Introduction to

GPGPU

Multi-core Programming 김덕수

Specialized processing unit for computer graphics

Virtual space (2D/3D)

Screen

[Images from Cyberpunk 2077]

[Images from Nvidia]

[Images Battleground]

Graphics Processing??

General Purpose GPU (GPGPU)

Using graphics processing unit (GPU) to perform computation <u>traditionally handled by the CPU [Wikipedia]</u>

Why GPU?

[Images from Nvidia]

Parallel Computing

- A form of computation in which many calculations are carried out simultaneously
- Solve sub-problems of a problem concurrently

Instruction and Data

A program consists of two basic ingredient

Parallelism

Task parallelism

- Distributes tasks across multiple cores
- CPU works better than GPU

Data parallelism

- Distributes data across multiple cores
- Suitable to GPU architecture

Instruction Core Data 1

Core Data 1

Computer Architecture

Flynn's Taxonomy

Single core processor

Vector processor

SISD

Single instruction stream
Single data stream

SIMD

Single instruction stream Multiple data stream

MISD

Multiple instruction stream
Single data stream

MIMD

Multiple instruction stream Multiple data stream

Not covered

Multi-core processor

Goals of Computer Architectures

Decrease Latency

- Time from start to complete an operation
- Micro/Milli-seconds

Increase Bandwidth

- Amount of data that can be processed per unit of time
- Mega- or Giga- bytes/sec

Increase Throughput

- Number of operations that can be processed per unit of time
- Giga- or Tera- flops (10⁹ or 10¹² floating-point op/sec)

SIMT

- The architecture of GPU is called SIMT
 - Rather than SIMD

- Single Instruction, Multiple Threads
 - A group of threads is controlled by a control unit
 - E.g., 32 threads (= warp)
 - Each thread has its own control context
 - Different with traditional SIMD
 - Divergent workflow among threads in a group is allowed
 - With a little performance penalty (e.g., work serialization)

VS

Multi-core **CPU**

GPU

CPU

VS

GPU

General Processing Unit

- Focus on the performance of a core
 - Clock frequency, cache
 , branch prediction, Etc.

Single/Multi-core

- 1 ~ 64 cores
- SISD (or MIMD)
 - Single instruction, Single Data

Graphics Processing Unit

- Focus on parallelization
 - Increasing the # of cores

Many core

More than hundreds of cores

SIMT

• Single instruction, Multiple Threads

CPU

VS

GPU

Allocate more to

- Cache
- Control

Optimized for

- Latency
- Sequential code

Allocate more to

- Functional units
- Bandwidth

Optimized for

- Throughput
- Streaming code

[Images from Nvidia]

CPU

Strength

- High performance processing core
- Efficient irregular workflow handling
 - Branch prediction
- Efficient handling for random memory access pattern
 - Well-organized cache hierarchy
- Large memory space

Weakness

- A small number of cores (up to 64)
 - More space for controls
- Lower performance than GPU
 - In a perspective of FLOPS

GPU

Strength

- A massive number of cores
 - But, less powerful than CPU core
- Much higher performance than CPU
 - In a perspective of FLOPS

Weakness

- Small memory space
 - High bandwidth memory = expensive
- Performance penalty for irregular workflow
- Weak for random memory access pattern

CPU vs GPU

	Nvidia RTX 3080	Raden RX 6800	Intel i9 11900K	AMD Ryzen 9 5950X	Intel Xeon Gold 6254		
# of cores	8704	3840	8	16	18		
base clock	1.44 Ghz	1.82 Ghz	3.50 Ghz	3.4 Ghz	3.10 Ghz		
boost clock	1.71 Ghz	2.11 Ghz	5.30 Ghz	4.9 Ghz	4.00 Ghz		
Memory type	GDDR6X	GDDR6	DDR4-3200	DDR4-3200	DDR4-2933		
Memory size	10GB	16 GB	~128GB	~128GB	~ 1TB		
L2 Cache size	5 MB	4 MB	4 MB	8 MB	18 MB		
L3 Cache size	-		16 MB	64 MB	24.75 MB		

Heterogeneous Architecture

- A heterogeneous architecture consisting of more than one type of computing resources
- Examples
 - A desktop PC having both multi-core CPUs and GPUs
 - A multi-GPU system consisting of different types of GPUs

Heterogeneous Architecture

- Host (≈CPU)
 - Host code, host memory, Etc.
- Device (≈ GPU)
 - Device code, device memory, Etc.
 - Hardware accelerator

Heterogeneous Computing

- Use multiple heterogeneous computing resources at once for solving a problem
 - → Homogeneous computing

- Advantage
 - Fully utilize all available computing resources
 - Achieve high performance

Heterogeneous Computing

[Images from CUDA C Professional programming, Nvidia]

Introduction to

CUDA

Multi-core Programming 김덕수

Outline

- GPGPU
- CPU vs GPU
- Heterogeneous computing
- NVIDIA GPUs
- CUDA

NVIDIA GPUs

Architectures

• Turning, Ampere, ...

Platform

- Gaming : GTX, RTX series
- Visualization: Quadro series
- Cloud computing: Tesla, P/A series
- Edge computing: Jetson series
- Etc.
 - Autonomous driving, mining, ...

Ampere

NVIDIA GPUs

- Two important features for GPU performance
 - Number of CUDA cores
 - Peak computational performance
 - Memory size and bandwidth

GEFORCE RTX 3080							
GPU Engine Specs:	NVIDIA CUDA [®] Cores	8704					
	Boost Clock (GHz)	1.71					
	Base Clock (GHz)	1.44					
Memory Specs:	Standard Memory Config	10 GB GDDR6X					
	Memory Interface Width	320-bit					
Technology Support:	Ray Tracing Cores	2nd Generation					
	Tensor Cores	3rd Generation					
[Images from Nvidia]	NVIDIA Architecture	Ampere					

NVIDIA GPUs

Compute Capability

- Hardware versions of a GPU
 - https://developer.nvidia.com/cuda-gpus
- Describe the functional capabilities of a GPU

GPU	Compute Capability					
GeForce RTX 3090	8.6					
GeForce RTX 3080	8.6					
GeForce RTX 3070	8.6					
NVIDIA TITAN RTX	7.5					
Geforce RTX 2080 Ti	7.5					
Geforce RTX 2080	7.5					

Table 15. Technical Specifications per Compute Capability													
	Compute Capability												
Technical Specifications	3.5	3.7	5.0	5.2	5.3	6.0	6.1	6.2	7.0	7.2	7.5	8.0	8.6
Maximum number of resident grids per device (Concurrent Kernel Execution)	32		16	128	32	16	128	16		128			
Maximum dimensionality of grid of thread blocks	3												
Maximum x-dimension of a grid of thread blocks	2 ³¹ -1												
Maximum y- or z- dimension of a grid of thread blocks	65535												

Outline

- GPGPU
- CPU vs GPU
- NVIDIA GPUs
- CUDA

CUDA

- A Platform for Heterogeneous Computing
- A Programming interface for utilizing NVIDIA GPU

CUDA APIS

Driver API

- A low-level API
- More control, but hard to program

Runtime API

- A high-level API

CPU

Applications

A CUDA Program

- Host code + Device code
 - The host code runs on CPU
 - The device code runs on GPU
- NVCC compiler

Q & A

Summary

- GPGPU
- CPU vs GPU
- NVIDIA GPUs
- CUDA

이미지 출처

- 본 슬라이드에 사용된 이미지들은,
 - 다음 출처로 부터 가져 왔으며, 상업적 사용 및 출처 표시 제한이 없는 이미지만 사용 했습니다
 - Pixarbay
 - illustAC

