Inferência Estatística Comparada

AULA 7 - INFERÊNCIA CLÁSSICA

- Hipótese estatística \rightarrow Afirmação sobre o parâmetro de interesse θ
- Exemplo 1: Urna contendo bolas numeradas de 1 a θ :

$$\theta=10$$
 , $\theta<15$, $\theta\geq 5$, etc..

Questão: Avaliar a hipótese de que $\theta = 20$ a partir da retirada de uma bola da caixa.

• Exemplo 2: $X|\theta \sim N(\theta, 1)$:

$$\theta = 0$$
 , $\theta < 2$, $-1 \le \theta \le 5$, etc.

- Hipótese estatística \rightarrow Afirmação sobre o parâmetro de interesse θ
- Exemplo 1: Urna contendo bolas numeradas de 1 a θ :

$$\theta=10$$
 , $\theta<15$, $\theta\geq 5$, etc..

Questão: Avaliar a hipótese de que $\theta = 20$ a partir da retirada de uma bola da caixa.

• Exemplo 2: $X|\theta \sim N(\theta, 1)$:

$$\theta = 0$$
 , $\theta < 2$, $-1 \le \theta \le 5$, etc..

- Hipótese estatística \rightarrow Afirmação sobre o parâmetro de interesse θ
- Exemplo 1: Urna contendo bolas numeradas de 1 a θ :

$$\theta=10$$
 , $\theta<15$, $\theta\geq 5$, etc..

Questão: Avaliar a hipótese de que $\theta=20$ a partir da retirada de uma bola da caixa.

• Exemplo 2: $X|\theta \sim N(\theta, 1)$:

$$\theta = 0$$
 , $\theta < 2$, $-1 \le \theta \le 5$, etc.

- Hipótese estatística \rightarrow Afirmação sobre o parâmetro de interesse θ
- Exemplo 1: Urna contendo bolas numeradas de 1 a θ :

$$\theta=10$$
 , $\theta<15$, $\theta\geq 5$, etc..

Questão: Avaliar a hipótese de que $\theta=20$ a partir da retirada de uma bola da caixa.

• Exemplo 2: $X|\theta \sim N(\theta, 1)$:

$$\theta = 0$$
 , $\theta < 2$, $-1 < \theta < 5$, etc..

- Abordagens ao problema de testar uma hipótese:
- Testes de significância (puros) (significance tests)
- Testes de hipóteses (hypothesis testing)
- Testes Bayesianos
- Testes com mais de duas alternativas: testes com três decisões/ações (agnósticos) ou mais; testes com mais de duas hipóteses.

- Abordagens ao problema de testar uma hipótese:
- Testes de significância (puros) (significance tests)
- Testes de hipóteses (hypothesis testing)
- Testes Bayesianos
- Testes com mais de duas alternativas: testes com três decisões/ações (agnósticos) ou mais; testes com mais de duas hipóteses.

- Abordagens ao problema de testar uma hipótese:
- Testes de significância (puros) (significance tests)
- Testes de hipóteses (hypothesis testing)
- Testes Bayesianos
- Testes com mais de duas alternativas: testes com três decisões/ações (agnósticos) ou mais; testes com mais de duas hipóteses.

- Abordagens ao problema de testar uma hipótese:
- Testes de significância (puros) (significance tests)
- Testes de hipóteses (hypothesis testing)
- Testes Bayesianos
- Testes com mais de duas alternativas: testes com três decisões/ações (agnósticos) ou mais; testes com mais de duas hipóteses.

- Abordagens ao problema de testar uma hipótese:
- Testes de significância (puros) (significance tests)
- Testes de hipóteses (hypothesis testing)
- Testes Bayesianos
- Testes com mais de duas alternativas: testes com três decisões/ações (agnósticos) ou mais; testes com mais de duas hipóteses.

- Abordagens ao problema de testar uma hipótese:
- Testes de significância (puros) (significance tests)
- Testes de hipóteses (hypothesis testing)
- Testes Bayesianos
- Testes com mais de duas alternativas: testes com três decisões/ações (agnósticos) ou mais; testes com mais de duas hipóteses.

- TESTES DE SIGNIFICÂNCIA
- Formulação apenas da hipótese de interesse, H, (a ser testada), sem fazer menção a qualquer hipótese alternativa.
- Especificação de uma relação de ordem fraca sobre os pontos amostrais: $\leq (\subset \mathcal{X}^2)$

Para $x,y\in\mathcal{X},\ x\preceq y$ denota que "y está mais em desacordo com a hipótese formulada que x"

$$x \leq y \Leftrightarrow T(x) \leq T(y)$$

• TESTES DE SIGNIFICÂNCIA

- Formulação apenas da hipótese de interesse, H, (a ser testada), sem fazer menção a qualquer hipótese alternativa.
- Especificação de uma relação de ordem fraca sobre os pontos amostrais: $\leq (\subset \mathcal{X}^2)$

Para $x,y\in\mathcal{X},\ x\preceq y\$ denota que "y está mais em desacordo com a hipótese formulada que x"

$$x \leq y \Leftrightarrow T(x) \leq T(y)$$

• TESTES DE SIGNIFICÂNCIA

- Formulação apenas da hipótese de interesse, H, (a ser testada), sem fazer menção a qualquer hipótese alternativa.
- Especificação de uma relação de ordem fraca sobre os pontos amostrais: $\leq (\subset \mathcal{X}^2)$

Para $x, y \in \mathcal{X}, \ x \leq y$ denota que "y está mais em desacordo com a hipótese formulada que x"

$$x \leq y \Leftrightarrow T(x) \leq T(y)$$

• TESTES DE SIGNIFICÂNCIA

- Formulação apenas da hipótese de interesse, H, (a ser testada), sem fazer menção a qualquer hipótese alternativa.
- Especificação de uma relação de ordem fraca sobre os pontos amostrais: $\preceq (\subset \mathcal{X}^2)$

Para $x,y\in\mathcal{X},\ x\preceq y$ denota que "y está mais em desacordo com a hipótese formulada que x"

$$x \leq y \Leftrightarrow T(x) \leq T(y)$$

- No exemplo 2, supondo $H:\theta=0$, podemos considerar, por exemplo, T(x)=|x|.
- No exemplo 1, considerando $\theta=20$, podemos definir, por exemplo, T(x)=20, se x>20, e T(x)=20-x, se $x\leq 20$
- Probabilidade de significância (ao observar x):

$$p_H(x) = \mathbb{P}\{y \in \mathcal{X} : x \leq y\} = \mathbb{P}\{y \in \mathcal{X} : T(x) \leq T(y)\}$$

- No exemplo 2, supondo $H:\theta=0$, podemos considerar, por exemplo, T(x)=|x|.
- No exemplo 1, considerando $\theta=20$, podemos definir, por exemplo, T(x)=20, se x>20, e T(x)=20-x, se $x\leq 20$.
- Probabilidade de significância (ao observar x):

$$p_H(x) = \mathbb{P}\{y \in \mathcal{X} : x \leq y\} = \mathbb{P}\{y \in \mathcal{X} : T(x) \leq T(y)\}$$

- No exemplo 2, supondo $H:\theta=0$, podemos considerar, por exemplo, T(x)=|x|.
- No exemplo 1, considerando $\theta=20$, podemos definir, por exemplo, T(x)=20, se x>20, e T(x)=20-x, se $x\leq 20$.
- Probabilidade de significância (ao observar x):

$$p_H(x) = \mathbb{P}\{y \in \mathcal{X} : x \leq y\} = \mathbb{P}\{y \in \mathcal{X} : T(x) \leq T(y)\}$$

- No exemplo 2, supondo $H:\theta=0$, podemos considerar, por exemplo, T(x)=|x|.
- No exemplo 1, considerando $\theta=20$, podemos definir, por exemplo, T(x)=20, se x>20, e T(x)=20-x, se $x\leq 20$.
- Probabilidade de significância (ao observar x):

$$p_H(x) = \mathbb{P}\{y \in \mathcal{X} : x \leq y\} = \mathbb{P}\{y \in \mathcal{X} : T(x) \leq T(y)\}\$$

- No exemplo 2, supondo $H:\theta=0$, podemos considerar, por exemplo, T(x)=|x|.
- No exemplo 1, considerando $\theta=20$, podemos definir, por exemplo, T(x)=20, se x>20, e T(x)=20-x, se $x\leq 20$.
- Probabilidade de significância (ao observar x):

$$p_H(x) = \mathbb{P}\{y \in \mathcal{X} : x \leq y\} = \mathbb{P}\{y \in \mathcal{X} : T(x) \leq T(y)\}\$$

