Mestrado em Sistemas de Informação Geográfica Aquisição e Edição de Dados Geográficos 2023/2024

Uso e ocupação do solo, rede viária e modelo digital de elevação da área em estudo

Docente: José Augusto Alves Teixeira José Alberto Álvares Pereira Gonçalves

Discentes: Ruben Raul Martins Sousa

Tiago Brito

Índice 1. Introdução......2 Enquadramento da área de estudo......2 Resultados.......4 4.1. Uso e ocupação do solo e rede viária.....4 4.2. Hipsometria......6 4.3. Sombreamento de vertentes......7 4.4. Declives em percentagem e graus......8 4.5. Exposição de vertentes......9 Mapa de intervisibilidade......12 4.6. Índice de figuras Fig. 1 – Mapa de enquadramento da área de estudo......2 Fig. 2 – Mapa da ocupação do solo na área de estudo......4 Fig. 3 – Tabela da ocupação do solo na área de estudo (%)5 Fig. 4 – Mapa da rede viária na área de estudo......5 Fig. 5 – Mapa hipsométrico da área de estudo......6 Fig. 6 – Perfil topográfico com a orientação Sudoeste para Nordeste.......6 Fig. 7 – Tabela com as áreas e as frequências relativas do mapa hipsométrico.......6 Fig. 8 – Mapa de sombreamento das vertentes......7 Fig. 9 – Mapa de declives da área de estudo calculado em graus......8 Fig. 10 – Tabela da área e frequência relativa de cada classe do mapa de declives em graus.....8 Fig. 11 – Mapa de declives da área de estudo calculado em percentagem......8 Fig. 12 – Tabela da área e frequência relativa de cada classe do mapa de declives em percentagem......8 Fig. 13 – Mapa de exposição de vertentes......9 Fig. 14 – Tabela com a área e a frequência relativa de cada classe do mapa de exposição de vertentes......9

Fig. 15 – Mapa de intervisibilidade da área de estudo......10

1. Introdução

O seguinte estudo baseia-se numa demonstração das capacidades e conceitos desenvolvidos na unidade curricular de Aquisição e Edição de Dados Geográficos. Assim sendo, o trabalho tratará, numa primeira parte, o uso e ocupação de solo e rede viária da área de estudo. Numa segunda fase, a criação de um Modelo Digital de Elevação (MDE) que permitiu a construção de um mapa hipsométrico, o mapa de sombreamento de vertentes, de declives, de exposição de vertentes e por fim o mapa de intervisibilidade de modo a caracterizar a área de estudo. Temos então como objetivo para este trabalho a criação de uma geodatabase, a vectorização do uso e ocupação do solo, da rede viária, a criação de um modelo TIN e um MDE com informação em ficheiros CAD, de seguida a criação da cartografia derivada do MDE, de um perfil topográfico também derivado do MDE e por fim a análise estatística dos mesmos.

Para a realização deste trabalho, foi necessário utilizar essencialmente o software ArcMap para a cartografia, o Excel para a execução de tabelas de modo a fazer a análise estatística dos resultados que foram obtidos.

2. Enquadramento da área de estudo

A área em estudo fica localizada no distrito do Porto. É abrangida por 3 freguesias, onde todas ficam localizadas no município de Matosinhos, sendo essas a União de freguesias de Matosinhos e Leça da Palmeira, União de freguesias de Custóias, Leça do Balio e Guifões e pela União das freguesias de São Mamede de Infesta e Senhora da Hora.

A União de freguesias de Matosinhos e Leça da Palmeira tem uma área de 11,28km² e 49 034 habitantes (Censos 2021). A União de freguesias de Custóias, Leça do Balio e Guifões apresenta uma área de 18,84km² e 44 045 habitantes (Censos de 2021). Por último a União das freguesias de São Mamede de Infesta e Senhora da Hora tem uma área de 9,01km² e 49 832 habitantes

(Censos de 2021).

