Stochastik für Info SoSe 2023 Lineare Regression - Fortsetzung

Hanno Gottschalk

July 5, 2023

Hanno Gottschalk Sochastik für Info – 1 / 26

Inhaltsverzeichnis Vorlesung

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Residuenplots
- Streuzerlegung
- Transformationen und lin. Reg.

Hanno Gottschalk Sochastik für Info – 2 / 26

Residuenplots

- ❖ Residuen
- Der naive Residuenplot
- ❖ Residuals over fitted
- ❖ Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Residuenplots

Hanno Gottschalk

Residuen

Residuenplots

❖ Residuen

- Der naive Residuenplot
- Residuals over fitted
- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Def. Es seien x_i und y_i die beobachteten Daten (x_i Einflussgröße, y_i Zielgröße) und

$$f(x_i) = \hat{\beta}x_i + \hat{\alpha}$$

die optimale Ausgleichsgrade. Dann heißen die folgenden Werte (i = 1, ..., n) Residuen der Ausgleichsgrade

 $\epsilon_i = y_i - f(x_i) = \text{Diff. zwischen Vorhersage und Beobachtung}$ (1)

Residuen

Residuenplots

❖ Residuen

- Der naive Residuenplot
- Residuals over fitted
- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Def. Es seien x_i und y_i die beobachteten Daten (x_i Einflussgröße, y_i Zielgröße) und

$$f(x_i) = \hat{\beta}x_i + \hat{\alpha}$$

die optimale Ausgleichsgrade. Dann heißen die folgenden Werte (i = 1, ..., n) Residuen der Ausgleichsgrade

 $\epsilon_i = y_i - f(x_i) = \text{Diff. zwischen Vorhersage und Beobachtung}$ (1)

Beispiel: Verkäufe vs Werbeausgaben

Monat	1	2	3	4	5	6	7	8	9	10
Werbeausgaben	1.2	0.8	1.0	1.3	0.7	0.8	1.0	0.6	0.9	1.1
Verkäufe	101	92	110	120	90	82	93	75	91	105
Modellvorhersage= $f(x_i)$	109.56	88.54	99.05	114.82	83.28378	88.54	99.054	78.027	93.79	104.31
Residuum $y_i - f(x_i)$	-8.56	3.45	10.94	5.17	6.71	-6.54	-6.054	-3.02	-2.79	0.68

Der naive Residuenplot

Residuenplots

- ❖ Residuen
- Der naive Residuenplot
- ❖ Residuals over fitted
- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Hanno Gottschalk Sochastik für Info – 5 / 26

Der naive Residuenplot

Residuenplots

- ❖ Residuen
- Der naive Residuenplot
- Residuals over fitted
- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Der naive Residuenplot stellt die Residuen über dem Regressor (x-Werte) dar.

Hanno Gottschalk Sochastik für Info – 5 / 26

Der naive Residuenplot

Residuenplots

- ❖ Residuen
- Der naive Residuenplot
- Residuals over fitted
- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Der naive Residuenplot stellt die Residuen über dem Regressor (x-Werte) dar.

Hauptaufgabe des Rediduenplots ist das Aufspüren von Trends

Residuals over fitted

Residuenplots

- ❖ Residuen
- Der naive Residuenplot

Residuals over fitted

- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Problem beim naiven Residuenplot: Kann nur für einen Regressor (eine erklärende Größe x_i) eingesetzt werden.

Hanno Gottschalk Sochastik für Info – 6 / 26

Residuals over fitted

Residuenplots

- ❖ Residuen
- Der naive Residuenplot

Residuals over fitted

- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Problem beim naiven Residuenplot: Kann nur für einen Regressor (eine erklärende Größe x_i) eingesetzt werden.

Deshalb wird beim 'residuals over fitted'-plot das Residuum über dem Vorhersagewert dargestellt:

Man berechnet die Residuen $\epsilon_i = y_i - f(x_i)$ und stellt die Punktepaare $(f(x_i), \epsilon_i)$ in einem Streudiagramm dar.

Residuals over fitted

Residuenplots

- Residuen
- Der naive Residuenplot

❖ Residuals over fitted

- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Problem beim naiven Residuenplot: Kann nur für einen Regressor (eine erklärende Größe x_i) eingesetzt werden.

Deshalb wird beim 'residuals over fitted'-plot das Residuum über dem Vorhersagewert dargestellt:

Man berechnet die Residuen $\epsilon_i = y_i - f(x_i)$ und stellt die Punktepaare $(f(x_i), \epsilon_i)$ in einem Streudiagramm dar.