• Exemplo 2: Suponhamos $H:\theta=0$. Sob $H, X\sim N(0,1)$. Observado X=-2,1, temos

$$p_H(-2,1) = \mathbb{P}(T(X) \ge T(-2,1)) = \mathbb{P}(|X| \ge 2,1) \Rightarrow$$

 $\Rightarrow p_H(-2,1) = 2 - 2 \Phi(2,1) = 0,0357$

• Exemplo 1: Suponhamos $H: \theta = 20$. Sob H, $X \sim U(\{1, 2, ..., 20\})$. Observado X = 2, temos $p_H(2) = \mathbb{P}(T(X) \geq T(2)) = \mathbb{P}(T(X) \geq 18) = \mathbb{P}(T(X) = 18) + \mathbb{P}(T(X) = 19) + \mathbb{P}(T(X) = 20) \Rightarrow 0.10$

• Exemplo 2: Suponhamos $H:\theta=0$. Sob $H, X\sim N(0,1)$. Observado X=-2,1, temos

$$p_H(-2,1) = \mathbb{P}(T(X) \ge T(-2,1)) = \mathbb{P}(|X| \ge 2,1) \Rightarrow$$

 $\Rightarrow p_H(-2,1) = 2 - 2 \Phi(2,1) = 0,0357$

• Exemplo 1: Suponhamos $H: \theta = 20$. Sob H, $X \sim U(\{1, 2, ..., 20\})$. Observado X = 2, temos

$$p_H(2) = \mathbb{P}(T(X) \ge T(2)) = \mathbb{P}(T(X) \ge 18) =$$

= $\mathbb{P}(T(X) = 18) + \mathbb{P}(T(X) = 19) + \mathbb{P}(T(X) = 20) \Rightarrow$
 $\Rightarrow p_H(2) = 0.10$

- De posse da medida de evidência $p_H(x)$ "contrária" a H, que tipo de "teste"para a hipótese H podemos considerar?
- ullet Apenas registrar a medida de "inconsistência da obsevação x com a hipótese H ou
 - considerar um problema de tomada de decisão no qual um valor pequeno de $p_H(x)$ levaria o agente decisor a julgar H como incorreta (rejeitar H)?
- Outros aspectos importantes:
- Como escolher a estatística T ? Como interpretar/comparar diferentes valores pequenos de consistência de x com a hipótese H para outros fins (análises posteriores, por exemplo)?

- De posse da medida de evidência $p_H(x)$ "contrária" a H, que tipo de "teste"para a hipótese H podemos considerar?
- Apenas registrar a medida de "inconsistência da obsevação x com a hipótese H ou
 - considerar um problema de tomada de decisão no qual um valor pequeno de $p_H(x)$ levaria o agente decisor a julgar H como incorreta (rejeitar H)?
- Outros aspectos importantes:
- Como escolher a estatística T ? Como interpretar/comparar diferentes valores pequenos de consistência de x com a hipótese H para outros fins (análises posteriores, por exemplo)?

- De posse da medida de evidência $p_H(x)$ "contrária" a H, que tipo de "teste"para a hipótese H podemos considerar?
- Apenas registrar a medida de "inconsistência da obsevação x com a hipótese H ou
 - considerar um problema de tomada de decisão no qual um valor pequeno de $p_H(x)$ levaria o agente decisor a julgar H como incorreta (rejeitar H)?
- Outros aspectos importantes:
- Como escolher a estatística T ? Como interpretar/comparar diferentes valores pequenos de consistência de x com a hipótese H para outros fins (análises posteriores, por exemplo)?

- De posse da medida de evidência $p_H(x)$ "contrária" a H, que tipo de "teste"para a hipótese H podemos considerar?
- Apenas registrar a medida de "inconsistência da obsevação x com a hipótese H ou
 - considerar um problema de tomada de decisão no qual um valor pequeno de $p_H(x)$ levaria o agente decisor a julgar H como incorreta (rejeitar H)?
- Outros aspectos importantes:
- Como escolher a estatística T ? Como interpretar/comparar diferentes valores pequenos de consistência de x com a hipótese H para outros fins (análises posteriores, por exemplo)?

- De posse da medida de evidência $p_H(x)$ "contrária" a H, que tipo de "teste"para a hipótese H podemos considerar?
- Apenas registrar a medida de "inconsistência da obsevação x com a hipótese H ou
 - considerar um problema de tomada de decisão no qual um valor pequeno de $p_H(x)$ levaria o agente decisor a julgar H como incorreta (rejeitar H)?
- Outros aspectos importantes:
- Como escolher a estatística T ? Como interpretar/comparar diferentes valores pequenos de consistência de x com a hipótese H para outros fins (análises posteriores, por exemplo)?

- Sob a perspectiva de um problema de decisão, vale destacar:
- Probabilidade de significância aqui é comparada com um valor, um limitante superior para a probabilidade de equivocadamente rejeitar a hipótese H (ou um limitante superior para tal probabilidade). Tal limitante superior não mede, de fato, o grau de inconsistência da observação x com H.
- No caso de decisão por não rejeitar H, não há indicativo de que H seja "verdadeira": apenas não há forte evidência para rejeitá-la - falseabilidade (Falsificacionismo).

- Sob a perspectiva de um problema de decisão, vale destacar:
- Probabilidade de significância aqui é comparada com um valor, um limitante superior para a probabilidade de equivocadamente rejeitar a hipótese H (ou um limitante superior para tal probabilidade). Tal limitante superior não mede, de fato, o grau de inconsistência da observação x com H.
- No caso de decisão por não rejeitar H, não há indicativo de que H seja "verdadeira": apenas não há forte evidência para rejeitá-la - falseabilidade (Falsificacionismo).

- Sob a perspectiva de um problema de decisão, vale destacar:
- Probabilidade de significância aqui é comparada com um valor, um limitante superior para a probabilidade de equivocadamente rejeitar a hipótese H (ou um limitante superior para tal probabilidade). Tal limitante superior não mede, de fato, o grau de inconsistência da observação x com H.
- No caso de decisão por não rejeitar H, não há indicativo de que H seja "verdadeira": apenas não há forte evidência para rejeitá-la - falseabilidade (Falsificacionismo).

- Consequências da ausência de hipótese alternativa a H:
- 1) Condução de análises (inferenciais ou de tomada de decisões posteriores) decorrentes do resultado do teste de significância.
- 1)a) Em caso de rejeição de H, o que considerar como "padrão" para novas análises? Adequação do novo "padrão" para tais análises?
- 1)b) Em caso de não-rejeição de H, análises desenvolvidas sob H são mais justas/adequadas do que sob outras possibilidades (fora de H)?
- ullet 2) Ausência de paradigma para escolha da estatística T.
- 3) Impossibilidade de avaliação de eventual erro de decisão ao não rejeitar H.

- Consequências da ausência de hipótese alternativa a H:
- 1) Condução de análises (inferenciais ou de tomada de decisões posteriores) decorrentes do resultado do teste de significância.
- 1)a) Em caso de rejeição de H, o que considerar como "padrão" para novas análises? Adequação do novo "padrão" para tais análises?
- 1)b) Em caso de não-rejeição de H, análises desenvolvidas sob H são mais justas/adequadas do que sob outras possibilidades (fora de H)?
- 2) Ausência de paradigma para escolha da estatística *T*.
- 3) Impossibilidade de avaliação de eventual erro de decisão ao não rejeitar H.

- Consequências da ausência de hipótese alternativa a H:
- 1) Condução de análises (inferenciais ou de tomada de decisões posteriores) decorrentes do resultado do teste de significância.
- 1)a) Em caso de rejeição de H, o que considerar como "padrão" para novas análises? Adequação do novo "padrão" para tais análises?
- 1)b) Em caso de não-rejeição de H, análises desenvolvidas sob H são mais justas/adequadas do que sob outras possibilidades (fora de H)?
- 2) Ausência de paradigma para escolha da estatística *T*.
- 3) Impossibilidade de avaliação de eventual erro de decisão ao não rejeitar H.

- Consequências da ausência de hipótese alternativa a H:
- 1) Condução de análises (inferenciais ou de tomada de decisões posteriores) decorrentes do resultado do teste de significância.
- 1)a) Em caso de rejeição de H, o que considerar como "padrão" para novas análises? Adequação do novo "padrão" para tais análises?
- 1)b) Em caso de não-rejeição de H, análises desenvolvidas sob H são mais justas/adequadas do que sob outras possibilidades (fora de H)?
- 2) Ausência de paradigma para escolha da estatística T.
- 3) Impossibilidade de avaliação de eventual erro de decisão ao não rejeitar H.

