Wiederholung Mathematischer Grundlagen für die TI I

Sebastian Böhne boehne@uni-potsdam.de

Inhaltsverzeichnis

- Logik
- 2 Mengen
- Relationen und Funktionen
- 4 Induktion

Keine Einführung

- Nur Ergebnisse, keine Motivationen
- Hohe Stoffdichte
- Nur relativ wenige Beispiele
- Lücken finden
- Lücken füllen, z.B. durch Brückenkurs-Materialien (https://openup.uni-potsdam.de/course/view.php?id=469)

Kontrollfragen zur Logik

- Für welche Logischen Operatoren bzw. Konstanten stehen
 ∧, ∨, ¬, ⇒, ⇔, 0 und 1?
- Was bedeuten $\forall x (\in X)$. $\varphi(x)$ und $\exists x (\in X)$. $\varphi(x)$?
- Wie kann man Aussagen, deren äußerste logische Struktur durch die obigen Konstrukte gegeben ist, jeweils verwenden?
- Wie zeigt man Aussagen, deren äußerste logische Struktur durch die obigen Konstrukte gegeben ist? (Wichtige Beispiele folgen)

Wichtige Beweismethoden

- Wie erhält man Aussagen zur Verwendung?
- Fallunterscheidung
- Widerspruchsbeweis
 - ¬B zeigen
 - B zeigen
- Induktion (folgt später)

Notwendige und hinreichende Bedingung

- Seien A und B zwei Aussagen mit A ⇒ B im Folgenden vorausgesetzt
- Wenn nun noch A gilt, so gilt auch B. Daher ist A eine hinreichende Bedingung für B
- Es gilt $\neg B \Rightarrow \neg A$ (Kontraposition). Wenn also $\neg B$ gilt, dann gilt $\neg A$ (statt A). B ist also eine notwendige Bedingung für A
- Beispiel: Regen ist eine hinreichende Bedingung für eine nasse Straße und eine nasse Straße ist eine notwendige Bedingung für Regen

Mengen, Notationen und Mengenzugehörigkeit

- Ansammlungen von irgendwelchen wohlunterscheidbaren Objekten
- $a \in A$ (oder auch $A \ni a$) drückt aus, dass a zu der Menge A gehört
- Mengenschreibweisen: $\{a_0, a_1, \dots, a_{n-1}\}$ und $\{x \mid \varphi(x)\}$; als Abkürzung auch $\{x \in X \mid \varphi(x)\}$, $\{x \subseteq X \mid \varphi(x)\}$ etc.
- Beispiele:
 - $5 \in \{73, 42, 5, 0, 12\}$
 - Katze ∉ {Haus, Flasche, Pferd}
 - $12 \in \{n \in \mathbb{N} \mid n \mod 3 = 0\}$
 - Baum $\notin \{x \in \text{Lebewesen} \mid x \text{ kann sprechen}\}$
- Wichtige Mengen
 - Ø
 - Zahlenmengen: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C}

Mengenrelationen

- $A \subseteq B :\Leftrightarrow \forall a \in A. \ a \in B$
- Beispiele:
 - $\{Haus, Pferd\} \subseteq \{Haus, Flasche, Pferd\}$
 - $\{42,0\} \subseteq \{73,42,5,0,12\}$
 - $a \in A \rightarrow \{a\} \subseteq A$
 - $A \subseteq A$ und $\emptyset \subseteq A$
 - $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$
- $A = B : \Leftrightarrow A \subseteq B \land B \subseteq A$
- Beispiele:
 - Für jede Menge A gilt A = A
 - $\{a,b\} = \{b,a\}$
 - $\{a, b, c\} = \{a, b, b, c, a\}$
 - $\mathbb{N} = \{z \in \mathbb{Z} \mid z \geq 0\}$
- $A \subset B :\Leftrightarrow A \subseteq B \land A \neq B$ (echte Teilmenge)

Vereinigung (von zwei Mengen)

• $A \cup B := \{x \mid x \in A \lor x \in B\}$

- Beispiele:
 - $\{0,1,2,3\} \cup \{4,5,6,7\} = \{0,1,2,3,4,5,6,7\}$
 - $\bullet \ \{0,1,2\} \cup \{0,2,6,7\} = \{0,1,2,6,7\}$

Vereinigung (allgemein)

