CMSSW WORK Documentation Appendix:

A. Setting up a CMSSW Release

B. Preparing Data Ntuples

b.1 EDAnalyzer (Preparing my own)

EDAnalyzer beginner's tutorial

https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookWriteFrameworkModule? LOCALSHELL=bash&LOCALWBRELEASE=7_4_15

b.2 Given Analyzers

b.2.1 MC RSG signal Analyzers

https://github.com/cms-exotica-diphotons/diphoton-analysis/tree/master/ExoDiPhotonRSGSignalAnalyzer

- a.) Follow instructions in README.md
- b.) try for a subset cmsRun <configurationfile>
 - compile everything scram b
 - cmsRun *.py
- c.) Analyse subset -> See documentation on events loop using myclass.C

b.2.2 Background Analysers

https://github.com/cms-exotica-diphotons/diphoton-analysis/tree/master/ExoDiPhotonBackgroundAnalyzer

- b.) try for a subset cmsRun <config file> cmsRun *.py
- c.) analyse subset -> See documentation on events loop using myclass.C

b.3 Submission to CRAB

https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCRAB3Tutorial https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideCrab2 https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCRAB2Tutorial

Some noteS: better if the crab.cfg file and your pset are in the same directory. create jobs and then submit. (check recheck by crab -status)

- a.) Set-up crab (we use CRAB 2)
- b.) edit the configuration file crab.cfg (see template in main folder)
- c.) Edit 1.) datasetpath from DAS 2.) pset = python config file 3.) optional (.r
 oot)
- d.) set up crab-> source /afs/cern.ch/cms/ccs/wm/scripts/Crab/crab.sh

which crab

===> to check crab version

e.) SUBMIT, RESUBMIT type PEM Passphrase: upr00tCRAB

crab -create -cfg <name_of_crab_cfg_file>

```
crab -submit
crab -status
crab -get
crab -status
crab -resubmit <job number> (if necessary)

d.) when jobs are finished you get several jobs by doing
crab -getoutput
====> This will save your files to lxplus
====> You can begin transferring your files to your hard drive
====> go to the results directory and do a
ls -altrh *.root
===> to check the file size before transferring files to your desktop
scp into your local computer and then put together all the ntuple files into one
.
===> DO THIS
===> hadd <name of compiled ntuple.root> *.root
```

C. Selection Criteria and Plotting

Looping over events by creating a Class with MakeClass

- 1.) TBrowser b to check name of tree
- 2.) fTree->Print() to check if it works
- 3.) fTree->MakeClass("myClass_name"). This will generate a macro template and a .h file that will loop over the events in your ntuples.
- 4.) Add selection criteria and you are ready to make plots from the data.

Github Repository for Analysis Macros

https://github.com/uzzielperez/CMS-UPD-MS-Thesis

DATASETS and WORKFLOW

1.) RSG Signal: /RSGravToGG_kMpl-001_M-1500_TuneCUEP8M1_13TeV-pythia8/RunlIFall15MiniAODv2-PU25nsData2015v1_76X_mcRun2_asymptotic_v12-v1/MINIAODSIM 2.) Background: /GGJets_M-1000To2000_Pt-50_13TeV-sherpa/RunlIFall15MiniAODv2-PU25nsData2015v1_76X_mcRun2_asymptotic_v12-v1/MINIAODSIM