Shentai Tao 01/31/23

Overview

Film industry is big. And some films have big box offices, such as Avatar. Some films may not seems big but with small investment, yielded significant profits comparing to investment, like The Gallows. There are many factors can affect investment outcomes, such as politics, time of year, economy. More in films themselfs, there are *factors* like **Budget**, **Director/Actor**, **Genre**.

from upsplash.com

Business Understanding

Microsoft wants to invest in film industry. Here I use **Return on Investment**(or ROI) as measurment to determine if the film is worth to invest. **Budget, Director/Actor, Genre** were investigated here to see how different value of them can affect ROI. At end of the project, recommendations are provided on how to choose between these 3 selections in order to yield high **ROI**. However, these recommendations are just recommendations, final decisions have to be made based on real situation.

Data Understanding

There are 5 csv files(including tsv files) and 1 sqlite database.

movie_budgets.csv contains information about **budgets** and **worldwide_gross**, which were used to calculate **ROI**.

In sqlite3 database, there are four tables *movie_basics,movie_akas,persons,principals*. These tables contains information about directors, actors, actresses, including their name. Also movie titles have primary titles, original title and aka titles, which are used to connected to *movie_budgets.csv*, so we can get the ROI for each **category(directors, actors, actresses)**. At mean time, we also can get the ROI for each **genres**.

Data Preparation

Data can be aquired here: https://github.com/learn-co-curriculum/dsc-phase-1-project-v2-4/tree/master/zippedData)

Copy files to data folder in project

Table previews

Table **previews** are showned below to give a brief peep into datas that will be worked on.

```
In [145]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sqlite3
%matplotlib inline
```

In [146]: df_tmdb =pd.read_csv('./Data/tmdb.movies.csv')
df_tmdb

Out[146]:

	Unnamed: 0	genre_ids	id	original_language	original_title	popularity	release_da
0	0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-
1	1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-
2	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-
3	3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-
4	4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-
•••							
26512	26512	[27, 18]	488143	en	Laboratory Conditions	0.600	2018-10-
26513	26513	[18, 53]	485975	en	_EXHIBIT_84xxx_	0.600	2018-05-
26514	26514	[14, 28, 12]	381231	en	The Last One	0.600	2018-10-
26515	26515	[10751, 12, 28]	366854	en	Trailer Made	0.600	2018-06-
26516	26516	[53, 27]	309885	en	The Church	0.600	2018-10-

26517 rows × 10 columns

In [147]: df_rt_reviews= pd.read_csv('./data/rt.reviews.tsv',sep='\t', encoding
df_rt_reviews

Out[147]:

Out[14/].		id	review	rating	fresh	critic	top_critic	pul	olisher	dat	te
	0) 3	A distinctly gallows take on contemporary fina	3/5	5 fresh	PJ Nabarro	0	Patrick N	abarro	Novembe 10, 201	
	1	3	It's an allegory in search of a meaning that n	NaN	I rotten	Annalee Newitz	0	ic	9.com	May 201	
	2	2 3	life lived in a bubble in financial dealin	NaN	I fresh	Sean Axmaker	0		eam on emand	January 4 201	
	3	3	Continuing along a line introduced in last year.	NaN	I fresh	Daniel Kasman	0		MUBI	Novembe 16, 201	
In [148]:			e_info = po e_info	d.rea	nd_csv('./data/r	rt.movie_	_info.tsv	', se	p='\t',	, (
	1556	1997	Saturday Night Live sketch was exp	PG	Come	edy Science Fi	iction and Fantasy	Steve Barron	-	urner Iom Davis Dan yd Bonnie Turner	
	1557	1998	Based on a novel by Richard Powell, when the I	G	Classics 0	Comedy Dram and Perfor		Gordon Douglas		NaN	
	1558	1999	The Sandlot is a coming- of-age story about a g	PG		omedy Drama mily Sports ar		David Mickey Evans		rid Mickey Ins Robert Gunter	
	1559	2000	Suspended from the force, Paris cop Hubert is	R	Action ar	nd Adventure / and Inte	Art House ernation	NaN	Lu	uc Besson	Ş

