

مخبر التجنيد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

### Autumn School of EMC: IoT&IoT

2<sup>nd</sup> to 4<sup>th</sup> November 2023

## Interferences of Things & IoT

Fethi CHOUBANI





مخبر التجديد في الاجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

#### **Outline**

Introduction
Definitions
Coupling mechanisms
Measurements
Mitigation techniques

To be continued....



#### Introduction



مخبر التجديد في الأجهزة الجوالة، المتواصنة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

- Certification from iNARTE (International Association for Radio, Telecommunications and Electromagnetics)
- Pre-Certification preparation for students, PhD students, Engineers,
   with collaboration of ISIKef (2h Exam scheduled at the end)
- EMI/EMS issues reenforced by IoT components and devices
   (See opening talk)
- EMC is a multidisciplinary field, and no one knows everything:
   Support by many friends and colleagues (Amplifiers, Budget link, Electrical networks, Filters, Signals and Spectra, TRLs Antennas and Propagation) + Student Posters (complementary content)
- 2 Credits for PhD students: Support by EDTIC
- Present High topics: Panel Discussions (Potential health risks of EM fields and 5G controversy)







The ability of a device, unit of equipment, or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances to anything in that environment. [IEC 61000-1-1]





### Sources of EMI

Innov'COM

مخبر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

RF devices Electronics/computers Cell phones/radios Wireless/RF energy Microwave equipment Power lines Electric motors Electrostatic discharge (ESD) Lightning (LEMP) Nuclear event (HEMP) Others.....





#### Conduction/Radiation





Conduction and/or Radiation



EMI is defined as any unwanted electrical or electromagnetic energy that causes undesirable responses, degraded performance, or failure in electronic equipment.

#### Four (4) coupling mechanisms:

- Common impedance (or conducted) coupling
- Electric field (or capacitive) coupling
- Magnetic field (or inductive) coupling
- Radiated coupling



## **Coupling Mechanisms**



مخبر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة vation of COMmunicant and COoperative Mobiles

## Common impedance coupling



Zm: finite common impedance between large and small signal circuits

$$Vc = Zm (Ic + Iv)$$

Solution for reduction of Vc: single point or star grounding arrangement



## Common impedance coupling

مخبر التجديد في الأجهزة الجوالة، المتواصلة والمتعاولا provation of COMmunicant and COoperative Mobiles

$$\delta = \frac{1}{\sqrt{\pi F \mu \sigma}}$$

F: Frequency (Hz)

μ : Permeability



 $\rho$ : resistivity ( $\Omega$ .m)

 $\sigma: 1/\rho: Conductivity(S/m)$ 

Silver:  $\rho = 16.10^{-9}$ 

Au:  $\rho = 22.10^{-9}$ 

Tin:  $\rho = 111.10^{-9}$ 

Copper:  $\rho = 17.10^{-9}$ 

Aluminium:  $\rho = 28.10^{-9}$ 

•••••

l: length (m)

A: Area (m<sup>2</sup>)

Others:

Water:  $\rho = 1.8 \ 10^5$  Glass:  $\rho = 10^{17}$ 

Polystyrene:  $\rho = 10^{20}$  ....



## Common impedance coupling

مخبر التجنود في الاجهزة الجوالة، المتواصلة والمتعاونا nnovation of COMmunicant and COoperative Mobiles

## Resistance of a rod wire at low frequencies (i.e. $\delta >> a$ ):

$$R = \frac{l}{\sigma A} = \frac{l}{\sigma \pi a^2}$$

Resistance of a rod wire at high frequencies (i.e.  $\delta \ll a$ ):

$$R = \frac{l}{\sigma A} = \frac{l}{\sigma 2\pi a \delta}$$

Resistance of a circuit board trace at low frequencies (i.e.  $\delta >> t$ ):

$$R = \frac{l}{\sigma A} = \frac{l}{\sigma wt}$$

Resistance of a circuit board trace at high frequencies (i.e.  $\delta \ll t$ ):

$$R = \frac{l}{\sigma A} = \frac{l}{\sigma 2wt}$$

(we assume t<<w)



a= radius of wire



## Common impedance coupling

nnovation of COMmunicant and COoperative Mobiles

### Impédance de pistes de Cu de 10 cm (e=35um)







#### **Exercise**



and an arrangement and a second representative Mobiles.

