Unidade 4 – Testes para duas amostras independentes

Para o caso de populações independentes, emprega-se um teste estatístico não-paramétrico devidamente adequado aos dados a serem analisados, não sendo necessário que as amostras tenham o mesmo tamanho.

Teste Qui-quadrado de independência

Uma outra aplicação do teste qui-quadrado visa estudar relações entre duas ou mais variáveis. Nesse caso, utilizamos tabelas de contingência para a execução do teste. Trabalha-se com frequências observadas distribuídas em classificações, dispondo em uma tabela com h linhas e k colunas.

Hipóteses:

 $^{\mathrm{H}_{\mathrm{o}}}$: as variáveis são independentes;

 H_1 : as variáveis não são independentes, ou seja, elas apresentam algum grau de associação entre si.

A Estatística do teste é a mesma do teste qui-quadrado já apresentado na disciplina

$$\chi_c^2 = \sum_{i=1}^h \sum_{j=1}^K \frac{\left(fo_{ij} - fe_{ij} \right)^2}{fe_{ii}}$$

 fo_{ij} é a frequência observada na linha i e coluna j;

$$fe_{ij}$$
 = frequência esperada = $\frac{\text{(Total linha i)} \times \text{(Total coluna j)}}{N}$

A restrição $fe_{ij} \ge 5$ também deve ser atendida. Caso não seja, utilizar o teste exato de Fisher.

Regra de decisão

Se
$$\chi_c^2 \ge \chi_{\alpha,\nu}^2$$
, rejeita-se H_o , $p \le \alpha$.

Em que :

v = (h-1)(k-1) graus de liberdade;

h = número de linhas;

k = número de colunas.

Com essas informações, basta buscarmos o valor crítico na tabela da distribuição qui-quadrado.

Exemplo:

Um determinado estudo com 100 fumantes (expostos) e 92 não-fumantes (não expostos/controles) em relação a ocorrência de infarto do miocárdio (IM) apresentou os resultados da Tabela abaixo. Verificar se existe associação entre a exposição (fumo) e o infarto do miocárdio (desfecho) para um nível de significância de α = 5%?

Tabela - Ocorrência de infarto relacionado ao uso de tabaco

Infarto do miocárdio

	Presença	Ausência	Total
Fumantes	17	83	100
Não-	6	86	92
fumantes			
Total	23	169	192

Resolução

H_o: Não existe relação entre fumo e infarto;

 H_1 : Existe relação entre fumo e infarto.

Já temos as 4 frequencias observadas:

$$fo_{11} = 17$$
, $fo_{12} = 83$, $fo_{21} = 6$, $fo_{22} = 86$

Para cada uma delas, devemos encontrar a frequência esperada correspondente, através da fórmula:

$$fe_{ij} = \frac{\text{(Total linha i)} \times \text{(Total coluna j)}}{N}$$

Assim,

$$fe_{11} = \frac{\text{(Total linha 1)} \times \text{(Total coluna 1)}}{192} = \frac{100 \times 23}{192} = 11.98$$

$$fe_{12} = \frac{\text{(Total linha 1)} \times \text{(Total coluna 2)}}{192} = \frac{100 \times 169}{192} = 88.02$$

$$fe_{21} = \frac{\text{(Total linha 2)} \times \text{(Total coluna 1)}}{192} = \frac{92 \times 23}{192} = 11.02$$

$$fe_{22} = \frac{\text{(Total linha 2)} \times \text{(Total coluna 2)}}{192} = \frac{92 \times 169}{192} = 80.98$$

$$\chi_c^2 = \frac{\left(17 - 11.98\right)^2}{11.98} + \frac{\left(83 - 88.02\right)^2}{88.02} + \frac{\left(16 - 11.02\right)^2}{11.02} + \frac{\left(86 - 80.98\right)^2}{80.98} = 4.98$$

Agora vamos a tabela da distribuição qui-quadrado localizar o valor critico. Como temos uma tabela 2x2, temos 1 grau de liberdade. A 5%, o valor crítico é 3,84.

Como 4.98 > 3.94, rejeita-se H0, ou seja, existem evidências para afirmarmos que existe relação entre o fumo e o infarto.