第三章一阶理论

吉建民

USTC jianmin@ustc.edu.cn

2021年5月20日

Used Materials

Disclaimer: 本课件采用了陈小平老师讲义内容和汪芳庭《数理逻辑》教材中内容。

Table of Contents

引言: 自然数的定义

带等词的谓词演算 K+

形式算术

可表示性与递归函数 可表示性 递归函数

1. Peano Postulates (1889)

- 1. 0 是自然数;
- 2. 对任何自然数 x,存在唯一的自然数 x,称为 x 的后继;
- 3. 0 不是任何自然数 x 的后继;
- 4. 任何两个不同的自然数的后继也不同;
- 5. 任何集合,若它包含 0 和它的每一个元素的后继,则它包含 所有自然数。

2. Gottlob Frege (1884)

- 1. 0 是不等于自身的事物的集合;
- 2. 1 是仅由 0 组成的集合;
- 3. 2 是仅由 0 和 1 组成的集合;
- 4. ...

3. Von Neumann 表述 (1922, 19 岁)

- 1. $0 =_{df} \{ \}$, the empty set;
- 2. $x' =_{df} x \cup \{x\}$.

It follows that each natural number is equal to the set of all natural numbers less than it:

$$0 = \{ \},\$$

$$1 = 0 \cup \{0\} = \{0\} = \{ \{ \} \},\$$

$$2 = 1 \cup \{1\} = \{0, 1\} = \{ \{ \}, \{ \{ \} \} \},\$$

$$3 = 2 \cup \{2\} = \{0, 1, 2\} = \{ \{ \}, \{ \{ \} \}, \{ \{ \} \} \} \},\$$

$$n = n - 1 \cup \{n - 1\} = \{0, 1, \dots, n - 1\}$$

4. Peano 公设的形式化

- ▶ 引入一阶公式集 Γ_N,表示 Peano 公设,为此取 K(Y),包含 个体常元 0,一元函数符号 ¹,一元谓词符号 N。
- ▶ Γ_N 的每一个模型中, 0, ′, N 必须分别解释为自然数 0, 后继函数 (+1) 和 "是自然数"
 - (P1) N(0)
 - (P2) $\forall x (N(x) \rightarrow \exists! y (y = x' \land N(y)))$
 - (P3) $\forall x \neg (0 = x')$
 - (P4) $\forall x \forall y (x' = y' \rightarrow x = y)$
 - (P5) $P(0) \wedge \forall x (P(x) \rightarrow P(x')) \rightarrow \forall x P(x)$ P 是任何谓词符号

对所有谓词符号 Q:

$$\exists! x \, Q(x) =_{df} \exists x \, (Q(x) \land \forall y \, (Q(y) \leftrightarrow (y = x)))$$

其中 y 不在 Q(x) 中出现。

思考

- ▶ 思考题 3-1: (P5) 是怎样表达了 Peano 第五公设的?
- ▶ 上述 "=" 是什么?
 - ▶ x = y 指 x 与 y 代表同一语法对象(符号,项,公式,同一 个表达式)
 - ▶ 所有 "=" 改写为 "≈", 称为 "等词符号", x≈y表示
 I(x) = I(y)

注:

- ▶ K 表示一阶逻辑的形式推理系统(一阶谓词演算)
- ▶ K(Y) 表示 K 的全体公式的集合,其中 $Y = \{x_1, \ldots, x_n, \ldots\}$ 为个体变元的集合

Table of Contents

引言: 自然数的定义

带等词的谓词演算 K+

形式算术

可表示性与递归函数 可表示性 递归函数

K⁺ 定义

- ▶ K^+ 的语言比 K(Y) 多一个二元谓词符号 \approx , 视为非逻辑符号 , \approx 称为 K^+ 的常谓词符号
- ▶ K⁺ 的推理设施增加下列等词公设:
 - (E1) $u \approx u$
 - (E2) $u_k \approx u \rightarrow f_i^n(u_1, \dots, u_k, \dots, u_n) \approx f_i^n(u_1, \dots, u, \dots, u_n)$
 - (E3) $u_k \approx u \rightarrow (P_i^n(u_1, \ldots, u_k, \ldots, u_n) \rightarrow P_i^n(u_1, \ldots, u, \ldots, u_n))$

注:在汪芳庭《数理逻辑》书中,以上三种形式的公式叫做等词公理,所有等词公理组成的集记为 *E*。

例子 1

等词公设并不是有效式。

- ▶ 令 $K^+(Y)$ 不含函数和个体常元,谓词只有 \approx ,考虑 $\mathcal{M} = (\mathbb{N}, \emptyset, \mathbb{P})$,使 $\approx^{\mathcal{M}}$ 是 >
- M ⊭ u ≈ u
- ▶ 对所有 K 公理 p, 有 M |= p

定理 1

定理

任给一阶结构 $\mathcal{M}=(\mathbb{D},\mathbb{F},\mathbb{P})$,若 $\approx^{\mathcal{M}}$ 为 \mathbb{D} 上的相等,则所有等词公设是 \mathcal{M} 有效的。

证明.

