Современные процессоры для высокопроизводительных вычислительных систем

Процессоры Intel Xeon

Xeon – линейка серверных микропроцессоров производства Intel. Отличие от настольных процессоров:

- увеличен кэш;
- поддержка больших многопроцессорных систем;
- уже в Pentium II Xeon отличался от Desktop Pentium II кэшем второго уровня, работающий на полной частоте ядра, а не на половине его частоты.

Название	Intel Xeon Processor E5502 ^[2]	Intel Xeon Processor E5504 ^[3]	Intel Xeon Processor E5506 ^[4]	Intel Xeon Processor E5520 ^[5]	Intel Xeon Processor E5530 ^[6]	Intel Xeon Processor E5540 ^[7]
Статус	Производится	Производится	Производится	Производится	Производится	Производится
Дата начала серийного производства	I кв. 2009					
Номер процессора	E5502	E5504	E5506	E5520	E5530	E5540
К-во ядер	2	4	4	4	4	4
К-во потоков	2	4	4	8	8	8
Базовая тактовая частота процессора	1.86 ГГц	2 ГГц	2.13 ГГц	2.26 ГГц	2.4 ГГц	2.53 ГГц
Кэш-память	4 МБ «разумный» кэш	4 МБ «разумный» кэш	4 МБ «разумный» кэш	8 МБ «разумный» кэш	8 МБ «разумный» кэш	8 МБ «разумный» кэш
Тип шины	QPI					
Производительность системной шины	4.8 ГТ/сек	4.8 ГТ/сек	4.8 ГТ/сек	5.86 ГТ/сек	5.86 ГТ/сек	5.86 ГТ/сек
К-во связей QPI	2					
Набор команд	64-битный					
Для встроенного применения?	Нет	Да	Нет	Нет	Нет	Да
Дополнительный SKU	Нет					

Макс. тепловыделение	80 BT	80 BT	80 BT	80 BT	80 BT	80 BT
Диапазон напряжения питания, VID	0.75B-1.35B	0.75B-1.35B	0.75B-1.35B	0.75B-1.35B	0.75B-1.35B	0.75B-1.35B
Цена (партия — 1 под инт) Спецификация пам	\$188.00 яти	\$224.00	\$266.00	\$373.00	\$530.00	\$744.00
Макс. объём памяти (зависит от типа памяти)	144 ГБ	144 ГБ	144 ГБ	144 ГБ	144 ГБ	144 ГБ
Типы памяти	DDR3-800	DDR3 800	DDR3-800	DDR3 1066/800	DDR3-800/1066	DDR3-800/1066
К-во каналов памяти	3		1			
Макс. пропускная способность памяти	19.2 ГБ/сек	19.2 ГБ/сек	19.2 ГБ/сек	25.6 ГБ/сек	25.6 ГБ/сек	25.6 ГБ/сек
Расширение физического адреса	40-битовое					
Поддержка памятью функции ECC	Да	Да	Да	Да	Да	Да
Спецификация кор	пуса					
Макс. процессоров в конфигурации	2	2	2	2	2	2

Н

Pentium II Xeon

Pentium II Xeon. 450 MHz, 512 KB cache, 100 MHz FSB.

Примеры ВС с процессорами Intel Xeon:

- National SuperComputer Center in Tianjin/NUDT. Tianhe-1 NUDT TH-1 Cluster, Xeon E5540/E5450, Infiniband / 2009 NUDT. Страна Китай. Имеет 71680 процессоров максимальной производительностью 563.1 TFlops и пиковой 1206.19 TFlops. ВС занимает пятое место в списке TOP-500.
- Кластерная система Enigma X000 в ВятГУ (Киров). Имеет 144 двухпроцессорных лезвий ProLiant BL460c, с новейшими четырехъядерными процессорами Intel Xeon. Ёмкость дисковой подсистемы до 50 Тб. Пиковая производительность до 19 TFlops. Занимал 242–е место в рейтинге самых мощных суперкомпьютеров ТОР–500.

Процессоры Itanium

Архитектура процессора Itanium 2

Процессоры Itanium

Itanium был специально разработан для предоставления очень высокого уровня в параллельных вычислениях, для достижения высокой производительности без увеличения частот. Ключевые преимущества архитектуры Itanium:

- Выполнение до 6 инструкций за 1 цикл.
- Выполнение двух SIMD операций с плавающей точкой с 98-битными операндами за один цикл.
- Увеличенные вычислительные ресурсы ядра:
 256 регистров (128 целочисленных, 128 вещественных)
 и 64 предикатных регистра.

