$\operatorname{MATH} 602$ - Homological algebra

Haoran Li

July 8, 2020

Contents

1	1 100 (10 ii 01 040 0 8 01) 111001			
	1.1	Categories - 1/27/2020	2	
	1.2	Functors - 1/29/2020	3	
	1.3	Presheaves and Yoneda lemma - 1/31/2020	4	
	1.4	Limits - 2/3/2020	7	
	1.5		8	
	1.6		9	
	1.7		11	
2	Chain complexes 12			
	2.1	Chain complexes - 2/12/2020	12	
	2.2	Arrow category - 2/14/2020		
	2.3	Chain homotopy - 2/17/2020		
	2.4		17	
	2.5		18	
	2.6		20	
	2.7		23	
	2.8		25	
	2.9		26	
	2.10		27	
			30	
	2.12	Group homology	31	
3	Spectral sequence			
	3.1	Spectral sequence	32	
	3.2	Spectral sequence of a filtered chain complex		
	3.3	Spectral sequence of a double complex	34	
	3.4	Hyperhomology		
Index 3				

1 Review of category theory

1.1 Categories - 1/27/2020

Definition 1.1. A category $\mathscr C$ consists of Ob $\mathscr C$ class of **objects** and Hom $\mathscr C$ class of **morphisms**, for $f:A\to B, g:B\to C, \exists g\circ f:A\to C$, the composition is associative $(h\circ g)\circ f=h\circ (g\circ f), \exists 1_A:A\to A$ such that $1_Af=f, \forall f:B\to A$ and $g1_A=g, \forall g:A\to B$ (thus 1_A is unique), we denote $Hom_{\mathscr C}(A,B)$ to be all the morphisms from A to B

Definition 1.2. Let $\mathscr C$ be a category, $f:A\to B$ is an **isomorphism** if there exists $g:B\to A$ such that $gf=1_A, fg=1_B$

Example 1.3. Let M be a monoid, we can view it as a category \mathscr{C}_M , where $\mathsf{Ob}\mathscr{C}_M = \{*\}$, $\mathsf{Hom}_{\mathscr{C}_M}(*,*) = M$

Remark. Book recommandation: Abelian category - Fregd, it defines a category use only morphisms

Lemma 1.4. An isomorphism $f: X \to Y$ has an unique inverse, denoted f^{-1}

Definition 1.5. A category $\mathscr C$ is called a small category if $Ob\mathscr C$ is a set

Definition 1.6. A category \mathscr{C} is called an **essentially small category** if $Ob\mathscr{C}/\sim$ is a set, here $Ob\mathscr{C}/\sim$ is the isomorphic classes of objects

Example 1.7. Let k be a field, then the category of finite dimensional k vector fields is not small but essentially small, two k vector spaces are isomorphic iff they have the same dimension

Example 1.8. Let R be a commutative ring, the category of R modules, RMod is not essentially small

Definition 1.9. Let P be a poset, we can view it as a category \mathscr{C}_P , where $Ob\mathscr{C}_P = P$, $Hom_{\mathscr{C}_P}(x,y) = \begin{cases} \{*\}, & x \leq y \\ \varnothing, & \text{else} \end{cases}$

Exercise 1.10. Suppose small category $\mathscr C$ satisfies

$$|Hom(x,y)| \leq 1$$

$$x \neq y \Rightarrow x \not\equiv y$$

Then \mathscr{C} is poset

Proof.

Definition 1.11. A category is a **groupoid** if every morphism is an isomorphism, thus a groupoid with only one object is a group

1.2 Functors - 1/29/2020

Definition 1.12. \mathscr{C}, \mathscr{D} are categories, $F : \mathscr{C} \to \mathscr{D}$ is a functor if it is a mapping: Ob $\mathscr{C} \to \mathscr{D}$ $Ob\mathcal{D}, \mathcal{C}(A,B) \to \mathcal{D}(F(A),F(B)), F(1_A) = 1_{F(A)}, \text{ given } f:A \to B,g:B \to C, F(g\circ f) = 0$ $F(g) \circ F(f) : F(A) \to F(C)$, this kind of functor is called **covariant fucntor**, if $Ob\mathscr{C} \to Ob\mathscr{D}$, $\mathscr{C}(A,B) \to \mathscr{D}(F(B),F(A)), \ F(1_A) = 1_{F(A)}, \ \text{given} \ f:A \to B,g:B \to C, \ F(g\circ f) = 0$ $F(f) \circ F(g) : F(C) \to F(A)$, then this is called a **contravariant functor**

The dual category of a category \mathscr{C} is denoted as \mathscr{C}^{op} with the same objects but morphisms reversed, a contravariant functor is just a functor in the dual

Example 1.13. (1): Let M, N be monoids, a functor $F : \mathscr{C}_M \to \mathscr{C}_N$ is just a homomorphism of monoids

(2): Let M, N be groups, a functor $F : \mathscr{C}_M \to \mathscr{C}_N$ is just a homomorphism of groups

(3): Let L/F be a field extension, $-\otimes L$ is a functor $Vect_F \to Vect_L, V \mapsto V \otimes_F L, \phi \mapsto \phi \otimes 1_L$

(4): Homology H_* is a functor $Top \to Abgp$, $X \mapsto H_*(X)$

(5): Cohomology H^* is a contravariant functor $Top \to Abgp, X \mapsto H^*(X)$

(6): Let FinAbgp be the category of finite abelian groups, then $D: FinAbgp \to FinAbgp$, $X \mapsto Hom(X, \mathbb{Q}/\mathbb{Z})$ is a contravariant functor, or we could use $Hom(X, \mathbb{C}^{\times})$, this is called Pontrjagin duality

(7): $D: Vect_K \to Vect, V \mapsto V^*$ is a contravariant functor

Notation. Suppose $f: X \to Y$ is a morphism in category \mathscr{C} , for $Z \in \mathsf{ob}\mathscr{C}$, we define

$$f_*: Hom(Z, X) \to Hom(Z, Y), g \mapsto fg$$

$$f^*: Hom(Y, Z) \to Hom(X, Z), \quad g \mapsto gf$$

Definition 1.14. A morphism $f: X \to Y$ is called a monomorphism if f_* is 1-1 for all $Z \in ob\mathscr{C}$ A morphism $f: X \to Y$ is called a epimorphism if f^* is 1-1 for all $Z \in ob\mathscr{C}$

Definition 1.15. In category \mathscr{C} , an object X is called an **initial object** if Hom(X,Y) consists of exactly one element for all Y, X is called a final object if Hom(Y,X) consists of exactly one element for all Y, X is called a zero object if it is both initial and final

Example 1.16. (1): In the category of sets, \emptyset is an initial object, $\{1\}$ is a final object (2): In the category of abelian groups, 0 is a zero object

Definition 1.17. $F,G:\mathscr{C}\to\mathscr{D}$ are covariant functors, $\eta_A:F(A)\to G(A)$ is a family of morphisms such that the following diagram commutes for any $f:A\to B$

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\downarrow_{\eta_A} \qquad \downarrow_{\eta_B} \text{ For contravariant functors, we have the following commutative diagram } G(A) \xrightarrow{G(f)} G(B)$$

for any $f: A \to B$

$$F(B) \xrightarrow{F(f)} F(A)$$

$$\downarrow^{\eta_B} \qquad \downarrow^{\eta_A} \quad \eta \text{ is called a natural transformation}$$

$$G(B) \xrightarrow{G(f)} G(A)$$

$$G(B) \xrightarrow{G(f)} G(A)$$

If η_A are isomorphisms, then η is called a **natural isomorphism**, denoted $F \cong G$

1.3 Presheaves and Yoneda lemma - 1/31/2020

Definition 1.18. Suppose \mathscr{C} , \mathscr{D} are categories, we can define the **functor category** $\operatorname{Fun}(\mathscr{C},\mathscr{D}) = \mathscr{D}^{\mathscr{C}}$ with objects functors from \mathscr{C} to \mathscr{D} and morphisms natural transformations

Remark. If I is a small category, then $Hom_{\mathscr{C}^I}(F,G)$ is a set

Definition 1.19. we say categories \mathscr{C} , \mathscr{D} are **isomorphic** if there are functors $F:\mathscr{C}\to\mathscr{D}$ and $G:\mathscr{D}\to\mathscr{C}$ such that $G\circ F=1_{\mathscr{C}}$, $F\circ G=1_{\mathscr{D}}$ and we say \mathscr{C} , \mathscr{D} are **equivalent** if $G\circ F$ is naturally isomorphic to $1_{\mathscr{C}}$ and $F\circ G$ is naturally isomorphic to $1_{\mathscr{D}}$

Example 1.20. Let $\mathscr{C} = Vect_K$ be te category of K vector spaces, define functor $F : \mathscr{C} \to \mathscr{C}$, $V \mapsto V \otimes_K K$ is an equivalence with inverse $G = 1_{\mathscr{C}}$, but this is not an isomorphism, since not every vector space is in the form of a tensor product

Definition 1.21. Suppose \mathscr{C}, \mathscr{D} are locally small categories, $F:\mathscr{C} \to \mathscr{D}$ is a functor F is **faithful** if $Hom_{\mathscr{C}}(X,Y) \to Hom_{\mathscr{D}}(F(X),F(Y))$ is injective for any X,Y F is **full** if $Hom_{\mathscr{C}}(X,Y) \to Hom_{\mathscr{D}}(F(X),F(Y))$ is surjective for any X,Y F is **fully faithful** if $Hom_{\mathscr{C}}(X,Y) \to Hom_{\mathscr{D}}(F(X),F(Y))$ is bijective for any X,Y F is **essentially surjective** if $\forall d \in ob\mathscr{D}, \exists c \in ob\mathscr{C}$ such that $Fc \cong d$

Lemma 1.22. In category \mathscr{C} , if $\phi_X: X \to X'$, $\phi_Y: Y \to Y'$ are isomorphisms, then Hom(X,Y), Hom(X',Y') are in bijective correspondence

Proof. We can define maps $Hom(X,Y) \to Hom(X',Y')$, $f \mapsto \phi_Y f \phi_X^{-1}$ and $Hom(X',Y') \to Hom(X,Y)$, $f' \mapsto \phi_Y^{-1} f' \phi_X$ which are inverses to each other

$$X \xrightarrow{f} Y$$

$$\phi_{X} \downarrow \qquad \qquad \downarrow \phi_{Y}$$

$$X' \xrightarrow{f'} Y'$$

Theorem 1.23. A functor $F: \mathcal{C} \to \mathcal{D}$ is an equivalence iff it is fully faithful and essentially surjective

