Assignment No. 4

Question 1

Solution:

Decision Variables:

Let,

```
A1 = cost of plant A for the Warehouse 1
```

A2 = cost of plant A for the Warehouse 2

A3 = cost of plant A for the Warehouse 3

B1 = cost of plant B for the Warehouse 1

B2 = cost of plant B for the Warehouse 2

B3 = cost of plant B for the Warehouse 3

A4 & B4 = Dummy Variables

Objective Function:

$$\begin{aligned} &\text{Min Z} = (600 + 22) \ X_{A1} + (600 + 14) \ X_{A2} + (600 + 30) \ X_{A3} + (625 + 16) \ X_{B1} + (625 + 20) \ X_{B2} + (625 + 24) \\ &X_{B3} + 0 \ X_{A4} + 0 \ X_{B4} \\ &\text{Min Z} = 622 \ X_{A1} + 614 \ X_{A2} + 630 \ X_{A3} + 641 \ X_{B1} + 645 \ X_{B2} + 649 \ X_{B3} + 0 \ X_{A4} + 0 \ X_{B4} \end{aligned}$$

Constraints:

Monthly Production Capacity:

$$X_{A1} + X_{A2} + X_{A3} + X_{A4} = 100$$

$$X_{B1} + X_{B2} + X_{B3} + X_{B4} = 120$$

Monthly Demand:

$$X_{A1} + X_{B1} = 80$$

$$X_{A2} + X_{B2} = 60$$

$$X_{A3} + X_{B3} = 70$$

$$X_{A4} + X_{B4} = 10$$
 (Dummy Variables)

Mathematical Formulation:

$$X_{A1} + X_{A2} + X_{A3} + X_{A4} = 100$$

$$X_{B1} + X_{B2} + X_{B3} + X_{B4} = 120$$

$$X_{A1} + X_{B1} = 80$$

$$X_{A2} + X_{B2} = 60$$

$$X_{A3} + X_{B3} = 70$$

$$X_{A4} + X_{B4} = 10$$
 (Dummy Variables)

$$X_{A1}$$
, X_{A2} , X_{A3} , X_{A4} , X_{B1} , X_{B2} , X_{B3} , X_{B4} , X_{A4} , $X_{B4} >= 0$

Network Diagram:

Question 2

Solution:

Decision Variables:

Let,

 X_{14} = The daily cost requires form Well 1 to Pump A X₁₅ = The daily cost requires form Well 1 to Pump B X₁₆= The daily cost requires form Well 1 to Pump C X_{24} = The daily cost requires form Well 2 to Pump A X_{25} = The daily cost requires form Well 2 to Pump B X₂₆= The daily cost requires form Well 2 to Pump C X_{34} = The daily cost requires form Well 3 to Pump A X_{35} = The daily cost requires form Well 3 to Pump B X₃₆= The daily cost requires form Well 3 to Pump C X₄₇= The daily cost requires form Pump A to Refineries 1 X₄₈= The daily cost requires form Pump A to Refineries 2 X₄₉= The daily cost requires form Pump A to Refineries 3 X₄₁₀= The daily cost requires form Pump A to Refineries 4 X₄₁₁= The daily cost requires form Pump A to Refineries 5 X₅₇= The daily cost requires form Pump B to Refineries 1 X₅₈= The daily cost requires form Pump B to Refineries 2 X₅₉= The daily cost requires form Pump B to Refineries 3 X₅₁₀= The daily cost requires form Pump B to Refineries 4 X₅₁₁= The daily cost requires form Pump B to Refineries 5 X₆₇= The daily cost requires form Pump C to Refineries 1 X₆₈= The daily cost requires form Pump C to Refineries 2 X₆₉= The daily cost requires form Pump C to Refineries 3 X₆₁₀= The daily cost requires form Pump C to Refineries 4 X₆₁₁= The daily cost requires form Pump C to Refineries 5

