Сжатие данных. Сжатие без учёта контекста. Разделимые и неразделимые коды сжатия без учёта контекста

Александра Игоревна Кононова

МИЭТ

2 ноября 2023 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

Символ — элемент качественной информации $a \in A$ (множество A — алфавит).

Текст — последовательность $m \in A^+$ таких элементов.

На практике для всех алгоритмов, где алфавит может быть произвольным, символ кодирования = байт (так как в большинстве ЭВМ байт 8-битен — это 00...FF), исходный текст = любой бинарный файл, сжатый текст — тоже бинарный файл:

- использование в программе для ЭВМ символов меньших, чем байт неудобно;
- использование символов фиксированной разрядности больших, чем байт ⇒ слишком большой алфавит \Longrightarrow объёмные структуры данных для восстановления.
- использование в качестве символа кодирования печатного символа ASCII или koi8r/cp1251/dos/iso/maccyrillic не позволяет рассматривать в качестве исходного текста произвольный файл и приводит к труднодиагностируемым ошибкам;
- использование печатного символа UTF-8 (144 697 символов Unicode в 2023 г.) то же самое + проигрыш в объёме.

В книгах для наглядности используются обозначения A, B, ... и т. п. (маленький алфавит +визуальное отличие символа от индекса или частоты), но в программе это всё равно байты!

Семинар: подготовка к КР1

Сжатие (компрессия, упаковка) — кодирование |code(X)| < |X|, причём X однозначно и полностью восстанавливается по code(X). Согласно первой теореме Шеннона $|code(X)| \ge I(X)$ (средние!). Кодирование с $|code(X)| \to I(X)$ и $|code(x)| \to I(x)$ — оптимальное.

- **1** Сжимается не отдельное сообщение x, а источник X.
- 2 Сжатие возможно только при наличии избыточности в изначальном кодировании X (|X| > I(X)).

Если источник X порождает блоки длины N бит с равной вероятностью $(p=\frac{1}{2N})$, он неизбыточен \rightarrow не существует такого алгоритма сжатия, который сжимает **любой** блок длины N.

Любой алгоритм сжатия сжимает часто встречающиеся блоки данных за счёт того, что более редкие увеличиваются в размерах.

Источник X генерирует входную последовательность $C = c_1 c_2 \dots c_n \dots$ $c_i \in A$ — символы пронумерованы (есть «предыдущий» и «последующий»).

Типы входной последовательности / алгоритмы сжатия по её типу

- **1** блок конечная входная последовательность (произвольный доступ);
- поток с неизвестными границами (последовательный доступ).
- Оправнительные обращения в пораго производительные обращения обращения
- поточные (адаптивные) статистика вычисляется только для уже обработанной части потока, «на лету» \implies нестационарная модель X.

X неизвестен \Rightarrow строится модель источника по догадкам и сообщению x.

Свойства алгоритмов сжатия:

- ① степень сжатия $\frac{|X|}{|code(X)|}$: в среднем по источнику; $\frac{|X|}{|code(X)|} \leqslant \frac{|X|}{|I(X)|}$; модель X для оценки |code(x)| снизу для конкретной реализации может отличаться от исходной модели (ср. Хаффман блочный и адаптивный);
- степень увеличения размера в наихудшем случае;

Семинар: подготовка к КР1

скорость сжатия и разжатия.

←□ → ←□ → ←□ → □ → ○○○

Пусть X порождает последовательность из 2^N возможных символов.

- **1** Равновероятный источник (I(X) = N) кодирование отдельных символов кодами фиксированной ширины N бит.
- Стационарный источник без памяти, порождающий символы с разными постоянными вероятностями (I(X) < N) — кодирование отдельных символов кодами переменной ширины: коды Хаффмана, методы семейства арифметического кодирования.
- Отационарный источник с памятью, порождающий символы с вероятностями, зависящими от контекста (I(X) < N) кодирование сочетаний символов: словарные методы семейства LZ77 (словарь=текст) и семейства LZ78 (отдельный словарь в виде дерева/таблицы).

