ÉRETTSÉGI VIZSGA • 2016. május

FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2016. május 17. 8:00

Az írásbeli vizsga időtartama: 240 perc

Pótlapok száma						
Tisztázati						
Piszkozati						

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Azonosító								
jel:								

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot!

A pótlapon tüntesse fel a feladat sorszámát is!

írásbeli vizsga 1613 2 / 16 2016. május 17.

Fizika	 eme	١ŀ	szint

Azonosító								
jel:								

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

1.	-	zni fog-e az a résztvevő egy futóversenyen, aki a legnagyobb t éri el?	maximális sebes-
	A) B) C)	Igen. Nem. A megadott információ alapján nem dönthető el.	
			2 pont
2.		rézből készült Faraday-kalitka belsejében egy kis vasgolyó va el közelítünk a kalitkához. Mi történik?	n. Egy erős mág-
	A) B) C)	A kis vasgolyót maga felé vonzza a mágnes. A kalitkában az elektromos térerősség nulla, ezért a vasgolyó nyugalomban marad. A kalitka felmágneseződik, ezért a vasgolyó a kalitka falához guru	ıl.
			2 pont
3.	Az a	lábbi állítások a neutrínókra vonatkoznak. Melyik a helyes?	
	A)	A neutrínó a maghasadásokban keletkező, legerősebben ionizálni részecske.	képes
	B) C)	A neutrínót még nem sikerült kísérletileg kimutatni. A neutrínónak nincsen elektromos töltése.	
			2 pont

Fiz	ika —	emelt szint	Azonosító jel:				
4.	merciállar feksz látha lapo tömo lapo belü	asztalon, az asztal élére őlegesen, egy <i>m</i> tömegű, adó vastagságú szívószál zik, melynek ¼ része az ábrán ató módon túlér az asztal- n. A szívószálon egy <i>m</i> egű darázs sétál az asztal- n túlnyúló vég felé. Körül- l meddig sétálhat ki a darázs a allapon nem csúszik el.)	← nélkül, h	ogy a szívo	ószál lebil	llenne? (A	szívószál az
	A) B) C)	Az asztal széléig. A szívószál végéig. Az asztalon túllógó rész feléig.				2 po	nt
5.	válto	veszteségmentes tekercset vá ozik a körben az áramerősség két megtartva a frekvenciáját	effektív	értéke, ha	_	-	
	A) B) C)	Az áramerősség csökken. Az áramerősség nő. Az áramerősség nem változik.					
						2 po	nt
6.	Űrál	-ben csaknem egy kilométeri lomást. Befolyásolta-e ez a m lomás jó közelítéssel körpályái	anőver a	z űrállom	ás pálya		
	A) B) C) D)	Igen, lecsökkent az űrállomás Nem, változatlan az űrállomás Igen, megnőtt az űrállomás pál A megadott adatok alapján ner	pálya menti ya menti	nti sebesség sebessége.			

2 pont

7. Súrlódásos lejtőn két test helyezkedik el. A testek egy elhanyagolható tömegű csigán átvetett fonallal vannak összekötve, a rajznak megfelelően. Az alább megadott tömegek közül melyik esetén fog az 1 kg tömegű test felfelé elindulni, ha a rendszert magára hagyjuk?

 $\mu = 0.01$.

- **A)** m = 1.5 kg.
- **B)** m = 2 kg.
- C) m = 2.5 kg.

- 8. Egy vékony üvegcső bizonyos mennyiségű higannyal van tele. A csőben levő higanyszál két vége között az ellenállás R. Ezt a higanyt áttöltjük egy feleakkora átmérőjű csőbe. Mekkora lesz a higany ellenállása?
 - **A)** 2*R*
 - \mathbf{B}' 4R
 - **C)** 8*R*
 - **D)** 16*R*

2 pont

9. Egy atom néhány energiaszintjét mutatja az ábra. Az atom fotonokat bocsát ki, amikor gerjesztett elektronjai alacsonyabb energiájú állapotba kerülnek. Az alábbiak közül melyik átmenethez tartozik a legnagyobb

-1 eV -3 eV	0 eV	 n = 3
-8 eV		n = 2

-16 eV

A) 4-es pályáról a 3-asra.

hullámhosszúságú foton?

