NCS 강좌: 딥러닝 기초 2. 로지스틱 회귀

강사 윤예빈

yebinyoun@gmail.com

https://github.com/yebiny

목차

- 1. 개념정리
- **2. 손실함수: 크로스 엔트로피** (Cross Entropy)
- 3. 실습

개념정리

$$f(x) = \sigma(xW + b)$$
 Sigmoid 함수

개념정리

$$f(x) = \sigma(xW + b)$$

Sigmoid 함수

예측해야 할 값이 연속 값이 아닌 범주형 값

개념정리

$$f(x) = \sigma(xW + b)$$

Sigmoid 함수

$$<$$
목적 > $_{ ext{Cross entropy}}$ $(w^*,b^*)=arg\ min\ oldsymbol{J}(y,\hat{y})$ $=arg\ min\ oldsymbol{J}(y,f(x))$ $=arg\ min\ oldsymbol{J}(y,\sigma(wx+b))$

개념정리: 시그모이드 함수

$$H(x)=rac{1}{1+e^{(-x)}}=\sigma(x)$$

e(e=2.718281..): 자연 상수

개념정리: 파라미터에 따른 변화

$$H(x)=rac{1}{1+e^{(-x)}}=\sigma(x)$$

e(e=2.718281..): 자연 상수

손실함수: 크로스 엔트로피 (Cross entropy)

$$J(W) = -rac{1}{n} \sum_{i=1}^{n} [y_i log(\hat{y_i}) + (1-y_i) log(1-\hat{y_i})]$$

- y_i 가 가질 수 있는 값은?
- $\hat{y_i}$ 가 가질 수 있는 값은?
- y_i 값에 따른 함수 식을 정리하면?

손실함수: 크로스 엔트로피 (Cross entropy)

$$egin{aligned} J(W) &= -rac{1}{n} \sum_{i=1}^n [y_i log(\hat{y_i}) + (1-y_i) log(1-\hat{y_i})] \ & y = 1
ightarrow cost(y, \hat{y}) = -log(\hat{y}) \ & y = 0
ightarrow cost(y, \hat{y}) = -log(1-\hat{y}) \end{aligned}$$

실습

공부시간	집중도	수면시간	종합성적	합격여부
0	1	9	0	불합격
1	1	8.5	11	불합격
2	2	8	23	불합격
3	4	8	30	불합격
4	3	7	44	불합격
5	5	7.5	55	합격
6	6	7	61	합격
7	6	6	73	합격
8	7	7	84	합격
9	6	6.5	98	합격