Universidade Federal de Itajubá

Thales Frazão Leite

SIMULADOR DE TELEFONE Relatório

Itajubá 2021

Universidade Federal de Itajubá

Thales Frazão Leite

SIMULADOR DE TELEFONE Relatório

Relatório técnico requisitado pela disciplina de Programação Embarcada como critério de avaliação dos discentes.

Prof. Otávio de Souza Martins Gomes

Itajubá 2021

Índice de figuras

Figura 1: PICSimLab.	6
Figura 2: Buzzer	6
Figura 3: Real Time Clock	
Figura 4: Relés	
Figura 5: Teclado	
Figura 6: Display LCD	
Figura 7: Tela Principal	
Figura 8: Menu	8
Figura 9: Inserir Número da Chamada	
Figura 10: Ligando para o Número da Chamada	
Figura 11: Inserir Mensagem	10
Figura 12: Exemplo de teclado de celulares antigos	
Figura 13: Número da Mensagem	
Figura 14: Confirmação Mensagem	
Figura 15: Simulação Chamada	11
Figura 16: Simulação Mensagem	11
Figura 17: Fluxograma	12

Sumário

1. INTRODUÇÃO	
1.1 OBJETIVO.	
2. PROJETO.	
2.1 FERRAMENTAS	
2.2 SEQUÊNCIA DO PROGRAMA	
2.3 DIFICULDADES	
3. CONCLUSÃO	

1. INTRODUÇÃO

Os sistemas embarcados sempre estiveram presentes no nosso cotidiano, são softwares de atuação contínua em placas relativamente simples e de baixo custo, quando comparadas ao poder de um computador atual. Estão sempre executando suas tarefas, deixando o dispositivo do qual controla automático, como semáforos, calculadoras, urnas eletrônicas, etc.

1.1 OBJETIVO

O objetivo deste projeto é simular ao máximo um telefone fixo com funções básicas de enviar e receber chamadas e mensagens, e atuar como um relógio como qualquer telefone fixo atual, aplicando o conteúdo aprendido em aula durante o semestre nas disciplinas de Programação Embarcada e Laboratório de Programação Embarcada, fazendo uso do simulador do PICSimLab.

2. PROJETO

2.1 FERRAMENTAS

O projeto conta com o simulador do PICSimLab, utilizando o modelo de placa do PICGenios.

Figura 1: PICSimLab

O microcontrolador utilizado é o PIC18F4520.

Neste projeto usufruímos dos seguintes componentes:

Figura 2: Buzzer

O buzzer, para a reprodução de sons, indicando efetuações e fins de chamadas.

Figura 3: Real Time Clock

O RTC(Real Time Clock), esse relógio de tempo real nos mostrará a data e a hora, sem a necessidade de ajustá-lo ou impedir outros processos para que ele possa contar os segundos.

Figura 4: Relés

Os relés atuam como transmissor e receptor de sinais, apenas teoricamente, não temos como transmitir e receber dados sem um componente externo além da placa PICGenios.

Figura 5: Teclado

Este teclado é o único meio utilizado como entrada pelo usuário do simulador.

Figura 6: Display LCD

O display LCD é o meio principal de apresentar informações ao usuário, por onde ele escreve e lê a maioria dos dados.

2.2 SEQUÊNCIA DO PROGRAMA

O caminho do programa tem 4 funções principais:

- Tela principal;
- Menu;
- Função para ligar;
- Função para enviar mensagem.

Figura 7: Tela Principal

A tela principal, possuí a função de mostrar a data e a hora, adquiridos pelo sensor RTC. Tudo vai e volta para ela. Caso qualquer botão do teclado principal seja apertado, encaminhará para a tela do menu. Caso uma ligação ou alguma mensagem seja recebida sairá dessa tela.

Figura 8: Menu

O menu encaminha para as telas de chamada e de mensagem. Também estabelece uma falsa emissão de dados, para simular como seria se houvesse um componente para ler ondas de rádio ou outro meio de transmissão. Nesse caso volta para a tela principal para que possa identificar esse falso sinal.

