# Phương pháp tính MAT1099

Nguyễn Việt Minh Nghĩa github.com/nvmnghia

07-09-2020

# Chapter 1

# Error analysis

## Exercise 1

Use the Bisection method to find  $p_3$  for  $f(x) = \sqrt{x} - \cos x$  on [0, 1].

## ${\bf Solution} \ {\bf 1}$

as hey

# Chapter 2

# Solution approximation

## 2.1 The Bisection Method

#### Exercise 1

Use the Bisection method to find  $p_3$  for  $f(x) = \sqrt{x} - \cos x$  on [0, 1].

#### Solution 1

f(0) = -1 and  $f(1) \approx 0.459697694$  have the opposite signs, so there's a root in [0, 1].

Applying Bisection method generates the following table:

| n | $a_n$ | $b_n$ | $p_n$ | $f(p_n)$     |
|---|-------|-------|-------|--------------|
| 1 | 0     | 1     | 0.5   | -0.170475781 |
| 2 | 0.5   | 1     | 0.75  | 0.134336535  |
| 3 | 0.5   | 0.75  | 0.625 | -0.020393704 |

So  $p_3 = 0.625$ .

#### Exercise 2

Let  $f(x) = 3(x+1)(x-\frac{1}{2})(x-1)$ . Use the bisection method to find  $p_3$  in the following intervals:

(a) 
$$[-2, 1.5]$$

(b) 
$$[-1.5, 2.5]$$

#### Solution 2

(a) f(-2) = -22.5 and f(1.5) = 3.75 have the opposite signs, so there's a root in [-2, 1.5].

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$  | $b_n$ | $p_n$   | $f(p_n)$     |
|----------------|--------|-------|---------|--------------|
| 1              | -2     | 1.5   | -0.25   | 2.109375     |
| 2              | -2     | -0.25 | -1.125  | -1.294921875 |
| 3              | -1.125 | -0.25 | -0.6875 | 1.878662109  |

So  $p_3 = -0.6875$ .

(b) f(-1.25) = -2.953125 and f(2.5) = 31.5 have the opposite signs, so there's a root in [-1.25, 2.5].

Applying Bisection method generates the following table:

The solution is found in the first iteration so  $p_3$  doesn't exist.

#### Exercise 3

Use the Bisection method to find solutions accurate to within  $10^{-2}$  for  $x^3 - 7x^2 + 14x - 6 = 0$  in the following intervals:

(a) 
$$[0,1]$$

(b) 
$$[1, 3.2]$$

(c) 
$$[3.2, 4]$$

#### Solution 3

(a) f(0) = -6 and f(1) = 2 have the opposite signs, so there's a root in [0, 1]. The number of iteration n needed to approximate p to within  $10^{-2}$  is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

| n    | $a_n$    | $b_n$   | $p_n$     | $f(p_n)$  |
|------|----------|---------|-----------|-----------|
| 1    | 0        | 1       | 0.5       | -0.625    |
| $^2$ | 0.5      | 1       | 0.75      | 0.984375  |
| 3    | 0.5      | 0.75    | 0.625     | 0.259766  |
| 4    | 0.5      | 0.625   | 0.5625    | -0.161865 |
| 5    | 0.5625   | 0.625   | 0.59375   | 0.054047  |
| 6    | 0.5625   | 0.59375 | 0.578125  | -0.052624 |
| 7    | 0.578125 | 0.59375 | 0.5859375 | 0.001031  |

So  $p \approx 0.5859$ .

(b) f(1) = 2 and f(3.2) = -0.112 have the opposite signs, so there's a root in [1, 3.2].

The number of iteration n needed to approximate p to within  $10^{-2}$  is:

$$|p_n - p| \le \frac{3.2 - 1}{2^n} < 10^{-2} \iff n \ge 8$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$   | $b_n$    | $p_n$    | $f(p_n)$  |
|----------------|---------|----------|----------|-----------|
| 1              | 1       | 3.2      | 2.1      | 1.791     |
| 2              | 2.1     | 3.2      | 2.65     | 0.552125  |
| 3              | 2.65    | 3.2      | 2.925    | 0.085828  |
| 4              | 2.925   | 3.2      | 3.0625   | -0.054443 |
| 5              | 2.925   | 3.0625   | 2.99375  | 0.006328  |
| 6              | 2.99375 | 3.0625   | 3.028125 | -0.026521 |
| 7              | 2.99375 | 3.02813  | 3.010938 | -0.010697 |
| 8              | 2.99375 | 3.010938 | 3.002344 | -0.002333 |

So  $p \approx 3.0023$ .

(c) f(3.2) = -0.112 and f(4) = 2 have the opposite signs, so there's a root in [3.2, 4].

The number of iteration n needed to approximate p to within  $10^{-2}$  is:

$$|p_n - p| \le \frac{4 - 3.2}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$  | $b_n$ | $p_n$   | $f(p_n)$  |
|----------------|--------|-------|---------|-----------|
| 1              | 3.2    | 4     | 3.6     | 0.336     |
| 2              | 3.2    | 3.6   | 3.4     | -0.016    |
| 3              | 3.4    | 3.6   | 3.5     | 0.125     |
| 4              | 3.4    | 3.5   | 3.45    | 0.046125  |
| 5              | 3.4    | 3.45  | 3.425   | 0.013016  |
| 6              | 3.4    | 3.425 | 3.4125  | -0.001998 |
| 7              | 3.4125 | 3.425 | 3.41875 | 0.005382  |

So  $p \approx 3.4188$ .

#### Exercise 4

Use the Bisection method to find solutions accurate to within  $10^{-2}$  for  $x^4 - 2x^3 - 4x^2 + 4x + 4 = 0$  for the following intervals:

- (a) [-2, -1]
  - (b) [0,2]
- (c) [2,3]
- (d) [-1,0]

#### Solution 4

(a) f(-2) = 12 and f(-1) = -1 have the opposite signs, so there's a root in [-2, -1].

The number of iteration n needed to approximate p to within  $10^{-2}$  is:

$$|p_n - p| \le \frac{-1 - (-2)}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$     | $b_n$    | $p_n$     | $f(p_n)$  |
|----------------|-----------|----------|-----------|-----------|
| 1              | -2        | -1       | -1.5      | 0.8125    |
| 2              | -1.5      | -1       | -1.25     | -0.902344 |
| 3              | -1.5      | -1.25    | -1.375    | -0.288818 |
| 4              | -1.5      | -1.375   | -1.4375   | 0.195328  |
| 5              | -1.4375   | -1.375   | -1.40625  | -0.062667 |
| 6              | -1.4375   | -1.40625 | -1.421875 | 0.062263  |
| 7              | -1.421875 | -1.40625 | -1.414063 | -0.001208 |

So  $p \approx -1.4141$ .

(b) f(0) = 4 and f(2) = -4 have the opposite signs, so there's a root in [0, 2]. The number of iteration n needed to approximate p to within  $10^{-2}$  is:

$$|p_n - p| \le \frac{2 - 0}{2^n} < 10^{-2} \iff n \ge 8$$

Applying Bisection method generates the following table:

| n | $a_n$   | $b_n$    | $p_n$    | $f(p_n)$  |
|---|---------|----------|----------|-----------|
| 1 | 0       | 2        | 1        | 3         |
| 2 | 1       | 2        | 1.5      | -0.6875   |
| 3 | 1       | 1.5      | 1.25     | 1.285156  |
| 4 | 1.25    | 1.5      | 1.375    | 0.312744  |
| 5 | 1.375   | 1.5      | 1.4375   | -0.186508 |
| 6 | 1.375   | 1.4375   | 1.40625  | 0.063676  |
| 7 | 1.40625 | 1.4375   | 1.421875 | -0.061318 |
| 8 | 1.40625 | 1.421875 | 1.414063 | 0.001208  |

So  $p \approx 1.4141$ .

(c) f(2) = -4 and f(3) = 7 have the opposite signs, so there's a root in [2, 3]. The number of iteration n needed to approximate p to within  $10^{-2}$  is:

$$|p_n - p| \le \frac{3 - 2}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$   | $b_n$    | $p_n$    | $f(p_n)$  |
|----------------|---------|----------|----------|-----------|
| 1              | 2       | 3        | 2.5      | -3.1875   |
| 2              | 2.5     | 3        | 2.75     | 0.347656  |
| 3              | 2.5     | 2.75     | 2.625    | -1.757568 |
| 4              | 2.625   | 2.75     | 2.6875   | -0.795639 |
| 5              | 2.6875  | 2.75     | 2.71875  | -0.247466 |
| 6              | 2.71875 | 2.75     | 2.734375 | 0.044125  |
| 7              | 2.71875 | 2.734375 | 2.726563 | -0.103151 |

So  $p \approx 2.7266$ .

(d) f(-1) = -1 and f(0) = 4 have the opposite signs, so there's a root in [-1,0].

The number of iteration n needed to approximate p to within  $10^{-2}$  is:

$$|p_n - p| \le \frac{0 - (-1)}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$     | $b_n$    | $p_n$     | $f(p_n)$  |
|----------------|-----------|----------|-----------|-----------|
| 1              | -1        | 0        | -0.5      | 1.3125    |
| 2              | -1        | -0.5     | -0.75     | -0.089844 |
| 3              | -0.75     | -0.5     | -0.625    | 0.578369  |
| 4              | -0.75     | -0.625   | -0.6875   | 0.232681  |
| 5              | -0.75     | -0.6875  | -0.71875  | 0.068086  |
| 6              | -0.75     | -0.71875 | -0.734375 | -0.011768 |
| 7              | -0.734375 | -0.71875 | -0.726563 | 0.027943  |

So  $p \approx -0.7266$ .

#### Exercise 5

Use the Bisection method to find solutions accurate to within  $10^{-5}$  for the following problems:

(a) 
$$x - 2^{-x} = 0, x \in [0, 1]$$

(b) 
$$e^x - x^2 + 3x - 2 = 0, x \in [0, 1]$$

(c) 
$$2x\cos 2x - (x+1)^2 = 0, x \in [-3, -2]$$

(d) 
$$x\cos x - 2x^2 + 3x - 1 = 0, x \in [0.2, 0.3]$$

#### Solution 5

(a) f(0) = -1 and f(1) = 0.5 have the opposite signs, so there's a root in [0, 1].

The number of iteration n needed to approximate p to within  $10^{-5}$  is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$       | $b_n$       | $p_n$       | $f(p_n)$     |
|----------------|-------------|-------------|-------------|--------------|
| 1              | 0           | 1           | 0.5         | -0.207106781 |
| 2              | 0.5         | 1           | 0.75        | 0.155396442  |
| 3              | 0.5         | 0.75        | 0.625       | -0.023419777 |
| 4              | 0.625       | 0.75        | 0.6875      | 0.066571094  |
| 5              | 0.625       | 0.6875      | 0.65625     | 0.021724521  |
| 6              | 0.625       | 0.65625     | 0.640625    | -0.000810008 |
| 7              | 0.640625    | 0.65625     | 0.6484375   | 0.010466611  |
| 8              | 0.640625    | 0.6484375   | 0.64453125  | 0.004830646  |
| 9              | 0.640625    | 0.64453125  | 0.642578125 | 0.002010906  |
| 10             | 0.640625    | 0.642578125 | 0.641601562 | 0.000600596  |
| 11             | 0.640625    | 0.641601562 | 0.641113281 | -0.000104669 |
| 12             | 0.641113281 | 0.641601562 | 0.641357422 | 0.000247972  |
| 13             | 0.641113281 | 0.641357422 | 0.641235352 | 0.000071654  |
| 14             | 0.641113281 | 0.641235352 | 0.641174316 | -0.000016507 |
| 15             | 0.641174316 | 0.641235352 | 0.641204834 | 0.000027573  |
| 16             | 0.641174316 | 0.641204834 | 0.641189575 | 0.000005533  |
| 17             | 0.641174316 | 0.641189575 | 0.641181946 | -0.000005487 |

So  $p \approx -0.641182$ .

