# Frequency-explicit *a posteriori* error estimates for finite element discretizations of Maxwell's equations

Théophile Chaumont-Frelet and Patrick Vega

Atlantis project-team, Inria Sophia Antipolis - Méditerranée



Séminaire de l'équipe EDP et Analyse Numérique Laboratoire J. A. Dieudonné Nice, France November 26, 2020

### Maxwell's equations

Given  $J:\Omega\to\mathbb{C}^3$  and a fixed **non-resonant** frequency  $\omega>0$ , we seek  $\boldsymbol{E}:\Omega\to\mathbb{C}^3$  such that

$$\left\{ \begin{array}{ll} -\omega^2 \boldsymbol{\varepsilon} \boldsymbol{E} + \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times (\boldsymbol{\mu}^{-1} \boldsymbol{E})) = i \omega \boldsymbol{J} & \text{in } \Omega, \\ \boldsymbol{E} \times \boldsymbol{n} = \boldsymbol{o} & \text{on } \partial \Omega, \end{array} \right.$$

where  $\Omega$  is a Lipschitz polyhedral domain.

We consider a mesh  $\mathcal{T}_h$  that partitions  $\Omega$ , and a finite element space  $\boldsymbol{V}_h$ .

We construct an approximation  $E_h$  of E, being  $E_h|_K$  a polynomial function, for each  $K \in \mathcal{T}_h$  (Nédélec finite elements), and we are interested in controlling  $E - E_h$ .

When **local singularities** deteriorates the **overall accuracy** of the numerical approximation, we can refine de the mesh where the solution is less regular.



# A posteriori error estimation (main idea)

Where? How to obtain a balance between the refined and unrefined regions?

We are interested in controlling  $(\mathbf{E} - \mathbf{E}_h)|_K$  by  $\eta_K \in \mathbb{R}$ , for each  $K \in \mathcal{T}_h$ .

 $\eta_K$  depends on the data and the finite element solution, must be cheap to compute and must satisfy two properties:

Reliability:

Global Error 
$$\lesssim \left(\sum_{K \in \mathcal{T}_h} \eta_K^2\right)^{1/2} =: \eta$$
 (error control).

(Local) Efficiency:

$$\eta_{\mathcal{K}} \lesssim \mathsf{Local} \ \mathsf{Error}, \quad \mathsf{for each} \ \mathcal{K} \in \mathcal{T}_h \qquad \qquad \mathsf{(choose regions to refine)}.$$



# Main challenges

We recall

$$-\omega^2 \varepsilon \mathbf{E} + \nabla \times (\nabla \times (\boldsymbol{\mu}^{-1} \mathbf{E})) = i\omega \mathbf{J} \quad \text{in } \Omega.$$

Main difficulties in this work:

- High frequency
- $\blacksquare$   $\mathcal{H}(\mathbf{curl})$  context

Given  $f: \Omega \to \mathbb{C}$ , we consider

$$-\Delta u = f \quad \text{in } \Omega \qquad \text{(Poisson)}$$
 
$$-\Delta u - \omega^2 u = f \quad \text{in } \Omega \qquad \text{(Helmholtz)}$$

Sketch of the talk:

$$\text{Poisson} \underset{\text{high frequency}}{\longrightarrow} \underset{\text{frequency}}{\longleftarrow} \text{Helmholtz} \underset{\boldsymbol{\mathcal{H}}(\text{curl})}{\longrightarrow} \text{Maxwell}$$



### Outline

- 1 A posteriori error estimates for the Poisson equation
- 2 A posteriori error estimates for the Helmholtz equation
- 3 Frequency-explicit a posteriori error estimates for Maxwell's equations
  - Settings
  - Reliability
  - Efficiency
- 4 Numerical experiments
  - Analytical solution in a PEC cavity
  - Scattering by a penetrable obstacle

### Outline

- 1 A posteriori error estimates for the Poisson equation
- 2 A posteriori error estimates for the Helmholtz equation
- 3 Frequency-explicit a posteriori error estimates for Maxwell's equations
  - Settings
  - Reliability
  - Efficiency
- 4 Numerical experiments
  - Analytical solution in a PEC cavity
  - Scattering by a penetrable obstacle

# The Poisson equation

Given 
$$f:\Omega\to\mathbb{C}$$
, we seek  $u:\Omega\to\mathbb{C}$  such that 
$$\left\{ \begin{array}{ll} -\Delta u=f & \text{in }\Omega,\\ u=0 & \text{on }\partial\Omega, \end{array} \right.$$

where  $\Omega$  is a Lipschitz polyhedral domain.

#### Variational formulation

Assuming  $f \in \mathcal{L}^2(\Omega)$ , we find  $u \in \mathcal{H}^1_0(\Omega)$  such that

$$b(u,v)=(f,v)_{\Omega} \qquad \forall v\in \mathcal{H}_0^1(\Omega),$$

where  $b(u, v) := (\nabla u, \nabla v)_{\Omega}$ .

### Finite element discretization

Find  $u_h \in V_h \subset \mathcal{H}^1_0(\Omega)$  such that

$$b(u_h, v_h) = (f, v_h)_{\Omega} \quad \forall v \in V_h,$$

where  $V_h := \{ w \in \mathcal{H}_0^1(\Omega) : w|_K \in \mathcal{P}_k(K) \mid \forall K \in \mathcal{T}_h \}$ , with  $k \in \mathbf{N}^*$ .

### Intuitive construction of $\eta_K$

Since  $f \in \mathcal{L}^2(\Omega)$  and  $u \in \mathcal{H}^1(\Omega)$ , we have

$$\begin{split} -\nabla \cdot (\nabla u) &= -\Delta u = f \text{ in } \Omega \Longrightarrow \nabla u \in \mathcal{H}(\mathsf{div}, \Omega) \\ &\Longrightarrow \llbracket \nabla u \rrbracket_{F} \cdot \mathbf{n}_{F} = 0 \quad \text{for each } F \in \mathcal{F}_{h}^{i}. \end{split}$$

We note that

$$(f+\Delta u_h)|_K\neq 0 \qquad \text{and} \qquad [\![\boldsymbol{\nabla} u]\!]_F\cdot \boldsymbol{n}_F\neq 0, \quad F\subset \partial K\setminus \partial\Omega,$$
 for each  $K\in\mathcal{T}_h$ .

Then, we propose the estimator

$$\eta_K := h_K \|f + \Delta u_h\|_K + h_K^{1/2} \| \llbracket \boldsymbol{\nabla} u_h \rrbracket \cdot \boldsymbol{n} \|_{\partial K \setminus \partial \Omega} \quad \text{for each } K \in \mathcal{T}_h.$$

Here  $h_K := \operatorname{diam}(K)$ .



# Intuitive construction of $\eta_K$

$$\eta_K := h_K \| \mathbf{f} + \Delta u_h \|_K + h_K^{1/2} \| \llbracket \nabla u_h \rrbracket \cdot \mathbf{n} \|_{\partial K \setminus \partial \Omega} \quad \text{for each } K \in \mathcal{T}_h.$$

 $\eta_K$  quantifies the mismatching of the strong equation and the trace continuity.

The powers of  $h_K$  appears by dimensional and convergence reasons.

The idea of the calculations is to link the error with the estimator.



# The role of coercivity in the reliability estimate (error $\lesssim \eta$ )

We recall that b is coercive in  $\mathcal{H}^1_0(\Omega)$ :  $\|\nabla v\|^2_{\Omega} \lesssim b(v,v) \quad \forall v \in \mathcal{H}^1_0(\Omega)$ .

