1

Índice de figuras

2.1.	Microcontrolador ESP32-WROOM-32D	5
2.2.	Sensor DHT11	6
2.3.	Sensor BMP280	6
2.4.	Fotorresistor	6
2.5.	Joystick analógico.	7
2.6.	Display LCM1602A	7
2.7.	Motor de corriente continua	7
2.8.	Interruptores de On-Off	8
2.9.	Baterias Li-Ion.	8
2.10.	Baterías AA	9
2.11.	Plaquetas genéricas	9
2.12.	Cables DuPont	9
		10
2.14.	Interruptores de On-Off	10
		11
2.16.	Ruedas.	11
		12
2.18.	Proceso de desarrollo utilizando ESP-IDF ¹	13
3.1.		16
3.2.		17
3.3.		20
3.4.		21
		21
		22
		23
		23
		24
3.10.	Detalles del hardware del robot	24
		25
3.12.	Conexionado del robot	25
3.13.	Conexionado del joystick	26
3.14.	Conexionado físico del robot.	26
		28
3.16.	Listado de commits en Github	29
3.17.		30
3.18.	Listado de versiones de imágenes doker en Google ArtifactRegistry.	31
		32
3.20.	Reportes de testing web	32
	•	
		35
4.2.		36
4.3.	Medición de temperatura en el interior.	36

Índice de figuras

2.1. Microcontrolador ESP32-WROOM-32D	5
2.2. Sensor DHT11	6
2.3. Sensor BMP280	6
2.4. Fotorresistor	6
2.5. Joystick analógico	7
2.6. Display LCM1602A	7
2.7. Motor de corriente continua	7
2.8. Interruptores de On-Off	8
2.9. Baterias Li-Ion.	8
2.10. Baterías AA	9
2.11. Plaquetas genéricas	9
2.12. Cables DuPont	9
2.13. Pines	10
2.14. Interruptores de On-Off	10
2.15. Portapilas	11
2.16. Ruedas	11
2.17. Anemometro digital AOPUTTRIVER AP-007-WM	12
2.18. Proceso de desarrollo utilizando ESP-IDF ¹	13
3.1. Arquitectura global	16
3.2. Arquitectura global	17
3.3. Conexionado joystick	20
3.4. Conexionado fotorresistor	21
3.5. Circuito del conexionado DHT11	21
3.6. Conexionado BMP280	22
3.7. Conexionado motores	23
3.8. Conexionado display	23
3.9. Hardware del robot.	24
3.10. Detalles del hardware del robot	24
3.11. Detalles del hardware del joystick	25
3.12. Conexionado del robot	25
3.13. Conexionado del joystick	26
3.14. Conexionado físico del robot.	26
3.15. Plataforma de CI/CD utilizada	27
3.16. Ejecución de tests por consola	28
3.17. Listado de commits en Github	29
3.18. Listado de builds en Google CloudBuild	30
3.19. Listado de versiones de imágenes doker en Google ArtifactRegistry.	31
3.20. Reportes de testing por consola	32
3.21. Reportes de testing web	32
44 32 2 4 11 2 1 1 1 1	25
4.1. Visualización del display en la oscuridad.	35
4.2. Medición de humedad en el interior	36

VI

VI

4.4. M	fedición de humedad en el exterior
4.5. M	fedición de temperatura en el exterior
4.6. M	fedición de presión atmosférica en el interior
4.7. M	ledición de presión atmosférica en el exterior
4.8. M	fedición de luminosidad ambiental en el exterior durante el día 3
4.9. Il	uminancia [Lux] reporatada por la aplicación Light Meter en el
es	kterior durante el día
4.10. M	fedición de luminosidad ambiental en interiores durante el día 4
4.11. Il	uminancia [Lux] reporatada por la aplicación Light Meter en in-
te	riores durante el día
4.12. M	fedición de luminosidad ambiental en interiores durante la noche. 4
4.13. Il	uminancia [Lux] reporatada por la aplicación Light Meter en in-
te	riores durante la noche

4.3.	Medición de temperatura en el interior.	36
	Medición de humedad en el exterior	37
4.5.	Medición de temperatura en el exterior	37
4.6.	Medición de presión atmosférica en el interior	38
4.7.	Medición de presión atmosférica en el exterior	38
4.8.	Medición de luminosidad ambiental en el exterior durante el día	39
4.9.	Iluminancia [Lux] reporatada por la aplicación Light Meter en el exterior durante el día.	39
4.10.	Medición de luminosidad ambiental en interiores durante el día	40
4.11.	Iluminancia [Lux] reporatada por la aplicación Light Meter en in-	
	teriores durante el día	40
4.12.	Medición de luminosidad ambiental en interiores durante la noche.	41
4.13.	Iluminancia [Lux] reporatada por la aplicación Light Meter en in-	
	teriores durante la noche	41

