NERSITA PRICH-UNITA PARTIAL PARTIES OF BANKS OF

Identifikaum von mstorischen Gebäuden und Bauteilen durch Bildklassifikation

Christof Wittmann

Bachelorarbeit

im Studiengang Angewandte Informatik Fakultät Wirtschaftsinformatik und Angewandte Informatik Otto-Friedrich-Universität Bamberg

4.4.2019

Wissenschaftliche Betreuung: Prof. Dr. Christoph Schlieder Softwaretechnischer Ansprechpartner: Thomas Heinz Lehrstuhl für Angewandte Informatik in den Kultur-, Geschichts- und Geowissenschaften

Inhaltsverzeichnis

1 Einleitung	1
2Problemstellung	2
3Forschungsstand	
4Lösungsansatz	
5Umsetzung	7
6Evaluierung	
7Diskussion	9
8Anhang	. 10
9Literaturverzeichnis	. 11
A Eidesstattliche Erklärung	12

Abbildungsverzeichnis

Tabellenverzeichnis

1 Einleitung

2 Problemstellung

Mobile kartographische Anwendungen erlauben zwar durch GPS etc. die Ermittlung der momentanen Position, gerade durch neuen GPS-Standard. Kompass-Sensor erlaubt auch Identifizierung der gegenwärtigen Richtung, so dass Gebäude grob zugeordnet werden können, indem sich Person bzw. mobiles Gerät so lange drehen, bis die Kompassnadel auf Gebäude zeigt. Diese ist ggfs. wenig komfortabel und hat folgende Nachteile:

- Gebäudekomplexe oft nur in Gesamtheit erfasst [Screenshot]
- Bedeutsame Bauteile oft nicht als eigenes Element auf Karte erfasst
- ...

Alternativ dazu: Benutzer machen Bild von Gebäude, erhalten nicht nur GPD-Position und Richtung auf Karte angezeigt, sondern auch sichere Identifikation von Gebäude mitsamt Titel und weiterführenden Informationen. Bei größeren Gebäudekomplexen oder besonderen Gebäudebestandteilen (Portale, Statuen, Brunnen, Fenster...) auch genaue Angaben.

3 Forschungsstand: Methoden der Bilderkennung

3.1 Grundprinzipien der Feature Detection

Um Bilder informatisch miteinander vergleichen und ihre Ähnlichkeit ermitteln zu können, ist es erforderlich, sich auf bestimmte Attribute dieser Bilder zu konzentrieren. Bei Feature Detection-Verfahren werden deshalb interessante Punkte ermittelt, die besonders für den Bildvergleich geeignet sind. Als interessant kann dabei ein Punkt gelten, der in Bezug auf seine Nachbarschaft eine signifikante Veränderung aufweist, etwa hinsichtlich seiner Farbe, seines Helligkeitswertes oder seiner Richtung. Die solchen Verfahren zugrundeliegende Annahme ist, dass derart interessante Punkte mit hoher Wahrscheinlichkeit auf allen Bildern zu finden sind, die ein identisches Objekt abbilden. [Andersson & Marquez, S. 8]

Die fotographische Aufnahme eines Objekts kann auf sehr unterschiedliche Weise erfolgen, wobei die fotografierende Person eine Vielzahl von Faktoren variieren kann, um zum gewünschten Ergebnis zu kommen. Eigenschaften wie Perspektive, Entfernung und Richtung können direkt durch Positionsänderung von Kamera und Person beeinflusst werden, wobei die Möglichkeiten ggfs. durch die Umgebungssituation des **Objekts** eingeschränkt werden. Mittels Kameraeinstellungen ist etwa die Helligkeit oder Farbbalance der Aufnahme wählbar, ebenso das Format des erzeugten Bildes. Weniger Einfluss hat die fotografierende Person auf die Lichtverhältnisse, insbesondere im Freien. Selbst die Wahl einer geeigneten Tageszeit und der Einsatz künstlicher Beleuchtung können nicht verhindern, dass örtliche Lichtverhältnisse stark durch örtliche Wetterverhältnisse beeinflusst werden. Beim Bildvergleich ist es deshalb von herausragender Bedeutung, dass bezüglich der genannten Faktoren eine größtmögliche Invarianz gegeben ist. Dies bedeutet, dass bei identischen Objekten idealerweise auch die gleichen Features identifiziert werden, auch wenn die Aufnahmen in vielerlei Hinsicht erheblich voneinander abweichen. [Andersson & Marquez, S. 7-10]