Even more

$$\|\mathbf{\nabla} v\|_{\Omega}^2 = b(v,v) \qquad \forall v \in \mathcal{H}_0^1(\Omega).$$

Then, if we can establish the bound

$$b(u-u_h,v)\lesssim \eta \|\nabla v\|_{\Omega} \qquad \forall v\in \mathcal{H}^1_0(\Omega),$$

we obtain 
$$(v = u - u_h)$$

$$\|\nabla(u-u_h)\|_{\Omega}^2=b(u-u_h,u-u_h)\lesssim \eta\|\nabla(u-u_h)\|_{\Omega}.$$



### Tools to prove the reliability estimate

### Theorem (Reliability)

The following estimate holds true

$$\|\nabla(u-u_h)\|_{\Omega}\lesssim \eta.$$

Tools to prove it:

### Galerkin orthogonality

$$b(u-u_h,v_h)=0 \quad \forall v_h \in V_h.$$

### Quasi-interpolation operator

$$\mathcal{Q}_h:\mathcal{H}^1_0(\Omega) o V_h$$
 such that

$$h_K^{-1}\|\boldsymbol{v}-\mathcal{Q}_h\boldsymbol{v}\|_K+h_K^{-1/2}\|\boldsymbol{v}-\mathcal{Q}_h\boldsymbol{v}\|_{\partial K}\lesssim \|\boldsymbol{\nabla}\boldsymbol{v}\|_{\widetilde{K}}\qquad\forall\boldsymbol{v}\in\mathcal{H}^1_0(\Omega).$$



# Reliability (error $\lesssim \eta$ ). Recall $\eta_K := h_K \|f + \Delta u_h\|_K + h_K^{1/2} \| \llbracket \nabla u_h \rrbracket \cdot \boldsymbol{n} \|_{\partial K \setminus \partial \Omega}$

For  $v \in \mathcal{H}_0^1(\Omega)$ , we have

$$b(u - u_h, v) = b(u - u_h, v - v_h) = (f, v - v_h)_{\Omega} - (\nabla u_h, \nabla (v - v_h))_{\Omega}$$

$$= (f + \Delta u_h, v - v_h)_{\Omega} - \sum_{K \in \mathcal{T}_h} (\llbracket \nabla u_h \rrbracket \cdot \mathbf{n}, v - v_h)_{\partial K \setminus \partial \Omega}$$

$$\leq \|f + \Delta u_h\|_{\Omega} \|v - v_h\|_{\Omega} + \sum_{K \in \mathcal{T}_h} \|\llbracket \nabla u_h \rrbracket \cdot \mathbf{n}\|_{\partial K \setminus \partial \Omega} \|v - v_h\|_{\partial K \setminus \partial \Omega} \quad \forall v_h \in V_h.$$

Choosing  $v_h = Q_h v$ :

$$b(u-u_h,v) \leq \|f+\Delta u_h\|_{\Omega} \|(\mathcal{I}-\mathcal{Q}_h)v\|_{\Omega} + \sum_{K\in\mathcal{T}_h} \| \llbracket \nabla u_h \rrbracket \cdot \boldsymbol{n} \|_{\partial K\setminus\partial\Omega} \|(\mathcal{I}-\mathcal{Q}_h)v\|_{\partial K\setminus\partial\Omega}$$

$$\lesssim \left(\sum_{K \in \mathcal{T}} h_K \|f + \Delta u_h\|_K + h_K^{1/2} \| \llbracket \nabla u_h \rrbracket \cdot \boldsymbol{n} \|_{\partial K \setminus \partial \Omega} \right) \| \nabla v \|_{\Omega} = \eta \| \nabla v \|_{\Omega}.$$

Thus  $(v = u - u_h)$ 

$$\|\nabla(u-u_h)\|_{\Omega} = \frac{b(u-u_h,u-u_h)}{\|\nabla(u-u_h)\|_{\Omega}} \lesssim \eta.$$

# Tools to prove the efficiency estimate ( $\eta_K \lesssim$ local error).

#### **Bubble functions**

For  $K \in \mathcal{T}_h$  and  $F \in \mathcal{F}_h$ ,  $b_K$  and  $b_F$  are the usual "bubble" functions respectively supported in K and  $\widetilde{F}$ . We have

$$\|v\|_{\mathcal{K}} \lesssim \|b_K^{1/2}v\|_{\mathcal{K}} \quad \forall v \in \mathcal{P}_{k+1}(K), \qquad \|v\|_F \lesssim \|b_F^{1/2}v\|_F \quad \forall v \in \mathcal{P}_{k+1}(F).$$

#### Inverse inequality

For each  $K \in \mathcal{T}_h$ , we have

$$\|\nabla(b_K v)\|_K \lesssim h_K^{-1}\|v\|_K \qquad \forall v \in \mathcal{P}_{k+1}(K).$$

#### Extension operator

For each 
$$F \in \mathcal{F}_h$$
,  $O_{\mathrm{ext}}: \mathcal{P}_{k+1}(F) \to \mathcal{P}_{k+1}(\widetilde{F})$  such that  $O_{\mathrm{ext}}(v)|_F = v$  and  $\|O_{\mathrm{ext}}(v)\|_{\mathcal{T}_{F,h}} + h_F\|\nabla(O_{\mathrm{ext}}(v))\|_{\mathcal{T}_{F,h}} \lesssim h_F^{1/2}\|v\|_F \qquad \forall v \in \mathcal{P}_{k+1}(F).$ 



# Efficiency ( $\eta_K \lesssim$ local error)

We recall 
$$\eta_K := \frac{\mathbf{h}_K \|\mathbf{f} + \Delta u_h\|_K}{\mathbf{f} + \mathbf{h}_K^{1/2}} \| [\![ \nabla u_h ]\!] \cdot \mathbf{n} \|_{\partial K \setminus \partial \Omega}.$$

For  $r_K := (f + \Delta u_h)|_K$ , with  $K \in \mathcal{T}_h$ , we have

$$||r_{K}||_{K}^{2} \lesssim (b_{K}r_{K}, r_{K})_{K}$$

$$= (b_{K}r_{K}, f + \Delta u_{h})_{K}$$

$$= (\nabla(b_{K}r_{K}), \nabla(u - u_{h}))_{K}$$

$$\lesssim h_{K}^{-1}||\nabla(u - u_{h})||_{K}||r_{K}||_{K}$$

and then

$$h_K \| f + \Delta u_h \|_K \lesssim \| \nabla (u - u_h) \|_K \qquad \forall K \in \mathcal{T}_h.$$



# Efficiency $(\eta_K \lesssim \text{local error})$

We recall 
$$\eta_K := h_K \|f + \Delta u_h\|_K + h_K^{1/2} \| \llbracket \nabla u_h \rrbracket \cdot \mathbf{n} \|_{\partial K \setminus \partial \Omega}$$
.

