Quantum Machine Learning for High Energy Physics

Quantum Contrastive Learning

Amey Bhatuse

Google Summer of Code 2024

Mid-term Evaluation

Contrastive Learning Framework

Data Augmentation Module - Aug()

Augmented views from same sample - positive pair Augmented views from different samples - negative pair

Encoder network - Enc()

Z1, Z2 = Representations for a positive pair

Objective

Learn encoder such that it minimizes distance between positive pairs and maximizes distance between negative pairs

Data Augmentation

- Random Horizontal flips
- Random Vertical flips
- Random Rotations
- Z-score Normalization

Data-Reuploading circuits (DRC)

Encoding (initialization) Random quantum circuit Decoding (Measurement) $q_0 > q_1 > q_2 > q_3 > q_4 > q_5 > q_5 > q_6 > q_6$

HYBRID

 Quantum Convolution layers followed by a classical Linear layer

Encoder

Output - N-dimensional vector

FULLY-QUANTUM

- Quantum Convolution layers followed by a parameterised quantum circuit
- Output 2ⁿ dimensional quantum state vector

Performance Evaluation - Classification using trained representations

Results - MNIST Os and 8s

Hybrid

Results - Quarks and Gluon images (Tracks)

Hybrid

Average of quark-gluon images for different channels

Challenges

- Capturing correlations between channels
- Different resolution for each channel

Next steps...

Quantum Graph Contrastive Learning

- Convert input samples into graphs
- Perform graph augmentations
- Use Graph NN as an encoder
- Use ideas from causal inference to capture correlations