### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» («ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

| Доп       | ущено к заш  | ите  |
|-----------|--------------|------|
| Руково    | одитель прое | кта  |
|           | /Исупов К    | .C./ |
| (подпись) | (О.Й.О)      |      |
| « »       | 20           | Γ.   |

# «СИНТЕЗ МИКРОПРОГРАММНЫХ УПРАВЛЯЮЩИХ АВТОМАТОВ»

#### ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту по дисциплине «Теория автоматов»

ТПЖА 09.03.01.071 ПЗ

| Разработал студент | группы ИВТ-22 | /Альмухаметов М.И                |
|--------------------|---------------|----------------------------------|
| Руководитель       |               | /Исупов К.С./                    |
| Проект защищен с с |               | »<br>(дата защиты)               |
| Члены комиссии     | /             | <u>Мельцов В.Ю</u> ./<br>(Ф.И.О) |
|                    | /             | Исупов К.С./                     |
|                    | (подпись)     | (Ф.И.Ф)                          |
|                    | Киров 2016    |                                  |

#### Реферат

Альмухаметов М.И. Синтез автомата с жесткой логикой. ТПЖА.09.03.01.071 ПЗ: Курс. проект / ВятГУ, каф. ЭВМ; рук. Исупов К.С. - Киров, 2016. Графическая часть 4 л. - ф.А2; ПЗ 43 с., 1 источник,6 прил.

ОПЕРАЦИОННЫЙ АВТОМАТ, ГРАФ-СХЕМА АЛГОРИТМА, ЧЕТВЕРТЫЙ СПОСОБ УМНОЖЕНИЯ, АВТОМАТИЧЕСКАЯ КОРРЕКЦИЯ

Цель курсового проекта — синтезировать автомат с жесткой логикой, управляющий операцией умножения чисел с плавающей запятой в дополнительном коде четвертым способом с автоматической коррекцией, с порядком.

|      |        |                   |         |      | ТПЖА 09.03.01.071 ПЗ     |    |     |    |      |          |                     |
|------|--------|-------------------|---------|------|--------------------------|----|-----|----|------|----------|---------------------|
|      |        |                   |         |      |                          |    | Пит | 7. | Μ    | lacca    | Масштаб             |
| Изм. | Лист   | № докум.          | Подпись | Дата |                          |    |     |    |      |          |                     |
| Pa   | зраб.  | Альмухаметов М.И, |         |      | Синтез микропрограммного | ı  |     |    |      | 1        | 1:1                 |
| Пр   | овер.  | Исупов К.С.       |         |      | Управляющего автомата    |    |     |    |      |          |                     |
| T. K | Сонтр. |                   |         |      |                          | Лι | ıcm | 2  |      | Листо    | ов 43               |
| Pe   | ценз.  |                   |         |      |                          |    |     | K  | - A  | nedna    | ЭВМ                 |
| Н. К | (онтр. |                   |         |      |                          |    |     |    |      |          | <i>ЭБМ</i><br>ВТ-22 |
| Ут   | верд.  |                   |         |      |                          |    |     | '  | Jy I | iiia VII | D1-22               |

# Содержание

| Введе                                          | ние5                                                       |  |  |  |  |  |  |
|------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|--|
| 1 Пс                                           | становка задачи6                                           |  |  |  |  |  |  |
| 2 On                                           | исание используемого алгоритма умножения7                  |  |  |  |  |  |  |
|                                                | сленные примеры9                                           |  |  |  |  |  |  |
| 3.1                                            | Операция умножения без исключительных ситуаций9            |  |  |  |  |  |  |
| 3.2                                            | Операция умножения с возникновением устранимого временного |  |  |  |  |  |  |
| ПРС                                            | 9                                                          |  |  |  |  |  |  |
| 3.3                                            | Операция умножения с возникновением ПМР при сложении       |  |  |  |  |  |  |
| порядков                                       | 10                                                         |  |  |  |  |  |  |
| 3.4                                            | Операция умножения с возникновением ПРС при сложении       |  |  |  |  |  |  |
| порядков                                       | 11                                                         |  |  |  |  |  |  |
| 3.5                                            | Операция умножения, когда множитель (или множимое) равно   |  |  |  |  |  |  |
| нулю                                           | 11                                                         |  |  |  |  |  |  |
| 4 Вь                                           | бор функциональной схемы операционной части устройства и   |  |  |  |  |  |  |
|                                                | е списка микроопераций и логических условий12              |  |  |  |  |  |  |
| 4.1                                            | Состав операционного автомата                              |  |  |  |  |  |  |
| 4.2                                            | Описание операционного автомата                            |  |  |  |  |  |  |
| 4.3                                            | Управляющие и осведомительные сигналы14                    |  |  |  |  |  |  |
|                                                | вработка содержательной граф-схемы алгоритма15             |  |  |  |  |  |  |
| 6 Построение отмеченной граф-схемы алгоритма17 |                                                            |  |  |  |  |  |  |
| 7 По                                           |                                                            |  |  |  |  |  |  |
| структурної                                    | й схемы управляющего автомата18                            |  |  |  |  |  |  |

|      |        |                   |         |      | ТПЖА 09.03.01.071 ПЗ                              |        |                    |               |  |
|------|--------|-------------------|---------|------|---------------------------------------------------|--------|--------------------|---------------|--|
|      |        |                   |         |      |                                                   | Лит.   | Масса              | Масштаб       |  |
| Изм. | Лист   | № докум.          | Подпись | Дата | Cuumoo Muuno Enoono Mariooo                       |        |                    |               |  |
| Pa   | зраб.  | Альмухаметов М.И. |         |      | Синтез микропрограммного<br>Управляющего автомата |        | 1                  | 1:1           |  |
| Пр   | овер.  | Исупов К.С.       |         |      | . ,                                               |        |                    |               |  |
| T. K | Сонтр. |                   |         |      |                                                   | Лист 3 | 3 Лист             | ов <i>4</i> 3 |  |
| Pe   | ценз.  |                   |         |      |                                                   | , k    | (adhedha           | 3RM           |  |
| H. K | (онтр. |                   |         |      |                                                   |        | (афедра<br>руппа И | RT-22         |  |
| Ут   | верд.  |                   |         |      |                                                   | ,      | pyriila Vi         | D I -ZZ       |  |

| 8 Код     | ирование внутренних состояний19                         |
|-----------|---------------------------------------------------------|
| 8.1       | Кодирование внутренних состояний для модели Мили на D   |
| триггерах | 19                                                      |
| 8.2       | Кодирование внутренних состояний для модели Мура на D   |
| триггерах | 22                                                      |
| 8.3       | Кодирование внутренних состояний для модели Мили на     |
| счетчике  | 26                                                      |
| 8.4       | Кодирование внутренних состояний для модели Мили на RS- |
| триггерах | 29                                                      |
|           | троение функциональной схемы управляющего автомата 35   |
| 10 Закл   | ıючение36                                               |
| Библио    | графический список                                      |
|           | кение А                                                 |
| _         | кение Б                                                 |
| _         | кение В40                                               |
| _         | кение Г41                                               |
|           | кение Д                                                 |
| _         | кение Е 43                                              |
|           |                                                         |

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

#### Введение

В последние годы с большой интенсивностью ведутся работы по созданию и применению различных автоматических систем для переработки информации. Такие автоматы реализуются в виде самостоятельных устройств специального назначения или в виде блоков, входящих в системы управления и системы обработки информации. При этом работа ведется с математическими моделями, предназначенными для в той или иной степени приближенного отображения физических моделей.

Применение моделей в "Теории автоматов" не ограничивается какой-либо частной областью, а возможно для решения проблем практически в любой области исследования.

