

BAHRIA UNIVERSITY,

(KarachiCampus)

Department of Software Engineering Quiz 3 - Fall 2022

COURSE TITLE: Applied Calculus & Analytical Geometry Class BSE-I(B) Course Instructor: Daniyal ur rehman Date: 30-12-2022	COURSE CODE: GSC-110 Shift: Morning Time Allowed: 20 min. Max. Marks: 10 Marks
Question No. 1. Choose the correct answers	[CLO3: 10 Marks]
i. nth derivative of $sin(ax+b)$ is $a.y_n = a^n cos(ax + b + \frac{n\pi}{2})$	
$b. y_n = a^n \sin(ax + b + \frac{n\pi}{2})$	
$c. y_n = b^n \cos(ax + b + \frac{n\pi}{2})$	
$d. y_n = b^n \sin(ax + b + \frac{3n\pi}{2})$	
ii.	
Find the area above the x-axis under the curve $y^2=x, \qquad x=1, x=3$ a. $\frac{3}{2}(3\sqrt{3}-1)$	
b. $\frac{5}{3}(3\sqrt{3}-1)$	
c. $(3\sqrt{3}-1)$ d. None	
iii.	
Solve the differential equation $rac{dy}{dx}=xcos^2y$ a. $tany=rac{x}{2}+c$ b. $tany+x+c=0$	
c. $tanx=rac{y^2}{2}+c$ d. $tany=rac{x^2}{2}+c$	
iv.	
$\int x lnx \ dx$	
a. $xlnx-x^2+c$ b. $rac{x^2}{2}lnx-rac{1}{4}x^2+c$	
c. $xlnx + x + c$ d. None	
v.	
$\int sin^2xcosxdx$	
a. $\frac{\sin^3 x}{3} + c$ b. $\cos^2 x + c$	
c. $SinxCosx + c$ d. None	
Q2. Show that If $y = x + tanx$ then $cos^2 x \frac{d^2 y}{dx^2} - 2y + 2x = 0$.	
Q3. Find the sum of 1+2+3++50 by using the appropriate formula	