设 \mathcal{M} 使 $\approx^{\mathcal{M}}$ 为 \mathbb{D} 上相等,考虑 (E1)。 对任何 $I=(\mathcal{M},V)$ 和项 u,存在 $d\in\mathbb{D}$,使 I(u)=d。 于是

$$I(u \approx u) = t$$
 iff $(I(u), I(u)) \in \approx^{\mathcal{M}}$ iff $(d, d) \in \approx^{\mathcal{M}}$.

故显然 $I(u \approx u) = t$, 由 I 的任意性, 得 $\mathcal{M} \models u \approx u$. 习题 3-1: (E2) 和 (E3) 的证明。

思考

▶ 在 K^+ 的模型中, $\approx^{\mathcal{M}}$ 是否一定是 $\mathbb D$ 上相等?

例子 2

- ▶ 取 $K^+(Y)$ 同例子 1,考虑 \mathcal{M}' 使 $\approx^{\mathcal{M}'}$ 为 \mathbb{N} 上 "有相同奇偶性"
- ▶ 易证, M' 是 K⁺ 的一个模型
- ▶ (E1) 和 (E2) 是 M' 有效的
- ▶ 考虑 (E3), 它在 K⁺(Y) 表现形式为:

$$u_k \approx u \rightarrow (u_1 \approx u_k \rightarrow u_1 \approx u)$$

或者

$$u_k \approx u \rightarrow (u_k \approx u_n \rightarrow u \approx u_n)$$

可以验证: 对一切 $I = (\mathcal{M}', V)$, 上述两种公式是真的

思考

- ▶ 思考题 3-2:
 - ► L 是否强迫 "→" 解释为实质蕴含?
 - ► K⁺ 模型将 "≈" 规定到什么程度?

定理(≈等价性)

定理 (≈ 等价性)

若 \mathcal{M} 是一个 K^+ 模型,则 $\approx^{\mathcal{M}}$ 是 \mathbb{D} 上等价关系。

证明.

只需证明在语法中有下列的 K^+ 的定理:

- 1. $\vdash_{K^+} t \approx t$
- 2. $\vdash_{K^+} t \approx u \rightarrow u \approx t$
- 3. $\vdash_{K^+} t \approx u \rightarrow (u \approx v \rightarrow t \approx v)$

证 1, 由于 (E1), 显然成立

定理(≈等价性)con't

证明.

. . .

证 2, 不涉及 (UG), 因此只需证 $\{t \approx u\} \vdash_{K^+} u \approx t$.

- (1) $t \approx u \rightarrow (t \approx t \rightarrow u \approx t)$
 - ≈ t) (E3) 前提

(2) $t \approx u$ (3) $t \approx t \rightarrow u \approx t$

MP(1)(2)

(4) $t \approx t$

(E1)

(5) $u \approx t$

MP(1)(2)

证 3, 利用上述结果

(6) $t \approx u \rightarrow u \approx t$

- 演绎定理 (2)(5)
- (7) $u \approx t \rightarrow (u \approx v \rightarrow t \approx v)$
- (E3)
- (8) $t \approx u \rightarrow (u \approx v \rightarrow t \approx v)$ HS(6)(7)

定理(等项可替换性)

定理 (等项可替换性)

- 1. $\vdash_{K^+} u \approx v \rightarrow t(u) \approx t(v)$, 其中项 u 是项 t(u) 的一个子项, 项 t(v) 是在 t(u) 中将 u 的某些出现替换为 v 的结果
- 2. $\vdash_{K^+} u \approx v \rightarrow (p(u) \rightarrow p(v))$, 其中 p(x) 是任意公式, u, v 对 p(x) 中 x 自由

等词公设刻画了"相等"的最重要的性质

正规模型

定义(正规模型)

设 $\Gamma \subseteq K^+(Y)$, $\mathcal{M} = (\mathbb{D}, \mathbb{F}, \mathbb{P})$ 是 Γ 的 K^+ 模型。若 $\approx^{\mathcal{M}}$ 为 \mathbb{D} 上相等,则称 \mathcal{M} 为 Γ 的正规 K^+ 模型。

定理:正规模型存在性

定理 (正规模型存在性)

若 Γ 有 K^+ 模型,则 Γ 一定有正规 K^+ 模型。

证明.

(思路) 设 $\mathcal{M} = (\mathbb{D}, \mathbb{F}, \mathbb{P})$ 是 Γ 的一个 K^+ 模型。 考虑 \mathcal{M} 关于 \approx 的商结构 $\mathcal{M}^{\approx} = (\mathbb{D}^{\approx}, \mathbb{F}^{\approx}, \mathbb{P}^{\approx})$,其中 \mathbb{D}^{\approx} 是由 \mathbb{D} 中关于 $\approx^{\mathcal{M}}$ 的等价类为个体形成的集合(论域)

$$\mathbb{D}^{\approx} =_{df} \{ [x] \mid x \in \mathbb{D} \}$$

为 D[≈] 上的函数。

 \mathbb{P} 中所有关系的定义域从 \mathbb{D}^n 变换为 $(\mathbb{D}^{\approx})^n$ 由此得到一个一阶结构 $\mathcal{M}^{\approx} = (\mathbb{D}^{\approx}, \mathbb{F}^{\approx}, \mathbb{P}^{\approx})$ 。

定理: 正规模型存在性 con't

证明.

