\$0/562776 \$\frac{1AP29}{AP29}\text{Rec'd}\text{PCT/PTO} 29 DEC 2005 \$\frac{248832.ST25}{SEQUENCE LISTING}\$

<110> Kuroita, Toshihiro Sogabe, Atsushi Takarada, Yutaka Tanaka, Naoki						
<120> PROTEIN ACHIEVING IMPROVED BLOCKING EFFICIENCY						
<130> 248832						
<150> PCT/ JP04/09785 <151> 2004-07-02						
<150> JP 2003-191081 <151> 2003-07-03						
<160> 17						
<170> PatentIn version 3.3						
<210> 1 <211> 638 <212> PRT <213> Escherichia coli						
<400> 1						
Met Gly Lys Ile Ile Gly Ile Asp Leu Gly Thr Thr Asn Ser Cys Val 1 10 15						
Ala Ile Met Asp Gly Thr Thr Pro Arg Val Leu Glu Asn Ala Glu Gly 20 25 30						
Asp Arg Thr Thr Pro Ser Ile Ile Ala Tyr Thr Gln Asp Gly Glu Thr 35 40 45						
Leu Val Gly Gln Pro Ala Lys Arg Gln Ala Val Thr Asn Pro Gln Asn 50 55 60						
Thr Leu Phe Ala Ile Lys Arg Leu Ile Gly Arg Arg Phe Gln Asp Glu 65 70 75 80						
Glu Val Gln Arg Asp Val Ser Ile Met Pro Phe Lys Ile Ile Ala Ala 85 90 95						
Asp Asn Gly Asp Ala Trp Val Glu Val Lys Gly Gln Lys Met Ala Pro 100 105 110						
Pro Gln Ile Ser Ala Glu Val Leu Lys Lys Met Lys Lys Thr Ala Glu 115 120 125						
Asp Tyr Leu Gly Glu Pro Val Thr Glu Ala Val Ile Thr Val Pro Ala 130 135 140						
Tyr Phe Asn Asp Ala Gln Arg Gln Ala Thr Lys Asp Ala Gly Arg Ile 145 150 150						

248832.ST25 Ala Gly Leu Glu Val Lys Arg Ile Ile Asn Glu Pro Thr Ala Ala Ala 165 170 175 Leu Ala Tyr Gly Leu Asp Lys Gly Thr Gly Asn Arg Thr Ile Ala Val 180 185 190 Tyr Asp Leu Gly Gly Gly Thr Phe Asp Ile Ser Ile Ile Glu Ile Asp 195 200 Glu Val Asp Gly Glu Lys Thr Phe Glu Val Leu Ala Thr Asn Gly Asp 210 220 Thr His Leu Gly Gly Glu Asp Phe Asp Ser Arg Leu Ile Asn Tyr Leu 225 230 235 240 Val Glu Glu Phe Lys Lys Asp Gln Gly Ile Asp Leu Arg Asn Asp Pro 245 250 255 Leu Ala Met Gln Arg Leu Lys Glu Ala Ala Glu Lys Ala Lys Ile Glu 260 265 270 Leu Ser Ser Ala Gln Gln Thr Asp Val Asn Leu Pro Tyr Ile Thr Ala 275 280 285 Asp Ala Thr Gly Pro Lys His Met Asn Ile Lys Val Thr Arg Ala Lys 290 295 300 Leu Glu Ser Leu Val Glu Asp Leu Val Asn Arg Ser Ile Glu Pro Leu 305 310 315 320 Lys Val Ala Leu Gln Asp Ala Gly Leu Ser Val Ser Asp Ile Asp Asp 325 330 335 Val Ile Leu Val Gly Gly Gln Thr Arg Met Pro Met Val Gln Lys Lys 340 345 Val Ala Glu Phe Phe Gly Lys Glu Pro Arg Lys Asp Val Asn Pro Asp 355 360 365 Glu Ala Val Ala Ile Gly Ala Ala Val Gln Gly Gly Val Leu Thr Gly 370 380 Asp Val Lys Asp Val Leu Leu Leu Asp Val Thr Pro Leu Ser Leu Gly 385 390 400 Ile Glu Thr Met Gly Gly Val Met Thr Thr Leu Ile Ala Lys Asn Thr 405 410 415Thr Ile Pro Thr Lys His Ser Gln Val Phe Ser Thr Ala Glu Asp Asn 420 425 430

