CHAPITRE OS4 – DOCUMENTS Grandeurs et dipôles électriques

FIGURE 1 : LED allumée / LED éteinte

FIGURE 2 : Action mécanique exercée par le verre électrisé par frottement sur de la soie (triboélectricité) ; électrisation des morceaux de papier par influence.

FIGURE 3 : Mouvement désordonné des électrons : agitation thermique des électrons

FIGURE 4 : Mouvement ordonné des électrons : courant électrique

FIGURE 5 : Déplacement de charges dans une solution électrolytique (à gauche) et dans un conducteur (à droite)

Électronique	Électrotechnique
ordinateur, téléphones portables	four, TGV
1 pA < i < 100 mA	1 A < i < 10 kA

FIGURE 6 : Ordres de grandeur de l'intensité du courant

Capteurs	Circuits	Réseau EDF	Lignes à très
	électroniques		haute tension
$10 \mu \text{V} < U < 10 \text{mV}$	1 V < U < 10 V	U = 230 V	U > 100 kV

FIGURE 9: Ordres de grandeur de tensions

isolant	semi-conducteur	conducteur
$\rho > 10^5 \ \Omega.m$	$1 < \rho < 10^4 \ \Omega.m$	$\rho \simeq 10^{-7} \ \Omega.m$

FIGURE 12 : Ordres de grandeur de résistivités

FIGURE 7 : Analogie hydraulique : courant d'eau spontané (à gauche) mouvement entretenu (à droite)

FIGURE 8 : Analogie hydraulique et différence de potentiels

Élément	Définition		
Circuit (ou réseau)	Constitué d'une association de dipôles, actifs et passifs,		
électrique	reliés entre eux par des fils de connexion.		
	Conducteur électrique dont le potentiel est le même en tout		
Fil de connexion	point.		
	Propriété :		
Nœud	Borne commune à plus de deux dipôles.		
Branche	Portion de circuit, i.e. ensemble de dipôles, située entre		
Dranche	deux nœuds consécutifs.		
	Ensemble de branches formant un circuit fermé qui ne		
Maille	passe qu'une seule fois par les nœuds rencontrés : une		
	maille est orientée arbitrairement.		
Magga	Référence des potentiels pour un circuit donné. Son		
Masse	symbole est: ##		
	Par mesure de sécurité, la carcasse métallique des		
Masse carcasse ou	appareils électriques est reliée à la Terre, qui est au		
Terre	potentiel électrique nul. Son symbole est : 🖶 La Terre peut		
	servir de référence des potentiels.		

FIGURE 10 : Éléments constitutifs d'un circuit électrique

Exercice d'application 1

- 1. Déterminer le nombre de nœuds, de branches et de mailles dans le circuit.
- 2. Écrire toutes les lois des nœuds indépendantes.
- 3. Écrire toutes les lois des mailles indépendantes.
- 4. Écrire les relations courant tension pour chacun des onze dipôles.

Exercice d'application 2

Préciser les caractéristiques des trois dipôles dont les caractéristiques statiques sont représentées sur la figure ci-contre.

FIGURE 11 : Analogie entre résistance hydraulique et résistance électrique

FIGURE 21 : Caractère récepteur ou générateur selon la convention choisie

Élément électrique	Résistance
Fil électrique en cuivre	$R \simeq 1 \Omega$
Résistance d'entrée d'un haut-parleur	$R \simeq 8 \Omega$
Résistance de sortie d'un GBF	$R = 50 \Omega$
Résistances usuelles en électronique	$100 \Omega < R < 100 k\Omega$
Résistance d'entrée d'un voltmètre	$R = 10 \text{ M}\Omega$

FIGURE 13 : Ordres de grandeur de résistances

Exercice d'application 3

- 1. Quelles sont les résistances en série?
- 2. Quelles sont les résistances en parallèle?
- 3. Déterminer la tension u aux bornes de R_1 en utilisant un pont diviseur de tension. On prendra

$$R_{\!\scriptscriptstyle 1} = R_{\!\scriptscriptstyle 4} = R_{\!\scriptscriptstyle 5} = R \,, \ R_{\!\scriptscriptstyle 2} = \frac{R}{2} \ {\rm et} \ R_{\!\scriptscriptstyle 3} = 2R \,.$$

FIGURE 14 : Source réelle de tension (caractéristique et schéma)

FIGURE 15 : Source réelle de courant (caractéristique et schéma)

FIGURE 16 : Générateur de Thévenin (caractéristique et schéma)

FIGURE 17: Montage diviseur de tension (DDT)

FIGURE 18 : Montage diviseur de courant (DDC)

FIGURE 19 : Influence de la résistance d'entrée

FIGURE 20 : Influence de la résistance de sortie