

KSU CIS DEPARTMENT SEMINAR

Information Extraction: Natural Language, Spatiotemporal Machine Learning, and Link Analysis Approaches

William H. Hsu

http://www.cis.ksu.edu/~bhsu

Laboratory for Knowledge Discovery in Databases (<u>www.kddresearch.org</u>)
Department of Computing and Information Sciences, Kansas State University

Sponsors

K-State National Agricultural Biosecurity Center (NABC)
U.S. Department of Defense, Department of Homeland Security & ONR

Joint Work With

Doina Caragea; Caterina Scoglio; Barry Erlick, Marty Vanier, KSU Dan Roth, Chengxiang Zhai, and Jiawei Han, UIUC

Slides for this talk: http://bit.ly/4CQilt

KNOWLEDGE DISCOVERY IN DATABASES

WEDNESDAY 30 SEP 2009

COMPUTING & INFORMATION SCIENCES

- Three Information Extraction (IE) Tasks
 - * Recognizing Textual Entailment (RTE)
 - * Update Summarization
 - * Question Answering (QA)
- Natural Language Learning/Reasoning Approaches
- Application: Spatiotemporal Event Extraction
- Data Mining: Link Prediction and Analysis
- Some Results from Link Mining, Text Extraction

LABORATORY FOR KNOWLEDGE DISCOVERY IN DATABASES DEPARTMENTAL SEMINAR

COMPUTING & INFORMATION SCIENCE
KANSAS STATE I INIVERSIT

INFORMATION EXTRACTION TASKS: RTE, SUMMARIZATION, QA

- Recognizing Textual Entailment (RTE)
 - * Determine when meaning of text logically follows from that of another
 - * Approaches: text categorization, semantic mapping, inference
 - * Related to question answering: "true/false" questions
- Update Summarization
 - * Produce brief synopsis of points in text where user has read others
 - * Approaches: formal summarization, natural language (NL) synthesis
 - * Related to question answering: collect relevant documents, digest
- Question Answering (QA)
 - * Respond to query posed in natural language
 - * Approaches: search, focused crawling, semantic mapping

- Three Information Extraction (IE) Tasks
 - * Recognizing Textual Entailment (RTE)
 - * Update Summarization
 - * Question Answering (QA)
- Natural Language Learning/Reasoning Approaches
- Application: Spatiotemporal Event Extraction
- Data Mining: Link Prediction and Analysis
- Some Results from Link Mining, Text Extraction

C

LABORATORY FOR KNOWLEDGE DISCOVERY IN DATABASES DEPARTMENTAL SEMINAR

COMPUTING & INFORMATION SCIENCE

RECOGNIZING TEXTUAL ENTAILMENT [1]: EXAMPLES

SOURCE: A bus collision with a truck in Uganda has resulted in at least 30 fatalities and has left a further 21 injured.

TARGET: 30 die in a bus collision in Uganda. ✓ S ⊨ T

SOURCE: Mrs. Bush's approval ratings have remained very high, above 80%, even as her husband's have recently dropped below 50%.

<code>SOURCE</code>: Take consumer products giant Procter and Gamble. Even with a \$1.8 billion Research and Development budget, it still $\underline{\text{manages}}$ 500 active partnerships each year, many of them with small companies.

TARGET: 500 small companies are partners of Procter and Gamble.

C

RECOGNIZING TEXTUAL ENTAILMENT [2]: PROBLEM DEFINITION

- Given: Natural Language Input
 - * SOURCE sentence(s): usually complex text
 - * TARGET sentence: usually simplified "gist" summary, proposition
- Return
 - ***** True iff SOURCE logically entails TARGET (S ⊨ T)
 - * Optional: Interpretation of SOURCE/TARGET
 - * Optional: Chain of inferences
- Possible Side Effects: Parsed Output
 - * Shallow parsing aka chunking: e.g., Named Entity Recognition (NER)
 - * Full parsing: noun/verb phrases, Semantic Role Labeling (SRL)

