

Bansilal Ramnath Agarwal Charitable Trust's
Vishwakarma Institute of Information Technology

# **Department of Artificial Intelligence and Data Science**

Student Name: Siddhesh Dilip Khairnar

Class: SY Division: B Roll No: 272028

Semester: 4<sup>th</sup> Academic Year: 2022 - 23

Subject Name & Code: Probability and Statistics (ES22201AD)

Title of Assignment: Continuous Probability Distributions

Date of Performance: 16/03/2023 Date of Submission: 10/04/2023

Aim: To calculate continuous Probability Distributions in R.

# Software Requirements:

R Studio or any other editor capable of executing R Scripts.

# **Background Information:**

### The Normal Distribution

# **Description**

Density, distribution function, quantile function and random generation for the normal distribution with mean equal to mean and standard deviation equal to sd.

# **Usage**

```
dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)
```

## **Arguments**

x, q = vector of quantiles.

p = vector of probabilities.

n = number of observations. If length(n) > 1, the length is taken to be the number required.

mean = vector of means.

sd = vector of standard deviations.

log, log.p = logical; if TRUE, probabilities p are given as log(p).

lower.tail = logical; if TRUE (default), probabilities are  $P[X \le x]$  otherwise, P[X > x].

#### **Details**

If mean or sd are not specified they assume the default values of 0 and 1, respectively.

The normal distribution has density

$$f(x) = 1/(\sqrt{2 \pi}) \sigma) e^{-((x - \mu)^2/(2 \sigma^2))}$$

where  $\mu$  is the mean of the distribution and  $\sigma$  the standard deviation.

## Value

dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile function, and rnorm generates random deviates.

The length of the result is determined by n for rnorm and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

For sd = 0 this gives the limit as sd decreases to 0, a point mass at mu. sd < 0 is an error and returns NaN.

#### Code:

```
this function gives height of probability distrubution
#i.e (y values for corresponding x values) at each point
#for given mean and standard deviation
x = seq(-20, 20, by = .1)
                        #starting point, ending point and the
difference between values
print(x)
y=dnorm(x,mean=5.0,sd=2.0)
plot(x,y,main="Normal Distribution",col="blue")
x = seq(-20, 20, by = .1)
                        #starting point, ending point and the
difference between values
print(x)
y=dnorm(x,mean=10.0,sd=5.0)
plot(x,y,main="Normal Distribution",col="blue")
#pnorm() function
                        #starting point, ending point and the
x=seq(-20,20,by=.1)
difference between values
```

```
print(x)
y=pnorm(x,mean=5.0,sd=1.0)
plot(x,y,main="Normal Distribution",col="blue")
#qnorm() function is the invese of the pnorm() function
#It takes the probability value and gives output
#which corresponds to the probability value
#It is useful in finding percentiles of normal distribution
y=seq(0,1,by=0.02) #area under graph ranges from 0 to 1.
x=qnorm(y,mean=2,sd=1)
plot(x,y,main="qnorm()",col="blue")
#rnorm() function in r programming is used to
#generate a vector of random numbers which are normally distributed
y=rnorm(50) #by default mean=0 and standard deviation=1
plot(y,main="Normal Distribution",col="darkorange")
y=rnorm(50,10,1) #no. of random values, mean and then standard
deviation
plot(y,main="Normal Distribution",col="darkorange")
#for normal distribution
p=dnorm(y,mean(y),sd(y))
plot(y,p,main="Normal Distribution",col="darkorange")
pnorm(80,67,13.7,lower.tail=FALSE) #since x>x(min) lowertail must
be false
```

