HOMEWORK 5

SAI SIVAKUMAR

Prove the following version of the Leibniz rule. Suppose $G \subseteq \mathbb{C}$ is open, $\gamma:[a,b] \to G$ is a smooth curve and $\psi:\{\gamma\} \times G \to \mathbb{C}$. Show, if

- (i) ψ is continuous;
- (ii) for each $w \in \{\gamma\}$ the function $\psi_w : G \to \mathbb{C}$ defined by $\psi_w(z) = \psi(w, z)$ is analytic;
- (iii) the function $F:\{\gamma\}\times G\to\mathbb{C}$ defined by $F(w,z)=\psi_w'(z)$ is continuous,

then $g: G \to \mathbb{C}$ by

$$g(z) = \int_{\gamma} \psi(w, z) \, dw$$

is analytic and

$$g'(z) = \int_{\gamma} F(w, z) \, dw.$$

Proof. We show that g is differentiable (hence analytic) at an arbitrary point of G. Let $z_0 \in G$ and $\varepsilon > 0$ be given. With G open there exists r > 0 with $N_r(z_0) \subseteq G$, so that $C = \overline{N_{r/2}(z_0)} \subseteq G$ is a closed set containing z_0 in G. Then $\{\gamma\} \times C$ is closed and bounded, hence compact.

Thus F restricted to $\{\gamma\} \times C$ is uniformly continuous so that there exists δ such that if $d((w_2, z), (w_1, z_0)) = \sqrt{|w_2 - w_1|^2 + |z_0 - z|^2} < \delta$ (where d is the metric induced by the standard inner product on \mathbb{C}^2) then $|F(w_2, z) - F(w_1, z_0)| < \varepsilon$. In particular by fixing $w \in \{\gamma\}$ we have $|F(w, z) - F(w, z_0)| < \varepsilon$ whenever $d((w, z), (w, z_0)) = |z - z_0| < \delta$. Then $\left| \int_{[z_0, z]} [F(w, \xi) - F(w, z_0)] \, \mathrm{d}\xi \right| \le \varepsilon |z - z_0|$ where $[z_0, z]$ denotes the straight line path from z_0 to z lying in C (C is convex).

The analytic function on G given by $\psi_w(z) - zF(w, z_0)$ has derivative $F(w, z) - F(w, z_0)$, so by a version of the fundamental theorem for line integrals proved prior,

$$\left| \int_{[z_0,z]} [F(w,\xi) - F(w,z_0)] \, \mathrm{d}\xi \right| = |\psi_w(z) - \psi_w(z_0) - (z - z_0)F(w,z_0)| \le \varepsilon |z - z_0|$$

whenever $|z - z_0| < \delta$. So by definition of g we have

$$\left| \frac{g(z) - g(z_0)}{z - z_0} - \int_{\gamma} F(w, z_0) \, dw \right| = \left| \int_{\gamma} \frac{\psi(w, z) - \psi(w, z_0) - (z - z_0) F(w, z_0)}{z - z_0} \, dw \right|$$

$$\leq \left| \int_{\gamma} \varepsilon \, dw \right|$$

$$\leq \varepsilon V(\gamma),$$

whenever $0 < |z - z_0| < \delta$, where $V(\gamma) = \int_a^b |\gamma'(s)| \, ds$ (smooth paths are rectifiable). It follows that g is differentiable (hence analytic) with derivative given by $g'(z) = \int_{\gamma} F(w, z) \, dw$.