Combining Artificial and Expert Intelligence: Using Machine Learning to Improve the World Economic Outlook

Marijn (Maryn) A. Bolhuis

University of Toronto and University of Oxford marijn.bolhuis@mail.utoronto.ca

February 4, 2019

•0000

Motivation

- Traditional macroeconomic forecasts (e.g. WEO) use country-specific expertise
- Key trade-off: using the past to predict the future...
 - bias ↓ ...
 - but variance ↑
- WEO forecasts tend to overfit (Hellwig, 2018) \rightarrow variance \uparrow
- **This paper:** explore to what extent Machine Learning (ML) models can improve expert forecasts in WEO
 - without additional data
 - 1- to 5-year horizons
 - full sample of countries

Approach

- Thought experiment:
 - give WEO data to data scientist at time of publication
 - how do predictions of non-expert compare to WEO?
- Goal is not to get most accurate prediction, rather:
 - compare performance of ML models with WEO
 - identify setting in which ML and WEO complement each other
- Study complements Jung et al. (2018)

 - no additional data → minimal information set
 - cover all countries

Motivation

Motivation: Current Approach

WEO forecast errors are consistently higher (r.t. average) in at least three different settings:

 \rightarrow Ahir & Loungani (2014); Jalles et al. (2015); Eicher et al. (2018); Bluedorn & Leight (2018)

- 1. During periods of low growth ('optimism') Detail
- 2. In low-income countries Details
- 3. During recessions Details

Motivation

Summary of Findings (2013-2016, 1-year)

Can we use ML models to improve macro-economic forecasting? \rightarrow 14-19% \downarrow RMSE overall

- Gains are driven by
 - 1. countries w/ real GDP growth < median
 - 2. countries w/ real GDP p.c. < median
- ML models are not necessarily better at predicting recessions...
 - ...but help make the role of (a)symmetric loss function explicit

Outline

- 1. Machine Learning Models
 - What, Why, When
- 2. Method

00000

- Data
- Approach
- Results
 - 3.1 Real economic growth
 - 3.2 Contractions ('recessions')
- 4. Conclusion

ML Models for Macroeconomic Forecasting

- Algorithms purely focused on predicting y using data from x
- Traditionally used for static, cross-section prediction
 - e.g. customer recommendations, image and speech recognition
- Practical challenges for dynamic forecasts in macroeconomic context
 - 1. Underlying process more volatile
 - 2. Lack of large, complete, training datasets
 - 3. Panel structure
 - 4. Data revisions are common

Why and When Use ML Models for Macroeconomic Forecasting?

Strengths

- 1. Generally outperform other quantitative models for prediction
- 2. Unbiased w.r.t. irrelevant context
- 3. Use all available data
- 4. Can be tuned to focus on predicting specific events (e.g. recessions)

Weaknesses

- 1. \longleftrightarrow hard to understand mechanisms ('black box')
- 2. $\leftarrow \rightarrow$ vulnerable to relevant changes in context
- 3. \longleftrightarrow reliant on large, high-quality datasets
- ←→ 'dumb' and reliant on model and variable selection by researcher

What Are MI Models?

Prediction problem:

- $y_i = f(X_i, \beta) + \epsilon_i$
- $\min_{\beta,\alpha} \sum_{i=1}^{N} L(y_i f(X_i, \beta))$ s.t. $\beta \in \Theta(\alpha)$
 - ullet eta are parameters that determine specific function
 - \bullet α are 'tuning parameters' or 'regularizers' that determine model complexity

Function $\tilde{f}(\alpha, \beta, X_i)$ maps input data (X_i) to prediction (y_i) .

Bias-Variance Trade-Off

$$L(z) = z^2 \to \mathbb{E}[L(\tilde{f}(\cdot) - f(\cdot))] = \mathsf{Bias}[\tilde{f}(\cdot)]^2 + \mathsf{Var}[\tilde{f}(\cdot)] + \mathsf{Var}[\epsilon_i]$$

What Are MI Models?

Prediction problem:

- $\mathbf{v}_i = f(\mathbf{X}_i, \boldsymbol{\beta}) + \epsilon_i$
- $\min_{\beta,\alpha} \sum_{i=1}^{N} L(y_i f(X_i, \beta))$ s.t. $\beta \in \Theta(\alpha)$
 - β are parameters that determine specific function
 - ullet lpha are 'tuning parameters' or 'regularizers' that determine model complexity

Function $\tilde{f}(\alpha, \beta, X_i)$ maps input data (X_i) to prediction (y_i) .

