

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC165700

Page: 1 of 45

FCC Radio Test Report FCC ID: 2AAZR-HSD8033A-1

Original Grant

Report No. : TB-FCC165700

Applicant: SHENZHEN HIGHSTAR ELECTRICAL CO.,LTD

Equipment Under Test (EUT)

EUT Name: MINI BLUETOOTH SPEAKER WITH FAN

Model No. : HSD8033A

Serial Model No. : N/A

Brand Name : ---

Receipt Date : 2019-02-28

Test Date : 2019-03-01 to 2019-05-05

Issue Date : 2019-05-06

Standards : FCC Part 15, Subpart C (15.247:2019)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness

Engineer Jason Xu

Engineer . 7 A

Supervisor Ivan Su

Engineer Manager : Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1. 0

TOBY

Report No.: TB-FCC165700 Page:

2 of 45

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	12
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	15
	5.3 Test Procedure	16
	5.4 EUT Operating Condition	17
	5.5 Test Data	17
6.	RESTRICTED BANDS AND BAND-EDGE TEST	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	19
	6.5 Test Data	19
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	
	7.4 EUT Operating Condition	20
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21

Page: 3 of 45

	8.3 Test Procedure	
	8.4 EUT Operating Condition	21
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	22
	9.1 Test Standard and Limit	22
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.	ANTENNA REQUIREMENT	23
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	23
	10.3 Result	23
ATTA	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATTA	ACHMENT B RADIATED EMISSION TEST DATA	26
	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	
	ACHMENT D CONDUCTED RF SPURIOUS EMISSION TEST DATA	
ATTA	ACHMENT E BANDWIDTH TEST DATA	40
	ACHMENT F PEAK OUTPUT POWER TEST DATA	
	ACHMENT G POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 45

Revision History

Report No.	Version	Description	Issued Date
TB-FCC165700	Rev.01	Initial issue of report	2019-05-06
WORK WAS			WOD!
	1000	The same of the sa	(E)
a Min			TO THE
			Day of
110	33 6	One Company	TO THE
	(408)	The same of the sa	CUBY
000			1 100
000	TOP S		The same of
The state of the s		COLUMN TO THE PARTY OF THE PART	The same
		6000	
	33 7 6	1000	

Page: 5 of 45

1. General Information about EUT

1.1 Client Information

Applicant :		SHENZHEN HIGHSTAR ELECTRICAL CO.,LTD	
Address : 2F,4&5F,Building6,Ya Lian Highstar Industrial Zone, 5022 \ Avenue,Bantian Street,Longgang District, Shenzhen, China		2F,4&5F,Building6,Ya Lian Highstar Industrial Zone, 5022 Wuhe Avenue,Bantian Street,Longgang District, Shenzhen, China	
Manufacturer : SHENZHEN HIGHSTAR ELECTRICAL CO.,		SHENZHEN HIGHSTAR ELECTRICAL CO.,LTD	
Address :		2F,4&5F,Building6,Ya Lian Highstar Industrial Zone, 5022 Wuhe Avenue,Bantian Street,Longgang District, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name		MINI BLUETOOTH SPEAKER WITH FAN		
Models No.		HSD8033A		
Model Difference	:	N/A		
THE STATE OF		Operation Frequency:	Bluetooth V4.2: 2402~2480 MHz	
THE REAL PROPERTY.		Number of Channel:	Bluetooth: 40 Channels see Note 2	
Product Description	:	Max Peak Output Power:	Bluetooth: -9.479dBm(GFSK)	
Beschption		Antenna Gain:	-0.68dBi PCB Antenna	
		Modulation Type:	GFSK (1 Mbps)	
Power Supply	÷	DC Voltage Supply from Adapter DC Voltage supplied by Li-ion battery.		
Power Rating	2	Iutput: DC 5.0V 1.5A by adapter DC 3.7V by 2200mAh Li-ion battery		
Software Version	ŀ	N/A		
Hardware Version	9	N/A		
Connecting I/O Port(S)	:	Please refer to the User's Manual		

Note:

This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 v05r02.

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.

