Advanced Lab II: Lab Template

LAB #?: A Lab

Dan Shields, Other Folks PH326 Section ? Lab Group ?

Experiment Date: ... Report Due Date: ...

Abstract

A NaI(Tl) scintillation detector was used in recording γ emissions produced by $^{137}\mathrm{Cs}$ and $^{60}\mathrm{Co}$. Other Things occurred. Some results were found with \pm errors.

Grade	Score
Abstract and Cover Pg.	
Fig. & Plt.	
Data & Error Ana.	
Writing	
Total	

1 Introduction

Some things were important to introduce the reader on about this lab.

2 Apparatus

A cool figure (Figure 1).

Fig. 1: NaI(Tl) detector, including the crystal, the optical coupling, and the photomultiplier tube.

Yet another! (Figure 2) This is getting interesting now. Really hooking the reader on your lab report.

Fig. 2: Photomultiplier tube [2].

3 Data Collection

You might have used the MAESTRO® software.

4 Data Analysis

Signals rise time was $\approx 20~\mu s$ and a fall time that is large comparatively at $\approx 300~\mu s$. Some data tables might look like:

	Source	Energy (keV)	Peak (bin)	Fit FWHM (bin)	Net Area (bin)	Net Count Rate (s)
	$^{137}\mathrm{Cs}$	661.657 ± 0.0003	1±1	1	1±1	1
Ì	⁶⁰ Co	1173.228 ± 0.0003	1±1	1	1±1	1
		1332.492 ± 0.0004	1±1	1	1±1	1
ĺ	$^{40}\mathrm{K}$	1460.822 ± 0.0006	1±1	1	1±1	1

Tab. 1: Spectral information from MAESTRO®. Energy from [5]

A fancy equation:

$$Energy = mx + B \tag{1}$$

You probably will use [4] to do some error analysis.

Fig. 3: $r^{-1}{=}\mathrm{Blue}{,}r^{-2}{=}\mathrm{Green},\,r^{-3}{=}\mathrm{Red},\,r^{-?}$, Data=Blue points

5 Conclusion

Some good and bad things happened.

References

- [1] Lawrence Wiencke, Professor for PHGN-326. Instructions for Experiments: Experiment 1: Scintillation Detector. Colorado School of Mines, Physics Department, 2017.
- [2] Mortimer Abramowitz & Michael W. Davidson, "Concepts in Digital Imaging Technology, Photomultiplier Tubes", Last modification: Friday, Jul 16, 2004 at 08:16 AM, http://micro.magnet.fsu.edu/primer/digitalimaging/concepts/photomultipliers.html
- [3] C.R. Nave, "Inverse Square Law, Radiation", Georgia State University, Department of Physics and Astronomy, 2006, http://hyperphysics.phy-astr.gsu.edu/HBASE/forces/isq.html
- [4] John R. Taylor, Professor at the University of Colorado Department of Physics. "An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements" Second Edition, 1982.
- [5] S.Y.F. Chu, L.P. Ekstrm, and R.B. Firestone1. "The Lund/LBNL Nuclear Data Search", Last Modification:February 1999, http://nucleardata.nuclear.lu.se/nucleardata/toi/perchart.htm