Statistical Natural Language Parsing

Mausam

(Based on slides of Michael Collins, Dan Jurafsky, Dan Klein, Chris Manning, Ray Mooney, Luke Zettlemoyer)

Two views of linguistic structure: 1. Constituency (phrase structure)

- Phrase structure organizes words into nested constituents.
- How do we know what is a constituent? (Not that linguists don't argue about some cases.)

• Distribution: a constituent behaves as a unit that can appear in different places:

- John talked [to the children] [about drugs].
- John talked [about drugs] [to the children].
- *John talked drugs to the children about
- Substitution/expansion/pro-forms:
 - I sat [on the box/right on top of the box/there].
- Coordination, regular internal structure, no intrusion, fragments, semantics, ...

Two views of linguistic structure:

2. Dependency structure

 Dependency structure shows which words depend on (modify or are arguments of) which other words.

Why Parse?

- Part of speech information
- Phrase information
- Useful relationships

8

 \Rightarrow "the burglar" is the subject of "robbed"

The rise of annotated data: The Penn Treebank

[Marcus et al. 1993, Computational Linguistics]

```
( (S
  (NP-SBJ (DT The) (NN move))
  (VP (VBD followed)
   (NP
    (NP (DT a) (NN round))
    (PP (IN of)
     (NP
       (NP (JJ similar) (NNS increases))
      (PP (IN by)
        (NP (JJ other) (NNS lenders)))
       (PP (IN against)
        (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
   (, ,)
   (S-ADV
    (NP-SBJ (-NONE- *))
    (VP (VBG reflecting)
     (NP
       (NP (DT a) (VBG continuing) (NN decline))
      (PP-LOC (IN in)
        (NP (DT that) (NN market))))))
  (..)))
```

Penn Treebank Non-terminals

Table 1.2. The Penn Treebank syntactic tagset

ADJP	Adjective phrase
ADVP	Adverb phrase
NP	Noun phrase
DD	Dranagitional phr

PP Prepositional phrase

S Simple declarative clause

SBAR Subordinate clause

SBARQ Direct question introduced by *wh*-element

SINV Declarative sentence with subject-aux inversion

SQ Yes/no questions and subconstituent of SBARQ excluding wh-element

VP Verb phrase

WHADVP Wh-adverb phrase WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Constituent of unknown or uncertain category

* "Understood" subject of infinitive or imperative

O Zero variant of *that* in subordinate clauses

Trace of wh-Constituent

Statistical parsing applications

Statistical parsers are now robust and widely used in larger NLP applications:

- High precision question answering [Pasca and Harabagiu SIGIR 2001]
- Improving biological named entity finding [Finkel et al. JNLPBA 2004]
- Syntactically based sentence compression [Lin and Wilbur 2007]
- Extracting opinions about products [Bloom et al. NAACL 2007]
- Improved interaction in computer games [Gorniak and Roy 2005]
- Helping linguists find data [Resnik et al. BLS 2005]
- Source sentence analysis for machine translation [Xu et al. 2009]
- Relation extraction systems [Fundel et al. Bioinformatics 2006]

- The boy put the tortoise on the rug
- लड़के ने रखा कछुं आ ऊंपर कालीन
- SVO vs. SOV; preposition vs. post-position

- The boy put the tortoise on the rug
- लड़के ने रखा कछुआ ऊपर कालीन
- SVO vs. SOV; preposition vs. post-position

- The boy put the tortoise on the rug
- लड़के ने रखा कछुआ ऊपर कालीन
- SVO vs. SOV; preposition vs. post-position

- The boy put the tortoise on the rug
- लड़के ने रखा कछुआ ऊपर कालीन
- SVO vs. SOV; preposition vs. post-position

- The boy put the tortoise on the rug
- लड़के ने रखा कछुआ ऊपर कालीन
- SVO vs. SOV; preposition vs. post-position

Pre 1990 ("Classical") NLP Parsing

- Goes back to Chomsky's PhD thesis in 1950s
- Wrote symbolic grammar (CFG or often richer) and lexicon

$$S \rightarrow NP \ VP$$
 $NN \rightarrow interest$ $NP \rightarrow (DT) \ NN$ $NNS \rightarrow rates$ $NP \rightarrow NN \ NNS$ $NNS \rightarrow raises$ $NP \rightarrow NNP$ $VBP \rightarrow interest$ $VP \rightarrow V \ NP$ $VBZ \rightarrow rates$

- Used grammar/proof systems to prove parses from words
- This scaled very badly and didn't give coverage. For sentence:

