<u>Recall</u>: $\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{k=1}^n f(x_k) \Delta x$; where $\Delta x = \frac{b-a}{n}$ and $x_k = a + k \Delta x$

- I. Which of the following is equal to $\int_2^5 x^4 dx$?
 - (A) $\lim_{n \to \infty} \sum_{k=1}^{n} \left(2 + \frac{k}{n} \right)^4 \left(\frac{1}{n} \right)$
 - (B) $\lim_{n \to \infty} \sum_{k=1}^{n} \left(2 + \frac{k}{n} \right)^4 \left(\frac{3}{n} \right)$
 - (C) $\lim_{n \to \infty} \sum_{k=1}^{n} \left(2 + \frac{3k}{n}\right)^{4} \left(\frac{3}{n}\right)$
 - (D) $\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{3k}{n} \right)^{4} \left(\frac{3}{n} \right)$
- II. For the continuous function f, the right Riemann sum approximation for $\int_0^2 f(x)dx$ is given by the expression $\frac{4(n+1)(3n+2)}{n^2}$. What is the value of $\int_0^2 f(x)dx$?
 - (A) 1
- (B) 3
- (C) 6
- (D) 12

- III. The closed interval [a, b] is partitioned into n equal subintervals, each of width Δx , by the numbers $x_0, x_1, ..., x_n$ where $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$. What is $\lim_{n \to \infty} \sum_{i=1}^n \sqrt{x_i} \Delta x$?

- (A) $b^{\frac{1}{2}} a^{\frac{1}{2}}$ (B) $b^{\frac{3}{2}} a^{\frac{3}{2}}$ (C) $\frac{2}{3} \left(b^{\frac{3}{2}} a^{\frac{3}{2}} \right)$