Proof. If F is an equivalence, there exist functor $G: \mathscr{D} \to \mathscr{C}$ and natural isomorphisms $\eta: 1_{\mathscr{C}} \to GF$, $\xi: 1_{\mathscr{D}} \to FG$, $\forall d \in \mathscr{C}$, $\xi_d: d = 1_{\mathscr{D}}(d) \to FG(d) = F(Gd)$ is an isomorphism, i.e. F is essentially surjective, similarly, so is G. The composition of

$$Hom(c,c') \xrightarrow{F} Hom(Fc,Fc') \xrightarrow{G} Hom(GFc,GFc'), f \mapsto Ff \mapsto GFf$$

Is the same as

$$Hom(c,c') \xrightarrow{\eta} Hom(GFc,GFc'), \quad f \mapsto \eta'_c f \eta_c^{-1}$$

By Lemma 1.22, this is bijective, thus $Hom(c,c') \xrightarrow{F} Hom(Fc,Fc')$ is injective, i.e. F is faithful. Similarly, consider the composition

$$Hom(Fc,Fc') \xrightarrow{G} Hom(GFc,GFc') \xrightarrow{F} Hom(FGFc,FGFc')$$

We know $Hom(GFc, GFc') \xrightarrow{F} Hom(FGFc, FGFc')$ is surjective, but we also have the following diagram

$$\begin{array}{ccc} Hom(c,c') & \xrightarrow{F} & Hom(Fc,Fc') \\ \downarrow \eta & & \downarrow \xi \\ Hom(GFc,GFc') & \xrightarrow{F} & Hom(FGFc,FGFc') \end{array}$$

Since η, ξ are bijective, $Hom(c,c') \xrightarrow{F} Hom(Fc,Fc')$ is surjective, i.e. F is full Conversely, suppose F is fully faithful and essentially surjective, then for any $d \in \mathcal{D}$, there exists c and an isomorphism $d \xrightarrow{\xi_d} Fc$, denote this c as Gd, we can define a functor $G: \mathcal{D} \to \mathcal{C}, d \mapsto Gd$ (Here we have used the axiom of choice), $d \xrightarrow{f} d' \mapsto c \xrightarrow{Gf} c'$ where $FGf = \xi_d^{-1}f\xi_{d'}$ since F is fully faithful

$$egin{aligned} d & \stackrel{f}{\longrightarrow} d' \ arepsilon_{d} & & igg| arepsilon_{d'} \ FGd & \stackrel{FGf}{\longrightarrow} FGd' \ F & & igcap_{F} \ Gd & \stackrel{Gf}{\longrightarrow} Gd' \end{aligned}$$

 $\xi: 1_{\mathcal{D}} \to FG$ is a natural isomorphism

Since F is fully faithful, there are unique $\eta_c: c \to GFc$, $F(\eta_c) = \xi_{Fc}$ If $f, g: c \to c'$ such that $\eta_{c'}f = \eta_{c'}g$, then $\xi_{Fc'}Ff = \xi_{Fc'}Fg \Rightarrow Ff = Fg \Rightarrow f = g$

If $f, g: c \to c'$ such that $f\eta_c = g\eta_c$, then $Ff\xi_{Fc} = Fg\xi_{Fc} \Rightarrow Ff = Fg \Rightarrow f = g$

 $\eta: 1_{\mathscr{C}} \to GF$ is a natural isomorphism

Definition 1.24. $\mathscr{D}^{\mathscr{C}^{op}}$ is the category of **presheaves**. Denote $\mathscr{C}^{\vee} := Sets^{\mathscr{C}^{op}}$. In particular, if X is a topological space, open subsets with inclusion form a category \mathscr{C} , $PreSh(X,\mathscr{D})$ is the category of presheaves on X with values in \mathscr{D}

Lemma 1.25 (Yoneda lemma). Yoneda embedding $h : \mathscr{C} \to \mathscr{C}^{\vee}$ defined as follows is a fully faithful functor

For $X \in \text{ob}\mathscr{C}$, $h(X) = \text{Hom}_{\mathscr{C}}(-,X)$ is a contravariant functor $\mathscr{C} \to \text{Sets}$: For $Z \in \text{ob}\mathscr{C}$, $h(X)(Z) = \text{Hom}_{\mathscr{C}}(Z,X)$, for $\phi : Z \to W$, $h(X)(\phi) = \phi^* : h(X)(W) = \text{Hom}_{\mathscr{C}}(W,X) \to \text{Hom}_{\mathscr{C}}(Z,X) = h(X)(Z)$, hence h(X) is an object in \mathscr{C}^{\vee} For $\psi : X \to Y$, $h(\psi) = \psi_*$ is a natural transformation $h(X) \to h(Y)$:

For $\phi: Z \to W$, we have the commutative diagram

$$\begin{array}{cccc} Hom_{\mathscr{C}}(W,X) & \xrightarrow{\psi_*} & Hom_{\mathscr{C}}(W,Y) & h(X)(W) & \xrightarrow{h(\psi)_W} & h(Y)(W) \\ \phi_* & & & \downarrow \phi_* & h(Y)(\phi) \downarrow & & \downarrow h(Y)(\phi) \\ Hom_{\mathscr{C}}(Z,X) & \xrightarrow{\psi_*} & Hom_{\mathscr{C}}(Z,Y) & h(X)(Z) & \xrightarrow{h(\psi)_Z} & h(X)(Z) \end{array}$$

Proof.

Definition 1.26. A subcategory \mathcal{D} of \mathscr{C} is a category with objects a subclass of $ob\mathscr{C}$ and morphisms a subclass of $Hom\mathscr{C}$, with the original composition

Example 1.27. The image of a functor is not necessarily a category Consider the following categories $\mathscr C$ and $\mathscr D$

Consider functor $F: \mathscr{C} \to \mathscr{D}, \ F(A) = E, \ F(B) = F, \ F(C) = F, \ F(D) = G, \ F(f) = h, \ F(g) = i$

Theorem 1.28. A functor $F:\mathscr{C}\to\mathscr{D}$ is fully faithful iff it induces an equivalence of categories from \mathscr{C} to a full subcategory of \mathscr{D}

Proof.

1.4 Limits - 2/3/2020

Definition 1.29. A functor F in \mathscr{C}^{\vee} is called **representable** if there exists $X \in ob\mathscr{C}$ such that $h(X) \cong F$, here h is the Yoneda embedding. In other words, there exists a natural isomorphism $Hom_{\mathscr{C}}(Y,X) \to F(Y)$, since h is fully faithful, if $F \cong h(X) \cong h(X')$, the natural isomorphism $h(X) \cong h(X')$ comes from an isomorphism $\phi: X \to X'$, hence X is unique to isomorphism

Definition 1.30. Let I be a small category, $\mathscr C$ be a category, for any $X \in ob\mathscr C$, we can define the **constant functor** $K_X : I \to \mathscr C$, $i \mapsto X$, $i \xrightarrow{f} j \mapsto 1_X$, hence $K : \mathscr C \to \mathscr C^I$, $X \mapsto K_X$ is a functor, a natural transformation f between constant functors $K_X \to K_Y$ is just a morphism $f : X \to Y$

Definition 1.31. Suppose $F: I \to \mathscr{C}$ is a functor, we get a presheaf $P, P(X) = Hom_{\mathscr{C}^I}(K_X, F)$ If P is representable, i.e. $h(L) \cong P$, we write $L = \varprojlim F$ which is called the **limit** of F We also have a functor $F^{op}: I^{op} \to \mathscr{C}^{op}$. The **colimit** is defined to be $\varprojlim F^{op}$

Remark. Unravel $Hom_{\mathscr{C}^1}(K_X,F)=P(X)\cong Hom_{\mathscr{C}}(X,L)$ If we take X=L, 1_X corresponds to a natural transformation $\phi:K_L\to F$, i.e. $\phi_i:L\to F(i)$ such that the following diagram commutes

$$X \xrightarrow{\phi_i} F(i)$$

$$\downarrow^{F(i \to j)}$$

$$F(j)$$

Each natural transformation $\psi: K_X \to F$ corresponds to a unique morphism $\widehat{\psi}: X \to L$, due to naturality, the following diagram commutes

$$X \downarrow \psi_i \downarrow L \xrightarrow{\phi_i} F(i)$$

Definition 1.32. A category I is called **discrete** if all morphisms are just identities, it is clear that a discrete category is the same as a class of objects, and a functor $F: I \to \mathscr{C}$ is the same as giving $X_i = F(i)$

Example 1.33. Suppose I is a discrete category, $F: I \to \mathscr{C}$ is a functor, we also get functor $F^{op}: I^{op} \to \mathscr{C}^{op}$. The **product** is defined to be the limit $\prod_{i \in I} X_i := \varprojlim F$, and the **coproduct** is $\varprojlim F^{op}$

1.5 Equalizers and fiber product - 2/5/2020

Definition 1.34. A category $\mathscr C$ is **complete** if $\mathscr C$ contains all limits, $\mathscr C$ is **cocomplete** if $\mathscr C$ contains all colimits

Definition 1.35. Let I be the category $\bullet \Longrightarrow \bullet$, a functor $F: I \to \mathscr{C}$ is just $X \Longrightarrow f$, the limit is defined to be the **equalizer**, the dual notion is called a **coequalizer**

Theorem 1.36. If a category $\mathscr C$ contains all products and equalizers, then $\mathscr C$ is complete

Proof. The limit of $A \xrightarrow{f} B$ is the same as the equaliser of $A \times B \xrightarrow{fp_A} B$

Then by induction, we can find the limit of $A_i \to \varprojlim_{j \neq i} A_j$ which is $\varprojlim_i A_i$

the limit is defined to be the **fiber product(pullback)**, the dual notion is called a **pushforward(pushout)**

Definition 1.38. An **Ab-category** $\mathscr C$ is a category such that $Hom_{\mathscr C}(X,Y)$ are equipped with an abelian group structure, such that f(g+h)=fg+fh, (f+g)h=fh+gh

Remark. An Ab-category is also called a **preadditive category** $End_{\mathscr{C}}(X)$ is a ring, $Aut_{\mathscr{C}}(X) = End_{\mathscr{C}}(X)^{\times}$ is a group

1.6 Abelian category - 2/7/2020

Definition 1.39. The **biproducts** $(A_1 \oplus \cdots \oplus A_n, p_1, \cdots, p_n, i_1, \cdots, i_n)$ of A_1, \cdots, A_n is such that $(A_1 \oplus \cdots \oplus A_n, p_1, \cdots, p_n)$ is the product of A_1, \cdots, A_n and $(A_1 \oplus \cdots \oplus A_n, i_1, \cdots, i_n)$ is the coproduct of A_1, \cdots, A_n

