Derivate

• Definizione di rapporto incrementale di una funzione in un punto x_0

Data una funzione y = f(x), ed un punto x_0 appartenente al dominio D di f(x), si chiama rapporto incrementale della funzione f(x) nel punto x_0 il rapporto:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + h) - f(x_0)}{h}$$

 $\Delta y = f(x_0 + h) - f(x_0)$ si chiama incremento della variabile y. $\Delta x = (x_0 + h) - x_0 = h$ si chiama incremento della variabile x.

• Definizione di derivata in un punto x_0

Data una funzione y = f(x), ed un punto x_0 appartenente al dominio D di f(x), si definisce **derivata prima di f(x) nel punto x_0**, e si chiama $f'(x_0)$, il limite del rapporto incrementale di f(x) in x_0 , per l'incremento $h \to 0$, ovvero:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Tale limite deve:

- esistere (ovvero: 1) non deve essere indefinito, come per $\lim_{x\to\infty} sen(x)$; 2) deve essere $\lim_{sx} = \lim_{dx} sen(x)$
- essere finito $(\ell \neq \pm \infty)$

• Definizione di derivata destra e sinistra in un punto x_0

Derivata sinistra: Il limite sinistro (se esiste e se è finito) del rapporto incrementale di f(x) in x_0

$$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$

Derivata destra: Il limite destro (se esiste e se è finito) del rapporto incrementale di f(x) in x_0

$$f'_{+}(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

• Definizione di derivata di f(x)

Se una funzione f(x) è derivabile in ogni punto x_0 di un intervallo I, si dice che f(x) è derivabile nell'intervallo I. In particolare, se f(x) è derivabile in ogni punto x_0 del suo dominio D, si può parlare di derivata di f(x).

Quindi:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Notazioni per la derivata di f(x)

La derivata di f(x) si può trovare scritta in più modi:

$$f'(x)$$
 ; $D(f(x))$; $\frac{d(f(x))}{dx}$

Esempio. Data $f(x) = \frac{1}{sen(x)}$, per riferirsi alla derivata di f(x), posso trovare scritto:

$$f'(x)$$
; $D\left(\frac{1}{sen(x)}\right)$; $\frac{d\left(\frac{1}{sen(x)}\right)}{dx}$; $\frac{d}{dx}\left(\frac{1}{sen(x)}\right)$

La notazione formale, ovvero $\frac{d(f(x))}{dx}$, significa: studio il rapporto fra l'incremento Δy , ovvero $\Delta f(x)$, e l'incremento Δx .

• Significato geometrico della derivata in x_0

Dato il punto P_0 di coordinate $(x_0, f(x_0))$, geometricamente, la derivata $f'(x_0)$ rappresenta la tangente t che ha coefficiente angolare $m = f'(x_0)$.

Errore comune: "Ci sono mille possibili "tangenti" di f(x) in P (rette che toccano f(x) solo su P). Quale considero?" Una retta tangente ad f(x) in P **sfiora** f(x) in un solo punto P. Una retta secante **interseca** f(x) in un uno o più punti.

Per trovare l'equazione della retta y = mx + q che tange f(x) nel punto P_0

- 1) Calcolo $f'(x_0)$, così si ottiene il coefficiente angolare m
- 2) uso l'equazione del fascio di rette per un punto, $y-y_0=m\cdot(x-x_0)$, mettendo quindi $y-f(x_0)=f'(x_0)\cdot(x-x_0)$

Perché $f'(x_0)$ rappresenta il coefficiente della tangente al punto P_0 ? Basta guardare la figura della retta passante per i punti $P_1(x_0, f(x_0))$, $P_2(x_0 + h, f(x_0 + h))$.

Con $h \to 0$, i due punti si avvicinano sempre più, fino a coincidere, per cui la retta tocca la curva f(x) in un solo punto.

Come determinare una derivata con la definizione

Esempio:

$$f(x) = 3x^2 - 2x$$

Derivata di f(x) usando le derivate notevoli e le proprietà (a seguire):

$$D(3x^2 - 2x) = D(3x^2) - D(2x) = (6x) - (2)$$

Derivata di f(x) usando la definizione di derivata:

$$D(3x^{2} - 2x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{[3 \cdot (x+h)^{2} - 2(x+h)] - [3x^{2} - 2x]}{h} = \lim_{h \to 0} \frac{[3x^{2} + 6xh + 3h^{2} - 2x - 2h] - [3x^{2} - 2x]}{h} = \lim_{h \to 0} \frac{3h^{2} + 6xh - 2h}{h} = \lim_{h \to 0} \frac{h \cdot (3h + 6x - 2)}{h} = \lim_{h \to 0} (3h + 6x - 2) = 3 \cdot (0) + 6x - 2 = 6x - 2$$

Derivate Notevoli

A differenza dei limiti notevoli, che richiedono dimostrazioni, tutte le derivate notevoli sono calcolabili manualmente utilizzando la definizione di derivata.

