Linear Transformations

So far we've been treating the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

as simply another way of writing the vector equation

$$x_1\mathbf{a_1} + \dots + x_n\mathbf{a_n} = \mathbf{b}.$$

However, we'll now think of the matrix equation in a new way: we will think of A as "acting on" the vector \mathbf{x} to form a new vector \mathbf{b} .

For example, let's let
$$A = \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix}$$
. Then we find:

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix} \quad \text{and} \quad A \begin{bmatrix} 1 \\ 4 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

In other words, if
$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$, then A transforms \mathbf{x} into \mathbf{b} .

Likewise, if
$$\mathbf{u} = \begin{bmatrix} 1 \\ 4 \\ -1 \\ 3 \end{bmatrix}$$
, then A transforms \mathbf{u} into the $\mathbf{0}$ vector.

This gives a **new** way of thinking about solving $A\mathbf{x} = \mathbf{b}$. We are "searching" for the vectors \mathbf{x} in \mathbb{R}^4 that are transformed into \mathbf{b} in \mathbb{R}^2 under the "action" of A.

We have moved out of the familiar world of functions of one variable: we are now thinking about functions that transform a vector into a vector.

Or, put another way, functions that transform multiple variables into multiple variables.

Some terminology:

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

The set \mathbb{R}^n is called the **domain** of T, and \mathbb{R}^m is called the **codomain** of T.

The notation:

$$T:\mathbb{R}^n\to\mathbb{R}^m$$

indicates that the domain of T is \mathbb{R}^n and the codomain is \mathbb{R}^m .

For **x** in \mathbb{R}^n , the vector $T(\mathbf{x})$ is called the **image** of **x** (under T). The set of all images $T(\mathbf{x})$ is called the **range** of T.

