- 498 -

(3S) -3-[(3S) -2-Oxo-3-(3-phenylpropionylamino) -5-(3-phenylpropionyl) -2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-1-acetylamino] -4-(5,7-dichlorobenzoxazol-2-yl) -4-oxo-butyric acid (609a).

- 5 Step A. A solution of 204 (223 mg, 0.5 mmol) and 603r (300mg; 0.36 mmol) in 4 ml of DMF and 4 ml of CH₂Cl₂ was treated with (Ph₃P)₂PdCl₂ (10 mg), 1-hydroxybenzotriazle (135 mg, 1.0 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (115 mg, 0.6 mmol). Tri-n-butyl tin hydride (219 mg, 0.75 mmol) was added dropwise to the reaction and stirred for 18 h. The reaction was poured onto EtOAc and washed with aq. 10% NaHSO₄, sat. aq. NaHCO₃ and sat. aq. NaCl, dried over Na₂SO₄ and concentrated in vacuo. Chromatography (flash, SiO₂, 0% to 50% EtOAc/hexane) gave 360 mg (86%) of 607a as a foam.
- Step B. A solution of 607a (360 mg) in 5 ml of CH₂Cl₂ was added dropwise to a suspension of 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodioxol-3(1H)-one (362 mg, 0.85 mmol) in 20 ml of CH₂Cl₂. The reaction was stirred for 4.5 h, diluted with CH₂Cl₂ and washed with a 1:1 mixture of sat. aq. NaHCO₃/sat. aq. Na₂S₂O₃, sat. aq. NaHCO₃ (2x) and sat. aq. NaCl, dried over Na₂SO₄ and concentrated in vacuo. Chromatography (flash, SiO₂, 20% EtOAc/CH₂Cl₂) gave 340 mg (95%) of the ketone 608a.
 - Step C. 608a (300 mg, 0.36 mmol) was dissolved in 25 ml of 25% TFA/CH₂Cl₂ and stirred at RT for 5 h and concentrated in vacuo. Chromatography (flash, SiO₂, 0 to 5% MeOH/CH₂Cl₂) gave 118 mg (42%) of 609a as a white solid: 1 H NMR (CD₃OD) δ 7.62-6.65 (16H, m), 4.85-4.7

- 499 -

(1H, m), 4.68-4.42 (2H, m), 4.40-4.15 (2H, m), 3.48-3.28 (1H, m), 3.0-2.9 (1H, m), 2.9-2.6 (4H, m), 2.55-2.18 (3H, m), 2.16-1.96 (2H, m).

(3S)-3-[(3S)-2-Oxo-3-benzoylamino-5-acetyl-2,3,4,5
5 tetrahydro-1H-1,5-benzodiazepin-1-acetylamino]-4-(5,7-dichlorobenzoxazol-2-yl)-4-oxo-butyric acid (609b) was prepared from 603d in a similar manner as 609a to give 287 mg (43% overall yield) as white solid: ¹H

NMR (DMSO-d₆) δ 1.6(s, 3H), 2.7-3.1(m, 2H), 3.45(m, 1H), 4.4(t, 1H), 4.7(m, 2H), 4.95(m, 1H), 5.2, 5.4(2s, 1H), 7.2-7.65(m, 8H), 7.9(d, 2H), 8.8(t, 1H), 8.9,9.1(2s, 1H), 12.6(br, 1H).

$$R_{4}$$
 R_{2}
 R_{4}
 R_{2}
 R_{4}
 R_{2}
 R_{4}
 R_{2}
 R_{4}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5

$$R_4-N$$
 R_2
 R_4-N
 R_2
 R_2
 R_4
 R_2
 R_4
 R_2
 R_4
 R_2
 R_4
 R_5
 R_5
 R_7
 R_7

612

611

(3S)-3-[(3S)-2-Oxo-3-benzoylamino-5-methanesulfonyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]-5-(2,6-dichlorobenzoyloxy)-4-oxo-pentanoic acid (612) was prepared by a method similar as 607a (Steps A and C only) using 603m (150 mg, 0.36 mmol)

- 501 -

instead of 603r and (3S)-3-(allyloxycarbonylamino)-4oxo-5-(2,6-dichlorobenzoyl-oxy)pentanoic acid t-butyl
ester (110; 160 mg, 0.36 mmol, WO 93/16710) instead of
606a to give 612 (56%) as a white solid: ¹H NMR

5 (CDCl₃) 7.85-7.10 (12H, m), 5.4-4.65 (4H, m), 4.6-4.15
(4H, m), 3.10-2.72 (5H, s & m).

Example 13

Compounds **619-635** were synthesized as described in Example 13 and Table 14.

Syntheses of 619-635.

Step A. Synthesis of 614. TentaGel S@ NH2 resin (0.16 mmol/g, 10.0 g) was placed in a sintered glass funnel and washed with dimethylformamide (3 X 50 mL), 5 10% (v/v) diisopropylethylamine (DIEA) in dimethylformamide (2 \times 50 mL) and finally with dimethylformamide (4 X 50 mL). Sufficient dimethylformamide was added to the resin to obtain a slurry followed by 400 (1.42 g, 2.4 mmol, prepared from 10 (3S) 3-(fluorenylmethyloxycarbonyl)-4-oxobutryic acid t-butyl ester according to A.M. Murphy et. al. J. Am. Chem. Soc., 114, 3156-3157 (1992)), 1hydroxybenzotriazole hydrate (HOBT H2O; 0.367 g, 2.4 mmol), O-benzotriazole-N,N,N,N'-tetramethyluronium 15 hexafluorophosphate (HBTU; 0.91 g, 2.4 mmol), and DIEA (0.55 mL, 3.2 mmol). The reaction mixture was agitated overnight at room temperature using a wrist arm shaker. The resin was isolated on a sintered glass funnel by suction filtration and washed with dimethylformamide (3 20 X 50 mL). Unreacted amine groups were then capped by reacting the resin with 20% (v/v) acetic anhydride/dimethylformamide (2 \times 25 mL) directly in the funnel (10 min/wash). The resin was washed with dimethylformamide (3 \times 50 mL) and dichloromethane (3 \times 25 50 mL) prior to drying overnight in vacuo to yield 614

Step B. Synthesis of 616. Resin 614 (3.0 g, 0.16 mmol/g, 0.48 mmol) was swelled in a sintered glass funnel by washing with dimethylformamide (3 X 15 mL).

The Fmoc protecting group was then cleaved with 25% (v/v) piperidine/dimethylformamide (15 mL) for 10 min

(11.0 g, quantitative yield).

- 504 -

(intermittent stirring) and then for 20 min with fresh
piperidine reagent (15 ml). The resin was then washed
with dimethylformamide (3 X 15 ml), followed by Nmethypyrrolidone (2 X 15 mL). After transferring the
5 resin to a 100 mL flask, N-methypyrrolidone was added
to obtain a slurry followed by 603u (0.736 g, 0.72
mmol), HOBT H2O (0.112 g, 0.73 mmol), HBTU (0.27 g,
0.73 mmol) and DIEA (0.26 mL, 1.5 mmol). The reaction
mixture was agitated overnight at room temperature
10 using a wrist arm shaker. The resin work-up and
capping with 20% (v/v) acetic anhydride in
dimethylformamide were performed as described for 614
to yield 616 (3.13 g, quantitative yield).

- Step C. Synthesis of 617. This compound was prepared from resin 616 (0.24 g, 0.038 mmol) using an Advanced ChemTech 396 Multiple Peptide synthesizer. The automated cycles consisted of a resin wash with dimethylformamide (3 X 1 mL), deprotection with 25% (v/v) piperidine in dimethylformamide (1 mL) for 3 min followed by fresh reagent (1 mL) for 10 min to yield resin 617. The resin was washed with dimethylformamide (3 X 1 mL) and N-methypyrrolidone (3 X 1 mL).
- Step D. Method 1. (624). Resin 617 was acylated with a solution of 0.4M thiophene-3-carboxylic acid and 0.4M HOBT in N-methypyrrolidone (1 mL), a solution of 0.4M HBTU in N-methylpyrrolidone (0.5 mL) and a solution of 1.6M DIEA in N-methypyrrolidone (0.35 mL) and the reaction was shaken for 2 hr at room temperature. The acylation step was repeated.

 30 Finally, the resin was washed with dimethylformamide (3 X 1 mL), dichloromethane (3 X 1 mL) and dried in vacuo.

- 505 -

The aldehyde was cleaved from the resin and globally deprotected by treatment with 95% TFA/ 5% H2O (v/v, 1.5 mL) for 30 min at room temperature. After washing the resin with cleavage reagent (1 mL), the combined filtrates were added to cold 1:1 ether:pentane (12 mL) and the resulting precipitate was isolated by centrifugation and decantation. The resulting pellet was dissolved in 10% acetonitrile/90% H2O/0.1% TFA (15 mL) and lyophilized to obtain crude 624 as a white powder. The compound was purified by semi-prep RP-HPLC with a Rainin Microsorb C18 column (5 u, 21.4 x 250 mm) eluting with a linear acetonitrile gradient (5% - 45%) containing 0.1% TFA (v/v) over 45 min at 12 mL/min. Fractions containing the desired product were pooled and lyophilized to provide 624 (10.0 mg, 54%).

Step D. Method 1A. Synthesis of 627. Following a similar procedure as method 1, resin 617 was acylated with 4-(1-fluorenylmethoxycarbonylamino)benzoic acid and repeated. The Fmoc group was removed as described in Step C and the free amine was acetylated with 20% (v/v) acetic anhydride in dimethylformamide (1 mL) and 1.6M DIEA in N-methylpyrrolidone (0.35 mL) for 2 hr at room temperature. The acetylation step was repeated. Cleavage of the aldehyde from the resin gave 627 (4.2 mg, 20%).

Step D. Method 2. Synthesis of 632. Following a similar procedure as method 1, resin 617 was acylated with 0.5M cinnamoyl chloride in N-methypyrrolidone (1 mL) and 1.6M DIEA in N-methypyrrolidone (0.35 mL) for 2 br at room temperature. The acylation step was

- 506 -

repeated. Cleavage of the aldehyde from the resingave 632 (11.1 mg, 58%).

Step D. Method 3. Synthesis of 629. Following a similar procedure as method 1, resin 617 was reacted with 1.0M benzenesulfonyl chloride in dichloromethane (0.5 mL) and 1M pyridine in dichloromethane (0.60 mL) for 4 hr at room temperature. The reaction was repeated. Cleavage of the aldehyde from the resin 629 (4.7 mg, 24%).

10 Analytical HPLC methods:

(1) Waters DeltaPak C18, 300A (5u, 3.9 X 150 mm). Linear acetonitrile gradient (5% - 45%) containing 0.1% TFA (v/v) over 14 min at 1 mL/min.

Syn. Method		-1	1	11.57 (1) (M+Na) + 2 98% 553 2			
MS	(M+H) + W	532	532	(M+Na) + 553			
HPLC RT	min	11.71 (1)	10.44 (1)	11.57 (1)			
×		531.53	531.53	530.54			
Ж		C27H25N5O7	C27H25N5O7	C28H26N4O7			
Structure		H I O ZI O ZI O ZI O Z	HO NH ON NH	HO NH O N			
Cmpd.		619	620	621			

Table 1

Cmpd.	Structure	MF	MΜ	HPLC RT	MS	Syn.
				וודווו	(M+H) +	мегрод
622	HO HOH	C28H26N4O8	546.54	10.19 (1) (M+Na) + 98% 569	(M+Na) + 569	1
623	HO NH O HO O	C39H32N4O10	716.71	15.8 (1) 09%	(M-) 716	
624	S H O H OH	C22H22N4O7S	486.51	8.39 (1) 988	487	

Cmpd.	Structure	Σ	MM	HPLC RT min	MS (M+H) +	Syn. Method
625	H ₃ C ₄ S _N C _{H₃} C _H	C23H25N5O7S	515.55	7.60 (1)	516	1
626	HOHO NI OHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOH	C25H26N4O8	510.51	7.58 (1)	511	1
627	HC O H O H O H O H O H O H O H O H O H O	C2 6H27N5O8	537.53	7.96 (1)	538	۸1

				TA 710H	υ _N	4.0
Cmpd.	Structure	MF	MM	min	+ (H+M)	Syn. Method
628		C25H24N409	524.49	9.50 (1)	525	1
629	H ₃ C-{ O N O O O O O O O O O O O O O O O O O O	C23H24N408S	516.53	9.85 (1)	517	m
630	H3C ON	C25H26N4O7	494.51	9.25 (1)	495	7
631	HGC OOH NOON H H	C24H26N4O8S	530.56	10.19 (1)	531	m

Cmpd.	Structure	MF	MM	HPLC RT	MS	Syn.
	C			min	+ (H+W)	Method
632	BI OH VI OH OH VI OH OH VI OH OH VI OH VI OH VI OH VI OH OH VI OH VI OH VI OH OH OH OH OH OH OH OH OH OH OH OH OH	C26H26N4O7	506.52	10.99 (1)	507	2
633	H H O N H O	C25H26N408	510.51	11.48 (1)	511	2
634	H ₃ C O O O O O O O O O O O O O O O O O O O	C22H26N4O9	490.47	6.87 (1)	491	2
635	H C C C C C C C C C C C C C C C C C C C	C25H24N4O8	508.49	10.03 (1)	509	1
						_

PCT/US96/20843 WO 97/22619

- 512 -

Example 14

Compounds 1605a-j, 1605m, 1605n, 1605p, 1605t, and 1605v were synthesized as described below.

(3s) N-(2-0xo-3-tert-butoxycarbonylamino-2,3,4,5-5 tetrahydro-1H-pyrido [3,4-b][1,4-diazepine (1600).

(2S) 2-tert-Butoxycarbonylamino-3-(3-Step A. nitropyridin-2-ylamino) propionic acid was prepared by a similar method as (2S) 2-tert-butoxycarbonylamino-3-(2-nitrophenyl-amino)propionic acid in Step A of 10 the synthesis of 600a/103, except that 3-chloro-3nitro pyridine was used instead of 2-

fluoronitrobenzene, to give 4.05~g~(64%) of a yellow solid.

Step B. (2S) 2-tert-Butoxycarbonylamino-3-(3-aminopyridin-2-ylamino)propionic acid was prepared by a similar method to (2S) 2-tert-Butoxycarbonylamino-3-(2-aminophenylamino)-propionic acid in Step B of the synthesis of 600a/103 to give 3.68 g (quant.) as a dark solid.

Step C. (2S) 2-tert-Butoxycarbonylamino-3-(3aminopyridin-2-ylamino)propionic acid methyl ester. A solution of (2S) 2-tert-Butoxycarbonylamino-3-(3aminopyridin-2-ylamino)-propionic acid (360 mg, 1.21 mmol) and MeOH (59 mg, 1.82 mmol) in anhydrous CH₂Cl₂ (20 ml) was treated with 4-dimethylaminopyridine

15 (DMAP, 163 mg, 1.33 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (280 mg, 1.45 mmol). The reaction was stirred for 18 h, diluted with EtOAc (150ml), washed with water (2x), sat. aq. NaHCO3, and sat. aq. NaCl,

dried over Na_2SO_4 and concentrated in vacuo. Chromatography (flash, SiO_2 , 0 to 5% MeOH/CH₂Cl₂) gave 250 mg (67%) of the title compound as a light tan solid.

Step D. (3S) N-(2-Oxo-3-tert-butoxycarbonylamino-2,3,4,5-tetrahydro-1H- pyrido[3,4-b][1,4-diazepine (1600). A solution of (2S) 2-tertbutoxycarbonylamino-3-(3-aminopyridin-2-ylamino)prop ionic acid methyl ester (70 mg, 0.225 mol) and 25. sodium methoxide/MeOH (130 µl, 0.56 mmol) in

30 anhydrous MeOH (4 ml) was heated at 60°C for 16 h.

- 514 -

The reaction was concentrated *in vacuo*, the residue dissolved in 2 ml of $\rm H_2O$ and extracted with EtOAc (3x). The combined extracts were dried over $\rm Na_2SO_4$ and concentrated *in vacuo*. Chromatography (flash, $\rm SiO_2$, 0 to 3% MeOH/CH₂Cl₂) gave 7.5 mg (3%) of 1600 as a light tan solid: $^1{\rm H}$ NMR (CD₃OD) δ 7.96-7.92 (1H, d), 7.75-7.65 (1H, br. s), 7.14-7.08 (1H, d), 6.73-6.65 (1H, m), 5.83-5.75 (1H, br. s), 5.4-5.25 (1H, br. s), 4.6-4.5 (1H, m), 3.95-3.84 (1H, m), 3.55-10 3.48 (1H, m), 1.4 (9H, s)

Step E. 1601 is prepared from 1600 following the
method in Step D for the preparation 600a/103.

Synthesis of 1603. 1603 is prepared from 1601 following the methods for the synthesis of 603 from 15 600.

Synthesis of 1605. 1605 is prepared from 1603 by methods described for the synthesis of 605 from 603.

Table 15

	1605	R ₃	R ₄
5	а	PhCH ₂ CH ₂ CO	PhCO
	ь	PhCH ₂ CO	PhCO
	С	PhCO	PhCO
	d	сн ₃ со	PhCO
	e	СН ₃ ОСН ₂ СО	PhCO
10	f	(CH ₃) ₂ CHCH ₂ CO	PhCO
	g	CH3COCH2CO	PhCO
	h	СН3ОСОСО	PhCO
	i	CH3COCO	PhCO
	j	CH ₃ OCO	PhCO
15	m	СН ₃ SO ₃	PhCO
	ח	СH ₃ CO	Naphthyl-2-CO
į	р	PhCH ₂ NHCO	PhCO

- 516 -

t	3-CH ₃ PhCH ₂ CO	PhCO
v	PhCH ₂ CH ₂ CO	PhCH ₂

Example 15

Compounds 1610-1621 are prepared from 1600

5 by methods similar to the methods used to prepare compounds 619-635 from 600a/103 and 600b.

1610-1621

WO 97/22619 P

0 N

1609

wherein for compounds 1610-1621,

a
$$R_3 = CH_3C(O) -$$

b $R_3 = CH_3OCH_2C(O) -$:

Example 16

Compounds comprising scaffolds (ell), (y1), (y2), (z), and (el2) may be synthesized as described below.

5 Synthesis of Scaffold R_1 , wherein R_1 is (e11) and wherein Y_2 is =0.

Synthesis of Scaffold $\mathbf{R}_1,$ wherein \mathbf{R}_1 is (y1) and wherein \mathbf{Y}_2 is =0.

$$\frac{X}{X = CI \text{ or } 1\text{-imidazole}}$$

Synthesis of Scaffold ${\rm R}_1\,,$ wherein ${\rm R}_1$ is (y2) and wherein ${\rm Y}_2$ is ${\rm H}_2$ and ${\rm X}_7$ is O.

271

Synthesis of Scaffold ${\rm R}_1\,,$ wherein ${\rm R}_1$ is (y2) and wherein ${\rm Y}_2$ is =0 and ${\rm X}_7$ is NH.

Synthesis of Scaffold ${\rm R}_1\,,$ wherein ${\rm R}_1$ is (y2) and wherein ${\rm Y}_2$ is ${\rm H}_2$ and ${\rm X}_7$ is NH.

Synthesis of Scaffold $\mathbf{R}_1,$ wherein \mathbf{R}_1 is (z) and wherein \mathbf{Y}_2 is O.

X = NHCbz $X = OCH_2Ph$

Synthesis of Scaffold \mathbf{R}_1 , wherein \mathbf{R}_1 is (e12) and wherein \mathbf{Y}_2 is =0.

277

- 526 -

Example 17

The preparation of compounds 2001, 2002, 2100a-e, and 2201 is described below.

(15,95) 9-Benzoylformylamino-6,10-dioxo-

5 1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a]-[1,2]
 diazepine-1-carboxylic acid (2000). To a solution of
 t-butyl 9-amino-6,10-dioxo-1,2,3,4,7,8,9,10 octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1 carboxylate (GB 2,128,984; 340 mg, 1.15 mmol) in
10 CH₂Cl₂ was added benzoylformic acid (260 mg, 1.7
 mmol), HOBT (230 mg, 1.7 mmol) and EDC (340 mg, 1.7
 mmol). The resulting mixture was stirred at ambient
 temperature for 16 hours, poured into 1N HCl and
 extracted with CH₂Cl₂. The organic extracts were

further washed with saturated NaHCO $_3$, dried over MgSO $_4$ and concentrated to afford **1999** as a pale yellow solid. The solid was dissolved in CH $_2$ Cl $_2$ (25 ml) and TFA (25 ml) and stirred overnight and concentrated in vacuo to give 560 mg of **2000** as an oil.

[1S,9S(2RS,3S)] 9-Benzoylformylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2(R,S)-benzyloxy-5oxotetrahydrofuran-3-yl)-6H-pyridazino[1,2-a][1,2]-10 diazepine-1-carboxamide (2001), was synthesized from 2000 by methods similar to compound 213e to afford 410 mg (63%) of **2001** as a white solid: 1 H NMR (CDCl₃; mixture of diastereomers) δ 8.25 (1H, d), 8.23 (1H, d), 7.78 (1H, dd), 7.65 (1H, bm), 7.50 (2H, 15 m), 7.40-7.25 (4H, m), 6.55 (1H, d), 5.57 (1H, d), 5.10 (1H, t), 5.05-4.95 (2H, m), 4.90, (1H, d), 4.80 (1H, d), 4.72 (1H, bm), 4.65 (1H, m), 4.55 (1H, m), 4.45 (1H, t), 3.25 (1H, m), 3.15 (1H, m), 3.00 (2H, bm), 2,90 (1H, dd), 2.70 (1H, m), 2.47 (1H, dd), 2.45 (1H, m), 2.35 (1H, m), 2.00-1.75 (4H, m), 1.60 (1H, 20 bm).

[3S(1S,9S)] 3-(9-Benzoylformylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]-diazepine-1-carboxamido)-4-oxobutanoic acid (2002).

- 25 Compound 2001 (58.6 mg, 0.10 mmol) was treated with 15 ml of TFA/MeCN/water (1:2:3) and stirred at room temperature for 6.5 h. The reaction was extracted with ether. The aqueous layer was concentrated with azeotropic removal of the water using MeCN. The product was suspended in CH₂Cl₂, concentrated in
- product was suspended in CH_2Cl_2 , concentrated in vacuo and precipitated with ether to give 46.8 mg

- 528 -

(99%) of 2002 as a white solid: 1 H NMR (CD₃OD) δ 9.05 (0.25H, d), 8.15 (1H, d), 7.68 (1H, t), 7.64 (0.25H, d), 7.55 (3H, t), 7.35 (0.5H, m), 5.22 (1H, t), 4.90 (1H, m), 4.58 (1H, dd), 4.50 (1H, m), 4.28 5 (1H, bm), 3.45 (1H, m), 3.10 (1H, bt), 2.68 (1H, ddd), 2.60-2.45 (2H, m), 2.30 (1H, dd), 2.15-2.05 (2H, m), 1.90 (2H, bm), 1.68 (1H, bm).

[15,95(2R5,35)] 9-Benzoylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-isopropoxy-5-oxo-10 tetrahydro-furan-3-yl)-6H-pyridazino-[1,2-a][1,2]diazepine-1-carboxamide (2100a). A solution of 214e (101 mg, 0.23 mmol) in isopropanol (10 ml) was stirred at room temperature with a catalytic amount of p-toluenesulfonic acid (10 mg). 15 After 75 minutes, the reaction mixture was poured into saturated NaHCO3 and extracted with CH2Cl2 The combined extracts were dried over $\mathrm{Na}_2\mathrm{SO}_4$ and

concentrated. Flash chromatography (SiO₂, CH₂Cl₂ to EtOAc) afforded 56 mg (51%) of **2100a** as a white solid: 1 H NMR (CDCl₃; mixture of diastereomers) δ 7.9-7.8 (2H,m), 7.6-7.5 (1H, m), 7.5-7.4 (2H, m), 7.1 (0.5H, d), 6.9 (0.5H, d), 6.4 (0.5H,d), 5.6 (0.5H, d), 5.3 (0,5H, s), 5.2-5.1 (1H, m), 4.95 (0.5H, m), 4.75-4.5 (1.5H, m), 4.35 (0.5H, t), 4.1 (0.5H, m), 3.98 (0.5H, m), 3.3-2.75 (4H, m), 2.5-2.4 (2H,m), 2.25 (1H, m), 2.1-1.9 (3H,m) 1.75-1.55 (2H,m).

- [3S(1S,9S)] 3-(9-Benzoylformylamino-6,10-dioxo1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4,4-diethoxy-butyric acid,
 ethyl ester (2100b). A solution of 214e (16 mg,
 0.036 mmol) in ethanol (2 ml) was stirred at room
- 15 temperature with a catalytic amount of ptoluenesulfonic acid (2 mg). After 5 days, the
 reaction mixture was poured into saturated NaHCO $_3$ and
 extracted with CH $_2$ Cl $_2$. The combined extracts were
 dried over Na $_2$ SO $_4$ and concentrated. Flash
- 20 chromatography (SiO₂, CH₂Cl₂:EtOAc 95:5 v/v) afforded 16 mg (81%) of **2100b** as a white solid: 1 H NMR (CDCl₃) d 7.85-7.74 (2H,m), 7.55-7.38 (3H,m), 7.04-6.95 (1H,d), 6.61-6.48 (1H,d), 5.15-5.08 (1H,m), 4.63-4.53 (1H,m), 4.52-4.45 (1H,m), 4.42-4.35 (1H,m),
- 25 4.15-4.05 (2H,m), 3.74-3.60 (2H,m), 3.57-3.42 (2H,m), 3.39-3.28 (1H,m), 3.03-2.93 (1H,m), 2.92-2.82 (1H,m), 2.65-2.52 (2H,m), 2.42-2.25 (1H,m), 2.20-1.88 (4H,m), 1.76-1.50 (2H,m), 1.35-1.10 (9H,m).

[3S(1S,9S)] 3-(9-Benzoylformylamino-6,10-dioxo-30 1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4,4-dimethoxy-butyric acid

- 530 -

methyl ester (2100c). A solution of 214e (165 mg, 0.37 mmol) in methanol (5 ml) was stirred at room temperature with a catalytic amount of ptoluenesulfonic acid (17.5 mg). After 4 days, the 5 reaction mixture was diluted with EtOAc and washed with 10% NaHCO3 (3x) and brine. The combined extracts were dried over Na2SO4 and concentrated. Flash chromatography (SiO₂, EtOAc) afforded 127 mg (68%) of 2100c as a white solid: 1 H NMR (CDCl₃) δ 10 7.82 (2H, d), 7.55-7.50 (1H, m), 7.47-7.43 (2H, m), 7.02 (1H, d), 6.53 (1H, d), 5.20-5.10 (1H, m), 4.56-4.50 (1H, m), 4.45-4.50 (1H each, two m), 3.69 (3H, s), 3.41 (3H, s), 3.43 (3H, s), 3.35-3.25 (1H, m), 3.06-2.98 (1H, m), 2.94-2.83 (1H, m), 2.65-2.53 (2H, 15 m), 2.35-2.32 (1H, m), 2.15-2.07 (1H, m), 2.00-1.89(3H, m), 1.75-1.56 (2H, m).

[3S(1S,9S)] 3-(9-Benzoylformylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]-diazepine-1-carboxamido)-4,4-diisopropoxy-butyric

20 acid, isopropyl ester (2100d). A solution of 214e (53 mg, 0.12 mmol) in isopropanol (5 ml) was stirred at 50 °C with a catalytic amount of p-toluenesulfonic acid (5 mg). After 3 days the reaction mixture was poured into saturated NaHCO₃ and extracted with

25 CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and concentrated. Flash chromatography (SiO₂, CH₂Cl₂:EtOAc (4:1 to 1:1 v/v)) afforded 49 mg (68%) of 2100d as a white solid: ¹H NMR (CDCl₃) & 7.85 (2H, d), 7.50-7.43 (1H, m), 7.41-7.35 (2H, m), 7.02

30 (1H, d), 6.47 (1H, d), 5.13-5.07 (1H, m) 5.00-4.9 (1H, m), 4.61-4.55 (2H, m), 4.37-4.30(1H, m), 3.80-

3.70 (1H, m), 3.90-3.80 (1H, m), 3.42-3.35 (1H, m),

3.03-2.93 (1H, m), 2.91-2.81 (1H, m), 2.62-2.50 (2H, m), 2.38-2.33 (1H, m), 2.12-2.06 (1H, m), 1.97-1.81 (3H, m), 1.70-1.60 (2H, m), 1.28-1.05 (18H, m).

2100e

[1S, 9S(2RS, 3S)] 9-Benzoylamino-6,10-dioxo-

- 5 1,2,3,4,7,8,9,10-octahydro-N-(2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-6H-pyridazino[1,2-a][1,2]-diazepine-1-carboxamide (2100e), was synthesized from 302 via methods used to synthesize 304a to afford 2100e, except ethanol and triethylorthoformate were
- used instead of methanol and trimethylorthoformate. Chromatography (SiO₂, 5% ethanol/CH₂Cl₂) afforded 92 mg (68%) of a white solid: 1 H NMR (CDCl₃; mixture of diastereomers) δ 7.90-7.80 (2H, m), 7.60-7.50 (1H, m), 7.50-7.40 (2H, m), 7.30 (0.5H, d), 7.00 (0.5H,
- 15 d), 6.50 (0.5H, d), 5.50 (0.5H, d), 5.20-5.10 (1.5H, m), 4.95 (0.5H, m), 4.75-4.65 (0.5H, m), 4.65-4.50 (1H, m), 4.38 (0.05H, t), 4.00-3.90 (0.5H, m), 3.85-3.75 (0.5H, m), 3.75-3.65 (0.5H, m), 3.65-3.55 (0.5H,
- m), 3.30-2.70 (4H, m), 2.50-2.35 (2H, m), 2.30 (1H,
- 20 d), 2.15-1.90 (3H, m), 1.80-1.60 (2H, m), 1.25-1.20 (3H, two t)

(3s)-3-[(3s)-2-oxo-3-(1-naphthoyl)amino-5-methoxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (2201) was synthesized from 600b by the methods used to synthesize 605b to afford 2201: ¹H NMR (CDCl₃) δ 8.30-8.22 (1H,m), 8.05-7.98 (1H, d), 7.96-7.83 (1H,m), 7.77-7.68 (1H,m), 7.67-7.40 (7H,m), 5.12-5.02 (1H,m), 4.98-4.41 (5H,m), 4.38-4.24 (1H,m), 4.07-4.00 (1H,d), 3.92-3.80 (2H,m), 3.32 (3H,s), 2.75-2.60

- 533 -

Example 18

We obtained the following data for selected compounds of this invention using the methods described herein (Table 16, see Example 7; Tables 17 and 18, see 5 Examples 1-4). The structures and preparations of compounds of this invention are described in Examples 28-31.

Table 16 Comparison of Prodrugs for Efficacy in LPS Challenged Mice: Inhibition of IL-1 β Production.

10 The percent inhibition of IL-1 β production after treatment with a compound of the invention is shown as a function of time after LPS challenge ("-" indicates that no value was obtained at that relative time).

		Ti	ime of	Compound .	Admini	stration
15	<u>(relative</u>	to time o	of LPS	challenge	, PO,	50 mg/kg)
	Compound	-2h	-1h	0h	+1h	
	213f	(-4)	•	8	-	
	213h	9	-	53	_	
	213i	(-11)	_	62	-	
20	213k	0		68	-	i
	2131	(-18)	-	80	_	
	213m	26	-	42	→	
	2130	4	_	8	_	:
	213p	21		29		
25	213q	17		91	-	:
	213r	59		37	-	
	213x	0		78	-	
	213y	29		50	-	
į	214e	39	-	70	75	 ,
		43	44	48	11	
ļ					47	
30	214k	12	-	31	_	
1	2141	0	-	54	-	- '
' -	214m	0		17		
:	214w	11	~	91	_	
-	2641	0		23		
35	404	-	-	-	56	
		55		6		_

- 534 -

Compound	-2h	-1h	0h	+1h
412	0 11	-	0 3 <i>7</i>	-
418				64
410	25	-	52	64 ~
434	-	-	-	80
	0		63	
450	0	-	35	-
452	-	-	-	70
	28		89	
456	- 41	_	- 69	56 -
470	0		36	
471	0		34	
475	0		15	
481	27		0	
486	19		<u></u>	
487	17		20	····
528	25		67	
550f	0		50	
550h	55		73	
550i	(-10)	-	23	_
550k	36		34	
5501	9		38	-
550m	45	-	52	-
550n	19	-	65	-
550o	19		64	
550p	30		60	-
655	0	_	68	_
656	31	-	16	-
662	41	-	75	-
668	-	-	-	53
695a	49	-	78	-
1015	15	-	28	
2001	64	62	58	55
2001a	10		16	
2002	5	_	87	-
2100h	34		3.2	
2100i	19	-	74	
2100j	4.8	41	0	33
2100k	30	50_	32	72
21001	52		28	
2100m	40		42	
2100n	21	9	64	73
21000	31	44	68	64

Table 17 Data for selected compounds of this invention obtained using the methods described in Examples 1-4.

	Compound	UV- Visible Ki (nM)	Cell PBMC avg. IC50 (nM)	prima	Mouse,	Clearance Rat, i.v. ml/min/kg
	213f		 	3000	,, , , , , , , , , , , , , , , , ,	:
5	213g			2200		
	213h			1500		
	213i			1100		
	213j					
	213k			2000		
10	2131			2000		
	213m			2500	i	
	2130		5000	3300	i	
	213p			<300		
	213q			<300		
15	213r			<300		
	213v	0.5	1,100	1100	41	23
	213x		4500	2500		
	213y			930	:	
	214j	4.2	2500	6000		
20	214k	0.2	500	580		22
	2141	6	1900	1100		12
	214m	1.5	530	2200		33.4
	214w	0.6	620	370		15
	246b	30000	>30000		87	
25	2641			3000		
	265a	2600	25000			
	265c	1100	4500			32
	265d	500	1500			35
	265f	1200				24
30	280b		13000			
	280c	· · · · · · · · · · · · · · · · · · ·	10000	:		86
	280d		25000			
	283b		1750			41
	283c	:	4000			50

Compound		Cell PBMC avg. IC50 (nM)	human blood	Clearance Mouse, i.v. ml/min/kg	Clearance Rat, i.v. ml/min/kg
283d		>8000	10000		
308c	3000				
308d	3000				
500	25	1800	1800		
501	2.5	1800	1600		
505c		1500			1
505d		>20000			
505f		550			
510a	65	200		267	
510d	2300	>20000		į	
511c	730	>20000	· · · · · · · · · · · · · · · · · · ·	78	40
528			2200		
550f			1100		
550h			1800		
550i			1400		
550k			3000		:
5501			750	1	
550m			2000		
550n			<300	:	
550o		450	3000	!	
550p			2900		
550q			700		
640	155	2250	3900	i	
642	35	8000	2900		
645	150				
650	550	4000		- ,	
653	30	2300	6000		
655	i				
656	0.6	2100	1600		2.9
662	0.5	1800	800		2.75
668	9	5200	3700		29
669	14		10000		
670			4500		
671	5	2000	2500		33.2
677	1		610 ;		
678	5	2700	2200		
680					

	Compound	UV- Visible Ki (nM)	Cell PBMC avg. IC50 (nM)	Whole human blood IC50(nM)	Clearance Mouse, i.v. ml/min/kg	Clearance Rat, i.v. ml/min/kg
	681	9	3000	5000		
	682			1300	:	
	683	400	>20000	>20000		
	684	15	5000	2800		
5	686	4	4000	9000		ı
	688a			3000		
	688b			1300		
	689a	0.8	910	2500		
	689b	2.2	600	2000		
10	690a			1600		
	690b					
	691a	2.1	2900	1200		9.9
	691b	11.5	1,900	1400		
	692a					!
15	692b			1800		
	693					<u> </u>
	694	3	2600	2100		
	695a					
	695b					
20	695c			2500		
	696	4.5	2000	2900		13
	700	275				
	701	90				,
	702	45	>5000	20000		
25	703	5	1400	20000	<u> </u>	
	704	30	2600	9800		
	705	5	2300	3200		
	706	5	2400	5800		
	707	180				
30	708	140		· · · · · · · · · · · · · · · · · · ·		
	709	10	2100	14000		
	710	110				
	711	175	. !			
	910	10	3400	3800		
35	911	9 ;	3500	1900	·	
	912	10	4200	3800		
	913	4.5	2400	7000		

	Compound	UV- Visible Ki (nM)	Cell PBMC avg. IC50 (nM)	חברשוות	Clearance Mouse, i.v. ml/min/kg	Clearance Rat, i.v. ml/min/kg
	914	5.2	2600	2800		
	915	11.5	>8000	1900		
	918	7		1150		
	919	4	2000	4300		
5	920	16	2100	3000		
	921	8.5	1800	3000		
	1018	170	4000	5500		9.1
	1052	100	2500			16
	1053	27	2000	>20000		34
10	1056	170				17
	1075	120	5000	5500		14.5
	1095	360	6000			2.8
	1105	250	3500	3000		
	1106	75	4000	1700		
15	1107	65				
	1108	22	1400	2600		
	1109	80	<u> </u>			
	1110	45				
	1111	18	6050	4400		
20	1112	3.5	1800	2300		
	1113	290				
	1114	125				
	1115	250				
	1116	215				
25	1117	35	1700	1300		
	1118	380				
	1119	515				
	1120	95				
	1121	170			:	
30	1122	400	: 		1	
	1123	30	2,400	4500		
	1124	270			i	
	1125	55	2300	9000	i	
	2001a		:	3000	<u> </u>	
35	2100f					
	2100g					
	2100h			2000	<u> </u>	

5

Compound	UV- Visible Ki (nM)	Cell PBMC avg. IC50 (nM)	human blood	Clearance Mouse, i.v. ml/min/kg	Clearance Rat, i.v. ml/min/kg
2100i					
2100j	30000		12000		
2100k	520	4000	600		
21001		750	2200		
2100m					
2100n	670	770	4000		
2100o	670	1150	1500		

We obtained the following data for selected compounds of this invention (Table 18) using the 10 methods described herein (see Examples 1-4). The structures and preparations of compounds of this invention are described in Examples 28-31.

Table 18

Cmpd.	Fluorescent Assay k _{inact}	Cell PBMC avg. IC50 (nM)	Whole human blood IC50 (nM)	Clearance Mouse, i.v. ml/min/kg	Rat, i.v.
286	370000	300	1600		119
505 b	190000	1500	2100	161	196
505 e	420000	9000	1000		

Example 19
In vivo acute assay for efficacy as
anti-inflammatory agent

Results in the Table 19 show that 412f, 412d and 696a inhibit IL-1 β production in LPS-challenged mice after oral adminstration using ethanol/PEG/water,

15

20

- 540 -

 β -cyclodextrin, labrosol/water or cremophor/water as vehicles. The compound was dosed at time of LPS challenge. The protocol is described in Example 7.

Table 19 Inhibition (%) of IL-1 β production in LPS- challenged mice.

Compound	10 mg/kg	25 mg/kg	50 mg/kg
	dose	dose	dose
412f	178	25%	32%
412e	5%	178	61%
696a	0	45%	52%

10

Example 20
Mouse Carrageenan Peritoneal Inflammation

Inflammation was induced in mice with an intraperitoneal (IP) injection of 10 mg carrageenan in 0.5 ml of saline (Griswold et al., Inflammation, 13, pp. 727-739 (1989)). Drugs are administered by oral gavage in ethanol/PEG/water, β-cyclodextrin, labrosol/water or cremophor/water vehicle. The mice are sacrificed at 4 hours post carrageenan administration, then injected IP with 2 ml of saline containing 5U/ml heparin. After gentle massage of the peritoneum, a small incision is made, the contents collected and volume recorded. Samples are kept on ice until centrifuged (130 x g, 8 mins at 4 °C) to remove cellular material, and the resultant supernatant stored at -20 °C. IL-1β levels in the peritoneal fluid are determined by ELISA.

Results in the Table 20 show prodrug 412f inhibits IL-1 β production in carrageenan-challenged mice after oral adminstration of drug. Compound 214e

- 541 -

did not inhibit IL-1 β production when dosed orally at 50 mg/kg.

Table 20 Inhibition (%) of IL-1 β production by 412f and 412d in carrageenan-challenged mice.

5	Dose	Compound 412f	Compound 412d
	(mg/kg)		
	1	30%	0
	10	54%	32%
	25	49%	31%
10	50	73%	36%
	100	75%	53%

Example 21
Type II Collagen-induced Arthritis

15 Type II collagen-induced arthritis was established in male DBA/lJ mice at described Wooley and Geiger (Wooley, P.H., Methods in Enzymology, 162, pp. 361-373 (1988) and Geiger, T., Clinical and Experimental Rheumatology, 11, pp. 515-522 (1993)). 20 Chick sternum Type II collagen (4 mg/kg in 10 mM acetic acid) was emulsified with an equal volume of Freund's complete adjuvant (FCA) by repeated passages (400) between two 10 ml glass syringes with a gauge 16 double-hub needle. Mice were immunized by intradermal 25 injection (50 μ l; 100 μ l CII per mouse) of collagen emulsion 21 days later at the contra-lateral side of the tail base. Drugs were administered twice a day (10, 25 and 50 mg/kg) by oral gavage approximately 7 hapart. Vehicles used included ethanol/PEG/water, β -30 cyclodextrin, labrosol/water or cremophor/water. Drug treatments were initiated within 2 h of the CII booster

- 542 -

immunization. Inflammation was scored on a 1 to 4 scale of increasing severity on the two front paws and the scores are added to give the final score.

Results in the Figs. 12, 13 and 14 show prodrugs 412f, 412d and 696a inhibit inflammation in collagen-induced arthritits in mice after oral adminstration. Compound 214e did not inhibit inflammation when dosed (50 mg/kg) once a day by oral gavage.

10

Example 22

In vivo bioavailability determination

The drugs (10-100 mg/kg) were dosed orally to rats (10 mL/kg) in ethanol/PEG/water, β-cyclodextrin, labrosol/water or cremophor/water. Blood samples were drawn from the carotid artery at 0.25, 0.50, 1, 1.5, 2, 3, 4, 6, and 8 hours after dosing, centrifuged to plasma and stored at -70°C until analysis. Aldehyde concentrations were determined using an enzymatic assay. Pharmacokinetic analysis of data was performed by non-linear regression using RStrip (MicroMath Software, UT). Drug availability values were determined as follows: (AUC of drug after oral prodrug dosing/AUC of drug after i.v. dosing of drug)x(dose i.v./dose p.o.) x100%.

25 Results in Table 21 show that prodrugs 412f,
412d and 696a give significant blood levels of drug and
have good drug availability when dosed orally. Blood
levels of 214e were not detected when it was dosed
orally.

- 543 -

Table 21 Oral Bioavailability of 412f, 412d, 696a and 214e in Rat.

Compound	Dose	Cmax	Drug
	(mg/kg)	$(\mu g/ml)$	Availability (%)
412f	25	2.4	32
412d	25	2.6	35
696a	50	1.2	10
214e	45	0.2	0.9%

Example 23
ICE cleaves and activates pro-IGIF

10 ICE and ICE homolog expression plasmids

5

A 0.6 kb cDNA encoding full length murine pro-IGIF (H. Okamura et al., Nature, 378, p. 88 (1995) was ligated into the mammalian expression vector pCDLSRα (Y. Takebe et al., Mol. Cell Biol., 8, p. 466 (1988)).

Generally, plasmids (3 μg) encoding active ICE (above), or the three ICE-related enzymes TX, CPP32, and CMH-1 in the pCDLSRα expression vector (C. Faucheu et al., EMBQ, 14, p. 1914 (1995); Y. Gu et al., EMBQ, 14, p. 1923 (1995); J. A. Lippke et al., J. Biol. Chem., 271, p. 1825 (1996)), were transfected into subconfluent monolayers of Cos cells in 35-mm dishes using the DEAE-dextran method (Y. Gu et al., EMBO J., 14, p. 1923 (1995)). Twenty-four hours later, cells were lysed and the lysates subjected to SDS-PAGE and immunoblotting using an antiserum specific for IGIF (H. Okamura et al., Nature, 378, p. 88 (1995).

Polymerase chain reaction was used to introduce Nde I sites at the 5' and 3' ends of the 30 murine pro-IGIF cDNA using the following primers: GGAATTCCATATGGCTGCCATGTCAGAAGAC (forward) and GGTTAACCATATGCTAACTTTGATGTAAGTTAGTGAG (reverse). The

- 544 -

resulting NdeI fragment was ligated into E. coli expression vector pET-15B(Novagen) at the NdeI site to create a plasmid that directs the synthesis of a polypeptide of 213 amino acids consisting of a 21-5 residue peptide (MGSSHHHHHHHSSGLVPRGSHM, where LVPRGS represents a thrombin cleavage site) fused in-frame to the N-terminus of pro-IGIF at Ala2, as confirmed by DNA sequencing of the plasmid and by N-terminal sequencing of the expressed proteins. E. coli strain BL21(DE3) 10 carrying the plasmid was induced with 0.8 mM isopropyl-1-thio- β -D-galactopyranoside for 1.5 hours at 37°C, harvested, and lysed by microfluidization (Microfluidic, Watertown, MA) in Buffer A (20 mM sodium phosphate, pH 7.0, 300 mM NaCl, 2 mM dithiothreitol, 15 10% glycerol, 1 mM phenylmethylsulfonyl fluoride, and 2.5 µg/ml leupeptin). Lysates were cleared by centrifugation at 100,000 x g for 30 min. (His)6tagged pro-IGIF protein was then purified from the supernatant by Ni-NTA-agarose (Qiagen) chromatography 20 under conditions recommended by the manufacturer.

In Vitro pro-IGIF Cleavage Reactions

In vitro cleavage reactions (30 ul) contained 2 μg of purified pro-IGIF and various concentrations of the purified proteases in a buffer containing 20 mM

25 Hepes, pH 7.2, 0.1% Triton X-100, 2 mM DTT, 1 mM PMSF and 2.5 μg/ml leupeptin and were incubated for 1 hour at 37°C. Conditions for cleavage by granzyme B were as described previously (Y. Gu et al., J. Biol. Chem., 271, p. 10816 (1996)). Cleavage products were analyzed by SDS-PAGE on 16% gels and Coomassie Blue staining, and were subjected to N-terminal amino acid sequencing

using an ABI automated peptide sequencer under conditions recommended by the manufacturer.

Kinetic Parameters of IGIF Cleavage by ICE

The kinetic parameters (k_{cat}/K_M, K_M, and k_{cat})

for IGIF cleavage by ICE were determined as follows.

S-methionine-labeled pro-IGIF (3000 cpm, prepared by in vitro transcription and translation using, the TNT T7-coupled reticulocyte lysate system (Promega) and pro-IGIF cDNA in a pSP73 vector as template) were

incubated in reaction mixtures of 60 µl containing 0.1 to 1 nM recombinant ICE and 190 nM to 12 µM of unlabeled pro-IGIF for 8-10 min at 37°C. Cleavage product concentrations were determined by SDS-PAGE and PhosphoImager analyses. The kinetic parameters were

calculated by nonlinear regression fitting of the rate vs. concentration data to the Michaelis-Menten equation using the program Enzfitter (Biosoft).

IFN-y Induction Assays

A.E7 Th1 cells (H. Quill and R. H. Schwartz,

J. Immunol., 138, p. 3704 (1987)) (1.3 x 10⁵ cells in

0.15 ml Click's medium supplemented with 10% FBS, 50 µM

2-mercaptoethanol and 50 units/ml IL-2) in 96-well

plates were treated with IGIF for 18-20 hours and the

culture supernatant were assayed for IFN-y by ELISA

25 (Endogen, Cambridge, MA).

Example 24

Processing of pro-IGIF by ICE in Cos Celis

Cos cells were transfected with various expression plasmid combinations as described in Example 30 23. Transfected Cos cells (3.5 x 10⁵ cells in a 35-mm dish) were labeled for 7 hours with 1 ml of methionine-

free DMEM containing 2.5% normal DMEM, 1% dialyzed fetal bovine serum and 300 uCi/ml ³⁵S-methionine (³⁵S-Express Protein Labeling-Mix, New England Nuclear). Cell lysates (prepared in 20 mM Hepes, pH 7.2, 150 mM NaCl, 0.1% Triton X-100, 5 mM N-ethylmaleimide, 1 mM PMSF, 2.5 µg/ml leupeptine) or conditioned medium were immunoprecipitated with an antiIGIF antibody that recognizes both the precursor and the mature forms of IGIF (H. Okamura et al., Nature, 378, p. 88 (1995)).

10 Immunoprecipitated proteins were analyzed by SDS-PAGE (polyacrylamide gel electrophoresis) and fluorography

We also measured the presence of IFN-y inducing activity in the cell lysates and the conditioned media of transfected cells (Fig. 2B). Transfected Cos cells (3.5 x 10⁵ cells in a 35-mm dish) were grown in 1 ml medium for 18 hours. Media was harvested and used at 1:10 final dilution in the IFN-y induction assay (Example 23). Cos cell pellets from the same transfection were lysed in 100 µl of 20 mM Hepes, pH 7.0, by freeze-thawing 3 times. Lysates were cleared by centrifugation as described above and were used at a 1:10 dilution in the assay.

(Fig. 2A).

Example 25

25 IGIF is a physiological substrate of ICE

Wild type (ICE+/+) and ICE-/- mice were primed with heat-inactivated *P. acnes*, and Kupffer cells were isolated from these mice 7 days after priming and were then challenged with 1 µg/ml LPS for 3 hours. The amounts of IGIF in the conditioned media were measured by ELISA.

wild type or ICE-deficient mice were injected intraperitoneally with heat-killed <u>p. acnes</u> as described (H. Okamura et al., <u>Infection and Immunity</u>, 63, p. 3966 (1995)). Kupffer cells were prepared seven days later according to Tsutsui et al. (H. Tsutsui et al., <u>Hepato-Gastroenterol.</u>, 39, p. 553 (1992)) except a nycodenz gradient was used instead cf metrizamide. For each experiment, Kupffer cells from 2-3 animals were pooled and cultured in RPMI 1640 supplemented with 10% fetal calf serum and 1 µg/ml LPS. Cell lysates and conditioned medium were prepared 3 hours later.

Kupffer cells from wild type and ICE-/- mice were metabolically labeled with ³⁵S-methionine as for Cos cells (described above in Example 24) except that methionine-free RPMI 1640 was used in place of DMEM. IGIF immunoprecipitation experiments were performed on cell lysates and conditioned media and immunoprecipitates were analyzed by SDS-PAGE and fluorography as described in Example 23. See Fig. 3.

20 <u>Example 26</u>

- 548 -

Example 27

IGIF and IFN-y Inhibition Assays

Inhibition of IGIF processing by ICE inhibitors was measured in ICE inhibition assays as described herein (see Example 1 and Table 22).

Human PBMC Assays

Human buffy coat cells were obtained from blood donors and peripheral blood mononuclear cells (PBMC) were isolated by centrifugation in LeukoPrep tubes (Becton-Dickinson, Lincoln Park, NJ). PBMC were added (3 x 10⁶/well) to 24 well Corning tissue culture plates and after 1 hr incubation at 37°C, non-adherent cells were removed by gently washing. Adherent mononuclear cells were stimulated with LPS (1 µg/ml) with or without ICE inhibitor in 2 ml RPMI-1640-10% FBS. After 16-18 hr incubation at 37°C, IGIF and IFN-y were quantitated in culture supernatants by ELISA.

For example, we obtained the following data for compound 412 of this invention using the methods described herein. The structure of compound 412 is shown below.

Table 22

compound	UV-Visible	Cell PBMC
	K _i (nM)	avg. IC50 (nM)
412	1.3	580

- 549 -

Example 28

Compounds of this invention may be prepared via various methods. The following illustrates a preferred method:

To a solution of A (1.1 equivalent) in CH₂Cl₂ (or DMF, or CH₂Cl₂:DMF (1:1)) is added triphenylphosphine (0-0.5 equivalent), a nucleophilic scavenger (2-50 equivalents) and tetrakistriphenylphosphine palladium(0) (0.05-0.1 equivalent) at ambient temperature under inert atmosphere (nitrogen or argon). After 10 minutes, the above reaction mixture is optionally concentrated, then a solution of acid A-I or A-II in CH₂Cl₂ (or DMF, or CH₂Cl₂:DMF (1:1)) is added followed by addition of HOBT (1.1 equivalent) and EDC (1.1 equivalent). The resulting reaction mixture is allowed to stir at ambient temperature 1 hour-48 hours to provide coupled products C-I or C-II.

Various nucleophilic scavengers may be used in the above process. Margon's and Guiba margon's a

Various nucleophilic scavengers may be used in the above process. Merzouk and Guibe, <u>Tetrahedron</u>

20 <u>Letters</u>, 33, pp. 477-480 (1992); Guibe and Balavoine, <u>Journal of Organic Chemistry</u>, 52, pp. 4984-4993

- 550 **-**

(1987)). Preferred nucleophilic scavengers that may be
used include: dimedone, morpholine, trimethylsilyl
dimethylamine and dimethyl barbituric acid. More
preferred nuclophilic scavengers are trimethylsilyl
dimethylamine (2-5 equivalents) and dimethyl barbituric
(5-50 equivalents). When the nucleophilic scavenger is
trimethylsilyl dimethylamine, the above reaction
mixture must be concentrated prior to addition of A-I
or A-II.

Other compounds of this invention may be prepared by hydrolyzing compounds represented by C-I and C-II to compounds represented by H-I and H-II as described in the following scheme:

The hydrolysis may be carried out under various conditions, provided that the conditions include an acid and $\rm H_2O$. Acids that may be used include ptcluensulfonic, methanesulfonic acid, sulfuric, perchloric, trifluoroacetic, and hydrochloric. For example, trifluoroacetic acid (1-90% by weight) or

hydrochloric acid (0.1-30% by weight) in CH_3CN/H_2O (1-90% H_2O by weight) at between 0-50 °C may be used.

Example 29

Compounds 213f, 213g, 213h, 213i, 213j, 213k, 5 213l, 213m, 214f, 214g, 214h, 214i, 214j, 214k, 214l, 214m, 550f, 550g, 550h, 550i, 550j, 550k, 550l and 550m were prepared as follows.

$$R^{4}-N$$
 $R^{4}-N$
 R^{4

[1s,9s(2Rs,3s)]9-[(4-Dimethylaminobenzoyl)amino]-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-Benzyloxy-5-

10 oxotetrahydrofuran-3-y1)-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (213f),
was synthesized from 212f by the methods used to

prepare **213e** from **212e** to afford 504 mg of **213f** as a yellow solid, 1 H NMR (CD₃OD) δ 1.10(br. m, 0.25H), 1.30(br. m, 2H), 1.50(br. m, 1H), 1.65(br. m, 1.5H), 1.80(br. m, 0.25H), 1.90(br. m, 0.25H), 1.95(br. m, 0.5H), 2.05(br. m, 0.25H), 2.15(m, 1H), 2.3(m, 1H), 2.5(br. m, 1H), 2.6(dd, 1H), 2.8(m, 1H), 3.1(br. s, 3H), 3.15(br. m, 1H), 3.32(br. s, 3H), 3.5(m, 1H), 4.5(br. m, 1H), 4.62(d, 0.25H), 4.72(m, 3H), 4.95(m, 1H), 5.1(br. t, 0.25H), 5.15(br. t, 0.75H), 5.7(d, 1H), 6.75(d, 2H), 7.35(br. s, 5H), 7.75(d, 2H).

[1S,9S(2RS,3S)]9-[(3-Dimethylaminobenzoyl)amino]-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamide (213g),

- was synthesized from 212g by the methods used to prepare 213e from 212e to afford 400 mg of 213g, 1 H NMR (CD₃OD) δ 1.5(br. m, 1H), 1.65(br. m, 2H), 1.70(br. m, 0.25H), 1.90(br. m, 1H), 1.95(br. m, 1H), 2.05(br. m, 0.25H), 2.10(m, 1H), 2.3(m, 1H), 2.5(m, 2H), 2.59(d,
- 20 1H), 2.6(d, 1H), 2.78(d, 1H), 2.8(d, 1H), 2.93(br. s, 4H), 3.05(br. m, 1H), 3.15(br. m, 0.25H), 3.3(br. s, 3H), 3.5(m, 2H), 4.5(br. m, 2H), 4.65(d, 1H), 4.7(br. m, 2H), 4.95(br. m, 1H), 5.15(br. t, 0.25H), 5.2(br. t, 0.75H), 5.2(d, 1H), 6.95(d, 1H), 7.15(d, 1H), 7.25(br.
- 25 s, 1H), 7.3(br. t, 2H), 7.45(br. s, 6H).

