MATH 2080

\$2.4 Continued

Last day, we discussed a function $f: [x, \beta] \to \mathbb{R}$ and its "jumps" in terms of sets U(x) and L(x).

Today we prove: (upper) (lower).

Lemma: Suppose $f: [\alpha, \beta] \longrightarrow \mathbb{R}$ is increasing. Set $U(x) = \inf\{f(y) \mid x < y\}$ and $L(x) = \sup\{f(y) \mid x > y\}$ for all $x \in (\alpha, \beta)$. Then f has a limit at $x \in (\alpha, \beta)$ if and only if $L(x_0) = U(x_0)$, in which case $\lim_{x \to x_0} f(x) = f(x_0) = U(x_0) = L(x_0)$.

Proof: First suppose that lim f(x) = A, and we'll x-> x.

show U(x) = L(x) = A.

Let E>O, and choose \$>O such that $0 < |x-x_o| < \delta$ implies $|f(x) - A| \in Whenever x \in [x, \beta]$.

Now since $x \in (\alpha, \beta)$ we can choose x, y such that

ie x.-8 < x < x. < y < x.+8.

Since f is increasing this gives $A - \varepsilon < f(x) \leq f(x_0) \leq f(y) < A + \varepsilon$ By definition of $L(x_0)$, we know $L(x_0) \ge f(x)$ since it's the sup of f(y), y < x. Similarly $U(x) \le f(y)$, $A-2 < f(x) \le L(x_0) \le f(x_0) \le U(x_0) \le f(y) < A+\epsilon$. But this holds for any E>0, so we have

U(x0)-L(x0) < 28 for all 8>0. Thus U(x0)=L(x0), and thus U(xo) = L(xo) = f(xo) from the inequalities above. Also from above, A-E < U(xo) < A+E for all & >0, so A = U(x0), ic. lin-fix) = U(x.) = L(x.) = f(x.).

Conversely, suppose now that U(xo)=L(xo). By the reasoning as above, we always have U(xo) & f(xo) & L(xo), so under our assumption $U(x_0) = f(x_0) = L(x_0)$. We must show $\lim_{x \to x_0} f(x) = f(x_0)$. Let E>O.

Non L(xo) - E is not an upperbound for (fig) / y < x. 1, so there's a y, with $\alpha < y_i < x_o$ and $L(x_o) - \epsilon < f(y_i)$.

Similarly there's y_2 with $x_0 < y_2 \le \beta$ and $f(y_2) < U(x_0) + \epsilon$. Set $\delta = \min\{x_0 - y_1, y_2 - x_0\}$.

These two points are witnesses to the fact that $U(x_0)+\varepsilon$ and $L(x_0)-\varepsilon$ are not lower and upper bounds of $\{f(y) \mid y > x_0\}$ and $\{f(y) \mid y < x_0\}$ respectively.

Now for $0 < 1x_0 - x1 < \delta$ we know $y_1 < x < y_2$, Therefore

 $f(x_0) - \varepsilon = L(x_0) - \varepsilon < f(y_1) \le f(x) \le f(y_2) < U(x_0) + \varepsilon$ $= f(x_0) - \varepsilon,$ since f is increasing. Thus $|f(x) - f(x_0)| < \varepsilon$,

so f has a limit at & and it's f(xo).

Now we have the most technical hurdle out of the way: For an increasing function $f: [x, B] \rightarrow \mathbb{R}$, there's a limit at x. if and only if there's no jump there, ie. $U(x_0) = L(x_0)$.

Theorem: Suppose f: [a,B] - TR 15 increasing.
Then the set Then the set $D = \{ x \in (\alpha, \beta) \mid \lim_{x \to x_0} f(x) \text{ does not exist} \}$ is countable. If $x_0 \in (\alpha, \beta) \setminus D$, then $\lim_{x \to x_0} f(x) = f(x_0)$. Proof: By our previous Lemma, $x \in D$ if and only if $U(x) \neq L(x)$. Since f is increasing, thus happens if and only if U(x) - L(x) > 0. Set $J_n = \left\{ x \in (\alpha, \beta) \mid U(x) - L(x) > \frac{1}{n} \right\}.$ Then D = U Jn. The proof is finished if each In is finite. To see this, suppose {x,, x2,...,xr} = In and $\alpha < x_1 < x_2 < ... < x_r < \beta$. Further choose Z_i 's so That they're between the x_i 's:

Now for $i=1,...,r_n$ $f(z_i) \leq L(x_i)$ and $U(x_i) \leq f(z_{i+1})$. Therefore $f(z_{i+1}) - f(z_i) > U(x_i) - L(x_i) > f_n$.

