IARE OLIVERY TON FOR LINE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

TUTORIAL QUESTION BANK

Course Title	APPLIED PHYSICS						
Course Code	AHSC09	AHSC09					
Program	B. Tech	B. Tech					
Semester	TWO	TWO					
Course Type	Foundation						
Regulation	IARE – UG20						
		Theory	Practical				
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits		
	3	-	3	3	1.5		
Course Coordinator	Dr. Rizwana, Professor						

COURSE OBJECTIVES:

Studen	Students will try to learn:					
I	Basic formulations in wave mechanics for the evolution of energy levels and quantization of					
	energies for a particle in a potential box with the help of mathematical description.					
II	Fundamental properties of semiconductors including the band gap, charge carrier concentration,					
	doping and transport mechanisms.					
III	The metrics of optoelectronic components, lasers, optical fiber communication and be able to					
	incorporate them into systems for optimal performance.					
IV	The appropriate magnetic and dielectric materials required for various engineering applications.					

COURSE OUTCOMES:

At the end of the course the students should be able to:

	Course Outcomes	Knowledge Level (Bloom's Taxonomy)
CO 1	Recall classical mechanics being replaced with a wave equation by using experiments that revealed the wave properties of matter.	Remember
CO 2	Make use of quantum mechanical description in Schrödinger's equation for simple systems and interpretation of wave functions.	Apply
CO 3	Illustrate the charge transport mechanism in intrinsic and extrinsic semiconductors by quantizing the charge carrier density.	Understand

CO 4	Identify the behavior of charge carriers in a semiconductor by using the phenomenon of Hall effect.	Apply
CO 5	Explain detailed knowledge of fundamental and applied aspects of optoelectronic device physics.	Understand
CO 6	Make use of the key concepts of semiconductors to illustrate basic working mechanism of optoelectronic device characteristics of light-emitting diodes, photodetectors and solar cells.	Apply
CO 7	Illustrate principles of different types of polarization mechanism to the properties of functional ferroelectric materials.	Apply
CO 8	Utilize spin and orbital motion of electrons in determining magnetic properties of materials and their role in classification of magnetic materials having specific engineering applications.	Understand
CO 9	Compare the concepts of Laser and normal light in terms of mechanism and working principles for applications in different fields and scientific practices.	Understand
CO 10	Explain functionality of components in optical fiber communication system by using the basics of signal propagation, attenuation and dispersion.	Understand

MAPPING OF EACH CO WITH PO(s), PSO(s):

Course	Program Outcomes							Program Specific Outcomes							
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	-	-		-	-	-	-	-	-	-	-	-	-	-
CO 6	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 7	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	3	-	-	1	-	-	-	-	-	-	-	-	-	-	1
CO 9	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 10	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	30	10	-	2	-	-	-	-	-	-	-	-	-	-	-
AVERAGE	3	2	-	1	-	-	-	-	-	-	-	-	-	-	1

TUTORIAL QUESTION BANK

MODULE – I **OUANTUM MECHANICS Part - A(Short Answer Questions) Blooms** How does this subsume the level Course S. No. **Ouestion Taxonomy** below Outcomes Level 1 Relate the dependency of wavelength of Remember CO₁ matter waves on velocity and mass of material particle. Write an expression for de-Broglie 2 CO₁ Remember wavelength in terms of momentum and kinetic energy. Explain the conception of light behaving 3 Understand Learner to recall the properties of CO1, CO2 both as a particle and wave. particle and wave and understand the dual nature of light radiation Justify the statement that Heisenberg's Understand Learner to recall the properties of CO1, CO2 4 uncertainty principle is a direct matter wave and understand consequence of dual nature of matter uncertainty in locating position of wave. particle behaving as wave. 5 Prove that matter waves travel with a Understand Learner to recall the Planck's and CO1, CO2 Einstein's theory and understand velocity greater than velocity of light. how matter wave travel with Also justify it. velocity of light. Write one dimensional time independent 6 Remember CO₂ Schrodinger equation associated with matter wave. 7 Explain the feature of wave function Learner to recall the CO2 Understand which connects the particle nature and characteristics of wave function wave nature of matter wave. and understand the dual nature of material particle. Understand Learner to recall the properties of CO₁ 8 Describe behavior of matter waves by giving any two of its properties. particle and wave and understand the dual nature of material particle. 9 Write expressions for wave function and Remember CO2 energy of a particle in three dimensional square well box of infinite potential. 10 Write expressions for Eigen function and Remember CO2 Eigen values for a particle in one dimensional square well box of infinite potential. 11 What are the limitations of wave function Understand Learner to recall the CO2 to be a solution of second order characteristics of wave function differential equation associated with and understand the dual nature of material particle? material particle. 12 Discuss about Normalization condition as Learner to recall the CO₂ Apply postulated by Max Born. characteristics of wavefunction. understand Max Born interpretation of wave function and apply it to probability density.

13	What is the Schrodinger's interpretation of complex and not observable wave function?	Apply	Learner to recall the characteristics of wave function, understand Schrodinger's interpretation of wave function and apply it to charge density.	CO2
14	How energy of a particle confined in a potential box is related to the width of the box.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2
15	Write about probability density of moving material particle as explained by Born and Schrodinger.		Learner to recall the characteristics of wave function, understand Max Born interpretation of wave function and apply it to probability density	CO2
16	What is the minimum energy possessed by the particle in an infinitely deep potential well.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2
17	Discuss about the nature of the walls of the box in which a particle is bound.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2
18	What happens to the wave function associated with a particle in an infinitely deep potential well.	Apply	Learner to recall the characteristics of wave function, understand Max Born interpretation of wave function and apply it to probability density	CO2
19	What is the boundary condition for normalized wave function?	Apply	Learner to recall the characteristics of wave function, understand Max Born interpretation of wave function and apply it to probability density	CO2
20	Define square well potential associated with a bound electron moving along one dimension.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2
	Part - B (Lo	ong Answer Q	questions)	
1	Compare a particle with a wave and discuss about dual nature of radiation.	Understand	Learner to recall the properties of particle and wave and understand the dual nature of light radiation	CO1
2	Enlist physical significance of wave function according to Schrodinger and Max – Born interpretation.	Understand	Learner to recall the characteristics of wave function and understand Max Born and Schrodinger's interpretation of wave function.	CO2
3	Matter waves are new kind of waves. Justify this concept by discussing different properties of matter waves.	Understand	Learner to recall the concept of dual nature of material particle and understand the behavior of matter wave.	CO1
4	Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass 'm' and kinetic energy 'E' is given by $\frac{h}{\sqrt{2mE}}$.	Understand	Learner to recall the Planck's and Einstein's theory and understand the derivation of de Broglie wavelength.	CO1

5	Determine an expression for the wavelength associated with an electron, accelerated by a potential V.	Understand	Learner to recall the concept of de Broglie wavelength and understand the wavelength associated with electron.	CO1
6	Why matter waves are observed for particles of atomic or nuclear size.	Understand	Learner to recall the concept of dual nature of material particle and understand the behavior of matter wave.	CO1
7	Explain the difference between a matter wave and an electromagnetic wave.	Understand	Learner to recall the properties of matter wave and understand that matter waves are not electromagnetic waves	CO1
8	Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electrons.	Understand	Learner to recall the concept of dual nature of material particle and understand the proof for existence of matter wave.	CO2
9	Considering dual nature of electron, derive Schrodinger's time independent wave equation for the motion of an electron.	Understand	Learner to recall the concept of matter wave and understand the wave equation associated with matter wave.	CO2
10	Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite height at $x=0$ and $x=a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2
11	Discuss the results from the Eigen values, Eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2
12	Show that the energies of a particle confined between two rigid walls of infinite potential are quantized.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2
13	What are de Broglie matter waves? Derive expression for de Broglie wavelength associated with a particle having mass <i>m</i> and velocity <i>v</i> .	Understand	Learner to recall the Planck's and Einstein's theory and understand the derivation of de Broglie wavelength.	CO1
14	Discuss different phenomenon's that show the behavior of light radiation interacting with matter.	Understand	Learner to recall the properties of particle and wave and understand the dual nature of light radiation	CO1
15	Write major differences between classical mechanics and quantum mechanics.		Learner to recall the basics of classical mechanics and understand to compare with quantum mechanics.	CO1
16	Differentiate between ψ and $ \psi ^2$	Understand	Learner to recall the characteristics of wave function and understand Max Born and Schrodinger's interpretation of wave function.	CO2
17	Highlight the conditions for an acceptable wave function.	Understand	Learner to recall the characteristics of wave function and understand the dual nature of material particle.	CO2