1560 rows × 12 columns

Out[149]:

	id	release_date	movie	ovie production_budget domestic_gross		worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747
5777	78	Dec 31, 2018	Red 11	\$7,000	\$0	\$0
5778	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,495

This table is only table that contain infomation on **budget**, which is used to calculate **ROI**.

```
In [150]: df_bom_movie_gross = pd.read_csv('./data/bom.movie_gross.csv')
    df_bom_movie_gross
```

Out[150]:

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
3	Inception	WB	292600000.0	535700000	2010
4	Shrek Forever After	P/DW	238700000.0	513900000	2010
3382	The Quake	Magn.	6200.0	NaN	2018
3383	Edward II (2018 re-release)	FM	4800.0	NaN	2018
3384	El Pacto	Sony	2500.0	NaN	2018
3385	The Swan	Synergetic	2400.0	NaN	2018
3386	An Actor Prepares	Grav.	1700.0	NaN	2018

3387 rows × 5 columns

This table contains less records of **gross** and doesn't contain **budget** info.

```
conn = sqlite3.connect('./data/im.db')
In [151]:
            cur = conn.cursor()
            cur.execute("""SELECT name FROM sqlite_master WHERE type = 'table';"""
            table_names = cur.fetchall()
            table_names
Out[151]:
            [('movie_basics',),
             ('directors',),
             ('known_for',),
             ('movie_akas',),
             ('movie_ratings',),
             ('persons',),
             ('principals',),
             ('writers',)]
In [152]:
            def sql_q1(table_name):
                 q = f'''''
                 SELECT *
                 FROM {table name};"""
                 return q
            df_movie_basics = pd.read_sql(sql_q1('movie_basics'),conn)
In [153]:
            df_movie_basics
                 0 tt0063540
                               Sunghursh
                                           Sunghursh
                                                         2013
                                                                        175.0
                                                                                 Action, Crime, Dram
                                 One Day
                                Before the
                                         Ashad Ka Ek
                   tt0066787
                                                         2019
                                                                        114.0
                                                                                   Biography, Dram
                                   Rainy
                                                 Din
                                  Season
                                            The Other
                                The Other
                   tt0069049
                               Side of the
                                           Side of the
                                                         2018
                                                                        122.0
                                                                                           Dram
                                    Wind
                                               Wind
                              Sabse Bada
                                          Sabse Bada
                   tt0069204
                                                         2018
                                                                         NaN
                                                                                    Comedy, Dram
                                    Sukh
                                               Sukh
                                     The
                   tt0100275
                               Wandering
                                           Telenovela
                                                         2017
                                                                         0.08
                                                                              Comedy, Drama, Fantas
                              Soap Opera
                                              Errante
                              Kuambil Lagi
                                         Kuambil Lagi
             146139 tt9916538
                                                         2019
                                                                        123.0
                                                                                           Dram
                                   Hatiku
                                              Hatiku
                                Rodolpho
                                            Rodolpho
```

This table contains **primary_title**, **original_title** and **genres**.

```
In [154]: df_directors = pd.read_sql(sql_q1('directors'),conn)
In [155]: df_known_for = pd.read_sql(sql_q1('known_for'),conn)
In [156]: df_movie_akas = pd.read_sql(sql_q1('movie_akas'),conn)
df_movie_akas
```

Out[156]:

	movie_id	ordering	title	region	language	types	attributes	is_original_t
0	tt0369610	10	Джурасик свят	BG	bg	None	None	
1	tt0369610	11	Jurashikku warudo	JP	None	imdbDisplay	None	
2	tt0369610	12	Jurassic World: O Mundo dos Dinossauros	BR	None	imdbDisplay	None	
3	tt0369610	13	O Mundo dos Dinossauros	BR	None	None	short title	
4	tt0369610	14	Jurassic World	FR	None	imdbDisplay	None	
୧୧ 160ଥ	#9827784	2	Sayonara	None	None	original	None	

