Discrete Mathematics Recitation Class

Tianyu Qiu

University of Michigan - Shanghai Jiaotong University

Joint Institute

Summer Term 2019

Contents

Functions

Function Properties Counting Sets Morphisms & Isomorphisms Fixed Points

 \mathbb{N}_{def}

Functions

Definitions

- 1. function (P89)
 - relation
 - uniqueness
- 2. $f''C = \{y | \exists x (x \in C \land (x, y) \in f)\} \subseteq ranf \subseteq B \text{ (P90)}$
- 3. $f \upharpoonright C = \{(x,y) | \exists x (x \in C \land (x,y) \in f)\} \subseteq f \text{ (P90)}$
- 4. injective functions (P90)
- 5. composing functions (P91)
- 6. inverses (P93)
- 7. identity function (P94)
- 8. surjective functions (P95)
- 9. bijection: both injective and surjective (P95)

Inverse Functions & Identity Functions (P94)

Lemma

Let $f: A \to B$ be a function. The relation f^{-1} is a function with $dom f^{-1} = ranf$ and $ranf^{-1} = A$ if and only if f is injective. Moreover, f^{-1} is injective and $f \circ f^{-1} = f^{-1} \circ f = id_A$

Proof.

Suppose $f: A \to B$, $w, x \in A$; $y, z \in B$

- 1. Given that f^{-1} is a function, then (according to the definition of function) for all $y \in B$ and for all $w, x \in A$ if $(y, x) \in f^{-1}$ and $(y, w) \in f^{-1}$, then w = x. This is also the definition of injection for f.
- 2. Given that f is injective, conversely we can have f^{-1} is a function as well as f^{-1} is injective.
- 3. For all $a \in A$, $b \in B$, if $(a, b) \in f$, then $(b, a) \in f^{-1}$, $f^{-1}(f(a)) = f^{-1}(b) = a, \ f(f^{-1}(b)) = f^{-1}(a) = b$

Cardinality (P96)

Lemma

If $f: A \to B$ and $g: B \to C$ are bijections, then $g \circ f$ is a bijection.

Proof.

For all $z \in C$, there exists a unique y that $(y,z) \in g$. Similarly, for all $y \in B$, there exists a unique X that $(x,y) \in f$. This means for all $z \in C$, there exists a unique x that $(x,z) \in g \circ f$, thus $g \circ f$ is a bijection.

Definitions

- 1. equal cardinality: bijection
- 2. small or equal cardinality: injection

If
$$|A| \leq |B|$$
, then $|A| = |C|$ for some $C \subseteq B$.

Examples for Cardinality (P97-P98)

e.g.

- 1. $|\mathbb{N}| = |2\mathbb{N}| (f : \mathbb{N} \to \mathbb{N}, f(n) = 2n)$
- 2. $|\mathbb{N}| = |\mathbb{N} \setminus \{1\}|$ since

$$f: \mathbb{N} \to \mathbb{N}, f(n) = \begin{cases} 0 & n=0\\ n+1 & n>0 \end{cases}$$

3. $|\mathbb{Z}| = |\mathbb{N} \setminus \{1\}|$ since

$$f: \mathbb{N} \to \mathbb{N}, f((-1)^k n) = egin{cases} 0 & n=0 \ 2n+k & n>0 \end{cases}$$

Theorem

$$|\mathbb{Z}| = |\mathbb{N}|$$
 (according to e.g.2 and e.g.3)

Countable Sets & Infinite Sets (P99-P100)

Definitions

For a set A

- 1. *infinite*: $f : A \rightarrow A$ is injective but not surjective.
- 2. countable: $|A| \leq |N|$.
- 3. countably infinite: both countable and infinite.

Lemma

If $f:A\to B$ and $g:B\to C$ are injective functions, then $g\circ f$ is an injective function.

Proof.

 $f': A \to ranf, f' = f$ is a bijection. $g': ranf \to ran(g \circ f), g' = g$ is a bijection. Thus $g' \circ f': A \to ran(g \circ f)$ is a bijection. Thus $g \circ f: A \to C$ is an injection.

Countable Sets & Infinite Sets (P101)

Lemma

If B is a countable set and $A \subseteq B$ then A is countable.