Lemma 1.40. Suppose \mathscr{A} is an Ab category, then for any A_1, \dots, A_n , if the product $\prod A_i$ exists, then it is a biproduct, similarly, if the coproduct $\prod A_i$ exists, then it is a biproduct

Proof. Suppose $(A \times B, p_A, p_B)$ is the product of A, B, then we can define morphisms $i_A = (1_A, 0) : A \to A \times B$, $i_B = (0, 1_B) : B \to A \times B$

$$A \stackrel{1_{A}}{\longleftarrow} A \times B \stackrel{0}{\longrightarrow} B \qquad A \stackrel{1_{B}}{\longleftarrow} A \times B \stackrel{1_{B}}{\longrightarrow} B$$

Thus $p_A i_A = 1_A$, $p_B i_A = 0$, $p_A i_B = 0$, $p_B i_B = 1_B$, also if we consider the following commutative diagram

By the uniqueness of the induced map, $i_A p_A + i_B p_B = 1_{A \times B}$, let's show that $(A \times B, i_A, i_B)$ is the coproduct of A, B, suppose $h : A \times B \to C$ is a morphism such that $hi_A = f$, $hi_B = g$, then $h = h(i_A p_A + i_B p_B) = hi_A p_A + hi_B p_B = f p_A + g p_B$

$$A \xrightarrow[p_{A}]{f_{A}} A \times B \xrightarrow[p_{B}]{f_{B}} B$$

Definition 1.41. An **additive category** is an Ab category with all finite biproducts, including empty biproduct 0, the zero object

Definition 1.42. An abelian category \mathscr{A} is an additive category satisfying

(AB1) Every map has a kernel and a cokernel

(AB2) Every monomorphism is the kernel of its cokernel, every epimorphism is the cokernel of its kernel

Example 1.43. The category of free \mathbb{Z} modules(free abelian groups) is not an abelian category, $\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}$ has 0 as its cokernel but this is not the kernel of $\mathbb{Z} \to 0$

Example 1.44 (A category with two different Ab structures). Consider rings $\mathbb{Q}[x]$, $\mathbb{Q}[x,y]$ as abelian categories with a single object and morphisms being the elements, multiplication as composition, addition gives an abelian group structure

 $\mathbb{Q}[x], \mathbb{Q}[x,y]$ as categories are isomorphic to its underlying monoids, since $\mathbb{Q}[x], \mathbb{Q}[x,y]$ are UFD's, and $\mathbb{Q}[x] = \{0\} \cup \mathbb{Q}^{\times} \times \bigoplus_{f} \mathbb{N}, \mathbb{Q}[x,y] = \{0\} \cup \mathbb{Q}^{\times} \times \bigoplus_{g} \mathbb{N}$, where f,g run over all irreducible polynomials of $\mathbb{Q}[x] \setminus \mathbb{Q}$ and $\mathbb{Q}[x,y] \setminus \mathbb{Q}$ which are both countably many, thus as monoids they are both isomorphic to $\{0\} \cup \mathbb{Q}^{\times} \times \bigoplus_{i \in \mathbb{N}} \mathbb{N}$, Where $0 \circ 0 = 0$, $0 \circ (q,(i_0,i_1,\cdots)) = (q,(i_0,i_1,\cdots)) \circ 0 = 0$, $(q,(i_0,i_1,\cdots)) \circ (q',(i'_0,i'_1,\cdots)) = (qq',(i_0+i'_0,i_1+i'_1,\cdots))$ with $(1,(0,0,\cdots))$ as the identity but $\mathbb{Q}[x], \mathbb{Q}[x,y]$ are not isomorphic as rings

Remark. Being an abelian category is purely a property of a category If all finite products and coproducts are biproducts, i.e. $X \sqcup Y = X \times Y$, with some other exactness properties, then the abelian group structure on Hom(X,Y) comes from this See Freyd - Abelian category

Definition 1.45. Define the **diagonal functor** $\Delta: \mathscr{C} \to \mathscr{C}^I$ mapping A to the constant functor K_A

1.7 Adjunction - 2/10/2020

Definition 1.46. Let $L: \mathcal{D} \to \mathcal{C}$, $R: \mathcal{C} \to \mathcal{D}$ be functors, and there is a natural isomorphism $\Phi_{X,Y}$, $X \in \mathcal{C}$, $Y \in \mathcal{D}$

$$\begin{array}{ccc} Hom_{\mathscr{C}}(LX,Y) & \xrightarrow{\Phi_{X,Y}} & Hom_{\mathscr{D}}(X,RY) \\ \downarrow^{(Lf,g)} & & & \downarrow^{(g,Rf)} \\ Hom_{\mathscr{C}}(LX',Y') & \xrightarrow{\Phi_{X',Y'}} & Hom_{\mathscr{D}}(X',RY') \end{array}$$

Here $f: X' \to X$, $g: Y \to Y'$, $Hom_{\mathscr{C}}(Lf, g)(h) = h \circ g \circ Lf$ We say L is the **left adjoint** of R and R is the **right adjoint** of L

Example 1.47. Let $G: Group \to Set$ be the forgetful functor, then the functor $F: Set \to Group$, sending S to F(S) is the left adjoint of G. In the category of R-modules Mod, consider functor $F:=-\otimes B$ and functor G:=Hom(B,-), then F,G are adjoint pairs, i.e. $Hom(A\otimes B,C)\cong Hom(A,Hom(B,C))$

Theorem 1.48. Suppose $L: \mathscr{A} \to \mathscr{B}$, $R: \mathscr{B} \to \mathscr{A}$ are a pair of adjoint functors, then there exist natural transformations $\eta: 1_{\mathscr{A}} \to RL$ and $\varepsilon: LR \to 1_{\mathscr{B}}$ such that the right adjoint of $LX \xrightarrow{f} Y$ is $X \xrightarrow{R(f)\eta_X} RY$ and left adjoint of $g: X \to RY$ is $LX \xrightarrow{\varepsilon_V L(g)} Y$. Moreover, the following composites are identity, $LX \xrightarrow{L(\eta_X)} LRLX \xrightarrow{\varepsilon_{LX}} LX$, $RY \xrightarrow{\eta_{RY}} RLRY \xrightarrow{R(\varepsilon_Y)} RY$

Theorem 1.49. Suppose F, G is an adjunction pair, then F preserve colimits, G preserve limits

Proof. Suppose $\Phi:I \to \mathscr{D}$ is a functor, $L=\varprojlim_{i\in I}\Phi(i)$ exists, applying G to commutative

diagram $L \xrightarrow{\varphi_i} \Phi(i)$, we get another commutative diagram $GL \xrightarrow{G\varphi_i} G\Phi(i)$. For any commutative diagram $X \xrightarrow{\psi_i} G\Phi(i)$, by adjunction, we have a commutative diagram $FX \to \Phi(i)$, which induce a map $FX \to L$, by adjunction again, we have $X \to GL$

Definition 1.50. A functor $F : \mathscr{C} \to \mathscr{D}$ is said to be **left exact** if F preserve all finite limits, and **right exact** if F preserve all finite colimits

Example 1.51. A left exact functor preserves all equalizers, and all kernels if the category is abelian, a right exact functor preserves all coequalizers, and all cokernels if the category is abelian, left adjoints are right exact, right adjoints are left exact, for example, $-\otimes B$ is right exact and Hom(B, -) is left exact

2 Chain complexes

2.1 Chain complexes - 2/12/2020

Definition 2.1. Let \mathscr{A} be an abelian category, a (\mathbb{Z} -graded) chain complex C_{\bullet} is

$$\cdots \to C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} C_{-1} \to \cdots$$

Such that $\partial_n \circ \partial_{n+1} = 0$, ∂_i are called **boundary maps(differentials)**

We can define chain maps, chain homotopy, boundaries, cycles, and homology groups, and we say the chain complex is exact if each homology groups is zero, the chain complexes form the **category of chain complexes** $Ch_{\bullet}\mathcal{A}$

Similarly, we can also define cochain complex C^{\bullet}

$$\cdots \to C^{-1} \xrightarrow{d^{-1}} C^0 \xrightarrow{d^0} C^1 \to \cdots$$

Such that $d^{n+1} \circ d^n = 0$, d^i are called **coboundary maps**, cochain complexes form the category of cochain complexes $Ch^{\bullet}\mathscr{A}$

Lemma 2.2. $\phi: Ch^{\bullet}\mathscr{A} \to Ch_{\bullet}\mathscr{A}, \ (\phi C_{\bullet})^n = C_{-n}, \ \phi(d^n) = \partial_n$

Definition 2.3. Suppose X_{\bullet} is a chain complex, we can define **cycles** $Z_n(X) := \ker(X_n \xrightarrow{\partial_n} X_{n-1})$, **boundaries** $B_n(X) := \operatorname{im}(X_{n+1} \xrightarrow{\partial_n} X_n)$ and **homology** $H_n(X) := \operatorname{coker}(B_n \to Z_n)$, actually, Z_n , B_n , H_n are functors $Ch\mathscr{A} \to \mathscr{A}$

Definition 2.4. $\phi: X_{\bullet} \to Y_{\bullet}$ is called a **quasi-isomorphism** if $H_n(\phi): H_nX \to H_nY$ are isomorphisms

Example 2.5. Consider

$$X_{\bullet}: \qquad 0 \longrightarrow \mathbb{Z} \stackrel{\times 5}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \mod 5$$

$$Y_{\bullet}: \qquad 0 \longrightarrow 0 \longrightarrow \mathbb{Z}/5\mathbb{Z} \longrightarrow 0$$

Definition 2.6. Pick $p \in \mathbb{Z}$, define the **translation** of X by p is $X_{\bullet}[p]$ where $(X_{\bullet}[p])_n = X_{p+n}$, differential $X_{\bullet}[p]_n \to X_{\bullet}[p]_{n-1}$ is given by $(-1)^p \partial$ The **translation functor** $T : Ch(\mathscr{A}) \to Ch(\mathscr{A}), X \mapsto X_{\bullet}[1]$ is an auto morphism of $Ch(\mathscr{A})$

Example 2.7. Suppose X is a topological space, R is a ring, $C_*^{\text{sing}}(X)$ is the singular chain complex, ΣX is the suspension of X, we have the Freudenthal theorem $H^k(\Sigma X) \cong H^{k-1}(X)$ for k > 0

Definition 2.8. Pick $p \in \mathbb{Z}$, define the **truncation** of X at p is $\tau_{\geq p}X$, where $(\tau_{\geq p}X)_k = 0$

$$\begin{cases} 0, & k We get the **truncation**$$

functors $\tau_{\geq p}X \to X$ and $X \to \tau_{< p}X$ Moreover, $H_*: \tau_{\geq p}X \to X$ induce isomorphisms for $k \geq p$ and zero maps for k < p, $H_*: X \to \tau_{< p}X$ induce isomorphisms for k < p and zero maps for $k \geq p$

