Generalized Poisson Distribution

Bo Yang boyang@knights.ucf.edu

May 7, 2013

Abstract

Generalized Poisson Distribution to model and bin metagenomic species.

1 Methods

 $X = (x_1, x_2, \dots, x_n)$: observed data. x_i is the unique occurrences of the i-th l-tuple in all reads, and l is a fixed number. n is the number of unique k-mers.

 $L = (l_1, l_2, \dots, l_n)$: observed data. l_i is the occurrences of x_i , i.e. the total number of a k-mer.

 $\Theta = (\alpha_1, \alpha_2, \dots, \alpha_m, \lambda_{jk})$: parameters, where $j = \{1, 2, \dots, m\}$ $k = \{1, 2\}$. And

 $\alpha_1, \alpha_2, \dots, \alpha_m$: the probability that a k-mer is from a Generalized Poisson Distribution (*GPD*). m is the number of different GPDs.

 λ_{ik} : parameters for generalized poisson distribution,

$$p_j(x_i) \stackrel{\triangle}{=} P(x_i|\lambda_{j1}, \lambda_{j2}) = \frac{\lambda_{j1} (\lambda_{j1} + x_i \lambda_{j2})^{x_i - 1} e^{-(\lambda_{j1} + x_i \lambda_{j2})}}{x_i!}$$
(1)

where $\lambda_{j1} > 0$, $0 < \lambda_{j2} < 1$.

 $Y = \{y_{ij}\}$: missing data, where $i = \{1, 2, ..., n\}, j = \{1, 2, ..., m\}$, and

 $y_{ij} = 1$ if x_i is from the j-th Generalized Poisson Distribution.

 $y_{ij} = 0$ if x_i is not from the j-th Generalized Poisson Distribution.

The likelihood function is

$$L(X, Y, L|\Theta) = P_Y(X, Y, L|\Theta) = \prod_{i=1}^{n} \sum_{j=1}^{m} y_{ij} \alpha_j p_j(x_i)$$
 (2)

$$\log L(X, Y, L|\Theta) = \sum_{i=1}^{n} \log \sum_{j=1}^{m} y_{ij} \alpha_{j} p_{j}(x_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{m} y_{ij} \log \alpha_{j} p_{j}(x_{i})$$
(3)

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} y_{ij} [\log \alpha_j + \log \lambda_{j1} + (x_i - 1) \log (\lambda_{j1} + x_i \lambda_{j2}) - (\lambda_{j1} + x_i \lambda_{j2}) - \log (x_i!)]$$

Since y_{ij} is missing, we try to estimate it by its mean:

$$E(y_{ij}) = P(y_{ij} = 1) = \frac{\alpha_j p_j(x_i)}{\sum_{k=1}^{m} \alpha_k p_k(x_i)} = z_{ij}$$

$$(4)$$

Note: z_{ij} depends on the current parameters, which we assume to be $\Theta^{(t-1)}$. Correspondingly, we assume z_{ij} under the current parameters are $z_{ij}^{(t-1)}$.

So we have the missing data y_{ij} replaced by its expression in $\log L(X,Y,L|\Theta)$. We define

$$Q\left(\Theta^{(t)}|\Theta^{(t-1)}\right) = \sum_{i=1}^{n} l_i \sum_{j=1}^{m} z_{ij}^{(t-1)} \log \alpha_j p_j(x_i)$$
 (5)

In other words, $Q\left(\Theta^{(t)}|\Theta^{(t-1)}\right)$ is the log likelihood function with the missing data y_{ij} integrated out under the current parameters $\Theta^{(t-1)}$. We now want to estimate the new parameter $\Theta^{(t)}$ by maximal likelihood estimation. So we calculate

$$\frac{\partial Q\left(\Theta^{(t)}|\Theta^{(t-1)}\right)}{\partial \alpha_{i}}, \frac{\partial Q\left(\Theta^{(t)}|\Theta^{(t-1)}\right)}{\partial \lambda_{i1}}, \frac{\partial Q\left(\Theta^{(t)}|\Theta^{(t-1)}\right)}{\partial \lambda_{i2}} \tag{6}$$

and so we have

$$\alpha_{j}^{(t)} = \frac{1}{N} \sum_{i=1}^{n} z_{ij}^{(t-1)} l_{i}$$

$$\frac{\partial Q}{\partial \lambda_{j1}} = \sum_{i=1}^{n} l_{i} z_{ij}^{(t-1)} \left(\frac{1}{\lambda_{j1}} + \frac{x_{i} - 1}{\lambda_{j1} + x_{i} \lambda_{j2}} - 1 \right) = 0$$

$$\frac{\partial Q}{\partial \lambda_{j2}} = \sum_{i=1}^{n} l_{i} z_{ij}^{(t-1)} \left(\frac{x_{i} (x_{i} - 1)}{\lambda_{j1} + x_{i} \lambda_{j2}} - x_{i} \right) = 0$$
(7)

where $N = \sum_{i=1}^{n} l_i$.