- Consequências da ausência de hipótese alternativa a H:
- 1) Condução de análises (inferenciais ou de tomada de decisões posteriores) decorrentes do resultado do teste de significância.
- 1)a) Em caso de rejeição de H, o que considerar como "padrão" para novas análises? Adequação do novo "padrão" para tais análises?
- 1)b) Em caso de não-rejeição de H, análises desenvolvidas sob H são mais justas/adequadas do que sob outras possibilidades (fora de H)?
- 2) Ausência de paradigma para escolha da estatística T.
- 3) Impossibilidade de avaliação de eventual erro de decisão ao não rejeitar H.

- Consequências da ausência de hipótese alternativa a H:
- 1) Condução de análises (inferenciais ou de tomada de decisões posteriores) decorrentes do resultado do teste de significância.
- 1)a) Em caso de rejeição de H, o que considerar como "padrão" para novas análises? Adequação do novo "padrão" para tais análises?
- 1)b) Em caso de não-rejeição de H, análises desenvolvidas sob H são mais justas/adequadas do que sob outras possibilidades (fora de H)?
- 2) Ausência de paradigma para escolha da estatística T.
- 3) Impossibilidade de avaliação de eventual erro de decisão ao não rejeitar H.

- TESTES DE HIPÓTESES
- Em vários aspectos, acomoda as questões anteriores.
- Abordagem "mais próxima" à tomada de decisão que testes de significância.
- Formalização: Consideremos (Θ_0,Θ_1) uma partição de Θ (isto é, $\Theta_0\cup\Theta_1=\Theta$ e $\Theta_0\cap\Theta_1=\emptyset$). Formulemos as hipóteses estatísticas $H_0:\theta\in\Theta_0$ e $H_1:\theta\in\Theta_1$. Como antes, $\mathcal X$ denota o espaço amostral.

• TESTES DE HIPÓTESES

- Em vários aspectos, acomoda as questões anteriores.
- Abordagem "mais próxima" à tomada de decisão que testes de significância.
- Formalização: Consideremos (Θ_0,Θ_1) uma partição de Θ (isto é, $\Theta_0\cup\Theta_1=\Theta$ e $\Theta_0\cap\Theta_1=\emptyset$). Formulemos as hipóteses estatísticas $H_0:\theta\in\Theta_0$ e $H_1:\theta\in\Theta_1$. Como antes, $\mathcal X$ denota o espaço amostral.

TESTES DE HIPÓTESES

- Em vários aspectos, acomoda as questões anteriores.
- Abordagem "mais próxima" à tomada de decisão que testes de significância.
- Formalização: Consideremos (Θ_0, Θ_1) uma partição de Θ (isto é, $\Theta_0 \cup \Theta_1 = \Theta$ e $\Theta_0 \cap \Theta_1 = \emptyset$). Formulemos as hipóteses estatísticas $H_0: \theta \in \Theta_0$ e $H_1: \theta \in \Theta_1$. Como antes, $\mathcal X$ denota o espaço amostral.

TESTES DE HIPÓTESES

- Em vários aspectos, acomoda as questões anteriores.
- Abordagem "mais próxima" à tomada de decisão que testes de significância.
- Formalização: Consideremos (Θ_0, Θ_1) uma partição de Θ (isto é, $\Theta_0 \cup \Theta_1 = \Theta$ e $\Theta_0 \cap \Theta_1 = \emptyset$). Formulemos as hipóteses estatísticas $H_0: \theta \in \Theta_0$ e $H_1: \theta \in \Theta_1$. Como antes, $\mathcal X$ denota o espaço amostral.

TESTES DE HIPÓTESES

- Em vários aspectos, acomoda as questões anteriores.
- Abordagem "mais próxima" à tomada de decisão que testes de significância.
- Formalização: Consideremos (Θ_0,Θ_1) uma partição de Θ (isto é, $\Theta_0\cup\Theta_1=\Theta$ e $\Theta_0\cap\Theta_1=\emptyset$). Formulemos as hipóteses estatísticas $H_0:\theta\in\Theta_0$ e $H_1:\theta\in\Theta_1$. Como antes, $\mathcal X$ denota o espaço amostral.

- **DEFINICÃO**: Um teste (função de teste) de hipóteses $\varphi: \mathcal{X} \to \{0,1\}$ para as hipóteses $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ é uma regra de decisão que especifica para cada ponto amostral $x \in \mathcal{X}$ a decisão por rejeitar H_0 ($\varphi(x) = 1$) ou a decisão de não rejeitar H_0 ($\varphi(x) = 0$).
- Especificado o modelo estatístico e formuladas as hipóteses H_0 e H_1 , como escolher uma "bom" teste (c teste "ótimo")?
- Critério de otimalidade baseado em possíveis erros de tomada de decisão: erros de tipo I (rejeição de H_0 quando verdadeira) e de tipo II (não-rejeição de H_0 quando falsa): probabilidades de erros de tipo I e II; função poder.

- **DEFINICÃO**: Um teste (função de teste) de hipóteses $\varphi: \mathcal{X} \to \{0,1\}$ para as hipóteses $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ é uma regra de decisão que especifica para cada ponto amostral $x \in \mathcal{X}$ a decisão por rejeitar H_0 ($\varphi(x) = 1$) ou a decisão de não rejeitar H_0 ($\varphi(x) = 0$).
- Especificado o modelo estatístico e formuladas as hipóteses H₀ e H₁, como escolher uma "bom" teste (c teste "ótimo")?
- Critério de otimalidade baseado em possíveis erros de tomada de decisão: erros de tipo I (rejeição de H_0 quando verdadeira) e de tipo II (não-rejeição de H_0 quando falsa): probabilidades de erros de tipo I e II; função poder.

- **DEFINICÃO**: Um teste (função de teste) de hipóteses $\varphi: \mathcal{X} \to \{0,1\}$ para as hipóteses $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ é uma regra de decisão que especifica para cada ponto amostral $x \in \mathcal{X}$ a decisão por rejeitar H_0 ($\varphi(x) = 1$) ou a decisão de não rejeitar H_0 ($\varphi(x) = 0$).
- Especificado o modelo estatístico e formuladas as hipóteses H_0 e H_1 , como escolher uma "bom" teste (o teste "ótimo")?
- Critério de otimalidade baseado em possíveis erros de tomada de decisão: erros de tipo I (rejeição de H_0 quando verdadeira) e de tipo II (não-rejeição de H_0 quando falsa): probabilidades de erros de tipo I e II; função poder.

- **DEFINICÃO**: Um teste (função de teste) de hipóteses $\varphi: \mathcal{X} \to \{0,1\}$ para as hipóteses $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ é uma regra de decisão que especifica para cada ponto amostral $x \in \mathcal{X}$ a decisão por rejeitar H_0 ($\varphi(x) = 1$) ou a decisão de não rejeitar H_0 ($\varphi(x) = 0$).
- Especificado o modelo estatístico e formuladas as hipóteses H_0 e H_1 , como escolher uma "bom" teste (o teste "ótimo")?
- Critério de otimalidade baseado em possíveis erros de tomada de decisão: erros de tipo I (rejeição de H_0 quando verdadeira) e de tipo II (não-rejeição de H_0 quando falsa): probabilidades de erros de tipo I e II; função poder.

