Histogram Equalisation: Matlab

Consider the matrix:

0	0	1	4	4	5
0	1	3	4	3	4
1	3	4	2	1	8
4	4	3	1	0	0
5	4	2	1	0	0
5	5	4	3	1	0

- Perform Conventional Histogram Equalisation.
- Download the image from Moodle (week
 9): Perform Conventional Histogram
 Equalisation.

Conventional HE $p(X_k) = \aleph(X_k) / \left(\sum_{k=0}^{L-1} \aleph(X_k)\right) = \aleph(X_k) / N$ $c(X_k) = \sum_{q=0}^k p(X_q) \qquad \forall \ k \in [0, L-1]$

$$T(X_k) = X_0 + [(X_{L-1} - X_0) \times c(X_k)]$$