My name and student number: Joseph Siu, 1010085701. Sanchit Manchanda, Ali Zaki Rashid

1. Consider the following iterative algorithm that finds the length of the longest increasing subsequence in the array A[1..n].

```
\begin{array}{l} 1 \ L[1] \leftarrow 1 \\ 2 \ \text{for} \ i \leftarrow 2 \ \text{to} \ n \ \text{do} \\ 3 \ L[i] \leftarrow 1 \\ 4 \ \text{for} \ j \leftarrow 1 \ \text{to} \ i - 1 \ \text{do} \\ 5 \ \text{if} \ (A[j] < A[i]) \ \text{and} \ (L[j] \geq L[i]) \ \text{then} \ L[i] \leftarrow L[j] + 1 \\ 6 \ m \leftarrow L[n] \\ 7 \ \text{for} \ i \leftarrow 2 \ \text{to} \ n - 1 \ \text{do} \\ 8 \ \text{if} \ L[i] > m \ \text{then} \ m \leftarrow L[i] \end{array}
```

(a) Give a precise statement of what it means for this algorithm to be partially correct.

Precondition: n is a positive integer, and A[1..n] is an array with elements from a totally ordered domain.

Postcondition: The array A[1..n] is unchanged, and m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n].

Partially correct: If n is a positive integer n, A[1..n] is an array with elements from a totally ordered domain, and the algorithm is executed and terminated, then A[1..n] is unchanged, and m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n].

(b) Prove that this algorithm is partially correct.

We will use L1, L2 to denote line 1, line 2, and so on.

We also assumed the line numbers of the pseudo-code are fixed (L6, L7, L8 instead of L7, L8, L9).

Proof of Question 1(b).

Assume n is a positive integer, A[1..n] is an array with elements from a totally ordered domain, and the algorithm is executed and terminated.

Since there are no assignments to A[1..n] in the algorithm, A[1..n] is unchanged.

For $l \in \mathbb{N}$. Let Q(l) = "immediately after the l^{th} iteration, L[l+1] contains the length of the longest increasing (finite) subsequence in A[1..(l+1)] that ends with the term A[l+1]"; and let P(l)="If the for-loop from line 2 to line 5 is executed at least l times, then Q(l)."

Lemma 1. $\forall l \in \mathbb{N}.P(l)$.

Proof of Lemma 1 by strong induction.

Let $l \in \mathbb{N}$ be arbitrary;

Assume $\forall k \in \mathbb{N}.(k < l)$ IMPLIES P(k).

Assume the for-loop from line 2 to line 5 is executed at least l times.

Case 1. l = 0.

Then trivially the length of the longest increasing subsequence in A[1..1] is 1, and we assigned L[1] = 1 on L1. Thus Q(0) holds.

For Case 1 Q(l).

Case 2. l = 1.

Then for the first iteration, i=2; on L3 L[2] is assigned with 1; on L4 since j is from 1 to 2-1=1, we only execute L5 once where j=1, and there are 2 subcases due to $L[1]=1\geq 1=L[2]$:

Subcase (1): A[j] < A[i]

Then on L5 L[2] is assigned with L[1] + 1 = 2, after this we end this iteration, and now L[2] = 2 is indeed the length of the longest increasing subsequence in A[1..2].

Thus Q(l) holds for subcase 2.1.

Subcase (2): $A[j] \geq A[i]$.

Then no assignment on L5 has been made. After this we end this iteration, and now L[2] = 1 is indeed the length of the longest increasing subsequence in A[1..2] since $A[j] = A[1] \ge A[2] = A[i].$

Thus Q(l) holds for subcase 2.2.

For all subcases of Case 2 we have shown Q(l) holds, so for Case 2 Q(l).

Case 3. $l \ge 2$.

We first assign L[l] = 1 on L3.

Now, let $S = \{ p \in [l] \mid A[p] < A[l] \}$, and let $S' = \{ L[p] \mid p \in S \}$.

Subcase (1): $S = \emptyset$.

Then since for all $p \in [l]$.NOT(A[p] < A[l]), no assignment on L5 has been made, and L[l+1] = 1 is indeed the length of the longest increasing subsequence in A[1..(l+1)] with the last term A[l+1] (all previous terms are at least A[l+1]).