The DC resistance per unit length of a cylindrical copper wire with a 0.5mm Diameter is approximately:

- a)  $80 \text{ m}\Omega/\text{m}$
- b)  $800 \text{ m}\Omega/\text{m}$
- c)  $1.80 \Omega/m$
- d)  $180 \Omega/m$

#### Answer:

The conductivity of copper is approximately 6x10<sup>7</sup> S/m. The resistance per unit length of wire is therefore:

$$R = \frac{l}{\sigma A} = \frac{l}{\sigma \pi a^2}$$

$$R = \frac{1}{(6x10^7 S/m)\pi(0.25x10^{-3}m)^2} \approx 85 m\Omega$$



## **Coupling Mechanisms**

## Innov'COM

مغير التجديد في الاجهزة الجوالة، المتواصلة والستعاونة Innovation of COMmunicant and COoperative Mobiles

## xTalk: Capacitive coupling



$$V1 \Rightarrow E \equiv \text{mutual capacitance}$$



## **Coupling Mechanisms**

مخبر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

## xTalk: Capacitive coupling



(a) description physique



(b) schéma équivalent



© variation du module de la fonction de transfert



## xTalk: Inductive Coupling

مضر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles



Lentz:  $I \Rightarrow B \Rightarrow \phi \Rightarrow \text{induced voltage}$ 



## xTalk: Inductive Coupling

مضر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles



(a) description physique



(b) modèle équivalent



(c) variation du module de la fonction de transfert

$$rac{I_2}{I_1}$$
 =  $-rac{jM\omega}{R_2} \over 1+jrac{L_2\omega}{R}$  Where:  $R_2=R_{ch2}+R_{G2}$ 



## **EMW** to Wires and Loops

Innov'COM

مخبر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

$$\frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}} = 120\pi \cong 377\Omega$$





Wire or Loop ? ≡ Electric or Magnetic dipole?

♦ Wire, Loop, surface, slot♦ cable, feed line



Reciprocity  $E, H \Leftrightarrow V, I$ 

## Radiating Loop

مضر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles



#### Near field (freq independant):

$$H = H_0 \sqrt{\frac{3\cos(2\theta) + 5}{8}}$$

Far Field (freq dependant ):

$$H = \frac{IS\beta^2}{4\pi r} \sin \theta$$



## Receiving Loop



مخبر التجديد في الاجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

#### **Incident/Radiated perturbations**



Radiation Loop/Captation Area

**☐** Low Frequency: Length  $<< \lambda$ 

$$e = -\frac{\partial \phi}{\partial t} = -j\omega * (\mu_0 \mu_r) * H * S * \cos(\vec{B}, \vec{S})$$

How to reduce e

F↓ !!!!!!

**Relative Permeability** ↓ air

Н↓

Area ↓

Cos(B,S) ↓

## Receiving Loop



مضر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

$$\Box$$
 HF Length, L $\cong$   $\lambda$ 



Worst case:  $U_{max} = 600 \cdot e \cdot H$ 

U:V, e:m, H:A/m



## Receiving Wire

مخبر التجديد في الاجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles



□ Low Frequency: L <<  $\lambda/4$ 

$$I \cong \frac{EL}{100\lambda}$$
; I:A, E:V/m, L:m,  $\lambda$ :m

Example: f= 945 kHz , L= 10 m, E= 300 V/m

$$\rightarrow$$
 I  $\simeq$  94,5 mA

□ High Frequency L≅ λ (Worst case)

$$I_{\text{max}} = \frac{E\lambda}{240}$$

 $I_{max}:A, E:V/m, \lambda:m$ 

Example: f = 100 MHz, L= 1 m, E= 10 V/m

$$\rightarrow$$
 I<sub>max</sub> = 125 mA





مخبر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

## **Conduction**











مضر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

### Radiation/OATS



Ambients in OATS

**Anechoic Chamber** 

TEM / GTEM Cell





مخبر التجديد في الاجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

# Anechoic chamber TEM/GTEM cell





Efficency for low frequencies!!
High cost
Small Size





مخبر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

#### EMC Antennas and AF

$$E(\mu V/m)=V_e(\mu V)$$
 .  $K(m^{-1})$  ou  $E(dB\mu V/m)=V_e(dB\mu V)+K(dB)$  (to be measured) (Read) (Given)



