

Boosting, Surrogate Losses, and Ensemble Methods

GU 4241/GR 5241

Statistical Machine Learning

Xiaofei Shi

Types of classifiers

- Discriminative classifiers:
 - Directly estimate a decision rule/boundary
 - e.g. decision tree, SVM
- Instance based classifiers:
 - Use observation directly
 - e.g. K nearest neighborhood
- Generative classifiers:
 - Build a generative statistical model
 - e.g. Bayesian Network

Pros and cons for simple classifiers

- Typical simple/weak classifiers
 - Shallow decision tree, SVM, logistic regression, naive Bayes
- Don't usually overfit
- Cannot solve complicated learning tasks

Can we make simple learners smarter?

What about several simple model together?

- Input:
 - A dataset D
 - your top T favorite learners: L1, ..., LT
- Learning algorithm:
 - Estimate the error of learners: L1, ..., LT
 - Pick the best learner L*
 - Train L* on D and return results

Buckets of models

Pros and cons of a "bucket of models"

- Pros:
 - simple
 - not much worse than the best of the "base learners"
- Cons:
 - what if there's not a single best learner?

Stack learners: first attempt

- Input:
 - A dataset D
 - your top T favorite learners: L1, ..., LT
- Learning algorithm:
 - Train L₁, ..., L_T on dataset to h₁, ..., h_T
 - Create a new dataset D' containing (x',y'),...
 - x' is a vector of the T predictions $h_1(x)$, ..., $h_T(x)$
 - y is the label for x
 - Train new classifier on D' to get h' -- which combines the predictions!

Pro and cons of stacking

- Pros:
 - Fairly simple
 - Slow, but easy to parallelize
- Cons:
 - What if there's not a single best combination scheme?
 - E.g.: for movie recommendation sometimes L1 is best for users with many ratings and L2 is best for users with few ratings

Voting! (Ensemble methods)

Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space

Output class: (Weighted) vote of each classifier

- Classifiers that are most "sure" will vote with more conviction
- Classifiers will be most "sure" about a particular part of the space
- On average, do better than single classifier!

But how do you ???

- force classifiers to learn about different parts of the input space?
- weigh the votes of different classifiers?

Boosting (Schapire, 1989)

- Practically useful
- Theoretically interesting

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let the learned classifiers vote
- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis ht
 - A strength for this hypothesis st
- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength.

Learning from weighted data

Sometimes not all data points are equal

Some data points are more equal than others

Consider a weighted dataset

- D(i) weight of *i* th training example ($\mathbf{x}^i, \mathbf{y}^i$)
- Interpretations:
 - *i* th training example counts as D(i) examples
 - If I were to "resample" data, I would get more samples of "heavier" data points

Now, in all calculations, whenever used, *i* th training example counts as D(i) "examples"

e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted count

Ada Boost

Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$. For $t = 1, \ldots, T$:

- Train weak learner using distribution D_t .
- Getweak classifier $h_t: X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$.
- Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Output the final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Toy example

Toy example: Round 1

Toy example: Round 2

Toy example: Round 3

Toy example: Final classifier

Boosting for handwritten digit recognition

Boosting often

- Robust to overfitting
- Test set error decreases even after training error is zero

Experimental results

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

Takeaways

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier slightly better than random on training data
 - Resulting very strong classifier can eventually provide zero training error
- AdaBoost algorithm
- Most popular application of Boosting:
 - Boosted shallow decision trees!
 - Very simple to implement, very effective classifier

Boosting and logistic regression

Logistic regression assumes:

$$P(Y = 1|X) = \frac{1}{1 + \exp(f(x))}$$

And tries to maximize data likelihood:

$$P(\mathcal{D}|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))}$$

Boosting minimizes similar loss function!!

$$\frac{1}{m}\sum_{i}\exp(-y_{i}f(x_{i})) = \prod_{t}Z_{t}$$

Both smooth approximations of 0/1 loss!

Equivalent to minimizing log loss

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Logistic regression:

Minimize loss fn

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Define

$$f(x) = \sum_{j} w_j x_j$$

where x_i predefined

Boosting:

Minimize loss fn

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Define

$$f(x) = \sum_{t} \alpha_t h_t(x)$$

where $h_t(x_i)$ defined dynamically to fit data (not a linear classifier)

Weights α_j learned incrementally

Logistics for midterm

- Choose a time slots on Piazza
- Start the zoom lecture with video on during the time slot you choose
- Visit coursework and download the exam and start
- Submit your solution on coursework under Midterm

References

- Trevor Hastie, Robert Tibshirani, Jerome Friedman: The Elements of Statistical Learning: Data
 Mining, Inference and Prediction, Chapter 10
- Ziv Bar-Joseph, Tom Mitchell, Pradeep Ravikumar and Aarti Singh: CMU 10-701