Thus Q(l) holds for subcase 3.1.

Subcase (2): $S \neq \emptyset$.

Then by construction this implies $S' \neq \emptyset$.

i = l + 1 on L2.

Since S' is a finite non-empty subset of \mathbb{Z}^+ , we are allowed to construct $q = \max S'$.

Then $q \in S'$, by construction there exists $p' \in S$ such that q = L[p'], we instantiate such p'.

By inductive hypothesis (specialization and modus ponens), q is the length of the longest increasing subsequence in A[1..p'] that ends with the term A[p']. We instantiate such subsequence as $\{s_o\}_{o=1}^q$. Moreover, because $q = \max S'$, this means q is the length of the longest increasing subsequence in A[1..l] that ends with a term less than A[l].

Now, we claim the subsequence $\{s_o\}_{o=1}^q \circ \{A[l+1]\}$ is the longest increasing subsequence in A[1..(l+1)] that ends with the term A[l+1]. Indeed, firsty for a subsequence to be both increasing and ends with A[l+1], the term before A[l+1] must be less than A[l+1], and by $A8 \{s_o\}_{o=1}^q \circ \{A[l+1]\}$ is increasing since $\{s_o\}_{o=1}^q$ is increasing and $s_q = A[p'] < A[l+1]$ by definition of S. Secondly, obviously the concatenation shows the subsequence ends with A[l+1]. Lastly, $\{s_o\}_{o=1}^q$ being the longest increasing subsequence in A[1..l] implies $\{s_o\}_{o=1}^q \circ \{A[l+1]\}$ is the longest increasing subsequence in A[1..(l+1)]that ends with the term A[l+1].

Therefore, as long as we show L[l+1] = q+1, we can conclude Q(l) holds.

To this end, since $1 \leq p' \leq l = i - 1$, for the for-loop from L4 to L5, right after the iteration where j = p', since A[p'] < A[l], and $L[p'] \ge L[l]$ due to our construction of q, on L5 L[l+1] is assigned with L[p']+1=q+1. And after this iteration, consider 2 cases:

1. If A[j] < A[l], then since $L[x] \le L[p'] = L[l+1]$ for all $x \in S'$ by construction of q, no assignment on L5 has been made.

2. If $A[j] \ge A[l]$, then no assignment on L5 has been made.

For both subcases 3.2.1 and 3.2.2, we have shown that immediately after the l^{th} iteration, L[l+1] = q+1 is indeed the length of the longest increasing subsequence in A[1..(l+1)]

For all subcases of Case 3 we have shown Q(l) holds, so for Case 3 Q(l).

For all cases we have shown Q(l) holds, so Q(l).

By direct proof, P(l).

By strong induction, $\forall l \in \mathbb{N}.P(l)$.

Quod Erat Dem

Now, since there are no assignments to i and j within their for-loop respectively, and so only finitely many for-loop iterations has performed thus the for loop from L2 to L5 eventually terminates. Now we are on L6.

Case 1. n = 1.

Then we assign m with L[n] = L[1] = 1 and the algorithm terminates. Thus m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1.n].

For Case 1 m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n].

Case 2. $n \ge 2$.

From L6 to L8, we assign m with the largest value in L[2..n], since $L[n] \ge L[1]$, such m is also the largest value in L[1..n]. Since by Lemma 1 L[y] is the length of the longest increasing subsequence in A[1..y] ending with A[y] for all $y \in [n]$, so the maximum of L[1..y] is indeed the length of the longest increasing subsequence in A[1..n].

For Case 2 m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n].

For all cases m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n], thus by proof of conjunction A[1..n] is unchanged, and m is assigned with a positive integer which represents the length of the longest increasing subsequence in A[1..n].

By direct proof, the algorithm is partially correct.

