```
In [1]:
import numpy as np
import pandas as pd
import seaborn as sns
{\bf import} \ {\bf matplotlib.pyplot} \ {\bf as} \ {\bf plt}
In [2]:
!gdown https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/original/aerofit_treadmill.csv
Downloading...
From: https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/original/aerofit_treadmill.csv (http
s://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/original/aerofit_treadmill.csv)
To: C:\Users\anusha\Desktop\Numpy\aerofit_treadmill.csv
                | 0.00/7.28k [00:00<?, ?B/s]
100%|########| 7.28k/7.28k [00:00<?, ?B/s]
In [2]:
df = pd.read_csv("aerofit_treadmill.csv")
In [3]:
```

df

- . -

Out[3]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

1b. Observations on the shape of data, data types of all the attributes,

#conversion of categorical attributes to 'category' (If required), missing value detection, statistical summary

```
In [4]:
df.shape
Out[4]:
(180, 9)
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
    Column
                    Non-Null Count Dtype
0
    Product
                   180 non-null
                                    object
1
    Age
                    180 non-null
                                    int64
2
     Gender
                    180 non-null
                                    object
     Education
                    180 non-null
                                    int64
    MaritalStatus 180 non-null
                                    object
                    180 non-null
    Usage
                                    int64
 6
    Fitness
                    180 non-null
                                    int64
    Income
                    180 non-null
                                    int64
    Miles
                    180 non-null
dtypes: int64(6), object(3)
```

memory usage: 12.8+ KB

```
In [6]:

df.describe(include="all")
```

Out[6]:

	Product	Age	Gender	Education	MaritaiStatus	Usage	Fitness	income	Milles
count	180	180.000000	180	180.000000	180	180.000000	180.000000	180.000000	180.000000
unique	3	NaN	2	NaN	2	NaN	NaN	NaN	NaN
top	KP281	NaN	Male	NaN	Partnered	NaN	NaN	NaN	NaN
freq	80	NaN	104	NaN	107	NaN	NaN	NaN	NaN
mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111	53719.577778	103.194444
std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869	16506.684226	51.863605
min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000	29562.000000	21.000000
25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000	44058.750000	66.000000
50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000	50596.500000	94.000000
75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000	58668.000000	114.750000
max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000	104581.000000	360.000000

In [5]:

```
df.describe(include="object")
```

Out[5]:

	Product	Gender	MaritalStatus
count	180	180	180
unique	3	2	2
top	KP281	Male	Partnered
freq	80	104	107

In [8]:

```
df.isna().sum()
```

Out[8]:

Product 0
Age 0
Gender 0
Education 0
MaritalStatus 0
Usage 0
Fitness 0
Income 0
Miles 0
dtype: int64

2 QUestion value counts and unique attributes

```
In [7]:

df.columns
```

In [6]:

Out[7]:

```
product_count = df['Product'].value_counts().reset_index()
product_count.columns = ['Product_Name', 'Count']
product_count
```

Out[6]:

	Product_Name	Count
0	KP281	80
1	KP481	60
2	KP781	40

```
In [8]:
gender_count = df['Gender'].value_counts().reset_index()
gender_count.columns = ['Gender', 'Count']
gender_count
Out[8]:
   Gender Count
     Male
             104
1 Female
             76
In [9]:
marital_status_count = df['MaritalStatus'].value_counts().reset_index()
marital_status_count.columns = ['MaritalStatus', 'Count']
marital_status_count
Out[9]:
   MaritalStatus Count
0
      Partnered
                 107
1
         Single
                  73
In [10]:
Fitness_count = df['Fitness'].value_counts().reset_index()
Fitness_count.columns = ['Fitness', 'Count']
Fitness_count
Out[10]:
   Fitness Count
        3
             31
        5
        2
             26
        4
             24
        1
              2
In [11]:
df.describe()[['Age', 'Income', 'Miles']].loc[['min', 'max']]
Out[11]:
      Age
           Income Miles
 min 18.0
           29562.0
                   21.0
max 50.0 104581.0 360.0
In [12]:
for i in df.columns:
    print(i,':',df[i].nunique())
Product : 3
Age : 32
Gender : 2
Education : 8
MaritalStatus : 2
Usage : 6
Fitness : 5
Income : 62
```

