Ex. (I - protocol for Pedionsen Commitment). Prover and Verifier knows g. h and $y = g^x h^x$ (= com(x)). However, only Prover knows x and r. i) [announcement] - choose Si. S. & Zg. - compute $a = g^{S_1} h^{S_2}$ and sends a to verifier ii) C challenge] - choose a # 725 and send a to Proveritt) [response] - compute ri = xc+s, and ra = rc+sa. - send r, and rs to verifier yea = (gxh)c. gsihs M [verification] = gxctsi . hretsz - if yea = gnhs, then verifier accepts. = gn. hs otherwise, verifier rejects. (Com(A) Ex. Prover and Verifier knows g.h, $y_1 = g^x h^x$ and $y_2 = g^y h^x$, of $g \in \mathbb{Z}_g$. Prover proves the knowledge of x and y s.t. $y = \alpha x + \beta$ \sim This is equivalent to proving bookledge of x s.t. $y_1 = Com(x) \wedge y_2 = y_1^{\alpha}$. noe the above example. i) Cannouncement] - choose si, so & 74*. - compute a = gs hs and sends a to verifier ii) [challenge] Inesponse I - compute R = cy+s, and R2 = car + s2. gR, h= gcyts, car+s2 = gsi. hsa. gconx+po. hour iv) Everification] - if you a gbc = gR hB, then voirfier accepts. = a gody gcp. hour, otherwise, Verifier nejects. = a.(gx. hri)ca. gcs = a. y a. Jaink thing