Optimization and Machine Learning SI151

Lu Sun

School of Information Science and Technology ShanghaiTech University

March 4, 2020

Today:

- Overview of supervised learning II
 - Statistical decision theory
 - Local methods in high dimensions
 - Statistical models
 - Model selection

Readings:

- The Element of Statistical Learning, Chapters 1 and 2
- Pattern Recognition and Machine Learning, Chapter 1

Overview of Supervised Learning II

--- Statistical Decision Theory

- Given:
 - a random input vector $X \in \mathbb{R}^p$,
 - □ random output variable $Y \in \mathbb{R}$,
 - \Box joint distribution Pr(X, Y),
- Goal: we seek a function f(X) for predicting Y given values of X.
- To penalize prediction errors, we introduce the *loss function* L(Y, f(X)).
- Squared error loss:

$$L(Y, f(X)) = (Y - f(X))^{2}.$$

• Expected prediction error (EPE):

$$EPE(f) = E(Y - f(X))^{2}$$
$$= \int (y - f(x))^{2} Pr(dx, dy).$$

• Since Pr(X, Y) = Pr(Y|X) Pr(X), EPE can also be written as

$$EPE(f) = E_X E_{Y|X}([Y - f(X)]^2 | X).$$

• Thus, it suffices to minimize EPE *pointwise*:

$$f(x) = \operatorname{argmin}_{c} \operatorname{E}_{Y|X} ([Y - c]^{2} | X = x)$$

- Nearest neighbor methods try to directly implement this recipe $\hat{f}(x) = \text{Ave}(y_i | x_i \in N_k(x)).$
- Two approximations:
 - expectation is approximated by averaging over sample data;
 - conditioning at a point is relaxed to conditioning on neighborhood.
- As $N, k \to \infty$ and $\frac{k}{N} \to 0$, we have $\hat{f}(x) \to E(Y|X=x)$.

- But usually we do not have very large samples.
- By making assumptions (linearity), we can reduce the required number of observations greatly.
- As increasing the number *p* of dimensions, the number *N* of observations required in the training data set increases exponentially.
- Thus the *rate of convergence* to the true estimator (with increasing *k*) decreases.

- Linear regression assumes that the regression function is approximately linear $f(x) \approx x^T \beta$.
- This is a model-based approach.
- Plugging this f(x) into EPE, $EPE(f) = E(Y - f(X))^{2}$ $= E((Y - X^{T}\beta)^{T}(Y - X^{T}\beta))$
- Differentiating w.r.t. β , leads to $\beta = [E(XX^T)]^{-1}E(XY)$

 Again, linear regression replaces the theoretical expectation by averaging over the observed data

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - x_i^T \beta)^2$$
$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- Summary approximation of f(X)
 - Least squares:globally linear function
 - Nearest neighbors:locally constant function.

- Additional methods in our course are often model-based but more flexible than the linear model.
- For example, additive models

$$f(X) = \sum_{j=1}^{p} f_j(X_j)$$

- \Box Coordinate function f_j is arbitrary.
- Approximate *univariate* conditional expectations simultaneously for each f_j .
- Model assumption: additivity.

• What happens if we use another loss function?

$$L_1(Y, f(X)) = E|Y - f(X)|$$

• In this case,

$$\hat{f}(x) = \text{median}(Y|X = x)$$

- More robust than the conditional mean.
- Summary:
 - \Box L_1 criterion not differentiable.
 - Squared error is the most popular.

- Procedure for categorical output variable *G* with values from *G*.
- Loss function is $K \times K$ matrix **L**, where $K = \text{card}(\mathcal{G})$
- $\mathbf{L}(k, l)$ is the price paid for misclassifying an observation belonging to class \mathcal{G}_k as class \mathcal{G}_l
- L is zero on the diagonal
- We often use the zero-one loss function

$$\mathbf{L}(k, l) = 1 - \delta_{kl}$$
 where $\delta_{kl} = 1$ if $k = l$, otherwise $\delta_{kl} = 0$