 X_{412} , X_{512} , X_{612} = Dummy Variables

Objective Function:

```
\begin{aligned} &\text{Min Z} = 1.52 \ X_{14} + 1.60 \ X_{15} + 1.40 \ X_{16} + 1.70 \ X_{24} + 1.63 \ X_{25} + 1.55 \ X_{26} + 1.45 \ X_{34} + 1.57 \ X_{35} + 1.30 \\ &X_{36} + 5.15 \ X_{47} + 5.12 \ X_{57} + 5.32 \ X_{67} + 5.69 \ X_{48} + 5.47 \ X_{58} + 6.16 \ X_{68} + \ 6.13 \ X_{49} + 6.05 \ X_{59} + 6.25 \ X_{69} \\ &+ 5.63 \ X_{410} + 6.12 \ X_{510} + 6.17 \ X_{610} + 5.80 \ X_{411} + 5.71 \ X_{511} + 5.87 \ X_{611} \end{aligned}
```

Constraints:

Supply Constraints

$$X_{14} + X_{15} + X_{16} = 93$$

$$X_{24} + X_{25} + X_{26} = 88$$

$$X_{34} + X_{35} + X_{36} = 95$$

Demand Constraints:

$$X_{47} + X_{57} + X_{67} = 30$$

$$X_{48} + X_{58} + X_{68} = 57$$

$$X_{49} + X_{59} + X_{69} = 48$$

$$X_{410} + X_{510} + X_{610} = 91$$

$$X_{411} + X_{511} + X_{611} = 48$$

$$X_{412} + X_{512} + X_{612} = 2$$
.

..... (Dummy Variables)

Constraints from Pump to Refinery:

$$X_{14} + X_{24} + X_{34} = X_{47} + X_{48} + X_{49} + X_{410} + X_{411}$$

$$X_{15} + X_{25} + X_{35} = X_{57} + X_{58} + X_{59} + X_{510} + X_{511}$$

$$X_{16} + X_{26} + X_{36} = X_{67} + X_{68} + X_{59} + X_{610} + X_{611}$$

Mathematical Formulation:

$$X_{14} + X_{24} + X_{34} = 93$$

$$X_{15} + X_{25} + X_{35} = 88$$

$$X_{16} + X_{26} + X_{36} = 95$$

$$X_{47} + X_{57} + X_{67} = 30$$

$$X_{48} + X_{58} + X_{68} = 57$$

$$X_{49} + X_{59} + X_{69} = 48$$

$$X_{410} + X_{510} + X_{610} = 91$$

$$X_{411} + X_{511} + X_{611} = 48$$

$$X_{412} + X_{512} + X_{612} = 2$$
 (Dummy Variables)

$$1.52X_{14} + 1.70X_{24} + 1.45X_{34} = 5.15X_{47} + 5.69X_{48} + 6.13X_{49} + 5.63X_{410} + 5.80X_{411}$$

$$1.60X_{15} + 1.63X_{25} + 1.57X_{35} = 5.12X_{57} + 5.47X_{58} + 6.05X_{59} + 6.12X_{510} + 5.71X_{511}$$

$$1.40X_{16} + 1.55X_{26} + 1.30X_{36} = 5.32X_{67} + 6.16X_{68} + 6.25X_{59} + 6.17X_{610} + 5.87X_{611}$$

$$X_{14}$$
, X_{24} , X_{34} , X_{15} , X_{25} , X_{35} , X_{16} , X_{26} , X_{36} , X_{47} , X_{57} , X_{67} , X_{48} , X_{58} , X_{68} , X_{49} , X_{59} , X_{69} , X_{410} , X_{510} , X_{610} , X_{411} , X_{511} , X_{611} , X_{412} , X_{512} , $X_{612} >= 0$

Q2 Part 1) Solution:

Using IpSolve the optimal solution is 1966.68. Well 3 Has used to the capacity in the optimal schedule.

Part 2) Solution:

Network Diagram:

