Class 8 mini project

Sofia Lanaspa, A17105313

PCA practical issue: larger range and values in a column of the data set are given more importance, but we need to make sure each feature contributes equally to the —> do this with scaling inside prcomp()

head(mtcars)

```
mpg cyl disp hp drat
                                             wt
                                                qsec vs am gear carb
Mazda RX4
                  21.0
                            160 110 3.90 2.620 16.46
                  21.0
Mazda RX4 Wag
                            160 110 3.90 2.875 17.02
Datsun 710
                  22.8
                            108
                                 93 3.85 2.320 18.61
                                                                    1
                                                          1
Hornet 4 Drive
                  21.4
                         6
                            258 110 3.08 3.215 19.44
                                                               3
                                                                    1
Hornet Sportabout 18.7
                            360 175 3.15 3.440 17.02
                                                               3
                                                                    2
Valiant
                  18.1
                            225 105 2.76 3.460 20.22
                                                               3
                                                                    1
```

apply(mtcars, 2, sd)

```
drat
                   cyl
                               disp
                                                                        wt
      mpg
6.0269481
            1.7859216 123.9386938
                                     68.5628685
                                                   0.5346787
                                                                0.9784574
     qsec
                    vs
                                            gear
                                                         carb
1.7869432
            0.5040161
                         0.4989909
                                      0.7378041
                                                   1.6152000
```

Scale our data

```
x <- scale(mtcars)
head(x)</pre>
```

```
mpg cyl disp hp drat
Mazda RX4 0.1508848 -0.1049878 -0.57061982 -0.5350928 0.5675137
Mazda RX4 Wag 0.1508848 -0.1049878 -0.57061982 -0.5350928 0.5675137
Datsun 710 0.4495434 -1.2248578 -0.99018209 -0.7830405 0.4739996
```

```
Hornet 4 Drive
                 0.2172534 -0.1049878 0.22009369 -0.5350928 -0.9661175
Hornet Sportabout -0.2307345 1.0148821 1.04308123 0.4129422 -0.8351978
Valiant
                -0.3302874 -0.1049878 -0.04616698 -0.6080186 -1.5646078
                                             ٧s
                                 qsec
                                                       am
Mazda RX4
               -0.610399567 -0.7771651 -0.8680278 1.1899014 0.4235542
Mazda RX4 Wag
                -0.349785269 -0.4637808 -0.8680278 1.1899014 0.4235542
Datsun 710
                -0.917004624 0.4260068 1.1160357 1.1899014 0.4235542
Hornet 4 Drive
               Hornet Sportabout 0.227654255 -0.4637808 -0.8680278 -0.8141431 -0.9318192
                 0.248094592 1.3269868 1.1160357 -0.8141431 -0.9318192
Valiant
                     carb
Mazda RX4
                0.7352031
Mazda RX4 Wag
                0.7352031
Datsun 710
                -1.1221521
Hornet 4 Drive
                -1.1221521
Hornet Sportabout -0.5030337
Valiant
                -1.1221521
```

```
round(colMeans(x),2) #mean = 0, st.dev = 1
```

prcomp

```
function (x, ...)
UseMethod("prcomp")
<bytecode: 0x11aa2f988>
```

<environment: namespace:stats>

Using scale in prcomp usually passes values to the scale function - we always need to choose wether or not to scale data

1. Exploratory data analysis

```
# Save your input data file into your Project directory
fna.data <- "WisconsinCancer.csv"

# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names=1)</pre>
```

```
# We can use -1 here to remove the first column
wisc.data <- wisc.df[,-1]
# Create diagnosis vector for later
diagnosis <- as.factor(wisc.df[,1])
diagnosis</pre>
```

```
[556] B B B B B B B M M M M M M B
Levels: B M
```

Q1. How many observations are in this dataset?

```
nrow(wisc.df)
```

[1] 569

569 observations

QUESTION 2

Q2. How many of the observations have a malignant diagnosis?

```
sum(diagnosis=="M")
```

table(diagnosis)

