Welding Codes & Standards

Lecture (hrs.)	Topic	St. No.
3.00	ASME Sec-IIA (Materials)	L
3.00	(slainateM gnibləW) Oll-598 AMSA	2
00.8	ASME Sec IX - WPQ	£
00.9	ASME Sec IX - WPS/ PQR	Þ
00.7	ASME Sec VIII Div.1- Manufacturing	S
00.9	gninutashunsM -S.viO IIIV aee BMSA	9
00.9	elsincturals - 1.1d - SWA	L
3.00	gniqi9 - 8.18 B 3M2A	8

 \bigcirc 0 0 0 0 \bigcirc \bigcirc ()0 () 0 ()()() () () () () ()0 () ()

HAZIRA HAZIRA HAZIRA TOUBRO LIMITED

Training Material for Welding Technology
Programme for M.E. Students of
The Maharaja Sayajirao University of BarodaVarodara, sponsored by L&T.

VALUE SEC. II-A - MATERIALS

ASME Boiler And Pressure Vessels Code AII-noitose

By Allwyn Lewis

Contents

- Overview of various sections of ASME codes
- Material selection criteria.
- ASME Section II
 ASME Section IIA-F
- ASME Section IIA-Ferrous material specification
- Types of materials
- " Specification for Carbon steel plate-SA 516/SA 516M
- * Specification for Carbon steel forging

ASME BOILER AND PRESSURE

Radioacuve Material and waste	
Packaging of spent Nuclear Fuel and High level	
Appendices II Division 3 Containment Systems for Storage and Transport	I
Sub Section CC Concrete Containments	
II Division 2 Code for Concrete Reactor Vessels and Containments	Ι -
I noisivid II	I
II Subsection NCA General Requirements for Division 1 & Division 2	I ′
Part C Specifications for Welding rods, electrodes and Filler Metals Part D Properties (US Customary) Part D Properties (Metrics)	
Part A Ferrous Material Specification Part B Non-Ferrous Material Specification	
II Materials	
Rules for Construction of Power Boilers	
SECLIONS	

ASME BOILER AND PRESSURE

IIX

IV Mondestructive Examination VI Recommended Rules for Care and operation of heating Boilers VI Recommended Cuidelines for Care of Power Boilers VIII Rules for Construction of Pressure Vessels Division 3 Alternative Rules Vessels Vessels Vessels Vessels Vessels Vessels Vessels Vessels Vessels	Fiber-Reinforced Plastic Pressure Vessels	\mathbf{x}
IV Nondestructive Examination VI Mondestructive Examination VI Recommended Rules for Care and operation of heating Boilers VI Recommended Cuidelines for Care of Power Boilers VIII Rules for Construction of Pressure Vessels Division 1 Alternative Rules Division 2 Alternative Rules Vessels Vessels		
IV Nondestructive Examination VI Mondestructive Examination VI Recommended Rules for Care and operation of heating Boilers VI Recommended Cuidelines for Care of Power Boilers VIII Rules for Construction of Pressure Vessels Division 1 Division 2 Alternative Rules Division 3 Alternative Rules	Welding and Brazing Qualifications	XI
IV Mondestructive Examination VI Recommended Rules for Care and operation of heating Boilers VI' Recommended Rules for Care of Power Boilers VIII Rules for Construction of Pressure Vessels Division 1 Division 2 Alternative Rules	Λ ezzelz	
IV Mondestructive Examination VI Recommended Rules for Care and operation of heating Boilers VI' Recommended Rules for Care of Power Boilers VIII Rules for Construction of Pressure Vessels Division 1 Division 2 Alternative Rules	Division 3 Alternative Rules for Construction of High Pressure	
IV Nondestructive Examination VI Recommended Rules for Care and operation of heating Boilers VI Recommended Cuidelines for Care of Power Boilers VIII Rules for Construction of Pressure Vessels		
IV Nondestructive Examination VI Recommended Rules for Care and operation of heating Boilers VI Recommended Cuidelines for Care of Power Boilers VIII Rules for Construction of Pressure Vessels	I noisivia	
Nondestructive Examination Nondestructive Examination Nondestructive Examination NI Recommended Rules for Care and operation of hearing Boilers NI Recommended Guidelines for Care of Power Boilers VIII Bules for	ction of Pressure Vessels	Construc
IV Rules for Construction of Heating Boilers Nondestructive Examination	Recommended Guidelines for Care of Power Boilers VIII Rules for	
IV Rules for Construction of Heating Boilers Nondestructive Examination	Recommended Rules for Care and operation of heating Boilers	IΑ
IV Rules for Construction of Heating Boilers		1
	Rules for Construction of Heating Boilers	Λ I
SECLIONS	SNC	SECLI (

Rules for Construction and Continued Service of Transport Tanks

 Bnles for In-service Inspection of $\mathit{Nucleat}$ Power Plant Components

7

0

(3)

Addenda & Interpretations

- Colored sheet addenda-Includes addition & revisions to
- individual sections of code
- Published annually
- Sent automatically-Up to 2007 code publication
- Edition and addenda in loose leaf format
- As on today
- For interpretation of technical aspects —ASME issues written Edition 2004 & addenda 2006
- replies as interpretations
- Interpretations issued annually (July) with Edition/Addenda

Code Cases

- covered by existing code rules ■ In urgent need & when rules for materials/construction not
- addition and revision of codes & to formulate cases - Böiler and pressure vessel committee considers proposed
- Adopted code case appears −2004 code case book
- (2) Nuclear components (1) Boiler and pressure vessels

Material Selection Criteria

- Service media
- Corrosive-sea water, urea
- H₂, H₂S, Ammonia
- Temperature
- Cryogenic
- Low temperature
- Medium temperature
- High temperature
- Pressure
- Low pressure Q & T material

Material Selection Criteria

(

1

0

8

00

- > Standard
- Material specification - Additional requirements
- > Economy
- Cost
- Availability
- Weldability
- Manufacturability

ASME Section II -Materials

- Part A Ferrous material specifications
- ★■ Part B Non ferrous material specifications
- Part C Specifications for welding rods,
- electrodes, and filler metals.
- Part D Properties (customary)

 Properties (metric)

Section II Part A Ferrous Material Specification

Дурея

- Steel plates, sheets and strips for pressure vessels
- > Steel pipes
- > Steel tubes > Steel flanges & fittings
- Structural Steel
- > Steel bars
- > Steel Bolting materials
- > Steel forgings
- Corrosion-resisting and Heat-resisting steels

General Requirements for Steel plates for	0Z-VS	4
Pressure Vessels	DECORPORATE PROPERTY.	
Pressure Vessel Plates, Alloy steel, Nickel	SA-203	<
Pressure Vessel plates, Alloy steel, Molybdenum	502-A2	4
Chromium and Chromium-Nickel Stainless steel Plate, for Pressure vessel	072-A2	<
Corrosion-Resisting chromium steel-clad plate	SA-263	<
Stainless Chromium-Nickel-Steel Clad Plate	492-AS	<
Nickel and Nickel- Base Alloy Clad Steel Plate	SA-265	<
Pressure Vessel Plates, Carbon Steel	SA-285	4
Pressure Vessel Plates, Alloy Steel, Manganese-	SA-302	4
Molybdenum	78£-A2	<
Pressure Vessel Plates, Alloy Steel, Chromium- Molybdenum	100-310	
Hinnana frozer		1940

Steel Plates

Manganese-Silicon Steel Pressure Vessel Plates, Alloy steel, quenched and Tempered, Chromium-Molybdenum	775-A2	4
Pressure Vessel Plates, Heat Treated, Carbon-	752-A2	<
Strength, Quenched and Tempered Pressure Vessel Plates, Alloy Steel, Quenched And Tempered, Manganese-Silicon Steel	SEZ-AZ	<
Pressure Vessel Plates, Alloy Steel, High	LIS-AS	4
Intermediate and Higher Temperature Service Pressure Vessel Plates, Carbon Steel, for Moderate and lower Temperature Service	912-A2	<
Pressure vessel Plates, Carbon Steel, for	SIS-AS	4
General Requirements for Flat-Rolled Stainless Steel Plate	087-A8	₹

() (i)

()

 $() \{ \}$

()

00

 \bigcirc \bigcirc

()**(**)

()

()

Steel Pipes

+1				
	Steel Pipe			
ssa	General requirements for alloy and Stainle	666-∀S	⋖	
	Temperature Service			
1 1	Seamless ferritic Alloy Steel Pipe for High	355-A2	4	
	Temperature Service			
	Seamless and Welded Steel Pipe for Low-	EEE-A2	4	
	Sieel Pipes			
	Seamless and Welded Austenitic Stainless	SA-312.	4	
	Temperature			
	Seamless Cathon Steel Pipe for High	901-A2	4	

Steel Tubes

					20
			# \$		
	and Stainless Steel		Austen Tubes.		
1	teel Tubes. or Ferritic Alloy, and	stenitic Alloy S Requirements f		9101-A2	4
уопу,	nd Heat Exchanger for Carbon, Ferritic A		Lnbes	024-AS	<
	nser Tubes sustenitic Alloy-Steel	ebnoo bas rega A bas oninet se		S12-A2	∢ ,
n	low-carbon steel Hea	ss Cold-Drawn	Seamles	641-AS	4

L

Steel Flanges and Fittings

.9		
Forged Fittings		
Common Requirements for Steel Flanges,	196-A2	N è
Pittings Fittings		
Common Requirements for Wrought Steel	096-¥S	
Alloy Steel for low-Temperature Service	0,0 10	
Piping Fittings of Wrought Carbon Steel and	24-A20	_
Wrought austenitic Stainless Steel Piping Fittings	504-A2	_
Components	201 43	
Notch Toughness Testing for Piping		
Carbon and Low-Alloy Steel Forgings, Requiring		
Cathon and Lower Stool Becoings B	0₹£-AS	-
Moderate and high-Temperature Service		
Piping Fittings of carbon Steel and Alloy for	5A-234	4
Forged Fittings, for High-Temperature Service		
Forged or Rolled Alloy-Steel Pipe Flanges,	281-A2	4
Bridiq	007 75	
Carbon Steel Forgings, for General-Purpose	181-A2	
Suongarday Suidi i toi (eSwiSro i toile adplications		-
Carbon Steel Forgings, for Piping Applications	201-A2	4

Structural Steel

steel Plate		
Low and intermediate Tensile Strength carbon	582-AS	4
Carbon Structural Steel	9£-A2	<
Steel Bars, Plates, Shapes and Sheet Piling		
General Requirements for Rolled Structural	9-VS	4

£]:

6

 \bigcirc \bigcirc

 \bigcirc \bigcirc

Ó.

() 6%

()63

Steel Bolting

a grant and appending		
at any temperature from Cryogenic to the Creep Range		
Fastener Materials or Both, Intended for Use		
Temperature Service Common Requirements for Steel Fasteners or	796-YS	4
Pressure and High Temperature Service Alloy steel Bolting Materials for Low-	SA-320	<
for High -Temperature Service Carbon and alloy Steel Nuts for Bolts for High-	761-A2	<
Alloy Steel and Stainless Steel Bolting Material	£61-A2	⋖

Steel Forgings

0			
	Steel Forgings, General Requirements	884-VS	٠. ٠. ٠
	Steel Forgings for Pressure Vessel Components		
	Quenched and Tempered Carbon and Alloy	142-A2	<
E.19	Vessels		
	Carbon and Alloy Steel Forgings for Pressure		
휘	Quenched and Tempered Vacuum-Treated	802-A2	₹.
	components		
	Notch Toughness Testing for Piping		
	Carbon and Low-Alloy Steel Forgings, Requiring	02£-A2	-
	Temperature Parts		
	Alloy Steel Forgings for Pressure and High-	99£-A2	₹ '
	Components		
	Carbon Steel Forgings, for Pressure Vessel	997-VS	*
	gniqi¶		
	Carbon Steel Forgings, for General Purpose	181-A2	4.
W ₁₂	Carbon Steel Forgings, for Piping Applications	201-A2	4.