Die rote Trendlinie ist ein nichtparametrischer moving average Trendschätzer:

Hier ist kein klarer Trend erkennbar!

Residuals over fitted: Bremsweg

Residuenplots

- ❖ Residuen
- Der naive Residuenplot
- Residuals over fitted
- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Bei den Bremswegdaten ist im Residuals over fitted Plot ein klarer Trend zu erkennen

Hanno Gottschalk Sochastik für Info – 7 / 26

Residuals over fitted: Bremsweg

Residuenplots

- ❖ Residuen
- Der naive Residuenplot
- Residuals over fitted
- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Bei den Bremswegdaten ist im Residuals over fitted Plot ein klarer Trend zu erkennen

Hanno Gottschalk Sochastik für Info – 7 / 26

Residuals over fitted: Bremsweg

Residuenplots

- ❖ Residuen
- Der naive Residuenplot
- Residuals over fitted
- ❖ Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Bei den Bremswegdaten ist im Residuals over fitted Plot ein klarer Trend zu erkennen

Erklärung: Kin. Energie $E=\frac{1}{2}mv^2$, die durch Reibung verlorene Energie ist jedoch proportional zum Weg \Rightarrow quadr. Abhängigkeit des Bremsweg von Geschwindigkeit!

Andere diagnostische Plots

Residuenplots

- ❖ Residuen
- Der naive Residuenplot
- Residuals over fitted
- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Professionelle Statistiksoftware offeriert mehrere diagnostische Plots:

Hanno Gottschalk Sochastik für Info – 8 / 26

Andere diagnostische Plots

Residuenplots

- ❖ Residuen
- Der naive Residuenplot
- Residuals over fitted
- Residuals over fitted: Bremsweg
- Andere diagnostische Plots

Streuzerlegung

Transformationen und lin. Reg

Professionelle Statistiksoftware offeriert mehrere diagnostische Plots:

Residuenplots

Streuzerlegung

- ❖ Erklärte und Residuenstreuung
- ❖ Streuzerlegungssatz
- Streuzerlegung Beweis
- $R^2 \det \operatorname{erkl\ddot{a}rte}$ Anteil
- \clubsuit Eigenschaften von \mathbb{R}^2

Transformationen und lin. Reg

Streuzerlegung

Hanno Gottschalk

Erklärte und Residuenstreuung

Residuenplots

Streuzerlegung

Erklärte und Residuenstreuung

- ❖ Streuzerlegungssatz
- ❖ Streuzerlegung Beweis
- R^2 der erklärte Anteil
- \star Eigenschaften von \mathbb{R}^2

Transformationen und lin. Reg

Def.: Die Gesamtstreuung des Merkmals Y ist

$$SQT = \sum_{i=1}^{n} (y_i - \bar{y})^2 \tag{2}$$

Hanno Gottschalk Sochastik für Info – 10 / 26

Erklärte und Residuenstreuung

Residuenplots

Streuzerlegung

Erklärte und Residuenstreuung

- Streuzerlegungssatz
- Streuzerlegung Beweis
- $R^2 \det \operatorname{erkl\ddot{a}rte}$ Anteil
- \star Eigenschaften von \mathbb{R}^2

Transformationen und lin. Reg

Def.: Die Gesamtstreuung des Merkmals Y ist

$$SQT = \sum_{i=1}^{n} (y_i - \bar{y})^2 \tag{2}$$

Die Residuenstreuung ist — gegeben den funktionalen Zusammenhang f(X) zur Vorhersage von Y

$$SQR = \sum_{i=1}^{n} (y_i - f(x_i))^2$$
 (3)

Erklärte und Residuenstreuung

Residuenplots

Streuzerlegung

Erklärte und Residuenstreuung

- Streuzerlegungssatz
- Streuzerlegung Beweis
- $R^2 \det \operatorname{erkl\ddot{a}rte}$ Anteil
- \bullet Eigenschaften von \mathbb{R}^2

Transformationen und lin. Reg

Def.: Die Gesamtstreuung des Merkmals Y ist

$$SQT = \sum_{i=1}^{n} (y_i - \bar{y})^2 \tag{2}$$

Die Residuenstreuung ist – gegeben den funktionalen Zusammenhang f(X) zur Vorhersage von Y

$$SQR = \sum_{i=1}^{n} (y_i - f(x_i))^2$$
 (3)

