Supplementary Material for Chapter 4

Callum R.K. Arnold¹,²,* Alex C. Kong³, Amy K. Winter⁴, William J. Moss³,5 Bryan N. Patenaude³, Matthew J. Ferrari¹,²

- ¹ Department of Biology, Pennsylvania State University, University Park, PA, USA 16802
- ² Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA 16802
- ³ Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA 21205
- ⁴ Department of Epidemiology, College of Public Health, University of Georgia, Athens, GA, USA 30602
- ⁵ Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA 21205

^{*} Corresponding author. Callum R.K. Arnold. Address: Department of Biology, Pennsylvania State University, University Park, PA, USA 16802. Email: contact@callumarnold.com.

Results

Tables

	Test Characteristic			Testing Rate						
Noise Type	Test Type	Test Lag	10%	20%	30%	40%	50%	60%		
Dynamical noise: in- phase	RDT Equivalent (85.0%)	0	0.64	0.72	0.71	0.68	0.7	0.73		
Dynamical noise: in- phase	RDT Equivalent (90.0%)	0	0.64	0.73	0.72	0.71	0.72	0.71		
Poisson noise	RDT Equivalent (85.0%)	0	0.66	0.93	0.92	0.93	0.88	0.88		
Poisson noise	RDT Equivalent (90.0%)	0	0.66	0.85	0.91	0.87	0.92	0.93		
All noise structures	Perfect Test	0	0.66	0.93	0.91	0.89	0.91	0.93		
All noise structures	Perfect Test	14	0.67	0.9	0.89	0.88	0.88	0.91		

Supplemental Table 1: Mean outbreak detection accuracy of each testing scenario at their specific optimal thresholds, when the average noise incidence is 8 times higher than the average measles incidence. A) the noise structure is dynamical, and the seasonality is in-phase with the measles incidence. B) the noise structure is Poisson only.

	Test Character	Testing Rate						
Noise Type	Test Type	Test Lag	10%	20%	30%	40%	50%	60%
Dynamical noise: in-phase	RDT Equivalent (85.0%)	0	452	3053	4424	7728	3406	4361
Dynamical noise: in-phase	RDT Equivalent (90.0%)	0	515	3289	4650	6417	2578	4933
Poisson noise	RDT Equivalent (85.0%)	0	766	6592	9111	9107	11865	11765
Poisson noise	RDT Equivalent (90.0%)	0	770	3178	9736	12808	5205	8111
All noise structures	Perfect Test	0	770	5980	8893	11172	4529	6144
All noise structures	Perfect Test	14	2015	9277	12363	14643	7641	9495

Supplemental Table 2: Mean unavoidable cases per annum of each testing scenario at their specific optimal thresholds, scaled up to Ghana's 2022 population, when the average noise incidence is 8 times higher than the average measles incidence. A) the noise structure is dynamical, and the seasonality is inphase with the measles incidence. B) the noise structure is Poisson only.

	Test Character	Testing Rate						
Noise Type	Test Type	Test Lag	10%	20%	30%	40%	50%	60%
Dynamical noise: in-phase	RDT Equivalent (85.0%)	0	-24.82	-12.79	-9.15	-3.21	-16.22	-10.77
Dynamical noise: in-phase	RDT Equivalent (90.0%)	0	-17.21	-5.34	-0.55	3.03	-10.55	-3.66
Poisson noise	RDT Equivalent (85.0%)	0	-3.75	24.49	31.45	31.85	38.17	37.87
Poisson noise	RDT Equivalent (90.0%)	0	-3.69	12.94	32.92	40.14	20.26	28.74
All noise structures	Perfect Test	0	-3.69	22.61	30.64	36.08	17.92	23.05
All noise structures	Perfect Test	14	3.69	33.64	42.38	48.18	28.21	34.07

Supplemental Table 3: Mean outbreak alert delay (days) of each testing scenario at their specific optimal thresholds, when the average noise incidence is 8 times higher than the average measles incidence. A) the noise structure is dynamical, and the seasonality is in-phase with the measles incidence. B) the noise structure is Poisson only.

Figures

Supplemental Figure 1: The difference between the proportion of the time series in outbreak for outbreak detection systems under different testing rates and noise structures. The shaded bands illustrate the 80% central interval, and the solid/dashed lines represent the mean estimate. Solid lines represent tests with 0-day turnaround times, and dashed lines represent tests with result delays.

Supplemental Figure 2: The difference between the alert durations for outbreak detection systems under different testing rates and noise structures. The shaded bands illustrate the 80% central interval, and the solid/dashed lines represent the mean estimate. Solid lines represent tests with 0-day turnaround times, and dashed lines represent tests with result delays.

Supplemental Figure 3: The difference between the number of alerts under different testing rates and noise structures. The shaded bands illustrate the 80% central interval, and the solid/dashed lines represent the mean estimate. Solid lines represent tests with 0-day turnaround times, and dashed lines represent tests with result delays.