Testing Methods

Test methods, practices and terminology for chemical analysis of Steel Products	TC/-TTC	,
sgnig10 1	127-A2	<
and clad steel plates for special applications. Ultrasonic Examination of austenitic steel	St-6-48	<
Plates Straight beam ultrasonic Examination of Plain	872-A2	4
Plates Ultrasonic angle beam examination of Steel	LLS-A2	<
Straight-beam ultrasonic Examination of Steel	254-A2	4
testing of Steel Products Ultrasonic Examination of heavy steel Forgings	88 £-A 2	4
Forgings Test methods and definitions for mechanical	07£-A2	<
Magnetic Particle Examination of Steel	SY2-A2	4

DIEFERENT P NUMBERS

Id

	28	19		
CS Forging Solging SD	CI 10	2V 102	ī l	Ы
CS Tube		671 AS	ı	ГI
CS Plate	C / B	S82 A2	I.	ы
CS Pipe Fitting CS Pipe Fitting	M.b.C M.b.B	SA 234	7 I	И
CS - Pipe CS - Pipe	9	EEEA2 EEE A2	£ £	ld
CS - Pipe CS - Pipe	C V\B	901 A2 801 A2	5 آ	ы
CS – Plate CS – Plate	0 <i>L</i> 09	918 AS \ 818 AS 918 AS \ 818 AS	ت 1	гq
Met. Quality & Form	Stade	Mat. Spec.	Group No	oN -q

P3

29				
C - 0.5 Mo - Forging	FI	282 AS	7	F3
Section 2.0 — Tube	T1, T1a, T1b	SA 209	, I	F3
C - 0.5 Mo - Plate	TP- B, Cl- 1 or 2	EES AS	ξ	БЗ
9qiT – 0M &0 – D	7d / ld	SEE AS	I.	£ď.
Mn – 0.5 Mo – Plate Mn – 0.5 Mo – Plate	A B,C,D	20£ A2	2 3	£ď
Met. Quality & Form	sbert	Mat. Spec.	quoið oM	οN -c

bd

Met. Quality & Form 1Cr. 0.5 Mo – Plate	12, Cl –1 / 2	Mat. Spec.	oV I	- No
1.25 Cr. 0.5 Mo – Plate	11, CI -1 / 2	78£ A2	٤	
1Cr (1.25 Cr) – 0.5 Mo – Pipe	114 / 214	SEE AS	ι	⊅d
1.25 Cr. 0.5 Mo – Tube	2 / I - TT	524 A23	7	þď
1. Cr – 0.5 Mo – Forging 1. 25 Cr – 0.5 Mo – Forging	F12, CI-1 / 2 F11, CI-1 / 2 / 3	282 A.S 356 A.S	I.	þď

P5A/B/C

Met. Quality & Form	Grade	Mat. Spec.	Group oN	oN -q
2. 25 Cr. 1 Mo – Plate 5 Cr. 0.5 Mo - Plates	22, Cl –1 / 2 5, Cl – 2	788 A2	Į Į	P5B P5A
2. 25 Cr. 1 Mo – Pipe	727	SEE AS	i t	ASq
225 Cr. 1 Mo – Tube	22 - TT	SIS AS	t	VSd
5 Cr - 0.5 Mo - Forging 2. 25 Cr - 1 Mo,V - Forging 2. 25 Cr - 1 Mo - Forging	F5 F22, CI –1 / 3	281 A2 281 A2 356 A3	I I I	PSA PSC PSB

Œ;

7.89q

*				C 2 1. 0
. 18Cr., Ti – Pipe	TP439	IEL VS	7	- <i>L</i> d
17.Cr. Tube	TP430	897 VS		∠d
17Cr Plate	TP 430	240	7	4d
17Cr - Forging	15430	SA182	7	LcI
13Gr Forging	9년	988 A2	٤	9d
13Cr. – Tube	TP410	897 AS	I ·	9d
13Cr., 4.5 Ni, Mo - Pipe	005148	IEL VS	†	9d
15Cr. – Plate	TP 429	042 A2	7	9d
Met. Quality & Form	obs17	Mat. Spec.	Group oN	oN -q

8**d**

	W.			
16Cr, 12Ni, 2Mo - Tube	TP316L	642 A2	ı.	P8
18C1, 13Ni, 3Mo -Tube	Tregr	64£ A2	I ·	V20.352.43
23Cr. 12Cr Plates	TP309S	702 VS	7	P8
18Cr, 8Ni - Piates	TP304	SA 240	ı	
25Cr., 20 Ni, Forging	TP310	988 VS	ı	8d
18Cr., 8 Ni, 2Mo -Forging	915TT	9EEA2	Į.	
18Cr., 10Ni, Cb - Pipe	7454T	21£ A2	ι	84
18Cr., 10Ni, Ti - Pipe	TP321	21£ A2	l .	
Met. Quality & Form	Grade	Mat. Spec.	Grou p No	oN -
				•

P9AB

3.3Mi Plate	Э	SA 203	ı	E99B
2.5Ni Plate	V	SA 203	. I	V6d
IngroH - iNč.I 3.5Ni - iNč.č	LF5, Cl. 2 LF3	02£ A2	Į Į	P9B
2.5Mi - Tube	<i>L</i>	455A2	Į.	V6d
əqiq - iN2.£	ξ	EEE AZ	ī	L9B
Met. Quality & Form	Grade	Mat. Spec.	Grou	oN -q

9

Specification for Pressure Vessel Plates, Carbon Steel, For Moderate and Low Temperature Service (SA-516/SA-516M)

Scope

notch toughness ■ Carbon steel plates - Welded pressure vessels with improved

Crades under this specification:

(517) 09 (055-514) 08-09 (312-085) 57-55 (088) 55 Tensile Strength Ksi (MPa) Grade U.S.(SI)

(029-584) 06-07 (485) (585-054) 58-59 (054)59

Maximum thickness of the plates furnished (To meet specified

Grade U.S.(SI) mechanical property requirements)

15 (302) (085) 55 Maximum thickness, in. (min.)

(917) 09 (202) 8

(584) 07 $(202) \cdot 8$ (054) 59 (202) 8

General Requirements

- Quality and repair of defects Permissible variation in dimensions and mass . Testing and retesting methods and procedures
- Establishes rules for ordering information Marking, loading etc.
- Additional Requirements Supplementary Requirements

Vacuum Treatment

Additional tension testing

Impact testing

Non destructive examination

specification prevails ■ In case of conflict with SA 20/SA 20M - Requirement of this

Manufacture & Heat Treatment

- Killed steel Steel making practice
- Heat treatment conditions as per thickness Fine austenitic grain size-As per SA 20/SA 20M
- < 40 mm As tolled condition/Normalized or stress relieved or
- both (without notch toughness requirements)
- < 40 mm Normalized (with notch toughness requirements)
- improvement Provided plates are tempered (595 705°C) ■ Faster cooling rates are permissible — For toughness > 40 mm - Normalized

Chemical Requirement

CHEMICAL REQUIREMENTS

	% 'soles	Pdusa 6			
OT somial (CBA special)	28 sbs10 (022 sbs10)	Grade 60 (214 shard)	Grade 3801		ginacns[3
Market				M 55 H	: _p xeta 'tioqie')
TS.0	PS.0	0.23	91'0		1/2 per [33'2 missi) and hinder
82.0	0,26	eto	0750		Dret 1/2 in. to 2 in. [12.5 lu
96.9	82.D	55.0	220		Over 2 in. to 4 in. [50 to].
₹€ ` 0	0.29	6.27	5273	. Ioni Linin i	Des at 601, int 8 at 6 1910
. tr.o .	62.0	0.27	0.26		Over & in. 1200 num)
				7	:asanegneM
					1,5 lie. (12,51) and under:
QS.1-28.0	021-580	69.0-64.0	06-0-09-0		azizylene lean
02.1-97.0	DE"1-62"0	86'0-55'0	96'0-99'0		Product analysis
					(5'21) 'n 5 (20)
05.1-28.0	03.4-69.0	05.1-28.0	0216-0910		Heat arratysis
06.1-91.0	05,1-97,0	05,1-97.0	06,4-62.0		Sit (lens laubor9
9£0-0	550%	5500	20.0		Phosphorus, max*
5£0*0	560.0	880.0	SEO'O		Sultus, max* Silicon:
47.4.7LU	24.0.25.0	05 9-36 0	08-0-250		declaration Heat
075-0.40	0+'0-51'0	0000-000	09.0-61.0		alegana anang
55.0-61.0	25.0-E1.0	Sb'0-81'0	\$6'0-E1'0		motion manus.

 $\bigcirc \bigcirc \bigcirc$

()

 $(x_{ij}, x_{ij}) \in \mathcal{C}_{ij}$

 \bigcirc

Mechanical Requirements

LE REOUTREMENTS	IZN TT
S 318AT	

	ар	end .		
(485)	(057) 49	PD [472]	(081) 55	
51 ₄ 38 (390) 20-40 (465-620	524 164 32 (5 6 0) 72-62 (480-282)	524 534 35 (550) 90-80 (472-220)	(232-085) 87-55 (205) 0£ %62 %12	faqNJ iza prengra dizne (cq NA) iza ^Q nim _i tzenetz telet iza prengra dizne (co nan), min, sa (co nan), min, sa pendra na sa sa 1 sa (cm nan), min, sa

politica projection do Sual G %	tisk method or the O.	1 Oeternied by this: Ur 0.2%
		A See Speriffication A 200A 200A.

Other Supplementary Requirements

■ Magnetic particle examination

High-Temperature tension test

- Simulated PWHT of mechanical test coupons

■ Ultrasonic examination

- Additional tension test

■ Bend test

- Product analysis
- Vacuum treatment

- Charpy V-notch impact test

Specification for Carbon Steel Forgings for Piping Applications (SA-105/SA-105M)

Scope

- For ambient & high temperature service-Pressure systems
- Forging includes flanges, fittings and valves
- Maximum weight of forging -4540 Kg
- > 4540 kg-Order as per SA 266
- Tube sheet-Not included in this scope

 Supplementary requirements provided for additional testing-
- When specified by the purchaser

Ordering Information

Purchase order should include as a minimum

Additional requirements Supplementary requirements Specification number Size & dimensions Quantity

Materials and Manufacture

- Sufficient discard-Avoiding injurious piping & undue segregation
- Material forged To specified shape and size

Electric furnace

■ Method of steel making

Basic oxygen furnace Open hearth furnace

- For hollow cylindrical part machined from hot rolled bar-Axial
- length to be parallel to metal flow line of the stock

Heat Treatment

■ Not a mandatory requirement except for

Flanges above class 300

Special design flanges-exceeding pressure temperature rating

of class 300

Piping component-Over NPS 4 & above class 300 Flanges - Unknown design temperature or pressure

Applicable Heat treatment are

Annealing

SnizilamioN

Quenching and tempering Normalizing and tempering

- temperature below 538°C ■ Immediately after forging operation Cool the forging -
- A group of forging re-heated represents-Annealing charge ■ Re-heat to a temperature 843 - 927°C - to refine the grain
- Uniformly cool in the furnace

£2.

(E)

()E

0

() E

()(E)

Snizilam10N

- Immediately after forging operation Cool the forging -
- \blacksquare . Re-heat to a temperature 843 927°C to refine the grain Temperature below 538°C
- A group of forging re-heated represents-Normalizing charge
- Uniformly cool in the air

Tempering

■ Tempering temperature-593°C to lower transformation

■ Tempering time-0.5hr/in (min) of maximum section thickness temperature

Quenching

- First procedure
- Quenched in switable liquid medium Forging fully austenetized
- Forging fully austenetized ■ Multiple stage procedure
- Quenching in suitable liquid medium Re-heat to partially reaustenetize Rapidly cooled
- All quenched forgings to be tempered

Chemical Composition

TABLE 1

Elensent Composition, %				
	115th 26.0	nachsü		
	20.1-03.0	อรอบอธิเลยให		
	xam 850.0	smoudsoud		
	xem 040.0	antina		
	\$6.0-ct.0	211)200		
	[(I] stoll] xsm:0+.0	Jaddog		
	I(I) atoN] xem 0+0	iskal®		
	(C)(C) gaball] asm Of.0	mulmondo		
	G.12 max [Notes (1)(2)]	niuesteánfold		
	xem 20.0	muibans 4		
	ASHI SO.O			

MOTES: (1) The sum of copper, mickel, chromium and molybdanum shall not exceed 1.00%. (2) The sum of chromium and molybdanum shall and exceed 0.32%,

77

Cast or Heat Analysis

For analysis -Samples taken during pouring of heat

the sequence of the sequen

Composition, %	10901	Flement.	
26.95 andes	U	Marted .	
39,1-94.0	asade		
35m 250.0	. Surons		
D. De G. 118x		enting.	
26.0-01.0	, ta	21110	
(I) ston) xem 050	. **	Cabba	
[(1) aloH) sam ep.0		Micke	
((S)(C) estold skin 06.0	กระบาน	Chron	
C(S)(C) 250H3 eam SI.0	mucedes		
xeii 90'0		CCRY	
O.OZ nisas	सम्बद्धाः	Cultur	

Central Rolls—For text accounts at the contract of the contrac

The sum of copper, mickel, chromium and molyndenum shall
 not exceed 1,00%.
 not exceed 2,00%.
 The sum of chromium and molyndenum shall not exceed

Product Analysis

- For solid forgings-sample taken midway between center and
- For hollow forging-sample taken midway between inner surface
- test specimen