For  $r_F := \llbracket \boldsymbol{\nabla} u_h \rrbracket_F \cdot \boldsymbol{n}_F$ , with  $F \in \mathcal{F}_K \cap \mathcal{F}_h^i$  and  $K \in \mathcal{T}_h$ , we have

$$\begin{split} \|r_F\|_F^2 &\lesssim (b_F r_F, r_F)_F = \sum_{K' \in \mathcal{T}_{F,h}} (O_{\mathrm{ext}}(b_F r_F), \nabla(u_h - u) \cdot \boldsymbol{n})_{\partial K'} \\ &= \sum_{K' \in \mathcal{T}_{F,h}} ((O_{\mathrm{ext}}(b_F r_F), \Delta u_h + f)_{K'} + (\nabla O_{\mathrm{ext}}((b_F r_F)), \nabla(u_h - u))_{K'}) \\ &\lesssim h_F^{-1/2} \sum_{K' \in \mathcal{T}_{F,h}} (h_{K'} \|r_{K'}\|_{K'} + \|\nabla(u - u_h)\|_{K'}) \|r_F\|_F \end{split}$$

and then

$$h_K^{1/2} \| \llbracket \nabla u_h \rrbracket \cdot \boldsymbol{n} \|_{\partial K \setminus \partial \Omega} \lesssim \| \nabla (u - u_h) \|_{\widetilde{K}} \qquad \forall K \in \mathcal{T}_h.$$



### Summary

We recall

$$\eta_K := h_K \|f + \Delta u_h\|_K + h_K^{1/2} \| \llbracket \boldsymbol{\nabla} u_h \rrbracket \cdot \boldsymbol{n} \|_{\partial K \setminus \partial \Omega} \quad \text{for each } K \in \mathcal{T}_h.$$

- $\|\nabla(u-u_h)\|_{\Omega}^2 = b(u-u_h,u-u_h)$
- $b(u u_h, v) \lesssim \eta \|v\|_{\Omega}$   $\forall v \in \mathcal{H}_0^1(\Omega)$

### Theorem (Reliability)

The following estimate holds true

$$\|\nabla(u-u_h)\|_{\Omega}\lesssim \eta.$$

### Theorem (Efficiency)

The following estimate holds true

$$\eta_{\mathcal{K}} \lesssim \|\nabla(u-u_h)\|_{\widetilde{\mathcal{K}}} \qquad \forall \mathcal{K} \in \mathcal{T}_h.$$



14/46

### Outline

- 1 A posteriori error estimates for the Poisson equation
- 2 A posteriori error estimates for the Helmholtz equation
- 3 Frequency-explicit a posteriori error estimates for Maxwell's equations
  - Settings
  - Reliability
  - Efficiency
- 4 Numerical experiments
  - Analytical solution in a PEC cavity
  - Scattering by a penetrable obstacle

### The Helmholtz equation

Given  $f:\Omega\to\mathbb{C}$  and a fixed non-resonant frequency  $\omega>0$ , we seek  $u:\Omega\to\mathbb{C}$  such that

$$\left\{ \begin{array}{ll} -\Delta u - \omega^2 u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{array} \right.$$

where  $\Omega$  is a Lipschitz polyhedral domain.

The above problem is ill-posed at high frequencies (or close to resonances).

We want results that are **explicit** in  $\omega$ .

### Variational formulation

Assuming  $f \in \mathcal{L}^2(\Omega)$ , we find  $u \in \mathcal{H}^1_0(\Omega)$  such that

$$b(u,v)=(f,v)_{\Omega} \qquad \forall v\in \mathcal{H}_0^1(\Omega),$$

where  $b(u, v) := (\nabla u, \nabla v)_{\Omega} - \omega^2(u, v)_{\Omega}$ .

### Finite element discretization

Find  $u_h \in V_h \subset \mathcal{H}^1_0(\Omega)$  such that

$$b(u_h, v_h) = (f, v_h)_{\Omega} \quad \forall v \in V_h,$$

where  $V_h$  is the same finite element space.

Inría\_

# The lack of coercivity and the reliability estimate (error $\lesssim \eta$ )

We need to establish the bound (with Galerkin orthog. and quasi-interpolation)

$$b(u-u_h,v)\lesssim \eta \|\nabla v\|_{\Omega} \qquad \forall v\in \mathcal{H}^1_0(\Omega),$$

with

$$\eta_K := h_K \|f + \Delta u_h + \omega^2 u_h\|_K + h_K^{1/2} \| \left[\!\!\left[ \boldsymbol{\nabla} u_h \right]\!\!\right] \cdot \boldsymbol{n} \|_{\partial K \setminus \partial \Omega} \quad \text{for each } K \in \mathcal{T}_h.$$

We can't control the error since b is **not** coercive in  $\mathcal{H}_0^1(\Omega)$ . We have

$$\|\nabla v\|_{\Omega}^2 = b(v,v) + \omega^2 \|v\|_{\Omega}^2 \qquad \forall v \in \mathcal{H}_0^1(\Omega).$$

We also **need** to control  $\omega \| v \|_{\Omega}$ .

Aubin-Nitsche trick: Given  $w \in \mathcal{L}^2(\Omega)$ , we get  $\omega ||w||_{\Omega} \lesssim \eta$ .

Thus, if 
$$\|\cdot\|_{1,\omega,\Omega} := (\|\nabla\cdot\|_{\Omega}^2 + \omega^2\|\cdot\|_{\Omega}^2)^{1/2}$$
  
 $\|u - u_h\|_{1,\omega,\Omega}^2 = b(u - u_h, u - u_h) + 2\omega^2\|u - u_h\|_{\Omega}^2$   
 $\lesssim \eta(\|\nabla(u - u_h)\|_{\Omega} + \omega\|u - u_h\|_{\Omega}),$ 

that is

$$||u-u_h||_{1,\omega,\Omega}\lesssim \eta.$$

# Tools for the Aubin-Nitsche trick: adjoint problem and approximation factor

For 
$$\phi \in \mathcal{L}^2(\Omega)$$
,  $u_\phi^\star \in \mathcal{H}_0^1(\Omega)$  denotes the unique solution of 
$$b(w, u_\phi^\star) = (w, \phi)_\Omega \quad \forall w \in \mathcal{H}_0^1(\Omega).$$

Then 
$$(w = u - u_h)$$
 
$$(u - u_h, \phi)_{\Omega} = b(u - u_h, u_{\phi}^{\star}) = b(u - u_h, u_{\phi}^{\star} - v_h) \lesssim \eta \|\nabla(u_{\phi}^{\star} - v_h)\|_{\Omega} \quad \forall v_h \in V_h.$$

### Approximation factor

$$\sigma_{\mathrm{ba}} := \omega \sup_{\phi \in \mathcal{L}^2(\Omega) \backslash \{0\}} \inf_{\mathbf{v}_h \in \mathcal{V}_h} \frac{\|\mathbf{u}_\phi^\star - \mathbf{v}_h\|_{1,\omega,\Omega}}{\|\phi\|_{\Omega}}.$$

As a consequence:  $\omega\inf_{v_h\in V_h}\|u_\phi^\star-v_h\|_{1,\omega,\Omega}\leq \sigma_{\mathrm{ba}}\|\phi\|_{\Omega} \qquad \forall \phi\in\mathcal{L}^2(\Omega).$ 

Thus

$$\omega(u-u_h,\phi)_{\Omega} \lesssim \sigma_{\mathrm{ba}}\eta \|\phi\|_{\Omega},$$

that is (choosing  $\phi = u - u_h$ )

$$\omega \| u - u_h \|_{\Omega} \leq \sigma_{\mathrm{ba}} \eta$$
.

Ínría\_

17/46

T. Chaumont-Frelet and P. Vega

# Approximation factor and reliability estimate (error $\lesssim \eta$ )

 $\sigma_{\mathrm{ba}} \in \mathbb{R}$  depends on  $\Omega$ ,  $\omega$  and  $V_h$  (indep. of f).

 $\sigma_{\mathrm{ba}}$  describes the ability of  $V_h$  to approximate  $u_\phi^\star$ .

If  $\Omega$  is a smooth domain, we show that

$$\sigma_{\mathrm{ba}} \leq C(\Omega) \left( \omega h + \frac{\omega}{|\omega - \omega_{\mathrm{r}}|} (\omega h)^{k+1} \right).$$

Then, if  $\omega h \leq \min\left\{1, \left(\frac{|\omega-\omega_{\mathrm{r}}|}{\omega}\right)^{1/(k+1)}\right\}$ ,  $\sigma_{\mathrm{ba}}$  has a bound independent of  $\omega$ .

CHAUMONT-FRELET T., ERN A. AND VOHRALÍK M., On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation (2019), hal-02202233v2.

