- SOLUTIONS ~

Math 53: Chaos! 2011: Midterm 1

2 hours, 56 points total, 5 questions worth various points (\propto blank space). Good luck!

1. [16 points] Consider the 1D map given by f(x) = |2x - 1|, as shown here, on [0, 1], which has been labelled with intervals L and R.

-fevel k=2 am use cobureby or level 4 withen in reverse & forward order us below.

(a) Write here the subintervals down to level 3 (that is, the correct ordering of all 3-symbol itinerary subintervals on [0, 1]):

LRR LRL LIL LLR RLR RLL RRL RRL

RLR RLL RRL RRR level-2 written in forward order (f increasily in R)

(3) (b) Compute the Lyapunov exponent of almost all orbits of this map.

almost all orbits never hir x=1/2 so have |f'(x)|=2 defined.

$$h:=\lim_{n\to\infty}\frac{1}{n}\frac{1}{n}\frac{1}{n}|f'(x_i)|=\max_{i=1}^n \min_{i=1}^n \frac{1}{n}\frac{1}{n}$$

$$=\lim_{n\to\infty}\frac{1}{n}\frac{1}{$$

	exponent Any XoE (0,1) with terminating binary representations will be on some subinterval boundary, so eventually mapped
	to $x_h = 1/2$, where f' undefined, so $h(x_0)$ undefined.
	(c) Imagine that a computer running a standard numerical environment (such as MATLAB) is used to iterate f starting at x_0 the only fixed point in $(0,1)$. Describe what will happen, including an estimate of how long it will take for errors to become of size $O(1)$. [Hint: numbers are represented with relative error of order 10^{-16} .]
	since the fixed pt xo (= 1/3 in fact) is only represented to
	within error & ~ 10", MATLAB (etc) will iterate Xo+E,
	rather than exactly Xo. Error after ke iterations will be
	roughly $\varepsilon e^{hk} = \varepsilon 2^k$, so $O(1)$ errors when $1 = \varepsilon 2^k$
	Solve so $k = \log_2 \frac{1}{2} \approx 53$. $= (\# binary digit in manhism$
	So numerical iterate will deviate from xo we exponentially growing error,
(3)	becoming garbage of $O(1)$ error after ≈ 50 iters (d) It is not hard to see that f^k has 2^k fixed points for each natural number k . Compute the number of period f^k are period f^k .
	or pertoute orotts or period 4.
	[Periodic table!] ft has 24 = 16 fixed pt but need to subtract off these accounted for by lower periods:
	f has 2 fixed pt = 2 p-1 orbits.
	f has 2 fixed pt = 2 p-1 orbit. f has 4 " = 1 p-2 orbit (other 2 come from p-1 3 doesn't divide 4.
	3 doesn't divide 4.
[1]	9 # fp 's accounted by $p - 4 = (6 - 2(1) - 1(2) = 12)$ 9 $\frac{12}{4} = (e)$ Sketch a proof that each point x_0 in $[0,1]$ has sensitive dependence on initial conditions. 3 period f
	let 2>0. choose J = SiSk the first k of
	itenerary of xo, where $k > \log_2 \frac{1}{k}$ Then since length $(J) = 2^{-k}$
	we have that all pts in \mathcal{J} are in $N_{\epsilon}(x_{0})$.
	Read off next 2 letters of Xo. If YLR choose yof JRR
	Read off next 2 letters of Xo. If IR choose, yo & JRR READ OF NEXT 2 letters of Xo. If RED YO & JLR
	Then after by the living the livi
	Then after k iters, $ y_k - x_h \ge 4 $ because I has been (enten up) (heft-shifted) by fh .
	•

BONUS: Describe the binary representation of all initial points in [0,1] which do not have this

Holds for any
$$\varepsilon > 0$$
 & $\times c \varepsilon = 0$, $0 \Rightarrow all pts have sens. dep. $0 \Rightarrow all pts$$

 $\sqrt{\Lambda_{min}(M^2)}$ 2. [11 points] Consider the two-dimensional map $f(\mathbf{x}) = A\mathbf{x}$. The minor semiaxis. has eigenvalues χ of ellipse.

