ISTANBUL TECHNICAL UNIVERSITY ★ GRADUATE SCHOOL

CONDITION MONITORING AND FAULT DIAGNOSIS OF VFD-FED INDUCTION MOTORS

M.Sc. THESIS

Alper SENEM

Department of Mechatronics Engineering

Mechatronics Engineering Programme

ISTANBUL TECHNICAL UNIVERSITY ★ GRADUATE SCHOOL

CONDITION MONITORING AND FAULT DIAGNOSIS OF VFD-FED INDUCTION MOTORS

M.Sc. THESIS

Alper SENEM (518181003)

Department of Mechatronics Engineering

Mechatronics Engineering Programme

Thesis Advisor: Prof. Dr. Şeniz ERTUĞRUL

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ</u> ★ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

DEĞİŞKEN FREKANSLI SÜRÜCÜ İLE BESLENEN ASENKRON MOTORLARDA DURUM İZLEME VE ARIZA TANILAMA

YüKSEK LİSANS TEZİ

Alper SENEM (518181003)

Mekatronik Mühendisliği Anabilim Dalı Mekatronik Mühendisliği Programı

Tez Danışmanı: Prof. Dr. Şeniz ERTUĞRUL

HAZİRAN 2021

Alper SENEM, a M.Sc. student of ITU Graduate School student ID 518181003, successfully defended the thesis entitled "CONDITION MONITORING AND FAULT DIAGNOSIS OF VFD-FED INDUCTION MOTORS", which he/she prepared after fulfilling the requirements specified in the associated legislations, before the jury whose signatures are below.

Thesis Advisor:	Prof. Dr. Şeniz ERTUĞRUL Istanbul Technical University	
Jury Members :	Prof. Dr. Name SURNAME Middle East Technical University	
	Prof. Dr. Name SURNAME Boğaziçi University	
	Prof. Dr. Name SURNAME Bilkent University	
	Prof. Dr. Name SURNAME Sabancı University	
	Prof. Dr. Name SURNAME Koç University	

Date of Submission: 11 June 2021
Date of Defense: 11 June 2021

To my family,

FOREWORD

For the foreword, 1 line spacing must be set. The foreword, written as a first page of the thesis must not exceed 2 pages.

The acknowledgments must be given in this section.

After the foreword text, name of the author (right-aligned), and the date (as month and year) must be written (left-aligned). These two expressions must be in the same line.

The foreword is written with 1 line spacing.

June 2021

Alper SENEM (Mechanical Engineer)

TABLE OF CONTENTS

<u>P</u>	age
FOREWORD	ix
TABLE OF CONTENTS	
ABBREVIATIONS	
SYMBOLS	xv
LIST OF TABLES	
LIST OF FIGURES	
SUMMARY	
ÖZET	
1. INTRODUCTION	
1.1 Overview	
1.2 Objectives of Research	
1.3 Organization of Thesis	
2. CONDITION MONITORING OF INDUCTION MOTORS: BACK-	
GROUND	
2.1 Introduction of Induction Motors	5
2.1.1 Principle of operation	5
2.1.2 VFD-fed induction motors	
2.1.3 Need for condition monitoring	7
2.1.4 Maintenance strategies	7
2.2 Induction Motor Fault Types	8
2.2.1 Bearing related faults	8
2.2.2 Stator related faults	8
2.2.3 Rotor related faults	8
2.3 Condition Monitoring Techniques	8
2.3.1 Temperature monitoring	
2.3.2 Vibration monitoring	8
2.3.3 Motor current monitoring	
2.4 Signal Processing Techniques	
2.4.1 Time domain based signal analysis	
2.4.1.1 Higher order statistics	
2.4.2 Time-frequency based signal analysis	
2.4.2.1 Wavelet Transform	
2.4.3 Frequency based signal analysis	
2.4.3.1 Shannon-Nyquist sampling theory	
2.4.3.2 Fast Fourier transform	
2.4.3.3 Power spectral density estimation	
2.5 Fault Diagnosis Techniques	
2.5.1 Model based condition monitoring	14

2.5.1.1 State estimation	14
2.5.1.2 Residual generation	14
2.5.1.3 Identification	14
2.5.2 Model free condition monitoring	15
2.5.2.1 Signal analysis	15
2.5.2.2 Classical machine learning methods	15
Support Vector Machines	15
Naive Bayes	
k-Nearest Neighbour	
Random Forest	
Multi Layer Perceptron	
2.5.2.3 Deep learning methods	
1D Convolutional Neural Networks	
Long-Short Term Memory Networks	
3. EXPERIMENTAL SETUP AND METHODOLOGY	
4. FAULT DIAGNOSIS METHODOLOGY	
4.1 Component Based Fault Diagnosis	
4.1.1 Bearing fault analysis	
4.1.1.1 Motor current signal analysis	
4.1.1.2 PSD analysis	
4.1.1.3 PSD+MCSA analysis	
4.1.1.4 Deep learning analysis	
4.1.2 Stator fault analysis	
4.1.2.1 Motor current signal analysis	
4.1.2.2 PSD analysis	
4.1.2.3 PSD+MCSA analysis	
4.1.2.4 Deep learning analysis	
4.1.3 Rotor fault analysis	
4.1.3.1 Motor current signal analysis	
4.1.3.2 PSD analysis	
4.1.3.3 PSD+MCSA analysis	
4.1.3.4 Deep learning analysis	
4.2 Motor Based Fault Diagnosis	
4.2.2 PSD analysis	
4.2.3 PSD+MCSA analysis	
4.2.4 Deep learning analysis	
5. CONCLUSIONS AND RECOMMENDATIONS	
REFERENCES	
APPENDICES	
APPENDIX A.1	
APPENDIX B.1	
APPENDIX B.2	
CURRICH UM VITAE	30