[1S,9S(2RS,3S)]9-[(3-Chloro-4-aminobenzoyl)amino]-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamide (213h),

30 was synthesized from 212h by the methods used to

- 553 **-**

prepare 213e from 212e to afford 296 mg of 213h, 1 H NMR (CDCl₃) δ 1.55-1.68 (m, 1H), 1.7-2.05 (m, 3H), 2.3-2.5 (m, 2H), 2.65-2.8 (m, 1H), 2.85-2.93 (m, 1H), 2.95-3.25 (m, 3H), 4.44-4.65 (m, 2H), 4.68-4.82 (m, 1H), 4.9-4.95 (d, 1H), 5.05-5.18 (m, 2H), 5.28 (s, 0.5H), 5.55-5.58 (d, 0.5H), 6.52-6.58 (d, 0.5H), 6.7-6.76 (m, 2H), 6.82-6.85 (d, 0.5H), 7.3-7.4 (m, 5H), 7.52-7.58 (m, 1H), 7.75 (s, 0.5H), 7.8 (s, 0.5H).

[1s,9s(2Rs,3s)]9-[(4-Methoxybenzoyl)amino]-6,10-dioxo10 1,2,3,4,7,8,9,10-octahydro-N-(2-Benzyloxy-5oxotetrahydrofuran-3-yl)-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (213i),
was synthesized from 212i by the methods used to
prepare 213e from 212e to afford 1.1 g of 213i, ¹H NMR

15 (CDCl₃) δ 1.55-2.05(m, 6H), 2.26-2.5(m, 2H), 2.682.82(m, 1H), 2.85-2.92(m, 1H), 2.95-3.25(m, 2H),
3.82(s, 1.5H), 3.85(s, 1.5H), 4.4-4.65(m, 2H), 4.74.78(m, 1H), 4.88-4.95(m, 1H), 5.05-5.23(m, 1H),
5.28(s, 0.5H), 5.55-5.58(d, 0.5H), 6.6-6.65(m, 1H),
20 6.8-6.84(m, 1H), 6.9-6.95(m, 3H), 7.3-7.45(m, 4H),

[1S,9S(2RS,3S)]9-[(3,5-Dichlorobenzoyl)amino]-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6H-

7.78-7.85(m, 2H).

pyridazino[1,2-a][1,2]diazepine-1-carboxamide (213j), was synthesized from 212j by the methods used to prepare 213e from 212e to afford 367 mg of 213j, $^{1}{\rm H}$ NMR (CDCl₃) δ 1.55-2.05(m, 12H), 2.25(d, 1H), 2.35(m, 1H), 2.48(m, 2H), 2.75(m, 2H), 2.9(m, 1H), 2.95-3.25(m, 5H), 30 4.45(t, 1H), 4.5-4.6(m, 4H), 4.7(m, 1H), 4.75(d, 1H),

- 554 -

4.88(m, 1H), 5.05(m, 2H), 5.15(q, 1H), 5.3(s, 1H), 5.58(d, 1H), 6.5(d, 1H), 6.9(d, 1H), 7.05(d, 1H), 7.25-7.35(m, 5H), 7.6(s, 2H), 7.7(s, 2H).

[1S,9S(2RS,3S)]9-[(3,5-Dichloro-4-

- 5 hydroxybenzoyl)amino]-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamide (213k), was synthesized from 212k by the methods used to prepare 213e from 212e to afford 593 mg of 213k, ¹H NMR (CD₃OD) δ 1.5(m, 1H), 1.6-1.7(m, 2H), 1.75-1.95(m, 4H), 2.15(m, 2H), 2.3(m, 1H), 2.6(m, 1H), 2.7(m, 1H), 3.05(m, 2H), 3.15(m, 1H), 3.5(m, 2H), 4.45(m, 2H), 4.65(d, 1H), 4.7(m, 1H), 4.95(m, 1H), 5.15(m, 1H), 5.4(s, 1H), 5.7(d, 1H), 7.3(m, 5H), 7.85(s, 2H).
- 15 [1s,9s(2Rs,3s)]9-[(3-Chloro-4-acetamidobenzoyl)amino]6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-Benzyloxy-5oxotetrahydrofuran-3-yl)-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (2131),
 was synthesized from 2121 by the methods used to
 20 prepare 213e from 212e to afford 133 mg of 2131, hnmR
 (CDCl₃) δ 1.55-1.7(m, 1h), 1.75-2.05(m, 3h), 2.25(s,
 1.5h), 2.27(s, 1.5h), 2.3-2.48(m, 2h), 2.7-2.83(m, 1h),
 2.85-2.94(dd, 1h), 2.95-3.25(m, 2h), 4.42-4.65(m, 2h),
 4.68-4.85(m, 1h), 4.88-4.95(m, 1h), 5.05-5.18(m, 2h),
 5.32(s, 0.5h), 5.55-5.6(d, 0.5h), 6.48-6.55(d, 1h),
 6.88-6.92(d, 1h), 7.0-7.04(d, 0.5h), 7.15-7.2(d, 0.5h),
 7.3-7.4(m, 4h), 7.64-7.78(m, 2h), 7.88-7.94(m, 1h),
 8.45-8.56(m, 1h).

[1S,9S(2RS,3S)]9-[(3,5-Dichloro-4-

30 methoxybenzoyl)amino]-6,10-dioxo-1,2,3,4,7,8,9,10-

octahydro-N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (213m),
was synthesized from 212m by the methods used to
prepare 213e from 212e to afford 991 mg of 213m, ¹H NMR

(CDCl₃) δ 1.5-2.15(m, 5H), 2.2-2.55(m, 3H), 2.6-3.3(m,
4H), 3.95(2s, 3H), 4.45-4.7(m, 2H), 4.7-4.85(m, 1H),
4.8504.95(m, 1H), 5.05-5.25(m, 1H), 5.3(s, 0.5H),
5.6(d, 0.5H), 6.55(d, 0.5H), 6.85(d, 0.5H), 7.0(d,
0.5H), 7.25-7.6(m, 5.5H), 7.75(s, 1H), 7.85(s, 1H).

10 [1S,9S(2RS,3S)]9-[(4-Dimethylaminobenzoyl)amino]-6,10dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-ethoxy-5oxotetrahydrofuran-3-yl)-6H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamide (550f),
was synthesized from 212f by the methods used to

- prepare 213e from 212e to afford 420 mg of 550f as an off white solid, 1 H NMR (CDCl $_{3}$) δ 1.2-1.25(br. t, 3H), 1.35(m, 1H), 1.55(br. m, 1H), 1.88-2.02(br. m, 4H), 2.3(d, 1H), 2.35(m, 1H), 2.45(m, 1H), 2.55-2.75(m, 3H), 3.0(s, 6H), 3.25(m, 1H), 3.55(m, 1H), 3.65(m, 1H),
- 20 3.75(m, 1H), 3.9(m, 1H), 4.3(t, 1H), 4.55(m, 2H), 4.68(br. m, 1H), 3.9(m, 1H), 4.3(t, 1H), 4.55(m, 2H), 4.68(br. m, 1H), 4.95(br. m, 1H), 5.1(br. m, 2H), 5.45(d, 1H), 6.5(m, 2H), 7.7(m, 2H).

[1S, 9S(2RS, 3S)]9-[(3-Chloro-4-aminobenzoyl)amino]-6,10-

25 dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-ethoxy-5oxotetrahydrofuran-3-yl)-6H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamide (550h),
was synthesized from 212h by the methods used to
prepare 213e from 212e to afford 195 mg of 550h as a

30 white solid, 1 H NMR (DMSO-d₆) δ 1.1-1.18(2t, 3H), 1.6-

- 556 -

1.7(m, 2H), 1.88-2.05(m, 2H), 2.1-2.35(m, 3H), 2.48-2.56(m, 1H), 2.75-2.8(m, 0.75H), 2.88-3.08(m, 1.25H), 3.25-3.4(m, 1H), 3.55-3.8(m, 2H), 4.35-4.45(m, 1H), 4.55-4.62(m, 1H), 4.8-4.88(m, 1H), 4.98-5.03(m, 0.25H), 5.1-5.13(m, 0.75H), 5.33(s, 0.25H), 5.58-5.6(d, 0.75H), 5.9-6.0(br. s, 2H), 6.8-6.85(d, 1H), 7.58-7.62(d, 1H), 7.82(s, 1H), 8.22-8.28(d, 1H), 8.48-8.52(d, 0.75H), 8.72-8.76(d, 0.25H).

[1s,9s(2Rs,3s)]9-[(4-Methoxybenzoyl)amino]-6,10-dioxo1,2,3,4,7,8,9,10-octahydro-N-(2-ethoxy-5oxotetrahydrofuran-3-yl)-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (550i),
was synthesized from 212i by the methods used to
prepare 213e from 212e to afford 135 mg of 550i, ¹H NMR

15 (CDCl₃) & 1.18-1.28(2t, 3H), 1.6-1.75(m, 1.5H), 1.92.1(m, 3.5H), 2.22-2.3(d, 0.5H), 2.38-2.47(m, 1.5H),
2.7-2.8(m, 0.5H), 2.8-2.93(m, 1H), 2.94-3.15(m, 1.5H),
3.15-3.28(m, 1H), 3.55-3.62(q, 0.5H), 3.62-3.73(q,
0.5H), 3.78-3.88(q, 0.5H), 3.88(s, 3H), 3.9-3.95(q,
20 0.5H), 4.33-4.4(m, 0.5H), 4.5-4.55(m, 1H), 4.68-4.76(m,
0.5H), 4.9-4.95(m, 0.5H), 5.1-5.2(m, 1.5H), 5.18(s,
0.5H), 5.48-5.52(d, 0.5H), 6.48-6.55(d, 0.5H), 6.856.9(m, 1H), 6.9-6.95(m, 2H), 7.34-7.38(d, 0.5H), 7.78-

25 [1s,9s(2Rs,3s)]9-[(3,5-Dichloro-4hydroxybenzoyl)amino]-6,10-dioxo-1,2,3,4,7,8,9,10octahydro-N-(2-ethoxy-5-oxotetrahydrofuran-3-yl)-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (550k),
was synthesized from 212k by the methods used to
30 prepare 213e from 212e to afford 174 mg cf 550k as a
white solid, ¹H NMR (DMSO-d₆) δ 1.15(2t, 3H), 1.6-

7.85(m, 2H).

- 557 -

1.75(m, 2H), 1.9-2.05(m, 2H), 2.1-2.4(m, 5H), 2.5-2.55(m, 1H), 2.7-2.8(m, 0.5H), 2.85-3.0(m, 1H), 3.0-3.1(m, 0.5H), 3.55-3.7(m, 1H), 3.7-3.8(m, 1H), 4.2(t, 0.5H), 4.35-4.45(m, 0.5H), 4.55-4.65(m, 0.5H), 4.8-4.9(m, 0.5H), 5.05(t, 0.5H), 5.15(t, 0.5H), 5.35(s, 0.5H), 5.6(d, 0.5H), 7.95(s, 2H), 8.5(d, 0.5H), 8.65(d, 1H), 8.75(d, 0.5H), 10.9(br. s, 1H).

[1S,9S(2RS,3S)]9-[(3-Chloro-4-acetamidobenzoyl)amino]-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-ethoxy-5-oxotetrahydrofuran-3-yl)-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamide (5501),

was synthesized from 2121 by the methods used to prepare 213e from 212e to afford 151 mg of 5501, 1 H NMR (CDCl₃) δ 1.2-1.28(2t, 3H), 1.6-1.72(m, 1.5H), 1.88-

- 15 2.15(m, 3.5H), 2.22-2.28(m, 0.5H), 2.28(s, 3H), 2.38-2.48(m, 1.5H), 2.66-2.92(m, 1.5H), 2.95-3.14(m, 1.5H), 3.2-3.34(m, 1H), 3.56-3.63(q, 0.5H), 3.63-3.72(q, 0.5H), 3.8-3.85(q, 0.5H), 3.9-3.95(q, 0.5H), 4.32-4.38(m, 0.5H), 4.5-4.62(m, 1H), 4.68-4.75(m, 0.5H),
- 20 4.88-4.92(m, 0.5H), 5.08-5.2(m, 1.5H), 5.18(s, 0.5H), 5.46-5.5(d, 0.5H), 6.5-6.55(d, 0.5H), 6.98-7.05(m, 1H), 7.42-7.48(d, 0.5H), 7.63-7.78(m, 2.5H), 7.9-7.94(d, 0.5H), 8.44-8.52(m, 1H).

[1S,9S(2RS,3S)]9-[(3,5-Dichloro-4-

25 methoxybenzoyl)amino]-6,10-dioxo-1,2,3,4,7,8,9,10 octahydro-N-(2-ethoxy-5-oxotetrahydrofuran-3-yl)-6H pyridazino[1,2-a][1,2]diazepine-1-carboxamide (550m),
 was synthesized from 212m by the methods used to
 prepare 213e from 212e to afford 301 mg of 550m as a
30 white solid, ¹H NMR (CDCl₃) δ 1.2-1.35(2t, 3H), 1.5-

 $\mathcal{F}_{i} = \mathcal{F}_{i}$

1 3

1.8 (m, 2H), 1.9-2.15 (5H), 2.25 (d, 0.5H), 2.4-2.5 (m, 2H), 2.65-2.8 (m, 0.5H), 2.8-3.0 (m, 0.5H), 3.0-3.2 (m, 1H), 3.2-3.35 (m, 0.5H), 3.55-3.65 (m, 0.5H), 3.65-3.75 (m, 0.5H), 3.8-3.9 (m, 0.5H), 3.9-4.0 (m, 0.5H), 4.4-4.45 (m, 0.5H), 4.55-4.65 (m, 0.5H), 4.7-4.8 (m, 0.5H), 4.85-4.95 (m, 0.5H), 5.05-5.2 (m, 0.5H), 5.2 (s, 0.5H), 5.5 (d, 0.5H), 6.5 (d, 0.5H), 6.9 (d, 0.5H), 6.95 (d, 0.5H), 7.35 (d, 0.5H), 7.75 (s, 1H), 7.85 (s, 1H).

[3s(1s,9s)]3-(9-(3,5-Dichlorobenzoyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxobutanoic acid (214j), was synthesized from 213j by the method used to prepare 2002 from 2001 to afford 62 mg of 214j as a white solid, ¹H NMR (CD₃OD) δ 0.9 (t, 15 lH), 1.3(br. s, 1H), 1.7(br. m, 1H), 1.9(br. m, 1H), 2.1(br. s, 1H), 2.25(q, 1H), 2.35(m, 1H), 2.48(m, 2H), 2.65(t, 1H), 3.15(br. t, 1H), 3.5(br. m, 1H), 4.3(br. s, 1H), 4.55(m, 2H), 4.95(t, 1H), 5.25(br. s, 1H), 7.85(br. s, 1H).

[3s(1s,9s)]3-(9-(3,5-Dichloro-4-hydroxybenzoyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxobutanoic acid (214k), was synthesized from 213k by the method used to prepare 2002 from 2001 to afford 80 mg of 214k as a white solid, ¹H NMR (CD₃OD) δ 1.6-1. Tom, 1H), 1.8-2.0(m, 2H), 2.0-2.1(m, 2H), 2.15-2.25(m, 1H), 2.3-2.4(m, 1H), 2.4-2.55(m, 2H), 2.6-2.75(m,1H), 3.05-3.2(m, 1H), 3.4-3.6(m, 2H), 4.2-4.3(m, 1H), 4.45-4.6(m, 1H), 4.8-5.0(m, 1H), 5.1-5.2(m, 1H), 7.85(s, 2H).

[3S(1S,9S)]3-(9-(3-Chloro-4-acetamidobenzoyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxobutanoic acid (2141), was synthesized from 2131 by the method used to prepare 2002 from 2001 to afford 91 mg of 2141 as a white solid, ¹H NMR (DMSO-d₆) δ 1.65(br.m, 6H), 1.9(br.m, 6H), 2.15(s, 3H), 2.3(m, 3H), 2.6-2.85(m, 3H), 2.9(m, 2H), 3.0(m, 1H), 4.15(br.q, 1H), 4.4(m, 3H), 5.0(m, 1H), 5.15(m, 1H), 5.45(s, 1H), 7.8(d, 2H), 7.95(d, 1H), 8.05(s, 1H), 8.65(m, 2H), 9.65(s, 1H).

[3s(1s,9s)]3-(9-(3,5-Dichlorobenzoyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4
15 oxobutanoic acid (214m), was synthesized from 213m by the method used to prepare 2002 from 2001 to afford 105 mg of 214m as a white solid, ¹H NMR (CD₃OD) δ 1.6-1.75(m, 1H), 1.85-1.95(m, 1H), 2.0-2.1(m, 2H), 2.15-2.25(m, 1H), 2.3-2.4(m, 1H), 2.45-2.55(m, 2H), 2.65-2.75(m, 1H), 3.4-3.55(m, 2H), 3.95(s, 3H), 4.2-4.3(m, 1H), 4.45-4.6(m, 1H), 4.9-5.0(m, 1H), 5.15-5.2(m, 1H),

Compounds 308c and 308d were prepared as follows.

7.9(s, 2H).

PCT/US96/20843

560 -

[3s(1s,9s) 3-(9-(4-Methoxybenzoyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-amino]-4-oxobutanoic acid, O-methyl oxime (308c), was 5 synthesized from 212e via the methods used to prepare 308b from 212e to afford 266 mg of 308c 1 H NMR (CDCl $_{2}$) δ 1.6-1.7(m, 1H), 1.88-1.98(m, 3H), 2.02-2.15(m, 1H), 2.3-2.4(m, 1H), 2.65-2.95(m, 3H), 3.04-3.09(m, 1H), 3.12-3.25 (m, 1H), 3.84 (s, 3H), 3.86 (s, 3H), 4.5-4.58 (m, 10 1H), 4.88-4.95(m, 1H), 5.1-5.25(m, 2H), 6.86-6.9(d, 2H), 7.15-7.25 (m, 2H), 7.36-7.4 (m, 1H), 7.75-7.8 (d, 2H).

[3s(1s,9s) 3-(9-(4-Methoxybenzoyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-

15 pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-amino]-4-oxobutanoic acid, O-benzyl oxime (308d), was synthesized from 212e via the methods used to prepare 308b from 212e to afford 270 mg of 308d, 1 H NMR (CDCl₃) δ 1.55-1.65(m, 1H), 1.8-2.1(m, 4H), 2.3-2.4(m, 1H), 20 2.65-2.88(m, 3H), 2.9-3.3(m, 3H), 4.5-4.58(m, 1H), 4.88-4.95(m, 1H), 5.05(s, 2H), 5.1-5.2(m, 1H), 6.826.95(m, 2H), 7.02-7.15(m, 2H), 7.28(m, 5H), 7.45(m, 1H), 7.72(d, 2H).

Compounds 2100f, 2100g, 2100h, 2100i and 2100j were prepared as described below.

(3s,2Rs) 3-Allyloxycarbonylamino-2-(4-chlorobenzyl)oxy-5-oxotetrahydrofuran (2101a), was synthesized from allyloxycarbonylamino-β-tert-butyl aspartate by the methods employed by Chapman (Bioorg. & Med. Chem. Lett., 2, pp.615-618 (1992)) to prepare (3s,2Rs) 3-allyloxycarbonylamino-2-benzyloxy-5-oxotetrahydrofuran

- 562 -

using 4-chlorobenzyl alcohol instead of benzyl alcohol to afford 1.84 g of 2101a as a crystalline solid.

[1*S*, 9*S*(2*RS*, 3*S*)] 9-Benzoylamino-6,10-dioxo1,2,3,4,7,8,9,10-octahydro-N-(2-(4-chlorobenzyl)oxy-55 oxotetrahydrofuran-3-yl)-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (2100f),
was synthesized from 212e by the methods used to
prepare 213e from 212e using 2101a to afford 380 mg of
2100f, ¹H NMR (CDCl₃) δ 1.8-2.0(m, 10H), 2.30(d, 1H),

10 2.31-2.5(m, 3H), 2.7-2.9(m, 3H), 3.05(m, 2H), 3.13.2(m, 4H), 4.45(q, 1H), 4.5-4.6(m, 3H), 4.7(d, 2H),
4.85(d, 1H), 4.9(t, 1H), 5.2(t, 1H), 5.15(m, 2H),
5.25(s, 1H), 5.55(d, 1H), 6.5(d, 1H), 6.9(d, 1H),
6.95(d, 1H), 7.25(m, 3H), 7.35(t, 2H), 7.45(m, 2H),

(3S,2RS) 3-Allyloxycarbonylamino-2-anti-isopropoxy-5-oxotetrahydrofuran (2101b), was synthesized from (3S,2RS) 3-allyloxycarbonylamino-2-benzyloxy-5-oxotetrahydrofuran via the method used to prepare 2100d from 214e using H₂SO₄ instead of pTSA to afford 2101b.

15 7.55(1H), 7.8(m, 3H).

[1s,9s(2rs,3s)] 9-Benzoylamino-6,10-dioxo1,2,3,4,7,8,9,10-octahydro-N-(2-anti-isopropoxy-5oxotetrahydrofuran-3-γl)-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (2100g),

25 was synthesized from 212e by the methods used to
prepare 213e from 212e using 2101b to afford 31 mg of
2100g, ¹H NMR (CDCl₃) δ 1.19 (d), 1.94 (br s), 2.00-2.12
(m), 2.24 (d), 2,42 (dd), 2.71-2.83 (m), 3.02 (dd),
3.12-3.27 (overlapping m), 3.93 (m), 4.32-4.37 (m,),

- 563 -

4.52-4.63 (m), 4.90-4.95 (m), 5.12-5.20 (m), 5.28 (s), 6.93 (d), 7.10 (d), 7.41-7.50 (m), 7.51-7.58 (m), 7,84 (d).

[1*S*, 9*S*(2*RS*, 3*RS*)] 9-Benzoylamino-6,10-dioxo-5 1,2,3,4,7,8,9,10-octahydro-N-(2-acetoxy-5-oxotetrahydrofuran-3-yl)-6H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamide (2100h).

A solution of 214e (287 mg, 0.65 mmol) in pyridine (5 mL) was treated with Ac₂O (0.4 mL, 3.62 mmol). After 6 hours, the reaction mixture was poured into 5% NaHsO₄ and extracted 3 times with EtOAc. The combined organics were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. Chromatography (SiO₂, EtOAc) afforded 119 mg of 2100h, ¹HNMR (CDCl₃, mixture of four

- diastereoisomers) δ 1.80-2.05(m), 2.12(s), 2.13(s), 2.19(s), 2.22(d), 2.67-2.75(m), 2.80-2.95(m), 3.00-3.20(m), 3.21-3.33(m), 3.50-3.95(four discrete multiplets), 4.19(m), 4.55(m), 4.57-4.65(m), 4.69(m), 4.85-4.95(m), 5.04(m), 5.10(s), 5.10-5.22(m), 6.46(d),
- 20 6.03(s), 6.50(d), 6.58(d), 6.75(d), 6.95-7.05(m), 7.22(m), 7.30(m), 7.71(d), 7.75-7.83(m).

PCT/US96/20843

WO 97/22619

[3S(1S,9S)]3-(9-Benzoylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4oxobutanoic acid ethyl ester (2100i). To a solution of 5 2100b (1.5 g, 2.7 mmol) in CH_3CN (10 mL) was added 1NHCl at ambient temperature. After 6 hours solid NaHCO3 was added and the product extracted with EtOAc, dried over MgSO₄ and concentrated in vacuo. Chromatography (SiO $_2$, 30-100% CH $_2$ Cl $_2$ in EtOAc) afforded 123 mg of 10 2100i, ${}^{1}H$ NMR (CDCl₃) δ 1.25(t, 3H), 1.6-1.8(m, 1H), 1.9-2.2(m, 5H), 2.4-2.5(m, 1H), 2.75-2.9(m, 2H), 3.0-3.1(m, 2H), 3.2-3.25(m, 1H), 4.05-4.2(m, 1H), 4.5-4.7(m, 1H), 5.1-5.25(m, 1H), 7.0-7.2(m, 2H), 7.4-7.45(m, 2H), 7.5(t, 1H), 7.8(t, 2H), 9.5(s, 1H).

15 [3S(1S,9S)]3-(9-Benzoylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4acetoxy-3-butenoic acid ethyl ester (2100j), was synthesized from 2100i via the method used to prepare

- 565 **-**

2100h from 214e to afford 347 mg of 2100j, 1 H NMR (CDCl₃) δ 1.3(t, 3H), 1.6-1.8(m, 2H), 1.9-2.25(m, 4H), 2.25(s, 3H), 2.3-2.45(m, 1H), 2.8-3.0(m, 1H), 3.0-3.25(m, 2H), 3.4-3.45(m, 2H), 4.1-4.2(m, 2H), 4.55-4.7(m, 1H), 5.1-5.25(m, 1H), 6.8(s, 1H), 7.0-7.1(m, 2H), 7.5(t, 1H), 7.8(t, 2H), 9.5(s, 1H).

Compounds 500 and 501 are described in Table 23. These compounds were prepared by methods similar to the methods used to prepare compounds 404-449 (see, 10 Example 11).

523.1 533 MS 10.13 0.97 HPLC RT min 11.448 (A) (method) Purity 0.991 532.51 521.92 MΣ C22H24C1N508 C24H28N4O10 ΜF Structure Compound 500 501

Table 23

The compounds described below (213m, 213n, 213o, 213p, 213q, 213r, 213s, 213t, 213u, 213v, 213w, 213x, and 214w), were prepared by methods similar to the methods used to prepare compounds 213b-f.

Compounds 419, 415, 450, 456, 475, 404, 486, 487, 417, 408 and 418 may also be prepared as described below.

213m-x 214w, 404, 408, 415,

10

417, 418, 419, 450,

456, 475, 486, 487

compound	R ¹
213m, 419	MeOC (O) -
213n, 415	

2130, 450	O HN Me
213p, 456	но
213q, 475	O NH
213r, 404	Me O
213s, 486	
213t, 487	
213u, 417	MeO OMe

213v, 408	ů,
213w, 214w	Me HO Me
213x, 418	H ₃ C H

[1S,9S(2RS,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-5 yl)-6,10-dioxo-9-(3,4-methylenedioxybenzoylamino)-1,2,3,4,7,8,9,10-octahydro-6H-

15 (1H, m), 4.90-4.59 (3.5H, m), 4.45-4.25 (1.5H, m), 3.47-3.20 (1H, m), 3.20-2.70 (2H, m), 2.65-2.35 (1H, m), 2.35-2.00 (3H, m), 2.00-1.75 (2H, m), 1.65-1.40 (2H, m). Anal. Calcd for $C_{29}H_{30}N_4O_9$: C, 60.20; H, 5.23; N, 9.68. Found: C, 60.08; H, 5.32; N, 9.50. MS (ES⁷)

- 570 -

580 $(M^{+} + 2, 35\%)$, 579 $(M^{+} + 1, 100)$, 404 (5), 367 (5), 236 (7), 107 (5).

[1S, 9S(2RS, 3S)]9-[(3-Acetamido)benzamido]-N-(2-benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-

- 5 1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (213o),
 anti-isomer as a white foamy solid (0.73g, 69%): mp.
 135-40°C; [α]_D²¹ -37.3° (c 0.1, CH₂Cl₂); IR (KBr) 3452,
 3310, 1790, 1664, 1659, 1650, 1549, 1425, 1258, 1121;
- ¹H NMR (D₆-DMSO) δ 10.11 (1H, s), 8.77 (1H, d), 8.57 (1H, d), 8.01 (1H, s), 7.76 (1H, d), 7.55 (1H, d), 7.45-7.25 (6H, m), 5.43 (1H, s), 5.08-5.00 (1H, m), 4.95-4.73 (1H, m), 4.76 and 4.68 (2H, dd), 3.40-3.20 (1H, m), 3.09 (1H, dd), 3.02-2.75 (1H, m), 2.45-2.06
- 15 (4H, m), 2.06 (3H, s), 2.00-1.75 (2H, m), 1.70-1.40 (2H, m). Anal. Calcd for $C_{30}H_{33}N_5O_8 \cdot 0.75H_2O$: C, 59.54; H, 5.75; N, 11.57. Found: C, 59.40; H, 5.62; N, 11.50. MS (ES⁺) 593 (M⁺ + 2, 33%), 592 (M⁺ + 1, 100), 574 (7), 487 (7), 475 (6), 385 (9), 373 (26), 318 (14), 296

20 (11), 266 (10), 221 (22).

[1s,9s(2rs,3s)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(4-hydroxybenzoyl)amino-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamide (213p),

25 was isolated as a foam (1.2g, 77%): $[\alpha]_D^{20}$ -115° (c 0.20, CH_2Cl_2); IR (KBr) 3368, 2946, 1794, 1654, 1609, 1540, 1505, 1421, 1277, 1175, 1119, 980; 1 H NMR (D₆-DMSO) δ 10.1 (1H, s), 8.80 (0.5H, d, J = 6.6), 8.60 (0.5H, d, J = 7.2), 8.40-8.36 (1H, 2d), 7.82 (2H, d, J = 8.0), 7.41 (5H, bs), 6.86 (2H, d, J 8.6), 5.72 (0.5H,

d, J = 5.0), 5.49 (0.5H, bs), 5.13-5.07 (1H, m), 4.95-4.65 (2.5H, m), 4.49-4.38 (2.5H, m), 3.49-3.30 (2H, m), 3.21, 2.79 (2H, m), 2.40-1.41 (7H, m). MS (ES⁺) 551.

[1S,9S(2RS,3S)]N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(indol-2-oylamino)-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamide (213q), was isolated as a white glassy solid (80%): mp. 145-149°C; [α]_D²³ -56.0° (c 0.05, CH₂Cl₂); IR (KBr) 3399-3319, 1791, 1657, 1543, 1420, 1253, 1119; ¹H NMR (CDCl₃) δ 9.54 (1H, s), 7.65 (1H, d, J = 7.9), 7.51 (1H, d, J = 6.9), 7.44-7.25 (7H, m), 7.18-7.06 (3H, m), 5.30-5.20 (1H, m), 5.27 (1H, s), 4.84 (1H, m), 4.79 (1H, d, J = 11.4), 4.56 (1H, d, J = 11.3), 4.47 (2H, m), 3.28 (1H, m), 3.10-2.97 (2H, m), 15 2.71 (1H, m), 2.47-2.37 (1H, m), 2.26 (1H, d, J = 17.9), 2.09 (1H, m), 1.83, 1.70, 1.51 (4H, 3m).

[1S,9S(2RS,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-9-(2-toluoylamino)-6H-pyridazino[1,2-a][1,2]diazepine-1-

- carboxamide (213r), was isolated as a mixture of diastereomers (syn:anti isomer ratio 55:45) as a white foamy solid (1.46g, 89%): mp. $106-10^{\circ}$ C; IR (KBr) 3306, 2947, 1791, 1659, 1650, 1535, 1421, 1256, 1122; 1 H NMR (D₆-DMSO) δ 8.76 (0.45H, d), 8.56 (0.55H, d), 8.49 and 8.47 (1H, 2 x d), 7.41-7.19 (9H, m), 5.67 (0.55H, d)
- 25 8.47 (1H, 2 x d), 7.41-7.19 (9H, m), 5.67 (0.55H, d), 5.43 (0.45H, s), 5.11-5.02 (1H, m), 4.86-4.55 (3.5H, m), 4.45-4.25 (1.5H, m), 3.40-3.20 (1H, m), 3.20-2.70 (2H, m), 2.65-2.40 (1H, m), 2.34 (3H, s), 2.30-1.70 (5H, m), 1.65-1.40 (2H, m). Anal. Calcd for C₂₉H₃₂N₄O₇:
- 30 C, 62.66; H, 5.95; N, 10.08. Found: C, 62.91; H, 6.00;

PCT/US96/20843 WO 97/22619

- 572 -

N, 9.70. MS (ES^{+}) 550 $(M^{+} + 2, 43\%)$, 549 $(M^{+} + 1, 100)$. 374 (3), 280 (4), 279 (20), 118 (5).

[1S,9S(2RS,3S)]N-(2-Benzyloxy-5-oxotetrahydrofuran-3yl)-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-9-[4-

- 5 (phenylacetamido) benzamido] 6Hpyridazino[1,2-a][1,2]diazepin-1-carboxamide (213s), was isolated as the anti-isomer as a white foamy solid (0.64g, 778): mp. 137-41°C; $[\alpha]_D^{21}$ -48.2° (c 0.05, CH₃OH); IR (KBr) 3477, 3314, 1791, 1659, 1599, 1529,
- 10 1499, 1406, 1256, 1122; 1 H NMR (D₆-DMSO) δ 10.45 (1H, s), 8.76 (1H, d), 8.50 (1H, d), 7.86 (2H, d), 7.69 (2H, d), 7.41-7.20 (10H, m), 5.43 (1H, s), 5.08-4.98 (1H, m), 4.90-4.73 (1H, m), 4.76 and 4.68 (2H, dd), 3.67 (2H, s), 3.40-3.20 (1H, m), 3.09 (1H, dd), 3.02-2.75
- 15 (1H, m), 2.39 (1H, dd), 2.30-2.00 (3H, m), 2.00-1.75 (2H, m), 1.70-1.40 (2H, m). Anal. Calcd for $C_{36}H_{37}N_{5}O_{8} \cdot 0.5H_{2}O$: C, 63.90; H, 5.66; N, 10.35. Found: C, 63.68; H, 5.67; N, 10.24. MS (ES^{+}) 669 $(M^{+} + 2)$ 40%), 668 (M^{+} + 1, 100), 640 (12), 435 (18), 425 (23),
- 20 403 (33), 328 (17), 302, (32), 274 (22), 197 (16), 138 (17).

[1S, 9S(2RS, 3S)]N-(2-Benzyloxy-5-oxotetrahydrofuran-3yl)-6,10-dioxo-9-[4-(3-methylbutan-1oylamino)benzamido]-1,2,3,4,7,8,9,10-octahydro-6H-

- 25 pyridazino[1,2-a][1,2]diazepine-1-carboxamide (213t), was isolated as a white foamy solid (0.63g, 80%,: mp. 159-64°C; $[\alpha]_D^{21}$ -37.0° (c 0.05, CH₃OH); IR (KBr) 3463, 3321, 1790, 1680, 1658, 1650, 1644, 1595, 1525, 1501, 1408, 1251, 1113, 933; ¹H NMR (D_6 -DMSO) δ 10.13 (1H, s),
- 30 8.76 (1H, d), 8.46 (1H, d), 7.85 (2H, d), 7.68 (2H, d),

- 7.40-7.25 (5H, m), 5.43 (1H, s), 5.08-4.95 (1H, m), 4.92-4.73 (1H, m), 4.76 and 4.68 (2H, dd), 3.40-3.20 (1H, m), 3.09 (1H, dd), 3.02-2.75 (1H, m), 2.39 (1H, dd), 2.35-2.00 (6H, m), 2.00-1.75 (2H, m), 1.70-1.40 (2H, m), 0.93 (6H, d). Anal. Calcd for $C_{33}H_{39}N_5O_8 \cdot 0.5H_2O$: C, 61.67; H, 6.27; N, 10.90. Found: C, 61.49; H, 6.24; N, 10.86. MS (ES⁺) 635 (M⁺ + 2, 39%), 634 (M+ + 1, 100), 484 (10), 427 (9), 274 (18), 268 (37), 204 (19), 117 (13).
- - [1S,9S(2RS,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(naphth-1-oylamino)-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-
- 25 **carboxamide (213v)**, was isolated as a white solid (78%): mp. 121-7°C; IR (KBr) 3534-3331, 1791, 1659, 1528, 1420, 1256, 1122; 1 H NMR (CDCl₃) δ 8.34-8.29 (1H, m), 7.98-7.87 (2H, m), 7.68-7.45 (4H, m), 7.34-7.24 (5H, m), 7.04 (d, J = 6.8), 6.78 (d, J = 7.8), 6.66 (d, 30 J = 7.7), 6.48 (2H, d, J = 7.5)5.56 (d, J = 5.4), 5.15

(1H, s), 5.30-5.14, 5.0, 4.89 (d, J = 11.2), 4.71-4.41 (6H), 3.18-2.80, 2.50-2.27, 2.08-1.60 (11H, 3m).

[1S,9S(2RS,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(4-hydroxy-3,5-dimethylbenzoyl)amino-5 1,2,3,4,7,8,9,10-octahydro-6H-

- pyridazino[1,2-a][1,2]diazepine-1-carboxamide (213w),
 was isolated as a mixture of diastereoisomers (65/35)
 as a white solid (0.9g, 65%): mp. 110-115°C (decomp.);
 IR (KBr) 3409, 2945, 1792, 1658, 1606, 1534, 1486,
- 10 1420, 1330, 1276, 1209, 1122, 980, 960; 1 H NMR (CDCl₃) δ 7.66 (0.35H, d, J = 6.9), 7.46-7.20 (7H, m), 6.93 (0.35H, d, J = 7.7), 6.85 (0.65H, d, J = 7.6), 6.73 (0.65H, d, J = 7.6), 5.96 (0.35H, bs), 5.85 (0.65H, bs), 5.56 (0.65H, d, J = 5.2), 5.28 (0.35H, bs), 5.20-
- 15 4.98 (2H, m), 4.96-4.40 (4H, m), 3.28-2.55 (3H, m), 2.53-2.32 (1H, m), 2.23 (6H, 2s), 2.03-1.40 (7H, m). MS (ES⁻) 577, (ES⁺) 579.

[1S,9S(2RS,3S)] 9-[4-(Acetylamino)benzoylamino]-N-(2-benzyloxy-5-oxo-tetrahydrofuran-3-yl)-6,10-dioxo-

- 1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboximide (213x),
 was isolated as a colourless poweder (691mg, 86%): mp.
 150-70°C; [α]_D²² -10.1° (c 0.10, Me₂CO); IR (KBr) 3313,
 1791, 1679, 1654, 1597, 1528, 1501, 1457, 1407, 1371,
- 25 1315, 1255, 1184, 1122, 933; ¹H NMR (d6-DMSO) δ8.75 (1H, d), 8.47 (1H, d), 7.84 (2H, d), 7.66 (2H, d), 7.35 (5H, m), 5.43 (1H, s), 5.06-5.00 (1H, m), 4.90-4.64 (3H, m), 4.46-4.26 (2H, m), 3.16-2.86 (2H, m), 2.45-2.05 (5H, m), 2.07 (3H, s), 2.00-1.84 (2H, m), 1.68-1.56 (2H, m);
- 30 Anal. Calcd for $C_{30}H_{33}N_{5}O_{8} \cdot H_{2}O$: C, 59.11; H, 5.79; N,

- 575 -

11.49. Found: C, 59.38; H, 5.66; N, 11.31; M.S. (ES^{+}) 614 (100%), 592 $(M^{+}+1.66)$.

methylenedioxybenzoylamino) -1,2,3,4,7,8,9,10-octahydro-

[3S(1S,9S)] 3-[6,10-Dioxo-9-(3,4-

5 6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4oxobutanoic acid (415), was prepared by a similar
method as compound 214e to afford a white solid (297mg,
84%): mp. 158-62°C; [α]_D²⁴ -109.5° (c 0.1, CH₃OH); IR

10 1439, 1257, 1037; 1 H NMR (CD₃OD) δ 7.48 (1H, dd), 7.35 (1H, d), 6.88 (1H, d), 6.03 (2H, s), 5.25-5.15 (1H, m), 5.02-4.90 (1H, m), 4.63-4.45 (2H, m), 4.30-4.20 (1H, m), 3.57-3.30 (1H, m), 3.20-3.05 (1H, m), 2.75-2.10 (5H, m), 2.10-1.60 (4H, m). MS (ES⁺) 488 (M+, 25%),

(KBr) 3700-2500 (br), 1783,1659, 1650, 1538, 1486,

15 487 (M^+ - 1, 100), 443 (8), 387 (3), 315 (5), 150 (6), 127 (5), 113 (8). Accurate mass calculated for $C_{22}H_{25}N_4O_9$ (MH^+): 489.1621. Found 489.1648.

[3S(1S,9S)] 3-{9-[(3-Acetamido) benzamido]-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-

- pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4oxobutanoic acid (450), was prepared by a similar
 method as compound 214e to afford a white foamy solid
 (378mg, 94%): mp. 175-9°C; [α]_D²² -91.7° (c 0.1, CH₃OH);
 IR (KBr) 3700-2500 (br), 3319, 1659, 1590, 1553, 1427,
- 25 1260; 1 H NMR (CD₃OD) δ 8.01 (1H, d), 7.74 (1H, dd), 7.56 (1H, d), 7.45-7.35 (1H, m), 5.25-5.15 (1H, m), 5.05-4.90 (1H, m), 4.60-4.45 (2H, m), 4.30-4.20 (1H, m), 3.55-3.30 (1H, m), 3.20-3.00 (1H, m), 2.75-2.20 (5H, m), 2.14 (3H, s), 2.20-1.60 (4H). Anal. Calcd for
- 30 $C_{23}H_{27}N_5O_8 \cdot 1.5H_2O$: C, 52.27; H, 5.72; N, 13.25. Found:

- 576 **-**

C, 52.31; H, 5.86; N, 12.85. MS (ES^{+}) 501 (M+, 26%), 500 $(M^{+} - 1, 100)$, 328 (2), 149 (3), 113 (3).

[3S(1S,9S)] 3-[4-(Hydroxybenzoyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-

- 5 pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4 oxobutanoic acid (456), was prepared by a similar
 method as compound 214e to afford a white solid (0.73g,
 72%): mp. >260°C; [α]_D²⁰ -66° (c 0.34, MeOH); IR (KBr)
 3401, 2946, 1651, 1609, 1584, 1506, 1426, 1277, 1257,
- 10 1177; 1 H NMR (D₆-DMSO) δ 10.2 (1H, very bs), 9.17 (1H, bs), 8.65 (1H, s), 8.37 (1H, d, J 5.4), 7.81 (2H, d, J = 8.2), 6.87 (2H, d, J = 8.4), 5.24 (1H, m), 4.92-4.86 (1H, m), 4.41-4.32 (2H, m), 3.68-3.21 (3H, m), 3.12-2.79 (1H, m), 2.50-1.42 (7H, m). MS (ES⁺) 459.
- 15 [3s(1s,9s)] 3-[6,10-Dioxo-9-(indol-2-oylamino) 1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4oxobutanoic acid (475), was prepared by a similar
 method to that described for compound 214e to afford a
 20 white solid (79%): mp. 150°C (softens) 190-210°C;
 [α]_D²³ +97.5° (c 0.1, CH₃OH); IR (KBr) 3319, 1658, 1650,
 1549, 1421, 1256; ¹H NMR (CD₃OD) δ 7.61 (1H, d, J = 8.0),
 7.43 (1H, d, J = 8.1), 7.21 (2H, m), 7.05 (1H, m), 5.21
 (1H, m), 5.07-4.77 (1H, m), 4.54 (2H, m), 4.23 (1H, m;,
 25 3.46 (1H, m), 3.14 (1H, m), 2.66-1.71 (9H, m). MS (ES[†],
 m/z), 482 (M[†] 1, 100%).

[3S(1S,9S)] 3-[6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-9-(2-toluoylamino)-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxobutanoic acid (404), was prepared by

a similar method as compound **214e** to afford a white solid (0.79g, 86%): mp. $156-9^{\circ}C$; $\{\alpha\}_{D}^{25}$ -119.7° (c 0.1, CH₃OH); IR (KBr) 3700-2500 (br), 3387, 3309, 2956, 1785, 1659, 1650, 1535, 1422, 1278; ¹H NMR (CD₃OD) δ 5 7.46-7.15 (4H, m), 5.25-5.15 (1H, m), 5.02-4.90 (1H, m), 4.58-4.45 (2H, m), 4.30-4.20 (1H, m), 3.55-3.30 (1H, m), 3.20-3.05 (1H, m), 2.80-2.20 (4H, m), 2.41 (3H, s), 2.20-1.60 (5H, m). MS (ES[†]) 458 (M+, 27%), 457 (M[†] - 1, 100), 413 (13), 339 (8), 285 (5), 134 (6), 10 127 (11). Accurate mass calculated for $C_{22}H_{27}N_4O_7$ (MH[†]): 459.1880. Found 459.1854.

[3S(1S,9S)] 3-{6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-9-[4-(phenylacetamido)benzamido]-6Hpyridazino[1,2-a][1,2]

- diazepine-1-carboxamido)-4-oxobutanoic acid (486), was prepared by a similar method as compound 214e to afford a white solid (325mg, 89%): mp. $165-9^{\circ}C$; $\left[\alpha\right]_{D}^{22}$ -69.1° (c 0.1, CH₃OH); IR (KBr) 3700-2500 (br), 3318, 1658, 1599, 1530, 1505, 1407, 1258; 1 H NMR (CD₃OD) δ 7.85 (2H, 20 d), 7.69 (2H, d), 7.38-7.20(5H, m), 5.25-5.15 (1H, m), 5.05-4.90 (1H, m), 4.57-4.45 (2H, m), 4.30-4.20 (1H, m), 3.70 (2H, s), 3.55-3.30 (1H, m), 3.20-3.00 (1H, m), 2.75-1.60 (9H, m). Anal. Calcd for C₂₉H₃₁N₅O₈•1.5H₂O: C, 57.61; H, 5.67; N, 11.58. Found: C, 57.81; H, 5.74; N, 11.47. MS (ES⁺) 577 (M+, 33%), 576 (M⁺ 1, 100), 502 (2).
- [3S(1S,9S)] 3-{6,10-Dioxo-9-[4-(3-methylbutan-1-oylamino)benzamido]-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido}-4-oxobutanoic acid (487), was prepared by a similar

method as compound 214e to afford a white foamy solid (335mg, 93%): mp. 176-80°C; $[\alpha]_D^{22}$ -88.0° (c0.1, CH₃OH); IR (KBr) 3700-2500 (br), 3321, 2960, 1781, 1660, 1597, 1529, 1407, 1258, 1187; 1 H NMR (CD₃OD) δ 7.86 (2H, d), 5 7.69 (2H, d), 5.25-5.15 (1H, m), 5.05-4.90 (1H, m), 4.60-4.45 (2H, m), 4.30-4.20 (1H, m), 3.57-3.30 (1H, m), 3.20-3.00 (1H, m), 2.75-1.60 (12H, m), 1.00 (6H, d). Anal. Calcd for $C_{26}H_{33}N_5O_8 \cdot H_2O$: C, 55.61; H, 6.28; N, 12.45. Found: C, 56.00; H, 6.37; N, 12.15. MS (ES^{+}) 543 (M+, 31%), 542 (M⁺ - 1, 100), 498 (2), 468 10 (3).

[3S(1S,9S)] 3-[6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-9-(3,4,5-trimethoxybenzoylamino)-6H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-15 oxobutanoic acid (417), was prepared by a similar method to that described for compound 214e to afford a white solid (0.63g, 92%): mp. 145-155°C (approx., not sharp); $[\alpha]_D^{27}$ -114.6° (c 0.11, CH₃OH); IR (KBr) 3327, 1658, 1586, 1548, 1501, 1416, 1341, 1238, 1126; ¹H NMR 20 (CD₃OD) δ 7.22 (2H, s), 5.21 (1H, m), 5.00 (1H, m), 4.56,

4.49 (2H, 2m), 4.25 (1H, m), 3.88 (6H, s), 3.80 (3H, s), 3.55-3.43 (1H, m), 3.12 (1H, m), 2.71-1.70 (9H, m). Anal. Calcd for $C_{24}H_{30}N_4O_{10} \cdot 2H_2O$: C, 50.52; H, 6.01; N, 9.82. Found: C, 50.49; H, 6.05; N, 9.68. MS (ES, 25 m/z) 533 $(M^{+} - 1, 100\%)$.

[3s(1s,9s)] 3-[6,10-Dioxo-9-(naphth-1-oylamino)-1,2,3,4,7,8,9,10-octahydro-6H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4oxobutanoic acid (408), was prepared by a similar

30 method to that described for compound 214e to afford a

white solid (73%): mp. 157-165°C (not sharp); $[\alpha]_D^{27}$ - 140.5° (c 0.1, CH₃OH); IR (KBr) 3325, 1658, 1531, 1420, 1278, 1257; ¹H NMR (CD₃OD) δ 8.33-8.28 (1H, m), 8.01-7.78 (2H, m), 7.71 (1H, d, J = 6.0), 7.59-7.52 (3H, m), 5.27 (1H, m), 5.12-5.03 (1H, m), 4.55 (2H, m), 4.25 (1H, m), 3.64-3.43 (1H, m), 3.24-3.12 (1H, m), 2.80-1.67 (9H, m). Anal. Calcd for $C_{25}H_{26}N_4O_7 \circ 2H_2O$: C, 56.60; H, 5.70; N, 10.56. Found: C, 56.70; H, 5.80; N, 10.33. MS (ES⁺, m/z), 493 (M⁺ - 1, 100%).

213y R= Bn

[1s, 9s(2Rs, 3s)] N-(2-Ethoxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(isoquinolin-1-oylamino)-1,2,3,4,7,8,9,10-

PCT/US96/20843 WO 97/22619

- 580 -

octahydro-6-H-pyridazino[1,2-a][1,2]diazepine-1carboxamide (550q), was synthesized via methods used to prepare 213e to afford 550q.

[1S, 9S(2RS, 3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-5 yl)-6,10-dioxo-9-(isoquinolin-1-oylamino)-1,2,3,4,7,8,9,10-octahydro-6-Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (213y), was synthesized via methods used to prepare 213e to afford 213y.

10 [1S,9S(2S,3S)] N-(2-Phenethoxy-5-oxotetrahydrofuran-3yl)-6,10-dioxo-9-(isoquinolin-1-oylamino)-1,2,3,4,7,8,9,10-octahydro-6-H-pyridazino[1,2-a][1,2] diazepine-1-carboxamide, (412a) was synthesized via methods used to prepare 550q using 513a-1 to afford 15 **412a**.

[1S, 9S(2R, 3S)] N-(2-Phenethoxy-5-oxotetrahydrofuran-3yl)-6,10-dioxo-9-(isoquinolin-1-oylamino)-1,2,3,4,7,8,9,10-octahydro-6-H-pyridazino[1,2-a][1,2] diazepine-1-carboxamide, (412b) was synthesized via

- 581 -

methods used to prepare **550q** using **513a-2** to afford **412b**.

[1*S*, *9S*(2*S*, 3*S*)] N-(2-Cyclopentoxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(isoquinolin-1-oylamino)-

- 5 1,2,3,4,7,8,9,10-octahydro-6-Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide, (412c)
 was synthesized via methods used to prepare 550q using
 513b-1 to afford 412c.
- [1S,9S(2R,3S)] N-(2-Cyclopentoxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(isoquinolin-1-oylamino)-1,2,3,4,7,8,9,10-octahydro-6-Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide, (412d) was synthesized via methods used to prepare 550q using 513b-2 to afford 412d: ¹H NMR (CDCl₃) δ 9.5 (1H, d), 8.9 (1H, d), 8.5 (1H, d), 7.9-7.8 (2H, m), 7.8-7.65 (2H, m), 6.55 (1H, d), 5.55 (1H, d), 5.25-5.1 (2H, m), 4.75-4.65 (1H, m), 4.65-4.6 (1H, m), 4.4-4.3 (1H, m), 3.25-3.15 (1H, m), 3.15-3.05 (1H, m), 2.95-2.8 (2H, m), 2.55-2.4 (2H, m), 2.15-1.5 (14H, m).
- [15,95(25,35)] N-(2-Ethoxy-5-oxotetrahydrofuran-3-y1)-6,10-dioxo-9-(isoquinolin-1-oylamino)-1,2,3,4,7,8,9,10-octahydro-6-H-pyridazino[1,2-a][1,2] diazepine-1-carboxamide, (412e) was synthesized via methods used to prepare 550q using 513f-1 to afford 412e.
- 25 [1s, 9s(2R,3s)] N-(2-Ethoxy-5-oxotetrahydrofuran-3-yl)6,10-dioxo-9-(isoquinolin-1-oylamino)-1,2,3,4,7,8,9,10octahydro-6-H-pyridazino[1,2-a][1,2] diazepine-1-

carboxamide, (412f) was synthesized via methods used to prepare 550q using 513f-2 to afford 412f.

Compounds 410 and 412 were prepared via methods used to prepare 605 from 604.

5 **502y**, **502z**

410, 412

compound	R ¹
502y, 410	S
502z, 4 12	

[3s(1s,9s)] 3-[(6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-9-(thiophene-3-yl-carbonylamino)-1-carboxamido]-4-oxobutanoic acid (410), was purified by flash chromatography (5-25% methanol in dichloromethane) to give 296mg (94%) of a colourless solid: mp. 90-200°C; IR (KBr) 3338, 3096, 2956, 1787, 1726, 1657, 1546, 1420, 1279, 1258, 1125, 1092, 984,

933; 1 H NMR (CD₃OD) δ 8.41 (1H, d), 8.13 (1H, d), 7.54-7.41 (3H, m), 7.20 (1H, d), 5.19-5.11 (1H, m), 4.54-4.30 (1H, m), 3.27 (1H, m), 3.18-3.03 (1H, m), 2.81-2.64 (2H, m), 2.56-1.59 (7H, m). Anal. Calcd for $C_{19}H_{22}N_4O_7S \cdot 2.5H_2O$: C, 46.05; H, 5.49; N, 11.31. Found: C, 46.36; H, 5.25; N, 11.10. MS (ES⁺) 449 (M - 1, 80%), 113 (100). Accurate mass calculated for $C_{19}H_{23}N_4O_7S$ (MH⁺): 451.1287. Found: 451.1295.

[3S(1S,9S)] 3-[6,10-Dioxo-9-(isoquinolin-1-oylamino)1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4oxobutanoic acid (412) was prepared by a similar method
to that described for compound 605 to afford a white
glassy solid (69%): mp. 138-141°C; [α]_D²³ -105.5° (c

15 0.5, CH₂Cl₂); IR (KBr) 3375, 1787, 1659, 1515, 1421,
1278, 1256; ¹H NMR (CDCl₃) δ 9.32 (1H, m), 8.79 (1H, m),
8.47 (1H, m), 7.86-7.64 (4H, m), 5.31, 5.18, 4.59, 4.37
(4 or 5H, m), 3.55-2.76, 2.49-2.39, 2.05, 1.65 (11H,
4m). Anal. Calcd for C₂₄H₂₅N₅O₇•1.5H₂O: C, 55.17; H,
20 5.40; N, 13.40. Found: C, 54.87; H, 5.22; N, 13.15.
MS (ES⁺, m/z) 494 (M⁺ - 1, 100%).

[3s(1s,9s)] t-Butyl 3-[6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-9-(thiophene-3-yl)-6H-pyridazino[1,2-a][1,2]diazepine-carbonylamino)-125 carboxamido]-4-oxobutanoate semicarbazone (502y), was synthesized via methods used to prepare 604 from 603 to afford a pale cream powder: mp. 120-180°C; [α]_D²³ - 109° (c 0.18, CH₂Cl₂); IR (KBr) 3478, 3327, 1670, 1582, 1543, 1421, 1279, 1257, 1155; ¹H NMR (CDCl₃, CD₃OD) δ
30 8.04 (1H, m), 7.49 (1H, m), 7.38 (1H, m), 7.17 (1H, m),

5.17-5.01 (2H, m), 4.86 (1H, m), 4.61-4.50 (1H, m), 3.45-3.29 (2H, m), 3.21-3.03 (1H, m), 2.79-2.54 (3H, m), 2.43-2.33 (1H, m), 2.11-1.66 (5H, m), 1.44 (9H, s). Anal. Calcd for $C_{24}H_{33}N_7O_7S \cdot H_2O$: C, 49.56; H, 6.07; N, 5.16.86; S, 5.51. Found: C, 49.51; H, 5.93; N, 16.31; S, 5.17. MS (ES⁺) 586 (100%), 564 (M⁺ + 1, 1.59). Accurate mass calculated for $C_{24}H_{34}N_7O_7S$ (MH⁺): 564.2240. Found: 564.2267.

