Import required packages

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

Read the data

```
In [2]: file_location="C:\\Users\\omkar\\OneDrive\\Documents\\Data science\\Naresh
    visa_df=pd.read_csv(file_location)
    visa_df.head()
```

Out[2]:		case_id	continent	education_of_employee	has_job_experience	requires_job_training	no_
	0	EZYV01	Asia	High School	N	N	
	1	EZYV02	Asia	Master's	Υ	N	
	2	EZYV03	Asia	Bachelor's	N	Υ	
	3	EZYV04	Asia	Bachelor's	N	N	
	4	EZYV05	Africa	Master's	Υ	N	
	4						

In [3]: visa_df.dtypes

```
Out[3]: case_id
                                   object
                                   object
        continent
        education_of_employee
                                   object
        has_job_experience
                                   object
        requires_job_training
                                   object
        no_of_employees
                                    int64
        yr_of_estab
                                    int64
        region_of_employment
                                   object
        prevailing_wage
                                  float64
        unit_of_wage
                                   object
        full_time_position
                                   object
        case_status
                                   object
        dtype: object
```

prevailing - wage

```
In [4]: | p_wage=visa_df['prevailing_wage']
        p_wage
Out[4]: 0
                    592.2029
        1
                  83425.6500
        2
                 122996.8600
                 83434.0300
                 149907.3900
        4
                 77092.5700
        25475
        25476
                 279174.7900
        25477
                 146298.8500
        25478
                 86154.7700
        25479
                  70876.9100
        Name: prevailing_wage, Length: 25480, dtype: float64
          count
          • max
          • min
          mean
          • median
          • 25p
          • 50p
          • 75p
In [5]: p_wage.count()
Out[5]: 25480
In [6]: p_wage=visa_df[['prevailing_wage']]
        p_wage.count().iloc[0]
        p_wage=visa_df['prevailing_wage']
        p_wage.count()
```

Out[6]: 25480

```
In [7]:
       p_wage=visa_df['prevailing_wage']
        wage_count=p_wage.count()
        wage_mean=round(p_wage.mean(),2)
        wage_median=round(p_wage.median(),2)
        wage_max=round(p_wage.max(),2)
        wage_min=round(p_wage.min(),2)
        # print(wage_count)
        # print(wage_mean)
        # print(wage_median)
        # print(wage max)
        # print(wage_min)
        list1=[wage_count,wage_max,wage_min,wage_mean,wage_median]
        index_list=['count','max','min','mean','median']
        pd.DataFrame(list1,
                     columns=['prevailing_wage'],
                     index=index list)
```

Out[7]: prevailing_wage

count	25480.00
max	319210.27
min	2.14
mean	74455.81
median	70308.21

```
In [8]: # Numerical columns seperaetly
    num_cols=visa_df.select_dtypes(exclude='object').columns
    dict1={}
    for i in num_cols:
        count=visa_df[i].count()
        mean=round(visa_df[i].mean(),2)
        median=round(visa_df[i].median(),2)
        maxx=round(visa_df[i].max(),2)
        minn=round(visa_df[i].min(),2)
        list1=[count,maxx,minn,mean,median]
        dict1[i]=list1
    index_list=['count','max','min','mean','median']
    numer_df=pd.DataFrame(dict1,index=index_list)
    numer_df.to_csv("numer_df.csv")
    numer_df
```

Out[8]:

	no_of_employees	yr_of_estab	prevailing_wage
count	25480.00	25480.00	25480.00
max	602069.00	2016.00	319210.27
min	-26.00	1800.00	2.14
mean	5667.04	1979.41	74455.81
median	2109.00	1997.00	70308.21

```
In [9]:
          visa df.describe()
 Out[9]:
                 no_of_employees
                                   yr_of_estab prevailing_wage
                     25480.000000
                                  25480.000000
                                                 25480.000000
           count
                      5667.043210
                                   1979.409929
                                                 74455.814592
           mean
             std
                     22877.928848
                                     42.366929
                                                 52815.942327
             min
                       -26.000000
                                   1800.000000
                                                     2.136700
            25%
                      1022.000000
                                   1976.000000
                                                 34015.480000
            50%
                      2109.000000
                                   1997.000000
                                                 70308.210000
            75%
                      3504.000000
                                   2005.000000
                                                107735.512500
                    602069.000000
                                   2016.000000
                                                319210.270000
            max
In [10]:
          p_wage=visa_df['prevailing_wage']
          wage_count=p_wage.count()
          wage_mean=round(p_wage.mean(),2)
          wage_median=round(p_wage.median(),2)
          wage_max=round(p_wage.max(),2)
          wage_min=round(p_wage.min(),2)
          wage_std=round(p_wage.std(),2)
          list1=[wage_count,wage_max,wage_min,
                  wage_mean,wage_median,wage_std]
          index_list=['count','max','min','mean','median','std']
          pd.DataFrame(list1,
                        columns=['prevailing_wage'],
                        index=index_list)
Out[10]:
                   prevailing_wage
            count
                         25480.00
                        319210.27
              max
                             2.14
              min
             mean
                         74455.81
                         70308.21
           median
              std
                         52815.94
In [11]:
         # what ever we did the calculations on above
          # by using pandas dataframe way
          # the same we can achieve by numpy package also
In [12]:
          # wage_mean=round(p_wage.mean(),2)=== pandas
          p_wage=visa_df['prevailing_wage']
          np.mean(p_wage)
          np.median(p_wage)
          np.max(p_wage)
          np.min(p_wage)
          np.std(p_wage)
```

percentile-quantile

Out[12]: 52814.90589711402

- In the numpy package we have np.percentile() and np.quantile()
- percentile: if you want to 25p 25
- quantile: q1=25p (0.25) q2=50p q3=75p
- · Assume that a student got 120 Marks 95P
- 95% of students has marks below 120

```
In [13]: |np.percentile(p_wage,25)
Out[13]: 34015.479999999996
In [14]: | np.quantile(p_wage,0.25)
Out[14]: 34015.479999999996
In [15]:
        p_wage=visa_df['prevailing_wage']
        wage_count=p_wage.count()
        wage_mean=round(p_wage.mean(),2)
        wage median=round(p wage.median(),2)
        wage_max=round(p_wage.max(),2)
        wage_min=round(p_wage.min(),2)
        wage_std=round(p_wage.std(),2)
        wage_25p=round(np.percentile(p_wage,25),2)
        wage_50p=round(np.percentile(p_wage,50),2)
        wage_75p=round(np.percentile(p_wage,75),2)
        list1=[wage_count, wage_max, wage_min,
              wage_mean,wage_median,wage_std,
              wage_25p,wage_50p,wage_75p]
        index_list=['count','max','min','mean',
                    'median','std','25%','50%','75%']
        pd.DataFrame(list1,
                    columns=['prevailing_wage'],
                    index=index_list)
```

Out[15]:

prevailing_wage

count	25480.00
max	319210.27
min	2.14
mean	74455.81
median	70308.21
std	52815.94
25%	34015.48
50%	70308.21
75%	107735.51

```
In [16]:
        # Numerical columns seperaetly
         num_cols=visa_df.select_dtypes(exclude='object').columns
         dict1={}
         for i in num_cols:
             count=visa_df[i].count()
             mean=round(visa_df[i].mean(),2)
             median=round(visa_df[i].median(),2)
             maxx=round(visa_df[i].max(),2)
             minn=round(visa_df[i].min(),2)
             std=round(visa df[i].std(),2)
             p25=round(np.percentile(visa_df[i],25),2)
             p50=round(np.percentile(visa df[i],50),2)
             p75=round(np.percentile(visa_df[i],75),2)
             list1=[count,maxx,minn,mean,median,std,p25,p50,p75]
             dict1[i]=list1
         index_list=['count','max','min','mean',
                      'median','std','25%','50%','75%']
         numer_df=pd.DataFrame(dict1,index=index_list)
         numer_df.to_csv("numer_df.csv")
         numer_df
```

Out[16]:

	no_of_employees	yr_of_estab	prevailing_wage
count	25480.00	25480.00	25480.00
max	602069.00	2016.00	319210.27
min	-26.00	1800.00	2.14
mean	5667.04	1979.41	74455.81
median	2109.00	1997.00	70308.21
std	22877.93	42.37	52815.94
25%	1022.00	1976.00	34015.48
50%	2109.00	1997.00	70308.21
75%	3504.00	2005.00	107735.51

```
In [17]: #pwage 25p = 34015

#25% of total employees has wages below 34015

#100
#25 members salary < 34k

50*(25480)/100

#6370 employees has wages less than 34015
#12740 employees has wages less than 70308.21</pre>
```

