1. given an empty heap perform the following operations.

Give the state of the heap (draw the tree) at each step.

push 1

push 5

push 3

push 4

push 2

pop

pop

pop

pop

pop

What order do the nodes come out in?

If I were to do this with n elements, what's the total running time?

- 2. (a) Give an algorithm to find the sum of all of the elements in a linked list.
 - (b) Give an algorithm to count the number of nodes in a binary tree.
 - (c) Give an algorithm to find the smallest number in a linked list.
 - (d) Give an algorithm to find the smallest number in a binary tree.

- 3. Use structural induction to prove that:
 - (a) for linked lists: count(a + b) = count(a) + count(b)
 - (b) for trees: height(mirror(t)) = height(t)

4. Given a graph G, we can define a relation \rightsquigarrow where $u \rightsquigarrow v$ if there's a path from u to v in G.

Show that \rightsquigarrow is an equivalence relation.

5. Give An adjacency list, adjacency matrix, and edge list for the following graphs.