### Result:

```
> x=seq(-20.20.by=.1) #starting point, ending point and the difference between values
> print(x)
  [1] -20.0 -19.9 -19.8 -19.7 -19.6 -19.5 -19.4
  [8] -19.3 -19.2 -19.1 -19.0 -18.9 -18.8 -18.7
 [15] -18.6 -18.5 -18.4 -18.3 -18.2 -18.1 -18.0
 [22] -17.9 -17.8 -17.7 -17.6 -17.5 -17.4 -17.3
 [29] -17.2 -17.1 -17.0 -16.9 -16.8 -16.7 -16.6
 [36] -16.5 -16.4 -16.3 -16.2 -16.1 -16.0 -15.9
 [43] -15.8 -15.7 -15.6 -15.5 -15.4 -15.3 -15.2
 [50] -15.1 -15.0 -14.9 -14.8 -14.7 -14.6 -14.5 [57] -14.4 -14.3 -14.2 -14.1 -14.0 -13.9 -13.8
 [64] -13.7 -13.6 -13.5 -13.4 -13.3 -13.2 -13.1
 [71] -13.0 -12.9 -12.8 -12.7 -12.6 -12.5 -12.4
 [78] -12.3 -12.2 -12.1 -12.0 -11.9 -11.8 -11.7
 [85] -11.6 -11.5 -11.4 -11.3 -11.2 -11.1 -11.0
 [92] -10.9 -10.8 -10.7 -10.6 -10.5 -10.4 -10.3
     -10.2 -10.1 -10.0
                         -9.9
                               -9.8
 [99]
                                      -9.7
                                           -9.6
                         -9.2
                                -9.1
[106]
      -9.5 -9.4
                   -9.3
                                      -9.0 -8.9
[113]
       -8.8 -8.7
                   -8.6
                         -8.5
                                -8.4
                                      -8.3 -8.2
[120]
       -8.1
            -8.0
                  -7.9
                         -7.8
                                -7.7
                                      -7.6 -7.5
                   -7.2
                                -7.0
[127]
       -7.4
             -7.3
                         -7.1
                                      -6.9
                                            -6.8
[134]
       -6.7
             -6.6
                   -6.5
                         -6.4
                                -6.3
                                      -6.2 -6.1
[141]
       -6.0
             -5.9
                   -5.8
                         -5.7
                                -5.6
                                      -5.5 - 5.4
             -5.2
                         -5.0
[148]
       -5.3
                   -5.1
                                -4.9
                                      -4.8 -4.7
             -4.5
                         -4.3
                                -4.2
                                      -4.1 -4.0
[155]
       -4.6
                   -4.4
[162]
                                            -3.3
       -3.9
             -3.8
                   -3.7
                          -3.6
                                -3.5
                                      -3.4
[169]
             -3.1
                   -3.0
                         -2.9
                                -2.8
       -3.2
                                      -2.7
                                            -2.6
[176]
       -2.5
             -2.4
                   -2.3
                          -2.2
                                -2.1
                                      -2.0 -1.9
                          -1.5
Γ1837
       -1.8
             -1.7
                    -1.6
                                -1.4
                                      -1.3
                                            -1.2
                                        -0.6
[190]
       -1.1
              -1.0
                    -0.9
                           -0.8
                                  -0.7
                                               -0.5
[197]
       -0.4
             -0.3
                    -0.2
                           -0.1
                                   0.0
                                          0.1
                                                0.2
[204]
                                                0.9
        0.3
               0.4
                     0.5
                            0.6
                                   0.7
                                          0.8
[211]
        1.0
               1.1
                     1.2
                            1.3
                                   1.4
                                          1.5
                                                1.6
[218]
        1.7
               1.8
                     1.9
                            2.0
                                   2.1
                                          2.2
                                                2.3
[225]
        2.4
               2.5
                      2.6
                            2.7
                                   2.8
                                          2.9
                                                3.0
[232]
        3.1
               3.2
                      3.3
                            3.4
                                   3.5
                                          3.6
                                                3.7
[239]
        3.8
               3.9
                     4.0
                            4.1
                                   4.2
                                          4.3
                                                4.4
[246]
        4.5
               4.6
                     4.7
                            4.8