- Expected prediction error (EPE) $EPE = E[L(G, \widehat{G}(X))]$ where expectation taken w.r.t. Pr(G, X)
- Conditioning on *X* yields

$$EPE = E_X \sum_{k=1}^{K} L[\mathcal{G}_k, \widehat{G}(X)] \Pr(\mathcal{G}_k | X)$$

Again, it suffices to pointwise minimization

$$\widehat{G}(x) = \operatorname{argmin}_{g \in G} \sum_{k=1}^{K} L(\mathcal{G}_k, g) \Pr(\mathcal{G}_k | X = x)$$
Or simply

Bayes classifier

• Or simply $\hat{G}(x) = \max_{g \in G} \Pr(g|X = x)$

Bayes Optimal Classifier

Since the generating density is known for each class, this boundary can be calculated exactly.

- Expected prediction error (EPE) $EPE = E[L(G, \hat{G}(X))]$ where expectation taken w.r.t. Pr(G, X)
- Conditioning on X yields $EPE = E_X \sum_{k=1}^{K} L[\mathcal{G}_k, \widehat{G}(X)] \Pr(\mathcal{G}_k | X)$
- Again, it suffices to pointwise minimization

$$\widehat{G}(x) = \operatorname{argmin}_{g \in G} \sum_{k=1}^{K} L(\mathcal{G}_k, g) \Pr(\mathcal{G}_k | X = x)$$
• Or simply

Bayes classifier

• Or simply $\hat{G}(x) = \max_{g \in G} \Pr(g|X = x)$

- Expected prediction error (EPE) $EPE = E[L(G, \hat{G}(X))]$ where expectation taken w.r.t. Pr(G, X)
- Conditioning on *X* yields

$$EPE = E_X \sum_{k=1}^{K} L[\mathcal{G}_k, \widehat{G}(X)] \Pr(\mathcal{G}_k | X)$$

• Again, it suffices to pointwise minimization

$$\widehat{G}(x) = \operatorname{argmin}_{g \in G} \sum_{k=1}^{K} L(\mathcal{G}_k, g) \Pr(\mathcal{G}_k | X = x)$$
Or simply

Bayes classifier

• Or simply $\widehat{G}(x) = \max_{g \in G} \Pr(g|X = x)$

Overview of Supervised Learning II

--- Local Methods in High Dimensions

- Curse of Dimensionality:
 Local neighborhoods become increasingly global, as the number of dimension increases
- Example: Points uniformly distributed in a *p*-dimensional unit hypercube.
- Hypercubical neighborhood in p dimensions that captures a fraction r of the data
 - edge length: $e_p(r) = r^{\frac{1}{p}}$ $e_{10}(0.01) = 0.63$ $e_{10}(0.1) = 0.80$

In ten dimensions we need to cover 63% (80%) of the range of each coordinate to capture 1% (10%) of the data.

Reducing *r* reduces the number of observations and thus the stability.

In ten dimensions we need to cover 63% (80%) of the range of each coordinate to capture 1% (10%) of the data.

- In high dimensions, all sample points are close to the edge of the sample
- *N* data points uniformly distributed in a *p*-dimensional unit ball centered at the origin
- Median distance from the closest point to the origin

$$d(p,N) = \left(1 - \frac{1^{1/N}}{2}\right)^{1/p}$$

• $d(10,500) \approx 0.52$: more than half the way to the boundary

(1)
$$\prod_{i=1}^{N} \Pr(\|x_i\| > r) = \frac{1}{2}$$

(2)
$$\Pr(\|x_i\| > r) = 1 - \Pr(\|x_i\| \le r)$$

= $1 - r^p$

$$(3) \quad (1 - r^p)^N = \frac{1}{2}$$

Volume of a *p*-ball:
$$V_p(r) = \frac{\pi^{\frac{p}{2}}}{\Gamma(\frac{p}{2}+1)} r^p$$

- In high dimensions, all sample points are close to the edge of the sample
- *N* data points uniformly distributed in a *p*-dimensional unit ball centered at the origin
- Median distance from the closest point to the origin

$$d(p, N) = \left(1 - \frac{1}{2}^{1/N}\right)^{1/p}$$

• $d(10,500) \approx 0.52$: more than half the way to the boundary

- Sampling density is proportional to $N^{1/p}$
- If $N_1 = 100$ is a dense sample for one input, then $N_{10} = 100^{10}$ is an equally dense sample for 10 inputs.
- Thus in high dimensions all feasible training samples sparsely populate the input space.