Example 2.9. Consider p = 0

2.2 Arrow category - 2/14/2020

Definition 2.10. A chain complex of **amplitude** [p,q] are chains of the following form

$$0 \longrightarrow X_q \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} X_p \longrightarrow 0$$

Let $Ch_{[p,q]}\mathscr{C}$ denote the full subcategory of $Ch\mathscr{C}$ consist of chain complexes of amplitude [p,q]

Definition 2.11. Suppose \mathscr{C} is a category, we can define the **arrow category** $Ar\mathscr{C}$, where the objects are morphisms in \mathscr{C} , and $Hom(X \xrightarrow{f} Y, Z \xrightarrow{g} W)$ consists of commutative diagrams

$$X \xrightarrow{f} Y$$

$$\downarrow v$$

$$Z \xrightarrow{g} W$$

Equivalently, $Ar\mathscr{C} = Ch_{[0,1]}\mathscr{C}$

Lemma 2.12. Suppose $\mathscr A$ is an abelian category, then ker, coker: $Ar\mathscr A \to \mathscr A$ are two functors given by the following diagram

$$\ker f \longleftrightarrow X \xrightarrow{f} Y \longrightarrow \operatorname{coker} f$$

$$\downarrow^{u_*} \qquad \downarrow^{u} \qquad \downarrow^{v} \qquad \downarrow^{v_*}$$

$$\ker g \longleftrightarrow Z \xrightarrow{g} W \longrightarrow \operatorname{coker} g$$

Let $F_1: \mathscr{A} \to Ar\mathscr{A}$, $X \mapsto 0 \to X \to 0$, where X is of degree 1, $F_0: \mathscr{A} \to Ar\mathscr{A}$, $X \mapsto 0 \to X \to 0$, where X is of degree 0. Then ker is the right adjoint to F_1 and coker is the left adjoint to F_0

 \square

2.3 Chain homotopy - 2/17/2020

Lemma 2.13 (Snake lemma). Given the following commutative diagram with exact rows, then we have an exact sequence

Proof.

Lemma 2.14. $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ is exact iff $0 \to A_n \to B_n \to C_n \to 0$ are exact *Proof.*

Theorem 2.15. Suppose $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ is exact, then we have $\partial: H_nC \to H_{n-1}A$ yielding a long exact sequence

$$\cdots \rightarrow H_n A \rightarrow H_n B \rightarrow H_n C \xrightarrow{\partial} H_{n-1} A \rightarrow H_{n-1} B \rightarrow H_{n-1} C \rightarrow \cdots$$

Proof. Fisrtly, by Lemma 2.13, we have

$$0 \longrightarrow Z_{n}A \longrightarrow Z_{n}B \longrightarrow Z_{n}C$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A_{n} \longrightarrow B_{n} \longrightarrow C_{n} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A_{n-1} \longrightarrow B_{n-1} \longrightarrow C_{n-1} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A_{n}/\partial A_{n-1} \longrightarrow B_{n}/\partial B_{n-1} \longrightarrow C_{n}/\partial C_{n-1} \longrightarrow 0$$

Then apply Lemma 2.13 again, we get

Lemma 2.16 (Five lemma). If b and d are monic and a is an epi, then c is monic. Dually, if b and d are epis and e is monic, then c is an epi. In particular, if a, b, d and e are iso, then c is also an iso

Definition 2.17. We can define a full subcategory $S(\mathscr{A})$ of short exact sequences, or equivalently just $Ch_{[0,2]}\mathscr{A}$, and define a full subcategory $L(\mathscr{A})$ of long exact sequences

Lemma 2.18. H gives a functor $S(Ch\mathscr{A}) \to L(\mathscr{A})$, sending $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ to its long exact sequence

Proof.

Definition 2.19. Suppose X_{\bullet} , $Y_{\bullet} \in Ch \mathscr{A}$, define a complex $Hom_{\bullet}(X_{\bullet}, Y_{\bullet}) \in Ch \mathscr{A}b$ as follows: for each $k \in \mathbb{Z}$, $Hom_k(X_{\bullet}, Y_{\bullet}) = \prod_{n \in \mathbb{Z}} Hom(X_n, Y_{k+n})$, and $d(f_n : X_n \to Y_{n+k})_{n \in \mathbb{Z}} = (g_n : X_n \to Y_{n+k-1})_{n \in \mathbb{Z}}$ where $g_n = \partial f_n - (-1)^k f_{n-1} \partial$

$$X_{n+1} \xrightarrow{\partial} X_n \xrightarrow{\partial} X_{n-1} \xrightarrow{\partial} X_{n-2}$$

$$\downarrow f \qquad \downarrow f_n \qquad \downarrow f_{n-1} \qquad \downarrow f$$

$$Y_{n+k+1} \xrightarrow{\partial} Y_{n+k} \xrightarrow{\partial} Y_{n+k-1} \xrightarrow{\partial} Y_{n+k-2}$$

 $Hom_{\bullet}(X_{\bullet}, Y_{\bullet})$ is a chain complex since for any $f \in Hom_k(X_{\bullet}, Y_{\bullet})$

$$d^{2}f = d(\partial f - (-1)^{k}f\partial)$$

$$= \partial(\partial f - (-1)^{k}f\partial) + (-1)^{k-1}(\partial f - (-1)^{k}f\partial)\partial$$

$$= \partial^{2}f - (-1)^{k}\partial f\partial + (-1)^{k}\partial f\partial + (-1)^{k}f\partial^{2}$$

$$= 0$$

If $f \in Hom_0(X_{\bullet}, Y_{\bullet})$, then $df = \partial f - f\partial = 0 \Leftrightarrow f \in Hom(X_{\bullet}, Y_{\bullet})$, i.e. $Hom(X_{\bullet}, Y_{\bullet}) = Z_0(Hom_{\bullet}(X_{\bullet}, Y_{\bullet}))$, $f \in B_0Hom_{\bullet}(X_{\bullet}, Y_{\bullet}) \Leftrightarrow f - 0 = f = ds = \partial s + s\partial$. i.e. f is chain homotopy equivalent to 0. Therefore we define the **chain homotopy** classes of morphisms from $X_{\bullet} \to Y_{\bullet}$ to be $H_0(Hom(X_{\bullet}, Y_{\bullet}))$

2.4 Chain homotopy category - 2/19/2020

Definition 2.20. Suppose \mathscr{A} is an abelian category, define $K(\mathscr{A})$ to be the **homotopy category** with $\mathsf{ob}K(\mathscr{A}) = \mathsf{ob}Ch(\mathscr{A})$, $Hom_{K(\mathscr{A})}(X_{\bullet}, Y_{\bullet}) = H_0(Hom_{\bullet}(X_{\bullet}, Y_{\bullet}))$

Definition 2.21. Suppose $f: X_* \to Y_*$ is chain map, then the **mapping cone** of f is defined to be the object C(f) in $Ch(\mathscr{A})$ with $C(f)_n = X_{n-1} \oplus Y_n$, $d_{C(f)} = \begin{pmatrix} -d_X & 0 \\ -f & d_Y \end{pmatrix}$, note that $d_{C(f)}^2 = \begin{pmatrix} -d_X & 0 \\ -f & d_Y \end{pmatrix} \begin{pmatrix} -d_X & 0 \\ -f & d_Y \end{pmatrix} = \begin{pmatrix} d_X^2 & 0 \\ fd_X - d_Y f & d_Y^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Lemma 2.22. We have a short exact sequence

$$(x,y) \longmapsto x$$

$$0 \longrightarrow Y \longrightarrow C(f) \longrightarrow X[-1] \longrightarrow 0$$

$$y \longmapsto (0,y)$$

Remark. If $f: X_* \to 0$ is the zero morphism, then C(f) = X[-1]Proof.

Corollary 2.23. $f: X_* \to Y_*$ is a quasi-isomorphism $\Leftrightarrow C(f)$ is exact

2.5 Freyd-Mitchell embedding - 2/21/2020

Theorem 2.24. We have a homology functor $H_*: K(\mathscr{A}) \to \mathscr{A}$ such that the following diagram commutes

$$Ch(\mathscr{A}) \xrightarrow{H_*} \mathscr{A}$$
 $\downarrow \qquad \qquad \downarrow$
 $K(\mathscr{A})$

Theorem 2.25 (Freyd-Mitchell embedding theorem). Suppose $\mathscr A$ is a small abelian category, then there exists a ring R and a fully faithful embedding $\mathscr A \to R\text{-mod}$, i.e. $\mathscr A$ embeds in R-mod as a full subcategory. Moreover, the embedding is an exact functor

Lemma 2.26. Suppose \mathscr{A} is an abelian category, \mathscr{C} is a subcategory, then

- (1) \mathscr{C} is additive \Leftrightarrow if \mathscr{C} is closed under direct sum, including 0
- (2) \mathscr{C} is abelian and $\mathscr{C} \hookrightarrow \mathscr{A}$ is exact $\Leftrightarrow \mathscr{C}$ is additive and contain kernels, cokernels

 \square

Definition 2.27. Suppose \mathscr{A} , \mathscr{B} are abelian categories, a covariant homological δ functor is a family of functors $T_n: \mathscr{A} \to \mathscr{B}$ and for each short exact sequence $0 \to A \stackrel{u}{\to} B \stackrel{v}{\to} C \to 0$, a family of morphisms $\delta_n: T_nC \to T_{n-1}A$ which induces a long exact sequence

$$\cdots \to T_n(A) \xrightarrow{u_n} T_n(B) \xrightarrow{v_n} T_n(C) \xrightarrow{\delta_n} T_{n-1}(A) \to \cdots$$

And any chain map

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C' \longrightarrow 0$$

The following diagram commutes

$$T_n(C) \stackrel{\delta_n}{\longrightarrow} T_{n-1}(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$T_n(C') \stackrel{\delta_n}{\longrightarrow} T_{n-1}(A')$$

Similarly, we can define covariant cohomological δ functors

Example 2.28. $H_n: Ch_{\bullet}(\mathscr{A}) \to \mathscr{A}, C_* \mapsto H_n(C), \delta = \partial$ is a homological δ functor, $H^n: Ch^{\bullet}(\mathscr{A}) \to \mathscr{A}, C^* \mapsto H^n(C), \delta = d$ is a cohomological δ functor

