

Modélisation du champ de pression sous un pied

/>

Dans le projet de réduire les ulcères plantaires des patients diabétiques

Souteance PFE 2022

PLAN

Contextualisation du projet

Modélisation

Modélisation du pied

FootWorkPro

Présentation de la plateforme

Simulation

Simulation du pied

Traitement

Traitement des données de la plateforme

Conclusion

Où on est-on dans le projet?

Le problème des ulcères plantaires chez les

"The predominant risk factor of diabetic foot ulcers (DFU), peripheral neuropathy, results in loss of protective sensation and is associated with abnormally high plantar pressures

Méthode de résolution du problème

Champ de pression

Modélisation

Obtenir le champ de pression réel à l'aide de FootWorkPro

Modéliser le pied sur ANSYS pour obtenir des informations à l'intérieur du pied

Simulation

Relier les champs de pressions réels et la modélisation

Obtenir les zones surcontraintes du pied

Footwork Pro

Une plateforme de pression

Teste sur la plateforme

Taille des capteurs :

-Théorie: 0,7 cm

-Expérimental: 0,75 cm

Mon poids :

-Théorie: 755 N

-Expérimental: 850 N

Traitement

Traitement des données de FootworkPro

Les étapes du traitement de données

Augmenter

Zoomer pour augmenter artificiellement l'image

Redimmensionner

Avec des facteurs en largeur et en longueur

If ... else

Seuiller

Le zoom interpole. Seuiller les valeurs proches de 0

Interpoler

Rééquilibrer le champ de pression

Résultat

Resize

Factour longueur: 0,4

Facteur largeur: 0,4

Forme : concorde

Valeur : vérifié

Modélisation

Modélisation du pied sur ANSYS

Soustraction booléenne des os avec le tissu

Simulation

Modélisation du pied sur Ansys

Force de 50N

Champ de pression

Pression maximale localisée au niveau du talon

Contraintes de Von Mises

Contraintes localisées au niveau des os

A 400N

1	Statistiques		
	Nœuds	311232	
- [Eléments	170459	

Le tissu mou contient des cavités complexes.

Il faut un maillage fin

The memory (-m) size requested [2112 mb] is not currently available. Reenter ANSYS command line with less memory requested.

Conclusion

Méthode de résolution du problème

Champ de pression

Modélisation

Obtenir le champ de pression réel à l'aide de FootWorkPro

Modéliser le pied sur ANSYS pour obtenir des informations à l'intérieur du pied

Simulation

Relier les champs de pressions réels et la modélisation

Obtenir les zones surcontraintes du pied

Champ de pression

-Obtention du champ de pression -Agrandissement/Elargissement du pied

Modélisation

-Simulation à 50N

-Soustraction booléenne os ou pièce de liaison avec tissu mou -Simulation à 650N non finalisée