LABORATORY FOR KNOWLEDGE DISCOVERY IN DATABASES DEPARTMENTAL SEMINAR
WEDNESDAY 30 SEP 2009

COMPUTING & INFORMATION SCIENCE

RECOGNIZING TEXTUAL ENTAILMENT [3]: APPROACHES

- Algorithms
 - * Shallow parsing aka chunking: e.g., Named Entity Recognition (NER)
 - > NER: people, places, organizations, quantities/dates, events
 - > Part-of-speech (POS) tagging: e.g., verbs
 - * Semantic Role Labeling: more in second problem (summarization)
- Knowledge Representation
 - * Propositions
 - * Limited first-order predicate calculus (shallow quantification)
- Other Semantic Tasks
 - * Extracting terminology, relationships
 - * Coreference resolution ("coref")

RECOGNIZING TEXTUAL ENTAILMENT [4]: CHALLENGES AND OPEN PROBLEMS

- NER: Beyond Gazetteers (Dictionary) Approaches
- Coreference Resolution ("Coref")
 - * Needed in multi-sentence tasks (RTE, QA, summarization)
 - * Applications: anaphora (including pronoun resolution)
 - * Inferential task
- Terminology Extraction: Finding New Named Entities, Verbs
- Relationship Extraction
 - * Identity/equality: "exactly" / "only" (=)
 - * Inequalities: "at least" (≥), "as many as" / "up to" (≤)
 - ★ Relationships with sets: membership (∈), containment (⊆)
 - * Terms of negation: "not", "never", "hardly", etc.

@

LABORATORY FOR KNOWLEDGE DISCOVERY IN DATABASES DEPARTMENTAL SEMINAR

COMPUTING & INFORMATION SCIENCE

RECOGNIZING TEXTUAL ENTAILMENT [5]: APPLICATIONS

• Example: CNN, 2007 Foot-and-Mouth Disease (http://bit.ly/3gof6o)

Tests have <u>confirmed</u> a second foot-and-mouth outbreak in southern <u>England</u>, the government <u>announced</u>, raising fears that the highly contagious <u>animal</u> virus is spreading.

Chief Veterinary Officer Debby Reynolds said Tuesday that tests showed a herd of cattle had been infected.

The animals were culled Monday evening after showing signs of the disease.

Britain's Department for Environment, Food and Rural Affairs said Monday a herd of more than 50 cattle on a second farm within the two-mile (three-kilometer) protection zone in Surrey County, England, had shown signs of the highly contagious disease.

- Open Problems
 - *Basic scientific, medical terminology: tests ... confirmed
 - ***Anaphor resolution:** the disease → [FMD]
 - *Aggregates: herd of more than 50 cattle

- Three Information Extraction (IE) Tasks
 - * Recognizing Textual Entailment (RTE)
 - * Update Summarization
 - * Question Answering (QA)
- Natural Language Learning/Reasoning Approaches
- Application: Spatiotemporal Event Extraction
- Data Mining: Link Prediction and Analysis
- Some Results from Link Mining, Text Extraction

UPDATE SUMMARIZATION [1]: EXAMPLES

SOURCE: A bus collision with a truck in Uganda has resulted in at least 30 fatalities and has left a further 21 injured.

TARGET: 30 people died and 21 people were injured in a bus collision in Uganda.

SOURCE: Mrs. Bush's approval ratings have remained above 80%, even as her husband's have recently dropped below 50%.

TARGET: President Bush's approval ratings have decreased to less than 50%.

SOURCE: Take consumer products giant Procter and Gamble. Even with a \$1.8 billion R&D budget, it still manages 500 active partnerships each year, many of them with small companies.

TARGET: Procter and Gamble has 500 partnerships per year.

