Views: Making Access Easy

```
CREATE VIEW V AS
   SELECT ... FROM ... WHERE ...;
```

Views: Making Access Easy

```
CREATE VIEW V AS
   SELECT ... FROM ... WHERE ...;
```

- Real tables are introduced by the CREATE TABLE-clause. They are also called base tables.
- A view can be used wherever we expect a table in an SFW-expression.

Views: Making Access Easy

```
CREATE VIEW V AS
SELECT ... FROM ... WHERE ...;
```

- Real tables are introduced by the CREATE TABLE-clause. They are also called base tables.
- A view can be used wherever we expect a table in an SFW-expression.

```
CREATE VIEW Capital-Info AS
SELECT Capital, Inhabitants
FROM Country, City
WHERE Country.CoCode = City.CoCode;
```

Views: Making Access Easy

```
CREATE VIEW V AS
   SELECT ... FROM ... WHERE ...:
```

- Real tables are introduced by the CREATE TABLE-clause. They are also called hase tables
- A view can be used wherever we expect a table in an SFW-expression.

```
CREATE VIEW Capital-Info AS
  SELECT Capital, Inhabitants
  FROM Country, City
   WHERE Country.CoCode = City.CoCode;
SELECT * FROM Capital-Info
   WHERE Inhabitants =
      ( SELECT MAX(Inhabitants) FROM Capital-Info );
```

Dynamics: Insert, Delete and Update

A new EU-member.

```
INSERT INTO Membership (CoCode, Organization, Status)
  VALUES ('PL', 'EU', 'member')
```

Dynamics: Insert, Delete and Update

A new EU-member.

```
INSERT INTO Membership (CoCode, Organization, Status)
VALUES ('PL', 'EU', 'member')
```

```
INSERT INTO Country ( CoCode )

SELECT DISTINCT M.CoCode

FROM Membership M

WHERE NOT EXISTS (

SELECT L.CoCode

FROM Country L

WHERE L.CoCode = M.CoCode)
```

Sequence-numbers — mostly used as surrogate keys (the Oracle way)

```
CREATE TABLE Country(
  COID INTEGER GENERATED ALWAYS AS IDENTITY
   ( START WITH 1
   INCREMENT BY 1
  MINVALUE 1
  MAXVALUE 100000
  NO CYCLE),
   ...)
```

Sequence-numbers — mostly used as surrogate keys (the Oracle way)

```
CREATE TABLE Country(
   COID INTEGER GENERATED ALWAYS AS IDENTITY
   ( START WITH 1
   INCREMENT BY 1
  MINVALUE 1
  MAXVALUE 100000
  NO CYCLE),
   ...)
```

Sequence-numbers (the Postgresql way)

```
CREATE TABLE Country(
   CoID SERIAL,
   ...)
```

Sequence-numbers — mostly used as surrogate keys (the Oracle way)

```
CREATE TABLE Country(
   CoID INTEGER GENERATED ALWAYS AS IDENTITY
   ( START WITH 1
   INCREMENT BY 1
   MINVALUE 1
   MAXVALUE 100000
   NO CYCLE),
   ...)
```

Sequence-numbers (the Postgresql way)

```
CREATE TABLE Country(
CoID SERIAL,
...)
```

Insertion for both

```
INSERT INTO Country
  (CoName, CoCode, Capital)
  VALUES ( 'Bavaria', 'BY', 'Munich')
```

DELETE FROM City

DELETE FROM City It deletes all tuples!

DELETE FROM City It deletes all tuples!

DELETE FROM City
WHERE Longitude < 90;

DELETE FROM City It deletes all tuples!

```
DELETE FROM City
   WHERE Longitude < 90;
```

```
UPDATE City
  SET Inhabitants = Inhabitants * 1.1,
      ...WHERE Inhabitants > 1000;
```

Integrity constraints

- Integrity constraints define the legal states of a database.
- The DBMS guarantees that all integrity constraints are obeyed.