Основной целью данного курсового проекта является получение навыков синтеза управляющего МПА с жесткой логикой на основе разработки машинных алгоритмов одной из заданных арифметических операций. Основным требованием является минимизация аппаратурных затрат как управляющего автомата, так и операционного автомата при приемлемом быстродействии.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

#### 1 Постановка задачи

Синтезировать микропрограммный автомат с жесткой логикой, управляющий выполнением умножения чисел в двоичной системе счисления с плавающей запятой в дополнительном коде с порядками четвертым способом с автоматической коррекцией, в основном логическом базисе.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

Лист

- 2 Описание используемого алгоритма умножения
  - 1) Считать множимое;
  - 2) Проверить множимое на равенство нулю:
    - если множимое равно нулю, то операцию умножения прекратить, результат равен нулю;
    - если множимое не равно нулю, то перейти к п.3;
  - 3) Считать множитель:
    - Если множитель равен нулю, то операцию умножения прекратить, результат равен нулю;
    - Если множитель не равен нулю, то перейти к п.4;
  - 4) Определить порядок произведения путем сложения порядков исходных сомножителей;
  - 5) Проверить сумму порядков на ПРС и ПМР (Если при сложении порядков положительного знака в результате получен порядок, знак которого отличается otзнаков операндов, TO эта ситуация сигнализирует о возникновении ПРС, при котором следует прекратить операцию умножения. Особого внимания требует ситуация, когда «1» в знаковом разряде порядка, а во всех остальных – нули. Это может быть, признак временного ПРС (в дальнейшем, если возникает необходимость в нормализации мантиссы результата, устраняется, в противном случае нужно выдать сигнал «ПРС»), так и ПМР, при 0). ПМР возникает при получении котором результат равен положительного знака суммы порядков, когда знаки порядков исходных операндов были отрицательными. В противном случае перейти к п.6;
  - 6) Цикл умножения (анализируются сразу две смежные цифры множителя, знаковый и старший разряд) по следующим правилам:

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

- если знаковый разряд множителя равен единице, а цифра соседнего старшего разряда множителя равна нулю (10), то множимое надо вычитать из предыдущей частной суммы;
- если знаковый разряд множителя равен нулю, а цифра соседнего старшего разряда множителя равна единице (01), то множимое надо складывать с предыдущей частной суммой;
- если анализируемые цифры совпадают (00, 11), то никаких операций не производится;
- сдвиги производятся на один разряд. Множимое сдвигается в сторону старших разрядов, а множитель в сторону младших (правило сдвига отрицательных чисел в ДК: при сдвиге влево освобождающиеся младшие разряды заполняются нулями, при сдвиге вправо освобождающиеся старшие разряды заполняются единицами);
- Окончание цикла умножения происходит, когда все разряды множимого равны нулю;
- результат получается в ДК со знаком;
- 7) Произвести нормализацию мантиссы, если необходимо. Если было зафиксировано временное ПРС и в нормализации нет необходимости, то произошло истинное ПРС, иначе, когда необходима нормализация, вычитается единица из порядка произведения и проверяется ПМР, если ПМР, то выдать 0, иначе перейти к п.8.
- 8) Выдать результат;

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

#### 3 Численные примеры

#### 3.1 Операция умножения без исключительных ситуаций

А=3.625<sub>10</sub> Мантисса (ДК): 0.1110100<sub>2</sub> Порядок: 0.010<sub>2</sub>

В=-5.75<sub>10</sub> Мантисса (ДК): 1.0100100<sub>2</sub> Порядок: 0.011<sub>2</sub>

Сложение порядков:

0.010

0.011

0.101 (ПРС не возникло)

Таблица 1 – Умножение мантисс

| Множитель ←       | Множимое →        | Сумма ЧП                                                           | Комментарий        |
|-------------------|-------------------|--------------------------------------------------------------------|--------------------|
| <u>0,1</u> 110100 | 1,0100100 0000000 | 0,0000000 0000000<br><u>1,0100100 0000000</u><br>1,0100100 0000000 | Сложение           |
| <u>1,1</u> 101000 | 1,1010010 0000000 | 1,0100100 0000000                                                  | Сдвиг              |
| <u>1,1</u> 010000 | 1,1101001 0000000 | 1,0100100 0000000                                                  | Сдвиг              |
| <u>1,0</u> 100000 | 1,1110100 1000000 | 1,0100100 0000000<br><u>0,0001011 1000000</u><br>1,0101111 1000000 | Сдвиг<br>Вычитание |
| <u>0,1</u> 000000 | 1,1111010 0100000 | 1,0101111 1000000<br><u>1,1111010 0100000</u><br>1,0101001 1100000 | Сдвиг<br>Сложение  |
| <u>1,0</u> 000000 | 1,1111101 0010000 | 1,0101001 1100000<br><u>0,0000010 1110000</u><br>1,0101100 1010000 | Сдвиг<br>Вычитание |
| <u>0,0</u> 000000 | 1,1111110 1001000 | 1,0101100 1010000                                                  | Сдвиг              |

(A\*B) дк=1,01011001010000 $_2$ 

(A\*B)  $_{\Pi K}$ =1,10100110110000 $_2$ 

Результат:  $-10100,11011_2 = -20.84375_{10}$ 

Проверка: 3,625\*(-5,75) = -20,84375

# 3.2 Операция умножения с возникновением устранимого временного ПРС

A= 16 Мантисса: 0.100000<sub>2</sub> Порядок: 0.101<sub>2</sub>

В= 4 Мантисса: 0.1000002 Порядок: 0.0112

|      |      |          |         |      |                   | Лист |
|------|------|----------|---------|------|-------------------|------|
|      |      |          |         |      | ТПЖА.09.03.01.071 | 0    |
| Изм. | Лист | № докум. | Подпись | Дата |                   | 9    |

Сложение порядков:

0.101

0.011

<u>1</u>.000 временное ПРС!

Таблица 2 – Умножение мантисс

| Множитель ←       | Множимое →        | Сумма ЧП                                                           | Комментарий |
|-------------------|-------------------|--------------------------------------------------------------------|-------------|
| <u>0,1</u> 000000 | 0,1000000 0000000 | 0,0000000 0000000<br><u>0,1000000 0000000</u><br>0,1000000 0000000 | Сложение    |
| <u>1,0</u> 000000 | 0,0100000 0000000 | 0,1000000 0000000<br><u>0,0100000 0000000</u><br>0,0100000 0000000 | Сдвиг       |
| <u>0,0</u> 000000 | 0,0010000 0000000 | 0,0100000 0000000                                                  | Сдвиг       |

 $(A*B)_{JK}=0,010000000000000$ 

(A\*B) <sub>IIK</sub>=0,0100000 0000000

Мантисса не нормализована, следовательно, так как было зафиксировано временное ПРС, оно устранится. Сдвинем произведение на один разряд влево, вычтем «1» из порядка произведения.

1.000

1.111

0.111 = 0.111

Временное ПРС было устранено. Продолжаем операцию умножения.

Результат:  $1000000_2 = 64_{10}$ 

Проверка: 16\*4 = 64

3.3 Операция умножения с возникновением ПМР при сложении порядков

 $A = 0.0234375_{10}$  Мантисса:  $0.1100000_2$  Порядок:  $1.011_2$  В=  $0.0078125_{10}$  Мантисса:  $0.1000000_2$  Порядок:  $1.010_2$ 

Сложение порядков:

1.011

1.010

<u>0</u>.101 ΠΜΡ!

ПМР. Прекращаем операцию умножения, вывести результат, равный нулю.

|      |      |          |         |      |                   | Лист |
|------|------|----------|---------|------|-------------------|------|
|      |      |          |         |      | ТПЖА.09.03.01.071 | 10   |
| Изм. | Лист | № докум. | Подпись | Дата |                   | 10   |

3.4 Операция умножения с возникновением ПРС при сложении порядков

A= 7.25 Мантисса: 0.1110100<sub>2</sub> Порядок: 0.011<sub>2</sub>

В= 46 Мантисса: 0.10111002 Порядок: 0.1102

0.011

0.110

<u>1</u>.001 ΠΡC!