**Loop** ∆F=10KHz to 30 MHz (H Field)



Resonant dipoles (w/wo amplifier)

ΛF=30MHz to 1 GHz

**Biconic Antenna** ΔF=20 MHz to 300 MHz





## Innov'COM

مخبر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

### **EMC Characterization**



**Log-spiral antenna** ΔF1=200 MHz to 1 GHz ΔF2=1 GHz to 10 GHz



double-ridged horn  $\Delta$ F1=200 MHz to 2 GHz  $\Delta$ F2=1 GHz to 18 GHz



Search coil '







مخبر التجديد في الاجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

## FRIIS transmission equation



FRIIS: 
$$Pr = GeGr(\lambda/(4\pi R))^2 Pe$$

Electric field created by a isotropic antenna at the distance R:

$$E \approx \frac{1}{R} \sqrt{30Pe}$$
 (With E: V/m and R: m)





مخبر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

#### Antenna Factor



Fields E, H

E=Ve K Avec (E: V/m and K: 1/m) or (E:  $\mu$ V/m and K: 1/m)

 $E = Ve + K \quad (E : dB\mu V/m \text{ and } K : dB)$ 

 $G = 20\log(9.73/\lambda) - AF$ 

#### Measurements vs Standards







## Innov'COM

مخبر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

## **Filtering**

☐ Low pass filter, band stop filter, ....



L with  $Z_G$ ,  $Z_L$  small

C with  $Z_G$ ,  $Z_I$  large





## Design Guides



مخبر التجديد في الاجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

## **Typical Capacitor Model**



Electrolytic capacitors made of tantalum or aluminium:

- high capacitance
- but high ESL
- generally only used for low frequency and energy storage

mylar capacitors are small relatively inexpensive and used trough ten to a few hundredths of a MHz



## Innov'COM

مخبر التجديد في الاجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

## **HF Capacitor Model**

\* High frequency capacitor model



- parallel resonant frequency

## \* Typical inductor model





مخبر التجنبد في الاجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

## Shielding



$$\delta = \sqrt{\frac{1}{\pi \cdot f \cdot \mu \cdot J}}$$

 $\delta$  [m] and  $\,f$  [Hz]

#### \* N.A.

#### copper

$$\sigma = 5.8 * 10^{7} [S/m]$$

$$\mu = \mu_0 = 4\Pi*10^{-7} [H/m]$$

| f     | 50 Hz   | 10 kHz  | 1 MHz | 100 MHz | 10 GHz  |
|-------|---------|---------|-------|---------|---------|
| delta | 9.35 mm | 0.66 mm | 66 µm | 6,6 µm  | 0,66 µm |



## Innov'COM

مضر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

## Shielding effectiveness



Electric filed :  $SE_e$  (dB) = 20 log ( $E_i/E_t$ )

Magnetic filed :  $SE_h$  (dB) =  $20log (H_i/H_t)$ 

Conducting factors : SE = R + A + B

R: reflection loss in dB

A: transmission or absorption loss in dB

B: internal reflection loss in dB (usually neglected)



## INNOV'CO

مخير التجنيد في الأجيز ة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

## SE Summary

\* Absorption loss: 
$$A[dB] = 8.68 \cdot \frac{t}{s}$$

\* Near filed zone:

$$\mathbf{R}_{h} \left[ \mathbf{dB} \right] = 131.43t \sqrt{\mathbf{f} \mu_{r} \sigma_{r}} + 74.6 - 10 \log \left( \frac{\mu_{r}}{\sigma_{r} \cdot \mathbf{f} \cdot \mathbf{r}^{2}} \right)$$

$$\begin{split} R_{h} \Big[ dB \Big] &= 131.43t \sqrt{f \mu_{r} \sigma_{r}} + 74.6 - 10 log \Bigg( \frac{\mu_{r}}{\sigma_{r} \cdot f \cdot r^{2}} \Bigg) \\ R_{e} \Big[ dB \Big] &= 131.43t \sqrt{f \mu_{r} \sigma_{r}} + 141.7 - 10 log \Bigg( \frac{\mu_{r} \cdot f^{3} \cdot r^{2}}{\sigma_{r}} \Bigg) \end{split}$$

