Independence

Two variables are **independent** if: $\forall x, y P(x, y) = P(x)P(y)$

We denote this as $X \perp \!\!\! \perp Y$

Conditional Independence

X is **conditionally independent** of Y given Z

if and only if:
$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if
$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$X \perp \!\!\! \perp Y | Z$$

Conditional Independence

Traffic, Umbrella, Raining

$$T \perp U^{2}$$

$$T \perp U \mid R$$

$$P(T \mid R, U) = P(T \mid R)$$

Conditional Independence

(Smole detector)

Fire, Smoke, Alarm

Independence vs. Conditional Independence

Rain
Traffic
Pedestrian holding umbrella
Flood in the house
Trip cancelled

. . .

P(Traffic | Rain, Umbrella) = P(Traffic | Rain)

Conditional Independent

Conditional distribution / independence allows us to model the probability of a certain event only using relevant factors.

Bayesian Networks

Bayes Net

Bayesian Network Example

Traffic, Umbrella, Raining

P(t, u, r)

= P(r) P(t | r) P(u | r, t) (always hold by chain rule)

= P(r) P(t | r) P(u | r)

T L U | R

R	Η	P(T R)
0	0	0.5
0	1	0.5
1	0	0.2
1	1	0.8

R	U	P(U R)
0	0	0.8
0	1	0.2
1	0	0.1
1	1	0.9

Bayesian Network (BN)

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - \bullet Suppose a node as m parents, and suppose each random variable can take d different values
 - What is the size of the table?
- The BN models the joint probability as

$$\# roms = d^{m+l}$$

Bayesian Network Example

Fire, Smoke, Alarm

Bayesian Network Example

0,00 Earthquake, Smoke, Alarm

$$P(e, s, a) = P(e) P(s) P(a | e, s)$$

Pr(Earthquake | Alarm) Pr(Earthquake | Alarm, Smoke)

Recap

Common cause

A and B are not independent in general

They could still be independent in special cases

They could still be independent in special of

• Causal chain

• Common effect

Example: Car Insurance

Example: Medical Diagnosis

Marin Prcela et al. Information Gain of Structured Medical Diagnostic Tests - Integration of Bayesian Networks and Ontologies

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents) and easier to think about
- BNs need not be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - Arrows that reflect correlation, but not necessary causality

Causality?

Independence Given Evidence

General question: Are two variables X, Y independent of each other conditioned on $Z = \{Z_1, Z_2, ...\}$?

Or: Are X and Y "D-separated" by Z?

Algorithm

- 1. Consider just the **ancestral subgraph** consisting of X, Y, Z, and their ancestors.
- 2. Add links between any unlinked pair of nodes that share a common child; now we have the so-called **moral graph**.
- 3. Replace all directed links by undirected links.
- 4. If Z blocks all paths between X and Y in the resulting graph, then Z d-separates X and Y.

.

Example

 $R \perp \!\!\! \perp B$ Yes

Example

$$L \perp T' \mid T$$
 Yes

$$L \bot\!\!\!\bot B$$
 Yes

$$L \bot\!\!\!\bot B | T$$

$$L \! \perp \! \! \perp \! \! B | T, R$$
 Yes

Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then $X \perp \!\!\! \perp Y \mid Z$

The moral graph gives a way to "factorize" the joint distribution of BN. Each clique in the moral graph is a factor.

$$P(a) P(b) P(c) P(d \mid a, b, c) P(e) P(f \mid d, e) = \phi(a, b, c, d) \phi(d, e, f)$$

$$\phi(a, b, c, d) \phi(d, e, f)$$

Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then $X \perp\!\!\!\perp Y \mid Z$

$$P(a|d) = \frac{P(a,d)}{P(d)} = \frac{\sum_{f} \phi(a,d)\phi(d,f)}{\sum_{a,f} \phi(a,d)\phi(d,f)} = \frac{\phi(a,d)\sum_{f} \phi(d,f)}{\sum_{a} \phi(a,d)\sum_{f} \phi(d,f)} = \frac{\phi(a,d)}{\sum_{a} \phi(a,d)}$$

$$P(a|d,f) = \frac{P(a,d,f)}{P(d,f)} = \frac{\phi(a,d)\phi(d,f)}{\sum_{a} \phi(a,d)\phi(d,f)} = \frac{\phi(a,d)}{\sum_{a} \phi(a,d)}$$

Structure Implications

 Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

This list determines the set of probability distributions that can be represented

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- Adding arcs increases the set of distributions, but has several costs

Application: Language Modeling

Markov Model

For each position $i=1,2,\ldots,n$: Generate word $X_i \sim p(X_i \mid X_{i-1})$

Wreck a nice beach
$$X_1$$
 X_2 X_3 X_4

Application: Object Tracking

Hidden Markov Model

Probabilistic program: hidden Markov model (HMM)7

For each time step $t=1,\ldots,T$:

Generate object location $H_t \sim p(H_t \mid H_{t-1})$

Generate sensor reading $E_t \sim p(E_t \mid H_t)$

Inference: given sensor readings, where is the object?