ПРС. Прекращаем операцию умножения, выдаем сигнал о ПРС.

3.5 Операция умножения, когда множитель (или множимое) равно нулю

A= 0 Мантисса: 0.0000000<sub>2</sub> Порядок: 0.001<sub>2</sub>

В= 6 Мантисса: 0.11000002 Порядок: 0.1012

Множимое равно нулю. Результат 0.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

- 4 Выбор функциональной схемы операционной части устройства и определение списка микроопераций и логических условий
  - 4.1 Состав операционного автомата

Операционный автомат должен содержать следующие элементы:

- 24-х разрядный сдвиговый регистр RG1 для хранения мантиссы множимого;
- 47 разрядный сдвиговый регистр RG2 для хранения мантиссы множителя;
- 47 разрядный сдвиговый регистр RG3 для хранения мантиссы СЧП;
- 8-разрядный регистр RG4 для хранения порядков;
- 24-х входовой элемент КС1 «или» для определения окончания операции;
- 47 разрядный управляемый инвертор КС2 для инвертирования множителя;
- 47 разрядный управляемый элемент КС3 «и» для формирования нуля, добавляемого к СЧП;
- 8 разрядный управляемый инвертор КС4 для инвертирования порядка (перевод в ДК);
- 7 разрядный управляемый инвертор КС5 для инвертирования суммы порядков;
- 7 входовой элемент КС6 «или» для проверки порядка на «00...00»
- 47 разрядный сумматор SM1 для суммы частичных произведений;
- 8-разрядный сумматор SM2 для сложения порядков;
- 8-разрядный счетчик СТ для хранения порядка произведения;
- D-триггер T1 для хранения знака порядка множимого;
- D-триггер Т3 для хранения знака результата;
- Элемент «или» для проверки числа на нуль;
- Элемент сложения «по модулю два» для выбора «0» как слагаемого суммы частичных произведений;
- Элемент «и» для подачи единицы на вход CRP сумматора SM1;
- Элемент «и» для подачи сигнала на сдвиг RG3;

|      |      |          |         |      |                   | Лист |
|------|------|----------|---------|------|-------------------|------|
|      |      |          |         |      | ТПЖА.09.03.01.071 | 12   |
| Изм. | Лист | № докум. | Подпись | Дата |                   | 12   |

- Элемент сложения «по модулю два» для проверки нормализации результата;
- Два 3-х входовых и три 2-х входовых элемента «и» для определения случаев ПРС, ПМР, временного ПРС;
- RS-триггер Т2 для выдачи сигнала о ПРС;
- Усилитель-формирователь для выдачи результата на выходную шину.
   Функциональная схема операционной части устройства представлена в приложении А.

#### 4.2 Описание операционного автомата

Операнды разрядностью 4 байта поступают по входной шине в дополнительном коде, результат в дополнительном коде выводится по выходной шине. В регистр RG1 поступает мантисса множимого со знаком, поэтому регистр имеет 24 разряда, так же регистр является сдвиговым, так как в процессе умножения производится сдвиг множимого влево.

Регистр RG2 имеет 47 разрядов, в старшие разряды заносится мантисса множителя со знаком, младшие разряды заполняются нулями. Регистр является сдвиговым, так как в процессе умножения производится сдвиг множителя вправо.

Регистр RG3 имеет 47 разрядов для хранения суммы частичных произведений, где 47-й разряд — знак результата, является сдвиговым, так как можем потребоваться нормализация мантиссы результата.

Регистр RG4 имеет 8 разрядов, в нем хранится сначала порядок множимого, затем множителя.

В триггер Т1 записывается знак порядка множимого.

Триггер Т2 сигнализирует о ПРС.

В тригтер Т3 записывается знак произведения.

Счетчик СТ1 имеет 8 разрядов, в нем хранится порядок произведения.

Сумматор SM1 имеет 47 разрядов на входе и выходе, вход CRP. На плечо А подается СЧП, на плечо В подается слагаемое, которое необходимо в

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

цикле. На вход CRP подается единица, если были инвертированы данные из RG2 и необходимо произвести вычитание в цикле умножения.

Сумматор SM2 имеет 8 разрядов на входе и выходе, вход CRP. На плечо А подается выходные данные с управляемого инвертора, на плечо В данные из счетчика CT1. На вход CRP подается единица, если были инвертированы данные из RG4.

#### 4.3 Управляющие и осведомительные сигналы

УА подает в ОА управляющие сигналы, реализующие следующие микрооперации:

- y0 сброс T2, RG3;
- y1 запись в RG1 и T1;
- y2 сдвиг RG1 влево, RG2 вправо, запись в T3;
- y3 запись в RG2, RG4;
- y4 запись в RG3;
- y5 запись в CT1;
- у6 вычитание 1 из счетчика СТ1, сдвиг RG3;
- у7 выдача результата на шину;
- у8 переключение в 1 триггера Т2 для выдачи сигнала о ПРС;

ОА формирует следующие осведомительные сигналы для УА:

- Х проверка наличия операндов на входной шине;
- РО проверка на окончание цикла умножения;
- Р1 проверка числа на 0;
- Р2 проверка нормализации мантиссы результата;
- P3 проверка на ПРС;
- P4 проверка на временное ПРС;
- Р5 проверка на ПМР;
- Р6 проверка знака суммы порядков;
- Z проверка возможности выдачи результата на выходную шину.

|   |      |      |          |         |      |                   | Лисп |
|---|------|------|----------|---------|------|-------------------|------|
|   |      |      |          |         |      | ТПЖА.09.03.01.071 | 11   |
| ı | Изм. | Лист | № докум. | Подпись | Дата |                   | 14   |

#### 5 Разработка содержательной граф-схемы алгоритма

В первом такте производится проверка наличия на входной шине множимого. При поступлении множимого его мантисса со знаком записывается в RG1 и в старшие разряды RG2. Порядок заноситься в RG4. Так же в данном такте происходит обнуление RG3 и CT1.

Во втором такте, если множимое нуль (p1=1), то выдается результат 0, иначе записывается порядок множимого из регистра RG4 в счетчик СТ1 через выход S сумматора SM2, на плече A которого порядок из RG4, если он отрицательный, то инвертируется, на плече B содержимое счетчика СТ1.

В третьем такте производится проверка на входной шине множителя. При поступлении множителя, его мантисса со знаком записывается в старшие разряды регистра RG2, порядок записывается в регистр RG4.

В четвертом такте, если множитель нуль (p1=1), то сбрасывается значение счетчика СТ1 и выдается результат 0, иначе в счетчик СТ1 записывается сумма порядков с выхода S сумматора SM2, на плече A которого порядок множителя, инвертированный, если он отрицательный, а на плече В содержимое счетчика СТ1.

В пятом такте проверяются исключительные ситуации. Если возникло ПРС(р3=1), то триггер Т2 устанавливается в единицу и операция умножения прекращается. Если произошла ПМР (р5=1), то сбрасывается значение счетчика СТ1 и регистра RG3, тем самым сформировав нуль на выходной шине. Если ПМР не произошло, то начинается цикл умножения. В регистр RG3 записывается значение с выхода S сумматора SM1, где на плечо A подается содержимое регистра RG3, а на плечо В подается значение RG2, инвертированное, если старший разряд RG1 равен единице или обнуленное, если значения двух старших разрядов RG1 равны «00» или «11». Далее производится запись знака в Т3, сдвиг регистров RG1 и RG2 плево и вправо соответственно. После чего если цикл не завершен, он повторяется сначала.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

Если цикл завершен (p0=1), то проверяется нормализация мантиссы, если она не нормализована (p2=1), то значение счетчика СТ1 уменьшается на единицу, содержимое RG3 сдвигается влево и проверяется возникновение ПМР, если да(p5=1), то сбрасывается значение счетчика СТ1 и регистра RG3, тем самым сформировав нуль на выходной шине, иначе проверяется, было ли зафиксировано временное ПРС, если да (p4=1), то произошло истинное ПРС, тригтер Т2 устанавливается в единицу и операция умножения прекращается. Далее проверяется порядок произведения, если он отрицательный (p6=1), то значение счетчика СТ1 уменьшается на единицу и на выходную шину подается инвертированное содержимое СТ1 – порядок произведения в ПК. Так же, на выходную шину подаются данные с выхода S мультиплексора МS1, где выбираются данные из регистра RG3 – мантисса результата, сдвинутая, если была необходима нормализация. Знак подается из старшего разряда регистра RG3.