Estimation (i.e. picking $\tilde{f}(\cdot)$) consists of 3 steps:

- 1. Given α , pick loss-minimizing $\hat{\beta}$ for subset (training) of data
- 2. Predict $\hat{y}_i = f(x_i, \hat{\beta})_{|\alpha}$ for remaining (test) data
- 3. Pick α with lowest loss for test data

Linear Methods (OLS, LASSO, Ridge, Elastic Net)

•
$$\min_{\beta} \{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{k=1}^{K} \beta_k x_{ik})^2 \}$$

•
$$s.t. \sum_{k=1}^{K} \gamma |\beta_k| + (1-\gamma)(\beta_k)^2 \leq \lambda$$

- 1. OLS
 - $\lambda \to \infty$
- 2. LASSO
 - $\gamma = 1$
- 3. Ridge
 - $\gamma = 0$
- 4. Elastic Net
 - $\gamma \in (0,1)$

Decision Trees

A Shallow Regression Tree Predicting House Values

Source: Mullainathan & Spiess (2017)

Random Forest (1)

- Exploits 'wisdom of the crowd' to reduce variance
- Use different trees as building blocks

- 1. Take bootstrap sample
 - 'experience'
- 2. At each split, use only randomly chosen m out of p predictors
 - 'expertise'
- 3. Aggregate predictions of trees for each observation

Random Forest (2)

Source: James et al. (2013). Gene classification with p=500 predictors. Single classification tree has test classification error of 0.457.

Generalizing ML Models

Method	β	$\mathbf{Most\ common\ }\alpha$
OLS	regression coefficients	-
LASSO	regression coefficients	$\sum_{k=0}^{K} \beta_k \le \lambda_L$
Ridge	regression coefficients	$\sum_{k=0}^{K} (\beta_k)^2 \le \lambda_R$
Elastic Net	regression coefficients	λ , lasso weight
Decision tree	splits	depth, $\#$ of leaves, obs. per leaf
Random forest	aggregation rule	# vars, obs. per bootstrap

Data

Data

- Original 2004-2016 World Economic Outlook (April)
 - Impute missing data using random forests
- Merge w/ real GDP growth from 2018 World Economic Outlook (April)
 - take as actual outcomes

Variable Selection

- Only country-level
- Only variables w/ > 75% coverage
- Log-level, log-difference, 1-5 year lags

Approach

- $y_{it} = f(x_{i,t-1}, x_{i,t-2}, x_{it-3}, x_{it-4}, x_{i,t-5}, \beta) + \epsilon_{it}$
 - v_{it} : y-o-y real GDP growth in %
- Loss function: $L(z) = z^2$ (squared error)
 - in addition, use L(z) = |z| (absolute error)
 - evaluate both mean and median
- Models:
 - Flastic Net
 - Individual decision tree
 - Random forest
- Focus on 2013-2016 period for 1-, 3-, 5-year ahead
 - results qualitatively robust

Learning Rate of ML Models r.t. WEO

All three ML models improve over time r.t. WEO

1-year Squared Error, 2013-2016

19% and $14\% \downarrow RMSE$ for Elastic Net and Random Forest

	WEO	Elastic Net	Decision Tree	Random Forest
RMSE	5.9	4.8	7.7	5.1
RMedSE	1.4	1.4	2.3	1.3
SD SE	248	176	593	198
R-Max.SE	63	60	123	57

RMSE: root-mean-squared error; RMedSE: root-median-squared error; SD SE: standard deviation of squared error; R-Max.SE: root of maximum squared error.

3-year Squared Error, 2013-2016

17% and 13% \downarrow RMSE for Elastic Net and Random Forest

	WEO	Elastic Net	Decision Tree	Random Forest
RMSE	5.4	4.5	7.4	4.7
RMedSE	1.5	1.4	2.6	1.5
SD SE	174	126	257	135
R-Max.SE	45	41	64	41

RMSE: root-mean-squared error; RMedSE: root-median-squared error; SD SE: standard deviation of squared error; R-Max.SE: root of maximum squared error.

