? (question mark) Boolean variable, 123 variable, 216–217, 256 ; (semicolon), comment delimiter, 172	structurational inertia, 4 tradeoffs, 36–38, 423–424 ABM cycle, hybrid computational models, 388–389 ABM design principle, 160–161
3D, agent movement, 248–249	ABMs (agent-based models)
3D perspective, 263	analyzing (see Analyzing models)
3D worlds, 248–252	computational, 22
3D worlds, 240 232	conceptual
ABM (agent-based modeling). See also Hybrid	correspondence to implemented model (see
computational models	Verification)
advantages of, 17	definition, 22
aggregate patterns, determining from known	connecting to the physical world (see NetLogoLab
individual behavior (see Integrative	environment)
understanding)	controlling (see File-based controls methods;
calculus requirements, 17	Observer/User Interface)
characteristic features of, 101-102	correctness (see Replication; Validation; Verification)
complex systems, 23	creating (see Creating, ABMs)
complex systems and emergence, 5-13	duplication (see Replication)
complex systems theory, 6	glass-box approach, 33
computational intensity, 37	with heterogeneous agents, 35–36
core idea, 32	identifying the need for, 35–36
definition, 1	introduction, 14
differential understanding, 7, 8–9	model implementation
disadvantages of, 17–18	correspondence to conceptual model (see
vs. EBM (equation-based modeling), 32–34, 162	Verification)
emergence, 6, 29 (see also Emergent phenomena)	definition, 22
explanatory cognitive pattern (see DC	validity for real world phenomena (see Validation)
[deterministic-centralized] mindset)	vs. other models, 32–34, 35–36
free parameters, 37	path dependency, 30
future of, 424–425	performance, improving, 418–419 randomness vs. determinism, 34–35
history of (<i>see</i> Computational roots of ABM) individual element behavior, determining from	usefulness vs. completeness, 161
known aggregate patterns (see Differential	uses for (see Applications for ABMs)
understanding)	verification, 33
integrative understanding, 7–8	ABMs (agent-based models), components of. <i>See</i>
introduction, 1–3	also Agents (ABM); Environments; Interactions;
prerequisites for, 38–39	Observer/User Interface
programming language for (see NetLogo)	graphical components, 14
restructuration, 4	Schedule, 204
self-organization, 6–7	state variables, 14
structuration, 4	values, 14
• •	•

Actions	environmental characteristics, 166
defining new, 209	environmental interactions, 36
overview, 209–211	granularity, 164, 222–224
predefined, 209	heading, 165–166 (see also HEADING property)
Actor model, computational roots of ABM, 440–442	heterogeneous, 35–36
Adaptation in Natural and Artificial Systems, 436	HEV-M (Human, Embedded and Virtual agents in
Adaptive agents	Mediation), 372–375, 376–377
agent cognition, 227, 230	history of, 204
computational roots of ABM, 436–437	human, 372–375
Agent-agent interactions, 259–260	initial population, specifying, 168
Agent-based modeling (ABM). See ABM (agent-	internal states (see Properties)
based modeling)	level of complexity, 222–224
Agent-based models (ABMs). See ABMs (agent-	location, 165–166
based models); Agents (ABM)	location coordinates (see XCOR property; YCOR
Agent buttons, 263	property)
Agent-centric thinking, 54	meta-agents, 232–233
Agent cognition	methods (see Actions)
adaptive agents, 227, 230	mixing with human agents (see Participatory
definition, 224–225	Simulations)
goal-based, 227–231	movement (see Movement of agents)
ML (Machine Learning), 232	observing the environment, 261
reflexive agents, 225	overview, 205
utility-based, 225–227	pitch property (3D), 248, 250
Agent collections	predefined actions, 209
agentsets	properties, 165–166, 205–209
and computation, 217–222	proto-agents, 165, 234
creating, 213–214	reproduction, 167, 185–186
definition, 212	robotic, 372–375
empty, 215	roll property (3D), 248, 251
vs. lists, 214–217	scale of the model, 224
no-turtles, 215	self-destruction, 210
breeds of agents, 212	sensing other agents, 259–260
lists, 214–217	setting up time steps, 167–168
types of agents, 211–212	stationary agents, 166
Agent-environment interactions, 261–262	subagents, 233
Agent variables, 58	tracking over time (see WHO property)
Agents (ABM)	unique IDs (see WHO property)
actions, 209–211	virtual, 372–375
ant foraging model, 22	yaw, 250
assigning animal behaviors, 167	Agents (NetLogo). See also Turtles
behaviors (see Actions)	collections of (see Agentsets)
birth events, 257	definition, 15
birth processes, 166	Agent-self interactions, 257–258
centering on, 263	Agentsets
color (see COLOR property)	and computation, 217–222
communicating with other agents, 260	creating, 213–214
consuming other agents, 259	definition, 92, 212
copying, 210	
1, 0	empty of turtles, 215
creating (see Heroes and Cowards model; Life model; Simple Economy model)	links, 92 vs. lists, 214–217
death procedures, 51, 166, 167, 258	vs. lists, 214–217 no-turtles, 215
defining new actions, 209	patches, 92
definition, 203	turtles, 92
description, 14	Aggregate (macro) behavior, Ant model, 27–28
	Aggregate (macro) benavior, Ant model, 27–28 Aggregate patterns, determining from known
direction facing (see HEADING property)	individual behavior. See Integrative
eating, 167 energy levels, 165–166	understanding
Chergy levels, 103-100	understanding

Aggressors and Defenders. See Heroes and Cowards	complex systems, 23
model	foraging model, 22–27
Algorithms	optimal behavior, 28
efficiency of, 220	pheromone hypothesis, 24
replication, 339	randomness vs. determinism, 34
Alignment rule, 327, 444	results and observations, 27–28
American Express credit card applications, 232	value of, 28–32
Analogies from agent-based models, 30	Ant trails, 24, 28
Analyzing models	Anthropology
Spread of Disease model	Artificial Anasazi model, 333
androids, 360	Kayenta Ancestral Pueblo, 333
batch experiment tool, 289	modeling, 333, 422
BehaviorSpace tool, 289-291, 292, 293	Applications for ABMs
compression of data, 288	anthropology, 422 (see also Artificial Anasazi
connections-per-node, effects of, 297-299	model)
creating agents, 283–284	biology, 222–223, 421
data inconsistencies, 286–287	chemistry, 127–128, 421
Disease HubNet model, 360–362	communication, 30, 369–370
edge density of disease trails, 303-304	computer science, 423
effects of population density, 289, 291	description, 28–29
environmental data, 301–304	ecology (see Ant model; Fire model; Wolf-Sheep
environmental decay, effects of, 301-302	Simple model)
environmental patterns, 304	economics, 421-422 (see also Simple Economy
GIS (Geographical Information Systems), 304	model)
graphs, 291–296	education, 30, 371–372 (see also Chicago Public
landscape metrics, 303–304	Schools model)
modeling other spreading effects, 285	engineering, 422–423
naming experiments, 289–290, 292	evolution, 196
necessity of multiple runs, 288–291	experimentation, 30
overview, 283–284	explanation, 29–30
patterns of infection, 302–304	focal objects for scientific dialog, 31
population density, effects of, 285	math, 423
SNA (social network analysis), 296–300	medicine
statistical analysis, 287–288	epidemiology, 117–118 (see also Spread of Disease
summary, 305–307	model)
time series analysis, 295–296, 297	overview, 421
tools for, 288	natural sciences, 421
Wolf-Sheep Simple model	organizations, 422
anomalous/aberrant behavior, 191	persuasion, 370–371
averaging across runs, 192	physics, 421
BehaviorSpace tool, 191	policy flight simulators, 371
collecting results, 191–192	politics, 422
data analysis, 192	predictions, 31
initial number of wolves, 192	ray traced images, 420
multiple runs, 191–192	sources of analogy, 30
oscillatory patterns, 164, 192	thought experiments, 31
overview, 189–191	traffic jams (see Traffic Basic Model)
parameter sweeping, 191–192	Arrow, Kenneth, 437
plotting data, 192	Arthur, W. Brian, 141, 437
stochastic components, 191–192	Artificial Anasazi model, 333
summarizing data, 192	Artificial Life models, 445
Androids, Spread of Disease model, 360	Artificial Stock Market, 150
Anomalous/aberrant behavior, 191	ASK PATCHES command, 53
Ant model	Asynchronous vs. synchronous updates, 270
aggregate (macro) behavior, 27–28	Authors, replication factor, 339
ant agent, 22	Averaging across runs, 192
ant trails, 24, 28	Averaging across runs, 192

