

Informatik

Themenmitteilung zur Studienarbeit

Studiengang Informatik, DHBW Karlsruhe Erzbergerstr. 121, 76133 Karlsruhe

Modul T2_3201, Theorie 5. Semester)

Studierende/r	Marcel Reith
Kurs	Tinf19b3
Zusammen mit	Peer Niklas Schäfer, Patrick Ell

Betreuer	Dr. Oliver Rettig
E-Mail	oliver.rettig@dhbw- karlsruhe.de

Titel der Arbeit	Analyse und Implementierung von Methoden zur Kalibrierung von Industrierobotern
Typ der Arbeit	Wissenschaftliche Arbeit
Problemstellung, Erwartetes Ergebnis	Die Wiederholgenauigkeit eines Roboters ist sehr genau, die Ansteuerung einer definierten Position im Koordinatenraum ist hingegen um einiges ungenauer. In dieser Arbeit sollen verschiedene Methoden analysiert werden, um eine kostengünstige, schnelle und industrienahe Roboterkalibrierung zu ermöglichen. Hierbei werden drei unterschiedliche Methoden in Betracht gezogen.
	Zum einen soll ein Messtaster, mit einer Präzisions-Rubin-Kugel am Ende, an den Endeffektor eines Roboters angeflanscht werden, um die Position eines Werkstücks zu bestimmen. Dazu soll der Roboter so gesteuert werden, dass er Kugeln im Raum sucht und aus verschiedenen Richtungen gegen sie stößt.
	Für jede Berührposition kann die Winkelkonfiguration des Roboters bestimmt werden. Zu jeder Winkelkonfiguration liefert die sogenannte direkte Kinematik eine Pose des Messtasters. Diese direkte Kinematik enthält allerdings 6 x 4 sogenannte Denavit-Hartenberg Parameter, deren Werte nur grob bekannt sind. Das Bild der Kugeln, wie es der Roboter sieht, stimmt also nur grob mit dem realen Objekt überein.
	Es geht nun darum aus den Messungsdaten die kinematischen Parameter des Roboters zu bestimmen bzw. zu optimieren. Dabei können Spherical-Fit Methoden eingesetzt und mit geometrischen Überlegungen kombiniert werden. Auch der Einsatz von neuronalen Netzen bietet sich hier an.
	Alternativ soll eine Industriekamera am Endeffektor des Roboters befestig werden. Mit dieser sollen flächige kontrastreiche Marker, bestehend aus kreisförmigen Objekten detektiert und vermessen werden. Auch auf Basis dieser Messungsdaten sollen die kinematischen Parameter des Roboters bestimmt werden.

Informatik

	Bei der dritten Methode wird statt der Kamera ein Kreuzlaser am Endeffektor angebracht.
Geplantes Vorgehen	Zuerst muss die Hardware in der benötigten Genauigkeit beschafft werden. Dann erfolgt die Einarbeitung in die Robotersteuerung, ebenso wie die Recherche zu den genannten und etwaigen weiteren Methoden. Anschließend müssen Verfahren entwickelt werden, mit denen der Roboter die Kugeln bzw. den Marker sucht. Nun müssen die Werte erfasst und ausgewertet werden. Anhand der erfassten Werte soll die Positionierung des Roboters mindestens auf Auslieferungsgenauigkeit kalibriert werden. Zuletzt erfolgt eine Auswertung und ein Vergleich der verschiedenen Verfahren.
Entwicklungsumgebung	ROS, VS Code
Literaturliste	Sandra Collin, Kinematic Robot Calibration Using a Double Ball-Bar John J. Craig, Indroduction to Robotics Mechanics and Control Prof. Alessandro De Luca, Kinematic calibration Peter Johansson, Robot Cell Calibration using a laser pointer