ABBREVIATIONS

AIC : Akaike Information CriteriaANN : Artificial Neural Network

App : Appendix

BP : Backpropagation

CGI : Common Gateway Interface

ESS : Error sum-of-squares

GARCH: Generalized Autoregressive Conditional Heteroskedasticity

GIS : Geographic Information SystemsHCA : Hierarchical Cluster Analysis

Mbps : Megabits per second

St : Station

SWAT : Soil and Water Assessment Tool

UMN : University of Minnesota

SYMBOLS

C : Capacitance

 \mathbf{H} : The amount of heat $\mathbf{M}_{\mathbf{x}}, \mathbf{M}_{\mathbf{y}}$: Torque Components

N_x, N_y, N_z : Normal Power Components

q : Phase load t : Time

u, v : Displacement Vector Components

w : Angular velocityXC : Capacitive reactanceXL : Inductive reactance

 α : Angle of deviation from the direction of the principal stresses

ρ : Density

 $\sigma_{x}, \sigma_{y}, \sigma_{xy}$: Shell internal stresses

LIST OF TABLES

		Page
Table 2.1	: Table with single row and centered columns.	8
Table 2.2	: Table captions must be ended with a full stop.	9
Table 2.3	: Prof. Dr. Galip TEPEHAN Captioning in landscape-oriented pages: the most important aspect is to align the lines horizontally	
Table 2.4	: Prof. Dr. Galip TEPEHAN Captioning in landscape-oriented pages: the most important aspect is to align the lines horizontally	12
Table 2.5	: Neighborhoods Visited	13
Table 2.6	: Feasible triples for a highly variable Grid	13
Table 4.1	: Example table	
Table 5.1	: Example table in chapter 5	30
Table A.1	: Example table in appendix	35
Table B.1	: Example table in appendix	37
Table B.2	: Example table in appendix	37

LIST OF FIGURES

		Page
Figure 3.1	: Neuron cell, adapted from (Çetin, 2003).	18
Figure 3.2	: For a multi-line figure captions, it is important that all the lines of the caption are aligned.	19
Figure 3.3	: Figure captions must be ended with a full stop	20
Figure 4.1	: Example figure.	27
_	: Example figure in chapter 5.	

CONDITION MONITORING AND FAULT DIAGNOSIS OF VFD-FED INDUCTION MOTORS

SUMMARY

1 line spacing must be set for summaries. For theses in Turkish, the summary in Turkish must have 300 words minimum and span 1 to 3 pages, whereas the extended summary in English must span 3-5 pages.

For theses in English, the summary in English must have 300 words minimum and span 1-3 pages, whereas the extended summary in Turkish must span 3-5 pages.

A summary must briefly mention the subject of the thesis, the method(s) used and the conclusions derived. References, figures and tables must not be given in Summary.

Above the Summary, the thesis title in first level title format (i.e., 72 pt before and 18 pt after paragraph spacing, and 1 line spacing) must be placed. Below the title, the expression **ÖZET** (for summary in Turkish) and **SUMMARY** (for summary in English) must be written horizontally centered.

It is recommended that the summary in English is placed before the summary in Turkish.

DEĞİŞKEN FREKANSLI SÜRÜCÜ İLE BESLENEN ASENKRON MOTORLARDA DURUM İZLEME VE ARIZA TANILAMA

ÖZET

Özet hazırlanırken 1 satır boşluk bırakılır. Türkçe tezlerde, Türkçe özet 300 kelimeden az olmamak kaydıyla 1-3 sayfa, İngilizce genişletilmiş özet de 3-5 sayfa arasında olmalıdır.

İngilizce tezlerde ise, İngilizce özet 300 kelimeden az olmamak kaydıyla 1-3 sayfa, Türkçe genişletilmiş özet de 3-5 sayfa arasında olmalıdır.

Özetlerde tezde ele alınan konu kısaca tanıtılarak, kullanılan yöntemler ve ulaşılan sonuçlar belirtilir. Özetlerde kaynak, şekil, çizelge verilmez.

Özetlerin başında, birinci dereceden başlık formatında tezin adı (önce 72, sonra 18 punto aralık bırakılarak ve 1 satır aralıklı olarak) yazılacaktır. Başlığın altına büyük harflerle sayfa ortalanarak (Türkçe özet için) **ÖZET** ve (İngilizce özet için) SUMMARY yazılmalıdır.

Türkçe tezlerde Türkçe özetin İngilizce özetten önce olması önerilir.

1 line spacing must be set for summaries. For theses in Turkish, the summary in Turkish must have 300 words minimum and span 1 to 3 pages, whereas the extended summary in English must span 3-5 pages. For theses in English, the summary in English must have 300 words minimum and span 1-3 pages, whereas the extended summary in Turkish must span 3-5 pages. A summary must briefly mention the subject of the thesis, the method(s) used and the conclusions derived. References, figures and tables must not be given in Summary. Above the Summary, the thesis title in first level title format (i.e., 72 pt before and 18 pt after paragraph spacing, and 1 line spacing) must be placed. Below the title, the expression **ÖZET** (for summary in Turkish) and **SUMMARY** (for summary in English) must be written horizontally centered. It is recommended that the summary in English is placed before the summary in Turkish.

