Bayesian-Optimal Multi-Classification with Noisy Input Necessitates General Input Space Representation

Aman Bhargava

December 20, 2023

1 Introduction

Notation: lower case variables denote scalars (e.g., x), upper case variables denote random variables (e.g., X), and boldfaced variables denote vector quantities (e.g., \mathbf{x}, \mathbf{X}).

Here I analyze the latent representations in optimal Bayesian filter models trained to perform multi-class classification on some ground truth input vector $\mathbf{x}^* = [x_1^*, x_2^*]^{\top}$ based on noisy discrete-time measurement signals $\mathbf{X}(t) = [X_1(t), X_2(t)]^{\top}$ defined as

$$X_1(t) = x_1^* + \eta \mathcal{N}(0, 1) \tag{1}$$

$$X_2(t) = x_2^* + \eta \mathcal{N}(0, 1) \tag{2}$$

We scope our analysis to N linear classification boundaries. The multiclassification task may be defined in terms of N classification boundary angles $\alpha_1, \ldots, \alpha_N$ which we collectively denote as Θ :

$$\Theta = \{\alpha_i : \alpha_i \in [-\pi, \pi], i = 1, \dots, N\}$$
(3)

as in Figure 1. Models are tasked with predicting the binary classification label for corresponding to each boundary in Θ . We denote the N labels $\mathbf{y}^* = [y_1^* \dots y_N^*]^\top$ corresponding to some \mathbf{x}^* based on the resulting noisy

Figure 1: Multitasking RNN learns abstract representations. Data generating process. The task is to simultaneously report whether the true joint evidence (x_1, x_2) (yellow dot) lies above (+1) or below (-1) a number of classification lines (here 6).

measurement signals $\mathbf{X}(t)$ where

$$y_i^* = \begin{cases} +1 & \text{if } x_2^* > x_1^* \tan \alpha_i \\ -1 & \text{otherwise} \end{cases}$$
 (4)

Contribution: In this document, I demonstrate that a Bayesian-optimal multi-classifier with noisy random input $\mathbf{X}(t)$ and classification estimate output $\hat{\mathbf{y}}(t) \in [-1,1]^N$ must form latent representations $\mathbf{z}(t)$ that retain the 2-dimensional structural information of the input data space $[x_1^*, x_2^*] \in \mathbb{R}^2$ in the limit as $N \to \infty$ for densely packed $\alpha_i \in \Theta$. Intriguingly, without noise, we are unable to guarantee that optimal latent representations $\mathbf{z}(t)$ will retain sufficient information to estimate \mathbf{x}^* . While the proof is stated for 2-dimensional input, the argument holds for any input dimensionality.

1.1 Bayesian Filtering Framework

Bayesian filters are a class of statistical models and algorithm that update a latent state based on noisy and uncertain observation signals. Rooted in principles of Bayesian inference, these filters combine aggregated "knowledge", represented by a latent state $\mathbf{Z}(t)$, with incoming observations $\mathbf{X}(t)$ to continually update the latent state to facilitate some prediction of some output $\mathbf{Y}(t) = f(\mathbf{Z}(t))$.

Definition 1 (Bayesian Filter Operation). A discrete-time Bayesian filter updates latent variable $\mathbf{z}(t)$ based on incoming data $\mathbf{x}(t)$ by applying Bayes' theorem:

$$P(\mathbf{z}(t)|\mathbf{x}(t),\mathbf{z}(t-1)) = \frac{P(\mathbf{x}(t)|\mathbf{z}(t),\mathbf{z}(t-1))P(\mathbf{z}(t)|\mathbf{z}(t-1))}{P(\mathbf{x}(t)|\mathbf{z}(t-1))}$$
(5)

$$\propto P(\mathbf{x}(t)|\mathbf{z}(t))P(\mathbf{z}(t)|\mathbf{z}(t-1))$$
 (6)

Bayesian filters are commonly equipped with a "decoder" or "readout map" f which maps latent $\mathbf{Z}(t)$ to readout estimation $\hat{\mathbf{Y}}(t) = f(\mathbf{Z}(t))$.

There is a deep structural similarity between RNNs and Bayesian filters, as both models update some latent state $\mathbf{z}(t)$ based on incoming datum $\mathbf{x}(t)$. Moreover, RNNs and Bayesian filters are both frequently used to predict some value $\mathbf{y}(t) = f(\mathbf{z}(t))$ (citation: Goodfellow for RNN, Bayesian inference textbook for filters). We leverage the structure in the Bayesian filter formulation to prove our main result in Section 2.