Axelrod, R., 437	Burks, Arthur W., 434, 437
Axelrod-Hammond Ethnocentrism model, 336–337 Axtell, Robert, 87–88	Buttons, 264
,,	CA (cellular automata), 65-68, 433-435
BACH group, 437	Calculating Space, 65
BACKWARD command, 210	Calculus requirements for ABM, 17
Backward movement of agents, 262	Calibration
Bak, Per, 104, 431	definition, 332
Barabasi-Albert model, 433	extracting rules
Bass model, 414	by data mining, 358
Batch experiment tool, 289	from empirical data, 357–360
Batch running, 268	from participatory simulations, 360–363
Batch vs. interactive, 267–268	through machine learning, 357
Behaviors of agents. See Actions	Cars, modeling traffic flow. <i>See also</i> Traffic Basic
BehaviorSpace tool, 191, 289–291, 292, 293	model
Big-O notation, 220	adjusting speed, 210–211
Binomial distributions, 173–174	Cruising model, 407
Biology	free-flow state, 231
computational roots of ABM, 431	initializing speed, 208–209
modeling (see also Ant model; Flocking model)	interactions between, 210–211
AIDS model, 223–224	interactions between, 210–211 interactions with the environment, 224–230
overview, 421	modifying actions and strategies, 230
Tumor model, 222–223	speed regulation, 258
Birds in flight, rules of, 327, 444. <i>See also</i> Flocking	Cellular automata (CA), 65–68, 433–435
model	Centering on an agent, 263
Birth events, 257	Changing Minds, 4
The Blind Watchmaker, 85	Changing Minas, 4 Chemistry
Boat traffic, modeling, 407 Boids model, 443–445	ABM applications for, 127–128 modeling, 421
Boltzmann, Ludwig, 95	Chicago Public Schools model, 407
Boltzmann equation, 95	Chinese streamers, 85–86
Boltzmann-Gibbs law, 93, 95	Choosers, 265
Bonabeau, Eric, 68–69	City growth model, 334–335
Books and publications. <i>See also</i> Documentation	CLEAR-ALL command, 51
Adaptation in Natural and Artificial Systems, 436	CLEAR-TURTLES command, 258
The Blind Watchmaker, 85	Climate Change Game model, 407
Calculating Space, 65	Clock
Changing Minds, 4	advancing, 55–60
"Computer Recreations," 68	resetting, 54
Dialogues Concerning Two New Sciences, 5	Closures. See TASKS
Emergence, 438	Club of Rome model, 432
Growing Artificial Societies, 88	CM (connection machines), 442
Hidden Order, 438	Code, definition, 271
The Magic Machine, 68	Code tab, 48, 272
Micromotives and Macrobehavior, 432	Coding guidelines, clarity over efficiency, 220
A New Kind of Science, 68	Cognitive pattern underlying ABM. See DC
Organization of Behavior, 436	(deterministic-centralized) mindset
Six Degrees, 300	Cognitive psychology, participatory simulations, 360
Theory of Self Reproducing Automata, 434	Cohen, M. D., 437
Bottom-up modeling, 159–160	Cohesion rule, 327–328, 444
Boundary conditions, 240–241	Collecting results, 191–192
Bounded rationality, 437	Collections of data. See Agentsets; Lists; TASKS
Bounded topology, 240–241 Box, George, 161	Collective behavior, modeling. See Heroes and Cowards model
BREED property, 206	Color coding
Breeds of agents, 212	agents, 143–145
Bugs vs. emergent behavior, 317–321, 325	grass, 182–183
bugs vs. emergent behavior, 317-321, 323	g1ass, 102–103

	D 11 11 110 115
NetLogo command blocks, 109	Boids model, 443–445
NetLogo commands, 109	bounded rationality, 437
COLOR property, 206, 208	Burks, Arthur W., 434, 437
Command blocks, color coding, 109	cellular automata, 433–435
Command center, 264	Club of Rome model, 432
Commands. See also specific commands	CM (connection machines), 442
re-executing, 264	Cohen, M. D., 437
running lists of, 393–395	cohesion rule, 444
Commands, NetLogo	complex adaptive systems, 435–438
color coding, 109	computer graphics, 443–445
creating your own, 109	Conway, John Horton, 434
definition, 109	C-Star language, 442
naming conventions, 109	cybernetics, 432
Commenting your code, 172	Dahl, Ole-Johan, 440
Communication	data parallelism, 442–443
agents with agents, 260	document retrieval, 443
model implementers and model authors, 313	ECHO models, 438
modeling, 369–370	El Farol Bar problem, 437
replicators and model author(s), 342	engineering, 431–432
through agent-based models, 30	Feynman, Richard, 443
Complex adaptive systems, 435–438	first computational agent, 439
Complex systems	fluid flow application, 443
Ant model, 23	Forrest, Stephanie, 438
definition, 23	GA (genetic algorithms), 435–438
and emergence, 5–13	Game of Life, 434
Complex systems theory, 6	game theory models, 432
Compositional understanding. See Differential	Garbage Can Model of Organizations, 437
understanding	Gardner, Martin, 434
Compression of data, 288	Goucher, Adam, 434
Computational complexity, 220	Hebb, Donald, 435–436
Computational intensity of ABM, 37	Hewitt, Carl, 441
Computational models	Hillis, Danny, 442
definition, 22	Holland, John H., 434, 435-438
hybrid	human networks, 433
ABM cycle, 388–389	IBM methodology, 431, 441
EC (evolutionary computation), 389–390	implicit fitness function, 438
integrated cycle, 388–389	Individual-Based Modeling, 431
Journey to El Yunque project, 385	_
	Ising models, 431
ML (Machine Learning) and ABM, 386, 388–389	Kay, Alan, 440
ML cycle, 388–390	Langton, Chris, 445
SDM (System Dynamics Modeling) and ABM,	Lisp language, 440
383–386	Logo, 439–440
Tabonuco-Yagrumo Hybrid model, 385, 387	McCarthy, John, 440
Wolf-Sheep Predation Docked model, 385	Milgram, Stanley, 433
Computational roots of ABM	Minsky, Marvin, 439
Actor model, 440–442	Mitchell, Melanie, 438
adaptive agents, 436–437	Monte Carlo simulation, 432
alignment rule, 444	network theory, 432–433
Arrow, Kenneth, 437	Nygaard, Kristen, 440
Arthur, W. Brian, 437	object-oriented programming, 440–442
Artificial Life models, 445	object recognition, 443
Axelrod, R., 437	Papert, Seymour, 439–440
BACH group, 437	particle systems, 443–445
	*
Bak, Per, 431	perceptrons, 436
Barabasi-Albert model, 433	physics, 431
biology, 431	point representations, 444
birds, behavioral rules, 444	process engineering, 431–432