1. INTRODUCTION

1.1 Overview

Electric motors extensively employed in a system that converts electrical power into mechanical power in not only industrial applications but also residential, agricultural and transportation purposes. Taken together with systems they drive, electric motors use more than 40% of all electricity consumption and almost twice as much as the next largest user lighting [1]. Considering only industrial usage, electric motors dominate and account close to 70% of the total electricity consumption [1,2].

There are many different motor types available in industrial facility operations, but asynchronous alternating current (AC) induction motors are the most preferred type because of their simple, reliable and rugged design. Relatively lost cost, low maintenance, high reliability and long lifespan are most advantageous features of AC induction motors which drive core electro-mechanical systems such as material handling,material processing, pumping, ventilation and compressed air generation [3]. Especially HVAC (Heating, ventilation and air conditioning) sector requires special attention as they have the largest share of industrial electrical consumption and reasonably high saving potentials [3].

In recent years raised awareness about global warming demands more efficient systems including electric motor-driven systems. Policymakers such as European Parliament and European Council implementing new requirements to increase efficiency by encouraging the usage of high-efficiency premium motors and variable frequency drives (VFD) [2,4].

VFDs regulate motor's output torque and speed to match the mechanical system loads and enables significant energy efficiency where variable mechanical power needed that have highly non-linear input power and output torque and speed such as pumps, fans and compressors. Previously Direct Current (DC) motors have been dominant for

variable motor speed control, yet developments in semiconductor technology became the drive force behind prevalence usage of VFDs with AC motors [5]. Motor speed control is advantageous in terms of lower system energy costs, increased system reliability and less maintenance.

Considering 20-year in service, power consumption of an electric motor depicts 90% of the total cost of ownership and followed by downtime costs as 5% and rebuild costs as 4% [1]. The initial purchase price represents only 1% of the total cost and it can be concluded that savings can be achieved by actions taken during operation of motor [1]. Industry 4.0 shaping industrial operations through automation and efficiency. Condition monitoring paves the way to Industry 4.0 through evaluating state of plant and/or equipment throughout its service life [6]. Maintenance can be defined as actions to retain or restore of an equipment in order to maintain its designed functions within entire lifespan [6]. Traditional maintenance relies on periodically health checks to provide operability, but researches shows that even if maintenance is done on time and correctly vast majority of failures arises during operation state [7]. Condition monitoring and diagnostics can help to schedule maintenance to prevent such situations whilst avoiding unintended downtime and financial losses. Also, condition monitoring has the opportunity to build database to understand better via trend analysis of the equipment or plant that leads more reliable system in the long run.

There are many condition monitoring methods available such as vibration, temperature, and current monitoring that can be used to assess insights into the health of equipment varying from bearings to electric motors and pumps. Current monitoring distinguishes itself from other methods since it is readily measured to control induction motor operation. VFDs are presenting great potential to not only controlling the motor operation but also can be utilised as a connection to the Internet of Things structure to serve Industry 4.0.

1.2 Objectives of Research

This study aims to diagnose and identify mechanical and electrical faults of VFD-fed induction motors under various loads and speeds via monitoring only motor current. As an outcome of this research comparative results among time-domain versus

frequency-domain analysis and classical machine learning algorithms versus deep learning algorithms are presented. Also, these analyses investigated under single-fault and multiple-fault approaches.

The achievement of this study was facilitated by the following specific objectives:

- Analyse motor faults under VFD controlled motor current
- Investigate effects of various loads and speeds
- Build different feature engineering methods
- Benchmark Classical ML and Deep Learning algorithms
- Investigate single-fault scenarios and multiple-fault scenario

1.3 Organization of Thesis

Thesis organised in five chapters to achieve aforementioned objectives;

- Chapter-2 provides an in-depth background to condition monitoring and fault diagnosis of AC induction motors including general information about induction motors, fault types, condition monitoring and signal processing techniques followed by fault diagnosis methods.
- Chapter-3 presents the experimental testing system and used methodology.
- Chapter-4 discusses the diagnostics of faults via two different approaches: component-based and motor-based condition monitoring.
- Chapter-5 remarks obtained results with different approaches and concludes with future recommendations.

2. CONDITION MONITORING OF INDUCTION MOTORS: BACKGROUND

2.1 Introduction of Induction Motors

2.1.1 Principle of operation

Electric motors are divided into two classes depending on their power supply type: direct current (DC) or alternating current (AC). The latter can be broken into two classes as synchronous or induction according to their operating speed. Induction motors, which operates slightly lower than synchronous speed, are also sub-divided as wounded and squirrel-cage motors. In this study, squirrel-cage induction motors have been investigated by means of induction motors, since the squirrel-cage type is predominantly used in industrial applications.

Induction motors run at a speed slightly lower than synchronous speed at the point where motor torque and load torque are equal [manual for industrial]. The difference between the actual speed and synchronous speed is known as slip [sourcebook].

synchronous speed equation comes here.

slip equation comes here.

In Principle, induction motors transfer electrical energy into mechanical energy by interlinking two electrical components: stator as stationary part and rotor as rotational part. Electrical energy transmitted from stator to rotor via electromagnetic induction, then a mechanical component bearing guides rotor to provide mechanical power [electric motor, induction motor fault diag].

motor diagram comes here.

2.1.2 VFD-fed induction motors

two figures will be added from iet 108.

