文脈自由文法

離散数学・オートマトン 2024 年後期 佐賀大学理工学部 只木進一

- ① 形式文法: Formal grammars
- ② 正規文法: Regular Grammars
- ③ 文脈自由文法: Context Free Grammars
- 4 文脈自由言語を受理する NPDA: NPDA Accepting CFL
- ⑤ 空スタックで受理する NPDA に対応する文脈自由文法: CFL corresponding to NPDA

言語と文法: Languages and grammars

- 言語の構成要素: Elements of languages
 - 文法: Grammars
 - 語: Words
 - 文: Sentences
- 文法: Grammars
 - 語の配置規則: Rules for arranging words
 - 文の生成規則: Rules for generating sentences
 - 生成文法: Generative Grammars
 N. Chomsky, Syntactic Structure, 1957.
- 有限オートマトン、プッシュダウンオートマトンの受理言語を 記述する文法とは: Grammars describing languages accepted by finite automata and pushdown automata?

形式文法: Formal Grammar

文法の一般的定式化: General formalization of grammars

$$G = \langle N, \Sigma, P, S_0 \rangle \tag{1.1}$$

- N: 非終端アルファベット: 文法の要素(品詞など)に相当: Non-terminal alphabet
- Σ: 終端アルファベット: 語に相当: Terminal alphabet
- P: 生成規則: Productions
- $S_0 \in N$: 開始記号: Start symbol

生成文法 (Generative Grammars) とも言う

 開始記号から終端記号の列を生成: Generate a sequence of terminal symbols from the start symbol

正規文法: Regular Grammars

- 正規表現に対応した正規言語を生成: Generate regular languages corresponding to regular expressions
- 生成規則: Productions

$$P: N \to \Sigma N | \Sigma \tag{2.1}$$

- ただし、必要ならば $S_0 \to \epsilon$ も許容する: $S_0 \to \epsilon$ is allowed if necessary
- 非終端記号が、一つの終端記号、または一つの終端記号と一つの非終端記号の列に置き換わる
- 記号 | は、or を表す: | represents or
- 右辺の ΣN が無限回の繰り返しを可能とする: ΣN on the right side allows infinite repetition

$$A \to aA \mid a$$
 (2.2)

例 2.1:

$$L = \left\{\mathsf{a}^{3n} | n \in N \cup \{0\}
ight\} = (\mathsf{aaa})^*$$

例 2.2:

$$\begin{split} N &= \left\{ S, A \right\}, \Sigma = \left\{ \mathsf{a}, \mathsf{b} \right\} \\ P &= \left\{ S \rightarrow \epsilon \mid \mathsf{a} A, A \rightarrow \mathsf{b} S \right\} \end{split}$$

正規文法が正規表現と同等であること: Regular grammars are equivalent to regular expressions

- 決定性有限オートマトンを正規文法に翻訳できること: DFAs can be translated to regular grammars
 - 遷移関数を生成規則に翻訳
- 正規文法を非決定性有限オートマトンに翻訳できること: Regular grammars can be translated to NFAs
 - 生成規則を遷移関数に翻訳
- 一般的な翻訳規則があることが重要: Existence of general translation rules is important

決定性有限オートマトンから正規文法へ: From DFA to regular grammar

Algorithm
$$\mathbf{1} \ M = \langle Q, \Sigma, \delta, q_0, F \rangle \Rightarrow G = \langle N, \Sigma, P, q_0 \rangle$$
 $N = Q$ \triangleright 内部状態を非終端記号に読み替える for all $q' = \delta \ (q, a)$ do \triangleright 遷移関数の各場合を変換 $P \ \textit{lc} \ q \rightarrow aq'$ を追加 \land if $q' \in F$ then \triangleright 終状態への遷移の場合は、終端記号のみへ

9/36

end if end for

P に $q \rightarrow a$ を追加

例 2.3:

• 正規表現: regular expression

$$((a + b) (a + b))^* a$$

 対応する正規文法の非終端記号と終端記号: Non-terminal and terminal symbols of the corresponding regular grammar

$$N = \{q_0, q_2, q_1\}$$

$$\Sigma = \{\mathsf{a}, \mathsf{b}\}$$

遷移関数	生成規則
$\delta(q_0,a)=q_2$	$q_0 o a q_2 a $
$\delta(q_0,b)=q_1$	$q_0 o b q_1$
$\delta(q_1,a)=q_0$	$q_1 o a q_0$
$\delta(q_1,b)=q_0$	$q_1 o b q_0$
$\delta(q_2,a)=q_0$	$q_2 o a q_0$
$\delta(q_2,b)=q_0$	$q_2 o b q_0$

