Lógica de Boole

Osmar de Oliveira Braz Junior Márcia Cargnin Martins Giraldi

Objetivos

- Aplicar as leis e regras básicas da álgebra Booleana
- Aplicar os teoremas de DeMorgan em expressões Booleanas
- Descrever circuitos de portas lógicas com expressões Booleanas
- Calcular expressões Booleanas
- Simplificar expressões usando as leis e regras da álgebra Booleana
- Converter qualquer expressão Booleana numa soma-de-produtos
- Converter qualquer expressão Booleana num produto-de-somas

Motivação

- Como visto, os circuitos lógicos correspondem (executam) expressões booleanas, as quais representam problemas no mundo real
- Porém, os circuitos gerados por tabelas verdade muitas vezes admitem simplificações, o que reduz o número de portas lógicas; essa redução diminui o grau de dificuldade na montagem e custo do sistema digital

Motivação

- O estudo da simplificação de circuitos lógicos requer o conhecimento da álgebra de Boole, por meio de seus postulados, propriedades, equivalências, etc
- Na Álgebra de Boole encontram-se os fundamentos da eletrônica digital de circuitos;

Lógica de Boole

- Lógica de Boole ou Álgebra Booleana é uma área da matemática que trata de regras e elementos da Lógica.
- O nome booleana é uma retribuição da comunidade científica ao matemático inglês George Boole (1815-1864), que desenvolveu uma análise matemática sobre a Lógica.
- Em 1854, ele publicou um livro no qual propôs os princípios básicos dessa álgebra.

Lógica de Boole

- Em 1938, Claude Shannon, no MIT, utilizou os conceitos desta álgebra para o projetos de circuitos de chaveamento que usavam relés.
 - Análise é um método prático e econômico de descrever as funções de um circuito digital e, consequentemente, seu funcionamento.
 - Projeto ao identificar a função a ser realizada por um circuito, a álgebra booleana pode ser aplicada para simplificar sua descrição e, assim, também sua implementação.

Constantes, Variáveis e Expressões

- Existem apenas duas constantes booleanas
 - □ 0 (zero)
 - □ 1 (um)
- Uma variável booleana é representada por letra e pode assumir apenas dois valores (0 ou 1)
 - □ Exemplos: A, B, C
- Uma expressão booleana é uma expressão matemática envolvendo constantes e/ou variáveis booleanas e seu resultado assume apenas dois valores (0 ou 1)
 - Exemplos:
 - S = A.B
 - S = A + B.C

Postulados & Propriedades

- Na álgebra booleana há postulados (axiomas) a partir dos quais são estabelecidas várias propriedades
- Existem várias propriedades da negação (complemento, inversor), adição (porta E) e soma (porta OU)
- Estas propriedades podem ser verificadas como equivalências lógicas
- Para demonstrar cada uma, basta utilizar as tabelas-verdade, constatando a equivalência.

- Complemento
 - □ Se A=0 então Ā=1
 - □ Se A=1 então Ā=0

- Notações alternativas
 - $\Box \bar{A} = A'$
 - $\Box \bar{A} = \neg A$
 - $\Box \overline{B.C} = (B.C)'$

Valores de A podem ser 1 ou 0

$$A = 1 \text{ ou } A = 0$$

Postulados

- 1) A = 1
 - A = 0
- 2) 1.1 = 1

O produto de 1.1 é 1

- O produto 1 por 0 é 0
- O produto 0 por 1 é 0

$$0.1 = 0$$

1)
$$A = 1$$

$$2)$$
 $1.1 = 1$

$$3) 1.0 = 0$$

O produto por 0 é 0

$$0.0 = 0$$

1)
$$A = 1$$

$$3) 1.0 = 0$$

$$0.1 = 0$$

$$4) 0.0 =$$

A soma de 0 e 0 é 0

$$0 + 0 = 0$$

1)
$$A = 1$$

$$A = 0$$

$$2)$$
 1.1 = 1

$$3) 1.0 = 0$$

$$0.1 = 0$$

$$4) 0.0 = 0$$

$$5) 0+0 =$$

- A soma de 0 e 1 é 1
- A soma de 1 e 0 é 1

$$\mathbf{0} + 1 = 1$$

$$1 + 0 = 1$$

- 1) A = 1
- 2) 1.1 = 1
- 3) 1.0 = 0
 - 0.1 = 0
- $4) \quad 0.0 = 0$
- 5) 0+0 = 0

