1.21 **Dominant Pole Approximation**

For each system:

- Construct a first-order or second-order approximation from the dominant pole
- Do you expect the dominant pole approximation to be accurate?

(a)
$$G_A(s) = \frac{5000}{(s+2)(s+20)(s^2+20s+500)}$$

(b)
$$G_B(s) = \frac{24}{(s+1)(s+2)^2(s+3)}$$

(c)
$$G_C(s) = \frac{15}{(s+1)^2(s+10)}$$

Solution:

(a)

• Poles are $s_1 = -2$, $s_2 = -20$, $s_{3,4} = -10 \pm 20j$. The dominant pole is s_1 . **DC Gain:** $G(0) = \frac{5000}{2 \times 20 \times 500} = \frac{1}{4}$

First-order approximation: $\hat{G}(s) = \frac{0.5}{s+2}$

• Accurate, since $s_1 = -2$ is much slower than s_2 and $s_{3,4}$

(b)

• Poles are $s_1 = -1, s_{2,3} = -2, s_4 = -3$. The dominant pole is s_1 . **DC Gain:** $G(0) = \frac{24}{1 \times 2^2 \times 3} = 2$

First-order approximation: $\hat{G}(s) = \frac{2}{s+1}$

• Not that accurate, since all poles are of similar time scale.

(c)

• Poles are $s_{1,2}=-1, s_3=-10$. The dominant poles are $s_{1,2}$. **DC Gain:** $G(0)=\frac{15}{1^2\times 10}=1.5$

Second-order approximation: $\hat{G}(s) = \frac{1.5}{(s+1)^2}$

• Accurate, since $s_{1,2}$ are much slower than s_3

GPT Answer:

For each system:

(a) For $G_A(s) = \frac{5000}{(s+2)(s+20)(s^2+20s+500)}$, the dominant pole approximation is $G_{A,approx}(s) = \frac{5000}{s+2}$. The approximation should be relatively accurate.

- (b) For $G_B(s) = \frac{24}{(s+1)(s+2)^2(s+3)}$, the dominant pole approximation is $G_{B,approx}(s) = \frac{24}{(s+2)^2}$. The approximation is expected to be decent.
- (c) For $G_C(s) = \frac{15}{(s+1)^2(s+10)}$, the dominant pole approximation is $G_{C,approx}(s) = \frac{15}{(s+1)^2}$. This approximation is likely to be quite accurate.

Confidence Level: Approximately 85%

Calculation Error for part (a) and (c). Reasoning Error for part (b)

Claude Answer:

(a)
$$G_A(s) = \frac{5000}{(s+2)(s+20)(s^2+20s+500)}$$

First-order approximation: $G_{A,approx}(s) \approx \frac{5000}{2(s+2)} = \frac{2500}{s+2}$

Accuracy expectation: The dominant pole approximation may not be very accurate, as the poles at s=-2 and $s=-10\pm10i$ are relatively close to each other. The second-order term $(s^2+20s+500)$ will have a significant impact on the system response.

Confidence: 60/100

(b)
$$G_B(s) = \frac{2}{(s+1)(0.5s+1)^2(s/3+1)}$$

First-order approximation: $G_{B,approx}(s) \approx \frac{2}{0.5^2(s+1)} = \frac{8}{s+1}$

Accuracy expectation: The dominant pole approximation should be reasonably accurate, as the pole at s=-1 is closer to the origin than the other poles. However, the repeated pole at s=-2 may have some impact on the system response.

Confidence: 75/100

(c)
$$G_C(s) = \frac{15}{(s+1)^2(s+10)}$$

First-order approximation: $G_{C,approx}(s) \approx \frac{15}{10(s+1)^2} = \frac{1.5}{(s+1)^2}$

Accuracy expectation: The dominant pole approximation is likely to be very accurate, as the double pole at s=-1 is much closer to the origin than the pole at s=-10. The first-order approximation should suffice in this case.

Confidence Level: 90/100

Calculation Error for part (a) and (b)