Die Erklärte Streuung ist

$$SQE = \sum_{i=1}^{n} (\bar{y} - f(x_i))^2$$
 (4)

Streuzerlegungssatz

Residuenplots

Streuzerlegung

Erklärte und Residuenstreuung

Streuzerlegungssatz

- Streuzerlegung Beweis
- R^2 der erklärte Anteil
- \bullet Eigenschaften von \mathbb{R}^2

Transformationen und lin. Reg

Satz (Streuzerlegung): Sei $f(x) = \hat{\beta}x + \hat{\alpha}$ mit $\hat{\beta}, \hat{\alpha}$ berechnet aus den Wertepaaren $x_i, y_i, i = 1, ..., n$. Dann

$$SQT = SQE + SQR \tag{5}$$

Streuzerlegungssatz

Residuenplots

Streuzerlegung

Erklärte und Residuenstreuung

Streuzerlegungssatz

- ❖ Streuzerlegung Beweis
- R^2 der erklärte Anteil
- \bullet Eigenschaften von \mathbb{R}^2

Transformationen und lin. Reg

Satz (Streuzerlegung): Sei $f(x) = \hat{\beta}x + \hat{\alpha}$ mit $\hat{\beta}, \hat{\alpha}$ berechnet aus den Wertepaaren $x_i, y_i, i = 1, ..., n$. Dann

$$SQT = SQE + SQR (5)$$

Denn: (Hier Var(X) für $\hat{\sigma}_X^2$ und Cov(X,Y) für $\hat{\sigma}_{X,Y}$)

$$SQT = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (y_i - f(x_i) + f(x_i) - \bar{y})^2$$

$$= SQE + SQR + 2(n-1)Cov(Y - f(X), f(X) - \bar{y})$$

Streuzerlegungssatz

Residuenplots

Streuzerlegung

Erklärte und Residuenstreuung

Streuzerlegungssatz

- Streuzerlegung Beweis
- R^2 der erklärte Anteil
- \bullet Eigenschaften von \mathbb{R}^2

Transformationen und lin. Reg

Satz (Streuzerlegung): Sei $f(x) = \hat{\beta}x + \hat{\alpha}$ mit $\hat{\beta}, \hat{\alpha}$ berechnet aus den Wertepaaren $x_i, y_i, i = 1, ..., n$. Dann

$$SQT = SQE + SQR (5)$$

Denn: (Hier Var(X) für $\hat{\sigma}_X^2$ und Cov(X,Y) für $\hat{\sigma}_{X,Y}$)

$$SQT = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (y_i - f(x_i) + f(x_i) - \bar{y})^2$$

$$= SQE + SQR + 2(n-1)Cov(Y - f(X), f(X) - \bar{y})$$

Zu Zeigen: $Cov(Y - f(X), f(X) - \bar{y}) = 0$

Streuzerlegung - Beweis

Residuenplots

Streuzerlegung

- Erklärte und Residuenstreuung
- Streuzerlegungssatz

Streuzerlegung –Beweis

- $R^2 \det \operatorname{erkl\ddot{a}rte}$ Anteil
- \bullet Eigenschaften von \mathbb{R}^2

Transformationen und lin. Reg

$$Cov(Y - f(X), f(X) - \bar{y}) = Cov(Y - \hat{\beta}X - \hat{\alpha}, \hat{\beta}X - \hat{\alpha} - \bar{y})$$

$$= \hat{\beta}Cov(Y - \hat{\beta}X, X)$$

$$= \hat{\beta}Cov(Y, X) - \hat{\beta}^{2}Var(X)$$

$$= \hat{\beta}(Cov(Y, X) - Cov(Y, X)\hat{\sigma}_{X}^{2}/\hat{\sigma}_{X}^{2})$$

$$= 0$$

Streuzerlegung - Beweis

Residuenplots

Streuzerlegung

- Erklärte und Residuenstreuung
- Streuzerlegungssatz

❖ Streuzerlegung – Beweis

- $R^2 \det \operatorname{erkl\ddot{a}rte}$ Anteil
- \bullet Eigenschaften von \mathbb{R}^2

Transformationen und lin. Reg

$$Cov(Y - f(X), f(X) - \bar{y}) = Cov(Y - \hat{\beta}X - \hat{\alpha}, \hat{\beta}X - \hat{\alpha} - \bar{y})$$

$$= \hat{\beta}Cov(Y - \hat{\beta}X, X)$$

$$= \hat{\beta}Cov(Y, X) - \hat{\beta}^{2}Var(X)$$

$$= \hat{\beta}(Cov(Y, X) - Cov(Y, X)\hat{\sigma}_{X}^{2}/\hat{\sigma}_{X}^{2})$$

$$= 0$$

qed.

