

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C12N 15/31, C07K 15/00 G01N 33/569, A61K 39/00		A1	(11) International Publication Number: WO 94/09141 (43) International Publication Date: 28 April 1994 (28.04.94)
(21) International Application Number: PCT/US93/09635 (22) International Filing Date: 8 October 1993 (08.10.93)		(74) Agents: MURPHY, Gerald, M., Jr. et al.; Birch, Stewart Kolasch & Birch, P.O. Box 747, Falls Church, VA 22046-0747 (US).	
(30) Priority data: 07/958,683 9 October 1992 (09.10.92) US		(81) Designated States: AU, CA, JP, European patent (AT, BE CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL PT, SE).	
(71) Applicant: THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; National Institutes of Health, Box OTT, Bethesda, MD 20892 (US).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(72) Inventors: KOVACS, Joseph, A. ; 11936 Goya Drive, Potomac, MD 20854 (US). ANGUS, C., William ; 6133 Fieldcrest Court, Frederick, MD 21701 (US). POWEL, Francoise ; 11420 Falcon Bridge Court, Beltsville, MD 20705 (US). EDMAN, Jeffrey, C. ; 126 Marion Avenue, Mill Valley, CA 94941-2617 (US).			

(54) Title: GENES THAT ENCODE A SURFACE PROTEIN OF *P. CARINII*

(57) Abstract

Seven unique genes encoding the major surface glycoprotein of rat *P. carinii*, which is related to the major surface antigen of *P. carinii* which is a life-threatening opportunistic pathogen in HIV-infected patients, have been cloned and sequenced. Genes encoding for the major surface glycoprotein of human *P. carinii* and vaccines containing the human *P. carinii* antigen can be prepared to prevent or control *P. carinii* infection.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BG	Bulgaria	HU	Hungary	NZ	New Zealand
BJ	Benin	IE	Ireland	PL	Poland
BR	Brazil	IT	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic of Korea	RU	Russian Federation
CF	Central African Republic	KR	Republic of Korea	SD	Sudan
CG	Congo	KZ	Kazakhstan	SE	Sweden
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovak Republic
CM	Cameroon	LU	Luxembourg	SN	Senegal
CN	China	LV	Latvia	TD	Chad
CS	Czechoslovakia	MC	Monaco	TC	Togo
CZ	Czech Republic	MG	Madagascar	UA	Ukraine
DE	Germany	ML	Mali	US	United States of America
DK	Denmark	MN	Mongolia	UZ	Uzbekistan
ES	Spain			VN	Viet Nam
FI	Finland				

GENES THAT ENCODE A SURFACE PROTEIN OF *P. CARINII*BACKGROUND OF THE INVENTIONField of the Invention

The present invention relates to the cloning of the major surface antigen of *Pneumocystis carinii*, a life threatening opportunistic pathogen in HIV-infected patients 5 and the use of that antigen as a vaccine to prevent or control *P. carinii* infection.

Description of Related Art

The AIDS epidemic was heralded by the occurrence of *Pneumocystis carinii* pneumonia, a life-threatening opportunistic disease, in patients with no previously identified immunodeficiency (1,2). Subsequently, the number of cases of *P. carinii* pneumonia increased dramatically as human immunodeficiency virus (HIV) infection became wide-spread and the virus progressively impaired the immune system of infected patients. Over the past 5 years, important advances in the diagnosis, treatment, and prevention of *P. carinii* pneumonia have resulted in a decline in the frequency of *P. carinii* pneumonia, as well as an improvement in survival (3).

Despite these important clinical advances, the immunopathogenesis of *P. carinii* pneumonia is poorly understood. Although long considered a protozoan, recent molecular biologic studies have shown *P. carinii* to be a

member of the fungi (4-7). The major surface antigen of P. carinii is a mannose-rich glycoprotein of approximately 110,000 to 120,000 MW under reducing and denaturing conditions, with a native M_r (molecular weight) of over 5 300,000 (8-12). P. carinii isolated from different mammalian species contain similar but antigenically distinct proteins (8,9,13). The present inventors have recently purified and characterized the major surface protein of both rat (gp116) and human (gp95) P. carinii, 10 and have demonstrated that about 10% of the M_r is accounted for by N-linked carbohydrates, with distinct carbohydrate profiles for the two proteins (8). Recent studies have suggested that gp116 is important in organism-host cell binding, possibly through interactions with fibronectin 15 (14), mannose-binding protein (15), or surfactant protein A (16). Passive immunization studies with a monoclonal antibody directed against a conserved epitope of this antigen have demonstrated partial protection against P. carinii pneumonia in rats and ferrets (17). The major 20 surface antigen thus appears to play a role not only in host-organism interactions, but also in host defense mechanisms.

SUMMARY OF THE INVENTION

Based on Southern blot studies using chromosomal or 25 restricted DNA, the major surface glycoproteins of P. carinii have been found to be the products of a multicopy family of genes. The predicted protein has a MW of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and 30 contains a well-conserved hydrophobic region at the carboxy terminus. The presence of multiple related genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is an important mechanism for evading host defenses.

35 The present inventors have isolated and sequenced the DNA (and deduced the corresponding amino acid sequences)

for seven unique genes, each of which encodes a major surface glycoprotein of rat P. carinii. These genes are related to the corresponding genes in human P. carinii. Seven cDNA clones, PC3, PC5, PC14, GP3, GP22, GP46 and GP14, encoding gp116, were isolated and the sequences obtained suggest that gp116 is, in fact, a heterogeneous mixture of proteins encoded by multiple related genes. This should enable the preparation of the corresponding DNA in P. carinii which infects humans and the corresponding polypeptides, thus permitting the development of a vaccine based on the major surface antigen of P. carinii strains which infect P. carinii.

Accordingly, it is an object of the present invention to provide and isolate a DNA molecule encoding a mammalian Pneumocystis carinii major surface glycoprotein or allelic variations thereof. It is also an object of the invention to provide a DNA molecule encoding the gene for the major surface glycoprotein of P. carinii as shown in Figure 1b. It is a further object of the invention to provide a DNA molecule encoding all or a portion of the gene for the major surface glycoprotein of P. carinii in a cDNA clone including the clones of PC3, PC5, PC14, GP3, GP22, GP46 and GP14.

It is an additional object of the invention to provide DNA molecules which encode human P. carinii major surface glycoprotein or allelic variations thereof.

It is another object of the invention to provide a method of obtaining a DNA molecule encoding a mammalian P. carinii major surface glycoprotein which comprises screening a cDNA expression library of P. carinii with an antibody to said major surface glycoprotein to identify positive clones encoding gp116 and using at least one of said clones or an oligonucleotide probe based on said clones to reveal the presence of multiple genes encoding for said major surface glycoprotein.

It is a further object of the invention to provide a mammalian Pneumocystis carinii major surface glycoprotein having the amino acid sequence as shown in Figure 1b.

5 It is an additional object of the invention to provide a mammalian Pneumocystis carinii major surface glycoprotein produced from the expression of a DNA sequence which is a composite (or consensus sequence) of multiple genes which encode said major surface glycoproteins.

10 It is a further object of the invention to provide a human Pneumocystis carinii major surface glycoprotein produced from the expression of a DNA sequence which is a composite (or consensus sequence) of multiple genes which encode said major surface glycoprotein.

15 It is another object of the invention to provide a vaccine comprising a therapeutically effective amount of a mammalian Pneumocystis carinii major surface glycoprotein or a polypeptide derived therefrom capable of eliciting an immune response to said glycoprotein, and pharmaceutically acceptable parenteral vehicle.

20 It is also an object of the invention to provide a DNA molecule encoding a mammalian Pneumocystis carinii major surface glycoprotein which is a composite (or consensus sequences) of multiple genes which encode said major surface glycoprotein.

25 Further scope of the applicability of the present invention will become apparent from the detailed description and drawings provided below. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments
30 of the invention, are given by way of illustration only since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

35 The above and other objects, features, and advantages of the present invention will be better understood from the

following detailed descriptions taken in conjunction with the accompanying drawings, all of which are given by way of illustration only, and are not limitative of the present invention, in which:

5 Figure 1A-1B. Alignment of the deduced amino acid sequences SEQ ID NO: 1 through SEQ ID NO: 7 represent 7 homologous clones encoding the major surface glycoprotein of rat P. carinii. Alignment was performed by the Clustal program of PC-Gene (IntelliGenetics, Inc.). Cysteine residues are identified in bold. Potential glycosylation sites are underlined. The peptides sequenced directly are shown above the alignment. An * indicates that a residue is conserved among all clones that overlap in that region.

10 Figure 2. Immunoblots demonstrating reactivity of anti-peptide antibodies with the major surface glycoprotein of rat P. carinii. Lanes 1, 3, 6, and 8, whole-organism extract; lanes 2, 4, 5, and 7, lyticase-solubilized proteins. Lanes 1, 2, 5, and 6, pre-immune sera (1:100); lanes 3 and 4, hyperimmune serum (1:100) following immunization with GP3₄₄₆₋₄₆₀; lanes 7 and 8, hyperimmune serum (1:100) following immunization with PC5₃₆₅₋₃₇₉. Reactivity specifically with the major surface glycoprotein ($M_r=116,000$) is seen with both hyperimmune sera. Lyticase treatment solubilizes the major surface glycoprotein, but results in a loss in apparent M_r of about 10%. Samples were run on a gradient gel (8% to 16%) prior to transfer to nitrocellulose. Migration of molecular weight markers is indicated on the left.

15 Figure 3A. Southern blot of P. carinii DNA (20 μ g/lane) digested with Nde 1 (first lane of each pair) and Eco R1 (second lane of each pair) and subsequently probed with MSG1 (common sequence), MSG2 (GP3-specific), MSG3 (GP14-specific), or DHPS1. Standards in kilobases are indicated on the left. P. carinii DNA was obtained from a single infected rat. None of the regions from which the oligonucleotides were derived contain Eco R1 or Nde 1 sites. All oligonucleotides were labeled at the same time,

and approximately equal numbers of counts were added for each probe. The first two lanes were exposed for 4 hours, and the remaining lanes for 48 hours. The presence of multiple bands in the first two lanes demonstrates that 5 multiple copies of these genes are present. Fewer bands are seen with the oligonucleotides specific for GP3 or GP14, but all bands correspond to those seen with the common oligonucleotide. No hybridization with MSG1 was seen with rat DNA (blot not shown). Hybridization with 10 DHPS1, derived from P. carinii dihydropteroate synthase, demonstrates the intensity of reactivity with a presumed single-copy gene.

Figure 3B. Southern blot of P. carinii chromosomes from 5 isolates (lanes 1 to 5) and Saccharomyces cerevisiae 15 chromosomes (lane 6) separated by transverse alternating field electrophoresis (28) and probed with PC5, demonstrating hybridization with multiple P. carinii chromosomes in all isolates. MW, based on S.cerevisiae chromosomes, is indicated on the right.

Figure 3C. Northern blot of total RNA extracted from 20 3T3 cells (10 µg, lane 1) or 5 P. carinii isolates (5-10 µg, lanes 2 to 6) probed with PC5. Hybridization to an approximately 4000 bp transcript is seen in P. carinii lanes. Migration of rRNA is indicated on the right.

25

DETAILED DESCRIPTION OF THE INVENTION

The following detailed description of the invention is provided to aid those skilled in the art in practicing the present invention. Even so, the following detailed description of the invention should not be construed to unduly limit the present invention, as modifications and 30 variations in the embodiments herein discussed may be made by those of ordinary skill in the art without departing from the spirit or scope of the present inventive discovery.

The contents of each of the literature citations in the present application are herein incorporated by reference in their entirety.

5 The nucleotide sequence of clone PC3 (SEQ ID NO: 1) encodes for a portion of the coding sequence for the major surface glycoprotein of rat P. carinii.

The nucleotide sequence of clone PC5 (SEQ ID NO: 2) encodes for a portion of the coding sequence for the major surface glycoprotein of rat P. carinii.

10 The nucleotide sequence of clone PC14 (SEQ ID NO: 3) encodes for a portion of the coding sequence for the major surface glycoprotein of rat P. carinii.

15 The nucleotide sequence of clone GP3 (SEQ ID NO: 4) encodes for a protein similar to the original gp116 clones and having a molecular weight of 104,048.

The nucleotide sequence of clone GP46 (SEQ ID NO: 5) encodes for a portion of the major surface glycoprotein of rat P. carinii.

20 The nucleotide sequence of clone GP22 (SEQ ID NO: 6) encodes for a portion of the major surface glycoprotein of rat P. carinii.

The nucleotide sequence of clone GP14 (SEQ ID NO: 7) encodes for a portion of the major surface glycoprotein of rat P. carinii.

25 DNA (SEQ ID NO: 8) and inferred amino acid sequence (SEQ ID NO: 9) illustrate one gene of the major surface glycoprotein of P. carinii. The DNA sequence, which was determined from both strands, is a composite of the original GP3 clone (SEQ ID NO: 4) (nucleotides 626 to 3521) and the 5' fragment (1 to 722) that was determined by PCR. Primers used in PCR to identify the 5' end of the sequence are underlined once, and the 5' end of the original clone is underlined twice. The 5' fragment was missing the first nine nucleotides of the 5' primer. The polyadenylation signal is shown in bold.

MATERIALS AND METHODSMaterials

5 Restriction enzymes were obtained from New England Biolabs (Beverly, MA). Other enzymes or kits were obtained from Stratagene (La Jolla, CA), Boehringer Mannheim (Indianapolis, IN), or InVitrogen (San Diego, CA).
10 Polymerase chain reaction (PCR¹) studies were performed with a DNA thermocycler (Perkin-Elmer/Cetus) using reagents obtained from Perkin-Elmer/Cetus. Radiolabeled chemicals
15 were obtained from New England Nuclear-DuPont (Boston, MA). Sequenase 2 was obtained from United States Biochemical (Cleveland, OH). Oligonucleotides were synthesized on a Cyclone-Plus DNA synthesizer (Milligen Biosearch, Burlington, MA) using reagents obtained from Milligen.
20 Hybond-N+ was obtained from Amersham (Chicago).

P. carinii organisms. Organisms were obtained from immunosuppressed rats and partially purified by Ficoll-Hypaque density gradient centrifugation as described (18).

20 P. carinii libraries. Construction of a P. carinii cDNA library in λ ZAP has been described (4). A second library was constructed in a similar fashion using oligo-dT-selected mRNA and subcloning into a modified λ ZAP vector (19), YcDE11, which contained sequences necessary for Saccharomyces cerevisiae replication and expression (Edman, J.C., unpublished observations). Both libraries were constructed from RNA pooled from three P. carinii preparations.

