ANALITIČKA GEOMETRIJA - formule

Vektori

Skalarni produkt: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \angle (\vec{a}, \vec{b})$

Vektorski produkt: $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \angle (\vec{a}, \vec{b})$

Vektor $\vec{a} \times \vec{b}$ je okomit na vektore \vec{a} i \vec{b} , orijentiran tako da $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$ bude desna baza.

Mješoviti produkt: $(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$

U ortonormiranoj bazi (desnoj): Za $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3)$ i $\vec{c} = (c_1, c_2, c_3)$:

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \qquad \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \qquad (\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Analitička geometrija ravnine i prostora

Udaljenost dvije točke: $d(A,B) = |\overrightarrow{AB}|$

u ravnini:
$$T = (x, y), \quad \overrightarrow{OT} = x\vec{i} + y\vec{j}, \qquad d(T_1, T_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

u prostoru:
$$T = (x, y, z)$$
, $\overrightarrow{OT} = x\vec{i} + y\vec{j} + z\vec{k}$, $d(T_1, T_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

Pravac određen točkom T_0 i vektorom smjera \vec{s} : $r = r_0 + \lambda \cdot \vec{s}$.

u ravnini, $\vec{s} = (p, q)$: $x = x_0 + \lambda p, y = y_0 + \lambda q$.

u prostoru, $\vec{s} = (p, q, r)$: $x = x_0 + \lambda p$, $y = y_0 + \lambda q$, $z = z_0 + \lambda r$.

kanonski oblik: $\frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}.$

Jednadžba pravca (u ravnini) i ravnine (u prostoru):

opći oblik	Ax + By + C = 0	Ax + By + Cz + D = 0
vektor normale	$\vec{n} = (A, B)$	$\vec{n} = (A, B, C)$
udaljenost točke od	$\frac{ Ax_0 + By_0 + C }{\sqrt{A^2 + B^2}}$	$\frac{ Ax_0 + By_0 + Cz_0 + D }{\sqrt{A^2 + B^2 + C^2}}$
segmentni oblik	$\frac{x}{a} + \frac{y}{b} = 1$	$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
normalni oblik	$x\cos\alpha + y\sin\alpha = p$	$ec{n_0} \cdot ec{r_0} = \delta$
udaljenost točke od	$ x_0\cos\alpha + y_0\sin\alpha - p $	$ \vec{n_0}\cdot\vec{r_0}-\delta $

Pravac u ravnini – eksplicitni oblik y = kx + l, $k = tg\varphi$

pravac određen točkom i koeficijentom smjera: $y - y_0 = k(x - x_0)$

Pravac određen dvjema točkama:

u ravnini:
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

u prostoru:
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

Jednadžba ravnine . . .

...koja prolazi točkom $T_0=(x_0,y_0,z_0)$ i okomita je na $\vec{n}=(A,B,C)$:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

... koja prolazi točkom $T_0=(x_0,y_0,z_0)$ i razapeta je vektorima $\vec{a}=(a_1,a_2,a_3)$ i $\vec{b}=(b_1,b_2,b_3)$:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = 0$$

...koja prolazi kroz tri točke $T_1=(x_1,y_1,z_1),\,T_2(x_2,y_2,z_2)$ i $T_3=(x_3,y_3,z_3)$:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

Pravac u prostoru kao presjek dvije ravnine

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Udaljenost

točke T_0 od pravca koji prolazi točkom T_1 s vektorom smjera \vec{s} : $\frac{|(\vec{r_0} - \vec{r_1}) \times \vec{s}|}{|\vec{s}|}$

dva pravca određena točkama T_1, T_2 i vektorima smjera $\vec{s_1}$ i $\vec{s_2}$: $\frac{|((\vec{r_2} - \vec{r_1}), \vec{s_1}, \vec{s_2})|}{|\vec{s_1} \times \vec{s_2}|}$

Kut

između dva pravca s vektorima smjerova $a = (a_1, a_2, a_3)$ i $b = (b_1, b_2, b_3)$

$$\cos \varphi = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{a}||\vec{b}|} = \frac{|a_1b_1 + a_2b_2 + a_3b_3|}{\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}}$$

između dva pravca u eksplicitnom obliku: $\mbox{tg}\varphi = \left|\frac{k_2-k_1}{1+k_1k_2}\right|$

između pravca (koef. smjera $\vec{s} = (p, q, r)$) i ravnine (vektor normale $\vec{n} = (A, B, C)$):

$$\sin \varphi = \frac{|\vec{s} \cdot \vec{n}|}{|\vec{s}||\vec{n}|} = \frac{|pA + qB + rC|}{\sqrt{p^2 + q^2 + r^2}\sqrt{A^2 + B^2 + C^2}}$$

između dvije ravnine s vektorima normale $\vec{n_1} = (A_1, B_1, C_1)$ i $\vec{n_2} = (A_2, B_2, C_2)$:

$$\cos \varphi = \frac{|\vec{n_1} \cdot \vec{n_2}|}{|\vec{n_1}||\vec{n_2}|} = \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$