Velikosti množin. CN.1

CN.1.1. Velikosti množin a kardinální čísla.

Množina x je subvalentní (\preccurlyeq) resp. ekvivalentní (\approx) množině y, existuje-li prosté zobrazení x do y resp. navíc na y; subvalencí a ekvivalencí je dáno porovnávání množin co do velikosti. Zřejmě jsou \leq , \approx reflexivní a tranzitivní vztahy. Platí dále:

Cantor-Bernsteinova věta. $x \leq y$ a $y \leq x \Rightarrow x \approx y$. Cantorova věta. $x \leq \mathcal{P}(x)$ a $x \not\approx \mathcal{P}(x)$. (x je ostře subvalentní $\mathcal{P}(x)$.)

Kardinální čísla čili kardinály představují velikosti množin podobně jako přirozená čísla představují velikosti konečných množin; přirozená čísla jsou konečné kardinály. Třída všech kardinály se značí \mathbf{Cn} a kardinály κ, λ, μ . Velikost čili kardinalita množiny x je jediný kardinál κ ekvivalentní s x; značí se |x|. Říká se též, že množina x je |x| prvková. Takovýto pojem je běžně znám pro velikost konečnou: konečná množina má velikost $n \in \mathbb{N}$, přičemž $n = \{0,1,\dots n-1\}$, je-li $n \approx x$, tj. lze-li x prostě "očíslovat" prvky $0, 1, \ldots n-1$. Je ovšem $|\kappa| = \kappa$. Kardinalita množiny $\mathbb R$ se nazývá kontinuum a značí se c. Z axiomu výběru plyne následující důležitá věta:

Věta o existenci kardinality. Každá množina má kardinalitu.

Na Cn je dáno dobré uspořádání \leq a podobně jako pro přirozená čísel platí i pro všechny kardinály $\kappa < \lambda \Leftrightarrow \kappa \in \lambda \Leftrightarrow \kappa \subsetneq \lambda$. Navíc pro množinu $x \subseteq \mathbf{Cn}$ je $\bigcup x$ supremum x v tomto uspořádání. N je počáteční úsek uspořádání <. První kardinál z $\mathbf{Cn} - \mathbb{N}$ je nejmenší nekonečný kardinál; představuje spočetnou velikost, značí se ω a je $\omega=\mathbb{N}.$ Nejmenší kardinál větší než κ se nazývá následník κ a značí se $\kappa^+.$ Definujeme indukcí: $\omega_0 = \omega$, $\omega_{n+1} = (\omega_n)^+$. Dále ω_ω je nejmenší kardinál větší než každé ω_n s $n < \omega$. Místo ω_i se píše také \aleph_i pro $i \leq \omega$. Třída **Cn** není množina, neboť jinak by pro supremum κ množiny **Cn** bylo $|\mathcal{P}(\kappa)| \leq \kappa$. Zápis $\kappa < \omega$ značí, že $\kappa \in \mathbb{N}$, $\kappa \geq \omega$ pak, že κ je nekonečný kardinál.

Aritmetika Cn. Na Cn je definováno +, · a mocnina, přičemž tyto operace rozšiřují analogické na N. Máme tedy:

$$\kappa + \lambda \approx \kappa \uplus \lambda, \qquad \kappa \cdot \lambda \approx \kappa \times \lambda, \qquad \kappa^{\lambda} \approx {}^{\lambda}\kappa.$$
 (1)

Přitom $x \uplus y$ je disjunktní sjednocení $(\{0\} \times x) \cup (\{1\} \times y)$.

ZNAČENÍ. Množina všech podmnožin $u \subseteq x$ s $|u| = \lambda$ resp. s $|u| < \lambda$ se značí $[x]^{\lambda}$ resp. $[x]^{<\lambda}$.

Speciálně $[x]^{<\omega}$ je množina všech konečných podmnožin množiny x.

Tvrzení o počítání s kardinalitami a kardinály.

- a) $|x \cup y| \le |x| + |y|$. b) $|\bigcup_{i \in I} x_i| \le |I| \cdot \lambda$, je-li $|x_i| \le \lambda$ pro každé $i \in I$. a) $|\mathcal{P}(x)| = 2^{|x|} = |\mathcal{P}(x)|$. b) $\mathfrak{c} = 2^\omega = \text{kardinalita Cantorovy množiny}$. C1)
- C2)
- C3) Pro +, · platí obvyklá komutativita, asociativita a distributivita. Platí obvyklé vzorce o mocnině: $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$, $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$. Dále: když $\kappa \leq \kappa_0, \lambda \leq \lambda_0$, tak

$$\kappa + \lambda \le \kappa_0 + \lambda_0, \qquad \kappa \cdot \lambda \le \kappa_0 \cdot \lambda_0, \qquad 0 < \kappa \Rightarrow \kappa^{\lambda} \le \kappa_0^{\lambda_0}.$$

C4) Je-li alespoň jeden kardinál κ , λ nekonečný a oba jsou nenulové, platí $\kappa + \lambda = \kappa \cdot \lambda = \max(\kappa, \lambda).$

Speciálně: Je-li x nekonečná, $y \subseteq x$ a |y| < |x|, tak |x - y| = |x|.

