ИНСТИТУТ ТРАНСПОРТА И СВЯЗИ

ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ НАУК И ЭЛЕКТРОНИКИ

Лабораторная работа

По дисциплине «Численные методы»

Тема: Методы решения нелинейного уравнения

Студент: Виктор Выползов

Группа: 4102BD

1. Задание

В данной лабораторной работе требуется реализовать два алгоритма решения нелинейного уравнения: метод бисекции и индивидуальный метод. Предусмотрено два способа реализации алгоритмов: с использованием скользящего окна или же с локально заданным интервалом. В зависимости от выбора реализации, будут меняться входные параметры метода. Во всех обоих случаях в качестве входного параметра требуется установить ввод точности решения (эпсилон). В таблице ниже представлены необходимые параметры для запуска алгоритмов:

Использование скользящего окна	Установка локальной области поиска
- Начальная точка всей области поиска - Конечная точка всей области - Ширина скользящего окна	- Начальная точка локального окна - Конечная точка локального окна

2. Метод бисекции

• Листинг программной реализации алгоритма

```
function result = bisection2(fun, start_point, end_point, step, e)
    tmp_result = [];
    a = start_point;
    b = start_point + step;
    while b <= end_point</pre>
        nc = bisection(fun, a, b, e);
        if ~isempty(nc)
            tmp_result = [tmp_result, nc];
        end
        a = b;
        b = a + step;
    result = tmp_result
end
function result = bisection(fun, a, b, e)
    syms f(x);
    f(x) = fun;
    if (f(a)*f(b) <=0 )</pre>
        i = 1;
        flag = true;
        while flag == true
            X(i,1) = (a+b)/2;
            if (f(a)*f(X(i,1)) <= 0)
                 b = X(i,1);
            else
                 a = X(i,1);
            end
            if (abs(b-a) < e)</pre>
                 flag = false;
                 i = i + 1;
            end
        end
        result = X(i,1);
    else
       result = [];
    end
end
```

• График функции на заданном участке и найденный корень

• $x*2^{3x}-14$, на интервале [1; 2]

Puc. 1

• $x^2*\sin(x)-14$, на интервале [-10; 10] с шагом 1

• Таблица с результатом работы алгоритма

Номер функции	Точности	Найденный корень	Число итераций
1) $x*2^{3x}-14$, [1; 2]	$\varepsilon = 0.01$	1.1797	7
	$\varepsilon = 0.0001$	1.1868	14
2) $x^2 * \sin(x) - 14$ [-10; 10],	$\varepsilon = 0.01$	[-9.5703 -5.8672 -4.1172 6.6172 9.2578]	[77777]
с шагом 1	$\varepsilon = 0.0001$	[-9.5779 -5.8638 -4.1149 6.6094 9.2608]	[14 14 14 14 14]

3. Метод Ньютона с коррекцией

• Листинг программной реализации алгоритма

```
function result = newton_correction2(fun, start_point, end_point, step, e)
    tmp_result = [];
    a = start_point;
    b = start_point + step;
    while b <= end_point</pre>
        nc = newton_correction(fun, a, b, e);
        if ~isempty(nc)
            tmp_result = [tmp_result, nc];
        end
        a = b;
        b = a + step;
    end
    result = tmp_result
end
function result = newton_correction(fun, a, b, e)
    syms f(x);
    f(x) = fun;
    fd(x) = diff(f(x));
    if (f(a)*f(b) \le 0 \&\& fd((a+b)/2) \le 0)
        i = 1;
        flag = true;
        Xi(i,1) = (a + b)/2;
        while flag == true
            second_flag = true;
            alpha = 1;
            while second_flag == true
                Xi(i+1,1) = Xi(i,1) - alpha * (f(Xi(i,1)) / fd(Xi(i,1)));
                 if abs(f(Xi(i+1,1))) > abs(f(Xi(i,1)))
                     alpha = alpha / 2;
                else
                    second_flag = false;
                end
            end
            if (abs(Xi(i+1,1)-Xi(i,1)) < e)
                flag = false;
            else
               i = i + 1;
            end
        end
        i = i + 1;
        result = Xi(i,1);
    else
        result = [];
    end
```

• График функции на заданном участке и найденный корень

• $x*2^{3x}-14$, на интервале [1; 2]

Puc 3.

• $x^2*\sin(x)-14$, на интервале [-10; 10] с шагом 1

• Таблица с результатами работы алгоритма

Номер функции	Точности	Найденный корень	Число итераций
1) $x*2^{3x}-14$, [1; 2]	$\varepsilon = 0.01$	1.1868	5
	$\varepsilon = 0.0001$	1.1868	6
2) $x^2 * \sin(x) - 14$ [-10; 10],	$\varepsilon = 0.01$	[-9.5780 -5.8638 -4.1150 6.6094 9.2608]	[3 5 4 3 4]
с шагом 1	$\varepsilon = 0.0001$	[-9.5780 -5.8638 -4.1150 6.6094 9.2608]	[4 6 5 4 4]

4. Выводы

В лабораторной работе были реализованы методы решения нелинейных уравнений: метод бисекции (метод деления отрезка по пополам) и метод Ньютона с коррекцией (выбор начального приближения). При сравнении методов между собой видно, что метод Ньютона с коррекцией даже при малой точности выдает точный результат, с меньшим количеством итераций.