

Linear Regression Models and Least Squares

Linear Regression form

• $f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$

Least Squares

• The most popular estimation method is *least squares*, in which we pick the coefficients $\beta = \left(\beta_0\,,\beta_1,\ldots,\beta_p\right)^T \text{ to minimize}$ the residual sum of squares

•
$$RSS(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2 = \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} X_{ij}\beta_j)^2$$

مدل رگرسیونی p متغیره

یک مدل رگرسیونی با ${\sf p}$ متغیر ${\sf x}_i(x_{i1},...,x_{ip})$ و خطای ${\sf z}_i$ به صورت زیر است : $y_i = f(x_i) + \varepsilon_i$

که f در آن یک تابع ثابت از متغیرهای $x_1,...,x_p$ است و اطلاعات سیستماتیکی که p تا x، درمورد y به ما مىدهد را مشخص مىكند.

> 1) برای انجام پیشگویی چرا تابع f را برآورد بكنيم؟

2) برای انجام استنباط

Prediction

پیشگویی

. یک برآورد از تابع اصلی ما که مجهول است میتوان پیشگویی یا prediction یک برآورد از تابع اصلی ما که مجهول است میتوان پیشگویی یا $\widehat{y}=\widehat{f(x)}$

میزان دقت $\widehat{\mathcal{Y}}$ به دو کمیت وابسته است:

$$y_i = \overbrace{f(x_i)}^1 + \stackrel{2}{\varepsilon_i}$$

۱) خطای تحویل پذیر (Reducibble error):

میدانیم که \hat{f} یک برآورد دقیق برای f نخواهد بود و مهم نیست که تعداد متغیرهای ما چندتا باشد، و این یعنی خطایی که بین چیزی که واقعیت است و چیزی که ما داریم بدست میآوریم، خطای تحویل پذیر می گوییم.

۲) خطای تحویل ناپذیر(IrReducible error):

 \mathcal{E}_i حتی اگر ما یک پیشبینی کاملا دقیق و بدون خطای تحویل پذیر داشته باشیم، باز هم \mathbf{y} ما خطا دارد زیرا \mathbf{f} ها وجود دارند و چون \mathbf{y} تابعی از آنهاست و این \mathbf{E}_i ها مستقل از \mathbf{x} ها هستند، پس مهم نیست که ما چقدر \mathbf{y} را خوب برآورد کرده باشیم، ما نمی توانیم خطای \mathbf{E}_i ها را کاهش بدهیم.

Inference استنباط

در این روش ما به اینکه نوع رابطهای که بین X,y است میپردازیم و یا به عبارتی اگر $ar{x}=(x_1,...,x_p)$ تغییر بکند چه تاثیری روی $ar{x}=(x_1,...,x_p)$

- 1. کدام یک از متغییرهای پیشگو ما تاثیر بیشتری دارند؟ باید بتوانیم از بین آنها، مفیدترها و موثرترها را پیدا بکنیم.
 - 2. رابطه بین متغیر پاسخ و متغیرهای پیشگو ما چگونه است؟ وابسته به پیچیدگی f است.
- 3. آیا رابطه بین متغیر پاسخ و هریک از متغیرهای پیشگو را میتوانیم بصورت خطی در بیاریم؟ بهترین مدل، مدلی ساده میباشد که بازدهی خوبی داشته باشد و دقیق تر باشد.

انواع روشهای برآورد کردن f

روشهای پارامتری:

• در این روش، مسله ی برآوردکردن f، که p بعدی نیز میباشد به برآوردکردن یک مجموعه از پارامترها تنزل پیدا می کند. یعنی بجای برآوردکردن p با p بعد، مسله را به برآوردکردن یک تعداد پارامتر کاهش می دهیم.

روشهای ناپارامتری:

• در این روش ما درمورد تابع f، هیچ فرضی را قرار نمیهیم یعنی فرم یا شکل خاصی قرار نمیدهیم. دراین صورت دنبال یک برآوردی از f می گردیم که تاجایی که ممکن است به نقاطی که ما داریم نزدیک و هموار باشند.

هدف نهایی ما از برآوردکردن:

مدلی را انتخاب بکنیم که هم دقت پیشگویی آن و هم تفسیرپذیری مدل مدنظر ما میباشد و باید یک توازنی بین این دو پارامتر برقرار بکنیم ولذا نه خیلی پیچیده باشد و نه خیلی ساده و بیدقت.

Subset selection methods

- این روش شامل ۳ بخش مختلف میشود:
- 1. انتخاب بهترین مدل Best subset selection
- 2. انتخاب بهترین مدل گام به گام Step wise selection
- 3. انتخاب مدل بهینه Choosing the Optimal Model

Best Subset selection

در این روش ما میخواهیم با انتخاب یک زیرمجموعهای از p متغیر پیشگویی که داریم، به ساختن مدل بپردازیم و براساس یکسری معیارها آنها را ارزیابی بکنیم.