3.1.1 Methoden der Feature Detection

Feature Detection-Algorithmen können generell einer der drei folgenden Kategorien zugeordnet werden:

- Kantendetektion (Edge Detection)
- Eckendetektion (Corner Detection)
- Blobdetektion (Blob Detection)

Die Kantendetektion identifiziert Bildpunkte, die entlang einer Linie liegen, die auffallenden Unterschiede bzgl. der vorliegenden Helligkeits- bzw. Farbwerte aufweist. Für sich genommen ist die Kantendetektion jedoch ungeeignet für die Feature Detection und ist für diese somit nur von historischer Bedeutung.

Die Eckendetektion, für die etwa die Harris Corner Detection als bekanntes Beispiel genannt werden kann, bedient sich der Kantendetektion und ermittelt auf deren Basis Schnittpunkte zwischen zwei oder mehreren Kanten. Die so identifizierten Ecken sind als Features deutlich besser geeignet als Kanten. Nichtsdestotrotz ist die Eckendetektion nicht in der Lage, eine Invarianz bezüglich der Skalierung zu gewährleisten. Deshalb wird die Eckendetektion in heutigen Feature Detection-Algorithmen entweder gar nicht oder nur in Verbindung mit der Blobdetektion verwendet.

Ein entscheidender Vorteil der Blobdetektion ist die Invarianz gegenüber Perspektive, Entfernung und Rotation, womit die entsprechenden Algorithmen für die meisten Anwendungszwecke als Regel als Mittel der Wahl gelten können. Ein bekanntes Beispiel ist der SIFT-Algorithmus, der im Folgenden vorgestellt werden soll. [Andersson & Marquez, S. 8-9]

4 Forschungsstand: Bildauswahl

Zurich Building Image Database. 1005 Bilder von 201 Gebäuden. Jeweils 5 Bilder pro Objekt. Jeweils leichte Variation von Zoomstufe und Winkel. Aufnahme zur gleichen Zeit mit gleicher Kamera. Keine systematische Variation der Bildeigenschaften.

http://www.vision.ee.ethz.ch/showroom/zubud/

"five images were acquired at random arbitrary view points" "all the images were taken under different seasons, weather conditions and by two different cameras" aber jeweils nur ein Zeitpunkt / eine Kamera für ein Gebäude.

https://webcache.googleusercontent.com/search?q=cache:oPXu5mapeJoJ:www.vision.ee.ethz.ch/showroom/zubud/report-db.ps+&cd=2&hl=en&ct=clnk&gl=de

The Oxford Buildings Dataset:

Von Flickr über Queries bezogen, dann manuell mit Qualitätskategorie (Good, OK, Bad. Junk) annotiert. Insgesamt 5062 Bilder für 11 Sehenswürdigkeiten. Bildeigenschaften zufällig bzw. von Flickr-Nutzern bestimmt.

https://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

5 Lösungsansatz

6 Umsetzung

7 Evaluierung

8 Diskussion

Ausblick: Nutzer können selbst Bauteile durch Fotos hinzufügen statt diese selbst in Karte (z.B. OSM) hinzufügen zu müssen. Identifizierung durch Position, Richtung und Visibility-Algorithmus.

9 Anhang

10 Literaturverzeichnis

A. Eidesstattliche Erklärung

C	O, dass ich die vorstehende Bachelorarbeit
selbstständig verfasst und keine anderen als benutzt habe.	die angegebenen Quenen und Amsmitter
benutzt nabe.	
Ort, Datum	Unterschrift