- Another example
- \mathcal{T} : set of training points x_i generated uniformly in $[-1,1]^p$ (red)
- Functional relationship between *X* and *Y* (green)

$$Y = f(X) = e^{-8\|X\|^2}$$

- No measurement error
- Error of a 1-nearest neighbor classifier in estimating f(0) (blue)

1-NN in One Dimension

- Another example
- Problem deterministic: Prediction error is the meansquared error for estimating f(0)

$$MSE(x_0) = E_{\mathcal{T}}[f(x_0) - \hat{y}_0]^2$$

$$= E_{\mathcal{T}}[\hat{y}_0 - E_{\mathcal{T}}(\hat{y}_0)]^2$$

$$+ [E_{\mathcal{T}}(\hat{y}_0) - f(x_0)]^2$$

$$= Var_{\mathcal{T}}(\hat{y}_0) + Bias^2(\hat{y}_0)$$

$$\begin{aligned} \text{MSE}(x_0) &= E_T [f(x_0) - \hat{y}_0]^2 \\ &= E_T [\hat{y}_0 - E_T(\hat{y}_0) + E_T(\hat{y}_0) - f(x_0)]^2 \\ &= E_T [\hat{y}_0 - E_T(\hat{y}_0)]^2 + 2 (\hat{y}_0 - E_T(\hat{y}_0)) (E_T(\hat{y}_0) - f(x_0)) + (E_T(\hat{y}_0) - f(x_0))^2] \\ &= E_T [(\hat{y}_0 - E_T(\hat{y}_0))^2] + (E_T(\hat{y}_0) - f(x_0))^2 \end{aligned}$$

$$= E_T [(\hat{y}_0 - E_T(\hat{y}_0))^2] + (E_T(\hat{y}_0) - f(x_0))^2$$

$$= Var_T(\hat{y}_0) + Bias^2(\hat{y}_0)$$

This is known as the bias-variance decomposition.

- Another example
- 1-d (red) vs 2-d (blue)
- As p increases, the bias increases

$$MSE(x_0) = E_{\mathcal{T}}[f(x_0) - \hat{y}_0]^2$$

$$= E_{\mathcal{T}}[\hat{y}_0 - E_{\mathcal{T}}(\hat{y}_0)]^2$$

$$+ [E_{\mathcal{T}}(\hat{y}_0) - f(x_0)]^2$$

$$= Var_{\mathcal{T}}(\hat{y}_0) + Bias^2(\hat{y}_0)$$

1-NN in One vs. Two Dimensions

• The case on N=1000 training points

Distance to 1-NN vs. Dimension

$$Y = f(X) = e^{-8\|X\|^2}$$

MSE vs. Dimension

• Yet another example

$$Y = f(X) = \frac{1}{2}(X_1 + 1)^3$$

MSE vs. Dimension

 Suppose a linear relationship with measurement error

$$Y = X^T \beta + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

- We fit the model by least squares.
- For an arbitrary test point x_0 ,

$$\hat{y}_0 = x_0^T \hat{\beta} = x_0^T \beta + \sum_{i=1}^N \ell_i(x_0) \varepsilon_i$$

where $\ell_i(x_0)$ is the *i*-th element of

$$\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}x_0$$

Q: How can we get it?