[2 0] (3) (a) Consider the case $A = \begin{bmatrix} 2 & 0 \\ 4 & 2 \end{bmatrix}$. What is the closest distance to the origin that a point x lying on the unit circle $\{x \in \mathbb{R}^2 : \|x\| = 1\}$ can get mapped to ? [Hint: easier if bring out the common factor in the matrix]

or gets wapped to ellipse. Semiaxes: AAT = 2°(1/2) = 4/25

Find μ , eigraph. $(1-\mu)(5-\mu)-2^2=0$ $\Rightarrow \mu^2-6\mu+1=0$ $\Rightarrow N = \frac{1}{2}(6 \pm \sqrt{36-4}) = 3 \pm \sqrt{8}$ smaller one = $3 - \sqrt{8}$

 $\Rightarrow \lambda = 4p = A(3-58), \sqrt{\lambda} = A(3-2.83) \approx 0.83... < 1$

(b) Your answer should be consistent with some points on the unit circle moving closer to the origin. For this A, find all possible fate(s) of orbits starting on the unit circle (ie, to where they may tend but don't (2) upon repeated iteration). let this distact you!

eignals of A: A is lower-triangular so eignals are diagonal entires => \(\lambda(A) = 2, twice > 1

=> 0 is a source => all points (other Han 0) have as as limit.

All of circle gets "blown away" to a (initial moving closer was red hering!)
(c) What is the area enclosed by the image of the unit circle under one application of the above map?

(1)

Area growth factor = | det A | $= |2^2 - O(4)| = 4$

Final ellipse area = 4tt.

(d) Now let $A = \begin{bmatrix} 1/2 & 1 \\ 1/2 & 3/2 \end{bmatrix}$. Is the origin now a hyperbolic fixed point?

eigrals λ : $(1/2 - \lambda)(1/2 - \lambda) - 1/2 = 0 + \lambda^2 - 2\lambda + 1/4 = 0$ $\lambda = 1 \pm \sqrt{1 - \frac{1}{4}} = 1 \pm \frac{\sqrt{3}}{2}$ all 2's have 12/71 + hyperbolic

Notice
$$|\lambda_{+}| = |1 + \frac{\sqrt{3}}{2}| >$$

Notice $|\lambda_t| = ||+\frac{3}{2}| > |$ unstable direction. Its ejenvector would give $|\lambda_t| = ||+\frac{3}{2}|| > |$ unstable direction.

$$\sqrt{|\lambda|} = |1 - \frac{3}{2}| < |$$
, so find its eigenvector for stable direction.
 $\sqrt{|\lambda|} = |1 - \frac{3}{2}| < |$, so find its eigenvector for stable direction.
 $\sqrt{|\lambda|} = |1 - \frac{3}{2}| < |$ $\sqrt{|\lambda|} = |1 - \frac{1+\sqrt{3}}{2}|$ $\sqrt{|\lambda|} = |1 - \frac{1+\sqrt{3}}{2}|$

$$\overrightarrow{\nabla} = \begin{bmatrix} a \\ b \end{bmatrix} \text{ is in Null } (A - \lambda. I) \text{ so } \frac{-1 + J3}{2} a + 1 \cdot b = 0$$

$$b = \frac{1 - J3}{2} a \text{ so } \overrightarrow{\nabla} = \begin{bmatrix} 1 - J3 \\ 1 - J3 \end{bmatrix} a = Span \begin{bmatrix} 2 - J3 \\ 1 - J3 \end{bmatrix}$$

Stable manifold =
$$\left\{ \propto \in \mathbb{R} : \vec{x} = \propto \begin{bmatrix} 2 \\ 1-\sqrt{3} \end{bmatrix} \right\}$$
 is all play with $\lim_{n\to\infty} f(x) = \vec{0}$.

3. [9 points]

Consider the Henón map on \mathbb{R}^2 with b=1/2 and general a, that is, $f(x,y)=(a-x^2+y/2,x)$.

