```
In [1]: using DiffEqFlux, DifferentialEquations, DiffEqCallbacks, SciMLBase, Distributions, LuxCore
using Statistics, LinearAlgebra, Plots
using Flux.Data: DataLoader
using Lux, Optimization, OptimizationOptimJL, Optimisers, OptimizationOptimisers, Random, Plots
using ComponentArrays

using OrdinaryOifFEq, Flux, MLDataUtils, NNlib
using Flux: Logitcrossentropy
using MLDatasets: MNIST
```

We implement Augmented Neural ODEs to perform classification on MNIST handwritten digit images. The original Neural ODE image classification code (without any augmentation) is adapted from https://docs.juliahub.com/DiffEqFlux/BdQ4p1.10.1/examples/Supervises-NN-ODE-NNIST/. We implement several potential performance improvements such as zero-padding augmentation, input-layer augmentation, temporal regularization, and second-order Neural ODEs. We measure and visualize performance using test accuracy and loss over iterations.

Loading MNIST dataset

```
In [2]: function loadmist(batchsize = bs)
# function to convert labels to one-hot format for training
onebot(labels_raw) = convertlabel(labelEnc.OneOfK, labels_raw, LabelEnc.NativeLabels(collect(0:9)))
# Load MULST brain and text labels
imps = MULST.train(labels)
labels_raw = MULST.train(labels)
labels_raw = MULST.train(labels)
text_imps = MULST.train(labels)
text_imps = mulsT.train(labels)
text_imps = mulsT.train(labels)
text_imps = mulsT.train(labels_raw)
text_imps = mulsT.train(labels_raw)
x_train = labels_labels_raw)
x_text = FloatS_(reshape(text_imps,size(imps,1),size(imps,3)))
x_text = FloatS_(reshape(text_imps,size(imps,1),size(imps,3)))
x_text = FloatS_(reshape(text_imps,size(imps,1),size(imps,3)))
x_text = FloatS_(reshape(text_imps,size(imps,1),size(imps,3)))
y_train = batchview(x_text_implacthsize)
y_train = batchview(x_text_implacthsize)
y_text = batchview(x_text_implacthsize)
y_text = batchview(x_text_implacthsize)
y_text = batchview(x_text_implacthsize)
y_text = batchview(x_text_implacthsize)
return x_train, y_train, x_text, y_text = loadmnist(bs)
```

Helper functions for training Neural ODE for classification

Neural ODE variant: temporal regularization

We implement a Neural ODE variant with temporal regularization. The code is adapted from that for the NeuralODE from DiffEqFlux, ii at https://github.com/SciML/DiffEqFlux,ii/blob/1e4614e7cdb01152338da09cf23ee37202b830disrcheural_de.ji (https://github.com/SciML/DiffEqFlux,ii/blob/1e4614e7cdb01152338da09cf23ee37202b830disrcheural_de.ji (utips://github.com/SciML/DiffEqFlux,ii/blob/1e4614e7cdb01152338da09cf23ee37202b830disrcheural_de.ji (utips://github.com/SciML/DiffEqFlux,ii/blob/1e4614e7cdb01152338da09cf23ee37202b830disrcheural_de.ji (utips://github.com/SciML/DiffEqFlux,ii/blob/1e4614e7cdb01152338da09cf23ee37202b830disrcheural_de.ji (utips://github.com/SciML/DiffEqFlux,ii/blob/1e4614e7cdb01152338da09cf23ee37202b830disrcheural_de.ji (utips://github.com/SciML/DiffEqFlux,ii/blob/1e4614e7cdb01152338da09cf23ee37202b830disrcheural_de.ji

```
In [18]:
abstract type NeuralDELayer :: LuxCore.AbstractExplicitContainertayer((:model,)) end
basic_tgrad(u,p,t) = zero(u)
struct NeuralDETimeRegularized(M,P,RE,T,ETR,A,K) :: NeuralDELayer
model::M
p:P
ctpan::7
end_time_regularization::ETR
args::A
kargs::A
kargs::K
end

function NeuralDETimeRegularized(model,tspan,end_time_regularization,args...;p = nothing,kwargs...)
p.re = Flux.destructure(model)
if p = nothing
end
NeuralDETimeRegularized(typeof(model),typeof(p),typeof(re),
typeof(tspan),typeof(end_time_regularization),typeof(span,end_time_regularization),typeof(swargs))(
model,p.re,tspan,end_time_regularization),typeof(swargs))
end

function (n:NeuralDETimeRegularized)(x.p.m.p)
dutt_(u,p,t) = n.re(p)(u)
ff = ODEFunction(false)(dut_urgad-basic_tgrad)

# uniformly of rondom somple the embosin of the ODE problem timespon from
# the intervoi (C2: end time regularization), rand(inform(-n.end_time_regularization)))
prob ODEFroblem(False)(ffx.v(n.tapanli)), rand(inform(-n.end_time_regularization)))
sol = solve ODE
senses = InterpolatingAdjoint(autojacvee-zygoteVJP())
sol = solve(prob,n.args...;sensealg-sense,n.kwargs...)
return sol
```