Page: 6 of 45

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Adapter + TX Mode

TX Mode

1.4 Description of Support Units

|--|

Page: 7 of 45

Name	Model	FCC ID/VOC	Manufacturer	Used "√"		
40/77			(A)	$m\Omega_{\overline{m}}$		
Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note		
1000			333 (100		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

	For Conducted Test			
í	Final Test Mode Description			
	Mode 1	Adapter + TX Mode		

For Radiated Test			
Final Test Mode Description			
Mode 2	Adapter + TX Mode		
Mode 3	Adapter + TX Mode (Channel 00/20/39)		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 45

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version			
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiated Emission	Level Accuracy:	±4.60 dB
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 db
Padiated Emission	Level Accuracy:	±4.20 dB
Radiated Emission	Above 1000MHz	±4.20 UB

Page: 9 of 45

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 45

2. Test Summary

Standard Section		Took Itam	ludana ant	Damari	
FCC	IC	Test Item	Judgment	Remark	
15.203		Antenna Requirement	PASS	N/A	
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A	
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A	
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A	

Note: N/A is an abbreviation for Not Applicable.

Page: 11 of 45

3. Test Equipment

Cal. Due							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Date		
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul.18, 2018	Jul. 17, 2019		
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul.18, 2018	Jul. 17, 2019		
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul.18, 2018	Jul. 17, 2019		
LISN	Rohde & Schwarz	ENV216	101131	Jul.18, 2018	Jul. 17, 2019		
Radiation Emission	n Test			-			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul.18, 2018	Jul. 17, 2019		
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul.18, 2018	Jul. 17, 2019		
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020		
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020		
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020		
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020		
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul.13, 2019		
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020		
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020		
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020		
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A		
Antenna Conducte	ed Emission						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul.18, 2018	Jul. 17, 2019		
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul.18, 2018	Jul. 17, 2019		
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 15, 2018	Sep. 14, 2019		
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 15, 2018	Sep. 14, 2019		
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 15, 2018	Sep. 14, 2019		
33	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 15, 2018	Sep. 14, 2019		
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 15, 2018	Sep. 14, 2019		
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 15, 2018	Sep. 14, 2019		
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 15, 2018	Sep. 14, 2019		

Page: 12 of 45

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Ereguenev	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Leve			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 45

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 45

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.247(d)

5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)			
(MHz)	Peak (dBuV/m)	Average (dBuV/m)		
Above 1000	74	54		

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 15 of 45

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 45

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 45

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 45

6. Restricted Bands and Band-edge test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)			
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)		
2310 ~2390	74	54		
2483.5 ~2500	74	54		

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

Page: 19 of 45

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.

Page: 20 of 45

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC P	FCC Part 15 Subpart C(15.247)/RSS-247					
Test Item	Test Item Limit Frequency Range(MHz					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5				

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 45

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)(3)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item Limit Frequency Range(MHz						
Peak Output Power 1 Watt or 30 dBm 2400~2483.5						

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 45

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)						
Test Item Limit Frequency Range(MHz)						
Power Spectral Density 8dBm(in any 3 kHz) 2400~2483.5						

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 45

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is -0.68dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is PCB Antenna. It complies with the standard requirement.

Antenna Type				
⊠Permanent attached antenna				
Unique connector antenna				
Professional installation antenna	a The			