UPDATE SUMMARIZATION [2]: PROBLEM DEFINITION

- Given: Natural Language (NL) Input
 - * SOURCE sentence(s): usually complex text
 - * Previously digested text summaries (~ what user has previously read)
- Return
 - * TARGET sentence: simple "gist" summary synthesized from **SOURCE**
 - * Optional: Machine-readable interpretation of SOURCE
 - * Optional: Rewriting, other transformations
- Possible Side Effects: Parsed Output
 - * Chunking as for textual entailment
 - Semantic Role Labeling: may be needed more (for text generation)

UPDATE SUMMARIZATION [3]:

APPROACHES

- **Algorithms**
 - * SRL

Semantic Role Labeling Demo

- * Text generation
- http://l2r.cs.uiuc.edu/~cogcomp/srl-demo.php © 2009 University of Illinois
- Knowledge Representation: Parse Trees, Abstract Data Types
- **Other Tasks**
 - * Filling in abstract data types (ADTs) aka frames, slot-filler structures
 - * Natural language generation, content evaluation

UPDATE SUMMARIZATION [4]: CHALLENGES AND OPEN PROBLEMS

- Information Extraction (IE) Shared Tasks
 - * NER: as in RTE, needed to identify actors, label roles
 - * Coreference resolution: needed to extract ADT representation
 - * Terminology extraction: as in RTE, needed to expand set of entities
 - * Relationship extraction: foundation of relational summarization
- Relational Data Modeling and Summarization
 - * Summaries as tuples
 - * "Who, what, when, where, why, how"
 - * Example: disease, species, locale, quantity, date/time, expert, agency
 - * Attributes may have missing values
- Machine Learning and Inference: Imputation of Values

LABORATORY FOR

DEPARTMENTAL SEMINAR
WEDNESDAY 30 SEP 2009

OMPUTING & INFORMATION SCIENCES

UPDATE SUMMARIZATION [5]: APPLICATIONS

• Example: CNN, 2007 Foot-and-Mouth Disease (http://bit.ly/3gof6o)

Tests have confirmed a second foot-and-mouth outbreak in southern England, the government announced, raising fears that the highly contagious animal virus is spreading.

Chief Veterinary Officer Debby Reynolds said Tuesday that tests showed a herd of cattle had been infected.

The animals were culled Monday evening after showing signs of the disease.

- Update Summarization
 - A second foot-and-mouth disease infection in a herd of cattle in southern England was responded to by culling on Monday evening and announced by Debby Reynolds on Tuesday.

(Second since earlier report – hence "update".)

- Compare: Recognizing Textual Entailment
 - A foot-and-mouth disease infection was reported the day after culling. (True.)

- Three Information Extraction (IE) Tasks
 - * Recognizing Textual Entailment (RTE)
 - * Update Summarization
 - * Question Answering (QA)
- Natural Language Learning/Reasoning Approaches
- Application: Spatiotemporal Event Extraction
- Data Mining: Link Prediction and Analysis
- Some Results from Link Mining, Text Extraction

C

KNOWLEDGE DISCOVERY IN DATABASES

DEPARTMENTAL SEMINAR
WEDNISDAY 30 SEP 2009

COMPUTING & INFORMATION SCIENCE
KANSAS STATE UNIVERSIT

QUESTION ANSWERING [1]: EXAMPLES

SOURCE: A bus collision with a truck in Uganda has resulted in at least 30 fatalities and has left a further 21 injured.

QUERY [TARGET]: How many injuries [21] and how many fatalities [30] were reported in bus accidents in Uganda?

SOURCE: Mrs. Bush's approval ratings have remained above 80%, even as her husband's have recently dropped below 50%.

QUERY [TARGET]: What is President Bush's latest approval rating? [Less than 50%]

SOURCE: Take consumer products giant Procter and Gamble. Even with a \$1.8 billion R&D budget, it still manages 500 active partnerships each year, many of them with small companies.

