00000

Introduction to Information Retrieval and Text Mining **Index Compression**

Dictionary compression

00000000000

Roman Klinger

Institute for Natural Language Processing, University of Stuttgart

2021-11-09

Overview

- 1 Recap
- **2** Compression

Compression

- 3 Term statistics
- 4 Dictionary compression
- **5** Postings compression

Outline

Recap

- 1 Recap
- 2 Compression
- 3 Term statistics
- 4 Dictionary compression
- 5 Postings compression

Dictionary compression

00000000000

Recap: Indexing Algorithms

- Blocked Sort-Based Indexing (BSBI)
- Single-pass in-memory indexing (SPIMI)
 - Both build blocks of documents
 - BSBI keeps one dictionary and sorts each block into it
 - SPIMI build full indexes for each block and merges later

Recap: MapReduce for index construction

Term statistics

Recap

0000000

Recap: Dynamic indexing and Logarithmic Merging

Term statistics

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into big index
- More efficient (but same idea): Logarithmic Merging

IRTM 21/22 Schedule

Dictionary compression

		111111 2 1/22 331134313				
		Date	Session	TOPIC	Assignments	Group
	DO	21.10.2021	1	Introduction and Boolean Retrieval		Gerade 2
	DI	26.10.2021	2	Term Vocabularies and Postings Lists		Ungerade 1
	DO	28.10.2021	3	Dictionaries, Phrase Queries		Ungerade 2
	DI	02.11.2021	4	Spelling, Tolerant Retrieval	Publication Assignment 1	Gerade 1
	DO	04.11.2021	5	Index Construction		Gerade 2
	DI	09.11.2021	6	Compression	Deadline Assignment 1	Ungerade 1
•	DO	11.11.2021	7	Scoring	Publication Assignment 2	Ungerade 2
	DI	16.11.2021		DISCUSSION ASSIGMENT 1		Online Only
	DO	18.11.2021	8	Ranking		Gerade 2
	DI	23.11.2021	9	System, Summaries, Intro to Evaluation		Ungerade 1
	DO	25.11.2021	10	Evaluation, IA Agreement	Deadline Assignment 2	Ungerade 2
	DI	30.11.2021	11	Query Expansion, Probabilistic Retrieval, Lang Models	Publication Assignment 3	Gerade 1
	DO	02.12.2021		DISCUSSION ASSIGNMENT 2		Online Only
	DI	7.12.2021	12	LM, Text Classification		Ungerade 1
	DO	09.12.2021	13	TC, NB		Ungerade 2
	DI	14.12.2021	14	NB, Evaluation, MaxEnt	Deadline Assignment 3	Gerade 1
	DO	16.12.2021	15	Feature Selection, Vector Space Classification, Perceptron	Publication Assignment 4	Gerade 2
	DI	21.12.2021		DISCUSSION ASSIGNMENT 3		Online Only
	DI	11.01.2022	16	Support Vector Machines, Learning to Rank		Gerade 1
	DO	13.01.2022	17	Representation Learning and Deep Learning for TC		Gerade 2
	DI	18.01.2022	18	Introduction to Clustering	Deadline Assignment 4	Ungerade 1

Recap

0000000

Attendance in Lecture Hall

I will put Gerade/Ungerade together next Monday, if nothing surprising happens.

Term statistics

0000000000000

Take-away today

- Motivation for compression in information retrieval systems
- How can we compress the dictionary component of the inverted index?
- How can we compress the postings component of the inverted index?
- Term statistics:

how are terms distributed in document collections? (and how can we estimate these numbers)

Outline

- 1 Recap
- **2** Compression
- 3 Term statistics
- 4 Dictionary compression
- 5 Postings compression

Dictionary compression

00000000000

postings file

Inverted index

Compression

00000

For each term t, we store a list of all documents that contain t.

Next:

dictionary

- How much space do we need for the dictionary?
- How much space do we need for the postings file?
- How can we compress them?

Recap

0000000

Why compression? (in general)

- Use less disk space (saves money)
- Keep more stuff in memory (increases speed)
- Increase speed of transferring data from disk to memory (increases speed)
 - [read compressed data and decompress in memory] is faster than [read uncompressed data]
- Premise: Decompression algorithms are fast.
 (True for those studied here.)

Why compression in information retrieval?

