1 Model settings

The unrestricted linear mixed effect model for the ith subject in the k treatment group is:

$$y_{ki} = X_i(\beta_k + \sum_{j=1}^p \gamma_{kj} x_{ij}) + X_i b_{ki} + \epsilon_{ki}$$

$$= X_i \beta_k + (X_i \otimes x_i') \gamma_k + X_i b_{ki} + \epsilon_{ki}$$
(1)

where

- X_i is the $n_t \times t$ dimension design matrix for subject i;
- $x_i = (x_{i1} \dots x_{ip})'$ is the $p \times 1$ vector of predictors for subject i; x_{ij} presents the jth predictor for the ith subject;
- β_k is the fixed effect coefficient with dimension $t \times 1$;
- γ_{kj} is the $t \times 1$ fixed effect coefficient, which is correlated to the jth predictors;
- $\gamma_k = (\gamma'_{k1} \dots \gamma'_{kp})'$ is the $pt \times 1$ vector.
- $\boldsymbol{b}_{ki} \sim N(0, \boldsymbol{D}_k), \ \boldsymbol{D}_k$ is a $t \times t$ matrix, with $\frac{t(t+1)}{2}$ parameters.
- $\epsilon_{ki} \sim N(0, \sigma_k^2)$

which means that different predictors in different treatment groups have different coefficients for different degree of design matrix X, e.g. when t = 3, X is constructed with intercept, slope and concavity. the predictors have coefficient corresponding to the predictor \times intercept, predictor \times slope, and predictor \times concavity.

Therefore, the total number of parameters in equation 1 is

$$k \times \left(t + pt + \frac{t(t+1)}{2} + 1\right)$$

The GEM model under restriction can be modeled as:

$$y_{ki} = X_i(\beta_k + b_{ki} + \Gamma_k(\alpha' x_i)) + \epsilon_{ki}$$

= $X_i\beta_k + (X_i \otimes x_i')(\Gamma_k \otimes \alpha) + \epsilon_{ki}$ (2)

That is, in equation 2, we replace the $pt \times 1$ vector $\boldsymbol{\gamma}_k = \begin{pmatrix} \boldsymbol{\gamma}'_{k1} & \dots & \boldsymbol{\gamma}'_{kp} \end{pmatrix}'$ with another $pt \times 1$ vector $\boldsymbol{\Gamma}_k \otimes \boldsymbol{\alpha}$, which is with p+t parameters.

Therefore, the total number of parameters in equation 2 is

$$k \times \left(t + p + t + \frac{t(t+1)}{2} + 1\right)$$

2 Likelihood ratio test

The assumption of the likelihood ratio test is set as

 H_0 : predictors share the same α , i.e. equation 2 is true

 H_1 : predictors do not share the same α

The degree of freedom of this test is

$$k \times (t + pt + \frac{t(t+1)}{2} + 1) - k \times (t + p + t + \frac{t(t+1)}{2} + 1) = k \times (pt - p - t)$$

The log-likelihood value can be calculated through the *lme4* package in R.

Test statistics: $-2(loglike_2 - loglike_1))$

Simulation

Suppose we generate a data set as following:

```
w_drg
                                                w_pbo
## 1
        1 0.5768541 -0.2587745
                                0 0.2249162 0.2249162 2.891554 -0.3190356
## 2
        1 0.5768541 -0.2587745
                               1 0.2249162 0.2249162 2.891554 -0.3190356
        1 0.5768541 -0.2587745
                                2 0.2249162 0.2249162 2.891554 -0.3190356
## 3
        1 0.5768541 -0.2587745
                                3 0.2249162 0.2249162 2.891554 -0.3190356
## 5
        1 0.5768541 -0.2587745 4 0.2249162 0.2249162 2.891554 -0.3190356
## 6
        1 0.5768541 -0.2587745 6 0.2249162 0.2249162 2.891554 -0.3190356
##
           fd3
                    fp1
                               fp2
                                         fp3
                                                yi_drg
                                                         yi_pbo
                                                                       У
## 1 0.2665183 1.714478 -0.6931485 0.1199219
                                             2.586166 1.698288 1.698288 0.5768541
## 2 0.2665183 1.714478 -0.6931485 0.1199219 4.350818 2.085088 2.085088 0.5768541
## 3 0.2665183 1.714478 -0.6931485 0.1199219
                                             3.709400 1.629090 1.629090 0.5768541
## 4 0.2665183 1.714478 -0.6931485 0.1199219
                                             3.711872 1.308231 1.308231 0.5768541
## 5 0.2665183 1.714478 -0.6931485 0.1199219 3.665005 1.779612 1.779612 0.5768541
## 6 0.2665183 1.714478 -0.6931485 0.1199219 11.696931 2.654913 2.654913 0.5768541
##
         slop1
                     cov1
                                int2
                                          slop2
## 1 0.0000000 0.0000000 -0.2587745
                                     0.0000000 0.0000000
## 2 0.5768541 0.5768541 -0.2587745 -0.2587745 -0.2587745
## 3 1.1537082 2.3074164 -0.2587745 -0.5175490 -1.0350981
## 4 1.7305623 5.1916868 -0.2587745 -0.7763236 -2.3289707
## 5 2.3074164 9.2296654 -0.2587745 -1.0350981 -4.1403924
## 6 3.4611245 20.7667472 -0.2587745 -1.5526471 -9.3158828
```