→ Hint: solution of least squares:

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• Suppose a linear relationship with measurement error

$$Y = X^T \beta + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

- We fit the model by least squares
- For an arbitrary test point x_0 ,

$$\hat{y}_0 = x_0^T \hat{\beta} = x_0^T \beta + \sum_{i=1}^N \ell_i(x_0) \varepsilon_i$$

where $\ell_i(x_0)$ is the *i*-th element of

$$\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}x_0$$

• We find that

$$EPE(x_0) = \sigma^2 + E_T[x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0] \sigma^2$$

$$\begin{split} \mathsf{EPE}(x_0) &= \mathsf{E}_{y_0|x_0} \mathsf{E}_{\mathcal{T}}(y_0 - \hat{y}_0)^2 \\ &= \mathsf{Var}(y_0|x_0) + \mathsf{E}_{\mathcal{T}}[y_0 - \mathsf{E}_{\mathsf{T}}(\hat{y}_0)]^2 + [\mathsf{E}_{\mathcal{T}}(\hat{y}_0) - \mathsf{E}_{\mathcal{T}}(y_0)]^2 \\ &= \mathsf{Var}(y_0|x_0) + \mathsf{Var}_{\mathcal{T}}(\hat{y}_0) + \mathsf{Bias}^2(\hat{y}_0) \\ &= \sigma^2 + \mathsf{E}_{\mathcal{T}}[x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0] \sigma^2 + 0^2 \end{split}$$

Additional variance

• Suppose a linear relationship with measurement error

$$Y = X^T \beta + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ • Variance depends on x_0

- We fit the model by **least squares**.
- For an arbitrary test point x_0 ,

$$\hat{y}_0 = x_0^T \hat{\beta} = x_0^T \beta + \sum_{i=1}^N \ell_i(x_0) \varepsilon_i$$

where $\ell_i(x_0)$ is the *i*-th element of $\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0$

We find that

$$EPE(x_0) = \sigma^2 + E_{\mathcal{T}}[x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0] \sigma^2$$
Assume $E(X) = 0$, we have $\mathbf{X}^T \mathbf{X} \to NCov(\mathbf{X})$

- Additional variance σ^2 originates from the nondeterministic output
- If *N* is large, we get

$$E_{x_0} EPE(x_0) \sim \frac{\sigma^2}{N} p + \sigma^2$$

$$\begin{aligned} \mathbf{E}_{x_0} \mathbf{E} \mathbf{P} \mathbf{E}(x_0) &\sim \frac{\sigma^2}{N} E_{x_0} x_0^T \mathbf{Cov}(X)^{-1} x_0 + \sigma^2 \\ &= \frac{\sigma^2}{N} \mathrm{trace} \big(\mathbf{Cov}(X)^{-1} \mathbf{Cov}(x_0) \big) + \sigma^2 \\ &= \frac{\sigma^2}{N} p + \sigma^2 \end{aligned}$$

• Suppose a linear relationship with measurement error

$$Y = X^T \beta + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ • Variance depends on x_0

- We fit the model by least squares.
- For an arbitrary test point x_0 ,

$$\hat{y}_0 = x_0^T \hat{\beta} = x_0^T \beta + \sum_{i=1}^N \ell_i(x_0) \varepsilon_i$$
• As p increases, variance grows negligible for large N or small ϵ

where $\ell_i(x_0)$ is the *i*-th element of $\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0$

We find that

$$EPE(x_0) = \sigma^2 + E_T[x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0] \sigma^2$$

- Additional variance σ^2 originates from the nondeterministic output
- If *N* is large, we get

$$E_{x_0}EPE(x_0) \sim \frac{\sigma^2}{N}p + \sigma^2$$

- negligible for large N or small σ^2
- No bias
- Curse of dimensionality controlled

• More generally

$$Y = f(X) + \varepsilon,$$

X uniform, $\varepsilon \sim \mathcal{N}(0,1)$

- Sample size: N = 500
- Linear case
 - EPE (Least Squares)is slightly above 1 no bias
 - EPE (1-NN) always
 above 2, grows slowly
 as nearest training point strays
 from target

$$EPE ratio = \frac{EPE (1 - NN)}{EPE (least squares)}$$

• More generally

$$Y = f(X) + \varepsilon,$$

X uniform, $\varepsilon \sim \mathcal{N}(0,1)$

- Sample size: N = 500
- Cubic case
 - EPE (Least Squares)is biased, thus ratio is smaller

$$EPE ratio = \frac{EPE (1 - NN)}{EPE (least squares)}$$

Overview of Supervised Learning II

--- Statistical Models

Statistical Models

• NN methods are the direct implementation of

$$f(x) = \mathrm{E}(Y|X=x)$$

- But it can fail in two ways
 - □ With high dimensions NN need not be close to the target point
 - If special structure exists in the problem, this can be used to reduce variance and bias
- We anticipate using other classes of models for f(x), and discuss a framework for incorporating them into the prediction problem.

