Efficient Parameter Adaptation Methods for Large Language Models

A Unifying Framework

Wei Li

University of Birmingham & ZoyMed

Research Motivation and Challenges

Large Language Models demonstrate revolutionary performance but face critical deployment challenges that limit real-world applications. This research addresses three fundamental dimensions:

Parameter Scale

Massive parameter counts (7B-70B+) create prohibitive memory overhead and computational costs for deployment on resource-constrained devices.

Compression Methods

Traditional uniform pruning ignores layerwise importance variations and requires extensive retraining, lacking theoretical foundations.

Theoretical Gap

Existing approaches rely on empirical hyperparameter tuning without principled frameworks for non-uniform, adaptive compression strategies.

Research Gap: Need for theoretically-grounded, training-free, and adaptive compression frameworks that exploit redundancy without sacrificing performance

Unified Framework Overview

A Cohesive Theoretical Framework Integrating Parameter-Efficient Adaptation **Methods**

Core Philosophy: Exploit redundancy and optimize parameter allocation without sacrificing performance

Adaptive Layer Sparsity (ALS) Neurips 2024

Linear programming for optimal layer-wise pruning ratios based on inter-layer redundancy analysis

Bayesian Knowledge Distillation ACL·Findings 2025

Fisher-informed distillation for compressed LLMs with logit dualscaling and Bayesian optimization

MoE-SVD ICML 2025

Structured singular value decomposition for Mixture-of-Experts compression with V-matrix sharing

Delta Decompression (D²-MoE) ICML 2025

Base-delta weight decomposition addressing expert diversity through Fisher merging and structured pruning

Unifying Theme: Information-theoretic foundations combined with Bayesian optimization principles

Adaptive Layer Sparsity - Methodology

ALS Formulates Sparsity Allocation as Linear Programming with Redundancy Metrics

Redundancy Metric (RM)

Based on Centered Kernel Alignment (CKA):

$$RM(X_i, X_j) = rac{\|X_i^T X_j\|^2}{\|X_i^T X_i\| \|X_j^T X_j\|}$$

Values: 0 = complete independence, 1 = complete redundancy

Optimization Objective

$$\max_{q} \sum_{i=1}^{L} \left(rac{q_i}{L-i+1} \sum_{l=i}^{L} \omega_l
ight)$$

where q_i is the sparsity rate for layer i

Constraint

$$\sum_{i=1}^{L} S^{(q_i)} \leq ext{Target Model Size}$$

Key Advantages

ALS Experimental Results

Superior Performance Over State-of-the-Art Methods at 50% Sparsity

WikiText-2 Perplexity Results

Model	Baseline	ALS	Improvement
LLaMA-V1 7B	Magnitude: 42.26	16.80	60.3% ↓
LLaMA-V1 13B	Magnitude: 43.61	12.61	71.1% ↓
LLaMA-V2 7B	Wanda: 11.21	9.86	12.0% ↓
LLaMA-V3 8B	Magnitude: 30.20	13.21	56.3 % ↓

Zero-Shot Task Accuracy

Model	Baseline	ALS	Gain
LLaMA-V1 7B	Magnitude: 53.40	56.28	+2.88
LLaMA-V3 8B	Magnitude: 43.29	57.43	+14.14
OPT 6.7B	Wanda: 47.81	47.89	+0.08

Baselines: Magnitude, SparseGPT, Wanda, OWL

Efficiency: 20 minutes for 70B model on single A100

Bayesian Knowledge Distillation (BayesKD)

Bridges the Logit Gap with Sparsity-Aware Bayesian Optimization

Performance Gains (Average Accuracy)

Teacher → Student	Baseline	BayesKD	Gain
LLaMA 7B → LLaMA 7B	Std KD: 38.60	44.60	+6.0
LLaMA3 13B → Tiny 1.1B	Std KD: 34.40	34.00	+4.23*
LLaMA3 70B → LLaMA3 8B	Std KD: 60.47	63.46	+2.99
Qwen2 72B → Qwen2 7B	Std KD: 64.41	68.46	+4.05

^{*}vs Sparse Model baseline (SABO optimization)

 ${\tt BayesKD\ Framework: Logits\ Dual-Scaling + Knowledge\ Alignment + Bayesian\ Optimization}$

Three-Component Framework

- 1. Logits Dual-Scaling: Dynamically adjusts teacher/student logits based on standard deviations
- 2. Knowledge Alignment: Min-max normalization aligns intermediate representations
- 3. Bayesian Optimization: Sparsity-aware hyperparameter search

