Package 'FAIBBase'

October 30, 2019

Title Basic functions for forest mensuration and ecology

Version 0.0.0.9000
Description Basic R fuctions for forest mensuration and ecology.
License Apache License (== 2.0) file LICENSE
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 6.1.1
Imports methods, dplyr, data.table, fpCompare, rmarkdown, sp, bcmaps, raster, rgdal, rgeos, spatstat
Suggests knitr
R topics documented:
annualGrowthRateCalculator appendedCat areaProportion

	PHFCalculator	13
	randomStemMapping	14
	SIInBC	15
	speciesCode2speciesType	15
	standardizeSpeciesName	16
	stemMappingExtension	17
	stemMappingExtension_square	18
	taperCoeffsGenerator	20
	taperImplementor	20
	treeVolCalculator	21
	UTM_Convertor	23
Index		24

annualGrowthRateCalculator

Calculate annual growth rate

Description

This function is to calcualte annual growth rate.

Usage

annualGrowthRateCalculator(boredDiameter, growthIncrement, growthYear, barkThickness)

Arguments

 $bored \hbox{\tt Diameter} \quad numeric, \hbox{\tt Diameter} \ at \ bored \ height \ in \ cm.$

growthIncrement

numeric, Growth increment in mm over a time period.

growthYear numeric, Number of years over which growth increment is measured.

barkThickness numeric, Bark thickness in mm. If missing, 0.05 will be used.

Value

Calculated annual growth rate.

Author(s)

appendedCat 3

appendedCat	Prints first text file and appends into second file	

Description

This function is a generic function to print the first text and appends into second file if it exists.

Usage

```
appendedCat(firstText, secondText = as.character(NA))
```

Arguments

firstText character, First text.
secondText character, Second text.

Value

Appended text file.

Author(s)

Yong Luo

areaProportion This function is to derive a correction index to account for edge effect

Description

The correction index is calculated using proportion of overlapped area to full circular area.

Usage

```
areaProportion(bearing, distance, radius, baseShape = "circle", baseRadius = 10, baseCorners = list(c(-50, 50), c(50, 50), c(50, -50), c(-50, -50)))
```

Arguments

bearing	numeric, The bearing of a tree from a given point of plot (centre or corner).
distance	numeric, The distance of a tree from a given point of plot (centre or corner).
radius	numeric, The radius for a focal subject, which define the circular area around a subject tree.
baseShape	character, The shape of the area to be overlapped. Must be either circle or rectangle. Default is circle.
baseRadius	numeric, The radius for the base area, if the shape is defined as circle. Default is 10.
baseCorners	list, If the shape is defined as rectangle, this argument specifies upper left, up-

per right, lower right and lower left corners. Default is list(c(-50,50),c(50,50),c(50,-50),c(-50,50),c(-5

which represent a 10000 m2 base area.

4 biomassCalculator

Value

A ratio of overlapped area to full circular area.

Author(s)

Yong Luo

BEC2IC

Group BEC zones into interior and coastal region

Description

It groups the BC BEC zone into two regions: coastal region C and interior region I.

Usage

```
BEC2IC(BEC)
## S4 method for signature 'character'
BEC2IC(BEC)
```

Arguments

BEC

character, BC BEC zone(s)

Value

grouped region by bec zone, in which C stands for coastal region, I stands for interior region and ? stands for unknown region.

Author(s)

Yong Luo

biomassCalculator

This function is to calculate aboveground biomass for boreal species based on DBH or DBH/Height

Description

This function is to calculate aboveground biomass for boreal species based on DBH or DBH/Height

Usage

```
biomassCalculator(species, DBH, heightIncluded = TRUE, height,
   paperSource = "Lambert2005")
```

checkSize_remeas 5

Arguments

species Character string. The species name.

DBH Numeric. The tree's diameter at breast height (DBH, cm).

heightIncluded Logical. Whether the biomass is calculated based on DBH and height. If TURE,

height must be provided. Default TRUE

height Numeric. The tree's height (m).

paperSource Character. Determine the sources of equations. Currently, this functions has two

options, i.e., "Lambert2005" and "Ung2008". Default Lambert2005

Value

Biomass (kg) and missedSpecies list that was not calculated.

Author(s)

Yong Luo

Examples

checkSize_remeas

Check the size change of a remeasured subject

Description

This function is to check the size change for a remeasured subject.

