Calculus Formulae

1 Integrals

1.1 Integrating Hyperbolic Functions

The sinh related:

$$\int \sinh(ax)dx = \frac{1}{a}\cosh ax + C$$

$$\int \sinh^2(ax)dx = \frac{1}{4a}\sinh 2ax - \frac{x}{2} + C$$

$$\int x \sinh(ax)dx = \frac{1}{a}x \cosh ax - \frac{1}{a^2}\sinh ax + C$$

$$\int \sinh^n(ax)dx = \frac{1}{na}(\sinh^{n-1} 2ax)(\cosh ax) - \frac{n-1}{n}\int \sinh^{n-2}(ax)dx$$

The cosh related:

$$\int \cosh(ax)dx = \frac{1}{a}\sinh ax + C$$

$$\int \cosh^2(ax)dx = \frac{1}{4a}\sinh 2ax - \frac{x}{2} + C$$

$$\int x \cosh(ax)dx = \frac{1}{a}x \sinh ax - \frac{1}{a^2}\cosh ax + C$$

$$\int \cosh^n(ax)dx = \frac{1}{na}(\cosh^{n-1} 2ax)(\sinh ax) + \frac{n-1}{n}\int \cosh^{n-2}(ax)dx$$

Others:

$$\int tanh(ax)dx = \frac{1}{a}ln(cosh\ ax) + C$$
$$\int coth(ax)dx = \frac{1}{a}ln(sinh\ ax) + C$$

1.2 Integrating to Hyperbolic

$$\begin{split} \int \frac{1}{\sqrt{a^2 + x^2}} dx &= \operatorname{arcsinh}(\frac{x}{a}) + C \\ \int \frac{1}{\sqrt{x^2 - a^2}} dx &= \operatorname{arccosh}(\frac{x}{a}) + C \\ \int \frac{1}{a^2 - x^2} dx &= \frac{1}{a} \operatorname{arctanh}(\frac{x}{a}) + C \qquad (x^2 < a^2) \\ \int \frac{1}{a^2 - x^2} dx &= \frac{1}{a} \operatorname{arccoth}(\frac{x}{a}) + C \qquad (x^2 > a^2) \\ \int \frac{1}{x\sqrt{a^2 - x^2}} dx &= -\frac{1}{a} \operatorname{arcsech}(\frac{x}{a}) + C \\ \int \frac{1}{x\sqrt{a^2 + x^2}} dx &= -\frac{1}{a} \operatorname{arcsech}(\frac{x}{a}) + C \end{split}$$

1.3 Integrating Trigs

The sin related:

$$\int \sin^2(ax)dx = \frac{x}{2} - \frac{1}{4a}\sin 2ax + C$$
$$\int x \sin(ax)dx = \frac{\sin ax}{a^2} - \frac{x \cos ax}{a} + C$$

The cos related:

$$\int \cos^2(ax)dx = \frac{x}{2} + \frac{1}{4a}\sin 2ax + C$$
$$\int x \cos(ax)dx = \frac{\cos ax}{a^2} - \frac{x \sin ax}{a} + C$$

Others:

$$\int tan(x) = \ln |secx| + C$$

1.4 Integrating to Trigs

$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin\left(\frac{u}{a}\right) + C$$

$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan\left(\frac{u}{a}\right) + C$$

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec}\left(\frac{|u|}{a}\right) + C$$

##Weierstrass Sub

Set $t = tan(\frac{x}{2})$, then

$$dx = \frac{2}{1+t^2} dt$$

$$sin(x) = \frac{2}{1+t^2}$$

$$cos(x) = \frac{1-t^2}{1+t^2}$$

2 Vector Calculus

2.1 Tensors

$$\varepsilon_{ijk}\varepsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$$
$$\varepsilon_{ijk}\varepsilon_{ilm} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}$$

2.2 Grad, Div, Curl

2.2.1 Directional Derivative

$$\frac{\partial \phi}{\partial s} = \frac{\partial \phi}{\partial n} (\hat{n} \cdot \hat{s})$$
$$= \hat{\mathbf{s}} \cdot \nabla \phi$$