A soma de 1 e 1 é 1

- 1) A = 1 A = 0
- 2) 1.1 = 1
- 3) 1.0 = 0
- $4) \quad 0.0 = 0$
- 5) 0+0 = 0
- 6) 0+1 = 1
 - 1+0 = 1
- 7) 1+1 = 1

 Do complemento, a negação de 1 e 0

- 1) A = 1 A = 0
- 2) 1.1 = 1
- 3) 1.0 = 0
- $4) \quad 0.0 = 0$
- 5) 0+0 = 0
- 6) 0+1 = 1
 - 7) 1+1 = 1
- $8) \quad 1 = 0$

Do complemento, a negação de 0 e 1

$$0' = 1$$

- 1) A = 1
- 2) 1.1 = 1
- 4) 0.0 = 0

- Lei da involução
- Se uma variável binária é negada duas vezes esta não varia, ou,

$\overline{\overline{A}} = A \text{ ou } A'' = A$

 Este postulado é válido para qualquer número par de negações

- 1) A = 1 A = 0
- 2) 1.1 = 1
- 3) 1.0 = 0 0.1 = 0
- $4) \quad 0.0 = 0$
- 5) 0+0 = 0
- 6) 0+1 = 11+0 = 1
- 7) 1+1 = 1
- 8) 1' = 0
- 9) 0' = 1
- 10) A'' = A

Expressões Equivalentes

 Duas expressões são equivalentes se para toda e qualquer combinação de valores atribuídos às suas variáveis, estas duas expressões apresentam valores iguais.

$$A = A$$

•
$$A + B = A + B$$

Expressões Equivalentes

$$A'.B' = (A+B)'$$

Α	В	A'	B'	A'.B'	(A+B)'
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Expressões Complementares

- Duas expressões são complementares se para toda e qualquer combinação de valores atribuídos às suas variáveis, uma delas terá valor 1 enquanto a outra terá valor 0.
- O complemento de uma expressão booleana, muitas vezes necessário para manipulações algébricas, pode ser obtido da expressão original realizando as seguintes operações:

```
□ Troca-se todos os "vezes" por "+";
□ Troca-se todos os "+" por "vezes";
□ Troca-se todos os "1" por "0";
□ Troca-se todos os "0" por "1";
□ A.B → A.B
□ A+B → A.B
□ 1 → 0
□ 0 → 1
```

□ Complementa-se cada literal;
A.B´+C → A´+B.C´

Deve-se observar a ordem das operações da expressão original

$$A = A'$$

Expressões Complementares

$$\Box$$
 A + B = (A + B)'

Α	В	A'	B'	A+B	(A+B)'
0	0	1	1	0	1
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	1	0

O resultado são complementares.

Expressões Duais

- Não existe relação geral entre os valores das expressões duais, isto é, ambas podem ser iguais a 0, ou ambas iguais a 1 ou uma com valor 1 enquanto a outra terá valor 0.
- O dual de uma expressão booleana, pode ser obtido da expressão original realizando as seguintes operações:

```
□ Troca-se todos os "vezes" por "+";
A.B → A+B
```

- □ Troca-se todos os "+" por "vezes"; A+B → A.B
- □ Troca-se todos os "1" por "0"; $1 \rightarrow 0$
- Troca-se todos os "0" por "1"; $0 \rightarrow 1$
- Deve-se observar a ordem das operações da expressão original.