Usage

```
checkSize_remeas(subjectID, measNo, size, change = "increase",
  tolerance = 0)
```

Arguments

subjectID character, Specifies subject ID, such as a tree id.

measNo numeric, Measurement number with bigger value indicates a later measurement.

size numeric, Measurement of an attribute.

6 DBHClassifier

change character, Change direction from increase, decrease or none. Default is

increase.

tolerance numeric, Tolerance value to allow measurement error, which is a absolute value.

If the change is increase, the change from current measurement to last measurement will be compared to the negative tolerance value, and vice versa. De-

fault is 0 for zero tolerance.

Value

A data table that contains pass information. TRUE indicates pass, while FALSE indicates failure.

Author(s)

Yong Luo

DBHClassifier

Derive DBH class from DBH

Description

This function derives DBH classes based on DBH. This function is equivalent to dbh_cl.sas macro.

Usage

```
DBHClassifier(DBH, classInterval = 5, maxDBH = 175)
```

Arguments

DBH numeric, Tree DBH.

classInterval numeric, The interval that used to categorize the DBH. If missing 5 cm is used.

maxDBH numeric, Upper class limit. DBH that surpasses this limit is groupped in at this

limit. If missing 175 is used.

Value

Classified DBH

Author(s)

DIB_ICalculator 7

DIB_ICalculator	Calculate the inside-bark diameter at a given height
-----------------	--

Description

This function uses taper equation to calculate diameter inside bark at a given height. It is equivalent to the subroutine of vol_tree_active_equation in vol_setup macro

Usage

```
DIB_ICalculator(taperEquationForm, FIZorBEC, species, height_I,
    heightTotal, DBH, volMultiplier)

## S4 method for signature

## 'character,character,numeric,numeric,numeric'

DIB_ICalculator(taperEquationForm,
    FIZorBEC, species, height_I, heightTotal, DBH, volMultiplier)
```

Arguments

taperEquationForm

character, Specifies a taper equation form one of KBEC, KBECQCI, KFIZ3.

FIZorBEC character, Specifies FIZ or BEC.

species character, Species code.

height_I numeric, Height from ground.

heightTotal numeric, Total height of a tree.

DBH numeric, Diameter at breast height.

volMultiplier numeric, Volume adjustment multiplier.

Value

Diameter inside bark

Author(s)

Yong Luo

getSpatial	Generic function to derive BEC, TSA and FIZ for given locations
8	, in the second of the second

Description

This function is to derive BEC, TSA or FIZ based on an UTM location and BEC map.

8 getSpatial

Usage

```
getSpatial(pointID, zone, northing, easting, spatialAttribute = "all",
   mapPath = as.character(NA), mapName = as.character(NA),
   mapFormat = "gdb")
```

Arguments

pointID character, Data point ID.

zone integer, UTM zone.

northing integer, UTM northing. easting integer, UTM easting.

spatialAttribute

character, specifies which spatial attribute to be obtained. Must be one of "BEC", "TSA" or "FIZ". The spatial attribute BEC and TSA are available at bec and tsa. Therefore, for these attributes, mapPath, mapName and mapFormat should not be specified. Since FIZ map is not available neither online nor from any R package.

The below arguements must be specified.

mapPath character, Path to map, must be specified when deriving FIZ.

mapName character, Map name of fiz, must be specified when deriving FIZ.

mapFormat character, Map format of fiz, either shp or gdb, must be specified when deriving

FIZ.

Value

Depends on what spatial attribute a function derives. For BEC, a table that contains:

- bec_zone bec zone.
- bec_sbz bec subzone.
- bec_var bec variant

For TSA, a table that contains:

- tsa tsa.
- tsa_desc tsa descriptions.

For FIZ, a table that contains:

• fiz fiz.

Author(s)

HegyiCICalculator 9

HegyiCICalculator	the function to calculate intraspecific and interspecific hegyi competition index both distance and size
-------------------	--

Description

the function to calculate intraspecific and interspecific hegyi competition index both distance and size

Usage

```
HegyiCICalculator(objectID, species, coordX, coordY, size, maxRadius,
  distanceWeight = 1, sizeWeight = 0)
```

Arguments

objectID	character, The unique object identifier. Must be unique.
species	character, Species code to identify intra and inter-specific competition.
coordX	numeric, The x coordinate.
coordY	numeric, The y coordinate.
size	numeric, The size that used for compute competition index.
maxRadius	numeric, The competition index will been calculated within this radius
distanceWeight	numeric, Define how the compeition sensitive to the distance of a neighbours, ie., crowdness. Default is 1, which is same as the original Hegyi index.
sizeWeight	numeric, Define how the compeition scales across all the plots. Default is 0, which means there is no scale.

