

Verified Gaming

Joe Kiniry
KindSoftware Research Group
Systems Research Group
CASL: Complex & Adaptive Systems Laboratory
University College Dublin
Dublin, Ireland

- * for the most part, we will not be the ones solving the Grand Challenges
- * interest in computer science is low
- * any mention of mathematics frightens off most students
- * how do we get new generations of students interested in our (sub)field?

$\Gamma, K \to L, L \to M, K \to M \vdash \Delta, (K \to M) \equiv (L \to M, K \to L)$ E

- * use computer gaming as a "hook"
- * introduce complex topics through secret ninja formal methods
 - see Thursday's talk in the main symposium for details about our ninja techniques
- * use running systems as specifications
- * provide examples of the use of verification in the gaming industry

Software Engineering i

- * the teaching context for this work
- * 1st—3rd year software engineering project modules at UCD in Ireland
- * individual vs. group work
- * summative and formative feedback
- * concepts, tools, and technologies covered include everything from domain analysis through reasoning about implementations

$\begin{array}{c} \textbf{Past-Projects} \\ \Gamma, K \to L, L \to M, K \to M \vdash \Delta, (K \to M) \equiv (L \to M, K \to L) \\ E \end{array}$

- * The Guinness Screensaver
 - * your display sleeps, a pint is pulled for you
- * The Computer Simulator
 - * make the abstract concrete by simulating subsystems of their own design
- * Flow
 - aesthetic game with minimal I/O and GUI
- * 1D cellular automaton simulator

This Year's Project: C=64 Game "Thrust" F

- * the video game "Thrust"
 - * classic but not well-known C=64 game
- * motivations for project choice
 - * students do not understand or appreciate the resources they have at their disposal
- * system decomposition
 - * simple I/O, persistence, GUI, discrete event simulation, physics, domain analysis

- * a formal methods-rich process, with no formality
- * (concept) analysis
- * (formal, contract-based) design
- * (refinement as a cut-and-paste) implementation
- * (scenario- and contract-driven) validation testing
- * verification (via static checking)

- metrics is the simplest motivator
- * textual I/O and the logging-based interface
- * formative and summative feedback to students via static checkers
- * manual system and automated unit testing
- reflections on validation and verification practices of students

Current State

 $\Gamma, K \to L, L \to M, K \to M \vdash \Delta, (K \to M) \equiv (L \oplus K)$ * the world's first verified game?

- * a "gold standard" case study in a verification-centric process in JML+Java
- future project ideas
 - * reuse of past C=64 projects
 - popular board games
 - * classic console games (e.g., Space Invaders)
- pedagogical resources
 - * The UCD CSI Trac—http://csi-trac.ucd.ie/

Course Corrections

* individual vs. team projects

 $\Gamma, K \to L, L \to M, K \to M \vdash \Delta, (K \to M) \equiv \langle$

- * tutorials on each static checker
- * more/better lab support for students
- * regular interim evaluations
- * integrating automated grading
- * cover fewer concepts and tools (we now cover about a dozen core topics of SE)
- * produce working solution throughout the term from which students can work