QUERY [TARGET]: How many active partnerships per year does Procter and Gamble have? [500]

QUESTION ANSWERING [2]: PROBLEM DEFINITION

- Given: Natural Language Input
 - * SOURCE sentence: usually complex text
 - * QUERY sentence
- Return
 - * TARGET sentence: answers
 - > from database query, OR
 - > synthesized from data retrieved in response to query
 - * Optional: other information retrieval (IR) functions
 - > Data cubes (On-Line Analytical Processing): drill down, roll up
 - > Visualization: thematic maps, hierarchies
 - > Statistics and evidence in support of answer

KNOWLEDGE DISCOVERY IN DATABASES

DEPARTMENTAL SEMINAR

COMPUTING & INFORMATION SCIENCES

QUESTION ANSWERING [3]: APPROACHES

- Algorithms
 - * Simple ranking
 - > Google PageRank / Kleinberg's HITS: hubs-authority score
 - > Term frequency, inverse document frequency (TFIDF)
 - * Entity search
 - * Learning to rank
 - * Query formation and semantics-preserving transformations
- Knowledge Representation
 - * Queries and texts as documents
 - * Propositional queries
- Document Collections and Text Categorization

LABORATORY FOR KNOWLEDGE DISCOVERY IN DATABASES DEPARTMENTAL SEMINAR
WEDNESDAY, 30 SEP 2009

COMPUTING & INFORMATION SCIENCES KANSAS STATE I INIVERSITY

QUESTION ANSWERING [4]: CHALLENGES AND OPEN PROBLEMS

- Information Extraction (IE) Shared Tasks
 - * NER: as in RTE and summarization, needed to produce NE phrases
 - * Coreference resolution: needed to relate query to text
 - * Terminology extraction: needed for synonymy, hypo/hypernymy
 - * Relationship extraction: basis of query formation in relational model
- Relational Data Modeling and QA
 - * Each relationship contains tuples
 - * Queries on relational databases
 - * Compare SQL SELECT ... FROM ... WHERE
 - * Predicates: disease, species, locale, quantity, date, expert, agency
 - * Translation of query needed
- Open Problem: Approximate/Tolerant (Skyline) Queries

LABORATORY FOR Knowledge Discovery in Databases DEPARTMENTAL SEMINAR

COMPUTING & INFORMATION SCIENCES

QUESTION ANSWERING [5]: APPLICATIONS

Spatial Queries

===> What cities are within 250 miles of the capital of Italy? I know that Italy's capital is Rome, Italy (source: START KB).

Using this information, I determined what cities are within 250 miles of Rome, Italy:

In Italy, the following cities are within 250 miles of Rome:

Naples, Italy is 118 miles (189.90298 kilometers) from Rome.

[Florence, Pisa, Bologna, Venice, Trieste, Verona]

Genoa, Italy is 249 miles (400.72745 kilometers) from Rome.

Source: START KB [http://start.csail.mit.edu]

Skyline Queries

- * Used in constrained decision support
- * Given: points $p_1, p_2, ..., p_N$, each in d dimensions
- * Return: maximal (non-dominated) points i.e., Pareto front
- * QA: interpretation of NL queries (including skyline)

http://bit.ly/UBq4q

University of Maryland

- Three Information Extraction (IE) Tasks
 - * Recognizing Textual Entailment (RTE)
 - * Update Summarization
 - * Question Answering (QA)
- Natural Language Learning/Reasoning Approaches
- Application: Spatiotemporal Event Extraction
- Data Mining: Link Prediction and Analysis
- Some Results from Link Mining, Text Extraction

LABORATORY FOR KNOWLEDGE DISCOVERY IN DATABASES DEPARTMENTAL SEMINAR
WEDNESDAY 30 SEP 2009

COMPUTING & INFORMATION SCIENCE
KANSAS STATE I INIVERSIT

MACHINE LEARNING

- Notation and Definitions
 - * Instance: $x = (x_1, x_2, ..., x_n)$, sometimes x_j , $1 \le j \le m$ with x_{ji} , $1 \le i \le n$
 - * Instance space X such that $x \in X$
 - * Data set: $D = \{x_1, x_2, ..., x_m\}$ where $x_j = (x_{j1}, x_{j2}, ..., x_{jn})$
- Clustering
 - * Mapping from old $x = (x_1, x_2, ..., x_n)$ to new $x' = (x_1', x_2', ..., x_k'), k << n$
 - * Attributes x_i of new instance not necessarily named
 - * Idea: project instance space X into lower dimension X
 - * Goal: keep groups of similar X together in X'
- Regression
 - * Idea: given independent variable x, dependent variables y = f(x), fit f
 - * Goal: given new (previously unseen) x, approximate f(x)
- Classification
 - * Similar to regression, except that f is boolean- or nominal-values.
 - * "Curve fitting" figurative: approximator may be logical formula

