(11) EP 1 092 764 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

18.04.2001 Bulletin 2001/16

(51) Int. Cl.⁷: **C12M 1/36**

(21) Application number: 00121663.9

(22) Date of filing: 04.10.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 11.10.1999 EP 99120289

08.09.2000 EP 00119676

(71) Applicant:

F. HOFFMANN-LA ROCHE AG 4070 Basel (CH)

(72) Inventors:

Bartok, Attila
 8002 Zürich (CH)

- Müh, Thorsten
 51375 Leverkusen (DE)
- Rückel, Markus
 82377 Penzberg (DE)

(74) Representative:

Müller, Ingrid, Dr. et al Grenzacherstrasse 124 CH-4070 Basel (CH)

Remarks:

The sequence listing, which is published as annex to the application documents, was filed after the date of filing. The applicant has declared that it does not include matter which goes beyond the content of the application as filed.

(54) Continuous fermentation process

(57) The invention is concerned with a continuous process for the manufacture of proteins by means of protein-producing microorganism in which process the microorganism is optionally immobilized on a solid carrier and/or the nutrients and other agents required for the growth of the microorganism and the optimal pro-

duction of protein are fed into the reactor individually at a constant dilution rate. Furthermore, the invention is concerned with a process for the manufacture of proteins using a fermentation assembly.

Description

15

20

25

30

[0001] The present invention relates to a continuous process for the manufacture of proteins.

[0002] In accordance with the present invention it has been found that splitting of cultivation media used in a continuous fermentation process allows to study the influence on growth and metabolite-production of microorganisms and thus to determine optimal conditions for the fermentation process. A continuously delivered fermentation medium can generally be split into as many fractions as it contains ingredients. Examples of such ingredients are carbon, nitrogen, phosphorus and sulfur sources as well as vitamins and complex substrates such as corn steep, yeast extract and other natural products. Furthermore, every required mineral, micro- or trace element can be provided separately as a solution of a water-soluble salt, such as a chloride, sulfate or nitrate. In this manner a fermentation medium of any desired composition can be obtained, provided that the desired amounts of the ingredients are (water)-soluble and no disturbing interactions (e.g., precipitation, reaction) occur in the individual feed solutions or in the fermentation medium.

[0003] In one aspect, the present invention is concerned with a continuous process for the manufacture of proteins by means of protein-producing microorganism.

[0004] More particularly, the invention is concerned with a continuous process for the manufacture of proteins by means of protein-producing microorganism in which process the microorganism is optionally immobilized on a solid carrier and/or the nutrients and other agents required for the growth of the microorganism and the optimal production of protein are fed into the reactor individually at a constant dilution rate.

[0005] In a preferred aspect, the invention is concerned with a process for the manufacture of proteins using a fermentation assembly that comprises

a vessel suitable for carrying out reactions involving living or inactivated cells;

at least two storage flasks connected to said vessel for supply of liquids and means to transport said liquids from said storage flasks to said vessel;

individual appliances monitoring the supply of the contents of said storage flasks to said vessel;

a harvest flask connected to said vessel and means to transport fermentation broth from said vessel to said harvest flask; and

a device for controlling and maintaining a constant dilution rate in said vessel with varying rates of individual supply of liquid from said storage flasks to said vessel.

25 [0006] Any conventional fermentation vessel can be used for the purpose of this invention. The vessel may be made of materials such as stainless steel, glass or ceramics and may have a volume of from e.g., 100 ml to 2500 m³ although these figures are not critical to the invention. For continuous operation the inside of the vessel is optionally equipped with, e.g., a receptacle or sieve plate for uptake of immobilized cells. Further, the fermentation vessel is connected to a series of storage flasks that contain nutrient solutions and solutions for maintaining and controlling a desired pH and other parameters, such as foam formation, redox potential etc. in the fermentation broth. Depending on the particular needs of the fermentation, there may be separate storage flasks for individual supply of substrates that serve as carbon or nitrogen or mineral source for the living cells.

[0007] It has been found in accordance with the invention that the process is advantageously carried out at a constant dilution rate in the fermentation vessel. As used herein, the term "dilution rate" denotes the total volume of liquids supplied to the fermentation vessel per volume of the fermentation vessel per hour [h⁻¹].

[0008] Accordingly, it is a particular feature of the present invention to carry out the fermentation process at a constant dilution rate in the fermentation vessel while varying the supply of individual nutrient components or other additives during the fermentation process. To facilitate this task a storage flask containing an inert component, e.g., water is optionally provided that allows to complement the supply of liquids thus keeping the total supply of liquid constant.

[0009] The assembly that is preferably used to carry out the process of this invention further comprises means to transport the individual components of the fermentation medium from the storage flasks to the fermentation vessel, and appliances for monitoring the amount of liquid supplied to the fermentation vessel. Every combination of measuring instruments (e.g., volumetric or mass flow rate by either gravimetric, anemometric, magnetic, ultrasonic, Venturi, J, cross-relation, thermal, Coriolis, radiometric) and transfer units (e.g., pumps or pressure difference) can be used for this purpose. Additionally, every transfer unit can be applied as a dosing unit (e.g., gear, peristaltic, piston, membrane or excenter pump). For operation on small scale the supply is suitably monitored by weighing the storage flasks that contain nutrient or additive solutions in a predetermined concentration.

[0010] The device for controlling and maintaining a constant dilution rate in the fermentation vessel is suitably a sys-

tem comprising a measuring instrument that monitors the flow from the storage flasks and a controlling unit, e.g., a computer-software control that calculates the actual mass flow rates, compares them to the desired value and adjusts the pump setting accordingly. An appropriate system is, e.g., the Process Automation System, National Instruments, Bridge View, USA, for Windows NT 4.0 (represented by National Instruments, Sonnenbergstrasse 53, 5408 Ennetbaden, Switzerland) that is connected to the various operating units (scales, pumps) through a serial-interface box (Rocket Port, Comtrol Europe Ltd, Great Britain, represented by Technosoftware AG Rothackerstrasse 13, 5702 Niederlenz, Switzerland).

[0011] An assembly that can be used in the process of this invention is depicted in Figure 1.

20

35

45

50

55

[0012] The fermentation vessel 1 (Fermentor) is equipped with inlet tubes 2a from storage flasks 2 (suitably equipped with a stirrer) for supply of salt solution (Salts), nutrient solution (Nutrients), particular substrates (Substrate 1 and Substrate 2) for supply of, e.g., distinct carbon sources, agent for controlling the pH (Base), water for controlling a constant dilution rate, and antifoam. Pumps 3 transport liquids from the storage flasks 2 to the fermentor 1. Scales 4 monitor the amount of liquids supplied to and discharged from the fermentor. Further, the fermentor has inlet tubes 9 for oxygen supply and outlet tubes 10 for exhaust controlled by untits 14 and 15. Pump 6 discharges fermentation broth via outlet tubes 5a to a harvest flask 5. A main controlling unit 7 monitors and steers the overall process. Controlling unit 11 monitors and steers individual control systems 17 for temperature, pH, gas pressure, fermentor content and supply of antifoam agents. Circuit 12 including pump 13 is used for taking samples from the fermentation broth and for providing a controlled gas flow for moving the fermentation broth. Inlet and outlet gas flow is controlled by flow control 14 and 15. Sterile filters 16 are provided optionally. Optionally, the fermentation vessel 1 is equipped with a thermostating unit 8.

[0013] In the process of the present invention, any protein-producing microorganism either natural, e.g. fungal origin or bacterial origin or microorganisms which have been transformed by protein encoding DNA whereby such transformed microorganisms can be bacteria or fungi or yeasts, preferably from the genus Peniophora, Aspergillus, Hansenula or Pichia, especially Aspergillus niger, Aspergillus awanari, Aspergillus sojae, Aspergillus oryzae or Hansenula polymorpha or Pichia pastoris.

[0014] In this context, the skilled person in the art selects such a protein-producing microorganism which is known to be useful for the production of a desired protein.

[0015] In a preferred embodiment of the present invention the protein is selected from the group consisting of proteins having the activity of an enzyme such as catalase, lactase, phenoloxidase, oxidase, oxidoreductase, glucanase cellulase, xylanase and other polysaccharide, peroxidase, lipase, hydrolase, esterase, cutinase, protease and other proteolytic enzymes, aminopeptidase, carboxypeptidase, phytase, lyase, pectinase and other pectinolytic enzymes, amylase, glucosidase, mannosidase, isomerase, invertase, transferase, ribonuclease, chitinase, and desoxyribonuclease. Furthermore, in a preferred embodiment of the present invention the protein is selected from the group of therapeutic proteins such as antibodies, vaccines, antigens, or of antibacterial and/or health-beneficial proteins such as lactoternin, lactoperoxidase or lysozyme.

[0016] It will be understood by those skilled in the art that the term "activity" includes not only native activities referring to naturally occurring enzymes or therapeutic functions, but also those activities or functions which have been modified by amino acid substitutions, deletions, additions, or other modifications which may be made to enhance or modify the desired activity, or the thermostability, pH tolerance and/or further properties.

[0017] In a most preferred embodiment of the invention the selected protein is a protein having the activity of a phytase.

[0018] Examples of proteins having the activity of a phytase are described in EP 684 313, EP 897 010, EP 897 985 or in Examples 6 to 16 and Figures 2 - 22 of the present invention.

Figure 2: Design of the consensus phytase sequence. The letters represent the amino acid residues in the one-letter code. The following sequences were used for the alignment: phyA from Aspergillus terreus 9A-1 (Mitchell et al, 1997; from amino acid (aa) 27), phyA from A. terreus cbs116.46; (van Loon et al., 1998; from aa 27), phyA from Aspergillus niger var. awamori (Piddington et al, 1993; from aa 27), phyA from A. niger T213; Mitchell et al. 1997 from aa 27), phyA from A. niger strain NRRL3135 (van Hartingsveldt et al, 1993; from aa 27), phyA from Aspergillus fumigatus ATCC 13073 (Pasamontes et al, 1997; from aa 25), phyA from A. fumigatus ATCC 32722 (EP 897 985; Figur 1; from aa 27), phyA from A. fumigatus ATCC 32239 (EP 897 985; Figur 1; from aa 27), phyA from A. fumigatus ATCC 32239 (EP 897 985; Figur 1; from aa 30), phyA from Emericella nidulans (Pasamontes et al, 1997a; from aa 25), phyA from Myceliophthora thermophila (Mitchell et al, 1997; from aa 19). The alignment was calculated using the program PILEUP. The location of the gaps was refined by hand. Capitalized amino acid residues in the alignment at a given position belong to the amino acid coalition that establish the consensus residue. In bold, beneath the calculated consensus sequence, the amino acid sequence of the finally constructed consensus phytase (Fcp) is shown. The gaps in the calculated consensus

sequence were filled by hand according to principals stated in Example 6.

5

10

15

20

25

30

35

40

45

50

55

Figure 3: DNA sequence of the consensus phytase-1 gene (*fcp*) and of the primers used for the gene construction. The calculated amino acid sequence (Figure 2) was converted into a DNA sequence using the program BACK-TRANSLATE (Devereux *et al.*, 1984) and the codon frequency table of highly expressed yeast genes (GCG program package, 9.0). The signal peptide of the phytase from *A. terreus* cbs.116.46 was fused to the *N*-terminus. The bold bases represent the sequences of the oligonucleotides used to generate the gene. The names of the respective oligonucleotides are alternately noted above or below the sequence. The underlined bases represent the start and stop codon of the gene. The bases written in italics show the two introduced *Eco* RI sites.

Figure 4: Alignment and consensus sequence of five *Basidiomycetes* phytases. The letters represent the amino acid residues in the one-letter code. The amino acid sequences of the phytases from *Paxillus involutus*, phyA1 (aa 21) and phyA2 (aa 21, WO 98/28409), *Trametes pubescens* (aa 24, WO 98/28409), *Agrocybe pediades* (aa 19, WO 98/28409), and *Peniophora lycii* (aa 21, WO 98/28409) starting with the amino acid residues mentioned in parentheses, were used for the alignment and the calculation of the corresponding consensus sequence called "Basidio" (Example 7). The alignment was performed by the program PILEPUP. The location of the gaps was refined by hand. The consensus sequence was calculated by the program PRETTY. While a vote weight of 0.5 was assigned to the two *P. involutus* phytases, all other genes were used with a vote weight of 1.0 for the consensus sequence calculation. At positions, where the program was not able to determine a consensus residue, the Basidio sequence contains a dash. Capitalized amino acid residues in the alignment at a given position belong to the amino acid coalition that establish the consensus residue.

<u>Figure 5</u>: Design of consensus phytase-10 amino acid sequence. Adding the phytase sequence of *Thermomyces lanuginosus* (Berka *et al.*, 1998) and the consensus sequence of the phytases from five *Basidiomycetes* to the alignment of Figure 2, an improved consensus sequence was calculated by the program PRETTY. Additionally, the amino acid sequence of *A. niger* T213 was omitted; therefore, a vote weight of 0.5 was used for the remaining *A. niger* phytase sequences. For further information see Example 8.

Figure 6: DNA and amino acid sequence of consensus phytase-10. The amino acid sequence is written above the corresponding DNA sequences using the one-letter code. The sequence of the oligonucleotides which were used to assemble the gene are in bold letters. The labels of oligonucleotides and the amino acids which were changed compared to those for consensus phytase -1 are underlined. The *fcp*10 gene was assembled from the following oligonucleotides: CP-1, CP-2, CP-3.10, CP-4.10, CP-5.10, CP-6, CP-7.10, CP-8.10, CP-9.10, CP-10.10, CP-11.10, CP-12.10, CP-13.10, CP-14.10, CP-15.10, CP-16.10, CP-17.10, CP18.10, CP-19.10, CP-20.10, CP-21.10, CP-22.10. The newly synthesized oligonucleotides are additionally marked by number 10. The phytase contains the following 32 exchanges relative to consensus phytase -1: Y54F, E58A, D69K, D70G, A94K, N134Q, I158V, S187A, Q188N, D197N, S204A, T214L, D220E, L234V, A238P, D246H, T251N, Y259N, E267D, E277Q, A283D, R291I, A320V, R329H, S364T, I366V, A379K, S396A, G404A, Q415E, A437G, A463E. The mutations accentuated in bold letters revealed a stabilizing effect on consensus phytase-1 when tested as single mutations in consensus phytase-1

<u>Figure 7:</u> Alignment for the design of consensus phytase-11. In contrast to the design of consensus phytase-10, for the design of the amino acid sequence of consensus phytase-11, all *Basidiomycete* phytases were used as independent sequences using an assigned vote weight of 0.2 for each *Basidiomycete* sequence. Additionally, the amino acid sequence of *A. niger* T213 phytase was used in that alignment, again.

<u>Figure 8</u>: DNA and amino acid sequence of consensus phytase-1-thermo[8]-Q50T-K91A. The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues are underlined. The stop codon of the gene is marked by a star (*).

<u>Figure 9:</u> DNA and amino acid sequence of consensus phytase-10-thermo[3]-Q50T-K91A. The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues are underlined. The stop codon of the gene is marked by a star (*).

Figure 10: DNA and amino acid sequence of *A. fumigatus* ATCC 13073 phytase α-mutant. The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues are underlined. The stop codon of the gene is marked by a star (*).

Figure 11: DNA and amino acid sequence of consensus phytase-7. The amino acids are written above the corresponding DNA sequence using the one-letter code. The sequences of the oligonucleotides used to assemble the gene are in bold letters. Oligonucleotides and amino acids that were exchanged are underlined and their corresponding triplets are highlighted in small cases. The *fcp*7 gene was assembled from the following oligonucleotides: CP-1, CP-2, CP-3, CP-4.7, CP-5.7, CP-6, CP-7, CP-8.7, CP-9, CP-10.7, CP-11.7, CP-12.7, CP-13.7, CP-14.7, CP-15.7, CP-16, CP-17.7, CP-18.7, CP-19.7, CP-20, CP-21, CP-22. The newly synthesized oligonucleotides are additionally marked by number 7. The phytase contains the following 24 exchanges in comparison to the original consensus phytase -1: S89D, S92G, A94K, D164S, P201S, G203A, G205S, H212P, G224A, D226T, E255T, D256E, V258T, P265S, Q292H, G300K, Y305H, A314T, S364G, M365I, A397S, S398A, G404A, and A405S.

10

5

<u>Figure 12</u>: Differential scanning calorimetry (DSC) of consensus phytase-1 and consensus phytase-10. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus phytase-10 (upper graph) yielded a melting temperature of 85.4 °C, which is 7.3 °C higher than the melting point of consensus phytase-1 (78.1 °C, lower graph).

15

<u>Figure 13</u>: Differential scanning calorimetry (DSC) of consensus phytase-10-thermo[3]-Q50T and consensus phytase-10-thermo[3]-Q50T-K91A. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus phytase-10-thermo-[3]-Q50T (upper graph) yielded a melting temperature of 88.6 °C, while the melting point of consensus phytase-10-thermo[3]-Q50T-K91A was found at 89.3 °C.

20

25

Figure 14: Comparison of the temperature optimum between consensus phytase-1, consensus phytase-10 and consensus phytase-10-thermo[3]-Q50T. For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 86 °C. The diluted supernatant of transformed *S. cerevisiae* strains was used for the determination. The other components of the supernatant showed no influence on the determination of the temperature optimum: \triangle , consensus phytase-1; \Diamond , consensus phytase-10; \blacksquare , consensus phytase 10-thermo[3]-Q50T.

30

Figure 15: pH-dependent activity profile and substrate specificity of consensus phytase-10 and its variants thermo[3]-Q50T and thermo[3]-Q50T-K91A. Graph a) shows the pH-dependent activity profile of consensus phytase- 10 (\square), consensus phytase-10-thermo[3]-Q50T (\triangle), and consensus phytase-10-thermo[3]-Q50T-K91A (\triangle). The phytase activity was determined using the standard assay in appropriate buffers (see Example 15) at different pH-values. Graph b) shows the corresponding substrate specificity tested by replacement of phytate by the indicated compounds in the standard assay; open bars, consensus phytase-10 (white bars, consensus phytase-10-thermo-Q50T; dark bars, consensus phytase-10-thermo-Q50T-K91A). The numbers correspond to the following compounds: 1, phytate; 2, p-nitrophenyl phosphate; 3, phenyl phosphate; 4, fructose-1,6-bisphosphate; 5, fructose-6-phosphate; 6, glucose-6-phosphate; 7, ribose-5-phosphate; 8, DL-glycerol-3-phosphate; 9, glycerol-2-phosphate; 10, 3-phosphoglycerate; 11, phosphoenolpyruvate; 12, AMP; 13, ADP; 14, ATP.

40

35

<u>Figure 16</u>: pH-dependent activity profile and substrate specificity of consensus phytase-1-thermo[8]-Q50T and of consensus phytase-1-thermo[8]-Q50T-K91A.. Graph a) shows the pH-dependent activity profile of the Q50T- (■) and the Q50T-K91A-variant (△).The phytase activity was determined using the standard assay in appropriate buffers (see Example 15) at different pH-values Graph b) shows the corresponding substrate specificities tested by replacement of phytate by the indicated compounds in the standard assay (open bars, consensus phytase-1-thermo[8]-Q50T; filled bars, consensus phytase-1-thermo[8]-Q50T-K91A). The substrates are listed in the legend of Figure 15.

45

50

<u>Figure 17:</u> Differential scanning calorimetry (DSC) of consensus phytase-1-thermo[8]-Q50T and consensus phytase-1-thermo[8]-Q50T-K91A. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus phytase-1-thermo[8]-Q50T (upper graph) showed a melting temperature of 84.7 °C, while the melting point of consensus phytase-1-thermo[8]-Q50T-K91A was found at 85.7 °C.

55

<u>Figure 18:</u> Comparison of the temperature optimum between consensus phytase-1, consensus phytase-1-thermo[8] and consensus phytase-1-thermo[8]. For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 86 °C. Purified protein from the supernatant of transformed *S. cerevisiae* strains was used for the determination. O, consensus phytase-1;□, consensus

phytase-1-thermo [3]; △, consensus phytase-1-thermo[8].

5

10

15

20

25

30

35

Figure 19: Comparison of the pH-dependent activity profile and substrate specificity of consensus phytase-1, consensus phytase-7, and of the phytase from *A. niger* NRRL 3135.. Graph a) shows the pH-dependent activity profile of consensus phytase-1 (■), the phytase from *A. niger* NRRL 3135 (O), and of consensus phytase-7 (△). The phytase activity was determined using the standard assay in appropriate buffers (see Example 15) at different pH-values Graph b) shows the corresponding substrate specificity tested by replacement of phytate by the indicated compounds in the standard assay (black bars, *A. niger* NRRL 3135 phytase; grey bars, consensus phytase-1, dashed bars, consensus phytase-7). The substrates are listed in the legend of Figure 15.

Figure 20: Differential scanning calorimetry (DSC) of the phytase from A. fumigatus ATCC 13073 and of its stabilized α -mutant, which contains the following amino acid exchanges: F55Y, V100I, F114Y, A243L, S265P, N294D.

The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus *A. fumigatus* 13073 phytase (lower graph) revealed a melting temperature of 62.5 °C, while the melting point of the α -mutant was found at 67.0 °C

Figure 21: Comparison of the temperature optimum of *A. fumigatus* 13073 wild-type phytase, its α-mutant, and a further stabilized α-mutant (E59A-S126N-R329H-S364T-G404A). For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 75 °C. The diluted supernatants of transformed *S. cerevisiae* strains were used for the determination. The other components of the supernatant showed no influence on the determination of the temperature optimum. O, *A. fumigatus* ATCC 13073 phytase; \triangle , *A. fumigatus* ATCC 13073 α-mutant; \square , *A. fumigatus* ATCC 13073 alpha-mutant-(E59A-S126N-R329H-S364T-G404A)-Q27T; \blacksquare , *A. fumigatus* ATCC 13073 α-mutant-(E59A-S126N-R329H-S364T-G404A)-Q27T-K68A. The mutations Q51T and K92A in the *A. furnigatus* α-mutants correspond to -1 Q50T and K91A in consensus phytase, respectively.

<u>Figure 22:</u> Amino acid sequence of consensus phytase -12 (consphy12) which contains a number of active site residues transferred from the "basidio" consensus sequence to consensus phytase-10-thermo[3]-Q50T-K91A.

The culture medium used in the fermentation process in accordance with the present invention usually contains nutrients for the cells or microorganisms such as digestible nitrogen sources and inorganic substances, vitamins, micro- and trace elements and other growth-promoting factors. In addition, the culture medium contains a carbon source. Various organic or inorganic substances may be used as nitrogen sources in the fermentation process in accordance with the present invention, such as nitrates, ammonium salts, yeast extract, meat extract, peptone, casein, cornsteep liquor, amino acids and urea. Typical inorganic substances that can be used in the fermentation are calcium, iron, zinc, nickel, manganese, cobalt, copper, molybdenum, and alkali salts such as chlorides, sulphates and phosphates as well as boric acid. As a carbon source, glycerol or sugar-like mono-, di-, oligo- or polysaccharides, e.g., glucose, fructose, sucrose, maltose, starch, glycogen, cellulose or substrates containing such substances, e.g., molasses, glucose syrups and fructose syrups can be used. The concentration of glucose and / or methanol in the total feed stream may vary from about 10 to about 500 g/l for each component and is preferably from about 200 to about 300 g/l. While the fermentation medium is principally an aqueous medium such medium may contain organic solvents such as alcohols, e.g. methanol, ethanol or isopropanol. Further, the fermentation medium may also be a dispersion or suspension, in which case the fermentation is suitably carried out with stirring.

[0020] For continuous operation, the cells are optionally immobilized on a solid porous carrier. Any solid porous carrier with any porosity, size and geometry conventionally used in fermentation processes and exerting no toxic effects on the particular cell or microorganism which is to be immobilized can be used for the purpose of this invention. Examples of such carriers are those made from inorganic material and having a pore diameter of from about 0.5 to about 100 μm, preferably from about 10 to about 30 μm diameter. Examples of inorganic materials are ceramics and natural minerals such as steatite, zeolite, bentonite, silicates (glasses), aluminum silicates, aluminum oxide, magnesium aluminum silicates and magnesium aluminum oxides. Such carriers are commercially available, e.g., from Ceramtec, Marktredwitz, Germany, Schott Engineering GmbH, Mainz, Germany and others. Preferably, the carriers are spherical with a mean diameter of from about 0,2 to about 20 mm diameter. The carriers can be loaded with the living cells in a manner known per se by contacting the carrier particles with an appropriate cell culture. If desired, the carrier particles loaded with the cells can be further processed by applying a membrane-type coating layer, such as described in German Offenlegungsschrift DE 3421049. Suitably, the carrier is present in the fermentation vessel on a fixed bed. Further, the culture medium, its components and their containments, respectively are suitably sterilized prior to use if autosterilization (e.g., by methanol, ammonia) cannot be guaranteed. Heat sterilization with steam (e.g., at 121°C and 1 bar pressure

during 20 minutes) and filtration (0.2 µm) for sensitive components are preferred. Alternative sterilization methods may be applied. Media components need not necessarily be sterilized when running the process in continuous mode.

[0021] Depending on the particular cell or organism used the fermentation may be carried out at a pH between about 2 and about 11. In a preferred aspect of the invention, the fermentation process for the manufacture of phytase is carried out using the microorganism, *Hansenula polymorpha* transformed by a phytase encoding DNA sequence as described in EP 897 010, EP 897 985, or Example 11 of the present case. According to that particular aspect of the invention, the preferred carbon source is a mixture of glucose and methanol. Further, in accordance with that particular aspect of the invention, the fermentation may be carried out at a pH betweeen about 4 and 5, preferably at about pH 4.6. A preferred temperature range for carrying out such fermentation process is between about 10 and 50 °C, more preferably the fermentation temperature is about 30 °C. The aeration rate is preferably adjusted to between about 0.01 and about 1.5 volume of gas per volume of liquid with a dissolved oxygen concentration (DO) of in between 0.01 and about 500 %. A DO of 100 % denotes oxygen saturation of the solution at atmospheric pressure (1 bar) and reactor temperature. The fermentation can be carried out at a pressure of from about 0.1 to about 100 bar, preferably, the fermentation is carried out at atmospheric pressure, i.e., at about 1 bar. The dilution rate can vary from about 0.001 to about 0.5 per hour.

[0022] The invention is illustrated further by the Examples given below.

Example 1

20 [0023] Storage solutions for feed medium were prepared as follows:

1.1 CaCl₂/H₃BO₃ Solution

[0024]

25

30

35

40

45

50

CaCl ₂ • 2 H ₂ O	18.75	g/l
H_3BO_3	0.0125	g/l

[0025] This solution was sterilized at 121 °C for 20 minutes.

1.2 Microelements Solution

[0026]

$(NH_4)_2 Fe(SO_4)_2 \cdot 6 H_2O$	2.5	g/l
CuSO ₄ • 5 H ₂ O	0.2	g/l
ZnSO ₄ • 7 H ₂ O	0.75	g/l
MnSO ₄ • 5 H ₂ O	1.0	g/l
Na-EDTA	2.5	g/l

[0027] This solution was sterilized at 121 °C for 20 minutes.

1.3 Trace Elements Solution

[0028]

NiSO ₄ • 6 H ₂ O	0.025	g/l

(continued)

CoCl ₂ • 6 H ₂ O	0.025	g/l
Na ₂ MoO ₄ • 2 H ₂ O	0.025	g/l
KJ		

[0029] This solution was sterilized at 121 °C for 20 minutes.

1.4 Salts + Vitamin Solution

[0030]

15

20

25

30

35

5

KH ₂ PO ₄	50.0	g/l
NH ₄ H ₂ PO ₄	100.0	g/l
MgSO ₄ • 7 H ₂ O	45.0	g/l
$(NH_4)_2SO_4$	50.0	g/l
KCI	23.0	g/l
NaCl	5.0	g/l
vitamin solution (D-biotin, 600 mg/l thiamin • HCl 200 g/l in 50 % isopropanol/water)	5.0	ml/l

[0031] The vitamin solution was sterilized by filtration (0.2 μ m) and added to the salt solution that was sterilized at 121 °C for 20 minutes.

1.5 Glucose Solution

[0032] 770 g of D-glucose • H2O were dissolved in 480 g of water and sterilized (121 °C, 20 min) to yield 1 I solution containing 57 % (by weight) of D-glucose.

1.6 Methanol

[0033] Pure methanol was assumed to be sterile and filled into a sterilized flask.

40 1.7 Antifoam

[0034] A sterilized (121 °C, 20 min) solution of 10% antifoam (Struktol J 673, Schill & Seilacher, Hamburg, Germany) was provided for supply on demand by foam-control.

45 1.8 Base

[0035] A solution of ca. 12,5 % (by weight) of ammonia in sterile water was filled into a sterilized flask.

Example 2

50

[0036] A fixed bed bioreactor (1 litre) was set up following the principle illustrated in Figure 1 with individual storage flasks being provided for the solutions 1.1 to 1.8 of Example 1. The fixed bed of porous steatite spheres (4 mm diameter, pore diameter 10-30 μm, 280 pores per ml, CeramTec, Marktredwitz, Germany) was contained by a sieve plate at the top. The reactor was sterilized (121 °C, 20 min) and thereafter filled with an inoculum culture of *Hansenula polymorpha* transformed with a phytase encoding DNA as described, e.g. in EP 897 010, EP 897 985 or Example 11. Then the connection to the storage flasks was established. The inoculum culture was grown on a medium containing glycerol as a carbon source instead of glucose. The reactor was put to batch operation until all glycerol was consumed, which was determined by a rise of the dissolved oxygen concentration. Then the feed stream was turned on and the fermentation

was run under process conditions as given below:

10

15

Temperature	30	°C
pН	4.6	Diluted oxygen concentration
p _{total}	10 ⁵	N/m ²
P _{O2}	10 ⁵	N/m ²
Dilution rate	0.0067	h ⁻¹
aeration rate	100	ml/min
V _{fluid}	1190	ml ⁻¹
1	050	ml ⁻¹
V _{fixed bed}	950	TIII

[0037] Substrate composition as provided by storage flasks 1-8; (actual concentrations in feed stream given):

25

25

30

Analytics:

[0038] Bio-Rad Protein Assay Kit I (Bio-Rad, Glattbrugg, Switzerland) was used to determine the total protein concentration. A factor for the calculation of phytase concentration (c_{phyt}) from total protein concentration (c_{tp}) was determined as $c_{phyt} = 0.76 \cdot c_{tp}$.

305

264

12.2

20.9

17.2

44.7

g/l

g/l

g/l

g/l

g/l

g/l

D-glucose

Methanol

CaCl₂/H₃BO₃ Solution

Microelement Solution

Trace Element Solution

Salts + vitamin Solution

[0039] To determine the biomass in the medium two samples of 1 ml were centrifuged, washed with 1 ml of water, centrifuged again, dried at 85 °C for two days and weighed.

Results:

[0040] Under the above process conditions the biomass was 59 g/l. Given a dilution rate of 0.0067 per hour the productivity was 0.078 g of phytase per litre per hour.

[0041] In a fermentation that was run fed-batch-wise the biomass was 125 g/l; the productivity, however, was calculated to 0.054 g phytase per litre per hour.

Example 3

50

[0042] A fermentation in analogy to Example 2 but omitting the steatite spheres (i.e., without immobilisation of the microorganism) was carried out. A nutrient and a salt and vitamin solution of the following composition were pumped into the reactor separately:

Nutrient Solution:

[0043]

5

10

15

20

25

40

50

NiSO ₄ • 6 H ₂ O	8.33	mg/l
CoCl ₂ • 6 H ₂ O	8.33	mg/l
Na ₂ MoO ₄ • 2 H ₂ O	8.33	mg/l
KJ	8.33	mg/l
$(NH_4)_2$ Fe $(SO_4)_2 \cdot 6 H_2O$	833.33	mg/l
CuSO ₄ • 5 H ₂ O	66.67	mg/l
ZnSO ₄ • 7 H ₂ O	250	mg/l
MnSO ₄ • 5 H ₂ O	333.33	mg/l
Na-EDTA	833.33	mg/l
CaCl ₂ • 2 H ₂ O	6250	mg/l
H ₃ BO ₃	4.17	mg/l

Salts + Vitamins Solution:

[0044]

30	KH ₂ PO ₄	50.0	g/l
	$NH_4H_2PO_4$	100.0	g/l
	MgSO ₄ • 7 H ₂ O	45.0	g/l
35	$(NH_4)_2SO_4$	50.0	g/l
	KCI	23.0	g/l
	NaCl	5.0	g/l
	vitamin solution (D-biotin, 600 mg/l thiamin • HCl 200 g/l in 50 % isopropanol/water)	5.0	ml/l

[0045] The supply of these two solutions was adjusted to provide in the feed stream a concentration of 51 g/l of Nutrient Solution and 61 g/l of Salts + Vitamins Solution. The dilution rate was adjusted to 0.009 h⁻¹. The pH was kept at 4.6 by addition of 12.5 wt% ammonium hydroxide.

[5046] Furthermore, Glucose Solution as in Example 1 and methanol were fed into the reactor separately to maintain a glucose concentration of 275 g/l and a methanol concentration of 260 g/l in the feed stream.

[0047] The productivity of this fermentation was 0.088 g phytase per litre per hour. Biomass in outflow was 58 g/l.

Example 4

F00.401

[0048] In a fermentation process in analogy to Example 3 but adjusting glucose concentration to 290 g/l, methanol concentration to 260 g/l, and keeping the dilution rate constant at 0.009 h⁻¹, the productivity was 0.092 g phytase per litre per hour. Biomass in outflow was 60.4 g/l.

55 Example 5

[0049] In a fermentation process in analogy to Example 3 but adjusting glucose concentration to 270 g/l, methanol concentration to 280 g/l, and keeping the dilution rate constant at 0.009 h⁻¹, the productivity was 0.094 g phytase per

litre per hour. Biomass in outflow was 56.8 g/l.

Example 6:

5 Design of the amino acid sequence of consensus phytase-1

Alignment of the amino acid sequences

[0050] The alignment was calculated using the program PILEUP from the GCG Sequence Analysis Package Release 9.0 (Devereux *et al.*, 1984) with the standard parameters (gap creation penalty 12, gap extension penalty 4). The location of the gaps was refined using a text editor. Table 1 shows the sequences (see Figure 2), without the signal sequence, that were used for the performance of the alignment starting with the amino acid (aa) as mentioned in Table 1.

15

20

25

30

35

Table 1

Origin and vote weight of the phytase amino acid sequences used for the design of consensus phytase-1

- phyA from Aspergillus terreus 9A-1, aa 27, vote weight 0.5 (Mitchell et al., 1997)
- phyA from Aspergillus terreus cbs116.46, aa 27, vote weight 0.5 (EP 897 985; Figur 1)
- phyA from Aspergillus niger var. awamori, aa 27, vote weight 0.33 (Piddington et al., 1993)
- phyA from Aspergillus niger T213, aa 27, vote weight 0.33
- phyA from Aspergillus niger strain NRRL3135, aa 27, vote weight 0.33 (van Hartingsveldt et al., 1993)
- phyA from Aspergillus fumigatus ATCC 13073, aa 26, vote weight 0.2 (Pasamontes et al., 1997)
- phyA from Aspergillus fumigatus ATCC 32722, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
- phyA from Aspergillus fumigatus ATCC 58128, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
- phyA from Aspergillus fumigatus ATCC 26906, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
- phyA from Aspergillus fumigatus ATCC 32239, aa 30, vote weight 0.2 (EP 897 985; Figur 1)
- phyA from Emericella nidulans, aa 25, vote weight 1.0 (Pasamontes et al., 1997a)
- phyA from Talaromyces thermophilus ATCC 20186, aa 24, vote weight 1.0 (Pasamontes et al., 1997a)
- phyA from Myceliophthora thermophila, aa 19, vote weight 1.0 (Mitchell et al., 1997)

Calculation of the amino acid sequence of consensus phytase-1

40

[0051] Using the refined alignment as input, the consensus sequence was calculated by the program PRETTY from the GCG Sequence Analysis Package Release 9.0 (Devereux *et al.*, 1984). PRETTY prints sequences with their columns aligned and can display a consensus sequence for an alignment. A vote weight that pays regard to the similarity between the amino acid sequences of the aligned phytases was assigned to all sequences. The vote weight was set in such a way that the combined impact of all phytases from one sequence subgroup (same species, but from different strains), e. g. the amino acid sequences of all phytases from *A. fumigatus*, on the election was set one, that means that each sequence contributes with a value of 1 divided by the number of strain sequences (see Table 1). By this means, it was possible to prevent that very similar amino acid sequences, e. g. of the phytases from different *A. fumigatus* strains, dominate the calculated consensus sequence.

[0052] The program PRETTY was started with the following parameters: The plurality defining the number of votes below which there is no consensus was set on 2.0. The threshold, which determines the scoring matrix value below which an amino acid residue may not vote for a coalition of residues, was set on 2. PRETTY used the PrettyPep.Cmp consensus scoring matrix for peptides.

