Capítulo 1

Gas de Bose

Para Bose debe cumplirse $\mu < \text{ todo } e \text{ y como } e \geq 0$ eso dice que

$$\mu < 0$$

Pero si en un sistema tiene e_0 como mínimo y $e_0 > 0$ entonces, ¿puede ser $\mu > 0$? Aparentemente sí (al menos recordando que la restricción sale de la serie).

Ya lo entendí esto: pero no para partícula libre.

$$N = \sum_{e} \langle n_e \rangle = \sum_{e} \frac{1}{z^{-1} e^{\beta e} - 1}$$

Además $\langle n_e \rangle \geq 0$, el número de partículas debe ser positivo, lo que lleva a $|z|e^{-\beta e}| < 1$ para todo e de manera que con $e \geq 0$ se tiene 0 < z < 1 (esto depende de que los niveles de energía sean mayores a cero).

$$\beta pV = \log(\Xi) = \sum_{e} -\log(1-\,\mathrm{e}^{-\beta(e-\mu)})$$

$$\beta p = \sum_{e \neq 0} \frac{-\log(1 - e^{-\beta(e-\mu)})}{V} - \frac{\log(1 - z)}{V}$$

La densidad es

$$\frac{N}{V} = \frac{1}{\lambda^3} g_{3/2}(z)$$

donde la expresión general de las g_{ν} es

$$g_{\nu}(z) = \frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{\nu-1}}{z^{-1} e^{x} - 1} dx$$

Recordemos que la longitud de onda térmica

es $\lambda = \lambda(T)$.

El paso al continuo para $N,V\to\infty$ con N/V constante y la relación $e=p^2/(2m)$ resulta en

$$g(e) = \left(\frac{2\pi V}{h^3}\right) (2N)^{3/2} e^{1/2}$$

y con ello las dos ecuaciones continuas para el gran canónico resultan en

$$\begin{split} \frac{pV}{kT} &= -\frac{2\pi V}{h^3} (2m)^{3/2} \int_0^\infty e^{1/2} \log(1-z\,\mathrm{e}^{-\beta e}) de \\ &N = \frac{2\pi}{h^3} (2m)^{3/2} \int_0^\infty \frac{e^{1/2}}{z^{-1}\,\mathrm{e}^{\beta e} - 1} \,de \end{split}$$

Al final la energía

$$U = -\frac{\partial}{\partial \beta} \log Q = \frac{3}{2} kT \frac{V}{\lambda^3} g_{5/2}(z)$$

y se ve que pV = 2/3U que usó la dispersión no relativista y el factor 3 es por la dimensión.

Para la ecuación de estado hay que expresar z=z(N) e introducirlo en p/(kT).

El último término será negligible para todo z, incluso con $z\to 1$ pues en ese caso $V\to\infty$ mucho más rápido

$$\langle n_0 \rangle = \frac{1}{z^{-1} - 1} = \frac{z}{1 - z}$$

y $\langle n_0 \rangle / V$ es finito incluso con $z \to 1$, entonces

$$\begin{split} \langle n_0 \rangle - z \, \langle n_0 \rangle - z &= 0 \qquad z = \frac{\langle n_0 \rangle}{1 + \langle n_0 \rangle} \\ 1 - z &= \frac{1}{1 + \langle n_0 \rangle} \\ - \frac{\log(1 - z)}{V} &= \frac{\log(1 + \langle n_0 \rangle)}{V} \end{split}$$

y dado que $\log(\langle n_0 \rangle) \ll \langle n_0 \rangle$ despreciamos $\log(1-z)/V$. Como $0 > \mu$ entonces $\mathrm{e}^{\beta \mu} \equiv z < 1$

En Bose la fugacidad está acotada

$$\frac{N}{V} = \frac{1}{\lambda^3} g_{3/2}(z) + \frac{1}{V} \left(\frac{z}{1-z} \right)$$

y entonces el nivel de ocupación del fundamental debo sumarlo aparte; vemos que en el segundo término con $z\to 1$ revienta. El primer término es la densidad de partículas en los niveles excitados

$$\frac{\lambda^3}{v} = g_{3/2}(z) + \frac{\lambda^3}{V} n_0$$

$$\frac{N}{V} = \frac{1}{\lambda^3} g_{3/2}(z) + \frac{1}{V} \left(\frac{z}{1-z}\right)$$
 residud total — densidad on all fundamental densidad on all fundamental

EJEMPLO 0.1 Comentario raro

En relación a lo del condensado anoté que: "aparentemente habría un error es esta ecuación" (con respecto a la ecuación de λ^3/v) pués

$$\sum_e \longrightarrow \int_0^\infty \ g(e) \ de$$

si he pesado el nivel energético cero con el cero y la borré de la integral. Veamos que $e^{1/2}$ y g(0)=0.