. . .

证明 \mathcal{M}^{\approx} 是 Γ 的一个 K^+ 模型,从而得到 Γ 的一个正规 K^+ 模型。

 $(u^{\mathcal{M}}) \approx^{\mathcal{M}} (v^{\mathcal{M}})$ 在 \mathcal{M} 中成立 $\Rightarrow u^{\mathcal{M}}$ 与 $v^{\mathcal{M}}$ 等价 $\Rightarrow u^{\mathcal{M}^{\approx}}$ 与 $v^{\mathcal{M}^{\approx}}$ 相等。

验证对所有 $p \in \Gamma$ 和等词公设,有 $\mathcal{M}^{\approx} \models p$ 。 所以 \mathcal{M}^{\approx} 是一个正规模型。

习题 3-2: 对任意 $p \in \Gamma$, 有 $\mathcal{M} \models p$, 证明 $\mathcal{M} \models p \Rightarrow \mathcal{M}^{\approx} \models p$ 。

定理

定理

设 E^* 为 E 的任何相容扩充(使 $E \subseteq E^*$ 且 E^* 相容),则 E^* 有非正规模型。

证明.

(思路) 设 $E'\supseteq E$, $\mathcal{M}=(\mathbb{D},\mathbb{F},\mathbb{P})$ 是 E' 的正规模型。 给 \mathbb{D} 增加一个新元素 u^* ,记 $\mathbb{D}^*=\mathbb{D}\cup\{u^*\}$ 。 任取 $u_0\in\mathbb{D}$,把 \mathbb{F} 和 \mathbb{P} 扩张成 \mathbb{F}^* 和 \mathbb{P}^* ,扩张时, u^* 用 u_0 作为替身。准确地说,规定

$$\overline{f_i^{n*}}(u_1^*, u_2^*, \dots, u_n^*) = \overline{f_i^n}(u_1, u_2, \dots, u_n),
(u_1^*, u_2^*, \dots, u_n^*) \in \overline{R_i^{n*}} \Leftrightarrow (u_1, u_2, \dots, u_n) \in \overline{R_i^n},$$

其中
$$u_i^* = \left\{ \begin{array}{l} u_i, \text{ if } u_i^* \neq u^*, \\ u_0, \text{ if } u_i^* = u^*. \end{array} \right.$$
 可以验证,这样构造的模型 $\mathcal{M}^* = (\mathbb{D}^*, \mathbb{F}^*, \mathbb{P}^*)$ 是 E 的非正规模型。

习题

习题 3-3: P. 138 练习 1.

1. 设项 t, u 都对公式 $p(x_i)$ 中 x_i 自由,且不含 x_i 。求证

$$E \cup \{\exists! x_i \, p(x_i), p(t)\} \vdash p(u) \to u \approx t,$$

这里规定

$$\exists ! x_i \, p(x_i) = \exists x_i \, (p(x_i) \land \forall x_j \, (p(x_j) \to x_i \approx x_j)),$$

其中 x_i 不在 $p(x_i)$ 中出现。

Table of Contents

引言: 自然数的定义

带等词的谓词演算 K+

形式算术

可表示性与递归函数 可表示性 递归函数

形式算术 KN

形式算术在 K^+ 增加初等数论的基础知识,形成 K_N ,称为形式 算术,又称为初等数论的形式(公理)系统。

K_N 构成

(1) 形式语言 K_N(Y)

- ▶ 逻辑符号: 同 K⁺/K
 - ▶ 个体变元: x₁,x₂,...,x_i,..., 可数无穷多个
 - ▶ 联结词: ¬, →
 - ▶ 量词: ∀ 全称量词
- ▶ 非逻辑符号:
 - ▶ 个体常元 (同 K): a₁, a₂,..., 至多可数无穷多个
 - ▶ 函项符号 (同 K): f₁, f₂,..., n 元函项符号,至多可数无穷 多个
 - ▶ 谓词符号 (同 K): P₁, P₂, ..., n 元谓词符号,至少一个,至
 多可数无穷多个
 - ▶ 个体常元: 0
 - ▶ 一元函数符号: /
 - ▶ 二元函数符号: +,×
 - ▶ 等词符号: ≈