LABORATORY FOR KNOWLEDGE DISCOVERY IN DATABASES DEPARTMENTAL SEMINAR
WEDNESDAY 30 SEP 2009

COMPUTING & INFORMATION SCIENCES KANSAS STATE I INIVERSITY

CURRENT SYSTEM: TASKS AND RESEARCH PRIORITIES

- Web document content extraction
 - * Named entity recognition (NER)
 - * Coreference, association
 - * Relation extraction (aka link discovery)
- Geotagging: location extraction, map view
- Temporal tagging: date/time extraction, timeline view
- Semi-supervised document clustering
- Data integration: portal application
- Visual and text analytics
- Predictive epidemiological modeling interface

- Three Information Extraction (IE) Tasks
 - * Recognizing Textual Entailment (RTE)
 - * Update Summarization
 - **★ Question Answering (QA)**
- Natural Language Learning/Reasoning Approaches
- Application: Spatiotemporal Event Extraction
- Data Mining: Link Prediction and Analysis
- Some Results from Link Mining, Text Extraction

- Three Information Extraction (IE) Tasks
 - * Recognizing Textual Entailment (RTE)
 - * Update Summarization
 - * Question Answering (QA)
- Natural Language Learning/Reasoning Approaches
- Application: Spatiotemporal Event Extraction
- Data Mining: Link Prediction and Analysis
- Some Results from Link Mining, Text Extraction

LINK MINING IN SOCIAL NETWORKS

- **Problem Definition**
 - * Given: records of users of weblog or social network service
 - * Discover
 - ⇒ Features of entities: users, communities
 - ⇒ Relationships: friendship, membership, moderatorship
 - ⇒ Explanations and predictions for relationships
- Goals
 - * Boost precision and recall of link existence prediction
 - * Find relevant features
- Significance: Recommendations (Friendship, Membership)
- Data Set: Crawled from LiveJournal Blog Service

LIVEJOURNAL TOPOLOGY: DEFINITIONS

Start	End	Link Denotes
User	User	Trust or friendship
User	Community	Readership or subscribership
Community	User	Membership, posting access, maintainer
Community	Community	Obsolete

Types of links in the blog service LiveJournal.

Mutual Friends: $\{ v \mid (v, u) \in E \land (u, v) \in E \}$

Also Friend Of: $\{ v \mid (v, u) \in E \land (u, v) \notin E \}$

LJCRAWLER AND LJCLIPPER

- Three Parts
 - * Client, Injector, Parser
 - * Ancillary: Multi-threading, distribution, storage
 - * LJClipper, LJStats
- What Makes LJCrawler Different?
 - * Distributed implementation of focused crawler
 - * Offline data synthesis: LJClipper
- Runtime Efficiency
 - * 200 users/sec maximum, 5 users/sec allowed
 - * ~2.3 million pages crawled

KNOWLEDGE DISCOVERY IN DATABASES

DEPARTMENTAL SEMINAR
WEDNESDAY 30 SEP 2009

COMPUTING & INFORMATION KANSAS STATE U

GRAPH FEATURES [1]: NODE, PAIR, LINK-DEPENDENT

Node-dependent feature: Indegree of u

Pair-dependent feature:
Common <u>interests</u> of *u* and *v*Alternate distance from *u* to *v*(degrees of separation)

Link-dependent feature:

Duration of friendship between *u* and *v*"How does *u* know *v*?"