Out[17]: 12740.0

```
In [18]: p_wage=visa_df['prevailing_wage']
    count_25p=len(p_wage[p_wage<np.percentile(p_wage,25)])
    count_50p=len(p_wage[p_wage<np.percentile(p_wage,50)])
    count_75p=len(p_wage[p_wage<np.percentile(p_wage,75)])

l1=['Count of 25%','Count of 50%','Count of 75%']
    l2=[count_25p,count_50p,count_75p]
    d1=pd.DataFrame(zip(l1,l2),columns=['Till per','Count'])
    plt.bar('Till per','Count',data=d1)</pre>
```

Out[18]: <BarContainer object of 3 artists>


```
In [19]: # You want to extract a dataframe
# which has wages Less than 34015(25p)
# 100  25 mem  34k
```

```
In [20]: # step-1: take the reference column first
         # Step-2: apply the condition
         # it will provide True or Flase
         # Step-3: Apply the original dataframe on top of that
                  So that it will give only True values
         p_wage=visa_df['prevailing_wage']
         p_25=np.percentile(p_wage,25)
         con=p_wage<p_25
         visa_df[con]
         visa_df[visa_df['prevailing_wage']<34015]</pre>
```

\sim		$\Gamma \sim \Gamma$	1
1 N	—	1 114	
v	uч	120	

	case_id	continent	education_of_employee	has_job_experience	requires_job_trainiı
0	EZYV01	Asia	High School	N	
7	EZYV08	North America	Bachelor's	Υ	
12	EZYV13	Asia	Bachelor's	Υ	
16	EZYV17	Europe	Master's	Υ	
17	EZYV18	Asia	Master's	Υ	
25461	EZYV25462	Asia	Master's	Υ	
25465	EZYV25466	North America	High School	N	
25466	EZYV25467	Europe	Bachelor's	Υ	
25470	EZYV25471	North America	Master's	Υ	
25473	EZYV25474	Asia	Bachelor's	Υ	
6370 rc	ows × 12 colu	umns			

370 rows × 12 columns

04	F 24 T .
υυτ	

	case_id	continent	education_of_employee	has_job_experience	requires_job_trainiı	
0	EZYV01	Asia	High School	N	_	
6	EZYV07	Asia	Bachelor's	N		
7	EZYV08	North America	Bachelor's	Υ		
9	EZYV10	Europe	Doctorate	Υ		
12	EZYV13	Asia	Bachelor's	Υ		
25465	EZYV25466	North America	High School	N		
25466	EZYV25467	Europe	Bachelor's	Υ		
25470	EZYV25471	North America	Master's	Υ		
25473	EZYV25474	Asia	Bachelor's	Υ		
25474	EZYV25475	Africa	Doctorate	N		
12740 r	12740 rows × 12 columns					

```
In [22]: # between 25p to 50p
# between 34k to 70k
# >25p and <50p
p_wage=visa_df['prevailing_wage']
p_25=np.percentile(p_wage,25)
p_50=np.percentile(p_wage,50)
# between 25p to 50p

con1=p_wage>p_25
con2=p_wage<p_50

visa_df[con1&con2]
#visa_df[(visa_df['prevailing_wage']>34015)&(visa_df['prevailing_wage']<7006</pre>
Out[22]: case_id continent education_of_employee has_job_experience requires_job_training.

Out[22]:
```

	case_id	continent	education_of_employee	has_job_experience	requires_job_trainii
6	EZYV07	Asia	Bachelor's	N	
9	EZYV10	Europe	Doctorate	Υ	
22	EZYV23	Asia	Master's	Υ	
28	EZYV29	Asia	Master's	Υ	
38	EZYV39	Asia	Bachelor's	Υ	
25449	EZYV25450	Asia	Bachelor's	Υ	
25454	EZYV25455	Asia	Bachelor's	N	
25456	EZYV25457	Asia	Bachelor's	Υ	
25459	EZYV25460	Asia	High School	Υ	
25474	EZYV25475	Africa	Doctorate	N	
0070	40				

6370 rows × 12 columns

In [24]: # till 50 =12740 # till 25 =6370

between 25 to 50 = 12740-6370=6370

```
p_wage =visa_df['prevailing_wage']
In [25]:
          p_25 = np.percentile(p_wage,25)
          p_75 = np.percentile(p_wage,75)
          con_1 = p_wage < p_25
          con_2 = p_wage > p_75
          visa_df[con_1 | con_2]
Out[25]:
                     case_id continent education_of_employee has_job_experience requires_job_trainii
               0
                     EZYV01
                                  Asia
                                                  High School
                                                                             Ν
               2
                     EZYV03
                                                   Bachelor's
                                                                             Ν
                                  Asia
               4
                     EZYV05
                                                     Master's
                                 Africa
                                                                             Υ
                                 North
               7
                                                   Bachelor's
                     EZYV08
```