Si z está lejos de 1 el nivel fundamental no está muy poblado y las partículas se distribuyen en los otros excitados.

Por otro lado como 0 < z < 1 entonces $g_{3/2}(z)$ está acotada

$$g_{3/2}(1) = \sum_{j=1}^{\infty} \frac{1}{j^{3/2}} = 2.612$$

Con $z \approx 1$ da

$$\frac{\lambda^3}{v} = g_{3/2}(1) + \lambda^3 \frac{n_0}{V}$$

cuando se aumenta N necesariamente las partículas se apilan en el fundamental; es una fracción macroscópica pués $V\to\infty$ y entonces $n_0\to\infty$.

Se da con

$$\frac{\lambda^3}{v} = \frac{\lambda^3}{V} N = \frac{h^3}{(2\pi mkT)^{3/2}} \frac{N}{V} > 2.612$$

El condensado de Bose surge cuando se saturan los excitados; ello pasa con T baja, N/V alta y $\mu \to 0$. Se tiene en estos casos que N_0 es comparable a N. El valor 2.612 define un punto crítico en el cual empieza a diverger la población del fundamental. Tiene niveles macroscópicos, se puede comparar con N.

En la carpeta hablo de un $N_m ax$ dado por $V(2\pi mkT)^{3/2}/h^3g_{3/2}(1)$ y se da $N_e \geq N_m ax(T)$, que imagino que implica lo del acotamiento en g y causa que no "entren más" en los excitados (supongo).

Destaco en esta expresión T baja dividiendo y n alta multiplicando.

El condensado de Bose podemos pensarlo como la coexistencia de dos fluidos (e=0 y $e\neq 0$). Podemos definir un T_c,v_c desde

$$\frac{\lambda^3}{v} = g_{3/2}(1) = 2.612 = \frac{h^3}{(2\pi mkT)^{3/2}} \frac{1}{v}$$

que lleva a que para un dado v tenemos una cierta T_c y para una cierta T tenemos un dado v_c dados ambos por

$$T_c^{3/2} = \frac{h^3}{(2\pi m k T)^{3/2}} \frac{1}{v} \frac{1}{g_{3/2}(1)} \qquad v_c = \frac{\lambda^3(T)}{g_{3/2}(1)}$$

De esta forma si $T < T_c$ y $v < v_c$ se tiene la condensación de Bose

$$\lambda^3 \frac{N}{V} = g_{3/2}(1) + \lambda^3 \frac{N_0}{V}$$

que es válida a partir de la condensación $(T < T_c)$

$$N = \frac{(2\pi mk)^{3/2}}{h^3} T^{3/2} g_{3/2}(1) V + N_0 = N \left(\frac{T}{T_c}\right)^{3/2} + N_0$$

$$N_e = N \left(rac{T}{T_c}
ight)^{3/2}$$

$$N_o = N \left(1 - \left(\frac{T}{T_c} \right)^{3/2} \right), \label{eq:No}$$

que es válida por supuesto con $T < T_c$. A partir de haber alcanzado la condensación z=1, añadir partículas (N++) o reducir el volumen (V--) hace que $N_e/V \to 0$ pues $V \to \infty$

Esto de arriba corresponde a $T < T_C$ para el caso $\lambda^3/v > 2.612$ y se ve que $z = N_0/(N_0+1) \to 1$ si $N_0 \to \infty$.

Cuando v/λ^3 es chico se saturan los N_e y entonces $z \to 1$.

Cuando v/λ^3 es grande no hay condensado y entonces $\lambda^3/v\approx z$ o bien $1/(v/\lambda^3)\approx z$.

Para la presión tendremos

$$\beta p = \frac{1}{\lambda^3} g_{5/2}(z)$$

Otra observación es que $P_{BE}(T=0)=0$. Las partículas N_e en la fase normal hacen presión que es la mitad de la del gas ideal mientras que las de N_0 no hacen presión en absoluto.

$$con z = 1(T < T_c)$$

$$\frac{p}{kT} = \frac{(2\pi mkT)^{3/2}}{h^3} g_{5/2}(1) = \frac{1}{v(T_c/T)^{3/2} g_{3/2}(1)} g_{5/2}(1)$$

$$p = 1.34 \frac{(2\pi m)^{3/2}}{h^3} (kT)^{5/2} \qquad \qquad \frac{pV}{NkT} = 0.513 \left(\frac{T}{T_c}\right)^{3/2}$$

 $\mathrm{con}\ z = 1(T = T_c)$

$$\beta p = \frac{g_{5/2}(1)}{g_{3/2}(1)v} = \frac{0.513}{v}$$

$$p = 0.513 \frac{NkT}{V}$$
 es aprox. $1/2p$ gas ideal clásico

con $z \lesssim 1(T > T_c)$

$$\beta p = \frac{1}{v} \frac{g_{5/2}(z)}{g_{3/2}(z)}$$

pero no podemos expandir en el virial porque λ^3/v no es chico.