- São utilizados para simplificar expressões lógicas e para obter outras expressões equivalentes.
- A demonstração destes teoremas será feita pelo chamado "método da Tabela Verdade", que consiste em demonstrar um teorema mostrando sua validade para todos os possíveis valores das variáveis.
- No caso da Álgebra de Boole isto é possível já que o número total de valores distintos de cada variável é apenas dois e o número de possíveis combinações de valores das diversas variáveis envolvidas é limitado e igual a 2ⁿ, onde n é o número de variáveis.
- Os teoremas são apresentados na forma de pares duais.

- Lei do elemento absorvente para a multiplicação lógica
 - Identidade da multiplicação
- O produto lógico de uma variável binária pôr um 0 lógico é igual a um 0 lógico, ou,

$$A \cdot 0 = 0$$

Α	A.0	A.0
1	1.0	0
0	0.0	0

- Lei do elemento absorvente para a soma lógica,
 - □ identidade da adição
- A soma lógica de uma variável binária mais um 1 lógico equivale a 1 lógico, ou,

$$A + 1 = 1$$

Α	A+1	A+1
1	1 + 1	1
0	0 + 1	1

- Para qualquer valor de A a expressão A + 1 é igual a 1 e a expressão A .0 é igual a 0, o que demonstra o teorema.
- O A das expressões A.0 e A.A + 1 não é necessariamente uma variável simples; pode ser uma expressão qualquer.
- Isto também é válido para os demais teoremas.

1) A .
$$0 = 0$$

A + $1 = 1$

Exemplos

a)
$$0.(A.B.C.D + A' E' + F') =$$

b)
$$0.A.B' =$$

c)
$$1 + A.B.C + C'.D' =$$

d)
$$1 + (A + B + C') \cdot (D.E) =$$

- Lei do elemento neutro para a soma lógica
- A soma lógica de uma variável binária mais um 0 lógico equivale ao valor da variável binária, ou,

$$A + 0 = A$$

Α	A+0	A+0
1	1+0	1
0	0 + 0	0

- Lei do elemento neutro para a multiplicação lógica
- O produto lógico de uma variável binária pôr um 1 lógico é igual ao valor da variável binária, ou,

$$A \cdot 1 = A$$

Α	A.1	A.1
1	1.1	1
0	0.1	0

Para qualquer valor de A a expressão A + 0 é igual a A e a expressão A . 1 é igual a A, o que demonstra o teorema.

Exemplos:

a)
$$0 + A.B + C.D =$$

b)
$$0 + A.B =$$

c)
$$1.(A.B + C) =$$

d)
$$1.(A.B.C)' =$$

1) A .
$$0 = 0$$
 A + $1 = 1$

2)
$$A + 0 = A$$

 $A \cdot 1 = A$

Teoremas 1 e 2

Teoremas

1) A .
$$0 = 0$$

A + 1 = 1
2) A + 0 = A

$A \cdot 1 = A$

Exemplos:

a)
$$1 + (0+(A.B.C + D.E)) =$$

b)
$$1 + (0 + A'.B.C) =$$

c)
$$1 + (A.C)' + 1.(B.C)' + (0 + C.D.F) + (0.A.D) =$$

Teorema 3 – Lei da Idempotência

 A soma e o produto lógico de duas variáveis binárias iguais equivale ao valor lógico dessa variável binária, ou,

$$A + A = A$$

$$\blacksquare A . A = A$$

Α	A+A	A+A
1	1.1	1
0	0.0	0

Α	A.A	A.A
1	1.1	1
0	0.0	0

Exemplos:

a)
$$(A'.B.C) \cdot (A'.B.C) =$$

b)
$$(A.E)' + C.D.B$$
) $(A.E)' + C.D.B$) =

c)
$$(B.B.C + A' + A') (B.B.C + A'.A') (B.B.C.C + A') =$$

1) A .
$$0 = 0$$

A + $1 = 1$

2)
$$A + 0 = A$$

 $A \cdot 1 = A$

$$3) A + A = A$$

$$A \cdot A =$$

Teorema 4 - Complemento

- Lei do elemento complementaridade para a soma e multiplicação lógica
- A soma lógica de uma variável binária mais a negação da mesma variável binária equivale a 1,
- A multiplicação lógica de uma variável binária mais a negação da mesma variável binária equivale a 0,