- C5)Pro $\kappa \geq \omega$ a $0 < n \in \mathbb{N}$ platí:
 - a) $\kappa^n \approx \kappa$.
- b) $\lambda \le \kappa \Rightarrow [\kappa]^{\lambda} = \kappa^{\lambda}$. d) $2 \le \lambda \le \kappa \Rightarrow 2^{\kappa} = \lambda^{\kappa}$.
- c) $|[\kappa]^{<\omega}| = \kappa$.

Tedy např: $\omega = \omega + 1 = \omega + \omega = \omega \cdot \omega = \omega \cdot \omega + 5 = \omega^7 < \omega^\omega = 2^\omega = (2^\omega)^\omega$.

CN.1.2. Velikosti některých množin.

- 1. Pro nekonečnou množinu x platí:
- a) $x^* \approx x$.
- b) $|x|^{|x|} \approx \mathcal{P}(x)$. Speciálně $[\mathbb{N}]^{\omega} \approx \mathbb{R}$. Může být $|x|^{\omega} \approx x$; např. $[\mathbb{R}]^{\omega} \approx \mathbb{R}$.
- c) x lze rozložit na |x| disjunktních množin, z nichž každá má kardinalitu |x|.

Důkaz. a) Je $x^* = \bigcup_{i < \omega} {}^n x$. Tedy $x \leq x^* \leq \omega \cdot |x| \approx x$ a odtud $x \approx x^*$. Přitom jsme užili C1) b), C4), C5) a).

- b) Prvá \approx plyne ihned z C2) a) a C5) b), d). Speciálně $[\mathbb{N}]^{\omega} \approx [\omega]^{\omega} \approx \mathcal{P}(\omega) \approx \mathbb{R}$; poslední \approx je dle C2 b). Konečně $[\mathbb{R}]^{\omega} \approx (2^{\omega})^{\omega} \approx 2^{\omega \cdot \omega} \approx 2^{\omega} \approx \mathbb{R}$. Užili jsme C2) b), C5) b), C3), C4), C2 b).
- c) Buď $\kappa = |x|$; $\{\{i\} \times \kappa; i \in \kappa\}$ je rozklad $\kappa \times \kappa$ na κ disjunktních množin majících každá kardinalitu κ ; díky $\kappa \times \kappa \approx \kappa$ platí dokazované.
 - 2. Všech relací resp. operací v x, které mají konečné četnosti, je

a)
$$\omega$$
, pokud $2 \le |x| < \omega$, b) $2^{|x|}$

b) $2^{|x|}$, pokud $|x| \ge \omega$.

Důkaz. a) Je $2 \leq |x| < \omega$. Pak množina všech uvažovaných relací je $\bigcup_{0 < n < \omega} \mathfrak{P}(x^n)$, což je spočetné sjednocení disjuntních neprázdných konečných množin a tedy to je množina spočetná. Množina všech uvažovaných operací je $\bigcup_{n < \omega} x^n x$, což je spočetné sjednocení disjuntních neprázdných konečných množin a tedy to je množina spočetná.

- b) Relací $R \subseteq x^n$ s $0 < n < \omega$ je $|\mathcal{P}(x^n)| = 2^{|x|}$, neboť $|x^n| = |x|$ dle C5) a). Množina všech uvažovaných relací je tedy spočetné sjednocení disjunktních množin kardinality |x|, což je množina kardinality |x| dle 1) b) (neboť je alespoň kardinality |x|). Podobně je tomu s operacemi $F: x^n \to x$.
 - 3. Buď $\kappa > 0$.
 - a) Pro $U, U' \subseteq \kappa$ je

$$\langle \kappa, U \rangle \cong \langle \kappa, U' \rangle \quad \Leftrightarrow \quad \langle |U|, |\kappa - U| \rangle = \langle |U'|, |\kappa - U'| \rangle.$$

b) Všech dvojic $\langle |U|, |\kappa - U| \rangle$ s $U \subseteq \kappa$ je právě $|\mathbf{Cn} \cap \kappa^+|$.