• No caso de hipóteses simples (conjuntos unitários), $H_0:\theta=\theta_0 \text{ e } H_1:\theta=\theta_1 \text{ : } (\Theta=\{\theta_0,\theta_1\})$ $\alpha_\varphi = \mathbb{P}(\varphi(X)=1\mid \theta=\theta_0) \text{ (idealmente, igual a 0)}$ $\beta_\varphi = \mathbb{P}(\varphi(X)=0\mid \theta=\theta_1) \text{ (idealmente, igual a 0)}$

• No caso de hipóteses gerais (simples ou não) : função poder do teste $\varphi,\,\pi_\varphi:\Theta\to[0,1],$ dada por

$$\pi_{\varphi}(\theta) \ = \ \mathbb{P}(\varphi(X) = 1 \mid \theta)$$
 (idealmente, satisfazendo $\pi_{\varphi}(\theta) = 0$, se $\theta \in \Theta_0$, e $\pi_{\varphi}(\theta) = 1$, se $\theta \in \Theta_1$)

• No caso de hipóteses simples (conjuntos unitários), $H_0:\theta=\theta_0 \text{ e } H_1:\theta=\theta_1 \text{ : } (\Theta=\{\theta_0,\theta_1\})$ $\alpha_\varphi \ = \ \mathbb{P}(\varphi(X)=1 \mid \theta=\theta_0) \text{ (idealmente, igual a 0)}$ $\beta_\varphi \ = \ \mathbb{P}(\varphi(X)=0 \mid \theta=\theta_1) \text{ (idealmente, igual a 0)}$

• No caso de hipóteses gerais (simples ou não) : função poder do teste $\varphi,\,\pi_{\varphi}:\Theta\to[0,1],$ dada por

$$\pi_{\varphi}(\theta) = \mathbb{P}(\varphi(X) = 1 \mid \theta)$$

(idealmente, satisfazendo $\pi_{\varphi}(\theta) = 0$, se $\theta \in \Theta_0$, e $\pi_{\varphi}(\theta) = 1$, se $\theta \in \Theta_1$)

• No caso de hipóteses simples (conjuntos unitários), $H_0:\theta=\theta_0 \text{ e } H_1:\theta=\theta_1 \text{ : } (\Theta=\{\theta_0,\theta_1\})$ $\alpha_\varphi \ = \ \mathbb{P}(\varphi(X)=1 \mid \theta=\theta_0) \text{ (idealmente, igual a 0)}$ $\beta_\varphi \ = \ \mathbb{P}(\varphi(X)=0 \mid \theta=\theta_1) \text{ (idealmente, igual a 0)}$

• No caso de hipóteses gerais (simples ou não) : função poder do teste $\varphi,\,\pi_\varphi:\Theta\to[0,1],$ dada por

$$\pi_{\varphi}(\theta) \ = \ \mathbb{P}(\varphi(X) = 1 \mid \theta)$$
 (idealmente, satisfazendo $\pi_{\varphi}(\theta) = 0$, se $\theta \in \Theta_0$, e $\pi_{\varphi}(\theta) = 1$, se $\theta \in \Theta_1$)

•
$$\varphi_2(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 \ge 1$$

•
$$\varphi_3(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 = 0$$

•
$$\varphi_4(x_1, x_2) = 1, \forall (x_1, x_2) \in \mathcal{X}$$

•
$$\varphi_1(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 = 2$$

•
$$\varphi_2(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 \ge 1$$

•
$$\varphi_3(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 = 0$$

$$\bullet \varphi_4(x_1, x_2) = 1, \forall (x_1, x_2) \in \mathcal{X}$$

•
$$\varphi_1(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 = 2$$

•
$$\varphi_2(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 \ge 1$$

•
$$\varphi_3(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 = 0$$

$$\bullet \varphi_4(x_1, x_2) = 1, \forall (x_1, x_2) \in \mathcal{X}$$

$$\bullet \ \varphi_1(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 = 2$$

$$\bullet \varphi_2(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 \ge 1$$

•
$$\varphi_3(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 = 0$$

$$\bullet \varphi_4(x_1, x_2) = 1, \forall (x_1, x_2) \in \mathcal{X}$$

$$\bullet \ \varphi_1(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 = 2$$

•
$$\varphi_2(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 \ge 1$$

$$\bullet \ \varphi_3(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 = 0$$

$$\bullet \varphi_4(x_1, x_2) = 1, \forall (x_1, x_2) \in \mathcal{X}$$

$$\bullet \varphi_2(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 \ge 1$$

$$\bullet \ \varphi_3(x_1, x_2) = 1 \Leftrightarrow x_1 + x_2 = 0$$

$$\bullet \varphi_4(x_1,x_2) = 1, \forall (x_1,x_2) \in \mathcal{X}$$

•
$$\pi_{\varphi_1}(\theta) = \mathbb{P}(X_1 = X_2 = 1 | \theta) = \frac{\theta(\theta - 1)}{20}$$

•
$$\pi_{\varphi_2}(\theta) = 1 - \mathbb{P}(X_1 = X_2 = 0|\theta) = 1 - \frac{(5-\theta)(4-\theta)}{20}$$

$$\bullet \ \pi_{\varphi_3}(\theta) = \frac{(5-\theta)(4-\theta)}{20}$$

$$\bullet \ \pi_{\varphi_4}(\theta) = 1 \ , \ \forall \theta \in \Theta$$

•
$$\pi_{\varphi_1}(\theta) = \mathbb{P}(X_1 = X_2 = 1 | \theta) = \frac{\theta(\theta - 1)}{20}$$

•
$$\pi_{\varphi_2}(\theta) = 1 - \mathbb{P}(X_1 = X_2 = 0|\theta) = 1 - \frac{(5-\theta)(4-\theta)}{20}$$

$$\bullet \ \pi_{\varphi_3}(\theta) = \frac{(5-\theta)(4-\theta)}{20}$$

•
$$\pi_{\varphi_4}(\theta) = 1, \forall \theta \in \Theta$$

$$\bullet \ \pi_{\varphi_1}(\theta) \ = \ \mathbb{P}(X_1 = X_2 = 1 | \theta) \ = \ \frac{\theta(\theta - 1)}{20}$$

•
$$\pi_{\varphi_2}(\theta) = 1 - \mathbb{P}(X_1 = X_2 = 0|\theta) = 1 - \frac{(5-\theta)(4-\theta)}{20}$$

$$\bullet \ \pi_{\varphi_3}(\theta) = \frac{(5-\theta)(4-\theta)}{20}$$

•
$$\pi_{\varphi_4}(\theta) = 1, \forall \theta \in \Theta$$

$$\bullet \ \pi_{\varphi_1}(\theta) \ = \ \mathbb{P}(X_1 = X_2 = 1 | \theta) \ = \ \frac{\theta(\theta - 1)}{20}$$

•
$$\pi_{\varphi_2}(\theta) = 1 - \mathbb{P}(X_1 = X_2 = 0|\theta) = 1 - \frac{(5-\theta)(4-\theta)}{20}$$

$$\bullet \ \pi_{\varphi_3}(\theta) = \frac{(5-\theta)(4-\theta)}{20}$$

$$\bullet \ \pi_{\varphi_4}(\theta) = 1, \forall \theta \in \Theta$$

$$\bullet \ \pi_{\varphi_1}(\theta) \ = \ \mathbb{P}(X_1 = X_2 = 1 | \theta) \ = \ \frac{\theta(\theta - 1)}{20}$$

•
$$\pi_{\varphi_2}(\theta) = 1 - \mathbb{P}(X_1 = X_2 = 0|\theta) = 1 - \frac{(5-\theta)(4-\theta)}{20}$$

$$\bullet \ \pi_{\varphi_3}(\theta) \ = \ \tfrac{(5-\theta)(4-\theta)}{20}$$

$$\bullet \ \pi_{\varphi_4}(\theta) = 1, \forall \theta \in \Theta$$

$$\bullet \ \pi_{\varphi_1}(\theta) \ = \ \mathbb{P}(X_1 = X_2 = 1 | \theta) \ = \ \frac{\theta(\theta - 1)}{20}$$

•
$$\pi_{\varphi_2}(\theta) = 1 - \mathbb{P}(X_1 = X_2 = 0|\theta) = 1 - \frac{(5-\theta)(4-\theta)}{20}$$

$$\bullet \ \pi_{\varphi_3}(\theta) \ = \ \tfrac{(5-\theta)(4-\theta)}{20}$$

$$\bullet \ \pi_{\varphi_4}(\theta) = 1, \ \forall \theta \in \Theta$$

- Impossibilidade de obter teste que seja ótimo SIMULTANEAMENTE quanto às probabilidades de erro de tipo I e de erro de tipo II (quanto aos valores da função poder tanto sob H_0 quanto sob H_1).
- Soluções alternativas:
- 1) Especificação de um valor máximo, limitante superior ("teto") para a probabilidade de erro de tipo I (para a função poder sobre toda hipótese nula H_0) e minimização da probabilidade de erro de tipo II (maximização da função poder sobre toda hipótese alternativa H_1) sob essa restrição ("teto").
- 2) Minimização de combinação linear das probabilidades de erro de tipo I e de erro de tipo II.

- Impossibilidade de obter teste que seja ótimo SIMULTANEAMENTE quanto às probabilidades de erro de tipo I e de erro de tipo II (quanto aos valores da função poder tanto sob H_0 quanto sob H_1).
- Soluções alternativas:
- 1) Especificação de um valor máximo, limitante superior ("teto") para a probabilidade de erro de tipo I (para a função poder sobre toda hipótese nula H_0) e minimização da probabilidade de erro de tipo II (maximização da função poder sobre toda hipótese alternativa H_1) sob essa restrição ("teto").
- 2) Minimização de combinação linear das probabilidades de erro de tipo I e de erro de tipo II.

