Probabilités conditionnelles et indépendance d'événements

Première Spécialité Mathématiques

1 Introduction : Vocabulaire des probabilités

Un joueur ou une joueuse lance deux dés à six faces équilibrés, et observe la somme des valeurs obtenues.

Définition 1.

- Une telle situation où le résultats possibles sont connus, mais où l'issue n'est a priori pas décidée à l'avance est nommée **Expérience aléatoire**.
- L'ensemble des **issues** possible de cette expérience est nommé l'**univers**, habituellement noté Ω . (Ici, un univers envisageable pour cette expérience est $\Omega = \{2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12\}$)
- Un sous-ensemble de l'univers Ω est appelé **événement**. (Par exemple, l'événement correspondant à obtenir une somme paire serait $A = \{2; 4; 6; 8; 10; 12\}$)

Définition 2. Soient A et B deux événements d'une expérience aléatoire d'univers Ω .

- Si $A = \Omega$, A est appelé **événement certain**. (Par exemple, obtenir un nombre inférieur à 13 à l'aide de deux dés est un événement certain)
- Si $A = \emptyset$ (l'ensemble vide), alors A est appelé **événement impossible**. (Par exemple, obtenir 1 à l'aide de deux dés est un événement impossible)
- L'union des événements A et B, noté $A \cup B$, se lisant « A union B », est l'événement réalisant les issues de A ou celles de B. (Par exemple, si $A = \{4; 10\}$ et $B = \{10; 12\}$, alors leur union est donnée $A \cup B = \{4; 10; 12\}$)
- L'intersection des événements A et B noté $A \cap B$, se lisant « A inter B, est l'évenement réalisant à la fois les issues de A et celles de B. (Par exemple, si $A = \{4; 10\}$ et $B = \{10; 12\}$, alors leur intersection est donnée par $A \cap B = \{10\}$)
- Le complémentaire de l'événement A noté \overline{A} , se lisant « A barre », est l'événement réalisant toutes les issues qui ne sont pas réalisées par A. (Par exemple, le complémentaire de l'évenement correspondant à obtenir une somme paire serait l'événement correspondant à obtenir une somme impaire)

Exemple. Proposer deux événements A et B dont l'intersection et l'union sont non-vide.

Définition 3. Soient A et B deux événements d'une expérience aléatoire d'univers Ω . Alors A et B sont **disjoints** si et seulement si $A \cap B = \emptyset$.

Définition 4. Soit une expérience aléatoire d'univers Ω . Une **probabilité** sur Ω associe à tout événement A un nombre réel P(A) compris entre 0 et 1, et vérifie deux propriétés :

- $P(\Omega) = 1$
- $P(A \cup B) = P(A) + P(B)$ si les événements A et B sont disjoints.

Exemple. Si A est l'événement consistant à obtenir 7 aux dés, alors

$$P(A) = \frac{1}{6}$$

Définition 5. Établir la loi de probabilité d'une expérience aléatoire d'univers Ω consiste à associer à chaque issue $w \in \Omega$ sa probabilité $P(\{w\})$.

Remarque. Ainsi, si la loi de probabilité est connue, la probabilité d'un événement P(A) est donnée par la somme de toutes les probabilités des issues réalisant A.

Exemple. On donne la loi de probabilité concernant la somme de deux dés.

ĺ	$w \in \Omega$	2	3	4	5	6	7	8	9	10	11	12
	$P(\{w\})$	1/36	1/18	1/12	1/9	5/36	1/6	5/36	1/9	1/12	1/18	1/36

- a) Vérifier que la somme des probabilités vaut 1.
- b) En déduire la probabilité de l'événement B « La somme des dé est paire ».

Définition 6. Soit une expérience aléatoire d'univers Ω , et P une probabilité sur Ω . On est en **situation d'équiprobabilité** si la loi de probabilité de P associe la même valeur à toutes les issues.

Exemple.

- Regarder le résultat du lancer d'un unique dé équilibré est une expérience aléatoire en situation d'équiprobabilité.
- Regarder la somme du résultat de deux dé équilibrés n'est pas une expérience aléatoire en situation d'équiprobabilité.

Proposition 1. Soit une expérience aléatoire d'univers Ω non vide, **en situation d'équiprobabilité**, et soit A un événement $d'\Omega$. Alors la probabilité de A est donnée par

$$P(A) = \frac{\textit{Nombre d'éléments de } A}{\textit{Nombre d'éléments de } \Omega}$$

Comment calculer la probabilité d'un événement quand nous ne sommes pas dans une situation d'équiprobabilité?

2 Représentation d'expérience aléatoire

2.1 Arbres pondérés

Exemple. Soit une expérience aléatoire d'univers Ω , et deux événements A et B d' Ω . Alors, l'arbre pondéré suivant permet donne le moyen de calculer certains probabilités.

Proposition 2.

