# SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

## I. Suites arithmétiques

# 1) Définition

#### Exemple:

Considérons une suite numérique  $(u_n)$  où la différence entre un terme et son précédent reste constante et égale à 5.

Si le premier terme est égal à 3, les premiers termes successifs sont :

 $u_0 = 3$ ,

 $u_1 = 8$ .

 $u_2 = 13$ ,

 $u_3 = 18.$ 

Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par :  $\begin{cases} u_0 = 3 \\ u_{n+1} = u_n + 5 \end{cases}$ 

<u>Définition</u>: Une suite  $(u_n)$  est une <u>suite arithmétique</u> s'il existe un nombre r tel que pour tout entier n, on a :  $u_{n+1} = u_n + r$ .

Le nombre *r* est appelé <u>raison</u> de la suite.

Méthode : Démontrer si une suite est arithmétique

# Vidéo https://youtu.be/YCokWYcBBOk

- 1) La suite  $(u_n)$  définie par :  $u_n = 7 9n$  est-elle arithmétique ?
- 2) La suite  $(v_n)$  définie par :  $v_n = n^2 + 3$  est-elle arithmétique ?

1) 
$$u_{n+1} - u_n = 7 - 9(n+1) - 7 + 9n = 7 - 9n - 9 - 7 + 9n = -9$$
.

La différence entre un terme et son précédent reste constante et égale à -9.  $(u_n)$  est une suite arithmétique de raison -9.

2) 
$$v_{n+1} - v_n = (n+1)^2 + 3 - n^2 - 3 = n^2 + 2n + 1 + 3 - n^2 - 3 = 2n + 1$$
.

La différence entre un terme et son précédent ne reste pas constante.  $(v_n)$  n'est pas une suite arithmétique.

Vidéo https://youtu.be/600KhPMHvBA

<u>Propriété</u> :  $(u_n)$  est une suite arithmétique de raison r et de premier terme  $u_0$ . Pour tout entier naturel n, on a :  $u_n = u_0 + nr$ .

## Démonstration:

La suite arithmétique  $(u_n)$  de raison r et de premier terme  $u_0$  vérifie la relation  $u_{n+1} = u_n + r$ .

En calculant les premiers termes :

$$\begin{aligned} u_1 &= u_0 + r \\ u_2 &= u_1 + r = \left(u_0 + r\right) + r = u_0 + 2r \\ u_3 &= u_2 + r = \left(u_0 + 2r\right) + r = u_0 + 3r \\ \dots \\ u_r &= u_{r-1} + r = \left(u_0 + (n-1)r\right) + r = u_0 + nr \end{aligned}$$

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique  $(u_n)$  tel que  $u_s = 7$  et  $u_q = 19$ .

- 1) Déterminer la raison et le premier terme de la suite  $(u_n)$ .
- 2) Exprimer  $u_n$  en fonction de n.
- 1) Les termes de la suite sont de la forme  $u_n = u_0 + nr$

Ainsi 
$$u_5 = u_0 + 5r = 7$$
 et  
 $u_9 = u_0 + 9r = 19$ .

On soustrayant membre à membre, on obtient : 5r - 9r = 7 - 19 donc r = 3.

Comme  $u_0 + 5r = 7$ , on a :  $u_0 + 5 \times 3 = 7$  et donc :  $u_0 = -8$ .

2) 
$$u_n = u_0 + nr$$
 soit  $u_n = -8 + n \times 3$  ou encore  $u_n = 3n - 8$ 

# 2) Variations

Propriété :  $(u_n)$  est une suite arithmétique de raison r.

- Si r > 0 alors la suite  $(u_n)$  est croissante.
- Si r < 0 alors la suite  $(u_n)$  est décroissante.

<u>Démonstration</u>:  $u_{n+1} - u_n = u_n + r - u_n = r$ .