GRAPH FEATURES [2]: NODE AND PAIR FEATURES IN LJMINER

- 1. Indegree of u: popularity of the user
- 2. Indegree of v: popularity of the candidate
- Outdegree of u: number of other friends besides the candidate; saturation of friends list
- Outdegree of ν : number of existing friends of the candidate besides the user; correlates loosely with likelihood of a reciprocal link
- 5. Number of mutual friends w such that $u \to w \land w \to v$
- "Forward deleted distance": minimum alternative distance from u to v in the graph without the edge (u,v)
- Backward distance from v to u in the graph
 - **Graph Features**

- 8. Number of mutual interests between u and v
- 9. Number of interests listed by u
- 10. Number of interests listed by v
- 11. Ratio of the number of mutual interests to the number
- 12. Ratio of the number of mutual interests to the number listed by ν

Interest-Related Features

- Three Information Extraction (IE) Tasks
 - * Recognizing Textual Entailment (RTE)
 - * Update Summarization
 - * Question Answering (QA)
- Natural Language Learning/Reasoning Approaches
- Application: Spatiotemporal Event Extraction
- Data Mining: Link Prediction and Analysis
- Some Results from Link Mining, Text Extraction

6

KNOWLEDGE DISCOVERY IN DATABASES

DEPARTMENTAL SEMINAR

COMPUTING & INFORMATION SCIENCE

NETWORK STATISTICS: GRAPH DISTANCE

Distance <i>d</i>	Frequency (= <i>d</i>)	Cumulative (≤ d)
1	6204	6204
2	107307	113511
3	69896	183407
4	59926	243333
5	3400	246733
6	255	246988
7	16	247004
8	1	247005
9	0	0
10	0	0
00	9731	256735

Distance d	Frequency (= <i>d</i>)	Cumulative (≤ d)
1	19410	19410
2	370568	389978
3	403075	793053
4	520373	1313426
5	123747	1437173
6	18453	1455626
7	2657	1458283
8	339	1458622
9	29	1458651
10	0	1458651
oo.	174534	1633185

1000 nodes

4000 nodes

Hsu, W. H., King, A. L., Paradesi, M., Pydimarri, T., & Weninger, T. (2006).

**AAAI Spring Symposium on Computational Approaches to Analyzing Weblogs http://bit.ly/LQmqR

LINK PREDICTION AS CLASSIFICATION: EARLY RESULTS

- 941-node graph (Hsu et al., 2006): LJCrawler v1 output
- 1000-4000 node graphs: LJCrawler v2 output

Inducer	All	NoDist	BkDist	Dist	Interest
J48	98.2	94.8	95.8	97.6	88.5
OneR	95.8	92.0	95.8	95.8	88.5
Logistic	91.6	90.9	88.3	88.9	88.4

Percent accuracy for predicting all classes using the 941-node graph

Inducer	All	NoDist	BkDist	Dist	Interest
J48	89.5	65.7	67.7	83.0	5.4
OneR	67.7	41.1	67.7	67.7	4.5
Logistic	38.3	33.3	0	4.5	4.5

Precision (true positives to all positives) using the 941-node graph.

Inducer	Accuracy	Precision	Recall			
J48	99.9	97.5	96.1			
OneR	99.6	91.7	91.8			
Percent accuracy, precision and recall using a 1000-node graph						
(10-fold CV).						

Inducer	Accuracy	Precision	Recall
J48	99.8	95.8	92.0
OneR	99.7	91.1	89.9
-		1 11 1	

precision and recall using a 2000-node graph (10-fold CV).

Inducer	Accuracy	Precision	Recall			
J48	99.8	94.5	88.3			
OneR	99.7	88.2	84.3			
Percent accuracy, precision and recall using a 4000-node graph						

(10-fold CV).

