Машинное обучение

Лекция 14

Рекомендательные системы

НИУ ВШЭ, 2021

Опрос

• Какие рекомендательные системы вы знаете?

Опрос

- Какие рекомендательные системы вы знаете?
- Рекомендации чего вы хотели бы получать?

Рекомендательные системы

- Фильмы, видео
- Музыка
- Книги
- Приложения
- Товары
- Посты в социальных сетях
- Баннерные системы
- Люди (социальные сети, сервисы знакомств)
- Услуги (рестораны, отели, ...)
- Научные публикации

Рекомендательные системы

- Рекомендательные системы сокращают объём информации, необходимый для принятия решения
- Не нужно читать отзывы на 1000 фильмов модель сама выберет лучший
- Netflix: 2/3 просмотренных фильмов найдены через рекомендательную систему
- Amazon: 35% продаж через полки рекомендаций
- Youtube: 60% просмотров благодаря рекомендациям

Amazon

Recommendations for you in Books

Amazon

Books best sellers See more

Netflix

Netflix

Profile Type	Score Image A Score Image	
Comedy	5.7	6.3
Romance	7.2	6.5

Image B

Рекомендации контента

- Медийный бум приводит к взрывному росту объёмов информации в сети
- Рекомендательные системы помогают ориентироваться
- Для авторов поиск целевой аудитории

• Пионеры в Китае — Toutiao (более 100 миллионов активных пользователей) и другие платформы

Цели с точки зрения продавца

Цели с точки зрения продавца

- Продать больше товаров
- Продать больше редких товаров
- Повысить лояльность пользователя
- Лучше понять покупателей

Цели с точки зрения покупателя

Цели с точки зрения покупателя

- Купить то, что нужно
- Понять, что покупать вместе с данным товаром
- Понять, что интересно (если нет задачи купить что-то конкретное)

Краткая история

- Начало 90-х: одна из первых рекомендательных систем (GroupLens, рекомендации записей в Usenet)
- Начало 2000-х: активные исследования, коммерциализация
- 2006: Netflix Prize
- 2007: первая конференция RecSys

Netflix Prize

- Предсказываем, какую оценку пользователь поставит фильму
- Метрика: RMSE
- Задача: улучшить на 10% качество предсказания
- Конкурс шёл с 02.10.2006 по 21.09.2009
- Главный приз: \$1,000,000
- Размеры:
 - 500 тысяч пользователей
 - 17 тысяч фильмов
 - 10⁸ рейтингов

Netflix Prize

- Одно из первых крупных соревнований по анализу данных (предшественник kaggle и т.д.)
- Первый большой открытый набор данных для тестирования алгоритмов рекомендаций
- Алгоритмы, разработанные участниками конкурса, до сих пор популярны в индустрии
- Netflix Prize привёл к большой популярности RMSE как метрики качества рекомендаций (не самый лучший результат)

Netflix Prize

На основе чего можно строить рекомендации?

На основе чего можно строить рекомендации?

- Данные по другим пользователям «что смотрят люди с похожими на мои интересами?»
- Данные по объектам (фильмам) «какие фильмы похожи на те, которые мне понравились?»

Типичная рекомендательная система

- Объект: пара «user-item»
- Целевая переменная: клики, длинные клики, досмотры, покупки, дослушивания, лайки и т.д.
- Решаем задачу классификации/регрессии/ранжирования

Типичная рекомендательная система

- Объект: пара «user-item»
- Целевая переменная: клики, длинные клики, досмотры, покупки, дослушивания, лайки и т.д.
- Решаем задачу классификации/регрессии/ранжирования

Особенности:

- Выбор целевой переменной
- Выбор метрики качества
- Факторы для модели
- Слишком много товаров/видео/песен/...

Отбор кандидатов

- Простая и быстрая модель, которая отбирает тысячи товаров для данного пользователя
- Сложная модель применяется только к отобранным кандидатам

Основные подходы

- Есть методы, разработанные напрямую для рекомендаций
- Коллаборативная фильтрация
 - Рекомендации на основе сходства действий пользователей
- Контентные рекомендации

Memory-based models

Обозначения

- Множество товаров: І
- Множество пользователей: U
- Множество пар «пользователь-товар», для которых известны оценки: R
- Если для пары (u,i) известен рейтинг, то будем писать $\exists r_{ui}$
- Оценки рейтинги фильмов, индикаторы покупки товара и т.д.