Если изначально каждый символ записан кодом фиксированной ширины из N бит \Rightarrow сжатие для \bigcirc и \bigcirc .

Модель источника X — стационарный источник без памяти, строится по кодируемому сообщению C:

- **1** кодируемое сообщение $C \in A_1^+$ (на практике символы первичного алфавита $a \in A_1$ — байты);
- 2 символы считаются независимыми: p(a) = const(но $p(a_i) \neq p(a_i)$ в общем случае для $a_i, a_i \in A_1$);
- ullet их вероятности оцениваются по частотам в сообщении C;

Если $\forall a_i, a_i \in A_1$ верно $p(a_i) = p(a_i)$ — модель без памяти Xне избыточна, энтропийное сжатие не уменьшит объёма; если вероятности символов (байтов) не равны друг другу $(u_{\frac{1}{256}})$ — энтропийное сжатие уменьшит объём данных приблизительно до I(X).

Семинар: подготовка к КР1

- 1 Каждому символу $a \in A_1$ сопоставляется код $code(a) \in A_2^+$, для двоичного кодирования — $A_2 = \{0, 1\}$ и code(a) — префиксный код из 0 и 1.
- **2** Длина кода code(a) должна быть как можно ближе к I(a) (для двоичного кодирования — в битах).

Префиксный код = дерево

Оптимальный код — сбалансированное с учётом весов дерево.

Результат алфавитного префиксного кодирования — битовая строка произвольной длины, в общем случае некратной длине байта.

При записи битовой строки в файл последний байт может быть неполным ⇒ дополняется незначащими битами, обычно нулями.

Семинар: подготовка к КР1

Символы первичного алфавита = байты: $A_1 = \{0, 1, ...N\}, N = |A| - 1$ (возможно, не все).

Положение сжатия без учёта контекста:

Модель — стационарный без памяти источник \implies задаётся постоянными $(p_0, p_1, ..., p_N)$; в алгоритмах для ЭВМ — целочисленные частоты $(\nu_0,\nu_1,...,\nu_N)$: $p_i=rac{
u_i}{
u_0+
u_1+...+
u_N}$ при оценивании по файлу частота ν_i не обязательно равна количеству вхождений count(i)байта i в исходном тексте, но $\nu_0: \nu_1: \dots: \nu_N \approx count(0): count(1): \dots: count(N)$.

Допущения ниже:

- Построение дерева громоздко \implies рассматриваем на примере 3-битного байта $(2^3 = 8$ -символьного алфавита $A_1 = \{0, 1, ..., 7\}$).
- Сортировка символов по убыванию частот. Для кодов Шеннона и АС это принципиально; для кодов Хаффмана и Шеннона—Фано — из единообразия.
- При сортировке символов по убыванию частот при $\nu_i = \nu_i$ порядок не определён \implies определим, что при равных частотах $0\succ 1\succ ...\succ N$ (здесь « $i\succ j$ » = «при $\nu_i=\nu_i$ сортируем как если $\nu_i>\nu_i$ ») для Хаффмана определим ... $\succ S_2 \succ S_1 \succ 0 \succ 1 \succ ... \succ N$.

Сжатие без учёта контекста Исторические коды: Шеннона и Шеннона-Фано Код Хаффмана

- **1** длина исходного текста n = 13 символов, что составляет $13 \cdot 3 = 39$ бит;
 - сохраняется в заголовке, чтобы при декодировании отсечь незначащие биты в конце файла;
- **2** частоты $(\nu_0, \nu_1, ..., \nu_7) = (2, 1, 1, 1, 5, 1, 1, 1)$:
 - массив частот (2,1,1,1,5,1,1,1) в исходном порядке $(\nu_0,\nu_1,...,\nu_7)$ помещается в архив и используется для распаковки файла;
 - пары символ $4^5, 0^2, 1^1, 2^1, 3^1, 5^1, 6^1, 7^1$, отсортированные по убыванию частот (а при равных — согласно $0 \succ 1 \succ ... \succ N$) — используются для построения кодов;
- общее (не среднее на символ!) количество информации (согласно модели без памяти): $I(x) = -5 \cdot \log_2 \frac{5}{13} - 2 \cdot \log_2 \frac{2}{13} - 6 \cdot 1 \cdot \log_2 \frac{1}{13} \approx 34.5$ бит $35~{
 m бит}$ — минимально возможная длина кода x любым алгоритмом без учёта контекста.

