

Advanced Parallel Computing for Scientific Applications

Autumn Term 2009

Prof. I. F. Sbalzarini ETH Zentrum, CAB G34 CH-8092 Zürich Prof. P. Arbenz ETH Zentrum, CAB G69.3 CH-8092 Zürich

Exercise 8

Release: 09 Nov 2009 Due: 16 Nov 2009

Question 1: Fox's algorithm I: Introduction

Consider a the matrix multiplication $C = A \cdot B$. One intuitive way for parallel processing of this task with p processes is to subdivide the matrices into equally-sized submatrices A_{ij} and B_{ij} with $i, j = 1 \dots q$. For example the matrix A can be subdivided as follows:

$$\begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix}$$

where A_{11} , for example, corresponds to $(a_{22} \ a_{23}; a_{32} \ a_{33})$. This is called a *Checkerboard* distribution of the submatrices.

Assume that all the submatrix-multiplications can be computed with different processes. A specific element of the result C can be calculated as follows:

$$C_{ij} = A_{i0}B_{0j} + A_{i1}B_{1j} + \ldots + A_{iq}B_{qj}$$

- a) (Paper and Pencil) For two arbitrary (4×4) matrices A and B and q = 2, please calculate the element $C_{23} = (A \cdot B)_{23}$ using the scheme above.
- b) (Paper and Pencil) Suppose that we have 4 processors available connected by a network for this task. Each process is responsible for the calculation of a submatrix of C. Suppose further that the matrices are too large to store all data from A and B at once, so each process holds data according to the checkerboard distribution (Process \mathcal{P}_{11} that treats submatrix C_{11} holds A_{11} and B_{11}). What information needs to be sent to the process \mathcal{P}_{11} ?

Now think of the calculation for all elements of C: For large matrices, a lot of data needs to be transmitted. Fox's algorithm enables good networking and load balance for this task:

Before the algorithm starts, each process holds the submatrices according to the checker-board distribution. At iteration $k = 0 \dots n - 1$, the process at \mathcal{P}_{ij} calculates:

$$C_{ij} = C_{ij} + A_{i\bar{k}} \cdot B_{\bar{k}j}, \ \bar{k} = (i+k) \mod n.$$

For example, at the first iteration k = 0, C is calculated as follows

$$C_{00} = A_{00} * B_{00} C_{01} = A_{00} * B_{01} C_{02} = A_{00} * B_{02}$$

$$C_{10} = A_{11} * B_{10} C_{11} = A_{11} * B_{11} C_{12} = A_{11} * B_{12}$$

$$C_{20} = A_{22} * B_{20} C_{21} = A_{22} * B_{21} C_{22} = A_{22} * B_{22}$$

$$(1)$$

c) (Paper and Pencil) For two arbitrary 3 × 3 matrices, simulate the Fox algorithm with 9 processes. For the first iteration, you may use the formulas in the table 1 above. What elements are now transmitted at each step of the algorithm, and more important, where? Please draw a sketch to illustrate.

Question 2: Fox's Algorithm II: Implementation

For simplicity, we restrict ourselves to square matrices of size $(m \cdot \sqrt{p}) \times (m \cdot \sqrt{p})$; $m, \sqrt{p} \in \mathbb{N}$. The implementation for p processors contains the following tasks:

- 1. Determine the number of submatrices per row and column, respectively: $q = \sqrt{p}$
- 2. Assign each processor its coordinates i and j.
- 3. Determine the coordinates of the processor to send to (\mathcal{P}_{dest}) : $((i-1) \mod q, j)$.
- 4. Determine the coordinates of the processor from which data is received: $((i + 1) \mod q, j)$.
- 5. Iterate: k = 0 ... n 1
 - (a) Calculate $\bar{k} = (i + k) \mod q$
 - (b) Broadcast $A(i, \bar{k})$ to the processors on the same row i.
 - (c) Calculate $C_{ij} = C_{ij} + A_{i\bar{k}} \cdot B_{\bar{k}j}$ locally.
 - (d) Send $B_{\bar{k},j}$ to $\mathcal{P}_{\text{dest}}$ and receive $B_{(\bar{k}+1 \mod q),j}$ from the source.

Please download the code skeleton from the course web-site.

- a) Please implement the C-function generate_communicators(...) that creates the communicators needed: one communicator per row and one communicator per column. There are several ways to do that. One possible way is using MPI_Comm_Split(...). Another more elegant possibility is to use a cartesian topology. The appropriate MPI function to invoke in this case is MPI_Cart_create(...).
- b) Please implement the C-function generate_sub_matrix(...) that takes a COMM_INFO-struct as an argument and generates the submatrix for this particular process. The element (i, j) of the global matrix reads: $\cos(i \cdot dim + j)$; i, j = 0...dim 1.
- c) Write a C-function multiply_local(...) that does a local matrix multiplication.
- d) Please implement the C-function collect_and_print(...) where the master process gets the element C_{ij} , from the process that owns this entry, and prints it to the console.
- e) In your main function, implement the steps 1-5 outlined above. Calculate the product $C = A \cdot B$ where A and B are both generated with generate_sub_matrix(...).

The element $C_{98,99}$ is equal to -0.37962 for dim = 100. Test your program for several numbers of processors.