CH105(I) Inorganic Chemistry

Prof. G. Rajaraman

Can be reached via

Email: rajaraman@chem.iitb.ac.in

Phone: +91-22-2576 7183

Or via moodle

Topic IV Magnetism Transition & Lanthanide ions and their complexes

Various contributions to magnetic moment

- > Each of these magnetic fields interact with one another and with the external magnetic fields.
- However, some of these interactions are strong, some are weak and some are negligible.

Classes of Magnetism

Two fundamentally different types of response:

- a) Diamagnetism M and χ are negative
- b) Paramagnetism M and χ are positive

$$\chi = \chi^{D} + \chi^{P}$$

Molecules with paired <u>and</u> unpaired $e^{-t}s = "paramagnetic"$ Molecules with <u>only</u> paired $e^{-t}s = "diamagnetic"$

external magnetic field H

Dia and Paramagnetic compounds

N₂ diamagnetic

Pouring liquid dinitrogen

liquid dinitrogen does NOT stick

<u>Dia.M. ex</u>. H₂O, KCI organic ligands, etc.

Bismuth metal (most diamagnetic of all metals)

diamagnetic

O₂ paramagnetic

when dioxygen is in its ground state it is a triplet (spin S=1) and its reactivity is weak.

Liquid O2

Video Magnetic Levitation: Property of diamagnetic molecules-I

Courtesy:https://www.youtube.com/watch?v=g4lW7xydnH8

MAGNETIC SUSCEPTIBILITY

When a sample is placed in H, the field within the body differs from the free space value. The body is <u>magnetised</u>. The intensity of the magnetisation is the rate of change of E of the body in the field:

$$M = -\delta E/\delta H$$

The sensitivity of M to H is defined as the *magnetic susceptibility*, χ .

When the field is weak, χ becomes independent of H:

$$\chi = M/H$$

Molar susceptibility is given as $\chi_m = \chi_g x$ Mol. Wt.

Where, M. Wt. is molecular weight of the sample

Curie's Law

$$\chi_{\rm M} = \frac{\rm C}{\rm T}$$
 where C = constant

$$C = \chi T = \frac{N\beta^2}{3k} g^2 S(S+1)$$

$$\mu_{so} = \sqrt{\frac{3k}{N\beta^2}} \sqrt{\chi T} = 2.828 \sqrt{\chi T}$$

$$\mu_{so} = \sqrt{g^2 S(S+1)} = \sqrt{n(n+2)}$$

Where k = Boltzmann constant

 β = Bohr Magneton

N = Avogadro's number

Notes:

 $1.\chi$ is a fundamental property of magnetic materials

.....while μ_{so} (B.M) is <u>arbitrarily</u> derived from χ .

2. If μ_{so} is constant with changing temperature

.....then χ must increase as T is decreased.

3. μ_{so} can be easily related to the total spin S of a molecule,thus linking magnetic measurements to molecular properties.

Quantum response to H

Quantum model – an electronic state with total spin angular momentum S has 2S+1 sublevels with spin quantum numbers m_s

These levels are degenerate unless a magnetic field is applied, or they couple with other states

The application of a magnetic field leads to a Zeeman splitting in the 2S+1 m_s levels, each with energy

```
m_s g \mu_B H g \approx 2.0023 (for a free electron)

\mu_B is the Bohr magneton

H = \text{magnetic field}
```

This is the first order Zeeman effect (ZE)

the splitting is proportional to H

The splitting of levels by the external magnetic field is called Zeeman effect.

The Zeeman effect: $s = \frac{1}{2}$

The application of a magnetic field leads to a Zeeman splitting in the 2S+1 m_s levels, each with energy

The difference in populations of m_s levels is crucial in providing the magnetization (M) that we measure.

The Zeeman effect: S = 2

The Curie-Weiss Law

Later experiments showed that not all paramagnetic materials obey Curie's Law. Some materials have susceptibilities that can be fitted to the equation:

$$\chi_{\rm M} = \frac{\rm C}{(\rm T - \theta)}$$
 $\theta =$

 θ = Curie-Weiss constant.