Quoi Erat Demi

```
2. For each k \in \mathbb{Z}^+, let X_k = \{x \in \{0,1\}^* : \text{NOT}(\exists y \in \{0,1\}^k.(x=y \cdot y))\} and consider the NFA N_k = (Q, \{0,1\}, \delta, q_0, F), where: Q = \{q_i : 0 \le i \le 2k+1\} \cup \{p_i : 0 \le i \le k-1\} \cup \{z_i : 0 \le i \le k-1\}, F = \{q_i : 0 \le i \le 2k-1\} \cup \{q_{2k+1}\}, \delta(q_i,0) = \{q_{i+1},z_0\} for 0 \le i \le k-1, \delta(q_i,1) = \{q_{i+1},p_0\} for 0 \le i \le k-1, \delta(q_i,0) = \delta(q_i,1) = \{q_{i+1}\} for k \le i \le 2k, \delta(q_{2k+1},0) = \delta(q_{2k+1},1) = \{q_{2k+1}\}, \delta(z_i,0) = \delta(z_i,1) = \{z_{i+1}\} for 0 \le i \le k-2, \delta(z_{k-1},1) = \{q_{2k+1}\}, \delta(z_{k-1},0) = \varnothing, \delta(p_i,0) = \delta(p_i,1) = \{p_{i+1}\} for 0 \le i \le k-2, \delta(p_{k-1},0) = \{q_{2k+1}\}, \delta(p_{k-1},1) = \varnothing, and \delta(q,\lambda) = \varnothing for all q \in Q.
```

(a) For each state $q \in Q$, describe the set of strings $w \in \{0,1\}^*$ such that $q \in \delta^*(q_0, w)$. Your descriptions should not mention δ .

Description. We will use "letter" to denote a single element in $\Sigma = \{0, 1\}$.

Let $k \in \mathbb{Z}^+$ be arbitrary. By definition of δ^* , it is equivalent to describe for each $q \in Q$, what strings $w \in \{0,1\}^*$ will lead to state q from the initial state q_0 . We will prove our description in part (b).

If $q = q_{2k+1}$, there are 2 cases that the string will reach q_{2k+1} : First, any string $w \in \{0,1\}^*$ with length at least 2k+1 will reach q_{2k+1} ; Second, if $w \in \{0,1\}^*$ has length at least k+1, and there exists 2 letters $a \in w$, $b \in w$ such that $a \neq b$ and they are k-1 letters apart, then w will reach q_{2k+1} (by " \in " we mean a is one of the letters of the string w, etc).

Let $\omega = \{w \in \{0,1\}^* \mid w \text{ has length at most } k-1\}.$

For p_0 , if $w = w' \cdot 1$ for some $w' \in \omega$, then w will reach p_0 ; For p_i with $i \in [k-1]$, if $w = w' \cdot 1 \cdot w''$ for some $w' \in \omega$ and $w'' \in \{0, 1\}^i$, then w will reach p_i .

Similarly, for z_0 , if $w = w' \cdot 0$ for some $w' \in \omega$, then w will reach z_0 ; For z_i with $i \in [k-1]$, if $w = w' \cdot 0 \cdot w''$ for some $w' \in \omega$ and $w'' \in \{0,1\}^i$, then w will reach z_i .

(b) Prove that $L(N_k) = X_k$ for all $k \in \mathbb{Z}^+$.

Lemma 1. For all $k \in \mathbb{Z}^+$. For all $x \in \{0,1\}^* - X_k$. |x| = 2k.

Proof of Lemma 1.

Let $k \in \mathbb{Z}^+$ be arbitrary.

Let $x \in \{0,1\}^* - X_k$ be arbitrary.

Since $X_k \subseteq \{0,1\}^*$, by definition of X_k we have $\{0,1\}^* - X_k = \{x \in \{0,1\}^* : \exists y \in \{0,1\}^k . (x = y \cdot y)\}$, since $x \in \{0,1\}^* - X_k$, we instantiate $y \in \{0,1\}^k$ such that $x = y \cdot y$.

Since |y| = k and $|y \cdot y| = 2k$, by substitution we have |x| = 2k.

Since x is arbitrary, we conclude for all $x \in \{0,1\}^* - X_k$. |x| = 2k.

Since k is arbitrary, we conclude Lemma 1 holds.

Quod Erat Dem∎

Proof of Question 2(b).

Let $k \in \mathbb{Z}^+$ be arbitrary.

Let $w \in \{0,1\}^*$ be arbitrary.

Consider 3 cases of the length of w: |w| < 2k, |w| = 2k, |w| > 2k.