General Methods

30 Screening of libraries. Antibody screening was performed by described techniques (20) on approximately 50,000 phage following induction with isopropyl- β -D-thiogalactopyranoside (10 mM) using serum (1:1000) from a rat immunized with rat P. carinii (18). Positive clones were plaque purified, and clones encoding the major surface glycoprotein were identified by the antibody elution technique (21). Briefly, approximately 5,000 phage were

plated with BB4 cells on NZCYM agar; after 3-4 hours growth at 42°C, plates were overlaid with nitrocellulose that had been soaked in 10mM isopropyl- β -D-thiogalactopyranoside, and incubated overnight. Filters were blocked, incubated overnight with hyperimmune rat serum (1:1000), and washed. Reactive antibodies were eluted using 5 mM glycine-HCl, pH 2.3, 150 mM NaCl, 0.5% Triton-X 100, and 100 μ g/ml bovine serum albumin. After neutralization, eluted antibodies reactive with the major surface glycoprotein were identified by the immunoblot technique using P. carinii antigens as described (18). For screening with DNA, probes were labeled with [α -³²P]-dCTP using the random priming method (22). Hybridization was performed overnight at 65°C in 6x SSPE/1%SDS/10x Denhardt's solution (1x SSPE is 0.15 M NaCl, 10mM NaH₂PO₄, 1 mM EDTA-Na₂, pH 7.4; 1x Denhardt's is 0.02% polyvinylpyrrolidone, 0.02% Ficoll, 0.02% bovine serum albumin). Filters were washed at 65°C in 0.5xSSPE/0.1% SDS. Positive clones were plaque purified, and plasmids (pBluescript plus insert) were rescued according to the manufacturer's instructions (Stratagene) (19). Inserts were sequenced directly from plasmid using the Sanger dideoxy chain termination method (23) either in the inventors' laboratory using the Sequenase 2.0 kit or commercially (Lofstrand, Gaithersburg, MD).

Polymerase chain reaction (PCR): The 5' region of GP3 was determined by PCR. To identify the 5' end of the mRNA, oligonucleotide JK58, complementary to positions 306 to 325 of PC3 (SEQ ID NO: 10) (TTAACCGGCCGTGCCATTGC), which includes the putative initiation codon, was used as a template for reverse transcription (24), after which the cDNA was tailed with terminal transferase and dGTP, amplified by PCR as described (25), using primer JK58 and a 1:10 ratio of modified primers ANC SEQ ID NO: 11 (GACTGCATGCGGAAGCTTGGATCCCCCCCCCC) and AN (SEQ ID NO: 12) (GACTGCATGCGGAAGCTTGGATCC), subcloned into pCR1000 (Invitrogen), and sequenced. The region 5' to GP3 was then determined by reverse transcription followed by PCR (24),

using a 5' primer corresponding to the previously determined first 20 bases of the mRNA (SEQ ID NO: 13) (TTTTTCTAATAGACGATATG), and a 3' primer complementary to positions 77 to 96 of GP3 (SEQ ID NO: 14) (GATCTCCACATGTTTAGCA), subcloning as above and sequencing.

5 Southern and Northern blots. For Southern blots, *P. carinii* DNA (20 µg/lane) digested with Eco R1, or Nde 1 was probed with the following oligonucleotides that had been labeled with [γ -³²P]ATP using T4 polynucleotide kinase (26):

10 MSG1:GCAGAACTTGAGTCGGAATGTTT [C, T] TATTAA (SEQ ID NO: 15);
MSG2:AAAATATCTTCCACGATGTCTTATCCTAA (SEQ ID NO: 16);
MSG3:GAAAATAAAGATAAGAGATAACCTTCAAAG (SEQ ID NO: 17); and
DHPS1:
TTGATCACGATATTAAGCCAGTTTGCCAT (SEQ ID NO: 18). MSG1,
15 which corresponds to nucleotides 1346 to 1375 of GP3, is well conserved among the overlapping clones. MSG2 (1573 to 1602 of GP3) and MSG3 (223 to 252 of GP14) are based on regions of PG3 and GP14 that are poorly conserved in other clones. DHPS1 is complementary to 1897 to 1926 of the *P. carinii* fas gene, which encodes *P. carinii* dihydropteroate synthase (27). None of the oligonucleotides contained Eco R1 or Nde 1 sites. For pulse-field gels, *P. carinii* chromosomes were separated by transverse alternating field electrophoresis as described (28) and probed with [³²P]-labeled PC5 or MSG1. For northern blots, RNA was extracted using an RNA isolation kit (Stratagene) according to the manufacturer's instructions; 5-10 µg total RNA was separated by formaldehyde/agarose gel electrophoresis and probed with [³²P]-labeled PC5. All blots were transferred to Hybond-N+. Blots probed with PC5 were prehybridized overnight in 6x SSPE/1%SDS/10x Denhardt's solution, hybridized overnight at 65°C with [³²P]-labeled PC5 (55°C for chromosome blots), then washed twice for 5 min. at room temperature in 2xSSPE/0.1% SDS followed by two washes for
20 20 min. at the hybridization temperature in 0.5xSSPE/0.1%SDS or, for chromosomal blots, 0.1xSSPE/0.1%/SDS. Blots probed with oligonucleotides were

5 prehybridized overnight in 2x SSPE/0.5%SDS/5x Denhardt's solution/0.5 µg/ml sonicated and denatured salmon sperm DNA, hybridized overnight at 60°C with [³²P]-labeled oligonucleotide, and washed three times at 60°C for 30 minutes each in 2xSSPE/0.5% SDS.

10 Peptide sequencing. Peptide sequencing was performed (Harvard µChem, Cambridge, MA) on peptides of gp116 following treatment of purified gp116 (8) with endoproteinase LysC and separation by narrow-bore reverse phase HPLC using previously described techniques (29). Peptide 1 was selected for sequencing by analyzing the predicted peptide sequences originating between the first two predicted methionines as follows: first, peptide retention prediction suggested such peptides would be 15 retained predominantly in the first quarter of the chromatogram. Second, greater than 70% of the sequences lacked tryptophan or tyrosine and, thus, would be deficient in UV absorbance at 277 nM. On the basis of these two criteria, appropriate fractions were screened by 20 electrospray ionization mass spectrometric analysis for a molecular mass matching a sequence from the desired region (29).

25 Anti-peptide antibodies. The following peptides were synthesized by Peninsula Laboratories (Belmont, CA): GP3₄₄₆₋₄₆₀ (SEQ. I.D. NO.:9, amino acids 446-460) (Glu-Leu-Lys-Gly-Lys-Leu-Gly-His-Val-Arg-Phe-Tyr-Ser-Asp-Pro), which corresponds to amino acid residues 446-460 of GP3 and 453 to 467 of PC3; and PC5₃₆₅₋₃₇₉ (SEQ. I.D. NO.:19) (Glu-Leu-Arg-Gly-Asn-Leu-Gly-Leu-Val-Arg-Phe-Tyr-Ser-Asp-Pro), which corresponds to 365 to 379 of PC5. Peptides (10 mg) were commercially coupled (Peninsula Laboratories) to KLH (50 mg) (30), and two rabbits were immunized (Lofstrand) with 0.5 to 1.25 mg of each peptide conjugate every two weeks for 10 weeks, using complete (first dose) or incomplete 30 (remaining doses) Freund's adjuvant. Immunoblots against whole organism extracts or lyticase-solubilized gp116 were 35 performed as previously described (8).

Computer analysis. DNA and protein analyses were performed using either the PC-Gene (Intelligenetics) or MacVector (IBI) analysis programs.

5 Molecular weight (M_r) Determinations. The M_r for purified major surface glycoprotein was determined for the native protein by a sizing column used on an HPLC, and for the reduced and denatured protein by SDS-polyacrylamide gel electrophoresis. For the proteins encoded by the cloned genes, the M_r was determined by the computer program
10 MacVector, based on the amino acid sequences of the predicted proteins.

15 Gene composite. The composite was generated by alignment of the sequence of the original GP3 clone and the sequence of the PCR-generated fragment corresponding to the 5' end of the gene. Nucleotides 626 to 722 of the PCR fragment were found to be identical to nucleotides 1 to 96 of the original GP3 clone. This allowed appending nucleotides 1 to 625 of the PCR fragment to the 5' end of GP3, to generate the composite full-length clone.

20 Consensus sequence synthesized gene. A consensus sequence can be generated by computer alignment of the proteins encoded by each gene from the multiple clones. A clone containing a synthetic construction and representing the consensus sequences, or regions that contain some of
25 the consensus sequences, could then be derived by molecular biologic techniques, for example by replacing regions in one of the clones with consensus sequences, or by using site-directed mutagenesis (39).

RESULTS

30 Identification of genes encoding the major surface glycoprotein. Multiple clones were identified by immunoscreening a rat P. carinif cDNA library using rat serum generated against whole rat P. carinii (18). Clones reactive with polyclonal serum were evaluated by the antibody elution technique (21) to identify those potentially encoding for gp116. These clones cross-

hybridized by Southern hybridization; however, it was not possible to align the clones by restriction mapping. Three of these clones (PC3, PC5, and PC14) were sequenced in their entirety and contained open reading frames encoding three closely related but distinct proteins. Although none of the clones contained the complete coding sequence, overlapping regions allowed alignment of the three clones (Figure 1A-1B) and generation of a putative composite complete coding sequence that encoded for a protein of approximately 122,000 MW. One of these clones (PC5) was used to screen a second cDNA library that had been constructed in a modified lambda ZAP vector, YcDE11. Approximately 1% of the clones hybridized to PC5. Four of these clones GP3, GP22, GP46 and GP14 were sequenced, and all contained open reading frames encoding proteins highly similar to the original gp116 clones (Figure 1A-1D). The clone with the largest insert (GP3), 2869 bases plus a poly-A tail, has an open reading frame encoding for a protein of 104,048 MW. Based on the sequences in the composite protein, GP3 also appeared to be incomplete at the 5' end; PCR was utilized to determine the full sequence of this gene. The 5' end of the message was identified by anchored PCR (24) using primer JK58, which spanned the putative start codon of the composite protein. The intervening region was determined by reverse transcription followed by PCR, using primers spanning the 5' end to base 722 in GP3. A single clone was identified that had an identical sequence to the first 76 bases of GP3. The complete, composite cDNA contained an open reading frame encoding a protein of 122,997 MW.

To demonstrate unambiguously that this cDNA encoded the major surface glycoprotein, fragments of purified gp116 were sequenced (29). Although the amino terminus was blocked, the sequence of an endoprotease LysC-generated 18 amino acid fragment was obtained. This sequence is identical to amino acids 423 to 440 in the deduced PC5 protein sequence, and is highly conserved in the other six

clones. A second sequenced peptide, identical to residues 365 to 378 of PC5, is much less well conserved among the other clones. An additional peptide (peptide 1), identical to residues 49 to 57 of PC5, was sequenced to show that the 5 protein began with the methionine at position 1, rather than 165 (which would result in a protein of approximately 104,000 MW).

Peptides based on regions in GP3 and PC5 were used to generate antibodies in rabbits. By immunoblot, these anti-peptide antibodies were shown to react with intact as well 10 as lyticase-solubilized gp116 (See Figure 2).

Multiple genes encode the major surface glycoprotein. Antigenic variability of surface proteins is an important mechanism for evading host defenses in a number of 15 organisms (e.g., trypanosome and borrelia species) (31,32). Upon the identification of multiple clones encoding for a family of closely related surface proteins, the present inventors theorized that antigenic variability of surface 20 proteins may be important to P. carinii. *Heterogeneity of genes for gp116 may represent the occurrence of multiple alleles for a single-copy gene, multiple genes encoding for a family of related proteins, splicing, or a combination of these factors.

Southern hybridization experiments of P. carinii DNA 25 treated with Nde I or Eco R1 and probed with either a conserved 30-mer oligonucleotide (MSG1) or PC5 (blot not shown), revealed multiple bands (Figure 3A), strongly arguing for the presence of multiple genes. When oligonucleotides specific for GP3 or GP14 were utilized in 30 Southern hybridization studies, fewer bands were seen, and the bands were different for the two probes, although all bands detected with these probes were also seen when probing with MSG1. The reactivity of a given band with MSG1 was consistently greater than with the specific 35 oligonucleotides (Figure 3A) despite the fact that all probes had approximately the same specific activity. From these experiments, the inventors concluded that multiple

similar genes encoding the major surface glycoprotein were present in those bands, but the regions corresponding to the specific oligonucleotides were poorly conserved in many of these genes. Hybridization to blots of pulse-field gel-separated *P. carinii* chromosomes (28) showed the presence of gp116 sequences on multiple chromosomes (Figure 3B), consistent with multiple genes per *P. carinii* genome. Single copy genes have been previously demonstrated to hybridize to a unique chromosome in all *P. carinii* isolates (28). Northern hybridization of *P. carinii* RNA with PC5 revealed a single band of approximately 4,000 bases (Figure 3C), demonstrating that if multiple transcripts are made, they are similar in size. Since *P. carinii* cannot be grown consistently in vitro, at present it is impossible to clone single organisms to further clarify these issues.

Analysis of the coding regions. The genes encoding gp116 are rich in adenine and thymidine residues (63% in GP3), and is 69% adenine or thymidine in the third codon position of GP3, similar to the other coding sequences of *P. carinii* that have been identified to date (4,5). Nucleotide variability among the clones is not located primarily in the wobble position of the codon: among the 437 nucleotides that differ in PC14 and GP3, for example, 36% are in the first, 30% in the second, and 34% in the third codon position. GP3 has a consensus polyadenylation signal (ATAAAA) at nucleotides 3470-3475.

Analysis of the coding sequences shows that of 135 amino acid residues common to all seven clones, only 60 (44%) are identical in all clones, although conservation is higher among pairs of clones. GP46 and GP14 are identical through the first 227 amino acid residues, but subsequently diverge. The cysteine content (5.5%) of the complete protein is relatively high with a very strong conversion of cysteine residues: of 267 residues present in the seven clones, only one is not conserved, and this results from a 16-base frame-shift at nucleotide positions 1045 to 1060 of GP3 compared to PC3 and PC5. The cysteines are

concentrated primarily in three regions: 37 to 243, 329 to 5 758, and 914 to 941 of GP3. In these regions the cysteine residues do not occur at random, but are most often separated from another cysteine by six (20 occurrences) or seven (six occurrences) amino acids. There is no predictable pattern to the intervening amino acids. The 10 conservation of cysteines, together with their repetitive nature, suggests the occurrence of a repetitive secondary structure, such as loops formed by intramolecular disulfide bonds, that may be functionally important. There is a poorly conserved region rich in proline and glycine residues between residues 817 and 870 of GP3, and a region rich in threonine and serine residues near the carboxy terminus (953-1052 of GP3).

15 The present inventors and others (8,10,12) have previously shown that gp116 has N-linked carbohydrate residues that account for approximately 10% of its apparent molecular weight. GP3 contains five potential glycosylation sites (Asn-X-Ser/Thr) (Figure 1a). Two of 20 these sites (573 and 809) are conserved in the overlapping regions of the other clones. It is unknown whether O-linked glycosylation sites also exist in gp116. The threonine/serine-rich region may be a candidate for such 25 glycosylation, as has been suggested for a serine-rich region in yeast gp115 and a threonine rich region in the promastigote surface antigen-2 of Leishmania major (33,34).

