```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

# Disable scientific notation for large numbers
pd.options.display.float_format = '{:.0f}'.format

# Setting display options for Pandas to show three decimal places for floati
pd.set_option('display.float_format', lambda x: '%.2f' % x)
```

Data Loading

```
In [2]: # import data
    customer_df = pd.read_csv('/content/drive/MyDrive/Customer_data.csv')
```

Data Exploration

```
In [3]: customer df.info() # Display information about the dataFrame, including dat
       <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 200 entries, 0 to 199
      Data columns (total 5 columns):
           Column
                              Non-Null Count Dtype
       --- -----
       0
           CustomerID
                               200 non-null
                                               int64
          Genre
                              200 non-null
                                               object
           Aae
                               200 non-null
                                               int64
       3
           Annual Income (k$) 200 non-null
                                              int64
           Spending Score
                               200 non-null
                                            int64
       dtypes: int64(4), object(1)
      memory usage: 7.9+ KB
In [4]: customer df.head() # Display top 5 records
Out[4]:
           CustomerID Genre Age Annual_Income_(k$) Spending_Score
        0
                    1
                         Male
                                19
                                                    15
                                                                    39
                                                    15
        1
                         Male
                                21
                                                                    81
```

```
      0
      1
      Male
      19
      15
      39

      1
      2
      Male
      21
      15
      81

      2
      3
      Female
      20
      16
      6

      3
      4
      Female
      23
      16
      77

      4
      5
      Female
      31
      17
      40
```

```
In [8]: customer_df[['Annual_Income_(k$)','Spending_Score']].describe() # Display st
```

]:		Annual_Income_(k\$)	Spending_Score
	count	200.00	200.00
	mean	60.56	50.20
	std	26.26	25.82
	min	15.00	1.00
	25%	41.50	34.75
	50%	61.50	50.00
	75 %	78.00	73.00
	max	137.00	99.00

Data Preprocessing

dtype: int64

Out[8

Since, sum of missing values is zero, so there is no need to handle null values.

```
In [11]: print(customer_df.duplicated().sum()) # Find sum of duplicate records
```

Since, sum of duplicated values is zero, so there is no need to drop duplicates.

Standardize the data using StandardScaler

```
In [12]: # Select features to be scaled
features = customer_df[['Age', 'Annual_Income_(k$)', 'Spending_Score']]
# Initialize the StandardScaler
scaler = StandardScaler()
# Fit and transform the features
scaled_features = scaler.fit_transform(features)
```

```
# Convert the scaled features back to a DataFrame
scaled_data = pd.DataFrame(scaled_features, columns=features.columns)
```

Clustering

Determine the optimal number of clusters using the Elbow Method.

```
In [13]: from sklearn.cluster import KMeans
In [14]: # Calculate WCSS for k=1 to 10
         wcss = []
         for k in range(1, 11):
             kmeans = KMeans(n clusters=k, init='k-means++', random state=42, n init=
             kmeans.fit(scaled features)
             wcss.append(kmeans.inertia ) # inertia = WCSS
         # Plot the Elbow curve
         plt.figure(figsize=(10, 6))
         plt.plot(range(1, 11), wcss, marker='o', linestyle='--')
         plt.title('Elbow Method for Optimal K')
         plt.xlabel('Number of Clusters (K)')
         plt.ylabel('Within-Cluster Sum of Squares (WCSS)')
         plt.xticks(range(1, 11))
         plt.grid(True)
         plt.show()
```


Apply K-Means Clustering and assign a cluster label to each customer.

```
In [15]: n clusters = 10
        # Fit KMeans
        kmeans = KMeans(n clusters=n clusters, init='k-means++', random state=42, n
        clusters = kmeans.fit predict(scaled features)
        # Assign cluster labels to the original data
        customer df['Cluster'] = clusters
        # Output the result
        print(customer df[['CustomerID', 'Genre', 'Age', 'Annual Income (k$)', 'Sper
           CustomerID Genre Age Annual Income (k$) Spending Score Cluster
                   1 Male 19
       0
                                                15
                                                               39
       1
                   2 Male 21
                                                               81
                                                                       3
                   3 Female 20
       2
                                                              6
                                                                       9
                                                16
       3
                  4 Female 23
                                                              77
                                                                       3
                                                16
       4
                  5 Female 31
                                               17
                                                              40
                                                                       9
                         . . .
       195
                 196 Female 35
                                              120
                                                              79
                                                                       8
                 197 Female 45
                                                                       2
       196
                                              126
                                                              28
                                              126
137
                 198 Male 32
                                                              74
                                                                       8
       197
       198
                  199
                        Male 32
                                                             18
                                                                       2
       199
                 200 Male 30
                                              137
                                                              83
                                                                       8
       [200 rows x 6 columns]
In [ ]: # Save cleaned data
        customer df.to csv('/content/drive/MyDrive/Customer data final.csv', index=F
```

