I. Alvarez-Castro J. Cugliari N. da Silva S. De Mello Agustín Estramil Manuel Hernández M. Renom

Reunión avance INUMET

27 de febrero de 2019

1. Introducción

Objetivos

Modelización estadística de las series diarias de temperatura máxima y mínima en varias estaciones meteorológicas en Uruguay. En base a esos modelos caracterizar eventos de olas de frío y calor.

- ► Imputación de datos faltantes
- Visualización de series diarias
- Definición y caraterización de olas de extremos
- Métodos para comparar y evaluar series imputadas

- ► Imputación de datos faltantes
- Visualización de series diarias
- Definición y caraterización de olas de extremos
- Métodos para comparar y evaluar series imputadas

2. Imputación de datos faltantes

Imputación de datos faltantes

- $ightharpoonup y_{ti}^n$: temperatura mínima el día t en locación i
- $\triangleright y_{ti}^x$: temperatura máxima el día t en locación i

Modelos aditivos basados en GEV

$$egin{align} G(y_{ti}^{ imes}) &= \exp\left\{-\left[1+\xi\left(rac{y_{ti}^{ imes}-\mu_{it}}{\sigma_i}
ight)
ight]_+^{-1/\xi}
ight\} \ &\mu_{it} &= s(t)+s(\textit{mei})+\textit{cl}_i \ \end{aligned}$$

- ightharpoonup un parámetro de escala por estación, σ_i
- ightharpoonup un parámetro de forma, ξ
- lacktriangle imputamos con la locación: $ilde{y}_{ti}^{ imes}=\hat{\mu}_{it}$

Imputación de datos faltantes

Modelos aditivos basados en GEV

- estimación con mgcv tiene problemas numéricos (demasiados??)
- opción: estimar en forma Bayesiana con brms

$$\begin{array}{ll} s(x) & = \sum_k \beta_k b_k(x) \\ \beta_k & \sim N(0, S_{\lambda}^-) \end{array}$$

Modelos con GAM y BRMS

- BRMS = Bayesian Regression Models using 'Stan'. Paquete brms en R.
- Se realiza la comparación de los modelos

```
\begin{split} & \text{b3ea} \leftarrow \text{gam(list(tempM} \sim \text{location} + \text{s(toy, k} = 7) + \text{s(mei, k} = 5), \sim 1, \sim 1), \text{ family} = \text{gevlss, data} = \text{dtgam2)} \end{split} & \text{y} \\ & \text{b3ec} \leftarrow \text{brm(bf(tempM} \sim \text{location} + \text{s(toy, k} = 7) + \text{s(mei, k} = 5), \\ & \text{sigma} \sim 1 \text{ , xi} \sim 1), \text{ data} = \text{dtgam2, family} = \text{gen\_extreme\_value()} \end{split}
```

► Se ajustan ambos modelos con la base de datos dtgam2, obtenida de tmin_gam, considerando únicamente al año 2012 y definiendo la variable tempM=-temp.

Modelos con GAM y BRMS

Figura: Artigas, días 60 a 120.

Imputación de datos faltantes

Otros métodos

- ▶ Regresión + ACP
- Modelos dinámicos
- ► GAM + estructura dependencia
- ► Variantes con RF (??)

comparar imputaciones

- ▶ en base a errores en datos simulados
- extremograma

3. Definición y caraterización de olas de extremos

Olas de extremos

Ola de frío: al menos 3 días seguidos con temperaturas mínimas y máximas inferiores a los respectivos percentiles 10 esperados para tales días.

Sucesión de días t_1, \ldots, t_k constituyen una ola de frío de largo k si:

$$egin{cases} y_{t_i}^n < p_{10_i}^n \ y_{t_i}^x < p_{10_i}^x \end{cases}$$
 para $i=1,\ldots,k$ donde $k\geq 3$

Percentiles para cada dia del año:

$$\begin{array}{l} p_{10_t}^n := \inf\{y : p(Y_t^n \leq y) \geq 0.1\} \\ p_{10_t}^x := \inf\{y : p(Y_t^x \leq y) \geq 0.1\} \end{array}$$

Calcular percentiles

empírica

- y_{at} es la temperatura de día t en año a
- ightharpoonup cada diat t, calcular cuantiles de $\{y_{1t}, \ldots, y_{At}\}$
- ightharpoonup obtener $p_{10_t}^n$ como media móvil de ventana 31 (en días)

con modelos

Modelo dinámico lineal:

$$Y_t = F_t \theta_t + v_t \qquad v_t \sim \mathcal{N}(0, V_t)$$

$$\theta_t = G_t \theta_{t-1} + w_t \qquad w_t \sim \mathcal{N}(0, W_t)$$

luego de estimar el modelo obtenemos:

$$\hat{p}^n_{10_t} := Fm_t + \sqrt{FC_tF^T + \mathsf{v}_t} \times z_{0,10}$$

donde $(m_t)_{1 \le t \le T}$ y $(C_t)_{1 \le t \le T}$ se obtienen mediante el filtro de Kalman.

Caracterizar olas de extremos

Curvas de Intensidad-Duración-Frecuencia (para temperatura)

- ▶ Obtener anomalías: $a_t = y_t \bar{y}_t$ (dato normal)
- ▶ Obtener versiones filtradas a 1, 2, ..., 20 días: $a_t^{(d)}$
- Mínimo para cada d = 1, ..., 20 $(m^{(d)} = \min_{t} \{a_t^{(d)}\})$

Caracterizar olas de extremos

Curvas de Intensidad-Duración-Frecuencia (para temperatura)

