PZTA92T1G, **NSVPZTA92T1G**

High Voltage Transistor

PNP Silicon

Features

- Complement to PZTA42T1G
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	-300	Vdc
Collector–Base Voltage	V _{CBO}	-300	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current	I _C	-500	mAdc
Total Power Dissipation up to @ T _A = 25°C (Note 1)	P _D	1.5	W
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	TJ	150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Device mounted on a FR-4 glass epoxy printed circuit board 1.575 in x 1.575 in x 0.0625 in; mounting pad for the collector lead = 0.93 sq in.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction–to–Ambient (Note 2)	$R_{\theta JA}$	83.3	°C/W

2. Device mounted on a FR-4 glass epoxy printed circuit board 1.575 in x 1.575 in x 0.0625 in; mounting pad for the collector lead = 0.93 sq in.

ON Semiconductor®

www.onsemi.com

SOT-223 PACKAGE PNP SILICON HIGH VOLTAGE TRANSISTOR SURFACE MOUNT

COLLECTOR 2,4

EMITTER 3

CASE 318E STYLE 1

MARKING DIAGRAM

P2D = Specific Device Code = Assembly Location

Υ = Year

W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
PZTA92T1G, NSVPZTA92T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel
NSVPZTA92T3G	SOT-223 (Pb-Free)	4,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PZTA92T1/D

PZTA92T1G, NSVPZTA92T1G

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage (Note 3) $(I_C = -1.0 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	-300	_	Vdc
Collector–Base Breakdown Voltage $(I_C = -100 \mu Adc, I_E = 0)$	V _{(BR)CBO}	-300	_	Vdc
Emitter–Base Breakdown Voltage $(I_E = -100 \mu Adc, I_C = 0)$	V _{(BR)EBO}	-5.0	_	Vdc
Collector-Base Cutoff Current $(V_{CB} = -200 \text{ Vdc}, I_E = 0)$	I _{CBO}	-	-0.25	μAdc
Emitter–Base Cutoff Current $(V_{BE} = -3.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	-0.1	μAdc
ON CHARACTERISTICS		•	•	
DC Current Gain	h _{FE}	25 40 40	- - -	-
Saturation Voltages ($I_C = -20 \text{ mAdc}$, $I_B = -2.0 \text{ mAdc}$) ($I_C = -20 \text{ mAdc}$, $I_B = -2.0 \text{ mAdc}$)	VCE(sat) VBE(sat)	- -	-0.5 -0.9	Vdc
DYNAMIC CHARACTERISTICS				
Collector–Base Capacitance @ f = 1.0 MHz $(V_{CB} = -20 \text{ Vdc}, I_E = 0)$	C _{cb}	-	6.0	pF
Current–Gain – Bandwidth Product (I _C = -10 mAdc, V _{CE} = -20 Vdc, f = 100 MHz)	f⊤	50	_	MHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test Conditions, $t_p = 300 \ \mu s$, $\delta \ 0.02$.

Figure 1. DC Current Gain

PZTA92T1G, NSVPZTA92T1G

Figure 2. Capacitance

Figure 3. Current-Gain - Bandwidth

Figure 4. "ON" Voltages

Figure 5. Safe Operating Area

PZTA92T1G, NSVPZTA92T1G

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.63	1.75	0.060	0.064	0.068	
A1	0.02	0.06	0.10	0.001	0.002	0.004	
b	0.60	0.75	0.89	0.024	0.030	0.035	
b1	2.90	3.06	3.20	0.115	0.121	0.126	
С	0.24	0.29	0.35	0.009	0.012	0.014	
D	6.30	6.50	6.70	0.249	0.256	0.263	
E	3.30	3.50	3.70	0.130	0.138	0.145	
е	2.20	2.30	2.40	0.087	0.091	0.094	
e1	0.85	0.94	1.05	0.033	0.037	0.041	
L	0.20			0.008			
L1	1.50	1.75	2.00	0.060	0.069	0.078	
HE	6.70	7.00	7.30	0.264	0.276	0.287	
θ	0°	-	10°	0°	_	10°	

SOLDERING FOOTPRINT* 3.8

STYLE 1: PIN 1. BASE COLLECTOR **EMITTER**

COLLECTOR

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Phone: 81–3–5817–1050

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

PZTA92T1 PZTA92T1G PZTA92 NSVPZTA92T1G