AI Notes

Context

Exam:

Monday 30th, 9:30am – 12:00pm

4 Questions:

- 1. Clustering
- 2. Supervised Learning
- 3. Search
- 4. Optimisation

Each 15 marks, total 60 marks

**note: no GMM and weka

Content:

- Clustering (Week1&2)
- Supervised Learning (Week 3 6)
- Search (Week 7 & 8)
- Optimisation (Week 9 & 10)

Clustering:

- Hierarchical Clustering
- K-means
- GMM/EM
- DBSCAN

Supervised Learning:

- Linear Regression
- Gradient Descent
- Logistic Regression
- Neural Network
- Evaluate & Hyperparameter Tuning
- Naive Bayes
- KNN-algorithm

Search:

- Search Problem
- BFS
- DFS
- A*

Optimisation:

- Hill Climbing
- Simulated Annealing
- Formulation
- Constraint handling

Introduction

Basic Introduction:

Assuming a data set with $m{n}$ samples, and each sample has $m{d}$ dimensions :

$$\begin{aligned} [(x_1^1, x_2^1, \dots x_d^1), (x_1^2, x_2^2, \dots x_d^2), \dots, (x_1^n, x_2^n, \dots x_d^n)] \\ &= 1, 2 \dots n \end{aligned}$$

Instance: One data sample

Dimension: Number of coordinates to specify the

samples

Feature / Attribute : The value at each dimension

you can think of $m{n}$ samples as data inputs, and $m{d}$ dimensions as attributes

(or in Objects terms,

n : Objects

d : properties)

There are 3 types of Machine Learning:

• Supervised Learning

(Labelled Data)

• Unsupervised Learning

(Unlabeled Data, may be due to data being too big / unclear)

• Reinforced Learning

(Learns from rewards, rewards changes by time)

Classification

Outputs are categorical

eg: handwritten numbers \rightarrow [1,2,3,..]

Regression

Outputs are continuous numbers

eg: Student Score Marks → 83.2%

Clustering

Hierarchical Clustering:

Terminology

Singleton: one data point

Cluster: multiple data points

Segments data into clusters such that there is a "natural grouping" among objects, it creates a hierarchical decomposition of the set of objects using some criterions

eg:

And produces a dendrogram:

Note : the distance between clusters are noted as height

In the end, there will be only 1 cluster all grouped together

Measuring Distance

we will be using Euclidean Distance only

$$distance(a,b) = \sqrt{(a_x - b_x)^2 + (a_y - b_y)^2}$$

extra: it is also Minkowski with dimension = 2

There are 2 ways of Hierarchical clustering:

- Agglomerative (bottom-up merging)
- **Divisive** (top-down merging)

Divisive is <u>not recommended</u> as it can be computationally expensive

There are 3 ways to measure distance between clusters:

Single Linkage

- > Distance of the closest pair
- Produces long chain shape of clusters

$$c_{1},c_{2}=min\left(\forall distance\left(p_{c_{1}},p_{c_{2}}\right)\right)$$

Where c_1 , c_2 are clusters and return $\underline{\text{minimum}}$ distance between 2 points in c_1 and c_2

• Complete Linkage

- > Distance of the **furthest pair**
- > Produces compact shape clusters
- > Sensitive to noise

Eg:

$$c_1, c_2 = max \Big(\forall distance \Big(p_{c_1}, p_{c_2} \Big) \Big)$$

return $\underline{\text{maximum}}$ distance between 2 points in c_1 and c_2

Group Average

- Average of all distances
- Most used
- Robust against noise

$$c_1, c_2 = \frac{\sum \forall distance(p_{c_1}, p_{c_2})}{N \text{um } p_{c_1} + N \text{um } p_{c_2}}$$

return Average distance of all the points in c_1 and c_2

Advantages

- Deterministic results (same result for any run)
- Does not need to specify number of clusters
- Can create cluster of arbitrary shapes

Disadvantages

- Does not scale up to larger datasets, time complexity is $O(n^2)$
- Will impose hierarchical structure even though data is not appropriate for it
- Once a decision is made, cant be undone

Algorithm (agglomerative):

Step 1: Find every Euclidean distance

(create distance matrix)

Step 2 : Get the minimum distance, which the 2 points/cluster joins becoming the new cluster

Step 3 : Recalculate the distance matrix with the new cluster

Complete Linkage → Max

• Single Linkage → Min

Group Average → Average

Step 4 : Repeat **Step 2**, until only 1 cluster left , Done!

Example of a run (Complete Linkage):

point	x-axis	y-axis
\boldsymbol{a}	0.40	0.53
b	0.22	0.38
c	0.35	0.32
d	0.26	0.19
e	0.08	0.41
f	0.45	0.30

Step 1 – Use Euclidean distance to create distance matrix

(in this case we are only calculating point a and b)

$$distance(a,b) = \sqrt{(a_x - b_x)^2 + (a_y - b_y)^2}$$

$$distance(a,b) = \sqrt{(0.40 - 0.22)^2 + (0.53 - 0.38)^2}$$

$$= \sqrt{(0.18)^2 - (0.15)^2}$$

$$= \sqrt{0.0549}$$

$$= 0.23$$

Distance Matrix:

	а	b	С	d	е	f
а	0					
b	0.23	0				
С	0.22	0.15	0			
d	0.37	0.20	0.15	0		
е	0.34	0.14	0.28	0.29	0	
f	0.23	0.25	0.11	0.22	0.39	0