در این روش ابتدا رگرسیون حداقل مربعات را با تمام ترکیبهای مختلف Pتا متغیر پیشگو خود انجام میدهیم و گامهای این روش به صورت زیراست.

گام اول: در گام اول مدل M_0 خود را یا همان مدلی که هیچ متغیری داخل آن نیست را میسازیم(میانگین نمونهای دادههای ما)

گام دوم: برای k=1,2,...,p بیاییم و تمام ترکیبهای $\binom{p}{k}$ که دقیقا شامل k، متغیرپیشگو هست را برازش بدهیم و بهترین این مدلهایی که تشکیل دادهایم را براساس معیارمورد نظر انتخاب کرده و M_k مینامیم و لذا ما p+1 مدل رگرسیونی خواهیم داشت.

گام سوم: دراین مرحله از بین p+1 مدلی که داریم یعنی M_0,\dots,M_p براساس معیارمورد نظر بهترین مدل را انتخاب می کنیم.

نکته: در این روش حتما میبایست n>p باشد.

نکته: معیارهای گام دوم و سوم نیز می تواند متفاوت باشد.

نکته: تا زمانی که $p \leq 8$ باشد، می توانیم از این روش استفاده بکنیم درغیر این صورت روشهای دیگری وجود دارد.

Best Subset selection

#R codes for Best subset selection method library("leaps")

 $best - subset < -regsubsets(y \sim x, data, nvmax = 19)$ summary(best - subset)

Step Wise selection

زمانی که تعداد متغیرهای ما بیشتر از Λ تا بود این روش بهتر جواب خواهد داد.

روش انتخاب مدل گام به گام نیز خود شامل ۳ روش مختلف میباشد.

- 1. روش گام به گام پیشرو Forward step wise
- 2. روش گام به گام پسرو Backward step wise
 - 3. روش ترکیبی Hybrid Approaches

Forward Step Wise

در روش گامبه گام پیشرو، درهر گام یک متغیر پیشگو به مدل قبلی اضافه می کنیم و آن متغیر باید بهترین تاثیر را داشته باشد.

گام اول: M_0 ما یک مدل خالی و بدون متغییر پیشگو میباشد.

گام دوم: به ازای مقادیر مختلف P ، R ، R , R میتوانیم R میتوانیم و اضافه بکنیم. R اضافه بکنیم و طبق معیار بهترین آنها را و آن مدل جدید را R مینامیم. یعنی مرحله اول R تا متغییر را میتوانیم به R اضافه بکنیم و به همین ترتیب... R تا متغییر را میتوانیم به R اضافه بکنیم و به همین ترتیب...

گام سوم: حال از بین p+1 تا مدلی که داریم، M_{p-1} , ... M_{p-1} میآییم و طبق معیار مورد نظر بهترین مدل را انتخاب می کنیم.

در این روش ما از بین 2^p تا مدلی که داریم، تضمینی وجود ندارد که بهترین مدل را انتخاب کرده باشیم.

#R codes forward < -regsubsets($y \sim x$, data, nvmax = 19, method = "forward") summary(forward)

Back Ward Step Wise

در این روش ما برعکس روش گامبه گام پیشرو، یک مدل کامل داریم و درهرمرحله متغییری که اهمیت و تاثیر کمتری را دارد از مدل خود حذف می کنیم.

گام اول: ما با M_p که نشان دهنده ی یک مدل کامل با P متغییراست شروع می کنیم.

گام دوم: به ازای مقادیر M_p میآییم M_p تا متغییر را از مدل M_p خود حذف می کنیم. و اسم آنرا M_{k-1} قرار می دهیم.

گام سوم: مجدد از بین M_0, M_{p-1}, \dots, M_0 تا مدلی که داریم، بر اساس معیارهای خودمان بهترین مدل را انتخاب می کنیم. در این روش حتما باید n>p باشد.

#R codes backward < -regsubsets($y \sim x$, data, nvmax = 19, metho = ("backward") summary(backwrd)

Hybrid Approaches

این روش یک روش ترکیبی از روشهای گامبه گام پیشرو و پسرو میباشد.

در این روش میآید درکنار افزایش متغییر، به کاهش متغییر هم نگاه میکند و بهترین مدل را انتخاب میکند تا به بهترین انتخاب ممکن برسیم.

Criterions for Step3

برای انتخاب کردن معیارهای خود درگام سوم روشهای بالا ۲ روش کلی وجود دارد.