This table contains more title.

```
In [157]: df_movie_ratings = pd.read_sql(sql_q1('movie_ratings'),conn)
```

```
In [158]: df_persons = pd.read_sql(sql_q1('persons'),conn)
df_persons
```

Out[158]:

primarı	death_year	birth_year	primary_name	person_id	
miscellaneous,production_mana	NaN	NaN	Mary Ellen Bauder	nm0061671	0
composer,music_department,sounc	NaN	NaN	Joseph Bauer	nm0061865	1
miscellaneou	NaN	NaN	Bruce Baum	nm0062070	2
camera_department,cinematographer,arl	NaN	NaN	Axel Baumann	nm0062195	3
production_designer,art_department,s	NaN	NaN	Pete Baxter	nm0062798	4
	NaN	NaN	Susan Grobes	nm9990381	606643
	NaN	NaN	Joo Yeon So	nm9990690	606644
	NaN	NaN	Madeline Smith	nm9991320	606645
	NaN	NaN	Michelle Modigliani	nm9991786	606646
directo	NaN	NaN	Pegasus Envoyé	nm9993380	606647

606648 rows × 5 columns

This table contains **person** name.

In [159]: df_principals = pd.read_sql(sql_q1('principals'),conn)
df_principals

Out[159]:

	movie_id	ordering	person_id	category	job	characters
0	tt0111414	1	nm0246005	actor	None	["The Man"]
1	tt0111414	2	nm0398271	director	None	None
2	tt0111414	3	nm3739909	producer	producer	None
3	tt0323808	10	nm0059247	editor	None	None
4	tt0323808	1	nm3579312	actress	None	["Beth Boothby"]
1028181	tt9692684	1	nm0186469	actor	None	["Ebenezer Scrooge"]
1028182	tt9692684	2	nm4929530	self	None	["Herself","Regan"]
1028183	tt9692684	3	nm10441594	director	None	None
1028184	tt9692684	4	nm6009913	writer	writer	None
1028185	tt9692684	5	nm10441595	producer	producer	None

1028186 rows × 6 columns

This table contains **category**. It also contain movie_id and person_id, which can be used as **keys** to connect other tables.

```
In [160]: df_writers = pd.read_sql(sql_q1('writers'),conn)
```

In [161]: df_principals.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1028186 entries, 0 to 1028185
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	movie_id	1028186 non-null	object
1	ordering	1028186 non-null	int64
2	person_id	1028186 non-null	object
3	category	1028186 non-null	object
4	job	177684 non-null	object
5	characters	393360 non-null	object
		/ = \	

dtypes: int64(1), object(5)

memory usage: 47.1+ MB

```
In [162]: df_principals.movie_id.value_counts()
Out[162]: tt3407878
                         10
          tt7061094
                         10
          tt9837530
                         10
          tt2770324
                         10
          tt7916276
                         10
          tt6543072
                          1
          tt6645470
                          1
          tt10457064
                          1
                          1
          tt10278270
          tt6639498
                          1
          Name: movie_id, Length: 143454, dtype: int64
```

EDA

Budgets

In [163]: df_tn_movie_budgets

Out[163]:

	id	release_date	e movie production_budget domestic_gross		domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	Caribbean: On \$410,600,000		\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	3 331 MILLINI 3454 III5 868		\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747
•••						
5777	78	Dec 31, 2018	Red 11	\$7,000	\$0	\$0
5778	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,495
5779	80	Jul 13, 2005	Return to the Land of Wonders	\$5,000	\$1,338	\$1,338
5780	81	Sep 29, 2015	A Plague So Pleasant	\$1,400	\$0	\$0
5781	82	Aug 5, 2005	My Date With Drew	\$1,100	\$181,041	\$181,041
5782 ı	rows	s × 6 columns				