2.2.2 Laplacian

$$\nabla^2 \phi = div(\nabla \phi)$$
$$= \frac{\partial^2 \phi}{\partial x_i^2}$$

2.3 Green, Divergence, Gauss, Stokes

2.3.1 Green

Closed curve C, L and M are continuously differentiable over R.

$$\begin{split} \oint_C \; (L \; dx + M \; dy) &= \int_R (\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}) \; dx dy \\ \oint_C \; \mathbf{F} \cdot \hat{\mathbf{n}} \; ds &= \int_R \mathrm{div} \mathbf{F} \; dx dy \end{split}$$

2.3.2 Divergence

Volume τ , closed surface S, outward normal $\hat{\mathbf{n}}$ continuous derivatives.

$$\int_{S} \mathbf{A} \cdot \hat{\mathbf{n}} \ dS = \int_{\tau} \mathrm{div} \mathbf{A} \ d\tau$$

2.3.3 Gauss

S closed surface with outward unit normal $\hat{\mathbf{n}}$, O is the origin of the coordinate system.

$$\int_{S} \frac{\mathbf{r} \cdot \hat{\mathbf{n}}}{r^{3}} dS = \begin{cases} 0, & \text{if } O \text{ is outside} \\ 4\pi, & \text{otherwise} \end{cases}$$
 (1)

2.3.4 Stokes

S an open surface, simple closed curve γ , \mathbf{A} with continuous partial derivatives, outward normal $\hat{\mathbf{n}}$ determined by right-hand rule

$$\oint_{\gamma} \mathbf{A} \cdot \mathbf{dr} = \int_{S} curl \mathbf{A} \cdot \hat{\mathbf{n}} \ dS$$

3 Curvilinear Coordinates

3.1 Cylindrical

The Jacobian determinant is r.

$$x = rcos\phi$$
 $y = rsin\phi$ $z = z$

The scale factors:

$$h_1 = 1$$
$$h_2 = r$$
$$h_3 = 1$$

The graident

$$\nabla = \hat{r} \frac{\partial}{\partial r} + \frac{\hat{\phi}}{r} \frac{\partial}{\partial \phi} + \hat{k} \frac{\partial}{\partial z}$$

The divergence:

$$\operatorname{div} \mathbf{A} = \frac{\partial A_1}{\partial r} + \frac{A_1}{r} + \frac{1}{r} \frac{\partial A_2}{\partial \phi} + \frac{\partial A_3}{\partial z}$$

The curl:

$$curl \mathbf{A} = \frac{1}{r} \begin{vmatrix} \mathbf{\hat{r}} & r\hat{\phi} & \mathbf{\hat{k}} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_1 & rA_2 & A_3 \end{vmatrix}$$

The Laplacian:

$$\nabla^2\Phi = \frac{\partial^2\Phi}{\partial r^2} + \frac{1}{r}\frac{\partial\Phi}{\partial r} + \frac{1}{r^2}\frac{\partial^2\Phi}{\partial\phi^2} + \frac{1}{r}\frac{\partial^2\Phi}{\partial z^2}$$

3.2 Spherical

The Jacobian determinant is $r^2 sin\theta$.

$$x = rsin\theta cos\phi$$
 $y = rsin\theta sin\phi$ $z = rcos\theta$

The scale factors:

$$h_1 = 1$$

$$h_2 = r$$

$$h_3 = r sin\theta$$

The graident

$$\nabla = \hat{r} \frac{\partial}{\partial r} + \frac{\hat{\theta}}{r} \frac{\partial}{\partial \theta} + \frac{\hat{\phi}}{r \sin \theta} \frac{\partial}{\partial \phi}$$

The divergence:

$$\operatorname{div} \mathbf{A} = \frac{1}{r^2 \sin \theta} \left\{ \frac{\partial}{\partial r} (r^2 \sin \theta A_1) + \frac{\partial}{\partial \theta} (r \sin \theta A_2) + \frac{\partial}{\partial \phi} (r A_3) \right\}$$

The curl:

$$curl \mathbf{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{\mathbf{r}} & r\hat{\theta} & r \sin \theta \ \hat{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_1 & rA_2 & r \sin \theta \ A_3 \end{vmatrix}$$

