Angles of reflection and refraction

• Now consider an plane wave propagating at an angle θ_1

• Law of reflection: reflection angle = incident angle

$$\theta_1 = \theta_r$$

 $V_2 > V_1$

• Law of refraction: refraction angle from Snell's law

$$\frac{\sin\theta_1}{v_1} = \frac{\sin\theta_2}{v_2}$$

Animation of waves

• Slower over faster (most common): v2 > v1

Notice the relation between wavefronts and rays (arrows)

What if....?

$$\frac{\sin\theta_1}{v_1} = \frac{\sin\theta_2}{v_2}$$

• What if $v_1 > v_2$? (ie, faster in top layer)

 Is refraction possible in this situation?

• Implications?

What if....?

$$\frac{\sin\theta_1}{v_1} = \frac{\sin\theta_2}{v_2}$$

• What if $\theta_2 = 90^{\circ}$? This is called the critical angle.

•
$$\sin \theta_1 = v_1/v_2$$

 The refracted ray travels horizontally along the interface

What if....?

$$\frac{\sin\theta_1}{v_1} = \frac{\sin\theta_2}{v_2}$$

• What if $\theta_2 = 90^{\circ}$? This is called the critical angle.

 "Head waves" or critically refracted rays send energy back to the surface.

• $\sin \theta_1 = v_1/v_2$

Apps on the web

- http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=16
 - Illustration of reflection and refracted wavefronts using Fresnel-Huygens principles.
- http://staff.washington.edu/aganse/raydemo/RayDemo2.med.html
 - Ray paths in arbitrary 1D earth. Generate the velocity model and observe first arrivals and curved ray paths. (Visualizing bending rays in linearly increasing velocities)
- http://www.iris.edu/hq/programs/education_and_outreach/visualization_s
 - Global Earthquakes recorded by US seismometer arrays. Learn about particle motions, wave.

Motivation: travel time

Real seismic data?

Travel times

• Time required for a seismic wave to travel from source to receiver in a homogeneous earth layer:

$$t=rac{d}{v}$$

- Seismic survey: measure time (=data)
- Then estimate subsurface properties

3 principal waves

 Interested in: arrival times at the receiver location

- Direct waves
- Reflected waves
- Critically refracted waves (head waves)

3 principal waves

- Travel time curves
- Critical distance x_{crit}
 - Closed surface point to the source at which the refracted ray can be observed
- Crossover distance x_{cros}
 - Surface point at which the direct and refracted rays arrive at the same time
- Note: when the offset from the source is greater than x_{cros} , the refracted ray will be the first signal to arrive.
 - Why is that?

Travel times

- Travel times depend on distance between source and receiver, layer thickness, and wave velocities
- Direct wave

$$t_{dir} = rac{x}{v_1}$$

Travel times

 Travel times depend on distance between source and receiver, layer thickness, and wave velocities

Direct wave

Reflected wave

Critically refracted wave

$$egin{aligned} t_{dir} &= rac{x}{v_1} \ t_{refl} &= rac{\sqrt{x^2 + 4h^2}}{v_1} \ t_{refr} &= rac{x}{v_2} + rac{2h\sqrt{v_2^2 - v_1^2}}{v_1 v_2} \end{aligned}$$

Refracted ray in 2-layer earth

Critical distance

$$x_c = 2z an heta \quad l = rac{z}{\cos heta} \ an heta = rac{x_c}{2z} \quad \cos heta = rac{z}{l}$$

 Total travel time is cumulative time for wave to traverse the path ABCD

$$t=t_{AB}+t_{BC}+t_{CD}=rac{2z}{v_1\cos heta}+rac{x-2z an heta}{v_2}$$

Refracted ray in 2-layer earth

- Total travel time
 - Do some trigonometry to get the following useful relations

$$t = rac{x}{v_2} + rac{2z\sqrt{v_2^2 - v_1^2}}{v_1v_2} \ = rac{x}{v_2} + t_i$$

• This says that the travel time curve is a straight line with a slope of $\frac{1}{v_2}$ and an intercept time of t_i

What this looks like on a graph

 The slope of the refracted arrival can tell us the velocity of the second layer!

 We can calculate the velocity of the first layer from the direct arrival!

• Note: intercept time t_i is not a "real" time – it is derived from the graph

Ok, so...

- 1. Plot the times of first arrivals on a time-offset plot
- 2. The direct arrival are observed along a straight line from the origin
 - It's slope is $1/v_1$, giving the velocity of the upper layer
- 3. The refracted arrival appears as a straight line
 - It has a smaller slope equal to $1/v_2$, giving the velocity of the second layer
- 4. For the refracted wave, the intercept time equation can be converted to give us the layer thickness!

$$t_i = rac{2z\sqrt{v_2^2 - v_1^2}}{v_1v_2} ag{z = rac{t_iv_1v_2}{2\sqrt{v_2^2 - v_1^2}}}$$

Ok, so...

Now we can compute: v1, v2, and layer thickness

- 1. Plot the times of first arrivals on a time-offset plot
- 2. The direct arrival are observed along a straight line from the origin
 - It's slope is $1/v_1$, giving the velocity of the upper layer
- 3. The refracted arrival appears as a straight line
 - It has a smaller slope equal to $1/v_2$, giving the velocity of the second layer
- 4. For the refracted wave, the intercept time equation can be converted to give us the layer thickness!

$$t_i = rac{2z\sqrt{v_2^2 - v_1^2}}{v_1v_2} ag{2\sqrt{v_2^2 - v_1^2}}$$

One more thing

 Cross-over distance: where the direct wave and the refracted wave arrive at the same time

$$rac{x_{ ext{cross}}}{v_1} = rac{x_{ ext{cross}}}{v_2} + t_i$$

$$egin{aligned} x_{ ext{cross}} &= \left(rac{v_1 v_2}{v_2 - v_1}
ight) t_i \ &= 2z \sqrt{rac{v_2 + v_1}{v_2 - v_1}} \end{aligned}$$

 Another way to calculate one of the variables given values for the others.

What about three layers?

• Snell's law holds: $\frac{\sin heta_1}{v_1} = \frac{\sin heta_2}{v_2} = \frac{\sin heta_3}{v_3} = \dots$

What about three layers?

Explore using the seismic app

Raw data

- Direct arrivals
- The T-X plot

Raw data

- First refractions
- The T-X plot

Raw data

- Second refractions
- The T-X plot

Reflected waves

- Reflection occurs if there is a change in the acoustic impedance at the boundary.
- Acoustic impedance: $Z = \rho V$
 - The product of density and velocity (either for P or S waves)

$$t=rac{(x^2+4z^2)^{rac{1}{2}}}{v}$$

t²-x² plot

$$t=rac{(x^2+4z^2)^{rac{1}{2}}}{v}$$

$$t^2 = \frac{x^2}{v^2} + \frac{4z^2}{v^2}$$
$$\frac{t_0^2}{t_0^2}$$

Can estimate velocity and thickness of the layer

What can we estimate from data?

End of Seismic lecture 2