

# 以太网设计规范说明书

**Specification of ETH Configuration and Communication Requirements** 

阿维塔科技 (重庆) 有限公司

**AVATR Technologies Co., Ltd.** 



# 目录

| 前言                       | 1 |
|--------------------------|---|
|                          |   |
| 1.范围                     | 2 |
| 2. 以太网络拓扑                | 3 |
| 3. 物理层配置                 | 3 |
| 4. 数据链路层配置               | 3 |
| 4.1 车内通信 VLAN 配置         | 3 |
| 4.2 车内通信 VLAN 配置         | 4 |
| 4.3 车内外通信 VLAN 配置        | 5 |
| 4.4 VLAN 配置汇总表           | 5 |
| 5. IP 层配置                | 6 |
| 5.1 IPv4 地址              | 6 |
| 5.2 IPv4 多播地址            | 6 |
| 6. 传输层配置                 | 7 |
| 6.1 TCP 保活机制(keep alive) | 7 |



# 前言

本规范起草单位: 阿维塔科技-产品研发中心-数字集成-电子电气架构

本规范起草人:郭涛

本规范审核人: 保志远

# 发布/修订记录:

| 修订版本  | 修订人      | 修订内容                                             | 发布/修改日     |
|-------|----------|--------------------------------------------------|------------|
|       |          |                                                  | 期          |
| V1.0  | 郭涛       | 首版                                               | 2023.10.24 |
| V1.1  | 郭涛       | 1.章节4.1.1 修改 VCU 单播 MAC 地址,由"AA-AA-AA-00-00-04"  | 2024.01.02 |
| V 1.1 | - 주이 /oT | 修改为 "18-CF-24-00-00-04" 。                        | 2024.01.02 |
|       |          | 1.TBOX、CDC、MDC 在 VLAN 69 网段增加 OTA 私有协议业务;        |            |
| V1.2  | 卢科       | 2. TBOX、CDC、MDC 增加 OTA 私有协议业务的 TCP 13402 端口。     | 2024.05.11 |
| V1.3  | 郭涛       | 1.章节 4.1.1 修改 VCU 单播 MAC 地址,由"18-CF-24-00-00-04" | 2024.05.28 |
| V 1.5 | 子中村      | 修改为 "AA-AA-AA-00-00-04"。                         | 2024.00.20 |



# 1.范围

本规范适用于阿维塔科技(简称阿维塔)ASE&G 车型项目车载以太网控制器的设计规范和配置。

如果本标准与其它标准或规范不一致,则按照如下方式处理:

- 1) 如果本标准与其它文档发生冲突时,优先考虑本标准。
- 2) 如果本标准与法规要求发生冲突时, 法规要求优先于本规范。

#### 2. 以太网络拓扑



图 1 以太网网络拓扑

#### 3. 物理层配置

对于以太网车型物理层实现,应遵循以下要求:

- ◆ 车辆内部网络使用 100BASE-T1 及 1000BASE-T1 物理层。
- ❖ 诊断连接通过 OBD 连接器使用 100BASE-TX 物理层, 包括 100BASE-TX 引脚和激活线引脚。

### 4. 数据链路层配置

### 4.1 车内通信 VLAN 配置

### 4.1.1 单播 MAC 地址

汽车内部通信的以太网节点,MAC 地址采用静态配置方式。MAC 地址分配如下:

Table表1 单播MAC地址

| 市点     | MAC 地址            | 备注 |
|--------|-------------------|----|
| ТВОХ   | AA-AA-AA-00-00-01 |    |
| CDC    | AA-AA-AA-00-00-02 |    |
| GW     | AA-AA-AA-00-00-03 |    |
| vcu    | AA-AA-AA-00-00-04 |    |
| MDC    | AA-AA-AA-00-00-05 |    |
| Tester | TBD               |    |

#### 4.1.2 多播 MAC 地址

以太网节点之间的通信组播 MAC 地址采用静态配置方式,组播 MAC 地址分配如下:



Table表2 多播MAC地址

| 应用场景      | 应用节点                | 组播IP地址      | 组播目标MAC地址         |
|-----------|---------------------|-------------|-------------------|
| SOMEIP-SD | GW/MDC/CDC/TBOX/VCU | 239.0.0.255 | 01-00-5E-00-00-FF |
| UDPNM(预留) | GW/MDC/CDC/TBOX/VCU | 239.1.0.1   | 01-00-5E-01-00-01 |
| DoIP      | GW/MDC/CDC/TBOX/VCU | 239.2.0.1   | 01-00-5E-02-00-01 |
| gPTP(预留)  | CDC/VCU             | NA          | 01-80-C2-00-00-0E |

# 4.2 车内通信 VLAN 配置

支持 VLAN 功能, VLAN ID 以及业务优先级划分如下:

Table表3 基于业务类型的VLAN分配

| VLAN<br>ID | Я                    | 业务类型           |   | 业务部件 |     |    |     |      |        |
|------------|----------------------|----------------|---|------|-----|----|-----|------|--------|
|            | COMEID (#A           | 隐私安全           | 7 |      | CDC |    |     | твох |        |
| 61         | SOMEIP (指令<br>类或交互类) | XCALL          | 7 |      | CDC |    |     | твох |        |
|            | 天戏又五天/               | VHR 控制指令       | 7 |      | CDC |    | VCU | твох |        |
| 62         | UDPNM(M              | ]络管理)(预留)      | 7 |      |     |    |     |      |        |
| 63         | gPTP(时)              | 间同步)(预留)       | 7 |      |     |    |     |      |        |
| 65         | 数据传输                 | 自动泊车           | 4 | MDC  | CDC |    |     |      |        |
|            | <b>左中网络 2/11</b>     | VHR 告警类        | 1 |      | CDC |    | VCU | твох |        |
| 68         | 车内网络 VHR<br>数据通道     | VHR 记录类        |   |      |     |    |     |      |        |
|            | — 数加旭 <b>但</b>       | BusMiorring 转发 | 0 |      | CDC | GW |     |      |        |
|            |                      | OTA 私有协议       | 0 | MDC  | CDC |    |     | твох |        |
|            |                      | 故障上报           | 6 | MDC  | CDC | GW | VCU | твох |        |
| 69         | 故障诊断类                | OTA 刷写         | 0 |      | CDC | GW | VCU |      |        |
|            |                      | DoIP 诊断        | 0 | MDC  | CDC | GW | VCU | твох | Tester |
|            |                      | OTA 升级包        | 3 | MDC  | CDC |    |     | твох |        |
| 71         |                      | 地图             | 3 | MDC  | CDC |    |     | твох |        |
| 72         | 车内外通信                | 上网娱乐           | 3 |      | CDC |    |     | твох |        |
| 73         |                      | VHR 上报车云       | 3 | MDC  | CDC |    |     | твох |        |
|            |                      | 视频、图片等         | 3 | MDC  | CDC |    |     |      |        |

### 4.3 车内外通信 VLAN 配置



图 2 车内外通信示意图

如上图所示, 蓝色实线走 VLAN 71, 绿色实线走 VLAN 72, 红色实线走 VLAN 73, VLAN 分配和 DNS 配置信息见下表。

| VLAN | APN编号     | MDC              | CDC             | ТВОХ            | DNS服务器       |
|------|-----------|------------------|-----------------|-----------------|--------------|
| ID   |           |                  |                 |                 |              |
| 71   | 专网APN1    | 192.168.71.41/24 | 192.168.71.6/24 | 192.168.71.1/24 | 192.168.71.1 |
| 72   | 公网APN2(公司 | 192.168.72.41/24 | 192.168.72.6/24 | 192.168.72.1/24 | 192.168.72.1 |
|      | 付费业务)     |                  |                 |                 |              |
| 73   | 公网APN3(客户 |                  | 192.168.73.6/24 | 192.168.73.1/24 | 192.168.73.1 |
|      | 付费业务)     |                  |                 |                 |              |

Table表4 基于APN的VLAN、IP和DNS配置

### 4.4 VLAN 配置汇总表

|     |      |     |               |    | <del>-</del> |
|-----|------|-----|---------------|----|--------------|
| Tah | le耒5 | 1/1 | $\Delta N M $ | 害训 | 显表           |

| VLAN ID | MDC | CDC | GW | VCU | твох | 车云 | Tester |
|---------|-----|-----|----|-----|------|----|--------|
| 61      |     | •   |    | •   | •    |    |        |
| 62 (预留) |     |     |    |     |      |    |        |
| 63 (预留) |     |     |    |     |      |    |        |
| 64 (预留) |     |     |    |     |      |    |        |
| 65      | •   | •   |    |     |      |    |        |
| 68      |     | •   | •  | •   | •    |    |        |
| 69      | •   | •   | •  | •   | •    | •  | •      |
| 70 (预留) |     |     |    |     |      |    |        |
| 71      | •   | •   |    |     | •    |    |        |
| 72      | •   | •   |    |     | •    |    |        |
| 73      |     | •   |    |     | •    |    |        |

### 5. IP 层配置

车辆内部网络中各部件未使用 IPv4 数据包的 TTL 字段。

车辆内部 IP 通信不应使用 IP 分片。

IP 首部中的 DSCP 优先级统一设置为默认值 0, 域间通信不使用 DSCP 优先级(只涉及域间通信业务, 域内由各自域控制器自行设置, 不做约束)。

#### 5.1 IPv4 地址

基于 IP 协议传输的 ECU 使用如下 IP 地址进行配置:诊断仪固定 IP,整车内网以太通信节点固定 IP。

Table表6 IP地址

| 业务类型             | MDC         | CDC                 | GW          | VCU         | твох                | 车云          | Tester      |
|------------------|-------------|---------------------|-------------|-------------|---------------------|-------------|-------------|
| SOME/IP 业        | 192.168.61. | 192.168.61.         | 192.168.61. | 192.168.61. | 192.168.61.         |             |             |
| 务                | 41/24       | 6/24                | 21/24       | 36/24       | 1/24                |             |             |
| UDPNM 网络         | 192.168.62. | 192.168.62.         | 192.168.62. | 192.168.62. | 192.168.62.         |             |             |
| 管理(预留)           | 41/24       | 6/24                | 21/24       | 36/24       | 1/24                |             |             |
| 白马拉左             | 192.168.65. | 192.168.65.         |             |             |                     |             |             |
| 自动泊车             | 41/24       | 6/24                |             |             |                     |             |             |
| 车内网络             |             |                     |             |             |                     |             |             |
| VHR 数据通          |             | 192.168.68.         | 192.168.68. | 192.168.68. | 192.168.68.         |             |             |
| 道(包括             |             | 6/24                | 21/24       | 36/24       | 1/24                |             |             |
| BusMiorring      |             |                     |             |             |                     |             |             |
| )                |             |                     |             |             |                     |             |             |
|                  | 192.168.69. | 192.168.69.         | 192.168.69. | 192.168.69. | 192.168.69.         | 192.168.69. | 192.168.69. |
| DoIP 诊断          | 41/24       | 6/24                | 21/24       | 36/24       | 1/24                | 11/24       | 71/24       |
| ⊼II ≠ EEI A DALI | 192.168.71. | 192.168.71.         |             |             | 192.168.71.         |             |             |
| 到专网 APN1         | 41/24       | 6/24                |             |             | 1/24                |             |             |
| ALV EL ADALO     | 192.168.72. | 192.168.72.         |             |             | 192.168.72.         |             |             |
| 到公网 APN2         | 41/24       | 6/24                |             |             | 1/24                |             |             |
| 到公网 APN3         |             | 192.168.73.<br>6/24 |             |             | 192.168.73.<br>1/24 |             |             |

### 5.2 IPv4 多播地址

基于 IP 协议传输的 ECU 使用如下 IP 多播地址进行配置:

Table表7 IP多播地址

| 功能场景       | Multicast IP address |  |
|------------|----------------------|--|
| SOME/IP-SD | 239.0.0.255          |  |
| UDPNM(预留)  | 239.1.0.1            |  |



| DoIP | 239.2.0.1 |
|------|-----------|
|      |           |

# 6. 传输层配置

数据传输 ECU 使用的端口分配如下:

# Table表8 TCP端口配置

| 功能场景                        | 源端口         | 目标端口          |
|-----------------------------|-------------|---------------|
| DoIP                        | -           | 13400         |
| OTA 私有协议                    | 13402       | 13402         |
| SOME/IP                     | 30500-30530 | 30502         |
| (SOME/IP 通信) 基于 TLS 的网关接入认证 | -           | 30504         |
| (SOME/IP 通信) TLS 加密传输       | 30500-30530 | 30505         |
| (SOME/IP 通信) TLS 不加密传输      | 30500-30530 | 30506         |
| 视频传输 RTSP                   | 55640-56640 | 35554: 行车记录仪  |
| が必要して おり はいこと               |             | 35555: 360 环视 |
| 导出数据(FTP)                   | -           | 数据端口 20       |
| →山 秋 ( 「 「 「 「 」            |             | 控制端口 21       |
| 导出数据(SFTP)                  | -           | 55623         |

### Table表9 UDP端口配置

| 功能场景                       | 源端口         | 目标端口                |
|----------------------------|-------------|---------------------|
| DoIP                       | -           | 13400               |
| SOME/IP-SD                 | 30490       | 30490               |
| SOME/IP                    | 30500-30530 | 30501               |
| (SOME/IP 通信)基于 TLS 的网关接入认证 |             | 30504               |
| Bus Mirroring              | -           | 30511               |
| 视频传输 RTP/RTCP              | 55640-56640 | 35004-35011: 行车记录仪  |
|                            |             | 35012-35021: 360 环视 |
| UDPNM(预留)                  | -           | 50002               |
| 以太网报文自定义封装协议               | -           | 51002               |

# 6.1 TCP 保活机制 (keep alive)

节点作为 TCP Server,需支持 TCP keep alive 机制,以老化无效端口,默认配置参数如下。

如功能层面有特殊要求,需要针对相关功能使用的 TCP 链接独立配置。 默认 keep alive 配置参数如下:

- tcp\_keepalive\_time=3 (s)
- tcp\_keepalive\_intvl=1 (s)
- tcp\_keepalive\_probes=3(次)



AOS (Linux)系统对 TCP 链接数量无严格约束条件下,默认 keep alive 配置参数如下:

- tcp\_keepalive\_time=7200 (s)
- tcp\_keepalive\_intvl=75 (s)
- tcp\_keepalive\_probes=9(次)