Scratch paper

Anonymous Università di Torino April 2019

Abstract Poche idee, ben confuse.

1 Introduction

2 Samples

Let M be a structure of signature L. The finite (fractional) sample expansion of M is a many-sorted expansion that has a sort for M, which we call the home-sort, a sort for \mathbb{R} , the set of real numbers, and for each n a sort for F_n , an \mathbb{R} -vector space of functions $f: M^n \to \mathbb{R}$. We refer collectively to these vector spaces as sample-sort. Variabels (or tuples of variables) of sample-sort are denoted with sumbolds x^s, y^s and variations thereof.

We will write M^f for the expansion above. The language of M^f is denoted by L^f . It expands L, the language of $\mathbb R$ as an ordered rings, and the language of vector spaces over $\mathbb R$. Each interpreted in the obvious sort. Moreover, for every $\varphi(x;z) \in L$ in L^f there is a symbol $\overline{\varphi}(x^s;z)$ for a function $F_{|x|} \times M^{|z|} \to \mathbb R$.

2.1 Definition Let \mathcal{U} be a monster model of cardinality $\kappa > |L|$. We denote by \mathcal{U}^s a saturated elementary extension of \mathcal{U}^f of cardinality κ . As all saturated models of cardinality κ are isomorphic, we can assume that \mathcal{U} is the home-sort of \mathcal{U}^s . Elements $r \in \mathcal{U}^f$ are called finite samples, elements in $s \in \mathcal{U}^s$ are called smooth samples.

Below, ε always ranges over the positive standard reals. If a and b are hyperreals, we write $a \approx_{\varepsilon} b$ for $|a - b| < \varepsilon$. We write $a \approx b$ if $a \approx_{\varepsilon} b$ holds for every ε .

2.2 Notation In general, for any global type $p(x) \in S(\mathcal{U})$ and formula $\varphi(x;z) \in L$ we write

$$\varphi(p;\mathcal{U}) = \{b \in \mathcal{U}^{|z|} : \varphi(x, b) \in p\}$$

This notation intentionally confuses p with any of its realizations in some elementary extension of U. Sets of this form are called externally definable.

We extend this notation to global samples. If $\varphi(x;z) \in L$ and $p(x^s)$ is a global sample, we write $\overline{\varphi}(p;b)$ for the unique $\mu \in \mathbb{R}$ such that $p(x^s) \vdash \overline{\varphi}(x^s;b) \approx \mu$.

2.3 Definition Let $\varphi(x;z) \in L$. We say that the global type $p(x^s)$ is smooth if there is a smooth sample s such that $\overline{\varphi}(s;b) \approx \overline{\varphi}(p;b)$ for all $b \in \mathcal{U}^{|z|}$.

- **2.4 Definition** Let $\varphi(x;z) \in L$ and M be given. A global sample $p(x^s)$ is
 - 1. invariant if $\bar{\varphi}(p;z)$ is invariant under Aut(U/M), that is, $\bar{\varphi}(p;b) \approx \bar{\varphi}(p;fb)$ for every $b \in U^{|z|}$ and $f \in Aut(U/M)$;
 - 2. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(p;b) < \varepsilon\}$ is definable over M;
 - 3. finitely satisfiable if, for all $b \in \mathcal{U}^{|z|}$ there is an $r \in M^f$ such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$;

П

4. generically stable if all of the above hold.

3 Old stuff

We write $\operatorname{supp}(p)$ for the support of p, that is, the set of those a in \mathcal{U} such that $p \vdash (a \in x^s) > \varepsilon$ for some standard positive ε . If s is a smooth sample $\operatorname{supp}(s)$ is defined to be $\operatorname{supp}(p)$ for $p(x^s) = \operatorname{tp}(s/\mathcal{U}^f)$.

Let s be an external sample. For every formula $\varphi(x;z) \in L$ and every $b \in \mathcal{U}^{|z|}$ we define

$$\operatorname{Av}_{x/s}\varphi(x\,;b) \ = \ \frac{\left|\left\{a\in s\ :\ \varphi(a\,;b)\right\}\right|}{|s|},$$

When possible we abbreviate $\operatorname{Av}_{x/s}\varphi(x;b)$ with $\overline{\varphi}(s;b)$.

