

Machine and Deep Learning for Medical Signals

Ho Chi Minh City University of Technology (HCMUT)

Kantika Wongkasem

Ascendas Systems

As the Authorized Resellein Southeast Asia for MathWorks Inc, developer of the MATLAB® and Simulink® family of products since 1996, we provide organizations and businesses with a wide spectrum of the best tools, products and services to facilitate innovations.

in more than 180 countries

in 34 offices around the world

for companies across multiple industries

Privately held

and focus on long-term customer success

DATA QUADRANT AWARDS 2022 Machine Learning

8.8

+98

Review Software

≛ Product Report 15+

MATLAB[®] is the enterprise engineering platform for AI.

- •Empower your team, including those with limited Al or data science experience
- •Apply complete workflows for data preparation, Al modeling, system design, and production
- •Deploy AI models on embedded devices, edge, enterprise systems, and the cloud
- Tackle integration challenges and reduce risk in designing Al-driven systems with Simulink®

Dataiku DSS

MathWorks Matlab

8.9

PRODUCT FEATURES AND SATISFACTION

7.2

DataRobot Al Cloud

Google Cloud ML

Databricks

Knime

RapidMiner

Alteryx

Altair Data Analytics Suite

VENDOR EXPERIENCE AND CAPABILITIES

9.2

MATLAB® SIMULINK®

- MATLAB Create algorithms and Almodels for biomedical data analysis
- Simulink Simulate complex medical devices with sensors and software
- Over 100 add-on products for specialized R&D tasks

Outline

- Overview of Machine Learning and Deep Learning Workflow
- Medical Signal Processing in Application
- Examples of Deep Learning in Medical Imaging
- Medical Device Applications
- Resources for further learning

Machine Learning is Everywhere

Solution is too complex for hand written rules or equations

Object Recognition

Engine Health Monitoring

learn complex nonlinear relationships

Solution needs to adapt with changing data

Weather Forecasting

Energy Load Forecasting

Stock Market Prediction

update as more data becomes available

Solution needs to scale

IoT Analytics

Taxi Availability

Airline Flight Delays

learn efficiently from very large data sets

What about medical signals?

Converting brain waves to speech to help ALS patients communicate (Nov 2019)

The AirSonea device and mobile app housing the wheeze analysis algorithms.

Signal Classification using LSTMs

Machine/Deep Learning Workflow

Access and Explore Data

Preprocess Data

ASCENDAS SYSTEMS

Develop Predictive Models

Integrate Analytics with Systems

Machine Learning...

- Ability to learn from data inherently without being explicitly programmed
 - Learns complex non-linear relationship
 - Updates as more data becomes available
 - Requires manual feature extraction from most datasets (images, signals etc)

Machine Learning

Deep
Learning

Deep Learning...

- Subset of machine learning with automatic feature extraction
 - Learns features and tasks directly from data (images, text, signals etc.)
 - Can be supervised, unsupervised, or semi-supervised
 - More Data = better model

Machine Learning

Deep
Learning

Machine Learning vs Deep Learning

ASCENDAS YSTEMS

Deep learning performs end-to-end learning by learning features, representations and tasks directly from images, text and signals

Increase productivity using Apps for design and analysis

Use MATLAB Apps to design deep learning networks, explore a wide range of classifiers, train regression models, train an optical character recognition model, and more.

Deep Network Designer app to build, visualize, and edit deep learning networks

Experiment Manager app to manage multiple deep learning experiments, analyze and compare results and code

Import pre-trained models for fast implementation

- Access pretrained networks and use them as a starting point for new models
 - Multiple pre-trained networks available online
- Perform transfer learning to use the learned features in the network for a specific task
- Compare the accuracy of pre-trained networks for a specific medical imaging task

A list of pretrained networks

Analysis of pretrained models

Outline

- Overview of Machine Learning and Deep Learning Workflow
- Medical Signal Processing in Application
- Examples of Deep Learning in Medical Imaging
- Medical Device Applications
- Resources for further learning

Analyse and synthesise biomedical signals using wavelets

- Use wavelets to extract features from biomedical signals for machine and deep learning
- Continuous Wavelet Transform (CWT) is ideal for analysing nonstationary signals
- Detect and analyse changes in frequency content of signals over time
- Use wavelets of biomedical signals as inputs for deep learning models

Cardiac arrhythmia (ARR), congestive heart failure (CHF) and normal sinus rhythms (NSR)

CWT generated 2-D time-frequency maps of ECG time series data

Example: Label QRS Complexes and R Peaks **Signal Labeler**

Signal Labeling app Video

ASCENDAS SYSTEMS

Use advanced signal analysis techniques

- Use deep learning for biomedical signal processing tasks such as segmentation, classification and detection
- Interactively create and edit deep learning networks
 - Built-in Deep Network Designer app
- Analyse network architecture to detect errors and layer compatibility issues before training

