代数学2,第10回の内容の理解度チェック

2025/7/7 担当:那須

W 41						I→ 3K1.	
学生証番号					 	点数	
•							

Rを一意分解整域 (UFD) とする. R上の1変数多項式環 R[x]の元

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

に対し、係数 a_0, a_1, \ldots, a_n の最大公約元を c(f) と表し、f の内容 (content) という.

- $\boxed{1}$ 次の多項式 $f(x) \in \mathbb{Z}[x]$ に対し, f(x) の内容 c(f) の値を求めよ.
 - (1) f(x) = 4 10x
 - (2) $f(x) = 6 9x + 18x^2$
 - (3) $f(x) = 1 2x + 4x^2 + \dots + (-2)^n x^n$

② $\mathbb{Z}[x]$ の元 f(x) = 4 + 6x と $g(x) = 3 - 9x + 12x^3$ に対し f(x)g(x) を計算せよ. また c(fg) の値を求めよ.

 $\boxed{3} \ f(x) \in \mathbb{Z}[x] \ \mathcal{E}$

$$f(x) = 72x^4 + 48x^3 - 54x^2 - 18x + 12$$

とする.

- (1) f(x) を $\mathbb{Z}[x]$ において、素元の積に分解せよ.
- (2) f(x) を $\mathbb{Q}[x]$ において、素元の積に分解せよ.

$4 \mid R$	を一意名	分解整域と	. 9 S. p∈	10 0)(()						
			: し, <i>k</i> を <i>R</i> し, もし必要		, 以下のカ	ブウスの定				素元である
_ 	ことを示す 	せ. (ただし	、もし必要	Pであれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>		であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
_ =	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- - -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	
- -	 整域 R l	せ. (ただし に対し, <i>R</i>	ン, もし必要 が一意分解	であれば	, 以下のカ – ガウス0	ブウスの定 の定理 ─	理を用い	てもよい.	.)	