Attachment A-- Conducted Emission Test Data

Page: 25 of 45

emperature:	25 ℃		R	elative Hu	midity:	55%	6
est Voltage:	AC 120\	// 60Hz	19		A THE		1 6
erminal:	Neutral	620		88 6	(MARIE	13
est Mode:	Charging	g + BLE M	ode 2402N	lhz	(1)		1
emark:	All chan	nels have l	been tested	d and Show	ws only	the wors	st channe
90.0 dBuV							
							QP: - AVG: -
					x x		
	-			. X	* * *	ılı	
40				11111		Mul	
100		JAHANALA . MAJA	Million Lucy		486142		
	A (M) (M)	, Whit	M. M.	Y 1 1 1 1 1 1		I WYWY	Myclindely learned an
A LA DAMONAN	mu Mu no	apartally had	Mary Mary In House	MANULULIAN	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	HWM.) junt
	. or . A	. A Male.	4.10	1 0		Lil AldiAldA	Najahan yan watu
0							
0.150	0.5		(MHz)	5			30
	0.5		(MHz)	5			30
0.150		Reading	Correct	Measure-		Over	30
	Freq.	Level	Correct Factor	Measure- ment	Limit	Over	
0.150 No. Mk.	Freq.	Level dBuV	Correct Factor	Measure- ment dBuV	Limit dBuV	dB	Detector
No. Mk.	Freq. MHz 1.9100	dBuV 16.22	Correct Factor dB	Measure- ment dBuV 25.83	dBuV 56.00	dB -30.17	Detector
No. Mk.	Freq. MHz 1.9100 1.9100	dBuV 16.22 6.10	Correct Factor dB 9.61 9.61	Measure- ment dBuV 25.83 15.71	dBuV 56.00 46.00	dB -30.17 -30.29	Detector QP AVG
No. Mk. 1 2 3	Freq. MHz 1.9100 1.9100 3.4860	dBuV 16.22 6.10 14.39	Correct Factor dB 9.61 9.61 9.69	Measure- ment dBuV 25.83 15.71 24.08	Limit dBuV 56.00 46.00 56.00	dB -30.17 -30.29 -31.92	Detector QP AVG QP
0.150 No. Mk. 1 2 3 4	Freq. MHz 1.9100 1.9100 3.4860 3.4860	dBuV 16.22 6.10 14.39 4.51	Correct Factor dB 9.61 9.61 9.69 9.69	Measure- ment dBuV 25.83 15.71 24.08 14.20	Limit dBuV 56.00 46.00 56.00 46.00	dB -30.17 -30.29 -31.92 -31.80	Detector QP AVG QP AVG
No. Mk. 1 2 3	Freq. MHz 1.9100 1.9100 3.4860	dBuV 16.22 6.10 14.39	Correct Factor dB 9.61 9.61 9.69	Measure- ment dBuV 25.83 15.71 24.08	Limit dBuV 56.00 46.00 56.00 46.00	dB -30.17 -30.29 -31.92	Detector QP AVG QP AVG
No. Mk. 1 2 3 4	Freq. MHz 1.9100 1.9100 3.4860 3.4860	dBuV 16.22 6.10 14.39 4.51	Correct Factor dB 9.61 9.61 9.69 9.69	Measure- ment dBuV 25.83 15.71 24.08 14.20	Limit dBuV 56.00 46.00 56.00 46.00 56.00	dB -30.17 -30.29 -31.92 -31.80	Detector QP AVG QP AVG
No. Mk. 1 2 3 4 5	Freq. MHz 1.9100 1.9100 3.4860 3.4860 4.7540	Level dBuV 16.22 6.10 14.39 4.51 13.62	Correct Factor dB 9.61 9.61 9.69 9.69 9.86	Measure- ment dBuV 25.83 15.71 24.08 14.20 23.48	Limit dBuV 56.00 46.00 56.00 46.00 46.00	dB -30.17 -30.29 -31.92 -31.80 -32.52	Detector QP AVG QP AVG
No. Mk. 1 2 3 4 5 6	Freq. MHz 1.9100 1.9100 3.4860 3.4860 4.7540 4.7540	Level dBuV 16.22 6.10 14.39 4.51 13.62 4.10	Correct Factor dB 9.61 9.61 9.69 9.69 9.86	Measure- ment dBuV 25.83 15.71 24.08 14.20 23.48 13.96	Limit dBuV 56.00 46.00 56.00 46.00 46.00 60.00	dB -30.17 -30.29 -31.92 -31.80 -32.52 -32.04	Detector QP AVG QP AVG QP AVG
No. Mk. 1 2 3 4 5 6 7	Freq. MHz 1.9100 1.9100 3.4860 3.4860 4.7540 4.7540 6.3900	Level dBuV 16.22 6.10 14.39 4.51 13.62 4.10 23.29	Correct Factor dB 9.61 9.61 9.69 9.69 9.86 9.86 10.17	Measure- ment dBuV 25.83 15.71 24.08 14.20 23.48 13.96 33.46	Limit dBuV 56.00 46.00 56.00 46.00 46.00 50.00	dB -30.17 -30.29 -31.92 -31.80 -32.52 -32.04 -26.54	Detector QP AVG QP AVG QP AVG
No. Mk. 1 2 3 4 5 6 7 8	Freq. MHz 1.9100 1.9100 3.4860 3.4860 4.7540 4.7540 6.3900 6.3900	Level dBuV 16.22 6.10 14.39 4.51 13.62 4.10 23.29 11.23	Correct Factor dB 9.61 9.61 9.69 9.69 9.86 9.86 10.17	Measure- ment dBuV 25.83 15.71 24.08 14.20 23.48 13.96 33.46 21.40	Limit dBuV 56.00 46.00 56.00 46.00 56.00 46.00 60.00 60.00	dB -30.17 -30.29 -31.92 -31.80 -32.52 -32.04 -26.54 -28.60	Detector QP AVG QP AVG QP AVG AVG
No. Mk. 1 2 3 4 5 6 7 8 9	Freq. MHz 1.9100 1.9100 3.4860 3.4860 4.7540 4.7540 6.3900 6.3900 7.3500	Level dBuV 16.22 6.10 14.39 4.51 13.62 4.10 23.29 11.23 26.58	Correct Factor dB 9.61 9.61 9.69 9.69 9.86 9.86 10.17 10.17	Measure- ment dBuV 25.83 15.71 24.08 14.20 23.48 13.96 33.46 21.40 36.86	Limit dBuV 56.00 46.00 56.00 46.00 56.00 60.00 50.00	dB -30.17 -30.29 -31.92 -31.80 -32.52 -32.04 -26.54 -28.60 -23.14	Detector QP AVG QP AVG QP AVG QP AVG