Application: Topic Modeling

Latent Dirichlet Allocation

Probabilistic program: latent Dirichlet allocation

Generate a distribution over topics $lpha \in \mathbb{R}^K$ For each position $i=1,\ldots,L$:

Generate a topic $Z_i \sim p(Z_i \mid lpha)$

Generate a word $W_i \sim p(W_i \mid Z_i)$

Document classification, information retrieval, customer segmentation, ...

Inference: given a text document, what topics is it about?

Exact Inference in Bayesian Networks

The "Join" Operation in Bayesian Network

The BN defines four factors P(A), P(B|A), P(C|A), P(D|B,C)

Join on B: Combine all factors that involve B

$$P(A)$$
, $P(B|A)$, $P(C|A)$, $P(D|B,C)$

$$P(A)$$
, $P(B,D \mid A,C)$, $P(C|A)$

Further join on C: Combine all factors that involve C

$$P(A)$$
, $P(B,D \mid A,C)$, $P(C|A)$

$$P(A), P(B,C,D \mid A)$$

Exercise

Exercise

P(b,a|e) = P(b)P(a|b,e)

В	P(B)
Т	0.001
F	0.999

В	Ш	Α	P(A B,E)
Т	Т	Т	0.95
Т	H	F	0.05
Т	F	Т	0.94
Т	F	F	0.06
F	Т	Т	0.29
F	Т	F	0.71
F	F	Т	0.001

0.999

Burglary	Earthquake
Ala	rm

Е	P(E)
Т	0.002
F	0.998

В	Α	Ш	P(B,A E)
Т	Т	Т	
Т	T	I	
Τ	F	Τ	
Т	F	H	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

Can you calculate P(B, A|E)?

Review: Inference by Enumeration

General case:

- Evidence variables:
- Query* variable:
- Hidden variables:

$$P(Q|e_1 \dots e_k) = ?$$

Inference by Enumeration

- **Step 1.** Select the entries consistent with the evidence
- Step 2. Sum out H to get joint probability of Query and evidence
- Step 3. Normalize

Step 0. Create a joint probability table

$$P(B,E,A,J,M) = P(B) P(E) P(A \mid B,E) P(J \mid A) P(M \mid A)$$

В	Е	Α	J	M	P(B,E,A,J,M)
Т	Т	Т	Т	Т	0.001 * 0.002 * 0.95 * 0.90 * 0.70
Т	Т	Т	Т	F	0.001 * 0.002 * 0.95 * 0.90 * 0.30
T	Т	Т	F	Т	0.001 * 0.002 * 0.95 * 0.10 * 0.70
F	F	F	F	F	0.999 * 0.998 * 0.999 * 0.95 * 0.99

$$P(B | +j, +m) = ?$$

Step 0: Create a Joint Probability Table

Join on A

Step 1. Select the entries consistent with the evidence

В	Е	Α	J	М	P(B,E,A,J,M)
Т	Т	Т	Т	Т	0.001 * 0.002 * 0.95 * 0.90 * 0.70
Т	Т	F	Т	Т	0.001 * 0.002 * 0.05 * 0.05 * 0.01
Т	F	Т	Т	Т	0.001 * 0.998 * 0.94 * 0.90 * 0.70
Т	F	F	Т	Т	0.001 * 0.998 * 0.06 * 0.05 * 0.01
F	Т	Т	Т	Т	0.999 * 0.002 * 0.29 * 0.90 * 0.70
F	Т	F	Т	Т	0.999 * 0.002 * 0.71 * 0.05 * 0.01
F	F	Т	Т	Т	0.999 * 0.998 * 0.001 * 0.90 * 0.70
F	F	F	Т	Т	0.999 * 0.998 * 0.999 * 0.05 * 0.01

$$P(B | +j, +m) = ?$$

P(B | +j, +m) = ?