Con $z \approx 0 \; (T \gg T_C)$

$$\beta pv = \frac{pV}{NkT} = \sum_{l=0}^{\infty} a_l \left(\frac{\lambda^3}{v}\right)^{l-1}$$

usando toda la serie y procediendo en modo análogo a Fermi se obtienen

Los a_ℓ son los coeficientes del virial -que son los mismos para Fermi-.

Tenía anotado por allí

 $p \propto T^{5/2}$.

$$\begin{cases} a_1 = 1 \\ a_2 = -0.17678 \\ a_3 = -0.00330 \end{cases}$$

$$\frac{pV}{NkT} = 1 - 0.17678 \left(\frac{\lambda^3}{v}\right) - 0.00330 \left(\frac{\lambda^3}{v}\right)^2$$

El virial vale en $\lambda^3/v\ll 1$ (alta Ty bajaN/V) A bajas Tse comportan de modo muy diferente, p $_{\rm Fermi}~>0$ y p $_{\rm Bose}~\approx$

EJEMPLO 0.2 Problema 2 -tip-

0

Es $e_{p,n_i} = p^2/2m + n_i \varepsilon_1$ donde $n_i = 0, 1$ y entonces es un grado de libertad interno.

1.0.1 Análisis del gas ideal de Bose

• $\lambda^3/v\ll 1$ y entonces $z\ll 1$ $[T\gg T_c]$ (o sea T alta y N/V baja) tenemos un desarrollo del virial porque $z\ll 1$

$$\begin{split} \frac{\beta pV}{N} &= \sum_{l=1}^\infty a_l \left(\frac{\lambda^3}{v}\right)^{l-1} = \frac{g_{5/2}(z)}{g_{3/2}(z)} \\ \beta pV &\approx 1 - \frac{\lambda^3}{v} \frac{1}{2^{5/2}} \qquad \qquad U = \frac{3}{2} pV = \frac{3}{2} NkT \left(1 - \frac{\lambda^3}{v} \frac{1}{2^{5/2}}\right) \end{split}$$

Como $a_2<0$ se tiene que la presión para Bose Einstein es menor a la presión clásica. Siguiendo podemos trabajar una expresión para el calor específico

$$\frac{C_V}{kT} = \frac{3}{2} \left(1 + 0.0884 \left(\frac{\lambda^3}{v} \right) + 0.0066 \left(\frac{\lambda^3}{v} \right)^2 + \dots \right)$$

• $\lambda^3/v \approx 1$ y entonces z < 1 $[T > T_c]$

$$\beta pV = \frac{g_{5/2}(z)}{g_{3/2}(z)}$$

• $\lambda^3/v = 2.612$ y entonces z = 1 $[T = T_c]$

$$\beta pV = \frac{g_{5/2}(z)}{g_{3/2}(z)} \approx \frac{1.34}{2.612} \approx 0.513$$

• $\lambda^3/v \gg 1$ y entonces z=1 [$T < T_c$] (baja temperatura T y alta densidad N/V) y hay que considerar el fundamental

$$\beta p = \frac{1}{\lambda^3} g_{5/2}(1) \qquad \qquad \lambda^3 \left(\frac{N - N_0}{V} \right) = g_{3/2}(1)$$

que lleva a

$$\left(1 - \frac{N_0}{N}\right) = \left(\frac{T}{T_c}\right)^{3/2}$$

puesto que T_c es tal que

$$\frac{h^3}{(2\pi mkT_c)^{3/2}} \frac{N}{V} = g_{3/2}(1) = \frac{\lambda^3}{v} \left(\frac{T}{T_c}\right)^{3/2}$$

$$\beta pV = \frac{g_{5/2}(z)}{g_{3/2}(z)} \left(\frac{T}{T_c}\right)^{3/2} = 0.513 \left(\frac{T}{T_c}\right)^{3/2}$$

$$\frac{\lambda^3}{v} \left(\frac{T}{T}\right)^{3/2} = g_{3/2}(1) \quad \Rightarrow \quad \frac{1}{\lambda^3} = \frac{1}{v} \left(\frac{T}{T}\right)^{3/2} \frac{1}{g_{3/2}(1)}$$

Con el aumento de la temperatura aumentan ambos miembros en la ecuación

$$\frac{\lambda^3}{v} = g_{3/2}(z)$$

pero como $g_{3/2}$ está acotada esto lleva a la condensación de Bose.