Neural ODE variant: Second Order NODE

Similar to the above section, but we implement a second-order NODE. The main modification is that the input is treated as a concatenation of the initial conditions for du0 and u0, and we solve a second-order ODE u" = NN(u). The output contains final trajectory values for both up and du

ANODE training function for MNIST classification

This is the main function for training an ANODE for MNIST classification, with all possible variants (zero-padding augmentation, input layer augmentation, end time regularization, and second order NODEs). Note that the first layer reshapes the image into a vector of length 784, and the final output layer is a fully connected layer with 10 output nodes (corresponding to the one-hot encoding of the 10 digit classes). The neural ODE structure varies based on the optional inputs for the different variants.

```
In [253]: function train_mmist_anode(augment_dims; input_layer_augmentation=false, end_time_regularization=0, second_order=false, get_test_acc=true)
# Given number of augmentation dimensions, train ANODE. (If augment_dims=0, this is just regular NODE.)
# Optional arguments are for ANODE variants: input layer augmentation, end time regularization, and second order ANODEs.
# Outputs: classification accuracies and losses over training iterations.
                                         # reshape image into Length-784 vector
reshape_layer = x->reshape(x,(784,:))
                                                   nput layer maps image to lower dimensional space, and we add augmenting dimensions
                                       # input loyer maps image to Lower dimensional spoke, which is in figure 1.9 may a lower to learn the augmented dimensions elseif second_order

# pod the two holves of the downsampled input (corresponding to u and du)

input_layer = Flux.Chain(Flux.Dense(784,80,tanh),

x -> cat(dims=1, x[1:40, :], zeros(Float32, augment_dims, bs), x[41:80, :], zeros(Float32, augment_dims, bs)))

alse
                                                   input_layer = Flux.Chain(Flux.Dense(784,20,tanh),
x -> cat(dims=1, x, zeros(Float32, augment_dims, bs))) # pad with augment_dims zeros
                                        end
                                         # different neural network architectures for first order vs second order ODEs
                                        if second order
                                                   second_order
nn = Flux.chain(
Flux.Dense(40+augment_dims, 20,tanh),
Flux.Dense(20, 20, tanh),
Flux.Dense(20, 40+augment_dims,tanh),
                                                    # final output is 10-dimensional since there are 10 classes of digits
output_layer = Flux.Chain(x -> x[1:40, :], Flux.Dense(40,10))
                                                   e
nn = Flux.Chain(
Flux.Dense(20+augment_dims, 10,tanh),
Flux.Dense(10, 10,tanh),
Flux.Dense(10, 20+augment_dims,tanh),
                                        \label{eq:output_layer} \begin{tabular}{ll} 
                                        # different Neural CDE variants defined earlier
if end_time_regularization |= 0
n_ode = NeuralODE:imeRegularized(nn, (8.40, 1.60), end_time_regularization, Tsit5(), save_everystep = false, reltol = 1e-3, abstol = 1e-3, save_start = false)
                                       nn_ode = NeuralODETimeRegularized(nn, (0.f0, 1.f0), end_time_regularization, Tsit5(), save_everystep = false, reltol = 1e-3, abstol elseif second_order nn_ode = NeuralODESecondOrder(nn, (0.f0, 1.f0), Tsit5(), save_everystep = false, reltol = 1e-3, abstol = 1e-3, save_start = false) else
                                        nn_ode = NeuralODE(nn, (0.f0, 1.f0), Tsit5(), save_everystep = false, reltol = 1e-3, abstol = 1e-3, save_start = false) end
                                         # create final model by chaining together layers
                                                    m = Flux.Chain(reshape_layer, input_layer, nn_ode, output_layer)
                                       eise
m = Flux.Chain(reshape_layer, input_layer, nn_ode, DiffEqArray_to_Array, output_layer)
end
                                        loss(x,y) = logitcrossentropy(m(x),y)
                                        accuracies = []
losses = []
                                        cb_mnist() = begin
                                                                                           .
uracies and Losses over test dataset or train dataset
                                                               append!(accuracies, accuracy(m, zip(x_test,y_test)))
append!(losses, total_loss(m, zip(x_test,y_test)))
                                                   else
                                                               append!(accuracies, accuracy(m, zip(x_train,y_train)))
append!(losses, total_loss(m, zip(x_train,y_train)))
                                                   end
                                        for i in 1:5 # training epochs
    Flux.train!(loss, Flux.params(m), zip(x_train, y_train), opt, cb = cb_mnist)
                                         print("Final accuracy: ", accuracies[end])
return accuracies, losses
```