Analysis of the hydrophilicity profile of the encoded 30 proteins by the algorithm of Kyte and Doolittle (35) demonstrates a single hydrophobic region common to all clones encompassing the last 15 amino acids at the carboxy terminus. There is no hydrophilic region compatible with an intracytoplasmic domain, nor is there a hydrophobic leader sequence. The position of the hydrophobic tail is consistent with a glycosyl phosphotidylinositol membrane anchorage (36) for this surface protein, although currently 35 there is no evidence to support such a linkage.

Searches of GenBank and PIR failed to identify any significant similarity to other known genes or proteins.

The DNA sequences for the P. carinii major surface glycoprotein, such as shown in Figure 1b, can be modified 5 to provide sequences that are mutants, deletions, or substitutions thereof which encode a protein having at least 90% homology with the naturally occurring major surface glycoprotein and possessing substantially the same properties as the P. carinii major surface glycoprotein.

10 The major surface glycoproteins of P. carinii preferably comprises one of a homologous variant of said major surface glycoproteins of P. carinii having less than 8 conservative amino acid changes, preferably less than 5 conservative amino acid changes. In this context, 15 "conservative amino acid changes" are substitutions of one amino acid by another amino acid wherein the charge and polarity of the two amino acids are not fundamentally different. Amino acids can be divided into the following four groups: (1) acidic amino acids, (2) neutral polar 20 amino acids, (3) neutral non-polar amino acids and (4) basic amino acids. Conservative amino acid changes can be made by substituting one amino acid within a group by another amino acid within the same group. Representative amino acids within these groups include, but are not 25 limited to, (1) acidic amino acids such as aspartic acid and glutamic acid, (2) neutral polar amino acids such as valine, isoleucine and leucine, (3) neutral nonpolar amino acids such as asparganine and glutamine and (4) basic amino acids such as lysine, arginine and histidine.

30 In addition to the above mentioned substitutions, the major surface glycoproteins of P. carinii of the present invention may comprise the above mentioned specific amino acid sequences and additional sequences at the N-terminal end, C-terminal end or in the middle thereof. The "gene" 35 or nucleotide sequence may have similar substitutions which allow it to code for the corresponding major surface glycoproteins of P. carinii. Individual base pair changes

or deletions or insertion of the DNA encoding for the major glycoproteins of P. carinii can be made by the methods of site-directed mutagenesis which are well known in the art. See Sambrook et al (39).

5 In processes for the synthesis of the major surface glycoproteins of P. carinii, DNA which encodes the major surface glycoproteins of P. carinii is ligated into a replicable (reproducible) vector, the vector is used to transform host cells, and the effector is recovered from the culture. The host cells for the above-described vectors include gram-negative bacteria such as *E. coli*, gram-positive bacteria, yeast and mammalian cells. Suitable replicable vectors will be selected depending upon the particular host cell chosen.

15

SIGNIFICANCE OF EXPERIMENTAL RESULTS

Although P. carinii has been a major pathogen in human immunodeficiency virus of infected patients since the beginning of the AIDS epidemic, inability to culture the organism has made studies of immunopathogenesis very difficult. Experiments investigating host-organism interactions have recently focused on the major surface glycoprotein. Although the function of this protein is unknown, it is an abundant surface-exposed glycoprotein that has the potential to interact with multiple host cell-associated or secreted proteins. As a surface protein, it is likely a primary target of the immune response. The present inventors have shown in the current experiments that multiple genes encode a family of related major surface glycoproteins, and that, based on chromosomal blots, multiple copies of these genes are present in the P. carinii genome. Based on the presence of multiple genes, the present inventors believe that antigenic variability may play a role in immune evasion. Although antigenic variability is well-known in protozoal and bacterial pathogens (31,32), the variability of the major surface

glycoprotein is the first description of this phenomenon in the fungi.

Previous experiments have shown that the major surface glycoprotein of P. carinii obtained from different species vary in size and are antigenically distinct (8,13).
5 However, no experiment has previously suggested variability in the protein moiety of the major surface glycoprotein in organisms obtained from a single species. An epitope of the major surface glycoprotein with a critical carbohydrate component that is conserved in P. carinii isolated from multiple species was identified by monoclonal antibody studies (13), and administration of a monoclonal antibody to this epitope resulted in a decrease in the intensity of 10 infection in two host species (17).

15

CLONING OF HUMAN ANTIGENS

Based on the above, the corresponding human antigen can be prepared as follows:

Materials

20 P. carinii organisms could be obtained from human HIV-infected patients and partially purified by Ficoll-Hypaque density gradient centrifugation as described (18).

Human P. carinii libraries could be constructed in the same manner as the P. carinii cDNA library in λ ZAP that has been described (4). A second library can be 25 constructed in a similar fashion using oligo-dT-selected mRNA and subcloning into a modified λ ZAP vector (19), YcDE11, which contained sequences necessary for Saccharomyces cerevisiae replication and expression.

General Methods

30 Several methods could be used to screen the human P. carinii library.

1. The library could be screened with the already identified rat P. carinii surface antigen genes. This could identify the genes since antibody studies have demonstrated that although the rat and human P. carinii 35

proteins are antigenically different, there is also cross-reactivity, and thus, there is likely to be conservation at the DNA level as well. Once one human P. carinii major surface glycoprotein gene is identified, that gene may be used to identify other members of the gene family.

5 2. The library may be screened using a conserved oligonucleotide whose sequence is based on the available rat P. carinii major surface glycoprotein genes. Since conserved regions are presumably functionally important, 10 and since the rat and human P. carinii major surface glycoprotein are homologous, they would have conserved the same regions that were conserved among rat P. carinii genes. Low stringency conditions may be used to obtain hybridization even if the conservation is not absolute.

15 3. Conserved oligonucleotides may be used based on sequences of the rat P. carinii major surface glycoprotein genes as primers for the polymerase chain reaction to be performed using human P. carinii DNA extracts as template. Conditions may be adjusted to low stringency if needed. 20 Once a human P. carinii-specific piece of DNA is amplified, that DNA fragment may then be used to screen the library to identify larger fragments or the entire gene.

25 4. Amino-acid sequence information from the purified human P. carinii major surface glycoprotein may be obtained by direct sequencing of proteolytic-enzyme generated fragments, in a manner similar to that done with the rat P. carinii major surface glycoprotein. This information may then be used to generate oligonucleotides that may be used either directly to screen the library, or as primers for 30 PCR to amplify a fragment of the human P. carinii major surface glycoprotein gene, which may then be used for further screening.

35 The identification of a multi-gene family of proteins is difficult because P. carinii cannot be cultured or cloned. The number of genes per genome encoding the major surface glycoprotein is difficult to estimate based on current data, but Southern blot experiments conducted by

the inventors using both conserved and specific oligonucleotides have led the inventors to believe that many similar genes exist in organisms obtained from a single host. The use of antibodies raised against peptides or oligonucleotides specific for individual genes will help determine if single organisms are expressing one or more genes, or if expression of specific genes is associated with specific stages of P. carinii.

P. carinii has been one of the most devastating complications of the immunosuppression associated with human immunodeficiency virus infection. The use of chemoprophylaxis has lead to a marked decline in the incidence of P. carinii pneumonia, but the agents used for prophylaxis are associated with significant adverse reactions or a high failure rate (37). The recent demonstration that novel, potentially protective, immune responses to HIV can be induced by immunization of HIV-infected patients with rgp160 (38) suggests that immunoprophylaxis may also be an effective alternative for controlling HIV-related opportunistic infections. The major surface glycoprotein of P. carinii can be used as a vaccine and as a diagnostic reagent. Additionally, the detailed study of this protein and its expression should lead to an understanding of its functional role in the pathogenesis of P. carinii pneumonia, and may lead to novel strategies designed to prevent or control P. carinii infection and its devastating consequences.

In use as a vaccine, the P. carinii major surface glycoprotein antigen of this invention can be administered to mammals; e.g., human, in a variety of ways. Exemplary methods include parenteral (subcutaneous) administration given with a nontoxic adjuvant, such as an alum precipitate or peroral administration given after reduction or ablation of gastric activity; or in a pharmaceutical form that protects the antigen against inactivation by gastric juice (e.g., a protective capsule or microsphere).

The dose and dosage regimen will depend mainly upon whether the antigen is being administered for therapeutic or prophylactic purposes, the patient, and the patient's history. The total pharmaceutically effective amount of 5 antigen administered per dose will typically be in the range of about 5 μ g to 1280 μ g per patient.

For parental administration, the antigen will generally be formulated in a unit dosage injectable form (solution, suspension, emulsion) in association with a 10 pharmaceutically acceptable parenteral vehicle. Such vehicles are inherently nontoxic and nontherapeutic. Examples of such vehicles include water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Non-aqueous vehicles, such as fixed oils and ethyl oleate, 15 may also be used. Liposomes may be used as vehicles. The vehicle may contain minor amounts of additives, such as substances which enhance isotonicity and chemical stability; e.g., buffers and preservatives.

The recombinant major surface glycoprotein of this 20 invention can provide a reagent to be used in a variety of diagnostic assays to detect antibodies to P. carinii as well as being useful in developing additional reagents that can detect antigens in clinical specimens. The recombinant protein, can be used directly in assays to detect anti-P. 25 carinii antibodies. Such assays would include, for example, ELISA (enzyme-linked immunosorbent assays), western blot (immunoblot) and immunoprecipitation assays. For antigen detection, antibodies, either polyclonal or monoclonal antibodies, can be generated to the recombinant 30 proteins. These antibodies can then be used in antigen-capture assays using, for example, an ELISA format, and in immunofluorescent assays.

The sequences of the genes can also be used to make 35 primers for use in polymerase chain reaction studies for the diagnosis of P. carinii infection as well as to make oligonucleotide probes that can be used directly in diagnostic assays for detecting the DNA of P. carinii.

The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would 5 be obvious to one skilled in the art are intended to be included within the scope of the following claims.

LITERATURE CITED

1. Gottlieb, M.S., Schroff, R., Schanker, H.M., Weisman, J.D., Fan, P.T., Wolf, R.A. & Saxon, A. (1981) *N. Engl. J. Med.* **305**, 1425-1431.
2. Masur, H., Michelis, M.A., Greene, J.B., Onorato, I., Stouwe, R.A., Holzman, R.S., Wormser, G., Brettman, L., Lange, M., Murray, H.W. & Cunningham Rundles, S. (1981) *N. Engl. J. Med.* **305**, 1431-1438.
3. Masur, H., Lane, H.C., Kovacs, J.A., Allegra, C.J. & Edman, J.C. (1989) *Ann. Intern. Med.* **111**, 813-826.
4. Edman, J.C., Edman, U., Cao, M., Lundgren, B., Kovacs, J.A. & Santi, D.V. (1989) *Proc. Natl. Acad. Sci. USA.* **86**, 8625-8629.
5. Edman, U., Edman, J.C., Lundgren, B. & Santi, D.V. (1989) *Proc. Natl. Acad. Sci. USA.* **86**, 6503-6507.
6. Edman, J.C., Kovacs, J.A., Masur, H., Santi, D.V., Elwood, H.J. & Sogin, M.L. (1988) *Nature* **334**, 519-522.
7. Stringer, S.L., Stringer, J.R., Blaše, M.A., Walzer, P.D. & Cushion, M.T. (1989) *Exp. Parasitol.* **68**, 450-461.
8. Lundgren, B., Lipschik, G.Y. & Kovacs, J.A. (1991) *J. Clin. Invest.* **87**, 163-170.
9. Gigliotti, F., Ballou, L.R., Hughes, W.T. & Mosley, B.D. (1988) *J. Infect. Dis.* **158**, 848-854.
10. Tanabe, K., Takasaki, S., Watanabe, J.I., Kobata, A., Egawa, K. & Nakamura, Y. (1989) *Infect. Immun.* **57**, 1363-1368.

11. Linke, M.J., Cushion, M.T. & Walzer, P.D. (1989) *Infect. Immun.* **57**, 1547-1555.
12. Radding, J.A., Armstrong, M.Y.K., Ullu, E. & Richards, F.F. (1989) *Infect. Immun.* **57**, 2149-2157.
13. Gigliotti, F. (1992) *J. Infect. Dis.* **165**, 329-336.
14. Pottratz, S.T., Paulsrud, J., Smith, J.S. & Martin, W.J.,II (1991) *J. Clin. Invest.* **88**, 403-407.
15. Ezekowitz, R.A.B., Williams, D.J., Koziel, H., Armstrong, M.Y.K., Warner, A., Richards, F.F. & Rose, R.M. (1991) *Nature* **351**, 155-158.
16. Zimmerman, P.E., Voelker, D.R., McCormack, F.X., Paulsrud, J.R. & Martin, W.J.,II (1992) *J. Clin. Invest.* **89**, 143-149.
17. Gigliotti, F. & Hughes, W.T. (1988) *J. Clin. Invest.* **81**, 1666-1668.
18. Kovacs, J.A., Halpern, J.L., Swan, J.C., Moss, J., Parrillo, J.E. & Masur, H. (1988) *J. Immunol.* **140**, 2023-2031.
19. Short, J.M., Fernandez, J.M., Sorge, J.A. & Huse, W.D. (1988) *Nucleic Acids Res.* **16**, 7583-7600.
20. Young, R.A. & Davis, R.W. (1983) *Proc. Natl. Acad. Sci. U. S. A.* **80**, 1194-1198.
21. Beall, J.A. & Mitchell, G.F. (1986) *J. Immunol. Methods* **86**, 217-223.
22. Feinberg, A.P. & Vogelstein, B. (1983) *Anal. Biochem.* **132**, 6-13.

23. Sanger, F., Nicklen, S. & Coulson, A.R. (1977) *Proc. Natl. Acad. Sci. U. S. A.* **74**, 5463-5467.
24. Kawasaki, E. S. (1990) in *PCR protocols: A guide to methods and applications*, eds. Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Academic Press, Inc., San Diego, CA), pp. 21-27.
25. Loh, E.Y., Elliott, J.F., Cwirla, S., Lanier, L.L. & Davis, M.M. (1989) *Science* **243**, 217-220.
26. Davis, L.G., Dibne, M.D. & Battey, J.F. (1986) *Basic Methods in Molecular Biology*, Elsevier, New York.
27. Volpe, F., Dyer, M., Scaife, J.G., Darby, G., Stammers, D.K., and Delves, C.J. (1992) *Gene* **112**, 213-218.
28. Lundgren, B. Cotton, R., Lundgren, J.D., Edman, J.C. & Kovacs, J.A. (1990) *Infect. Immun.* **58**, 1705-1710.
29. Lane, W.S., Galat, A., Harding, M.W. & Schreiber, S.L. (1991) *J. Prot. Chem.* **10**, 151-160.
30. Staros, J.V., Wright, R.W., and Swingle, D.M. (1986) *Anal. Biochem.* **156**, 220-222.
31. Boothroyd, J.C. (1985) *Ann. Rev. Microbiol.* **39**, 475-502.
32. Barbour, A.G., Barrera, O. & Judd, R. (1983) *J. Exp. Med.* **2127**, 2140.
33. Vai, M., Gatti, E., Lacana, E., Popolo, L. & Alberghina, L. (1991) *J. Biol. Chem.* **266**, 12242-12248.