Since there are no λ transitions, for all $q \in Q$ we have $\delta(q, \lambda) = \emptyset$, so we will simply ignore checking λ transitions.

Case 1. |w| < 2k

Since $\delta(q_i, 0) = \{q_{i+1}, z_0\}$ and $\delta(q_i, 1) = \{q_{i+1}, p_0\}$ for $0 \le i \le k-1$, and $\delta(q_i, 0) = \delta(q_i, 1) = \{q_{i+1}\}$ for $k \le i \le 2k$, from these we have $q_{i+1} \in \delta(q_i, \alpha)$ for $0 \le i \le 2k$ where $\alpha \in \{0, 1\}$.

Hence, since q_i is a final state for $i \in [2k+1] \cup \{0\} - \{2k\}$, the string w starting from q_0 and through the walk $\{\omega_j\}_{j \in [|w|]}, \omega_j = (q_{j-1}, q_j)$ reaches a final state $q_{|w|}$ since |w| < 2k and so $|w| \in [2k+1] \cup \{0\} - \{2k\}$ by our case assumption.

For Case 1 we have shown that when |w| < 2k, w is accepted by N_k , thus $w \in L(N_k)$. Moreover, by Lemma 1 and specialization of k, because $|w| \neq 2k$, thus $w \notin \{0,1\}^* - X_k$, so $w \in X_k$. Therefore $w \in L(N_k)$ if and only if $w \in X_k$.

Case 2. |w| > 2k.

|w| > 2k implies $|w| \ge 2k + 1$, so $|w| - 2k - 1 \ge 0$. We will use [0] to denote the empty set.

Since $\delta(q_i, 0) = \{q_{i+1}, z_0\}$ and $\delta(q_i, 1) = \{q_{i+1}, p_0\}$ for $0 \le i \le k-1$, and $\delta(q_i, 0) = \delta(q_i, 1) = \{q_{i+1}\}$ for $k \le i \le 2k$, from these we have $q_{i+1} \in \delta(q_i, \alpha)$ for $0 \le i \le 2k$ where $\alpha \in \{0, 1\}$.

Moreover, since $\delta(q_{2k+1},0) = \delta(q_{2k+1},1) = \{q_{2k+1}\}$, and q_{2k+1} is a final state, by constructing the walk $\{(q_{i-1},q_i)\}_{i\in[2k+1]}\circ\{(p_j,p_j)\}_{j\in[|w|-2k-1]}, p_j=q_{2k+1}$ for all $j\in[|w|-2k-1]$. We can see

For Case 2 we have shown that when |w| > 2k, w is accepted by N_k , thus $w \in L(N_k)$. Moreover, by Lemma 1 and specialization of k, because $|w| \neq 2k$, thus $w \notin \{0,1\}^* - X_k$, so $w \in X_k$. Therefore $w \in L(N_k)$ if and only if $w \in X_k$.

Case 3. |w| = 2k.

We will use the word "character" to denote element in $\Sigma = \{0, 1\}$, moreover, since w is a finite sequence of characters, we will use w_i to denote the i^{th} character of w starting from position 1.

Subcase (1): NOT($\exists y \in \{0,1\}^k . (w = y \cdot y)$).

First, $w = y \cdot y = yy$ is equivalent to $\forall i \in [2k].$ $w_i = yy_i.$

Hence, NOT($\exists y \in \{0,1\}^k . (w = y \cdot y)$) is equivalent to $\forall y \in \{0,1\}^k . \exists i \in [2k] . w_i \neq yy_i$.

Let $y' \in \{0,1\}^k$ be such that $\forall i \in [k]. y'_i = w_i$. Then by specialization of the above formula, we have $\exists i \in [2k]. w_i \neq y'y'_i$.

Since by construction $\forall i \in [k].w_i = y'y'_i$, combining with $\exists i \in [2k].w_i \neq y'y'_i$ we have $\exists i \in [2k] - [k].w_i \neq y'y'_i$, instantiate such i.

Since $w_i \neq y'y'_i = y'y'_{i-k}$ but by specialization $w_{i-k} = y'_{i-k} = y'y'_{i-k}$, by substitution we have $w_i \neq w_{i-k}$.

Subsubcase (a) $w_i = 0$.

Since $w_i \neq w_{i-k}$, we have $w_{i-k} = 1$.

Now define $\forall m \in [2k-i], r_m = (q_{2k+1}, q_{2k+1}),$ and construct the walk $\{(q_{j-1}, q_j)\}_{j \in [i-k-1]} \circ \{(q_{i-k-1}, p_0)\} \circ \{(p_{l-1}, p_l)\}_{l \in [k-1]} \circ \{(p_{k-1}, q_{2k+1})\} \circ \{r_m\}_{m \in [2k-i]}.$ Here

 $\{(q_{j-1},q_j)\}_{j\in[i-k-1]}$ is valid since $q_{b+1}\in\delta(q_b,0)=\delta(q_b,1)$ for $0\leq b\leq 2k$ from Case 2;

 $\{(q_{i-k-1}, p_0)\}\$ is valid due to $\delta(q_a, 1) = \{q_{a+1}, p_0\}\$ for $0 \le a \le k-1$ and $w_{i-k} = 1$;

 $\{(p_{l-1}, p_l)\}\$ is valid due to $\delta(p_c, 0) = \delta(p_c, 1) = \{p_{c+1}\}\$ for $0 \le c \le k-2$;

 $\{(p_{k-1}, q_{2k+1})\}\$ is valid due to $\delta(p_{k-1}, 0) = \{q_{2k+1}\}\$ and $w_i = 0$ (the length of the walk before is (i - k - 1) + (1) + (k - 1) = i - 1, thus we read the character w_i during $\{(p_{k-1}, q_{2k+1})\}$);

and finally $\{r_m\}_{m \in [2k-i]}$ is valid due to $\delta(q_{2k+1}, 0) = \delta(q_{2k+1}, 1) = \{q_{2k+1}\}$

So, we have shown our walk is valid and reaches the final state q_{2k+1} . Note that all indexes are valid due to basic algebra and arithmetic manipulations.

For subsubcase (a) we have shown w is accepted by N_k thus $w \in L(N_k)$. And by definition of X_k , $w \in X_k$. So for subsubcase (a) $w \in L(N_k)$ if and only if $w \in X_k$.

Subsubcase (b) $w_i = 1$.

Since $w_i \neq w_{i-k}$, we have $w_{i-k} = 0$.

Now define $\forall m \in [2k-i], r_m = (q_{2k+1}, q_{2k+1}),$ and construct the walk $\{(q_{j-1}, q_j)\}_{j \in [i-k-1]} \circ \{(q_{i-k-1}, z_0)\} \circ \{(z_{l-1}, z_l)\}_{l \in [k-1]} \circ \{(z_{k-1}, q_{2k+1})\} \circ \{r_m\}_{m \in [2k-i]}.$ Here

 $\{(q_{j-1},q_j)\}_{j\in[i-k-1]}$ is valid since $q_{b+1}\in\delta(q_b,0)=\delta(q_b,1)$ for $0\leq b\leq 2k$ from Case 2;

 $\{(q_{i-k-1}, z_0)\}\$ is valid due to $\delta(q_a, 0) = \{q_{a+1}, z_0\}\$ for $0 \le a \le k-1$ and $w_{i-k} = 0$;

 $\{(z_{l-1}, z_l)\}\$ is valid due to $\delta(z_c, 0) = \delta(z_c, 1) = \{z_{c+1}\}\$ for $0 \le c \le k-2$;

 $\{(z_{k-1}, q_{2k+1})\}\$ is valid due to $\delta(z_{k-1}, 1) = \{q_{2k+1}\}\$ and $w_i = 1$ (the length of the walk before is (i - k - 1) + (1) + (k - 1) = i - 1, thus we read the character w_i during $\{(z_{k-1}, q_{2k+1})\}$);

and finally $\{r_m\}_{m\in[2k-i]}$ is valid due to $\delta(q_{2k+1},0)=\delta(q_{2k+1},1)=\{q_{2k+1}\}.$

So, we have shown our walk is valid and reaches the final state q_{2k+1} . Note that all indexes are valid due to basic algebra and arithmetic manipulations.