R^2 - der erklärte Anteil

Residuenplots

Streuzerlegung

- Erklärte und Residuenstreuung
- ❖ Streuzerlegungssatz
- ❖ Streuzerlegung Beweis
- R^2 der erklärte Anteil
- \star Eigenschaften von \mathbb{R}^2

Transformationen und lin. Reg

Def.: Der durch das Modell f erklärte Anteil \mathbb{R}^2 ist gegeben durch

$$R^2 = SQE/SQT = 1 - SQR/SQT \tag{6}$$

R^2 - der erklärte Anteil

Residuenplots

Streuzerlegung

- Erklärte und Residuenstreuung
- Streuzerlegungssatz
- Streuzerlegung Beweis
- R^2 der erklärte Anteil
- \star Eigenschaften von \mathbb{R}^2
- Transformationen und lin. Reg

Def.: Der durch das Modell f erklärte Anteil \mathbb{R}^2 ist gegeben durch

$$R^2 = SQE/SQT = 1 - SQR/SQT \tag{6}$$

Es gilt: Ist
$$f(x) = \hat{\beta}x + \hat{\alpha}$$
, dann $R^2 = \hat{r}_{X,Y}^2$

R² - der erklärte Anteil

Residuenplots

Streuzerlegung

- Erklärte und Residuenstreuung
- Streuzerlegungssatz
- Streuzerlegung Beweis
- R^2 der erklärte Anteil
- \bullet Eigenschaften von \mathbb{R}^2
- Transformationen und lin. Reg

Def.: Der durch das Modell f erklärte Anteil \mathbb{R}^2 ist gegeben durch

$$R^2 = SQE/SQT = 1 - SQR/SQT \tag{6}$$

Es gilt: Ist $f(x) = \hat{\beta}x + \hat{\alpha}$, dann $R^2 = \hat{r}_{X,Y}^2$ Denn:

$$R^{2} = \frac{\sum_{i} (f(x_{i}) - \bar{y})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} = \frac{\sum_{i} (\hat{\alpha} + \hat{\beta}x_{i} - \bar{y})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

$$\hat{\alpha} = \frac{\bar{y}}{\bar{z}} - \hat{\beta}\bar{x} \qquad \hat{\beta}^{2} \sum_{i} (x_{i} - \bar{x})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} \stackrel{\hat{\beta} = \hat{\sigma}^{2}_{X,Y}}{=} /\hat{\sigma}^{2}_{X} \qquad \frac{(\hat{\sigma}^{2}_{X,Y})^{2} \hat{\sigma}^{2}_{X}}{(\hat{\sigma}^{2}_{X})^{2} \hat{\sigma}^{2}_{Y}}$$

$$= \left(\frac{\hat{\sigma}_{X,Y}}{\hat{\sigma}_{X} \hat{\sigma}_{Y}}\right)^{2} = \hat{r}^{2}_{X,Y}$$

Residuenplots

Streuzerlegung

- Erklärte und Residuenstreuung
- Streuzerlegungssatz
- ❖ Streuzerlegung Beweis
- $R^2 \det \operatorname{erkl\ddot{a}rte}$ Anteil
- ❖ Eigenschaften von
 R²

Transformationen und lin. Reg

 R^2 ist für beliebige funktionale Abhängigkeiten erklärt

Hanno Gottschalk

Residuenplots

Streuzerlegung

- Erklärte und Residuenstreuung
- Streuzerlegungssatz
- ❖ Streuzerlegung Beweis
- $R^2 \det \operatorname{erkl\ddot{a}rte}$ Anteil
- ❖ Eigenschaften von
 R²

Transformationen und lin. Reg

 \mathbb{R}^2 ist für beliebige funktionale Abhängigkeiten erklärt

 R^2 liegt zwischen Null und Eins

$$0 \le R^2 \le 1 \tag{7}$$

Hanno Gottschalk Sochastik für Info – 14 / 26

Residuenplots

Streuzerlegung

- Erklärte und Residuenstreuung
- Streuzerlegungssatz
- Streuzerlegung Beweis
- R^2 der erklärte Anteil
- ❖ Eigenschaften von
 R²

Transformationen und lin. Reg

 \mathbb{R}^2 ist für beliebige funktionale Abhängigkeiten erklärt

 R^2 liegt zwischen Null und Eins

$$0 \le R^2 \le 1 \tag{7}$$

Ist $R^2 = 1 \Rightarrow SQR = 0 \Rightarrow y_i = f(x_i)$ für i = 1, ..., n, d.h. die funktionale Abhängigkeit f erklärt die <u>beobachteten</u> Variationen von y_i genau.