 Sample for analysis can also be taken from broken mechanical

Product Analysis

Permissable Variations over the Maximum Limit or Under the Minimum Limit, %

TABLE 2 PERMISSIBLE VARITAINS IN PRODUCT ANALYSIS

*ná dodť ravů (Sma 0SE OL)	01 008 rev0 04.21 f.m 004£ Three 055 0E at ioni	or 003-yet) 08251 % 008 08251 % 1008 08251 % 1008	at 002 1sv0 6951.3 km 004 5 0825 at 1soi	\$00 in. ² (\$20 cm ²) sold thes	
70"3	če.o	P0.0	60,0	20.0	Carbonia Strengages:
60.0	56.0	90'0	20.0	e-0.∙0	Seancedouble Application including 6.90
60.0	30.0	av.0	50.0	90.0	15V0 SAS 17.0
\$t0.0	eto.o	90.0	0.010	800.0	રકામાં મુક્તિમાં છ
510.0	610.0	aco e	950.0	QTO'O	Sulfur
40.0	50.0	₩0 10	÷0.0	60.0	ZKICOV
50.0	500	€0.0	50.0	60.0	Copper
€0.0	€0.0	60.0	sora	60.0	श्रद्धा
50.0	PG-0	≥ 0.0	9010	40.0	Chromitem
20.0	tora	1979	13/0	10.0	musicalion
C0.0	10-0	TO O	tora	10.0	muibansv
Ca.a	. 10.0	6,03	rarg	10.0	Celombium

Mechanical Properties

MECHANICAL REQUIREMENTS (Note (1))

Souther investigate and the southern makes (2)			
(S) Determined by either the D.2 % office method (S)	ود اابند و	·uasxá % 6°C	
A. A. 9 me agnigrat flaime 10 7 (1)			
NOTES:			
Hardness, HB, max	181		
Reduction of area, min, % [Note (4)]	Œ		
slost to coniag againstant and to nothermals			
muntalinies seed set mont from P. T. "Il age			
woled asentability likew of easestook Count 8.03			
For skrip tests, a deduction for each 352 in.	05 T	T 20 [Note (3)]	
pasn si			
Oh at laups altered sough and aliw mamicroca			
length or smaller proportionally sixed			
Witen standard round 2 in, or 50 mm gage	22		
(7.9 mm) and over in thickness, strip tests.			
Besit minimum elongation for walts % in.	90		
Elenyation in 2 in, or 50 mm, min, %:			
Yield strength, min, psi (MPa) Eldote (2))	95	10523 000	
Tensille strength, min, psi 18623		[\$8 b] 000	

74

-6

13

63

(C)

Mechanical Properties

- Specimens taken from production forging after heat treatment
- Becimens taken from separately forged test blanks prepared from same stock
- Test blank should have
- Approximately same working as product
- Heat treatment with finished product
- For N, N+T, Q+T- Central axis of test specimen at ¼ T or deeper
- Tension Test
- For each heat-one test
- Same heat treating temperature and furnace with +/- 14°C-equipped
- with recording pyrometers-one tension test per heat More then one heat in a heat treating charge-one test per heat For each heat treating charge-one test

Hardness Test

Repair by Welding

- Repair of defects permissible for forgings made to dimensional standard
- Prior approval of purchaser required-special forgings
- Welding procedure and welder-qualified as per ASME sec. IX
- Welding process with high level of hydrogen-not permissible
- Before welding-MT of ground area
- Forgings repair welding-to be PWHT
- Without prior approval of purchaser-repair shall not exceed

10% of surface area 33% of wall thickness

10 mm, Which ever is lesser.

 $\cap\, \circlearrowleft$

 \bigcirc \bigcirc

()()

() ##

() **6**3

(50

HAZIRA HAZIRA HAZIRA HAZIRA

Training Material for Welding Technology
Programme for M.E. Students of
The Maharaja Sayajirao University of BarodaVarodara, sponsored by L&T.

METDING WYLEKIYTS

VENETOR OF THE SECTION OF THE SE

AWS Specification

-	-	01.2A	£.3A	ΙΑ
41.3A	-	41.3A	11.3A	.iN
£S.2A	62.3A	82.2A	3.3A	SAJ
6.3A	SS.3A	6.3A	4.2A	SS
71.3A	0S.3A	81.3A	r.aA	SO
WAS	_ FCAW	WATO	WAM2	

6

្ញុំ

£3

₹ !÷

,				I The control of the
	Э,Н	DCEP or AC	EXXX(X)-Se	
, " Tes	TTY	DCEP or AC	Tr-(X)XXX3	
٠	TT∀	DCEP or AC	61-(X)XX3	
	Э,Н	DCEb	EXXX(X)-25	
1	JJA	DCEP	Classification EXXX(X)-15	9
	onible/V noitiso9	Welding Current	SWA	
ctrod	- 1.0 7.0 - 1.0 57.0 - 7.0	104 1011801. 10 95:0 95:0 95:0 95:0 95:0 95:0 95:0 95:	MS CISSEL SILO OIL SILO STILO	V UMI
	50.0 57.1 - 59.0 - 19.1 - 11 - 11 - 11 - 11	5.2-8 = 17. 5.2-8 = 17.	200 1/0 500 1 " 500 1 7 500 1 7 500 1 7 500	50 770 - Fu 250 75
	25% 25%	52.00 97	0.05 0.0	178 (18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	eposit.	b bləw ləəte əli	oimədə : xiftu znət	

No.

1.

() ()

 $\cap \emptyset$

00

() ()

() ()

()

- Classification according to (1)Type of Current
- (2) Type of Covering
- noitisof gniblə $W(\xi)$
- (4)Mechanical Properties of the weld metal

Electrode Classification

Type of Current	Welding noitieoq	Type of Covering	Classification
DCEP	Е'Л'ОН'Н	High Cellulose muibo2	Ee010
AC or DCEP	Е'Л'ОН'Н	High Cellulose muissstoq	Ee011
AC or DCEN	Е, У, ОН, Н	sinstiT dgiH muibo2	Ee012
AC,DCEP or	Н'НО'∧'∃	sinstiT dgiH muisssto9	E6013
AC,DCEP or	н'но'∧'н	nonl sinstiTebixo muisstoT	Ee019
AC or DCEN AC,DCEP or DCEN	H-Fillet, F	High Iron Oxide	E6020

Iron powder

Potassium

Low Hydrogen

Iron powder

Low Hydrogen

Iron powder Potassium

Low Hydrogen

Potassium

Low Hydrogen

MuiboS

гом Нудгодел

powder, Titania

Iron

Covering

Type of

Electrode Classification

E7028

E7018M

E7018

E7016

E7015

F7014

Classification

SWA

Ь

H-Fillet,

Е'Λ'ОН'Н

Н, ИО, И, Я

Н,ЧО,V,Я

Н, ИО, И, Н

Н, ИО, И, Н

Position

Welding

AC or DCEP

DCEb

AC or DCEP

AC or DCEP

DCEb

DCEN

AC, DCEP or

Type of Current

Tensile Test Requiremnts

Elongation(%)	Yield Strength(Ksi)	Tensile Strength(Ksi)	AWS Classification
22	84	09	Ee010
22	84	09	E6011
Z١	84	09	E6012
21	84	09	Ee013
22	84	09	E6019
- 22	84	09	E6020
71	89	04	E7014
22	89	04	E7015
22	89	04	E7016
22	89	04	E7018
L l	89	04	E7024
22	89	02	E7028

& Requirements Section B-Tests, Procedures

Chemical analysis-Retest for failed elements only Retest Specimen-Taken from original/new test Results of both refest-Meeting the Requirements Twice Retest allowed

Retests

Usability of Electrode

seildmessA test bleW

One or more of following Assemblies Required

(1)Weld pad - Chemical analysis of undiluted weld metal

(2) Groove weld-Mechanical properties & Soundness

(3)Fillet Weld for usability of electrode

(4) Groove weld-Transverse tensile & longitudinal bend-

77.09

(5) Groove weld-Mechanical properties & Soundness-

Thank You

óîk) É 6.0 $\cap^{\, \mathbb{C}}$ $\cap^{\, \bigcirc}$ 0 0 () 00 (**6** 0 **_\$** ()

LARSEN & TOUBRO LIMITED HAZIRA HAZIRA

Training Material for Welding Technology
Programme for M.E. Students of
The Maharaja Sayajirao University of BarodaVarodara, sponsored by L&T.

MELDING & BRAZING QUALIFICATION
ASME SEC. IX -

(E)

(F)

A Presentation

uo

YEME SECION IX

By: Hemal Desai ... Welding Engineering

YZWE SECTION IX

➤ Qualification standards for Welding & Brazing Procedures, Welders, Brazers, & Welding & Brazing Operators.

VENUE SECTION IX

- : strs Two Parts :
- Part QW- Welding
- Part QB- Brazing

Part QW - Welding

Article I – Welding General Requirements
Article II – Welding Procedure Qualification
Article III – Welding Performance Qualification
Article IV – Welding Data

Welding Qualifications

· Welding Procedure Qualification

Welders' or Welding Operators' Performance

7

6

É

£3

WPS & PQR

Purpose:

 To determine that the weldment proposed for construction is capable of having the required properties.

WPS: Welding Procedure Specification

PQR: Procedure Qualification Record

WPS & PQR

- WPS:A written qualified welding procedure prepared to provide direction for making production welds to code requirement
- Contents of WPS: Essential, Non Essential, and, when required Supplementary essential variables for each welding process used in WPS.
- Changes to the WPS: May be made in non essential variables to suit production requirements without requirements.
- Availability of the WPS:WPS used for code production welding shall be available for reference & review by Al at fabrication site.

625 C.

6

) <u>C</u>

1

63

()()

<u></u>

(G

8	w j	The state of the s	-		His arm	NIONI COC VIOLET COC	Sel (mo Sel (mo Sel (mo	T 468 1 SOCIESSES LO LESS 462-405 LO L	r usda s Rel indo In 190 li I rij fan	-2.,45.,17.,19. 20 1830 1804c 191 1821 181723 174 18251744 1	. (01.40) 481.801 12621 K 482.80	: i x≤ x1			9			10
		- 25 25 2	8.3 40.2 8.1 15.6 16.6 16.7	. 105 - 04) ALE 35; ALE 35; AL	# - # # - # # - #	955 - 951 955 - 956 231 - 95 231 - 90 231 - 91	122 122 123 123 123 123 123 123 123 123	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 10 10 10 10 10 10 10 10 10 10 10 10 10	2015 2015 2016 2016 2016 2016 2016	5545 5545 5555 	Carboari Gara Gara Gara Gara Gara Gara Gara G	-					
	Ti Villa	SECTION OF THE	(SEESELD MOSE) (AMERY) STAINE STEEN PAGE	fares: sargi ayou! idia/es;	1924 1924	-4nt	smo. s squf quinside	and staff raff		o≠ saliit MaiD	tesseri	5(34 18) (17)(2						
1							-457 W	MEST HE STATE AND				:स्ट्रा						
1							-		151	india ina Amér	te toss	10 200126			7. 6			
		ŀ					1972D 1745	REMIT OF THE PROPERTY OF THE P			dieni i	Camento Intellat						
				59-92 59-92 100	Pet 1100)	क्ष्या कडीडे इंडक्स १३ स्टे इंडस्स ३१५६३	CIRCI		IR H	8011198 82 193 1931 - 1334 83 1931 - 1334	n augus Sala bas							
		F			1 . 1					(OT)-A	(a) Zul	TROST						
					n n n	- 3		*		. g	. 16	(cistaling)) princed publish rente						
			1	(SATE) STREET	i milit	coint) s			(22	ाट .					4.3			3
100											(837-1	CY2 (6						
7/			श्रद शब्दा बडाइड	कार्य का कार्य का इन्हर्म इन्हर इन्हर्म इन्हर्म इन्हर इन्हर इन्हर इन्हर इन्हर इन्हर इन्हर इन्ह इन्हर इन्ह इन्हर इन्हर इन्ह इन्हर इन्ह इन्हर इन्ह इन्ह इन्ह इन्ह इन्ह इन्ह इन्ह इन्ह		series series series series series series series		304 70 320	t stand care que care que careires	7 PM 7 PM 7 PM 7 PM 7 PM 7 PM 7 PM 7 PM	dung san	to ext inspire in est o oxion instit				1	7	-
	100	10	509-801 SO	ETE INSTEAM	NO JACIN	CLORIZ		(40)	-n5) L	KBCASAT U	CH II	POLYER				. (30	in early	
	steen e	1.50 1 9294			20515	APR. OCC	20-515-55	1 191 75R						10	 	ja	manifest .	

