Stat 541 Homework #5

Kenny Flagg

March 4, 2016

- 1. Problem 3.42 (a), sample size to detect a difference in means of 10 with power 0.90.
 - (a) If $\sigma = 2$, a total of 9 observations (3 batteries of each brand) are needed to detect a difference in mean battery life of 10 hours with a power of at least 0.90. The actual power achieved is 0.998.
 - (b) If $\sigma = 3$, a total of 9 observations (3 batteries of each brand) are needed to detect a difference in mean battery life of 10 hours with a power of at least 0.90. The actual power achieved is 0.902.

Problem 1: Sample Sizes Needed to Detect Battery Life Difference of 10 with Power 0.90

The GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable	effect
Source	level
Alpha	0.05
Nominal Power	0.9
Test Degrees of Freedom	2

Computed N Total

	Std	Error	Actual	N
Index	Dev	DF	Power	Total
1	2	6	0.998	9
2	3	6	0.902	9

- 2. Problem 3.42 (a) again, sample size to detect a difference in means of 10 with power 0.95.
 - (a) If $\sigma = 2$, a total of 9 observations (3 batteries of each brand) are needed to detect a difference in mean battery life of 10 hours with a power of at least 0.95. The actual power achieved is 0.998.
 - (b) If $\sigma = 2$, a total of 12 observations (4 batteries of each brand) are needed to detect a difference in mean battery life of 10 hours with a power of at least 0.95. The actual power achieved is 0.987.

Problem 2: Sample Sizes Needed to Detect Battery Life Difference of 10 with Power 0.95

The GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable	effect
Source	level
Alpha	0.05
Nominal Power	0.95
Test Degrees of Freedom	2

Computed N Total

Index	Std	Error	Actual	N
	Dev	DF	Power	Total
1	2	6	0.998	9
2		9	0.987	12

3. In Problem 3.26, was random assignment used?

Random assignment was not used. The treatment is brand, and it would not be possible to randomly assign batteries to brands.

4. Orthogonal polynomial contrasts for 2mg, 4mg, 8mg, and 10mg.

The mean is $\bar{x} = 6$, so the initial vectors are:

$$\mathbf{v}_0 = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \qquad \mathbf{v}_1 = \begin{bmatrix} -4\\-2\\2\\4 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 16\\4\\4\\16 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -64\\-8\\8\\64 \end{bmatrix}$$

$$|\mathbf{v}_0| = \sqrt{1+1+1+1} = 2$$
 \Longrightarrow $\mathbf{u}_0 = \frac{\mathbf{v}_0}{|\mathbf{v}_0|} = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$

Linear Contrast Vector:

$$\mathbf{v}_1 \cdot \mathbf{u}_0 = \frac{1}{2}(-4 - 2 + 2 + 4) = 0$$

$$\mathbf{w}_1 = \mathbf{v}_1 - (\mathbf{v}_1 \cdot \mathbf{u}_0)\mathbf{u}_0 = \mathbf{v}_1 - 0\mathbf{u}_0 = \begin{bmatrix} -4\\-2\\2\\4 \end{bmatrix}$$

$$|\mathbf{w}_1| = \sqrt{16 + 4 + 4 + 16} = 2\sqrt{10}$$
 \Longrightarrow $\mathbf{u}_1 = \frac{\mathbf{w}_1}{|\mathbf{w}_1|} = \frac{1}{\sqrt{10}} \begin{bmatrix} -2\\-1\\1\\2 \end{bmatrix}$

Quadratic Contrast Vector:

$$\mathbf{v}_2 \cdot \mathbf{u}_0 = \frac{1}{2}(16 + 4 + 4 + 16) = 20$$

$$\mathbf{v}_2 \cdot \mathbf{u}_1 = \frac{1}{\sqrt{10}}(-32 - 4 + 4 + 32) = 0$$

$$\mathbf{w}_{2} = \mathbf{v}_{2} - (\mathbf{v}_{2} \cdot \mathbf{u}_{0})\mathbf{u}_{0} - (\mathbf{v}_{2} \cdot \mathbf{u}_{1})\mathbf{u}_{1} = \mathbf{v}_{2} - 20\mathbf{u}_{0} - 0\mathbf{u}_{1} = \begin{bmatrix} 16\\4\\4\\16 \end{bmatrix} - \begin{bmatrix} 10\\10\\10\\10 \end{bmatrix} = \begin{bmatrix} 6\\-6\\-6\\6 \end{bmatrix}$$

$$|\mathbf{w}_2| = \sqrt{36 + 36 + 36 + 36 + 36} = 12$$
 \Longrightarrow $\mathbf{u}_2 = \frac{\mathbf{w}_2}{|\mathbf{w}_2|} = \frac{1}{2} \begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix}$