	248832.ST25															
Gln	Ser	Ala 435	val	Thr	Ile	His	Va1 440					Arg 445	Lys	Arg	Ala	
Ala	Asp 450	Asn	Lys	Ser	Leu	Gly 455	Gln	Phe	Asn	Leu	Asp 460	Gly	Ile	Asn	Pro	
Ala 465	Pro	Arg	Gly	Met	Pro 470	Gln	Ile	Glu	val	Thr 475	Phe	Asp	Ile	Asp	Ala 480	
Asp	Gly	Ile	Leu	His 485	val	Ser	Ala	Lys	Asp 490	Lys	Asn	Ser	Glу	Lys 495	Glu	
Gln	Lys	Ile	Thr 500	Ile	Lys	Ala	Ser	Ser 505	Gly	Leu	Asn	Glu	Asp 510	Glu	Ile	
Gln	Lys	Met 515	val	Arg	Asp	Ala	G1u 520	Ala	Asn	Ala	Glu	Ala 525	Asp	Arg	Lys	
Phe	Glu 530	Glu	Leu	٧a٦	Gln	Thr 535	Arg	Asn	Gln	Gly	Asp 540	His	Leu	Leu	His	
Ser 545	⊤hr	Arg	Lys	Gln	∨a1 550	Glu	Glu	Ala	Gly	Asp 555	Lys	Leu	Pro	Ala	Asp 560	
Asp	Lys	Thr	Ala	11e 565	Glu	Ser	Ala	Leu	Thr 570	Ala	Leu	Glu	Thr	Ala 575	Leu	
Lys	Gly	Glu	Asp 580	Lys	Ala	Ala	Ile	Glu 585	Ala	Lys	Met	Gln	Glu 590	Leu	Ala	
Gln	val	Ser 595	Gln	Lys	Leu	Met	G]u 600	Ile	Ala	Gln	Gln	G]n 605	нis	Ala	Gln	
Gln	Gln 610	Thr	Аlа	Gly	Ala	Asp 615	Ala	Ser	Ala	Asn	Asn 620	Ala	Lys	Asp	Asp	
Asp 625	٧al	val	Asp	Ala	G]u 630	Phe	Glu	Glu	٧a٦	Lys 635	Asp	Lys	Lys			
<210> 2 <211> 1917 <212> DNA <213> Escherichia coli																
<400 atg			taati	ggta	at co	gacci	gggt	t act	tacca	act	ctt	gtgta	agc (gatta	atggat	60
																120
ggcaccactc ctcgcgtgct ggagaacgcc gaaggcgatc gcaccacgcc ttctatcatt 120 gcctataccc aggatggtga aactctagtt ggtcagccgg ctaaacgtca ggcagtgacg 180																
aacccgcaaa acactctgtt tgcgattaaa cgcctgattg gtcgccgctt ccaggacgaa 240																
gaag	gtaca	agc g	gtgai	gtti	c ca	itcat	gccg	g tto	caaaa	atta	ttg	tgct	tga '	taac	ggcgac	300

