Results are obtained with h_0^P not estimated

ESTIMATED PARAMETERS ON WEDNESDAYS MLE UNDER P (10 YEARS), h_0^P IS NOT ESTIMATED									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
ω	1.2975e - 08	3.2071e - 12	2.1207e - 12	1.6796e - 12	1.7917e - 12	8.9516e - 10	1.1045e - 07	3.0739e - 08	1.7259e - 08
std	(9.3544e - 08)	(1.6706e - 12)	(9.8649e - 13)	(3.1980e - 13)	(4.1006e - 13)	(6.5041e - 09)	(1.9574e - 07)	(7.4376e - 08)	(4.8518e - 08)
α	3.2426e - 06	3.2882e - 06	3.6153e - 06	3.6197e - 06	3.2770e - 06	3.9174e - 06	5.0106e - 06	4.9179e - 06	5.1861e - 06
std	(5.1623e - 07)	(5.6061e - 07)	(3.9560e - 07)	(3.7018e - 07)	(2.1522e - 07)	(4.8735e - 07)	(3.6634e - 07)	(5.6537e - 07)	(9.1782e - 07)
β	0.7641	0.7873	0.7822	0.7810	0.7547	0.7399	0.7160	0.7217	0.7316
std	(0.0160)	(0.0143)	(0.0067)	(0.0089)	(0.0106)	(0.0100)	(0.0174)	(0.0072)	(0.0112)
γ	259.9071	243.5292	231.9895	230.6658	259.2831	243.7077	222.3818	222.7956	210.1394
std	(27.2834)	(27.3670)	(16.0833)	(17.2119)	(12.0970)	(15.5994)	(10.6219)	(16.6864)	(22.4343)
λ	-0.6689	0.1146	0.8443	1.5838	1.6303	1.5294	1.1802	1.1481	1.9111
std	(0.1863)	(0.1641)	(0.4290)	(0.2296)	(0.1373)	(0.1708)	(0.1279)	(0.1064)	(0.6088)
h_0^P	5.4364e - 06	5.4364e - 06	5.2312e - 06	5.2312e - 06	5.3338e - 06	5.3338e - 06	5.3338e - 06	5.3338e - 06	5.1287e - 06
std	(3.4212e - 21)	(3.4212e - 21)	(1.0459e - 06)	(1.0459e - 06)	(7.4674e - 07)	(7.4674e - 07)	(7.4674e - 07)	(7.4674e - 07)	(1.2683e - 06)
persistency	0.9791	0.9780	0.9749	0.9718	0.9744	0.9702	0.9630	0.9630	0.9556
std	(0.0037)	(0.0035)	(0.0027)	(0.0026)	(0.0015)	(0.0033)	(0.0028)	(0.0035)	(0.0084)
logLikValue	3.0461	3.0713	3.1422	3.2064	3.2333	3.2290	3.1991	3.2118	3.2615