Data Visualization

Create 2D Scatter Plot by using PCA (Principal Component Analysis) or t-SNE to reduce dimensions to two for visualization

```
plt.xlabel('Component 1')
plt.ylabel('Component 2')

# Add colorbar if clusters exist
if 'Cluster' in customer_df.columns:
    plt.colorbar(scatter, label='Cluster')
plt.grid(True)
plt.show()
```


Create Pair Plots to visualize relationships between features within clusters.

```
In [19]: # Select features for the pair plot
plot_features = ['Age', 'Annual_Income_(k$)', 'Spending_Score', 'Cluster']
# Create pair plot colored by cluster
sb.pairplot(customer_df[plot_features], hue='Cluster', diag_kind='hist', plc
plt.suptitle('Pair Plot of Customer Features Colored by Cluster', y=1.02)
plt.show()
```


Create Centroid Visuals to show the centroid of each cluster for better interpretation.

```
In [20]: # Get centroids in original feature space and transform to PCA space
    centroids = kmeans.cluster_centers_
    centroids_pca = pca.transform(centroids)

# Plot the data points
    plt.figure(figsize=(10, 6))
    plt.scatter(pca_result[:, 0], pca_result[:, 1], c=clusters, cmap='viridis',

# Plot the centroids
    plt.scatter(centroids_pca[:, 0], centroids_pca[:, 1], marker='*', s=200, c='

    plt.title('Customer Clusters with Centroids (PCA-reduced)')
    plt.xlabel('PCA Component 1')
    plt.ylabel('PCA Component 2')
    plt.legend()
    plt.grid(True)
    plt.show()
```


Recommendations

Recommand which groups to target for promotions or premium products.

```
In [21]: # Analyze cluster characteristics
         cluster profile = customer df.groupby('Cluster').agg({
             'Age': 'mean',
             'Annual Income (k$)': 'mean',
             'Spending_Score': 'mean',
             'CustomerID': 'count'
         }).rename(columns={'CustomerID': 'Count'})
         # Visualize cluster profiles
         plt.figure(figsize=(12, 8))
         sb.heatmap(cluster profile.drop('Count', axis=1), annot=True, cmap='YlGnBu')
         plt.title('Cluster Profile Heatmap')
         plt.show()
         # Generate targeting recommendations
         def generate recommendations(profile):
             recommendations = []
             for cluster id, row in profile.iterrows():
                 age = row['Age']
                 income = row['Annual Income (k$)']
                 spending = row['Spending Score']
                 size = row['Count']
                 if income > 80 and spending > 70:
```

```
rec = f"Cluster {cluster_id}: Target for PREMIUM products (High-
elif spending > 60:
    rec = f"Cluster {cluster_id}: Ideal for PROMOTIONS (High spendir
elif income > 70 and age < 40:
    rec = f"Cluster {cluster_id}: Upsell opportunities (Young high-else:
    rec = f"Cluster {cluster_id}: Maintain engagement (Moderate value)
    return recommendations

# Execute and print recommendations
recommendations = generate_recommendations(cluster_profile)
print("\nTargeting Recommendations:")
for rec in recommendations:
    print(f"- {rec}")</pre>
```



```
Targeting Recommendations:
- Cluster 0: Target for PREMIUM products (High-income: $80.4k, High spendin g: 82.9 score)
- Cluster 1: Maintain engagement (Moderate value)
- Cluster 2: Upsell opportunities (Young high-earners: $93.9k)
- Cluster 3: Ideal for PROMOTIONS (High spending: 78.6 score)
- Cluster 4: Maintain engagement (Moderate value)
- Cluster 5: Maintain engagement (Moderate value)
- Cluster 6: Maintain engagement (Moderate value)
- Cluster 7: Maintain engagement (Moderate value)
- Cluster 8: Target for PREMIUM products (High-income: $114.7k, High spendin g: 78.4 score)
- Cluster 9: Maintain engagement (Moderate value)
```

