Statistics 305/605: Introduction to Biostatistical Methods for Health Sciences

Chapter 15, part 1: Contingency Tables

Jinko Graham

Contingency Tables

- Contingency tables display the joint frequency distribution of two categorical variables.
- ► E.G.: Let's consider the data of Mungan et al. 2000 click on 21,737 bladder cancer patients
 - ► Two categorical variables: **gender**, which has 2 levels, and **cancer stage**, which has 4 levels.
 - ▶ The first few lines of the data file are as follows:

	${\tt Gender}$	Cancer.Stage
1	Male	I
2	Male	I
3	Male	I
4	Male	I
5	Male	I
6	Male	I
7	Male	I
8	Male	I
	2 3 4 5 6 7	1 Male 2 Male 3 Male 4 Male 5 Male 6 Male 7 Male

► The contingency table made by cross-tabulating the gender and cancer stage variables of the Mungan data is as follows:

##	Cancer.Stage							
##	Gender	I	II	III	IV			
##	Female	3926	402	356	852			
##	Male	12418	995	883	1905			

Terminology: Cells of a Table

- ▶ The cells of the table are its entries.
 - ▶ In the table cross-tabulating the gender and cancer stage variables of the Mungan data, the first cell of the table is 3926

```
Cancer.Stage
##
## Gender
                      II
                            III
                                   IV
     Female 3926
                     402
                           356
                                  852
##
     Male
            12418
                     995
                           883
                                 1905
##
```

Terminology: Row and Column Variables

- ► The row variable in a table defines the rows, the column variable the columns.
 - ▶ In the table below, the row variable is Gender and the column variable is Cancer.Stage.

```
##
            Cancer.Stage
## Gender
                       II
                            III
                                    IV
##
     Female 3926
                     402
                            356
                                  852
     Male
             12418
                     995
                            883
                                 1905
##
```

Terminology: Row and Column Margins

- ► The **row margin** is the tabulation of the row variable and the **column margin** is the tabulation of the column variable.
- For the Mungan data,
 - the row margin (tabulation of Gender) is 5536 and 16201
 Females and Males, respectively
 - ► The column margin (tabulation of Cancer Stage) is 16344, 1397, 1239, 2757 for cancer stages I through IV, respectively.
- Exercise: verify these table margins yourself.

Adding Margins to a Table

- ▶ It is common practice to add margins to a contingency table.
- ▶ In the following, the row margins (first table) and column margins (second table) have been added:

```
##
                TT TTT
                         IV Total
## Female 3926 402 356
                       852
                             5536
## Male
          12418 995 883 1905 16201
##
                           TV
                 ΤT
                      TTT
## Female
         3926 402
                          852
                     356
## Male
          12418 995 883 1905
## Total 16344 1397 1239 2757
```

Conditional distribution of cancer stage given gender

```
## Cancer.Stage
## Gender I II III IV
## Female 3926 402 356 852
## Male 12418 995 883 1905
```

► For each gender category, we can divide the counts in each row by the row total to get proportions.

```
## Cancer.Stage
## Gender I II III IV
## Female 0.70917630 0.07261561 0.06430636 0.15390173
## Male 0.76649590 0.06141596 0.05450281 0.11758533
```

► This gives an estimate of the distributions of cancer stage within each gender.

Conditional distribution of gender given cancer stage

Likewise, for each cancer stage category we can divide the counts in each column by the column total to get proportions.

```
## Cancer.Stage
## Gender I II III IV
## Female 0.2402105 0.2877595 0.2873285 0.3090316
## Male 0.7597895 0.7122405 0.7126715 0.6909684
```

► This gives an estimate of the distributions of gender within each cancer stage.

Independence of Row and Column Variables.

- ▶ Suppose the conditional distribution of gender given cancer stage is 25% female and 75% male, regardless of cancer stage.
- What is the unconditional distribution of gender in this case (i.e., ignoring cancer stage)?

- ▶ If the conditional gender distribution is 25% female and 75% male in each cancer stage then, ignoring cancer stage and considering the unconditional distribution of gender, there will also be 25% females and 75% males.
- ▶ In this case, we say that gender and cancer stage are independent.

More generally

- ▶ If the conditional distributions of the row variable given the column variable are all the same, they will also be the same as the unconditional distribution of the row variable.
 - ▶ E.G., if the conditional gender distribution is 25% female and 75% male in each cancer stage, we will also have 25% females and 75% males unconditionally (i.e. ignoring cancer stage).
- We say that the column and row variables are independent because:
 - Knowing the value of the column variable tell us nothing about the row variable;
 - ► E.G. Knowing cancer stage tells us nothing about gender; so $P(Gender = Female \mid Stage = I) = P(Gender = Female)$

- One can use the definition of conditional probability to show that independence of row and column variables is equivalent to the following two statements:
 - 1. The conditional distributions given the different levels of the row variable are all equal
 - 2. The conditional distributions given the different levels of the column variable are all equal.
- ▶ The opposite of independence is dependence, or an association.
- We next discuss how to test for association.