- Une branche de la racine à une extrémité correspond à l'intersection des événements correspondants. Pour calculer la probabilité de cette intersection, il faut multiplier les probabilités sur la branche.
- La somme de toutes les probabilités issues d'un même noeud vaut 1.
- La probabilité d'un événement est égale à la somme des probabilités de toutes les branches contenant cet événement.

2.2 Tableau

Certaines expériences aléatoires se prêtent bien à l'utilisation de tableaux à double entrée.

Exemple. La somme du résultat du lancer de deux dés est un bon exemple, car il peut être résumé comme ceci :

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Puisque toutes les cases correspondent à des situations équiprobables, il devient très facile de calculer la probabilité d'obtenir la somme de votre choix.

3 Théorie des probabilités

Nous allons chercher à comprendre les règles de calculs donnés par l'arbre pondéré.

3.1 Probabilités conditionnelles

Définition 7. Soit une expérience aléatoire d'univers Ω , et A et B deux événenements de Ω . On suppose de plus que $P(A) \neq 0$.

Alors, la **probabilité de** A **sachant** B, notée $P_A(B)$, est la probabilité que B se réalise **sachant** que A s'est déjà réalisé.

Exemple. Une usine produit des vis et des clous. Certaines pièces ont une défaut de fabrication. On prend une pièce produite par cette usine au hasard.

On note V « La pièce choisie est une vis » et D « La pièce choisie a un défaut de fabrication ». Dans chacune des situations suivantes, donner la probabilité correspondante (en choisissant bien la bonne notation)

- a) Il y a 4% de vis présentant un défaut de fabrication parmi toutes les pièces produites par l'usine.
- b) Il y a 2% de vis présentant un défaut de fabrication parmi les vis produites par l'usine.

Proposition 3 (Formule des probabilités composées). *Soit* A *et* B *deux événements de* Ω *tels que* $P(A) \neq 0$. *Alors*

$$P(A \cap B) = P(A) \times P_A(B)$$

Remarque. Il s'agit de la règle de calcul de la probabilité d'une branche dans un arbre pondéré.

Proposition 4. Soit A et B deux événements de Ω tels que $P(A) \neq 0$. Alors

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

Exemple. On tire une bille au hasard dans un sac. Chaque bille est grosse ou petite, et chaque bille est rouge ou verte. On note R « La bille est rouge », et G « la bille est grosse ». Alors le tableau suivant donne la répartition du sac.

	R	\overline{R}	Total
G	12	8	20
\overline{G}	7	13	20
Total	19	21	40

- a) Quelle est la probabilité d'obtenir une grosse bille rouge?
- b) Quelle est la probabilité d'obtenir une petite bille, sachant que la bille tirée est verte?

3.2 Partition de l'univers

Définition 8. Soit une expérience aléatoire d'univers Ω . On dit que des événements $A_1, A_2, ... A_n$ forment une **partition** de Ω si et seulement si

$$\begin{cases} A_1 \cup A_2 \cup \dots \cup A_n = \Omega \\ A_1, A_2 \dots A_n \text{ sont disjoints deux à deux} \end{cases}$$

Remarque.

- Créer une partition de Ω , c'est regrouper chaque issue de Ω dans un unique paquet.
- Soit A un événement de Ω , alors A et \overline{A} forment une partition de Ω .

Exemple. On considère le lancer d'un seul dé équilibré. Alors si A« le résultat est pair », B« le résultat est 1 » et C « le résultat est impair supérieur ou égal à 3 », on en déduit que A, B et C forment une partition de l'univers de l'expérience.

Proposition 5 (formule des probabilités totales). *Soit* B *un évenement, et* A_1 , A_2 , ..., A_n *une partition de* Ω . *Alors,*

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \dots + P(B \cap A_n)$$

Remarque. Le schéma suivant permet de visualiser la situation.

Remarque. La formule des probabilité totale correspond à la méthode de calcul de la probabilité de plusieurs branches d'un arbre pondéré.

À chaque hauteur de l'arbre, il faut donc s'assurer que tous les événements originaires d'une même branche forment une partition de l'univers Ω .

4 Indépendance

Définition 9. Soit une expérience aléatoire d'univers Ω , et P une probabilité sur Ω . Soit A et B deux événements de Ω . Alors, A et B sont dits indépendants si et seulement si $P(A \cap B) = P(A)P(B)$.
Exemple. On lance deux dés : un dé rouge et un dé bleu. On pose les événements A « le dé rouge renvoie un résulta pair », et B « le dé bleu renvoie un résulat supérieur ou égal à 4 ». Les événements A et B sont-ils indépendants?
Proposition 6. Soit A et B deux événements, tels $P(A) \neq 0$. Alors, si A et B sont indépendants, on a
$P_A(B) = P(B)$
Remarque. Quand deux événements sont indépendants, cela signifie que la réalisation de l'un n'a pas d'influence sur l réalisation de l'autre. À ne pas confondre avec des événements incompatibles $(P(A \cap B) = 0)$.
Démonstration.
Proposition 7. Soit A et B deux événenements indépendants de Ω . Alors \overline{A} et B sont indépendants.
Démonstration.