$$A + \overline{A} = 1$$

Α	$A + \overline{A}$	$A + \overline{A}$
1	1 + 0	1
0	0 +1	1

$$A \cdot \overline{A} = 0$$

Α	A.A	A.A
1	1.0	0
0	0.1	0

Exemplos:

a)
$$A.B.(A'.B') =$$

b)
$$(V.C + C.D.F).((V'.C').(C'.D'.F')) =$$

$$c)((O.T'+N.I.P+U.C))+((O'.T).(N'.I'.P').(U'.C')) =$$

$$d)(A.A.B+C.D)+(A'.A'.B').(C'.D')=$$

1) A .
$$0 = 0$$
 A + $1 = 1$

2)
$$A + 0 = A$$

 $A \cdot 1 = A$

3)
$$A + A = A$$

$$A \cdot A = A$$

4)
$$A + A' = 1$$

 $A \cdot A' = 0$

Teorema 5 – Comutativa

 A ordem dos fatores em uma multiplicação ou soma não altera o resultado.

$$_{\Box}$$
 A . B = B . A //Produto

A	В	A+B	B+A
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

A	В	A.B	B.A
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Exemplos:

- 1) A . 0 = 0 A + 1 = 1
- 2) A + 0 = A $A \cdot 1 = A$
- 3) A + A = A $A \cdot A = A$
- 4) A + A' = 1 $A \cdot A' = 0$
- 5) A+B=B+A A.B=B.A

Teorema 6 - Associativa

 A ordem em que os fatores estão agrupados em uma multiplicação ou soma não muda o resultado

$$(A + B) + C = A + (B + C) //Adição$$

$$\Box$$
 (A.B).C = A.(B.C)//Produto

Α	В	С	A+(B+C)	(A+B)+C	A+B+C
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Α	В	С	A.(B.C)	(A.B).C	A.B.C
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	1	1	1

Exemplos:

b)
$$A + B + C$$

= $A + (B + C)$
= $(A + B) + C$

1) A .
$$0 = 0$$
 A + $1 = 1$

2)
$$A + 0 = A$$

 $A \cdot 1 = A$

3)
$$A + A = A$$

4)
$$A + A' = 1$$

 $A \cdot A' = 0$

6)
$$(A+B)+C=A+(B+C)$$

 $(A.B).C=A.(B.C)$

Teorema 7 – Lei De Morgan

- Também chamado princípio da dualidade
 - O complemento do produto é igual a soma dos complementos

a)
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

b)
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

ou

$$(A+B)' = A'.B'$$

$$(A.B)' = A' + B'$$

A	В	A+B	A+B	A	B	A.B
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	0	0
1	1	1	0	0	1	0

Teorema 7 De Morgan

Exemplos:

a)
$$(A.B'.C.D.E')'$$

= $A'+B+C'+D'+E$

b)
$$(A+B'+C+D'+E')'$$

= A'.B.C'.D.E

- c) A.B'.C.D.E' e A'+B+C'+D'+E são complementares
- d)A.B'.C.D.E' e A'+B+C'+D'+ E são complementares

- 1) A . 0 = 0 A + 1 = 1
- 2) A + 0 = A $A \cdot 1 = A$
- 3) A + A = A $A \cdot A = A$
- 4) A + A' = 1 $A \cdot A' = 0$
- 5) A+B=B+A A.B=B.A
- 6) (A+B)+C=A+(B+C)(A.B).C=A.(B.C)
- 7) $(A+B)' = A' \cdot B'$ $(A \cdot B)' = A' + B'$

- Engloba os teoremas 7a e 7b em uma só expressão;
- O complemento de uma expressão contendo literais ligados pelos operadores "." e "+", representado por f', é determinado complementando cada variável e permutando "vezes" por "+" e "+" por "vezes", devendo-se observar a sequência das operações da expressão original.

Ex.:

•
$$((A + B'.C).(D'+ E.F))' = A'.(B+C')+D.(E'+F')$$

os parênteses serviram para manter a sequência das operações da expressão original.