Page: 26 of 45

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25℃	CHID.	Relative Hu	midity:	55%	
Test Voltage:	DC 3.7V BY 2	200MAH LI-IC	N BATTERY		W. Carrie	
Ant. Pol.	Horizontal		Contract of		1	TITO
Test Mode:	BLE TX 2402	Mode	1	Millian		100
Remark:	Only worse ca	se is reported				
80.0 dBuV/m						
-20 30,000 40 50	60 70			\$ 5 \$ X	15C 3M Radiation Margin -6	
	Deadi		Massums			
No. Mk. Fr	Readii eq. Leve		Measure- ment	Limit	Over	
М	Hz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 * 149.4	4857 53.47	7 -21.49	31.98	43.50	-11.52	QP
2 181.9	9202 47.72	2 -20.10	27.62	43.50	-15.88	QP
3 229.2	2931 45.36	-18.33	27.03	46.00	-18.97	QP
4 321.0	0608 47.33	3 -15.52	31.81	46.00	-14.19	QP
5 482.2	2156 43.20	-11.10	32.10	46.00	-13.90	QP
6 562.	6624 43.3	1 -8.96	34.35	46.00	-11.65	QP
*:Maximum data x:	Over limit !:over m	argin				

Page: 27 of 45

Temperature:	25℃		elative Humi	dity:	55%		
Test Voltage:	DC 3.7V	BY 2200M	AH LI-ION	BATTERY			S. British
Ant. Pol.	Vertical	600		11	(m)	133	
Test Mode:	BLE TX 2	2402 Mode	DRIFE		10		CHIT?
Remark:	Only wors	se case is	reported		2	a W	A STATE OF THE PARTY OF THE PAR
80.0 dBuV/m							
					(RF)FCC 1	5C 3M Radiation	
						Margin -E	-
1 2 x		3 X	- (5 X	8 X	
30	η,						
, ,	CM	~	~ ^\/		www.	Manhor	MANAGEN
	<i>™</i> √	M		My Murmy	Mr.		
30.000 40 50	60 70		(MHz)	300	400 5	500 600 700	1000.00
	-	- P	01				
No. Mk. F		eading evel	Correct Factor	Measure- ment	Limit	Over	
		dBuV		dBuV/m	dBuV/m	dB	Detector
			dB/m				
			-14.64	32.72	40.00	-7.28	QP
2 * 49.0	0145 5	7.35	-22.92	34.43	40.00	-5.57	QP
3 122.	.8340 5	6.98	-22.34	34.64	43.50	-8.86	QP
4 146.	.3735 5	55.87	-21.81	34.06	43.50	-9.44	QP
		18.52	-11.10	37.42	46.00	-8.58	QP
		16.98	-8.96	38.02	46.00	-7.98	QP
0 502.	.0024 4	10.30	-0.30	30.02	40.00	-1.50	QI
*:Maximum data x	c:Over limit !:	over margin					
aamman data X		orei maigin					
Emission Level	= Read Le	vel+ Corre	ct Factor				