以上まとめて

$$P = \{q_0 \rightarrow \mathsf{a}q_2 | \mathsf{b}q_1 | \mathsf{a}, q_1 \rightarrow \mathsf{a}q_0 | \mathsf{b}q_0, q_2 \rightarrow \mathsf{a}q_0 | \mathsf{b}q_0 \}$$

導出例: Derivation example

$$q_0 \Rightarrow aq_2 \Rightarrow abq_0 \Rightarrow abbq_1$$

= $abbaq_0 \Rightarrow abbaa$

正規文法から非決定性有限オートマトンへ: From regular grammar to NFA

Algorithm 2 $G = \langle N, \Sigma, P, S_0 \rangle \Rightarrow M = \langle Q, \Sigma, \delta, S_0, \rangle$ O = N \Rightarrow 非終端記号を内部状態に読み替える

$$F = \{q_f\}$$
 for all $A o aB$ do $B \in \delta\left(A,a
ight)$

end for

for all
$$A \to a$$
 do $q_f \in \delta(A, a)$

end for

if
$$S_0 \to \epsilon \in P$$
 then $q_f \in \delta\left(S_0.\epsilon\right)$

end if

▷ 非終端記号を含む場合

▷ 終端記号のみの場合は終状態へ

例 2.4:

$$\begin{split} N &= \{q_0,q_2,q_1\} \\ \Sigma &= \{\mathsf{a},\mathsf{b}\} \\ P &= \{q_0 \to \mathsf{a}q_2 | \mathsf{a}| \mathsf{b}q_1,q_1 \to \mathsf{a}q_0 | \mathsf{b}q_0,q_2 \to \mathsf{a}q_0 | \mathsf{b}q_0\} \end{split}$$

CFG	NFA
$q_0 ightarrow a q_2 a b q_1$	$\delta(q_0,a) = \{q1,q_f\}$
	$\delta(q_0, b) = \{q2\}$
$q_1 ightarrow a q_0 b q_0$	$\delta(q_1,a)=\{q_0\}$
	$\delta(q_1,b) = \{q_0\}$
$q_2 o a q_0 b q_0$	$\delta(q_2,a)=\{q_0\}$
	$\delta(q_2,b) = \{q_0\}$

文脈自由文法: Context Free Grammars

生成規則: 非終端記号が非終端記号または終端記号の長さ0以上の列へと変換: Non-terminal symbols are replaced by a sequence of terminal and non-terminal symbols

$$P: N \to (\Sigma \cup N)^* \tag{3.1}$$

• 例: example

$$egin{aligned} N &= \{S_0\}\,,\;\; \Sigma &= \{\mathsf{a},\mathsf{b}\} \ P &= \{S_0
ightarrow \epsilon | \mathsf{a}S_0\mathsf{b}\} \ S_0 &\Rightarrow \mathsf{a}S_0\mathsf{b} \Rightarrow \mathsf{a}\mathsf{a}S_0\mathsf{b}\mathsf{b} \Rightarrow \mathsf{a}\mathsf{a}\mathsf{a}S_0\mathsf{b}\mathsf{b} \Rightarrow \mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}\mathsf{b} \end{aligned}$$

なぜ「文脈自由」なのか: Why they are called *context free*

- 生成規則の左辺は、非終端記号一つ: A single non-terminal symbol on the left side of a production rule
- 前後の非終端記号や終端記号との繋がり(文脈)を無視: Ignoring the context of the surrounding symbols

二つの標準形: Standard forms

- チョムスキー標準形 (Chomsky normal form, CNF)
 - $A \rightarrow BC(B, C \in N)$
 - $A \to a (a \in \Sigma)$
 - $S \rightarrow \epsilon$ も可
- グライバッハ標準形 (Greibach normal form, GNF)
 - $A \to a\alpha \ (a \in \Sigma, \alpha \in N^*)$
 - $S \rightarrow \epsilon$ も可