Term statistics

- Consider space for dictionary
 - Main motivation for dictionary compression: make it small enough to keep in main memory
- Postings file
 - Motivation:

reduce disk space needed, decrease time needed to read from disk

Lossy vs. lossless compression

- Lossy compression: Discard some information
 - Famous examples: MP3 (audio), JPEG (photos)
 - Some preprocessing steps can be viewed as lossy compression:
 - downcasing, stop words, stemming, number elimination
- Lossless compression: All information is preserved.
 - What we mostly do in index compression

Outline

- 1 Recap
- 2 Compression
- 3 Term statistics
- 4 Dictionary compression
- 5 Postings compression

Model collection: The Reuters collection

symbol	statistic	value
Ν	documents	800,000
L	avg. # word tokens per document	200
Μ	word types	400,000
	avg. $\#$ bytes per word type	7.5
T	non-positional postings	100,000,000

Effect of preprocessing for Reuters

Compression

00000

	word types	non-positional	positional postings
	(terms)	postings	(word tokens)
size of	dictionary	non-positional index	positional index
	size Δ cml	size Δ cml	size Δ cml
unfiltered	484,494	109,971,179	197,879,290
no numbers	473,723 -2 -2	100,680,242 -8 -8	179,158,204 -9 -9
case folding	391,523-17 -19	96,969,056 -3 -12	179,158,204 -0 -9
30 stopw's	391,493 -0 -19	83,390,443-14 -24	121,857,825 -31 -38
150 stopw's	391,373 -0 -19	67,001,847-30 -39	94,516,599 -47 -52
stemming	322,383-17 -33	63,812,300 -4 -42	94,516,599 -0 -52

Dictionary compression

How big is the term vocabulary?

- That is, how many distinct words are there?
- Can we assume there is an upper bound??
 - Not really: Many long words, very infrequent..
 - The vocabulary will keep growing with collection size. But how much
- Heaps' law: $M = kT^b$
 - M is the size of the vocabulary (terms)
 T is the number of tokens in the collection.
- Typical values for the parameters k and b are: $30 \le k \le 100$ and $b \approx 0.5$.
- Heaps' law is linear in log-log space.
- Empirical law

00000

Examples for Heaps' Law (change k)

Dictionary compression

00000

Examples for Heaps' Law (change b)

Dictionary compression

00000

Examples for Heaps' Law (in log-log)

Heaps' law for Reuters

Compression

00000

Reuters-RCV1

Dictionary compression

- $M = kT^b$
- Vocabulary Size M
- Num. Tokens *T*
- Dashed line:

$$\log_{10} M = \\ 0.49 * \log_{10} T + 1.64$$

- $M = 10^{1.64} T^{0.49}$
- $k = 10^{1.64} \approx 44$
- b = 0.49

Empirical fit for Reuters

- Good, as we just saw in the graph.
- Example: for the first 1,000,020 tokens Heaps' law predicts 38,323 terms:

$$44 \times 1,000,020^{0.49} \approx 38,323$$

- The actual number is 38,365 terms, very close to the prediction.
- Empirical observation: fit is good in general.

Exercise

- 1 What is the effect of including spelling errors, vs. automatically correcting spelling errors on Heaps' law?
- 2 Compute vocabulary size M
 - Looking at a collection of web pages, you find that there are 3000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens.

Dictionary compression

00000000000

- Assume a search engine indexes a total of 20,000,000,000 (2×10^{10}) pages, containing 200 tokens on average
- What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

Reminder: $M = kT^b$

Exercise

Compression

00000

- What is the effect of including spelling errors, vs. automatically correcting spelling errors on Heaps' law?
- 2 Compute vocabulary size M
 - Looking at a collection of web pages, you find that there are 3000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens.

Dictionary compression

00000000000

- Assume a search engine indexes a total of 20,000,000,000 (2×10^{10}) pages, containing 200 tokens on average
- What is the size of the vocabulary of the indexed collection as predicted by Heaps' law?

Reminder: $M = kT^b$

Idea:

■ $3000 = k \cdot 10000^b$ and $30000 = k \cdot 1000000^b$

Solve Exercise

Recap

- $3000 = k \cdot 10000^b$ and $30000 = k \cdot 1000000^b$
- b = 0.5 and k = 30
- $\Rightarrow M = 30 T^{0.5}$
 - Given $T = 4,000,000,000,000 = 200 \cdot 20,000,000,000$: $M = 30 \cdot 4,000,000,000,000^{0.5}$
 - $M = 30 \cdot 2,000,000$

Zipf's law

- Heaps' Law: growth of the vocabulary in collections.
- What about frequent vs. infrequent terms to be expected in a collection?
- In natural language, there are a few very frequent terms and very many very rare terms.
- **Zipf's law**: i^{th} most frequent term has frequency cf_i proportional to 1/i.
 - $\mathbf{cf}_i \propto \frac{1}{i}$
 - cf_i is collection frequency: the number of occurrences of the term t_i in the collection.