_ L	. 16 Glace	EIY .	स स्टब्स्ट			
		20 JULIA VELET CHELES HAL ME MELTER SACION SEL MAZ MEL MELTER SACION MELTER SACION MEL	(and a construction of the sound of the construction of the constr			
	ORDERS + 0 TRADITION OF TRADITION OF STREET, 1 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	THE TOURS THE TOURS	(201-00) SHOIZISCO SECOND SECOND SEC			i
	94 .6 1928 65 19 07 19 07	25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	Sec. 7. (1982) Sec. 100, 1980) Sec. 100, 1980) Sec. 100, 1980,			
THE NAME OF STREET		At (1 > szakoln sza cze	CPF::	F 18 11		
	ore also where the property of	ngt - heilitugi,sekteatin (alin anord lankasa alin pari samegin lankasi palan alin pari				
		LINK DESC \ 1 SCHOOL \	.08.3		E 8	
		. (60	16-10) ELATOR SEAS			
		क्षाना एक वर्ष एकाम प्राप्त प्रश्नि एकाम समझ का	Solver (198-402) Solver to the first parties (198-402)	v 1		
	#45 taioi. #46 ; 35(127(270070 midza#	EDG : NC2 metacont.blef incel incel expr.blef	् अल्लास्य अल्लास्य	-		
	Secretarion of Agest policies			2.0	17	1
a galeti ili. Galeti	TOURSO TENETED SET 16.2 P. C. 16.	DOS 70 '201296 '(1265-60 PG)		100	(anter sin	7)

PQR

- coupon. Also contain test result of the tested specimen. • PQR : A record of the welding data used to weld a test
- required, supplementary essential variables for each process used Content of the PQR: PQR shall document all essential &, when
- Changes to PQR: Changes to PQR are permitted except during welding of test coupon.
- Addenda to the PQR Editorial Correction
- record or similar data. been the part of the original qualification condition by lab later date provided the information is sustained as ahving Additional information can be incorporated in PQR at a
- welding operator. review by AI.PQR need not be available to the welder or Availability of PQR:PQR shall be available upon request for

ς

WPS & PQR

- WPS With One PQR / Multiple PQRS With One
- Several WPS may be prepared from the data on a
- Single WPS may cover several essential varible changes as long as a supporting PQR exist for each essential variable &,when required,supplementary essential variable

71

657

€:

6

(1)

) (D

)()

Welding Procedure Qualification

- Proves the Quality / Properties of Weld Joint
 Prepared by a set of welding variables
- Welding Process
- Base Material
- Welding consumable
- Welding Parameters & Techniques (Position, Polarity, Preheat, Inter Pass Temp.)
- PWHT etc.
- Qualification limited to the essential variables of the Specific Process

Welding Procedure Qualification

- WELDING DATA

 A set of Welding Variables involved in Preparing a
- Weld Joint.
- A change in welding condition which will affect the mechanical properties (Other than notch toughness)
- of weld joint SUPPLEMENTARY ESSENTIAL VARIABLE •
- A change in welding condition which will affect the notch toughness properties of weld joint
- A Change in welding condition which will not affect the mechanical properties of the weld joint

- Mandatory Requirement from Codes /Standards \
 Regulations
- Qualification Tests in accordance with the Applicable Code / Standards / Regulation.
- Acceptance Criteria of Test Results as per ASME SEC IX
- Qualification Records and Test Results to be Documented

91

3

(1)

(e)

- Ascertain the skill of a welder or a welding operator to Produce defect free/Sound weld
- Makes A Weld Coupon Using an Approved WPS of a Qualified Procedure.
- Weld Coupon Undergoes Soundness Test
- Each Qualified Welder Shall be Assigned by A Unique Welder Number
- Welders' Qualifications Records Are Documented
- Performance Qualification limited to the essential variables of the Specific Process

How To Qualify A Welder

Understand ASME Sec. IX - Welding
 Performance Qualifications

- Variables For Different Processes QW 350 Limits Of Positions Qualified & Dia – QW 461
- Testing Requirements QW 304-1

Important Definitions as per ASME SEC IX-

- Welder:One who performs manual or semiautomatic
 welding.
- Welding Operator: One who operates machine or automatic welding equipment.
- Manual Welding: Welding wherein the entire welding operation is performed & controlled by hand

Contd.

61

Welding Performance Qualification

- Semiautomatic Welding: Arc welding with equipment which controls only the filler metal feed. The advance of welding is manually controlled.
- Machine Welding:Welding with equipment that has controls that are manually adjusted by the welding operator in response to visual observation of welding.
- Automatic Welding:Welding with equipment which performs the welding operation without adjustment of the controls by a welding operator.

07

(

- Packing: A material placed at the root of a weld joint for
- Double welded joint: A joint that is welded from both sides.
- Single-welded joint: A joint welded from one side only.
- Consumable Insert: Filler metal that is placed at joint rot before welding, & intended to completely fused into the root to become part of the weld.

. .

Welding Performance Qualification

- F-NUMBER: Assign filler wire in order to reducing the welder procedure & performance qualifications. (QW-432)
- P-NUMBER: Assign to base metal in order to reducing the welder procedure qualifications. (QW-420)
- Retainer Non consumable material, metallic or non metallic, which is used to contain or shape molten weld metal.

- WELDING DATA
- Performing a Weld Joint. A set of Welding Variables involved in
- ESSENTIAL VARIABLE
- ability of welder to deposit sound weld metal. A change in welding condition which will affect the
- NONESSENTIAL VARIABLE
- affect the ability of welder to deposit sound weld A Change in welding condition which will not

Welding Performance Qualification

B -	1.42	WA9 .	WATO							
	TEE-WO	95E-W0	SZE-WO	MAS MAS	WAME ERE-WO	DAN-325 DEM	Brief of Variables	1	гиделбелен	
		×	X	×		×	1	- Backing +	7.	UNY-402
							×		2	
							×	A Pipe diameter	41.	QW-403 E261
		×	x	· x	×	×	<u> </u>		st.	lerath
		. × .	x	×	×	×	×	A P-Number	AL.	
		×	x				×		SI.	
		x	x	x	×	x .	×	edmin-1 &	55.	
	iring.	. x	x				1		ES.	DOS-WQ
ě	1,580	_ x	x					Solid or metal-	1	माम् प्रदाशस
		×	X	×	×	×		1 MAD DOW 1 0	OE.	
							×	1 Wed otposit	IE.	
				. · x .				(Limit (s. cir. arc)	55.	
		x	x	×	×	×	×	noisied +	t	2001100g
		×	· X	X		×		# 1 Verz welding	15	Snoillea
							x	a Type fuel gas		80 F-M0
	14.00	_ x	Χ.	· X			T	Eulybed Frant -	8	829
100								, 30om raterial &	-	
			×					Connects on payarthy	P.	1 1031 0331 3
			×	x	. i		6	Scurces or polarity Oxylact gas welding Shicked massi-are welding Shicked massi-are welding Shicked massi-are welding	(2) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Icoleonal and Ic
							38	Thickness	noiribb	V +

(33

(P)

Essential Variables - Automatic Welding

- · Change from automatic to machine welding
- · Change in the welding process
- · EBM: Addition or deletion of filler metal
- EBW: Change from vacuum to out of vacuum equip. or
- vice versa.
- Laser welding: Change in laser type
- Friction Welding: Change from continuous drive to inertia
- Of vice versa.

Welding Performance Qualification

Essential Variables - Machine Welding

- Change in the welding process
- & vice-versa Change from direct visual control to remote visual control
- WATO 101 OVA to noiteled
- Deletion of automatic joint tracking
- Deletion of consumable insert.
- Deletion of backing
- Change from single pass per side to multiple passes per
- side but not the reverse.

Material Grouping(P-Numbers)

,27,			cloun
		P-No. 62	confum-base
	P-No. 117	P-No. 61 through	-tix bus mutnostiX
	P-No.107 and P-No. 108 P-No. 110 through P-No. 115 P-No. 115	P-No. 31 through P-No. 35 P-No. 41 through P-No. 47 P-No. 51 through P-No. 53	Copper and copper and copper base alloys Vickel and nickel- base alloys Thanium and tita- nium-base alloys
	No. 105	P-No. 25	minum-base alloys
	P-No. 104 and P-	5C P-No. 21 through	-uls bas munimulA
	P-No. 101 through P-No. 103	P-No. 1 through P- No. 11 incl. P- No. 5A, 5B, and	Steel and steel
	guizetA	Welding	Base Metal

QW-423 Alternate Base Material for Welder

Qualified Production Base Metal(s)

P-No. 1 through P-No. 11, P-No. 34, P-No. 41 through P-No. 47 and unassigned metals als of similar chemical composition to these metals P-No. 21 through P-No. 25 and P-No. 51 through P-No. 53 and P-No. 61 through P-No. 53 and

Base Metal(s) for Welder Qualification

P-No. 1 through P-No. 11, P-No. 34, or P-No. 41 through P-No. 47

P-No. 21 through P-No. 25 or P-P-No. 51 through P-No. 53 or P-No. 61 through P-No. 62

653

(0)

) 🖅

) **(**]

163

(3)

 \bigcirc

QW-423 Alternate F-Numbers for Welder Qualification

	F-No. 5 Without Backing	F-No. 5	F-No. 4 Without Backing	Backing F-No. 4	Backing Without F-No. 3	F-No. 3 Backing	F-No. 2 Without Backing	Backing With F-No. 2	F-No. 1	Backing F-No. 1	Qualified With -
	x	. х	X	x	×	x	X	x	х	x	Backing F-No. 1 With
	•	-							Х		Backing F-No. 1 Without
	у в	¥	X	X	Х	Х	х	Х		a *	Backing E-No. 2 With
		1 12	61		-	0	X				F-No. 2 Without
	1.4		X	×	χ	X					E-No. s With
The state					X	9 8		5.00		118	Sacking Without
			X	X		9. %					F-No. 4 With Backing
			, X								Escking F-No. 4 Without
	χ	X		18							Escking E-No. ≤ With
	x									19.	F-No. ≤ Without Packing
67		J.	8				12				ý v

Welding Performance Qualification

QW-423 Alternate F-Numbers for Welder Qualification

	L',	, .,	JINI 3		1	11 .
	17	r) au	e Inc	ON	1	HW
52	E-No.	บุธิทอ	71 IPL	ON	E-3	$\mathbb{I} V$
SEA	ber as i	muN	-4 sm	es al	H Y	InO
	nalifica					
					153	
14	F-No.	lls	pue	tE.	10	N-3
		54	F-No.	បុភិព	on	11

All F-No. 51 inrough F-No. 54 All F-No. 61 Only the same F-Number as was used during the qualification Any F-No. 71 through F-No. 72

Any F-No. 51 through F-No. 54

Any F-No. 21 through F-No. 25 Any F-No. 31, F-No. 32, F-No. 33, F-No. 35, F-No. 35, F-No. 36. 01

Qualified With

19 ON-4 AUV

E-No. 37

Any F-No. 6

F-No. 34 or any F-No. 41 through F-No. 45

(1) Deposited weld metal made using a hare rod not covered by an SFA Specification but which conforms to an analysis listed in QW-442 shall be considered to be chassified as F-No. 6.

Leter .

-. 0201-04 82014- brad rathers Hense

Welding Performance Qualification

Important F-NUMBERS

-		Grouping of Electrodes and Welding R	 F-No.
-	MA Classification		
	EXXIS	SFA-5.1	Þ
2	EXX16	SFA-5.1	Þ
	EXX18	SFA-5.1	Þ
	M8IXX3	SFA-5.1	b
	EXX48	SFA-5.1	t
		SFA-5.4 other than austenitic and o	Þ
		SFA-5.4 other than austenitic and o	b
		SFA-5.4 other than austenitic and o	t

M

Welding Performance Qualification

		Crouping of Electrodes and Welding Rook for Qualification QW-432	
	AWS Classification	MSA Specification	F-No.
	EXXX(X)-J2	SFA-5.4 austenitic and duplex	ς
	EXXX(X)-19	SFA-5.4 austenitic and duplex	ç
	EXXX(X)-J1	xalqub bns airlieiter P.E-A72	ç
		OW-432 F-NUNDERS Grouping of Electrodes and Welding Rock for Qualification	
	AWS Ciasaffeation	ASME Specification	F-No.
	E NICKEE-1	. IL.2-A72	Eb
	E NICYFe-2	SFA-5.11	Eb
14	E NICrFe-3	11.2-472	£b
ę	E NICTFE-4	51.2-712	Et
	ENICKF6-7	2FA-5.11 SFA-5.11	٤٤
	E NICKE6-9	f f. č- Å 4 S	43
	ENICLE6-10	II.2-A42	54
	E VICTMO-3	11.2-A72	54
	ENICYM0-6	II.2-A72	£tr
	ENICLW0-15	II.2-A 12	£ p

(3)

0

0

0

()

Groove Weld Positions – QW461

			10	7		
	G - 10 +	Pipe Axis Fixed 45° inclined	ΑN	59	9	
	G۱-0 .	Pipe Axis Fixed VistnozinoH	AN	99	g	
	08 - 0	∀N	IstnozitoH	4G Over Head	<i>t</i>	
	06 – 08 08 - 31	ΨN	Vertical	3G Vertical	3	
	91-0	IsoiheV aixA eqiq	Vertical	2G Horizontal	Z	
	G1-0	- IstnozinoH aixA sqiq noitstoR ni	IstnozinoH	or Flat	ı	
	° ni sixA	Pipe	Plate	noitizo9	:01110	
-	Inclination of	etal Position	M əssa	Groove	Sr No.	