Exemplos:

a)
$$(A + B'.C) = A'.(B+C')$$

Α	В	С	B'	B'.C	A+B'.C	C'	B+C'	A'	A'.(B+C')
0	0	0	1	0	0	1	1	1	1
0	0	1	1	1	1	0	0	1	0
0	1	0	0	0	0	1	1	1	1
0	1	1	0	0	0	0	1	1	1
1	0	0	1	0	1	1	1	0	0
1	0	1	1	1	1	0	0	0	0
1	1	0	0	0	1	1	1	0	0
1	1	1	0	0	1	0	1	0	0

- 1) A . 0 = 0 A + 1 = 1
- 2) A + 0 = A
 - $A \cdot 1 = A$
- 3) A + A = A $A \cdot A = A$
- 4) A + A' = 1 $A \cdot A' = 0$
- 5) A+B=B+A A.B=B.A
- 6) (A+B) + C = A + (B+C) $(A.B) \cdot C = A \cdot (B.C)$
- 7) $(A+B)' = A' \cdot B'$ $(A \cdot B)' = A' + B'$
- 8) F'(A,B,...,D,.,+) =F(A',B',...,D',+,.)

Teorema 9 – Fatoração/Distributiva

- Dois ou mais termos presentes numa expressão de soma que é multiplicada por outra variável ou expressão, é igual à soma da multiplicação de cada um dos termos da soma pela variável.
 - A propriedade distributiva da multiplicação sobre a soma

$$\Box$$
 A. (B + C) = A. B + A. C

$$\Box$$
 (A .B) + C) = (A + C) . (B + C)

Teorema 9 Fatoração/Distributiva

Exemplos:

a)
$$(A .B) + C) = (A+C).(B+C)$$

Α	В	С	A.(B+C)	A.B + A.C
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

1) A .
$$0 = 0$$
 A + $1 = 1$

2)
$$A + 0 = A$$

 $A \cdot 1 = A$

3)
$$A + A = A$$

 $A \cdot A = A$

4)
$$A + A' = 1$$

 $A \cdot A' = 0$

5)
$$A+B=B+A$$
 $A \cdot B=B \cdot A$

6)
$$(A+B) + C = A + (B+C)$$

 $(A.B) \cdot C = A \cdot (B.C)$

7)
$$(A+B)' = A' \cdot B'$$

 $(A.B)' = A' + B'$

9) A.
$$(B+C) = A.B+A.C$$

A+ $(B.C) = (A+B).(A+C)$

- Este teorema é a base do "Método dos Mapas";
- Em uma soma de 2^m termos, cada termo contendo n variáveis (ou em um produto 2^m fatores cada fator contendo n variáveis),
- se m variáveis ocorrem em todas as variações possíveis enquanto que n – m variáveis permanecem constantes, em todos os termos (ou fatores), as m variáveis são redundantes e a expressão ficará definida com as n-m constantes.
- O número de termos (ou fatores) envolvidos deve ser uma potência inteira de 2, já que existem 2^m combinações e m variáveis.

Α	В	B'	A.B	A.B'	A.B+A.B´
0	0	1	0	0	0
0	1	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1

- 1) A . 0 = 0 A + 1 = 1
- 2) A + 0 = A $A \cdot 1 = A$
- 3) A + A = A $A \cdot A = A$
- 4) A + A' = 1 $A \cdot A' = 0$
- 5) A+B=B+A A.B=B.A
- 6) (A+B)+C=A+(B+C)(A.B).C=A.(B.C)
- 7) (A+B)' = A'.B'(A.B)' = A'+B'
- 8) F'(A,B,...,D,..,+)=F(A',B',...,D',+,..)
- 9) A. (B+C) = A.B+A.CA+ (B.C) = (A+B).(A+C)

Exemplos:

```
a) ABC + AB'C + ABC' + AB'C' =
A(BC+B'C+BC'+B'C') =
A(B(C+C') + B'(C + C')) =
A(B.1 + B'.1)
A(B+B')
A.1
A
```