Integrity

Integrity constraints

- Integrity constraints define the legal states of a database.
- The DBMS guarantees that all integrity constraints are obeyed.
- Primary key and foreign key clauses express integrity constraints.
 No null-values and no duplicates allowed for primary keys!

Integrity

Integrity constraints

- Integrity constraints define the legal states of a database.
- The DBMS guarantees that all integrity constraints are obeyed.
- Primary key and foreign key clauses express integrity constraints. No null-values and no duplicates allowed for primary keys!
- There are also domain constraints: CREATE TABLE Location (Continent VARCHAR(35) NONNULL, Percentage NUMBER DEFAULT 100);

Integrity constraints

- Integrity constraints define the legal states of a database.
- The DBMS guarantees that all integrity constraints are obeyed.
- Primary key and foreign key clauses express integrity constraints.
 No null-values and no duplicates allowed for primary keys!
- There are also *domain* constraints:

```
CREATE TABLE Location (
Continent VARCHAR(35) NONNULL,
Percentage NUMBER DEFAULT 100);
```

■ More general constraints need the *check*-clause:

```
CREATE TABLE City (
Longitude NUMBER,
Latitude NUMBER,
CHECK (Longitude BETWEEN -180 AND 180),
CHECK (Latitude BETWEEN -90 AND 90));
```



```
CREATE TABLE Province (
  PrName VARCHAR(35),
  CoCode VARCHAR(4),
  PRIMARY KEY (PrName, CoCode),
  FOREIGN KEY (CoCode) REFERENCES Country (CoCode) )
```

```
CREATE TABLE Province (
  PrName VARCHAR(35),
  CoCode VARCHAR(4),
  PRIMARY KEY (PrName, CoCode),
  FOREIGN KEY (CoCode) REFERENCES Country (CoCode) )
CREATE TABLE Border (
  CoCode1 VARCHAR(4),
  CoCode2 VARCHAR(4),
  Length INTEGER,
  PRIMARY KEY (CoCode1, CoCode2),
   FOREIGN KEY (CoCode1) REFERENCES Country (CoCode),
  FOREIGN KEY (CoCode2) REFERENCES Country (CoCode) )
```

```
CREATE TABLE Province (
  PrName VARCHAR(35),
  CoCode VARCHAR(4),
  PRIMARY KEY (PrName, CoCode),
  FOREIGN KEY (CoCode) REFERENCES Country (CoCode) )
CREATE TABLE Border (
  CoCode1 VARCHAR(4),
  CoCode2 VARCHAR(4),
  Length INTEGER,
  PRIMARY KEY (CoCode1, CoCode2),
  FOREIGN KEY (CoCode1) REFERENCES Country (CoCode),
  FOREIGN KEY (CoCode2) REFERENCES Country (CoCode) )
CREATE TABLE City ( ...
  PRIMARY KEY (CiName, CoCode, PrName),
   FOREIGN KEY (CoCode) REFERENCES Country (CoCode),
  FOREIGN KEY (CoCode, PrName) REFERENCES Province (CoCode, PrName) )
```

Without any additional provisions the DBMS will cancel all operations on a databse which are going to violate integrity constraints.

Without any additional provisions the DBMS will cancel all operations on a databse which are going to violate integrity constraints.

To retain referential integrity we can specify actions that maintain consistency; these are the *referential* actions.

Without any additional provisions the DBMS will cancel all operations on a databse which are going to violate integrity constraints.

To retain referential integrity we can specify actions that maintain consistency; these are the referential actions.

For a given FOREIGN KEY-clause, the table containing the clause is called (child) C-table and the referenced table is called (parent) P-table.

Without any additional provisions the DBMS will cancel all operations on a databse which are going to violate integrity constraints.

To retain referential integrity we can specify actions that maintain consistency; these are the referential actions.

For a given FOREIGN KEY-clause, the table containing the clause is called (child) C-table and the referenced table is called (parent) P-table.