- 1. بصورت غیرمستقیم خطای آزمون را محاسبه بکنیم و برآورد بکنیم.
 - 2. بصورت مستقیم به بررسی خطای آزمون بپردازیم.

روش غيرمستقيم

در این روش ما بصورت غیر مستقیم خطای آزمون را محاسبه و برآورد میکنیم، به این طریق که خطا را تعدیل میکنیم و اریبی آنرا نیز برطرف میکنیم.

از معیارهای برآورد غیرمستقیم نیز میتوانیم به $adjR^2$,BIC ,AIC , C_p اشاره بکنیم.

برای مدل با

اگر ما یک مدل داشته باشیم که d متغییر داشته باشد دراین صورت

$$C_p = \frac{1}{n} \left(Rss + 2d \ \widehat{\sigma^2} \right)$$
 $\varepsilon_i \sim N(0, \sigma^2)$

و لذا 2d $\widehat{\sigma^2}$ برای حذف اریبی به RSS ما اضافه گردیده است.

هرچه ${\sf d}$ بیشتر شود، ${\it c}_p$ ما بیشتر خواهد شد و کمترین مقدار این معیار، بهترین مدل را نشان میدهد یعنی هرچه کمتر باشد بهتر است.

روش غير مستقيم

با توجه به C_p که در اسلاید قبلی درمورد آن بحث شد، میخواهیم معیارهای دیگر را معرفی بکنیم:

$$AIC = \frac{1}{\widehat{\sigma^2}}C_p$$

این معیار نیز، هرچه مقدار کمتری داشته باشد نشانه بهتر بودن مدل ما خواهد بود.

$$BIC = \frac{1}{n} \left(Rss + \log(n) d\widehat{\sigma^2} \right)$$

این معیار نیز، هرچه مقدار کمتری داشته باشد نشانه بهتر بودن مدل ما خواهد بود، و اگر $\log(n)>2$ یا n>7 باشد، ضریب فریب c_p بیشتر خواهد بود.

$$R^2 = 1 - \left(\frac{Rss}{SST}\right)$$
 , $Adj. R^2 = 1 - \left(\frac{MSE}{MST}\right)$

این معیار نیز، هرچه مقدار بیشتری داشته باشد نشانه بهتر بودن مدل ما خواهد بود.

#R codes For AIC, BIC, C_p , Adjusted R squred:

result < -summary(best - subset)

Cp = result *adjr2

BIC = result\$bic

 $which. \max(adj-R2)$; $which. \min(Cp)$; $which. \min(BIC)$. اندیس را به ما می دهد

روش مستقيم

در این روش ما بصورت مستقیم به بررسی خطای آزمون میپردازیم: در این روش ما باید خطای ارزیابی متقابل خود را برای مدلها حساب کرده و بهترین را انتخاب بکنیم. ما دراینجا برای مدلهای مختلف با تعداد متغییرهای پیشگو مختلف یک خطای استاندارد (one standard error) داریم. و برای هریک از این مدلهای P متغییره، میآییم و مدلی را که کمترین میانگین انحراف استاندارد را دارد انتخاب می کنیم و آنرا با درنمودار خود + و - Sd رسم می کنیم و بعد هریک از مدلهایی که داخل این بازه قرار داشتند، ساده ترین آنها بهترین مدل ما خواهد بود.

$$X = \begin{bmatrix} obs1 \\ \vdots \\ obsn \end{bmatrix} \begin{bmatrix} 1x_1 & \dots & x_p \\ 1 \vdots & \dots & \vdots \\ 1 \vdots & \dots & \vdots \end{bmatrix}_{n*p+1}$$

ما بعد از انتخاب بهترین مدل p متغیره خود، ضرایب آنرا استخراج میکنیم که آنها p+1 تا خواهند بود و بعد بصورت زیر مقادیر را پیشبینی خواهیم کرد.

$$\hat{y} = \beta X$$

روش مستقيم

```
#R codes for Cross Validaion set Approches Method:

Validation – erros < -vector ("double",lenght=19)

for(i in 1:19){coef – x < -coef (best – subset, id = i)

pred – x < -test – m[, names(coef – x)]% * %coef – x

validation – errors[i] = mean((test$y – pred – x)^2)}

Plot(Validation – errors, type = "b")
```

روش مستقيم

```
#R codes for K Fold Cross Validation
predict.regsubset = function(object, newdata, id, ...)
  form < -as. formula(object call[[2]])
  mat < -model. matrix(form, newdata)
  coefi < -coef(object, id = id)
  xvars < -names(coefi)
  mat[,xvars] \% * \% coefi
  K < -10
  Folds < -sample(1: K, nrow(data), replace = TRUE)
  Cv.errors < -matrix(NA, k, 19, dimnames = list(NULL, paste(1:19)))
  for(j in 1:k){
  nest - subset < -regsubset(y \sim x, data[folds == j,], nvmax = 19)
  for(i in 1:19){
  pred - x = predict.regsubset(best - subset, data|folds == j, |, id = i)
  Cv - errors[i, j] < -mean(data y[folds == j] - pred - x)^2
  }}
```

Regularization Regression

در روشهای قبلی n>p و برای بدست آوردن خطای آزمون Min(Rss) را بدست میآوردیم.

