Math 251 - Exercise Set 2 Zehra's Solutions

March 16, 2024

1 Theorems and Definitions that are used in the solutions

• $p \in \partial S$. \iff for every r > 0, $B(p,r) \cap S \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^m \setminus S) \neq \emptyset$.

2 Solutions

- 1. Let
- 2. Let A(1,4) and B(5,7) be two points in the plane. Find two open sets U and V s.t. $A \in U, B \in V$ and $U \cap V = \emptyset$

Solution:

Let
$$U = B(A, 1)$$
 and $V = B(B, 1)$.
Then $A \in U$, $B \in V$ and $U \cap V = \emptyset$.

- 3. Let $S \subseteq \mathbb{R}^m$.
 - (a) Show that $p \in \partial S$ iff there exists sequences $\{p_n\}$ in S with $\lim_{n\to\infty} p_n = p$ and $\{q_n\}$ in $\mathbb{R}^m \setminus S$ with $\lim_{n\to\infty} q_n = p$.

Proof:

```
 \Rightarrow \text{Suppose } p \in \partial S.  Then for every r > 0, B(p,r) \cap S \neq \emptyset and B(p,r) \cap (\mathbb{R}^m \setminus S) \neq \emptyset. Let n \in \mathbb{N}. Then there exists p_n \in B(p,\frac{1}{n}) \cap S and q_n \in B(p,\frac{1}{n}) \cap (\mathbb{R}^m \setminus S). Then \lim_{n \to \infty} p_n = p and \lim_{n \to \infty} q_n = p.
```

 \Leftarrow Suppose there exists sequences $\{p_n\}$ in S with $\lim_{n\to\infty} p_n = p$ and $\{q_n\}$ in $\mathbb{R}^m\setminus S$ with $\lim_{n\to\infty} q_n = p$. Then for every r>0, there exists $N\in\mathbb{N}$ such that $p_n\in B(p,r)$ for all $n\geq N$ and $q_n\in B(p,r)$ for all $n\geq N$. Then $B(p,r)\cap S\neq\emptyset$ and $B(p,r)\cap (\mathbb{R}^m\setminus S)\neq\emptyset$. Thus $p\in\partial S$.

(b) Show that S is closed iff the limit of every convergent sequence $\{p_n\}$ in S belongs to S.

Proof:

 \Rightarrow Suppose S is closed.

Let $\{p_n\}$ be a convergent sequence in S with $\lim_{n\to\infty} p_n = p$. Then for every r > 0, there exists $N \in \mathbb{N}$ such that $p_n \in B(p,r)$ for all $n \geq N$.

Then $B(p,r) \cap S \neq \emptyset$. Thus $p \in \overline{S} = S$.

 \Leftarrow Suppose the limit of every convergent sequence $\{p_n\}$ in S belongs to S.

Let $p \in \overline{S}$.

Then there exists a sequence $\{p_n\}$ in S with $\lim_{n\to\infty} p_n = p$. Then $p\in S$ because the limit of every convergent sequence $\{p_n\}$ in S belongs to S.

Thus $\overline{S} = S$.

- 4. Find $\limsup x_n$ and $\liminf x_n$ if $\{x_n\}$ is
 - (a) $\{2,4,2,4,6,2,4,8,2,4,10,\dots\}$

Solution:

 $\limsup x_n = 6$ and $\liminf x_n = 2$.

(b) $\{1,0,-1,1,0,-1,1,0,-1,\dots\},$

Solution:

 $\limsup x_n = 1$ and $\liminf x_n = -1$.

(c) $\{-2, 1, 1, -2, 1, 1/2, -2, 1, 1/3, -2, 1, 1/4, -2, 1, 1/5, \dots\},\$

Solution:

 $\limsup x_n = 1$ and $\liminf x_n = -2$.

(d) $\{\frac{3n-1}{2n}\}_{n=1}$,

Solution:

 $\limsup x_n = \frac{3}{2}$ and $\liminf x_n = \frac{1}{2}$.

(e) $\{0, 1, 0, 3, 0, 5, 0, 7, 0, \dots\}$

Solution:

 $\limsup x_n = 7$ and $\liminf x_n = 0$.

(f) $x_n = -3n + 2$ for $n \ge 1$,

Solution:

 $\limsup x_n = 2$ and $\liminf x_n = -\infty$.

5. Find a sequence $\{a_n\}$ with $\limsup a_n = 3$ and $\liminf a_n = -2$.

Solution:

Let $a_n = (-1)^n n$ for $n \ge 1$.

Then $\limsup a_n = 3$ and $\liminf a_n = -2$.

6. Let $S = \{x \in \mathbb{R} | x^3 + 3x^2 + x + 3 < 0\}$. Find $\sup(S)$. Is S bounded below?

Solution:

 $\sup(S) = 0$. Since $x^3 + 3x^2 + x + 3 = (x+1)(x^2 + 2x + 3) = (x+1)(x+1+i\sqrt{2})(x+1-i\sqrt{2}), x^3 + 3x^2 + x + 3 < 0$ if and only if $x \in (-1,0)$.

S is bounded below. Because -1 is a lower bound of S.

7. Is the sequence $x_n = \{\frac{\sin(n)}{n^3}\}$ a Cauchy sequence?

Solution:

Yes, the sequence $x_n = \{\frac{\sin(n)}{n^3}\}$ is a Cauchy sequence.

8. Let $A \subseteq \mathbb{R}^n$ and $p \in \mathbb{R}^n$. Show that $p \in \overline{A} \Leftrightarrow B(p, \varepsilon) \cap A \neq \emptyset$ for all $\varepsilon > 0$.

Proof:

 \Rightarrow Suppose $p \in \bar{A}$.

Then for every $\varepsilon > 0$, $B(p, \varepsilon) \cap A \neq \emptyset$.