(b) f(0) = -1 and f(1) = e have the opposite signs, so there's a root in [0, 1].

The number of iteration n needed to approximate p to within  $10^{-5}$  is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

| n  | $a_n$       | $b_n$       | $p_n$       | $f(p_n)$     |
|----|-------------|-------------|-------------|--------------|
| 1  | 0           | 1           | 0.5         | 0.898721271  |
| 2  | 0           | 0.5         | 0.25        | -0.028474583 |
| 3  | 0.25        | 0.5         | 0.375       | 0.439366415  |
| 4  | 0.25        | 0.375       | 0.3125      | 0.206681691  |
| 5  | 0.25        | 0.3125      | 0.28125     | 0.089433196  |
| 6  | 0.25        | 0.28125     | 0.265625    | 0.030564234  |
| 7  | 0.25        | 0.265625    | 0.2578125   | 0.001066368  |
| 8  | 0.25        | 0.2578125   | 0.25390625  | -0.013698684 |
| 9  | 0.25390625  | 0.2578125   | 0.255859375 | -0.006314807 |
| 10 | 0.255859375 | 0.2578125   | 0.256835938 | -0.002623882 |
| 11 | 0.256835938 | 0.2578125   | 0.257324219 | -0.000778673 |
| 12 | 0.257324219 | 0.2578125   | 0.257568359 | 0.000143868  |
| 13 | 0.257324219 | 0.257568359 | 0.257446289 | -0.000317397 |
| 14 | 0.257446289 | 0.257568359 | 0.257507324 | -0.000086763 |
| 15 | 0.257507324 | 0.257568359 | 0.257537842 | 0.000028553  |
| 16 | 0.257507324 | 0.257537842 | 0.257522583 | -0.000029105 |
| 17 | 0.257522583 | 0.257537842 | 0.257530212 | -0.000000276 |

So  $p \approx 0.25753$ .

(c)  $f(-3) \approx -9.761\,021\,72$  and  $f(-2) \approx 1.614\,574\,483$  have the opposite signs, so there's a root in [-3,-2].

The number of iteration n needed to approximate p to within  $10^{-5}$  is:

$$|p_n - p| \le \frac{-2 - (-3)}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

| n | $a_n$     | $b_n$   | $p_n$      | $f(p_n)$     |
|---|-----------|---------|------------|--------------|
| 1 | -3        | -2      | -2.5       | -3.66831093  |
| 2 | -2.5      | -2      | -2.25      | -0.613918903 |
| 3 | -2.25     | -2      | -2.125     | 0.630246832  |
| 4 | -2.25     | -2.125  | -2.1875    | 0.038075532  |
| 5 | -2.25     | -2.1875 | -2.21875   | -0.280836176 |
| 6 | -2.21875  | -2.1875 | -2.203125  | -0.119556815 |
| 7 | -2.203125 | -2.1875 | -2.1953125 | -0.040278514 |

| n  | $a_n$       | $b_n$       | $p_n$       | $f(p_n)$     |
|----|-------------|-------------|-------------|--------------|
| 8  | -2.1953125  | -2.1875     | -2.19140625 | -0.000985195 |
| 9  | -2.19140625 | -2.1875     | -2.18945312 | 0.018574337  |
| 10 | -2.19140625 | -2.18945312 | -2.19042969 | 0.008801851  |
| 11 | -2.19140625 | -2.19042969 | -2.19091797 | 0.003910147  |
| 12 | -2.19140625 | -2.19091797 | -2.19116211 | 0.00146293   |
| 13 | -2.19140625 | -2.19116211 | -2.19128418 | 0.000238981  |
| 14 | -2.19140625 | -2.19128418 | -2.19134521 | -0.000373078 |
| 15 | -2.19134521 | -2.19128418 | -2.1913147  | -0.000067041 |
| 16 | -2.1913147  | -2.19128418 | -2.19129944 | 0.000085972  |

So  $p \approx -2.191299$ .

(d)  $f(0.2) \approx -0.283\,986\,684$  and  $f(0.3) \approx 0.006\,600\,946$  have the opposite signs, so there's a root in [0.2,0.3].

The number of iteration n needed to approximate p to within  $10^{-5}$  is:

$$|p_n - p| \le \frac{0.3 - 0.2}{2^n} < 10^{-5} \iff n \ge 14$$

Applying Bisection method generates the following table:

| n  | $a_n$       | $b_n$       | $p_n$       | $f(p_n)$     |
|----|-------------|-------------|-------------|--------------|
| 1  | 0.2         | 0.3         | 0.25        | -0.132771895 |
| 2  | 0.25        | 0.3         | 0.275       | -0.061583071 |
| 3  | 0.275       | 0.3         | 0.2875      | -0.027112719 |
| 4  | 0.2875      | 0.3         | 0.29375     | -0.010160959 |
| 5  | 0.29375     | 0.3         | 0.296875    | -0.001756232 |
| 6  | 0.296875    | 0.3         | 0.2984375   | 0.002428306  |
| 7  | 0.296875    | 0.2984375   | 0.29765625  | 0.000337524  |
| 8  | 0.296875    | 0.29765625  | 0.297265625 | -0.000708983 |
| 9  | 0.297265625 | 0.29765625  | 0.297460938 | -0.000185637 |
| 10 | 0.297460938 | 0.29765625  | 0.297558594 | 0.000075967  |
| 11 | 0.297460938 | 0.297558594 | 0.297509766 | -0.000054829 |
| 12 | 0.297509766 | 0.297558594 | 0.29753418  | 0.00001057   |
| 13 | 0.297509766 | 0.29753418  | 0.297521973 | -0.000022129 |
| 14 | 0.297521973 | 0.29753418  | 0.297528076 | -0.000005779 |

So  $p \approx 0.297528$ .

#### Exercise 6

Use the Bisection method to find solutions accurate to within  $10^{-5}$  for the following problems:

(a) 
$$3x - e^x = 0, x \in [1, 2]$$

(a) 
$$3x - e^x = 0, x \in [1, 2]$$
 (c)  $x^2 - 4x + 4 - \ln x = 0, x \in [1, 2]$ 

(b) 
$$2x + 3\cos x - e^x = 0, x \in [0, 1]$$
 (d)  $x + 1 - 2\sin \pi x = 0, x \in [0, 0.5]$ 

(d) 
$$x + 1 - 2\sin \pi x = 0, x \in [0, 0.5]$$

#### Solution 6

(a)  $f(1) \approx 0.281718172$  and  $f(2) \approx -1.389056099$  have the opposite signs, so there's a root in [1, 2].

The number of iteration n needed to approximate p to within  $10^{-5}$  is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

| n  | $a_n$      | $b_n$      | $p_n$      | $f(p_n)$     |
|----|------------|------------|------------|--------------|
| 1  | 1          | 2          | 1.5        | 0.01831093   |
| 2  | 1.5        | 2          | 1.75       | -0.504602676 |
| 3  | 1.5        | 1.75       | 1.625      | -0.203419037 |
| 4  | 1.5        | 1.625      | 1.5625     | -0.083233182 |
| 5  | 1.5        | 1.5625     | 1.53125    | -0.030203153 |
| 6  | 1.5        | 1.53125    | 1.515625   | -0.005390404 |
| 7  | 1.5        | 1.515625   | 1.5078125  | 0.006598107  |
| 8  | 1.5078125  | 1.515625   | 1.51171875 | 0.000638447  |
| 9  | 1.51171875 | 1.515625   | 1.51367188 | -0.002367313 |
| 10 | 1.51171875 | 1.51367188 | 1.51269531 | -0.000862268 |
| 11 | 1.51171875 | 1.51269531 | 1.51220703 | -0.00011137  |
| 12 | 1.51171875 | 1.51220703 | 1.51196289 | 0.000263674  |
| 13 | 1.51196289 | 1.51220703 | 1.51208496 | 0.000076186  |
| 14 | 1.51208496 | 1.51220703 | 1.512146   | -0.000017584 |
| 15 | 1.51208496 | 1.512146   | 1.51211548 | 0.000029303  |
| 16 | 1.51211548 | 1.512146   | 1.51213074 | 0.00000586   |
| 17 | 1.51213074 | 1.512146   | 1.51213837 | -0.000005861 |

So  $p \approx 1.512138$ .

- (b) f(0) = 2 and  $f(1) \approx 0.902625089$  have the same sign, so there's no root in [0, 1].
- (c) f(1) = 1 and f(2) = -0.693147181 have the opposite signs, so there's a root in [1,2].

The number of iteration n needed to approximate p to within  $10^{-5}$  is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-5} \iff n \ge 17$$

| $\overline{n}$ | $a_n$      | $b_n$      | $p_n$      | $f(p_n)$     |
|----------------|------------|------------|------------|--------------|
| 1              | 1          | 2          | 1.5        | -0.155465108 |
| 2              | 1          | 1.5        | 1.25       | 0.339356449  |
| 3              | 1.25       | 1.5        | 1.375      | 0.072171269  |
| 4              | 1.375      | 1.5        | 1.4375     | -0.046499244 |
| 5              | 1.375      | 1.4375     | 1.40625    | 0.011612476  |
| 6              | 1.40625    | 1.4375     | 1.421875   | -0.017747908 |
| 7              | 1.40625    | 1.421875   | 1.4140625  | -0.003144013 |
| 8              | 1.40625    | 1.4140625  | 1.41015625 | 0.004215136  |
| 9              | 1.41015625 | 1.4140625  | 1.41210938 | 0.00053079   |
| 10             | 1.41210938 | 1.4140625  | 1.41308594 | -0.001307804 |
| 11             | 1.41210938 | 1.41308594 | 1.41259766 | -0.000388805 |
| 12             | 1.41210938 | 1.41259766 | 1.41235352 | 0.000070918  |
| 13             | 1.41235352 | 1.41259766 | 1.41247559 | -0.000158962 |
| 14             | 1.41235352 | 1.41247559 | 1.41241455 | -0.000044027 |
| 15             | 1.41235352 | 1.41241455 | 1.41238403 | 0.000013444  |

Applying Bisection method generates the following table:

So  $p \approx 1.412392$ .

 $1.412\,384\,03$ 

 $1.412\,384\,03$ 

16

17

(d) f(0) = 1 and f(1) = -0.5 have the opposite signs, so there's a root in [0, 0.5].