PDAの3種類の受理: Three types of acceptance by a PDA

• 入力終了時にスタックが空: Empty stack at the end of input

$$L_A(M) = \{ w \in \Sigma * | (q_0, w, Z) \vdash^* (q, \epsilon, \epsilon) \}$$
 (4.1)

• 入力終了時に終状態: Reaching the final state at the end of input

$$L_A(M) = \{ w \in \Sigma * | (q_0, w, Z) \vdash^* (q, \epsilon, \gamma), q \in F \}$$
 (4.2)

 入力終了時にスタックが空、かつ終状態: Empty stack and reaching the final state at the end of input

$$L_{A}(M) = \{ w \in \Sigma * | (q_{0}, w, Z) \vdash^{*} (q, \epsilon, \epsilon), q \in F \}$$
 (4.3)

文脈自由言語Lを受理する NPDA : NPDA Accepting CFL L

$$G = \langle N, \Sigma, P, S \rangle \tag{4.4}$$

- $L \cap \{\epsilon\} = \emptyset$: 明示的に ϵ を受理する場合を除く: Except when ϵ is explicitly accepted
- Greibach 標準形: GNF
- 最左導出 (一番左の非終端記号から生成規則を適用): leftmost derivation
- 等価な NPDA: 入力終了時にスタックが空になる: Accepting by the empty stack at the end of input

$$M = \langle \{q\}, \Sigma, N, \delta, q, S, \emptyset \rangle \tag{4.5}$$

● 最左導出: Leftmost derivation

$$S \Rightarrow a_1 A_1 \gamma_1 \Rightarrow a_1 a_2 A_2 \gamma_2 \Rightarrow^* a_1 a_2 \cdots a_{n-1} A_{n-1} \Rightarrow a_1 a_2 \cdots a_n$$

対応する動作: Relating transitions

$$(q, a_1 a_2 \cdots a_n, S) \vdash (q, a_2 \cdots a_n, A_1 \gamma_1) \\ \vdash (q, a_3 \cdots a_n, A_2 \gamma_2) \\ \cdots \\ \vdash (q, a_n, A_{n-1}) \\ \vdash (q, \epsilon, \epsilon)$$

- 遷移関数: Transition functions
 - 生成規則 $A \rightarrow a\gamma$ があり、かつその限り: If and only if there is a production rule $A \rightarrow a\gamma$

$$(q, \gamma) \in \delta(q, a, A)$$

例 4.1:

$$\begin{split} G &= \left\langle \left\{ S, A, B \right\}, \left\{ \mathsf{a}, \mathsf{b} \right\}, P, S \right\rangle \\ P &= \left\{ S \to \mathsf{a} \middle| \mathsf{b} \middle| \mathsf{a} SA \middle| \mathsf{b} SB, A \to \mathsf{a}, B \to \mathsf{b} \right\} \end{split}$$

$$S\Rightarrow \mathsf{a}SA\Rightarrow \mathsf{a}\mathsf{b}SBA\Rightarrow \mathsf{a}\mathsf{b}\mathsf{a}SABA\Rightarrow \mathsf{a}\mathsf{b}\mathsf{a}\mathsf{a}ABA$$
 $\Rightarrow \mathsf{a}\mathsf{b}\mathsf{a}\mathsf{a}\mathsf{a}BA\Rightarrow \mathsf{a}\mathsf{b}\mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}A\Rightarrow \mathsf{a}\mathsf{b}\mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}\mathsf{a}$

$$M = \langle \{q\}, \{\mathsf{a}, \mathsf{b}\}, \{S, A, B\}, \delta, S, \emptyset \rangle$$
 $\delta (q, \mathsf{a}, S) = \{(q, \epsilon), (q, SA)\}$ $S \to \mathsf{a} \mid \mathsf{a}SA$ より $\delta (q, \mathsf{b}, S) = \{(q, \epsilon), (q, SB)\}$ $S \to \mathsf{b} \mid \mathsf{b}SB$ より $\delta (q, \mathsf{a}, A) = \{(q, \epsilon)\}$ $A \to \mathsf{a}$ より $\delta (q, \mathsf{b}, B) = \{(q, \epsilon)\}$ $S \to \mathsf{b}$ より

$$(q,\mathsf{abaaba},S) \vdash (q,\mathsf{baaaba},SA) \\ \vdash (q,\mathsf{aaaba},SBA) \\ \vdash (q,\mathsf{aaba},SABA) \\ \vdash (q,\mathsf{aba},ABA) \\ \vdash (q,\mathsf{ba},BA) \\ \vdash (q,\mathsf{a},A) \\ \vdash (q,\epsilon,\epsilon)$$