Hsu et al. (2006) http://bit.ly/LQmqR

Hsu, W. H., Lancaster, J. P., Paradesi, M. S. R., & Weninger, T. (2007). First International Conference on Weblogs and Social Media (ICWSM).

http://bit.ly/34NwTE

LABORATORY FOR KNOWLEDGE DISCOVERY IN DATABASES DEPARTMENTAL SEMINAR

COMPUTING & INFORMATION SCIENCES

ONTOLOGY EXTRACTION: MOST RECENT RESULTS [1]

(Predicting Friendships)

• Graph-based and interest-based numerical features

Exp#	Ontology	svm	Logistic	J48	Random Forest	OneR
4	(graph only)	0.92 +/- 0.03	0.91 +/- 0.04	0.94 +/- 0.03	0.97 +/- 0.03	0.86 +/- 0.09
11		0.92 +/- 0.03	0.91 +/- 0.04	0.94 +/- 0.02	0.98 +/- 0.01	0.86 +/- 0.09
12(a)	01	0.94 +/- 0.04	0.94 +/- 0.02	0.93 +/- 0.05	0.97 +/- 0.02	0.88 +/- 0.04
I 2(b)	O2	0.95 +/- 0.03	0.94 +/- 0.03	0.94 +/- 0.03	0.98 +/- 0.01	0.91+/- 0.04
13(a)	Sub-O1	0.90 +/- 0.04	0.91 +/- 0.04	0.94 +/- 0.03	0.97 +/- 0.03	0.86 +/- 0.06
13(b)	Sub-O2	0.93 +/- 0.04	0.92 +/- 0.04	0.93 +/- 0.05	0.98 +/- 0.01	0.91 +/- 0.08

Table reports AUC values

BLUE-BOLD highlights significant improvements compared to the baseline RED highlights improvements compared to the baselines that are not significant

Bahirwani, V., Caragea, D., Aljandal, W. & Hsu, W. H. (2008).

Second ACM SIGKDD Workshop on Social Network Mining and Analysis (SNA-KDD).

http://bit.ly/32UnGs

ORMATION S

LABORATORY FOR KNOWLEDGE DISCOVERY IN DATABASES DEPARTMENTAL SEMINAR
WEDNESDAY 30 SEP 2009

COMPUTING & INFORMATION SCIENCES

KANSAS STATE I INIVERSITY

ONTOLOGY EXTRACTION: MORE RECENT RESULTS [2]

(Predicting Friendships)

(Fredreshig Friendships)									
	Feature	es Used							
Nom. Interest based	Num. Interest based	Graph based	Ontology 2	SVM	Logistic	J48	Random Forest	OneR	
✓									
✓			✓						
	✓			0.66	0.64	0.59	0.61	0.58	
	✓		✓	0.76	0.73	0.69	0.73	0.64	
		✓		0.92	0.91	0.94	0.97	0.86	
✓		✓							
✓		✓	✓						
	✓	✓		0.92	0.91	0.94	0.98	0.86	
	✓	✓	✓	0.95	0.94	0.94	0.98	0.91	

Bahirwani *et al.* (2008). http://bit.ly/32UnGs

LABORATORY FOR

DEPARTMENTAL SEMINAR
WEDNESDAY 30 SEP 2009

COMPUTING & INFORMATION SCIENCES

KANSAS STATE LINIVERSITY

ONTOLOGY EXTRACTION: MOST RECENT RESULTS

Area Under the ROC Curve (ROC-AUC)
Support Vector Machines, Logistic Regression, Random Forest, Decision Trees
Average of 5 Replications

10% links known

25% links known

50% links known

Features	SVM	LR	RF	J48
Graph only	0.69 ± 0.01	0.67 ± 0.01	0.70 ± 0.04	0.61 ± 0.08
Graph, without O	0.68 ± 0.01	0.68 ± 0.01	0.69 ± 0.05	0.57 ± 0.09
Graph, O (best level)	0.70 ± 0.00	$0.69 {\pm} 0.01$	0.74 ± 0.04	$0.64 {\pm} 0.06$
	(42,35,37,42,34)	(42,28,17,21,17)	(9,13,38,26,27)	(2,3,5,22,6)
Graph only	0.71 ± 0.01	0.67 ± 0.01	0.72 ± 0.02	0.67 ± 0.05
Graph, without O	0.74 ± 0.01	0.72 ± 0.01	0.71 ± 0.03	0.65 ± 0.04
Graph, O (best level)	0.76 ± 0.01	0.74 ± 0.01	0.79 ± 0.02	0.71 ± 0.05
	(42,36,42,41,23)	(42,40,42,29,32)	(42,36,19,31,27)	(6,22,2,5,6)
Graph Only	0.82 ± 0.01	0.79 ± 0.01	0.80 ± 0.01	0.77 ± 0.03
Graph, without O	0.85 ± 0.01	0.83 ± 0.01	0.82 ± 0.02	0.76 ± 0.02
Graph, O (best level)	$0.86{\pm}0.01$	$0.85 {\pm} 0.01$	$0.86 {\pm} 0.02$	0.78 ± 0.02
	(42,42,42,27,23)	(42,23,21,29,42)	(42,36,26,18,27)	(6,28,2,26,27)

