Práctica 6: Esperanza

"A mathematician is a device for turning coffee into theorems."
PAUL ERDŐS

Ejercicio 1. Sea X el resultado que se obtiene al arrojar un dado equilibrado una vez. Si antes de arrojar el dado se ofrece la opción de elegir entre recibir $\frac{2}{7}$ ó $h(X) = \frac{1}{X}$, decidir cuál de las dos opciones es preferible, en el sentido de cuál tiene un mayor valor esperado.

Ejercicio 2. En un comercio de artículos para el hogar hay 6 televisores en stock. El número de clientes que entran a comprar un televisor por semana es una variable aleatoria X con distribución $\mathcal{P}(5)$. Cada cliente que entra a comprar un televisor lo comprará si todavía hay stock. ¿Cuál es el número esperado de televisores a ser vendidos durante la próxima semana?

Ejercicio 3. Un juego consiste en arrojar un dado equilibrado hasta obtener un número mayor o igual que 4. Si X es el número de veces que se arroja el dado a lo largo del juego, el puntaje que se obtiene por jugar es (4-X) si $1 \le X \le 3$ y no se obtiene puntaje en caso contrario. ¿Cuál es el puntaje esperado de este juego?

Ejercicio 4. Hallar la esperanza y varianza de las siguientes variables aleatorias:

- a) $\mathcal{B}i(n,p)$. Sugerencia: ¿Qué distribución tiene la suma de n variables aleatorias independientes Be(p)?
- b) $\mathcal{G}(p)$. Sugerencia: Recordar que una serie de potencias es derivable dentro de su radio de convergencia.
- c) $\mathcal{BN}(r,p)$. Sugerencia: ¿Qué distribución tiene la suma de r variables aleatorias independientes $\mathcal{G}(p)$?
- d) $\mathcal{P}(\lambda)$. Sugerencia: Para hallar Var(X) calcular primero $\mathbb{E}(X(X-1))$.
- e) $\Gamma(\alpha, \lambda)$. Sugerencia: Si $X \sim \Gamma(\alpha, \lambda)$ entonces $\int_{-\infty}^{+\infty} f_X(x) dx = 1$ para cualquier α y λ positivos.
- f) $\varepsilon(\lambda)$.
- g) $\chi^{2}(n)$.
- h) $\mathcal{N}(\mu, \sigma^2)$.
- i) $\mathcal{U}[a,b]$.
- j) $\beta(a,b)$. Sugerencia: Si $X \sim \beta(a,b)$ entonces $\int_{-\infty}^{+\infty} f_X(x) dx = 1$, para cualquier $a \neq b$ positivos.

Ejercicio 5. Se distribuyen al azar N bolillas indistinguibles en m urnas. Sean X el número de urnas vacías, Y el número de urnas que contienen exactamente una bolilla y Z el número de urnas que contienen dos o más bolillas.

a) Hallar $\mathbb{E}(X)$.

Sugerencia: Sea

$$X_i = \begin{cases} 1 & \text{si la } i\text{-\'esima urna est\'a vac\'ia} \\ 0 & \text{en caso contrario.} \end{cases}$$

Verificar que $X = \sum_{i=1}^{m} X_i$.

- b) Hallar $\mathbb{E}(Y)$ y $\mathbb{E}(Z)$.
- c) Un centro cultural dispone de m cuentas de correo electrónico para comunicarse con el público. Durante un día en particular, N personas envían sus inquietudes vía e-mail al centro cultural, eligiendo una cuenta al azar para hacerlo. Hallar la esperanza del número de cuentas de correo que no son usadas durante dicho día.

Ejercicio 6. Sean X_1, \ldots, X_n variables aleatorias independientes tales que

$$P(X_k \le t) = \begin{cases} 0 & \text{si} & t < 0 \\ t^k & \text{si} & 0 \le t \le 1 \\ 1 & \text{si} & t > 1 \end{cases}$$

- a) Sea $Y = \max(X_1, \dots, X_n)$. Hallar F_Y , f_Y y $\mathbb{E}(Y)$.
- b) Hallar $\mathbb{E}(\prod_{i=1}^n X_i)$.

Ejercicio 7. Sea (X,Y) un vector aleatorio con función de densidad conjunta

$$f_{XY}(x,y) = \begin{cases} \frac{6}{7}(3y+x) & 0 \le x \le y \le 1\\ 0 & \text{en caso contrario} \end{cases}$$

Hallar $\mathbb{E}(X)$, $\mathbb{E}(Y)$, Var(X), Var(Y), Cov(X,Y), Var(X-Y) y $\rho(X,Y)$.

Ejercicio 8. Dada una urna con N bolillas de las cuales D son blancas y N-D son negras, se extraen n sin reposición. Sean

X = número de bolillas blancas extraídas

$$X_i = \begin{cases} 1 & \text{si la i-ésima bolilla extraída es blanca} \\ 0 & \text{si la i-ésima bolilla extraída es negra.} \end{cases}$$

Observar que $X \sim \mathcal{H}(N, D, n)$.

a) Mostrar que $P(X_i=1)=\frac{D}{N}$ para todo $i=1,\dots,n$ y que para $i\neq j$ se tiene

$$P(X_i = 1, X_j = 1) = \frac{D(D-1)}{N(N-1)}.$$

Determinar la distribución conjunta del vector (X_i, X_j) .