Оценки

- Оценки (или фидбэк) бывают явные и неявные
- Явные оценки
 - Пользователь поставил оценку фильму/товару
 - Пользователь написал отзыв
 - Пользователь поставил лайк
- Неявные оценки
 - Пользователь посмотрел фильм
 - Пользователь добавил товар в корзину
 - Пользователь долго смотрел на запись в социальной сети
- Неявные оценки более шумные, но их больше

Сходство пользователей

- $I_{uv} = \{i \in I \mid \exists r_{ui} \text{ и } \exists r_{vi}\}$ множество товаров, которые оценили и пользователь u, и пользователь v
- Сходство пользователей (корреляция):

$$w_{uv} = \frac{\sum_{i \in I_{uv}} (r_{ui} - \bar{r}_u)(r_{vi} - \bar{r}_v)}{\sqrt{\sum_{i \in I_{uv}} (r_{ui} - \bar{r}_u)^2} \sqrt{\sum_{i \in I_{uv}} (r_{vi} - \bar{r}_v)^2}},$$

где $\overline{r_u}$ и $\overline{r_v}$ — средние рейтинги пользователей

- Дан пользователь u_0
- Найдём пользователей, которые похожи на него:

$$U(u_0) = \{ v \in U \mid w_{u_0 v} > \alpha \}$$

• Порекомендуем те товары, которые часто покупались пользователями из $U(u_0)$

Товары

1	1	0		1	
0	1	1			1
			1	1	0
	1	1		0	
	1				1

Товары

1	1	0		1	
0	1	1			1
			1	1	0
	1	1		0	
	1				1

Товары

1	1	0		1		•
0	1	1			1	
			1	1	0	
	1	1		0		
	1				1	

Похожие

пользователи

Товары

Недостатки:

- Много параметров, которые сложно выбирать
 - Какой порог сходства для пользователей?
 - Сколько похожих пользователей должны были купить товар, чтобы мы его порекомендовали?
- Требуется хранить всю матрицу оценок

Есть и другие методы, основанные на сходствах, но все обладают теми же недостатками.

Модели со скрытыми переменными

Векторы интересов

- Для пользователя насколько он интересуется каждым жанром
- Для фильма насколько он относится к каждому жанру

Рейтинг

• Предположение: заинтересованность определяется как скалярное произведение векторов пользователя и фильма

$$(0.1, 0.5, 0.01, 0.92) \times (0, 0, 0.1, 0.95) = 0.875$$

$$(0.1, 0.5, 0.01, 0.92) \times (0.9, 0, 0, 0.1) = 0.182$$

Пользователь

Фильм

- Обучим вектор p_u для каждого пользователя u
- Обучим вектор q_i для каждого товара i
- Оценка приближается их скалярным произведением:

$$r_{ui} \approx \langle p_u, q_i \rangle$$

- Находим векторы только по известным оценкам
- После этого можем предсказать оценку для любой пары «пользователь-товар»

• Оптимизационная задача:

$$\sum_{(u,i)\in R} (r_{ui} - \bar{r}_u - \bar{r}_i - \langle p_u, q_i \rangle)^2 \to \min_{P,Q}$$

• Решение: градиентный спуск, Alternating Least Squares (ALS) и другие методы

2	5	
5		4
	1	
	2	5

	(0.9, 0.05)	(0.02, 1.1)	(1.05, 0.01)
(2.1, 5)	2	5	
(4.6, 0)	5		4
(0, 1)		1	
(4.9, 0.9)		1	5

Контентные методы

Контентные рекомендации

- Сведём задачу к обычному обучению с учителем
- Объект: пара «пользователь-товар» (u,i)
- Ответ: отклик пользователя
- Факторы: информация про пользователя и про товар
- Обучаем любую модель на этих данных
- Среди факторов могут быть и прогнозы коллаборативных моделей

Метрики качества рекомендаций

В зависимости от целевой переменной:

- MSE, MAE, R^2
- Accuracy, HitRate, precision/recall, AUC-ROC
- Метрики качества ранжирования (дальше в курсе)

Позиция	Релевантность
1	1
2	0
3	1
4	1
5	0
6	0
7	1
•••	

Позиция	Релевантность
1	1
2	0
3	1
4	1
5	0
6	0
7	1
	•••

precision@5 =
$$\frac{3}{5}$$

recall@5 = $\frac{3}{4}$ (если всего 4 релевантных айтема)

- Насколько хорошо мы предсказываем оценки r_{ui} ?
- Разделяем сессии пользователей на две части: обучаемся на первой, измеряем качество предсказания на второй
- Оцениваем, насколько хорошо предсказываем поведение пользователя но не факт, что нужно именно это
- Зачем рекомендовать то, что он и так купил бы?

Другие метрики

- Покрытие
 - Какая доля товаров рекомендовалась хотя бы раз?
 - Какой доле пользователей хотя бы раз показаны рекомендации?
- Новизна
 - Как много рекомендованных товаров пользователь встречал раньше?
- Прозорливость (serendipity)
 - Способность предлагать товары, которые отличаются от купленных ранее
- Разнообразие

Резюме

- Рекомендации широкая задача с большим количеством коммерческих применений
- Модели: коллаборативная фильтрация, контентный подход
- Рекомендации товаров на основе сходства пользователей
- Модели со скрытыми переменными
- Обилие метрик качества