Nonercal Method  $x \in \mathbb{R}^n$  be  $\mathbb{R}^n$ Last time: Stationary iterative method for  $A \times b$ :  $x^{bet} = B \times k + C$ ,  $k = 0, 1, \dots$ Consistent if  $A \times b \in X = B \times b \in X$ Then conveyent if S(B) < 1(BSM)

Example: Basic Stationary Method: B = I - A, C = b  $x^{bet} = (I - A) \times^b + b$ ,  $b = 0, 1, \dots$ 

Convergent if  $\sigma(A) \subset \{\lambda \in \mathbb{C} : |\lambda - 1| < 1\}$ .

[Note: eigenvalues of I - A are of the form  $1 - \lambda$  where  $\lambda \in \sigma(A)$ ].

Proof -exercise, using definot  $\sigma(A)$ .

If A is symmetric than so is I - A, so S(B) would be a convergence constant w.r.t.  $||\cdot||_2$ , i.e.  $||e^{k+1}||_2 \leq S(I - A)||e^{k}||_2 = \infty$ .

If A has eigenvalues close to  $\{\lambda \in \mathbb{C} : |\lambda - 1| = 1\}$  we'll have slow convergence  $(S(I - A)) \approx 1$ 

To improve things we can try "precaditioning" the system to relate S(B). I dea: choose some invertible matrix  $P \in \mathbb{R}^{n \times n}$  (the "precaditioner") and apply BSM to the modified system  $P^- A \simeq = P^{-1} b$ , giving the iteration  $\chi^{k+1} = (I - P^- A) \times^k + P^- b \quad , h = 0,1, \dots$ 

```
Two competing requirements of P:

Want P \cong A, in the sense that S(I-P'H) is small.

(extreme rose: P = A gives S(I-P'H) = 0.

instant convergence!

but invoting P is just as hard as any inal problem!)

Nant Py = A to be easy to solve

(extreme rase: P = I

to the involve P = A

but no effect on convergence
as S(I-P'H) = S(I-A).
```

Simplest preconditioner: 
$$P = \frac{1}{\alpha}I$$
 for some  $\alpha \neq 0$ .  $(P^{-1} = \alpha I)$ 
 $\alpha Ax = \alpha b$ .

Station on Richardson we that

I treation matrix  $B_{\alpha} = I - \alpha A$ .

Since  $\sigma(B_{\alpha}) = \sum_{\alpha} \mu \in C$ :  $\mu = 1 - \alpha \lambda$  for some  $\lambda \in \sigma(A)$  we have convergence when

 $\sigma(A) \subset \sum_{\alpha} \lambda \in C$ :  $|\lambda - \frac{1}{\alpha}| < \frac{1}{\alpha}$ 

If I know  $\sigma(A) \subset \{A: \text{Red} > 0\}$  or  $\sigma(A) \subset \{A: \text{Red} < 0\}$  I non always choose  $\infty$  to make S(Ba) < I.

What is the optimal choice of  $\infty$ ? (in the sense of minimising S(Ba)).

Let's focus on the core where A is symmetric positive definite (SPD), i.e. A is symmetric  $(A^T = A)$  and  $\sum_{i=1}^{n} A_i = \sum_{i=1}^{n} A_i = \sum_{$ 



Proof: (on regence for  $\alpha \in (0, \frac{2}{1 + \alpha x})$ ) is firm our earlier analysis.

[exercise: write out the full proof, showing that  $\alpha \in (0, \frac{2}{1 + \alpha x}) \Rightarrow S(B_{\alpha}) < 1$ .

Then eigenvalues of  $B_{\alpha} = I - \alpha A$  lie between  $1 - \alpha A_{\max}$  and  $1 - \alpha A_{\min}$ .

Note that  $-1 < 1 - \alpha A_{\max} < 1 - \alpha A_{\min} < 1$ Then  $S(B_{\alpha}) = \max \left( \left[ 1 - \alpha A_{\max} \right] \left[ 1 - \alpha A_{\min} \right] \right)$ Then  $S(B_{\alpha}) = \max \left( \left[ 1 - \alpha A_{\max} \right] \left[ 1 - \alpha A_{\min} \right] \right)$ [Old also be  $A_{\max} = A_{\max} = A$ 

The optimal choice is where 
$$1-\alpha h_{\text{min}} = -(1-\alpha d_{\text{max}})$$
, and solving for  $\alpha = \alpha = 1$ . Pluging  $\alpha = \alpha = 1$  into  $(k)$  gives the claimed form a for  $\beta(\beta_{\alpha})$ . (check!)

$$\frac{\beta x-\tilde{x}}{|\tilde{x}|} \approx \frac{|x-\tilde{x}|}{|x|}$$

$$|\alpha| = |\tilde{x}+(x-\tilde{x})| \leq |\tilde{x}|+|x-\tilde{x}| = |\tilde{x}|(1+\frac{|x-\tilde{x}|}{|\tilde{x}|}) = |\tilde{x}|(1+\hat{e})$$

$$|\beta^{k}|_{2} \leq \beta(\beta_{\alpha})|\beta^{k}|_{2}$$

Remark: If A is SPD then 
$$K_2(A) := \|A\|_2 \|A^{-1}\|_2$$
  
Satisfies  $K_2(A) = \frac{1}{1} \max_{A \text{ min}} \frac{1}{1} \sum_{K_2(A) + 1} \frac{1}{1} \sum_{K_2(A$ 

Jacobi and Gauss-Seidel methods: strictly

Decaposing 
$$A = L + D + U$$

Suggest other precarditiners, e.g.

Jacobi method:  $P = D$ 

giving iteration matrix  $B_J = I - D^T A = D^T (0 - A) = -D^T (L + U)$ .

(P=0 is very deep to invert - cost  $O(n)$ )

Gass-Seidel method: 
$$P = L + D$$
 (110).

gising iteration matrix  $B_{GS} = I - (L + 0)^{-1}A = -(L + 0)^{-1}U$ 

( $P = L + D$  is a bit more expensive to invot:  $O(n^2)$  by found substitution" (see notes  $p + 6$ ).

When do these converge?

Defin:  $A \in \mathbb{R}^{n \times n}$  is ralled strictly diagonally dominant by rows ( $SDD$ )

if  $|aii| > \sum_{j=1}^{n} |aij|$  for each  $i = 1, ..., n$ .

 $SDO \neq SPD!$ 



Now recall that
$$\|B_{J}\|_{\infty} = \max_{i} \sum_{j=1}^{\infty} |b_{ij}| = \max_{i} \sum_{j\neq i} \frac{|a_{ij}|}{|a_{ij}|} = \max_{i} \frac{1}{|a_{ij}|} \sum_{j\neq i} |a_{ij}|$$

$$|B_{J}\|_{\infty} \leq \|B_{J}\|_{\infty} \|g^{[k]}\|_{\infty}$$

$$|B_{J}\|_{\infty} \leq \|B_{J}\|_{\infty} \|g^{[k]}\|_{\infty}$$

$$|A_{is}|_{\infty} \leq \|B_{J}\|_{\infty} \|g^{[k]}\|_{\infty}$$

Theorem: If A is SPD then Gauss-Seidel conveyes.

\$\sigma \text{SDD!}\$

Proof: not in the course.

Next time: non-Stationary methods

\$\text{x}^{ht} = \text{B}\_h \text{x}^k + \text{S}\_k .