Residuenplots

Streuzerlegung

- Erklärte und Residuenstreuung
- Streuzerlegungssatz
- Streuzerlegung Beweis
- R^2 der erklärte Anteil
- ❖ Eigenschaften von
 R²

Transformationen und lin. Reg

 \mathbb{R}^2 ist für beliebige funktionale Abhängigkeiten erklärt

 R^2 liegt zwischen Null und Eins

$$0 \le R^2 \le 1 \tag{7}$$

Ist $R^2=1\Rightarrow SQR=0\Rightarrow y_i=f(x_i)$ für $i=1,\ldots n,$ d.h. die funktionale Abhängigkeit f erklärt die <u>beobachteten</u> Variationen von y_i genau.

Dies impliziert jedoch NICHT dass eine funktionale Abhängigkeit mit größerem R^2 auch <u>nicht beobachtete</u> Werte besser vorhersagt (wegen potentiellem *overfitting*)!

Residuenplots

Streuzerlegung

- Erklärte und Residuenstreuung
- Streuzerlegungssatz
- Streuzerlegung Beweis
- R^2 der erklärte Anteil
- ❖ Eigenschaften von
 R²

Transformationen und lin. Reg

 \mathbb{R}^2 ist für beliebige funktionale Abhängigkeiten erklärt

 R^2 liegt zwischen Null und Eins

$$0 \le R^2 \le 1 \tag{7}$$

Ist $R^2=1\Rightarrow SQR=0\Rightarrow y_i=f(x_i)$ für $i=1,\ldots n,$ d.h. die funktionale Abhängigkeit f erklärt die <u>beobachteten</u> Variationen von y_i genau.

Dies impliziert jedoch NICHT dass eine funktionale Abhängigkeit mit größerem \mathbb{R}^2 auch <u>nicht beobachtete</u> Werte besser vorhersagt (wegen potentiellem *overfitting*)!

Wir kommen darauf zurück...

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Transformationen und lin. Reg

Hanno Gottschalk

Skalengesetze

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

❖ Skalengesetze

- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz
- Ein.-logarithmische
 Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Bei Urliste $(t_1, z_1), \ldots, (t_n, z_n), t_i > 0, z_i > 0$ die Skalengesetz folgt — funktionale Abhängigkeit $\overline{z_i} = f(x_i) \times \exp(\text{stat. Schwankungen})$:

$$f(t) = at^{\beta} \tag{8}$$

Hanno Gottschalk

Skalengesetze

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

❖ Skalengesetze

- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische
 Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Bei Urliste $(t_1, z_1), \ldots, (t_n, z_n), t_i > 0, z_i > 0$ die Skalengesetz folgt — funktionale Abhängigkeit $\overline{z_i} = f(x_i) \times \exp(\text{stat. Schwankungen})$:

$$f(t) = at^{\beta} \tag{8}$$

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- ❖ Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Setze
$$y_i = \log(z_i)$$
 und $x_i = \log(t_i) \Rightarrow$

$$y_i = \log(z_i) = \log(a) + \beta \log(t_i) + \text{stat. Schwankungen}$$

$$= \log(a) + \beta x_i + \text{stat. Schwankungen}$$
 (9)

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Setze
$$y_i = \log(z_i)$$
 und $x_i = \log(t_i) \Rightarrow$

$$y_i = \log(z_i) = \log(a) + \beta \log(t_i) + \text{stat. Schwankungen}$$

$$= \log(a) + \beta x_i + \text{stat. Schwankungen}$$
 (9)

Die doppellogarithmische Transformation führt Skalengesetze auf lineare Gesetze zurück

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Setze
$$y_i = \log(z_i)$$
 und $x_i = \log(t_i) \Rightarrow$

$$y_i = \log(z_i) = \log(a) + \beta \log(t_i) + \text{stat. Schwankungen}$$

$$= \log(a) + \beta x_i + \text{stat. Schwankungen}$$
 (9)

Die doppellogarithmische Transformation führt Skalengesetze auf lineare Gesetze zurück

Nach dopplellogarithmischer Transformation der Daten kann lineare Regression angewendet werden!