- Si r > 0 alors  $u_{n+1} u_n > 0$  et la suite  $(u_n)$  est croissante.
- Si r < 0 alors  $u_{n+1} u_n < 0$  et la suite ( $u_n$ ) est décroissante.

#### Exemple:

Vidéo https://youtu.be/R3sHNwOb02M

La suite arithmétique  $(u_n)$  définie par  $u_n = 5 - 4n$  est décroissante car de raison négative et égale à -4.

# 3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

## Exemple:

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.



| RÉSUMÉ                      | (u <sub>n</sub> ) une <b>suite arithmétique</b>                                | Exemple :                                                                             |
|-----------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                             | - de <b>raison</b> $r$                                                         | $r = -0.5$ et $u_0 = 4$                                                               |
|                             | - de premier terme $u_{\theta}$ .                                              |                                                                                       |
| Définition                  | $u_{n+1} = u_n + r$                                                            | $u_{n+1} = u_n - 0,5$ La différence entre un terme et son précédent est égale à -0,5. |
| Propriété                   | $u_n = u_0 + nr$                                                               | $u_n = 4 - 0.5n$                                                                      |
| Variations                  | Si $r > 0$ : $(u_n)$ est croissante.<br>Si $r < 0$ : $(u_n)$ est décroissante. | r = -0.5 < 0<br>La suite $(u_n)$ est décroissante.                                    |
| Représentation<br>graphique | Remarque :<br>Les points de la représentation<br>graphique sont alignés.       | 1<br>0<br>0 1 2 3 4 5 6 7 8 9                                                         |

## II. Suites géométriques

## 1) Définition

#### Exemple:

Considérons une suite numérique  $(u_n)$  où le rapport entre un terme et son précédent reste constant et égale à 2.

Si le premier terme est égal à 5, les premiers termes successifs sont :

 $u_0 = 5$ ,

 $u_1 = 10$ ,

 $u_2 = 20$ ,

 $u_3 = 40.$ 

Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La suite est donc définie par :  $\begin{cases} u_0 = 5 \\ u_{n+1} = 2u_n \end{cases}$ 

# Vidéo https://youtu.be/WTmdtbQpa0c

<u>Définition</u>: Une suite  $(u_n)$  est une <u>suite géométrique</u> s'il existe un nombre q tel que pour tout entier n, on a :  $u_{n+1} = q \times u_n$ .

Le nombre q est appelé raison de la suite.

Méthode : Démontrer si une suite est géométrique

# Vidéo https://youtu.be/YPbEHxuMaeQ

La suite  $(u_n)$  définie par :  $u_n = 3 \times 5^n$  est-elle géométrique ?

$$\frac{u_{n+1}}{u_n} = \frac{3 \times 5^{n+1}}{3 \times 5^n} = \frac{5^{n+1}}{5^n} = 5^{n+1-n} = 5.$$

Le rapport entre un terme et son précédent reste constant et égale à 5.

 $(u_n)$  est une suite géométrique de raison 5 et de premier terme  $u_0 = 3 \times 5^0 = 3$ .

## Exemple concret:

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%. Chaque année, le capital est multiplié par 1,04.

Ce capital suit une progression géométrique de raison 1,04.

#### On a ainsi:

$$u_1 = 1,04 \times 500 = 520$$
  $u_2 = 1,04 \times 520 = 540,80$   $u_3 = 1,04 \times 540,80 = 562,432$ 

De manière générale :  $u_{n+1} = 1.04 \times u_n$  avec  $u_0 = 500$ 

On peut également exprimer  $u_n$  en fonction de n:  $u_n = 500 \times 1,04^n$ 

Propriété :  $(u_n)$  est une suite géométrique de raison q et de premier terme  $u_0$ . Pour tout entier naturel n, on a :  $u_n = u_0 \times q^n$ .

#### Démonstration:

La suite géométrique  $(u_n)$  de raison q et de premier terme  $u_0$  vérifie la relation  $u_{n+1} = q \times u_n$ .