- b) Calcular $\mathbb{E}(X_i)$, $Var(X_i)$.
- c) Calcular $Cov(X_i, X_j)$ para $i \neq j$.
- d) Hallar $\mathbb{E}(X)$. Verificar que

$$Var(X) = \frac{(N-n)nD(N-D)}{(N-1)N^2}$$

Ejercicio 9. El problema del coleccionista de cupones

Un hombre colecciona cupones de un álbum compuesto por N cupones distintos. El hombre adquiere sus cupones comprando uno por día en el kiosko de la esquina de su casa y, cada vez que adquiere uno, éste tiene igual probabilidad de ser cualquiera de los N que componen el álbum.

- a) Hallar la esperanza del número de cupones diferentes que hay en un conjunto de k figuritas.
- b) Hallar el número esperado de cupones que es necesario juntar para completar el álbum.

Ejercicio 10.

- a) Mostrar con un ejemplo que Cov(X,Y) = 0 no implica que X e Y sean independientes. Sugerencia: Puede considerar un vector aleatorio con densidad uniforme en el pentágono de vértices (-1,1), (1,1), (-1,0), (0,-1) y (1,0).
- b) Sean X e Y dos variables aleatorias que toman sólo dos valores cada una. Probar que si Cov(X,Y) = 0 entonces X e Y son independientes.
 Sugerencia: Considerar primero el caso en que los dos valores que toma cada variable son 0 y 1.

Ejercicio 11. Sea X una variable aleatoria con distribución simétrica respecto de $m \in \mathbb{R}$. Probar que si X es una variable aleatoria absolutamente continua y simétrica respecto de m tal que $\mathbb{E}(|X|) < \infty$ entonces $\mathbb{E}(X) = m$.

Ejercicio 12. Esquema de Polya. De un bolillero que contiene B bolillas blancas y R rojas se extrae una bolilla al azar y se la devuelve al bolillero junto con otras c bolillas del mismo color. Se repite este procedimiento sucesivamente comenzando en cada nuevo paso con la composición del bolillero resultante del paso anterior. Sean

$$X_i = \begin{cases} 1 & \text{si la } i\text{-\'esima bolilla extra\'ida es roja} \\ 0 & \text{si la } i\text{-\'esima bolilla extra\'ida es blanca} \end{cases}$$

- a) ¿Qué distribución tienen las variables aleatorias X_i ?
- b) Hallar $\mathbb{E}(X_i)$, $\operatorname{Var}(X_i)$, $\operatorname{Cov}(X_i, X_j)$ y $\rho(X_i, X_j)$ para i < j. ¿Son independientes las variables X_i ? Contestar a partir las cantidades calculadas.
- c) Sea $S_j = \sum_{i=1}^j X_i$ el número de bolillas rojas extraídas luego de j extracciones. Hallar $\mathbb{E}(S_j)$, $\mathrm{Var}(S_j)$, $\mathrm{Cov}(S_i,S_j)$ y $\rho(S_i,S_j)$ para i < j.

Ejercicio 13. Sean X_1 y X_2 variables aleatorias independientes con distribución N(0,1). Sea $A = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$ tal que det $A \neq 0$ y $c = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$. Consideremos el vector aleatorio $\mathbf{Y} = (Y_1, Y_2)$ definido por

$$\mathbf{Y} = A \cdot \mathbf{X} + c.$$

- a) Probar que Y_i tiene distribución normal. Calcular $\mathbb{E}(Y_i)$ y $\mathrm{Var}(Y_i)$. Sugerencia: Apelar al Ejercicio 14 de la Práctica 5.
- b) Hallar $\mathrm{Cov}(Y_1,Y_2)$ y $\rho(Y_1,Y_2)$ a partir del cálculo de $\mathrm{Cov}(X_1,X_2)$. Observar que

$$|\rho(Y_1, Y_2)| < 1.$$

- c) Sea μ el vector de medias definido por $\mu_i = \mathbb{E}(Y_i)$ y Σ la matriz de covarianzas dada por $\Sigma_{i,j} = \text{Cov}(Y_i, Y_j)$. Verificar que $\mu = c$ y $\Sigma = A \cdot A^t$.
- d) Concluir a partir del item anterior que Σ es inversible y que tanto ella como su inversa son matrices simétricas y definidas positivas.
- e) Mostrar que la función de densidad conjunta de \mathbf{Y}^1 viene dada por

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} e^{\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right)\right]\right\}}$$

donde

$$\mu = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix} \qquad \text{y} \qquad \Sigma = \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix}.$$

Verificar que la densidad también puede escribirse en notación matricial como

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{2\pi \left[\det(\Sigma) \right]^{\frac{1}{2}}} \exp \left\{ -\frac{1}{2} \left(\mathbf{y} - \mu \right)^t \Sigma^{-1} \left(\mathbf{y} - \mu \right) \right\}.$$

¿Qué tipo de curvas de nivel tiene $f_{\mathbf{Y}}$?

