

FICHA DE PREPARAÇÃO PARA O EXAME DE 12º ANO MATEMÁTICA A

Utiliza apenas caneta ou esferográfica de tinta azul ou preta.

É permitido o uso de régua, compasso, esquadro e transferidor.

Não é permitido o uso de corretor.

Apresenta apenas uma resposta para cada item.

A ficha inclui um formulário.

As cotações dos itens encontram-se no final da ficha.

Na resposta aos itens de escolha múltipla, seleciona a opção correta.

Escreve, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresenta todos os cálculos que tiveres de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresenta sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

 $\frac{\alpha r^2}{2}$ (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: πrg (r – raio da base; g – geratriz)

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times Area da base \times Altura$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho} e^{i\theta} = \sqrt[n]{\rho} e^{i\frac{\theta+2k\pi}{n}}$$
 $(k \in \{0, ..., n-1\} \ e \ n \in \mathbb{N})$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Fonte: iave.pt

1. Seja Ω o espaço de resultados associado a uma determinada experiência aleatória. Sejam A e B dois acontecimentos independentes desse espaço de resultados.

Sabe-se que P(A) = 0.3 e P(B) = 0.7.

Qual é o valor de $P(A \cup B)$?

- **(A)** 1
- **(B)** 0,79
- (C) 0.21
- **(D)** 0

2. Dos alunos de uma escola, sabe-se que:

- metade se desloca para a escola de autocarro;
- um quarto habita a menos de dez quilómetros da escola;
- metade dos que habitam a menos de dez quilómetros da escola desloca-se para a escola de autocarro.

Determina a probabilidade de um aluno dessa escola, escolhido ao acaso, não se deslocar de autocarro para a escola e não habitar a menos de dez quilómetros da escola.

Apresenta o resultado em percentagem.

3. A soma de todos os elementos de uma linha do triângulo de Pascal é 1024.

Qual é o quinto elemento da linha seguinte?

- **(A)** 210
- **(B)** 252
- **(C)** 330
- **(D)** 462

A soma dos seis primeiros termos de uma progressão geométrica de razão 2 é G (G>0).

Qual é o terceiro termo dessa progressão?

- (A) $\frac{4G}{31}$ (B) $\frac{8G}{31}$ (C) $\frac{4G}{63}$

5. Na figura seguinte, está representado, em referencial ortonormado do espaço, o prisma reto [ABCDEFGH], de bases quadradas paralelas ao plano xOy.

As coordenadas dos vértices A, B e G são, respetivamente, (3,0,0), (3,6,0) e (-3,6,12).

- **5.1.** Obtém uma equação cartesiana do plano mediador do segmento de reta $\lceil AG \rceil$. Apresenta essa equação na forma ax + by + cz + d = 0.
- **5.2.** Seja r a reta de equação (x, y, z) = (2, 2, 2) + k(3, 4, 6) $(k \in \square)$ e seja P o ponto de interseção da reta r com o plano FBC.

Determina o volume da esfera com centro no ponto $\,P\,$ e cuja superfície contém o ponto B.

Apresenta o valor pedido na forma de dízima, arredondado às décimas.

Em cálculos intermédios, utiliza valores exatos.

5.3. Escolhem-se, aleatoriamente, dois vértices do prisma.

Determina a probabilidade de esses vértices serem extremos de uma diagonal de uma face do prisma.

Apresenta o valor pedido na forma de dízima, arredondado às milésimas.

- 6. Qual é o valor de $\lim \left(\frac{n-3}{n}\right)^n$?

 (A) $\frac{1}{e^3}$ (B) 1 (C) e^3

- **(D)** +∞

- 7. Seja h a função, de domínio \square , definida por $h(x) = e^x e^{3x}$.
 - **7.1.** Seja a um número real positivo. Qual é o valor de $h(\ln(2a))$?
 - **(A)** −4*a*
- **(B)** -6*a*
- (C) $2a-6a^3$
- **(D)** $2a 8a^3$
- **7.2.** Estuda a função h quanto à monotonia e determina, caso existam, os respetivos extremos relativos.

Apresenta os valores de eventuais extremos relativos na forma $\frac{a\sqrt{b}}{c}$.