Fonte: CAOP 2019

3. Metodologia

Este projeto teve como processo metodológico as seguintes etapas descritas: eleger uma das áreas de estudo com 4km², que foram disponibilizadas pelo professor no Moodle relativamente ao concelho de Matosinhos, sendo a que a área escolhida foi a nº 3. Após a escolha da área de estudo procedemos à criação da Geodatabase Pessoal no software ArcCatalog.

Nas propriedades da Geodatabase criou-se assim os domínios (feature dataset) e posteriormente as três features dataset (Eixos da Via, Ocupação do Solo e Limite).

No software ArcMap adicionou-se à feature classe limite a CAOP e o limite da área de estudo escolhido através de Import Feature Classe (Single). Quanto às feacture class da rede de estradas que foi vetorizada com base no OpenStreetMap e no basemap, foram criados cinco domínios (autoestrada, estradas nacionais, estradas municipais, estradas locais e metro). É necessário ressalvar que tudo foi configurado com o sistema de coordenadas ETRS89-TM06-Portugal.

A fecture classe da Cos foi criada tendo por base o nível 1 da COS e no basemap foram criados cada um dos 9 domínios dentro do limite da área: Territórios Artificializados, Agricultura, Pastagens, Superfícies Agroflorestais, Florestas, Matos, Espaços descobertos ou com pouca vegetação, Zonas húmidas e Massas de água superficiais. No entanto, foram desenhadas 7 tipologias (Territórios artificializados, Matos, Zonas húmidas e Massas de água superficiais, agricultura, Florestas, Espaços descobertos ou com pouca vegetação), visto que as restantes não se encontravam presentes na área em estudo.

De seguida, aplicou-se nas features classes da COS e da Rede Viária a correção, utilizando para esse efeito o comando "Topology". Nas features classes da COS, aplicaram-se as seguintes regras: "Polygons must not Overlap" e "Polygons must not have gaps", tendo por objetivo identificar as áreas onde os polígonos se sobrepõem e onde existem buracos entre polígonos. Já para a rede viária foi aplicada a regra "Lines must not have dangles, com o propósito de perceber quais as linhas que estão soltas ou não conectadas. A utilização deste comando permitiu corrigir todos os erros da vectorização da COS e da rede viária, assegurando assim a integridade dos dados.

Na segunda parte deste projeto, foi utilizada a informação CAD (Altimetria) disponibilizada pelo docente no Moodle, com o objetivo de construir o modelo TIN. Devido aos ficheiros CAD não serem os indicados visto que são dados em formato vetorial, mas são nativos do Autocad e não possuem sistema de coordenadas e não são compatíveis com o software ArcMap, foi necessário extrair para shapefiles a informação dos pontos cotados e das curvas de nível e projetar para sistema de coordenadas (ETRS89-TM06-Portugal) do projeto.

Em seguida foi criado o modelo TIN com as linhas e pontos que ocupavam a área de estudo e a área envolvente de modo aos valores perto do limite serem valores reais e não serem aproximações feitas pelo software. Tendo ainda em atenção a mudança para Soft Line e Elevation ao criar o modelo TIN.

Através do TIN, criou-se o Modelo Digital de Elevação (MDE) com o comando "TIN to Raster" e definiu-se o tamanho de 1m para o pixel. Para este modelo foi definido que o intervalo entre classes seria de 13m.

De modo a entender melhor os elementos topográficos, criou-se com recurso ao comando "Hillshade" um mapa de sombreamento de vertentes.

Para obter a área de cada classe do MDE, recorreu-se ao comando "Reclassify", de modo a possibilitar a adição de um campo à tabela de atributos e calcular. Com o Field Calculator foi possível calcular a frequência relativa de cada classe dividindo as áreas de cada classe pelo total das mesmas e multiplicado por 100

De maneira a criar um perfil topográfico para a área de estudo, foi criada uma shapefile de linhas onde se criou uma linha com a orientação sudoeste para nordeste. Com recurso ao comando "Stack Profile", criou-se uma tabela com a informação respetiva ao perfil topográfico para fazer um gráfico que representa o perfil.