Example 2.29. Let $\mathscr{A}b$ be the category of abelian groups, define functors $T_1: \mathscr{A}b \to \mathscr{A}b$, $A \mapsto A_p$, where A_p is $\ker(A \xrightarrow{\times p} A)$ is the p torsion of A, and $T_0: \mathscr{A}b \to \mathscr{A}b$, $A \mapsto A/pA$, where $A/pA = \operatorname{coker}(A \xrightarrow{\times p} A)$. For a short exact sequence $0 \to A \to B \to C \to 0$, by Snake Lemma 2.13, we have long exact sequence

$$0 \to T_1 A \to T_1 B \to T_1 C \xrightarrow{\delta_1} T_0 A \to T_0 B \to T_0 C \to 0$$

Definition 2.30. A morphism between delta functors $\{S_i\}$, $\{T_i\}$ is a sequence of natural transformations $\eta_n: S_n \to T_n$ commuting with δ , i.e.

$$\cdots \longrightarrow S_{n}A \xrightarrow{S_{n}u} S_{n}B \xrightarrow{S_{n}v} S_{n}C \xrightarrow{\delta_{S}} S_{n-1}A \longrightarrow \cdots$$

$$\downarrow^{\eta} \qquad \downarrow^{\eta} \qquad \downarrow^{\eta} \qquad \downarrow^{\eta}$$

$$\cdots \longrightarrow T_{n}A \xrightarrow{T_{n}u} T_{n}B \xrightarrow{T_{n}v} T_{n}C \xrightarrow{\delta_{T}} T_{n-1}A \longrightarrow \cdots$$

Therefore we get a category of homological δ functors

Definition 2.31. A δ functor $\{T_n\}$ is called **universal** if for any δ functor $\{S_n\}$, given a natural transformation $\eta_0: S_0 \to T_0$, this can be uniquely extended to $\eta_n: S_n \to T_n$ up to isomorphism, in other words, $\{T_n\}$ is a final object in the category of homological δ functors

2.6 Resolutions - 2/24/2020

Definition 2.32. Suppose \mathscr{C} is an abelian category, P is **projective** if functor Hom(P, -): $\mathscr{C} \to Sets$ sends epi to epi, or equivalently

$$X \xrightarrow{\exists h} P \\ \downarrow g \\ X \xrightarrow{k} Y$$

I is **injective** if functor $Hom(-,Q): \mathscr{C} \to Sets$ sends mono to epi, or equivalently

$$X \stackrel{f}{\longleftarrow} Y$$

$$\downarrow g \qquad \exists h$$

$$Q$$

Lemma 2.33. Coproduct of projective objects is projective, product of injective objects is injective

Proof. Suppose I_{α} are injective, $A \hookrightarrow B$ is a monomorphism, we have

$$Hom(B, \prod I_{\alpha}) \longrightarrow Hom(A, \prod I_{\alpha})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\prod Hom(B, I_{\alpha}) \longrightarrow \prod Hom(A, I_{\alpha})$$

Definition 2.34. $\mathscr C$ has **enough projectives** if for any X, there is an epi $P \to X$ from a projective object, $\mathscr C$ has **enough injectives** if for any X, there is a mono $X \to Q$ to an injective object

Lemma 2.35. Suppose $\mathscr A$ is an abelian category, $\operatorname{Hom}(P,-)$, $\operatorname{Hom}(-,I)$ are left exact. We have

P is projective \Leftrightarrow Hom(P, -) is right exact \Leftrightarrow Hom(P, -) is exact

I is injective \Leftrightarrow Hom(-, I) is right exact \Leftrightarrow Hom(-, I) is exact

 \square

Remark. It is obvious that $A \to B \to C \to 0$ is exact iff $0 \to Hom(C,D) \to Hom(B,D) \to Hom(A,D)$ is exact for all $D,\ 0 \to A \to B \to C$ is exact iff $0 \to Hom(D,A) \to Hom(D,B) \to Hom(D,C)$ is exact for all D

Lemma 2.36. Functors between abelian categories $F: \mathcal{A} \to \mathfrak{B}$, $G: \mathfrak{B} \to \mathcal{A}$ is an adjoint pair. If F is left exact, then G preserves injectives. If G is right exact, then F preserves projectives

Proof.

 $Hom_{\mathfrak{B}}(-,G(I))$ is right exact $\Leftrightarrow Hom_{\mathcal{A}}(F(-),I) = Hom_{\mathcal{A}}(-,I) \circ F$ is right exact $Hom_{\mathfrak{B}}(F(P),-)$ is right exact $\Leftrightarrow Hom_{\mathcal{A}}(P,G(-)) = Hom_{\mathcal{A}}(P,-) \circ G$ is right exact

Lemma 2.37. An R module M is projective iff M is a direct summand of a free module Proof.

Definition 2.38. Exact sequence C_{\bullet} split at if there are $s_n:C_n\to C_{n+1}$ such that $\partial_{n+1}s_n\partial_{n+1}=\partial_{n+1}$

Lemma 2.39. C_{\bullet} split iff $1_C \simeq 0$

Lemma 2.40. P_{\bullet} is a projective in $Ch(\mathscr{A})$ iff P_{\bullet} is a split exact sequence of projectives

$$\square$$

Definition 2.41. A **left resolution** is morphism $P_{\bullet} \xrightarrow{\varepsilon} M$ in $Ch_{\geq 0}(\mathscr{A})$, here M means $0 \to M \to 0$ with M at degree 0, then $\cdots \to P_2 \to P_1 \to P_0 \xrightarrow{\varepsilon} M \to 0$ is exact. A projective resolution is a left resolution with projectives, an injective resolution is a right resolution with injectives

Lemma 2.42. If \mathscr{A} has enough projectives, then for any M, there is a projective resolution $P_{\bullet} \stackrel{\varepsilon}{\to} M$

Proof. First there exists exact sequence $0 \to \ker \varepsilon \xrightarrow{i_0} P_0 \xrightarrow{\varepsilon} M \to 0$ where P_0 is a projective, then there exists another exact sequence $0 \to \ker i_0 \to P_1 \to \ker \varepsilon \to 0$ where P_1 is a projective, then we can splice them to get exact sequence $P_1 \to P_0 \xrightarrow{\varepsilon} M \to 0$, inductively we get a projective resolution

Theorem 2.43 (Comparison theorem). Suppose $P_{\bullet} \xrightarrow{\varepsilon} M$ is a complex with P_n projectives, $Q_{\bullet} \xrightarrow{\eta} N$ is a left resolution, then for any $M \xrightarrow{f} N$, it can be extend to chain map $f_{\bullet} : P_{\bullet} \to Q_{\bullet}$, and f_{\bullet} is unique up to homotopy

$$\cdots \xrightarrow{\partial_2} P_1 \xrightarrow{\partial_1} P_0 \xrightarrow{\varepsilon} M \longrightarrow 0$$

$$\downarrow^{f_1} \qquad \downarrow^{f_0} \qquad \downarrow^{f}$$

$$\cdots \xrightarrow{\partial_2} Q_1 \xrightarrow{\partial_1} Q_0 \xrightarrow{\eta} N \longrightarrow 0$$

Proof. Since P_0 is projective, there exists $P_0 \xrightarrow{f_0} Q_0$ such that $f\varepsilon = \eta f_0$, then we have $\eta f_0 \partial_1 = f\varepsilon \partial_1 = 0$, $f_0 \partial_1 : P_1 \to Z_0 Q$, and $Q_1 \xrightarrow{\partial_1} Z_0 Q$ is epi, we have $P_1 \xrightarrow{f_1} Q_1$, inductively, we can extend f to a chain map $f_{\bullet} : P_{\bullet} \to Q_{\bullet}$

Suppose f=0, we need to show $f_{\bullet}\simeq 0$, Write $P_{-1}:=M$, $Q_{-1}:=N$, $P_n=Q_n=0$, $\forall n<-1$, define $s_n:P_n\to Q_{n+1}$, $\forall n<0$ to be zero. Since $\eta f_0=0$, thus $f_0:P_0\to Z_0Q$, and $Q_1\stackrel{\partial_1}{\to}Z_0Q$ is epi, we get $P_0\stackrel{s_0}{\to}Q_1$ such that $f_0=\partial_1 s_0=\partial_1 s_0+s_{-1}\partial_0$, then since $\partial_1 f_1=f_0\partial_1=\partial_1 s_0\partial_1\Rightarrow f_1-s_0\partial_1:P_1\to Z_1Q$, and $Q_2\stackrel{\partial_2}{\to}Z_1Q$ is epi, we get $s_1:P_1\to Q_2$ such that $\partial_2 s_1=f_1-s_0\partial_1$, inductively we construct a null homotopy s_{\bullet}

Lemma 2.44 (Horseshoe lemma). Suppose $P_{\bullet} \xrightarrow{\varepsilon} M$, $Q_{\bullet} \xrightarrow{\eta} N$ are projective resolutions, then any exact sequence $0 \to M \xrightarrow{f} A \xrightarrow{g} N \to 0$ can be extended into commutative diagram

With $(P \oplus Q)_{\bullet}$ being a projective resolution, every row and column are exact

Proof. Since $A \xrightarrow{g} N$ is epi and Q_0 is projective, we get $Q_0 \xrightarrow{s_0} A$ such that $gs_0 = \partial_0$ which gives us $P_0 \oplus Q_0 \xrightarrow{\left(f\partial_0 \quad s_0\right)} A$, by Lemma 2.13, this is epi, and we get an exact sequence $0 \to Z_0P \to \ker i_0 \to Z_0Q \to 0$, similarly, we can construct $Q_1 \xrightarrow{s_1} \ker i_0$, then $P_1 \oplus Q_1 \xrightarrow{\left(\iota_0\partial_0 \quad s_1\right)} \ker i_0$ is again epi by Lemma 2.13, inductively, we can construct the commutative diagram

2.7 Baer's criterion - 2/28/2020

Theorem 2.45 (Baer's criterion). A left R module E is injective in the category of left R modules iff every left ideal homomorphism $\phi: I \to E$ can be extended to a homomorphism $R \to E$

Proof. If E is injective, we can certainly extend $\phi: I \to E$

Now suppose extension is always possible, $A \hookrightarrow B$ is a submodule, $\alpha: A \to E$ is a homomorphism, consider poset $\Gamma:=\{A \leq C \leq B, \alpha_C: C \to E\}, (C,\alpha_C) \leq (D,\alpha_D)$ meaning $C \leq D$ and $\alpha_D|_C=\alpha_C$, by Zorn's lemma, we can pick a maximal element (C,α) , suppose $C \subsetneq B$, there exists $b \in B \setminus C$, consider $J=\{r \in R | rb \in C\}$, we have

$$J \xrightarrow{\times b} C \xrightarrow{\alpha} E$$

define $\beta: C + \langle b \rangle \to E$, $c + rb \mapsto \alpha(c) + f(r)$, contradicting the maximality