Teorema 11 – Lei da Absorção ou Identidade

- É muito útil para simplificação de expressões e pode ser usado do seguinte modo: se um termo pequeno (ou fator) aparece em um termo grande (ou fator) o termo grande é redundante podendo ser retirado da expressão.
 - □ Como termo pequeno(ou fator) entende-se aquele que possui menor número de literais enquanto como termo grande(ou fator) entende-se aquele que contém mais literais.

$$A + A \cdot B = A$$

Α	В	A.B	A+A.B
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

$$A \cdot (A + B) = A$$

Α	В	A+B	A.(A+B)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Teorema 11 Absorção

Exemplos:

a)
$$A + A.B = A$$

 $A.(1+B)$ //Colocando A em evidência no 1º termo
 $A.1=A$ // Como 1 + B = 1

- 1) A . 0 = 0 A + 1 = 1
- 2) A + 0 = A $A \cdot 1 = A$
- 3) A + A = A $A \cdot A = A$
- 4) A + A' = 1 $A \cdot A' = 0$
- 5) A+B=B+A A.B=B.A
- 6) (A+B)+C=A+(B+C)(A.B).C=A.(B.C)
- 7) $(A+B)' = A' \cdot B'$ $(A \cdot B)' = A' + B'$
- 8) F'(A,B,...,D,..+)=F(A',B',...,D',+,.)
- 9) A. (B+C) = A.B+A.CA+ (B.C) = (A+B).(A+C)
- 10) A.B + A.B' = A
- 11) $A+A \cdot B = A$ $A \cdot (A+B) = A$

Resumo Postulados

Complementação	Adição	Multiplicação
(1) A = 0 -> A' = 1(9)	0+0 = 0 (5)	0.0 = 0 (4)
(1) A = 1 -> A' = 0(8)	0+1 = 1 (6)	0.1 = 0 (3)
A'' = A (10)	1+0 = 1 (6)	0.1 = 0 (3)
	1+1 = 1 (7)	1.1 = 0 (2)

M

Resumo Teoremas

Teorema	Complemento	Adição	Multiplicação
Identidade	A' = A	A+0 = A (2)	A.0 = A (1)
		A+1 = 1 (1)	A.1 = A(2)
		A+A = A (3)	A.A = A (3)
		A+A' = 1 (4)	A.A' = 0 (4)
Comutativa (5)		A+B = B + A	A.B = B.A
Associativa (6)		A+(B+C) =	A.(B.C) =
		(A+B)+C =	(A.B).C =
		A+B+C	A.B.C
De Morgan(7)		(A+B)'=A'.B'	(A.B)'=A'+B'
7a e 7b (8)	F'(A,B,,Z,,+)		
	= F(A',B',,Z',+,.)		
Distributiva (9)		A+(B.C)=	A. (B+C) =
		(A+B).(A+C)	A.B+A.C
Absorção (11)		A+A.B = A	A. (A+B) =A

Exercícios

- 1) Mostre, usando simplificação por postulados e teoremas, ou seja, por transformações algébricas que:
 - a) A+A.B=A
 - b) A.(A+B) = A
 - c) A.B+A.C = A.(B+C)

Solução Exercício 1 a)

• a)A+A.B = A

□ A + A.B

 \Box = A.(1+B) Distributiva, Teorema 9

□ = A.(1) Identidade da adição, Teorema 1

□ = A
 Identidade da multiplicação, Teorema 2

Α	В	A.B	A+A.B
0	0	0	0
0	7	0	0
1	0	0	1
1	1	1	1

Solução Exercício 1 a)

A	В	A.B	A+A.B
0	0	0	0
0	7	0	0
1	0	0	1
1	1	1	1

A0
1

Solução Exercício 1 b)

- b)A.(A+B) = A
 - □ A.(A+B)
 - \Box = (A.A) + (A.B) Distributiva Teorema 9
 - □ = A + (A.B) Lei da absorção, Teorema 11
 - $\Box = A$

A	В	A+B	A.(A+B)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Solução Exercício 1 b)