Train regular Neural ODE

In [102]: node_accuracies, node_losses = train_mnist_anode(0)

Final accuracy: 0.732

Out[182]: (Any[0.227, 0.399, 0.443, 0.463, 0.49, 0.538, 0.588, 0.601, 0.586, 0.633 _ 0.728, 0.726, 0.722, 0.735, 0.739, 0.745, 0.749, 0.738, 0.722, 0.732], Any[26.773666f0, 21.134886f0, 19.157936f0, 16.258987f0, 15.254635f0, 1 4.603728f0, 13.128592f0, 12.664176f0, 12.627069f0, 11.540196f0 _ 8.321392f0, 8.458588f0, 8.439966f0, 8.276887f0, 8.089961f0, 7.924491f0, 7.8128023f0, 8.086908f0, 8.4869175f0, 8.207112f0])

Zero-padding augmentation

```
In [122]: anode_accuracies_10, anode_losses_10 = train_mnist_anode(10)
```

Final accuracy: 0.77

Out[122]: (Any[0.235, 0.398, 0.483, 0.499, 0.519, 0.534, 0.566, 0.613, 0.634, 0.617 _ 0.759, 0.77, 0.782, 0.796, 0.786, 0.776, 0.786, 0.783, 0.781, 0.77], Any[25.47559769, 20.1206670, 16.27851570, 14.90623670, 14.20282476, 13. 49247570, 12.720983570, 11.86825270, 11.40523670, 11.33944170 _ 7.76899470, 7.414722470, 7.11190770, 6.96570670, 7.05942170, 7.179256470, 7.21708670, 7.22975670, 7.259214470, 7.77934570]

In [124]: anode_accuracies_25, anode_losses_25 = train_mnist_anode(25)

Final accuracy: 0.798

Out[124]: (Any[0.279, 0.233, 0.493, 0.569, 0.605, 0.624, 0.627, 0.666, 0.703, 0.708 _ 0.756, 0.756, 0.756, 0.77, 0.795, 0.8, 0.803, 0.802, 0.804, 0.798], Any[23.411448f0, 20.532196f0, 15.624832f0, 13.48805f0, 12.494654f0, 11.7 21497f0, 11.159152f0, 10.257824f0, 9.38868f0, 8.910438f0 _ 8.114785f0, 8.329447f0, 8.026104f0, 7.455347f0, 6.857174f0, 6.432046f0, 6.2200937f0, 6.039778f0, 5.956437f0, 6.13566f0]]

In [128]: anode_accuracies_40, anode_losses_40 = train_mnist_anode(40)

Final accuracy: 0.811

Out[128]: (Any[0.297, 0.422, 0.595, 0.592, 0.586, 0.633, 0.651, 0.652, 0.686, 0.69 _ 0.766, 0.778, 0.785, 0.797, 0.801, 0.805, 0.815, 0.821, 0.811], Any[21.9611976, 16.545862f0, 14.155242f0, 12.974012f0, 12.207743f0, 1 0.996065f0, 10.84268f0, 10.399176f0, 9.495364f0, 9.2334385f0 _ 6.64111f0, 6.661042f0, 6.435278f0, 6.2573957f0, 6.122465f0, 5.992382f0, 5.9930104f0, 5.742066f0, 5.6628275f0, 5.8586f0])

```
In [188]: plot(1:50, node_accuracies, label="NODE")
plot(1:50, anode_accuracies_10, label="ANODE (aug dim = 10)")
plot(1:50, anode_accuracies_25, label="ANODE (aug dim = 25)")
plot(1:50, anode_accuracies_40, label="ANODE (aug dim = 40)")
titlel("ANODE Test Accuracy on MNIST classification")
xlabel("Iterations")
ylabel!("Test Accuracy")
```

