Mathematical Methods - III Week 5

Jayampathy Ratnayake

Faculty of Science Department of Mathematics Room 209(B) jratnaya@indiana.edu

September 11, 2017

Mathematical Methods - III Week 5

Jayampathy Ratnayake

Faculty of Science Department of Mathematics Room 209(B) jratnaya@indiana.edu

September 11, 2017

• Define the Taylor approximations of a function around a given point by a polynomial.

- Define the Taylor approximations of a function around a given point by a polynomial.
- Use the Taylor's Theorem to approximate a function by a polynomial.

- Define the Taylor approximations of a function around a given point by a polynomial.
- Use the Taylor's Theorem to approximate a function by a polynomial.
- Use the Error function to give bounds for errors associated with the approximation.

- Define the Taylor approximations of a function around a given point by a polynomial.
- Use the Taylor's Theorem to approximate a function by a polynomial.
- Use the Error function to give bounds for errors associated with the approximation.
- Apply Taylor Polynomials to estimate the error of the "Mid-point rule".

• Taylor's Theorem approximates a *k*-times differentiable function by a polynomial, using its **derivatives**.

- Taylor's Theorem approximates a *k*-times differentiable function by a polynomial, using its **derivatives**.
- More precisely, given a point a and f(a), f'(a),..., $f^{(k)}(a)$, the Taylor's Theorem approximates the function by a polynomial of degree k.

- Taylor's Theorem approximates a k-times differentiable function by a polynomial, using its derivatives.
- More precisely, given a point a and f(a), f'(a),..., $f^{(k)}(a)$, the Taylor's Theorem approximates the function by a polynomial of degree k.
- This approximation is more accurate near a.

- Taylor's Theorem approximates a k-times differentiable function by a polynomial, using its derivatives.
- More precisely, given a point a and f(a), f'(a),..., $f^{(k)}(a)$, the Taylor's Theorem approximates the function by a polynomial of degree k.
- This approximation is more accurate near a.

If $f: \mathbb{R} \to \mathbb{R}$ is k-times differentiable at the point $a \in \mathbb{R}$,

If $f : \mathbb{R} \to \mathbb{R}$ is k-times differentiable at the point $a \in \mathbb{R}$, then there is a function $R_k : \mathbb{R} \to \mathbb{R}$ such that,

If $f : \mathbb{R} \to \mathbb{R}$ is k-times differentiable at the point $a \in \mathbb{R}$, then there is a function $R_k : \mathbb{R} \to \mathbb{R}$ such that,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \dots + \frac{f^{(k)}(a)}{k!}(x - a)^{k} + \frac{R_{k}(x)}{k!}$$

If $f : \mathbb{R} \to \mathbb{R}$ is k-times differentiable at the point $a \in \mathbb{R}$, then there is a function $R_k : \mathbb{R} \to \mathbb{R}$ such that,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x - a)^k + \frac{R_k(x)}{k!}$$

Where R_k has the property that $\lim_{x\to a} \frac{R_k(x)}{(x-a)^k} = 0$

If $f : \mathbb{R} \to \mathbb{R}$ is k-times differentiable at the point $a \in \mathbb{R}$, then there is a function $R_k : \mathbb{R} \to \mathbb{R}$ such that,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x - a)^k + R_k(x)$$

Where R_k has the property that $\lim_{x\to a} \frac{R_k(x)}{(x-a)^k} = 0$

Remark

We will write $h_k(x) = \frac{R_k(x)}{(x-a)^k}$.

•
$$P_{k,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^{(k)}(a)}{k!}(x-a)^k$$

• $P_{k,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k$ is the k^{th} order Taylor polynomial, of degree k,

• $P_{k,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k$ is the k^{th} order Taylor polynomial, of degree k, at a.

- $P_{k,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k$ is the k^{th} order Taylor polynomial, of degree k, at a.
- $f(x) = P_{k,a}(x) + R_{k,a}(x)$

- $P_{k,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^{(k)}(a)}{k!}(x-a)^k$ is the k^{th} order Taylor polynomial, of degree k, at a.
- $f(x) = P_{k,a}(x) + R_{k,a}(x)$
- When a is clear from the context, we will simply write $f(x) = P_k(x) + R_k(x)$, omitting a from the subscript.

- $P_{k,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^{(k)}(a)}{k!}(x-a)^k$ is the k^{th} order Taylor polynomial, of degree k, at a.
- $f(x) = P_{k,a}(x) + R_{k,a}(x)$
- When a is clear from the context, we will simply write $f(x) = P_k(x) + R_k(x)$, omitting a from the subscript.
- $R_k(x) := f(x) P_k(x) = h_k(x)(x-a)^k$ is the error when f(x) is approximated by $P_k(x)$.