Definition 2.46. A left R module M is r divisible if $M \xrightarrow{\times r} M$ is surjetive, M is divisible if M is r divisible for any $0 \neq r \in R$

Corollary 2.47. Suppose R is a PID, a left R module M is injective iff M is divisible

Proof. Suppose M is injective, for any $0 \neq r \in R$, $R \xrightarrow{\times r} rR$ is an isomorphism since R is a PID, by Theorem 2.45, we have

Here $R \xrightarrow{m} M$, $1 \mapsto m$, thus m = rm'

Suppose M is divisible, since R is a PID, for any homomorphism $rR \to M$, $r \mapsto m$, we have m = rm' for some m', giving the extension $R \to M$, $1 \mapsto m'$

Corollary 2.48. The category of abelian groups $\mathscr{A}b$ has enough injectives

Proof. By corollary 2.47, \mathbb{Q}/\mathbb{Z} is injective since \mathbb{Q}/\mathbb{Z} is divisible Suppose M is an abelian group, define $I = \prod_f \mathbb{Q}/\mathbb{Z}$ which is also injective due to Lemma 2.33, here f runs over $Hom(M,\mathbb{Q}/\mathbb{Z})$, thus we get $h:M\to I$. Suppose $0\neq m\in\ker h$, then f(m)=0 for any $f\in Hom(M,\mathbb{Q}/\mathbb{Z})$. Define $H=\mathbb{Z}m$ which is isomorphism to \mathbb{Z} or $\mathbb{Z}/n\mathbb{Z}$, then we can define $\beta:H\to\mathbb{Q}/\mathbb{Z}$, $m\mapsto\frac{1}{n}$, since \mathbb{Q}/\mathbb{Z} is a injective, we can extend to $\alpha:M\to\mathbb{Q}/\mathbb{Z}$, but then $\alpha(m)=\beta(m)\neq 0$ which is a contradiction

Theorem 2.49. Suppose \mathscr{A} , \mathscr{B} are abelian categories, $L: \mathscr{A} \to \mathscr{B}$, $R: \mathscr{B} \to \mathscr{A}$ are adjoint functors, L is exact, $I \in \mathsf{ob}\mathscr{B}$ is injective, then R(I) is also injective

Proof. For any monomorphism $A \hookrightarrow A'$, $L(A) \hookrightarrow L(A')$ is also monic, we have

$$Hom(L(A'),I) \longrightarrow Hom(L(A),I)$$

$$\downarrow \qquad \qquad \downarrow$$
 $Hom(A',R(I)) \longrightarrow Hom(A,R(I))$

2.8 Enough injectives in R-Mod - 3/2/2020

Lemma 2.50. If M is a left R module, A is an abelian group, then Hom(M,A) is a right R module. Similarly, if M is a ring R module, then Hom(A,M) is a left R module

Proof.
$$(fr)(m) = f(rm), (frs)(m) = f(rsm) = (fr)(sm) = ((fr)s)(m)$$

 $(rf)(m) = f(mr), (rsf)(m) = f(mrs) = (sf)(rm) = (r(sf))(m)$

Proposition 2.51. If M is a left R module, A is an abelian group, viewing R as a right R module, then the natural map $\operatorname{Hom}_{\mathscr{A}_b}(M,A) \to \operatorname{Hom}_{R\operatorname{-Mod}}(M,\operatorname{Hom}(R,A))$ is an isomorphism. In other words, $\operatorname{Hom}(R,-)$ is the right adjoint to the forgetful functor $R\operatorname{-Mod} \to \mathscr{A}_b$, sending a right R module to its underlying abelian group, the forgetfull is clearly an exact functor, thus $\operatorname{Hom}(R,-)$ maps injectives to injectives

Corollary 2.52. R-Mod has enough injectives

$$\square$$

Definition 2.53. Suppose \mathscr{A} , \mathscr{B} are abelian category, $F: \mathscr{A} \to \mathscr{B}$ is an additive funtor if $F(A \oplus B)$ is naturally isomorphic to $F(A) \oplus F(B)$, and F is additive, i.e. F(f+g) =

 $F(f)+F(g), f,g \in Hom(A,B), \text{ here } f+g \text{ is given by the composition } A \xrightarrow{\left(\begin{matrix} g \end{matrix}\right)} B \oplus B \xrightarrow{\nabla} Y,$ here ∇ is the **codiagonal**

Example 2.54. $\bigwedge^2 : \operatorname{Vect}_F \to \operatorname{Vect}_F$ is exact but not additive

2.9 Universality of derived functors - 3/6/2020

Definition 2.55. The **left derived functor** of F is $L_iF(A) = H_iF(P)$, where $P \to A$ is a projective resolution

Definition 2.56. $Y \in ob \mathscr{A}$ is F-acyclic if $L_iF(Y) = 0$ for all $i \geq 1$. Projectives are acyclic

Theorem 2.57. $F: \mathcal{A} \to \mathcal{B}$ is right exact, \mathcal{A} has enough projectives, the **left derived functor** L_iF is a universal homological δ functor

Proof. Suppose $0 \to X \to Y \to Z \to 0$ is exact, P_X , P_Z are projective resolutions of X, Z, then $(P_Y)_i = (P_X)_i \oplus (P_Z)_i$ is a projective resolution of Y by Lemma 2.44, since $F(P_Y)_i = F(P_Y)_i \oplus F(P_Z)_i$, $0 \to F(P_X)_i \to F(P_Y)_i \to F(P_Z)_i \to 0$ split, by Lemma 2.13, we have $\cdots \to L_i F(X) \to L_i F(Y) \to L_i F(Z) \xrightarrow{\delta} L_{i-1} F(X) \to \cdots$, i.e. $L_i F$ is a homological δ functor. Suppose T_i is another homological δ functor, $\phi_0 : T_0 \to L_0 F$ is a natural transformation, since $\mathscr A$ has enough projecives, there exists $P \xrightarrow{} X$ with P projetive, let K be the kernel, we have a short exact sequence $0 \to K \to P \to X \to 0$

And then inductively for i > 0

$$T_{i+1}X \xrightarrow{\delta} T_{i}K$$

$$\downarrow^{\exists_{1}\phi_{i+1}} \qquad \downarrow^{\phi_{i}}$$

$$0 \longrightarrow L_{i+1}FX \xrightarrow{\delta} L_{i}FK \longrightarrow 0$$

Corollary 2.58. $F: \mathcal{A} \to \mathcal{B}$ is left exact, \mathcal{A} has enough injectives, the **right derived functor** R^iF is a universal cohomological δ functor

Example 2.59. $F_M: R\text{-}mod \rightarrow Ab, N \mapsto Hom_R(M,N)$ is left exact, $R^iF_M(N) = Ext_R^i(M,N)$

2.10 Filtered category - 3/9/2020

Lemma 2.60. A left adjoint is a right exact functor, a right adjoint is a left exact functor

Proof. Suppose (L,R) are adjoint pair of functors of abelian categories, $L: \mathscr{A} \to \mathscr{B}$, $R: \mathscr{B} \to \mathscr{A}, A \to B \to C \to 0$ is exact, then $0 \to Hom(C,RD) \to Hom(B,RD) \to Hom(A,RD)$ is exact, $0 \to Hom(LC,D) \to Hom(LB,D) \to Hom(LA,D)$ is exact, thus $LA \to LB \to LC \to 0$ is exact

Proposition 2.61. I is small, $\mathscr C$ is cocomplete, $K:\mathscr C\to\mathscr C^I,\ X\mapsto K_X$ is the right adjoint to $\operatorname{colim}:\mathscr C^I\to\mathscr C$

 \square

Corollary 2.62. I, J is small, \mathscr{C} , \mathscr{C}^I , \mathscr{C}^J are cocomplete, $F: I \times J \to \mathscr{C}$ is a bifunctor, which give $F_I: I \to \mathscr{C}^I$, $F_J: J \to \mathscr{C}^I$, then $\operatorname{colim} F \cong \operatorname{colimcolim} F_I \cong \operatorname{colimcolim} F_J$

Proof.

Definition 2.63. *I* is a **filtered category** if for any i, j, there exist $i \to k \leftarrow j$ and for any $i \xrightarrow{\phi} j$, there exists $j \xrightarrow{\xi} k$ coequalizes ϕ, ψ , i.e. $\xi \phi = \xi \psi$

Equivalently, for finitely many i_{α} , there exist $i_{\alpha} \xrightarrow{\phi_{\alpha}} j$ and for finitely many $i \xrightarrow{\phi_{\alpha}} j$, there exists $j \xrightarrow{\psi} k$ coequalizes ϕ_{α}

Lemma 2.64. $F: I \to R\text{-mod}$ is a functor, then $\operatorname{colim} F = \bigoplus_i F(i)/E$, E is generated by $F(\phi)(a_i) - a_i$, here $i \xrightarrow{\phi} j$

Proof. We have the following diagrams

Lemma 2.65. Suppose I is a filtered category, for finitely many $i \to j$, there exist a k and $i \to k$, $j \to k$ such that $i \to k = i \to j \to k$

Proof. Use induction

(a) For a single morphism $i \xrightarrow{\phi} j$, there exist $i \xrightarrow{\lambda} k$, $j \xrightarrow{\mu} k$, then there exists $k \xrightarrow{\psi} j$ such that $\psi \lambda = \psi \mu \phi$

$$i \xrightarrow{\phi} j \xrightarrow{\mu} k \xrightarrow{\psi} l$$

(b) For $\bullet \xrightarrow{\alpha_d} l$, $i \xrightarrow{\phi} j$, by (a), there exist $i \xrightarrow{\lambda} k$, $j \xrightarrow{\mu} k$ such $\lambda = \mu \phi$, then there exist $l \xrightarrow{\beta} m$, $k \xrightarrow{\gamma} m$

(c) For $\bullet \xrightarrow{\alpha_d} j$, $\bullet \xrightarrow{\beta} i$, there exist $j \xrightarrow{\lambda} k$, $i \xrightarrow{\mu} k$, then there exists $k \xrightarrow{\phi} l$ such that $\phi \lambda \alpha_d = \phi \mu \beta$

$$\bullet \xrightarrow{\alpha_d} j \xrightarrow{\lambda} k \xrightarrow{\phi} l$$

(d) For $\bullet \xrightarrow{\alpha_d} j$, $i \xrightarrow{\beta} \bullet$, there exists $j \xrightarrow{\phi} k$ equalizes $\alpha_d \beta$

$$i \stackrel{\beta}{\longrightarrow} \bullet \stackrel{\alpha_d}{\longrightarrow} j \stackrel{\phi}{\longrightarrow} k$$