Bachelor's

Master's

Master's

Bachelor's

High School

Master's

Υ

Υ

12740 rows × 12 columns

EZYV13

In []: # You are good at writing the conditions

Histogram

12

25469 EZYV25470

25470 EZYV25471

25473 EZYV25474

25476 EZYV25477

25477 EZYV25478

- · From raw data will make class intervals
- · Will count the observations in each class intervals
- Freqiency distribution table
- Plot of Frequency distribution table is Hitogram

America

Asia

North

America North

America

Asia

Asia

Asia

```
In [26]:
         p_wage=visa_df['prevailing_wage']
         freq,interval,n=plt.hist(p_wage,bins=40)
         freq, interval
Out[26]: (array([2992., 871., 1005., 1170., 1242., 1434., 1385., 1443., 1444.,
                 1445., 1457., 1335., 1268., 1217., 1088., 978., 807.,
                                                                  99.,
                  509., 373., 264., 144., 105., 111., 107.,
                                                                           88.,
                   79.,
                          65.,
                                 64.,
                                        58., 53., 33., 33.,
                                                                    29.,
                                                                           19.,
                    7.,
                           3.,
                                  6.,
                                         5.]),
          array([2.13670000e+00, 7.98234003e+03, 1.59625434e+04, 2.39427467e+04,
                 3.19229500e+04, 3.99031534e+04, 4.78833567e+04, 5.58635600e+04,
                 6.38437634e+04, 7.18239667e+04, 7.98041700e+04, 8.77843734e+04,
                 9.57645767e+04, 1.03744780e+05, 1.11724983e+05, 1.19705187e+05,
                 1.27685390e+05, 1.35665593e+05, 1.43645797e+05, 1.51626000e+05,
                 1.59606203e+05, 1.67586407e+05, 1.75566610e+05, 1.83546813e+05,
                 1.91527017e+05, 1.99507220e+05, 2.07487423e+05, 2.15467627e+05,
                 2.23447830e+05, 2.31428033e+05, 2.39408237e+05, 2.47388440e+05,
                 2.55368643e+05, 2.63348847e+05, 2.71329050e+05, 2.79309253e+05,
                 2.87289457e+05, 2.95269660e+05, 3.03249863e+05, 3.11230067e+05,
                 3.19210270e+05]))
          3000
          2500
          2000
           1500
           1000
            500
              0
                   0
                          50000
                                  100000
                                           150000
                                                    200000
                                                              250000
                                                                       300000
In [27]:
         2.13670000e+00
                         # 2.13
         7.98234003e+03 # 7982
Out[27]: 7982.34003
In [28]: #2.13
                  to
                        7982.34003
                                       (2992)
         p_wage=visa_df['prevailing_wage']
         con1=p_wage>2.13
         con2=p wage<7982.34003
         len(visa df[con1&con2])
```

Out[28]: 2992

```
In [29]:
         p wage=visa df['prevailing wage']
         con1=p_wage>7.98234003e+03
         con2=p wage<1.59625434e+04
         len(visa df[con1&con2])
Out[29]: 871
 In [ ]: # # Histogram
         # # what do you want represent in graphical way
         # p wage.values
         # # raw observations
         # # 25480 observations
         # # we are dividng into 40 intervals
         # l1=sorted(p_wage.values)
         # L1.index(2.1367) #0
         # L1.index() # 2991
                                 2992
In [30]: freq
Out[30]: array([2992., 871., 1005., 1170., 1242., 1434., 1385., 1443., 1444.,
                1445., 1457., 1335., 1268., 1217., 1088., 978., 807., 645.,
                 509., 373., 264., 144., 105., 111., 107.,
                                                                   99.,
                                                                          88.,
                  79.,
                         65.,
                               64.,
                                     58., 53.,
                                                   33., 33.,
                                                                   29.,
                                                                          19.,
                   7.,
                          3.,
                               6.,
                                        5.])
In [31]: interval
Out[31]: array([2.13670000e+00, 7.98234003e+03, 1.59625434e+04, 2.39427467e+04,
                3.19229500e+04, 3.99031534e+04, 4.78833567e+04, 5.58635600e+04,
                6.38437634e+04, 7.18239667e+04, 7.98041700e+04, 8.77843734e+04,
                9.57645767e+04, 1.03744780e+05, 1.11724983e+05, 1.19705187e+05,
                1.27685390e+05, 1.35665593e+05, 1.43645797e+05, 1.51626000e+05,
                1.59606203e+05, 1.67586407e+05, 1.75566610e+05, 1.83546813e+05,
                1.91527017e+05, 1.99507220e+05, 2.07487423e+05, 2.15467627e+05,
                2.23447830e+05, 2.31428033e+05, 2.39408237e+05, 2.47388440e+05,
                2.55368643e+05, 2.63348847e+05, 2.71329050e+05, 2.79309253e+05,
                2.87289457e+05, 2.95269660e+05, 3.03249863e+05, 3.11230067e+05,
                3.19210270e+05])
```

```
In [33]: plt.hist(visa_df['prevailing_wage'],bins=40)
Out[33]: (array([2992., 871., 1005., 1170., 1242., 1434., 1385., 1443., 1444.,
                 1445., 1457., 1335., 1268., 1217., 1088., 978., 807.,
                  509., 373., 264., 144., 105., 111.,
                                                            107.,
                                                                     99.,
                   79.,
                          65.,
                                 64.,
                                        58.,
                                               53.,
                                                       33.,
                                                              33.,
                                                                     29.,
                                                                            19.,
                    7.,
                           3.,
                                  6.,
                                          5.]),
          array([2.13670000e+00, 7.98234003e+03, 1.59625434e+04, 2.39427467e+04,
                 3.19229500e+04, 3.99031534e+04, 4.78833567e+04, 5.58635600e+04,
                 6.38437634e+04, 7.18239667e+04, 7.98041700e+04, 8.77843734e+04,
                 9.57645767e+04, 1.03744780e+05, 1.11724983e+05, 1.19705187e+05,
                 1.27685390e+05, 1.35665593e+05, 1.43645797e+05, 1.51626000e+05,
                 1.59606203e+05, 1.67586407e+05, 1.75566610e+05, 1.83546813e+05,
                 1.91527017e+05, 1.99507220e+05, 2.07487423e+05, 2.15467627e+05,
                 2.23447830e+05, 2.31428033e+05, 2.39408237e+05, 2.47388440e+05,
                 2.55368643e+05, 2.63348847e+05, 2.71329050e+05, 2.79309253e+05,
                 2.87289457e+05, 2.95269660e+05, 3.03249863e+05, 3.11230067e+05,
                 3.19210270e+05]),
          <BarContainer object of 40 artists>)
```



```
In [45]: sns.displot(visa_df['prevailing_wage'],kind='ecdf')
# ecdf= coumulative distribution plot
```

C:\Users\omkar\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[45]: <seaborn.axisgrid.FacetGrid at 0x20b15188e10>


```
In [43]: sns.displot(visa_df['prevailing_wage'],kind='kde') # kernal density estimate
sns.displot(visa_df['prevailing_wage'])
# ecdf= coumulative distribution plot
```

C:\Users\omkar\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)
C:\Users\omkar\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[43]: <seaborn.axisgrid.FacetGrid at 0x20b1d361e10>


```
In [46]: sns.displot(visa_df['prevailing_wage']) # Histogram
    sns.displot(visa_df['prevailing_wage'],kind='kde') # kernal density estimated sns.displot(visa_df['prevailing_wage'],kind='ecdf') # coummulative distributed sns.displot(visa_df['prevailing_wage'],kind='ecdf') # coummulative distributed sns.displot(visa_df['prevailing_wage'],kind='ecdf') # coummulative distributed sns.displot(visa_df['prevailing_wage'],kind='ecdf') # kernal density estimated sns.displot(visa_df['prevailing_wage'],kind='kde') # kernal density estimated sns.displot(visa_df') # kernal den
```

Out[46]: <seaborn.axisgrid.FacetGrid at 0x20b1e72f810>


```
In [52]: plt.subplot(1,3,1) # 1 row 3 columns
    plt.hist(visa_df['prevailing_wage'])
    plt.subplot(1,3,2)
    plt.hist(visa_df['prevailing_wage'])
    plt.subplot(1,3,3)
    plt.hist(visa_df['prevailing_wage'])
```


In []:	
In []:	
In []:	
In []:	
In []:	
In []:	