Desde la expresión de la energía U=3/2pV y $C_V=\frac{\partial}{\partial T}(3/2pV)$ y entonces

• $T < T_c$

$$C_V = \frac{\partial}{\partial T} \left(\frac{3}{2} Nk \left(\frac{T}{T_c} \right)^{3/2} 0.513 \right) = \frac{15}{4} Nk \left(\frac{T}{T_c} \right)^{3/2} 0.513 \qquad C_V \propto T^{3/2}$$

Con z = 1 y $T < T_c$ expresamos todo en términos de (T/T_c) .

•
$$T = T_c$$

$$C_V = Nk \ 0.513 \frac{15}{4} = Nk1.92375$$

• $T > T_c$

$$C_V = \left(\frac{15}{4} \frac{g_{5/2}(z)}{g_{3/2}(z)} - \frac{9}{4} \underbrace{\frac{g_{3/2}(z)}{g_{1/2}(z)}}_{\to \infty \text{ en } z=1}\right)$$

 C_V es continuo.

• $T \gg T_c$

$$C_V = Nk \frac{3}{2} \frac{\partial}{\partial T} \left(T \sum_{l=1}^{\infty} a_l \left(\frac{\lambda^3}{v} \right)^{l-1} \right)$$

$$C_V = Nk \frac{3}{2} \left(1 + 0.0884 \left(\frac{\lambda^3}{v} \right) + \dots \right)$$

DIBUJO

Entonces tenemos dos fases macroscópicas, que dependen de la temperatura

• Fase normal: consisten en las partículas de los niveles excitados,

$$N_e = N \left(\frac{T}{T_C}\right)^{3/2}$$

• Fase condensada

$$\frac{N_0}{N} = 1 - \left(\frac{T}{T_C}\right)^{3/2}$$

Y vemos que $N_0\to\infty$ en forma comparable a como $N\to\infty$. El N_0 macroscópicamente poblado es la condensación.

 $\begin{array}{l} \lambda^3 = h^3/(2\pi m k T)^{3/2} \ {\bf y} \\ \frac{\lambda^3}{v} = g_{3/2}(1) = \frac{\lambda^3}{v} \frac{v}{v_c} \end{array}$

1.0.2 Condensado de Bose como transición de fase

$$\frac{N_0}{N} = 1 - \left(\frac{T}{T_c}\right)^{3/2}$$

$$\frac{N_0}{N} = 1 - \frac{v}{v_c}$$

que se obtiene desde las siguientes

$$\frac{\lambda^3(T_c)}{v} = g_{3/2}(1) \qquad \qquad \frac{\lambda^3(T)}{v_c} = g_{3/2}(1)$$

para llegar a la relación útil:

$$\left(\frac{T}{T_c}\right)^{3/2} = \frac{v}{v_c}$$

En $\frac{\lambda^3}{v} \leq g_{3/2}(1)$ vale

$$\frac{\lambda^3}{v} = g_{3/2}(z)$$
 no tengo en cuenta N_0

$$\frac{v_c}{v} = \frac{g_{3/2}(z)}{g_{3/2}(1)} \quad \Rightarrow \quad \left(\frac{T}{T_c}\right)^{3/2} = \frac{g_{3/2}(z)}{g_{3/2}(1)}$$

Se vio que con $V \to \infty$

$$\frac{1}{V}\log(1-z)\to 0$$

y entonces

$$\begin{split} \beta p &= \frac{1}{\lambda^3} g_{5/2}(z) & v > v_c \\ \beta p &= \frac{1}{\lambda^3} g_{5/2}(1) & v \leq v_c \\ \beta p &= \frac{g_{5/2}(1)}{v_c g_{3/2}(1)} \end{split}$$

es decir que la presión p no depende del v

Con $v > v_c$

$$p = \frac{kTg_{5/2}(z)}{\lambda^3} = \left(\frac{h^2}{2\pi m}\right)\frac{1}{\lambda^3}g_{5/2}(z)$$

que conlleva a

$$kT = \left(\frac{h^2}{2\pi m}\right)\frac{1}{\lambda^2} \qquad p = \left(\frac{h^2}{2\pi m}\right)\frac{g_{5/2}(z)}{v^{5/3}[g_{3/2}(z)]^{5/3}}$$

y con $v > v_c$

$$pv^{5/3} = \left(\frac{h^2}{2\pi m}\right) \frac{g_{5/2}(z)}{[g_{3/2}(z)]^{5/3}}$$

 $con v \leq v_c$

$$p = \frac{kT}{v_c} \frac{g_{5/2}(1)}{g_{3/2}(1)}$$

Vemos que en $v = v_c$ es

$$\begin{split} pv^{5/3} &= \left(\frac{h^2}{2\pi m}\right) \frac{g_{5/2}(1)}{[g_{3/2}(1)]^{5/3}} \\ p &= \left(\frac{h^2}{2\pi m}\right) \frac{g_{5/2}(1)}{v_c g_{3/2}(1)} \frac{1}{\lambda^2} = \frac{kT}{v_c} \frac{g_{5/2}(1)}{g_{3/2}(1)} \end{split}$$

y entonces se ve que es continua.

