Лабораторная работа № 3

ИССЛЕДОВАНИЕ МЕТОДОВ ЧИСЛЕННОГО ИНТЕГРИРОВАНИЯ

Постановка задачи №1. С целью исследования формул численного интегрирования вычислите определенный интеграл от функции f(x) на отрезке $x \in [a, b]$, а также для «осциллирующих» функций f(x) + cos10x и f(x) + cos100x на том же отрезке $x \in [a, b]$ на равномерной сетке. Конкретный вид функций приведен в приложении.

В своей работе используйте формулы: прямоугольников, трапеций, Симпсона.

Вывод результатов. Программа должна строить график интегрируемой функции, а полученное значение интеграла должно быть выведено на экран. Также должно быть выведено истинное значение интеграла, и погрешность интегрирования.

Анализ порядка погрешности. Исследуйте порядок погрешности формул численного интегрирования. С этой целью для каждой из указанных функций вычислите приближенное значение интеграла I при разных значениях n. Закономерность выбора n должна быть такой, чтобы оценка порядка была достаточно убедительной. Результаты расчетов запишите в таблицу 1 и на ее основе определите порядок погрешности формулы.

Таблица 1

n	$ \int_{a}^{b} f(x)dx - I $
n_1	
n_2 .	
n_3 .	
n_4 .	
Порядок	

Постановка задачи №2. Реализовать и исследовать **метод адаптивной квадратуры**, который заключается в следующем.

Пусть нужно вычислить $I(a,b,\varepsilon)=\int\limits_a^b f(t)dt$, где ε — заданная точность, и применяется одна из квадратурных формул G(a,b) (прямоугольников, трапеций, Симпсона, ...). Тогда следует:

- 1. Вычислить приближение на всем отрезке G(a,b);
- 2. Вычислить приближения на половинах отрезков $G\left(a, \frac{a+b}{2}\right)$ и $G\left(\frac{a+b}{2}, b\right)$;

3. Если
$$\left|G\!\!\left(a,\frac{a+b}{2}\right)\!+G\!\!\left(\frac{a+b}{2},b\right)\!-G(a,b)\right|<\varepsilon \qquad \text{ то} \qquad I(a,b,\varepsilon)=G(a,b)$$
 иначе $I(a,b,\varepsilon)=I\!\!\left(a,\frac{a+b}{2},\frac{\varepsilon}{2}\right)\!+I\!\!\left(\frac{a+b}{2},b,\frac{\varepsilon}{2}\right).$

С целью исследования метода адаптивной квадратуры нужно:

1. построить график функции g(x)

$$g(x) = \int_{-\pi/2}^{\pi/2} \left[\sum_{i=1}^{14} \left(A_i \sin(2\pi i(\alpha - x)t) + B_i \cos(2\pi i(\alpha - x)t) \right) \right] dt, \ x \in [0,1],$$
 (*)

где значения $A_i, B_i, 1 \le i \le 14$, независимо и равномерно распределены в интервале [-1,1], а параметра α — в интервале [0,1]. Интеграл (*) составлен таким образом, что в окрестности точки α подынтегральная функция будет пологой, а вне этой окрестности — осциллирующей, следовательно, трудоемкость вычисления интеграла методом адаптивной квадратуры будет зависеть от x.

- 2. Предусмотреть возможность последовательной генерации различных подынтегральных функций с целью последующего интегрирования. Фактически для этого нужно последовательно генерировать значения параметров $A_i, B_i, 1 \le i \le 14$, и α в соответствующих интервалах.
- 3. Построить график функции T(x), отражающий зависимость трудоемкости вычисления значения функции от точки x. Время вычисления можно оценить как время вычисления значения, а также как число рекурсивных вызовов функции интегрирования.

Отмет должен включать в себя

- 1. Постановку задачи №1.
- 2. Краткие сведения по численному интегрированию (оценка погрешности).
- 3. точное значение интеграла.
- 4. Таблицу 1 для разных формул.
- 5. Постановку одной из решенных вами задач №2 (конкретные значения случайных параметров),
- 6. построенные графики функций g(x) и T(x) для нескольких различных значений ε ,
- 7. ваши выводы и комментарии,
- 8. текст подпрограммы, реализующей метод адаптивной квадартуры.

Пункты 1-5 должны быть написаны от руки, 6-8- можно приложить распечатки из вашей программы.

Приложение. Варианты заданий

$\mathcal{N}\!$	а	b	f(x)
1	0	1	$\frac{1}{1+x^2}$
2	0	1	$\frac{1}{1+x}$
3	0	1	$\frac{x+1}{x}$
4	1	2	$\sin(x)\cos(2x)$
5	0	2	$\frac{x}{x+1}$
6	1	3	$\frac{1}{1+2x}$
7	1	2	$\frac{1+2x}{4x}$
8	1	$\pi/2$	$\frac{1}{x} + \sin(x)$
9	1	2	$\frac{1}{x} + x^2$
10	1	3	$\frac{1}{x^2} + \sin(2x)$
11	1	π	$\sin(2x)\cos(x)$
12	0	π/4	$x \cos x$
13	1	π	$\sqrt{x} + \frac{1}{x^2}$
14	0	1	$x \cdot \sin(x)$