[3S(1S,9S)] t-Butyl 3-[6,10-dioxo-9-(isoquinolin-1-oylamino)-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxobutanoate semicarbazone (502z), was prepared by a similar method to that described for compound 604 to afford a pale yellow solid (90%): mp. 142-145°C; [α]_D²⁴ 15 -136.5° (c 0.06, CH₂Cl₂); ¹H NMR (CDCl₃) δ 9.51-9.46 (1H, m), 9.11 (1H, s), 8.83 (1H, d, J = 7.8), 8.53 (1H, d, J = 5.5), 7.89-7.83 (2H, m), 7.77-7.65 (2H, m), 7.55 (1H, d, J = 7.2), 7.18 (1H, d, J = 2.7), 5.26-5.12 (2H, m), 4.87 (1H, m), 4.59 (1H, m), 3.25-3.12 (2H, m), 2.95-2.76 (2H, m), 2.59-2.38, 2.18-1.94, 1.70 (5H, 3m), 1.44 (9H, s).

compound	R ⁴	R ¹
415a		

compound	R ⁴	R ¹
415b	W.	,0\
415c		,000
214w-1	CH ₃ HO CH ₃	,000
214w-2	CH ₃ CH ₃	Ç
214w-3	н н н н н н н н н н н н н н н н н н н	
214w-4	CH ₃ O	,o~{\bar{\bar{\bar{\bar{\bar{\bar{\bar
214w-5	CH ₃ CH ₃	, (<u>)</u>
214w-6	CH ₃	,00
214w-7	CH ₃ CH ₃	,o.
412g		,0~

5

10

compound	R ⁴	R ¹
412h		

[1S,9S(2S,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(methylenedioxybenzoylamino)1,2,3,4,7,8,9,10-octahydro-6-H-pyridazino[1,2-a][1,2]
5 diazepine-1-carboxamide, (415a) was synthesized via
methods used to prepare 550q to afford 415a.

[1s,9s(2Rs,3s)] N-(2-Ethoxy-5-oxotetrahydrofuran-3-yl)6,10-dioxo-9-(methylenedioxy benzoylamino)1,2,3,4,7,8,9,10-octahydro-6-H-pyridazino[1,2-a][1,2]
10 diazepine-1-carboxamide, (415b) was synthesized via
methods used to prepare 550q to afford 415b.

[1s,9s(2R,3s)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(methylenedioxy benzoylamino)1,2,3,4,7,8,9,10-octahydro-6-H-pyridazino[1,2-a][1,2]
diazepine-1-carboxamide, (415c) was synthesized via
methods used to prepare 550q to afford 415c.

[1S,9S(2RS,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(3,5-dimethyl-4-hydroxybenzoylamino)-1,2,3,4,7,8,9,10-octahydro-6-H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamide, (214w-1) was synthesized via methods used to prepare 550q to afford 214w-1.

[1S,9S(2R,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(3,5-dimethyl-4-hydroxybenzoylamino)-

- 1,2,3,4,7,8,9,10-octahydro-6-Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide, (214w-2) was synthesized via methods used to prepare 550q to afford 214w-2.
- 5 [1S,9S(2S,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3yl)-6,10-dioxo-9-(3,5-dimethyl-4-hydroxybenzoylamino)-1,2,3,4,7,8,9,10-octahydro-6-Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide, (214w-3) was synthesized via methods used to prepare 550q to 10 afford 214w-3.
- [1S,9S(2R,3S)] N-(2-Phenethoxy-5-oxotetrahydrofuran-3yl)-6,10-dioxo-9-(3,5-dimethyl-4-hydroxybenzoylamino)-1,2,3,4,7,8,9,10-octahydro-6-Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide, (214w-4) 15 was synthesized via methods used to prepare 550g to afford 214w-4.
 - [1S, 9S(2S, 3S)] N-(2-Phenethoxy-5-oxotetrahydrofuran-3yl)-6,10-dioxo-9-(3,5-dimethyl-4-hydroxybenzoylamino)-1,2,3,4,7,8,9,10-octahydro-6-H-
- 20 pyridazino[1,2-a][1,2]diazepine-1-carboxamide, (214w-5) was synthesized via methods used to prepare 550q to afford 214w-5.
 - [1S, 9S(2R, 3S)] N-(2-Cyclopentoxy-5-oxotetrahydrofuran-3-y1)-6,10-dioxo-9-(3,5-dimethyl-4-
- 25 hydroxybenzoylamino) -1,2,3,4,7,8,9,10-octahydro-6-Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide, (214w-6) was synthesized via methods used to prepare 550q to afford 214w-6.

[1s,9s(2s,3s)] N-(2-Cyclopentoxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(3,5-dimethyl-4hydroxybenzoylamino)-1,2,3,4,7,8,9,10-octahydro-6-Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide, (214w-7) was synthesized via methods used to prepare 550q to afford 214w-7.

[1S,9S(2R,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(isoquinolin-1-oylamino)1,2,3,4,7,8,9,10-octahydro-6-H-pyridazino[1,2-a][1,2]
10 diazepine-1-carboxamide, (412g) was synthesized via
methods used to prepare 550q to afford 412g.

[1s,9s(2s,3s)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-9-(isoquinolin-1-oylamino)1,2,3,4,7,8,9,10-octahydro-6-H-pyridazino[1,2-a][1,2]

diazepine-1-carboxamide, (412h) was synthesized via
methods used to prepare 550q to afford 412h.

[3S(1S,9S)]3-(9-(4,5-Methylenedioxybenzoyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4
20 oxobutanoic acid (415), was synthesized by the method used to prepare 2002 from 2001 to afford 415.

[3S(1S,9S)]3-(9-(3,5-Dichloro-4-hydroxybenzoyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxobutanoic acid (214w), was synthesized by the method used to prepare 2002 from 2001 to afford 214w.

2100k-o

compound	R
2100k	* ₀ ~
21001	*o
2100m	` o-
2100n	H1. 0
21000	

10

[1S,9S(2RS,3S)] 9-Benzoylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-N-(2-phenethyloxy-5-oxotetrahydrofuran-3-yl)-6H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamide (2100k),

- was prepared by a similar method as compound **213e** to afford a mixture of diastereoisomers (75/25) as a white solid (258mg, 83%): mp. 101°C ; $\left[\alpha\right]_{D}^{25}$ -96° (c 0.2, CH₂Cl₂); IR (KBr) 3328, 2935, 2978, 1732, 1669, 1603, 1483, 1450, 1414, 1237, 1155, 1082, 989, 755; ^{1}H NMR
- 10 (CDCl₃) δ 7.84-7.80 (2H, m), 7.54-7.17 (8H, m), 7.06-6.99 (1H, m), 6.25 (1H, d, J = 7.9H), 5.41 (0.75H, d, J = 5.4H), 5.31 (0.25H, bs), 5.23-5.09 (1H, m), 4.93-4.87 (1H, m), 4.68-4.51 (2H, m), 4.40-4.33 (0.25H, m), 4.24-4.14 (0.75H, m), 3.95-3.70 (1H, m), 3.30-3.13 (1H, m),
- 15 3.14-2.78 (5H, m), 2.47-2.21 (2H, m), 2.05-1.50 (5H, m). Anal. Calcd for $C_{29}H_{32}N_4O_7 \cdot 0.5H_2O$: C, 62.47; H, 5.97; N, 10.05. Found: C, 62.17; H, 5.83; N, 9.97. MS (ES⁺) 549.

[1S,9S(2RS,3S)] 9-Benzamido-N-(2-cyclopentyloxy-5-oxo-

- 2C tetrahydrofuran-3-yl)-6,10-dioxo-1,2,3,4,7,8,9,10octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1carboxamide (21001), was prepared by a similar method
 as 213e, (74%) as a colourless solid: mp. 172-80°C;
 [α]_D²³ -91.5° (c 0.1, CH₂Cl₂); IR (KBr) 3290, 1792,
- 25 1677, 1657, 1642, 1544, 1425, 1280, 1259, 1124, 977; 1 H NMR (CDCl₃) δ 7.80 (2H, m), 7.46 (3.5H, m), 7.00 (1H, d, J = 6.7), 6.48 (0.5H, d, J = 7.9), 5.55 (0.5H, d, J = 5.3), 5.19 (2H, s + m), 4.93 (0.5H, m), 4.62 (1.5H, m), 4.34 (1H, m), 4.18 (0.5H, m), 3.28-2.70 (4H, m), 2.49-
- 30 2.29 (2H, m), 205-1.48 (15H, m).

[1s,9s(2r,3s)] 9-Benzamido-6,10-dioxo-N-[2-(2-indanyloxy)-5-oxo-tetrahydrofuran-3-yl]1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (2100m),

5 was prepared by a similar method as 213e, (76%) as a colourless solid: mp. ~140°C, remelts 187-9°C; [α]_D²³ - 96.9° (c 0.11, CH₂Cl₂); IR (KBr) 3507, 3308, 3251, 1772, 1660, 1641, 1566, 1545, 1457, 1424, 1346, 1326, 1302, 1275, 1258, 1136, 1085, 1018, 981; ¹H NMR (CDCl₃)

10 δ 7.78 (2H, m), 7.53 (3H, m), 7.19 (4H, m), 6.91 (1H, d, J = 7.4), 6.27 (1H, d, J = 7.6), 5.66 (1H, d, J = 5.3), 5.10 (1H, m), 4.96 (1H, m), 4.75 (2H, m), 4.52

(1H, m), 3.08 (3H, m), 3.03-2.71 (5H, m), 2.48-2.31

(2H, m), 1.90-1.40 (4H, m), 1.22 (1H, m).

- 2.96, 2.81-2.69, 2.46-2.37, 2.16-1.66 (10H, 4m), 2.27 (1H, d, J = 17.8). Anal. Calcd for $C_{28}H_{30}N_4O_7 \cdot 0.5H_2O$: C, 61.87; H, 5.75; N, 10.32. Found: C, 61.88; H, 5.70; N, 10.33. MS (ES⁺, m/z) 535 (M⁺ + 1, 100%).

- 592 -

[1S, 9S(2R, 3S)] 9-Benzoylamino-N-(2-benzyloxy-5oxotetrahydrofuran-3-yl)-6,10-dioxo-1,2,3,4,7,8,9,10octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1carboxamide (2100o), (containing about 7% of (2S)), was 5 prepared by a similar method to that described for compound 213e to afford a white glassy solid (81%): mp. 115-7°C; $[\alpha]_D^{23}$ -121.8° (c 0.11, CH₂Cl₂); IR (KBr) 3326, 1792, 1659, 1535, 1421, 1278, 1257, 1124, 978; ¹H NMR (CDCl₃) δ 7.82 (2H, m), 7.58-7.24 (8H, m), 6.90 (1H, 10 d, J = 7.3), 6.49 (1H, d, J = 7.7), 5.57 (1H, d, J =5.5), 5.11 (2H, m), 4.91 (1H, d, J = 11.4), 4.57 (1H, d, J = 11.1), 4.81-4.68 (1H, m), 4.65-4.54 (1H, m), 3.18-2.71 2.52-2.30, 2.05-1.62 (11H, 3m). Anal. Calcd for $C_{28}H_{30}N_4O_7 \cdot 0.5H_2O$: C, 61.87; H, 5.75; N, 10.32. 15 Found: C, 61.70; H, 5.71; N, 10.15. MS (ES, m/z) 535 $(M^{+} + 1, 94.3\%), 557 (100\%).$

550n

[1S,9S(2RS,3S)] 9-(3-Acetamido)benzoylamino-6,10-dioxo-N-(2-ethoxy-5-oxo-tetrahydrofuran-3-yl)-

20 1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (550n),
was prepared by a similar method as compound 213e to

- 593 -

afford a mixture of diastereoisomers (65/35) as a tan powder (390mg, 28%): mp. 139-145°C; $\left[\alpha\right]_D^{23}$ -104° (c 0.2, MeOH); IR (KBr) 3318, 2405, 2369, 1792, 1660, 1591, 1549, 1484, 1422, 1257, 1117; ¹H NMR (D₆-DMSO) δ 5 10.1 (1H, s), 8.80 (0.65H, d, J = 6.6), 8.58 (0.35H, d, J = 6.6), 8.59 (1H, d, J = 7.0), 8.06 (1H, bs), 7.83-7.79 (1H, m), 7.61-7.57 (1H, m), 7.47-7.39 (1H, m), 5.61 (0.35H, d, J = 5.0), 5.37 (0.65H, bs), 5.17-5.14 (0.35H, m), 5.08-5.06 (0.65H, m), 4.92-4.86 (1H, m), 4.67-4.61 (0.35H, m), 4.47-4.41 (0.65H, m), 4.28-4.11 (1H, 2m), 3.80-3.59 (2H, m), 3.23-2.75 (3H, m), 2.61-1.48 (7H, m), 2.10 (3H, s), 1.25 and 1.17 (3H, 2t, J = 5.8). MS (ES⁺) 528.

550o

15 [1s,9s(2rs,3s)] 6,10-Dioxo-N-(2-ethoxy-5-oxotetrahydrofuran-3-yl)-9-(2-indoloylamino)1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamide (550o),
was synthesized by a similar method as compound 213e to
20 afford a colourless solid (1.071g, 80%): mp. 155-70°C;
[α]_D²² -75.8° (c 0.26, CH₂Cl₂); IR (KBr) 3314, 2941,
1791, 1658, 1545, 1420, 1341, 1312, 1252, 1181, 1118,
939, 749; ¹H NMR (CDCl₃) δ 9.45 (C.5H, s), 9.34 (5.5H, s), 7.68-7.62 (1H, m), 7.49-7.39 (2H, m), 7.33-7.26

- 594 -

(1H, m), 7.18-7.03 (3H, m), 5.49 (0.5H, d), 5.30 (0.5 H, s), 5.26-5.13 (1H, m), 4.90-4.83 (0.5H, m), 4.76-4.49 (1H, m), 4.42-4.35 (0.5H, m), 3.97-3.74 (1H, m), 3.72-3.53 (1H, m), 3.35-2.64 (4H, m), 2.50-2.37 (1H, m), 2.20-1.82 (5H, m), 1.69-1.50 (2H, m), 1.30-1.19 (3H, m).

550p

[1S,9S(2RS,3S)] 6,10-Dioxo-N-(2-ethoxy-5-oxotetrahydrofuran-3-yl)-9-(4-hydroxybenzoyl)amino-

10 1,2,3,4,7,8,9,10-octahydro-6H
pyridazino[1,2-a][1,2]diazepine-1-carboxamide (550p),

was prepared by a similar method as compound 213e to

afford a mixture of diastereoisomers as a white foam

(820mg, 47%): [α]_D²⁴ -75° (c 0.16, CH₂Cl₂); IR (KBr)

15 3401, 2937, 1791, 1657, 1609, 1539, 1505, 1423, 1277,

1177, 1118; ¹H NMR (CDCl₃) δ8.07-8.05 (1H, m), 7.67 (2H,

d, J = 7.9), 7.38-7.29 (2H, m), 6.80 (2H, d, J = 8.5),

5.49 (0.5H, d, J = 4.6), 5.23 (0.5H, bs), 5.24-5.20

(1H, m), 5.12-5.08 (1H, m), 4.68-4.29 (2H, m), 3.92-

20 3.45 (3H, m), 3.32-2.30 (2H, m), 2.80-1.56 (11H, m), 1.21 (3H, t, J = 7.0H).

compound	R
503a 504a 286	
503b 504b 505b	Me Ph N
503c 504c 505c	OPh ii
503d 504d 505d	OPh

5

10

- 596 -

[3S, 4R(1S, 9S)] t-Butyl 3-(6, 10-dioxo-9-

- 5 methanesulphonylamino-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-hydroxy-5-(1-naphthoyloxy)pentanoate (503a), was prepared from 212b and (3S,4R) t-butyl (N-allyloxycarbonyl)-3-amino-4-hydroxy-5-(1-
- naphthoyloxy)pentanoate by the method described for (213e) to afford 533mg (81%) of an off-white foam: $\left[\alpha\right]_D^{22} -81.4^\circ \text{ (c 0.5, CH}_2\text{Cl}_2\text{); IR(KBr) 3342, 2976, 1719,} \\ 1664, 1328, 1278, 1246, 1153, 1137. \\ ^1\text{H NMR (CDCl}_3\text{)} \delta \\ 8.86 \text{ (1H, d, J = 8.4), 8.21 (1H, dd, J = 1.3, 7.3),}$
- 15 8.03 (1H, d, J = 8.1), 7.88 (1H, d, J = 8.6), 7.66-7.45 (3H, m), 7.23 (1H, d, J = 8.6), 5.96 (1H, d, J = 9.2), 5.30 (1H, m), 4.59-4.33 (5H, m), 4.24 (1H, m), 3.96 (1H, brd), 3.29 (1H, m), 2.95 (1H, m), 2.93 (3H, s), 2.69-2.50 (3H, m), 2.36 (1H, m), 1.96 (4H, m), 1.62
- 20 (1H, m), 1.41 (9H, s). Anal. Calcd for $C_{31}H_{40}N_4O_{10}S \cdot 0.25H_2O$: C, 55.97; H, 6.14; N, 8.42. Found: C, 55.90; H, 6.11; N, 8.23. M.S. (ES[†]) 683 (M+Na, 100%), 661 (M+1,39), 605 (78).

[3S(1S,9S)] t-Butyl 3-(6,10-dioxo-9-

methanesulphonylamino-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-5-(1-naphthoyloxy)-4-oxopentanoate (504a), was synthesized from 503a via method used to prepare 216e from 215e to afford 446mg (91%) of a colourless foam: {α}_D²¹ -111.6°

100%).

(c 0.5, CH_2Cl_2); IR (KBr) 3319, 2978, 2936, 1723, 1670, 1413, 1370, 1329, 1278, 1246, 1153. ¹H NMR (CDCl₃) δ 8.87 (1H, d, J = 8.9), 8.29 (1H, d, J = 7.2), 8.06 (1H, d, J = 8.3), 7.90 (1H, d, J = 8.2), 7.66-7.48 (3H, m), 7.37 (1H, d, J = 8.1), 5.61 (1H, d, J = 9.0), 5.31 (1H, m), 5.22 (1H, AB, J = 16.9), 5.09 (1H, AB, J = 16.92), 4.99 (1H, m), 4.65-4.43 (2H, m), 3.28 (1H, m), 2.96 (3H, s), 2.86 (2H, m), 2.59 (1H, m) 2.38 (1H, dd, J = 6.8, 13.2), 2.21-1.70 (6H, m), 1.45 (9H, s). Anal. 10 Calcd for $C_{31}H_{38}N_4O_{10}S \cdot 0.25H_2O$. C, 56.14; H, 5.85; N, 8.45. Found: C, 56.11; H, 5.83; N, 8.29. M.S. (ES⁺) 657 (M-1, 100%).

[3S(1S,9S)] 3-(6,10-Dioxo-9-methanesulphonylamino-1,2,3,4,7,8,9,10-octahydro-6H-

- 15 pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-5-(1-naphthoyloxy)-4-oxopentanoic acid (286), was prepared from 504a by the method described for 217 to afford 356mg (93%) of a white powder: mp 120-123°C; [α]_D²³ 121° (c 0.194, CH₂Cl₂); IR (KBr) 3314, 2937, 1722, 1663, 1412, 1328, 1278, 1245, 1195, 1132.

 1 NMR (d6-DMSO)δ12.63 (1H, brs), 8.94 (1H, d, J = 7.4), 8.78 (1H, d, J = 8.6), 8.26 (2H, m), 8.11 (1H, d, J = 8.0), 7.77-7.62 (4H, m), 5.28 (2H, s), 5.21 (1H, m), 4.82 (1H, m), 4.44-4.29 (2H, m), 3.31 (1H, m), 2.98 (3H, s), 2.98-2.86 (2H, m), 2.72 (1H, dd, J = 7.3, 16.9), 2.40 (1H, m), 2.24-1.84 (4H, m), 1.69 (2H, m). Anal. Calcd for C₂₇H₃₀N₄O₁₀S·H₂O: C, 52.25; H, 5.20; N, 9.03. Found: C, 52.11; H, 4.97; N, 8.89. M.S. (ES[†]) 601 (M-1)
- 30 [3S,4RS(1S,9S)] t-Butyl 3-[6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-9-

- 797 -

(e10)
$$R_{21} \xrightarrow{Y_{2}} R_{5} \xrightarrow{N} N$$

 R_3 is $-CO-CH_2-T_1-R_{11}$ and R_{11} is $-Ar_4$;

 R_5 is selected from the group consisting of:

 $-C(0)-R_{10}$

5

15

20

 $-C(0)O-R_9$, and

 $-C(0)-NH-R_{10};$

X₅ is CH;

Y₂ is 0;

10 T_1 is 0 or S;

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

 R_{13} is H or a C_{1-4} straight or branched alkyl group optionally substituted with $-Ar_3$, -OH, $-OR_9$, $+CO_2H$, wherein the R_9 is a C_{1-4} branched or straight chain alkyl group; wherein Ar_3 is morpholinyl or phenyl,

5

10

15

20

pyridinyl, oxazolyl, naphthyl, pyrimidinyl, and thienyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of $-NH_2$, -Cl, -F, -Br, -OH, $-R_9$, $-NH-R_5$ wherein R_5 is $-C(O)-R_{10}$ or $-S(O)_2-R_9$, $-OR_5$ wherein R_5 is $-C(O)-R_{10}$, $-OR_9$, $-NHR_9$, and

wherein each R_9 and R_{10} are independently a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$ wherein Ar_3 is phenyl;

provided that when -Ar $_3$ is substituted with a Q_1 group which comprises one or more additional -Ar $_3$ groups, said additional -Ar $_3$ groups are not substituted with another -Ar $_3$.

35. A compound represented by the formula:

wherein:

m is 1;

$$R_1$$
 is:

- 795 **-**

5

10

25

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

34. The compound according to claims 32 or 33, wherein:

m is 1:

15 R_{13} is H or a C_{1-4} straight or branched alkyl group optionally substituted with $-Ar_3$, -OH, $-OR_9$, $-CO_2H$, wherein the R_9 is a C_{1-4} branched or straight chain alkyl group; wherein Ar_3 is morpholinyl or phenyl, wherein the phenyl is optionally substituted with O_1 ;

20 R_{21} is -H or -CH₃;

each Ar_3 cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, pyrazolyl, thiazolyl, isoxazolyl, benzotriazolyl, benzimidazolyl, thienothienyl, imidazolyl, thiadiazolyl, benzo[b]thiophenyl, pyridyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar₄ cyclic group is independently selected from the set consisting of phenyl, tetrazolyl,

5

15

20

 $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

 R_{13} is selected from the group consisting of H, Ar_3 , and a C_{1-6} straight or branched alkyl group optionally substituted with $-Ar_3$, $-CONH_2$, $-OR_5$, -OH, $-OR_9$, or $-CO_2H$;

 OR_{13} is optionally -N(H)-OH;

each R_{21} is independently selected from the group consisting of -H or a -C₁₋₆ straight or branched alkyl group;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, and -NH-, $-N(R_5)-$, and $-N(R_9)-$ said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of $-NH_2$, $-CO_2H$, -Cl, -F, -Br, -I, $-NO_2$, -CN, =O, -OH, -perfluoro C_{1-3} alkyl, R_5 , $-OR_5$, $-NHR_5$, $-OR_9$, $-NHR_9$, $-R_9$, $-C(O)-R_{10}$, and

- 793 -

$$(\underline{\underline{II}}) \qquad (\underline{\bigcap_{m}} OR_{13}$$

wherein:

m is 1 or 2;

 R_1 is:

5 (e10)

 R_3 is -C(0)-H;

 R_5 is selected from the group consisting of:

;

 $-S(0)_2-R_9$,

10 $-S(0)_2-NH-R_{10}$,

 $-C(0)-C(0)-R_{10}$,

 $-R_9$, and

 $-C(0)-C(0)-OR_{10};$

15 X_5 is CH;

 Y_2 is H_2 or O;

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each $\rm R_{10}$ is independently selected from the group consisting of -H, -Ar_3, a -C_{3-6} cycloalkyl group, and a

5

10

20

25

and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings, and a heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, -NH-, -N(R_5)-, and -N(R_9)- said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by -Q₁;

each Q_1 is independently selected from the group consisting of $-NH_2$, $-CO_2H$, -Cl, -F, -Br, -I, $-NO_2$, -CN, =O, -OH, -perfluoro C_{1-3} alkyl, R_5 , $-OR_5$, $-NHR_5$, $-OR_9$, $-NHR_9$, $-R_9$, $-C(O)-R_{10}$, and

provided that when $-Ar_3$ is substituted with a \mathbb{Q}_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

33. A compound represented by the formula:

- 791 -

 Y_2 is H_2 or O;

5

10

20

25

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

 $\rm R_{13}$ is selected from the group consisting of H, Ar₃, and a C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, -CONH₂, -OR₅, -OH, -OR₉, or -CO₂H;

OR₁₃ is optionally -N(H)-OH;

each R_{21} is independently selected from the group consisting of -H or a - C_{1-6} straight or branched alkyl group;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, and -NH-, -N(R_5)-, and -N(R_9)- said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings,

5

with -Ar₃ wherein Ar₃ is phenyl;

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

32. A compound represented by the formula:

wherein:

10 m is 1 or 2;

 R_1 is:

 $R_3 \text{ is } -C(O) - CH_2 - T_1 - R_{11}; \ T_1 \text{ is } O; \text{ and } R_{11} \text{ is}$ $-C(O) - Ar_4;$

 R_5 is selected from the group consisting of: $-S(0)_2-R_9$,

 $-S(0)_2-NH-R_{10}$,

 $-C(0)-C(0)-R_{10}$,

 $-R_9$, and $-C(0)-C(0)-OR_{10}$;

 X_5 is CH;

- 789 -

wherein the phenyl is optionally substituted with Q_1 ;

 R_{21} is -H or -CH₃;

 Ar_2 is (hh);

Y is 0;

5

10

each Ar_3 cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, pyrazolyl, thiazolyl, isoxazolyl, benzotriazolyl, benzimidazolyl, thienothienyl, imidazolyl, thiadiazolyl, benzo[b]thiophenyl, pyridyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 cyclic group is independently selected from the set consisting of phenyl, tetrazolyl, pyridinyl, oxazolyl, naphthyl, pyrimidinyl, and thienyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of -NH₂, -Cl, -F, -Br, -OH, -R₉, -NH-R₅ wherein R₅ is -C(0)-R₁₀ or -S(0)₂-R₉, -OR₅ wherein R₅ is -C(0)-R₁₀, -OR₉, -NHR₉, and

25

20

wherein each $\rm R_9$ and $\rm R_{10}$ are independently a $^{-\rm C}_{1-6}$ straight or branched alkyl group optionally substituted

PCT/US96/20843

- 788 -

O /\ CH₂,

5

wherein each R_9 and R_{10} are independently a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$ wherein Ar_3 is phenyl;

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

30. The compound according to claims 26 or 27, wherein R_5 is selected from the group consisting of:

 $-S(0)_2-R_9$,

 $-S(0)_2-NH-R_{10}$,

 $-C(0)-C(0)-R_{10}$,

 $-R_9$, and

 $-C(0)-C(0)-OR_{10}$.

31. The compound according to claim 30, wherein:

m is 1;

25

30

T₁ is O or S;

 $\rm R_{13}$ is H or a $\rm C_{1-4}$ straight or branched alkyl group optionally substituted with -Ar_3, -OH, -OR_9, -CO_2H, wherein the R_9 is a $\rm C_{1-4}$ branched or straight chain alkyl group; wherein Ar_3 is morpholinyl or phenyl,

- 787 -

 T_1 is 0 or S_i

 R_{13} is H or a C_{1-4} straight or branched alkyl group optionally substituted with $-Ar_3$, -OH, $-OR_9$, $-CC_2H$, wherein the R_9 is a C_{1-4} branched or straight chain alkyl group; wherein Ar_3 is morpholinyl or phenyl, wherein the phenyl is optionally substituted with Q_3 ;

 R_{21} is -H or -CH₃;

 Ar_2 is (hh);

Y is 0;

10

15

each Ar_3 cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, pyrazolyl, thiazolyl, isoxazolyl, benzotriazolyl, benzimidazolyl, thienothienyl, imidazolyl, thiadiazolyl, benzo[b]thicphenyl, pyridyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 cyclic group is independently selected from the set consisting of phenyl, tetrazolyl, pyridinyl, oxazolyl, naphthyl, pyrimidinyl, and thienyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of $-NH_2$, -Cl, -F, -Br, -OH, $-R_9$, $-NH-R_5$ wherein R_5 is $-C(O)-R_{10}$ or $-S(O)_2-R_9$, $-OR_5$ wherein R_5 is $-C(O)-R_{10}$, $-OR_9$, $-NHR_9$, and

heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, -NH-, -N(R_5)-, and -N(R_9)- said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by - Q_1 ;

each Q_1 is independently selected from the group consisting of $-NH_2$, $-CO_2H$, -Cl, -F, -Br, -I, $-NO_2$, -CN, =O, -OH, -perfluoro C_{1-3} alkyl, $-R_5$, $-OR_5$, $-NHR_5$, $-OR_9$, $-NHR_9$, $-R_9$, $-C(O)-R_{10}$, and

15

20

10

5

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

28. The compound according to claims 26 or 27, wherein R_5 is selected from the group consisting of:

25 $-C(0)-R_{10}$, $-C(0)O-R_{9}$, and $-C(0)-NH-R_{10}$.

29. The compound according to claim 28, wherein:

30 m is 1;

- 785 -

consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

 R_{13} is selected from the group consisting of H, Ar₃, and a C_{1-6} straight or branched alkyl group optionally substituted with -Ar₃, -CONH₂, -OR₅, -OH, -OR₉, or -CO₂H;

 OR_{13} is optionally -N(H)-OH;

15

20

each R_{21} is independently selected from the group consisting of -H or a - C_{1-6} straight or branched alkyl group;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, and -NH-, $-N(R_5)$ -, and $-N(R_9)$ - said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar₄ is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings, and a heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said

- 784 -

(e10)
$$R_{21} \longrightarrow X_{5} \longrightarrow X_{5}$$

$$R_{5} - N \longrightarrow X_{5} \longrightarrow X_{5}$$

 R_3 is -C(0)-CH₂-T₁-R₁₁ and R_{11} is -(CH₂)₁₋₃-Ar₄;

 R_5 is selected from the group consisting of:

5 $-C(0)-R_{10}$, $-C(0)O-R_{9}$,

10

15

25

-C(O)-N

 $-S(0)_2-R_9$,

 $-C(0)-CH_2-O-R_9$,

 $-C(0)C(0)-R_{10}$

-R₉,

-H, and

 $-C(0)C(0)-OR_{10}$

 X_5 is CH;

 Y_2 is H_2 or O;

each T_1 is independently selected from the group consisting of -O-, -S-, -S(0)-, and -S(0)₂-;

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group

- 783 -

containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of $-NH_2$, $-CO_2H$, -Cl, -F, -Br, -I, $-NO_2$, -CN, =0, -OH, -perfluoro C_{1-3} alkyl, R_5 , $-OR_5$, $-NHR_5$, $-OR_9$, $-NHR_9$, $-R_9$, $-C(O)-R_{10}$, and

O / \ CH₂;

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

27. A compound represented by the formula:

 $(II) \qquad \begin{array}{c} O \\ ()m \\ R_1 - N \\ H \end{array} \qquad \begin{array}{c} R_3 \end{array}$

wherein:

20

m is 1 or 2;

R₁ is:

10

15

20

25

group, in which any ring may optionally be singly or multiply substituted by $-Q_1$ or phenyl, optionally substituted by Q_1 :

(hh) , and (ii) ,
$$(ii)$$

wherein each Y is independently selected from the group consisting of O and S;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from $-O_-$, $-S_-$, $-SO_-$, SO_2 , $=N_-$, and $-NH_-$, $-N(R_5)_-$, and $-N(R_9)_-$ said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings, and a heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, -NH-, -N(R_5)-, and -N(R_9)- said heterocycle group optionally

- 781 -

 $-S(O)_2-R_9$, $-C(O)-CH_2-O-R_9$, $-C(O)C(O)-R_{10}$, $-R_9$, -H, and $-C(O)C(O)-OR_{10}$.

 X_5 is CH;

5

15

20

 Y_2 is H_2 or O;

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

 R_{13} is selected from the group consisting of H, Ar_3 , and a C_{1-6} straight or branched alkyl group optionally substituted with $-Ar_3$, $-CONH_2$, $-OR_5$, -OH, $-OR_9$, or $-CO_2H$;

 OR_{13} is optionally -N(H)-OH;

each R_{21} is independently selected from the group consisting of -H or a -C $_{1-6}$ straight or branched alkyl group;

 Ar_2 is independently selected from the following

wherein each R_9 and R_{10} are independently a $^{-C}_{1-6}$ straight or branched alkyl group optionally substituted with $^{-A}r_3$ wherein Ar_3 is phenyl;

provided that when -Ar $_3$ is substituted with a \mathbb{Q}_1 group which comprises one or more additional -Ar $_3$ groups, said additional -Ar $_3$ groups are not substituted with another -Ar $_3$.

26. A compound represented by the formula:

10

wherein:

m is 1 or 2;

 R_1 is:

(e10)

R₂₁ X₅ X₅

 R_3 is -CO-Ar₂;

 $\ensuremath{R_{5}}$ is selected from the group consisting of:

$$-C(0)-R_{10}$$
,

-C(O)-N

20

15

- 779 -

wherein the R_9 is a C_{1-4} branched or straight chain alkyl group; wherein Ar_3 is morpholinyl or phenyl, wherein the phenyl is optionally substituted with Q_1 ;

 R_{21} is -H or -CH₃;

5 Ar_2 is (hh);

Y is 0;

each Ar₃ cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, pyrazolyl, thiazolyl, isoxazolyl, benzotriazolyl, benzimidazolyl, thienothienyl, imidazolyl, thiadiazolyl, benzo(b)thiophenyl, pyridyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by -Q₁;

each Ar_4 cyclic group is independently selected from the set consisting of phenyl, tetrazolyl, pyridinyl, oxazolyl, naphthyl, pyrimidinyl, and thienyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of $-NH_2$, -Cl, -F, -Br, -OH, $-R_9$, $-NH-R_5$ wherein R_5 is $-C(0)-R_{10}$ or $-S(0)_2-R_9$, $-OR_5$ wherein R_5 is $-C(0)-R_{10}$, $-OR_9$, $-NHR_9$, and

25

20

PCT/US96/20843

WO 97/22619

- 778 -

5

wherein each \mbox{R}_{9} and \mbox{R}_{10} are independently a $\mbox{-C}_{1-6}$ straight or branched alkyl group optionally substituted with -Ar3 wherein Ar3 is phenyl;

provided that when $-Ar_3$ is substituted with a Q_1 10 group which comprises one or more additional -Ar3 groups, said additional -Ar3 groups are not substituted with another -Ar3.

24. The compound according to any one of claims 19-21, wherein R_5 is selected from the group 15 consisting of:

$$-S(0)_2-R_9$$
,

$$-S(0)_2-NH-R_{10}$$
,

$$-C(0)-C(0)-R_{10}$$
,

20 $-R_9$, and

$$-C(0)-C(0)-OR_{10}$$
.

25. The compound according to claim 24, wherein:

m is 1;

25

 T_1 is 0 or S, provided that when R_3 is $-C(0)-CH_2-T_1-R_{11}$, T_1 is 0;

 R_{13} is H or a C_{1-4} straight or branched alkyl group optionally substituted with -Ar $_3$, -OH, -OR $_9$, -CO $_2$ H, 30

- 777 -

provided that when ${\tt R}_3$ is -C(O)-CH $_2$ -T $_1$ -R $_{11}$, T $_1$ is O;

 R_{13} is H or a C_{1-4} straight or branched alkyl group optionally substituted with -Ar₃, -OH, -OR₉, -CO₂H, wherein the R₉ is a C_{1-4} branched or straight chain alkyl group; wherein Ar₃ is morpholinyl or phenyl, wherein the phenyl is optionally substituted with Q_1 ;

 R_{21} is -H or -CH₃;

 Ar_2 is (hh);

10 Y is O;

5

each Ar₃ cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, pyrazolyl, thiazolyl, isoxazolyl, benzotriazolyl, benzimidazolyl, thienothienyl, imidazolyl, thiadiazolyl, benzo[b]thiophenyl, pyridyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by -Q₁;

- each Ar_4 cyclic group is independently selected from the set consisting of phenyl, tetrazolyl, pyridinyl, oxazolyl, naphthyl, pyrimidinyl, and thienyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;
- each Q_1 is independently selected from the group consisting of $-NH_2$, -Cl, -F, -Br, -OH, $-R_9$, $-NH-R_5$ wherein R_5 is $-C(O)-R_{10}$ or $-S(O)_2-R_9$, $-OR_5$ wherein R_5 is $-C(O)-R_{10}$, $-OR_9$, $-NHR_9$, and

PCT/US96/20843

- 776 -

16. The compound according to claim 8, wherein R_1 is (e10) and X_5 is N.

- 17. The compound according to claim 16, wherein R₃ is CO-Ar₂.
- 18. The compound according to claim 16, 5 wherein R_3 is -C(0)-CH₂-T₁-R₁₁ and R_{11} is -(CH₂)₁₋₃-Ar₄.
 - The compound according to claim 16, 19. wherein:

 R_3 is $-C(0)-CH_2-T_1-R_{11}$; 10 T_1 is 0; and R_{11} is -C(0)-Ar₄.

- The compound according to claim 16, wherein R_3 is -C(0)-H.
- 21. The compound according to claim 16, wherein R_3 is -CO-CH₂-T₁-R₁₁ and R_{11} is -Ar₄. 15
 - 22. The compound according to any one of claims 19-21, wherein R5 is selected from the group consisting of:

 $-C(0)-R_{10}$, $-C(0)O-R_9$, and 20 $-C(0)-NH-R_{10}$.

> 23. The compound according to claim 22, wherein:

> > m is 1;

25

 T_1 is 0 or S,

- 775 **-**

Y is 0;

5

30

each Ar_3 cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, thiazolyl, benzimidazolyl, thienothienyl, thiadiazolyl, benzotriazolyl, benzo[b]thiophenyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 cyclic group is independently selected from the set consisting of phenyl, tetrazolyl, naphthyl, pyridinyl, oxazolyl, pyrimidinyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q₁ is independently selected from the group consisting of -NH₂, -Cl, -F, -Br, -OH, -R₉, -NH-R₅ wherein R₅ is -C(O)-R₁₀ or -S(O)₂-R₉, -OR₅ wherein R₅ is -C(O)-R₁₀, -OR₉, -NHR₉, and

20 /\ CH₂,

wherein each R_9 and R_{10} are independently a $-C_{1-\epsilon}$ 25 straight or branched alkyl group optionally substituted with $-Ar_3$ wherein Ar_3 is phenyl;

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

5

m is 1;

ring C is benzo, pyrido, or thieno;

 R_3 is selected from the group consisting of -C(0)-H, $-C(0)-Ar_2$, and $-C(0)CH_2-T_1-R_{11}$;

 R_5 is selected from the group consisting of:

-C(O)- R_{10} , wherein R_{10} is -Ar₃;

-C(0)0-R₉, wherein R₉ is -CH₂-Ar₃;

 $-C(0)C(0)-R_{10}$, wherein R_{10} is $-Ar_3$;

 $-R_9$, wherein R_9 is a C_{1-2} alkyl group

10 substituted with -Ar₃; and

-C(0)C(0)-OR₁₀, wherein R_{10} is -CH₂Ar₃;

 T_1 is 0 or S;

R6 is H;

15 $R_8 \text{ is selected from the group consisting } -C(O) - R_{10}, \\ -C(O) - CH_2 - OR_{10}, \text{ and } -C(O) CH_2 - N(R_{10}) (R_{10}), \text{ wherein } R_{10} \text{ is} \\ H, CH_3, \text{ or } -CH_2CH_3;$

 R_{11} is selected from the group consisting of -Ar₄, -(CH₂)₁₋₃-Ar₄, and -C(O)-Ar₄;

 $R_{13} \text{ is H or a C_{1-4} straight or branched alkyl group optionally substituted with $-Ar_3$, $-OH$, $-OR_9$, $+CO_2H$, wherein the R_9 is a C_{1-4} branched or straight chain alkyl group; wherein Ar_3 is morpholinyl or phenyl, wherein the phenyl is optionally substituted with Q_1;$

25 Ar_2 is (hh);

- 773 -

each Q_1 is independently selected from the group consisting of -NH₂, -CO₂H, -Cl, -F, -Br, -I, -NO₂, -CN, =O, -OH, -perfluoro C₁₋₃ alkyl, R₅, -OR₅, -NHR₅, -OR₉, -NHR₉, -R₉, -C(O)-R₁₀, and

5

10

provided that when -Ar $_3$ is substituted with a $\rm Q_1$ group which comprises one or more additional -Ar $_3$ groups, said additional -Ar $_3$ groups are not substituted with another -Ar $_3$.

- 9. The compound according to claim 8, wherein R_1 is (ell).
 - 10. The compound according to claim 8, wherein $\ensuremath{R_1}$ is (e12).
- $\label{eq:compound} \mbox{ 11. The compound according to claim 8,} \\ \mbox{ 20 } \mbox{ wherein R_1 is (y1).}$
 - 12. The compound according to claim 8, wherein $\ensuremath{\text{R}}_1$ is (y2).
 - \$13.\$ The compound according to claim 8, wherein and R_{T} is (z).
- - 15. The compound according to claim 14, wherein:

- 772 -

10

15

20

25

wherein each Y is independently selected from the group consisting of O and S;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, and -NH-, -N(R_5)-, and -N(R_9)- said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by -Q1;

each Ar_4 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings, and a heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from $-O^-$, $-S^-$, $-SO^-$, SO_2 , $=N^-$, $-NH^-$, $-N(R_5)^-$, and $-N(R_9)^-$ said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

- 771 -

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

each R_{11} is independently selected from the group consisting of:

-Ara,

-(CH₂)₁₋₃-Ar₄,

-H, and

 $-C(0)-Ar_4;$

 R_{13} is selected from the group consisting of H, Ar_3 , and a C_{1-6} straight or branched alkyl group optionally substituted with $-Ar_3$, $-CONH_2$, $-OR_5$, -OH, $-OR_9$, or $-CO_2H$;

OR₁₃ is optionally -N(H)-OH;

each $\rm R_{21}$ is independently selected from the group consisting of -H or a -C $_{1-6}$ straight or branched alkyl group;

Ar₂ is independently selected from the following group, in which any ring may optionally be singly or multiply substituted by $-Q_1$ or phenyl, optionally substituted by Q_1 :

PCT/US96/20843

- 770 -

 Y_2 is H_2 or O;

$$X_7$$
 is $-N(R_8)$ - or -O-;

each T_1 is independently selected from the group 15 consisting of -O-, -S-, -S(0)-, and -S(0) $_2$ -;

> R_6 is selected from the group consisting of -H and $-CH_3;$

20

 R_8 is selected from the group consisting of:

$$-C(0) - R_{10},$$

$$-C(0) O - R_{9},$$

$$-C(0) - NH - R_{10},$$

$$-S(0)_{2} - R_{9},$$

$$-S(0)_{2} - NH - R_{10},$$

$$-C(0) - CH_{2} - OR_{10},$$

$$-C(0) C(0) - R_{10},$$

$$-C(0) - CH_{2} - N(R_{10})(R_{10}),$$

$$-C(0) - CH_{2}C(0) - O - R_{9},$$

$$-C(0) - CH_{2}C(0) - R_{9},$$

-H, and

-C(O)-C(O)-OR₁₀;

- 769 -

$$\begin{array}{c}
(z) \\
R_5 - N \\
H
\end{array}$$
; and

ring C is chosen from the group consisting of benzo, pyrido, thieno, pyrrolo, furano, thiazolo, isothiazolo, oxazolo, isoxazolo, pyrimido, imidazolo, cyclopentyl, and cyclohexyl;

> R_3 is selected from the group consisting of: -CN, -C(O)-H,

10

 $\ensuremath{\mathsf{R}}_5$ is selected from the group consisting of: $-C(0)-R_{10}$, 20 -C(O)O-R9,

provided that when -Ar $_3$ is substituted with a \mathcal{Q}_1 group which comprises one or more additional -Ar $_3$ groups, said additional -Ar $_3$ groups are not substituted with another -Ar $_3$.

5

8. A compound represented by the formula:

wherein:

m is 1 or 2;

10

 $\ensuremath{\text{R}}_1$ is selected from the group consisting of the following formulae:

(e10)

, wherein X_5 is N;

;

(e11)

15

(e12)

(w2)

$$R_{8}$$
 R_{5}
 R_{5}
 R_{6}
 R_{6}
 R_{6}

- 767 -

 R_{13} is H or a C_{1-4} straight or branched alkyl group optionally substituted with $-Ar_3$, -OH, $-OR_9$, $-CO_2H$, wherein the R_9 is a C_{1-4} branched or straight chain alkyl group; wherein Ar_3 is morpholinyl or phenyl, wherein the phenyl is optionally substituted with Q_1 ;

 R_{21} is -H or -CH₃;

 R_{51} is a C_{1-6} straight or branched alkyl group optionally substituted with $-Ar_3$, wherein Ar_3 is phenyl, optionally substituted by $-Q_1$;

10 each Ar₃ cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, pyrazolyl, thiazolyl, isoxazolyl, benzotriazolyl, benzimidazolyl, thienothienyl, imidazolyl, thiadiazolyl, benzo[b]thiophenyl, pyridyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by -Q₁;

each Q_1 is independently selected from the group consisting of $-NH_2$, -Cl, -F, -Br, -OH, $-R_9$, $-NH-R_5$ wherein R_5 is $-C(0)-R_{10}$ or $-S(0)_2-R_9$, $-OR_5$ wherein R_5 is $-C(0)-R_{10}$, $-OR_9$, $-NHR_9$, and

wherein each R_9 and R_{10} are independently a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$ wherein Ar_3 is phenyl;

30

20

25

5

each Q_1 is independently selected from the group consisting of -NH₂, -CO₂H, -Cl, -F, -Br, -I, -NO₂, -CN, =O, -OH, -perfluoro C₁₋₃ alkyl, R₅, -OR₅, -NHR₅, -OR₉, -NHR₉, -R₉, -C(O)-R₁₀, and

5

10

provided that when -Ar $_3$ is substituted with a Q_1 group which comprises one or more additional -Ar $_3$ groups, said additional -Ar $_3$ groups are not substituted with another -Ar $_3$.

$$-C(0)-R_{10}$$
,

 $-C(0)O-R_9$, and

 $-C(0)-NH-R_{10}$.

20 6. The compound according to claim 4, wherein R_5 is selected from the group consisting of:

$$-S(0)_2-R_9$$
,

$$-S(0)_2-NH-R_{10}$$
,

$$-C(0)-C(0)-R_{10}$$
,

 $-R_9$, and

 $-C(0)-C(0)-OR_{10}$.

7. The compound according to claims 5 or ϵ , wherein:

m is 1;

- 765 -

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

 R_{13} is selected from the group consisting of H, Ar₃, and a C_{1-6} straight or branched alkyl group optionally substituted with -Ar₃, -CONH₂, -OR₅, -OH, -OR₉, or -CO₂H;

5

15

20

25

each R_{51} is independently selected from the group consisting of R_9 , $-C(0)-R_9$, $-C(0)-N(H)-R_9$, or each R_{51} taken together forms a saturated 4-8 member carbocyclic ring or heterocyclic ring containing -O-, -S-, or -NH-;

each R_{21} is independently selected from the group consisting of -H or a $-C_{1-6}$ straight or branched alkyl group;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from $-O_-$, $-S_-$, $-SO_-$, SO_2 , $=N_-$, and $-NH_-$, said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

- 764 -

5
$$X_5$$
 is -CH- or -N-;
 Y_2 is H_2 or O ;

 X_7 is $-N(R_8)$ - or -O-;

10

30

 $\ensuremath{\text{R}_6}$ is selected from the group consisting of -H and -CH3;

 R_{B} is selected from the group consisting of:

15
$$-C(0) - R_{10},$$

$$-C(0) O - R_{9},$$

$$-C(0) - N(H) - R_{10},$$

$$-S(0)_{2} - R_{9},$$

$$-S(0)_{2} - NH - R_{10},$$

$$-C(0) - CH_{2} - OR_{10},$$

$$-C(0) C(0) - R_{10};$$

$$-C(0) - CH_{2}N(R_{10})(R_{10}),$$

$$-C(0) - CH_{2}C(0) - O - R_{9},$$

$$-C(0) - CH_{2}C(0) - R_{9},$$

$$-H, and$$

$$-C(0) - C(0) - C(0) - OR_{10};$$

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

- 763 -

$$\begin{array}{c} X_{1} \\ X_{2} \\ X_{3} \\ X_{N} \\$$

ring C is chosen from the group consisting of benzo, pyrido, thieno, pyrrolo, furano, thiazolo, isothiazolo, oxazolo, isoxazolo, pyrimido, imidazolo, 5 cyclopentyl, and cyclohexyl;

 R_2 is:

a)
$$(rm_0)$$
, or rm_0

10 m is 1 or 2;

 $\ensuremath{\mathsf{R}}_5$ is selected from the group consisting of:

20
$$-S(0)_2-R_9$$
, $-C(0)-CH_2-O-R_9$,

(e11)
$$R_{5}-N$$

$$(y2) \qquad \qquad X_7 \qquad X_7 \qquad \qquad X_{1} \qquad \qquad X_{2} \qquad \qquad X_{3} \qquad \qquad X_{4} \qquad \qquad X_{5} \qquad \qquad X_{7} \qquad \qquad X$$

- 761 -

3. The compound according to claims 1 or 2, wherein the $\ensuremath{R_{1}}$ group is:

(w1) $\begin{array}{c|c} X_{2} & & \\ R_{6} & & \\ N & C & C \\ \vdots & \vdots & \vdots \\ H & O \end{array}$; wherein

10

optionally substituted with ${\rm R}_5$ or ${\rm Q}_1$ at ${\rm X}_2$ when ${\rm X}_2$ is -NH-; and

ring C is benzo substituted with $-C_{1-3}$ alkyl, $-O-C_{1-3}$ alkyl, -Cl, -F or $-CF_3$.

4. A compound represented by the formula:

$$\begin{array}{ccc}
(\underline{I}) & R_1 - N - R_2 \\
\downarrow & H
\end{array}$$

wherein:

 R_1 is selected from the group consisting of the following formulae:

₩O 97/22619

5

- 760 -

PCT/US96/20843

 R_7 is -H and R_6 is: -H, -R₉, or -Ar₁;

 R_9 is a C_{1-6} straight or branched alkyl group optionally substituted with =0 and optionally substituted with -Ar₁;

10 R_{10} is H or a $-C_{1-3}$ straight or branched alkyl group;

20

15

Q₁ is R₉ or -(CH₂)_{0,1,2}-T₁-(CH₂)_{0,1,2}-Ar₁, wherein T₁ is -O- or -S-;

each X is independently selected from the group consisting of =N-, and -CH-;

each X_2 is independently selected from the group consisting of -O-, -CH₂-, -NH-, -S-, -SO-, and -SO₂-.

- 759 -

```
X_2 is O,
                    R_5 is benzyloxycarbonyl, and
                    ring C is benzo,
              then R_3 cannot be -CO-R_{13} when:
  5
                    R_{13} is -CH_2-O-Ar_1 and
                    Ar<sub>1</sub> is 1-phenyl-3-trifluoromethyl-
        pyrazole-5-yl wherein the phenyl is optionally
        substituted with a chlorine atom;
              or when
10
                    R_{13} is -CH_2-O-CO-Ar_1, wherein
                   Ar_1 is 2,6-dichlorophenyl.
                    2. The compound according to claim 1,
        wherein:
             X_1 is -CH;
15
              g is 0;
             J is -H;
             m is 0 or 1 and T is -CO-CO_2H, or any bioisosteric
        replacement for -CO_2H, or
20
             m is 1 and T is -CO_2H;
             ring C is benzo optionally substituted with
       -C_{1-3} alkyl, -O-C_{1-3} alkyl, -Cl, -F or -CF_3;
             R<sub>5</sub> is:
                   -CO-Ar<sub>1</sub>
25
                  -SO_2-Ar_1
                  -CO-NH<sub>2</sub>
                  -CO-NH-Ar<sub>1</sub>
                  -CO-R9,
```

PCT/US96/20843

- 758 -

each \mathbf{Q}_1 is independently selected from the group consisting of:

 $-Ar_1$ -0-Ar₁ -Rg, 5 $-T_1-R_9$, and $-(CH_2)_{1,2,3}-T_1-R_9;$

15

30

each Q_2 is independently selected from the group consisting of -OH, -NH $_2$, -CO $_2$ H, -Cl, -F, -Br, -I, 10

> $-NO_2$, -CN, $-CF_3$, and CH₂;

provided that when $-Ar_1$ is substituted with a Q_1 group which comprises one or more additional -Ar₁ groups, said additional -Ar₁ groups are not substituted with Q_1 ;

each X is independently selected from the group 20 consisting of =N-, and =CH-;

> each X_2 is independently selected from the group consisting of -O-, -CH $_2$ -, -NH-, -S-, -SO-, and -SO $_2$ -;

each Y is independently selected from the group 25 consisting of -O-, -S-, and -NH;

provided that when

g is 0, J is -H, m is 1, T is $-CO_2H$,

- 757 -

atoms and between 1 and 3 rings, said heterocycle group containing at least one heteroatom group selected from -O-, -S-, -SO-, $-SO_2-$, =N-, and -NH-, said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted with $-NH_2$, $-CO_2H$, -Cl, -F, -Br, -I, $-NO_2$, -CN,

10 =0, -OH, -perfluoro C_{1-3} alkyl, CH_2 , or $-Q_1$;

each Ar_2 is independently selected from the following group, in which any ring may optionally be singly or multiply substituted by $-Q_1$ and $-Q_2$:

$$(ii) \qquad \qquad \bigvee_{\mathbf{x} = \mathbf{x}} \qquad ;$$

$$(jj)$$
 ; and

20

5

$$(kk) \qquad - \sqrt{\sum_{\mathbf{v} = \mathbf{x}}^{\mathbf{v}}}$$

PCT/US96/20843

- 756 -

15

R₆ is: - H -Ar1, 10 -Rg, $-(CH_2)_{1,2,3}-T_1-R_9$, or an α -amino acid side chain residue;

each R_9 is a C_{1-6} straight or branched alkyl group optionally singly or multiply substituted with -OH, -F, or =0 and optionally substituted with one or two Ar₁ groups;

each R_{10} is independently selected from the group consisting of -H or a C_{1-6} straight or branched alkyl group;

each R_{13} is independently selected from the group 20 consisting of $-Ar_2$, $-R_4$ and -N-OH

each Ar_1 is a cyclic group independently selected from the set consisting of an aryl group which contains 25 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings, a cycloalkyl group which contains between 3 and 15 carbon atoms and between 1 and 3 rings, said cycloalkyl group being optionally benzofused, and a heterocycle group containing between 5 and 15 ring 30

- 755 -

```
-S-,
                    -SO-,
                    -SO<sub>2</sub>-,
                    -NR_{10}-,
                    -NR<sub>10</sub>-CO-,
   5
                    -CO-,
                    -O-CO-,
                    -co-o-,
                    -CO-NR_{10}-,
                    -O-CO-NR<sub>10</sub>-,
 10
                   -NR<sub>10</sub>-CO-O-,
                   -NR_{10}-CO-NR_{10}-,
                   -SO_2-NR_{10}-,
                   -NR_{10}-SO_{2}-,
 15
                   -NR<sub>10</sub>-SO<sub>2</sub>-NR<sub>10</sub>-;
                   each R_5 is independently selected from the group
           consisting of:
                   -H,
                   -Ar_1,
                   -co-Ar<sub>1</sub>,
20
                   -so_2-Ar_1,
                   -CO-NH<sub>2</sub>,
                   -SO_2-NH_2,
                   -Rq,
                  -CO-R<sub>9</sub>,
25
                   -CO-O-R<sub>9</sub>,
                  -SO<sub>2</sub>-R<sub>9</sub>,
                          /Ar_1
                   -CO-N
30
                          \R_{10},
                  -so<sub>2</sub>-N
```

- 754 -

wherein each ring C is independently chosen from the group consisting of benzo, pyrido, thieno, pyrrolo, furano, thiazolo, isothiazolo, oxazolo, isoxazolo, pyrimido, imidazolo, cyclopentyl, and cyclohexyl;

R₃ is: -CN, -CH=CH-R₉, -CH=N-O-R₉, -(CH₂)₁₋₃-T₁-R₉, -CJ₂-R₉, -CO-R₁₃, or /R₅ -CO-CO-N \R₁₀;

each $\ensuremath{R_4}$ is independently selected from the group consisting of:

-H, $-Ar_1$, $-R_9$, $-T_1-R_9$, and $-(CH_2)_{1,2,3}-T_1-R_9$;

CH=CH-,

- 753 -

CLAIMS

We claim:

1. A compound represented by the formula:

5 $\alpha \qquad \qquad \begin{array}{c} \text{(CJ}_2)_m\text{-T} \\ \text{(CH}_2)_g\text{-R}_3 \end{array}$

wherein:

10 X_1 is -CH;

g is 0 or 1;

each J is independently selected from the group consisting of -H, -OH, and -F, provided that when a first and second J are bound to a C and said first J is -OH, said second J is -H;

m is 0, 1, or 2;

T is -OH, -CO-CO $_2$ H, -CO $_2$ H, or any bioisosteric replacement for -CO $_2$ H;

 R_1 is selected from the group consisting of the following formulae, in which any ring may optionally be singly or multiply substituted at any carbon by Q_1 , at any nitrogen by R_5 , or at any atom by =0, -OH, $-CO_2H$, or halogen; and any saturated ring may optionally be unsaturated at one or two bonds;

1.5

Compound	R ⁴	R ³
764	H ₅ C NH O	HO
765	N C CI	HO.
766	H N N H	0
767	OH OH	9 €

The data of the examples above demonstrate that compounds according to this invention display inhibitory activity towards IL-1ß Converting Enzyme.

