STAT 331 Final Project

Krishna Prem Pasumarthy & Islam Amin
April 11, 2020

1 Summary

2 Descriptive Statistics

First, take a look at summary statistics of the fhsd dataset.

Table 1: Summary Statistics

chdrisk	sex	totchol	age	sysbp	diabp	cursmoke	cigpday	bmi	diabetes	bpmeds	heartrte	glucose	prevmi	prevstrk	prevhyp	hdle	ldlc
Min. :0.0050	Female:1305										Min.: 44.00					Min.: 10.00	Min. : 20.0
1st Qu.:0.1320	Male :1001	1st Qu.:207.0	1st Qu.:53.00	1st Qu.:122.5	1st Qu.: 73.00	Yes: 802	1st Qu.: 0.00	1st Qu.:23.22	Yes: 164	Yes: 333	1st Qu.: 70.00	1st Qu.: 75.00	Yes: 117	Yes: 46	Yes:1349	1st Qu.: 38.00	1st Qu.:152.0
Median :0.2240	NA	Median :235.5	Median :60.00	Median :136.0	Median : 80.00	NA	Median: 0.00	Median :25.40	NA	NA	Median : 76.00	Median : 83.00	NA	NA	NA	Median : 47.00	Median :180.0
Mean :0.2655	NA	Mean :237.8	Mean :60.23	Mean :139.2	Mean: 81.07	NA	Mean : 6.84	Mean :25.78	NA	NA	Mean: 77.61	Mean: 89.07	NA	NA	NA	Mean: 48.89	Mean :183.1
3rd Qu.:0.3448	NA	3rd Qu.:265.0	3rd Qu.:67.00	3rd Qu.:153.0	3rd Qu.: 88.00	NA	3rd Qu.:10.00	3rd Qu.:27.91	NA	NA	3rd Qu.: 85.00	3rd Qu.: 95.00	NA	NA	NA	3rd Qu.: 57.00	3rd Qu.:210.0
Max. :0.9770	NA	Max. :625.0	Max. :81.00	Max. :246.0	Max. :130.00	NA	Max. :80.00	Max. :46.52	NA	NA	Max. :150.00	Max. :478.00	NA	NA	NA	Max. :189.00	Max. :565.0

Then take a look at chdrisk grouped by sex as well as chdrisk grouped by cursmoke.

```
## fhsd$sex: Female
##
     Min. 1st Qu. Median
                         Mean 3rd Qu.
                                      Max.
                        0.215 0.285
    0.005
         0.104 0.179
                                     0.949
  _____
## fhsd$sex: Male
     Min. 1st Qu. Median
                        Mean 3rd Qu.
   0.0210 0.1860 0.2860 0.3314 0.4060 0.9770
## fhsd$cursmoke: No
    Min. 1st Qu. Median
                       Mean 3rd Qu.
  0.0050 0.1390 0.2350 0.2754 0.3580 0.9770
## fhsd$cursmoke: Yes
     Min. 1st Qu. Median
                         Mean 3rd Qu.
   0.0080 0.1220 0.1995 0.2471 0.3140 0.9710
```

[ADD SOME COMMENTS HERE REGARDING SUMMARY]

Now take a look at pair plots of all numeric explanatory variates i.e. variates excluding response variate chdrisk and logical variates such as cursmoke.

Pair Plots of Continuous Variates

From the pair plots, we can observe a strong correlation between low density lipoprotein cholesterol and serum total cholestrol. This correlation could be explained by the fact that there could be a relationship between the amount [TO BE CONTINUED]

Now take a look at the VIFs of these variates.

##	sexMale	totchol	age	sysbp	diabp	${\tt cursmokeYes}$
##	1.225191	10.634882	1.489926	2.918660	2.406411	2.978609
##	cigpday	bmi	${\tt diabetesYes}$	bpmedsYes	heartrte	glucose
##	2.973594	1.181865	1.286401	1.214744	1.105902	1.308923
##	prevmiYes	${\tt prevstrkYes}$	prevhypYes	hdlc	ldlc	
##	1.067134	1.045746	1.823014	2.287571	10.367649	

[ADD COMMENTS]

