

Presentación #3 Análisis geoespacial

Mateo López Mogollón Ing. Civil Programa: Esp. R.H.

Contextualización E2

Problema:

Evolución de coberturas y su efecto en aportes de caudal durante eventos extremos.

Caso de estudio:

Fuente: portal área metropolitana

Motivación:

Comprender desde una perspectiva geoespacial, las causas de inundación en entornos urbanos en escala de microcuenca.

Fuente: infobae, 29/04/2025

Contextualización E2

Discretización de eventos: cuando el sensor registre

nivel de emergencia en estación de nivel fija

Fuentes de información:

SIATA (estaciones de nivel y precipitación),

ALOS PALSAR (MDT, 12.5m)

IDEAM (coberturas)

IGAC (capas vectoriales diversas)

Estaciones meteorológicas AMVA Fuente: portal SIATA

Serie de niveles (abril, 2025), en 87 estaciones red SIATA

Umbral de riesgo, descripción SIATA.

Contextualización E2

20 estaciones (amarillo) de 68 con reporte de riesgo y sus cuencas (rojo). AMVA

- ID: código estación
- ESTACION: Drenaje al que pertenece
- DESBORDE: Si presento crecientes en el mes (1), sino (0)

0.086287003 92.57914463999... 289.2758789062... 1517.000000000.

0.591719081 10.42586376000... 5.502340950000... 460.2601318359... 1761,000000000.

- AREA: área de la cuenca aportante [km2]
- TIA: área impermeable / área total [%]
- PPT: precipitación promedio diaria [mm/día]
- COTA: elevación de terreno [m.s.n.m.]

AREA IMP

Dataframe de puntos

AREA

Matriz de vecindad

Red de Vecindad (DESBORDE=True) con fondo de mapa

Matriz de vecindad por distancias, D = 5 km

Inverso de la distancia. Punto 4

Rezago espacial (área)

Comparación rezago área de cuenca km^2

Rezago espacial (TIA)

Comparación rezago % TIA de cuenca (total impervious area)

Índice de MORAN

Clasificación K means

Modelo OLS

 R^2 = 2.8% AIC = 99.98

Data set :	unknown			
Weights matrix :				
Dependent Variable :D	ESBORDE_BIN	Numbe	er of Observations	: 68
Mean dependent var :	0.3088	Numbe	er of Variables	: 7
S.D. dependent var :	0.4654	Degre	es of Freedom	: 61
R-squared :	0.0288			
Adjusted R-squared :	-0.0668			
Sum squared residual:	14.0971	F-sta	atistic	: 1.1546
Sigma-square :	0.231	Prob((F-statistic)	: 0.3424
S.E. of regression :	0.481	Log]	likelihood	: -42.988
Sigma-square ML :	0.207	Akaik	ce info criterion	: 99.975
S.E of regression ML:	0.4553	Schwa	arz criterion	: 115.512
Variable	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT	0.33993	0.68069	0.49939	0.61930
AREA	-3467.30164	160158.87635	-0.02165	0.98280
AREA IMP	3467.26366	160158.87641	0.02165	0.98280
AREA PERM	3467.29857	160158.87634	0.02165	0.98280
TIA	-0.00005	0.00250	-0.02180	0.98268
PPT	0.00149	0.00108	1.38204	0.17200
COTA	-0.00031	0.00032	-0.96428	0.33871