Proof.

$$|A| \le |B| \le |\mathbb{N}|$$
 (we can construct an injective function $f: A \to B, f(x) = x$ for $x \in A$)

Cantor's Pairing Function (P102)

Theorem

$$|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$$

Proof.

Cantor Pairing Function

$$\pi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$$

$$\pi(x,y) = \frac{1}{2}(x+y)(x+y+1) + y$$

Theorem

Cantor's Pairing Function $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is a bijection (according to the figure on the right).

Cantor's Theorem (P104)

Definition

|A| < |B|: exists injective functions, exists no bijective functions

Theorem

If A is a set, then there is no injection $f: \mathcal{P}(A) \to A$.

Proof.

This is a proof by contradiction. Let A be a set. Suppose that $f: \mathcal{P}(A) \to A$ is an injection. Since f is injective, $f^{-1}: ranf \to \mathcal{P}(A)$ is a bijection. Let $Z = \{x \in ranf | x \notin f^{-1}(x)\}$. Note that $Z \subseteq A$, and let z = f(Z). Now if $z \in f^{-1}(z) = Z$, then $z \notin f^{-1}(z)$, which is a contradiction. And if $z \notin f^{-1}(z)$, then $z \in Z = f^{-1}(z)$, which is a contradiction (recall Russell's Paradox).

Cantor's Theorem (P104)

Corollary (Cantor's Theorem)

If A is a set, then $|A| < |\mathcal{P}(A)|$.

Proof.

The function $f = \{(x, \{x\}) \in A \times \mathcal{P}(A) | x \in A\}$ is an injection.

Uncountable Sets (P105)

Definition

For a set A:

uncountable: not countable ($|A| > |\mathbb{N}|$, recall the definition of countable)

Cantor's Paradox in Naive Set Theory:

If V is the set of all sets, then $\mathcal{P}(V) \subseteq V$, which leads to a contradiction.

Morphisms & Isomorphisms (P106-P107)

- ▶ isomorphism: $(x,y) \in R$ iff $(f(x),f(y)) \in S$ (f is a bijection)
- ▶ homomorphism: $if(x,y) \in R$, then $(f(x), f(y)) \in S$

Isomorphisms are definitely homomorphisms.

Definition

Compare with monotone function in Calculus.

e.g.

- ▶ Let $a \in \mathbb{N}$ with $a \neq 0$. The function $f : \mathbb{N} \to \mathbb{N}$ defined by f(x) = ax is order-preserving from $(\mathbb{N}, ||)$ to $(\mathbb{N}, ||)$.
- ▶ The function $f: \mathbb{Z} \to \mathbb{Z}$ given by f(n) = n 1 is order-preserving from (\mathbb{Z}, \leqslant) to (\mathbb{Z}, \leqslant) , but $g: \mathbb{Z} \to \mathbb{Z}$ defined by g(n) = -n is not.

Fixed Points (P109)

Definition

$$f(x) = x$$

e.g.

The function $f: \mathcal{P}(\mathbb{N} \to \mathcal{P}(\mathbb{N}))$ defined by $f(X) = X \setminus \{0\}$ has the property that if $A \subseteq \mathbb{N}$ is such that $0 \notin A$, then A is a fixed point of f.

Tarski-Knaster Theorem (P110-P111)

Theorem

Let (L, \preceq) be a complete lattice. If $f: (L, \preceq) \to (L, \preceq)$ is an order-preserving function, then f has a (least) fixed point.

Proof.

Let $f:(L, \preceq) \to (L, \preceq)$ be order preserving. Consider

 $X = \{x \in L | f(x) \prec x\}$ and $a \in \Lambda X$

Claim I: If $x \in X$, then $f(x) \in X$. To see this, let $x \in X$.

Therefore $f(x) \leq x$. Since f is order preserving, $f(f(x)) \leq f(x)$.

This shows that $f(x) \in X$.

Claim II: f(a) is a lower bound on X. Since f is order preserving. $f(a) \leq f(x)$. Since $f(x) \leq x$, it follows that $f(a) \leq x$.

It follows from Claim II that $f(a) \leq a$, because a is the g.l.b. of X.

Therefore $a \in X$. So, by Claim I, $f(a) \in X$. Therefore $a \prec f(a)$

and a = f(a). So a is a fixed point of f.

Schröder-Bernstein Theorem (P112)

Theorem

Let A and B be sets. If there exists $f: A \rightarrow B$ that is injective and $g: B \to A$ that is injective, then there exists a bijection $h: A \to B$.