A variable frequency drive, also called as adjustable-frequency drive (AFD), variable-speed drive (VSD) or inverter, fed motor system controls the rotation speed of the induction motor by controlling the supply frequency and voltage of the motor. The main difference between line-start and VFD-fed induction motors is that while in line-start mode supply voltage is the only controllable parameter, on the other hand, VFD-fed has the ability to control torque and speed easily [IET energy].

From a historical point of view, DC motors have been utilised in speed control applications. However, as a result of advances in power semiconductor technology used in inverters, the performance of AC motors in terms of precision, response, and speed range began to exceed that of DC motors [improving, historical]. As a driving force behind the induction motor control dominance today, VFDs generally have the following control strategies regarding speed and torque regulation:

- Voltage per Frequency Control (V/f)
- Field Oriented Control (FOC)
- Direct Torque Control (DTC)

The common idea behind these methods is based on controlling the torque and flux references applied to the motor separately, as in DC motor control [iet energy]. In the scope of this thesis, only the V/f control strategy emphasized due to the widespread adoption of the control method in pump, compressor and fan applications.

V/f control can be employed in both open-loop and closed-loop modes. Open-loop V/f control, which is by far the most popular control due to its simplicity, as the name implies, creates a constant air-gap flux by keeping the ratio between the voltage and frequency applied to the induction motor constant, and as a result, it provides the opportunity to work at operating frequencies from zero to nominal frequency [bose].

VFDs come with benefits such that energy savings, reliability and product quality, yet in concern of fault diagnosis they introduce a number of factors, which will be discussed later on, that increase the complexity.

2.1.3 Need for condition monitoring

Condition monitoring defined as measuring activities concerning characteristics and parameters of physical equipment at predetermined intervals either manually or automatically [bsi]. Leveraging rapid technological advancements in data storage, data process and network structure, condition monitoring became one of the driving force behind the industry 4.0 paradigm. The key goal behind this paradigm is to acquisition, transmition and analysis of data in order to predict future behaviours of a machinery, or plant on a larger scale, to boost efficiency and reliability [a pred model, pred maint]. Researchers from both academia and industry have devoted significant attention to condition monitoring of induction motors over decades. Even though induction motors renowned for robustness, environmental, electrical and mechanical effects may lead induction motors to failure. As a result, industrial processes subjected to potential losses in a manner of time and capital, so the desire to minimize or even prevent these losses emerges the need for condition monitoring.

2.1.4 Maintenance strategies

Maintenance can be defined as the combination of all technical and administrative actions taken to maintain or restore an item throughout its life cycle in a condition where it can fulfil its designed function [6]. A motor maintenance program should effectively address reliability, cost, and scheduling issues, as well as the causes of the most common motor failures. Essentially, there are two types of maintenance strategies: corrective and preventive.

bsi map comes here as figure.

Corrective maintenance is a type of maintenance performed after the induction motor failure to detect the fault and restore it to operational condition [6]. The main purpose of this type of maintenance is to get the equipment up and running as soon as possible by repairing or replacing the defective equipment. However, corrective maintenance as a failure-driven method contains a high-risk potential as faults may occur at unexpected times, can disrupt the operation. Since this type of maintenance approach does not take into account the damages that may occur, it may be suitable for equipment that is not critical to the business that does not pose a safety risk.

Preventive maintenance on the other hand, aims to detect faults at an early stage and correct them before they introduce risk to operation [6].

Predictive maintenance

PF diagram comes here.

2.2 Induction Motor Fault Types

2.2.1 Bearing related faults

2.2.2 Stator related faults

2.2.3 Rotor related faults

2.3 Condition Monitoring Techniques

2.3.1 Temperature monitoring

2.3.2 Vibration monitoring

2.3.3 Motor current monitoring

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Table 2.1: Table with single row and centered columns.

Column A	Column B	Column C	Column D
Row A	Row A	Row A	Row A
Row B	Row B	Row B	Row B
Row C	Row C	Row C	Row C

As seen in Table 2.1, lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Table 2.2: Table captions must be ended with a full stop.

Column A	Column B	Column C	Column D
Row A	Row A	Row A	Row A
Row B	Row B	Row B	Row B
Row C	Row C	Row C	Row C

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum, as seen in Table 2.2.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum [8].

2.4 Signal Processing Techniques

2.4.1 Time domain based signal analysis

2.4.1.1 Higher order statistics

2.4.2 Time-frequency based signal analysis

2.4.2.1 Wavelet Transform

2.4.3 Frequency based signal analysis

2.4.3.1 Shannon-Nyquist sampling theory

2.4.3.2 Fast Fourier transform

2.4.3.3 Power spectral density estimation

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Table 2.3: Prof. Dr. Galip TEPEHAN Captioning in landscape-oriented pages: the most important aspect is to align the lines horizontally.

Darametra	Column 2	Column 3		Column 4		Colu	Column 5
ı alanıcıı c			Subcolumn	Subcolumn	Subcolumn	Subcolumn	Subcolumn
Row 1	-7.680442	7.6986348	0.00	0.00	0.00	12	12
Row 2	140	ı	0.50	0.00	0.00	0	0
Row 3	37.174357	37.16192697	0.00	0.00	0.00	0	24
Row 4	140	ı	0.50	0.00	0.00	0	0
Row 5	37.174357	37.16192697	0.00	0.00	0.00	0	24
Row 6	140	ı	0.50	0.00	0.00	0	0
Row 7	37.174357	37.16192697	0.00	0.00	0.00	0	24
Row 8	140	ı	0.50	0.00	0.00	0	0
Row 9	37.174357	37.16192697	0.00	0.00	0.00	0	24
Row 10	140	ı	0.50	0.00	0.00	0	0
Row 11	37.174357	37.16192697	0.00	0.00	0.00	0	24
Row 12	140	ı	0.50	0.00	0.00	0	0
Row 13	37.174357	37.16192697	0.00	0.00	0.00	0	24
Row 14	140	ı	0.50	0.00	0.00	0	0
Row 15	37.174357	37.16192697	0.00	0.00	0.00	0	24

Table 2.4: Prof. Dr. Galip TEPEHAN Captioning in landscape-oriented pages: the most important aspect is to align the lines horizontally.