1.41239929

 $1.412\,391\,66$ 

-0.000015292

 $-0.000\,000\,924$ 

The number of iteration n needed to approximate p to within  $10^{-5}$  is:

$$|p_n - p| \le \frac{0.5 - 0}{2^n} < 10^{-5} \iff n \ge 16$$

Applying Bisection method generates the following table:

 $1.412\,414\,55$ 

 $1.412\,399\,29$ 

| $\overline{n}$ | $a_n$       | $b_n$       | $p_n$       | $f(p_n)$     |
|----------------|-------------|-------------|-------------|--------------|
| 1              | 0           | 0.5         | 0.25        | -0.164213562 |
| 2              | 0           | 0.25        | 0.125       | 0.359633135  |
| 3              | 0.125       | 0.25        | 0.1875      | 0.076359534  |
| 4              | 0.1875      | 0.25        | 0.21875     | -0.050036568 |
| 5              | 0.1875      | 0.21875     | 0.203125    | 0.011726391  |
| 6              | 0.203125    | 0.21875     | 0.2109375   | -0.019525681 |
| 7              | 0.203125    | 0.2109375   | 0.20703125  | -0.003990833 |
| 8              | 0.203125    | 0.20703125  | 0.205078125 | 0.003845166  |
| 9              | 0.205078125 | 0.20703125  | 0.206054688 | -0.00007851  |
| 10             | 0.205078125 | 0.206054688 | 0.205566406 | 0.001881912  |
| 11             | 0.205566406 | 0.206054688 | 0.205810547 | 0.000901347  |

| n  | $a_n$       | $b_n$       | $p_n$       | $f(p_n)$     |
|----|-------------|-------------|-------------|--------------|
| 12 | 0.205810547 | 0.206054688 | 0.205932617 | 0.00041133   |
| 13 | 0.205932617 | 0.206054688 | 0.205993652 | 0.000166388  |
| 14 | 0.205993652 | 0.206054688 | 0.20602417  | 0.000043934  |
| 15 | 0.20602417  | 0.206054688 | 0.206039429 | -0.000017289 |
| 16 | 0.20602417  | 0.206039429 | 0.206031799 | 0.000013322  |

So  $p \approx 0.206\,032$ .

#### Exercise 7

- (a) Sketch the graphs of y = x and  $y = 2 \sin x$ .
- (b) Use the Bisection method to find an approximation to within  $10^5$  to the first positive value of x with  $x = 2 \sin x$ .

#### Solution 7

(a) Graph of y = x and  $y = 2 \sin x$  is as follow:



(b) According to the graph, the first positive root p of  $f=x-2\sin x$  is in  $[\frac{\pi}{2},\pi].$ 

The number of iteration n needed to approximate p to within  $10^{-5}$  in that interval is:

$$|p_n - p| \le \frac{\pi - \frac{\pi}{2}}{2^n} < 10^{-5} \iff n \ge 18$$

Applying Bisection method generates the following table:

| n | $a_n$      | $b_n$      | $p_n$      | $f(p_n)$     |
|---|------------|------------|------------|--------------|
| 1 | 1.57079633 | 3.14159265 | 2.35619449 | 0.941980928  |
| 2 | 1.57079633 | 2.35619449 | 1.96349541 | 0.115736343  |
| 3 | 1.57079633 | 1.96349541 | 1.76714587 | -0.194424693 |
| 4 | 1.76714587 | 1.96349541 | 1.86532064 | -0.048560033 |

| n  | $a_n$      | $b_n$      | $p_n$      | $f(p_n)$     |
|----|------------|------------|------------|--------------|
| 5  | 1.86532064 | 1.96349541 | 1.91440802 | 0.031319893  |
| 6  | 1.86532064 | 1.91440802 | 1.88986433 | -0.009192031 |
| 7  | 1.88986433 | 1.91440802 | 1.90213618 | 0.010921526  |
| 8  | 1.88986433 | 1.90213618 | 1.89600025 | 0.000829072  |
| 9  | 1.88986433 | 1.89600025 | 1.89293229 | -0.004190408 |
| 10 | 1.89293229 | 1.89600025 | 1.89446627 | -0.001682899 |
| 11 | 1.89446627 | 1.89600025 | 1.89523326 | -0.000427471 |
| 12 | 1.89523326 | 1.89600025 | 1.89561676 | 0.000200661  |
| 13 | 1.89523326 | 1.89561676 | 1.89542501 | -0.00011344  |
| 14 | 1.89542501 | 1.89561676 | 1.89552088 | 0.000043602  |
| 15 | 1.89542501 | 1.89552088 | 1.89547295 | -0.000034921 |
| 16 | 1.89547295 | 1.89552088 | 1.89549692 | 0.00000434   |
| 17 | 1.89547295 | 1.89549692 | 1.89548493 | -0.000015291 |
| 18 | 1.89548493 | 1.89549692 | 1.89549092 | -0.000005476 |

So  $p \approx 1.895491$ .

#### Exercise 8

- (a) Sketch the graphs of y = x and  $y = \tan x$ .
- (b) Use the Bisection method to find an approximation to within  $10^{-5}$  to the first positive value of x with  $y = \tan x$ .

#### Solution 8

(a) Graph of y = x and  $y = \tan x$  is as follow:



(b) According to the graph, the first positive root p of  $f=x-\tan x$  is in  $[\pi,\frac{3\pi}{2}].$ 

The number of iteration n needed to approximate p to within  $10^{-5}$  in that interval is:

$$|p_n - p| \le \frac{\frac{3\pi}{2} - \pi}{2^n} < 10^{-5} \iff n \ge 18$$

Applying Bisection method generates the following table:

| n  | $a_n$      | $b_n$      | $p_n$      | $f(p_n)$     |
|----|------------|------------|------------|--------------|
| 1  | 3.14159265 | 4.71238898 | 3.92699082 | 2.92699082   |
| 2  | 3.92699082 | 4.71238898 | 4.3196899  | 1.90547634   |
| 3  | 4.3196899  | 4.71238898 | 4.51603944 | -0.511300053 |
| 4  | 4.3196899  | 4.51603944 | 4.41786467 | 1.12130646   |
| 5  | 4.41786467 | 4.51603944 | 4.46695205 | 0.474728271  |
| 6  | 4.46695205 | 4.51603944 | 4.49149575 | 0.038293523  |
| 7  | 4.49149575 | 4.51603944 | 4.50376759 | -0.219861735 |
| 8  | 4.49149575 | 4.50376759 | 4.49763167 | -0.086980389 |
| 9  | 4.49149575 | 4.49763167 | 4.49456371 | -0.023432692 |
| 10 | 4.49149575 | 4.49456371 | 4.49302973 | 0.007653323  |
| 11 | 4.49302973 | 4.49456371 | 4.49379672 | -0.007833371 |
| 12 | 4.49302973 | 4.49379672 | 4.49341322 | -0.00007602  |
| 13 | 4.49302973 | 4.49341322 | 4.49322148 | 0.003792144  |
| 14 | 4.49322148 | 4.49341322 | 4.49331735 | 0.001858936  |
| 15 | 4.49331735 | 4.49341322 | 4.49336529 | 0.000891677  |
| 16 | 4.49336529 | 4.49341322 | 4.49338925 | 0.000407883  |
| 17 | 4.49338925 | 4.49341322 | 4.49340124 | 0.000165946  |
| 18 | 4.49340124 | 4.49341322 | 4.49340723 | 0.000044966  |

So  $p \approx 4.493407$ .

#### Exercise 9

- (a) Sketch the graphs of  $y = e^x 2$  and  $y = \cos e^x 2$ .
- (b) Use the Bisection method to find an approximation to within  $10^{-5}$  to a value in [0.5, 1.5] with  $e^x 2 = \cos e^x 2$ .

#### Solution 9

(a) The graphs of the 2 functions are as follow:



(b) Let  $f = e^x - 2 - \cos e^x - 2$ .  $f(0.5) \approx -1.290212$  and  $f(1.5) \approx 3.27174$  have the opposite signs, so there's a root p of f in [0.5, 1.5].

The number of iteration n needed to approximate p to within  $10^{-5}$  in that interval is:

$$|p_n - p| \le \frac{1.5 - 0.5}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$      | $b_n$      | $p_n$      | $f(p_n)$     |
|----------------|------------|------------|------------|--------------|
| 1              | 0.5        | 1.5        | 1          | -0.034655726 |
| 2              | 1          | 1.5        | 1.25       | 1.40997635   |
| 3              | 1          | 1.25       | 1.125      | 0.609079747  |
| 4              | 1          | 1.125      | 1.0625     | 0.266982288  |
| 5              | 1          | 1.0625     | 1.03125    | 0.111147764  |
| 6              | 1          | 1.03125    | 1.015625   | 0.037002875  |
| 7              | 1          | 1.015625   | 1.0078125  | 0.000864425  |
| 8              | 1          | 1.0078125  | 1.00390625 | -0.016972716 |
| 9              | 1.00390625 | 1.0078125  | 1.00585938 | -0.00807344  |
| 10             | 1.00585938 | 1.0078125  | 1.00683594 | -0.003609335 |
| 11             | 1.00683594 | 1.0078125  | 1.00732422 | -0.001373662 |
| 12             | 1.00732422 | 1.0078125  | 1.00756836 | -0.00025492  |
| 13             | 1.00756836 | 1.0078125  | 1.00769043 | 0.000304677  |
| 14             | 1.00756836 | 1.00769043 | 1.00762939 | 0.000024859  |
| 15             | 1.00756836 | 1.00762939 | 1.00759888 | -0.000115035 |
| 16             | 1.00759888 | 1.00762939 | 1.00761414 | -0.000045089 |

So  $p \approx 1.007\,614$ .

19

#### Exercise 10

Let  $f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$ . To which zero of f does the Bisection method converge when applied on the following intervals?

(a) 
$$[-1.5, 2.5]$$

(b) 
$$[-0.5, 2.4]$$
 (c)  $[-0.5, 3]$ 

(c) 
$$[-0.5, 3]$$

(d) 
$$[-3, -0.5]$$

#### Solution 10

f has 5 zeros:  $\pm 2$ ,  $\pm 1$ , 0.

(a) Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$ | $b_n$ | $p_n$ | $f(p_n)$    |
|----------------|-------|-------|-------|-------------|
| 1              | -1.5  | 2.5   | 0.5   | 0.52734375  |
| 2              | -1.5  | 0.5   | -0.5  | -1.58203125 |
| 3              | -0.5  | 0.5   | 0     | 0           |

So when applied on [-1.5, 2.5], the Bisection method gives 0.

(b) Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$ | $b_n$ | $p_n$ | $f(p_n)$    |
|----------------|-------|-------|-------|-------------|
| 1              | -0.5  | 2.4   | 0.95  | 0.001398666 |
| 2              | -0.5  | 0.95  | 0.225 | 0.62070919  |

At n = 2, the interval shrinks to [-0.5, 0.95]. So when applied on [-0.5, 2.4], the Bisection method gives 0.

(c) Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$ | $b_n$ | $p_n$ | $f(p_n)$     |
|----------------|-------|-------|-------|--------------|
| 1              | -0.5  | 3     | 1.25  | -0.241012573 |
| 2              | 1.25  | 3     | 2.125 | 15.2352825   |

At n = 2, the interval shrinks to [1.25, 3]. So when applied on [-0.5, 3], the Bisection method gives 2.