Insofar as the compounds of this invention are able to inhibit ICE in vitro and furthermore, may be 10 delivered orally to mammals, they are of evident clinical utility for the treatment of IL-1-, apoptosis-, IGIF-, and IFN-y mediated diseases. These tests are predictive of the compounds ability to inhibit ICE in vivo.

While we have described a number of embodiments of this invention, it is apparent that our basic constructions may be altered to provide other embodiments which utilize the products and processes of this invention. Therefore, it will be appreciated that the scope 20 of this invention is to be defined by the appended claims, rather than by the specific embodiments which have been presented by way of example.

- 751 -

Compound	R ⁴	R ³
753	H ₃ C O O H ₃ C O H ₃ C	HOUL
754	.o_Nt.]	HO
755	- N	но
756	H-000	HO
757	CH CH	HOLI
758	, , , , , , , , , , , , , , , , , , ,	HO HO
759	H ₃ C H O	но
760	H ₃ C + 0	но Т
761	2 - Z - Z - Z - Z - Z - Z - Z - Z - Z -	HO
762	HO N	НО
763	HC O.N	HOLI

5

	- 750 -	
Compound	R ⁴	R ³
742		P O
743		HD HO
744		0={ £
745	0={=>	HO J
746	045)	Ю
747	O H OCH	PO T
748	0 = 5 5 = 5	0 1 0
749	H _{CO} N OOH	HO
750	HO	Ю
751	HO N	Ю
752	CI OCH3	но

5

- 749 -

Example 35

Compounds 736-767 were prepared by methods similar to the methods used to prepare compounds 619-635 (see, Example 13). Physical data for compounds 5 736-767 is listed in Table 30.

Table 30

Compound	R ⁴	R ³
736	O O	HO
737		но ј
738	H ₂ CO N	HOJ
739	NH H ₃ C CH ₃	HOJ
740	H CO	HD I
741		HOJ

	_	
MS (M+Na)+	630.6	632.1
RT V	ж б б	92%
HPLC RT min Purity	9.656	10.887
MM	608.62	609.62
MF	C32H28N607	C28H27N509S
Structure		H ₂ C _{-S} C ₀ H
Compound	734	735

MS (M+Na)+	595.9	565.9
HPLC RT min	88	98 88 65
m M	7.640	7.375
MM	572.53	542.51
MF	C26H28N4O11	C25H26N4O10
Structure	H ₃ C H H ₃ C H H ₄ C H H ₃ C	DE TO THE TOTAL PROPERTY OF THE TOTAL PROPER
Compound	732	733

MS (M+Na) +	572.2	587
	% 96	928
HPLC RT min Purity	3.939	4.298
MW	549.50	563.53
MF	C23H27N5011	C24H29N5O11
Structure	H ₃ C _N H H ₃ C _N H	H ₃ C H H O H O H O H
Compound	730	731

MS (M+Na)+	634.9	607.3
HPLC RT min Purity	11.556	11.611 99%
мМ	610.63	582.57
Σ E	C30H34N4O10	C28H30N4O10
Structure	H ₃ C CH ₃ V OH H ₃ C CH ₃ V OH H ₃ C CH ₃ V OH	HO H
Compound	728	729

MS (M+Na)+	620.8	506.6
RT :Y	Q Q %	92%
HPLC RT min Purity	10.667	9.085
MM	596.60	482.50
MF	C29H32N4O10	C24H26N4O7
Structure	H ₃ C O O H ₃ C O H ₃ C O O O H ₃ C O O O O O O O O O O O O O O O O O O O	T T O T O T T O T O T T O T
Compound	726	727

	T	
MS (M+Na)+	563.1	577.2
RT t <	& 60 60	υ υ ο
HPLC RT min Purity	10.584	11.329
M	538.56	552.59
MF	C27H30N408	C28H32N4O8
Structure	HO NI O HO H	HO H
Compound	724	725

MS (M+Na) +	578.2	564.5
M+M)		
RT ty	86 6	793
HPLC RT min Purity	11.761	10.655
ММ	554.56	540.53
MF	C27H30N4O9	C26H28N4O9
Structure	H ₃ C _H	O T O T O T O T O T O T O T O T O T O T
Compound	722	723

MS (M+Na)+	568.8	640.4
RT ' ^	9008	Q Q So
HPLC RT min Puritv	10	13.241
MM	546.93	616.63
Σ	C24H23C1N409	C32H32N409
Structure	OH OH OH OH	H ₃ C H ₃ C H ₃ C H ₃ C H ₄ C H ₃ C H ₄ C H ₃ C H ₄ C H ₃ C
Compound	720	721

[ab]e 2

- 740 -

Example 34

Compounds 720-73 were prepared by methods similar to the methods used to prepare compounds 619-635 (see, Example 13). Physical data for compounds 5 720-73 is listed in Table 29.

- 739 -

1H), 7.82 (t, 1H), 8.05 (d, 1H), 8.55 (d, 1H), and 9.05 ppm (d, 1H).

- (3S) -3-[(3S) -2-0xo-3-(3,5-dimethyl-4-hydroxybenzoyl)amino-5-methoxyacetyl-2,3,4,5-
- 5 tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4oxobutyric acid, O-2,6-dichlorobenzyl oxime(688c) was
 synthesized via methods used to prepare 308d to afford
 800, ¹H NMR (CD₃OD) δ 2.2 (s, 6H), 2.58-2.83 (m, 2H),
 3.28 (s, 3H), 3.29-3.34 (m, 1H), 3.68-3.80 (m, 2H),
- 10 3.95-4.05 (dd, 1H), 4.38-4.48 (dd, 1H), 4.82-5.00 (m, 2H), 5.26-5.36 (m, 2H), 7.22-7.65 (m, 10H).
 - (3S) -2-Oxo-(2,4-dimethylthiazo-5-yl)amino-5hydroxyacetyl-N-[(2RS,3S) 2-benzyloxy-5-oxotetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-
- benzodiazepine-1-acetamide(800) was synthesized via methods used to prepare 696a-1 to afford 204 mg of 800 as a yellow solid, 1 H NMR(CDCl $_{3}$) (mixture of diastereomers) δ 1.70(s, 1H), 2.40-2.80(m, 7H), 2.80-2.90(m, 0.5H), 2.95-3.05(m, 0.5H), 3.30-3.35(m, 0.5H),
- 20 3.45-3.55(m, 0.5H), 3.55-3.65(m, 1H), 3.80-4.05(m, 2H), 4.30-4.50(m, 2H), 4.55-4.65(m, 1H), 4.75-4.95(m, 3H), 5.45(s, 0.5H), 5.55(d, 0.5H), 6.70(d, 0.5H), 6.90(d, 0.5H), 7.15-7.80(m, 10H)
- (3S)-3-[(3S)-2-0xo-3-(2,4-dimethylthiazo-1-oyl)amino-5hydroxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxobutyric acid(801) was synthesized via methods used to prepare 2002 from 2001 to afford 801.

(m, 3H), 7.65 (m, 1H), 7.75 (t, 1H), 7.85 (t, 1H), 8.00 (d, 1H), 8.55 (d, 1H), and 9.05 ppm (d, 1H).

- (3S)-3-[(3S)-2-Oxo-3-isoquinolin-1-oylamino-5hydroxyacetyl-2,3,4,5-tetrahydro-7-chloro-1H-1,5
 5 benzodiazepine-1-acetylamino]4-oxobutyric acid(696-2)
 was synthesized via methods used to prepare 2002 from
 2001 to afford 250 mg of 696-2as a white solid, ¹H

 NMR(CD₃OD) δ 2.40-2.55(m, 1H), 2.60-2.75(m, 1H), 3.804.00(m, 2H), 4.05(d, 1H), 4.20-4.35(m, 1H), 4.45
 10 4.65(m, 3H), 4.80-5.10(m, 2H)
- (3S)-2-Oxo-3-isoquinolin-1-oylamino-5-methoxyacetyl-N-((2RS,3S) 2-benzyloxy-5-oxo-tetrahydrofuran-3-yl)-2,3,4,5-tetrahydro-7-fluoro-1H-1,5-benzodiazepine-1acetamide(699a-1) was synthesized via methods used to 15 prepare 655 to afford 699a-1 ¹H NMR (500 MHz, CDCl₃) δ 2.55 (ddd, 1H), 2.90 (ddd, 1H), 3.25 (s, 3H), 3.28 (s, 3H), 3.80 (bt, 2H), 3.95 (bm, 2H), 4.25 (dd, 1H), 4.45-4.90 (m, 3H), 5.60 (d, 1H), 7.05- 7.40 (m, 8H), 7.50 (bm, 1H), 7.65- 7.85 (m, 2H), 8.45 (d, 1H), 9.1 (m,
- (3s) -3-[(3s) -2-Oxo-3-isoquinolin-1-oylamino-5-methoxyacetyl-2,3,4,5-tetrahydro-7-fluoro-1H-1,5-benzodiazepine-1-acetylamino]4-oxobutyric acid(699a-2) was synthesized via methods used to prepare 2002 from 2001 to afford 699a-2 ¹H NMR (500 MHz, CD₃OD) δ 2.51 (m, 1H), 2.70 (dt, 1H), 3.31 (bs, 3H), 3.90 (bdt, 1H), 3.95 (bm, 1H), 4.05 (d, 1H), 4.35 (m, 1H), 4.50 (d, 1H), 4.60 (dd, 1H), 4.65 (dt, 1H), 4.80 (m, 1H), 5.05 (m, 1H), 7.35- 7.48 (m, 3H), 7.65 (bm, 1H), 7.75 (t,

- 737 -

(d, 1H), 7.10 (d, 1H), 7.20-7.35 (m, 3H), 7.40-7.50 (m, 1H), 7.60-7.85 (m, 3H), 8.40 (dd, 1H), 9.10 (m, 1H), and 9.30 pp (m, 1H).

- (3S) -2-Oxo-3-isoquinolin-1-oylamino-5-hydroxyacetyl-N-5 [(2RS,3S) 2-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-7-chloro-1H-1,5-benzodiazepine-1acetamide(696a-2) was synthesized via methods used to prepare 677, to afford 204 mg of 696a-2 as a white solid, with the exception that the reduction of the 10 nitro- group was done as follows: To a solution of the nitro compound (7.2 g, 20 mmol) in MeOH was added NH_4Cl (2.1 g, 39 mmol) and Zn (17 g, 260 mmol). The resulting mixture was heated to reflux 1 hour after which it was cooled and filtered through celite. The 15 filtrated was concentrated in vacuo then treated with cold 1N HCl to afford 3.6 g of a pale red solid. 1H NMR(CDCl₃) δ 1.85(s, 1H), 2.45(d, 0.5H), 2.50-2.65(m, 0.5H), 2.80-2.90(m, 0.5H), 2.90-3.00(m, 0.5H), 3.45(s, 0.5H)0.5H), 3.55-3.75(m, 1H), 3.85-4.15(m, 2H), 4.25(d, 1H), 20 4.40-4.65(m, 2H), 4.70-4.80(m, 0.5H), 4.85-5.15(m, 3H), 5.40(s, 0.5H), 5.60(d, 0.5H), 7.00(d, 0.5H), 7.15-7.90(m, 12.5H), 8.35-8.45(m, 1H), 9.00-9.10(m, 1H),
- (3s)-3-[(3s)-2-0xo-3-isoquinolin-1-oylamino-5hydroxyacetyl-2,3,4,5-tetrahydro-7-fluoro-1H-1,5benzodiazepine-1-acetylamino]4-oxobutyric acid(696-1) was synthesized via methods used to prepare 2002 from 2001 to afford 140 mg of 696-1 as a white solid, ¹H NMR (500 MHz, CD₃OD) δ 2.50 (m, 1H), 2.70 (m, 1H), 3.85 (d, 30 1H), 3.95 (m, 1H), 4.10 (d, 1H), 4.35 (m, 1H), 4.50-4.60 (m, 2H), 4.80 (bm, 1H), 5.00 (m, 1H), 7.40- 7.48

9.25-9.40(m, 1H)

- 4.85 (m, 1H), 4.88-5.1 (m, 2H), 5.45 (s, 0.5H), 5.55-5.65 (d, 0.5H), 6.85-6.92 (m, 1H), 7.02-7.13 (m, 2H), 7.24-7.55 (m, 9H).
- 5 (3s)-3-[(3s)-2-Oxo-3-(3,5-dimethyl-4-hydroxybenzoyl)amino-5-methoxyacetyl-2,3,4,5-tetrahydro-7-fluoro-1H-1,5-benzodiazepine-1-acetylamino]4-oxobutyric acid(689b-1) was synthesized via methods used to prepare 2002 from 2001 to afford 689b-1, ¹H NMR (CD₃OD) δ 2.18 (s, 6H), 2.36-2.47 (m, 1H), 2.6-2.72 (m, 1H), 3.34 (s, 3H), 3.66-3.88 (m, 2H), 3.95-4.05 (m, 1H), 4.2-4.78 (m, 5H), 4.9 (m, 1H), 7.3-7.41 (m, 2H), 7.48 (s, 2H), 7.5-7.63 (m, 1H).
- (3S)-3-[(3S)-2-Oxo-3-isoquinolin-1-oylamino-5
 methoxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine1-acetylamino]4-oxobutyric acid (699) was synthesized via methods used to prepare 2002 from 2001 to afford 699 as a white solid, ¹H NMR (500 MHz, CD₃OD) δ 2.50 (m, 1H), 2.70 (m, 1H), 3.25 (s, 3H), 3.80 (bd, 1H),

 20 3.90 (bd, 1H), 4.00 (bd, 1H), 4.30 (m, 1H), 4.50-4.70 (m, 3H), 4.80-4.85 (bt, 1H), 5.00 (bm, 1H), 7.40-7.55 (m, 5H), 7.70 (bm, 1H), 7.85 (bm, 1H), 8.00 (bm, 1H), 8.55 (bd, 1H), and 9.05 ppm (bd, 1H).
- (3S)-2-Oxo-3-isoquinolin-1-oylamino-5-hydroxyacetyl-N[(2RS,3S) 2-benzyloxy-5-oxo-tetrahydrofuran-3-yl]2,3,4,5-tetrahydro-7-fluoro-1H-1,5-benzodiazepine-1acetamide(696a-1) was synthesized via methods used to prepare 656 to afford 800 as a yellow solid, ¹H NMR
 (500 MHz, CDCl₃) δ 2.55 (ddd, 1H), 2.85 (ddd, 1H),
 30 3.70-3.80 (m, 2H), 3.95 (bm, 1H), 4.05 (d, 1H), 4.30 (d, 1H), 4.40-4.60 (m, 4H), 4.70-5.05 (m, 4H), 5.55

- 735 -

1H), 7.3-7.85 (m, 11H), 7.9 (t, 1H), 8.2 (d, 1H), 8.6 (m, 1H), 9.3 (m, 1H).

- (3S) -3-[(3S) -2-Oxo-3-isoquinolin-1-oylamino-5-formyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-
- 5 acetylamino]4-oxobutyric acid(698) was synthesized via methods used to prepare 653 to afford 225 mg of 698 1 H NMR (500 MHz, CD₃OD) δ 2.4(m, 1H), 2.6(m, 1H), 3.9(m, 1H), 4.2(m, 1H), 4.3-4.7(m, 4H), 5.1(m, 1H), 7.3-7.5(m, 4H), 7.6-7.8(m, 2H), 7.8(m, 2H), 8.2(d, 1H), 8.5(d, 10 1H), 9.0(d, 1H).
- (3S)-2-Oxo-3-isoquinolin-1-oylamino-5-methoxyacetyl-N[(2RS,3S) 2-benzyloxy-5-oxo-tetrahydrofuran-3-yl]2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1acetamide(699a) was synthesized via methods used to

 15 prepare 655 to afford 820 mg of 699a as a tan solid, ¹H
 NMR (500 MHz, CDCl₃) δ 2.60 (ddd, 1H), 2.90 (ddd, 1H),
 3.20 (s, 3H), 3.25 (s, 3H), 3.70 (t, 1H), 3.90 (m, 2H),
 4.20 (dd, 1H), 4.60 (m, 2H), 4.70-5.00 (m, 5H), 5.55
- (3S)-2-Oxo-3-(3,5-dimethyl-4-hydroxybenzoyl)amino-5-methoxyacetyl-N-[(2RS,3S) 2-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-7-fluoro-1H-1,5-benzodiazepine-1-acetamide(688b-1) was synthesized via methods used to prepare 655 to afford 600 mg of

(d, 1H), 7.00 (d, 1H), 7.20-7.50 (m, 7H), 8.45 (dd,

20 1H), 9.0 (dd, 1H), and 9.35 ppm (dd, 1H).

via methods used to prepare **655** to afford 600 mg of **688b-1**, 1 H NMR (CDCl₃; mix. of diastereomers) δ 2.21 (s, 3H), 2.28 (s, 3H), 2.42-2.50 (m, 0.5 H), 2.58-2.65 (m, 0.5H), 2.83-2.91 (m, 0.5H), 2.98-3.1 (m, 0.5H), 3.18 (s,1.5H), 3.22 (s, 1.5H), 3.72-3.78 (d, 1H), 3.78-30 3.9 (m, 2H), 4.08-4.15 (d, 1H), 4.5-4.69 (m, 3H), 4.7-

2.6-2.7 (m, 0.5H), 2.8-2.9 (m, 0.5H), 2.92-3.03 (m, 0.5H), 3.55-3.8 (m, 2H), 3.92-4.02 (d, 1H), 4.25-4.3 (d, 0.5H), 4.37-4.42 (d, 0.5H), 4.43-4.48 (m, 0.5H), 4.55-4.65 (m, 1.5H) 4.7-5.12 (m, 5H), 5.44 (s, 0.5H), 5.58-5.63 (d, 0.5H), 6.95-8.1 (m, 13H).

(3s)-3-[(3s)-2-Oxo-3-(3,5-dichloro4-aminobenzoyl)amino-5-acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxobutyric acid (697) was synthesized via methods used to prepare 2002 from 2001 to afford 140 mg of 697, ¹H NMR (CD₃OD) δ 238-2.5 (m,1H), 2.55-2.75 (m,1H), 3.68-3.9 (m, 3H), 3.95-4.03 (m, 1H), 4.2-4.3 (m,1H), 4.4-4.7 (m, 4H), 7.35-7.8 (m, 6H).

(3s) -3-[(3s) -2-Oxo-3-(3,5-dimethyl-4-methoxybenzoyl) amino-5-hydroxyacetyl-2,3,4,5
15 tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-acetoxy-3-butenoic acid ethyl ester(684a), was synthesized by the methods used to prepare 2100j to afford 684a, ¹H NMR (500 MHz, CDCl₃ mixture of diastereomers) δ 1.3 (s, 9H), 1.8(s, 3H), 2.1(s, 3H), 2.15(s, 3H), 2.3(s, 6H), 3.3-3.5(m, 3H), 3.65(s, 3H), 3.9(m, 1H), 4.1(d, 1H), 4.3(d, 1H), 4.6-4.8(m, 3H), 5.0(m, 1H), 6.7(s, 1H), 7.0(d, 1H), 7.1(d, 1H), 7.2-7.5(m, 6H).

(3S)-2-Oxo-3-isoquinolin-1-oylamino-5-formyl-N25 [(2RS,3S) 2-benzyloxy-5-oxo-tetrahydrofuran-3-yl]2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1acetamide(698a) was synthesized via methods used to
prepare 652 to afford 795 mg of 698a ¹H NMR (500 MHz,
CDCl₃ mixture of diastereomers) δ 2.8(m, 2H), 4.0(m,
30 1H), 4.5-4.8(m, 4H), 5.2(m, 1H), 5.5(s, 1H), 5.75(d,

	_	-	-	
_	- 1	₹	₹	_

CIP#	R ⁴	R ³	R ⁵	R ¹
699a-1	N N N N N N N N N N N N N N N N N N N	MeO	F	OBn
699a-2	045	MeO_ii	F	O H H O
800	\$ \frac{1}{2}	0= \	Н	OBn
801	\$ 2	но	Н	ОН

- 5 (3s)-3-[(3s)-2-0xo-3-(3,5-dimethyl-4-hydroxybenzoyl) amino-5-hydroxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4,4-diethoxybutyric acid ethyl ester(690a-1), was synthesized by the methods used to prepare 690a and 10 2100b to afford 690a-1, ¹H NMR(CDCl₃) δ 1.15(t, 6H), 1.3(t, 3H), 2.25(s, 6H), 2.60(d, 2H), 3.50(m, 2H), 3.70(m,4H), 4.05(m, 2H), 4.15(m, 2H), 4.30(d, 1H), 4.45(m, 1H), 4.50(d, 1H), 4.55(d, 1H), 4.70(t, 1H), 5.05(m, 1H), 5.30(s, 1H), 6.70(d, 1H), 7.10(d, 2H), 15 7.30-7.50(m, 7H)
- (3S)-2-0xo-3-(3,5-dichloro-4-aminobenzoyl)amino-5-hydroxyacetyl-N-[(2RS,3S) 2-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide(697a) was synthesized via methods used to prepare 677 to afford 840 mg of 697a, ¹H NMR (CDCl₃) δ 1.78 (br. s, 2H), 2.48-2.58 (d, 0.5H),

CIP#	R ⁴	R ³	R ⁵	R ¹
696-1	0 4	0 	F	0 ± ± 0
696-2	() = 0	0={ £	Cl	ОН О
696a-2	(F)	д С	Cl	OBn
696a-1	() = 0	0 10	F	OBn
697		0 	Н	ЭОН
697a		0=\ R	Н	OBn
698	0 / 0	o={	Н	о н о н
698a	0=	, t	Н	OBn
699		MeO_ji	Н	O H
699a		MeO_ii	Н	OBn

10

- 731 -

Example 33

Compounds 684a, 688b-1, 688c, 689b-1, 690a-1, 696-1, 696-2, 696a-2, 696a-1, 697, 697a, 698, 698a, 699, 699a, 699a-1, 699a-2, 800 and 801 were prepared as described below.

Table 28

		1	T	T -	T
	CIP#	R ⁴	R ³	R ⁵	R ¹
	684a	CH ₃ O CH ₃	CH ₃	Н	OtBu OAc
	688b-1	CH ₃	MeO	F	OBn
10	688c	CH ₃ O O O O O O O O O O O O O O O O O O O	MeO	Н	0 ± 0 0
	689b-1	CH ₃	09M €0	۲۰	ОН
	690a-1	CH ₃ O CH ₃	ЮЩ	Н	O OEt OEt

- 730 **-**

Example 32

Table 27

Compound Visible Ki (nM) Clearance human blood IC50 (nM) Mole (nM) Fig. V. ml/min/kg Mouse, i.v. ml/min/kg Moleman blood (nM) Fig. V. ml/min/kg Moleman place (
5 689b-1 3.5 2700 696-1 0.5 696-2 0.5 697 1.8 5000 698 18 13500 10 699 1.1 699a-2 721 1.3 5000 722 5 5000 15 723 2.3 2000 724 2 1800 725 3.7 3000 726 300	
696-1 0.5 696-2 0.5 697 1.8 698 18 10 699 699a-2 1.1 720 2.7 721 1.3 5000 722 5 5000 723 2.3 724 2 1800 725 3.7 3000	
696-2 0.5 5000 697 1.8 5000 698 18 13500 10 699 1.1 699a-2 720 2.7 721 1.3 5000 722 5 5000 724 2 1800 725 3.7 3000 726 300 726 300	
697 1.8 5000 698 18 13500 10 699 1.1 699a-2	
698 18 13500 699 1.1 699a-2	
10 699 1.1 699a-2 720 2.7 721 1.3 5000 722 5 5000 724 2 1800 725 3.7 3000 726 300	
699a-2 2.7 720 2.7 721 1.3 5000 722 5 5000 723 2.3 724 2 1800 725 3.7 3000	
720 2.7 721 1.3 5000 722 5 5000 15 723 2.3 2000 724 2 1800 725 3.7 3000 726 300 3000	\Box
721 1.3 5000 722 5 5000 15 723 2.3 2000 724 2 1800 725 3.7 3000 726 300 3000	
722 5 5000 723 2.3 2000 724 2 1800 725 3.7 3000 726 300 3000	
15 723 2.3 2000 724 2 1800 725 3.7 3000 726 300	
724 2 1800 725 3.7 3000 726 300	
725 3.7 3000 726 300	
726 300	
727 50 2300	
<u> </u>	
20 728 300	
729 28 2800	
730 90 8000	
731 150	
732 5 1800	
25 733 5 1500	
734 9 6000	
735 6 10000	

- 729 ~

3.05(m, 1H), 3.9(d, 1H), 4.2(m, 1H), 4.3(d, 1H), 4.7-5.0(m, 3H), 5.25(m, 1H), 5.7(s, 1H), 5.9(d, 1H), 7.5(d, 2H), 7.7-7.9(m, 3H), 8.0(t, 1H), 8.2(m, 2H), 8.75(d, 1H), 9.35(d, 1H).

- 5 (3S)-2-Oxo-3-(isoquinolin-1-oyl)amino-5-hydroxyacetyl(2RS-cyclopentyloxy-5-oxo-tetrahydrofuran-3-yl)2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-carboxamide
 (696d) was synthesized from 600b via methods used to
 prepare 690a from 600b to afford 696d. ¹H NMR (CDCl₃) δ
 10 0.9(t, 1H), 1.2(t, 1H), 1.3-1.45(m, 2H), 1.6-1.8(m,
 4H), 2.45(m, 1H), 2.8(m, 1H), 3.0(m, 1H), 3.4(q, 1H),
- 3.5(d, 1H), 4.0(m, 2H), 4.2-4.3(m, 2H), 4.55(d, 1H), 4.65(m, 1H), 4.9(m, 1H), 5.05(m, 1H), 5.4(s, 1H), 5.5(d, 1H), 6.8(d, 1H), 7.3-7.9(m, 6H), 8.5(d, 1H), 9.05(d, 1H), 9.4(d, 1H).
 - (3s) -2-Oxo-3-(isoquinolin-1-oyl)amino-5-hydroxyacetyl-N-[(2R, 3s)-phenethoxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (696e) was synthesized from 600b via methods used to
- prepare **690a** from **600b** to afford **696e**. 1 H NMR (CDCl₃) δ 1.2(t, 1H), 2.4(m, 1H), 2.8(m, 2H), 3.6(d, 1H), 3.7(q, 1H), 4.0(m, 2H), 4.3(d, 2H), 4.65(m, 1H), 4.85(t, 1H), 5.0(m, 1H), 5.35(d, 1H), 6.5(d, 1H), 7.15-7.85(m, 8H), 8.45(d, 1H), 9.05(d, 1H), 9.4(d, 1H).

(3S)-2-Oxo-3-(isoquinolin-1-oyl)amino-5-hydroxyacetyl-N-[(2RS,3S)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (696a) was synthesized from 600b via methods used to prepare 690a from 600b to afford 696a. ¹H NMR (CDCl₃) δ 0.95(t, 2H), 1.25(t, 1H), 1.4(m, 2H), 1.55(m, 1H), 2.55(m, 1H), 2.85(m, 1H), 2.95(dd, 1H), 3.15(m, 1H), 3.55(m, 1H), 3.9(m, 2H), 4.35(t, 1H), 4.4-4.55(m, 2H), 4.75(m, 1H), 4.8-5.05(m, 2H), 5.45(s, 1H), 5.55(d, 1H), 6.85(d, 1H), 7.15(d, 1H), 7.2-7.5(m, 5H), 7.6-7.8(m, 3H), 8.45(d, 1H), 9.05(d, 1H), 9.35(d, 1H).

(3s)-2-0xo-3-(isoquinolin-1-oyl)amino-5-hydroxyacetyl-N-[(2Rs,3s)-ethoxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-carboxamide (696b)

15 was synthesized from 600b via methods used to prepare 690a from 600b to afford 696b. ¹H NMR (CDCl₃) δ 0.9 (m, 3H), 1.15 (q, 3H), 1.15 (m, 1H), 1.65 (m, 1H), 2.5 (m, 1H), 2.8 (m, 1H), 2.95-3.0 (m, 2H), 3.6 (m, 2H), 3.7-3.85 (m, 4H), 4.0 (m, 2H), 4.3 (m, 1H), 4.55 (m, 1H), 4.65 (m, 1H), 4.85-4.95 (m, 1H), 5.05 (m, 1H), 5.35 (s, 1H), 5.45 (d, 1H), 6.85 (d, 1H), 7.25 (d, 1H), 7.35-7.85 (6H), 8.85 (dd, 2H), 9.05 (m, 1H), 9.35 (dd, 2H).

- 727 -

(2) Waters DeltaPak C18, 300Å (5 μ , 3.9 X 150 mm). Linear acetonitrile gradient (5% - 45%) containing 0.1% TFA (v/v) over 14 min at 1 mL/min.

(3S) -3 - [(3S) -2 - 0xo -3 - (isoquinolin -1 - oyl) amino -5 -

5 hydroxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino)4-oxo-butyric acid (696) was synthesized from 600b by the method used to prepare 691a from 600b to afford 696. ¹H NMR (CD3OD) δ 2.45(m, 1H), 2.7(m, 1H), 3.75(d, 1H), 3.95(q, 1H), 4.05(d, 1H), 4.3(m, 1H), 4.45-4.65(m, 2H), 5.05(m, 1H), 7.5-7.6(m, 3H), 7.7(t, 1H), 7.8(t, 1H), 7.98(t, 1H), 8.55(d, 1H), 9.1(d, 1H).

- 726 -

Step E. (910-922) Resin 906 was acylated with a solution of 0.4M carboxylic acid and 0.4M HOBT in Nmethypyrrolidone (0.5 mL), a solution of 0.4M HBTU in N-methylpyrrolidone (0.5 mL) and a solution of 1.6M 5 DIEA in N-methypyrrolidone (0.25 mL) and the reaction was shaken for 2 hr at room temperature. The resin was washed with N-methylpyrrolidone (1 X 1 mL), dimethylformamide (4 X 1 mL), 50% methanol in dichloromethane (5 X 1 mL) and dried in air. The 10 aldehyde was cleaved from the resin and globally deprotected by treatment with 95% TFA/ 5% $\rm H_2O$ (v/v, 1.5 mL) for 30 min at room temperature. After washing the resin with cleavage reagent (2 X 1 mL), the combined filtrates were added to cold 1:1 ether:hexane (35 mL) 15 and the resulting precipitate was isolated by centrifugation and decantation. The resulting pellet was dissolved in acetonitrile (0.5 mL) and H₂O (0.5 mL) and filtered through 0.45 micron microcentrifuge filters. The compound was purified by semi-preparative 20 RP-HPLC with a Rainin Microsorb^M C18 column (5 μ , 21.4 X 250 mm) eluting with a linear acetonitrile gradient (10% - 50%) containing 0.1% TFA (v/v) over 30 min at 12 mL/min. Fractions containing the desired product were pooled and lyophilized to provide 910-922.

25

Analytical HPLC methods:

(1) Waters DeltaPak C18, 300Å (5 μ , 3.9 X 150 mm). Linear acetonitrile gradient (0% - 25%) containing 0.1% TFA (v/v) over 14 min at 1 mL/min.

- 725 -

dimethylacetamide (4 X 20 mL) and dichloromethane (4 X 20 mL), and dried under nitrogen purge. Resin substitution was performed as described for **401** and determined to be 0.169 mmol g^{-1} .

- Step C. Synthesis of 905. Resin 903 (7.54 g, 1.27 mmol) and dimedone (2.19 g, 15.6 mmol) were placed in a 100 mL round bottomed flask and freshly distilled anhydrous tetrahydrofuran (60 mL) was added.
- Tetrakis(triphenylphosphine)palladium (0) (0.32 g, 0.28 mmol) was added and the nitrogen blanketed, sealed reaction was agitated for 15 h on a wrist action shaker. The resin was filtered, washed with dimethylacetamide (4 X 20 mL), dichloromethane (4 X 20
- mL) and dimethylacetamide (1 X 20 mL). Sufficient dimethylacetamide was added to the resin to obtain a slurry followed by pyridine (1.5 mL, 18.5 mmol) and a solution of **904** (5.5 mmol) in dichloromethane (10 mL). The reaction was shaken under nitrogen for 8 h, then
- filtered. The resin was washed with dimethylacetamide (5 X 20 mL) and dichloromethane (5 X 20 mL).
- Step D. Synthesis of 906. This compound was prepared from resin 905 (0.24 g, 0.038 mmol) using an Advanced ChemTech 396 Multiple Peptide synthesizer. The automated cycles consisted of a resin wash with dimethylformamide (3 X 1 mL), deprotection with 25% (v/v) piperidine in dimethylformamide (1 mL) for 10 min followed by fresh reagent (1 mL) for 20 min to yield resin 906. The resin was washed with dimethylformamide (3 X 1 mL) and N-methypyrrolidone (3 X 1 mL).

Step A. Synthesis of 401. TentaGel S® NH2 resin (0.25 mmol/g, 6.8 g) was placed in a glass shaker vessel and washed with dimethylacetamide (3 X 20 mL). To a solution of 400 (1.70 g, 2.9 mmol, prepared from 5 (3S) 3-(fluorenylmethyloxycarbonyl)-4-oxobutryic acid t-butyl ester according to A.M. Murphy et. al. J. Am. Chem. Soc., 114, 3156-3157 (1992)) in dimethylacetamide (15 mL) was added O-benzotriazole-N, N, N, N'tetramethyluronium hexafluorophosphate (HBTU; 1.09 g, 10 2.9 mmol), and DIEA (1.0 mL, 5.7 mmol). The solution was added to the resin, followed by dimethylacetamide (5 mL). The reaction mixture was agitated for 3 h at room temperature using a wrist arm shaker. The resin was isolated by suction filtration and washed with 15 dimethylacetamide (6 X 20 mL). A sample of resin (7.4 mg) was thoroughly washed with 50% methanol in dichloromethane and dried under suction. Deprotection of the Fmoc group using 20% piperidine in dimethylacetamide (10.0 mL) and UV analysis of the 20 solution revealed a substitution of 0.19 mmol g^{-1} .

step B. Synthesis of 903. Resin 401 was deprotected with 20% (v/v) piperidine/dimethylacetamide (20 mL) for 10 min (shaking) and then for 10 min with fresh piperidine reagent (20 ml). The resin was then washed with dimethylacetamide (6 X 20 ml). A solution of 902 (1.52 g, 2.81 mmol) was treated with HBTU (1.07 g, 2.83 mmol) and DIEA (1.0 mL, 5.7 mmol) and transferred to the resin, followed by dimethylacetamide (5 mL). The reaction mixture was agitated for 2.5 h at room temperature using a wrist arm shaker. The resin was isolated by suction filtration and washed with

PCT/US96/20843

				HPLC RT min	2
Compound	Structure	MF	MM	(method)	SE W
				Purity	+ (B+N4)+
922/694	H ₃ C ₋ O ₊ H ₃ C ₋ O ₊ C ₊ H ₃ C ₋ O ₊ C	C27H30N4O9	554.56	10.024 (2)	578.8

MS (M+Na)+	560.6	579.1
HPLC RT min (method)	5.494 (2) 98%	7.827 (2)
æ	536.51	554.52
MF	C25H24N6O8	C26H26N4O10
Structure		OH ON OH
Compound	920	921

MS	(M+Na)+	619.3	559.7
HPLC RT min	Purity	11.817 (2) 998	9.709 (2)
ŒΣ		595.40	535.52
<u>Γ</u> .		C25H24C12N409	C26H25N5O8
Structure		H ₃ C _{-O} H	HO O OH O OH
		918	919

+		
MS (M+Na)+	537	564.9
HPLC RT min (method)	6.331 (2) 98%	8.114 (2)
MW	512.48	540.53
M	C24H24N4O9	C26H28N4O9
Structure	OH OH OH	H ₃ C H ₃ C H ₄ C H ₄ C H ₄ C H ₄ C H ₅ C
Compound	916/691b	917/691a

				HPLC RT min	
Compound	Structure	Σ	MM	(method)	M+Na) +
914	Ho N I O H O H O H O H O H O H O H O H O H O	C26H26C1N509	587.98	7.815 (2)	612.2
915	HO Z I O JO J	C26H25C12N5O9	622.42	7.490 (2)	647

MS (M+Na)+	550.7	563.5	
HPLC RT min (method)	8.317 (2) 99%	6.588 (2) 99%	
Σ	526.51	539.55	
MF	C25H26N409	C26H29N5O8	
Structure	HSC-O HSC-O	H ₃ C-N H ₃ C-N CH ₃	
Compound	912	913	

MS (M+Na) +	564.4	5.77.5
HPLC RT min (method) Purity	8.172 (2) 99%	6.949 (2) 998
ММ	540.49	553.53
MF	C25H24N4O10	C26H27N5O9
Structure	O O O O O O O O O O O O O O O O O O O	H ₃ C I O I O I O I O I O I O I O I O I O I
Compound	910	911

Table 26

		7 E	+ (B+W) +	582.2	521.9
	HPLC RT min	(method)	Purity	12.406 (2)	13.072 (1)
	_	MM		557.95	498.45
		MF		C25H24C1N508	C23H22N409
	Compound Structure			D I N N N I N N N I N N N I N N N I N N N I N N I N N I N N I N N I N N I N N I N N N I N N N I N N N I N N N I N N N N I N	HO HO Z I
				710	711

ų,	M+Na) +		575.9	574.6	574
HPLC RT min	(method)	Purity	15.952 (1) 98%	10.731 (2) 93%	13.192 (2) 95%
	MW		552.55	550.53	550.57
	Μ		C27H28N4O9	C27H26N409	C28H30N4O8
	Structure		HON NI ON NI	ON O	
	Compound		707	708	709

MS (M+Na)+	562.1	562.1	592.4
HPLC RT min (method)	Purity 10.475 (2) 968	14.260 (1)	14.836 (1)
MM	538.52	538.52	568.55
M FF	C2 6H2 6N4O9	C26H26N4O9	C27H28N4O10
Structure			O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Compound	704	705	706

		
MS (M+Na)+	575.9	572.1
HPLC RT min (method) Purity	15.855 (1) 98%	10.315 (2)
MM	552.50	547.53
MF	C26H24N4O10	C27H25N5O8
Structure	HO O O O O O O O O O O O O O O O O O O	HO N N N N N N N N N N N N N N N N N N N
Compound	702	703

MW (method) (M+Na)+	575.41 14.061 (2) 600	514.52 15.589 (1) 538.8
M	2N407	
Structure	D N N N N N N N N N N N N N N N N N N N	HO ZI O ZI O S
Compound	700	701

Sable 2

(3s)-3-[(3s)-2-Oxo-3-(3,5-dimethyl-4-methoxybenzoyl)amino-5-hydroxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (694), was synthesized from 691c by the method used to prepare 2002 from 2001 to afford 380 mg of 694 as a white solid, ¹H NMR (CD₃OD) δ 2.25(s, 6H), 2.45(m, 1H), 2.65(m, 1H), 3.65(m, 5H), 4.0(d, 1H), 4.28(m, 1H), 4.55(d, 2H), 4.95(m, 1H), 7.4-7.6(m, 6H).

Compounds 700-711 were prepared by methods

10 similar to the methods used to prepare compounds 619635 (see, Example 13). Physical data for compounds
700-711 is listed in Table 25.

Compounds 910-915 and 918-921 were prepared as described below. Physical data for these compounds is listed in Table 26.

- 709 -

(3S)-2-Oxo-3-(3,5-dimethyl-4-hydroxybenzoyl)amino-5-hydroxyacetyl-N-[(2RS,3S)-ethoxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (692b), was synthesized from 600b via methods used to prepare 661 from 600b, excluding steps used to make 604d from 603d, using instead the method to prepare 688a from 687a to afford 207 mg of 692b, ¹H NMR (CD₃OD) δ 1.05(t, 3H), 1.15(t, 3H), 2.45(d, 1H), 2.55(m, 1H), 2.7(m, 1H), 3.55(m, 2H), 3.6-3.75(m, 5H), 4.0(dd, 2H), 4.3(d, 1H), 4.4-4.7(m, 5H), 5.25(s, 1H), 5.5(d, 1H), 7.25-7.6(m, 4H), 7.85(s, 2H).

(3S) -2-Oxo-3-benzoylamino-5-acetyl-N-[(2RS,3S) - benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (693), was synthesized from 600b via methods used to prepare 688a from 600b to afford 30 mg of 693, ¹H NMR (CD₃OD) δ 1.7(s, 3H), 1.8(s, 3H), 2.51(d, 1H), 2.6(m, 1H), 2.85(m, 1H), 3.0(m, 1H), 3.75(br. d, 2H), 4.0-4.1(dd, 2H), 4.5-5.0(m, 6H), 5.45(s, 1H), 5.55(s, 1H), 7.15-7.85(m, 14H).

(3s)-2RS-Oxo-3-(3,5-dimethyl-4-hydroxybenzoyl) amino-5-hydroxyacetyl-N-(2-benzyloxy-5-oxo-tetrahydrofuran-3-y1)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (695c), was synthesized from 600b via methods used to prepare 677 from 600b to afford 840 mg of 695c,

¹H NMR(CDCl₃) δ 2.23(s, 3H), 2.26(s, 3H), 2.45-2.62(m, 1H), 2.8-2.9(dd, 0.5H), 2.9-3.05(dd, 0.5H), 3.45-3.63(m, 1H), 3.64(s, 1.5H), 3.68(s, 1.5H), 3.78-4.05(m, 2H), 4.2-4.33(m, 1H), 4.4-4.63(m, 2H), 4.65-4.94(m, 2H), 4.95-5.1(m, 1H), 5.45(s, 0.5H), 5.5-5.6(d, 0.5H), 6.9-6.95(d, 1H), 7.25-7.7(m, 12H).

(3s)-2-0xo-3-(3,5-dichloro4-hydroxybenzoyl)amino-5-hydroxyacetyl-N-[(2RS,3S)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (692a), was synthesized from 600b via methods used to prepare 661 from 600b, excluding steps used to make 604d from 603d, using instead the method to prepare 688a from 687a to afford 854 mg of 692a, ¹H NMR (CD₃OD) δ 2.45(d, 1H), 2.6(m, 1H), 2.7(m, 1H), 3.0(m, 1H), 3.5-3.7(m, 4H), 4.0(q, 2H), 4.45(m, 3H), 4.55(m, 4H), 5.35(s, 1H), 5.6(d, 1H), 7.2-7.5(m, 9H), 7.85(s, 2H).

600b

$$\begin{array}{c}
HO \\
AR-N \\
H
\end{array}$$

$$\begin{array}{c}
AR^{4} = \\
CH_{3}
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
CH_{3}
\end{array}$$

$$\begin{array}{c}
CH_{3}
\end{array}$$

$$\begin{array}{c}
CH_{3}
\end{array}$$

(3S)-2-Oxo-3-benzoylamino-5-hydroxyacetyl-N-[(2RS,3S)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (695a), was synthesized from 600b via methods used to prepare 677 from 600b to afford 75 mg of 695a, ¹H NMR (CD₃OD) δ 2.2(s, 6H), 2.45(m, 1H), 2.6(m, 1H), 3.65(m, 1H), 3.75(d, 1H), 4.0(d, 1H), 4.28(m, 1H), 4.5(m, 3H), 7.4-7.6(m, 6H).

(3S) -2-Oxo-3-(4-acetamidobenzoyl) amino-5-hydroxyacetylN-[(2RS,3S)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide
(695b), was synthesized from 600b via methods used to prepare 677 from 600b to afford 880 mg of 695b, ¹H NMR
(CDCl₃) δ 2.1(s, 3H), 2.25-2.5(m, 2H), 2.8-2.92(m,

15 0.5H), 3.15-3.2(m, 0.5H), 3.45-3.6(m, 2H), 3.75-3.95(m, 2H), 4.15-4.25(m, 1H), 4.35-4.6(m, 2H), 4.6-4.88(m, 3H), 5.22(s, 0.25H), 5.33(s, 0.25H), 5.52-5.58(d, 0.5H), 7.15-7.45(m, 9.5H), 7.5-7.75(m, 5H), 8.3-8.35(m, 0.5H), 9.08-9.18(m, 1H).

 $\begin{array}{c} (\text{CD}_3\text{OD}) \ \delta \ 2.49\,(\text{d},\ 1\text{H})\,,\ 2.65\,(\text{d},\ 1\text{H})\,,\ 2.66\,(\text{d},\ 1\text{H})\,,\ 2.85\,(\text{d},\ 1\text{H})\,,\ 2.87\,(\text{d},\ 1\text{H})\,,\ 3.05\,(\text{dd},\ 1\text{H})\,,\ 3.35\,(\text{br. s},\ 1\text{H})\,,\ 3.72\,(\text{br. s},\ 2\text{H})\,,\ 4.01\,(\text{m},\ 2\text{H})\,,\ 4.45\,(\text{br. m},\ 1\text{H})\,,\ 4.6\,(\text{m},\ 1\text{H})\,,\ 4.7\,(\text{m},\ 1\text{H})\,,\ 4.8\,(\text{m},\ 1\text{H})\,,\ 4.95\,(\text{br. s},\ 2\text{H})\,,\ 5.65\,(\text{d},\ 1\text{H})\,,\ 6.8\,(\text{d},\ 2\text{H})\,,\ 7.2-7.35\,(\text{br. m},\ 3\text{H})\,,\ 7.45\,(\text{m},\ 2\text{H})\,,\ 7.75\,(\text{d},\ 2\text{H})\,. \end{array}$

(3s) -3-[(3s)-2-0xo-3-(3,5-dimethyl-4-hydroxybenzoyl)amino-5-hydroxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (691a), was synthesized from 690a by the method used to prepare 2002 from 2001 to afford 560 mg of 691a as a white solid, ¹H NMR (CD₃OD) δ 2.15(s, 6H), 2.45(m, 1H), 2.65(m, 1H), 3.55(m, 1H), 3.7(d, 1H), 4.0(d, 1H), 4.25(m, 1H), 4.5-4.6(m, 3H), 7.3-7.5(m, 6H).

(3s)-3-[(3s)-2-Oxo-3-(4-hydroxybenzoyl)amino-5-hydroxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (691b), was synthesized from 690b by the method used to prepare 20 2002 from 2001 to afford 410 mg of 691b as a white solid, ¹H NMR (CD₃OD) δ 2.5(m, 1H), 2.65(m, 1H), 3.75(m, 1H), 3.8(d, 1H), 4.05(d, 1H), 4.25(m, 1H), 4.5(m, 1H), 4.6(m, 1H), 4.95(br. s, 2H), 6.8(d, 2H), 7.45(m, 2H), 7.6(m, 2H), 7.75(d, 2H).

- 705 **-**

2.7(m, 1H), 3.3(s, 3H), 3.7-3.85(m, 2H), 4.05(dd, 1H), 4.3(m, 1H), 4.6(m, 2H), 7.45-7.4(m, 2H), 7.5(s, 2H), 7.55(m, 2H).

(3S)-2-Oxo-3-(3,5-dimethyl-4-hydroxybenzoyl) amino-5hydroxyacetyl-N-[(2RS,3S)-benzyloxy-5-oxotetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5benzodiazepine-1-acetamide (690a), was synthesized from 600b via methods used to prepare 676 from 600b, 688a from 687a, then 677 from 676 to afford 863 mg of 690a

10 as a white solid, ¹H NMR (CD₃OD) δ 2.2(s, 6H), 2.45(d, 0.5H), 2.6-2.9(m, 1H), 3.05(dd, 0.5H), 3.65-3.85(m, 2H), 3.95-4.1(m, 1H), 4.35-5.0(m, 7H), 5.35(s, 0.5H), 5.65(d, 0.5H), 7.2-7.4(m, 4H), 7.4-7.7(m, 7H).

(3S)-2-Oxo-3-(4-hydroxybenzoyl)amino-5-hydroxyacetyl-N[(2RS,3S)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide
(690b), was synthesized from 600b via methods used to
prepare 677 from 600b to afford 200 mg of 690b, ¹H NMR

NMR (CD₃OD) δ 2.55(dd, 1H), 2.7(dd, 1H), 3.0(m, 1H), 3.6(m, 1H), 3.75(d, 1H), 3.9-4.0(m, 2H), 4.3-4.45(m, 3H), 4.5-4.6(m, 3H), 4.7(m, 2H), 5.35(s, 1H), 5.55(d, 1H), 7.1-7.5(m, 4H), 7.85(s, 2H).

- 5 (3S) -2-Oxo-3-(3,5-dimethyl-4-hydroxybenzoyl) amino-5-methoxyacetyl-N-[(2RS,3S)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (688b), was synthesized from 687b by the method used to prepare 688a from 687a to afford 960 mg of 688b as an off-white solid, ¹H NMR (CD₃OD) δ 2.6(dd, 1H), 2.7(dd, 1H), 3.0(dd, 1H), 3.2(s, 3H), 3.7(m, 3H), 3.9(m, 2H), 4.4-4.5(m, 2H), 4.6(m, 3H), 5.35(s, 1H), 5.55(d, 1H), 7.25(m, 2H), 7.4-7.5(m, 4H).
- 15 (3s)-3-[(3s)-2-Oxo-3-(3,5-dichloro-4hydroxybenzoyl)amino-5-methoxyacetyl-2,3,4,5tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxobutyric acid (689a), was synthesized from 688a by the
 method used to prepare 2002 from 2001 to afford 184 mg
 20 of 689a as a white solid, ¹H NMR (CD₃OD) δ 2.45(m, 1H),
 2.6(m 1H), 3.3(s, 3H), 3.7-3.85(m, 2H), 4.0(d, 1H),
 4.3(m, 1H), 4.5-4.6(m, 3H), 7.3-7.6(m, 4H), 7.85(s,
 2H).
 - (3S) -3 [(3S) -2 0xo -3 (3, 5 dimethyl -4 -
- hydroxybenzoyl)amino-5-methoxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (689b), was synthesized from 688b by the method used to prepare 2002 from 2001 to afford 412 mg of 689b as a white solid, ¹H NMR (CD₃OD) δ 2.5(m, 1H),

(3S)-2-0xo-3-(3,5-dichloro-4-hydroxybenzoyl)amino-5methoxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine1-acetic acid (687a), was synthesized from 600b using
methods similar to those used for preparing 654 from
5 600b to afford 1.6 g of 687a.

(3S)-2-0xo-3-(3,5-dimethyl-4-hydroxybenzoyl)amino-5methoxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine1-acetic acid (687b), was synthesized from 600b using
methods similar to those used for preparing 654 from
10 600b to afford 1.1 g of 687b.

(3S) -2-0xo-3-(3,5-dichloro-4-hydroxybenzoyl) amino-5methoxyacetyl-N-[(2RS,3S)-benzyloxy-5-oxotetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5benzodiazepine-1-acetamide (688a). To a solution of 15 (3S, 2R, S) - 3-allyloxycarbonylamino-2-benzyloxy-5oxotetrahydrofuran (Chapman, Biorg. Med. Chem. Lett., 2, pp. 613-618 (1992)) (1.13 g, 1.2 equiv) in CH₂Cl₂ was added triphenylphosphine (423 mg, 0.5 equiv), dimethylbarbituric acid (1.26 g, 2.5 equiv), and 20 tetrakistriphenylphosphine palladium (0) (373 mg, 0.1 equiv). After 5 minutes the reaction mixture was cooled via ice-bath then added a solution of 687a in DMF (1.6 g, 1 equiv), HOBT (480 mg, 1.1 equiv), and EDC (681 mg, 1.1 equiv). The resulting mixture was allowed 25 to stir at ambient temperature. After 16 hours the reaction mixture was poured into NaHSO4 and extracted twice with EtOAc. The organic layer was washed with NaHCO3, brine, dried over Na2SO4 and concentrated in vacuo. Chromatography (SiO2, 20% to 100% EtOAc in 30 CH_2Cl_2) afforded 880mg of **688a** as an off-white solid, ¹H benzodiazepine-1-acetamide (685), was synthesized from
600b by the methods used to prepare 676 from 600b to
afford 165 mg of 685.

(3S)-3-[(3S)-2-Oxo-3-(3-chloro-4-aminobenzoyl)amino-55 (2-triisopropylsilyloxy)acetyl-2,3,4,5-tetrahydro-1H1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid
(686). To a solution of 685 (165 mg, 0.21 mmol) in THF
was added a solution of TBAF (1M, 0.21 mL). The
product was isolated by filtration after precipitation
10 from reaction mixture. Reverse phase chromatography
(10% to 80% MeCN in water/ 0.1% TFA) afforded 25 mg of
686 as a white solid, ¹H NMR (CD₃OD) δ 2.37-2.42 (m),
2.59-2.70 (m), 3.60-3.89 (m), 4.01 (d), 4.20-4.31 (m),
4.42-4.70 (m), 4.80-5.05 (m), 6.79 (d), 7.32-7.65 (m),
7.81 (s).

(3S)-3-[(3S)-2-Oxo-3-(3,5-dimethyl-4-methoxybenzoyl)amino-5-acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (684), was synthesized from 600b by the method used to prepare 605d from 600b to afford 72 mg of 684 as a white solid, ¹H NMR (CD₃OD) δ 1.9(s, 3H), 2.25(s, 6H), 2.45(m, 1H), 2.6(m, 1H), 3.3(s, 1H), 3.7(s, 3H), 4.25(m, 1H), 4.45-4.6(m, 3H), 7.4(br. s, 2H), 7.55(br. d, 4H).

10 (3S)-2-0xo-3-(3-chloro-4-aminobenzoyl)amino-5-(2-triisopropylsilyloxy)acetyl-N-((2RS,3S)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-

4.85 (br. s, 2H), 7.3 (br. m, 2H), 7.4-7.7 (m, 5H), 8.15 (d, 2H).

(3s)-2-0xo-3-benzoylamino-5-(2-acetoxy)acetyl-N[(2RS,3s)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]5 2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide
(682), was synthesized from 600b by the methods used to
prepare 655 from 600b to afford 495 mg of 682 as a
white solid, ¹H NMR (CDCl₃) δ 2.00(s, 3H), 2.05(s, 3H),
2.47(d, 1H), 2.58(dd, 1H), 2.85(dd, 1H), 2.89(dd, 1H),
10 3.9(m, 2H), 4.05-4.15(m, 2H), 4.19(dd, 1H), 4.45(m,
2H), 4.55-5.05(m, 8H), 5.55(d, 1H), 6.85(d, 1H),

(3s)-3-[(3s)-2-Oxo-3-benzoylamino-5-(2-acetoxy)acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1
15 acetylamino]4-oxo-butyric acid (683), was synthesized from 682 by the method used to prepare 2002 from 2001 to afford 82 mg of 683 as a white solid, ¹H NMR (CD₃OD) δ 2.1(s, 3H), 2.5(m, 1H), 2.68(m, 1H), 3.8(m, 1H), 4.29(dd, 1H), 4.31(m, 1H), 4.45(d, 1H), 4.55(d, 1H), 4.6(d, 1H), 4.72(d, 1H), 4.95(br. s, 2H), 7.45(br. m, 2H), 7.52-7.65(br. m, 5H), 7.88(d, 2H).

7.15(d, 1H), 7.25-7.55(m, 10H), 7.75(d, 2H).

(3S)-2-Oxo-3-benzoylformylamino-5-(2-hydroxy)acetyl-N-(2RS,3S)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (680), was synthesized from 600b by the methods used to prepare 677 from 600b to afford 140 mg of 680 as a white solid, ¹H NMR (CDCl₃) δ 2.31(d, 1H), 2.4(dd, 2H), 2.75(dd, 2H), 2.85(dd, 1H), 3.36(br. s, 1H), 3.45(br. s, 1H), 3.6(br. t, 2H), 3.82(br. m, 2H), 3.95(br. d, 2H), 4.35(m, 2H), 4.42(d, 1H), 4.55(m, 1H), 4.70(d, 1H), 4.82(br. s, 2H), 5.5(d, 1H), 6.91(d, 1H), 7.25(br. m, 5H), 7.35-7.46(br. m, 3H), 7.5-7.6(m, 2H), 8.15(br. d, 2H).