Doromotro	Column			Column 4		Colu	Column 5
ralaniene			Subcolumn	Subcolumn	Subcolumn	Subcolumn	Subcolumn
Row 1	-7.680442	7.6986348	0.00	0.00	0.00	12	12
Row 2	140	ı	0.50	0.00	0.00	0	0
Row 3	37.174357	37.16192697	0.00	0.00	0.00	0	24
Row 4	140	ı	0.50	0.00	0.00	0	0
Row 5	37.174357	37.16192697	0.00	0.00	0.00	0	24
Row 6	140	ı	0.50	0.00	0.00	0	0
Row 7	37.174357	37.16192697	0.00	0.00	0.00	0	24
Row 8	140	1	0.50	0.00	0.00	0	0

 Table 2.5: Neighborhoods Visited

Variable	Values	Count	%	Cum. %
::4	FALSE	2	33.33	33.33
	TRUE	3	50.00	83.33
visit	NA	1	16.67	100.00
	Total	6	100.00	

Table 2.6: Feasible triples for highly variable Grid, MLMMH.

Time (s) Triple chosen Other feasible trip	oles
0 (1, 11, 13725) (1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745 (1, 12, 10980) (1, 13, 8235), (2, 2, 0), (2, 3	(3, 0), (3, 1, 0)
5490 (1, 12, 13725) (2, 2, 2745), (2, 3, 0),	(3, 1, 0)
8235 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2	2, 3, 0), (3, 1, 0)
164700 (1, 13, 13725) (2, 2, 2745), (2, 3, 0),	(3, 1, 0)
0 (1, 11, 13725) (1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745 (1, 12, 10980) (1, 13, 8235), (2, 2, 0), (2, 3	(3, 0), (3, 1, 0)
5490 (1, 12, 13725) (2, 2, 2745), (2, 3, 0),	(3, 1, 0)
8235 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2	2, 3, 0), (3, 1, 0)
164700 (1, 13, 13725) (2, 2, 2745), (2, 3, 0),	(3, 1, 0)
0 (1, 11, 13725) (1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745 (1, 12, 10980) (1, 13, 8235), (2, 2, 0), (2, 3	(3, 0), (3, 1, 0)
5490 (1, 12, 13725) (2, 2, 2745), (2, 3, 0),	` ' ' '
8235 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2	2, 3, 0), (3, 1, 0)
164700 (1, 13, 13725) (2, 2, 2745), (2, 3, 0),	
0 (1, 11, 13725) (1, 12, 10980), (1, 13, 8235), (
2745 (1, 12, 10980) (1, 13, 8235), (2, 2, 0), (2, 3	
5490 (1, 12, 13725) (2, 2, 2745), (2, 3, 0),	
8235 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2	
164700 (1, 13, 13725) (2, 2, 2745), (2, 3, 0),	
0 (1, 11, 13725) (1, 12, 10980), (1, 13, 8235), (
2745 (1, 12, 10980) (1, 13, 8235), (2, 2, 0), (2, 3	
5490 (1, 12, 13725) (2, 2, 2745), (2, 3, 0),	
8235 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2	
164700 (1, 13, 13725) (2, 2, 2745), (2, 3, 0),	
0 (1, 11, 13725) (1, 12, 10980), (1, 13, 8235), (
2745 (1, 12, 10980) (1, 13, 8235), (2, 2, 0), (2, 3	
5490 (1, 12, 13725) (2, 2, 2745), (2, 3, 0),	
8235 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 2, 2745)	
164700 (1, 13, 13725) (2, 2, 2745), (2, 3, 0),	
0 (1, 11, 13725) (1, 12, 10980), (1, 13, 8235), (
2745 (1, 12, 10980) (1, 13, 8235), (2, 2, 0), (2, 3	. , ,
5490 (1, 12, 13725) (2, 2, 2745), (2, 3, 0),	
8235 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2	2, 3, 0), (3, 1, 0)

Table 2.6 (continued): Feasible triples for highly variable Grid, MLMMH.

Time (s)	Triple chosen	Other feasible triples
164700	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
0	(1, 11, 13725)	(1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745	(1, 12, 10980)	(1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
5490	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
8235	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
164700	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
0	(1, 11, 13725)	(1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745	(1, 12, 10980)	(1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
5490	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
8235	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
164700	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
0	(1, 11, 13725)	(1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745	(1, 12, 10980)	(1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
5490	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
8235	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
164700	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
0	(1, 11, 13725)	(1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745	(1, 12, 10980)	(1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
5490	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
8235	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
164700	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
0	(1, 11, 13725)	(1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745	(1, 12, 10980)	(1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
5490	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
8235	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
164700	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
0	(1, 11, 13725)	(1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745	(1, 12, 10980)	(1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
5490	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
8235	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

2.5 Fault Diagnosis Techniques

2.5.1 Model based condition monitoring

2.5.1.1 State estimation

2.5.1.2 Residual generation

2.5.1.3 Identification

2.5.2 Model free condition monitoring

2.5.2.1 Signal analysis

2.5.2.2 Classical machine learning methods

Support Vector Machines
Naive Bayes
k-Nearest Neighbour
Random Forest
Multi Layer Perceptron

2.5.2.3 Deep learning methods

1D Convolutional Neural Networks Long-Short Term Memory Networks

3. EXPERIMENTAL SETUP AND METHODOLOGY

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum (Figure 3.1).