diagnosis B M 357 212

212 malignant

Remove first column 'diagnosis' from data frame, this is the asnwer we need to compare to our analysis result

```
# Use -1 here to remove the first column
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean te	exture_mean	perimete	er_mean	area_mea	n smooth	ness_mean
842302	17.99	10.38		122.80	1001.	0	0.11840
842517	20.57	17.77		132.90	1326.	0	0.08474
84300903	19.69	21.25		130.00	1203.	0	0.10960
84348301	11.42	20.38		77.58	386.	1	0.14250
84358402	20.29	14.34		135.10	1297.	0	0.10030
843786	12.45	15.70		82.57	477.	1	0.12780
	compactness_me	ean concavi	ty_mean o	concave.	points_m	ean symm	etry_mean
842302	0.277	760	0.3001		0.14	710	0.2419
842517	0.078	364	0.0869		0.07	017	0.1812
84300903	0.159	990	0.1974		0.12	790	0.2069
84348301	0.283	390	0.2414		0.10	520	0.2597
84358402	0.132	280	0.1980		0.10	430	0.1809
843786	0.170	000	0.1578		0.08	089	0.2087
	fractal_dimens	sion_mean ra	adius_se	texture	e_se peri	meter_se	area_se
842302		0.07871	1.0950	0.9	9053	8.589	153.40
842517		0.05667	0.5435	0.7	7339	3.398	74.08
84300903		0.05999	0.7456	0.7	7869	4.585	94.03
84348301		0.09744	0.4956	1.1	1560	3.445	27.23
84358402		0.05883	0.7572	0.7	7813	5.438	94.44
843786		0.07613	0.3345	0.8	3902	2.217	27.19
	${\tt smoothness_se}$	compactness	s_se con	cavity_s	se concav	e.points	_se
842302	0.006399	0.0	4904	0.0537	73	0.01	587
842517	0.005225	0.0	1308	0.0186	30	0.01	340

84348301 0.009110 0.07458 0.05661 0.01867 84358402 0.011490 0.02461 0.05688 0.01885 843786 0.007510 0.03345 0.03672 0.01137 symmetry_se fractal_dimension_se radius_worst texture_worst 842302 0.03003 0.006193 25.38 17.33 842517 0.01389 0.003532 24.99 23.41 84300903 0.02250 0.004571 23.57 25.53 84348301 0.05963 0.009208 14.91 26.50 84358402 0.01756 0.005115 22.54 16.67 843786 0.02165 0.005082 15.47 23.75 perimeter_worst area_worst smoothness_worst compactness_worst
843786 0.007510 0.03345 0.03672 0.01137 symmetry_se fractal_dimension_se radius_worst texture_worst 842302 0.03003 0.006193 25.38 17.33 842517 0.01389 0.003532 24.99 23.41 84300903 0.02250 0.004571 23.57 25.53 84348301 0.05963 0.009208 14.91 26.50 84358402 0.01756 0.005115 22.54 16.67 843786 0.02165 0.005082 15.47 23.75
symmetry_se fractal_dimension_se radius_worst texture_worst 842302 0.03003 0.006193 25.38 17.33 842517 0.01389 0.003532 24.99 23.41 84300903 0.02250 0.004571 23.57 25.53 84348301 0.05963 0.009208 14.91 26.50 84358402 0.01756 0.005115 22.54 16.67 843786 0.02165 0.005082 15.47 23.75
842302 0.03003 0.006193 25.38 17.33 842517 0.01389 0.003532 24.99 23.41 84300903 0.02250 0.004571 23.57 25.53 84348301 0.05963 0.009208 14.91 26.50 84358402 0.01756 0.005115 22.54 16.67 843786 0.02165 0.005082 15.47 23.75
842517 0.01389 0.003532 24.99 23.41 84300903 0.02250 0.004571 23.57 25.53 84348301 0.05963 0.009208 14.91 26.50 84358402 0.01756 0.005115 22.54 16.67 843786 0.02165 0.005082 15.47 23.75
84300903 0.02250 0.004571 23.57 25.53 84348301 0.05963 0.009208 14.91 26.50 84358402 0.01756 0.005115 22.54 16.67 843786 0.02165 0.005082 15.47 23.75
84348301 0.05963 0.009208 14.91 26.50 84358402 0.01756 0.005115 22.54 16.67 843786 0.02165 0.005082 15.47 23.75
84358402 0.01756 0.005115 22.54 16.67 843786 0.02165 0.005082 15.47 23.75
843786 0.02165 0.005082 15.47 23.75
<pre>perimeter_worst area_worst smoothness_worst compactness_worst</pre>
842302 184.60 2019.0 0.1622 0.6656
842517 158.80 1956.0 0.1238 0.1866
84300903 152.50 1709.0 0.1444 0.4245
84348301 98.87 567.7 0.2098 0.8663
84358402 152.20 1575.0 0.1374 0.2050
843786 103.40 741.6 0.1791 0.5249
<pre>concavity_worst concave.points_worst symmetry_worst</pre>
842302 0.7119 0.2654 0.4601
842517 0.2416 0.1860 0.2750
84300903 0.4504 0.2430 0.3613
84348301 0.6869 0.2575 0.6638
84358402 0.4000 0.1625 0.2364
843786 0.5355 0.1741 0.3985
fractal_dimension_worst
842302 0.11890
842517 0.08902
84300903 0.08758
84348301 0.17300
84358402 0.07678
843786 0.12440

Q3. How many variables/features in the data are suffixed with _mean?