For subcase (1) we have shown $w \in L(N_k)$ and $w \in X_k$. Thus $w \in L(N_k)$ if and only if $w \in X_k$. Subcase (2): $\exists y \in \{0,1\}^k. (w = y \cdot y)$.

Since $\exists y \in \{0,1\}^k . (w = y \cdot y)$, we instantiate such y.

By definition of X_k , $w \notin X_k$. We now show $w \notin L(N_k)$.

To this end, since |w| = 2k, and the length of path to read q_d where $d \in [2k-1] \cup \{0\}$ is exactly d by our definitions of δ : q_d can only be reached from q_{d-1} for $d \in [2k-1]$ and q_0 can only be reached only by the string λ , solving the simple recurrence relation we have q_b can only be reached by the strings with length b for all $b \in [2k-1] \cup \{0\}$.

So, since |w| = 2k > 2k - 1, final states $\{q_d \mid d \in [2k - 1] \cup \{0\}\}$ cannot be reached by w, now we just have to show q_{2k+1} cannot be reached by w.

To obtain a contradiction, assume there exists a walk that q_{2k+1} is reached by w from q_0 .

There are 3 possible paths to reach q_{2k+1} : from q_{2k} , from p_{k-1} , and from z_{k-1} .

Subsubcase (a) w can be reached from q_{2k} .

For this case since to reach q_{2k-1} , the path must be at least length 2k-1, and to reach q_{2k} , the path must be at least length 2k, so the path must be at least length 2k+1 to reach q_{2k+1} , which is a contradiction to |w|=2k.

For this subsubcase (a) contradiction occured.

Subsubcase (b) w can be reached from p_{k-1} .

Since $q_{2k+1} \in \delta(p_{k-1}, 0)$ and $\delta(p_{k-1}, 1) = \emptyset$, this implies $w_i = 0$ for some $i \in [2k-1] \cup \{0\}$, since the shortest path to reach p_{k-1} is length k (from q_0 to p_0 and from p_0 to p_{k-1}), this gives $k+1 \le i \le 2k-1$. Since w=kk and $w_i=0$, this shows $w_{i-k}=0$ (valid index since $i \ge k+1$). However, since the path from p_0 to p_{k-1} is exactly length k, and p_0 can only be reached by character 1, this implies $w_{i-k}=1$, which is a contradiction.

For this subsubcase (b) contradiction occured.

Subsubcase (c) w can be reached from z_{k-1} .

Since $q_{2k+1} \in \delta(z_{k-1}, 1)$ and $\delta(z_{k-1}, 0) = \emptyset$, this implies $w_i = 1$ for some $i \in [2k-1] \cup \{0\}$, since the shortest path to reach z_{k-1} is length k (from q_0 to z_0 and from z_0 to z_{k-1}), this gives $k+1 \le i \le 2k-1$. Since w=kk and $w_i=1$, this shows $w_{i-k}=1$. However, since the path from z_0 to z_{k-1} is exactly length k, and z_0 can only be reached by character 0, this implies $w_{i-k}=0$, which is a contradiction.

For this subsubcase (c) contradiction occured.

For all cases contradiction occurred, so q_{2k+1} cannot be reached by w. Since w cannot reach all final states, we conclude $w \notin L(N_k)$, and by definition of X_k , $w \notin X_k$. Therefore $w \in L(N_k)$ if and only if $w \in X_k$.

For subcase (2) we have shown $w \notin L(N_k)$ and $w \notin X_k$. Thus $w \in L(N_k)$ if and only if $w \in X_k$.

We conclude for Case 3 $w \in L(N_k)$ if and only if $w \in X_k$.

For all cases we have shown $w \in L(N_k)$ if and only if $w \in X_k$.

Since w is arbitrary, we conclude $\forall w \in \{0,1\}^*.w \in L(N_k)$ if and only if $w \in X_k$. Since $L(N_k) \subseteq \{0,1\}^*$ and $X_k \subseteq \{0,1\}^*$, by definition of set equality we conclude $L(N_k) = X_k$.

Since k is arbitrary, we therefore have shown that $L(N_k) = X_k$ for all $k \in \mathbb{Z}^+$.

Quod Erat Dem∎