

Capstone Project-2

Project Title Seoul Bike Sharing Demand Prediction

By-Bhushan Patil

Problem Statement

Currently Rental bikes are introduced in many urban cities for the enhancement of mobility comfort. It is important to make the rental bike available and accessible to the public at the right time as it lessens the waiting time. Eventually, providing the city with a stable supply of rental bikes becomes a major concern. The crucial part is the prediction of bike count required at each hour for the stable supply of rental bikes.

(a)

Dataset

- There are 8760 entries and 14 columns
- 10 out of 14 are numeric: (Rented Bike Count, Hour, Temperature(°C), Humidity(%), Wind speed (m/s), Visibility (10m), Dew point temperature(°C), Solar Radiation (MJ/m2), Rainfall(mm), Snowfall (cm))
- 4 out of 14 are categorical: (Date, Seasons, Holiday, Functioning Day)

RangeIndex: 8760 entries, 0 to 8759
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Date	8760 non-null	object
1	Rented Bike Count	8760 non-null	int64
2	Hour	8760 non-null	int64
3	Temperature(°C)	8760 non-null	float64
4	Humidity(%)	8760 non-null	int64
5	Wind speed (m/s)	8760 non-null	float64
6	Visibility (10m)	8760 non-null	int64
7	Dew point temperature(°C)	8760 non-null	float64
8	Solar Radiation (MJ/m2)	8760 non-null	float64
9	Rainfall(mm)	8760 non-null	float64
10	Snowfall (cm)	8760 non-null	float64
11	Seasons	8760 non-null	object
12	Holiday	8760 non-null	object
13	Functioning Day	8760 non-null	object
dtyp	es: float64(6), int64(4), o	bject(4)	

Data Description

Dependent variable:

• Rented Bike count

Independent variables:

- Date
- Hour
- Temperature(°C)
- Humidity(%)
- Wind speed (m/s)
- Visibility (10m)
- Functioning Day

- Dew point temperature(°C)
- Solar Radiation (MJ/m2)
- Rainfall(mm)
- Snowfall (cm)
- Seasons
- Holiday

EDA Correlation matrix

EDA Distribution of rented bike count

EDA Transformation of distribution

EDA Rented bike count and Seasons

- Higher bike demand on Summer season and
- Less bike demand on Winter season

EDA Rented bike count and Holiday

• Slightly Higher demand of bike during Non holidays

EDA Rented bike count and Functioning day

 Almost no demand of bike on non functioning day

EDA Rented bike count and Month

- We can see that there is less demand of Rented bike in the month of December, January, February i.e. during winter seasons.
- Also demand of bike is maximum during May, June, July i.e. Summer seasons.

EDA Average bike rented over time(hr)

EDA Regression Plots

- We see a strong positive correlation between Rented bike count and temperature
- We see a strong negative correlation between Rented bike count and humidity

Supervised Learning Regression Problem

Model's Used

- Linear Regression
- Lasso regression
- Ridge Regression
- Elastic net Regression
- Polynomial Regression
- KNN Regression
- Decision Tree Regression
- Random Forest Regression
- Gradient Boosting Model
- Extreme Gradient Boosting (XGBoost)

Combined Evaluation Matrix of All the models

	Models	Mean_square_error	Root_Mean_square_error	R2	Adjusted_R2
0	Linear	175590.552873	419.035264	0.572911	0.569766
1	Lasso	175560.907118	418.999889	0.572983	0.569839
2	Ridge	175248.935066	418.627442	0.573742	0.570603
3	Elasticnet	175479.947047	418.903267	0.573180	0.570037
4	Polynomial	123952.860328	352.069397	0.698509	0.696289
5	K-Nearyest_Neighbor	83411.759209	288.810940	0.796159	0.794659
6	Decision_Tree	86944.836073	294.864098	0.787525	0.785961
7	Random_Forest	62948.565985	250.895528	0.846167	0.845034
8	Gradient_Boosting	54511.256233	233.476458	0.866786	0.865805
9	XGBoost	40812.801816	202.021785	0.900262	0.899528

Adjusted R2 of model

Model Validation and Selection

- From R2 and Adjusted_R2 it is clearly seen that linear regression and KNN not giving good results.
- Random forest and Gradient Boosting giving good result in terms of R2.
- But we are getting best result from XGBoost.

Feature Importance

XGBoost

Model Explainability - SHAP

XGBoost

Model Explainability – ELI5

y (score 696.485) top features

Feature	Value
<bias></bias>	1.000
Solar Radiation (MJ/m2)	1.680
Temperature(°C)	34.000
Functioning Day_Yes	1.000
Humidity(%)	50.000
weekdays_weekend	1.000
Rainfall(mm)	0.000
Visibility (10m)	1744.000
month	7.000
Wind speed (m/s)	1.200
Seasons_Summer	1.000
Seasons_Spring	0.000
Holiday_No Holiday	1.000
Dew point temperature(°C)	22.100
Hour	14.000
	<bias> Solar Radiation (MJ/m2) Temperature(°C) Functioning Day_Yes Humidity(%) weekdays_weekend Rainfall(mm) Visibility (10m) month Wind speed (m/s) Seasons_Summer Seasons_Spring Holiday_No Holiday</bias>

Conclusion

It is quite evident from the results that XGBoost is the best model that can be used for the Bike Sharing Demand Prediction since the performance metrics (mse,rmse) shows lower and (R2,Adjusted R2) show a higher value for the XGBoost. So, we can use model for the XGBoost above problem.

