

Good morning!

We start at 9 am

How to manage an end-to-end data science case

Data BootCamp 2022

Summary

- 1. Formation objectives (10)
- 2. How does a data project work? (50)
- 3. Dream team for data projects 🚳
- 4. Wrap-up (15)

FORMATION OBJECTIVES

What knowledge do you have on the conduct of a data project?

There are several types of use cases ranging from the display of indicators to artificial intelligence, it depends on the maturity of your customer

Visualization

Capitalize on quality and accessible data to share information

Monitoring

Track what's happening on a process or within a team/organization

Analytics & Prediction

Discover patterns to extrapolate the rest

Optimization

Extract insights on the elements to be anticipated or controlled as well as the optimization levers

Automation

Assist employees through self-adaptive/scalable algorithms that automate tasks

THE CONDUCT OF A DATA PROJECT

Illustration of data science project

CONTEXT

In a context of **natural disasters increase** and **meteorological disturbances**, a major French Insurer observed a saturation in its claim management centre. Therefore, we were asked to **underline and quantify** those observations and **identify root causes** and process bottle necks that could affect the claim management process.

DATA

8,4M

Customers in 2019

12,8M

Insurance contracts

Turnover

4,1B€

OBJECTIVES

Objectify and measure saturation in claims management centers that have been going on for years

Put light on the root causes

that explain this saturation:

around the processes and

claims themselves

Identify and qualify optimization levers

Evolve the data model and the process mining solution

SCOPE

1,2 millions of claims to analyse

7 weeks project delivered in 3 sprints

RESULTS

More than **30 spot process** analyses worked with expert teams

9 root causes identified

5 Optimization LEVERs listed to support the disaster throughout its value chain

TOOLS

The standard agile development life cycle of a project consists of 4 phases and embeds many skills

纹 **Ideation** and Industrialization **Development Sprint 0 – Framing** Experimentation, qualification of use 3-4 weeks 2-4 weeks / sprint 2-4 weeks / sprint cases mprovement... Sprint 1 Sprint 2 Sprint 3 Sprint 1 Sprint 2 Hypercare) Estimation de **Accessibilité** Synthèse métier la valeur technique Métier Formalization of business needs Developing the use case in iterative mode **Automating data ingestion** Collecting use case Maintenance in ideas operational conditions Technical value and accessibility Data ingestion Orchestration and (MOC) of the service Defining the **issue** analysis scheduling of application Reviews and feature improvements back tasks and scope of the use Adoption Management Analysis and preparation of data Testing of the technical solution case ingestion and definition of the target Securing scalability Commercialization architecture Preparation for industrialization **Business Needs End product** Vision Prioritized Use Case Backlog for the 1st sprints (short-term Functional application with a Application capable of prios), functional roadmap (medium-term prediction model & a robust operating autonomously for Matrix prios), v0 data model data model the RUN phase Client (Product Owner, Business Experts, Business IT Experts) **Data Consultant** Tech Lead Data Engineer **Data Scientist** Other roles of the development team

Ideation Sprint 0 Development Indus.

Collection of use case ideas (ideation) then definition of the issue and scope (qualification)

Data Engineer

Can be in support of the prequalification of data (model, techno, quality ...)

Roles and activities

Business Analyst

- Supports the profession in the definition of the product vision (brainstorm, design thinking, rexs...)
- Identifies the challenges and objectives of the data product in the form of macro-functionalities
- Frames the product scope (data, users, MVPs...)
- Defines the issue and accessibility of use cases

Data Scientist

- Supports ideation by proposing ideas for data science applications
- Assesses the feasibility/complexity of the approach

Key actions

Precisely characterize the purpose of the data product (AI, dataviz...)

Insert the use case into a reflection around a business business process

Clarify business usage and target users of the use case

Prioritize use case ideas with regard to their business challenge and technical accessibility

Define the MVP macro perimeter

Ideation Sprint 0 Development Indus.

Developing a Use Case

UDP Offers the possibility to businesses to develop their own use cases. Each building block of the platform was built to enable all ingredients of a Use Case

« As a truck owner, I would like to develop a Dashboard to predict engine failure of my truck fleet »

I collect all the data I need to build on the different KPIs of my Dashboard

The data I need can come from different sources (external, internal, sensors ...) and might event be already available on UDP!

