

Détection automatique de faux billets

Cruder Lea – Data Analyst

Table des matières

01

Contexte

Rappel du contexte et de la mission

02

Méthodologie

Description des étapes de conception

03

Conclusion

Bilan et recommandations

04

Démonstration

Démonstration de l'algorithme final

01

Contexte

Rappel du contexte et de la mission

Organisation nationale de lutte contre le faux-monnayage (ONCFM)

- → Organisation publique
- → Objectif: mettre en place des méthodes d'identification des contrefaçons des billets en euros.
- → Mission : mettre en place un algorithme qui soit capable de différencier automatiquement les vrais des faux billets à partir des dimensions géométriques

Méthodologie

Description des étapes de conception

Méthodologie suivie

Analyse de la mission en détails et des attendus

Analyse exploratoire

Prédiction des valeurs manquantes

Analyse en Composantes Principales

Conception des algorithmes

Optimisation de l'algorithme retenu

Test final

Préparation

Analyse Planification Données Exploration

Analyse du cahier des charges et de la mission en détails Récapitulatif et planification des attendus

Importation des données

Vérification de l'intégrité

Première analyse exploratoire des données afin de mieux les comprendre

Description des données

Description des données

Vrais billets

- O 1000 exemplaires
- O 29 valeurs manquantes sur margin low

Faux billets

- O 500 exemplaires
- 3 8 valeurs manquantes sur margin_low

Analyse exploratoire

Analyses univariées

Etude de chaque variable dans son ensemble et par type de billet

Analyses multivariées

Recherche de multi colinéarité et de variables constantes

Analyses bivariées

Recherche et étude des liens potentiels entre les variables

Prédiction des valeurs manquantes

Comparaison et choix du meilleur modèle pour prédire les valeurs manquantes

Variable: is_genuine

Vrais billets

Remplacement par 1

Faux billets

Remplacement par 0

Variable: diagonal

Distribution normale

9 outliers potentiels

Vrais billets

Moyenne: 171,91 mm Médiane: 171,99 mm

Faux billets

Moyenne : 171,99 mm Médiane : 171,90 mm

Variable: height_left

Vrais billets

Moyenne: 103,95 mm Médiane: 103,95 mm

Faux billets

Moyenne : 104,18 mm Médiane : 104,18 mm

Variable: height_right

Vrais billets

Moyenne: 103,81 mm Médiane: 103,81 mm

Faux billets

Moyenne : 104,14 mm Médiane : 104,16 mm

Variable: margin_low

Vrais billets

Moyenne: 4,11 mm Médiane: 4,11 mm

Faux billets

Moyenne: 5,21 mm Médiane: 5,19 mm

Variable: margin_up

Vrais billets

Moyenne: 3,05 mm Médiane: 3,05 mm

Faux billets

Moyenne: 3,35 mm Médiane: 3,35 mm

Vrais billets

Moyenne: 113,20 mm Médiane: 113,20 mm

Faux billets

Moyenne: 111,63 mm Médiane: 111,63 mm

Analyses bivariées

Après analyse visuelle, étude des liens potentiels et confirmation notamment :

is_genuine

- Lien confirmé avec margin_low: Stat H de Kruskal-Wallis = 828,74 / p-value <0,01
- Lien confirmé avec **length** : Stat H de Kruskal-Wallis = 916,9 / p-value < 0,01
- Lien confirmé avec height_right : Stat H de Kruskal-Wallis = 355,69 / p-value <0,01
- Lien confirmé avec height_left : Stat H de Kruskal-Wallis = 221,40 / p-value <0,01

margin_low

- Corrélation confirmée avec **length** : Coeff. de Spearman = -0,59 / p-value <0,01
- Corrélation confirmée avec height_right : Coeff. de Spearman = 0,39 / p-value <0,01
- Corrélation confirmée avec margin_up : Coeff. de Spearman = 0,42 / p-value <0,01
- Corrélation confirmée avec height_left : Coeff. de Spearman = 0,29 / p-value <0,01

Conception d'un modèle

Choix du modèle final

Modèle de base

Dummy_median

Remplacement par la médiane (distribution non normale)

Scores obtenus:

Métrique	Train	Test
R2	-0.068643	-0.077451
MSE	0.475608	0.454152
RMSE	0.689643	0.673908

Régression linéaire simple

Variable prédictive : length

	Coef.	Std.Err.	t	P> t
const	60.705029	1.901646	31.922361	2.780726e-161
length	-0.498963	0.016877	-29.564881	7.173831e-144

Scores obtenus:

Métrique	Train	Test
R2	0.428035	0.513607
MSE	0.254557	0.205017
RMSE	0.504537	0.452788

