### Introduction to Parallel Computing Problem Assignment #2

### Mandelbrot Set

Presentation & Demo

Yihong Gu
Tsinghua University
yihong 15.math@gmail.com

### Outlines

- Hierarchical Master-Slave Architecture
  - Data Preprocessing
  - Dynamic Scheduling using MPI
  - Bootstrap
- Optimization
  - Bulb Check

### Outlines

- Hierarchical Master-Slave Architecture
  - Data Preprocessing
  - Dynamic Scheduling using MPI
  - Bootstrap
- Optimization
  - Bulb Check

# Data Preprocessing

· 'Flatten'





- Job 'queues'
  - message of chunk (2 ints): (bg\_id, len)
    - e.g. (4, 3)

# Dynamic Scheduling using MPI

#### Master:

- 1. Send initial messages to all slaves (MPI\_Recv)
- 2. Receive messages from all slaves (MPI\_Isend)
  - source=MPI\_ANY\_SOURCE
- 3. (Suppose receive message from slave i)
  - Check whether all jobs have been done
    - Yes: send overall finish message
    - No: allocate a new job chunk (MPI\_Isend)
- 4. Repeat [2]-[3] until finished

#### Slave:

- 1. Receive a job chunk message (MPI\_Recv)
- 2. Do job using OpenMP
- 3. Send a job chunk finish message to Master
- 4. Repeat [1]-[3] until receive a overall finish message from Master

## Hierarchical Dynamic Scheduling

- Hierarchical Dynamic Scheduling
  - PROCESS\_CHUNK\_SIZE=(Width+Height)\*5
  - THREAD\_CHUNK\_SIZE=50



- The implementation of 'master'
  - Process ? rank=0 -> master
    - waste
  - Thread ? rank=0 + PThread
    - communication problem: one process can't using MPI Recv and MPI Isend at the same time.

## Bootstrap

· Recall job 'queue'



# Bootstrap (cond)

#### Master:

- 1. Send initial messages to all slaves (MPI\_Recv)
- 2. Receive messages from all slaves (MPI\_Isend)
  - source=MPI\_ANY\_SOURCE
- 3. (Suppose receive message from slave i)
  - Check whether head = tail
    - Yes: send overall finish message
    - No: allocate a new job chunk (MPI\_Isend)
- 4. Repeat [2]-[3] until finished

#### Slave #0:

- 1. Change the tail pointer and get job chunk itself
- 2. Do job using OpenMP
- 3. Repeat [1]-[2] until head = tail

Slave #1  $\sim$  #(K-1): remains same

# Bootstrap (cond)

#### Master:

- 1. Send initial messages to all slaves (MPI\_Recv)
- 2. Receive messages from all slaves (MPI\_Isend)
  - source=MPI\_ANY\_SOURCE
- 3. (Suppose receive message from slave i)

mutex #0

- Check whether head = tail
  - Yes: send overall finish message
  - No: allocate a new job chunk (MPI Isend)
- 4. Repeat [2]-[3] until finished

### Slave #0:

mutex #0

- 1. Change the tail pointer and get job chunk itself
- 2. Do job using OpenMP
- 3. Repeat [1]-[2] until head = tail

Slave #1  $\sim$  #(K-1): remains same

### Outlines

- Hierarchical Master-Slave Architecture
  - Data Preprocessing
  - Dynamic Scheduling using MPI
  - Bootstrap
- Optimization
  - Bulb Check

### Bulb Check



• Get Analytical Solution of Bulb #1 and #2.

$$q=\left(x-rac{1}{4}
ight)^2+y^2, \ q\left(q+\left(x-rac{1}{4}
ight)
ight)<rac{1}{4}y^2.$$

# Thank You Q&A