Quiz Questions: Complexity of Algorithms

- 1. The complexity of finding the second largest element of a list is:
 - A. O(n)
 - B. $O(n^2)$
 - C. $O(n^3)$
 - D. $O(2^n)$
- 2. Algorithm A and B have a worst-case running time of $O(\log n)$ and O(n) respectively.
 - A. $\forall A, B, I A$ runs faster than B for input I
 - B. None of the other answers is correct
 - C. $\forall A \exists B \forall I A \text{ runs faster than } B \text{ for input } I$
 - D. $\forall B \exists A \forall I \ B$ runs faster than A for input I
- 3. Which of the following is correct (little-o)?
 - A. x^3 is $o(x^{\pi})$
 - B. $x^3 is \ o(x^{\frac{3}{2}})$ C. $x^3 is \ o(x^2)$ D. $x^3 is \ o(x^e)$
- 4. What is the smallest integer n such that $f(x) = (\log x)^4 + 4x + \frac{1}{x^4}$ is $O(x^n)$

 - B. 2
 - C. 3
 - D. 4
- 5. If for an algorithm time complexity is given by $O(\pi^n)$ then complexity is
 - A. Quadratic
 - B. Exponential
 - C. Cubic
 - D. Rational
- 6. Which of the following are ordered by decreasing complexity (big-O)?
 - A. $n \log n^2 > n(\log n)^2 > n^2$ B. $n^2 > n (\log n)^2 > n \log n^2$ C. $n(\log n)^2 > n \log n^2 > n^2$ D. $n \log n^2 > n^2 > (\log n)^2$
- 7. Let k, n be positive integers, then $k^n + ... + 2^n + 1^n$ is:
 - A. $O(k^{n+1})$
 - B. $O(n^{k+1})$
 - C. $O(\log_n k)$
 - D. $O(nk^n)$
- 8. The big- Θ estimate for $\sum_{j=1}^{n} (j-1)(j+1)$ is
 - A. $\Theta(2^n)$
 - B. $\Theta(n^2)$
 - C. $\Theta(\log n)$
 - D. $\Theta(n^3)$

Answers:

- 1. A
- 2. C
- 3. A
- 4. A
- 5. B
- 6. B
- 7. A
- 8. D