[0053] Ten positions of the alignment (position 46, 66, 82, 138, 162, 236, 276, 279, 280, 308; Figure 2), for which the program was not able to determine a consensus residue, were filled by hand according to the following rules: if a most frequent residue existed, this residue was chosen (138, 236, 280); if a prevalent group of similar equivalent residues occurred, the most frequent or, if not available, one residue of this group was selected (46, 66, 82, 162, 276, 308). If there was neither a prevalent residue nor a prevalent group, one of the occurring residues was chosen according to

common assumptions on their influence on the protein stability (279). Eight other positions (132, 170, 204, 211, 275, 317, 384, 447; Figure 2) were not filled with the amino acid residue selected by the program but normally with amino acids that occur with the same frequency as the residues that were chosen by the program. In most cases, the slight underrating of the three *A. niger* sequences (sum of the vote weights: 0.99) was eliminated by this correction.

Conversion of the consensus phytase-1 amino acid sequence to a DNA sequence

[0054] The first 26 amino acid residues of *A. terreus* cbs116.46 phytase were used as signal peptide and, therefore, fused to the N-terminus of all consensus phytases. For this stretch, we used a special method to calculate the corresponding DNA sequence. Purvis et al (1987) proposed that the incorporation of rare codons in a gene has an influence on the folding efficiency of the protein. The DNA sequence for the signal sequence was calculated using the approach of Purvis et al (1987) and optimized for expression in *S. cerevisiae*. For the remaining parts of the protein, we used the codon frequency table of highly expressed *S. cerevisiae* genes, obtained from the GCG program package, to translate the calculated amino acid sequence into a DNA sequence.

[0055] The resulting sequence of the fcp gene is shown in Figure 3.

Construction and cloning of the consensus phytase-1 gene

[0056] The calculated DNA sequence of consensus phrase-1 (*fcp*) was divided into oligonucleotides of 85 bp, alternately using the sequence of the sense and the anti-sense strand. Every oligonucleotide overlaps 20 bp with its previous and its following oligonucleotide of the opposite strand. The location of all primers, purchased from Microsynth, Balgach (Switzerland) and obtained in a PAGE-purified form, is indicated in Figure 3.

PCR-Reactions

25

5

15

[0057] In three PCR reactions, the synthesized oligonucleotides were composed to the entire gene. For the PCR, the High Fidelity Kit from Boehringer Mannheim (Boehringer Mannheim, Germany) and the thermo cycler The Protokol (TM) from AMS Biotechnology (Europe) Ltd. (Lugano, Switzerland) were used.

[0058] Oligonucleotides CP-1 to CP-10 (Mix 1, Figure 3) were mixed to a concentration of 0.2 pmol/μl of each oligonucleotide. A second oligonucleotide mixture (Mix 2) was prepared with CP-9 to CP-22 (0.2 pmol/μl of each oligonucleotide). Additionally, four short primers were used in the PCR reactions:

	CP-a:	Eco RI		
35	5'-T	ATAT <i>GAATTC</i> ATGGGC	CGTGTTCGTC-3'	(SEQ ID No. 1)
40	CP-b:	5'-TGAAAAGTTCATT	GAAGGTTTC-3'	(SEQ ID No. 2)
	CP-c:	5'-TCTTCGAAAGCAC	GTACAAGTAC-3'	(SEQ ID No. 3)
45				
	CP-e:	Eco RI		
50		5'-TATAT <i>GAATTC</i> TT	AAGCGAAAC-3'	(SEQ ID No. 4)
55	PCR reaction a:		10 μl Mix 1 (2.0 pmol of each oligonucleoti 2 μl nucleotides (10 mM each nucleotide) 2 μl primer CP-a (10 pmol/μl)	de)

2 μl primer CP-c (10 pmol/μl)

10,0 μl PCR buffer

0.75 µl polymerase mixture (2.6U)

73.25 µl H₂O

PCR reaction *b*: 10 μl Mix 2 (2.0 pmol of each oligonucleotide)

2 μl nucleotides (10 mM each nucleotide)

2 μl primer CP-b (10 pmol/μl) 2 μl primer CP-e (10 pmol/μl)

10,0 µl PCR buffer

0.75 μl polymerase mixture (2.6 U)

73.25 μl H₂O

Reaction conditions for PCR reactions a and b: step 1 2 min - 45°C

step 2 30 sec - 72°C step 3 30 sec - 94°C step 4 30 sec - 52°C step 5 1 min - 72°C

[0059] Steps 3 to 5 were repeated 40-times.

[0060] The PCR products (670 and 905 bp) were purified by an agarose gel electrophoresis (0.9% agarose) and a following gel extraction (QIAEX II Gel Extraction Kit, Qiagen, Hilden, Germany). The purified DNA fragments were used for the PCR reaction c.

PCR reaction *c*: 6 µl PCR product of reaction a (≈50 ng)

6 μl PCR product of reaction b (≈50 ng)

2 μl primer CP-a (10 pmol/μl) 2 μl primer CP-e (10 pmol/μl)

10,0 μl PCR buffer

0.75 µl polymerase mixture (2.6 U)

73.25 μl H₂O

Reaction conditions for PCR reaction c: step 1 2 min - 94°C

step 2 30 sec - 94°C step 3 30 sec - 55°C step 4 1 min - 72°C

[0061] Steps 2 to 4 were repeated 31-times.

[0062] The resulting PCR product (1.4 kb) was purified as mentioned above, digested with *Eco* RI, and ligated in an *Eco* RI-digested and dephosphorylated pBsk(-)-vector (Stratagene, La Jolla, CA, USA). 1 μI of the ligation mixture was used to transform *E. coli* XL-1 competent cells (Stratagene, La Jolla, CA, USA). All standard procedures were carried out as described by Sambrook *et al.* (1987). The DNA sequence of the constructed consensus phytase gene (*fcp*, Figure 3) was controlled by sequencing as known in the art.

Example 7

Design of an improved consensus phytase (consensus phytase-10) amino acid sequence

[0063] The alignments used for the design of consensus phytase-10 were calculated using the program PILEUP from the GCG Sequence Analysis Package Release 9.0 (Devereux *et al.*, 1984) with the standard parameters (gap creation penalty 12, gap extension penalty 4). The location of the gaps was refined using a text editor.

[0064] The following sequences were used for the alignment of the *Basiodiomycete* phytases starting with the amino acid (aa) mentioned in Table 2:

55

10

15

25

30

35

Table 2

Origin and vote weight of five Basidiomycete phytases used for the calculation of the corresponding amino acid consensus sequence (basidio) - phyA1 from Paxillus involutus NN005693, aa 21, vote weight 0.5 (WO 98/28409)

- phyA2 from Paxillus involutus NN005693, aa 21, vote weight 0.5 (WO 98/28409)
- phyA from Trametes pubescens NN9343, aa 24, vote weight 1.0 (WO 98/28409)
- phyA from Agrocybe pediades NN009289, aa 19, vote weight 1.0 (WO 98/28409)
- phyA from Peniophora lycii NN006113, aa 21, vote weight 1.0 (WO 98/28409)

[0065] The alignment is shown in Figure 4.

5

10

15

25

30

35

40

45

[0066] In Table 3 the genes, which were used for the performance of the final alignment, are arranged. The first amino acid (aa) of the sequence which is used in the alignment is mentioned behind the organism's designation.

Table 3 20 Origin and vote weight of the phytase sequences used for the design of consensus phytase 10

- phyA from Aspergillus terreus 9A-1, aa 27, vote weight 0.5 (Mitchell et al., 1997)
- phyA from Aspergillus terreus cbs116.46, aa 27, vote weight 0.5 (EP 897 985; Figur 1)
- phyA from Aspergillus niger var. awamori, aa 27, vote weight 0.5 (Piddington et al., 1993)
- phyA from Aspergillus niger strain NRRL3135, aa 27, vote weight 0.5 (van Hartingsveldt et al., 1993)
- phyA from Aspergillus fumigatus ATCC 13073, aa 26, vote weight 0.2 (Pasamontes et al., 1997)
- phyA from Aspergillus fumigatus ATCC 32722, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
- phyA from Aspergillus fumigatus ATCC 58128, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
- phyA from Aspergillus fumigatus ATCC 26906, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
- phyA from Aspergillus fumigatus ATCC 32239, aa 30, vote weight 0.2 (EP 897 985; Figur 1)
- phyA from Emericella nidulans, aa 25, vote weight 1.0 (Pasamontes et al., 1997a)
- phyA from Talaromyces thermophilus ATCC 20186, aa 24, vote weight 1.0 (Pasamontes et al., 1997a)
- phyA from Myceliophthora thermophila, aa 19, vote weight 1.0 (Mitchell et al., 1997)
- phyA from Thermomyces lanuginosa, aa 36, vote weight 1.0 (Berka et al., 1998)
- Consensus sequence of five Basidiomycete phytases, vote weight 1.0 (Basidio, Figure 4)

[0067] The corresponding alignment is shown in Figure 5.

Calculation of the amino acid sequence of consensus phytase-10

To improve the alignment, we combined the consensus sequence of five phytases from four different Basidiomycetes, called Basidio, still containing the undefined sequence positions (see Figure 4), nearly all phytase sequences used for calculation of the original consensus phytase and one new phytase sequence from the Ascomycete Thermomyces lanuginosus to a larger alignment.

We set plurality on 2.0 and threshold on 3. The used vote weights are listed in Table 3. The alignment and the corresponding consensus sequence are presented in Figure 5. The new consensus phytase -10 sequence has 32 different amino acids in comparison to the original consensus phytase. Positions for which the program PRETTY was not able to calculate a consensus amino acid residue were filled according to rules mentioned in Example 6. None of the residues suggested by the program was replaced.

Furthermore, we included all Basidiomycete phytases as single amino acid sequences but assigning a vote weight of 0.2 in the alignment. The corresponding alignment is shown in Figure 7. The calculated consensus amino acid

sequence (consensus phytase-11) has the following differences to the sequence of consensus phytase-10: D35X, X(K)69K, X(E)100E, A101R, Q134N, X(K)153N, X(H)190H, X(A)204S, X(E)220D, E222T, V227A, X(R)271R, H287A, X(D)288D, X(K)379K, X(I)389I, E390X, X(E)415E, X(A)416A, X(R)446L, E463A, where the numbering is as in Fig. 6.

[0070] Letter X means that the program was not able to calculate a consensus amino acid; the amino acid in parenthesis corresponds to the amino acid finally included into the consensus phytase-10.

[0071] We also checked single amino acid replacements suggested by the improved consensus phytase sequences 10 and 11 on their influence on the stability of the original consensus phytase -1. The approach is described in example 8.

10 Conversion of consensus phytase-10 amino acid sequence to a DNA sequence

[0072] The first 26 amino acid residues of *A. terreus* cbs116.46 phytase were used as signal peptide and, therefore, fused to the *N*-terminus of consensus phytase-10. The used procedure is further described in Example 6.

[0073] The resulting sequence of the fcp10 gene is shown in Figure 6.

Construction and cloning of the consensus phytase-10 gene (fcp10)

[0074] The calculated DNA sequence of *fcp*10 was divided into oligonucleotides of 85 bp, alternately using the sequence of the sense and the anti-sense strand. Every oligonucleotide overlaps 20 bp with its previous and its following oligonucleotide of the opposite strand. The location of all primers, purchased from Microsynth, Balgach (Switzerland) and obtained in a PAGE-purified form, is indicated in Figure 6.

PCR-Reactions

15

[0075] In three PCR reactions, the synthesized oligonucleotides were composed to the entire gene. For the PCR, the High Fidelity Kit from Boehringer Mannheim (Boehringer Mannheim, Mannheim, Germany) and the thermocycler The Protokol™ from AMS Biotechnology (Europe) Ltd. (Lugano, Switzerland) were used. The following oligonucleotides were used in a concentration of 0.2 pmol/ml.

30 Mix 1.10: CP-1, CP-2, CP-3.10, CP-4.10, CP-5.10, CP-6, CP-7.10, CP-8.10, CP-9.10, CP-10.10

Mix 2.10: CP-9.10, CP-10.10, CP-11.10, CP-12.10, CP-13.10, CP-14.10, CP-15.10, CP-16.10, CP-17.10, CP-18.10, CP-19.10, CP-20.10, CP-21.10, CP-22.10

[0076] The newly synthesized oligonucleotides are marked by number 10. The phytase contains the following 32 exchanges, which are underlined in Figure 6, in comparison to the original consensus phytase -1: Y54F, E58A, D69K, D70G, A94K, N134Q, I158V, S187A, Q188N, D197N, S204A, T214L, D220E, L234V, A238P, D246H, T251N, Y259N, E267D, E277Q, A283D, R291I, A320V, R329H, S364T, I366V, A379K, S396A, G404A, Q415E, A437G, A463E.

[0077] Four short PCR primers were used for the assembling of the oligonucleotides:

CP-a: Eco RI

5'-TATATGAATTCATGGGCGTGTTCGTC-3' (SEQ, ID No. 1)

CP-b:

5'-TGAAAAGTTCATTGAAGGTTTC-3' (SEQ, ID No. 2)

CP-c.10:

5'-TCTTCGAAAGCAGTACACAAAC-3' (SEQ, ID No. 5)

⁵⁰ CP-e: Eco RI

5'-TATATGAATTCTTAAGCGAAAC-3' (SEQ, ID No. 4)

55

40

PCR reaction a: 10 µl Mix 1.10 (2.0 pmol of each oligonucleotide) 2 μl nucleotides (10 mM each nucleotide) 2 µl primer CP-a (10 pmol/ml) 2 µl primer CP-c.10 (10 pmol/ml) 10,0 μl PCR buffer 5 0.75 µl polymerase mixture (2.6 U) 73.25 µl H₂O PCR reaction b: 10 µl Mix 2.10 (2.0 pmol of each oligonucleotide) 2 µl nucleotides (10 mM each nucleotide) 10 2 μl primer CP-b (10 pmol/ml) 2 μl primer CP-e (10 pmol/ml) 10,0 µl PCR buffer 0.75 µl polymerase mixture (2.6 U) 73.25 µl H₂O 15 Reaction conditions for PCR reactions a and b: step 1 2 min - 45°C step 2 30 sec - 72 °C step 3 30 sec - 94 °C step 4 30 sec - 52 °C 20 step 5 1 min - 72°C [0078] Steps 3 to 5 were repeated 40-times. [0079] The PCR products (670 and 905 bp) were purified by an agarose gel electrophoresis (0.9% agarose) and a following gel extraction (QIAEX II Gel Extraction Kit, Qiagen, Hilden, Germany). The purified DNA fragments were used for the PCR reaction c. PCR reaction c: 6 μl PCR product of reaction a(≈50 ng) 6 µl PCR product of reaction b(≈50 ng) 30 2 μl primer CP-a (10 pmol/ml) 2 μl primer CP-e (10 pmol/ml) 10,0 µl PCR buffer 0.75 µl polymerase mixture (2.6 U) 73.25 µl H₂O 35 Reaction conditions for PCR reaction c: step 1 2 min - 94°C step 2 30 sec - 94 °C step 3 30 sec - 55 °C step 4 1 min - 72°C

Steps 2 to 4 were repeated 31-times.

[0080] The resulting PCR product (1.4 kb) was purified as mentioned above, digested with *Eco* RI, and ligated in an *Eco* RI-digested and dephosphorylated pBsk(-)-vector (Stratagene, La Jolla, CA, USA). 1 µI of the ligation mixture was used to transform *E. coli* XL-1 competent cells (Stratagene, La Jolla, CA, USA). All standard procedures were carried out as described by Sambrook *et al.* (1987). The DNA sequence of the constructed gene (*fcp10*) was checked by sequencing as known in the art.

Example 8

40

50

Increasing the thermostability of consensus phytase-1 by introduction of single mutations suggested by the amino acid sequence of consensus phytase-10 and/or consensus phytase-11

[0081] In order to increase the thermostability of homologous genes, it is also possible to test the stability effect of each differing amino acid residue between the protein of interest and the calculated consensus sequence and to combine all stabilizing mutations into the protein of interest. We used the consensus phytase -1 as protein of interest and tested the effect on the protein stability of 34 amino acids, which differed between consensus phytase -1 on one hand and consensus phytases 10 and/or -11 on the other hand, by single mutation..

[0082] To construct muteins for expression in *A. niger*, *S. cerevisiae*, or *H. polymorpha*, the corresponding expression plasmid containing the consensus phytase gene was used as template for site-directed mutagenesis (see Examples 11 - 13). Mutations were introduced using the "quick exchange™ site-directed mutagenesis kit" from Stratagene (La Jolla, CA, USA) following the manufacturer's protocol and using the corresponding primers. All mutations made and their corresponding primers are summarized in Table 4. Plasmids harboring the desired mutation were identified by DNA sequence analysis as known in the art.

Table 4: Primers used for site-directed mutagenesis of consensus phytases

(Exchanged bases are highlighted in bold. The introduction of a restriction site is marked above the sequence. When a restriction site is written in parenthesis, the mentioned site was destroyed by introduction of the mutation.)

	mutation	Primer set
20	Q50T	Kpn I 5'-CACTTGTGGGGTACCTACTCTCCATACTTCTC-3' (SEQ ID No. 6) 5'-GAGAAGTATGGAGAGTAGGTACCCCACAAGTG-3' (SEQ ID No. 7)
25	Y54F	5'-GGTCAATACTCTCCATTCTTCTCTTTGGAAG-3' (SEQ ID No. 8) 5'-CTTCCAAAGAGAAGAATGGAGAGTATTGACC-3' (SEQ ID No. 9)
30	E58A	5'-CATACTTCTCTTTGGCAGACGAATCTGC-3' (SEQ ID No. 10) 5'-GCAGATTCGTCTGCCAAAGAGAAGTATG-3' (SEQ ID No. 11)

5	D69K	Aat II 5'-CTCCAGACGTCCCAAAGGACTGTAGAGTTAC-3' (SEQ ID No. 12) 5'-GTAACTCTACAGTCCTTTGGGACGTCTGGAG-3' (SEQ ID No. 13)
	D70G	Ant II 5'-CTCCAGACGTCCCAGACGCTGTAGAGTTAC-3' (SEQ ID No. 14) 5'-GTAACTCTACAGCCGTCTGGGACGTCTGGAG-3' (SEQ ID No. 15)
10	K91A	5'-GATACCCAACTTCTTCTGCGTCTAAGGCTTACTCTG-3' (SEQ ID No. 16) 5'-CAGAGTAAGCCTTAGACGCAGAAGAAGTTGGGTATC-3' (SEQ ID No. 17)
15	A94K	Sca I 5'-CTTCTAAGTCTAAGAAGTACTCTGCTTTG-3' (SEQ ID No. 18) 5'-CAAAGCAGAGTACTTCTTAGACTTAGAAG-3'(SEQ ID No. 19)
20	A101R	5'-GCTTACTCTGCTTTGATTGAACGGATTCAAAAGAACGCTAC-3'
25	N134Q	5'-GTAGCGTTCTTTTGAATCCGTTCAATCAAAGCAGAGTAAGC-3' 5'-CCATTCGGTGAACAGCAAATGGTTAACTC-3' (SEQ ID No. 22) 5'-GAGTTAACCATTTGCTGTTCACCGAATGG-3' (SEQ ID No. 23)
30	K153N	Nru I 5'-GATACAAGGCTCTCGCGAGAAACATTGTTC -3' (SEQ ID No. 24). 5'-GGAACAATGTTTCTCGCGAGAGCCTTGTATC-3' (SEQ ID No. 25)
35	I158V	Bss HI 5'-GATTGTTCCATTCGTGCGCGCTTCTGGTTC-3' (SEQ ID No. 26) 5'-GAACCAGAAGCGCGCACGAATGGAACAATC-3' (SEQ ID No. 27)
40	D197N	Bcl I 5'-CTCCAGTTATTAACGTGATCATTCCAGAAGG-3' (SEQ ID No. 28) 5'-CCTTCTGGAATGATCACGTTAATAACTGGAG-3' (SEQ ID No. 29)
	S187A	Apa I 5'-GGCTGACCCAGGGGCCCAACCACCAAGC-3' (SEQ ID No. 30) 5'-GCTTGGTGTGGGTCGGCCCTGGGTCAGCC-3' (SEQ ID No. 31)
45	T214L	Nco I 5'-CACTTTGGACCATGGTCTTTGTACTGCTTTCG-3' (SEQ ID No. 32) 5'-CGAAAGCAGTACAAAGACCATGGTCCAAAGTG-3' (SEQ ID No. 33)
50	E222T 34) 5'-C/	Avr II 5'-GCTTTCGAAGACTCTACCCTAGGTGACGACGTTG-3' (SEQ ID No. AACGTCGTCACCTAGGGTAGAGTCTTCGAAAGC-3' (SEQ ID No. 35)

	V227A	5'-GGTGACGACGCTGAAGCTAACTTCAC-3' (SEQ ID No. 36) 5'-GTGAAGTTAGCTTCAGCGTCGTCACC-3'(SEQ ID No. 37)
5	L234V	Sac II 5'-CTAACTTCACCGCGGTGTTCGCTCCAG-3' (SEQ ID No. 38) 5'-CTGGAGCGAACACCGCGGTGAAGTTAG-3' (SEQ ID No. 39)
10	A238P 40)	5'-GCTTTGTTCGCTCCACCTATTAGAGCTAGATTGG-3' (SEQ ID No.
		5'-CCAATCTAGCTCTAATAGGTGGAGCGAACAAAGC-3' (SEQ ID No. 41)
15	T251N	<i>Hpa</i> I 5'-GCCAGGT <i>GTTAAC</i> TTGACTGACGAAG-3' (SEQ ID No. 42) 5'-TTCGTCAGTCAA <i>GTTAAC</i> ACCTGGC-3' (SEQ ID No. 43)
20	Y259N	Aat II 5'-GACGAAGACGTCGTTAACTTGATGGAC-3' (SEQ ID No. 44) 5'-GTCCATCAAGTTAACGACGTCTTCGTC-3' (SEQ ID No. 45)
25	E267D	Asp I 5'-GTCCATTCGACACTGTCGCTAGAACTT C-3' (SEQ ID No. 46) 5'-GAAGTTCTAGCGACAGTGTCGAATGGAC-3' (SEQ ID No. 47)
30	E277Q	5'-CTGACGCTACTCAGCTGTCTCCATTC-3' (SEQ ID No. 48) 5'-GAATGGAGACAGCTGAGTAGCGTCAG-3' (SEQ ID No. 49)
35	A283D	5'-GTCTCCATTCTGTGATTTGTTCACTCAC-3' (SEQ ID No. 50) 5'-GTGAGTGAACAAATCACAGAATGGAGAC-3' (SEQ ID No. 51)
40	H287A	Ksp I 5'-GCTTTGTTCACCGCGGACGAATGGAG-3' (SEQ ID No. 52) 5'-CTCCATTCGTCCGCGGTGAACAAAGC-3' (SEQ ID No. 53)
40	R291I	Bam HI 5'-CACGACGAATGGATCCAATACGACTAC-3' (SEQ ID No. 54) 5'-GTAGTCGTATTGGATCCATTCGTCGTG-3' (SEQ ID No. 55)
45	Q292A	Bsi WI 5'-GACGAATGGAGAGCGTACGACTACTTG-3' (SEQ ID No. 56) 5'-CAAGTAGT <i>CGTACG</i> CTCTCCATTCGTC-3' (SEQ ID No. 57)
50	A320V	Hpa I 5'-GGTGTTGGTTTCGTTAACGAATTGATTGC-3' (SEQ ID No. 58) 5'-GCAATCAATTCGTTAACGAAACCAACACC-3' (SEQ ID No. 59)

		(Bgl II)
5	R329H	5'-GCTAGATTGACT <i>CACTCTC</i> CAGTTCAAG-3' (SEQ ID No. 60) 5'-CTTGAACTGGAGA <i>GTGAGT</i> CAATCTAGC-3' (SEQ ID No. 61)
5		Eco RV
	S364T	5'-CTCACGACAACACTATGATATCTATTTTCTTC-3' (SEQ ID No. 62) 5'-GAAGAAAATAGATATCATAGTGTTGTCGTGAG-3' (SEQ ID No. 63)
10		·
	I366V	Nco I 5'-CGACAACTCCATGGTTTCTATTTTCTTCGC-3' (SEQ ID No. 64) 5'-GCGAAGAAAATAGAAACCATGGAGTTGTCG-3' (SEQ ID No. 65)
15		Kpn I
	A379K	5'-GTACAACGGTACCAAGCCATTGTCTAC-3' (SEQ ID No. 66) 5'-GTAGACAATGGCTTGGTACCGTTGTAC-3' (SEQ ID No. 67)
20		
	S396A	5'-CTGACGGTTACGCTGCTTCTTGGAC-3' (SEQ ID No. 68 5'-GTCCAAGAAGCAGCGTAACCGTCAG-3' (SEQ ID No. 69)
25	G404A	5'-CTGTTCCATTCGCTGCTAGAGCTTAC-3' (SEQ ID No. 70) 5'-GTAAGCTCTAGCAGCGAATGGAACAG-3' (SEQ ID No. 71)
		(024.21.0.71)
30	Q415E	5'-GATGCAATGTGAAGCTGAAAAGGAACC-3' (SEQ ID No. 72) 5'-GGTTCCTTTTCAGCTTCACATTGCATC-3' (SEQ ID No. 73)
		Sal I
35	A437G	5'-CACGGTTGTGGTCGACAAGTTGGG-3' (SEQ ID No. 74) 5'-CCCAACTTGTCGACACCACAACCGTG-3' (SEQ ID No. 75)
		Mun I
40	A463E	5'-GATCTGGTGGCAATTGGGAGGAATGTTTCG-3' (SEQ ID No. 76) 5'-CGAAACATTCCTCCCAATTGCCACCAGATC-3' (SEQ ID No. 77)
	and accord	ingly for other mutations.
	and accord	ingly for other mutations.

[0083] The temperature optimum of the purified phytases, expressed in *Saccharomyces cerevisiae* (Example 14), was determined as outlined in Example 14. Table 5 shows the effect on the stability of consensus phytase -1 for each mutation introduced.

45

55

Table 5: Stability effect of the individual amino acid replacements in consensus phytase-1 (+ or - means a positive, respectively, negative effect on the protein stability up to 1 °C, ++ and -- means a positive, respectively, negative effect on the protein stability between 1 and

5	the amino acid replacement.)
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	

EP 1 092 764 A2

stabilizing neutral destabilizing mutation effect mutation effect mutation effect 5 E58A (10) D69A Y54F (10) + \pm D69K (11) + D70G (10) ± V73I 10 A94K (10) D197N (10) N134Q (10) ± T214L (10) G186H A101R (11) ++ ± 15 E222T (11) S187A (10) K153N (11) ± T214V E267D (10) + I158V (10) \pm 20 R291I* G203A + T251N (10) ± R329H (10) + Y259N (10) ± G205S \$364T (10) A283D (10) \pm A217V 25 A320V (10) A379K (11) ± V227A (11) G404A (10) ++ K445T ± L234V (10) 30 A463E (10) ± A238P (10) E277Q (10) 35 H287A (11) Q292A (10) 40 I366V (10) S396A (10) Q415E(11) 45 A437G (10) E451R 50

55

[0084] We combined eight positive mutations (E58A, D197N, E267D, R291I, R329H, S364T, A379K, G404A) in consensus phytase -1 using the primers and the technique mentioned above in this example. Furthermore, the mutations Q50T and K91A were introduced which mainly influence the catalytical characteristics of the phytase (see EP 897).

^{*:} This amino acid replacement was found in another round of mutations.

985 as well as Example 14). The DNA and amino acid sequence of the resulting phytase gene (consensus phytase-1-thermo[8]-Q50T-K91A) is shown in Figure 8. In this way, the temperature optimum and the melting point of the consensus phytase was increased by 7 ° C (Figure 16, 17, 18).

[0085] Using the results of Table 5, we further improved the thermostability of consensus phytase 10 by the following back mutations K94A, V158I, and A396S that revealed a strong negative influence on the stability of consensus phytase -1. The resulting protein is consensus phytase-10-thermo [3]. Furthermore, we introduced the mutations Q50T and K91A which mainly influence the catalytical characteristics of consensus phytase (see EP 897 485 as well as Example 14 and Figures 15 and 16). The resulting DNA and amino acid sequence is shown in Figure 9. The optimized phytase showed a 4 °C higher temperature optimum and melting point than consensus phytase -10 (Figures 13 and 14). Furthermore, the phytase has also a strongly increased specific activity with phytate as substrate of 250 U/mg at pH 5.5 (Figure 15).

Example 9

25

40

45

50

55

Stabilization of the phytase of *A. fumigatus* ATCC 13073 by replacement of amino acid residues with the corresponding consensus phytase-1 and consensus phytase-10 residues

[0086] At six typical positions where the *A. fumigatus* 13073 phytase is the only or nearly the only phytase in the alignment of Figure 2 that does not contain the corresponding consensus phytase amino acid residue, the non-consensus amino acid residue was replaced by the consensus one. In a first round, the following amino acids were substituted in *A. fumigatus* 13073 phytase, containing the Q51T substitution and the signal sequence of *A. terreus* cbs.116.46 phytase (see Figure 10):

F55(28)Y, V100(73)I, F114(87)Y, A243(220)L, S265(242)P, N294(282)D.

[0087] The numbers in parentheses refer to the numbering of Figure 2.

[0088] In a second round, four of the seven stabilizing amino acid exchanges (E59A, R329H, S364T, G404A) found in the consensus phytase-10 sequence and, tested as single mutations in consensus phytase-1 (Table 5), were additionally introduced into the *A. fumigatus* α -mutant. Furthermore, the amino acid replacement S154N, shown to reduce the protease susceptibility of the phytase, was introduced.

[0089] The mutations were introduced as described in example 8 (see Table 6) and expressed as described in example 11 to 13. The resulting *A. fumigatus* 13073 phytase variants were called a-mutant and α -mutant-E59A-S154N-R329H-S364T-G404A.

[0090] The temperature optimum (60 °C, Figure 21) and the melting point (67.0 °C, Figure 20) of the *A. fumigatus* 13073 phytase α -mutant were increased by 5 - 7°C in comparison to the values of the wild-type (temperature optimum: 55 °C, T_m : 60 °C). The five additional amino acid replacements further increased the temperature optimum by 3 °C (Figure 21).

Table 6: Mutagenesis primers for stabilization of A. fumigatus phytase ATCC 13073

5	Mutation	Primer
40	F55Y	5'-CACGTACTCGCCATACTTTTCGCTCGAG-3' (SEQ ID No. 78) 5'-CTCGAGCGAAAAGTATGGCGAGTACGTG-3' (SEQ ID No. 79)
10		(Xho I)
15	E58A 5'-CA	5'-CCATACTTTTCGCTCGCGACGAGCTGTCCGTG-3' (SEQ ID NO. 80) ACGGACAGCTCGTCCGCGAGCGAAAAGTAGG-3' (SEQ ID NO. 81)
20	V100I	5'-GTATAAGAAGCTTATTACGGCGATCCAGGCC-3' (SEQ ID No. 82) 5'-GGCCTGGATCGCCGTAATAAGCTTCTTATAC-3' (SEQ ID No. 83)
25	F114Y	5'-CTTCAAGGGCAAGTACGCCTTTTTGAAGACG-3' (SEQ ID No. 84) 5'-CGTCTTCAAAAAGGCGTACTTGCCCTTGAAG-3' (SEQ ID No. 85)
30	A243L	5'-CATCCGAGCTCGCCTCGAGAAGCATCTTC-3' (SEQ ID No. 86) 5'-GAAGATGCTTCTCGAGGCGAGCTCGGATG-3' (SEQ ID No. 87)
35	\$265P	5'-CTAATGGA TGTGTCCGTTTGATACGGTAG-3' (SEQ ID No. 88) 5'-CTACCGTATCAAACGGACACATGTCCATTAG-3' (SEQ ID No. 89)
40		
45		
50		
55		

	N294D	5'-GTGGAAGAAGTACGACTACCTTCAGTC-3' (SEQ ID No. 90) 5'-GACTGAAGGTAGTCGTACTTCTTCCAC-3' (SEQ ID No. 91)			
5		Constitution of the consti			
		(Mlu I)			
	R329H	5'-GCCCGGTTGACGCATTCGCCAGTGCAGG-3' (SEQ ID No. 92)			
10		5'-CCTGCACTGGCGAATGCGTCAACCGGGC-3' (SEQ ID No. 93)			
		Nco I			
	S364T	5'-CACACGACAACA <i>CCATGG</i> TTTCCATCTTC-3' (SEQ ID No. 94)			
15		5'-GAAGATGGAAA <u>CCATGG</u> TGTTGTCGTGTG-3' (SEQ ID No. 95)			
	(Bss HI)				
	G404A	5'-GTGGTGCCTTTCGCCGCGCGAGCCTACTTC-3' (SEQ ID No. 96)			
20		5'-GAAGTAGGCTCGCGCGCGAAAGGCACCAC-3' (SEQ ID No. 97)			

Example 10

25

30

35

45

Introduction of the active site amino acid residues of the A. niger NRRL 3135 phytase into the consensus phytase-1

We used the crystal structure of the Aspergillus niger NRRL 3135 phytase to define all active site amino acid residues (see Reference Example and EP 897 010). Using the alignment of Figure 2, we replaced the following active site residues and additionally the non-identical adjacent ones of the consensus phytase -1 by those of the A. niger

S89D, S92G, A94K, D164S, P201S, G203A, G205S, H212P, G224A, D226T, E255T, D256E, V258T, P265S, Q292H, G300K, Y305H, A314T, S364G, M365I, A397S, S398A, G404A, and A405S

The new protein sequence consensus phytase -7 was backtranslated into a DNA sequence (Figure 11) as described in Example 6. The corresponding gene (fcp7) was generated as described in Example 6 using the following oligonucleotide mixes:

Mix 1.7: CP-1, CP-2, CP-3, CP-4.7, CP-5.7, CP-6, CP-7, CP-8.7, CP-9, CP-10.7

Mix 2.7: CP-9, CP-10.7, CP-11.7, CP-12.7, CP-13.7, CP-14.7, CP-15.7, CP-16, CP-17.7, CP-18.7, CP-19.7, CP-20, CP-21, CP-22.

[0093] The DNA sequences of the oligonucleotides are indicated in Figure 11. The newly synthesized oligonucleotides are additionally marked by number 7. After assembling of the oligonucleotides using the same PCR primers as mentioned in Example 6, the gene was cloned into an expression vector as described in Examples 11 - 13.

The pH-profile of consensus phytase-7, purified after expression in Hansenula polymorpha, was very similar to that of A. niger NRRL 3135 phytase (see Figure 19).

Example 11

Expression of the consensus phytase genes in Hansenula polymorpha 55

The phytase expression vectors, used to transform H. polymorpha RB11 (Gellissen et al., 1994), were constructed by inserting the Eco RI fragment of pBsk'fcp or variants thereof into the multiple cloning site of the H.

polymorpha expression vector pFPMT121, which is based on an *ura3* selection marker from *S. cerevisiae*, a formate dehydrogenase (*FMD*) promoter element and a methanol oxidase (*MO*) terminator element from *H. polymorpha*. The 5' end of the *fcp* gene is fused to the *FMD* promoter, the 3' end to the *MOX* terminator (Gellissen *et al.*, 1996; EP 0299 108 B). The resulting expression vectors were designated pFPMT*fcp*, pFPMT*fcp10*, pFPMT*fcp7*.

[0096] The constructed plasmids were propagated in *E. coli*. Plasmid DNA was purified using standard state of the art procedures. The expression plasmids were transformed into the *H. polymorpha* strain RP11 deficient in orotidine-5'-phosphate decarboxylase (*ura3*) using the procedure for preparation of competent cells and for transformation of yeast as described in Gelissen *et al.* (1996). Each transformation mixture was plated on YNB (0.14% w/v Difco YNB and 0.5% ammonium sulfate) containing 2% glucose and 1.8% agar and incubated at 37 °C. After 4 to 5 days individual transformant colonies were picked and grown in the liquid medium described above for 2 days at 37 °C. Subsequently, an aliquot of this culture was used to inoculate fresh vials with YNB-medium containing 2% glucose. After seven further passages in selective medium, the expression vector is integrated into the yeast genome in multimeric form. Subsequently, mitotically stable transformants were obtained by two additional cultivation steps in 3 ml non-selective liquid medium (YPD, 2% glucose, 10 g yeast extract, and 20 g peptone). In order to obtain genetically homogeneous recombinant strains an aliquot from the last stabilization culture was plated on a selective plate. Single colonies were isolated for analysis of phytase expression in YNB containing 2% glycerol instead of glucose to derepress the *fmd* promoter. Purification of the consensus phytases was done as described in Example 12.