Fed raises interest rates 0.5% in effort to control inflation

• Minimal grammar: 36 parses

• Simple 10 rule grammar: 592 parses

• Real-size broad-coverage grammar: millions of parses

Classical NLP Parsing: The problem and its solution

- Categorical constraints can be added to grammars to limit unlikely/weird parses for sentences
 - But the attempt make the grammars not robust
 - In traditional systems, commonly 30% of sentences in even an edited text would have no parse.
- A less constrained grammar can parse more sentences
 - But simple sentences end up with ever more parses with no way to choose between them
- We need mechanisms that allow us to find the most likely parse(s) for a sentence
 - Statistical parsing lets us work with very loose grammars that admit millions of parses for sentences but still quickly find the best parse(s)

Context Free Grammars and Ambiguities

Context-Free Grammars

Hopcroft and Ullman, 1979

A context free grammar $G = (N, \Sigma, R, S)$ where:

- N is a set of non-terminal symbols
- $ightharpoonup \Sigma$ is a set of terminal symbols
- ▶ R is a set of rules of the form $X \to Y_1 Y_2 \dots Y_n$ for $n \ge 0$, $X \in N$, $Y_i \in (N \cup \Sigma)$
- $ightharpoonup S \in N$ is a distinguished start symbol

Context-Free Grammars in NLP

- A context free grammar G in NLP = (N, C, Σ, S, L, R)
 - Σ is a set of terminal symbols
 - C is a set of preterminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \in N$)
 - L is the lexicon, a set of items of the form $X \rightarrow x$
 - $X \in C$ and $x \in \Sigma$
 - R is the grammar, a set of items of the form $X \rightarrow \gamma$
 - $X \in \mathbb{N}$ and $\gamma \in (\mathbb{N} \cup \mathbb{C})^*$
- By usual convention, S is the start symbol, but in statistical NLP, we usually have an extra node at the top (ROOT, TOP)
- We usually write e for an empty sequence, rather than nothing

A Context Free Grammar of English

```
\begin{split} N &= \{ \text{S, NP, VP, PP, DT, Vi, Vt, NN, IN} \} \\ S &= \text{S} \\ \Sigma &= \{ \text{sleeps, saw, man, woman, telescope, the, with, in} \} \end{split}
```

$$R = \begin{array}{c} S & \rightarrow & \mathrm{NP} & \mathrm{VP} \\ \hline \mathrm{VP} & \rightarrow & \mathrm{Vi} \\ \mathrm{VP} & \rightarrow & \mathrm{Vt} & \mathrm{NP} \\ \mathrm{VP} & \rightarrow & \mathrm{VP} & \mathrm{PP} \\ \hline \mathrm{NP} & \rightarrow & \mathrm{DT} & \mathrm{NN} \\ \mathrm{NP} & \rightarrow & \mathrm{NP} & \mathrm{PP} \\ \hline \mathrm{PP} & \rightarrow & \mathrm{IN} & \mathrm{NP} \\ \hline \end{array}$$

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Left-Most Derivations

A left-most derivation is a sequence of strings $s_1 \dots s_n$, where

- $s_1 = S$, the start symbol
- ▶ $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
- ▶ Each s_i for $i=2\dots n$ is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \to \beta$ is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], [the man Vi], [the man sleeps]

Representation of a derivation as a tree:

Properties of CFGs

- A CFG defines a set of possible derivations
- A string $s \in \Sigma^*$ is in the *language* defined by the CFG if there is at least one derivation that yields s
- Each string in the language generated by the CFG may have more than one derivation ("ambiguity")

A Fragment of a Noun Phrase Grammar

```
\begin{array}{cccc} \mathsf{NN} & \Rightarrow & \mathsf{box} \\ \mathsf{NN} & \Rightarrow & \mathsf{car} \\ \mathsf{NN} & \Rightarrow & \mathsf{mechanic} \\ \mathsf{NN} & \Rightarrow & \mathsf{pigeon} \\ \mathsf{DT} & \Rightarrow & \mathsf{the} \\ \mathsf{DT} & \Rightarrow & \mathsf{a} \end{array}
```

```
\begin{array}{ccc} \mathsf{JJ} & \Rightarrow & \mathsf{fast} \\ \mathsf{JJ} & \Rightarrow & \mathsf{metal} \\ \mathsf{JJ} & \Rightarrow & \mathsf{idealistic} \\ \mathsf{JJ} & \Rightarrow & \mathsf{clay} \end{array}
```

Extended Grammar with Prepositional Phrases

Generates:

in a box, under the box, the fast car mechanic under the pigeon in the box, ...