空スタックで受理する NPDA に対応する 文脈自由文法

CFL corresponding to NPDA accepting by empty stack

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z, \emptyset \rangle$$
 $G = \langle N, \Sigma, P, S \rangle$ $q, q' \in Q, A \in \Gamma$ に対して $[qAq'] \in N$

- $\forall q \in Q$ に対して $S \rightarrow [q_0 Zq]$ を作る
- $(q_1, B_1 \cdots B_k) \in \delta(q, a, A)$ に対して
 - $\forall q_2, \cdots, q_{k+1}$ に対して

$$[qAq_{k+1}] \rightarrow a [q_1B_1q_2] [q_2B_2q_3] \cdots [q_kB_kq_{k+1}]$$

• ただし $(q_1, \epsilon) \in \delta(q, a, A)$ に対しては

$$[qAq_1] \to a$$

例 5.1:

$$M = \left\langle \left\{q_0, q_1\right\}, \left\{\mathsf{a}, \mathsf{b}\right\}, \left\{A, Z\right\}, \delta, q_0, Z, \emptyset\right\rangle$$

$$\delta\left(q_0, \mathsf{a}, Z\right) = \left\{\left(q_0, AZ\right)\right\}, \qquad \delta\left(q_0, \mathsf{a}, A\right) = \left\{\left(q_0, AA\right)\right\},$$

$$\delta\left(q_0, \mathsf{b}, A\right) = \left\{\left(q_1, \epsilon\right)\right\}, \qquad \delta\left(q_1, \mathsf{e}, Z\right) = \left\{\left(q_1, \epsilon\right)\right\}.$$

$$\mathsf{a}, \mathsf{Z}/\mathsf{AZ} \qquad \mathsf{b}, \mathsf{A}/\epsilon$$

$$\mathsf{a}, \mathsf{A}/\mathsf{AA} \qquad \epsilon, \mathsf{Z}/\epsilon$$

$$\bigcirc \bigcirc$$

$$(q_0, \mathsf{aaabbb}, Z) \vdash (q_0, \mathsf{aabbb}, \mathsf{AZ}) \\ \vdash (q_0, \mathsf{abbb}, \mathsf{AAAZ}) \\ \vdash (q_0, \mathsf{bbb}, \mathsf{AAAZ}) \\ \vdash (q_1, \mathsf{bb}, \mathsf{AAZ}) \\ \vdash (q_1, \mathsf{b}, \mathsf{AZ}) \\ \vdash (q_1, \epsilon, Z) \\ \vdash (q_1, \epsilon, \epsilon)$$

対応する CFG を構成: Corresponding CFG

$$G = \langle N, \{a, b\}, P, S \rangle$$

• 開始記号: Start symbol

$$S \to [q_0 Z q_0] \mid [q_0 Z q_1]$$

 $oldsymbol{\delta}\left(q_{0},\mathsf{a},Z
ight)=\left\{ \left(q_{0},\mathsf{AZ}
ight)
ight\}$ より

$$\begin{split} \left[q_0Zq_0\right] &\rightarrow \mathsf{a}\left[q_0Aq_0\right]\left[q_0Zq_0\right] \mathsf{a}\left[q_0Aq_1\right]\left[q_1Zq_0\right] \\ \left[q_0Zq_1\right] &\rightarrow \mathsf{a}\left[q_0Aq_0\right]\left[q_0Zq_1\right] \mathsf{a}\left[q_0Aq_1\right]\left[q_1Zq_1\right] \end{split}$$

•
$$\delta(q_0, \mathsf{a}, A) = \{(q_0, \mathsf{AA})\}$$
 より

$$\begin{split} [q_0Aq_0] &\to \mathsf{a} \, [q_0Aq_0] \, [q_0Aq_0] \, | \mathsf{a} \, [q_0Aq_1] \, [q_1Aq_0] \\ [q_0Aq_1] &\to \mathsf{a} \, [q_0Aq_0] \, [q_0Aq_1] \, | \mathsf{a} \, [q_0Aq_1] \, [q_1Aq_1] \end{split}$$