18	How do you predict the energy of a particle in closed box from classical theory and quantum theory?	Understand	Learner to recall the basics of classical mechanics and understand to compare with quantum mechanics.	CO1
19	Starting from the wave equation and introducing energy and momentum of particle, obtain n expression for one dimensional Schrodinger's equation for a free particle.	Understand	Learner to recall the concept of matter wave and understand the wave equation associated with matter wave.	CO2
20	Enlighten different laws of quantum physics that lead to different interpretation of energy.	Understand	Learner to recall the basics of classical mechanics and understand to compare with quantum mechanics.	CO1
	Part - C (Analytical Qu	estions)	
1	Calculate the velocity and kinetic energy of an electron having wavelength of 0.21nm.	Understand	Learner to recall the Planck's and Einstein's theory and understand about de Broglie wavelength.	CO1
2	Determine the de Broglie wavelength associated with a proton moving with a velocity of 1/10 of velocity of light. (Mass of proton = 1.674 x 10 ⁻²⁷ kg).	Understand	Learner to recall the Planck's and Einstein's theory and understand about de Broglie wavelength.	CO1
3	Estimate the wavelength of an electron rose to a potential 15kV.	Understand	Learner to recall the Planck's and Einstein's theory and understand about de Broglie wavelength associated with electron.	CO1
4	Obtain de-Broglie wavelength of neutron. (Given kinetic energy of the neutron is 0.025eV mass of neutron =1.674 x 10 ⁻²⁷ kg).	Understand	Learner to recall the Planck's and Einstein's theory and understand about de Broglie wavelength.	CO1
5	Calculate the wavelength of an electron, if the kinetic energy of the neutron is 0.025 eV.	Understand	Learner to recall the Planck's and Einstein's theory and understand about de Broglie wavelength.	CO1
6	Find the wavelength associated with an electron rose to a potential 1600V.	Understand	Learner to recall the Planck's and Einstein's theory and understand about de Broglie wavelength associated with electron.	CO1
7	Calculate the energies that can be possessed by a particle of mass 8.50 x10 ⁻³¹ kg which is placed in an infinite potential box of width 10 ⁻⁹ m.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2
8	Find the lowest energy of an electron confined in a square box of side 0.1nm.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2
9	Electrons are accelerated by 344 volts and are reflected from a crystal. The first reflection maximum occurs when the glancing angle is 60°. Determine the spacing of the crystal.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2
10	An electron is bound in one-dimensional infinite well of width 1 x 10 ⁻¹⁰ m. Find the energy levels in the ground state and first two excited states.	Apply	Learner to recall the concept of matter wave, understand quantization of energy and apply it to potential box.	CO2

MODULE – II INTRODUCTION TO SOLIDS AND SEMICONDUCTORS **Part – A (Short Answer Questions)** 1 What do you mean by periodic potential Understand Learner to recall one dimensional CO3 associated with an electron moving in a crystal array and understand one dimensional crystal lattice? variation of potential of electron with its position in lattice. Explain a metallic solid and draw its band Learner to recall structure of a 2. Understand CO3 diagram to explain its electronic behavior. metal and understand free flow of electrons through it. 3 Justify that the crystalline solids are Understand Learner to recall energy band CO3 diagram and understand change classified into conductors, semiconductors in properties of solids with width and insulators. of forbidden energy gap. Learner to recall structure of a 4 Illustrate electronic behavior of a Understand CO3 semiconductor by drawing its band semiconductor and understand diagram. about its conductivity based on energy band diagram. 5 Outline the behavior of an insulator by Understand Learner to recall structure of CO3 sketching its band diagram. insulator and understand about its conductivity based on energy band diagram. Learner to recall structure of a Distinguish semiconductors based on Understand 6 CO₃ variation of conductivity in terms of semiconductor and understand temperature and doping. about its conductivity based on energy band diagram and doping. 7 Learner to recall structure of Explore an intrinsic semiconductor by Understand CO3 giving an example. intrinsic semiconductor and understand about its conductivity based on energy band diagram and temperature. Understand Learner to recall conduction 8 Give the expressions for carrier CO3 concentration of electrons and holes in phenomenon in intrinsic intrinsic semiconductors. semiconductor and understand about its carrier concentration. 9 Write an expression for carrier Understand Learner to recall conduction CO₃ concentration of electrons in n-type phenomenon in n-type semiconductor and understand semiconductor. about its carrier concentration. 10 Give an expression for carrier Understand Learner to recall conduction CO₃ concentration of holes in p-type phenomenon in p-type semiconductor? semiconductor and understand about its carrier concentration. 11 Describe Hall effect using a proper Apply Learner to recall Hall effect. CO4 diagram representing current, magnetic understand about this field and Hall voltage. phenomenon and apply it to find nature of charge carriers. 12 How does the Fermi level play a Understand Learner to recall Fermi level and CO₃ significant role in semiconductor? understand its dependency on temperature. Explain different mechanisms responsible Learner to recall nature of charge 13 Understand CO3 for electrical resistance in metals. carriers in metals and understand their behavior for different electrical resistance.

14	Explain about drift velocity and mobility associated with charge carriers in a semiconductor.	Understand	Learner to recall terms drift velocity and mobility and understand how their values change with movement of electrons and holes in a semiconductor.	CO3
15	List out the failures of quantum free electron theory of solids.	Remember	Sering Graduction	CO3
16	Enlighten about Root Mean Square velocity (RMS) and Relaxation time.	Remember		CO3
17	Define mean collision time (τ) associated with moving electron.	Remember		CO3
18	Write about Mean free path as given by classical free electron theory of metals.	Remember		CO3
19	Discuss about formation of a hole in a semiconductor.	Understand	Learner to recall the concept of formation of holes and understand its nature in a semiconductor.	CO3
20	How do you interpret the idea of conduction taking place due to movement of holes in a semiconductor?	Understand	Learner to recall the concept of formation of holes and understand its role in conduction in a semiconductor.	CO3
	Part - B (Lo	ong Answer Q	Questions)	
1	Summarize Bloch's theorem? Demonstrate in detail the motion of an electron in a periodic potential.	Understand	Learner to recall one dimensional crystal array and understand variation of potential of electron with its position in lattice.	CO3
2	Using Kronig-Penny model, show that the energy spectrum of an electron contains a number of allowed energy bands separated by forbidden bands.	Understand	Learner to recall about periodic potential and understand formation of energy bands.	CO3
3	Explain in detail the origin of energy band formation in solids that lead to the classification of materials based on conductivity.	Understand	Learner to recall about energy band diagram and understand types of solids based on width of forbidden energy gap.	CO3
4	Distinguish between intrinsic and extrinsic semiconductors. Indicate on an energy level diagram, the conduction and valence bands, donor and acceptor levels for intrinsic and extrinsic semiconductors.	Understand	Learner to recall different semiconductors and understand about them based on their energy levels.	CO3
5	Develop a mathematical expression for intrinsic carrier concentration and hence prove that the Fermi level lies at the middle for an intrinsic semiconductor.	Understand	Learner to recall about intrinsic semiconductor and understand derivation of its carrier concentration and locating position of Fermi level.	CO3
6	Obtain an expression for carrier concentration of n- type semiconductor.	Understand	Learner to recall about extrinsic semiconductor and understand derivation of carrier concentration of n-type semiconductor.	CO3
7	Derive an expression for carrier concentration of p- type semiconductor.	Understand	Learner to recall about extrinsic semiconductor and understand derivation of carrier concentration of p-type semiconductor	CO3

8	Illustrate the dependence of Fermi level	Understand	Learner to recall Fermi level and	CO3
	on carrier-concentration and temperature	Onderstand	understand its dependency on	003
	in n-type and p-type semiconductors.		temperature and nature of	
			dopants.	
9	Demonstrate in detail Hall effect and	Apply	Learner to recall Hall effect,	CO4
	obtain an expression for Hall coefficient.		understand about this	
	List out the uses of Hall effect.		phenomenon and apply it to find	
			nature of charge carriers.	
10	Interpret the graphical representation of	Understand	Learner to recall about periodic	CO3
	Kronig-Penny model. Extend the		potential and understand	
	conclusions drawn from the graph.		formation of energy bands.	
11	With neat energy band diagrams, classify	Understand	Learner to recall about energy	CO3
	the materials into conductors, insulators		band diagram and understand	
	and semiconductors.		types of solids based on width of	
			forbidden energy gap.	
12	Derive an expression for the electron	Understand	Learner to recall about intrinsic	CO3
	concentration in the conduction band of		semiconductor and understand	
	an intrinsic semiconductor.		derivation of its electron	
			concentration.	
13	Infer an expression for hole concentration	Understand	Learner to recall about intrinsic	CO3
	in the valence band of an intrinsic		semiconductor and understand	
	semiconductor.		derivation of its electron	
			concentration.	~~~
14	Summarize an intrinsic semiconductor?	Understand	Learner to recall intrinsic	CO3
	Justify why an intrinsic semiconductor		semiconductor and understand	
	behaves as an insulator at 0K. Highlight		change in its conduction with	
	2D representations of the crystal of		temperature.	
	Silicon at $T = 0K$ and $T > 0K$.			~~~
15	Discuss about an extrinsic	Understand	Learner to recall extrinsic	CO3
	semiconductor? Distinguish between n-		semiconductor and understand	
	type and p-type semiconductors.		change in its conduction with	
1.0		TT 1 4 1	nature of dopants.	CO2
16	Explain the significance of Fermi energy	Understand	Learner to recall Fermi level and	CO3
	level. Mention its position in intrinsic and		understand its dependency on	
	extrinsic semiconductors at 0 K.		temperature and nature of	
17		TT 1 . 1	dopants.	002
17	Develop the mathematical expression	Understand	Learner to recall Fermi level and	CO3
	showing the variation of position of Fermi		understand derivation of	
	energy level in n-type semiconductor.		expression for Fermi level	
			showing its dependency on	
			temperature and nature of	
10	Dariya mathamatical ayonasaisa ahasaisa	I Indoneter d	dopants.	CO2
18	Derive mathematical expression showing	Understand	Learner to recall Fermi level and	CO3
	the variation of position of Fermi energy		understand derivation of	
	level in n-type semiconductor.		expression for Fermi level	
			showing its dependency on	
			temperature and nature of dopants.	
19	Explain the classical free electron theory	Understand	Learner to recall classical free	CO3
17	of metals. Also discuss its drawbacks.	Onderständ	electron theory and understand its	COS
	of frictals. Also discuss its drawbacks.		postulates and drawbacks.	
20	Discuss the assumptions made in quantum	Understand	Learner to recall quantum theory	CO3
20	theory to overcome the drawbacks of free	Onderständ	of solids and understand its	CO3
	electron theory of metals.		postulates.	
	ciccuon dicory of flictars.		posturates.	