- Beispiele:
 - \bigcup {{0,1,2},{3,4},{2,4,6}} = {0,1,2,3,4,6}
 - \bigcup { \mathbb{N} , { $z \in \mathbb{Z} \mid z \leq 0$ }} = \mathbb{Z}
- $\bullet \bigcup_{i=j}^k A_i := \{x \mid \exists i \in \mathbb{N}. \ j \le i \le k \land x \in A_i\}$
- Beispiel: Seien $A_0 := \{0, 1, 2\}$, $A_1 := \{3, 4\}$ und $A_2 := \{2, 4, 6\}$. Es gilt $\bigcup_{i=0}^{2} A_i = \{0, 1, 2, 3, 4, 6\}$
- $\bullet \bigcup_{i \in I} A_i := \{x \mid \exists i \in I. \ x \in A_i\}$
- Beispiel: $A_i := \{i\}$ für jedes $i \in \mathbb{N}$. Es gilt $\bigcup_{i \in \mathbb{N}} A_i = \mathbb{N}$

Schnitt

 $\bullet \ A \cap B := \{x \mid x \in A \land x \in B\}$

- Beispiele:
 - $\{0,1,2,3\} \cap \{4,5,6,7\} = \emptyset$
 - $\{0,1,2\} \cap \{0,2,6,7\} = \{0,2\}$
- $\bigcap A$ (für $A \neq \emptyset$), $\bigcap_{i=j}^k A_i$ (für $k \geq j$), $\bigcap_{i \in I} A_i$ (für $I \neq \emptyset$) lassen sich analog Vereinigung definieren (mit \forall statt \exists)
- Beispiel: $\bigcap_{i \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}$
- A und B disjunkt : $\Leftrightarrow A \cap B = \emptyset$

Differenz

 $\bullet \ A \setminus B := \{x \mid x \in A \land x \notin B\}$

- Beispiele:
 - $\{0,1,2,3,4,5,6,7\} \setminus \{4,5,6,7\} = \{0,1,2,3\}$
 - $\{0,1,2\} \setminus \{0,2,6,7\} = \{1\}$

Komplement

- Sei im Folgenden $A \subseteq B$
- $\overline{A} := B \setminus A$

- Beispiele (für $B = \{0, 1, 2, 3, 4, 5\}$):
 - $\overline{\{1,3,5\}} = \{0,2,4\}$
 - $\bullet \ \overline{\{0,1,2\}} = \{3,4,5\}$
 - $\{0,1,2,3,4,5\} = \emptyset$
 - $\bullet \ \vec{\emptyset} = \{0, 1, 2, 3, 4, 5\}$

Potenzmenge

- $\mathcal{P}(A) := \{x \mid x \subseteq A\}$ (auch Schreibweise 2^A verbreitet)
- Beispiele:
 - $\mathcal{P}(\emptyset) = \{\emptyset\}$
 - $\bullet \ \mathcal{P}(\{0,1,2\}) = \{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$
- Beobachtung (für endliche A): $|\mathcal{P}(A)| = 2^{|A|}$

n-Tupel und Kartesisches Produkt

- $(a, b) := \{\{a\}, \{a, b\}\}$ (Definition nach Kuratowski)
- $(a,b) = (a',b') \Leftrightarrow a = a' \land b = b'$
- $\bullet \ A \times B := \{(a,b) \mid a \in A \land b \in B\}$
- $\bullet |A \times B| = |A| * |B|$
- (a) := a und () := \emptyset und (a_0, \dots, a_{n-1}) := $((a_0, \dots, a_{n-2}), a_{n-1})$ für $n \ge 3$
- $A^0 := \{()\}(=1), A^1 := \{(a) \mid a \in A\} = A, A^2 := A \times A, A^n := A^{n-1} \times A \text{ für } n \ge 3$
- Seien n eine natürliche Zahl und $a_i, b_i \in A$ für i < n: $(a_0, \ldots, a_{n-1}) = (b_0, \ldots, b_{n-1}) \Leftrightarrow a_0 = b_0 \land a_1 = b_1 \land \ldots \land a_{n-1} = b_{n-1}$

Definition und Sprechweisen

- R heißt (binäre) Relation aus A in B, falls $R \subseteq A \times B$ (auch "zwischen A und B")
- R heißt (binäre) Relation, falls A und B existieren, so dass R eine Relation aus A in B ist
- Statt $(a, b) \in R$ schreibt man auch a R b
- Der Definitions- oder Vorbereich einer Relation ist definiert durch $\mathcal{D}(R) := \{a \mid \exists b. (a, b) \in R\}$
- Der Werte- oder Nachbereich einer Relation ist definiert durch $\mathcal{W}(R) := \{b \mid \exists a. (a, b) \in R\}$

