Disclaimer

These slides are intended as presentation aids for the lecture. They contain information that would otherwise be to difficult or time-consuming to reproduce on the board. But they are incomplete, not self-explanatory, and are not always used in the order they appear in this presentation. As a result, these slides should not be used as a script for this course. I recommend you take notes during class, maybe on the slides themselves. It has been shown that taking notes improves learning success.

Reading for this set of slides

- Planning Algorithms (Steve LaValle)
 - -6 Combinatorial Motion Planning (6.1 6.3)
 - 8 Feedback Motion Planning (8.1, 8.2)
- Please refer to the slides for potential fields and vehicle kinematics

Please note that this set of slides is intended as support for the lecture, not as a stand-alone script. If you want to study for this course, please use these slides in conjunction with the indicated chapters in the text books. The textbooks are available online or in the TUB library (many copies that can be checked out for the entire semester. There are also some aspects of the lectures that will not be covered in the text books but can still be part of the homework or exam. For those It is important that you attend class or ask somebody about what was covered in class.

Robotics

Mobile Robots – Kinematics

TU Berlin Oliver Brock

Caster Wheel

Wheels

Double Universal

Swedish

Getting Rid of Nonholonomicity

Drive Systems

- Differential Drive
- Synchro-Drive
- Holonomic Delta Robot
- Tricycle
- Ackerman Steering

Differential Drive

Circumference of a circle:

$$c = 2\pi r$$

$$2\pi = \frac{c}{r}$$

$$\theta = \frac{d_r}{a} = \frac{d_l}{a+b}$$

Differential Drive cont.

$$\theta = \frac{d_r}{a} = \frac{d_l}{a+b}$$

$$(a+b) d_r = a d_l$$

$$a = b \frac{d_r}{d_l - d_r}$$

$$\theta = \frac{d_l - d_r}{b}$$

$$d_c = \frac{d_l + d_r}{2}$$

$$\omega = \frac{v_l - v_r}{b}$$

$$v = \frac{v_l + v_r}{2}$$

$$v_l = \omega_l \, r$$

$$\omega_l(\sigma r)$$

Differential Drive cont. II

$$\omega = \frac{v_l - v_r}{b} \Rightarrow v_r = v_l - \omega b$$

$$v_l + v_r$$

$$v = \frac{v_l + v_r}{2} \Rightarrow v_r = 2v - v_l$$

$$v_l - \omega b = 2v - v_l$$

$$v_l = v + \frac{\omega b}{2}$$

$$v_r = v - \frac{\omega b}{2}$$

$$v_r = v - \frac{\omega b}{2}$$

Differential Drive Summary

$$v = \frac{v_l + v_r}{2}$$

$$\omega = \frac{v_l - v_r}{b}$$

$$\omega_l = \frac{v_l}{r} \qquad v_l = v + \frac{\omega b}{2}$$

$$\omega_r = \frac{v_r}{r} \qquad v_r = v - \frac{\omega b}{2}$$

$$v_r = v - \frac{\omega b}{2}$$

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = \begin{bmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} v \\ \omega \end{pmatrix}$$

Kinematic Equations of Motion

$$\begin{pmatrix} v \\ \omega \end{pmatrix} = r \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{b} & -\frac{1}{b} \end{bmatrix} \begin{pmatrix} \omega_l \\ \omega_r \end{pmatrix}$$

$$\begin{pmatrix} \omega_l \\ \omega_r \end{pmatrix} = \frac{1}{r} \begin{bmatrix} 1 & \frac{b}{2} \\ 1 & -\frac{b}{2} \end{bmatrix} \begin{pmatrix} v \\ \omega \end{pmatrix}$$

Differential Drive Example

$$\begin{pmatrix} \omega_l \\ \omega_r \end{pmatrix} = \frac{1}{r} \begin{bmatrix} 1 & \frac{b}{2} \\ 1 & -\frac{b}{2} \end{bmatrix} \begin{pmatrix} v \\ \omega \end{pmatrix}$$

$$v=0, \omega \neq 0$$
?

$$v\neq 0$$
, $\omega=0$?