	Part - C (A	Analytical Qu	estions)	
1	Determine carrier concentration of an intrinsic semiconductor of band gap 0.7eV at 300K. [Given that the effective mass of electron = effective mass of hole = rest mass of electron].	Understand	Learner to recall about intrinsic semiconductor and understand to find value of carrier concentration from the data given.	CO3
2	Calculate the position of Fermi level E_F and the conductivity at 300 K for germanium crystal containing 5 x 10^{22} arsenic atoms / m^3 . Also calculate the conductivity if the mobility of the electron is $0.39 \ m^2 V^{-1} s^{-1}$.	Understand	Learner to recall about intrinsic semiconductor and understand to find values of conductivity, mobility and position of Fermi level from the data given.	CO3
3	Obtain the temperature at which the E_F shifts by 15% from middle of forbidden gap (E_g)? Given E_g =1.2ev, effective mass of holes is 5 times that of electrons.		Learner to recall Fermi level and understand its dependency on temperature and nature of dopants.	CO3
4	For silicon semiconductor with bandgap 1.12 eV, interpret the position of the Fermi level at 300 K if $m_e^* = 0.12 m_o$ and $m_h^* = 0.28 m_o$.	Understand	Learner to recall Fermi level and understand its dependency on temperature and nature of dopants.	CO3
5	In a Hall experiment, a current of 25 A is passed through a long foil of silver which is 0.1 mm thick and 3 cm wide. If the magnetic field of flux density 0.14 Wb/m³ is applied perpendicular to the foil, calculate the Hall voltage developed and estimate the mobility of electrons in silver. The conductivity of silver is 6.8 x $10^7 \ \Omega^{-1} \text{m}^{-1}$ and the Hall coefficient is -8.4 x $10^{-11} \ \text{m}^3$ /coulomb.	Apply	Learner to recall Hall effect, understand about this phenomenon and apply it to find Hall voltage.	CO4
6	Simulate the Hall voltage developed across the width of the slab of a metallic slab carrying a current of 30A is subjected to a magnetic field of 1.75T. The magnetic field is perpendicular to the plane of the slab and to the current. The thickness of the slab is 0.35cm. The concentration of free electrons in the metal is 6.55 x 10 ²⁸ electrons/m ³ .	Apply	Learner to recall Hall effect, understand about this phenomenon and apply it to find Hall voltage.	CO4
7	Evaluate the value of carrier concentration, if the R _H of a specimen is 3.66 x 10 ⁻⁴ m ³ C ⁻¹ .	Apply	Learner to recall Hall effect, understand about this phenomenon and apply it to find carrier concentration.	CO4
8	Calculate the density of charge carriers of semiconductor, given the Hall efficient is -6.85×10^{-5} m ³ /Coulomb.	Apply	Learner to recall Hall effect, understand about this phenomenon and apply it to find carrier concentration.	CO4
9	A silicon plate of thickness 1 mm, breadth 10 mm and length 100 mm is placed in a magnetic field of 0.5 Wb/m ² acting perpendicular to its thickness. If 10 ⁻² A current flows along its length, obtain the Hall voltage developed if the Hall coefficient is 3.66 x 10 ⁻⁴ m ³ /coulomb.	Apply	Learner to recall Hall effect, understand about this phenomenon and apply it to find Hall voltage.	CO4

10	For a semiconductor, the Hall coefficient is -3.7 x 10^{-6} m ³ /coulomb and electrical conductivity is 250 m ⁻¹ Ω^{-1} . Calculate the density and mobility of charge carriers.	Apply	Learner to recall Hall effect, understand about this phenomenon and apply it to find density and mobility of charge carriers.	CO4
	M	ODULE -III		
	SEMICON	DUCTOR D	EVICES	
	Part - A (Sh	ort Answer (Questions)	
1	Illustrate how potential barrier prevents the diffusion of electrons and holes across the junction.	Understand	Learner to recall junction diode and understand formation of depletion layer in diode.	CO5
2	Explain the terms charge carrier generation and recombination in semiconductors.	Understand	Learner to recall semiconductor and understand the phenomenon of generation and recombination of electron-hole pairs.	CO5
3	List the materials used to fabricate direct and indirect band gaps semiconductors.	Remember		CO5
4	Explain biasing of a semiconductor material. Show how they are connected in forward and reverse biasing.	Understand	Learner to recall biasing of diode and understand about forward and reverse biasing of diode.	CO5
5	List the applications of direct and indirect bandgap semiconductors.	Remember		CO5
6	Recall different techniques used for the formation PN junction diode.	Remember		CO5
7	Define Depletion layer formed in a PN junction diode. Draw the V-I characteristics of diode.	Remember		CO5
8	Draw the circuit of a forward biased PN junction diode.	Remember		CO5
9	What are elemental and compound semiconductors? Give two examples.	Understand	Learner to recall compound semiconductors and understand how they help in light emission.	CO5
10	Why is Zener diode used as voltage regulator?	Understand	Learner to recall Zener diode and understand how it behaves as voltage regulator.	CO5
11	Why do we need a suitable material for the Light Emitting Diode?	Apply	Learner to recall direct bandgap semiconductors and understand how they help in light emission.	CO6
12	Mention the different types of LED materials along with their radiant colour.	Remember		CO6
13	Illustrate any two differences between Light Emitting Diode and Photo diode.	Apply	Learner to recall LED and photo diode and understand difference in their principle.	CO6
14	Compare the principle behind working of Light Emitting Diode and solar cell.	Apply	Learner to recall LED and solar cell, understand difference in their principle and apply it to day to day applications.	CO6
15	Draw the circuit of a reverse biased PN junction diode	Remember		CO6
16	Mention any two advantages of Avalanche photo diode.	Remember		CO6
17	Mention the industrial applications of a solar cell.	Remember		CO6

18	What are the materials used for the fabrication of a solar cell.	Remember		CO6
19	Define the efficiency of a solar cell.	Remember		CO6
20	Draw the V-I characteristics of photo diode.	Remember		CO6
	Part – B (Le	ong Answer Q	Questions)	
1	Write notes on direct and indirect band gap semiconductors.	Understand	Learner to recall role of energy band gap in semiconductors and understand the importance of indirect band gap semiconductors for light emission.	CO5
2	What is forward biasing of a PN junction? Draw the circuit diagram and explain.	Understand	Learner to recall biasing of diode and understand about forward biased diode behaving as conductor.	CO5
3	Describe the drift and diffusion currents in a semiconductor.	Understand	Learner to recall mobility of charge carriers in a semiconductor and understand drifting and diffusion of charge carriers contributing to current.	CO5
4	Discuss in detail about formation of a PN junction diode.	Understand	Learner to recall p-type and n- type semiconductors and understand formation PN junction diode and depletion layer in diode.	CO5
5	What is reverse biasing of a PN junction diode? Draw the circuit diagram and explain.	Understand	Learner to recall biasing of diode and understand about reverse biased diode behaving as insulator.	CO5
6	Draw the graphic symbol of crystal diode and explain its significance. How will you determine the V-I characteristics of a p-n diode.	Understand	Learner to recall junction diode and understand diode behaving as conductor and insulator from V-I characteristics.	CO5
7	Write a short note on Zener diode. Explain how Zener diode maintains constant voltage across the load.	Understand	Learner to recall Zener diode and understand how Zener diode acts as voltage regulator.	CO5
8	Draw and explain the energy band diagram for a p-n junction diode in an unbiased condition.	Understand	Learner to recall junction diode and understand change in energy band diagram of individual p- type and n-type semiconductors after forming PN junction.	CO5
9	Show that the application of forward bias voltage across p-n junction causes an exponential increase in number of charge carriers in opposite regions.	Understand	Learner to recall biasing of diode and understand about forward biased diode behaving as conductor from V-I characteristics	CO5
10	What is Zener voltage or breakdown voltage in a PN junction diode?	Understand	Learner to recall Zener diode and understand the phenomenon of Avalanche breakdown in reverse biasing.	CO5
11	Write a note on Avalanche photo diode. Review the parameters that are commonly used to assess the performance of a detector.	Understand	Learner to recall Avalanche diode and understand difference between normal photodiode and Avalanche photodiode.	CO6

12	Illustrate the construction and working of LED. What are the advantages and disadvantages of LEDs in electronic display?	Apply	Learner to recall LED, understand its working principle and apply it in day to day life.	CO6
13	Compare and contrast the functioning of Light Emitting diode and photo diode.	Apply	Learner to recall LED and photodiode, understand difference in their working principle and apply it in different fields.	CO6
14	Give the theory of junction photo diode with a neat diagram. Discuss the factors which limit the speed of response of photodiodes.	Apply	Learner to recall photo diode, understand its drawbacks by studying its working principle and apply it in day to day life.	CO6
15	Summarize how a photo diode can be converted into PIN and Avalanche photo diode.	Apply	Learner to recall photo diode, understand its drawbacks and apply to convert it to PIN and Avalanche photo diode.	CO6
16	In what respect is an LED different from an ordinary p-n junction diode? State applications of LEDs. Why should LEDs preferred over conventional incandescent lamps.	Apply	Learner to recall junction diode and LED, understand LED being superior to normal diode in light emission and apply in day to day life.	CO6
17	Explain with a neat sketch the construction, working and V-I characteristics of solar cell.	Apply	Learner to recall solar cell, understand its construction and working principle and apply it in different fields.	CO6
18	Compare and contrast the functioning of Light Emitting diode and solar cell.	Apply	Learner to recall LED and solar cell, understand difference in their working principle and apply in different fields	CO6
19	Give the properties of silicon and gallium arsenide based on band theory.	Apply	Learner to recall structure of silicon and GaAs, understand difference in their energy bandgap and apply GaAs for light emission.	CO6
20	What are the main requirements of a LED material? Infer advantages of LED.	Apply	Learner to recall LED, understand its working principle and apply it in day to day life.	CO6
	Part - C (Analytical Qu	estions)	
1	Calculate the value of applied forward voltage for a p-n junction diode if $I_s = 50$ μA , $I = 2$ A and $e/kT = 40$.	Understand	Learner to recall junction diode and understand calculation of applied forward voltage from the given data.	CO5
2	The current in a p-n junction at 27°C is 0.18 μA when a large reverse bias voltage is applied. Estimate the current when a forward bias of 0.98 V is applied.	Understand	Learner to recall junction diode and understand calculation of forward current from the given data.	CO5
3	Evaluate the forward bias current of a Si diode when forward bias voltage of 0.4V is applied, the reverse saturation current is 1.17×10-9A and the thermal voltage is 25.2mV.	Understand	Learner to recall junction diode and understand calculation of forward current from the given data.	CO5
4	Obtain the reverse saturation current of a diode if the current at 0.2V forward bias is 0.1mA at a temperature of 25°C and the ideality factor is 1.5.	Understand	Learner to recall junction diode and understand calculation of forward current from the given data.	CO5

