

计算方法 第二章 方程求根

计算方法课程组

华中科技大学数学与统计学院

§ 2 方程求根

- **▶ §2.0** 引言
- ► §2.1 二分法
- ► §2.2 迭代法
- ► §2.3 牛顿 (Newton) 法
- ► §2.4 迭代过程的加速方法

§ 2 方程求根—引言

方程是在科学研究中不可缺少的工具,f(x)=0方程求解是科学计算中一个重要的研究对象.

几百年前就已经找到 了代数方程中二次至 四次方程的求解公式; 但是,对于更高次数 的代数方程目前仍 无有效的精确解法;

对于无规律的非代数方程的求解也无精确解法.

因此,研究非线性方程的数值解法成为必然.

本节主要研究单根区间上方程求根的各种近似算法.

$x^3 + ax^2 + bx + c = 0$ 求根公式

$$A = \frac{a^2 - 3b}{9} \quad and \quad B = \frac{2a^3 - 9ab + 27c}{54}$$
if $B^2 - A^3 > 0$ obtain $x_1 = -\text{sgn}(B)(\beta + \frac{A}{\beta}) - \frac{a}{3}$
where $\beta = (\sqrt{B^2 - A^3} + |B|)^{1/3}$;
else
$$x_1 = 2\sqrt{A}\cos(\frac{\gamma}{3}) - \frac{a}{3},$$

$$x_2 = 2\sqrt{A}\cos(\frac{\gamma + 2\pi}{3}) - \frac{a}{3},$$

$$x_3 = 2\sqrt{A}\cos(\frac{\gamma + 4\pi}{3}) - \frac{a}{3},$$
where $\gamma = \arccos(-B/A^{3/2})$;

1. 其中一类特殊的问题就是多项式方程的求根。

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \quad (a_n \square 0)$$

2. 另一类就是超越方程的求根。

$$cos(x)cosh(x) + 1 = 0$$

基本概念 f(x) = 0

方程f(x)=0 的根 x^* 又称为f(x) 的零点,它使 $(x^*)=0$ 若 $g(x^*)=0$, f(x) 可表示为 $f(x)=(x-x^*)^mg(x)$, 其中 m 为正整数,且 $f(x^*)=0$ 。

当 $^{m=1}$ 时,称 x 为单根,若 $^{m>1}$ 称 x 为 $^{f(x)}$ 的 m 重根,或 $^{f(x)}$ 的 m 重零点。 若 x 是 $^{f(x)}$ 的 m 重零点 且 $^{g(x)}$ 充分光滑,则

$$f(x^*) = f(x^*) = \dots = f^{(m-1)}(x^*) = 0, f^{(m)}(x^*) = 0$$

§ 2.1 二分法

求
$$f(x) = 0$$
 的根

原理: 若 $f \in C[a, b]$, 且 $f(a) \cdot f(b) < 0$, 则 $f = ext{$a, b$} \quad \text{L必有一根}.$

§ 2.1

给定有根区间 $[a,b](f(a)\cdot f(b)<0)$ 和 精度 ε 或 δ

- 1. $\Leftrightarrow x = (a+b)/2$
- 2. 如果 $b-a < \varepsilon$ 或 $f(x) < \delta$, 停机, 输出 x
- 3. 如果 f(a) f(x) < 0, 则令 b = x, 否则令 a = x, 返回第 1步

用二分法求根,通常先给出 f(x) 草图以确定根的大概位置。

§ 2.1 二分法—误差分析

记 $a_1 = a$, $b_1 = b$, 第 k 步的有根区间为 $[a_k, b_k]$

$$|x_k - x^*| = \left| \frac{b_k + a_k}{2} - x^* \right| \square \frac{b_k - a_k}{2} = \frac{b_{k-1} - a_{k-1}}{4} = \cdots = \frac{b_1 - a_1}{2^k}$$

对于给定的精度 ε ,可估计二分法所需的步数 k :

$$\frac{b-a}{2^k} < \varepsilon \quad \diamondsuit \quad k > \log_2 \frac{b-a}{\varepsilon}, \quad \mathbb{R} \quad k = \mathfrak{S} g_2 \frac{b-a}{\varepsilon}$$

- \checkmark 简单易用 \checkmark 对 f(x) 要求不高,只要连续即可收敛

- ✓ 收敛速度慢✓ 无法求复根及偶重根

§ 2.1 二分法—例题分析

例 1: 用二分法求方程 $2x^3 - 5x - 1 = 0$ 在区间 (1,2)

内

$$\varepsilon \leq 10^{-2}$$

§ 2.1 二分法—例题分析

例 1: 用二分法求方程 $2x^3 - 5x - 1 = 0$ 在区间 (1,2)

大 $\varepsilon \leq 10^{-2}$

解:令的实根?x³要求误差限为

$$f(1) < 0, f(2) > 0$$
 记 $I_0 = [1,2]$, $x_0 = (1+2)/2 = 1.5$

因为 $f(x_0) f(1) > 0$ 得 $I_1 = [1.5, 2]$, $x_1 = (1.5 + 2)/2 = 1.75$

$$f(x_1) f(1.5) < 0$$
 得 $I_2 = [1.5, 1.75]$, $x_2 = (1.5 + 1.75)/2 = 1.625$

 I_6 =[1.681875, 1.6875],

 I_7 =[1.671875, 1.679688]

 $b_7 - a_7 = 0.7813 \times 10^{-2} < 10^{-2}$

11

例 2: 求 $f(x) = x^3 - x - 1 = 0$ 在 (1, 1.5) 的

实根,要求误差不超过0.005。

§ 2.1 二分法—算法步骤

例 2 : 求 $f(x) = x^3 - x - 1 = 0$ 在 (1, 1.5) 的

实根,要求误差不超过0.005。

STEP 0	输入 $a, b, eps, delta, fa=f(a), fb=f(b)$
STEP 1	x=(a+b)/2, $fx=f(x)$
STEP 2	判断: b-a <eps delta<="" or="" th="" fx <=""></eps>
	若是,goto step 4;否则,执行下一步
STEP 3	若 fb*fx<0,则 a=x
	否则 b=x. goto step 1
STEP 4	输出 x,fx, 停机.

```
***
```

```
function [xvect,xdif,fx,nit]=bisect(a,b,toll,nmax,fun)
err=toll+1;
nit=0;
                    >> fun=inline('2*x.^3-5*x-1');
xvect=[];
fx=[];
                    >> [xvect,xdif,fx,nit]=bisect(1,2,0.01,50,fun)
xdif=[];
while (nit < nmax & err > toll)
  nit=nit+1;
  c = (a+b)/2;
                             x值
                                        区间长
                                                     函数值
  x=c;
                             1.2500
                                          0.2500
                                                    -0.2969
  fc=feval(fun,x);
  xvect=[xvect;x];
                                          0.1250
                             1.3750
                                                     0.2246
  fx=[fx;fc];
  x=a;
                             1.3125
                                          0.0625
                                                    -0.0515
  if (fc*feval(fun,x) > 0)
                             1.3438
                                          0.0313
                                                     0.0826
   a=c;
  else
                             1.3281
                                          0.0156
                                                     0.0146
   b=c;
  end;
                                                    -0.0187
                                          0.0078
                             1.3203
  err=abs(b-a);
  xdif=[xdif;err];
                             1.3242
                                          0.0039
                                                    -0.0021
end
return
```


程序算法说明:

