命題教師:Derek 審題教師:Bao

試題共四頁,答案卡一張

※答案卡請用 2B 鉛筆畫記,若資料遺漏導致無法判讀將扣成績五分

第一部分:單一選擇題(占16分)

說明:第1題至第4題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇(填)題答案區」。 各題答對者,得4分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

- 1. 設 $\overrightarrow{a} = (1,3)$, $\overrightarrow{b} = (-2,1)$, 下列哪一個選項的 t 會使 $|\overrightarrow{a} + t\overrightarrow{b}|$ 的值最小?
 - (1) -2
- (2) -1
- (3) 0
- (4) 1
- (5) 2
- 2. 如附圖,坐標平面上 O 為原點, $A \times B \times C \times D \times E$ 五點共線,則下列哪一個選項的內積 值最小?

- $(1) \ \overrightarrow{OA} \cdot \overrightarrow{OE} \qquad (2) \ \overrightarrow{OB} \cdot \overrightarrow{OE} \qquad (3) \ \overrightarrow{OC} \cdot \overrightarrow{OE} \qquad (4) \ \overrightarrow{OD} \cdot \overrightarrow{OE} \qquad (5) \ \overrightarrow{OE} \cdot \overrightarrow{OE}$

- 3. $\triangle ABC$ 的外接圓為一單位圓,其圓心為 O,若 $4\overrightarrow{OA} + 5\overrightarrow{OB} + 6\overrightarrow{OC} = \overrightarrow{0}$,則 $\left| \overrightarrow{AB} \right| = ?$ (1) $\sqrt{2}$ (2) $\frac{3}{2}$ (3) 2 (4) $\frac{5}{2}$ (5) $\sqrt{5}$

- 4. 若一直線 L 過點 P(1,-2) 且與直線 M: x+3y+1=0 夾 θ 角,且滿足 $\sin\theta=\frac{3}{5}$,則下列哪一個選項可能是直 線 L 的斜率?
- $(1) -\frac{5}{3}$ $(2) -\frac{13}{9}$ $(3) -\frac{1}{3}$ $(4) \frac{3}{4}$ $(5) \frac{13}{7}$

第二部分:多重選擇題(占24分)

說明:第5題至第7題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫記在答案卡之「選擇(填)題答案 區」。各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答 錯多於2個選項或所有選項均未作答者,該題以零分計算。

- 5. 已知三點 A(1,2), B(3,-1), C(-1,-2), 若有第四點 D 使其四點可形成一平行四邊形,則下列哪些選項可能是點 D?

 - (1) (-3,1) (2) (-2,0) (3) (2,1) (4) (5,3) (5) (1,-5)

- 6. 設三點 O, A, B 不共線,下列哪些選項中的 P 點必在直線 AB 上?
 - (1) $\overrightarrow{OP} = \frac{4}{9} \overrightarrow{OA} + \frac{5}{9} \overrightarrow{OB}$
- (2) $\overrightarrow{OP} = \frac{5}{2} \overrightarrow{OA} \frac{2}{2} \overrightarrow{OB}$
- (3) $\overrightarrow{OP} = \frac{1}{2} \overrightarrow{OA} + \frac{1}{3} \overrightarrow{OB}$

- (4) $\overrightarrow{OP} = -\frac{6}{5} \overrightarrow{OA} + \frac{1}{5} \overrightarrow{OB}$
- $(5) \ \overrightarrow{OP} = 101 \overrightarrow{OA} 100 \overrightarrow{OB}$

- 7. 如附圖,坐標平面上,O 為原點, $\overrightarrow{OA} = (1,2)$, $\overrightarrow{OB} = (2,1)$ 。若 P 點滿足 $\overrightarrow{OP} = x\overrightarrow{OA} + y\overrightarrow{OB}$,且 $1 \le x \le 2$, $0 \le y \le 2$,則下列那些點可能是 P 點的位置?
 - (1) Q_1
- (2) Q_2 (3) Q_3
- (4) Q_4
- (5) Q_5

第三部分:選填題(占60分)

說明:1.第A至L題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(8-39) 2.每題答對得 5 分,答錯不倒扣,未完全答對不給分。

A. 已知 A(1,2),B(1,-1),C(-3,4),若 $\overrightarrow{PA}+2\overrightarrow{PB}+3\overrightarrow{PC}=\overrightarrow{0}$,則 P 點座標為($\overrightarrow{8}$ $\overrightarrow{9}$, $\overrightarrow{10}$) 。

