Recursive backtracking

Robin Jadoul

April 7, 2016

Complete Search

Recursive Complete Search

Pruning

Complete Search

Try all the answers

- Try (almost) every possibility
- ► Should always be AC (given enough time)
- ▶ However, frequently TLE
- Use the right algorithm/structure
- Sometimes necessary (eg. enumerate all permutations)

Complete Search

Approaches

- Generating
 - Usually iteratively
 - (Sometimes heavily nested) loops
 - Covers every possibility
- Filtering
 - Usually recursively
 - Recursive function(s)
 - Can prune along the way (see later)

Complete Search

Easy iterative example

Complete Search

Recursive Complete Search

Pruning

Recursive Complete Search

(Simplified) sudoku solving

- Running example: Solving a sudoku puzzle
- \triangleright Simplified: without 3 \times 3 box constraint
- Note: there are other ways to solve these (constraint satisfaction)
- \triangleright Representation: a 9 \times 9 grid of integers (0 is an unfilled cell)

Checking a filled sudoku

Recursive Complete Search

Filling the sudoku

```
bool solve_slow(Grid& grid, int i=0, int j=0) {
    if (i >= 9)
        return correct(grid);

    int nextj = (j + 1) % 9;
    int nexti = i + ((j + 1) / 9);

    if (grid[i][j] == 0) { //Not yet filled
        for (int val = 1; val <= 9; val++) {
            grid[i][j] = val;
            if (solve_slow(grid, nexti, nextj))
            return true;
        }
        grid[i][j] = 0;
        return false;
    } else {
        return solve_slow(grid, nexti, nextj);
    }
}</pre>
```

Recursive Complete Search

Filling the sudoku

Some (really big) problems with this version

- Really slow (filling an empty grid took my computer x minutes)
- We can still improve the correct (but this will not be necessary, as we will see)
- ► We keep going, even if we can see that the solution already fails!

	1	1	1	1	1	1	1	1	1
•	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1

Even this grid is generated:

Complete Search

Recursive Complete Search

Pruning

Try all the answers

- Stop processing when you know it is wrong
- Alternatively: stop processing when you know you have a better answer already (aka alpha-beta pruning)
- Applied to our sudoku: don't fill numbers that cannot go there anymore

Sudoku: check a single cell

```
bool good(Grid& grid, int r, int c) {
    for (int i = 0; i < 9; i++) {
        if (i != r && grid[i][c] == grid[r][c])
            return false;
        if (i != c && grid[r][i] == grid[r][c])
            return false;
    }
    return true;
}</pre>
```

Sudoku: solve it

```
bool solve (Grid& grid, int i=0, int j=0) {
   if (i > = 9)
       //Check happens before going to the next cell
        //So we have found a solution
        return true:
   int nextj = (j + 1) \% 9;
    int nexti = i + ((i + 1) / 9);
    if (grid[i][j] = 0) { //Not yet filled
        for (int val = 1; val \leq 9; val++) {
            grid[i][j] = val;
            //Short circuiting to the rescue
            if (good(grid, i, j) && solve(grid, nexti, nextj))
                return true;
        grid[i][j] = 0;
        return false:
   } else {
        return solve (grid, nexti, nextj);
```

Sudoku: wrap up

- Very similar
- Just with pruning this time
- Filling an empty maze: instant (0.002s)

Complete Search

Recursive Complete Search

Pruning

bitmasks

Passing booleans

- Sometimes, you need to pass around booleans to recursive calls
- Note: not just some boolean flags, but a boolean that indicates for example if an element has been *taken*
- ▶ How can we best do this?
- ► Passing around a vector; bool¿: needs copying every time
- ► Better: bitset¡N¿, a statically sized boolean collection
- If the size if small enough ($size \le 32$ or $size \le 64$), store it in an integer

bitmasks

Using ints

- ► Needed operations: <<, &, |
- ▶ set at index i: bitmask |= 1 << i</pre>
- ▶ test at index i: bitmask & (1 << i)</pre>