More test practice!

Math 425a, Fall 2015

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and periodic, i.e. $\exists c \in \mathbb{R}$ such that f(x+c) = f(x) for all $x \in \mathbb{R}$. Show f is uniformly continuous on \mathbb{R} .
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous, and suppose $E \subseteq \mathbb{R}$ is bounded. Show f(E) is bounded.
- 3. Show that two sets A and B are separated in X if and only if there exists a continuous function $f: X \to \mathbb{R}$ such that f(x) = 0 for $x \in A$ and f(x) = 1 for $x \in B$.
- 4. Find an example of two metric spaces X and Y and a continuous bijection f between them such that f^{-1} is not continuous.
- 5. Rudin, ch. 3, #14.
- 6. Rudin, ch. 4, #8.
- 7. Rudin, ch. 4, #20.
- 8. Rudin, ch. 4, #21.
- 9. If $s_{n+1} = \sqrt{1 + s_n}$, $s_1 = 1$, does s_n converge? If so, find its limit.
- 10. Show that if a real number has a repeating decimal expansion, then it is rational. True or false? Furnish a PROOF if it is true, and a COUNTEREXAMPLE if it is false.
- 11. Suppose X is a metric space. Then $f: X \to X$ given by f(x) = x is uniformly continuous.
- 12. If $f: \mathbb{R} \to X$ is continuous and $n \in \mathbb{Z}$, then f([-n, n]) is compact in X.
- 13. $f: A \to \mathbb{R}$ given by $f(x) = \frac{1}{x}$ is uniformly continuous for:
- a) A = (0,1)
- b) $A = (1, \infty)$
- c) $A = (0, \infty)$
- 14. If $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous, then there exists an a in \mathbb{R} such that $f(a) = \sup_{x \in \mathbb{R}} f(x)$.
- 15. Let S be infinite. Then S is the range of a convergent sequence in X if and only if S has a unique limit point in X.
- 16. If there exists an L > 0 such that $d(f(x), f(y)) < L \cdot d(x, y)$ for all x, y, then f is uniformly continuous.

- 17. If $\sum c_n z^n$ converges for z = 1 + 3i, then it also converges for z = 2 + 2i.
- 18. If $\lim_{n\to\infty} \left| \frac{c_n}{c_{n+1}} \right|$ exists, then it is equal to the radius of convergence of $\sum c_n z^n$.
- 19. If $\liminf s_n = \alpha$, then $\forall \epsilon > 0$, $\exists n$ such that $\alpha < s_n < \alpha + \epsilon$.
- 20. A sequence in a metric space is convergent if and only if it is Cauchy.