To 20: Bode Plots

- 1 Transfer Function Review
- 2 Cutoff Freq
- 3 Bode Plot

Bode Plot:

Cutoff Frequency: Frequency in which the magnitude is attenuated by $\frac{1}{J_2}$ $|H(jw_c)| = \frac{1}{J_2}$

· Inspection:
$$H(jw) = \frac{k}{1+jvo}$$
 e.g. $H(jw) = \frac{1}{1+jwR}$

$$wc = k$$

$$\frac{Q_{L}(\alpha)}{j\omega L} = \frac{R}{R+j\omega L} = \frac{R}{R^{2}+(\omega L)^{2}}$$

$$\frac{A}{M}(j\omega) = \frac{A}{R} - \frac{A}{A}(R+j\omega L) = \frac{R}{R}$$

$$= 0 - atan2(\omega L, R) + ton\theta = \frac{\omega L}{R}$$

$$= 0 - atan2(\omega L, R) + ton\theta = \frac{\omega L}{R}$$

$$= 0 - atan2(\omega L, R) + ton\theta = \frac{\omega L}{R}$$

$$= 0 - atan2(\omega L, R) + ton\theta = \frac{\omega L}{R}$$

$$= 0 - atan2(\omega L, R)$$

$$\therefore W_{c} = \frac{R}{L} = \frac{R}{L} + \frac{j\omega L}{L} + \frac{j\omega L}{L} = \frac{R}{R+j\omega L} = \frac{R}{R^{2}+(\omega L)^{2}}$$

$$= \frac{A}{L} + \frac{A}{L} +$$

Vout(+) = [H1(jw)] · [H2(jw)] Vo cor (w+ + \$ + 4 H1 + 4H2)

 10^4

 10^{5}

-60 ∟ 10¹

10²

 10^{3}

ww

 10^{2}

 10^{1}

 10^{3}

 10^{4}

10⁵