In [164]: !ls

```
Microsoft_Movie_Analysis.key
                                code
Microsoft_Movie_Analysis.pdf
                                data
Notebook - Jupyter Notebook.pdf images
Notebook ipynb
                                presentation.pdf
Notebook_copy_ipynb
                                readme.md
ROI_by_budget.png
```

```
In [165]: # trying to import module but failed.
          import sys
          sys.path.insert(0,'./code')
          import data_preparation as dp
```

In [166]:

formate currency from str '\$4,000' to int '4000'
df_tn_movie_budgets['production_budget'] = df_tn_movie_budgets.product

In [167]: # formate currency from str '\$4,000' to int '4000'
df_tn_movie_budgets['domestic_gross'] = df_tn_movie_budgets.domestic_g

In [168]: # formate currency from str '\$4,000' to int '4000'
df_tn_movie_budgets['worldwide_gross'] = df_tn_movie_budgets.worldwide

In [169]: # insanity check
df_tn_movie_budgets['production_budget'][1]

Out[169]: 410600000

In [170]: df_tn_movie_budgets

Out[170]:

	id	release_date	te movie production_budget domestic_g		domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	425000000	760507625	2776345279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875
2	3	Jun 7, 2019	Dark Phoenix	350000000	42762350	149762350
3	4	May 1, 2015	Avengers: Age of Ultron	330600000	459005868	1403013963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747

5777	78	Dec 31, 2018	Red 11	7000	0	0
5778	79	Apr 2, 1999	Following	6000	48482	240495
5779	80	Jul 13, 2005	Return to the Land of Wonders	5000	1338	1338
5780	81	Sep 29, 2015	A Plague So Pleasant	1400	0	0
5781	82	Aug 5, 2005	My Date With Drew	1100	181041	181041

5782 rows × 6 columns

In [171]: # add column ROI
df_tn_movie_budgets['ROI'] = (df_tn_movie_budgets['worldwide_gross']

In [172]: # insanity check
 df_tn_movie_budgets

Out[172]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross	
0	1	Dec 18, 2009	Avatar	425000000	760507625	2776345279	4.5
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	410600000	241063875	1045663875	0.5
2	3	Jun 7, 2019	Dark Phoenix	350000000	42762350	149762350	-1.5
3	4	May 1, 2015	Avengers: Age of Ultron	330600000	459005868	1403013963	2.2
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747	2.1
•••							
5777	78	Dec 31, 2018	Red 11	7000	0	0	-2.0
5778	79	Apr 2, 1999	Following	6000	48482	240495	38.0
5779	80	Jul 13, 2005	Return to the Land of Wonders	5000	1338	1338	-1.7
5780	81	Sep 29, 2015	A Plague So Pleasant	1400	0	0	-2.0
5781	82	Aug 5, 2005	My Date With Drew	1100	181041	181041	162.5

5782 rows × 7 columns

In [173]: use scatter plot to visulize the relationship between ROI and budget
f_tn_movie_budgets.plot(kind='scatter', x='production_budget',y='ROI',

In [174]: # sort by ROI
df_tn_movie_budgets = df_tn_movie_budgets.sort_values(by='ROI',ascendi

There is a outlier, it's 'Deep Throat', which has 1750 as return on investment.

To continue analysis, let's delete it.

In [175]: df_tn_movie_budgets.reset_index(inplace=True)

In [176]: # drop outlier
df_tn_movie_budgets.drop(0,inplace=True)

In [177]: df_tn_movie_budgets.plot(kind='scatter', x='production_budget',y='ROI'
plt.savefig('ROI_by_budget')

- 1. Most films have ROI below 50.
- 2. When **budget** is *between* 10K to 1M, films have *higher* chance to achieve higher ROI, especially when budget are *between* 100K to 1M.
- 3. There are many films that has **budget** between 1M to 10M, but they can't achieve ROI more than 100. Then budgets higher than 10M lead to much lower ROI overall.
- 4. There are few films that has **budget** between 1K to 10K, but ROI in this **budget** range can be very high or low, means having big variance.