3 Visual Analysis - Univariate & Bivariate

Miles: 37

```
In [10]:
```

```
fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12, 10))
fig.subplots_adjust(top=1.2)

sns.histplot(data=df, x="Age", kde=True, ax=axis[0,0],color = 'Green')
sns.histplot(data=df, x="Education", kde=True, ax=axis[0,1],color = 'Orange')
sns.histplot(data=df, x="Usage", kde=True, ax=axis[1,0],color = 'Pink')
sns.histplot(data=df, x="Fitness", kde=True, ax=axis[1,1],color = 'Violet')
sns.histplot(data=df, x="Income", kde=True, ax=axis[2,0],color = 'Purple')
sns.histplot(data=df, x="Miles", kde=True, ax=axis[2,1],color = 'Red')
plt.show()
```



```
In [10]:
```

```
df["Income"].max()
```

Out[10]:

104581

In [11]:

```
df["Income"].min()
```

Out[11]:

29562

In [4]:

In [5]:

df

Out[5]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	Income_new
0	KP281	18	Male	14	Single	3	4	29562	112	Low
1	KP281	19	Male	15	Single	2	3	31836	75	Low
2	KP281	19	Female	14	Partnered	4	3	30699	66	Low
3	KP281	19	Male	12	Single	3	3	32973	85	Low
4	KP281	20	Male	13	Partnered	4	2	35247	47	Low
175	KP781	40	Male	21	Single	6	5	83416	200	High
176	KP781	42	Male	18	Single	5	4	89641	200	very_High
177	KP781	45	Male	16	Single	5	5	90886	160	very_High
178	KP781	47	Male	18	Partnered	4	5	104581	120	very_High
179	KP781	48	Male	18	Partnered	4	5	95508	180	very_High

180 rows × 10 columns

In [11]:

```
plt.figure(figsize=(12,5))
sns.histplot(data=df, x="Income_new", kde=True,color ='Orange')
plt.title("Analyzing Income bins", pad=10, fontsize=14)
plt.show()
```


Boxplot usage for outliners detection

In [11]:

```
fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12, 10))
fig.subplots_adjust(top=1.2)
sns.boxplot(data=df, x="Age", orient='h', ax=axis[0,0],color ='Green')
sns.boxplot(data=df, x="Education", orient='h', ax=axis[0,1],color ='Green')
sns.boxplot(data=df, x="Usage", orient='h', ax=axis[1,0],color ='Green')
sns.boxplot(data=df, x="Fitness", orient='h', ax=axis[1,1],color ='Green')
sns.boxplot(data=df, x="Income", orient='h', ax=axis[2,0],color ='Green')
sns.boxplot(data=df, x="Miles", orient='h', ax=axis[2,1],color ='Green')
plt.show()
```


categorical columns analyzation

In [12]:

```
plt.figure(figsize=(12,5))
sns.countplot(data=df, x='Product',color = 'Red')
plt.title("count of Product", pad=10, fontsize=14)
plt.show()
```


In [18]:

```
plt.figure(figsize=(12,5))
sns.countplot(data=df, x='MaritalStatus',color = 'purple')
plt.title("count of MaritalStatus", pad=10, fontsize=14)
plt.show()
```


In [13]:

```
plt.figure(figsize=(12,5))
sns.countplot(data=df, x='Gender',color = 'Orange')
plt.title("count of Gender", pad=10, fontsize=14)
plt.show()
```


In [13]:

```
plt.figure(figsize=(12,5))
sns.countplot(data=df, x='Income_new',color = 'Red')
plt.show()
```


In [14]:

```
df1 = df[['Product', 'Gender', 'MaritalStatus','Income_new']].melt()
df1.groupby(['variable', 'value'])[['value']].count() / len(df)
```