3.4. Plataforma de desarrollo y ciclo de CI/CD

Durante el ciclo de desarrollo, se utilizaron las herramientas descritas en el capítulo anterior, y para cada prototipo se creó una imagen Docker, extendiendo la de espressif/idf [52]. El conjunto de actividades del mismo fue el siguiente:

- Codificar localmente en Ubuntu utilizando VSCode.
- Construcción local en Ubuntu de imagen Docker, de acuerdo a la especificación de los siguientes pasos en el archivo docker-compose. yml:
 - a) Compilación del código, enlazado de bibliotecas y empaquetado de la aplicación.
 - b) Ejecución de los tests unitarios con ceedling.
 - c) Despliegue (flash) de la aplicación en el ESP32.
- Versionado del código en el repositorio GitHub por medio de los comandos git commit y git push.
- Construcción en el ambiente de CI/CD por medio de Google Cloud Build, de acuerdo a la especificacion de los siguientes pasos definidos en el archivo cloudbuild.yml:
 - a) Compilación del código, enlazado de bibliotecas y empaquetado de la aplicación.
 - b) Ejecución de los tests unitarios con ceedling.
 - c) Construcción de imagen docker.
 - d) Tagging v versionado de imagen docker en Google Artifact Registry.

A continuación, se pueden apreciar capturas de pantallas de cada uno de los sistemas utilizados y los pasos ejecutados. En la imagen 3.15, se puede apreciar la salida por consola tras la ejecución de los tests unitarios y construcción de la imagen Docker de manera local.

3.4. Plataforma de desarrollo y ciclo de CI/CD

3.4. Plataforma de desarrollo y ciclo de CI/CD

Durante el ciclo de desarrollo, se utilizó la infraestructura de CI formada por las herramientas descritas en el capítulo anterior. En la figura 3.15 se puede apreciar su arquitectura.

FIGURA 3.15. Plataforma de CI/CD utilizada.

Para cada prototipo desarrollado se creó una imagen Docker, extendiendo la de espressif/idf [52]. El conjunto de actividades del mismo fue el siguiente:

- Codificar localmente en Ubuntu utilizando VSCode.
- Construcción local en Ubuntu de imagen Docker, de acuerdo a la especificación de los siguientes pasos en el archivo docker-compose.yml:
 - a) Compilación del código, enlazado de bibliotecas y empaquetado de la aplicación.
 - b) Ejecución de los tests unitarios con ceedling.
 - c) Despliegue (flash) de la aplicación en el ESP32.
- Versionado del código en el repositorio GitHub por medio de los comandos git commit y git push.
- Construcción en el ambiente de CI/CD por medio de Google Cloud Build, de acuerdo a la especificacion de los siguientes pasos definidos en el archivo cloudbuild.yml:
 - a) Compilación del código, enlazado de bibliotecas y empaquetado de la aplicación.
 - b) Ejecución de los tests unitarios con ceedling.
 - c) Construcción de imagen docker.
 - d) Tagging y versionado de imagen docker en Google Artifact Registry.

A continuación, se pueden apreciar capturas de pantallas de cada uno de los sistemas utilizados y los pasos ejecutados. En la imagen 3.16, se puede apreciar la salida por consola tras la ejecución de los tests unitarios y construcción de la imagen Docker de manera local.

```
Test 'test adc service.c'
Running test add service.out...
Test 'test display service.c'
Running test display service.out...
Test 'test joystick service.c'
Running test joystick service.out...
Test 'test measuring services.c'
Running test measuring services.out...
Test 'test notors service.c'
Running test_motors_service.out...
Test 'test robot position state.c
Running test_robot_position_state.out...
Test 'test_wifi_service.c'
Running test wifi service.out...
TEST OUTPUT
[test motors service.c]
- "Initializing mcpwm gpio..."
  - 'Configuring Initial Parameters of mcpwm..."
    "initializing mcpwm gpio..."
"Configuring Initial Parameters of mcpwm..."
[test wifi service.c]

    wifi init softap finished. SSID:1 password:1 channel:1"
    "station 12:34:56:78:9A:BC leave, AID=1"

   - "station 12:34:56:78:9A:BC leave, AID=1"
OVERALL TEST SUMMARY
TESTED: 39
PASSED: 39
IGNORED:
```

FIGURA 3.15. Ejecución de tests por consola.

Luego de realizar commit y push de los cambios locales, se pueden apreciar en la figura 3.16 el listado de las versiones en GitHub.

```
Test 'test adc service.c'
Running test adc service.out...
Test 'test display service.c'
Running test display service.out...
Test 'test joystick service.c'
Running test joystick service.out...
Test 'test measuring services.c'
Running test measuring services.out...
Test 'test notors service.c'
Running test motors service.out...
Test 'test robot position state.c'
Running test_robot_position_state.out...
Test 'test wifi service.c'
Running test wifi service.out...
TEST OUTPUT
[test_motors_service.c]
     "initializing mcpwm gpio..."
  - "Configuring Initial Parameters of mcpwm..."
  - 'initializing mcpwm gpio..."
- 'Configuring Initial Parameters of mcpwm..."
[test wifi service.c]

    wifi init softap finished. SSID:1 password:1 channel:1"
    "station 12:34:56:78:9A:BC leave, AID=1"

  - "station 12:34:56:78:9A:BC leave, AID=1"
OVERALL TEST SUMMARY
TESTED: 39
PASSED: 39
IGNORED:
```

FIGURA 3.16. Ejecución de tests por consola.