Page: 28 of 45

Above 1GHz

empe	eratu	re:	25℃			Relative Hu	umidity:	55%				
est V	oltag	e:	DC 3	DC 3.7V BY 2200MAH LI-ION BATTERY								
nt. P	ol.		Horiz	zontal			OH)	1				
est N	lode:		BLE	Mode TX 24	02 MHz		1	60	11/2/2			
Remai	rk:			eport for the cribed limit.	emission w	vhich more th	an 10 dB l	below the				
No.	Mk.	Fre	∋q.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er				
No.	Mk.	Fre		_			Limit dBuV/m	O∨er dB	Detecto			
No.	Mk.		łz	Level	Factor	ment			Detecto			

Page: 29 of 45

Temperature:	25 ℃	1000		Relative Hum	idity: 5	55%			
Test Voltage:	DC 3	.7V BY 2200	MAH LI-IC	N BATTERY					
Ant. Pol. Vertical									
Test Mode:	Test Mode: BLE Mode TX 2402 MHz								
Remark:		eport for the cribed limit.	emission w	hich more tha	n 10 dB b	elow the			
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1 * 480	03.886	37.14	12.42	49.56	54.00	-4.44	AVG		
2 480	04.258	47.03	12.42	59.45	74.00	-14.55	peak		
Emission Level= Read Level+ Correct Factor									

Page: 30 of 45

Temperature:	25℃		Relative Hu	ımidity:	55%					
Test Voltage:	DC 3	DC 3.7V BY 2200MAH LI-ION BATTERY								
Ant. Pol.	Horiz	zontal		8.0	Tim	133				
Test Mode:	BLE	Mode TX 24	42 MHz		10					
Remark:		eport for the cribed limit.	emission v	which more th	an 10 dB l	pelow the				
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er				
	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector			
1 * 48	82.188	37.32	12.90	50.22	54.00	-3.78	AVG			
2 48	82.398	46.44	12.90	59.34	74.00	-14.66	peak			
Emission Level= Read Level+ Correct Factor										

Page: 31 of 45

			111					
Temperature:	25℃	Relative H	umidity:	55%				
Test Voltage:	DC 3.7V BY 2200M	AH LI-ION BATTERY	1					
Ant. Pol. Vertical								
Test Mode:	Mode: BLE Mode TX 2442 MHz							
Remark:	No report for the en prescribed limit.	nission which more th	nan 10 dB b	elow the				
No. Mk. Fre		Correct Measure- Factor ment	Limit	Over				
MH	łz dBuV	dB/m dBuV/m	dBuV/m	dB	Detector			
1 * 4881.	600 36.94	12.90 49.84	54.00	-4.16	AVG			
2 4881.	804 45.37	12.90 58.27	74.00	-15.73	peak			
Emission Level= Read Level+ Correct Factor								

Page: 32 of 45

							TATE OF THE PERSON OF THE PERS	
Temperatui	re:	25℃			Relative Hu	ımidity:	55%	
Test Voltag	e:	DC 3	.7V BY 2200	MAH LI-IC	N BATTERY			
Ant. Pol.		Horiz	ontal	88		1:33		
Test Mode:		BLE	Mode TX 24	80 MHz		1 W		City of
Remark:			eport for the cribed limit.	emission w	hich more th	an 10 dB t	pelow the	
No. Mk.	Fre	∋q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MH	łz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	1 4960.0		45.32	13.37	58.69	74.00	-15.31	peak
2 *	4960.	070	37.82	13.37	51.19	54.00	-2.81	AVG
Emission Level= Read Level+ Correct Factor								

Page: 33 of 45

Temperature:	25℃	Relative Humid	ity: 55%						
Test Voltage:	DC 3.7V BY 2200MAH	LI-ION BATTERY							
Ant. Pol. Vertical									
Test Mode:	BLE Mode TX 2480 MH	lz							
Remark:	No report for the emiss prescribed limit.	on which more than 10) dB below the						
No. Mk. Fre	Reading Corr eq. Level Fac		nit Over						
MH	lz dBuV dB/	n dBuV/m dBi	uV/m dB Detector						
1 * 4960.	030 37.95 13.3	37 51.32 54	1.00 -2.68 AVG						
2 4960.	110 46.00 13.3	37 59.37 74	1.00 -14.63 peak						
Emission Level= Read Level+ Correct Factor									

