Exam Practice Questions

Calculate the estimators I:

Consider the following dataset, where Y is the dependent variable and X1 and X2 are the independent variables:

Given Data:			
Observation	Y	X_1	X_2
1	5	1	2
2	10	2	3
3	15	3	4
4	20	4	5

We want to fit a linear regression model of the form $Y = \beta 0 + \beta 1X1 + \beta 2X2 + e$

Compute the least squares estimates of β using the matrix formula:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Calculate the X^T * X and X^T *Y

Result

Now, compute X^TX :

$$X^TX = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & 2 & 3 & 4 \ 2 & 3 & 4 & 5 \end{bmatrix} egin{bmatrix} 1 & 1 & 2 \ 1 & 2 & 3 \ 1 & 3 & 4 \ 1 & 4 & 5 \end{bmatrix} = egin{bmatrix} 4 & 10 & 14 \ 10 & 30 & 40 \ 14 & 40 & 54 \end{bmatrix}$$

Next, compute X^TY :

$$X^TY = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & 2 & 3 & 4 \ 2 & 3 & 4 & 5 \end{bmatrix} egin{bmatrix} 5 \ 10 \ 15 \ 20 \end{bmatrix} = egin{bmatrix} 50 \ 150 \ 200 \end{bmatrix}$$

We got the β 0, β 1 and β 2 when we multiply (X^T * X)**-1 and X^T * Y.

Calculate the estimators II:

The inverse of XT * X is given:

The inverse of X^TX is:

$$(X^TX)^{-1} = egin{bmatrix} 1.5 & -0.5 & 0 \ -0.5 & 0.5 & 0 \ 0 & 0 & 0.5 \end{bmatrix}$$

Find the estimators

Result

Now, multiply $(X^TX)^{-1}$ by X^TY :

$$eta = egin{bmatrix} 1.5 & -0.5 & 0 \ -0.5 & 0.5 & 0 \ 0 & 0 & 0.5 \end{bmatrix} egin{bmatrix} 50 \ 150 \ 200 \end{bmatrix} = egin{bmatrix} 0 \ 5 \ 10 \end{bmatrix}$$

The estimated coefficients are:

$$\beta_0=0,\quad \beta_1=5,\quad \beta_2=10$$

Thus, the estimated regression equation is:

$$Y = 0 + 5X_1 + 10X_2$$

Given our estimated model, calculate the MS reg and MS res:

Result

$$SS_{reg} = \sum (\hat{Y}_i - ar{Y})^2$$

Compute SS_{reg} :

$$egin{split} SS_{reg} &= (25-12.5)^2 + (40-12.5)^2 + (55-12.5)^2 + (70-12.5)^2 \ SS_{reg} &= (12.5)^2 + (27.5)^2 + (42.5)^2 + (57.5)^2 \ SS_{reg} &= 156.25 + 756.25 + 1806.25 + 3306.25 = 6025 \end{split}$$

Residual Sum of Squares (SS_{res}):

$$SS_{res} = \sum (Y_i - \hat{Y}_i)^2$$

Compute SS_{res} :

$$SS_{res} = (5 - 25)^2 + (10 - 40)^2 + (15 - 55)^2 + (20 - 70)^2$$

 $SS_{res} = (-20)^2 + (-30)^2 + (-40)^2 + (-50)^2$
 $SS_{res} = 400 + 900 + 1600 + 2500 = 5400$

- Degrees of Freedom for Regression (df_{reg}): Number of predictors = 2 (X_1 and X_2).
- Degrees of Freedom for Residual (df_{res}): n-p-1=4-2-1=1.