Statistical Models – A Statistical Model for Pr(X, Y)

Assume additive error model

$$Y = f(X) + \varepsilon$$

 $E(\varepsilon) = 0$
 ε independent of X

- Then Pr(Y|X) depends only on the conditional mean of f(x)
- This model is a good approximation in many cases
- In many cases, f(x) is deterministic and error enters through uncertainty in the input. This can often be mapped on uncertainty in the output with deterministic input.

(p + 1)-dimensional Euclidean space, we fit $f: \mathbb{R}^p \to \mathbb{R}$ by

$$y_i = f(x_i) + \varepsilon_i$$

- More general input spaces are possible
- Goal: a good approximation of f(x) in some region of input space, given the training set \mathcal{T}
- Many models have certain parameters θ
 - \blacksquare E.g. for the linear model $f(x) = x^T \beta$ and $\theta = \beta$

• Data: pairs (x_i, y_i) that are points in • Linear basis expansions have the more general form

$$f_{\theta}(x) = \sum_{k=1}^{K} h_k(x)\theta_k$$

- h_k : a suitable set of functions or transformations of the input vector x.
- Examples:
 - Polynomial expansions: $h_k(x) = x_1 x_2^2$
 - Trigonometric expansions: $h_k(x) = \cos(x_1)$
 - Sigmoid expansion:

$$h_k(x) = \frac{1}{1 + \exp(-x^T \beta_k)}$$

• Approximating f_{θ} by minimizing the residual sum of squares

$$RSS(\theta) = \sum_{i=1}^{N} (y_i - f_{\theta}(x_i))^2$$

• Linear basis expansions have the more general form

$$f_{\theta}(x) = \sum_{k=1}^{K} h_k(x)\theta_k$$

- h_k : a suitable set of functions or transformations of the input vector x.
- Examples:
 - Polynomial expansions: $h_k(x) = x_1 x_2^2$
 - Trigonometric expansions: $h_k(x) = \cos(x_1)$
 - Sigmoid expansion:

$$h_k(x) = \frac{1}{1 + \exp(-x^T \beta_k)}$$

• Approximating f_{θ} by minimizing the residual sum of squares

$$RSS(\theta) = \sum_{i=1}^{N} (y_i - f_{\theta}(x_i))^2$$

- Intuition
 - □ f surface in (p + 1) –space
 - Observe noisy realizations
 - Want fitted surface as close to the observed points as possible
 - Distance measured by RSS
- Methods
 - Closed form: if basis function have no hidden parameters
 - Iterative: otherwise

- Approximating f_{θ} by maximum likelihood estimation (MLE)
- Assume an independently drawn random sample y_i , i = 1, ..., N from a probability density $Pr_{\theta}(y)$.
- The log-probability of observing the sample is

$$L(\theta) = \sum_{i=1}^{N} \log \Pr_{\theta}(y_i)$$

$$L(\theta) = \log \Pr_{\theta}(y_1, y_2, ..., y_N)$$

$$= \log \prod_{i=1}^{N} \Pr_{\theta}(y_i)$$

- Approximating f_{θ} by maximum likelihood estimation (MLE)
- Assume an independently drawn random sample y_i , i = 1, ..., N from a probability density $Pr_{\theta}(y)$.
- The log-probability of observing the sample is

$$L(\theta) = \sum_{i=1}^{N} \log \Pr_{\theta}(y_i)$$

• Set θ to maximize $L(\theta)$

Intuition:

Under the assumed statistical model, the observed data is most probable.