248832.ST25							
gcatggg	gtcg	aagttaaagg	ccagaaaatg	gcaccgccgc	agatttctgc	tgaagtgctg	360
aaaaaa	itga	agaaaaccgc	tgaagattac	ctgggtgaac	cggtaactga	agctgttatc	420
accgtac	cgg	catactttaa	cgatgctcag	cgtcaggcaa	ccaaagacgc	aggccgtatc	480
gctggtc	tgg	aagtaaaacg	tatcatcaac	gaaccgaccg	cagctgcgct	ggcttacggt	540
ctggaca	aag	gcactggcaa	ccgtactatc	gcggtttatg	acctgggtgg	tggtactttc	600
gatattt	cta	ttatcgaaat	cgacgaagtt	gacggcgaaa	aaaccttcga	agttctggca	660
accaacg	gtg	atacccacct	ggggggtgaa	gacttcgaca	gccgtctgat	caactatctg	720
gttgaag	gaat	tcaagaaaga	tcagggcatt	gacctgcgca	acgatccgct	ggcaatgcag	780
cgcctga	aag	aagcggcaga	aaaagcgaaa	atcgaactgt	cttccgctca	gcagaccgac	840
gttaacc	tgc	catacatcac	tgcagacgcg	accggtccga	aacacatgaa	catcaaagtg	900
actcgtg	ıcga	aactggaaag	cctggttgaa	gatctggtaa	accgttccat	tgagccgctg	960
aaagttg	gcac	tgcaggacgc	tggcctgtcc	gtatctgata	tcgacgacgt	tatcctcgtt	1020
ggtggtc	aga	ctcgtatgcc	aatggttcag	aagaaagttg	ctgagttctt	tggtaaagag	1080
ccgcgta	aag	acgttaaccc	ggacgaagct	gtagcaatcg	gtgctgctgt	tcagggtggt	1140
gttctga	ıctg	gtgacgtaaa	agacgtactg	ctgctggacg	ttaccccgct	gtctctgggt	1200
atcgaaa	ıcca	tgggcggtgt	gatgacgacg	ctgatcgcga	aaaacaccac	tatcccgacc	1260
aagcaca	ıgcc	aggtgttctc	taccgctgaa	gacaaccagt	ctgcggtaac	catccatgtg	1320
ctgcagg	gtg	aacgtaaacg	tgcggctgat	aacaaatctc	tgggtcagtt	caacctagat	1380
ggtatca	acc	cggcaccgcg	cggcatgccg	cagatcgaag	ttaccttcga	tatcgatgct	1440
gacggta	itcc	tgcacgtttc	cgcgaaagat	aaaaacagcg	gtaaagagca	gaagatcacc	1500
atcaagg	ctt	cttctggtct	gaacgaagat	gaaatccaga	aaatggtacg	cgacgcagaa	1560
gctaacg	ıccg	aagctgaccg	taagtttgaa	gagctggtac	agactcgcaa	ccagggcgac	1620
catctgo	tgc	acagcacccg	taagcaggtt	gaagaagcag	gcgacaaact	gccggctgac	1680
gacaaaa	ctg	ctatcgagtc	tgcgctgact	gcactggaaa	ctgctctgaa	aggtgaagac	1740
aaagccg	ıcta	tcgaagcgaa	aatgcaggaa	ctggcacagg	tttcccagaa	actgatggaa	1800
atcgccc	agc	agcaacatgc	ccagcagcag	actgccggtg	ctgatgcttc	tgcaaacaac	1860
gcgaaag	atg	acgatgttgt	cgacgctgaa	tttgaagaag	tcaaagacaa	aaaataa	1917
<213> <220>		ficial					
<400>	3	can anata ==	aa+aa.aa+a-		actactas =	a++2.c	55
gcggatc	.cdT	cyayyytaga	ggtgacgtaa	aayacytact	gctyctygac	gilac))

248832.ST25

<211> <212> <213>	33 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> ttattt	4 tttg tctttgactt cttcaaattc agc	33
	5 30 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> gccggc	5 tgac gactaaactg ctatcgagtc	30
<210> <211> <212> <213>	DNA	
<220> <223>	Synthetic DNA	
<400> gactcg	6 atag cagtttagtc gtcagccggc	30
<210> <211> <212> <213>	7 30 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> tgctct	7 gaaa ggttaagaca aagccgctat	30
<210> <211> <212> <213>	8 30 DNA Artificial	
<220> <223>	Synthetic DNA	
<400> atagcg	8 gctt tgtcttaacc tttcagagca	30
<210> <211> <212> <213>	9 30 DNA Artificial	
<220> <223>	Synthetic DNA	
<400>	9	

		248832.ST25	20
gcagca	acat gcctaacagc agactgccgg		30
<210> <211> <212> <213>	10 30 DNA Artificial		
<220> <223>	Synthetic DNA		
<400> ccggca	10 gtct gctgttaggc atgttgctgc		30
<210> <211> <212> <213>	11 30 DNA Artificial		
<220> <223>	Synthetic DNA		
<400> ccttcga	11 atat cgttgctgtc ggtatcctgc		30
<210> <211> <212> <213>	12 30 DNA Artificial	,	
<220> <223>	Synthetic DNA		
<400> gcagga	12 tacc gacagcaacg atatcgaagg		30
<210> <211> <212> <213>	13 27 DNA Artificial		
<220> <223>	Synthetic DNA		
<400> tctgga	13 tcca acgaagatga aatccag		27
<210> <211> <212> <213>	14 30 DNA Artificial		
<220> <223>	Synthetic DNA		
<400> gcggate	14 ccgc tgaccgtaag tttgaagagc		30
<210> <211> <212> <213>	15 29 DNA Artificial		

248832.ST25

<220>		2-1	3032.3123	
	Synthetic DNA			
<400> ccggat	15 cccc gaccaagcac	agccaggtg		29
<211> <212>				
<220> <223>	Synthetic DNA			
<400> attaac	16 tatg agaggatccc	atcaccatc		29
<210> <211> <212> <213>	29			
<220> <223>	Synthetic DNA			
	17 gatg ggatcctctc	atagttaat		29