Putting Strings

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 megabytes

Among all the assistants Dictator S has, Assistant Y is no doubt the assistant he is most fond of. Hence, he decided to give her some presents for her upcoming birthday. He has N empty boxes which is numbered 1 to N from left to right. Then, for every box he will either put 1 string or 1 orange inside it, so that there will be **exactly** 1 object in every box.

Assistant Y is picky. Luckily, Dictator S knows about the Q conditions that must be satisfied in order for Assistant Y to be happy about the presents. Every condition i consists of 3 integers l_i , r_i and x_i . $(0 \le x_i \le 1)$

- If x_i is 0, then the total number of strings from l^{th} to r^{th} boxes inclusively must be even.
- If x_i is 1, then the total number of strings from l^{th} to r^{th} boxes inclusively must be odd.

Note that oranges are just a placeholder and there are no conditions limiting the number of oranges in the boxes.

Help Dictator S find 1 valid way to put strings and oranges in the boxes, such that all the conditions are satisfied!

Input

- The first line of the input contains 2 integers N and Q, the number of boxes and number of conditions respectively.
- For the next Q lines, the i^{th} line will contain 3 integers l_i , r_i and x_i , which describes a condition.

Output

If it is impossible to satisfy all the conditions, output -1.

Otherwise, output any valid way in the form of N space-separated integers. The i^{th} integer is 0 if you decide to put an orange at the i^{th} box or 1 if you put a string.

Scoring

For all testcases, it is guaranteed that

- $1 \le N, Q \le 10^6$
- $1 \le l_i \le r_i \le N$
- $0 < x_i < 1$

Subtask	Score	N	Additional Constraints
1	7	$1 \le N, Q \le 17$	-
2	10	-	$(\mathrm{sum\ of\ all\ }(r_i$ - l_i $+$ $1))$ $<=$ 17
3	3	-	The conditions do not intersect.
4	10	-	$l_i = 1 \ (1 \le i \le N)$
5	30	$1 \le N, Q \le 2000$	-
6	40	-	-
7	0	Sample Testcases	

Examples

standard input	standard output
4 3	0 1 1 1
1 4 1	
1 2 1	
2 4 1	
8 3	1 1 0 0 0 1 0 1
2 7 0	
1 6 1	
1 7 1	
4 3	-1
1 2 0	
3 4 0	
1 4 1	