My **recommendation** is to have **budget** set *between* 100K to 200K to have better chance to have high return on investment.

Director/Actor

In	[178]:	# recall what related tables look like
		df_movie_basics

0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,Dram
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,Dram
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Dram
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Comedy,Dram
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy, Drama, Fantas
146139	tt9916538	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	2019	123.0	Dram
		Rodolpho	Rodolpho			

In [179]: # recall what related tables look like
df_principals

Out[179]:

	movie_id	ordering	person_id	category	job	characters
0	tt0111414	1	nm0246005	actor	None	["The Man"]
1	tt0111414	2	nm0398271	director	None	None
2	tt0111414	3	nm3739909	producer	producer	None
3	tt0323808	10	nm0059247	editor	None	None
4	tt0323808	1	nm3579312	actress	None	["Beth Boothby"]
1028181	tt9692684	1	nm0186469	actor	None	["Ebenezer Scrooge"]
1028182	tt9692684	2	nm4929530	self	None	["Herself","Regan"]
1028183	tt9692684	3	nm10441594	director	None	None
1028184	tt9692684	4	nm6009913	writer	writer	None
1028185	tt9692684	5	nm10441595	producer	producer	None

1028186 rows × 6 columns

In [180]: pvie_akas to get tables that contains category and titles.
s.merge(df_movie_basics,on='movie_id').merge(df_persons,on='person_id')

Out[180]:

	movie_id	ordering_x	person_id	category	job	characters	primary_title	or
0	tt0111414	1	nm0246005	actor	None	["The Man"]	A Thin Life	
1	tt0111414	2	nm0398271	director	None	None	A Thin Life	
2	tt5573596	5	nm0398271	director	None	None	Remembering Nigel	Rer
3	tt0111414	3	nm3739909	producer	producer	None	A Thin Life	
4	tt0323808	10	nm0059247	editor	None	None	The Wicker Tree	٦
2972478	tt9692684	4	nm6009913	writer	writer	None	Disnatured	
2972479	tt9692684	4	nm6009913	writer	writer	None	Disnatured	
2972480	tt9692684	5	nm10441595	producer	producer	None	Disnatured	
2972481	tt9692684	5	nm10441595	producer	producer	None	Disnatured	
2972482	tt9692684	5	nm10441595	producer	producer	None	Disnatured	

2972483 rows × 22 columns

In [181]: df_tn_movie_budgets

Out[181]:

	index	id	release_date	movie	production_budget	domestic_gross	worldwide_gros
1	5613	14	Mar 21, 1980	Mad Max	200000	8750000	99750000
2	5492	93	Sep 25, 2009	Paranormal Activity	450000	107918810	194183034
3	5679	80	Jul 10, 2015	The Gallows	100000	22764410	41656474
4	5406	7	Jul 14, 1999	The Blair Witch Project	600000	140539099	248300000
5	5709	10	May 7, 2004	Super Size Me	65000	11529368	22233808
•••							
5777	5522	23	Dec 31, 2014	Pancakes	400000	0	(
5778	5521	22	Nov 4, 2005	Show Me	400000	0	(
5779	5520	21	Apr 1, 1986	My Beautiful Laundrette	400000	0	(
5780	5116	17	Sep 8, 2015	Checkmate	1500000	0	(
5781	4982	83	Oct 14, 2008	No Man's Land: The Rise of Reeker	2000000	0	(

