Proposty of =m & =L 20,13\*\* Fact: = m is a refinement of = Defn: An equivalence relation =, refires  $\equiv$  (denoted as  $\equiv$   $\subseteq$   $\subseteq$  ) if  $\chi \equiv_{1} \gamma \rightarrow \chi \equiv_{2} \gamma$ \* The equivalence classes of = 2 are unions of equivalence classes of =1 \* = 2 is a refinement 9 = 1\*  $\Xi_1$  is a coarsening of  $\Xi_2$ 

Coarsest Myhill- Nerode relation Theorem: Let L be a regular language.
and let = be a Myhill-Nerode relation Then = = = = = Proof: Let = be any Myhill Norode relation if azy, then as zyo toes inductively fzet xz = gz Since = refines L NZ = yZ => nZEL (=> yZEL i, if a = y then tz nzel@yzec <u>~</u>) ~= y

Theorem: Let = be a Myhill-Nerode reln. of index & over It w.r.t a language L. Then 3 OFA M with k states accepting L Proof: Q= { [a] a ∈ II\* } Lo equivalence classes of = 9 = [E] F= { [w] | we L'} & ([w], o) = [wo] (Is & well-defined? If w, +wz & [w]=[w2] -then is  $\delta(EW_1, \sigma) = \delta(EW_2, \sigma)$ ? Right congruence: If  $[w_1] = [w_2]$ , then  $w_1 \equiv w_2$   $=) w_1 \in = w_2 \in =) [w_1 \in = [w_2 \in ]$ \* wel (=> [w] EF <u>Claim:</u> LCM)=L Proof: we L(M) (=> & ([E], W) & F € [w] € F <=> weL

Eg: 
$$L = \{ \omega \mid \exists x, y \in \{0,1\}^* - \epsilon, \omega = xy, \\ \# 1(x) < \# 1(y) \}$$

- Verify that this is a Myhill- Nerode relation
  - (1) Sous, us us us = Zi\*
  - (2) Right congruence
  - 3 Refines L