Computational roots of ABM (cont.)	Creating
Reed, John, 437	ABMs (see also specific models)
Repast platform, 440	communication between model implementers and
Reynolds, Craig, 444	model authors, 313
Rosenblatt, Frank, 436	describing conceptual models, 314–315
Sandpile model, 431	flowcharts, 314
Schelling, Thomas, 432	pseudo-code, 314–315
SDM (System Dynamics Modeling), 432	UML (Unified Modeling Language), 315
Segregation model, 432	Agents (see Heroes and Cowards model; Life model;
separation rule, 444	Simple Economy model; Wolf-Sheep Simple
seven bridges of Konigsberg problem, 432–433	model)
SIMD (Single Instruction, Multiple Data),	agentsets, 213–214
442	GO buttons (see GO buttons, examples)
Simon, Herbert, 437	GO procedures (see GO procedures, examples)
Simula language, 440	grass, 180–181
Smalltalk language, 440	HubNet models, 363–369
SOC (self-organizing criticality), 431	NetLogo commands, 109
social sciences, 432	NetLogo reporters, 109
StarLisp language, 442	SETUP buttons, 54
Swarm toolkit, 437, 440	SETUP procedures (see SETUP procedure,
Thinking Machines company, 442–443	examples)
Tucker, Lew, 443	Critical threshold, 103. See also Fire model
turtle objects, 439	Cruising model, 407
Ulam, Stanislaw, 433	C-Star language, computational roots of ABM, 442
von Neumann, John, 433–435	Cybernetics, computational roots of ABM, 432
Watts and Strogatz small-worlds network models,	
433	Dahl, Ole-Johan, 440
Wolfram, Stephen, 434, 435, 443	Data analysis, 192
Computer graphics, computational roots of ABM,	Data inconsistencies, analyzing, 286–287
443–445	Data measures, selecting, 169
Computer languages, replication factor, 338	Data mining, extracting rules, 358
"Computer Recreations," 68	Data parallelism, computational roots of ABM,
Computer science, modeling, 423	442–443
Conceptual ABMs	Data sources
correspondence to implemented model (see	advanced mathematical analysis
Verification)	Mathematica™, 415–417
definition, 22	Mathematica Link, 416–417
describing, 314–315	MatLab™, 415–416
Connected Chemistry application, 127–128	GIS (Geographical Information Systems), 402–407
Connection machines (CM), 442	NetLogo Networks extension
Connections-per-node, effects of, 297–299	CREATE-NETWORK command, 410
Conservation law of money, 93	CREATE-PREFERENTIAL-ATTACHMENT
Continuous spaces, 238–239	command, 411
Controller. See Observer	CREATE-RANDOM-NETWORK command, 410
Conway, John Horton, 45, 434	importing data, 406, 408–409
Cook, Matthew, 68	Network extension toolkit, 409
Copper aggregates, modeling, 119–121	Simple Viral Marketing example, 409–411
Copying	specifying data to import, 412–413
agents, 210	physical sensor data, 414–415
models (see Replication)	SNA (social network analysis), 406–415
Correctness of a model. See Replication; Validation;	Data structures. See Agentsets; Lists; TASKS
Verification	Dawkins, Richard, 85
CREATE-NETWORK command, 410	DC (deterministic-centralized) mindset, 10, 12
CREATE-PREFERENTIAL-ATTACHMENT	Death procedures, 51, 166, 167, 258
command, 411	Debugging, 312
CREATE-RANDOM-NETWORK command, 410	Decision trees, 358
CREATE-TURTLES command, 71	Determinism vs. randomness, 34–35

Dewdney, A. K., 68	participatory simulations, 360
Dialogues Concerning Two New Sciences, 5	Root Beer Supply Chain, 150
DIE command, 210	stock market simulation, 150
Differential understanding, 7, 8–9	Econophysics, 96
Diffusion of innovation model, 300. See also Spread	Edge density of disease trails, 303–304
of Disease model	Education
Direction of agents. See HEADING property	Chicago Public Schools model, 407
Discrete space	modeling, 371–372
description, 235–236	participatory simulations, 360
mapping to continuous, 239	through agent-based models, 30
Disease model, 360–362	Einstein, Albert, 160
Distributional equivalence, 339	El Farol Bar problem, computational roots of ABM,
Diversity thresholds, Segregation model, 136–137	437
Diversity-seeking individuals, Segregation model,	El Farol model. See also Minority Game
137–140	advanced modeling applications, 150–151
DLA (diffusion-limited aggregation) model	average min and max rewards, 145–146
advanced modeling applications, 127–128	color-coding agents, 143–145
copper aggregates, 119–121	description, 141–143
description, 119–121	histograms for reward values, 146–149
extension 1: probabilistic sticking, 121–122	overview, 141
extension 2: neighbor influence, 121–125	source for, 142
GO procedure, 120–121, 123–124	summary of, 149–150
overview, 118–119	Elaborated Realistic Models (ER), 353–355
SETUP procedure, 125–127	Electromagnetism, modeling, 128
source for, 120	Element behavior, determining from known aggregate
summary of, 127	patterns. See Differential understanding
Document retrieval, computational roots of ABM, 443	Embracing Complexity conference, 68
Documentation. See also Books and publications	Emergence
annotating models, 265	and complex systems, 5–13
commenting your code, 172	definition, 6
definition, 271	emergent phenomena, 29
Info tab, 273–274	Emergence, 438
NetLogo, 15	Emergent behavior vs. bugs, 317–321, 325
organization, 274	Emergent phenomena
Dot, final behavior, 78, 83	definition, 6
Dragulescu, A., 96	identifying rules for, 29
Duplicating ABMs. See Replication	levels of, 12–13
r g	obstacle to thinking about, 12
EAT procedure, 181	self-organizing patterns, 102
EBM (equation-based modeling, equational	thinking in levels, 12–13
modeling)	Empirical data, extracting rules, 357–360
vs. ABM (agent-based modeling), 2, 17–18, 32–34,	Empirical validation, 325, 331–334
36–37, 162	Empty agentsets, 215
free parameters, 37	END1 property, 206
Lotka-Volterra differential equations, 15	END2 property, 206
in phenomena-based modeling, 159	Energy variable, 174–177
and validation, 331	ENERGY-GAIN-FROM-GRASS parameter,
EC (evolutionary computation), 389–390	183–184
ECHO models, computational roots of ABM, 438	ENERGY-GAIN-FROM-SHEEP parameter, 188–189
Ecology, modeling. See Ant model; Fire model; Wolf-	Engineering
Sheep Simple model	computational roots of ABM, 431–432
Economics, modeling. See also El Farol model;	modeling, 422–423
Simple Economy model	Environmental data, analyzing, 301–304
Artificial Stock Market, 150	Environmental decay, effects on spread of disease,
Minority Game, 150	301–302
Oil Cartel model, 150	Environmental patterns in spread of disease, 304
overview, 421–422	Environment-environment interactions, 261