So we can rewrite $f(\beta)-f(\alpha)$ as a telescoping sum and get:

 $f(\beta)-f(\alpha) = f(\beta)-f(z_{i+1})$ $+ \sum_{k=2}^{r+1} \left[f(z_k) - f(z_{k-1}) \right] \leftarrow \text{all terms} > \frac{1}{n}.$ $+ f(z_1) - f(\alpha)$ $\geq r(\frac{1}{n}).$

Thus $(f(\beta)-f(\alpha))n > r$, so there can only be finitely many terms in J_n . Thus D is countable.

Last we observe: All this work applies to increasing functions only. However if f is decreasing, then -f is increasing. So for decreasing functions we know -f has only countably many discortions. Points where $\lim_{x\to x_0} (-f)$ does not exist, and $\lim_{x\to x_0} (-f) = -f(x_0)$. Multiplying everything by -1 proves the theorem holds for decreasing functions f and f and f are theorem holds.

MATH 2080

\$3.1 Continuity

Definition: Suppose $E \subseteq \mathbb{R}$ and $f: E \longrightarrow \mathbb{R}$. If $x_o \in E$, then f(x) is continuous at x_o if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x - x_o| < \delta$ and $x \in E$ implies $|f(x) - f(x_o)| < \varepsilon$.

Note that this is almost the definition of lim $f(x) = f(x_0)$, but not quite. If $x_0 \in E$ and $x \to x_0$. Is not an accumulation point of E, then our definition of $\lim_{x \to x_0} f(x)$ does not apply (it only $\lim_{x \to x_0} f(x)$) while the above definition does apply.

If $x_s \in E$ and x_s is not an accumulation point, then choose $S \neq D$ such that $(x_s - \delta, x_s + \delta) \cap E = x_s$. Then $|x_s| < \delta = |f(x) - f(x_s)| < \varepsilon$ for any ε whatsoever, since only $x = x_s$. Satisfies $|x_s - x_s| < \delta$.

In other words:

point of E, then f is continuous at x.

"by default".

If x, Is an accumulation point, then:

Theorem: Let $f: E \rightarrow \mathbb{R}$ with $x_s \in E$ and x_s an accumulation point of E. Then the following are equivalent:

(i) f is continuous at x.

(ii) $\lim_{x \to x} f(x) = f(x)$

(iii) For every sequence $\{x_n\}_{n=1}^{\infty}$ converging to x_n with $x_n \in E$ for all n, $\{f(x_n)\}_{n=1}^{\infty}$ converges to $f(x_n)$.

Prof: We will show (iii) => (ii) => (ii) => (iii). Thus the truth of any one statement implies the truth of all others.

Assume (iii) holds. Then for the sequences $\{x_n\}_{n=1}^{\infty}$ with $x_n \in E \setminus \{x_o\}$ for all n, the sequence $\{f(x_n)\}_{n=1}^{\infty}$ converges to $f(x_o)$. By our previous work, we know this means $\lim_{x\to x_o} f(x) = f(x_o)$. So that means $x\to x_o$

 $(iii) \Rightarrow (ii).$

Now assume (ii). To show (i) holds, let $\varepsilon>0$. Since (ii) holds, there's $\delta>0$ such that $0<|x-x_0|<\delta$ and $x\in E$ implies $|f(x)-f(x_0)|<\varepsilon$. This is almost the definition of continuity, except for $0<|x-x_0|$ must be removed to get the definition

of continuity, So suppose $x=x_0$. Then $|f(x)-f(x_0)|=0<\varepsilon$, so the definition of continuity is satisfied. So (ii) \Rightarrow (ii).

