Dynamic Models

Ali AlBeladi January 14, 2025

Introduction to Control systems

System

- Definition

A system is an interconnection of components forming a system configuration that will provide a desired system response.

Each component is described by a cause-effect relation.

Therefore a component or process to be controlled can be represented by a block

The input- output relation represents the cause-and-effect relationship of the process

Classification of Control systems

An open-loop control system utilizes an actuating device to control the process directly without feedback

Examples:- Washing Machine, Toaster

A closed-loop control system uses a measurement of the out put and feedback of this signal to compare it with the desired output (reference or command)

Closed-loop Feedback System With External Disturbances And Measurement Noise

Multiloop Feedback System

Feedback Control

Some terminology:

- the plant is the system being controlled
- the sensors measure the quantity that is subject to control
- the actuators act on the plant
- the controller processes the sensor signals and drives the actuators
- the control law is the rule for mapping sensor signals to actuator signals

Disturbance

What is a Model?

• A model can be obtained using principles of the underlying physics or by testing a prototype of the device, measuring its response to inputs, and using the data to construct an analytical model.

We will focus only on using physics

Modelling an Electric System

Consider the RC circuit shown here

Using KVL, we can obtain

$$v_1(t) = R i(t) + v_2(t)$$

We also have the relationship

$$v_2(t) = \frac{1}{C} \int_0^t i(\tau) \, d\tau$$

(assuming no initial charge)

Differentiate v_2

$$\dot{v}_2 = \frac{1}{C}i(t)$$

Substitute in i(t)

$$v_1(t) = RC\dot{v}_2 + v_2(t)$$

Modelling an Electric System

Consider the RLC circuit shown below.

Using KCL, one obtains the following integro-differential equation,

$$\frac{v(t)}{R} + C\frac{dv(t)}{dt} + \frac{1}{L}\int v(t)dt = r(t)$$

Dynamics of Mechanical System

• The cornerstone for obtaining a mathematical model, or the dynamic equations, for any mechanical system is Newton's law

$$\mathbf{F} = m\mathbf{a}$$

•
$$m\ddot{x} = -kx - c\dot{x} + u$$

A Simple System; Cruise Control Model

1. Write the equations of motion for the speed and forward motion of the car shown in Fig. 2.1, assuming the engine imparts a force *u* as shown. Take the Laplace transform of the resulting differential equation and find the transfer function between the input *u* and the output *v*.

For the case of the automotive cruise control where the variable of interest is the speed, $v = \dot{x}$, the equation of motion becomes

$$\dot{v} + \frac{b}{m}v = \frac{u}{m}.\tag{2.4}$$

$$\frac{V_o}{U_o} = \frac{\frac{1}{m}}{s + \frac{b}{m}}.$$