- Approximating f_{θ} by maximum likelihood estimation (MLE)
- Assume an independently drawn random sample y_i , i = 1, ..., N from a probability density $Pr_{\theta}(y)$.
- The log-probability of observing the sample is

$$L(\theta) = \sum_{i=1}^{N} \log \Pr_{\theta}(y_i)$$

• Set θ to maximize $L(\theta)$

$$\Pr_{\theta}(y|X=x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(\frac{y - f_{\theta}(x)}{\sigma})^2)$$

• Least squares with additive error model

$$Y = f_{\theta}(X) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

is equivalent to maximum likelihood with the conditional likelihood

$$\Pr_{\theta}(Y|X) = \mathcal{N}(f_{\theta}(X), \sigma^2)$$

• This is, because in this case the *log-likelihood* of data is

$$L(\theta) = -\frac{N}{2}\log(2\pi) - N\log\sigma$$
$$-\frac{1}{2\sigma^2}\sum_{i=1}^{N}(y_i - f_{\theta}(x_i))^2$$

- Approximating f_{θ} by maximum likelihood estimation (MLE)
- Assume an independently drawn random sample y_i , i = 1, ..., N from a probability density $Pr_{\theta}(y)$.
- The log-probability of observing the sample is

$$L(\theta) = \sum_{i=1}^{N} \log \Pr_{\theta}(y_i)$$

• Least squares with additive error model

$$Y = f_{\theta}(X) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

is equivalent to maximum likelihood with the conditional likelihood

$$\Pr_{\theta}(Y|X) = \mathcal{N}(f_{\theta}(X), \sigma^2)$$

• This is, because in this case the *log*likelihood of data is

$$L(\theta) = -\frac{N}{2}\log(2\pi) - N\log\sigma$$

• Set
$$\theta$$
 to maximize $L(\theta)$ Proportional to RSS

$$\frac{2}{108(2\pi)} = \frac{2}{108(2\pi)} = \frac{1}{108} \left(\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - f_{\theta}(x_i))^2 \right)$$

argmax_{\theta} $L(\theta) = \operatorname{argmin}_{\theta} \operatorname{RSS}(\theta) = \operatorname{argmin}_{\theta} \sum_{i=1}^{N} (y_i - f_{\theta}(x_i))^2$

Overview of Supervised Learning II

--- Classes of Restricted Estimators

- ➤ Bayesian Methods and Roughness Penalty
- ➤ Kernel Methods and Local Regression
- Basis Functions

Bayesian Methods and Roughness Penalty

- Bayesian methods
- Formula for joint probabilities

$$Pr(X,Y) = Pr(Y|X) Pr(X)$$
$$= Pr(X|Y) Pr(Y)$$

Bayes's theorem

Likelihood Prior probability for Y $Pr(Y|X) = \frac{Pr(X|Y) Pr(Y)}{Pr(X)}$ Posterior probability for Y Evidence

Posterior ∝ Likelihood × Prior

• RSS is penalized with a roughness penalty

$$PRSS(f; \lambda) = RSS(f) + \lambda J(f)$$

- J(f) is large for ragged functions
 - E.g. cubic smoothing spline is the solution for the least-squares problem

$$PRSS(f; \lambda) = \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \int [f''(x)]^2 dx$$

Large second derivative is penalized

Bayesian Methods and Roughness Penalty

- Introducing penalty functions is a type of regularization
 - It works against overfitting
 - It implements beliefs about unseen parts of the problem
- In a Bayesian framework
 - Penalty *J* is the log-prior (probability distribution)
 - PRSS is the log-posterior (probability distribution)

• RSS is penalized with a roughness penalty

$$PRSS(f; \lambda) = RSS(f) + \lambda J(f)$$

- J(f) is large for ragged functions
 - E.g. cubic smoothing spline is the solution for the least-squares problem

$$PRSS(f; \lambda) = \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \int [f''(x)]^2 dx$$

Large second derivative is penalized

Posterior ∝ Likelihood × Prior

Kernel Methods and Local Regression

- Kernel functions
 - model the local neighborhoods in NN methods
- Gaussian kernel

$$K_{\lambda}(x_0, x) = \frac{1}{\lambda} \exp\left[-\frac{\|x - x_0\|^2}{2\lambda}\right]$$

- assigns weights to points that die exponentially with the square of the distance from the point x_0

Simplest kernel estimate:
 Nadaraya-Watson weighted average

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i) y_i}{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i)}$$