Referential actions are part of the C-table; they state what has to happen when a DELETE- or UPDATE-operation executed with respect to the corresponding P-table violates referential integrity.

```
CREATE TABLE Province (
  FOREIGN KEY (CoCode) REFERENCES Country (CoCode)
      ON DELETE CASCADE ON UPDATE NO ACTION )
```

```
CREATE TABLE Province (
  FOREIGN KEY (CoCode) REFERENCES Country (CoCode)
      ON DELETE CASCADE ON UPDATE NO ACTION )
CREATE TABLE City (
  PRIMARY KEY (CiNAME)
  FOREIGN KEY (CoCode, PrName)
      REFERENCES Province (CoCode, PrName)
      ON DELETE SET NULL ON UPDATE SET DEFAULT )
```

```
DROP TABLE T4: DROP TABLE T3: DROP TABLE T2: DROP TABLE T1:
CREATE TABLE T1( k1 INTEGER, PRIMARY KEY(k1) ):
CREATE TABLE T2( k2 INTEGER, k1 INTEGER,
PRIMARY KEY(k2), FOREIGN KEY(k1) REFERENCES T1(k1) ON DELETE CASCADE );
CREATE TABLE T3( k3 INTEGER, k1 INTEGER,
PRIMARY KEY(k3). FOREIGN KEY(k1) REFERENCES T1(k1) ON DELETE CASCADE ):
CREATE TABLE T4( k4 INTEGER, k2 INTEGER, k3 INTEGER, PRIMARY KEY(k4).
FOREIGN KEY(k2) REFERENCES T2(k2) ON DELETE CASCADE.
FOREIGN KEY(k3) REFERENCES T3(k3) ON DELETE SET NULL ):
INSERT INTO T1(k1) VALUES(1): INSERT INTO T1(k1) VALUES(2):
INSERT INTO T2(k2,k1) VALUES(21,1); INSERT INTO T2(k2,k1) VALUES(22,2);
INSERT INTO T3(k3.k1) VALUES(31.1): INSERT INTO T3(k3.k1) VALUES(32.2):
INSERT INTO T4(k4.k2.k3) VALUES(41.21.31):
INSERT INTO T4(k4,k2,k3) VALUES(42,22,32);
INSERT INTO T4(k4.k2.k3) VALUES(43.22.31):
delete from T1 where k1 = 2:
```

Trigger: A Powerful Machanism Based on Events

T1 K1 T2 T4 K4 K3

```
/* DELETE CASCADE bei T2->T1 and T3->T1 */
CREATE TRIGGER t1delete_t2undt3
   AFTER DELETE ON T1 REFERENCING OLD as oldrow
   FOR EACH ROW
   BEGIN DELETE FROM T2 WHERE k1=oldrow.k1;
          DELETE FROM T3 WHERE k1=oldrow.k1: END
/* DELETE CASCADE bei T4->T2 */
CREATE TRIGGER t2delete t4
   AFTER DELETE ON T2 REFERENCING OLD as oldrow
   FOR EACH ROW DELETE FROM T4 WHERE k2=oldrow.k2:
/* DELETE RESTRICT bei T4->T3 */
CREATE TRIGGER t3delete t4
   AFTER DELETE ON T3 REFERENCING OLD as oldrow
   FOR EACH ROW DELETE FROM T4 WHERE k3 = oldrow.k3
```

On Triggers

- Triggers are Event-Condition-Action (ECA)-rules
- they execute when the event occurs and the condition is fulfilled.
- Powerful mechanism to check and possibly correct violations of integrity.
- Executing a trigger may activate another trigger, and so on. Danger of nontermination!