Environments	forest fires, 18–20
3D worlds, 248–252	integrative understanding, 7–8
boundary conditions, 240–241	Italian shopkeepers, 4
bounded topology, 240–241	ML (Machine Learning), 395–398
continuous spaces, 238–239	predator-prey interactions, 15–18
discrete spaces, 235–236	pulsating circle, 8, 9
GIS (Geographical Information Systems), 252–257	Roman to Hindu-Arabic numeracy transparency, 3–5
grid graphs, 235–236	
hex lattices, 237–238	slime molds, 13
implementing, 234–235	time series, 295–296
infinite-plane topology, 241	traffic jams, 9, 12 (see also Traffic Basic model)
interaction topologies, 247–248, 252–253	V formation of goose flocks, 8–9, 10, 13
lattice graphs, 235–236	voting behavior, 312–317
mesh graphs, 235–236	wolf and moose populations, 163–164
Moore neighborhoods, 236–237	Excusing people from prejudice, 129
network-based	Experimentation through agent-based models, 30
Erdös-Rényi network, 245	Experiments, naming, 289–290, 292
examples, 242–243	Explanation through agent-based models, 29–30
links, 241	Exploratory modeling, 129, 159. See also Segregation
nodes, 241	model
preferential attachment, 245–246	Extending ABMs. See DLA (diffusion-limited
random networks, 244–245	aggregation) model; El Farol model; Fire model;
scale-free networks, 245–246	Segregation model
small-world networks, 246–247	EXTENSIONS command, 401–402
patches, 235–236	Extracting rules
spatial, 235	data mining, 358
square lattices, 236–237	decision trees, 358
topologies, 240	from empirical data, 357–360
toroidal topology, 240	ML (Machine Learning), 357
triangle lattices, 235	overview, 356
von Neumann neighborhoods, 236–237	from participatory simulations, 360–363
wrapping, 240–241	EACE
Environment-self interactions, 258–259	FACE command, 263
Epidemiology, modeling, 117–118. See also Spread	Face validation, 325, 331–334
of Disease model	FACEXYZ command, 263
Epstein, Josh, 87–88	Feynman, Richard, 443
Equation-based modeling (EBM). See EBM	Fibonacci, 4
(equational modeling) ED (Elaborated Papilistic Models) 252, 255	File-based controls methods, 265
ER (Elaborated Realistic Models), 353–355	FILTER primitive, 391–393
Erdős-Rényi network, 245	Fire model
Erosion, modeling, 335 Ethnicities, adding to Sogregation model, 134, 135	advanced modeling applications, 117–118
Ethnicities, adding to Segregation model, 134–135	control parameters, 104–105
Ethnocentrism model, 266–267, 336–337	description, 104–110
Evolution, modeling, 195 Evolutionary algorithms, 205, 308	epidemiology, modeling, 117–118
Evolutionary algorithms, 395–398	extension 1: probabilistic transitions, 110–112
Evolutionary computation (EC), 389–390	extension 2: adding wind, 112–115
Examining models. See Analyzing models	extension 3: long-distance transmission, 115–116
Examples. See also specific models	forest density, 104–105
American Express credit card applications, 232	GO procedure, 107–108
determining aggregate patterns from known	initializing, 105–106
individual behavior (see Integrative understanding)	percolation, modeling, 117–118
determining individual element behavior from known aggregate patterns (see Differential	REPORT primitive, 108 report procedures, 108–109
understanding)	self-organizing criticality, 104
differential understanding, 7, 8–9	SETUP procedure, 105–107
flocking of birds, 8–9, 10, 11–12 (see also V	source for, 104
formation of goose flocks)	summary of, 116–117
Tormation of goose nocks)	Summary 01, 110–117

tipping point, 103-104, 114-115 Glider guns, 65 TO-REPORT primitive, 108 Global variables, 58 First computational agent, 439 GO buttons, examples First-class functions, 400. See also TASKS Heroes and Cowards model, 74 Fish ladders, effects on salmon populations, 195 Life model, 57 Fish populations, modeling, 195 GO procedures, examples Floating-point numbers, 180 DLA (diffusion-limited aggregation) model, Flocking model 120-121, 123-124 alignment rule, 327 Fire model, 107-108 cohesion rule, 327-328 Heroes and Cowards model, 74 Life model, 55-60 rules of bird movement, 327 Schedule, 269-270 separation rule, 327–328 V formation of goose flocks, 8-9, 10, 13 Segregation model, 133 Simple Economy model, 91-93 Flocking model, examples of ABM, 8-9, 10, 11-12 Wolf-Sheep Simple model, 172-173 validation, 326-328 Goal-based agent cognition, 227-231 Flowcharts, 314 Gosper, Bill, 65 Fluid flow application, 443 Goucher, Adam, 434 Focal objects for scientific dialog, 31 Grand Canyon model, 253-257, 406 FOLLOW command, 263 Granularity of agents, 222-224 Graphical components, agent-based models, 14 Food webs, modeling, 195–196 Foraging model, 22-27 Graphs. See Plotting FOREACH command, 216 Grass Forest density, Fire model, 104-105 choosing agents for, 166 Forest fire model. See Fire model color coding, 182-183 creating, 180-181 Forever button, 264 Forrest, Stephanie, 438 growth/regrowth, 167-168 FORWARD command, 210 regrowing, 181-183 sheep eating, 181 Forward movement of agents, 262 Fractals, modeling. See DLA (diffusion-limited GRASS-REGROWTH-RATE parameter, 183 aggregation) model Grid graphs, 235-236 Fratelli theater group, 68 Grid size, changing, 49 Fredkin, Ed, 67 Groupthink, 343 Free parameters, 37 Growing Artificial Societies: Social Science from the Frequency of sampling values during replication, 340 Bottom Up, 88 Guerin, Stephen, 69 Friends and Enemies. See Heroes and Cowards model Frozen, final behavior, 78, 82 Guns, 65 Full Spectrum Modeling, 353–355 Hardware, replication factor, 338 GA (genetic algorithms), computational roots of HATCH command, 210 ABM, 435-438 Heading, of agents, 165-166 Galileo, 4-5 HEADING property, 206, 208 Game models. See Heroes and Cowards model; Life Hebb, Donald, 435-436 model Heroes and Cowards model Game of Life. See also Life model brave behavior, 78-80, 84 computational roots of ABM, 434 Chinese streamers, 85-86 history of, 45 cowardly behavior, 78-80, 84 simulating itself, 65 dot, final behavior, 78, 83 as Turing machine, 65 final behaviors, 76, 78, 85–86 Game theory models, computational roots of ABM, frozen, final behavior, 78, 82 game rules, 68-69 Garbage Can Model of Organizations, computational GO button, 74 roots of ABM, 437 GO procedure, 74 Gardner, Martin, 45, 434 inspectors, 74-75, 77 GIS (Geographical Information Systems), 252–257, links, 74 personalities, setting, 74-80 304, 402-407 pseudo-code, 79 Glass-box approach, 33

Heroes and Cowards model (cont.)	traffic speed, 208–209
random number generation, 76, 81	wolf energy, 186–189
SETUP procedure, 69, 71–73	Input boxes, 265
slinky, final behavior, 78, 82	Input controls, 265
spiral, final behavior, 78, 83	Inspecting properties, 206–207
strategies, 70	Inspectors, turtle monitors, 74–75, 77
turtle monitors, 74–75, 77	Integrated cycle, hybrid computational models,
user interface, 73–78	388–389
Heterogeneous agents, 35–36	Integrative understanding, example, 7–8
HEV-M (Human, Embedded and Virtual agents in	Interaction topologies, 247–248, 252–253
Mediation), 372–375, 376–377	Interactions. See also Observer/User Interface
Hewitt, Carl, 441	agent-agent, 259-260
Hex lattices, 237–238	agent-environment, 261–262
Hidden Order, 438	agent-self, 257–258
HIDDEN? property, 206	birth events, 257
Higher-order operators, 391–401	death procedures, 166, 167, 258
Hillis, Danny, 442	definition, 203–204
HISTOGRAM command, 88, 147	environment-environment, 261
Histograms, 88, 146–149. See also Plotting	environment-self, 258–259
History of ABM. See Computational roots of ABM	speed regulation, 258
Holland, John H., 434, 435–438	between the user and the model, 204
Housing choices, modeling. See Segregation model	Interactive running, 267–268
HubNet models	Interface, definition, 271
	Interface controls, 265. See also Observer/User
creating, 363–369	Interface Interface
description, 150	
Disease model, 360–362	Interface tab, 48, 274–275
Human, Embedded and Virtual agents in Mediation	Internal states of agents. See Properties
(HEV-M), 372–375, 376–377	Invariant results, 334–335
Human agents, 372–375	Ising models, computational roots of ABM, 431
Human networks, computational roots of ABM, 433	Italian shopkeepers, example, 4
Hybrid computational models	Iterating through a list, 216
ABM cycle, 388–389	Iterative Modeling, 355–356
EC (evolutionary computation), 389–390	Journal to El Vingua majort 205
integrated cycle, 388–389	Journey to El Yunque project, 385
Journey to El Yunque project, 385	Vov. Alon. 440
ML (Machine Learning) and ABM, 386, 388–389	Kay, Alan, 440
ML cycle, 388–390	Kayenta Ancestral Pueblo, 333
SDM (System Dynamics Modeling) and ABM,	Kill command. See CLEAR-TURTLES command
383–386	Kolmogorov-Smirnov test, 324
Tabonuco-Yagrumo Hybrid model, 385, 387	LADEL A 200
Wolf-Sheep Predation Docked model, 385	LABEL property, 206
TD16 - 1 - 1 1	LABEL-COLOR property, 206
IBM methodology, computational roots of ABM, 431,	Lambdas. See TASKS
441	Landscape metrics, 303–304
Ideas, modeling the spreading of, 285. See also	Langton, Chris, 445
Spread of Disease model	Language change, modeling, 285. See also Spread of
Implicit fitness function, computational roots of	Disease model
ABM, 438	Languages, replication factor, 338
Importing data from social networks, 406,	Lattice graphs, 235–236
408–409	LEFT command, 210
Individual-based modeling, 193–195, 431	Level of complexity of agents, 222–224
Infinite-plane topology, 241	Lewes, G. H., 6
Info tab, 48, 273–274	Life model
Initializing	agent-centric thinking, 54
Fire model, 105–106	cells
properties, 209	changing color, 60
sheep energy, 174–177	live, monitoring, 60