Value

a data table that has five columns, plotNumber, treeNumber, Year, IntraH and InterH

Note

no note

Author(s)

Yong Luo

See Also

no

heightEstimateForBTOP_D

Estimate tree height for a broken top tree when DBH, inside bark diamater at broken top height, height at broken are available

Description

This is the second function to estimate a tree's height for a broken top tree. A tree's height is esimated using height of the broken top (heightBTOP), inside bark diameter at broken height (DIBBTOP) and DBH. Specifically, this function guesses the tree height, computes inside bark diameter at broken height (heightBTOP) using a taper equation, compares it to an observed inside bark diameter and chooses the tree height that has closest value of inside bark diameter at broken. For the broken top trees that have field projected height, total tree height also can be estimated using heightEstimateForBTOP_H.

Usage

```
heightEstimateForBTOP_D(heightBTOP, DIBBTOP, DBH,
  taperEquationForm = "KBEC", FIZorBEC, species, volMultiplier = 1,
  SASOriginal = FALSE)
```

Arguments

heightBTOP numeric, Height of the broken top.

DIBBTOP numeric, Diameter inside bark at the height of the broken top.

DBH numeric, DBH of the tree, Must be given when BTOP is D.

taperEquationForm

character, Specifies which taper equaiton will be used to estimate tree height, currently supports KBEC, KBECQCI, KFIZ. If missing, the function uses KBEC

as default.

FIZorBEC character, Specifies which FIZ or BEC (depends on taperEquationForm) zones

the tree located.

species character, Tree species.

volMultiplier numeric, Volume adjustment. If missing, 1 will be used.

SASOriginal logical, Specifies whether the original sas algrithm will be used for guess tree

height If missing, FALSE will be used.

Value

Total tree height

Author(s)

Yong Luo

See Also

heightEstimateForBTOP_H

heightEstimateForBTOP_H

Estimate tree height for a broken top tree when projected tree height is available

Description

This function is to esimate a broken top tree's height based on projected tree height in the field (heightProjected). For the broken top trees that have diameter at broken and broken top trees, total tree height also can be esimated using heightEstimateForBTOP_D.

Usage

```
heightEstimateForBTOP_H(heightProjected)
```

Arguments

heightProjected

numeric, Projected tree height in the field, must be non-NA value.

Value

Total tree height

Author(s)

Yong Luo

See Also

heightEstimateForBTOP_D

lm_group

Extended Im function by adding group functionality

Description

A generic function by adding grouping functionality in 1m function.

Usage

12 merge_dupUpdate

Arguments

```
formula character, Linear model formula.

data data.table, The data used for the models.

groupBy character, Specifies variables that used for the group.

see lm for the rest arguments.
```

Value

A list of regression analyses results

Author(s)

Yong Luo

See Also

1m

merge_dupUpdate

Merge table and update values for duplicate column

Description

This is an extended function for merge function by updating values for duplicate column for the first, second or both tables.

Usage

```
merge_dupUpdate(x, y, by, updateDup, ...)

## S4 method for signature 'data.table,data.table,character,logical'
merge_dupUpdate(x, y,
    by, updateDup, ...)

## S4 method for signature 'data.table,data.table,character,missing'
merge_dupUpdate(x, y,
    by, updateDup, ...)
```

Arguments

```
x data.table, The first table for merging.

y data.table, The second table for merging.

by character, The key to merge two tables.

updateDup logical, Specifies whether update duplicate column in merged table when its information is available in y table, which means update from the second table. If missing, the function takes TRUE.

... see merge for rest of arguments.
```

PHFCalculator 13

Value

A merged table without duplicate columes. A warning message is given if the duplicate column has different values.

Author(s)

Yong Luo

See Also

merge

PHFCalculator	Calculate tree per ha factor for both fix and variable area plot
i ili carcaratoi	Ediculate tree per ha factor for both fix and variable area prof

Description

Calculates tree per ha factor for both fix and variable area plots.