<ロ> <問> < 置> < 置> < 置> < 置 > の< で

Код Шеннона строится не как дерево [но является деревом]:

• все символы сортируются по частоте (по убыванию): $a_1, a_2, ... a_{|A|}$, $\nu(a_1) \geqslant \nu(a_2) \geqslant ... \geqslant \nu(a_{|A|})$;

② код a_i — первые $l_i = \lceil -\log_2 p_i \rceil$ двоичных цифр $\sum_{k=0}^{i-1} p_i$.

a_i	p_i	$I(a_i) = -\log_2 p_i$	l_i	$\sum_{k=0}^{i-1} p_i$	код		
4	$\frac{5}{13} \approx 0.01100$	1,38	2	0 = 0,00000	00		
0	$\frac{2}{13} \approx 0,00100$	2.70	3	$\frac{5}{13} \approx 0.01100$	011		
1	$\frac{1}{13} \approx 0,00010$	3.70	4	$\frac{7}{13} \approx 0,10001$	1000		
2	$\frac{1}{13} \approx 0,00010$	3.70	4	$\frac{8}{13} \approx 0,10011$	1001		
3	$\frac{1}{13} \approx 0,00010$	3.70	4	$\frac{9}{13} \approx 0,10110$	1011		
5	$\frac{1}{13} \approx 0,00010$	3.70	4	$\frac{10}{13} \approx 0,11000$	1100		
6	$\frac{1}{13} \approx 0,00010$	3.70	4	$\frac{11}{13} \approx 0,11011$	1101		
7	$\frac{1}{13} \approx 0,00010$	3.70	4	$\frac{12}{13} \approx 0,11101$	1110		

 $|code(x)| = 5 \cdot 2 + 2 \cdot 3 + 6 \cdot 1 \cdot 4 = 40$ бит $= \left[13\frac{1}{3}\right] = 14$ трёхбитных байтов.

Исторически первый; не лучше Шеннона—Фано.

Семинар: подготовка к КР1

Дерево Шеннона—Фано строится сверху вниз (от корневого узла к листовым):

- все символы сортируются по частоте;
- упорядоченный ряд символов в некотором месте делится на две части так, чтобы в каждой из них сумма частот символов была примерно одинакова (без пересортировки!);
- новое деление.

Исторически первый близкий к оптимальному префиксный код.

Не лучше кода Хаффмана по степени сжатия и примерно аналогичен по скорости кодирования/декодирования.

Кодирование х методом Шеннона-Фано

Не определено, какая ветвь получает бит 0, а какая 1. Пусть первая подгруппа (s_1) — 0, вторая (s_2) — 1. Неточно определён алгоритм деления s на $s_1 + s_2$. Основные варианты уточнений:

- $\min_{s_1 \leqslant s_2} |s_2 s_1|$ более частые символы получают более короткие коды, быстрее расчёт;
- $\min |s_2 s_1|$, если он достигается в одной точке; если в двух: $\min_{s_1 \leqslant s_2} |s_2 s_1|$; короче код сообщения.

Воспользуемся 2:

$$1) \, \left(4^5,0^2,1^1,2^1,3^1,5^1,6^1,7^1\right)^{13} \rightarrow \underbrace{\left(4^5,0^2\right)^7}_{\text{коды начинаются с 0}} + \underbrace{\left(1^1,2^1,3^1,5^1,6^1,7^1\right)^6}_{\text{коды начинаются с 1}}$$

2) $\left(4^{5},0^{2}\right)^{7}$ $\rightarrow \underbrace{4^{5}}_{0} + \underbrace{0^{2}}_{0}$ и т. д.: коды начинаются с 0

