Section 6.7 Financial Models

Simple Interest Formula

If a principal of *P* dollars is borrowed for a period of *t* years at a per annum interest rate *r*, expressed as a decimal, the interest *I* charged is

$$I = Prt (1)$$

Interest charged according to formula (1) is called **simple interest.**

Annually: Once per year

Semiannually: Twice per year

Quarterly: Four times per year

Monthly: 12 times per year

Daily: 365 times per year

Computing Compound Interest

I = Prt

A credit union pays interest of 4% per annum compounded quarterly on a certain savings plan. If \$2000 is deposited in such a plan and the interest is left to accumulate, how much is in the account after 1 year?

Interest after first quarter:
$$I = 2000(0.04)\left(\frac{1}{4}\right) = $20$$

New Principal = 2000 + 20 = \$2020

Interest after second quarter:
$$I = 2020(0.04)\left(\frac{1}{4}\right) = $20.20$$

New Principal =2020 + 20.20 = \$2040.20

Interest after third quarter:
$$I = 2040.20(0.04)(\frac{1}{4}) = $20.40$$

New Principal = 2040.20 + 20.40 = \$2060.60

Interest after fourth quarter:
$$I = 2060.60(0.04)(\frac{1}{4}) = $20.61$$

New Principal =
$$2060.60 + 20.61 = $2081.21$$

Interest = principal × rate × time =
$$P \cdot r \cdot \frac{1}{n} = P \cdot \left(\frac{r}{n}\right)$$

The amount A after one compounding period is

$$A = P + I = P + P \cdot \left(\frac{r}{n}\right) = P \cdot \left(1 + \frac{r}{n}\right)$$

After two compounding periods,

$$A = P \cdot \left(1 + \frac{r}{n}\right) + P \cdot \left(1 + \frac{r}{n}\right) \left(\frac{r}{n}\right) = P \cdot \left(1 + \frac{r}{n}\right) \left(1 + \frac{r}{n}\right) = P \cdot \left(1 + \frac{r}{n}\right)^2$$
New
Principal
Interest on new principal

After three compounding periods, the amount A is

$$A = P \cdot \left(1 + \frac{r}{n}\right)^2 + P \cdot \left(1 + \frac{r}{n}\right)^2 \left(\frac{r}{n}\right) = P \cdot \left(1 + \frac{r}{n}\right)^2 \cdot \left(1 + \frac{r}{n}\right) = P \cdot \left(1 + \frac{r}{n}\right)^3$$

Because t years will contain $n \cdot t$ compounding periods, after t years we have

$$A = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$$

Compound Interest Formula

The amount A after t years due to a principal P invested at an annual interest rate r compounded n times per year is

$$A = P \cdot \left(1 + \frac{r}{n}\right)^{nt} \tag{2}$$

Exploration

To see the effects of compounding interest monthly on an initial deposit of \$1,

graph
$$Y_1 = \left(1 + \frac{r}{12}\right)^{12x}$$
 with $r = 0.06$

and r = 0.12 for $0 \le x \le 30$. What is the future value of \$1 in 30 years when the interest rate per annum is r = 0.06 (6%)? What is the future value of \$1 in 30 years when the interest rate per annum is r = 0.12 (12%)? Does doubling the interest rate double the future value?

Comparing Investments Using Different Compounding Periods

Investing \$1000 at an annual rate of 10% compounded annually, semiannually, quarterly, monthly, and daily will yield the following amounts after 1 year:

Annual compounding
$$(n = 1)$$
: $A = P \cdot (1 + r)$
= $(\$1000)(1 + 0.10) = \1100.00

Semiannual compounding
$$(n = 2)$$
: $A = P \cdot \left(1 + \frac{r}{2}\right)^2$
= $(\$1000)(1 + 0.05)^2 = \1102.50

Quarterly compounding
$$(n = 4)$$
: $A = P \cdot \left(1 + \frac{r}{4}\right)^4$
= $(\$1000)(1 + 0.025)^4 = \1103.81

Monthly compounding
$$(n = 12)$$
: $A = P \cdot \left(1 + \frac{r}{12}\right)^{12}$
= $(\$1000)(1 + 0.00833)^{12} = \1104.71

Daily compounding
$$(n = 365)$$
: $A = P \cdot \left(1 + \frac{r}{365}\right)^{365}$
= $(\$1000)(1 + 0.000274)^{365} = \1105.16

Comparing Investments Using Different Compounding Periods

$$A = P \cdot \left(1 + \frac{r}{n}\right)^n = P \cdot \left(1 + \frac{1}{\frac{n}{r}}\right)^n = P \cdot \left[\left(1 + \frac{1}{\frac{n}{r}}\right)^{n/r}\right]^r = P \cdot \left[\left(1 + \frac{1}{h}\right)^h\right]^r$$

$$h = \frac{n}{r}$$

$\left(1+\frac{r}{n}\right)^n$				
	n = 100	n = 1000	n = 10,000	e ^r
r = 0.05	1.0512580	1.0512698	1.051271	1.0512711
r = 0.10	1.1051157	1.1051654	1.1051704	1.1051709
r = 0.15	1.1617037	1.1618212	1.1618329	1.1618342
r = 1	2.7048138	2.7169239	2.7181459	2.7182818