The gap at the bottom of the page is 2.5 cm.

Keeping more redundant space is incorrect. So, this gap should not be. Texts, tables, figures, etc. in the pages must be arranged considering this situation.

- Figures, tables can be enlarged and be reduced.
- The explanations except from the first reference about the figure or table can be placed either before the figure/table or after.
- After referring to a figure or table it is placed to the closest and convenient location.

 Convenient location must be arranged considering the gap at the bottom of the page.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea

Figure 3.1: Neuron cell, adapted from (Cetin, 2003).

takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna equation (3.1).

$$y_t = \phi_1 y_{t-1} + \varepsilon_t \tag{3.1}$$

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Figure 3.2 : For a multi-line figure captions, it is important that all the lines of the caption are aligned.

$$R_0 = 0 ag{3.2a}$$

$$N_0 = 0$$
 (3.2b)

Each parameter is described, as seen in equation (3.1), or in 3.1. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore equation 3.1'in magna aliquyam erat Equation (3.2) into Equation (3.2a) and Equation (3.2b).

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna (3.3). Lorem ipsum

ÖRNEK ŞEKİL

Figure 3.3: Figure captions must be ended with a full stop.

dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

$$D(C_A, C_B) = \min X_A \in C_A, X_B \in C_B d(X_A, X_B)$$
 (3.3)

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna (Nelson, 1988).

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua [9].

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed ac augue vel dui adipiscing placerat et nec metus [10].

Donec bibendum sodales mollis. Cras in lacus justo, at vestibulum quam. Sed semper, est sit amet consectetur ornare, leo est lacinia velit, adipiscing elementum lectus felis at sem. Aenean hendrerit erat eu lacus malesuada at sodales arcu egestas. Maecenas euismod urna ut sem luctus et congue metus vulputate. Ut pellentesque, neque eget fringilla elementum, ligula massa aliquet lorem, et varius nisi lacus vel diam. Etiam vitae metus sed orci rutrum fringilla. Phasellus sed velit quam [11].

Mauris vestibulum, mauris a cursus adipiscing, nulla est hendrerit justo, ut fringilla eros velit ut mauris.

4. FAULT DIAGNOSIS METHODOLOGY

In this section, information will be given about how citations, quotings and footnotes should be.

4.1 Component Based Fault Diagnosis

4.1.1 Bearing fault analysis

4.1.1.1 Motor current signal analysis

4.1.1.2 PSD analysis

4.1.1.3 PSD+MCSA analysis

4.1.1.4 Deep learning analysis

References are cited with the surname of author and year. In the references section, the references are listed alphabetically according to the surname of the author.

Citing of a reference at the beginning of or within a sentence must be as Boran (2003), whereas a citation at the end of a sentence must be as (Boran, 2003). The full-stop is placed directly after the citation.

A reference with two authors must be cited as Yılmaz and Johnson (2004) at the beginning of or within a sentence, or as (Yılmaz and Johnson, 2004) at the end of a sentence.

A reference with more than two authors must be cited as Yılmaz et al. (2004) at the beginning of or within a sentence, or as (Yılmaz et al, 2004) at the end of a sentence.

Different publications of an author published in the same year must be cited as Feray (2005a), Feray (2005b).

While citing a part of a publication; the number of the page the cited material (chapter, table, figure, or equation) is on must be indicated. While citing, the expression "page"

must be abbreviated, but "chapter" must not. For example; (Centers for Disease Control and Prevention, 2005, p. 10), (Shimamura, 1989, Chapter 3).

Citing multiple publications in one pair of brackets; (Berndt, 2002; Harlow, 1983).

Citing personal communication in main text body; (V.–G. Nguyen, personal communication, September 28, 1998), (J. Smith, personal communication, August 15, 2009).

In the references section, reference tags must be listed according to the surname of author.

For citing of secondary references (In case the reference cites another reference), the secondary reference must be cited in brackets. In the references section, the reference tag is organized according to the secondary reference, the original reference must not be used as a tag. For example; In his e-mails, Smith argued that asynchronous line dancing would be the next Internet meme (as cited in Jones, 2010).

4.1.2 Stator fault analysis

4.1.2.1 Motor current signal analysis

4.1.2.2 PSD analysis

4.1.2.3 PSD+MCSA analysis

4.1.2.4 Deep learning analysis

References are cited by numbering and indicating the number in square brackets ([]) in the main text body. The first reference cited in a thesis is numbered [1] and the following references are numbered according to the order of appearance.

In the main text body, references must be cited as specified below:

- [1] Reference no. 1
- [1–3] References from no.1 to 3 (thus, references 1,2 and 3)
- [1,3] References no. 1 and 3
- [1,3,8] References no.1, 3 and 8
- [1,3–8] References no.1, and from no.3 to 8 (thus, references 1, 3, 4, 5, 6, 7 and 8)

Different volumes of a reference must be cited and numbered individually.

