ELECTRICAL ENGINEERING DEPARTMENT EEL204 ANALOG ELECTRONIC CIRCUITS MAJOR TEST

Date: May 4, 2009 Max. Marks 40 Time: 3:30PM to 5:30PM

Note: This is an open Book and open Notes (only Handwritten and NOT Photocopied) examination. Discussions with the neighbour(s) will not be tolerated.

- Q1. Fig. Q1 shows a RC coupled amplifier designed as a cascade of Emitter Follower and a Common Emitter Stage. Given that β = 100, f_T = 400MHz, I_{E2Q} = I_{E1Q} = 1mA, V_{CC} = 10V, V_{CE1Q} = 5.7V, V_{CE2Q} = 2.4V, R_L = 4K Ω , C_L = 2Pf, C_μ = 0.2pF and R_S = 1K Ω .
 - i. Find the values of V_{E1} , R_{E1} , R_1 , R_2 , R_{E2} , and R_c . (5)
 - ii. Neglectin r_{bb} and r_o , draw the hybrid π equivalent circuit of the amplifier. (4)
 - iii. Find the overall gain and (2)
 - iv. Find the bandwidth of the amplifier assuming C_{C1} , C_{C2} & $C_E \rightarrow \infty$. (2)

- Q2. The circuit in Fig Q2 is a cascode differential amplifier with simple current mirror load. Given that $V_{DD} = -V_{SS} = 5V$. $K_N = 100\mu A/V^2$, $K_P = 50$ $\mu A/V^2$, $\lambda_N = \lambda_P = 0.05V^{-1}$, $V_{TN} = |V_{TP}| = 0.7V$, $(W/L)_1 = (W/L)_2 = 50$, $C_L = 5pF$, $I_{BIAS} = 400\mu A$. Find
 - i. Slew rate of the amplifier. (2)
 - ii. g_m of M_1 and M_2 (3)
 - iii. Gain of the amplifier. (3)
 - iv. 3dB bandwidth of the amplifier. (3)
 - v. If V_{min} of the current source at the bottom is 1.0V, find the minimum DC voltage that can be applied to the gates of M_1 and M_2 , V_{651} (min), such that the amplifier works properly. (3)

Fig. Q2

Q3. a) For the three circuits in Fig. Q3, identify the nature of feedback, if it is a feedback amplifier.

- b) A feedback amplifier needs to be designed with a voltage gain of 50 ± 0.5 . The basic amplifier has a gain that can vary up to $\pm10\%$. The original amplifier has an input impedance of $10\text{K}\Omega$. Determine the
 - i. appropriate feedback configuration you would use, (2)
 - ii. value of the open loop gain (gain without feedback), (3)
 - iii. feedback ratio, β (3)
 - iv. input impedance of the amplifier with feedback. (2)

4₽₽ 84€

GOOD LUCK