

escola britânica de artes criativas & tecnologia

Profissão: Cientista de Dados

Análise de Regressão II

Previsão vs Explicação

Previsão vs explicação

Previsão vs explicação

Previsão:

- Objetivo mais comum em machine learning
- Encontrar padrões em dados e "prever" novas observações
- Poucas premissas
- Foco em redução de erros

Explicação:

- Objetivo mais comum em estatística
- Identificar associações e interpretá-las
- Testar hipóteses sobre elas
- Premissas mais fortes sobre os dados
- Mede erro amostral

Para descontrair...

Como se pareciam...

Inferência sobre os parâmetros

Premissas sobre os dados

- São observações aleatórias seja devido a:
 - Processo de amostragem
 - Processo estocástico de geração
 - Por premissa
- Possuem alguma "lei" geradora sobre a qual queremos inferir

"As I have said so many times, God doesn't play dice with the world."

Albert Einstein

Einstein não estava errado... Só trabalhava com um modelo que não é útil sob o paradigma que vamos usar.

Uma estimativa é aleatória

Siga o meu raciocínio:

- Vemos dados são variáveis aleatórias
- $\hat{\beta}$ é uma função dos dados (x e y)
- $\hat{\beta}$ é, portanto, variável aleatória também.
- Se conhecermos a 'lei' de $\hat{\beta}$ podemos fazer inferência sobre ele

Qual será a "lei" geradora de $\hat{\beta}$?

Raciocínio com dados simulados

$$y = 5 + 0.1x + \epsilon$$

com o parâmetro aleatório de erro sendo: $\epsilon \sim N(0, 0.25)$

Premissas da regressão

- Erros ~ $N(0, \sigma^2)$
- Erros independentes
- Homocedasticidade (variância homogênea)

Formulando a hipótese nula:

$$H_0$$
: $\beta = 0$
 H_a : $\beta \neq 0$

$$t = \frac{\hat{\beta}}{erro - padr\tilde{a}o_{\hat{\beta}}} \sim N(\beta, \sigma^2_{\beta})$$

	coef	std err	t	P> t	[0.025	0.975]
Intercept	5.1700	0.136	37.988	0.000	4.896	5.444
x	0.0540	0.029	1.842	0.072	-0.005	0.113

Formulando a hipótese nula:

$$H_0$$
: $\beta = 0$
 H_a : $\beta \neq 0$

$$t = \frac{\hat{\beta}}{erro - padr\tilde{a}o_{\hat{\beta}}} \sim N(\beta, \sigma^2_{\beta})$$

Formulando a hipótese nula:

$$H_0$$
: $\beta = 0$
 H_a : $\beta \neq 0$

$$t = \frac{\hat{\beta}}{erro - padr\tilde{a}o_{\hat{\beta}}} \sim N(\beta, \sigma^2_{\beta})$$

Estimativa do beta

• Formulando a hipótese nula:

$$H_0$$
: $\beta = 0$
 H_a : $\beta \neq 0$

$$t = \frac{\hat{\beta}}{erro - padr\tilde{a}o_{\hat{\beta}}} \sim N(\beta, \sigma^2_{\beta})$$

0.029

x 0.0540

Erro padrão do beta

1.842 0.072 -0.005

0.113

• Formulando a hipótese nula:

$$H_0$$
: $\beta = 0$
 H_a : $\beta \neq 0$

$$t = \frac{\hat{\beta}}{erro - padr\tilde{a}o_{\hat{\beta}}} \sim N(\beta, \sigma^2_{\beta})$$

Estatística t – estimativa/erro padrão

 $erro-padrão_{\widehat{\mathcal{B}}}$

p – value

Formulando a hipótese nula:

$$H_0$$
: $\beta = 0$
 H_a : $\beta \neq 0$

$$t = \frac{\hat{\beta}}{erro - padr\tilde{a}o_{\hat{\beta}}} \sim N(\beta, \sigma^2_{\beta})$$

P-value: probabilidade de observarmos um novo $\hat{\beta}$ sob H₀, menos provável que a estimativa atual.

• Formulando a hipótese nula:

$$H_0$$
: $\beta = 0$
 H_a : $\beta \neq 0$

$$t = \frac{\hat{\beta}}{erro - padr\tilde{a}o_{\hat{\beta}}} \sim N(\beta, \sigma^2_{\beta})$$

Podemos dizer, com 95% de confiança, que o verdadeiro valor do parâmetro está dentro desse intervalo.