Důkaz. a) je jasné. b) Pro $\kappa < \omega$ to platí, neboť $|\kappa - U|$ je jednoznačně určeno |U|. Buď $\kappa \ge \omega$. Všech uvažovaných dvojic s $|U| < \kappa$ je $|\mathbf{Cn} \cap \kappa|$ a těch, pro které $|U| = \kappa$, je právě $|\mathbf{Cn} \cap \kappa^+|$ (neboť $|\kappa - U|$ je libovolné $\lambda \le \kappa$); celkem jich tedy je právě $|\mathbf{Cn} \cap \kappa^+|$.

CN.1.3. Rozklady, ekvivalence a jejich počet.

Počet rozkladů lze užít k zjištění počtu neizomorfních modelů pro některé jazyky.

1. Rozklad množiny x je množina $W\subseteq \mathcal{P}(x)$ neprázdných po dvou disjunktních množin taková, že $\bigcup W=x$. Takové W je uniformní, když |u|=|x| pro každé $u\in W$. Rozklad W množiny x určuje ekvivalenci E_W na x tak, že

$$\langle a, b \rangle \in E_W \Leftrightarrow \text{existuje } u \in W \text{ tak, že } \{a, b\} \subseteq u;$$

pak tedy $W = \{E_W[a]; a \in x\}$. Naopak ekvivalence E na x určuje rozklad $W = \{E[a]; a \in x\}$ množiny x; platí pak $E_W = E$. Rozklady a ekvivalence na x jsou tak ve vzájemně jednoznačném vztahu. Speciálně pro x nekonečné je počet rozkladů x nejvýše $|\mathcal{P}(x \times x)| = 2^{|x|}$.

2. Je-li E ekvivalence na x, a $a \in x$ nazývá se E[a] třída (ekvivalence) E určená a, také faktor (ekvivalence) E určený a, též E-faktor a. Značí se

$$x/E=\{E[a];\,a\in x\}.$$

Faktor E[a] se také může značit a/E.

Buď x nekonečná množina a $|x| = \kappa$. Pak platí:

- a) Pro $0 < \lambda \le \kappa$ existuje uniformní λ -prvkový rozklad x.
- b) Pro $2 \le \lambda \le \kappa$ je všech uniformních λ -prvkových rozkladů x právě 2^{κ} .

Důkaz. a) Buď $x' = \bigcup_{i \in \lambda} \{i\} \times x$; je $x' \approx \lambda \cdot \kappa = \kappa$ dle C1) b), Cantor-Bernsteinovy věty a C4). Přitom $\{\{i\} \times x; i \in \lambda\}$ je uniformní rozklad x'.

b) Buď $\{u, v, w\}$ uniformní tříprvkový rozklad x. Pro $z \subseteq w$ je $W_z = \{u \cup z, v \cup (w - z)\}$ uniformní dvouprvkový rozklad x a pro $z \neq z' \subseteq w$ je $W_z \neq W_{z'}$; tedy uniformních dvouprvkových rozkladů x je alespoň 2^{κ} , tedy právě 2^{κ} .

Buď $3 \le \lambda \le \kappa$. Buď $\{u, v\}$ uniformní dvouprvkový rozklad x. Nechť W je uniformní rozklad v kardinality λ' , kde λ' je $\lambda - 2$, je-li $\lambda < \omega$ a $\lambda' = \lambda$ jinak. Každý uniformní dvouprvkový rozklad u rozšiřme o W do rozkladu x kardinality λ ; tím získáme požadovaných 2^{κ} uniformních λ -prvkových rozkladů x.

CN.1.4. Důkazy některých tvrzení.

Důkaz Cantorovy věty. Je $x \preceq \mathcal{P}(x)$ díky tomu, že zobrazení $f: x \to \mathcal{P}(x)$ takové, že $f(a) = \{a\}$, je prosté. Neexistuje zobrazení x na $\mathcal{P}(x)$. Je-li totiž $g: x \to \mathcal{P}(x)$ zobrazení na $\mathcal{P}(x)$, pak pro $u = \{a \in x; a \notin g(a)\}$ existuje $b \in g(b) \Leftrightarrow b \notin u$ a máme spor. Tedy není $x \approx \mathcal{P}(x)$.

Důkaz tvrzení o počítání s kardinalitami a kardinály.