4.1.3 Rotor fault analysis

4.1.3.1 Motor current signal analysis

4.1.3.2 PSD analysis

4.1.3.3 PSD+MCSA analysis

4.1.3.4 Deep learning analysis

Generally, quoting is done by remaining faithful to the original text in terms of words, spelling and punctuation. In case there is a mistake, the correct version is written in square brackets in the quoted text.

Short quotations (not longer than 40 words) must be given in quotation marks. Following the text quoted, the reference must be written and a full-stop must be placed afterwards.

Quotations longer than 40 words must not be shown in quotation marks. Instead, they must be indented 1 tab space (1.27 cm) from the left side of the page. The font size for long quotations indented from the left must be 2 pt smaller than the font size used in main text body. However, it is not advised to quote very long texts and to quote very frequently. Unlike short quotations, references of long quotations must be placed after the full stop. (i.e., .(p.196))

Example for a quotation at the beginning of a sentence;

According to Jones (1998), "Students often had difficulty using APA style, especially when it was their first time" (p. 199).

Example for a quotation in the middle of a sentence;

Interpreting these results, Robbins et al. (2003) suggested that the "therapists in dropout cases may have inadvertently validated parental negativity about the adolescent without adequately responding to the adolescent's needs or concerns" (p. 541) contributing to an overall climate of negativity.

Example for a quotation at the end of a sentence;

Confusing this issue is the overlapping nature of roles in palliative care, whereby "medical needs are met by those in the medical disciplines; nonmedical needs may be addressed by anyone on the team" (Csikai & Chaitin, 2006, p. 112).

Detailed information on quoting could be found on websites of Graduate Schools and associated links.

Footnotes could be used in theses to add content-expanding, content-enhancing, or additional information. Footnote numbers must be placed directly after a quotation. In case the quotation is a paragraph, the footnote numbers must be placed directly after the last word of the paragraph (as superscript). In case the quotation is a concept or a noun, footnote numbers must be placed directly after that concept or noun (as superscript).

Footnote numbers in the main text body must be indicated as superscript, as shown¹. A punctuation mark must not be placed after the number.

Footnotes must be written with a font size 2 pt smaller than the main text body font size.

1 space must be set between footnote line and footnote number, 1/2 space must be set between footnote number and the first line of the footnote. Footnotes must be separated from the main text body with a thin horizontal line.

Detailed information on footnotes could be found on the websites of Graduate Schools and associated links.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea.

_

¹ Reference display can not be done with footnotes. Footnotes could be used in theses to add content-expanding, content-enhancing, or additional information. If these information must include references, these references must be indicated in References section.

Figure 4.1: Example figure.

4.2 Motor Based Fault Diagnosis

4.2.1 Motor current signal analysis

4.2.2 PSD analysis

4.2.3 PSD+MCSA analysis

4.2.4 Deep learning analysis

Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna².

This indicates that the ANN is accurate at base flow and flow height values lower then 3 m.

Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor

² Footnotes must be written with a font size 2 pt smaller than the main text body font size.

Table 4.1: Example table.

Column A	Column B	Column C	Column D
Row A	Row A	Row A	Row A
Row B	Row B	Row B	Row B
Row C	Row C	Row C	Row C

sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

ÖRNEK ŞEKİL

Figure 5.1 : Example figure in chapter 5.

5. CONCLUSIONS AND RECOMMENDATIONS

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

In this thesis, the necessary steps for constructing an end-to-end streamflow forecasting system were discussed. These steps include the use.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gub rgren, no sea.

Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.

This indicates that the ANN is accurate at base flow and flow height values lower then 3 m.

Table 5.1 : Example table in chapter 5.

Column A	Column B	Column C	Column D
Row A	Row A	Row A	Row A
Row B	Row B	Row B	Row B
Row C	Row C	Row C	Row C

Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna. Stet clita kasd gub rgren, no sea takimata sanctus est Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut lab ore sit et dolore magna.

REFERENCES

- [1] **Waide, P. and Brunner, C.U.** (2011). Energy-efficiency policy opportunities for electric motor-driven systems.
- [2] Kulterer, K., Werle, R., Lackner, P., Brunner, C. and Ellis, M. (2014). Policy Guidelines for Electric Motor Systems—Part 2: Toolkit for Policy Makers, 4E Electric Motor Systems EMSA, 4E Energy Efficient Enduse Equipment, International Energy Agency.
- [3] **Fleiter, T. and Eichhammer, W.** (2012). Energy efficiency in electric motor systems: Technology, saving potentials and policy options for developing countries.
- [4] Mikami, H., Ide, K., Shimizu, Y., Senoo, M. and Seki, H. (2011). Historical evolution of motor technology, *Hitachi Review*, 60(1), 39.
- [5] (2014). Improving Motor and Drive System Performance A Sourcebook for Industry, https://www.osti.gov/biblio/1220836.
- [6] **EN, B.** (2017). 13306:2017: Maintenance—Maintenance terminology, *BSI Standards Publication*.
- [7] (1985). Report of Large Motor Reliability Survey of Industrial and Commercial Installations, Part I, *IEEE Transactions on Industry Applications*, *IA-21*(4), 853–864.
- [8] **Roberts, S. and Jackson, J.** (1991). Active normal faulting in central Greece: an overview, *Geological Society Special Publication*, 56(1), 125–142.
- [9] Wegener, D.T., Kerr, N.L., Fleming, M.A. and Petty, R.E. (2000). Flexible Corrections of Juror Judgments Implications for Jury Instructions, *Psychology, Public Policy, and Law, 6*(3), 629–654.
- [10] Wolchik, S.A., West, S.G., Sandler, I.N., Tein, J.Y., Coatsworth, D., Lengua, L., Weiss, L., Anderson, E.R., Greene, S.M. and Griffin, W.A. (2000). An Experimental Evaluation of Theory-Based Mother and Mother-Child Programs for Children of Divorce, *Journal of Consulting and Clinical Psychology*, 68(5), 843–856.
- [11] **Zuckerman, M. and Kieffer, S.C.** (1994). Race Differences in Face-ism: Does Facial Prominence Imply Dominance?, *Journal of Personality and Social Psychology*, 66(1), 86–92.