Usage

PHFCalculator(sampleType, blowUp, treeWeight, plotWeight, treeBasalArea)

Arguments

sampleType	character, Specifies how the plot is sampled among fixed area plot or variable area plot, must be either V for variable area plot or F for fixed area plot.
blowUp	numeric, Specifies the blowup factor. For fixed area plot, it is calculated as 1/plotarea. For variable area plot, it is basal area factor (BAF).
treeWeight	numeric, Specifies whether a tree is zero counted (tree is out), one time counted (regular count) or two times counted (double counted) in the walk through sampling protocal.
plotWeight	numeric, Specifies how a plot is measured, i.e., full plot measured (valued as 1), half plot measured (valued as 2) or quarter plot measured (valued as 4).
treeBasalArea	numeric, When plot is measured using variable area plot, this value must be given, otherwise, can be missing

Value

Tree per ha factor

Author(s)

randomStemMapping	The function is to generate stem mapping using random spatial distribution of stratified size group for non-stem-mapped trees.

Description

The function is to generate stem mapping using random spatial distribution of stratified size group for non-stem-mapped trees.

Usage

```
randomStemMapping(objectID, size, noofGroup = 5, plotSize,
  mapSize = 10000)
```

Arguments

objectID	character, The unique object identifier. Must be unique.
size	numeric, The size that used for compute competition index.
noofGroup	numeric, Defines how many groups to distribute objects. Default is 5.
plotSize	numeric, The plot size for the objects.
mapSize	numeric, The map size to distribute the objects. Default is 10000 m2.

Value

a data table that has five columns, plotNumber, treeNumber, Year, IntraH and InterH

Note

no note

Author(s)

Yong Luo

See Also

no

SIInBC 15

SIInBC	Derive site index for a given spatial coverage or a spatial point
	* *

Description

This function is to derive species' site index for a given spatial coverage or spatial points based on BC provincial species productivity maps.

Usage

```
SIInBC(SIMapPath, spatialCoverage, species = "all",
  returnClass = "table")
```

Arguments

SIMapPath character, Specifies folder location of species index maps. Please request all

the maps from author and save them into your target folder. The function only supports TIFF format. Currently those maps were converted from BC Data cat-

alogue.

spatialCoverage

spatialPolygons or spatialPoints, Specifies spatial polygons or spatial points that

need to intersect.

species character, Must be one or some of 22 species.

returnClass character, Specifies the class you intended to return from either sp or table. If

missing, table will be used.

Value

the returned value depends on returnClass arguement and class of spatialCoverage arguement. If returnClass is set as table, a table will be returned. If returnClass is set as sp, a raster layer will be returned for SpatialPolygons* objects, while a SpatialPointDataframe will be returned for SpatialPoints* objects.

Author(s)

Yong Luo

speciesCode2speciesType

Group species into deciduous and coniferous species group

Description

This function is to group species into deciduous and coniferous species types based on BC species code and sp_type lookup table. This function uses hardcoded sp_type lookup table.

Usage

```
speciesCode2speciesType(species)
## S4 method for signature 'character'
speciesCode2speciesType(species)
```

Arguments

species

character, Tree basic species code, which is SPECIES in VRI original data.

Value

Species type: D-deciduous species and C-coniferous species. NA, with a warning message, is given if a species fails to be grouped.

Author(s)

Yong Luo

standardizeSpeciesName

Standardize species name from different forest inventory data, this function to make all the species compatible to biomassCalculation function

Description

Standardize species name from different forest inventory data, this function to make all the species compatible to biomassCalculation function

Usage

```
standardizeSpeciesName(speciesTable, forestInventorySource)
## S4 method for signature 'data.table,character'
standardizeSpeciesName(speciesTable,
    forestInventorySource)
```

Arguments

speciesTable data table. It must at least have one column species forestInventorySource,

Character string. Give the forest inventory data source Currently support MBPSP, MBTSP, ABPSP, BCPSP, SKPSP, SKTSP and NFIPSP

Value

a data tables, the first one contains successfully standardized species. the newSpeciesName is the standardized name, unknown means the species in the original species table can not be found according to manual

stemMappingExtension 17

Note

no note

Author(s)

Yong Luo

See Also

no

stemMappingExtension Extend stem mapping to a target area and shape.

Description

The function cuts a circle stem map into a largest hexagon in circle and extends this hexagon to a target area and shape. This is a generic function.