	4^{5}	0^2	1^1	2^1	3^1	5^1	6^1	7^1	
	()	1						
	0	1	0				1		
			0	1		0	1		
				0	1		0	1	
	00	01	100	1010	1011	110	1110	1111	

$$code(x) = 111100100...$$

$$|code(x)| = 5 \cdot 2 + 2 \cdot 2 + 2 \cdot 1 \cdot 3 + 4 \cdot 1 \cdot 4 = 36$$
 бит $= 12$ трёхбитных байтов

Семинар: подготовка к КР1

Дерево Хаффмана строится снизу вверх (от листовых узлов к корневому узлу):

- все символы сортируются по частоте (по убыванию);
- 2 два последних (самых редких) элемента отсортированного списка узлов заменяются на новый элемент с частотой, равной сумме исходных;
- новая сортировка.

На каждом шаге число узлов сокращается на один; узел, полученные на последнем шаге — корень дерева.

Код Хаффмана имеет минимальную длину среди префиксных.

Не увеличивает размера исходных данных в худшем случае.

Кодирование x методом Хаффмана, ... $\succ S_2 \succ S_1 \succ 0 \succ 1 \succ ... \succ 7$

Не определено, какая ветвь дерева получает бит 0, а какая 1. Пусть 0, 1 — слева направо.

1)
$$4^5,0^2,1^1,2^1,3^1,5^1,\underbrace{6^1,7^1}_{0}$$
 — последний бит кода 6^1 — 0, последний бит кода 7^1 — 1

2)
$$4^5, S_1^2, 0^2, 1^1, 2^1, \underbrace{3^1, 5^1}_{0 S_2^2 1}$$

3)
$$4^5$$
, S_2^2 , S_1^2 , 0^2 , $\underbrace{1^1, 2^1}_{0 \quad S_3^2 \quad 1}$

4)
$$4^5, S_3^2, S_2^2, \underbrace{S_1^2, 0^2}_{0 \quad S_4^4 \quad 1}$$

5)
$$4^5, S_4^4, \underbrace{S_3^2, S_2^2}_{0 \quad S_5^4}$$

6)
$$4^5$$
, $\underbrace{S_5^4, S_4^4}_{0 \quad S_6^8 \quad 1}$

7)
$$\underbrace{S_6^8, 4^5}_{0.513}$$

4^5	0^2	1^1	2^1	3^1	5^1	6^1	7^1
1	011	0000	0001	0010	0011	0100	0101

$$code(x) = 010110000000101000011011011111110010$$

$$|code(x)| = 5 \cdot 1 + 2 \cdot 3 + 6 \cdot 1 \cdot 4 = 35$$
 бит $= \left\lceil 11 \frac{2}{3} \right\rceil = 12$ трёхбитных байтов.

Сжатие без учёта контекста Исторические коды: Шеннона и Шеннона-Фано Код Хаффмана

Построение дерева Хаффмана Кодирование x методом Хаффмана, ... $\succ S_2 \succ S_1 \succ 0 \succ 1 \succ ... \succ 7$ Код Хаффмана и архив с кодами Хаффмана

Код Хаффмана и архив с кодами Хаффмана

Исходный файл m = 7412650044443 из $n = 13_{10} = 15_8$ трёхбитных байтов, код Хаффмана: 01011000000010100001101101101111110010 длиной 35 бит будет дополнен до $\geqslant 12$ байтов: $010\,110\,000\,000\,101\,000\,011\,011\,011\,111\,100\,100$ (биты) = 260050333744 (байты)

Для декодирования нужны ещё n (запишем 12 битами = 4 байтами) и массив частот $\vec{\nu}$: 0015, 21115111, 260050333744

Ненормированное количество count(c) вхождений достигает $n \implies$ нормировка:

```
\begin{cases} \nu_0: \nu_1: \ldots: \nu_N \approx count(0): count(1): \ldots: count(N), \\ \max(\nu_i) = \text{максимальное значение байта.} \end{cases}
```

 $\overrightarrow{count} = (0, 3, 1, 16, 17, 1, 0, 2), \text{ HO } \vec{\nu} = (0, 2, 1, 7, 7, 1, 0, 1).$