839

()

€.

Ó

Ø,

0

٩

0

F, H, F ALL ALL ALL ALL ASPE	Р.,Ч. Р.Ц. А.Ц. А.Ц. А.Ц.	F, H F, V, O ALL ALL SP, F	1G SG SG SPG SPGI SPGI SPGI SPGI	Pipe\$
н, ч И, н, ч V, н, ч O, н, ч ALL ¬ & ч	*+4 *+4 *-4 *+3 *+48*-4 *+88*-7	F. H. T. Y. Y. T. Y. Y. T. Y.	16 26 36 46 26, 36 &46 Spcl Position	Plate Sroon
salified Fillet Plate & Pipe	Pipe ≤ 24"	Plate & Pipe "Pste & Pipe	reation Test	Weld

Performance Qualification

(1)

6

Performance Qualification Thickness Limits – QW 452.1(b)

Maximum To Be Welded	13 (1/2) and Over With Pree Layers
 17	II∀
Thickness of Weld metal Qualified	Thickness "t" asanybidT mm ni noquoO əht ni lstəM (ni)

Performance Qualification

Groove-Weld, Pipe Dia. Limits QW 452.3

) A	ynA no eeziS lle	o signified for making Fillets of	Notes:- 1) Type & Number of Tests as per QW-452.1 2) Welders Qualified on Groove, Are Also Qua Thickness & Any Pipe Dia.
Ī	bəjimilnU	73 (21/8")	Over 73 (21/8")
	DəfimilnU	Z2 (1")	("\$\\Z) &\T of ("1) &\Z
	bətimilnU	bablaW axi2	Less Than 25 (1")
-	Max.	.niM	(ni) mm ni noquoO
Ī	. Qualified	out Side Dia	Out Side Dia. Of Test

Performance Qualification

Thickness limits & test specimen for Overlay

QW-AS3
PROCEDURE/PERFORMANCE QUALIFICATION THICKNESS LIMITS AND TEST
SPECIMENS FOR HARD-FACING (WEAR-RESISTANT) AND CORROSIONRESISTANT OVERLAYS

1	(or) bas (a) zach	basimilau ca battilsug T (mm est an i basimilau oa	(a) stoff	basimilmu as basilieup T. (mm 25) .ni f basimilmu oz	Performance (lushingstyng) T. Sea min) T. C.S. min) T. C.
1	Notes (3), (7), (8), and (9)	ni c ot qu beititisup 7 (mar 25) cr (mar 25) ni c besimilaa	(6) put '(5) '(6) S210N	barkmilnu or baililisup T (mm es) .ni .z bailmilisu or	notisaitleud ewbetzord gniket T (mm 2S) in i nett 22s) T 1940 bns (mm 2S) in i i
	Type and Number bertupes azet to	Mominal Base Metal Thickness Qualified (T)	Type and Number of Tests Required	Mominal Base Meial (T) badilauQ cserubirfT	Thickness of Test Coupon (T)
	y (V) ear-Resistant)	stysyd gmost-brsH BIAM]		Corrosion-Reass	

How To Qualify A Welder

- 2) Train The Welder For The Process To Be Qualified
- Welder Shall Posses Adequate Skill In Performing the Process
- He Shall have Necessary Knowledge In Operation Of Machine, Precautions In Storage & Usage Of Consumable, Defects In Welding, Their Causes And Remedy.
- He Shall Practice Welding In The Particular Position In Which He Is To Be Tested / Qualified

74

63

0

How To Qualify A Welder

- 3) Preparation Of Test Coupon (Groove)
- Prepare A Test Coupon Out of $300 \times 150 \times 20$ mm Plates Or Pipe Of 150mm long As Per Applicable WPS.
- WEP (Angle, Root Face & Root Opening) Shall Be As Per The WPS
- Provide Run in & Run Out Coupons on plate & Fix the Test Coupon In In Any One Of The Positions To Be Qualified.
- Weld The Groove Fully In The Position
- All Welding Variables Shall be Strictly Within The Qualified WPS

How To Qualify A Welder

- 4) Type Of Test Required On Welded Coupon (Groove) (QW-302)
- Visual Examination QW 302.4
 Completed Coupon Shall be Subjected To Visual Inspection
- Mechanical Test QW 452.1
 For t <10 mm, Root Bend :-1 No, Face Bend :-1
 For t=10 to <19 mm, Side Bend :- 2 No or 1 RB & 1 FB
 For t ≥19 mm, Side Bend :- 2 No
 (For 5d > 6G 2 Face & 2 Root Or 4 Side Bends)
- Alternate to Mechanical Tests, Radiograph the Coupon –
 Minimum Length

Location of Test Specimens From Test coupon – QW 463.2. Plates Less Than 19 mm Root Berd 71vo 300 mm 300 mm (150 mm Minimum)

How To Qualify A Welder

5) Acceptability Criteria For Tests

• Visual Examination – QW 302.4

Free From Incomplete Fusion / Penetration and Surface Defect

• Bend Test - QW 163

Opening not more than 3 mm in any direction on Convex Surface Within the Weld & HAZ

• RT-QW191.2

No Crack, L/F & Incomplete Penetration No Slag, Cluster Of Porosity & Other Inclusions Beyond Specified Limit

WATAR the punitocalion possible only in 1878 we had gold of the back welding com down

How To Qualify A Welder

OW 191.2 Radiography Acceptance Criteria

Vgolonim19T 1.2.191-WD

Linear Indication: L > 3W -Crack, LF, Slag

Rounded Indication : $L \le 3W$ -Porosity & inclusions such as slag or tungsten

6

How To Qualify A Welder

- QW-191.2.2 Acceptance standards
- Crack or LF (a) Following Linear Indications are unacceptable
- Elongated inclusion which has a length greater than
- 1). 3 mm for t up to 10 mm
- 2). 1/3 X f for t over 10 to 57 mm
- 3). 19 mm for tover 57 mm
- length of longest imperfection the successive imperfections exceeds 6L where L is > t in a length of 12t except when distance between Group of slag inclusions in line with aggregate length

How To Qualify A Welder

- (b) Rounded Indication
- be 20% of t or 3 mm whichever is smaller 1). Permissible dimensions for rounded indication shall
- 150 mm are acceptable 2). For welds in T < 3 mm,max. 12 no of indication in
- 3). For welds in $T \ge 3$ mm, refer charts in Appendix I

operators when T >= 3 mm considered in the radiography acceptance test of welders & welding Rounded indications less than 0.8 mm in diameter shall not be

Rounded Indication Charts The Apple Indication Charts The List and Ste Fermine The List and s

qualifies on a groove weld test Fillet welds are qualified when a welder/velding operator filter sizes, and diameters Any groove All base material thicknesses, All thicknesses Thickness of Tesi Coupon as Welded, In. (nim) Type of Joint Rednived Type and Number of Tests PILLET QUALIFICATION BY GROOVE-WELD TESTS (a) Type and number of tests required shall be in accordance with QW-452.5. (b) $2\frac{1}{N}$ in. (73 mm) 0.D, is considered the equivalent of NPS $2\frac{1}{N}$. GENERAL NOTES: (81) %2 Z/e (73) and over IIA (EL) % Z UPUL SSOI OF (ES) I IIA (SZ) [IIA Size welded (SZ) [ueqt ssa7 Danil Guy Quallfied, In. (mm) (uiui) 'ui Minimum Outside Diameter Outside Diameter of Test Coupon, Thickness SMALL DIAMETER FILLET-WELD TEST QW-452.4 How To Qualify A Welder for Fillet Weld

How To Qualify A Welder for Overlay

- TX021 X 021: noquoD to exis .
- WPQ on pipe: Length: 150 mm MIN. & a min. diameter to allow the required number of test specimen. Overlay shall be continuous around the circumference of the test coupon.
- Minimum width of overlay: 38 mm
- WPQ: for process where width of bead is > 13 mm, minimum three bead are required in first layer
 SB specimens are perpendicular to the direction of
- SB specimens are perpendicular to the direction of welding in accordance with QW161. Locations specified in QW-462.5(b) or QW-462.5(d)

How To Qualify A Welder for Overlay

QW-322 Expiration & Renewal Of Qualification

- QW-322.1 Expiration of Qualification
 When welder Or welding operator has not
 welded with a process during a period of 6
 months or more, his qualification for that process
 shall expires
- When there is a specific reason to question welder or welding operator's ability to make welds that meet the specification, the qualification that support the welding he is doing shall be revoked.

()

8

10

QW-322 Expiration & Renewal Of Qualification

- QW-322.1 Expiration of Qualification
- Re-qualifications have been revoked.

 whose qualifications have been revoked.
- Renewal of qualification expired under expired under QW-322.1(a) may be made for any process by welding a single test coupon of either plate or pipe, of any material, thickness or diameter, in any position & by testing of that coupon as required by QW-301 & QW-302
- Renewal of qualification may be done on production work (QW-322.1 (a))

nox, zuvyL

A Presentation

uo

PSME SECION IX - WPS / PQR

Welding Engineering By: Hemal Desai

YZWE SECTION IX

Operators. Procedures, Welders, Brazers, & Welding & Brazing > Qualification standards for Welding & Brazing

ASME SECTION IX

Divides into Two Parts:

- Part QW-Welding
- enizera 80 heq -

Part QW - Welding

Article I – Welding General Requirements Article II – Welding Procedure Qualification Article III – Welding Performance Qualification Article IV – Welding Data

Welding Qualifications

- Welding Procedure Qualification
- Welders' or Welding Operators' Performance

0

0

MPS & PQR

Purpose:

To determine that the weldment proposed for construction is capable of having the required properties.

WPS: Welding Procedure Specification

PQR: Procedure Qualification Record

MbS

VPS:A written qualified welding procedure prepared to provide direction for making production welds to code
 requirement

- Contents of WPS: Essential, Non Essential, and, when required Supplementary essential variables for each welding process used in WPS.
- Changes to the WPS: May be made in non essential variables to suit production requirements without requalification.
- Availability of the WPS:WPS used for code production welding shall be available for reference & review by AI at fabrication site.

hisossa nd

Welding Procedure Qualification

- WELDING DATA
- A set of Welding Variables involved in Preparing a Weld Joint.
- ESSENTIAL VARIABLE • ESSENTIAL VARIABLE

A change in welding condition which will affect the mechanical properties (Other than notch toughness) of weld joint.

SUPPLEMENTARY ESSENTIAL VARIABLE
 A change in welding condition which will affect

A change in weiging condition which will affect the notch toughness properties of weld joint المرابعة المرابعة

A Change in welding condition which will not affect the mechanical properties of the weld joint

cho! A) 25.2 - 52 (Cprizzed D) occasion 2 2.25 (2) Cprizzed D) occasion 2 2.25 (Cprizzed D) oc

| Comparison of the part of th

C)

0.

63

0

and a

5

3

800

murson at ourse on smith A (Atpas duts Bribbuloxs) suit grimmer PIZM nows i poods burpion.