4 Old stuff

We write $\operatorname{ft}(a)$, for the standard part of the hyperrational number a. That is, the unique real number μ such that $\mu \approx a$.

The standard part of Av_s induces a finite probability measure on the algebra of definable subsets of $\mathfrak{U}^{|x|}$. This measure has an unique extension to a Lebesgue probability measure on a σ -algebra. This is known as the Loeb measure.

All definitions and facts in this section are relative to some given formula $\varphi(x;z) \in L$ and some model M.

- **4.1 Definition** Let $\varphi(x;z) \in L$ and M be given. We say that a sample s is smooth if, for every $s' \equiv_M s$ and every $b \in \mathcal{U}^{|z|}$, we have $\overline{\varphi}(s';b) \approx \overline{\varphi}(s;b)$.
- **4.2 Definition** Let $\varphi(x;z) \in L$ and M be given. An external sample s is
 - 1. invariant if, for every $b, b' \in \mathbb{U}^{|z|}$ such that $b \equiv_M b'$, we have $\overline{\varphi}(s;b) \approx \overline{\varphi}(s;b')$;
 - 2. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(s;b) < \varepsilon\}$ is definable over M;
 - 3. finitely satisfiable if, for all $b \in \mathcal{U}^{|z|}$ there is an $r \in M^f$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$;
 - 4. generically stable if all of the above hold. \Box

Smooth roughly means internal and invariant.

- **4.3 Fact** Let $\varphi(x;z) \in L$ and M be given. The following are equivalent for every external sample s
 - 1. s is smooth;
 - 2. there is an invariant internal sample $s' \equiv_M s$.

Proof 1 \Rightarrow 2. Let s be smooth and let $s' \equiv_M s$ be any internal sample. If $b, b' \in \mathcal{U}^{|z|}$ and $b \equiv_M b'$, then b' = fb for some $f \in \operatorname{Aut}(\mathcal{U}^s/M)$. Then $\overline{\varphi}(s';fb) \approx \overline{\varphi}(f^{-1}s';b)$. Moreover, by smothness $\overline{\varphi}(f^{-1}s';b) \approx \overline{\varphi}(s';b)$. The infariace in s' follows.

2 \Rightarrow 1. It suffices to prove that if s is internal and invariant then it is smooth. Suppose for a contradiction that there is an $s' \equiv_M s$ such that $\overline{\varphi}(s';b) \not\approx_{\varepsilon} \overline{\varphi}(s;b)$. Pick a internal sample $s'' \equiv_{M,s} s'$. Then $\overline{\varphi}(s'';b) \not\approx_{\varepsilon} \overline{\varphi}(s;b)$. As $s'' \equiv_M s$ are both in \mathcal{U}^s , then s'' = fs for some $f \in \operatorname{Aut}(\mathcal{U}^s/M)$. Hence we obtan $\overline{\varphi}(s;f^{-1}b) \not\approx_{\varepsilon} \overline{\varphi}(s;b)$ which contradics the invariance of s.

4.4 Fact For any given $\varphi(x;z) \in L$ and M, smooth samples are generically stable.

Proof Assume *s* is smooth and prove in turn 1-3 of Definition 4.2.

- 1. Invariance follows immediately from Fact 4.3.
- 2. Note that the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(s;b) < \varepsilon\}$ is definable in \mathcal{U}^s . In fact, by the smoothness of s, we may replace s with any internal sample $s' \equiv_M s$. By what proved above, this set is invariat over M. Therefore it is definable over M^f , or equivalently, over M.
- 3. Let $b \in \mathcal{U}^{|z|}$ be such that $\overline{\varphi}(s;b) > \varepsilon$. Pick a sample s' such that $s \equiv_M s' \downarrow_{M^f} b$. By the smoothness of s, we obtain $\overline{\varphi}(s';b) > \varepsilon$. Let $r \in M^f$ such that $\overline{\varphi}(r;b) > \varepsilon$.