Процессоры Itanium

- Большой кэш: 24 МБ у двухядерной версии (по 12 МБ на ядро), предоставляющий данные каждому ядру со скоростью до 48 ГБ/с.
- Большое адресное пространство: 50-битная адресация физической памяти / 64-битная адресация виртуальной памяти.
- Маленькое, энергоэффективное ядро: с тех пор, как функции распараллеливания передали от Itanium к компилятору, в ядре уменьшили количество транзисторов

Система TERA-10

Производительность - 60 TFlops. Страна - Франция. Занимает 86 место в top500.

System Name	Tera-10		
System Family	Bull SMP Cluster		
System Model	NovaScale 5160		
Computer	NovaScale 5160,		
	Itanium2 1.6		
	GHz, Quadrics		
Vendor	Bull SA		
Application area	Защита		
Main Memory	29904 GB		
Installation Year	2006		
Operating System	Linux		
Processor	Itanium2 1.6 GHz		

Процессоры AMD Opteron

Двумя важными технологиями воплощёнными в процессоре Opteron являются:

- Прямая (без эмуляции)
 поддержка 32-битных х86
 приложений без потери
 скорости
- Прямая (без эмуляции)
 поддержка 64-битных х86 64 приложений (линейная адресация более 4 ГБ ОЗУ);

Процессоры AMD Opteron

- Модель Opteron X12 6174 (2,2 ГГц) y Provantage стоит \$1250.
- Восьмиядерный процессор Opteron X12 6136 (2,4 ГГц) оценен примерно в \$800.
- В каталоге Provantage имеется одна модель с ADP 65 Bt.
- Это процессор Opteron X12 6128 HE (2,0 ГГц), стоящий \$560.
- Версия этого процессора без букв НЕ, потребляющая 80 Вт, стоит \$292.

Вычислительная система JAGUAR

Вычислительная система JAGUAR

Количество ядер – 224162, Максимальная реальная производительность – 1759 TFlops. Пиковая производительность – 2331 TFlops. Занимает первое место в top500.

System Name	Jaguar
System Family	Cray XT
System Model	Cray XT5-HE
Computer	Cray XT5-HE Opteron Six Core 2.6 GHz
Vendor	Cray Inc.
Application area	Not Specified
Installation Year	2009
Operating System	Linux
Processor	AMD x86_64 Opteron Six Core 2600 MHz (10.4 GFlops)

Однокристальный векторно-конвейерный процессор SX-6

- Микропроцессор создан по 0,15-микронной КМОП-технологии с медными проводниками и содержит приблизительно 57 млн. транзисторов.
- Основными компонентами микропроцессора являются скалярный процессор и 8 идентичных векторных устройств.
- Скалярный процессор имеет суперскалярную архитектуру с 4 результатами за такт и использует 128 64-разрядных регистров.
- При частоте 500 МГц пиковая производительность скалярного процессора составляет 1 GFLOPS.
- Пропускная способность интерфейса с памятью равна 32 Гбайт/с, что позволяет каждому из 8 векторных устройств прочитать из памяти или записать в память один операнд в каждом такте.
- ▶ Производительность SX-6 составляет 8 GFLOPS.

Однокристальный векторно-конвейерный процессор SX-6

Earth Simulator

Однокристальный векторно-конвейерный процессор SX-6

Пример ВС: занимает 31-е место в top500. Количество ядер – 1280, Реальная производительность – 122.4 TFlops, пиковая – 131.07 TFlops.

System Name	Earth Simulator
System Family	NEC Vector
System Model	SX-9/E
Computer	SX-9/E/1280M160
Vendor	NEC
Application area	Research
Installation Year	2009
Main Memory	20480 GB
Operating System	Super-UX
Processor	NEC 3200 MHz (102.4 GFlops)

MIPS-процессор SandCraft SR71000

Новый 64-битный процессор с ядром MIPS64 выпущен по лицензии компании MIPS Technologies, занимающейся разработкой MIPS-архитектур. SandCraft проектирует микропроцессоры на основе архитектуры Montage, оптимизированной для коммуникационных и сетевых приложений.

Особенности:

- Архитектура является многопоточной и конвейерной, позволяющей повышать скорость процессора до 1.2 ГГц;
- В процессоре SR71000 происходит одновременная выборка и отправка на исполнение двух команд;
- Процессор может выдавать на конвейер и выполнять до 6 предварительно обработанных команд за один такт;
- 9-ступенчатый суперскалярный конвейер использует переупорядоченный набор команд, но производит упорядоченную выдачу результата.

Архитектура Montage микропроцессоров SR71000

SPARC

Scalable Processor ARChitecture — масштабируемая процессорная архитектура. Архитектура RISC-микропроцессоров, первоначально разработанная в 1985 году компанией Sun Microsystems.