Разработанная содержательная граф-схема представлена в приложении Б.

|      |      |          | ·       |      |
|------|------|----------|---------|------|
| Изм. | Лист | № докум. | Подпись | Дата |

#### 6 Построение отмеченной граф-схемы алгоритма

Для граф-схемы разметки алгоритма каждой совокупности микроопераций, находящихся в операторных вершинах, ставятся в соответствие управляющие сигналы у0...у8. Эти сигналы являются выходными сигналами управляющего автомата и обеспечивают выполнение требуемых действий в соответствии co списком микроопераций операционного автомата. Совокупность микроопераций для каждой операторной вершины образует микрокоманды, список которых приведен в таблице 3.

Таблица 3 — Совокупность микроопераций и соответствующие им микрокоманды

| Микрокоманда               | Y0             | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 |
|----------------------------|----------------|----|----|----|----|----|----|----|----|
| Совокупность микроопераций | y3<br>y1<br>y0 | у5 | у3 | y0 | y8 | y4 | y2 | у6 | у7 |

Каждой условной вершине содержательной граф-схемы алгоритма ставится в соответствие один из входных сигналов управляющего автомата X0...X8, список которых представлен в таблице 4.

Таблица 4 – Список входных сигналов

| Входной    | X0 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
|------------|----|----|----|----|----|----|----|----|----|
| сигнал УА  |    |    |    |    |    |    |    |    |    |
| Логическое | p0 | p1 | p2 | р3 | p4 | p5 | р6 | Z  | X  |
| условие ОА |    |    |    |    |    |    |    |    |    |

Далее, в полном соответствии с содержательной граф-схемой алгоритма строится отмеченная граф-схема алгоритма, условным вершинам которой приписывается один из входных сигналов управляющего автомата, а операторным вершинам — одна из микрокоманд.

Отмеченная граф-схема алгоритма представлена в приложении В.

|      |      |          |         |      |                   | Лист |
|------|------|----------|---------|------|-------------------|------|
|      |      |          |         |      | ТПЖА.09.03.01.071 | 17   |
| Изм. | Лист | № докум. | Подпись | Дата |                   | 17   |

7 Построение графов автомата моделей Мили и Мура и выбор структурной схемы управляющего автомата

Графы автомата моделей Мили и Мура, построенные в соответствии с отмеченной граф-схемой алгоритма представлены в приложениях Г и Д.

Граф автомата Мили имеет 9 вершин, соответствующих состояниям автомата а0...а8. Дуги его отмечены входными сигналами, действующими на каждом переходе и набором входных сигналов, вырабатываемых управляющим автоматом на данном переходе.

Граф автомата Мура имеет 14 вершин, соответствующих состояниям автомата b0...b13, каждое из которых определяет наборы выходных сигналов управляющего, а дуги графа отмечены входными сигналами, действующими на данном переходе.

В управляющем автомате в качестве элементов памяти управляющего устройства будем рассматривать D-триггеры, RS-триггеры и счетчик, так как именно эти элементы дают возможность составить минимальный управляющий автомат.

При выборе D-триггеров в качестве ЭП, при переходе из одного состояния в другое сигналы возбуждения должны быть поданы на триггеры, которые в коде состояния содержат единицу.

Для RS-триггеров необходима установка в единицу и сброса для каждого триггера.

В случае счетчиков, при последовательном кодировании состояний, переход из одного состояния в другое будет осуществляться подачей на вход счетчика сигнала, увеличивающего или уменьшающего содержимое самого счетчика. Счетчики имеют входы сброса и установки. Это позволяет закодировать нестандартные переходы.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

#### 8 Кодирование внутренних состояний

#### 8.1 Кодирование внутренних состояний для модели Мили на D-триггерах

Составим таблицу, содержащую число переходов в каждое состояние и в соответствие с ней закодируем состояния, так как при кодировании следует применять метод (состояния с наибольшим числом переходов кодируются минимальным количеством единиц). Данная таблица представлена в таблице 5.

Таблица 5 - Число переходов в каждое из состояний

| Состояние | $a_0$                             | $a_1$ | $a_2$      | $a_3$ | $a_4$ | a <sub>5</sub>                  | $a_6$ | a <sub>7</sub> | a <sub>8</sub>                                  |
|-----------|-----------------------------------|-------|------------|-------|-------|---------------------------------|-------|----------------|-------------------------------------------------|
| Переходы  | a <sub>0</sub> , a <sub>4</sub> , | $a_0$ | $a_1, a_2$ | $a_2$ | $a_3$ | a <sub>4</sub> , a <sub>6</sub> | $a_5$ | $a_6(2)$       | a <sub>1,</sub> a <sub>3,</sub> a <sub>4,</sub> |
|           | $a_{6}, a_{8}$                    |       |            |       |       |                                 |       |                | $a_7(3), a_8$                                   |
| Число     | 4                                 | 1     | 2          | 1     | 1     | 2                               | 1     | 2              | 7                                               |
| переходов |                                   |       |            |       |       |                                 |       |                |                                                 |
| Код       | 0001                              | 0011  | 0010       | 0110  | 1100  | 1000                            | 1010  | 0100           | 0000                                            |
|           |                                   |       |            |       |       |                                 |       |                |                                                 |

Далее составляется прямая структурная таблица переходов и выходов автомата Мили и формируются логические выражения для функций возбуждения. Данная таблица представлена в таблице 6.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

Таблица 6 - Прямая структурная таблица переходов и выходов

| Исходное  | Код ат | Состояние               | Код as | Входной           | Выходной | Функции     |
|-----------|--------|-------------------------|--------|-------------------|----------|-------------|
| состояние |        | перехода а <sub>s</sub> |        | сигнал            | сигнал   | возбуждения |
| a0        | 0001   | a0                      | 0001   | ¬x8               | -        | D0          |
|           |        | a1                      | 0011   | x8                | y0y1y3   | D1D0        |
| a1        | 0011   | a2                      | 0010   | ¬x1               | y5       | D1          |
|           |        | a8                      | 0000   | x1                | -        | -           |
| a2        | 0010   | a2                      | 0010   | ¬x8               | -        | D1          |
|           |        | a3                      | 0110   | x8                | y3       | D2D1        |
| a3        | 0110   | a4                      | 1100   | ¬x1               | y5       | D3D2        |
|           |        | a8                      | 0000   | x1                | y0       | -           |
| a4        | 1100   | a0                      | 0001   | x3                | y8       | D0          |
|           |        | a5                      | 1000   | $\neg x3 \neg x5$ | y4       | D3          |
|           |        | a8                      | 0000   | ¬x3x5             | y0       | -           |
| a5        | 1000   | a6                      | 1010   | 1                 | y2       | D3D1        |
| a6        | 1010   | a0                      | 0001   | x0¬x2x4           | y8       | D0          |
|           |        | a5                      | 1000   | ¬x0               | y4       | D3          |
|           |        | a7                      | 0100   | x0x2              | у6       | D2          |
|           |        | a7                      | 0100   | x0¬x2¬x4          | -        | D2          |
| a7        | 0100   | a8                      | 0000   | x5                | y0       | -           |
|           |        | a8                      | 0000   | ¬x5¬x6            | -        | -           |
|           |        | a8                      | 0000   | ¬x5x6             | у6       | -           |
| a8        | 0000   | a0                      | 0001   | x7                | y7       | D0          |
|           |        | a8                      | 0000   | ¬x7               | -        | -           |

Из таблицы 6 получим логические выражения для каждой функции возбуждения D-триггера, а также для функций выходов как конъюнкции соответствующих исходных состояний  $a_m$  и входных сигналов, которые объединены знаками дизъюнкции для всех строк, содержащих данную функцию возбуждения или соответственно функцию выхода.