Verbs, Verb Phrases and Sentences

Basic Verb Types

```
Vi = Intransitive verb e.g., sleeps, walks, laughs Vt = Transitive verb e.g., sees, saw, likes Vd = Ditransitive verb e.g., gave
```

Basic VP Rules

```
VP \rightarrow Vi
VP \rightarrow Vt NP
VP \rightarrow Vd NP NP
```

Basic S Rule

$$S \rightarrow NP VP$$

Examples of VP:

sleeps, walks, likes the mechanic, gave the mechanic the fast car

Examples of S:

the man sleeps, the dog walks, the dog gave the mechanic the fast car

PPs Modifying Verb Phrases

A new rule: $VP \rightarrow VP PP$

New examples of VP:

sleeps in the car, walks like the mechanic, gave the mechanic the fast car on Tuesday, . . .

Complementizers and SBARs

- Complementizers
 COMP = complementizer e.g., that
- ightharpoonup SBAR ightharpoonup COMP S

Examples:

that the man sleeps, that the mechanic saw the dog . .

More Verbs

```
    New Verb Types
    V[5] e.g., said, reported
    V[6] e.g., told, informed
    V[7] e.g., bet
```

New VP Rules VP \rightarrow V[5] SBAR VP \rightarrow V[6] NP SBAR VP \rightarrow V[7] NP NP SBAR

Examples of New VPs:

said that the man sleeps told the dog that the mechanic likes the pigeon bet the pigeon \$50 that the mechanic owns a fast car

Coordination

A New Part-of-Speech:
 CC = Coordinator e.g., and, or, but

New Rules NP → NP CC NP \bar{N} → \bar{N} CC \bar{N} VP → VP CC VP S → S CC S SBAR → SBAR CC SBAR

Much more remains...

Agreement

The dogs laugh vs. The dog laughs

- Wh-movement
 The dog that the cat liked ___
- Active vs. passive
 The dog saw the cat vs.
 The cat was seen by the dog
- If you're interested in reading more:

Syntactic Theory: A Formal Introduction, 2nd Edition. Ivan A. Sag, Thomas Wasow, and Emily M. Bender.

Attachment ambiguities

- A key parsing decision is how we 'attach' various constituents
 - PPs, adverbial or participial phrases, infinitives, coordinations, etc.

The board approved [its acquisition] [by Royal Trustco Ltd.]

[of Toronto]

[for \$27 a share]

[at its monthly meeting].

Attachment ambiguities

- A key parsing decision is how we 'attach' various constituents
 - PPs, adverbial or participial phrases, infinitives, coordinations, etc.

- Catalan numbers: $C_n = (2n)!/[(n+1)!n!]$
- An exponentially growing series, which arises in many tree-like contexts:
 - E.g., the number of possible triangulations of a polygon with n+2 sides
 - Turns up in triangulation of probabilistic graphical models....

Attachments

- I cleaned the dishes from dinner
- I cleaned the dishes with detergent
- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink

Syntactic Ambiguities I

- Prepositional phrases:
 They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition:
 The lady dressed up the staircase.
- Complement structures
 The tourists objected to the guide that they couldn't hear.
 She knows you like the back of her hand.
- Gerund vs. participial adjective
 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.

Syntactic Ambiguities II

- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.
- Coordination scope: Small rats and mice can squeeze into holes or cracks in the wall.

Non-Local Phenomena

- Dislocation / gapping
 - Which book should Peter buy?
 - A debate arose which continued until the election.
- Binding
 - Reference
 - The IRS audits itself
 - Control
 - I want to go
 - I want you to go

Product Details (from Amazon)

Hardcover: 1779 pages

Publisher: Longman; 2nd Revised edition

Language: English

ISBN-10: 0582517346

ISBN-13: 978-0582517349

Product Dimensions: 8.4 x 2.4 x 10 inches

Shipping Weight: 4.6 pounds

Parsing: Two problems to solve:

1. Repeated work...

Parsing: Two problems to solve:

1. Repeated work...

Parsing: Two problems to solve: 2. Choosing the correct parse

- How do we work out the correct attachment:
 - She saw the man with a telescope
- Is the problem 'AI complete'? Yes, but ...
- Words are good predictors of attachment
 - Even absent full understanding
 - Moscow sent more than 100,000 soldiers into Afghanistan ...
 - Sydney Water breached an agreement with NSW Health ...
- Our statistical parsers will try to exploit such statistics.