General local regression estimate of $f(x_0)$ is $f_{\widehat{\theta}}(x_0)$, where $\widehat{\theta}$ minimizes $RSS(f_{\theta}, x_0) = \sum_{i=1}^{N} K_{\lambda}(x_0, x_i)(y_i - f_{\theta}(x_i))^2$

Kernel Methods and Local Regression

- f_{θ} is a parameterized function, such as a low-order polynomial
 - $f_{\theta} = \theta_0$ Nadaraya-Watson estimate
 - $f_{\theta} = \theta_0 + \theta^T x$ local linear regression model
- NN methods can be regarded as kernel methods with a special metric

$$K_k(x, x_0) = I(\|x - x_0\| \le \|x_{(k)} - x_0\|)$$

Simplest Kernel estimate:
 Nadaraya-Watson weighted average

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i) y_i}{\sum_{i=1}^{N} K_{\lambda}(x_0, x_i)}$$

• General local regression estimate of $f(x_0)$ is $f_{\widehat{\theta}}(x_0)$, where $\widehat{\theta}$ minimizes

RSS
$$(f_{\theta}, x_0) = \sum_{i=1}^{N} K_{\lambda}(x_0, x_i)(y_i - f_{\theta}(x_i))^2$$

 $x_{(k)}$ training sample ranked k in distance from x_0 I indicator function

Basis Functions

- Include linear and polynomial expansions and more
- General form

$$f_{\theta}(x) = \sum_{m=1}^{M} \theta_m h_m(x)$$

- The term linear refers to the action of the parameters θ
- Cover a wide range of methods

Radial Basis Functions

$$f_{\theta}(x) = \sum_{m=1}^{M} K_{\lambda_m}(\mu_m, x)\theta_m$$

- Parameters are
 - Centroids μ_m
 - Scales λ_m
- E.g. the Gaussian kernel

$$K_{\lambda}(\mu, x) = \exp(-\frac{\|x - \mu\|^2}{2\lambda})$$

 Change the regression problem from a linear problem to a combinatorially nonlinear problem.

Basis Functions

- Include linear and polynomial expansions and more
- General form

$$f_{\theta}(x) = \sum_{m=1}^{M} \theta_m h_m(x)$$

- The term linear refers to the action of the parameters θ
- Cover a wide range of methods

- Neural Networks
 - Single-layer feed-forward model

$$f_{\theta}(x) = \sum_{m=1}^{M} \beta_m \, \sigma(\alpha_m^T x + b_m)$$

Neuron weight

Neuron output

Basis Functions

- Include linear and polynomial expansions and more
- General form

$$f_{\theta}(x) = \sum_{m=1}^{M} \theta_m h_m(x)$$

- The term linear refers to the action of the parameters θ
- Cover a wide range of methods

- Neural Networks
 - Single-layer feed-forward model

$$f_{\theta}(x) = \sum_{m=1}^{M} \beta_m \, \sigma(\alpha_m^T x + b_m)$$

 $\sigma(x)$ is known as *activation function*

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Overview of Supervised Learning II

--- Model Selection

Model Selection

- Smoothing and complexity parameters
 - Coefficient of the penalty term
 - Width of the kernel
 - Number of basis functions
- The setting of the parameters implements a trade-off between bias and variance
- Example: k-NN methods $Y = f(X) + \varepsilon$ $E(\varepsilon) = 0$ $Var(\varepsilon) = \sigma^{2}$

• Generalization error

$$\begin{aligned} \text{EPE}_{k}(x_{0}) &= \text{E}[Y - \hat{f}_{k}(x_{0}) | X = x_{0}] \\ &= \sigma^{2} + \left[\text{Bias}^{2}(\hat{f}_{k}(x_{0})) + \text{Var}_{\mathcal{T}}(\hat{f}_{k}(x_{0})) \right] \\ &= \sigma^{2} + \left[f(x_{0}) - \frac{1}{k} \sum_{\ell=1}^{k} f(x_{(\ell)}) \right]^{2} + \frac{\sigma^{2}}{k} \end{aligned}$$

irreducible error

mean-square error