```
colsWithMean <- grep("_mean",colnames(wisc.df))
length(colsWithMean)</pre>
```

[1] 10

2. Principal component analysis

Check column means and standard deviations
colMeans(wisc.data)

radius_mean	texture_mean	perimeter_mean
1.412729e+01	1.928965e+01	9.196903e+01
area_mean	${\tt smoothness_mean}$	${\tt compactness_mean}$
6.548891e+02	9.636028e-02	1.043410e-01
concavity_mean	concave.points_mean	symmetry_mean
8.879932e-02	4.891915e-02	1.811619e-01
fractal_dimension_mean	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	smoothness_se
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01
texture_worst	perimeter_worst	area_worst
2.567722e+01	1.072612e+02	8.805831e+02
smoothness_worst	${\tt compactness_worst}$	concavity_worst
1.323686e-01	2.542650e-01	2.721885e-01
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
1.146062e-01	2.900756e-01	8.394582e-02

apply(wisc.data,2,sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
$symmetry_mean$	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	${\tt fractal_dimension_mean}$
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se

```
2.021855e+00
                                 4.549101e+01
                                                         3.002518e-03
      compactness_se
                                 concavity_se
                                                    concave.points_se
        1.790818e-02
                                 3.018606e-02
                                                         6.170285e-03
                                                         radius_worst
         symmetry_se
                        fractal_dimension_se
        8.266372e-03
                                 2.646071e-03
                                                         4.833242e+00
       texture_worst
                             perimeter_worst
                                                            area worst
        6.146258e+00
                                 3.360254e+01
                                                         5.693570e+02
    smoothness_worst
                            compactness_worst
                                                      concavity_worst
        2.283243e-02
                                 1.573365e-01
                                                         2.086243e-01
concave.points_worst
                               symmetry_worst fractal_dimension_worst
                                 6.186747e-02
        6.573234e-02
                                                          1.806127e-02
```

```
# Perform PCA on wisc.data by completing the following code
# SCALE
wisc.pr <- prcomp(wisc.data, scale=T)</pre>
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

```
# Find proportion variance of each PC
summary(wisc.pr)
```

Importance of components:

```
PC1
                                  PC2
                                          PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                           PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                                                         PC12
                           PC8
                                   PC9
                                          PC10
                                                 PC11
                                                                 PC13
                                                                          PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 \ 0.9399 \ 0.95157 \ 0.9614 \ 0.97007 \ 0.97812 \ 0.98335
                          PC15
                                   PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                           PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                   PC23
                                          PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                           PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
```

PC29 PC30

Standard deviation 0.02736 0.01153 Proportion of Variance 0.00002 0.00000 Cumulative Proportion 1.00000 1.00000

44.27%

QUESTION 5

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3 PCs

QUESTION 6

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7 PCs

QUESTION 7

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

biplot(wisc.pr)

So difficult to understand, too many components on top of each other

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

The PC axis are the most important axis for the data

PC1 is the axis with most variation, PC2 is the axis with second most variation, etc.

Find the middle of each PC axis and it is 0, then measure the points based on how far/close they are from it, this is the **influence** of the

ggplot

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point() +
   labs(title = "PCA Scatter Plot", x = "PC 1", y = "PC 2") +
   theme_minimal()</pre>
```


variance

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357


```
## ggplot based graph
#install.packages("factoextra")
library(factoextra)
```

 ${\tt Welcome!\ Want\ to\ learn\ more?\ See\ two\ factoextra-related\ books\ at\ https://goo.gl/ve3WBa}$

```
fviz_eig(wisc.pr, addlabels = TRUE)
```


Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

wisc.pr\$rotation["concave.points_mean",1]

[1] -0.2608538

QUESTION 10

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

5 PCs

QUESTION 11

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)
# Get distance of data
data.dist <- dist(data.scaled)
# Make hierarchy tree
wisc.hclust <- hclust(data.dist, method="complete")</pre>
```

Class walk through

```
# distance matrix from PCA result
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d,method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Cut the tree into 2 groups/branches/clusters

```
grps <- cutree(hc,k=2)
plot(wisc.pr$x,col=grps)</pre>
```


Hierarchical Clustering Dendogram

Samples hclust (*, "ward.D2")

QUESTION 12

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

The best cluster vs diagnoses is done by cutting 2 clusters

QUESTION 13

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

The PCA scattter plot is my favorite representation of the data since it clearly shows the

QUESTION 14

Q14. How well does k-means separate the two diagnoses? How does it compare to your helust results?

table(diagnosis,grps)

```
grps
diagnosis 1 2
B 24 333
M 179 33
```

This table clearly shows how many benign and malignant tumors in each cluster

QUESTION 16

Q16. How well do the k-means and hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.km\$cluster and wisc.hclust.clusters) with the vector containing the actual diagnoses.

```
#table(wisc.km$cluster)
#table(wisc.hclust.clusters)
# I think k-means and hierarchical clustering models do not work well for separating diagnose
```