- C1) a) Díky $x \cup y \preccurlyeq x \uplus y$. b) Pro $i \in I$ buď $f_i : x_i \to \lambda$ prosté. Pak je prosté zobrazení $f : \bigcup_{i \in I} (\{i\} \times x_i) \to I \times \lambda$, kde $f(\langle i, x \rangle) = \langle i, f_i(x) \rangle$ pro každé $x \in x_i$ s $i \in I$. Tedy $|\bigcup_{i \in I} (\{i\} \times x_i)| \le |I| \cdot \lambda$. Jelikož lze sestrojit prosté zobrazení $\bigcup_{i \in I} x_i$ do "disjunktního" sjednocení $\bigcup_{i \in I} (\{i\} \times x_i)$, platí dokazovaná nerovnost.
- C2) a) plyne ihned z definic a $\mathcal{P}(x) \approx {}^{x}2$. b) Zobrazení $f: {}^{\omega}2 \to [0,1]$, kde $f(s) = \sum_{i \in \mathbb{N}} 2s(i)/3^{i+1}$ je prosté na Cantorovu množinu, tedy ${}^{\omega}2 \preccurlyeq [0,1]$. Pomocí dvojkových rozvojů získáme $[0,1] \preccurlyeq {}^{\omega}2$ a z Cantor-Bernsteinovy věty ${}^{\omega}2 \approx [0,1]$. Snadno sestrojíme prosté zobrazení \mathbb{R} na [0,1]. Tudíž $2^{\omega} = |\mathbb{R}|$ a $\mathfrak{c} = |\mathbb{R}|$.
 - C3) neuvádíme; není však obtížný.
- C4) Stačí dokázat $\kappa \times \kappa \approx \kappa$ pro $\kappa \geq \omega$. Případ $\omega \times \omega \approx \omega$ je snadý. Dále je výhodné užít transfinitní indukci na ordinálních číslech; to neuvádíme. Speciální tvrzení plyne ihned sporem.
- C5) a) Indukcí přes n. Pro n=1 to platí. $\kappa^{n+1} \approx \kappa^n \times \kappa \approx \kappa \times \kappa \approx \kappa$ užitím indukčního předpokladu a C4).
- b) i) Dokážeme $[\kappa]^{\lambda} \preccurlyeq {}^{\lambda}\kappa$. Pro $u \subseteq \kappa$ kardinality λ buď f(u) prosté zobrazení λ na u, tedy $f(u) \in {}^{\lambda}\kappa$ a zobrazení $f: [\kappa]^{\lambda} \to {}^{\lambda}\kappa$ je jasně prosté. ii) Dokážeme ${}^{\lambda}\kappa \preccurlyeq [\kappa]^{\lambda}$. Pro $\lambda = 0$ to platí; buď dále $\lambda \neq 0$. Pro $g \in {}^{\lambda}\kappa$ je $g \in [\lambda \times \kappa]^{\lambda}$, tedy ${}^{\lambda}\kappa \subseteq [\lambda \times \kappa]^{\lambda} \preccurlyeq [\kappa]^{\lambda}$ díky $\lambda \times \kappa \approx \kappa$, což plyne z C4).
- c) Dokážeme $|[\kappa]^{<\omega}| = \kappa$. Máme $|[\kappa]^{<\omega}| = |\bigcup_{n \in \mathbb{N}} [\kappa]^n| \le |\mathbb{N}| \cdot \kappa = \kappa$ díky C1) b), neboť $|[\kappa]^n| = \kappa$ pro n > 0. Nerovnost \ge plyne z $\kappa \approx [\kappa]^1 \preccurlyeq [\kappa]^{<\omega}$.
- d) Pro $2 \le \lambda \le \kappa$ je $2^{\kappa} \le \lambda^{\kappa} \le \kappa^{\kappa} \le 2^{\kappa}$; první dvě \le plynou z C3), třetí díky $[\kappa]^{\kappa} \subseteq \mathcal{P}(\kappa) \approx 2^{\kappa}$.

POZNÁMKY CN.1.5.

1. Můžeme zapsat začátek kardinální škály:

$$0 < 1 < 2 < \dots < n < n + 1 < \dots < \omega < \omega_1 < \omega_2 < \dots < \omega_\omega < (\omega_\omega)^+ < \dots$$

2. Rovnost $\mathfrak{c}=\omega_1$ se nazývá hypotéza kontinua a značí se (CH). Z axiomů obvyklé, tj. Zermelo-Fraenkelovy teorie množin s axiomem výběru ZFC, nelze hypotézu kontinua ani dokázat ani vyvrátit. Je to jedno z nejznámějších nezávislých tvrzení teorie množin. Je-li teorie ZFC bezesporná, je bezesporná i s (CH), ale např. i s $\mathfrak{c}=\omega_5$.