The Standard Model Summary

http://physics.info/standard/summary.shtml

Summary

- Elementary Particles (pdf) concept map
- Fermions
 - o Fermions...
 - are the particles of matter
 - obey Fermi-Dirac statistics
 - have half integral spin quantum numbers ($\pm \frac{1}{2}$ for elementary particles; $\pm \frac{1}{2}$, $\pm \frac{2}{2}$, ... for composite particles)
 - come in one of twelve flavors
 - belong to one of three generations.
 - I. ordinary matter (the parts needed to make an atom)
 - II. exotic matter (produced in high energy collisions)
 - III. very exotic matter (produced in high very energy collisions)
 - The elementary fermions are either quarks or leptons.
 - Quarks (q)···
 - have spin ½
 - come in one of six flavors
 - three in the up group, each with a charge of +⅔ e
 - up (u)
 - II. strange (s)
 - III. top (t)
 - three in the down group, each with a charge of -

⅓ e

- I. down (d)
- II. charm (c)
- III. bottom (b)
- have a property called color
 - Color is something like electric charge
 - All quarks can be found in any one of three colors.
 - red
 - green
 - blue
 - Color in this context has nothing to do with human vision or visible light
 - Only quarks and gluons are colored
- are always bound to other quarks (by the strong force)
- Leptons (I)···
 - have spin ½
 - come in one of six flavors
 - the three heavy leptons

- I. electron (e)
- II. muon (μ, mu)
- III. tau (τ, tau)
- each with a charge of -1 e
- can be found free or bound to other charged fermions (by the electromagnetic force)
- and three corresponding neutrinos
 - I. electron neutrino (v_e , nu sub e)
 - II. muon neutrino (ν_{μ} , nu sub mu)
 - III. tau neutrino (v_{τ} , nu sub tau)
 - all of them are electrically neutral
 - only interact with themselves and other particles via the weak force
 - are exceptionally lightweight
- o The composite fermions arranged in order of increasing complexity are
 - Hadrons
 - Mesons
 - are quark-antiquark pairs
 - have spin 0 or 1 making them bosons
 - have charge 0 e or ±1 e
 - are color neutral
 - include exotic particles like the pion (π) , eta (η) , rho (ρ) , etc.
 - Somewhere between 91–124 different mesons have been identified
 - Baryons
 - are quark triplets
 - have spin ½ or 1½ making them fermions
 - have charge +2 e, +1 e, 0 e, −1 e
 - are color neutral
 - subgroups
 - nucleons: protons and neutrons
 - hyperons: exotic particles like the lambda (Λ), sigma (Σ), omega (Ω), etc.
 - Somewhere between 86–193 different baryons have been identified.
 - Nuclei
 - are groups of protons and neutrons
 - have a positive integral amount of elementary charge
 - are color neutral
 - Atoms
 - are nuclei with bound electrons (one electron for every

proton)

- are electrically neutral
- are color neutral
- Molecules
 - are atoms sharing electrons
- Bosons
 - o Bosons...
 - obey Bose-Einstein statistics
 - have integral spin quantum numbers (±0, ±1, ±2,···)
 - Vector bosons, also known as gauge bosons…
 - have spin 1
 - belong to one of three types each associated with a fundamental force
 - The photon (γ, gamma)
 - carries the electromagnetic force between particles with charge
 - has an infinite range
 - is massless
 - exerts a force that is moderately strong relative to the other fundamental forces
 - has no charge or color
 - is described by the theory of quantum electrodynamics (QED)
 - is discussed in more detail in a <u>another section</u> of this book
 - Gluons (g)
 - carry the strong force between particles with color (only quarks and gluons)
 - have a short range ($\sim 10^{-15}$ m, about the diameter of a nucleon)
 - are massless
 - exert a force which is very strong relative to the other fundamental forces
 - come in one of eight color combinations, but carry no charge
 - are described by the theory of quantum chromodynamics (QCD)
 - are discussed in more detail in a <u>another section</u> of this book
 - The intermediate vector bosons (W^+ , W^- , Z^0), also known as the weak bosons
 - carry the weak force between certain particles with

flavor

- have an extremely short range (~ 10⁻¹⁸ m, smaller than any known object)
- have mass
- exert a force that is moderately weak relative to the other fundamental forces
- come in charged and uncharged varieties, but are not colored
 - W⁺ has a charge of +1e
 - W^- has a charge of -1e
 - Z⁰ has no charge
- are described by electroweak theory (EWT), which unites electromagnetism with weak interactions
- are discussed in more detail in a <u>another section</u> of this book
- o Scalar bosons...
 - have spin 0
 - The higgs boson (H)
 - mediates the higgs mechanism
 - gives mass to all particles with mass (including itself)
 - has mass
- Hypothetical tensor bosons beyond the standard model
 - would have spin 2
 - The graviton (G)
 - would carry the gravitational force between particles with mass-energy
 - would have infinite range
 - would be massless
 - would be extremely weak
 - may one day be described by a theory of quantum gravitation or a theory of everything