Cortical Bone Properties					
Property	Units	Minimum Value	Maximum Value		
Elastic Limit	MPa	90	144		
Density	Kg/m ³	1800	2080		
Fracture Toughness	MPa*m ^{0,5}	3,5	6,1		
Fatigue Resistance at 10^7 cicles	MPa	23	80		
Hardness	HV	50	80		
Poisson's ratio	-	0,13	0,3		
Shear Rigidity Modulus	GPa	4,5	6,7		
Thermal Conductivity	W/m*°C	0,41	0,63		
Young's Module	GPa	18	26		
Specific Heat Capacity	J/Kg*°C	1100	1260		

Table 1. Orthotropic Properties of Cortical Bone.

Composite Materials Properties			
	Properties		
Materials	Young's Module (GPa)	Thermal conductivity (W/m*°C)	
PEK with 30% Fiberglass	18,2 - 19,1	0,608 - 0,632	
PEEK with 40% Carbon Fiber	33,4 - 40	2	
PARA with 60% Fiberglass	20,5 - 25,5	0,672 - 0,691	
PC with 40% Carbon Fiber	20,7 - 21,4	0,696 - 0,753	
Modified PEEK with Carbon Fiber between 45% and 55%	32,8 - 34,4	0,686 - 0,714	

Table 2. Properties of Composite Materials.

Simulation Properties					
	Units	Materials			
Interest Properties		PEK (30% CF)	PARA (60% GF)	PC (40% CF)	
Thermal Conductivity	W/m*°C	0,608 - 0,632	0,672 - 0,691	0,696 - 0,753	
Young's Module	GPa	18,2 - 19,1	20,5 - 25,5	20,7 - 21,4	
Density	Kg/m ³	1440 - 1460	1770 - 1810	1360 - 1380	
Elastic Limit	MPa	197 - 217	223 - 262	159 - 165	
Poisso's ratio	-	0,323 - 0,336	0,324 - 0,326	0,318 - 0,331	
Shear Rigidity Module	GPa	6,84 - 7,18	8,46 - 8,89	7,81 - 8,08	
Biocompatibility	Si	Si	Si	Si	
Tensile Limit	MPa	263 - 290	324 - 380	234 - 241	
Compression Limit	MPa	222 - 245	270 - 330	144 - 159	

Table 3. Properties for Simulation.

Figure 1. References for Titanium Implant.

Figure 2. Existing Model of Titanium Implants.

Figure 3. DCP Wide Plate Charging Status.

Figure 4. Mesh Layout of the Wide DCP Plate.

Mesh Details			
Data	Plate Type		
Data	Wide DCP Plate		
Mesh Type	Based on Combined Curvature		
Maximum Element Size	0,5 mm		
Minimum Element Size	0,0508817 mm		
Total Number of Nodes	626721		
Total Number of Elementes	943098		
Maximum Aspect Radius	4,565		

Table 4. Characteristics of the Model Mesh.

Figure 5. Compressive Stress Wide DPC Plate - PARA.

Figure 6. Wide DCP Plate Deformation - PARA.

Figure 7. Unitary Deformation Wide DCP Plate - PARA.

Figure 8. Compressive Stress Wide DCP Plate - PEK.

Figure 9. Wide DCP Plate Deformation - PEK.

Figure 10. Unitary Deformation Wide DCP Plate - PEK.

Figure 11. Compressive Stress Wide DCP Plate - PC.

Figure 12. Wide DCP Plate Deformation - PC.

Figure 13. Unitary Deformation Wide DCP Plate - PC.

Simulation Results - Wide DCP Plate					
	Unit	Used Material			
Analyzed Data		PARA	PEK	PC	
		(60% GF)	(30% CF)	(40% CF)	
Compressive Stress	MPa	3,91	4,003	3,91	
Desplacement	mm	0,03582	0,04528	0,0398	
Resulting Unit Strain	N/A	0,002441	0,003099	0,002712	

Table 5. Results from the Wide DCP Plate Study.

Figure 14. Convergence Analysis Graph.

Mesh Convergence Analysis					
Iteration	Mesh Density	Number of Elements	Maximum Element Size (mm)	Maximum Aspect Radius	Deformations (mm)
1	Very Thick Mesh	46451	7,52101	7,0168	0,03559
2	Thick Mesh	49956	6,7	6,6104	0,03562
3	Thick Mesh	72558	4,6	4,0376	0,03567
4	Standard Mesh	91440	3,3	9,2041	0,03571
5	Standard Mesh	97862	2,1	5,2713	0,03566
6	Fine Mesh	111455	1	6,9402	0,03575
7	Fine Mesh	127302	0,9	9,2038	0,03578
8	Fine Mesh	163276	0,8	4,683	0,03577
9	Very Fine Mesh	196249	0,7	6,9394	0,03579
10	Very Fine Mesh	279821	0,6	9,2186	0,03582
11	Very Fine Mesh	431286	0,5	4,565	0,03582

Table 6. Convergence Analysis Results.