

Übung 12 - Numerisches Programmieren

Michael Obersteiner

Technische Universität München

Fakultät für Informatik

Lehrstuhl für Wissenschaftliches Rechnen

Garching, 10. Februar 2021

Recap – Iterative Verfahren

- Keine direkte Berechnung → Iterative Annäherung an Lösung
- Anfang mit Startwert x_0 (Beliebig gewählt oder "educated guess")
- Berechnungsvorschrift $\Phi(x_k) = x_{k+1}$
- Stopp wenn ausreichend nah an Lösung: $x_0 \xrightarrow{\Phi} x_1 \xrightarrow{\Phi} \dots \xrightarrow{\Phi} x_n$
- Fixpunkt bei unendlich viele Iterationen: $\lim_{k \to \infty} x_k = x^* = \Phi(x^*)$
- Anwendung lineare Gleichungssysteme Ax = b:
 - Splitting Verfahren:
 - $\Phi(x) = x + M^{-1}(b Ax) O(N^2)$
 - Fehlerschätzung durch Residuum: $r^{(k)} = b Ax_k = Ax Ax_k = A(x x_k) = A\epsilon$
 - Je "ähnlicher" M zu A desto schneller Konvergenz
 - Je teurer Invertierung von M desto teurer Iteration
 - Beispiele:
 - M = diag(A) → Jacobi Verfahren
 - M = L(A) (linke untere Dreiecksmatrix inklusive Diagonale) → Gauss-Seidel
 - Verfahren des steilsten Abstiegs:
 - Gradientenverfahren zur Approximation der Lösung x

Recap – Verfahren des steilsten Abstiegs

• Indirektes Lösen des Gleichungssystems über Optimierungsproblem:

$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x$$

$$\nabla f(x) = Ax - b \stackrel{!}{=} 0 \Rightarrow Ax = b$$

- Wenn A symmetrisch und positiv definit (spd) dann ist Extremum ein Minimum!
 - → Abstiegsverfahren zur Suche des Minimum (Funktioniert nur bei spd Matrix)
- Negativer Gradient zeigt in Richtung des steilsten Abstiegs.
- Iterationsverfahren:

$$\Phi(x) = x + \alpha(b - Ax) \Rightarrow x^{(k+1)} = x^{(k)} + \alpha(b - Ax^{(k)})$$

Fehlerschätzer:

$$r^{(k)} = b - Ax^{(k)}$$

Optimale Schrittweite:

$$\alpha^{(i)} = \frac{r^{(i)^T} r^{(i)}}{r^{(i)^T} A r^{(i)}}$$

Recap – Newton Verfahren

- Nullstellenberechnung einer (nicht-linearen) Funktion: $f(x) \stackrel{!}{=} 0$
- Idee: Approximation der Funktion mittels Tangente
 - → Nullstelle der Tangente als nächste Annäherung
- Vorschrift: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$

Recap - Newton Verfahren

- Nullstellenberechnung einer (nicht-linearen) Funktion: $f(x) \stackrel{!}{=} 0$
- Idee: Approximation der Funktion mittels Tangente
 - → Nullstelle der Tangente als nächste Annäherung
- Vorschrift: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$

Recap - Newton Verfahren

- Nullstellenberechnung einer (nicht-linearen) Funktion: $f(x) \stackrel{!}{=} 0$
- Idee: Approximation der Funktion mittels Tangente
 - → Nullstelle der Tangente als nächste Annäherung
- Vorschrift: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$

Recap - Newton Verfahren

- Nullstellenberechnung einer (nicht-linearen) Funktion: $f(x) \stackrel{!}{=} 0$
- Idee: Approximation der Funktion mittels Tangente
 - → Nullstelle der Tangente als nächste Annäherung
- Vorschrift: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$

Recap – Newton Verfahren

- Nullstellenberechnung einer (nicht-linearen) Funktion: $f(x) \stackrel{!}{=} 0$
- Idee: Approximation der Funktion mittels Tangente
 - → Nullstelle der Tangente als nächste Annäherung

• Iterationsvorschrift:
$$\Phi(x) = x - \frac{f(x)}{f'(x)} \Rightarrow x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

- Vorteile:
 - Quadratische Konvergenz bei einfacher Nullstelle (da $\Phi'(x^*)=0$
 - Bei mehrfachen Nullstellen existieren Modifikationen für quadratische Konvergenz
- Nachteil:
 - Nur lokale Konvergenz (Startpunkt "muss bereits in der Nähe liegen")
 - → guter Anfangspunkt bekannt oder Annäherung mit anderem Verfahren

Übung 12 – Eigenwerte

- Eigenwerte definieren den Streckungsfaktor des zugehörigen Eigenvektors nach Anwendung der Matrix: $Av = \lambda v$
- Bei Symmetrischen Matrizen gibt es Basis aus Eigenvektoren so dass:

$$x = \sum_{i=1}^{n} \tilde{x}_i v_i \Rightarrow Ax = \sum_{i=1}^{n} \lambda_i \tilde{x}_i v_i$$

Berechnung der Eigenwerte über Nullstellen des charakteristischen Polynoms:

$$Av = \lambda v$$

$$Av - \lambda v = \mathbf{0}$$

$$(A - \lambda I_n)v = \mathbf{0}; \quad v \neq \mathbf{0}$$

$$\Rightarrow det(A - \lambda I_n) = 0$$

- Zugehöriger Eigenvektor wird dann über Gleichungssystem bestimmt (vorletzte Zeile)
- Beobachtung: Eigenwerte liegen in Gerschgorin Kreisscheiben (Siehe Übung 2)

Übung 12 – iterative Berechnung der Eigenwerte

- Beobachtung:
 - Mithilfe von Eigenvektor lässt sich Eigenwert berechnen

$$\label{eq:lambda} {\bf a} \ {\bf Rayleigh \ Quotient:} \qquad \lambda = \frac{v^T A v}{v^T v}$$

Übung 12 – iterative Berechnung der Eigenwerte

- Beobachtung:
 - Mithilfe von Eigenvektor lässt sich Eigenwert berechnen

$$\rightarrow$$
 Rayleigh Quotient: $\lambda = \frac{v^T A v}{v^T v}$

Maximaler Eigenwert dominiert bei wiederholter Anwendung von A (symmetrisch):

$$x = \sum_{i=1}^{n} \tilde{x}_{i} v_{i} \Rightarrow Ax = \sum_{i=1}^{n} \lambda_{i} \tilde{x}_{i} v_{i} \Rightarrow A^{k} x = \sum_{i=1}^{n} \lambda_{i}^{k} \tilde{x}_{i} v_{i} \stackrel{\text{large k}}{\Rightarrow} \approx \lambda_{max}^{k} v_{max} \tilde{x}_{max}$$

$$\rightarrow \text{ Power Iteration (für maximalen Eigenwert):}$$

$$v^{(k+1)} = Av^{(k)}; \quad \lambda^{(k)} = \frac{v^{(k)^T}Av^{(k)}}{v^{(k)^T}v^{(k)}}$$
 Konvergenzrate:
$$\frac{\lambda_{max-1}}{\lambda_{max}}$$

Shiften der Matrix um alternative Eigenwerte zum größten zu machen:

$$\lambda(A - \mu I_n) = \lambda(A) - \mu$$

- \rightarrow Iteration mit: $\tilde{A} = A \mu I_n$
- Iteration mit Inversen um gegen kleinsten Eigenwert zu iterieren