• Impossibilidade de obter teste que seja ótimo SIMULTANEAMENTE quanto às probabilidades de erro de tipo I e de erro de tipo II (quanto aos valores da função poder tanto sob H_0 quanto sob H_1).

Soluções alternativas:

- 1) Especificação de um valor máximo, limitante superior ("teto") para a probabilidade de erro de tipo I (para a função poder sobre toda hipótese nula H_0) e minimização da probabilidade de erro de tipo II (maximização da função poder sobre toda hipótese alternativa H_1) sob essa restrição ("teto").
- 2) Minimização de combinação linear das probabilidades de erro de tipo I e de erro de tipo II.

- Impossibilidade de obter teste que seja ótimo SIMULTANEAMENTE quanto às probabilidades de erro de tipo I e de erro de tipo II (quanto aos valores da função poder tanto sob H_0 quanto sob H_1).
- Soluções alternativas:
- 1) Especificação de um valor máximo, limitante superior ("teto") para a probabilidade de erro de tipo I (para a função poder sobre toda hipótese nula H_0) e minimização da probabilidade de erro de tipo II (maximização da função poder sobre toda hipótese alternativa H_1) sob essa restrição ("teto").
- 2) Minimização de combinação linear das probabilidades de erro de tipo I e de erro de tipo II.

- Impossibilidade de obter teste que seja ótimo SIMULTANEAMENTE quanto às probabilidades de erro de tipo I e de erro de tipo II (quanto aos valores da função poder tanto sob H_0 quanto sob H_1).
- Soluções alternativas:
- 1) Especificação de um valor máximo, limitante superior ("teto") para a probabilidade de erro de tipo I (para a função poder sobre toda hipótese nula H_0) e minimização da probabilidade de erro de tipo II (maximização da função poder sobre toda hipótese alternativa H_1) sob essa restrição ("teto").
- 2) Minimização de combinação linear das probabilidades de erro de tipo I e de erro de tipo II.

- Solução alternativa 1: Testes uniformemente mais poderosos (UMP) de nível de significância fixado.
- **DEFINICÃO**; Um teste $\varphi^*: \mathcal{X} \to \{0,1\}$ é uniformemente mais poderoso (UMP) de nível α para $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ se
 - (a) $\pi_{\varphi^*}(\theta) \leq \alpha$, $\forall \theta \in \Theta_0$ e
 - (b) Para todo teste φ que satisfaz (a), $\pi_{\varphi^*}(\theta) \geq \pi_{\varphi}(\theta), \forall \theta \in \Theta_1$
- (Lema de Neyman-Pearson) Seja k>0. O teste $\varphi^*:\mathcal{X}\to\{0,1\}$ para as hipóteses $H_0:\theta=\theta_0$ versus $H_1:\theta=\theta_1$ dado por

$$\varphi^*(x) = 1 \Leftrightarrow \frac{f(x|\theta_1)}{f(x|\theta_0)} > k$$

é teste UMP (MP) de nível $\alpha = \pi_{\mathcal{O}^*}(\theta_0)$

- Solução alternativa 1: Testes uniformemente mais poderosos (UMP) de nível de significância fixado.
- **DEFINICÃO**; Um teste $\varphi^*: \mathcal{X} \to \{0,1\}$ é uniformemente mais poderoso (UMP) de nível α para $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ se
 - (a) $\pi_{\varphi^*}(\theta) \leq \alpha$, $\forall \theta \in \Theta_0$ e
 - (b) Para todo teste φ que satisfaz (a), $\pi_{\varphi^*}(\theta) \geq \pi_{\varphi}(\theta), \forall \theta \in \Theta_1$
- (Lema de Neyman-Pearson) Seja k>0. O teste $\varphi^*:\mathcal{X}\to\{0,1\}$ para as hipóteses $H_0:\theta=\theta_0$ versus $H_1:\theta=\theta_1$ dado por

$$\varphi^*(x) = 1 \Leftrightarrow \frac{f(x|\theta_1)}{f(x|\theta_0)} > k$$

é teste UMP (MP) de nível $\alpha = \pi_{\varphi^*}(\theta_0)$ and θ

- Solução alternativa 1: Testes uniformemente mais poderosos (UMP) de nível de significância fixado.
- **DEFINICÃO**; Um teste $\varphi^*: \mathcal{X} \to \{0,1\}$ é uniformemente mais poderoso (UMP) de nível α para $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ se
 - (a) $\pi_{\varphi^*}(\theta) \leq \alpha$, $\forall \theta \in \Theta_0$ e
 - (b) Para todo teste φ que satisfaz (a), $\pi_{\varphi^*}(\theta) \geq \pi_{\varphi}(\theta)$, $\forall \theta \in \Theta_1$
- (Lema de Neyman-Pearson) Seja k>0. O teste $\varphi^*:\mathcal{X}\to\{0,1\}$ para as hipóteses $H_0:\theta=\theta_0$ versus $H_1:\theta=\theta_1$ dado por

$$\varphi^*(x) = 1 \Leftrightarrow \frac{f(x|\theta_1)}{f(x|\theta_0)} > k$$

é teste UMP (MP) de nível $\alpha=\pi_{\varphi^*}(\theta_0)$ and the second second $\alpha=\pi_{\varphi^*}(\theta_0)$ and the second $\alpha=\pi_{\varphi^*}(\theta_0)$ and $\alpha=\pi_{\varphi^*}(\theta_0)$

- Solução alternativa 1: Testes uniformemente mais poderosos (UMP) de nível de significância fixado.
- **DEFINICÃO**; Um teste $\varphi^*: \mathcal{X} \to \{0,1\}$ é uniformemente mais poderoso (UMP) de nível α para $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ se
 - (a) $\pi_{\varphi^*}(\theta) \leq \alpha$, $\forall \theta \in \Theta_0$ e
 - (b) Para todo teste φ que satisfaz (a), $\pi_{\varphi^*}(\theta) \geq \pi_{\varphi}(\theta)$, $\forall \theta \in \Theta_1$
- (Lema de Neyman-Pearson) Seja k > 0. O teste $\varphi^* : \mathcal{X} \to \{0,1\}$ para as hipóteses $H_0 : \theta = \theta_0$ versus $H_1 : \theta = \theta_1$ dado por $\varphi^*(x) = 1 \Leftrightarrow \frac{f(x|\theta_1)}{f(x|\theta_2)} > k$

é teste UMP (MP) de nível $lpha=\pi_{arphi^*}(heta_0)$.

• Exemplo: Seja $(X_1,...,X_n)$ AAS do modelo Normal de média θ e variância 1. Sejam $\theta_0,\theta_1\in\mathbb{R}$ tais que $\theta_0<\theta_1$. Para testar $H_0:\theta=\theta_0$ versus $H_1:\theta=\theta_1$, vamos construir, pelo Lema de Neyman-Pearson, o teste MP de nível α , $\alpha\in[0,1]$. Para $x=(x_1,...,x_n)\in\mathbb{R}^n$,

$$\bullet \ \frac{f(x|\theta_1)}{f(x|\theta_0)} = \frac{V_x(\theta_1)}{V_x(\theta_0)} = \frac{\left(\frac{1}{2\pi}\right)^{\frac{n}{2}} e^{-\frac{\sum_{i=1}^n (x_i - \theta_1)^2}{2}}}{\left(\frac{1}{2\pi}\right)^{\frac{n}{2}} e^{-\frac{\sum_{i=1}^n (x_i - \theta_0)^2}{2}}} > k \iff \dots$$

$$\bullet \Leftrightarrow e^{-\frac{n}{2}(\theta_1 - \theta_0)^2 + n\bar{x}(\theta_1 - \theta_0)} > k \Leftrightarrow \dots$$

$$\bullet \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 - \theta_0)} + \frac{\theta_1 + \theta_0}{2} = k' = k'(n, \theta_0, \theta_1) \quad (*)$$

• Exemplo: Seja $(X_1,...,X_n)$ AAS do modelo Normal de média θ e variância 1. Sejam $\theta_0,\theta_1\in\mathbb{R}$ tais que $\theta_0<\theta_1$. Para testar $H_0:\theta=\theta_0$ versus $H_1:\theta=\theta_1$, vamos construir, pelo Lema de Neyman-Pearson, o teste MP de nível α , $\alpha\in[0,1]$. Para $x=(x_1,...,x_n)\in\mathbb{R}^n$,

$$\bullet \Leftrightarrow e^{-\frac{n}{2}(\theta_1 - \theta_0)^2 + n\bar{x}(\theta_1 - \theta_0)} > k \Leftrightarrow \dots$$

$$\bullet \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 - \theta_0)} + \frac{\theta_1 + \theta_0}{2} = k' = k'(n, \theta_0, \theta_1) \quad (*)$$