Caragea, D., Bahirwani, V., Aljandal, W., & Hsu, W. H. (2009). Eighth Symposium on Abstraction, Reformulation and Approximation (SARA). http://bit.ly/32UnGs

LABORATORY FOR

DEPARTMENTAL SEMINAR

COMPUTING & INFORMATION SCIENCES

CONTINUING WORK

- Natural Language Learning and Information Extraction
 - * Multi-lingual NER
 - * Extracting domain lexicons and ontologies using coreference
 - * Maximum entropy methods for event extraction
 - * From topic detection to update tracking: stream mining
 - * Spatial disambiguation
 - * Skyline QA
- Link Mining

- Roy Chowdhury, Scoglio, & Hsu (2009)

 Epidemics 2. to appear.
- * Ontology-aware link annotation: towards causal explanations
- * Spatiotemporal fluents
- Predictive Epidemiology
 - * Parameter estimation
 - * Graphical models of probability: continuous-time Bayes nets
- Other Topics
 - * Information trust: using constrained conditional models
 - * Vertical portals (e.g., http://dblife.cs.wisc.edu)

LABORATORY FOR KNOWLEDGE DISCOVERY IN DATABASES DEPARTMENTAL SEMINAR
WEDNESDAY, 30 SEP 2009

COMPUTING & INFORMATION SCIENCES

KANSAS STATE I INIVERSITY

REFERENCES

Natural Language Learning and Information Extraction

* RTE: PASCAL

http://bit.ly/2VZn62

* Update Summarization: NIST TAC 2009

http://bit.ly/sx9ws

* Question Answering: NIST TAC 2008

* IR: Manning et al. (2008), Zhai (2009)

http://bit.ly/lkRFH

Link Mining

- * Barabási & Crandall (2003)
- * Han & Kamber (2006), Chapter 9

Predictive Epidemiology

- * Sørensen et al. (1999)
- * Barthelemy et al. (2004), Colizza et al. (2007)

Machine Learning and Data Mining

- * Han & Kamber, 2e (2006)
- * Witten & Frank, 2e (2005)
- * Mitchell (1997)
- * See also: KDD Group Bibliography (work in progress)

ACKNOWLEDGEMENTS

Collaborators

- * Doina Caragea Department of Computing and Information Sciences
- * Caterina Scoglio Department of Electrical and Computer Engineering

K-State Lab for Knowledge Discovery in Databases

- * Grad RAs: Elshamy, Kallumadi, Roy Chowdhury, Volkova
- * Other grad students: Greene, Hart; Bujuru, Karanam, Mohammed, Peddola, Singireddy, Tirumalae
- * Alumni: Aljandal, Bahirwani, Paradesi, Weninger, Xia
- * Undergrads: Berggren, Drouhard, Fowles, Henke, Jones

Predictive Epidemiology, Social Networks, Graph Algorithms

- * Marty Vanier, Barry J. Erlick (Nat'l. Ag. Biosecurity Center)
- * Z. Buckner, J. Dimeo, J. R. Lawhorne (Elder Research, Inc.)

Machine Learning

- * Dan Roth, Jiawei Han, Kevin Chang, ChengXiang Zhai (University of Illinois at Urbana-Champaign)
- * AnHai Doan (University of Wisconsin Madison)