Usage

```
stemMappingExtension(objectID, bearing, distance, plotRadius = 11.28,
  targetArea = 1, targetShape = "square", randomRotate = FALSE)
```

Arguments

objectID	character, A object's ID, e.g., a tree's ID.
bearing	numeric, Azimuth of a object from the north. It should be between 0 to 360.
distance	numeric, Distance between a object and the centre of the circle.
plotRadius	numeric, Radius of the plot circle. If missing, 11.28 will be used, as it presents the radius of a circle for big trees (i.e., trees DBH $>= 9$).
targetArea	numeric, Defines the area you may want to extend. The unit of this input is ha. Default is $1\ \mathrm{ha}$.
targetShape	character, Defines the shape of the target area. It currently supports circle and square. The default is square.
randomRotate	logical, Defines whether need to random rotate the hexagon when merge into a targetArea. The default is FALSE.

Value

A table contains the x and y for all the objects in the extended area.

Author(s)

Examples

```
## Not run:
## randomly generate some trees
library(data.table)
smallplottrees <- data.table(tree_id = 1:20,</pre>
                              angle = runif(20, min = 0, max = 360),
                              distance = runif(20, min = 0, max = 5.6))
## extend it to 1 ha
treelist_smallplot <- stemMappingExtension(objectID = smallplottrees$tree_id,</pre>
                                            bearing = smallplottrees$angle,
                                            distance = smallplottrees$distance,
                                            plotRadius = 5.64,
                                            randomRotate = TRUE)
bigplottrees <- data.table(tree_id = 1:20,</pre>
                            angle = runif(20, min = 0, max = 360),
                            distance = runif(20, min = 0, max = 11.28))
## extend it to 1 ha
treelist_bigplot <- stemMappingExtension(objectID = bigplottrees$tree_id,</pre>
                                          bearing = bigplottrees$angle,
                                          distance = bigplottrees$distance,
                                          plotRadius = 11.28)
treelist_smallplot[, source := "smallplot"]
treelist_bigplot[, source := "bigplot"]
alltreelist <- rbind(treelist_bigplot, treelist_smallplot)</pre>
alltreeplot <- ggplot(data = alltreelist, aes(x, y))+
 geom_point(aes(col = factor(source)))
## End(Not run)
```

stemMappingExtension_square

Extend stem mapping to a target area and shape.

Description

The function extends stem mapping in a square plot to a target area and shape.

Usage

```
stemMappingExtension_square(objectID, bearing, distance, plotLength,
  targetArea = 1, targetShape = "square", randomRotate = FALSE)
```

Arguments

```
objectID character, A object's ID, e.g., a tree's ID.
```

bearing numeric, Bearing of a object from the north. It should be between 0 to 360. distance numeric, Distance between a object and the centre of the circle. numeric, Length of a square plot. plotLength targetArea numeric, Defines the area you may want to extend. The unit of this input is ha. Default is 1 ha. character, Defines the shape of the target area. It currently supports circle and targetShape square. The default is square. randomRotate

logical, Defines whether need to random rotate the hexagon when merge into a

targetArea. The default is FALSE.

Value

A table contains the x and y for all the objects in the extended area.

Author(s)

Yong Luo

Examples

```
## Not run:
## randomly generate some trees
library(data.table)
smallplottrees <- data.table(tree_id = 1:20,</pre>
                              angle = runif(20, min = 0, max = 360),
                              distance = runif(20, min = 0, max = 5.6))
## extend it to 1 ha
treelist_smallplot <- stemMappingExtension_square(objectID = smallplottrees$tree_id,</pre>
                                             bearing = smallplottrees$angle,
                                             distance = smallplottrees$distance,
                                             radius = 5.64,
                                             randomRotate = TRUE)
bigplottrees <- data.table(tree_id = 1:20,</pre>
                            angle = runif(20, min = 0, max = 360),
                            distance = runif(20, min = 0, max = 11.28))
## extend it to 1 ha
treelist_bigplot <- stemMappingExtension_square(objectID = bigplottrees$tree_id,</pre>
                                          bearing = bigplottrees$angle,
                                           distance = bigplottrees$distance,
                                           radius = 11.28)
treelist_smallplot[, source := "smallplot"]
treelist_bigplot[, source := "bigplot"]
alltreelist <- rbind(treelist_bigplot, treelist_smallplot)</pre>
alltreeplot <- ggplot(data = alltreelist, aes(x, y))+
 geom_point(aes(col = factor(source)))
## End(Not run)
```

20 taperImplementor

taperCoeffsGenerator Generate the coefficients table of taper equations

Description

Generates the coefficients of the taper equations for based on specific taper equation form (taperEquationForm)

Usage

```
taperCoeffsGenerator(taperEquationForm)
## S4 method for signature 'character'
taperCoeffsGenerator(taperEquationForm)
## S4 method for signature 'missing'
taperCoeffsGenerator()
```

Arguments

taperEquationForm

character, Specifies a taper equation form one of KBEC, KBECQCI, KFIZ3.

