02_Classification_using_Bayes_Theory

2.1 Bayes Decision Theory 贝叶斯决策理论

- Basic Assumptions
- The decision problem is posed in probabilistic terms.
- ALL relevant probability values are known.

2.1.1 Process

Given:

1. A test sample x.

• Contains features
$$\mathbf{x} = egin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_l \end{bmatrix}$$
 .

- Often reduced, removed some non-discriminative (un-useful) features.
- 2. A list of classes/patterns $\omega = \{\omega_1, \omega_2, \dots \omega_c\}$.
 - Defined by human-being.
- 3. A classification method M.
 - A database storing multiple samples with the same type of x.
 - Each sample is assigned to an arbitrary class $\omega_{any} \in \{\omega_1, \omega_2, \dots \omega_c\}$.

Do:

- $\{P(\omega_1|\mathbf{x}), \cdots, P(\omega_c|\mathbf{x})\} \leftarrow classify(M, \mathbf{x}, \omega)$
- That is, for all the possible classes, find:
 - The probability that the given x belongs to that class.

Get

$$ullet \ \ \omega_{target}(\mathbf{x}) = \mathrm{argmax}_i \Big[P(\omega_i | x) \Big], i \in [1, c].$$

• That is, assign x a class/pattern from ω with the most probable one.

Example

MNIST database.

- Test sample:
 - $x = A 28 \times 28$ grayscale image of a hand-written number.
- Set of classes:

•
$$\omega = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$

- Classification Method:
 - Derived from 10,000 of 28×28 similar gray-scale images.

- Process:
 - Given an image, using the classification method, get a list of probabilities $P(\omega) = \{P(\omega_1), P(\omega_2), \dots, P(\omega_c)\}.$
 - Select the ω_i with the largest probability $P(\omega_i)$, that is $selected = argmax[P(\omega_i)]$.

2.1.2 Properties of Variables.

- **1** The set of all classes ω :
 - c available classes: $\omega = \{\omega_1, \omega_2, \dots, \omega_c\}$
- i Prior Probabilities $P(\omega) = \{P(\omega_1), P(\omega_2), \dots, P(\omega_c)\}$:
 - Probability Distribution of random variable ω_j in the database.
 - The fraction of samples in the database that belongs to class ω_i .
 - $P(\omega)$ is the prior knowledge on $\omega = \{\omega_1, \omega_2, \dots, \omega_c\}$.
 - It is Non-Negative.
 - $\forall i \in [1, c], P(\omega_i) \geq 0.$
 - The probabilities of all classes are greater-or-equal to 0.
 - It is Normalized.
 - $\sum_{i=1}^{c} P(\omega_i) = 1$.
 - The sum of the prior probabilities of all classes is 1.

2.2 Prior & Posterior Probabilities 先验与后验概率

2.2.1 Definition of Prior Probability 先验概率

- 1 Decision BEFORE Observation (Naïve Decision Rule).
 - Don't care about test sample x.
 - Given x, always choose the class that:
 - has the most member in the database.
 - i.e., has the highest prior probability.
- Classification Process:
 - 1. $\omega = \{\omega_1, \omega_2, \dots, \omega_c\}.$
 - 2. By counting the number of members $Num(\omega_i)$ for each class $\omega_i \in \omega, i \in [1, c]$, we get the prior probabilities $P(\omega) = \{P(\omega_1), P(\omega_2), \dots, P(\omega_c)\}$.
 - 3. Then, classify x directly into $\operatorname{argmax}_i[P(\omega_i)]$.
- The decision is the same all the time obviously, and the prob. of a right guess is $\frac{1}{c}$.

2.2.2 Definition of Posterior Probability 后验概率

- 1 Decision WITH Observation.
 - Cares about test sample x.

• Considering ${f x}$, as well as the prior probabilities $P(\omega)=\{P(\omega_1),P(\omega_2),\dots,P(\omega_c)\}$

 \bullet and give ${\bf x}$ the class with the biggest posterior probability.

- **1** Posterior Probability of a class ω_j on test sample \mathbf{x} :
 - Given test sample x,
 - how possible does x could be classified into class ω_i .

$$P(\omega_j|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_j)P(\omega_j)}{P(\mathbf{x})}$$

$$Posterior = \frac{Likelihood \times Pior}{Evidence}$$

where:

- i Likelihood $p(\mathbf{x}|\omega_j)$:
 - Known
 - The fraction of samples stored in the database that
 - is same to x, and
 - is labeled to class ω_i .
- i Prior probability of class ω_i $P(\omega_i)$:
 - Known
 - The fraction of samples stored in the database that
 - is not necessarily same to x, and
 - is labeled to class ω_i .
- i Evidence $P(\mathbf{x})$:
 - Irrelevant
 - Unconditional density of x.
 - $P(\mathbf{x}) = \sum_{j=1}^{N} p(\mathbf{x}|\omega_j) \cdot P(\omega_j)$

Special Cases

1. Equal Prior Probability

$$P(\omega_1) = P(\omega_2) = \dots = P(\omega_c) = rac{1}{c}$$

- The amount of members in each class is same.
- Posterior probabilities $P(\omega_j|\mathbf{x})$ only depend on likelihoods $P(\mathbf{x}|\omega_j)$.
- 2. Equal Likelihood

$$P(\mathbf{x}|\omega_1) = P(\mathbf{x}|\omega_2) = \cdots = P(\mathbf{x}|\omega_c)$$

• The amount of members *that's same to* \mathbf{x} in each class is same.

- Posterior probabilities $P(\omega_i|\mathbf{x})$ only depend on priors $P(\omega_i)$.
- Back to Naïve Decision Rule.

2.2.3 Classification Examples

Given:

- 1. Test sample $x \in \{+, -\}$.
- 2. A list of classes $\omega = \{\omega_1 = cancer, \omega_2 = no_cancer\}$.
- 3. Classification Method M, with known probabilities:
 - Prior Probabilities:
 - $-P(\omega_1) = 0.008$
 - $-P(\omega_2) = 1 P(\omega_1) = 0.992$
 - Likelihoods:
 - For class $\omega_1=cancer$: $P(+|\omega_1)=0.98$, $P(-|\omega_1)=0.02$
 - For class $\omega_2=no_cancer$: $P(+|\omega_2)=0.03$, $P(-|\omega_2)=0.97$.

Classification:

- Given a test sample x = +.
 - The prob. that this person gets cancer is:

$$ullet P(\omega_1|+) = rac{P(+|\omega_1) imes P(\omega_1)}{P(+)} = rac{0.98 imes 0.008}{P(+)} = rac{0.00784}{P(+)}.$$

• The prob. that this person doesn't gets cancer is:

$$ullet P(\omega_2|+) = rac{P(+|\omega_2) imes P(\omega_2)}{P(+)} = rac{0.03 imes 0.992}{P(+)} = rac{0.02976}{P(+)}$$

Therefore, the classification result would be:

$$egin{aligned} \bullet & \omega_{target} = argmax_i[P(\omega_i|+)] \ &= argmax_i[rac{P(+|\omega_i) imes P(\omega_i)}{P(x)}] \ &= argmax_i[P(+|\omega_i) imes P(\omega_i)] \ &= \omega_{2} ext{, for } 0.00784 < 0.02976 \end{aligned}$$

• That is, *no_cancer*.

2.3 Loss Functions 决策成本函数

2.3.0 Why do we use loss functions?

- Different selection errors may have differently significant consequences, i.e., "losses" or "costs". 不同决策的成本、后果不同。
 - In pure Naïve Bayes classification, we only consider probability.
 - However,
 - we can tolerate "non-cancer" being classified into "cancer",
 - while it's more lossy to classify "cancer" into "non-cancer".
 - There is a need to consider this kind of "loss" into our decision method.

- We want to know if the Bayes decision rule is optimal.
 - Need a evaluation method
 - calc how many error you make, sum together

2.3.1 Probability of Error

For only two classes:

- If $P(\omega_1|x) > P(\omega_2|x)$, $x \leftarrow \omega_1$. Prob. of error: $P(\omega_2|x)$.
- If $P(\omega_1|x) < P(\omega_2|x)$, $x \leftarrow \omega_2$. Prob. of error: $P(\omega_1|x)$.

2.3.2 Loss Function (i.e., "Cost Function")

Basics

- **1** An action α_i for a given \mathbf{x} is:
 - To assign the test pattern ${\bf x}$ with the class ω_i
- **1** The loss $\lambda(\alpha_i|\omega_i)$ denotes the cost of:
 - Assigning a random test sample as ω_i ,
 - while the actual class of the sample is ω_i .
 - For instance, $\lambda(\alpha_{\rm cancer}|\omega_{\rm no_cancer})$ is the cost of diagnosing a patient without cancer as "having cancer".

Expected Loss & Bayes Risk

- i Expected Loss (Average Loss, Conditional Risk) 期望成本
 - We don't actually know the true class of ω_j for a random sample \mathbf{x} , so we use the Expected Loss, i.e., the "average loss".
 - We consider the average loss of classifying a random sample into ω_i by considering:
 - For all class $\omega_j \in \omega$, the loss of classifying ω_i into ω_j , and
 - The probability that the random sample $\mathbf{x} \in \omega_j$, i.e., $P(\omega_j | \mathbf{x})$.

The expected loss of classifying a random sample x into ω_i is:

$$R(lpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(lpha_i|\omega_j) \cdot P(\omega_j|\mathbf{x})$$

where:

- $\lambda(\alpha_i|\omega_j)$ is the cost of classifying ${\bf x}$ into ω_i with ${\bf x}$ belonging to ω_j actually.
- $P(\omega_i|\mathbf{x})$ is the (posterior) probability that \mathbf{x} belongs to class ω_i .
 - Computed during Naïve Bayes Classification with $P(\omega_i)$ and $P(\mathbf{x}|\omega_i)$.
- 1 Bayes Risk 贝叶斯风险
 - The modified measurement of the original Bayes Rule.

- Consider the importance of each error.
- Consider minimum loss, instead of maximum probability.
- Bayes Risk finds the action that gives the minimum expected loss classifying x.

$$egin{aligned} lpha(\mathbf{x}) &= \mathrm{argmin}_{lpha_i \in A} R(lpha_i | \mathbf{x}) \ &= \mathrm{argmin}_{lpha \in A} \sum_{j=1}^c \lambda(lpha_i | \omega_j) \cdot P(\omega_j | \mathbf{x}) \end{aligned}$$

Derivation: A 2-class problem.

Given

- The test sample x.
- Two classes: $\omega = \{\omega_1, \omega_2\}$
- Calculated posterior probabilities during Naive Bayes:

•
$$P(\omega_1|\mathbf{x}), P(\omega_2|\mathbf{x})$$

Loss Matrix:

$$-\begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix}$$

- where $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$

Do

- $ullet \ \omega^* = \mathrm{argmin}_{lpha_i \in A} R(lpha_i | \mathbf{x})$
- The condition of choosing α_1 is:

$$R(\alpha_{1}|\mathbf{x}) < R(\alpha_{2}|\mathbf{x})$$

$$\iff \lambda_{11}P(\omega_{1}|\mathbf{x}) + \lambda_{12}P(\omega_{2}|\mathbf{x}) < \lambda_{21}P(\omega_{1}|\mathbf{x}) + \lambda_{22}P(\omega_{2}|\mathbf{x})$$

$$\iff (\lambda_{21} - \lambda_{11}) \cdot P(\omega_{1}|\mathbf{x}) > (\lambda_{12} - \lambda_{22}) \cdot P(\omega_{2}|\mathbf{x})$$

$$\iff \frac{P(\omega_{1}|\mathbf{x})}{P(\omega_{2}|\mathbf{x})} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}$$

$$\iff \frac{P(\mathbf{x}|\omega_{1}) \cdot P(\omega_{1})}{P(\mathbf{x}|\omega_{2}) \cdot P(\omega_{2})} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}$$

$$\iff \frac{P(\mathbf{x}|\omega_{1})}{P(\mathbf{x}|\omega_{2})} > \frac{(\lambda_{12} - \lambda_{22}) \cdot P(\omega_{2})}{(\lambda_{21} - \lambda_{11}) \cdot P(\omega_{1})} = \theta$$

2.3.3 Examples

Minimum Prob. Error and Minimum Risk

Remark: The Gaussian Distribution.

$$x \in \mathbb{R} \sim Gaussian(\mu,\sigma): \ P(x) = rac{1}{\sigma \sqrt{2\pi}} e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Given:

• Random distributions of samples in 2 classes ω_1 and ω_2 respectively.

$$\begin{array}{ll} \bullet & \omega_1 \colon \mu = 0 \text{, } \sigma = \frac{1}{\sqrt{2}} \implies P(x|\omega_1) = \frac{1}{\sqrt{\pi}} e^{-x^2} \\ \bullet & \omega_2 \colon \mu = 1 \text{, } \sigma = \frac{1}{\sqrt{2}} \implies P(x|\omega_2) = \frac{1}{\sqrt{\pi}} e^{-(x-1)^2} \end{array}$$

Loss Matrix:

$$-\begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1.0 \\ 0.5 & 0 \end{pmatrix}$$

Minimum Error

The threshold value x_0 where the two distributions are equal

• i.e., minimum probability of error

$$egin{aligned} P(x_0|\omega_1) &= P(x_0|\omega_2) \ \Longrightarrow rac{1}{\sqrt{\pi}}e^{-x_0^2} &= rac{1}{\sqrt{\pi}}e^{-(x_0-1)^2} \ \Longrightarrow x_0 &= -x_0 + 1 \ \Longrightarrow x_0 &= rac{1}{2} \end{aligned}$$

Minimum Risk

The threshold \hat{x}_0 for minimum $R(\alpha_i|x)$.

$$R(\alpha_{1}|\hat{x}_{0}) = R(\alpha_{2}|\hat{x}_{0})$$

$$\Rightarrow \lambda_{11} \cdot P(\omega_{1}|\hat{x}_{0}) + \lambda_{12} \cdot P(\omega_{2}|\hat{x}_{0}) = \lambda_{21} \cdot P(\omega_{1}|\hat{x}_{0}) + \lambda_{22} \cdot P(\omega_{2}|\hat{x}_{0})$$

$$\Rightarrow (\lambda_{21} - \lambda_{11}) \cdot P(\omega_{1}|\hat{x}_{0}) = (\lambda_{12} - \lambda_{22}) \cdot P(\omega_{2}|\hat{x}_{0})$$

$$\Rightarrow \frac{P(\omega_{1}|\hat{x}_{0})}{P(\omega_{2}|\hat{x}_{0})} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}$$

$$\Rightarrow \frac{P(\hat{x}_{0}|\omega_{1}) \cdot P(\omega_{1})}{P(\hat{x}_{0}|\omega_{2}) \cdot P(\omega_{2})} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}$$

$$\Rightarrow \frac{P(\hat{x}_{0}|\omega_{1})}{P(\hat{x}_{0}|\omega_{2})} = \frac{(\lambda_{12} - \lambda_{22}) \cdot P(\omega_{2})}{(\lambda_{21} - \lambda_{11}) \cdot P(\omega_{1})}$$

$$\Rightarrow \frac{P(\hat{x}_{0}|\omega_{1})}{P(\hat{x}_{0}|\omega_{2})} = \frac{(1 - 0) \times \frac{1}{2}}{(0.5 - 0) \times \frac{1}{2}} = 2$$

$$\Rightarrow P(\hat{x}_{0}|\omega_{1}) = 2P(\hat{x}_{0}|\omega_{2})$$

$$\Rightarrow \frac{1}{\sqrt{\pi}} e^{-\hat{x}_{0}^{2}} = \frac{2}{\sqrt{\pi}} e^{-(\hat{x}_{0} - 1)^{2}}$$

$$\Rightarrow -\hat{x}_{0}^{2} = \ln 2 - \hat{x}_{0}^{2} + 2\hat{x}_{0} - 1$$

$$\Rightarrow 2\hat{x}_{0} = 1 - \ln 2$$

$$\Rightarrow \hat{x}_{0} = \frac{1 - \ln 2}{2}$$

2.4 Discriminant Functions 判别函数

2.4.1 Definition of Discriminant Function

- $oldsymbol{i}$ A Discriminant Function is a function f that satisfies the following property:
 - If:
 - $f(\cdot)$ monotonically increases, and
 - $ullet \ orall i
 eq j, \ f\Big(P(\omega_i|\mathbf{x})\Big) > f\Big(P(\omega_j|\mathbf{x})\Big)$

- Then:
 - $\mathbf{x} \leftarrow \omega_i$
- That is, the function is able to "tell", or "discriminate" a certain ω_i from others.
 - i.e., it separates ω_i and $\neg \omega_i$.

A sample usage of a discriminant function: Given two classes ω_i and ω_j , define $g(\mathbf{x}) \equiv P(\omega_i|\mathbf{x}) - P(\omega_j|\mathbf{x}) = 0$.

- $g(\mathbf{x}) = 0$: Decision Surface;
- $g(\mathbf{x}) > 0$: Region R_i where $P(\omega_i|\mathbf{x}) > P(\omega_i|\mathbf{x})$;
- $g(\mathbf{x}) < 0$: Region R_i where $P(\omega_i | \mathbf{x}) < P(\omega_i | \mathbf{x})$;

2.4.2 Property of Discriminant Function

- 1. One function per class.
 - 1. A discriminant function is able to "tell" a certain one ω_i specifically for any input x.
- 2. Various discriminant functions → Identical classification results. 样式各异, 结果相同。
 - 1. It is correct to say, the discriminant functions:
 - 1. Preserves the original monotonically increase of its inputs.
 - 2. But changes the changing rate by *processing* the inputs.
 - 2. i.e.,
 - 1. " $\forall i \neq j, f(g_i(x)) > f(g_j(x)) \land f \nearrow$ "and " $\forall i \neq j, g_i(x) > g_j(x)$ " are equivalent in decision.
 - 2. Changing growth rate of input:
 - 1. $f(g_i(x)) = k \cdot g_i(x)$, a linear change.
 - 2. $f(g_i(x)) = \ln g_i(x)$, a log change, i.e., it grows, but slower as it proceed.
 - 3. Therefore, the discriminant function may vary, but the output is always the same.
- 3. Examples of discriminant functions:
 - 1. Minimum Risk: $g_i(x) = -R(\alpha_i|x) = -\lambda(\alpha_i|x) \times P(\omega_i|x)$, for $i \in [1,c]$
 - 2. Minimum Error Rate: $g_i(x) = P(\omega_i|x)$, for $i \in [1, c]$

2.4.3 Decision Region 决策区域

- c discriminant functions $\implies c$ decision regions
 - $g_i(x) \implies R_i \subset R^d, i \in [1,c]$
- One function per decision region that is distinct and mutual-exclusive.
 - A decision region is defined as: $R_i = \{x | x \in R^d : \forall i \neq j, g_i(x) > g_i(x)\}$, where
 - $orall i
 eq j, R_i \cap R_j = \emptyset$, and $\cup_{i=1}^c R_i = R^d$

2.4.4 Decision Boundaries 决策边界

- "Surface" in feature space, where ties occur among 2 or more largest discriminant functions.
- x_0 is on the decision boundary/surface if and only if
 - $ullet \exists \omega_i, \omega_j \in \omega, g_i(x_0) = g_j(x_0).$

2.5 Bayesian Classification for Normal Distributions

2.5.1 Multi-Dimensional Normal Distribution 高维正态分布

1-D Case 多类别,一维数据

- There are several classes:
 - Each class has its own distribution of data samples.
 - i.e., each class has its own μ and σ .
- For a specific class, there are plenty of data samples:
 - Each sample is a *scalar*, that is a 1×1 "matrix", which is a "plain number".
 - The samples follows a Normal Distribution.

Suppose data samples in a specific class ω_i conforms a normal distribution:

$$x \sim N(\mu_i, \sigma_i) : P(x|\omega_i) = rac{1}{\sigma_i \sqrt{2\pi}}^{rac{(x-\mu_i)^2}{2\sigma^2}}$$

where:

- μ_i is the mean value, $\mu_i = E(x)$
- ullet σ_i^2 is the variance, $\sigma_i^2 = E \Big[(x-\mu)^2 \Big]$

Multivariate Case 多类别,高维数据

- There are several classes:
 - Each class has its own distribution of data samples,
 - i.e., each class has its own μ and σ .
- For a specific class, there are plenty of data samples:
 - Each sample is a *vector*, that is a $d \times 1$ matrix, where d is the dimension of data.

• The samples follow a d-dimensional Normal Distribution.

Suppose data samples in a specific class ω_i conforms a normal distribution:

$$\mathbf{x} \sim N(\mu_i, \Sigma_i): \ P(\mathbf{x} | \omega_i) = rac{1}{|\Sigma_i|^{rac{1}{2}} \cdot (2\pi)^{rac{1}{2}}} e^{-rac{1}{2} (\mathbf{x} - \mu_i)^ op \sum_i^{-1} (\mathbf{x} - \mu_i)}$$

Regular Variables:

•
$$d$$
-dimensional random variable: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$
• d -dimensional mean vector: $\mu_i = \begin{bmatrix} \mu_{i1} \\ \mu_{i2} \\ \vdots \\ \mu_{id} \end{bmatrix} = \begin{bmatrix} E(x_{i1}) \\ E(x_{i2}) \\ \vdots \\ E(x_{id}) \end{bmatrix}$
• $d \times d$ covariate matrix: $\sigma_i = \begin{pmatrix} \sigma_{i11} & \sigma_{i12} & \cdots & \sigma_{i1d} \\ \sigma_{i21} & \sigma_{i22} & \cdots & \sigma_{i2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{id1} & \sigma_{id2} & \cdots & \sigma_{idd} \end{pmatrix} = E \Big[(\mathbf{x} - \mu_i)(\mathbf{x} - \mu_i)^\top \Big]$

Explanation of exponent $-\frac{1}{2}(\mathbf{x}-\mu_i)^{\top}\Sigma_i^{-1}(\mathbf{x}-\mu_i)$:

$$\begin{array}{l} \bullet \quad (X-\mu_i)^\top = [(x_1-\mu_{i1}) \quad (x_2-\mu_{i2}) \quad \cdots \quad (x_d-\mu_{id})] \\ \bullet \quad \Sigma_i^{-1} = \begin{pmatrix} \sigma'_{i11} & \sigma'_{i12} & \cdots & \sigma'_{i1d} \\ \sigma'_{i21} & \sigma'_{i22} & \cdots & \sigma'_{i2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma'_{id1} & \sigma'_{id2} & \cdots & \sigma'_{idd} \end{pmatrix}, \text{ the inverse of the covariance matrix.} \\ \bullet \quad (X-\mu_i) = \begin{bmatrix} x_1-\mu_{i1} \\ x_2-\mu_{i2} \\ \dots \\ x_d-\mu_{id} \end{bmatrix}$$

The exponent as a whole:

$$\begin{split} & -\frac{1}{2}(X - \mu_i)^\top \Sigma_i^{-1}(X - \mu_i) \\ & = -\frac{1}{2}[(x_1 - \mu_{i1}) \quad (x_2 - \mu_{i2}) \quad \cdots \quad (x_d - \mu_{id})] \begin{pmatrix} \sigma'_{i11} & \sigma'_{i12} & \cdots & \sigma'_{i1d} \\ \sigma'_{i21} & \sigma'_{i22} & \cdots & \sigma'_{i2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma'_{id1} & \sigma'_{id2} & \cdots & \sigma'_{idd} \end{pmatrix} \begin{bmatrix} x_1 - \mu_{i1} \\ x_2 - \mu_{i2} \\ \cdots \\ x_d - \mu_{id} \end{bmatrix} \\ & = -\frac{1}{2}[a_1 \quad a_2 \quad \cdots a_d] \begin{bmatrix} x_1 - \mu_{i1} \\ x_2 - \mu_{i2} \\ \cdots \\ x_d - \mu_{id} \end{bmatrix} \\ & = y > 0 \end{split}$$

Example: 2-D Case

$$\mathbf{x} \sim N(\mu_i, \sigma_i) : P(\mathbf{x} | \omega_i = rac{1}{|\Sigma_i|^{rac{1}{2}} \cdot (2\pi)} e^{-rac{1}{2}(x_1 - \mu_{i1} - x_2 - \mu_{i2})\Sigma_i^{-1}inom{x_1 - \mu_{i1}}{x_2 - \mu_{i2}}}$$

where:

- 2-dimensional random variable: $\mathbf{x} = inom{x_1}{x_2}$.
- 2-dimensional mean vector: $\mu_i = egin{pmatrix} \mu_{i1} \\ \mu_{i2} \end{pmatrix}$
- 2×2 covariate matrix Σ_i :

$$egin{aligned} \Sigma_i &= E \Big[(\mathbf{x} - \mu_i) (\mathbf{x} - \mu_i)^ op \Big] \ &= E \Big[egin{aligned} (x_1 - \mu_{i1}) & x_2 - \mu_{i2}) \Big] \ &= E \Big[egin{aligned} (x_1 - \mu_{i1})^2 & (x_1 - \mu_{i1}) (x_2 - \mu_{i2}) \\ (x_1 - \mu_{i1}) (x_2 - \mu_{i2}) & (x_2 - \mu_{i2})^2 \end{bmatrix} \Big] \ &= egin{aligned} E \Big[(x_1 - \mu_{i1})^2 \Big] & E \Big[(x_1 - \mu_{i1}) (x_2 - \mu_{i2}) \Big] \\ E \Big[(x_1 - \mu_{i1}) (x_2 - \mu_{i2}) \Big] & E \Big[(x_2 - \mu_{i2})^2 \Big] \end{aligned} \end{bmatrix} \ &= egin{aligned} \sigma_1^2 & \sigma \\ \sigma & \sigma_2^2 \\ \end{aligned}$$

2.5.2 Minimum-error-rate classification

Recall:

- Minimum-error-rate means that we ignore the "cost" of each decision.
- In other words, we only select the classes based on probabilities.

Pattern of Discriminant Function

The discriminant function of MER classification could be given by:

$$\forall i \in [1,c] \cap \mathbb{N}^+, \ g_i(\mathbf{x}) = \ln P(\omega_i|\mathbf{x})$$

Namely,

$$\begin{split} g_i(\mathbf{x}) &= \ln P(\omega_i | \mathbf{x}) \\ \Longrightarrow g_i(\mathbf{x}) &= \ln \left[P(\mathbf{x} | \omega_i) \cdot P(\omega_i) \right] \\ \Longrightarrow g_i(\mathbf{x}) &= \ln \left[P(\mathbf{x} | \omega_i) \right] + \ln \left[P(\omega_i) \right] \\ \Longrightarrow g_i(\mathbf{x}) &= \ln \left[\frac{1}{|\Sigma_i|^{\frac{1}{2}} \cdot (2\pi)^{\frac{d}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mu_i)^\top \Sigma_i^{-1}(\mathbf{x} - \mu_i)} \right] + \ln \left[P(\omega_i) \right] \\ \Longrightarrow g_i(\mathbf{x}) &= \ln \left[\frac{1}{|\Sigma_i|^{\frac{1}{2}} \cdot (2\pi)^{\frac{d}{2}}} \right] - \frac{1}{2} (\mathbf{x} - \mu_i)^\top \Sigma_i^{-1} (\mathbf{x} - \mu_i) + \ln \left[P(\omega_i) \right] \\ \Longrightarrow g_i(\mathbf{x}) &= \left(-\frac{d}{2} \ln(2\pi) - \frac{1}{2} \ln |\Sigma_i| \right) - \frac{1}{2} (\mathbf{x} - \mu_i)^\top \Sigma_i^{-1} (\mathbf{x} - \mu_i) + \ln \left[P(\omega_i) \right] \end{split}$$

Here, $-\frac{d}{2}\ln(2\pi)$ is a constant, which could be ignored.

★ The discriminant function is then updated as:

$$g_i(\mathbf{x}) = -rac{1}{2} ext{ln}\left|\Sigma_i
ight| - rac{1}{2}(\mathbf{x}-\mu_i)^ op \Sigma_i^{-1}(\mathbf{x}-\mu_i) + ext{ln}\Big[P(\omega_i)\Big]$$

Case I: $\Sigma_i = \sigma^2 I$

That is:

$$\Sigma_1 = \Sigma_2 = \cdots = \Sigma_{|\omega|} = \sigma^2 I = egin{bmatrix} \sigma^2 & 0 & \cdots & 0 \ 0 & \sigma^2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \sigma^2 \end{bmatrix}$$

- All the classes have a Common Covariance Matrix of $\sigma^2 I$.
- The common covariate matrix is isotropic (各向同性的) with respect to any class.
 - i.e., the variance is the same in all directions.
 - · i.e., no directional preference in the spread of distribution

Therefore, we have:

$$|\Sigma_i| = \sigma^{2d}$$

$$\Sigma_i^{-1} = rac{1}{\sigma^2} I$$

This is the original discriminant function:

$$g_i(\mathbf{x}) = -rac{1}{2} ext{ln}\,|\Sigma_i| - rac{1}{2}(\mathbf{x}-\mu_i)^ op \Sigma_i^{-1}(\mathbf{x}-\mu_i) + ext{ln}\Big[P(\omega_i)\Big]$$

Here, $-\frac{1}{2} \ln |\Sigma_i| = -\frac{1}{2} \ln |\sigma^2 I|$ is a constant, therefore can be ignored:

$$\begin{split} g_i(\mathbf{x}) &= -\frac{1}{2} (\mathbf{x} - \mu_i)^\top \Sigma_i^{-1} (\mathbf{x} - \mu_i) + \ln \Big[P(\omega_i) \Big] \\ &= -\frac{1}{2} (\mathbf{x} - \mu_i)^\top \cdot (\frac{1}{\sigma^2} I) \cdot (\mathbf{x} - \mu_i) + \ln \Big[P(\omega_i) \Big] \\ &= -\frac{(\mathbf{x} - \mu_i)^\top (\mathbf{x} - \mu_i)}{2\sigma^2} + \ln \Big[P(\omega_i) \Big] \\ &= -\frac{(\mathbf{x}^\top - \mu_i^\top) (\mathbf{x} - \mu_i)}{2\sigma^2} + \ln \Big[P(\omega_i) \Big] \\ &= -\frac{\mathbf{x}^\top \mathbf{x} - \mathbf{x}^\top \mu_i - \mu_i^\top \mathbf{x} + \mu_i^\top \mu_i}{2\sigma^2} + \ln \Big[P(\omega_i) \Big] \\ &= -\frac{\mathbf{x}^\top \mathbf{x} - 2\mu_i^\top \mathbf{x} + \mu_i^\top \mu_i}{2\sigma^2} + \ln \Big[P(\omega_i) \Big] \\ &= -\frac{\|\mathbf{x} - \mu_i\|^2}{2\sigma^2} + \ln \Big[P(\omega_i) \Big] \end{split}$$

Note: $\|\cdot\|^2$ denotes the *Euclidean Distance*.

Moreover $\mathbf{x}^{\top}\mathbf{x}$ is the same across all classes, therefore can be ignored:

$$egin{aligned} g_i(\mathbf{x}) &= -rac{-2\mu_i^ op \mathbf{x} + \mu_i^ op \mu_i}{2\sigma^2} + \ln\Bigl[P(\omega_i)\Bigr] \ &= rac{\mu_i^ op \mathbf{x}}{\sigma^2} - rac{\mu_i^ op \mu_i}{2\sigma^2} + \ln\Bigl[P(\omega_i)\Bigr] \ &= \Bigl(rac{\mu_i}{\sigma^2}\Bigr)^ op \mathbf{x} + \Bigl(-rac{\mu_i^ op \mu_i}{2\sigma^2} + \ln\Bigl[P(\omega_i)\Bigr]\Bigr) \end{aligned}$$

Namely,

$$g_i(\mathbf{x}) = \mathbf{w}_i^ op \mathbf{x} + w_{i0}$$

where:

 $oldsymbol{ iny w}_i = rac{\mu_i}{\sigma^2}$ is the weight vector, and

 $ullet w_{i0} = -rac{\mu_i^ op \mu_i}{2\sigma^2} + \ln \Big[P(\omega_i)\Big]$ is the threshold / bias scalar.

This is a Linear Discriminant Function. The decision surface is thus:

$$g_{i}(\mathbf{x}) - g_{j}(\mathbf{x}) = 0$$

$$\Rightarrow \mathbf{w}_{i}^{\top} \mathbf{x} + w_{i0} - (\mathbf{w}_{j}^{\top} \mathbf{x} + w_{j0}) = 0$$

$$\Rightarrow (\mathbf{w}_{i} - \mathbf{w}_{j})^{\top} \mathbf{x} + (w_{i0} - w_{j0}) = 0$$

$$\Rightarrow (\frac{\mu_{i} - \mu_{j}}{\sigma^{2}})^{\top} \mathbf{x} + (w_{i0} - w_{j0}) = 0$$

$$\Rightarrow (\mu_{i} - \mu_{j})^{\top} \mathbf{x} + \sigma^{2}(w_{i0} - w_{j0}) = 0$$

$$\Rightarrow (\mu_{i} - \mu_{j})^{\top} \mathbf{x} + \sigma^{2}(\frac{-\mu_{i}^{\top} \mu_{i}}{2\sigma^{2}} - \frac{-\mu_{j}^{\top} \mu_{j}}{2\sigma^{2}} + \ln[P(\omega_{i})] - \ln[P(\omega_{j})]) = 0$$

$$\Rightarrow (\mu_{i} - \mu_{j})^{\top} \mathbf{x} - \frac{1}{2}(\mu_{i}^{\top} \mu_{i} - \mu_{j}^{\top} \mu_{j}) + \sigma^{2} \ln[\frac{P(\omega_{i})}{P(\omega_{j})}] = 0$$

$$\Rightarrow (\mu_{i} - \mu_{j})^{\top} \mathbf{x} - \frac{1}{2}(\mu_{i} - \mu_{j})^{\top}(\mu_{i} + \mu_{j}) + \sigma^{2} \ln[\frac{P(\omega_{i})}{P(\omega_{j})}] = 0$$

$$\Rightarrow \mathbf{x} - \frac{1}{2}(\mu_{i} + \mu_{j}) + \sigma^{2} \ln[\frac{P(\omega_{i})}{P(\omega_{j})}] \cdot \frac{\mu_{i} - \mu_{j}}{\|\mu_{i} - \mu_{j}\|^{2}} = 0$$

$$\Rightarrow \mathbf{x} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \sigma^{2} \ln[\frac{P(\omega_{i})}{P(\omega_{j})}] \cdot \frac{\mu_{i} - \mu_{j}}{\|\mu_{i} - \mu_{j}\|^{2}} \in \mathbb{R}^{2}$$

Case II: $\Sigma_i = \Sigma$

That is:

$$\Sigma_1 = \Sigma_2 = \dots = \Sigma_{|\omega|} = \Sigma$$

- All the classes have a Common Covariance Matrix of Σ .
- More general than Case I.

This is the original discriminant function:

$$g_i(\mathbf{x}) = -rac{1}{2} ext{ln}\,|\Sigma_i| - rac{1}{2}(\mathbf{x}-\mu_i)^ op \Sigma_i^{-1}(\mathbf{x}-\mu_i) + ext{ln}\Big[P(\omega_i)\Big]$$

Here, $-\frac{1}{2} \ln |\Sigma_i| = -\frac{1}{2} \ln |\Sigma|$ is constant, which could be ignored:

$$\begin{split} g_i(\mathbf{x}) &= -\frac{1}{2} (\mathbf{x} - \mu_i)^\top \Sigma^{-1} (\mathbf{x} - \mu_i) + \ln \Big[P(\omega_i) \Big] \\ &= -\frac{1}{2} (\mathbf{x}^\top - \mu_i^\top) \Big(\Sigma^{-1} \mathbf{x} - \Sigma^{-1} \mu_i \Big) + \ln \Big[P(\omega_i) \Big] \\ &= -\frac{1}{2} (\mathbf{x}^\top \Sigma^{-1} \mathbf{x} - \mathbf{x}^\top \Sigma^{-1} \mu_i - \mu_i^\top \Sigma^{-1} \mathbf{x} + \mu_i^\top \Sigma^{-1} \mu_i) + \ln \Big[P(\omega_i) \Big] \\ &= -\frac{1}{2} (\mathbf{x}^\top \Sigma^{-1} \mathbf{x} - 2\mu_i^\top \Sigma^{-1} \mathbf{x} + \mu_i^\top \Sigma^{-1} \mu_i) + \ln \Big[P(\omega_i) \Big] \end{split}$$

Here, $\mathbf{x}^{\top} \Sigma^{-1} \mathbf{x}$ is the same across all classes, thus can be ignored:

$$g_i(\mathbf{x}) = \mu_i^ op \Sigma^{-1} \mathbf{x} + (-rac{\mu_i^ op \Sigma^{-1} \mu_i}{2} + \ln \Big[P(\omega_i)\Big])$$

Namely,

$$g_i(\mathbf{x}) = \mathbf{w}_i^ op \mathbf{x} + w_{i0}$$

where:

- $\mathbf{w}_i = \mu_i$ is the weight vector;
- $w_{i0} = -rac{1}{2}\mu_i^ op \Sigma^{-1}\mu_i + \ln \Big[P(\omega_i)\Big]$ is the threshold / bias scalar.

Case III: Σ_i is arbitrary

In most cases, for each class ω_i , Σ_i , the covariance/spread of data in this class is arbitrary. This is the original discriminant function:

$$g_i(\mathbf{x}) = -rac{1}{2} ext{ln}\,|\Sigma_i| - rac{1}{2}(\mathbf{x}-\mu_i)^ op \Sigma_i^{-1}(\mathbf{x}-\mu_i) + ext{ln}\Big[P(\omega_i)\Big]$$

We can derive that:

$$\begin{split} g_i(\mathbf{x}) &= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^\top \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2}\ln|\boldsymbol{\Sigma}_i| + \ln\Big[P(\boldsymbol{\omega}_i)\Big] \\ &= -\frac{1}{2}(\mathbf{x}^\top - \boldsymbol{\mu}_i^\top)(\boldsymbol{\Sigma}_i^{-1}\mathbf{x} - \boldsymbol{\Sigma}_i^{-1}\boldsymbol{\mu}_i) + (-\frac{1}{2}|\boldsymbol{\Sigma}_i| + \ln\Big[P(\boldsymbol{\omega}_i)\Big]) \\ &= -\frac{1}{2}(\mathbf{x}^\top \boldsymbol{\Sigma}_i^{-1}\mathbf{x} - \mathbf{x}^\top \boldsymbol{\Sigma}_i^{-1}\boldsymbol{\mu}_i - \boldsymbol{\mu}_i^\top \boldsymbol{\Sigma}_i^{-1}\mathbf{x} + \boldsymbol{\mu}_i^\top \boldsymbol{\Sigma}_i^{-1}\boldsymbol{\mu}_i) + (-\frac{1}{2}|\boldsymbol{\Sigma}_i| + \ln\Big[P(\boldsymbol{\omega}_i)\Big]) \\ &= -\frac{1}{2}(\mathbf{x}^\top \boldsymbol{\Sigma}_i^{-1}\mathbf{x} - 2\boldsymbol{\mu}_i^\top \boldsymbol{\Sigma}_i^{-1}\mathbf{x} + \boldsymbol{\mu}_i^\top \boldsymbol{\Sigma}_i^{-1}\boldsymbol{\mu}_i) + (-\frac{1}{2}|\boldsymbol{\Sigma}_i| + \ln\Big[P(\boldsymbol{\omega}_i)\Big]) \\ &= -\frac{1}{2}\mathbf{x}^\top \boldsymbol{\Sigma}_I^{-1}\mathbf{x} + \boldsymbol{\mu}_i^\top \boldsymbol{\Sigma}_i^{-1}\mathbf{x} - \frac{1}{2}\boldsymbol{\mu}_i^\top \boldsymbol{\Sigma}_i^{-1}\boldsymbol{\mu}_i - \frac{1}{2}|\boldsymbol{\Sigma}_i| + \ln\Big[P(\boldsymbol{\omega}_i)\Big] \\ &= -\frac{1}{2}\mathbf{x}^\top \boldsymbol{\Sigma}_i^{-1}\mathbf{x} + \boldsymbol{\mu}_i^\top \boldsymbol{\Sigma}_i^{-1}\mathbf{x} + (-\frac{\boldsymbol{\mu}_i^\top \boldsymbol{\Sigma}_i^{-1}\boldsymbol{\mu}_i + |\boldsymbol{\Sigma}_i|}{2} + \ln\Big[P(\boldsymbol{\omega}_i)\Big]) \\ &= \mathbf{x}^\top (-\frac{1}{2}\boldsymbol{\Sigma}_i^{-1})\mathbf{x} + (\boldsymbol{\mu}_i^\top \boldsymbol{\Sigma}_i^{-1})\mathbf{x} + (-\frac{\boldsymbol{\mu}_i^\top \boldsymbol{\Sigma}_i^{-1}\boldsymbol{\mu}_i + |\boldsymbol{\Sigma}_i|}{2} + \ln\Big[P(\boldsymbol{\omega}_i)\Big]) \end{split}$$

Namely,

$$g_i(\mathbf{x}) = \mathbf{x}^{ op} \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^{ op} \mathbf{x} + w_{i0}$$

where:

- $\mathbf{W}_i = -rac{1}{2}\Sigma_i^{-1}$ is the Quadratic matrix.
- $\mathbf{w}_i = \mu_i^{\top} \Sigma_i^{-1}$ is the weight vector.
- $ullet w_{i0} = -rac{\mu_i^ op \Sigma_i^{-1} \mu_i + |\Sigma_i|}{2} + \ln\Bigl[P(\omega_i)\Bigr]$ is the threshold / bias scalar.

Summary

Again, for special covariance matrices:

- ullet $\Sigma_i=\sigma^2I$:
 - Assign x to ω_i if there is a smaller Euclidean Distance: $d_{Euclidean} = \|X \mu_i\|$
- $\Sigma_i = \Sigma$:
 - Assign x to ω_i if there is a smaller Mahalanobis Distance: $d_{Mahalanobis} = \sqrt{(X-\mu_i)^\top \Sigma^{-1} (X-\mu_i)}$

2.5.3 Examples

Given:

- Two classes: ω_1, ω_2
- Prior probabilities:

•
$$P(\omega_1) = P(\omega_2)$$
.

- Posterior probabilities:
 - $P(\mathbf{x}|\omega_1) \sim N(\mu_1, \Sigma)$
 - $P(\mathbf{x}|\omega_2) \sim N(\mu_2, \Sigma)$
 - where:

$$-\mu_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mu_2 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$
$$-\Sigma = \begin{pmatrix} 1.1 & 0.3 \\ 0.3 & 1.9 \end{pmatrix}$$

Do:

• Classify $\mathbf{x} = \begin{pmatrix} 1.0 \\ 2.2 \end{pmatrix}$ using Bayes Classification.

Solve:

Compute inverse of covariance matrix:

$$\begin{pmatrix} 1.1 & 0.3 \\ 0.3 & 1.9 \end{pmatrix}^{-1} = \frac{1}{1.1 \times 1.9 - 0.3^2} \begin{pmatrix} 1.9 & -0.3 \\ -0.3 & 1.1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1.9 & -0.3 \\ -0.3 & 1.1 \end{pmatrix}$$
$$\Sigma^{-1} = \begin{pmatrix} 0.95 & -0.15 \\ -0.15 & 0.55 \end{pmatrix}$$

Compute *Mahalanobis distance* using μ_1 and μ_2 .

$$d^{2}(\mathbf{x}, \mu_{i}) = (\mathbf{x} - \mu_{i})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{i})$$

$$\mathbf{x} - \mu_{1} = \begin{pmatrix} 1.0 \\ 2.2 \end{pmatrix}, \ \mathbf{x} - \mu_{2} = \begin{pmatrix} -2.0 \\ -0.8 \end{pmatrix}$$

$$d^{2}(\mathbf{x}, \mu_{1}) = (1.0 \quad 2.2) \begin{pmatrix} 0.95 & -0.15 \\ -0.15 & 0.55 \end{pmatrix} \begin{pmatrix} 1.0 \\ 2.2 \end{pmatrix} = 2.952$$

$$d^{2}(\mathbf{x}, \mu_{2}) = (-2.0 \quad -0.8) \begin{pmatrix} 0.95 & -0.15 \\ -0.15 & 0.55 \end{pmatrix} \begin{pmatrix} -2.0 \\ -0.8 \end{pmatrix} = 3.672$$

Therefore, classify $\mathbf{x} \leftarrow \omega_1$, since $d^2(\mathbf{x}, \mu_2) > d^2(\mathbf{x}, \mu_1)$.