If not, I use the ingestion framework on Data Foundation to acquire and ingest my data (or I request UDP team to add it into their ingestion roadmap)

- Engine sensors data flow
- Trucks type & Segment

٠...

To modelize the KPIs of my dashboard,
I need to transform the data into
tangible metrics

Once the data is transformed through the ingestion framework, it is accessible through all BI & AA tools available on UDP. Therefore, I use the tools create the models I need.

- I can use already setup KPI in the KPI catalogue
- Try some models in MLOps patterns

- ...

I'm almost there, KPIs and models are ready, I need to visualize them

UDP offers a wide portfolio of analytics and business intelligence execution tools. Being accessible and modelize, I can use some tools in my environment to build on my dashboard

- Power BI/Qlik for dynamic dashboard
- Customed AI solutions I can develop

- ...

DATA FOUNDATION

AI, ANALYTICS & BI FOUNDATION

AI, ANALYTICS & BI EXECUTION

Ideation Sprint 0 Development Indus.

Illustration of a data use case qualification sheet with "issues-accessibility" matrix

Anticipated complexity

Anticipated use case value

DATA	Quality effort	Low		
	Accessibility effort	Low		
	Novelty effort	Hight		
တ္တ	RSE contribution/ Green / Energy efficiency	Low		
& ETHICS	Ethical risk (data privacy subject, algorithmic bias, etc.)	Hight		
RSE	Anticipated complexity/explainability of algorithms	Medium		
PROFESSION	Internal complexity: actors to be aligned, visibility of the project etc.	Low		
	Business complexity	Low		
	Interdependencies with other projects	Medium		
PR	Sponsorship Level	Medium		
	Business Maturity	Low		
_	Complexity data science	Hight		
EXI.	Complexity DevOps / ML Ops	Hight		
TECHNICAL	Security issues	Hight		
##S	SLA	Low		

Alignment with the organization's strategic priorities	Hight
Anticipated financial value	Hight
Contribution to the advancement of SAFe projects already launched	Low
Technical contribution to the Data Factory: Ingestion of key data, reuse of algorithms	Medium

Value / Complexity Position

Ideation Sprint 0 Development Indus.

Illustration of a business use case prioritization matrix

eation Sprint 0

velopment

ndus.

 Formalization of the need, analysis of the value, preparation of the ingestion and definition of the architecture

Roles and activities -

Data Engineer

- Performs data quality analysis
- Pre-qualifies the data model
- Sets up its dev environment If Tech Lead:
- Helps define the macro architecture of the use case
- Ensures the technical feasibility of the ambition

Business Analyst

- Details with the business the list of macro-features
- Turns the product vision into a mock-up
- Identifies the data needed for the use case
- Defines the business value of macro-features and prioritizes them
- Secures technical and legal prerequisites (GDPR)

Data Scientist

- Advises on the data approach to be preferred if necessary – study of the state of the art
- Ensures the technical feasibility of the ambition, in terms of model (depending on the quality and quantity of the data)

Key actions

Go as far as possible in defining priority macro-features before starting devs

Dissociate the functional need from the technical response in the backlog structure

Use mockups to help define business needs and frame user stories

Anticipate the industrialization of the use case (e.g. management of user profiles)

Co-construct the use case architecture with the client's technical teams (including data architects)

Adjust ambition with regard to available data and their quality

Ideation

Sprint 0

eve lo pment

Indus.

All Epics offer the complete view of the product's features

Epic	γ Feature	User Story		Business value	Sizing	Data	Back End	Front End	Mock-ups validated
1. Launch an extraction	Tag prospects clients	As an analyst, I want to be able tag it as "Joker" so that I can upload the excel loader previously created in CRF to retrieve its information	S6	3.5/5	1	0	1	0	To be updated
2. Extract data	 	As an analyst, I want to make sure that the algorithm recognizes requests that have already been done, and show me the existing one	S 6	TBC	2	0	2	0	Not needed
	Extract text data	As an analyst, when some items are not found in tables (about ten, defined in workshops) I want the application to search them in text and scrap the relevant paragraph(s) to display them	S6	3/5	11	5	3	3	Done
	Manage different languages	As an analyst, I want the application to be able to handle every language in scope in latin alphabet		3.5/5	3	2	1	0	Not needed
3. Check and Complete	Error notification	As an analyst, I want to be able to know when the data extraction has been unsuccessful, so that I can relaunch it	S6	TBC	1	0	1	0	Not needed
	Visualize textual notes	As an analyst, I want to visualize relevant textual notes for defined items that have not been found in tables so that I can quickly fill them manually	S6	TBC	3	0	0	3	To be updated
Manage access	Read only	The character always appears in							
	Read and modify	the user stories because it identifies the end user of the feature							
	Admin access								
Dashboard and KPIs	Track the accuracy		(MAN)	The MVP	is a subset of	the epics to	o be developed.	. Epics that are	e not
	Visualize results			part or th	e wive are no	or to be deta	nted till odgir ds	ier stories	