5781 rows × 8 columns

In [183]: df_on_primary_title_ROI

Out[183]:

	index	id	release_date	movie	production_budget	domestic_gross	worldwide_gro
0	5679	80	Jul 10, 2015	The Gallows	100000	22764410	416564
1	5679	80	Jul 10, 2015	The Gallows	100000	22764410	416564
2	5679	80	Jul 10, 2015	The Gallows	100000	22764410	416564
3	5679	80	Jul 10, 2015	The Gallows	100000	22764410	416564
4	5679	80	Jul 10, 2015	The Gallows	100000	22764410	416564
457179	5116	17	Sep 8, 2015	Checkmate	1500000	0	
457180	5116	17	Sep 8, 2015	Checkmate	1500000	0	
457181	5116	17	Sep 8, 2015	Checkmate	1500000	0	
457182	5116	17	Sep 8, 2015	Checkmate	1500000	0	
457183	5116	17	Sep 8, 2015	Checkmate	1500000	0	

457184 rows × 30 columns

In [184]: # merge direct_actor and movie_budgets to get table using original_tit
df_on_original_title_ROI = df_tn_movie_budgets.merge(df_director_actor

In [185]: df_on_original_title_ROI

Out[185]:

	index	id	release_date	movie	production_budget	domestic_gross	worldwide_gro
0	5679	80	Jul 10, 2015	The Gallows	100000	22764410	41656
1	5679	80	Jul 10, 2015	The Gallows	100000	22764410	416564
2	5679	80	Jul 10, 2015	The Gallows	100000	22764410	416564
3	5679	80	Jul 10, 2015	The Gallows	100000	22764410	416564
4	5679	80	Jul 10, 2015	The Gallows	100000	22764410	416564
			•••				
444874	5116	17	Sep 8, 2015	Checkmate	1500000	0	
444875	5116	17	Sep 8, 2015	Checkmate	1500000	0	

In [186]: # merge direct_actor and movie_budgets to get table using aka_title
df_on_aka_title_ROI = df_tn_movie_budgets.merge(df_director_actor,left

In [187]: df_final = pd.concat([df_on_original_title_ROI,df_on_primary_title_ROI

In [188]: # drop duplicated records led by merge
df_final.drop_duplicates(inplace=True)

In [189]: pd.set_option('max_columns', None)

```
In [190]: # insanity check
            df_final.iloc[180:240,:-1]
                                           The
             232
                  5679 80
                                                         100000
                                                                      22764410
                                                                                      41656474 4<sup>-</sup>
                             Jul 10, 2015
                                        Gallows
                                           The
                                                          100000
             233
                  5679 80
                            Jul 10, 2015
                                                                      22764410
                                                                                      41656474 4
                                        Gallows
                                           The
             234
                  5679 80
                                                          100000
                                                                                      41656474 4<sup>-</sup>
                            Jul 10, 2015
                                                                      22764410
                                        Gallows
                                           The
             235
                  5679 80
                                                          100000
                                                                                      41656474 4<sup>-</sup>
                            Jul 10, 2015
                                                                      22764410
                                        Gallows
                                           The
             236
                  5679 80
                            Jul 10, 2015
                                                         100000
                                                                      22764410
                                                                                      41656474 4°
                                        Gallows
                                           The
                            Jul 10, 2015
                                                                                      41656474 4<sup>-</sup>
             237
                  5679 80
                                                          100000
                                                                      22764410
                                        Gallows
                                           The
                            Jul 10, 2015
                                                          100000
                                                                      22764410
                                                                                      41656474 4°
             238
                  5679 80
                                        Gallows
                                           The
                                                          100000
             239
                  5679 80
                            Jul 10, 2015
                                                                      22764410
                                                                                      41656474 4°
                                        Gallows
In [191]: | df_final.category.value_counts()
Out[191]:
            actor
                                        121454
            writer
                                         93398
                                         90592
            producer
                                         69613
            actress
            director
                                         52064
            composer
                                         23501
            cinematographer
                                         14954
            editor
                                           7702
                                           2276
            production_designer
            self
                                           2003
            archive_footage
                                            164
            archive_sound
                                             55
            Name: category, dtype: int64
In [192]: df final aftergroupby = df final.groupby(by=['category','person id']).
In [193]: def get_name_bar(x):
                df_top_20_x = df_final_aftergroupby[df_final_aftergroupby.category=
                df_top_20_x_name = df_top_20_x.merge(df_final)
                df_top_20_x_name[['primary_name','ROI']].drop_duplicates().plot(kir
```

```
In [194]: get_name_bar('actor')
   plt.savefig('ROI_by_actor',bbox_inches='tight')
```