APPENDICES

APPENDIX A.1: Example table and equations in the Appendices **APPENDIX A.2:** Additional information provided in the Appendices **APPENDIX B.1:** More additional information provided in the Appendices

APPENDIX B.2: More and more additional information provided in the Appendices

One way of implementing multiple appendix in a row is to use itemize as in below to prevent issues on the indentation in the second line.

APPENDIX A.1: Example table and equations in the Appendices **APPENDIX A.2:** Additional information provided in the Appendices **APPENDIX B.1:** More additional information provided in the Appendices

APPENDIX B.2: More and more additional information provided in the Appendices can go to the second line

APPENDIX A.1

Table A.1: Example table in appendix.

Column A	Column B	Column C	Column D
Row A	Row A	Row A	Row A
Row B	Row B	Row B	Row B
Row C	Row C	Row C	Row C

$$y_t = \phi_1 y_{t-1} + \varepsilon_t \tag{A.1.1}$$

Each parameter is described. As seen in equation (A.1.1), or in A.1.1.

$$y_t = \phi_1 y_{t-1} + \varepsilon_t \tag{A.1.2}$$

APPENDIX A.2

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed ac augue vel dui adipiscing placerat et nec metus. Donec bibendum sodales mollis. Cras in lacus justo, at vestibulum quam. Sed semper, est sit amet consectetur ornare, leo est lacinia velit, adipiscing elementum lectus felis at sem.

$$y_t = \phi_1 y_{t-1} + \varepsilon_t \tag{A.2.1}$$

Each parameter is described. As seen in equation (A.2.1), or in A.2.1.

APPENDIX B.1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed ac augue vel dui adipiscing placerat et nec metus. Donec bibendum sodales mollis. Cras in lacus justo, at vestibulum quam. Sed semper, est sit amet consectetur ornare, leo est lacinia velit, adipiscing elementum lectus felis at sem.

$$y_t = \phi_1 y_{t-1} + \varepsilon_t \tag{B.1.1}$$

Each parameter is described. As seen in equation (**B.1.1**), or in B.1.1.

$$y_t = \phi_1 y_{t-1} + \varepsilon_t \tag{B.1.2}$$

Each parameter is described. As seen in equation (**B.1.2**), or in B.1.2.

Table B.1: Example table in appendix.

Column A	Column B	Column C	Column D
Row A	Row A	Row A	Row A
Row B	Row B	Row B	Row B
Row C	Row C	Row C	Row C

APPENDIX B.2

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed ac augue vel dui adipiscing placerat et nec metus. Donec bibendum sodales mollis. Cras in lacus justo, at vestibulum quam. Sed semper, est sit amet consectetur ornare, leo est lacinia velit, adipiscing elementum lectus felis at sem.

$$y_t = \phi_1 y_{t-1} + \varepsilon_t \tag{B.2.1}$$

Each parameter is described. As seen in equation (**B.2.1**), or in B.2.1.

Table B.2: Example table in appendix.

Column A	Column B	Column C	Column D
Row A	Row A	Row A	Row A
Row B	Row B	Row B	Row B
Row C	Row C	Row C	Row C

CURRICULUM VITAE

PHOTO

Name Surname :

Place and Date of Birth :

E-Mail :

EDUCATION :

• **B.Sc.** : Graduation year, Istanbul Technical University, Faculty

of Electrical and Electronics, Department of Electrical

Engineering

• M.Sc. (If exists) : Graduation year, Istanbul Technical University, Faculty

of Electrical and Electronics, Department of Electrical

Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

- 1950-1956 Istanbul Technical University at the Central Laboratory of Theoretical Physics.
- 1953 Nobel Prize for Physics
- 1956 Completed Doctorate at Istanbul Technical University

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

- Ganapuram S., Hamidov A., Demirel, M. C., Bozkurt E., Kındap U., Newton A. 2007. Erasmus Mundus Scholar's Perspective On Water And Coastal Management Education In Europe. *International Congress River Basin Management*, March 22–24, 2007 Antalya, Turkey. (Presentation Instance)
- Satoğlu, Ş.I., Durmuşoğlu, M. B., Ertay, T. A. 2010. A Mathematical Model And A Heuristic Approach For Design Of The Hybrid Manufacturing Systems To Facilitate One-Piece Flow, *International Journal of Production Research*, 48(17), 5195–5220. (Article Instance)

• Chen, Z. 2013. Intelligent Digital Teaching And Learning All-In-One Machine, Has Projection Mechanism Whose Front End Is Connected With Supporting Arm, And Base Shell Provided With Panoramic Camera That Is Connected With Projector. Patent numarası: CN203102627-U. (Patent Instance)

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

F. M. SURNAME