34. Murray, P.J. & Spithill, T.W. (1991) *J. Biol. Chem.* **266**, 24477-24484.
35. Kyte, J. & Doolittle, R.F. 1982) *J. Mol. Biol.* **157**, 105-132.
36. Low, M.G. (1987) *Biochem. J.* **244**, 1-13.
37. Kovacs, J.A. & Masur, H. (1992) *Clin. Infect. Dis.* In press,
38. Redfield, R.R., Birx, D.L., Ketter, N., Tramont, E., Polonis, V., Davis, C., Brundage, J.F., Smith, G., Johnson, S., Fowler, A., Wierzba, T., Shafferman, A., Volcovitz, F., Oster, C. & Burke, D.S. (1991) *N. Engl. J. Med.* **324**, 1677-1684.
39. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Chapter 15.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Kovacs, Joseph A.
 Angus, C. W.
 Powell, Francoise
 Edman, Jeffrey C.

(ii) TITLE OF INVENTION: GENES THAT ENCODE A SURFACE PROTEIN OF
 P. CARNII

(iii) NUMBER OF SEQUENCES: 19

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Birch, Stewart, Kolasch & Birch
 (B) STREET: 8110 Gatehouse Road
 (C) CITY: Falls Church
 (D) STATE: Virginia
 (E) COUNTRY: USA
 (F) ZIP: 22042

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/958,683
 (B) FILING DATE: 09-OCT-1992
 (C) CLASSIFICATION:

(vii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Murphy Jr., Gerald M.
 (B) REGISTRATION NUMBER: 28,977
 (C) REFERENCE/DOCKET NUMBER: 1173-368P

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 703-205-8000
 (B) TELEFAX: 703-205-8050

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2110 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Pneumocystis carinii*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGGTTATCCT CGTGGAGGTC ATTTGATGAA ATATATGAAG GAGGCGATAT AAGTTTGAT	60
CATAAAAAAC TCGAATTAA CGAATATAAT CAAGTTTAC AAATGCTTGA AAAGGCAGAA	120
AATTGGGAAC CGGCTTTGTT GATAGAACCA AAGATTTTC TAATAGACGA TATGAAGGGA	180

GAATTGAGTT	AAATCATTG	GGGAGACGCC	CAGGAGTCGA	CTATTTAGG	AAAGGTGGGG	24
ATGTTTTAC	TGATGGTTAT	CCTCGTGGAG	GTCATTTGAT	CGAGGATGAG	TTGTCCGAAG	30
AGGCAGCAAT	GGCACGGCCG	GTAAAGAGGC	AAGCAAAAGT	AGTACAAGGA	GCACAAGGAG	36
CACAAGATGA	CATTAAGGAG	GAACACCTTT	TGGCTTTCAT	TGCGAAGAAG	GAATATAGTA	42
ATGAGGATAA	ATGCAAACAA	GAACTCAAGA	AATATTGTGA	AGAGTTGAAG	GAAGCAGATG	48
GTAAATTCAA	TGTTAATGAT	AAAGTTAAAG	AACTTTGTGG	TGGTGGTGAT	GAAGCAAAAC	54
GAGATAAAAA	ATGCAAAGAC	CTGAAAGACA	AAGTTGAAGA	TGAATTAGAA	AATTTTGATG	60
ATGAACCTCA	AGAACGATTG	AAAGACATAA	AAGATGAAAA	TTGTGAAAAA	CATGAAGAAA	66
AATGTATACT	TTTAGAAGAC	ACGGGTTATA	GTGAAGATAT	TAAGAAGAAC	TGTGTCAAGT	720
TGAGGGAAAG	ATGTTACAAA	TTGAAGCGTA	AAAAGGTGGC	AGAGGAGCTC	CTTTGAGGG	780
CGCTCGGAGG	GGATGCTAAA	GATGAAGCTA	AATGTAAAGA	AAAGATGAAA	ACTGTTGCC	840
CAATGTTAAG	CCGAGAAAGT	GACGAGCTGA	TGTTTTCTG	CCTTGATTG	GATGGAACGT	900
GTAAAGCGCT	AAAAACAAAA	TCAGAAGAAC	TTTGCTGCC	TTTAAAGAA	AAGCTTAAAG	960
ATGGCGAATT	AAAGGAAAAA	TGTCATGAA	GACTTGAGAA	ATGTCATTT	TACAAAGAAC	1020
CGTGTACTGA	AACAAAGTGT	GATGAGGATA	TGAAGCAATG	CAAGGAAAAA	GGATTACAT	1080
ATAAAGCGCC	GGAATCTGAT	TTTAGTCCTG	TCAAGCCGAA	GGCGTCGTTG	TTGAGAACGTA	1140
TTGGGTTGGA	TGATGTGTAT	AAAAAGGCTG	AAAAAGAACG	AATTATTATT	GGAAAATCAG	1200
GAGTGGATCT	ACCAAGGAAG	TCAGGTACAA	AATTCTGCA	AGATCTCTTG	CTACTGTTGA	1260
GCAGAGATGA	GAATGATGCA	GGGAAGAAAT	GCGGTAAAGC	GTTAGGAAAA	TGTGAAACTT	1320
CTAAGTATT	GAATACTGAT	TTGATGGAGT	TATGCAAAGA	TGCTGATAAA	GAAAATAAAT	1380
GCAAAAAAAA	GCTAGATGTA	AAAGAAAGAT	GTACAAAACT	CAAGTTAAAT	CTTTATGTGA	1440
AAGGGTTGTC	TACGGAGTTT	AAAGAACATA	AAAATCACA	TCTTTATCG	TGGGGACAGC	1500
TTCCAACATT	ATTTACGAAG	GGAGAGTGTG	CAGAACTTGA	GTCGGAATGT	TTCTATTTAG	1560
AAAATGCGTG	AAAAGATAAT	GAGATTGGTG	AAGCGTGTCA	AAATCTACGA	TCAGCGTGCT	1620
ATAAAAAGGG	ACAAGACAGG	ATGTTGAATA	AGTTCTTC	AAAGGAATTG	AAGGGAAAGC	1680
TTGGTCATGT	AAGATTTAT	AGCGATCCTA	AAGATTGTAA	AAAATATGTG	GTAGAAAACT	1740
GTACAAAACT	AAAAAAGAT	AAAAGATAACC	TTTCAAAATG	TCTTTATCCT	AAAGAACTAT	1800
GTTATGGGCT	TTCAAATGAT	ATTTTCTCC	AATCCAAAGA	GTAAAGTCG	CTTTTAGATG	1860
ATCAGAGAGA	TTTCCATT	AAAAGGATT	GTCTGAATT	GGGAGAGAAC	TGTGATCAAC	1920
TTAGTAGTGA	TTCATTATTG	AATTTAGAAA	AGTGTATAAC	ATTGAAAAGA	CGCTGTGAAT	1980
ATTTTGACGT	TACAGAAAGA	TTTAGAAAAG	TATTTTTAGA	AAAAAAGGAT	GATTCGTTAA	2040
TGATTCAGGA	AAACTGTACA	AAGGCATTGC	ATGAGAAATG	TAATACTTTA	TATAAGAGGA	2100
GAAAGAATTG						2110

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1454 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Pneumocystis carinii*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GAAGAAGAAT TGACAAC	TTT TGAAGGGAT CTTGACACTG CATTGAAAAA TGGCATAAAA	60
GATGAAGATT GTGAAAACA TGAAGAAAAA TGTATACTT TAGAGGAAGC AGACCCAAAT		120
AGTCTTAAGG AGAAAGTGTGT CAAGTTGAGG GAAGGATGTT ACGAATTGAA GCGTGAAAAG		180
GTGGCAGAGG AGCTCCTTT CAGGGCACTC GGAGGGATG CTAAAGAAGA TGGTAAATGT		240
AAAGGAAAGA TGAATACTGT TTGCCAGTG TTAAGCCGAG AAAGCGACGA ATTGATGACT		300
TTTGCCTTG ATCCGGATGG AACGTGTGGA GAGCTGAAA CAAAATTGGG CGAAGTTGCG		360
AAACCTTTAG AAACAGAATT GAATGAGAAA AGCTCAGAAA AGTGTATGA AAGACTTGAG		420
AAATGTCATT TTTACAAAGA AGCGTGTGGT AATACAAAT GTAAGGAGGA TAAGACGAAA		480
TGCGAGGAAA AAGGATTACAC ATATAAAGCG CCGGAATCTG ATTTAGTCC GGTCAAGCCG		540
AAGGCGTCGT TGTTGAGAAG TATTGGGTTG GAAGATGTGT ATAAAACGC GGGAAAACAT		600
GGGATTATTA TTGGAAAATC AGGAGTGGAT CTACCAAGGA AGTCAGGTAC AAAATTCTG		660
CAAGATCTCT TGCTAGTCTT GAGCAGAGAT GAGAATGATG CAGGGAGAA ATGCGGTAAA		720
GCGTTAGGAA AATGTGATGC TTCTAAGTAT TTGGATCATA ATTGAAAGA GTTATGCAAT		780
GATGGAAAAGA AAAACGACAA ATGCAAAGAA TTACTAGATG TAAATGTAAA AGAAAGATGT		840
ACAAAACCTCA AATTAAATCT TTATGTGAAA GGGTTGTCTA CAAAATTGAA AAAAGCTGAA		900
AAATCAGATC TTTTATCGTG GGGACAGCTT CCAACATTAT TTACGAAGGG AGAGTGTGCA		960
GAACATTGAGT CGGAATGTTT CTATTTAGAA AATGCGTGTAA AGGATAATAA GATTGATGAA		1020
GCATGTCAAA ATGCAAGAGC AGCGTGTAT AAAAAGGGAC AAGACAGGAT GTTGAATAAG		1100
TTCTTTCAAA AGGAATTGAG GGGAAATCTT GGTCTTGTAA GATTTTATAG CGATCCTGAA		1120
GAATGCAAAA AATCTGTGGT AGGAAACTGT ACAAAACTTA AAGAAGATAG TAGATACCTT		1180
TCAAAATGTC TTTATCCTAA AGAATTATGT TATGCGCTT CAAATGATAT TTTTCTTCAA		1200
TCCAAAGAGT TAAGTTCGCT TTTGGATGAT CAAAGGGATT TTCCATTAGA AAAGGATTGT		1220
CTTGAATTGG TGGAGAAGTG TGATGAACCTT AGTAGTGATT CATTATTGAA TTTAGAAAAG		1240
TGTATAACAT TGAAAAGACG CTGTGAATAC TTTAAGGTTA CAGAGGGATT TAGAAAAGTA		1260
TTTTAAAAAA AAAA		1280

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2190 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Pneumocystis carnii*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TTCCCCAAAC	TTTTATCGTG	GGGACAGCTT	CCAACCCTT	TTATAAAAGG	AGAGTGTGCA	600
GAACATTGAGT	CGGAATGCTT	CTATTTAGAA	AATGCGTGT	CGAATAAGAT	TGGTGAAGCA	1200
TGTCAAAATG	TACGATCAGC	GTGCTATAAA	AAGGGACAAG	ACAGGATGTT	GAATACGTTG	1800
TTTCGAGAGG	AGATGAAGGG	AAAGCTTGCT	AATATAAAAT	ATTTTAATGA	TACTGAAAGT	2400
TGCAAAAAAT	CAGTGGCAAA	AAAGTGTGCA	GAACATTGATA	AAAGATAACCT	TTCAAAATGT	3000
CTTTACCCCTA	AAAGACTATG	TTATGTGCTT	TCAGATGATA	TTTTCTTCA	ATCAAAAGAG	3600
TTAAGTGTGC	TTTTAGATGA	TCAGAGAGAT	TTTCCATTAG	AAAAGGATTG	TGTTGAATTG	4200
GGAGAGAAGT	GTGATGAACT	TGGTAGTGAT	TCATTATTGA	ATTTAGAAAA	GTGTATAACA	4800
TTGAAAAGAC	GCTGTGAATA	CTTTAAGGTT	ACAGAAAGAT	TTAGAAAAGT	ATTTTTAGAA	5400
AGAAAAGATC	ATTCAATTATA	CGATGAGCAA	AATTGTACGA	AGGCCTTGCA	TGAGAAATGT	6000
GAAGCTTAT	TTAGGAAAAG	GAGGAATCCA	TTTGAGTTT	CATGTGCTT	GCAAGAAGAA	6600
ACATGTCAAC	GTATGGTATA	CCATACAAC	CAAGATTGTA	TTTATTAAA	AGACAACATC	7200
AAAAATAAAA	AAATTCTAGA	ACAAATTGGA	AAAGTAAAAC	AGGATAAAC	AAAAGAAGCA	7800
GAAGTGAAG	AACTCTGCAC	AACATGGGT	AAATATTGTC	ACCAACTTAT	GGAGAATTGT	8400
CCAGATAAGT	TGAAAAAAAAA	AAAAAAGAAA	GACAATGACA	ATAATCAAA	CTGCGAAGAA	9000
CTCGAAAAAA	AATGCACTGA	TACCTTAAA	AAGTTGGAAT	TGAAGGATGA	GCTGACTCAT	9600
CTGTTGAAAG	GCAGCTTAAA	GGATAAAGAA	AAATGTAAAG	TAACACTAGG	ACAGCGTTGC	10200
CCTGAGTTGA	AAAATAATGA	TACATTCAA	ATTCTGCTTA	CTAATTGTGA	AGATTCTTG	10800
GAAAATGTTT	GCGCGGAATT	AGTTAAAAAA	GTACAGAAGA	AATGTCCTAC	TTTAAAAGAC	11400
GAACTGAATA	AAGCGAAAGA	TGAGTTGACA	AAGATGAAGA	CTGAGTACGA	AAATGCTAAA	12000
AAGGCGGCAG	AGAATCTAC	AAACAAAGCT	AGCTTATTGC	TATCAAAGTC	TGGAAAAGCC	12600
GCAATGCCAA	CTGCGCAGAA	TGGCAGTGCT	TCTGCACCA	CATCAGCACC	AGCAGAATCA	13200
GGATCATCAC	CAGCATCAGG	GTCACCA	GCATCAGAGC	CATCAACTAA	TGGAAAGGTG	13800
GACACGCCAG	CTGGAGGATC	AGGGACACAA	GATAAAACAT	CAGACGCATC	AGGTCAAACG	14400
ACGAAGTATA	CAAAACTTGG	ACTCGTTAAA	AGAGCATATG	TAGCTGAAGG	AGTATCAGAA	15000

