GEL-2005Systèmes et commande linéaires

Mini-test #2

Lundi 27 novembre 2017, 9h30-10h20

Document permis: aucun

Professeur: André Desbiens, Département de génie électrique et de génie informatique

NOM :		
PRÉNOM :		
MATRICULE :		

Détaillez vos démarches et justifiez vos réponses.

Question 1 (30%)

Dans un cas moins fréquent où le bruit de mesure possède une amplitude particulièrement importante, il peut être recommandé d'utiliser un filtre de mesure $F_m(s)$, tel qu'illustré à la figure 1. Si r=0, $F_m(s)=\frac{1}{1+0.2s}$, $G_c(s)=\frac{0.5(1+s)}{s}$, $G_p(s)=\frac{2}{1+s}$ et $d_m(t)=3\sin(10t)$, que vaut l'amplitude de la variable contrôlée en régime permanent? Cet asservissement est stable.

Figure 1

Réponse : $|y_p(j10)| = 0.14$

Question 2 (20%)

Le procédé réel est $G_{proc}(s) = G_p(s) + M(s)G_p(s)$. La valeur maximale que peut prendre l'incertitude multiplicative à chaque fréquence est tracée à la figure 2. Le modèle qui a été identifié suite à des tests sur le procédé est $G_p(s) = \frac{2}{1+5s}$. Le régulateur conçu à partir de ce modèle est $G_c(s) = \frac{1+5s}{5s}$. Peut-on garantir que ce régulateur mènera assurément à un asservissement stable lorsqu'il sera testé sur le procédé (figure 3)?

Réponse : Pas de garantie de stabilité.

Figure 2

Figure 3

Question 3 (25%)

Le système étudié qui est illustré à la figure 4 est stable. La réponse en fréquences du régulateur est illustré à la figure 5. Le procédé $G_p(s)$ est similaire au moteur DC du laboratoire où y est la position angulaire et u est la tension à l'amplificateur de puissance. Si r est un échelon d'amplitude 4 appliqué à t=1 seconde et d_u est un échelon d'amplitude 3 appliqué à t=2 secondes, que vaut $u(\infty)$?

Réponse : $u(\infty) = -3$

Figure 4

Figure 5

Question 4 (12.5% + 12.5% = 25%)

Le système étudié est illustré à la figure 6. La réponse en fréquences de $G(s)=G_c(s)G_p(s)$ est tracée à la figure 7.

- a) Quel est le gain statique de $\frac{Y(s)}{R(s)} = H(s)$?
- b) Par quel facteur doit-on multiplier $G_p(s)$ pour que l'asservissement soit à la limite de la stabilité?

Réponses : a) 1 b) 3.16 ou encore $e^{-0.52s}$

Figure 6

Figure 7

Bon succès!

F(s) sans pôles

$f(t)$ pour $t \ge 0^-$	F(s)	Pôles de $F(s)$		
$\delta(t)$	1	Aucun		

F(s) avec des pôles simples (réels ou conjugués)

f(t) pour $t > 0$	F(s)	Pôles de $F(s)$
1 ou $u_e(t)$	$\frac{1}{s}$	0
e^{-at}	$\frac{1}{s+a}$	-a
$\sin(\omega t + \phi)$	$\frac{[\sin \phi]s + \omega \cos \phi}{s^2 + \omega^2}$	$\pm j\omega$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$	$\pm j\omega$
$\cos(\omega t)$	$ \frac{\frac{s}{s^2 + \omega^2}}{\underset{s+a}{\underline{\hspace{1cm}}}} $	$\pm j\omega$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$-a \pm j\omega$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$	$-a \pm j\omega$

F(s) avec des pôles multiples

f(t) pour $t > 0$	F(s)	Pôles de $F(s)$
t	$\frac{1}{s^2}$	0 (double)
$\frac{t^{n-1}}{(n-1)!}, n = 1, 2, 3, \dots$ te^{-at}	$\frac{1}{s^n}$	0 (ordre n)
	$\frac{1}{(s+a)^2}$	-a (double)
$\frac{t^{n-1}}{(n-1)!}e^{-at}, n = 1, 2, 3, \dots$	$\frac{1}{(s+a)^n}$	-a (ordre n)
$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$	$\pm j\omega$ (double)
$\frac{t}{2\omega}\sin(\omega t)$	$\frac{s}{(s^2+\omega^2)^2}$	$\pm j\omega$ (double)
$\frac{t^2}{2\omega}\sin(\omega t)$	$\frac{3s^2 - \omega^2}{(s^2 + \omega^2)^3}$	$\pm j\omega$ (triple)

Table 1: Transformées de Laplace

$$\mathcal{L}f'(t) \text{ (pour } t > 0) = s\mathcal{L}f(t) - f(0^+)$$
(1)

$$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{1}{s}\mathcal{L}f(t) \tag{2}$$

$$f(0^{+}) = \lim_{s \to \infty} s \mathcal{L}f(t) \tag{3}$$

$$f(\infty) = \lim_{s \to 0} s \mathcal{L} f(t) \tag{4}$$

$$\mathcal{L}f(t-\theta)u_e(t-\theta) = e^{-\theta s}\mathcal{L}f(t)u_e(t)$$
(5)

$$\mathcal{L}\left[\int_0^t f_1(\tau)f_2(t-\tau)d\tau\right] = F_1(s)F_2(s) \tag{6}$$