cellular automata, 65–68	Macrobehavior derived from micromotives, 129. See
clock	also Segregation model
advancing, 55–60	Macro-empirical validation, 332, 334
resetting, 54	Macro-face validation, 332, 334
configuring settings, 48, 50, 51	Macrovalidation, 325, 329–331
documentation, 48	The Magic Machine, 68
game rules, 45–48	MAP primitive (reporter), 391–393
glider guns, 65	Math, modeling, 423
GO button, creating, 57	Mathematica™, 415–417
GO procedure	Mathematica Link, 416–417
creating, 55–60	Mathematical analysis, advanced. See also Statistical
ending, 56	analysis
grid size, changing, 49	Mathematica™, 415–417
guns, 65	Mathematica Link, 416–417
Model Settings dialog, 48, 50, 51	MatLab TM , 415–416
NetLogo elements, 48–49	MatLab TM , 415–416
Oscillators, 63	max/min rewards, El Farol model, 145–146
patches	Maxwell-Boltzmann distribution, 95
agent monitors, 60–61	McCarthy, John, 440
color, setting, 51, 52	Medicine, modeling
as game cells, 50	epidemiology, 117–118 (see also Spread of Disease
inspectors, 60–61	model)
issuing commands, 52	overview, 421
making requests, 52	Mesh graphs, 235–236
neighbors, 56–57	Meta-agents, 232–233
sample trajectories, 62	Methods of agents. See Actions
SETUP button, creating, 54	Micro-empirical validation, 332, 334
SETUP procedure, creating, 50–55	Micro-face validation, 332, 334
Spaceships, 63–65	Micromotives and Macrobehavior, 432
stable patterns, 60, 63	Microvalidation, 325, 329–331
Still Lifes, 60, 63	Milgram, Stanley, 300, 433
user interface, 48	min/max rewards, El Farol model, 145–146
the view	Minority Game, 150. See also El Farol model
clearing, 51	Minsky, Marvin, 439
definition, 48	·
	Mitchell, Melanie, 438
updating on each tick, 57	ML (Machine Learning)
wrapping, 49, 52	and ABM, 386, 388–389
Links	agent cognition, 232
agentsets, 92	example, 395–398
definition, 241	extracting rules, 357
network-based environments, 241	ML cycle, hybrid computational models,
properties, 206	388–390
between turtles, 74	Model clock, incrementing, 173
Lisp language, computational roots of ABM, 440	Model design guidelines
Lists	ER (Elaborated Realistic Models), 353–355
vs. agentsets, 214–217	Full Spectrum Modeling, 353–355
definition, 92	Iterative Modeling, 355–356
working with, 391–393	POM (pattern-oriented modeling), 353–355
Logo, computational roots of ABM, 439–440	Model implementation, 22
Long-distance fire transmission, Fire model,	correspondence to conceptual model (see
115–116	Verification)
Looping. See Iterating	validity for real world phenomena (see
Lotka-Volterra equations, 15, 193–195	Validation)
	Model output, 264–265
Machine Learning (ML). See ML (Machine	Model Settings dialog, 48, 50, 51
Learning)	Model visualization, 265–267
Macro (aggregate) behavior, Ant model, 27–28	Modeler. See Observer

Models. See also ABMs (agent-based models);	definition, 109
specific models	naming conventions, 109
computational models, definition, 22	continuous space vs. discrete, specifying, 239
conceptual models, 22	developer of, 14
equational models (EBM), 2, 17-18, 32, 37, 159,	documentation, 15
162, 331	elements of
hybrid models, 388–389	actions, 209–210
systems dynamics models, 383–386	agents, 15 (see also Turtles)
textual models, 21–22	Code tab, 48
Monetary wealth, modeling. See Simple Economy	Info tab, 48
model	Interface tab, 48
Monitors, 265	predefined actions, 209
Monte Carlo simulation, computational roots of	turtles, 15
ABM, 432	primitives, definition, 109
Moore, Edward F., 236	reporter blocks, color coding, 109
Moore neighborhoods, 56, 236–237	reporters
MOVE procedure, 173, 176–177, 179	color coding, 109
Movement of agents	creating your own, 109
3-D, 248–249	definition, 109
agent-environment interaction, 262	source for, 14
backward/forward, 262	NetLogo 2D, 3-D Perspective, 263
movement cost, 174–179	NetLogo 3D, 248
randomized, 173–174	NetLogo Controlling API, 401–402
rules of bird movement, 327	NetLogo Extension API, 401–402
turtles, 210	
	NetLogo GIS Extension, 401–402
Wolf Sheep Simple model, 167	NetLogo Networks extension
Multiple runs, 191–192, 288–291	CREATE PRESERVITIAL ATTACHMENT
Namina conventions Natl age commands	CREATE-PREFERENTIAL-ATTACHMENT
Naming conventions, NetLogo commands,	command, 411
109 Namina anno simonta 280, 200, 202	CREATE-RANDOM-NETWORK command, 410
Naming experiments, 289–290, 292	importing data, 406, 408–409
Nano-sheep problem, 194–195	Network extension toolkit, 409
Nano-wolf problem, 32	Simple Viral Marketing example, 409–411
Natural sciences, modeling, 421	specifying data to import, 412–413
Neighbor influence, in DLA model, 121–125	NetLogo turtles. See Turtles
Neighborhood Tipping model, 129	NetLogoLab environment
NEIGHBORS primitive, 56	Arduino extension, 379–383
NEIGHBORS4 primitive, 56	bifocal modeling, 383–384
NetLogo	description, 375
advanced concepts	GoGo Board, 375, 378
data structures, 395–398	overview, 377–383
evolutionary algorithms, 395–398	Network extension toolkit, 409
FILTER primitive, 391–393	Network science, 241
higher-order operators, 391–401	Network theory, computational roots of ABM,
MAP primitive, 391–393	432–433
ML (Machine Learning) example, 395–398	Network-based environments
REDUCE primitive, 391–393	Erdös-Rényi network, 245
RUN primitive, 393–395	examples, 242–243
running lists of commands, 393–395	links, 241
RUNRESULT primitive, 393–395	nodes, 241
storing code for later use, 398, 400–401	preferential attachment, 245–246
TASKS, 400–401	random networks, 244–245
working with lists, 391–393	scale-free networks, 245-246
command blocks, color coding, 109	small-world networks, 246-247
commands	A New Kind of Science, 68
color coding, 109	NEW-SEED command, 81
creating your own, 109	NIELS application, 128