Weak, inter-molecular interactions are the usual cause of θ .

z= number of nearest neighbour interactions

J= int. between nearest neighbour

(exchange coupling; not to confuse with *J* quantum number.

intercept on temperature axis = θ

 θ < 0 for antiferromagnets

Antiferromagnetism

J negative with spins antiparallel below T_N

Ferromagnetism

Spins parallel below T_c

Ferrimagnetism

Spins of unequal magnitude antiparallel below critical T

Temperature, T

Magnetic coupling: Origin of AF interaction

Orbital contribution to magnetic moments

• [Ti(H₂O)₆]³⁺ shows zero magnetic moment at very low temperatures, why?

Orbital Contribution to the Magnetic Moment

Orbital motion of the electron generates Orbital Magnetic Moment (μ_l).

Spin motion of the electron generate spin magnetic moment (μ_s)

For multi-electron systems

L =
$$I_1 + I_2 + I_3 + \dots$$

S = $s_1 + s_2 + s_3 + \dots$

$$\mu_{l+S} = \sqrt{4S(S+1) + L(L+1)} B.M$$

This equation is valid only if L and S are independent of each other.

But what if they are not independent?

How do you determine, if L and S are coupled?

Spectroscopic Terms (Term Symbols)

Different microstates exists for the same electronic configuration.

Free ions

For one unpaired electron in d orbital there are 10 possible microstates. These 10 states are degenerate and are called ²D term.

Russel-Saunders coupling is used to describe the terms. The symbol will represent the total value of azimuthal quantum numbers (L = Σ I_i) and it takes the letters, 'S, P, D, F, G' respectively for L values of 0, 1, 2, 3 and 4.

The degeneracy (2S+1) $\{S = \text{sum of all the spins}\}\$ is shown on the left superscript.

The term symbol is shown as (2S+1)L {for eg., 3F corresponds to S = 1 and L = 3}

Number of microstates for ${}^{3}F$ is, $(2S+1) \times (2L+1) = 3 \times 7 = 21$

Ground terms for dⁿ configurations

Ground Term = (2S+1)L

Where the maximum value of M_L defines L L=0, 1, 2 and 3 corresponds to S, P, D and F Terms Where the maximum value of M_S defines S

 Free ions

Determine the number of 3d electrons in the ion

Rule 1: for a given electronic configuration, the state with highest S is lowest in energy

Rule 2: for a given electronic configuration and subject to Rule 1, the state with highest L is lowest in energy

Rule 3: for a given electronic configuration and subject to Rules 1 and 2, the state with **highest J** is lowest in energy for ions with a greater than-half-filled 3d subshell; converse true for ions with a less than half-filled shell.

Ground terms for dⁿ configurations

Free ions

Ground Term = (2S+1)L

Where the maximum value of M_L defines L L=0, 1, 2 and 3 corresponds to S, P, D and F Terms Where the maximum value of M_S defines S

Orbital contribution to magnetic moments in the Presence of ligand field

First row transition metal ion in octahedral ligand field?

Conditions to exhibit orbital angular momentum (µ_L)

Octahedral field

Rule #1: The orbitals should be degenerate $(t_{2q} \text{ or } e_q)$.

Rule #2 The orbitals should be similar in shape and size. Should be possible to transform an orbital into an equivalent one by rotation. This is indeed possible to transform the t_{2g} orbitals into each other by 90° rotation. Such transformation is not possible with the orbitals of e_g .

Rule #3: The orbitals must not contain electrons of identical spin during this transformation and the movement of electron

These conditions are fulfilled only when one or two orbitals contain partially filled electrons in t_{2g} and NOT in e_g

Octahedral complexes

Octahedral field

 \succ The degenerate t_{2g} orbitals (d_{xy}, d_{xz}, d_{yz}) can be interconverted by 90° rotations.

e.g. the d_{xz} orbital is transformed into the d_{yz} orbital by a rotation of 90° about the z-axis – during this rotation the electron is orbiting the nucleus

> Thus, an electron in a t_{2a} orbital **can** contribute to orbital angular momentum.