Example 12

5

15

20

35

Expression of the consensus phytase genes in Saccharomyces cerevisiae and purification of the phytases from culture supernatant

The consensus phytase genes were isolated from the corresponding Bluescript-plasmid (pBsk⁻fcp, pBSK⁻ fcp10, pBsk fcp7) and ligated into the Eco RI sites of the expression cassette of the Saccharomyces cerevisiae expression vector pYES2 (Invitrogen, San Diego, CA, USA) or subcloned between the shortened GAPFL (glyceraldhyde-3phosphate dehydrogenase) promoter and the pho5 terminator as described by Janes et al. (1990). The correct orientation of the gene was checked by PCR. Transformation of S. cerevisiae strains. e. g. INVSc1 (Invitrogen, San Diego, CA, USA) was done according to Hinnen et al. (1978). Single colonies harboring the phytase gene under the control of the GAPFL promoter were picked and cultivated in 5 ml selection medium (SD-uracil, Sherman et al., 1986) at 30°C under vigorous shaking (250 rpm) for one day. The preculture was then added to 500 ml YPD medium (Sherman et al., 1986) and grown under the same conditions. Induction of the gal1 promoter was done according to the manufacturer's instructions. After four days of incubation cell broth was centrifuged (7000 rpm, GS3 rotor, 15 min, 5°C) to remove the cells and the supernatant was concentrated by way of ultrafiltration in Amicon 8400 cells (PM30 membranes) and ultrafree-15 centrifugal filter devices (Biomax-30K, Millipore, Bedford, MA, USA). The concentrate (10 ml) was desalted on a 40 ml Sephadex G25 Superfine column (Pharmacia Biotech, Freiburg, Germany), with 10 mM sodium acetate, pH 5.0, serving as elution buffer. The desalted sample was brought to 2 M (NH₄)₂SO₄ and directly loaded onto a 1 ml Butyl Sepharose 4 Fast Flow hydrophobic interaction chromatography column (Pharmacia Biotech, Freiburg, Germany) which was eluted with a linear gradient from 2 M to 0 M (NH₄)₂SO₄ in 10 mM sodium acetate, pH 5.0. Phytase was eluted in the break-through, concentrated and loaded on a 120 ml Sephacryl S-300 gel permeation chromatography column (Pharmacia Biotech, Freiburg, Germany). Consensus phytase -1 and consensus phytase -7 eluted as a homogeneous symmetrical peak and was shown by SDS-PAGE to be approx. 95% pure.

Example 13

Expression of the consensus phytase genes in Aspergillus niger

[0098] The Bluescript-plasmids pBsk⁻fcp, pBSK⁻fcp10, and pBsk⁻fcp7 were used as template for the introduction of a Bsp HI-site upstream of the start codon of the genes and an Eco RV-site downstream of the stop codon. The Expand™ High Fidelity PCR Kit (Boehringer Mannheim, Mannheim, Germany) was used with the following primers:

55

50

Primer Asp-1:

Bsp HI

5'-TATATCATGAGCGTGTTCGTCGTGCTACTGTTC-3' (SEQ ID No. 98)

Primer Asp-2 used for cloning of fcp and fcp7:

Eco RV

3'-ACCCGACTTACAAAGCGAATT*CTATAG*ATATAT-5' (SEQ ID No. 99)

Primer Asp-3 used for cloning of fcp10:

Eco RV

3'-ACCCTTCTTACAAAGCGAATTCTATAGATATAT-5' (SEQ ID No. 100)

20

5

10

15

[0099] The reaction was performed as described by the supplier. The PCR-amplified *fcp*-genes had a new *Bsp* HI site at the start codon, introduced by primer Asp-1, which resulted in a replacement of the second amino acid residue glycine by serine. Subsequently, the DNA-fragment was digested with *Bsp* HI and *Eco* RV and ligated into the *Nco* I site downstream of the glucoamylase promoter of *Aspergillus niger* (*glaA*) and the *Eco* RV site upstream of the *Aspergillus nidulans* tryptophan C terminator (*trpC*) (Mullaney *et al.*, 1985). After this cloning step, the genes were sequenced to detect possible failures introduced by PCR. The resulting expression plasmids which basically correspond to the pGLAC vector as described in Example 9 of EP 684 313 contained the orotidine-5'-phosphate decarboxylase gene (*pyr4*) of *Neurospora crassa* as a selection marker. Transformation of *Aspergillus niger* and expression of the consensus phytase genes was done as described in EP 684 313. The consensus phytases were purified as described in Example 12.

Example 14

35

Determination of phytase activity and of temperature optimum

[0100] Phytase activity was determined basically as described by Mitchell et al (1997). The activity was measured in an assay mixture containing 0.5% phytic acid (\approx 5 mM) in 200 mM sodium acetate, pH 5.0. After 15 min of incubation at 37 °C, the reaction was stopped by addition of an equal volume of 15% trichloroacetic acid. The liberated phosphate was quantified by mixing 100 μ l of the assay mixture with 900 μ l H₂O and 1 ml of 0.6 M H₂SO₄, 2% ascorbic acid and 0.5% ammonium molybdate. Standard solutions of potassium phosphate were used as reference. One unit of enzyme activity was defined as the amount of enzyme that releases 1 μ mol phosphate per minute at 37 °C. The protein concentration was determined using the enzyme extinction coefficient at 280 nm calculated according to Pace et al (1995): consensus phytase -1.101; consensus phytase -7, 1.068; consensus phytase -1 10, 1.039.

[0101] In case of pH-optimum curves, purified enzymes were diluted in 10 mM sodium acetate, pH 5.0. Incubations were started by mixing aliquots of the diluted protein with an equal volume of 1% phytic acid (≈10 mM) in a series of different buffers: 0.4 M glycine/HCl, pH 2.5; 0.4 M acetate/NaOH, pH 3.0, 3.5, 4.0, 4.5, 5.0, 5.5; 0.4 M imidazole/HCl, pH 6.0, 6.5; 0.4 M Tris/HCl pH 7.0, 7.5, 8.0, 8.5, 9.0. Control experiments showed that pH was only slightly affected by the mixing step. Incubations were performed for 15 min at 37 °C as described above.

[0102] For determinations of the substrate specificities of the phytases, phytic acid in the assay mixture was replaced by 5 mM concentrations of the respective phosphate compounds. The activity tests were performed as described above.

[0103] For determination of the temperature optimum, enzyme (100 μ l) and substrate solution (100 μ l) were pre-incubated for 5 min at the given temperature. The reaction was started by addition of the substrate solution to the enzyme. After 15 min incubation, the reaction was stopped with trichloroacetic acid and the amount of phosphate released was determined.

[0104] The pH-optimum of the original consensus phytase was around pH 6.0-6.5 (80 U/mg). By introduction of the

Q50T mutation, the pH-optimum shifted to pH 6.0 (130 U/mg). After introduction of K91A, the pH optimum shifted one pH-unit into the acidic pH-range showing a higher specific activity between pH 2.5 and pH 6.0. That was shown for the stabilized mutants and for consensus phytase-10, too (Figure 15 and 16).

[0105] Consensus phytase-7, which was constructed to transfer the catalytic characteristics of the A. niger NRRL 3135 phytase into consensus phytase-1, had a pH-profile very similar to that of A. niger NRRL 3135 phytase (see Figure 19). The substrate specificity of consensus phytase-7 also resembled more to that of A. niger NRRL 3135 phytase than to that of consensus phytase-1.

[0106] The temperature optimum of consensus phytase-1 (71 °C) was 16-26 °C higher than the temperature optimum of the wild-type phytases (45-55 °C, Table 7) which were used to calculate the consensus sequence. The improved consensus phytase-10 showed a further increase of its temperature optimum to 80 °C (Figure 12). The temperature optimum of the consensus phytase-1-thermo[8] phytase was found in the same range (78 °C) when using the supernatant of an overproducing *S. cerevisiae* strain. The highest temperature optimum reached of 82 °C was determined for consensus phytase-10-thermo[3]-Q50T-K91A.

Table 7

Table

Temperature optimum and $T_{\rm m}$ -value of consensus phytase and of the phytases from *A. fumigatus*, *A. niger*, *E. nidulans* and *M. thermophila*. The determination of the temperature optimum was performed as described in Example 14. The $T_{\rm m}$ -values were determined by differential scanning calorimetry as described in Example 15.

phytase	temperature optimum [°C]	Tm [°C]
Consensus phytase-10-thermo[3]- Q50T-K91A	82	89.3
Consensus phytase-10-thermo[3]- Q50T	82	88.6
Consensus phytase-10	80	85.4
Consensus phytase-1-thermo[8]- Q50T	78	84.7
Consensus phytase-1-thermo[8]- Q50T-K91A	78	85.7
Consensus phytase-1	71	78.1
A. niger NRRL3135	55	63.3
A. fumigatus 13073	55	62.5
A. fumigatus 13073 α-mutant	60	67.0
A. fumigatus 13073 α-mutant (optimized)	63	-
A. terreus 9A-1	49	57.5
A. terreus cbs.116.46	45	58.5
E. nidulans	45	55.7
M. thermophila	55	n. d.
T. thermophilus	45	n. d.

50 Example 15

55

15

Determination of the melting point by differential scanning calorimetry (DSC)

[0107] In order to determine the unfolding temperature of the phytases, differential scanning calorimetry was applied as previously published by Lehmann et al (2000). Solutions of 50-60 mg/ml homogeneous phytase were used for the tests. A constant heating rate of 10 °C/min was applied up to 90-95 °C.

[0108] The determined melting points reflect the results obtained for the temperature optima (Table 7). The most stable consensus phytase designed is consensus phytase-10-thermo[3]-Q50T-K91A showing a melting temperature

under the chosen conditions of 89.3 °C. This is 26 to 33.6 °C higher than the melting points of the wild-type phytases used.

Example 16

5

Transfer of basidiomycete phytase active site into consensus phytase-10-thermo[3]-Q50T-K91A

These constructs were expressed as described in Examples 11 - 13.

As described previously (Example 8), mutations derived from the basidiomycete phytase active site were introduced into the consensus phytase -10. The following five constructs a) to e) were prepared:

10

a) This construct is called consensus phytase -12, and it comprises a selected number of active site residues of the basidio consensus sequence. Its amino acid sequence (consphy12) is shown in Fig. 22 (the first 26 amino acids forms the signal peptide, amended positions are underlined);

15

b) a cluster of mutations (Cluster II) was transferred to the consensus phytase 10 sequence, viz.: S80Q, Y86F. S90G, K91A, S92A, K93T, A94R, Y95I;

c) analogously, another cluster of mutations (Cluster III) was transferred, viz.: T129V, E133A, Q143N, M136S, V137S, N138Q, S139A;

20

25

d) analogously, a further cluster of mutations (Cluster IV) was transferred, viz.: A168D, E171T, K172N, F173W;

e) and finally, a further cluster of mutations (Cluster V) was transferred, viz.: Q297G, S298D, G300D, Y305T.

[0110]

References:

[0111]

30

Akanuma, S., Yamagishi, A., Tanaka, N. & Oshima, T. (1998). Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution. Prot. Sci. 7, 698-705.

Arase, A., Yomo, T., Urabe, I., Hata, Y., Katsube, Y. & Okada, H. (1993). Stabilization of xylanase by random mutagenesis. FEBS Lett. 316, 123-127.

35

40

Berka, R. M., Rey M. W., Brown, K. M., Byun, T. & Klotz, A. V. (1998). Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl. Environ. Microbiol. 64, 4423-4427.

Blaber, M., Lindstrom, J. D., Gassner, N., Xu, J., Heinz, D. W. & Matthews, B. W. (1993). Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala'Ser and Val'Thr substitutions in T4 lysozyme. Biochemistry 32, 11363-11373.

Cosgrove, D.J. (1980) Inositol phosphates - their chemistry, biochemistry and physiology: studies in organic chemistry, chapter 4. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York.

Devereux, J., Haeberli, P.& Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387-395.

45

Gellissen, G., Hollenberg, C. P., Janowicz, Z. A. (1994) Gene expression in methylotrophic yeasts. In: Smith, A. (ed.) Gene expression in recombinant microorganisms. Dekker, New York, 395-439.

Gellissen, G., Piontek, M., Dahlems, U., Jenzelewski, V., Gavagan, J. E., DiCosimo, R., Anton, D. I. & Janowicz, Z. A. (1996) Recombinant Hansenula polymorpha as a biocatalyst: coexpression of the spinach glycolate oxidase (GO) and the S. cerevisiae catalase T (CTT1) gene. Appl. Microbiol. Biotechnol. 46, 46-54.

50

Gerber, P. and Müller, K. (1995) Moloc molecular modeling software. J. Comput. Aided Mol. Des. 9, 251-268 Hinnen, A., Hicks, J. B. & Fink, G, R. (1978) Transformation of yeast. Proc. Natl. Acad. Sci. USA 75, 1929-1933. Imanaka, T., Shibazaki, M. & Takagi, M. (1986). A new way of enhancing the thermostability of proteases. Nature 324, 695-697.

55

Janes, M., Meyhack, B., Zimmermann, W. & Hinnen, A. (1990) The influence of GAP promoter variants on hirudine production, average plasmid copy number and cell growth in Saccharomyces cerevisiae. Curr. Genet. 18, 97-103. Karpusas, M., Baase, W. A., Matsumura, M. & Matthews, B. W. (1989). Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc. Natl. Acad. Sci.(USA) 86, 8237-8241.

Lehmann, L., Kostrewa, D., Wyss, M., Brugger, R., D'Arcy, A., Pasamontes, L., van Loon, A. (2000), From DNA

- sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase, *Protein Engineering* 13, 49-57.
- Margarit, I., Campagnoli, S., Frigerio, F., Grandi, G., Fillipis, V. D. & Fontana, A. (1992). Cumulative stabilizing effects of glycine to alanine substitutions in *Bacillus subtilis* neutral protease. *Prot. Eng.* 5, 543-550.
- Matthews, B. W. (1987a). Genetic and structural analysis of the protein stability problem. *Biochemistry* 26, 6885-6888.
 - Matthews, B. W. (1993). Structural and genetic analysis of protein stability. *Annu. Rev. Biochem.* 62, 139-160.
 - Matthews, B. W., Nicholson, H. & Becktel, W. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. *Proc. Natl. Acad. Sci. (USA)* 84, 6663-6667.
- Mitchell, D. B., Vogel, K., Weimann, B. J., Pasamontes, L. & van Loon, A. P. G. M. (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi *Aspergillus terreus* and *Myceliophthora thermophila*, *Microbiology* 143, 245-252.
 - Mullaney, E. J., Hamer, J. E., Roberti, K. A., Yelton, M. M. & Timberlake, W. E. (1985) Primary structure of the *trpC* gene from *Aspergillus nidulans*. *Mol. Gen. Genet.* 199, 37-46.
- Munoz, V. & Serrano, L. (1995). Helix design, prediction and stability. Curr. Opin. Biotechnol. 6, 382-386.
 - Pace, N. C., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. *Prot. Sci.* 4, 2411-2423.
 - Pantoliano, M. W., Landner, R. C., Brian, P. N., Rollence, M. L., Wood, J. F. & Poulos, T. L. (1987). Protein engineering of subtilisin BPN': enhanced stabilization through the introduction of two cysteines to form a disulfide bond. *Biochemistry* 26, 2077-2082.
 - Pasamontes, L., Haiker, M., Henriquez-Huecas, M., Mitchell, D. B. & van Loon, A. P. G. M. (1997a). Cloning of the phytases from *Emericella nidulans* and the thermophilic fungus *Talaromyces thermophilus*. *Biochim. Biophys. Acta* 1353, 217-223.
- Pasamontes, L., Haiker, M., Wyss, M., Tessier, M. & van Loon, A. P. G. M. (1997) Cloning, purification and characterization of a heat stable phytase from the fungus *Aspergillus fumigatus, Appl. Environ. Microbiol.* 63, 1696-1700. Piddington, C. S., Houston, C. S., Paloheimo, M., Cantrell, M., Miettinen-Oinonen, A. Nevalainen, H., & Rambosek, J. (1993) The cloning and sequencing of the genes encoding phytase (*phy*) and pH 2.5-optimum acid phosphatase (*aph*) from *Aspergillus niger* var. *awamori. Gene* 133, 55-62.
 - Purvis, I. J., Bettany, A. J. E., Santiago, T. C., Coggins, J. R., Duncan, K., Eason, R. & Brown, A. J. P. (1987). The efficiency of folding of some proteins is increased by controlled rates of translation *in vivo. J. Mol. Biol.* 193, 413-417.
 - Risse, B., Stempfer, G., Rudolph, R., Schumacher, G. & Jaenicke, R. (1992). Characterization of the stability effect of point mutations of pyruvate oxidase from *Lactobacillus plantarum*: protection of the native state by modulating coenzyme binding and subunit interaction. *Prot. Sci.* 1, 1710-1718.
- Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
 - Sauer, R., Hehir, K., Stearman, R., Weiss, M., Jeitler-Nilsson, A., Suchanek, E. & Pabo, C. (1986). An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of 1-repressor. *Biochemistry* 25, 5992-5999.
- Serrano, L., Day, A. G. & Fersht, A. R. (1993). Step-wise mutation of barnase to binase. A procedure for engineering increased stability of proteins and an experimental analysis of the evolution of protein stability. J. Mol. Biol. 233, 305-312.
 - Sheman, J. P., Finck, G. R. & Hicks, J. B. (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor University.
- Steipe, B., Schiller, B., Plueckthun, A. & Steinbach, S. (1994). Sequence statistics reliably predict stabilizing mutations in a protein domain. *J. Mol. Biol.* 240, 188-192.
 - van den Burg, B., Vriend, G., Veltman, O. R., Venema & G., Eijsink, V. G. H. (1998). Engineering an enzyme to resist boiling. *Proc. Natl. Acad. Sci. (USA)* 95, 2056-2060.
 - Van Etten, R.L. (1982) Human prostatic acid phosphatase: a histidine phosphatase. *Ann. NY Acad. Sci.* 390, 27-50.
 - van Hartingsveldt, W., van Zeijl, C. M. F., Harteveld, G. M., Gouka, R. J., Suykerbuyk, M. E. G., Luiten, R. G. M., van Paridon, P. A., Selten, G. C. M., Veenstra, A. E., van Gorcom, R. F. M., & van den Hondel, C. A. M. J. J. (1993) Cloning, characterization and overexpression of the phytase-encoding gene (*phyA*) of *Aspergillus niger. Gene* 127, 87-94.

55

50

20

Annex to the application documents - subsequently filed sequence listing

[0112]

	SEQUENCE LISTING. EXE	
10	<110> F. Hoffmann-La Roche AG	
10	<120> Continuous fermentation process	
	<130> Case 20486 EP2	
15	<140> EP 00121663.9 <141> 2000-10-04	
	<150> EP 99120289.6 <151> 1999-10-11	
20	<150> EP 00119676.5 <151> 2000-09-08	
	<160> 113	
25	<170> PADAT Sequenzmodul, Version 1.0	
30	<210> 1 <211> 26 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
35	<400> 1	
	tatatgaatt catgggcgtg ttcgtc	26
40	<210> 2 <211> 22 <212> DNA <213> Artificial Sequence	
45	<220> <223> Primer	
	<400> 2	
50	tgaaaagttc attgaaggtt tc	22
	<210> 3 <211> 22 <212> DNA	
55	<pre><212> DNA </pre> <pre><213> Artificial Sequence</pre>	

SEQUENCE LISTING.txt

	<220>		
5		Primer	
_	\L L J >	1 1 met	
	<400×	2	
	<400>	3	
10	tette	gaaag cagtacaagt ac	22
70			
	<210>	4	
	<211>		
	<212>		
15			
	\Z13 /	Artificial Sequence	
	<220>		
	<223>	Primer	
20	<400>	4	
	tatato	gaatt cttaagcgaa ac	22
	<210>	5	
25	<211>	22	
	<212>		
		Artificial Sequence	
	-220	THE CITE OF THE COLOR	
	<220>	•	
		Primer	
30	12437	Filmer	
	-100-	г	
	<400>	5	
05	tcttcg	gaaag cagtacacaa ac	22
35			
	<210>		
	<211>	32	
	<212>	DNA	
40	<213>	Artificial Sequence	
40		•	
	<220>		
		Primer	
	<400>	6	
45	74002		
- -			
	c=c++~	taga ataoataata tagataatta t-	2.0
	cactig	rtggg gtacctactc tccatacttc tc	32
	-010	0	
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	

32

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 7	
10	gagaagtatg gagagtaggt accccacaag tg 3	32
15	<210> 8 <211> 31 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
20	<400> 8	
	ggtcaatact ctccattctt ctctttggaa g 3	1
25	<210> 9 <211> 31 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 9	
35	cttccaaaga gaagaatgga gagtattgac c 3	1
	<210> 10 <211> 28 <212> DNA	
40	<213> Artificial Sequence <220>	
	<223> Primer	
45	<400> 10	
	catacttctc tttggcagac gaatctgc 2	8
50	<210> 11 <211> 28 <212> DNA <213> Artificial Sequence	

33

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 11	
10	gcagattcgt ctgccaaaga gaagtatg	28
15	<210> 12 <211> 31 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
20	<400> 12	
	ctccagacgt cccaaaggac tgtagagtta c	31
25	<210> 13 <211> 31 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 13	
35	gtaactctac agtcctttgg gacgtctgga g	31
40	<210> 14 <211> 31 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
45	<400> 14	
	ctccagacgt cccagacggc tgtagagtta c	31
50	<210> 15 <211> 31 <212> DNA <213> Artificial Sequence	

34

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 15	
10	gtaactctac agccgtctgg gacgtctgga g	31
15	<210> 16 <211> 36 <212> DNA <213> Artificial Sequence	
	<223> Primer	
20	<400> 16	
	gatacccaac ttcttctgcg tctaaggctt actctg	36
25	<210> 17 <211> 36 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 17	
35	cagagtaagc cttagacgca gaagaagttg ggtatc	36
40	<210> 18 <211> 29 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
45	<400> 18	
	cttctaagtc taagaagtac tctgctttg	29
50	<210> 19 <211> 29 <212> DNA <213> Artificial Sequence	

35

SEQUENCE LISTING.txt

5	<220> <223>	Primer	
	<400>	19	
10	caaagc	agag tacttettag acttagaag	29
	<210> :<211> :<212> :	41	
15		Artificial Sequence	
	<220> <223>	Primer	
20	<400>	20	
	gcttac	tetg etttgattga aeggatteaa aagaaegeta e	41
05	<210> 3		
25	<211>		
	<212> 5		
	<213> 2	Artificial Sequence	
	<220>		
30	<223> 1	Primer	
	<400> 2	21	
35	gtagcgt	ttct tttgaatccg ttcaatcaaa gcagagtaag c	41
	<210> 2		
	<211> 2	29	
	<212> I	DNA	
40	<213> 1	Artificial Sequence	
	<220>		
	<223> I	Primer	
	<400> 2	22	
45			
	ccattcg	ggtg aacagcaaat ggttaactc	29
50	<210> 2	23	
50	<211> 2		
	<212> I		
		Artificial Sequence	

36

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 23	
10	gagttaacca tttgctgttc accgaatgg	29
15	<210> 24 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer	
20	<400> 24	
	gatacaaggc tctcgcgaga aacattgttc	30
25	<210> 25 <211> 31 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 25	
35	ggaacaatgt ttctcgcgag agccttgtat c	31
	<210> 26 <211> 30 <212> DNA	
40	<213> Artificial Sequence <220>	
45	<223> Primer <400> 26	
	gattgttcca ttcgtgcgcg cttctggttc	30
50	<210> 27 <211> 30 <212> DNA <213> Artificial Sequence	

37

SEQUENCE LISTING.txt

5	<220> <223>	Drimor	
3	\2237 I	FIIMEI	
	<400> 2	27	
10	gaaccag	gaag cgcgcacgaa tggaacaatc	30
	<210> 2		
	<211> 3 <212> I		
15		Artificial Sequence	
		-	
	<220> <223> I	Primer	
20	<400> 2	28	
	ctccagt	ttat taacgtgatc attccagaag g	31
	<210> 2		
25	<211> 3		
	<212> I		
	<213> A	Artificial Sequence	
	<220>		
30	<223> I	Primer	
	<400> 2	29	
	ccttctc	ggaa tgatcacgtt aataactgga g	31
35			
	<210> 3	30	
	<211> 3		
	<212> I		
40	<213> A	Artificial Sequence	
	<220>		
	<223> F	Primer	
	<400> 3	30	
45			
	ggctgac	ceca ggggeecaac cacaccaage	30
50	<210> 3	31	
50	<211> 3		
	<212> I		
		Artificial Sequence	

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 31	
10	gettggtgtg gttgggeece tgggteagee	30
15	<210> 32 <211> 32 <212> DNA <213> Artificial Sequence	
20	<223> Primer <400> 32	
20		
	cactttggac catggtcttt gtactgcttt cg	32
25	<210> 33 <211> 32 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 33	
35	cgaaagcagt acaaagacca tggtccaaag tg	32
40	<210> 34 <211> 34 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
45	<400> 34	
	gctttcgaag actctaccct aggtgacgac gttg	34
50	<210> 35 <211> 34 <212> DNA <213> Artificial Sequence	

39

SEQUENCE LISTING.txt

	<220>		
5	<223>	Primer	
	<400>	35	
	C2200	roata acotaganta mantottana aana	34
10	Caacy	regte acetagggta gagtettega aage	34
	010	26	
	<210>		
	<211>		
15	<212>		
15	<213>	Artificial Sequence	
	<220>		
	<223>	Primer	
20	<400>	36	
20			
	ggtgag	gacg ctgaagctaa cttcac	26
	33-3		
	<210>	37	
25	<211>		
	<212>		
		Artificial Sequence	
	\Z13/	Altitital Sequence	
	<220>		
		Primer	
30	44237	Filmer	
	- 4 0 0 -	27	
	<400>	3 /	
	gtgaag	gttag cttcagcgtc gtcacc	26
35			
	<210>		
	<211>		
	<212>		
40	<213>	Artificial Sequence	
,,,			
	<220>		
	<223>	Primer	
	<400>	38	
45			
	ctaact	tcac cgcggtgttc gctccag	27
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	٠,
	<210>	30	
50	<211>		
	<212>		
	<713>	Artificial Sequence	

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 39	
10	ctggagcgaa caccgcggtg aagttag	27
15	<210> 40 <211> 34 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
20	<400> 40	
	getttgtteg etceacetat tagagetaga ttgg	34
25	<210> 41 <211> 34 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 41	
35	ccaatctagc tctaataggt ggagcgaaca aagc	34
40	<210> 42 <211> 26 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
45	<400> 42	
	gccaggtgtt aacttgactg acgaag	26
50	<210> 43 <211> 25 <212> DNA <213> Artificial Sequence	

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 43	
10	ttcgtcagtc aagttaacac ctggc	25
15	<210> 44 <211> 27 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
20	<400> 44	
	gacgaagacg tcgttaactt gatggac	27
25	<210> 45 <211> 27 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 45	
35	gtccatcaag ttaacgacgt cttcgtc	27
40	<210> 46 <211> 28 <212> DNA <213> Artificial Sequence	
	<220><223> Primer	
45	<400> 46	
	gtecattega caetgteget agaactte	28
50	<210> 47 <211> 28 <212> DNA <213> Artificial Sequence	

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 47	
10	gaagttctag cgacagtgtc gaatggac	28
15	<210> 48 <211> 26 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
20	<400> 48	
	ctgacgctac tcagctgtct ccattc	26
25	<210> 49 <211> 26 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 49	
35	gaatggagac agctgagtag cgtcag	26
40	<210> 50 <211> 28 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
45	<400> 50	
	gtctccattc tgtgatttgt tcactcac	28
50	<210> 51 <211> 28 <212> DNA <213> Artificial Sequence	

43

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 51	
10	gtgagtgaac aaatcacaga atggagac	28
15	<210> 52 <211> 26 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
20	<400> 52	
	gctttgttca ccgcggacga atggag	26
25	<210> 53 <211> 26 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 53	
35	ctccattcgt ccgcggtgaa caaagc	26
40	<210> 54 <211> 27 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
45	<400> 54	
	cacgacgaat ggatccaata cgactac	27
50	<210> 55 <211> 27 <212> DNA <213> Artificial Sequence	

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 55	
10	gtagtcgtat tggatccatt cgtcgtg	27
15	<210> 56 <211> 27 <212> DNA <213> Artificial Sequence <220>	
	<223> Primer	
20	<400> 56	
	gacgaatgga gagcgtacga ctacttg	27
25	<210> 57 <211> 27 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 57	
35	caagtagteg tacgetetee attegte	27
	<210> 58 <211> 29 <212> DNA	
40	<213> Artificial Sequence <220>	
	<223> Primer	
45	<400> 58	
	ggtgttggtt tcgttaacga attgattgc	29
50	<210> 59 <211> 29 <212> DNA <213> Artificial Sequence	

45

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 59	
10	gcaatcaatt cgttaacgaa accaacacc	29
15	<210> 60 <211> 28 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
20	<400> 60	
	gctagattga ctcactctcc agttcaag	28
25	<210> 61 <211> 28 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer <400> 61	
35	cttgaactgg agagtgagtc aatctagc	28
40	<210> 62 <211> 32 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
45	<400> 62	
	ctcacgacaa cactatgata tctattttct tc	32
50	<210> 63 <211> 32 <212> DNA <213> Artificial Sequence	

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 63	
10	gaagaaaata gatatcatag tgttgtcgtg ag	32
15	<210> 64 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer	
20	<400> 64	
	cgacaactcc atggtttcta ttttcttcgc	30
25	<210> 65 <211> 30 <212> DNA <213> Articial Sequence	
30	<220> <223> Primer <400> 65	
35	gcgaagaaaa tagaaaccat ggagttgtcg	30
40	<210> 66 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer	
45	<400> 66	
	gtacaacggt accaagccat tgtctac	27
50	<210> 67 <211> 27 <212> DNA <213> Articial Sequence	

47

SEQUENCE LISTING.txt

5	<220> <223> Pri	imer	
	<400> 67		
10	gtagacaat	tg gcttggtacc gttgtac	27
15	<210> 68 <211> 25 <212> DNA <213> Art <220> <223> Pri	tificial Sequence	
20	<400> 68		
	ctgacggtt	ta cgctgcttct tggac	25
25	<210> 69 <211> 25 <212> DNA <213> Art	A Lificial Sequence	
30	<220> <223> Pri	imer	
	<400> 69		
35	gtccaagaa	ag cagcgtaacc gtcag	25
40	<210> 70 <211> 26 <212> DNA <213> Art	A Lificial Sequence	
	<220> <223> Pri	imer	
45	<400> 70		
	ctgttccat	tt egetgetaga gettae	26
50	<210> 71 <211> 26 <212> DNA <213> Art	A cificial Sequence	

48

SEQUENCE LISTING.txt

-	<220>	
5	<223> Primer	
	<400> 71	
10	gtaagctcta gcagcgaatg gaacag	26
10		_ •
	<210> 72	
	<211> 27	
	<212> DNA	
15	<213> Artificial Sequence	
	<220>	
	<223> Primer	
20	<400> 72	
20		
	gatgcaatgt gaagctgaaa aggaacc	27
		2,
05	<210> 73	
25	<211> 27	
	<212> DNA <213> Artificial Sequence	
	value Altificial Sequence	
	<220>	
30	<223> Primer	
	<400> 73	
	ggttcctttt cagcttcaca ttgcatc	27
35		
	<210> 74	
	<211> 26	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 74	
45	Z4002 14	
	cacggttgtg gtgtcgacaa gttggg	26
50	<210> 75	
	<211> 26 <212> DNA	
	<213> Artificial Sequence	
	.asoassetsear ocquence	

49

SEQUENCE LISTING.txt

5	<220> <223>	Primer	
	<400>	75	
10	cccaa	cttgt cgacaccaca accgtg	26
15	<220>	30	
20	<400>		
	gatcto	ggtgg caattgggag gaatgtttcg	30
25	<210><211><211><212><213>	30	
30		Primer	
	<400>		
35	cgaaac	catte eteccaattg ceaceagate	30
40	<210><211><212><212><213>	28	
	<220> <223>	Primer	
45	<400>	78	
	cacgta	acteg ceataetttt egetegag	28
50	<210> <211> <212> <213>	28	

50

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 79	
10	ctcgagcgaa aagtatggcg agtacgtg	28
15	<210> 80 <211> 33 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
20	<400> 80	
	ccatactttt cgctcgcgga cgagctgtcc gtg	33
25	<210> 81 <211> 32 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer <400> 81	
35	cacggacage tegteegega gegaaaagta gg	32
	<210> 82 <211> 31 <212> DNA	
40	<213> Artificial Sequence <220> <223> Primer	
45	<400> 82	
	gtataagaag cttattacgg cgatccaggc c	31
50	<210> 83 <211> 31 <212> DNA <213> Artificial Sequence	

51

SEQUENCE LISTING.txt

31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
29

52

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 87	
10	gaagatgctt ctcgaggcga gctcggatg	29
15	<210> 88 <211> 29 <212> DNA <213> Artificial Sequence	
20	<223> Primer <400> 88	
	ctaatggatg tgtccgtttg atacggtag	29
25	<210> 89 <211> 31 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 89	31
35	ctaccgtatc aaacggacac atgtccatta g	71
40	<210> 90 <211> 27 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
45	<400> 90	
	gtggaagaag tacgactacc ttcagtc	27
50	<210> 91 <211> 27 <212> DNA <213> Artificial Sequence	

53

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 91	
10	gactgaaggt agtcgtactt cttccac	27
15	<210> 92 <211> 28 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
20	<400> 92	
	geeeggttga egeattegee agtgeagg	28
25	<210> 93 <211> 28 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer	
	<400> 93	
35	cctgcactgg cgaatgcgtc aaccgggc	28
40	<210> 94 <211> 29 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
45	<400> 94	
	cacacgacaa caccatggtt tocatette	29
50	<210> 95 <211> 29 <212> DNA <213> Artificial Sequence	

SEQUENCE LISTING.txt

5	<220> <223> Primer	
	<400> 95	
10	gaagatggaa accatggtgt tgtcgtgtg	29
15	<210> 96 <211> 30 <212> DNA <213> Artificial Sequence <220>	
20	<223> Primer <400> 96	
	gtggtgcctt tcgccgcgcg agcctacttc	30
25	<210> 97 <211> 30 <212> DNA <213> Artificial Sequence	
30	<220> <223> Primer <400> 97	
35	gaagtagget egegeggega aaggeaceae	30
40	<210> 98 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer	
45	<400> 98	
	tatatcatga gcgtgttcgt cgtgctactg ttc	33
50	<210> 99 <211> 33 <212> DNA <213> Artificial Sequence	

55

SEQUENCE LISTING.txt

5	<220 <223		rime	r												
	<400)> 99	9													
	acco	cgact	cta (caaa	gcga	at to	ctat	agata	a ta	t						33
10	<211 <212)> 10 L> 33 2> DI 3> A1	3	icia:	l Sed	quenc	ce									
15	<220 <223		cime	r												
	<400> 100															
20	acco	ettet	ta d	caaag	gcga	at to	ctata	agata	a tai	t						33
25	<211 <212)> 1(l> 46 l> PH l> Ar	57	lcia:	l Sed	quenc	ce									
23		3> co	onser	ısus	phyt	tase-	-1									
30	<400)> 1()1													
30	Met	Glv	Val	Phe	Val	Val	Leu	Leu	Ser	Ile	Ala	Thr	Leu	Phe	Gly	Ser
	1	_			_ 5					10					15	
			_	20			_		25	_				30	Cys	_
35	Thr	Val	Asp 35	GIA	GLY	Tyr	GIn	Cys 40	Phe	Pro	Glu	Ile	Ser 45	His	Leu	Trp
	Gly	Gln 50	Tyr	Ser	Pro	Tyr	Phe 55	Ser	Leu	Glu	Asp	Glu 60	Ser	Ala	Ile	Ser
40	Pro 65	Asp	Val	Pro	Asp	Asp 70	Суѕ	Arg	Val	Thr	Phe 75	Val	Gln	Val	Leu	Ser 80
40	Arg	His	Gly	Ala	Arg 85	Tyr	Pro	Thr	Ser	Ser 90	Lys	Ser	Lys	Ala	Tyr 95	Ser
	Ala	Leu	Ile	Glu 100	Ala	Ile	Gln	Lys	Asn 105	Ala	Thr	Ala	Phe	Lys 110	Gly	Lys
45	Tyr	Ala	Phe 115	Leu	Lys	Thr	Tyr	Asn 120	Tyr	Thr	Leu	Gly	Ala 125	Asp	Asp	Leu
	Thr	Pro 130	Phe	Gly	Glu	Asn	Gln 135	Met	Val	Asn	Ser	Gly 140	Ile	Lys	Phe	Туг
	145	_	_			150		_	_		155				Arg	160
50	Ser	Gly	Ser	Asp	Arg 165	Val	Ile	Ala	Ser	Ala 170	Glu	Lys	Phe	Ile	Glu 175	Gly
	Phe	Gln	Ser	Ala 180		Leu	Ala	Asp	Pro 185		Ser	Gln	Pro	His 190	Gln	Ala