5-year Squared Error, 2013-2016

2% and $2\% \downarrow RMSE$ for Elastic Net and Random Forest

	WEO	Elastic Net	Decision Tree	Random Forest
RMSE	5.2	5.1	6.3	5.1
RMedSE	1.7	1.5	2.4	1.5
SD SE	195	182	186	187
R-Max.SE	61	58	58	59

RMSE: root-mean-squared error; RMedSE: root-median-squared error; SD SE: standard deviation of squared error; R-Max.SE: root of maximum squared error.

1-year Error Rate: WEO

Vertical lines: (a) Solid blue: mean WEO error rate; (b) dashed blue: median WEO error rate.

1-year Error Rate: WEO and Random Forest

Results: Growth

Vertical lines: (a) Solid blue: mean WEO error rate; (b) dashed blue: median WEO error rate; (c) solid green: mean RF error rate; (d) dashed green: median RF error rate.

1-year Error Rate: WEO, Random Forest, and Elastic Net

Vertical lines: (a) Solid blue: mean WEO error rate; (b) dashed blue: median WEO error rate; (c) solid green: mean RF error rate; (d) dashed green: median RF error rate; (e) solid red: mean EN error rate; (f) dashed red: median EN error rate.

3-year Error Rate: WEO, Random Forest, and Elastic Net

Vertical lines: (a) Solid blue: mean WEO error rate; (b) dashed blue: median WEO error rate; (c) solid green: mean RF error rate; (d) dashed green: median RF error rate; (e) solid red: mean EN error rate; (f) dashed red: median EN error rate.

5-year Error Rate: WEO, Random Forest, and Elastic Net

Vertical lines: (a) Solid blue: mean WEO error rate; (b) dashed blue: median WEO error rate; (c) solid green: mean RF error rate; (d) dashed green: median RF error rate; (e) solid red: mean EN error rate; (f) dashed red: median EN error rate.

Performance in low growth years (1)

Random Forest outperforms in periods of low growth

Binned scatter plot; y-variable represents mean value of 15 equally-sized bins.

Performance in low growth years (2)

Random Forest outperforms in initially slower growing countries

Performance and GDP p.c.

Random Forest outperform in initially poorer countries

Binned scatter plot; y-variable represents mean value of 15 equally-sized bins.

Regression framework

Robust in regression framework (Random Forest)

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
Real GDP growth	-5.654**	-5.982***	-5.994***	-2.902*
	(2.231)	(2.278)	(2.169)	(1.473)
Log GDP p.c., t-1		-9.704*	-6.482*	-0.994
		(4.956)	(3.607)	(2.009)
A C			10.64	15 40**
Africa			18.64	15.48**
			(13.53)	(7.408)
Asia			10.06*	5.738
			(5.874)	(4.806)
Europe			1.458	-2.093
			(6.527)	(3.428)
Latin America			-5.213	0.653
Eatin / tinenea			(6.313)	(2.652)
			(0.313)	(2.052)
Year FE	Υ	Υ	Υ	Υ
Continent FE	N	N	Υ	Υ
Observations	741	741	741	2176
Adjusted R ²	0.101	0.118	0.122	0.045

Standard errors in parentheses, clustered at country-level

p < 0.10, ** p < 0.05, *** p < 0.01

Combining ML and WEO Predictions

- ML models outperform in most settings
- What about a combination of ML models and WEO?
 - → complementarity between expert and ML expertise
- Combine by taking convex combination (ensemble) predicted growth rates
 - e.g. $y_i^{convex} = 0.5 \cdot y_i^{RF} + 0.5 \cdot y_i^{WEO}$

Ensemble of WEO and RF forecasts

WEO adds only little to ensemble in terms of RMSE

Ensemble of WEO and RF forecasts

20-30% WEO minimizes RMedSE

Extra

1-year forecasting gains: actual growth

Ensemble slightly improves RMSE for two fastest growing quintiles

1-year forecasting gains: initial GDP p.c.