Probabilistic Context Free Grammar

Probabilistic – or stochastic – context-free grammars (PCFGs)

- $G = (\Sigma, N, S, R, P)$
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \in N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - P is a probability function
 - P: $R \to [0,1]$
 - $\forall X \in \mathbb{N}, \sum_{X \to \gamma \in \mathbb{R}} P(X \to \gamma) = 1$
- A grammar G generates a language model L.

$$\mathring{a}_{g\hat{1}T^*}P(g)=1$$

PCFG Example

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

• Probability of a tree t with rules

$$\alpha_1 \to \beta_1$$
° $\alpha_2 \to \beta_2$ ° ddd $\alpha_n \to \beta_n$

is

$$p(t) = \prod_{i=1}^{n} q(\mathbf{\alpha}_i \to \mathbf{\beta}_i)$$

where $q(\alpha \to \beta)$ is the probability for rule $\alpha \to \beta$.

Example of a PCFG

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$$

is $p(t) = \prod_{i=1}^n q(\alpha_i \to \beta_i)$ where $q(\alpha \to \beta)$ is the probability for rule $\alpha \to \beta$.

Probability of a Parse

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

 $p(t_s)=1.8*0.3*1.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1$

PCFGs: Learning and Inference

Model

• The probability of a tree t with n rules $\alpha_i \rightarrow \beta_i$, i = 1...n

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

Learning

Read the rules off of labeled sentences, use ML estimates for probabilities

$$q_{ML}(\alpha \to \beta) = \frac{\mathsf{Count}(\alpha \to \beta)}{\mathsf{Count}(\alpha)}$$

and use all of our standard smoothing tricks!

Inference

For input sentence s, define T(s) to be the set of trees whose yield is s
(whole leaves, read left to right, match the words in s)

$$t^*(s) = \arg\max_{t \in \mathcal{T}(s)} p(t)$$

Grammar Transforms

Chomsky Normal Form

- All rules are of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - $X, Y, Z \in N$ and $w \in \Sigma$
- A transformation to this form doesn't change the weak generative capacity of a CFG
 - That is, it recognizes the same language
 - But maybe with different trees
- Empties and unaries are removed recursively
- n-ary rules are divided by introducing new nonterminals (n > 2)

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow NP VP$

 $S \rightarrow VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V$

 $VP \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V$

 $S \rightarrow V$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP V$

 $@VP V \rightarrow NP PP$

 $S \rightarrow V @S V$

 $@S_V \rightarrow NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP V$

 $@VP V \rightarrow NP PP$

 $S \rightarrow V @S V$

 $@S_V \rightarrow NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

Chomsky Normal Form

- You should think of this as a transformation for efficient parsing
- With some extra book-keeping in symbol names, you can even reconstruct the same trees with a detransform
- In practice full Chomsky Normal Form is a pain
 - Reconstructing n-aries is easy
 - Reconstructing unaries/empties is trickier
- Binarization is crucial for cubic time CFG parsing
- The rest isn't necessary; it just makes the algorithms cleaner and a bit quicker

An example: before binarization...

After binarization...

Parsing

Constituency Parsing

PCFG

Rule Prob θ_i	
$S \rightarrow NP VP$	θ_0
$NP \rightarrow NP NP$	θ_1
•••	
$N \rightarrow fish$	θ_{42}
$N \rightarrow people$	θ_{43}
$V \rightarrow fish$	θ_{44}
•••	

Cocke-Kasami-Younger (CKY) Constituency Parsing

Viterbi (Max) Scores

Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn't increase algorithmic complexity
- Empties can be incorporated
 - Use fenceposts
 - Doesn't increase complexity; essentially like unaries

Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn't increase algorithmic complexity
- Empties can be incorporated
 - Use fenceposts
 - Doesn't increase complexity; essentially like unaries
- Binarization is vital
 - Without binarization, you don't get parsing cubic in the length of the sentence and in the number of nonterminals in the grammar
 - Binarization may be an explicit transformation or implicit in how the parser works (Early-style dotted rules), but it's always there.