Derivate di funzioni esponenziali				
D(k) = 0 ; con k costante				
$D(x^n) = n \cdot x^{n-1}$; con n costante				
$D\left(\frac{1}{x^n}\right) = D(x^{-n}) = -n \cdot x^{(-n-1)} = -\frac{n}{x^{n+1}}$				
$D(\sqrt[n]{x}) = D\left(x^{\frac{1}{n}}\right) = \frac{1}{n} \cdot x^{\left(\frac{1}{n}-1\right)} = \frac{1}{n \cdot \left(x^{\frac{n-1}{n}}\right)} = \frac{1}{n \cdot \sqrt[n]{x^{(n-1)}}}$				
$D(\log_a(x)) = \frac{1}{x} \cdot \log_a e \iff \frac{1}{x} \cdot \frac{1}{\ln(a)}$	$D(\ln(x)) = \frac{1}{x} \cdot \log_e e = \frac{1}{x}$			
$D(a^{x}) = a^{x} \cdot \ln(a) \Leftrightarrow a^{x} \cdot \frac{1}{\log_{a}(e)}$	$D(e^x) = e^x \cdot \log_e(e) = e^x$			
$D(x) = \frac{x}{ x } \Longleftrightarrow \frac{ x }{x}$				

Errore comune:

 $D(x^x) \neq x \cdot (x^{x-1})$, perché c'è una funzione, non una costante, all'esponente; x^x è una funzione elevata a funzione, e va usata la regola per $D(f(x)^{g(x)})$, che si trova nella pagina a seguire.

$\begin{aligned} & \overline{Derivate \ di \ funzioni \ goniometriche} \\ & \overline{D(sen(x)) = \cos(x)} \\ & \overline{D(\cos(x)) = -sen(x)} \\ & \overline{D(tg(x))} = \begin{cases} \frac{1}{\cos^2(x)} \\ 1 + tg^2(x) \end{cases} \\ & \overline{Perché: D(tg(x))} = D\left(\frac{sen(x)}{\cos(x)}\right) = [\dots] = \frac{1}{\cos^2(x)} = \frac{\cos^2(x) + sen^2(x)}{\cos^2(x)} = \frac{\cos^2(x)}{\cos^2(x)} + \frac{sen^2(x)}{\cos^2(x)} = 1 + tg^2(x) \end{aligned}$ $& \overline{D(\cot g(x))} = \begin{cases} -\frac{1}{sen^2(x)} \\ -1 - \cot g^2(x) \end{cases}$ $& \overline{D(arcsen(x))} = \frac{1}{\sqrt{1-x^2}}$ $& \overline{D(arccos(x))} = -\frac{1}{\sqrt{1-x^2}}$ $& \overline{D(arctg(x))} = \frac{1}{1+x^2}$ $& \overline{D(arccotg(x))} = -\frac{1}{1+x^2}$

Le derivate delle funzioni goniometriche inverse (arcsen, ...) conviene impararle a memoria, piuttosto che provare a ricavarle (richiedono destrezza con la notazione $\frac{dy}{dx}$, e con le mille formule goniometriche).

• Cenni di Dimostrazioni delle derivate notevoli

Esempio di derivata notevole calcolata con la definizione di derivata:

Verifichiamo che:
$$D(\ln(x)) = \frac{1}{x}$$

Dato $f(x) = \ln(x)$, $f'(x) = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} \Rightarrow$
 $\Rightarrow \lim_{h \to 0} \frac{\ln\left(\frac{x+h}{x}\right)}{h} = \lim_{h \to 0} \frac{\ln\left(\frac{x}{x} + \frac{h}{x}\right)}{h} = \lim_{h \to 0} \frac{\ln\left(1 + \frac{h}{x}\right)}{h} \Rightarrow$
 $\Rightarrow \operatorname{Per} h \to 0$, $\ln(1+h) \sim h \to \operatorname{Dato} g(h) = \frac{h}{x}$, $\operatorname{per} h \to 0$, $g(h) \to 0 \Rightarrow$
 $\Rightarrow \operatorname{per} h \to 0$, $\ln\left(1 + \frac{h}{x}\right) \sim \frac{h}{x} \Rightarrow \lim_{h \to 0} \frac{\frac{h}{x}}{h} = \lim_{h \to 0} \frac{h}{xh} = \frac{1}{x}$

• Proprietà delle derivate

$D(k \cdot f(x)) = k \cdot D(f(x))$	Prodotto di costante per funzione	
$D(f(x) \pm g(x) \pm h(x)) = D(f(x)) \pm D(g(x)) \pm D(h(x))$	Somma di 2 o più funzioni	
$D(f(x) \cdot g(x)) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$	Prodotto di 2 funzioni	
$D(f(x) \cdot g(x) \cdot h(x)) = f'(x) \cdot g(x) \cdot h(x) + f(x) \cdot g'(x) \cdot h(x) + f(x) \cdot g(x) \cdot h'(x)$	Prodotto di 3 funzioni	
$D\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left(g(x)\right)^2}$	Rapporto di 2 funzioni	
$D\left(f(g(x))\right) = f'(g(x)) \cdot g'(x)$	Funzione composta	
Modo 1 (formale): $D([f(x)]^{g(x)}) = [f(x)]^{g(x)} \cdot \left[g'(x) \cdot \ln\{f(x)\} + g'(x) \cdot \frac{f'(x)}{f(x)}\right]$		
Modo 2 (pratico): $D([f(x)]^{g(x)}) = D\left(e^{qualcosa\ che\ faccia\ uscire\ [f(x)]^{g(x)}}\right) =$	Funzione elevata ad una funzione	
$= D\left(e^{\ln\left\{ \left[f(x)\right]g(x)\right\}}\right) = D\left(e^{g(x)\cdot\ln\left\{ f(x)\right\}}\right) \Rightarrow$		
⇒ Si procede usando la derivata di una funzione composta.		

• Derivate di ordine superiore al primo

La derivata seconda e la derivata terza sono usate ad esempio nello studio di funzione.

Trovare f''(x) vuol dire calcolare D(f'(x)) = D(D(f(x)))

Lo stesso vale per la derivata terza, quarta, eccetera.