Out[14]:

		value
variable	value	
Gender	Female	0.422222
Gender	Male	0.577778
	High	0.061111
Incomo now	Low	0.272222
Income_new	Medium	0.572222
	very_High	0.094444
MaritalStatus	Partnered	0.594444
MaritaiStatus	Single	0.405556
	KP281	0.444444
Product	KP481	0.333333
	KP781	0.222222

Bivaraite Analysis

In [21]:

```
plt.figure(figsize=(12,5))
sns.countplot(data=df, x='Product', hue='Gender', edgecolor="0.15",palette='Set1')
plt.title("Product vs Gender", pad=10, fontsize=14)
plt.grid()
plt.show()
```


In [25]:

```
plt.figure(figsize=(12,5))
sns.countplot(data=df, x='Product', hue='MaritalStatus', edgecolor="0.15", palette='Set2')
plt.title("Product vs MartialStatus", pad=10, fontsize=14)
plt.grid()
plt.show()
```


In [15]:

```
plt.figure(figsize=(12,5))
sns.countplot(data=df, x='Product', hue='Income_new', edgecolor="0.15",palette='Set1')
plt.title("Product vs Income_new", pad=10, fontsize=14)
plt.grid()
plt.show()
```


In [4]:

```
fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12, 10))
fig.subplots_adjust(top=1.2)
sns.boxplot(data=df, x="Product",y= "Education", ax=axis[0,0])
sns.boxplot(data=df, x="Product",y="Usage", ax=axis[1,0])
sns.boxplot(data=df, x="Product",y="Income", ax=axis[1,0])
sns.boxplot(data=df, x="Product",y="Fitness", ax=axis[1,1])
sns.boxplot(data=df, x="Product",y="Income", ax=axis[2,0])
sns.boxplot(data=df, x="Product",y="Miles", ax=axis[2,1])
axis[0,0].set_title("Product vs Age", pad=10, fontsize=14)
axis[0,1].set_title("Product vs Education", pad=10, fontsize=14)
axis[1,0].set_title("Product vs Fitness", pad=10, fontsize=14)
axis[2,0].set_title("Product vs Income", pad=10, fontsize=14)
axis[2,1].set_title("Product vs Miles", pad=10, fontsize=14)
plt.title("Quantitative attributes effect on product purchase")
plt.show()
```


In [9]:

```
plt.figure(figsize=(12,5))
sns.barplot(data=df, x="Income_new",y = "Education")
plt.grid()
plt.show()
```


In [7]:

```
plt.figure(figsize=(12,5))
sns.barplot(data=df, x="Income_new",y = "Education",hue='Gender')
plt.grid()
plt.show()
```


Multivariate Analysis

In [38]:

In [39]:

In [40]:

In [41]:

In [42]:

In [43]:

In [25]:

For correlation: Heatmaps, Pairplots

In [26]:

df.corr()

Out[26]:

	Age	Education	Usage	Fitness	Income	Miles
Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618
Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284
Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130
Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702
Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473
Miles	0.036618	0.307284	0.759130	0.785702	0.543473	1.000000

In [5]:

```
plt.figure(figsize=(7,6))
sns.heatmap(df.corr(), cmap="coolwarm", annot=True)
```

Out[5]:

<AxesSubplot:>


```
In [17]:
```

```
sns.pairplot(df, hue ='Product')
```

Out[17]:

<seaborn.axisgrid.PairGrid at 0xe65bd33f40>

Computing Marginal & Conditional Probabilitie

In [25]:

pd.crosstab(df['Product'],[df['Gender']], normalize=True, margins=True, margins_name='Total').round(2)

Out[25]:

Gender	Female	Male	Total
Product			
KP281	0.22	0.22	0.44
KP481	0.16	0.17	0.33
KP781	0.04	0.18	0.22
Total	0.42	0.58	1.00

```
In [4]:
pd.crosstab(index=df["Product"],
           columns=df["Gender"],
           margins=True)
Out[4]:
 Gender Female Male
                     All
Product
 KP281
                  40
             40
  KP481
            29
                  31
                       60
  KP781
             7
                  33
                       40
     ΑII
            76
                 104 180
In [28]:
pd.crosstab(df['Product'],[df['MaritalStatus']], normalize=True, margins=True, margins_name='Total').round(2)
Out[28]:
MaritalStatus Partnered Single Total
     Product
      KP281
                 0.27
                        0.18
                              0.44
      KP481
                 0.20
                        0.13
                              0.33
      KP781
                 0.13
                        0.09
                              0.22
       Total
                 0.59
                        0.41 1.00
In [29]:
pd.crosstab(df['Product'],[df['Fitness']], normalize=True, margins=True, margins_name='Total').round(2)
Out[29]:
                2
 Fitness
                     3
                               5 Total
Product
 KP281 0.01 0.08 0.30 0.05 0.01
                                  0 44
 KP481 0.01 0.07 0.22 0.04 0.00
                                  0.33
 KP781 0.00 0.00 0.02 0.04 0.16
                                  0.22
   Total 0.01 0.14 0.54 0.13 0.17
                                 1.00
In [30]:
pd.crosstab(df['Product'],[df['Education']], normalize=True, margins=True, margins_name='Total').round(2)
Out[30]:
Education
            12
                13
                           15
                               16
                                    18
                                          20
                                              21 Total
  Product
   KP281 0.01 0.02 0.17 0.02 0.22 0.01
                                        0.00
                                             0.00
   KP481 0.01 0.01 0.13 0.01 0.17 0.01 0.00 0.00
   KP781 0.00 0.00 0.01 0.00 0.08 0.11 0.01 0.02
     Total 0.02 0.03 0.31 0.03 0.47 0.13 0.01 0.02
In [27]:
pd.crosstab(df['Income_new'],[df['Education']], normalize=True, margins=True, margins_name='Total').round(2)
Out[27]:
  Education
Income_new
       Low 0.02 0.02 0.13 0.02 0.09 0.00 0.00 0.00
    Medium 0.00 0.01 0.17 0.00 0.35 0.04 0.00
           0.00 0.00 0.00 0.01 0.01 0.03 0.01 0.01
   very_High 0.00 0.00 0.01 0.00 0.03 0.06 0.00 0.01
                                                     0.09
       Total 0.02 0.03 0.31 0.03 0.47 0.13 0.01 0.02 1.00
```

```
In [9]:
pd.crosstab(index=df["Income_new"],
           columns=df["Education"],
           margins=True)
Out[9]:
  Education 12 13 14 15 16 18 20 21 All
Income_new
                3 23
                      4 16
                              0 0
                                    0
    Medium
                2 31
                      0 63
                             7
                0
                    0
                      1
                          1
                              6
                                 1
                                     2
  very_High
             0
                0
                    1
                       0
                          5 10
                                 0
                                        17
             3
                5 55
        ΑII
                       5 85 23
                                 1
                                     3 180
In [6]:
pd.crosstab(df['Income_new'],[df['Product']], normalize=True, margins=True, margins_name='Total').round(2)
Out[6]:
    Product KP281 KP481 KP781 Total
Income_new
       Low
              0.19
                    0.08
                           0.00
                                0.27
    Medium
              0.24
                    0.24
                           0.09
                                0.57
       High
              0.01
                    0.01
                           0.04
                                0.06
  very_High
              0.00
                    0.00
                           0.09
                                0.09
      Total
              0.44
                    0.33
                           0.22 1.00
In [7]:
pd.crosstab(index=df["Income_new"],
           columns=df["Product"],
           margins=True)
Out[7]:
    Product KP281 KP481 KP781 All
Income_new
                             0
                                 49
    Medium
               44
                      43
                             16 103
       High
                2
                      2
                             7
                                 11
                      0
  very_High
                0
                            17
                                17
```

Marginal Probability

80

60

40 180

ΑII

```
In [24]:
df['Product'].value_counts(normalize=True)
Out[24]:

KP281    0.444444
    KP481    0.333333
    KP781    0.22222
Name: Product, dtype: float64

In []:
```