Architectural diagram

Ideation Sprint 0 Development Indus.

Illustration

Technical Questioning

- Understanding the services to be used for data storage
- Use of appropriate tools for data processing
 - Implementation of an ingestion logic
 - Customer data sources
 - External APIs from Data providers
 - Integration of a feedback loop to improve / correct association algorithms
- Automated architecture deployment
 - CI/CD from DEV to PROD in close collaboration with DevOps teams

Once the sprint 0 has passed and the need has been identified, the development pipe is set up

Construction of the application itself, in iterative mode (sprints)

Roles and activities -

Data Engineer

- Builds data pipelines
- Cleans and structures source datasets
- Builds the target data model:
 - Creates aggregates (data cross-referencing)
 - · Calculates metrics

Business analyst

- Framework business needs to feed and prioritize the backlog
- Collects business rules
- Identifies missing data and its source
- Initiates and drives ingestion requests
- Tests developed US
- Collects user feedback

•

Data Scientist

- Builds features
- Expands the model
- · Builds explainability
- Defines with the business the metrics for evaluating the model
- Builds complex visualizations (e.g. distance graphs between business objects)

Key actions

Explain the data source as soon as the features are written

Involve the Tech Lead as soon as the features are written

Don't always wait for industrialized data

Write the US with the DE and the DS

Spend time on the data model

Estimate the complexity of the US with the entire data team

Have the US pre-tested by the consultant

Illustration

Context

- · Anomalies and delays in the supply chain of an aircraft manufacturer are discovered too late
- The objective of the project is to anticipate the risks of a decline in performance in a horizon of 6 months to two years.

	As is	Random Forest	Linear Regression	Decision Tree	Gradient Boosting
True Negatives	585	611	524	611	607
False Negatives	7	11	6	12	6
True Positives	5	1	6	0	6
False Positives	26	0	87	0	4
Precision	0.16	1	0.06	-	0.60
Recall	0.42	0.08	0.5	0	0.5
F1-Score	0.23	0.15	0.11	0	0.55

True Negatives (TN): Number of alerts not raised at a rate

False Negatives (FN): Number of alerts wrongly not raised

True Positive (TP): Number of alerts raised at a rate

False Positives (FP): Number of wrongly raised alerts

Precision: Proportion of true alerts among the total number of alerts raised

$$Precision = \frac{TP}{TP + FP}$$

Recall: Proportion of actual alerts raised among the total number of alerts that should have been lifted

$$Recall = \frac{TP}{TP + FN}$$

Illustration of the performance of different models and selection of the appropriate model for the use case

Automate and orchestrate pipelines, secure operation in perennial mode

Roles and activities -

Data Engineer

- Revises and freezes the data model
- Parameter for updating datasets: frequency, response if error, aggregate calculations
- Freezes the mapping of ingestion flows
- Implements quality control rules: freshness, completeness, consistency, mandatory metadata...

Consultant

- Drives industrialization: monitors the consistency of results and the proper ingestion of data
- Harvests and qualifies user feedback in the backlog
- Participates in the acculturation of professions to new uses
- Ensures the transparency of the deliverable to the customer: sources, quality, freshness, explainability, limits of the model

Data Scientist

- Optimizes its model: resources consumed, response time, bias, extreme values
- Plans training and model inferences

Key actions

Knowing how to identify industrialization: it is sometimes done over the water

Don't wait for the end of the MVP to think about industrialization

Encourage the team to mobilize the ecosystem Focus on the problems encountered

Automate, automate, automate

Keep a sprint to "refine" the app: a hypercare sprint

Ideation Sp

Define with the business the refresh rate of information

Training

- Model training consists of generating a new model based on a fixed dataset.
- Plan the training of the model:
 - How often should the model be trained to account for new data?
- Optimize the model: resources consumed, response time, bias, extreme values