SEQUENCE LISTING.txt Ser Pro Val Ile Asp Val Ile Ile Pro Glu Gly Ser Gly Tyr Asn Asn Thr Leu Asp His Gly Thr Cys Thr Ala Phe Glu Asp Ser Glu Leu Gly Asp Asp Val Glu Ala Asn Phe Thr Ala Leu Phe Ala Pro Ala Ile Arg Ala Arg Leu Glu Ala Asp Leu Pro Gly Val Thr Leu Thr Asp Glu Asp Val Val Tyr Leu Met Asp Met Cys Pro Phe Glu Thr Val Ala Arg Thr Ser Asp Ala Thr Glu Leu Ser Pro Phe Cys Ala Leu Phe Thr His Asp Glu Trp Arg Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Ala Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro Val Gln Asp His Thr Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Ser Met Ile Ser Ile Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu Ser Thr Thr Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr Val Pro Phe Gly Ala Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu Cys Phe Ala <210> 102 <211> 1426 <212> DNA <213> Artificial Sequence <220> <223> consensus phytase-1 <400> 102 tatatgaatt catgggcgtg ttcgtcgtgc tactgtccat tgccaccttg ttcggttcca cateeggtae egecttgggt eetegtggta atteteacte ttgtgaeact gttgaeggtg gttaccaatg tttcccagaa atttctcact tgtggggtca atactctcca tacttctctt

SEQUENCE LISTING.txt

```
tggaagacga atctgctatt tctccagacg ttccagacga ctgtagagtt actttcgttc
      240
5
      aagttttgtc tagacacggt gctagatacc caacttcttc taagtctaag gcttactctg
      300
      ctttgattga agetattcaa aagaaegeta etgetttcaa gggtaagtae getttettga
      360
      agacttacaa ctacactttg ggtgctgacg acttgactcc attcggtgaa aaccaaatgg
      420
10
      ttaactctgg tattaagttc tacagaagat acaaggcttt ggctagaaag attgttccat
      480
      teattagage ttetggttet gacagagtta ttgettetge tgaaaagtte attgaaggtt
      540
      tecaatetge taagttgget gacceaggtt eteaaceaca ceaagettet ceagttattg
15
      600
      acgttattat tecagaagga teeggttaca acaacacttt ggaccaeggt acttgtactg
      ctttcgaaga ctctgaattg ggtgacgacg ttgaagctaa cttcactgct ttgttcgctc
      720
20
      cagetattag agetagattg gaagetgact tgccaggtgt tactttgact gacgaagacg
      780
      ttgtttactt gatggacatg tgtccattcg aaactgttgc tagaacttct gacgctactg
      840
      aattgtetee attetgtget ttgtteacte acgacgaatg gagacaatac gactacttge
25
      aatetttggg taagtactac ggttacggtg ctggtaaccc attgggtcca gctcaaggtg
      ttggtttcgc taacgaattg attgctagat tgactagatc tccagttcaa gaccacactt
      1020
      ctactaacca cactttggac tctaacccag ctactttccc attgaacqct actttgtacq
30
      1080
      ctgacttctc tcacgacaac tctatgattt ctattttctt cgctttgggt ttgtacaacg
      1140
      qtactgctcc attgtctact acttctgttg aatctattga agaaactgac ggttactctg
      1200
35
      cttcttggac tgttccattc ggtgctagag cttacgttga aatgatgcaa tgtcaagctg
      aaaaqqaacc attggttaga gttttggtta acgacagagt tgttccattg cacggttgtg
      1320
      ctgttgacaa gttgggtaga tgtaagagag acgacttcgt tgaaggtttg tctttcgcta
      1380
40
      gatctggtgg taactgggct gaatgtttcg cttaagaatt catata
      1426
      <210> 103
45
      <211> 467
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> consensus phytase-10
50
      <400> 103
```

SEQUENCE LISTING.txt Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp Gly Gln Tyr Ser Pro Phe Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser Pro Asp Val Pro Lys Gly Cys Arg Val Thr Phe Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys Ser Lys Lys Tyr Ser Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu Thr Pro Phe Gly Glu Gln Gln Met Val Asn Ser Gly Ile Lys Phe Tyr Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Val Arg Ala Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ala Asn Pro His Gln Ala Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ala Gly Tyr Asn Asn Thr Leu Asp His Gly Leu Cys Thr Ala Phe Glu Glu Ser Glu Leu Gly Asp Asp Val Glu Ala Asn Phe Thr Ala Val Phe Ala Pro Pro Ile Arg Ala Arg Leu Glu Ala His Leu Pro Gly Val Asn Leu Thr Asp Glu Asp Val Val Asn Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr Ser Asp Ala Thr Gln Leu Ser Pro Phe Cys Asp Leu Phe Thr His Asp Glu Trp Ile Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Val Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Val Ser Ile Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ala Ala Ser Trp Thr Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Glu Ala Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro Leu His Gly Cys Gly Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp

SEQUENCE LISTING.txt 445 435 440 Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Glu Glu 450 5 455 460 Cys Phe Ala 465 <210> 104 10 <211> 1426 <212> DNA <213> Artificial Sequence <220> 15 <223> consensus phytase-10 <400> 104 tatatgaatt catgggcgtg ttcgtcgtgc tactgtccat tgccaccttg ttcggttcca 20 catcoggtac cgccttgggt cctcgtggta attctcactc ttgtgacact gttgacggtg 120 gttaccaatg tttcccagaa atttctcact tgtggggtca atactctcca ttcttctctt 180 25 tggctgacga atctgctatt tctccagacg ttccaaaggg ttgtagagtt actttcgttc 240 aagttttgtc tagacacggt gctagatacc caacttcttc taagtctaag aagtactctg 300 ctttgattga agctattcaa aagaacgcta ctgctttcaa gggtaagtac gctttcttga 360 30 agacttacaa ctacactttg ggtgctgacg acttgactcc attcggtgaa caacaaatgg 420 ttaactctgg tattaagttc tacagaagat acaaggcttt ggctagaaag attgttccat 480 tegttagage ttetggttet gacagagtta ttgettetge tgaaaagtte attgaaggtt 35 540 tecaatetge taagttgget gacceaggtg ctaacceaca ccaagettet ccagttatta 600 acqttattat tccagaaggt gctggttaca acaacacttt ggaccacggt ttqtgtactq 660 ctttcgaaga atctgaattg ggtgacgacg ttgaagctaa cttcactgct qttttcqctc 40 cacctattag agctagattg gaagctcact tgccaggtgt taacttgact gacgaagacg 780 ttgttaactt gatggacatg tgtccattcg acactgttgc tagaacttct gacgctactc 45 aattgtetee attetgtgae tigtteacte aegacgaatg gatteaatae gactaetige 900 aatctttggg taagtactac ggttacggtg ctggtaaccc attgggtcca gctcaaggtg 960 ttggtttcgt taacgaattg attgctagat tgactcactc tccagttcaa gaccacactt 1020 50 ctactaacca cactitggac tctaacccag ctactitccc attgaacgct actitgtacg 1080 ctgacttctc tcacgacaac actatggttt ctattttctt cgctttgggt ttgtacaacg

60

SEQUENCE LISTING.txt

```
1140
       gtactaagcc attgtctact acttctgttg aatctattga agaaactgac ggttacgctg
5
       1200
       cttcttggac tgttccattc gctgctagag cttacgttga aatgatgcaa tgtgaagctg
       1260
       aaaaggaacc attggttaga gttttggtta acgacagagt tgttccattg cacggttgtg
       1320
       gtgttgacaa gttgggtaga tgtaagagag acgacttcgt tgaaggtttg tctttcgcta
10
       1380
       gatctggtgg taactgggaa gaatgtttcg cttaagaatt catata
       1426
15
       <210> 105
       <211> 467
       <212> PRT
       <213> Artificial Sequence
20
       <223> consensus phytase-1-thermo[8]-Q50T-K91A
       <400> 105
25
       Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
                                             10
                                                                  15
       Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
                     20
                                         25
                                                              30
       Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
                35
                                     40
30
       Gly Thr Tyr Ser Pro Tyr Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser
                                 55
                                                      60
       Pro Asp Val Pro Asp Asp Cys Arg Val Thr Phe Val Gln Val Leu Ser
                             70
                                                  75
       Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Ala Ser Lys Ala Tyr Ser
35
                         85
                                             90
                                                                  95
       Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys
                   100
                                        105
                                                             110
       Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu
                                    120
       Thr Pro Phe Gly Glu Asn Gln Met Val Asn Ser Gly Ile Lys Phe Tyr
40
           130
                                135
                                                     140
       Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala
                            150
                                                155
                                                                     160
       Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly
                        165
                                            170
                                                                 175
45
       Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ser Gln Pro His Gln Ala
                   180
                                        185
                                                             190
       Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ser Gly Tyr Asn Asn
                                    200
                                                         205
       Thr Leu Asp His Gly Thr Cys Thr Ala Phe Glu Asp Ser Glu Leu Gly
           210
                                215
                                                     220
50
       Asp Asp Val Glu Ala Asn Phe Thr Ala Leu Phe Ala Pro Ala Ile Arg
       225
                            230
                                                 235
       Ala Arg Leu Glu Ala Asp Leu Pro Gly Val Thr Leu Thr Asp Glu Asp
```

SEQUENCE LISTING.txt Val Val Tyr Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr Ser Asp Ala Thr Glu Leu Ser Pro Phe Cys Ala Leu Phe Thr His Asp Glu Trp Ile Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Ala Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Ile Ser Ile Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu Cys Phe Ala <210> 106 <211> 1404 <212> DNA <213> Artificial Sequence <220> <223> consensus phytase-1-thermo[8]-Q50T-K91A <400> 106 atgggegtgt tegtegtget actgtecatt gecaecttgt teggttecae atceggtace gccttgggtc ctcgtggtaa ttctcactct tgtgacactg ttgacggtgg ttaccaatgt ttcccagaaa tttctcactt gtggggtacc tactctccat acttctcttt ggcagacgaa tetgetattt eteeagaegt teeagaegae tgtagagtta etttegttea agttttgtet agacacggtg ctagataccc aacttettet gegtetaagg ettactetge tttgattgaa gctattcaaa agaacgctac tgctttcaag ggtaagtacg ctttcttgaa gacttacaac

tacactttgg gtgctgacga cttgactcca ttcggtgaaa accaaatggt taactctggt

SEQUENCE LISTING.txt

	SEQUENCE DISTING. CXC												
5	420 attaagttct 480	acagaagata	caaggctttg	gctagaaaga	ttgttccatt cattagagct								
		acagagttat	tgcttctgct	gaaaagttca	ttgaaggttt ccaatctgct								
		acccaggttc	tcaaccacac	caagcttctc	cagttattaa cgtgatcatt								
10	ccagaaggat 660	ccggttacaa	caacactttg	gaccacggta	cttgtactgc tttcgaagac								
	tctgaattag 720	gtgacgacgt	tgaagctaac	ttcactgctt	tgttcgctcc agctattaga								
	gctagattgg 780	aagctgactt	gccaggtgtt	actttgactg	acgaagacgt tgtttacttg								
15	atggacatgt 840	gtccattcga	cactgtcgct	agaacttctg	acgctactga attgtctcca								
	ttctgtgctt 900	tgttcactca	cgacgaatgg	atccaatacg	actacttgca aagcttgggt								
20	aagtactacg 960	gttacggtgc	tggtaaccca	ttgggtccag	ctcaaggtgt tggtttcgct								
20	aacgaattga 1020	ttgctagatt	gactcactct	ccagttcaag	accacacttc tactaaccac								
	actttggact 1080	ctaacccagc	tactttccca	ttgaacgcta	ctttgtacgc tgacttctct								
25	1140				tgtacaacgg taccaagcca								
	1200				gttactctgc ttcttggact								
	1260				gtcaagctga aaaggaacca								
30	1320				acggttgtgc tgttgacaag								
	1380			gaaggtttgt	ctttcgctag atctggtggt								
	aactgggctg 1404	aatgtttcgc	ttaa										
35													
	<210> 107 <211> 467												
40	<212> PRT <213> Artif	ficial Seque	ence										
,0	<220>												
	<223> conse	ensus phytas	se-10-thermo)[3]-Q50T-K9	91A								
45	<400> 107												
	Met Gly Val	Phe Val Va	al Leu Leu S	Ser Ile Ala	Thr Leu Phe Gly Ser								
	Thr Ser Gly	7 Thr Ala Le	eu Gly Pro A	Arg Gly Asn 25	Ser His Ser Cys Asp								
50	Thr Val Asp	Gly Gly Ty	yr Gln Cys I 40		Ile Ser His Leu Trp								
				Leu Ala Asp	Glu Ser Ala Ile Ser								

SEQUENCE LISTING.txt Pro Asp Val Pro Lys Gly Cys Arg Val Thr Phe Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Ala Ser Lys Ala Tyr Ser Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu Thr Pro Phe Gly Glu Gln Gln Met Val Asn Ser Gly Ile Lys Phe Tyr Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ala Asn Pro His Gln Ala Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ala Gly Tyr Asn Asn Thr Leu Asp His Gly Leu Cys Thr Ala Phe Glu Glu Ser Glu Leu Gly Asp Asp Val Glu Ala Asn Phe Thr Ala Val Phe Ala Pro Pro Ile Arg Ala Arg Leu Glu Ala His Leu Pro Gly Val Asn Leu Thr Asp Glu Asp 5 Val Val Asn Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr Ser Asp Ala Thr Gln Leu Ser Pro Phe Cys Asp Leu Phe Thr His Asp Glu Trp Ile Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Val Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Val Ser Ile Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Glu Ala Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro Leu His Gly Cys Gly Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Glu Glu Cys Phe Ala

SEQUENCE LISTING.txt

```
<210> 108
       <211> 1404
5
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> consensus phytase-10-thermo-[3]-Q50T-K91A
10
       <400> 108
       atgggcgtgt tcgtcgtgct actgtccatt gccaccttgt tcggttccac atccggtacc
15
       gccttgggtc ctcgtggtaa ctctcactct tgtgacactg ttgacggtgg ttaccaatgt
       120
       ttcccagaaa tttctcactt gtggggtaca tactctccat tcttctcttt ggctgacgaa
       180
       tetgetattt etecagaegt tecaaagggt tgtagagtta etttegttea agttttgtet
       240
20
       agacacggtg ctagataccc aacttcttct gcgtctaagg cgtactctgc tttgattgaa
       300
       gctattcaaa agaacgctac tgctttcaag ggtaagtacg ctttcttgaa gacttacaac
       360
       tacactttgg gtgctgacga cttgactcca ttcggtgaac aacaaatggt taactctggt
25
       420
       attaagttct acagaagata caaggctttg gctagaaaga ttgttccatt cattagagct
       480
       totggttotg acagagttat tgcttotgot gaaaagttoa ttgaaggttt ccaatotgot
       540
       aagttggctg acccaggtgc taacccacac caagcttctc cagttattaa cgttattatt
30
       600
       ccagaaggtg ctggttacaa caacactttg gaccacggtt tgtgtactgc tttcgaagaa
       660
       totgaattgg gtgacgacgt tgaagctaac ttcactgctg ttttcgctcc accaattaga
35
       gctagattgg aagctcactt gccaggtgtt aacttgactg acgaagacgt tgttaacttg
       780
       atggacatgt gtccattcga cactgttgct agaacttctg acgctactca attgtctcca
       840
       ttetgtgaet tgtteactea egaegaatgg atteaataeg aetaettgea atetttgggt
       900
40
       aagtactacg gttacggtgc tggtaaccca ttgggtccag ctcaaggtgt tggtttcgtt
       960
       aacgaattga ttgctagatt gactcactct ccagttcaag accacacttc tactaaccac
       1020
       actitiggact ctaacccage tactiticca tigaacgeta ctitigtacge tigactictet
45
       1080
       cacgacaaca ctatggtttc tattttcttc gctttgggtt tgtacaacgg tactaagcca
       1140
       ttgtctacta cttctgttga atctattgaa gaaactgacg gttactctgc ttcttggact
       1200
       gttecatteg etgetagage ttaegttgaa atgatgeaat gtgaagetga aaaggaacea
50
       1260
       ttggttagag ttttggttaa cgacagagtt gttccattgc acggttgtgg tgttgacaag
       1320
```

65

SEQUENCE LISTING.txt

ttgggtagat gtaagagaga cgacttcgtt gaaggtttgt ctttcgctag atctggtggt

aactgggaag aatgtttcgc ttaa

<210> 109

<211> 467 <212> PRT

<213> Artificial Sequence

<223> A.fumigatus ATCC 13073 phytase alpha-mutant

<400> 109

Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn His Ser Lys Ser Cys Asp Thr Val Asp Leu Gly Tyr Gln Cys Ser Pro Ala Thr Ser His Leu Trp Gly Thr Tyr Ser Pro Tyr Phe Ser Leu Glu Asp Glu Leu Ser Val Ser Ser Lys Leu Pro Lys Asp Cys Arg Ile Thr Leu Val Gln Val Leu Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys Ser Lys Lys Tyr Lys Lys Leu Ile Thr Ala Ile Gln Ala Asn Ala Thr Asp Phe Lys Gly Lys Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu Thr Pro Phe Gly Glu Gln Gln Leu Val Asn Ser Gly Ile Lys Phe Tyr Gln Arg Tyr Lys Ala Leu Ala Arg Ser Val Val Pro Phe Ile Arg Ala Ser Gly Ser Asp Arg Val Ile Ala Ser Gly Glu Lys Phe Ile Glu Gly Phe Gln Gln Ala Lys Leu Ala Asp Pro Gly Ala Thr Asn Arg Ala Ala Pro Ala Ile Ser Val Ile Ile Pro Glu Ser Glu Thr Phe Asn Asn Thr Leu Asp His Gly Val Cys Thr Lys Phe Glu Ala Ser Gln Leu Gly Asp Glu Val Ala Ala Asn Phe Thr Ala Leu Phe Ala Pro Asp Ile Arg Ala Arg Leu Glu Lys His Leu Pro Gly Val Thr Leu Thr Asp Glu Asp Val Val Ser Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr Ser Asp Ala Ser Gln Leu Ser Pro Phe Cys Gln Leu Phe Thr His Asn Glu Trp Lys Lys Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly

SEOUENCE LISTING.txt Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Ile Gly Phe Thr Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro Val Gln Asp His Thr Ser Thr Asn Ser Thr Leu Val Ser Asn Pro Ala Thr Phe Pro Leu Asn Ala Thr Met Tyr Val Asp Phe Ser His Asp Asn Ser Met Val Ser Ile Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Glu Pro Leu Ser Arg Thr Ser Val Glu Ser Ala Lys Glu Leu Asp Gly Tyr Ser Ala Ser Trp Val Val Pro Phe Gly Ala Arg Ala Tyr Phe Glu Thr Met Gln Cys Lys Ser Glu Lys Glu Pro Leu Val Arg Ala Leu Ile Asn Asp Arg Val Val Pro Leu His Gly Cys Asp Val Asp Lys Leu Gly Arg Cys Lys Leu Asn Asp Phe Val Lys Gly Leu Ser Trp Ala Arg Ser Gly Gly Asn Trp Gly Glu Cys Phe Ser <210> 110 <211> 1404 <212> DNA <213> Artificial Sequence <220> <223> A.fumigatus ATCC 13073 phytase alpha-mutant <400> 110 atgggggttt tcgtcgttct attatctatc gcgactctgt tcggcagcac atcgggcact gegetgggee eeegtggaaa teacteeaag teetgegata eggtagaeet agggtaeeag tgctcccctg cgacttctca tctatggggc acgtactcgc catacttttc gctcgaggac gagctgtccg tgtcgagtaa gcttcccaag gattgccgga tcaccttggt acaggtgcta tegegecatg gagegeggta eccaaceage tecaagagea aaaagtataa gaagettatt acggegatee aggeeaatge cacegaette aagggeaagt acgeettttt gaaqacqtae aactatactc tgggtgcgga tgacctcact ccctttgggg agcagcagct ggtgaactcg ggcatcaagt totaccagag gtacaaggot otggogogoa gtgtggtgco gtttattogo gcctcaggct cggaccgggt tattgcttcg ggagagaagt tcatcgaggg gttccagcag gcgaagctgg ctgatcctgg cgcgacgaac cgcgccgctc cggcgattag tgtgattatt

SEQUENCE LISTING.txt

```
ceggagageg agaegtteaa caataegetg gaccaeggtg tgtgcaegaa gtttgaggeg
       660
5
       agtcagctgg gagatgaggt tgcggccaat ttcactgcgc tctttgcacc cgacatccga
       720
       gctcgcctcg agaagcatct tcctggcgtg acgctgacag acgaggacgt tgtcagtcta
       780
       atggacatgt gtccgtttga tacggtagcg cgcaccagcg acgcaagtca gctgtcaccg
       840
10
       ttetgteaac tetteactea caatgagtgg aagaagtacg actacettea gteettggge
       900
       aagtactacg gctacggcgc aggcaaccct ctgggaccgg ctcaggggat agggttcacc
       aacgagetga ttgeceggtt gaegegtteg ceagtgeagg accaeaceag caetaaeteg
15
       1020
       actctagtct ccaacccggc caccttcccg ttgaacgcta ccatgtacgt cgacttttca
       1080
       cacgacaaca gcatggtttc catcttcttt gcattgggcc tgtacaacgg cactgaaccc
       1140
       ttgtcccgga cctcggtgga aagcgccaag gaattggatg ggtattctgc atcctgggtg
20
       1200
       gtgeettteg gegegegage etaettegag aegatgeaat geaagtegga aaaggageet
       1260
       cttgttcgcg ctttgattaa tgaccgggtt gtgccactgc atggctgcga tgtggacaag
       1320
25
       ctggggcgat gcaagctgaa tgactttgtc aagggattga gttgggccag atctgggggc
       1380
       aactggggag agtgctttag ttga
       1404
30
       <210> 111
       <211> 467
       <212> PRT
       <213> Artificial Sequence
35
       <220>
       <223> consensus phytase-7
       <400> 111
40
       Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
                                             10
       Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
                           Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
       Thr Val Asp Gly Gly
45
                35
                                     40
                                                          45
       Gly Gln Tyr Ser Pro Tyr Phe Ser Leu Glu Asp Glu Ser Ala Ile Ser
            50
                                 55
                                                      60
       Pro Asp Val Pro Asp Asp Cys Arg Val Thr Phe Val Gln Val Leu Ser
                             70
        65
                                                 75
                                                                      80
```

55

50

Arg His Gly Ala Arg Tyr Pro Thr Asp Ser Lys Gly Lys Lys Tyr Ser

Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys

105

90

95

110

85

SEQUENCE LISTING.txt Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu Thr Pro Phe Gly Glu Asn Gln Met Val Asn Ser Gly Ile Lys Phe Tyr Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala Ser Gly Ser Ser Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ser Gln Pro His Gln Ala Ser Pro Val Ile Asp Val Ile Ile Ser Glu Ala Ser Ser Tyr Asn Asn Thr Leu Asp Pro Gly Thr Cys Thr Ala Phe Glu Asp Ser Glu Leu Ala Asp Thr Val Glu Ala Asn Phe Thr Ala Leu Phe Ala Pro Ala Ile Arg Ala Arg Leu Glu Ala Asp Leu Pro Gly Val Thr Leu Thr Asp Thr Glu Val Thr Tyr Leu Met Asp Met Cys Ser Phe Glu Thr Val Ala Arg Thr Ser Asp Ala Thr Glu Leu Ser Pro Phe Cys Ala Leu Phe Thr His Asp Glu Trp Arg His Tyr Asp Tyr Leu Gln Ser Leu Lys Lys Tyr Tyr Gly His Gly Ala Gly Asn Pro Leu Gly Pro Thr Gln Gly Val Gly Phe Ala Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro Val Gln Asp His Thr Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Gly Ile Ile Ser Ile Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu Ser Thr Thr Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ser Ala Trp Thr Val Pro Phe Ala Ser Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu Cys Phe Ala <210> 112 <211> 1426 <212> DNA <213> Artificial Sequence <220> <223> consensus phytase-7

SEQUENCE LISTING.txt

<400> 112

5

		catgggcgtg	ttcgtcgtgc	tactgtccat	tgccaccttg	ttcggttcca
	60 cateeggtae 120	cgccttgggt	cctcgtggta	attctcactc	ttgtgacact	gttgacggtg
10		tttcccagaa	atttctcact	tgtggggtca	atactctcca	tacttctctt
		atctgctatt	tctccagacg	ttccagacga	ctgtagagtt	actttcgttc
15	aagttttgtc 300	tagacacggt	gctagatacc	caactgactc	taagggtaag	aagtactctg
	360				gggtaagtac	
	agacttacaa 420	ctacactttg	ggtgctgacg	acttgactcc	attcggtgaa	aaccaaatgg
20	ttaactctgg 480	tattaagttc	tacagaagat	acaaggcttt	ggctagaaag	attgttccat
	tcattagagc 540	ttctggttct	tctagagtta	ttgcttctgc	tgaaaagttc	attgaaggtt
	tccaatctgc 600	taagttggct	gacccaggtt	ctcaaccaca	ccaagcttct	ccagttattg
25	acgttattat 660	ttctgacgct	tcttcttaca	acaacacttt	ggacccaggt	acttgtactg
	ctttcgaaga 720	ctctgaattg	gctgacactg	ttgaagctaa	cttcactgct	ttgttcgctc
99	cagctattag 780	agctagattg	gaagctgact	tgccaggtgt	tactttgact	gacactgaag
30	ttacttactt 840	gatggacatg	tgttctttcg	aaactgttgc	tagaacttct	gacgctactg
	aattgtctcc 900	attctgtgct	ttgttcactc	acgacgaatg	gagacactac	gactacttgc
<i>35</i>	aatctttgaa 960	gaagtactac	ggtcacggtg	ctggtaaccc	attgggtcca	actcaaggtg
	ttggtttcgc 1020	taacgaattg	attgctagat	tgactagatc	tccagttcaa	gaccacactt
	ctactaacca 1080	cactttggac	tctaacccag	ctactttccc	attgaacgct	actttgtacg
40	ctgacttctc 1140	tcacgacaac	ggtattattt	ctattttctt	cgctttgggt	ttgtacaacg
	gtactgctcc 1200	attgtctact	acttctgttg	aatctattga	agaaactgac	ggttactctt
	ctgcttggac 1260	tgttccattc	gcttctagag	cttacgttga	aatgatgcaa	tgtcaagctg
45	aaaaggaacc 1320	attggttaga	gttttggtta	acgacagagt	tgttccattg	cacggttgtg
	ctgttgacaa 1380	gttgggtaga	tgtaagagag	acgacttcgt	tgaaggtttg	tctttcgcta
50		taactgggct	gaatgtttcg	cttaagaatt	catata	
50	<210> 113 <211> 467					

SEQUENCE LISTING.txt

	SEQUENCE LISTING.txt															
5		<212> PRT <213> Artificial Sequence														
	<22 <22		onsei	nsus	phy	tase	-12									
	<40	0> 1:	13													
10	Met 1	Gly	Val	Phe	Val 5	Val	Leu	Leu	Ser	Ile 10	Ala	Thr	Leu	Phe	Gly 15	Ser
15	Thr	Ser	Gly	Thr 20	Ala	Leu	Gly	Pro	Arg 25	Gly	Asn	Ser	His	Ser 30	Cys	Asp
	Thr	Val	Asp 35	Gly	Gly	Туr	Gln	Cys 40	Phe	Pro	Glu	Ile	Ser 45	Ser	Asn	Trp
20	Ser	Pro 50	Tyr	Ser	Pro	Tyr	Phe 55	Ser	Leu	Ala	Asp	Glu 60	Ser	Ala	Ile	Ser
	Pro 65	Asp	Val	Pro	Lys	Gly 70	Cys	Arg	Val	Thr	Phe 75	Val	Gln	Val	Leu	Gln 80
25	Arg	His	Gly	Ala	Arg 85	Phe	Pro	Thr	Ser	Gly 90	Ala	Ala	Thr	Arg	Ile 95	Ser
	Ala	Leu	Ile	Glu 100	Ala	Ile	Gln	Lys	Asn 105	Ala	Thr	Ala	Phe	Lys 110	Gly	Lys
30	Tyr	Ala	Phe 115	Leu	Lys	Thr	Tyr	Asn 120	Tyr	Thr	Leu	Gly	Ala 125	Asp	Asp	Leu
	Va1	Pro 130	Phe	Gly	Ala	Asn	Gln 135	Ser	Ser	Gln	Ala	Gly 140	Ile	Lys	Phe	Tyr
35	Arg 145	Arg	Tyr	Lys	Ala	Leu 150	Ala	Arg	Lys	Ile	Val 155	Pro	Phe	Ile	Arg	Ala 160
40	Ser	Gly	Ser	qaA	Arg 165	Val	Ile	Asp	Ser	Ala 170	Thr	Asn	Trp	Ile	Glu 175	Gly
40	Phe	Gln	Ser	Ala 180	Lys	Leu	Ala	Asp	Pro 185	Gly	Ala	Asn	Pro	His 190	Gln	Ala
45	Ser	Pro	Val 195	Ile	Asn	Val	Ile	Ile 200	Pro	Glu	Gly	Ala	Gly 205	Tyr	Asn	Asn
	Thr	Leu 210	Asp	His	Gly	Leu	Cys 215	Thr	Ala	Phe	Glu	Glu 220	Ser	Glu	Leu	Gly
50	Asp 225	Asp	Val	Glu	Ala	Asn 230	Phe	Thr	Ala	Val	Phe 235	Ala	Pro	Pro	Ile	Arg 240
	Ala	Arg	Leu	Glu	Ala 245	His	Leu	Pro	Gly	Val 250	Asn	Leu	Thr	Asp	Glu 255	Asp

SEQUENCE LISTING.txt

5	Val	Val	Asn	Leu 260	Met	Asp	Met	Суѕ	Pro 265	Phe	Asp	Thr	Val	Ala 270	Arg	Thr
	Ser	Asp	Ala 275	Thr	Glu	Leu	Ser	Pro 280	Phe	Cys	Asp	Leu	Phe 285	Thr	His	Asp
10	Glu	Trp 290	Ile	Gln	Tyr	Asp	Tyr 295	Leu	Gly	Asp	Leu	Asp 300	Lys	Tyr	Tyr	Gly
15	Thr 305	Gly	Ala	Gly	Asn	Pro 310	Leu	Gly	Pro	Ala	Gln 315	Gly	Val	Gly	Phe	Val 320
	Asn	Glu	Leu	Ile	Ala 325	Arg	Leu	Thr	His	Ser 330	Pro	Val	Gln	Asp	His 335	Thr
20	Ser	Thr	Asn	His 340	Thr	Leu	Asp	Ser	Asn 345	Pro	Ala	Thr	Phe	Pro 350	Leu	Asn
	Ala	Thr	Leu 355	Tyr	Ala	Asp	Phe	Ser 360	His	Asp	Asn	Thr	Met 365	Val	Ala	Ile
25	Phe	Phe 370	Ala	Leu	Gly	Leu	Tyr 375	Asn	Gly	Thr	Lys	Pro 380	Leu	Ser	Thr	Thr
	Ser 385	Val	Glu	Ser	Ile	Glu 390	Glu	Thr	Asp	Gly	Tyr 395	Ser	Ala	Ser	Trp	Leu 400
30	Val	Pro	Phe	Ser	Ala 405	Arg	Met	Tyr	Val	Glu 410	Met	Met	Gln	Cys	Glu 415	Ala
35	Glu	Lys	Glu	Pro 420	Leu	Val	Arg	Val	Leu 425	Val	Asn	Asp	Arg	Val 430	Val	Pro
	Leu	His	Gly 435	Cys	Gly	Val	Asp	Lys 440	Leu	Gly	Arg	Cys	Lys 445	Arg	Asp	Asp
40	Phe	Val 450	Glu	Gly	Leu	Ser	Phe 455	Ala	Arg	Ser	Gly	Gly 460	Asn	Trp	Glu	Glu
	Cys 465	Phe	Ala													

Claims

45

50

55

1. A fermentation assembly comprising

a vessel suitable for carrying out reactions involving living cells;

at least two storage flasks connected to said vessel for supply of liquids and means to transport said liquids from said storage flasks to said vessel;

individual appliances monitoring the supply of the contents of said storage flasks to said vessel;

a harvest flask connected to said vessel and means to transport fermentation broth from said vessel to said harvest flask; and

- a device for controlling and maintaining a constant dilution rate in said vessel with varying rates of individual supply of liquid from said storage flasks to said vessel.
- 2. An assembly as in claim 1 and in accordance with Figure 1 comprising

5

10

15

20

35

40

50

55

- a fermentor 1 equipped with inlet tubes 2a from storage flasks 2 for supply of liquids; pumps 3 for transporting liquids from the storage flasks 2 to fermentor 1; scales 4 for monitoring the amount of liquids supplies to and discharged from the fermentor; gas inlet tubes 9 and outlet tubes 10; pump 6 for discharging fermentation broth via outlet tubes 5a to a harvest flask 5; main controlling unit 7 for overall process monitoring and steering; controlling unit 11 for monitoring and steering individual control systems 17 for temperature, pH, gas pressure, fermentor content and antifoam agents; circuit 12 including pump 13 for gas supply and taking samples; gas inlet and outlet flow control 14 and 15; and, optionally, sterile filters 16 and thermostating unit 8.
 - 3. An assembly as in claims 1 or 2, wherein said storage flasks comprise individual flasks for solutions of carbon, nitrogen, and mineral sources required for the growth of said cells and optimal formation of the desired reaction product.
 - 4. An assembly as in any one of claims 1 to 3, wherein said storage flasks comprise at least one individual flask containing a controlling agent.
- 5. An assembly as in any one of claims 1 to 4, wherein said storage flasks comprise an individual flask containing water.
 - 6. An assembly as in any one of claims 1 to 5, wherein said vessel contains a fixed bed and/or an expanded bed and/or a moving bed of immobilized living cells.
- 30 7. An assembly as in claim 6 wherein the living cells are immobilized on a porous carrier.
 - 8. A continuous process for the manufacture of proteins from cultures of living cells in which process the nutrients and other agents required for the growth of the cells and the optimal production of the desired protein are fed into the reactor individually at a constant dilution rate.
 - 9. A continuous process according to claim 8 wherein the protein is selected from the group consisting of catalase, lactase, phenoloxidase, oxidase, oxidoreductase, glucanase cellulase, xylanase and other polysaccharide, peroxidase, lipase, hydrolase, esterase, cutinase, protease and other proteolytic enzymes, aminopeptidase, carboxypeptidase, phytase, lyase, pectinase and other pectinolytic enzymes, amylase, glucosidase, mannosidase, isomerase, invertase, transferase, ribonuclease, chitinase, and desoxyribonuclease or the protein is selected from the group of therapeutic proteins such as antibodies, vaccines, antigens, or of antibacterial and/or health-beneficial proteins such as lactoternin, lactoperoxidase or lysozyme.
- 10. A continuous process according to claim 8 wherein the protein is selected from the group consisting of proteinshaving the activity of a therapeutic protein such as antibodies, vaccines, antigens.
 - 11. A process as in any one of claims 8 to 10 wherein the cells are immobilized.
 - 12. A process as in any one of claims 8 to 11 wherein the cell is a phytase-producing microorganism.
 - 13. A process as in claim 12, wherein the phytase-producing microorganism is Hansenula polymorpha.
 - **14.** A process as in claim 13, wherein the phytase-producing microorganism is *Hansenula polymorpha* transformed by a DNA encoding a phytase of fungal or consensus origin.
 - 15. A process as in any one of claims 8 to 14, wherein the cell or microorganism is in a fixed bed and/or an expanded bed and/or a moving bed on a porous carrier.