GAAGAGGTAA AAGCATTGA TGCAACGACG GTAGCATTGG AATTGTATTT GGAATTGAAA	1560
GAGGAATGCA ATGCTTCTAGA ACTAGATTGC GGTTTTAAAG AGGATTGTGA GGAATCTAAA	1620
CCAGCTTGTA AAGAAATAGA AGAGTTATGC AAAGGAATAG AATCATTAAA AGTTACGCCT	1680
CATCATACAG AGACGCAAAA AGAAATCTCA ACCACTACGA CGACCACACTAC TACGACCACT	1740
ACCACGACTA CTACCACGAC TACGACGACA ACTACTACTA CAACCAAGCC GGGAAAGTGG	1800
GGAAAAGTAA CAGAAGAGTG TACAATGATA CAAACAACAG ATACATGGGT GACACGTACG	1860
TCATTGCATA CGAGTACGAC AACGAGTACG TCGACAGTGA CGTCGACAGT GACATTGACG	1920
TCGATGCGCA AGTGCAAGCC TACCAAATGT ACCACTGATT CAAGCAAAGA GACAGAAGAA	1980
GGAGGAAAAG AAGAAGAAGA AGTAAACCG AATGATGGGA TGAAAATAAG AGTTCCGTGAT	2040
ATGATTAAAA TAATATTGTT GGGAGTGATT GTTATGGGG A TGATGTAAAA TGAATGAAAA	2100
AAATGTTAAT AGAATGAAAA TGTGCATATA TCCATTGTTT ATATATAATA GAAATCTAAA	2160
TGAATGAAAT GAAGTTTAA TAATTTAAG	2190

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3521 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Pneumocystis carni*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TAGACGATAT GAAGAGAGAA TTGAGTTAAA TCATTTGGGG AGACGCCAG GAGTCGACTA	60
TTTTAGGAAA GGTGGGGATG TTTTTACTGA TGGTTATCCT CGTGGAGGTC ATTGATCGA	120
GGATGAGTTG TCCGAAGAGG TGGCAATGGC ACGGCCGGTT AAGAGGCAAG CAGTACAAGG	180
AGCACAAGAT GAGATTGATG AGAAACACCT TTTGGCTTTC ATTGTGAAGG ACAAAATATAA	240
AGAAGAACAA AAATGCAAAG AAGAACTCGA GAAATATTGT AAAGAGTTGA AGGAAGCAGA	300
TAAAAATCTA GAGAATGTGG ATGATAAAAGT TAAAGGGCTT TGTGATGATA AAAAACGAGA	360
CGAAAAATGC AAAGACGTGA AAAAAGAGT TGAAGATGAA TTAAAGGATT TTGAAGAGGA	420
ACTTCAAAAA GTATTGAATA ATATAAAAGA TGAAAATTGC GAAAAATATG AAGAAAAATG	480
TATACTTTA GAAGAGACGG ATTATGATGT TATTAAGGAT AACTGTATCG AGTTGAGGGA	540
AGGATGTTAC AAATTGAAGC GTGAAAAGGT GGCAGAGGAG CTTCTCTGA GGGCGCTCGG	600
AGGGGATGCT AAAGAAGAAG CTAATGTAA AGGAAAGATG AATACTGTTT GCCCAGTGT	660
GAGCCGAGAA AGCGACGAAT TGATGTCTTT TTGCCTTGAT TCTGCTAAAA CATGTGGAGA	720
TCTGAAAAAA AAATTGGTA CTGTTGCGA GCCTTAAAAA AAAGAGCTTA AAGATAACGA	780

33.

ATTAGCGGAA	AAGTGTATG	AAAGACTTGA	GAAATGTCAT	TTTTACGGAG	AAGCGTGTGA	840
TGATGCGAAA	TGCAAGAAGT	TTGAGGAGCA	ATGCAAGGGA	AAAAATATTA	TATATAAAC	900
GCCAGAACATCT	GATCTTAGTC	CTGTCAAGCC	GAGGGCGTCC	TTGTTGAGAA	GTATTGGTT	960
GGATGATGTG	TATAAAAACG	CGGAAAAACA	TGGGATTATT	ATTGGAAAAT	CAGGAGTGGA	1020
TCTACCAAGG	AAGTCAGGTA	CAAATTCCTG	CAAGATCTCT	TTGCTACTGT	TGAGCAGAGA	1080
TGAGGATAAG	AAGGAACCAG	ATAAAAAAGT	CACTAAAGCG	TTAGAAAAAT	GTGATGCCTC	1140
TAAGTATTTG	AATACTGAAT	TGGAAAAGTT	ATGTAAAGAT	GGAAACAAAA	ACGAAAATG	1200
CAAAAAAATA	TTAGATGTA	AAGAAAGATG	TACAAATCTC	AAATTAAC	TTTATCTGAA	1260
AGGATTGTCT	ACGGAATATG	ATGATCAAGA	ATCAGATCCT	TTATCGTGGG	GACAGCTGCC	1320
AACTTTTTT	ATAAAAGGAG	AGTGTGCAGA	ACTTGAGTCG	GAATGTTCT	ATTTAGAAAA	1380
GGCGTGTAAA	GATAATAATA	TTGATAAAGC	GTGCCAAAT	GCAAGAGCAG	CGTGCTATAA	1440
AAAGGGACAA	GACAGGATGT	TGAATAAGTT	CTTCAAAAG	GAATTGAAGG	GAAAGCTTGG	1500
TCATGTAAAGA	TTTTATAGCG	ATCCTAAAGA	TTGTAAGGAA	TATGTGGTAG	AAAACGTAC	1560
AAAACTTGAT	AAAAAATATC	TTCCACGATG	TCTTTATCCT	AAAGAACTAT	GTTATGGGCT	1620
TCATGAAATGAT	ATTTTCTTC	AATCCAAAGA	GTAAAGTGGC	CTTTGGATG	ATCAAAGGGA	1680
TTTTCCATTA	AAAAAGGATT	GTGTTGAGTT	GAAGGAGAAG	TGTGATGAAC	TTAGTAGTGA	1740
TCATTATTG	AATTTAGAAA	AGTGTATAAC	ATTGAAAAGA	CGTTGTGAAT	ACTTTAGAGT	1800
TTCAGAGGGA	TTTAGAAATG	TATTTTACA	AAAAAAGGAT	GATTGTTAA	TGACTCAGGA	1860
TAACGTACA	AAGGCATTGC	ATGAGAAATG	CCATCAATT	TATAGGAGGA	GAAAGAATTG	1920
ATTTAGTGT	TCATGTGCTT	TACCAAGA	AACATGTAGT	TATATGGTAT	TCCATACAAAG	1980
TCAAGATTGT	AGTAGTTAA	AAGTCAACAT	CAAGAATGAA	AAAATTCTAG	AAAAAATTGG	2040
AGAAGAAATT	AAAAAAGCAA	ATAAAAATGA	AGCCTGGTT	GAAGAACTCT	GCACAAACATG	2100
GGGCGACAT	TGTCACCAAC	TTATGGAGAA	TTGTCGGAT	GACTTGAAAA	AAAAAGAGAA	2160
TGGCAATGGC	AATGATCATA	ACTGCGAAGC	ACTCCAAGAA	AAATGCAATA	AAACCTTGT	2220
AAAGTTGAAA	TTAGAGGAGG	AGCTGAGTCA	TCTGTTGAAA	GGCAGTTAA	AGGATGATAA	2280
ATGTAAAGAA	GCATTAGGAA	AGCGTTGCAC	TGAGTTGGAA	AAGAATGAAG	CATTCAAAAC	2340
TCTGTATGGT	AAATGTGATG	ATAATACCAA	GGAAAATGTT	TGCAAAAT	TAGTTGATAA	2400
AGTAAAAAAG	AGATGCCCTA	CTTTAAAAGA	CGAACTGGAG	AATGCGAAA	AAGAGTTGAC	2460
AAAGATGAAG	AATGAGTACG	ATGATCTCAA	AAAGCGGCA	AAAAATCTA	CGGAGGCAGC	2520
TAAGTTATTG	CTATCAAGAC	CTAGACAAAC	TGTAATGCCA	AATGCGCAGA	ATGGCAGTGA	2580
TTCTACACTA	GTACCACCA	CACCACAAAGC	ACCAGCAGGG	CCACCACAC	CAGGGTCACC	2640
ACCACCA	CCATCACAAA	ATGGAACGCC	AGGCACACCA	GGTGGAGAAA	CAGGCGCATC	2700
AGGTGGAACA	CCAGGCACAC	CAGGCACACC	AGGCACACCA	GGCACACCAG	GTGGAATGAT	2760
GAAGTATGCA	AAACTTGGAC	TCGTTAAAAG	AACGTATGTA	GATGGAGGTG	TATCAGAAAGT	2820

AGAGGTCAAA GCATTTGATG CAACGACGAT AGCATTGGAA TTGTATTTGG AATTGAAAGA	2880
AGAACATGTAAA GCTTTAGAAT TAGATTGCGG TTTTAAAGAG GATTGTCCAG ATACTAAACA	2940
AGCTTGCGAA AATATAGACA CTTTATGTAA ACTGGAACCA TTAGAAATTA AGCCTCATCA	3000
TACAGAGAAA ATAACAGAAA CAAAGACGGA AACGAAGACG GAAACAAAGA CGGAAACAAA	3060
GACTGATGGC AAGGCTGATG AAAAGACCGT TGAGAAGACT GTTACAGAAA CCAAGTCAGT	3120
AGGTGGAGGA AAAGTAACAG AAGAGTGTAC AATGATACAA ACAACAGATA CATGGGTGAC	3180
GAGTACGTCA TTGCATACGA GTACGACAAC GAGTACGTCA ACGGTGACGT CGACAGTGAC	3240
GTTGACTTCG ATGCGCAAGT GCAAGCCTAC CAAATGTACC ACCGATTCAA GCAAAGAGAC	3300
ACAGAAAGAA GAAGATGATG AAGAAAGTGA ACCGAATGAG GGAATGAAAA TAAGAGTTCC	3360
TGATATGATT AAAATAATGT TGTTGGAGT GATTGTTATG GGGATGATGT AAATGAATGA	3420
AAAAAAATGTT AATAGATTGA AAATGTGCAT ATATCCATTG TTTATATATA ATAAAAAATGT	3480
AAATGAATGA AATGAAAAAA AAAAAAAAAA AAAAAAAAAA A	3521

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2058 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Pneumocystis carnii*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATGTTGAGTA CGTTGTTTCG AAAGGAATCG AAGGGGGAGT CTGGTCATAA AAGATATTAT	60
AACCATCCTG AGGAATGCCA AAAATCTGTG GTAAAAGACT GTAAAAAAACT TGAAAATAAA	120
GATAAGAGAT ACCTTCCAAA GTGTCTTTAT CCTAAAGAAC TATGTTATAT GCTTCAGAT	180
GATATTTCC TTCAATCCAA AGAGTTGGGA GCGCTTTGG ATGATCAAAG GGATTITCCA	240
TTAGAAAAGC ATTGTGTTGA ATTGAAGGAG AAGTGTGATG AACITGAAAC TTATTCACAT	300
TCGAATTCCG AAAAGTGTAT AACATTGAGA AGGCGCTGTG AATACCTTAG AGTTTCAGAG	360
GAATTTAGAA AAGTATTTT AAAAAGAAAA GATCATGCAT TATATAATGA GCAAAACTGT	420
ACGGAGGTGT TGCAAGAAAA ATGTAATACT TTATATAGGA GGAGAAAGAA TTCATTAGT	480
GTTTCATGTG CTTTGCCAGG AGAACATGT GAATATATGG TATACCGTAC AAAAGATGAA	540
TGTTTTTATT TAAGTGGCAA CATGGAGGAT GAAAAAATTG TAGAAGAAAT TGGAAGAAAA	600
AAAGCAAATG AAACAGCACT CGAAGAACTC TGCACAACAT GGGGCCGACA TTGTCACCAA	660
CTTATGGAGA ATTGTCCGGA TGACTTGAAA AAAAAAGAGA ATGGCAATGA CAATGATCAT	720
AACTGTGAAG AACTCGATGA AAAATGCAGT GATACCTTTA AAAGGTTGAA ATTAGAGGAG	780

GAGCTGACTC ATCTGTTGAA AGGCAGCTTA AAGGATAAGG ATGAATGTAA AAAAACATTA	840
GAAAAGCGTT GCACTGAGTT GCAAATAAT GAAACATTAA AAAATCTGCT TAGTTATTGT	900
GGAGAGAATG ACAAGGGAAC TGTTTGCAGA AAATTAGTTG AAAAACTAAA AAAGAGATGT	960
CCTACTTTAA AAGACGGACT GAATAAAGCG AAAGATGAGT TGACAAAGAT GAAAAAAAGAA	1020
TACGATGCGC TTAAAAAGGC GGCAGAAGAA TCTACAAAGG AAGCTAGCTT ATTGCTATCA	1080
AGACCTAGAC AAACGTAAAT GCCAAGTGCAG CAGAATGGCA GTGCTTCAGA GCAAGTATTA	1140
CAACCAAGTAC AACCAAGAATC AGGGTCATCA TCAGGGTCGC CATCATCACC ACCAGGGCCA	1200
CCATCAGCAC CACCACAAAA TGGAACGCCA GCCACACCAAG GTGGAGCACC AGGCACACCA	1260
AGCAGTGGAA CGACGGGCC CGACAAACTT GGACTCGTTA AAAGAGCATA TGTAGCTGAA	1320
GGAGTATCAG AAGCAGAGGT CAAAGCATT GATGCAACAA CGATAGCATT GGAGTTGTAT	1380
TTGGAATTGA AAGAAGAATG TAAAGCTTTA GAATTAGATT GCGGTTTTAA AGAGGATTGT	1440
AAGGAAACTG AACCAAGCTTG TAAAGAAATA GAAAAGTTAT GTAAACTGGAA AGCATTAAAA	1500
GTTGCGCCCTC ATCATAACAGA GACAATAACA AATAAGGTGA CGGAAACACA GACGGAAACA	1560
AAGACCGTTG AGAAGGTGCA TGACAAGGCT GATGTGAAGA CCGTTGAGAA GACTGTTACG	1620
GTAACCAAAC CAGGAAGTGG AGAAAAAGTA ACAGAAGAGT GTACAAATGAT ACAAAACAACA	1680
GATAATGGG TGACAAGCAC GTCATTGCAT ACGAGTACGA CAACGAGTAC ATCGACGGTG	1740
ACGTCGACAG TGACGTTGAC CTCGATGCGC AAGTGCAGC CTACCAAATG TACTACTGAT	1800
TCAAGCAGAG AGACAGATAA AGGAGGAGAA GGAGAAGAAG ATGTAACCAAC GAATGAGGGAA	1860
ATGAAAATAA GAGTTCTGA TATGATTAAA ATAATGTTGT TGGGAGTGAT TGTTATGGGA	1920
ATGATGTAAA ATGAATGAAA AAAATGTTAA TAGATTGAAA ATGTGCATAT ATCCATTGTT	1980
TATATATAAT AGAAATCTAA ATGAATGAAA TGAAGTTTTA ATTTTAATAC ACCAAAAAAA	2040
AAAAAAAAAA AAAAAAAA	2058