(d) Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$ | $b_n$ | $p_n$  | $f(p_n)$    |
|----------------|-------|-------|--------|-------------|
| 1              | -3    | -0.5  | -1.75  | -19.1924286 |
| 2              | -3    | -1.75 | -2.375 | 283.204185  |

At n = 2, the interval shrinks to [3, -1.75]. So when applied on [-3, -0.5], the Bisection method gives -2.

#### Exercise 11

Let  $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$ . To which zero of f does the Bisection method converge when applied on the following intervals?

(a) [-3, 2.5]

(c) [-1.75, 1.5]

(b) [-2.5, 3]

(d) [-1.5, -1.75]

#### Solution 11

f has 5 zeros:  $\pm 2$ ,  $\pm 1$ , 0.

(a) Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$ | $b_n$ | $p_n$  | $f(p_n)$     |
|----------------|-------|-------|--------|--------------|
| 1              | -3    | 2.5   | -0.25  | -1.44195557  |
| 2              | -0.25 | 2.5   | 1.125  | -0.012767315 |
| 3              | 1.125 | 2.5   | 1.8125 | -1.95457248  |

At n=3, the interval shrinks to [1.125, 2.5]. So when applied on [-3, 2.5], the Bisection method gives 2.

(b) Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$ | $b_n$  | $p_n$   | $f(p_n)$    |
|----------------|-------|--------|---------|-------------|
| 1              | -2.5  | 3      | 0.25    | 0.519104004 |
| 2              | -2.5  | 0.25   | -1.125  | 3.68975401  |
| 3              | -2.5  | -1.125 | -1.8125 | 23.4201732  |

At n = 3, the interval shrinks to [-2.5, -1.125]. So when applied on [-2.5, 3], the Bisection method gives -2.

(c) Applying Bisection method generates the following table:

| n | $a_n$ | $b_n$  | $p_n$   | $f(p_n)$     |
|---|-------|--------|---------|--------------|
| 1 | -1.75 | 1.5    | -0.125  | -0.620491505 |
| 2 | -1.75 | -0.125 | -0.9375 | -1.33009678  |

At n=2, the interval shrinks to [-1.75, -0.125]. So when applied on [-1.75, 1.5], the Bisection method gives -1.

| $\overline{n}$ | $a_n$ | $b_n$ | $p_n$  | $f(p_n)$    |
|----------------|-------|-------|--------|-------------|
| 1              | -1.5  | 1.75  | 0.125  | 0.375359058 |
| 2              | 0.125 | 1.75  | 0.9375 | 0.001384076 |

At n=2, the interval shrinks to [0.125,1.75]. So when applied on [-1.5,1.75], the Bisection method gives 1.

#### Exercise 12

Find an approximation to  $\sqrt{3}$  correct to within  $10^4$  using the Bisection Algorithm.

#### Solution 12

Let  $f(x) = x^2 - 3$ . The positive zero of f is  $\sqrt{3}$ , so by approximating that positive zero, we get an approximation of  $\sqrt{3}$ .

The positive zero of f clearly is inside [1, 2]. Using Bisection, the number of iteration n needed to approximate  $\sqrt{3}$  to within  $10^{-4}$  in that interval is:

$$\frac{2-1}{2^n} < 10^{-4} \iff n \ge 14$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$      | $b_n$      | $p_n$      | $f(p_n)$     |
|----------------|------------|------------|------------|--------------|
| 1              | 1          | 2          | 1.5        | -0.75        |
| 2              | 1.5        | 2          | 1.75       | 0.0625       |
| 3              | 1.5        | 1.75       | 1.625      | -0.359375    |
| 4              | 1.625      | 1.75       | 1.6875     | -0.15234375  |
| 5              | 1.6875     | 1.75       | 1.71875    | -0.045898438 |
| 6              | 1.71875    | 1.75       | 1.734375   | 0.008056641  |
| 7              | 1.71875    | 1.734375   | 1.7265625  | -0.018981934 |
| 8              | 1.7265625  | 1.734375   | 1.73046875 | -0.005477905 |
| 9              | 1.73046875 | 1.734375   | 1.73242188 | 0.001285553  |
| 10             | 1.73046875 | 1.73242188 | 1.73144531 | -0.00209713  |
| 11             | 1.73144531 | 1.73242188 | 1.73193359 | -0.000406027 |
| 12             | 1.73193359 | 1.73242188 | 1.73217773 | 0.000439703  |
| 13             | 1.73193359 | 1.73217773 | 1.73205566 | 0.000016823  |
| 14             | 1.73193359 | 1.73205566 | 1.73199463 | -0.000194605 |

#### Exercise 13

Find an approximation to  $\sqrt[3]{25}$  correct to within  $10^4$  using the Bisection Algorithm.

#### Solution 13

Let  $f(x) = x^3 - 25$ . The zero of f is  $\sqrt[3]{25}$ , so by approximating that positive zero, we get an approximation of  $\sqrt[3]{25}$ .

The positive zero of f clearly is inside [2, 3]. Using Bisection, the number of iteration n needed to approximate  $\sqrt[3]{25}$  to within  $10^{-4}$  in that interval is:

$$\frac{3-2}{2^n} < 10^{-4} \iff n \ge 14$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$      | $b_n$      | $p_n$      | $f(p_n)$     |
|----------------|------------|------------|------------|--------------|
| 1              | 2          | 3          | 2.5        | -9.375       |
| 2              | 2.5        | 3          | 2.75       | -4.203125    |
| 3              | 2.75       | 3          | 2.875      | -1.23632812  |
| 4              | 2.875      | 3          | 2.9375     | 0.347412109  |
| 5              | 2.875      | 2.9375     | 2.90625    | -0.452972412 |
| 6              | 2.90625    | 2.9375     | 2.921875   | -0.054920197 |
| 7              | 2.921875   | 2.9375     | 2.9296875  | 0.145709515  |
| 8              | 2.921875   | 2.9296875  | 2.92578125 | 0.045260727  |
| 9              | 2.921875   | 2.92578125 | 2.92382812 | -0.004863195 |
| 10             | 2.92382812 | 2.92578125 | 2.92480469 | 0.020190398  |
| 11             | 2.92382812 | 2.92480469 | 2.92431641 | 0.00766151   |
| 12             | 2.92382812 | 2.92431641 | 2.92407227 | 0.001398635  |
| 13             | 2.92382812 | 2.92407227 | 2.9239502  | -0.001732411 |
| 14             | 2.9239502  | 2.92407227 | 2.92401123 | -0.000166921 |

So  $\sqrt[3]{25} \approx 2.92401$ .

#### Exercise 14

Use Theorem 2.1 (*Dinh lí* 2.2 in the Lectures.pdf of the project) to find a bound for the number of iterations needed to achieve an approximation with accuracy  $10^{-3}$  to the solution of  $x^3 + x^4 = 0$  lying in the interval [1, 4]. Find an approximation to the root with this degree of accuracy.

#### Solution 14

Let  $f(x) = x^3 + x4$ . f(1) = -2 and f(4) = 64 have the opposite signs, so there's a root p of f in [1, 4].

The number of iteration n needed to approximate p to within  $10^{-3}$  in that interval is:

$$|p_n - p| \le \frac{4 - 1}{2^n} < 10^{-3} \iff n \ge 12$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$      | $b_n$      | $p_n$      | $f(p_n)$     |
|----------------|------------|------------|------------|--------------|
| 1              | 1          | 4          | 2.5        | 14.125       |
| 2              | 1          | 2.5        | 1.75       | 3.109375     |
| 3              | 1          | 1.75       | 1.375      | -0.025390625 |
| 4              | 1.375      | 1.75       | 1.5625     | 1.37719727   |
| 5              | 1.375      | 1.5625     | 1.46875    | 0.637176514  |
| 6              | 1.375      | 1.46875    | 1.421875   | 0.296520233  |
| 7              | 1.375      | 1.421875   | 1.3984375  | 0.13326025   |
| 8              | 1.375      | 1.3984375  | 1.38671875 | 0.053363502  |
| 9              | 1.375      | 1.38671875 | 1.38085938 | 0.013844214  |
| 10             | 1.375      | 1.38085938 | 1.37792969 | -0.005808686 |
| 11             | 1.37792969 | 1.38085938 | 1.37939453 | 0.004008885  |
| 12             | 1.37792969 | 1.37939453 | 1.37866211 | -0.000902119 |

So  $p \approx 1.3787$ .

#### Exercise 15

Use Theorem 2.1 (*Dinh li 2.2* in the Lectures.pdf of the project) to find a bound for the number of iterations needed to achieve an approximation with accuracy  $10^{-4}$  to the solution of  $x^3 - x1 = 0$  lying in the interval [1, 2]. Find an approximation to the root with this degree of accuracy.

#### Solution 15

Let  $f(x) = x^3 - x1$ . f(1) = -2 and f(4) = 64 have the opposite signs, so there's a root p of f in [1,2].

The number of iteration n needed to approximate p to within  $10^{-4}$  in that interval is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-4} \iff n \ge 14$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$ | $b_n$ | $p_n$ | $f(p_n)$    |
|----------------|-------|-------|-------|-------------|
| 1              | 1     | 2     | 1.5   | 0.875       |
| 2              | 1     | 1.5   | 1.25  | -0.296875   |
| 3              | 1.25  | 1.5   | 1.375 | 0.224609375 |

| n  | $a_n$      | $b_n$      | $p_n$      | $f(p_n)$     |
|----|------------|------------|------------|--------------|
| 4  | 1.25       | 1.375      | 1.3125     | -0.051513672 |
| 5  | 1.3125     | 1.375      | 1.34375    | 0.082611084  |
| 6  | 1.3125     | 1.34375    | 1.328125   | 0.014575958  |
| 7  | 1.3125     | 1.328125   | 1.3203125  | -0.018710613 |
| 8  | 1.3203125  | 1.328125   | 1.32421875 | -0.002127945 |
| 9  | 1.32421875 | 1.328125   | 1.32617188 | 0.00620883   |
| 10 | 1.32421875 | 1.32617188 | 1.32519531 | 0.002036651  |
| 11 | 1.32421875 | 1.32519531 | 1.32470703 | -0.000046595 |
| 12 | 1.32470703 | 1.32519531 | 1.32495117 | 0.000994791  |
| 13 | 1.32470703 | 1.32495117 | 1.3248291  | 0.000474039  |
| 14 | 1.32470703 | 1.3248291  | 1.32476807 | 0.000213707  |

So  $p \approx 1.32477$ .

#### Exercise 16

Let  $f(x) = (x1)^{10}$ , p = 1, and  $p_n = 1 + \frac{1}{n}$ . Show that  $|f(p_n)| < 10^{-3}$  whenever n > 1 but that  $|p - p_n| < 10^{-3}$  requires that n > 1000.

#### Solution 16

For  $f(p_n) < 10^{-3}$ , it is required that n > 1 as:

$$f(p_n) < 10^{-3}$$

$$\iff (p_n - 1)^{10} < 10^{-3}$$

$$\iff \frac{1}{n^{10}} < 10^{-3}$$

$$\iff n > 1$$

For  $|p - p_n| < 10^{-3}$ , it is required that n > 1000 as:

$$|p - p_n| < 10^{-3}$$

$$\iff \qquad \frac{1}{n} < 10^{-3}$$

$$\iff \qquad n > 1000$$

#### Exercise 17

Let  $\{p_n\}$  be the sequence defined by  $p_n = \sum_{k=1}^n \frac{1}{k}$ . Show that  $\{p_n\}$  diverges even though  $\lim_{n\to\infty}(p_n-p_{n-1})=0$ .