	16. A process as in any one of claims 8 to 15, wherein the carbon source is glycerol or a sugar like a mono-, di- or polysaccharide.
5	17. A process as in claim 16, wherein the carbon source is glucose.
3	18. A process as in any one of claims 8 to 15, wherein the carbon source is methanol.
	19. A process as in any one of claims 8 to 15, wherein the carbon source is glucose and methanol.
10	20. A process as in 19, wherein the total amount of methanol and glucose is from about 10 to about 500 g/l each.
15	
20	
25	
30	
35	
40	
45	
50	
55	

Figure 2

50 A. terreus 9A-1 KhsDCNSVDh GYQCFPELSH kWGlYAPYFS LQDESPFP1D VPEDChITFV NhsDCTSVDr GYQCFPELSH kWGlYAPYFS A. terreus cbs LQDESPFPlD VPDDChITFV A. niger var. awamori NqsTCDTVDQ GYQCFSETSH LWGQYAPFFS LANESAISPD VPAGCTVTFA A. niger T213 NgsSCDTVDQ GYQCFSETSH LWGQYAPFFS LANESVISPD VPAGCrVTFA A. niger NRRL3135 NqsSCDTVDQ GYQCFSETSH LWGQYAPFFS LANESVISPE VPAGCTVTFA A. fumigatus 13073 GSkSCDTVDl GYQCsPATSH LWGQYSPFFS LEDELSVSSK LPKDCrITLV A. fumigatus 32722 GSkSCDTVD1 GYQCsPATSH LWGQYSPFFS LEDELSVSSK LPKDCrITLV A. fumigatus 58128 GSkSCDTVD1 GYQCsPATSH LWGQYSPFFS LEDELSVSSK LPKDCrITLV A. fumigatus 26906 GSkSCDTVD1 GYQCsPATSH LWGQYSPFFS LEDELSVSSK LPKDCrITLV A. fumigatus 32239 GSkACDTVEl GYQCsPGTSH LWGQYSPFFS LEDELSVSSD LPKDCrVTFV E. nidulans QNHSCNTADG GYQCFPNVSH VWGQYSPYFS IEQESAISeD VPHGCeVTFV T. thermophilus DSHSCNTVEG GYQCrPEISH sWGQYSPFFS LADOSEISPD VPQNCkITFV M. thermophila ESRPCDTpD1 GFQCgTAISH FWGQYSPYFS VpSElDaS.. IPDDCeVTFA Consensus NSHSCDTVDG GYQCFPEISH LWGQYSPYFS LEDESAISPD VPDDC-VTFV NSHSCDTVDG GYQCFPEISH LWGQYSPYFS Consensus phytase LEDESAISPD VPDDCRVTFV 100 A. terreus 9A-1 OVLARHGARS PThSKtKAYA AtlAAIQKSA TafpGKYAFL QSYNYSLDSE QVLARHGARS PTDSKtKAYA AtIAAIQKNA A. terreus cbs TalpGKYAFL KSYNYSMGSE A. niger var. awamori QVLSRHGARY PTESKgKkYS ALIEEIQQNV TtFDGKYAFL KTYNYSLGAD A. niger T213 QVLSRHGARY PTESKgKkYS ALIEEIQQNV TtFDGKYAFL KTYNYSLGAD A. niger NRRL3135 QVLSRHGARY PTDSKgKkYS ALIEEIQQNA TtFDGKYAFL KTYNYSLGAD A. fumigatus 13073 QVLSRHGARY PTSSKsKkYK kLVTAIQaNA Tdfkgkfafl ktynytlgad A. fumigatus 32722 QVLSRHGARY PTSSKsKkYK kLVTAIQaNA TdfKGKFAFL KTYNYTLGAD QVLSRHGARY PTSSKsKkYK kLVTAIQaNA A. fumigatus 58128 TdFKGKFAFL KTYNYTLGAD QVLSRHGARY PTSSKsKkYK kLVTAIQaNA A. fumigatus 26906 TdfkGkfafl kTYNYTLGAD OVLSRHGARY PTASKSKKYK KLVTAIQKNA A. fumigatus 32239

TefkGKFAFL ETYNYTLGAD

E. nidulans TsFwGOYAFL ESYNYTLGAD	QVLSRHGARY	PTESKsKAYS	GLIEAIQKNA	
T. thermophilus TaYKGYYAFL KDYrYqLGAN	QLLSRHGARY	PTSSKtElyS	QLISTIQKTA	
M. thermophila IsygPgYEFL RTYDYTLGAD	QVLSRHGARa	PT1KRaaSYv	DLIDrIHhGA	
Consensus FKGKYAFL KTYNYTLGAD	QVLSRHGARY	PTSSK-KAYS	ALIEAIQKNA	T
Consensus phytase TAFKGKYAFL KTYNYTLGAD	QVLSRHGARY	PTSSKSKAYS	ALIEAIQKNA	
150	101			
A. terreus 9A-1 FVRATDASRV hESAEKFVEG	ELTPFGrNQL	rDlGaQFYeR	YNALTRhInP	
A. terreus cbs FVRAADSSRV hESAEKFVEG	NLTPFGrNQL	qD1GaQFYRR	YDTLTRhInP	
A. niger var. awamori FIRSSGSSRV IASGEKFIEG	_	_	YESLTRNIIP	
A. niger T213 FIRSSGSSRV IASGEKFIEG	DLTPFGEQEL	VNSGIKFYQR	YESLTRNIIP	
A. niger NRRL3135 FIRSSGSSRV IASGKKFIEG	_	VNSGIKFYQR		
A. fumigatus 13073 FIRASGSDRV IASGEKFIEG	-	VNSGIKFYQR		
A. fumigatus 32722 FIRASGSDRV IASGEKFIEG		_	YKALARSVVP	
A. fumigatus 58128 FIRASGSDRV IASGEKFIEG			YKALARSVVP	
A. fumigatus 26906 FIRASGSDRV IASGEKFIEG			YKALARSVVP	
A. fumigatus 32239 FIRSSGSDRV IASGEKFIEG		-	YKALAGSVVP	
E. nidulans FIRASGSDRV VASAEKFING	_		YKNLARKnTP	
T. thermophilus FVRCSGSDRV IASGrlFIEG M. thermophila	_	_	YKSLARNAVP	
FVRTAGqDRV VhSAENFTQG		ANITALDENIA	YRALARKSIP	
Consensus FVRASGSDRV IASAEKFIEG	-	VNSGIKFYRR	YKALARK-VP	
Consensus phytase FIRASGSDRV IASAEKFIEG		VNSGIKFYRR	YKALARKIVP	

151

200	151		
A. terreus 9A-1 NNTLEHSICT AFESSTV	FQTARqDDHh	ANpHQPSPrV	DVaIPEGSAY
A. terreus cbs NNTLEHSICT AFEASTV	FQNARqGDPh	ANpHQPSPrV	DVVIPEGTAY
A. niger var. awamori NNTLDPGTCT VFEDSEL	FQSTKLkDPr	AqpgQSSPkI	DVVISEASSs
A. niger T213 NNTLDPGTCT VFEDSEL	FQSTKLkDPr	AqpgQSSPkI	DVVISEASSs
A. niger NRRL3135 NNTLDPGTCT VFEDSEL	FQSTKLkDPr	AqpgQSSPkI	DVVISEASSs
A. fumigatus 13073 NNTLDHGVCT kFEASQL	FQqAKLADPG	A.TNRAAPAI	SVIIPESETF
A. fumigatus 32722 NNTLDHGVCT kFEASQL	FQqAKLADPG	A.TNRAAPAI	SVIIPESETF
A. fumigatus 58128 NNTLDHGVCT kFEASQL	FQqAKLADPG	A.TNRAAPAI	SVIIPESETF
A. fumigatus 26906 NNTLDHGVCT kFEASQL	FQqAKLADPG	A.TNRAAPAI	SVIIPESETF
A. fumigatus 32239 NNTLDHSVCT NFEASEL	FQqANVADPG	A.TNRAAPVI	SVIIPESETY
E. nidulans NNTLDHSTCV SFENDEr	FRKAQLhDHG	SgQATPVV	NVIIPEIDGF
T. thermophilus NNTLDtGSCP VFEDSSg	FQSAKV1DPh	SDKHDAPPTI	NVIIeEGPSY
M. thermophila NNTLHNDlCT AFEEgpySTI	FHSA1LADRG	STVRPT1Pyd	mVVIPETAGa
Consensus NNTLDHGTCT AFEDSEL	FQSAKLADPG	S-PHQASPVI	NVIIPEGSGY
Consensus phytase NNTLDHGTCT AFEDSEL	FQSAKLADPG	SQPHQASPVI	DVIIPEGSGY
	201		
250 A. terreus 9A-1	CDDAVANETA	VFAPAIaQRL	FADI.PCVat.S
TDDVVnLMAM CPFETVS1TD			
A. terreus cbs ADDVVnLMAM CPFETVSlTD		VFAPAIakRL	-
A. niger var. awamori DTEVTYLMDM CSFDTIStST	ADTVEANFTA	TFAPSIRQRL	ENDLSGVTLT
A. niger T213 DTEVTYLMDM CSFDTIStST	ADTVEANFTA	TFAPSIRQRL	ENDLSGVTLT
A. niger NRRL3135 DTEVTyLMDM CSFDTIStST	ADTVEANFTA	TFVPSIRQRL	ENDLSGVTLT
A. fumigatus 13073 DEDVVsLMDM CSFDTVARTS	GDEVAANFTA	lFAPDIRARa	EKHLPGVTLT
A. fumigatus 32722 DEDVVsLMDM CSFDTVARTS	GDEVAANFTA	1FAPDIRARa	EKHLPGVTLT
A. fumigatus 58128	GDEVAANFTA	1FAPDIRARa	EKHLPGVTLT
DEDVVsLMDM CSFDTVARTS			

78

A. fumigatus 26906 DEDVVsLMDM CSFDTVARTS A. fumigatus 32239

E. nidulans

DDDVVsLMDM CSFDTVARTA

NENVIYLMDM CSFDTMARTA

DADTVALMDL CPFETVASSS

T. thermophilus vSDVpyLMDL CPFETLARNh

M. thermophila

GDEVAANFTA 1FAPDIRARA KKHLPGVTLT

GDEVEANFTA 1FAPAIRARI EKHLPGVQLT

ADEIEANFTA IMGPPIRKRL ENDLPGIKLT

GHDAQEKFAK QFAPAIlEKI KDHLPGVDLA

GDDAQDTY1S TFAGPITARV NANLPGANLT

Consensus
LMDM CPFETVARTS
Consensus phytase

DEDVVYLMDM CPFETVARTS

GDDAEANFTA TFAPAIRARL EADLPGVTLT DEDVV-

GDDVEANFTA LFAPAIRARL EADLPGVTLT

251 300 A. terreus 9A-1 DAhTLSPFC DLFTAtEWtq YNYL1SLDKY YGYGGGNPLG DAhTLSPFC DLFTAaEWtq A. terreus cbs YNYL1SLDKY YGYGGGNPLG A. niger var. awamoriVDTKLSPFC DLFTHdEWih YDYLQSLKKY YGHGAGNPLG vDTKLSPFC DLFTHdEWih A. niger T213 YDYLRSLKKY YGHGAGNPLG A. niger NRRL3135 VDTKLSPFC DLFTHdEWin YDYLQSLkKY YGHGAGNPLG A. fumigatus 13073 DASQLSPFC QLFTHnEWkk YNYLQSLGKY YGYGAGNPLGDASQLSPFC QLFTHnEWkk A. fumigatus 32722 YNYLQSLGKY YGYGAGNPLG A. fumigatus 58128DASQLSPFC QLFTHnEWkk YNYLQSLGKY YGYGAGNPLG DASQLSPFC QLFTHnEWkk A. fumigatus 26906 YNYLQSLGKY YGYGAGNPLG DASELSPFC AIFTHnEWkk A. fumigatus 32239 YDYLQSLGKY YGYGAGNPLG E. nidulans YDYLQSLSKY YGYGAGSPLG T. thermophilusTDT.LSPFC ALsTQeEWga YDYYQSLGKY YGnGGGNPLG M. thermophila sdpatadagg gNGrpLSPFC rLFSEsEWra YDYLQSVGKW YGYGPGNPLG Consensus ----- -DATELSPFC ALFTE-EW--YDYLQSLGKY YGYGAGNPLG Consensus phytase YDYLQSLGKY YGYGAGNPLG

350			
A. terreus 9A-1 DASPATFPLN ATLYADFSHD	PVQGVGWaNE	LMARLTRAPV	HDHTCVNNTL
A. terreus cbs DANPATFPLN ATLYADFSHD	PVQGVGWaNE	LIARLTRSPV	HDHTCVNNTL
A. niger var. awamori DSNPATFPLN STLYADFSHD	PTQGVGYaNE	LIARLTHSPV	HDDTSSNHTL
A. niger T213 DSNPATFPLN STLYADFSHD	PTQGVGYaNE	LIARLTHSPV	HDDTSSNHTL
A. niger NRRL3135	PTQGVGYaNE	LIARLTHSPV	HDDTSSNHTL
DSSPATFPLN STLYADFSHD A. fumigatus 13073	PAQGIGFtNE	LIARLTRSPV	QDHTSTNsTL
VSNPATFPLN ATMYVDFSHD A. fumigatus 32722	PAQGIGFtNE	LIARLTRSPV	QDHTSTNsTL
vSNPATFPLN ATMYVDFSHD A. fumigatus 58128	PAQGIGFtNE	LIARLTRSPV	QDHTSTNsTL
vSNPATFPLN ATMYVDFSHD A. fumigatus 26906	PAQGIGFTNE	LIARLTRSPV	QDHTSTNsTL
vSNPATFPLN ATMYVDFSHD A. fumigatus 32239	PAQGIGFTNE	LIARLTNSPV	QDHTSTNsTL
DSDPATFPLN ATIYVDFSHD E. nidulans	PAQGIGFtNE	LIARLTQSPV	QDNTSTNHTL
DSNPATFPLD rKLYADFSHD T. thermophilus	PAQGVGFvNE	LIARMTHSPV	QDYTTVNHTL
DSNPATFPLN ATLYADFSHD M. thermophila	PTQGVGFvNE	LLARLAgvPV	RDgTSTNRTL
DGDPrTFPLG rPLYADFSHD			
Consensus DSNPATFPLN ATLYADFSHD	PAQGVGF-NE	LIARLTHSPV	QDHTSTNHTL
Consensus phytase DSNPATFPLN ATLYADFSHD	PAQGVGFANE	LIARLTRSPV	QDHTSTNHTL
	351		
400 A. terreus 9A-1		GLYNGTAPLS	qTSVESVSQT
	SNLVSIFWAL	GLYNGTAPLS GLYNGTKPLS	_
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM	SNLVSIFWAL SNLVSIFWAL		qTTVEDITrT
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL	GLYNGTKPLS GLYNGTKPLS	qTTVEDITrT TTTVENITQT
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS	QTTVEDITTT TTTVENITQT TTTVENITQT
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS	QTTVEDITTT TTTVENITQT TTTVENITQT TTTVENITQT
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFELM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NGIISILFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS	QTTVEDITTT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRLYVEMM A. niger T213 DGFSSAWTVP FASRLYVEMM A. niger NRRL3135 DGFSSAWTVP FASRLYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFELM A. fumigatus 32722 DGYSASWVVP FGARAYFELM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS	QTTVEDITTT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRLYVEMM A. niger T213 DGFSSAWTVP FASRLYVEMM A. niger NRRL3135 DGFSSAWTVP FASRLYVEMM A. fuger NRRL3135 DGFSSAWTVP FASRLYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFELM A. fumigatus 32722 DGYSASWVVP FGARAYFELM A. fumigatus 58128 DGYSASWVVP FGARAYFELM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS GLYNGTEPLS	qTTVEDITTT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1 rTSVESaKE1
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRLYVEMM A. niger T213 DGFSSAWTVP FASRLYVEMM A. niger NRRL3135 DGFSSAWTVP FASRLYVEMM A. niger NRRL3135 DGFSSAWTVP FASRLYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFELM A. fumigatus 32722 DGYSASWVVP FGARAYFELM A. fumigatus 58128 DGYSASWVVP FGARAYFELM A. fumigatus 26906 DGYSASWVVP FGARAYFELM A. fumigatus 26906	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS GLYNGTEPLS GLYNGTEPLS	qTTVEDITTT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRLYVEMM A. niger T213 DGFSSAWTVP FASRLYVEMM A. niger NRRL3135 DGFSSAWTVP FASRLYVEMM A. niger NRRL3135 DGFSSAWTVP FASRLYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFELM A. fumigatus 32722 DGYSASWVVP FGARAYFELM A. fumigatus 58128 DGYSASWVVP FGARAYFELM A. fumigatus 26906 DGYSASWVVP FGARAYFELM A. fumigatus 32239 NGYSASWVVP FGARAYFELM A. fumigatus 32239 NGYSASWAVP FGARAYFELM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS GLYNGTEPLS GLYNGTEPLS GLYNGTEPLS	qTTVEDITTT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASR1YVEMM A. niger T213 DGFSSAWTVP FASR1YVEMM A. niger NRRL3135 DGFSSAWTVP FASR1YVEMM A. niger NRRL3135 DGFSSAWTVP FASR1YVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFETM A. fumigatus 32722 DGYSASWVVP FGARAYFETM A. fumigatus 58128 DGYSASWVVP FGARAYFETM A. fumigatus 26906 DGYSASWVVP FGARAYFETM A. fumigatus 32239 NGYSASWVVP FGARAYFETM A. fumigatus 32239 NGYSASWAVP FGARAYFETM E. nidulans DGYAASWTVP FGARAYFELM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS GLYNGTEPLS GLYNGTEPLS GLYNGTEPLS GLYNGTEPLS	qTTVEDITTT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFETM A. fumigatus 32722 DGYSASWVVP FGARAYFETM A. fumigatus 58128 DGYSASWVVP FGARAYFETM A. fumigatus 26906 DGYSASWVVP FGARAYFETM A. fumigatus 32239 NGYSASWVVP FGARAYFETM A. fumigatus 32239 NGYSASWAVP FGARAYFETM E. nidulans	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS GLYNGTEPLS GLYNGTEPLS GLYNGTEPLS GLYNGTEPLS	qTTVEDITTT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1
A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFETM A. fumigatus 32722 DGYSASWVVP FGARAYFETM A. fumigatus 58128 DGYSASWVVP FGARAYFETM A. fumigatus 26906 DGYSASWVVP FGARAYFETM A. fumigatus 32239 NGYSASWVVP FGARAYFETM E. nidulans DGYAASWTVP FGARAYFELM T. thermophilus	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL NGMIPIFFAM NTMTSIFFAM NTMTSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS GLYNGTEPLS GLYNGTEPLS GLYNGTEPLS GLYNGTEPLS GLYNGTEPLS GLYNGTEPLS	qTTVEDITTT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1 rTSVESaKE1

Consensus DGYAASWTVP FGARAYVEMM	NSMISIFFAL	GLYNGTAPLS	TTSVESIEET
Consensus phytase DGYSASWTVP FGARAYVEMM	NSMISIFFAL	GLYNGTAPLS	TTSVESIEET
	401		
450 A. terreus 9A-1	QC	RAEKE	PLVRVLVNDR
VMPLHGCPTD KLGRCKrDAF A. terreus cbs	oc	RAEKQ	PLVRVLVNDR
VMPLHGCAVD NLGRCKrDDF A. niger var. awamori		QAEQE	
VVPLHGCPID aLGRCTrDSF A. niger T213		QAEQE	
VVPLHGCPID aLGRCTrDSF			
A. niger NRRL3135 VVPLHGCPVD aLGRCTrDSF		QAEQE	
A. fumigatus 13073 VVPLHGCDVD KLGRCKLNDF	QC	KSEKE	PLVRALINDR
A. fumigatus 32722 VVPLHGCDVD KLGRCKLNDF	QC	KSEKE	PLVRALINDR
A. fumigatus 58128 VVPLHGCDVD KLGRCKLNDF	QC	KSEKE	SLVRALINDR
A. fumigatus 26906 VVPLHGCDVD KLGRCKLNDF	QC	KSEKE	PLVRALINDR
A. fumigatus 32239 VVPLHGCAVD KLGRCKLKDF	QC	KSEKE	PLVRALINDR
E. nidulans	QC	E.KKE	PLVRVLVNDR
VVPLHGCAVD KFGRCTLDDW T. thermophilus	QC	DDSDE	PVVRVLVNDR
VVPLHGCEVD SLGRCKrDDF M. thermophila	RCsgggggg	ggegrQEKDE	eMVRVLVNDR
VMTLkGCGAD ErGMCTLErF			
Consensus VVPLHGCAVD KLGRCKLDDF	QC	QAEKE	PLVRVLVNDR
Consensus phytase VVPLHGCAVD KLGRCKRDDF	QC	QAEKE	PLVRVLVNDR
VVI BRIGGAVD ADGREEMEDI	454		
471	451		
A. terreus 9A-1	VAGLSFAQAG VEGLSFARAG	GNWADCF~~~	~
A. terreus cbs GNWAECF~~~ ~	VEGLSFARAG		
A. niger var. awamori			
A. niger T213 A. niger NRRL3135		GDWAECFA~~	~
GDWAECFA~~ ~	VEGESTARSG		
A. fumigatus 13073			
A. fumigatus 32722		GNWGECFS~~	
A. fumigatus 58128		GNWGECFS~~	
		GNWGECFS~~	~
A. fumigatus 32239 GNSEQSFS~~ ~	VKGLSWARSG		
E. nidulans		GNWkTCFT1~	
T. thermophilus		GNWEGCYAas	
M. thermophila	IESMAFARGN	GKWD1CFA~~	~
Consensus	VEGLSFARSG	GNWAECFA	_
Consensus phytase		GNWAECFA	

Figure 3

	CP-	L																				
	1	Eco	RI	м	(3	v	F	v	v	L	L	s	1	Α	Т	L	F	G.	s	т	
	TAT				Ì	_	•	-	•	-	_	_	_			•	_	-	•	7_		
1				+			4	 -			-+-			+-				+ ·		 -	-+	60
	ATA	raci	(AT1	AGT.	AC	CCG	CAC	CAAC	GCA(GCA(CGA′	rga(CAGO	GTA.	ACG	GTG	GAA	CAAC	GCC.	AAG	ЭT	
	s	G	T	Α]	L	G	P	R	G	N	s	Н	s	С	D	T	v	D	G	G	
	CAT	CCGC	JTA(CCG	CC:	TTG	:GG1	rcc	rcg	TGGʻ	'AAT	rrc	rca(CTC	rtg	rgae	CAC	ГGТ	TGA	CGG	rG	
61				+							-+-			+				+			-+	120
	GTA	3G C (CAT	GGC	GG	AAC	:CC2	AGG	AGC.	ACC.	ATT.	AAG	AGT	GAG	AAC	ACT	GTG.	ACA.	ACT	GCC.	A.C	
		Ci	P-2		-3																	
					•																	
	Y	Q	С	F		P	E	I	S	Н	L	W	G	Q	Y	S	P	Y	F	s	L	
	GTT.	ACC/	TAA	GTT	TC	CCA	(GA)	TAA	TTC	TCA	CTT	GTG	GGG'	rca	ATA	CTC	TCC.	ATA	CTT	CTC	TT	
121		-		+				+		- 	-+-			+	- 		-	+	- <i>-</i> -		-+	180
	CAA	m <i>c</i>	TOTAL S	~	».C.	~~"	n C mr	ner s	**~	» ~ m	~ 3 3 1	C 2 C		እ ርታሞ	ייי אייי	C 2 C	x ~ ~	ጥአጥ	~ A A	CAC	A A	
	CAA	rgg.	IIX	CAA	MG	GG1	rcr.	LIM	AAG.	MG1	GAA	CAC		AGI	IMI	GAG	AGG	IAI	GAA	GAG	^^	
	E	D	E	S	;	A	I	S	P	D	٧	P	D	D	С	R	V	T	F	V	Q	
	TGG	aag:	ACG	AAI	CT	GC:	TAT	TTC	TCC	a ga	CGT	TCC	AGA	CGA	CTG	TAG	AGT	TAC	TTT	CGT	TC	
181			-	+	- -			+			- + -			+		- 		+			-+	240
	ACC	TTC'	TGC	TTP	AGA	CG	ATA	AAG	AGG	TCT	'GCA	AGG	TCT	GCT	GAC	ATC	TCA	ATG	AAA	GCA	AG	
						C	P-4															
						-	•		-5													
	٧	L	S	F	₹	H	G	A	R	Y	P	Т	S	s	K	S	K	A	Y	S	A	
	AAG	ттт	TGI	CTA	AGA	CA	CGG	TGC	TAG	ATA	ccc	AAC	TTC	TTC	KAT!	GTC	TAP:	.GGC	TT	CTC	TG:	

241				+-				+			-+-			+				+			-+	300
	TTC.	AAA	ACI	\GA	TC	rgt	GCC.	ACG.	ATC	TAT	GGG	TTG.	AAG.	AAG.	ATT(CAG	ATT	CCG.	AAT	GAG.	AC	
																			•			
	L	1	. I	Ξ	A	Ι	Q	K	N	Α	T	Α	F	K	G	K	Y	A	F	L	K	
	CTT	TGA	LTT(AAE	GC:	TAT	TCA	AAA	GAA	CGC	TAC	TGC	TTT	CAA	GGG	TA A	GTA	CGC	TTT	CTT	GA	
301				-+-				+			-+-			+	-			+			-+	360
	GAA	ACT	'AA'	TT	CG?	ATA	AGT	ТТТ	СТТ	GCG	ATG	ACG.	AAA	GTT	CCC.	ATT	CAT	GCG	AAA	GAA	CT	
										CP-	6											
											С	P-7										
	Т	3	<i>(</i>)	V	Y	т	L	G	A	D	D	L	Т	P	F	G	E	N	Q	М	v	
	AGA	CTI	rac	AAC	TA	CAC	ттт	GGG	TGC	TGA	CGA	CTT	GAC	TCC	ATT	CGG	TGA	AAA	CCA	AAT	GG	
361				-+-				+			-+-			+	-			+			-+	420
	TCT	GAJ	\TG'	r t e	SAT	GTG	AAA	.ccc	ACG	ACT	GСТ	GAA	CTG	AGG	AAT	GCC	ACT	T TT	GGT	TTA	CC	
	N		5 (G	I	K	F	Y	R	R	Y	K	A	L	A	R	K	I	ν	P	F	
	TTA	AC?	rc T	GG1	TAT	TAA	GTT.	CTA	.CAG	AAG	ATA	CAA	GGC	TTT	GGC	TAG	AAA	.GAT	TGT	TCC	ΑT	
421		-	- 	-+-	- 	-		+		 -	-+ -	-		- - +			-	+			-+	480
	AAT	TG	AGA	CCI	ATA	АТТ	CAA	.GAT	GTC	TTC	TAT	GTT	C CG	AAA	.CCG	ATC	TTI	CTA	ACA	AGG	TA	
													CP	-8								
															CP-	9						
	I	: 1	R	A	s	G	s	D	R	v	ı	A	s	A	E	к	F	I	E	G	F	
										AGT					_							
481	A CT																					540

	Q	S	Α	K	L	A	D	P	G	S	Q	P	Н	Q	A	S	P	V	I	D	
	TCCA	ATC:	rgc:	raa(ett(GC:	rgad	ccc	AGG'	TTC	TCA	ACC	ACA	CCA	AGC'	TTC	TCC	agt	TAT	TG	
541	- -		+				+		 -	-+-		- 	+				+			-+	600
	AGGT	TAG	ACG	ATTO	CAA	CCG	ACT(GGG'	TCC.	AAG.	AGT'	TGGʻ	TGT	GGT	TC G .	AAG.	AGG	TCA	ATA	AC	
															_	n 1	^				
															C	P-1					
																	CP	-11			
	7.7	I	т	D	E-	C	c	C	v	N T	NT	TT.	Ť.	D	Ľ	_	T	_	TT.	λ	
	ACGT	TAL	LAT	rcca	4GA	AGG	21C	200	LTA	CAA	CAA	CAC	111	GGA	CCA	CGG	TAC	116	TAC	16	
601			+				+			-+-		-	+			_	+			-+	660
			•				•			•							,			·	
	TGCA	ATA	ATA	AGG:	rct	TCC	LAG	JCC.	AAT	GTT	GTT	GTG.	AAA	CCT	GGT	GCC	ATG	AAC	ATG	AC	
	F	E	D	S	Ε	L	G	D	D	V	E	A	N	F	T	Α	L	F	A	₽	
	CTTT	CGA	AGA	CTC	TGA	ATT	GGG'	TGA	CGA	CGT	TGA	AGC	TAA	CTT	CAC	TGC	TTT	GTI	CGC	TC	
661							.										.				720
001							•			•							•			•	
	GAAA	.GCT	TCT	GAG.	ACT	TAA	ccc.	ACT	GCT	GCA	АСТ	TCG	TTA	GAA	GTG	ACG	AAA	CAA	GCG	AG	
																			CP-	-12	
	A	I	R	A	R	L	E	A	D	L	P	G	v	т	L	т	D	E	D	v	
	CAGO	TAT	TAG	AGC	TA G	ATT	GGA	AGC	TGA	CTT	GCC	AGG	TGT	'TAC	TTT	GAC	TGA	CGA	LAG#	ACG	
	•																				
721			+		-	- 	+			-+-			+				+			+	780
	GTC	ATA	ATC	TCG	ATC	TAA	.CCT	TCG	ACI	'GAA	CGG	TCC	'ACA	ATC	AAA	CTC	ACT	rGC	rtci	rgc	
	a = 1																				
	CP-1	13																			
	17	Y	т.	м	ח	м	_	D	দ	F	т	17	Δ	D	т	c	n	Δ	т	E	
	٧	•	L	r.	ט	*1	_	-	٠		•	٧	n	1	•	5	,		•	_	
	TTG	atti	CTI	GAT	'GGJ	CAT	'GTG	TCC	TA:	rcg.	AAC	TGI	TGO	TAC	AA:	CTT	CTG	ACG	CTA	CTG	
781			4			. .	. +			+-	. .		1	· ·			-+-			+	840

		AACA	AAT	Gλλ	CTA	CCT	GTA	CAC	AGG	TAA	.GCT	TTG	ACA	ACG	ATC	TTG	AAG	ACT	GCG.	ATG.	AC	
		L	s	P	F	С	A	L	F	T	Н	D	E	W	R	Q	Y	D	Υ.	L	Q	
		AATT	GTC	TCC	ATT	CTG	TGC	TTT	GTT	CAC	TCA	.CGA	.CGA	ATG	GAG	ACA	АТА	CGA	СТА	CTT	GC	
	0/1							.										.				900
	041										-,-							,				500
		TTAA	CAG	AGG	TAA	GAC	ACG	AAA	CAA	.GTG	AGT	GCT	GCT	TAC	CTC	TGT	TAT	GCT	GAT	GAA	CG	
			СÞ	-14																		
					CP-	15																
		s	L	G	ĸ	Y	Y	G	Y	G	A	G	N	P	L	G	P	A	Q	G	v	
		AATC	TTT	GGG	TAA	GTA	.CTA	.CGG	TTA	CGG	TGC	TGG	TAR	ccc	ATT	GGG	TCC	AGC	TCA	AGG	TG	
	•••																					
	901			+				+			-+-			+				+			-+	960
		TTAG	AAA	.ccc	ATT	CAT	GAT	GCC	AAT	GCC	ACG	ACC	TTA	GGG	TAA	.ccc	AGG	TCG	AGT	TCC	AC .	
		G	F	A	N	E	L	I	A	R	L	T	R	S	P	v	Q	D	Н	т	S	
		TTGG	TTT	CGC	TAA	.CGA	ATT	'GAT	TGC	TAC	ATI	GAC	TAC	ATC	TCC	AGT	TCA	AGA	.CCA	.CAC	тт	
	961			+	- - -			+		. .	· - + -			. – – +		 -		+			-+	
1020																						
		AACC	מממי	.ccc	ኒ ልጥጥ	رتار ط ا	ממייי	מיחי	ACC.	ያ አጥር	"ጥል 2	ירייינ	: አ ጥር	ጉጥ አ ር	a A C C	מ ייתי	እርጣ	, 1 ,01	сст	יכיים	AA	
		MCC	· ruur	.000	MII	00.								- 1 - 10		ra Can	J. G.					
						C	P-1	-	-17	,												
								CF	-11	,												
		T	N	Н	Т	L	D	s	N	P	A	Т	F	P	L	N	A	Т	L	Y	A	
		СТАС	TAA	CCA	CAC	TTT	rgg <i>i</i>	AC TC	TA	CCC	CAGO	CTAC	TT	rcco	CATT	GAA	CGC	TAC	TTI	GTA	CG	
	1021				· -	. 	- -	-+	- -	- - -	+-		·		-	. -		-+ - -			+	
108																						

 ${\tt GATGATTGGTGTAAACCTGAGATTGGGTCGATGAAAGGGTAACTTGCGATGAAACATGC}$

	D	F	S	н	D	N	s	M	I	s	I	F	F	A	L	G	L	Y	N	G
	CTGA	CTT	CTC	TCA	CGA	CAA	CTC	TAT	GAT	TTC	TAT	TTT	CTT	CGC	TTT	GGG	ттт	GTA	CAA	CG
1081			+	~ 			+		~	-+-			+				+			-+
1140																				
	GACT	GAA	GAG.	AGT	GCT	GTT	GAG	АТА	CTA	AAG	ATA	AAA	GAA	.GCG	AAA	.ccc	AAA	CAT	GTT	GC
									CP-	-										
										С	P-1	9								
	Т	A	P	L	s	T	T	s	V	E	s	I	E	E	Т	D	G	Y	s	A
	GTAC	TGC	TCC	ATT	GTC	TAC	TAC	TTC	TGT	TGA	ATC	TAT	TGA	AGA	AAC	TGA	.CGG	TTA	.CTC	TG
1141 1200			+				+			-+-	 -		+			 -	+			-+
	CATG	ACG	AGG	TAA	CAG	ATG	ATG	AAG	ACA	ACT	TAG	ATA	ACT	TCT	ттG	ACT	G CC	AAT	'GAG	AC
	S	W	т	v	P	F	G	Α	R	A	Y	v	E	М	М	Q	С	Q	A	Ē
	CTTC	TTG	GAC	TGT	TCC	ATT	'CGG	TGC	TAG	AGC	TTA	.CGT	TGA	AAT	'GA'I	GCA	ATG	TCA	AGC	TG
1201 1260			+				+			-+-			+				+			-+
	GAAG	AAC	CTG	ACA	AGG	TAA	.GCC	CACG	ATC	TCG	AAT	'G CA	aci	TTA	CTA	CGI	TAC	AGT	TCG	AC
												CF	-20							
														CP-	-21					
	K	E	P	L	V	R	٧	L	v	N	D	R	V	V	P	L	Н	G	С	A
	AAAA	\GGA	ACC	TTA	GGT	TAC	SAGT	TTT	GGT	TAA	CGA	CAC	AG	TGI	rtco	ATI	rgcj	CGC	TTC	FG
1261 1320			+		- -	•	-+			+-			- - -	 -			-+			+

TTTTCCTTGGTAACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACAC

V D K L G R C K R D D F V E G L S F A R CTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTA 1380 GACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT CP-22 S G G N W A E C F A * Eco RI **GATCT**GGTGGTAACTGGGCTGAATGTTTCGCT*TAA*GAATTCATATA 1381 ------ 1426 CTAGACCACCATTGACCCGACTTACAAAGCGAATTCTTAAGTATAT Figure 4 1 50 P. involutus (phyA1) SvP.KnTAPt FPIPeseQrn WSPYSPYFPL AeYkAPPAGC QInQVNIIQR P. involutus (phyA2) SvP.RniAPK FSIPeseQrn WSPYSPYFPL AeYkAPPAGC EInQVNIIQR T. pubescens hiPlRdTSAc LdVTrDvQqs WSmYSPYFPa AtYvAPPASC QInQVHIIQR A. pediades GgvvQaTfvQ pfFPpQiQds WAAYTPYYPV qaYtPPPkDC KItQVNIIQR P. lycii StQfsfvAAQ LPIPaQntsn WGPYdPFFPV EpYaAPPEGC

tVtQVNLIQR

Basidio QVNIIQR		S-P-R-TAAQ	LPIP-Q-Q	WSPYSPYFPV	A-Y-APPAGC	QI-
100		51				
P. involutus dLGnsDLVPF	(phyA1)	HGARFPTSGA	TTRIKAGLTK	LQGvqnfTDA	KFNFIkSfkY	
P. involutus	(phyA2)	HGARFPTSGA	ATRIKAGLSK	LQSvqnfTDP	KFDFIkSfTY	
T. pubescens		HGARFPTSGA	AKRIQTAVAK	LKAAsnyTDP	llafvenyty	
A. pediades		HGARFPTSGA	GTRIQAAVkK	LQSAKtyTDP	RLDFLtNyTY	
P. lycii kFGvADLLPF		HGARWPTSGA	rSRqvAAVAK	IQmArpfTDP	KYEFLnDfvY	
Basidio DDLVPF		HGARFPTSGA	ATRIQAAVAK	LQSATDP	KLDFL-N-TY	-LG-
150		101				
P. involutus TNWTAGFAsA	(phyA1)	GAaQSfDAGQ	EAFARYSkLV	Sknnlpfira	dGSDRVVDSA	
P. involutus TNWTAGFAsA	(phyA2)	GAaQSfDAG1	Evfarysklv	SsDNLPFIRS	dGSDRVVDTA	
T. pubescens		GAtQSSEAGQ	EAFTRYSsLV	Sadelpfvra	. SGSDRVVATA	