Com objetivo de obter o declive das vertentes, foi realizado o "Slope", para obter os declives em graus e percentagem. A simbologia foi escolhida de acordo com a temática, as classes foram divididas em 6 tanto para graus como em percentagem. Este também foi reclassificado como os anteriores de modo a obter as áreas das classes e a frequência relativa.

Para a obtenção da exposição de vertentes foi feito com o comando "Aspect", utilizando o raster de base (MDE) alterando as classes para estas ficarem de acordo com a tipologia do mapa. Como este mapa é referente às orientações das vertentes, as cores quentes correspondem às vertentes orientadas para sul e as cores frias às vertentes orientadas para norte. O resultado do "Aspect" foi reclassificado depois em octantes, para isso foi necessário fazer a junção de duas classes (Norte com valores 0 e 360) e para obter a área das classes e a respetiva frequência relativa como feito anteriormente.

Para elaborar o mapa de intervisibilidade foi necessário, procurar o ponto com cotado mais elevado da área de estudo, sendo exportado como shapefile. De modo a responder às condições pedidas foi criada na tabela de atributos do ponto antes exportado, um campo denominado de OFFSETA para fazer o cálculo da torre de vigia (15m) mais a altura do indivíduo (1,75m) originando um valor de 16,75. Por fim, utilizou-se o comando "Viewshed" para calcular as áreas das bacias de visão para a análise da intervisibilidade na área de estudo.

4. Resultados

4.1. Uso e Ocupação do Solo e Rede Viária

Nesta área de estudo é possível observar 5 tipos de ocupação do solo sendo estas, territórios artificializados, agricultura, florestas, matos, espaços descobertos ou com pouca vegetação, zonas húmidas, massas de água superficiais.

É possível observar uma predominância de territórios artificializados, ocupando 63,22% da área total. Seguindo-se dos espaços descobertos ou com pouca vegetação com 20,60%. Já a agricultura apresenta 6,87% e as florestas 6,62%. Por último os matos, zonas húmidas e as massas de água superficiais juntos apresentam somente 2,69% da área total.

Relativamente a rede viária, prevalece as estradas municipais, e é de destacar ainda a existência da autoestrada e da rede de metro presente na área de estudo.

Fig. 2 – Mapa da ocupação do solo na área de estudo

Ocupação do solo (%)		
Territórios artificializados	63,22%	
Agricultura	6,87%	
Florestas	6,62%	
Matos	1,72%	
Espaços descobertos ou com pouca vegetação	20,60%	
Zonas Humidas	0,33%	
Massas de água superficiais	0,64%	

Fig. 3 – Tabela da ocupação do solo na área de estudo (%)

Fig. 4 – Mapa da rede viária da área de estudo

4.2. Hipsometria

Em relação ao relevo, a área de estudo caracteriza-se por apresentar áreas mais aplanadas a oeste e zonas de maior altitude a este. Isto confirma-se, através da figura 2, onde é possível ver que as classes mais baixas entre 6 e os 45 metros a oeste e sudoeste na União de freguesias de Matosinhos e Leça da Palmeira e as classes de maior altitude entre os 46 e os 84 metros estão concentradas a este e nordeste sobretudo na União de freguesias de São Mamede de Infesta e Senhora da Hora. A classe 6 a 19 m é a classe que ocupa menos área, com 51 245 m² cerca de 1,3% da área total (figura 4). A classe que ocupa uma maior área é a classe entre os 72 a 84 m com uma área de 1 343 872 m², cerca de 33,6% da área total (figura 4).

O próximo passo deste trabalho foi a elaboração de um perfil topográfico que demonstrasse e representasse a área de estudo, então tendo em conta o raster elaborado a partir do modelo TIN visto que já tínhamos analisado as suas tramas, tivemos a ideia de fazer um traço de maneira a ser possível demonstrar as diferentes topografias da área, fazendo o traço no sentido SO – NE, começando assim pela área que tem menor altitude.

