

GEOMETRÍA Capítulo 9

RELACIONES METRICAS EN EL TRIÁNGULO RECTÁNGULO Y LA CIRCUNFERENCIA

PROYECCIÓN ORTOGONAL

I. De un punto a una recta

NOTA:

II. De un segmento a una recta

A₁B₁: Proyección de AB sobre L₂

 C_1D_1 : Proyección de $\overline{C_1D_1}$ sobre $\overline{L_2}$

EF₁: Proyección de **EF** sobre L₂

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

* AB y BC son catetos

* AC: hipotenusa

AH: proyección ortogonal AB sobre AC

HC: proyección ortogonal **BC** sobre **AC**

$$(AC)^2 = (AB)^2 + (BC)^2$$

$$c \cdot a = h \cdot b$$

$$\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{h^2}$$

$$x^2 = b.m$$

RELACIONES MÉTRIÇAS EN LA CIRCUNFERENCIA

T. de Cuerdas

a.b=m.n

T. de las Secantes

$$x.y=a.b$$

T. de la Tangente

$$x^2 = n \cdot m$$

T: punto de tangencia

1. Halle el valor de x, si O es centro.

Teorema de cuerdas (PB)(BQ) = (AB)(BC)

Resolución:

- Piden: x
- Aplicando el teorema de cuerdas

$$(x)(x) = (4)(16)$$

 $x^2 = 64$
 $x = 8$

2. En la figura, las circunferencias son concéntricas; M y T son

puntos de tangencia. Halle el valor de x.

T: punto de tangencia

Resolución:

$$8^2 = 8x \cdot 2x \Rightarrow 8 = 2x^2 \Rightarrow 4 = x^2$$

T. de la Tangente

$$x^2 = n \cdot m$$

T: punto de tangencia

$$\Rightarrow$$
 4 = x^2

3. Hallar el valor de x.

TM: Base media

$$RP = 2(TM)$$

Resolución:

$$2x(x) = 18(4)$$

T. de las Secantes

$$x.y=a.b$$

$$\Rightarrow$$
 $x^2 = 36$

4. En un triángulo rectángulo ABC, recto en B, se traza la ceviana interior BD, tal que AD = 6, DC = 21 y AB = BD.

Resolución:

$$x^2 = 3(27) \Rightarrow x^2 = 81$$

5. Halle la medida de uno de los ángulos agudos de un triángulo rectángulo si la hipotenusa tiene una longitud igual a $\sqrt{12-a}$ y los otros lados sus longitudes son 2 y \sqrt{a} .

Resolución:

Por teorema de Pitágoras

$$(\sqrt{12 - a})^2 = (\sqrt{a})^2 + 2^2$$

 $\Rightarrow 12 - a = a + 4 \Rightarrow 8 = 2a \Rightarrow 4 = a$

Por Notable (45°-45°)

6. En la figura, el pentágono mostrado es el contorno de un jardín cuyo perímetro es igual a 24m. Calcule el valor de x.

Resolución:

Prolongamos dos lados para formar un triángulo rectángulo

DATO:
$$2p = 24$$

 $8 + 3x + H = 24$
 $H = 16 - 3x$

Por teorema de Pitágoras

$$8^{2} + (3x)^{2} = H^{2}$$

$$64 + 9x^{2} = (16 - 3x)^{2}$$

$$64 + 9x^{2} = 256 - 96x + 9x^{2}$$

$$96x = 192$$

7. En la figura se muestra un patio cuyo contorno tiene forma de cuadrilátero. Halle el valor de x.

Resolución:

* Trazamos la diagonal BD

Por teorema de Pitágoras

$$a^2 = 7^2 + 1^2$$

$$a^2 = 50$$

$$a^2 = x^2 + x^2$$

$$50 = 2x^2 \Rightarrow 25 = x^2$$