How to improve performance of regression model

General guideline for developing ML model

Contents

Flow of the presentation

follow the process of developing ML model

(From collecting data to evaluating model)

Data Features Model Evaluation Metrics

Collecting Data

The more data we collect, the greater the performance of model

Let data tell itself

Add more data

to get more information from data itself

Dealing with Features (EDA)

Handling missing values & outliers

Handling missing values & outliers

Missing values - imputing with mean, median, or mode for continuous values using methods like KNN imputation for categorical values

Outliers - deleting observations, transforming or binning values

making raw data better in terms of reducing bias and errors

Dealing with Features (EDA)

Feature Engineering & Feature Selection

Feature Engineering

help to extract more information from existing features

related to hypothesis

Variable Transformation (e.g. Data normalization)

Feature Creation

Feature Selection

find the features that explain data better than others

Domain Knowledge

Visualization

Statistical Methods (e.g. PCA)

Developing Model

Model Selection

Developing Model

Hyperparameter Tuning

sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize='deprecated',
copy_X=True, n_jobs=None, positive=False)
[source]

sklearn.linear_model.ElasticNet

class sklearn.linear_model.ElasticNet(alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, normalize='deprecated', precompute=False, max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic') [source]

Hyperparameter

Evaluating Performance

Choose proper evaluation metrics

Regression

MAE (Mean Absolute Error)

MSE (Mean Squared Error)

R-Squared (R²)

.

Classification

Accuracy

Precision / Recall

F1 Score

•

Takeaway

What we should keep in mind

Prepare data as much as possible

Use methods that are helpful for reducing errors e.g. Feature Engineering, Feature Selection, Handling missing values & outliers

Choose proper model & evaluation metric

There is no optimal solution for all Be cautious of 'Overfitting'

References

https://towardsdatascience.com/how-to-improve-the-accuracy-of-a-regression-model-3517accf8604

https://stackoverflow.com/questions/47577168/how-can-i-increase-the-accuracy-of-my-linear-regression-modelmachine-learning

https://www.analyticsvidhya.com/blog/2015/12/improve-machine-learning-results/

https://www.analyticsvidhya.com/blog/2016/01/guide-data-exploration/

https://evidentlyai.com/blog/evidently-016-regression-model-performance

https://nycdatascience.com/blog/student-works/improving-model-accuracy-kaggle-competition/

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet

Thank You for listening \heartsuit