### Theorem (Reliability)

The following estimate holds true

$$||u-u_h||_{1,\omega,\Omega}\lesssim (1+\sigma_{\mathrm{ba}})\eta.$$

If  $\omega h \to 0$ , then  $\sigma_{\rm ba} \to 0$ , and thus

$$||u-u_h||_{1,\omega,\Omega} \lesssim \eta.$$

# Efficiency $(\eta_K \lesssim \text{local error})$

We recall 
$$\eta_K := h_K \|f + \Delta u_h + \omega^2 u_h\|_K + h_K^{1/2} \| \|\nabla u_h \| \cdot \boldsymbol{n} \|_{\partial K \setminus \partial \Omega}$$
.

For 
$$r_K := (f + \Delta u_h + \omega^2 u_h)|_K$$
, with  $K \in \mathcal{T}_h$ , we have

$$||r_{K}||_{K}^{2} \lesssim (b_{K}r_{K}, r_{K})_{K}$$

$$= (b_{K}r_{K}, f + \Delta u_{h} + \omega^{2}u_{h})_{K}$$

$$= (\nabla(b_{K}r_{K}), \nabla(u - u_{h}))_{K} - \omega^{2}(b_{K}r_{K}, u - u_{h})_{K}$$

$$\lesssim h_{K}^{-1}(1 + \omega h_{K})(||\nabla(u - u_{h})||_{K} + \omega ||u - u_{h}||_{K})||r_{K}||_{K}$$

and then

$$h_K \| f + \Delta u_h + \omega^2 u_h \|_K \lesssim (1 + \omega h_K) \| u - u_h \|_{1,\omega,K} \qquad \forall K \in \mathcal{T}_h.$$



# Efficiency $(\eta_K \lesssim \text{local error})$

We recall 
$$\eta_K := h_K \|f + \Delta u_h + \omega^2 u_h\|_K + h_K^{1/2} \| \|\nabla u_h\| \cdot \mathbf{n} \|_{\partial K \setminus \partial \Omega}$$
.

For  $r_F := \llbracket \boldsymbol{\nabla} u_h \rrbracket_F \cdot \boldsymbol{n}_F$ , with  $F \in \mathcal{F}_K \cap \mathcal{F}_h^i$  and  $K \in \mathcal{T}_h$ , we have

$$\begin{split} \|r_{F}\|_{F}^{2} &\lesssim (b_{F}r_{F}, r_{F})_{F} = \sum_{K' \in \mathcal{T}_{F,h}} (O_{\text{ext}}(b_{F}r_{F}), \nabla(u_{h} - u) \cdot \boldsymbol{n})_{\partial K'} \\ &= \sum_{K' \in \mathcal{T}_{F,h}} ((O_{\text{ext}}(b_{F}r_{F}), \Delta u_{h} + f)_{K'} + (\nabla O_{\text{ext}}((b_{F}r_{F})), \nabla(u_{h} - u))_{K'}) \\ &\lesssim h_{F}^{-1/2} \sum_{K' \in \mathcal{T}_{F,h}} (h_{K'} \|r_{K'}\|_{K'} + \|\nabla(u - u_{h})\|_{K'}) \|r_{F}\|_{F} \end{split}$$

and then

$$h_{K}^{1/2} \| \llbracket \nabla u_{h} \rrbracket \cdot \boldsymbol{n} \|_{\partial K \setminus \partial \Omega} \lesssim (1 + \omega h_{K}) \| u - u_{h} \|_{1, \omega, \widetilde{K}} \qquad \forall K \in \mathcal{T}_{h}.$$



### Summary

We recall

$$\eta_K := h_K \|f + \Delta u_h + \omega^2 u_h\|_K + h_K^{1/2} \| \llbracket \boldsymbol{\nabla} u_h \rrbracket \cdot \boldsymbol{n} \|_{\partial K \setminus \partial \Omega} \quad \text{for each } K \in \mathcal{T}_h.$$

$$\|\nabla(u-u_h)\|_{\Omega}^2 = b(u-u_h, u-u_h) + \omega^2 \|u-u_h\|_{\Omega}^2$$

$$b(u-u_h,v) \lesssim \eta \|v\|_{\Omega} \forall v \in \mathcal{H}_0^1(\Omega)$$

 $\| \omega \| u - u_h \|_{\Omega} < \sigma_{\mathrm{ba}} \eta$ 

### Theorem (Reliability)

The following estimate holds true

$$||u-u_h||_{1,\omega,\Omega}\lesssim (1+\sigma_{\mathrm{ba}})\eta.$$

### Theorem (Efficiency)

The following estimate holds true

$$\eta_{\mathsf{K}} \lesssim (1 + \omega h_{\mathsf{K}}) \|u - u_h\|_{1,\omega,\widetilde{\mathsf{K}}} \qquad \forall \mathsf{K} \in \mathcal{T}_h.$$

au 0, then  $\sigma_{\mathrm{ba}} o$  0, and thus  $\|u-u_h\|_{1,\omega,\Omega}\lesssim \eta$  and  $\eta_K\lesssim \|u-u_h\|_{1,\omega,\widetilde{K}}$   $orall K\in\mathcal{T}_h$ . If  $\omega h \to 0$ , then  $\sigma_{\rm ba} \to 0$ , and thus

$$||\mu - \mu_b||_{1 \to 0} \le n$$
 an

$$n_{\nu} < \|\mu - \mu_{\nu}\|$$

$$\forall K \in \mathcal{T}_{L}$$

21/46 T. Chaumont-Frelet and P. Vega

Frequency-explicit a posteriori error estimates for Maxwell's equations

### Outline

- 1 A posteriori error estimates for the Poisson equation
- 2 A posteriori error estimates for the Helmholtz equation
- 3 Frequency-explicit a posteriori error estimates for Maxwell's equations
  - Settings
  - Reliability
  - Efficiency
- 4 Numerical experiments
  - Analytical solution in a PEC cavity
  - Scattering by a penetrable obstacle

### Outline

- 1 A posteriori error estimates for the Poisson equation
- 2 A posteriori error estimates for the Helmholtz equation
- 3 Frequency-explicit a posteriori error estimates for Maxwell's equations
  - Settings
  - Reliability
  - Efficiency
- 4 Numerical experiments
  - Analytical solution in a PEC cavity
  - Scattering by a penetrable obstacle

### Maxwell's equations

Given  $\mathbf{J}: \Omega \to \mathbb{C}^3$  and a fixed non-resonant frequency  $\omega > 0$ , we seek  $\boldsymbol{E}:\Omega\to\mathbb{C}^3$  such that  $\begin{cases} -\omega^2 \mathbf{E} + \mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{E}) = i\omega \mathbf{J} & \text{in } \Omega, \\ \mathbf{E} \times \mathbf{n} = \mathbf{o} & \text{on } \partial \Omega, \end{cases}$ 

where  $\Omega$  is a Lipschitz polyhedral domain.

The above problem is ill-posed at high frequencies (or close to resonances).

We want results that are **explicit** in  $\omega$ .