(3S) -3-[(3S) -2-Oxo-3-benzoylformylamino-5-(2hydroxy)acetyl-2,3,4,5-tetrahydro-1H-1,5benzodiazepine-1-acetylamino]4-oxo-butyric acid (681), 15 was synthesized from 680 by the method used to prepare 678 from 677 to afford 45 mg of 681 as a grey solid, ¹H NMR (CD₃OD) δ 2.5(m, 1H), 2.7(dt, 1H), 3.65-3.85(br. m,

3H), 4.05(m, 1H), 4.3(m, 1H), 4.5-4.7(br. m, 3H),

(3s)-2-0xo-3-(1,6-dimethoxybenzoylformyl)amino-5-(2-triisopropylsilyloxy)acetyl-N-[(2Rs,3s)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (676), was synthesized from 675 by the method used to prepare 213e to afford 166 mg of 676 as a white solid.

(3s) -2-Oxo-3-(1,6-dimethoxybenzoylformyl) amino-5-(2-hydroxy) acetyl-N-[(2Rs,3s)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5
10 benzodiazepine-1-acetamide (677). A solution of TBAF (6 mL, 3 mmol) in HOAc (0.46 mL, 8 mmol) was added to 676 (0.213 g, 0.256 mmol). After 16 hours the reaction mixture was poured into EtOAc and washed twice with NaHCO₃, once with brine then dried over MgSO₄ and concnetrated in vacuo to afford 139 mg of 677 as a solid, ¹H NMR (CDCl₃) δ 2.4(d, 1H), 2.5(dd, 1H), 2.8(dd, 1H), 2.92(dd, 1H), 3.15(m, 2H), 3.55-3.65(m, 2H), 3.72(s, 6H), 3.92(m, 1H), 4.05(m, 1H), 4.3(m, 1H), 4.42(d, 1H), 4.6(dd, 1H), 4.65-4.8(m, 2H), 4.88(d, 1H), 5.55(d, 1H), 6.55(m, 2H), 6.75(d, 1H), 7.25-7.55(m, 8H), 7.75(m, 2H).

(3s)-3-[(3s)-2-Oxo-3-(3,5-dimethoxybenzoylformyl)amino-5-(2-hydroxy)acetyl-2,3,4,5-tetrahydro-1H-1,5benzodiazepine-1-acetylamino]4-oxo-butyric acid (678), 25 was synthesized by the method used to prepare 667 from 666 to afford 54 mg of 678 as a white solid, ¹H NMR (CD₃OD) δ 2.45(m, 1H), 2.7(m, 1H), 3.5(m, 2H), 3.75(br. s, 6H), 4.05(d, 1H), 4.3(m, 1H), 4.51-4.6(m, 2H), 4.8(br. m, 2H), 6.7(d, 2H), 7.4-7.5(br. m, 3H), 7.6-30 7.65(br. m, 2H).

- 697 -

(3S)-2-0xo-3-tert-butoxycarbonylamino-5-(2-triisopropylsilyloxy)acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetic acid benzylester (672), was synthesized from 600b by method 1 used to prepare 602n from 600b using 665 to afford 1.08 g of 672.

- (3S)-2-0xo-3-amino-5-(2-triisopropylsilyloxy)acetyl2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetic acid
 benzylester (673). To a solution of 672 (1.08 g, 1.69
 mmol) in CH₂Cl₂ was added 2,6-lutadine (0.8 mL) then
 10 TMSOTf (1 mL, 5.1 mmol). After 1 hour, the reaction
 mixture was poured into NaHCO₃ and extracted with
 CH₂Cl₂, dried over MgSO₄ and concentrated in vacuo to a
 small volume that was used directly for the next
 reaction.
- 15 (3s)-2-Oxo-3-(1,6-dimethoxybenzoyl formyl)amino-5-(2-triisopropylsilyloxy)acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetic acid benzylester (674), was synthesized from 673 by the method used to prepare 602b to afford 0.91 g of 674.
- 20 (3S)-2-Oxo-3-(1,6-dimethoxybenzoyl formyl)amino-5-(2-triisopropylsilyloxy)acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetic acid (675). A solution of 674 (0.365 g, 0.5 mmol) in MeOH was stirred with 1N NaOH (1.2 mL, 1.2 mmol). After 16 hours the reaction
- 25 mixture was concentrated *in vacuo* then dissolved in water and washed twice with ether. The aqueous layer was acidified with 1N HCl and the product extracted with EtOAc, dried over MgSO₄ and concnetrated *in vacuo* to afford 337 mg of **675** as a solid.

2.4-2.5(m, 1H), 2.6-2.75(m, 1H), 3.65-3.75(m, 2H), 4.2-4.3(m, 2H), 4.45-4.6(m, 3H), 7.35-7.6(m, 4H), 7.5(s, 2H).

- 695 -

white solid, 1H NMR (CD₃OD) δ 1.9(s, 3H), 2.4-2.7(m, 2H), 3.6-3.7(m, 2H), 3.9(s, 3H), 4.2-4.4(m, 2H), 4.4-4.6(m, 3H), 7.4-7.8(m, 4H), 7.9(s, 2H).

(3s)-2-0xo-3-(3,5-dimethyl-4-hydroxybenzoyl)amino-5acetyl-N-[(2Rs,3s)-benzyloxy-5-oxo-tetrahydrofuran-3yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1acetamide (670), was synthesized from 600b by the methods used to prepare 655 from 600b to afford 218 mg of 670 as a white solid, ¹H NMR (CD₃OD) δ 1.7, 1.75(2s, 3H), 2.15, 2.2(2s, 6H), 2.4-2.5(m, 1H), 2.6-2.75(m, 1H), 3.65-3.75(m, 2H), 4.2-4.3(m, 2H), 4.45-4.6(m, 3H), 7.35-7.6(m, 4H), 7.5(s, 2H).

(3s)-3-[(3s)-2-0xo-3-(3,5-dimethyl-4-hydroxybenzoyl)amino-5-acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (671), was synthesized from 670 by the methods used to prepare 2002 from 2001 to afford 253 mg of 671 as a white solid, ¹H NMR (CD₃OD) δ 1.9(s, 3H), 2.25(s, 6H),

(3S)-3-[(3S)-2-Oxo-3-benzoylamino-5-(2-hydroxy)acetyl2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1acetylamino]4-oxo-butyric acid tert-butyl ester
semicarbazone (667). To a solution of 666 (131 mg, 0.17
5 mmol) in tetrahydrofuran, cooled via ice-water bath,
was added tetrabutylammonium fluoride (1M, 0.190 mL).
After 2 hours the reaction mixture was poured into
water, extracted twice with EtOAc, dried over MgSO4 and
concentrated in vacuo to afford 63 mg of 667 as a white

(3s)-3-[(3s)-2-0xo-3-benzoylamino-5-(2-hydroxy) acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (668), was synthesized from 667 by the methods used to prepare 605d from 604d to afford 48 mg of 668 as a white solid, ¹H NMR (CD₃OD) 8 2.45(m, 1H), 2.67(dddd, 1H), 3.78(d, 1H), 3.85(br. m, 1H), 4.05(d, 1H), 4.28(m, 1H), 4.5(m, 2H), 4.65(m, 1H), 4.95(br. s, 2H), 7.4-7.5(m, 4H), 7.52-7.65(m, 3H), 7.88(d, 2H).

20 (3s)-3-[(3s)-2-0xo-3-(3,5-dichloro-4-methoxybenzoy1)amino-5-acetyl-2,3,4,5-tetrahydro-1H1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid
(669), was synthesized from 600b by the methods used to prepare 605d from 600b to afford 63 mg of 669 as a

- 693 -

2-(Triisopropylsilyloxy) acetic acid benzyl ester (663).

To a solution of benzyl glycolate (46.91g, 0.282 mol) and diisopropylethylamine (74 mLs, 0.423 mol) in CH₂Cl₂, cooled via water bath, was added a solution of TIPSOTF (95 g, 0.31 mol) in CH₂Cl₂. The resulting mixture was allowed to warm to ambient temperature then poured into water, washed twice with 10% aqueous NaHSO₄, dried over Na₂SO₄ and concentrated in vacuo. Flash chromatography (SiO₂, 0 to 5% EtOAc in hexanes) afforded 71.6 g of 663.

2-(Triisopropylsilyloxy)acetic acid (664). To a solution of 663 (0.4 g, 1.2 mmol) in EtOAc was added 10% Pd/C (33 mg). The resulting suspension was stirred under hydrogen atmosphere. After 15 hours, the reaction mixture was filterred through Celite and the filtrate concentrated in vacuo to afford 0.29 g of an oil. To a solution of this oil in 1,4-dioxane was added NaHCO₃ (0.5M, 2.4 mLs). The resulting solution was concentrated in vacuo from toluene to afford 664 as a waxy solid.

2-(Triisopropylsilyloxy)acetyl chloride (665), was synthesized from 664 by a method similar that used to prepare 643 to afford 665 as a crude product.

(3s) -3 - [(3s) -2 -0xo -3 -benzoylamino -5 - (2 - 2)]

triisopropylsilyloxy)acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino)4-oxo-butyric acid tert-butyl ester semicarbazone (666), was synthesized from 600b, using 665, by methods used to prepare 604d from 600b to afford 131 mg of 666.

- 691 -

from 600b, using 659, by methods used to prepare 604d from 600b to afford 453 mg of 660.

(3S)-3-[(3S)-2-0xo-3-(3,5-dichloro-4-hydroxybenzoyl)amino-5-(2-hydroxy)acetyl-2,3,4,5
tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid tert-butyl ester semicarbazone (661). A solution of 660 (423 mg) in MeOH:Et₂NH (1:1, v/v) was stirred at ambient temperature. After 10 minutes, the reaction mixture was concentrated in vacuo to a small volume. Precipitation by the addition of ether

(3s)-3-[(3s)-2-0xo-3-(3,5-dichloro-4-hydroxybenzoyl)amino-5-(2-hydroxy) acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (662), was synthesized from 661 by the methods used to prepare 605d from 604 to afford 37 mg of 662 as a white solid, ¹H NMR (CD₃OD) δ 2.45(m, 1H), 2.7(m, 1H), 3.75(m, 1H), 3.9(d, 1H), 4.15(d, 1H), 4.35(m, 1H), 4.5(t, 2H), 4.7(dd, 1H), 7.4-7.6(m, 4H), 7.85(s, 2H).

afforded 230 mg of 661.

- 2-(Fluorenylmethoxycarbonyl)hydroxyacetic acid benzyl
 ester (657). To a solution of benzyl glycolate (6.0 g,
 36.1 mmol) in CH₂Cl₂, cooled via ice-water bath, was
 added fluorenylmethoxy chloroformate (14 g, 1.5 equiv.)
 5 then diisopropylethylamine (9 mLs, 1.5 equiv.). After
 1 hour, reaction mixture was poured into a saturated
 aqueaous solution of ammonium chloride and extracted
 with CH₂Cl₂, dried over Na₂SO₄ then concentrated in
 vacuo. The product was triturated from MeOH to obtain
 10 2.2 g of 657 as a first crop of white solid.
- 2-(Fluorenylmethoxycarbonate) acetic acid (658). To a
 solution of 657 (2.2 g, 5.93 mmol) in tetrahydrofuran
 was added 5% Pd/C (220 mg). The resulting suspension
 was vigorously stirred under hydrogen atmosphere.
 15 After 90 min, the reaction mixture was filterred
- through Celite. The filtrate was poured into saturated aqueous NaHCO₃ and washed twice with EtOAc. The aqueous layer was then acidified and the product extracted twice with CH₂Cl₂, dried over Na₂SO₄ and
- 20 concentrated in vacuo to afford 1.46 g (88%) of **658** as a white solid.
 - 2-(Fluorenylmethoxycarbonate) acetyl chloride (659), was prepared from 658 by the method used to prepare 643 to afford 659 as a crude product.
- 25 (3s)-3-[(3s)-2-0xo-3-(3,5-dichloro-4-hydroxybenzoyl)amino-5-(2-fluorenylmethoxycarbonate)acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid tert-butyl ester semicarbazone (660), was synthesized

(3s) -2-Oxo-3-(3,5-dichloro-4-hydroxybenzoyl) amino-5-acetyl-N-[(2Rs,3s)-benzyloxy-5-oxo-tetrahydrofuran-3-yl]-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetamide (655), was synthesized from 654 using the method used to prepare 213e to afford 304 mg of 655, ¹H NMR (CD₃OD) δ 2.4(d, 1H), 2.6-2.75(m, 2H), 3.0(m, 1H), 3.45(m, 1H), 3.8(d, 1H), 4.0(t, 2H), 4.4(m, 2H), 4.5-4.55(m, 2H), 7.2-7.45(m, 4H), 7.85(s, 2H).

(3S)-3-[(3S)-2-0xo-3-(3,5-dichloro, 4-

hydroxybenzoyl)amino-5-acetyl-2,3,4,5-tetrahydro-1H1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid
(656), was synthesized from 655 using a method similar
to that used to prepare 2002 from 2001 to afford 136 mg
of 656 as a white solid, ¹H NMR (CD₃OD) δ 1.85(s, 3H),
2.5(m, 1H), 2.65(m, 1H), 3.7(m, 1H), 4.3(m, 1H),
4.55(m, 2H), 7.4-7.6(m, 4H), 7.85(s, 2H).

- 687 -

reagent obtained from reacting DMF with 3 equiv. of oxalyl chloride in a CH_2Cl_2 solution as R^3X , to afford 404 mg of 652.

(3S)-3-[(3S)-2-Oxo-3-(1-naphthoy1) amino-5-formy15 2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1acetylamino]4-oxo-butyric acid (653), was synthesized from 652 by methods used to prepare 605d from 602d to afford 84 mg of 653 as a white solid, ¹H NMR (CD₃OD) δ 2.3 (m, 1H), 2.55 (dd, 1H), 3.75 (br. s, 1H), 4.25-4.6 (m 5H), 5.15 (m, 1H), 7.2-7.45 (m, 6H), 7.8-7.9 (dd, 3H), 8.1 (s, 1H), 8.2 (m, 2H).

(3s)-2-Oxo-3-(3,5-dichloro-4-hydroxybenzoyl)amino-5-acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetic acid (654), was synthesized from 600b using methods similar to those used for preparing 603d from 600b to afford 775 mg of 654.

synthesized from 647 by methods used to prepare 604d from 602d to afford 409 mg of 648.

(3S)-3-[(3S)-2-0xo-3-(1-naphthoyl)amino-5-(2-methyl amino) acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine1-acetylamino]4-oxo-butyric acid tert-butyl ester semicarbazone (649).

A solution of 648 (409 mg, 0.465 mmol) in MeCN:Et₂NH (4:1, v/v) was stirred at ambient temperature. After 45 minutes, the reaction mixture was concentrated in vacuo. Flash chromatography (SiO₂, 5% to 20% MeOH in CH₂Cl₂) afforded 241 mg of 649.

(3S)-3-[(3S)-2-Oxo-3-(1-naphthoyl)amino-5-(2-methyl amino) acetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (650), was synthesized from 649 by methods used to prepare 605d from 604 to afford 179 mg of 650 as a white solid, ¹H NMR (CD₃OD) δ 2.4-2.6(m, 2H), 2.7(s, 3H), 3.5(q, 1H), 3.8(m, 2H), 4.2-4.4(m, 2H), 4.3-4.45(m, 1H), 5.0-5.1(m, 2H), 7.4-7.7(m, 6H), 7.85-7.9(m, 2H), 8.2(m, 1H).

20 (3s)-2-0xo-3-(1-naphthoyl)amino-5-formyl-2,3,4,5tetrahydro-1H-1,5-benzodiazepine-1-acetic acid benzyl ester (652), was synthesized from 600b by methods similar to those used to make 602n from 600b, using the

PCT/US96/20843

WO 97/22619

2-(N-Methyl, N-fluorenylmethoxycarbonyl)aminoacetyl chloride (646), was prepared from N-Fmoc-sarcosine by method used to make 643 to afford 646 as a crude product.

(3S) - 2 - 0xo - 3 - (1 - naphthoy1) amino - 5 - [2 - (N - methy1), N - (3S) - 2 - 0xo - 3 - (1 - naphthoy1) amino - 5 - [2 - (N - methy1), N - (1 - naphthoy1)]fluorenylmethoxycarbonyl) aminolacetyl-2,3,4,5tetrahydro-1H-1,5-benzodiazepine-1-acetic acid benzyl ester (647), was synthesized from 600b by methods used to synthesize 602d from 600b, using 646 to afford 481 10 mg of 647.

(3S) - 3 - [(3S) - 2 - 0xo - 3 - (1 - naphthoy1) amino - 5 - [2 - (N - methy1)]N-fluorenylmethoxycarbonyl)amino]acetyl-2,3,4,5tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxobutyric acid tert-butyl ester semicarbazone (648), was

- 684 -

(0.450 mLs, 5.1 mmol). After stirring 30 minutes at ambient temperature, the mixture was concentrated to afford 643 as a crude product.

(3S)-2-Oxo-3-(1-naphthoyl)amino-5-(2-acetamido)acetyl
2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetic acid
benzyl ester (644), was synthesized from 600b by
methods used to make 602d from 600b using 643 to afford
112 mg of 644.

(3S)-3-[(3S)-2-Oxo-3-(1-naphthoyl)amino-5-(2acetamido)acetyl-2,3,4,5-tetrahydro-1H-1,5benzodiazepine-1-acetylamino]4-oxo-butyric acid (645), was synthesized from 644 by methods used to make 605d from 602d to afford 43 mg of 645 as a white solid, ¹E NMR (CD₃OD) δ 1.95(s, 3H), 2.4(m, 1H), 2.65(m, 1H), 3.4(s, 1H), 3.55(m, 1H), 3.85(m, 1H), 4.05(d, 1H), 4.3(m, 1H), 4.4-4.6(m, 2H), 5.0(m, 1H), 7.4-7.7(m, 6H), 7.85-8.0(m, 2H).

(3S)-3-[(3S)-2-Oxo-3-benzoylformylamino-5-methoxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (642), was synthesized from 638 by similar methods used to make 605m to afford 213 mg of 642, ¹H NMR (CD₃OD) δ 2.5(m, 1H), 2.68 (ddd, 1H), 3.25(s, 2H), 3.3(s, 3H), 3.78(m, 2H), 4.0(d, 1H), 4.3(m, 1H), 4.6(m, 2H), 4.85(br. s, 2H), 7.08-7.22(m, 2H), 7.35(m, 1H), 7.4-7.65(m, 4H), 7.7(dd, 1H), 8.1(dd, 1H).

10 2-Acetamido-acetyl chloride (643). To a suspension of N-acetyl glycine (200 mg, 1.7 mmol) in $\mathrm{CH_2Cl_2}$ (2.5 mLs) containing DMF (0.005 mLs) was added oxalyl chloride

(3s)-2-0xo-3-amino-5-methoxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetic acid methyl ester (638), was synthesized from 600a by methods similar to those used for making 602m from 600a to afford 2.4g of 638 as 5 a white solid.

(3S)-2-Oxo-3-(2-naphthylmethylene)amino-5methoxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine1-acetic acid methyl ester (639). To a solution of 638
 (630 mg, 1.76 mmol) and 2-naphthylmethyl bromide (428
10 mg, 1.94 mmol) in CH₃CN was added K₂CO₃ (608 mg, 4.4
 mmol). The resulting mixture was stirred at ambient
 temperature. After 18 hours, the reaction mixture was
 diluted with CH₂Cl₂, washed with water then brine,
 dried over Na₂SO₄ then concentrated in vacuo. Flash
15 chromatography (SiO₂, 0 to 20% EtOAc/CH₂Cl₂) afforded
 450mg of 639.

(3s) -3-[(3s) -2-Oxo-3-(2-naphthylmethylene) amino-5-methoxyacetyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-acetylamino]4-oxo-butyric acid (640), was synthesized by methods used to make 605v from 602v to afford 205 mg of 640 as a white solid, ¹H NMR (CDCl₃) δ 2.4-2.55(m, 1H), 2.65-2.8(m, 1H), 3.2(s, 3H), 3.72-3.78(m, 1H), 3.85-4.0(m, 2H), 4.22-4.28(d, 1H), 4.26-4.5(m, 4H), 4.58-4.75(m, 1H), 4.78-4.85(m, 1H), 5.0-5.08(t, 1H), 7.35-7.65(m, 7H), 7.85-8.02(m, 4H).

PCT/US96/20843

58%): mp. 124-32°C; IR (KBr) 3312, 2979, 1790, 1664, 1610, 1532, 1485, 1285, 1120, 1037, 932; 1 H NMR (D₆-DMSO) δ 10.39 (1H, s), 8.71 (0.5H, d), 8.43 (0.5H, d), 7.45 (1H, d), 7.36 (1H, s), 7.04 (1H, d), 6.12 (2H, s), 5.58 (0.5H, d), 5.34 (0.5H, s), 4.95-4.85 (1H, m), 4.70-4.52 (0.5H, m), 4.35-4.10 (1.5H, m), 3.95-3.50 (5H, m), 3.03 (0.5H, dd), 2.90-2.55 (1.5H, m), 2.46-2.20 (2H, m), 2.10-2.40 (4H, m), 1.16-1.13 (3H, 2 x t). Anal. Calcd for $C_{23}H_{27}N_5O_9 \cdot 0.6H_2O$: C, 52.29; H, 5.38; N, 13.26. Found: C, 52.53; H, 5.35; N, 12.78. MS (ES[†]) 519 (M[†] + 2, 27%), 518 (M[†] + 1, 100), 472 (7), 374 (12), 373 (53), 345 (14), 149 (12).

Example 31

Compounds 640, 642, 645, 650, 653, 655, 656, 652, 662, 668, 669, 670, 671, 677, 678, 681, 682, 683, 684, 686, 688a, 688b, 6891, 689b, 690a, 690b, 691a, 691b, 695a, 695b, 695c, 692a, 692b, 693 and 694 were prepared as follows.

PCT/US96/20843

15

 $C_{27}H_{34}N_{8}O_{7}S$: C, 52.76; H, 5.58; N, 18.23. Found: C, 52.25; H, 5.74; N, 16.30. MS (ES⁺) 615.

[3S(4S)] 3-[7-(Benzo[b]thiophene-2-carbonyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-

- 5 pyridazino[1,2-a][1,2,4]triazepine-4-carboxamido]-4oxobutanoic acid (1053), was prepared by a similar
 method as used for 214 to afford a white solid (106mg,
 73%): [α]_D²⁰ +22° (c 0.10, MeOH); IR (KBr) 3428, 2944,
 1733, 1652, 1532, 1433, 1337, 1288, 1186; ¹H NMR
- 10 (CD₃OD) δ 7.95 (1H, s), 7.90-7.85 (2H, m), 7.43-7.35 (2H, m), 4.98 (1H, m), 4.65-4.52 (1H, m), 4.40-4.20 (2H, m), 3.85-3.70 (3H, m), 3.30-3.25 (3H, m), 3.03-2.85 (1H, m), 2.70-2.31 (3H, m), 2.10-1.55 (4H, m). MS (ES⁺) 500 (as methyl acetal of the aldehyde).

528

[4S(2RS,3S)] 6,10-Dioxo-N-(2-ethoxy-5oxotetrahydrofuran-3-y1)-7-(3,4methylenedioxybenzoylamino)-1,2,3,4,7,8,9,10-octahydro6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxamide
20 (528), was prepared by a similar method as compound
213e to afford a mixture of diastereomers (Syn: antiisomer ratio 1:1) as a creamy white foamy solid (1.05g,

- 679 -

[3s(4s)] 3-[6,10-Dioxo-7-(3,4-

methylenedioxybenzoylamino) -1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxamido]-4-oxobutanoic acid (1015), was prepared by a similar

5 method as used for 265 to afford a white solid (142mg, 58%): mp. 170-5°C; [α]_D²⁵ +32.7° (c 0.1, CH₃OH); IR (KBr) 3700-2500 (br), 3325, 2969, 1784, 1662, 1485, 1440, 1292, 1258, 1037; ¹H NMR (CD₃OD) δ 7.45 (1H, dd), 7.32 (1H, d), 6.90 (1H, d), 6.05 (2H, s), 5.10-4.90 (1H, m), 4.62-4.54 (1H, m), 4.45-4.35 (1H, m), 4.33-4.22 (1H, m), 3.95-3.65 (3H, m), 3.05-2.90 (1H, m), 2.80-2.30 (3H, m), 2.20-1.50 (4H, m).

[3S(4S)] t-Butyl 3-[7-(benzo[b]thiophene-2-carbonyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine]-4-oxobutanoate semicarbazone (526), was prepared by a similar method as used for 502 to afford a glassy solid: [α]_D²⁰ +34° (c 0.13, CH₂Cl₂); IR (KBr) 3437, 2929, 1670, 1530, 1428, 1288, 1156; ¹H NMR (CDCl₃)δ10.0 (1H, bs), 9.74 (1H, bs), 7.93 (1H, s), 7.80-7.60 (2H, m), 7.40-7.18 (3H, m), 6.15-5.30 (2H, bs), 5.00-4.85 (2H, m), 4.50-4.25 (1H, m), 3.95-3.75 (3H, m), 3.12-2.78 (2H, m), 2.73-1.60 (7H, m), 1.36 (9H, s). Anal. Calcd for

(0.194g, 100%): mp. 138-142°C; $[\alpha]_D^{20}$ +36.3° (c 0.19, CH₃OH); IR (KBr) 3434-2962, 1782, 1660, 1607, 1537, 1504, 1441, 1424, 1313, 1293, 1258, 1177; ¹H NMR (CD₃OD) δ 7.11 (2H, d, J = 8.8), 6.90 (2H, d, J = 8.9), 4.48 (1H, m), 4.34, 4.28 (1H, 2m), 4.15 (1H, m), 3.75 (3H, s), 3.75, 3.70 (3H, m), 2.88, 2.49, 2.28, 2.23, 2.00, 1.86, 1.79, 1.58 (8H, m).

[3S(4S)] 3-(6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-7-phenylsulphonylamino-6H-

- pyridazino[1,2-a][1,2,4]triazepine-4-carboxamido]-4oxobutanoic acid (1027), was synthesized by a similar
 method as compound 265 to afford a white foam (88%):
 [α]_D²⁴ +22.6° (c 0.17, MeOH); IR (KBr) 3349, 1789,
 1663, 1537, 1448, 1337, 1169, 1092, 690; ¹H NMR (CD₃OD)

 5 7.82 (2H, d, J = 7.8), 7.57 (3H, m), 4.74 (1H, m),
 4.47 (1H, m), 4.24-4.10 (2H, m), 3.72-3.47 (4H, m),
 2.62-2.48 (3H, m), 2.20 (1H, m), 1.94-1.35 (3H, m). MS
 (ES⁺) 480 (M⁺ 1, 100%). Accurate mass calculated for
 C₁₉H₂₄SN₅O₈ (MH⁺): 482.1346. Found: 482.1325.

oxobutanoic acid (1075), was prepared by a similar method as compound 265 to afford a white solid (184mg, 83%): mp. $210-5^{\circ}C$; $[\alpha]_{D}^{24} + 43.9^{\circ}$ (c 0.1, CH₃OH); IR (KBr) 3700-2300 (br), 3309, 1660, 1537, 1423, 1311, 1262, 1184; ¹H NMR (CD₃OD) δ 7.61 (1H, d), 7.45 (1H, d), 7.28-7.15 (1H, m), 7.15-7.00 (1H, m), 7.13 (1H, s), 5.12-4.96 (1H, m), 4.62-4.55 (1H, m), 4.50-4.25 (2H, m), 4.00-3.69 (3H, m), 3.05-2.90 (1H, m), 2.80-2.30 (3H, m), 2.25-1.50 (4H, m). MS (ES⁺) 484 (M+, 26%), 483 (M⁺ - 1, 100), 383 (25), 245 (12), 208 (11), 200 (21), 174 (31), 137 (18).

[3S(4S)] 3-{7-[(4-Acetamido)benzamido]-6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2,4]-triazepine-4-carboxamido}-4-oxobutanoic acid (1018),

- 15 was prepared by a similar method as compound 265 to afford a white solid (177mg, 82%): mp. 235-40°C; $\left[\alpha\right]_{D}^{23}$ +27.3° (c 0.1, CH₃OH); IR (KBr) 3700-2300 (br), 3311, 2957, 1662, 1599, 1531, 1318, 1266, 1182; ¹H NMR (CD₃OD) δ 7.83 (2H, d), 7.69 (2H, d), 5.10-4.95 (1H, m), 4.64-4.55 (1H, m), 4.50-4.35 (1H, m), 4.32-4.22 (1H, m), 4.00-3.65 (3H, m), 3.05-2.90 (1H, m), 2.80-2.30 (3H, m), 2.15 (3H, s), 2.15-1.50 (4H, m). Anal. Calcd for C₂₂H₂₆N₆O₈•1.5H₂O: C, 49.90; H, 5.52; N, 15.87. Found: C, 50.21; H, 5.41; N, 15.49. MS (ES[†]) 502 (M+, 28%), 501 (M[†] 1, 100), 401 (8), 218 (4), 119 (2), 118 (5), 113 (16).
- [3S(4S)] 3-[6,10-Dioxo-7-(4-methoxybenzoylamino) octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-4carboxamido]-4-oxobutanoic acid (1052), was synthesized
 via method used to prepare 265 to afford a white solid

[3s(4s)] 3-(6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-7-phenylacetylamino-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxamido)-4-oxobutanoic acid (1095), was prepared by a similar method as compound 265 to afford a white solid (84mg, 90%): mp. 180-6°C; [α]_D²² +22.3° (c 0.065, CH₃OH); IR (KBr) 3700-2300 (br), 3287, 1664, 1536, 1425, 1261, 1181; ¹H NMR (CD₃OD) δ 7.35-7.20 (5H, m), 5.00-4.90 (1H, m), 4.60-4.50 (1H, m), 4.50-4.10 (2H, m), 3.90-3.50 (3H, m), 3.54 (2H, s), 3.00-2.80 (1H, m), 2.80-2.40 (2H, m), 2.35-2.20 (1H, m), 2.20-1.50 (4H, m). MS (ES[†]) 459 (M+ 24%), 458 (M[†] - 1, 100), 358 (27), 175 (9), 149 (7), 137 (12). Accurate mass calculated for C₂₁H₂₆N₅O₇ (MH[†]): 460.1832. found: 460.1840.

[3s(4s)] 3-[6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-7-(3-phenylureido)-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxamido]-4-oxobutanoic acid (265f), was prepared by a similar method as compound 265 to afford a white foamy solid (130mg, 88%): mp. 157-62°C; [α]_D²⁴ +41.7°

20 (c 0.1, CH₃OH); IR (KBr) 3700-2300 (br), 3325, 1782, 1663, 1547, 1443, 1315, 1242, 1181; ¹H NMR (CD₃OD) δ 7.40 (2H, dd), 7.35-7.20 (2H, m), 7.06-6.95 (1H, m), 5.05-4.95 (1H, m), 4.64-4.54 (1H, m), 4.50-4.35 (1H, m), 4.35-4.15 (1H, m), 3.90-3.69 (3H, m), 3.06-2.85 (1H, m), 2.80-2.45 (3H, m), 3.40-1.50 (4H, m). MS (ES[†]) 460 (M+, 24%), 459 (M[†] - 1, 100), 341 (9;, 340 (54), 296 (6), 239 (9).

[3S(4S)] 3-[6,10-Dioxo-7-(indole-2-carboxamido)-1,2,3,4,7,8,9,10-octahydro-6H-

30 pyridazino[1,2-a][1,2,4]triazepine-4-carboxamido]-4-

- 675 -

17%): mp. 126-30°C (dec); $\{\alpha\}_D^{20}$ +30° (c 0.05, MeOH); IR (KBr) 3371, 2935, 1785, 1663, 1538, 1418, 1339, 1164, 669; ¹H NMR (CD₃OD) δ 8.44 (1H, s), 8.06-7.50 (7H, m), 7.22 (1H, d, J = 8.4), 4.58-4.57 (1H, m), 4.46-4.42 (1H, m), 4.16-4.09 (2H, m), 3.85-3.50 (3H, m), 2.84-2.78 (1H, m), 2.64-2.51 (1H, m), 2.44-2.15 (2H, m), 1.81-0.89 (4H, m). Anal. Calcd for $C_{23}H_{25}N_{5}O_{8}S \cdot H_{2}O$: C, 50.27; H, 4.95; N, 12.74. Found: C, 50.33; H, 5.04; N, 12.60. MS (ES⁺) 530.

- 10 [3s(4s)] 3-[6,10-Dioxo-7-(3-methoxyphenylureido) 1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2,4]triazepine-4-carboxamido]-4oxobutanoic acid (265c), was prepared by a similar
 method as 265, (90%) as a colourless solid: mp. ~150°C

 15 (decomp.); [α]_D²³ +94.8° (c 0.1, 20% MeOH/CH₂Cl₂); IR
 (KBr) 3330, 1780, 1660, 1610, 1550, 1495, 1428, 1326,
 1287, 1251, 1223, 1160; ¹H NMR (CD₃OD) & 7.16 (2H, m),
 6.89 (1H, d, J = 7.8), 4.58 (1H, m), 4.37 (2H, m), 3.76
 (6H, s + m), 2.95 (1H, m), 2.67 (1H, m), 2.33 (1H, m),
 20 2.20-1.85 (3H, m), 1.66 (1H, m).
- 1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxamido]-4-oxobutanoic acid (265d),
 was prepared by a similar method as 265, (85%) as a

 25 colourless solid: mp. ~176-85°C; [α]_D²³ +11.0° (c 0.1,
 MeOH); IR (KBr) 3392, 3328, 1784w, 1665, 1603, 1537,
 1490, 1462, 1437, 1337, 1290, 1290, 1217, 1177, 1119,
 1023; ¹H NMR (CD₃OD) δ8.02 (2H, m), 6.95 (4H, m), 5.05
 (1H, m), 4.60 (2H, m), 3.92 (4H, s + m), 3.00 (2H, m),
 30 2.68 (1H, m), 2.39 (1H, m), 2.00 (4H, m), 1.69 (1H, m).

[3S(4S)] 3-[6,10-Dioxo-7-(2-methoxyphenylureido)-

(264k), was prepared by the method used for 213e (96%):
IR (KBr) 3294, 2946, 1793, 1658, 1606, 1535, 1501,
1248, 1174, 1119.

H NMR (CDCl₃) δ 8.91 (1H, s), 7.85
(3H, m), 7.4 (10H, m), 7.02 (2H, d), 5.35 (1H, s), 5.10
(2H, s), 4.8-4.3 (5H, m), 4.00 (1H, bs), 3.78 (2H, m),
2.90 (2H, m), 2.5-1.5 (6H, m).

[4s(2Rs,3s)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-7-(3,4-methylenedioxybenzoylamino)-1,2,3,4,7,8,9,10-octahydro-6H-

- pyridazino[1,2-a][1,2,4]triazepine-4-carboxamide
 (2641), was prepared by a similar method as compound
 213e to afford a mixture of diastereomers (syn:anti
 isomer ratio 1:1) as a white solid (1.72g, 71%): mp.
 148-60°C; IR (KBr) 3314, 1780, 1677, 1658, 1651, 1550,
- 15 1485, 1439, 1258, 1132, 1038, 943; 1 H NMR (D₆-DMSO) δ 10.39 (1H, s), 8.71 (0.5H, d), 8.49 (0.5H, d), 7.44 (1H, d), 7.42-7.30 (6H, m), 7.03 (1H, d), 6.12 (2H, s), 5.68 (0.5H, d), 5.45 (0.5H, s), 4.90-4.82 (1H, m), 4.82-4.58 (2.5H, m), 4.40-4.10 (1.5H, m), 3.90-3.65
- 20 (2H, m), 3.65-3.43 (1H, m), 3.09 (0.5H, dd), 2.90-2.55 (1.5H, m), 2.45-2.10 (2H, m), 2.10-1.35 (4H, m). Anal. Calcd for $C_{28}H_{29}N_5O_9 \cdot 0.2H_2O$: C, 57.67; H, 5.08; N, 12.01. Found: C, 58.01; H, 5.33; N, 11.51. MS (ES⁺) 581 (M⁺ + 2, 33%), 580 (M+, 100), 374 (9), 373 (48), 25 345 (12), 261 (4), 239 (7), 149 (9).

[3S(4S)] 3-[6,10-Dioxo-7-(2-naphthalenesulfonyl)amino-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2,4]triazepine-4-carboxamido]-4oxobutanoic acid (265a), was prepared by a similar method as compound 265 to afford a white solid (37mg,

- 673 -

(264i), was prepared by a similar method to that described for compound 213e to afford a white solid (70%): mp. 116-118°C; IR (KBr) 3315, 2951, 1793, 1664, 1607, 1502, 1258, 1177; 1 H NMR (CDCl₃) δ 8.07 (1H, s), 5 7.77 (2H, d, J = 8.6), 7.35 (5H, m), 6.94 (2H, d, J = 8.5), 6.74 (1H), 4.89 (1H, d, J = 11.1), 4.74 (1H, m), 4.60 (1H, d, J = 11.0), 4.48, 4.41 (1H, 2m), 3.86 (3H, s), 3.79, 3.71-3.53 (3H, 2m), 2.87 (2H, m), 2.44 (1H, m), 2.18, 1.91, 1.68 (5H, 3m).

- [4S(2S,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-7-phenylsulphonylamino-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxamide (264j), was synthesized by a similar method as compound 15 213e to afford a foam (88%): [α]_D²⁴ +74.2° (c 0.36, CH₂Cl₂); IR (KBr) 3332, 3235, 1793, 1664, 1537, 1448, 1416, 1337, 1169, 118, 1092, 940, 690; ¹H NMR (CDCl₃)δ 7.99 (1H, s), 7.88 (2H, d, J = 6.8), 7.64-7.48 (3H, m), 7.34 (5H, s), 7.13 (1H, d, J = 6.9), 5.39 (1H, s), 4.81 (2H, m), 4.62 (1H, d, J = 11.5), 4.48 (1H, m), 4.33 (1H, m), 3.85 (1H, m), 3.59 (2H, m), 3.03 (1H, dd, J =
- Found: C, 54.42; H, 5.28; N, 11.62. MS (ES^{$^{+}$}) 572 (MH^{$^{+}$}, 25 100%). Accurate mass calculated for $C_{26}H_{30}SN_5O_8$ (MH^{$^{+}$}): 572.1815. Found: 572.1802.

Anal. Calcd for $C_{26}H_{29}SN_5O_8$: C, 54.63; H, 5.11 N, 12.25.

7.6, 18.2), 2.49-2.28 (3H, m), 1.94-1.40 (4H, m).

[4S(2RS,3S)] 7-(4-Benzyloxyphenyl)carbonylamino-N-(2-benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-

30 pyridazino[1,2-a][1,2,4]triazepine-4-carboxamide

CH₂Cl₂); IR (KBr) 3404, 3295, 1789, 1660, 1536, 1421, 1310, 1260, 1122, 749; ¹H NMR (D₆-DMSO) δ 11.72 (1H, s), 10.58 (1H, s), 8.73 (1H, d), 7.65 (1H, d), 7.58-7.27 (6H, m), 7.27-7.10 (1H, m), 7.17 (1H, s), 7.10-7.00 (1H, m), 5.46 (1H, s), 4.90-4.85 (1H, m), 4.77 and 4.68 (2H, dd), 4.35-4.25 (2H, m), 3.95-3.55 (3H, m), 3.09 (1H, dd), 2.95-2.80 (1H, m), 2.47-2.25 (2H, m), 2.10-1.35 (4H, m). MS (ES⁺) 574 (M+, 35%), 573 (M⁺ - 1, 100), 384 (16), 383 (69), 341 (23), 327 (12), 267 (13), 200 (22).

[4S(2RS, 3S)] 7-[(4-Acetamido)benzamido]-N-(2-benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-1,2,3,4,7,8,9,10octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-4carboxamide (264h), was prepared by a similar method as 15 compound **213e** to afford a mixture of diastereomers (Syn:anti isomer ratio 9:1) as a white solid (276mg, 70%): mp. 147-52°C; IR (KBr) 3444, 3304, 1793, 1665, 1602, 1531, 1505, 1423, 1294, 1264, 1181, 1123, 966; ¹H NMR (D₆-DMSO) δ 10.41 (1H, s), 10.22 (1H, s), 8.71 (0.1H, d), 8.48 (0.9H, d), 7.78 (2H, d), 7.67 (2H, d), 7.35-7.30 (5H, m), 5.68 (0.9H, d), 5.45 (0.1H, s), 4.88-4.80 (1H, m), 4.75-4.60 (1H, m), 4.77 and 4.63(2H, dd), 4.30-4.20 (1H, m), 3.90-3.50 (3H, m), 3.10-2.50 (3H, m), 2.35-2.20 (1H, m), 2.07 (3H, s), 2.05-25 1.35 (4H, m). Anal. Calcd for C₂₉H₃₂N₆O₈•1H₂O: C, 57.04; H, 5.61; N, 13.76. Found: C, 56.79; H, 5.50; N, 13.53. MS (ES^{+}) 594 $(M^{+} + 2, 34\%)$, 593 $(M^{+} + 1, 100)$, 387 (8), 386 (38), 358 (8), 162 (19).

[4S(2RS,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-7-(4-methoxybenzoylamino)-octahydro-6Hpyridazino[1,2-a][1,2,4]triazepine-4-carboxamide 4.85-4.75 (1H, m), 4.74-4.60 (1H, m), 4.77 and 4.63 (2H, dd), 4.30-4.10 (1H, m), 3.80-3.40 (3H, m), 3.43 (2H, s), 3.10-2.40 (3H, m), 2.25-2.15 (1H, m), 2.00-1.35 (4H, m). Anal. Calcd for $C_{28}H_{31}N_{5}O_{7} \cdot 0.5H_{2}O$: C, 5 60.21; H, 5.77; N, 12.53. Found: C, 60.38; H, 5.83; N, 12.13. MS (ES⁺) 551 (M⁺ + 2, 33%), 550 (M⁺ + 1, 100), 480 (7), 343 (8), 279 (4).

[4S(2RS,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-7-(3-

- phenylureido)-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxamide (264f), was prepared by a similar method as compound 213e to afford the pure syn-isomer as a white foamy solid (225mg, 82%): mp. 130-5°C; $[\alpha]_D^{-24}$ +10.8° (c 0.1, CH₂Cl₂); IR (KBr) 3316, 1791, 1688, 1676, 1664,
- 15 1601, 1536, 1445, 1314, 1242, 973; 1 H NMR (D₆-DMSO) δ 8.84 (1H, s), 8.49 (1H, d), 8.19 (1H, s), 7.45-7.18 (9H, m), 7.00-6.90 (1H, m), 5.68 (1H, d), 4.90-4.81 (1H, m), 4.75-4.60 (1H, m), 4.78 and 4.63 (2H, dd), 4.30-4.20 (1H, m), 3.75-3.55 (3H, m), 2.85-2.55 (3H,
- 20 m), 2.25-2.15 (1H, m), 2.00-1.35 (4H, m). Anal. Calcd for $C_{27}H_{30}N_{6}O_{7} \cdot 0.5H_{2}O$: C, 57.95; H, 5.58; N, 15.02. Found: C, 58.12; H, 5.64; N, 14.81. MS (ES⁺) 552 (M⁺ 2, 30%), 551 (M⁺ + 1, 100), 362 (19), 299 (10), 279 (4).
- 25 [4s(2s,3s)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)6,10-dioxo-7-(indole-2-carboxamido)-1,2,3,4,7,8,9,10octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-4carboxamide (264g), was prepared by a similar method as
 compound 213e to afford the pure anti-isomer as a white
 30 solid (284mg, 80%): mp. 148-53°C; [α]_D²⁴ +72.0° (c 0.1,

1608, 1543, 1496, 1455, 1428, 1325, 1287, 1250, 1218, 1160, 1118; 1 H NMR (CDCl₃) δ 8.00 (1H, d, J = 7.1), 7.66 (1H, s), 7.55 (1H, s), 7.28 (5H, m), 7.14 (2H, m), 6.87 (1H, d, J = 7.4), 6.59 (1H, m), 5.42 (1H, s), 4.66 (5H, 5), 3.90-3.65 (4H, m), 3.73 (3H, s), 2.98 (2H, m), 2.38 (2H, m), 2.01-1.65 (3H, m).

[4S(2S,3S)] N-(2-Benzyloxy-5-oxo-tetrahydrofuran-3-yl)-6,10-dioxo-7-(2-methoxyphenylureido)-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-1
10 carboxamide (264d), was prepared by a similar method as

- 213e, (72%) as colourless foam: $[\alpha]_D^{22}$ +21.4° (c 0.1, CH₂Cl₂); IR (KBr) 3302, 1791, 1689, 1678, 1664, 1602, 1536, 1489, 1461, 1437, 1420, 1249, 1119, 1023, 942, 751; ¹H NMR (CDCl₃) δ 8.07 (1H, d, J = 7.7), 7.82 (1H,
- 15 s), 7.68 (1H, d, J = 6.7), 7.49 (1H, s), 7.34 (5H, m), 6.96 (3H, m), 5.47 (1H, s), 4.82 (2H, d + m, J = 11.5), 4.63 (1H, d, J = 11.5), 4.49 (2H, m), 3.85 (4H, s + m), 3.68 (2H, m), 3.01 (2H, m), 2.46 (2H, m), 1.95 (3H, m), 1.57 (1H, m).
- 20 [4S(2RS,3S)] N-(2-Benzyloxy-5-oxotetrahydrofuran-3-yl)6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-7phenylacetylamino-6H-

pyridazino[1,2-a][1,2,4]triazepine-4-carboxamide (264e)
was synthesized via a similar method as used to prepare

25 **213e** to afford a mixture of diastereomers (Syn:anti isomer ratio 9:1) as a white glassy solid (128mg, 78%): mp. 103-8°C; IR (KBr) 3419, 3302, 1793, 1664, 1535, 1421, 1327, 1256, 1123, 973; 1 H NMR (D₆-DMSO) δ 10.20 (0.9H, s), 9.35 (0.1H, s), 8.74 (0.1H, d), 8.49 (0.9H, 30 d), 7.36-7.15 (10H, m), 5.67 (0.9H, d), 5.44 (0.1H, s),

- 669 -

20

[4S(2S,3S)] N-(2-Benzyloxy-5-oxo-tetrahydrofuran-3-yl)-

25 6,10-dioxo-7-(2-naphthalenesulfonyl)amino-1,2,3,4,7,8,9,10-octahydro-6H-

pyridazino[1,2-a][1,2,4]triazepine-4-carboxamide

(264a), was synthesized by a similar method as compound 213e to afford a white solid (240mg, 82%): IR (KBr)

- 30 3380, 3066, 2947, 1789, 1750, 1691, 1454, 1417, 1368, 1298, 1262, 1235, 1193, 1118, 756, 696; 1 H NMR (D₆-DMSO) δ 8.59 (1H, d, J = 6.8), 8.48 (1H, s), 8.25-8.09 (3H, m), 7.85-7.75 (3H, m), 7.36 (5H, m), 5.39 (1H, m), 4.21 (2H, AB, J = 14.2), 4.53-4.49 (1H, m), 4.25-4.10
- 35 (2H, m), 3.65-3.44 (3H, m), 3.13-2.99 (1H, m), 2.43-2.16 (1H, m), 1.72-0.72 (7H, m). Anal. Calcd for $C_{30}H_{31}N_5O_8S$: C, 57.96; H, 5.03; N, 11.27. Found: C, 57.28; H, 5.14; N, 10.48. MS (ES⁺) 622.

[4S(2S,3S)] N-(2-Benzyloxy-5-oxo-tetrahydrofuran-3-yl)-

6,10-dioxo-7-(3-methoxyphenylureido)-1,2,3,4,7,8,9,10octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-1carboxamide (264c), was prepared by a similar method as
213e, (55%) as a colourless foam: mp. 135-40°C; (α)_D²²
+51.6° (c 0.1, CH₂Cl₂); IR (KBr) 3314, 1790, 1664,

- 668 -

	- 000 -
compound	R ¹
264a 265a	SO
264c 265c	H N O OMe
264d 265d	I NO OMe
264e 1095	
264f 265f	o I
264g 1075	N H O
264h 1018	H,C H
264i 1052	Meo
26 4 j 1027	50,

5

10

15

- 667 -

pyridazino[1,2-a][1,2,4]triazepine-4-carboxylic acid (2631). A suspension of 5251 (3.32g, 8.2mmol) in tetrahydrofuran (60ml) was treated with a solution of LiOH·H₂O (0.69q, 16.4mmol, 2.0 equiv) in water (20ml). 5 The resulting mixture was stirred for 1h, concentrated and the residue dissolved in water (50ml). The solution was acidified using 2M. $NaHSO_4$ and the product extracted with EtOAc (100ml and 50ml portions). The combined extract was washed once with brine (2 x 50ml), 10 dried (MgSO₄) and concentrated to afford 2631 as a white crystalline solid (2.87g, 90%): mp. 154-8°C; $[\alpha]_D^{20} + 85.6^{\circ}$ (c 0.01, CH₃OH); IR (KBr) 3700-2300 (br), 3248, 2942, 1733, 1681, 1658, 1648, 1536, 1486, 1440, 1297, 1255, 1037; 1 H NMR (D₆-DMSO) δ 13.23 (1H, bs), 15 10.45 (1H, s), 7.45 (1H, d), 7.35 (1H, s), 7.03 (1H, d), 6.12 (2H, s), 5.00-4.93 (1H, m), 4.35-4.25 (1H, m), 3.90-3.40 (3H, m), 2.95-2.70 (1H, m), 2.40-2.25 (1H, m), 2.15-2.00 (1H, m), 1.91-1.40 (3H, m). Anal. Calcd for C₁₇H₁₈N₄O₇ • 0.8H₂O: C, 50.45; H, 4.88; N, 13.84. 20 Found: C, 50.80; H, 4.95; N, 13.36. MS (ES⁺) 390 (M⁺, 19%), $389 (M^{+} - 1, 100)$, 345 (9), 204 (31), 182 (27),

264a, c-1

111 (12).

265a, c, d, f 1015, 1018, 1027, 1052, 1056, 1075, 1095

25

2945, 1738, 1650, 1611, 1501, 1445, 1309, 1255, 1171;

¹H NMR (CDCl₃) δ 9.35 (1H, s), 7.74 (2H, d), 7.38 (5H, m), 6.85 (2H, d), 5.40 (1H, bs), 5.19 (1H, s), 5.02 (2H, s), 4.49 (1H, d), 3.92 (2H, m), 3.68 (1H, m), 2.99

5 (1H, bs), 2.43 (1H, bs), 2.22 (1H, bs), 1.99 (1H, bs), 1.68 (2H, bs).

(4S) Methyl 6,10-dioxo-7-(3,4-

methylenedioxybenzoylamino)-1,2,3,4,7,8,9,10-octahydro6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxylate
(5251), was synthesized via method used to prepare 211
to afford a white crystalline solid (3.35g, 83%): mp.
214-5°C; [α]_D²⁰ +75.2° (c 0.1, CH₂Cl₂); IR (KBr) 3272,
2955, 1747, 1664, 1610, 1485, 1443, 1265, 1040; ¹H NMR

15 (CDCl₃) δ 8.66 (1H, s), 7.32 (1H, dd), 7.23 (1H, d),
6.76 (1H, d), 6.02 (2H, s), 5.20 (1H, dd), 4.55-4.45
(1H, m), 4.03-3.70 (3H, m), 3.78 (3H, s), 3.05-2.88
(1H, m), 2.47-2.35 (1H, m), 2.35-2.20 (1H, m), 2.101.90 (1H, m), 1.85-1.50 (2H, m). Anal. Calcd for

20 C₁₈H₂₀N₄O₇·0.5H₂O: C, 52.87; H, 5.06; N, 13.70. Found:
C, 52.84; H, 5.00; N, 13.66. MS (ES[†]) 406 (M[†] + 2,
20%), 405 (M[†] + 1, 100), 391 (10), 162 (6), 148 (3),
105 (2).

(4S) 6,10-Dioxo-7-(3,4-methylenedioxybenzoylamino)-25 1,2,3,4,7,8,9,10-octahydro-6H-

- 665 -

(M+, 10%), $402 (M^{+} - 1, 100)$, 358 (10), 247 (10), 227 (16), 219 (51), 198 (12), 184 (17).

- (4S) 6,10-Dioxo-7-(4-methoxybenzoylamino)-octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-carboxylic acid
- 5 (263i), was obtained as a white glassy solid (approx 100%) used without purification: 1 H NMR (CDCl₃) δ 9.23 (1H, s), 7.72 (2H, d, J = 8.8), 6.81 (2H, d, J = 8.9), 5.22 (1H, m), 4.51 (1H, m), 3.97-3.72 (2H, m), 3.81 (3H, s), 3.03 (1H, m), 2.51-2.46 (1H, m), 2.31-2.25 10 (1H, m), 2.03 (1H, m), 1.72 (2H, m).
 - (4S) 6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-7-phenylsulphonylamino-6H-

pyridazino[1,2-a][1,2,4]triazepine-4-carboxylic acid (263j), was obtained as a white solid (100%): mp. 73-

- 15 83°C (dec); $[\alpha]_D^{22}$ +104.7° (c 0.3, CH_2Cl_2); IR (KBr) 3600-2500 (br), 3208, 1734, 1666, 1481, 1448, 1416, 1338, 1311, 1214, 1171, 1091, 729, 689; ¹H NMR (CDCl₃) δ 7.87 (3H, m), 7.70-7.50 (3H, m), 7.16 (1H, brs), 4.99 (1H, m), 4.37 (1H, brd, J = 12.8), 3.92 (1H, m), 3.67
- 20 (2H, m), 2.36 (2H, m), 2.13 (1H, brd, J = 12.2), 1.56 (3H, m). Anal. Calcd for $C_{15}H_{18}SN_4O_6 \cdot 0.25CF_3CO_2H$: C, 45.31; H, 4.48 N, 13.64. Found: C, 45.48; H, 4.71; N, 13.43. MS (ES⁺) 383 (MH⁺, 100%). Accurate mass calculated for $C_{15}H_{19}SN_4O_6$ (MH⁺): 383.1025. Found: 25 383.1007.
 - (4s) 7-(4-Benzyloxyphenyl)carbonylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxylic acid (263k), (100%) obtained: mp. 130-142°C; IR (KBr) 3272,

18.42. MS (ES^{+}) 361 (M+, 20%), 360 $(M^{+} - 1, 100)$, 241 (11), 240 (89), 196 (15), 175 (29), 111 (12).

- (4S) 6,10-Dioxo-7-(indole-2-carboxamido)-1,2,3,4,7,8,9,10-octahydro-6H-
- 5 pyridazino[1,2-a][1,2,4]triazepine-4-carboxylic acid (263g), was obtained as a white solid (259mg, 92%)mp. 248-51°C; $[\alpha]_D^{24}$ +94.0° (c 0.01, CH₃OH); IR (KBr) 3700-2300 (br) 3341, 2956, 1738, 1668, 1651, 1529, 1425, 1311, 1259, 751; ¹H NMR (D₆-DMSO) δ 13.29 (1H, bs),
- 10 11.72 (1H, s), 10.64 (1H, s), 7.65 (1H, d), 7.45 (1H, d), 7.26-7.15 (1H, m), 7.17 (1H, s), 7.10-7.00 (1H, m), 5.05-4.95 (1H, m), 4.40-4.25 (1H, m), 3.90-3.50 (3H, m), 2.88-2.75 (1H, m), 2.38-2.20 (1H, m), 2.20-2.00 (1H, m), 1.90-1.35 (3H). Anal. Calcd for
- 15 $C_{18}H_{19}N_5O_5 \cdot 0.5H_2O$: C, 53.59; H, 5.25; N, 17.35. Found: C, 53.66; H, 4.88; N, 17.11. MS (ES⁺) 385 (M+, 23%), 384 (M⁺ 1, 100), 298 (6), 253 (8), 227 (10), 199 (23), 196 (10), 173 (9), 126 (21).

(4S) 7-[(4-Acetamido)benzamido]-6,10-dioxo-

- 20 1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2,4]triazepine-4-carboxylic acid
 (263h), was obtained as a white solid (282mg, 99%): mp.
 219-5°C; [α]_D²⁴ +74.5° (c 0.01, CH₃OH); IR (KBr) 37002300 (br) 3444, 3316, 2960, 1664, 1599, 1531, 1439,
- 25 1301, 1184; 1 H NMR (D₆-DMSO) δ 13.30 (1H, bs), 10.50 (1H, s), 10.25 (1H, s), 7.80 (2H, d), 7.68 (2H, d), 5.00-4.90 (1H, m), 4.35-4.25 (1H, m), 3.90-3.40 (3H, m), 2.88-2.70 (1H, m), 2.35-2.25 (1H, m), 2.25-1.95 (1H, m), 2.08 (3H, s), 1.95-1.35 (3H, m). MS (ES[†]) 403

- 663 -

m), 7.97 (2H, m), 7.15-6.84 (3H, m), 5.29 (1H, m), 4.62 (1H, m), 4.04-3.65 (4H, m), 3.89 (3H, s), 2.92 (1H, m), 2.50 (1H, m), 2.30 (1H, m), 2.10-1.75 (2H, m).