Company of the compan	-	-		,									_						-	
1 1 1 1 1 1 1 1 1 1		6										2 6					1			
1 1 1 1 1 1 1 1 1 1		0					Min diviz	er. Rike con Marien	etado ou Par Caci Paros ou	Alfor was 41, 19 South by 415-105. South by 14 111	N 1800 TO NI DANG NI DANG NI DANG NI DANG NI DANG NI DANG NI DANG	-K., K., IT., IK D. 1880 - BACK DR 1888 - BUTCH TR 1888 - BUTCH TR 1888 - BUTCH	na. 16, 16 es 16 or 1905 or 1905	2 2 2			,			
Processor Proc	1			<u></u>		r		190 34 21 0	-1000	1 32 / 30	132.0			r						
Processor Proc	İ																			
					F.7	. 551 - 551	W - 43	(SS - 45)	1000		-327	. 23		\$0.00 per \$2.00						
1	1			541	H.1	57# 55	22 - 53	1 31 - 65	-21.		27	(3-116)S	255	্বজ্ঞ ক ক্ষুত্ৰ						
1997 1997				11				all-01	-:30		27			-::	70.0					
MAIN					1265820 926	(Allaforo		téchi	tritte		(92)									
ACTION OF MANY PARTY AND ALTERNATION OF A CONTINUENCE AND A CONTIN	1			8000	20965	gbeec :			i		- 1	179m 2.877.72	esterni,	श्च						
THE STATE OF THE PARTY OF THE P				(4.12 4.X	2454 108	1		-		W 5 - 67 - 6 - 100			-	1400						
The second secon	1			ļ					-52 04	Mark R La										
Comment of the comm	1											REN SE INS								
The state of the s	1								andt tel	an the sales of the	71.50 20 3 350 35 0	१८६४ १५१४ व. १८६४ ६२								
POSTPARE BANK TORNINGEN CROSSOCIES CROSSOCIES CROSSOCIES						31-1	CHC.	हेरतका अस्ति। इसका १३ व्य	7/17/PN 7/17/PN		DAY SI	ACIDA 281 - 160 ACIDA 281 - 160 ACIDA 281 - 160	india by Elster	ng farant Nationalis						
100 100	1			1						1. 1.		(ott-	nd) TC	PECHAIG						
(400-400) SULPANIAN CACANON CONTRACTOR						•			1			* H		Trailling 6						
And (Qui-402) And (Q					,		=													
(401-401 20172187DAGACO_LOGATIZZ (101-402) 1024042471078 (121-402) (101-402) (28		rs Va			(West Ration	i oci	ssoin) +	1		1)	H(78)		-						
The first of the contract of t	1						-		*		*		(827-	פירות ולא						
The profit of th	a					quartable coging	meri inter Seel stale	estaper of to soon observabili		m; set	ti saota Signe qu	448 421⇔8			j.					
					il ser	MOTES NO. 100 MO	(11 10 E)	Thisias G sanges	2	105 Zed 2	E HYS	(59 E) =	aburg a	CONTRACTOR				(7	,
\$ 20 \$ 2004 c 40 1970 M.C. 400	1		11.04	-	600-m31 S	DETECTORS	CAL CEL	IKTORIE		(10	9-m5)	TABRAMI I	CASH O	POSTWEE				A.	- 8	3
			Section .	2 30 2 29Y8	e f		40	tecasi di	451-852-9	श्री "व्याद्रक्ष		1 1				- 6		1000	and command in	

OR DVIE & boll can support

PQR

- Content of the PQR: PQR shall document all essential coupon. Also contain test result of the tested specimen. • PQR: A record of the welding data used to weld a test
- each process used during welding of test coupon. &, when required, supplementary essential variables for
- Changes to PQR: Changes to PQR are permitted except
- Editorial Correction
- Addenda to the PQR
- condition by lab record or similar data. having been the part of the original qualification a later date provided the information is sustained as Additional information can be incorporated in PQR at
- or welding operator. for review by ALPQR need not be available to the welder Availability of PQR:PQR shall be available upon request

change the poor? Bors Amel

15 A LANGERA ST SCORTS
STORY SEE SEE
SEE SEE
SEE SEE
SEE SEE
SEE SEE
SEE SEE
SEE SEE
SEE SEE
SEE SEE
SEE SEE
SEE SEE CE SEE SEE FEE SEE SEE FEE SEE SEE BELVER SEE THE ACT THE COST THE COST MACHERS SCHAEL 0.06(4) 0.06(4) 0.06(4) 0.06(4) 0.06(4) 0.06(4) 201 201 201 201 962 721 275 855 961 07 85 211 081 77 05 502 771 194 175 802 17 25 M (2): HVS TOUCHNESS TEST (ON-170) | For information |

Jone 1 CHANT Y - 2 mm/

Touch Depart Touch Touch India ONEDED BEND JEST (Chived) ALT ALT ALT

1633

(3)

O

6

0

0

0

2

MPS & PQR

- Multiple WPSs with One PQR / Multiple PQRS With One
- A Single PQR Several WPS may be prepared from the data on
- essential variable essential variable &,when required,supplementary changes as long as a supporting PQR exist for each Single WPS may cover several essential variable

Welding Procedure Qualification

- Prepared by a set of welding variables · Proves the Quality / Properties of Weld Joint
- Welding Process
- Base Material
- Welding consumable
- Welding Parameters & Techniques (Position, Polarity, Preheat, Inter Pass Temp.)
- PWHT etc.
- Specific Process Qualification limited to the essential variables of the

Understand ASME Sec. IX Classifications & Requirements

- Welding Data Essential, Non Essential & Supplementary Essential Variables. QW-251, 400
- Parent Metal Grouping "P" No / S No; Group No QW-420 & 422
- Filler Metal Grouping " F" No QW-431,432, 433
- Weld Metal Composition Grouping "A" No QW-
- Welding Positions, Groove & Fillet QW-461

How To Qualify Groove Butt Weld Procedure?

- Types of Tests & Acceptance Limits Tension, Guided Bend, Notch Toughness QW-141, 451, 153, 163, 171, 172, 462, 463
- Test Requirements QW-451
- Test Specimen Location, Dimension & Testing Procedure QW- 462,463,464,466
- Qualifications Range in Thickness QW-451
- Record & Documentation of WPS, PQR

ST.

By Frenced Clement (Harcenic 2828 ismuth) DBFT Acuted

By Hermord Clement (Harcenic 2828 ismuth) DBFT Acuted

Red icutes the la-5 years) of Accordor.

GMOT - Preceduse Appecinence Incubilian Temp.

QW-253 Welding Variables Procedure Specification(WPS)

(1921 sold mans

9

2 sikerschard hosinachon bagg gened - I chard - and -

		-
	E . 10	
my	5x oan	
Dy	IN 09	= 4/1
}	Cort of	Herd
	4 . 3	

egend: Addition Deletion	> Increase/pr		T Dewnhill → Form		VS Jouey	· WAN
-	95.	= 1	Peening	T		×
	25.	4	Stremone to feureM		N	×
schnique	9.	4	ablavased alguis or itivital		×	x
0 E>-W	9.	4	меньод раск деиде			x
	. 5'	4	Method cleaning			×
	t'.	φ	FACHAYOURIS			×
รวเรเสองวัยสยน	9:	4	1 & E range			×
lectrical	p	P	Currem or polarity		×	×
600-M	t.	**	ndul Jeah	1	×	
-	-		SHWIT 2	×		
THY	z	4	(apries T & T) THWG	 	×	
70F-W	t.	P	FWHT	× .	^	
	· ·					
165437			Incresse > 100°F (56°C) (IP)	-	χ.	
306-W	z.	4	Préhéal mana,			× ·
<u> </u>			Decrease > 100°F (56°C)	×		
SUGILISO	ε.	4	Quiblew lesimey 11			x
201-W	s.	4	F*05/1/201		× .	
	τ.	•	notities			x
Y.	€.€.	φ	AWS Class.			×
	0€"	P	,	×		
sierai	21.	4	AVIS CIRSA		×	
1116k	۲.	φ	Unam. >> 1/4, In. (6 mm)		×	1
POP-W	۵.	P	Diameter			Χ
	. S.	4	15dmuM-A	×		
	ρ.	φ	F-Number	Х.		
	ετ.	P	P-No. 5/9/10	×		
	tt.	P	P-No. qualified	×		
Sietai	46.		(min Et) in ₁ < 2864)	X		
255 W-403	8.	T	baditeup 7	×		
	τ.		77. Limits > 8 in. (203 mm)	×		
	ė. 9.		F Limits impact		×	
		Ф	Group Number		×	
	tt.	7	Retainers			х .
A-402	ot.	Ф	Root spacing			x
200 111	ρ,		Bocklug			×
	t.	4	nuisae avousa			×
GG196169			Briel of Variables	16imese3	Supplementary	Monessentis

2204 Silt book blow 2200 LNO = 2240-5

QW-403.5

- \bullet MPS shall be qualified using one of the following
- Same B.M. to be used in production welding
- B.M. listed in the same P-Number group no in QW- 422 as the B.M. to be used in production welding
- When B.M. of different P-Number group number combinations are qualified using a single test coupon, that coupon qualifies the welding of those two P-Number Group number to them selves as well as to each other using the variable qualified.

0.804-WQ

- Minimum B.M. thickness qualified is : T or 16 mm whichever is less
- When T < 6 mm, Minimum thickness qualified is 1/2T

07

િં

0

0

(0)

(()

3.404-WQ & 4.404-WQ

- in table QW-432. other F-Number or to any other filler metal not listed A change from one F-Number in QW-432 to any
- table QW-442 Change fro one A-Number to any other A-Number in
- vice versa. & S.oN-A 10t yill qualify for A-No.2 &

- 2.204-WD
- progression A change from any position to the vertical uphill
- · Vertical uphill progression shall qualifies for all position
- weave bead. · In uphill progression, a change from stringer bead to

E.304 WQ & 1.304-WQ

- 1.301-WO
- Decrease of more than 55° C in the preheat temperature dualified. Minimum temperature of welding shall be specified in WPS.
- 6 904-WO •
- Increase of more than 55° C in in the maximum interpass temperature recorded on the PQR

QW-407.2

 Procedure qualification test shall be subjected to PWHT essentially equivalent to that encountered in the fabrication of production weld, including at least 80% of the aggregate times at temperature.

(3)

1.604-WO

- qualified. weld metal deposited per unit length of weld, over that · Increase in heat input, or an increase in volume of
- (J/in. (j/mm)) Travel Speed (in./min(mm/in.)) Voltage X Amperage X 60 Heat Input =
- Volume of weld metal measured by:
- Increase in bead size(WXT)
- length of electrode. Decrease in length of weld bead per unit 7

Specification(WPS) Welding Variables Procedure **GW-255**

GMAW & FCAW

E.

0

()

(3)

3

الرقي

3

egend: Addltion Deletion			e/greater than assissingn		Forehand	ф Срапде	ECAW
	z.	92"	∓ Peening				X
	z-	SZ.	e 10 leuneM &	tomatic.			Х
	T.	SI.	φ Electrode sp.	ซันเวช			· X
	τ.	ot.	um of signiz 🌢	iti electrodes		×	. X
	6.	6.	ouis of Itinim &	ile pass/side		×	X
ecpujane	8.	8.	♠ Tube-work d	- apreisi	×		. x
0 [4-W	<u>Z-</u>	7.	Φ Oscillation			-	X
	9.	9.	φ Method back	donde		1.	×
	ς.	ς.	φ Method clea	- 6uju			X
	ε.	ε.	φ Orlfice, cup,	Or nozzle size			×
	τ.	τ.	φ String/weave				×
	8.	8.	4 1 & E range				×
haracteristic	b. 2	b.	& Current or p	olarity		X	X
lectr)cal	21	5.	φ Transfer mo	gp	X		
606-W	r-	I.	> Heat Input			×	
	r:	OI.	◆ Shleiding or	tralling	X		
	5.	6.	- Выскјид ок	φ comb.	X		
cne	3.	g.	∓ OL ♥ BSCKIL	WOR P		2000	×
338 SW-408	-	٤.	₱ Flow rate				×
8	2.	z.	A Single, mixi	nke' ok %	×		* *
		ſ.	∓ Trall Or Φ C	'duo			×
npe-eq	yde		Jaina	seldainsV lo	Essentia	Supplementary Essential	Nonessential

Titanium - 260°C where it is reactive a trailing gare is used to present accounting gare got supplied.

		p.	zılınıl ⊤	×			
THW		S.	(Sensi T & T) THWG &		×		
200 771	0.15	τ.	THW4 &	×			
		€.	Increase > 100°F (56°C) (IP)		. × ·		
reheat		z.	d Preheat malm.			×	
900-M		τ.	Decresse > 100°F (56°C)	×			
		ε.	A TL Vertical welding.			. ×	
Suolitiso	9 3 6	z.	Position &		×		
504-W		T.	+ Position			×	
*		E.E.	A AWS Class.			×	
		SE.	t Limit (S. Cir. Arc)	×			
		OE.	1 \$. ×			
		ZZ.	A Alloy elements	×		(2)	
sieray	-	42.	φ = Supplemental	×	are to the		
W-404		EZ.	♦ Filler metal product form	×			
		Z.T.	A AWS class.		×		
		ð.	φ Diameter			×	
		S.	19dmuh-A &	×			
		p.	φ F-Number	×			
			ET.	4 P-No. 5/9/10	×		
	1	LL.	& P-No. qualified	. ×		And the second	
		OI.	7 Limits (S. Cir. Arc)	×			
sterat		6.	(mm £1) -n1 5/ < 2269 }	×			
9986		8.	beanfied A	×			
E04-W		· 7.	(mm £05), m 8 < 21/m () 1/1.	×			
		9.	SIJWIT /		· ×		
		5.	4 Group Number	7	, - ×		
		tt.	# Retainers			×	
		OI.			1	×	
ZOP-W		4.	- Backing		100	×	
200 //(τ.	A Groove design			×	
ereq	das101		Brief of Variables	Essential	Supplemental Supplemental	Nonessentla	

Change in P-40 SA to PMO SB on SC is eccential worked se.

