

XL4005 DEMO BOARD MANUAL

一: XL4005 12V 转 5V 应用电路测试数据:

1.XL4005 12V 转 5V (负载 0.01A~5A) 应用电路图:

2. XL4005 12V 转 5V (负载 0.01A~5A) 测试数据及效率图:

输入电压(V)	输入电流(A)	输出电压(V)	输出电流(A)	效率 (%)
12.072	0.234	5.008	0.5	88.64
11.997	0.461	5.008	1	90.55
11.920	0.694	5.004	1.5	90.73
11.834	0.935	5.004	2	90.45
11.748	1.182	5.001	2.5	90.04
11.655	1.443	4.995	3	89.10
11.603	1.707	4.993	3.5	88.23
11.513	1.978	4.986	4	87.58
11.443	2.253	4.976	4.5	86.85
11.394	2.531	4.970	5	86.17

二: XL4005 24V 转 12V 应用电路测试数据:

1.XL4005 24V 转 12V (负载 0.01A~5A) 应用电路图:

2. XL4005 24V 转 12V (负载 0.01A~5A) 测试数据及效率:

输入电压(V)	输入电流(A)	输出电压 (V)	输出电流 (A)	效率 (%)
24.02	0.288	12.12	0.5	87.60
23.93	0.553	12.11	1	91.51
23.84	0.820	12.09	1.5	92.77
23.75	1.091	12.07	2	93.16
23.65	1.364	12.05	2.5	93.39
23.58	1.647	12.02	3	92.85
23.51	1.924	11.99	3.5	92.77
23.44	2.206	11.96	4	92.52
23.37	2.487	11.92	4.5	92.29
23.34	2.766	11.90	5	92.16

三: XL4005 PCB 板布局建议:

- (1) 流大电流的线要粗,短,不拐弯。
- (2)1 脚(GND) 脚(VIN)线要粗,短线,不拐弯,且输入电解电容 CIN 和 105 C1 陶瓷电容紧挨第 5 脚,5 (VIN)和 1 脚(GND)。(主要是为了减小输入电源布线寄生的电感,电阻产生的高压开关毛刺干扰)
- (3) 3 脚(SW) 输出线要粗,短线,不拐弯,电感和续流二极管要紧挨第 3 脚(SW) 输出端。
- (4) 2 脚 (FB) 走线要接到输出滤波电容 C2,COUT 之后, PCB 布线远离 L1,D1,避免噪声干扰。
- (5) 增加 PCB 板铜薄的厚度。(DEMO 板用 130um 厚铜薄双面 PCB 板材料)
- (6) 适当的增加 XL4005 芯片衬底与 PCB 板的接触面积,提高芯片散热能力,注意 XL4005 芯片衬底是 SW 端。

输入电解电容 CIN,陶瓷电容 C1 布局布线 要紧靠芯片 1 脚(GND)和 5 脚(VIN) 反馈点要接到输出滤波电容 C2,COUT 之后 且远离 L1,D1,避免噪声干扰

大电流走线要粗,短,不拐弯

四: XL4005 温度测试数据

1.XL4005 电路图和 PCB 图

2: XL4005 DEMO 板工作时(12V 转 5V)各元件温度,自然通风,室温: 27℃。

	1A	1.5A	2A	2.5A	3A	3.5A	4A	4.5A	5A
XL4005	30℃	31℃	33℃	35℃	38℃	39℃	41℃	43℃	48℃
电感	29℃	30℃	31℃	33℃	35℃	36℃	39℃	40℃	43℃
肖特基二极管	31℃	32℃	34℃	36℃	39℃	41℃	45℃	47℃	50℃
输入电容	28℃	29℃	30℃	31℃	32℃	34℃	35℃	37℃	39℃
输出电容	28℃	29℃	30℃	32℃	33℃	35℃	36℃	38℃	40°C

3: XL4005DEMO 板工作时(24V 转 12V)各元件温度,自然通风,室温: 27℃。

	1A	1.5A	2A	2.5A	3A	3.5A	4A	4.5A	5A
XL4005	32℃	33℃	36℃	39℃	43℃	46℃	48℃	54℃	58℃
电感	35℃	37℃	38℃	40℃	43℃	44℃	46℃	47℃	49℃
肖特基二极管	31℃	34℃	36℃	39℃	44℃	46℃	49℃	56℃	58℃
输入电容	28℃	29℃	31℃	33℃	34℃	36℃	37℃	38℃	39℃
输出电容	28℃	29℃	31℃	33℃	35℃	37℃	39℃	40℃	42℃

五: XL4005 实现恒流具体方案

1 XL4005 恒流原理图

说明: 先把 RCS 的功耗降下来,把 VRCS 放大几倍之后与FB关联。 其中放大器 VAR1=VRCS(1+R6/R5),例如设定恒流电路单路 ICS =300mA,RCS=0.33R,那么 VCS=RCS*ICS 0.099V 由于 VAR1=0.8V 那么放大器调解成放大 8.倍,那么 R5,R6 的值就可以得出来了。

昆山东森微电子有限公司

手机: 15950933050 电话: 0512-50710709 传真: 0512-50111209

代理:集成电路、光耦、MOS管、可控硅、各类二三极管、桥堆