Mälardalen University School of Education, Culture and Communication Division of Applied Mathematics

EXAM TEN1 MAA153 LINEAR ALGEBRA 17 AUGUST 2018

Suggested solutions

1

Let T be the linear map in \mathbb{R}^3 that maps the vectors (1,0,-1), (0,1,0) and (0,1,1), to the vectors (1,1,1), (1,-1,1), and (1,0,1), respectively. Denote by v the vector (1,2,3).

- (i). 2 points. Determine whether v belongs to the range of T.
- (ii). 2 points. Determine whether v belongs to the kernel of T.
- (iii). 2 points. Show that the intersection of the range of T and the kernel of T equals the image under T of the kernel of T composed with itself: $T(V) \cap \ker T = T(\ker T^2)$.
- (iv). 4 points. Determine the vector w, if it exists, that, among all the vectors belonging to both the range and the kernel of T, lies closest to v in the standard Euclidean metric.

Solution.

- (i). No. The range of T is the image under T of the domain of T, which, the first set of vectors being linearly independent (check!), equals R^3 . The vector v thus lies in the range of T if and only if it is in the span of the second set of vectors, and this it is not (check!).
- (ii). No. The vector v is the linear combination of the first (ordered) set of vectors with coefficients (1, -2, 4) (check!), and T(v) is the the linear combination, with the same coefficients, of the second set of vectors, but the latter combination is not zero (check!).
- (iii). A vector y is in the kernel of T if and only if T(y) = 0, and y is in the range of T if and only if y = T(x) for some x in the domain of T, so y is both in the range and in the kernel if and only if y = T(x) for some x satisfying T(T(x)) = 0, i.e. if and only if y is in the image under T of the kernel of T^2 .
- (iv). A basis B for ker T^2 is found by solving $M^2x=0$, with M the matrix for T in the standard basis. The orthogonal projection of v onto the span of T(B) is the sought vector w, and the distance from v to the intersection of the range and the kernel of T is ||v-w||. Presently, B consists of a non-zero multiple of (1,-1,-3), which T maps to zero, so w=0 and the sought distance equals ||v||, which equals $\sqrt{14}$.

2

Let V be the vector space of all real polynomial functions of degree at most two, in the interval (-1,1), equipped with the scalar product $(f|g) = \int_{-1}^{1} f(t)g(t) t^2 dt$. Define $\delta: V \to R$ by $\delta(f) = f(0)$.

- (i). 1 point. Show that δ is linear.
- (ii). 4 points. Find an orthonormal basis \mathcal{B} for the kernel of δ .
- (iii). 3 points. Extend the set \mathcal{B} to an orthonormal basis \mathcal{C} in V.
- (iv). 2 points. Determine the matrix for δ in the basis \mathcal{C} .

Solution.

- (i). The vector space operations in the function space V are defined 'point-wise', $\delta(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$, $x \in (-1,1)$, $\alpha, \beta \in R$, $f, g \in V$, and putting x = 0 proves the claim.
- (ii). The general element $p \in V$ has the form $p(t) = at^2 + bt + c$, and p is in the kernel of δ if and only if $\delta(p) = p(0) = c = 0$, so a basis in the kernel of δ is given by the monomials t and t^2 , which are orthogonal (the integral of an odd function over (-1.1) is zero), duly normalised.
- (iii). The monomial 1, which is not in the kernel of δ , is orthogonal to t, but not to t^2 . Subtract then from 1 its orthogonal projection on (the line spanned by) t^2 to get a vector f orthogonal to the kernel.
 - (iv). The matrix for δ is $(\delta(t/\|t\|), \delta(t^2/\|t^2\|), \delta(f/\|f\|) = (0, 0, 1/\|f\|)$.