5	Find the applied voltage on a forward biased diode if the current is 1mA and reverse saturation current is 10^{-10} . (Given temperature is 25°C and ideality factor as 1.5).	Understand	Learner to recall junction diode and understand calculation of applied forward voltage from the given data.	CO5
6	Calculate the wavelength of emitted radiation from a LED made up of GaAs with a band gap of 1.52eV.	Apply	Learner to recall LED, understand its working principle and apply it to calculate wavelength of emitted radiation.	CO6
7	A semiconductor diode laser has a wavelength of 1.65μm. Find its band gap in eV	Apply	Learner to recall LED, understand its working principle and apply it to calculate bandgap.	CO6
8	Find the temperature at which a diode current is 2mA for a diode which has reverse saturation current of 10 ⁻⁹ A. The ideality factor is 1.4 and the applied voltage is 0.6V forward bias.	Understand	Learner to recall junction diode and understand calculation of temperature at which current is emitted.	CO5
9	Consider a silicon diode with η =1.2. Estimate the change in voltage if the current changes from 0.1mA to 10mA.	Understand	Learner to recall junction diode and understand calculation of change in voltage for current variation.	CO5
10	What will be the ratio of final current to initial current of a diode if voltage of a diode changes from 0.7V to 872.5 mV?	Understand	Learner to recall junction diode and understand calculation of ratio of final to initial current.	CO5
	Take ideality factor as 1.5.			
	Take ideality factor as 1.5.	ODULE -IV		
	Take ideality factor as 1.5.		GNETIC MATERIALS	
	Take ideality factor as 1.5. MENGINEERED ELECTR			
1	Take ideality factor as 1.5. MENGINEERED ELECTR	IC AND MA	Questions) Learner to recall different dielectric materials and understand nature of polarization	CO7
1	Take ideality factor as 1.5. MENGINEERED ELECTR Part – A (St Explain the different types of solid dielectric materials and their polarization	IC AND MAG	Questions) Learner to recall different dielectric materials and	CO7
	Take ideality factor as 1.5. MENGINEERED ELECTR Part – A (State of the state of t	IC AND MAC nort Answer (Understand	Questions) Learner to recall different dielectric materials and understand nature of polarization	
2	Take ideality factor as 1.5. MENGINEERED ELECTR Part – A (St Explain the different types of solid dielectric materials and their polarization process. Write Lorentz relation for internal field or local field in a dielectric material. How ferroelectric material is different	IC AND MAC nort Answer (Understand Remember	Learner to recall different dielectric materials and understand nature of polarization occurring in it. Learner to recall ferroelectric materials, understand their retention property and apply it to	CO7
3	ENGINEERED ELECTR Part – A (St Explain the different types of solid dielectric materials and their polarization process. Write Lorentz relation for internal field or local field in a dielectric material. How ferroelectric material is different from normal dielectric material. Write the Clausius - Mosotti equation	IC AND MAC nort Answer (Understand Remember Apply	Learner to recall different dielectric materials and understand nature of polarization occurring in it. Learner to recall ferroelectric materials, understand their retention property and apply it to	CO7
3	ENGINEERED ELECTR Part – A (St Explain the different types of solid dielectric materials and their polarization process. Write Lorentz relation for internal field or local field in a dielectric material. How ferroelectric material is different from normal dielectric material. Write the Clausius - Mosotti equation associated with a dielectric material. Name different types of polarizations that occur in dielectric materials in the	IC AND MACONOTE Answer (Understand Remember Apply Remember	Learner to recall different dielectric materials and understand nature of polarization occurring in it. Learner to recall ferroelectric materials, understand their retention property and apply it to	CO7 CO7
2 3 4 5	Part – A (Standard Explain the different types of solid dielectric materials and their polarization process. Write Lorentz relation for internal field or local field in a dielectric material. How ferroelectric material is different from normal dielectric material. Write the Clausius - Mosotti equation associated with a dielectric material. Name different types of polarizations that occur in dielectric materials in the presence of external electric field. When an electric field is applied, how does the phenomenon of polarization	IC AND MACONOTE Answer (Understand Remember Apply Remember Remember	Learner to recall different dielectric materials and understand nature of polarization occurring in it. Learner to recall ferroelectric materials, understand their retention property and apply it to memory storage. Learner to recall polarization process and understand separation of charges with	CO7 CO7 CO7

9	Write the relation between electric	Remember		CO7
9	susceptibility and dielectric constant.	Remember		CO/
10	Why is a capacitor known to be an energy storing device?	Understand	Learner to recall capacitor and understand development of charges on the surface of plates of capacitor.	CO7
11	How do you account for the magnetic properties of materials?	Understand	Learner to recall magnetic moment and understand how it helps for magnetism in some materials.	CO8
12	What is curie temperature? Is it unique for all substances?	Understand	Learner to learn curie temperature and understand transition of magnetic properties at this temperature.	CO8
13	Mention the types of magnetic materials based on electron spins.	Remember		CO8
14	Sketch neatly hysteresis loop observed in ferromagnetic materials.	Remember		CO8
15	What is hysteresis? What does the area of hysteresis curve represent?	Remember		CO8
16	Define diamagnetic, paramagnetic and ferromagnetic materials.	Remember		CO8
17	Give two examples for each diamagnetic, paramagnetic and ferromagnetic material.	Remember		CO8
18	Define coercivity and retentivity of a ferromagnetic material.	Remember		CO8
19	Discuss in detail about Bohr magneton. Also mention its value.	Understand	Learner to recall Bohr magneton and understand how it helps to measure magnetic moment of atomic systems.	CO8
20	Compare the relative permeability values of diamagnetic, paramagnetic and ferromagnetic material.	Understand	Learner to recall relative permeability and understand that ferromagnetic materials have highest relative permeability values.	CO8
	Part – B (Le	ong Answer Ç	Questions)	
1	What do you understand by dielectric materials? Establish a relationship between <i>D</i> , <i>E</i> and <i>P</i> .	Understand	Learner to recall dielectric material and understand occurrence of polarization with applied electric field.	CO7
2	Explain in detail, the terms: (a) Dielectric constant (b) Electric susceptibility (c) Displacement vector	Understand	Learner to recall different terms related to polarization and understands measurement of dielectric constant, susceptibility from polarization.	C07
3	Derive a relation between electronic polarization and electric susceptibility of the dielectric medium.	Apply	Learner to recall polarization in dielectrics, understand measurement of susceptibility and apply it to functional materials.	CO7
4	Explain in detail, the terms: (a) Polarizability (b) Polarization vector (c) Electric dipole (d) Electric dipole moment	Understand	Learner to recall different terms related to polarization and understands measurement of polarizability, dipole moment from polarization.	C07

	T		I	~~-
5	Discuss about Clausius-Mosotti relation	Apply	Learner to recall polarizability	CO7
	in dielectrics subjected to static fields and		and dielectric constant,	
	also explain its significance.		understand relation between them	
			and apply it to find dielectric	
			constant once given polarizability	
			value.	
	On application of external electric field,	Apply	Learner to recall different	CO7
6	various polarization processes takes place	FF-J	dielectric materials, understand	
	in dielectric material. Explain briefly all		nature of polarization occurring	
	these polarization processes.		in it and apply it to get functional	
	these potarization processes.		materials.	
	Obtain an arrange on for the internal field	A1		CO7
	Obtain an expression for the internal field	Apply	Learner to recall internal field,	CO7
7	experienced by an atom inside a dielectric		understand different types	
	material subjected to an external field by		polarization contributing to it	
	using Lorentz method.		and apply it to get functional	
			materials	
8	Write notes on dielectric theory of	Apply	Learner to recall ferroelectric	CO7
	ferroelectricity. What are the important		materials, understand their	
	characteristics of ferroelectric materials		retention property and apply it to	
			memory storage.	
9	Explain the phenomenon of	Apply	Learner to recall structure of	CO7
	ferroelectricity with particular reference	-rr- <i>J</i>	Barium Titanate, understand its	
	to Barium titanate.		retention property and apply it to	
	to Buriam thanate.		memory storage.	
10	Define dielectric breakdown. What are the	Apply	Learner to recall dielectric	CO7
10	different mechanisms involved in	Арргу	breakdown, understand causes of	COT
	dielectric breakdown?			
	dielectric breakdowit?		it and apply it to get good	
- 11		** 1	functional materials	G00
11	Explain the terms magnetic dipole,	Understand	Learner to recall different terms	CO8
	magnetic dipole moment, magnetic field		related to magnetism, and	
	intensity and magnetic induction.		understands measurement of	
			dipole moment and magnetic	
			induction.	
12	Discuss in detail about the magnetic	Understand	Learner to recall different terms	CO8
	permeability, relative permeability,		related to magnetism and	
	Intensity of magnetization and magnetic		understands measurement of	
	susceptibility.		permeability and magnetic	
			susceptibility.	
13	Obtain a relation between magnetic	Understand	Learner to recall different terms	CO8
	susceptibility, magnetization and		related to magnetism and	2 - 3
	magnetic field intensity.		understands relation between	
	giroto incomotoj.		susceptibility and magnetization.	
14	Describe the origin of magnetic moment	Understand	Learner to recall spins in	CO8
17	and find the magnetic dipole moments	Onderstand	magnetic materials and	200
			•	
	due to orbital and spin motions of an		understand how magnetic	
	electron.		moment is developed from their	
		**	spins.	
15	What is a Bohr magneton? How it is	Understand	Learner to recall Bohr magneton	CO8
	related to magnetic moment of electron.		and understand how it helps to	
			measure magnetic moment of	
			atomic systems.	
16	Distinguish between diamagnetic,	Understand	Learner to recall different	CO8
	paramagnetic and ferromagnetic		magnetic materials and	
	materials. Explain their behavior with the		understand their properties in	
	help of examples.		terms of magnetization.	
	i e			