Identify high-spending customers and propose loyalty programs.

```
In [22]: # Define high-spending threshold (top 20% by Spending Score)
         threshold = customer df['Spending Score'].quantile(0.8)
         high spenders = customer df[customer df['Spending Score'] >= threshold]
         # Print high-spending customers
         print("High-Spending Customers:")
         print(high spenders[['CustomerID', 'Genre', 'Age', 'Annual Income (k$)', 'Sr
         # Propose loyalty programs based on customer characteristics
         print("\nProposed Loyalty Programs for High-Spending Customers:")
         for idx, customer in high spenders.iterrows():
             # Premium tier for very high income and spending
             if customer['Annual Income (k$)'] > 80 and customer['Spending Score'] >
                 program = (
                     f"Customer['CustomerID']}: Premium Loyalty Program (ex
             # Standard rewards for high spending
             elif customer['Spending Score'] > 80:
                 program = (
                     f"Customer['CustomerID']}: Rewards Program (points, di
             # Upsell for younger high spenders
             elif customer['Age'] < 40 and customer['Spending Score'] > 70:
                 program = (
                     f"Customer {customer['CustomerID']}: Upsell Program (targeted of
             # General loyalty for other high spenders
             else:
                 program = (
                     f"Customer {customer['CustomerID']}: General Loyalty Program (fr
             print(program)
```

High-Spending Customers:					
	CustomerID	Genre	Age	Annual_Income_(k\$)	Spending_Score
1	2	Male	21	 15	81
3	4	Female	23	16	77
5	6	Female	22	17	76
7	8	Female	23	18	94
11	12	Female	35	19	99
13	14	Female	24	20	77
15	16	Male	22	20	79
19	20	Female	35	23	98
25	26	Male	29	28	82
29	30	Female	23	29	87
33	34	Male	18	33	92
35	36	Female	21	33	81
39	40	Female	20	37	75
41	42	Male	24	38	92
123	124	Male	39	69	91
125	126	Female	31	70	77
127	128	Male	40	71	95
129	130	Male	38	71	75
131	132	Male	39	71	75
135	136	Female	29	73	88
141	142	Male	32	75	93
143	144	Female	32	76	87
145	146	Male	28	77	97
149	150	Male	34	78	90
151	152	Male	39	78	88
153	154	Female	38	78	76
155	156	Female	27	78	89
157	158	Female	30	78	78
161	162	Female	29	79	83
163	164	Female	31	81	93
165	166	Female	36	85	75
167	168	Female	33	86	95
171	172	Male	28	87	75
173	174	Male	36	87	92
175	176	Female	30	88	86
179	180	Male	35	93	90
181	182	Female	32	97	86
183	184	Female	29	98	88
185	186	Male	30	99	97
189	190	Female	36	103	85
193	194	Female	38	113	91
195	196	Female	35	120	79
199	200	Male	30	137	83

Proposed Loyalty Programs for High-Spending Customers:
Customer 2: Rewards Program (points, discounts, birthday offers)
Customer 4: Upsell Program (targeted offers, new product trials)
Customer 6: Upsell Program (targeted offers, new product trials)
Customer 8: Rewards Program (points, discounts, birthday offers)
Customer 12: Rewards Program (points, discounts, birthday offers)
Customer 14: Upsell Program (targeted offers, new product trials)
Customer 16: Upsell Program (targeted offers, new product trials)
Customer 20: Rewards Program (points, discounts, birthday offers)
Customer 26: Rewards Program (points, discounts, birthday offers)

```
Customer 30: Rewards Program (points, discounts, birthday offers)
Customer 34: Rewards Program (points, discounts, birthday offers)
Customer 36: Rewards Program (points, discounts, birthday offers)
Customer 40: Upsell Program (targeted offers, new product trials)
Customer 42: Rewards Program (points, discounts, birthday offers)
Customer 124: Rewards Program (points, discounts, birthday offers)
Customer 126: Upsell Program (targeted offers, new product trials)
Customer 128: Rewards Program (points, discounts, birthday offers)
Customer 130: Upsell Program (targeted offers, new product trials)
Customer 132: Upsell Program (targeted offers, new product trials)
Customer 136: Rewards Program (points, discounts, birthday offers)
Customer 142: Rewards Program (points, discounts, birthday offers)
Customer 144: Rewards Program (points, discounts, birthday offers)
Customer 146: Rewards Program (points, discounts, birthday offers)
Customer 150: Rewards Program (points, discounts, birthday offers)
Customer 152: Rewards Program (points, discounts, birthday offers)
Customer 154: Upsell Program (targeted offers, new product trials)
Customer 156: Rewards Program (points, discounts, birthday offers)
Customer 158: Upsell Program (targeted offers, new product trials)
Customer 162: Rewards Program (points, discounts, birthday offers)
Customer 164: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
Customer 166: Upsell Program (targeted offers, new product trials)
Customer 168: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
Customer 172: Upsell Program (targeted offers, new product trials)
Customer 174: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
Customer 176: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
Customer 180: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
Customer 182: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
Customer 184: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
Customer 186: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
Customer 190: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
Customer 194: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
Customer 196: Upsell Program (targeted offers, new product trials)
Customer 200: Premium Loyalty Program (exclusive access, priority service, e
arly sales)
```