$$\begin{split} \beta p &= \frac{1}{\lambda^3} g_{5/2}(z) \quad v \geq v_c \\ &\qquad \qquad \beta p = \frac{1}{\lambda^3} g_{5/2}(1) \quad v \leq v_c \\ &\qquad \qquad \frac{\lambda^3}{v} = g_{3/2}(z) \quad v > v_c \\ &\qquad \qquad \frac{\lambda^3}{v} = g_{3/2}(1) \quad v = v_c \end{split}$$

$$\bullet \quad v \geq v_c$$

$$\begin{split} p &= \frac{kT}{v_c} g_{5/2}(z) = \frac{(2\pi m)^{3/2}}{h^3} (kT)^{5/2} g_{5/2}(z) \\ p &= \left(\frac{h^2}{2\pi m}\right) \frac{1}{\lambda^5} g_{5/2}(z) = \left(\frac{h^2}{2\pi m}\right) \frac{g_{5/2}(z)}{v_c^{5/3} [g_{3/2}(z)]^{5/3}} \\ \hline pv^{5/3} &= \left(\frac{h^2}{2\pi m}\right) \frac{g_{5/2}(z)}{g_{3/2}(z)^{5/3}} \end{split}$$

• $v \le v_c$

$$p = \frac{kT}{v_c} g_{5/2}(1) = \boxed{ \left(\frac{kT}{v_c} \right) \frac{g_{5/2}(1)}{g_{3/2}(1)} }$$

Las isotermas del gas ideal de Bose serán algo como

Una dada T_1 determina un \boldsymbol{v}_{c_1} pués

$$\frac{\lambda^3(T_1)}{v_{C_1}} = g_{3/2}(1) \quad \to \quad v_{C_1} = \frac{\lambda^3(T_1)}{g_{3/2}(1)}$$

y en la zona condensada p no depende del v.

Si ponemos todo en función de T resulta

 $\lambda^3(T) \propto T^{-3/2}$ A medida que T sube el v_c es más pequeño.

$$\begin{split} v &\leq v_c \qquad p = \frac{(2\pi m)^{3/2}}{h^3} (kT)^{5/2} g_{5/2}(1) \\ \frac{dp}{dT} &= \frac{5}{2} \frac{(2\pi m)^{3/2}}{h^3} (k)^{5/2} T^{3/2} g_{5/2}(1) = \frac{5}{2} \frac{k}{\lambda^3} g_{5/2}(1) = \frac{5}{2} \frac{k}{v_c} \frac{g_{5/2}(1)}{g_{3/2}(1)} \\ \\ \frac{dp}{dT} &= \frac{(5/2)kT g_{5/2}(1)}{T v_c g_{3/2}(1)} \end{split}$$

pero Clapeyron era

$$\frac{dp}{dT} = \frac{L}{T\Delta V} \qquad \Rightarrow \qquad \boxed{\frac{dp}{dT} = \frac{(5/2)kTg_{5/2}(1)/g_{3/2}(1)}{Tv_c}}$$

Es una transición de fase de primer orden

$$S = \frac{U + pV - \mu N}{T} = \frac{5/2pV - \mu N}{T}$$
$$\frac{S}{kN} = \frac{5}{2} \frac{pV}{NkT} - \frac{\mu}{kT}$$

v entonces

$$T > T_c$$

$$\frac{S}{kN} = \frac{5}{2} \frac{g_{5/2}(z)}{g_{3/2}(z)} - \log z$$

$$T < T_c$$

$$\frac{S}{kN} = \frac{5}{2} 0.513 \left(\frac{T}{T_c}\right)^{3/2}$$

Con
$$T \to 0$$

$$\frac{S}{kN} \propto T^{3/2}$$

y por lo tanto vale la tercer de la termodinámica. Para $T < T_c$ es

$$S = Nk \frac{5}{2} \frac{g_{5/2}(1)}{g_{3/2}(1)} \left(\frac{v}{v_c} \right) \quad \rightarrow \quad \frac{\partial S}{\partial V} = \frac{\partial S/N}{\partial V/N} = \frac{\partial s}{\partial v}$$

$$\frac{dp}{dT} = \frac{L}{T\Delta V} = \frac{T\Delta S}{T\Delta V} = \frac{\Delta S}{\Delta V}$$

 $\left(\frac{T_c}{T}\right)^{3/2} = \frac{\lambda^3}{a_{2/2}(1)n}$

siendo s entropía por unidad y v volumen específico.

$$\frac{\partial s}{\partial v} = \frac{(5/2)kg_{5/2}(1)/g_{3/2}(1)}{v_c} = \frac{dp}{dT}$$

y acá es donde vemos que es una transición de fase de primer orden.