Nodes, 241	Participatory simulations, extracting rules,
Notes, 265	360–363
Notes, in models, 265	Particle systems, computational roots of ABM,
No-turtles agentsets, 215	443–445
Numerical identity, 339	Patches
Nygaard, Kristen, 440	agent monitors, 60–61
Object accomplete a community and an example of ADM 442	agentsets, 92
Object recognition, computational roots of ABM, 443	color (see PCOLOR property)
Object-oriented programming, computational roots of	color, setting, 51, 52
ABM, 440–442 Observer, 262	as game cells, 50 inspectors, 60–61
Observer buttons, 263	issuing commands, 53
Observer/User Interface. See also Schedule	Life model
3D perspective, 263	agent monitors, 60–61
agent buttons, 263	color, setting, 51, 52
batch running, 268	as game cells, 50
batch vs. interactive, 267–268	inspectors, 60–61
buttons, 264	issuing commands, 52
centering on an agent, 263	making requests, 52
choosers, 265	neighbors, 56–57
command center, 264	making requests, 53
forever button, 264	moving, 211
input boxes, 265	neighbors, 56–57
input controls, 265	properties, 206
interactive running, 267–268	representing discrete spaces, 235–236
interface, definition, 271 (see also Interface tab)	setting colors, 172
interface controls, 265	vs. turtles, 211
model output, 264–265	Path dependency, 30
model visualization, 265–267	Pattern-oriented modeling (POM), 332, 334,
monitors, 265	353–355
notes, 265	Patterns in nature, modeling. See Cellular automata;
observer, 262	DLA (diffusion-limited aggregation) model
observer buttons, 263	Patterns of infection, 302–304
output boxes, 265	PCOLOR property, 206
output controls, 265	PEN-MODE property, 206
plots, 265	PEN-SIZE property, 206
re-executing commands, 264	Perceptrons, computational roots of ABM, 436
sliders, 265	Percolation, modeling, 117–118
switches, 265	Percolation model, 2D. <i>See also</i> Fire model
user input, 264–265	vs. 3D version, 252
Oil Cartel model, 150	code sample, 250 Percolation model, 3D
ONE-OF primitive, 72 Optimal behavior, Ant model, 28	vs. 2D version, 252
Organization of Behavior, 436	code sample, 251
Organizations, modeling, 422. See also El Farol	example, 249
model; Heroes and Cowards model	Percolation phenomena, 104. <i>See also</i> Fire model
Original models, 337–338	Performance, improving, 418–419
Oscillators, 63	Persuasion, modeling, 370–371
Oscillatory patterns, 164, 192	Phase transition. See Tipping point
Output boxes, 265	Phenomena-based modeling. See also Segregation
Output controls, 265	model
1	definition, 128
Papert, Seymour, 370, 439-440	in equation-based modeling, 159
Parallel actions vs. sequential, 270–271	goal of, 159
Parameter sweeping, 191–192	reference patterns, 128–129
Pareto distribution, 95	Pheromone hypothesis, 24
Participatory Simulations, 150	Physical sensor data, 414–415
* *	•

Physics computational roots of ABM, 431	inspecting, 206–207 (see also Inspectors; Monitors) links, 206
modeling, 421	NetLogo turtles, 206
Pictures generated from models, 420	patches, 206
Pitch property (3D), 248, 250	Proto-agents, 234
PLABEL property, 206	Pseudo-code, 79, 314–315
PLABEL-COLOR property, 206	Pseudo-random numbers, 81
PLOT widget, 88–89	Pulsating circle, example, 8, 9
Plotting	PXCOR property, 206
code-based method, 177-178	PYCOR property, 206
for data analysis, 192	
histograms, 88, 146–149	Question mark (?)
in model analysis, 291–296	Boolean variable, 123
output controls, 264	variable, 216–217, 256
programmatic method, 177–179	Questions. See Research questions
sheep population, 177–179	
widget-based method, 177–178	RANDOM command, 54
Wolf-Sheep Simple data	Random networks, 244–245
analyzing results, 192	Random number generators (RNGs), 76, 81
sheep population, 177–179	Random numbers
wolf population, 189	NEW-SEED command, 81
Point representations, computational roots of ABM,	ONE-OF command, 72
444	pseudo-random numbers, 81
Policy flight simulators, modeling, 371	RANDOM Command, 54
Political science, participatory simulations, 360	RANDOM-FLOAT primitive, 122
Politics, modeling, 422	RNGs (random number generators), 76, 81
POM (pattern-oriented modeling), 332, 334, 353–355	seeds, 81
Population density, effects on spread of disease, 285,	RANDOM-FLOAT primitive, 122
289, 291 Population fluctuations, modeling, 104, 105	Randomized agent movement, 173–174
Productor provinteractions, modeling, 194–195	Randomness vs. determinism, 34–35
Predator-prey interactions advanced modeling applications, 195–196	Ray traced images, 420
example, 15–18	RECOLOR-GRASS procedure, 182–183 REDUCE primitive, 391–393
fish ladders, effects on salmon populations, 195	Reed, John, 437
fish populations, modeling, 195	Reference patterns, 128–129, 159
food webs, modeling, 195–196	Reflexive agents, agent cognition, 225
individual-based modeling, 193–195	REGROW-GRASS procedure, 182
Lotka-Volterra equations, 193–195	Regrowing grass, 181–183
modeling as a continuous distribution, 194–195	Relational alignment, 340
nano-sheep problem, 194–195	Repast platform, computational roots of ABM, 440
population fluctuations, modeling, 194–195	Replicated models, 337–338
wolf and moose populations, 163–164	Replication. See also Validation; Verification
wolf and sheep populations (see Wolf-Sheep Simple	Axelrod-Hammond Ethnocentrism model, 336–337
model)	benefits of, 340–341
Predefined actions, 209	communication with the model author(s), 342
Predictions through agent-based models, 31	definition, 337
Preferential attachment, 245–246	dimensions
Prejudice, excusing people from, 129	algorithms, 339
Primitives, NetLogo, 109	authors, 339
Probabilistic sticking, in DLA model, 121–122	computer languages, 338
Probabilistic transitions, Fire model, 110–112	hardware, 338
Process engineering, computational roots of ABM,	languages, 338
431–432	time, 338
Properties. See also specific properties	toolkits, 338–339
agents, 205–209	frequency of sampling values, 340
changing during runtime, 209	groupthink, 343
initializing, 209	original models, 337–338

