NIPS 2017

Trends and Interesting Papers

Overview

Self-Normalizing Neural Networks

Meta Learning

Self-play

Population based Training of Neural Networks

GANs

PacGANs

Differentiable Computing

The Case for Learned Index Structures

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

ELU
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Scaled exponential linear units:

$$selu(x) = \lambda \begin{cases} x & \text{if } x > 0 \\ \alpha e^x - \alpha & \text{if } x \leqslant 0 \end{cases}$$

#layers / #blocks								
method	2	3	4	6	8	16	32	
SNN	83.7 ± 0.3	84.4 ± 0.5	84.2 ± 0.4	83.9 ± 0.5	84.5 ± 0.2	83.5 ± 0.5	82.5 ± 0.7	
Batchnorm	80.0 ± 0.5	$79.8 \pm {\scriptstyle 1.6}$	77.2 ± 1.1	77.0 ± 1.7	75.0 ± 0.9	73.7 ± 2.0	$76.0 \pm {\scriptstyle 1.1}$	
WeightNorm	83.7 ± 0.8	$82.9\pm{\scriptstyle 0.8}$	82.2 ± 0.9	82.5 ± 0.6	81.9 ± 1.2	$78.1 \pm {\scriptstyle 1.3}$	56.6 ± 2.6	
LayerNorm	84.3 ± 0.3	84.3 ± 0.5	84.0 ± 0.2	82.5 ± 0.8	$80.9 \pm {\scriptstyle 1.8}$	78.7 ± 2.3	$78.8 \pm {\scriptstyle 0.8}$	
Highway	83.3 ± 0.9	83.0 ± 0.5	82.6 ± 0.9	82.4 ± 0.8	$80.3 \pm {\scriptstyle 1.4}$	$80.3\pm {\scriptstyle 2.4}$	79.6 ± 0.8	
MSRAinit	$82.7\pm{\scriptstyle 0.4}$	81.6 ± 0.9	81.1 ± 1.7	80.6 ± 0.6	80.9 ± 1.1	80.2 ± 1.1	80.4 ± 1.9	
ResNet	82.2 ± 1.1	80.0 ± 2.0	80.5 ± 1.2	81.2 ± 0.7	81.8 ± 0.6	81.2 ± 0.6	na	

Overview

Self-Normalizing Neural Networks

Meta Learning

Self-play

Population based Training of Neural Networks

GANs

PacGANs

Differentiable Computing

The Case for Learned Index Structures

Meta Learning - Self Play

AlphaGo / AlphaZero

Meta Learning Workshop @ NIPS

https://nips.cc/Conferences/2017/Schedule?showEvent=8767

Self Play

learn complex behaviours given a simple objective initially: rewards for behaviours like standing / moving forward later: reward only for winning and losing

https://www.youtube.com/watch?v=OBcjhp4KSgQ

Population Based Training of Neural Networks

Optimize model and hyperparameters

Fixed computational budget

Very easy to implement

Hyperparameter optimization

Sequential

Manual tweaking

Bayesian models

Parallel

Grid search

Random search

Bayesian models

A global, black box optimization engine for real world metric optimization.

Hyperparameter optimization

Sequential

Manual tweaking

Bayesian models

Parallel

Grid search

Random search

Key ideas

Run population in parallel

But only a few steps

Use actual error measure for evaluation

Keep best, kill worst, mutate others

Evolutionary search in hyperparameter space

Key ideas

Evolution of hyper-parameters

GAN population development

FuN population development

1000 2000 3000 4000 5000 6000 7000 8000 9000 Cumulative Expected Reward

Results on RNN, GANs, Machine Translation

Vs Random Search in Reinforcement

Vs Random Search for GANs

Contributions

Automatic selection of hyperparameters

Online model selection maximise use of computation spent on promising models

Enable non-stationary training regimes

Discovery of complex hyperparameter schedules

Overview

Self-Normalizing Neural Networks

Meta Learning

Self-play

Population based Training of Neural Networks

GANs

PacGANs

Differentiable Computing

The Case for Learned Index Structures

Generative Adversarial Models

Hype slowing down (a little ;-)

Focus on domain translation

Focus on avoiding mode collapse e.g VEEGAN
PacGAN

Domain translation

Domain translation

Generative Adversarial Networks

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

GAN Discriminator

Input Layer

Overview

Self-Normalizing Neural Networks

Meta Learning

Self-play

Population based Training of Neural Networks

GANs

PacGANs

Differentiable Computing

The Case for Learned Index Structures

The Case for Learned Index Structures

Index Structures

B-Trees

Hash-Maps

Bloom Filters

Aim

Learn more compact / faster data structures!

The Case for Learned Index Structures

The Case for Learned Index Structures

Index Structures

B-Trees

Hash-Maps

Bloom Filters

Tim Kraska* MIT

Cambridge, MA

kraska@mit.edu

Alex Beutel

Google, Inc. Mountain View, CA

alexbeutel@google.com

Goog Mountair

Ed 1

edchi@g

Jeffrey Dean Google, Inc.