Octahedral field

 d_{xz} / d_{yz} d_{xz} / d_{xy} d_{yz} / d_{xy}

orbital motion about z axis orbital motion about x axis orbital motion about y axis

Octahedral complexes

However the e_g orbitals (d_{z^2} and $d_{x^2-y^2}$) cannot be interconverted by rotation as they are different in shapes

Thus an electron in an e_g orbital **can not** contribute to orbital angular momentum.

Orbital contribution to the magnetic moment

high spin octahedral d^n ions think of possible t_{2g} electron arrangements

 $d^{1} \qquad d_{xz} \qquad d_{yz} \qquad d_{xy} \qquad d_{xz} \qquad d_{yz} \qquad d_{xy} \qquad d_{xz} \qquad d_{yz} \qquad d_{xy}$

Possible t_{2g} arrangements = 3 Orbital contribution = YES

d¹ e.g. Ti(III)

$$d^{2} \qquad d_{xz} + d_{yz} + d_{xy} \qquad d_{xz} + d_{yz} + d_{xy} \qquad d_{xz} + d_{xy} + d_$$

Possible t_{2g} arrangements = 3 Orbital contribution = yes

d² e.g. V(III)

But, electrons in t_{2g} orbitals will not always contribute to orbital angular momentum

e.g. consider octahedral Cr(III) d³, t_{2g}³

an electron in the d_{xz} orbital cannot by rotation be placed in e.g. the d_{yz} orbital because this orbital already contains an electron with the same spin as the incoming electron

Therefore, there is only one possible t_{2g} <u>arrangement</u>, and **NO** orbital angular momentum

TABLE 7.1 ORBITAL CONTRIBUTION FOR d¹ TO d⁹ IONS IN OCTAHEDRAL AND TETRAHEDRAL STEREOCHEMISTRIES

Numb		Octal	hedral co	omplexes	Tetrahedral complexes		
of d		nfiguratio	on	Orbital contribution	Configuration		Orbital contribution
1	7	t _{2g} ¹	_	yes	e ¹		no
2		t _{2g} ²	_	yes	e ²		no
3	1	t ₂ 3		no	$e^2 t_2^1$	_	yes
S 4	,	$t_{2g}^3 e_g^1$		no	$e^2 t_2^2$	_	yes
S 4	-1	t2g4	_	yes			
S 5	_	$t_{2g}^3 e_g^2$		no	$e^2 t_2^3$		no
5	1	t _{2 g} 5	_	yes			
S 6		$t_{2g}^{4} e_{g}^{2}$	_	yes	$e^3 t_2^3$		no
S 6	- 1	t ₂ 6		no			
S 7	1	$t_{2g}^{5} e_{g}^{2}$	_	yes	e4 t23		no
S 7		$t_{2g}^{6} e_{g}^{1}$		no			
8] ;	$t_{2g}^{6} e_{g}^{2}$		no	e4 t24	_	yes
9	٠,	t_2 e_a g		no	$e^4 t_2^5$	_	ves

Orbital contribution to the magnetic moment: Excited state(s) contribution

think of possible t_{2g} electron arrangements

Ni(II) d⁸

Possible t_{2g} arrangements = 1 Orbital contribution = **NO**

Possible t_{2g} arrangements = 3 Orbital contribution = YES Therefore for O_h Ni(II) the magnetic moments are larger if the GS-ES gap is small.

BUT FOR Tetrahedral Ni(II) situation is entirely different

Possible t_{2g} arrangements = 3 Orbital contribution = YES

 $M_{exp} O_h Ni(II)$ is smaller than $M_{exp} T_d Ni(II)$

Exp. $NiCl_4^{2-}$, $Ni(HMPA)_4^{2+}$ (HMPA=hexamethyl phosphoramide) have mag. moment larger than 4 BM. (Larger the distortion smaller the mag.moment)

USEFUL IN DISCRIMINATING O_h vs T_d structures.

Magnetic properties of Lanthanides

- > The f electrons in lanthanides are buried in the (n-2) shell.
- > Thus 4f orbitals are normally unaffected by the surrounding ligands.
- ➤ Magnetic moments of Ln³+ ions are generally well described from the coupling of spin and orbital angular momenta ~ Russel-Saunders coupling to give J vector.
- > Spin-Orbit coupling constants are large (approximately 1000 cm⁻¹).
- ➤ Ligand field effects are very small (approximately 100 cm⁻¹).
 - Only ground J-state is populated.
 - Spin-orbit coupling >> ligand field splitting.