Out[188]


```
In [189]: plot(1:50, node_losses, label="NODE")
plot!(1:50, anode_losses_10, label="ANODE (aug dim = 10)")
plot!(1:50, anode_losses_25, label="ANODE (aug dim = 25)")
plot!(1:50, anode_losses_26, label="ANODE (aug dim = 25)")
plot!(3:50, anode_losses_26, label="ANODE (aug dim = 40)")
titlel("ANODE Test Loss on MNIST classification")
xlabel!("Terations")
ylabel!("Cross-Entropy Loss")
```

Out[189]:

Input-layer augmentation

In [138]: il_anode_accuracies_10, il_anode_losses_10 = train_mnist_anode(10, input_layer_augmentation=true)

Final accuracy: 0.807

3]: (Any[0.236, 0.342, 0.461, 0.477, 0.556, 0.618, 0.614, 0.63, 0.615, 0.61 _ 0.774, 0.798, 0.815, 0.813, 0.806, 0.795, 0.804, 0.813, 0.815, 0.807], Any[26.976202f0, 19.111366f0, 15.211487f0, 13.73826f0, 11.919678f0, 11. 102933f0, 10.682887f0, 10.745924f0, 10.745924f0, 10.585981f0, 10.429465f0 _ 7.3744354f0, 6.7953806f0, 6.325192f0, 6.3474174f0, 6.4996414f0, 6.5120573f0, 6.21073f0, 5.9839854f0, 5.9134407f0, 6.1013794f0])

In [132]: il_anode_accuracies_25, il_anode_losses_25 = train_mnist_anode(25, input_layer_augmentation=true)

inal accuracy: 0.814

Out[132]: (Any[0.339, 0.349, 0.481, 0.502, 0.555, 0.58, 0.683, 0.683, 0.683, 0.684, 0.797, 0.797, 0.797, 0.791, 0.798, 0.803, 0.813, 0.814, 0.81, 0.814], Any[24.32352f0, 18.394129f0, 14.81003f0, 13.696833f0, 12.909499f0, 12.1 73111f0, 11.961259f0, 10.760969f0, 10.16151f0, 9.747705f0 _ 6.1982403f0, 6.366974f0, 6.520851f0, 6.633375f0, 6.5553963f0, 6.317669f0, 6.182312f0, 6.120674f0, 6.1274567f0, 6.1962147f0])

In [136]: il_anode_accuracies_40, il_anode_losses_40 = train_mnist_anode(40, input_layer_augmentation=true)