\* for plane waves :

$$SE_e = SE_h = 131.43t\sqrt{f \ \mu_r \sigma_r} + 108.1 - 10log\left(\frac{\mu_r}{\sigma_r}f\right)$$

r = Source-to-Shield Distance in m with:

t = Shield Metal Thickness in mm

f = Frequency in MHz

,  $\delta = Skin Depth in mm$ 

 $\mu_r$  = Relative Permeability of Copper,

 $\sigma_r$  = Conductivity Relative to Copper

Example: f = 10 kHz, r = 10 cm,  $\sigma_{cu} = 5.7 \cdot 10^7 \text{ S/m}$ ,  $\mu = \mu_0 = 4\pi 10^{-7} \text{ H/m}$ ,  $A \sim 10 \text{ dB}$ ,  $SE_e \sim 118 \text{ dB}$ ,  $SE_h \sim 44 \text{ dB}$  ( $SE_e >> SE_h$ ) t = 0.8 mm





مخبر التجديد في الاجهزة الجوالة؛ المتواصلة والمتعاونة Innovation of COMmunicant and Cooperative Mobiles

## **Control Apertures Leakages**



viewing window apertures (optically transparent and RF reflective)for alphanumeric display or CRT





مخبر التجنيد في الاجهزة الجوالة، المتواصلة والمتعاونة ricant and COocerative Mobiles

## Apertures and HoneyComb Shielding

#### Deep aperture with round holes





$$A (dB) = 32 (d/g)$$

Typical application: input of fiber optic (f.o.)

f.o.

Example. : g = 3 mm and d = 15 mm

A = 160 dB



# Mitigation Techniques

### Innov'COM

مضر التجديد في الأجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and COoperative Mobiles

### **Transfert Impedance**

Transfert impedance Zt of coaxial line

$$1 < \frac{\lambda}{2}$$

$$Zt = \frac{Vi}{Is.l} \quad \Omega$$

Zt: (V/m)

I: (m)

Vi:(V)

Is: (A)



Example. : I=5m coaxial line with Is=100 mA and f= 1 MHz

RG58/U : Zt= 14 m $\Omega$ /m

 $\qquad \qquad \Longrightarrow$ 

Vmd = 3.5 mV (single shield)

RG214 :  $Zt = 5 \text{ m}\Omega/\text{m}$ 

<u></u>

Vmd = 1.25 mV (double shield)



### **Exercise**



مخبر التجديد في الاجهزة الجوالة، المتواصلة والمتعاونة Innovation of COMmunicant and Occoperative Mobiles

# Transfer Impedance

#### **Exercise:**

Which of the following cable transfer impedance measurement results corresponds to the cable with the best shielding

- a)  $2 m\Omega$
- b) 10MΩ
- c) 0dB
- d) 100dB

#### Answer:

Cable Transfer impedance measurements induce a current on the cable shield and measure the voltage induced in the signal wire terminations.

The transfer impedance is the ratio of the induced voltage to the excitation current.

Smaller values imply better shielding.

Note that the last two options are not impedances.



IoT: Communications AND Radio

# **Budget Link**





# Rapport Signal à Bruit

مغير التجديد في الأجهزة الجوالة، المتواصلة والمتعاولة movation of COMmunicant and COoperative Mobiles

$$S/B = S/N$$
,  $SNR$ ,  $C/I$ ,  $C/N$ ,  $C/(N+I)$ 



$$P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2 \frac{1}{\alpha_{\rm R} \alpha_{\rm G} \alpha_{\rm A}} \quad (w)$$

Matching Power Control Cable Loss

Components, Filtring
Processing, Modulation,
Nonlinearities & Linearization

**Pt = Transmitted Power,** 

**Gt = Transmitter Antenna Gain** 

Pr = Received Power
Gr = Receiver Antenna Gain

**d** = **Distance** between transmitter and receiver

 $\alpha_B$ ,  $\alpha_G$ ,  $\alpha_A$  = Losses of connectors, guides and hydrometeor, respectively