Tailor marketing strategies for different age or income segments.

```
In [24]: # Define segmentation boundaries
    age_bins = [0, 30, 50, 100]
    age_labels = ['Young (<30)', 'Middle-aged (30-50)', 'Senior (>50)']
    income_bins = [0, 50, 80, 200]
    income_labels = ['Low (<$50k)', 'Medium ($50k-$80k)', 'High (>$80k)']

# Create segments
    customer df['Age Segment'] = pd.cut(customer df['Age'], bins=age bins, label
```

```
customer df['Income Segment'] = pd.cut(customer df['Annual Income (k$)'], bi
# Analyze segment characteristics
segment analysis = customer df.groupby(['Age Segment', 'Income Segment']).ag
   Avg_Spending=('Spending_Score', 'mean'),
    Customer Count=('CustomerID', 'count')
).reset index()
# Visualize segment distribution
plt.figure(figsize=(12, 8))
sb.heatmap(
   segment analysis pivot table(index='Age Segment', columns='Income Segment'
   annot=True, cmap='YlGnBu'
plt.title('Customer Distribution Across Segments')
plt.show()
# Propose tailored marketing strategies
def propose strategies(row):
   age = row['Age Segment']
   income = row['Income Segment']
   spending = row['Avg Spending']
   count = row['Customer Count']
   if age == 'Young (<30)':
        if income == 'High (>$80k)':
            return "Luxury trend-focused campaigns: Premium tech/experience
        elif income == 'Medium ($50k-$80k)':
            return "Value bundles: Mid-range fashion, subscription models, s
        else:
            return "Entry-level offers: Student discounts, budget-friendly d
   elif age == 'Middle-aged (30-50)':
        if income == 'High (>$80k)':
            return "Premium family packages: High-end home goods, exclusive
        elif income == 'Medium ($50k-$80k)':
            return "Quality-focused promotions: Durable goods, loyalty progr
        else:
            return "Budget solutions: Value packs, discount events, communit
   else: # Senior (>50)
        if income == 'High (>\$80k)':
            return "Luxury leisure: High-end travel, premium health services
        elif income == 'Medium ($50k-$80k)':
            return "Comfort-focused: Quality-of-life products, loyalty benef
        else:
            return "Essential value: Senior discounts, basic necessities, th
# Generate and display strategies
segment analysis['Strategy'] = segment analysis.apply(propose strategies, ax
print("\nTailored Marketing Strategies:")
print(segment_analysis[['Age Segment', 'Income Segment', 'Customer_Count',
```


Tailored Marketing Strategies:

	3	9		
	Age Segment	Income Segment	Customer_Count	\
0	Young (<30)	Low (<\$50k)	26	
1	Young (<30)	Medium (\$50k-\$80k)	28	
2	Young (<30)	High (>\$80k)	8	
3	Middle-aged (30-50)	Low (<\$50k)	28	
4	Middle-aged (30-50)	Medium (\$50k-\$80k)	44	
5	Middle-aged (30-50)	High (>\$80k)	26	
6	Senior (>50)	Low (<\$50k)	20	
7	Senior (>50)	Medium (\$50k-\$80k)	16	
8	Senior (>50)	High (>\$80k)	4	

Strategy

- 0 Entry-level offers: Student discounts, budget-...
- 1 Value bundles: Mid-range fashion, subscription...
- 2 Luxury trend-focused campaigns: Premium tech/e...
- 3 Budget solutions: Value packs, discount events...
- 4 Quality-focused promotions: Durable goods, loy...
- 5 Premium family packages: High-end home goods, ...
- 6 Essential value: Senior discounts, basic neces...
- 7 Comfort-focused: Quality-of-life products, loy...
- 8 Luxury leisure: High-end travel, premium healt...