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2110 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Pneumocystis carni*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GCAGAACTTG TCTCGGAATG TTTTATTTA GAAAAGCGT GTAAAGATAA TAAAATTGAT	60
CAAGCGTGTGTC AAAATGTACG AGCAGCGTGC TATAAAATGG GACAAAATAG GATGTTGAAT	120
ATGCTCTTTC GAGAGGGTT GAAGGAGAAT TCTGAACGTA TAAAATATTA TGATGAGAAT	180

CCTCAAAAAT GTCAAGAATT TGTGGTAGGA AGCTGTACAA AACTAAAAAA ATATCTTCCA 240
 CAATGTCTTT ACCCTAAAGA ACTATGTTAT GCGGTTTCAG ATGATATTTT TCTTCATCC 300
 AAAGAGTTGG GTGTGCTTT GGATGATCAA AGAGATTTTC CATTAGAAGA GGATTGTCTT 360
 GAATTGAAGG AGAAGTGTGC TCAACTTGAA ACTTATTCAA ATTCAATTTC TCAAAAGTGT 420
 GCAACATTGA GAAGGCCTG TAAATACCTTA AGAGTTCTG AGGGATTTAG AAATGTATTT 480
 TAAAAAAGAG AAGATGATTC GTTAAAGAAA GAAAACGTGA CGAAGGCATT GCAAGAAAAA 540
 TGTGATGCTT TATCTAGGAA AAGGAGGAAT CCATTGGGT TTTCATGTGC TTTGCGAGAA 600
 GAAACATGTG AATATATGGT AGCCCGTACA AAAGACGAAT GTTTTATTT AAAAGACAAAC 660
 ATGGAGAATG AAGAAATTCT AAAAGAAATT GAAGAAAAAG CAAAAAAAGA TAATGCAAAT 720
 AGAAATGAAA CCTTGGTTGA AGAACTCTGC ACAACATGGG GCCGACATTG TCACCAACTT 780
 GTGGGGAAATT GTCCGGAGCA GTTGAAAAAA AAAAAAAAAA AAGATGATAA CAAAGATCAT 840
 AACTGTGACA AACTCGAAGA AAAATGCAGT GATACTTTA AAAGGTTGAA ATTAGAGGAG 900
 GAGCTGACTC ATCTGTTGAA AGGAAGTTA AAGAGTGAAG ATGAATGTAA AAAAACATTA 960
 GGAGAGCATT GCCCTGAGTT GCAAAAGAAT GATACTTCA AAACCTGTAA TGTTAAATGT 1020
 GAAGAGAATG AAAAGGGAAC TGTTGCAAA AAATTAGTTA AAAAGTACA AGAGAGATGT 1080
 CCTACTTAA AAACCGATCT GGAGAAGGCG AAAAAAGAGT TGAAGGACAA GAAAGATGAA 1140
 TACGATAATG TCAACACGGC AGCAAAAGAA TCTACGGAGA AAGCTAAGTT ATTACTATCG 1200
 AAGCCTCGAC AAACCGTAAC GCCAAATGCG CAGAATGGCA GTGCTTCTGG ACCAGTACCA 1260
 GCACCAGCAG CACCTCCAGC AGCACCCAGAA GCACCAGCAC AGCCACCACC ACCAGCAGGG 1320
 CAACCAAGTG GTGAAACATC AAACGTACCA GGTAAAACGC CAAGCAAAGA AGCTGGAACCA 1380
 CCAAACACAA CAGATGAAAC GACGAAGAAT CCAAGCCTTG GACTCGTTAA AAGAGCATAT 1440
 GTAGAAGGAG GTGTATCAGA AGCAGAGGTA AAAGCATTG ATGCAACGAC AATAGCATTG 1500
 GAGTTGTATT TGGAATTGAA AGAGGAATGC AGCGCTTTAC AACTAGATTG CGGTTTTAGA 1560
 AAGGATTGTT CGAGTGTGAA AGGTGTTGC AAAGAAATAG ACAAGTTATG TGAACGGAA 1620
 CCATTAAAAG TTACGCCCTCA TCATACAGAG ACAATAACAA ATAAGGTGAC GGAAACGAAG 1680
 ACGGAAACAA AGACAGAAAC AAAGACTGAT GACAAGGCTG ATGAGAAGAC CGGTACGAAA 1740
 ACTGTTACAG AAACCAAGAC AATAGCTGGA GGAAAAGTAA CAGAAGAGTG TACAATGGTA 1800
 CAAACAAACAG ATACATGGAT AACACGTACG TCATTGCATA CGAGTACGAC AACGAGCACG 1860
 TCAACGGTGA CGTCGACAGT GACGTTGACC TCGATGCGCA AGTGCAGGCC TACCAAATGT 1920
 ACCACTGATT CAACCAAAGA GACACAGAAA GAAGAAGATG ATGAAGAAGT GAAACCGAAT 1980
 GAGGGAAATGA AAATAAGAGT TCCTGATATG ATTAAAATAA TGTTGTTGGG AGTGATTGTT 2040
 ACGGGGATGA TGTAAAATGA ATGAAAAAAA TGTTAATAGA TTGAAAATGT GCATATAAAA 2100
 AAAAAAAAAA 2110

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2126 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Pneumocystis carnii*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GCAGAACTTG AGTCGGAATG	TTTTTATTAA AAAAAGCGT	GTAAAGATAA GGAGATTGAT	60
GAAGCATGTC AAAATGCACG	AGCAGCGTGC TATAAAGTGG	GAAAAGATAG GATGTTGAGT	120
ACGTTGTTTC GAAAGGAATC	GAAGGGGGAG TCTGGTCATA	AAAGATATTAA TAACCATCCT	180
GAGGAATGCC AAAAATCTGT	GGTAAAAGAC TGTAACAAAC	TTGAAAATAA AGATAAGAGA	240
TACCTTCCAA AGTGTCTTTA	TCCTAAAGAA CTATGTTATA	TGCTTTCAGA TGATAATTTC	300
CTTCAATCCA AAGAGTTGGG	AGCGCTTTTG GATGATCAA	GGGATTTCC ATTAGAAAAG	360
CATTGTGTTG AATTGAAGGA	GAAGTGTGAT GAACTTGAAA	CTTATTTCACA TTCGAATTCC	420
GAAAAGTGTAA ACACATTGAG	AAGCGCTGT GAATACCTTA	GAGTTTCAGA GGAATTAGA	480
AAAGTATTAA TAAAAAGAAA	AGATCATGCA TTATATAATG	AGCAAAACTG TACGGAGGTG	540
TTGCAAGAAA AATGTAATAC	TTTATATAGG AGGAGAAAAGA	ATTCAATTAG TGTTTCATGT	600
GCTTGCCAG GAGAACATG	TGAATATATG GTATACCGTA	CAAAAGATGA ATGTTTTTAT	660
TTAAGTGGCA ACATGGAGGA	TGAAAAAATT GTAGAAGAAA	TTGAAAAGAA AAAAGCAAAT	720
GAAACAGCAC TCGAAGAACT	CTGCACAAACA TGGGGCCGAC	ATTGTCACCA ACTTATGGAG	780
AATTGTCCAG ATAAGTTGAA	AAAAGAAAGT GATAACAGAG	ATCATAACTG TGACAAACTC	840
GAAGAAAAAT GCAGTGATAC	CTTTAAAAG TTGAAATTGA	AGGAGGAGCT AACTCATCTG	900
TTGAAAGGAA GTTTAAATGA	TAAAAAAGAA TGTACAGAAA	CATTAGGAAA GAATTGCACT	960
GAGTTGCAAA AGAATGATAC	ATTCAAAATT CTGCTTAGTG	ATTGTAAAGA TTCCTTGGAA	1020
AATGTTGCA CAAAATTAGT	TGAAAAAGTA CAGAAGAGAT	GTCCTGCTTT AAAAACCGAT	1080
CTAGAGGAAG CGAAAAAAGA	GTTGAAGGTC AAGAAAGAAG	AATATGATGC GCTAAAAAG	1140
GCAGCAGAAG AATCCAGAAA	TAAGCTAGC TTATTGCTAT	CAAGGTCTAA ACAAGCCGTA	1200
ACACCAAGTG GACAGAATGG	CAGTGATTCT GTACCAGCAC	AGGTACAGCC AGCACCAGCA	1260
GGGCCACCAT CAGCACCAAGG	GTCGCCATCA TCACCACCAT	CACAAATGG AACGCCAGGT	1320
GCACCAAGATG GAACGACAGA	CACAGCAGGT GGAACGACGA	ATAATGAAA ACTTGGACTC	1380
GTAAAAGAG CGTATGTAGA	TGAAGGTGTA TCAGAAGCAG	AGGTAAAAGC ATTTAATGCA	1440
ACGACAATAG CATTGGAATT	GTATTTGGAA TTGAAAGAGG	AATGCAGCGC TTTACAACCA	1500

GATTGCGGTT TTAAAGAGGA TTGTCCAGAT ACTAAACAAG CTTGTAAAGA AATAGAAGAG 1560
 TTATGTAAAC TGGAAAGCATT AAAAGITGCG CCTCATCATA CAGAGACAAT AACAGAACG 1620
 AAGACAGAAA CGAAGACGGA AACAAAGATG GAAACAAAGA CTGATGACAA GGCTGATGAG 1680
 AAGACCGGTA CGAAAACGTG TACAGAAACC AAGACAATAG GTGGAGGAAA AGTAACAGAA 1740
 GAGTGTACAT TAGTCAAGAC AACAGATACA TGGGTGACGA GTACGTCATT GCATACGAGT 1800
 ACGACAACGA GTACGTCAAC GGTGACGTCT ACAGTGACGT TGACCTCGAT GCGCAAGTGC 1860
 AAGCCTACCA AATGTACCCAC CGATTCAACC AAAGAGACAC AGAAAGAAGA AGATGAAGAA 1920
 GTAAAACCGA ATAATGGGAT GAAAATAAGA GTTCCTGATA TGATTAAAAT AATGTTGTTG 1980
 GGAGTGATTG TTATGGGGAT GATGTAAAAT GAATGAAAAA AATGTTAATA GATTGAAATT 2040
 GTGCATATAT CCATTGTTA TATATAATAG AAATCTAAAT GAATGAATGA ATTAAAAAAT 2100
 AAAAGTTTAA AAAAAAAA AAAAAA 2126

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3521 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Pneumocystis carni*

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 146..3409
- (D) OTHER INFORMATION: /product= "gp3"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

TAGACGATAT	GAAGAGAGAA	TTGAGTTAAA	TCATTTGGGG	AGACGCCAG	GAGTCGACTA	60
TTTTAGGAAA	GGTGGGGATG	TTTTACTGA	TGGTTATCCT	CGTGGAGGTC	ATTGATCGA	120
GGATGAGTTG	TCCGAAGAGG	TGGCA	ATG GCA CGG CCG	GTT AAG AGG	CAA GCA	172
			Met Ala Arg Pro	Val Lys Arg	Gln Ala	
			1	5		
GTA CAA GGA GCA CAA GAT	GAG ATT GAT GAG	AAA CAC CTT TTG	GCT TTC			220
Val Gln Gly Ala Gln Asp	Glu Ile Asp Glu	Lys His Leu	Leu Ala Phe			
10	15	20	25			
ATT GTG AAG GAC AAA TAT	AAA GAA CAA AAA TGC	AAA GAA GAA CTC				268
Ile Val Lys Asp Lys Tyr	Lys Glu Glu Gln	Lys Cys Lys Glu	Leu			
30	35	40				
GAG AAA TAT TGT AAA GAG	TTG AAG GAA GCA GAT	AAA AAT CTA GAG	AAT			316
Glu Lys Tyr Cys Lys Glu	Leu Lys Glu Ala Asp	Lys Asn Leu Glu	Asn			
45	50	55				
GTG GAT GAT AAA GTT AAA	GGG CTT TGT GAT	AAA AAA CGA GAC	GAA			364
Val Asp Asp Lys Val Lys	Gly Leu Cys Asp Asp	Lys Lys Arg Asp	Glu			
60	65	70				

AAA TGC AAA GAC GTG AAA AAA GTT GAA GAT GAA TTA AAA GAT TTT Lys Cys Lys Asp Val Lys Lys Lys Val Glu Asp Glu Leu Lys Asp Phe 75 80 85	412
GAA GAG GAA CTT CAA AAA GTA TTG AAT AAT ATA AAA GAT GAA AAT TGC Glu Glu Glu Leu Gln Lys Val Leu Asn Asn Ile Lys Asp Glu Asn Cys 90 95 100 105	460
GAA AAA TAT GAA GAA AAA TGT ATA CTT TTA GAA GAG ACG GAT TAT GAT Glu Lys Tyr Glu Glu Lys Cys Ile Leu Leu Glu Glu Thr Asp Tyr Asp 110 115 120	508
GTT ATT AAG GAT AAC TGT ATC GAG TTG AGG GAA GGA TGT TAC AAA TTG Val Ile Lys Asp Asn Cys Ile Glu Leu Arg Glu Gly Cys Tyr Lys Leu 125 130 135	556
AAG CGT GAA AAG GTG GCA GAG GAG CTT CTT CTG AGG GCG CTC GGA GGG Lys Arg Glu Lys Val Ala Glu Glu Leu Leu Arg Ala Leu Gly Gly 140 145 150	604
GAT GCT AAA GAA GAA GCT AAA TGT AAA GGA AAG ATG AAT ACT GTT TGC Asp Ala Lys Glu Ala Lys Cys Lys Gly Lys Met Asn Thr Val Cys 155 160 165	652
CCA GTG TTG AGC CGA GAA AGC GAC GAA TTG ATG TCT TTT TGC CTT GAT Pro Val Leu Ser Arg Glu Ser Asp Glu Leu Met Ser Phe Cys Leu Asp 170 175 180 185	700
TCT GCT AAA ACA TGT GGA GAT CTG AAA AAA AAA TTG GGT ACT GTT TGC Ser Ala Lys Thr Cys Gly Asp Leu Lys Lys Leu Gly Thr Val Cys 190 195 200	748
GAG CCT TTA AAA AAA GAG CTT AAA GAT AAC GAA TTA GCG GAA AAG TGT Glu Pro Leu Lys Lys Glu Leu Lys Asp Asn Glu Leu Ala Glu Lys Cys 205 210 215	796
CAT GAA AGA CTT GAG AAA TGT CAT TTT TAC GGA GAA GCG TGT GAT GAT His Glu Arg Leu Glu Lys Cys His Phe Tyr Gly Glu Ala Cys Asp Asp 220 225 230	844
GCG AAA TGC AAG AAG TTT GAG GAG CAA TGC AAG GGA AAA AAT ATT ATA Ala Lys Cys Lys Lys Phe Glu Glu Gln Cys Lys Gly Lys Asn Ile Ile 235 240 245	892
TAT AAA GCG CCA GAA TCT GAT CTT AGT CCT GTC AAG CCG AGG GCG TCC Tyr Lys Ala Pro Glu Ser Asp Leu Ser Pro Val Lys Pro Arg Ala Ser 250 255 260 265	940
TTG TTG AGA AGT ATT GGG TTG GAT GAT GTG TAT AAA AAC GCG GAA AAA Leu Leu Arg Ser Ile Gly Leu Asp Asp Val Tyr Lys Asn Ala Glu Lys 270 275 280	988
CAT GGG ATT ATT ATT GGA AAA TCA GGA GTG GAT CTA CCA AGG AAG TCA His Gly Ile Ile Ile Gly Lys Ser Gly Val Asp Leu Pro Arg Lys Ser 285 290 295	1036
GGT ACA AAT TTC TGC AAG ATC TCT TTG CTA CTG TTG AGC AGA GAT GAG Gly Thr Asn Phe Cys Lys Ile Ser Leu Leu Leu Ser Arg Asp Glu 300 305 310	1084
GAT AAG AAG GAA CCA GAT AAA AAG TGC ACT AAA GCG TTA GAA AAA TGT Asp Lys Lys Glu Pro Asp Lys Lys Cys Thr Lys Ala Leu Glu Lys Cys 315 320 325	1132
GAT GCC TCT AAG TAT TTG AAT ACT GAA TTG GAA AAG TTA TGT AAA GAT Asp Ala Ser Lys Tyr Leu Asn Thr Glu Leu Glu Lys Leu Cys Lys Asp 330 335 340 345	1180

