CONTENTS

1	Introduction 1							
	1.1	Goals		4				
	1.2	Outlin	ne	6				
2	Background 9							
	2.1	Probal	bilistic Machine Learning	9				
	2.2		ional Inference	10				
		2.2.1	Evidence Lower Bound	11				
	2.3	Statist	ical Divergences and Density-Ratio Estimation .	12				
		2.3.1	Variational Divergence Estimation	14				
		2.3.2	Class-Probability Estimation	15				
	2.4	Gauss	ian Processes	18				
		2.4.1	Gaussian Process Regression	18				
		2.4.2	Sparse Gaussian Processes	23				
		2.4.3	Random Fourier Features	28				
	2.5	Bayesi	an Optimisation	32				
		2.5.1	Surrogate Models	35				
		2.5.2	Acquisition Functions	37				
	Add	endum		41				
	2.A	KL Di	vergence Simplification	41				
	2.B	Optim	al Variational Distribution for General Likelihoods	41				
	2.C	Intermediate Lower Bound for Gaussian Likelihoods						
	2.D	Optimal Variational Distribution for Gaussian Likelihoods						
	2. E	Collapsed Lower Bound for Gaussian Likelihoods						
	2.F		al Density of the Squared Exponential Kernel	43				
	2.G	Cosine	e Difference as Inner Product	44				
3	Orthogonally-Decoupled Sparse Gaussian Processes with							
	Sphe	erical N	Jeural Network Activation Features	45				
	3.1		uction	45				
	3.2	Inter-I	Domain Inducing Features	46				
		3.2.1	Spherical Harmonics Inducing Features	47				
		3.2.2	Spherical Neural Network Inducing Features .	48				
	3.3		gonally Decoupled Inducing Points	50				
	3.4	Methodology						
	3.5	Experi	iments	58				
		3.5.1	Synthetic 1D Dataset	58				
		3.5.2	Regression on UCI Repository Datasets	59				
		3.5.3	Large-scale Regression on Airline Delays Dataset	61				
	3.6		nary	63				
		Addendum						
	3.A	-	imental Set-up and Implementation Details	65				
			Hardware	65				
		3.A.2	Software	65				

		3.A.3	Hyperparameters	65					
	3.B	Addit	ional Results	66					
		3.B.1	Regression on Airline Delays Dataset	66					
		3.B.2	Extra UCI Repository Datasets	66					
	Cycl	e-Cons	istent Generative Adversarial Networks as a Bayesian	l					
	-	roxima	·	69					
	4.1	Introd	luction	60					
	4.2	Impli	cit Latent Variable Models	70					
		4.2.1	Prescribed Likelihood	71					
		4.2.2	Implicit Prior	71					
	4.3	Variat	ional Inference	72					
		4.3.1	Prescribed Variational Posterior	72					
		4.3.2	Reverse KL Variational Objective	73					
		4.3.3	Approximate Divergence Minimisation	73					
	4.4	Symm	netric Joint-Matching Variational Inference	75					
		4.4.1	Variational Joint	75					
		4.4.2	Forward KL Variational Objective	76					
	4.5	Cycle	GAN as a Special Case	77					
		4.5.1	Basic CycleGAN Framework	78					
		4.5.2	Cycle-consistency as Conditional Entropy Max-						
			imisation	79					
		4.5.3	Distribution Matching as Approximate Diver-						
			gence Minimisation	80					
	4.6	Relate	ed Work	83					
	4.7	Exper	iments	84					
	4.8		nary	85					
		Addendum							
	4.A	4.A Relation to KL Importance Estimation Procedure (KLIEP) 8							
	4.B	Summ	nary of Definitions	90					
,	-		ptimisation by Classification with Deep Learning						
		Beyon		93					
	5.1		luction	93					
	5.2	Optim	nisation Policies and Density-Ratio Estimation	95					
		5.2.1	Relative Density-Ratio	95					
		5.2.2	Improvement-based Acquisition Functions	95					
		5.2.3	Tree-structured Parzen Estimator	98					
		5.2.4	Potential Pitfalls	98					
	5.3	Bayesi	ian Optimisation by Probabilistic Classification .	99					
		5.3.1	1 ,	102					
		5.3.2		104					
		5.3.3	, 0	10					
	5.4	-		106					
		5.4.1	8 .	106					
		5.4.2		109					
			U ala a t. A susa. Du ala isa a						
		5·4·3	- · · · · · · ·	109					

		5.4.5 A	Ablation Studies	112				
	5.5	Discussi	on	113				
	5.6	Summar	ry	116				
	Add	dendum						
	5.A							
	5.B		osterior Probability	118				
	5.C		s	118				
		5.C.1 (Optimum	119				
		5.C.2 E	Empirical Risk Minimisation	119				
	5.D		entation of Baselines	120				
	5.E	Experim	nental Set-up and Implementation Details	120				
		5.E.1 E	BORE-RF	121				
		5.E.2 E	BORE-XGB	121				
		5.E.3 E	BORE-MLP	122				
	5.F	Details of	of Benchmarks	122				
		5.F.1 H	HPOBench	122				
		5.F.2 N	NASBench201	122				
		5.F.3 F	Robot pushing control	123				
			Racing Line Optimisation	124				
	5.G	Paramet	ers, hyperparameters, and meta-hyperparameter	S124				
		5.G.1 I	Parameters	125				
		5.G.2 I	Hyperparameters	126				
		5.G.3 N	Meta-hyperparameters	127				
,	Con	clusion		129				
	6.1	Summar	ry of Contributions	129				
	6.2	Future I	Directions	130				
	6.3	Final Reflection						
1	Nun	nerical M	lethods for Improved Decoupled Sampling of					
	Gau	ssian Pro	cesses	133				
	A.1	Introduc	ction	133				
	A.2		led Sampling of Gaussian Processes	134				
	A.3	Numeri	cal Integration for GP Prior Approximations .	137				
		A.3.1 N	Monte Carlo Estimation	138				
		A.3.2 (Quasi-Monte Carlo	139				
		A.3.3 (Quadrature	140				
		A.3.4	Other Approaches	148				
	A.4	Experim	nents	149				
		A.4.1 I	Prior Approximation	149				
		A.4.2 I	Posterior Sample Approximation	154				
	A. 5	Summa	ry	156				
	Add	endum .		159				
			-to-Sum Identity	159				
	a.B	Zero in	Expectation	159				
	Bibli	liography 161						