The following is a useful characterization of smoothness.

- **4.5 Lemma** Let $\varphi(x;z) \in L$ and M be given. The following are equivalent for every external sample s
 - 1. s is smooth;
 - 2. for every $b \in \mathcal{U}^{|z|}$ there is a finite sample $r \in M^f$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ (the sample r depends on ε and b);
 - 3. there are some finite samples $r_1, \ldots, r_n \in M^f$ such that for every $b \in \mathbb{U}^{|z|}$ we have $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r_i;b)$ for some r_i (the samples r_1, \ldots, r_n as well as the number n depend on ε , but not on b);
 - 4. there are finitely many formulas $\vartheta_i(x) \in L(M)$ such that for every $b \in \mathbb{U}^{|z|}$ we have that $\vartheta_i(x) \to \varphi(x;b) \to \vartheta_j(x)$ and $\bar{\vartheta}_j(s) \bar{\vartheta}_i(s) < \varepsilon$ for some i,j.

Proof 1 \Rightarrow 2. Let $b \in \mathcal{U}^{|z|}$ be arbitrary. Let μ be the standard part of $\overline{\varphi}(s;b)$. Let s' be a sample such that $s \equiv_M s' \downarrow_{M^f} b$. By smoothness, $\overline{\varphi}(s';b) \approx \mu$. As $s' \downarrow_{M^f} b$ there is an $r \in M^f$ such that $\overline{\varphi}(r;b) \approx_{\varepsilon} \mu$.

1⇒3. Let $s' \equiv_M s$ be an internal sample. By smoothness we it suffices to prove 3 with s' for s. The type

$$p(z) = \left\{ \overline{\varphi}(s';z) \not\approx_{\varepsilon} \overline{\varphi}(r;z) \ : \ r \in M^{\mathrm{f}} \right\}$$

is inconsistent by 2 (clearly s' is smooth). Hence compatness yields the required $r_1, \ldots, r_n \in M^f$.

The proof of equivalence $3\Leftrightarrow 4$ is left to the reader. The other implications are evident.

- **4.6 Definition** Let $\varphi(x;z) \in L$ and M be given. Let $\mathbb{B} \subseteq \mathbb{U}^{|z|}$ be arbitrary. We say that s is (uniformly) approximable on \mathbb{B} if for every ε there is a finite sample $r \in M^f$ such that $\overline{\varphi}(s,b) \approx_{\varepsilon} \overline{\varphi}(r,b)$ for every $b \in \mathbb{B}$. (The sample r depends on ε , not on b.)
- **4.7 Lemma** Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on $\mathbb B$ and such that $\overline{\varphi}(s;b) > \varepsilon$ for every $b \in \mathbb B$. Then there is a finite cover of $\mathbb B$, say $\mathbb B_1, \ldots, \mathbb B_n$, such that all the types $p_i(x) = \{\varphi(x;b) : b \in \mathbb B_i\}$ are consistent.

Proof Let $r \in M^f$ be as in Definition 4.6. As r is finite, we may assume that $\operatorname{supp}(r) = \{a_1, \ldots, a_n\}$. Let $\mathcal{B}_i = \{b \in \mathcal{B} : \varphi(a_i; b)\}$. As $\overline{\varphi}(r; b) > 0$ for all $b \in \mathcal{B}$, these \mathcal{B}_i are the required cover of \mathcal{B} .

- **4.8 Corollary** Let $\varphi(x;z) \in L$ and M be given. If s be approximable on $\langle b_i : i < \omega \rangle$, where $\langle b_i : i < \omega \rangle$ is a sequence of indiscernibles such that $\overline{\varphi}(s;b_i) > \varepsilon$ for every $i < \omega$, then the type $\{\varphi(x;b_i) : i < \omega\}$ is consistent.
- **4.9 Corollary** Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on \mathbb{C} . Then for every ε there is a pair of distict $c,c' \in \mathbb{C}$ such that $\operatorname{Av}_{x/s}[\varphi(x;c) \nleftrightarrow \varphi(x;c')] < \varepsilon$