3

Let \mathcal{L} be the vector space of the linear transformation of the standard Euclidean plane \mathbb{R}^2 . Write E for the identity map and write I for the counter-clockwise rotation of the plane by the angle $\pi/2$. Show:

- (i). 2 points. The set C of the transformations in L that commute with I is a vector subspace of L.
 - (ii). 3 points. The pair (E, I) is an (ordered) basis for C.
 - (iii). 2 points. The maps in \mathcal{C} commute: AB BA = 0 for $A, B \in \mathcal{C}$.
 - (iv). 3 points. For $A, B \in \mathcal{C}$ the following hold:

$$x(AB) = x(A)x(B) - y(A)y(B)$$

and

$$y(AB) = x(A)y(B) + y(A)x(B),$$

with (x(T), y(T)) denoting the coordinates of $T \in \mathcal{C}$ in the basis (E, I).

Solution.

- (i). The set \mathcal{C} is the kernel of the linear map $T \mapsto TI IT$ in \mathcal{L} .
- (ii). The set $\{E, I\}$ is linearly independent (since so is $\{E(u), I(u)\}$ for any $v \neq 0$) and the space C is of dimension two. Indeed, one easily

MAA153

finds two linearly independent maps in the range \mathcal{R} of $T \mapsto TI - IT$ in \mathcal{L} , and then $2 \leq \dim \mathcal{C} = 4 - \dim \mathcal{R} \leq 2$.

- (iii). Linear combinations of pair-wise commuting maps commute.
- (iv). Compose A = x(A)E + y(A)I with B = x(B)E + y(B)I and collect the terms, remembering that $E^2 = -I$.

4

Let T be the linear map in \mathbb{R}^3 that maps (1,0,0),(0,1,0),(0,0,1) to (1,1,0),(-1,-2,1),(-1,1,-3), respectively.

- (i). 2 points. Show that there exists a non-zero polynomial p of degree at most three, such that p(T) maps the vector (1,0,0) to zero.
 - (ii). 3 points. Show that p(T) then maps every vector to zero.
 - (iii). 5 points. Determine all such polynomials p.

Solution.

- (i). Denote (1,0,0) by e. The four vectors $T^k(e)$, k=0,1,2,3, in R^3 are not linearly independent (for R^3 is of dimension three), so there are real numbers a_k , k=0,1,2,3, not all zero, such that $\sum_k a_k T^k(e) = p(T)(e) = 0$, with $p(x) = \sum_k a_k x^k$.
- (ii). The vectors $T^k(e)$, k = 0, 1, 2, are linearly independent (check!), hence a basis in \mathbb{R}^3 , and $p(T)(T^k(e)) = T^k(p(T)(e)) = 0$, k = 0, 1, 2.
- (iii). Let M be the matrix for T in the standard basis (determine this matrix!), compute $v_k := T^k(e) = M^k e$, k = 0, 1, 2, 3, (recursively, since $M^k e = M(M^{k-1}e)$), and solve the homogeneous system $\sum_k a_k v_k = 0$.

5

Consider R^3 with Euclidean metric. Call T the linear map that maps (1,0,0), (1,1,0), (1,1,1) to (1,0,0), (0,-1,1), (-1,0,-2), respectively. Put y=(1,2,3).

10 points. Find all the unit eigenvectors, and the eigenvalues, of T, and, using these, solve the equation Tx = y.

Solution.

v is eigenvector for T with eigenvalue λ iff $v \neq 0$ and $Tv - \lambda v = (T - \lambda E)v = 0$, and λ , v exist iff $\det(M - \lambda E) = 0$, M due matrix for T. This has $\lambda_1 = 1$ as root (with eigenvector $v_1 = (1, 0, 0)$), and the roots λ_2 , λ_3 , are easily seen to be $-2 - \sqrt{2}$, $-2 + \sqrt{2}$, respectively, with unit eigenvectors v_2 , v_3 , obtained by solving corresponding homogeneous systems of equations; $v_1 = (3 - \sqrt{2}, 7\sqrt{2}/2, 7 + 7\sqrt{2}/2) \cdot \sqrt{109 + 43\sqrt{2}}$, and similarly for v_2 . With $y = (y_1, y_2, y_3)$ in basis (v_1, v_2, v_3) solves Tx = y in form $x = (y_1/\lambda_1, y_2/\lambda_2, y_3/\lambda_3)$ (the computation of y_1, y_2, y_3 is cumbersome and would not be required for full credit).