#### **Machine Learning in Healthcare**



### **#L09-Introduction to nonlinear models**

Technion-IIT, Haifa, Israel

Asst. Prof. Joachim Behar Biomedical Engineering Faculty, Technion-IIT Artificial intelligence in medicine laboratory (AIMLab.) https://aim-lab.github.io/

Twitter: @lab\_aim







### **Hypothesis representation**

- Linear regression:
  - Hypothesis class:  $h_w(x) = w^T x$
- Logistic regression:
  - Hypothesis class:  $h_w(x) = \sigma(w^T x)$
- However life is often nonlinear.
  - How do we learn nonlinear models?



 $\chi$ 







# Using explicit nonlinear features



### Linear regression but with nonlinear features

- We may construct explicit feature vectors:
  - Example 1:

$$x \in \mathbb{R}^2$$
,  $h_w(x) = w^T x = w_1 x_1 + w_2 x_2$ 

• 
$$x \in \mathbb{R}^2 \to x' \in \mathbb{R}^5$$





Plot of polynomial bases

$$h_w(x') = w^T x' = w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 + w_4 x_1 x_2$$



### Linear regression but with nonlinear features

- We may construct explicit feature vectors:
  - Example 2:



### Linear regression but with nonlinear features

- General:
  - Moving to a new space where the examples may be linearly separable.

$$\begin{cases}
\mathbb{R}^{n_x} \to \mathbb{R}^{n_x'} \\
\emptyset: x \to x'
\end{cases}$$

$$h_w(x') = w^T x'$$



### Logistic regression but with nonlinear features

- We may construct explicit feature vectors:
  - Example 1:

• 
$$x \in \mathbb{R}^2$$
,  $h_w(x) = \sigma(w^T x) = \sigma(w_1 x_1 + w_2 x_2)$ 

• 
$$x \in \mathbb{R}^2 \to x' \in \mathbb{R}^5$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \\ x_1 x_2 \end{bmatrix}$$

$$h_w(x') = \sigma(w^T x') = \sigma(w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 + w_4 x_1 x_2)$$



### Logistic regression but with nonlinear features

- We may construct explicit feature vectors:
  - Example 2:



### Logistic regression but with nonlinear features

- General:
  - Moving to a new space where the examples may be linearly separable.

$$\begin{cases}
\mathbb{R}^{n_x} \to \mathbb{R}^{n_x'} \\
\emptyset: x \to x'
\end{cases}$$

$$h_w(x') = \sigma(w^T x')$$





- So great, it seems that we are done with this lecture, right?
- We know how to perform linear and nonlinear regression/classification.
- Yes, but not quiet...
- What happens if we have many features, i.e.  $n_x$  is large?

| $n_{\chi}$ | d | Complexity | $n_x'$ |
|------------|---|------------|--------|
| 60         | 2 | o(2)       | 1,891  |
| 60         | 3 | ?          | ?      |
| 60         | 4 | ?          | ?      |
| 60         | 5 | ?          | ?      |



- More generally, for a choice of degree d and an input vector with  $n_x$  features then the feature transformation will lead to:
  - $n_{\chi}' = \binom{n_{\chi} + d}{d}$
- That is a lot of features to compute for every single example!
- In particular, take an image:
  - 128\*128=16384 pixels.
  - That is a lot of features.





### Using another basis function

- We gave examples using the polynomial features i.e. a polynomial basis function.
- We could also use alternative basis function such as the radial basis function (RBF):

• With  $\sigma$  the bandwidth and  $\mu_j$  the center of the RBF kernel and  $j \in [1:n_x']$ .





### Using another basis function

- lacktriangledown Complexity: if we assume we make a uniform grid over the input space with d centers along each dimension then:
  - $n_x' = d^{n_x}$
- Example for  $n_x = 2$ :





- To summarize:
  - We can use our linear model for nonlinear classification by using a nonlinear transform of the features from the input space and by working in the new space.
  - If you have a few features and a good idea of what transformation might be relevant then that approach might work well.
  - However, if you have a high number of features and/or no prior on a meaningful transformation then this approach is computationally expensive and might lead to overfitting.



#### Take home

- It is possible to perform nonlinear regression/classification using a linear model by constructing an explicit nonlinear features vector and then performing linear regression in the new feature space.
- Different basis function may be used for this transform e.g. polynomial, RBF.
- However, complexity is high and there is a high risk of overfitting. So this might only be a viable option for a limited number of input features and with some prior about what feature transform may be interesting.
- How do we deal with nonlinear regression and classification otherwise? Next lecture.



#### References

[1] Lecture notes: Machine Learning 2: Nonlinear Regression. By Stefano Ermon, 2016 URL (access date 20-11-2020): https://cs.stanford.edu/~ermon/cs325/slides/ml\_nonlin\_reg.pdf

Other good read:

https://kenndanielso.github.io/mlrefined/blog\_posts/12\_Nonlinear\_intro/12\_2\_Introduction\_nonlinear\_classification.html