Step 2. Sum out hidden variable to get joint probability of query and evidence (Marginalize)

В	Е	Α	J	М	P(B,E,A,J,M)
Т	Т	Т	Т	Т	0.001 * 0.002 * 0.95 * 0.90 * 0.70
Т	Т	F	Т	Т	0.001 * 0.002 * 0.05 * 0.05 * 0.01
Т	F	Т	Т	Т	0.001 * 0.998 * 0.94 * 0.90 * 0.70
Т	F	F	Т	Т	0.001 * 0.998 * 0.06 * 0.05 * 0.01
F	Т	Т	Т	Т	0.999 * 0.002 * 0.29 * 0.90 * 0.70
F	Т	F	Т	Т	0.999 * 0.002 * 0.71 * 0.05 * 0.01
F	F	Т	Т	Т	0.999 * 0.998 * 0.001 * 0.90 * 0.70
F	F	F	Т	Т	0.999 * 0.998 * 0.999 * 0.05 * 0.01

В	J	М	P(B,J,M)
Т	Т	Т	0.0006
F	Т	Т	0.0015

Step 3. Normalize

P(B | +j, +m) = ?

В	Е	Α	J	М	P(B,E,A,J,M)
T	Т	Т	Т	Т	0.001 * 0.002 * 0.95 * 0.90 * 0.70
Т	Т	F	Т	Т	0.001 * 0.002 * 0.05 * 0.05 * 0.01
Т	F	Т	Т	Т	0.001 * 0.998 * 0.94 * 0.90 * 0.70
Т	F	F	Т	Т	0.001 * 0.998 * 0.06 * 0.05 * 0.01
F	Т	Т	Т	Т	0.999 * 0.002 * 0.29 * 0.90 * 0.70
F	Т	F	Т	Т	0.999 * 0.002 * 0.71 * 0.05 * 0.01
F	F	Т	Т	Т	0.999 * 0.998 * 0.001 * 0.90 * 0.70
F	F	F	Т	Т	0.999 * 0.998 * 0.999 * 0.05 * 0.01

В	J	M	P(B,J,M)
Т	Т	Т	0.0006
F	Т	Т	0.0015

Inference by Enumeration?

How did we do Inference by Enumeration?

P(B,E,A,J,M) = P(B) P(E) P(A | B,E) P(J | A) P(M | A)

В	Α	Ш	P(B,A E)
Т	Τ	Τ	
Т	Т	F	
F	F	F	

E P(E) T

Join on E

 B
 E
 A
 P(B,E,A)

 T
 T
 T

 T
 T
 F

 ...
 ...
 ...

 F
 F
 F

Α	J	P(J A)
Т	Т	

A M P(M|A)
T T
...

P(B,E,A,J,M)

We first create a big table by **joining all variables**, and then

- 1) Removing entries inconsistent with the evidence
- 2) Perform marginalization to eliminate hidden variables

Join on A

How did we do Inference by Enumeration?

Joining all variables (Step 0)

1) only keep rows consistent with the evidence (Step 1)

2) Marginalize hidden variables (Step 2)

Improving the Algorithm

- First improvement: Instead of eliminating rows inconsistent with the evidence at the end, we will only keep rows consistent with evidence from the beginning.
- Second improvement: Instead of marginalize all hidden variables at the end after joining all variables, we will **interleave joining and marginalization**.

Improving the Algorithm

Inference by Enumeration

A variable can only be marginalized when it's only involved in one factor. Otherwise, it has to be joined first.

Variable Elimination

В

Query: P(B | +j, +m) = ?

В	Е	Α	P(A B,E)
Т	T	Т	
Т	Т	F	
F	F	F	

	_	
Α	J	P(J A)
Т	Т	
Т	F	
F	Т	
F	F	

Α	М	P(M A)
Т	Т	
Т	F	
F	Т	
F	F	

Ε

Ε

P(E)

Query: P(B | +j, +m) = ?

Α	М	P(M A)
Т	Т	
F	Т	

1) Only keep rows consistent with the evidence

Query: P(B | +j, +m) = ?

Query: P(B | +j, +m) = ?

В	Α	P(B,A)
H	H	
Т	F	
F	Т	
F	F	

Α	М	P(M A)
Т	H	
F	Т	

Query: P(B | +j, +m) = ?

Join on A

В	Α	J	М	P(B,A,J,M)
Т	Τ	F	F	
Т	F	Т	Т	
F	Т	Т	Т	
F	F	Т	Т	

Query: P(B | +j, +m) = ?

В	J	М	P(B,J,M)
Т	Т	Т	
F	Т	Т	

We can then get P(B | +j, +m) by normalizing this table

Query: P(B | +j, +m) = ?

Can be done in different orders

- Start with initial factors but instantiated by evidence
- While there are still hidden variables:
 - Pick a hidden variable X
 - Join all factors mentioning X
 - Eliminate (sum out) X (i.e., marginalize X)
- Join all the remaining factors
- Normalize

Ordering of the Join and Marginalize?