overview, 336–337	overview, 356
recommendations for	from participatory simulations, 360–363
model authors, 344–346	RUN primitive, 393–395, 419
replicators, 341–344	RUNRESULT primitive, 393–395
replicated models, 337–338	r
RS (replication standards)	Sandpile model, computational roots of ABM, 431
distributional equivalence, 339	Scale of the model, 224
numerical identity, 339	Scale-free networks, 245–246
relational alignment, 340	Schedule. See also Observer/User Interface
shared understanding, 341	asynchronous vs. synchronous updates, 270
source code, 343	description, 268
success criteria, 339	GO procedure, 269–270
Replication standards (RS). See RS (replication	sequential vs. parallel actions, 270–271
standards)	SETUP procedure, 268–269
REPORT primitive, 108	simulated concurrency, 270–271
Report procedures, 108–109	Schelling, Thomas, 129, 432
Reporter blocks, color coding, 109	SDM (System Dynamics Modeling), 383–386,
Reporters	432
color coding, 109	Seeds for random numbers, 81
creating your own, 109	Segregation model
definition, 109	advanced urban modeling, 140
REPRODUCE procedure, 186	computational roots of ABM, 432
Reproduction among agents, 167, 185–186	description, 131–133
Research questions	extension 1: adding ethnicities, 134–135
choosing, 161–163	extension 2: diverse thresholds, 136–137
example, wolf and moose populations,	extension 3: diversity-seeking individuals,
163–164	137–140
scope of, 159	failure to reach equilibrium, 139
stating formally, 162–163	GO procedure, 133
suitability for our model, 162	history of, 128–131
RESET-TICKS command, 54, 71, 72	SETUP procedure, 132
Restructuration, 4	source for, 131
Results and observations, Ant model, 27–28	summary of, 140
Reynolds, Craig, 444	Self-destruction of agents, 210
RIDE command, 263	Self-organizing criticality, 104
RIGHT command, 210	Semicolon (;), comment delimiter, 172
RNGs (random number generators), 76, 81	Sensitivity analysis, 321–324
Robotic agents, 372–375	Separation rule, 327–328, 444
Robustness, 321–324 Roll property (3D), 248, 251	Sequential vs. parallel actions, 270–271
Roll property (3D), 248, 251	SETUP button, creating, 54
Roman to Hindu-Arabic numeracy transparency,	SETUP procedure, examples
example, 3–5 Root Beer Supply Chain, 150	DLA (diffusion-limited aggregation) model, 125–127
Roots of ABM. See Computational roots of	Fire model, 105–107
ABM	Heroes and Cowards model, 69, 71–73
Rosenblatt, Frank, 436	Life model, 50–55
RS (replication standards)	Schedule, 268–269
distributional equivalence, 339	Segregation model, 132
numerical identity, 339	Simple Economy model, 88–91
relational alignment, 340	Wolf-Sheep Simple model, 172
Rules	SETXYZ command, 263
of birds in flight, 327, 444	Seven bridges of Konigsberg problem, 432–433
extracting	SHAPE property, 206
data mining, 358	Shared understanding, 341
decision trees, 358	SIMD (Single Instruction, Multiple Data),
from empirical data, 357–360	computational roots of ABM, 442
ML (Machine Learning), 357	Simon, Herbert, 437
<i>C</i> ,,	

overview, 283-284 Simple Economy model analyzing results, 93-96 patterns of infection, 302-304 Boltzmann-Gibbs law, 93, 95 population density, effects of, 285 configuring the view, 89–91 SNA (social network analysis), 296-300 conservation law of money, 93 statistical analysis, 287-288 summary, 305-307 description, 87-88 GO procedure, 91-93 time series analysis, 295-296, 297 HISTOGRAM command, 88 tools for, 288 Pareto distribution, 95 Spread runs, 324 PLOT widget, 88-89 Square lattices, 236-237 running the model, 93 StarLisp language, computational roots of ABM, 442 SETUP procedure, 88-91 State variables, agent-based models, 14 visualizing wealth, 90 Statistical analysis. See also Mathematical analysis, Simple Viral Marketing model, 406–415 advanced Simula language, computational roots of ABM, 440 invariant vs. variant results, 334-335 Simulated concurrency, 270-271 Kolmogorov-Smirnov test, 324 of models, 287–288 (see also Analyzing models) Six Degrees, 300 SIZE property, 206 Student's t-test, 324 verification, 324 Sliders, 265 Slime molds, example, 13 Still Lifes, 60, 63 Slinky, final behavior, 78, 82 Stochastic components, analyzing, 191-192 Small World networks, 300 Stock market simulation, 150 Smalltalk language, computational roots of ABM, 440 Storing code for later use, 398, 400-401 Small-worlds network models, 246-247, 433 Structuration, 4 SNA (social network analysis), 296–300, 406–415 Structurational inertia, 4 SOC (self-organizing criticality), computational roots Student's t-test, 324 of ABM, 431 Subagents, 233 Social psychology, participatory simulations, 360 SugarScape, 87-88. See also Simple Economy model Social sciences, computational roots of ABM, 432 Summarizing results data, 192 Sociology, participatory simulations, 360 Swarm toolkit, computational roots of ABM, 437, 440 Source code, for replication, 343 Swarms, modeling. See Heroes and Cowards model Spaceships, 63–65 Switches, 265 Spatial environments, 235 Swords and Shields. See Heroes and Cowards model Speed, increasing, 418-419 Synchronous vs. asynchronous updates, 270 Spiral, final behavior, 78, 83 System Dynamics Modeling (SDM), 383-386 Spread of Disease model androids, 360 Tabonuco-Yagrumo Hybrid model, 385, 387 Disease HubNet model, 360-362 TASKS, 400-401, 419 Spread of Disease model, analyzing Termites model, 271 batch experiment tool, 289 Terrain, specifying, 168 BehaviorSpace tool, 289-291, 292, 293 Textual models, 22 compression of data, 288 Theory of Self Reproducing Automata, 434 connections-per-node, effects of, 297-299 THICKNESS property, 206 creating agents, 283-284 Thinking in levels, 12–13 data inconsistencies, 286-287 Thinking Machines company, computational roots of edge density of disease trails, 303-304 ABM, 442-443 effects of population density, 289, 291 Thought experiments environmental data, 301-304 from agent-based models, 31 environmental decay, effects of, 301-302 Roman to Hindu-Arabic numeracy transparency, environmental patterns, 304 3-5GIS (Geographical Information Systems), 304 3D, agent movement, 248-249 graphs, 291-296 3D perspective, 263 landscape metrics, 303-304 3D worlds, 248-252 modeling other spreading effects, 285 TICK command, 173 naming experiments, 289-290, 292 TIE-MODE property, 206 necessity of multiple runs, 288-291 Time, replication factor, 338

Time series analysis, 295–296, 297	moving forward and backward, 210
Tipping point, 103–104, 114–115. See also Fire	moving left and right, 210
model	observing the environment, 261
Top-down modeling, 159–160	overview, 205
Topologies	as placeholders (see Proto-agents)
bounded, 240–241	predefined actions, 209
infinite-plane, 241	properties, 205–209
interaction, 247–248, 252–253	property awareness (see Agent cognition)
toroidal, 240	proto-agents, 234
wrapping, 166, 240–241	scale of the model, 224
TO-REPORT primitive, 108	self-destruction, 210
Toroidal topology, 240	sensing other agents, 259–260
Tracking agents over time. See WHO property	subagents, 233
Tradeoffs of ABM, 36–38, 423–424	Traffic Basic model, cars
Traffic Basic model	adjusting speed, 210–211
causes of traffic jams, 9, 12	free-flow state, 231
controlling. See File-based controls methods;	initializing speed, 208–209
Observer/User Interface	interactions between, 210–211
history of, 204	interactions with the environment,
model visualization, 266	224–230
Traffic Basic model, agent cognition	modifying actions and strategies, 230
adaptive agents, 227, 230	speed regulation, 258
definition, 224–225	Traffic Basic model, environments. See also Traffic
goal-based, 227–231	Basic model, interactions
ML (Machine Learning), 232	3D worlds, 248–252
reflexive agents, 225	boundary conditions, 240–241
utility-based, 225–227	bounded topology, 240–241
Traffic Basic model, agent collections	continuous spaces, 238–239
agentsets	discrete spaces, 235–236
and computation, 217–222	GIS (Geographical Information Systems),
creating, 213–214	252–257
definition, 212	grid graphs, 235–236
empty, 215	hex lattices, 237–238
vs. lists, 214–217	implementing, 234–235
no-turtles, 215	infinite-plane topologies, 241
breeds of agents, 212	interaction topologies, 247–248, 252–253
lists, 214–217	lattice graphs, 235–236
types of agents, 211–212	mesh graphs, 235–236
Traffic Basic model, agents. See also Traffic Basic	Moore neighborhoods, 236–237
model, interactions	network-based
actions, 209–211	Erdös-Rényi network, 245
behaviors (see Actions)	examples, 242–243
birth events, 257	links, 241
communicating with other agents, 260	nodes, 241
composed of other agents (see Meta-agents)	preferential attachment, 245–246
composing other agents (see Subagents)	random networks, 244–245
consuming other agents, 259	scale-free networks, 245–246
copying, 210	small-world networks, 246–247
death procedures, 258	patches, 235–236
defining new actions, 209	spatial, 235
definition, 203	square lattices, 236–237
granularity, 222–224	topologies, 240
history of, 204	toroidal topologies, 240
level of complexity, 222–224	triangle lattices, 235
meta-agents, 232–233	von Neumann neighborhoods, 236–237
movement, 262	wrapping, 240–241

