

Machine learning for earth observation: Mapping the "Area of Applicability" of spatial prediction models

Hanna Meyer

Remote Sensing & Spatial Modelling, Institute of Landscape Ecology, WWU Münster

Problem: Moving from field observations to maps of ecosystem variables

How do we fill the gaps between sampling locations?

Remote Sensing of landscapes

Predictive modelling of the environment

e.g. vegetation cover from satellite (VIS/NIR)

Remote sensing data

Typical ecological variables from satellite?

Models that can deal with complex nonlinear relationships are required!

Predictive modelling of the environment: The machine learning way

Global maps of ecosystem variables based on machine learning

Proportion of publications that use machine learning in environmental remote sensing

Including **global** datasets on

- soil properties
- abundances of microorganisms
- Biodiversity
- tree restoration potential
- ...and many more

Machine learning as a "magic tool" to map basically everything?

...but there are increasingly doubts about the methods

Wissenschaft

Wenn die KI daneben liegt

Welche Fehler drohen, wenn Forscher Wissenslücken per Computer schließen wollen, zeigen zwei aktuelle Klimastudien.

Von Tin Fischer

6. November 2019, 16:44 Uhr / Editiert am 9. November 2019, 17:42 Uhr / DIE ZEIT Nr. 46/2019, 7. November 2019 / 9 Kommentare

BY DOUGLAS HEAVEN Nature 574, 163-166 (2019)

Home / News & Opinion

Researchers Find Flaws in High-Profile Study on Trees and Climate

Four independent groups say the work overestimates the carbon-absorbing benefits of global forest restoration, but the authors insist their original estimates are accurate.

Oct 17, 2019 KATARINA ZIMMER www.the-scientist.com

Have we been too ambitious? Why might the models fail?

What we have learned so far...

See e.g. workshop at previous OpenGeoHub Summer School

Spatial dependencies need to be taken into account for machine learning applications!

- Standard validation procedures lead to an overoptimistic view on prediction performance
 - → Spatial validation is essential
- Spatial dependencies can lead to misinterpretation of predictor variables
 - → Spatial variable selection is required

...but is this sufficient for reliable (global) mapping?

Largest challenge: predictions far beyond training samples

- Transfer to new space required
- New space might differ in environmental properties
- But what if the algorithm has never seen such properties?

Machine learning models are weak in extrapolations

Predictor

- Machine learning can fit very complex relationships.
- But gaps in predictor space are problematic (the model has no knowledge about these areas!)
- A measure for "unknown space" is needed

Distances in feature space as a measure for "unknown space"

- Unknown space: Environmental conditions that are very different from the training locations
- Suggestion: Distances in the (weighted) predictor space

For each new location/pixel: how distant is it from what the algorithm has seen?

More details: https://arxiv.org/abs/2005.07939

Mapping the area of applicability - Example

Virtual Reference and simulated samples

- 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0

Where can we trust the predictions and where should we better not?

Mapping the area of applicability - Example

Why is it relevant to map the area of applicability?

Results are not just nice maps but used for...

- subsequent modeling
- nature conservation
- risk assessment
- ...

Predictions should only be presented for the area of applicability to avoid error propagation or misplanning (and to keep trust in the methods)!

Today's hands-on exercise

- Machine learning for remote sensing based land cover classification
- Analysing the area of applicability
- Assessing the transferability of a model