- ▶ 形成规则: 同 K⁺/K
 - ▶ 项 (term)
 - 1. 个体变元和个体常元是项;
 - 2. 若 f 是 n 元函项符号, t_1, \ldots, t_n 是项, 则 $f(t_1, \ldots, t_n)$ 是项;
 - 3. 只有经过有限次应用以上步骤得到的是项。
 - ► K_N 的公式
 - 若 P 是 n 元谓词符号, t₁,...,t_n 是项, P(t₁,...,t_n) 是公式, 称为原子公式;
 - 2. 若 p, q 是公式, $\neg p$ 和 $p \rightarrow q$ 是公式, 称为复合公式;
 - 3. 若 x 是个体变元, p 是公式, 则 ∀xp 是公式, 称为量化公式;
 - 4. 只有经过有限次应用以上步骤得到的是公式。

(2) 推理设施

▶ 逻辑公理(公理模式): 同 K

$$(K1)$$
 $p \rightarrow (q \rightarrow p)$
 $(K2)$ $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$
 $(K3)$ $(\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$
 $(K4)$ $\forall x p(x) \rightarrow p(t)$, 项 t 对 $p(x)$ 中 x 自由
 $(K5)$ $\forall x (p \rightarrow q) \rightarrow (p \rightarrow \forall x q)$, x 不在 p 中自由出现

▶ 推理规则: 同 K

- ▶ 非逻辑公理:
 - ▶ 等词公设: 同 *K*⁺, (E1)~(E3)
 - (E1) $u \approx u$
 - (E2) $u_k \approx u \rightarrow f_i^n(u_1, \dots, u_k, \dots, u_n) \approx f_i^n(u_1, \dots, u, \dots, u_n)$
 - (E3) $u_k \approx u \rightarrow (P_i^n(u_1, \dots, u_k, \dots, u_n) \rightarrow P_i^n(u_1, \dots, u, \dots, u_n))$
- ▶ 算术公设: (N1)~(N7)

$$(N1) \neg (u' \approx 0) \tag{P3}$$

$$(N2) \ u' \approx V \to (u \approx v) \tag{P4}$$

(N3)
$$u + \vec{0} \approx u$$

(N4)
$$u + v' \approx (u + v)'$$

(N5)
$$u \times 0 \approx 0$$

(N6)
$$u \times v \approx u \times v + u$$

$$(N7)$$
 $p(\overrightarrow{0}) \rightarrow (\forall x (p(x) \rightarrow p(x')) \rightarrow \forall x p(x))$ (P5) 归纳公设

- (3) 定义: 同 K

 - $\triangleright p \lor q =_{df} \neg p \rightarrow q$

 - $\exists x \, p =_{df} \neg \forall x \neg p$

∃ 存在量词

思考

▶ 思考题 3-3: 为什么没有 (P1) 和 (P2)?

K_N 的标准模型 \mathcal{N}

 K_N 的预期模型是一个 K^+ 正规模型 $\mathcal{N}=(\mathbb{N},\mathbb{F},\mathbb{P}), \mathbb{N}$ 为自然数集, \mathbb{F} 包含自然数集上的 0、后继函数、加法和乘法, \mathbb{P} 包含自然数集上的相等关系 =,满足:

$$0^{\mathcal{N}} = 0; \quad +^{\mathcal{N}} = 0; \quad \times^{\mathcal{N}} = 0; \quad \times^{\mathcal{N}} = 0;$$

定理

上述 \mathcal{N} 是 K_N 的正规模型。

- 约定: 0',0",0",...,0" 简写为 1,2,3,...,n, 称为 K_N 的数字; ¬(u≈ v) 简写为 u ≈ v。
- ▶ n+m 中 + 为 \mathbb{N} 中加法,n+m 则是 + $(K_N$ 中二元函数符号)。需证明:n+m 成立,iff,n+m。
- ▶ 思考题 3-4: 上述二种"运算"有何区别?

定理 1

定理

1°
$$\vdash_{K_N} \overline{m} + \overline{n} \approx \overline{m} + \overline{n}$$

2° $\vdash_{K_N} \overline{m} \times \overline{n} \approx \overline{m} \times \overline{n}$
3° $\vdash_{K_N} \overline{0} + u \approx u$
4° $\vdash_{K_N} u' + v \approx (u + v)'$

$$5^{\circ} \vdash_{K_N} u + v \approx v + u$$

$$6^{\circ} \vdash_{K_N} (u+v) + r \approx u + (v+r)$$

(N3) 对称的情况

(N4) 对称的情况

定理 1 (cont'd)

证明 1° $\vdash_{K_N} \overline{m} + \overline{n} \approx \overline{m+n}$.

归纳于 n。

(i) n=0, 待证公式为: $\vdash_{K_N} \overline{m} + \overline{0} \approx \overline{m}$, 它就是 (N3), 结论成立;

(ii) n > 0,假设对 N - 1 结论成立, K_N 中的一个形式推导:

$$(1) \overline{m} + \overline{n-1}' \approx (\overline{m} + \overline{n-1})'$$
 (N4)

$$(2)$$
 $m+n-1 \approx m+n-1$ 归纳假设

(3)
$$\overline{m} + \overline{n-1} \approx \overline{m+n-1} \rightarrow (\overline{m} + \overline{n-1})' \approx \overline{m+n-1}'$$
 (E2)

(4)
$$(m + (n-1))' \approx (m+n-1)'$$
 MP(2)(3)

(5)
$$\overline{m} + \overline{n-1}' \approx \overline{m+n-1}'$$
 \approx 传递性 (1)(4)

依归纳法原理, 结论对一切 n 成立。

| □ ト ◆ 圖 ト ◆ 園 ト ◆ 園 ・ 夕 Q G

定理 1 (cont'd)

证明 3°
$$\vdash_{K_N} \overline{0} + u \approx u$$
.