Final accuracy: 0.823

Out[136]: (Any[0.246, 0.404, 0.495, 0.57, 0.594, 0.592, 0.614, 0.638, 0.678, 0.672 _ 0.799, 0.803, 0.806, 0.816, 0.809, 0.809, 0.819, 0.83, 0.825, 0.823], Any[21.776491f0, 18.317554f0, 15.384143f0, 13.855808f0, 12.930713f0, 1 2.045832f0, 11.108894f0, 10.464067f0, 10.092501f0, 10.068508f0 _ 6.5776024f0, 6.4511743f0, 6.0879784f0, 6.0418367f0, 6.0769715f0, 6.0826015f0, 6.0208097f0, 5.6082563f0, 5.6020355f0, 5.829573f0])

```
In [198]: plot(1:50, node_accuracies, label="NODE")
plot(1:50, anode_accuracies 10, label="ANDDE (aug dim = 10)")
plot(1:50, all_anode_accuracies 10, label="IL-ANDDE (aug dim = 10)")
plot(1:50, il_anode_accuracies 10, label="IL-ANDDE (aug dim = 25)")
plot(1:50, il_anode_accuracies 25, label="IL-ANDDE (aug dim = 25)")
plot(1:50, il_anode_accuracies_40, label="IL-ANDDE (aug dim = 40)")
title("IL-ANDDE Test Accuracy on MNIST classification")
xlabel1("Terations")
ylabel1("Test Accuracy")
Out[190]:
                                                             IL-ANODE Test Accuracy on MNIST classification
                                          0.8
                                          0.7
                                  Accuracy
                                          0.5
                                          0.4
                                                                                                                                                                                              NODE
ANODE (aug dim = 10)
IL-ANODE (aug dim = 10)
IL-ANODE (aug dim = 25)
IL-ANODE (aug dim = 40)
                                          0.3
In [191]: plot(1:50, node losses, label="NODE")
plot(1:50, anode losses, 1a, label="ANODE (aug dim = 10)")
plot(1:50, anode losses, 1e, label="IL-ANODE (aug dim = 10)")
plot(1:50, anode losses, 2e, label="IL-ANODE (aug dim = 25)")
plot(1:50, anode losses, 2e, label="IL-ANODE (aug dim = 40)")
title("IL-ANODE Test Loss on MWIST classification")
xlabel("Terations")
ylabel("Cross-Entropy Loss")
 Out[191]:
                                                                     IL-ANODE Test Loss on MNIST classification
                                          25
                                  Loss
                                          20
                                 Cross-Entropy
                                           15
                                          10
                                                                                                                                           Iterations
                               Temporal regularization
```

```
In [165]: reg_anode_accuracies_20, reg_anode_losses_20 = train_mnist_anode(10, end_time_regularization=0.2)

Final accuracy: 0.81

Out[165]: (Any[0.242, 0.512, 0.571, 0.626, 0.633, 0.645, 0.657, 0.667, 0.692, 0.795 _ 0.812, 0.814, 0.812, 0.809, 0.809, 0.802, 0.795, 0.81, 0.806, 0.81], Any[19.747875f0, 17.554031f0, 14.786218f0, 12.163734f0, 11.380127f0, 1 0.914139f0, 10.48744f0, 10.126495f0, 9.667911f0, 9.291637f0 _ 5.91667f0, 6.081716f0, 6.2100263f0, 6.3855615f0, 6.3893394f0, 6.420374f0, 6.322182f0, 6.232897f0, 6.1347775f0, 6.098957f0])

In [166]: reg_anode_accuracies_30, reg_anode_losses_30 = train_mnist_anode(10, end_time_regularization=0.3)

Final accuracy: 0.808

Out[166]: (Any[0.357, 0.362, 0.533, 0.575, 0.602, 0.611, 0.63, 0.656, 0.686, 0.697 _ 0.79, 0.794, 0.797, 0.805, 0.813, 0.814, 0.809, 0.809, 0.81, 0.808], Any[21.559385f0, 19.332924f0, 15.89835f0, 13.9182625f0, 12.294415f0, 1 1.268187f0, 18.08916f0, 18.087314f0, 9.530009f0, 9.173318f0 _ 6.363705f0, 6.268433f0, 6.068194f0, 5.7526555f0, 5.7526555f0, 5.7526555f0, 5.735334f0, 5.718261f0, 5.8403835f0, 5.9131985f0, 5.9233027f0])

In [181]: reg_anode_accuracies_60, reg_anode_losses_60 = train_mnist_anode(10, end_time_regularization=0.6)

Final accuracy: 0.821
```

Out[181]: (Any[0.246, 0.522, 0.58, 0.556, 0.565, 0.565, 0.565, 0.592, 0.643, 0.702, 0.693 _ 0.777, 0.781, 0.79, 0.791, 0.798, 0.8, 0.804, 0.825, 0.821, 0.821], Any[24.08501f0, 15.513119f0, 13.363345f0, 12.5917845f0, 12.221241f0, 11.4 7541f0, 10.416765f0, 9.56783f0, 9.439296f0, 9.36563f0 _ 7.383833f0, 7.5351725f0, 7.1987896f0, 7.050933f0, 6.9000525f0, 7.007737f0, 6.736189f0, 6.458054f0, 6.536541f0, 6.677477f0])