                                   4.9
                                                5.1
                                          5.0
[253]
        5.2
               5.3
                      5.4
                            5.5
                                   5.6
                                          5.7
                                                5.8
[260]
        5.9
               6.0
                     6.1
                            6.2
                                   6.3
                                          6.4
                                                6.5
                     6.8
                            6.9
[267]
               6.7
                                   7.0
                                          7.1
                                                7.2
        6.6
[274]
        7.3
               7.4
                      7.5
                            7.6
                                   7.7
                                          7.8
                                                7.9
               8.1
                     8.2
                            8.3
                                         8.5
[281]
        8.0
                                   8.4
                                                8.6
[288]
        8.7
               8.8
                     8.9
                            9.0
                                   9.1
                                          9.2
                                                9.3
[295]
        9.4
               9.5
                     9.6
                            9.7
                                   9.8
                                          9.9
                                               10.0
[302]
       10.1
              10.2
                    10.3
                           10.4
                                  10.5
                                        10.6
                                               10.7
[309]
       10.8
             10.9
                    11.0
                           11.1
                                  11.2
                                        11.3
                                               11.4
[316]
       11.5
              11.6
                    11.7
                           11.8
                                  11.9
                                        12.0
                                              12.1
       12.2
              12.3
                    12.4
                           12.5
                                  12.6
                                        12.7
                                               12.8
[323]
       12.9
                    13.1
                           13.2
                                        13.4
                                               13.5
[330]
              13.0
                                  13.3
[337]
       13.6
              13.7
                    13.8
                           13.9
                                  14.0
                                        14.1
                                               14.2
                    14.5
                           14.6
[344]
       14.3
              14.4
                                  14.7
                                        14.8
                                               14.9
[351]
       15.0
              15.1
                    15.2
                           15.3
                                  15.4
                                        15.5
                                               15.6
[358]
       15.7
              15.8
                    15.9
                           16.0
                                  16.1
                                        16.2
                                               16.3
              16.5
                    16.6
                           16.7
                                  16.8
       16.4
                                        16.9
                                               17.0
[365]
       17.1
17.8
             17.2
17.9
[372]
                    17.3
                           17.4
                                  17.5
                                         17.6
                                               17.7
[379]
                    18.0
                           18.1
                                  18.2
                                        18.3
                                               18.4
[386]
       18.5
             18.6
                    18.7
                           18.8
                                  18.9
                                        19.0
                                               19.1
```

```
y=dnorm(x,mean=5.0,sd=2.0)
 plot(x,y,main="Normal Distribution",col="blue")
> x = seq(-20, 20, by = .1)
                         #starting point, ending point and the difference between values
> print(x)
  [1] -20.0 -19.9 -19.8 -19.7 -19.6 -19.5 -19.4
  [8] -19.3 -19.2 -19.1 -19.0 -18.9 -18.8 -18.7
 [15] -18.6 -18.5 -18.4 -18.3 -18.2 -18.1 -18.0
 [22] -17.9 -17.8 -17.7 -17.6 -17.5 -17.4 -17.3
 [29] -17.2 -17.1 -17.0 -16.9 -16.8 -16.7 -16.6