#### Variational formulation

Assuming  $J \in \mathcal{H}(\text{div}, \Omega)$ , we find  $E \in \mathcal{H}_0(\text{curl}, \Omega)$  such that

$$b(\boldsymbol{\mathit{E}},\boldsymbol{\mathit{v}}) := -\omega^2(\boldsymbol{\mathit{E}},\boldsymbol{\mathit{v}})_\Omega + (\boldsymbol{\nabla}\times\boldsymbol{\mathit{E}},\boldsymbol{\nabla}\times\boldsymbol{\mathit{v}})_\Omega = i\omega(\boldsymbol{\mathit{J}},\boldsymbol{\mathit{v}})_\Omega \qquad \forall \boldsymbol{\mathit{v}}\in\mathcal{H}_0(\boldsymbol{\mathsf{curl}},\Omega).$$

#### Finite element discretization

Find  $\boldsymbol{u}_h \in \boldsymbol{V}_h$  such that

$$b(\mathbf{E}, \mathbf{v}_h) = i\omega(\mathbf{J}, \mathbf{v}_h)_{\Omega} \quad \forall \mathbf{v}_h \in \mathbf{V}_h,$$

where  $V_h := \{ v_h \in \mathcal{H}_0(\mathbf{curl}, \Omega) : v_h|_K \in \mathcal{N}_k(K) \quad \forall K \in \mathcal{T}_h \}$  with

$$\mathcal{N}_k(K) := \mathcal{P}_k(K) + \mathbf{x} \times \mathcal{P}_k(K).$$

22/46

T. Chaumont-Frelet and P. Vega

Frequency-explicit a posteriori error estimates for Maxwell's equations

### A posteriori error estimators

Strong equation:  $-\omega^2 \mathbf{E} + \nabla \times (\nabla \times \mathbf{E}) = i\omega \mathbf{J}$  in  $\Omega$ .

Hidden equation:  $\nabla \cdot (\mathbf{J} - i\omega \mathbf{E}) = 0$  in Ω.

Trace continuity:  $\llbracket \boldsymbol{\nabla} \times \boldsymbol{E} \rrbracket \times \boldsymbol{n} = \boldsymbol{o}$  and  $\llbracket \boldsymbol{E} \rrbracket \cdot \boldsymbol{n} = 0$  for each  $F \in \mathcal{F}_h^i$ .

#### A posteriori error estimators

For  $K \in \mathcal{T}_h$ , we set

$$\eta_K^2 := \eta_{\mathrm{div},K}^2 + \eta_{\mathrm{curl},K}^2$$

with

$$\eta_{\mathsf{div},K} := h_K \| \nabla \cdot (\mathbf{J} - i\omega \mathbf{E}_h) \|_K + \omega h_K^{1/2} \| [\![ \mathbf{E}_h ]\!] \cdot \mathbf{n} \|_{\partial K \setminus \partial \Omega}$$

and

$$\eta_{\mathsf{curl},K} := h_K \| i\omega \mathbf{J} + \omega^2 \mathbf{E}_h - \nabla \times (\nabla \times \mathbf{E}_h) \|_K + h_K^{1/2} \| [\![ \nabla \times \mathbf{E}_h ]\!] \times \mathbf{n} \|_{\partial K \setminus \partial \Omega}.$$

We also set

$$\eta^2 := \sum_{K \in \mathcal{T}_h} \eta_K^2, \qquad \eta_{\mathrm{div}}^2 := \sum_{K \in \mathcal{T}_h} \eta_{\mathrm{div},K}^2, \qquad \eta_{\mathrm{curl}}^2 := \sum_{K \in \mathcal{T}_h} \eta_{\mathrm{curl},K}^2.$$

BECK R., HIPTMAIR R., HOPPE R. H. W. AND WOHLMUTH B., Residual based a posteriori error estimators for eddy current computation. ESAIM Math. Model. Numer. Anal., 34 (2000), pp. 159-182.

NICAISE S. AND CREUSÉ E., A posteriori error estimation for the heterogeneous Maxwell equations on isotropic and anisotropic meshes. Calcolo. 40 (2003), pp. 249-271.

Inría\_

# Finite element discretization and tools for the reliability estimate (error $\lesssim \eta$ )

Tools to prove the reliability estimate:

### Galerkin orthogonality

$$b(\boldsymbol{E}-\boldsymbol{E}_h,\boldsymbol{v}_h)=0 \quad \forall \boldsymbol{v}_h \in \boldsymbol{V}_h.$$

### Quasi-interpolation operator

$$\mathcal{S}_h: \mathcal{H}^1(\Omega) \to \boldsymbol{V}_h$$
 such that

$$\|\boldsymbol{h}_{K}^{-1}\|\boldsymbol{w}-\mathcal{S}_{h}\boldsymbol{w}\|_{K}+h_{K}^{-1/2}\|(\boldsymbol{w}-\mathcal{S}_{h}\boldsymbol{w}) imes\boldsymbol{n}\|_{\partial K}\lesssim \|\nabla \boldsymbol{w}\|_{\widetilde{K}}\quad orall \boldsymbol{w}\in \boldsymbol{\mathcal{H}}^{1}(\Omega).$$

#### Gradient extraction

For all  $\theta \in \mathcal{H}_0(\mathbf{curl}, \Omega)$ , there exist  $\phi \in \mathcal{H}^1(\Omega) \cap \mathcal{H}_0(\mathbf{curl}, \Omega)$  and  $r \in \mathcal{H}^1_0(\Omega)$  such that  $\theta = \phi + \nabla r$  with

$$\|\nabla \phi\|_{\Omega} \lesssim \|\nabla \times \boldsymbol{\theta}\|_{\Omega}$$
 and  $\|\nabla r\|_{\Omega} \lesssim \|\boldsymbol{\theta}\|_{\operatorname{curl},\omega,\Omega}$ .

COSTABEL M., DAUGE M. AND NICAISE S., Singularities of Maxwell interface problems. ESAIM Math. Model. Numer. Anal., 33 (1999), pp. 627-649.

Inría

### An approach based on gradient extraction

Then, if we write  $\mathbf{w} \in \mathcal{H}_0(\mathbf{curl}, \Omega)$  as

$$\mathbf{w} = \boldsymbol{\phi} + \boldsymbol{\nabla} r,$$

with  $\phi \in \mathcal{H}^1(\Omega) \cap \mathcal{H}_0(\mathbf{curl}, \Omega)$  and  $r \in \mathcal{H}^1_0(\Omega)$ , we can use  $\mathcal{S}_h$  to get

$$b(\pmb{\mathcal{E}}-\pmb{\mathcal{E}}_h,\pmb{\phi})\lesssim \eta_{ extsf{curl}}\|oldsymbol{
abla}\pmb{\phi}\|_{\Omega} \qquad orall \pmb{\phi}\in \pmb{\mathcal{H}}^1(\Omega)\cap \pmb{\mathcal{H}}_0( extsf{curl},\Omega),$$

following the idea that we used for Helmholtz and recalling that

$$\eta_{\operatorname{curl},K} := h_K \| i\omega \mathbf{J} + \omega^2 \mathbf{E}_h - \nabla \times (\nabla \times \mathbf{E}_h) \|_K + h_K^{1/2} \| [\![ \nabla \times \mathbf{E}_h ]\!] \times \mathbf{n} \|_{\partial K \setminus \partial \Omega}.$$

On the other hand,

$$\begin{split} b(\boldsymbol{E} - \boldsymbol{E}_h, \boldsymbol{\nabla} r) &= i\omega(\boldsymbol{J} - i\omega\boldsymbol{E}_h, \boldsymbol{\nabla} r)_{\Omega} \\ &= -i\omega\left((\boldsymbol{\nabla} \cdot (\boldsymbol{J} - i\omega\boldsymbol{E}_h), r)_{\Omega} - i\omega\langle \left[\!\left[\boldsymbol{E}_h\right]\!\right] \cdot \boldsymbol{n}, r\rangle_{\mathcal{F}_h^i}\right), \end{split}$$

and using  $Q_h$ , we get

$$b(\boldsymbol{E} - \boldsymbol{E}_h, \boldsymbol{\nabla} r) \lesssim \omega \eta_{\mathsf{div}} \| \boldsymbol{\nabla} r \|_{\Omega} \qquad \forall r \in \mathcal{H}^1_0(\Omega),$$

recalling that

$$\eta_{\mathsf{div},K} := h_K \| \boldsymbol{\nabla} \cdot (\boldsymbol{J} - i\omega \boldsymbol{\mathcal{E}}_h) \|_K + \omega h_K^{1/2} \| [\![ \boldsymbol{\mathcal{E}}_h ]\!] \cdot \boldsymbol{n} \|_{\partial K \setminus \partial \Omega}.$$