17	Illustrate the phenomenon of magnetization. Show that $B=\mu_o(H+M). \label{eq:beta}$	Understand	Learner to recall magnetization and understand derivation of relation between magnetic induction and permeability.	CO8
18	Draw the B-H curve for a ferromagnetic material and identify the retentivity and the coercive field on the curve.	Understand	Learner to recall hysteresis curve and understand to get retentivity and coercivity from it.	CO8
19	What are the sources of permanent dipole moment in magnetic materials?	Understand	Learner to recall dipole moment and understand different materials exhibiting different moment values.	CO8
20	Discuss Curie-Weiss law of ferromagnetic materials. Explain the effect of temperature on ferromagnetic properties of a material.	Understand	Learner to recall Curie-Weiss law and understand change in magnetic behavior at curie temperation.	CO8
	Part - C (A	Analytical Qu	estions)	
1	Find the electric susceptibility of a dielectric gas having dielectric constant of 1.000041.	Apply	Learner to recall susceptibility and dielectric constant, understand relation between them and applies it to find susceptibility once given dielectric constant value.	CO7
2	A parallel capacitor has an area of 100cm ² , a plate separation of 1 cm and is charged to a potential of 100 Volts. Calculate the capacitance of the capacitor and the change on the plates.	Apply	Learner to recall capacitor, understand capacitance in terms of area, plate separation and potential and apply it to find capacitance from the given data.	CO7
3	The dielectric constant of He gas is 1.0000684. Find the electronic polarizability of He atoms if the gas contains 2.7 x 10 ²⁵ atoms per m ³ .	Apply	Learner to recall polarizability and dielectric constant, understand relation between them and applies it to find polarizability once given dielectric constant value.	CO7
4	A solid dielectric with density 3 x 10 ²⁸ atoms / m³ shows an electronic polarizability of 10 ⁻⁴⁰ farad -m ⁻² . Assuming the internal electric field to be a Lorentz field, calculate the dielectric constant of the material.	Apply	Learner to recall susceptibility and dielectric constant, understand relation between them and applies it to find dielectric constant once given polarizability value.	CO7
5	A parallel capacitor of area 650 mm ² and a plate separation of 4 mm has a charge of 2x10 ⁻¹⁰ C on it. When a material of dielectric constant 3.5 is introduced between the plates, what is the resultant voltage across the capacitors?	Apply	Learner to recall capacitor, understand capacitance in terms of area, plate separation and potential and apply it to find potential from the given data.	CO7
6	Calculate magnetization and magnetic flux density if magnetic field intensity 250amp/m and relative permeability is 15.	Apply	Learner to recall terms related to magnetism, understands relation between them and apply it to find magnetization and flux density from the data given.	CO8
7	Find relative permeability, if H=220amp/m and M=3300 amp/m.	Apply	Learner to recall terms related to magnetism, understands relation between them and apply it to find relative permeability from the data given.	CO8

8	The magnetic susceptibility of aluminium is 2.3 x 10 ⁻⁵ . Find its permeability and relative permeability.	Apply	Learner to recall terms related to magnetism, understands relation between them and apply it to find permeability from the data given.	CO8
9	If a magnetic field of strength 300 amp/meter produces a magnetization of 4200 A/m in a ferromagnetic material, find the relative permeability of the material.	Apply	Learner to recall terms related to magnetism, understands relation between them and apply it to find relative permeability from the data given.	CO8
10	A paramagnetic material has a magnetic field intensity of 10 ⁴ A/m. If the susceptibility of the material at room temperature is 3.7 x 10 ⁻³ , calculate the magnetization and magnetic flux density in the material.	Apply	Learner to recall terms related to magnetism, understands relation between them and apply it to find magnetization and flux density from the data given.	CO8
	N	MODULE-V		
	LASERS A	AND FIBER (OPTICS	
	Part – A (Sh	ort Answer (Questions)	
1	Mention the three distinct processes by which a transition can take place.	Remember		CO8
2	What do you mean by coherence? Name two types of coherence.	Understand	Learner to recall coherence and understand spatial and temporal coherence.	CO8
3	State the properties of laser beam that makes it different from normal light.	Remember		CO8
4	List out the different types of lasers?	Remember		CO8
5	What is the advantage of using laser as light sources in CD player?	Understand	Learner to recall principle of laser and understand its use in CD player	CO8
6	What are the three important requisites for laser action to take place?	Remember		CO8
7	What does the term laser stand for? Illustrate about the principle of laser.	Understand	Learner to recall abbreviation of laser and understand its principle.	CO8
8	Recall the role of metastable state in achieving the population inversion.	Remember		CO8
9	Define the terms lifetime and population of an energy state.	Remember		CO8
10	List any two applications of lasers in engineering.	Remember		CO8
11	Explain the basic principle used in optical fiber for transmission of light.	Understand	Learner to recall optical fiber and understand its principle.	CO9
12	Define Acceptance angle, Acceptance cone and Numerical Aperture of an optical fiber.	Remember		CO9
13	List any two applications of optical fibers in day to day life.	Remember		CO9
14	Mention any three advantages of optical fiber communication system.	Remember		CO9
15	How is attenuation loss in optical fiber measured? Mention its units.	Understand	Learner to recall propagation of signal through fiber and understand loss during propagation.	CO9