(2)
$$(\overline{0} + x)' \approx \overline{0} + x'$$
 (N4), \approx 对称性

(3)
$$0 + x \approx x \rightarrow (0 + x)' \approx x'$$
 (E2)

$$(4) (0+x)' \approx (0+x') \to ((0+x) \approx x \to (0+x)' \approx x') \to ((0+x) \approx x \to (0+x)' \approx x') \Rightarrow$$
等项替换定理

(5)
$$(0 + x) \approx x \rightarrow (0 + x') \approx x'$$
 MP(3)(MP(2)(4))

(6)
$$\forall x ((0 + x) \approx x \rightarrow (0 + x') \approx x')$$
 UG(5)

(7)
$$(0 + 0) \approx 0 \rightarrow (\forall x ((0 + x) \approx x \rightarrow (0 + x') \approx x') \rightarrow \forall x ((0 + x) \approx x))$$
 (N7)

(8)
$$\forall x ((0 + x) \approx x)$$
 MP(6)(MP(1)(7))

(9)
$$0 + x \approx x$$
 MP(8)(K4)

定理 2

定理

若 m=n, 则 $\vdash_{K_N} \overline{m} \approx \overline{n}$; 若 $m \neq n$, 则 $\vdash_{K_N} \overline{m} \not\approx \overline{n}$.

▶ 思考题 3-5: N 中相等在 KN 中被完全规定了?

习题

习题 3-4: p157: 1; 4。

- 1. 证明当 n=2k 时, $\vdash_{K_N} \exists x_i ((x_i \times \overline{2}) \approx \overline{n}).$
- 2. 证明 $\vdash_{K_N} t'_1 + t_2 \not\approx t_1$.

Table of Contents

引言: 自然数的定义

带等词的谓词演算 K+

形式算术

可表示性与递归函数

可表示性递归函数

Table of Contents

引言: 自然数的定义

带等词的谓词演算 K+

形式算术

可表示性与递归函数 可表示性 递归函数

k 元函数、k 元关系

k 元函数指 $f: \mathbb{N}^k \to \mathbb{N}$

k 元关系: $\mathbb{R} \subseteq \mathbb{N}^k$

定义1(可表示函数)

k 元函数 f 在 K_N 中可表示,如果存在 k+1 个自由变元的公式 $p(x_1, \ldots, x_k, x_{k+1})$ 使对任意对 $p(x_1, \ldots, x_{k+1})$ 中 x_{k+1} 自由的项 u 及 $n_1, \ldots, n_{k+1} \in \mathbb{N}$ 有,

$$1^{\circ} \ \textit{f}(\textit{n}_{1},\ldots,\textit{n}_{\textit{k}}) = \textit{n}_{\textit{k}+1} \ \Rightarrow \vdash_{\textit{K}_{\textit{N}}} \textit{p}(\overleftarrow{\textit{n}_{1}},\ldots,\overleftarrow{\textit{n}_{\textit{k}}},\overleftarrow{\textit{n}_{\textit{k}+1}})$$

$$2^{\circ} f(n_1,\ldots,n_k) \neq n_{k+1} \Rightarrow \vdash_{K_N} \neg p(\overrightarrow{n_1},\ldots,\overrightarrow{n_k},\overrightarrow{n_{k+1}})$$

$$3^{\circ} \vdash_{K_N} p(\overline{n_1},\ldots,\overline{n_k},u) \rightarrow u \approx f(n_1,\ldots,n_k)$$

这时我们说 f 用公式 $p(x_1,\ldots,x_k,x_{k+1})$ 在 K_N 中可表示。

命题 1

k 元函数 f 用公式 $p(x_1, ..., x_k, x_{k+1})$ 在 K_N 中可表示的充要条件 是: 对任意 $n_1, ..., n_k$ 及项 t (t 对 $p(x_1, ..., x_{k+1})$ 中 x_{k+1} 自由),

- 1. $\vdash_{K_N} p(\overline{n_1}, \ldots, \overline{n_k}, \overline{f(n_1, \ldots, n_k)}),$
- 2. $\vdash_{K_N} p(\overline{n_1}, \ldots, \overline{n_k}, t) \to t \approx \overline{f(n_1, \ldots, n_k)}$.