Verificamos assim que nos primeiros 300 metros não existem desníveis acentuados sendo entre os 400 e os 1400 metros onde se localizam os desníveis mais acentuado, enquanto a altitude vai aumentado, a partir dos 1400 metros a altitude aumenta ligeiramente até aos 2000 metros onde começa a manter os níveis de altitude.

Figura 5- Mapa hipsométrico da área de estudo

Classes	Área	frequência
6 - 19	51245	1,3
20 - 32	290383	7,3
33 - 45	390860	9,8
46 - 58	700876	17,5
59 - 71	1222764	30,6
72 - 84	1343872	33,6

6

Figura 6 – Tabela com as áreas e as frequências relativas do mapa hipsométrico

Figura 7- Perfil topográfico com a orientação Sudoeste para Nordeste

4.3. Sombreamento de vertentes

Como já referido na metodologia para a realização do mapa do sombreamento de vertentes, foi necessário utilizar a ferramenta do Arctoolbox, Hillshade, onde teria como input o raster resultante do modelo TIN e este tem como sua função realçar os contrastes dos diferentes elementos presentes na área de estudo. Foi ainda pedido que fosse tido em conta um dia aleatório escolhido pelos elementos, o dia escolhido foi 20/11/2023, ás 14h 00m e 00s, num site que foi fornecido durante as aulas pelo professor (https://gml.noaa.gov/grad/solcalc/), onde iriamos ter valor do azimuth para poder finalizar o Hillshade e usa-lo de forma correta. É possível ver pela figura 5 que podemos ver os elementos topográfico melhor nas zonas onde o declive é menos acentuado.

4.4. Declives em percentagem e grau

Figura 9- Mapa de declives da área de estudo calculado em graus

	0 350 700 m
Declives (%) 79.49 - 302,51	Projeção: ETRS89 PT-TM06

Figura 11- Mapa de declives da área de estudo calculado em percentagem

Classes	COUNT	Área	Frequência
0 - 2,25	2136851	2136851	53,42128
2,26 - 5,91	1198668	1198668	29,9667
5,92 - 11,53	375124	375124	9,3781
11,54 - 19,12	169270	169270	4,23175
19,13 - 29,81	92199	92199	2,304975
29,82 - 71,71	27888	27888	0,6972

Figura 10- Tabela da área e frequência relativa de cada classe do mapa de declives em graus

VALUE	COUNT	Área	Frequência
0 – 3,56	1991187	1991187	49,8
3,57 – 13,05	1505897	1505897	37,6
13,06 – 27,29	317605	317605	7,9
27,3 – 46,27	129655	129655	3,2
46,28 – 79,48	48161	48161	1,2
79,49 – 302,51	7495	7495	0,2

Figura 12- Tabela da área e frequência relativa de cada classe do mapa de declives em percentagem

Como já referido na metodologia para realização do um mapa de declives das vertentes foi necessário utilizar a ferramenta do ArcToolbox, Slope, esta ferramenta foi utilizada duas vezes, uma para calcular os declives em graus e em percentagens, tendo como base o TIN raster para obtermos os resultados

A área de estudo apresenta na maioria declives pouco acentuados como podemos ver nas figuras 6 e 7 que apresenta os declives em graus para a área de estudo, onde 92,75% são declives suaves.

É possível observar as mesmas conclusões nas figuras 8 e 9 que apresentam os declives em percentagem. Podemos observar também nos mapas de declive que na área de estudo existem que não existem declives muito acentuados.