Proof.

Let $f: A \to B$ and $g: B \to A$ be injective functions. We know that $(\mathcal{P}(A),\subseteq)$ is a complete lattice. Define $F:\mathcal{P}(A)\to\mathcal{P}(A)$ by $F(X) = A \setminus g''(B \setminus f''X)$. F(X) is the complement of points in A mapped to be g from the points that are not in the range of f restricted to X.

Claim: F is order-preserving. To see this, let $Y \subseteq Z \subseteq A$. So $f''Y \subseteq f''Z$ and $B \setminus f''Z \subseteq B \setminus f''Y$. Therefore $g''(B \setminus f''Z) \subseteq g''(B \setminus f''Y)$. And so $F(Y) = A \setminus g''(B \setminus f''Y) \subseteq A \setminus g''(B \setminus f''Z).$

Schröder-Bernstein Theorem (P113)

Proof(continue).

By TK Theorem, F has a fixed point. Let $X \subseteq A$ be such that F(X) = X. Let C = rang. So $g^{-1}: C \to B$ is an injection and $A \setminus X \subseteq C$. Define

$$h = (f \upharpoonright X) \cup (g^{-1} \upharpoonright (A \setminus X))$$

Now, domh = A. We have $ran(g^{-1} \upharpoonright (A \setminus X)) = B \setminus f''X$, so ranh = B. Therefore $h: A \rightarrow B$ is a bijection.

Corollary

If
$$|A| \leq |B|$$
 and $|B| \leq |A|$, then $|A| = |B|$.

A Flawed Definition of \mathbb{N} (P114)

Let V be the set of all sets (does such V really exist?) and let L be the set of all sets that have \emptyset as a member:

$$L = \{x \in V | \emptyset \in x\}$$

 (L,\subset) is a complete lattice. (why?) Define the **successor** operation $S:V\to V$ by

$$S(x) = x \cup \{x\}$$
 for all $x \in V$

Define $F: L \to L$ such that for all $A \in L$,

$$F(A) = A \cup S''A$$

A Flawed Definition of \mathbb{N} (P115)

For all $A, B \in L$, if $A \subseteq B$, then $S''A \subseteq S''B$. So F is an order-preserving function on the complete lattice (L, \subseteq) . Therefore, by TK Theorem, F has a least fixed point. Let \mathbb{N}_{def} be the least fixed point of F. \mathbb{N}_{def} is the \subset -least set X such that

$$\emptyset \in X, S(\emptyset) \in X, S(S(\emptyset)) \in X, \cdots$$

By defining

$$0 := \emptyset$$

$$1 := S(\emptyset) = \{\emptyset\}$$

$$2 := S(S(\emptyset)) = \{\emptyset, \{\emptyset\}\}$$

$$\vdots$$

The set \mathbb{N}_{def} interprets the natural numbers.

A Flawed Definition of N (P116)

$$\mathbb{N}_{def} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \cdots\}$$

Set n has n elements (cardinality), thus we can define addition(+) and multiplication(·) in \mathbb{N} :

Let
$$m = \{0, 1\}, k = \{2, 3\}$$

Addition(+):
$$|m| = 2$$
, $|k| = 2$, $m \cap k = \emptyset$
 $|m \cup k| = |\{0, 1, 2, 3\}| = |m| + |k| = 4 = |n|$
 $n = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset\}\}\}\}\}$
Multiplication(·): $|k \times m| = |\{(0, 2), (2, 3), (1, 2), (1, 3)\}| = 4 = |n|$
 $\forall n \in \mathbb{N}_{def}, S(n) = n + 1$

Properties of \mathbb{N}_{def} (P118)

- ► + & · : commutativity, associativity, distributivity, identity
- ▶ \leqslant : a well ordering of \mathbb{N}_{def}
- ▶ Every $n \in \mathbb{N}_{def}$ except 0 is the successor of some $k \in \mathbb{N}_{def}$, i.e. n = k + 1.
- N_{def} satisfies the principle of induction. If a peoperty P(x) is such that P(0) holds, and $\forall n \in \mathbb{N}_{def}$, if P(n) holds, then P(n+1) holds, then $\forall n \in \mathbb{N}_{def}$, P(n) holds. (proof by contradiction (P119))