1. Evaluate the following determinants:

2. Given the matrix

$$A = \left(\begin{array}{ccccc} 1 & -2 & 1 & 3 & 4 \\ 1 & -1 & 0 & 2 & 4 \\ 2 & 1 & 3 & 1 & 2 \\ -1 & 0 & 1 & 1 & 3 \\ 0 & 1 & -1 & 1 & 3 \end{array}\right)$$

Use Gauss elimination to transform A in an upper triangular matrix $\operatorname{Deduce}\,|A|$

3. Let

$$A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ -1 & 3 & 0 \\ 0 & 1 & -1 \end{array}\right)$$

Evaluate |A| and deduce that A is invertible

Find the inverse of A by the cofactors method and then by the Gauss-Jordan method deduce from a) the determinant of A^{-1} and then calculate directly $|A^{-1}|$

- 4. For what values of $a \in IR$ the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{pmatrix} \in M_3(IR)$ is invertible? Find in this case, its inverse.
- 5. Show that a square matrix A is invertible if and only if ${}^tA.A$ is invertible

Find the matrix A if
$$(I + 2A)^{-1} = \begin{pmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{pmatrix}$$