A. pediades TNWTEGFSaA		GAlQSSQAGE	ETFqRYSfLV	SKENLPFVRA	SSSNRVVDSA
P. lycii TNWTAGFGdA		GAnQShQTGt	DmYTRYStLf	egGDVPFVRA	AGdQRVVDSS
Basidio TNWTAGFA-A		QDAQ22Q-AD	EAFTRYS-LV	S-DNLPFVRA	SGSDRVVDSA
200		151			
P. involutus AVafPSITAR	(phyA1)	ShNTvqPkLn	LILPQtGNDT	LEDNMCPaAG	DSDPQvNaWL
P. involutus AsafPSVTAQ	(phyA2)	SrNAiqPkLd	LILPQtGNDT	LEDNMCPaAG	ESDPQvDaWL
T. pubescens		SsNSitPvLs	VIISEaGNDT	LDDNMCPaAG	DSDPQvNqWL
A. pediades SIYGTPIAnR		ShHvlnPiLf	VILSEslNDT	LDDaMCPnAG	sSDPQtGiWt
<i>P. lycii</i> GVFAPnITAR		SgETvlPtLq	VVLqEeGNcT	LcNNMCPnEv	DGDest.tWL
Basidio AVFAPPITAR		S-NTP-L-	VILSE-GNDT	LDDNMCP-AG	DSDPQ-N-WL
250 P. involutus	(phv21)	201	TDtDAfNLvs	LCAF1TVSkE	kkSdFCtLFE
	,			-	

giPGsFeAFa

P. involutus (phyA2) giPGsFeAFa	LNAAAPGANL TE	DaDAfNLvs	LCPFmTVSkE	qkSdFCtLFE
T. pubescens elQAE.dAFa	LNAGAPGANL TE	OEDTYNL1t	LCPFETVALE	rrSeFCDIYE
A. pediades .tPEEFaqFe	LNqqAPGANI TA	AaDvsNLip	LCAFETIVKE	tpSpFCNLF.
P. lycii .tAEEYvSYe	LNAAAPSANL SI	DsDAltLmd	MCPFDTLSsG	naSpFCDLF.
Basidio AF-	LNAAAPGANL TI	D-DA-NL	LCPFETVS-E	S-FCDLFEPEEF-
300	251			
P. involutus (phyA1) NTQTNRTLDA	YgGDLDKFYG TO	GYGQeLGPV	QGVGYVNELI	ARLTnsAVRD
P. involutus (phyA2) NTQTNRTLDA	YaGDLDKFYG TO	GYGQALGPV	QGVGYINELL	ARLTnsAVnD
T. pubescens	YnADLDKFYG TO	GYGQPLGPV	QGVGYINELI	ARLTaQnVsD
A. pediades NTQTNRTLDS	YEGDLDKFYG TO	GYGQPLGPV	QGVGYINELL	ARLTemPVRD
P. lycii ETQTNRTLDS	YYYDLDKYYG TO	GpGNALGPV	OGAGAANETT	ARLTgQAVRD
Basidio				

	301

RVLVNDAVQP

350						
P. involutus vPNPwRTWrT	(phyA1)	SPVTFPLNKT	FYADFSHDN1	MVAVFSAMGL	FrQPAPLsTS	
P. involutus	(phyA2)	APdTFPLNKT	MYADFSHDN1	MVAVFSAMGL	FrQSAPLsTS	
T. pubescens		SPETFPLNRT	LYADFSHDNQ	MVAIFSAMGL	FNQSAPLDPT	
A. pediades fPNPKRTWVT		SPITFPLDRS	IYADLSHDNQ	MIAIFSAMGL	FNQSSPLDPS	
P. lycii kPDeNRlWVd		dPatfplnrt	FYADFSHDNc	MVPIFAALGL	FNaTA.LDPl	
Basidio PDPNRTWVT	,	SP-TFPLNRT	FYADFSHDNQ	MVAIFSAMGL	FNQSAPLDPS	_
		351				
400		351				
400 P. involutus RVLVQDqVQP	(phyA1)		VVERLsCf	GT	tkV	
P. involutus		SsLVPFSGRM				
P. involutus RVLVQDqVQP P. involutus	(phyA2)	SsLVPFSGRM SsVVPFSARM	aVERLSCa	GT		
P. involutus RVLVQDqVQP P. involutus RVLVQDqVQP T. pubescens	(phyA2)	SsLVPFSGRM SsVVPFSARM kKIVPFSARM	aVERLsCa	GT	tkV	

Basidio		SKLVPFSARM	VVERL-C	GT	v	
RVLVNDAVQP					•	
		401			4.4	1
P. involutus	(phyA1)	LEFCGGDrNG	lctlakfves	QtFARsDGaG	DFEKCFATSa	~
P. involutus	(phyA2)	LEFCGGDqDG	lCALDkFVES	QaYARsGGaG	DFEKCLATTV	~
T. pubescens		LAFCGADtsG	vCTLDAFVES	QayARNDGEG	DFEKCFAT~~	~
A. pediades		LKFCGGDmDS	1CTLEAFVES	QkYAREDGQG	DFEKCFD~~~	~
P. lycii		LEFCGG.vDG	vCeLsAFVES	QtYARENGQG	DFAKCgfvPs	e
Basidio		LEFCGGD-DG	-CTLDAFVES	Q-YAREDGQG	DFEKCFATP-	-

Figure 5

	1			
50				
A. terreus 9al VPeDCHITFV	KhsdCNSVDh	GYQCfPELSH	kWGlYAPYFS	LqDESPFPlD
A. terreus cbs	NhsdCtSVDr	GYQCfPELSH	kWGlYAPYFS	LqDESPFPlD
A. niger var. awamori VPaGCRVTFa	NqsTCDTVDq	GYQCfSEtSH	LWGQYAPFFS	LANESAISPD
A. niger NRRL3135 VPaGCRVTFa	NqsSCDTVDq	GYQCfSEtSH	LWGQYAPFFS	LANESVISPE
A. fumigatus 13073 LPkDCRITLV	GSkSCDTVDl	GYQCsPAtSH	LWGQYSPFFS	LEDELSVSSK
A. fumigatus 32722 LPkDCRITLV	GSkSCDTVDl	GYQCsPAtSH	LWGQYSPFFS	LEDELSVSSK
A. fumigatus 58128 LPkDCRITLV	GSkSCDTVD1	GYQCsPAtSH	LWGQYSPFFS	LEDELSVSSK
A. fumigatus 26906 LPkDCRITLV	GSkSCDTVD1	GYQCsPAtSH	LWGQYSPFFS	LEDELSVSSK
A. fumigatus 32239 LPkDCRVTFV	GSkACDTVE1	GYQCsPGtSH	LWGQYSPFFS	LEDELSVSSD
E. nidulans VPhGCeVTFV	QNHSCNTaDG	GYQCfPNVSH	VWGQYSPYFS	IEQESAISeD
T. thermophilus	DSHSCNTVEG	GYQCrPEISH	sWGQYSPFFS	LADQSEISPD
T. lanuginosa VPkGCRVeFV	~~~~~~	~~~nvDIAR	hwgqyspffs	LAEVSEISPA

M. thermophila IPdDCeVTFa	ESRPCDTpD1	GFQCgTAISH	FWGQYSPYFS	VPsElDaS
Basidio pPaGCQIxqV	xSxPxrxtAA	qLPipxQxqx	xWSPYSPYFP	VAxyxA
Consensus	NSHSCDTVDG	GYQC-PEISH	LWGQYSPFFS	LADESAISPD VP-
Fcp10 VPKGCRVTFV	NSHSCDTVDG	GYQCFPEISH	LWGQYSPFFS	LADESAISPD
100	51			
A. terreus 9al QSYNYSLDSE	QVLARHGARs	PThSKTKaYA	AtlaAIQKSA	TafpGKYAFL
A. terreus cbs KSYNYSMGSE	QVLARHGARs	PTdSKTKaYA	AtlaAlQKNA	TalpGKYAFL
A. niger var. awamori KTYNYSLGAD	QVLSRHGARY	PTeSKGKKYS	ALIeEIQQNv	TEFDGKYAFL
A. niger NRRL3135 KTYNYSLGAD	QVLSRHGARY	PTdSKGKKYS	ALIeEIQQNA	TtFDGKYAFL
A. fumigatus 13073 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYk	kLVtAIQaNA	TdfkGkfafL
A. fumigatus 32722 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYk	kLVtAIQaNA	TdfkGKFAFL
A. fumigatus 58128 KTYNYTLGAD				
A. fumigatus 26906 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYK	kLVtAIQaNA	TdfkGKFAFL

A. fumigatus 32239 ETYNYTLGAD	QVLSRHGARY	PTASKSKKYk	kLVtAIQKNA	TefkGKFAFL
E. nidulans ESYNYTLGAD	QVLSRHGARY	PTeSKSKaYS	GLIeAIQKNA	TsFwGQYAFL
T. thermophilus KdYrYqLGAN	QLLSRHGARY	PTSSKTElys	qLIsrIQKtA	TaYKGyYAFL
T. lanuginosa RdYaYhLGAD	QVLSRHGARY	PTAhKSEVYA	ELLqrIQDtA	TeFKGDFAFL
M. thermophila	QVLSRHGARa	PTlkRAasYv	DLIdrIHhGA	isYgPgYEFL
Basidio xnxtYxLGxD	NIIqRHGARF	PTSGaAtRiq	AaVakLQsax	xxtDPKLDFL
Consensus	OVI SPHCARY	PTSSKSKKYS	AI.T-ATOKNA	T-FYCYYAFI
KTYNYTLGAD	QVLSKNGARI	PISSKSKKIS	ALI-AIQKNA	T-FRGRIAFL
Fcp10 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYS	ALIEAIQKNA	TAFKGKYAFL
<u>-</u>	QVLSRHGARY	PTSSKSKKYS	ALIEAIQKNA	TAFKGKYAFL
<u>-</u>	QVLSRHGARY	PTSSKSKKYS	ALIEAIQKNA	TAFKGKYAFL
<u>-</u>	QVLSRHGARY	PTSSKSKKYS	ALIEAIQKNA	TAFKGKYAFL
KTYNYTLGAD	101	PTSSKSKKYS		

A. niger var. awamori VIASGEKFIE	DLTPFGEQEL	VNSGIKFYQR	YESL.TRnII	PFIRSSGSsR
A. niger NRRL3135 VIASGKKFIE	DLTPFGEQEL	VNSGIKFYQR	YESL.TRnIV	PFIRSSGSsR
A. fumigatus 13073 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARsVV	PFIRASGSDR
A. fumigatus 32722 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARsVV	PFIRASGSDR
A. fumigatus 58128 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARSVV	PFIRASGSDR
A. fumigatus 26906 VIASGEKFIE	DLTAFGEQQL	VNSGIKFYQR	YKAL.ARsVV	PFIRASGSDR
A. fumigatus 32239 VIASGEKFIE	DLTPFGEQQM	VNSGIKFYQK	YKAL.AgsVV	PFIRSSGSDR
E. nidulans VVASAEKFIN	DLTiFGENQM	VDSGaKFYRR	YKnL.ARknt	PFIRASGSDR
T. thermophilus	DLTPFGENQM	IQlGIKFYnH	YKSL.ARnaV	PFVRCSGSDR
T. lanuginosa VIASAEfFnr	NLTRFGEEQM	MESGrQFYHR	YREq.AReIV	PFVRAAGSAR
<pre>M. thermophila VVhSAENFtQ</pre>	ELTREGQQQM	VNSGIKFYRR	YRAL.ARksI	PFVRTAGqDR
Basidio VVDSAtNWtA	DLvPFGAxQs	sQAGqEaFtR	YsxLvSxdnL	PFVRASGSDR
Consensus	DLTPFGEQQM	VNSGIKFYRR	YKAL-AR-IV	PFVRASGSDR
Fcp10 VIASAEKFIE	DLTPFGEQQM	VNSGIKFYRR	YKAL.ARKIV	PFVRASGSDR

A. terreus 9al TAFESSt	GFQTARqDDh	hAnphQPSPr	VDVaIPEGsA	YNNTLEHSLC
A. terreus cbs	GFQNARqGDP	hAnphQPSPr	VDVVIPEGtA	YNNTLEHSIC
A. niger var. awamori TvFEdSE	GFQSTKLkDP	rAqpgQSSPk	IDVVISEAsS	sNNTLDpGtC
A. niger NRRL3135 TvFEdSE	GFQSTKLkDP	rAqpgQSSPk	IDVVISEASS	SNNTLDpGtC
A. fumigatus 13073 TkFEaSQ	GFQqAKLADP	gAt.nRAAPa	ISVIIPESeT	FNNTLDHGVC
A. fumigatus 32722 TkFEaSQ	GFQqAKLADP	gAt.nRAAPa	ISVIIPESeT	FNNTLDHGVC
A. fumigatus 58128 TkFEaSQ	GFQqAKLADP	gAt.nRAAPa	ISVIIPESeT	FNNTLDHGVC
A. fumigatus 26906 TkFEaSQ	GFQqAKLADP	gAt.nRAAPa	ISVIIPESeT	FNNTLDHGVC
A. fumigatus 32239 TnFEaSE	GFQqANVADP	gAt.nRAAPV	ISVIIPESeT	YNNTLDHSVC
E. nidulans vSFEndE	GFRkAQLhDh	g.s.gQATPV	VNVIIPEidG	FNNTLDHStC
T. thermophilus PvFEdSs	GFQSAKVldp	hSdkhDAPPt	INVIIeEGpS	YNNTLDtGsC
T. lanuginosa	GFQdAKdrDP	rSnkdQAePV	INVIISEEtG	sNNTLDgltC
M. thermophila TAFEegPySt	GFHSAlLADR	gStvrPTlPy	dmVVIPETaG	aNNTLHNDLC

Basidio PxAG	GFaxA	sxntxxPx	LxVILSExg.	. NDTLDDNMC
Consensus	GFQSAKLADP	-AQASPV	INVIIPEG-G	YNNTLDHGLC
Fcp10	GFQSAKLADP	GANPHQASPV	INVIIPEGAG	YNNTLDHGLC
250	201			
A. terreus 9al	VGDDavANFT	AVFAPAIaqR	LEAdLPGVQL	StddVVNLMA
A. terreus cbs	VGDAaADNFT	AVFAPAIakR	LEAdLPGVQL	SADDVVNLMA
A. niger var. awamori	LADtVEANFT	AtFAPSIRqR	LEndLSGVtL	TDtEVtyLMD
A. niger NRRL3135	LADEVEANFT	AtfvPSIRqR	LEndLSGVtL	TDtEVtyLMD
A. fumigatus 13073 MCSFDTVArT	LGDEVAANFT	alfapdirar	aEkhLPGVtL	TDEDVVSLMD
A. fumigatus 32722 MCSFDTVArT	LGDEVAANFT	alfapdirar	aEkhLPGVtL	TDEDVVSLMD
A. fumigatus 58128 MCSFDTVArT	LGDEVAANFT	ALFAPdIRAR	aEkhLPGVtL	TDEDVVSLMD
A. fumigatus 26906 MCSFDTVArT	LGDEVAANFT	ALFAPdIRAR	aKkhLPGVtL	TDEDVVSLMD
A. fumigatus 32239	LGDEVEANFT	ALFAPAIRAR	IEkhLPGVQL	TDDDVVSLMD

E. nidulans MCSFDTMArT	rADEIEANFT	AIMGPPIRKR	LEndLPGIKL	TNENVIYLMD
T. thermophilus	gGHDaQEKFA	kqfapailek	IKDhLPGVDL	AvsDVpyLMD
T. lanuginosa LCPFDTVGsd	.DptqpAEF1	qVFGPRV1kK	ItkhMPGVNL	TlEDVplFMD
M. thermophila	IGDDaQDtYl	StFAGPItAR	VNAnLPGaNL	TDADtVaLMD
Basidio	dSDpqxnxWl	AVFAPPITAR	LNAaaPGaNL	TDxDaxNLxx
Consensus MCPFDTVA-T	LGDDVEANFT	AVFAPPIRAR	LEA-LPGVNL	TDEDVVNLMD
Fcp10	LGDDVEANFT	AVFAPPIRAR	LEAHLPGVNL	TDEDVVNLMD
MCPFDIVARI				
MCPFDIVARI				
300	251			
		LSPF	CDLFTatE	WcQYNYL1SL
300 A. terreus 9a1	dDAht			
A. terreus 9a1 dKYYGYGGGN A. terreus cbs	dDAht	LSPF	CDLFTaaE	WtQYNYLlSL
A. terreus 9a1 dKYYGYGGGN A. terreus cbs dKYYGYGGGN A. niger var. awamori	dDAht dDAht	LSPF	CDLFTAaE	WtQYNYL1SL WiHYDYLQSL

A. fumigatus 32722	SDASQ	LSPF	CQLFTHnE	WKKYNYLQSL
gKYYGYGAGN				
A. fumigatus 58128 gKYYGYGAGN	SDASQ	LSPF	CQLFTHnE	WKKYNYLQSL
A. fumigatus 26906 gKYYGYGAGN	SDASQ	LSPF	CQLFTHnE	WKKYNYLQSL
A. fumigatus 32239	ADASE	LSPF	CAIFTHnE	WkKYDYLQSL
gkyygygagn				
E. nidulans	AHGTE	LSPF	CAIFTEkE	WlQYDYLQSL
T. thermophilus gKYYGnGGGN	htDT	LSPF	CALSTQeE	WqaYDYYQSL
	PvlfPrQ	LSPF	CHLFTadD	WmaYDYYyTL
dkyyshgggs				
M. thermophila	SsdpATadag	ggngrpLSPF	CrLFSEsE	WraYDYLQSV
gKWYGYGPGN				
Basidio		xexxSxF	CDLFexxpeE	FxaFxYxgdL
dKFYGtGyGQ			-	•
Congongua	CD ATTO	t ene	CDI ETU E	W-QYDYLQSL -
KYYGYGAGN	SDAIQ	DSPr	CDDF IRE	W-QIDILQSD -
Fcp10	SDATQ	LSPF	CDLFTHDE	WIQYDYLQSL
GKYYGYGAGN				
350	301			
A. terreus 9al	PLGPvQGVGW	anelmarltr	A. PVHDHTCv	NNTLDASPAT
FPLNATLYAD				

A. terreus cbs	PLGPvQGVGW	aNELIARLTR	S.PVHDHTCv	NNTLDANPAT
A. niger var. awamori FPLNSTLYAD	PLGPTQGVGY	aNELIARLTH	S.PVHDDTSS	NHTLDSNPAT
A. niger NRRL3135 FPLNSTLYAD	PLGPTQGVGY	aneliarlth	S.PVHDDTSS	NHTLDSSPAT
A. fumigatus 13073 FPLNATMYVD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NSTLVSNPAT
A. fumigatus 32722 FPLNATMYVD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NsTLvSNPAT
A. fumigatus 58128 FPLNATMYvD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NsTLvSNPAT
A. fumigatus 26906 FPLNATMYVD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NSTLVSNPAT
A. fumigatus 32239 FPLNATIYVD	PLGPAQGIGF	tNELIARLTN	S.PVQDHTST	NsTLDSDPAT
E. nidulans FPLDrkLYAD	PLGPAQGIGF	tNELIARLTQ	S.PVQDNTST	NHTLDSNPAT
T. thermophilus	PLGPAQGVGF	VNELIARMTH	S.PVQDYTTv	NHTLDSNPAT
T. lanuginosa FPLDAVLYAD	AFGPSRGVGF	vneliarmtg	NlpVKDHTTv	NHTLDdNPET
M. thermophila FPLGrPLYAD	PLGPTQGVGF	vnellarla.	GvPVRDgTST	NRTLDGDPrT
Basidio FPLNrTFYAD	PLGPvQGVGY	iNELLARLTX	qa.VRDNTqT	NRTLDSSPxT
Consensus FPLNATLYAD	PLGPAQGVGF	-NELIARLTH	S-PVQDHTST	NHTLDSNPAT

FCp10 PLGPAQGVGF VNELIARLTH S.PVQDHTST NHTLDSNPAT

FPLNATLYAD

351

400

400				
A. terreus 9al	FSHDSnLVSI	FWALGLYNGT	aPLSqTSVE.	. SvsQTDGYA
A. terreus cbs	FSHDSnLVSI	FWALGLYNGT	kPLSqTTVE.	.ditrTDGYA
A. niger var. awamori SAWTVPFASR	FSHDNGIISI	LFALGLYNGT	kplstttve.	.NitQTDGFS
A. niger NRRL3135	FSHDNGIISI	LFALGLYNGT	kPLSTTTVE.	.NitQTDGFS
SAWTVPFASR A. fumigatus 13073	FSHDNSMVSI	FFALGLYNGT	ePLSrTSVE.	.SaKElDGYS
ASWvVPFGAR A. fumigatus 32722	FSHDNSMVSI	FFALGLYNGT	gPLSrTSVE.	.SakelDGYS
ASWvVPFGAR A. fumigatus 58128	FSHDNSMVSI	FFALGLYNGT	ePLSrTSVE.	.SaKElDGYS
ASWvVPFGAR A. fumigatus 26906	ECHDNESSEC	EENI OL VAICO	ont cametys	Cavel DCVC
ASWVVPFGAR	r SHDNSMV SI	FFALGLINGI	epusitsve.	. SanElDGIS
A. fumigatus 32239 ASWAVPFGAR	FSHDNGMIPI	FFAMGLYNGT	ePLSqTSeE.	.StKESNGYS
E. nidulans ASWTVPFGAR	FSHDNSMISI	FFAMGLYNGT	qPLSmdSVE.	.SiQEmDGYA
T. thermophilus	FSHDNTMtSI	FaALGLYNGT	akLSTTeIK.	.SiEETDGYS
T. lanuginosa ASWTVPFAAR	FSHDNTMtGI	FsAMGLYNGT	kpLSTSkIQP	pTgAAADGYA

<pre>M. thermophila ASWAVPFAAR</pre>	FSHDNdMMGV	LgALGaYDGv	pPLdkTAR	rdpEElGGYA
Basidio TSklVPFSAR	FSHDNqMVAI	FsAMGLFNqS	aPLdPSxpDP	nrtWv
Consensus ASWTVPFAAR	FSHDNTMVSI	FFALGLYNGT	-PLSTTSVEP	-S-EETDGYA
Fcp10	FSHDNTMVSI	FFALGLYNGT	KPLSTTSVE.	.SIEETDGYA
ASWTVPFAAR				
	401			
450				
A. terreus 9al	AYVEMMQC	ra	EKEPL	VRVLVNDRVM
PLHGCPtDKL				
A. terreus cbs	AYIEMMQC	ra	EKQPL	VRVLVNDRVM
A. niger var. awamori	lyvemmqc	Qa	EQEPL	VRVLVNDRVV
A. niger NRRL3135 PLHGCPVDaL	lyvemmQC	Qa	EQEPL	, VRVLVNDRVV
A. fumigatus 13073 PLHGCDVDKL	AYfEtMQC	Ks	EKEPL	VRaLINDRVV
A. fumigatus 32722 PLHGCDVDKL	AYfEtMQC	Ks	EKEPL	VRaLINDRVV
A. fumigatus 58128 PLHGCDVDKL	AYfEtMQC	Ks	EKESL	VRaLINDRVV
A. fumigatus 26906 PLHGCDVDKL	AYfEtMQC	Ks	EKEPL	VRaLINDRVV

A. fumigatus 32239 PLHGCAVDKL	AYfEtMQC	Ks	EKEPL	VRaLINDRVV
E. nidulans PLHGCAVDKF	AYfELMQC	E	KKEPL	VRVLVNDRVV
T. thermophilus	AYIEMMQC	Dd	sDEPV	VRVLVNDR V V
T. lanuginosa PLHGCrVDRW	AYVELLRC	Etetsseeee	EGEDEPF	VRVLVNDRVV
M. thermophila	iyvekMRC	sgggggggg	EGrqeKDEeM	VRVLVNDRVM
Basidio PLEfCGgDxd	mvVErLxCxx	xgtxxxxxxx	xxxxxxxxx	VRVLVNDaVq
Consensus PLHGCGVDKL	AYVEMMQC	E	EGEKEPL	VRVLVNDRVV
-	AYVEMMQC	EA	EKEPL	VRVLVNDRVV
Fcp10	AYVEMMQC	EA		VRVLVNDRVV
-	451	GLSFAQAG		182
PLHGCGVDKL	451 GRCKrDAFVA		GNWADCF~~~	482
PLHGCGVDKL A. terreus 9a1	451 GRCKrDAFVA GRCKrDDFVE	GLSFAQAG GLSFARAG	GNWADCF~~~	482 ~~
A. terreus 9a1 A. terreus cbs	451 GRCKrDAFVA GRCKrDDFVE GRCtrDsFVr	GLSFAQAG GLSFARAG GLSFARSG	GNWADCF~~~ GNWAECF~~~ GDWAECSA~~	482
A. terreus 9a1 A. terreus cbs A. niger var. awamori	451 GRCKrDAFVA GRCKrDDFVE GRCtrDsFVr	GLSFAQAG GLSFARAG GLSFARSG	GNWADCF~~~ GNWAECF~~~ GDWAECSA~~ GDWAECFA~~	482
A. terreus 9a1 A. terreus cbs A. niger var. awamori A. niger NRRL3135	GRCKrDAFVA GRCKrDDFVE GRCtrDsFVr GRCtrDsFVr GRCKINDFVK	GLSFAQAG GLSFARAG GLSFARSG	GNWADCF~~~ GNWAECF~~~ GDWAECSA~~ GDWAECFA~~	482 ~~ ~~ ~~
A. terreus 9a1 A. terreus cbs A. niger var. awamori A. niger NRRL3135 A. fumigatus 13073	GRCKrDAFVA GRCKrDDFVE GRCtrDsFVr GRCtrDsFVr GRCKlNDFVK	GLSFAQAG GLSFARAG GLSFARSG GLSFARSG	GNWADCF~~~ GNWAECF~~~ GDWAECSA~~ GDWAECFA~~ GNWGECFS~~	482
A. terreus 9a1 A. terreus cbs A. niger var. awamori A. niger NRRL3135 A. fumigatus 13073 A. fumigatus 32722	GRCKTDAFVA GRCKTDDFVE GRCTTDSFVT GRCTTDSFVT GRCKINDFVK GRCKINDFVK	GLSFAQAG GLSFARAG GLSFARSG GLSWARSG GLSWARSG	GNWADCF~~~ GNWAECF~~~ GDWAECSA~~ GDWAECFA~~ GNWGECFS~~ GNWGECFS~~	482

E. ni	dulans		GRCt1	DDWVE (GLNFARSO	3 G	NWK t (CFT1	- - -	-			
T. th	ermophil:	us	GRCKr	DDFVr (GLSFARqO	3 G	NWEG	CYAa:	s e	~			
T. la	nuginosa		GRCRr	DEWIK (GLTFARq(3 G	HWDr(CF~~	~ ~.	~			
M. th	ermophila	a	GmCtl	ErFIE :	SMAFARGI	1 G	KWD1	CFA~	~ ~	~			
Basid	lio		GxCt1	DAFVE :	SqxYAReI	Ogq G	DFEK	CFAt	рх	x			
	Cor	nsensus	GRCK-	DDFVE (GLSFARSO	3 G	NWEE	CFA-		~			
		Fcp10	GRCKR	DDFVE (GLSFARS(3 G	NWEE(CFA.		•			
Figure 6													
	CP-1												
					L L								17
	TATAT <i>GA</i> .	ATTC <u>ATG</u> C	, GCG1 G 1	icuicu	IGCIACI	SICCA	.TTGC	CACC	116	1100	311 C(_A	
1		+	+-		+		+	-	+		-	-+	60
	ATATACT	TAAGTACO	CCGCACA	AGCAGC.	ACGATGA	CAGGI	'AACG	GTGG	AAC.	AAGC(CAAG	GT	
	S G	T A I	L G P	RG	N S	н s	; c	D	т	V D	G	G	37
	CATCCGG	TACCGCC	rrgggro	CTCG TG	GTAATTC'	rcaci	CTTG	TGAC	ACT	GTTG.	ACGG	TG	
61	l	+	+-		+		-+		+		-	-+	120
	GTAGGCC	ATGGCGG	AACCCAG	GAGCAC	CATTAAG	AGTG2	AGAAC	ACTG	TGA	CAAC	TGCC	AC	
	CP	-2											
		CP-3	.10										
	Y Q	C F	P E 1	SH	L W	G (Y Ç	s	P	<u>F</u> F	s	L	57
	GTTACCA	ATG TTTC	CCAGAAI	ATTTCTC	ACTTGTG	GGGT	ATAC	CTC1	KOD7	TTCT	TCTC	TT	

${\tt CAATGGTTACAAAGGGTCTTTAAAGAGTGAACACCCCAGTTATGAGAGGTAAGAAGAAGAA}$

	A	D	E	s	A	I	s	P	D	v	P	ĸ	g	С	R	v	т	F.	v	Q	77
	TGGC	TGA	.CGA	ATC	TGC	TAT	TTC	TCC.	a ga	CGT	TCC.	AAA	GGG	TTG	TAG	AGT'	TAC'	rtt	CGT'	ГC	
181			+		-		+	<i>-</i>		-+-			+				+			-+	240
	ACCG	ACT	GCT	TAG	AC G	ATA	AAG	AGG	TCT	GCA	AGG	TŢŢ	ccc	GAC	ATC	TCA	ATG.	AAA	GCA	AG	
						CP-		<u>0</u> P-5	.10												
	v	L	s	R	Н	G	A	R	Y	P	т	s	s	K	s	ĸ	ĸ	Y	s	A	97
	AAGT	TTI	'GTC	TAG	ACA	CGG	TGC	TAG	ATA	ccc	AAC	TTC	TTC	TAA	GTC	TAA	GAA	GTA	CTC	TG	
241			+				+			-+-			+		- 		+	-		-+	300
	TTCA	AAA	CAG	ATC	TGT	GCC	ACG	ATC	TAT	GGG	TTG	AAG	AAG	ATT	CAG	ATT	CTT	CAT	GAG	AC	
	L	I	E	A	I	Q	ĸ	N	A	Ť	A	F	к	G	к	Y	A	F	L	к	117
	CTTI	GAI	TGA	AGC	TAT	TCA	AAA	GAA.	.CGC	TAC	TGC	TTT	CAA	.GGG	TA A	GTA	.CGC	TTT	CTT	GA	
301			+				+			-+-			+		- 		+		- 	-+	360
	GAAA	\CT#	ACT	TCG	ATA	AGT	ттт	СТТ	GCG	ATG	ACG	AAA	.GTI	ccc	ATI	CAT	GCG	AAA	GAA	.CT	
									CF	-6											
											CP-	7.1	<u>.0</u>								
	Т	Y	N	Y	Т	L	G	A	D	D	L	T	P	F	G	E	Q	Q	М	v	137
	AGAC	TT	ACAA	ACTA	CAC	TTT	rGGC	TGC	TGA	\CG#	CTI	'GAC	TCC	LTA:	CGG	TGA	LACA	ACA	AAT	'GG	
361			+	·	-		. +	· •		·-+-	· -			· -			. +			-+	420
	TCT	GAA!	rgty	rgat	rgto	LAA	ACC(CACG	aci	GC1	GAA	CTC	AGO	TAI	rec (CACT	r r G1	TGI	TT	/CC	
		~	~	_	.,	-	v		_	17	•				-	7/	.	17		r	167

			+		 -		+			-+ -		-	+		-		+			-+	480
AA	TTC	GAG	ACC	ATA	ATT	CAA	GAT	GTC	TTC	TAT	GTT	CCG.	AAA	CCG.	ATC	TTT	CTA	ACA	AGG	TA	
												CP	-8.	10							
													9	CP-	9.1	<u>0</u>					
	<u>v</u>	R	A	s	G	s	D	R	v	I	A	s	A	E	ĸ	F	I	E	G	F	177
TC	GT:	rag.	AGC	TTC	TGG	TTC	TGA	CAG	AGT	TAT	TGC	TTC	TGC	TGA	AAA	GTT	CAT	TGA	AGG	TT	
																					540
AG	CA	ATC'	TÇG	AAG	ACC	AAG.	ACT	GTC	TCA	ATA	ACG.	AAG.	ACG.	ACT	TTT	CAA	GTA	ACT	TCC	AA	
	Q	s	A	K	L	A	D	P	G	A	N	P	н	Q	A	s	P	v	I	N	197
TC	CA	ATC	TGC	TAA	GTT	GGC	TGA	.ccc	AGG	TGC	TAA	ccc	ACA	CCA	AGC	TTC	TCC	AGT	TAT	TA	
																	.				600
							T														
										- + -			+				,			,	000
AG	GT	TAG	ACG	АТТ	CAA	CCG					ATT										000
AG	GT'	TAG	ACG	АТТ	CAA	CCG									TCG	AAG		TCA			
AG	GT	TAG	ACG	АТТ	CAA	CCG									TCG	AAG	AGG	TCA	ATA		
							АСТ	GGG	TCC	ACG	АТТ	GGG	TGT	GGT	TC G	AAG	.10 CP-	TCA	ATA	AТ	
	v	I	I	P	E	G	ACT	GGG	TCC Y	acg n	АТТ	GGG T	TGT:	GGT D	ТС С <u>СР</u> Н	AAG -10	.10 CP-	TCA 11.	ата 10 Т	AT	
)	V CGT	I TAT	I TAT	P TCC	E AGA	G .AGG	ACT A TGC	G G	Y Y	ACG N .CAA	ATT N .CAA	GGG T CAC	TGT(L TTT	GGT D GGA	ТС С <u>СР</u> Н	G.CGG	.10 CP- L	11.	10 T	A T A	217
ρĄ	V CGT	I TAT	I TAT	P TCC	E AGA	G .AGG	ACT A TGC	G G	Y Y	ACG N .CAA	ATT N .CAA	GGG T CAC	TGT(L TTT	GGT D GGA	ТС С <u>СР</u> Н	G.CGG	.10 CP- L	11.	10 T	A T A	217
A C	V	I TAT	I TAT +	P	E AGA	G .AGG	<u>A</u>	G G	Y TTA	N CAA	ATT N .CAA	T CAC	L TTT	D GGA	TCG CP H CCA	G CCGG	.10 CP- L	11. C	10 T	AT A	217
AC	V	I TAT	I TAT +	P	E AGA	G .AGG	<u>A</u>	G G	Y TTA	N CAA	N CAA	T CAC	L TTT	D GGA	TCG CP H CCA	G CCGG	.10 CP- L	11. C	10 T	AT A	217
A C	V	I TAT	I TAT +	P	E AGA	G .AGG	<u>A</u>	G G	Y TTA	N CAA	N CAA	T CAC	L TTT	D GGA	TCG CP H CCA	G CCGG	.10 CP- L	11. C	10 T	AT A	217
AC	V CGT	I TAT	I TAT +	P TCC	E AGA 	G AGG	ACT ACT CACG	G G TGG	Y TTA	N CAA -+-	N CAA	T CAC	L TTT	D GGA	TCG CP H CCA	G CCGG	L TTTT	11. C GTG	TTAC	AT ATTG	217
ACC	V CGT GCA	I TAT ATA E	I TAT + ATA <u>E</u>	P TCC AGG	E AGA TCT	G AGG TCC L	ACT ACT CACC G	G G HACO	Y TTTA	N CAA -+- 'GTT	N CAA	T CAC 	L TTTT +	D GGA CCT	TCG CP H CCA	G CGGG	L TTTT	11. C GTG	TTAC	AT A TTG	217
TO	V CGT GCA F	I TAT ATA E	I TAT + ATA <u>E</u>	P TCC AGG	E AGA TCT E	G AGG TCC L	ACT ACT CTGC G	G GTTGG	Y TTTA LAAT D	N CAA -+- V	N CAA E	GGGG T CAC GTG	L TTT + AAA N	D GGA CCT	TCG CP H CCA	G CGGG	L TTTT +	11. C GTG	T TAC	AT ATG	217

																			g	P-:	12.	10
	Ē	2	I	R	Α	R	L	E	A	Ħ	L	P	G	v	N	L	т	D	E.	D	v	257
	CAC	CI	'AT'	rag.	AGC	ta g	АТТ	GGA	AGC	TCA	СТТ	GCC	AGG'	TGT	TAA	СТТ	GAC'	TGA	CGA	AGA(CG	
721				+				+		-	-+-			+				+			-+	780
	GTC	GJ.	(TA	ATC'	TCG.	ATC	TAA	CCT	TCG	agt	gaa	CGG	TCC.	ACA	ATT	GAA	CTG.	ACT(GCT?	rct(3C	
	CP-	-13	3.1	<u>0</u>																		
	1	7	<u>N</u>	L	М	D	M	С	P	F	D	T	v	A	R	Т	s	D	A	т	Q	277
	TTC	TT	AA	CTT	gat	GGA	CAT	GTG	TCC	TTA	CGA	CAC	TGT	TGC	TAG	AAC	TTC	TGA	CGC	PAC'	IC	
781				+			 -	+			-+-	 -		+				+			-+	840
	AAC	CAJ	\TT	gaa	CTA	CCT	GTA	. C AC	AGG	ТАА	GCT.	GTG	ACA	ACG	ATC	TTG	AAG	АСТ	GCG	ATG.	AG	
	I	<u>.</u>	s	P	F	С	₫	L	F	Т	Н	D	E	W	I	Q	Y	D	Y	L	Q	297
	AA	rT(TC	TCC	ATT	CTG	TGA	.CTT	GTT	CAC	TCA	CGA	CGA	ATG	GAT	TCA	ATA	CGA	CTA	CTT	GC	
841			-	+			- - -	+			-+-			+			- 	+			-+	900
	TTA	AA(CAG	AGG	TAA	.GAC	ACT	'GAA	.CAA	.GTG	AGT	GCT	GCT	TAC	CTA	AGT	TAT	GCT	GAT	GAA	CG	
			<u>C</u>	P-1	4.1	_																
					CP	-15	.10	<u>.</u>														
		s	L	G	ĸ	Y	Y	G	Y	G	A	G	N	P	L	G	P	Α	Q	G	V	317
	AA'	TC:	ГТТ	GGG	KAT	gt)	CTA	rcee	TTA	.CGG	TGC	TGG	KAT	ccc	ATI	GGG	TCC	AGC	TCA	AGG	TG	
901	~			+			- - -	+			-+-			+				+			-+	960
	TT	AG	AAA	ccc	CTA	CAT	GAI	GCC	:AAT	GCC	ACG	ACC	ATI	GGG	TAA	ccc	AGG	TCG	AGT	TCC	AC	
	(G	F	Ā	N	E	L	I	A	R	L	Т	Ħ	S	P	V	Q	D	Н	Т	S	337
	TT	GG'	rti	'CG'	TA	\CG#	LATI	rga:	MGC	TAC	TA	GAC	TCA	CTC	TCC	AGT	TC	AG.	CCA	CAC	TT	