where

- X1, X2 shows the value of two predictors
- tt presents the time in the trial
- w_drg and w_pbo are the true $\alpha'_{drg}x, \alpha'_{pbo}x$ values.
- (fd1, fd2, fd3) are the coefficients for the trajectory (intercept, slope, concavity) is the subject is in drug group.
- (fp1, fp2, fp3) are the coefficients for the trajectory (intercept, slope, concavity) is the subject is in placebo group.
- yi_drg and yi_pbo are the outcomes for drug treatment and placebo treatment
- trt is the group assignment and y is the observed outcome.
- X is the design matrix $X = (1, t, t^2), t = 0, 1, 2, 3, 4, 6, 8$
- int1 is the value of X1 \times X[, 1], slop1 is the value of X1 \times X[, 2], cov1 is the value of X1 \times X[, 3].
- int2 is the value of $X2 \times X[1]$, slop2 is the value of $X2 \times X[2]$, cov2 is the value of $X2 \times X[3]$.

To fit the unrestricted LME, we have the formula as

```
formula_full
## [1] "y~1+ tt + I(tt^2) + int1 + slop1 + cov1 + int2 + slop2 + cov2 + (1+ tt + I(tt^2) | subj)"
The LME
dat_pbo = data[data$trt == 1, ]; rownames(dat_pbo) = NULL
dat_drg = data[data$trt == 2, ]; rownames(dat_drg) = NULL
```

```
fit_pbo_est_full = lmer(formula_full,data = dat_pbo, REML = FALSE)
fit_drg_est_full = lmer(formula_full,data = dat_drg, REML = FALSE)
The loglikelihood in the models
summary(fit_pbo_est_full)$logLik
## 'log Lik.' -1539.87 (df=16)
summary(fit_drg_est_full)$logLik
## 'log Lik.' -1507.694 (df=16)
To fit the GEM LME, we have the function as
fit_pbo_est_si = lmer(y ~ tt + I(tt^2) + w_pbo + w_pbo * tt +
                        w_{pbo} * I(tt^2) + (tt + I(tt^2) | subj),
                        data = dat_pbo, REML = FALSE)
fit_drg_est_si = lmer(y ~ tt + I(tt^2) + w_drg + w_drg * tt +
                          w_drg * I(tt^2) + (tt + I(tt^2)|subj),
                        data = dat_drg, REML = FALSE)
The loglikelihood in the models
summary(fit_pbo_est_si)$logLik
## 'log Lik.' -1542.624 (df=13)
summary(fit_drg_est_si)$logLik
## 'log Lik.' -1507.912 (df=13)
Therefore the test statistics is
chis = as.numeric(summary(fit_pbo_est_full)$logLik + summary(fit_drg_est_full)$logLik -
                  (summary(fit_pbo_est_si)$logLik + summary(fit_drg_est_si)$logLik))
chis = chis*2
chis
```

```
## [1] 5.943638
```

The p value is

```
1-pchisq(chis, df= (3*(p-1)-p)*2)
```

[1] 0.05121008

For different dimension p, the likelihood ratio test can be conducted and we can get p values as

If we use $df = 2 \times (3p - p - 3)$,

p	2	3	4	5	6	7	8	9	10	11
p-value	0.051	0.071	0.033	0.002	0.006	0.025	0.684	0.048	0.001	0

p	12	13	14	15	16	17	18	19	20	21
p-value	0.008	0.055	0.008	0.033	0	0.025	0	0	0	0

p	22	23	24	25	26	27	28	29	30
p-value	0	0	0.006	0	0	0	0.002	0	0

Most of the p values are less than 0.05. Therefore, we tend to reject H0, that they do not share the same α . However, the true model is the GEM model. The results do not consistant with the true scenario.

If we use $df = 2 \times (3p - 3)$,

	p	2	3	4	Į.	5	6	7	8	9	10	11
p-val	ue 0.4	43 0	.476	0.355	0.08	1 0.18	6 0.43	32 0.9	95 0.0	639	0.157	0.04
	p	12	13	14	15	5 16	3 1	.7 1	18	19	20	21
p-valı	ie 0.4	43 ().787	0.51	0.758	0.171	1 0.76	66 0.20	0.0	16	0.177	0.268
_	p	2	2	23	24	25	26	27	28	3 2	29	30
p	-value	0.33	5 0	.091	0.734	0.142	0.118	0.021	0.674	0.	.1 0.0	026

Most of the p values are larger than 0.05. Therefore, we tend to accept H0, that they share the same α .