Cubic Contrast Vector:

$$\mathbf{v}_3 \cdot \mathbf{u}_0 = \frac{1}{2}(-64 - 8 + 8 + 64) = 0$$

$$\mathbf{v}_3 \cdot \mathbf{u}_1 = \frac{1}{\sqrt{10}} (128 + 8 + 8 + 128) = \frac{272}{\sqrt{10}}$$

$$\mathbf{v}_3 \cdot \mathbf{u}_2 = \frac{1}{2}(-64 + 8 - 8 + 64) = 0$$

$$\mathbf{w}_{3} = \mathbf{v}_{3} - (\mathbf{v}_{3} \cdot \mathbf{u}_{0})\mathbf{u}_{0} - (\mathbf{v}_{3} \cdot \mathbf{u}_{1})\mathbf{u}_{1} - (\mathbf{v}_{3} \cdot \mathbf{u}_{2})\mathbf{u}_{2} = \mathbf{v}_{3} - 0\mathbf{u}_{0} - \frac{288}{\sqrt{10}}\mathbf{u}_{1} - 0\mathbf{u}_{2}$$

$$= \frac{1}{5} \begin{bmatrix} -320 \\ -40 \\ 40 \\ 320 \end{bmatrix} - \frac{1}{5} \begin{bmatrix} -272 \\ -136 \\ 136 \\ 272 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -48 \\ 96 \\ -96 \\ 48 \end{bmatrix}$$

$$|\mathbf{w}_3| = \frac{48}{5}\sqrt{1+4+4+1} = \frac{48\sqrt{10}}{5}$$
 \Longrightarrow $\mathbf{u}_3 = \frac{\mathbf{w}_3}{|\mathbf{w}_3|} = \frac{1}{48\sqrt{10}} \begin{bmatrix} -1\\2\\-2\\1 \end{bmatrix}$

So the contrasts are:

$$\Gamma_L = -2\mu_1 - \mu_2 + \mu_3 + 2\mu_4$$

$$\Gamma_Q = \mu_1 - \mu_2 - \mu_3 + \mu_4$$

$$\Gamma_C = -1\mu_1 + 2\mu_2 - 2\mu_3 + \mu_4$$

- 5. Cell count experiment with runs as blocks.
 - (a) Model and parameters.

The model is

$$y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}; \quad \epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$$

where μ is the mean cell count for the control group in experiment 6; τ_i , i = 2, 3, are the effects of the drugs on mean cell count; and β_j , $j = 1, \ldots, 5$, are the effects of the experimental runs on the mean cell count.

(b) ANOVA hypotheses.

 H_0 : $\tau_2 = \tau_3 = 0$; Both drugs have no effect on mean cell count.

 H_a : $\tau_i \neq 0$ for some i; At least one drug has an effect on mean cell count.

(c) ANOVA results.

There is strong evidence ($F_0 = 6.78$, p-value = 0.0138) that at least one of the drugs has an effect on mean cell count.

Problem 5(c): RCBD ANOVA

The GLM Procedure

Class Level Information

Class	Levels	Values	
drug	3	_drug1 _drug2 c	ontrol
exprment	6	1 2 3 4 5 6	
	of Observati	. 0110 10000	18 18

Problem 5(c): RCBD ANOVA

The GLM Procedure

Dependent Variable: cell_cnt

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		7 224:	141.7222	32020.2460	4.83	0.0129
Error		10 662	293.8889	6629.3889		
Corrected	d Total	17 2904	435.6111			
	R-Square	Coeff Var	Root M	MSE cell_cn	t Mean	
	0.771743	6.626482	81.421	106 12	28.722	
Source		DF Type	e III SS	Mean Square	F Value	Pr > F
exprment		5 134:	189.6111	26837.9222	4.05	0.0286
drug		2 899	952.1111	44976.0556	6.78	0.0138
				110.0.000		
		Estimate		Standard	Value	Pr > t

Intercept		1282.444444	В	54.28070616	23.63	<.0001
exprment	1	-222.000000	В	66.48001649	-3.34	0.0075
exprment	2	-45.000000	В	66.48001649	-0.68	0.5138
exprment	3	-118.666667	В	66.48001649	-1.78	0.1046
exprment	4	-202.000000	В	66.48001649	-3.04	0.0125
exprment	5	-22.000000	В	66.48001649	-0.33	0.7475
exprment	6	0.000000	В		•	•
drug	_drug1	147.833333	В	47.00847047	3.14	0.0104
drug	_drug2	-4.166667	В	47.00847047	-0.09	0.9311
drug	control	0.000000	В	•	•	•

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

(d) Did either drug increase cell counts?

Drug 1 has an estimated effect of $\hat{\tau}_2 = 147.83$ ($t_0 = 3.14$, right-tailed p-value = 0.0052) so there is strong evidence that drug 1 increases the mean cell count.

Drug 2 has an estimated effect of $\hat{\tau}_3 = -4.17$ ($t_0 = -0.09$, two-tailed p-value = 0.9311) so there is no evidence that drug 2 has an effect on the mean cell count.

(e) Is a square root transformation appropriate?

The square root transformation is not necessary. The studentized residuals by predicted values plot does not show any serious violation of the constant variance assumption.

(f) ANOVA ignoring blocks.

There is moderate evidence ($F_0 = 3.37$, p-value = 0.0620) that at least one of the drugs has an effect on mean cell count.