T	:-:11:4-+: 225 221 224
Traffic Basic model, interactions	empirical validation, 325, 331–334
agent-agent, 259–260	face validation, 325, 331–334
agent-environment, 261–262	macro-empirical validation, 332, 334
agent-self, 257–258	macro-face validation, 332, 334
birth events, 257	macrovalidation, 325, 329–331
death procedures, 258	micro-empirical validation, 332, 334
environment-environment, 261	micro-face validation, 332, 334
environment-self, 258–259	microvalidation, 325, 329–331
speed regulation, 258	with participatory simulation, 363
Traffic Basic model, properties	pattern-oriented modeling, 332, 334
agent awareness of (see Agent cognition)	questions about, 335–336
agents, 205–209	validation spectrum, 331
changing during runtime, 209	Validation spectrum, 331
initializing, 209	Validation testing
inspecting, 206–207	invariant results, 334–335
links, 206	path dependence, 334–335
NetLogo turtles, 206	statistical analysis
patches, 206	invariant vs. variant results, 334–335
Traffic jams. See Traffic Basic model	Kolmogorov-Smirnov test, 324
Treatments, 324	Student's t-test, 324
Triangle lattices, 235	verification, 324
Tucker, Lew, 443	stochasticity, 334–335
Turtle monitors, 74–75, 77	variant results, 334–335
Turtle objects, computational roots of ABM,	Values, agent-based models, 14
439	Variables
Turtles	agent, 58
accessing patch properties, 206	built into NetLogo, 58
actions, 209–210	defining your own, 58
agentsets, 92	global, 58
CLEAR-TURTLES command, 258	observing over time, 265
color (see COLOR property)	overview, 58
color properties, 206	Variant results, 334–335
CREATE-TURTLES command, 71	Venice model, 407
definition, 15	Verification. See also Replication; Validation
empty agentsets, 215	benefits, 324–325
links, 74	communication between model implementers and
movement, 210	model authors, 313
order of operations, 216	debugging, 312
vs. patches, 211	definition, 33, 161
properties, inspecting, 74	describing conceptual models, 314–315
Turtles, all the way down, 233	emergent behavior vs. bugs, 317–321,
Turnes, an me way down, 250	325
Ulam, Stanislaw, 433	issues, 324–325
UML (Unified Modeling Language), 315	Kolmogorov-Smirnov test, 324
Unique IDs for agents. See WHO property	robustness, 321–324
User input, 264–265	sensitivity analysis, 321–324
User interface. See also Observer/User	spread runs, 324
Interface	statistical analysis, 324
Heroes and Cowards model, 73–78	Student's <i>t</i> -test, 324
Life model, 48	treatments, 324
Utility-based agent cognition, 225–227	voting behavior, example, 312–317
othicy-based agent cognition, 223–221	Verification testing
V formation of goose flocks, modeling & 0, 10, 12	
V formation of goose flocks, modeling, 8–9, 10, 13.	ANT (Active Nonlinear Testing), 324
See also Flocking model	with BehaviorSpace, 323–324
Validation. See also Replication; Verification	online/offline unit testing, 317
benefits of, 335–336	overview, 315–317
definition, 325	unit testing, 317

View, Life model	version 2
clearing, 51	energy variable, 174–177
definition, 48	initializing sheep energy, 174–177
updating on each tick, 57	MOVE procedure, 176–177, 179
Virtual agents, 372–375	movement cost, 174–179
Visualization, 265–267, 416, 418	plotting sheep population, 177–179
von Neumann, John	stop when no more sheep, 177
artificial reproducing machine, 433–435	
	version 3
computational roots of ABM, 433–435	color-coding grass, 182–183
Universal Constructor, 433–434	creating grass, 180–181
von Neumann neighborhoods, 56, 236–237	EAT procedure, 181 ENERGY GAIN EROM GRASS peremeter
Voting behavior, example, 312–317	ENERGY-GAIN-FROM-GRASS parameter, 183–184
WATCH command, 263	gaining energy for sheep, 180–185
Watts, Duncan, 300	GRASS-REGROWTH-RATE parameter,
Watts and Strogatz small-worlds network models,	183
Weelth con modeling See Simple Feenancy model	RECOLOR-GRASS procedure, 182–183
Wealth gap, modeling. See Simple Economy model	REGROW-GRASS procedure, 182
Weather, modeling. See Climate Change Game	regrowing grass, 181–183
model	sheep eating grass, 181
WHO property, 206, 208	version 4
Wilgram Uri 14	REPRODUCE procedure, 186
Wilensky, Uri, 14 Wind, Fire model, 112–115	sheep reproduction, 185–186 version 5
Wolf and moose populations, 163–164	creating wolves, 186–189
Wolfram, Stephen, 67–68, 434, 435, 443	ENERGY-GAIN-FROM-SHEEP parameter,
Wolf-Sheep Predation Docked model, 385	188–189
Wolf-Sheep Simple model, analyzing	gaining energy for wolves, 188–189
anomalous/aberrant behavior, 191	initializing wolf energy, 186–189
averaging across runs, 192	plotting wolf population, 189
BehaviorSpace tool, 191	specifying wolf behaviors, 187–189
collecting results, 191–192	Wolf-Sheep Simple model, designing. See also
data analysis, 192	Model design guidelines
initial number of wolves, 192	ABM design principle, 160–161
multiple runs, 191–192	from the bottom up, 159–160
oscillatory patterns, 164, 192	choosing agents (wolves and sheep)
overview, 189–191	animal behaviors, 167
parameter sweeping, 191–192	birth processes, 166
plotting data, 192	death, 166, 167
stochastic components, 191–192	eating, 167
summarizing data, 192	energy level, 165–166
Wolf-Sheep Simple model, building	environmental characteristics, 166
version 1	granularity, 164
assigning initial sheep properties, 172	heading, 165–166
binomial distributions, 173–174	initial population, specifying, 168
clearing the world, 172	location, 165–166
commenting your code, 172	movement, 167
controlling sheep and wolves, 171, 173	properties for, 165–166
creating a sheep breed, 171	proto-agents, 165
creating individual sheep, 172	reproduction, 167
GO procedure, 172–173	setting up time steps, 167–168
incrementing the model clock, 173	stationary agents, 166
MOVE procedure, 173	data measures, selecting, 169
randomized movement, 173-174	design summary, 169–170
setting patch colors, 172	exploratory modeling, 159
SETUP procedure, 172	exploring emerging patterns (see Exploratory
sheep procedures, 173	modeling)

> Wolf-Sheep Simple model, designing (cont.) choosing agents for, 166 growth/regrowth, 167-168 model parameters, 168-169 phenomena-based modeling, 159 reference patterns, 159 research questions choosing, 161-163 example, wolf and moose populations, 163-164 scope of, 159 stating formally, 162-163 suitability for our model, 162 from a target phenomenon to underlying causes (see Phenomena-based modeling) terrain, specifying, 168 from the top down, 159–160 verification, 161 wrapping topology, 166 Wrapping environments description, 52 Game of Life, 49 NetLogo default, 166 topologies, 240–241

XCOR property, 206, 208

Yakovenko, V. M., 96 Yaw, 250 YCOR property, 206, 208

Zuse, Konrad, 65, 67