Аналогично составляются логический выражения для функций выходов.

|      |      |          |         |      |                   | Лист |
|------|------|----------|---------|------|-------------------|------|
|      |      |          |         |      | ТПЖА.09.03.01.071 | 20   |
| Изм. | Лист | № докум. | Подпись | Дата |                   | 20   |

```
y4=a4¬x3¬x5 V a6¬x0
y5=a1¬x1 V a3¬x1
y6=a6x0x2 V a7¬x5x6
y7=a8x7
y8=a4x3 V a6x0¬x2x4
```

После выделения общих частей в логических выражениях и некоторого их упрощения получаем логические уравнения для построения функциональной схемы управляющего автомата.

| $q=a3\neg x1$                                                 | (2)               |
|---------------------------------------------------------------|-------------------|
| $w=a4\neg x3$                                                 | (2)               |
| e=w¬x5                                                        | (2)               |
| t=e V a6¬x0                                                   | (4)               |
| u=a2x8                                                        | (2)               |
| i=a6x0                                                        | (2)               |
| o=ix2                                                         | (2)               |
| p= i¬x2                                                       | (2)               |
| s=a4x3 V px4                                                  | (6)               |
| d=a0x8                                                        | (2)               |
| f=a8x7                                                        | (2)               |
| g=d V u                                                       | (2)               |
|                                                               |                   |
| D3=q V t V a5<br>D2=q V o V p¬x4 V a2¬x8<br>D1=g V a1¬x1 V a5 | (3)<br>(8)<br>(5) |
| D0=d V a0¬x8 V s V f                                          | (6)               |
| Do-d v do Ao v s v i                                          | (0)               |
| y0=d V a3x1 V wx5                                             | (7)               |
| y1=d                                                          | (0)               |
| y2=a5                                                         | (0)               |
| y3=g                                                          | (0)               |
| y4=t                                                          | (0)               |
| $y5=a1\neg x1 V q$                                            | (4)               |
| y6=o V a7¬x5x6                                                | (5)               |
| y7=f                                                          | (0)               |
| y8=s                                                          | (0)               |
| Инверторы                                                     | (7)               |

$$\Sigma$$
=KC+3 $\Pi$ +HY+DC=75+16+0+4=99

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

#### 8.2 Кодирование внутренних состояний для модели Мура на D-триггерах

Составим таблицу, содержащую число переходов в каждое состояние и в соответствие с ней закодируем состояния, так как при кодировании следует применять эвристический метод (состояния с наибольшим числом переходов кодируются минимальным количеством единиц). Данная таблица представлена в таблице 7.

Таблица 7 - Число переходов в каждое из состояний

| $b_0$            | $b_1$ | $b_2$ | $b_3$            | $b_4$            | $b_5$ | $b_6$            | $b_7$            | $b_8$            | <b>b</b> <sub>9</sub> | $b_{10}$              | b <sub>11</sub>  | b <sub>12</sub>   | $b_{13}$          |
|------------------|-------|-------|------------------|------------------|-------|------------------|------------------|------------------|-----------------------|-----------------------|------------------|-------------------|-------------------|
| b <sub>0</sub> , | $b_0$ | $b_1$ | b <sub>2</sub> , | b <sub>2</sub> , | $b_3$ | b <sub>3</sub> , | b <sub>5</sub> , | b <sub>5</sub> , | $b_8$                 | <b>b</b> <sub>9</sub> | b <sub>9</sub> , | b <sub>1</sub> ,  | b <sub>1</sub> ,  |
| b <sub>7</sub> , |       |       | $b_4$            | $b_4$            |       | $b_5$            | $b_9$            | $b_9$            |                       |                       | $b_{10}$         | b <sub>6</sub> ,  | b <sub>6</sub> ,  |
| $b_{13}$         |       |       |                  |                  |       | $b_9$            |                  |                  |                       |                       |                  | b <sub>9</sub> ,  | b <sub>9</sub> ,  |
|                  |       |       |                  |                  |       | $b_{10}$         |                  |                  |                       |                       |                  | b <sub>10</sub> , | b <sub>10</sub> , |
|                  |       |       |                  |                  |       |                  |                  |                  |                       |                       |                  | b <sub>11</sub> , | b <sub>11</sub> , |
|                  |       |       |                  |                  |       |                  |                  |                  |                       |                       |                  | $b_{12}$          | $b_{12}$          |
| 3                | 1     | 1     | 2                | 2                | 1     | 4                | 2                | 2                | 1                     | 1                     | 2                | 6                 | 6                 |
| 0010             | 0111  | 1011  | 0100             | 0110             | 1010  | 1000             | 1100             | 1001             | 1110                  | 1101                  | 0011             | 0001              | 0000              |

Далее составляется прямая структурная таблица переходов и выходов автомата Мура и формируются логические выражения для функций возбуждения. Данная таблица представлена в таблице 8.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

Таблица 8 - Прямая структурная таблица переходов и выходов

| Исходное    | Выходные | Код         | Состояние | Код b <sub>s</sub> | Входной сигнал            | Функции     |
|-------------|----------|-------------|-----------|--------------------|---------------------------|-------------|
| состояние   | сигналы  | $b_{\rm m}$ | перехода  |                    |                           | возбуждения |
| $b_{\rm m}$ |          |             | $b_s$     |                    |                           | триггеров   |
| b0          | -        | 0010        | b0        | 0010               | ¬x8                       | D1          |
|             |          |             | b1        | 0111               | x8                        | D2D1D0      |
| b1          | y0,y1,y3 | 0111        | b2        | 1011               | ¬x1                       | D3D1D0      |
|             |          |             | b12       | 0001               | x1¬x7                     | D0          |
|             |          |             | b13       | 0000               | x1x7                      | -           |
| b2          | y5       | 1011        | b3        | 0100               | x8                        | D2          |
|             | -        |             | b4        | 0110               | ¬x8                       | D2D1        |
| b3          | y3       | 0100        | b5        | 1010               | ¬x1                       | D3D1        |
|             |          |             | b6        | 1000               | x1                        | D3          |
| b4          | -        | 0110        | b3        | 0100               | x8                        | D2          |
|             |          |             | b4        | 0110               | ¬x8                       | D2D1        |
| b5          | y5       | 1010        | b6        | 1000               | ¬x3x5                     | D3          |
|             |          |             | b7        | 1100               | x3                        | D3D2        |
|             |          |             | b8        | 1001               | $\neg x3 \neg x5$         | D3D0        |
| b6          | y0       | 1000        | b12       | 0001               | ¬x7                       | D0          |
|             |          |             | b13       | 0000               | x7                        | -           |
| b7          | y8       | 1100        | b0        | 0010               | 1                         | D1          |
| b8          | y4       | 1001        | b9        | 1110               | 1                         | D3D2D1      |
| b9          | y2       | 1110        | b6        | 1000               | x0¬x2¬x4x5                | D3          |
|             |          |             | b7        | 1100               | x0¬x2x4                   | D3D2        |
|             |          |             | b8        | 1001               | ¬x0                       | D3D0        |
|             |          |             | b10       | 1101               | x0x2                      | D3D2D0      |
|             |          |             | b11       | 0011               | x0¬x2¬x4¬x5x6             | D1D0        |
|             |          |             | b12       | 0001               | x0¬x2¬x4¬x5¬x6¬x7         | D0          |
|             |          |             | b13       | 0000               | x0¬x2¬x4¬x5¬x6x7          | -           |
| b10         | у6       | 1101        | b6        | 1000               | x5                        | D3          |
|             |          |             | b11       | 0011               | ¬x5x6                     | D1D0        |
|             |          |             | b12       | 0001               | $\neg x5 \neg x6 \neg x7$ | D0          |
|             |          |             | b13       | 0000               | $\neg x5 \neg x6x7$       | -           |
| b11         | у6       | 0011        | b12       | 0001               | ¬x7                       | D0          |
|             |          |             | b13       | 0000               | x7                        | -           |
|             |          |             |           |                    |                           |             |
| b12         | -        | 0001        | b12       | 0001               | ¬x7                       | D0          |
|             |          |             | b13       | 0000               | x7                        | -           |
| b13         | y7       | 0000        | b0        | 0010               | 1                         | D1          |

