CS180: Algorithms

Professor Sarrafzadeh

Fall 2019

Contents

CS180: Algorithms	2
Greedy	2
Famous Problem	2

CS180: .	Algo	orithms
----------	------	---------

Greedy

- the **greedy** paradigm is a problem-solving approach where the solution set is *greedily* minimized by repeatedly eliminating a possibility from consideration *without global analysis*
 - pros:
 - very fast, since there is no need for global analysis
 - cons:
 - * more difficult to prove correctness for, since there is no global analysis

Famous Problem

- problem:
 - a famous person is defined as someone who everyone else knows, but knows noone else
 - * the **model of computation (MOC)** or basic set of permitted operations for this problem is asking a *pair* of people at a time if they know they other
 - * note that there cannot be two famous people in a room, since they would have to know each other, and that there may not be a famous person in the room
 - find if there a famous person in a room of n people
- *solution #1*:
 - 1. repeatedly, pick an arbitrary person p
 - for every other person p', ask if p knows p'
 - * if p knows p', p can't be famous
 - then, for every other person p', ask if p' knows p
 - * if p' doesn't know p, p can't be famous
- analysis #1:
 - for each candidate, $2 \times (n-1)$ questions are asked
 - in the worst case, $2n \times (n-1)$ questions are asked
 - thus, solution #1 has a complexity of $O(n^2)$
- optimization:

- is it possible to improve on solution #1?
 - * when considering every pair, there are $\binom{n}{2}\approx n^2$
 - * but not every pair is needed for an algorithm to be succesful
- use the greedy paradigm, and try to reduce the problem size by one repeatedly
 - * ie. eliminate one person from being famous with every question
- *solution #2*:
 - 1. repeatedly, pick two arbitrary people a and b, ask if a knows b
 - if a knows b, then a cannot be famous
 - otherwise, if a does not know b, then b cannot be famous
 - whatever person is *eliminated* will not be asked picked again in this step
 - 2. after n-1 questions, only one candidate c remains
 - check if c knows noone else (n-1) questions)
 - check if everyone else knows c (n-1 more questions)
- analysis #2:
 - $-3 \times (n-1)$ questions are asked
 - thus, solution #2 has a complexity of O(n)
 - the **lower bound** for complexity is n since everybody must be asked a question
 - * thus, the algorithm is **optimal**