思考

- ▶ 问题 1: 是否每个 K_N 中的公式都一定可用来表示一个数论函数?
 - ▶ 答案是否定的。例如, $x_1 \approx x_1 \land x_2 \not\approx x_2$ 不可能用来表示任何一个一元函数,因为它不是 K_N 下内定理
- ▶ 问题 2: 同一公式 $p(x_1,...,x_{k+1})$ 是否可用来表示两个不同的 k 元函数?
 - ▶ 答案也是否定的。若 f_1 和 f_2 是两个不同的 k 元函数,则存在定义中 1° 和 2° 会出现矛盾的情况。
- ▶ 问题 3:是否每个数论函数都可用 K_N 的公式来表示?
 - ▶ 答案还是否定的。所有数论函数的集是不可数集,而 K_N 中 所有公式构成可数集。
- ▶ 人类至今积累的经验表明,凡是"算法可计算的"数论函数 都是在 K_N 中可表示的。

定义 2 (投影函数)

k 元投影函数 p_i^k 是指由下式规定的函数

$$p_i^k(n_1,\ldots,n_k)=n_i, \quad i=1,\ldots,k.$$

命题 2

函数 +, \times 和 p_i^k 在 K_N 中是可表示的。

证明.

(思路)

- 二元和函数 + 用公式 $x_1 + x_2 \approx x_3$ 表示。
- 二元乘积函数 × 用公式 $x_1 \times x_2 \approx x_3$ 表示。
- p_i^k 用公式 $x_1 \approx x_1 \wedge \cdots \wedge x_k \approx x_k \wedge x_{k+1} \approx x_i$ 表示。

定义3(可表示关系)

 \mathbb{N} 上的 k 元关系 R 在 K_N 中可表示,是指存在着含有 k 个自由 变元的公式 $p(x_1,\ldots,x_k)$,它具有以下性质:对任意 $n_1,\ldots,n_k\in\mathbb{N}$,

1°
$$(n_1, \ldots, n_k) \in R \Rightarrow \vdash_{K_N} p(\overline{n_1}, \ldots, \overline{n_k}),$$

2° $(n_1, \ldots, n_k) \notin R \Rightarrow \vdash_{K_N} \neg p(\overline{n_1}, \ldots, \overline{n_k}).$

这时我们说 R 用公式 $p(x_1,\ldots,x_k)$ 在 K_N 中可表示。

思考

- ▶ 问题: 是否每个 K_N 的公式 p(x₁,...,x_k) 都一定可用来表示 某个 k 元关系?
 - ▶ 这个问题的回答与 K_N 的"完备性"有关。如果存在 $n_1, \ldots, n_k \in \mathbb{N}$,使

$$\vdash_{K_N} p(\overline{n_1},\ldots,\overline{n_k}) \not \models \vdash_{K_N} \neg p(\overline{n_1},\ldots,\overline{n_k})$$

都不成立,那么我们说闭式 $p(\overline{n_1}, \ldots, \overline{n_k})$ 是一个从 K_N 不可判定的公式,并且说 K_N 不完备。这时公式 $p(x_1, \ldots, x_k)$ 便不能用来表示任何一个关系。因为, $(n_1, \ldots, n_k) \in R$ 或者 $(n_1, \ldots, n_k) \notin R$ 二者必居其一。

例子

二元关系"相等"在 K_N 中用公式 $x_1 \approx x_2$ 可表示。我们有

$$n_1 = n_2 \Rightarrow \vdash_{K_N} \overrightarrow{n_1} \approx \overrightarrow{n_2},$$

 $n_1 \neq n_2 \Rightarrow \vdash_{K_N} \overrightarrow{n_1} \not\approx \overrightarrow{n_2}.$

命题 3

k 元关系 R 的特征函数 $C_R: \mathbb{N}^k \to \mathbb{Z}_2$ 是用下式定义的:

$$C_R(n_1,\ldots,n_k) = \begin{cases} 1, & (n_1,\ldots,n_k) \in R, \\ 0, & (n_1,\ldots,n_k) \notin R. \end{cases}$$

关系 R 可表示,当且仅当它的特征函数 C_R 可表示。

例子

二元关系 " \leq " 是可表示关系,从而它的特征函数 C_{\leq} 是可表示函数。

▶ 二元关系 " \leq " 用公式 $\exists x_3 (x_3 + x_1 \approx x_2)$ 可表示。

定理 1

定理

函数的复合保持可表示性。具体地说,设 j 元函数 g 和 j 个 k 元 函数 h_1, \ldots, h_j 都是可表示的,那么如下定义的 k 元函数 f 也是可表示的:

$$f(n_1,...,n_k) = g(h_1(n_1,...,n_k),...,h_j(n_1,...,n_k)),$$

此式简写为

$$f(\alpha) = g(h_1(\alpha), \ldots, h_j(\alpha)).$$

定义(最小数算子, μ 算子)

