

UNIVERSIDAD PRIVADA DE TACNA

FACULTAD DE INGENIERIA

Escuela Profesional de Ingeniería de Sistemas

Policía Nacional del Perú: Área de Inspectoría Tacna-Arequipa

Curso: Inteligencia de Negocios

Docente: Ing. Patrick Cuadros Quiroga

Integrantes:

ina Vargas, Luigui Augusto	2019065166
Chambe Torres, Edgard Reynaldo	2019064917
Chata Choque, Brant Antony	2020067577
Condori Vargas, Tomas Yoel	2018000487
Casilla Maquera, Tell Ivan	2017057888

Tacna – Perú *2024*

CONTROL DE VERSIONES					
Versión	Hecha por	Revisada por	Aprobada por	Fecha	Motivo
1.0	C.N.C.C.C	P.C.Q	P.C.Q	28/06/2024	Versión Original

Sistema *Área de Inspectoria Tacna-Arequipa* Documento de Arquitectura de Software

Versión 1

INDICE GENERAL

Contenido

1.	INT	RODUCCIÓN	4
	1.1.	Propósito (Diagrama 4+1)	4
	1.2.	Alcance	4
	1.3.	Definición, siglas y abreviaturas	4
	1.4.	Organización del documento	
2.	ОВЛ	IETIVOS Y RESTRICCIONES ARQUITECTONICAS	5
	2.1.1		
	2.1.2	·	
3.	REP	PRESENTACIÓN DE LA ARQUITECTURA DEL SISTEMA	6
	3.1.	Vista de Caso de uso	6
	3.1.1	1. Diagramas de Casos de uso	6
	3.2.	Vista Lógica	6
	3.2.1	-	
	3.2.2	,	
	3.2.3	3. Diagrama de Colaboración (vista de diseño)	6
	3.2.4	4. Diagrama de Objetos	6
	3.2.5	5. Diagrama de Clases	6
	3.2.6	5. Diagrama de Base de datos (relacional o no relacional)	6
	3.3.	Vista de Implementación (vista de desarrollo)	
	3.3.1	Diagrama de arquitectura software (paquetes)	7
	3.3.2 defi	 Diagrama de arquitectura del sistema (Diagrama de componentes) .¡Error! Marcador nido. 	· no
	3.4.	Vista de procesos ¡Error! Marcador no defini	do.
	3.4.1	 Diagrama de Procesos del sistema (diagrama de actividad)¡Error! Marcador no defini 	ido.
	3.5.	Vista de Despliegue (vista física) ¡Error! Marcador no defini	
	3.5.1	1. Diagrama de desplieguejError! Marcador no defini	ido.
4.	ATF	RIBUTOS DE CALIDAD DEL SOFTWARE	7
	Escena	ario de Funcionalidad	7
	Escena	ario de Usabilidad	7
	Escena	ario de confiabilidad	7
	Escena	ario de rendimiento	7
	Escena	ario de mantenibilidad	7
	Otros	Escenarios	8

1. INTRODUCCIÓN

1.1. Propósito (Diagrama 4+1)

El propósito de este documento es presentar la arquitectura del sistema de análisis de datos para el Área de Inspectoría de la Policía Nacional del Perú en las regiones de Tacna y Arequipa, utilizando PowerBI. Se utilizará el modelo de vistas 4+1 de Kruchten para describir la arquitectura desde diferentes perspectivas.

1.2. Alcance

Este documento abarca la arquitectura completa del sistema, incluyendo la implementación de paneles interactivos en PowerBI, la integración con las fuentes de datos existentes, y los componentes necesarios para el análisis y visualización de información relevante para la Inspectoría.

1.3. Definición, siglas y abreviaturas

PNP: Policía Nacional del Perú

PowerBI: Herramienta de análisis de datos de Microsoft

AWS: Amazon Web Services

S3: Simple Storage Service de Amazon

1.4. Organización del documento

Este documento está organizado siguiendo el modelo de vistas 4+1, presentando las vistas de casos de uso, lógica, implementación, procesos y despliegue del sistema.