Ablation: Each component (KD, ID, DT) contributes to performance

MoE-SVD: Structured Compression

Selective Layer Decomposition Based on Sensitivity Analysis

Selection Criteria

- Sensitivity Metric: Based on weight singular values and activation statistics
- Layer-wise Decision: Decompose only layers with low sensitivity to compression
- Adaptive Strategy: Different compression ratios per layer (20%-60%)

Layer-wise decomposition decisions for Mixtral-8×7B and Phi-3.5-MoE

MoE-SVD Pipeline

V-matrix sharing + U-matrix trimming pipeline

Key Techniques

- 1. V-Matrix Sharing: Shared across all experts
- 2. U-Matrix Trimming: Top-k selection
- 3. Selective Decomposition: Layer-specific

Experimental Results

Model	Compression	PPL Drop	Speedup	Baseline Comparison
Mixtral-8×7B	20%	2%	1.2×	Outperforms MC-SMoE
Mixtral-8×7B	40%	5%	1.5×	Best performance/compression trade-off
Phi-3.5-MoE	40%	5%	1.4×	Maintains 95% accuracy

Expert Redundancy and Delta Decompression (D²-MoE)

CKA Analysis Reveals Redundancy Patterns Enabling Delta-Based Compression

Expert Similarity Analysis

Key Observation: V-matrices show high redundancy (left), U-matrices show diversity (right)

D²-MoE Components

① Weighted Fisher Merge: Combines similar experts using Fisher information weighting (W_b = base weight)

D²-MoE Framework Pipeline

Four-stage pipeline: Weighted Fisher Merge → Truncation-aware SVD → Semi-dynamical Pruning → Deployment

Key Results

- ▶ DeepSeek-MoE-16B: 60% compression with minimal performance loss
- ▶ Mixtral-8×7B: Combined with MoE-SVD achieves aggressive compression

Comprehensive Performance Evaluation

Unified Framework: Method-Specific Results Across Diverse Models

Method	Model Type	Key Achievement	
Adaptive Layer Sparsity (ALS)			
ALS	LLaMA-2 7B-70B	50% sparsity, 16% PPL improvement	
ALS	OPT 6.7B-13B	20-70% sparsity range	
Bayesian Knowledge Distillation (BayesKD)			
BayesKD	LLaMA 13B → Tiny 1.1B	+4.4% accuracy vs Standard KD	
BayesKD	Qwen-2 72B → 7B	+2.6% vs LoRA fine-tuning	
MoE Compression (MoE-SVD + D ² -MoE)			
MoE-SVD	Mixtral-8×7B	40% compression, 5% drop, 1.5× speedup	
MoE-SVD	Phi-3.5-MoE	40% compression, 5% drop	
D²-MoE	DeepSeek-MoE-16B	60% compression, minimal loss	

Overall Framework Achievements

- ✓ Parameter Reduction: 40-80% across methods
- ✓ Performance Retention: 90-95% of original capability
- ✓ Training Requirement: Free or minimal fine-tuning
- ✓ Inference Speedup: 1.2-1.5× for MoE models

Inference Speed Comparison

Benchmarks: WikiText-2, OpenBookQA, HellaSwag, ARC, PIQA, BoolQ, SST-2, WinoGrande

Contributions and Future Directions

This Framework Establishes Theoretical Foundations for Next-Generation LLM Efficiency Research

Key Contributions

1. Theoretical Advancement

First linear programming formulation for LLM sparsity allocation with information-theoretic foundations

2. Practical Impact

Training-free methods enabling deployment on resource-constrained devices

3. Architectural Innovation

Specialized compression techniques for emerging MoE architectures

4. Empirical Validation

Extensive experiments across 6.7B-70B parameter models demonstrating scalability

Future Directions

- Multimodal LLMs: Extension to vision-language models and crossmodal compression
- Combined Compression: Integration with quantization for synergistic parameter reduction
- Dynamic Adaptation: Runtime sparsity adjustment based on input complexity
- Federated Learning: Application to distributed training scenarios with communication constraints

Zoy Technology Co., LtD

Reimagining precision medicine through world-class AI: Empowering doctors, enabling patients.

SurgiFlow Cloud Platform

Compact & light weight
Multi-models support
NFC wheat login

Encrypted Cloud

Secure Cloud Service

Al Analysis

Phase extraction
Dangerous operation
Critical operation
Surgical instruments detection