Wheel radius: 0.1m

Wheel base: 0.4m

Desired velocity: 0.5m/s

Desired turning velocity: 0.3rad/s

$$10 \begin{vmatrix} 1 & 0.2 \\ 1 & -0.2 \end{vmatrix} \begin{pmatrix} 0.5 \\ 0.3 \end{pmatrix} = \begin{pmatrix} 5.6 \\ 4.4 \end{pmatrix}$$

Synchro Drive

 Motivation: direct drive robots and tricycles are not very stable (wheel arrangement)

Wheels are mechanically synchronized

- turn
- driv
- Orientation of robot\is fixed
- Report always arms about its center
- Nest synchrologies ive/robots have turret

Synchro Drive cont.

$$\underline{x(t_c)} = \underline{x(t_0)} + \int_{t_0}^{t_c} v(t) \cdot \cos \theta(t) dt$$

$$\underline{y}(t_c) = y(t_0) + \int_{t_0}^{t_c} v(t) \cdot \sin \theta(t) dt$$

$$v(t_c) = v(t_0) + \int_{t_0}^{t_c} \dot{v}(t)dt$$

$$\underline{\theta}(t_c) = \theta(t_0) + \int_{t_0}^{t_c} \dot{\theta}(t) dt$$

Synchro Drive cont. II

$$x(t_c) = x(t_0) + \sum_{t_0}^{t_c} v(t) \cdot \cos \theta(t) \Delta t$$

$$y(t_c) = y(t_0) + \sum_{t_0}^{t_c} v(t) \cdot \sin \theta(t) \Delta t$$

$$v(t_c) = v(t_0) + \sum_{t_0}^{t_c} \dot{v}(t) \Delta t$$

$$\theta(t_c) = \theta(t_0) + \sum_{t_0}^{t_c} \dot{\theta}(t) \Delta t$$

More Mobile Robot Kinematics in the Slides

Tricycle

Ackermann Steering

Sidebar: Law of Sines

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{g}{\sin \gamma} = 2r$$

Tricycle cont.

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{g}{\sin \gamma} = 2r$$

$$\psi = \pi - \gamma - \frac{\pi}{2} = \frac{\pi}{2} - \gamma \qquad \sin(\frac{\pi}{2} - \gamma) = -\sin(\gamma - \frac{\pi}{2}) = \cos\gamma$$

$$\sin(\frac{\pi}{2} - \gamma) = -\sin(\gamma - \frac{\pi}{2}) = \cos\gamma$$

$$\frac{\sin\frac{\pi}{2}}{r_3} = \frac{\sin\gamma}{l} = \frac{\sin(\frac{\pi}{2} - \gamma)}{r_1 + \frac{b}{2}} = \frac{\cos\gamma}{r_1 + \frac{b}{2}}$$

Sidebar: sin/cos identities

$$\sin \theta = -\sin(-\theta) = -\cos(\theta + \frac{\pi}{2}) = \cos(\theta - \frac{\pi}{2})$$

$$\cos \theta = \cos(-\theta) = \sin(\theta + \frac{\pi}{2}) = -\sin(\theta - \frac{\pi}{2})$$

Tricycle cont. II

$$\frac{\sin\gamma}{l} = \frac{\cos\gamma}{r_1 + \frac{b}{2}} \implies r_1 = \frac{\cos\gamma}{\sin\gamma}l - \frac{b}{2}$$

Tricycle cont. III

$$r_1 = \frac{\cos \gamma}{\sin \gamma} l - \frac{b}{2}$$
$$r_3 = \frac{l}{\sin \gamma}$$

$$\theta = \frac{C_1}{r_1} \implies C_1 = \theta r_1, \ C_2 = \theta (r_1 + b)$$

$$\theta = \frac{C_3}{r_3}$$

Tricycle cont. III

Tricycle cont. IV

$$C_1 = C_3 \left(\cos \gamma - \frac{b}{2l} \sin \gamma \right)$$

$$C_2 = C_3 \left(\cos \gamma + \frac{b}{2l} \sin \gamma \right)$$

From Differential Drive
$$\begin{cases} \theta = \frac{C_2 - C_1}{b} \\ r_1 = b \frac{C_1}{C_2 - C_1} \end{cases}$$

$$\theta = \frac{C_3}{l} \sin \gamma$$

$$r_1 = l \, \frac{\cos \gamma}{\sin \gamma} - \frac{b}{2}$$

$$r_c = l \, rac{\cos \gamma}{\sin \gamma}$$

Tricycle Summary

$$\theta = \frac{C_3}{l} \sin \gamma$$

$$r_1 = l \, \frac{\cos \gamma}{\sin \gamma} - \frac{b}{2}$$

$$r_2 = r_1 + b$$

$$r_3 = \frac{l}{\sin \gamma}$$

$$r_c = l \, \frac{\cos \gamma}{\sin \gamma}$$

$$\omega = \frac{v_3}{l} \sin \gamma$$

$$\omega = \frac{v_3}{l} \sin \gamma$$
$$v = \frac{v_1 + v_2}{2}$$

Tricycle in Local Frame

Ackerman Steering

Sidebar: Cotangent

$$\tan x = \frac{\sin x}{\cos x} = \frac{r \sin x}{r \cos x}$$

$$\cot x = \frac{\cos x}{\sin x} = \frac{r \cos x}{r \sin x}$$

Ackerman Steering cont.