A Recursive Parser

The CKY algorithm (1960/1965) ... extended to unaries

```
function CKY(words, grammar) returns [most_probable_parse,prob]
  score = new double[#(words)+1][#(words)+1][#(nonterms)]
  back = new Pair[#(words)+1][#(words)+1][#nonterms]]
  for i=0; i<#(words); i++
    for A in nonterms
      if A -> words[i] in grammar
        score[i][i+1][A] = P(A \rightarrow words[i])
    //handle unaries
    boolean added = true
    while added
      added = false
      for A, B in nonterms
        if score[i][i+1][B] > 0 && A->B in grammar
          prob = P(A->B)*score[i][i+1][B]
          if prob > score[i][i+1][A]
            score[i][i+1][A] = prob
            back[i][i+1][A] = B
            added = true
```

The CKY algorithm (1960/1965) ... extended to unaries

```
for span = 2 to \#(words)
  for begin = 0 to \#(words) - span
    end = begin + span
    for split = begin+1 to end-1
      for A,B,C in nonterms
        prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
        if prob > score[begin][end][A]
          score[begin]end][A] = prob
          back[begin][end][A] = new Triple(split,B,C)
    //handle unaries
    boolean added = true
   while added
      added = false
      for A, B in nonterms
        prob = P(A->B)*score[begin][end][B];
        if prob > score[begin][end][A]
          score[begin][end][A] = prob
          back[begin][end][A] = B
          added = true
return buildTree(score, back)
```

The grammar: Binary, no epsilons,

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \rightarrow V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NPPP$	1.0
$NP \rightarrow NP NP$	0.1
$NP \rightarrow NP PP$	0.2
$NP \rightarrow N$	0.7
$PP \rightarrow P NP$	1.0

$N \rightarrow people$	0.5
$N \rightarrow fish$	0.2
$N \rightarrow tanks$	0.2
$N \rightarrow rods$	0.1
$V \rightarrow people$	0.1
$V \rightarrow fish$	0.6
$V \rightarrow tanks$	0.3
$P \rightarrow with$	1.0

C NDVD	0.0	o fish 1 people 2 fish 3 tanks	4
$S \rightarrow NP VP$ $S \rightarrow VP$	0.9 0.1	$N \rightarrow \text{fish } 0.2$	
$VP \rightarrow V NP$	0.1	V → fish 0.6	
$VP \rightarrow V$ $VP \rightarrow V$	0.5	$NP \rightarrow N \ 0.14$	
$VP \rightarrow V @VP_V$	0.3	$ \begin{array}{c c} VP \to V \ 0.06 \\ S \to VP \ 0.006 \end{array} $	
$VP \rightarrow VPP$	0.1	$N \rightarrow \text{people 0.5}$	
$@VP_V \to NPPP$	1.0	$V \rightarrow people 0.1$	
$NP \rightarrow NP NP$	0.1	$NP \rightarrow N \ 0.35$	
$NP \rightarrow NP PP$	0.2	$VP \rightarrow V \ 0.01$	
$NP \rightarrow N$	0.7	2 $S \rightarrow VP 0.001$	
$PP \rightarrow P NP$	1.0	$ \begin{array}{c} N \rightarrow \text{fish } 0.2 \\ V \rightarrow \text{fish } 0.6 \end{array} $	
		$NP \rightarrow N \ 0.14$	
$N \rightarrow people$	0.5	$VP \rightarrow V 0.06$	
$N \rightarrow fish$	0.2	$S \rightarrow VP 0.006$	
$N \rightarrow tanks$		N \rightarrow tanks 0	.2
0.2		prob=score[begin][split][B]*score[split][end][C]*P(A->BC) if (prob > score[begin][end][A]) V → tanks 0	.1
$N \rightarrow rods$	0.1	score[begin]end][A] = prob $NP \rightarrow N \ 0.12$	
$V \rightarrow people$	0.1	$\frac{\text{back[begin][end][A] = new Triple(split,B,C)}}{\text{VP} \rightarrow \text{V} 0.03}$	
$V \rightarrow f$ ish	0.6	$4 S \rightarrow VP \ 0.00$	3
$V \rightarrow tanks$	0.3		

 $P \rightarrow with$

1.0

Evaluating constituency parsing

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Evaluating constituency parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Labeled Precision 3/7 = 42.9%

Labeled Recall 3/8 = 37.5%

LP/LR F1 40.0%

Tagging Accuracy 11/11 = 100.0%

How good are PCFGs?

- Penn WSJ parsing accuracy: about 73.7% LP/LR F1
- Robust
 - · Usually admit everything, but with low probability
- Partial solution for grammar ambiguity
 - · A PCFG gives some idea of the plausibility of a parse
 - But not so good because the independence assumptions are too strong
- Give a probabilistic language model
 - But in the simple case it performs worse than a trigram model
- The problem seems to be that PCFGs lack the lexicalization of a trigram model

Weaknesses of PCFGs

Weaknesses

- Lack of sensitivity to structural frequencies
- Lack of sensitivity to lexical information
- (A word is independent of the rest of the tree given its POS!)