The Laplacian:

$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial r^2} + \frac{2}{r} \frac{\partial \Phi}{\partial r} + \frac{\cot \theta}{r^2} \frac{\partial \Phi}{\partial \theta} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2}$$

3.3 General

The graident

$$\nabla = \frac{\hat{e_1}}{h_1} \frac{\partial}{\partial u_1} + \frac{\hat{e_2}}{h_2} \frac{\partial}{\partial u_2} + \frac{\hat{e_3}}{h_3} \frac{\partial}{\partial u_3}$$

The divergence:

$$\operatorname{div} \mathbf{A} = \frac{1}{h_1 h_2 h_3} \left\{ \frac{\partial}{\partial u_1} (A_1 \ h_2 \ h_3) + \frac{\partial}{\partial u_2} (A_2 \ h_3 \ h_1) + \frac{\partial}{\partial u_3} (A_3 \ h_1 \ h_2) \right\}$$

The curl:

$$curl \mathbf{A} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{\mathbf{e_1}} & h_2 \hat{\mathbf{e_2}} & h_3 \hat{\mathbf{e_3}} \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 & A_1 & h_2 & A_2 & h_3 & A_3 \end{vmatrix}$$

The Laplacian:

$$\nabla^2 \Phi = \frac{1}{h_1 h_2 h_3} \left\{ \frac{\partial}{\partial u_1} (\frac{h_2 \ h_3}{h_1} \ \frac{\partial \Phi}{\partial u_1}) + \frac{\partial}{\partial u_2} (\frac{h_1 \ h_3}{h_2} \ \frac{\partial \Phi}{\partial u_2}) + \frac{\partial}{\partial u_3} (\frac{h_2 \ h_1}{h_3} \ \frac{\partial \Phi}{\partial u_3}) \right\}$$

3.4 Vector Jacobian

S parametrised by u_1, u_2 .

$$x = x(u_1, u_2)$$
 $y = y(u_1, u_2)$ $z = z(u_1, u_2)$

$$dS = |\mathbf{J}| du_1 du_2$$

where **J** is $\frac{\partial \mathbf{r}}{\partial u_1} \times \frac{\partial \mathbf{r}}{\partial u_2}$, $\mathbf{r} = x \hat{i} + y \hat{j} + z \hat{k}$

4 Calculus of variations

4.1 Independent of y

$$\frac{\partial L}{\partial y'} = K$$

4.2 Independent of y'

$$\frac{\partial L}{\partial y} = 0$$

4.3 Independent of x

$$L - y' \ \frac{\partial L}{\partial y'} = K$$

4.4 Multivariate

A system of **E-L** equations

$$\frac{\partial L}{\partial x_i} - \frac{d}{dt} \frac{\partial L}{\partial x_i'} = 0$$

4.5 With constraint

$$\frac{\partial}{\partial y}(L+\lambda g)-\frac{d}{dx}\left(\frac{\partial}{\partial y'}(L+\lambda g)\right)=0$$

4.6 Higher dimensions

$$\frac{\partial L}{\partial f} - \operatorname{div}(\nabla_{\nabla \mathbf{f}} L) = 0$$

where $\nabla_{\mathbf{p}} A = i \frac{\partial}{\partial p_1} + j \frac{\partial}{\partial p_2}$

5 Differential Equations

5.1 Euler-Cauchy

$$\mathcal{L}[y] = \beta_k x^k \frac{d^k y}{dx^k} + \dots + \beta_1 x \frac{dy}{dx} = f(x)$$

Try substitution $x = e^z$:

$$\begin{split} \frac{dy}{dx} &= \frac{1}{x} \frac{dy}{dz} \\ \frac{d^2y}{dx^2} &= \frac{1}{x^2} \left[\frac{d^2y}{dz^2} - \frac{dy}{dz} \right] \\ \frac{d^3y}{dx^3} &= \frac{1}{x^3} \left[\frac{d^3y}{dz^3} - 3 \frac{d^2y}{dz^2} + 2 \frac{dy}{dz} \right] \end{split}$$

Note the a(a-1)(a-2) factorial like pattern here.