$y_{ij} = \mu_i + \epsilon_{ij}, j = 1, 2, \dots, n_i; i = 1, 2, \dots, k, \epsilon_{ij} \sim N(0, \sigma^2)$ i.i.d. Are the group means different?

$$\begin{pmatrix} \hat{\mu}_1 \\ \vdots \\ \hat{\mu}_k \end{pmatrix} = \begin{pmatrix} \bar{y}_1 \\ \vdots \\ \bar{y}_k \end{pmatrix} \text{ so that RSS} = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2.$$

To test $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$, consider

$$A_{(k-1)\times k} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & -1 \\ 0 & 1 & 0 & \cdots & 0 & -1 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -1 \end{pmatrix}.$$
 Then we test $H_0: A\mu = 0$ where A

has rank k-1. To test H_0 , we obtain $\hat{\mu}_{H_0}$, RSS_{H_0} and consider

$$F = \frac{(\text{RSS}_{H_0} - \text{RSS})/(k-1)}{\text{RSS}/(\sum_{i=1}^k n_i - k)}, \text{ which } \sim F_{k-1,\sum_{i=1}^k n_i - k} \text{ under } H_0.$$

To find $\hat{\mu}_{H_0}$, RSS_{H_0} , note that, under $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$, these means are equal, and so it is enough to find

$$\min_{\mu_1 = \mu_2 = \dots = \mu_k} \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \mu_i)^2 = \min_{\mu} \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \mu)^2.$$

Therefore,

$$\hat{\mu}_{H_0} = \frac{1}{\sum_{i=1}^k n_i} \sum_{i=1}^k \sum_{j=1}^{n_i} y_{ij} \equiv \bar{y}_{..}, \text{ and hence } RSS_{H_0} = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2.$$

Introduce further notation: $\bar{y}_{i.} = \bar{y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}, i = 1, 2, ..., k$. Note, further, that

 RSS_{H_0}

$$= \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.} + \bar{y}_{i.} - \bar{y}_{..})^2$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 + \sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2 + 2 \sum_{i=1}^{k} \left\{ (\bar{y}_{i.} - \bar{y}_{..}) \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.}) \right\}$$

$$= RSS + \sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2,$$

since $\sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.}) = 0$ for all i. Therefore,

$$RSS_{H_0} - RSS = \sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2$$

and therefore,

$$F = \frac{\sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2 / (k-1)}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 / (\sum_{i=1}^{k} n_i - k)} \sim F_{k-1, \sum_{i=1}^{k} n_i - k} \text{ under } H_0.$$

It is instructive to consider these sum of squares.

$$RSS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

- RSS = $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} \bar{y}_{i.})^2$ = the sum total of all the sum of squares of deviations from the sample means
- = within groups or within treatments sum of squares, SS_W .

$$RSS_{H_0} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2$$

- $RSS_{H_0} = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} \bar{y}_{..})^2$ = total sum of squares of deviations assuming no treatment effect
- = total variability (corrected) in the k samples, SS_T .

Therefore, $\sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2 = SS_T - SS_W = \text{between groups or between treatments sum of squares} = SS_B$. Thus,

 $SS_T = SS_W + SS_B$ is the decomposition of sum of squares along with $\sum_{i=1}^k n_i - 1 = (\sum_{i=1}^k n_i - k) + (k-1)$, decomposition of d.f.

ANOVA for One-way classification

source	d.f.	SS	MS	F
Treatments	k-1	$SS_B =$	$MS_B =$	$\frac{\text{MS}_B}{\text{MSE}} \sim (\text{under } H_0)$
(groups)		$\sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{})^2$	$\frac{SS_B}{k-1}$	$F_{k-1,\sum_{i=1}^k n_i - k}$
Error	$\sum n_i - k$	$SS_W =$	MSE =	
		$\sum \sum (y_{ij} - \bar{y}_{i.})^2$	$\frac{SS_W}{\sum_{i=1}^k n_i - k}$	
Total	$\sum n_i - 1$	$SS_T =$		
(corrected)		$\sum \sum (y_{ij} - \bar{y}_{})^2$		
Mean	1	$\left(\sum_{i=1}^k n_i\right)\bar{y}_{\cdot\cdot\cdot}^2$		
Total	$\sum n_i$	$\sum_{i=1}^k \sum_{j=1}^{n_i} y_{ij}^2$		

Example. Tensile strength data. k = 5, $n_i = 5$. ANOVA is as follows.

source	d.f.	SS	MS	F
Factor levels (% cotton)	4	475.76	118.94	$14.76 >> 4.43 = F_{4,20}(.99)$
Error	20	161.20	8.06	
Total(corrected)	24	636.96		

$$R^2 = \frac{475.76}{636.96} \approx 75\%$$

Now that the ANOVA H_0 has been rejected, we should look at the group means (estimates) closely. Suppose we want to compare μ_r and μ_s either with $H_0: \mu_r = \mu_s$ or using a confidence interval for $\mu_r - \mu_s$.

$$\hat{\mu}_r - \hat{\mu}_s = \bar{y}_{r.} - \bar{y}_{s.} \sim N\left(\mu_r - \mu_s, \sigma^2\left(\frac{1}{n_r} + \frac{1}{n_s}\right)\right)$$

independently of

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 \sim \sigma^2 \chi^2_{\sum_{i=1}^{k} n_i - k}.$$

Therefore,

$$\frac{\left\{ (\bar{y}_{r.} - \bar{y}_{s.}) - (\mu_r - \mu_s) \right\} / \sqrt{\frac{1}{n_r} + \frac{1}{n_s}}}{\sqrt{\sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 / \left(\sum_{i=1}^k n_i - k\right)}} \sim t_{\sum_{i=1}^k n_i - k}.$$

 $100(1-\alpha)\%$ confidence interval for $\mu_r - \mu_s$ is

$$\bar{y}_{r.} - \bar{y}_{s.} \pm t_{\sum_{i=1}^{k} n_i - k} (1 - \alpha/2) \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 / \left(\sum_{i=1}^{k} n_i - k\right)} \sqrt{\frac{1}{n_r} + \frac{1}{n_s}}.$$

Further, test statistic for testing $H_0: \mu_r = \mu_s$ is

$$T = \frac{(\bar{y}_{r.} - \bar{y}_{s.}) / \sqrt{\frac{1}{n_r} + \frac{1}{n_s}}}{\sqrt{\sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 / \left(\sum_{i=1}^k n_i - k\right)}} \sim t_{\sum_{i=1}^k n_i - k},$$

if H_0 is true.