Breadth-First Search

Breadth-First Search (§ 12.3.3)

- Breadth-first search
 (BFS) is a general
 technique for traversing
 a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- * BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS Algorithm

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm BFS(G)
 Input graph G
 Output labeling of the edges
     and partition of the
     vertices of G
for all u \in G.vertices()
 setLabel(u, UNEXPLORED)
for all e \in G.edges()
 setLabel(e, UNEXPLORED)
for all v \in G.vertices()
 if getLabel(v) = UNEXPLORED
     BFS(G, v)
```

```
Algorithm BFS(G, s)
L_0 \leftarrow new empty sequence
L_0.insertLast(s)
setLabel(s, VISITED)
i \leftarrow 0
while \neg L_r is Empty()
   L_{i+1} \leftarrow new empty sequence
   for all v \in L_r elements()
      for all e \in G.incidentEdges(v)
        if getLabel(e) = UNEXPLORED
           w \leftarrow opposite(v,e)
           if getLabel(w) = UNEXPLORED
              setLabel(e, DISCOVERY)
              setLabel(w, VISITED)
              L_{i+1}.insertLast(w)
           else
              setLabel(e, CROSS)
   i \leftarrow i + 1
```

Example

Example (cont.)

Example (cont.)

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- \bullet Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- lacktriangle Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- \bullet BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	V	√
Shortest paths		V
Biconnected components	√	

DFS vs. BFS (cont.)

Back edge (v,w)

 w is an ancestor of v in the tree of discovery edges

B C F DFS

Cross edge (v,w)

w is in the same level as
 v or in the next level in
 the tree of discovery
 edges