A Case of PP Attachment Ambiguity

	Rules
	$S \to NP \; VP$
	$NP \to NNS$
	$VP \rightarrow VP PP$
	$VP \rightarrow VBD NP$
	$NP \to NNS$
(2)	$PP \to IN \; NP$
(a)	$NP \to DT \; NN$
	NNS o workers
	VBD o dumped
	$NNS \to sacks$
	IN o into
	DT o a
	NN o bin
	1

	Rules
	$S \to NP VP$
	$NP \to NNS$
	$NP \rightarrow NP PP$
	$VP \rightarrow VBD NP$
	$NP \to NNS$
(h)	$PP \to IN \; NP$
(b)	$NP \to DT \; NN$
	NNS o workers
	VBD o dumped
	$NNS \to sacks$
	IN o into
	DT o a
	NN o bin

If $q(NP \rightarrow NP PP) > q(VP \rightarrow VP PP)$ then (b) is more probable, else (a) is more probable.

Attachment decision is completely independent of the words

A Case of Coordination Ambiguity

	Rules		
	$NP \to NP \; CC \; NP$		
	$NP \to NP \; PP$		
	$NP \to NNS$		
	$PP \to IN \; NP$		
(2)	$NP \to NNS$		
(a)	$NP \to NNS$		
	$NNS \to dogs$		
	IN o in		
	$NNS \to houses$		
	CC o and		
	NNS o cats		

	Rules
	$NP \to NP \; CC \; NP$
	$NP \to NP \; PP$
	$NP \to NNS$
	$PP \to IN \; NP$
(h)	$NP \to NNS$
(b)	$NP \to NNS$
	$NNS \to dogs$
	IN o in
	$NNS \to houses$
	CC o and
	$NNS \to cats$

Here the two parses have identical rules, and therefore have identical probability under any assignment of PCFG rule probabilities

Structural Preferences: Close Attachment

- ► Example: president of a company in Africa
- Both parses have the same rules, therefore receive same probability under a PCFG
- "Close attachment" (structure (a)) is twice as likely in Wall Street Journal text.

Structural Preferences: Close Attachment

- Example: John was believed to have been shot by Bill
- Low attachment analysis (Bill does the shooting) contains same rules as high attachment analysis (Bill does the believing)
 - Two analyses receive the same probability

PCFGs and Independence

The symbols in a PCFG define independence assumptions:

- At any node, the material inside that node is independent of the material outside that node, given the label of that node
- Any information that statistically connects behavior inside and outside a node must flow through that node's label

Non-Independence I

The independence assumptions of a PCFG are often too strong

 Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects)

Non-Independence II

- Symptoms of overly strong assumptions:
 - Rewrites get used where they don't belong

Refining the Grammar Symbols

 We can relax independence assumptions by encoding dependencies into the PCFG symbols, by state splitting:

Parent annotation [Johnson 98]

Marking possessive NPs

- Too much state-splitting sparseness (no smoothing used!)
- What are the most useful features to encode?

Linguistics in Unlexicalized Parsing

Horizontal Markovization

Horizontal Markovization: Merges States

Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes.

(i.e., parent annotation)

Model	F1	Size
v=h=2v	77.8	7.5K

Unary Splits

 Problem: unary rewrites are used to transmute categories so a highprobability rule can be used.

Solution: Mark unary rewrite sites with -U

Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: SBAR sentential complementizers (that, whether, if), subordinating conjunctions (while, after), and true prepositions (in, of, to) are all tagged IN.
- Partial Solution:
 - Subdivide the IN tag.

Annotation	F1	Size	
Previous	78.3	8.0K	
SPLIT-IN	80.3	8.1K	

Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "&" from other conjunctions
- SPLIT-%: "%" gets its own tag.

F1	Size
80.4	8.1K
80.5	8.1K
81.2	8.5K
81.6	9.0K
81.7	9.1K
81.8	9.3K

Yield Splits

 Problem: sometimes the behavior of a category depends on something inside its future yield.

Examples:

- Possessive NPs
- Finite vs. infinite VPs
- Lexical heads!
- Solution: annotate future elements into nodes.