Continuous Compounding

The amount A after t years due to a principal P invested at an annual interest rate r compounded continuously is

$$A = Pe^{rt} (4)$$

Using Continuous Compounding

Find the amount A that results from investing a principal P of \$2000 at an annual rate r of 8% compounded continuously for a time t of 1 year.

$$A = 2000 e^{(0.08)(1)} = 2000 e^{(0.08)(1)} = $2166.57$$

$$A = Pe^{rt}$$

2 Calculate Effective Rates of Return

Suppose that you have \$1000 and a bank offers to pay you 3% annual interest on a savings account with interest compounded monthly. In one year:

$$A = \$1000 \left(1 + \frac{0.03}{12}\right)^{12}$$
Use $A = P\left(1 + \frac{r}{n}\right)^n$ with $P = \$1000, r = 0.03, n = 12.$

$$= \$1030.42$$

So the interest earned is \$30.42. Using I = Prt with t = 1, I = \$30.42, and P = \$1000, we find the annual simple interest rate is 0.03042 = 3.042%. This interest rate is known as the *effective rate of interest*.

The **effective rate** of interest is the equivalent annual simple rate of interest that would yield the same amount as compounding after 1 year.

Effective Rate of Interest

The effective rate of interest r_e of an investment earning an annual interest rate r is given by

Compounding *n* times per year:
$$r_e = \left(1 + \frac{r}{n}\right)^n - 1$$

Continuous compounding:
$$r_e = e^r - 1$$

Computing the Effective Rate of Interest —Which Is the Best Deal?

Suppose you want to open a money market account. You visit three banks to determine their money market rates. Bank A offers you 4% annual interest compounded daily, Bank B offers you 4.1% compounded monthly, and Bank C offers 3.95% compounded continuously. Determine which bank is offering the best deal.

Bank A	Bank B	Bank C			
$r_e = \left(1 + \frac{0.04}{365}\right)^{365} - 1$	$r_e = \left(1 + \frac{0.041}{12}\right)^{12} - 1$	$r_e = e^{0.0395} - 1$			
$r_e = 0.0408084$	$r_e = 0.0417793$	$r_e = 0.0402905$			
$r_e = 4.081\%$	$r_e = 4.178\%$	$r_e = 4.029\%$			
Bank B is offering the best deal					

Present Value Formulas

The present value P of A dollars to be received after t years, assuming a per annum interest rate r compounded n times per year, is

$$P = A \cdot \left(1 + \frac{r}{n}\right)^{-nt} \tag{5}$$

If the interest is compounded continuously,

$$P = Ae^{-rt} ag{6}$$

Computing the Value of a Zero-coupon Bond

A zero-coupon (noninterest-bearing) bond can be redeemed in 10 years for \$1000. How much should you be willing to pay for it now if you want a return of

- (a) 7% compounded monthly?
- (b) 6% compounded continuously?

(a)
$$p = 1000 \left(1 + \frac{0.07}{12} \right)^{-12(10)} = $497.60$$

(b)
$$p = 1000e^{-0.06(10)} = $548.81$$

$$P = A \cdot \left(1 + \frac{r}{n}\right)^{-nt}$$

$$P = Ae^{-rt}$$

4 Determine the Rate of Interest or Time Required to Double a Lump Sum of Money

Rate of Interest Required to Double an Investment

What annual rate of interest compounded quarterly should you seek if you want to double your investment in 6 years?

$$2P = P\left(1 + \frac{r}{4}\right)^{4(6)} \qquad 2 = \left(1 + \frac{r}{4}\right)^{24} \qquad {}^{24}\sqrt{2} = 1 + \frac{r}{4}$$

$$r = 4\left(\sqrt[24]{2} - 1\right) = 0.1172089466$$

$$A = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$$

The annual rate of interest needed to double the principal in 6 years is 11.72%.

Time Required to Double or Triple an Investment

- (a) How long will it take for an investment to double in value if it earns 6% compounded continuously?
- (b) How long will it take to triple at this rate?

(a)
$$2P = Pe^{0.06t}$$

 $2 = e^{0.06t}$
 $\ln 2 = \ln e^{0.06t}$
 $\ln 2 = 0.06t$
 $t = \frac{\ln 2}{0.06} \approx 11.55 \text{ years}$

(b)
$$3P = Pe^{0.06t}$$

 $3 = e^{0.06t}$
 $\ln 3 = \ln e^{0.06t}$
 $\ln 3 = 0.06t$
 $t = \frac{\ln 3}{0.06} \approx 18.31 \text{ years}$

$$A = Pe^{rt}$$