Mean Square Regression (MS_{reg}):

$$MS_{reg} = rac{SS_{reg}}{df_{reg}} = rac{6025}{2} = 3012.5$$

Mean Square Residual (MS_{res}):

$$MS_{res} = rac{SS_{res}}{df_{res}} = rac{5400}{1} = 5400$$

Now form the hypothesis for our model, is our model significant? (F test):

Result

Step 1: Calculate the F-statistic (F_{obs})

The F-statistic is calculated as:

$$F_{obs} = rac{MS_{reg}}{MS_{res}}$$

From the previous calculations:

- $MS_{reg} = 3012.5$
- $MS_{res} = 5400$

Now, compute F_{obs} :

$$F_{obs} = \frac{3012.5}{5400} \approx 0.5579$$

Step 2: Determine the Critical Value from the F-distribution Table

The critical value for the F-distribution depends on:

- Degrees of Freedom for Regression (df_{reg}): 2
- Degrees of Freedom for Residual (df_{res}): 1
- Confidence Level (α): 0.05

Using an F-distribution table or calculator, the critical value $F_{(2,1,0.05)}$ is approximately 18.51.

Step 3: Compare F_{obs} to the Critical Value

- $F_{obs} \approx 0.5579$
- ho Critical Value $F_{(2,1,0.05)} = 18.51$

Since $F_{obs}=0.5579<18.51$, we fail to reject the null hypothesis at the 0.05 confidence level.

Step 4: Interpretation

- The null hypothesis H_0 states that all regression coefficients (β_1 and β_2) are zero, meaning the predictors X_1 and X_2 do not significantly explain the variation in Y.
- Since F_{obs} is less than the critical value, we do not have sufficient evidence to reject H₀. This
 suggests that the regression model does not provide a significant fit to the data at the 0.05
 confidence level.

Final Answer:

- F-statistic (F_{obs}): 0.5579
- Critical Value (F_(2,1,0.05)): 18.51
- Conclusion: Fail to reject the null hypothesis H_0 at the 0.05 confidence level. The regression model is not statistically significant.

Does adding X3, X4, X5, X6, and X7 to the model have a significant impact on improving the model's predictions?

STAT 6004	Example (1.1	Page 6
	MLR EXAMPLE # .1 - GAS MILEAGE	4
Model: MODEL2 Dependent Variable: M	PG	
	Analysis of Variance	
Source	Sum of Mean DF Squares Square F Value	Prob>F
Model Error C Total	2 1339.21617 669.60809 66.903 29 290.25101 10.00866 31 1629.46719	0.0001
Root MSE Dep Mean C.V.		
	Parameter Estimates	
Variable DF	Parameter Standard T for HO: Estimate Error Parameter=0	Prob > {T}
INTERCEP 1 SIZE 1 HP 1	33.491421 1.47544969 22.699 -0.040148 0.00990172 -4.055 -0.016611 0.02250347 -0.738	0.0001 0.0003 0.4663

MLR EXAMPLE N.1 - GAS MILEAGE

Model: MODEL1

Dependent Variable: MPG

Analysis of Variance

Source				oquare	alue Prob>F
Model Error C Total		24 162.5 31 1629.4	9329 6	.77472	
Dep Mean 20.29		2.60283 20.29062 12.82774	R-squar Adj R-s		
		Parameter Estimates			
Variable	DF	Parameter Estimate	Standaro Erro		Prob > T
INTERCEP SIZE HP WEIGHT SHAPE CYLIN TRANS SPEEDS	1 1 1 1 1 1 1	45.026054 0.077614 -0.032959 -0.008264 1.283181 -3.169670 0.510739 1.869099	12.3747290 0.0303903 0.0191626 0.0022823 2.7764354 1.4471297 3.5867305 2.7891804	7 2.554 1 -1.720 6 -3.621 4 0.462 4 -2.190 9 0.142	0.0174 0.0983 0.0014 0.6481 0.0385 0.8880
INTERCEP SIZE HP WEIGHT SHAPE CYLIN TRANS SPEEDS	1 1 1 1 1 1 1	89.690772 44.187532 20.040986 88.815898 1.447078 32.501586 0.137370 3.042306			

Result

R(β 3, β 4, β 5, β 6, β 7 | β 1, β 2) = SSreg full - SSreg sub

Fobs = (SSreg full - SSreg sub / p) / MSres full model

To form this hypothesis we first look at the SSreg of the sub-model =1339, Next, we look at the SSreg of the full model containing X3, X4, X5, X6 = 1466

- 1. SSreg full model SSreg sub model = 1466 -1339 = 127
- 2. Divide it by the number of parameters in the model = 127 / 5 = 25.4
- 3. Divide it by MSres full = 25.4 / 6.775 = 3.75 = Fobs
- 4. Look at the F table for (p, n-p-1) = F(5,24) = 2.62
- 5. Fobs (3.75) > Ftable (2.62), Reject the null hypothesis
- 6. Rejecting the H0 means adding these predictors will improve the model's prediction quality significantly.