•
$$\delta\left(q_0, textb, A\right) = \left\{\left(q_1, \epsilon\right)\right\}$$
 より

$$[q_0Aq_1] \rightarrow \mathsf{b}$$

•
$$\delta\left(q_1, textb, A\right) = \left\{\left(q_1, \epsilon\right)\right\}$$
 より

$$[q_1Aq_1] \to \mathsf{b}$$

•
$$\delta\left(q_{1},\epsilon,Z\right)=\left\{ \left(q_{1},\epsilon\right)\right\}$$
 \$ b

$$[q_1Zq_1] \to \epsilon$$

暫定生成規則: Temporary production rules

$$\begin{split} S &\to [q_0 Z q_0] \mid [q_0 Z q_1] \\ [q_0 Z q_0] &\to \mathsf{a} \left[q_0 A q_0 \right] [q_0 Z q_0] \mid \mathsf{a} \left[q_0 A q_1 \right] [q_1 Z q_0] \\ [q_0 Z q_1] &\to \mathsf{a} \left[q_0 A q_0 \right] [q_0 Z q_1] \mid \mathsf{a} \left[q_0 A q_1 \right] [q_1 Z q_1] \\ [q_0 A q_0] &\to \mathsf{a} \left[q_0 A q_0 \right] [q_0 A q_0] \mid \mathsf{a} \left[q_0 A q_1 \right] [q_1 A q_0] \\ [q_0 A q_1] &\to \mathsf{a} \left[q_0 A q_0 \right] [q_0 A q_1] \mid \mathsf{a} \left[q_0 A q_1 \right] [q_1 A q_1] \mid \mathsf{b} \\ [q_1 A q_1] &\to \mathsf{b} \\ [q_1 Z q_1] &\to \epsilon \end{split}$$

生成規則から終端記号に至る非終端記号を 探す:

Finding non-terminal symbols leading to terminal symbols

 直接終端記号に至る左辺記号: Non-terminal symbols leading directly to terminal symbols

$$[q_0Aq_1], [q_1Aq_1], [q_1Zq_1]$$

② 上記がわかった上で終端記号に至る左辺記号: Non-terminal symbols leading to terminal symbols based on the above results

$$[q_0 Z q_1]$$

 ● 上記がわかった上で終端記号に至る左辺記号探すが、新たな記号が見つからない: Finding non-terminal symbols leading to terminal symbols based on the above results, but no new symbols are found

終端記号を導くNの要素

• 終端記号を導く N の要素: Elements of N leading to terminal symbols

$$[q_0Aq_1], [q_1Aq_1], [q_1Zq_1], [q_0Zq_1], S$$

• 終端記号を導かない N の要素: Elements of N not leading to terminal symbols

$$[q_0Zq_0], [q_1Zq_0], [q_0Aq_0], [q_1Aq_0]$$

生成規則: Productions

$$\begin{split} S &\to \left[q_0 Z q_1\right] \\ \left[q_0 Z q_1\right] &\to \mathsf{a} \left[q_0 A q_1\right] \left[q_1 Z q_1\right] \\ \left[q_0 A q_1\right] &\to \mathsf{a} \left[q_0 A q_1\right] \left[q_1 A q_1\right] |\mathsf{b} \\ \left[q_1 A q_1\right] &\to \mathsf{b} \\ \left[q_1 Z q_1\right] &\to \epsilon \end{split}$$

導出例: Derivation example

```
\begin{split} S &\Rightarrow \left[q_0 Z q_1\right] \\ &\Rightarrow \mathsf{a} \left[q_0 A q_1\right] \left[q_1 Z q_1\right] \\ &\Rightarrow \mathsf{aa} \left[q_0 A q_1\right] \left[q_1 A q_1\right] \left[q_1 Z q_1\right] \\ &\Rightarrow \mathsf{aaa} \left[q_0 A q_1\right] \left[q_1 A q_1\right] \left[q_1 A q_1\right] \left[q_1 Z q_1\right] \\ &\Rightarrow \mathsf{aaab} \left[q_1 A q_1\right] \left[q_1 A q_1\right] \left[q_1 Z q_1\right] \\ &\Rightarrow \mathsf{aaabbb} \left[q_1 A q_1\right] \left[q_1 Z q_1\right] \\ &\Rightarrow \mathsf{aaabbb} \left[q_1 Z q_1\right] \\ &\Rightarrow \mathsf{aaabbb} \end{split}
```