ECG segmentation using deep learning and LSTM network

Interactively build and visualise network structures

Deployment Solutions

Embedded and Enterprise

ASCENDAS S Y S T E M S

Integrate analytics with systems

Build desktop and web apps for validation

- MATLAB Compiler allows sharing algorithms as standalone, web apps and MS Excel add-ins
- Applications and add-ins can be run on any computer using the MATLAB Runtime
 - No need to install MATLAB
- Web applications can be hosted online and shared with users in a trusted intranet environment

Build standalone applications for desktop use

Share applications with users in a trusted intranet

Automatically generate code for target hardware

Outline

- Overview of Machine Learning and Deep Learning Workflow
- Medical Signal Processing in Application
- Examples of Deep Learning in Medical Imaging
- Medical Device Applications
- Resources for further learning

MATLAB Example: Transfer Learning for EKG Classification

- Customize pre-trained CNN architectures
- CNNs are great at extracting features from input representations
- Leverage time-frequency maps
 - convert 1-D signal to 2-D
- Quickly build a model

Objective:

Develop a classifier quickly to classify EKG signals

In other words ...

Learn how to implement the entire Al pipeline on real-world signal data

EKG Data Source:

162 EKG records of 3 classes

- NSR: Normal Sinus Rhythm h
- ARR: Cardiac Arrythmia
- CHF: Congestive Heart Failure

Each record has 65536 samples → 512s data @ 128 Hz

Time-Frequency Representations in MATLAB

- A time-frequency representation captures how spectral content of signal evolves over time
 - can be saved as an image.
- Many time-frequency representations are available
 - spectrogram,
 - mel-frequency spectrograms,
 - scalogram (continuous wavelet transform)
 - Constant Q Transform etc.

Overall Workflow – Deep Learning on Signals with CNNs

Open MATLAB

Outline

- Overview of Machine Learning and Deep Learning Workflow
- Medical Signal Processing in Application
- Examples of Deep Learning in Medical Imaging
- Medical Device Applications
- Resources for further learning

UT Austin Researchers Convert Brain Signals to Words and Phrases Using Wavelets and Deep Learning

Challenge

Create a speech-driven brain-computer interface to enable ALS patients to communicate by imagining the act of speaking specific phrases

Solution

Use wavelet scalograms of MEG signals to train deep neural networks

Results

- Classification accuracy of 96% achieved
- Wavelets and deep learning networks quickly combined
- Training times accelerated by a factor of 10

Classifying the brain signals corresponding to the imagined word "goodbye" using feature extraction and deep neural networks.

"MATLAB is an industry-standard tool, and one that you can trust. It is easier to learn than other languages, and its toolboxes help you get started in new areas because you don't have to start from scratch."

- Dr. Jun Wang, UT Austin

VivaQuant Accelerates Development and Validation of Embedded Device for Ambulatory ECG Sensing

Challenge

Design and implement an embedded system for extracting accurate information from noisy electrocardiogram signals

Solution

Use MATLAB to develop an algorithm for removing in-band noise, and use Fixed-Point Designer and MATLAB Coder to implement it on an ARM Cortex-M series processor

Results

- Development accelerated by 300%
- Power and memory consumption minimized
- Rigorous testing enabled

ECG snippet after processing with VivaQuant's embedded in-band noise removal algorithm

"MATLAB, MATLAB Coder, and Fixed-Point Designer enabled our small team to develop a complex real-time signal processing algorithm, optimize it to reduce power and memory requirements, accelerate embedded code implementation, and perform the rigorous testing required for medical device validation."

- Marina Brockway, VivaQuant

Outline

- Overview of Machine Learning and Deep Learning Workflow
- Medical Signal Processing in Application
- Examples of Deep Learning in Medical Imaging
- Medical Device Applications
- Resources for further learning

Online examples of deep learning for biomedical signals

- Classify ECG Signals Using Long Short-Term Memory Networks
- Classify ECG Time Series Using Wavelet Analysis and Deep Learning
- Label QRS Complexes and R Peaks of ECG Signals Using Deep Network
- ECG Waveform Segmentation Using Deep Learning
- Get Started with Deep Network Designer

Learn more

Interactive tutorials

- MATLAB Onramp
- Simulink Onramp
- Stateflow Onramp

Webinars

- What is MATLAB?
- What is Simulink?
- Model-Based Design with MATLAB and Simulink

Onsite or self-paced training courses

- MATLAB Fundamentals
- Deep Learning with MATLAB
- Signal Processing with MATLAB

Course Description

An interactive introduction to signal processing methods for spectral analysis.

Deep Learning Onramp

Get started quickly using deep learning methods to perform image recognition.

Details and launch

Engineering support

- ► Trials and evaluations
- ► Consulting services
- ► Training services
- ► <u>Technical support</u>

Learn more

mathworks.com/medical