En calculant les premiers termes :

$$u_1 = q \times u_0$$

$$u_2 = q \times u_1 = q \times (q \times u_0) = q^2 \times u_0$$

$$u_3 = q \times u_2 = q \times (q^2 \times u_0) = q^3 \times u_0$$

. . .

$$u_n = q \times u_{n-1} = q \times (q^{n-1}u_0) = q^n \times u_0$$
.

Méthode : Déterminer la raison et le premier terme d'une suite géométrique

# Vidéo https://youtu.be/wUfleWpRr10

Considérons la suite géométrique ( $u_n$ ) tel que  $u_4 = 8$  et  $u_7 = 512$ .

Déterminer la raison et le premier terme de la suite  $(u_n)$ .

Les termes de la suite sont de la forme  $u_n = q^n \times u_0$ .

Ainsi 
$$u_4 = q^4 \times u_0 = 8$$
 et

$$u_7 = q^7 \times u_0 = 512$$
.

Ainsi: 
$$\frac{u_7}{u_4} = \frac{q^7 \times u_0}{q^4 \times u_0} = q^3$$
 et  $\frac{u_7}{u_4} = \frac{512}{8} = 64$  donc  $q^3 = 64$ .

On utilise la fonction racine troisième de la calculatrice pour trouver le nombre qui élevé au cube donne 64.

Ainsi 
$$q = \sqrt[3]{64} = 4$$

Comme 
$$q^4 \times u_0 = 8$$
, on a :  $4^4 \times u_0 = 8$  et donc :  $u_0 = \frac{1}{32}$ .

# 2) Variations

<u>Propriété</u> :  $(u_n)$  est une suite géométrique de raison q et de premier terme non nul  $u_0$ . Pour  $u_0 > 0$  :

- Si q > 1 alors la suite  $(u_n)$  est croissante.
- Si 0 < q < 1 alors la suite  $(u_n)$  est décroissante.

Pour  $u_0 < 0$ :

- Si q > 1 alors la suite  $(u_n)$  est décroissante.
- Si 0 < q < 1 alors la suite  $(u_n)$  est croissante.

# Démonstration dans le cas où $u_0 > 0$ :

$$u_{n+1} - u_n = q^{n+1}u_0 - q^nu_0 = u_0q^n(q-1)$$
.

- Si q > 1 alors  $u_{n+1} u_n > 0$  et la suite  $(u_n)$  est croissante.
- Si 0 < q < 1 alors  $u_{n+1} u_n < 0$  et la suite  $(u_n)$  est décroissante.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

# Exemple:

# Vidéo https://youtu.be/vLshnJqW-64

La suite géométrique  $(u_n)$  définie par  $u_n = -4 \times 2^n$  est décroissante car le premier terme est négatif et la raison est supérieure à 1.



Remarque : Si la raison q est négative alors la suite géométrique n'est pas monotone.

| RÉSUMÉ                      | (u <sub>n</sub> ) une suite géométrique                                                                                                                                                                          | Exemple :                                                                              |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                             | de <b>raison</b> $q$                                                                                                                                                                                             | $q = 2$ et $u_0 = -4$                                                                  |
|                             | de premier terme $u_0$ .                                                                                                                                                                                         |                                                                                        |
| Définition                  | $u_{n+1} = q \times u_n$                                                                                                                                                                                         | $u_{_{n+1}}=2\times u_{_{n}}$ Le rapport entre un terme et son précédent est égal à 2. |
| Propriété                   | $u_n = u_0 \times q^n$                                                                                                                                                                                           | $u_n = -4 \times 2^n$                                                                  |
| Variations                  | Pour $u_0 > 0$ :<br>Si $q > 1$ : $(u_n)$ est croissante.<br>Si $0 < q < 1$ : $(u_n)$ est décroissante.<br>Pour $u_0 < 0$ :<br>Si $q > 1$ : $(u_n)$ est décroissante.<br>Si $0 < q < 1$ : $(u_n)$ est croissante. | $u_0 = -4 < 0$ $q = 2 > 1$ La suite $(u_n)$ est décroissante.                          |
| Représentation<br>graphique | Remarque : Si $q < 0$ : la suite géométrique n'est ni croissante ni décroissante.                                                                                                                                | 0 0 2 4 6 8 -200 -400 -600 -800 -1000                                                  |

