When to use Brnary Search
,
1) Target
2) Searoch Space = [
3) Condition to Soduce season by half.
- I mid
L

Of Given N tasks and IK workers and time taken for cash task. Find minimum time in which we can complete all tasks.

Note 1: A single worker can only do continuous set

Note 2: All workers start their assigned tasks at the same time.

Note 3. A task can be only assigned to a single user.

Exi Total tasks (N) = 15 No of workers (K) = 3time for task [15] = 3517825310147546

3517825310147546

₱₂₅

Ex2 Total tasks (N) = 7 No of wookers (K) = 2time for task $[7] = \begin{bmatrix} 1 & 1 & 1 & 1 & 6 \\ 1 & 1 & 1 & 1 & 6 \end{bmatrix}$ Ex3 Total tagks (N) = 8 No of workers (K) = 3time for task [8] = 1094529108 Sum = 57 [9] + 10 [8] + 10 [9] + 10 [

Binasy Seasch

- 1) Target => minimum time to solve all took
- 2) Search Space => [max (Array), sum (Array)]
- 3) Do we have a condition to reduce search espece.

CASE 1: It is possible to do work in mid time. If go left

CASE 2: It is not possible to do coop in mid time.

Dgo oight.

time for task [15] = 3517825310147546 24 25 22 mid - 25 TC: To Paun Binary Search Search Spece > Sum (arr) - max (arr) = log 2 (Search Space) X N 3517825310147546 time for took [16] = Doctix Sum [15] 3 8 9 16 24 26 31 34 44 45 49 56 61 65 71 lo \$ 10, hi \$ 71, mid \$ 40 5 hi=mid-1 lo 710, h, 739, mid 784 X 17 mid+1 lo \$ 25, h, \$39, mid \$32 = h, = mid-1 lu 7 25 , h, 781 , mid 728 5 lo \$25, h, \$27, mid \$26 5 lu 7 25 , h, 725 mid 7 25 5 Ex1 18 18 18 3 9 9 9 9 6, 4 4 4 44 mid \$20 K = 33

Psaudo Code.
bool check (int time, int asset int R, int n)
int SPD, CPO.
$\int O8 \left(m + i = 0, i \leq n, i + 1 \right) $
S = S + and [i]; If (s > time) { S = and [i];
C++;
3 [2]4]7]819
if (8)=0) + 1 H H
if (c>k) fin = 5 (4)
if (c>k) reform false else return true;
relian true;

ant binary search (int aso [] int n, int (2) {
lo = max (array), int are = (-1) hi = sum (array).
while $(l_0 \leq h_i)$ d $int mid = (l_0 + h_i)$; $if (check (mid, arr, R, n))$ d. $h_i \neq mid-1$; $ars = mid$;
ars=mid; 3 clse L lo 7 mid+1;
3 Tc: O(n log & Sum (aso))
defusin 918; Sc: 0(1)

0/2	Give	n N	Cowe	and 1	M stolls	. The	y are	located	On
	the	x-ari	ts, at	differe	M stalls	ons. Pl	ace al	l N co	ows
					distance				
	is	maxi	mi zed				$\overline{\mathbb{M} \geq \mathbb{N}}$		

Note 1: In a stall only 1 cow can be present.

Note 2: All cows have to be placed.

Note 3. Positions of stall are given in sorted order.

 $\frac{\mathcal{E}_{x1}}{\mathcal{E}_{x1}} = \frac{5}{5} \qquad \frac{5}{5}$

n target =	Minimum Astone	
	e = [lo,hi]	lo 7 min differe b/w adjacent clemente.
3) (ondition t	o Jedue seach	h, 7 los) -
	Spae.	fire-l
lo	md	h ₁
	nid is possible. and mid. lo mid+1.	Jo dight
(se 2 : r	hit mid-1	
	,	

ar = 12

$$lo = 3$$
 $lo = 3$
 $lo = 3$
 $lo = 3$
 $lo = 13$
 $lo = 13$

12 (2)

bool check (int chestone, int) cross [] int n, int c)? in-1 cn+ = 1 int blood-cow => ares[0]; $\int_{\partial \mathcal{E}} \left(1n - i = 1 - i < n + i \right) \mathcal{L}$ if (aso (i] - lest_row > distance) lut row = an li]: de-lusa (alec)

int Dinasy-seasch (int n, int m, int ass[])? do 7 min différe du 2 de adjourt h => lost - lise! int ax = lo/-1; While (lo 2 hi) L inf mid = $\left(\frac{l_0 + h_1}{2}\right)$: i) (check (m)d, arr, m))
ars = mid lo -mid +1. h => mid - 1

Seasch Space => h1 - lo

Tr: / log (Seadhinge NN)

