LAURA DE ALMEIDA MAGALHÃES

LUGAR GEOMÉTRICO E PONTOS NOTÁVEIS DO TRIÂNGULO

- 1. Uma circunferência de raio unitário tangencia os lados de um ângulo de 60º. A distância entre o centro dessa circunferência e o vértice do ângulo é igual a:
 - a. 1
 - **b.** $\sqrt{2}$
 - **c.** $\sqrt{3}$
 - **)** 2
 - **e.** √5

As retas M e N são concorrentes e de mesma distância do centro da circunferência. Se prolongarmos a reta, a mesma chegará no ponto médio do segmento AB, sendo a mediana de AB. Com isso temos que os ângulos a e b são congruentes de valor 60° . Concluindo que o triangulo é equilátero por obter todos os ângulos congruentes, os pontos notáveis estarão no centro O da circunferência obtendo a proporção $\frac{2}{1}$

$$\frac{2}{1} = \frac{x}{1}$$

$$x = 2$$

2. Se, na figura, T é o incentro do triângulo MNP, a medida do ângulo α é:

- **a.** 45º
- **b.** 50º
- **c.** 60º
- **d.** 70º
- **★**. 80º

Considerando os ângulos de N=2x, M=2∝ e P=2y, obtemos a resolução de

$$2x + 2 \propto +2y = 180^{\circ}$$

$$x+\propto +y = 90^{\circ}$$

Sabendo que $\propto + y + 50^\circ = 180^\circ \qquad \propto + y = 130^\circ$

$$x + 130^{\circ} = 90^{\circ}$$

$$x = 40^{\circ}$$

$$x = 40 * 2$$
 $x = 80^{\circ}$

- **3.** Sejam A, B e C, pontos distintos no interior de um círculo, sendo C o centro do mesmo. Se construirmos um triângulo inscrito no círculo com um lado passando por A, o outro por B e o outro por C podemos afirmar que este triângulo:
 - a. É acutangulo
 - **★** É retângulo
 - c. É obtusângulo
 - d. Não é isósceles
 - e. Pode ser equilátero

Em qualquer ponto que posicionarmos A e B para formar um triangulo com C, teremos um **triangulo retângulo**. Pois quando há a circunferência circunscrita, seu triangulo terá mediatrizes que denotam um ângulo reto e segmentos perpendiculares pelo ponto médio.

4. Na figura abaixo, A, B e C são pontos de tangência. Então, x vale:

- **a.** 3/16
- **b.** 1/8
- **c.** 3/32
- **d.** 1/32
- 1/16

Os ângulos de 60° + 60° + x devem formar 180° , logo x = 60° . Se prolongarmos as retas B e C obtemos um triangulo equilátero com uma circunferência inscrita

Assim, temos todos os pontos notáveis no mesmo ponto e usando a relação do baricentro com proporção $\frac{2}{1}$

Sabendo que o raio da circunferência é $\frac{3}{16}$, a propriedade do baricentro denota que a paralela entre s//t e t é $\frac{6}{16}$ e somando as frações, obtemos $\frac{9}{16}$. Usando a igualdade de:

$$\frac{9}{16} = x + \frac{1}{2}$$

$$x = \frac{9}{16} - \frac{1}{2}$$

$$x=\frac{1}{16}$$

- 5. A hipotenusa de um triângulo retângulo mede 20cm. E um dos ângulos, 20º.
 - a. Qual a medida da mediana relativa à hipotenusa?

Sabendo que a mediana une o segmento ao ponto médio, logo, se a hipotenusa vale 20cm e há uma mediana relativa à ela, essa valerá **10cm**

b. Qual a medida do ângulo formado por essa mediana e pela bissetriz do ângulo

Sabendo que o triangulo é isósceles por conter dois lados congruentes MC e MB, temos que o ângulo de y = C

O ângulo x está entre a bissetriz do ângulo reto e a mediana, logo:

$$45^{\circ} + 20^{\circ} + x = 90^{\circ}$$
$$65^{\circ} + x = 90^{\circ}$$
$$x = 90^{\circ} - 60^{\circ}$$
$$\mathbf{x} = \mathbf{25}^{\circ}$$

6. Uma circunferência tem centro O e raio r. Duas retas distintas passam por um ponto P e são tangentes à circunferência nos pontos A e B. Se o triângulo PAB é equilátero, então PO vale:

O¦

Obtendo o triangulo equilátero e sabendo da sua propriedade de lados congruentes, é possível utilizar a proporção $\frac{2}{1}$ da mediana do triangulo.

Assim, temos que o raio = r e o PO = 2r