- The time and space of variable elimination are dominate by the size of the largest factor constructed during the algorithm.
- It's hard to determine the optimal ordering
 - Heuristics: Choose the variable that minimize the size of the next factor to be constructed.

Exercise

Calculate P(L)

(Use the heuristic: minimize the size of the next constructed factor)

P(L)		
+		
-		

+|

+t

0.3

0.7

0.1

0.9

Approximate Inference in Bayesian Networks

• Still, the inference procedure may still be time consuming if the Bayesian network is dense.

Sampling

- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P

Why sample?

- Often very fast to get a decent approximate answer
- The algorithms are very simple and general (easy to apply to fancy models)
- They require very little memory (O(n))
- They can be applied to large models, whereas exact algorithms blow up

Sampling in Bayes nets

- Prior sampling
- Rejection sampling
- Likelihood weighting
- Gibbs sampling

0.99

 $\neg w$

- For i=1, 2, ..., n (in topological order)
 - Sample X_i from P(X_i | parents(X_i))
- Return $(x_1, x_2, ..., x_n)$

• This process generates samples with probability:

$$S_{PS}(x_1,...,x_n) = \prod_i P(x_i \mid parents(X_i)) = P(x_1,...,x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{PS}(x_1,...,x_n)$
- Estimate from N samples is $Q_N(x_1,...,x_n) = N_{PS}(x_1,...,x_n)/N$
- Then $\lim_{N\to\infty} Q_N(x_1,...,x_n) = \lim_{N\to\infty} N_{PS}(x_1,...,x_n)/N$ = $S_{PS}(x_1,...,x_n)$ = $P(x_1,...,x_n)$
- I.e., the sampling procedure is *consistent*

Example

We'll get a bunch of samples from the BN:

$$C, \neg S, r, W$$
 C, S, r, W
 $\neg C, S, r, \neg W$
 $C, \neg S, r, W$
 $\neg C, \neg S, \neg r, W$

- If we want to know P(W)
 - We have counts <w:4, ¬w:1>
 - Normalize to get $P(W) = \langle w:0.8, \neg w:0.2 \rangle$
 - This will get closer to the true distribution with more samples

Rejection sampling

Rejection sampling

- A simple application of prior sampling for estimating conditional probabilities
 - Let's say we want $P(C | r, w) = \alpha P(C, r, w)$
 - For these counts, samples with ¬r or ¬w are not relevant
 - So count the C outcomes for samples with r, w and reject all other samples
- This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

Rejection sampling

- Input: evidence $e_1,...,e_k$
- For i=1, 2, ..., n
 - Sample X_i from P(X_i | parents(X_i))
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return (x₁, x₂, ..., x_n)

Car Insurance: P(PropertyCost | e)

Likelihood weighting

Likelihood weighting

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape|Color=blue)

- Idea: fix evidence variables, sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight each sample by probability of evidence variables given parents

Likelihood Weighting

Likelihood weighting

- Input: evidence $e_1,...,e_k$
- W = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x_i = observed value_i for X_i
 - Set $w = w * P(x_i | parents(X_i))$
 - else
 - Sample x_i from $P(X_i | parents(X_i))$
- return $(x_1, x_2, ..., x_n), w$

Likelihood weighting is consistent

Sampling distribution if Z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i} P(z_i \mid parents(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_k P(e_k \mid parents(E_k))$$

Together, weighted sampling distribution is consistent

$$S_{WS}(\mathbf{z}, \mathbf{e}) \cdot w(\mathbf{z}, \mathbf{e}) = \prod_{j} P(z_j \mid parents(Z_j)) \prod_{k} P(e_k \mid parents(E_k))$$

$$= P(\mathbf{z}, \mathbf{e})$$

- Likelihood weighting is an example of importance sampling
 - Would like to estimate some quantity based on samples from P
 - P is hard to sample from, so use Q instead
 - Weight each sample x by P(x)/Q(x)

Car Insurance: P(PropertyCost | e)

Likelihood weighting

- Likelihood weighting is good
 - All samples are used
 - The values of downstream variables are influenced by upstream evidence

- Likelihood weighting still has weaknesses
 - The values of *upstream* variables are unaffected by downstream evidence
 - E.g., suppose evidence is a video of a traffic accident
 - With evidence in k leaf nodes, weights will be $O(2^{-k})$
 - With high probability, one lucky sample will have much larger weight than the others, dominating the result
- We would like each variable to "see" all the evidence!