- $P_{k,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^{(k)}(a)}{k!}(x-a)^k$ is the k^{th} order Taylor polynomial, of degree k, at a.
- $f(x) = P_{k,a}(x) + R_{k,a}(x)$
- When a is clear from the context, we will simply write $f(x) = P_k(x) + R_k(x)$, omitting a from the subscript.
- $R_k(x) := f(x) P_k(x) = h_k(x)(x-a)^k$ is the error when f(x) is approximated by $P_k(x)$.
- h = x a is the step size taken from a.

- $P_{k,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^{(k)}(a)}{k!}(x-a)^k$ is the k^{th} order Taylor polynomial, of degree k, at a.
- $f(x) = P_{k,a}(x) + R_{k,a}(x)$
- When a is clear from the context, we will simply write $f(x) = P_k(x) + R_k(x)$, omitting a from the subscript.
- $R_k(x) := f(x) P_k(x) = h_k(x)(x-a)^k$ is the error when f(x) is approximated by $P_k(x)$.
- h = x a is the step size taken from a.
- $\lim_{x\to a} \frac{R_k(x)}{(x-a)^k} = 0$ states that the order of convergence has to do something with k.

- $P_{k,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^{(k)}(a)}{k!}(x-a)^k$ is the k^{th} order Taylor polynomial, of degree k, at a.
- $f(x) = P_{k,a}(x) + R_{k,a}(x)$
- When a is clear from the context, we will simply write $f(x) = P_k(x) + R_k(x)$, omitting a from the subscript.
- $R_k(x) := f(x) P_k(x) = h_k(x)(x-a)^k$ is the error when f(x) is approximated by $P_k(x)$.
- h = x a is the step size taken from a.
- $\lim_{x\to a} \frac{R_k(x)}{(x-a)^k} = 0$ states that the order of convergence has to do something with k.

Moreover, given f is k+1 times differentiable,

Moreover, given f is k+1 times differentiable, there is a ϵ , between x and a, such that

Moreover, given f is k+1 times differentiable, there is a ϵ , between x and a, such that

$$R_k(x) = \frac{f^{(k+1)}(\epsilon)}{(k+1)!}(x-a)^{k+1}$$

Moreover, given f is k+1 times differentiable, there is a ϵ , between x and a, such that

$$R_k(x) = \frac{f^{(k+1)}(\epsilon)}{(k+1)!}(x-a)^{k+1}$$

Thus we can write Taylo's Theorem in this case as:

Moreover, given f is k+1 times differentiable, there is a ϵ , between x and a, such that

$$R_k(x) = \frac{f^{(k+1)}(\epsilon)}{(k+1)!}(x-a)^{k+1}$$

Thus we can write Taylo's Theorem in this case as:

Theorem (Taylor's Theorem (2))

If $f : \mathbb{R} \to \mathbb{R}$ is k+1-times differentiable at the point $a \in \mathbb{R}$, then there is a ϵ , between x and a such that,

Moreover, given f is k+1 times differentiable, there is a ϵ , between x and a, such that

$$R_k(x) = \frac{f^{(k+1)}(\epsilon)}{(k+1)!}(x-a)^{k+1}$$

Thus we can write Taylo's Theorem in this case as:

Theorem (Taylor's Theorem (2))

If $f : \mathbb{R} \to \mathbb{R}$ is k+1-times differentiable at the point $a \in \mathbb{R}$, then there is a ϵ , between x and a such that,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x - a)^k + \frac{f^{(k+1)}(\epsilon)}{(k+1)!}(x - a)^{k+1}$$

Moreover, given f is k+1 times differentiable, there is a ϵ , between x and a, such that

$$R_k(x) = \frac{f^{(k+1)}(\epsilon)}{(k+1)!}(x-a)^{k+1}$$

Thus we can write Taylo's Theorem in this case as:

Theorem (Taylor's Theorem (2))

If $f: \mathbb{R} \to \mathbb{R}$ is k+1-times differentiable at the point $a \in \mathbb{R}$, then there is a ϵ , between x and a such that,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots +$$

$$+ \frac{f^{(k)}(a)}{k!}(x - a)^k + \frac{f^{(k+1)}(\epsilon)}{(k+1)!}(x - a)^{k+1}$$

Let f(x) = ln(x).

1 Find a polynomial approximation of degre 1 to f near x = 1.

Let f(x) = ln(x).

- Find a polynomial approximation of degre 1 to f near x = 1.
- What is the error estimates.

Let f(x) = ln(x).

- Find a polynomial approximation of degre 1 to f near x = 1.
- What is the error estimates.
- Use this to approximate the value of ln(1/2).

Let f(x) = ln(x).

- Find a polynomial approximation of degre 1 to f near x = 1.
- What is the error estimates.
- Use this to approximate the value of ln(1/2).
- Give error bounds for your approximation.

Let f(x) = ln(x).

