PHY372: All-Photonics Quantum Repeaters

QiLin Xue

University of Toronto

August 5, 2023

Motivation: Overview

- Current cryptography relies on unproven hardness of certain problems
- Quantum cryptography uses the laws of physics for unconditional security.
- Challenge: Channel loss and noise increase with distance.

Classical vs Quantum Repeaters

- Classical repeaters amplify signals to overcome loss in transmission medium.
- ▶ Quantum signals cannot be amplified due to the **no cloning theorem**.
- Instead, create long-distance entanglement linking distant nodes through 'entanglement swapping'.

Challenges with Quantum Repeaters

- Quantum Memory
- Ability to convert between staionary and flying qubits
- Could be as hard as quantum computers!

All-Photonics Quantum Repeater

- ▶ No need for quantum memory.
- ▶ Multiple channels for creating entanglement.

Overview of Photonic Quantum Repeaters

► Two stages:

- **Preparation:** Compute P_{cn} , the probability to prepare the clusters
- ▶ Measurement: Compute the key rate R by looking at success probability of measurements.

Building a Cluster State: Repeater Nodes

- lacktriangle Attach error protection trees with branching vector $\vec{b} = [b_0, b_1]$.
- ▶ White qubits are *outer qubits* that are transmitted to receiver nodes.

In above example, $\vec{b} = [2, 3]$ and m = 3.

Building a Cluster State: Repeater Nodes

- ightharpoonup 4m+1 basis measurements are done to turn tree into a cluster
- ► Allows for maximal error correction

Building a Cluster State: Fusion Operations

- Start from GHZ states.
- Fusion: Combine two states but remove two photons in the process.
- \triangleright Combining two states of x photons will result in a state with 2x-2 photons.

► Given the probabilistic nature of creating GHZ states and the fusion operations, run these operations on multiple copies at each stage.

Building a Cluster State: Example

TODO: make my own better figure of more relevant example

Naive Approach

- Build up the tree, through time steps.
- ▶ Each time step, combine states of similar size to create larger intermediate states.
 - Each fusion step is attempted several times.
- Start with GHZ states.

▶ **Problem:** If multiple attempts at a given fusion step succeed, then the other successful ones are wasted.

Improved Approach

- ▶ **Solution:** Pool all the successful ones in a bank that any fusion step could pull from.
- Perform measurements early.

Rate Calculations

▶ Key rate, in terms of bits per mode, is computed following formula below.

$$R = \frac{P_{cn}P_{meas}}{N_{parallel}}$$

For improved scheme,

$$N_{\text{parallel}} = 2m$$
 (1)

For naive scheme,

$$N_{\text{parallel}} = 2m + 2m(b_0b_1 + b_0)$$
 (2)

Determining Loss Rates

For outer qubits, loss rate is given by:

$$\epsilon_{trav} = 1 - \eta^{1/(2n)} P_{chip}^{k+2} \eta_{GHZ} \eta_{c}$$

For inner qubits, loss rate is given by:

$$\epsilon_{ extit{stat}} = 1 - \eta^{1/n} P_{ extit{fib}} P_{ extit{chip}}^{k+2} \eta_{ extit{GHZ}} \eta_{ extit{C}}$$

Determining Probabilities

▶ Probability of an indriect Z masurement at ith level, ξ_i given by

$$\xi_i = 1 - [1 - (1 - \epsilon_{stat})(1 - \epsilon_{stat} + \epsilon_{stat}\xi_{i+2})^{b_{i+1}}]^{b_i}, \text{ for } i \leq \ell, \xi_{\ell+1} = b_{\ell+1} = 0.$$

 \triangleright P_X, P_Z is calculated as:

$$egin{aligned} P_X &= 1 - [1 - (1 - \epsilon_{stat})^{b_1 + 1}]^{b_0} \ P_Z &= (1 - \epsilon_{stat}^{b_1 + 1})^{b_0} \end{aligned}$$

Establish success rate of Bell state measurements:

$$P_B = \left[rac{1}{2}(\eta_s\eta_d)^2 + rac{1}{4}(\eta_s\eta_d)^4
ight]\cdot \left(P_{chip}^{k+2}\eta_{GHZ}\eta_c
ight)^2\cdot \eta^{1/n}$$

▶ Probability of at least one successful detection at ends is

$$P_{end} = 1 - (1 - \eta^{1/(2n)} P_{chin}^{k+2} \eta_{GHZ} \eta_c)$$

Naive Approach Modifications

▶ In naive approach, the number of parallel channels and success probability of Bell measurements change.

$$egin{aligned} N_{\mathsf{parallel}} : 2m &
ightarrow 2m + 2m(b_0b_1 + b_0) \ P_{\mathsf{BSM}} : rac{3}{4} &
ightarrow rac{1}{2} \ &\epsilon : \epsilon_{\mathsf{stat}} &
ightarrow \epsilon_{\mathsf{trav}} \end{aligned}$$

k	m_{naive}	$ec{b}_{\sf naive}$	$R_{\sf naive}$	$m_{\rm improved}$	$ec{b}_{improved}$	$R_{\rm improved}$
7	5	[3, 2]	$1.91 imes 10^{-8}$	4	[4, 2]	3.87×10^{-6}
8	8	[4, 2]	6.13×10^{-6}	5	[5, 3]	2.98×10^{-3}
9	11	[5, 3]	5.77×10^{-4}	7	[6, 4]	2.71×10^{-2}
10	13	[7, 4]	7.42×10^{-4}	8	[10, 5]	$4.93 imes 10^{-2}$

Optimizing the number of repeater nodes

▶ Optimal value of *n* is different for each value of *L*

► Satisfies the relationship

$$\frac{L}{n} = 1.5 \text{ km}$$

Comparison

► Rate vs Distance for Naive (left) and Improved (right):

The End