#### 25

#### Solution 17

It's clear that the difference of 2 consecutive terms goes to zero:

$$\lim_{n \to \infty} (p_n - p_{n-1}) = \lim_{n \to \infty} \frac{1}{n} = 0$$

However, the sequence diverges as:

$$p_n = \sum_{k=1}^n \frac{1}{k}$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

$$> 1 + (\frac{1}{2}) + (\frac{1}{4} + \frac{1}{4}) + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \dots$$

$$= \infty$$

#### Exercise 18

The function defined by  $f(x) = \sin \pi x$  has zeros at every integer. Show that when 1 < a < 0 and 2 < b < 3, the Bisection method converges to

(a) 0 if 
$$a + b < 2$$

(b) 2 if 
$$a + b > 2$$

(b) 2 if 
$$a + b > 2$$
 (c) 1 if  $a + b = 2$ 

#### Solution 18

Let p be the zero converged by Bisection.

With -1 < a < 0 and 2 < b < 3:

$$\sin \pi a < 0$$
$$\sin \pi b > 0$$
$$1 < a + b < 3$$

- (a) If a+b < 2, then  $0.5 < p_1 = \frac{a+b}{2} < 1$ . Then  $\sin p_1 > 0$ , and the interval shrinks to  $[a, p_1]$ . 0 is the only zero in that interval, so p = 0.
- (b) If a+b>2, then  $1< p_1=\frac{a+b}{2}<1.5$ . Then  $\sin p_1<0$ , and the interval shrinks to  $[p_1,b]$ . 2 is the only zero in that interval, so p=0.
- (c) If a+b=2, then  $p_1=\frac{a+b}{2}=1$ . Then  $\sin p_1=0$ , and a zero p=1 is found.

#### Exercise 19

A trough of length L has a cross section in the shape of a semicircle with radius r. When filled with water to within a distance h of the top, the volume V of water is:

$$V = L(0.5\pi r^2 - r^2 \arcsin{\frac{h}{r}} - h\sqrt{r^2 - h^2})$$

Suppose  $L=10\,\mathrm{ft},\,r=1\,\mathrm{ft},$  and  $V=12.4\,\mathrm{ft}^3.$  Find the depth of water in the trough to within 0.01 ft.

#### Solution 19

Let d be the depth of the water, so d = r - h. Let

$$f(h) = 10(0.5\pi - \arcsin(h) - h\sqrt{1 - h^2}) - 12.4$$

Instead of finding d directly, we find h, also to within 0.01 ft. The number of iteration n needed to approximate h to within 0.01 in [0, r] is:

$$|h - h_n| < \frac{1 - 0}{2^n} < 0.01 \iff n \ge 7$$

Applying Bisection method generates the following table:

| $\overline{n}$ | $a_n$   | $b_n$    | $p_n$     | $f(p_n)$     |
|----------------|---------|----------|-----------|--------------|
| 1              | 0       | 1        | 0.5       | -6.25815151  |
| 2              | 0       | 0.5      | 0.25      | -1.63945387  |
| 3              | 0       | 0.25     | 0.125     | 0.814489029  |
| 4              | 0.125   | 0.25     | 0.1875    | -0.419946724 |
| 5              | 0.125   | 0.1875   | 0.15625   | 0.195725903  |
| 6              | 0.15625 | 0.1875   | 0.171875  | -0.112536394 |
| 7              | 0.15625 | 0.171875 | 0.1640625 | 0.041493241  |

So  $h \approx 0.1641$ , hence  $d = r - h \approx 0.8359$ .

#### Exercise 20

A particle starts at rest on a smooth inclined plane whose angle  $\theta$  is changing at a constant rate  $\omega$  such that:

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega < 0$$

At the end of t seconds, the position of the object is given by:

$$x(t) = -\frac{g}{2\omega^2} \left( \frac{e^{\omega t} - e^{-\omega t}}{x} - \sin \omega t \right)$$

Suppose the particle has moved 1.7 ft in 1 s. Find, to within  $10^5$ , the rate  $\omega$  at which  $\theta$  changes. Assume that  $g = 32.17 \, \text{ft/s}^2$ .

#### Solution 20

As  $\omega < 0$ , the plane rotates clockwise. After 1 s, the particle still sticks to the plane, so:

$$\theta(1) < \frac{\pi}{2} \iff -\frac{\pi}{2} < \omega < 0$$

After 1s, the particle has moved 1.7ft, so that:

$$x(1) = 1.7 = -\frac{32.17}{2\omega^2} \left( \frac{e^{\omega t} - e^{-\omega t}}{2} - \sin \omega t \right)$$

Let

$$f(\omega) = 3.4\omega^2 + 32.17 \left( \frac{e^{\omega t} - e^{-\omega t}}{2} - \sin \omega t \right)$$

The root of the above function in  $(-\frac{\pi}{2},0)$  will be the solution of the problem. Applying Bisection on f on  $[-\frac{\pi}{2},0]$  fails as f(0)=0. We need to expand (arbitrarily even) the searching interval a bit for the method to work, and check the solution later on. Hence, we use the interval  $[-\frac{\pi}{2},1]$ .

The number of iteration n needed to approximate  $\omega$  to within  $10^{-5}$  is:

$$|\omega - \omega_n| < \frac{1 - (-0.5\pi)}{2^n} < 10^{-5} \iff n \ge 18$$

Applying Bisection method generates the following table:

| n  | $a_n$        | $b_n$        | $p_n$        | $f(p_n)$     |
|----|--------------|--------------|--------------|--------------|
| 1  | -1.57079633  | 1            | -0.285398163 | 0.027657569  |
| 2  | -1.57079633  | -0.285398163 | -0.928097245 | -5.65148786  |
| 3  | -0.928097245 | -0.285398163 | -0.606747704 | -1.14396969  |
| 4  | -0.606747704 | -0.285398163 | -0.446072934 | -0.275313029 |
| 5  | -0.446072934 | -0.285398163 | -0.365735549 | -0.06982238  |
| 6  | -0.365735549 | -0.285398163 | -0.325566856 | -0.009667545 |
| 7  | -0.325566856 | -0.285398163 | -0.30548251  | 0.011587981  |
| 8  | -0.325566856 | -0.30548251  | -0.315524683 | 0.001641051  |
| 9  | -0.325566856 | -0.315524683 | -0.320545769 | -0.003838965 |
| 10 | -0.320545769 | -0.315524683 | -0.318035226 | -0.001055895 |
| 11 | -0.318035226 | -0.315524683 | -0.316779954 | 0.00030328   |
| 12 | -0.318035226 | -0.316779954 | -0.31740759  | -0.000373625 |
| 13 | -0.31740759  | -0.316779954 | -0.317093772 | -0.000034503 |
| 14 | -0.317093772 | -0.316779954 | -0.316936863 | 0.000134556  |
| 15 | -0.317093772 | -0.316936863 | -0.317015318 | 0.000050068  |

| n  | $a_n$        | $b_n$        | $p_n$        | $f(p_n)$     |
|----|--------------|--------------|--------------|--------------|
| 16 | -0.317093772 | -0.317015318 | -0.317054545 | 0.000007793  |
| 17 | -0.317093772 | -0.317054545 | -0.317074159 | -0.000013352 |
| 18 | -0.317074159 | -0.317054545 | -0.317064352 | -0.000002779 |

As  $-0.317064 \in (-\frac{\pi}{2}, 0)$ , it is a valid approximation of  $\omega$ . We conclude that  $\omega \approx -0.317064$ .

### 2.2 Fixed-Point Iteration

#### Exercise 1

Use algebraic manipulation to show that each of the following functions has a fixed-point at p precisely when f(p) = 0, where  $f(x) = x^4 + 2x^2 - x - 3$ .

a) 
$$g_1(x) = (3 + x - 2x^2)^{1/4}$$
 b)  $g_2(x) = \left(\frac{x + 3 - x^4}{2}\right)^{1/2}$ 

c) 
$$g_3(x) = \left(\frac{x+3}{x^2+2}\right)^{1/2}$$
 d)  $g_4(x) = \frac{3x^4+2x^2+3}{4x^3+4x-1}$ 

#### Solution 1

a) For x = p:

$$g_1(p) = (3 + p - 2p^2)^{\frac{1}{4}} = (p^4 - f(p))^{1/4} = |p|$$

So p is a fixed-point of  $g_1$ .

b) For x = p:

$$g_2(p) = \left(\frac{p+3-p^4}{2}\right)^{1/2}$$
$$= \left(\frac{2p^2}{2}\right)^{\frac{1}{2}}$$
$$= |p|$$

So p is a fixed-point of  $g_2$ .

c) For x = p:

$$g_3(p) = \left(\frac{p+3}{p^2+2}\right)^{1/2}$$
$$= \left(\frac{p^4+2p^2}{p^2+2}\right)^{1/2}$$
$$= |p|$$

So p is a fixed-point of  $g_3$ .

d) For x = p:

$$g_4(p) = \frac{3p^4 + 2p^2 + 3}{4p^3 + 4p - 1}$$

$$= \frac{4p^4 - (3 + p - 2p^2) + 2p^2 + 3}{4p^3 + 4p - 1}$$

$$= \frac{4p^4 + 4p^2 - p}{4p^3 + 4p - 1}$$

$$= p$$

So p is a fixed-point of  $g_4$ .

#### Exercise 2

- a) Perform four iterations, if possible, on each of the functions g defined in Exercise 1. Let  $p_0 = 1$  and  $p_{n+1} = g(p_n)$ , for n = 0, 1, 2, 3.
- b) Which function do you think gives the best approximation to the solution?

#### Solution 2

a) Applying fixed-point method on the four functions g generates the following table:

| $\overline{n}$ | $p_n$ by $g_1$ | $p_n$ by $g_2$ | $p_n$ by $g_3$ | $p_n$ by $g_4$ |
|----------------|----------------|----------------|----------------|----------------|
| 0              | 1              | 1              | 1              | 1              |
| 1              | 1.189207115    | 1.224744871    | 1.154700538    | 1.142857143    |
| 2              | 1.080057753    | 0.993666159    | 1.11642741     | 1.12448169     |
| 3              | 1.149671431    | 1.228568645    | 1.126052233    | 1.124123164    |
| 4              | 1.107820053    | 0.987506429    | 1.123638885    | 1.12412303     |

b)  $g_4$  gives the best approximation as it generates the smallest difference between  $p_3$  and  $p_4$ :  $|p_4 - p_3| = -134 \times 10^{-7}$ .