I () 3 then max qualified thickness will be 1.17

solistingsอธิปฐิเมติ	8.	98.1 & E range			×
lectrical	p.	◆ Current or polarity		x	. ×
604-W	τ.	rudui reaH ≪		×	
	P.	รมุนทุา 🗘	×		
706-Wg	S.	(Spiner T & T) THW/9 &		×	
200-100	Ľ.	THW9 &	×		
	€.	Increase > 100°F (56°C) (1P)		×	
readent	S.	A Preheat maint.			×
30A-406	τ.	Deckesse >> 100ct (SeoC)	×		
suotiteo					4-14
50t-W	τ.	+ Position			×
	ėε.	Recrushed slag	×		
	ZE.	◆ FILX/WI'E CIBSS.		×	×
	P.E.	φ Flux type	×		
	EE.	A AWS CIRSS.		G 1.80	×
	OE.	14	× .		
	6Z.	A Flux designation			×
	75.	& Alloy elements	×		
Stellah					- L
100-404	₽Z.	prususigens ≠	×		
700 711	OI.	XUR YOUA &			
			×		
	6.	aseta entra wida 1	×		
	è.	A Diameter			×
		19dmuM-A &	×		
	6	& E-Number	×		
	EI.	0 E/6/5 'ON-d P	×		
	LI.	& P-No. qualified	×		
sicial	6.	(rum Et) .ni 🕍 < sseq 1	×	1 0 T	
oses	8.	baillised T &	×		
€04-W	۲.	(ww £02) 'ul 8 < \$1\wl 7 1/2	×		
	4.	silm(1 ₹		×	
	e.	◆ Group Number		×	
H +	LI.	# Retainers			×
sinto	Of.	◆ Root spacing			×
50A-W(p.	- Backjuð		*	×
	τ.	A Groove design ,			×
Paragraph		Seldsing to tell	Istines23	Supplementary Essential	Nonessential

egend: Addition Neletion			orehand Forehand	, θυν (γ	ΨAS
	92.	± Peening			X
	52:	🏚 Manual or automatic			Χ
60 BG	ζľ.	φ Electrode spacing			X
	OI.	♦ Single to multi electrodes	Two are	X	Χ
2nhuuna	6.	♦ Multi to single pass/side		X	X
echnique W-410	8.	♦ Tube-work distance			X
	L.	wolstillation			X
	9.	ф мегрод раск долде	£ .		Χ
	č.	ф Мегрод сјезијид			X
	ī.	aveawerints &	The second		X
1gera 9	yde	Brief of Variables	Essential	Supplementary Essential	Nonessential

Harris Harris	WATĐ	
*	Specification(WPS)	
	Velding Variables Procedure	1
•	QW-256	
■ CA-SUMPERSUM.	nrantantine net	
2 2		
		(along)

€ÿ

()

et CLAW	Backhand Forehand		Se/greater than † Uphill Se/less than † Downhi			- Geletion - Addition - Deletion
Х			Peening	7	92.	
X	,	180	Manual or automatic	φ	SZ"	2 0
X		. 4	Electrode spacing	φ	čľ.	**
		χ .	Closed to out chamber	ф	ττ.	
X	×		Single to multi electrodes	φ	OI.	V-
X	X		Multi to single pass/side	φ	6.	CChnique
. X	a z v	0 2 8	Oscillation	φ	L.	
Χ .			Method back gouge	φ	9.	
X			Метрод стеалілд	φ	č.	80 90
X			Orlfice, cup, or nozzle size	φ	٤.	12/1
X.			StringAweave	φ	τ.	
X			Tungsten electrode	φ	SI.	
X	ia ia] & E range	φ	8.	Characteristics
X	. x		Current or polarity	φ	Þ.	Electrical
X	8	1 1 1	I gniziu9	7	ε.	604-WC
			Hest Jubnt	<	τ.	91 8
Nonessentia	Supplementary Essential	Essential	Brief of Variables			Paragraph

Nonessent	Supplementary Essential	Essential	Brief of Variables			Hq6veese4
×		No.	rigisab avoord	4>	κ.	
×			Backing	+	e.	204-W
×			ಆಂಚ ಚಾತ್ರಗಿತ	4	OI.	sinto
×			Retainers	Ŧ	TT:	and the second
	×		Group Number	P	e.	
	.×	***	Symi7 ∠		9.	10 10 10 10 10
		×	7.7 Limits > 8 in. (203 mm)		۲.	€04-W
		×	backleup 7	P	В.	ମଣ୍ଡୋଧ ଅଟଡ
		× .	P-No. qualified	42	£ £.	
	· · · · · · · · · · · · · · · · · · ·	×	P-No. 5/9/10	#	ET.	
× .		7.74 2 2 2	, 921S	4	€.	
		×	F-Number	P	t	
		×	A-Number	4	s.	all the factor
	×		Secio SWA	ø	ZT.	
		×	F11)cr	=	PT.	1911
×			Consum, Insert	=	SZ.	stens
		×	Filler metal product form	40	EZ.	
60 N		×	,	4	OE.	
×		TV T	AWS Class.	4	EE.	N 40
×			XUIT	=	OS.	11.
· ×		. Na	Position	+	τ.	400 700
	: ×		Position	4	s.	204-W
×			T.1 Vertical welding	4	€.	
		×	Decusase > 100°F (56°C)		τ.	90t-M
	×		(1b) 1uctes2e > 100, E (2€, C)		€.	reader.
,4 f	•	×	THWq	4	τ.	
	×		PWHT (T & T range)	Ф	z.	704-W
		×	Z Limits	- 000 000	tr'	
×		- X	Trall or & comp.	#	τ.	
		×.	Single, mixture, or %	P	s.	
. ×		1. 3	Flow rate	4	€.	80 p-W
×	27		OF & Backing flow	= .	5.	se
		×	Eacking or & comb.	_	6.	
			OF & Backing flow	# .	ε. ε.	

P – Number Grouping (Base Metal For Qualification)

38				
	07.IO	181 A2	2	
CS Forging		301 A2	1	ld
CS Tube		671 A2	L.	ld
CS Plate	C/B	382 A2	1	ld
CS Pipe Fitting	MbC	\$52 AS	7	
	MPB	452 A2	ı	И
	10	EEE AS	ε	A sign
	9	EEEAS	· L	ld
	Э	901 A2	2	
	8.1 A	901 A2	l i	Ы
140.00	- 04	313 A2 \ 313 A2	2	
CS - Plate	09	313 A2 \ 313 A2		ŀd
Met. Quality & Form	Grade	Met. Spec.	Group No	оИ -Ч
	CS Forging CS - Pipe	60 CS - Plate 70 CS - Plate A / B CS - Pipe 6 CS - Pipe 70 CS - Pipe 71 CS - Pipe 71 CS - Pipe 72 CS - Pipe 73 CS - Pipe 74 CS - Pipe 75 CS - Pipe 76 CS - Pipe 76 CS - Pipe 77 CS - Pipe 78 CS - Pipe 78 CS - Pipe 79 CS - Pipe 70 CS - Pipe	SA 515 / SA 516 60 CS - Plate SA 515 / SA 516 70 CS - Plate SA 106 A / B CS - Plate SA 106 C CS - Pipe SA 233 10 CS - Pipe SA 234 WPB CS Pipe Fitting SA 234 WPC CS Pipe Fitting SA 234 WPC CS Pipe SA 234 WPC CS Pipe Fitting SA 234 WPC CS Pipe SA 234 WPC CS Pipe SA 109 CS Pipe CS Pipe SA 139 C / B CS Pipe SA 139 C / B CS Forging SA 181 C / B CS Forging	No Met. Spec. Grade Met. Quality & Form 1 SA 515 / SA 516 60 CS - Plate 2 SA 515 / SA 516 70 CS - Plate 1 SA 515 / SA 516 CV B CS - Plate 1 SA 534 WPB CS - Pipe 2 SA 234 WPB CS - Pipe 3 SA 234 WPB CS - Pipe 1 SA 234 WPB CS - Pipe 2 SA 333 40 CS - Pipe 3 SA 234 WPB CS Pige 1 SA 234 WPB CS Pipe 2 Pipe CS Pipe Fitting 3 SA 234 WPC CS Pipe 4 SA 179 CS Pipe 5 SA 234 WPC CS Pipe 6 CS Pipe CS Pipe 7 SA 179 8 CS Pipe CS Pipe 9 CS Pipe CS Pipe

P – Number Grouping (Base Metal For Qualification)

	Met. Quality & Form	Grade	Met. Spec.	Group No	оИ -Ч
	Mn – 0.5 Mo – Plate	A	SAS 302	2	F3
	etsI9 - oM c.0 - nM	B,C,D	S0£ A2	3	
	C - 0.5 Mo - Pipe	्रव/।व	388 AS	L	F3
	C - 0.5 Mo - Plate	TP- B, Cl- 1 or 2	553 AS	3	P3
.	O - 0.5 Mo - Tube	dtT,stT,tT	602 A≳	ı	P3
	C - 0.5 Mo - Forging	FI	S8S A2	7	P3

6

ુ

0

Ö

6

(]

6

C3

P – Number Grouping (Base Metal For Qualification)

1.25 Ct - 0.5 Mo - Forging	F11, CI-1/2/3	988 A2		
1. Cr – 0.5 Mo – Forging	F12, CL 1/2	S82 A2	ı	7 d
1.25 Cr. 0.5 Mo - Tube	Z/1-9T	ESA A23	2	t/d
1 Cr (1.25 Cr) – 0.5 Mo – Pipe	119/219	388 A2	i	₽d
1.25 Cr. 0.5 Mo - Plate	11, CI-172	78£ A2	3	2 II
1Cr. 0.5 Mo - Plate	12, CI-112	78E A2	ı	t/d
Met. Quality & Form	Grade	Met. Spec.	Group oN	oN -

			T. A. S.	
1.25 Ct - 0.5 Mo - Forging	F11, CI-1/2/3	988 A2		
1. Cr – 0.5 Mo – Forging	E15' CF 1 \ 5	Z82 A2	t .	7 d
1.25 Cr. 0.5 Mo - Tube	2/1-9T	ESA A23	2	bd
1Cr (1.25 Cr) - 0.5 Mo - Pipe	7.7	000110		
101(1 25 Gt) - 0 5 Mo -	119/219	38E A2	· · ·	7 d
1.25 Cr. 0.5 Mo - Plate	11, CI-172	78E A2	3	2.0
1Ct. 0.5 Mo – Plate	12, CI-172	78E A2	ı	t/d
Met. Quality & Form	Grade	Met. Spec.	Group oN	οN -

21 B	P – Number Grouping				5500
	88 524 3		a d		

	Met. Quality & Form	Grade	Met. Spec.	Group ON	oИ -Ч
	2. 25 Cr. 1 Mo - Plate	22, CI -1 / 2	78£ A2	l.	A39
	5 Ct. 0.5 Mo - Plates	2°CI-5	78£ A2		894
	2. 25 Cr. 1 Mo - Pipe	P22	38£ A2	ι	Aaq
	2. 25 Cr. 1 Mo - Tube	SS - 9T	SFS AS	1	A39
	5 Cr - 0.5 Mo - Forging	F5	S81 AS		B59
	2. 25 Ct - 1 Mo, V - Forging	F22V	S81 A2	ı	DPC
П	2. 25 Ct - 1 Mo - Forging	F22, CI-1/3	988 AS	1	A ₂ q

* a* = **			8 8 9	
2. 25 Ct - 1 Mo - Forging	F22, CI-1/3	988 AS	1 × 1 × ×	Aaq
2. 25 Ct - 1 Mo, V - Forging	F22V	S81 A2	l l	P5C
5 Ct - 0.5 Mo - Forging	£2	S81 A2	ı	894
225 Cr. 1 Mo - Tube	22 - 9T	ELS AS	ı	A39
2. 25 Cr. 1 Mo - Pipe	P22	388 A2	t =	A29
5 Ct. 0.5 Mo - Plates	2°CI-5	78£ A2	t	894
2. 25 Cr. 1 Mo - Plate	22, CI-1 / 2	78£ A2	ı	Aaq
Met. Quality & Form	Grade	Met. Spec.	Group No	oN -c

(Base Metal For Qualification)

P – Number Grouping (Base Metal For Qualification)

	my.	
1	1	1
1 Mills	M AN	7

•					H P,
	18Cr., Ti – Pipe	1P439	1ET AZ		
ſ	17Cr Tube		892 VS	-5	- Zd-
	17Cr Plate	0£4 9T	042 A2	7	Zd
	17Cr Forging	F430	S81A2	7.7	Ld
	Paligio T1981	E6	9EE AS	3.	9d
	13Cr - Tube	0149T	892 A2	1	94
	13Cr., 4.5 Ni, Mo - Pipe	241500	1ET A2	b	9d
	15Cr. – Plate	TP 429	042 A2	.7	9d
	Met. Quality & Form	eberə	Met. Spec.	Group No	P- No

P – Number Grouping (Base Metal For Qualification)

				10	
D.	18Cr, 13Ni, 3Mo - Tube 16Cr, 12Ni, 2Mo - Tube	7189T Jate9T	642 A2	l L	84
	18Cr, 8Ni - Plates 23Cr. 12Cr Plates	\$089T \$6089T	042 A2	2	84
	18Cr., 8 Ni, 2Mo -Forging 25Cr., 20 Ni, Forging	8159T 0159T	988A2 388 A2	l l	84
in the	18Cr., 10Ni, Ti - Pipe 18Cr., 10Ni, Cb - Pipe	1289T 7489T	SIE AS	ı	89
	Met. Quality & Form	Grade	Met. Spec.	Group	oN -9