961			+				+			-+-			+	 -			-		. -	- +	
1020																					
	AACC	AAA	GCA/	ATT(GC T '	TAA(CTA	ACG.	ATC'	TAA	CTG	AGT	GAG	AGG'	rca:	agt:	гстс	GTC	;TG/	LA.	
						~p_	16.:	10													
					3	<u> </u>			.10												
									. = 0												
	T	N	Н	T	L	D	S	N	P	A	т	F	P	L	N	A	T	L	Y	A	357
	CTAC	TAA(CCA	CAC	TTT(GGA	C TC :	TAA	ccc.	AGC	TAC	r T T	ccc	ATT	GAA	CGC:	raca	rtte	3TAC	CG	
1021		- 	+				+			-+ -		- 	+	- 			+	·		-+	
1080			·							·			·				•			·	
	GATG.	ATT	GGT(g t g:	XXX	CCT	GAG	ATT	GGG	TCG	ATG.	AAA	GGG [,]	TAA	CTT	GCG	ATG	\AA(CATO	GC	
	D	F	s	н	D	N	Ţ	M	<u>v</u>	s	I	F	F	A	L	G	L	Y	N	G	377
	CTGA	CTT	CTC'	TCA	CGA	CAA	CAC	TAT	GGT	TTC	TAT'	TTT(CTT	CGC	PT T	GGG′	rtt(GTA(CAAC	CG	
1081			+				+			-+-			+				+			-+	
1140																					
	GACT	GAA	GAG.	AGT	GCT	GTT	GTG.	ATA	CCA	AAG	ATA	AAA	GAA	GCG.	AAA	CCC.	AAA	CAT	JTT(GC	
									CP-	18.	10										
										C	P-1	9.1	<u>o</u>								
	т	ĸ	P	L	s	Т	Т	s	v	E	s	I	E	E	Т	D	G	Y	Ā	A	397
	GTAC	TAA	.GCC	ATT	GTC	TAC	TAC	ттс	TGT	TGA	ATC	TAT	TGA	AGA	AAC	TGA	CGG	TTA	CGC'	TG	
			+				+			-+-			+				+			-+	
1200																					
	CATG	ATT	CGG	TAA	.CAG	ATG	ATG	AAG	ACA	ACI	TAG	ATA	ACT	TCT	TTG	ACT	G CC	TAA	GCG	AC	
	S	W	ጥ	ν	P	F	A	A	R	A	Y	v	E	M	М	O	C	E	A	E	417
	_		-	•	-				- •			-	-			-		_			

	CTTCTTGGACTGTTCCATTCGCTGCTAGAGCTTACGTTGAAATGATGCAATGTGAAGCTG
1201	
1260	
	CAACAACCTCACAACCTAACCAACCATCTCCAATCTCAAACCAACCTAACCTAACCTCAACCTCAACCTAACCTCAAC
	GAAGAACCTGACAAGGTAAGCCACGATCTCGAATGCAACTTTACTACGTTACACTTCGAC
	CP-20.10
	CP-21.10
	KEPLVRVLVNDRVVPLHGC <u>G</u> 437
	AAAAGGAACCATTGGTTAGAGTTTTGGTTAACGACAGAGT TGTTCCATTGCACGGTTGTG
1261	
1320	
	TTTTCCTTGGTAACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACAC
	1111CC11GGIAACCAATCTCAAATCCAATTGCTGTCTCAACAACAACAACAACAACAACAACAACAACAACAAC
	V D K L G R C K R D D F V E G L S F A R 457
	GTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTA
1321	
1380	
	CACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT
	<u>CP-22.10</u>
	SGGNW <u>E</u> ECFA* EcoRI 467
	GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA
1381	1426
	CTAGACCACCATTGACCCTTCTTACAAAGCGAATTCTTAAGTATAT

Figure 7

50				
P. involutus (phyA1) pPaGCQInqV	~~~~~~	~FPipeseqR	nWSPYSPYFP	LAEyka
P. involutus (phyA2) pPaGCeInqV	~~~~~~	~FsipeseqR	nWSPYSPYFP	LAEykA
T. pubescens pPaSCQInqV	~~~~~~~	~LDvtRDVqQ	sWSmYSPYFP	aAtyvA
A. pediades pPKDCKITqV	~~~~~~	~pffpPQIqD	sWAaYTPYYP	VqAyTP
P. lycii pPEGCtVTqV		~LPipAQnTs	nWGPYdPFFP	VEpyAA
A. terreus 9al VPEDCHITFV	KhsdCNSVDh	GYQCfPELSH	kWGlYAPYFS	LqDESPFP1D
A. terreus cbs VPDDCHITFV	NhsdCtSVDr	GYQCfPELSH	kWGlYAPYFS	LqDESPFP1D
A. niger var. awamori VPaGCRVTFa	NgsTCDTVDg	GYQCESEESH	LWGQYAPFFS	LANESAISPD
A. niger T213 VPaGCRVTFa	NqsSCDTVDq	GYQCfSEtSH	LWGQYAPFFS	LANESVISPD
A. niger NRRL3135 VPaGCRVTFa	NgsSCDTVDq	GYQCfSEtSH	LWGQYAPFFS	LANESVISPE
A. fumigatus ATCC13073 LPKDCRITLV	GSkSCDTVD1	GYQCsPAtSH	LWGQYSPFFS	LEDELSVSSK
A. fumigatus ATCC32722 LPKDCRITLV	GSkSCDTVD1	GYQCsPAtSH	LWGQYSPFFS	LEDEISVSSK
A. fumigatus ATCC58128 LPKDCRITLV	GSkSCDTVD1	GYQCsPAtSH	LWGQYSPFFS	LEDEISVSSK

A. fumigatus ATCC26906 LPKDCRITLV	GSkSCDTVDl	GYQCsPAtSH	LWGQYSPFFS	LEDEISVSSK
A. fumigatus ATCC32239 LPKDCRVTFV	GSkACDTVEl	GYQCsPGtSH	LWGQYSPFFS	LEDELSVSSD
E. nidulans VPhGCeVTFV	QNHSCNTaDg	GYQCfPNVSH	VWGQYSPYFS	IEQESAISeD
T. thermophilus VPQNCKITFV	DSHSCNTVEg	GYQCrPEISH	sWGQYSPFFS	LADQSEISPD
T. lanuginosa VPKGCRVeFV	~~~~~~~	~~~nvDIAR	hWGQYSPFFS	LAEVSEISPA
M. thermophila	ESRPCDTpD1	GFQCgTAISH	FWGQYSPYFS	VPsElDaS
Consensus Seq. 11	NSHSCDTVD-	GYQC-PEISH	LWGQYSPFFS	LADESAISPD
VPKGCRVTFV				
VPKGCRVTFV	51			
		PTSGaTtRik	AgLtKLQgvq	nftDAKFnFI
100 P. involutus (phyA1)	NIIQRHGARF			
100 P. involutus (phyA1) KSFKYdLGns P. involutus (phyA2)	NIIQRHGARF NIIQRHGARF		AgLsKLQsvq	nftDPKFDFI
100 P. involutus (phyA1) KSFKYdLGns P. involutus (phyA2) KSFtYdLGTs T. pubescens	NIIQRHGARF NIIQRHGARF HIIQRHGARF	PTSGaAtRik	AgLsKLQsvq TaVAKLKaaS	nftDPKFDFI nytDP1LAFV

A. terreus 9al	QVLARHGARs	PThSKTKaYA	AtlAalQKSA	TafpGKYAFL
QSYNYSLDSE				
	QVLARHGARS	PTdSKTKaYA	AtiAaiQKNA	TalpGKYAFL
KSYNYSMGSE				
A. niger var. awamori	QVLSRHGARY	PTeSKGKKYS	ALIEeIQQNv	TtFDGKYAFL
KTYNYSLGAD				
A. niger T213	QVLSRHGARY	PTeSKGKKYS	ALIEeIQQNv	TtFDGKYAFL
KTYNYSLGAD				
A. niger NRRL3135	QVLSRHGARY	PTdSKGKKYS	ALIEeIQQNA	TtFDGKYAFL
KTYNYSLGAD				
A. fumigatus ATCC13073	QVLSRHGARY	PTSSKSKKYk	kLVtaIQaNA	Tdfkgkfafl
KTYNYTLGAD				
A. fumigatus ATCC32722	QVLSRHGARY	PTSSKSKKYk	kLVtaIQaNA	Tdfkgkfafl
KTYNYTLGAD				
A. fumigatus ATCC58128	QVLSRHGARY	PTSSKSKKYk	kLVtaIQaNA	TdfkGkfafl
KTYNYTLGAD				
A. fumigatus ATCC26906	QVLSRHGARY	PTSSKSKKYk	kLVtaIQaNA	TdfkGkfafl
KTYNYTLGAD				
A. fumigatus ATCC32239	QVLSRHGARY	PTASKSKKYk	kLVtaIQKNA	TeFKGKFAFL
ETYNYTLGAD				
E. nidulans	OVLSRHGARY	PTeSKSKaYS	GLIEaIOKNA	TsFwGOYAFL
ESYNYTLGAD	L /		•	
T. thermophilus	OLLSRHGARY	PTSSKTElys	al.TeRIOKtA	TaYKGVYAFI.
KdYrYqLGAN	QDDD:morn(1	1100111111	darawraw.	1411.07 1,110
m lanuainean	OUT CRUCARY	DWY PACE - WY	ELLORIODE A	TARVODENEL
T. lanuginosa RdYaYhLGAD	QV DOKHORKY	PIMINSEVIA	PUDÚKTÚDCA	TefKGDFAFL
M. thermophila RTYDYTLGAD	QVLSRHGARa	PTIKRAasYv	DLIDRIHHGA	isYgPgYEFL

Consensus Seq. 11 QVLSRHGARY PTSSKSKKYS ALIERIQKNA T-FKGKYAFL KTYNYTLGAD

101

-	١
	4

150				
P. involutus (phyA1) VVDSAtNWtA	DLvPFGAaQs	fDAGqEaFaR	YskLvSKNnL	PFIRAdGSDR
P. involutus (phyA2) VVDTAtNWtA	DLvPFGAaQs	fDAGLEVFaR	YskLvSsDnL	PFIRSdGSDR
T. pubescens	sLveLGAtQs	sEAGqEaFtR	YsSLvSaDeL	PFVRASGSDR
A. pediades VVDSAtNWtE	DLvPFGAlQs	sQAGeEtFQR	YsfLvSKEnL	PFVRASSSNR
P. lycii VVDSStNWtA	DL1PFGANQs	hQTGtDMYtR	YsTLfEgGdV	PFVRAAGdQR
A. terreus 9a1 VhESAEKFVE	ELTPFGrNQL	rDlGaQFYeR	YNAL.TRHIn	PFVRATDAsR
A. terreus cbs VhESAEKFVE	NLTPFGrNQL	qD1GaQFYRR	YDTL.TRHIn	PFVRAADSsR
A. niger var. awamori VIASGEKFIE	DLTPFGEQEL	VNSGIKFYQR	YESL.TRNII	PFIRSSGSsR
A. niger T213 VIASGEKFIE	DLTPFGEQEL	VNSGIKFYQR	YESL.TRNII	PFIRSSGSsR
A. niger NRRL3135 VIASGKKFIE	DLTPFGEQEL	VNSGIKFYQR	YESL.TRNIV	PFIRSSGSsR
A. fumigatus ATCC13073 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARSVV	PFIRASGSDR
A. fumigatus ATCC32722 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARSVV	PFIRASGSDR

A. fumigatus ATCC58128 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARSVV	PFIRASGSDR
A. fumigatus ATCC26906 VIASGEKFIE	DLTAFGEQQL	VNSGIKFYQR	YKAL.ARSVV	PFIRASGSDR
A. fumigatus ATCC32239 VIASGEKFIE	DLTPFGEQQM	VNSGIKFYQK	YKAL.AgSVV	PFIRSSGSDR
E. nidulans VVASAEKFIN	DLTiFGENQM	VDSGaKFYRR	YKnL.ARKnt	PFIRASGSDR
T. thermophilus	DLTPFGENQM	IQlGIKFYnH	YKSL.ARNaV	PFVRCSGSDR
T. lanuginosa VIASAEfFnr	NLTRFGEEQM	MESGrQFYHR	YREq.AREIV	PFVRAAGSAR
M. thermophila VVhSAENFtQ	ELTREGQQQM	VNSGIKFYRR	YRAL.ARKsI	PFVRTAGqDR
Consensus Seq. 11 VIASAEKFIE	DLTPFGENQM	VNSGIKFYRR	YKAL-ARNIV	PFVRASGSDR
	DLTPFGENQM	VNSGIKFYRR	YKAL-ARNIV	PFVRASGSDR
VIASAEKFIE	151			
VIASAEKFIE 200 P. involutus (phyA1)	151 GFaSA	shNtvqPk	LNLILPQT	gndtlednmc
P. involutus (phyA1) PAaGD P. involutus (phyA2)	GFaSA	shNtvqPk	LNLILPQT	gndtlednmc gndtlednmc

P. lycii PnevD	GFgdA	sgEtvlPt	LQVVLQEE	gnctlcnnmC
A. terreus 9al TAFEsST	GFQTARqDDh	hAnpHQPSPr	VDVaIPEGSA	YNNTLEHSLC
A. terreus cbs	GFQNARqGDP	hAnpHQPSPr	VDVVIPEGTA	YNNTLEHSIC
A. niger var. awamori TvFEDSe	GFQSTKLkDP	rAqpgQSSPk	IDVVISEASS	SNNTLDpGtC
A. niger T213 TvFEDSe	GFQSTKLkDP	rAqpgQSSPk	IDVVISEASS	sNNTLDpGtC
A. niger NRRL3135 TvFEDSe	GFQSTKLkDP	rAqpgQSSPk	IDVVISEASS	sNNTLDpGtC
A. fumigatus ATCC13073 TkFEASq	GFQqAKLADP	gAt.NRAAPa	ISVIIPESeT	FNNTLDHGVC
A. fumigatus ATCC32722 TkFEASq	GFQqAKLADP	gAt.NRAAPa	ISVIIPESeT	FNNTLDHGVC
A. fumigatus ATCC58128 TkFEASq	GFQqAKLADP	gAt.NRAAPa	ISVIIPESeT	FNNTLDHGVC
A. fumigatus ATCC26906 TkFEASq	GFQqAKLADP	gAt.NRAAPa	ISVIIPESeT	FNNTLDHGVC
A. fumigatus ATCC32239 TnFEASe	GFQqANVADP	gAt.NRAAPV	ISVIIPESeT	YNNTLDHSVC
E. nidulans vSFENde	GFRkAQLhDh	g.s.gQATPV	VNVIIPEidG	FNNTLDHStC
T. thermophilus PvFEDSS	GFQSAKVldP	hSdkHDAPPt	INVIIeEGPS	YNNTLDtGsC
T. lanuginosa	GFQdAKdrDF	rSnkDQAePV	INVIISEETG	sNNTLDgltC

M. thermophila TAFEEgpyST	GFHSAlLADR	gStvRPT1Py	dmVVIPETAG	
Consensus Seq. 11	GFQSAKLADP	-AHQASPV	INVIIPEGSG	YNNTLDHGLC
250	201			
P. involutus (phyA1) LCAFlTVSK.	.SDpqvnaWl	AVafPSItAR	LNAaaPSVNL	TDtDafNLVs
P. involutus (phyA2) LCPFmTVSK.	.SDpqvDaWl	AsafPSVtAQ	LNAaaPGaNL	TDADafNLVs
T. pubescens	.SDpqvnQWl	Aqfappmtar	LNAgaPGaNL	TDtDtyNLLt
A. pediades LCAFETIVK.	.SDpqtGiWT	SIYGTPIanR	LNqqaPGaNI	TAADVsNLIp
P. lycii MCPFDTLSs.	.GDESt.tWl	GVFAPnItAR	LNAaaPSaNL	SDsDaLtLMD
A. terreus 9al	VGDDAVANFT	AVFAPAIaqR	LEAdLPGVQL	SEDDVVNLMA
A. terreus cbs	VGDAAADNFT	AVFAPAIakR	LEAdLPGVQL	SADDVVNLMA
A. niger var. awamori MCSFDTIStS	LADtvEANFT	AtFAPSIRqR	LEndLSGVtL	TDtEVtyLMD
A. niger T213 MCSFDTIStS	LADtvEANFT	AtFAPSIRqR	. LEndLSGVtL	TDtEVtyLMD
A. niger NRRL3135 MCSFDTIStS	LADtvEANFT	`AtfvPSIRqR	LEndLSGVtL	, TDtEVtyLMD

A. fumigatus ATCC13073 MCSFDTVART	LGDEVAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD
A. fumigatus ATCC32722 MCSFDTVART	LGDEVAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD
A. fumigatus ATCC58128 MCSFDTVART	LGDEVAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD
A. fumigatus ATCC26906 MCSFDTVART	LGDEVAANFT ALFAPdIRAR aKkhLPGVtL TDEDVVSLMD
A. fumigatus ATCC32239 MCSFDTVART	LGDEVEANFT ALFAPAIRAR IEKhLPGVQL TDDDVVSLMD
E. nidulans MCSFDTMART	rADEIEANFT AIMGPPIRKR LEndLPGIKL TNENVIYLMD
T. thermophilus	gGHDAQEKFA kqFAPAIlEK IKDhLPGVDL AvsDVpyLMD
T. lanuginosa LCPFDTVGsd	.DptqpAEF1 qVFGPRVlkK ItkhMPGVNL TlEDVplFMD
M. thermophila	IGDDAQDtYl StFAGPITAR VNAnLPGaNL TDADtVaLMD
Consensus Seq. 11	LGDDAEANFT AVFAPPIRAR LEA-LPGVNL TDEDVVNLMD
300	251
P. involutus (phyAl) dKFYGtGyGQ	ekkSdF CtLFegiPGs FeaFAYggdL
P. involutus (phyA2) dKFYGtGyGQ	eqkSdF CtLFegiPGs FeaFAYagdI

T. pubescens	errSeF	CDIYeelqAE .daFAYnadL
dKFYGtGyGQ		
A. pediades dKFYGtGyGQ	etpSPF	CNLFTPEE FaQFEYFġdL
P. lycii dKYYGtGPGN	gnaSPF	CDLFTAEE YvsYEYYydL
A. terreus 9al dKYYGYGGGN	dDAhtLSPF	CDLFTATE WTQYNYLISL
A. terreus cbs dKYYGYGGGN	dDAhtLSPF	CDLFTAAE WtQYNYLlSL
A. niger var. awamori kKYYGHGAGN	TvDTKLSPF	CDLFThDE WiHYDYLQSL
A. niger T213 kKYYGHGAGN	TvDTKLSPF	CDLFThDE WiHYDYLRSL
A. niger NRRL3135 kKYYGHGAGN	TvDTKLSPF	CDLFThDE WiNYDYLQSL
A. fumigatus ATCC13073 gKYYGYGAGN	SDASQLSPF	CQLFThNE WKKYNYLQSL
A. fumigatus ATCC32722 gKYYGYGAGN	SDASQLSPF	CQLFThNE WKKYNYLQSL
A. fumigatus ATCC58128 gKYYGYGAGN	SDASQLSPE	CQLFThNE WKKYNYLQSL
A. fumigatus ATCC26906 gKYYGYGAGN	SDASQLSPE	F CQLFThNE WkKYNYLQSL
A. fumigatus ATCC32239 gKYYGYGAGN	ADASELSPI	F CAIFThNE WKKYDYLQSL
E. nidulans sKYYGYGAGS	AHGTELSPI	F CAIFTEKE WłQYDYLQSL

T. thermophilus gKYYGnGGGN	htDT	LSPF	CALsTqEE	WqaYDYYQSL
T. lanuginosa dKYYSHGGGS	PvlfPrQ	LSPF	CHLFTADD	WmaYDYYyTL
M. thermophila gKWYGYGPGN	SsdpATadag	ggngrpLSPF	CrLFSEsE	WraYDYLQSV
Consensus Seq. 11 KYYGYGAGN	SDATQ	LSPF	CDLFTADE	W-QYDYLQSL
350	301			
P. involutus (phyA1) FPLNkTFYAD	eLGPvQGVGY	VNELIARLTN	S.AVRDNTqT	NRTLDASPVT
P. involutus (phyA2) FPLNkTMYAD	ALGPvQGVGY	inellarltn	S.AVNDNTqT	NRTLDAaPDT
T. pubescens FPLNrTLYAD	PLGPvQGVGY	iNELIARLTa	q.nVsDHTqT	NsTLDSSPET
A. pediades FPLDrSIYAD	PLGPvQGVGY	inellarlte	m.PVRDNTqT	NRTLDSSPlT
P. lycii FPLNrTFYAD	ALGPvQGVGY	vnellarltg	q.AVRDETqT	NRTLDSDPAT
A. terreus 9a1 FPLNATLYAD	PLGPvQGVGW	anelmarltr	A.PVHDHTCv	NNTLDASPAT
A. terreus cbs	PLGPvQGVGW	aNELIARLTR	S.PVHDHTCv	NNTLDANPAT
A. niger var. awamori FPLNSTLYAD	PLGPTQGVGY	aNELIARLTH	S.PVHDDTSS	NHTLDSNPAT

A. niger T213 FPLNSTLYAD	PLGPTQGVGY	aNELIARLTH	S.PVHDDTSS	NHTLDSNPAT
A. niger NRRL3135 FPLNSTLYAD	PLGPTQGVGY	aNELIARLTH	S.PVHDDTSS	NHTLDSSPAT
A. fumigatus ATCC13073 FPLNATMYvD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NsTLvSNPAT
A. fumigatus ATCC32722 FPLNATMYvD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NsTLvSNPAT
A. fumigatus ATCC58128 FPLNATMYVD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NsTLvSNPAT
A. fumigatus ATCC26906 FPLNATMYVD	PLGPAQGIGF	tneliarltr	S.PVQDHTST	NSTLVSNPAT
A. fumigatus ATCC32239 FPLNATIYVD	PLGPAQGIGF	tneliarltn	S.PVQDHTST	NsTLDSDPAT
E. nidulans FPLDrkLYAD	PLGPAQGIGF	tneliarltq	S.PVQDNTST	NHTLDSNPAT
T. thermophilus FPLNATLYAD	PLGPAQGVGF	∨NELIARMTH	S.PVQDYTTv	NHTLDSNPAT
T. lanuginosa FPLDAvLYAD	AFGPSRGVGF	vNELIARMTg	Nlpvkdhttv	NHTLDdNPET
M. thermophila FPLGrPLYAD	PLGPTQGVGF	vnellarla.	GvPVRDgTST	NRTLDGDPrT
Consensus Seq. 11	PLGPAQGVGF	-NELIARLTH	S-PVQDHTST	NHTLDSNPAT

P. involutus (phyA1)	FSHDNlMVAV	FsAMGLFrqP	aPLSTSvpNP	wrtWr
TSSlVPFSGR				
P. involutus (phyA2) TSSvVPFSAR	FSHDN1MVAV	FsAMGLFrqS	aPLSTSTpDP	nrt∴Wl
T. pubescens vkkiVPFSAR	FSHDNqMVAI	FsAMGLFNqS	aPLdPTTpDP	artFl
A. pediades TSRltPFSAR	LSHDNqMIAI	FsAMGLFNqS	sPLdPSfpNP	krtWv
P. lycii DSklVPFSGH	FSHDNTMVPI	FaALGLFNAT	a.LdPlkpDe	nrlWv
A. terreus 9al AAWTVPFAAR	FSHDSnLVSI	FWALGLYNGT	aPLSqTSVES	VsQTDGYA
A. terreus cbs AAWTVPFAAR	FSHDSnLVSI	FWALGLYNGT	KPLSqTTVEd	ItrTDGYA
A. niger var. awamori SAWTVPFASR	FSHDNGIISI	LFALGLYNGT	KPLSTTTVEN	ItQTDGFS
A. niger T213 SAWTVPFASR	FSHDNGIISI	LFALGLYNGT	KPLSTTTVEN	ItQTDGFS
A. niger NRRL3135 SAWTVPFASR	FSHDNGIISI	LFALGLYNGT	KPLSTTTVEN	ItQTDGFS
A. fumigatus ATCC13073 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	EPLSrTSVES	akElDGYS
A. fumigatus ATCC32722 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	gPLSrTSVES	akElDGYS
A. fumigatus ATCC58128 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	EPLSTTSVES	akElDGYS
A. fumigatus ATCC26906 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	EPLSTTSVES	akElDGYS

A. fumigatus ATCC32239 ASWAVPFGAR	FSHDNGMIPI	FFAMGLYNGT	EPLSqTSeES	tkESNGYS
E. nidulans ASWTVPFGAR	FSHDNSMISI	FFAMGLYNGT	QPLSmdSVES	IqEmDGYA
T. thermophilus	FSHDNTMtSI	FaALGLYNGT	akLSTTeIKS	IeETDGYS
T. lanuginosa ASWTVPFAAR	FSHDNTMtGI	FsAMGLYNGT	KPLSTSKIQP	ptgaAADGYA
M. thermophila ASWAVPFAAR	FSHDNdMMGV	LgALGaYDGv	pPLdkTArrd	peElGGYA
Consensus Seq. 11 ASWTVPFAAR	FSHDNTMVSI	FFALGLYNGT	KPLSTTSVES	IETDGYA
450	401			
450 P. involutus (phyA1) PLEfCGgDRn		fGt	Tk	VRVLVQDQVq
P. involutus (phyA1)	mvVErLsC			
P. involutus (phyA1) PLEfCGgDRn P. involutus (phyA2)	mvVErLsC maVErLsC	AGt	Tk	
P. involutus (phyA1) PLEfCGgDRn P. involutus (phyA2) PLEfCGgDQd T. pubescens	mvVErLsC maVErLsC	AGt	Tk	VRVLVQDQVq
P. involutus (phyA1) PLEfCGgDRn P. involutus (phyA2) PLEfCGgDQd T. pubescens PLafCGaDts A. pediades	mvVErLsC maVErLsC mvVErLDC	AGtGGa	Qs	VRVLVQDQVq VRLLVNDaVq VRILVNDaLq

A. terreus cbs PLHGCAVDNL	AYIEMMQCrA	• • • • • • • • • • • • • • • • • • • •	EKQPL	VRVLVNDRVM
A. niger var. awamori PLHGCPIDaL	lyvemmqcqa		EQEPL	VRVLVNDRVV
A. niger T213 PLHGCPIDaL	lyvemmQCQA		EQEPL	VRVLVNDRVV
A. niger NRRL3135 PLHGCPVDaL	lyvemmqcqa		EQEPL	VRVLVNDRVV
A. fumigatus ATCC13073 PLHGCDVDKL	AYfEtMQCKS		EKEPL	VRaLINDRVV
A. fumigatus ATCC32722 PLHGCDVDKL	AYfEtMQCKS		EKEPL	VRaLINDRVV
A. fumigatus ATCC58128 PLHGCDVDKL	AYfEtMQCKS		EKESL	VRaLINDRVV
A. fumigatus ATCC26906 PLHGCDVDKL	AYfEtMQCKS	• • • • • • • • • • • • • • • • • • • •	EKEPL	VRaLINDRVV
A. fumigatus ATCC32239 PLHGCAVDKL	AYfEtMQCKS		EKEPL	VRaLINDRVV
E. nidulans PLHGCAVDKF	AYfELMQCE.		KKEPL	VRVLVNDRVV
T. thermophilus	AYIEMMQCDD		sDEPV	VRVLVNDRVV
T. lanuginosa PLHGCrVDRW	AYVELLRCET	ETsSeEEeEG	EDEPF	VRVLVNDRVV
M. thermophila TLkGCGaDEr	iYVEkMRCsG	GGgGgGGgEG	rQekdEeM	VRVLVNDRVM
Consensus Seq. 11	AYVEMMQCEA	GG-G-GG-EG	EKEPL	VRVLVNDRVV

PLHGCGVDKL

Co	onsensus Seq. 11	GRCKLDDFVE	GLSFARSG	GNWAECFA	
М.	thermophila	GmCtLErFIE	SMAFARGN	GKWDlCFA~~	
Т.	lanuginosa	GRCRrDEWIK	GLTFARqG	GHWDrCF~~~	~~
Т.	thermophilus	GRCKrDDFVr	GLSFARqG	GNWEGCYAas	e~
E.	nidulans	GRCtLDDWVE	GLNFARSG	GNWktCFT1~	~~
Α.	fumigatus ATCC32239	GRCKLKDFVK	GLSWARSG	GNSEQSFS-~	~~
Α.	fumigatus ATCC26906	GRCKLNDFVK	GLSWARSG	GNWGECFS~~	~~
Α.	fumigatus ATCC58128	GRCKLNDFVK	GLSWARSG	GNWGECFS~~	~~
Α.	fumigatus ATCC32722	GRCKLNDFVK	GLSWARSG	GNWGECFS~~	~~
A.	fumigatus ATCC13073	GRCKLNDFVK	GLSWARSG	GNWGECFS~~	~~
Α.	niger NRRL3135	GRCtrDsFVr	GLSFARSG	GDWAECFA~~	~~
Α.	niger T213	GRCtrDsFVr	GLSFARSG	GDWAECFA~~	~~
Α.	niger var. awamori	GRCtrDsFVr	GLSFARSG	GDWAECsA~~	~~
A.	terreus cbs	GRCKrDDFVE	GLSFARAG	GNWAECF~~~	~~
Α.	terreus 9al	GRCKrDAFVA	GLSFAQAG	GNWADCF~~~	~~
P.	lycii	GvCELsAFVE	SqTYAReNgq	GDFAKCgfvp	se
Α.	pediades	SICtLEAFVE	SqkYAReDgq	GDFEKCFD~~	~~
T.	pubescens	GvCtLDAFVE	SqAYARNDge	GDFEKCFAt~	~~
P.	involutus (phyA2)	GlCaLDKFVE	SqAYARSGga	GDFEKCLAtt	v~
P.	involutus (phyA1)	GlCtLAKFVE	SqTFARSDga	GDFEKCFAts a	a~
		451		48	82

Figure 8

20		M	G	v	F	v	v	L	L	s	I	A	T	L	F	G	S	T	S	G.	Т
		ΑT	GGG	CGT	GTT	CGT	CGT	GСТ	ACT	GTC	CAT	TGC	CAC	CTT	GTT	CGG'	TTC	CAC	ATC	CGG'	TACC
60	1		-+-			- - +				+			-+-			+				+	
		TA	ccc	GCA	CAA	GCA	GCA	CGA	TGA	.CAG	GTA	ACG	GTG	GAA	CAA	GCC.	AAG(GTG'	TAG	GCC.	ATGG
40		A	L	G	P	R	G	N	s	н	S	С	D	т	v	D	G	G	Y	Q	С
40		GC	СТТ	GGG	T C C	TCG	TGG	TAA	TTC	TCA	CTC	TTG	TGA	CAC'	TGT	TGA	CGGʻ	TGG	TTA	CCA	ATGT
120	61		-+-			- -+		- 	 -	+	-		-+-		- 	+				+	
		CG	GAA	.ccc	AGG	AGC	ACC	ATT	'AAG	AGT	GAG	AAC	ACT	GTG	ACA	ACT:	GCC.	ACC.	AAT	GGT	TACA
60		F	Þ	E	ı	s	н	L	W	G	T	Y	s	P	Y	F	s	L	Ā	D	E
		тт	ccc	AGA	.A.A.T	TTC	TCA	CTI	GTG	GGG	TAC	СТА	.CTC	TCC	ATA	СТТ	стс	TTT	GGC	AGA	CGAA
180	121		-+-			+			· -	-+			-+-			+			 -	+	
		AA	.GGG	STCT	TTA	AAG	SAGT	GAZ	ACAC	ccc	ATG	GAT	'GAG	AGG	TAT	'GAA	.GAG	AAA	.CCG	тст	GCTT
80		s	A	I	s	P	D	v	P	D	D	С	R	v	т	F	v	Q	v	L	S
		TC	TGC	CTAT	የፕፕር	CTCC	CAG	4CG	rtc(CAGA	ACG <i>F</i>	CTC	CAT	SAGI	TAC	TTT	CGI	TC	AGT	TTT	GTCT
240	187		+-			+	+			-+			-+-			+				+	

		AG	ACG.	АТА	AAG.	AGGʻ	TCT	GCA	AGG	TCT	GCT	GAC	ATC	TCA	ATG.	AAA(GCA/	AGT'	rcai	AAA(CAGA
100		R	н	G	A	R	Y	P	т	s	S	Ā	s	К	A	Y	s	Α	L	I:	E
		AG	ACA	CGG	TGC	TAG.	ATA	ccc	AAC	TTC	TTC	TGC	GTC	TAA	GGC'	TTA	CTC	TGC'	TTT(GAT'	rgaa
300	241		-+-			+				+			-+-			+				+	
•		TC'	rg T	GCC	ACG	ATC'	TAT	GGG	TTG	AAG	AAG	ACG	CAG	ATT	CCG.	AAT	GAG.	ACG.	AAA(CTA	ACTT
120		A	I	Q	К	N	A	т	A	F	ĸ	G	ĸ	Y	A	F	L	ĸ	т	Y	N
		GC'	TAT	TCA	AAA	GAA	CGC	TAC	TGC	TTT	CAA	GGG	TAA	GTA	CGC	TTT	CTT	GAA	GAC′	TTA	CAAC
360	301		-+-			+				+			-+-	-		+				+	
		CG.	АТА	AGT	TTT	CTT	GCG	ATG	acg	AAA	GTT	ccc	АТТ	CAT	GCG.	AAA	GAA	СТТ	CTG.	AAT(GTTG
140		Y	т	L	G	A	Q	D	L	Т	Þ	F	G	E	N	Q	M	v	N	s	G
		TA	CAC	TTI	rGGG	TGC	TGA	.CGA	CTI	GAC	TCC	ATT	'CGG	TGA	AAA	.CCA	AAT	GGT	ТАА	CTC	TGGT
420	361		-+-			+				+			-+ -			+				+	
		AT	GTG	AAZ	ACCC	CACG	ACT	rgei	rga.a	CTC	GAGG	TAP	.GCC	CACT	ጕጕገ	GGT	TTA	CCA	TTA.	'GAG	ACCA
160		I	ĸ	F	Y	R	R	Y	K	A	L	A	R	ĸ	I	V	P	F	I	R	A
		ΑΊ	TAP	\GT1	rct <i>i</i>	\CAG	JAA(GATA	ACA.	AGGC	TT	rggo	TAC	SAAZ	\GA1	TGT	TCC	AT1	CAT	TAG	AGCT
480	421		-+-			4	+ ·			-+		 - ·	+-			+	· -			+	

180		s	G	s	D	R	v	I	Α	s	A	E	ĸ	F	I	Е	G	F	Q	S.	A
																					CCT
540	481		-+-			+				+ ·			- +			-+-			+		
		AG.	ACC.	AAG	ACT(GTC'	TCA	ATA	ACG	AAG	ACG	ACTI	r T T(CAAC	STAA	CTI	CCA	AAG	GTI	CAGA	ACGA
200		ĸ	L	A	D	P	G	s	Q	P	н	Q	A	s	P	v	I	N	v	I	I
		AΑ	GTT	GGC'	rga(CCC	AGGʻ	TTC	TCA	ACC.	ACA	CCAZ	AGC:	rtci	rcc#	GTI	TTA	'AAC	GTO	SATO	CATT
600	541		-+ -		~ = =	+				+			-+			+ -				·	
		TT	CAA	CCG	ACT	GGG'	TCC.	AAG	AGT	TGG'	TGT	GGT:	rcg	aag <i>i</i>	AGGT	CAA	XTA.	TTO	GCAC	CTAC	GTAA
220		P	E	G	S	G	Y	N	N	т	L	D	Н	G	Т	С	т	A	F	E	D
		CC	:AGA	AGG.	ATC	CGG	TTA	CAA	.CAA	CAC	TTT	GGA	CCA	CGG:	rac:	rtgi	raci	rgcr	rtt(CGA	AGAC
660	601		-+-			+				+			-+-			+-				+	-
		GG	STCI	TCC	TAG	GCC	AAT	GTT	GTT	GTG	AAA	.CCT	GGT	GCC.	ATG	AAC	ATG2	ACG	A.A.A	GCT	TCTG
240		s	E	L	G	D	D	V	E	A	N	F	Т	A	L	F	A	P	A	I	R
		T	CTGA	ATT	`AGG	TGA	CGA	ACGI	TGA	AGC	TAA	CTT	CAC	TGC	TTT	GTT(CGC'	rcc	AGC	TAT	TAGA
720	661		+-			+				•+			-+-			+		 -		+	