已知平面上四點 A(x,y),B(3,6),C(6,0),D(3,-2),其中 x、y 皆為整數。若滿足 \overrightarrow{BC} 與 \overrightarrow{DA} 平行 \overrightarrow{AC} 與 \overrightarrow{BD} 垂 直,則數對 (x,y) = (11, 12) 。

C. 設 $\overrightarrow{OA} = (4, -3)$, $\overrightarrow{OB} = (5, 12)$,满足 $\overrightarrow{OP} = k \overrightarrow{OA} + 10 \overrightarrow{OB}$,若 \overrightarrow{OP} 平分 $\angle AOB$,則正數 k = 13 14 。

D. 已知 $\left| \overrightarrow{a} \right| = 1$, $\left| \overrightarrow{b} \right| = 2$,且 $\left| \overrightarrow{a} + 2\overrightarrow{b} \right| = \sqrt{19}$,試求 $\left(\overrightarrow{a} - 2\overrightarrow{b} \right) \cdot \left(3\overrightarrow{a} - 2\overrightarrow{b} \right) = 1$ $\left(15 \right)$ $\left(16 \right)$ 。 (化為最簡分數)

E. 承上題 (D題), 若 \overline{a} 與 \overline{b} 其夾角為 θ,則 $\cos \theta = \frac{17}{18}$ 。 (化為最簡分數)

F. 已知兩點 P(2,3),Q(5,7) 以及直線 L:4x+2y+7=0,其中 L 的法向量為 \overrightarrow{n} ,若向量 $\overrightarrow{PQ}=\overrightarrow{a}+\overrightarrow{b}$,其中 \overrightarrow{a} 與 \overrightarrow{n} 平行, \overrightarrow{b} 與 \overrightarrow{n} 垂直,則 $\overrightarrow{b}=(\begin{array}{c}19\end{array})$ ② ,②1)。

H. 已知
$$\left| \overrightarrow{a} \right| = 2$$
, $\left| \overrightarrow{b} \right| = 3$, $\left| \overrightarrow{c} \right| = 5$,且 $\left| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right| = 0$,則 $\left| 3\overrightarrow{a} + 4\overrightarrow{b} + 5\overrightarrow{c} \right| = 2$ \circ

I. 有一隻螞蟻在坐標平面上爬行,螞蟻從點 $P(1,\sqrt{3})$ 沿 x 軸正向之方向出發,走了 8 單位後停留在 A 點,接著往原本爬行方向逆時針轉 60° 後繼續前行,走了 4 單位後停留在 B 點,再接著往原本爬行方向逆時針轉 60° 後繼續前行,走了 2 單位後停留在 2° 器,則向量 2° 是 2° 是 2

J. 已知 ΔABC 內部有一點 P,且滿足 $\overrightarrow{AP} = \frac{1}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC}$,則 ΔABP 為 ΔABC 的 $\frac{\textcircled{32}}{\textcircled{33}}$ 倍。(化為最簡分數)

K. 如附圖, $O \cdot P \cdot A \cdot Q$ 四點共線, \overrightarrow{OB} 在 \overrightarrow{OA} 上的正射影為 \overrightarrow{OP} , \overrightarrow{OC} 在 \overrightarrow{OA} 上的正射影為 \overrightarrow{OQ} ,且 $\overrightarrow{OQ} = 3\overrightarrow{OP}$,若 $\overrightarrow{OC} \cdot \overrightarrow{OA} = 18$,則 $\overrightarrow{BC} \cdot \overrightarrow{OA} = 34$ 35

L. 附圖中的 $\triangle ABC$ 內有三點 P , Q , R , 且滿足 $\overrightarrow{AQ} = \overrightarrow{QP}$, $\overrightarrow{BR} = 2\overrightarrow{RQ}$, $\overrightarrow{CP} = 2\overrightarrow{PR}$, 若 $\overrightarrow{AP} = x\overrightarrow{AB} + y\overrightarrow{AC}$, 則數對

$$(x,y) = (\frac{36}{37}, \frac{38}{39})$$
 。 (化為最簡分數)

<試題結束,請記得檢查,並將答案作答在答案卡上,祝考試順利>

國立中興大學附屬高級中學 112 學年度 第一學期期末考 高二數 B 試題

參考答案 敬請指正

單選題

1.	2.	3.	4.
3	1	2	2

多選題

1.	2.	3.
1 4 5	1 2 5	3 5

填充題

A.		B.	C.	D.
	(-1,2)	(2,0)	26	15
E.		F.	G.	H.
	$\frac{1}{4}$	(-1,2)	$(-\frac{1}{3},\frac{2}{3})$	7
I.		J.	K.	L.
	$(10,4\sqrt{3})$	$\frac{2}{5}$	12	$(\frac{2}{7},\frac{3}{7})$