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Setze
$$y_i = \log(z_i)$$
 und $x_i = \log(t_i) \Rightarrow$

$$y_i = \log(z_i) = \log(a) + \beta \log(t_i) + \text{stat. Schwankungen}$$

$$= \log(a) + \beta x_i + \text{stat. Schwankungen}$$
 (9)

Die doppellogarithmische Transformation führt Skalengesetze auf lineare Gesetze zurück

Nach dopplellogarithmischer Transformation der Daten kann lineare Regression angewendet werden!

Beachte jedoch, dass lineare Regression nur dann sinnvoll ist, wenn die Residuen NACH der Transformation über den Vorhersagebereich ungefähr dieselbe Größenordnung haben – sonst ist evtl. ein nichtlinearer Least Squares Fit ohne Transformation vorzuziehen.

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Die durch doppellogarithmische Transformation gewonnene Lösung ist

$$f(t) = e^{\hat{\alpha}} t^{\hat{\beta}} \tag{10}$$

Hanno Gottschalk

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Die durch doppellogarithmische Transformation gewonnene Lösung ist

$$f(t) = e^{\hat{\alpha}} t^{\hat{\beta}} \tag{10}$$

mit

$$\hat{\beta} = \hat{\sigma}_{\log(T), \log(Z)} / \hat{\sigma}_{\log(T)}^2 \quad \hat{\alpha} = \overline{\log(z)} - \hat{\beta} \overline{\log(t)}$$
 (11)

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Die durch doppellogarithmische Transformation gewonnene Lösung ist

$$f(t) = e^{\hat{\alpha}} t^{\hat{\beta}} \tag{10}$$

mit

$$\hat{\beta} = \hat{\sigma}_{\log(T),\log(Z)}/\hat{\sigma}_{\log(T)}^2 \quad \hat{\alpha} = \overline{\log(z)} - \hat{\beta}\overline{\log(t)}$$
 (11)

Dies ist natürlich nicht der funktionale Zusammenhang, der die Fehlerquadrate minimiert!

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Die durch doppellogarithmische Transformation gewonnene Lösung ist

$$f(t) = e^{\hat{\alpha}} t^{\hat{\beta}} \tag{10}$$

mit

$$\hat{\beta} = \hat{\sigma}_{\log(T), \log(Z)} / \hat{\sigma}_{\log(T)}^2 \quad \hat{\alpha} = \overline{\log(z)} - \hat{\beta} \overline{\log(t)}$$
 (11)

Dies ist natürlich nicht der funktionale Zusammenhang, der die Fehlerquadrate minimiert!

Vorgehen mittels doppellogarithmischer Transformation ist sinnvoll, wenn der zu erwartede Fehler größenmäßig proportional zum gemessenen Wert ist.

Skalengesetze - Beispiel

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische
 Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Schadenshäufigkeit in Abhängigkeit von Schadenshöhe bei Versicherung gegen Ernteausfälle (fiktive Daten)

Skalengesetz - Beispiel II

Residuenplots

Streuzerlegung

Transformationen und lin. Rea

- Skalengesetze
- ❖ Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- ❖ Skalengesetze -Beispiel

❖ Skalengesetz -Beispiel II

- ❖ Skalengesetz -Beispiel III
- ❖ Skalengesetz -Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz -Beispiel
- Exponentialgesetz
- -Beispiel

Streuplot der logarithmierten Werte mit Ausgleichsgraden

Berechnete Werte:

$$\hat{\beta} = -1.4836, \quad \hat{\alpha} = 4.4890$$

Skalengesetz - Beispiel III

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- ❖ Exponentialgesetz
- -Beispiel

Skalengesetz - Beispiel III

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Diagnostische Plots nicht wirklich prickelnd...

Hanno Gottschalk

Skalengesetz - Beispiel IV

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III

❖ Skalengesetz -Beispiel IV

- Exponentialgesetz
- Ein.-logarithmische
 Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Die ersten vier Werte (korrespondierend zu kleinen Schadenshöhen) passen in den Diagnostischen plots nicht gut ins Bild.