• Exemplo: Seja $(X_1,...,X_n)$ AAS do modelo Normal de média θ e variância 1. Sejam $\theta_0,\theta_1\in\mathbb{R}$ tais que $\theta_0<\theta_1$. Para testar $H_0:\theta=\theta_0$ versus $H_1:\theta=\theta_1$, vamos construir, pelo Lema de Neyman-Pearson, o teste MP de nível α , $\alpha\in[0,1]$. Para $x=(x_1,...,x_n)\in\mathbb{R}^n$,

$$\bullet \frac{f(x|\theta_1)}{f(x|\theta_0)} = \frac{V_x(\theta_1)}{V_x(\theta_0)} = \frac{(\frac{1}{2\pi})^{\frac{n}{2}} e^{-\frac{\sum_{i=1}^n (x_i - \theta_1)^2}{2}}}{(\frac{1}{2\pi})^{\frac{n}{2}} e^{-\frac{\sum_{i=1}^n (x_i - \theta_0)^2}{2}}} > k \iff \dots$$

$$\bullet \Leftrightarrow e^{-\frac{n}{2}(\theta_1 - \theta_0)^2 + n\bar{x}(\theta_1 - \theta_0)} > k \Leftrightarrow \dots$$

$$\bullet \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 - \theta_0)} + \frac{\theta_1 + \theta_0}{2} = k' = k'(n, \theta_0, \theta_1) \quad (*)$$

• Exemplo: Seja $(X_1,...,X_n)$ AAS do modelo Normal de média θ e variância 1. Sejam $\theta_0,\theta_1\in\mathbb{R}$ tais que $\theta_0<\theta_1$. Para testar $H_0:\theta=\theta_0$ versus $H_1:\theta=\theta_1$, vamos construir, pelo Lema de Neyman-Pearson, o teste MP de nível α , $\alpha\in[0,1]$. Para $x=(x_1,...,x_n)\in\mathbb{R}^n$,

$$\bullet \frac{f(x|\theta_1)}{f(x|\theta_0)} = \frac{V_x(\theta_1)}{V_x(\theta_0)} = \frac{(\frac{1}{2\pi})^{\frac{n}{2}} e^{-\frac{\sum_{i=1}^n (x_i - \theta_1)^2}{2}}}{(\frac{1}{2\pi})^{\frac{n}{2}} e^{-\frac{\sum_{i=1}^n (x_i - \theta_0)^2}{2}}} > k \iff \dots$$

$$\bullet \Leftrightarrow e^{-\frac{n}{2}(\theta_1 - \theta_0)^2 + n\bar{x}(\theta_1 - \theta_0)} > k \Leftrightarrow \dots$$

$$\bullet \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 - \theta_0)} + \frac{\theta_1 + \theta_0}{2} = k' = k'(n, \theta_0, \theta_1) \quad (*)$$

• Exemplo: Seja $(X_1,...,X_n)$ AAS do modelo Normal de média θ e variância 1. Sejam $\theta_0,\theta_1\in\mathbb{R}$ tais que $\theta_0<\theta_1$. Para testar $H_0:\theta=\theta_0$ versus $H_1:\theta=\theta_1$, vamos construir, pelo Lema de Neyman-Pearson, o teste MP de nível α , $\alpha\in[0,1]$. Para $x=(x_1,...,x_n)\in\mathbb{R}^n$,

$$\bullet \frac{f(x|\theta_1)}{f(x|\theta_0)} = \frac{V_x(\theta_1)}{V_x(\theta_0)} = \frac{(\frac{1}{2\pi})^{\frac{n}{2}} e^{-\frac{\sum_{i=1}^n (x_i - \theta_1)^2}{2}}}{(\frac{1}{2\pi})^{\frac{n}{2}} e^{-\frac{\sum_{i=1}^n (x_i - \theta_0)^2}{2}}} > k \iff \dots$$

- $\bullet \Leftrightarrow e^{-\frac{n}{2}(\theta_1 \theta_0)^2 + n\bar{x}(\theta_1 \theta_0)} > k \Leftrightarrow \dots$
- $\bullet \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 \theta_0)} + \frac{\theta_1 + \theta_0}{2} = k' = k'(n, \theta_0, \theta_1) \quad (*)$

• Comumente, ao invés de se adotar k' como em (*) e obter o teste MP de nível α_{φ^*} , é fixado $\alpha \in (0,1)$ e determinado k'' de modo a satisfazer a condição $\pi_{\varphi^{**}}(\theta_0) = \alpha$, isto é, é determinado o teste MP de nível α fixado. Assim, resulta que

•
$$\pi_{\varphi^{**}}(\theta_0) = \alpha \Leftrightarrow \mathbb{P}(\bar{X} > k''|\theta_0) = \alpha \Leftrightarrow \dots$$

$$\bullet \Leftrightarrow k'' = \theta_0 + \frac{\Phi^{-1}(1-\alpha)}{\sqrt{n}} = k''(n,\theta_0,\alpha)$$

Pelo Lema de neyman-Pearson,

$$\varphi^{**}(x) = 1 \Leftrightarrow \bar{x} > \theta_0 + \frac{\Phi^{-1}(1-\alpha)}{\sqrt{n}}$$

• Comumente, ao invés de se adotar k' como em (*) e obter o teste MP de nível α_{φ^*} , é fixado $\alpha \in (0,1)$ e determinado k'' de modo a satisfazer a condição $\pi_{\varphi^{**}}(\theta_0) = \alpha$, isto é, é determinado o teste MP de nível α fixado. Assim, resulta que

$$\bullet \ \pi_{\varphi^{**}}(\theta_0) = \alpha \Leftrightarrow \mathbb{P}(\bar{X} > k''|\theta_0) = \alpha \Leftrightarrow \dots$$

$$\bullet \Leftrightarrow k'' = \theta_0 + \frac{\Phi^{-1}(1-\alpha)}{\sqrt{n}} = k''(n,\theta_0,\alpha)$$

Pelo Lema de neyman-Pearson,

$$\varphi^{**}(x) = 1 \Leftrightarrow \bar{x} > \theta_0 + \frac{\Phi^{-1}(1-\alpha)}{\sqrt{n}}$$

• Comumente, ao invés de se adotar k' como em (*) e obter o teste MP de nível α_{φ^*} , é fixado $\alpha \in (0,1)$ e determinado k'' de modo a satisfazer a condição $\pi_{\varphi^{**}}(\theta_0) = \alpha$, isto é, é determinado o teste MP de nível α fixado. Assim, resulta que

•
$$\pi_{\varphi^{**}}(\theta_0) = \alpha \Leftrightarrow \mathbb{P}(\bar{X} > k''|\theta_0) = \alpha \Leftrightarrow \dots$$

$$\bullet \Leftrightarrow k'' = \theta_0 + \frac{\Phi^{-1}(1-\alpha)}{\sqrt{n}} = k''(n,\theta_0,\alpha)$$

Pelo Lema de neyman-Pearson,

$$\varphi^{**}(x) = 1 \Leftrightarrow \bar{x} > \theta_0 + \frac{\Phi^{-1}(1-\alpha)}{\sqrt{n}}$$

• Comumente, ao invés de se adotar k' como em (*) e obter o teste MP de nível α_{φ^*} , é fixado $\alpha \in (0,1)$ e determinado k'' de modo a satisfazer a condição $\pi_{\varphi^{**}}(\theta_0) = \alpha$, isto é, é determinado o teste MP de nível α fixado. Assim, resulta que

•
$$\pi_{\varphi^{**}}(\theta_0) = \alpha \Leftrightarrow \mathbb{P}(\bar{X} > k''|\theta_0) = \alpha \Leftrightarrow \dots$$

$$\bullet \Leftrightarrow k'' = \theta_0 + \frac{\Phi^{-1}(1-\alpha)}{\sqrt{n}} = k''(n,\theta_0,\alpha)$$

Pelo Lema de neyman-Pearson,

$$\varphi^{**}(x) = 1 \Leftrightarrow \bar{x} > \theta_0 + \frac{\Phi^{-1}(1-\alpha)}{\sqrt{n}}$$

• Comumente, ao invés de se adotar k' como em (*) e obter o teste MP de nível α_{φ^*} , é fixado $\alpha \in (0,1)$ e determinado k'' de modo a satisfazer a condição $\pi_{\varphi^{**}}(\theta_0) = \alpha$, isto é, é determinado o teste MP de nível α fixado. Assim, resulta que