Структурная схема SPARC V8

Процессоры SPARC

- В режиме холостого хода (Idle) конвейерный механизм процессора останавливается, а таймер-счетчик, последовательные порты и системы прерываний продолжают функционировать.
- ▶ SPARC64 VIIIfx (кодовое имя «Venus») восьмиядерная версия процессора SPARC64 VII. Микропроцессор имеет производительность до 128 GFLOPS и производится по 45-нм технологии. На август 2009 года SPARC64 VIIIfx является самым быстрым в мире процессором, обгоняя самый быстрый процессор от Intel (Xeon 5500 на ядре Nehalem) примерно в 2,5 раза.

Процессоры SPARC

▶ По состоянию на июль 2009 только один суперкомпьютер на процессорах SPARC включён в список самых быстрых компьютеров TOP500. Находящийся на 28 месте суперкомпьютер Fujitsu FX1 использует четырёхядерные микропроцессоры SPARC64 VII 2,52 ГГц и имеет производительность 121 282 GFLOPS. Он установлен в Японском агентстве аэрокосмических исследований.

CELL

Процессор PowerXCell 8i содержит в себе 9 ядер: одно управляющее ядро Power Processor Element(PPE) с архитектурой PowerPC и 8 вычислительных ядер Synergistic Processor Elements (SPE). Ядра SPE, PPE и контроллер основной памяти соединены между собой высокоскоростной шиной, Element Interconnect Bus,

CELL

• В процессоре PowerXCell 8і реализован принципиально новый подход к работе с системной памятью. Каждое ядро SPE имеет свою собственную локальную память объемов 256 КБ, в которую из системной памяти загружаются для обработки данные и инструкции.

CELL

- Это означает, что ядро SPE может подгружать необходимые данные и выгружать их обратно, не прерывая вычислительного процесса в ожидании загружаемых данных.
- Новые возможности работы с памятью позволяют преодолеть ограничения производительности, возникающие из-за задержек при пересылке данных, и ускорить работу приложений в десятки раз.

Спецификации процессора PowerXCell 8i

Технология	SOI-CMOS (КМОП кремний на изоляторе), 65
	нм
Площадь кристалла	212 кв. мм
Конструктивное исполнение	1827 контактов, 47,5 x 47,5 мм, PBGA (plastic ball
	grid array - пластиковый корпус с матрицей
	шариковых выводов), шаг 1 мм
Сигналы ввода/вывода	837
Диапазон рабочей температуры (Тј)	от 5 до 90 С
Интерфейсы	Два 144-разрядных канала памяти DDR2 с
	пропускной способностью 800 Мбит/с
	Пять 8-разрядных каналов FlexIO с пропускной
	способностью 5 ГБ/с каждый, конфигурируемые
	в виде двух шин FlexIO
Тактовая частота (SPE и PPE)	До 3,2 ГГц
Производительность (оценка)	Свыше 200 гигафлопс на частоте 3,2 ГГц
Источник питания	1,0 B VDD / 1,5 B VDDA / 1,8 B VDD18 / 1,2 B
	VDDIO ±2%
Максимальная рассеиваемая мощность	92 Вт
(оценка)	

Пример ВС: Roadrunner

Занимает второе место в top500. Количество ядер – 122400, Максимальная производительность – 1042 TFlops, пиковая – 1375,78 TFlops. Мощность – 2345,50 Вт.

System Name	Roadrunner		
System Family	DOE/NNSA/LANL		
System Model	BladeCenter QS22 Cluster		
Computer	BladeCenter QS22/LS21		
	Cluster, PowerXCell 8i 3.2 Ghz		
	/ Opteron DC 1.8 GHz, Voltaire		
	Infiniband		
Vendor	IBM		
Application area	Not Specified		
Installation Year	2009		
Main Memory	-		
Operating System	Linux		
Processor	PowerXCell 8i 3200 MHz (12.8		
	GFlops)		

Архитектура Blue Gene

Blue Gene — проект компьютерной архитектуры, разработанный для создания нескольких суперкомпьютеров и направленный на достижение скорости обработки данных, превышающей 1 петафлопс.

Является совместным проектом фирмы IBM (подразделение Rochester MN и исследовательский центр Томаса Уотсона), Ливерморской национальной лаборатории, Министерства энергетики США (которое частично финансирует проект) и академических кругов.

На данный момент успешно достигнута скорость почти в 1 петафлопс.

Блок-схема чипа Blue Gene/L, содержащая два ядра PowerPC 440

Корзина Blue Gene/P

Стойка Blue Gene/L