- Find a polynomial approximation of degre 1 to f near x = 1.
- What is the error estimates.
- Use this to approximate the value of ln(1/2).
- Give error bounds for your approximation.
- **5** Find a polynomial approximation degree 3 to f(x).

Let f(x) = ln(x).

- Find a polynomial approximation of degre 1 to f near x = 1.
- What is the error estimates.
- Use this to approximate the value of ln(1/2).
- Give error bounds for your approximation.
- **1** Find a polynomial approximation degree 3 to f(x).
- Use this to approximate ln(1/2). Give error bounds.

Let f(x) = ln(x).

- Find a polynomial approximation of degre 1 to f near x = 1.
- What is the error estimates.
- Use this to approximate the value of ln(1/2).
- Give error bounds for your approximation.
- **1** Find a polynomial approximation degree 3 to f(x).
- Use this to approximate ln(1/2). Give error bounds.

Let $f(x) = \sin(x)$

- Find a polynomial approximation of degre 1 to f near x = 0.
- Use this to approximate the value of sin(1).
- Give error bounds for your approximation.

Let $f(x) = \sin(x)$

- **1** Find a polynomial approximation of degre 1 to f near x = 0.
- ② Use this to approximate the value of $\sin(1)$.
- Give error bounds for your approximation.
- Find a polynomial approximation degree 4 to f(x) near x = 0.
- Use this to approximate sin(1). Give error bounds.

Let $f(x) = \sqrt{x}$

- **1** Find a polynomial approximation of degre 1 to f near x = 4.
- **②** Use this to approximate the value of $\sqrt{3.9}$. Give error bounds for your approximation.

Let $f(x) = \sqrt{x}$

- Find a polynomial approximation of degre 1 to f near x = 4.
- ② Use this to approximate the value of $\sqrt{3.9}$. Give error bounds for your approximation.
- **3** Find a polynomial approximation degree 2 to f(x) near x = 4.
- Use this to approximate $\sqrt{3.9}$. Give error bounds.

Let $f(x) = x^2$. Use Taylor's theorem to find polynomial approximations of,

- degree 1, near x = 0
- degree 2, near x = 0
- degree 3, near x = 0

Let $f(x) = x^2$. Use Taylor's theorem to find polynomial approximations of,

- degree 1, near x = 0
- degree 2, near x = 0
- degree 3, near x = 0
- degree 1, near x = 1
- degree 2, near x = 1
- degree 3, near x = 1

Let $f(x) = x^2$. Use Taylor's theorem to find polynomial approximations of,

- degree 1, near x = 0
- degree 2, near x = 0
- degree 3, near x = 0
- degree 1, near x = 1
- degree 2, near x = 1
- degree 3, near x = 1
- degree k, near x = a, where k > 2.

Find the values of

- $P_k(a)$ and
- $R_k(a)$.

Suppose f(1) = 0, f'(1) = 0.2, f''(1) = -2 and f'''(1) = 10.

• Use this information to approximate f(1.01).

Suppose f(1) = 0, f'(1) = 0.2, f''(1) = -2 and f'''(1) = 10.

- Use this information to approximate f(1.01).
- If $|f^{(4)}(x)| \le 10$ for all x between 1 and 1.01, then estimate the error in the above approximation.

Let $f(x) = e^x$.

- Find the Taylor polynomial, $P_k(x)$, of degree k to f near a.
- What is the error?
- Find a bound for error (independent of x), when using $P_k(x)$ to estimate f(x) in the interval [a, a+h].

Consider k + 1 equally spaced points $x_0, ..., x_i, ..., x_k$. Let $y_i = f(x_i)$.

• Then one can find the degree k polynomial, $P_{k,h}$, interpolation of these points (x_i, y_i) , approximating f in the interval $[x_0, x_k]$.

Consider k + 1 equally spaced points $x_0, ..., x_i, ..., x_k$. Let $y_i = f(x_i)$.

- **1** Then one can find the degree k polynomial, $P_{k,h}$, interpolation of these points (x_i, y_i) , approximating f in the interval $[x_0, x_k]$.
- ② If the distance between two consecutive points is h, then

$$x_1 = x_0 + h, \dots, x_i = x_0 + ih, \dots, x_k = x_0 + kh$$

Consider k + 1 equally spaced points $x_0, ..., x_i, ..., x_k$. Let $y_i = f(x_i)$.

- Then one can find the degree k polynomial, $P_{k,h}$, interpolation of these points (x_i, y_i) , approximating f in the interval $[x_0, x_k]$.
- 2 If the distance between two consecutive points is h, then

$$x_1 = x_0 + h, \dots, x_i = x_0 + ih, \dots, x_k = x_0 + kh$$

Show that

$$\lim_{h\to 0} P_{k,h} = P_{k,x_0}$$

The degree k Taylor polynomial at x_0 .