•
$$\pi_{\varphi^{**}}(\theta_0) = \alpha \Leftrightarrow \mathbb{P}(\bar{X} > k''|\theta_0) = \alpha \Leftrightarrow \dots$$

$$\bullet \Leftrightarrow k'' = \theta_0 + \frac{\Phi^{-1}(1-\alpha)}{\sqrt{n}} = k''(n,\theta_0,\alpha)$$

Pelo Lema de neyman-Pearson,

$$\varphi^{**}(x) = 1 \Leftrightarrow \bar{x} > \theta_0 + \frac{\Phi^{-1}(1-\alpha)}{\sqrt{n}}$$

- Solução alternativa 2: Testes que minimizam combinações lineares das probabilidades de erros de tipo I e de tipo II.
- **RESULTADO:** Seja k > 0. O teste $\varphi^* : \mathcal{X} \to \{0, 1\}$ para as hipóteses $H_0 : \theta = \theta_0$ versus $H_1 : \theta = \theta_1$ dado por

$$\varphi^*(x) = 1 \Leftrightarrow \frac{f(x|\theta_1)}{f(x|\theta_0)} > k$$

satisfaz, para toda função de teste φ

$$k \alpha_{\varphi^*} + \beta_{\varphi^*} \le k \alpha_{\varphi} + \beta_{\varphi}$$
, ou
$$k\pi_{\varphi^*}(\theta_0) + (1 - \pi_{\varphi^*}(\theta_1)) \le k\pi_{\varphi}(\theta_0) + (1 - \pi_{\varphi}(\theta_1))$$

- Solução alternativa 2: Testes que minimizam combinações lineares das probabilidades de erros de tipo I e de tipo II.
- **RESULTADO:** Seja k > 0. O teste $\varphi^* : \mathcal{X} \to \{0, 1\}$ para as hipóteses $H_0 : \theta = \theta_0$ versus $H_1 : \theta = \theta_1$ dado por

$$\varphi^*(x) = 1 \Leftrightarrow \frac{f(x|\theta_1)}{f(x|\theta_0)} > k$$

satisfaz, para toda função de teste φ ,

$$k \alpha_{\varphi^*} + \beta_{\varphi^*} \leq k \alpha_{\varphi} + \beta_{\varphi}$$
, ou $k\pi_{\varphi^*}(\theta_0) + (1 - \pi_{\varphi^*}(\theta_1)) \leq k\pi_{\varphi}(\theta_0) + (1 - \pi_{\varphi}(\theta_1))$

- Solução alternativa 2: Testes que minimizam combinações lineares das probabilidades de erros de tipo I e de tipo II.
- **RESULTADO:** Seja k > 0. O teste $\varphi^* : \mathcal{X} \to \{0, 1\}$ para as hipóteses $H_0 : \theta = \theta_0$ versus $H_1 : \theta = \theta_1$ dado por

$$\varphi^*(x) = 1 \Leftrightarrow \frac{f(x|\theta_1)}{f(x|\theta_0)} > k$$

satisfaz, para toda função de teste φ ,

$$k \alpha_{\varphi^*} + \beta_{\varphi^*} \le k \alpha_{\varphi} + \beta_{\varphi}$$
, ou
$$k\pi_{\varphi^*}(\theta_0) + (1 - \pi_{\varphi^*}(\theta_1)) \le k\pi_{\varphi}(\theta_0) + (1 - \pi_{\varphi}(\theta_1))$$

• No exemplo anterior, o teste φ^* com tal propriedade (minimização de combinação linear de probabilidades de erros) é

•
$$\varphi^*(x) = 1 \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 - \theta_0)} + \frac{\theta_1 + \theta_0}{2}$$
 (depende de θ_1)

• O teste MP de nível α para H_0 versus H_1 é

$$arphi^{**}(x) \ = \ 1 \ \Leftrightarrow \ ar{x} \ > \ heta_0 \ + \ rac{\Phi^{-1}(1-lpha)}{\sqrt{n}} \ \ \ ext{(n\~ao depende de $ heta_1$)}$$

• No exemplo anterior, o teste φ^* com tal propriedade (minimização de combinação linear de probabilidades de erros) é

•
$$\varphi^*(x) = 1 \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 - \theta_0)} + \frac{\theta_1 + \theta_0}{2}$$
 (depende de θ_1)

• O teste MP de nível α para H_0 versus H_1 é

• No exemplo anterior, o teste φ^* com tal propriedade (minimização de combinação linear de probabilidades de erros) é

•
$$\varphi^*(x) = 1 \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 - \theta_0)} + \frac{\theta_1 + \theta_0}{2}$$
 (depende de θ_1)

• O teste MP de nível α para H_0 versus H_1 é

• No exemplo anterior, o teste φ^* com tal propriedade (minimização de combinação linear de probabilidades de erros) é

•
$$\varphi^*(x) = 1 \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 - \theta_0)} + \frac{\theta_1 + \theta_0}{2}$$
 (depende de θ_1)

• O teste MP de nível α para H_0 versus H_1 é

$$arphi^{**}(x) = 1 \Leftrightarrow ar{x} > heta_0 + rac{\Phi^{-1}(1-lpha)}{\sqrt{n}} \quad (ext{n\~ao depende de } heta_1)$$

- No exemplo anterior, o teste φ^* com tal propriedade (minimização de combinação linear de probabilidades de erros) é
- $\varphi^*(x) = 1 \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 \theta_0)} + \frac{\theta_1 + \theta_0}{2}$ (depende de θ_1)
- O teste MP de nível α para H_0 versus H_1 é

$$arphi^{**}(x) = 1 \Leftrightarrow ar{x} > heta_0 + rac{\Phi^{-1}(1-lpha)}{\sqrt{n}}$$
 (não depende de $heta_1$)

- No exemplo anterior, o teste φ^* com tal propriedade (minimização de combinação linear de probabilidades de erros) é
- $\varphi^*(x) = 1 \Leftrightarrow \bar{x} > \frac{\log k}{n(\theta_1 \theta_0)} + \frac{\theta_1 + \theta_0}{2}$ (depende de θ_1)
- O teste MP de nível α para H_0 versus H_1 é

$$arphi^{**}(x) = 1 \Leftrightarrow ar{x} > heta_0 + rac{\Phi^{-1}(1-lpha)}{\sqrt{n}}$$
 (não depende de $heta_1$)

- Testes mais poderosos \rightarrow "Independência" de $\theta_1 > \theta_0$ viabiliza, sob certas condições, a extensão de testes MP para testes UMP para hipóteses unilaterais (Karlin e Rubin), união de dois intervalos, testes RVG, etc.. Por outro lado, testes MP de nível pré-fixado "negligenciam" a razão de verossimilhanças entre cada $\theta_1 > \theta_0$ e θ_0 .
- Por outro lado, a fixação de um "valor de corte" para a razão de verossimilhanças impossibilita a existência de um único nível de significância para todos os testes para as hipóteses alternativas $\theta = \theta_1$, com $\theta_1 > \theta_0$.
- No que segue, avaliamos vantagens e desvantagens de testes de hipóteses (hypothesis testing).

- Testes mais poderosos \rightarrow "Independência" de $\theta_1 > \theta_0$ viabiliza, sob certas condições, a extensão de testes MP para testes UMP para hipóteses unilaterais (Karlin e Rubin), união de dois intervalos, testes RVG, etc.. Por outro lado, testes MP de nível pré-fixado "negligenciam" a razão de verossimilhanças entre cada $\theta_1 > \theta_0$ e θ_0 .
- Por outro lado, a fixação de um "valor de corte" para a razão de verossimilhanças impossibilita a existência de um único nível de significância para todos os testes para as hipóteses alternativas $\theta=\theta_1$, com $\theta_1>\theta_0$.
- No que segue, avaliamos vantagens e desvantagens de testes de hipóteses (hypothesis testing).

- Testes mais poderosos \rightarrow "Independência" de $\theta_1 > \theta_0$ viabiliza, sob certas condições, a extensão de testes MP para testes UMP para hipóteses unilaterais (Karlin e Rubin), união de dois intervalos, testes RVG, etc.. Por outro lado, testes MP de nível pré-fixado "negligenciam" a razão de verossimilhanças entre cada $\theta_1 > \theta_0$ e θ_0 .
- Por outro lado, a fixação de um "valor de corte" para a razão de verossimilhanças impossibilita a existência de um único nível de significância para todos os testes para as hipóteses alternativas $\theta=\theta_1$, com $\theta_1>\theta_0$.
- No que segue, avaliamos vantagens e desvantagens de testes de hipóteses (hypothesis testing).

