Algebra e Logica Matematica

Sottogruppi, morfismi

Esercizio 4.1. Sia G un gruppo. Si definisce il centro di G, Z(G) nel modo seguente:

$$Z(G) = \{z \in G / \forall q \in G, qz = zq\}.$$

Mostrare che Z(G) è un sottogruppo normale di G.

Esercizio 4.2. Sia $f: G \to G'$ un morfismo di gruppi. Mostrare che

- a) Se H è un sottogruppo di G, f(H) è un sottogruppo di G'.
- b) Se H è un sottogruppo normale di G e f è suriettiva, f(H) è un sottogruppo normale di G'. Cosa può succedere se f non è suriettiva ?
- c) Se H' è un sottogruppo di G', $f^{-1}(H')$ è un sottogruppo di G.
- d) Se H' è un sottogruppo normale di G', $f^{-1}(H')$ è un sottogruppo normale di G.
- e) Dedurre che Ker f è un sottogruppo normale di G.

Esercizio 4.3. Sia G un gruppo finito e H un sottogruppo di G di indice n. Supponiamo che H è l'unico sottogruppo di G di indice n. Verificare che H è normale in G.

Esercizio 4.4. Sia G un gruppo finito e H un sottogruppo di G di indice 2. Verificare che H è normale in G.

Esercizio 4.5. a) Sia G un gruppo finito. Mostrare che se G/Z(G) è ciclico allora G è abeliano (che cos'è Z(G)?).

- b) Dedurre che ogni gruppo di ordine p^2 con p primo è isomorfo a $\mathbb{Z}/p^2\mathbb{Z}$ o a $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. (Si ricorda che un gruppo di ordine p è necessariamente isomorfo a $\mathbb{Z}/p\mathbb{Z}$).
- c) Verificare che i due gruppi di cui sopra non sono isomorfi.

Esercizio 4.6. Sia G un gruppo di ordine 2p dove p è un numero primo dispari. Calcolare l'ordine di Z(G) secondo che G è abeliano o meno.

Esercizio 4.7. Sia G un gruppo e H un sottogruppo normale di G. Mostrare che esiste una biiezione naturale tra l'insieme dei sottogruppi (risp. sottogruppi normali) di G/H e i sottogruppi (risp. sottogruppi normali) di G che contengono H.

Esercizio 4.8. Siano G un gruppo e A e B due sottogruppi normali di G tali che $A \subseteq B$. Mostrare que B/A è un sottogruppo normale di G/A e che (G/A)/(B/A) è isomorfo a G/B.

Esercizio 4.9. (teorema di isomorfismo di Noether)

Sia G un gruppo e H e K due sottogruppi di G tale che K è normale in G.

- a) Verificare che $HK = \{hk/h \in H; k \in K\}$ è un sottogruppo di G e che K è normale in HK.
- b) Verificare che $H \cap K$ è normale in H.
- c) Mostrare che i gruppi $H/H \cap K$ e HK/K sono isomorfi (Indicazione: studiare l'omomorfismo $s \circ j$ dove $j: H \longrightarrow HK$ è l'iniezione canonica e dove $s: HK \longrightarrow HK/K$ è la suriezione canonica).