Из таблицы 8 получим логические выражения для каждой функции возбуждения D-триггера, а также для функций выходов как конъюнкции соответствующих исходных состояний  $b_m$  и входных сигналов, которые объединены знаками дизъюнкции для всех строк, содержащих данную функцию возбуждения или соответственно функцию выхода.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

D3=b1¬x1 V b3¬x1 V b3x1 V b5¬x3x5 V b5x3 V b5¬x3¬x5 V b8 V b9x0¬x2¬x4x5 V b9x0¬x2x4 V b9¬x0 V b9x0x2 V b10x5

D2=b0x8 V b2x8 V b2¬x8 V b4x8 V b4¬x8 V b5x3 V b8 V b9x0¬x2x4 V b9x0x2

D1=b0¬x8 V b0x8 V b1¬x1V b2¬x8 V b3¬x1 V b4¬x8 V b7 V b8 V b9x0¬x2¬x4¬x5x6 V b10¬x5x6 V b13

D0=b0x8 V b1¬x1 V b1x1¬x7 V b5¬x3¬x5 V b6¬x7 V b9¬x0 V b9x0x2 V b9x0¬x2¬x4¬x5x6 V b9x0¬x2¬x4¬x5¬x6¬x7 V b10¬x5x6 V b10¬x5¬x6¬x7 V b11¬x7 V b12¬x7

Так как для автомата Мура функции выходов не зависят от входных сигналов, то в соответствии со вторым столбцом таблицы записываем логические выражения для управляющих сигналов.

После выделения общих частей в логических уравнениях и упрощений получаем окончательные выражения для построения функциональной схемы управляющего автомата.

| $q=b1\neg x1$         | (2) |
|-----------------------|-----|
| $w=b3\neg x1$         | (2) |
| $e=b5\neg x3$         | (2) |
| t=b5x3                | (2) |
| u=b9x0                | (2) |
| i=ux2                 | (2) |
| $o=u\neg x2$          | (2) |
| p=ox4                 | (2) |
| $s=o\neg x4\neg x5x6$ | (4) |
| $d=b9\neg x0$         | (2) |
| f=b0x8                | (2) |
| $h=b2\neg x8$         | (2) |
| j=b4¬x8               | (2) |
| k=e¬x5                | (2) |
| $1=b10\neg x5$        | (2) |

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

```
n=1x6
                       (2)
     m=q V w V b8
                       (3)
      qq=p V i V t
                       (3)
      ww=s V n V f
                       (3)
      ee=k V d
                       (2)
      tt=j V h
                       (2)
      D3=m V b3x1 V ex5 V o¬x4x5 V qq V ee V b10x5
                                                            (16)
     D2= f V b2x8 V b4x8 V tt V b8 V qq
                                                            (10)
      D1=b0¬x8 V m V tt V b7 V ww V b13
                                                            (8)
      D0=q V b1x1¬x7 V b6¬x7 V ee V i V ww V o¬x4¬x5¬x6¬x7 V 1¬x6¬x7
V b11¬x7 V b12¬x7
                                                            (27)
      y0 = b1 V b6
                                                            (2)
      y1 = b1
                                                            (0)
      y2 = b9
                                                            (0)
      y3 = b1 V b3
                                                            (2)
      y4 = b8
                                                            (0)
      y5 = b2 V b5
                                                            (2)
      y6 = b10 V b11
                                                            (2)
      y7 = b13
                                                            (0)
      y8 = b7
                                                            (0)
      Интверторы:9
\Sigma = KC + 3\Pi + HY + DC = 125 + 16 + 0 + 4 = 145
```

Цена по Квайну автомата модели Мура получилась значительно больше, чем на модели Мили, можно сделать вывод, что цена по Квайну автомата на модели Мура не будет минимальна.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

#### 8.3 Кодирование внутренних состояний для модели Мили на счетчике

Закодируем состояния таким образом, чтобы рядом стоящие по циклу графа состояния отличались на единицу, то есть последовательно. Переход из одного состояния в другое будет осуществляться подачей сигнала на входы «+1» или «-1» счетчика, сигналы сброса и установки счетчика позволяют закодировать нестандартные переходы. Закодированные состояния представлены в таблице 9.

Таблица 9 – Коды состояний

| $a_0$ | $a_1$ | $a_2$ | $a_3$ | $a_4$ | $a_5$ | $a_6$ | a <sub>7</sub> | $a_8$ |
|-------|-------|-------|-------|-------|-------|-------|----------------|-------|
| 0000  | 0001  | 0010  | 0011  | 0100  | 0101  | 0110  | 0111           | 1000  |

Далее составляется прямая структурная таблица переходов и выходов автомата Мили и формируются логические выражения для функций возбуждения. Данная таблица представлена в таблице 10.

Таблица 10 - Прямая структурная таблица переходов и выходов

| Исходное  | Код ат | Состояние   | Код as | Входной           | Выходной | Функции     |
|-----------|--------|-------------|--------|-------------------|----------|-------------|
| состояние |        | перехода аs |        | сигнал            | сигнал   | возбуждения |
| a0        | 0000   | a0          | 0000   | ¬x8               | -        | -           |
|           |        | a1          | 0001   | x8                | y0y1y3   | +1          |
| a1        | 0001   | a2          | 0010   | ¬x1               | у5       | +1          |
|           |        | a8          | 1000   | x1                | -        | WR - D3     |
| a2        | 0010   | a2          | 0010   | ¬x8               | -        | -           |
|           |        | a3          | 0011   | x8                | у3       | +1          |
| a3        | 0011   | a4          | 0100   | ¬x1               | у5       | +1          |
|           |        | a8          | 1000   | x1                | y0       | WR - D3     |
| a4        | 0100   | a0          | 0000   | x3                | y8       | R           |
|           |        | a5          | 0101   | $\neg x3 \neg x5$ | y4       | +1          |
|           |        | a8          | 1000   | ¬x3x5             | y0       | WR - D3     |
| a5        | 0101   | a6          | 0110   | 1                 | y2       | +1          |
| a6        | 0110   | a0          | 0000   | x0¬x2x4           | y8       | R           |
|           |        | a5          | 0101   | ¬x0               | y4       | -1          |
|           |        | a7          | 0111   | x0x2              | у6       | +1          |
|           |        | a7          | 0111   | x0¬x2¬x4          | -        | +1          |
| a7        | 0111   | a8          | 1000   | x5                | y0       | +1          |
|           |        | a8          | 1000   | ¬x5¬x6            | -        | +1          |
|           |        | a8          | 1000   | ¬x5x6             | у6       | +1          |
| a8        | 1000   | a0          | 0000   | x7                | y7       | R           |
|           |        | a8          | 1000   | ¬x7               | -        | -           |

|      | ·    |          |         | ·    |
|------|------|----------|---------|------|
| Изм. | Лист | № докум. | Подпись | Дата |

