

OUTLINE

- 1. Excutive Summary
- 2. Introduction
- 3. Methodology
- 4. Results
- 5. Conclusion
- 6. Appendix

EXECUTIVE SUMMARY

Summary of methodologies

- Data Collection
- Data Wrangling
- EDA with Data Visualization
- EDA with SQL
- Interactive Visual Analytics with Folium lab
- Create Dashboard with Plotly
- Prediction with Machine Learning

Summary of all results

- Results of EDA
- Demo for interactive Visual Analystivs
- Results of prediction

INTRODUCTION

Background

SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefor if we can determine if the first stage will land, we can determine the cost of a launch. With public information and machine learning models we can predict, if SpaceX will reuse the first stage.

Problems

- The relationships between variables and how they can have impact on outcome.
- What are the best conditions for the successful landing.
- Which machine learning models are better for this case.

Executive Summary

- Data collection methodology:
 - SpaceX REST API
 - Web Scrapping from Wikipedia
- Perform data wrangling
 - Data clean
 - Use One-Hot-Encoding for numeric variables
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - build, tune, evaluate classification models

Data Collection

Data were collected from two sources:

- SpaceX REST API:
- https://api.spacexdata.com/v4/rockets/
- Wikipedia for SpaceX: https://en.wikipedia.org/wiki/List_of_Falcon/_9/_and_Falcon_Heavy_launches/

SpaceX REST API

Request SpaceX REST API for data

Decode response with .json() and turn it into DataFrame with .json_normalize()

Request needed data and apply data with custom functions

Deal with missing values and save data as .csv

Filter Data that only include Falcon 9 lauches

Convert into dictionary and then into DataFrame

Github: Data Collection API

Wikipedia

Request Wikipedia for data of Falcon 9

Create
BeatifulSoup
Object from HTML

Extract names of column from HTML table header

Ssave data as .csv

Convert Data into dictionary and then into DataFrame

Parse HTML data for collecting data

Github: Data Collection with Web Scraping

Data Wrangling

EDA

Summarizations

Create labels for data set

- EDA: Performe EDA to determine the labels for training.
- Summarizations: Calculate the number of launches per site, occurrences of each orbit and occurrences of mission outcome per orbit type.
- Create labels for data set: create labels from Outcome column.

Github: Data Wrangling

EDA with Data Visualization

Variables	Chart Type		
Flight Number & Payload Mass	Scatter		
Flight Number & Launch Site	Scatter		
Payload Mass & Launch Site	Scatter		
Oribit & Class	Bar		
Flight Number & Oribit	Scatter		
Payload Mass & Oribit	Scatter		
Year & Success Rate	Line		

- Scatter: shows relationship between variables.
- Bar: compares discrete categories.
- Line: shows trends over time.

Github: EDA with Data Visualization

EDA with SQL

- Names of the unique launch sites in missions
 - 5 records where name of launch sites begins with 'CCA'
 - Total payload mass carried by boosters launched by NASA
 - Average payload mass carried by booster version F9 v1.1
 - Date of the first successful landing outcome
 - Names of the successful boosters in drone ship and payload mass is greater than 4000 but less than 6000
 - Total number of successful and failure mission outcomes
 - Names of the booster versions that carried the maximum payload mass
 - Failed landing outcomes in drone ship, which have booster versions and launch site names for the months in 2015
 - Ranking the total number of landing outcomes between 2010-06-04 and 2017-03-20

Github: EDA with SQL

Interactive Visual Analytics with Folium

Used tools:

- Markers indicates points (latitude and longitude coordinate)
- Circles indicates highlighted places around specific coordinates
- Marker clusters: indicates groups of places in each coordinate
- Lines: indicates distances between two coordinates

Interactive Dashboard with Ploty Dash

Success launches for sites:

- Dropdown list for sites selection
- Pie Chart for success und unsuccess Launches

Correlation between payload mass and success:

- Payload mass range is 0 to 10000 kg
- Scatter Chart for correlation between payload mass and success

Github: Interactive Dashboard with Ploty Dash

Machine Learning Prediction

Prepare Data and do standardization

Split dataset into Train and Test dataset. Ratio: 8:2

Create
GridSearchCV to
find the best
parameters

Evaluate models with accuracy on the whole dataset

Evaluate models with accuracy and confusion matrix on test dataset

Train models:
Logistic Regression,
SVM, Decision Tree
and KNN

Github: Machine Learning Prediction

EDA with Data Visualization

Flight Number and Launch Site:

- CCAFS SLC 40 has the most launches.
- KSC LC 39A has the highest success rate:
 77.3%

EDA with Data Visualization

Payload mass and Launch Site:

- Higher payload mass, higher success rate
- CCAFS SLC 40 has 100% success rate when payload mass over 13000 kg
- KSC LC 39A has 100% success rate when payload mass under 5000 kg

EDA with Data Visualization

Orbit type and Launch Site:

- 4 Orbits has 100% success rate: ES-L1, GEO, HEO, SSO
- Orbit SO has 0% success rate

EDA with Data Visualization

Flight number and Orbit type:

 Assume that flight number has no impact on Orbit ISS and GTO

EDA with Data Visualization

Payload mass and Orbit type:

 Assume that payload mass has no impact on Orbit GTO

EDA with Data Visualization

Year and Success rate:

Success rate kept increasing after 2013

EDA with SQL

Names of the unique launch sites in missions:

CCAFS LC-40
CCAFS SLC-40
KSC LC-39A
VAFB SLC-4E

5 records where name of launch sites begins with 'CCA':

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01-03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

EDA with SQL

Total payload mass carried by boosters launched by NASA:

total_payload_mass 45596

Average payload mass carried by booster version F9 v1.1:

average_payload_mass 2534.6666666666665

Date of the first successful landing outcome:

first_successful_landing 01-05-2017

EDA with SQL

Names of the successful boosters in drone ship and payload mass is greater than 4000 but less than 6000:

Total number of successful and failure mission outcomes:

Mission_Outcome	total_number	
Failure (in flight)	1	
Success	98	
Success	1	
Success (payload status unclear)	1	

EDA with SQL

Names of the booster versions that carried the maximum payload mass:

F9 B5 B1048.4 F9 B5 B1049.4

F9 B5 B1051.3

F9 B5 B1056.4

F9 B5 B1048.5

F9 B5 B1051.4

F9 B5 B1049.5

F9 B5 B1060.2

F9 B5 B1058.3

F9 B5 B1051.6

F9 B5 B1060.3

F9 B5 B1049.7

EDA with SQL

Failed landing outcomes in drone ship, which have booster versions and launch site names for the months in 2015:

month	Date	Booster_Version	Launch_Site	Landing _Outcome
01	10-01-2015	F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
04	14-04-2015	F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

EDA with SQL

Ranking the total number of landing outcomes between 2010-06-04 and 2017-03-20

Landing _Outcome	count_outcomes
Success	24
No attempt	14
Success (ground pad)	8
Success (drone ship)	8
Failure (drone ship)	5
Failure	3
Controlled (ocean)	3
Failure (parachute)	2
No attempt	1

Interactive Visual Analytics with Folium

Location of all launch sites on a global map:

- All launch sites are very close proximity to the coast.
- Most of Launch sites are close to the Equator line.

Interactive Visual Analytics with Folium

Launch records on the map:

- Green marker: successful launch red marker: unsuccessful launch
- KSC LC-39A has a very high Success Rate. (This left picture shows KSC LC-39A)

Interactive Visual Analytics with Folium

Distance from KSC LC-39A:

- Distance to city Titusville: 16.32 km
- Distance to coastline: 15.8 km
- Distance to highway: 20.3 km

Interactive Dashboard with Ploty Dash

Launch success for all sites:

- KSC LC-39A has the most success
- CCAFS LC-40 has the least success

Interactive Dashboard with Ploty Dash

highest launch success ratio:

KSC LC-39A has the highest success ratio with 76.9%

Interactive Dashboard with Ploty Dash

Payload mass and launch outcome for all sites:

payloads between 2000 and 6000 kg have the highest success rate.

Machine Learning Prediction

Training dataset: Test dataset = 8:2

Test dataset: 18 samples

Confusion matrix of models are all same on test dataset:

Machine Learning Prediction

Accuracy of all models on test dataset are all 93.3%

To find best models, accuracy of all models on the whole dataset are calculated:

Model	Logistic Regression	SVM	Decision Tree	KNN
Accuracy	86.7%	87.8%	81.1%	85.6

So, the best model is SVM.

CONCLUSION

- Orbits ES-L1, GEO, HEO and SSO have 100% success rate.
- KSC LC-39A has the highest success rate.
- Success rate of launches kept increasing over the years.
- All sites are very close to the coast.
- Low payload mass performances better.
- SVM is the best model for this dataset.

APPENDIX

Courseara

<u>Instructors</u>

<u>IBM</u>