### Outline

- 1 A posteriori error estimates for the Poisson equation
- 2 A posteriori error estimates for the Helmholtz equation
- 3 Frequency-explicit a posteriori error estimates for Maxwell's equations
  - Settings
  - Reliability
  - Efficiency
- 4 Numerical experiments
  - Analytical solution in a PEC cavity
  - Scattering by a penetrable obstacle

### Quasi-interpolation operator and gradient extraction

### Quasi-interpolation operator

$$egin{aligned} \mathcal{S}_h : \mathcal{H}^1(\Omega) &
ightarrow oldsymbol{V}_h ext{ such that} \ h_K^{-1} \| oldsymbol{w} - \mathcal{S}_h oldsymbol{w} \|_K + h_K^{-1/2} \| (oldsymbol{w} - \mathcal{S}_h oldsymbol{w}) imes oldsymbol{n} \|_{\partial K} \lesssim \| oldsymbol{
abla} oldsymbol{w} \|_{\widetilde{K}} \ &orall oldsymbol{w} \in \mathcal{H}^1(\Omega) \cap \mathcal{H}_0(\operatorname{\mathbf{curl}}, \Omega). \end{aligned}$$

### Gradient extraction (improved)

For all  $\theta \in \mathcal{H}_0(\mathbf{curl}, \Omega)$ , there exist  $\phi \in \mathcal{H}^1(\Omega) \cap \mathcal{H}_0(\mathbf{curl}, \Omega)$  and  $r \in \mathcal{H}^1_0(\Omega)$  such that  $\theta = \phi + \nabla r$  with

$$\|\nabla \phi\|_{\Omega} \lesssim \|\nabla \times \boldsymbol{\theta}\|_{\Omega}$$
 and  $\|\nabla r\|_{\Omega} \lesssim \|\boldsymbol{\theta}\|_{\Omega}$ .

**Novelty**: In contrast to standard results, we include the  $\mathcal{L}^2(\Omega)$ -norm of  $\theta$  instead of their  $\mathcal{H}_0(\text{curl},\Omega)$ -norm to get correct scalings with respect to  $\omega$ .

CHAUMONT-FRELET T. AND VEGA P., Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations (2020), hal-02943386.

# Reliability (error $\lesssim \eta$ )

### Lemma (Control of the residual)

The estimates

$$b(\mathbf{E} - \mathbf{E}_h, \nabla q) \lesssim \omega \eta_{\mathsf{div}} \|\nabla q\|_{\Omega} \quad \text{and} \quad b(\mathbf{E} - \mathbf{E}_h, \phi) \lesssim \eta_{\mathsf{curl}} \|\nabla \phi\|_{\Omega}$$
 hold true for all  $q \in \mathcal{H}^1_0(\Omega)$  and  $\phi \in \mathcal{H}^1(\mathcal{T}_h) \cap \mathcal{H}_0(\mathsf{curl}, \Omega)$ .

### Lemma (General control of the residual)

The estimate

$$b(\mathbf{E} - \mathbf{E}_h, \boldsymbol{\theta}) \lesssim \eta \|\boldsymbol{\theta}\|_{\operatorname{curl},\omega,\Omega}$$

hold true for all  $\theta \in \mathcal{H}_0(\mathbf{curl}, \Omega)$ .

Sketch of the proof: Gradient extraction + Control of the residual.

CHAUMONT-FRELET T. AND VEGA P., Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations (2020), hal-02943386.

We recall that b is **not** coercive in  $\mathcal{H}_0(\mathbf{curl}, \Omega)$ . We have

$$\|\mathbf{\nabla} \times \mathbf{v}\|_{\Omega}^2 = b(\mathbf{v}, \mathbf{v}) + \omega^2 \|\mathbf{v}\|_{\Omega}^2 \qquad \forall \mathbf{v} \in \mathcal{H}_0(\mathbf{curl}, \Omega).$$

We will need to use the Aubin-Nitsche trick!

### Approximation factor

For  $j \in \mathcal{L}^2(\Omega)$ ,  $e_j^* \in \mathcal{H}_0(\operatorname{curl}, \Omega)$  denotes the unique solution of  $b(\mathbf{w}, e_j^*) = \omega(\mathbf{w}, j)_{\Omega} \quad \forall \mathbf{w} \in \mathcal{H}_0(\operatorname{curl}, \Omega).$ 

### Approximation factor

$$\sigma_{\mathrm{ba}} := \omega \sup_{\boldsymbol{j} \in \boldsymbol{\mathcal{H}}(\operatorname{div}^0,\Omega)} \inf_{\boldsymbol{e}_h \in \boldsymbol{V}_h} \frac{\|\boldsymbol{e}_{\boldsymbol{j}}^\star - \boldsymbol{e}_h\|_{\operatorname{curl},\omega,\Omega}}{\|\boldsymbol{j}\|_{\Omega}}.$$

If we consider  $j \in \mathcal{L}^2(\Omega)$  instead of  $j \in \mathcal{H}(\mathsf{div}^0, \Omega)$ , we get  $\sigma_{\mathrm{ba}} \gtrsim 1$ .

$$\sigma_{\mathrm{ba}} \in \mathbb{R}$$
 depends on  $\Omega$ ,  $\omega$  and  $\boldsymbol{V}_h$  (indep. of  $f$ ) and is such that 
$$\inf_{\boldsymbol{e}_h \in \boldsymbol{V}_h} \|\boldsymbol{e}_j^\star - \boldsymbol{e}_h\|_{\operatorname{curl},\omega,\Omega} \le \sigma_{\mathrm{ba}} \|\boldsymbol{j}\|_{\Omega} \qquad \forall \boldsymbol{j} \in \boldsymbol{\mathcal{H}}(\operatorname{div}^0,\Omega).$$

Moreover, the condition  $j \in \mathcal{H}(\mathsf{div}^0, \Omega)$  gives us enough regularity to show that

$$\sigma_{\mathrm{ba}} \leq C(\Omega) \left( \omega h + \frac{\omega}{|\omega - \omega_{\mathrm{r}}|} (\omega h)^{k+1} \right).$$

Then, for  $\omega h$  small enough,  $\sigma_{\rm ba}$  has a bound indep. of  $\omega$  (as for Helmholtz).

Inría-

### The Aubin-Nitsche trick

### Lemma (Aubin-Nitsche)

We have

$$\omega \| \mathbf{E} - \mathbf{E}_h \|_{\Omega} \lesssim (1 + \sigma_{\mathrm{ba}}) \eta.$$

Sketch of the proof:

Since  $\mathbf{E} - \mathbf{E}_h \notin \mathcal{H}(\mathsf{div}^0, \Omega)$ , we can't use it as a rhs.

- Helmholtz decomposition:  $\boldsymbol{E} \boldsymbol{E}_h = \boldsymbol{\nabla} p + \boldsymbol{\theta}$ , with  $p \in H^1_0(\Omega)$  such that  $(\boldsymbol{\nabla} p, \boldsymbol{\nabla} v) = (\boldsymbol{E} \boldsymbol{E}_h, \boldsymbol{\nabla} v) \quad \forall v \in H^1_0(\Omega)$  and  $\boldsymbol{\theta} \in \mathcal{H}(\operatorname{div}^0, \Omega)$ .
- $\qquad \qquad \mathbf{\omega}^2 \| \boldsymbol{\nabla} \boldsymbol{p} \|_{\Omega}^2 = \omega^2 (\boldsymbol{E} \boldsymbol{E}_h, \boldsymbol{\nabla} \boldsymbol{p}) = -b (\boldsymbol{E} \boldsymbol{E}_h, \boldsymbol{\nabla} \boldsymbol{p}) \lesssim \omega \eta_{\mathsf{div}} \| \boldsymbol{\nabla} \boldsymbol{p} \|_{\Omega}.$

CHAUMONT-FRELET T. AND VEGA P., Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations (2020), hal-02943386.