2. OBJETIVOS Y RESTRICCIONES ARQUITECTONICAS

2.1.1. Requerimientos Funcionales

Numero	Requerimiento Funcional	Descripción
RF1	Carga Automatizada de	Integración automática de datos desde archivos Excel
	Datos	a AWS S3 cambiando el formato a CSV.
RF2	Denuncias realizadas por	Desarrollar un sistema que permita registrar y
	Regiones	almacenar denuncias categorizadas por diferentes
		regiones geográficas.
RF3	Cantidad de Denuncias	Implementar un mecanismo para contar y reportar el
	realizadas	número total de denuncias realizadas en el sistema.
RF4	Cantidad de denuncias	Crear un informe que muestre la cantidad de
	por trimestres	denuncias realizadas, desglosadas por trimestres.
RF5	Visualizacion de Delitos	Desarrollar una interfaz gráfica que permita visualizar
	Cometidos por Regiones	los delitos cometidos en diferentes regiones,
		posiblemente utilizando mapas o gráficos.
RF6	Tipo de Indicador 2010-	Proveer indicadores de datos y estadísticas desde el
	2024	año 2010 hasta 2024, permitiendo análisis de
		tendencias y comparaciones anuales.

2.1.2. Requerimientos No Funcionales – Atributos de Calidad

Numero	Requerimiento No Funcional	Descripción
RNF1	Seguridad	Implementación de medidas de seguridad robustas para proteger la confidencialidad e integridad de los datos almacenados y procesados en AWS.
RNF2	Rendimiento	Garantizar tiempos de respuesta rápidos y eficiencia en el procesamiento y visualización de datos en los dashboards.
RNF3	Escalabilidad	Capacidad de escalar la infraestructura de AWS según las necesidades de crecimiento de datos y usuarios.
RNF4	Usabilidad	Interfaces intuitivas y fáciles de usar con PowerBy para asegurar una experiencia de usuario positiva y productiva.

3. REPRESENTACIÓN DE LA ARQUITECTURA DEL SISTEMA

3.1. Vista de Caso de uso

3.1.1. Diagramas de Casos de uso

3.2. Vista Lógica

- 3.2.1. Diagrama de Colaboración (vista de diseño)
- 3.2.2. Diagrama de Objetos
- 3.2.3. Diagrama de Clases
- 3.2.4. Diagrama de Base de datos (relacional o no relacional)
- 3.3. Vista de Implementación (vista de desarrollo)

3.3.1. Diagrama de arquitectura software

4. ATRIBUTOS DE CALIDAD DEL SOFTWARE

Para el sistema de análisis de datos del Área de Inspectoría de la Policía Nacional del Perú en las regiones de Tacna y Arequipa, se han identificado los siguientes atributos de calidad críticos

Escenario de Funcionalidad

El sistema debe permitir a los usuarios visualizar datos de denuncias por regiones y trimestres de manera interactiva y en tiempo real.

Escenario de Usabilidad

Los usuarios deben poder generar informes personalizados con no más de 5 clics desde la interfaz principal.

Escenario de confiabilidad

El sistema debe mantener una disponibilidad del 99.9% durante las horas de operación de la PNP.

Escenario de rendimiento

Los dashboards deben cargarse en menos de 3 segundos con hasta 100 usuarios concurrentes.

Escenario de mantenibilidad

Estímulo: Se identifica un bug en el sistema que requiere corrección.

Respuesta: El equipo de desarrollo debe poder identificar, corregir y desplegar la solución rápidamente.

Medida de respuesta: El tiempo desde la identificación del bug hasta su corrección y despliegue en producción no debe exceder las 24 horas para bugs críticos y 72 horas para bugs no críticos.

Otros Escenarios:

Escenario de Portabilidad:

- Estímulo: Se requiere acceder al sistema desde diferentes dispositivos y navegadores.
- Respuesta: El sistema debe funcionar correctamente en una variedad de plataformas.
- Medida de respuesta: El sistema debe ser 100% funcional en los navegadores Chrome, Firefox, Safari y Edge, así como en dispositivos móviles con iOS y Android.

Escenario de Recuperabilidad:

- Estímulo: Ocurre una falla del sistema que causa pérdida de datos.
- Respuesta: El sistema debe ser capaz de recuperar los datos y volver a un estado operativo.
- Medida de respuesta: En caso de falla, el sistema debe recuperar al menos el 99.9% de los datos y volver a estar completamente operativo en menos de 1 hora.

Escenario de Auditabilidad:

- Estímulo: Se requiere una auditoría de las acciones realizadas en el sistema.
- Respuesta: El sistema debe proporcionar registros detallados de todas las actividades.
- Medida de respuesta: El sistema debe mantener logs de todas las acciones de usuario y cambios en los datos, con capacidad de generar informes de auditoría en menos de 30 minutos.

Escenario de Capacidad:

- Estímulo: El volumen de datos en el sistema crece significativamente.
- Respuesta: El sistema debe manejar el aumento de datos sin degradación del rendimiento.
- Medida de respuesta: El sistema debe ser capaz de manejar un crecimiento anual del 100% en el volumen de datos sin que los tiempos de respuesta aumenten en más de un 10%.