

Iris Yu, Ethan Taggart, Christopher Way, Anna Lavrentieva

Level 4: Washington Fatal Crash Files

Problem
Statement:

Data Processing and Exploration

Reverse Geocoding

ArcGIS Package

1

Risky Zip Code Rate

Calculated as Fatal Crashes per Year per Zip Code 3

Data Visualizations

Graphs of EDA and demographics

Determining Communities

Zip Code, and later define community with city boundaries **Exploratory Data Analysis**

Who are these risky drivers?

Who are involved in these crashes?

Crashes over Time

Driver Behaviors and Road Conditions

Distraction

Drinking

High-Speed Roads

Chi-Squared Tests for Homogeneity Between Visitors and Residents

Driver Behavior	p-value	Crash Type	p-value
Drunk Driver Involved	.98	Traffic Flow	2.7 *10^-18
Drowsy Involved	.99	Road Class	4*10^-68
Distractions Involved	.99	Urban Rural	1.1*10^-23
Alcohol Impaired	.98	Intersections	1.2*10^-9

Bold indicates significance at α =0.05

Deadly Interchange: Can YOU navigate this?

Interchange Diagram from Washington State Department of Transportation

Determining Risky Zip-Codes

Demographics of High Risk Zip Codes

Policy Recommendations

- Emphasize increased caution when driving in areas of high population density.
- In future infrastructure design, make sure that roads are not confusing for both locals and visitors.
- De-emphasize the use of cars in high-density areas.
 Traffic increases the risk of accidents happening.
 Possible solutions could be more pedestrian zones, bicycle lanes, and public transportation.

If we had more time: Next Steps

Predictive Analysis

Use autoregression and time-series forecasting to anticipate fatal crash sites

Other Exploratory Data Analysis

Other factors we were curious about: car type (larger cars), temporal data (night vs. day, weekends), and current enforcement trends

THANKS!

Do you have any questions?

Acknowledgements:

Thank you to the WSTC for the datasets, package authors (plotly, ArcGIS reverse Geocoding), our mentor Chauncey, and the Info Challenge organizers, judges, and sponsors

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by Freepik and illustrations by **Storyset**

Please, keep this slide for attribution