Page: 34 of 45

Attachment C-- Restricted Bands Requirement Test Data

(1) Radiation Test

0.0

2314.000 2324.00

2334.00

2344.00

2354.00

Report No.: TB-FCC165700

Page: 35 of 45

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V BY 2200MA	H LI-ION BATTERY					
Ant. Pol.	Vertical						
Test Mode:	ИНz						
Remark:	N/A						
100.0 dBuV/m							
			4 ×				
		(RF) FC	3 CC PART 15(X(PEAK)				
		(RF) I	FCC PART 15C (AVG)				
50		1 X					

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	44.76	1.51	46.27	74.00	-27.73	peak
2		2390.000	31.47	1.51	32.98	54.00	-21.02	AVG
3	*	2402.200	75.47	1.56	77.03	Fundamental	Frequency	AVG
4	Х	2402.400	88.71	1.56	90.27	Fundamental	Frequency	peak

2364.00

2374.00

2384.00

2394.00

2414.00 MHz

Page: 36 of 45

Page: 37 of 45

Temperature:			25℃	1013		9	R	elativ	e Hun	nidity:	55%	
Tes	t Voltaç	je:	DC 3	.7V BY	2200	MAH L	I-IOI	N BAT	TERY	17750		RAIL
Ant	. Pol.		Vertic	cal				88	100	6	MISS	
Tes	t Mode	•	BLE	Mode T	X 248	30 MHz				A K	The same	ATAI.
Ren	nark:		N/A		M)		6	111			A Land
100.0	O dBuV/m											
		2 X										
		1										
		Ă								(RF) FCC	PART 15C (PEAK)	
		+/										
		+/-	3 X							(RF) FC	PART 15C (AVG)	
50			a ×									
	$\Box / \backslash J$	(V										
	~ ·		4				+			$\perp \sim$		
0.0 24	 66.000 247	6.00	2486.00	2496.00	2506	.00 251	6.00	2526.	00 25	36.00 2546	.00 25	66.00 MHz
				Poor	ina	Corre	t	Mac	asur e			
Ν	lo. Mk	. Fi	req.	Read Lev	_	Fac			ent	Limit	Over	
		M	1Hz	dBu	V	dB/n	n	dB	uV/m	dBuV/r	n dB	Detecto
1	*	2480	0.000	77.9	98	2.07	7	80	0.05	Fundamen	tal Frequency	AVG
2	Х	2480	0.200	92.0	06	2.07	7	94	4.13	Fundamen	tal Frequency	peak
3		2483	3.500	55.4	41	2.10)	57	7.51	74.00	-16.49	peak
4		2483	3.500	45.	19	2.10)	47	7.29	54.00	-6.71	AVG

Page: 38 of 45

(2) Conducted Band Edge Test

Page: 39 of 45

Attachment D-- Conducted RF Spurious Emission Test Data

Page: 40 of 45

Attachment E-- Bandwidth Test Data

Temperature:	25°C	101:32	Relative Humidity:	55%						
Test Voltage:	DC 3	DC 3.7V BY 2200MAH LI-ION BATTERY								
Test Mode:	BLE	TX Mode								
Channel frequency		6dB Bandwidth	99% Bandwidth	Limit						
(MHz)		(kHz)	(kHz)	(kHz)						
2402		690.640	1065.4							
2442		705.524	1060.8	>=500						
2480		714.134	1056.2							

BLE Mode

2402 MHz

Page: 41 of 45

Page: 42 of 45

Attachment F-- Peak Output Power Test Data

Temperature:	25℃		Relative Humidi	55%					
Test Voltage:	DC 3.7V I	DC 3.7V BY 2200MAH LI-ION BATTERY							
Test Mode:	t Mode: BLE TX Mode								
Channel frequen	cy (MHz)	Test Result (dBm)			Limit (dBm)				
2402		-9.4	-9.479						
2442		-9.826			30				
2480		-9.739							
BLE Mode									

2402 MHz

Page: 43 of 45

Page: 44 of 45

Attachment G-- Power Spectral Density Test Data

Temperature:	25℃		Relative Humidity:		55%	AMO
Test Voltage:	DC 3.7V BY 2200MAH LI-ION BATTERY					
Test Mode:	BLE TX Mode					
Channel Frequency		Power Density		Lim	Limit (dBm/3KHz)	
(MHz)		(dBm/3KHz)		(dBm/3		
2402		-22.5	54		8	
2442		-22.8	36	8		
2480		-22.8	30			
		BLE M	ode			
		2402 N	ЛHz			

TORY

Report No.: TB-FCC165700

Page: 45 of 45

----END OF REPORT-----