Régression linéaire multiple

Variables prédictives :

	Coef.	Std.Err.	t	P> t
height_left	0.175760	0.039037	4.502434	7.391678e-06
height_right	0.283590	0.037374	7.587922	6.626067e-14
margin_up	0.294641	0.073321	4.018497	6.232521e-05
length	-0.392292	0.016678	-23.521624	1.968097e-100

Scores obtenus:

Métrique	Train	Test
R2	0.458700	0.539374
R2_adjusted	0.988241	
MSE	0.240909	0.194156
RMSE	0.490825	0.440632

Conditions d'application

Linéarité

Homoscédasticité

Normalité

Les relations suivent une forme linéaire

Variance presque constante des résidus (Test de Breusch-Pagan ne passe pas)

Distribution presque normale mais rejetée par les tests (Shapiro-Wilk)

Conditions d'application

Absence de multicolinéarité

Variable VIF const 313283.808503 height_left 1.147526 height_right 1.259215 margin_low 1.903892 margin_up 1.419586 length 2.126807

Pas de VIF > 5 pour les variables sélectionnées = pas de variables colinéaires

Absence d'autocorrélation

Les variables ne sont pas auto-corrélées Confirmé par le test de Durbin-Watson

Significativité des coefficients

	Coef.	Std.Err.	t	P> t
height_left	0.175760	0.039037	4.502434	7.391678e-06
height_right	0.283590	0.037374	7.587922	6.626067e-14
margin_up	0.294641	0.073321	4.018497	6.232521e-05
length	-0.392292	0.016678	-23.521624	1.968097e-100

Les coefficients sont statistiquement différents de 0

Les p-values sont < 0,05

ONCFM

Prédiction et exportation

Préparation

Prédiction

Vérification

Exportation

Ré-entraînement du modèle final sur l'ensemble des données Prédiction des valeurs manquantes sur margin_low

Vérification de l'intégrité des données

Exportation du fichier final

Exportation d'une version sans outliers pour tester l'impact

Analyse en Composantes Principales

Calcul du nombre optimal de dimensions

Nous permettra de visualiser nos clusters

Choix de 3 axes : conserve 77% de la variance expliquée

Analyse en Composantes Principales

Comprendre et vérifier les axes

Calculer les valeurs sur les nouveaux axes

Le premier axe sera calculé sur chaque ligne en multipliant par les **coefficients** correspondants, puis en additionnant le tout

Analyse en Composantes Principales Cercle des corrél Length

Cercle des corrélations

height_right, margin_down et height_left sont corrélées positivement à F1

length est très liée à F2

Projection sur les axes

Projection des billetspaur les 3 dimensions

Les vrais billets ont presque tous des valeurs négatives sur F1

Algorithmes

Train

Test

Comparaison

Découpage des différentes versions du dataset en Train et en Test pour validation croisée simple Entraînement des modèles

Calcul des métriques

Test des modèles

Calcul des métriques et comparaison

Bilan sur l'impact des potentiels outliers

Choix du meilleur modèle en comparant les métriques et les scores obtenus

Méthode des K-means

Calcul du nombre optimal de clusters

Ici 2 : on anticipe les classes de vrais / faux billets (à confirmer avec l'étude des centroïdes)

Vérification des centroïdes

Sur la base du Train (version non normalisée)

Étude des centroïdes

Sur la base du Train (version non normalisée)

	diagonal	height_left	height_right	margin_low	margin_up	length	value_counts
cluster_kmeans							
0	171.982670	103.956359	103.816092	4.123944	3.059466	113.203859	824
1	171.900957	104.192473	104.147580	5.237287	3.351383	111.564096	376

Comparaison avec les moyennes des types de billets :

	diagonal	height_left	height_right	margin_low	margin_up	length	value_counts
is_genuine							
0	171.903154	104.190026	104.146538	5.213462	3.353000	111.608154	390
1	171.983025	103.953457	103.810864	4.116173	3.053642	113.210988	810

Rappel: is_genuine = 0 -> Faux billets

is_genuine = 1 -> Vrais billets

Des moyennes très proches de celles des types de billets

Notre cluster 0 correspond aux vrais billets, et notre cluster 1 aux faux

14 erreurs de classification

Un taux d'erreur de 1,5 % sur la base du Train

Performances du K-means

Sur la base du Test (version non normalisée)

Matrice de confusion :

6 faux positifs : notre modèle a prédit 6 faux billets comme étant vrais

Rapport de classification:

	precision	recall	f1-score	support
0	1.00	0.95	0.97	110
1	0.97	1.00	0.98	190
accuracy			0.98	300
macro avg	0.98	0.97	0.98	300
weighted avg	0.98	0.98	0.98	300