Eigenschaften von Relationen

- Im Folgenden sei R eine Relation
- R linkseindeutig (oder auch injektiv) : $\Leftrightarrow \forall a, a', b. (a, b), (a', b) \in R \rightarrow a = a'$
- R (rechts)eindeutig : $\Leftrightarrow \forall a, b, b'$. $(a, b), (a, b') \in R \rightarrow b = b'$
- R linksvollständig (bzgl. A) : $\Leftrightarrow \forall a \in A \exists b. (a, b) \in R$ Man sagt dann auch, R ist eine Relation von $A \dots B$
- R rechtsvollständig (bzgl. B) : $\Leftrightarrow \forall b \in B \exists a. (a, b) \in R$ Man sagt dann auch, R ist eine Relation . . . A auf B
- Beispiel: $\{(|z|, z) \mid z \in \mathbb{Z}\}$

Operationen auf Relationen

- Relationen sind Mengen und daher sind alle
 Mengenoperationen auf sie anwendbar, z.B. ∪, ∩, →
- Ist R eine Relation zwischen A und B, dann ist $R^{-1} := \{(b, a) \mid (a, b) \in R\}$ eine Relation zwischen B und A
- Ist R eine Relation zwischen A und B sowie S eine Relation zwischen B und C, so ist $R \circ S := \{(a,c) \mid \exists b \in B. \ (a,b) \in R \land (b,c) \in S\}$ eine Relation zwischen A und C

Definition

- (Partielle) Funktionen sind rechtseindeutige Relationen
- f: A → B bedeutet, dass f eine Relation aus A in B ist, welche eine Funktion ist. Man sagt dann, f ist eine Funktion aus A in B.
- Die Rechtseindeutigkeit einer Funktion f erlaubt von **dem** Funktionswert f(a) für jedes $a \in \mathcal{D}(f)$ zu sprechen

Weder f(a) noch Funktionsgleichungen wie $f(x) = x^2$ sind Funktionen, sondern nur f selbst

 f^{-1} muss keine Funktion sein

 $g \circ f$ bei Funktionen meint $f \circ g$ bei Relationen

Eigenschaften von Funktionen

- Ist eine Funktion f aus A in B linksvollständig (dann auch total genannt), so spricht man von einer Funktion **von** A in B, geschrieben $f:A \rightarrow B$
- Statt von rechtsvollständigen Funktionen spricht man meistens von surjektiven Funktionen. In dem Fall ändert sich der Zusatz "in B" zu "auf B"
- Die Menge der Funktionen von A in B wird in der Informatik mit $A \to B$ bezeichnet (in der Mathematik eher mit AB oder B^A)
- $\{(x, x^2) \mid x \in \mathbb{R}\}$ ist eine Funktion von \mathbb{R} auf $\mathbb{R}^{\geq 0}$ (aber nur in \mathbb{R})
- Zwei Funktionen mit gleichem Definitionsbereich sind gleich, wenn alle ihre Funktionswerte gleich sind

Vollständige Induktion

•
$$\underbrace{P(0)}_{\mathsf{IA}} \land (\forall n \in \mathbb{N}. \ \underbrace{P(n)}_{\mathsf{IV}} \Rightarrow \underbrace{P(n+1)}_{\mathsf{IB}}) \ \Rightarrow \ \forall n \in \mathbb{N}. \ P(n)$$

• Beispiel: $\forall n \in \mathbb{N}$. 6 | $n^3 + 5 * n$

Vollständige Induktion ab m

- $P(m) \land (\forall n \in \mathbb{N}. \ n \ge m \land P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N}. \ n \ge m \Rightarrow P(n)$ (Gültigkeitsbeweis mit $Q(n) := n < m \lor P(n)$)
- Beispiel: $P(n) := n^2 \ge 2 * n$

Starke Induktion

- $(\forall n \in \mathbb{N}. n \ge m \Rightarrow (\forall \ell \in \mathbb{N}. m \le \ell < n \Rightarrow P(\ell)) \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}. n \ge m \Rightarrow P(n)$
- Beispiel: Jedes $n \in \mathbb{N}$ mit $n \ge 2$ hat einen Primzahlteiler