

Identifying Optical GW Counterparts with Image Processing

Noemi Glaeser, University of South Carolina SIST Final Talk 6 August 2018

Overview

- Background
 - GW
 - DES
- The DES-GW pipeline
 - SE
 - DiffImg
- Next steps

LIGO/T. Pyle 2016

"Perpetuating changes in the gravitational field caused by accelerating masses"

LIGO/T. Pyle 2016

Binary Black Hole (BBH)
Black Hole-Neutron Star (BH-NS)
Binary Neutron Star (BNS)

LIGO/Caltech/MIT/LSC 2017

Wave shape → event type Amplitude → distance

LIGO/Virgo/NASA/Leo Singer 2017 (Milky Way image: Axel Mellinger)

Dark Energy Survey Collaboration

Dark Energy Survey (DES)

DECam, assembled at Fermilab, now mounted on the Blanco telescope in Chile

Dark Energy Survey (DES)

DES Collaboration

The DES footprint spans ~5000 square degrees (1/8 of the sky)

Dark Energy Survey (DES): Why?

Independent measure of the Hubble parameter and other cosmological parameters

Dark Energy Survey (DES): GW170817

GW170817 Optical Counterpart composite detection images (Soares-Santos et al. 2017)

- The first optical counterpart of a GW event was observed by DES in August 2017!
 - One point on the distance-redshift plot
- In O3 we expect ~10x as many events

Dark Energy Survey (DES): Why?

Independent measure of the Hubble parameter and other cosmological parameters

DES Collaboration

- Image Correction
 - Raw Images → "science-ready"
- Astrometric calibration:2MASS
- Object Cataloguing
- Photometric Calibration: 2MASS

- Image Correction
 - Raw Images → "science-ready"
- Astrometric calibration:2MASS
- Object Cataloguing
- Photometric Calibration:2MASS

- Image Correction
 - Raw Images → "science-ready"
- Astrometric calibration:
 2MASS
- Object Cataloguing
- Photometric Calibration:
 2MASS

- Image Correction
 - Raw Images → "science-ready"
- Astrometric calibration:2MASS
- Object Cataloguing
- Photometric Calibration:
 2MASS

- Image Correction
 - Raw Images → "science-ready"
- Astrometric calibration: 2MASS
- Object Cataloguing
- Photometric Calibration:2MASS

- Image Correction
 - Raw Images → "science-ready"
- Astrometric calibration:
 2MASS
- Object Cataloguing
- Photometric Calibration:
 2MASS

Single Epoch Processing

- Image Correction
 - Raw Images → "science-ready"
- Astrometric calibration:
 2MASS
 - CCD-by-CCD
- Object Cataloguing
- Photometric Calibration:
 2MASS
 - CCD-by-CCD

Single Epoch Processing

- Image Correction
 - Raw Images → "science-ready"
- Astrometric calibration:

2MASS

- CCD-by-CCD
- Object Cataloguing
- Photometric Calibration:2MASS
 - CCD-by-CCD

Single Epoch Processing

- Image Correction
 - Raw Images → "science-ready"
- Astrometric calibration:

GAIA-DR2

- CCD-by-CCD
- Object Cataloguing
- Photometric Calibration:

GAIA-DR2

CCD-by-CCD

Single Epoch Processing

- Image Correction
 - Raw Images → "science-ready"
- Astrometric calibration:

GAIA-DR2

- CCD-by-CCD
- Object Cataloguing
- Photometric Calibration:

GAIA-DR2

CCD-by-CCD

 "Fast" CCDs don't have to wait for slower ones

 "Fast" CCDs don't have to wait for slower ones

Single Epoch Parallelization Speedup (series: 0.9625 h; parallel: μ =0.15, median=0.13, σ =0.05)

 "Fast" CCDs don't have to wait for slower ones

Single Epoch Parallelization Speedup (series: 0.9625 h; parallel: μ =0.15, median=0.13, σ =0.05)

- "Fast" CCDs don't have to wait for slower ones
- But...

Single Epoch Parallelization Speedup (**series**: 0.9625 h; **parallel**: μ =0.15, median=0.13, σ =0.05)

- "Fast" CCDs don't have to wait for slower ones
- But...
 - do the results still make sense?
 - did we break something down the line?
 - Test on GW170817

- Run newly SE-processed images through DiffImg
 - Make sure we still identify the counterpart

Non-matching candidates with old SE (all 2MASS) vs. new SE (all GAIA)

- Run newly SE-processed images through Difflmg
 - Make sure we still identify the counterpart
- 135 unmatched objects (45%)!