### Aubin-Nitsche trick

### Lemma (Aubin-Nitsche)

We have

$$\omega \| \mathbf{E} - \mathbf{E}_h \|_{\Omega} \lesssim (1 + \sigma_{\mathrm{ba}}) \eta.$$

Sketch of the proof (cont'd): We recall

$$\omega \| \nabla p \|_{\Omega} \lesssim \eta_{\text{div}}.$$

- Let be  $\xi \in \mathcal{H}_0(\mathbf{curl}, \Omega)$  such that  $b(\mathbf{w}, \xi) = \omega(\mathbf{w}, \theta)$   $\forall \mathbf{w} \in \mathcal{H}_0(\mathbf{curl}, \Omega)$ .
- lacksquare For all  $oldsymbol{\xi}_h \in oldsymbol{V}_h$ , we have

$$\begin{split} \omega(\boldsymbol{\theta}, \boldsymbol{\theta}) &= \omega(\boldsymbol{E} - \boldsymbol{E}_h, \boldsymbol{\theta}) - \omega(\boldsymbol{\nabla} \boldsymbol{p}, \boldsymbol{\theta}) = b(\boldsymbol{E} - \boldsymbol{E}_h, \boldsymbol{\xi}) - \omega(\boldsymbol{\nabla} \boldsymbol{p}, \boldsymbol{\theta}) \\ &= b(\boldsymbol{E} - \boldsymbol{E}_h, \boldsymbol{\xi} - \boldsymbol{\xi}_h) - \omega(\boldsymbol{\nabla} \boldsymbol{p}, \boldsymbol{\theta}) \lesssim \eta \|\boldsymbol{\xi} - \boldsymbol{\xi}_h\|_{\text{curl}, \omega, \Omega} + \omega \|\boldsymbol{\nabla} \boldsymbol{p}\|_{\Omega} \|\boldsymbol{\theta}\|_{\Omega}. \end{split}$$

CHAUMONT-FRELET T. AND VEGA P., Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations (2020), hal-02943386.

# Reliability (error $\lesssim \eta$ )

### "Gårding inequality"

We have

$$\| \mathbf{v} \|_{\mathbf{curl},\omega,\Omega}^2 = b(\mathbf{v},\mathbf{v}) + 2\omega^2 \| \mathbf{v} \|_{\Omega}^2 \qquad \forall \mathbf{v} \in \boldsymbol{\mathcal{H}}_0(\mathbf{curl},\Omega).$$

### Theorem (Reliability)

The following estimate holds true

$$\|m{E} - m{E}_h\|_{\mathbf{curl},\omega,\Omega} \lesssim (1 + \sigma_{\mathbf{ba}})\eta.$$

Sketch of the proof:

- $b(\mathbf{E} \mathbf{E}_h, \mathbf{E} \mathbf{E}_h) \lesssim \eta \|\mathbf{E} \mathbf{E}_h\|_{\mathbf{curl},\omega,\Omega}$  (General control of the residual)
- $\| \boldsymbol{E} \boldsymbol{E}_h \|_{\operatorname{curl},\omega,\Omega}^2 \lesssim b(\boldsymbol{E} \boldsymbol{E}_h, \boldsymbol{E} \boldsymbol{E}_h) + \omega^2 \| \boldsymbol{E} \boldsymbol{E}_h \|_{\Omega}^2 \text{ (Gårding ineq.)}$
- + Aubin-Nitsche

CHAUMONT-FRELET T. AND VEGA P., Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations (2020), hal-02943386.

Ínría\_

- 1 A posteriori error estimates for the Poisson equation
- 2 A posteriori error estimates for the Helmholtz equation
- 3 Frequency-explicit a posteriori error estimates for Maxwell's equations
  - Settings
  - Reliability
  - Efficiency
- 4 Numerical experiments
  - Analytical solution in a PEC cavity
  - Scattering by a penetrable obstacle

# Efficiency ( $\eta_K \lesssim \text{local error}$ )

#### Lemma (Upper bound for $\eta_{\text{div},K}$ )

We have

$$\eta_{\mathsf{div},K} \lesssim \omega \|\mathbf{E} - \mathbf{E}_h\|_{\widetilde{K}} \qquad \forall K \in \mathcal{T}_h.$$

Sketch of the proof: Bubble functions properties + integration by parts + identities  $\nabla \cdot (\mathbf{J}_h - i\omega \mathbf{E}_h) = \nabla \cdot (\mathbf{J} - \mathbf{J}_h) - i\omega \nabla \cdot (\mathbf{E} - \mathbf{E}_h)$  and  $i\omega \nabla \cdot \mathbf{E} = \mathbf{J}$ .

### Lemma (Upper bound for $\eta_{\text{curl},K}$ )

We have

$$\eta_{\operatorname{curl},K} \lesssim (1+\omega h_K) \| \boldsymbol{E} - \boldsymbol{E}_h \|_{\operatorname{curl},\omega,\widetilde{K}} \qquad orall K \in \mathcal{T}_h.$$

Sketch of the proof: Similar to the case of the Helmholtz equation.

#### Theorem (Efficiency)

The following estimate holds true

$$\eta_{\mathsf{K}} \lesssim (1 + \omega h_{\mathsf{K}}) \| \mathbf{\mathcal{E}} - \mathbf{\mathcal{E}}_h \|_{\mathsf{curl},\omega,\widetilde{\mathsf{K}}} \qquad orall \mathsf{K} \in \mathcal{T}_h.$$

CHAUMONT-FRELET T. AND VEGA P., Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations (2020), hal-02943386.

# Summary (We recall: If $\omega h \to 0$ , then $\sigma_{\rm ba} \to 0$ )

- $\|\nabla \times (\mathbf{E} \mathbf{E}_h)\|_{\Omega}^2 = b(\mathbf{E} \mathbf{E}_h, \mathbf{E} \mathbf{E}_h) + \omega^2 \|\mathbf{E} \mathbf{E}_h\|_{\Omega}^2$
- $b(\mathbf{E} \mathbf{E}_h, \boldsymbol{\theta}) \lesssim \eta \|\boldsymbol{\theta}\|_{\Omega}$   $\forall \boldsymbol{\theta} \in \mathcal{H}_0(\mathsf{curl}, \Omega)$
- $\|\omega\| E E_h\|_0 < (1 + \sigma_{\rm ba})n$

### Theorem (Reliability)

The following estimate holds true

$$\| {m E} - {m E}_h \|_{{
m curl},\omega,\Omega} \lesssim (1 + \sigma_{
m ba}) \eta.$$

### Theorem (Efficiency)

The following estimate holds true

$$\eta_{\mathsf{K}} \lesssim (1+\omega \textbf{\textit{h}}_{\mathsf{K}}) \|\textbf{\textit{E}}-\textbf{\textit{E}}_{\textit{h}}\|_{\text{curl},\omega,\widetilde{\mathsf{K}}} \qquad \forall \mathsf{K} \in \mathcal{T}_{\textit{h}}.$$

**General coefficients**: We can consider the problem

Find 
$$\mathbf{E}:\Omega \to \mathbb{C}^3$$
 such that 
$$\begin{cases} -\omega^2 \varepsilon \mathbf{E} + \mathbf{\nabla} \times \left(\boldsymbol{\mu}^{-1} \mathbf{\nabla} \times \mathbf{E}\right) = i\omega \mathbf{J} & \text{in } \Omega, \\ \mathbf{E} \times \mathbf{n} = \mathbf{o} & \text{on } \partial \Omega, \end{cases}$$

where  $\varepsilon$ ,  $\mu$  are symmetric tensor-valued functions (useful for PML conditions).