angle and Numerical aperture of an optical fiber. 17 Illustrate a neat sketch of refractive index profile of sleep index optical fiber. 18 Mention the principle behind propagation of light signal through an optical fiber? 19 State the expressions for Snell's law and critical angle associated with an optical fiber. 20 Enlist different types of attenuation in optical fibers that occur during propagation of light signals. 21 Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light. 22 Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle. 12 Derive an expression for angle of Understand 13 Learner to recall transition between energy states and understand role optical resonator in a laser system. 14 Understand Learner to recall excitation process and understand orloe of them in laser emission. 15 Cost and understand its construction and understand its construction and understand orloe optical resonator to light amplification is achieve population inversion	angle and Numerical aperture of an optical fiber. 17 Illustrate a neat sketch of refractive index profile of step index optical fiber. 18 Mention the principle behind propagation of light signal through an optical fiber? 19 State the expressions for Snell's law and critical angle associated with an optical fiber. 20 Enlist different types of attenuation in optical fibers that occur during propagation of light signals. 21 Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light. 22 Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a fleat and disparam. 4 Narrate the construction and working of He-Ne gascous laser in detail, with the help of a neat stillable diagram. 4 Narrate the construction and working. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss why population inversion is essential for laser action. 11 Describe an optical fiber? Explore is construction and principle.		<u></u>		,	
Illustrate a neat sketch of refractive index profile of step index optical fiber. CO9	Illustrate a near sketch of refractive index profile of step index optical fiber. Cop	16		Remember		CO9
profile of step index optical fiber. Mention the principle behind propagation of light signal through an optical fiber? State the expressions for Snell's law and critical angle associated with an optical fiber. Enlist different types of attenuation in optical fibers that occur during propagation of light signals. Part - B (Long Answer Questions) I Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light. Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? Demonstrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat suitable diagram. Narrate the construction and working of laser late the construction and working of a neat diagram. Narrate the construction and working of least like industry, medicine, science, etc., by giving their applications. Enlists the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. What do you mean by population and optical resonator in a laser system. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. How light amplification is achieved in a laser system. Martage different pumping and process involved in laser emission. Learner to recall stimulated emission. Learner to recall stimu	profile of step index optical fiber. Mention the principle behind propagation of light signal through an optical fiber? State the expressions for Snell's law and critical angle associated with an optical fiber. Enlist different types of attenuation in optical fibers that occur during propagation of light signals. Part - B (Long Answer Questions) I Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light. Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? Demonstrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Narrate the construction and working of leds like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. B Illustrate the purpose of an active medium and optical resonator in a laser system. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. B Illustrate the purpose of an active medium and optical resonator in a laser system. Understand Learner to recall transition between energy states and understand its construction and understand its only interest and understand its of laser system and understand role of them in laser emission. CO8 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Understand Learner to recall stimulated emi		optical fiber.			
1	Mention the principle behind propagation of light signal through an optical fiber?	17		Remember		CO9
State the expressions for Snell's law and critical angle associated with an optical fiber. Remember CO9	State the expressions for Shell's law and critical angle associated with an optical fiber. Remember CO9	18	Mention the principle behind propagation	Remember		CO9
critical angle associated with an optical fiber. 20 Enlist different types of attenuation in optical fibers that occur during propagation of light signals. Part - B (Long Answer Questions) 1 Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light. 2 Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derivation of the phenomenon of a state and understand different ways of excitation to achieve population inversion inversion in detail. Understand construction and principle with a neat diagram. 12 Derivation are process involved in laser emission and understand different ways of excitation to achieve population inversion and principle with a neat diagram. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derivation and principle with a neat diagram. 13 Derivation of attention of attention in a laser emission.	critical angle associated with an optical fiber. 20 Enlist different types of attenuation in optical fibers that occur during propagation of light signals. Part - B (Long Answer Questions) 1 Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light. 2 Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion? Explain it using three energy level diagram it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derivation of the phenomenon of a structure of the process and understand different ways of excitation to achieve population inversion and principle with a neat diagram. 12 Derivation of a structure of explainment of the pumping process involved in lacer emission. Also discuss in detail diagram. 13 Describe an optical fiber? Explore its construction and principle with a neat diagram. 14 Describe an optical fiber?	19		Remember		CO9
fiber. 20 Enlist different types of attenuation in optical fibers that occur during propagation of light signals. Part - B (Long Answer Questions) 1 Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light. 2 Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gascous laser in detail, with the help of a neat diagram. 5 Enlist different types of a Ruby taser in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in laser emission. Also discuss in detail different pumping mechanisms. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall different parts of alaser and understand different pumping process involved in laser emission and understand to achieve population inversion is detail different pumping mechanisms.	fiber. 20 Enlist different types of attenuation in optical fibers that occur during propagation of light signals. Part - B (Long Answer Questions) 1 Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light. 2 Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gascous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion's Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Cogetal acceptance Cogetal acceptanc	1)		Kemember		CO)
Enlist different types of attenuation in optical fibers that occur during propagation of light signals. Part - B (Long Answer Questions)	Enlist different types of attenuation in optical fibers that occur during propagation of light signals. Part - B (Long Answer Questions)					
propagation of light signals. Part - B (Long Answer Questions) I Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light. 2 Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states and understand excitation to higher state with energy. 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion' Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser emission. Also discuss in detail different pumping mechanisms. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle. 12 Derive an expression for angle of Understand Learner to recall document and optical fiber? Explore its construction and principle. 12 Derive an expression for angle of Understand Learner to recall optical fiber and understand its construction and principle.	propagation of light signals. Part - B (Long Answer Questions) 1 Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light. 2 Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion's Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser emission. Also discuss in detail different pumping mechanisms. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall sciculation process and understand its construction and principle with a neat diagram. 12 Deleven an expression for angle of Understand Learner to recall sciculation process and understand role optical resonator for light amplification in a construction and principle with a neat diagram. 12 Deleven an expression for angle of Understand Learner to recall different pumping process involved in principle. 13 Learner to recall excitation process and understand role optical resonator for light amplification in a principle. 14 Understand Learner to recall optical fiber and understand tile principle. 15 Learner to recall optical fiber and understand tile p			~ .		200
Propagation of light signals.	Part - B (Long Answer Questions)	20		Remember		CO9
Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light.	Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light.					
Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light.	Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light.		propagation of light signals.			
Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light.	Illustrate the characteristics of lasers, and highlight the phenomenon of lasing action required for the production of laser light.		Part - B (Lo	ong Answer Q	ouestions)	
highlight the phenomenon of lasing action required for the production of laser light. 2 Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat suitable diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in laser emission. Also discuss in detail different pumping mechanisms. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall acceptance CO9 13 Discussion of the pumping process involved in laser emission and understand different parts of construction and principle with a neat diagram. 14 Describe an optical fiber? Explore its construction and principle with a neat diagram. 15 Derive an expression for angle of Understand Learner to recall acceptance CO9	highlight the phenomenon of laser light. 2 Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat suitable diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall optical fiber and understand its construction and between energy states and understand its principle. 12 Understand Learner to recall excitation process with energy and understand role optical resonator for light amplification. 13 Describe an optical fiber? Explore its construction and principle with a neat diagram. 14 Orderstand Learner to recall optical fiber and understand different pumping defined in a lager and understand different pumping defined principle. 15 Derive an expression for angle of Understand Learner to recall optical fiber and understand different pumping defined principle.	1	•			CO8
required for the production of laser light. Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. Understand Learner to recall He-Ne laser and understand its construction and working. Learner to recall He-Ne laser and understand its construction and working. Learner to recall He-Ne laser and understand its construction and working. Learner to recall the construction and working. Learner to recall the construction and understand its applications in various fields. Learner to recall transition to recall transition between energy states and understand its construction and working. Learner to recall the construction and working. Learner to recall transition between energy states and understand its applications in various fields. Learner to recall transition between energy states and understand de-excitation to lower state. Understand Learner to recall excitation process with energy and understand its role in laser emission. Earner to recall excitation to lower state. Understand Learner to recall different parts of laser system. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall stimulated emission. Learner to recall stimulated emission. Learner to recall stimulated continuity amplification. Learner to recall parts of laser system and understand role optical resonator for light amplification. Learner to recall potical fiber and understand different pumping mechanisms. Understand Learner to recall parts of laser system and understand different pumping mechanisms. Learner to recall excitation process and understand diffe	required for the production of laser light. Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Indicates the least of the period of lasers in various fields like industry, medicine, science, etc., by giving their applications. Understand Learner to recall transition between energy states and understand its construction and working. Learner to recall He-Ne laser and understand its construction and working. Learner to recall characteristics of lasers and understand its construction and working. Learner to recall characteristics of lasers and understand its applications in various fields. Learner to recall characteristics of lasers and understand its applications in various fields. Learner to recall transition between energy states and understand its construction and working. Understand Learner to recall characteristics of lasers and understand its applications in various fields. Learner to recall transition between energy states and understand de-excitation to lower state. Understand Learner to recall characteristics of lasers and understand its role in laser emission. Learner to recall excitation process with energy and understand its role in laser emission. Learner to recall excitation of laser system. How light amplification is achieved in a laser system. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall stimulated emission. Learner to recall optical fiber and understand its construction and principle with a neat diagram. Understand Learner to recall optical fiber and u	1	· · · · · · · · · · · · · · · · · · ·			CO8
Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion's essential for laser action. Billustrate the purpose of an active medium and optical resonator in a laser system. Understand laser system. Understand Learner to recall transition working. Understand Learner to recall transition between energy states and understand its applications in various fields. Learner to recall transition between energy states and understand de-excitation to lower state. Understand Learner to recall excitation process with energy and understand its role in laser emission. Understand Learner to recall excitation process with energy and understand its role in laser emission. Learner to recall excitation process in learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall different parts of laser system and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion in a construction and principle with a neat diagram. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. CO8 Describe an optical fiber? Explore its construction and principle. Understand Learner to	Explore the phenomena's of absorption and pumping mechanism related to excitation of atoms from lower to higher energy states? Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion's essential for laser action. Mortate the pumpose of an active medium and optical resonator in a laser system. Understand Understand Understand Learner to recall transition between energy states and understand its construction and working. CO8 OS8 OS8 OS9 Understand Understand Understand Understand Learner to recall transition between energy states and understand its applications in various fields. Learner to recall transition between energy states and understand de-excitation to lower state. Understand Understand Understand Understand Learner to recall transition between energy states and understand de-excitation to lower state. Understand Understand Learner to recall transition between energy states and understand for loop to the minute of laser emission. Understand Understand Understand Learner to recall stimulated emission. Understand Learner to recall excitation process with energy and understand role of them in laser emission. Understand Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall different parts of laser system and understand role optical resonator for light amplification. Understand Learner to recall deriva					
and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall pacitation to higher state with energy, states and understand its construction and working. 12 Derive an expression for angle of Understand Learner to recall characteristics of laser and understand its construction and understand in understand to hear the purpose of laser and understand to hear the purpose of an active medium and optical resonator for light amplification. 13 Describe an optical fiber? Explore its construction and principle with a neat diagram. 14 Derive an expression for angle of Understand Learner to recall prical fiber and understand its construction and principle.	and pumping mechanism related to excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall acceptance CO9					
excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in laser emission. Also discuss in detail different pumping mechanisms. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and working. 12 Understand Learner to recall ruby laser and understand its construction and working. 13 Understand Understand Understand its construction and working. 14 Learner to recall He-Ne laser and understand its construction and working. 15 Learner to recall the-Ne laser and understand its construction and understand its applications in various fields. 16 Understand Understand Understand Understand its role in laser emission. 17 What do you mean by population inversion is essential for laser action. 18 Illustrate the purpose of an active medium and optical resonator for light amplification. 19 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. 10 Explain the pumping process involved in laser emission. 11 Describe an optical fiber? Explore its construction and principle. 12 Derive an expression for angle of Understand 13 Learner to recall ruby laser and understand to bunderstand its construction and principle. 14 Understand Understand Ea	excitation of atoms from lower to higher energy states? 3 Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle. 12 Derive an expression for angle of 12 Understand 13 Understand Learner to recall ruby laser and understand its construction and working. 14 Understand Understand Understand its construction and understand its construction in a laser system. 15 Understand Understand Learner to recall excitation process with energy and understand its role in laser emission. 16 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 17 Understand Understand Understand Understand Understand Understand its construction and principle. 18 Describe an optical fiber? Explore its construction and principle. 19 Derive an expression for angle of Understand Learner to recall potical fiber and understand its construction and principle.	2		Understand		CO8
State with energy. State with energy. COB Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. Understand understand its construction and working.	State with energy. State with energy. COB					
Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. Understand working. Understand before a passeous laser in detail, with the help of a neat diagram. Independent of the last of the las	Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Earner to recall ruby laser and understand its construction and working. Understand Learner to recall He-Ne laser and understand its construction and working. Understand Learner to recall He-Ne laser and understand its construction and working. Understand Learner to recall he-Ne laser and understand its construction and working. Understand Learner to recall characteristics of laser and understand its applications in various fields. Understand Learner to recall characteristics of laser and understand its applications in various fields. Understand Learner to recall characteristics of laser and understand its applications in various fields. Understand Learner to recall transition between energy states and understand de-excitation to lower state. Understand Learner to recall excitation process with energy and understand its role in laser emission. Understand Learner to recall different parts of laser system. Understand Learner to recall different parts of laser system. Understand Learner to recall excitation process with energy and understand its role in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role of them in laser emission. Understand Learner to recall cecitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall cecitation process and understand different ways of excitation to achieve population inversion.		excitation of atoms from lower to higher		understand excitation to higher	
Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. Understand working. Understand before a passeous laser in detail, with the help of a neat diagram. Independent of the last of the las	Demonstrate the construction and working of a Ruby laser in detail, with the help of a neat suitable diagram. Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Earner to recall ruby laser and understand its construction and working. Understand Learner to recall He-Ne laser and understand its construction and working. Understand Learner to recall He-Ne laser and understand its construction and working. Understand Learner to recall he-Ne laser and understand its construction and working. Understand Learner to recall characteristics of laser and understand its applications in various fields. Understand Learner to recall characteristics of laser and understand its applications in various fields. Understand Learner to recall characteristics of laser and understand its applications in various fields. Understand Learner to recall transition between energy states and understand de-excitation to lower state. Understand Learner to recall excitation process with energy and understand its role in laser emission. Understand Learner to recall different parts of laser system. Understand Learner to recall different parts of laser system. Understand Learner to recall excitation process with energy and understand its role in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role of them in laser emission. Understand Learner to recall cecitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall cecitation process and understand different ways of excitation to achieve population inversion.		energy states?		state with energy.	
working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and working. 12 Derive an expression for angle of Understand U	working of a Ruby laser in detail, with the help of a neat suitable diagram. 4 Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and working. 12 Derive an expression for angle of Understand understand its construction and working. Understand Understa	3		Understand	Learner to recall ruby laser and	CO8