(a) Find the fixed point(s) in terms of a. For what a does at least one fixed point exist? [3]

Fixed pts:
$$f(\bar{x}) = \bar{x}$$
 ie $a - x^2 + \frac{1}{2} = x$ } solve sub. $y = x$

$$\Rightarrow x^2 + \frac{1}{2} - a = 0$$

$$\Rightarrow x = \frac{1}{2}(-\frac{1}{2} \pm \sqrt{4 + 4a}) = -\frac{1}{4} \pm \sqrt{\frac{1}{16} + a}$$

When a > - to have existence of (real-valued!) fixed points

(b) Now specialize to a = 7/4. What is the period of the orbit from point (3/2, -1)? 2)

(c) Categorize the stability of the orbit from (b). Is it a (possibly periodic) sink, saddle, source, or e see book, in Hénon section. none of these?

Jacobean DF = [-2x 1/2]

4. [8 points]

Stability matrix
$$A = \overrightarrow{Df}(\overrightarrow{p})\overrightarrow{Df}(\overrightarrow{p}) = \begin{bmatrix} -3/2 \\ 10 \end{bmatrix} \begin{bmatrix} 2/2 \\ 10 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 2/2 \end{bmatrix}$$

 $\lambda, \text{ eigenvalue}(A): \lambda^2 + 5\lambda - \frac{1}{4} + 3 = 0$

50
$$\lambda = \frac{1}{2}(-5 \pm \sqrt{25-1})$$
; since $4 < \sqrt{24} < 5$, we have $|\lambda_1| < 1$ but $|\lambda_1| > 1$ = a saddle.

anything

- (a) Using the axes above, with the partition L and R as shown, draw a possible graph of a smooth function f mapping $L \cup R$ into $L \cup R$ with transition graph as shown to the right.
- (b) Onto what interval does the subinterval LR get mapped by f? (1)

(c) Give a list of all the types of itineraries that must occur given the transition graph: [3]

n= 0,1,...

ie not your special choice of f graph.

(d) Given only the above information about f, is it possible that there exists a period-2 orbit? Explain. [i]A period-2 with piel & preR would give LR itin, not poss. But it could be that forestricted to R-1R has a period-2, eg [], "50, yes, it's possible! (tricky! Note sine subinterrals don't get Xo, unlike in S(x), Ixanod D), et)

5. [12 points] Random short questions. Please explain each briefly.

(a) The origin is a fixed point of $f(x) = x + x^2$. Categorize it as a source, sink, or neither.

· O is a sink, with busin at least (a, 1-a), a < 0

For all these orbits, asymptotically periodic to p=0, so Lyap, exp h=h(p) = In f(0) = In %

{a, 1-a} is p-2 source, x < a or x > 1-a unbounded.

(c) True/False: the basin of a sink for any smooth map $f: \mathbb{R} \to \mathbb{R}$ must consist of an interval (possibly sink fixed pt p No, viz: _

both these are in the

[1]

basin of p, but the gop between them is not.

say, F

(3) (d) Let p be a fixed point of a map on \mathbb{R}^m . Give the mathematical definition of p being a source.

\$ source if: 3 2>0 such that for all $\vec{z} \in N_{\epsilon}(\vec{p}) \setminus \{\vec{p}'\}$, note, k must be allowed for depend on the choice of \vec{z}' !

(as $\vec{x} \rightarrow \vec{p}$) k can gray without

Here $N_{\epsilon}(\vec{p}) := \{\vec{x} \in \mathbb{R}^m : |\vec{x} - \vec{p}| < \epsilon \}$ neighborhood.

(e) Compute (by hand!) the binary representation of the fraction 7/9 [i]

Use 2x (mod I) map:

Now repeats!

7/9 14 = 4 7 7/9 0 8/9 16 -7/9 (mod1) "1" (mod1) "0" "0" "0" "0" "1" 19 -7/9

9=0.110001

period -6

(f) Consider a 1-dimensional map undergoing bifurcation with respect to some parameter. What is (5) the Lyapunov number of the orbit at its bifurcation point?

orbits n §xk} p-1 orbit loses stability d ac a p-2 is been.

As and from below, stability approaches neutral, ie Lyapumor number L = 1 (exponent is h=0)