3 Candidate Models

3.1 Automated Model Selection

```
library(gtools)
load_calcs = TRUE
# model with only intercept
MO <- lm(I(logit(chdrisk)) ~ 1, data = fhsd)</pre>
Mmax <- lm(I(logit(chdrisk)) ~ (.)^2, data = fhsd)</pre>
# starting model for stepwise selection
Mstart <- lm(I(logit(chdrisk)) ~ ., data = fhsd)</pre>
# find model coefficients which are NA
beta.max <- coef(Mmax)</pre>
names(beta.max)[is.na(beta.max)]
## [1] "cursmokeYes:cigpday" "bpmedsYes:prevhypYes"
# find the problem with the NA coeffs
kable(table(fhsd[c("cursmoke", "cigpday")]), "latex")
                      3
                           4
                               5
                                    6
                                            8
                                               9
                                                   10
                                                       12
                                                            14
                                                                15
                                                                     16
                                                                         17
                                                                              18
                                                                                  19
                                                                                        20
                                                                                            23
 No
      1504
                                                                      0
                           0
                               0
                                    0
                                       0
                                            0
                                               0
                                                                                         0
 Yes
         0
             16
                 18
                     34
                          11
                              18
                                   24
                                       9 | 18
                                               5
                                                   76
                                                        3
                                                             3
                                                                 50
                                                                      6
                                                                          1
                                                                               8
                                                                                    1
                                                                                       279
                                                                                             1
kable(table(fhsd[c("bpmeds", "prevhyp")]), "latex")
       No
             Yes
 No
      957
            1016
 Yes
            333
        0
# remove the coeffs with the problem and add quadratic terms for the continuous variables
Mmax <- lm(I(logit(chdrisk)) ~ (.)^2 - cursmoke:cigpday - bpmeds:prevhyp +</pre>
             I(totchol ^ 2) + I(sysbp ^ 2) + I(diabp ^ 2)
           + I(bmi ^ 2) + I(glucose ^ 2)
           + I(hdlc ^ 2) + I(ldlc ^ 2), data = fhsd)
anyNA(coef(Mmax)) # check if there are any remaining NAs
## [1] FALSE
if(!load_calcs){
  #forward model selection
  system.time({
    Mfwd <- step(object = MO,
                  scope = list(lower = MO, upper = Mmax),
                  direction = "forward", trace = FALSE)
 })
  #backward model selection
  system.time({
    Mback <- step(object = Mmax,</pre>
                  scope = list(lower = MO, upper = Mmax),
                  direction = "backward", trace = FALSE)
 })
```