In [195]: get_name_bar('actress')
 plt.savefig('ROI_by_actress',bbox_inches='tight')


```
In [196]: get_name_bar('director')
   plt.savefig('ROI_by_director',bbox_inches='tight')
```


These show *top 20* **actors, directors, actresses** from above graphs. However this result is strongly *correlated* the specific **films** they are in. As top 1 and top 2 in each category, Reese Mishler, Cassiidy Gifford, Travis Cluff, Chris Lofing, Pfeifer Brown, and Ryan Shoos all are part of in *same* film.

I recommend pick top 10 personas from each category, since these persons have significant higher ROI than rest of person.

Genre

```
In [197]: df_final.boxplot(by='genres',column='ROI',rot=90,figsize=(12,5))
plt.ylabel('ROI');
plt.savefig('ROI_by_genres',bbox_inches='tight')
```


Genres can be Drama, Documentary, Comedy, Horror, Family, Mystery, Adventure, Animation, Crime, Fatasy, War, Sci-Fi, News......

There are so many!

I filtered that has top 10 records amount to compare **genres** that only has signifiant records size.

Out[199]: genres

Adventure, Animation, Comedy	26779
Drama	20713
Action,Adventure,Sci-Fi	20497
Comedy, Drama, Romance	14417
Comedy, Drama	14351
Comedy	13966
Action,Adventure,Fantasy	13924
Drama, Romance	13209
Action,Crime,Drama	10648
Comedy, Romance	10230
Name: id, dtype: int64	

```
df_final_genre_aftergroupby_top10_1 = df_final[df_final.genres.isin(df

In [201]: df_final_genre_aftergroupby_top10_1.boxplot(by='genres',column='ROI',r
    plt.title('ROI by genres')
    plt.ylabel('ROI');
    plt.savefig('ROI_by_genres_top_10',bbox_inches='tight')
```

In [200]: # prepare final table to draw plot. Here only choose records whose gen

- 1. 'Adventure, Animation, Comedy', 'Action, Adventrue, Sci-Fi', 'Action, Adventure, Fantasy' are there **genres** that generates most **ROI** comparing to other **genres** or genres conbinations.
- 2. However overall each **genres** tends to have smilar **ROI** based on median comparison.
- 3. *Drama* has many *high* **ROI** films, however it could be the results of *high* records volumns. And majority of dramas films have negative **ROI**.
- 4. Comedy and Documentary have many films that has high ROI.

I would *recommend* setting genre as adventure and action or comedy, since films yeild high **ROI** are in these genre or commbination of these genres.

Results

This Analysis generates 3 recommendations:

- 1. Have **budget** set *between* 100K to 200K to have better chance to have high return on investment.
- 2. Pick top 10 personas from each category such as Reese Mishler, Cassiidy Gifford, Travis Cluff, Chris Lofing, Pfeifer Brown, and Ryan Shoos, since these persons have significant higher **ROI** than rest of person.
- 3. Set genre as adventure and action or comedy, since films yelld high **ROI** are in these genre or commbination of these genres.

More

There are some more related finds:

- 1. Another *measurement* here can be films **rating**, while it would provide perspective about how people like the film, ratings might not give as many insights about profit as **ROI** does.
- 2. There are many **Generes** that doesn't have many records. However for those not-well-produced **generes** have some films that yield high ROI. This films can be investigated further and out of this project's scope.
- 3. The impact of persons on films'ROI are so correlated to films themselves. If there a group of person are in same film and that film has high **ROI** then those person all have high **ROI**. So alternatively, we can investigate **ROI** for each **title**, and then choose person from top 10 films that have highest ROI.
- 4. Avatar has big box office, however it's budget is so high that makes it not high in ROI.