Hanno Gottschalk Sochastik für Info – 22 / 26

Skalengesetz - Beispiel IV

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III

❖ Skalengesetz -Beispiel IV

- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Die ersten vier Werte (korrespondierend zu kleinen Schadenshöhen) passen in den Diagnostischen plots nicht gut ins Bild.

Es wird argumentiert, dass kleine Schadenshöhen nicht wichtig sind in dieser Betrachtung und sie werden herausgenommen...

Skalengesetz - Beispiel IV

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III

❖ Skalengesetz -Beispiel IV

- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Die ersten vier Werte (korrespondierend zu kleinen Schadenshöhen) passen in den Diagnostischen plots nicht gut ins Bild.

Es wird argumentiert, dass kleine Schadenshöhen nicht wichtig sind in dieser Betrachtung und sie werden herausgenommen...

Die Diagnostischen Plots sehen nun viel besser aus, doch die Werte $\hat{\alpha}=7.579$ und $\hat{\beta}=-2.561$ unterscheiden sich stark...

Welche Vorgehensweise ist gerechtfertigt ?

Exponentialgesetz

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV

Exponentialgesetz

- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Urliste enthalte Wertepaare $(x_1, z_1), \dots (x_n, z_n)$ die einer exponentiellen funktionalen Abhängigkeit entsprechen:

$$f(x) = ae^{\beta x} \tag{12}$$

Ein.-logarithmische Substitution

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz

Ein.-logarithmische Substitution

- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Setze
$$y_i = \log(z_i)$$
 und $\alpha = \log(a)$, dann

$$y_i = \log(z_i) = \alpha + \beta x_i + \text{stat. Schwankungen}$$
 (13)

Ein.-logarithmische Substitution

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz

Ein.-logarithmische Substitution

- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Setze $y_i = \log(z_i)$ und $\alpha = \log(a)$, dann

$$y_i = \log(z_i) = \alpha + \beta x_i + \text{stat. Schwankungen}$$
 (13)

Die Iin. Regression nach einfachlogarithmischer Transfrormation ergibt

$$f(x) = e^{\hat{\alpha}} e^{\hat{\beta}x} \min \hat{\beta} = \frac{\hat{\sigma}_{X,\log(Z)}}{\hat{\sigma}_X^2} \text{ und } \hat{\alpha} = \overline{\log(z)} - \hat{\beta}\overline{x} \text{ (14)}$$

Ein.-logarithmische Substitution

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz

Ein.-logarithmische Substitution

- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Setze $y_i = \log(z_i)$ und $\alpha = \log(a)$, dann

$$y_i = \log(z_i) = \alpha + \beta x_i + \text{stat. Schwankungen}$$
 (13)

Die Iin. Regression nach einfachlogarithmischer Transfrormation ergibt

$$f(x) = e^{\hat{\alpha}} e^{\hat{\beta}x} \min \hat{\beta} = \frac{\hat{\sigma}_{X,\log(Z)}}{\hat{\sigma}_X^2} \text{ und } \hat{\alpha} = \overline{\log(z)} - \hat{\beta}\overline{x} \text{ (14)}$$

Die Bemerkungen über Residuen gelten analog zum doppellogarithmischen Fall

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Ungebremste Vermehrung von Schädlingen

Hanno Gottschalk

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- Exponentialgesetz
- -Beispiel

Ungebremste Vermehrung von Schädlingen

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- ❖ Exponentialgesetz
- -Beispiel

Ungebremste Vermehrung von Schädlingen

$$\hat{\alpha} = 0.1635 \ \hat{\beta} = 0.2639 \ f(x) = e^{0.1635} e^{0.2639x}$$

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- ExponentialgesetzBeispiel

Ungebremste Vermehrung von Schädlingen

$$\hat{\alpha} = 0.1635 \quad \hat{\beta} = 0.2639 \quad f(x) = e^{0.1635} e^{0.2639x}$$

Z.B. Prognose für 15. Tag: $f(15) = e^{0.1635}e^{0.2639 \times 15} = 61.64$

Residuenplots

Streuzerlegung

Transformationen und lin. Reg

- Skalengesetze
- Doppellogarithmische Substitution
- ❖ Skalengesetze Lösung
- Skalengesetze Beispiel
- Skalengesetz Beispiel II
- Skalengesetz Beispiel III
- Skalengesetz Beispiel IV
- ❖ Exponentialgesetz
- Ein.-logarithmische Substitution
- Exponentialgesetz Beispiel
- ExponentialgesetzBeispiel

