Math 550

Homework 10

Trevor Klar

November 13, 2018

1. For a vector field $X = (f_x, f_y)$ on \mathbb{R}^2 , we may define as associated 1-form, different from the one in class, by

$$\star \omega_X^1 = -f_y \, dx + f_x \, dy.$$

We may also define

$$\operatorname{div} X = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y}.$$

(a) Let M be a compact 2-dimensional manifold with boundary in \mathbb{R}^3 . Show that for all points $p \in \partial M$, the equation $\star \omega_X^1 = X \cdot n \, ds$ holds.

PROOF Let $p \in \partial M$, and let $v \in (\partial M)_p$. Then

$$\star \omega_X^1(p)(v) = \left(-f_y(p) \, dx + f_x(p) \, dy \right)(v)$$
$$= \det \begin{bmatrix} | & | \\ X_p & v \\ | & | \end{bmatrix}$$

Now X_p can be written as $w + \langle X_p, N_p \rangle N_p$, where $w \in (\partial M)_p$ and N_p is the unit outward normal vector of M at p. Thus we have

$$\det \begin{bmatrix} & | & | \\ X_p & v \\ & | & | \end{bmatrix} = \det \begin{bmatrix} & | & | & | \\ w + \langle X_p, N_p \rangle N_p & v \\ & | & | \end{bmatrix}$$

$$= \det \begin{bmatrix} & | & | \\ w & v \\ & | & | \end{bmatrix} + \det \begin{bmatrix} & | & | \\ \langle X_p, N_p \rangle N_p & v \\ & | & | \end{bmatrix}$$

$$= 0 + \langle X_p, N_p \rangle \det \begin{bmatrix} & | & | \\ N_p & v \\ & | & | \end{bmatrix}$$

$$= \langle X_p, N_p \rangle ds$$

and we are done.

(b) Prove the following Divergence form of Green's Theorem: Let M be a 2-dimensional manifold with boundary in \mathbb{R}^2 , and let X be a vector field on M. Then

$$\int_{M} \operatorname{div} X \, dA = \int_{\partial M} \langle X, n \rangle \, ds.$$

PROOF Since the differential of the RHS is

$$d(\langle X, n \rangle ds) = d(-f_y(p) dx + f_x(p) dy)$$

$$= -\frac{\partial f_y}{\partial y} dy \wedge dx + \frac{\partial f_x}{\partial x} dx \wedge dy$$

$$= \left(\frac{\partial f_y}{\partial y} + \frac{\partial f_x}{\partial x}\right) dx \wedge dy$$

$$= \operatorname{div} X dA,$$

then by Stokes' Theorem,

$$\int_{\partial M}\left\langle X,n\right\rangle ds=\int_{M}d\left(\left\langle X,n\right\rangle ds\right)=\int_{M}\operatorname{div}X\,dA,$$

and we are done.

2. Let M be a compact 3-dimensional manifold with boundary in \mathbb{R}^3 , with $\vec{0} \in M - \partial M$. Consider the vector field $X(p) = \frac{p}{||p||^3}$ defined on $\mathbb{R}^3 - \vec{0}$. Prove that

$$\int_{\partial M} \langle X, N \rangle \, dA = 4\pi.$$

PROOF Define a manifold $M' = M - B_{\epsilon}(\vec{0})$. We will integrate over M' to find the integral over M. Note that $\partial M' = \partial M \cup S_{\epsilon}^2$, where S_{ϵ}^2 is a sphere of radius ϵ . This means that

$$\int_{\partial M'} \langle X, N \rangle \, dA = \int_{\partial M} \langle X, N \rangle \, dA - \int_{S_{\tau}^2} \langle X, N \rangle \, dA.$$

By the Divergence form of Green's Theorem, the LHS is $\int_{M'} \operatorname{div} X \, dA$, and a straightforward calculation will show that $\operatorname{div} X = 0$. Thus we find that

$$0 = \int_{\partial M} \langle X, N \rangle dA - \int_{S_{\epsilon}^{2}} \langle X, N \rangle dA$$
$$= \int_{\partial M} \langle X, N \rangle dA - 4\pi$$

And we are done.

3. (a) Show that if X is a vector field on \mathbb{R}^3 with $\operatorname{curl} X = 0$, then $X = \operatorname{grad} F$ for some function $F : \mathbb{R}^3 \to \mathbb{R}$.

PROOF Let $X = (f_x, f_y, f_z)$. Then $\omega_X^1 = f_x dx + f_y dy + f_z dz$. So,

$$d(\omega_X^1) = \omega_{\operatorname{curl} X}^2 = 0,$$

since $\operatorname{curl} X=0$. Thus, ω_X^1 is exact by Poinacaré's Lemma. Therefore there is some function F such that $dF=\omega_X^1$, and since $dF=\omega_{\operatorname{grad} F}^1$, then $\omega_X^1=\omega_{\operatorname{grad} F}^1$. So

$$f_x dx + f_y dy + f_z dz = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy + \frac{\partial F}{\partial z} dz$$

and since dx, dy, dz are linearly independent, then we can equate the coefficients, and we are done.

(b) Show that if X is a vector field on \mathbb{R}^3 with div X = 0, then $X = \operatorname{curl} Y$ for some vector field Y on \mathbb{R}^3 .

PROOF Since div X=0, then (div X) $dx \wedge dy \wedge dz = d(\omega_X^2) = 0$, so ω_X^2 is exact. Then there is a one form η such that $d\eta = \omega_X^2$. Now $\eta = n_1 dx + n_2 dy + n_3 dz$ can be written as $\eta = \omega_Y^1$, where $Y = (n_1, n_2, n_3)$. Thus,

$$\omega_X^2 = d\eta = d(\omega_Y^1) = \omega_{\text{curl }Y}^2,$$

so $X = \operatorname{curl} Y$, by the linear independence argument of problem 3a.

4. Let $\omega = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$ be a 1-form on $\mathbb{R}^2 - \vec{0}$. Prove that ω does not extend to a 1-form on \mathbb{R}^n .

PROOF Recall that we showed on a previous homework that ω is closed but not exact. If ω did extend to a 1-form on \mathbb{R}^n , then the extension would have to be given by the same formula, defined on all \mathbb{R}^n . So, it would be exact by Poincaré's Lemma, but it is not.