Proof Suppose for a contradiction that $\operatorname{Av}_{x/s}[\varphi(x;c) \not\leftrightarrow \varphi(x;c')] \geq \varepsilon$ for all distict $c,c' \in \mathbb{C}$. Apply Lemma 4.7 to the folmula $\psi(x;z,z') = [\varphi(x;z) \not\leftrightarrow \varphi(x;z')]$ and the set $\mathcal{B} = \{\langle c,c' \rangle \in \mathbb{C}^2 : c \neq c' \}$. The sets \mathcal{B}_i obtained from Lemma 4.7 induce a finite coloring of the complete graph on \mathbb{C} . By the Ramsey theorem there is an infinite monochromatic set $A \subseteq \mathbb{C}$. Hence $\{\varphi(x;a) \not\leftrightarrow \varphi(x;a') : a,a' \in A, a \neq a' \}$ is consistent. As |A| > 2, this is impossible.

5 The nip formulas

5.1 Theorem Let $\varphi(x;z) \in L$ and M be given and assume that $\varphi(x;z)$ is nip. Then every sample is approximable on M over M.

Proof Questo è Vapnik-Chervonenkis.

For smooth samples the Vapnik-Chervonenkis Theorem can be strengthened as follows. (The difference is that below b ranges over $\mathfrak{U}^{|z|}$.)

5.2 Corollary Let $\varphi(x;z) \in L$ be nip. Every smooth sample s is approximable on \mathbb{U} over M.

Proof By Theorem 5.1, there is an $r \in M^f$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ for all $b \in M^{|z|}$.

Suppose for a contradiction that $\overline{\varphi}(s;b')\not\approx_{\varepsilon}\overline{\varphi}(r;b')$ for some $b'\in\mathcal{U}^{|z|}$. Pick a $s'\subseteq\mathcal{U}^{|x|}$ such that $b'\downarrow_M s'\equiv_M s$. By the smoothness of s, we obtain $\overline{\varphi}(s';b')\not\approx_{\varepsilon}\overline{\varphi}(r;b')$. As $b'\downarrow_M s'$, the same formula holds for some $b\in M^{|z|}$. Once again by smoothness, $\overline{\varphi}(s;b)\not\approx_{\varepsilon}\overline{\varphi}(r;b)$. A contradiction.

- **5.3 Definition ??** We say that $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x;z_1,...z_n) \in L$ such that for every finite set $B \subseteq \mathcal{U}$ and every $a \in \mathcal{U}^{|x|}$ there are $b_1,...,b_n \in B$ such that $\psi(a;b_1,...,b_n)$ and $\psi(x;b_1,...,b_n)$ decides all formulas $\varphi(x;b)$ for $b \in B$.
- **5.4 Definition ??*** We say that $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x_1,\ldots,x_n;z) \in L$ such that for every finite set $A \subseteq \mathcal{U}^{|x|}$ and every $b \in \mathcal{U}^{|z|}$ there are $a_1,\ldots,a_n \in B$ such that $\psi(a_1,\ldots,a_n,z)$ and $\psi(a_1,\ldots,a_n,z)$ decides all formulas $\varphi(a;z)$ for $a \in A$.

For every finite sample $r \in M^f$ and every $\mu \in \mathbb{R}$ there is a formula $\psi(z) \in L(\operatorname{supp} r)$ such that $\overline{\varphi}(r;z) = \mu \leftrightarrow \psi(z)$. The formula $\psi(z)$ depends on r.

When $\varphi(x;z)$ is distal

If $\varphi(x;z)$ is distal then there is a formula ψ such that for every $r\in M^f$ there is $r_0\in M$

- **5.5 Theorem (false)** The following are equivalent
 - 1. $\varphi(x;z) \in L$ is distal;
 - 2. for every sample $s \in U_*^+$, if s is generically stable then s is smooth.

There is a formula $\psi(x_1, ..., x_n; z)$ such that for every $r \in M^f$ there are $a_1, ..., a_n$ such that $\varphi(r; b) = \mu \ \psi(x_1, ..., x_n; z)$