- **B)** 2-es pályáról az 1-esre.
- C) 4-es pályáról az 1-esre.

2 pont	

Fizika	 eme	l+	szint

Azonosító								
jel:								

10. Egy hegyes vascölöp (a felülnézeti rajzon a C pont) közelében két egyforma krokodil napozik. Vihar közeledik, a vascölöpbe villám csap. Az áram a talajban a nyilak irányába folyik szét. Melyik krokodilnak van több esélye a túlélésre? (A talaj minden irányban azonos módon vezeti az áramot. A krokodilok szélességétől tekintsünk el!)

- A) Az 1. jelűnek, mert egy ekvipotenciális vonal mentén fekszik.
- B) A 2. jelűnek, mert az áram folyásának irányában fekszik.
- C) A két krokodilnak egyformák a túlélési esélyei.

2 pont	
--------	--

- 11. Egy italos palackot vízzel töltünk meg. Hogyan változik a csobogás hangmagassága a vízszint emelkedése közben?
 - A) Mélyül.
 - **B)** Emelkedik.
 - C) A hangmagasság nem, csak a hangszín változik.

2 pont	
--------	--

- 12. Egy lábosban víz van, amellyel hőt közlünk. Lehetséges-e, hogy a hőközlés során a víz hőmérséklete nem emelkedik?
 - **A)** Nem, mert a folyamatos melegítés következtében a víz hőmérséklete előbb-utóbb eléri a forráspontot.
 - **B)** Igen, mert ha nem takarjuk le az edényt, a víz hőmérséklete nem növekedhet, mivel a felette lévő vízgőz nyomása sem növekszik.
 - C) Igen, amennyiben a hőveszteség megegyezik a felvett hővel, a víz nem fog melegedni.

2 pont	

írásbeli vizsga 1613 6 / 16 2016. május 17.

13. Elzárt ideális gáz állapotváltozását mutatja a mellékelt p-T grafikon. Mit mondhatunk a folyamat során a munkavégzésről?

- A) Nem történik munkavégzés.
- B) A környezet végez pozitív munkát a gázon.
- C) A gáz végez pozitív munkát a környezetén.

2 pont	
--------	--

14. Lehetséges-e, hogy egy álló gázpalackban levő gázrészecskék összes lendülete nulla?

- **A)** Igen, mert ez egy zárt rendszer, és a zárt rendszerek összes kinetikus energiája mindig nulla.
- **B)** Nem, mert a részecskék ütköznek a tartály falával, és megváltozik a lendületük.
- C) Nem, mert akkor a gáz hőmérséklete 0 Kelvin lenne, ami a termodinamika törvényei szerint nem lehetséges.
- **D)** Igen, mert a palack nem mozog.

2 pont	
--------	--

15. Két különböző radioaktív izotópunk van, az egyikből 1 g, a másikból pedig 1,2 g. A két minta aktivitása ekkor azonos. Melyiknek nagyobb a felezési ideje?

- A) Az 1 g mennyiségűnek.
- B) Az 1,2 g mennyiségűnek.
- C) A megadott adatok alapján nem lehet eldönteni.

Azonosító								
jel:								

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet, és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

1. Súrlódás, közegellenállás

"Coulomb különféle anyagokból használt pallókat és szánkákat, változtatá a szánkák súlyát, valamint a felületek érintő pontjai számát is zsíros anyagok közbetétele által, és ekkép meghatározá a súrlódás megfejtőjét, vagyis azon arányt, mely a szánkák megindítására szükséges erő és ennek nyomása között létezik."

(Schirkhuber Móricz: Elméleti és tapasztalati természettan alaprajza I. kötet. Pest, 1851.)

