Supplementary Document to "Detection of Actuator Enablement Attacks by Time Petri Nets in Supervisory Control"

Journal Title
XX(X):1-4
©The Author(s) 2025
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Zhenhua Yu¹, Yifei Jia¹ and Xuya Cong¹

Example of Warehouse Order Processing System

The overall architecture of the warehouse order processing system is shown in Figure 1. This architecture enables a closed-loop management process from order inflow to completion. In the specific process design, the standard order processing flow includes two branches: sufficient stock and insufficient stock. Expedited orders utilize priority scheduling to optimize resource allocation and shorten the processing cycle. It should be noted that there are two tokens in p1, representing two pending order tasks in the current system. To further clarify the practical implications of each core element in the system modeling process, Table 1 and Table 2 provide detailed definitions of the physical scenarios and functions corresponding to the places and transitions in the model, respectively.

Figure 1. The TPN model of the warehouse order processing system

Corresponding author:

Xuya Cong, College of Artificial Intelligence and Computer Science, Xi'an University of Science and Technology, Xi'an 710054, China.

Email: congxuya@xust.edu.cn

¹ College of Artificial Intelligence and Computer Science, Xi'an University of Science and Technology, Xi'an 710054, China

2 Journal Title XX(X)

Table 1. Physical meaning of places.

Places	Meaning
$\overline{p_1}$	All pending orders
p_2	Waiting for the system to identify the order priority
p_3	Regular orders with sufficient inventory are pending sorting
p_4	Regular orders are pending stock replenishment
p_5	Regular orders are pending quality inspection
p_6	Regular orders are pending packaging
p_7	Rush orders with sufficient inventory are pending sorting
p_8	Rush orders are pending packaging
p_9	Order completed

Table 2. Physical meaning of transitions.

Option	Columns
t_1	Classification of pending orders
t_2	Check on sufficient inventory for regular orders
t_3	Check on insufficient inventory for regular orders
t_4	Regular order replenishment
t_5	Regular order sorting process
t_6	Regular order quality inspection process
t_7	Package regular orders and process new orders
t_8	Rush order inventory check
t_9	Rush order sorting
t_{10}	Package rush orders and process new orders

The MSCG corresponding to this system, which represents the plant G under investigation, is illustrated in Figure 2. Based on the physical properties of the transitions in Table 2, the system's uncontrollable event set is $\Sigma_{uc} = \{\alpha_5, \alpha_6, \alpha_9\}$. These events are typically automated and dominated by equipment, making external interference extremely difficult. Conversely, the controllable event set is $\Sigma_c = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_7, \alpha_8, \alpha_{10}\}$. The vulnerable event set is $\Sigma_{c,v}^a = \{\alpha_2, \alpha_3, \alpha_8\}$. They are the core targets for attack intervention because they correspond to events that affect critical decision-making, such as order flow direction and prioritization. The two types of states, "Regular Order with Sufficient Inventory Pending Sorting" and "Rush Order with Sufficient Inventory Pending Sorting," serve as the core nodes connecting order decision-making and physical execution. Anomalies in these states directly lead to the stagnation of the warehouse sorting function and the interruption of the supply chain flow, thereby disrupting the normal operational logic of the warehouse. Therefore, the unsafe state set for this system is defined as $X_f = \{x_2, x_3, x_7\}$. These states are critical for accurately describing the threats to system stability.

To prevent an increase in analysis complexity due to an excessively large attack time span, the time interval for the occurrence of attack events in this example is set to be the same as the firing time interval of the transitions. According to Algorithm 1, the attacked model G_a and the attacked supervisor H_a are constructed, respectively. By calculating $G_a \otimes H_a$, the attacked closed-loop controlled system G_M of this case is obtained, as shown in Figure 3.

Yu et al. 3

Figure 2. The MSCG of the TPN system in Figure 1

Figure 3. Attacked closed-loop system model G_M

Since this system is a small-scale system, a diagnoser is used to determine the AE-safe controllability of the system. The diagnoser G_d is shown in Figure 4. According to Step 7 of Algorithm 2, we can obtain

4 Journal Title XX(X)

 $\{((x_2, x_1), Y), ((x_3, x_1), Y)\} \in FC$. Since this set contains the unsafe states x_2 and x_3 , the system does not satisfy the AE-safe controllability condition.

Figure 4. The diagnoser G_d