

planetmath.org

Math for the people, by the people.

potential of hollow ball

Canonical name PotentialOfHollowBall Date of creation 2013-03-22 17:16:46 Last modified on 2013-03-22 17:16:46

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 8

Author pahio (2872)
Entry type Example
Classification msc 28A25
Classification msc 26B10
Classification msc 26B15

Related topic JacobiDeterminant

Related topic ChangeOfVariablesInIntegralOnMathbbRn

Related topic SubstitutionNotation

Related topic ModulusOfComplexNumber

Let (ξ, η, ζ) be a point bearing a mass m and (x, y, z) a point. If the distance of these points is r, we can define the *potential* of (ξ, η, ζ) in (x, y, z) as

$$\frac{m}{r} = \frac{m}{\sqrt{(x-\xi)^2 + (y-\eta)^2 + (z-\zeta)^2}}.$$

The relevance of this concept appears from the fact that its partial derivatives

$$\frac{\partial}{\partial x} \left(\frac{m}{r} \right) = -\frac{m(x - \xi)}{r^3}, \quad \frac{\partial}{\partial y} \left(\frac{m}{r} \right) = -\frac{m(y - \eta)}{r^3}, \quad \frac{\partial}{\partial z} \left(\frac{m}{r} \right) = -\frac{m(z - \zeta)}{r^3}$$

are the components of the gravitational with which the material point (ξ, η, ζ) acts on one mass unit in the point (x, y, z) (provided that the are chosen suitably).

The potential of a set of points (ξ, η, ζ) is the sum of the potentials of individual points, i.e. it may lead to an integral.

We determine the potential of all points (ξ, η, ζ) of a hollow ball, where the matter is located between two concentric spheres with radii R_0 and R (> R_0). Here the of mass is assumed to be presented by a continuous function $\varrho = \varrho(r)$ at the distance r from the centre O. Let a be the distance from O of the point A, where the potential is to be determined. We chose O the origin and the ray OA the positive z-axis.

For obtaining the potential in A we must integrate over the ball shell where $R_0 \leq r \leq R$. We use the spherical coordinates r, φ and ψ which are tied to the Cartesian coordinates via

$$x = r \cos \varphi \cos \psi$$
, $y = r \cos \varphi \sin \psi$, $z = r \sin \varphi$;

for attaining all points we set

$$R_0 \le r \le R$$
, $-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$, $0 \le \psi < 2\pi$.

The cosines law implies that $PA = \sqrt{r^2 - 2ar\sin\varphi + a^2}$. Thus the potential is the triple integral

$$V(a) = \int_{R_0}^{R} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\pi} \frac{\varrho(r) r^2 \cos \varphi}{\sqrt{r^2 - 2ar \sin \varphi + a^2}} dr d\varphi d\psi = 2\pi \int_{R_0}^{R} \varrho(r) r dr \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{r \cos \varphi d\varphi}{\sqrt{r^2 - 2ar \sin \varphi + a^2}},$$
(1)

where the factor $r^2 \cos \varphi$ is the coefficient for the coordinate changing

$$\left|\frac{\partial(x,\,y,\,z)}{\partial(r,\,\varphi,\,\psi)}\right| = \mod \left| \begin{matrix} \cos\varphi\cos\psi & \cos\varphi\sin\psi & \sin\varphi \\ -r\sin\varphi\cos\psi & -r\sin\varphi\sin\psi & r\cos\varphi \\ -r\cos\varphi\sin\psi & r\cos\varphi\cos\psi & 0 \end{matrix} \right|.$$

We get from the latter integral

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{r \cos \varphi \, d\varphi}{\sqrt{r^2 - 2ar \sin \varphi + a^2}} = -\frac{1}{a} \int_{\varphi = -\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{r^2 - 2ar \sin \varphi + a^2} = \frac{1}{a} [(r+a) - |r-a|].$$
(2)

Accordingly we have the two cases:

1°. The point A is outwards the hollow ball, i.e. a > R. Then we have |r - a| = a - r for all $r \in [R_0, R]$. The value of the integral (2) is $\frac{2r}{a}$, and (1) gets the form

$$V(a) = \frac{4\pi}{a} \int_{R_0}^{R} \varrho(r) \, r^2 \, dr = \frac{M}{a},$$

where M is the mass of the hollow ball. Thus the potential outwards the hollow ball is exactly the same as in the case that all mass were concentrated to the centre. A correspondent statement concerns the attractive

$$V'(a) = -\frac{M}{a^2}.$$

 2° . The point A is in the cavity of the hollow ball, i.e. $a < R_0$. Then |r-a| = r-a on the interval of integration of (2). The value of (2) is equal to 2, and (1) yields

$$V(a) = 4\pi \int_{R_0}^{R} \varrho(r) r \, dr,$$

which is on a. That is, the potential of the hollow ball, when the of mass depends only on the distance from the centre, has in the cavity a constant value, and the hollow ball influences in no way on a mass inside it.

References

[1] Ernst Lindelöf: Differentiali- ja integralilasku ja sen sovellutukset II. Mercatorin Kirjapaino Osakeyhtiö, Helsinki (1932).