Α	В	A+B	A.(A+B)
0	0	0	0
0	7	1	0
1	0	1	1
1	1	1	1

Solução Exercício 1 c)

- c)A.B+A.C = A.(B+C)
 - □ A.B + A.C
 - □ = A.(B+C) Distributiva, Teorema 9

Α	В	С	A.B	A.C	A.B+A.C
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Α	В	С	B+C	A.(B+C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Solução Exercício 1 c)

Α	В	C	A.B	A.C	A.B+A.C
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Α	В	С	B+C	A.(B+C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Exercícios

- 2) Mostre, usando simplificação por postulados e teoremas, ou seja, por transformações algébricas que:
- $A + \bar{A}.B = A + B$

Solução Exercício 2

• $A + \bar{A}.B = A + B$

$$\Box = (A + A'.B)''$$

$$\Box = (A'. (A'.B)')'$$

$$\Box = (A' \cdot (A'' + B'))'$$

$$\Box = (A'.A + A'.B')'$$

$$\Box = (0 + A'.B')'$$

$$\Box = (A'.B')'$$

$$\Box = A'' + B''$$

$$\Box = A + B$$

Dois caminhos de prova!

Postulado 10

Teorema 4 Complemento

Teorema 7 De Morgan e A'' = A

Teorema 9 Distributiva

Identidade da multiplicação, Teorma 6

Identidade da adição, Teorema 2

Teorema 7 De Morgan

Postulado 10

Solução Exercício 2

• $A + \bar{A}.B = A + B$

- □ A + A'.B
- $\Box = (A + A').(A+B)$
- $\Box = 1.(A+B)$
- $\Box = A + B$

Dois caminhos de prova!

Distributiva ,Teorema 9 Identidade da adição, Teorema 4 Identidade da multiplicação, Teorema 2

Exercícios

- 3) Mostre, usando simplificação por postulados e propriedades, ou seja, por transformações algébricas que:
- (A+B).(A+C) = A + B.C

Solução Exercício 3

- (A+B).(A+C) = A + B.C
 - □ (A+B).(A+C)
 - \Box = A.A + A.C + B.A + B.C
 - $\Box = A.A + A.C + A.B + B.C$
 - \Box = A + A.C + A.B + B.C
 - $\Box = A + A.(C+B) + B.C$
 - $\Box = A.(1 + (C+B)) + B.C$
 - $\Box = A.(1) + B.C$
 - $\Box = A + B.C$

Distributiva, Teorema 9

Comutativa, Teorema 5

Identidade da multiplicação, Teorema 3

Distributiva, Teorema 9

Distributiva, Teorema 9

Identidade da adição, Teorema 1

Identidade da multiplicação, Teorema 2

Simplificação de Expressões Booleanas

- Usando a álgebra booleana é possível simplificar expressões
- Como cada circuito corresponde a uma expressão, simplificações de expressões significam em simplificações de circuitos
- Há duas formas para simplificar expressões
 - □ Fatoração
 - Mapas de Veitch-Karnaugh
- Veremos, a seguir, o processo de fatoração

Fatoração

- Consiste na aplicação dos postulados e propriedades da álgebra booleana, com o objetivo de simplificar a expressão
- Por exemplo

\Box S = A.B.C + A.C' + A.B'	
$\Box = A.(B.C + C' + B')$	Distributiva, Teorema 9
$\Box = A.(B.C + (C' + B'))$	Associativa, Teorema 6
$\Box = A.(B.C + ((C' + B')')')$	Identidade do complemento Postulado 10
$\Box = A.(B.C + (C.B)')$	De Morgan, Teorema 7
$\Box = A.(B.C + (B.C)')$	Comutativa, Teorema 5
$\Box = A.(1)$	Identidade da adição (A+A'=1), Teorema 4
□ = A	Identidade da multiplicação, Teorema 2

Fatoração

- Portanto,
 - \Box A.B.C + A.C' + A.B' = A
- Essa expressão
 mostra a importância
 da simplificação de
 expressões e a
 consequente
 minimização do
 circuito, sendo o
 resultado final igual ao
 da variável A

Circuito antes da simplificação

Circuito após simplificação

re.