Mutassa be egy-egy hétköznapi példán a csúszási és a tapadási súrlódás jelenségét! Mutassa be a súrlódási erő irányát és nagyságát befolyásoló tényezőket, az ezt leíró matematikai összefüggéseket! Külön térjen ki a tapadási és a csúszási súrlódási erőre! Ismertessen egy-egy gyakorlati eljárást a tapadási és a csúszási súrlódási együttható mérésére! Mutasson be egy olyan konkrét példát, amelyben egy testre ható erők eredője egyenlő a súrlódási erővel, de a test sebességének nagysága mégsem csökken, hanem növekszik! Miért állíthatjuk, hogy a csúszási súrlódás disszipatív erő? Ismertesse a közegellenállás jelenségét, mutassa be egy gyakorlati példán! Milyen tényezők befolyásolják a testekre ható közegellenállási erő nagyságát és irányát? Ismertessen egy olyan esetet, amelyben a közegellenállási erő növelése a célunk, és egy olyat, amelyben a csökkentése a cél!

írásbeli vizsga 1613 8 / 16 2016. május 17.

Azonosító								
jel:								

2. Kondenzátor és tekercs

"A Volta által 1782-ben feltalált villanysűrítő szolgál a villanyfolyam csekély mennyiségének föllelhetésére. Áll két jól kisimított kerekes fémlemezből, melyek közül az összeszedő (collector), vagy alaplemez közönséges villanymutatóval és golyóban végződő sodronnyal van összekötve. A sűrítő lemez, vagy födő üvegnyéllel ellátott, hogy elszigetelten emeltethessék fel."

(Schirkhuber Móricz: Elméleti és tapasztalati természettan alaprajza II. kötet. Pest, 1852.)

Egy kondenzátort egyen-, majd váltóáramú körbe kapcsolunk. Ismertesse, miben tér el a kondenzátor működése a két hálózatban! Az ideális tekercs működése is eltérő, ha egyen-, illetve váltófeszültségre kapcsoljuk. Ismertesse a tekercs viselkedését a két hálózatban! Mitől és hogyan függ az ideális tekercs, illetve az ideális kondenzátor ellenállása szinuszos váltóáramú körben? Mit értünk fáziskésésen, illetve fázissietésen? Egy ideális tekercsben, illetve kondenzátorban mekkora a fáziseltérés? Mekkora effektív teljesítmény keletkezik egy ideális tekercsen, illetve kondenzátoron a váltóáramú körökben? Válaszát indokolja! Mutassa be egy rezgőkör felépítését! Ismertesse, hogy milyen mechanizmus hozza létre a szabad rezgések kialakulását! Mitől és hogyan függ a rezgőkörben kialakuló rezgés periódusideje? Nevezze meg a rezgőkörök egy felhasználási területét!

3. A radioaktív sugárzás élettani vonatkozásai

"A lakosságot folytonosan éri természetes és mesterséges eredetű sugárzás. Az ionizáció kiváltására képes sugárzó anyagok jelen vannak a környezetünkben, mind az élettelen anyagokban, mind az élőlényekben, s így kivétel nélkül valamennyi emberben is."

(http://www.muszeroldal.hu/assistance/Sugaregeszsegugyi_ismeretek.pdf)

Ismertesse a radioaktív sugárzás aktivitásának fogalmát, mértékegységét! Mutassa be a földi háttérsugárzás eredetét, említsen meg néhány természetes és mesterséges összetevőt is! Indokolja a sugárzás elleni védelem szükségességét, két gyakorlati példán mutassa be ennek lehetséges módját! Miért vannak az űrhajósok és a mélyben dolgozó bányászok jelentős sugárterhelésnek kitéve? Az emberi test esetében beszélhetünk külső és belső sugárforrásokról. Mit értünk ezek alatt? Nevezzen meg mindkettőre egy-egy példát! Adja meg az elnyelt dózis, valamint a dózisegyenérték fogalmát és mértékegységét! Mi a különbség a két mennyiség között? Írjon le két gyakorlati példát a radioaktív sugárzás orvosi alkalmazására! Mutassa be a radioaktív sugárzás egy orvostudomány területén kívül eső alkalmazását is!