- Testes mais poderosos \rightarrow "Independência" de $\theta_1 > \theta_0$ viabiliza, sob certas condições, a extensão de testes MP para testes UMP para hipóteses unilaterais (Karlin e Rubin), união de dois intervalos, testes RVG, etc.. Por outro lado, testes MP de nível pré-fixado "negligenciam" a razão de verossimilhanças entre cada $\theta_1 > \theta_0$ e θ_0 .
- Por outro lado, a fixação de um "valor de corte" para a razão de verossimilhanças impossibilita a existência de um único nível de significância para todos os testes para as hipóteses alternativas $\theta = \theta_1$, com $\theta_1 > \theta_0$.
- No que segue, avaliamos vantagens e desvantagens de testes de hipóteses (hypothesis testing).

- Vantagens
- 1)Consideração de hipótese alternativa e suas consequências: procedimento para a seleção de estatística adequada para tomada de decisão (dependência de estatística suficiente); avaliação dos dados sob situação "fora" da hipótese nula, etc..
- 2) No caso de testes com nível de significância fixado, possibilita de extensão de testes MP para muitos outros problemas de teste de hipóteses além de hipóteses simples.
- 3) Conexão com o problema de estimação por intervalo.
- 4) Formalização, num certo sentido, de testes vigentes até então.

- 1)Consideração de hipótese alternativa e suas consequências: procedimento para a seleção de estatística adequada para tomada de decisão (dependência de estatística suficiente); avaliação dos dados sob situação "fora" da hipótese nula, etc..
- 2) No caso de testes com nível de significância fixado, possibilita de extensão de testes MP para muitos outros problemas de teste de hipóteses além de hipóteses simples.
- 3) Conexão com o problema de estimação por intervalo.
- 4) Formalização, num certo sentido, de testes vigentes até então.

- 1)Consideração de hipótese alternativa e suas consequências: procedimento para a seleção de estatística adequada para tomada de decisão (dependência de estatística suficiente); avaliação dos dados sob situação "fora" da hipótese nula, etc..
- 2) No caso de testes com nível de significância fixado, possibilita de extensão de testes MP para muitos outros problemas de teste de hipóteses além de hipóteses simples.
- 3) Conexão com o problema de estimação por intervalo.
- 4) Formalização, num certo sentido, de testes vigentes até então.

- 1)Consideração de hipótese alternativa e suas consequências: procedimento para a seleção de estatística adequada para tomada de decisão (dependência de estatística suficiente); avaliação dos dados sob situação "fora" da hipótese nula, etc..
- 2) No caso de testes com nível de significância fixado, possibilita de extensão de testes MP para muitos outros problemas de teste de hipóteses além de hipóteses simples.
- 3) Conexão com o problema de estimação por intervalo.
- 4) Formalização, num certo sentido, de testes vigentes até então.

- 1)Consideração de hipótese alternativa e suas consequências: procedimento para a seleção de estatística adequada para tomada de decisão (dependência de estatística suficiente); avaliação dos dados sob situação "fora" da hipótese nula, etc..
- 2) No caso de testes com nível de significância fixado, possibilita de extensão de testes MP para muitos outros problemas de teste de hipóteses além de hipóteses simples.
- 3) Conexão com o problema de estimação por intervalo.
- 4) Formalização, num certo sentido, de testes vigentes até então.

- 1)Consideração de hipótese alternativa e suas consequências: procedimento para a seleção de estatística adequada para tomada de decisão (dependência de estatística suficiente); avaliação dos dados sob situação "fora" da hipótese nula, etc..
- 2) No caso de testes com nível de significância fixado, possibilita de extensão de testes MP para muitos outros problemas de teste de hipóteses além de hipóteses simples.
- 3) Conexão com o problema de estimação por intervalo.
- 4) Formalização, num certo sentido, de testes vigentes até então.

- 1)Fixação do nível de significância impõe restrições à escolha de funções de teste; ademais, desconsidera avaliação sob hipótese alternativa para definição dos testes "elegíveis"; "assimetria".
- 2) Controvérsias sobre mecanismo de escolha de valores para o nível de significância: escolha do agente decisor/pesquisador X particularidades do modelo sob apreciação (tamanho da amostra, do parâmetro), etc..
- "... in determining just how the balance [between the two kinds of error] should be struck must be left to the investigator" (Neyman and Pearson (1933), page 296).

- 1)Fixação do nível de significância impõe restrições à escolha de funções de teste; ademais, desconsidera avaliação sob hipótese alternativa para definição dos testes "elegíveis"; "assimetria".
- 2) Controvérsias sobre mecanismo de escolha de valores para o nível de significância: escolha do agente decisor/pesquisador X particularidades do modelo sob apreciação (tamanho da amostra, do parâmetro), etc..
- "... in determining just how the balance [between the two kinds of error] should be struck must be left to the investigator" (Neyman and Pearson (1933), page 296).

- 1)Fixação do nível de significância impõe restrições à escolha de funções de teste; ademais, desconsidera avaliação sob hipótese alternativa para definição dos testes "elegíveis"; "assimetria".
- 2) Controvérsias sobre mecanismo de escolha de valores para o nível de significância: escolha do agente decisor/pesquisador X particularidades do modelo sob apreciação (tamanho da amostra, do parâmetro), etc..
- "... in determining just how the balance [between the two kinds of error] should be struck must be left to the investigator" (Neyman and Pearson (1933), page 296).

- 1)Fixação do nível de significância impõe restrições à escolha de funções de teste; ademais, desconsidera avaliação sob hipótese alternativa para definição dos testes "elegíveis"; "assimetria".
- 2) Controvérsias sobre mecanismo de escolha de valores para o nível de significância: escolha do agente decisor/pesquisador X particularidades do modelo sob apreciação (tamanho da amostra, do parâmetro), etc..
- "... in determining just how the balance [between the two kinds of error] should be struck must be left to the investigator" (Neyman and Pearson (1933), page 296).

- 1)Fixação do nível de significância impõe restrições à escolha de funções de teste; ademais, desconsidera avaliação sob hipótese alternativa para definição dos testes "elegíveis"; "assimetria".
- 2) Controvérsias sobre mecanismo de escolha de valores para o nível de significância: escolha do agente decisor/pesquisador X particularidades do modelo sob apreciação (tamanho da amostra, do parâmetro), etc..
- "... in determining just how the balance [between the two kinds of error] should be struck must be left to the investigator" (Neyman and Pearson (1933), page 296).

- 3)Inconsistência lógica entre as conclusões obtidas de testes simultâneos/múltiplos baseados em níveis de significância pré-fixados.
- 4) Dificuldades em situações com espaços amostrais discretos: adoção de testes aleatorizados X mudança de nível de significância fixado de antemão X inconsistência com príncipios de inferência estatística.
- "In practice, typically neither the breaking of the r-order nor randomization is considered acceptable. The common solution, instead, is to adopt a value of α that can be attained exactly and therefore does not present this problem" (Lehmann (1959)).

- 3)Inconsistência lógica entre as conclusões obtidas de testes simultâneos/múltiplos baseados em níveis de significância pré-fixados.
- 4) Dificuldades em situações com espaços amostrais discretos: adoção de testes aleatorizados X mudança de nível de significância fixado de antemão X inconsistência com príncipios de inferência estatística.
- "In practice, typically neither the breaking of the r-order nor randomization is considered acceptable. The common solution, instead, is to adopt a value of α that can be attained exactly and therefore does not present this problem" (Lehmann (1959)).

- 3)Inconsistência lógica entre as conclusões obtidas de testes simultâneos/múltiplos baseados em níveis de significância pré-fixados.
- 4) Dificuldades em situações com espaços amostrais discretos: adoção de testes aleatorizados X mudança de nível de significância fixado de antemão X inconsistência com príncipios de inferência estatística.
- "In practice, typically neither the breaking of the r-order nor randomization is considered acceptable. The common solution, instead, is to adopt a value of α that can be attained exactly and therefore does not present this problem" (Lehmann (1959)).

- 3)Inconsistência lógica entre as conclusões obtidas de testes simultâneos/múltiplos baseados em níveis de significância pré-fixados.
- 4) Dificuldades em situações com espaços amostrais discretos: adoção de testes aleatorizados X mudança de nível de significância fixado de antemão X inconsistência com príncipios de inferência estatística.
- "In practice, typically neither the breaking of the r-order nor randomization is considered acceptable. The common solution, instead, is to adopt a value of α that can be attained exactly and therefore does not present this problem" (Lehmann (1959)).