- 7.3. Na figura seguinte, estão representados, em referencial ortonormado do plano:
 - parte do gráfico da função *h* ;
 - as retas verticais de equações x = t e $x = \frac{t}{3}$, sendo -1 < t < 0;
 - o trapézio $\begin{bmatrix} ABCD \end{bmatrix}$, em que A e B são os pontos de interseção das retas verticais com o gráfico da função h e C e D são os pontos de interseção dessas retas com o eixo Ox.

Determina, recorrendo às capacidades gráficas da calculadora, o valor de t para o qual a área do trapézio $\begin{bmatrix} ABCD \end{bmatrix}$ é igual a 0,2, sabendo-se que esse valor existe e é único.

Não justifiques a validade do resultado obtido na calculadora.

Na tua resposta:

- mostra que a área do trapézio $\left[ABCD\right]$ é dada, em função de t, por $-\frac{t}{3}\left(e^{\frac{t}{3}}-e^{3t}\right)$
- equaciona o problema;
- reproduz, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que te permite(m) resolver a equação;
- apresenta o valor de *t* arredondado às centésimas.

8. Considera, em \square , conjunto dos números complexos, o número

$$z = \cos\left(\frac{\pi}{7}\right) + i\sin\left(\frac{\pi}{7}\right)$$

Qual é o valor, arredondado às décimas, de $\operatorname{Im}\left(\overline{z^2}\right)$?

- (A) -0.8
- **(B)** -0.2
- (C) 0,2
- **(D)** 0,8

9. Em $\ \square$, conjunto dos números complexos, considera os números complexos $\ \mathcal Z$ e $\ \mathcal W$ tais que:

$$z = \lambda i \pmod{\lambda \in \Box^{-}} e \quad w = 2\cos\left(\frac{\pi}{5}t\right) + 2i\sin\left(\frac{\pi}{5}t\right) \pmod{t \in]10,20[}$$

Determina para que valores de t o afixo de $Z \times W$ pertence ao 1° quadrante.

10. Seja f a função, de domínio $\left] -\frac{\pi}{2}, +\infty \right[$, definida por

$$f(x) = \begin{cases} \frac{\cos(2x) - 1}{\sin(2x)} & \text{se } -\frac{\pi}{2} < x < 0 \\ 0 & \text{se } x = 0 \\ \frac{e^{-2x} - 1}{\ln(x + 1)} & \text{se } x > 0 \end{cases}$$

- **10.1** Averigua se a função f é contínua em x = 0.
- 10.2 Estuda a função f quanto à existência de assíntotas não verticais ao seu gráfico. Em caso de existência, escreve, para cada assíntota, uma equação que a defina.

10.3 Seja g a função, de domínio $]-\infty$, 3], definida por $g(x)=(x-3)^2$.

Qual é o valor de $g^{-1} \left[f \left(-\frac{\pi}{4} \right) \right]$? Nota: g^{-1} representa a função inversa da função g .

- **(A)** −1
- **(B)** 1
- **(C)** 2
- **(D)** 4

11. Sejam f uma função, de domínio \Box , duas vezes diferenciável, g a função polinomial definida por g(x)=1-2x e h a função, de domínio \Box , definida por $h(x)=f(x)\times g(x)$.

Sabe-se que:

- a função f tem um extremo relativo em x = k $(k \in \square)$ e f''(k) > 0;
- ullet o gráfico da função h tem um ponto de inflexão de abcissa k .

Determina o valor de $\,k\,$.

12. Seja f a função, de domínio \Box , definida por $f(x) = \sin(2x)$.

Sabe-se que
$$\lim_{x\to c} \frac{f(x)-f(c)}{f'(x)-f'(c)} = \frac{\sqrt{3}}{2}$$
, em que $c\in \left]\frac{\pi}{2}, \pi\right[$.

Determina o valor de ℓ .

FIM

Item	1.	2.	3.	4.	5.1	5.2	5.3	6.	7.1	7.2	7.3	8.	Total
Cotação	9	12	9	9	12	12	13	9	9	12	13	9	
Item	9.	10.1	10.2	10.3	11.	12.							200
Cotação	12	13	12	9	13	13							