#### Exercise 3

The following four methods are proposed to compute  $21^{1/3}$ . Rank them in order, based on their apparent speed of convergence, assuming  $p_0 = 1$ .

a) 
$$p_n = \frac{20p_{n-1} + \frac{21}{p_{n-1}^2}}{21}$$

a) 
$$p_n = \frac{20p_{n-1} + \frac{21}{p_{n-1}^2}}{21}$$
 b)  $p_n = p_{n-1} - \frac{p_{n-1}^3 - 21}{3p_{n-1}^2}$ 

c) 
$$p_n = p_{n-1} - \frac{p_{n-1}^4 - 21p_{n-1}}{p_{n-1}^2 - 21}$$
 d)  $p_n = \left(\frac{21}{p_{n-1}}\right)^{1/2}$ 

d) 
$$p_n = \left(\frac{21}{p_{n-1}}\right)^{1/2}$$

#### Solution 3

Applying fixed-point method on the four sequences generate the following table:

| $\overline{n}$ | a)          | b)          | c) | d)            |
|----------------|-------------|-------------|----|---------------|
| 0              | 1           | 1           | 1  | 1             |
| 1              | 1.952380952 | 7.666666667 | 0  | 4.582575695   |
| 2              | 2.121754174 | 5.230203739 | 0  | 2.140695143   |
| 3              | 2.242849692 | 3.742696919 |    | 3.132075595   |
| 4              | 2.334839673 | 2.994853568 |    | 2.589366527   |
| 5              | 2.40109338  | 2.777022226 |    | 2.847822274   |
| 6              | 2.465059288 | 2.759041866 |    | 2.715521253   |
| 7              | 2.512243463 | 2.758924181 |    | 2.780885095   |
| 8              | 2.551057096 | 2.758924176 |    | 2.748008838   |
| 9              | 2.583237767 | 2.758924176 |    | 2.764398093   |
| 10             | 2.610081445 |             |    | 2.756191284   |
| 11             | 2.632580301 |             |    | 2.760291639   |
| 12             | 2.651509504 |             |    | 2.758240699   |
| 13             | 2.667484488 |             |    | 2.759265978   |
| 14             | 2.681000202 |             |    | 2.758753291   |
| 15             | 2.692458887 |             |    | 2.759009623   |
| 16             | 2.702190249 |             |    | 2.758881454   |
| 17             | 2.710466453 |             |    | 2.758945538   |
| 18             | 2.717513483 |             |    | 2.758913496   |
| 19             | 2.723519902 |             |    | 2.758 929 517 |

Apparently, the speed of convergence is ranked in descending order as follow: b), d), a). c) does not converge.

#### Exercise 4

The following four methods are proposed to compute  $7^{1/5}$ . Rank them in order, based on their apparent speed of convergence, assuming  $p_0 = 1$ .

a) 
$$p_n = p_{n-1} - \left(1 + \frac{7 - p_{n-1}^5}{p_{n-1}^2}\right)^3$$
 b)  $p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{p_{n-1}^2}$ 

b) 
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{p_{n-1}^2}$$

c) 
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{5p_{n-1}^4}$$
 d)  $p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{12}$ 

d) 
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{12}$$

#### Solution 4

Applying fixed-point method on the four sequences generate the following table:

| $\overline{n}$ | a)                     | b)       | c)          | d)          |
|----------------|------------------------|----------|-------------|-------------|
| 0              | 1                      | 1        | 2.2         | 1           |
| 1              | 343                    | 7        | 1.819763677 | 1.5         |
| 2              | $-2.25 \times 10^{25}$ | -335.857 | 1.58347483  | 1.450520833 |
| 3              |                        | 37884356 | 1.489460974 | 1.498749661 |
| 4              |                        |          | 1.476022436 | 1.451903535 |
| 5              |                        |          | 1.475773246 | 1.497577067 |
| 6              |                        |          | 1.475773162 | 1.45319229  |
| 7              |                        |          | 1.475773162 | 1.496475364 |
| 9              |                        |          |             | 1.454396119 |
| 8              |                        |          |             | 1.495438587 |
| 10             |                        |          |             | 1.45552281  |
| 11             |                        |          |             | 1.494461513 |
| 12             |                        |          |             | 1.456579138 |
| 13             |                        |          |             | 1.493539533 |
| 14             |                        |          |             | 1.457571031 |
| 15             |                        |          |             | 1.49266856  |
| 16             |                        |          |             | 1.458803715 |
| 17             |                        |          |             | 1.491844948 |
| 18             |                        |          |             | 1.459381814 |
| 19             |                        |          |             | 1.491065425 |

Apparently, the speed of convergence is ranked in descending order as follow: c), d). a) and b) do not converge.

#### Exercise 5

Use a fixed-point iteration method to determine a solution accurate to within  $10^{-2}$  for  $x^4 - 3x^2 - 3 = 0$  on [1, 2]. Use  $p_0 = 1$ .

#### Solution 5

Let  $f(x) = x^4 - 3x^2 - 3$ . Let p be the root of f in [1, 2]. We need to find a function g for which p = g(p) to perform the fixed-point method.

Extract p to RHS gives:

$$p^4 = 3p^2 + 3 \iff |p| = (3p^2 + 3)^{1/4}$$

Then g is chosen as:

$$g(x) = (3x^2 + 3)^{1/4}$$

Applying fixed-point method on g generate the following table:

| $\overline{n}$ | $p_n$       | n | $p_n$       |
|----------------|-------------|---|-------------|
| 0              | 1           | 4 | 1.922847844 |
| 1              | 1.56508458  | 5 | 1.93750754  |
| 2              | 1.793572879 | 6 | 1.94331693  |
| 3              | 1.885943743 |   |             |

We can try the other obvious option

$$g(x) = \left(\frac{x^4 - 3}{3}\right)^{0.5}$$

which fails on the first iteration. A reasonable explanation for the choice of g is that we need |g'| to be as small as possible. On [1, 2], the  $O(x^{0.5})$  of the first choice clearly has an advantage over  $O(x^2)$  of the second choice of g.

We conclude that  $p \approx 1.943$ .

#### Exercise 6

Use a fixed-point iteration method to determine a solution accurate to within  $10^{-2}$  for  $x^3 - x - 1 = 0$  on [1, 2]. Use  $p_0 = 1$ .

#### Solution 6

Let  $f(x) = x^3 - x - 1 = 0$ . Let p be the root of f in [1,2]. We need to find a function g for which p = g(p) to perform the fixed-point method.

Extract p to RHS gives:

$$p^3 = p + 1 \iff p = (p+1)^{1/3}$$

Then g is chosen as:

$$g(x) = (p+1)^{1/3}$$

Applying fixed-point method on g generates the following table:

| n | $p_n$       | n | $p_n$       |
|---|-------------|---|-------------|
| 0 | 1           | 3 | 1.322353819 |
| 1 | 1.25992105  | 4 | 1.324268745 |
| 2 | 1.312293837 |   |             |

We conclude that  $p \approx 1.324$ .

#### Exercise 7

Use Theorem 2.3 (Định lý 2.3 in the accompanying Lectures.pdf) to show that  $g(x) = \pi + 0.5 \sin 0.5x$  has a unique fixed point on  $[0, 2\pi]$ . Use fixed-point iteration to find an approximation to the fixed point that is accurate to within  $10^{-2}$ . Use Corollary 2.5 (Hệ quả 2.1) to estimate the number of iterations required to achieve  $10^{-2}$  accuracy, and compare this theoretical estimate to the number actually needed.

#### Solution 7

From the formula of g:

$$g(x) = \pi + 0.5 \sin 0.5x$$
  
 $\Rightarrow g(x) \in [\pi - 0.5, \pi + 0.5] \, \forall x$ 

Consider the interval  $I=[\pi-0.5,\pi+0.5]\in[0,2\pi].$  From the above equations, we know that:

- $g \in CI$
- $q(x) \in I \, \forall x \in I$

According to theorem 2.3, there exists a fixed point of g on I. Differentiating g gives:

$$g'(x) = -0.25\cos 0.5x \Rightarrow |g'(x)| \le k = 0.25 < 1 \,\forall x$$

Again, according to theorem 2.3, there exists one and only one fixed point of g on I.

Applying fixed-point method on g, with  $p_0 = \pi$ , generates the following table:

| n | $p_n$       | n | $p_n$       |
|---|-------------|---|-------------|
| 0 | 3.141592654 | 2 | 3.626048864 |
| 1 | 3.641592654 | 3 | 3.626995622 |

Using corollary 2.5, the number of iterations n required to achieve  $10^{-2}$  accuracy is

$$|p_n - p| \le k^n 0.5 < 10^{-2} \iff n \ge 3$$

which is in line with the number of iteration actually performed.

#### Exercise 8

Use Theorem 2.3 (Định lý 2.3 in the accompanying Lectures.pdf) to show that  $g(x) = 2^{-x}$  has a unique fixed point on  $[\frac{1}{3}, 1]$ . Use fixed-point iteration to find an approximation to the fixed point that is accurate to within  $10^{-4}$ . Use Corollary 2.5 (Hệ quả 2.1) to estimate the number of iterations required to achieve  $10^{-4}$  accuracy, and compare this theoretical estimate to the number actually needed.

#### Solution 8

From the formula of g:

$$g(x) = 2^{-x}$$
$$\Rightarrow g'(x) = -2^{-x} \ln 2$$

It is clear that  $g \in C^1R$ .

Consider the interval  $I = [\frac{1}{3}, 1], I_{open} = (\frac{1}{3}, 1)$ :

$$g'(x) < 0 \forall x \in I$$
  

$$\Rightarrow 1 > g(\frac{1}{3}) = 2^{-1/3} \ge g(x) \ge g(1) = 2^{-1} > \frac{1}{3}$$
  

$$\Rightarrow g(x) \in I \, \forall x \in I$$

So far, we know that:

- $g \in CI \ (g \in CR \text{ even})$
- $g(x) \in I \, \forall x \in I$

According to theorem 2.3, there exists a fixed point of g on I. Consider g':

$$-1 < -\ln 2 \le g'(x) \le -\frac{1}{3}\ln 2 < 0 \,\forall x \in I$$
$$\Rightarrow |g'(x)| \le k = \ln 2 < 1 \,\forall x \in I$$

Again, according to Theorem 2.3, there exists one and only one fixed point of g on I.

Applying fixed-point method on g, with  $p_0 = \frac{2}{3}$ , generates the following table:

| n | $p_n$       | n | $p_n$       |
|---|-------------|---|-------------|
| 0 | 0.666666667 | 5 | 0.640746653 |
| 1 | 0.629960525 | 6 | 0.641380922 |
| 2 | 0.646194096 | 7 | 0.641099006 |
| 3 | 0.638963711 | 8 | 0.641224295 |
| 4 | 0.642174057 | 9 | 0.641168611 |

Using Corollary 2.5, the number of iterations n required to achieve  $10^{-4}$  accuracy is

$$|p_n - p| \le k^n \frac{1}{3} < 10^{-4} \iff n \ge 23$$

which is quit a bit higher than the number of iteration actually performed.

#### Exercise 9

Use a fixed-point iteration method to find an approximation to  $\sqrt{3}$  that is accurate to within  $10^{-4}$ . Compare your result and the number of iterations required with the answer obtained in Exercise 12 of Section 2.1.

#### Solution 9

Let  $f(x) = x^2 - 3$ , p > 0 is a zero of f. Then  $p = \sqrt{3}$ , and an approximation of p is an approximation of  $\sqrt{3}$ .

Consider  $g(x) = \frac{3}{x}$ . It is clear that this is a bad choice, as applying g on any  $p_0$  will generate a sequence that jumps between  $p_0$  and  $\frac{3}{p_0}$ .