#### III. Sommes de termes consécutifs

## 1) Cas d'une suite arithmétique

Propriété: n est un entier naturel non nul alors on a :  $1+2+3+...+n=\frac{n(n+1)}{2}$ 

Remarque : Il s'agit de la somme des n+1 premiers termes d'une suite arithmétique de raison 1 et de premier terme 1.

#### Démonstration :

donc: 
$$2 \times (1 + 2 + 3 + ... + n) = n(n+1)$$

et donc: 
$$1+2+3+...+n=\frac{n(n+1)}{2}$$
.

Méthode : Calculer la somme des termes d'une suite arithmétique

- **Vidéo** <a href="https://youtu.be/WeDtB9ZUTHs">https://youtu.be/WeDtB9ZUTHs</a>
- Vidéo <a href="https://youtu.be/iSfevWwk8e4">https://youtu.be/iSfevWwk8e4</a>

Calculer les sommes  $S_1$  et  $S_2$  suivantes :

$$S_1 = 1 + 2 + 3 + \dots + 348$$

$$S_2 = 33 + 36 + 39 + ... + 267$$

$$S_1 = 1 + 2 + 3 + \dots + 348$$

$$=\frac{348\times349}{2}$$

$$=60726$$

$$S_2 = 33 + 36 + 39 + ... + 267$$

$$=3\times(11+12+...+89)$$

$$=3\times((1+2+...+89)-(1+2+...+10))$$

$$=3\times\left(\frac{89\times90}{2}-\frac{10\times11}{2}\right)$$

$$=11850$$



Une anecdote relate comment le mathématicien allemand *Carl Friedrich Gauss* (1777 ; 1855), alors âgé de 10 ans a fait preuve d'un talent remarquable pour le calcul mental. Voulant occuper ses élèves, le professeur demande d'effectuer des additions, plus exactement d'effectuer la somme des nombres de 1 à 100. Après très peu de temps, le jeune *Gauss* impressionne son professeur en donnant la réponse correcte. Sa technique consiste à regrouper astucieusement les termes extrêmes par deux. Sans le savoir

encore, *Gauss* a découvert la formule permettant de calculer la somme des termes d'une série arithmétique.

## 2) Cas d'une suite géométrique

Propriété : n est un entier naturel non nul et q un réel différent de 1 alors on a :

$$1+q+q^2+...+q^n=\frac{1-q^{n+1}}{1-q}$$

Remarque : Il s'agit de la somme des n+1 premiers termes d'une suite géométrique de raison q et de premier terme 1.

#### Démonstration:

$$S = 1 + q + q^{2} + ... + q^{n}$$
$$q \times S = q + q^{2} + q^{3} + ... + q^{n+1}$$

#### Ainsi:

$$S - q \times S = (1 + q + q^{2} + \dots + q^{n}) - (q + q^{2} + q^{3} + \dots + q^{n+1})$$

$$S - q \times S = 1 - q^{n+1}$$

$$S \times (1 - q) = 1 - q^{n+1}$$

$$S = \frac{1 - q^{n+1}}{1 - q}$$

Méthode : Calculer la somme des termes d'une suite géométrique

# Vidéo <a href="https://youtu.be/eSDrE1phUXY">https://youtu.be/eSDrE1phUXY</a>

#### Calculer la somme S suivante :

$$S = 1 + 3 + 3^2 + ... + 3^{13}$$

$$S = 1 + 3 + 3^{2} + \dots + 3^{13}$$
$$= \frac{1 - 3^{14}}{1 - 3} = 2391484$$



Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales