GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/8719	7

1 (i) H_0 : $\mu = 15$ or $p = 0.25$ H_1 : $\mu > 15$ or $p > 0.25$ (ii) Test statistic $z = \pm \frac{21.5 - 15}{\sqrt{60 \times 0.25 \times 0.75}} = 1.938$ OR test statistic $z = \pm \frac{22/60^{-0.5}/60^{-15/60}}{\sqrt{0.25 \times 0.75}} = 1.938$ CV $z = 1.645$ In CR Claim justified 2 (i) Mean = 3.5 + 2.9 + 3.1 = 9.5 Var = 0.3² + 0.25² + 0.35² (=0.275) St dev = 0.524 A1 For H ₀ and H ₁ correct For Alternative	-tailed, to 5% one-tail
(ii) Test statistic $z = \pm \frac{21.5 - 15}{\sqrt{60 \times 0.25 \times 0.75}} = 1.938$ OR test statistic $z = \pm \frac{2^2/60 - 0.5/60 - 15/60}{\sqrt{\frac{0.25 \times 0.75}{60}}} = 1.938$ CV $z = 1.645$ In CR Claim justified A1ft CI Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 M1 For attempt at standardising with or vacc, must have $\sqrt{}$ something with 60 is denom For 1.94 (1.938) For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 9.5 as final answer For summing three squared deviation For correct answer For correct answer For standardising, no cc	-tailed, to 5% one-tail
(ii) Test statistic $z = \pm \frac{21.5 - 15}{\sqrt{60 \times 0.25 \times 0.75}} = 1.938$ OR test statistic $z = \pm \frac{22/60 - 0.5/60 - 15/60}{\sqrt{0.25 \times 0.75}} = 1.938$ CV $z = 1.645$ In CR Claim justified 10 In CR Claim justified 11 In CR Claim justified 12 In CR Claim justified 13 In CR Claim justified 14 In CR Claim justified 15 In CR Claim justified 16 In CR Claim justified 17 In CR Claim justified 18 In CR Claim justified 18 In CR Claim justified 19 In CR Claim justified 19 In CR Claim justified 10 In CR Claim justified 10 In CR Claim justified 11 In CR Claim justified 12 In CR Claim justified 13 In CR Claim justified 16 In CR Claim justified 17 In CR Claim justified 18 In CR Claim justified 19 In CR Claim justified 19 In CR Claim justified 10 In CR Claim justified 10 In CR Claim justified 11 In CR Claim justified 12 In CR Claim justified 13 In CR Claim justified 14 In CR Claim justified 16 In CR Claim justified 17 In CR Claim justified 18 In CR Claim justified 20 In CR Claim justified 21 In CR Claim justified 22 In CR Claim justified 23 In CR Claim justified 24 In CR Claim justified 25 In CR Claim justified 26 In CR Claim justified 27 In CR Claim justified 28 In CR Claim justified 29 In CR Claim justified 29 In CR Claim justified 20 In CR Claim justified 20 In CR Claim justified 20 In CR Claim justified 21 In CR Claim justified 22 In CR Claim justified 23 In CR Claim justified 24 In CR Claim justified 26 In CR Claim justified 27 In CR Claim justified 28 In CR Claim justified 29 In CR Claim justified 29 In CR Claim justified 20 In CR Claim justified 30 In CR Claim justified 31 In CR Claim justified 32 In CR Claim justified 33 In CR Claim justified 34 In CR Claim justified 35 In CR Claim justified 36 In CR Claim justified 37 In CR Claim justified 38 In CR Claim justified 39 In CR Claim justified 40 In CR Claim justified 41 In CR Claim justified 42 In CR Claim justified 43 In CR Claim justified 44 In CR Claim justified 45 In CR Claim justified 46 In CR Clai	-tailed, to 5% one-tail
$z = \pm \frac{21.5 - 15}{\sqrt{60 \times 0.25 \times 0.75}} = 1.938$ OR test statistic $z = \pm \frac{2^{2}/60^{-0.5}/60^{-15}/60}{\sqrt{\frac{0.25 \times 0.75}{60}}} = 1.938$ CV z = 1.645 In CR Claim justified 2 (i) Mean = 3.5 + 2.9 + 3.1 = 9.5 Var = 0.3 ² + 0.25 ² + 0.35 ² (=0.275) St dev = 0.524 A1 For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 9.5 as final answer For summing three squared deviation For correct answer For correct answer For standardising, no cc	-tailed, to 5% one-tail
$z = \pm \frac{21.5 - 15}{\sqrt{60 \times 0.25 \times 0.75}} = 1.938$ OR test statistic $z = \pm \frac{2^2/60^{-0.5}/60^{-15}/60}{\sqrt{\frac{0.25 \times 0.75}{600}}} = 1.938$ CV z = 1.645 In CR Claim justified A1ft CR Claim justified 2 (i) Mean = 3.5 + 2.9 + 3.1 = 9.5 Var = 0.3² + 0.25² + 0.35² (=0.275) St dev = 0.524 M1 For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) B1 Pos 3.5 + 2.9 + 3.1 = 9.5 M1 A1 3 For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) The interval 1.938 CC, must have √ something with 60 in denom A1 For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) The interval 1.938 CV z = 1.645 A1ft For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) For correct answer For summing three squared deviation For correct answer For standardising, no cc	-tailed, to 5% one-tail
OR test statistic $z = \pm \frac{\frac{22}{60} - 0.5}{\frac{0.25 \times 0.75}{60}} = 1.938$ CV $z = 1.645$ In CR Claim justified A1ft For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 B1 9.5 as final answer For summing three squared deviation For correct answer For correct answer For summing three squared deviation For correct answer For standardising, no cc	-tailed, to 5% one-tail
OR test statistic $z = \pm \frac{22/60 - 0.5/60 - 15/60}{\sqrt{0.25 \times 0.75}} = 1.938$ CV $z = 1.645$ In CR Claim justified A1 For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 B1 9.5 as final answer For summing three squared deviation For correct answer For correct answer For standardising, no cc	-tailed, to 5% one-tail
OR test statistic $z = \pm \frac{\frac{22}{60} - 0.5/60 - 15/60}{\sqrt{\frac{0.25 \times 0.75}{60}}} = 1.938$ CV $z = 1.645$ In CR Claim justified A1ft For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 B1 9.5 as final answer For summing three squared deviation For correct answer For correct answer For standardising, no cc	to 5% one-tail
$z = \pm \frac{\frac{22}{60} - \frac{0.5}{60} - \frac{15}{60}}{\sqrt{\frac{0.25 \times 0.75}{60}}} = 1.938$ CV $z = 1.645$ In CR Claim justified $A1ft$ For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 $B1$ B1 For standardising, no cc M1 For standardising, no cc	to 5% one-tail
$z = \pm \frac{\frac{22}{60} - \frac{0.5}{60} - \frac{15}{60}}{\sqrt{\frac{0.25 \times 0.75}{60}}} = 1.938$ CV $z = 1.645$ In CR Claim justified $A1ft$ For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 $B1$ B1 For standardising, no cc M1 For standardising, no cc	to 5% one-tail
CV $z = 1.645$ In CR Claim justified A1ft A1ft For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 B1 9.5 as final answer For summing three squared deviation For correct answer For correct answer For standardising, no cc	to 5% one-tail
CV $z = 1.645$ In CR Claim justified A1ft A1ft For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 B1 9.5 as final answer For summing three squared deviation For correct answer For correct answer For standardising, no cc	to 5% one-tail
CV $z = 1.645$ In CR Claim justified A1ft A1ft For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 B1 9.5 as final answer For summing three squared deviation For correct answer For correct answer For standardising, no cc	to 5% one-tail
CV $z = 1.645$ In CR Claim justified A1ft A1ft For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 B1 9.5 as final answer For summing three squared deviation For correct answer For correct answer For standardising, no cc	to 5% one-tail
CV $z = 1.645$ In CR Claim justified A1ft A1ft For comparing with 1.645 or 1.96 if 2 signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 B1 For standardising, no cc W1 For standardising, no cc	to 5% one-tail
In CR Claim justified A1ft Signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$	to 5% one-tail
In CR Claim justified A1ft Signs consistent, or comparing areas For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$	to 5% one-tail
In CR Claim justified A1ft For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) St dev = 0.524 B1 For summing three squared deviation For correct answer For correct answer For correct answer For summing three squared deviation For correct answer For standardising, no cc	one-tail
In CR Claim justified A1ft For correct answer(ft only for correct test) 2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$	one-tail
2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) M1 For summing three squared deviation St dev = 0.524 M1 For standardising, no cc	
2 (i) Mean = $3.5 + 2.9 + 3.1 = 9.5$ Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) M1 For summing three squared deviation For correct answer (ii) $z = \frac{9-9.5}{ their \ var } = -1.907$ M1 For standardising, no cc	ıs
Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) M1 For summing three squared deviation St dev = 0.524 M1 For correct answer (ii) $z = \frac{9-9.5}{\text{their var}} = -1.907$ M1 For standardising, no cc	ıs
Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) M1 For summing three squared deviation St dev = 0.524 M1 For correct answer (ii) $z = \frac{9-9.5}{\text{their var}} = -1.907$ M1 For standardising, no cc	IS
Var = $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) M1 For summing three squared deviation St dev = 0.524 M1 For correct answer (ii) $z = \frac{9-9.5}{ their var } = -1.907$ M1 For standardising, no cc	ıs
St dev = 0.524 A1 3 For correct answer (ii) $z = \frac{9-9.5}{ their \text{ yar} } = -1.907$ M1 For standardising, no cc	1S
(ii) $z = \frac{9-9.5}{\sqrt{their \text{ yar}}} = -1.907$ M1 For standardising, no cc	
(ii) $z = \frac{9-9.5}{\boxed{their \text{ var}}} = -1.907$ M1 For standardising, no cc	
(ii) $z = \frac{9-9.5}{\boxed{their \text{ var}}} = -1.907$ M1 For standardising, no cc	
(ii) $z = \frac{9-9.3}{ their \text{ var} } = -1.907$ M1 For standardising, no cc	
their var	
Well vai	
-	
1	enom -
or z = 36-38 = -1.907	
$\sqrt{(4 \times their var)}$ no 'mixed' methods.	