From the textbook examples, we choose  $g(x) = x - \frac{x^2 - 3}{x^2}$ . Applying fixed-point method on g with  $p_0 = 1.5$  generates the following table:

| $\overline{n}$ | $p_n$      | n | $p_n$      |
|----------------|------------|---|------------|
| 0              | 1.5        | 4 | 1.73189858 |
| 1              | 1.83333333 | 5 | 1.73207438 |
| 2              | 1.72589532 | 6 | 1.73204716 |
| 3              | 1.73304114 |   |            |

We conclude that  $\sqrt{3} \approx 1.732\,05$ . In exercise 12 of section 2.1, 14 iteration is needed, much higher than that of this method.

#### Exercise 10

Use a fixed-point iteration method to find an approximation to  $\sqrt[3]{25}$  that is accurate to within  $10^{-4}$ . Compare your result and the number of iterations required with the answer obtained in Exercise 13 of Section 2.1.

## 36

#### Solution 10

Let  $f(x) = x^3 - 25$ , p > 0 is a zero of f. Then  $p = \sqrt[3]{25}$ , and an approximation of p is an approximation of  $\sqrt[3]{25}$ .

We choose  $g(x) = x - \frac{x^3 - 25}{x^3}$ . Applying fixed-point method on g with  $p_0 = 2.5$  generates the following table:

| $\overline{n}$ | $p_n$      | n | $p_n$      |
|----------------|------------|---|------------|
| 0              | 2.5        | 3 | 2.92378369 |
| 1              | 3.1        | 4 | 2.92402386 |
| 2              | 2.93917962 | 5 | 2.92401758 |

We conclude that  $\sqrt[3]{25} \approx 2.924\,02$ . In exercise 13 of section 2.1, 14 iteration is needed, much higher than that of this method.

#### Exercise 11

For each of the following equations, determine an interval [a, b] on which fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approximations accurate to within  $10^{-5}$ , and perform the calculations.

a) 
$$x = \frac{2 - e^x + x^2}{3}$$

b) 
$$x = \frac{5}{x^2} + 2$$

c) 
$$x = (e^x/3)^{1/2}$$

d) 
$$x = 5^{-x}$$

e) 
$$x = 6^{-x}$$

$$f) \quad x = 0.5(\sin x + \cos x)$$

#### Solution 11

a) Let

$$g(x) = \frac{2 - e^x + x^2}{3}$$

$$\Rightarrow \qquad g'(x) = \frac{2x - e^x}{3}$$

$$\Rightarrow \qquad g''(x) = \frac{2 - e^x}{3}$$

It's clear that g is continuous in  $\mathbb{R}$ .

Consider q'':

• 
$$g''(x) > 0 \iff x < \ln 2$$

• 
$$g''(x) = 0 \iff x = \ln 2$$

• 
$$q''(x) < 0 \iff x > \ln 2$$

So,  $\max g'(x) = g'(\ln 2) = \frac{\ln 4 - 2}{3} < 0$ . So g is monotonically decreasing in  $\mathbb{R}$ .

Consider the interval I = [0, 1]:

$$1 > g(0) = \frac{1}{3} > g(x) > g(1) = \frac{3 - e}{3} > 0 \,\forall x \in I$$
$$\Rightarrow g(x) \in I \,\forall x \in I$$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with  $p_0 = 0.5$  generates the following table:

| n | $p_n$       | n | $p_n$       |
|---|-------------|---|-------------|
| 0 | 0.5         | 5 | 0.257265636 |
| 1 | 0.200426243 | 6 | 0.257598985 |
| 2 | 0.272749065 | 7 | 0.257512455 |
| 3 | 0.253607157 | 8 | 0.257534914 |
| 4 | 0.258550376 | 9 | 0.257529084 |

We conclude that the fixed point  $p \approx 0.257529$ .

#### b) Let

$$g = \frac{5}{x^2} + 2$$

Consider the interval I = [2.5, 3].  $0 \notin I$ , so g is continuous in I.

 $x^2$  is monotonically increasing in I, so g is monotonically decreasing in I. So that:

$$3 > g(2.5) = 2.8 > g(x) > g(3) = {}^{23}/\!{}_{9} > 2.5 \,\forall x \in I$$
  
 $\Rightarrow g(x) \in I \,\forall x \in I$ 

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with  $p_0 = 2.75$  generates the following table:

| n | $p_n$      | n  | $p_n$      | n  | $p_n$      |
|---|------------|----|------------|----|------------|
| 0 | 2.75       | 6  | 2.69171092 | 12 | 2.69066691 |
| 1 | 2.66115702 | 7  | 2.69010182 | 13 | 2.69063746 |
| 2 | 2.7060395  | 8  | 2.69092764 | 14 | 2.69065258 |
| 3 | 2.68281293 | 9  | 2.69050363 | 15 | 2.69064482 |
| 4 | 2.69468708 | 10 | 2.69072129 |    |            |
| 5 | 2.68857829 | 11 | 2.69060954 |    |            |

We conclude that the fixed point  $p \approx 2.690645$ .

c) Let

$$g(x) = \left(\frac{e^x}{3}\right)^{1/2}$$

It's clear that g is continuous in  $\mathbb{R}$ .

g is monotonically increasing in  $\mathbb{R}$ . Consider the interval I = [0, 1]:

$$0 < g(0) = \frac{1}{\sqrt{3}} < g(x) < g(1) = \sqrt{\frac{e}{3}} < 1$$
$$\Rightarrow g(x) \in I \,\forall x \in I$$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with  $p_0 = 0.5$  generates the following table:

| $\overline{n}$ | $p_n$       | n | $p_n$       | n  | $p_n$       |
|----------------|-------------|---|-------------|----|-------------|
| 0              | 0.5         | 5 | 0.903281143 | 10 | 0.909876791 |
| 1              | 0.74133242  | 6 | 0.906952163 | 11 | 0.909948068 |
| 2              | 0.836407007 | 7 | 0.908618411 | 12 | 0.909980498 |
| 3              | 0.87712774  | 8 | 0.909375718 | 13 | 0.909995254 |
| 4              | 0.895169428 | 9 | 0.909720122 | 14 | 0.910001967 |

We conclude that the fixed point  $p \approx 0.910002$ .

d) Let  $g(x) = 5^{-x}$ . It's clear that g is continuous in  $\mathbb{R}$ .  $5^x$  is monotonically increasing in  $\mathbb{R}$ , so g is monotonically decreasing in  $\mathbb{R}$ . Consider the interval I = [0, 1]:

$$0 < g(1) = 0.2 < g(x) < g(0) = 1$$
$$\Rightarrow g(x) \in I \, \forall x \in I$$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with  $p_0 = 0.5$  generates the following table:

| n | $p_n$       | n  | $p_n$       | n  | $p_n$       |
|---|-------------|----|-------------|----|-------------|
| 0 | 0.5         | 11 | 0.468245559 | 22 | 0.469685261 |
| 1 | 0.447213595 | 12 | 0.470663369 | 23 | 0.469574052 |
| 2 | 0.486867866 | 13 | 0.468835429 | 24 | 0.469658106 |
| 3 | 0.456766207 | 14 | 0.470216753 | 25 | 0.469594575 |
| 4 | 0.479439843 | 15 | 0.469172549 | 26 | 0.469642593 |
| 5 | 0.462259591 | 16 | 0.469961695 | 27 | 0.4696063   |

| n  | $p_n$       | n  | $p_n$       | n  | $p_n$       |
|----|-------------|----|-------------|----|-------------|
| 6  | 0.475219673 | 17 | 0.469365184 | 28 | 0.469633731 |
| 7  | 0.465409992 | 18 | 0.469816013 | 29 | 0.469612998 |
| 8  | 0.47281623  | 19 | 0.469475247 | 30 | 0.469628669 |
| 9  | 0.467213774 | 20 | 0.469732798 | 31 | 0.469616824 |
| 10 | 0.4714456   | 21 | 0.469538128 | 32 | 0.469625777 |

We conclude that the fixed point  $p \approx 0.469626$ .

e) Let  $g(x) = 6^{-x}$ . It's clear that g is continuous in  $\mathbb{R}$ .  $6^x$  is monotonically increasing in  $\mathbb{R}$ , so g is monotonically decreasing in  $\mathbb{R}$ . Consider the interval I = [0, 1]:

$$0 < g(1) = \frac{1}{6} < g(x) < g(0) = 1$$
$$\Rightarrow g(x) \in I \,\forall x \in I$$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with  $p_0 = 0.5$  generates the following table:

| n  | $p_n$       | n  | $p_n$       | n  | $p_n$       |
|----|-------------|----|-------------|----|-------------|
| 0  | 0.5         | 15 | 0.446190464 | 30 | 0.448132603 |
| 1  | 0.40824829  | 16 | 0.449568975 | 31 | 0.448007263 |
| 2  | 0.481194974 | 17 | 0.446855739 | 32 | 0.448107887 |
| 3  | 0.422238208 | 18 | 0.449033402 | 33 | 0.448027103 |
| 4  | 0.469282988 | 19 | 0.447284756 | 34 | 0.448091958 |
| 5  | 0.431347074 | 20 | 0.448688365 | 35 | 0.448039891 |
| 6  | 0.461686032 | 21 | 0.447561363 | 36 | 0.448081691 |
| 7  | 0.437258678 | 22 | 0.448466044 | 37 | 0.448048133 |
| 8  | 0.456821582 | 23 | 0.447739682 | 38 | 0.448075074 |
| 9  | 0.441086448 | 24 | 0.44832278  | 39 | 0.448053445 |
| 10 | 0.453699216 | 25 | 0.44785463  | 40 | 0.448070809 |
| 11 | 0.443561035 | 26 | 0.448230453 | 41 | 0.448056869 |
| 12 | 0.451692029 | 27 | 0.447928723 | 42 | 0.44806806  |
| 13 | 0.445159128 | 28 | 0.448170951 | 43 | 0.448059076 |
| 14 | 0.450400504 | 29 | 0.447976481 |    |             |

We conclude that the fixed point  $p \approx 0.448059$ .

f) Let  $g(x) = 0.5(\sin x + \cos x)$ . It's clear that g is continuous in  $\mathbb{R}$ . Manipulating g gives:

$$\sin x + \cos x = \sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right)$$

$$= \sqrt{2} \left( \cos \frac{\pi}{4} \sin x + \sin \frac{\pi}{4} \cos x \right)$$

$$= \sqrt{2} \sin \left( x + \frac{\pi}{4} \right)$$

$$\Rightarrow g(x) = 0.5(\sin x + \cos x)$$

$$= \frac{1}{\sqrt{2}} \sin \left( x + \frac{\pi}{4} \right)$$

Consider the interval  $I = [0, \frac{\pi}{4}]$ . sinx is monotonically increasing in  $[0, \frac{\pi}{2}]$ , so  $sin x + \frac{\pi}{4}$  also is monotonically increasing in I. It follows that:

$$0 < g(0) = 0.5 < g(x) < g(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} < \frac{\pi}{4}$$
  
$$\Rightarrow g(x) \in I \ \forall x \in I$$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with  $p_0 = \frac{\pi}{8}$  generates the following table:

| $\overline{n}$ | $p_n$       | n | $p_n$       |
|----------------|-------------|---|-------------|
| 0              | 0.392699082 | 4 | 0.704799153 |
| 1              | 0.653281482 | 5 | 0.704811271 |
| 2              | 0.700944543 | 6 | 0.70481196  |
| 3              | 0.70458659  |   |             |

We conclude that the fixed point  $p \approx 0.704812$ .