Из таблицы 10 получим логические выражения для каждой функции возбуждения счетчика, а также для функций выходов как конъюнкции соответствующих исходных состояний  $a_{\rm m}$  и входных сигналов, которые объединены знаками дизъюнкции для всех строк, содержащих данную функцию возбуждения или соответственно функцию выхода.

```
+1=a0x8 V a1¬x1 V a2x8 V a3¬x1 V a4¬x3¬x5 V a5 V a6x0x2 V a6x0¬x2¬x4 V a7x5 V a7¬x5¬x6 V a7¬x5x6

-1 = a6¬x0

R = a4x3 V a6x0¬x2x4 V a8x7

WR = a1x1 V a3x1 V a4¬x3x5

D3 = a1x1 V a3x1 V a4¬x3x5

y0=a0x8 V a3x1 V a4¬x3x5

y1=a0x8

y2=a5

y3=a0x8 V a2x8

y4=a4¬x3¬x5 V a6¬x0

y5=a1¬x1 V a3¬x1

y6=a6x0x2 V a7¬x5x6

y7=a8x7

y8=a4x3 V a6x0¬x2x4
```

После выделения общих частей в логических выражениях и некоторого их упрощения получаем логические уравнения для построения функциональной схемы управляющего автомата.

| q=a0x8        | (2) |
|---------------|-----|
| $w=a1\neg x1$ | (2) |
| e=a2x8        | (2) |
| $t=a3\neg x1$ | (2) |
| $u=a4\neg x3$ | (2) |
| $i=u\neg x5$  | (2) |
| o=a3x1 V ux5  | (6) |
| p=a6x0        | (2) |
| s = px2 V nx6 | (6) |
| d=a4x3 V 1x4  | (6) |
| $f=a6\neg x0$ | (2) |
| g=a8x7        | (2) |
| h = a1x1  V o | (4) |
| j=w V t       | (2) |
| k=q V e       | (2) |

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

| 1=p¬x2                                     | (2)  |
|--------------------------------------------|------|
| $n=a7\neg x5$                              | (2)  |
| +1=k V j V i V a5 V s V l¬x4 V a7x5 V n¬x6 | (14) |
| -1 = f                                     | (0)  |
| R = d V g                                  | (2)  |
| WR = h                                     | (0)  |
| D3 = h                                     | (0)  |
| y0=q V o                                   | (2)  |
| y1=q                                       | (0)  |
| y2=a5                                      | (0)  |
| y3=k                                       | (0)  |
| y4=i V f                                   | (2)  |
| y5=j                                       | (0)  |
| y6=s                                       | (0)  |
| y7=g                                       | (0)  |
| y8=d                                       | (0)  |

Инверторы:7 
$$\Sigma$$
=КС+ЭП+НУ+DС=75+9+1+4=89

*Лист* 28 8.4 Кодирование внутренних состояний для модели Мили на RS-триггерах

При кодировании состояний, наилучшим методом является метод соседнего кодирования и, если возможно, следует придерживаться данного метода, однако, по графу автомата Мили видно, что данный метод не применим, так как в нем присутствуют циклы с нечетным числом вершин. Поэтому применяется эвристический метод кодирования.

Составим карту Карно и в процессе алгоритма будем её заполнять.

|    | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 | a8 | a7 | a6 | a0 |
| 01 | a3 | a4 | a5 |    |
| 11 | a2 |    |    |    |
| 10 | a1 |    |    |    |

$$T = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 8 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 8 & 1 \\ 4 & 0 & 1 \\ 4 & 5 & 1 \\ 4 & 8 & 1 \\ 5 & 6 & 2 \\ 6 & 0 & 1 \\ 6 & 7 & 2 \\ 7 & 8 & 3 \\ 8 & 0 & 1 \end{bmatrix}$$

Отсортируем матрицу в соответствии с весом пар, в первую строку поместив пару, с наибольшим весом. Составим матрицу Q, с суммами весов компонентов пар, для ситуаций с равенством весов.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

$$Q = \begin{bmatrix} 0 & 1 & 7 \\ 1 & 2 & 5 \\ 1 & 8 & 8 \\ 2 & 3 & 5 \\ 3 & 4 & 7 \\ 3 & 8 & 8 \\ 4 & 0 & 8 \\ 4 & 5 & 6 \\ 4 & 8 & 9 \\ 5 & 6 & 5 \\ 6 & 0 & 7 \\ 6 & 7 & 5 \\ 7 & 8 & 7 \\ 8 & 0 & 9 \end{bmatrix}$$

Закодируем первые два состояния: а7=0001; а8=0000;

$$M^{1} = \begin{bmatrix} 6\,7 & 2 \\ 5\,6 & 2 \\ 8\,0 & 1 \\ 4\,8 & 1 \\ 4\,0 & 1 \\ 3\,8 & 1 \\ 1\,8 & 1 \\ 6\,0 & 1 \\ 0\,1 & 1 \\ 3\,4 & 1 \\ 4\,5 & 1 \\ 2\,3 & 1 \\ 1\,2 & 1 \end{bmatrix}$$

$$M_6 = \begin{bmatrix} 6 & 7 \\ 5 & 6 \\ 6 & 0 \end{bmatrix} \qquad B_6 = \{7\}; \qquad K_7 = 0001;$$
 
$$C_7^1 = \{0101, 1001, 0010\};$$
 
$$D_6^1 = \{0101, 1001, 0011\};$$
 
$$W_{0101} = W_{1001} = W_{0011} = 2*1=1;$$
 
$$a6 = 0011;$$

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

$$M^{2} = \begin{pmatrix} 5 & 6 & | & 2 \\ 8 & 0 & | & 1 \\ 4 & 8 & | & 1 \\ 4 & 0 & | & 1 \\ 3 & 8 & | & 1 \\ 6 & 0 & | & 1 \\ 0 & 1 & | & 1 \\ 3 & 4 & | & 1 \\ 4 & 5 & | & 1 \\ 2 & 3 & | & 1 \\ 1 & 2 & | & 1 \\ \end{pmatrix} \qquad M_{5} = \begin{pmatrix} 5 & 6 \\ 4 & 5 & | & B_{5} = \{6\}; K_{6} = 0011 \\ C_{6}^{-1} = \{1011, 0111, 0010\} \\ W_{1011} = \{1011, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111,$$

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

$$M^{6} = \begin{bmatrix} 1 & 8 & 1 \\ 0 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 2 & 1 \end{bmatrix} \qquad M_{1} = \begin{bmatrix} 1 & 8 \\ 0 & 1 \\ 1 & 2 \end{bmatrix} \qquad B_{1} = \{8\}; K_{8} = 0000; \\ C_{8}^{1} = D_{1}^{1} = \{1000\}$$

$$a1 = 1000$$

$$\begin{split} M^7 = M_2 = \left| \begin{array}{c|c} 2 \ 3 \\ 1 \ 2 \end{array} \right| 1 \\ B_2 = \{3, 1\} \quad K_3 = 0100; \ K_1 = 1000; \\ C_3{}^1 = \{0110, 1100\}; \ C_1{}^1 = \{1100, 1001, 1010\} \\ D_2{}^1 = \{0110, 1100, 1001, 1010\} \\ W_{0110} = W_{1001} = W_{1010} = 1 + 3 = 4; \ W_{1100} = 1 + 1 = 2; \\ a2 = 1100 \end{split}$$

Эффективность кодирования: k = 17/14 = 1.214

Получившиеся коды состояний представлены в таблице 11.