4.5. Mapa de exposição de vertentes

Figura 13- Mapa de exposição de vertentes

Classes	Count	Área	Frequência
Plano	552230	552230	13,83
Norte	226599	226599	5,68
Nordeste	101153	101153	2,53
Este	78813	78813	1,97
Sudeste	251296	251296	6,29
Sul	464945	464945	11,65
Sudoeste	851183	851183	21,32
Oeste	933187	933187	23,38
Noroeste	532598	532598	13,34

Figura 14- Tabela com a área e a frequência relativa de cada classe do mapa de exposição de vertentes.

Como já referido na metodologia para a elaboração do mapa de exposição de vertentes com o qual é possível verificar qual a orientação das diferentes vertentes. Numa primeira fase fomos ao ArcToolBox e procuramos a ferramenta Aspect, nesta colocamos o raster resultante do

modelo TIN. Inicialmente obtivemos os octantes as quais se encontravam incorretos, portanto foi necessário corrigi-los reclassificando-os.

A primeira forma de os corrigir estes valores foi nos "breaks values", colocando-os de maneira correta, e separando-os de 45 em 45 graus. A segunda correção foi alterar o Norte, visto que este estava representado duas vezes na anterior escala, desta forma foi necessário selecionar a classe 337.5 até 360 seria norte assim como a de 0 a 22.5 graus.

Para representação do mapa de Exposição de Vertentes foi necessário fazer alterações nas cores correspondentes aos diferentes octantes, deste modo e seguindo o que foi feito na aula que este tema foi abordado alteramos e classificamos da seguinte forma, -1° a 0°, Plano, representado com a cor cinzenta, de azul royal, o Norte, 337° a 22,5° de 22,5° a 67,5° o Nordeste, representado a cor azul Capri, representado a verde claro, o Este, variando entre 67,5° e 112,5°, de 112,5° a 157,5° Sudeste, com a cor amarelo claro, representado a laranja forte o Sul, variando entre 157,5° e 202,5°, de 202,5° a 247,5°, o Sudoeste, representado a laranja claro, representado a verde o Oeste, variando entre 247,5° e 292,5° e por último o Noroeste que variava entre 292,5° e 337,5° com o azul claro.

Quanto à exposição de vertentes, é possível observar um destaque evidente das vertentes com orientação a oeste com uma área total de 23,38%. Seguindo-se as vertentes orientadas a sudoeste com uma área de 21,32% (vertentes soalheiras), um destaque também para as vertentes expostas a noroeste com 13,34%. De salientar que a vertente que apresenta menos exposição são as vertentes expostas a este com uma área de 1,97% assim como é de salientar as vertentes planas que constituem 13,83% da área como é possível observar nas figuras 10 e 11.

4.6. Mapa de intervisibilidade

Figura 15- Mapa de intervisibilidade da área de estudo

A cota mais alta obtida na área de estudo está a uma altura de 83,42m somando também o tamanho da torre (15m) mais a altura do observador de 1,75m, resultando numa altitude de 100,17m. Este valor vai permitir uma intervisibilidade numa pequena parte da área de estudo (41,6%). Devido às diferenças de altitude pela bacia como é possível observar na figura 12 que desde os 1400m até aos 0m houve mais ao menos uma descida de 60m de altitude. Fazendo com que a área envolvida nesta distância não possa ser observada.

Conclusão

Concluindo tendo em conta os aspetos apresentados, relativamente a ocupação do solo, os territórios artificiais são a predominância na área de estudo com mais de metade da área (63,22%), já relativamente à rede viária esta é preenchida na maioria por estradas municipais. Foi possível observar que o Modelo Digital de Elevação é uma parte fundamental para a caracterização da área de estudo visto que a partir deste é possível calcular e criar outros mapas. Como foi possível ver na realização deste trabalho, conseguimos criar os mapas de declives das vertentes, a exposição de vertentes o mapa de intervisivilidade e o mapa de sombreamento de vertentes.

Quanto à análise da área de estudo, é possível concluir que é uma área com grandes diferenças de altitude visto que a oeste é uma área mais aplanada visto ser mais próxima do mar e conforme nos deslocamos para este a altitude vai aumentando.