Ensemble slightly improves RMSE for two richest quintiles

Notivation	ML Models	Method	Results: Growth	Results: Recessions	Conclusion
00000	0000000000	00	0000000000000000	•000000	0

WEO forecasts miss most recessions

Formalizing the Asymmetric Loss Function

- WEO: many false negatives \longleftrightarrow few false positives
- Recessions occur only ≈ 14 % of years
 → need asymmetric loss function to call any recessions
- ...at cost of false positives ('can't miss if you don't shoot')
- ML models can help make this trade-off explicit
 - use random forest classification model with variable loss function
 - recession: $y_i = 1$ if $\Delta y_{n,t} < 0$

A Loss Function Framework (Elkan, 2001)

$\begin{array}{cccc} & \textbf{Actual growth} & \textbf{Actual recession} \\ \textbf{Predict growth} & 0 & c_{fn} \\ \textbf{Predict recession} & c_{fp} & 0 \\ \end{array}$

- Symmetric loss function: $c_{fp} = c_{fn}$
 - forecasts noisy + recessions infrequent \rightarrow predict growth
- Threshold of $p = P(y_i = 1|X_i)$ satisfies:

•
$$p^* \cdot c_{fn}$$
 = $(1 - p^*) \cdot c_{fp}$ $\rightarrow p^* = \frac{c_{fp}}{c_{fn} + c_{fp}}$ exp. cost false positive exp. cost false negative

- Intuition:
 - high cost of recession \rightarrow certainty \rightarrow accept false negatives

Recessions: 1 Year Ahead (2007-2016)

Random Forest predicts more recessions with 1:3 loss function...

Recessions: False Positives (2007-2016)

...but Random Forest with 1:3 loss function also predicts more false positives

Success Rate and Accuracy of Different Loss Functions (2007-2016)

Conclusion

- Results suggest ML methods can help improve macroeconomic forecasts
- Although not goal of this paper, fine-tuning forecasts could improve prediction further
 - data: country-specific, global macroeconomic data, sentiment surveys, etc.
- However, ML methods are not a panacea:
 - substantial prediction errors remain
 - implementation is still researcher-dependent
- Additional applications
 - macroeconomic aggregates (current account, inflation, etc.)
 - discrete events (e.g. sudden stops)

Appendix, Literature: ML models and macroeconomic forecasting (Motivation)

- Jung et al. (2018):
 - use ML models and additional data to improve 1-q and 1-y predictions for 7 high- and middle-income countries
- Cook & Smalter Hall (2017); Smalter Hall (2018); Nyman & Ormerod (2016):
 - predict short-run fluctuations macro-economic aggregates in US, UK
- Cepni et al. (2018); Tiffin (2016); Kapetanios & Papailias (2018); Ricardson et al. (2018); Fornaro & Luomaranta (2018):
 - use micro-data for GDP nowcasting

Motivation: The World Economic Outlook Motivation

WEO is over-optimistic in its 1-year forecasts

Motivation: The World Economic Outlook Motivation

WEO forecast errors are higher for low-income countries

Motivation: The World Economic Outlook Motivation

WEO forecasts miss most recessions

Variables Method

List of variables used from WEO, 2015:

- GDP measures: real GDP growth (+ p.c.), GDP at PPP (+ p.c.), GDP at int. (+ p.c.), nominal GDP in USD (+ p.c.), nominal GDP in LCU (+ p.c.), output gap, investment, exports, imports
- Prices: GDP deflator, PPP deflator, inflation
- Government: government balance, government expenditure, government net debt, government revenue,
- Other: current account, employment, libor, population, savings, unemployment

Results: Growth
 Results: Growth

Results: Growth, Summary 1-year, 2013-2017

Absolute error (EN, RF, 8 %)

AME	WEO 2.5		Decision Tree 3.8	Random Forest 2.3
AMedE	1.3	1.3	2.3	1.3
SD	5.3	4.2	6.7	4.6
A-Max.	63	60	123	57

Results: Growth, Summary 3-year, 2013-2017

Absolute error (EN 15%, RF 7%

AME			Decision Tree 4.2	Random Forest 2.5
AMedE	1.5	1.4	2.6	1.5
SD	4.6	3.8	6.1	4.1
A-Max.	46	41	64	41

Results: Growth, Summary 5-year, 2013-2017

Absolute error (EN, RF, 7%)

AME	WEO 2.7		Decision Tree 3.7	Random Forest 2.5
AMedE	1.7	1.5	2.4	1.5
SD	4.5	4.4	5.0	4.4
A-Max.	61	58	58	59

Performance in low growth years

Random Forest outperform in periods of low growth: absolute error

Performance in low growth years

Elastic Net outperform in periods of low growth: absolute error

Performance in low growth years

Elastic Net outperform in periods of low growth: squared error

Performance in low growth years (2)

Random Forest outperforms in *initially* slower growing countries: absolute error Results: Growth

Performance in low growth years (2)

Elastic Net outperforms in *initially* slower growing countries: absolute error Results: Growth

Performance in low growth years (2)

Elastic Net outperforms in *initially* slower growing countries: squared error Results: Growth

Performance and GDP p.c.