Non-matching candidates with old SE (all 2MASS) vs. new SE (all GAIA)

- Run newly SE-processed images through DiffImg
 - Make sure we still identify the counterpart
- 135 unmatched objects (45%)!
 - 8 with ML score > 0.5

Non-matching candidates with old SE (all 2MASS) vs. new SE (all GAIA)

- Run newly SE-processed images through DiffImg
 - Make sure we still identify the counterpart
- 135 unmatched objects (45%)!
 - 8 with ML score > 0.5
 - 1 with ML score > 0.7 (ML=0.96)

Non-matching candidates with old SE (all 2MASS) vs. new SE (all GAIA)

- Run newly SE-processed images through DiffImg
 - Make sure we still identify the counterpart
- Unmatched objects are mostly junk

Difference images: new SE (left) vs. old SE (right)

- Run newly SE-processed images through Difflmg
 - Make sure we still identify the counterpart
- Unmatched objects are mostly junk
- Almost identical difference images

Difference images: new SE (left) vs. old SE (right) with counterpart

- Run newly SE-processed images through DiffImg
 - Make sure we still identify the counterpart
- Unmatched objects are mostly junk
- Almost identical difference images
 - Still found the counterpart!

Difference images: new SE (left) vs. old SE (right) with unmatched object (ML=0.96)

- Run newly SE-processed images through Difflmg
 - Make sure we still identify the counterpart
- Unmatched objects are mostly junk
- Almost identical difference images
 - ...Remember the lone unmatched object?

Next Steps

- Both search & template image calibration in parallel with GAIA (instead of 2MASS)
 - Understand the results
 - Was the 0.96 ML object an anomaly in camera pointing?
 - Why was it ultimately eliminated as a candidate?
- Integrate SE, verifySE, and DiffImg into one script
 - raw image → counterpart identification
- Test the full DES-GW pipeline in the mock observing run next week

Next Steps

- Both search & template image calibration in parallel with GAIA (instead of 2MASS)
 - Understand the results
 - Was the 0.96 ML object an anomaly in camera pointing?
 - Why was it ultimately eliminated as a candidate?
- Integrate SE, verifySE, and DiffImg into one script
 - raw image → counterpart identification
- Test the full DES-GW pipeline in the mock observing run next week

DES-GW Pipeline

Full Pipeline

DES-GW Pipeline

Full Pipeline

Next Steps

- Both search & template image calibration in parallel with GAIA (instead of 2MASS)
 - Understand the results
 - Was the 0.96 ML object an anomaly in camera pointing?
 - Why was it ultimately eliminated as a candidate?
- Integrate SE, verifySE, and DiffImg into one script
 - raw image → counterpart identification
- Test the full DES-GW pipeline in a mock observing run

Conclusion

- Parallelization: DES-GW image processing pipeline is faster without sacrificing accuracy
 - Allows us to discover counterpart ASAP, enabling detailed spectroscopic follow-up from the early stages of the kilonova
- Integration: Full process, from image capture to counterpart identification, is more streamlined
- The new pipeline will be employed by DES-GW in LIGO O3 in early 2019

Acknowledgements

- The Department of Energy
- The SIST Committee & the Computing Division
- Ken Herner, Jim Annis, Marcelle Soares-Santos, and the remainder of the DES-GW group

Questions?

Backup

Plot of ΔML as a function of averaged ML score: mostly clustered around 0, but many negative values for low ML scores

- Run newly SE-processed images through DiffImg
 - Make sure we still identify the counterpart
- Unmatched objects are mostly junk
- Similar machine learning (ML) scores

Plot of ΔML as a function of averaged ML score: mostly clustered around 0, but many negative values for low ML scores

- Run newly SE-processed images through DiffImg
 - Make sure we still identify the counterpart
- Unmatched objects are mostly junk
- Similar machine learning (ML) scores
 - Low scores are typically even lower in the new processing

Plot of ΔML as a function of averaged ML score: mostly clustered around 0, but many negative values for low ML scores

- Run newly SE-processed images through DiffImg
 - Make sure we still identify the counterpart
- Unmatched objects are mostly junk
- Similar machine learning (ML) scores
 - Low scores are typically even lower in the new processing

- Run newly SE-processed images through DiffImg
 - Make sure we still identify the counterpart
- Unmatched objects are mostly junk
- Similar machine learning (ML) scores
 - Left-skewed normal distribution

The Mysterious ML=0.96 Object

Also found in the z-band

Kilonova Light Curve

Detailed spectroscopic follow-up of GW170817 counterpart. This shows the importance of fast counterpart identification, which is enabled by the new pipeline. (Soares-Santos et al.)

Search-Temp = Diff