Таблица 11 – Коды состояний

| Состояние | $a_0$ | $a_1$ | $\mathbf{a}_2$ | $a_3$ | $a_4$ | $\mathbf{a}_5$ | $a_6$ | $a_7$ | $a_8$ |
|-----------|-------|-------|----------------|-------|-------|----------------|-------|-------|-------|
| Код       | 0010  | 1000  | 1100           | 0100  | 0101  | 0111           | 0011  | 0001  | 0000  |

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

Далее составляется прямая структурная таблица переходов и выходов автомата Мили и по известному правилу формируются логические выражения для функций возбуждения. Прямая структурная таблица переходов и выходов автомата Мили представлена в таблице 12.

Таблица 12 - Прямая структурная таблица переходов и выходов

| Исходное  | Код ат | Состояние               | Код a <sub>s</sub> | Входной           | Выходной | Функции     |
|-----------|--------|-------------------------|--------------------|-------------------|----------|-------------|
| состояние |        | перехода а <sub>s</sub> |                    | сигнал            | сигнал   | возбуждения |
| a0        | 0010   | a0                      | 0010               | ¬x8               | -        | -           |
|           |        | a1                      | 1000               | x8                | y0y1y3   | S3R1        |
| a1        | 1000   | a2                      | 1100               | ¬x1               | у5       | S2          |
|           |        | a8                      | 0000               | x1                | -        | R3          |
| a2        | 1100   | a2                      | 1100               | ¬x8               | -        | -           |
|           |        | a3                      | 0100               | x8                | у3       | R3          |
| a3        | 0100   | a4                      | 0101               | ¬x1               | у5       | S0          |
|           |        | a8                      | 0000               | x1                | y0       | R2          |
| a4        | 0101   | a0                      | 0010               | x3                | y8       | R2S1R0      |
|           |        | a5                      | 0111               | $\neg x3 \neg x5$ | y4       | S1          |
|           |        | a8                      | 0000               | ¬x3x5             | y0       | R2R0        |
| a5        | 0111   | a6                      | 0011               | 1                 | y2       | S2          |
| a6        | 0011   | a0                      | 0010               | x0¬x2x4           | y8       | S0          |
|           |        | a5                      | 0111               | ¬x0               | y4       | S2          |
|           |        | a7                      | 0001               | x0x2              | у6       | R1          |
|           |        | a7                      | 0001               | x0¬x2¬x4          | -        | R1          |
| a7        | 0001   | a8                      | 0000               | x5                | y0       | R0          |
|           |        | a8                      | 0000               | ¬x5¬x6            | -        | R0          |
|           |        | a8                      | 0000               | ¬x5x6             | у6       | R0          |
| a8        | 0000   | a0                      | 0010               | x7                | у7       | S1          |
|           |        | a8                      | 0000               | ¬x7               | -        | -           |

Логические выражения для каждой функции возбуждения RS-триггера получают по таблице как конъюнкции соответствующих исходных состояний ат и входных сигналов, которые объединены знаками дизъюнкции для всех строк, содержащих данную функцию возбуждения.

 $S0 = a3\neg x1 \ V \ a6x0\neg x2x4$ 

 $S1 = a4x3 V a8x7 V a4 \neg x3 \neg x5$ 

 $S2 = a1 \neg x1 \ V \ a5 \ V \ a6 \neg x0$ 

S3 = a0x8

 $R0 = a4x3 \ V \ a4 \neg x3x5 \ V \ a7x8 \ V \ a7 \neg x5 \neg x6 \ V \ a7 \neg x5x6$ 

 $R1 = a0x8 \ V \ a6x0x2 \ V \ a6x0 \neg x2 \neg x4$ 

 $R2 = a3x1 V a4x3 V a4 \neg x3x5$ 

R3 = a1x1 V a2x8

Аналогично составляются логические выражения для функций выходов.

|      |      |          |         |      |                   | Лисг |
|------|------|----------|---------|------|-------------------|------|
|      |      |          |         |      | ТПЖА.09.03.01.071 | 22   |
| Изм. | Лист | № докум. | Подпись | Дата |                   | 33   |

```
y0=a0x8 V a3x1 V a4¬x3x5
y1=a0x8
y2=a5
y3=a0x8 V a2x8
y4=a4¬x3¬x5 V a6¬x0
y5=a1¬x1 V a3¬x1
y6=a6x0x2 V a7¬x5x6
y7=a8x7
y8=a4x3 V a6x0¬x2x4
```

После выделения общих частей в логических выражениях и некоторого их упрощения получаем логические уравнения для построения функциональной схемы УА.

| $q=a3\neg x1$                               | (2) |
|---------------------------------------------|-----|
| w=a6x0                                      | (2) |
| e = wx2                                     | (2) |
| $t=w \neg x 2x 4$                           | (3) |
| u=a4x3                                      | (2) |
| i=a8x7                                      | (2) |
| $o=a1\neg x1$                               | (2) |
| p=a6¬x0                                     | (2) |
| s=a0x8                                      | (2) |
| $d=a4\neg x3$                               | (2) |
| f=dx5                                       | (2) |
| $g=a7\neg x5x6$                             | (3) |
| h=a3x1 V f                                  | (4) |
| j=a2x8                                      | (2) |
| k=d¬x5                                      | (2) |
|                                             | . , |
| S0 = q V t                                  | (2) |
| S1 = u V i V k                              | (2) |
| S2 = o V a5 V p                             | (3) |
| S3 = s                                      | (0) |
| $R0 = u V f V a7(x8 V \neg x5 \neg x6) V g$ | (9) |
| $R1 = s V e V w \neg x 2 \neg x 4$          | (6) |
| R2 = h V u                                  | (2) |
| R3 = a1x1  V j                              | (4) |
| ·                                           | , , |
| y0=s V h                                    | (2) |
| y1=s                                        | (0) |
| y2=a5                                       | (0) |
| y3=s V j                                    | (2) |
| -                                           |     |

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

| y4=k V p    | (2) |
|-------------|-----|
| y5=0 V q    | (2) |
| y6=e V g    | (2) |
| y7=i        | (0) |
| y8=u V t    | (2) |
|             |     |
| Инверторы:7 |     |

Инверторы:7  $\Sigma$ =КС+ЭП+НУ+DС=81+12+17+4=114

## 9 Построение функциональной схемы управляющего автомата

Наиболее оптимальной ценой по Квайну обладает модель автомата Мили на счетчике. Ее цена составляет 89, поэтому автомат будет строиться для этой модели.

Функциональная схема построена в основном логическом базисе в полном соответствии с приведенной для модели Мили системой логических уравнений для выходов и функций возбуждения ЭП.

Функциональная схема УА представлена в приложении Е.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

#### 10 Заключение

В ходе курсового проекта был синтезирован автомат с жесткой логикой, выполняющий умножение двоичных чисел в форме с плавающей запятой и порядками в дополнительном коде четвертым способом с автоматической коррекцией. Управляющий автомат был синтезирован по модели Мили с использованием счетчика, так как цена по Квайну, равная 89 для данного автомата получилась наименьшей.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

#### Библиографический список

- 1. Мельцов, В.Ю. Синтез микропрограммных управляющих автоматов [Текст]: Учеб. пособие / В. Ю. Мельцов, Т. Р. Фадеева ВятГУ, ФАВТ, каф. ЭВМ. Киров: [б. и.], 2000. 54с.
- 2. Мельцов, В.Ю. Применение САПР Quartus для синтеза абстрактных и структурных автоматов. Учебное пособие [Текст] Киров: ГОУ ВПО ВятГУ, 2011. 86с.

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|

Приложение А (Обязательное) Схема операционного автомата



Приложение Б (Обязательное) Содержательная граф-схема алгоритма



Приложение В (Обязательное) Отмеченная граф-схема алгоритма



Приложение Г (Обязательное) Граф автомата Мили



Приложение Д (Обязательное) Граф автомата Мура



# Приложение E (Обязательное) Функциональная схема управляющего автомата