设 k+1 元函数 g 满足"根存在性条件":对任意 n_1, \ldots, n_k 都存在 x 使得 $g(n_1, \ldots, n_k, x) = 0$ 。现用下式来定义 k 元函数 f:

$$f(n_1, \ldots, n_k) = \min\{x \mid g(n_1, \ldots, n_k, x) = 0\},\$$

即把 $f(n_1,\ldots,n_k)$ 定义为满足 $g(n_1,\ldots,n_k,x)=0$ 的 x 的最小值。我们把这样定义的 k 元函数 f 说成是由已给的 k+1 元函数 g 使用最小数算子或 μ 算子得来的,并写

$$f(n_1, \ldots, n_k) = \mu x [g(n_1, \ldots, n_k, x) = 0].$$

性质

如果 f 是由 g 使用 μ 算子得来的,则以下两点成立:

▶ $f(n_1,...,n_k)$ 是"根":

$$g(n_1,\ldots,n_k,f(n_1,\ldots,n_k))=0.$$

▶ f(n₁,...,n_k) 这个根具有"最小性":

$$g(n_1,\ldots,n_k,x)=0 \Rightarrow f(n_1,\ldots,n_k)\leq x.$$

定理 2

定理

 μ 算子保持可表示性。具体地说,设 k+1 元函数 g 在 K_N 中可表示,那么由 g 使用 μ 算子得到的 k 元函数 f 也在 K_N 中可表示。

Table of Contents

引言: 自然数的定义

带等词的谓词演算 K+

形式算术

可表示性与递归函数 可表示性 递归函数

定义(基本函数)

以下三种,

- 1° 一元零函数 z, z(n) = 0;
- 2° 一元后继函数 s, s(n) = n + 1;
- 3° k 元投影函数 p_i^k , $p_i^k(n_1, ..., n_k) = n_i$, i = 1, ..., k.

定义

▶ (复合规则) 一个 *j* 元函数 *g* 和 *i* 个 *k* 元函数 *h*₁,..., *h_j* 的复合是一个 *k* 元函数,

$$f(n_1,\ldots,n_k)=g(h_1(n_1,\ldots,n_k),\ldots,h_j(n_1,\ldots,n_k))$$

▶ (递归规则) 由 k 元函数 g 和 k+2 元函数 h, 使用递归规则 生成的 k+1 元函数 f 的定义如下:

$$\begin{cases}
f(n_1, \ldots, n_k, 0) = g(n_1, \ldots, n_k), \\
f(n_1, \ldots, n_k, n + 1) = h(n_1, \ldots, n_k, n, f(n_1, \ldots, n_k, n)).
\end{cases}$$

k=0 时,由定数 g 和二元函数 h 使用递归规则生成一元函数 f 的方式是:

$$\begin{cases} f(0) = g, \\ f(n+1) = h(n, f(n)). \end{cases}$$

定义 (μ 算子)

设 k+1 元函数 g 满足根存在条件: 任给 n_1, \ldots, n_k 存在 x 使 $g(n_1, \ldots, n_k, x) = 0$, 应用 μ 算子于 g 生成的函数 f 为

$$f(n_1, \ldots, n_k) = \min\{x \mid g(n_1, \ldots, n_k, x) = 0\}$$

定义(递归函数)

三个基本函数以及由它们经过有限次应用三个规则生成的函数称为 (一般) 递归函数,不使用 μ 算子生成的称为原始递归函数,不要求根存在条件地应用 μ 算子生成的为部分递归函数(递归偏函数)。

性质

- 按照定义证明一个函数的递归性,应说明它是由哪些基本函数依何种次序用什么规则生产的。在描述过程中可以使用已经得到的已知递归函数。
- ▶ 所有基本函数构成的集 F_0 是可数集;把由基本函数使用 n 次规则生成的所有函数构成的集记为 F_n ;对 n 归纳可证每个 F_n 都是可数集;所有递归偏函数构成的集就是 $\bigcup_{n=0}^{\infty} F_n$,它是可数集。
- ▶ 所有数论函数构成不可数集。所以,非递归函数是存在的, 与递归函数相比,更大量的数论函数是非递归的。

常用递归函数

1° k 元常值函数 C_m , 定义式是

$$C_m(n_1,\ldots,n_k)=m.$$

 C_m 是递归函数,这是因为(对 m 归纳)

$$C_0(n_1,...,n_k) = z(p_1^k(n_1,...,n_k)),$$

 $C_{m+1}(n_1,...,n_k) = s(C_m(n_1,...,n_k)).$

2°二元和函数+

$$n_1 + 0 = p_1^1(n_1),$$

 $n_1 + (n+1) = (n_1 + n) + 1 = s(p_3^3(n_1, n, n_1 + n)).$

3°二元积函数×

$$n_1 \times 0 = z(n_1),$$

 $n_1 \times (n+1) = p_3^3(n_1, n, n_1 \times n) + p_1^3(n_1, n, n_1 \times n).$

常用递归函数 (con't)

 4° 前邻函数 p^{-} 的定义式是

$$p^{-}(n) = \begin{cases} 0, & n = 0, \\ n - 1, & n > 0. \end{cases}$$

p⁻ 是递归的,因为

$$p^-(0) = 0,$$

 $p^-(n+1) = n = p_1^2(n, p^-(n)).$

5° 截差函数 - 的定义式是

$$n_1 \dot{-} n_2 = \begin{cases} n_1 - n_2, & n_1 \ge n_2, \\ 0, & n_1 < n_2. \end{cases}$$