F test:
$$R(\beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{7} | \beta_{1}, \beta_{2}) = R(\beta_{1}, \beta_{2}, \dots, \beta_{7}) - R(\beta_{4} | \beta_{5})$$

$$= 1466.874 - 1339.216$$

$$= 127.658$$

$$= 127.658$$

$$F_{obs} = \frac{R(\beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{7} | \beta_{1}, \beta_{2})}{MS_{res}} = \frac{127.658}{6.775}$$

$$= 3.769 \sim F(5,24)$$

$$= 3.769 \sim F(5,24)$$

$$= 3.769 \sim F(5,24)$$

Can we remove β 4? β 3? B2? (MSres = 0.0499, n = 17)

```
a) Type I SS = sequential SS = R(\beta_1) = R(\beta_1)
```

Result

X4: Fobs = 0.0041 / 0.0499 = 0.082, F(1, 15) = 4.54, Accept the H0 and drop X4,

X3: Fobs = 0.1353 / 0.0499 = 2.710, F(1,15) = 4.54, **Accept the H0** and **drop** X3, X2: Fobs=0.2825 / 0.0499 = 5.65, F(1,15) = 4.54, **Reject the H0** and **keep** X2.

	e) quantile
	e) example
	= R(B4 B1, B2, B3) /1 -0041 - 082 ~ F(1)1
	MSres0499
	741
	F(1,15), 95 = 4.54 => non-significant => drop X
	Do we need x3?
بي	Do we need X^2 . Folios = $R(\beta_3 \beta_1\beta_2)/I = .1353 = 2.710 = 2.4.54$ MSresfull = 0499 The properties of the state of the properties o
	1005 MSress
	Mistesfull to mon-cionificant to drop X3
. 1	The second secon
659	Do we need X22
	$R(\beta_2 \beta_1)/1 = .2825 = 5.63 \%$
	msresfull .0499
	=> significant
	⇒ stop and include X2 and X Y= Bo+ BIX+BIX
	After deciding that 2nd order model is adequate, we must run the 2nd order model to obtain the
	we must run the 2nd order model to obtain. The
	(114
	PROC REGIONAL
	$MODEL Y = X XZ_J$
	t t from this is on p.3
	1 They deliver to the second state of the seco
	ŷ= .1776 + 2.0469 X1756 X2
	7 147

Can we remove the β4 from the model?

		Analy	sis of Variand	ce .		
Source			in or	Mean ware F Val	ue Prob>F	
Model Error		7 1466.8	6.7	5341 30.9	0.0001	
C Total		31 1629.4	6719			
Root	MSE Mean	2.60283 20.29062 12.82774	R-square Adj R-sq	0.9002 0.8711		
		Para	meter Estimate	· s		
Variable	DF	Parameter Estimate	Standard Error	T for RO: Parameter∞0	Prob > T	
INTERCEP SIZE HP WEIGHT	1 1 1	45.026054 0.077614 -0.032959 -0.008264	12.37472908 0.03039037 0.01916261 0.00228236	3.639 2.554 -1.720 -3.621 0.462	0.0013 0.0174 0.0983 0.0014 0.6481	
SHAPE CYLIN TRANS SPEEDS	1 1 1	-3.169670 0.510739 1.869099	1.44712974 3.58673059 2.78918048	-2.190 0.142 0.670	0.0385 0.8880 0.5092	
Variable	DF	Type II ss		ا م		
INTERCEP SIZE HP WEIGHT SHAPE	1 1 1	89.690772 44.187532 20.040986 88.815898 1.447078		· · · · · · · · · · · · · · · · · · ·		
CYLIN TRANS SPEEDS	1 1	32.501586 0.137370 3.042306				

Result

To see if we can remove the $\beta 4$ from the model we have to look at the predictors.

$$\beta$$
1 = SIZE, B2 = HP, β 3 = WEIGHT, β 4 = SHAPE, ...

