The Alan Turing Institute

Retentive Networks

Edward Gunn

DARe, EME

Sun, Y., "Retentive Network: A Successor to Transformer for Large Language Models", <i>arXiv e-prints</i>, 2023. doi:10.48550/arXiv.2307.08621.

Architectures	Training Parallelization	Inference Cost	Long-Sequence Memory Complexity	Performance	
Transformer	V	O(N)	$O(N^2)$	//	
Linear Transformer	✓	O(1)	O(N)	×	
Recurrent NN	×	O(1)	O(N)	×	
RWKV	×	O(1)	O(N)	✓	
H3/S4	✓	O(1)	$O(N \log N)$	✓	
Hyena	✓	O(N)	$O(N \log N)$	✓	
RetNet	✓	O(1)	O(N)	~	

Retention

$$Q = XW_Q$$

$$K = XW_K$$

$$A = \Lambda \operatorname{diag}(\gamma \odot e^{i\theta}) \Lambda^{-1}$$

$$A^{n-m} = \Lambda \operatorname{diag}(\gamma \odot e^{i\theta})^{n-m} \Lambda^{-1}$$

$$s_n = As_{n-1} + K_n^{\mathsf{T}} v_n$$

$$o_n = Q_n s_n$$

$$= \sum_{m=1}^{n} Q_n A^{n-m} K_m^{\mathsf{T}} v_m$$

$$=\sum_{m=1}^{n}Q_{n}\Lambda\operatorname{diag}(\gamma\odot e^{i\theta})^{n-m}\Lambda^{-1}K_{m}^{\mathsf{T}}v_{m}$$

$$=\sum_{m=1}^{n}Q_{n}\operatorname{diag}(\gamma\odot e^{i\theta})^{n-m}K_{m}^{\mathsf{T}}v_{m}$$

$$= \sum_{m=1}^{n} Q_n \operatorname{diag}(\gamma \odot e^{i\theta})^n \operatorname{diag}(\gamma \odot e^{i\theta})^{-m} K_m^{\mathsf{T}} v_m$$

$$= \sum_{m=1}^{n} Q_n \operatorname{diag}(\gamma \odot e^{i\theta})^n \left(K_m \operatorname{diag}(\gamma \odot e^{i\theta})^{-m} \right)^{\mathsf{T}} v_m$$

$$o_n = \sum_{m=1}^n \gamma^{n-m} \left(Q_n \operatorname{diag}(e^{in\theta}) \right) \left(K_m \operatorname{diag}(e^{im\theta}) \right)^{\mathsf{T}} v_m$$

Parallel Representation

$$-Q = (XW_O) \odot \Theta$$

$$-K = (XW_K) \odot \overline{\Theta}$$

$$-V = XW_V$$

$$-\Theta_n = e^{in\theta}$$

$$- D_{nm} = \begin{cases} \gamma^{n-m}, n \ge m \\ 0, n < m \end{cases}$$

-
$$Retention(X) = (QK^{\mathsf{T}} \odot D)V$$

– GN is GroupNorm

Comparison to attention

$$D_{nm} = \begin{cases} \gamma^{n-m}, n \ge m \\ 0, n < m \end{cases}$$

Attention

 $softmax(QK^{\mathsf{T}})V$

Retention

 $\overline{(QK^{\mathsf{T}} \odot D)V}$

Recurrent Representation

- $-S_n = \gamma S_{n-1} + K_n^{\mathsf{T}} V_n$
- $Retention(X_n) = Q_n S_n$
- GN is GroupNorm

Chunkwise Recurrent Representation

Gated Multi-scale Retention

$$-\gamma_i = 1 - 2^{-5-i}$$

- $-head_i = Retention(X, \gamma_i)$
- $-Y = GroupNorm(Concat(head_1, ..., head_h))$
- $-MSR(X) = (swish(XW_G) \odot Y)W_O$

RetNet

$$-Y_l = MSR\left(LN(X^l)\right) + X^l$$

$$-X^{l+1} = FFN\left(LN(Y^l)\right) + Y^l$$

– LN is LayerNorm

Performance

	HS	BoolQ	COPA	PIQA	Winograd	Winogrande	SC	Avg
Zero-Shot								
Transformer	55.9	62.0	69.0	74.6	69.5	56.5	75.0	66.07
RetNet	60.7	62.2	77.0	75.4	77.2	58.1	76.0	69.51
4-Shot								
Transformer	55.8	58.7	71.0	75.0	71.9	57.3	75.4	66.44
RetNet	60.5	60.1	78.0	76.0	77.9	59.9	75.9	69.76

Inference Cost

Ablations

Method	In-Domain	PG22	QMSum	GovReport	SummScreen
RetNet	26.05	45.27	21.33	16.52	22.48
swish gate	27.84	49.44	22.52	17.45	23.72
- GroupNorm	27.54	46.95	22.61	17.59	23.73
$-\gamma$ decay	27.86	47.85	21.99	17.49	23.70
 multi-scale decay 	27.02	47.18	22.08	17.17	23.38
Reduce head dimension	27.68	47.72	23.09	17.46	23.41

Questions?