help of a neat suitable diagram. Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Plow light amplification is achieved in laser emission. Also discuss in detail different pumping mechanisms. Learner to recall transition between energy states and understand de-excitation to lower state. Understand Learner to recall excitation process with energy and understand its role in laser emission. Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. CO8 Discussin detail different pumping mechanisms. Understand Learner to recall excitation to achieve population inversion. CO8 Learner to recall stimulated emission and understand different ways of excitation to achieve population inversion. CO8 Discussin detail different pumping mechanisms.	help of a neat suitable diagram. Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Earner to recall He-Ne laser and understand its construction and working. I Learner to recall characteristics of laser and understand its applications in various fields like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. How light amplification is achieved in laser emission. Also discuss in detail different pumping mechanisms. Illustrate the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Illustrate of the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Illustrate of the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Illustrate of the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Illustrate of the pumping mechanisms. Illustrate the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Illustrate the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Illustrate the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Illustrate the pumping process involved in laser emission. Illustrate the pumping process invo					
Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram.	Narrate the construction and working of He-Ne gaseous laser in detail, with the help of a neat diagram. Understand working.					
He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle. 12 Derive an expression for angle of Understand 15 Learner to recall excitation between energy states and understand its role in laser emission. 16 Understand Learner to recall different parts of laser system and understand role of them in laser emission. 17 Learner to recall different parts of laser system and understand role of them in laser emission. 18 Learner to recall stimulated emission and understand role optical resonator for light amplification. 19 Learner to recall excitation process and understand role optical resonator for light amplification. 10 Explain the pumping process involved in different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle. 12 Derive an expression for angle of Understand Learner to recall acceptance CO9	He-Ne gaseous laser in detail, with the help of a neat diagram. 5 Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. 6 Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. 7 What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle. 12 Derive an expression for angle of Understand Understan	1		Understand		COS
help of a neat diagram. Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. Understand Learner to recall transition between energy states and understand de-excitation to lower state. Understand Learner to recall excitation to lower state. Understand Learner to recall excitation process with energy and understand its role in laser emission. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall different parts of laser system and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall polical fiber and understand its construction and principle. Understand Learner to recall acceptance CO9 Derive an expression for angle of Understand Learner to recall acceptance	help of a neat diagram. Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Describe an optical fiber? Explore its construction and diagram. Learner to recall characteristics of laser and understand its applications in various fields. Learner to recall transition between energy states and understand dunderstand to lower state. Understand Learner to recall excitation process with energy and understand its role in laser emission. Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. Learner to recall excitation process and understand different ways of excitation to achieve population inversion. CO8 To 8 Describe an optical fiber? Explore its construction and principle with a neat diagram. Learner to recall acceptance CO9 Understand Learner to recall excitation construction and principle. Learner to recall population inversion.	4		Understand		CO8
Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Most do you mean by population inversion is essential for laser action. Understand Learner to recall excitation between energy states and understand its role in laser emission. Learner to recall excitation process with energy and understand its role in laser emission. Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall different parts of laser system and understand role optical resonator for light amplification. Learner to recall stimulated emission and understand role optical resonator for light amplification. Learner to recall different parts of laser system and understand role optical resonator for light amplification. Learner to recall different parts of laser system and understand role optical resonator for light amplification. Learner to recall different value emission and understand different ways of excitation process and understand different ways of excitation to achieve population inversion. Describe an optical fiber? Explore its construction and principle with a neat diagram. Learner to recall optical fiber and understand tist construction and principle.	Enlist the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Billustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Mow light amplification is achieved in a laser emission. Also discuss in detail different pumping mechanisms. Learner to recall excitation between energy states and understand tis role in laser emission. Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process involved in laser emission. Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall poptical fiber and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle.		_			
fields like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. Understand Learner to recall transition between energy states and understand de-excitation to lower state. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. How light amplification is achieved in a laser emission. Also discuss in detail different pumping mechanisms. Learner to recall excitation process with energy and understand its role in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall potical fiber and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand different ways of excitation to achieve population inversion.	fields like industry, medicine, science, etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. How light amplification is achieved in a laser emission. Also discuss in detail different pumping mechanisms. Describe an optical fiber? Explore its construction and principle with a neat diagram. In Describe an expression for angle of Understand classer and understand its applications in various fields. Understand Learner to recall transition between energy states and understand to lower state. Understand Learner to recall excitation process with energy and understand its role in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall potical fiber and understand its construction and principle. Understand Learner to recall optical fiber and understand its construction and principle.			** 1	<u> </u>	G00
etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Phow light amplification is achieved in a laser emission. Also discuss in detail different pumping mechanisms. Describe an optical fiber? Explore its construction and principle. Derive an expression for angle of Understand Learner to recall different various dunderstand its role in laser emission. Learner to recall different parts of laser system and understand role of them in laser emission. CO8 Learner to recall stimulated emission and understand role of them in laser emission. Learner to recall excitation of CO8 Learner to recall excitation process involved in laser emission. Learner to recall excitation process and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion.	etc., by giving their applications. Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Phow light amplification is achieved in a laser emission. Also discuss in detail different pumping mechanisms. Describe an optical fiber? Explore its construction and principle. Derive an expression for angle of Understand Learner to recall excitation process with energy and understand its role in laser emission. Learner to recall different parts of laser system and understand role of them in laser emission. CO8 Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall population inversion. CO8 Learner to recall stimulated emission and understand different ways of excitation to achieve population inversion. Learner to recall excitation CO8 Learner to recall excitation process and understand different ways of excitation to achieve population inversion.	5		Understand		CO8
Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Describe an optical fiber? Explore its construction and principle. Discuss in detail the phenomenon's of spontaneous emission and understand dunderstand understand to between energy states and understand che-excitation process with energy and understand its role in laser emission. Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall different parts of laser system and understand role optical resonator for light amplification. Learner to recall excitation process involved in laser emission and understand role optical resonator for light amplification. Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Learner to recall excitation to achieve population inversion.	Discuss in detail the phenomenon's of spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Describe an optical fiber? Explore its construction and diagram. Discuss in detail the phenomenon's of spontaneous emission and understand to lower state. Understand Learner to recall excitation process with energy and understand its role in laser emission. Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Learner to recall optical fiber and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle.		•			
spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Illustrate the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Illustrate the pumping process involved in laser emission. Understand emission and understand role optical resonator for light amplification. Understand Learner to recall different parts of laser system and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Describe an optical fiber? Explore its construction and principle. Derive an expression for angle of Understand Learner to recall acceptance CO9	spontaneous emission and stimulated emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. Illustrate the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Illustrate the pumping process involved in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall officer and understand its construction and principle. Describe an optical fiber? Explore its construction and principle. Understand Learner to recall acceptance					
emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. How light amplification is achieved in a laser emission. Also discuss in detail different pumping mechanisms. Explain the pumping process involved in laser emission. Also discuss in detail diagram. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. CO8 Understand Learner to recall excitation process and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall optical fiber and understand its construction and principle.	emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall optical fiber and understand its construction and principle. CO8	6	Discuss in detail the phenomenon's of	Understand	Learner to recall transition	CO8
emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. How light amplification is achieved in a laser emission. Also discuss in detail different pumping mechanisms. Explain the pumping process involved in laser emission. Also discuss in detail diagram. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. CO8 Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance CO9 Understand Learner to recall optical fiber and understand its construction and principle.	emission. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Illustrate the purpose of an active medium and optical resonator in a laser system. How light amplification is achieved in a laser system. What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall optical fiber and understand its construction and principle. CO8		spontaneous emission and stimulated		between energy states and	
What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Understand and optical resonator in a laser system. Understand laser emission. Also discuss in detail different pumping mechanisms. Understand laser system in laser emission. Understand laser emission. Understand laser emission. Understand laser system in detail different pumping mechanisms. Understand laser emission. Understand laser emission. Understand laser emission. Understand laser emission. Understand laser emission and understand different ways of excitation to achieve population inversion. Understand laser emission and understand its construction and understand its construction and principle. Understand laser emission. Understand laser emission and understand its construction and understand its construction and principle. Understand laser emission. Understand laser emission and understand its construction and understand its construction and understand its construction and principle. Understand laser emission. Understand laser emission and understand its construction and understand its constructi	What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action.		emission.			
What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. Understand understand its role in laser emission.	What do you mean by population inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action.				state.	
inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Illustrate the purpose of an active medium understand its role in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO8 Understand Learner to recall optical fiber and understand its construction and principle.	inversion? Explain it using three energy level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Illustrate the purpose of an active medium understand its role in laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO9	7	What do you mean by population	Understand		CO8
level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression is essential for laser emission. Understand Learner to recall different parts of laser emission. Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO9	level diagram. Also discuss why population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression is essential for laser emission. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO9	•	• • • • • • • • • • • • • • • • • • • •	Charletana		
population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Indeptitude (Interest and construction is emission and active medium and active medium action). Understand Learner to recall different purpose and understand different ways of excitation to achieve population inversion. 12 Derive an expression for angle of Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance CO8 CO8 Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall acceptance CO8 CO8 CO8 Learner to recall different parts of laser system and understand role of them in laser emission. Understand Learner to recall acceptance CO9 CO9 CO9	population inversion is essential for laser action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression is essential for laser action. Understand Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO9 Understand Learner to recall acceptance CO9					
action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Inderstand Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO8 CO8 CO8 CO9 CO9	action. 8 Illustrate the purpose of an active medium and optical resonator in a laser system. 9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Inderstand Learner to recall different parts of laser system and understand role of them in laser emission. Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. CO9 Understand Learner to recall optical fiber and understand its construction and principle. CO9					
Illustrate the purpose of an active medium and optical resonator in a laser system. Understand laser system and understand role of them in laser emission.	Illustrate the purpose of an active medium and optical resonator in a laser system. Understand laser system and understand role of them in laser emission.		* *		emission.	
and optical resonator in a laser system. Solution Possible an optical fiber? Explore its construction and principle with a neat diagram. Solution Possible an optical fiber Explore its construction and principle. Solution Possible an optical fiber Possible an optical fiber and diagram. Solution Possible an optical fiber Possible an optical fiber and diagram. Solution Possible an optical fiber Possible an optical fiber and diagram. Solution Possible an optical fiber Possible an optical fiber and diagram. Solution Possible an optical fiber Possible and principle with a neat diagram. Solution Possible and understand understand its construction and principle. Solution Possible and understand its construction and principle and understand its construction and understand its construction and understand its construction and understand its constru	and optical resonator in a laser system. Solution Paragraphic Par	0		I Indoneter d	Learner to recall different next of	COo
9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of How light amplification is achieved in a laser emission. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance	9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of How light amplification is achieved in a chieve in laser emission and understand construction in laser emission and understand its construction and principle. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO8 CO8 Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. CO9 Understand Learner to recall optical fiber and understand its construction and principle. CO9 Understand Learner to recall acceptance	Ŏ		Understand	_	CU8
9 How light amplification is achieved in a laser system. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Learner to recall stimulated emission and understand role optical resonator for light amplification. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO8 CO8 Explain the pumping process involved in laser emission. Also discuss in detail process and understand different ways of excitation to achieve population inversion. CO9 CO9 CO9 CO9	How light amplification is achieved in a laser system. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall stimulated emission and understand role optical resonator for light amplification. CO8 Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO9 CO9 CO9 Understand Learner to recall acceptance CO9		and optical resonator in a laser system.			
laser system. CO8	laser system. CO8					
optical resonator for light amplification. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Ounderstand Understand Understand Understand its construction and principle. Understand Learner to recall optical fiber and understand its construction and principle. CO8 CO8 Understand Learner to recall optical fiber and understand its construction and principle. CO9 Understand Learner to recall acceptance	optical resonator for light amplification. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Outderstand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO9 CO9	9		Understand		CO8
amplification. 10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO9 Understand Learner to recall acceptance CO9	amplification. Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. Describe an optical fiber? Explore its construction and principle with a neat diagram. Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance CO9		laser system.			
10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO8 CO8 Process and understand different ways of excitation to achieve population inversion. Understand Learner to recall acceptance CO9	10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO8 CO8 Process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO9 CO9 CO9					
10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO8 CO8 Process and understand different ways of excitation to achieve population inversion. Understand Learner to recall acceptance CO9	10 Explain the pumping process involved in laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall excitation process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO8 CO8 Process and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO9 CO9 CO9			<u></u>	amplification.	
laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Drocess and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance CO9	laser emission. Also discuss in detail different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Drocess and understand different ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. CO9 Understand Learner to recall acceptance CO9	10	Explain the pumping process involved in	Understand	Learner to recall excitation	CO8
different pumping mechanisms. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of ways of excitation to achieve population inversion. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance CO9	different pumping mechanisms. Describe an optical fiber? Explore its construction and principle with a neat diagram. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance CO9 Understand Learner to recall acceptance				process and understand different	
population inversion. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of population inversion. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance CO9	population inversion. 11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of population inversion. Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance CO9					
11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance CO9	11 Describe an optical fiber? Explore its construction and principle with a neat diagram. 12 Derive an expression for angle of Understand Learner to recall optical fiber and understand its construction and principle. Understand Learner to recall acceptance CO9		F 6		· ·	
construction and principle with a neat diagram. understand its construction and principle. principle. 12 Derive an expression for angle of Understand Learner to recall acceptance CO9	construction and principle with a neat diagram. understand its construction and principle. principle. Understand Learner to recall acceptance CO9	11	Describe an ontical fiber? Evolore its	Understand		COo
diagram. principle. 12 Derive an expression for angle of Understand Learner to recall acceptance CO9	diagram. principle. 12 Derive an expression for angle of Understand Learner to recall acceptance CO9	11		Chacistana		203
12 Derive an expression for angle of Understand Learner to recall acceptance CO9	12 Derive an expression for angle of Understand Learner to recall acceptance CO9					
		10		TT 3 · 4		CO0
Langle and understand to get	acceptance of an optical fiber in terms of	12		Understand		CO9
refractive indices of core and cladding. expression for it.	retractive indices of core and cladding. expression for it.		retractive indices of core and cladding.		expression for it.	

