Es01A: Uso dello strumento Analog Discovery 2.

Gruppo 1.AC Matteo Rossi, Bernardo Tomelleri

6 ottobre 2021

2 Utilizzo del canale di alimentazione e del multimetro

2.d Accensione diodo

La tensione di alimentazione è stata variata nell'intervallo tra $0.5\,\mathrm{V}$ e $5\,\mathrm{V}$

Si osserva che la luminosità del diodo è proporzionale alla tensione erogata dal generatore, una volta superata una tensione di soglia per cui il LED inizia a emettere luce di intensità osservabile. La tensione di soglia varia per i diversi colori; in particolare $V_{\rm thr}$ risulta proporzionale alla frequenza del colore di luce emessa. Dunque rosso < giallo < verde < blu.

2.e Misura tensione

Utilizzando il multimetro si misura la tensione ai capi del diodo e si ottiene:

V+	σ V+	VD	$\sigma \text{ VD}$	I(R1)	σ I(R1)

Tabella 1: (2.e) Tensione e corrente ai capi del diodo. Tutte le tensioni in V.

3 Uso generatore di forme d'onda

Inserire commento sulle onde generate, ed eventualmente screenshot.

4 Oscilloscopio

4.e Uso del trigger

Inserire commento sulle prove effettuate

4.f Misura tensione massima ai capi del diodo

La tensione massima ai capi del diodo misurata con i cursori risulta essere $V_{\text{MAX}} = (\pm) V$. La funzione di misura automatica fornisce il valore $V_{\text{AUTO}} = xx V$

Inserire commento sulla accuratezza della misura.

Figura 1: (4.e) Relazione tra trigger e segnale

5 Caratteristica del diodo

5.c Caratteristica del diodo

Figura 2: (5.c) Caratteristica corrente-tensione del diodo in modalità XY

5.d Fit curva del diodo

Figura 3: (2.b) Grafico ${\cal I}_D$ vs. ${\cal V}_D$ e fit all'equazione di Schockley

6 Partitore

6.b Partitore con resistenze da 1k

Si realizza un partitore con resistenze da 1 k Ω . Valori misurati con il multimetro: R1=0.993 ± k Ω , R2=0.993 ± k Ω

[VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN

Tabella 2: (6.b) Partitore di tensione con resistenze da circa 1k. Tutte le tensioni in V.

Inserire commento sul confronto tra valori misurati ed attesi.

6.d Partitore con resistenze da circa 1M

Si realizza un partitore con resistenze da 1 M Ω . Valori misurati con il multimetro: R1= \pm M Ω , R2= \pm M Ω

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN

Tabella 3: (6.d) Partitore di tensione con resistenze da circa 1M. Tutte le tensioni in V.

Inserire commento sul confronto tra valori misurati ed attesi.

6.e Resistenza di ingresso del multimetro

Usando il modello mostrato nella scheda si ottiene

$$\frac{R_1}{R_T} = \frac{V_{IN}}{V_{OUT}} - (1 + \frac{R_1}{R_2})$$

Con i dati con resistenze da 1k si ottiene

$$R_1/R_{IN} = \pm \longrightarrow R_{IN} > k\Omega$$

Con i dati con resistenze da 1M si ottiene

$$R_1/R_{IN} = \pm \rightarrow R_{IN} = (\pm \pm)M\Omega$$

Inserire commento sulla sensibilità sperimentale della misura.

7 Misure di tempo e frequenza

7.e Misure di frequenza

Misure con onda sinusoidale

7.f Misure di duty cyle

Misure con onda quadra

Periodo T (s)	$\sigma T (s)$	Frequenza f (Hz)	σ f (Hz)	Misura oscilloscopio (Hz)	Differenza (Hz)

Tabella 4: (7.e) Misura di frequenza di onde sinusoidali e confronto con misurazione interna dell'oscilloscopio

Periodo T (s)	$\sigma T (s)$	Durata alto t_H (s)	$\sigma t_H (s)$	Duty cycle D(%)	σ D (%)

Tabella 5: (7.f) Misura di duty cycle per onde quadre

7.g Tempo di salita e di discesa

Misure su onda quadra

$$f = ($$
 \pm)MHz, $t_{\text{salita}} = (35 \pm 6) \text{ns}, t_{\text{discesa}} = (37 \pm 6) \text{ns},$

La misura è un po' balorda, visto che il tempo di salita/discesa è dello stesso ordine di grandezza del periodo di

Inserire commento su altre caratteristiche del segnale ed eventualmente uno screenshot campionamento $^1\!/f_s = \Delta t \approx 10 \mathrm{ns}$.

8 Conclusioni e commenti finali

Inserire eventuali commenti e conclusioni finali

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.