1.1 Cuánticos IV -reubicar-

algunos temitas sueltos: números de ocupación gas de Fermi p y c_v gas de Fermi p y c_v Condensado de Bose

El coeficiente lineal del virial $1/2^{5/2}=0.1767767$ sale considerando las $f_{\nu}(z)$ hasta orden uno y tirando términos más allá.

El requerimiento $\mu<0$ viene de que el fundamental n_0 no puede tener población negativa

$$\begin{split} n_0 &= \frac{1}{\mathrm{e}^{\beta(e_0 - \mu)} - 1} = \frac{1}{\mathrm{e}^{-\beta\mu} - 1} \ge 0 \\ &= \mathrm{e}^{-\beta\mu} - 1 > 0 \qquad \Rightarrow \quad \mu < 0 \end{split}$$

Con $\mu \to 0^-$ tenemos $n \to \infty$

En el caso del condensado establecemos desde

$$\frac{\lambda^3(T)}{v} = g_{3/2}(1)$$

que lleva para T_c (para vfijo) o v_c (para Tfija) versiones evaluadas de la anterior ecuación.

Para la población de los estados excitados

$$\begin{split} p_x &= \frac{h}{V^{1/3}} n_x \Rightarrow \boldsymbol{p} = \frac{h}{V^{1/3}} \boldsymbol{n} \\ \frac{n_{e_i}}{V} &= \frac{1}{V} \frac{1}{z^{-1} \operatorname{e}^{\beta e_i} - 1} \leq \frac{1}{V(\operatorname{e}^{\beta e_i} - 1)} = \frac{1}{V(\sum_{l=1}^{\infty} (\beta e_i)^l / l!)} \end{split}$$

pués $z^{-1} = 1/z \le 1$

$$\beta e = \frac{\beta p^2}{2m} = \frac{\beta}{2m} \frac{h^2}{V^{2/3}} (n_x^2 + n_y^2 + n_z^2)$$

¿El condensado BE requiere población de los niveles o V total de algún tipo; unas consultas agarradas con clip: ¿porqué hay una cúspide en C_v ? ¿transiciones?

$$\frac{2m}{V^{1/3}\beta h^2(\sum_{l=1}...)}\to 0 \quad \text{ si } \quad V\to\infty$$

y entonces

$$\frac{n_e}{V} \to 0$$
 si $V \to \infty$

Esto significa que si V es muy grande, en el condensado se tenderá a que todas las partículas se hallen en e=0 pues

$$\frac{N_e}{N} \to 0$$
 $\frac{N_0}{N} \to 1$

Véamoslo en la ecuación de N,

$$\frac{\lambda^3 N}{V} = g_{3/2}(1) + \frac{\lambda^3}{V} \frac{z}{1-z}$$

y si $z \to 1$ de forma que $z/(1-z) \gg 1$ entonces $g_{3/2}(1)$ es despreciable de modo que

$$\frac{\lambda^3 N}{V} \approx \frac{\lambda^3}{V} \frac{z}{1-z} = \frac{\lambda^3 N_0}{V}$$

y se da que $N \sim N_0$.

En Bose se da 0 < z < 1

Con $z\ll 1$ es $\lambda^3/v\approx z$ y entonces $z\approx 1/(v/\lambda^3)$. Con z=1 es $\lambda^3/v=2.612$ n pero si $\lambda^3/v>2.612$ entonces z no se mueve y sigue en su valor 1.

1.1.1 Cuánticos 5 - Cuánticos 5b -reubicar-

presión gas de Bose

 C_V gas de Bose

El condensado de Bose es una transición de fase de primer orden. Crece la población del fundamental de modo espectacular. El parámetro λ^3/V se encarga de adjustar la población del fundamental.

límite clásico función de partición cálculo de $Tr(e^{-\beta A})=Q_N(V,T)$ diferencia con el caso clásico potencial efectivo

Ver la transición de fase con el tema del calor latente. ¿Cómo era lo de Clayperon? Podemos comparar presión con el gas ideal para reconoder si es Fermi o Bose.

El C_V es continuo. Veamos que da

$$T < T_C$$
 $\frac{C_V}{Nk} \propto T^{3/2}$
$$T = T_C$$
 $\frac{C_V}{Nk} \approx 1.925 > \frac{3}{2}$
$$T > T_C$$
 $\frac{\partial}{\partial T} \left(\frac{3}{2} T \frac{g_{5/2}(z)}{g_{3/2}(z)} \right) \frac{C_V}{Nk}$

La flecha de abajo señala una región de coexistencia. Entonces el fundamental se empieza a poblar mucho. Cuando tengo todos en el condensado es $S \to 0, T \to 0$ y se ve que satisface la tercer ley. Los boltzmanniones no cumplen esto (no están pensados para satisfacer la tercer ley).