(e) For $\bullet \xrightarrow{\alpha_d} i$, $\bullet \xrightarrow{\beta} \bullet$, there exists $i \xrightarrow{\phi} j$ equalizes $\alpha_d \beta$

$$egin{aligned} ullet & \stackrel{lpha_d}{\longrightarrow} i & \stackrel{\phi}{\longrightarrow} j \ igotimes & eta & \end{aligned}$$

Lemma 2.66. Suppose I is a filtered category, $F: I \to R$ -mod is a functor, then

(a) Every element of colim F lies in the image of some $F(i) \to \text{colim} F$

(b)
$$\ker(F(i) \to \operatorname{colim} F) = \bigcup_{\substack{i \to i \\ j \to i}} \ker F(\phi)$$

Proof. (a) Any element of colim F is a finite sum $\sum a_i$, since I is filtered, there exist k and $i \xrightarrow{\phi_i} k$

(b) $a_i \in \ker(F(i) \to \operatorname{colim} F)$ can be written as finite sum $\sum (F(\phi)(a_j) - a_j)$ with $j \xrightarrow{\phi} k$, by Lemma 2.65, there exist $j \xrightarrow{\psi_j} l$ such that for each $j \xrightarrow{\phi} k$ we have $\psi_j = \psi_k \phi$, then $F(\psi_k)F(\phi) = F(\psi_j)$, hence

$$F(\psi_i)(a_i) = \left(\sum F(\psi_j)\right)(a_i)$$

$$= \left(\sum F(\psi_j)\right) \left(\sum (F(\phi)(a_j) - a_j)\right)$$

$$= \sum (F(\psi_k)F(\phi)(a_j) - F(\psi_j)a_j)$$

$$= 0$$

Therefore $a_i \in \ker F(\psi_i)$

Definition 2.67. A sheaf is a presheaf F such that

$$F(U) \longrightarrow \prod_{i} F(U_i) \Longrightarrow \prod_{i,j} F(U_i \cap U_j)$$

Is an equaliser. Sh(X) is the category of sheaves over X

Proposition 2.68. If \mathscr{D} is complete, then $\mathscr{D}^{\mathscr{C}^{op}}$ is complete, $(\lim F_i)(X) = \lim F_i(C)$. If \mathscr{D} is cocomplete, then $\mathscr{D}^{\mathscr{C}^{op}}$ is cocomplete, $(\operatorname{colim} F_i)(X) = \operatorname{colim} F_i(X)$

Corollary 2.69. PreSh(X, R-mod), Sh(X, R-mod) are abelian categories

Theorem 2.70. Inclusion $Sh(X,R\text{-mod}) \to PreSh(X,R\text{-mod})$ is the right adjoint to the sheafification $PreSh(X,R\text{-mod}) \to Sh(X,R\text{-mod})$, hence inclusion is left exact, sheafification is actually exact

Proof. \Box Lemma 2.71. $0 \to F \to G \to H \to 0$ is exact iff $0 \to F_x \to G_x \to H_x \to 0$ is exact Proof. \Box

Example 2.72. $X = \mathbb{C} \setminus \{0\}$, \mathbb{Z} is the sheaf of locally integer constant functions, \mathbb{O} is the sheaf of holomorphic functions, \mathbb{O}^{\times} is the sheaf of nonvanishing holomorphic functions, $0 \to \mathbb{Z} \hookrightarrow 0 \xrightarrow{\exp} \mathbb{O}^{\times} \to 0$ is exact in Sh(X), but not in PreSh(X), since $\mathbf{z} \in \mathbb{O}^{\times}$ is not in $im(\mathbb{O}(X) \xrightarrow{\exp} \mathbb{O}^{\times}(X))$

2.11 Hom cochain complex

Definition 2.73. P is a chain complex with differentials ∂ , I is a cochain complex with codifferentials d, we get a double complex $Hom(P,I) = \{Hom(P_p,I^q)\}$ with horizontal and vertical codifferentials d',d'' defined as $d''(f) = f\partial$, $d'(f) = (-1)^{p+q+1}df$. The **Hom cochain complex** is the product total complex $Tot^{\Pi}(Hom(P,I))$

2.12 Group homology

Definition 2.74. R is a commutative ring, M is right R[G] module, $C_*(G)$ is the tuple complex, equivalently, $B_*(G)$ is the bar complex, $\bar{B}_*(G) = B_*(G) \otimes_{R[G]} R$, thus

$$M \otimes_{R[G]} B_*(G) \cong M \otimes_R R \otimes_{R[G]} B_*(G) \cong M \otimes_R \bar{B}_*(G)$$

Group homology with coefficients in M is

$$\begin{split} H_k(G;M) &= H_k(M \otimes_{R[G]} C_*(G)) \\ &= H_k(M \otimes_{R[G]} B_*(G)) \\ &= H_k(M \otimes_R \bar{B}_*(G)) \\ &= Tor_k^{R[G]}(M,R) \end{split}$$

The differential of $M \otimes_{\mathbb{Z}[G]} C_*(G)$ is given by

$$\begin{split} \partial(m\otimes[g_1|\cdots|g_n]) &= \partial(m\otimes(1,g_1,g_1g_2,\cdots,g_1\cdots g_n)) \\ &= mg_1\otimes[g_2|\cdots|g_n] + \sum_{i=1}^{n-1}(-1)^i m\otimes[g_1|\cdots|g_ig_{i+1}|\cdots|g_n] \\ &+ (-1)^n m\otimes[g_1|\cdots|g_{n-1}] \end{split}$$

$$H_0(G;M) = M \otimes_{R[G]} R = M_G$$

3 Spectral sequence

3.1 Spectral sequence

Definition 3.1.

Lemma 3.2. $E \xrightarrow{f} E'$ is a morphism of spectral sequences, and $E_{pq}^r \xrightarrow{f_{pq}^r} E_{pq}^{rr}$ are isomorphisms for any p, q, then $E_{pq}^s \xrightarrow{f_{pq}^s} E_{pq}^{rs}$ are isomorphisms for any $p, q, s \ge r$

Proof. By five lemma 2.16

Definition 3.3. A spectral sequence C is **bounded** if for all n, r, all but finitely many $E_{p,n-p}^r$ vanish

Definition 3.4. $H_* \in \mathscr{A}^{\mathbb{Z}}$, \mathbb{Z} is the discrete category, F_pH_* is a filtration of H_* . E weakly converge to H_* if $E_{pq}^{\infty} \cong F_pH_{p+q}/F_{p-1}H_{p+q}$. If F_pH_n are Hausdorff and exhaustive, then E approaches or abuts H_* . If F_pH_n are complete, then E converges to H_* Bounded spectral sequence E converge to H_* if F_pH_n are bounded, and $E_{pq}^{\infty} = F_pH_{p+q}/F_{p-1}H_{p+q}$, denote $E_{pq}^r \Rightarrow H_{p+q}$

3.2 Spectral sequence of a filtered chain complex

Definition 3.5. C is a chain complex, $\cdots \subseteq F_{p-1}C \subseteq F_pC \subseteq F_{p+1}C \subseteq \cdots$ is a filtration of chain complexes. FC is **exhaustive** if $\bigcup F_pC = C$. FC is **Hausdorff** if $\bigcap F_pC = 0$. $\widehat{C} = \varprojlim C/F_pC$ is the **completion**. FC is **complete** if $\widehat{C} \cong C$, since $C \to \widehat{C}$ has kernel $\bigcap F_p\widehat{C}$, hence completeness implies Hausdorff. FC is **bounded below** if $\forall n, F_pC_n = 0$ for p small enough. FC is **bounded above** if $\forall n, F_pC_n = C_n$ for p big enough. FC is **bounded** if bounded below and above

 $F_pH_n(C) = \operatorname{im}(H_n(F_pC) \to H_n(C))$

Definition 3.6. F_nC is a filtered chain complex, $E_{pq}^0 = \frac{F_pC_{p+q}}{F_{p+1}C_{p+q-1}}$ defines a spectral sequence

 E_{pq}^1 converges to H_*C if $E_{pq}^1 = H_{p+q}(F_pC/F_{p-1}C) \Rightarrow H_{p+q}C$

Definition 3.7. $E_{pq}^0 = F_p C_{p+q}$ defines a spectral sequence

Theorem 3.8. $A_p^r = \{x \in F_pC | dx \in F_{p-r}C\}, Z_p^r = A_p^r + F_{p-1}C, B_p^r = dA_{p+r-1}^{r-1} + F_{p-1}C, A_p^r \cap F_{p-1}C = A_{p-1}^{r-1}$

$$\begin{split} E_p^r &= \frac{Z_p^r}{B_p^r} = \frac{A_p^r + F_{p-1}C}{dA_{p+r-1}^{r-1} + F_{p-1}C} = \frac{\frac{A_p^r + F_{p-1}C}{F_{p-1}C}}{\frac{dA_{p+r-1}^{r-1} + F_{p-1}C}{F_{p-1}C}} = \frac{\frac{A_p^r}{A_{p-1}^{r-1}}}{\frac{dA_{p+r-1}^{r-1}}{dA_{p+r-1}^{r-1} \cap F_{p-1}C}} \\ &= \frac{\frac{A_p^r}{A_{p-1}^{r-1}}}{\frac{dA_{p+r-1}^{r-1}}{dA_{p+r-1}^{r-1} \cap A_{p-1}^{r-1}}} = \frac{\frac{A_p^r}{A_{p-1}^{r-1}}}{\frac{dA_{p+r-1}^{r-1} + A_{p-1}^{r-1}}{A_{p-1}^{r-1}}} = \frac{A_p^r}{dA_{p+r-1}^{r-1} + A_{p-1}^{r-1}} \end{split}$$

Lemma 3.9. C and \widehat{C} give the same spectral sequence

Theorem 3.10. If F_*C is bounded, then $E^1_{p,q}$ converges to H_*C If F_*C is bounded below and exhaustive, then $E^1_{p,q}$ converges to H_*C , the convergence is natural

Theorem 3.11. C is a complete filtration, then

rem 3.11.
$$C$$
 is a complete furtation, then
$$0 \longrightarrow \varprojlim^{1} H_{n+1}(C/F_{p}C) \longrightarrow H_{n}(C) \longrightarrow H_{n}(C/F_{p}C) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\cap F_{p}H_{n}(C) \qquad \qquad \varprojlim H_{n}(C)/F_{p}H_{n}(C)$$

$$\parallel \qquad \qquad \qquad \qquad \parallel$$

$$H_{*}(C)/\cap F_{p}H_{n}(C)$$

Lemma 3.12. F_*C is Hausdorff and exhaustive, then

1.
$$A_{pq}^{\infty} = \ker(F_p C_{p+q} \xrightarrow{d} F_p C_{p+q-1})$$

2.
$$F_pH_{p+q}(C) \cong A^{\infty}/\bigcup dA^r_{p+r,q-r+1}$$

3. The subgroup $e_{pq}^{\infty}=A_{pq}^{\infty}+B_{pq}^{\infty}$ is isomorphic to $F_pH_{p+q}(C)/F_{p-1}H_{p+q}(C)$

3.3 Spectral sequence of a double complex

Definition 3.13. C_{pq} is a double complex. Filtration by columns $F_n(Tot(C))$ is the total complex of a truncation of C with $C_{pq} = 0$ for q > n