Mountain View, CA

jeff@google.com

Neoklis Polyzotis Google, Inc.

Mountain View, CA

npolyzotis@google.com

Aim

Learn more compact / faster data structures!

Motivation

Index Structures are Models

B-Trees -> regression

Hash-Maps -> classification

Bloom Filters -> classification

Future Performance

CPU: Moore's law is dead

GPUs / TPUs

Worst-case data distribution vs task specific data distribution

Learn data structure best suited for actual data!

Motivation

Index Structures are Models

B-Trees -> regression

Hash-Maps -> classification

Bloom Filters -> classification

Future Performance

CPU: Moore's law is dead

GPUs / TPUs

Worst-case data distribution vs task specific data distribution

Learn data structure best suited for actual data!

Task

Given key/datum, predict location in sorted index

(a) B-Tree Index

(b) Learned Index

Task

Given key/datum, predict location in sorted index

(a) B-Tree Index

(b) Learned Index

Task

Given key/datum, predict location in sorted index

Indices as cumulative distribution functions

Naive approach

Two layer FNN, 32 nodes

Slow due to Tensorflow overhead

Difficulty modelling fine details

Learning Index Framework

Custom C++ framework for small networks

Recursive Model Index

Recursive Model Index

Takes idea from mixture of experts

Recursive Model Index

Train stage by stage

Predict all data - create new temp data sets

Last stage predicts position

Is not a tree

Hybrid model with B-Tree

Results

Туре	Config	Search	Total	Model	Search	Speedup	Size	Size	Model Err
			(ns)	(ns)	(ns)		(MB)	Savings	± Err Var.
Btree	page size: 16	Binary	280	229	51	6%	104.91	700%	4 ± 0
	page size: 32	Binary	274	198	76	4%	52.45	300%	16 ± 0
	page size: 64	Binary	277	172	105	5%	26.23	100%	32 ± 0
	page size: 128	Binary	265	134	130	0%	13.11	0%	64 ± 0
	page size: 256	Binary	267	114	153	1%	6.56	-50%	128 ± 0
Learned Index	2nd stage size: 10,000	Binary	98	31	67	-63%	0.15	-99%	8 ± 45
	33.7	Quaternary	101	31	70	-62%	0.15	-99%	8 ± 45
	2nd stage size: 50,000	Binary	85	39	46	-68%	0.76	-94%	3 ± 36
		Quaternary	93	38	55	-65%	0.76	-94%	3 ± 36
	2nd stage size: 100,000	Binary	82	41	41	-69%	1.53	-88%	2 ± 36
		Quaternary	91	41	50	-66%	1.53	-88%	2 ± 36
	2nd stage size: 200,000	Binary	86	50	36	-68%	3.05	-77%	2 ± 36
17		Quaternary	95	49	46	-64%	3.05	-77%	2 ± 36
Learned Index	2nd stage size: 100,000	Binary	157	116	41	-41%	1.53	-88%	2 ± 30
Complex		Quaternary	161	111	50	-39%	1.53	-88%	2 ± 30

Figure 4: Map data: Learned Index vs B-Tree

Hash-Maps

Figure 9: Traditional Hash-map vs Learned Hash-map

Hash-Maps

Dataset	Slots	Hash Type	Search	Empty Slots	Space
			Time (ns)		Improvement
Мар	75%	Model Hash	67	0.63GB (05%)	-20%
		Random Hash	52	0.80GB (25%)	
	100%	Model Hash	53	1.10GB (08%)	-27%
		Random Hash	48	1.50GB (35%)	
	125%	Model Hash	64	2.16GB (26%)	-6%
		Random Hash	49	2.31GB (43%)	
Web Log	75%	Model Hash	78	0.18GB (19%)	-78%
		Random Hash	53	0.84GB (25%)	
	100%	Model Hash	63	0.35GB (25%)	-78%
		Random Hash	50	1.58GB (35%)	
	125%	Model Hash	77	1.47GB (40%)	-39%
		Random Hash	50	2.43GB (43%)	
Log	75%	Model Hash	79	0.63GB (20%)	-22%
Normal		Random Hash	52	0.80GB (25%)	
	100%	Model Hash	66	1.10GB (26%)	-30%
		Random Hash	46	1.50GB (35%)	
	125%	Model Hash	77	2.16GB (41%)	-9%
		Random Hash	46	2.31GB (44%)	

Figure 10: Model vs Random Hash-map

Overview

Self-Normalizing Neural Networks

Meta Learning

Self-play

Population based Training of Neural Networks

GANs

PacGANs

Differentiable Computing

The Case for Learned Index Structures

image analysis machine learning artificial intelligence

contextflow

spinoff of the Medical University of Vienna

exploration of large-scale medical imaging data