Magnetism is essentially independent of the environment (by approximation).

➤ Magnetic moments of a J-state is expressed by:

$$\mu_J = g_J \sqrt{J(J+1)} \mu_B$$
 where $g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$
 $here \ J = L + S, L + S - 1, \dots L_S$

For the calculation of g_I value, we use

minimum value of J for the configurations up to half-filled

i.e. J = L - S for f^0 - f^7 configurations

Maximum value of J for configurations for more than half-filled;

i.e. J = L+S for f^8-f^{14} configurations

For f^0 , f^7 and f^{14} configurations L =0 hence μ_I becomes μ_S .

	config	g.s.	No. e-	color	calcd	obsd
La	4f ⁰	¹ S ₀	0	Colorless	0	0
Ce	4f ¹	${}^{2}F_{5/2}$	1	Colorless	2.54	2.3 - 2.5
Pr	4f ²	3H_4	2	Green	3.58	3.4 - 3.6
Nd	4f ³	⁴ I _{9/2}	3	Lilac	3.62	3.5 - 3.6
Pm	4f ⁴	⁵ ₄	4	Pink	2.68	-
Sm	4f ⁵	$^{6}\mathrm{H}_{5/2}$	5	Yellow	0.85	1.4 - 1.7
Eu	4f ⁶	$^{7}F_{0}$	6	Pale pink	0	3.3 - 3.5
Gd	$4f^7$	⁸ S _{7/2}	7	Colorless	7.94	7.9 - 8.0
Tb	4f ⁸	⁷ F ₆	6	Pale pink	9.72	9.5 - 9.8
Dy	4f ⁹	$^{6}H_{15/2}$	5	Yellow	10.65	10.4 - 10.6
Но	4f ¹⁰	⁵ ₈	4	Yellow	10.6	10.4 - 10.7
Er	4f ¹¹	⁴ I _{15/2}	3	Rose-pink	9.58	9.4 - 9.6
Tm	4f ¹²	${}^{3}H_{6}$	2	pale green	7.56	7.1 - 7.6
Yb	4f ¹³	${}^{2}F_{7/2}$	1	Colorless	4.54	4.3 - 4.9
Lu	4f ¹⁴	¹ S ₀	0	Colorless	0	0

e.g.
$$Pr^{3+}$$
, $4f^2$

$$M_1 + 3 + 2 + 1 = 0 - 1 - 2 - 3$$

$$2S+1 = 3; L = 5 \Longrightarrow^{3}H$$

$$J = L+S......L-S = 6, 5, 4$$

$$\Longrightarrow^{3}H_4$$

$$g_J = \frac{3}{2} + \frac{S(S+1)-L(L+1)}{2J(J+1)} = 0.8$$

$$\mu = g_J \sqrt{J(J+1)}$$

$$\mu = 4/5 \sqrt{20} = 3.6$$

$$\mu_{obs} = 3.5$$
Experiments 3.4 to 3.6 BM

- ➤ This formula fits well with experimental magnetic moments for all but Sm^{III} and Eu^{III} ions.
- ➤ Moments of these ions are altered from the formula due to temperature dependent population of low lying excited J-states

Magnetic susceptibility of some Fe²⁺ octahedral complexes has sharp decrease, why?

Low-spin-High-spin transition

-Configurations d^{4-7} in Octahedral has either LS or HS ground state. (determined by Δ and mean spin paring energy P).

-
$$\triangle >> P$$
 -----> LS and if $\triangle << P$ -----> HS

-However when $\Delta <<$ or >> P not true, a LS \leftrightarrow HS transition can occur. But often $|\Delta - P| \sim kT$.

- -Spin transition corresponds to an intraionic electron transfer.
- The occupancy in e_g orbitals in the HS state cause elongation of M-L bonds.

Spin-Crossover example Fe(II)-d⁶ ion:

-First example of spin-crossover.

Temperature, K

-A abrupt change at \sim 176 K from S=0 to S=2.