Problem 5(f):
ANOVA Ignoring Blocks

The GLM Procedure

Class Level Information

Class Levels Values

drug 3 _drug1 _drug2 control

Number of Observations Read 18 Number of Observations Used 18

Problem 5(f): ANOVA Ignoring Blocks

The GLM Procedure

Dependent Variable: cell_cnt

Source	Sum of DF Squares Mea	n Square F Value Pr > F
Model	2 89952.1111 44	976.0556 3.37 0.0620
Error	15 200483.5000 13	365.5667
Corrected Total	17 290435.6111	
R-Square	Coeff Var Root MSE	cell_cnt Mean
0.309714	9.408924 115.6095	1228.722
Source	DF Type III SS Mea	n Square F Value Pr > F
drug	2 89952.11111 449	76.05556 3.37 0.0620
	Stand	ard
Parameter	Estimate Er	ror t Value Pr > t
Intercept drug _drug1	1180.833333 B 47.19739 147.833333 B 66.74720	136 2.21 0.0427
drug _drug2 drug control	-4.166667 B 66.74720 0.000000 B .	136 -0.06 0.9510

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

(g) Did blocking improve the analysis?

Yes, blocking improved the analysis. In both analyses, the estimated drug effects are the same, but their standard errors differ. Including the blocks accounts for run-to-run variability so the estimates are more precise and we can be more certain in our conclusion that drug 1 is effective.

6. Power analysis for Problem 3.10.

Cotton Weight Percent	T	Tensile Strengths				Mean
15	7	7	15	11	9	9.8
20	12	17	12	18	18	15.4
25	14	19	19	18	18	17.6
30	19	25	22	19	23	21.6
35	7	10	11	15	11	10.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

$$\widehat{\sigma} = \sqrt{MSE} = 2.84$$

- (a) A total of 70 observations (14 observations of each cotton weight percentage) are needed to detect a linear trend in mean tensile strength with a power of at least 0.90. The actual power achieved is 0.920.
- (b) A total of 10 observations (2 observations of each cotton weight percentage) are needed to detect a quadratic trend in mean tensile strength with a power of at least 0.90. The actual power achieved is 0.904.

Problem 5: Sample Sizes Needed to Linear and Quadratic Trends in Tensile Strength with Power 0.90

The GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable	meanstrength
Alpha	0.05
Error Standard Deviation	2.84
Nominal Power	0.9

Computed N Total

Index	Туре	Source	Test DF	Error DF	Actual Power	N Total
1	Effect	pct	4	10	0.976	15
2	Contrast	Linear	1	65	0.920	70
3	Contrast	Quadratic	1	5	0.904	10

Appendix: SAS Code

Problems 1 and 2

```
options center nodate nonumber 1s=75 ps=60 formdlim='';
data prob1;
 do level=1 to 5;
   input effect @@;
   output;
datalines;
10 0 0
ods listing file='hw5p1.lst';
proc glmpower data=prob1;
 class level;
 model effect = level;
 power
   stddev = 2 3
   alpha = 0.05
   ntotal = .
   power = 0.90;
title1 'Problem 1:';
title2 'Sample Sizes Needed to Detect Battery Life';
title3 'Difference of 10 with Power 0.90';
run;
ods listing file='hw5p2.lst';
proc glmpower data=prob1;
 class level;
 model effect = level;
 power
   stddev = 2 3
   alpha = 0.05
   ntotal = .
   power = 0.95;
title1 'Problem 2:';
title2 'Sample Sizes Needed to Detect Battery Life';
title3 'Difference of 10 with Power 0.95';
run;
Problem 5
options center nodate nonumber ls=75 formdlim=' ';
*** A RANDOMIZED COMPLETE BLOCK DESIGN ***;
**************
data in;
 input drug $ exprment cell_cnt @@;
datalines;
control 1 1147 _drug1 1 1169 _drug2 1 1009
```

```
control 3 1216 _drug1 3 1276 _drug2 3 1143
control 6 1265 _drug1 6 1532 _drug2 6 1194
ods listing file='hw5p5c.lst';
ods graphics on / imagename='hw5p5c' reset=index;
proc glm data=in plots(unpack)=all;
 class drug exprment;
 model cell_cnt = exprment drug / ss3 solution;
title1 'Problem 5(c):';
title2 'RCBD ANOVA';
run;
ods listing file='hw5p5f.lst';
ods graphics on / imagename='hw5p5f' reset=index;
proc glm data=in;
 class drug;
 model cell_cnt = drug / ss3 solution;
title1 'Problem 5(f):';
title2 'ANOVA Ignoring Blocks';
run;
Problem 6
options center nodate nonumber ls=75 formdlim='';
data prob6;
 input pct meanstrength @@;
datalines;
15 9.8 20 15.4 25 17.6 30 21.6 35 10.8
proc glmpower data=prob6;
 class pct;
 model meanstrength = pct;
 contrast 'Linear ' pct -2 -1 0 1 2;
 contrast 'Quadratic' pct 2 -1 -2 -1 2;
 power
   stddev = 2.84
   alpha = 0.05
   ntotal = .
   power = 0.90;
title1 'Problem 5:';
title2 'Sample Sizes Needed to Linear and Quadratic';
title3 'Trends in Tensile Strength with Power 0.90';
run;
```