Caso demore muito nessa tela, cerca de 10 segundos, o programa conclui que não é necessário mais apresentar a tela de menu, e volta à sua tela principal.

Figura 9: Inserir Número da Chamada

Ao pressionar 1 na tela do menu, essa tela aparecerá.

Nessa tela o usuário pode escrever pelo teclado qual número que ele deseja ligar, então pode pressionar a tecla '#' que está definida como aceitar ou confirmar e então seguirá para a tela chamando o número. Ou pode pressionar a tecla que usamos como voltar ou cancelar, o '*', para cancelar a chamada e retornar a tela principal.

Figura 10: Ligando para o Número da Chamada

Neste momento a placa PICGenios vai 'ligar' para o número fornecido, o que indica que informação está sendo transmitida é o relé superior que acenderá, o buzzer começará a apitar em uma frequência constante semelhante à de uma chamada real. O usuário pode então encerrar a chamada usando a tecla de cancelar ou esperar até que o tempo de chamada se esgote, de qualquer maneira fará o buzzer apitar semelhantemente a uma chamada recusada, voltando para a tela inicial.

Figura 11: Inserir Mensagem

antigos

Figura 12: Exemplo de teclado de celulares

A partir do menu, pela opção 2, a função de mensagem é acionada. O usuário pode usar qualquer botão do teclado principal para escrever mensagens como os celulares antigos, por exemplo, se pressionar 2 rapidamente pode-se percorrer pelos caracteres (a,b,c,A,B,C,2), assim podendo escrever 65 caracteres diferentes com apenas 10 teclas. O código possui um tratamento para quebrar linhas automaticamente ao fim de uma linha, permitindo ao usuário escrever até 64 caracteres na mensagem. A tecla de cancelar possui uma função diferente nesse caso, ela atua como 'backspace', apagar, limpando o último caractere da tela. A tecla de confirmar prossegue para a próxima tela.

Figura 13: Número da Mensagem

Aqui é fornecido o número para enviar a mensagem, e confirma com a tecla '#'.

Figura 14: Confirmação Mensagem

Uma confirmação aparece na tela, assim como o relé superior se acendendo, indicando que dados estão sendo enviados.

Figura 15: Simulação Chamada

A partir do menu, pode-se criar essa simulação de uma chamada recebida, o relé inferior se acenderá, indicando dados recebidos. Aqui pode-se atender a chamada com a tecla de confirmação, então encerrando com a tecla de cancelar, pode-se recusar a chamada tanto esperando o tempo de chamada esgotar quanto apertando o botão de cancelar.

Figura 16: Simulação Mensagem

Outra simulação é a de mensagem, apertando o botão de confirmar para lê-la, e então pressionando a tecla de cancelar para voltar a tela principal.

Figura 17: Fluxograma

2.3 DIFICULDADES

O maior problema encontrado foi lidar com o tempo para volar à tela inicial do menu, e o tempo para deixar as teclas trocando e quando interromper para deixá-la fixa. Como foi algo que estava planejando implementar desde que pensei no projeto estava confiante de que daria certo, mas quando tentei criar algo semelhante da primeira vez não deu resultados, a biblioteca 'timer.h' tinha uma função que não era a que eu esperava.

Quando procurei outras bibliotecas alternativas para leitura de teclado, percebi que a disponibilizada pelo Luis Claudio Gambôa Lopes, autor do PICSimLab, em seu github poderia atuar como atraso em microssegundos e ler o teclado ao mesmo tempo. Isso foi a solução, usar a própria função que faz a leitura necessária para contar o tempo em segundos.

3. CONCLUSÃO

É de se impressionar com a capacidade desta placa, o código final ficou com mais de 700 linhas sem contar as bibliotecas, e mal foi utilizado 20% da memória do PICGenios. Apesar de não ser possível enviar e receber realmente os dados foi uma simulação extremamente satisfatória, conseguindo simular bem o trabalho que um telefone comum lida diariamente, com destaque à entrada de dados pelo teclado para escrever uma mensagem, foi extremamente simples a aplicação e teve uma semelhança notável com o método real.

Ao final desse projeto, é perceptível o crescente interesse pessoal por essa área da computação, e até por eletrônica em si.