로 동작해서 테이블을 만드는 것
- 라우팅 알고리즘 (라우팅 프로토콜)을 통해 라우터 자체에서 테이블을 만듦.
- Control plane, Data plane 자체가 라우터에 모두 구현됨

### Logically centralized control

- 라우팅 테이블 만드는 Remote Controller가 따로 있다.
- 외부 프로그램에서 테이블을 만들어주고, 라우터에게 전달해준다.
- 라우터는 데이터 처리만 한다.
- Control plane은 외부에 있고, Data plane만 라우터에 있다.

### 라우팅 알고리즘의 분류

라우팅 알고리즘은 결국 그래프에서의 최소 비용 문제.

- Global한 정보를 사용하는가, 탈중앙화된 정보를 사용하는가?
  - Link state 알고리즘 : Global
    - 모든 라우터가 완전한 연결 정보를 갖는다.
  - **Distance vector 알고리**즘 : Decentralized
    - 서로 인접한 라우터끼리의 정보만 알고 있다.
- 경로 정보가 Static한가, Dynamic한가?
  - Dynamic하다면 주기적 업데이트 필요.

# Link state 알고리즘 중 하나 : 다익스트라

문제가 생길 수 있다. Cost값이 계속해서 바뀌는 경우, 최단경로 계산이 이리저리 왔다갔다한다. (oscillations)

• ex) Cost값이 Carried traffic인 경우, 최단경로가 계산할 때마다 계속 바뀐다.

### Distance vector 알고리즘 중 하나 : 벨만-포드

Cost값이 바뀔 경우, 이 링크와 연결된 노드는 이를 알아차리고 라우팅 정보를 업데이트 한다.

- · Good news travels first.
  - Cost가 낮아진 경우, 주변 라우터들에게 계속해서 정보가 전달되면서 업데이트 된다. 단, Distance vector의 변화가 없을 때는 전해준 라우터에게 다시 알리지 않는다.
- Bad news travels slow
  - → Count to infinity 문제가 생긴다! 서로 Cost가 무한대까지 증가하고 나서야 못 간다는 것을 안다.

# Y

#### RX—A—R1—B 연결.

- \* A가 가지는 정보 : X까지 A를통해 1번만에.
- \* B가 가지는 정보: X까지 A를통해 2번만에.

연결이 끊어져 RX A-R1-B 가 된 경우, 진행을 잘 보자.

- \* A 정보 업뎃: X까지 A를통해 16번만에. (inf) 그런데, B는 아직 업뎃되지 않았다. A는 다시 B의 정보를 보고는, X에 3번 만에 도달할 수 있다고 생각한다.
- \* A 정보 업뎃: X까지 B를통해 3번만에.
- 그럼 B는 A의 정보를 보고 자신 걸 업뎃한다.
- \* B 정보 업뎃: X까지 A를통해 4번만에.
- \* A 정보 업뎃: X까지 B를통해 5번만에.
- \* B 정보 업뎃: X까지 A를통해 6번만에.

•••

이렇게 가면 둘 다 inf까지 가고, 그제서야 못 간다는 걸 안다.

• 해결책: Poisoned reverse, Split horizon, Triggered update

# LS와 DV 알고리즘의 비교

#### 수렴 속도

- LS: O(n^2). 진동(Oscillations) 발생 가능.
- DV : 수렴 속도 다양함. 루프 발생 가능, Count-to-infinity 문제.

# **Scalable Routing**

실제 네트워크에 이러한 LS, DV 방법을 적용할 수 있는가? 그렇지 않다.

전 세계의 모든 라우터들이 동일한 알고리즘을 사용하는가? 그렇지 않다.

- Network is "flat" 모든 네트워크는 평등하다.
- Scalable하지 않다.
  - Destination의 숫자는 너무 많다. **라우팅 테이블에 모든 걸 저장할 수 없다.**
- Administrative autonomy

- 인터넷 = 네트워크들끼리 연결해 둔 또 다른 네트워크.
- 각각의 네트워크는 운영 주체를 갖는다.
- AS (Autonomous Systems) : 하나의 단위. "Domains"
- Intra-AS 라우팅: 한 AS 내부의 호스트끼리의 라우팅.
  - 게이트웨이 라우터 : 서로 다른 AS로의 엣지가 있는 라우터.
- Inter-AS 라우팅: 서로 다른 AS간의 라우팅
  - BGP 방법이 있다.
- 한 AS 내의 모든 호스트들은 동일한 Intra-domain 프로토콜을 돌린다. AS가 다르면 Intra-domain 프로토콜도 다를 수 있다.
- Intra-AS 라우팅 알고리즘, Inter-AS 라우팅 알고리즘 두 개를 복합적으로 사용 해서 라우팅 테이블을 만든다.



Intra-AS: AS 내부에서 어느 라우터를 거쳐야 하는지만 알면 된다.

Inter-AS: 어느 AS를 거쳐야 하는지만 알면 된다.