Zipf's law

Zipf's law:

Compression

00000

 $i^{\rm th}$ most frequent term has frequency ${\rm cf}_i$ proportional to 1/i.

Dictionary compression

00000000000

- $\mathbf{cf}_i \propto \frac{1}{i}$
- \mathbf{cf}_i is collection frequency: the number of occurrences of the term t_i in the collection.
- In words:

if the most frequent term (the) occurs cf_1 times the second most frequent term (of) has half as many occurrences $cf_2 = \frac{1}{2}cf_1 \dots$

- ...and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$ etc.
- Example of a power law

Dictionary compression

00000000000

Zipf's law for Reuters

Compression

00000

Fit is not great. What is important is the key insight: Few frequent terms, many rare terms.

Outline

- 1 Recap
- 2 Compression
- 3 Term statistics
- 4 Dictionary compression
- 5 Postings compression

Dictionary compression

- The dictionary is small compared to the postings file.
- But we want to keep it in memory.
- Competition with other applications, cell phones, onboard computers, fast startup time
- So compressing the dictionary is important.

Dictionary Terms and a Hash

Recall: Dictionary as array of fixed-width entries

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	\longrightarrow
20 bytes	4 bytes	4 bytes

Dictionary compression

00000000000

space needed:

Compression

00000

Space for Reuters: (20+4+4)*400,000 = 11.2 MB

Recap

0000000

- Most of the bytes in the term column are wasted.
 - We allot 20 bytes for terms of length 1.

Term statistics

- We can't handle HYDROCHLOROFLUOROCARBONS and SUPERCALIFRAGILISTICEXPIALIDOCIOUS
- Average length of a term in English: 8 characters (or a little bit less)
- How can we use on average 8 characters per term?

Dictionary as a string

Compression

Space for dictionary as a string

- 4 bytes per term for frequency
- 4 bytes per term for pointer to postings list
- 8 bytes (on average) for term in string
- 3 bytes per pointer into string (need $log_2 8 \cdot 400000 < 24$ bits to resolve $8 \cdot 400,000$ positions)
- Space: $400,000 \times (4 + 4 + 3 + 8) = 7.6MB$ (compared to 11.2 MB for fixed-width array)

Dictionary compression

00000000000

Dictionary as a string with blocking

Compression

Space for dictionary as a string with blocking

- **Example block size** k = 4
- Where we used 4×3 bytes for term pointers without blocking . . .
- ...we now use 3 bytes for one pointer plus 4 bytes for indicating the length of each term.
- We save 12 (3 + 4) = 5 bytes per block.
- Total savings: 400,000/4 * 5 = 0.5 MB
- This reduces the size of the dictionary from 7.6 MB to 7.1 MB.

Front coding

Compression

00000

```
One block in blocked compression (k = 4) . . .
8 automata 8 automate 9 automatic 10 automation
                 ... further compressed with front coding.
\mathbf{8} a u t o m a t * a \mathbf{1} \diamond e \mathbf{2} \diamond i c \mathbf{3} \diamond i o n
```

Dictionary compression

Dictionary compression for Reuters: Summary

	data structure	size in MB
_	dictionary, fixed-width	11.2
一	dictionary, term pointers into string	7.6
	\sim , with blocking, $k=4$	7.1
	\sim , with blocking & front coding	5.9

Dictionary compression

0000000000

Question

Compression

- Which prefixes should be used for front coding? What are the tradeoffs?
- Input: list of terms (= the term vocabulary)
- Output: list of prefixes that will be used in front coding

- 1 Recap
- 2 Compression
- 3 Term statistics
- 4 Dictionary compression
- **5** Postings compression

Dictionary compression

00000000000

Postings compression

Compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key idea: store each posting compactly
- A posting for our purposes is a docID. (procedure can be used analogously for more entries)

Recap

0000000

Key idea: Store gaps instead of docIDs

Term statistics

- Each postings list is ordered in increasing order of docID.
- Example postings list: COMPUTER: 283154, 283159, 283202, ...
- It suffices to store gaps: 283159-283154=5, 283202-283159=43
- Example postings list using gaps: COMPUTER: 283154, 5, 43, ...
- Gaps for frequent terms are small.

Gap encoding

	encoding	postings	list								
THE	doclDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	doclDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	doclDs	252000		500100							
	gaps	252000	248100								

Variable length encoding

Aim:

Recap

- For ARACHNOCENTRIC and other rare terms, we will use about 20 bits per gap (= posting).
- For THE and other very frequent terms, we will use only a few bits per gap (= posting).
- In order to implement this, we need to do some form of variable length encoding.
- Variable length encoding uses few bits for small gaps and many bits for large gaps.