Inference

- Model inference involves applying the model to a sample to obtain a prediction.
- Plan model inference:
 - How often do predictions need to be refreshed?
- Monitor performance: relevance of the results obtained, comparison to reality and business indicators

Illustration of a data pipeline and training and inference phases

THE ROLES IN A DATA PROJECT

A delivery team requires specific profiles according to needs, 4 of them interest us today

Data Scientist

- Turns a business problem into a mathematical problem
- Uses machine learning models, statistics and algorithms to meet business needs
- Iterates with the business in order to understand the data and know how to use it

- Carries out exploratory analyses on the available data
- Prepares the data (in collaboration with the DE) so that it can be used by its models
- · Packages his model so that it can be industrialized
- Monitors the performance and durability of its model over time

- Advises on technical choices
- Proposes architecture concepts for data science solutions
- Frames and prioritizes datascience use cases
- Puts his technical skills at the service of the client (e.g. production of statistical analysis)

- Presents its results in a format understandable by all
- Organizes acculturation sessions in data science
- Organizes hackathons

To fulfill his missions, the Data Scientist can use several technologies and learning models

Supervised methods

Predict values (continuous or discrete) based on a data history where the result is known

Ex: classify a new incident in a known taxonomy

Unsupervised methods

Group data according to their similarities (without prior information on which families to predict)

Ex: check the robustness of a taxonomy

Knowledge graphs

Connecting entities, their properties and relationships to generate new knowledge

Ex: detect fraud in financial systems by highlighting unusual behavior

Computer vision & image recognition

Acquire, process, analyze and understand images, text (OCR) or sequences of images (videos)

E.g. contract/attachment scan analysis for anomaly detection/fraudulent scheme

Natural Language Processing / Understanding

Processing and understanding human language from textual corpora

Ex: extract representative topics (build a taxonomy), analyze sentiment (customer satisfaction), ...

Natural Language Generation

Generate textual human languages (Chatbot, weather reports, ...)

Ex: support for new recruits / increased customer relations

Time series

Analyze time-ordered data to detect unusual behavior Ex: detect deviations in the usual operation of aircraft sensors

Data Engineer

Developer

• Develops, builds, tests and maintains an architecture

- Processes the data:
 - Its ingestion (Datalake, API, ...)
 - Through its treatment (Spark, Scala, ...)
 - Until its final return (app., storage)

• Builds the data model to be used/rendered in an application

• Guarantees the data flow (dataflow), the orchestration of programs /scripts

Source Systems

- Helps the Data Scientist in:
 - data preparation (pre-processing)
 - deploying models

The specializations of a DE

A DE differs in the areas it masters

Ingestion

- Ingestion of different file formats: datalake (parquet, delta), csv dumps, ...
- API requests
- Scrapping Web

Modeling

- Creating the Data Model from the need
- Creation of the Data Flow to feed the Data Model

Dev. Methodology

- Using Git (code versioning)
- Setting up an architecture on a platform

ETL

- Language used: python, spark, scala, ...
- Script orchestration
- Big data

IA

- · Feature engineering
- · Industrialization of models

An DE can specialize on a cloud platform

Amazon Web Services

Microsoft Azure

Google Cloud Platform

Palantir Foundry

and others ...

Tech Lead

- Responsible for the technical deliverables to the customer (technical and documentation).
- The interface between the customer, the development teams and the run teams.
- Guarantees the consistency of the solution developed, and the right choices of dependencies.

- Arbitrates the implementation choices made by his team.
- Helps in the resolution of the blocking topics of the project.
- Is at the heart of the development validation process, and brings his technical expertise to it.

- Ensures the implementation and proper application of collaboration processes (Git, CI, Code Review).
- Streamlines communication between the technical teams and the client, with a global view of the project. It identifies the right proxies to foster seamless collaboration.

- Carries out a technological watch on its subjects of expertise.
- Ensures the development of technical skills of its teams.
- Makes his teams aware of the state of the art (participation in Tech events, intervention of experts on project).

Illustration of role intervention steps during the construction of a data product

Key success factors of a data project

Generate business value

Define model evaluation metrics with the business

Identify accessible & quality data

Engage users and capture business rules

Acculturate the profession to the AI model

Anticipating industrialization

In short, the wheel of a Data project