Outlook: Analysis

Online Analytical Processing (OLAP): ROLLUP and CUBE

SALES							
Model	Year	Color	Sales				
Chevy	1990	red	5				
Chevy	1990	white	87				
Chevy	1990	blue	62				
Chevy	1991	red	54				
Chevy	1991	white	95				
Chevy	1991	blue	49				
Chevy	1992	red	31				
Chevy	1992	white	54				
Chevy	1992	blue	71				
Ford	1990	red	64				
Ford	1990	white	62				
Ford	1990	blue	63				
Ford	1991	red	52				
Ford	1991	white	9				
Ford	1991	blue	55				
Ford	1992	red	27				
Ford	1992	white	62				
Ford	1992	blue	39				

ROLLUP(M, Y, C)

	ROLLUP		
Model	Year	Color	Sales
Chevy	1990	blue	62
Chevy	1990	red	5
Chevy	1990	white	87
Chevy	1990	ALL	154
Chevy	1991	blue	49
Chevy	1991	red	54
Chevy	1991	white	95
Chevy	1991	ALL	198
Chevy	1992	blue	71
Chevy	1992	red	31
Chevy	1992	white	54
Chevy	1992	ALL	156
Chevy	ALL	ALL	508
Ford	1990	blue	63
Ford	1990	red	64
Ford	1990	white	62
Ford	1990	ALL	189
Ford	1991	blue	55
Ford	1991	red	52
Ford	1991	white	9
Ford	1991	ALL	116
Ford	1992	blue	39
Ford	1992	red	27
Ford	1992	white	62
Ford	1992	ALL	128
Ford	ALL	ALL	433
ALL	ALL	ALL	941

					DATA CUBE							
					Model	Year	Color	Sales				
					Chevy	1990	blue	62	•			
					Chevy	1990	red	5				
					Chevy	1990	white	87				
					Chevy	1990	ALL	154				
					Chevy	1991	blue	49				
					Chevy	1991	red	54				
SALES					Chevy	1991	white	95				
Model	Year	Color	Sales		Chevy	1991	ALL	198				
Chevy	1990	red	5		Chevy	1992	blue	71	:			
Chevy	1990	white	87		Chevy	1992	red	31	54 ALL 156 ALL 182 ALL	1990 1990 1990	blue red white	125 69 149
Chevy	1990	blue	62		Chevy	1992	white					
Chevy	1991	red	54		Chevy	1992	ALL	156				
Chevy	1991	white	95		Chevy	ALL	blue	182				
Chevy	1991	blue	49	_ ⇒	Chevy	ALL	red	90 ALL 236 ALL	1990 1991	ALL	343	
Chevy	1992	red	31	\overrightarrow{CUBE} (M, Y, C)	Chevy	ALL	white			blue	106	
Chevy	1992	white	54	$(M \vee C)$	Chevy	ALL	ALL	508	ALL	1991	red white	104
Chevy	1992	blue	71	(W, T, C)	Ford	1990	blue	63	ALL ALL	1991 1991	ALL	110 314
Ford	1990	red	64		Ford	1990	red	64			blue	
Ford	1990	white	62		Ford	1990	white	62	ALL	1992 1992		110
Ford	1990	blue	63		Ford	1990	ALL	189	ALL ALL	1992	red white	58
Ford	1991	red	52		Ford	1991	blue	55	ALL	1992	ALL	116 284
Ford	1991	white	9		Ford	1991	red	52	ALL	ALL	blue	
Ford	1991	blue	55		Ford	1991	white	9	ALL	ALL	red	339 233
Ford	1992	red	27		Ford	1991	ALL	116	ALL	ALL	rea white	369
Ford	1992	white	62		Ford	1992	blue	39		ALL	ALL	941
Ford	1992	blue	39		Ford	1992	red	27	ALL	ALL	ALL	941
					Ford	1992	white	62				
					Ford	1992	ALL	128				
					Ford	ALL	blue	157				
					Ford	ALL	red	143				
					Ford	ALL	white	133				
					Ford	ALL	ALL	433				

OLAP Useful for *Datawarehouse*-applications, i.e. applications based on *historical* data. This is in contrast to *Online Transaction Processing* (OLTP), i.e. applications on the *production* data.

OLAP in SQL

```
SELECT Model, Year, Color, sum(Sales)
FROM SALES
GROUP BY ROLLUP(Model, Year, Color)
SELECT Model, Year, Color, sum(Sales)
FROM SALES
GROUP BY CUBE(Model, Year, Color)
```