Variable byte (VB) code

- Key idea:
 - Dedicate 1 bit (high bit) to be a continuation bit c.0000 0000
- If the gap G fits within 7 bits: binary-encode it in the 7 available bits and set c=1. e.g. if the gap is $127_{10}=01111111_2$ result is: 111111111
- Else (e.g. with $128_{10} = 10000000_2$): encode lower-order 7 bits and then use one or more additional bytes to encode the higher order bits using the same algorithm.
 - At the end set the continuation bit of the last byte to 1 (c = 1) and of the other bytes to 0 (c = 0).
 - e.g. $128_{10} = 10000000_2$: 00000001 10000000

docIDs 824 829 215406

gaps 5 214577

VB code 00000110 10111000 10000101 00001101 00001100 10110001

Other variable codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles) etc
- Variable byte alignment wastes space if you have many small gaps – nibbles do better on those.

Gamma codes for gap encoding

- You can get even more compression with another type of variable length encoding: bitlevel code.
- Gamma code is the best known of these.
- Introduce unary code first
- Unary code
 - \blacksquare Represent n as n 1s with a final 0.
 - Unary code for 3 is 1110

 - Unary code for 70 is:

Gamma code

- \blacksquare Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.
- $lue{}$ For example $13_{10}
 ightarrow 1101_2
 ightarrow 101 = offset$
- Length is the length of offset.
- For 13_{10} (offset 101), this is 3.
- Encode length in unary code: 1110₁
- Gamma code of 13_{10} is the concatenation of length and offset: $1110\underline{101}$.

Gamma code examples

number	unary code	length	offset	γ code
0	0			
1	10	0		0
2	110	10	0	10,0
3	1110	10	1	10,1
4	11110	110	00	110,00
9	1111111110	1110	001	1110,001
13		1110	101	1110,101
24		11110	1000	11110,1000
511		111111110	11111111	111111110,11111111
1025		11111111110	000000001	111111111110,0000000001

Exercise

- Compute the variable byte code of 130
- Compute the gamma code of 130

$$(130_{10} = 10000010_2)$$

Dictionary compression

00000000000

Exercise solution

Compression

- \blacksquare 130₁₀ = 10000010₂
- In VB code: 0000 0001 1000 0010
- In Gamma Code:
 - Offset 000 0010
 - Length $7_{10} = 111111110_1$
 - Gamma code: 11111110 0000010

Length of gamma code

- The length of *offset* is $|\log_2 G|$ bits.
 - (number of bits used to represent a decimal number in general: $\lfloor \log_2(n) \rfloor + 1$)
- The length of *length* is $|\log_2 G| + 1$ bits,
- So the length of the entire code is $2 \times \lfloor \log_2 G \rfloor + 1$ bits.
- $lue{\gamma}$ codes are always of odd length.
- Gamma codes are (approximately) within a factor of 2 of the optimal encoding length log_2 G.

Recap

0000000

Gamma code: Properties

- Gamma code is prefix-free: a valid code word is not a prefix of any other valid code.
- This result is independent of the distribution of gaps!
- We can use gamma codes for any distribution.
 Gamma code is universal.
- Gamma code is parameter-free.

Gamma codes: Alignment

- Machines have word boundaries 8, 16, 32 bits
- Compressing and manipulating at granularity of bits can be slow.
- Variable byte encoding is aligned and thus potentially more efficient.
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost.

Compression of Reuters

Compression

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking & front coding	5.9
collection (text, xml markup etc)	3600.0
collection (text)	960.0
T/D incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ encoded	101.0

Term-document incidence matrix

Term statistics

000000000000

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

0000000

Entry is 1 if term occurs. Example: Calpurnia occurs in *Julius Caesar*. Entry is 0 if term doesn't occur. Example: CALPURNIA doesn't occur in The tempest.

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking & front coding	5.9
collection (text, xml markup etc)	3600.0
collection (text)	960.0
T/D incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ encoded	101.0

Compression of Reuters

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking & front coding	5.9
collection (text, xml markup etc)	3600.0
collection (text)	960.0
T/D incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ encoded	101.0

Summary for Compression

- We can now create an index for highly efficient Boolean retrieval that is very space efficient.
- Only 10-15% of the total size of the text in the collection.
- However, we've ignored positional and frequency information.
- For this reason, space savings are less in reality.

Take-away today

- Motivation for compression in information retrieval systems
- How can we compress the dictionary component of the inverted index?
- How can we compress the postings component of the inverted index?
- Term statistics:

how are terms distributed in document collections? (and how can we estimate these numbers)