	AG	ACT	TAA	TCC	ACT	GCT	GCA	ACT	TCG	ATT	GAA	GTG	ACG	AAA	CAA	GCG	AGG	TCG	ATA	ATC	Т
	A	R	L	E	A	D	L	P	G	v	т	L	т	D	E	D	v	v	∴ Y	L	
260																					

M D M C P F D T V A R T S D A T E L S P

TACCTGTACACAGGTAAGCTGTGACAGCGATCTTGAAGACTGCGATGACTTAACAGAGGT

FCALFTHDEW<u>I</u>QYDYLQSLG

TTCTGTGCTTTGTTCACTCACGACGAATGGATCCAATACGACTACTTGCAAAGCTTGGGT

AAGACACGAAACAAGTGAGTGCTGCTTACCTAGGTTATGCTGATGAACGTTTCGAACCCA

KYYGYGAGNPLGPAQGVGFA

AAGTACTACGGTTACGGTGCTGGTAACCCATTGGGTCCAGCTCAAGGTGTTGGTTTCGCT

960

780

840

900

TTCATGATGCCAATGCCACGACCATTGGGTAACCCAGGTCGAGTTCCACAACCAAAGCGA

340		N	E	L	I	A	R	L	т	<u>H</u>	S	P	V	Q	D	Н	Т	s	т	N.	Н
	061																				CCAC
1020	961		-+			+-				+			-+-			+-				+	
		TT	GCT'	raa(CTA	ACG	ATC:	raa(CTG	AGT	GAG	AGG'	TCA	AGT:	rc T (GTO	GTG <i>I</i>	\AG#	ATG	ATT(ggtg
360		т	L	מ	S	N	P	A	Т	F	P	L	N	A	T	L	Y	A	D	F	s
	1021																		-		СТСТ
1080	1021		-+-	-		+			-	+			-+-			+-				+	
		TG.	AAA	CCT	GAG	ATT(GGG'	TCG.	ATG.	AAA	GGG'	TAA	CTT	GCG	ATG/)AAP	CATO	GCG <i>I</i>	ACT(GAA(GAGA
380		н	D	N	T	M	I	S	I	F	F	A	L	G	L	Y	N	G	Т	K	P
																					GCCA
1140	1081		-+-			+				+			-+-			+				+	
		GT	GCT	GTT	GTG	ATA	CTA	TAG	ATA	AAA	.GA.A	GCG	AAA	.ccc	AAA	CAT	GTT(GCC.	ATG	GTT	CGGT
400		L	S	т	Т	S	V	E	s	I	E	E	Т	D	G	Y	s	A	S	W	т
																				TTG	GACT
120	1141 0		-+-			+	· 		- 	+			+-			+				+	

AACAGATGAAGACAACTTAGATAACTTCTTTGACTGCCAATGAGACGAAGAACCTGA

420		v	P	F	A	A	R	A	Y	v	E	M	M	Q	С	Q	A	E	ĸ	E.	P
		GT'	TCC.	ATT	CGC'	TGC'	TAG.	AGC'	TTA	.CGT	TGA	AAT	GAT	GCA	ATG	TCA	AGC	TGA	AAA	GGA	ACCA
1260	1201		-+-			+				+			-+-			+				+ - -	
		CA	AGG'	TAA	GCG.	ACG.	ATC	TCG	AAT	GCA	ACT	TTA	СТА	CGT	TAC	AGT	TCG	ACT	TTT	CCT'	TGGT
440		L	v	R	v	L	v	N	D	R	v	v	P	L	Н	G	С	A	v	D	K
		TT	GGT	TAG.	AGT	TTT	GGT	TAA	CGA	.CAG	AGT	TGT	TCC	ATT	GCA	CGG	TTG	TGC	TGT	TGA	CAAG
1320	1261		-+-			+				+			-+-			+				+	
		AA	CCA	ATC	TCA	AAA	CCA	ATT	GCT	GTC	TCA	ACA	AGG	TAA	CGT	GCC	AAC	ACG	ACA	ACT(GTTC
460		L	G	R	С	ĸ	R	D	D	F	V	E	G	L	S	F	A	R	S	G	G
		TT	GGG	TAG	ATG	TAA	.GAG	AGA	.CGA	CTI	CGI	TGA	AGG	TTT	GTC	TTT	CGC	TAG	ATC	TGG	TGGT
1380	1321)		-+-			+				+			-+-		 -	+				+	
		AA	.ccc	ATC	TAC	:ATT	CTC	тст	GCI	rgaa	.GC <i>F</i>	ACT	TCC	AAA	CAG	AAA	.GCG	ATC	CAT	ACC	ACCA
		N	W	A	E	С	F	A	*		467	7									
		AA	CTG	GGC	TGA	ATC	TTT	CGC	CTT	A.A											
	1381		+-			4				-+]	1410)									
		ТТ	rGAC	CCC	GAC1	TAC	:AAA	AGC	SAA:	ГT											

Figure 9

20		M	G	v	F	v	v	L	L	s	ı	A	T	L	F	G	s	т	S	G [:]	т
		ΑT	GGG	CGT	GTT	CGT	CGT	GCT	ACT	GTC	CAT	TGC	CAC	CTT	GTT	CGG	TTC	CAC	ATC(CGG	TACC
60	1			-	- + -			+				+			-+-		-	+			+
		TA	ccc	GCA	CAA	.GCA	GCA	CGA	TGA	CAG	GTA	ACG	GTG	GAA	CAA	GCC	AAG	GTG'	TAG	GCC:	ATGG
40		A	L	G	P	R	G	N	S	н	s	С	D	т	v	D	G	G	Y	Q	С
-		GC	СТТ	GGG	TCC	TCG	TGG	TAA	.CTC	TCA	CTC	TTG	TGA	CAC	TGT	TGA	CGG	TGG	TTA	CCA	ATGT
120	61			- 	-+-		-	+				+			-+-			+			+
		CG	GAA	CCC	AGG	AGC	ACC	'ATT	'GAG	AGT	GAG	AAC	ACT	GTG	ACA	ACT	GCC	ACC	AAT	GGT'	TACA
A 60		F	P	E	I	s	н	L	W	G	<u>T</u>	Y	s	P	F	F	s	L	A	D	E
		ТТ	ccc	AGA	AAT	TTC	TCA	CTI	GTG	GGG	TAC	ATA	CTC	TCC	ATI	стт	CTC	ттт	GGC	TGA	CGAA
180	121				-+-		-			. 		+			-+-		-	- -+			+
		AA	.GGG	TCI	TTF	\AAG	SAGI	GAZ	ACAC	ccc	:ATG	TAT	GAG	agg	TAP	\GA.ª	AGAG	AAA	CCG	ACT	GCTT
80		s	A	I	s	P	D	V	P	к	G	С	R	v	т	F	v	Q	V	L	S
		TO	CTGC	TAT	የተጥ	CTCC	CAG	ACG:	PTC(CAAA	AGGC	TTC	TAC	GAGI	TAC	CTT	rcgi	rtc <i>i</i>	\AG1	TTTI	GTCT
240	181	. - -			+.		-		+			-+	 -		+				+ -		+

AGACGATAAAGAGGTCTGCAAGGTTTCCCAACATCTCAATGAAAGCAAGTTCAAAACAGA

100		R	Н	G	A	R	Y	P	т	s	s	A	S	К	<u>A</u>	Y	s	A	L	ı.	E
		AGA	ACAC	CGG:	rgc'	rag?	ATA(CCC.	AAC	TTC	TTC	TGC	GTC	TAA	GGC	GTA	CTC	TGC	TTT	GAT'	IGAA
300	241				-+-			+	 -			+			-+-			+			 +
		TCT	rgt(GC Z	ACG:	ATC	rat(GGG	TTG.	AAG	AAG	ACG	CAG	ATT	CCG	CAT	GAG.	ACG	AAA	CTA	ACTT
120		Α	I	Q	ĸ	N	A	т	A	F	ĸ	G	ĸ	Y	A	F	L	к	т	Y	N
		GC:	rat:	rca.	AAA(GAA	CGC'	TAC	TGC	TTT	CAA	GGG	TAA	GTA	CGC	TTT	CTT	GAA	GAC	TTA	CAAC
360	301				-+-			+				+			-+-			+			+
		CG	ATA	AGT'	TTT(CTT	GCG.	ATG	ACG	AAA	GTT	ccc	АТТ	CAT	GCG	AAA	GAA	СТТ	CTG	AAT	GTTG
A 140		Y	т	L	G	A	D	D	L	т	P	F	G	E	Q	Q	M	V	N	S	G
		TA	CAC'	TTT	GGG	TGC	TGA	.CGA	CTT.	GAC	TCC	'ATT	cgg	TGA	ACA	ACA	AAT	GGT	TAA	CTC	TGGT
420	361			 -	-+-	- 		+				+			-+ -		-	+			+
		TA	GTG.	AAA	CCC	ACG	ACT	GC1	'GAA	CTC	AGG	AAT	recc	ACT	TGT	TGT	ATT	4DD	TTA.	'GAG	ACCA
160		ı	K	F	Y	R	R	Y	K	A	L	A	R	K	I	v	P	F	Ī	R	A
		АТ	TAA	GTT	СТА	.CAG	AAG	ATA	CAA	AGGC	TT	rggo	CTAC	SAAA	AGAT	rtgi	TCC	CATT	rca7	PAT	AGCT
480	421				-+-		. 	+	 -			- +			+-				+ -	- 	+

		TA	ATT	CAA	GAT.	GTC	TTC	TAT	GTT	CCG	AAA	CCG	ATC	TTT	CTA	ACA	AGG'	TAA	GTA.	ATC'	TCGA
180		s	G	s	D	R	v	I	A	s	A	E	ĸ	F	I	E	G	F	Q	S.	A
		TC	TGG	TTC	TGA	CAG	AGT	ТАТ	TGC	ттс	TGC	TGA	AAA	GTT	CAT	TGA	AGG'	TTT	CCA	ATC'	TGCT
540	481				-+-			+				+			-+-			+			+
		AG.	ACC	AAG	ACT	GTC	TCA	АТА	ACG	AAG	ACG	ACT	TTT	CAA	GTA	ACT	TCC.	AAA	GGT	TAG.	ACGA
200		ĸ	L	A	D	P	G	A	N	P	н	Q	A	s	P	v	I	N	v	I	I
		AA	GTT	GGC	TGA	ccc	AGG	TGC	TAA	.ccc	ACA	.CCA	AGC	TTC	TCC	agt	ТАТ	TAA	CGT	TAT	TATT
600	541				-+ -			+	- -		-	+			-+-			+			+
		тт	CAA	.ccc	SACT	rggg	TCC	ACG	TTA	'GGG	TGT	GGT	TCG	AAG	AGG	TCA	АТА	ATT	GCA	ATA	ATAA
220		P	E	G	A	G	Y	N	N	т	L	D	Н	G	L	С	т	Α	F	E	E
		CC	'AGA	AGC	STGC	TGG	TTA	CAZ	\CA#	CAC	TT1	GGA	ACC#	rCGG	TTT	GTG	TAC	TGC	TTT	CGA	AGAA
660	601				+-		- -	+	• - - -			+			-+ -			+		- 	+
		GG	TCI	TC(CACC	GACC	CAAT	rgt'	rgti	rgt(SAA!	rooz	rggi	rgcc	:AA	CAC	атс	SACG	AAA	GC1	TC TT
240		s	E	L	G	D	D	v	E	A	N	F	т	A	v	F	Α	P	P	I	R
210		TO	CTG/	AAT'	TGG(GTG	ACG	ACG'	TTG:	AAG	CTAI	ACT"	rca(CTGC	CTG:	PTT?	rcgo	CTC	CACO	CAAT	TAGA
720	661				+				+			-+			+				+		+

AGACTTAACCCACTGCTGCAA	.CTTCGATTGAAGTGACGACAA <i>I</i>	AAGCGAGGTGGTTAATCT
-----------------------	---------------------------------	--------------------

260		A	R	L	E	A	н	L	P	G	v	N	L	т	D	E	D	v	v	N :	L
	50.																				CTTG
780	721													CTG				·			GAAC
							F							s							
280		ΑT	GGA	CAT	GTG'	rcci	TTA	CGA	CAC'	TGT	TGC'	TAG	aac'	TTC	rga(CGC′	rac'	TCA	ATT(GTC:	rcca
840	781		 -		-+-			+				+			- + - ·			+		- ·	+
		TA	CCT	GTA	CAC	AGGʻ	TAA	GCT	GTG.	ACA.	ACG.	ATC'	TTG.	AAG	ACT	GCG:	ATG	AGT"	raa(CAG	AGGT
300		F	С	D	L	F	T	Н	D	E	W	I	Q	Y	D	Y	L	Q	S	L	G
000	841																				GGGT
900		AA	GAC	'ACT	'GAA	CAA	.GTG	AGT	GCT	GCT	TAC	CTA	AGT	TAT	GCT	GAT	gaa	.CGT	TAG	AAA	CCCA
320		ĸ	Y	Y	G	Y	G	A	G	N	P	L	G	P	A	Q	G	V	G	F	v
																					CGTT
960	901				+-			. – – 1				+		- - -	-+-			+		·	+

		TTC	CAT	GAT(GCC	AAT	GCC	ACG.	ACC.	ATT	GGG'	TAA	CCC.	AGG'	rcg	AGTI	rcc <i>i</i>	CAA	ACCA	AAA	CAA
340		N	E	L	I	Α	R	L	т	н	s	P	v	Q	D	Н	т	s	T	N.	н
		AA	CGA	ATT	GAT'	TGC'	TAG	ATT	GAC	TCA	CTC	TCC	AGT	TCA	AGA	CCA	CACT	rrci	rac:	raa(CCAC
1020	961			 -	-+-			+			- 	+			-+-	 -		+-			-+
		TT	GCT'	TAA	CTA	ACG.	ATC	TAA	CTG	AGT	GAG	AGG	TCA	AGT [.]	rc T	GGT	GTG <i>l</i>	\AG/	ATG/	ATT	GGTG
360		т	L	D	s	N	P	A	т	F	P	L	N	A	т	L	Y	A	D	F	s
		AC'	TTT:	GGA	CTC	TAA	CCC	AGC	TAC	ттт	ccc	ATT	GAA	CGC	TAC	TTT(GTA(CGC	rga	CTT	CTCT
1080	1021				-+-			+				+			-+-			+			+
		TG	AAA	CCT	GAG	ATT	GGG	TCG	ATG	AAA	.GGG	ТАА	.CTT	GCG	ATG	AAA	CAT	GCG.	ACT(GAA	GAGA
380		н	D	N	Т	M	v	S	I	F	F	Α	L	G	L	Y	N	G	т	к	P
		CA	CGA	.CAA	CAC	TAT	GGT	TTC	TAT	TTT	CTI	CGC	TTT	GGG	TTT	GTA	CAA	CGG	TAC	TAA	GCCA
1140	1081)				-+-		- - -	+		· •		+			-+-		- 	+			+
		GT	GCT	'GT'I	GTG	ATA	CCA	LAAC	at <i>a</i>	LAA.A	AGAA	reco	BAAA	CCC	AAA	CAT	GTT	GCC	ATG	ATT	CGGT
400		L	S	т	Т	s	v	E	s	I	E	E	т	D	G	Y	<u>s</u>	A	s	M	т
		TI	GTC	TAC	CTAC	CTTC	TGT	rtg <i>l</i>	TAP	CTAT	rtg <i>i</i>	\AG!)AAA	CTG	\CG(TTA	CTC	TGC	TTC	TTG	GACT
120					+-				+ -			- + - ·			 + -		. -		· -		+

AACAGATGATGAAGACAACTTAGATAACTTCTTTGACTGCCAATGAGACGAAGAACCTGA

V P F A A R A Y V E M M Q C E A E K E P 420 GTTCCATTCGCTGCTAGAGCTTACGTTGAAATGATGCAATGTGAAGCTGAAAAGGAACCA 1201 ------1260 ${\tt CAAGGTAAGCGACGATCTCGAATGCAACTTTACTACGTTACACTTCGACTTTTCCTTGGT}$ L V R V L V N D R V V P L H G C G V D K 440 TTGGTTAGAGTTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTGGTGTTGACAAG 1261 ------+ 1320 AACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACACCACAACTGTTC L G R C K R D D F V E G L S F A R S G G 460 TTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTAGATCTGGTGGT 1321 ------1380 AACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGATCTAGACCACCA N W E E C F A * 467 AACTGGGAAGAATGTTTCGCTTAA 1381 ----- 1404

TTGACCCTTCTTACAAAGCGAATT

Figure 10

	M	G	V	F	V	V	L	L	Ş	I	A	Т	L	F	G	S	T	S	G.	T	20
	AT	GGG	GGT'	TTT(CGT	CGT	тст	TTA	ATC	TAT	CGC	GAC	TCT	GTT	CGG	CAG	CAC	ATC	GGG	CACT	
1				-+-			+			-	+ - -			-+-			+			+	60
	TA	ccc	CCA	AAA	GCA	GCA	AGA	TAA	TAG	АТА	GCG	CTG	AGA	CAA	GCC	GTC	GTG	TAG	CCC	GTGA	
	Δ	τ.	G	Þ	R	G	N	н	s	ĸ	g	C	מ	ጥ	v	D	т.	G	v	0	40
				_																CCAG	••
61																-				+	120
	CG	CGA	CCC	GGG	GGC	ACC	TTT	'AGT	GAG	GTT	CAG	GAC	GCT	ATG	CCA	тст	'GGA	TCC	САТ	GGTC	
	С	s	P	A	Т	s	Н	L	W	G	T	Y	S	P	Y	F	s	L	E	D	60
	TG	CTC	ccc	TGC	GAC	TTC	TCA	TCT	ATG	GGG	CAC	GTA	CTC	GCC	АТа	CTI	TTC	GCT	CGA	GGAC	
121																				+	
	AC	GAG	GGG	ACG	CTG	AAG	AGT	AGA	TAC	CCC	Gtg	CAI	'GAG	cgg	TAt	GAA	AAG	GCGA	.GCT	CCTG	
	E	L	s	v	s	s	ĸ	L	Р	K	D	С	R	I	т	L	v	Q	v	L	80
	GA	.GCT	GTC	CGT	GTC	GAG	TAA	AGCI	TCC	CAA	.GGA	TTC	CCG	GAT	CAC	CTI	rggī	raca	GGT	GCTA	
181				-+-			1				+		·	-+-			+	 -		+	240
	CT	CGA	CAG	GCA	CAC	CTC	CATI	rcgi	AAGO	GTI	cci)AA	CGGC	CTA	AGTO	GA <i>l</i>	ACCA	ATGT	CCA	CGAT	i
	s	R	н	G	А	R	Y	P	т	s	s	ĸ	s	к	к	¥	ĸ	K	L	I	100
																				– TaTt	
241																					- 300

	AG	CGC	GGT/	ACC'	rcg	CGC	CAT	GGG'	ITG(GTC(GAG	GTT(CTC	GTT'	FT T(CAT.	ATT(CTT(CGA	AtAa	
	т	A	I	Q	A	N	A	т	D	F	ĸ	G	ĸ	<u>¥</u>	Α	F	L	ĸ	т.	Y	120
	AC	GGC	GAT(CCA	GCC	CAA'	rgc	CAC	CGA	CTT	CAA	GGG	CAA	GTa	cGC	CTT	TTT	GAA(GAC	GTAC	
301				-+ - .			+				+			-+-			+			+	360
	TG	CCG	CTA(GGT	CCG	GTT	ACG(GTG	GCT	GAA(GTT(CCC	GTT(CAt	gCG	gaa.	AAA(CTT	CTG	CATG	
	N	Y	т	L	G	A	D	D	L	т	P	F	G	E	Q	Q	L	v	N	s	140
	AA	CTA'	rac:	rct(GGG'	rgC(GGA′	TGA	CCT	CAC'	rcc	CTT'	TGG	GGA	GCA	GCA	GCT	GGT(GAA	CTCG	
361			- .	-+	- - -		+				+ – – •			-+-			+			+	420
	TT	GAT	ATG	AGA	eçe:	ACG(CCT	ACT	GGA(GTG	AGG(GAA	ACC	CCT	CGT	CGT	CGA	CCA	CTT	GAGC	
	G	I	K	F	Y	Q	R	Y	ĸ	A	L	A	R	s	v	v	P	F	I	R	160
	GG	CAT	CAA	GTT	CTA	CCA	GAG	GTA	CAA	GGC'	rct(GGC	GCG	CAG'	TGT	GGT	GCC	GTT'	TAT	rcgc	
421				-+-		-	+			- 	+			-+-			+			+	480
	CC	GTA:	GTT	CAA	GAT(GGT	CTC	CAT	GTT(CCG.	AGA	CCG	CGC	GTC.	ACA	CCA	CGG	CAA	ATA.	AGCG	
	A	s	G	s	D	R	v	I	A	s	G	E	K	F	I	E	G	F	Q	Q	180
	GC	СТС	AGG	CTC	GGA	CCG	GGT	TAT	TGC	TTC	GGG.	AGA	GAA	GTT	CAT	CGA	.GGG	GTT	CCA	GCAG	
481				-+-	 -		+	-			+			-+-			+			+	540
	CG	GAG	TCC	GAG	ССТ	GGC	CCA	АТА	ACG	AAG	CCC	тст	CTT	CAA	GTA	.GCT	ccc	CAA	.GGT	CGTC	
	7\	ν	T	7.	D	מ	C	מ	TT.	N	ם	73	7	מ	7	т	c	37	т	т	200

GCGAAGCTGGCTGATCCTGGCGCGACGAACCGCGCCGCTCCGGCGATTAGTGTGATTATT

541 -----+ 600

CG	СТТ	CGA	CCG	ACT	AGG	ACC	GCG	CTG	СТТ	GGC	GCG	GCG	AGG	CCG	CTA	ATC	ACA	.CTA	АТАА	
P	E	s	E	т	F	N	N	т	L	D	н	G	v	С	т	ĸ	F	E.	A	220
CC	GGA	GAG	CGA	GAC	GTT	CAA	.CAA	TAC	GCT	GGA	.CCA	CGG	TGT	GTG	CAC	GAA	GTT	TGA	GGCG	:

601 ------ 660

GGCCTCTCGCTCTGCAAGTTGTTATGCGACCTGGTGCCACACACGTGCTTCAAACTCCGC

S Q L G D E V A A N F T A L F A P D I R 240

AGTCAGCTGGGAGATGAGGTTGCGGCCAATTTCACTGCGCTCTTTGCACCCGACATCCGA

661 -----+ 720

 ${\tt TCAGTCGACCCTCTACTCCAACGCCGGTTAAAGTGACGCGAGAAACGTGGGCTGTAGGCT}$

A R L E K H L P G V T L T D E D V V S L 260

GCTCGCctCGAGAAGCATCTTCCTGGCGTGACGCTGACAGACGAGGACGTTGTCAGTCTA

721 -----+ 780

 $\tt CGAGCGgaGCTCTTCGTAGAAGGACCGCACTGCGACTGTCTGCTCCTGCAACAGTCAGAT$

M D M C \underline{P} F D T V A R T S D A S Q L S P 280 ATGGACATGTGCGCTTGATACGGTAGCGCGCACCAGCGACGCAAGTCAGCTGTCACCG

TACCTGTACACAGGCAAACTATGCCATCGCGCGTGGTCGCTGCGTTCAGTCGACAGTGGC

F C Q L F T H N E W K K Y D Y L Q S L G 300

TTCTGTCAACTCTTCACTCACAATGAGTGGAAGAAGTACGACTACCTTCAGTCCTTGGGC

841 ----++900

 ${\tt AAGACAGTTGAGAAGTGAGTGTTACTCACCTTCTTCATGCTGATGGAAGTCAGGAACCCG}$

		ĸ	Y	Y	G	Y	G	A	G	N	P	L	G	P	A	Q	G	I	G	F°	т	320
		AA	GTA(CTAC	CGG	CTA	CGG	CGC.	AGG	CAA	ccc	TCT	GGG.	ACC	GGC	TCA	GGG	GAT	AGG	GTT	CACC	
	901				-+-	- 		+			-	+			-+-	 -		+		-	+	960
		TT	CAT	GAT(GCC(GAT(GCC	GCG [,]	TCC	GTT(GGG	AGA	CCC	TGG	CCG	AGT	ccc	СТА	TCC	CAA	GTGG	
340		N	E	L	I	A	R	L	т	R	s	P	v	Q	D	Н	т	s	т	N	S	
		AA	CGA(GCT	GAT'	TGC	CCG	GTT	GAC	gCG	TTC	GCC.	AGT	GCA	GGA	CCA	CAC	CAG	CAC	TAA	CTCG	
1020				·	-+-			+				+			-+-			+			+	
		TT	GCT(CGA	CTA	ACG	GGC	CAA	CTG	cGC	AAG	CGG	TCA	CGT	CCT	GGT	GTG	GTC	GTG	ATT	GAGC	
360		т	L	v	s	N	P	A	т	F	P	L	N	A	т	М	Y	v	D	F	S	
		AC'	TCT.	AGT	CTC	CAA	ccc	GGC	CAC	СТТ	ccc	GTT	GAA	CGC	TAC	CAT	GTA	.CGT	'CGA	CTT	TTCA	
1080	1021		-		- + -	- 		+				+			-+-	-		+	-		+	
		TG	AGA	TCA	GAG	GTT	GGG	ccg	GTG	GAA	.GGG	CAA	.CTT	GCG	ATG	GTA	CAT	'GCA	GCT	'GAA	AAGT	
380		н	D	N	s	М	v	s	I	F	F	A	L	G	L	Y	N	G	т	E	Þ	
		CA	CGA	.CAA	.CAG	CAT	GGT	TTC	CAT	CTI	CTI	TGC	TTA	'GGC	CCI	GT#	CAP	\CG(GCAC	TGA	LACCO	:
1140	1081)	-			-+-			· 4	• -			-+			+-				+		+	-

 $\tt GTGCTGTTGTCGTACCAAAGGTAGAAGAAACGTAACCCGGACATGTTGCCGTGACTTGGG$

400	L	S	R	T	s	V	Ε	s	A	K	E	L	D	G	Y	S	A	S	w	v
1141													-							GGTG
	AAC	AGG	GCC	CTGO	GAGO	CAC	CTI	rtco	GCGC	GTT(CT	CAAC	CCTA	vcc.	CATA	\AGA	.CGT	`AGG	SACC	CAC
420	v	P	F	G	A	R	A	Y	F	E	т	М	Q	С	ĸ	s	E	K	Ē	P
1201																				CCT
1260	CAC	:GG#	\AA(GCC	GCGC	CGCT	rcgo	GATO	GAAC	GCT(CTG	CTAC	CGTI	raco	TTC	CAGO	CTI	TTC	CTC	GGA
440	L	V	R	Α	L	ı	N	D	R	v	v	P	L	н	G	С	D	V	D	K
1261																				CAAG
1320	GAJ	ACA!	AGC(GCG/)AAA	CTA	TTA	TOA	GGC(CCA	ACA(cgg′	rga(CGT	ACCO	GACO	GCT2	ACA(CCT	GTTC
460	L	G	R	С	ĸ	L	N	D	F	V	ĸ	G	L	s	W	Α	R	s	G	G
	CT	GGG	GCG	ATG	CAA	GCT	GAA'	TGA	СТТ	TGT	CAA	GGG.	ATT(GAGʻ	TTG	GGC(CAG.	ATC'	TGG	GGGC
1321 1380																				+ CCCG

	T/ A/	G	E	C	E	5	•		40	′											
	AACT	GGG	GAG	AGTO	GCT'	TTAC	GTT(GA											÷		
1381			 + ·			-	+		140	4											
	TTGA	CCC	CTC:	rcac	CGA	AAT	CAA	CT													
Figure 11																					
	CP-1																				
	E	co i	RI	М	G.	v	F	v	v	L	L	s	I	A	т	L	F	G	s	т	
	TATA	TGA	ATT	CATO	G GG	CGT	GTT	CGT	CGT	GCT	ACT	GTC	CAT	TGC	CAC	CTI	GTI	cGG	TTC	CA	
1			+				+ :			-+ -			+				.			_+	6 0
-																					00
	ATAT	ACT	TAA	GTA(CCC	GCA	CAA	GCA	GCA	CGA	TGA	CAG	GTA	ACG	GTG	GAA	CAA	GCC	AAG	GT	
	s	G	T	A	L	G	P	R	G	N	s	н	s	С	D	T	v	D	G	G	
	CATC	CGG	TAC	CGC	CTT	GGG'	TCC:	TCG	TGG	ТАА	TTC	TCA	стс	TTG	TGA	CAC	TGI	TGA	CGG	TG	
61			+		-		+			-+-			+	- 			+			-+	120
	GTAG	GCC.	ATG	GCG	AAE	ccc	AGG.	AGC	ACC	TTA	AAG	agt	GAG	AAC	ACI	GTG	ACA	ACT	GCC	AC	
		CP		CP-	3																
	Y	Q	С	F	P	E	I	s	Н	L	W	G	Q	Y	s	P	Y	F	s	L	
	GTTA	CCA	ATG'	TTT	CCC.	AGA	AAT	TTC	TCA	.CTT	GTG	GGG	TCA	ATA	CTC	TCC	ATA	CTT	CTC	TT	
121			+				+			-+-		-	+				.+	-		-+	180
	CAAT	GGT	TAC.	AAA	GGG	TCT	TTA	AAG	AGT	' Ga A	CAC	ccc	AGT	rat"	GAC	GAGO	TAT	rgaa	.GAG	AA	
		_	E	c	2	_	c	_	_	**	_		-	~	_	17	m	-	7.7	^	
	£	ט	E	5	A	1	5	P	ט	V	P	D	ט	C	R	V	1	F	V	Q	
	TGGA	LAGA	.CGA	ATC'	TGC	TAT	TTC	TCC	A GA	CGI	TCC.	AGA	CGA	CTC	TAC	GAG)ATI	TTTI	CGT	TC.	
181			+			- 	+			-+-	· - -		+		. .		-+-		. -	· - +	240
	ACCI	TCT	GCT	TAG.	AC G	ATA	AAG	AGG	TCI	GCA	A GG	TCI	GCI	'GAC	CATO	CTC	AAT(GAAI	.GC2	AG	
						CP-	4.7														
								P-5	5.7												
	v	L	S	R	Н	G	A	R	Y	P	т	₽	s	ĸ	G	ĸ	ĸ	¥	s	A	

	AAG'I"	T.L.I.	GTC'	ľAG	ACAC	JGG'	rgc:	rag.	ATA	CCC	AAC'	Tga	cTC'	TAA	Ggg	taa	Gaa	gta	CTC	TG	
241			+				+			-+-		-	+			 -	+			-+	300
	TTCA	TTCAAAACAGATCTGTGCCACGATCTATGGGTTGActgAGATTCccaTTCttcATGAGAC																			
	т.	т	E	Δ	т	0	ĸ	N	Δ	т	20.	E	ĸ	G	ĸ	v	Δ	F	L	r	
						-						_		_					_		
	CTTT																				
301			+				+	-		-+-			+				+	-		-+	360
	GAAA	СТА	ACT'	TCG	ATA	AGT:	rtt(CTT	GCG.	ATG.	ACG.	AAA	GTT	ccc	TTA	CAT	GCG	AAA	GAA.	CT	
	CP-6 CP-7																				
	т	Y	N	Y	т	T.	G	A	D	D	τ.	т	Þ	ਜ	G	E	N	0	М	V	
	AGAC											-		_				-	-		
361			+				+			-+-			+				+			-+	420
	TCTGAATGTTGATGTGAAACCCACGACTGCTGAACTGAGGTAAGCCACTTTTGGTTTACC																				
	N	s	G	I	ĸ	F	Y	R	R	Y	ĸ	A	L	A	R	ĸ	I	v	P	F	
	TTAA	CTC	TGG	TAT	TAA	GTT(CTA	CAG.	AAG.	ATA	CAA	GGC	TTT	GGC	TAG	AAA	.GAI	TGI	TCC	ΑT	
421			+				+ -		 -	-+ -		-	+	- 	- - -		+	- 		-+	480
	ልል ጥጥ	GAG	ACC	ልጥል.	ልጥጥ(CAA	CAT	GTC'	ጥጥር	ጥልጥ	ርጥጥ	റ്റദ	AAA	ന് നു	ልጥሮ	ጥጥጥ	יכידא	ACA	AGG	TA	
	AATTGAGACCATAATTCAAGATGTCTTCTATGTTCCGAAACCGATCTTTCTAACAAGGTA																				
		<u>CP-8.7</u>																			
	CP-9 I R A S G S S R V I A S A E K F I E G F																				
	I	R	A	S	G	S	<u>5</u>	R	V	Ι	Α	S	Α	E	K	F	I	E	G	F	
481	TCAT																				540
	AGTA	ATC	TCG	AAG	ACC	AAG	Aag	aTC	TCA	ATA	ACG	AAG	ACG	ACT	TTT	CAA	.GT≱	LACI	TCC	'AA	
	0	c	Δ	r	Τ.	Δ	n	D	G	c	0	D	ш	0	λ	c	D	37	I	D	
	~						_		_		_			_							
	TCCA																				
541			+				+			-+-			+				-+-		- ·	+	600
	AGGT	CAT	ACG	TTA	CAA	'CCG	ACT	'GGG	TCC	AAC	AGI	TGC	TGI	GGT	TCG	AA	BAG	GTC2	AATI	AAC	
															CF	<u>-10</u>	0.7 CP	-11	<u>. 7</u>		
	v	I	I	<u>s</u>	E	Ā	s	<u>s</u>	Y	N	N	т	L	D	<u>P</u>	G	т	С	т	A	

	ACGTTATTATTtctGAcgctTCTtctTACAACAACACTTTGGACccaGGTACTTGTAC									
601		660								
	TCCAATAATAAAAACTTCCCCCAAAATCCTTCCTTCTTCT									

EP 1 092 764 A2

	v	D	ĸ	L	G	R	С	K	R	D	D	F	v	E	G	L	s	F	A	R
	CTGT	'TGA	CAA	GTT	GGG	TAG	ATG	TAA	GAG	AGA	CGA	CTT	CGT	TGA	AGG	TTT	GTC	TTT	CGC	TA
1321 1380			+				+			-+-			+				+	· -	<u></u>	-+
	GACA	ACT	GTT	CAA	.ccc	ATC	TAC	TTA	CTC	TCT	GCT	GAA	GCA	ACI	TCC	AAA:	CAG	AAA	.GCG	ΑT
	S	G	G	N	W	A	E	С	F	A	*	Ec	o R	I	C	P-2	2			
	GATCT GGTGGTAACTGGGCTGAATGTTTCGCT <i>TAA</i> GAATTCATATA																			
1381		1426																		
で 中る ら なでてみててみずでらなでてらなでするとある。												тст	TAA	GT2	רבדו	3				

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

1 MGVFVVLLSI ATLFGSTSGT ALGPRGNSHS CDTVDGGYQC FPEIS<u>SN</u>WSP
51 YSPYFSLADE SAISPDVPKG CRVTFVQVLQ RHGARFPTSG AATRISALIE
101 AIQKNATAFK GKYAFLKTYN YTLGADDLYP FGANQSSQAG IKFYRRYKAL
151 ARKIVPFIRA SGSDRVIDSA TNWIEGFQSA KLADPGANPH QASPVINVII
201 PEGAGYNNTL DHGLCTAFEE SELGDDVEAN FTAVFAPPIR ARLEAHLPGV
251 NLTDEDVVNL MDMCPFDTVA RTSDATELSP FCDLFTHDEW IQYDYLGDLD
301 KYYGTGAGNP LGPAQGVGFV NELIARLTHS PVQDHTSTNH TLDSNPATFP
351 LNATLYADFS HDNTMVAIFF ALGLYNGTKP LSTTSVESIE ETDGYSASWL
401 VPFSARMYVE MMQCEAEKEP LVRVLVNDRV VPLHGCGVDK LGRCKRDDFV
451 EGLSFARSGG NWEECFA