- f) Deducir que si $\mathbf{Z} = (Z_1, Z_2)$ es un vector aleatorio con distribución normal multivariada entonces Z_1 y Z_2 son independientes si y sólo si $\text{Cov}(Z_1, Z_2) = 0$.
- g) Probar que si \mathbf{Y} tiene distribución normal multivariada, entonces $\tilde{\mathbf{Y}} = \tilde{A} \cdot \mathbf{Y} + \tilde{c}$ también tiene distribución normal multivariada.
- h) Dar un ejemplo de un vector aleatorio ${\bf Z}$ cuyas marginales tengan distribución normal pero ${\bf Z}$ no tenga distribución normal multivariada. ²

¹Esta distribución se conoce como distribución normal bivariada o multivariada 2-dimensional de parámetros μ y Σ , se denota por $N_2(\mu, \Sigma)$.

²Mostraremos más adelante que un vector aleatorio \mathbf{Z} tiene distribución normal multivariada 2-dimensional si y sólo si es absolutamente continuo y vale que $v \cdot \mathbf{Z}$ tiene distribución normal para todo $v \in \mathbb{R}^2$. Esta caracterización de la distribución normal multivariada en \mathbb{R}^2 es la que se adopta a la hora de definir dicha distribución sobre espacios más generales.

Ejercicio 14. Sean X y W variables aleatorias independientes tales que $X \sim N(0,1)$ y $W \sim Be(\frac{1}{2})$. Definimos

$$Y = \begin{cases} X & \text{si } W = 1 \\ -X & \text{si } W = 0 \end{cases}$$

- a) Probar que $Y \sim N(0, 1)$.
- b) ¿Son X e Y independientes?
- c) ¿Son Y y W independientes?
- d) Mostrar que Cov(X, Y) = 0.
- e) Deducir que el vector aleatorio (X,Y) no tiene distribución normal multivariada a pesar de tener marginales con distribución normal. ¿Contradice esto los resultados del ejercicio anterior?¿Por qué?

Ejercicio 15. Sean U_1, \ldots, U_n variables aleatorias independientes con distribución $\mathcal{U}[0,1]$ y consideremos sus estadísticos de orden $U^{(1)}, \ldots, U^{(n)}$.

- a) Hallar $\mathbb{E}\left(U^{(i)}\right)$. ¿Qué relación guardan las esperanzas entre sí? Sugerencia: Recordar la distribución de $U^{(i)}$ calculada en el Ejercicio 13 de la Práctica 5.
- b) Calcular Var $(U^{(i)})$.
- c) ¿Para qué valor de i se minimiza la varianza? ¿Para cuál se maximiza?

Ejercicio 16. Muestreo estratificado

Se quiere saber cuántos habitantes viven en una cierta ciudad. Se sabe que dicha ciudad tiene n manzanas, de las cuales n_j tienen x_j habitantes cada una $(n_1 + n_2 + \dots = n)$. Sea $m = \sum_j \frac{n_j x_j}{n}$ el número medio de habitantes por manzana y sea $a^2 = \frac{1}{n} \sum_j n_j x_j^2 - m^2$. Para averiguarlo se sortean al azar r manzanas para encuestarlas. Un encuestador es enviado a cada una de las manzanas sorteadas para contar la cantidad de habitantes que viven en ellas. Definamos las variables aleatorias

 Z_i = cantidad de habitantes que viven en la *i*-ésima manzana sorteada Y = cantidad de personas encuestadas.

- a) Hallar $\mathbb{E}(Z_i)$ y $\operatorname{Var}(Z_i)$.
- b) Mostrar que

$$\mathbb{E}(Y) = mr$$

$$\operatorname{Var}(Y) = \frac{a^{2}r(n-r)}{n-1}.$$

Ejercicio 17. Sea (X_1, \ldots, X_k) un vector aleatorio con distribución $\mathcal{M}(p_1, \ldots, p_k, n)$ para n > 2. Hallar $\mathbb{E}(X_i)$, $\mathrm{Var}(X_i)$ y $\mathrm{Cov}(X_i, X_j)$.

Ejercicio 18.

a) Sea X una variable aleatoria discreta con $R_X \subseteq \mathbb{N}_0$. Probar que

$$E(X) = \sum_{n=0}^{\infty} P(X > n) = \sum_{n=1}^{\infty} P(X \ge n).$$

b) Sea X una variable aleatoria arbitraria. Probar que

$$\sum_{n=1}^{\infty} P(|X| \ge n) \le E(|X|) \le 1 + \sum_{n=1}^{\infty} P(|X| \ge n)$$

Concluir que

$$E(|X|) < \infty \iff \sum_{n=1}^{\infty} P(|X| \ge n) < \infty.$$

Sugerencia: Considerar la variable aleatoria discreta [|X|].