2 Main Results

Consider an optimal Bayesian filter for the multi-class classification task Θ on noisy discrete time measurement signals. Let ϵ be the maximum angular gap between classification boundaries in $\Theta = (\alpha_1 \dots \alpha_n)$ (Definition 7).

$$\epsilon = \max_{i \in N} \min_{j > i} \|\alpha_1 - \alpha_2\| \tag{7}$$

Theorem 1. An optimal Bayesian filter trained to perform multi-class classification on ground truth input \mathbf{x}^* w.r.t. decision boundaries $\Theta = \{\alpha_1, \ldots, \alpha_N\}$ based on noisy measurement signals $\mathbf{X}(t)$ must have latent state $\mathbf{Z}(t)$ that retains a representation of the 2-dimensional input vector \mathbf{x}^* in the limit as $\epsilon \to 0$.

Proof.

Lemma 1 (Equivalence to Angle Estimation). In the limit as $\epsilon \to 0$ for uniformly distributed decision boundaries in $\Theta = \{\alpha_i\}_{i \in [N]}$, the multi-classification task of estimating \mathbf{y}^* (Equation 3) for a given \mathbf{x}^* given noisy observations $\mathbf{X}(t)$ is equivalent to estimating the angle $\theta = \angle \mathbf{x}^*$.

Lemma 2 (Angle Estimation Requires Magnitude Estimation). An optimal Bayesian filter predicting the angle of some ground truth input $\angle \mathbf{x}^*$ based on noisy observations $\mathbf{X}(t)$ must implicitly estimate the magnitude of \mathbf{x}^* during state updates on latent variable $\mathbf{Z}(t)$.

Proof. We denote the conditional entropy of angle estimate $\hat{\theta} = f(\mathbf{Z}(t))$ as $H(\hat{\theta}|\mathbf{Z}(t)) = H(\hat{\theta}|\mathbf{X}(1), \dots, \mathbf{X}(t))$. Since $\mathbf{X}(t)$ is subject to equivariant Gaussian noise with variance η , the condition entropy is inversely proportional to the distance between point x^* and classification boundaries $\Theta = (\alpha_1, \dots, \alpha_N)$. For fixed angle $\theta = \angle \mathbf{x}^*$, the distance between \mathbf{x}^* and each classification boundary scales monotonically with $\|\mathbf{x}^*\|$. Therefore, the angle $\angle \mathbf{x}^*$ and the entropy of the angle estimate $H(\hat{\theta}|\mathbf{X}(t)\dots\mathbf{X}(t)) = H(\hat{\theta}|\mathbf{Z}(t))$ is sufficient to determine $\|\mathbf{x}^*\|$. Since $\hat{\theta}$ and $H(\hat{\theta}|Z(t))$ are both functions of $\mathbf{Z}(t)$ and $\lim_{t\to\infty}\hat{\theta}=\theta$ we have demonstrated that $\mathbf{Z}(t)$ implicitly estimates the magnitude of \mathbf{x}^* .

Therefore, multi-class classification in the limit as the decision boundary spacing $\epsilon \to 0$ is equivalent to estimating the angle of the ground truth \mathbf{x}^* based on noisy $\mathbf{X}(t)$ (Lemma 1). Optimal Bayesian filtering to estimate the angle $\theta = \angle \mathbf{x}^*$ also implies estimating the magnitude of the ground truth data $\|\mathbf{x}^*\|$.

Thus we have demonstrated that both the angle information and the magnitude information of \mathbf{x}^* must be implicitly estimated by an optimal Bayesian filter in multi-class classification problem Θ with non-zero equivariant noise η in the measurements $\mathbf{X}(t)$.

3 Discussion

3.1 Implications of Non-Equivariant Gaussian Noise

In our analysis, we assumed equivariant Gaussian noise with variance η in $\mathbf{X}(t)$. The case of $\eta = [\eta_1, \eta_2]^{\top}$ with $\eta_1 \neq \eta_2$ can be made equiavlent to the equivariant case via a coordinate transformation $x_2 = x_2\eta_1/\eta_2$. This may change the maximum inter-classification boundary distance ϵ , but the final result remains the same as $\epsilon \to 0$.