Random Forest outperform in *initially* poorer countries: absolute error Results: Growth

Performance and GDP p.c.

Elastic Net outperform in initially poorer countries: squared error

Performance and GDP p.c.

Elastic Net outperform in initially poorer countries: squared error

Regression framework

Absolute error, Random Forest

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
Real GDP growth	-0.0760***	-0.0843***	-0.0862***	-0.0660**
	(0.0270)	(0.0281)	(0.0271)	(0.0284)
				0.40=*
Log GDP p.c., t-1		-0.246**	-0.217**	-0.107*
		(0.107)	(0.107)	(0.0646)
Africa			0.375	0.340*
Airica				
			(0.336)	(0.181)
Asia			0.414*	0.157
			(0.230)	(0.152)
			, ,	
Europe			0.155	0.133
			(0.230)	(0.160)
Latin America			0.0633	0.0981
Latin America				
			(0.251)	(0.141)
Year FE	Υ	Υ	Υ	Υ
Continent FE	N	N	Υ	Υ
Observations	741	741	741	2176
Adjusted R ²	0.031	0.050	0.050	0.032

Standard errors in parentheses, clustered at country-level * p < 0.10, *** p < 0.05, *** p < 0.01

Regression framework

Absolute error, Elastic Net

Results: Growth
 Results: Growth

	(1) OLS	(2) OLS	(3) OLS	(4) OLS
Real GDP growth	-0.105 (0.0695)	-0.114 (0.0710)	-0.114* (0.0664)	-0.0675 (0.0453)
Log GDP p.c., t-1		-0.267* (0.148)	-0.0973 (0.148)	-0.0146 (0.0725)
Africa			0.567 (0.484)	0.529** (0.252)
Asia			0.169 (0.270)	0.136 (0.167)
Europe			-0.334 (0.292)	-0.0428 (0.150)
Latin America			-0.428 (0.276)	0.0254 (0.140)
Year FE	Υ	Υ	Υ	Υ
Continent FE	N	N	Υ	Υ
Observations	741	741	741	2176
Adjusted R ²	0.032	0.044	0.053	0.026

Standard errors in parentheses, clustered at country-level * p < 0.10, ** p < 0.05, *** p < 0.01

Regression framework

Squared error, Elastic Net

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
Real GDP growth	-9.010*	-9.392*	-9.305*	-4.244
	(5.412)	(5.500)	(5.272)	(2.991)
Log GDP p.c., t-1		-11.29*	-2.574	0.416
Log dDi p.c., t-1			(6.597)	
		(6.358)	(0.597)	(2.255)
Africa			34.78	23.18*
			(22.84)	(13.28)
			,	,
Asia			6.673	8.099
			(10.48)	(8.030)
Europe			-9.510	-4.450
Luiope				
			(12.53)	(4.745)
Latin America			-13.80	-0.176
			(10.43)	(3.476)
Year FE	Υ	Υ	Υ	Υ
Continent FE	N	N	Υ	Υ
Observations	741	741	741	2176
Adjusted R ²	0.103	0.112	0.121	0.047

Standard errors in parentheses, clustered at country-level

Ensemble of WEO and RF forecasts

Mean absolute error

Ensemble of WEO and RF forecasts

Median absolute error

1-year forecasting gains: actual growth

Elastic Net, RMSE

1-year forecasting gains: actual growth

Random Forest, Mean Absolute Error

1-year forecasting gains: actual growth

Elastic Net, Mean Absolute Error

Random Forest, RMSE, 3-year

Elastic Net, RMSE, 3-year

Random Forest, MAE, 3-year

Elastic Net, Mean Absolute Error, 3-year

Elastic Net, RMSE

Random Forest, Mean Absolute Error

Elastic Net, Mean Absolute Error

Random Forest, RMSE, 3-year

Forecasting gains: initial GDP p.c.

Elastic Net, RMSE, 3-year

Random Forest, Mean Absolute Error, 3-year

Elastic Net, Mean Absolute Error, 3-year