+: Matching, Polarization, Antenna Pointing



Distance

# **Block Diagram of a Transmitter**



| Technology  | Range (m)                                                                       | Power(mW)            |
|-------------|---------------------------------------------------------------------------------|----------------------|
| BlueTooth   | ~ 10                                                                            | ~ 2,5                |
| WiFi        | ~ 50                                                                            | ~ 80                 |
| 3G/4G       | ~ 5000                                                                          | ~ 500                |
| Lora(LPWAN) | <ul><li>2000-5000 (urbain), 5000-15000(rural)</li><li>&gt; 15000(LOS)</li></ul> | ~ 20 (dépend.region) |

# PA, Non-linearities, IM Products





# Lignes de Transmission (Structures de guidage)

### Ligne bifiliare ou Multiconducteurs









**Câbles coaxiaux** 







### **Lignes microrubans**







# Characteristic Z, Reflection Coefficient, SWR, Matching



$$Z_c = \frac{60}{\sqrt{\varepsilon_r}} Ln \frac{D}{d}$$

$$\Gamma_L = \frac{Z_L - Z_c}{Z_L + Z_c}$$

Coaxial: 
$$Z_c = \frac{60}{\sqrt{\varepsilon_r}} Ln \frac{D}{d}$$
  $\Gamma_L = \frac{Z_L - Z_c}{Z_L + Z_c}$   $VSWR = ROS = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|}$ 

Matching: 
$$Z_L = Z_c \leftrightarrow \Gamma_L = 0 \leftrightarrow VSWR = 1$$
  $P_t = P_{inc}(1 - |\Gamma|^2)$ 

$$P_t = P_{inc}(1 - |\Gamma|^2)$$

#### 1/2inch Cable Loss:

| Туре   |   | 1800MHz | 2100MHz |
|--------|---|---------|---------|
| ½ inch | 7 | 10      | 11      |

- Exemple: Loss of a 67m portion at 1800MHz
- Answer=  $67x0,1=6,7dB + Coonector Losses \rightarrow Lees than 25\% of power transmitted$



# **Different kinds of Antennas**

















### **Antennas Characteristics**



- Reciprocity
- Radiation Pattern
- Gain & Directivity vs Effective area
- Radiation Resistance, Impedance and Resonance
- Image principle and Effect of Ground Planes
- Polarization
- Arrays, Nonintentional



# **Propagation Mechanisms**



- ☐ Indoor, Outdoor, Free space, LOS, Satellites, Models
- ☐ Reflection, Refraction, Diffraction, Scattering, Absorption, Doppler,...

- ☐ Amplitude, Phase Distortion
- ☐ Slow and Fast Fading
- ☐ Propagation Models

# Other mechanismes





Distance

# **Receiver Block Diagram**



Receiver Sensibility
Margin
Low Noise Amplifier (LNA)

# **Noise and Noise Factor/Figure**



Thermal Noise, Shot Noise, Flicker,.... **⇔** Thermal Noise generated by a resistor heated to an absolute temperature T°K:



$$P = kTB$$

T= Absolute Temperature in K

B= Noise Bandwidth in Hz

B= Noise Bandwidth in Hz

$$F_T = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots + \frac{F_n - 1}{G_1 G_2 \dots G_{n-1}}$$

$$=\frac{\left(\frac{1}{N_{i}}\right)}{\left(\frac{S_{o}}{N_{o}}\right)}$$

$$NF = 10 \log \left| \frac{\left(\frac{S_i}{N_i}\right)}{\left(\frac{S_o}{N_o}\right)} \right|$$

# Conclusion: When consider RF techniques?

- Component models (Bahavior of R, L, C, Diodes, Transistors)
- \* Single and coupled Transmisison Lines (xTalk, matching, coupling)
- \* Amplifiers (Gmax, LNA, PA), Oscillators, Mixers (NLinearities and IM products)
- \* Antennas and Propagation (Design and Radio Planning)
- \* Transmitters and Receivers (Range, sensibility and efficiency)
- \* EMC and interferences
- \* Electromagnetic Fields effects and Health risks

Thank you



Merci