Oulfid Hamza Lahbib Yassin

SUPERVISE

Arbre de decision

Intervalle [0 , 0.2]

- accuracy élevé et stable
- nb feuille diminue jusqua 42 %

zoom Intervalle [0, 0.2]

max (accuracy / nbfeuilles) => entropie de 0,2 pour une meilleur complexité temporelle

Perceptron

	Epsilon	Accuracy
10	1.000000e-06	0.929841
11	1.000000e-06	0.921640
12	1.000000e-06	0.909795
13	1.000000e-06	0.902506
14	1.000000e-06	0.888383

Meilleur epsilon: 1e-06

K plus proches voisins

La valeur de k pour laquelle l'accuracy est la plus grande est 1

Meilleur classifieur avec les meilleurs parametres

NON-SUPERVISE

Échantillonnage de chaque class selon le pourcentage d'éléments souhaité

CHA

En ayant une distance max d'environ 116 pour chaque description du même cluster, on obtient 10 clusters.

K means

Diminution significative de l'inertie intra-cluster jusqu'à environ 10 clusters. Au-delà de ce point, la réduction de l'inertie devient beaucoup moins prononcée.

Xie Beni

Après avoir lancé plusieurs fois Kmeans avec k = 10. Nous avons choisi l'affectation minimisant l'indice calculé.

Répartition des vrai labels selon nos clusters

[0, 8, 0, 102, 0, 23, 0, 0, 1, 17], [0, 3, 0, 0, 2, 7, 0, 0, 2, 65],0, 0, 3, 3, 105, 0, [2, 0, 0, 0, 0, 1, 0, 0, 48, 0], 2: [0, 35, 111, 1, 0, 0, 0, 91, 1, 1]}

• classe ayant le moins de désordre : 6 et 8 • classe ayant le plus de désordre : 7