В файл записываются $0050,\ 02177101$ и код, рассчитанный по $\vec{v}=(0,2,1,7,7,1,0,1).$

Сжатие без учёта контекста Исторические коды: Шеннона и Шеннона-Фано Код Хаффмана Вырожденное сообщение, адаптивные алгоритмы, арифметический код

Семинар: подготовка к КР1

- По умолчанию байты с нулевыми u_i отбрасываются и не получают кода. Тогда при приведении частот $count(i) \in [0, \max(count)] \to \nu_i \in [0, Max]$ необходимо, чтобы при count(i) > 0 было $\nu_i > 0$:
 - соотношения всех частот незначительно искажаются:

$$\begin{cases}
\nu_i = 0, & count(i) = 0, \\
\nu_i = \text{round}\left(\frac{count(i) - 1}{\max(count) - 1} \cdot (Max - 1)\right) + 1, & count(i) > 0;
\end{cases}$$
(A)

• для
$$count(i) > \frac{\max(count)}{Max}$$
 передаются максимально точно; для малых полностью искажаются:
$$\begin{cases} \nu_i = 0, & count(i) = 0, \\ \nu_i = 1, & 0 < count(i) \leqslant \frac{\max(count)}{Max}, \\ \nu_i = \operatorname{round}\left(\frac{count(i)}{\max(count)} \cdot Max\right), & count(i) > \frac{\max(count)}{Max}; \end{cases}$$
 (B)

для октетов (Max=255) и $\frac{\max(count)}{\min(count)} \leqslant Max$ обе формулы дают приемлемый результат.

- ② Если хочется $\nu_i = \mathrm{round}\left(\frac{count(i)}{\max(count)} \cdot Max\right)$ для всех (возможно $count(i) > 0 \ o \ \nu_i = 0$), то:
 - ullet необходимо модифицировать алгоритм, чтобы байты с $u_i = 0$ получили коды (возможно для Хаффмана и Шеннона—Фано, невозможно для арифметического и Шеннона);
 - тогда коды получат и байты с count(i) = 0, а коды count(i) > 0 удлинятся.

> < ₱ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹ > < ₹

Сжатие без учёта контекста Исторические коды: Шеннона и Шеннона-Фано Код Хаффмана

- длина кода Шеннона символа 4 равна нулю, так как I(m) = 0;
- длина кода Хаффмана и Шеннона—Фано символа 4 равна нулю, так как дерево состоит из одного узла (корня 4) и нуля ветвей.

Длина кода (Хаффмана, Шеннона—Фано или Шеннона) всего сообщения из n одинаковых символов 4 также нулевая.

Файл архива должен содержать n и массив частот $\vec{\nu}$:

0015.00007000

этого достаточно для восстановления такого сообщения.

4□ > 4回 > 4 亘 > 4 亘 > □ ■ 990

Вначале считаем символы равновероятными (код=значение байта как есть), после каждого записанного/прочитанного символа перестраиваем дерево:

- собственно код code(x) длиннее блочного кодека: оценка |code(x)| снизу не стационарный источник без памяти, а нестационарный (набор вероятностей на каждом шаге меняется);
- не требует для декодирования частот $(\nu_0, \nu_1, ..., \nu_N) \implies$ общий размер файла может быть меньше, чем у блочного.

Неалфавитное неразделимое кодирование

$$C = c_0 c_1 c_2 ... c_n \to z \in [0, 1);$$
 $(0, 1) \simeq \mathbb{R}$

$$I(z) pprox I(C)$$
, и чаще всего $I(z) >> 64$ бит $> I({\tt double})$

Для сообщения $m=3242\,5675\,2067\,5462$

- оцените суммарное количество информации согласно модели «источник без памяти» (вероятности символов оцениваются по сообщению);
- закодируйте методами: Хаффмана, Шеннона—Фано, Шеннона (укажите порядок сортировки по умолчанию при равных частотах);
- сравните длины кодов друг с другом и с количеством информации.

В байте три бита; символы первичного алфавита — байты.

МИЭТ

www.miet.ru

Александра Игоревна Кононова illinc@mail.ru gitlab.com/illinc/raspisanie