 [36] -16.5 -16.4 -16.3 -16.2 -16.1 -16.0 -15.9
 [43] -15.8 -15.7 -15.6 -15.5 -15.4 -15.3 -15.2
 [50] -15.1 -15.0 -14.9 -14.8 -14.7 -14.6 -14.5 [57] -14.4 -14.3 -14.2 -14.1 -14.0 -13.9 -13.8
 [64] -13.7 -13.6 -13.5 -13.4 -13.3 -13.2 -13.1
 [71] -13.0 -12.9 -12.8 -12.7 -12.6 -12.5 -12.4
 [78] -12.3 -12.2 -12.1 -12.0 -11.9 -11.8 -11.7
 [85] -11.6 -11.5 -11.4 -11.3 -11.2 -11.1 -11.0
 [92] -10.9 -10.8 -10.7 -10.6 -10.5 -10.4 -10.3
 [99] -10.2 -10.1 -10.0 -9.9
                               -9.8 -9.7
                                     -9.0 -8.9
                               -9.1
[106]
                         -9.2
      -9.5 -9.4
                  -9.3
       -8.8 -8.7
[113]
                   -8.6
                         -8.5
                               -8.4
                                      -8.3 -8.2
             -8.0 -7.9
[120]
      -8.1
                         -7.8
                               -7.7
                                      -7.6 -7.5
       -7.4
             -7.3
                   -7.2
                         -7.1
                               -7.0
                                      -6.9
                                           -6.8
[127]
Γ1347
       -6.7
             -6.6 -6.5
                         -6.4
                               -6.3
                                      -6.2
                                           -6.1
[141]
       -6.0
             -5.9
                   -5.8
                         -5.7
                               -5.6
                                      -5.5
                                           -5.4
[148]
       -5.3
             -5.2
                   -5.1
                         -5.0
                               -4.9
                                      -4.8 -4.7
       -4.6
                   -4.4
                                -4.2
                                            -4.0
Γ1557
             -4.5
                         -4.3
                                      -4.1
> y=dnorm(x,mean=10.0,sd=5.0)
> plot(x,y,main="Normal Distribution",col="blue")
> #pnorm() function
> x = seq(-20, 20, by = .1)
                          #starting point, ending point and the difference between values
> print(x)
  [1] -20.0 -19.9 -19.8 -19.7 -19.6 -19.5 -19.4
  [8] -19.3 -19.2 -19.1 -19.0 -18.9 -18.8 -18.7
 [15] -18.6 -18.5 -18.4 -18.3 -18.2 -18.1 -18.0
 [22] -17.9 -17.8 -17.7 -17.6 -17.5 -17.4 -17.3
 [29] -17.2 -17.1 -17.0 -16.9 -16.8 -16.7 -16.6
 [36] -16.5 -16.4 -16.3 -16.2 -16.1 -16.0 -15.9
 [43] -15.8 -15.7 -15.6 -15.5 -15.4 -15.3 -15.2
 [50] -15.1 -15.0 -14.9 -14.8 -14.7 -14.6 -14.5
 [57] -14.4 -14.3 -14.2 -14.1 -14.0 -13.9 -13.8
 [64] -13.7 -13.6 -13.5 -13.4 -13.3 -13.2 -13.1
 [71] -13.0 -12.9 -12.8 -12.7 -12.6 -12.5 -12.4
     -12.3 -12.2 -12.1 -12.0 -11.9 -11.8 -11.7
 [78]
 [85] -11.6 -11.5 -11.4 -11.3 -11.2 -11.1 -11.0
 [92] -10.9 -10.8 -10.7 -10.6 -10.5 -10.4 -10.3
 [99] -10.2 -10.1 -10.0 -9.9 -9.8 -9.7
                                           -9.6
[106]
       -9.5
            -9.4
                   -9.3
                         -9.2
                               -9.1
                                      -9.0 -8.9
                   -8.6
[113]
       -8.8 -8.7
                         -8.5
                               -8.4
                                      -8.3 -8.2
[120]
       -8.1 -8.0 -7.9
                         -7.8 -7.7
                                      -7.6 -7.5
       -7.4
                   -7.2
                         -7.1
[127]
             -7.3
                               -7.0
                                     -6.9
                                            -6.8
       -6.7
Γ1347
             -6.6 -6.5
                         -6.4
                               -6.3
                                      -6.2
                                            -6.1
Γ141]
       -6.0
             -5.9
                                -5.6
```

```
y=pnorm(x,mean=5.0,sd=1.0)
> plot(x,y,main="Normal Distribution",col="blue")
> #qnorm() function is the invese of the pnorm() function
> #It takes the probability value and gives output
> #which corresponds to the probability value
> #It is useful in finding percentiles of normal distribution
> y = seq(0,1,by=0.02)
                        #area under graph ranges from 0 to 1.
> x=qnorm(y,mean=2,sd=1)
> plot(x,y,main="qnorm()",col="blue")
> #rnorm() function in r programming is used to
> #generate a vector of random numbers which are normally distributed
> y=rnorm(50) #by default mean=0 and standard deviation=1
> plot(y,main="Normal Distribution",col="darkorange")
> y=rnorm(50,10,1) #no. of random values, mean and then standard deviation
> plot(y,main="Normal Distribution",col="darkorange")
> #for normal distribution
> p=dnorm(y,mean(y),sd(y))
> plot(y,p,main="Normal Distribution",col="darkorange")
> pnorm(80,67,13.7,lower.tail=FALSE) #since x>x(min) lowertail must be false
[1] 0.1713344
> pnorm(q, mean, sd, lower.tail = TRUE, log.p = FALSE)
```

## Visualization:











Conclusion: Hence in this assignment we've learned different functions To Generate NormalDistribution in R which are dnorm, qnorm, pnorm, rnorm.