In [195]: plot(1:50, node_accuracies, label="NODE")
plot(1:50, anode_accuracies_10, label="NODE (aug dim = 10)")
plot(1:50, pre_anode_accuracies_20, label="time-regularized ANODE (aug dim = 10, b = 0.2)")
plot(1:50, reg_anode_accuracies_30, label="time-regularized ANODE (aug dim = 10, b = 0.3)")
plot(1:50, reg_anode_accuracies_60, label="time-regularized ANODE (aug dim = 10, b = 0.3)")
plot(1:510, reg_anode_accuracies_60, label="time-regularized ANODE (aug dim = 10, b = 0.5)")
titlel("Time-regularized ANODE Test Accuracy on MMIST")
xlabel("Terations")
ylabel("Terations")


```
In [217]: plot(1:50, node_losses, label="MODE")
  plot(1:50, anode_losses_10, label="AMODE (aug dim = 10)")
  plot(1:50, reg_anode_losses_20, label="AMODE (aug dim = 10, b = 0.2)")
  plot(1:50, reg_anode_losses_20, label="time-regularized AMODE (aug dim = 10, b = 0.3)")
  plot(1:50, reg_anode_losses_50, label="time-regularized AMODE (aug dim = 10, b = 0.6)")
  title!("Time-regularized AMODE Test Loss on MNIST")
  xlabel!("terations")
  ylabel!("Cross-Entropy_Loss")
 Out[217]:
                                         Time-regularized ANODE Test Loss on MNIST
                          25
                     Loss
                    Cross-Entropy
                          15
                          10
                                                                                       Iterations
                   We also compare the train accuracies and losses to see the effect of regularization.
 In [203]: train_anode_accuracies_10, train_anode_losses_10 = train_mnist_anode(10, get_test_acc=false)
                    Final accuracy: 0.946
                    (Any [ 8.241, 0.38, 0.498, 0.604, 0.67, 0.678, 0.651, 0.699, 0.721, 0.754 \_ 0.918, 0.914, 0.917, 0.937, 0.94, 0.935, 0.934, 0.935, 0.934, 0.942, 0.946], \\ Any [ 23.077784f0, 20.176426f0, 14.558219f0, 12.5663185f0, 10.771791f0, 9.7211075f0, 9.553288f0, 8.889776f0, 8.6946335f0, 7.9237175f0 \_ 2.532746f0, 2.6941848f0, 2.579479f0, 2.2287428f0, 2.3123062f0, 2.4240556f0, 2.3259807f0, 2.1167514f0, 2.0490487f0] ) 
 In [212]: train_reg_anode_accuracies_20, train_reg_anode_losses_20 = train_mnist_anode(10, end_time_regularization=0.2, get_test_acc=false)
                     \blacktriangleleft
                   Final accuracy: 0.938
Out[212]: (Any[0.111, 0.41, 0.462, 0.5, 0.498, 0.521, 0.581, 0.612, 0.618, 0.653 _ 0.919, 0.915, 0.914, 0.919, 0.925, 0.925, 0.933, 0.937, 0.937, 0.937, 0.937, 0.938], Any[30.93947369, 17.82336469, 15.517652569, 15.55351569, 14.84552669, 1 3.96846469, 12.67173869, 11.628468569, 10.69956769, 9.84373669 _ 3.139580269, 3.139580269, 3.409310469, 2.948422769, 2.794324469, 2.648150769, 2.5228902769, 2.443888469, 2.312697269, 2.312853378])
 In [199]: train_reg_anode_accuracies_30, train_reg_anode_losses_30 = train_mnist_anode(10, end_time_regularization=0.3, get_test_acc=false)
                      4
                   Final accuracy: 0.904
Out[199]: (Any[0.197, 0.304, 0.386, 0.484, 0.549, 0.597, 0.592, 0.583, 0.581, 0.597 _ 0.883, 0.883, 0.885, 0.883, 0.902, 0.908, 0.915, 0.923, 0.904], Any[31.2882966, 22.87244f6, 18.19588f6, 15.995473f0, 14.732131f0, 13.
 In [207]: train_reg_anode_accuracies_60, train_reg_anode_losses_60 = train_mnist_anode(10, end_time_regularization=0.6, get_test_acc=false)
                      \P
                    Final accuracy: 0.926
Out[207]: (Any[0.182, 0.485, 0.51, 0.557, 0.636, 0.623, 0.619, 0.67, 0.706, 0.719 _ 0.906, 0.901, 0.907, 0.906, 0.916, 0.922, 0.928, 0.932, 0.929, 0.926], Any[25.784758f0, 18.008217f0, 14.987472f0, 12.914676f0, 11.863629f0, 1 1.472921f0, 10.8568535f0, 10.073899f0, 9.285956f0, 8.785873f0 _ 3.2794962f0, 3.2985308f0, 3.3525686f0, 3.2584991f0, 3.0158727f0, 2.7157683f0, 2.5784726f0, 2.5784863f0, 2.6814878f0, 2.6752093f0])
In [215]: plot(1:50, train_anode_accuracies_10, label="ANODE (aug dim = 10)", ylims=(0, 1))
plot(1:50, train_reg_anode_accuracies_20, label="time-regularized ANODE (aug dim = 10, b = 0.2)")
plot(1:50, train_reg_anode_accuracies_20, label="time-regularized ANODE (aug dim = 10, b = 0.3)")
plot(1:50, train_reg_anode_accuracies_60, label="time-regularized ANODE (aug dim = 10, b = 0.6)")
title!(Time-regularized ANODE Train Accuracy on MMISI")
xlabel!("Iterations")
                   ylabel!("Train Accuracy")
 Out[215]:
                                   Time-regularized ANODE Train Accuracy on MNIST
                          1.0
                          0.8
                    Train Accuracy
                          0.4
                          0.2
                                                                                      ANODE (aug dim = 10) time-regularized ANODE (aug dim = 10, b = 0.2) time-regularized ANODE (aug dim = 10, b = 0.3) time-regularized ANODE (aug dim = 10, b = 0.6)
                          0.0
                                                         10
                                                                                 20
                                                                                       Iterations
                 : plot(1:50, train_anode_losses_10, label="AMODE (aug dim = 10)")
plot!(1:50, train_reg_anode_losses_20, label="time-regularized AMODE (aug dim = 10, b = 0.2)")
plot!(1:50, train_reg_anode_losses_30, label="time-regularized AMODE (aug dim = 10, b = 0.3)")
plot!(1:50, train_reg_anode_losses_60, label="time-regularized AMODE (aug dim = 10, b = 0.3)")
plot!(1:50, train_reg_anode_losses_60, label="time-regularized AMODE (aug dim = 10, b = 0.6)")
title!("Time-regularized AMODE Train Loss on MNIST")
xlabel!("Cross-Entropy Loss")
 Out[219]:
                                         Time-regularized ANODE Train Loss on MNIST
                          30
                          25
                     Loss
                    Cross-Entropy
                           15
```