Tiene calor latente ΔH , entonces tenemos una transición de fase de primer orden.

1.1.2 Límite clásico de la función de partición

Cuando se overlapean las funciones de onda en las partículas hay que realizar las perturbaciones correspondientes. El límite clásico es la no permutación. La simetría hace surgir términos efectivos de interacción (atractivos o repulsivos)

EJEMPLO 1.1 Problema 5

Se tiene lo siguiente:

$$\frac{m}{2}(\omega_x^2x^2+\omega_y^2y^2+\omega_z^2z^2)$$

es decir un planteamiento semiclásico, de manera que considero un continuo.

Primero se considera el caso 1D, entonces es

$$E = \frac{m}{2}\omega^2 x^2 + \frac{p^2}{2m}$$

y hago la conversión al continuo según

$$\sum_{\text{estados}} \longrightarrow \frac{1}{h} \int dx dp \longrightarrow \int g(e) de$$

Con el cambio de variables $R^2 = X^2 + Y^2$ se tienen

$$dx = \sqrt{2/(m\omega^2)}dX \qquad dp = \sqrt{2m}dY$$

de modo que $dXdY = 2\pi RdR = \pi de$ y como

$$\frac{1}{\hbar}dxdp = \frac{1}{\hbar\omega}de$$

se ve que $g(e)=1/(\hbar\omega)$. Hemos hallado un g(e) constante, lo cual parece razonable porque es el espaciado entre niveles de energía para el oscilador armónico en el caso cuántico. Entonces este enfoque semiclásico lleva al mismo resultado,

$$\Delta E = \hbar \omega \qquad H = \left(n + \frac{1}{2}\right) \hbar \omega \qquad g(e) = \frac{\# \text{ de estados}}{\text{unidad de energía}}$$

Vayamos ahora al caso 3D

$$E = \frac{m\omega^2}{2}(x_1^2 + x_2^2 + x_3^2) + \frac{1}{2m}(p_1^2 + p_2^2 + p_3^2)$$

y como $R^2=x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_3^2$ que es el módulo al cuadrado de un vector en \mathbb{R}^6 . De tal suerte es

$$\frac{d^3xd^3p}{h^3} = \frac{2^3}{h^3\omega^3} d^3X d^3Y = \frac{R^5dR}{(\hbar\omega)^3}$$

donde $d^3Xd^3Y=\pi^3R^5dR$ y el volumen $\Theta_{6D}=\pi^3R^6/6$ de tal manera que

$$g(e) = \frac{1}{2(\hbar\omega)^3}e^2 de$$

Ahora, en 3D, g(e) sí depende de la energía. El número de estados va de $g_{xp}d^3xd^3p$ a g_ede . No interesa ver el límite termodinámico, $N\to\infty, V\to\infty$ con N/V finito. En el problema del oscilador armónico N/ω^3 será el límite termodinámico. Si $\hbar\omega\ll kT$ entonces lo puedo considerar un continuo. $kT_c\sim 20-200\hbar\omega$, este es el caso en condensación de Bose

$$N = \sum_{e} \frac{z \, \mathrm{e}^{-\beta e}}{1 - z \, \mathrm{e}^{-\beta e}} \longrightarrow \int_{0}^{\infty} \frac{g(e) de}{z^{-1} \, \mathrm{e}^{\beta e} - 1} + \frac{z}{1 - z} + \frac{z \, \mathrm{e}^{-\beta e_{1}}}{1 - z \, \mathrm{e}^{-\beta e_{1}}}$$

donde separo la contribución de finitos términos lo cual no debería joder. La primer integral es, mediante el cambio de variables $\beta e=x$

$$I = \frac{1}{2(\hbar\omega)^3} \int_0^\infty \frac{1}{\beta} \frac{x^2 dx}{z^{-1} e^x - 1}$$

relacionados con la expresión de g_{ν} (que tendría que estar en un apéndice al final). Importante remark: notemos que con $\nu > 1$ con $z \to$ converge pero con $\nu = 1$ (lo cual tiene que ver con la dispersión y la dimensión del problema) con $z \to 1$ diverge.

$$\begin{split} N &= \frac{z}{1-z} + \left(\frac{kT}{\hbar\omega}\right)^3 g_3(z) + \frac{z\,\mathrm{e}^{-\beta e_1}}{1-z\,\mathrm{e}^{-\beta e_1}} \\ N\omega^3 \left(\frac{\hbar}{kT}\right)^3 &= \left(\frac{\omega\hbar}{kT}\right)^3 \frac{z}{1-z} + g_z(z) + \left(\frac{\omega\hbar}{kT}\right)^3 \frac{z\,\mathrm{e}^{-\beta e_1}}{1-z\,\mathrm{e}^{-\beta e_1}} \end{split}$$

donde $g_3(z)$ es creciente pero como $z \leq 1$ está acotada. El primer término permanece macroscópicamente poblado en el límite termodinámico. El último término en cambio es aproximadamente nulo en dicho límite.