- (4S) 6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-7-
- phenylacetyl-amino-6Hpyridazino[1,2-a][1,2,4]triazepine-4-carboxylic acid
 (263e), obtained as a white foamy solid (117mg, 98%):

mp. 109-14°C; $\{\alpha\}_D^{24}$ +82.6° (c 0.06, CH_2Cl_2); IR (KBr) 3700-2250 (br), 3437, 3274, 2959, 1733, 1664, 1481,

- 10 1437, 1310, 1177; 1 H NMR (CDCl₃) δ 7.99 (1H, s), 7.40-7.15 (5H, m), 5.15-5.10 (1H, m), 5.25-4.70 (1H, bs), 4.50-4.35 (1H, m), 3.95-3.50 (3H, m), 3.61 (2H, s), 2.93-2.78 (1H, m), 2.40-2.20 (2H, m), 2.10-1.80 (1H, m), 1.80-1.60 (2H, m). Anal. Calcd for $C_{17}H_{20}N_{4}O_{5} \cdot 1H_{2}O$:
- 15 C, 53.96; H, 5.86; N, 14.81. Found: C, 54.12; H, 5.50; N, 14.68. MS (ES⁺) 360 (M+, 21%), 359 (M⁺ 1, 100), 196 (14), 182 (14), 111 (7).
 - (4S) 6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-7-(3-phenylureido)-6H-pyridazino[1,2-a][1,2,4]triazepine-4-
- carboxylic acid (263f), obtained as a white foamy solid (199mg, 92%): mp. 149-52°C; $[\alpha]_D^{24}$ +92.0° (c 0.01, CH₃OH); IR (KBr) 3700-2300 (br), 3319, 2956, 1726, 1664, 1600, 1548, 1500, 1444, 1313, 1238, 755; ¹H NMR (D₆-DMSO) δ 8.90 (1H, s), 8.24 (1H, s), 7.42 (2H, d),
- 25 7.30-7.20 (2H, m), 7.00-6.90 (1H, m), 4.98-4.92 (1H, m), 4.32-4.22 (1H, m), 3.80-3.55 (3H, m), 2.85-2.70 (1H, m), 2.30-2.20 (1H, m), 2.20-2.00 (1H, m), 1.90-1.35 (3H, m). Anal. Calcd for $C_{16}H_{19}N_{5}O_{5} \cdot 0.75H_{2}O$: C, 51.26; H, 5.51; N, 18.68. Found: C, 51.11; H, 5.23; N,

- 2.01 (1H, m), 1.91-1.83 (1H, m), 1.46-1.26 (1H, m), 1.13-1.06 (1H, m), 0.90-0.77 (1H, m). MS (ES⁺) 431.
- (4S) 7-(Benzo[b]thiophene-2-carbonyl)amino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-
- 5 pyridazino[1,2-a][1,2,4]triazepine-4-carboxylic acid (263b). 200mg (100%) was obtained as a white solid: mp. 155°C; [α]_D²⁰ +13° (c 0.07, CH₂Cl₂); IR (KBr) 3431, 2935, 1734, 1663, 1531, 1435, 1292, 1177; ¹H NMR (CDCl₃)δ9.73 (1H, bs), 7.73-7.27 (5H, m), 5.35-5.25 (1H, m), 4.56-4.48 (1H, m), 4.05-3.65 (3H, m), 3.12-3.00 (1H, m), 2.50-2.45 (1H, m), 2.30-2.20 (1H, m), 2.10-2.00 (1H, m), 1.75-1.61 (2H, m). MS (ES⁺) 401.
 - (4S) 6,10-Dioxo-7-(3-methoxyphenylureido)-1,2,3,4,7,8,9,10-octahydro-6H-
- 15 pyridazino[1,2-a][1,2,4]triazepine-4-carboxylic acid
 (263c), 216mg, (100+%) obtained as a colourless foam:
 [α]_D²³ 32.5° (c 0.1, CH₂Cl₂); IR (KBr) 3326, 1730,
 1661, 1610, 1555, 1495, 1431, 1314, 1288, 1217, 1175,
 1161; ¹H NMR (CDCl₃) δ7.87 (1H, s), 7.58 (1H, s), 7.19
 20 (2H, m), 6.82 (1H, m), 6.62 (1H, m), 5.21 (1H, m), 4.55 (1H, m), 3.76 (3H, s), 4.0-3.65 (4H, m), 2.85 (1H, m),
 2.35 (2H, m), 1.75 (1H, m), 1.71 (2H, m).
 - (4S) 6,10-Dioxo-7-(2-methoxyphenylureido)-1,2,3,4,7,8,9,10-octahydro-6H-
- pyridazino[1,2-a][1,2,4]triazepine-4-carboxylic acid (263d), (100+%) obtained as colourless foam: $[\alpha]_D^{-24}$ +11.7° (c 0.1, CH₂Cl₂); IR (KBr) 3394, 3325, 1666, 1603, 1543, 1490, 1463, 1438, 1329, 1311, 1292, 1249, 1214, 1176, 1119, 1024, 752; 1 H NMR (CDCl₃) δ 8.15 (1H,

- 661 -

IR (KBr) 3283, 1732, 1684, 1448, 1430, 1404, 1369, 1338, 1306, 1285, 1242, 1169, 1091, 692; 1 H NMR (CDCl₃) δ 7.89 (2H, d, J = 7.4), 7.76 (1H, s), 7.64-7.49 (3H, m), 4.83 (1H, m), 4.35 (1H, brd, J = 13.0), 4.00 (1H, 5 m), 3.74-3.63 (2H, m), 2.39-2.26 (2H, m), 2.06 (1H, m), 1.50-1.41 (10H, m). Anal. Calcd for $C_{19}H_{26}SN_{4}O_{6}$: C, 52.04; H, 5.98 N, 12.78. Found: C, 52.11; H, 5.95; N, 12.71. MS (ES⁺) 437 (M⁺ - 1, 100%).

(3S) t-Butyl (7-(4-benzyloxyphenyl)carbonylamino-6,1010 dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino
[1,2-a][1,2,4]triazepine-4-carboxylate (262k), (83%)
was obtained: [α]_D²² +42.3°. (c 0.11, CH₂Cl₂);.IR (KBr)
3287, 2997, 2935, 1735, 1681, 1606, 1501, 1296, 1248,
1173,1155.

¹H NMR (CDCl₃) δ 9.23 (1H, s), 7.73 (2H, d),
15 7.38 (5H, m), 6.85 (2H, d), 5.08 (1H, m), 5.02 (2H, s),
4.48 (1H, bd), 4.15-3.65 (3H, m), 2.96 (1H, m), 2.452.10 (2H, m), 1.88 (1H, m), 1.63 (2H, m), 1.48 (9H, s).
M.S. (ES⁺ 509 (M⁺+1).

Compounds 263a-k were synthesized via methods 20 used to prepare 212b-f.

(4S) 6,10-Dioxo-7-(2-naphthalenesulfonyl)amino-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxylic acid (263a), 348mg (94%) obtained as a white foamy solid:
25 mp. [α]_D²¹ +171° (c 0.056, CH₂Cl₂); IR (KBr) 3426, 3233, 2953, 1734, 1663, 1481, 1415, 1340, 1214, 1167, 1132, 1075, 668; ¹H NMR (CDCl₃) δ 8.44 (1H, s), 8.00-7.60 (7H, m), 4.85-4.83 (1H, m), 4.25-4.00 (1H, m), 4.07-3.90 (1H, m), 3.70-3.46 (2H, m), 2.38-2.30 (1H, m), 2.12-

- (4s) t-Butyl 7-[(4-acetamido)benzamido]-6,10-dioxo1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxylate (262h), was obtained as a
 white solid (325mg, 73%): mp. 209-12°C; [α]_D²⁴ +62.4°

 5 (c 0.2, CH₂Cl₂); IR (KBr) 3513, 3269, 2980, 1731, 1680,
 1653, 1599, 1531, 1314, 1158; ¹H NMR (CDCl₃) δ 9.40 (1H,
 s), 8.75 (1H, s), 7.72 (2H, d), 7.47 (2H, d), 5.15-5.05
 (1H, m), 4.55-4.45 (1H, m), 4.05-3.70 (3H, m), 3.002.80 (1H, m), 2.45-2.35 (1H, m), 2.30-2.15 (1H, m),
 10 2.10 (3H, s), 2.00-1.80 (1H, m), 1.80-1.50 (2H, m),
 1.48 (9H, s). Anal. Calcd for C₂₂H₂₉N₅O₆: C, 57.51; H,
 6.36; N, 15.24. Found: C, 57.41; H, 6.38; N, 15.12.
 MS (ES⁺) 461 (M⁺ + 2, 26%), 460 (M⁺ + 1, 100), 405 (12),
 404 (55), 354 (7), 285 (23), 229 (52), 183 (22).
- 15 (4s) t-Butyl 6,10-dioxo-7-(4-methoxybenzoylamino) octahydro-6H-pyridazino[1,2-a][1,2,4]triazepinecarboxylate (262i), was obtained as a white glassy
 solid (76%): mp. 85-9°C; [α]_D²⁵ +66.4° (c 0.11,
 CH₂Cl₂); IR (KBr) 1732, 1668, 1607, 1502, 1440, 1312,
 20 1295, 1258, 1176, 1157, 1025; ¹H NMR (CDCl₃) δ 8.25 (1H,
 s), 7.77 (2H, m), 6.90 (2H, m), 5.11-5.07 (1H, m),
 4.55-4.48 (1H, m), 4.01-3.91 (2H, m), 3.86-3.78 (1H,
 m), 3.85 (3H, s), 2.98 (1H, m), 2.46-2.40 (1H, m),
 2.26-2.20 (1H, m), 2.05-1.80 (1H, m), 1.70-1.64 (2H,
 25 m), 1.48 (9H, s).
- (4S) t-Butyl 6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-7phenylsulphonylamino-6Hpyridazino[1,2-a][1,2,4]triazepine-4-carboxylate
 (262j), was obtained as a white crystalline solid
 3C (79%): mp. 182-3°C (dec); (α)_D²² +92.1° (c 0.4, CH₂Cl₂);

- 659 -

- (4*S*) t-Butyl 6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-7-(3-phenylureido)-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxylate (262f), was obtained as a white solid (273mg, 93%): mp. 102-6°C; [α]_D²² +7.5° (c 0.07,
- 5 CH₂Cl₂); IR (KBr) 3320, 2979, 1731, 1676, 1669, 1601, 1549, 1444, 1314, 1240, 1156; ¹H NMR (CDCl₃) δ 7.37-7.20 (6H, m), 7.08-6.98 (1H, m), 5.12 (1H, dd), 4.64-4.55 (1H, m), 4.02-3.78 (2H, m), 3.75-3.65 (1H, m), 2.94-2.75 (1H, m), 2.57-2.35 (1H, m), 2.35-2.20 (1H, m),
- 10 2.00-1.50 (3H, m), 1.48 (9H, s). Anal. Calcd for $C_{20}H_{27}N_5O_5 \cdot 0.4H_2O$: C, 56.56; H, 6.60; N, 16.49. Found: C, 56.89; H, 6.58; N, 16.07. MS (ES⁺) 419 (M⁺ + 2, 248), 418 (M⁺ + 1, 100), 363 (15), 362 (81), 242 (10).
 - (4S) t-Butyl 6,10-dioxo-7-(indole-2-carboxamido) -
- 15 1,2,3,4,7,8,9,10-octahydro-6H-pyridazino
 [1,2-a][1,2,4]triazepine-4-carboxylate (262g), (13g)
 was obtained as a white solid (298mg, 70%): mp. 13843°C; [α]_D²³ +69.8° (c 0.1, CH₂Cl₂); IR (KBr) 3282,
 2978, 1733, 1664, 1536, 1421, 1310, 1156, 748; ¹H NMR
- 20 (CDCl₃) δ 9.67 (1H, s), 9.53 (1H, s), 7.50 (1H, d), 7.30-7.15 (2H, m), 7.10-7.00 (1H, m), 6.93 (1H, s), 5.16-5.12 (1H, m), 4.60-4.50 (1H, m), 4.05-3.85 (2H, m), 3.85-3.70 (1H, m), 3.05-2.90 (1H, m), 2.55-2.35 (1H, m), 2.35-2.20 (1H, m), 2.00-1.65 (1H, m), 1.85-1.50
- 25 (2H, m), 1.47 (9H, s). Anal. Calcd for $C_{22}H_{27}N_5O_5 \cdot 0.45H_2O$: C, 58.77; H, 6.26; N, 15.58. Found: C, 59.14; H, 6.24; N, 15.18. MS (ES⁺) 433 (M⁺ + 2, 26%), 442 (M⁺ + 1, 100), 387 (17), 386 (79), 285 (20), 229 (85), 211 (26), 185 (15), 183 (57), 139 (9).

- 658 -

 $[\alpha]_D^{22}$ +22.6° (c 0.1, CH₂Cl₂); IR (KBr) 3316, 1732, 1671, 1609, 1551, 1495, 1455, 1432, 1316, 1288, 1245, 1218, 1158, 1122, 1023; ¹H NMR (CDCl₃) δ 7.16 (4H, m), 6.79 (1H, m) 6.60 (1H, m), 5.11 (1H, m), 4.59 (1H, m), 3.89 (2H, m), 3.77 (3H, s), 3.72 (2H, m), 2.85 (1H, m).

- (4s) t-Butyl 6,10-dioxo-7-(2-methoxyphenylureido) 1,2,3,4,7,8,9,10-octahydro-6H-pyridazino
 [1,2-a][1,2,4]triazepine-4-carboxylate (262d), (81%)
 was obtained as colourless foam: [α]_D²² +3.7° (c 0.1,
 10 CH₂Cl₂); IR (KBr) 3468, 3446, 3269, 1734, 1698, 1667,
 1609, 1555, 1490, 1461, 1433, 1423, 1296, 1246, 1215,
 1173, 1157, 1028, 756; ¹H NMR (CDCl₃) δ 8.23 (1H, m),
 7.95 (1H, s), 6.95 (4H, m), 5.15 (1H, m), 4.60 (1H, m),
 3.98-3.65 (4H, m), 3.89 (3H, s), 2.90 (1H, m), 2.48
 15 (1H, m), 2.25 (1H, m), 2.05-1.65 (2H, m), 1.48 (9H, s).
- (4s) t-Butyl 6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-7-phenylacetylamino-6H-pyridazino[1,2-a][1,2,4]triazepine-4-carboxylate
 (262e), was obtained as a white foamy solid (155mg,
 20 53%): mp. 53-7°C; [α]_D²² +57.4° (c 0.1, CH₂Cl₂); IR
 (KBr) 3271, 2978, 1733, 1680, 1437, 1314, 1245, 1156;

 ¹H NMR (CDCl₃) δ7.46 (1H, s), 7.42-7.20 (5H, m), 5.03
 (1H, dd), 4.52-4.40 (1H, m), 3.96-3.70 (2H, m), 3.70-3.49 (1H, m), 3.63 (2H, s), 2.92-2.75 (1H, m), 2.43-2.33 (1H, m), 2.33-2.15 (1H, m), 2.00-1.50 (3H, m), 1.45 (9H, s). Anal. Calcd for C₂₁H₂₈N₄O₅*0.25H₂O: C, 59.91; H, 6.82; N, 13.31. Found: C, 60.19; H, 6.80; N, 13.30. MS (ES⁺) 418 (M⁺ + 2, 25%), 417 (M⁺ + 1, 100), 362 (9), 361 (45).

- 657 **-**

20

262i 263i	MeO
262j 263j	PhSO ₂
262k 263k	

- 25 (4s) t-Butyl 6,10-dioxo-7-(2-naphthyl) sulfonamide1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2,4]triazepine-4-carboxylate
 (262a). 443mg (91%) of the title compound was
 obtained: mp. 56-7°C; [α]_D²⁵ +76° (c 0.15, CH₂Cl₂); IR

 30 (KBr) 3429, 2979, 1734, 1675, 1418, 1369, 1339, 1323,
 1244, 1164, 665; ¹H NMR (CDCl₃) δ8.45 (1H, s), 8.00-7.59
 (7H, m), 4.69-4.65 (1H, m), 4.25-4.12 (1H, m), 4.103.99 (1H, m), 3.73-3.55 (2H, m), 2.40-2.30 (1H, m),
 1.99-1.91 (1H, m), 1.82-1.62 (2H, m), 1.48-1.46 (2H,
 35 m), 1.37 (9H, s). Anal. Calcd for C₂₃H₂₈N₄O₆S·H₂O: C,
 54.53; H, 5.97; N, 11.06. Found: C, 54.60; H, 5.73; N,
 10.95. MS (ES⁺) 489.
 - (4S) t-Butyl 6,10-dioxo-7-(3-methoxyphenylureido)-1,2,3,4,7,8,9,10-octahydro-6H-
- 40 pyridazino[1,2-a][1,2,4]triazepine-4-carboxylate
 (262c), 120mg (80%) of colourless foam was obtained:

262a-k

263a-k

LULU X	2030 X
compound	R
262a 263a	Soz
262b 263b	
262c 263c	NHCO.
262d 263d	NHOO- OMe
262e 263e	
262f 263f	
262g 263g	
262h 263h	**************************************

5

10

15

- 655 **-**

522 (7.15g, 19.1mmol) was dissolved in dichloromethane(100ml), containing dimethylformamide (0.5ml), and cooled to 0°C. Thionyl chloride (1.6ml, 2.61g, 22mmol) and N-ethyl morpholine (4.86ml, 440mg, 5 38.2mmol) were added and the mixture stirred for 2h. The organic mixture was washed with 2M sodium bisulphate (50ml), saturated sodium bicarbonate (50ml) and brine (50ml), dried (MgSO₄) and concentrated. The residues were triturated with ether to give 523 as a 10 white solid (5.73g, 84%): mp. 186-188°C (decomp); $(\alpha)_{D}^{22}$ +65.3° (c 0.25, CH₂Cl₂); IR (KBr) 3298, 2978, 1750, 1720, 1682, 1658, 1455, 1423, 1369, 1316, 1241, 1212, 1160; 1 H NMR (CDCl₃) δ 6.56 (1H, s), 5.17 (1H, dd), 4.48 (1H, bd), 3.81 (3H, m), 3.75 (3H, s), 2.83 (1H, 15 dt), 2.40 (1H, m), 2.28 (1H, m), 1.95 (1H, m), 1.67 (1H, m), 1.47 (9H, s). Anal. Calcd for $C_{15}H_{24}N_{4}O_{6} \cdot 1/6H_{2}O$: C, 50.13; H, 6.82; N, 15.59. Found: C, 50.12; H, 6.71; N, 15.58. MS (ES^{+}) 357 $(M^{+} - 1)$ 46%), 301 (100%).

20 (4S) Methyl 7-amino-6,10-dioxo-1,2,3,4,7,8,9,10octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-4carboxylate (524), was synthesized from 523 via method used to prepare 518.

Compounds 262a-k were synthesized via methods 25 used to prepare 211b-f.

PCT/US96/20843 WO 97/22619

- 654 -

bd), 3.73 (3H, s), 3.55 (1H, dd), 3.12 (1H, t), 2.06 (1H, m), 1.73 (3H, m). Anal. Calcd for $C_{14}H_{17}N_{2}O_{4} \cdot 0.25H_{2}O$: C, 59.46; H, 6.59; N, 9.91. Found: C, 59.44; H, 6.46; N, 10.09.

- 5 (3S) 1-Benzyl 3-methyl 2-(N-2-benzyloxycarbonylethyl-NI-t-butoxycarbonylhydrazino) carbonyl hexahydropyridazine dicarboxylate (521). Using a similar method to that described for 260 above, 521 was prepared, 96% as a crude oil: $[\alpha]_{D}^{22}$ -22.16° (c 0.25, 10 CH₂Cl₂); IR (film) 3316, 2976, 2953, 1738, 1726, 1714, 1690, 1367, 1260, 1167; 1 H NMR (CDCl₃) δ 7.25 (10H, m), 6.82 (1H, bs), 5.10 (4H, m), 4.80 (1H, bs), 4.3-3.4 (6H, m), 3.10 (1H, m), 2.59 (2H, m), 1.95 (2H, m), 1.44 (10H, m + s).
- 15 (3s) Methyl 2-(N'-t-butoxycarbonyl-N-2carboxyethylhydrazino)-carbonyl hexahydropyridazine 3carboxylate (522). Using a similar method to that described for 261 above, 522 was prepared, 92% as a white solid: mp. 146-148°C (decomp); $[\alpha]_{D}^{22}$ +27.8° (c 20 0.25, CH₂Cl₂); IR (KBr) 3346, 1740, 1710, 1626, 1497, 1290, 1250, 1206, 1179, 1159; 1 H NMR (CDCl₃) δ 7.60 (1H, bs), 7.5-5.5 (1H, vbs), 4.64 (1H, bs), 3.76 (5H, m + s), 3.00 (1H, m), 2.70 (3H, m), 2.16 (1H, m), 1.92 (1H, m), 1.56 (1H, m), 1.46 (11H, m + s). Anal. Calcd for 25 $C_{15}H_{26}N_4O_7$: C, 48.12; H, 7.00; N, 14.96. Found: C, 48.21; H, 6.96; N, 14.86. MS (ES^{+}) 373 $(M^{-} - 1)$.
 - (4S) Methyl 7-t-butoxycarbonylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2,4]triazepine-4-carboxylate (523).

PCT/US96/20843 WO 97/22619

(3S) Methyl 1-benzyloxycarbonyl-hexahydropyridazine-3carboxylate (520). 519 (9.4g, 35.6mmol) was suspended in methanol (230ml) and cooled to 0°C in an ice bath. Thionyl chloride (3ml, 4.89g, 41.1mmol) was added 5 dropwise over 30min and the mixture stirred at ambient temperature for 48h. The solvent was removed in vacuo at 30°C and the oily residue dissolved in ethyl acetate (500ml). The organic solution was washed with saturated sodium bicarbonate, water and brine, dried $(MgSO_4)$ and concentrated to give 520 (7.84g, 79%) as an oil: $[\alpha]_D^{22}$ -25.9° (c 0.615, CH_2Cl_2); IR (film) 2953, 1739, 1703, 1694, 1440, 1403, 1357, 1261, 1241, 1174; ¹H NMR (CDCl₃) δ 7.36 (5H, s), 5.18 (2H, s), 4.00 (1H,

10

pyridazino[1,2-a][1,2,4]triazepine-4-carboxylate (262b), was synthesized via method used to prepare 262 from 261 to give the title compound 262b, (18.6g, 54%) as an oil: $[\alpha]_D^{20}$ +47.7° (c 0.236, CH₂Cl₂); IR (film) 5 3291, 2978, 1738, 1727, 1690, 1678, 1439, 1243, 1164; 1 H NMR (CDCl₃) δ 6.59 (1H, s), 5.06 (1H, m), 4.47 (1H, m), 3.85 (3H, m), 2.82 (1H, m), 2.37 (1H, m), 2.22 (1H, m), 1.92 (1H, m), 1.63 (2H, m), 1.48 and 1.46 (18H, 2 x s). MS (ES⁺) 399 (M⁺ + 1).

(4S) t-Butyl 7-amino-6,10-dioxo-1,2,3,4,7,8,9,10octahydro-6H-pyridazino[1,2-a][1,2,4]triazepine-4carboxylate (518). Compound 262b (2.43q, 6.1mmol) was dissolved in 1M hydrogen chloride in ethyl acetate (30ml) and stirred at room temperature for 20h. Solid 15 sodium bicarbonate (4g, 46.5mmol) and water 20ml were added and the mixture stirred for 5min before separating and extracting the aqueous portion with ethyl acetate. The combined organic solution was washed with water, saturated salt, dried (MgSO₄) and 20 concentrated. Purification by flash chromatography (50% ethyl acetate in dichloromethane - 100% ethyl acetate) gave the pure product 518 (1.08g, 59%) as an unstable oil: $[\alpha]_D^{20}$ +82° (c 0.55, CH₂Cl₂); IR (film) 3331, 2977, 1731, 1680, 1664, 1439, 1420, 1315, 1158; 25 1 H NMR (CDCl₃) δ 5.08 (1H, m), 4.48 (1H, m), 3.80 (2H, Abg:, 3.70 (2H, bs, exch with D_2O), 3.53 (1H, m), 2.75 (1H, m), 2.30 (2H, m), 1.88 (1H, m), 1.71 (2H, m), 1.47 (9H, s).

- 651 -

1254, 1171; ¹H NMR (CDCl₃) δ 7.35 (5H, m), 6.15 (1H, bs), 5.13 (2H, s), 3.15 (2H, t, J = 6.5), 2.54 (2H, t, J = 6.5), 1.45 (9H, s). Anal. Calcd for $C_{15}H_{22}N_2O_3$: C, 61.21; H, 7.53; N, 9.52. Found: C, 61.29; H, 7.51; N, 9.51. MS (ES⁺) 295 (M⁺ + 1).

- (35) 1-Benzyl 3-t-butyl 2-(N-2-benzyloxycarbonylethyl-NI-2-butoxycarbonylhydrazino) carbonyl hexahydropyridazine dicarboxylate (260b), was synthesized via method used to prepare 260 from 259 to afford a gum (81g) which was used in the next step without purification. Analytical data for a pure sample: IR (film) 3318, 2976, 1733, 1451, 1412, 1393, 1366, 1256, 1161; ¹H NMR (CDCl₃) δ7.34 (10H, m), 6.68 (0.5H, bs), 5.11 (4H, m), 4.63 (0.5H, bs), 4.14 (1H, m), 3.53 (2H, m), 3.08 (1H, m), 2.63 (2H, m), 2.10-1.60 (4H, m), 1.60-1.35 (19H, m + 2 x s).
- (35) t-Butyl 2-(N'-t-butoxycarbonyl-N-2-carboxyethylhydrazino)-carbonylhexahydropyridazine 3-carboxylate (261b), was synthesized via method used to prepare 261 from 260 to give a gum which was purified by flash chromatography (1:1 ethyl acetate/dichloromethane) to give the title compound 261b (36.0g, 79.4% over 2 stages): IR (film) 3267, 2979, 2937, 1728, 1668, 1394, 1369, 1245, 1159; H NMR (CDCl₃) δ 7.6 (1H, bs), 6.8 (1H, vbs), 4.47 (1H, bs), 3.73 (2H, bs), 2.98 (1H, bs), 2.66 (3H, m), 2.04 (1H, bs), 1.84 (1H, m), 1.6-1.2 (21H, m + s).
 - (4*S*) t-Butyl 7-t-butoxycarbonylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-

Analytical HPLC methods:

- (1) Waters DeltaPak C18, 300Å (5 μ , 3.9 X 150 mm). Linear acetonitrile gradient (0% 25%) containing 0.1% TFA (v/v) over 14 min at 1 mL/min.
- 5 (2) Waters DeltaPak C18, 300Å (5 μ , 3.9 X 150 mm). Linear acetonitrile gradient (5% 45%) containing 0.1% TFA (v/v) over 14 min at 1 mL/min.

Benzyl 3-(N'-t-butyloxycarbonylhydrazino)propionate (259b), was synthesized via method used to prepare 259 from 258 to afford a waxy solid (87g, 51:): mp 54-55°C; IR (film) 3324, 2978, 1732, 1713, 1455, 1367, 1277,

- 649 -

dimethylformamide (3 X 1 mL) and N-methypyrrolidone (3 X 1 mL).

Resin 1103 was acylated with a solution of C.4M carboxylic acid and O.4M HOBT in N-5 methypyrrolidone (0.5 mL), a solution of 0.4M HBTU in N-methylpyrrolidone (0.5 mL) and a solution of 1.6M DIEA in N-methypyrrolidone (0.25 mL) and the reaction was shaken for 2 hr at room temperature. The acylation step was repeated. Finally, the resin was washed with 10 N-methylpyrrolidone (1 X 1 mL), dimethylformamide (4 X 1 mL), dichloromethane (5 X 1 mL) and dried in vacuo. The aldehyde was cleaved from the resin and globally deprotected by treatment with 95% TFA/ 5% H₂O (v/v, 1.5 mL) for 30 min at room temperature. After washing the 15 resin with cleavage reagent (1 mL), the combined filtrates were added to cold 1:1 ether:hexane (10 mL) and the resulting precipitate was isolated by centrifugation and decantation. The resulting pellet was dissolved in 10% acetonitrile/90% H₂O/0.1% TFA (5 20 mL) and lyophilized to obtain crude 1105-1125 as a white powder. The compound was purified by semipreparative RP-HPLC with a Rainin Microsorb™ C18 column (5 μ , 21.4 X 250 mm) eluting with a linear acetonitrile gradient (8% - 48%) containing 0.1% TFA (v/v) over 30 25 min at 12 mL/min. Fractions containing the desired product were pooled and lyophilized to provide 1105-

1125 (10.8 mg, 63%).

dissolved in DMA (10 mL) and O-benzotriazole-N,N,N,N'-tetramethyluronium hexafluorophosphate (HBTU; 0.88 g, 2.3 mmol), and DIEA (0.8 mL, 4.6 mmol) were added. The solution was transferred to the resin and a further 5 mL DMA added. The reaction mixture was agitated for 1.5 h at room temperature using a wrist arm shaker. The resin was filtered and washed with dimethylacetamide (4 X 15 mL).

Step B. Synthesis of 1102. Resin 401 was deprotected with 20% (v/v) piperidine/dimethylacetamide (15 mL) for 10 min (shaking) and then for 10 min with fresh piperidine reagent (15 ml). The resin was then washed with dimethylacetamide (6 X 15 ml), followed by N-methypyrrolidone (2 X 25 mL).

15 Compound 1101 (0.979 g, 2.11 mmol) was dissolved in dimethylacetamide (8 mL). HBTU (0.81 g, 2.1 mmol) and DIEA (0.75 mL, 4.3 mmol) were added and the solution added to the resin, followed by dimethylacetamide (4 mL). The reaction mixture was agitated for 2 h at room temperature using a wrist arm shaker. The resin work-up was performed as described for 401 to yield 1102.

step C. Synthesis of 1103. This compound was prepared from resin 1102 (0.040 mmol) using an Advanced ChemTech 396 Multiple Peptide synthesizer. The automated cycles consisted of a resin wash with dimethylformamide (2 X 1 mL), deprotection with 25% (v/v) piperidine in dimethylformamide (1 mL) for 3 min followed by fresh reagent (1 mL) for 10 min to yield resin 1103. The resin was washed with

Step A. Synthesis of 401. TentaGel S® $\rm NH_2$ resin (0.25 mmol/g, 5.25 g) was placed in a sintered glass shaker vessel and washed with dimethylacetamide (3 X 15 mL). Compound 400 (1.36 g, 2.3 mmol) was

<u></u>			
MS (M+Na) +		587	566
HPLC RT min (method)	Purity	13.336 (1)	8 9 . 0 5 . 0
MM		563.53	544.35
MF		C24H29N5O11	C21H23C12N508
Structure		HO CH3 O CH3	H ₃ C _O H O H
Compound		1124	1125

		
MS (M+Na) +	525.5	574
HPLC RT min (method)	Purity 10.892 (2) 98%	15.85
Σ Σ	501.54	552.50
Σ	C24H31N5O7	C26H24N4O10
Structure		J.Z. O. Z.
Compound	1122	1123

MS (M+Na)+	547.3	527.9
HPLC RT min (method) Purity	16.796 (1) 99%	11.131 (1)
MΜ	522.91	503.47
MF	C21H23C1N6O8	C22H25N509
Structure	D Z I	HO N N N HO H
Compound	1120	1121

MS (M+Na)+	488 .9	502.9
HPLC RT min (method)	1	11.079 (2)
MΣ	465.51	479.54
M	C21H31N5O7	C22H33N5O7
Structure		
Compound	1118	1119

MS (M+Na) + 538.8		538.8	538.8
HPLC RT min (method)	Purity	14.144 (1) 85%	11.551 (2)
MM		515.48	515.53
MF		C23H25N509	C24H29N5O8
Structure			D I O Z I O O Z I O O O O O O O O O O O O
Compound		1116	1117

+		
MS (M+Na)+	542.4	563.4
HPLC RT min (method)	12.902 (1) 998	12.529 (2) 973
Σ	517.50	540.36
MF	C23H27N509	C22H23C12N5O7
Structure		
Compound	1114	1115

MS (M+Na)+	557.2	531.5
HPLC RT min (method) Purity	11.377 (1)	16.317 (1) 98%
ΜM	533.50	507.93
Lu Σ	C23H27N5O10	C22H26C1N507
Structure		
Compound	1112	1113

MS (M+Na)+	. 2	527.9	526.7
	541	522	52
HPLC RT min (method)	341 (1)	991 (1)	951 (1)
HPLC (me	12.341	12.991	10.951
MW	517.46	503.47	503.47
Ж	C22H23N5O10	C22H25N509	C22H25N509
Structure	O Z I	O N I O N I O O O O O O O O O O O O O O	
Compound	1109	1110	1111

MS (M+Na)+	502.9	536.4
HPLC RT min (method)	11.272 (1) 978	13.699 (1)
ММ	479.47	512.48
ΜF	C19H21N5O8S	C23H24N608
Structure	HO ZI O S	J I O Z I O Z I O N I O
Compound	1107	1108

+	σ	o.
MS (M+Na) +	496.9	496.9
HPLC RT min (method)	12.769 (1)	12.137 (1)
MΣ	473.49	473.45
Σ	C22H27N5O7	C21H23N5O8
Structure		
Compound	1105	1106

Table

(3S, 4R) t-Butyl 3-(allyloxycarbonylamino) 4,5-dihydroxy pentanoate (517). A solution 516 (2.44g, 7.41mmol) in 80% aqueous acetic acid (25ml) was stirred at room temperature for 24h then concentrated and azeotroped 5 with toluene $(2 \times 25ml)$. The residue was treated with brine (25ml) and extracted with ethylacetate (2 x)25ml). The organic fractions were dried $(MgSO_4)$ and concentrated to afford a colourless oil. Flash chromatography (20-80% ethyl acetate in 10 dichloromethane) gave a colourless solid (1.99g, 90%): mp. 74-5°C; $[\alpha]_D^{25} -1.3$ ° (c 1.0, CH_2Cl_2); IR (KBr) 1723, 1691; 1 H NMR (CDCl₃) δ 6.02-5.78 (2H, m), 5.35-5.16 (2H, m), 4.55 (2H, d), 4.16-4.04 (2H, m), 2.76 (2H, s), 3.56 (2H, m), 2.56 (2H, m), 1.43 (9H, s); Anal. Calcd 15 for $C_{13}H_{23}NO_6$: C, 53.97; H, 8.01; N, 4.84. Found: C, 53.79; H, 7.88; N, 4.81; MS(+FAB) 290 (M^{\dagger} +1, 44%), 234 (100).

Example 30

Compounds 1105-1125 were prepared as follows.

20 Physical data for these compounds is listed in Table 24.

Tetrahedron Letters 24, pp. 3009-3012 (1983) as a pure diastereomer (60%) as an oil: $\left[\alpha\right]_{D}^{23}$ -36.9° (c 0.5, dichloromethane); IR (film) 2982, 2934, 1726, 1455, 1369, 1257, 1214, 1157, 1068; ¹H NMR (CDCl₃) δ 7.31 (5H, m), 4.10 (1H, q, J = 6.0), 4.05-3.75 (4H, m), 3.10 (1H, q, J = 6.0), 2.40 (2H, m), 1.42 (9H, s), 1.40 (3H, s), 1.34 (3H, s).

(3S,4R) t-Butyl 3-(allyloxycarbonylamino)-4,5-(dimethylmethylenedioxy)pentanoate (516). 514 (3.02g,

- 9.00mmol) and 10% palladium on carbon (300mg) in ethanol (30ml) were stirred under hydrogen for 2h. The suspension was filtered through celite and a 0.45mm membrane and the filtrate concentrated to give a colourless oil 515 (2.106g, 95%) which was used without
- purification. The oil (1.93g, 7.88mmol) was dissolved in water (10ml) and 1,4-dioxan and sodium hydrogen carbonate added (695mg, 8.27mmol). The mixture was cooled to 0°C and allyl chloroformate (1.04g, 919ml, 8.66mmol) added dropwise. After 3h the mixture was
- extracted with ether (2 x 50ml). The combined ether extracts were washed with water (2 x 25ml) and brine (25ml), dried (MgSO $_4$) and concentrated to give a colourless oil. Flash column chromatography (10-35% ethylacetate in hexane) afforded a colourless solid
- 25 (2.69g, 95%): mp. 64-5°C; $[\alpha]_D^{23}$ -21° (c 1.00, CH₂Cl₂;; IR (KBr) 3329, 1735, 1702; ¹H NMR (CDCl₃) δ 6.00-5.82 (1H, m), 5.36-5.14 (2H, m), 542 (1H, s), 4.56 (1H, d), 4.40-4.08 (2H, m), 4.03 (1H, m) 3.70 (1H, m), 2.52 (2H, m), 1.44 (12H, 2 x s), 1.33 (3H, s); Anal. Calcd for
- 30 $C_{16}H_{27}NO_6$: C, 58.34; H, 8.26; N, 4.25. Found : C, 58.12; H, 8.16; N, 4.19; MS (+FAB) 320 (M⁺+1, 41±), 274 (70), 216 (100).

486 $(M^+ + 1, 33)$. Accurate mass calculated for $C_{26}H_{32}NO_8$ (MH^+) : 486.2128. Found: 486.2121.

(3s,4Rs) t-Butyl 3-(allyloxycarbonylamino)-4-hydroxy-5-(5-methyl-3-phenylisoxazoloyloxy)pentanoate (513j), was 5 synthesized by a similar method as compound 513g to afford a pale orange oil (905mg, 91%): IR (film) 3418, 3383, 2980, 1722, 1711, 1601, 1517, 1450, 1424, 1368, 1308, 1252, 1154, 1100, 994, 767, 698; ¹H NMR (CDCl₃) δ 7.62-7.55 (2H, m), 7.51-7.42 (3H, m), 5.98-5.76 (1H, 10 m), 5.33-5.18 (2H, m), 4.53 (2H, d), 4.18 (2H, d), 3.91 (1H, m), 3.80 (1H, m), 2.76 (3H, s), 2.50 (2H, m), 1.43 (9H, s). Anal. Calcd for C₂₄H₃₀N₂O₈·0.5H₂O: C, 59.62; H, 6.46; N, 5.79. Found: C, 59.46; H, 6.24; N, 5.72. MS (ES⁺) 497 (100%), 475 (M⁺ + 1, 15), 419 (48).

15

(3S,4R) t-Butyl 3-benzylamino-4,5-

(dimethylmethylenedioxy)-pentanoate (514), was prepared by the method described in H. Matsunaga, et al.

- 633 -

(1H, d), 5.30-5.13 (2H, m), 4.51 (2H, d), 4.25 (2H, d), 4.18-4.04 (1H, m), 3.88 (1H, m), 3.50 (1H, m), 2.51 (2H, m), 1.41 (9H, s). MS (ES †) 508 (57%), 503 (76), 486 (M † + 1, 45), 468 (27), 412 (100). Accurate mass calculated for C₂₆H₃₂NO₈ (MH †): 486.2126. Found: 486.2158.

(35,4R) t-Butyl (N-allyloxycarbonyl)-3-amino-4-hydroxy-5-(1-naphthoyloxy) pentanoate (513h), was prepared from (35,4R) t-butyl (N-allyloxycarbonyl)-3-amino-4,5
10 dihydroxypentanoate by the method described for 513g to afford 562mg (85%) of a colourless oil: IR(film) 3418, 2980, 1722, 1711, 1512, 1368, 1278, 1245, 1198, 1157, 1139;

1 h NMR (CDCl₃) δ8.90 (1H, d, J = 8.6), 8.21 (1H, dd, J = 1.2, 7.3), 8.04 (1H, d, J = 8.2), 7.89 (1H, dd, J = 1.5, 7.9), 7.67-7.46 (3H, m), 5.88 (1H, m), 5.49 (1H, d, J = 9.0), 5.35-5.18 (2H, m), 4.57-4.46 (4H, m), 4.19 (2H, m), 2.67 (2H, m), 1.40 (9H, s). Anal. Calcd for C₂₄H₂₉NO₇: C, 65.00; H, 6.59; N, 3.16. Found: C, 64.74; H, 6.56; N, 3.09. M.S. (ES⁺) 466 (M+Na, 100%), 20 444 (M+1, 39), 386 (44).

(3s,4Rs) t-Butyl 3-(allyloxycarbonylamino)-4-hydroxy-5-(3-henoxybenzoyloxy)pentanoate (513i), was synthesized by a similar method as compound 513g to afford a colourless oil (569mg, 85%): IR (film) 3400, 1723, 1712, 1584, 1528, 1489, 1443, 1367, 1276, 1232, 1190, 1161, 1098, 1074, 995, 755; ¹H NMR (CDCl₃) δ 8.65-8.59 (1H, d), 7.84-7.66 (2H, m), 7.45-711 (5H, m), 7.05-6.97 (2H, m), 6.00-5.78 (1H, m), 5.54-5.14 (2H, m), 4.62-4.52 (2H, m), 4.42-4.32 (2H, m), 4.08-4.22 (2H, m), 30 2.78-2.47 (2H, m), 1.44 (9H, s). MS (ES⁺) 508 (100s),

dd). Anal. Calcd for $C_{15}H_{17}NO_5 \cdot 0.1H_2O$ C, 61.47; H, 5.91; N, 4.78. Found: C, 61.42; H, 5.88; N, 4.81.

(2RS,3R) 3-(Allyloxycarbonylamino)-2-ethoxy-5oxotetrahydrofuran (513f), was synthesized by a similar

5 method as 513d/e to afford a colourless oil (152mg,
79%): IR (film) 3334, 2983, 2941, 1783, 1727, 1713,
1547, 1529, 1422, 1378, 1331, 1313, 1164, 1122, 1060,
938; ¹H NMR (CDCl₃) δ6.09-5.82 (2H, m), 5.50-5.18 (3H,
m), 4.64-4.54 (2H, m), 4.27-4.16 (1H, m), 3.95-3.78

10 (1H, m), 3.73-3.56 (1H, m), 3.05-2.77 (1H, m), 2.562.37 (1H, m), 1.35-1.17 (4H, m). Anal. Calcd for
C₁₀H₁₅NO₅: C, 52.40; H, 6.60; N, 6.11. Found: C, 52.16;
H, 6.62; N, 5.99. MS (ES⁺) 229 (M⁺ + 1, 100%).

(3S,4RS) t-Butyl 3-(allyloxycarbonylamino)-4-hydroxy-5-15 (2-phenoxybenzoyloxy) pentanoate (513g). 4-Dimethylamino-pyridine (76.0mg, 622mmol) was added to a solution of 2-phenoxybenzoyl chloride (579mg, 2.49mmol) and 517 (600mg, 2.07mmol) in pyridine (10ml). The mixture was stirred at room temperature for 18h before 20 adding brine (25ml) and extracting with ethyl acetate (30ml, 20ml). The combined organic extracts were washed with 1M hydrochloric acid (3 x 25ml), saturated aqueous sodium hydrogen carbonate (2 x 25ml) and brine (25ml), dried $(MgSO_4)$ and concentrated. The pale 25 orange oil was purified by flash column chromatography (1-10% acetone in dichloromethane) to afford 447mg (44%) of colourless oil: IR (film) 3375, 2980, 1721, 1712, 1602, 1579, 1514, 1484, 1451, 1368, 1294, 1250, 1234, 1161, 1137, 1081, 754; 1 H NMR (CDCl₃) δ 7.98-7.93 30 (1H, m), 7.50-7.41 (1H, m), 7.35-7.25 (2H, m), 7.22-

7.03 (3H, m), 6.95 (3H, d), 5.95-5.76 (1H, m), 5.57

- 631 -

(1992)]. Following work-up by extraction with ethylacetate and washing with NaHCO3, the product was dried (MgSO₄), filtered and evaporated to yield an oil which contained product and benzyl alcohol. 5 (200ml) (200ml hexane for every 56g of AllocAsp(CO2tBu)CH2OH used) was added and the mixture stirred and cooled overnight. This afforded an oily solid. The liquors were decanted and retained for chromatography. The oily residue was dissolved in 10 ethyl acetate and evaporated to afford an oil which was crystallised from 10% ethyl acetate in hexane (~500ml). The solid was filtered to afford 513d (12.2g, 19%): mp. 108-110°C; $[\alpha]_D^{24}$ +75.72° (c 0.25, CH_2Cl_2); IR (KBr) 3361, 1778, 1720, 1517, 1262, 1236, 1222, 1135, 15 1121, 944, 930, 760; 1 H NMR (CDCl₃) δ 7.38 (5H, m), 5.90 (1H, m), 5.50 (1H, s), 5.37 (0.5H, m), 5.26 (2.5H, m), 4.87 (1H, ABq), 4.63 (3H, m), 4.31 (1H, m), 3.07 (1H, dd), 2.46 (1H, dd). Anal. Calcd for $C_{15}H_{17}NO_5$: C, 61.85; H, 5.88; N, 4.81. Found: C, 61.85; H, 5.89; N, 4.80.

The liquors were combined and evaporated to yield an oil (~200g) containing benzyl alcohol. Hexane/ethyl acetate (9:1, 100ml) was added and the product purified by chromatography eluting with 10% ethyl acetate in hexane to remove the excess benzyl alcohol, and then dichloromethane/hexane (1:1 containing 10% ethyl acetate). This afforded 513e containing some 513d (20.5g, 32%): mp. 45-48°C; [α]_D²⁴-71.26° (c 0.25, CH₂Cl₂); IR (KBr) 3332, 1804, 1691, 1536, 1279, 1252, 1125,976. ¹H NMR (CDCl₃) δ7.3% (5H, 30 m), 5.91 (1H, m), 5.54 (1H, d, J = 5.2), 5.38 (3H, m); 4.90 (1H, ABg); 4.60 (4H, m), 2.86 (1H, dd); 2.52 (1H,

m), 4.59-4.56 (2H, m), 4.32-3.96 (2H, m), 3.85-3.73 (1H, m), 3.02-2.76 (3H, m), 2.49-2.34 (1H, m).

- (2RS,3S) 3-(Allyloxycarbonyl)amino-2-cyclopentyloxy-5-oxotetrahydrofuran (513b), was prepared as 513d/e to afford 8g (51%) of a mixture of diastereoisomers as a clear oil: [α]_D²⁰ -13° (c 0.25, CH₂Cl₂); IR (KBr) 3325, 2959, 2875, 1790, 1723, 1535, 1420, 1328, 1257, 1120, 1049, 973, 937; ¹H NMR (CDCl₃)δ6.02-5.80 (1H, m), 5.53-5.46 (2H, m), 5.37-5.21 (2H, m), 4.58 (2H, d, J = 5.5), 4.50-4.46 (0.5H, m), 4.34-4.25 (1H, m), 4.19-4.12 (0.5H, m), 3.06-2.77 (1H, m), 2.53-2.35 (1H, m), 1.85-1.50 (8H, m). Anal. Calcd for C₁₃H₁₉NO₅: C, 57.98; H, 7.11; N, 5.20. Found: C, 56.62; H, 7.22; N, 4.95. MS (ES⁺) 270.
- 15 (2R,3s) 3-Allyloxycarbonylamino-2-(indan-2-yloxy)-5oxotetrahydrofuran (513c), was synthesized by a similar
 method as compound 513d/e to afford a single isomer
 (20%) as a pale yellow oil: [α]_D²⁴ -63.1° (c 0.2,
 CH₂Cl₂); IR (film) 3338, 2948, 1791, 1723, 1529, 1421,
 20 1330, 1253, 1122, 984, 929, 746; h NMR (CDCl₃) δ 7.20
 (4H, m), 5.87 (1H, m), 5.61 (1H, d, J = 5.4), 5.33-5.10
 (2H, m), 4.70 (1H, m), 4.56 (3H, m), 3.33-3.19 (2H, m),
 3.10-2.94 (2H, m), 2.81 (1H, dd, J = 8.3, 17.3), 2.43
 (1H, dd, J = 10.5, 17.3).
- 25 (2R,3s) 3-Allyloxycarbonylamino-2-benzyloxy-5-oxotetrahydro-furan (513d) and (2s,3s) 3-Allyloxycarbonylamino-2-benzyloxy-5-oxo-tetrahydrofuran (513d/e), were prepared [via method described by Chapman Biorg. & Med. Chem. Lett., 2, pp. 615-618

513i

513h

513ز

5 5-oxotetrahydrofuran (513a), was prepared by a similar method as compound 513d/e to afford a mixture of diastereoisomers (670mg, 50%) as an oil: IR (KBr) 3331, 2946, 1790, 1723, 1713, 1531, 1329, 1257, 1164, 1120, 1060, 977, 937, 701; ¹H NMR (CDCl₃) δ7.36-7.18 (5H, m),

(2RS,3S) 3-(Allyloxycarbonyl)amino-2-(2-phenethyloxy)-

10 5.99-5.83 (1H, m), 5.41-5.34 (2H, m), 5.28-5.18 (2H,

5

513b-2	°-<>
513c	`o-(\(\)
513d	, o C
513e	` °`
513f	⁴ 0√
513f-1	, >
513f-2	^ ~~
513f-2	<i>^</i> ~

513g

- 627 -

104mg (33%) of a white powder: mp. 115-119°C; $\left[\alpha\right]_{D}^{24}$ - 19.8° (c 0.2 MeOH); IR (KBr) 3293, 2944, 1786, 1639, 1578, 1537, 1489, 1450, 1329, 1162, 1124; ¹H NMR (CD₃OD) δ 7.85 (2H, d, J = 7.0), 7.49 (3H, m), 5.49 (1H, 5 m), 4.55 (1H, m), 4.30 (2H, m), 3.40 (1H, m), 3.19-2.89 (3H, m), 2.63 (2H, m), 2.16-1.81 (5H, m), 1.60 (3H, m). Anal. Calcd for $C_{21}H_{26}N_{4}O_{6} \cdot H_{2}O$: C, 56.24; H, 6.29; N, 12.49. Found: C, 56.54; H, 6.05; N, 12.29. MS (ES[†]) 429 (M - 1, 100%).

10 Compounds **513a-j** were prepared as described below.

513a-f

compound	R
513a	*°~
513a-1	
513a-2	°~~
513b	³ 0(
513b-1	·

15

245b 246b

[15,9R(2RS,3S)] 9-Benzoylamino-N-(2-benzyloxy-5oxotetrahydrofuran-3-yl)-1,2,3,4,7,8,9,10-octahydro-10oxo-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamide 5 (245b), was prepared from (1S, 9R) 9-Benzoylamino-1, 2, 3, 4, 7, 8, 9, 10-octahydro-10-oxo-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxylic acid by the method described for 245 to afford 416mg (85%) of a colourless foam (~1:1 mixture of diastereoisomers): IR 10 (KBr) 3392, 3302, 2942, 1792, 1642, 1529, 1520, 1454, 1119; 1 H NMR (CDCl₃) δ 7.79 (2H, m), 7.51-7.09 (10H, m), 5.52 (0.5H, d, J = 5.3), 5.51 (0.5H, s), 5.36 (1H, m), 4.84 (1H, m), 4.74-4.59 (1.5H, m), 4.51 (1H, m), 4.38 (0.5H, m), 3.22-2.83 (5H, m), 2.51 (1H, m), 2.25 (2H, m)15 m), 2.01-1.46 (6H, m). Anal. Calcd for $C_{28}H_{32}N_4O_6 \cdot 0.75H_2O$: C, 62.97; H, 6.32; N, 10.49. Found: C, 63.10; H, 6.16; N, 10.21. MS (ES^{+}) 521 (M + 1,100%).

[3s(1s,9R)] 3-(9-Benzoylamino-1,2,3,4,7,8,9,10-20 octahydro-10-oxo-6H-pyridazino[1,2-a][1,2]diazepine-1carboxamido)-4-oxobutanoic acid (246b), was prepared from 245b by the method described for 246 to afford

- 625 -

1728, 1659, 1531, 1501, 1415, 1341, 1278, 1253, 1222, 1185; 1 H NMR (CDCl₃) δ 8.05 (1H, d, J = 7.9), 7.57 (5H, br s), 5.30 (1H, m), 5.01 (2H, m), 4.70-4.10 (4H, m), 3.40-2.85 (4H, m), 2.62 (1H, m), 2.33 (1H, m), 2.27-5 1.65 (5H, m), 2.01 (3H, s).

[3S(1S,9S)] t-Butyl 3-(9-acetamido-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxo-5-(3-pyridyloxy)pentanoate (512b), was prepared by a

- similar method as compound **509b**, to afford (9%) as a colourless foam: IR (KBr) 3333, 1727, 1661, 1542, 1427, 1369, 1279, 1257, 1232, 1156; 1 H NMR (CDCl₃) δ 8.30 (2H, m), 7.20 (3H, m), 6.45 (1H, d, J = 7.4), 5.17 (1H, m), 4.91 (3H, m), 4.55 (1H, m), 3.27 (1H, m), 3.14-2.70
- 15 (4H, m), 2.41 (1H, m), 2.04 (3H, s), 2.10-1.65 (6H, m), 1.44 (9H, s).

[3s(1s,9s)] 3-(9-Acetamido-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxo-5-(3-pyridyloxy)pentanoic acid

20 (283d), was prepared by a similar method as compound

- 280. (100%) as a colourless foam: [α]_D²² -106.0° (c 0.2, 10% CH₃OH/CH₂Cl₂); IR (KBr) 3312, 1735, 1664, 1549, 1426, 1279, 1258, 1200, 1135; ¹H NMR (CDCl₃) δ8.27 (2H, m), 7.46 (2H, m), 5.09 (1H, m), 4.79 (3H, m), 4.47 (1H, 25 m), 3.40 (1H m), 3.30-2.70 (3H m), 2.56 (4H m), 2.35
- 25 m), 3.40 (1H, m), 3.30-2.70 (3H, m), 2.54 (1H, m), 2.30 (1H, m), 1.98 (3H, s), 2.05-1.65 (4H, m).

PCT/US96/20843

compound	R
512a 280d	S N N
512b 283d	2=

5

[3s(1s,9s)] t-Butyl 3-(9-acetamido-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxo-5-(1-phenyl-1H-tetrazole-5-thio)pentanoate (512a), was prepared by a similar method as compound 509b, to afford (83%) as a colourless foam: [α]_D²³ -129.6° (c 0.1, CH₂Cl₂); IR (KBr) 3323, 1726, 1664, 1531, 1501, 1444, 1415, 1394, 1369, 1279, 1254, 1156; ¹H NMR (CDCl₃) δ7.59 (5H, s), 7.37 (1H, d, J = 7.9), 6.38 (1H, d, J = 7.4), 5.27 (1H, m), 4.98 (2H, m), 4.58 (2H, d + m), 4.28 (1H, d, J = 17.2), 3.28 (1H, m), 3.10-2.65 (4H, m), 2.31 (2H, m), 2.03 (3H, s), 2.10-1.72 (4H, m), 1.48 (9H, s).

[3S(1S,9S)] 3-(9-Acetamido-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxo-5-(1-phenyl-1H-tetrazole-5-thio)pentanoic acid (280d), was prepared by a similar method as compound 280, to afford (77%) as a colourless foam: [\alpha]_D^{22} -93.3° (c 0.1, CH₂Cl₂); IR (KBr) 3316,

- 623 -

7.20 (2H, s), 5.91 (1H, d), 5.24-5.16 (1H, m), 5.07-4.86 (3H, m), 4.81-4.51 (2H, m), 3.67 (3H, s), 3.34-3.16 (1H, m), 3.10-2.81 (3H, m), 2.72-2.54 (1H, m), 2.41-2.31 (1H, m), 2.07-1.62 (5H, m), 1.47 (9H s). MS 5 (ES^{+}) 562 $(M^{+} + 1, 100\%)$, 506 (38).

[3S(1S,9S)] 3-[6,10-Dioxo-9-(methoxycarbonylamino)-1,2,3,4,7,8,9,10-octahydro-6H-

1688, 1527, 1501, 1458, 1418, 1368, 1279, 1250, 1155, 1064; ^{1}H NMR (CDCl₃) δ 7.70 (1H, d), 7.63-7.53 (5H, m), 5.84 (1H, d), 5.34-5.27 (1H, m), 5.05-4.92 (1H, m), 4.78-4.54 (3H, m), 4.38 (1H, d), 3.66 (3H, s), 3.37-3.19 (1H, m), 3.07-2.94 (1H, m), 2.91-2.82 (2H, m), 2.71-2.56 (1H, m), 2.40-2.30 (1H, m), 2.19-2.13 (1H, m), 2.08-1.68 (4H, m), 1.42 (9H, s). MS (ES[†]) 667 (31%), 645 (M[†] + 1, 100), 589 (62).