Pour qu'un modèle soit performant, il doit identifier le plus possible de faux billets

On veut donc la précision la plus proche de 1 possible (et pour le f1-score)

Un taux d'erreur de classification de 2 % sur le Test

Régression logistique

Sur la base du Train (version non normalisée)

Premier essai avec toutes les variables

		Logit Regre	ssion Resu	lts		
Dep. Variable:		is_genuine		rvations:		1200
Model: Method:		Logit MLE	Df Resid			1193 6
Date:	Sat,	20 Apr 2024				0.9517
Time: converged:		17:03:35 True	Log-Like LL-Null:			-36.563 -756.70
Covariance Typ	e:	nonrobust	LLR p-va	lue:	4.	619e-308
	coef	std err	z	P> z	[0.025	0.975]
const	-83.9258	257.673	-0.326	0.745	-588.957	421.105
diagonal height left		1.151 1.276				1.868 0.641
height_right		1.093			-4.400	
margin_low	-5.3287	0.976	-5.460	0.000	-7.242	-3.416
margin_up	-8.8390	2.111	-4.186	0.000	-12.977	-4.701
length	5.6169	0.895	6.276	0.000	3.863	7.371

On retirera par la suite la variable la moins significative et ainsi de suite

Ces 4 variables sont significatives dans la configuration actuelle (coefficient statistiquement différent de 0 avec une p-value < 0,05)

Pas de variables colinéaires

Régression logistique

Sur la base du Train (version non normalisée)

Troisième essai

Logit Regression Results						
Dep. Variable:		is_genuine	No. Obs	ervations:		1200
Model:		Logit	Df Resi	duals:		1195
Method:		MLE	Df Mode	1:		4
Date:	Sat,	20 Apr 2024	Pseudo	R-squ.:		0.9511
Time:		17:03:36	Log-Lik	elihood:		-36.990
converged:		True	LL-Null	:		-756.70
Covariance Type	:	nonrobust	LLR p-va	alue:	1.9	963e-310
	coef	std err	Z	P> z	[0.025	0.975]
height_left	-2.4744	1.070	-2.314	0.021	-4.571	-0.378
height_right	-2.6582	0.979	-2.715	0.007	-4.577	-0.739
margin_low	-5.2354	0.911	-5.747	0.000	-7.021	-3.450
margin_up	-9.1009	2.101	-4.332	0.000	-13.219	-4.983
length	5.2192	0.724	7.205	0.000	3.799	6.639
			=======			

Cette fois toutes les variables sont significatives

Pas de variables colinéaires

Performances du modèle

Sur la base du Test (version non normalisée)

Matrice de confusion :

4

2 faux positifs pour 1 faux négatif

Rapport de classification :

	precision	recall	f1-score	support
0	0.99	0.98	0.99	110
1	0.99	0.99	0.99	190
accuracy			0.99	300
macro avg	0.99	0.99	0.99	300
weighted avg	0.99	0.99	0.99	300

De bons résultats sur les métriques

Une précision et un F1-score très proches de 1

Un taux d'erreur de classification de 1 % sur le Test

Performances du modèle

Courbe ROC:

- De bons résultats : les 2 courbes sont quasiment dans le coin supérieur gauche
- Une courbe de Test meilleure que celle d'entraînement
- Des performances qui peuvent encore être améliorées en calculant le seuil optimal

Optimisation du modèle

Recherche du seuil optimal

Seuil trouvé : 0,62

Mêmes résultats

Approche de la précision, du rappel et du F1-score

Seuil trouvé : 0,40

Résultats moins bons

Méthode de classification coût sensible

Test final: préparation

Ré-entraînement sur tout le dataset

Visualisation des vrais classes

6 faux positifs seulement sur les 1500 billets

Test final

Prédictions des 5 billets du fichier production :

	id	is_genuine	taux_proba
0	A_1	False	0.000229
1	A_2	False	0.000015
2	A_3	False	0.000023
3	A_4	True	0.980833
4	A_5	True	0.999987

Correspond à la probabilité qu'un billet soit vrai

Conclusion

Bilan et recommandations

Bilan et recommandations

Forces

- Modèle sachant réagir aux valeurs atypiques des vrais billets, et donc proche de la situation réelle
- Modèle performant pour la prédiction des faux billets : très peu de faux positifs sur l'entièreté du dataset

Améliorations possibles

- Ajouter l'info sur le type de billet (5€ / 50€...)
- Possibilité de créer une classe pour les prédictions proches du seuil

Recommandations

- Faire plusieurs tests en situation réelle avant déploiement
- Confirmer les valeurs atypiques

Démonstration

Démonstration de l'algorithme final