írásbeli vizsga 1613 9 / 16 2016. május 17.

Tartalom	Kifejtés	Összesen
18 pont	5 pont	23 pont

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Két azonos tömegű égitest kering körpályán közös tömegközéppontjuk körül, egymástól $d=50~000~\rm km$ távolságban (50 000 km az égitestek középpontjainak távolsága). A keringési idő T=5 földi nap.
 - a) Mekkora az égitestek tömege?
 - b) Mekkora lenne a keringési idő, ha az égitestek egymástól vett távolsága d' = 2d volna?

a)	b)	Összesen
7 pont	5 pont	12 pont

2. Egy 10 liter térfogatú tartályt száraz levegő tölt ki. A hőmérséklet 10 °C, a nyomás 10⁵ Pa. A tartályba egy kis vizet fecskendezünk, majd a berendezést felmelegítjük 293 °C hőmérsékletre, és azt tapasztaljuk, hogy folyékony víz már nincs a tartályban, és a nyomás 2,5 · 10⁵ Pa-ra emelkedik.

Hány cm³ vizet fecskendeztünk a tartályba? (A telítetlen gőzt jó közelítéssel ideális gáznak tekinthetjük.)

A víz moláris tömege: $M_{\rm víz}=18$ g/mol, sűrűsége: $\rho=1$ g/cm³, az egyetemes gázállandó: $R=8,31\frac{\rm J}{\rm mol\cdot K}$.

Összesen

11 pont

3. Egy vákuum-fotocellás mérésnél egy ismeretlen anyagú, negatívan töltött fémlemezt különböző frekvenciájú, monokromatikus fénysugarakkal világítunk meg egymás után. A fény hatására kilépő elektronok maximális mozgási energiájának értékét a fény frekvenciájának függvényében a mellékelt grafikon mutatja. Az alábbi táblázat néhány fém kilépési munkáját tartalmazza eV egységekben.

Anyag neve	Cézium	Kálium	Cink	Platina		
Kilépési	1 04	2,24	4.27	5 36		
munka (eV)	1,94	2,24	4,27	5,36		

- a) A grafikon alapján határozza meg a fémre jellemző határfrekvenciát!
- b) Számítsa ki a fémre jellemző kilépési munkát, és határozza meg a fémlemez anyagát!
- c) Mekkora a kilépő elektronok maximális sebessége $f = 7.2 \cdot 10^{14}$ Hz megvilágító fény esetén?

Az elektron töltése: $e = -1.6 \cdot 10^{-19} \text{ C}$, tömege: $m_e = 9.1 \cdot 10^{-31} \text{ kg}$, $h = 6.63 \cdot 10^{-34} \text{ J} \cdot \text{s}$.

írásbeli vizsga 1613 13 / 16 2016. május 17.

a)	b)	c)	Összesen
3 pont	5 pont	5 pont	13 pont

Azonosító								
jel:								

4. Egy akkumulátor elektromotoros ereje 12 V, belső ellenállása 1 Ω . Az ábra szerint az akkumulátor sarkaira párhuzamosan kapcsolunk két izzót, amelyek ellenállása 4 Ω és állandónak tekinthető.

Mennyivel változik meg az 1. számú izzó teljesítménye, ha a 2. számú izzó kiég?

Összesen

11 pont

Fizika –	– emelt	szint

Azonosító								
jel:								

Figyelem! Az értékelő tanár tölti ki!

	maximális pontszám	elért pontszám
I. Feleletválasztós kérdéssor	30	
II. Esszé: tartalom	18	
II. Esszé: kifejtés módja	5	
III. Összetett feladatok	47	
Az írásbeli vizsgarész pontszáma	100	

	 javító tanár	
Dátum:		

	elért pontszám egész számra kerekítve	programba beírt egész pontszám
I. Feleletválasztós kérdéssor		
II. Esszé: tartalom		
II. Esszé: kifejtés módja		
III. Összetett feladatok		

javító tanár			jegyző		
		Dátum:			