[3s(1s,9s)] 3-[6,10-Dioxo-9-(methoxycarbonylamino)1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5[5-(1-phenyltetrazolyl)-thio]pentanoic acid (280c), was synthesized by a similar method as compound 280 to afford a pale cream solid (203mg, 88%): mp. 105-130°C;

[α]_D²² -235° (c 0.11 MeOH); IR (KBr) 3342, 2951, 1727, 1667, 1529, 1501, 1459, 1416, 1276, 1252, 1225, 1192, 1062; ¹H NMR (D₆-DMSO) δ 8.89 (1H, d), 7.69 (5H, s), 7.50 (1H, d), 5.18-5.11 (1H, m), 4.79-4.69 (1H, m), 4.57 (2H, s), 4.42-4.32 (1H, m), 3.54 (3H, s), 2.9220 2.63 (3H, m), 2.21-1.82 (5H, m), 1.65-1.57 (1H, m). MS (ES⁺) 587 (M - 1, 100%).

[3S(1S,9S)] t-Butyl 3-[6,10-dioxo-9-(methoxycarbonylamino)-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5-25 (3-pyridinyloxy) pentanoate (508e), was synthesized by a similar method as compound 509b to afford a pale orange solid (199mg, 25%): mp. 80-120°C; [α]_D²³ -89° (c 0.51 CH₂Cl₂); IR (KBr) 3333, 2978, 1726, 1669, 1578, 1536, 1478, 1426, 1368, 1277, 1253, 1232, 1155, 1064; 30 ¹H NMR (CDCl₃) δ 8.41-8.18 (2H, m), 7.81 (1H, d), 7.261383, 1253, 1155, 1064; ¹H NMR (CDCl₃) δ 8.49 (2H, d, J = 4.8), 7.13 (1H, d, J = 7.9), 7.03-6.98 (1H, m), 5.47 (1H, d, J = 7.9), 5.23-5.19 (1H, m), 5.09-5.01 (1H, m), 4.84-4.51 (2H, m), 4.04 (2H, AB), 3.69 (3H, s), 3.38-3.19 (1H, m), 3.06-2.64 (4H, m), 2.40-1.76 (6H, m), 1.43 (9H, s). Anal. Calcd for $C_{25}H_{34}N_{6}O_{8}S$: C, 51.89; H, 5.92; N, 14.52. Found: C, 51.49; H, 6.04; N, 13.87. MS (ES⁺) 579.

[3S(1S,9S)] 3-[6,10-Dioxo-9-(methoxycarbonyl)-amino-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-5-(2mercaptopyrimidine)-4-oxopentanoic acid (511c), was prepared by a similar method as compound 280 to afford 370mg (79%) of a white powder: mp. 105°C (dec); [α]_D²² 15 -94° (c 0.20, CH₂Cl₂); IR (KBr) 3316, 3057, 2957, 1724, 1664, 1252, 1416, 1384, 1254, 1189, 1063; ¹H NMR (D₆-DMSO) δ8.85 (1H, d, J = 7.8), 8.62 (2H, d, J = 4.7), 7.53 (1H, d, J = 8.0), 7.28-7.23 (1H, m), 5.21-5.17 (1H, m), 4.87-4.79 (1H, m), 4.47-4.35 (2H, m), 4.23 20 (2H, AB), 3.58 (3H, s), 3.30-3.21 (1H, m), 2.95-2.50 (4H, m), 2.35-1.60 (6H, m). Anal. Calcd for C₂₁H₂₆N₆O₈S·H₂O: C, 46.66; H, 5.22; N, 15.55. Found: C, 46.66; H, 5.13; N, 15.07. MS (ES⁺) 523, (ES⁺) 521.

[3S(1S,9S)] t-Butyl 3-[6,10-dioxo-9-

(methoxycarbonylamino)-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5[5-(1-phenyltetrazolyl)-thio]pentanoate (508d), was
synthesized by a similar method as compound 509b to
afford a colourless solid (269mg, 87%): mp. 80-110°C;
(α)_D²³-108° (c 0.60 CH₂Cl₂); IR (KBr) 3315, 2977, 1727,

PCT/US96/20843

- 620 -

5.32 (2H, m), 4.83 (2H, m), 4.45 (2H, m), 3.43-2.77 (4H, m), 2.97 (3H, s), 2.42 (2H, m), 2.05-1.72 (5H, m).

5

compound	R
508c 511c	s N
508d 280c	S N-N
508e 283c)

10

[3S(1S,9S)] t-Butyl 3-[6,10-dioxo-9-(methoxycarbonyl)amino-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-5-(2mercaptopyrimidine)-4-oxo-pentanoate (508c), was 15 prepared by a similar method as compound 509b to afford 544mg (97%) of a pale yellow foam: [α]_D²⁰ -86° (c 0.19, CH₂Cl₂); IR (KBr) 3426, 2947, 1725, 1669, 1551, 1418,

- 619 **-**

was prepared by a similar method as compound 280, (100%) as a colourless foam: mp. 120-5°C; $\left[\alpha\right]_{D}^{25}$ - 112.4° (c 0.1, CH₂Cl₂); IR (KBr) 3328, 1730, 1664, 1529, 1501, 1410, 1328, 1277, 1219, 1153, 1134, 991; 1 H NMR (CDCl₃) δ 8.07 (1H, d, J = 7.8), 7.58 (5H, s), 6.41 (1H, d, J = 9.5), 5.32 (1H, m), 5.04 (1H, m), 4.70 (1H, d, J = 17.5), 4.60 (3H, m), 3.50-2.9 (3H, m), 2.98 (3H, s), 2.45 (2H, m), 2.06 (4H, m), 1.68 (1H, m).

[3S(1S,9S)] t-Butyl 3-(6,10-dioxo-9-

methanesulphonamido-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxo5(3-pyridyloxy)pentanoate (504h), was prepared by a
similar method as compound 509b (24%) as a colourless
foam: [α]_D²³ -101.0° (c 0.2, CH₂Cl₂); IR (KBr) 3330,
15 1727, 1669, 1425, 1396, 1369, 1328, 1276, 1256, 1231,
1155, 1137, 991; ¹H NMR (CDCl₃) δ8.28 (2H, br d, J =
9.4), 7.71 (1H, d, J = 7.9), 7.22 (2H, s), 6.03 (1H, d,
J = 9.4), 5.36 (1H, m), 4.95 (2H, m), 4.52 (2H, m),
3.29 (1H, m), 3.07 (3H, s), 3.23-2.75 (3H, m), 2.6620 2.35 (2H, m), 2.30-1.60 (5H, m), 1.42 (9H, s).

[3s(1s,9s)] 3-(6,10-Dioxo-9-methanesulphonamido-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxo-5(3-pyridyloxy)pentanoic acid (283b), was prepared by a similar method as compound 280, (100·) as a colourless foam: mp. 120-5°C; [α]_D²⁵ -85.2° (c 0.1, 10½ CH₃OH/CH₂Cl₂); IR (KBr) 3337, 1738, 1667, 1560, 1457, 1424, 1326, 1317, 1278, 1258, 1200, 1189, 1150, 1133, 991; ¹H NMR (CDCl₃/CD₃OD) δ8.35 (2H, m), 7.54 (2H, m),

(methylsulphonyl) amino-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4oxopentanoic acid (505f), was prepared by a similar
method as compound 508a using 507b and 3-chloro-25 hydroxy-4H-pyrido[1,2-a]pyrimidin-4-one and directly
followed by the hydrolysis of 504f with trifluoroacetic
to afford a tan powder (65mg, 30%): [a]_D²⁰ -128° (c
0.10, MeOH); IR (KBr) 3414, 2928, 1667, 1527, 2459,
1407, 1328, 1274, 1153, 1134; ¹H NMR (MeOD) δ 9.35 (1H,
10 d, J = 6.6H), 8.34 (1H, t, J = 7.2H), 7.99-7.95 (1H,
m), 7.76-7.69 (1H, m), 5.85-5.45 (3H, m), 5.30-5.21
(1H, m), 4.93-4.66 (2H, m), 3.81-3.65 (1H, m), 3.66
(3H, m), 3.45-2.52 (4H, m), 2.52-1.71 (6H, m). D.J.
Hlasta et al., J. Med. Chem. 1995, 38, 4687-4692.

15 [3s(1s,9s)] t-Butyl 3-(6,10-dioxo-9-methanesulphonamido-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxo-5(1-phenyl-1H-tetrazole-5-thio)pentanoate (504g), was prepared by a similar method as compound 509b, (83%) as 20 a colourless foam: [α]_D²³ -112.7° (c 0.2, CH₂Cl₂); IR (KBr) 3312, 1726, 1668, 1501, 1413, 1395, 1369, 1328, 1276, 1254, 1155; ¹H NMR (CDCl₃) δ7.59 (5H, m), 7.48 (1H, d, J = 8.0), 5.68 (1H, d, J = 9.0), 5.37 (1H, m), 4.95 (1H, m), 4.62-4.31 (4H, m), 3.36 (1H, m), 2.98 (3H, s), 2.88 (4H, m), 2.66 (1H, m), 2.42 (2H, m, 1.98 (1H, m), 1.75 (1H, m), 1.43 (9H,s).

[3s(1s,9s)] 3-(6,10-Dioxo-9-methanesulphonamido-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxo-5(1-phenyl-1H-tetrazole-5-thio)pentanoic acid (280b),

- 617 -

(1H, d), 7.87 (2H, d), 7.54-7.42 (3H, m), 6.48 (1H, d), 5.22-5.15 (1H, m), 4.57-4.46 (1H, m), 3.62-3.41 (1H, m), 3.22-3.13 (1H, m), 3.02-2.81 (2H, m), 2.70-1.80 (6H, m). Anal. Calcd for $C_{26}H_{28}N_{6}O_{8} \cdot 1.5H_{2}O$: C, 54.30; H, 5.35; N, 14.61. Found: C, 54.14; H, 5.35; N, 13.04. MS (ES⁺) 551 (M - 1, 100%). Accurate mass calculated for $C_{26}H_{29}N_{6}O_{8}$ (MH⁺): 553.2047. Found: 553.2080.

compound R

504f
505f

ci

504g 280b

N-N S N, N

504h 283b

15 [3s(1s,9s)] 5-(3-Chloro-2-oxy-4H-pyrido[1,2-a)pyrimidin-4-one)-3-[6,10-dioxo-9-

10

(3-pyridyloxy) pentanoic acid (283), was prepared by a similar method as compound 280 to afford a colourless foam (100%): mp. ~125°C; [α]_D¹⁹ -84.1° (c 0.1, 20% MeOH/CH₂Cl₂); IR (KBr) 3401, 1736, 1663, 1538, 1489, 1459, 1425, 1281, 1258, 1200, 1134; ¹H NMR (CD₃OD/CDCl₃) δ 8.38 (2H, m), 7.84-7.40 (8H, m), 5.16 (4H, m), 4.80 (1H, m), 4.56 (1H, m), 3.50 (1H, m), 3.12 (2H, m), 2.82 (2H, m), 2.37 (1H, m), 2.10-1.65 (5H, m). Anal. Calcd for C₂₇H₂₉N₅O₈·0.4H₂O: C, 51.77; H, 4.61; N, 10.41.

[3S(1S,9S)] t-Butyl 3-[6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-9-(phenycarbonylamino)-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5-{2-[4(3H)-pyrimidone]}pentanoate (509d), was

- 15 synthesized by a similar method as compound **509b** to afford a colourless solid (49.6mg, 82%): ¹H NMR (CDCl₃) δ 8.02 (1H, s), 7.95-7.86 (1H, m), 7.84-7.76 (2H, m), 7.62-7.35 (4H, m), 7.22-7.07 (1H, m), 6.43 (1H, d), 5.26-5.08 (2H, m), 5.03-4.72 (3H, m), 4.66-4.50 (1H, 20 m), 3.43-3.19 (1H, m), 3.15-2.97 (1H, m), 2.86-2.72 (3H, m), 2.48-2.31 (1H, m), 2.18-1.60 (6H, m), 1.43 (9H, s).
 - [3S(1S,9S)] 3-[6,10-Dioxo-1,2,3,4,7,8,9,10-octahydro-9-(phenycarbonylamino)-6H-
- pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5{2-[4(3H)-pyrimidone]}pentanoic acid (510d), was
 synthesized by a similar method as compound 280 to
 afford a colourless solid (25.7mg, 57%): mp. 140-80°C;
 IR (KBr) 3391, 2945, 1733, 1664, 1530, 1422, 1363,
 1277, 1259, 1204; ¹H NMR (CD₃OD) δ 8.23 (1H, s), 7.94

- 615 -

room temperature for 30min before evaporation under reduced pressure. The residue was triturated with dry toluene and evaporated. Chromatography on silica gel eluting with 10% methanol in dichloromethane gave a colourless glass which was crystallised from dichloromethane/diethyl ether to give 62mg (69%) of colourless solid: mp. 145°C (decomp.); $[\alpha]_D^{22}$ -80.9° (c 0.1, CH₂Cl₂); IR (KBr) 3400, 1727, 1658, 1530, 1501, 1460, 1445, 1416, 1280, 1254; ¹H NMR (CDCl₃) δ 8.00 (1H, m), 7.79 (2H, d, J = 6.7), 7.58-7.30 (9H, m), 5.25 (2H, m), 4.94 (1H, m), 4.53 (2H, m), 4.35 (1H, m), 3.35 (1H, m), 3.01 (3H, m), 2.73 (1H, m), 2.38 (1H, m), 1.98 (4H, m), 1.64 (1H, m). Anal. Calcd for C₂₉H₃₀N₈O₇S·0.2TFA: C, 53.71; H, 4.63 N, 17.04. Found: C, 53.97; H, 4.92; N, 15 16.77. MS (ES⁺) 633.55 (M⁺ - 1).

[3s(1s,9s)] t-Butyl 3-[9-benzoylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5-(3-pyridyloxy)pentanoate (509c), was prepared by a similar method as compound 509b to afford a colourless glass (34%): [\alpha]_{D}^{22} -77.1° (c 0.25, CH₂Cl₂); IR (film) 3311, 1724, 1658, 1603, 1578, 1536, 1488, 1458, 1426, 1368, 1340, 1279, 1256, 1231, 1155, 707; \frac{1}{1}H NMR (CDCl₃) \delta 8.29 (2H, m), 7.84 (2H, m), 7.48 (4H, m), 7.22 (3H, m), 5.20 (2H, m), 4.90 (2H, m), 4.58 (1H, m), 3.29 (1H, m), 3.20-2.70 (4H, m), 2.38 (2H, m), 1.96 (4H, m), 1.68

[3S(1S,9S)] 3-[9-Benzoylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-

30 pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5-

(1H, m), 1.42 (9H, s). MS (ES^{+}) 608.54 (M + 1).

- 614 -

Calcd for $C_{25}H_{27}N_5O_4S_2 \cdot H_2O$: C, 50.75; H, 4.94 N, 11.84. Found: C, 51.34; H, 4.70; N, 11.58. MS (ES⁺) 572.

[3s(1s,9s)] t-Butyl 3-(9-benzoylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-

- pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxo-5-(1-phenyl-1H-tetrazole-5-thio) pentanoate (509b). 507a (100mg, 0.17mmol) in dry dimethylformamide (1.5ml) was treated with 1-phenyl-1H-tetrazole-5-thiol (33mg, 0.187mmol) and potassium fluoride (15mg, 0.34mmol).
- The mixture was stirred at room temperature for 2h, diluted with ethyl acetate, washed with aqueous sodium bicarbonate (x2), brine, dried (MgSO₄) and evaporated. The product was purified by flash chromatography on silica gel eluting with ethyl acetate to give 103mg
- 15 (88%) as a colourless foam: $[\alpha]_D^{23}$ -92.2° (c 0.1, CH_2Cl_2); IR (KBr) 3334, 1726, 1660, 1528, 1501, 1417, 1394, 1368, 1279, 1253, 1155; 1H NMR (CDCl₃) δ 7.82 (2H, m), 7.60-7.40 (8H, m), 7.39 (1H, d, J = 8.1), 7.05 (1H, d, J = 7.3), 5.26 (1H, m), 5.15 (1H, m), 4.99 (1H, m),
- 20 4.60 (2H, m), 4.30 (1H, d, J = 17.2H), 3.32 (1H, m), 3.10-2.75 (4H, m), 2.40 (1H, m), 2.24 (1H, m), 1.90 (3H, m), 1.75 (1H, m), 1.44 (9H, s). MS (ES[†]) 691.47 (M[†] + 1).

[3S(1S,9S)] 3-(9-Benzoylamino-6,10-dioxo-

25 1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxo5(1-phenyl-1H-tetrazole-5-thio) pentanoic acid (280),
was synthesized via method used to prepare 505 from
504. 509b (98mg, 0.142mmol) in dichloromethane (1ml)
30 was cooled to 0° and trifluoroacetic acid (1ml) was
added. The mixture was stirred at 0° for 15min and at

- 613 -

acid in acetic acid (1.84ml, 9.2mmol, 2.2equiv) at 0°C, under nitrogen. After 10min stirring at 0°C the reaction was complete and a white solid crystallised in the medium. The solid was filtered and washed with 5 ethylacetate and diethylether to afford 2.20g (100%) of [3S(1S, 9S)] 5-bromo-3-(9-benzoylamino-6, 10-dioxo-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4oxopentanoic acid which was used without further 10 purification: ${}^{1}H$ NMR (D₆-DMSO) δ 8.87 (1H, d, J = 7.3), 8.63 (1H, d, J = 7.6), 7.91-7.87 (2H, m), 7.60-7.44(3H, m), 6.92 (1H, bs), 5.14-5.09 (1H, m), 4.92-4.65 (2H, m), 4.43 (2H, AB), 4.41-4.35 (1H, m), 3.33-3.22 (1H, m), 2.98-2.90 (1H, m), 2.89-2.57 (2H, m), 2.35-15 2.15 (3H, m), 1.99-1.91 (2H, m), 1.75-1.60 (2H, m). A solution of the bromoketone (535mg, 1mmol) in dry DMF (10ml) was treated with potassium fluoride (150mg, 2.5mmol, 2.5 equiv), under nitrogen. After 5min stirring at room temperature, 2-mercaptothiazole 20 (140mg, 1.2mmol, 1.2equiv) was added. After overnight reaction ethylacetate (150ml) was added and the organic solution was washed with brine, dried over magnesium sulphate and reduced in vacuo. The residue was crystallised in diethyl ether, filtered and purified on 25 silica gel using a gradient of MeOH (0% to 5%) in dichloromethane. Evaporation afforded 344mg (60%) of a white solid: mp. 90-95°C (decomp.); $[\alpha]_{D}^{20}$ -82° (c 0.2, CH₂Cl₂); IR (KBr) 3328, 2941, 1745, 1659, 1535, 1422, 1276, 1255, 1223, 1072; 1 H NMR (D₆-DMSC) δ 8.92 (1H, d, 30 J = 7.6), 8.68 (1H, d, J = 7.6), 7.98-7.90 (2H, m), 7.75-7.67 (1H, m), 7.64-7.50 (4H, m), 5.22-5.18 (1H,

m), 4.95-4.74 (2H, m), 4.58-4.38 (3H, m), 3.52-3.19 (1H, m), 3.05-2.65 (4H, m), 2.40-1.50 (6H, m). Anal.

PCT/US96/20843

WO 97/22619

- 612 -

509a-d

510a, 280, 283, 510d

compound	R
509a 510a	s—\(\s_{\sigma}\)
50 9 b 280	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
509c 283	0 =
509d 510d	z

5

10

[3s(1s,9s)] 3-(9-Benzoylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-5-(2mercaptothiazole)-4-oxopentanoic acid (510a). A 15 solution of 506a (2.27g, 4.2mmol) in dry dichloromethane (50ml) was treated with 30% hydrobromic m). Anal. Calcd for $C_{24}H_{26}C_{12}N_4O_{10} \cdot H_2O$: C, 46.54; H, 4.56; N, 9.05. Found: C, 46.36; H, 4.14; N, 8.88.

[3s(1s,9s)] t-Butyl 5-(2,6-dimethylbenzoyloxy)-3-[6,10-dioxo-9-(methoxycarbonyl)amino-1,2,3,4,7,8,9,10-5 octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1carboxamido]-4-oxopentanoate (508b), was synthesized by a similar method as compound 508a to afford a pale yellow foam (460mg, 82%): [α]_D²² -115° (c 0.20, CH₂Ci₂); IR (KBr) 3413, 2960, 1729, 1675, 1528, 1514, 1461, 10 1421, 1368, 1265, 1116, 1096; ¹H NMR (CDCl₃) δ 7.27-7.03 (4H, m), 5.48 (1H, d, J = 8.2), 5.20-5.14 (1H, m), 5.04 (2H, AB), 4.93-4.86 (1H, m), 4.80-4.56 (2H, m), 3.77 (3H, s), 3.32-3.15 (1H, m), 3.00-2.56 (4H, m), 2.37 (6H, s), 2.19-1.77 (5H, m), 1.45 (9H, s), 2.41-2.25 15 (1H, m). MS (ES⁺) 617.

[3S(1S,9S)] 5-(2,6-Dimethylbenzoyloxy)3-[6,10-dioxo-9-(methoxycarbonyl)amino-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxopentanoic acid (285), was synthesized by a similar method as compound 284 to afford a white solid (303mg, 78%): mp. 110°C (decomp.); [α]_D²⁰ -128° (c 0.10, CH₂Cl₂); IR (KBr) 3339, 2958, 1731, 1666, 1529, 1420, 1266, 1248, 1115, 1070; ¹H NMR (D₆-DMSO) δ 8.90 (1H, d, J = 7.4), 7.54 (1H, d, J = 7.9), 7.36-7.28 (1H, m), 7.17-7.14 (2H, m), 5.19-5.15 (3H, m), 4.84-4.74 (1H, m), 4.45-4.37 (2H, m), 3.59 (3H, s), 3.45-3.25 (1H, m), 2.95-2.64 (4H, m), 2.35 (6H, s), 2.30-1.60 (6H, m). Anal. Calcd for C₂₆H₃₂N₄O₁₀·H₂O: C, 53.98; H, 5.92; N, 9.68. Found: C, 53.50; H, 5.52; N, 9.49. MS (ES⁷)

506c (547mg, 1mmol) in DMF (4ml) was added potassium fluoride (145mg, 2.5mmol, 2.5 equiv). After 10min stirring at room temperature, 2,6-dichlorobenzoic acid (229mg, 1.2mmol, 1.2 equiv) was added. After 3h 5 reaction at room temperature, ethyl acetate (30ml) was added. The solution was washed with a saturated solution of sodium bicarbonate (30ml), brine, dried over $MgSO_4$ and concentrated in vacuo to afford 590mg (90%) of a pale yellow foam: $\left[\alpha\right]_{D}^{22}$ -85° (c 0.20, 10 CH₂Cl₂); IR (KBr) 3400, 2956, 1737, 1675, 1528, 1434, 1414, 1368, 1344, 1272, 1197, 1152, 1061; ¹H NMR $(CDCl_3) \delta 7.36-7.33 (3H, m), 7.04 (1H, d, J = 8.0), 5.46$ (1H, d, J = 7.8), 5.19-5.16 (1H, m), 5.08 (2H, AB),4.97 - 4.55 (1H, m), 4.69-4.55 (2H, m), 3.68 (3H, s), 15 3.30-3.10 (1H, m), 3.01-2.50 (4H, m), 2.40-2.33 (1H, m), 2.15-1.60 (5H, m), 1.44 (9H, s). Anal. Calcd for $C_{28}H_{34}Cl_2N_4O_{10}$: C, 51.15; H, 5.21; N, 8.52. Found: C, 51.35; H, 5.32; N, 8.56.

[3s(1s,9s)] 5-(2,6-Dichlorobenzoyloxy)-3-[6,10-dioxo-9-20 (methoxycarbonyl)amino-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxopentanoic acid (284), was synthesized from 508a via method used to prepare 505 from 504 which afforded 330mg (65%) of a white solid: mp. 115°C (decomp.);

[α]_D²⁰ -107° (c 0.2, CH₂Cl₂); IR (KBr) 3340, 2954, 1736, 1664, 1530, 1434, 1272, 1198, 1148, 1060; ¹H NMR (D₆-DMSO) δ 8.91 (1H, d, J = 7.2H), 7.67-7.63 (3H, m), 7.54 (1H, d, J = 8.0), 5.24 (2H, s), 5.20-5.15 (1H, m), 4.79-4.70 (1H, m), 4.46-4.37 (2H, m), 3.58 (3H, s), 3.33-3.20 (1H, m), 2.94-2.55 (4H, m), 2.30-1.60 (6H,

- 609 -

method as compound **507a** to afford a pale yellow foam (84%): $[\alpha]_D^{22}$ -109.6° (c 0.1, CH₂Cl₂); IR (KBr) 3324, 1727, 1659, 1535, 1458, 1444, 1423, 1369, 1279, 1256, 1223, 1155; ¹H NMR (CDCl₃) δ 7.12 (1H, d, J = 7.8), 6.33 (1H, d, J = 7.5), 5.19 (1H, m,), 4.97 (2H, m), 4.58 (1H, m), 4.06 (2H, s), 3.20 (1H, m), 3.05-2.69 (4H, m), 2.35 (1H, m), 2.14-1.68 (5H, m), 2.03 (3H, s), 1.44 (9H, s). Anal. Calcd for C₂₁H₃₁BrN₄O₇ • 0.3H₂O: C, 46.99; H, 5.93; N, 10.44. Found: C, 46.97; H, 5.90; N, 10.35.

10

compound	R
508a 284	CI
508b 285	Me

[3s(1s,9s)] t-Butyl 5-(2,6-dichlorobenzoyloxy)-3-[6,10-dioxo-9-(methoxycarbonyl)amino-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxobutanoate (508a). To a solution of

[3s(1s,9s)] t-Butyl 5-bromo-3-(6,10-dioxo-9-methanesulphonamido-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4-oxopentanoate (507b), was prepared by a similar method as compound 507a. (68%) as an orange foam: [α]_D²⁰ - 135° (c 0.053, CH₂Cl₂); IR (KBr) 3429, 2944, 2935, 1723, 1670, 1458, 1408, 1327, 1225, 1154, 991; ¹H NMR (CDCl₃)δ7.38 (1H, d, J = 8.2), 5.69 (1H, d, J = 9.3), 5,43-5.34 (1H, m), 5.07-4.97 (1H, m), 4.70-4.42 (2H, m), 4.12 (2H, s), 3.35-3.17 (1H, m), 3.10-2.69 (4H, m), 2.98 (3H, s), 2.43-2.33 (1H, m), 2.15-1.65 (5H, m), 1.43 (9H, s). Anal. Calcd for C₂₀H₃₁BrN₄O₈S: C, 42.33; H, 5.51; N, 9.87. Found: C, 42.69; H, 5.52; N, 9.97.

[3S(1S,9S)] t-Butyl 5-bromo-3-(6,10-dioxo-9
(methoxycarbonyl)amino-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4oxopentanoate (507c), was prepared by a similar method
as compound 507a to afford a pale yellow foam (320mg,
78%): [α]_D²⁰ -107° (c 0.2, CH₂Cl₂); IR (KBr) 3401,
20 2956, 1726, 1670, 1528, 1452, 1415, 1395, 1368, 1276,
1251, 1155, 1064; ¹H NMR (CDCl₃) δ 7.07 (1H, d, J =
7.6), 5.47 (1H, d, J = 8.1), 5.21-5.16 (1H, m), 5.034.94 (1H, m), 4.75-4.56 (2H, m), 4.06 (2H, s), 3.69
(3H, s), 3.31-3.13 (1H, m), 3.03-2.92 (2H, m), 2.8125 2.58 (2H, m), 2.41-2.31 (1H, m), 2.10-1.66 (5H, m),
1.44 (9H, s).

[3s(1s,9s)] t-Butyl 3-(9-acetylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-5-bromo-4-oxopentanoate (507g), was prepared by a similar

- 607 -

method as compound **506a**. 81%: $[\alpha]_D^{28}$ -146.7° (c 0.4, CH₂Cl₂); IR (KBr) 3438, 2904, 2113, 1728, 1669, 1523, 1368, 1328, 1155; ¹H NMR (CDCl₃) δ 7.32 (1H, d), 6.43 (1H, d), 5.50 (1H, s), 5.22 (1H, m), 4.94 (1H, m), 4.77 (1H, m), 4.60 (1H, m), 3.24 (1H, m), 3.03-2.52 (4H, m), 2.36 (1H, m), 2.10-1.64 (5H, m), 2.02 (3H, s), 1.45 (9H, s). Anal. Calcd for C₂₁H₂₀N₆O₇: C, 52.69; H, 6.32; N, 17.05. Found: C, 52.51; H, 6.27; N, 17.36. MS (ES⁺) 477 (M⁺ - 1, 100%).

- 10 [3S(1S,9S)] t-Butyl 5-bromo-3-(9-benzoylamino-6,10dioxo-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine~1-carboxamido)-4oxopentanoate (507a). 506a (3.0g, 5.55mmol) in dry
 dichloromethane (40ml) was cooled to 0° and 30%
- hydrobromic acid in acetic acid (1.1mi, 5.55mmol) was added dropwise over 4min. The mixture was stirred at 0° for 9min and quenched with aqueous sodium bicarbonate. The product was extracted into ethyl acetate, washed with aqueous sodium bicarbonate, brine,
- 20 dried (MgSO₄) and evaporated to give 2.97g (92%) of a colourless foam: $[\alpha]_D^{23}$ -82.3° (c 0.23, CH₂Cl₂); IR (KBr) 3333, 1726, 1659, 1530, 1458, 1447, 1422, 1395, 1368, 1279, 1256, 1222, 1155, 728; ¹H NMR (CDCl₃; δ 7.61 (2H, m), 7.50 (3H, m), 7.11 (1H, d, J = 8.0), 7.01 (1H,
- 25 d, J = 7.4), 5.20 (2H, m), 5.00 (1H, m), 4.06 (2H, s), 3.28 (1H, m), 3.20-2.70 (4H, m), 2.42 (1H, m), 2.10-1.85 (4H, m), 1.72 (1H, m), 1.44 (9H, s). Anal. Calcd for $C_{26}H_{33}N_4O_7Br \cdot 0.7H_2O$: C, 51.53; H, 5.72 N, 9.24. Found: C, 51.55; H, 5.52; N, 9.09. MS (ES⁺) 598, 593
- $30 (M^+ + 1)$.

1.85 (4H, m), 1.70 (1H, m), 1.45 (9H, s). MS (ES^{+}) 539.58 (M - 1, 97.9%) 529.59 (100).

[3s(1s,9s)] t-Butyl 5-diazo-3-[6,10-dioxo-(9-methanesulphonamido)-1,2,3,4,7,8,9,10-octahydro-6H
5 pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4oxopentanoate (506b), was prepared by a similar method as compound 506a. 74% as yellow orange solid: mp. 75°C (decomp.); [α]_D²⁰ -92.0° (c 0.036, CH₂Cl₂); IR (KBr)
3438, 2904, 2113, 1728, 1669, 1523, 1368, 1328, 1155;

1 H NMR (CDCl₃) δ 7.48 (1H, d, J = 8.1), 5.83-5.68 (1H, m,), 5.55-5.50 (1H, m), 5.43-5.14 (1H, m), 4.83-4.45 (3H, m), 3.40-3.19 (1H, m), 2.98 (3H, s), 2.92-2.30 (4H, m), 2.24-1.70 (6H, m), 1.43 (9H, s).

[3s(1s,9s)] t-Butyl 5-diazo-3-[6,10-dioxo-(9
methoxycarbonyl)amino-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4oxopentanoate (506c), was prepared by a similar method
as compound 506a to afford a pale yellow foam (405mg,
82%): [α]_D²⁰ -144° (c 0.2, CH₂Cl₂); IR (KBr) 3339,
20 2978, 2958, 2112, 1728, 1674, 1530, 1459, 1415, 1367,
1274, 1252, 1154, 1063; ¹H NMR (CDCl₃) δ 7.23 (1H, d, J
= 8.2), 5.51-5.31 (2H, m), 5.21-5.16 (1H, m), 4.77-4.55
(3H, m), 3.68 (3H, s), 3.35-3.18 (1H, m), 3.04-2.51
(4H, m), 2.40-2.30 (1H, m), 2.09-1.6€ (5H, m), 1.45
25 (9H,s). MS (ES⁺) 493.

[3s(1s,9s)] t-Butyl 3-(9-acetylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-5-diazo-4-oxopentanoate (506g), was prepared by a similar

- 605 -

compound	R ¹
506a	PhC (0) -
507a	
506b	MeS(O) ₂ -
507b	
506c	MeOC(0)-
507c	
506g	CH ₃ C(O)-
507g	

5

10 [3S(1S,9S)] t-Butyl 3-(9-benzoylamino-6,10-dioxo-1,2,3,4,7,8,9,10-octahydro-6H-

pyridazino[1,2-a][1,2]diazepine-1-carboxamido)-5-diazo4-oxopentanoate (506a). A solution of 212e (32lmg,
0.929mmol) and (3s) t-butyl 3-amino-5-diazo-4-

- oxopentanoate (198mg, 0.929mmol) in dichloromethane (3ml) was cooled to 0° and N,N-diisopropylethylamine (0.16ml, 1.86mmol) and [2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium tetrafluoroborate (328mg, 1.02mmol) were added. The solution was stirred
- overnight at room temperature, diluted with ethyl acetate and washed with 1M $NaHSO_4$ (x2), aqueous $NaHCO_3$ (x2), brine, dried over magnesium sulphate and evaporated. Chromatography on silica gel eluting with ethyl acetate gave **506a** (425mg, 85%) as a colourless
- foam: $[\alpha]_D^{23}$ -124.9° (c 0.2, CH_2Cl_2); IR (KBr) 3332, 2111, 1728, 1658, 1532, 1421, 1392, 1367, 1279, 1256, 1155; ¹H NMR (CDCl₃) δ 7.82 (2H, m), 7.49 (3H, m), 7.28 (1H, d, J = 9.3), 7.05 (1H, d, J = 7.3), 5.06 (1H, s), 5.18 (2H, m), 4.78 (1H, m), 4.62 (1H, m), 3.29 (1H, m),
- 30 3.08-2.79 (3H, m), 2.58 (1H, dd, J = 16.8, 5.6), 2.20-

[3s(1s, 9s)] 5-(3-Chlorothien-2-oyloxy)-3-(6,10-dioxo-9methanesulphonylamino-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido)-4oxopentanoic acid (505e). A solution of 217 (0.33g, 5 0.51mmol) in dry dichloromethane (3ml) was cooled (ice/water) with protection from moisture. Trifluoroacetic acid (2ml) was added with stirring. The solution was kept at room temperature for 2h after removal of the cooling bath, then concentrated in 10 vacuo. The residue was evaporated three times from dichloromethane, triturated with diethyl ether and filtered. The solid was purified by flash chromatography (silica gel, 0-6% methanol in dichloromethane) to give the product as a white glassy 15 solid (0.296g, 98%): mp 110-122°C; $[\alpha]_D^{22}$ -163.5° (c 0.1, CH₃OH); IR (KBr) 3514-3337, 1726, 1664, 1513, 1420, 1245, 1152, 1134, 990; 1 H NMR (CD₃OD) δ 7.79 (1H, d, J = 5.2), 7.12 (1H, d, J = 5.2), 5.20 (1H, m), 5.02-4.72 (2H, m, masked by H_2O), 4.59-4.32 (3H, m), 3.48-20 3.29, 3.08-2.75, 2.50-2.41, 2.31-2.22, 2.08-1.89, 1.72-1.63 (11H, 6m), 2.95 (3H, s).

$$R^1-N$$
 H
 $OtBu$
 CHN_2
 R^1-N
 H
 $OtBu$
 H
 $OtBu$
 H
 $OtBu$

506a-c,g

507a-c,g

- 603 -

2.19-2.06 (2H, m), 2.02-1.79 (3H, m), 1.63-1.52 (1H, m). Anal. Calcd for $C_{29}H_{32}N_4O_{11}S \cdot 0.5H_2O$: C, 53.29; H, 5.09; N, 8.57; S, 4.90. Found: C, 53.24; H, 5.14; N, 8.34; S, 4.86. MS (ES[†]) 643 (M - 1, 100%), 385 (62).

- 5 [3S,4R(1S,9S)] t-Butyl 5-(3-chlorothien-2-oyloxy)-3 (6,10-dioxo-9-methanesulphonylamino-1,2,3,4,7,8,9,10 octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1 carboxamido)-4-hydroxypentanoate (503e), was prepared
 by a similar method to that described for compound
 10 213e, to afford an off white solid (70%): mp. 100 103°C; [α]_D²⁵ -84.0° (c 0.05, CH₂Cl₂); IR (KBr) 3459-
- 103°C; $[\alpha]_D^{25}$ -84.0° (c 0.05, CH_2Cl_2); IR (KBr) 3459-3359, 1722, 1664, 1514, 1368, 1328, 1278, 1247, 1155; ¹H NMR (CDCl₃) δ 7.52 (1H, m), 7.06-6.99 (2H, m), 5.69 (1H, d, J = 9.0), 5.23 (1H, m), 4.61-4.16 (6H, m),
- 15 3.36-3.19 (1H, m), 2.96 (3H, s), 2.67-2.49, 2.42-2.32, 2.06-1.89, 1.69 (10H, 4m), 1.43 (9H, s).

[3S(1S,9S)] t-Butyl 5-(3-chlorothien-2-oyloxy)-3-(6,10-dioxo-9-methanesulphonylamino-1,2,3,4,7,8,9,10-octahydro-6H-pyridazino[1,2-a][1,2]diazepine-1-

- carboxamido)-4-oxopentanoate (504e), was prepared by a similar method to that described for compound 216e, to afford a white solid (98%): mp. 91-98°C; $\left[\alpha\right]_{D}^{25}$ 112.5°C (c 0.06, CH₂Cl₂); IR (KBr) 3453-3364, 1727, 1668, 1513, 1420, 1368, 1245, 1155; 1 H NMR (CDCl₃) δ 7.54
- 25 (1H, d, J = 5.3), 7.18 (1H, d, J = 7.18), 7.05 (1H, d, J = 5.4), 5.42 (1H, d, J = 8.9), 5.25 (1H, m), 5.02 (2H, m), 4.96-4.87 (1H, m), 4.65-4.42 (2H, m), 3.34-3.17 (1H, m), 2.97-2.93 (1H, m), 2.97 (3H, s), 2.87-2.78, 2.73-2.50, 2.38-2.32, 2.13-1.88, 1.69-1.60 (9H,
- 30 5m), 1.44 (9H, s).

[3s(1s,9s)] t-Butyl 3-[6,10-dioxo-9-(methanesulphonylamino)-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5-(3-phenoxybenzoyloxy) pentanoate (504d), was 5 synthesized by a similar method as compound 216e to afford a colourless powder (466mg, 85%): mp. 75-100°C; $[\alpha]_D^{22}$ -99.3° (c 0.60, CH_2Cl_2); IR (KBr) 3335, 2978, 2937, 1728, 1669, 1584, 1525, 1487, 1444, 1416, 1369, 1328, 1272, 1227, 1188, 1155, 989, 754; ^{1}H NMR (CDCl3) δ 10 7.82-7.77 (1H, m), 7.66-7.65 (1H, m), 7.46-7.32 (4H, m), 7.26-7.10 (2H, m), 7.04-6.98 (2H, m), 5.68 (1H, d), 5.37-5.31 (1H, m), 5.11 (1H, d), 5.02-4.88 (2H, m), 4.66-4.42 (2H, m), 3.35-3.17 (1H, m), 2.98-2.89 (1H, m), 2.96 (3H, s), 2.84-2.78 (1H, m), 2.72-2.47 (1H, m), 15 2.42-2.32 (1H, m), 2.14-1.58 (6H, m), 1.43 (9H. s). Anal. Calcd for $C_{33}H_{40}N_4O_{11}S$: C, 56.56; H, 5.75; N, 8.00. Found: C, 56.36; H, 5.82; N, 7.71. MS (ES⁺) 723

[3s(1s,9s)] 3-[6,10-Dioxo-9-(methanesulphonylamino)1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5(3-phenoxybenzoyloxy)pentanoic acid (505d), was
synthesized by a similar method as compound 217 to
afford a colourless foam (353mg, 73%): mp. 80-115°C;
[α]_D²³ -138° (c 0.11, MeOH); IR (KBr) 3327, 2937, 1728,
1666, 1584, 1529, 1487, 1443, 1413, 1328, 1273, 1227,
1189, 1155, 1134, 989, 754; H NMR (D₆-DMSO) δ 8.82
(1H, d), 7.76-7.72 (1H, m), 7.61-7.53 (2H, m), 7.487.32 (4H, m), 7.24-7.17 (1H, m), 7.11-7.06 (2H, m),
30 5.14-5.06 (3H, m), 4.73-4.64 (1H, m), 4.38-4.24 (2H,
m), 2.92 (3H, s), 2.89-2.61 (3H, m), 2.38-2.27 (1H, m),

(56%), 718 (90), 701 $(M^{+} + 1, 36)$, 645 (100).

- 601 -

(2-phenoxybenzoyloxy) pentanoic acid (505c), was synthesized by a similar method as compound 217 to afford a colourless foam (252mg, 72%): mp. 90-125°C; $\left[\alpha\right]_{D}^{23}$ -133° (c 0.11, MeOH); IR (KBr) 3314, 2938, 5 1792, 1734, 1663, 1604, 1535, 1483, 1448, 1415, 1250, 1132, 756; 1 H NMR (D₆-DMSO) δ 8.81-8.76 (1H, m), 7.92 (1H, d), 7.68-7.54 (2H, m), 7.41-7.25 (3H, m), 7.16-6.91 (4H, m), 5.13-4.98 (2H, m), 4.72-4.63 (1H, m), 4.37-4.21 (2H, m), 2.92 (3H, s), 2.90-2.60 (3H, m), 10 2.35-2.26 (1H, m), 2.17-2.05 (2H, m), 1.99-1.80 (2H, m), 1.61-1.50 (1H, m).Anal. Calcd for $C_{29}H_{32}N_4O_{11}S \cdot 0.5H_2O$: C, 53.29; H, 5.09; N, 8.57; S, 4.90. Found: C, 53.57; H, 5.18; N, 8.32; S, 4.75. MS (ES⁺) 643 (M - 1, 100%).

15 [3S,4RS(1S,9S)] t-Butyl 3-[6,10-dioxo-9-(methanesulphonylamino)-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4hydroxy-5-(3-phenoxybenzoyloxy) pentanoate (503d), was synthesized by a similar method as compound 213e to 20 afford a colourless solid (563mg, 90%): IR (KBr) 3349, 2978, 2935, 1724, 1664, 1583, 1536, 1489, 1443, 1370, 1327, 1271, 1226, 1189, 1155, 1073, 990, 755; ¹H NMR $(CDCl_3) \delta 7.77$ (1H, d), 7.67 (1H, m), 7.45-7.10 (6H, m), 7.00 (2H, d), 5.93-5.80 (1H, m), 5.36-5.30 (1H, m), 25 4.63-4.24 (5H, m), 4.15-4.09 (1H, m), 3.37-3.22 (1H, m), 2.98-2.74 (1H, m), 2.94 (3H, s), 2.70-2.47 (3H, m), 2.40-2.30 (1H, m), 2.15-1.60 (5H, m), 1.42 (9H, s). Anal. Calcd for $C_{33}H_{42}N_4O_{11}S\cdot H_2O$: C, 54.99; H, 6.15; N, 7.77; S, 4.45. Found: C, 54.60; H, 5.88; N, 7.49; S, 30 4.50. MS (ES^{+}) 725 (19%), 720 (91), 703 $(M^{+} + 1, 74)$,

647 (76), 629 (100), 433 (78).

WO 97/22619

(1H, m), 7.39-7.18 (3H, m), 7.14-7.07 (1H, m), 7.00-6.90 (3H, m), 6.75 (1H, d), 5.57-5.50 (1H, m), 5.21-5.09 (1H, m), 4.64-4.42 (2H, m), 4.36-4.12 (3H, m), 3.95-3.87 (1H, m), 3.39-3.18 (1H, m), 3.00-2.82 (1H, m), 2.95 (3H, s), 2.69-2.48 (3H, m), 2.42-2.28 (1H, m), 2.07-1.62 (6H, m), 1.42 (9H, s). Anal. Calcd for $C_{33}H_{42}N_4O_{11}S\cdot H_2O$: C, 54.99; H, 6.15; N, 7.77; S, 4.45. Found: C, 54.95; H, 5.95; N, 7.34; S, 4.20. MS (ES⁺) 725 (26%), 720 (47), 703 (M⁺ + 1, 34), 433 (100), 403

[3S(1S,9S)] t-Butyl 3-[6,10-dioxo-9-(methanesulphonylamino)-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5-(2-phenoxybenzoyloxy) pentanoate (504c), was 15 synthesized by a similar method as compound 216e to afford a colourless powder: mp. 85-100°C; [α]_D²² -91.3° (c 0.52, CH₂Cl₂); IR (KBr) 3328, 2978, 2935, 1732, 1669, 1603, 1524, 1483, 1450, 1396, 1369, 1296, 1276,

7.98 (1H, m), 7.52-7.44 (1H, m), 7.37-7.07 (5H, m),
7.01-6.92 (3H, m), 5.52 (1H, d), 5.28-5.20 (1H, m),
5.06-4.84 (3H, m), 4.64-4.39 (2H, m), 3.32-3.14 (1H,
m), 2.99-2.88 (1H, m), 2.94 (3H, s), 2.65-2.45 (2H, m),
2.39-2.29 (1H, m), 2.12-1.58 (6H, m), 1.40 (9H, s).

1237, 1155, 1132, 1082, 989, 755; 1 H NMR (CDCl₃) δ 8.03-

25 Anal. Calcd for $C_{33}H_{40}N_4O_{11}S$: C, 56.56; H, 5.75; N, 8.00; S, 4.58. Found: C, 56.37; H, 5.84; N, 7.69; S, 4.37. MS (ES⁺) 723 (30%), 718 (100), 701 (M⁺ + 1, 23), 645 (59).

[3s(1s,9s)] 3-[6,10-Dioxo-9-(methanesulphonylamino)
1,2,3,4,7,8,9,10-octahydro-6H
pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-oxo-5-

- 599 -

MS (ES^{$^{+}$}) 712 (31%), 707 (100), 690 (M^{$^{+}$} + 1, 41), 634 (55).

[3S(1S,9S)] 3-[6,10-Dioxo-9-(methanesulphonylamino)-1,2,3,4,7,8,9,10-octahydro-6H-

- pyridazino[1,2-a][1,2]diazepine-1-carboxamido]-5-(5-methyl-3-phenylisoxazoyloxy)-4-oxopentanoic acid (505b), was synthesized by a similar method as compound 217 to afford a colourless powder (499mg, 96%): mp. 95-145°C; [α]_D²² -137° (c 0.12, MeOH); IR (KBr) 3323,
- 10 2936, 1732, 1665, 1529, 1452, 1421, 1312, 1275, 1256, 1221, 1183, 1153, 1135, 1101, 990; 1 H NMR (CD₃OD) δ 7.67-7.56 (2H, m), 7.49-7.38 (4H, m), 5.23-5.12 (1H, m), 5.02 (1H, d), 4.79-4.73 (1H, m), 4.52-4.34 (3H, m), 3.48-3.25 (2H, m), 3.03-2.85 (2H, m), 2.94 (3H, s),
- 15 2.74 (3H, s), 2.79-2.66 (1H, m), 2.52-2.38 (1H, m), 2.29-2.14 (1H, m), 2.04-1.70 (4H, m). Anal. Calcd for $C_{27}H_{31}N_5O_{11}S \cdot H_2O$: C, 49.77; H, 5.18; N, 10.75; S, 4.92. Found: C, 49.83; H, 5.01; N, 10.27; S, 4.84. MS (ES⁺) 746 (42%), 632 (M 1, 100), 386 (60). Accurate mass
- 20 calculated for $C_{27}H_{32}N_5O_{11}S$ (MH⁺): 634.1819. Found: 634.1807.

[3S,4RS(1S,9S)] t-Butyl 3-[6,10-dioxo-9-(methanesulphonylamino)-1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-4-

- 25 hydroxy-5-(2-phenoxybenzoyloxy)pentanoate (503c), was synthesized by a similar method as compound 213e to afford a colourless solid (446mg, 84%): IR (KBr) 3345, 2976, 2935, 1727, 1664, 1603, 1535, 1483, 1451, 1416, 1395, 1369, 1328, 1297, 1277, 1237, 1155, 1135, 1076,
- 30 990, 755; ^{1}H NMR (CDCl $_{3}$) δ 7.98-7.89 (1H, m), 7.55-7.45

15 [3s(1s,9s)] t-Butyl 3-[6,10-dioxo-9-(methanesulphonylamino) -1,2,3,4,7,8,9,10-octahydro-6Hpyridazino[1,2-a][1,2]diazepine-1-carboxamido]-5-(5methyl-3-phenylisoxazoyloxy)-4-oxopentanoate (504b), was synthesized by a similar method as compound 216b to afford a colourless powder (601mg, 93%): mp. 75-115°C; 20 $[\alpha]_{D}^{23}$ -104° (c 0.26, CH₂Cl₂); IR (KBr) 3324, 2977, 2935, 1730, 1670, 1525, 1452, 1422, 1369, 1317, 1276, 1256, 1222, 1155, 1107, 990, 766; 1 H NMR (CDCl₃) δ 7.68-7.61 (2H, m), 7.47-7.38 (3H, m), 7.32-7.24 (1H, m), 25 5.56 (1H, d), 5.36-5.24 (1H, m), 5.04 (1H, d), 4.88 (1H, d), 4.86-4.77 (1H, m), 4.64-4.39 (2H, m), 3.32-3.17 (1H, m), 2.97-2.85 (1H, m), 2.93 (3H, s), 2.76(3H, s), 2.8C-2.71 (1H, m), 2.65-2.49 (1H, m), 2.41-2.30 (1H, m), 2.12-1.61 (6H, m), 1.42 (9H, s). Anal. 30 Calcd for $C_{31}H_{39}N_5O_{11}S \cdot H_2O$: C, 52.61; H, 5.84; N, 9.90; S, 4.53. Found: C, 52.94; H, 5.69; N, 9.72; S, 4.51.

FIG. 14

Days After Collagen Booster Immunization

_____ Untreated (Vehicle control:25% Cremophor)

----- 50 mg/kg, bid

o 25 mg/kg, bid

_--- 10 mg/kg, bid

FIG. 13

FIG. 12

FIG. 10

WO 97/22619

FIG. 7

FIG. 4

3/11

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 2B

153. The process according to any one of claims 140-149, wherein $\ensuremath{\text{R}}_1$ is:

comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of $-NH_2$, $-CO_2H$, -Cl, -F, -Br, -I, $-NO_2$, -CN, =O, -OH, -perfluoro C_{1-3} alkyl, R_5 , $-OR_5$, $-NHR_5$, $-OR_9$, $-N(R_9)$ (R_{10}) , $-R_9$, -C(O) $-R_{10}$, and

 $(R_1)^{-1}(R_{10})^{-1}(R_{10$

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$;

\$151.\$ The process according to any one of claims 140 -149 wherein the N-alloc protected amine is:

Alloc—N
$$OR_{st}$$

20

 R_{51} is independently selected from the group consisting of R_9 , $-C(0)-R_9$, $-C(0)-N(H)-R_9$, or each R_{51} taken together forms a saturated 4-8 member carbocyclic ring or heterocyclic ring containing -O-, -S-, or -NH-;

25 152. The process according to any one of claims 140-149, wherein R_1 is:

PCT/US96/20843

WO 97/22619

20

25

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

10 R_{13} is selected from the group consisting of H, Ar_3 , and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, $-CONH_2$, $-OF_5$, -OH, $-OR_9$, or $-CO_2H$;

each R_{51} is independently selected from the group consisting of R_9 , $-C(O)-R_9$, $-C(O)-N(H)-R_9$, or each R_{51} taken together forms a saturated 4-8 member carbocyclic ring or heterocyclic ring containing -O-, -S-, or -NH-;

each R_{21} is independently selected from the group consisting of -H or a -C₁₋₆ straight or branched alkyl group;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, and -NH-, said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally

- 931 -

```
-C(O)O-R<sub>9</sub>,
                           -C(0)-N(R_{10})(R_{10})
                          -S(0)_2-R_9,
                          -S(O)<sub>2</sub>-NH-R<sub>10</sub>,
                          -C(O)-CH<sub>2</sub>-O-R<sub>9</sub>,
   5
                          -C(O)C(O)-R<sub>10</sub>,
                          -R<sub>9</sub>,
                          -H,
                          -C(0)C(0)-OR_{10} and
 10
                          -C(0)C(0)-N(R_9)(R_{10});
                  X_5 is CH or N;
                  Y_2 is H_2 or O;
                  X_7 is -N(R_8) - or -O-;
15
                  \ensuremath{\text{R}}_6 is selected from the group consisting of -H and
          -CH<sub>3</sub>;
                  \ensuremath{R_8} is selected from the group consisting of:
                         -C(O)-R<sub>10</sub>,
20
                         -C(O)O-R<sub>9</sub>,
                         -C(O)-N(H)-R_{10},
                         -S(0)_2-R_9,
                         -S(0)_2-NH-R_{10},
                         -C(0)-CH_2-OR_{10},
25
                         -C(0)C(0)-R_{10};
                         -C(0) - CH_2N(R_{10})(R_{10}),
                         -C(O) - CH_2C(O) - O - R_9,
                         -C(0) - CH_2C(0) - R_9
                         -H, and
30
                         -C(0)-C(0)-OR<sub>10</sub>;
```

C is a ring chosen from the set consisting of benzo, pyrido, thieno, pyrrolo, furano, thiazolo, isothiazolo, oxazolo, isoxazolo, pyrimido, imidazolo, cyclopentyl, and cyclohexyl, the ring optionally being singly or multiply substituted by halogen, $-NH_2$, or -NH-R₉,;

R₂ is:

5

15 m is 1 or 2;

> each R_5 is independently selected from the group consisting of:

- 929 -

(e10)
$$R_{21} \xrightarrow{Y_2}$$

$$R_5 \xrightarrow{N} X_5 \xrightarrow{N}$$

$$\begin{array}{c} R_8 \\ N \\ C \\ O \\ R_5 - N \\ H \\ O \\ R_6 \end{array} \hspace{1cm} ; \hspace{1cm}$$

$$(y2) \qquad \qquad X_7 \xrightarrow{Y_2} \qquad ; \qquad \qquad$$

of CH_2Cl_2 and DMF.

- 145. The process according to claim 144, wherein the nucleophilic scavenger is dimethyl barbituric acid.
- 146. The process according to claim 145, wherein the solution comprises trifluoroacetic acid in about 1-90% by weight.
- 147. The process according to claim 146, wherein the solution comprises trifluoroacetic acid in about 20-50% by weight.
 - 148. The process according to claim 145, wherein the solution comprises hydrochloric acid in about 0.1-30% by weight.
- 149. The process according to claim 148, wherein the solution comprises hydrochloric acid in about 5-15% by weight.
 - 150. The process according to any one of claims 140-149, wherein the N-acylamino compound is represented by formula (VIII):

20 (VIII)
$$\begin{array}{ccc}
R_1 - N - R_2 \\
| \\
H
\end{array}$$

wherein:

 R_1 is selected from the group consisting of the following formulae:

- 927 -

diabetes mellitus (Type I), juvenile diabetes, psoriasis, graft vs. host disease, and hepatitis.

- 140. A process for preparing an N-acylamino compound, comprising the steps of:
- a) mixing a carboxylic acid with an Nalloc-protected amine in the presence of an inert
 solvent, triphenylphoshine, a nucleophilic scavenger,
 and tetrakis-triphenyl phosphine palladium(0) at
 ambient temperature under an inert atmosphere; and
- b) adding to the step a) mixture, HOBT and EDC; and optionally comprising the further step of:
 - c) hydrolyzing the step b) mixture in the presence of a solution comprising an acid and $\rm H_2O$, wherein the step b) mixture is optionally concentrated.
 - 141. The process according to claim 140, wherein the inert solvent is ${\rm CH_2Cl_2}$, DMF, or a mixture of ${\rm CH_2Cl_2}$ and DMF.
- 142. The process according to claim 140, wherein the nucleophilic scavenger is dimedone, morpholine, trimethylsilyl dimethylamine or dimethyl barbituric acid.

15

25

- 143. The process according to claim 142, wherein the nucleophilic scavenger is trimethylsilyl dimethylamine or dimethyl barbituric acid.
 - 144. The process according to claim 142, wherein the inert solvent is $\mathrm{CH_2Cl_2}$, DMF, or a mixture

5

10

15

20

25

30

production and a pharmaceutically acceptable carrier.

138. A method for treating or preventing a disease selected from an IGIF mediated disease, an IFN-y mediated disease, an inflammatory disease, an autoimmune disease, an infectious disease, a proliferative disease, a neurodegenerative disease, a necrotic disease, osteoarthritis, acute pancreatitis, chronic pancreatitis, asthma, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, ulcerative collitis, cerebral ischemia, myocardial ischemia, adult respiratory distress syndrome, infectious hepatitis, sepsis, septic shock, Shigellosis, glomerulonephritis, systemic lupus erythematosus, scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, insulin-dependent diabetes mellitus (Type I), juvenile diabetes, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, myasthenia gravis, multiple sclerosis, psoriasis, lichenplanus, graft vs. host disease, acute dermatomyositis, eczema, primary cirrhosis, hepatitis, uveitis, Behcet's disease, acute dermatomyositis, atopic skin disease, pure red cell aplasia, aplastic anemia, amyotrophic lateral sclerosis and nephrotic syndrome comprising the step of administering to said patient a pharmaceutical composition according to claims 136 or 137.

139. The method according to claim 138, wherein the disease is selected from an inflammatory disease, an autoimmune disease, an infectious disease, rheumatoid arthritis, ulcerative collitis, Crohn's disease, hepatitis, adult respiratory distress syndrome, glomerulonephritis, insulin-dependent

- 925 -

cyclic group is phenyl, substituted by

5

134. The compound according to claim 133, wherein the compound is:

10

\$135.\$ The compound according to claim 133, wherein the compound is:

15

136. A pharmaceutical composition, comprising a compound according to any one of claims 1-41 and 57-135 in an amount effective for decreasing IGIF production and a pharmaceutically acceptable carrier.

. .

137. A pharmaceutical composition comprising a compound according to any one of claims 1-41 and 57-135 in an amount effective for decreasing IFN- γ

- 924 -

132. The compound according to claim 130, wherein the compound is:

133. The compound according to claim 119, wherein R_5 is -C(0)-R_{10}, wherein R_{10} is Ar_3 and the Ar_3

- 923 -

by $-Q_1$.

129. The compound according to claim 128, selected from the group consisting of:

5 920 HO OH H

130. The compound according to claim 128, wherein the Ar_3 cyclic group is isoquinolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$.

131. The compound according to claim 130, wherein the compound is:

FCT/US96/20843

- 922 -

917
$$H_3C$$
 H_3C H_4 H_5 H_6 H_7 H_8 H_8

127. The compound according to claim 125, wherein the compound is:

128. The compound according to claim 119, wherein:

 $\rm R_{5}$ is -C(O)-R_{10}, wherein $\rm R_{10}$ is $\rm Ar_{3}$ and the $\rm Ar_{3}$ cyclic group is selected from the group consisting of 10 is indolyl, benzimidazolyl, thienyl, quinolyl, isoquinolyl and benzo[b]thiophenyl, and said cyclic group optionally being singly or multiply substituted

5

125. The compound according to claim 120, wherein Ar_3 is phenyl being singly or multiply substituted at the 3- or 5-position by $-R_9$, wherein R_9 is a C_{1-4} straight or branched alkyl group; and at the 4-position by $-O-R_5$.

126. The compound according to claim 125, selected from the group consisting of:

- 919 -

914
$$H_{3C} = H_{3C} = H_{3C}$$

124. The compound according to claim 122, selected from the group consisting of:

5

- 917 -

913
$$H_3C-N$$
 CH_3

122. The compound according to claim 120, wherein Ar_3 is phenyl being singly or multiply substituted at the 3- or 5-position by -Cl or at the 4-position by -NH-R₅, -N(R₉)(R₁₀), or -O-R₅.

123. The compound according to claim 122, selected from the group consisting of:

119. The compound according to claim 118, wherein $\ensuremath{\text{R}_{10}}$ is $\ensuremath{\text{Ar}_{3}}.$

120. The compound according to claim 119, wherein:

 R_5 is $-C(0)-R_{10}$ and R_{10} is Ar_3 , wherein the Ar_3 cyclic group is phenyl optionally being singly or multiply substituted by:

 $-R_9$, wherein R_9 is a C_{1-4} straight or branched alkyl group;

10 -F,

15

-Cl,

 $-N(H)-R_5$, wherein $-R_5$ is -H or $-C(O)-R_{10}$, wherein R_{10} is a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein Ar_3 is phenyl,

 $^{-N\,(R_9)\,(R_{10})},$ wherein R_9 and R_{10} are independently a $^{-\text{C}}_{1-4}$ straight or branched alkyl group, or

-O-R5, wherein R5 is H or a -C1-4 straight or branched alkyl group.

20 121. The compound according to claim 120, selected from the group consisting of:

- 914 -

and said cyclic group being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of $-NH_2$, -Cl, -F, -Br, -OH, $-R_9$, $-NH-R_5$ wherein R_5 is $-C(O)-R_{10}$ or $-S(O)_2-R_9$, $-OR_5$ wherein R_5 is $-C(O)-R_{10}$, $-OR_9$, $-NHR_9$, and

O /\ CH₂,

10

20

wherein each R_9 and R_{10} are independently a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$ wherein Ar_3 is phenyl;

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

- 115. The compound according to claim 114, wherein R_3 is $-C(0)-Ar_2$,
- 116. The compound according to claim 114, wherein R_3 is $-C(0)CH_2-T_1-R_{11}$;
- 25 117. The compound according to claim 114, wherein R_3 is -C(0)-H.
 - 118. The compound according to any one of claims 104-117, wherein R_5 is $-C(O)-R_{10}$ or $-C(O)C(O)-R_{10}$.

- 913 -

113. The compound according to claim 111, wherein $\rm R_8$ is -C(O)-CH_2-OR_{10} and $\rm R_{10}$ is -H or -CH_3.

114. The compound according to claim 68, wherein:

m is 1;

 T_1 is 0 or S;

 R_{21} is -H or -CH₃;

10 Ar_2 is (hh);

5

Y is 0;

each Ar₃ cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, pyrazolyl, thiazolyl, isoxazolyl, benzotriazolyl, benzimidazolyl, thienothienyl, imidazolyl, thiadiazolyl, benzo[b]thiophenyl, pyridyl, benzofuranyl, and indolyl and said cyclic group being singly or multiply substituted by -Q₁;

each Ar_4 cyclic group is independently selected from the set consisting of phenyl, tetrazolyl, pyridinyl, oxazolyl, naphthyl, pyrimidinyl, and thienyl

$$-C(0)-R_{10}$$
,

-C(O)O-R9,

 $-C(0)-CH_2-OR_{10}$, and

 $-C(0) - CH_2C(0) - R_9$.

108. The compound according to claim 105, wherein R_3 is $-C(0)-Ar_2$,

109. The compound according to claim 105, wherein R_3 is $-C(0)CH_2-T_1-R_{11}$;

110. The compound according to claim 105, wherein R_3 is -C(O)-H.

111. The compound according to claim 110, wherein $\ensuremath{R_8}$ is selected from the group consisting of:

 $-C(0)-R_{10}$

-C(0)0-R₉,

 $-C(0)-CH_2+OR_{10}$, and

 $-C(0) - CH_2C(0) - R_9$.

112. The compound according to claim 111,
20 selected from the group consisting of:

- 909 -

each Ar_3 cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, thiazolyl, benzimidazolyl, thienothienyl, thiadiazolyl, benzotriazolyl, benzo[b]thiophenyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 cyclic group is independently selected from the set consisting of phenyl, tetrazolyl, naphthyl, pyridinyl, oxazolyl, pyrimidinyl, or indolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of -NH₂, -Cl, -F, -Br, -OH, -R₉, -NH-R₅ wherein R₅ is -C(O)-R₁₀ or -S(O)₂-R₉, -OR₅ wherein R₅ is -C(O)-R₁₀, -OR₉, -NHR₉, and

O / \ CH₂,

5

10

15

20

25

30

wherein each R_9 and R_{10} are independently a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$ wherein Ar_3 is phenyl;

provided that when -Ar $_3$ is substituted with a \mathbb{Q}_1 group which comprises one or more additional -Ar $_3$ groups, said additional -Ar $_3$ groups are not substituted with another -Ar $_3$.

106. The compound according to claim 105, wherein R_8 is selected from the group consisting of:

5

10

=0, -OH, -perfluoro
$$C_{1-3}$$
 alkyl, R_5 , -OR $_5$, -NH R_5 , -OR $_9$, -N(R_9)(R_{10}), - R_9 , -C(O)- R_{10} , and O CH $_2$;

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

105. The compound according to claim 104, wherein:

m is 1;

C is a ring chosen from the set consisting of benzo, pyrido, and thieno, the ring optionally being singly or multiply substituted by halogen, $-\mathrm{NH}_2$, $-\mathrm{NH}-\mathrm{R}_5$, or $-\mathrm{NH}-\mathrm{R}_9$, $-\mathrm{OR}_{10}$, or $-\mathrm{R}_9$, wherein R_9 is a straight or branched C_{1-4} alkyl group, and R_{10} is H or a straight or branched C_{1-4} alkyl group;

20

 T_1 is 0 or S;

R6 is H;

 R_{11} is selected from the group consisting of -Ar₄, -(CH₂)₁₋₃-Ar₄, and -C(O)-Ar₄;

Ar₂ is (hh);

Y is 0;

- 907 -

wherein each Y is independently selected from the group consisting of O and S;

from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO₂, =N-, and -NH-, -N(R₅)-, and -N(R₉)- said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by -Q₁;

each Ar_4 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings, and a heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from $-O_-$, $-S_-$, $-SO_-$, SO_2 , $=N_-$, $-NH_-$, $-N(R_5)_-$, and $-N(R_9)_-$ said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

20

25

30

each Q_1 is independently selected from the group consisting of $-NH_2$, $-CO_2H$, -Cl, -F, -Br, -I, $-NO_2$, -CN,

5

20

alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

each R_{11} is independently selected from the group consisting of:

10 $-Ar_4$, $-(CH_2)_{1-3}-Ar_4$, -H, and $-C(0)-Ar_4$;

 R_{15} is selected from the group consisting of -OH, -OAr₃, -N(H)-OH, and -OC₁₋₆, wherein C₁₋₆ is a straight or branched alkyl group optionally substituted with -Ar₃, -CONH₂, -OR₅, -OH, -OR₉, or -CO₂H;

Ar₂ is independently selected from the following group, in which any ring may optionally be singly or multiply substituted by $-Q_1$ or phenyl, optionally substituted by Q_1 :

- 905 -

```
-C(0) O-R_{9},
-C(0)-N(R_{10})(R_{10})
-S(0)_{2}-R_{9},
-S(0)_{2}-NH-R_{10},
-C(0)-CH_{2}-O-R_{9},
-C(0)C(0)-R_{10},
-R_{9},
-H,
-C(0)C(0)-OR_{10}, and
-C(0)C(0)-N(R_{9})(R_{10});
each T_{1} is independently selection
```

each T_1 is independently selected from the group consisting of -O-, -S-, -S(O)-, and -S(O) $_2$ -;

 $$\rm R_{6}$$ is selected from the group consisting of -H and -CH $_{\rm 3};$

 R_8 is selected from the group consisting of: $-C(0)-R_{10}$,

$$\begin{array}{c} -C(0) \, O - R_9, \\ -C(0) \, -NH - R_{10}, \\ -S(0) \, _2 - R_9, \\ -S(0) \, _2 - NH - R_{10}, \\ -C(0) \, -CH_2 - OR_{10}, \\ -C(0) \, -C(0) \, -R_{10}, \\ -C(0) \, -CH_2 - N(R_{10}) \, (R_{10}), \\ -C(0) \, -CH_2 C(0) \, -O - R_9, \\ -C(0) \, -CH_2 C(0) \, -R_9, \\ -H, \quad \text{and} \\ -C(0) \, -C(0) \, -C(0) \, -OR_{10}; \end{array}$$

each $\rm R_9$ is independently selected from the group consisting of $\rm -Ar_3$ and a $\rm -C_{1-6}$ straight or branched

- 904 -

104. A compound represented by the formula:

wherein:

m is 1 or 2;

5

15

 $\ensuremath{\text{R}}_1$ is selected from the group consisting of the following formulae:

C is a ring chosen from the set consisting of benzo, pyrido, thieno, pyrrolo, furano, thiazolo, isothiazolo, oxazolo, isoxazolo, pyrimido, imidazolo, cyclopentyl, and cyclohexyl, the ring optionally being singly or multiply substituted by $-Q_1$,;

 R_3 is selected from the group consisting of: -CN, -C(O)-H, -C(O)-CH₂-T₁-R₁₁, -C(O)-CH₂-F,

each $\ensuremath{R_5}$ is independently selected from the group consisting of:

$$-C(0)-R_{10}$$

- 903 -

PCT/US96/20843

; and

102. The compound according to claim 89, wherein $\rm R_5$ is -C(O)-R_{10}, wherein $\rm R_{10}$ is Ar $_3$ and the Ar $_3$ cyclic group is phenyl, substituted by

10

5

103. The compound according to claim 102, selected from the group consisting of:

- 901 -

101. The compound according to claim 99, selected from the group consisting of:

- 899 -

100. The compound according to claim 99 selected from the group consisting of:

- 897 -

214w-6
$$H_3C$$
 H_3C H_3C

214w-7
$$H_3C$$
 H_3C H_3 H_4 H_5 H

98. The compound according to claim 89,

5 wherein:

10

15

 $\rm R_5$ is -C(O)-R_{10}, wherein R_{10} is Ar_3 and the Ar_3 cyclic group is selected from the group consisting of is indolyl, benzimidazolyl, thienyl, quinolyl, isoquinolyl and benzo[b]thiophenyl, and said cyclic group optionally being singly or multiply substituted by -Q_1.

99. The compound according to claim 98, wherein the Ar_3 cyclic group is isoquinoly1, and said cyclic group optionally being singly or multiply substituted by $-Q_1$.

5

97. The compound according to claim 95, selected from the group consisting of:

- 895 -

and at the 4-position by $-O-R_5$.

96. The compound according to claim 95, selected from the group consisting of:

$$\begin{array}{c} \text{HO} \\ \text{Ho} \\ \text{HO} \\ \text{CH}_3 \end{array}$$
 ; and

5 95. The compound according to claim 90, wherein Ar_3 is phenyl being singly or multiply substituted at the 3- or 5-position by $-R_9$, wherein R_9 is a C_{1-4} straight or branched alkyl group;

- 893 -

93. The compound according to claim 92, selected from the group consisting of:

94. The compound according to claim 92, selected from the group consisting of:

PCT/US96/20843

WO 97/22619

- 892 **-**

5

92. The compound according to claim 90, wherein Ar_3 is phenyl being singly or multiply substituted at the 3- or 5-position by -Cl or at the 4position by $-NH-R_5$, $-N(R_9)(R_{10})$, or $-O-R_5$.

- 891 -

\$89.\$ The compound according to claim 88, wherein $\ensuremath{R_{10}}$ is $\ensuremath{Ar_3}.$

90. The compound according to claim 89, wherein:

S R_5 is $-C(0)-R_{10}$ and R_{10} is Ar_3 , wherein the Ar_3 cyclic group is phenyl optionally being singly or multiply substituted by:

 $-R_9$, wherein R_9 is a C_{1-4} straight or branched alkyl group;

10 -F,

15

-Cl,

 $-N(H)-R_5$, wherein $-R_5$ is -H or $-C(O)-R_{10}$, wherein R_{10} is a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein Ar_3 is phenyl,

 $^{-N\,(R_9)\,(R_{10})}\,,$ wherein R_9 and R_{10} are independently a $^{-C}_{1-4}$ straight or branched alkyl group, or

-O-R₅, wherein R₅ is H or a -C₁₋₄ straight or branched alkyl group.

91. The compound according to claim 90, selected from the group consisting of:

selected from the group consisting of:

84. The compound according to claim 82, wherein R_8 is selected from the group consisting of:

 $-C(0)-R_{10}$,

-C(O)O-R₉,

 $-C(0)-CH_2-OR_{10}$, and

 $-C(0) - CH_2C(0) - R_9$.

10 85. The compound according to claim 84, wherein R₈ is $-C(0)-CH_2-OR_{10}$ and R₁₀ is -H or $-CH_3$.

86. The compound according to claim 81, wherein R_1 is (el0) and X_5 is CH.

87. The compound according to claim 81, wherein R_1 is (e10) and X_5 is N.

88. The compound according to any one of claims 80-87 wherein $\rm R_5$ is -C(0)-R_{10} or -C(0)-C(0)-R_{10}.

- 889 -

optionally substituted with -Ar $_3$, wherein Ar $_3$ is phenyl, optionally substituted by -Q $_1$;

each Ar_3 cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, pyrazolyl, thiazolyl, isoxazolyl, benzotriazolyl, benzimidazolyl, thienothienyl, imidazolyl, thiadiazolyl, benzo[b]thiophenyl, pyridyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of $-NH_2$, -Cl, -F, -Br, -OH, $-R_9$, $-NH-R_5$ wherein R_5 is $-C(O)-R_{10}$ or $-S(O)_2-R_9$, $-OR_5$ wherein R_5 is $-C(O)-R_{10}$, $-OR_9$, $-NHR_9$, and

15

wherein each R_9 and R_{10} are independently a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$ wherein Ar_3 is phenyl;

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

- 82. The compound according to claim 81, wherein $\ensuremath{R_{1}}$ is (w2).
- 30 83. The compound according to claim 82,

5

20

25

consisting of -NH₂, -CO₂H, -Cl, -F, -Br, -I, -NO₂, -CN, =O, -OH, -perfluoro C_{1-3} alkyl, R_5 , -OR₅, -NHR₅, -OR₉, -N(R₉)(R₁₀), -R₉, -C(O)-R₁₀, and O / CH₂,

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

15 m is 1;

C is a ring chosen from the set consisting of benzo, pyrido, or thieno the ring optionally being singly or multiply substituted by halogen, $-\mathrm{NH}_2$, $-\mathrm{NH}-\mathrm{R}_5$, $-\mathrm{NH}-\mathrm{R}_9$, $-\mathrm{OR}_{10}$, or $-\mathrm{R}_9$, wherein R_9 is a straight or branched C_{1-4} alkyl group, and R_{10} is H or a straight or branched C_{1-4} alkyl group;

 R_6 is H;

 R_{13} is H or a C_{1-4} straight or branched alkyl group optionally substituted with -Ar₃, -OH, -OR₉, -CO₂H, wherein the R_9 is a C_{1-4} branched or straight chain alkyl group; wherein Ar₃ is morpholinyl or phenyl, wherein the phenyl is optionally substituted by -Q₁;

 R_{21} is -H or -CH₃;

 R_{51} is a C_{1-6} straight or branched alkyl group

5

20

25

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

 $\rm R_{13}$ is selected from the group consisting of H, Ar_3, and a -C_{1-6} straight or branched alkyl group optionally substituted with -Ar_3, -CONH_2, -OR_5, -OH, -OR_9, or -CO_2H;

each R_{51} is independently selected from the group consisting of R_9 , $-C(0)-R_9$, $-C(0)-N(H)-R_9$, or each R_{51} taken together forms a saturated 4-8 member carbocyclic ring or heterocyclic ring containing -O-, -S-, or -NH-;

each R_{21} is independently selected from the group consisting of -H or a - C_{1-6} straight or branched alkyl group;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, and -NH-, said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group

- 886 **-**

```
-S(0)_2-R_9,
                    -S(0)_2-NH-R_{10},
                    -C(0)-CH_2-O-R_9,
                    -C(0)C(0)-R_{10}
 5
                    -R<sub>9</sub>
                    -H,
                    -C(0)C(0)-OR_{10}, and
                    -C(0)C(0)-N(R_9)(R_{10});
              X_5 is CH or N;
10
              Y_2 is H_2 or O;
              R_6 is selected from the group consisting of -H and
15
        -CH3;
              R_{8} is selected from the group consisting of:
                    -C(0)-R_{10},
                    -C(0)O-R_9,
                    -C(0)-N(H)-R_{10},
                    -S(0)_2-R_9,
20
                    -S(0)_2-NH-R_{10}
                    -C(0)-CH_2-OR_{10},
                    -C(0)C(0)-R_{10};
                    -C(0) - CH_2N(R_{10})(R_{10}),
25
                    -C(0)-CH_2C(0)-O-R_9,
                    -C(0)-CH_2C(0)-R_9,
                    -H, and
                    -C(0)-C(0)-OR_{10};
```

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

- 885 -

(el0)
$$\begin{array}{c} Y_2 \\ \\ R_5 - N \\ H \end{array}$$
 , or

$$(W2)$$
 R_8
 R_5
 R_6
 R_6

C is a ring chosen from the set consisting of benzo, pyrido, thieno, pyrrolo, furano, thiazolo, isothiazolo, oxazolo, isoxazolo, pyrimido, imidazolo, cyclopentyl, and cyclohexyl; the ring optionally being singly or multiply substituted by $-Q_1$;

 R_2 is:

m is 1 or 2;

each R_5 is independently selected from the group consisting of:

$$-C(0)-N(R_{10})(R_{10})$$

- 884 -

 R_3 is -C(0)-H; and

 $\rm R_5$ is -C(O)-R_{10}, wherein $\rm R_{10}$ is $\rm Ar_3$ and the $\rm Ar_3$ cyclic group is phenyl, substituted by

/\ CH₂

5

79. The compound according to claim 68,selected from the group consisting of:

80. A compound represented by the formula:

(VI) R₁-N-R₂

wherein:

 R_1 is:

- 883 -

phenyl,

 $^{-N\,(R_9)}\,(R_{10})\,,$ wherein R_9 and R_{10} are independently a $^{-C}_{1-4}$ straight or branched alkyl group, or

 $^{-\text{O-R}_5}\text{,}$ wherein R_5 is H or a $^{-\text{C}}_{1-4}$ straight or branched alkyl group.

75. The compound according to claim 74, wherein Ar_3 is phenyl being optionally singly or multiply substituted at the 3- or 5-position by -Cl or at the 4-position by -NH-R₅, -N(R₉)(R₁₀), or -O-R₅.

76. The compound according to claim 68, wherein:

 R_3 is -C(0)-H;

 R_5 is $-C(0)-R_{10}$, wherein R_{10} is Ar_3 and the Ar_3 cyclic group is selected from the group consisting of is indolyl, benzimidazolyl, thienyl, and benzo[b]thiophenyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$.

77. The compound according to claim 68, wherein:

20 R_3 is -C(0)-H; and

15

 $\rm R_5$ is -C(0)-R_{10}, wherein R_{10} is Ar_3 and the Ar_3 cyclic group is selected from quinolyl and isoquinolyl, and said cyclic group optionally being singly or multiply substituted by -Q_1.

78. The compound according to claim 66, wherein:

is $-C(0)-Ar_4$, wherein the Ar_4 cyclic group is 2,5-dichlorophenyl, then R_5 cannot be:

-C(0)-OR9, wherein R9 is -CH2-Ar3 and the Ar3 cyclic group is phenyl.

- 5 69. The compound according to claim 68, wherein R_{21} is -CH₃.
 - 70. The compound according to claim 68, wherein R_5 is $-C(0)-C(0)-OR_{10}$.
- 71. The compound according to claim 68, wherein R_5 is $-C(0)-C(0)-OR_{10}$ and R_{21} is $-CH_3$.
 - 72. The compound according to any one of claims 66, 67, 70 and 71, wherein R_3 is -C(O)-H.
 - 73. The compound according to any one of claims 65, 68 and 69, wherein R_3 is -C(0)-H.
- 15 74. The compound according to claim 63, wherein:

 R_3 is -C(0)-H, and

 R_5 is $-C(0)-R_{10}$, wherein:

 R_{10} is Ar₃, wherein the Ar₃ cyclic group is phenyl optionally being singly or multiply substituted by:

-F,

-C1,

25

 $-N(H)-R_5$, wherein $-R_5$ is -H or $-C(O)-R_{10}$, wherein R_{10} is a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein Ar_3 is

- 881 -

4-(carboxyethyl)phenyl, 4-(carboxypropyl)phenyl, 2-fluorophenyl, 2-pyridyl, N-(4-methylpiperazino)methylphenyl, or

 $-C(O)-OR_9$, wherein R_9 is isobutyl or $-CH_2-Ar_3$ and the Ar_3 cyclic group is phenyl;

and when R_{11} is Ar_4 , wherein the Ar_4 cyclic group is 5-(1-phenyl-3-trifluoromethyl)pyrazolyl or 5-(1-(4-chloro-2-pyridinyl)-3-trifluoromethyl)pyrazolyl, then R_5 cannot be:

10 $-C(O)-OR_9$, wherein R_9 is $-CH_2-Ar_3$, and the Ar_3 cyclic group is phenyl;

5

and when R_{11} is Ar_4 , wherein the Ar_4 cyclic group is 5-(1-(2-pyridyl)-3-trifluoromethyl) pyrazolyl), then R_5 cannot be:

15 $-C(0)-R_{10}$, wherein R_{10} is $-Ar_3$ and the Ar_3 cyclic group is 4-(dimethylaminomethyl)phenyl, or

-C(0)-OR₉, wherein R₉ is -CH₂-Ar₃, and the Ar₃ cyclic group is phenyl, unsubstituted by -Q₁; and when

 Y_2 is 0, R_3 is -C(0)-CH₂-T₁-R₁₁, T₁ is 0, and R_{11} 20 is -C(0)-Ar₄, wherein the Ar₄ cyclic group is 2,5-dichlorophenyl, then R_5 cannot be:

-C(O)- R_{10} , wherein R_{10} is -Ar $_3$ and the Ar $_3$ cyclic group is 4-(dimethylaminomethyl)phenyl, 4-(N-morpholinomethyl)phenyl, 4-(N-

methylpiperazino)methyl)phenyl, 4-(N-(2-methyl)imidazolylmethyl)phenyl, 5-benzimidazolyl, 5-benztriazolyl, N-carboethoxy-5-benztriazolyl, N-carboethoxy-5-benzimidazolyl, or

-C(O)-OR₉, wherein R₉ is -CH₂-Ar₃, and the Ar₃ cyclic group is phenyl, unsubstituted by -Q₁,; and when

 Y_2 is H_2 , R_3 is $-C(0)-CH_2-T_1-R_{11}$, T_1 is O, and R_{11}

- 880 -

each Q_1 is independently selected from the group consisting of $-NH_2$, $-CO_2H$, -Cl, -F, -Br, -I, $-NO_2$, -CN, =O, -OH, -perfluoro C_{1-3} alkyl, R_5 , $-OR_5$, $-NHR_5$, $-OR_9$, $-N(R_9)$ (R_{10}) , $-R_9$, $-C(O)-R_{10}$, and O CH_2 ;

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$;

provided that when:

m is 1; R_{15} is -OH; R_{21} is -H; and

5

20

30

 Y_2 is O and R_3 is -C(O)-H, then R_5 cannot be: -C(O)- R_{10} , wherein R_{10} is -Ar $_3$ and the Ar $_3$ cyclic group is phenyl, unsubstituted by -Q $_1$, 4- (carboxymethoxy)phenyl, 2-fluorophenyl, 2-pyridyl, N- (4-methylpiperazino)methylphenyl, or

-C(O)-OR9, wherein R9 is -CH2-Ar3, and the Ar3 cyclic group is phenyl, unsubstituted by -Q1; and when

 Y_2 is O, R_3 is $-C(0)-CH_2-T_1-R_{11}$, T_1 is G, and R_{11} is Ar4, wherein the Ar4 cyclic group is 5-(1-(4-chlorophenyl)-3-trifluoromethyl) pyrazolyl), then R_5 cannot be:

-H;

-C(0)- R_{10} , wherein R_{10} is -Ar $_3$ and the Ar $_3$ cyclic group is 4-(dimethylaminomethyl)phenyl, phenyl, 4-(carboxymethylthio)phenyl,4-(carboxyethylthic)phenyl,

- 879 -

5

10

15

20

25

wherein each Y is independently selected from the group consisting of O and S;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -0-, -S-, -S0-, $S0_2$, =N-, and -NH-, $-N(R_5)-$, and $-N(R_9)-$ said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings, and a heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, -NH-, -N(R_5)-, and -N(R_9)- said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by -O1;

5

10

25

each T_1 is independently selected from the group consisting of -O-, -S-, -S(0)-, and -S(0)₂-;

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

each ${\bf R}_{11}$ is independently selected from the group consisting of:

15 $-Ar_4$, $-(CH_2)_{1-3}-Ar_4$, -H, and $-C(0)-Ar_4$;

 R_{15} is selected from the group consisting of -OH, -OAr₃, -N(H)-OH, and -OC₁₋₆, wherein C₁₋₆ is a straight or branched alkyl group optionally substituted with -Ar₃, -CONH₂, -OR₅, -OH, -OR₉, or -CO₂H;

each R_{21} is independently selected from the group consisting of -H or a $-C_{1-6}$ straight or branched alkyl group;

Ar₂ is independently selected from the following group, in which any ring may optionally be singly or multiply substituted by $-Q_1$ or phenyl, optionally substituted by Q_1 :

- 877 -

m is 1 or 2;

R₁ is:

 R_3 is selected from the group consisting of: -CN, -C(O)-H, -C(O)-CH₂-T₁-R₁₁, -C(O)-CH₂-F, -C=N-O-R₉, and

each R_5 is independently selected from the group

consisting of:

10

 $\begin{array}{c} -C(0) - R_{10}, \\ -C(0) O - R_{9}, \\ -C(0) - N(R_{10}) (R_{10}) \\ -S(0)_2 - R_{9}, \\ \\ -S(0)_2 - NH - R_{10}, \\ -C(0) - CH_2 - O - R_{9}, \\ -C(0) - C(0) - R_{10}, \\ -R_{9}, \\ -H, \\ \\ 25 \end{array}$

-CO-Ar₂;

 Y_2 is H_2 or O;

 $-C(0)C(0)-N(R_9)(R_{10});$

5

10

15

from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings, and a heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -0-, -S-, -S0-, $S0_2$, =N-, -NH-, $-N(R_5)-$, and $-N(R_9)-$ said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of $-NH_2$, $-CO_2H$, -Cl, -F, -Br, -I, $-NO_2$, -CN, =0, -OH, -perfluoro C_{1-3} alkyl, R_5 , $-OR_5$, $-NHR_5$, $-OR_9$, $-N(R_9)$ (R_{10}) , $-R_9$, $-C(O)-R_{10}$, and O CH₂;

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

68. A compound represented by the formula:

(V)
$$\begin{array}{c} O \\ O \\ I \\ I \\ I \\ I \\ I \end{array}$$

wherein:

- 875 -

 $-Ar_3$, $-CONH_2$, $-OR_5$, -OH, $-OR_9$, or $-CO_2H$;

each $\rm R_{21}$ is independently selected from the group consisting of -H or a -C $_{1-6}$ straight or branched alkyl group;

Ar₂ is independently selected from the following group, in which any ring may optionally be singly or multiply substituted by $-Q_1$ or phenyl, optionally substituted by Q_1 :

10

15

20

25

wherein each Y is independently selected from the group consisting of O and S;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, and -NH-, $-N(R_5)$ -, and $-N(R_9)$ - said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 is a cyclic group independently selected

- 874 -

-C(O)-H, -C(O)-CH₂-T₁-R₁₁, -C(O)-CH₂-F, -C=N-O-R₉, and -CO-Ar₂;

each R_5 is $-C(0)C(0)-OR_{10}$;

 Y_2 is H_2 or O;

5

each T_1 is independently selected from the group consisting of -O-, -S-, -S(0)-, and -S(0)₂-;

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

each R_{11} is independently selected from the group consisting of:

-Ar₄, $-(CH_2)_{1-3}$ -Ar₄, -H, and -C(0)-Ar₄;

 R_{15} is selected from the group consisting of -OH, -OAr_3, -N(H)-OH, and -OC_{1-6}, wherein C_{1-6} is a straight or branched alkyl group optionally substituted with

- 873 -

containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q_1 is independently selected from the group consisting of $-NH_2$, $-CO_2H$, -Cl, -F, -Br, -I, $-NO_2$, -CN, =O, -OH, -perfluoro C_{1-3} alkyl, R_5 , $-OR_5$, $-NHR_5$, $-OR_9$, $-N(R_9)$ (R_{10}) , $-R_9$, -C(O) $-R_{10}$, and O

 $-N(R_9)(R_{10})$, $-R_9$, $-C(O)-R_{10}$, and O /\
10 CH₂;

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

66. A compound represented by the formula:

$$(V) \qquad \begin{array}{c} O \\ \downarrow \\ R_1 - N \\ R_3 \end{array}$$

wherein:

15

20 m is 1 or 2;

$$R_1$$
 is:
$$R_{21} \longrightarrow N$$

$$R_{5} \longrightarrow N$$

$$R_{5} \longrightarrow N$$

 R_3 is selected from the group consisting of: -CN,

PCT/US96/20843

group, in which any ring may optionally be singly or multiply substituted by $-Q_1$ or phenyl, optionally substituted by Q_1 :

10

15

20

25

wherein each Y is independently selected from the group consisting of O and S;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, and -NH-, $-N(R_5)$ -, and $-N(R_9)$ - said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings, and a heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, -NH-, -N(R_5)-, and -N(R_9)- said heterocycle group optionally

- 871 -

 $-C(0)C(0)-OR_{10}$, and $-C(0)C(0)-N(R_9)(R_{10})$;

 Y_2 is H_2 or O;

each T_1 is independently selected from the group consisting of -O-, -S-, -S(O)-, and -S(O)₂-;

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

each $\ensuremath{\text{R}_{11}}$ is independently selected from the group consisting of:

 $-Ar_4$, $-(CH_2)_{1-3}-Ar_4$, -H, and $-C(0)-Ar_4$;

10

15

 R_{15} is selected from the group consisting of -OH, -OAr₃, -N(H)-OH, and -OC₁₋₆, wherein C_{1-6} is a straight or branched alkyl group optionally substituted with -Ar₃, -CONH₂, -OR₅, -OH, -OR₉, or -CO₂H;

 R_{21} is $-CH_3$;

 Ar_2 is independently selected from the following

PCT/US96/20843

- 870 -

$$(V) \qquad \begin{array}{c} O \\ O \\ O \\ R_1 - N \\ R_3 \end{array}$$

wherein:

m is 1 or 2;

R₁ is: 5

 R_3 is selected from the group consisting of:

each R_5 is independently selected from the group consisting of:

$$-C(0)-R_{10},$$

$$-C(0)O-R_{9},$$

$$-C(0)-N(R_{10})(R_{10})$$

$$-S(0)_2-R_{9},$$

$$-S(0)_2-NH-R_{10},$$

$$-C(0)-CH_2-O-R_{9},$$

$$-C(0)C(0)-R_{10},$$

$$-R_{9},$$

$$-H,$$

- 869 -

from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings, and a heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from $-O_-$, $-S_-$, $-SO_-$, SO_2 , $=N_-$, $-NH_-$, $-N(R_5)_-$, and $-N(R_9)_-$ said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

- provided that when $-\mathrm{Ar}_3$ is substituted with a Q_1 group which comprises one or more additional $-\mathrm{Ar}_3$ groups, said additional $-\mathrm{Ar}_3$ groups are not substituted with another $-\mathrm{Ar}_3$.
- $\label{eq:compound} \textbf{63.} \quad \text{The compound according to claim 62,} \\ \text{wherein } R_1 \text{ is (w2).}$

15

- \$64.\$ The compound according to claim 62, wherein $\ensuremath{R_{1}}$ is (e10-A).
 - 65. A compound represented by the formula:

5

10

15

20

25

$$-Ar_3$$
, $-CONH_2$, $-OR_5$, $-OH$, $-OR_9$, or $-CO_2H$;

each R_{21} is independently selected from the group consisting of -H or a $-C_{1-6}$ straight or branched alkyl group;

Ar₂ is independently selected from the following group, in which any ring may optionally be singly or multiply substituted by $-Q_1$ or phenyl, optionally substituted by Q_1 :

wherein each Y is independently selected from the group consisting of O and S;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, and -NH-, $-N(R_5)$ -, and $-N(R_9)$ - said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar4 is a cyclic group independently selected

- 867 -

```
-C(0) - R_{10},
-C(0) O - R_{9},
-C(0) - NH - R_{10},
-S(0)_{2} - R_{9},
-S(0)_{2} - NH - R_{10},
-C(0) - CH_{2} - OR_{10},
-C(0) C(0) - R_{10},
-C(0) - CH_{2} - N(R_{10})(R_{10}),
-C(0) - CH_{2}C(0) - O - R_{9},
-C(0) - CH_{2}C(0) - R_{9},
-H, and
-C(0) - C(0) - C(0) - OR_{10};
```

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

each $\ensuremath{R_{11}}$ is independently selected from the group consisting of:

$$-Ar_{4},$$

$$-(CH_{2})_{1-3}-Ar_{4},$$

$$-H, \text{ and}$$

$$-C(O)-Ar_{4};$$

15

20

 R_{15} is selected from the group consisting of -OH, -OAr₃, -N(H)-OH, and -OC₁₋₆, wherein C₁₋₆ is a straight or branched alkyl group optionally substituted with

30

```
cyclopentyl, and cyclohexyl;
```

```
R_3 is selected from the group consisting of:
                    -CN,
                    -C(O)-H,
                    -C(O)-CH_2-T_1-R_{11},
 5
                    -C(0)-CH_2-F,
                    -C=N-O-R_9, and
                    -CO-Ar<sub>2</sub>;
             each R_5 is independently selected from the group
10
       consisting of:
                   -C(0)-R_{10},
                   -C(O)O-Rq,
                   -C(0)-N(R_{10})(R_{10})
                   -S(0)_2-R_9,
                   -S(0)_2-NH-R_{10},
15
                   -C(0)-CH_2-O-R_9,
                   -C(0)C(0)-R_{10}
                   -R<sub>9</sub>.
                   -H,
20
                   -C(O)C(O)-OR_{10}, and
                   -C(0)C(0)-N(R_9)(R_{10});
             Y_2 is H_2 or O;
             X_7 is -N(R_8) - or -O-;
             each {\bf T}_1 is independently selected from the group
25
       consisting of -0-, -S-, -S(0)-, and -S(0)_2-;
             R_6 is selected from the group consisting of -H and
       -CH_3;
```

R₈ is selected from the group consisting of:

- 865 -

$$(e11) \\ R_5 - N \\ H \\ O_0$$
 ;

 $(w2) \qquad \qquad R_{8} \qquad \qquad \vdots$

$$(y1) \qquad \begin{array}{c} R_8 \\ N \\ N \\ N \\ N \end{array}$$

 $(y2) \qquad \qquad X_7 \qquad \qquad ; \text{ and} \qquad \qquad$

10 (z) $\begin{array}{c} Y_2 \\ X_7 \\ N_N \end{array}$;

ring C is chosen from the group consisting of benzo, pyrido, thieno, pyrrolo, furano, thiazolo, isothiazolo, oxazolo, isoxazolo, pyrimido, imidazolo,

62. A compound represented by the formula:

5 wherein:

m is 1 or 2;

 $\ensuremath{\text{R}}_1$ is selected from the group consisting of the following formulae:

10 (e10-A)
$$R_{21} \longrightarrow N$$

$$R_{5} \longrightarrow N$$

$$H$$

- 863 -

wherein R_1 is (e10) and X_5 is CH.

60. The compound according to claim 57, wherein \mbox{R}_1 is (el0) and \mbox{X}_5 is \mbox{N}_{*}

61. The compound according to claim 57, selected from the group consisting of:

5

10

15

each R_{21} is independently selected from the group consisting of -H or a -C₁₋₆ straight or branched alkyl group;

each Ar_3 is a cyclic group independently selected from the set consisting of an aryl group which contains 6, 10, 12, or 14 carbon atoms and between 1 and 3 rings and an aromatic heterocycle group containing between 5 and 15 ring atoms and between 1 and 3 rings, said heterocyclic group containing at least one heteroatom group selected from -O-, -S-, -SO-, SO_2 , =N-, and -NH-, said heterocycle group optionally containing one or more double bonds, said heterocycle group optionally comprising one or more aromatic rings, and said cyclic group optionally being singly or multiply substituted by -Q1;

each Q_1 is independently selected from the group consisting of -NH $_2$, -CO $_2$ H, -Cl, -F, -Br, -I, -NO $_2$, -CN, =O, -OH, -perfluoro C $_{1-3}$ alkyl, R $_5$, -OR $_5$, -NHR $_5$, -OR $_9$, -N(R $_9$)(R $_{10}$), -R $_9$, -C(O)-R $_{10}$, and O CH $_2$,

25

20

provided that when -Ar $_3$ is substituted with a \mathbb{Q}_1 group which comprises one or more additional -Ar $_3$ groups, said additional -Ar $_3$ groups are not substituted with another -Ar $_3$.

- - 59. The compound according to claim 57,

- 861 -

 $R_{8} \text{ is selected from the group consisting of:} \\ -C(0)-R_{10}, \\ -C(0)O-R_{9}, \\ -C(0)-N(H)-R_{10}, \\ -S(0)_{2}-R_{9}, \\ -S(0)_{2}-NH-R_{10}, \\ -C(0)-CH_{2}-OR_{10}, \\ -C(0)-CH_{2}N(R_{10})(R_{10}), \\ -C(0)-CH_{2}N(R_{10})(R_{10}), \\ -C(0)-CH_{2}C(0)-O-R_{9}, \\ -C(0)-CH_{2}C(0)-R_{9}, \\ -H, \text{ and} \\ -C(0)-C(0)-C(0)-OR_{10}; \\ \end{array}$

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

 R_{13} is selected from the group consisting of H, Ar₃, and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, $-CONH_2$, $-OR_5$, -OH, $-OR_9$, or $-CO_2H$;

20

30

each R_{51} is independently selected from the group consisting of R_9 , $-C(0)-R_9$, $-C(0)-N(H)-R_9$, or each R_{51} taken together forms a saturated 4-8 member carbocyclic ring or heterocyclic ring containing -O-, -S-, or -NH-;

PCT/US96/20843

- 860 -

(a) (pm) , or OR_{51}

(b) (m OR₁₃ ;

m is 1 or 2;

each R_5 is independently selected from the group consisting of:

-C (O) O-R₉,

 $-C(0)-R_{10}$,

 $-C(0)-N(R_{10})(R_{10})$

10 $-S(O)_2-R_9$, - $S(O)_2-NH-R_{10}$,

 $-5(0)_2-NH-R_{10}$, $-C(0)-CH_2-O-R_9$,

 $-C(0)C(0)-R_{10}$

-R₉,

15 -H,

 $-C(0)C(0)-OR_{10}$, and

 $-C(0)C(0)-N(R_9)(R_{10});$

 X_5 is CH or N;

20

 Y_2 is H_2 or O;

 X_7 is $-N(R_8)$ - or -O-;

 $$\rm R_{6}$$ is selected from the group consisting of -H and -CH $_{\rm 3};$

- 859 -

ring C is chosen from the group consisting of benzo, pyrido, thieno, pyrrolo, furano, thiazolo, isothiazolo, oxazolo, isoxazolo, pyrimido, imidazolo, cyclopentyl, and cyclohexyl;

 R_2 is:

5

atrophy, multiple sclerosis, AIDS-related encephalitis, HIV-related encephalitis, aging, alopecia, and neurological damage due to stroke in a patient comprising the step of administering to said patient a pharmaceutical composition according to any one of claims 42 to 54.

56. The method according to claim 55, wherein the disease is selected from the group consisting of osteoarthritis, acute pancreatitis, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, psoriasis, and Alzeheimer's disease.

57. A compound represented by the formula:

$$\begin{array}{ccc} \text{(III)} & & \text{R}_1\text{-N-R}_2 \\ & & \text{|} \\ & & \text{H} \end{array}$$

15

10

wherein:

 $\ensuremath{R_1}$ is selected from the group consisting of the following formulae:

(e10)
$$R_{21} \longrightarrow N$$

$$R_{5} \longrightarrow N$$

- 857 -

5

10

to claim 43, wherein the apoptosis-mediated disease is a degenerative disease, selected from the group consisting of Alzheimer's disease, Parkinson's disease, cerebral ischemia, myocardial ischemia, spinal muscular atrophy, multiple sclerosis, AIDS-related encephalitis, HIV-related encephalitis, aging, alopecia, and neurological damage due to stroke.

- 54. A pharmaceutical composition for inhibiting an ICE-mediated function comprising an ICE inhibitor according to any one of claims 1-41 and 57-135 and a pharmaceutically acceptable carrier.
- 55. A method for treating or preventing a disease selected from the group consisting of an IL-1 mediated disease, an apoptosis mediated disease, an inflammatory disease, an autoimmune disease, a 15 destructive bone disorder, a proliferative disorder, an infectious disease, a degenerative disease, a necrotic disease, osteoarthritis, pancreatitis, asthma, adult respiratory distress syndrome, glomeralonephritis, 20 rheumatoid arthritis, systemic lupus erythematosus, scleroderma, chronic thyroiditis, Grave's disease, autoimmune gastritis, insulin-dependent diabetes mellitus (Type I), autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, chronic active hepatitis, myasthenia gravis, inflammatory bowel 25 disease, Crohn's disease, psoriasis, graft vs host disease, osteoporosis, multiple myeloma-related bone disorder, acute myelogenous leukemia, chronic myelogenous leukemia, metastatic melanoma, Kaposi's 3.0 sarcoma, multiple myeloma, sepsis, septic shock, Shigellosis, Alzheimer's disease, Parkinson's disease, cerebral ischemia, myocardial ischemia, spinal muscular

- 856 -

- 47. The pharmaceutical composition according to claim 46, wherein the autoimmune disease is rheumatoid arthritis, inflammatory bowel disease, or Crohn's disease, or psoriasis.
- 5 48. The pharmaceutical composition according to claim 42, wherein the IL-1-mediated disease is a destructive bone disorder selected from the group consisting of osteoporosis or multiple myeloma-related bone disorder.
- 10 49. The pharmaceutical composition according to claim 42, wherein the IL-1-mediated disease is a proliferative disorder selected from the group consisting of acute myelogenous leukemia, chronic myelogenous leukemia, metastatic melanoma, Kaposi's sarcoma, and multiple myeloma.
 - 50. The pharmaceutical composition according to claim 42, wherein the IL-1-mediated disease is an infectious disease, selected from the group consisting of sepsis, septic shock, and Shigellosis.
- 51. The pharmaceutical composition according to claim 42, wherein the IL-1-mediated disease is a degenerative or necrotic disease, selected from the group consisting of Alzheimer's disease, Parkinson's disease, cerebral ischemia, and myocardial ischemia.
- 25 52. The pharmaceutical composition according to claim 51, wherein the degenerative disease is Alzheimer's disease.
 - 53. The pharmaceutical composition according

- 855 -

an ICE inhibitor according to any one of claims 1-41 and 57-135 in an amount effective for treating or preventing an IL-1-mediated disease and a pharmaceutically acceptable carrier.

- 43. A pharmaceutical composition comprising an ICE inhibitor according to any one of claims 1-41 and 57-135 in an amount effective for treating or preventing an apoptosis-mediated disease and a pharmaceutically acceptable carrier.
- 10 44. The pharmaceutical composition according to claim 42, wherein the IL-1-mediated disease is an inflammatory disease selected from the group consisting of osteoarthritis, acute pancreatitis, chronic pancreatitis, asthma, and adult respiratory distress syndrome.
 - 45. The pharmaceutical composition according to claim 44, wherein the inflammatory disease is osteoarthritis or acute pancreatitis.
- to claim 42, wherein the IL-1-mediated disease is an autoimmune disease selected from the group consisting of glomeralonephritis, rheumatoid arthritis, systemic lupus erythematosus, scleroderma, chronic thyroiditis, Grave's disease, autoimmune gastritis, insulindependent diabetes mellitus (Type I), autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, chronic active hepatitis, myasthenia gravis, inflammatory bowel disease, Crohn's disease, psoriasis, and graft vs host disease.

5

42. A pharmaceutical composition comprising

- 853 -

5 41. The compound according to claim 33 selected from the group consisting of:

- 852 -

1090 H₃C O N H O N H H

1091 ;

1093

H₃C OF H ON H OH

1094 , N N N N OH H

5 1095 ;

- 851 -

1085

1086 ;

1088 ;

5 1089

- 850 -

1081s

1083 ;

1082s ;

5 1084 ;

- 849 -

1077

1080 HN H O H ;

5 1081 ;

1072

1073

1074

1075

- 847 -

1068

1071 H_C N H OOH ;

- 846 -

1061 F OH OH H

CI N OH H

1065 ;

5

1066 H₃C O N N O O H

- 845 -

1056

1057 OH HOW HOW H

1058 F H OH H

1059

5 1060

HiC, SH, C, H, C

1052

1053

1054

- 843 -

ON NOH H

- 841 -

1038

1040

5 1041 ON NOT ON HOOM H

1033 ;

1034 P O N O H O H

1035 ON NOH H

5 1036 OH HOON H

1024 OH OH ;

1018 H₃C N H H H H H

1019 CH₃O H O H H

- 837 -

1015

1016

ON NOH H

1007

1008

1009

1010

- 835 -

H3CO N OH OH OH

H₃CO H O CI

1004 CH₃ O N N N N N H OH H

5 1006 CI ON NOH H

- 833 -

499

814c

H₃C + H O H O H O CI H O

5 817e ;

- 831 -

5

- 830 -

482 CINNOH H₂N

482s ;

483 P P P O H O H O

484 H₃C N H O H O H O H

5 485 H₃C N O N O H

- 829 -

478

HANGE OF HEIGHT OF HE

479 HO N N OH

HN HN O HO H

481 CL H₂N H OH H

5 481s ;

- 828 -

- 827 -

468 ;

469 H₃C O H OH H

471 H₃C₁N N O N O H O H O H

5 472 ;

- 826 -

463 ;

464 CI N OH ;

465 CH CONTRACTOR ;

5 467 , OH ON OH H

- 825 -

458 F H OH H

459

H₃C₃S₀ H OH H

- 824 -

454 P O N OH H

455 P ON NOT OH

HO HO NO NO OH

5 457 ;

- 823 -

- 822 -

443

444

445

446

- 821 -

437

N N O N O H

438 , N OH H

439 , N O H O H

440

5

441

442

H ON H OH H

N N O H O H

- 820 -

- 819 -

425 HO N OH H

430 NH O NH O NH OH

5 431 , NO NO OH H

- 818 -

419 — N O O H O O H

5 423 ;

- 817 -

417
$$\begin{array}{c} O \\ O \\ N \\ O \\ N \\ O \\ H \end{array} \begin{array}{c} O \\ O \\ H \\ O \\ H \end{array} \begin{array}{c} O \\ O \\ H \\ O \\ H \end{array} \begin{array}{c} O \\ O \\ H \\ O \\ H \end{array} \begin{array}{c} O \\ O \\ O \\ H \\ O \end{array}$$

- 816 -

287

H₃CO N O CI

404 H₃C N H O H O H O H

405 ON NOH OH

CI O N O H OH

5 407 , OH OH H

408 ON NO OH OH

- 815 -

- 814 -

217e

257 N N O O H

5 280 ;

- 813 -

40. The compound according to claims 8 or 68, selected from the group consisting of:

WO 97/22619

- 812 -

630 H₃C-V H OH H

631

H.C. N. N. N. N. H. OH

S. N. N. N. H. OH

F. H. H. OH

F. N. H. H. OH

F. N. H. OH

F. N. H.

632 H₃C OH ;

633 H₃C O OH H H H O H O

5 634 H_3C OH ; and

625 H₃C_NS_HNO_NNO_NO_NO_HO_H

5

624

620 N N N N N H

622 OH OH ;

- 809 -

605t
$$CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{4} \longrightarrow CH_{5} \longrightarrow CH_{5$$

- 808 -

605n , NON NO OH H

6050 CH₃ OH H OH H OH

605p HNN HOH

5 605s ;

- 807 -

605g , N O OH N OH N OH

605h , N N OH H

605i

605j

5 605m H₃C'S'O OH

WO 97/22619

- 806 -

605b

605c

605d

605e

5 605f

- 805 -

5 39. The compound according to claim 15 selected from the group consisting of:

5

38. The compound according to claims 8 or 68, selected from the group consisting of:

- 801 -

each Q_1 is independently selected from the group consisting of $-NH_2$, -Cl, -F, -Br, -OH, $-R_9$, $-NH-R_5$ wherein R_5 is $-C(O)-R_{10}$ or $-S(O)_2-R_9$, $-OR_5$ wherein R_5 is $-C(O)-R_{10}$, $-OR_9$, $-NHR_9$, and

/ \ ______CH

5

wherein each $\rm R_9$ and $\rm R_{10}$ are independently a $^{-}\rm C_{1-6}$ straight or branched alkyl group optionally substituted

provided that when $-Ar_3$ is substituted with a Q_1 group which comprises one or more additional $-Ar_3$ groups, said additional $-Ar_3$ groups are not substituted with another $-Ar_3$.

37. The compound according to claim 7 selected from the group consisting of:

selected from the group consisting of:

with $-Ar_3$ wherein Ar_3 is phenyl;

20 213e

302 ON NO

each R_9 is independently selected from the group consisting of $-Ar_3$ and a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$, wherein the $-C_{1-6}$ alkyl group is optionally unsaturated;

each R_{10} is independently selected from the group consisting of -H, -Ar₃, a -C₃₋₆ cycloalkyl group, and a -C₁₋₆ straight or branched alkyl group optionally substituted with -Ar₃, wherein the -C₁₋₆ alkyl group is optionally unsaturated;

 $R_{13} \text{ is H or a } C_{1-4} \text{ straight or branched alkyl group} \\ \text{optionally substituted with -Ar}_3, -OH, -OR}_9, -CO}_2H, \\ \text{wherein the } R_9 \text{ is a } C_{1-4} \text{ branched or straight chain} \\ \text{alkyl group; wherein Ar}_3 \text{ is morpholinyl or phenyl}, \\ \text{wherein the phenyl is optionally substituted with } Q_1;$

15 R_{21} is -H or -CH₃;

20

each Ar_3 cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, pyrazolyl, thiazolyl, isoxazolyl, benzotriazolyl, benzimidazolyl, thienothienyl, imidazolyl, thiadiazolyl, benzo[b]thiophenyl, pyridyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 cyclic group is independently selected from the set consisting of phenyl, tetrazolyl, pyridinyl, oxazolyl, naphthyl, pyrimidinyl, and thienyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

- 799 **-**

groups, said additional -Ar $_3$ groups are not substituted with another -Ar $_3$.

36. A compound represented by the formula:

5 wherein:

m is 1;

 R_1 is:

(e10)

R₂₁

R₅-N

R₅-N

 R_3 is $-CO-CH_2-T_1-R_{11}$ and R_{11} is $-Ar_4$;

 R_5 is selected from the group consisting of:

$$-S(0)_2-R_9$$
,

$$-S(0)_2-NH-R_{10}$$
,

15
$$-C(C)-C(O)-R_{10}$$
,

$$-R_9$$
, and

X₅ is CH;

 Y_2 is O;

20 T_1 is 0 or S;

PCT/US96/20843

5

10

15

wherein the phenyl is optionally substituted with Q_1 ;

 R_{21} is -H or -CH₃;

each Ar_3 cyclic group is independently selected from the set consisting of phenyl, naphthyl, thienyl, quinolinyl, isoquinolinyl, pyrazolyl, thiazolyl, isoxazolyl, benzotriazolyl, benzimidazolyl, thienothienyl, imidazolyl, thiadiazolyl, benzo[b]thiophenyl, pyridyl, benzofuranyl, and indolyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Ar_4 cyclic group is independently selected from the set consisting of phenyl, tetrazolyl, pyridinyl, oxazolyl, naphthyl, pyrimidinyl, and thienyl, and said cyclic group optionally being singly or multiply substituted by $-Q_1$;

each Q $_1$ is independently selected from the group consisting of -NH $_2$, -Cl, -F, -Br, -OH, -R $_9$, -NH-R $_5$ wherein R $_5$ is -C(0)-R $_{10}$ or -S(0) $_2$ -R $_9$, -OR $_5$ wherein R $_5$ is -C(0)-R $_{10}$, -OR $_9$, -NHR $_9$, and

20

wherein each R_9 and R_{10} are independently a $-C_{1-6}$ straight or branched alkyl group optionally substituted with $-Ar_3$ wherein Ar_3 is phenyl;

provided that when -Ar $_3$ is substituted with a \mathcal{Q}_1 group which comprises one or more additional -Ar $_3$