10

Iterations

Second order NODEs

0.2

```
In [274]: second_order_node_accuracies_0, second_order_node_losses_0 = train_mnist_anode(0, second_order=true)

Final accuracy: 0.554

Out[274]: (Any[0.189, 0.888, 0.116, 0.122, 0.226, 0.291, 0.389, 0.334, 0.379, 0.372 _ 0.529, 0.526, 0.541, 0.537, 0.553, 0.538, 0.528, 0.532, 0.549, 0.554], Any[41.822656f0, 39.74138376, 27.164011f0, 22.4.48871f0, 25.409086f0, 2 4.2526f6, 22.99236f0, 21.447826f0, 19.802427f0, 18.3521676 _ 14.389604f0, 13.760771f0, 13.438322f0, 13.577651f0, 13.99873f0, 13.63366f0, 13.377093f0, 13.244428f0])

In [284]: plot(1:50, node_accuracies_1, label="NODE") plot(1:50, second_order_node_accuracies_1, label="second-order NODE") title!("Second-order ANODE Test Accuracy on MNIST") ylabel!("Test Accuracy on MNIST") ylabel!("Test Accuracy on MNIST")

Second-order ANODE Test Accuracy on MNIST

0.8

Out[284]: Second-order ANODE Test Accuracy on MNIST

0.8

Out[284]: Second-order ANODE Test Accuracy on MNIST
```

```
In [285]: plot(1:50, node_losses, label="NODE")
plot(1:50, anode_losses_10, label="NODE (aug dim = 10)")
plot(1:50, second_order_node_losses_0, label="second-order NODE")
title!("Second-order ANODE Test Loss on MNIST")
xlabel!("Iterations")
ylabel!("Cross-Entropy_Loss")
```


Iterations

NODE ANODE (aug dim = 10) second-order NODE