2.2 Manifestement $D_f = \mathbb{R}$.

Soit $a \in \mathbb{R}$ un élément que lconque de l'ensemble de définition. Montrons que la fonction f est continue au point a.

Soit $\varepsilon > 0$ un nombre positif quelconque (arbitrairement petit).

Il s'agit de montrer l'existence d'un nombre $\delta > 0$ tel que pour tout $x \in \mathbb{R}$ avec $|x - a| < \delta$ on ait $|f(x) - f(a)| < \varepsilon$.

On veut donc avoir $|f(x) - f(a)| = |x - a| < \varepsilon$.

Cette inégalité est clairement vérifiée si $|x-a|<\varepsilon$. Par conséquent, en choisissant $\delta=\varepsilon$, on obtient que pour tout $x\in\mathbb{R}$ avec $|x-a|<\delta$ on a $|f(x)-f(a)|=0<\varepsilon$. La continuité de la fonction f en a est ainsi prouvée.

Analyse : continuité Corrigé 2.2