Finally suppose that (i) holds and we'll deduce (iii). To show (iii), let $\{x_n\}_{n=1}^{\infty}$ be a sequence converging to x_n with $x_n \in E$. Let $\varepsilon > 0$. Then by continuity, there's $\delta > 0$ such that $|x-x_n| < \delta$ implies $|f(x)-f(x_n)| < \varepsilon$ whenever $x \in E$. By convergence of $\{x_n\}_{n=1}^{\infty}$ to x_n , there's an N such that $n \ge N$ implies $|x_n-x_n| < \delta$. So, for $n \ge N$ we get $|f(x_n)-f(x_n)| < \varepsilon$. But this exactly means that $\{f(x_n)\}_{n=1}^{\infty}$ converges to $\{x_n\}_{n=1}^{\infty}$.

Example: Recall the function $f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{9} & \text{if } x = \frac{1}{9} \in \mathbb{Q} \text{ with } \frac{1}{9} & \text{in lowest terms} \end{cases}$

We saw that $\lim_{x\to x_0} f(x) = 0$ at every x_0 , so in $\lim_{x\to x_0} f(x_0) = 0$ (ie at x_0 irrational) we have $\lim_{x\to x_0} f(x) = f(x_0) = 0$. When x_0 is rational, $x\to x_0$

say $x_0 = \frac{1}{q}$, then $\lim_{x \to x_0} f(x) \neq \frac{1}{q}$, so we conclude:

The function f(x) is continuous at every point of RID and discontinuous eleswhere. Example: Consider the function $f(x) = \frac{x-1}{x^2-1}$ This function is equal to 1 at all points except x=1, where there is a hole. We saw that dimits do not detect the difference between fix, and $\frac{1}{x+1}$ since $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} \frac{1}{x+1}$ no matter the value of xo. However, there Is a difference when it comes to continuity: $\lim_{x \to x_0} f(x) = \frac{1}{2} \neq f(1)$, since f(1) is not defined So f is not continuous at 1. On the other hand, $\lim_{x \to 1} \frac{1}{x+1} = \frac{1}{1+1} = \frac{1}{2}, \text{ so } \frac{1}{x+1} = \frac{1}{2} \text{ continuous}$ Example: If $g(x) = \sin(\frac{1}{x})$ where 0 < x < 1, and g(0) = 38, then $\lim_{x \to 0} g(x)$ does not exist (and O is an accumulation point of the domain) so g(x) is not continuous at 0. On the other hand if $g(x) = \sin(\frac{1}{x})$ for $\frac{1}{100} < x < 1$ and g(0) = 38, then g is continuous

at x=0 since 0 is not an accumulation point of the domain of q (domain = (too, 1) u {0}). Added material (not in book). We can also define continuity of functions $\mathbb{R}^2 \longrightarrow \mathbb{R}$ or $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ or $\mathbb{R} \longrightarrow \mathbb{R}^2$ as well, $\mathbb{R}^n \longrightarrow \mathbb{R}^m$, etc. We cover functions of two variables. Definition: Let $A \subseteq \mathbb{R}^2$. A function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ is continuous at CEA if for every E>O there exists a 8 >0 Such that $||x-c|| < \delta$ implies $|f(x)-f(c)| < \epsilon$. Note: Here 11. 11 is the Euclidean distance/norm, meaning if $x = (x_1, x_2)$ and $c = (c_1, c_2)$ then $\| \chi - c \| = \| (\chi_1 - c_1, \chi_2 - c_2) \| = \sqrt{(\chi_1 - c_1)^2 + (\chi_2 - c_2)^2}.$ i.e. the set {x \ R2 | 11x - c11 < 5} 13

We have theorems identical to our previous ones:

Theorem: Let $A \subseteq \mathbb{R}^2$, $f:A \to \mathbb{R}$ a function and $c \in A$ an accumulation point of A. Then the following are equivalent:

(i) f is continuous at c.

(ii) Suppose $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are sequences in \mathbb{R} such that $(x_n, y_n) \in A$, and if $c = (c_1, c_2)$ then $x_n \neq c_1$ for all n and $y_n \neq c_2$ for all n.

If $\{x_n\}_{n=1}^{\infty}$ converges to c_1 and $\{y_n\}_{n=1}^{\infty}$ converges to c_2 then $\{f(x_n, y_n)\}_{n=1}^{\infty}$ converges to f(c).