Annotation	F1	Size
tag splits	82.3	9.7K
POSS-NP	83.1	9.8K
SPLIT-VP	85.7	10.5K

Distance / Recursion Splits

- Problem: vanilla PCFGs cannot distinguish attachment heights.
- Solution: mark a property of higher or lower sites:
 - Contains a verb.
 - Is (non)-recursive.
 - Base NPs [cf. Collins 99]
 - Right-recursive NPs

Annotation	F1	Size
Previous	85.7	10.5K
BASE-NP	86.0	11.7K
DOMINATES-V	86.9	14.1K
RIGHT-REC-NP	87.0	15.2K

A Fully Annotated Tree

Final Test Set Results

Parser	LP	LR	F1
Magerman 95	84.9	84.6	84.7
Collins 96	86.3	85.8	86.0
Klein & Manning 03	86.9	85.7	86.3
Charniak 97	87.4	87.5	87.4
Collins 99	88.7	88.6	88.6

Beats "first generation" lexicalized parsers

Lexicalised PCFGs

Heads in Context Free Rules

Add annotations specifying the "head" of each rule:

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps	
Vt	\Rightarrow	saw	
NN	\Rightarrow	man	
NN	\Rightarrow	woman	
NN	\Rightarrow	telescope	
DT	\Rightarrow	the	
IN	\Rightarrow	with	
IN	\Rightarrow	in	

Heads

 Each context-free rule has one "special" child that is the head of the rule. e.g.,

```
S \Rightarrow NP VP (VP is the head)

VP \Rightarrow Vt NP (Vt is the head)

NP \Rightarrow DT NN NN (NN is the head)
```

- A core idea in syntax (e.g., see X-bar Theory, Head-Driven Phrase Structure Grammar)
- Some intuitions:
 - The central sub-constituent of each rule.
 - The semantic predicate in each rule.

Rules to Recover Heads: An Example for NPs

If the rule contains NN, NNS, or NNP: Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,

Rules to Recover Heads: An Example for VPs

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains an VP: Choose the leftmost VP

Else Choose the leftmost child

$$VP \Rightarrow Vt NP$$

$$VP \Rightarrow VP PP$$

Adding Headwords to Trees

Adding Headwords to Trees

Adding Headwords to Trees

A constituent receives its headword from its head child.

Lexicalized CFGs in Chomsky Normal Form

- N is a set of non-terminal symbols
- $ightharpoonup \Sigma$ is a set of terminal symbols
- R is a set of rules which take one of three forms:
 - $X(h) \rightarrow_1 Y_1(h) \ Y_2(w)$ for $X \in N$, and $Y_1, Y_2 \in N$, and $h, w \in \Sigma$
 - $X(h) \rightarrow_2 Y_1(w) \ Y_2(h)$ for $X \in N$, and $Y_1, Y_2 \in N$, and $h, w \in \Sigma$
 - $X(h) \to h$ for $X \in N$, and $h \in \Sigma$
- $ightharpoonup S \in N$ is a distinguished start symbol

Example

Lexicalized CKY

```
(VP->VBD...NP) [saw]
                                                       X[h]
                     VBD[saw]
              (VP->
                              NP[her])
                                                    Ý[h]
                                                         Z[h
bestScore(X,i,j,h)
  if (j = i)
                                                             h'
                                                 h
                                                        k
    return score(X,s[i])
  else
    return
                  score(X[h]->Y[h]Z[w]) *
           max
         k,h,w
                  bestScore(Y,i,k,h) *
         X->YZ
                  bestScore(Z,k+1,j,w)
                  score(X[h]->Y[w]Z[h]) *
           max
         k,h,w
                  bestScore(Y,i,k,w) *
         X->YZ
                  bestScore(Z,k+1,j,h)
```

Parsing with Lexicalized CFGs

- ▶ The new form of grammar looks just like a Chomsky normal form CFG, but with potentially $O(|\Sigma|^2 \times |N|^3)$ possible rules.
- Naively, parsing an n word sentence using the dynamic programming algorithm will take $O(n^3|\Sigma|^2|N|^3)$ time. But $|\Sigma|$ can be huge!!
- ▶ Crucial observation: at most $O(n^2 \times |N|^3)$ rules can be applicable to a given sentence $w_1, w_2, \ldots w_n$ of length n. This is because any rules which contain a lexical item that is not one of $w_1 \ldots w_n$, can be safely discarded.
- ▶ The result: we can parse in $O(n^5|N|^3)$ time.

Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the O(n⁵) CKY
 - Remember only a few hypotheses for each span <i,j>.
 - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
 - Keeps things more or less cubic
- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Parameter Estimation

$$\begin{array}{l} \mathsf{p}(\mathsf{t}) = q(\mathsf{S}(\mathsf{saw}) \to_2 \mathsf{NP}(\mathsf{man}) \; \mathsf{VP}(\mathsf{saw})) \\ \times q(\mathsf{NP}(\mathsf{man}) \to_2 \mathsf{DT}(\mathsf{the}) \; \mathsf{NN}(\mathsf{man})) \\ \times q(\mathsf{VP}(\mathsf{saw}) \to_1 \mathsf{VP}(\mathsf{saw}) \; \mathsf{PP}(\mathsf{with})) \\ \times q(\mathsf{VP}(\mathsf{saw}) \to_1 \mathsf{Vt}(\mathsf{saw}) \; \mathsf{NP}(\mathsf{dog})) \\ \times q(\mathsf{PP}(\mathsf{with}) \to_1 \mathsf{IN}(\mathsf{with}) \; \mathsf{NP}(\mathsf{telescope})) \\ \times \dots \end{array}$$

A Model from Charniak (1997)

An example parameter in a Lexicalized PCFG:

$$q(S(saw) \rightarrow_2 NP(man) VP(saw))$$

 First step: decompose this parameter into a product of two parameters

$$q(S(saw) \rightarrow_2 NP(man) VP(saw))$$

= $q(S \rightarrow_2 NP VP|S, saw) \times q(man|S \rightarrow_2 NP VP, saw)$

A Model from Charniak (1997)

$$q(\mathsf{S}(\mathsf{saw}) \to_2 \mathsf{NP}(\mathsf{man}) \; \mathsf{VP}(\mathsf{saw})) \\ = q(\mathsf{S} \to_2 \mathsf{NP} \; \mathsf{VP}|\mathsf{S}, \; \mathsf{saw}) \times q(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \; \mathsf{VP}, \; \mathsf{saw})$$

 Second step: use smoothed estimation for the two parameter estimates

$$\begin{split} &q(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \mathsf{saw}) \\ &= \lambda_1 \times q_{ML}(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \mathsf{saw}) + \lambda_2 \times q_{ML}(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}) \\ &q(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}, \mathsf{saw}) \\ &= \lambda_3 \times q_{ML}(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}, \mathsf{saw}) + \lambda_4 \times q_{ML}(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}) \\ &+ \lambda_5 \times q_{ML}(\mathsf{man}|\mathsf{NP}) \end{split}$$

Final Test Set Results

Parser	LP	LR	F1
Magerman 95	84.9	84.6	84.7
Collins 96	86.3	85.8	86.0
Klein & Manning 03	86.9	85.7	86.3
Charniak 97	87.4	87.5	87.4
Collins 99	88.7	88.6	88.6

Analysis/Evaluation (Method 2)


```
ROOT_0,
                                                  ROOT >
                         saw<sub>3</sub>.
                                       \mathsf{S} 	o_2 \mathsf{NP} \mathsf{VP} \ 
angle
                         man_2,
saw<sub>3</sub>,
                         the<sub>1</sub>, NP \rightarrow_2 DT NN \rangle
man<sub>2</sub>,
                         with_6, VP 
ightarrow_1 VP PP 
angle
saw<sub>3</sub>,
                         \mathsf{dog}_5, \qquad \quad \mathsf{VP} \to_1 \mathsf{Vt} \; \mathsf{NP} \; \rangle
saw_3,
                                       \mathsf{NP} \to_2 \mathsf{DT} \; \mathsf{NN} \; \rangle
                        the₄,
dog_5,
                       telescope<sub>8</sub>, PP 
ightarrow_1 IN NP 
angle
with 6.
                                      \mathsf{NP} \to_2 \mathsf{DT} \; \mathsf{NN} \; \rangle
telescope<sub>8</sub>,
                        the<sub>7</sub>,
```

Dependency Accuracies

- ▶ All parses for a sentence with n words have n dependencies Report a single figure, dependency accuracy
- Results from Collins, 2003: 88.3% dependency accuracy
- ▶ Can calculate precision/recall on particular dependency types e.g., look at all subject/verb dependencies \Rightarrow all dependencies with label S \rightarrow_2 NP VP

```
Recall = number of subject/verb dependencies correct number of subject/verb dependencies in gold standard
```

Precision = number of subject/verb dependencies correct number of subject/verb dependencies in parser's output

Strengths and Weaknesses of Modern Parsers

(Numbers taken from Collins (2003))

- Subject-verb pairs: over 95% recall and precision
- Object-verb pairs: over 92% recall and precision
- ▶ Other arguments to verbs: $\approx 93\%$ recall and precision
- ▶ Non-recursive NP boundaries: $\approx 93\%$ recall and precision
- ightharpoonup PP attachments: pprox 82% recall and precision
- ightharpoonup Coordination ambiguities: pprox 61% recall and precision