- 1 A posteriori error estimates for the Poisson equation
- 2 A posteriori error estimates for the Helmholtz equation
- 3 Frequency-explicit a posteriori error estimates for Maxwell's equations
  - Settings
  - Reliability
  - Efficiency
- 4 Numerical experiments
  - Analytical solution in a PEC cavity
  - Scattering by a penetrable obstacle

# Effectivity index

Effectivity index := 
$$\frac{\text{error}}{\eta}$$
.

Recalling the reliability and efficiency results

$$\mathsf{error} \leq \mathit{C}_{\mathrm{rel}} \eta \qquad \mathsf{and} \qquad \eta \leq \mathit{C}_{\mathrm{eff}} \mathsf{error},$$

we can write

$$rac{1}{C_{ ext{eff}}} \leq ext{Effectivity index} \leq C_{ ext{rel}}.$$

We expect the effective index to be independent of  $\omega$  and h for sufficiently refined meshes.



- 1 A posteriori error estimates for the Poisson equation
- 2 A posteriori error estimates for the Helmholtz equation
- 3 Frequency-explicit a posteriori error estimates for Maxwell's equations
  - Settings
  - Reliability
  - Efficiency
- 4 Numerical experiments
  - Analytical solution in a PEC cavity
  - Scattering by a penetrable obstacle

### Analytical solution in a PEC cavity

We set 
$$\Omega:=(-1,1)^2$$
,  $\pmb{\varepsilon}:=\pmb{I}$ ,  $\mu:=1$  and  $\pmb{J}:=\pmb{e}_1$ . Thus  $\pmb{E}(\pmb{x})=rac{1}{\omega}\left(rac{\cos(\omega \pmb{x}_2)}{\cos\omega}-1
ight)\pmb{e}_1$ 

Since the problem doesn't feature absorption, there are resonance frequencies for which it is not well-posed:

$$\omega = m\pi/2, \ m \in \mathbb{N}^*.$$

We consider two sequences of frequencies to illustrate the influence of  $\sigma_{\rm ba}$ :

- Frequencies tending towards the resonance frequency  $\omega_r = 3\pi/2$ :  $\omega_\delta := \omega_r + \delta(\pi/2)$  with  $\delta = 1/2, 1/4, 1/8, 1/16, 1/32, 1/64$ .
- Increasing frequencies uniformly separated from the resonance set:  $\omega_\ell := (\ell+3/10) \times 2\pi$ , for  $\ell := 1, 2, 4, 8, 16, 32$ .

We use structured meshes.



### Frequencies tending towards the resonance frequency



Ínría\_

# Increasing frequencies



Ínría\_

37/46

T. Chaumont-Frelet and P. Vega

Frequency-explicit a posteriori error estimates for Maxwell's equations

### Analytical solution in a PEC cavity

#### For a fixed polynomial degree k:

- When the frequency gets closer to  $\omega_r$  or is increased, the effectivity index is larger for coarse meshes.
- When  $h \to 0$ , the same effectivity index is achieved for all frequencies.

The effectivity index is independent of the frequency if the mesh is sufficiently refined (highlighting our key theoretical finding).

### Comparing different values of k:

- The effectivity index decreases when *k* increases.
- The "asymptotic" effectivity index is achieved faster for higher values of k.

The effectivity index of residual estimators depends on k. For a fixed mesh,  $\sigma_{\rm ba}$  decreases when k is increased.



- 1 A posteriori error estimates for the Poisson equation
- 2 A posteriori error estimates for the Helmholtz equation
- 3 Frequency-explicit a posteriori error estimates for Maxwell's equations
  - Settings
  - Reliability
  - Efficiency
- 4 Numerical experiments
  - Analytical solution in a PEC cavity
  - Scattering by a penetrable obstacle

# Scattering by a penetrable obstacle

Penetrable obstacle:  $G := (-1/4, 1/4)^2$ .

 $\Omega$  consist in  $\Omega_0:=(-1,1)^2,$  surrounded with a PML of length  $\frac{1}{4}.$ 

#### $\boldsymbol{E}_{\mathrm{aux}}$ is a plane wave:

- travelling in the direction  $d := (\cos \phi, \sin \phi)$ ,
- polarized along  $\boldsymbol{p} := (\sin \phi, -\cos \phi)$ , with  $\phi = \pi/12$ ,
- lacksquare injected through a cut-off function supported in the ring  $0.8 \le |x| \le 0.9$ .

$$m{J} := -\omega^2 m{E}_{\mathrm{aux}} + m{
abla} imes m{
abla} imes m{E}_{\mathrm{aux}}$$
, is supported in the ring  $0.8 \le |m{x}| \le 0.9$ .

We set 
$$\varepsilon := \left( \begin{array}{cc} 8 & 0 \\ 0 & 32 \end{array} \right)$$
 and  $\mu := \frac{1}{4}$  in  $G$ .

Here, the analytical solution is unavailable. Given  $\boldsymbol{E}_h$  we then compute errors compared to  $\widetilde{\boldsymbol{E}}$ , where  $\widetilde{\boldsymbol{E}}$  is computed on the same mesh than  $\boldsymbol{E}_h$  with k=6.



### Scattering by a penetrable obstacle

We analyze the ability of our estimator to drive a mesh adaptive algorithm.

- We consider general unstructured meshes (MMG software package).
- This package takes as input an already existing mesh, and a set of maximal mesh sizes associated with each vertex of the input mesh.
- The output is a new mesh, locally refined respecting prescribed mesh sizes.
- Using the MMG package and Dörfler's marking, refine the mesh iteratively.



# Re $m{\widetilde{E}}_2$ computed at the last iteration of the adaptive algorithm



Inría-

41/46 T. Chaumont-Frelet and P. Vega Frequency-explicit a posteriori error estimates for Maxwell's equations

### Initial mesh and mesh obtained at iteration 10 of the algorithm





# Error vs. number of dofs / Effectivity index vs. number of iterations



Inría

## Error vs. number of dofs / Effectivity index vs. number of iterations



Inría\_

### Error vs. number of dofs / Effectivity index vs. number of iterations

$$\mathrm{Error} := 100 \frac{\|\widetilde{\textbf{\textit{E}}} - \textbf{\textit{E}}_h\|_{\text{curl},\omega,\Omega}}{\|\widetilde{\textbf{\textit{E}}}\|_{\text{curl},\omega,\Omega}} \text{ vs. } \textit{N} :$$

■ Asymptotically: Error  $\sim O(N^{-(k+1)/2})$  (optimal rate).

The produced meshes are adequately refined for all  $\omega$  and k considered.

#### Effectivity index vs. iterations:

- The error is underestimated on coarse meshes, and this under estimation is more pronounced for higher frequencies.
- Asymptotically, the effectivity index becomes independent of the frequency.

The curves are similar to the one presented for uniform meshes.



#### Conclusion<sup>b</sup>

- We analyzed residual-based a posteriori error estimators for the discretization of time-harmonic Maxwell's equations in heterogeneous media.
   Novelty: We derive frequency-explicit reliability and efficiency estimates.
- Our findings generalize previous results for scalar wave propagation problems.
- The reliability and efficiency constants are independent of the frequency for sufficiently refined meshes.
- We presented numerical experiments including interior problems and scattering problems with PMLs. In all cases, the behavior of the estimator fits our theoretical predictions.
- The estimator was used to drive an adaptive refinement. We got optimal convergence rates, and therefore our estimator is suited for adaptivity purposes.