Step 2 - get minimum value, forms the cluster

	а	b	С	d	е	f
а	0					
b	0.23	0				
С	0.22	0.15	0			
d	0.37	0.20	0.15	0		
е	0.34	0.14	0.28	0.29	0	
f	0.23	0.25	0.11	0.22	0.39	0

Step 3 – Recalculate the distance matrix (Complete Link)

to update the table:

NewValue = $\max(distance(p_1, n), distance(p_2, n))$

Which concludes:

 $\max(distance(c, a), distance(f, a)) = 0.23$ $\max(distance(c, b), distance(f, b)) = 0.25$ $\max(distance(c, d), distance(f, d)) = 0.22$ $\max(distance(c, e), distance(f, e)) = 0.39$

Updated Table:

	а	b	c,f	d	е
а	0				
b	0.23	0			
c,f	0.23	0.25	0		
d	0.37	0.20	0.15	0	
е	0.34	0.14	0.28	0.29	0

Step 4 – Repeat Step 2 until 1 cluster left

Will give an output of the distance of the final 2 cluster

**many more steps here but will skip ahead till 1 cluster left as it's just a repeat

K-Means:

Terminology

K: number of clusters

Centroid: the center of uniform density

Centroid Based – Describes each cluster by its mean

Its objective is to *minimize the within cluster variances* of all clusters that you set, **K**

eg(K = 2):

Advantages

- Easy to implement
- Efficient

Disadvantages

- Non-deterministic results (different result for every run)
- May result in local optima (multiple restart to get global optima)
- Require number of clusters in advance

Algorithm:

Step 1: Set number of cluster, K

(K will usually have coordinates, if not → set random)

Step 2 : Calculate the distance matrix of every points to K centroid

Step 3 : Assign the points to the closest K centroid (minimum)

Step 4 : Recalculate the cluster centroid mean

Step 5: Repeat Step 2, until K-mean stop changing,

Done!

Example of a run:

1 2 3 4 5 6	185 170 168 179 182 188	72 56 60 68 72		P6
3 4 5	168 179 182	60 68		P6
5	179 182	68		
5	182			
		72		
6	188			
	100	77	P5	P1
	P3 P2			

Step 1: Set number of cluster, K

Set K = 2 and in this case: $K_1 = P_1$, $K_2 = P_2$

Initial Centroid

Cluster	X	Y
k1	185	72
k2	170	56

Step 2 : Calculate the distance matrix of every points to K centroid

Using Euclidean Distance formula:

$$distance(a,b) = \sqrt{(a_x - b_x)^2 + (a_y - b_y)^2}$$

Gives:

Sample No	K1	K2
3	20.809	4.472
4	7.211	15
5	3	20
6	5.831	27.659

Step 3: Assign the points to the closest K centroid

Using formula:

$$\min(distance(P_n, K_1), distance(P_n, K_2))$$

"assign to K closest to it"

Step 4 : Recalculate the cluster centroid mean

Formula for new K-mean if dimension = 2:

$$\frac{\sum P_x}{n}, \frac{\sum P_y}{n}$$

n = number of points in that cluster

Cluster	X	Υ
	= (185+179+	= (72+68+
k1	182+188) / 4	72+77) / 4
	= 183	= 72
k2	= (170 + 168) / 2	= (60 + 59) / 2
K2	= 169	= 58

Step 5: Repeat Step 2, until K-mean stop changing

GMM/EM:

NO

DBSCAN:

Density Based Spatial Clustering of Application with Noise (you do not need to memorize the name)

Discover clusters by density of regions

Usually, there are 2 parameters:

- ➤ Radius of circle (€)
- Minimum number of points in that circle (minPts)

Points are categorized into 3 terms:

Core: point has minPts and within radius €

Border: does not have minPts and point lies within radius ϵ of core

Noise/Outlier: point which are <u>not</u> border or core

Forming Clusters

Directly Density-Reachable

A point, u is *Directly Density-Reachable* if it is within a <u>core's</u> radius of point v

Indirectly Density-Reachable

A point, u is *Indirectly Density-Reachable* if it is a border but <u>not within</u> a <u>core's</u> radius of point v

Advantages

- Can discover arbitrary shape clusters
- Robust to noise/outliers
- Doesn't need number of cluster

<u>Disadvantages</u>

- Non-deterministic results (border points may have different clusters depending on code)
- If data is not well-explained, choosing e and minPts may be difficult
- May fail if data too sparse

Algorithm:

Step 1 : Label all the points , core/border/noise

Step 2 : Remove all the noise/outlier points

(or set them as *Noise*)

Step 3 : For every core point, Assign points that are density-Reachable from that core and make it a cluster

Step 4 : Reassign border points belonging to more than 1 cluster to be the one <u>closest</u> to it

Done!

Example of a run:

Step 1: Label all the points , **core/border/noise**

have set:

- Radius of Circle (ϵ) \rightarrow 1.5
- Number of Neighbors (minPts) → 4

Step 2: Remove all the noise/outlier points

(in code, we can just ignore them to increase efficiency of program)

onlyList = core + border

Step 3 : For every core point, Assign points that are density-Reachable from that core and make it a cluster

Without radius shown:

Step 4 : Reassign border points belonging to more than 1 cluster to be the one <u>closest</u> to it

(In this case, we don't need to as border doesn't belong to more than 1 cluster)

Done!