Puedo despejar una T_c

Para la ${\cal T}_c$ sería

$$N\left(\frac{\omega\hbar}{kT}\right)=g_3(z=1)$$

de manera que

$$N=N_0+\left(\frac{kT}{\omega\hbar}\right)g_3(z\neq 1)$$

y para $T < T_c$ es

$$N = N_0 + N \left(\frac{T}{T_0}\right)^3 \qquad \frac{N_0}{N} = 1 - \left(\frac{T}{T_0}\right)^3$$

La energía será

$$E = \int_0^\infty \frac{g(e)de}{z^{-1} e^{\beta e} - 1} = 3 \frac{(kT)^4}{(\hbar \omega)^3} g_4(z)$$

Con $N_0 \ll N$ es

$$N \sim \left(\frac{kT_c}{\omega \hbar}\right) g_3(1)$$

y finalmente

$$\frac{E}{NkT_c} = \frac{3g_4(1)}{g_3(1)} \left(\frac{T}{T_c}\right)^4. \label{eq:energy}$$

EJEMPLO 1.2 Problema 6

Relacionado con excitaciones en un sólido.

Entonces.

$$\begin{split} E_{\mathrm{cin}} &= \frac{1}{2} m \sum_{i=1}^{3N} \dot{x}_i^2 \\ E_{\mathrm{pot}} &= \phi_0 + \frac{1}{2} \sum_{ij} \left. \frac{\partial^2 \phi}{\partial x_j \partial x_i} \right|_{x_{i0}, x_{j0}} (x_i - x_i^0)^2 (x_j - x_j^0)^2 + \dots \end{split}$$

Pero podemos cambiar de coordenadas

$$H = \phi_0 + \sum_{i=1}^{3N} \frac{1}{2} (m\dot{q}_i^2 + \omega_i^2 q_i^2),$$

donde $\{q_i\}$ son los modos normales. Un modo normal es un oscilador armónico. Clásicamente tenemos los modos normales $\boldsymbol{e}\,\mathrm{e}^{i(\boldsymbol{k}\cdot\boldsymbol{x}-\omega t)}$ donde estos son vectores de polarización y \boldsymbol{k} es el vector de propagación y \boldsymbol{e} el vector de polarización.

Cuánticamente hablamos de fonones, que serán cuantos de excitación de cada modo normal. El número de fonones es análogo al formalismo de los números de ocupación. Los fonones se pueden crear y destruir sin invertir energía de manera que $\mu=0$ pero aún utilizo la estadística de Bose. Podemos considerar dos aproximaciones.

- Aproximación de Einstein: $\omega_i = \omega$ constante para todo i.
- Aproximación de Debye: El sólido es un medio elástico, continuo y deformable, el espectro de ω va al continuo.

Quiero usar Debye. En 3D asumo dispersión como $\omega = ck$ y entonces se tiene

$$g(\omega)d\omega = \frac{3V}{\hbar^3} 4\pi p^2 \ dp = \frac{3V}{(2\pi)^3} 4\pi k^2 \ dk$$

donde $\mathbf{p} = \hbar \mathbf{k}$ o bien integrando y considerando relación $\omega c = k$,

$$3N = \int_0^{\omega_D} d(u) \, du = \int_0^{\omega_D} \frac{V\omega^2}{2\pi^2 c^3} \, d\omega$$

desde la cual despejamos la frecuencia de corte

$$\omega_D = \left(\frac{6\pi^2}{v}\right)^{1/3}$$

que se puede escribir también en términos de una longitud de onda de corte como

$$\omega_D = rac{2\pi}{\lambda_D} c \qquad \lambda_D = \left(rac{4\pi v}{3}
ight)^{1/3}.$$

La integral da 3N y entonces se define una ω de corte. Claramente la ω no puede implicar desplazamientos mayores a la distancia interparticular.

En el caso de D dimensiones se tiene $\omega=\alpha|{\pmb k}|^s$ y el número de estados entre p,p+dp da algo como

$$g\frac{L^D}{h^D}d^Dp$$

donde g es por la polarización, y el L es la discretización por las condiciones de contorno periódicas. Es

$$g\frac{L^D}{(2\pi)^D}Ak^{D-1}dk$$

que es la integral sobre la parte angular que en D=3 es $A=4\pi$ y en D=2 es $A=2\pi$. Con esto se puede arribar a

$$g(\omega)d\omega = g \frac{L^D}{(2\pi)^D} A \frac{1}{S\alpha^{D/s}} \omega^{(D-s)/s} d\omega,$$

pero esto deber cortarse en

$$DN = \int_0^{\omega_D} g(\omega) \, d\omega.$$