Exercícios

4) Simplifique a expressão

$$S = A'.B'.C' + A'.B.C' + A.B'.C$$

Solução Exercício 4

Simplifique a expressão

S = A'.B'.C' + A'.B.C' + A.B'.C Comutativa 5

= A'.C'.B' + A'.C'.B + A.B'.C Distributiva 9

= A'.C'.(B' + B) + A.B'.C

B'.C Teorema 4

= A'.C'.(1) + A.B'.C

Teorema 2

= A'.C' + A.B'.C

Exercícios

$$S = A' + A'.B'$$

Solução Exercício 5

Simplifique a expressão

 $S = A' + A' \cdot B'$

Distributiva 9

= A'.(1+B')

Teorema 1

= A'.(1)

Teorema 2

= A'

Exercícios

$$S = (ABC').(A'+B'+C')$$

М

Solução Exercício 6

Simplifique a expressão

S = (A.B.C').(A'+B'+C')

Distributiva, Teorema 9

= A.B.C'.A'+ A.B.C'.B'+ A.B.C'. C' Teorema 3

= A.B.C'.A' + A.B.C'.B' + A.B.C'

Associativa, Teorema 6

= A.A'. B.C'+ A.B.C'.B'+ A.B.C'

Teorema 4

= 0. B.C' + A.B.C'.B' + A.B.C'

Teorema 1

= 0 + A.B.C'.B' + A.B.C'

Teorema 2

= A.B.C'.B'+A.B.C'

Associativa, Teorema 6

= A. C'.B.B' + A.B.C'

Teorema 4

= A.C'.0 + A.B.C'

Teorema 1

= 0 + A.B.C'

Teorema 2

= A.B.C'

re.

Exercícios

$$S = ((AC)'+B+D)'+C(ACD)'$$

м

Solução Exercício 7

Simplifique a expressão

```
S = ((A.C)'+B+D)'+C.(A.C.D)'
```

$$= (A.C)^{"}.B'.D'+C.(A.C.D)'$$

$$= A.C.B'.D'+C.(A.C.D)'$$

$$= A.C.B'.D'+C.(A'+C'+D')$$

$$= A.C.B'.D'+C.A'+C.C'+C.D'$$

$$= A.C.B'.D'+C.A'+0+C.D'$$

$$= A.C.B'.D'+C.A'+C.D'$$

$$= A.C.B'.D'+C.A'+C.D'$$

$$= A.B'.C.D'+C.D'+C.A'$$

$$= C.D' + C.A'$$

$$= C(D'+A')$$

De Morgan, Teorema 7

Lei da involução, Postulado 10

De Morgan, Teorema 7

Distributiva, Teorema 9

Lei do complemento, Teorema 4

Lei da identidade, Teorema 2

Lei da identidade, Teorema 2

Associativa, Teorema 6

Absorção Teorema 11

Distributiva, Teorema 9

Exercícios

$$S = (A+B+C).(A'.B'.C)$$

Exercícios

$$S = (A+B+C).(A'+B'+C)$$

Exercícios

• 9) Simplifique a expressão S = A.B.C + (A.C)' + (A.B)'

Exercícios

$$S = A'.B'.C' + A'.B.C + A'.B.C' + A.B'.C' + A.B.C'$$

Conclusão

- Que qualquer operação aritmética pode ser realizada em computadores apenas através de somas (diretas ou em complemento)!
- ReduzIR o tamanho dos algoritmos ou circuitos é a função básica da Algebra de Boole.

Referências

- WEBER, Raul Fernando. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre: Bookman, 2012. E-book. Disponível em: https://integrada.minhabiblioteca.com.br/books/9788540701434
- STALLINGS, William. Arquitetura e organização de computadores. 8.ed. São Paulo: Pearson, 2010. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/459/epub/0
- HOGLUND, Greg. Como quebrar códigos: a arte de explorar (e proteger) software. São Paulo: Pearson, 2006. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/179934/epub/0