25

14

26

1

27

0

1

```
#stepwise model selection
  system.time({
   Mstep <- step(object = Mstart,</pre>
                  scope = list(lower = MO, upper = Mmax),
                  direction = "both", trace = FALSE)
 })
}
# the caching/loading block
if(!load_calcs) {
  saveRDS(list(Mfwd = Mfwd, Mback = Mback, Mstep = Mstep), file = "models_automated.rds")
} else {
  # just load the calculations
  tmp <- readRDS("models_automated.rds")</pre>
 Mfwd <- tmp$Mfwd
 Mback <- tmp$Mback
 Mstep <- tmp$Mstep</pre>
 rm(tmp) # optionally remove tmp from workspace
# Stepwise model selection
Mstep$call
## lm(formula = I(logit(chdrisk)) ~ sex + totchol + age + sysbp +
       diabp + cursmoke + cigpday + bmi + diabetes + bpmeds + heartrte +
##
       glucose + prevmi + prevstrk + prevhyp + hdlc + ldlc + I(hdlc^2) +
##
       I(bmi^2) + I(diabp^2) + I(sysbp^2) + sysbp:prevmi + totchol:prevhyp +
##
       diabetes:prevmi + prevhyp:ldlc + sysbp:prevhyp + totchol:heartrte +
##
       sysbp:diabetes + diabp:bmi + diabp:hdlc + prevmi:hdlc + prevmi:prevhyp +
       sex:glucose + age:ldlc + age:heartrte + cigpday:hdlc + bmi:ldlc +
##
##
       totchol:hdlc + totchol:prevmi + sysbp:heartrte + sysbp:bpmeds +
##
       cursmoke:hdlc + prevmi:prevstrk + diabetes:hdlc + sex:sysbp +
##
       cigpday:glucose + heartrte:glucose + diabp:glucose + cursmoke:ldlc +
##
       age:cigpday + age:hdlc + hdlc:ldlc + age:prevhyp + diabp:prevhyp +
       diabp:cursmoke + diabp:cigpday + bmi:bpmeds + bpmeds:glucose +
##
##
       age:prevmi + sex:ldlc + cigpday:heartrte + cigpday:prevmi +
       glucose:prevmi + heartrte:prevmi + bpmeds:prevstrk, data = fhsd)
##
# Forward model selection
Mfwd$call
## lm(formula = I(logit(chdrisk)) ~ prevmi + sysbp + sex + age +
       ldlc + prevhyp + diabetes + hdlc + I(hdlc^2) + cigpday +
##
##
       I(bmi^2) + bmi + totchol + I(glucose^2) + I(sysbp^2) + bpmeds +
##
       heartrte + cursmoke + prevstrk + prevmi:sysbp + sysbp:age +
##
       prevhyp:hdlc + prevmi:diabetes + sysbp:prevhyp + prevhyp:totchol +
##
       sysbp:diabetes + prevmi:hdlc + prevmi:prevhyp + age:ldlc +
       age:cigpday + hdlc:cigpday + prevhyp:bmi + ldlc:bmi + prevmi:totchol +
##
##
       ldlc:prevhyp + sysbp:bpmeds + sysbp:hdlc + hdlc:totchol +
##
       totchol:heartrte + age:heartrte + diabetes:hdlc + sysbp:heartrte +
       bmi:bpmeds + sysbp:sex + ldlc:hdlc + prevmi:bmi + age:bmi +
##
```

```
##
       prevmi:age + sysbp:cursmoke + hdlc:cursmoke + ldlc:cursmoke +
       prevmi:cigpday + sex:diabetes + prevmi:prevstrk, data = fhsd)
# Backward model selection
Mback$call
## lm(formula = I(logit(chdrisk)) ~ sex + totchol + age + sysbp +
##
       diabp + cursmoke + cigpday + bmi + diabetes + bpmeds + heartrte +
##
       glucose + prevmi + prevstrk + prevhyp + hdlc + Idlc + I(totchol^2) +
##
       I(sysbp^2) + I(diabp^2) + I(bmi^2) + I(hdlc^2) + I(ldlc^2) +
##
       sex:totchol + sex:sysbp + sex:glucose + sex:prevstrk + sex:prevhyp +
##
       totchol:age + totchol:bpmeds + totchol:heartrte + totchol:prevmi +
       totchol:prevstrk + totchol:prevhyp + totchol:hdlc + totchol:ldlc +
##
       age:cursmoke + age:bmi + age:heartrte + age:prevmi + age:prevhyp +
##
##
       age:hdlc + sysbp:diabetes + sysbp:bpmeds + sysbp:heartrte +
       sysbp:prevmi + sysbp:prevhyp + diabp:cursmoke + diabp:cigpday +
##
##
       diabp:bmi + diabp:glucose + diabp:prevhyp + diabp:hdlc +
       cursmoke:bmi + cursmoke:hdlc + cursmoke:ldlc + cigpday:bmi +
##
       cigpday:heartrte + cigpday:glucose + cigpday:prevmi + cigpday:hdlc +
##
       bmi:prevmi + bmi:prevhyp + bmi:ldlc + diabetes:prevmi + diabetes:hdlc +
##
##
       bpmeds:glucose + bpmeds:prevstrk + bpmeds:ldlc + heartrte:glucose +
##
       heartrte:prevmi + glucose:prevmi + prevmi:prevhyp + prevmi:hdlc +
##
       prevhyp:ldlc, data = fhsd)
beta.fwd = coef(Mfwd)
beta.back = coef(Mback)
beta.step = coef(Mstep)
identical(names(beta.fwd) [names(beta.fwd) %in% names(beta.back)], names(beta.fwd))
## [1] FALSE
identical(names(beta.fwd) [names(beta.fwd) %in% names(beta.step)], names(beta.fwd))
## [1] FALSE
identical(names(beta.back) [names(beta.back) %in% names(beta.step)], names(beta.back))
## [1] FALSE
```

- 3.2 Manual Model Selection
- 4 Model Diagnostics
- 5 Model Selection
- 6 Discussion