©

0

0

E

0

0

0

٠.		# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	Mn, 0.5 Mo, 0.75Ni - Plate	TP C, CL.3	SE3 A2	Þ	Arrq
Table.	Mn, 0.5 Mo, 0.5Ni - Plate	TPB, CL3	583 AS	· t	Arrq
gniga	3.5Ni -1.75 Cr0.5Mo V, Fo	2' Cl' 5	803 A2	g	Allq
gnigro	3.5Ni -1.75 Cr0.5Mo V, Fo	4N, CI.2	803 A2	ç	Arrq
	9duT - iNe	8	466A2	ı	Arrq
c.C.	9di - iNe	8	585 A2	L	Arrq
	Met. Quality & Form	Grade	Met. Spec.	Group '	oN -9
	er evere en en en en en		5 × ×	122	- WD •
					te .
	(noitsoitils	L For Qu	staM e	(Base	17
	Guidno	nber Gr	INN -	_	(antiv at

-					
	3.3Ni Plate	Э 3	502 AS	l L	86d
-	2.5Ni Plate	Α	SOS A2	l l	A69
1	3.5M5 - Forging	LF3	03£ A2	1	86d
1	1.5Mi - Forging	LF5, CI 2	03£ A2	- 1	A64
	2.5M - Tube	L	468A2	l l	A99
	3.5 Na - INd.£	ε	£££ A2	l.	B6d
	Met. Quality & Form	əbsıƏ	Met. Spec.	Group No	οи -ч
-			**************************************	122	- WO •
_	* * * * * * * * * * * * * * * * * * *				

Welding Procedure Qualification

Material Grouping(P-Numbers)

43	To the William Co.		alloys
		D-No. 62	econium-base
	P-No. 117	P-No. 61 through	-tix bas mutaostiX
		P-No. 53	syolls ased-muin
18 TH 18	P-No. 115	P-No. 51 through	-stit bas muiastiT
	P-No. 112	74 .0N-9	pase alloys
	P-No. 110 through	P-No. 41 through	Nickel and nickel-
	108	P-No. 35	per-base alloys
	oN-9 bas 701.oN-9	P-No. 31 through	Copper and cop-
			alloys
	No. 105	P-No. 25	əseq-tunujtu
	P-No. 104 and P-	P-No. 21 through	-ula bas munimulA
		DS .	
		No. 5A, 5B, and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		No. 11 incl. P-	alloys
	P-No. 101 through	P-No. 1 through P-	Steel and steel
er dear	gaisen8	Welding	Base Metal

Welding Procedure Qualification

QW-424

Conbon Base Metal(s) Used for Procedure Qualification

One metal from a P-Number to ano and more from the same and more failed and a second

One metal from P-No. 3 to any Manupel Number
One metal from a P-Number to any metal from any other P-

One metal from P-No. 4 to any One metal from P-No. 4 more metal from P-No. 4 on to a constant arom P-No. 50 to a constant architecture arom P-No. 50 to a constant architecture architectu

any metal from P-No. 5A

Any unassigned metal to any Pony unassigned metal to the feath bongissenu sens One metal from P-No. 4, or P-No. 3, or P-No. 1, or P-No. 1, 5, or P-No. 1 one metal from P-No. 3 or P-No. 1 or

Any unassigned metal to any other unassigned metal

Number as the qualified metal to The first unassigned metal the second unassigned metal The unassigned metal to ame P-motal assigned to the same P-tores beginning No. 1 The unassigned metal to itself

menal assigned to P-No. 4, or P-No. 3, or P-No. 1 P-No. 4 metal to any metal assigned to P-No. 3 or P-

Any P-No. 5A metal to any

Any P-No. 4 metal to any metal from P-Nos. 4, 3, or I from P-Nos. 5A metal to any metal from P-Nos. SA. 4, 3.

Number to any metal assigned the second P-Number (any p-No.3 metal to any metal from P-No. 3 or P-No. 1 Any P-No.4 to F.No.4 to P-No.4 to F.No.4 t

Any metal assigned the first p. Any metals assigned that P-

Base Metals Qualified

	50				
	•				•
	TI-(X)XXX3	and duplex	ner than austenitic a	110 P.C-A72	þ
	EXXX(X)-19	xəldnp pur	uek than austenitic a	SFA-5.4 Ot	t
	EXXX(X)-12		uer than austenitic a		4
	EXX48			L.2-A72	4
	EXXI8M			SFA-5.1	b
	EXX18			I.2-A72	4
	EXXIP			I.S-A72	4
	EXXID			SFA-5.1	4
:	AWS Classification		notisation 31	MZA	F-No.
		S Bods for Qualification	croopes sud Weldin F-NUMBER OW-432	Grouping of Ele	
	Brown and Art St. Billion and Art St. St. St. St. St. St. St. St. St. St	OMBERS	odant F-NU	dwj	
		34141		To a make year to	
	noite	soiiilsuQ əru	Procedu	Bulpjann	17

	9t		*				- K					
		E MICLW0-15					II.2-A 7			43		
		8-oM10iN B					[[.2-A]			43		
		E NICLMO-3					11.2-A7			43	100	
		E NICTMO-2					II.2-A7			54		
		E NICTFe-10					[[.d-A]]			543		
		E NICYFe-9					II.2-A7			€₽		
		E NICTFe-7					[[.2-A]			24		
M.		E NIC1F€-4					11.2-A3			Et .	100	
							II.2-A7			43		
		E MICrFe-2			81		II.2-A7			£43		
		E NICKEE-3				ME Specification	II.2-A7		 	43 E-NO		
					755-	WD		8 8 5				
		EXXX(X)-J1			qnbjex	natenitic and	6 P. C-A7	,		ç.		
		EXXX(X)-JP			qnbjex	nesevisic suq	6 P.Z-A7)		ς		
		EXXX(X)-J2			qnbjex	nateultic and	6 4.2-A7)		ç		
5		noticipation	2WA		uc	ME Specification	ISA	e W		F-N0	36	a 9
			- 4011	for Qualifica	Melding Rods MBERS 1-432	L-NU	H3 to gale	evonl		22.1		gr s

Welding Procedure Qualification

25 	2.00	[(() alon]	% , zizylenA	*	:	Types of Weld	
IS	пМ	IN	oM	13	0	Deposit	.oN-A
o.t	. 09.L		•		0.20	Mild Steel	
49			00000000000000000000000000000000000000	100.000		munahdyloki acdaso	
J.O	1.60		59.0-04.0	05.0	21.0	Carbon-Malybdenim	
			970-070	0.40-2.50	21.0	Chrome (6.4% to 2%)-Molybdenum	
0.I	09.E		69.0-04.0	00.2-04.0 00.6-00.2	51.0	Chrome (2% to 6%)-Molybdenum	
2.0	1.60		03.1-04.0	05.01-00.3	51.0	Chrome (6% to 10.5%)-Molybdenum	
Z.D	02.I		05.1-04.0		10		
3740		10 H	OL U	11.00-15.00	21.0	Chrome-Martensh)c	
1.0	00.Z		07.0	ACCE ACCE			29
	100		30 1	11 00-30 00	21.0	Chrome-Ferritic	
3.06	90.L	•••	1.00	11.00-30.00	CTTO		
			30 0	000000301	310	Chromlum-Mickel	100
J.00	2.50	00.21-02.7	00.t	14.50-30.00 19.00-30.00	05.0	Chromium-Nickel	
J.00	05.5	00.75-00.21	00.9	00:05 00:45			
		000 000	29 0		51.0	MICKEI 10 4%	W = 1
00.I	07.1	00.4-08.0	55.0				
30 L	ZZ.Z-ZZ.I	≥8.0	27.0-22.0		71.0	Manganese–Molybdenum	
30.I	C212 C215	2 22/2	-200				
1.00	22.2-27.0	08.S-25.E	08.0-25.0	02.I	61.0	Mickel-Chrome - Molybdenum	

How To Qualify Groove Butt Weld Procedure?

2) Understand ASME Sec. II Part C.

- Specification for Filler Analysis SFA No
- AWS Classification of Welding Consumable
- Limits for Chemical Composition & Mechanical Properties of Consumables

...

3

0

O

0

- SYW- noite A Welding Procedure Specification WPS
- WPS Provides Direction for A Specific Welding
- Essential & Non Essential Variables - WPS Shall Include All Essential, Supplementary
- WPS Format Available in ASME Sec. IX:
- Each WPS Shall be Assigned with A Unique Number.

How To Qualify Groove Butt Weld Procedure?

Prepare A Test Coupon As Per WPS

- All Other Details as per Written WPS Coupon Size: 500 mm X 150 moduoD
- Complete the Welding by Reasonably Skilled Welder
- All Welding Variables Shall be Used Within the Limit Specified in WPS.
- Annexure to PQR (Procedure Qualification Record) All Variables Actually Used Shall be Documented as

- NDT Of Weld Coupon Optional
- Reduirement) X-Ray / Radiograph the Weld Joint (Not a Code
- QW463 Mark Transverse Tensile & Guided Bends As Per
- the Test Specimens Eliminate Defective Weld Portion If Any, While Marking
- Preserve RT Report & X-Ray Film as Annexure to PQR

How To Qualify Groove Butt Weld Procedure?

6) Mechanical Tests

Test Specimen - QW-451 Procedure Qualification Thickness Limits &

Compone	2 ¹ 6 197
Welded, in. (mm) Min. Max. OW-160 O	2 ¹ 6 197
\$ 2 (E) 910), Incl. S 15 TS (3.E) 3/4 (9.E) 100, Incl. 1839 S 15 (9.E) 3/4 (9.E) 100, Incl. 1839 S 15 (9.E) 3/4 (9.E	2 ¹ 6 197
S S (E) 910H S 12 TS (8,P) _M ¹⁶ (9T) ¹⁶ mort 2291 tod ₁ (0T)	² /€ 19V
To love the tention of the tention o	(el) ;
t [(6) years 2 (91) 2 (91) 2 (91) 4 (91) 5 (91)	
4 [(4) 910 H] S (91) 4 C S 1 mids TS (8.4) 4 (8.5) 4 T (0.6) 22 H or the 2	
4 [(p) sight 5 (61) st. >1 materia [(2) sight] (60.5) 6 (8.p) st. 1910 cite.)E) Y ₁
; and over 12 (4.6) 4 (4.8) 8 (203) [130 (203) 8 (203) When (22); (19) 2 [10) (4.8)	

_	Discard	this piece
	bned sbi2	nemiosqs
. [Reduced section	nəminəqz əliznət
	bned sbi2	specimen
	Side bend	specimen
	Reduced section	namicaqa alianat
F	bad sbi2	raminaqs
F	Discard	agaiq sifis

	eneig sidt	Discard
=	tensile specimen	Reduced section
==	вресітеп	Face bend
=======================================	nemiaeqa	Poot bend
==	specimen	Face bend
н	raecimen	Poot fooff
	nemicage slizner	Reduced section
	sosiq zint	Discard

QW-463.1(b) PLATES — ¾ In. (19 mm) AND OVER THICKNESS AND ALTERNATE FROM ¾ In. (10 mm) PROCEDURE QUALIFICATION ●

QW-463.1(a) PLETES — LESS THEN ⅔ In. (19 mm) THICKNESS PROCEDURE QUALIFICATION

7) Acceptance Criteria for Test Results. QW-153 Acceptance Criteria - Tension Tests Specimen shall have Tensile strength that is not less than:

- Min. specified T.S. of base metal
- Min. specified T.S. of weaker of the two, if base metal of different min. T.S. are used.
- Min. specified T.S. of weld metal when applicable when the applicable section provides for the use of weld metal having lower room temp. strength than base metal.
- If specimen breaks in the B.M. out side of the weld or weld interface, the test shall be accepted as meeting the requirements, provided the strength is not more than 5% below the minimum specified T.S. of the base metal

QW-163 Acceptance Criteria - Bend Tests

Guided bend test specimens shall have no open discontinuity in the weld or HAZ exceeding 3 mm, measured in any direction on the convex surface of the specimen after bending

How To Qualify Groove Butt Weld Procedure?

- 8) PQR Procedure Qualification Record
- PQR Format Available in Sec. IX
- Record All Relevant Data in the Format.
- Record All Mechanical Test Results
- Attach All Test Reports & Welding Parameters Used as Annexure to PQR
- Assign Unique Number to Each PQR
- WPS No Shall be Referred in PQR

Qualified WPS

- A WPS Remains Qualified When
- A Procedure Qualification Coupon Is Welded As Per
- All Mechanical Tests of The Coupon Are Completed All Test Results Are Within The Acceptable Limit
- The Supporting PQR No Is Referred In The WPS

nox Juvys

0 O G) Ó O $\cap C$ 00 \bigcirc \bigcirc 0 (0 (3