Results

Programming Assignment-2

Name	UNH-ID	User-id	Contribution
Sai Arvind Reddy	923519765	sd1253	Q3, Q4
AKhila Bezawada	933142537	ab1545	Q5, Q6
Medhini Shankar	978572176	Ms1537	Q1, Q2
Narayan			

Question 2

Using TREC_EVAL	BM25	Custom Score
Precision at R	0.5966	0.5257
Mean Average Precision	0.6016	0.5095
NDCG@20	0.7696	0.674

Question 3

Qrel file: train.pages.cbor-article.qrels

Eval Measure	BM25	Custom
Precision at R	0.5922715781870711	0.5922715781870711

Question 4

Eval Measure	BM25	Custom
Mean Average Precision	0.6165717206846371	0.6165717206846371

Question 5

Eval Measure	BM25	Custom
Mean Average Precision	0.6712607859648821	0.6645272023724066

The eval scores which we have obtained is very similar to the one calculated by TREC_EVAL, but not exactly the same.

With the default scoring algorithm, we calculate a nDCG@20 score of NDCG20 is: 0.6712607859648821, while TREC_EVAL reports 0.7696.

For our custom scoring function, we calculate NDCG20 is: 0.6645272023724066, while TREC_EVAL calculates 0.674 As we are using logarithms base 2, while we implement in class determines the denominator as $\log 2(c+1)$, results in $\log 2(2) = 1$, results in denominator will be one larger for all calculations.

Question 6

Using TREC-EVAL following results are obtained.

Using TREC_EVAL	BM25	Custom Score
Precision at R	0.5966	0.5257
Mean Average Precision	0.6016	0.5095
NDCG@20	0.7696	0.674

From our code, following results are obtained

Using our code	BM25	Custom Score
Precision at R	0.5922715781870711	0.5922715781870711
Mean Average Precision	0.6165717206846371	0.6165717206846371
NDCG@20	0.6712607859648821	0.6645272023724066

From the graph above, we can conclude that our default Retrieval function(BM25) is giving better results compared to Custom Scoring function. Therefore, BM25 is better. The error bars are not overlapping and the difference is very small.(significant enough to differentiate).