T (4 00 T) 0 0 T (4 0 T)	
$\Phi(1.907) = 0.9717 = 0.972$ A1 3 For correct answer	
3 (i) $E(2X-3Y) = 2E(X) - 3E(Y) = 16 - 18$ M1 For multiplying by 2 and 3 resp and s	uht
	ubt
= - 2 A1 2 For correct answer	
(ii) $Var(2X-3Y) = 4Var(X) + 9Var(Y)$ B1 For use of $Var(Y) = 6$	
= 19.2 + 54 M1 For squaring 3 and 2	
	,
M1 For adding variances (and nothing el	se)
= 73.2 A1 4 For correct final answer	
4 (i) $\bar{x} = 375.3$ B1 For correct mean (3.s.f)	
$\sigma^2_{n-1} = 8.29$ M1 For legit method involving <i>n</i> -1, can be	: implied
A1 3 For correct answer	
(ii) p = 0.19 or equity B1 For correct p	
(ii) $p = 0.19$ or equiv. B1 For correct p	
D 10 - 0 01	المادة
$0.19 \pm 2.055 \times \sqrt{\frac{0.19 \times 0.81}{200}}$ M1 For correct form $p \pm z \times \sqrt{\frac{pq}{n}}$ either/bo	in sides
200	
B_1 For $z = 2.054$ or 2.055	
0.400 0.047	
0.133 < <i>p</i> < 0.247 A1 4 For correct answer	

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/8719	7

	T	T
5 (i) $\frac{c-54}{3.1/\sqrt{10}} = -1.282$	B1 M1	For + or – 1.282 seen For equality/inequality with their z (\pm) (must have used tables), no $\sqrt{10}$ needed (c can be
$c = 54 - 1.282 \times \frac{3.1}{\sqrt{10}} = 52.74$	A1	numerical) For correct expression (c can be numerical, but signs must be consistent)
	A1 4	For correct GIVEN answer. No errors seen.
(ii) $P(\bar{x} > 52.74) = 1 - \Phi\left(\frac{52.74 - 51.5}{3.1/\sqrt{10}}\right)$	B1	For identifying the outcome for a type II error For standardising , no $\sqrt{10}$ needed
$= 1 - \Phi(1.265) = 1 - 0.8971$	A1	For ± 1.265 (accept 1.26-1.27)
= 0.103 or 0.102	A1 4	For correct answer
6 (i) P(5) = $e^{-6} \times \frac{6^5}{5!} = 0.161$	M1	For an attempted Poisson P(5) calculation,
3!	A1 2	any mean For correct answer
	A1 2	FOI COITECT GIISMEI
(ii) $P(X \ge 2) = 1 - \{P(0) + P(1)\}$ = 1 - $e^{-1.6}(1+1.6)$	B1 M1	For μ = 1.6, evaluated in a Poisson prob For 1 – P(0) – P(1) or 1 – P(0) – P(1) – P(2)
= 0.475	A1 3	For correct answer
(iii)	M1	For multiplying P(1) by P(4) any (consistent)
P(1 then 4 5) = $\frac{\left(e^{-3} \times 3\right) \times \left(e^{-3} \times \frac{3^4}{4!}\right)}{e^{-6} \times \frac{6^5}{4!}}$	M1	mean For dividing by P(5) any mean
5!	A1 3	For correct answer
= 0.156 or 5/32		
7 (i) $c \int_{0}^{3} t(25 - t^{2}) dt = 1$	M1	For equating to 1 and a sensible attempt to integrate
$c\left[\frac{25t^2}{2} - \frac{t^4}{4}\right]_0^5 = 1$	A1	For correct integration and correct limits
$c\left[\frac{625}{2} - \frac{625}{4}\right] = 1 \implies c = \frac{4}{625}$	A1 3	For given answer correctly obtained
(ii) $\int_{2}^{4} ct(25 - t^{2}) dt = \left[\frac{25ct^{2}}{2} - \frac{ct^{4}}{4} \right]_{2}^{4} = c[136] - c[46]$	M1*	For attempting to integrate f(t) between 2 and 4 (or attempt 2 and 4)
	M1*dep	For subtracting their value when t = 2 from
$=\frac{72}{125} (0.576)$	A1 3	their value when t = 4 For correct answer
(iii) $\int_{C}^{5} ct^{2}(25-t^{2})dt = \left[\frac{4}{4} \times \frac{25t^{3}}{4} - \frac{4}{4} \times \frac{t^{5}}{4}\right]^{5}$	M1*	For attempting to integrate $tf(t)$, no limits
(iii) $\int_{0}^{5} ct^{2} (25 - t^{2}) dt = \left[\frac{4}{625} \times \frac{25t^{3}}{3} - \frac{4}{625} \times \frac{t^{5}}{5} \right]_{0}^{5}$	A1	needed For correct integrand can have <i>c</i> (or their <i>c</i>)
$=\frac{8}{3}$	M1*dep	For subtracting their value when t=0 from
	A1 4	their value when t=5 For correct answer
l .		1