13	What is a Numerical aperture? Determine an expression for numerical aperture of an optical fiber.	Understand	Learner to recall Numerical Aperture and understand to get expression for it.	CO9
14	Compare different types of optical fibers based on number of modes propagation through core medium of an optical fiber.	Understand	Learner to recall single and multimode fibers and understand that single mode is best suitable for communication.	CO9
15	Draw the block diagram of fiber optic communication system and explain the functions of each block in the system.	Understand	Learner to recall different parts of optical fiber communication system and understand role of each.	CO9
16	Describe the step index fiber with a neat diagram and explain the transmission of a signal through it.	Understand	Learner to recall step index fiber and understand how its refractive index profile affects signal transmission.	CO9
17	Illustrate the advantages of optical fibers in communication system over ordinary cable communication.	Understand	Learner to recall advantages of optical fibers and understand its importance.	CO9
18	Discuss in detail graded index optical fiber with a neat figure and explain the transmission of signal through it.	Understand	Learner to recall Graded index fiber and understand how its refractive index profile reduces dispersion.	CO9
19	What do you mean by attenuation in optical fibers? Write a brief note on different losses in optical fibers.	Understand	Learner to recall transmission loss in optical fibers and understand different reasons for losses.	CO9
20	Write a note on the applications of optical fibers in different fields.	Understand	Learner to recall advantages of optical fibers and understand its application in different fields.	CO9
	Part - C (A	Analytical Qu	estions)	
1	Find the relative population of the two states in a ruby laser that produces a light beam of wavelength 6943 A° at 300 K.	Understand	Learner to recall expression for population and understand to calculate relative population.	CO8
2	For a He-Ne laser at 1 m and 2 m distances from the laser the output beam spot diameters are 4 mm and 6 mm respectively. Calculate the divergence.	Understand	Learner to recall divergence and understand to find its value from the data given.	CO8
3	A He-Ne laser emits light at a wavelength of 632.8 nm and has an output power of 2.3 mW. How many photons are emitted in each minute by this laser when operating?	Understand	Learner to recall energy bandgap and understand to find photons emitted from energy gap and energy of photon.	CO8
4	Solve the value of the wavelength of emitted radiation from a semiconductor diode laser, which has a band gap of 1.44eV.	Understand	Learner to recall energy bandgap and understand to find wavelength of laser from it.	CO8
5	A semiconductor diode laser has a wavelength of 1.55 µm. Estimate its band gap in eV.	Understand	Learner to recall energy bandgap and understand to find its value once given wavelength of laser.	CO8
6	A step index fiber has a numerical aperture of 0.16 and core refractive index of 1.45. Estimate the acceptance angle of the fiber and refractive index of the cladding.	Understand	Learner to recall acceptance angle and understand to find its value from the data given.	CO9

7	The refractive indices of core and	Understand	Learner to recall acceptance	CO9
	cladding materials of a step index fiber		angle and numerical aperture and	
	are 1.48 and 1.45 respectively. Simulate i)		understand to find their values	
	Numerical aperture ii) Acceptance angle.		from the data given.	
8	An optical fiber has a numerical aperture	Understand	Learner to recall acceptance	CO9
	of 0.02 and a cladding refractive index of		angle and understand to find its	
	1.59. Solve the value of acceptance angle		value from the data given.	
	for the fiber in water which has a			
	refractive index of 1.33.			
9	Calculate the fractional index change for a	Understand	Learner to recall relative	CO9
	given optical fiber if the refractive indices		refractive change and understand	
	of the core and the cladding are 1.563 and		to find its value from the data	
	1.498 respectively.		given.	
10	When the mean optical power launched	Understand	Learner to recall logarithmic	CO9
	into an 8 Km length of fiber is 120 μW.		formula for attenuation and	
	The mean optical power at the fiber		understand to find its value from	
	output is 3 µW. Find the overall signal		the data given	
	attenuation and signal attenuation per Km.			

Prepared by: Dr. Rizwana, Professor HOD, CSE