截差函数是递归的,因为:

$$n_1 \dot{-} 0 = n_1 = p_1^1(n_1),$$

$$n_1 \dot{-} (n+1) = p^-(n_1 \dot{-} n) = p^-(p_3^3(n_1, n, n_1 \dot{-} n)).$$

常用递归函数 (con't)

6° 一元函数 sg 的定义式是

$$sg(n) = \begin{cases} 1, & n > 0, \\ 0, & n = 0. \end{cases}$$

sg 是递归的, 因为

$$sg(0) = 0.$$

 $sg(n+1) = 1 = C_1(n, sg(n)).$

7°一元函数 5g 的定义式是

$$\overline{sg}(n) = \begin{cases} 0, & n > 0, \\ 1, & n = 0. \end{cases}$$

家 是递归的,因为

$$\overline{sg}(n) = 1 - sg(n)$$
.

命题

由 k 元函数 f 用下式定义初的 l 元函数 g 也是递归的:

$$g(n_1,\ldots,n_l)=f(n_{m_1},\ldots,n_{m_k}),$$

其中对每个 $i=1,\ldots,k$,有 $1 \leq m_i \leq l$.

其他常用递归函数

8° 绝对差 $n_1 \ddot{-} n_2 = |n_1 - n_2|$ 是递归的,因为

$$n_1\ddot{-}n_2 = (n_1\dot{-}n_2) + (n_2\dot{-}n_1).$$

 9° min 与 max (k 元, k > 1) 的递归的,因为

$$k=2$$
 时, $\min(n_1,n_2)=n_1\dot{-}(n_1\dot{-}n_2),$ $k>2$ 时, $\min(n_1,\ldots,n_k)=\min(\min(n_1,\ldots,n_{k_1}),n_k).$

 10° 指数函数 n_1^n 是递归的,因为

$$n_1^0 = sg(n_1),$$

 $n_1^{n+1} = n_1^n \times n_1.$

11°余数函数也是递归函数

定义(递归关系/集合)

回顾 k 元关系 R 的特征函数

$$C_R(n_1,\ldots,n_k) = \begin{cases} 1, & (n_1,\ldots,n_k) \in R, \\ 0, & (n_1,\ldots,n_k) \notin R. \end{cases}$$

定义(递归关系与递归集)

若特征函数 C_R 是递归函数,则关系 R 叫做递归关系。一元递归关系叫做 $\mathbb N$ 的递归子集,简称为递归集。

命题

- ▶ 命题 1:
 - ▶ 若 $R \in k$ 元递归关系,则 R 也是 k 元递归关系,这里的 R 是 R 的余集: $R = \mathbb{N}^k R$ 。
 - ► 若 R₁, R₂ 都是 k 元递归关系,则 R₁ ∪ R₂ 和 R₁ ∩ R₂ 也是 k
 元递归关系。
- ▶ 命题 2: N, Ø, 独元集 {a}, 有限集 {a₁,...,a_n} 都是递归集。

定理

定理

所有递归函数(关系、集)是 K_N 可表示的。

定理

所有 K_N 可表示的函数(关系、集)是递归的。

▶ 证明过程中用到 Gödel 编码,把所有公式、公式序列唯一地映射为自然数。

能行可计算 \Leftrightarrow 递归 \Leftrightarrow K_N 可表示

定义 (丘奇-图灵论题)

一个自然数上的函数 $f: \mathbb{N}^n \to \mathbb{N}$ 是能行可计算的 (effectively computable), 当且仅当它是图灵可计算的 (Turing computable)。

Gödel 编码

目标:把所有公式、公式序列唯一地映射为自然数。

1° K_N 符号 u, Gödel 数 g(u):

- 2° 符号串的 Gödel 数, $g(u_0, u_1, \ldots, u_k) = 2^{g(u_0)} 3^{g(u_1)} \cdots p_{k+1}^{g(u_k)}$. p_k 是第 k 个素数。
- 3° 公式序列 Gödel 数, $g(s_0,s_1,\ldots,s_n)=2^{g(s_0)}3^{g(s_1)}\cdots p_{n+1}^{g(s_n)}$.

命题

下列集合是递归的

- 2° { g(p) | p 是K_N 公式 };
- 3° { $g(s) \mid s \in K_N$ 中公式序列 }.

例

- $g(0 \approx 0) = 2^{15}3^{13}5^{15} = n$
- $g(\overline{3}) = g('''\overline{0}) = 2^1 3^1 5^1 7^{15} = n$
- ▶ $15 = 2^0 3^1 5^1$,不是符号串,15 代表 0
- ▶ 14 = 2¹3⁰5⁰7¹, 不是符号, 代表 ',¬ 不是项/公式

K_N 公式 \Rightarrow 自然数