SHAPE predictor has 1.4471 Type I SS, which is equivalent to:

R(
$$\beta4$$
 | $\beta1$, $\beta2$, $\beta3$, $\beta5$, $\beta6$, $\beta7$) = SS full - SS sub

F-obs = (R(β 4 | β 1, β 2, β 3, β 5, β 6, β 7) / p) / MS res full = ((SS full - SSsub) / p) / MSres full model

(1.4471 / 1) / 6.774 = 0.214

Now we want to compare the F-obs with F-table = F(1,24) = 4.26

We now can compare F-obs < F-table, **Reject H0**, We can drop $\beta 4$ because its contribution to the model is not significant.

Note: You can directly look at the **"T for H0: Parameter = 0"** value from the table to see if the parameter is significant according to Type II SS (partial SS)

!!! F-obs = T-obs 2 — 0.462 2 = 0.214

c) Type I SS = partial SS
added to the model. For each vbl. separately we ask whether it would be worth adding it all the other
whether it would be worth adding it all
predictors were already in the model.
example. II. (p. 2 of output): $R(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7) = 44.1875$
R(β2/β3,β3,β4,β5,β6,β7) = 20.0410
to tested as a partial
ii) each of these can be tested as a partial
test.
example: Ho: By=0 in full model
Fobs = R(β4 β1,β2,β3,β5,β6,β7)/1 = 1.4471/1 Fobs = MS resfull 6.7747
MS restall
21" A F
= 4.26 = paccept to for x=,05
F(1/24), 95 = 4.26 = Daccept to for K=,05 =D we could delete X4 from the full model =D we could delete X4 from the full model
without significant loss in predictability
(1) cas extent contains
tabs = V Fobs Under heading
("I FOR HO PARAMETER = 0") Note that for
$\frac{X_4 \left(SHAPE\right)}{tobs} = \frac{462}{462} = \sqrt{214} = \sqrt{Fobs}$
Xy (SHAPE) , Tobs - Tour with our condusion
p-value is 6.481, consistent with our conduction

Explain

Explain the following SAS inputs

```
1. Proc PRINT;
```

- 2. Proc REG;
 - Model Y = X X2 X3 X4 / SS1;
- 3. Proc REG;
 - Model Y = X X2;
- 4. Proc REG;
 - MODEL MPG = SIZE WEIGHT SHAPE / P SS2;
 - RUN;

- 1. Prints the data, the output contains the values of Y, X, X2, X3, X4 (ie: $X2 = X^2$)
- 2. To examine 4th order model (X, X^2, X^3, X^4)
- 3. To examine 2th order model (X, X^2)
- 4. Builds a multiple linear regression model to predict Y (MPG) with X1 (Size), X2 (Weight) and X3 (Shape) features. Options: P = Requests predicted values (Ŷ) and residuals (e) for each observation. SS2: Provides the Type II Sum of Squares for the model.

Draw the flow chart for the Forward Selection:

Draw the flow chart for the Backward Elimination:

Draw the flow chart for the Stepwise Procedure:

Result

Explain the cross-validation procedure step by step.

- 1. **Split Data:** Randomly divide data into training and validation sets.
- 2. **Fit Model:** Use the training set to select variables and fit the model.
- 3. **Predict:** Apply the model to the validation set to predict outcomes.

- 4. **Compare:** Check prediction accuracy by comparing predicted and actual values, often using sum of squared errors (SSE).
- 5. **Refit or Revise:** If the model performs well, refit using all data for stable estimates. If not, reduce predictors or revise the model to avoid overfitting.

Look at the Graps, and write the cause of outlier pattern or position (X or Y)

Result

a. Location X and Y

- b. Location X and Y, and Pattern
- c. Location X and Pattern
- d. Location Y and Pattern
- e. Only Pattern