#### Exercise 12

For each of the following equations, use the given interval or determine an interval [a, b] on which fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approximations accurate to within  $10^{-5}$ , and perform the calculations.

a) 
$$2 + \sin x - x = 0$$
 on [2, 3]

b) 
$$x^3 - 3x - 5 = 0$$
 on [2, 3]

c) 
$$3x^2 - e^x = 0$$

d) 
$$x - \cos x = 0$$

#### Solution 12

a) Let I = [2, 3] and

$$g(x) = \sin x + 2$$
$$\Rightarrow g'(x) = \cos x$$

A fixed point p of g will also be a root of the problem.

Consider g. It's clear that g is continuous on  $\mathbb{R}$ .  $\sin x$  is monotonically decreasing in I, so that:

$$2 < g(3) = \sin 3 + 2 < g(x) < g(2) = \sin 2 + 2 < 3$$

Consider g'.  $\cos x$  is monotonically decreasing in I, so that:

$$\cos 3 \le g'(x) \le \cos 2 < 0 \,\forall x \in I$$
$$\Rightarrow |g'(x)| \le k = -\cos 3 < 1$$

Therefore, all the conditions in Corollary 2.5 hold. Using Corollary 2.5, with  $p_0 = 2.5$ , the number of iteration n required to obtain approximations accurate to within  $10^{-5}$  is:

$$|p_n - p| \le k^n 0.5 < 10^{-5} \iff n \ge 1076$$

Applying fixed-point method on g generates the following table:

| n  | $p_n$      | n  | $p_n$      | n  | $p_n$      |
|----|------------|----|------------|----|------------|
| 0  | 2.5        | 18 | 2.55222543 | 36 | 2.55412346 |
| 1  | 2.59847214 | 19 | 2.55583511 | 37 | 2.55425629 |
| 2  | 2.51680997 | 20 | 2.5528308  | 38 | 2.55414573 |
| 3  | 2.58492102 | 21 | 2.55533177 | 39 | 2.55423776 |
| 4  | 2.52836328 | 22 | 2.55325015 | 40 | 2.55416115 |
| 5  | 2.57551141 | 23 | 2.55498297 | 41 | 2.55422492 |
| 6  | 2.5363287  | 24 | 2.55354068 | 42 | 2.55417184 |
| 7  | 2.56897915 | 25 | 2.55474128 | 43 | 2.55421602 |
| 8  | 2.54183051 | 26 | 2.55374195 | 44 | 2.55417925 |
| 9  | 2.56444615 | 27 | 2.5545738  | 45 | 2.55420986 |
| 10 | 2.54563487 | 28 | 2.5538814  | 46 | 2.55418438 |
| 11 | 2.56130168 | 29 | 2.55445776 | 47 | 2.55420559 |
| 12 | 2.5482673  | 30 | 2.55397801 | 48 | 2.55418793 |
| 13 | 2.55912111 | 31 | 2.55437735 | 49 | 2.55420263 |
| 14 | 2.55008961 | 32 | 2.55404495 | 50 | 2.5541904  |
| 15 | 2.55760933 | 33 | 2.55432164 | 51 | 2.55420058 |
| 16 | 2.55135148 | 34 | 2.55409133 | 52 | 2.5541921  |
| 17 | 2.55656141 | 35 | 2.55428304 |    |            |

So one root of the problem is  $p \approx 2.554192$ .

b) Let I = [2, 3] and

$$g(x) = \sqrt[3]{2x+5}$$
  
 
$$\Rightarrow g'(x) = \frac{2}{3}(2x+5)^{-2/3}$$

A fixed point p of g will also be a root of the problem.

Consider g. It's clear that g is continuous and monotonically increasing on  $\mathbb{R}$ , so that:

$$2 < g(2) = \sqrt[3]{9} < g(x) < g(3) = \sqrt[3]{11} < 3$$
  
 $\Rightarrow g(x) \in I \, \forall x \in I$ 

Consider g'. Since -2/3 < 0 and I > 0, g'(x) is monotonically decreasing in I, so that:

$$g'(2) = \frac{2}{9\sqrt[3]{3}} \ge g'(x) \ge g'(3) = \frac{2}{3\sqrt[3]{121}}$$
$$\Rightarrow |g'(x)| \le k = \frac{2}{9\sqrt[3]{3}} < 1$$

Therefore, all the conditions in Corollary 2.5 hold. Using Corollary 2.5, with  $p_0 = 2.5$ , the number of iteration n required to obtain approximations accurate to within  $10^{-5}$  is:

$$|p_n - p| \le k^n 0.5 < 10^{-5} \iff n \ge 6$$

Applying fixed-point method on g generates the following table:

| n | $p_n$      | n | $p_n$      |
|---|------------|---|------------|
| 0 | 2.5        | 4 | 2.09476055 |
| 1 | 2.15443469 | 5 | 2.09458325 |
| 2 | 2.10361203 | 6 | 2.09455631 |
| 3 | 2.09592741 | 7 | 2.09455222 |

So one root of the problem is  $p \approx 2.094552$ .

c) Let I = [3, 4] and

$$g(x) = \ln 3x^2 = 2 \ln x + \ln 3$$

$$\Rightarrow g'(x) = \frac{2}{x}$$

A fixed point p of g will also be a root of the problem.

Consider g. It's clear that g is continuous and monotonically increasing on I, so that:

$$3 < g(3) = \ln 27 < g(x) < g(4) = \ln 48 < 4$$
  
 $\Rightarrow g(x) \in I \ \forall x \in I$ 

Consider g'. Since I > 0, g'(x) is monotonically decreasing in I, so that:

$$g'(3) = \frac{2}{3} \ge g'(x) \ge g'(4) = \frac{1}{2}$$
  
 $\Rightarrow |g'(x)| \le k = \frac{2}{3} < 1$ 

Therefore, all the conditions in Corollary 2.5 hold. Using Corollary 2.5, with  $p_0 = 3.5$ , the number of iteration n required to obtain approximations accurate to within  $10^{-5}$  is:

$$|p_n - p| \le k^n 0.5 < 10^{-5} \iff n \ge 27$$

Applying fixed-point method on g generates the following table:

| $\overline{n}$ | $p_n$      | n  | $p_n$      | n  | $p_n$      |
|----------------|------------|----|------------|----|------------|
| 0              | 3.5        | 6  | 3.72717712 | 12 | 3.73293923 |
| 1              | 3.60413823 | 7  | 3.72991458 | 13 | 3.73300413 |
| 2              | 3.66277767 | 8  | 3.73138295 | 14 | 3.7330389  |
| 3              | 3.69505586 | 9  | 3.73217015 | 15 | 3.73305753 |
| 4              | 3.71260363 | 10 | 3.73259204 | 16 | 3.73306751 |
| 5              | 3.72207913 | 11 | 3.7328181  |    |            |

So one root of the problem is  $p \approx 3.733068$ .

d) Let I = [0, 1] and

$$g(x) = \cos x$$
$$\Rightarrow g'(x) = -\sin x$$

A fixed point p of g will also be a root of the problem.

Consider g. It's clear that g is continuous and monotonically decreasing on I, so that:

$$1 = g(0) \ge g(x) \ge g(1) = \cos 1 > 0$$
  
$$\Rightarrow g(x) \in I \,\forall x \in I$$

Consider g'. Since I > 0, g'(x) is monotonically decreasing in I, so that:

$$g'(0) = 0 \ge g'(x) \ge g'(1) = -\sin 1$$
  
 $\Rightarrow |g'(x)| \le k = \sin 1 < 1$ 

Therefore, all the conditions in Corollary 2.5 hold. Using Corollary 2.5, with  $p_0 = 0.5$ , the number of iteration n required to obtain approximations accurate to within  $10^{-5}$  is:

$$|p_n - p| \le k^n 0.5 < 10^{-5} \iff n \ge 63$$

Applying fixed-point method on g generates the following table:

| $\overline{n}$ | $p_n$       | n  | $p_n$       | n  | $p_n$        |
|----------------|-------------|----|-------------|----|--------------|
| 0              | 0.5         | 10 | 0.735006309 | 20 | 0.739 006 78 |
| 1              | 0.877582562 | 11 | 0.741826523 | 21 | 0.739137911  |
| 2              | 0.639012494 | 12 | 0.737235725 | 22 | 0.739049581  |
| 3              | 0.802685101 | 13 | 0.740329652 | 23 | 0.739109081  |
| 4              | 0.694778027 | 14 | 0.738246238 | 24 | 0.739069001  |
| 5              | 0.768195831 | 15 | 0.739649963 | 25 | 0.739096     |
| 6              | 0.719165446 | 16 | 0.738704539 | 26 | 0.739077813  |
| 7              | 0.752355759 | 17 | 0.739341452 | 27 | 0.739090064  |
| 8              | 0.730081063 | 18 | 0.738912449 | 28 | 0.739081812  |
| 9              | 0.745120341 | 19 | 0.739201444 |    |              |

So one root of the problem is  $p \approx 0.739\,082$ .

#### Exercise 13

Find all the zeros of  $f(x) = x^2 + 10\cos x$  by using the fixed-point iteration method for an appropriate iteration function g. Find the zeros accurate to within  $10^{-4}$ .

#### Solution 13

Consider f = 0. Since  $x^2 \ge 0$ ,  $\cos x$  must be negative for the equation to hold, so that:

$$x \in I_k = \left[\frac{\pi}{2} + k2\pi, \frac{3\pi}{2} + k2\pi\right] \forall k \in \mathbb{N}$$
 (1)

Also, since  $10 \cos x \in [-10, 0]$ :

$$x \in \left[-\sqrt{10}, \sqrt{10}\right] \tag{2}$$

Combining (1) and (2) gives:

$$x \in I = I_a \cup I_b$$
 where  $I_a = [-\sqrt{10}, -\frac{\pi}{2}]$  and  $I_b = [\frac{\pi}{2}, \sqrt{10}]$ 

As  $x^2$  and  $\cos x$  take Oy as a symmetry axis, each zero  $z_b$  of f in  $I_b$  will result in another zero  $z_a = -z_b$  in  $I_a$ . Hence, from now on, we just need to examine on  $I_b$ .

Differentiating f gives:

$$f'(x) = 2x - 10\sin x$$

x is monotonically increasing on  $I_b$ ,  $\sin x$  is monotonically decreasing on  $I_b$ . It follows that f' is monotonically increasing on  $I_b$ , which means:

$$f'(\frac{\pi}{2}) = \pi - 10 \le f'(x) \le f'(\sqrt{10}) = 2\sqrt{10} - 10\sin\sqrt{10}$$

f' clearly has one zero in  $I_b$ , which means f has at most two zeros in  $I_b$ .

#### unfinished

#### Exercise 14

Use a fixed-point iteration method to determine a solution accurate to within  $10^{-4}$  for  $x = \tan x$ , for  $x \in [4, 5]$ .

#### Solution 14