40

GGA AAC AAA AAC GAA AAA TGC AAA ATA TTA GAT GTA AAA GAA AGA Gly Asn Lys Asn Glu Lys Cys Lys Lys Ile Leu Asp Val Lys Glu Arg 350 355 360	1228
TGT ACA AAT CTC AAA TTA AAA CTT TAT CTG AAA GGA TTG TCT ACG GAA Cys Thr Asn Leu Lys Leu Lys Tyr Leu Ser Thr Glu 365 370 375	1276
TAT GAT GAT CAA GAA TCA GAT CCT TTA TCG TGG GGA CAG CTG CCA ACT Tyr Asp Asp Gln Glu Ser Asp Pro Leu Ser Trp Gly Gln Leu Pro Thr 380 385 390	1324
TTT TTT ATA AAA GGA GAG TGT GCA GAA CTT GAG TCG GAA TGT TTC TAT Phe Phe Ile Lys Gly Cys Ala Glu Leu Glu Ser Glu Cys Phe Tyr 395 400 405	1372
TTA GAA AAG GCG TGT AAA GAT AAT ATT GAT AAA GCG TGC CAA AAT Leu Glu Lys Ala Cys Lys Asp Asn Asn Ile Asp Lys Ala Cys Gln Asn 410 415 420 425	1420
GCA AGA GCA GCG TGC TAT AAA AAG GGA CAA GAC AGG ATG TTG AAT AAG Ala Arg Ala Ala Cys Tyr Lys Gly Gln Asp Arg Met Leu Asn Lys 430 435 440	1468
TTC TTT CAA AAG GAA TTG AAG GGA AAG CTT GGT CAT GTA AGA TTT TAT Phe Phe Gln Lys Glu Leu Lys Gly Lys Leu Gly His Val Arg Phe Tyr 445 450 455	1516
AGC GAT CCT AAA GAT TGT AAA AAA TAT GTG GTA GAA AAC TGT ACA AAA Ser Asp Pro Lys Asp Cys Lys Tyr Val Val Glu Asn Cys Thr Lys 460 465 470	1564
CTT GAT AAA AAA TAT CTT CCA CGA TGT CTT TAT CCT AAA GAA CTA TGT Leu Asp Lys Tyr Leu Pro Arg Cys Leu Tyr Pro Lys Glu Leu Cys 475 480 485	1612
TAT GGG CTT TCA AAT GAT ATT TTT CTT CAA TCC AAA GAG TTA AGT GCG Tyr Gly Leu Ser Asn Ile Phe Leu Gln Ser Lys Glu Leu Ser Ala 490 495 500 505	1660
CTT TTG GAT GAT CAA AGG GAT TTT CCA TTA AAA AAG GAT TGT GTT GAG Leu Leu Asp Asp Gln Arg Asp Phe Pro Leu Lys Lys Asp Cys Val Glu 510 515 520	1708
TTG AAG GAG AAG TGT GAT GAA CTT AGT AGT GAT TCA TTA TTG AAT TTA Leu Lys Glu Lys Cys Asp Glu Leu Ser Ser Asp Ser Leu Leu Asn Leu 525 530 535	1756
GAA AAG TGT ATA ACA TTG AAA AGA CGT TGT GAA TAC TTT AGA GTT TCA Glu Lys Cys Ile Thr Leu Lys Arg Arg Cys Glu Tyr Phe Arg Val Ser 540 545 550	1804
GAG GGA TTT AGA AAT GTA TTT TTA GAA AAA AAG GAT GAT TCG TTA ATG Glu Gly Phe Arg Asn Val Phe Leu Glu Lys Lys Asp Ser Leu Met 555 560 565	1852
ACT CAG GAT AAC TGT ACA AAG GCA TTG CAT GAG AAA TGC CAT CAA TTA Thr Gln Asp Asn Cys Thr Lys Ala Leu His Glu Lys Cys His Gln Leu 570 575 580 585	1900
TAT AGG AGG AGA AAG AAT TCA TTT AGT GTT TCA TGT GCT TTA CCA GAA Tyr Arg Arg Arg Lys Asn Ser Phe Ser Val Ser Cys Ala Leu Pro Glu 590 595 600	1948
GAA ACA TGT AGT TAT ATG GTA TTC CAT ACA AGT CAA GAT TGT AGT AGT Glu Thr Cys Ser Tyr Met Val Phe His Thr Ser Gln Asp Cys Ser Ser 605 610 615	1996

41

TTA AAA GTC AAC ATC AAG AAT GAA AAA ATT CTA GAA AAA ATT GGA GAA Leu Lys Val Asn Ile Lys Asn Glu Lys Ile Leu Glu Lys Ile Gly Glu 620 625 630	2044
GAA ATT AAA AAA GCA AAT AAA AAT GAA GCC TTG GTT GAA GAA CTC TGC Glu Ile Lys Lys Ala Asn Lys Asn Glu Ala Leu Val Glu Glu Leu Cys 635 640 645	2092
ACA ACA TGG GGC CGA CAT TGT CAC CAA CTT ATG GAG AAT TGT CCG GAT Thr Thr Trp Gly Arg His Cys His Gln Leu Met Glu Asn Cys Pro Asp 650 655 660 665	2140
GAC TTG AAA AAA AAA GAG AAT GGC AAT GGC AAT GAT CAT AAC TGC GAA Asp Leu Lys Lys Glu Asn Gly Asn Asp His Asn Cys Glu 670 675 680	2188
GCA CTC CAA GAA AAA TGC AAT AAA ACC TTT GAA AAG TTG AAA TTA GAG Ala Leu Gln Glu Lys Cys Asn Lys Thr Phe Glu Lys Leu Lys Leu Glu 685 690 695	2236
GAG GAG CTG AGT CAT CTG TTG AAA GGC AGT TTA AAG GAT GAT AAA TGT Glu Glu Leu Ser His Leu Leu Lys Gly Ser Leu Lys Asp Asp Lys Cys 700 705 710	2284
AAA GAA GCA TTA GGA AAG CGT TGC ACT GAG TTG GAA AAG AAT GAA GCA Lys Glu Ala Leu Gly Lys Arg Cys Thr Glu Leu Glu Lys Asn Glu Ala 715 720 725	2332
TTC AAA ACT CTG TAT GGT AAA TGT GAT GAT AAT ACC AAG GAA AAT GTT Phe Lys Thr Leu Tyr Gly Lys Cys Asp Asp Asn Thr Lys Glu Asn Val 730 735 740 745	2380
TGC AAA AAA TTA GTT GAT AAA GTA AAA AAG AGA TGC CCT ACT TTA AAA Cys Lys Lys Leu Val Asp Lys Val Lys Lys Arg Cys Pro Thr Leu Lys 750 755 760	2428
GAC GAA CTG GAG AAT GCG AAA AAA GAG TTG ACA AAG ATG AAG AAT GAG Asp Glu Leu Glu Asn Ala Lys Lys Glu Leu Thr Lys Met Lys Asn Glu 765 770 775	2476
TAC GAT GAT CTC AAA AAG GCG GCA GAA AAA TCT ACG GAG GCA GCT AAG Tyr Asp Asp Leu Lys Lys Ala Ala Glu Lys Ser Thr Glu Ala Ala Lys 780 785 790	2524
TTA TTG CTA TCA AGA CCT AGA CAA ACT GTA ATG CCA AAT GCG CAG AAT Leu Leu Ser Arg Pro Arg Gln Thr Val Met Pro Asn Ala Gln Asn 795 800 805	2572
GGC AGT GAT TCT ACA CTA GTA CCA CCA CCA CCA CAA GCA CCA GCA GGG Gly Ser Asp Ser Thr Leu Val Pro Pro Pro Gln Ala Pro Ala Gly 810 815 820 825	2620
CCA CCA CCA CCA GGG TCA CCA CCA CCA CCA TCA CAA AAT GGA ACG Pro Pro Pro Pro Gly Ser Pro Pro Pro Pro Ser Gln Asn Gly Thr 830 835 840	2668
CCA GGC ACA CCA GGT GGA GAA ACA GGC GCA TCA GGT GGA ACA CCA GGC Pro Gly Thr Pro Gly Gly Glu Thr Gly Ala Ser Gly Gly Thr Pro Gly 845 850 855	2716
ACA CCA GGC ACA CCA GGC ACA CCA GGC ACA CCA GGT GGA ATG ATG AAG Thr Pro Gly Thr Pro Gly Thr Pro Gly Thr Pro Gly Gly Met Met Lys 860 865 870	2764
TAT GCA AAA CTT GGA CTC GTT AAA AGA ACG TAT GTA GAT GGA GGT GTA Tyr Ala Lys Leu Gly Leu Val Lys Arg Thr Tyr Val Asp Gly Gly Val 875 880 885	2812

42

TCA GAA GTA GAG GTC AAA GCA TTT GAT GCA ACG ACG ATA GCA TTG GAA Ser Glu Val Glu Val Lys Ala Phe Asp Ala Thr Thr Ile Ala Leu Glu 890 895 900 905	2860
TTG TAT TTG GAA TTG AAA GAA GAA TGT AAA GCT TTA GAA TTA GAT TGC Leu Tyr Leu Glu Leu Lys Glu Glu Cys Lys Ala Leu Glu Leu Asp Cys 910 915 920	2908
GGT TTT AAA GAG GAT TGT CCA GAT ACT AAA CAA GCT TGC GAA AAT ATA Gly Phe Lys Glu Asp Cys Pro Asp Thr Lys Gln Ala Cys Glu Asn Ile 925 930 935	2956
GAC ACT TTA TGT AAA CTG GAA CCA TTA GAA ATT AAG CCT CAT CAT ACA Asp Thr Leu Cys Lys Leu Glu Pro Leu Glu Ile Lys Pro His His Thr 940 945 950	3004
GAG AAA ATA ACA GAA ACA AAG ACG GAA ACG AAG ACG GAA ACA AAG ACG Glu Lys Ile Thr Glu Thr Lys Thr Glu Thr Lys Thr Glu Thr Lys Thr 955 960 965	3052
GAA ACA AAG ACT GAT GGC AAG GCT GAT GAA AAG ACC GTT GAG AAG ACT Glu Thr Lys Thr Asp Gly Lys Ala Asp Glu Lys Thr Val Glu Lys Thr 970 975 980 985	3100
GTT ACA GAA ACC AAG TCA GTA GGT GGA GGA AAA GTA ACA GAA GAG TGT Val Thr Glu Thr Lys Ser Val Gly Gly Lys Val Thr Glu Glu Cys 990 995 1000	3148
ACA ATG ATA CAA ACA ACA GAT ACA TGG GTG ACC AGT ACG TCA TTG CAT Thr Met Ile Gln Thr Thr Asp Thr Trp Val Thr Ser Thr Ser Leu His 1005 1010 1015	3196
ACG AGT ACG ACA ACG AGT ACG TCA ACG GTG ACG TCG ACA GTG ACG TTG Thr Ser Thr Thr Ser Thr Val Thr Ser Thr Val Thr Leu 1020 1025 1030	3244
ACT TCG ATG CGC AAG TGC AAG CCT ACC AAA TGT ACC ACC GAT TCA AGC Thr Ser Met Arg Lys Cys Lys Pro Thr Lys Cys Thr Thr Asp Ser Ser 1035 1040 1045	3292
AAA GAG ACA CAG AAA GAA GAA GAT GAT GAA GAA GTG AAA CCG AAT GAG Lys Glu Thr Gln Lys Glu Glu Asp Asp Glu Glu Val Lys Pro Asn Glu 1050 1055 1060 1065	3340
GGA ATG AAA ATA AGA GTT CCT GAT ATG ATT AAA ATA ATG TTG TTG GGA Gly Met Lys Ile Arg Val Pro Asp Met Ile Lys Ile Met Leu Leu Gly 1070 1075 1080	3388
GTG ATT GTT ATG GGG ATG ATG TAAATGAATG AAAAAATGT TAATAGATTG Val Ile Val Met Gly Met Met 1085	3439
AAAATGTGCA TATATCCATT GTTTATATAT AATAAAAATG TTAAAGAATG AAATGAAAAA AAAAAAAAAAAAA AAAAAAAAAAA AA	3499
	3521

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1088 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Ala Arg Pro Val Lys Arg Gln Ala Val Gln Gly Ala Gln Asp Glu
1 5 10 15

