

Koji Higasa

2021 年吉日

まえがき

この文書では私がよく使うくせに、自己の記憶媒体から時々抜ける数学・物理をまとめたものである. 内容は理学部物理系の院試相当のレベルまでに限る. そのため数理的な側面は弱い.

目次

第Ⅰ部	数学	3
第1章 1.1	線形代数 量	5 5
第2章 2.1	微分方程式 常微分方程式	6
第Ⅱ部	物理学	7
第3章	近似式	8

第Ⅰ部

数学

算数

第1章

線形代数

1.1 量

Def.1.1.1

aaa

$$E = mc (1.1)$$

Th.1.1.2

aaa

$$E = mc (1.2)$$

Prop.1.1.3

aaa

Lem.1.1.4

aaa

Cor.1.1.5

aaa

第2章

微分方程式

2.1 常微分方程式

Th.2.1.1 (定数係数 2 階線形微分方程式)

a, b を実定数とし、2 階斉次微分方程式 y'' + ay' + by = 0 を考える. 特性方程式 $\lambda^2 + a\lambda + b = 0$ の 2 根を λ_1 , λ_2 とする. このとき、一般解 y(x) は、 C_1 , C_2 を任意定数として、

$$y(x) = \begin{cases} C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} & \text{when } \lambda_1 \neq \lambda_2, (\lambda_1, \lambda_2 \in \mathbb{R}) \\ C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_1 t} & \text{when } \lambda_1 = \lambda_2 \\ e^{\alpha t} (C_1 \cos \beta t + C_2 \sin \beta t) & \text{when } \lambda_2 = \alpha + i\beta, \lambda_2 = \alpha - i\beta, (\alpha, \beta \in \mathbb{R}, \beta > 0) \end{cases}$$

$$(2.1)$$

で与えられる.

第川部

物理学

第3章

近似式