Modelo SAR

 R^2 = 6.76% AIC = 100.64

SUMMARY OF OUTPUT: MAX	IMUM LIKELIHOOD	SPATIAL LAG (ME	THOD = FULL)	
	unknown			
Weights matrix :				
Dependent Variable :D			er of Observations	
Mean dependent var :			er of Variables	: 8
S.D. dependent var :		Degre	ees of Freedom	: 60
	0.0676			
Spatial Pseudo R-squar				
Log likelihood :				
Sigma-square ML :	0.2018		ke info criterion	
S.E of regression :	0.4492	Schwa	arz criterion	: 118.395
Variable	Coefficient	Std.Error	z-Statistic	Probability
CONSTANT	0.26118	0.63608 263183.87253		0.68136
		263183.87253		0.98914
AREA IMP				0.98914
AREA PERM TIA	3580.78450 0.00044	263183.87252 0.00234	0.01361 0.18793	0.98914 0.85093
PPT COTA	0.00163	0.00102	1.59325 -1.10124	0.11110 0.27079
	-0.00033 0.16681	0.00030 0.14344	-1.16124 1.16290	0.27679 0.24487
W_DESBORDE_BIN	0.10081	0.14344	1.10290	0.24487
SPATIAL LAG MODEL IMPA	cts			
Impacts computed using	the 'simple' m	ethod.		
Variable	Direct	Indirect	Total	
AREA	-3580.7868	-716.8914	-4297.6782	
AREA IMP	3580.7519	716.8844	4297.6363	
AREA PERM	3580.7845	716.8910	4297.6755	
TIA	0.0004	0.0001	0.0005	
PPT	0.0016	0.0003	0.0020	
COTA	-0.0003	-0.0001	-0.0004	

Modelo SLX

 R^2 = 13% AIC = 104.49

REGRESSION RESULTS				
REGRESSION RESULTS				
SUMMARY OF OUTPUT: ORDI	INARV LEAST SOUAR	EC		
SUMPART OF OUTPOIL ORDS	MANY LEAST SYNAN			
Data set :	unknown			
Weights matrix :	None			
Dependent Variable :DE		Number	of Observations	s: 68
Mean dependent var :	0.3088		of Variables	: 13
S.D. dependent var :	0.4654		s of Freedom	: 55
R-squared :	0.1300	2-6	, occao	. 22
Adjusted R-squared :	-0.0598			
Sum squared residual:	12.6279	F-stati	istic	: 1.9025
Sigma-square :	0.230	Prob(F-	-statistic)	: 0.0542
S.E. of regression :	0.479		kelihood	: -39.246
Sigma-square ML :	0.186		info criterion	: 104.491
S.E of regression ML:	0.4309	Schwarz	z criterion	: 133.345
Variable	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT	2.18705	2.15800	1.01346	0.31528
AREA	4567269.54256	260995.01519	17.49945	0.00000
AREA IMP	-4567269.55029	260995.00949	-17.49945	0.00000
AREA PERM	-4567269.55288	260995.00775	-17.49945	0.00000
TIA	0.00300	0.00262	1.14334	0.25785
PPT	0.00378	0.00142	2.66626	0.01005
COTA	-0.00064	0.00039	-1.62650	0.10956
W_AREA	-2807.98762	393630.43056	-0.00713	0.99433
W_AREA IMP	2807.82670	393630.43075	0.00713	0.99433
W_AREA PERM	2807.98924	393630.43059	0.00713	0.99433
W_TIA	-0.00825	0.00674	-1.22435	0.22604
W PPT	-0.00731	0.00275	-2.65744	0.01029
_	0.00055	0.00445	0 40440	0 (2242
W_COTA	0.00056	0.00116	0.48142	0.63213
_	0.000 56	0.00116 	0.48142 	0. 63213

Modelo SEM

 $R^2 = 6.31\%$

Data set				
Weights matrix	: unknown			
Dependent Variable	:DESBORDE_BIN	Numb	er of Observation	is: 68
Mean dependent var	: 0.3088	Numb	er of Variables	: 7
S.D. dependent var	: 0.4654	Degr	ees of Freedom	: 61
Pseudo R-squared	: 0.0631			
N. of iterations	: 1	Step	1c computed	: No
Variabl	le Coefficient	Std.Error	z-Statistic	Probability
CONSTAN	NT 0.32222	0.51412	0.62674	0.53083
ARE	A 7907.38013			
AREA IM	MP -7907.41345			
AREA PER	RM -7907.37803			
TI	[A 0.00073	0.00240	0.30509	0.76030
PP	PT 0.00184	0.00097	1.89351	
COT				
lambd				0.25083
	·	<u> </u>	·	

Referencias:

- Han Chen, Yizhao Wei, Jinhui Jeanne Huang. (2023). Altered landscape pattern dominates the declined urban evapotranspiration trend.
- Guzman G. (2018). Análisis de la influencia del diseño urbano en la meteorología del Valle de Aburra
- Osorio D. (2019). Vulnerabilidad de la disponibilidad actual y futura del recurso hídrico en el valle de Aburra y sus cuencas abastecedoras.