# Inter-AS: 서로 다른 AS간 라우팅

AS1의 라우터에서 AS2의 라우터로 데이터를 보내기 위해서는?

- 1. **어느 AS를 통해야** AS1 → AS2로 갈 수 있는지 확인.
- 2. 어느 AS로 갈지 결정했으면, AS1 안에 있는 **어느 게이트웨이 라우터를 통해야** 그 AS 로 갈 수 있는지 확인.
- 3. 모두 확인됐으면 그 게이트웨이 라우터로 보내면 된다.

### **BGP (Border Gateway Protocol)**

AS간 프로토콜로 가장 많이 사용됨.

자신의 존재를 subnet (서브 네트워크)에 알려주는 역할을 한다.

- **eBGP** (exterior BGP)
  - 서로 다른 AS간 통신

- **iBGP** (interior BGP)
  - 한 AS 내부의 호스트 간 통신

BGP 프로토콜들은 서로 **BGP 세션**이라는 것을 만든다.

• **BGP 세션**: 두 BGP 라우터 사이의 반영구적인 TCP 연결

BGP는 Path vector 프로토콜을 사용한다.

• 라우터끼리 경로 정보를 전달한다.

#### BGP 경로 선택 옵션

- 1. Policy에 따라서
- 2. 최단 AS경로
- 3. **Hot potato routing** : 최대한 지금 있는 AS에서 빨리 벗어나도록. 가장 가까운 게이트웨이 라우터로 전달.
- 4. ...

# Intra-AS = IGP (Interior Gateway Protocols)

- **RIP**: Routing Information Protocol
  - DV 알고리즘 사용
- OSPF: Open Shortest Path First
  - LS 알고리즘 사용
- IGRP: Interior Gateway Routing Protocol

# **SDN: Software Defined Networking**



Remind: 기존의 방식은 라우터 내에 라우팅 프로토콜이 내장되어 있다. 라우터 내의 라우팅 프로토콜은 우리 임의대로 수정할 수 없다.

항상 같이 등장하는 기술이 NFV (Network Function Virtualization)이다.

• NFV: 네트워크 노드들의 함수들을 가상화해둔 것

Control plane, Data plane이 분리되어 있다.

Control plane도 두 부분으로 나누어볼 수 있다.

- Network-control applications
  - 라우팅, 로드 밸런싱, ... 등을 수행
- SDN Controller
  - 인터페이스 레이어, 상태 관리 레이어, 커뮤니케이션 레이어 등 존재.
  - ODL(OpenDayLight) 컨트롤러, ONOS 컨트롤러 등이 있다.

# **ICMP: Internet Control Message Protocol**

호스트와 라우터들이 네트워크 레벨의 정보를 전달할 수 있도록 해 준다.

• Error reporting : 문제가 생겼을 때 정보 전달.



라우터를 거칠 때마다 TTL이 감소한다. TTL이 0이 되면? 패킷을 drop한다. 그러면 Source에다가 라우터가 **TTL이 0 돼서 패킷 드랍했다고 알려야한다**.

- → 이러한 이벤트를 알리는 프로토콜이 ICMP.
- Echo request/reply : 네트워크에 대한 정보를 알고 싶을 때, ping 보내고 받는 프로토콜.

ICMP도 일종의 Network layer(IP계층)에 포함되는 프로토콜이다.

• ICMP 메시지를 전달할 때, IP계층의 도움을 받아 이 패킷에 패킷 헤더가 붙어서 전달 된다.

### ICMP를 이용하는 예시 1: ping

서버-클라 만드는 게 아니라, ICMP 기능을 활용한다.

ping은 그냥 나만 가지고 있고, 상대에는 ping 없어도 된다. 이럴 때, 상대 컴퓨터가 살아 있는지 어떻게 확인하는가?

A에서 B로 ping 실행 → A의 ICMP 모듈 호출 → IP계층을 통해 echo\_request 메시지 전달 - B의 IP계층에서 수신 - B의 IP계층에서 ICMP 프로토콜 메시지를 뜯어봤더니 echo\_request → A에게 다시 echo\_reply를 전달 → ...

### ICMP를 이용하는 예시 2: traceroute

tracert B 하면 B로 갈 때 어느 호스트를 거쳐가는지 다 뜬다. 이것도 마찬가지로, tracert 프로그램은 나만 가지고 있다.

- Remind: TTL 0 되면 라우터는 패킷 버리고 원래 Source에 메시지를 전달한다.
- 이를 이용한다.
- TTL 1인 패킷 보내고, 2인 패킷 보내고, 3인 패킷 보내고, ... → 이렇게 하면 경로에 있는 라우터들의 정보가 순서대로 ICMP 메시지로 들어오게 된다.
  - Timeout은? TTL이 0이 됐다는 정보가 안 들어온 것

# SNMP: 네트워크 관리에 사용

여러 기기의 정보를 MIB(Management Information Base)로 저장한다.

MIB에 저장된 정보를 가지고 오는 프로토콜: SNMP