1. INTRODUCTION

1.1 Project Overview

This project aims to predict the presence of liver cirrhosis using advanced machine learning techniques. A web-based interface built with Flask allows users to input medical parameters and receive a prediction.

1.2 Purpose

The goal is to provide a quick and reliable tool to assist in the early detection of liver cirrhosis using patient data.

2. IDEATION PHASE

2.1 Problem Statement

Early diagnosis of liver cirrhosis can save lives. Manual diagnosis is time-consuming and prone to errors. This project automates prediction using ML.

2.2 Empathy Map Canvas

Understanding user needs such as accessibility, simplicity, and accuracy was essential to design the solution.

2.3 Brainstorming

Various models and data preprocessing methods were considered. RandomForest was selected for its balance between accuracy and interpretability.

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

Users enter data in a web form, receive predictions, and take further steps based on results.

3.2 Solution Requirement

Python, Flask, scikit-learn, pandas, HTML/CSS for frontend.

3.3 Data Flow Diagram

User -> Web Form -> Flask App -> Model -> Prediction -> Output

3.4 Technology Stack

Python, Flask, scikit-learn, HTML/CSS

4. PROJECT DESIGN

4.1 Problem-Solution Fit

ML model fits the need to automate liver disease detection.

4.2 Proposed Solution

Web interface to input values and get predictions.

4.3 Solution Architecture

Frontend (HTML) -> Flask API -> ML Model

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Week 1-2: Data preprocessing & model training

Week 3: Flask integration

Week 4: UI testing and deployment

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

The model was tested on liver_data.csv and achieved satisfactory accuracy. Test cases were run to validate the predictions.

7. RESULTS

7.1 Output Screenshots

8. ADVANTAGES & DISADVANTAGES

Advantages:

- Quick predictions
- Easy to use web interface
- Can aid early diagnosis

Disadvantages:

- Depends on quality of input data
- Not a substitute for clinical diagnosis

9. CONCLUSION

This project demonstrates that machine learning can assist in medical diagnosis and can be easily deployed using web technologies.

10. FUTURE SCOPE

Model can be expanded to include more data and additional diseases for broader medical support.

11. APPENDIX

GitHub Repo:

https://github.com/Praveen-6163/Predicting-Liver-Cirrhosis-using-Advanced-Machine-Learning-Tech niques

