Principles of Cryptography Problem Sheet 2 Solutions

Dr. Kurunandan Jain¹†,

¹Department of Mathematics, Amrita Vishwa, Amrita Campus, Kollam-690525, Kerala, India

(Received xx; revised xx; accepted xx)

1) $y_i \equiv x_i + K_i \mod 26 \ x_i \equiv y_i - K_i \mod 26$

The keystream is a sequence of random integers from \mathbb{Z}_{26}

 $x_1 = y_1 - K_1 = B - R = 1 - 17 = -16 \equiv 10 \mod 26 = K$ continue this pattern and we get the decrypted text: KASPAR HAUSER

- 2) We need 128 pairs of plaintext and ciphertext bits in order to determine the keys, s_i is being computed by the formula $s_i = x_i \oplus y_i$ where $i = 0, 1, 2, \dots 128$
 - 3) See the first and second figures at the end of the answers
 - c) The two sequences are shifted versions of one another
 - 4) See the third figure at the end of the answers

So the resulting first two output bytes are 10010000111111111

5) $S(x_1) \oplus S(x_2) = 1110$ and $S(x_1 \oplus x_2) = 0000$.

They are not equal

b) $S(x_1) \oplus S(x_2) = 1001$ and $S(x_1 \oplus x_2) = 1000$.

They are not equal

c) $S(x_1) \oplus S(x_2) = 1010$ and $S(x_1 \oplus x_2) = 1101$.

They are not equal

6) $S_1(000000) = 14 = 1110$

 $S_2(000000) = 15 = 1111$

 $S_3(000000) = 10 = 1010$

 $S_4(000000) = 7 = 0111$

 $S_5(000000) = 2 = 0010$

 $S_6(000000) = 12 = 1100$

 $S_7(000000) = 4 = 0100$

 $S_8(000000) = 13 = 1101$

P(S) = D8D8DBBC

 $(L_1, R_1) = (0000 \ 0000 \ D8D8 \ DBBC)$

7) IP(x) maps bit position 57 to position 33, which is position 1 in in R_0

E-Expansion box maps bit position 1 to positions 2 and 48.

Therefore the input to S-boxes are: $S_1=010000$ and $S_2=000000=S_3=S_4=S_5=S_6=S_7$ and $S_8=000001$

Two S-boxes get a different input

P(S) = D058 5B9E and thus $(L_1, R_1) = 80000 0000 D058 5B9E$

- a) 2 S-boxes get a different input S_1 and S_8
- b) According to design criteria, a minimum of 2 bits/bit, thus 4 bits.
- c) See above.
- d) 6 bits have changed, 3 from S_1 2 from S_8 and 1 in the left half.
- 8) See the fourth figure on the last page See the third figure at the end of the answers
- 9) Multiplying A(x) and B(x) together yields

1. Sequence 1: z₀ = 001111010011101...

2. Sequence 2: $z_0 = 11010011101011...$

S ₇	S ₆	S ₅	5 ₄ − 1	S ₃	s ₂	s ₁	\$0	
1	1	1	1	1	1	1	1	$=Z_0$
0	1	1	1	1	1	1	1	$=Z_1$
0	0	1	1	1	1	1	1	$= \mathbf{Z}_2$
0	0	0	1	1	1	1	1	
0	0	0	0	1	1	1	1	
1	0	0	0	0	1	1	1	
0	1	0	0	0	0	1	1	
0	0	1	0	0	0	0	1	
1	0	0	1	0	0	0	0	
1	1	0	0	1	0	0	0	
1	1	1	0	0	1	0	0	
0	1	1	1	0	0	1	0	
0	0	1	1	1	0	0	1	
1	0	0	1	1	1	0	0	
0	1	0	0	1	1	1	0	$= Z_{14}$
0	0	1	0	0	1	1	1	= Z ₁₅

Multiplication table for $GF(2^3)$, $P(x) = x^3 + x + 1$													
×	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$					
0	0	0	0		0	0	0	0					
1	0	1				$x^2 + 1$							
x			x^2				$x^2 + x + 1$	$x^2 + 1$					
x+1	0	x+1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x					
			x+1					1					
			1										
$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x+1	X	x^2					
$x^2 + x + 1$	0 :	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^2 + x$	x^2	x+1					

$$(x^{2}+1)(x^{3}+x^{2}+1) = x^{5}+x^{4}+2x^{2}+x^{3}+1$$

 $(x^2+1)(x^3+x^2+1)=x^5+x^4+2x^2+x^3+1$ After division we obtain the remainder x^3-x^2 which is the same as x^3+x^2 and thus the answer is $C(x)=x^3+x^2$ b) $(x^2+1)(x+1)=x^3+x^2+1$ after division it's clear the remainder is $C(x)=x^3+x^2+1$

b)
$$(x^2+1)(x+1) = x^3+x^2+1$$
 after division it's clear the remainder is $C(x) = x^3+x^2+1$