Week 4 Introduction to parametric models

12 July 2020 02:24

- model
 - o signal
 - o noise
- · Gaussian model
 - o standardisation (xi mean) / std dev
 - NORMSDIST(z) (cumulative prob) NORMSINV(prob)
 - o central limit thm
 - o Markowitz portfolio optimisation
 - stock i has expected return E(r_i); then expected return of portfolio E(rp) = wi * E(r_i) (sum_wi = 1)
 - x- axis: volatility; y-axis: return
 Want to find wi to maximise the Sharpe ratio (gradient of the line joining the pt and the risk-free rate)

- Linear regression (assuming X, Y gaussian)
 - standardising x and y

=> covariance = beta = R, alpha = 0 where best fit line is y = beta x + alpha, $R^2 = correlation$ (correlation remains the same)

- goal: minimise sigma((yi yi_pred)^2) = sigma((yi beta*xi -alpha)^2) => with standardisation, alpha = 0, so beta = sigma(xiyi)/sigma(xi^2) = covariance / 1 = covariance also, R = covariance / std(x)std(y) = covariance
- Modelling error
 - Y = (beta * X + alpha) + error term with standardisation, phi(0,1) = phi(0, beta^2) + phi(0, stdev_error) => 1 = R^2 + stdev_error^2
 - A *Point* Forecast: $\hat{y}_i = \beta x_i$, and
 - A *Probabilistic* Forecast: $\phi(\beta x_i, 1 \beta^2)$.
 - can form a CI for the forecast
- o Information gain
 - differential entropy for CRV
 - $H(Y) H(Y|X) = H(phi(0,1)) H(phi(0, stdev_error^2)$ signal + noise noise
 - Note H(X) = 2.05 + log(stdev) for gaussianSo I(X;Y) = H(Y) H(Y|X) = log(stdev_error) = log (sqrt(1-R^2))
 - percentage information gain = I(X;Y) / H(Y) = log (sqrt(1-R^2))/2.05
- 2 different kinds of forecast