Math 100A: Homework 5

Merrick Qiu

Problem 1

Since $yxy^{-1} = x^{-1}$ and m is odd,

$$x = y^m x y^{-m} = x^{-1}$$

Therefore $x^2 = 1$.

Problem 2

Let n = 2k + 1. Since $x^2 = 1$ and $x^n = x^{2k+1} = 1$, this implies that $x^{2k+1}(x^2)^{-k} = x = 1$. Substituting x = 1, we have the relations $y^m = 1$ and $yy^{-1} = 1$, which is a cyclic group of order m with generator y.

Problem 3

The last relation implies that $yx = x^{-1}y$, meaning we can conjugate all the y to the right and write all elements in $G_{n,m}$ in the form x^ay^b for $a \in \{0, \ldots, n-1\}$ and $b \in \{0, \ldots, m-1\}$. Thus there are at most nm elements.

Problem 4

The cyclic group $N = \langle x \rangle$ is of order n so it is isomorphic to $\mathbb{Z}/n\mathbb{Z}$. It is a normal subgroup of $G_{n,m}$ because of the relation $yxy^{-1} = x^{-1}$.

The cyclic group $M = \langle y \rangle$ is of order m so it is isomorphic to $\mathbb{Z}/m\mathbb{Z}$. $N \cap M = \{1\}$ since the set of symbols x^k is distinct from the set of symbols y^k apart from identity.

Since every element in $G_{n,m}$ can be written as $x^a y^b$ for integers a, b we have that $G_{n,m} = NM$. Let the map $\Psi: G'_{n,m} \to G_{n,m}$ be given by $\Psi(x^a, y^b) = x^a y^b$ for integers a, b.

By the third relation $(\varphi \circ \pi)(y^m)$ is an automorphism that is conjugation by y^m

$$(\varphi \circ \pi)(y^m)(x^n) = \begin{cases} x^n & \text{if m is even} \\ x^{-n} & \text{if m is odd} \end{cases} = y^m x^n y^{-m}.$$

 Ψ is an homomorphism since

$$\begin{split} \Psi((x^{a},y^{b})(x^{c},y^{d})) &= \Psi((x^{a}\varphi(\pi(y^{b}))(x^{c}),y^{b}y^{d})) \\ &= x^{a}\varphi(\pi(y^{b}))(x^{c})y^{b}y^{d} \\ &= x^{a}y^{b}x^{c}y^{-b}y^{b}y^{d} \\ &= x^{a}y^{b}x^{c}y^{d} \\ &= \Psi(x^{a},y^{b})\Psi(x^{c},y^{d}) \end{split}$$

 Ψ is injective since $N \cap M = \{1\}$ and it is surjective since $G_{n,m} = NM$. Therefore Ψ is an isomorphism between $\Psi : G'_{n,m}$ and $G_{n,m}$.