OSCILLATEURS MECANIQUES

Exercice n°1

L'une des extrémités d'un ressort de constante de raideur k et de longueur à vide l₀, est accrochée à un support vertical fixe. On vient attacher à l'autre extrémité un bloc de masse m. Le tout est immergé dans l'eau et le bloc est choisi de manière à ce que la poussée d'Archimède compense exactement le poids.

1. Le bloc est écarté d'une distance a_0 de sa position d'équilibre. Il est lâché sans vitesse initiale. Déterminer l'équation différentielle régissant l'évolution du mouvement du bloc en prenant en compte le terme de frottement dans l'eau proportionnel à la vitesse $\vec{f} = -\lambda \vec{v}$.

2. On se place dans le cas où k.m> $(\lambda/2)^2$. Qualifier le mouvement, résoudre l'équation différentielle et représenter de manière schématique l'évolution temporelle de la position du bloc.

Exercice n°2

Horloge comtoise.

Une horloge comtoise comprend essentiellement deux parties : Un oscillateur constitué par un balancier qui bat la seconde (c'est à dire que sa période est $T_0 = 2.00s$), et un mécanisme qui entretient les oscillations du balancier en compensant les pertes d'énergie dues aux différents frottements.

1°) Le mouvement du balancier est le même que celui d'un pendule simple constitué d'un fil inextensible et de masse négligeable de longueur b et d'un point matériel A de masse m; calculer b sachant que m = 1.00 kg. ($g = 9.81 \text{ m/s}^2$)

2°) Les différentes actions de frottements sont équivalentes à une force de frottement fluide agissant sur le point A, d'expression $\overrightarrow{F} = -h \overrightarrow{v}$, h étant une constante positive. En absence d'entretien l'amplitude du mouvement est divisée par e = 2.718... au bout de n = 50 oscillations. Calculer la valeur de h. 3°) L'énergie nécessaire à l'entretien du mouvement est fournie par la chute verticale d'un cylindre de masse M qui descend d'une hauteur H = 1.00 m par jour. Calculer la valeur de M sachant que l'amplitude des oscillations est égale à 5.00 10^{-2} rad.

Exercice n°3

La couleur du ciel

Pour décrire les interactions entre une onde lumineuse caractérisée par le vecteur champ électrique $\overrightarrow{E}(t) = \overrightarrow{E_0} \cos(\omega t)$ et les électrons de la couche externe d'un atome, on utilise l'hypothèse de l'électron élastiquement lié de J-J Thomson.

- 1°) Etablir l'équation du mouvement d'un tel électron quand il est excité par $\vec{E}(t)$ en admettant qu'il est rappelle vers le centre O de l'atome par une force \vec{f} = -k \overrightarrow{OM} et qu'il est freiné par une force proportionnelle à sa vitesse $\vec{f_r}$ =-h \vec{v} . On notera q et m respectivement la charge et la masse de l'électron.
- 2°) Démontrer qu'en régime établi, l'électron oscille parallèlement à $\overrightarrow{E_0}$. On notera x son élongation.
- 3°) On considère que la réponse de l'atome à l'excitation est l'accélération a_x de son électron. Etudier l'expression de l'accélération complexe.
- 4°) Cet atome est éclairé par de la lumière blanche composée d'ondes dont les pulsations sont comprises entre ω_1 (rouge et ω_2 (violet). Sachant que $\alpha=h/2m$ et ω_2 sont très inférieurs à $\omega_0=\sqrt{\frac{k}{m}}$, montrer que, dans ces conditions, l'amplitude a_x de l'accélération est proportionnelle à ω^2 .
- 5°) Sachant qu'un électron accéléré rayonne une puissance *p* lumineuse proportionnelle au carré de son accélération expliquer pourquoi la couleur du ciel est bleue.