Luego de realizar *commit y push* de los cambios locales, se pueden apreciar en la figura 3.17 el listado de las versiones en GitHub.

FIGURA 3.16. Listado de commits en Github.

En la figura 3.17, se pueden apreciar los diferentes builds disparados en Cloud Build referenciando los commits de GitHub.

FIGURA 3.17. Listado de commits en Github.

En la figura 3.18, se pueden apreciar los diferentes builds disparados en Cloud Build referenciando los commits de GitHub. 30

FIGURA 3.17. Listado de builds en Google CloudBuild.

Finalmente, en la figura 3.18 se pueden apreciar las imágenes Docker versionadas y almacenadas en Artifact Registry.

FIGURA 3.18. Listado de builds en Google CloudBuild.

Finalmente, en la figura 3.19 se pueden apreciar las imágenes Docker versionadas y almacenadas en Artifact Registry.

3.5. Reportes de ejecución y cobertura de testing unitario

FIGURA 3.18. Listado de versiones de imágenes doker en Google ArtifactRegistry.

3.5. Reportes de ejecución y cobertura de testing unitario

A continuación, se presentan los reportes de testing generados por la herramienta ceedling con el complemento gcov donde se puede apreciar el nivel de cobertura logrado para cada servicio.

En la figura 3.19, se puede apreciar la salida por pantalla tras la ejecución local de ceedling con el plugin de cobertura, en donde se evidencia la cantidad de test cases.

3.5. Reportes de ejecución y cobertura de testing unitario

FIGURA 3.19. Listado de versiones de imágenes doker en Google ArtifactRegistry.

3.5. Reportes de ejecución y cobertura de testing unitario

A continuación, se presentan los reportes de testing generados por la herramienta ceedling con el complemento gcov donde se puede apreciar el nivel de cobertura logrado para cada servicio.

En la figura 3.20, se puede apreciar la salida por pantalla tras la ejecución local de ceedling con el plugin de cobertura, en donde se evidencia la cantidad de test cases.

21

32

```
GCOV: OVERALL TEST SUMMARY
 TESTED: 39
GCOV: CODE COVERAGE SUMMARY
adc service.c Lines executed:188.88% of 17
adc service.c Calls executed:188.88% of 13
display_service.c Lines executed:188.88% of 11
display service c No branches
display service.c Calls executed:188.88% of 7
 joystick_service.c Lines executed:91.67% of 24
 joystick service.c Branches executed:100.00% of 12
joystick service.c Taken at least once:83.33% of 12
joystick_service.c Calls executed:188.88% of 2
measuring_services.c Lines executed:77.78% of 36
measuring_services.c Branches executed:100.00% of 10
measuring services.c Taken at least once:88.88% of 18
 measuring services.c Calls executed:71.43% of 7
motors_service.c Lines executed:100.00% of 30
motors service.c Branches executed:188.88% of 4
motors service.c Taken at least once:75.00% of 4
motors service.c Calls executed:188.88% of 15
 robot_position_state.c Lines executed:81.48% of 27
robot position state.c Branches executed:100.00% of 24 robot position state.c Taken at least once:87.58% of 24
 robot position state.c No calls
wifi service.c Lines executed:100.00% of 19
wifi_service.c Branches executed:188.88% of 4
wifi service.c Taken at least once:100.00% of 4
wifi_service.c Calls executed:188.88% of 15
```

FIGURA 3.19. Reportes de testing por consola.

En la figura 3.20, se pueden apreciar los detalles de la cobertura por cada servicio.

GCC Code Coverage Report

Directory: main/		Exec	Total	Coverag
Date: 2024-09-21 12:39:50	Lines:	149	162	92.01
Legend: lox: 475.0 % modum: >= 75.0 % high: >= 90.0 %	Branches:	46	54	85.21
File	Lines	-05	Bran	ches
display service.c	100.0	% 11/11	- %	0/0
wifi_service.c	100.0	% 19/19	100.0 %	4/4
adc_service.c	100.0	% 17 / 17	-%	0/0
meters_service.c	100.0	% 30/30	75.0 %	3/4
joystick_service.c	95.7	% 22/23	83.3 %	10 / 12
rebot position_statu.c	84.6	% 22/26	87.5 %	21 / 24
measuring services.c	77.8	% 28/36	80.0 %	8 / 10

FIGURA 3.20. Reportes de testing web.

FIGURA 3.20. Reportes de testing por consola.

En la figura 3.21, se pueden apreciar los detalles de la cobertura por cada servicio.

GCC Code Coverage Report

FIGURA 3.21. Reportes de testing web.