Filtration by rows ${}''F_n(Tot(C))$ is the total complex of a truncation of C with $C_{pq}=0$ for p>n

We have

$${}^{\prime}E_{pq}^{0}=C_{pq}, {}^{\prime}E_{pq}^{1}=H_{q}(C_{p*}), {}^{\prime}E_{pq}^{2}=H_{p}^{h}H_{q}^{v}C$$
 ${}^{\prime\prime}E_{pq}^{0}=C_{qp}, {}^{\prime\prime}E_{pq}^{1}=H_{q}(C_{*p}), {}^{\prime}E_{pq}^{2}=H_{q}^{v}H_{p}^{h}C$

3.4 Hyperhomology

Definition 3.14. \mathcal{A} is an abelian category with enough projectives, a **Cartan-Eilenberg resolution** P_{**} of chain complex A_* is an upper half plane double complex consist of projectives and a augmentation $P_{*0} \xrightarrow{\varepsilon} A_*$ such that

1. If $A_p = 0$, then $P_{p,*} = 0$

2.
$$B_p^h(P) \xrightarrow{B_p(\varepsilon)} B_p(A_*), H_p^h(P) \xrightarrow{H_p(\varepsilon)} H_p(A_*)$$
 are projective resolutions

Lemma 3.15. Every chain complex A_* has a Cartan-Eilenberg resolution, and $Z_p^h(P) \xrightarrow{Z_p(\varepsilon)} Z_p(A_*)$, $P_{D*} \xrightarrow{\varepsilon_p} A_p$ are projective resolutions

Lemma 3.16. $f: A \to B$ is a chain map, $P \to A$, $Q \to B$ are Cartan-Eilenberg resolutions, there exists a double complex map $\tilde{f}: P \to Q$ over f

Definition 3.17. $f,g:D\to E$ are maps between double complexes, a chain homotopy from f to g consists of $s^h:D_{pq}\to E_{p+1,q}$ and $s^v:D_{pq}\to E_{p,q+1}$ satisfying

$$f - g = (s^{h}d^{h} + d^{h}s^{h}) = (s^{v}d^{v} + d^{v}s^{v})$$
$$s^{v}d^{h} + d^{h}s^{v} = s^{h}d^{v} + d^{v}s^{h} = 0$$

So that $s^h + s^v : Tot(D)_n \to Tot(E)_{n+1}$ is a chain homotopy between Tot(f), $Tot(g) : Tot^{\oplus}(D) \to Tot^{\oplus}(E)$

Lemma 3.18. $f,g: A \to B$ are chain homotopic, $P \to A$, $Q \to B$ are Cartan-Eilenberg resolutions, $\tilde{f}, \tilde{g}: P \to Q$ are over f, g, then \tilde{f}, \tilde{g} are chain homotopic. Any two Cartan-Eilenberg resolutions of $P \to A$, $Q \to A$ are chain homotopic. F is an additive functor, then $Tot^{\oplus}(F(P))$, $Tot^{\oplus}(F(Q))$ are chain homotopic

Definition 3.19. \mathcal{A}, \mathcal{B} are abelian categories, \mathcal{A} has enough projectives, $F: \mathcal{A} \to \mathcal{B}$ is an additive functor, $f: A \to B$ is a chain map. Define $\mathbb{L}_i F(A) = H_i(Tot^{\oplus}(F(P)))$, by Lemma 3.18, $\mathbb{L}_i F(A)$ is independent of the choice of P, $\mathbb{L}_i F(f) = H_i(Tot(F(f)))$. $\mathbb{L}_i F: \mathbf{Ch} \mathcal{A} \to \mathcal{B}$ is the left hyper-derived functor of F

Lemma 3.20. $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of bounded below chain complexes, then we have a long exact sequence

$$\cdots \to \mathbb{L}_{i+1}F(C) \xrightarrow{\delta} \mathbb{L}_iF(A) \to \mathbb{L}_iF(B) \to \mathbb{L}_i(C) \xrightarrow{\delta} \cdots$$

Proposition 3.21 (Hyperhomology spectral sequence). $L_pF(H_q(A)) \Rightarrow \mathbb{L}_{p+q}F(A)$. If A is bounded below, then $H_p(L_qF(A)) \Rightarrow \mathbb{L}_{p+q}F(A)$

Proof. Consider the double complex P of a Cartan-Eilenberg resolution $P \to A$. Since $H_p^h(P) \to H_pA$ is a projective resolution, we have

$$L_p F(H_q(A)) = H_p^v F(H_q^h(P)) = H_p^v H_q^h(F(P)) = "E_{pq}^2 \Rightarrow H_{p+q} F(P) = \mathbb{L}_{p+q} F(A)$$

If A is bounded below, then

$$H_p(L_qF(A)) = H_p^h H_q^v(F(P)) = E_{pq}^2 \Rightarrow H_{p+q}F(P) = \mathbb{L}_{p+q}F(A)$$

Corollary 3.22.

1. If A is exact, then $\mathbb{L}_i F(A) = 0$

2. If $f: A \to B$ is a quasi-isomorphism, then $\mathbb{L}_*F(f): \mathbb{L}_*F(A) \to \mathbb{L}_*F(B)$ are isomorphisms

3. If A is bounded below and A_D are F acyclic, then $\mathbb{L}_D F(A) = H_D F(A)$

Theorem 3.23 (Grothendieck spectral sequence). \mathcal{A} , \mathcal{B} have enough projectives, $F: \mathcal{B} \to \mathcal{G}$, $G: \mathcal{A} \to \mathcal{B}$ are right exact functors and G sends projectives to F-acyclic objects, then

$$(L_pF)(L_qG)(A) \Rightarrow L_{p+q}(FG)(A)$$

Proof. Suppose $P \to A$ is a projective resolution, then by Proposition 3.21, we have

$$(L_pF)(L_qG)(A) \cong L_pF(H_qG(P)) \Rightarrow \mathbb{L}_{p+q}(FG)(A)$$

$$H_p(L_qF(G(P))) \Rightarrow \mathbb{L}_{p+q}(FG)(A)$$

Since G(A) is F-acyclic, $E_2^{pq} = 0$ for $q \neq 0$ and

$$E_2^{p0} = H_p(FG(P)) = L_p(FG)(A) \cong \mathbb{L}_p(FG)(A)$$

Corollary 3.24 (Hochschild-Serre spectral sequence). $N \subseteq G$ is a normal subgroup, A is a $\mathbb{Z}G$ module, then

$$H_p(G/N; H_q(N; A)) \Rightarrow H_{p+q}(G; A)$$

Proof. Consider right exact functors

$$F = - \otimes_{\mathbb{Z}[G/N]} \mathbb{Z} : \mathbb{Z}[G/N]\text{-mod} \to \mathbb{Z}\text{-mod}$$

$$G = - \otimes_{\mathbb{Z}[N]} \mathbb{Z} = - \otimes_{\mathbb{Z}[G]} \mathbb{Z}[G/N] : \mathbb{Z}[G]\text{-mod} \to \mathbb{Z}[G/N]\text{-mod}$$

The left derived functors of $FG = - \otimes_{\mathbb{Z}[G]} \mathbb{Z}$ is $L_*(FG)(A) = Tor_*^{\mathbb{Z}[G]}(A, \mathbb{Z}) = H_*(G; A)$. For any $\mathbb{Z}[G]$ module A and $\mathbb{Z}[G/N]$ module B, we have natural isomorphism

$$Hom_{\mathbb{Z}[G/N]}(A \otimes_{\mathbb{Z}[G]} \mathbb{Z}[G/N], B) \cong Hom_{\mathbb{Z}[G]}(A, B) = Hom_{\mathbb{Z}[G]}(A, U(B))$$

Hence G is left adjoint to forgetful functor U which is exact, by Lemma 2.36, G preserves projectives which are exactly F-acyclic objects. Apply Theorem 3.23 we have

$$H_{p}(G/N; H_{q}(N; A)) = (L_{p}F)(L_{q}G)(A) \Rightarrow L_{p+q}(FG)(A) = H_{p+q}(G; A)$$

Index

Ab-category, 8 F-cyclic, 26 δ functor, 18	Hochschild-Serre spectral sequence, 36 Hom cochain complex, 30 Homology, 12
Abelian category, 9	Homotopy category, 17 Hyperhomology spectral sequence, 35
Additive category, 9 Additive funtor, 25	Initial object, 3
Adjoint functors, 11	Injective object, 20
Amplitude of a chain complex, 14 Arrow category, 14	Isomorphic category, 4 Isomorphism, 2
Baer's criterion, 23	Left exact, 11
Biproduct, 9	Limit, 7
Boundary, 12 Boundary maps, 12	
Bounded spectral sequence, 32	Mapping cone, 17
Bounded specurar sequence, 62	Morphism, 2
Cartan-Eilenberg resolution, 35 Category of chain complexes, 12	Natural transformation, 3
Categroy, 2 Chain complex, 12	Object, 2
Chain homotopy, 16 Coboundary maps, 12	Pontrjagin duality, 3
Cocomplete category, 8	Preadditive category, 8
Coequalizer, 8	Presheaf, 5
Colimit, 7	Product, 7
Complete category, 8	Projective object, 20 Pullback, 8
Constant functor, 7	Pushforward, 8
Coproduct, 7	Pushout, 8
Cycle, 12	
Derived functor, 26 Discrete category, 7	Quasi-isomorphism, 12
Divisible, 23	Representable functor, 7
Dual category, 3	resolution, 21
	Right exact, 11
Equalizer, 8	Sheaf, 28
Equivalent category, 4 Essentially small category, 2	Small category, 2
Essentially small category, 2 Essentially surjective, 4	Snake lemma, 15
Essentially surjective, 4	Split, 21
Faithful functor, 4	Subcategory, 5
Fiber product, 8	
Filtered category, 27	Translation of a chain complex, 12
Final object, 3	Truncation of a chain complex, 12
Full functor, 4	II.:1 C ft 10
Functor, 3	Universal δ functor, 19
Functor category, 4	Yoneda embedding, 5
Grothendieck spectral sequence, 36	
Groupoid, 2	Zero object, 3