In order to calculate λ_{j1} and λ_{j2} , we will resort to Newton's method.

$$\lambda_{j1} = \frac{\sum_{i=1}^{n} l_i z_{ij}^{(t-1)} x_i}{\sum_{i=1}^{n} l_i z_{ij}^{(t-1)}} (1 - \lambda_{j2}) = w (1 - \lambda_{j2})$$
(8)

where $w = \frac{\sum_{i=1}^{n} l_i z_{ij}^{(t-1)} x_i}{\sum_{i=1}^{n} l_i z_{ij}^{(t-1)}}$.

$$f(\lambda_{j2}) = \sum_{i=1}^{n} l_i z_{ij}^{(t-1)} \left(\frac{x_i(x_i - 1)}{w + (x_i - w)\lambda_{j2}} - x_i \right) = 0$$
(9)

and

$$f'(\lambda_{j2}) = -\sum_{i=1}^{n} l_i z_{ij}^{(t-1)} \frac{x_i(x_i - 1)(x_i - w)}{\left[w + (x_i - w)\lambda_{j2}\right]^2}$$
(10)

According to Newton's Method.

$$\lambda_{j2}^{(k+1)} = \lambda_{j2}^{(k)} - \frac{f(\lambda_{j2})}{f'(\lambda_{j2})} \tag{11}$$

and the stop criteria is

$$\left| \frac{\lambda_{j2}^{(k+1)} - \lambda_{j2}^{(k)}}{\lambda_{j2}^{(k+1)}} \right| < \varepsilon \tag{12}$$

Another way to calculate λ_{j1} and λ_{j2} is Define vector

$$g = f(\lambda_{j1}, \lambda_{j2}) = \begin{bmatrix} f_1(\lambda_{j1}, \lambda_{j2}) \\ f_2(\lambda_{j1}, \lambda_{j2}) \end{bmatrix} = \begin{bmatrix} \frac{\partial Q}{\partial \lambda_{j1}} \\ \frac{\partial Q}{\partial \lambda_{j2}} \end{bmatrix}$$
(13)

so that

$$H = Df(\lambda_{j1}, \lambda_{j2}) = \begin{bmatrix} \frac{\partial f_1}{\partial \lambda_{j1}} & \frac{\partial f_1}{\partial \lambda_{j2}} \\ \frac{\partial f_2}{\partial \lambda_{j1}} & \frac{\partial f_2}{\partial \lambda_{j2}} \end{bmatrix}$$

$$(14)$$

$$= \begin{bmatrix} -\sum_{i=1}^{n} z_{ij}^{(t-1)} \left(\frac{1}{\lambda_{j1}^{2}} + \frac{x_{i} - 1}{(\lambda_{j1} + x_{i}\lambda_{j2})^{2}} \right) & -\sum_{i=1}^{n} z_{ij}^{(t-1)} \frac{x_{i}(x_{i} - 1)}{(\lambda_{j1} + x_{i}\lambda_{j2})^{2}} \\ -\sum_{i=1}^{n} z_{ij}^{(t-1)} \frac{x_{i}(x_{i} - 1)}{(\lambda_{j1} + x_{i}\lambda_{j2})^{2}} & -\sum_{i=1}^{n} z_{ij}^{(t-1)} \frac{x_{i}^{2}(x_{i} - 1)}{(\lambda_{j1} + x_{i}\lambda_{j2})^{2}} \end{bmatrix}$$

$$(15)$$

Assume $\Delta = H^{-1}g$, so we have

$$\begin{bmatrix} \lambda_{j1} \\ \lambda_{j2} \end{bmatrix}^{(t+1)} = \begin{bmatrix} \lambda_{j1} \\ \lambda_{j2} \end{bmatrix}^{(t)} - \Delta \tag{16}$$

Convergence criteria for Newton's Method and EM algorithm

$$\left| \frac{\sqrt{\left(\lambda_{j1}^{(t+1)} - \lambda_{j1}^{(t)}\right)^{2} + \left(\lambda_{j2}^{(t+1)} - \lambda_{j2}^{(t)}\right)^{2}}}{\sqrt{\lambda_{j1}^{(t)^{2}} + \lambda_{j2}^{(t)^{2}}}} \right| < \varepsilon \tag{17}$$

where $\varepsilon = 0.001$ or 0.0001.

Computing probability by logarithm

Since

$$\log p_j(x_i) = \log \lambda_{j1} + (x_i - 1)\log(\lambda_{j1} + x_i\lambda_{j2}) - (\lambda_{j1} + x_i\lambda_{j2}) - \log(x_i!)$$
(18)

and $\log(x_i!) = \sum_{k=1}^{x_i} \log k$,

$$p_{j}(x_{i}) = \exp\left(\log \lambda_{j1} + (x_{i} - 1)\log(\lambda_{j1} + x_{i}\lambda_{j2}) - (\lambda_{j1} + x_{i}\lambda_{j2}) - \sum_{k=1}^{x_{i}}\log k\right)$$
(19)

Once the EM algorithm converges, we can estimate the probability of a read assigned to a bin, based on its *l*-tuples binning result as,

$$P(r_k \in s_j) = \frac{\prod_{w_i \in r_k} P(y_{ij} = 1)}{\sum_{s_j \in S} \left(\prod_{w_i \in r_k} P(y_{ij} = 1)\right)} = \frac{\prod_{i=0}^n z_{ij}}{\sum_{j=0}^m \left(\prod_{i=0}^n z_{ij}\right)}$$
(20)

where r_k is a given read, w_i is the l-tuples that belong to r_k , and s_j is a bin. A read will be assigned to the bin with the highest probability among all bins.