$$\cot x = \frac{\cos x}{\sin x} = \frac{r \cos x}{r \sin x}$$

$$\cot \gamma_v = \frac{r + \frac{b}{2}}{l} = \frac{r}{l} + \frac{b}{2l}$$

$$= \cot \gamma_r + \frac{b}{2l}$$

$$= \cot \gamma_l - \frac{b}{2l}$$

Now we can apply the tricycle case!

Achieving Holonomic Motion

We need:

- Dot product
- Rolling Wheels

Sidebar: Dot Product

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \phi$$
$$= \sum_{i=1}^{n} a_i b_i$$

$$\hat{a} = \frac{a}{\|a\|}$$

Sidebar: Rolling Wheels

For a circle:

$$c=2\pi r$$

$$\mathbf{v} = \omega r$$

Omniwheel

component of
$${\bf v}$$
 along ${\bf \widehat v}_1:{\bf \widehat v}_1\cdot {\bf v}$

expressed as angular velocity of the wheel:
$$\frac{\widehat{\mathbf{v}} \cdot \mathbf{v}}{r}$$

contribution of wheels to
$$\dot{ heta}: \frac{b\dot{ heta}}{r}$$

$$\begin{pmatrix} v_x \\ v_y \\ \dot{\theta} \end{pmatrix} \stackrel{?}{\Rightarrow} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}$$

$$\omega_{1} = (\hat{\mathbf{v}}_{1} \cdot \mathbf{v} + b \dot{\theta}) / r$$

$$\omega_{2} = (\hat{\mathbf{v}}_{2} \cdot \mathbf{v} + b \dot{\theta}) / r$$

$$\omega_{3} = (\hat{\mathbf{v}}_{3} \cdot \mathbf{v} + b \dot{\theta}) / r$$

$$\omega_{1} = \left(\hat{\mathbf{v}}_{1} \cdot \mathbf{v} + b \,\dot{\theta}\right)/r$$

$$\omega_{2} = \left(\hat{\mathbf{v}}_{2} \cdot \mathbf{v} + b \,\dot{\theta}\right)/r$$

$$\omega_{3} = \left(\hat{\mathbf{v}}_{3} \cdot \mathbf{v} + b \,\dot{\theta}\right)/r$$

$$\begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \frac{1}{r} \begin{bmatrix} \cos \phi_1 & \sin \phi_1 & b \\ \cos \phi_2 & \sin \phi_2 & b \\ \cos \phi_3 & \sin \phi_3 & b \end{bmatrix} \begin{pmatrix} v_x \\ v_y \\ \dot{\theta} \end{pmatrix}$$

Example

wheelbase = 0.09m
radius of wheels = 0.02m
desired velocity =
$$\sqrt{2}0.05$$
 m/s
desired heading = 45 degrees
desired angular velocity = 0.5 rad/s

$$\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \|\mathbf{v}\|$$

$$= \begin{pmatrix} \cos 45^{\circ} \\ \sin 45^{\circ} \end{pmatrix} \sqrt{2} \cdot 0.05$$

$$= \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \sqrt{2} \cdot 0.05$$

$$= \begin{pmatrix} 0.05 \\ 0.05 \end{pmatrix}$$

$$\begin{pmatrix} -0.25 \\ 1.135 \\ 5.665 \end{pmatrix} = 50 \begin{bmatrix} -1 & 0 & 0.09 \\ 0.5 & -0.866 & 0.09 \\ 0.5 & 0.866 & 0.09 \end{bmatrix} \begin{pmatrix} 0.05 \\ 0.05 \\ 0.5 \end{pmatrix}$$
$$\begin{pmatrix} -4.75 \\ 3.165 \\ 1.165 \end{pmatrix} = 50 \begin{bmatrix} -1 & 0 & 0.09 \\ 0.5 & -0.866 & 0.09 \\ 0.5 & 0.866 & 0.09 \end{bmatrix} \begin{pmatrix} 0.05 \\ 0.05 \\ -0.5 \end{pmatrix}$$