Ile Asp Glu Lys His Leu Leu Ala Phe Ile Val Lys Asp Lys Tyr Lys
20 25 30

Glu Glu Gln Lys Cys Lys Glu Glu Leu Glu Lys Tyr Cys Lys Glu Leu
35 40 45

Lys Glu Ala Asp Lys Asn Leu Glu Asn Val Asp Asp Lys Val Lys Gly
50 55 60

Leu Cys Asp Asp Lys Lys Arg Asp Glu Lys Cys Lys Asp Val Lys Lys
65 70 75 80

Lys Val Glu Asp Glu Leu Lys Asp Phe Glu Glu Glu Leu Gln Lys Val
85 90 95

Leu Asn Asn Ile Lys Asp Glu Asn Cys Glu Lys Tyr Glu Glu Lys Cys
100 105 110

Ile Leu Leu Glu Glu Thr Asp Tyr Asp Val Ile Lys Asp Asn Cys Ile
115 120 125

Glu Leu Arg Glu Gly Cys Tyr Lys Leu Lys Arg Glu Lys Val Ala Glu
130 135 140

Glu Leu Leu Leu Arg Ala Leu Gly Gly Asp Ala Lys Glu Glu Ala Lys
145 150 155 160

Cys Lys Gly Lys Met Asn Thr Val Cys Pro Val Leu Ser Arg Glu Ser
165 170 175

Asp Glu Leu Met Ser Phe Cys Leu Asp Ser Ala Lys Thr Cys Gly Asp
180 185 190

Leu Lys Lys Leu Gly Thr Val Cys Glu Pro Leu Lys Lys Glu Leu
195 200 205

Lys Asp Asn Glu Leu Ala Glu Lys Cys His Glu Arg Leu Glu Lys Cys
210 215 220

His Phe Tyr Gly Glu Ala Cys Asp Asp Ala Lys Cys Lys Lys Phe Glu
225 230 235 240

Glu Gln Cys Lys Gly Lys Asn Ile Ile Tyr Lys Ala Pro Glu Ser Asp
245 250 255

Leu Ser Pro Val Lys Pro Arg Ala Ser Leu Leu Arg Ser Ile Gly Leu
260 265 270

Asp Asp Val Tyr Lys Asn Ala Glu Lys His Gly Ile Ile Ile Gly Lys
275 280 285

Ser Gly Val Asp Leu Pro Arg Lys Ser Gly Thr Asn Phe Cys Lys Ile
290 295 300

Ser Leu Leu Leu Ser Arg Asp Glu Asp Lys Lys Glu Pro Asp Lys
305 310 315 320

Lys Cys Thr Lys Ala Leu Glu Lys Cys Asp Ala Ser Lys Tyr Leu Asn
325 330 335

Thr Glu Leu Glu Lys Leu Cys Lys Asp Gly Asn Lys Asn Glu Lys Cys
340 345 350

Lys Lys Ile Leu Asp Val Lys Glu Arg Cys Thr Asn Leu Lys Leu Lys
 355 360 365

Leu Tyr Leu Lys Gly Leu Ser Thr Glu Tyr Asp Asp Gln Glu Ser Asp
 370 375 380

Pro Leu Ser Trp Gly Gln Leu Pro Thr Phe Phe Ile Lys Gly Glu Cys
 385 390 395 400

Ala Glu Leu Glu Ser Glu Cys Phe Tyr Leu Glu Lys Ala Cys Lys Asp
 405 410 415

Asn Asn Ile Asp Lys Ala Cys Gln Asn Ala Arg Ala Ala Cys Tyr Lys
 420 425 430

Lys Gly Gln Asp Arg Met Leu Asn Lys Phe Phe Gln Lys Glu Leu Lys
 435 440 445

Gly Lys Leu Gly His Val Arg Phe Tyr Ser Asp Pro Lys Asp Cys Lys
 450 455 460

Lys Tyr Val Val Glu Asn Cys Thr Lys Leu Asp Lys Lys Tyr Leu Pro
 465 470 475 480

Arg Cys Leu Tyr Pro Lys Glu Leu Cys Tyr Gly Leu Ser Asn Asp Ile
 485 490 495

Phe Leu Gln Ser Lys Glu Leu Ser Ala Leu Leu Asp Asp Gln Arg Asp
 500 505 510

Phe Pro Leu Lys Lys Asp Cys Val Glu Leu Lys Glu Lys Cys Asp Glu
 515 520 525

Leu Ser Ser Asp Ser Leu Leu Asn Leu Glu Lys Cys Ile Thr Leu Lys
 530 535 540

Arg Arg Cys Glu Tyr Phe Arg Val Ser Glu Gly Phe Arg Asn Val Phe
 545 550 555 560

Leu Glu Lys Lys Asp Asp Ser Leu Met Thr Gln Asp Asn Cys Thr Lys
 565 570 575

Ala Leu His Glu Lys Cys His Gln Leu Tyr Arg Arg Arg Lys Asn Ser
 580 585 590

Phe Ser Val Ser Cys Ala Leu Pro Glu Glu Thr Cys Ser Tyr Met Val
 595 600 605

Phe His Thr Ser Gln Asp Cys Ser Ser Leu Lys Val Asn Ile Lys Asn
 610 615 620

Glu Lys Ile Leu Glu Lys Ile Gly Glu Glu Ile Lys Lys Ala Asn Lys
 625 630 635 640

Asn Glu Ala Leu Val Glu Glu Leu Cys Thr Thr Trp Gly Arg His Cys
 645 650 655

His Gln Leu Met Glu Asn Cys Pro Asp Asp Leu Lys Lys Glu Asn
 660 665 670

Gly Asn Gly Asn Asp His Asn Cys Glu Ala Leu Gln Glu Lys Cys Asn
 675 680 685

Lys Thr Phe Glu Lys Leu Lys Leu Glu Glu Glu Leu Ser His Leu Leu
 690 695 700

Lys Gly Ser Leu Lys Asp Asp Lys Cys Lys Glu Ala Leu Gly Lys Arg
705 710 715 720

Cys Thr Glu Leu Glu Lys Asn Glu Ala Phe Lys Thr Leu Tyr Gly Lys
725 730 735

Cys Asp Asp Asn Thr Lys Glu Asn Val Cys Lys Lys Leu Val Asp Lys
740 745 750

Val Lys Lys Arg Cys Pro Thr Leu Lys Asp Glu Leu Glu Asn Ala Lys
755 760 765

Lys Glu Leu Thr Lys Met Lys Asn Glu Tyr Asp Asp Leu Lys Lys Ala
770 775 780

Ala Glu Lys Ser Thr Glu Ala Ala Lys Leu Leu Ser Arg Pro Arg
785 790 795 800

Gln Thr Val Met Pro Asn Ala Gln Asn Gly Ser Asp Ser Thr Leu Val
805 810 815

Pro Pro Pro Gln Ala Pro Ala Gly Pro Pro Pro Gly Ser Pro
820 825 830

Pro Pro Pro Ser Gln Asn Gly Thr Pro Gly Thr Pro Gly Gly Glu
835 840 845

Thr Gly Ala Ser Gly Gly Thr Pro Gly Thr Pro Gly Thr Pro Gly Thr
850 855 860

Pro Gly Thr Pro Gly Gly Met Met Lys Tyr Ala Lys Leu Gly Leu Val
865 870 875 880

Lys Arg Thr Tyr Val Asp Gly Gly Val Ser Glu Val Glu Val Lys Ala
885 890 895

Phe Asp Ala Thr Thr Ile Ala Leu Glu Leu Tyr Leu Glu Leu Lys Glu
900 905 910

Glu Cys Lys Ala Leu Glu Leu Asp Cys Gly Phe Lys Glu Asp Cys Pro
915 920 925

Asp Thr Lys Gln Ala Cys Glu Asn Ile Asp Thr Leu Cys Lys Leu Glu
930 935 940

Pro Leu Glu Ile Lys Pro His His Thr Glu Lys Ile Thr Glu Thr Lys
945 950 955 960

Thr Glu Thr Lys Thr Glu Thr Lys Thr Glu Thr Lys Thr Asp Gly Lys
965 970 975

Ala Asp Glu Lys Thr Val Glu Lys Thr Val Thr Glu Thr Lys Ser Val
980 985 990

Gly Gly Gly Lys Val Thr Glu Glu Cys Thr Met Ile Gln Thr Thr Asp
995 1000 1005

Thr Trp Val Thr Ser Thr Ser Leu His Thr Ser Thr Thr Ser Thr
1010 1015 1020

Ser Thr Val Thr Ser Thr Val Thr Leu Thr Ser Met Arg Lys Cys Lys
1025 1030 1035 1040

Pro Thr Lys Cys Thr Thr Asp Ser Ser Lys Glu Thr Gln Lys Glu Glu
1045 1050 1055

Asp Asp Glu Glu Val Lys Pro Asn Glu Gly Met Lys Ile Arg Val Pro
 1060 1065 1070

Asp Met Ile Lys Ile Met Leu Leu Gly Val Ile Val Met Gly Met Met
 1075 1080 1085

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: -
- (B) LOCATION: 1..20
- (D) OTHER INFORMATION: /label= oligonucleotide
 /note= "primer JK58"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

TTAACCGGCC GTGCCATTGC

20

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 36 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: -
- (B) LOCATION: 1..35
- (D) OTHER INFORMATION: /label= oligonucleotide
 /note= "primer ANC"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GACTGCATGC GGAAGCTTGG ATCCCCCCCC CCCCCC

36

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: -
- (B) LOCATION: 1..24

(D) OTHER INFORMATION: /label= oligonucleotide
/note= "primer AN"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GACTGCATGC GGAAGCTTGG ATCC

24

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: -
(B) LOCATION: 1..20
(D) OTHER INFORMATION: /label= oligonucleotide
/note= "5' primer corresponding to first 20 bases
of GP3 mRNA"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

TTTTTCTAAT AGACGATATG

20

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: -
(B) LOCATION: 1..20
(D) OTHER INFORMATION: /label= oligonucleotide
/note= "3' primer corresponding to positions 77-96
of GP3"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GATCTCCACA TGTTTTAGCA

20

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: -

48

- (B) LOCATION: 1..30
(D) OTHER INFORMATION: /label= oligonucleotide
/note= "hybridization probe MSG1"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GCAGAACTTG AGTCGGAATG TTTYTATTAA

30

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: -
(B) LOCATION: 1..30
(D) OTHER INFORMATION: /label= oligonucleotide
/note= "hybridization probe MSG2"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

AAAATATCTT CCACGATGTC TTTATCCTAA

30

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: -
(B) LOCATION: 1..30
(D) OTHER INFORMATION: /label= oligonucleotide
/note= "hybridization probe MSG3"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GAAAATAAAG ATAAGAGATA CCTTCCAAAG

30

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: -
(B) LOCATION: 1..30

(D) OTHER INFORMATION: /label= oligonucleotide
/note= "hybridization probe DHPS1"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

TTGATCACGA TATTAAGCCA GTTTGCCAT

30

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Glu Leu Lys Gly Lys Leu Gly His Val Arg Phe Tyr Ser Asp Pro
1 5 10 15

What is claimed is:

- 1 1. A DNA molecule encoding a mammalian Pneumocystis carinii major surface glycoprotein or an allelic variation thereof.
- 2
- 3
- 1 2. The DNA molecule according to claim 1 where the mammal is a rat.
- 2
- 1 3. A DNA molecule encoding the gene for the major surface glycoprotein of P. carinii as shown in SEQ ID NO: 8.
- 2
- 3
- 1 4. A DNA molecule encoding a portion of the gene for the major surface glycoprotein of P. carinii in a cDNA selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6 and SEQ ID NO: 7.
- 2
- 3
- 4
- 5
- 1 5. A DNA molecule according to claim 1 where the mammal is a human.
- 2
- 3
- 4
- 5
- 1 6. A DNA molecule encoding a mammalian Pneumocystis carinii major surface glycoprotein which is a composite of a multiple gene family or is a synthetic construction representing a consensus sequence analysis of a multiple gene family.

- 1 7. A method of obtaining a DNA molecule encoding a
2 mammalian P. carinii major surface glycoprotein
3 which comprises screening a cDNA library of P.
4 carinii with an antibody to said major surface
5 glycoprotein to identify positive clones encoding
6 for gp116 and using at least one of said clones or
7 an oligonucleotide probe based on said clones to
8 reveal the presence of multiple genes encoding for
9 said major surface glycoprotein.
- 1 8. A mammalian Pneumocystis carinii major surface
2 glycoprotein having the amino acid sequence as
3 shown in SEQ ID NO: 9.
- 1 9. A mammalian Pneumocystis carinii major surface
2 glycoprotein produced from the expression of a DNA
3 sequence which is a composite of a multiple gene
4 family encoding for said major surface glycoprotein
5 or a synthetic construction representing a
6 consensus sequence analysis of a multiple gene
7 family.
- 1 10. The major surface glycoprotein according to claim
2 8 where the mammal is human.
- 1 11. A mammalian Pneumocystis carinii major surface
2 protein having a molecular weight of about 122977
3 or allelic variations thereof.
- 1 12. A vaccine comprising a therapeutically effective
2 amount of a mammaian Pneumocystis carinii major
3 surface glycoprotein or a polypeptide derived
4 therefrom capable of eliciting an immune response
5 to said glycoprotein, and a pharmaceutically
6 acceptable parenteral vehicle.

FIGURE 1A

SUBSTITUTE SHEET (RULE 26)

FIGURE 1B

SUBSTITUTE SHEET (RULE 26)

1 2 3 4 5 6 7 8

205-
116-
80-

FIG. 2

FIG. 3A

**Southern Blot of gp116 (PC5) Hybridized to
P. carinii Chromosomes Separated
by PFGE**

FIG. 3B

1 2 3 4 5 6

← 28S
← 26S
← 18S

FIG. 3C

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 93/09635

A. CLASSIFICATION SUBJECT MATTER
IPC 5 C12N15/31 C07K15/00 G01N33/569 A1 19/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 5 C07K C12N A61K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	J. CLIN. INVEST. vol. 87, no. 1 , 1991 pages 163 - 170 B. LUNDGREN ET AL. 'Purification and characterisation of a major human P. carinii antigen' see the whole document ----	8-12
X,O	31ST INTERSCIENCE CONFERENCE ON ANTIMICROBIAL AGENTS AND CHEMOTHERAPY PROGRAM ABSTR. vol. 31, no. 0, 1991, page 136 J. FISHMAN ET AL. "Molecular cloning and analysis of genes " ... see the abstract ----	1,2,5-7, 9-12 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

'&' document member of the same patent family

Date of the actual completion of the international search 28 February 1994	Date of mailing of the international search report 21-03- 1994
---	---

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

Skelly, J

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 93/09635

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>INF. IMMUN. vol. 57, no. 9 , 1989 pages 2149 - 2157</p> <p>J. RADDING ET AL. 'Identification and isolation of a major cell surface glycoprotein of <i>P. carinii</i>' see the whole document</p> <p>---</p>	8,9,11, 12
X	<p>J. PROTOZOOL. vol. 38, no. 6 , 1991 pages 8S - 10S</p> <p>A. SMULIAN ET AL. 'Expression cloning of <i>P. carinii</i> antigens' see the whole document</p> <p>---</p>	1,2
X,P	<p>J. BIOL. CHEM. vol. 268, no. 8 , 1993 pages 6034 - 6040</p> <p>J. KOVACS ET AL. 'Multiple genes encode the major surface glycoprotein of <i>P. carinii</i>' see the whole document</p> <p>---</p>	1-12
X,P	<p>WO,A,93 07274 (THE GENERAL HOSPITAL CORPORATION) 15 April 1993 see the whole document</p> <p>-----</p>	1,2,5-7, 9-12

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 93/09635

Patent document cited in search report	Publication date	Patent member(s)	Publication date
WO-A-9307274	15-04-93	AU-A- 2869192	03-05-93

LEIGH & WHINSTON

KLARQVIST, SPARKMAN, CAMPBELL

JUN 3 0 1998

RECEIVED