Czech (CZE)

Hieroglyfy

Tým výzkumníků studuje podobnosti mezi posloupnostmi hieroglyfů. Výzkumníci reprezentují každý hieroglyf nezáporným celým číslem. Při provádění výzkumu používají následující koncepty o posloupnostech.

Pro zadanou posloupnost A se posloupnost S nazývá **podposloupnost** A právě tehdy, když S může být získána odstraněním některých (případně žádných) prvků A.

Tabulka níže obsahuje některé podposloupnosti posloupnosti A=[3,2,1,2].

Podposloupnost	Jak se dá získat z A
[3, 2, 1, 2]	Žádné prvky nebyly odstraněny.
[2, 1, 2]	[3 , 2, 1, 2]
[3, 2, 2]	[3, 2, 1 , 2]
[3, 2]	[3, 2 , 1 , 2] nebo [3, 2, 1 , 2]
[3]	[3, 2 , 1 , 2]
[]	[3 , 2 , 1 , 2]

Naopak [3,3] nebo [1,3] nejsou podposloupnosti A.

Uvažujme dvě posloupnosti hieroglyfů, A a B. Sekvence S se nazývá **společná podposloupnost** A a B právě tehdy, když S je podposloupnost A i B. Dále, posloupnost U nazýváme **univerzální společnou podposloupností** A a B právě tehdy, když následující dvě podmínky jsou splněny:

- U je společná podposloupnost A a B.
- Každá společná podposloupnost A a B je podposloupností U.

Lze dokázat, že jakékoliv dvě posloupnosti A a B mají nejvýše jednu univerzální společnou podposloupnost.

Vědci našli dvě posloupnosti hieroglyfů A a B. Posloupnost A se skládá z N hieroglyfů a posloupnost B se skládá z M hieroglyfů. Pomozte vědcům najít univerzální společnou podposloupnost A a B, nebo určete, že taková posloupnost neexistuje.

Implementační detaily

Vaším úkolem je implementovat následující funkci.

std::vector<int> ucs(std::vector<int> A, std::vector<int> B)

- A: pole délky N popisující první posloupnost.
- B: pole délky M popisující druhou posloupnost.
- Pokud existuje univerzální společná podposloupnost A a B, tato funkce by měla vrátit pole obsahující tuto posloupnost. Jinak by tato funkce měla vrátit [-1] (pole délky 1 s jediným prvkem -1).
- Tato funkce je zavolána právě jednou v každém vstupu.

Omezení

- $1 \le N \le 100\,000$
- $1 \le M \le 100\,000$
- ullet $0 \leq A[i] \leq 200\,000$ pro každé i takové, že $0 \leq i < N$
- $0 \leq B[j] \leq 200\,000$ pro každé j takové, že $0 \leq j < M$

Podúlohy

Podúloha	Počet bodů	Dodatečná omezení
1	3	N=M;A i B se skládají z N různých celých čísel mezi 0 a $N-1$ (včetně).
2	15	Pro jakékoliv celé číslo k , (počet prvků A rovných k) plus (počet prvků B rovných k) je nejvýše 3 .
3	10	$A[i] \leq 1$ pro každé i takové, že $0 \leq i < N$; $B[j] \leq 1$ pro každé j takové, že $0 \leq j < M$
4	16	Existuje univerzální společná podposloupnost A a B .
5	14	$N \leq 3000$; $M \leq 3000$
6	42	Žádná další omezení.

Příklady

Příklad 1

Uvažujme následující zavolání.

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

Zde jsou společné podposloupnosti A a B následující: $[\]$, [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] a [0,1,0,2].

Protože [0,1,0,2] je společná podposloupnost A a B a všechny společné podposloupnosti A a B jsou podposloupnosti [0,1,0,2], by funkce měla vrátit [0,1,0,2].

Příklad 2

Uvažujme následující zavolání.

```
ucs([0, 0, 2], [1, 1])
```

Jediná společná podposloupnost A a B je prázdná posloupnost []. Proto by tato funkce měla vrátit prázdné pole [].

Příklad 3

Uvažujme následující zavolání.

```
ucs([0, 1, 0], [1, 0, 1])
```

Společné podposloupnosti A a B jsou $[\,],[0],[1],[0,1]$ and [1,0]. Lze dokázat, že univerzální společná podposloupnost neexistuje. Proto by funkce měla vrátit [-1].

Ukázkový grader

Formát vstupu:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

Formát výstupu:

```
T
R[0] R[1] ... R[T-1]
```

Zde je R pole vrácené ucs a T je jeho délka.