اما حال اگر p>n باشد و هرچه p افزایش پیدا بکند، شرایط p>n نقض میشود یعنی با افزایش تعداد متغییرهای ما، احتمال وجود داشتن همخطی بین متغییرها زیاد میشود و افزایش واریانس را خواهیم دید.

Ridge Regression:

رگرسیون تابانیده:

در این روش نیز هدف ما $minimize\{Rss+p(penalty)\}$ میباشد.

$$minimize \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

Rدر اینجا پارامتُر تنظیم کننده است، در این روش ما هم به دنبال کمترین مقدار RSS هستیم و هم به دنبال یک پنالتی انقباضی هستیم و زمانی این پنالتی ما کوچک می شود که $eta_1, ..., eta_p$ همگی به صفر نزدیک بشوند. λ اثر نسبی بین دوجمله را کنترل می کند یعنی اگر برابر با \cdot باشد که همان RSS را داریم و اگر به سمت بینهایت میل بکند، برای اینکه تابع هدف ما کمترین مقدار خود را بگیرد باید تمامی ضرایب رگرسیونی که داریم به \cdot میل بکنند. ما در این روش، به ازای هر مقدار $\widehat{\beta_\lambda}$ Ridge از ضرایب را داریم و آنها را به صورت $\widehat{\beta_\lambda}$ یا $\widehat{\beta_\lambda}$ نشان می دهیم.

نکته قابل توجه، این هست که ما با مقادیر خود λ ها کاری نداریم و با مقدار لگاریتم آنها یعنی $\log(\lambda)$ کار داریم.

Ridge Regression

• #R codes for Ridge Regression $data - y - train = \log(data_{train} \$ y)$ $data - x - train = model.matrix(y \sim x, data_{train})[, -1]$ $data - x - test = model.matrix(y \sim x, data_{test})[, -1]$ $data - y - test = \log(data_{test} \$ y)$

در تابع glm.net باید توجه داشته باشیم که x,y ما باید از داده های اصلی جدا باشند و اینکه اگر متغیرهای ما کیفی بودند خودش خودکار طبقهبندی می کند و اگر داده های ما استاندارد شده بودند،آرگمان standadize را برابر با FALSE قرار بدهیم.

```
data-ridge
=glm.net(x=data-x-train,y=data-y-train,alpha=0)
plot(data-ridge,xvars="lambda")
data-ridge$lambda
ames-ridge$lambda%>%head()
coef(data-ridge)[c("predictor1","predictor2,...),100] برای دیدن کوچترین ضرایب coef(data-ridge)[c("predictor1","predictor2,...),11] برای دیدن بزرگترین ضرایب coef(data-ridge)[c("predictor1","predictor2,...),11]
```

Ridge Regression with Cross Validation

#R codes for Ridge Regression with Cross Validtaion:

```
fit
<-cv.glmnet(x=data-x-train,y)
= data - y - train, alpha = 0
Plot(fit)
min(fit\$cvm) # min MSE
fit$lambda.min #\lambda for min MSE
fit$cvm[fit$lambda == fit$lambda.1se] #for \lambda, MSE + Sd
coef(fit, s = "lambda.1se")
```

Lasso Regression

در این روش نسبت به روش قبلی، پنالتی ما متفاوت خواهد بود و نه تنها نتایج را بهبود می بخشد، حتی یک انتخاب مدل نیز برای ما انجام می دهد . از دیگر مزایای این روش می توانیم به این اشاره بکنیم که دیگر ضرایب ما به ۰ میل نمیکنند بلکه دقیقا ۰ خواهند شد. و از معایب این روش می توانیم به کاهش دقت مدل اشاره بکنیم که از حذف متغیرها منشع دارد.

و تنها تفاوت از نظر کدهای زبان برنامه نویسی ${\sf R}$ این هست که مقدار lpha=1 باید باشد.

```
#R Codes for lasso Regression with Cross Validation:
    fit
    < -cv. glmnet(x = data - x - train, y)
= data - y - train, alpha = 1)
Fit$lambda. min
Fit. lambda. 1se
pred
= predict(fit, s = cv - lasso$lambda. min, data - x - test)
mean((data - y - test) - pred)^2)
```

End

Thanks For Youre Attention