Value

A coeffients table

Author(s)

Yong Luo

taperImplementor

Implement taper equation for a given tree

Description

Implement taper equation for a given tree

Usage

```
taperImplementor(taperEquationForm, taperCoeffs, FIZorBEC, species,
  height_I, heightTotal, DBH, volMultiplier)

## S4 method for signature

## 'character,

## data.table,

## character,

## character,

## mumeric,

## numeric,
```

treeVolCalculator 21

```
## numeric,
## numeric'
taperImplementor(taperEquationForm,
   taperCoeffs, FIZorBEC, species, height_I, heightTotal, DBH,
   volMultiplier)
```

Arguments

taperEquationForm

character, Specifies a taper equation form one of KBEC, KBECQCI, KFIZ3.

taperCoeffs data.table, Table that stores the coefficients that match the taper equation.

FIZorBEC character, FIZ or BEC. species character, Species code.

height_I numeric, Height from ground.
heightTotal numeric, Total height of a tree.

DBH numeric, Diameter at breast height.

volMultiplier,

Volume multiplier adjustment.

Value

DIB_I diameter inside bark at height_I

Note

This function is inside of the VRIVolTree function

Author(s)

Yong Luo

treeVolCalculator

Calculate volume for trees

Description

This function is to calculate tree volume using taper equations on a basis of 10 cm slice. As default, the function is to calculate whole tree volume (VOL_WSV), total merchantable volume (VOL_BELOW_UTOP) and non-merchantable volume (VOL_ABOVE_UTOP) based on FIZorBEC, species, height, DBH using Kozak BEC taper equations. The function also handles broken top trees by specifying BTOPEstimateType, BTOPHeight and BTOPDIB. Accordingly, VOL_BELOW_BTOP and VOL_ABOVE_BTOP are produced. Lastly, the function derives volume (denoted as LOG_V_X), merchantable volume (denoted as LOG_VM_X) and top inside bark diameter (denoted as LOG_D_X) for each log when the logLengthMatrix is provided. For all the scenarioes, stump height (HT_STUMP), inside bark diameter at stump height (DIB_STUMP), breast height (HT_BH), inside bark diameter at breast height (DIB_BH) are generated.

22 treeVolCalculator

Usage

Arguments

FIZorBEC character, Specifies which FIZ or BEC (depends on taperEquation) zones the

tree located in BC.

species character, Tree species, must be BC species code.

height numeric, Total tree height in meter.

DBH numeric, DBH of the tree in cm.

taperEquationForm

character, Specifies which taper equaiton will be used, currently support KFIZ3 or KBEC. See function DIB_ICalculator for details. Default is KBEC, if miss-

ing.

volMultiplier numeric, Volume adjustment multiplier. If missing, 1 (no adjustment) is used.

stumpHeight numeric, Defines stump height. If missing, 0.3 m is used.
breastHeight numeric, Defines the breast height. If missing, 1.3 m is used.

UTOPDIB numeric, Merchantable inside-bark diameter. If missing, UTOP is 10.

BTOPEstimateType

integer, Must among NA, 1, 2, 3. Defines whether a tree has broken top and which field observation (height at broken or DIB at broken) is used to define broken point. NA means that tree is not broken top. 1 and 3 means diameter at broken top is not available, height at broken top is used to define broken point. 2 means diameter at broken top is available and is used to define broken point.

Default is NA: tree does not have broken top.

BTOPHeight numeric, Height at broken top.

BTOPDIB numeric, Diameter inside bark at height of broken top.

logLengthMatrix

data.table, Log length matrix. If missing, there is no log-level volume returned.

logMinLength numeric, Minimum log length. This argument is activated when logLengthMa-

trix is provided.

Value

A volume table

Author(s)

UTM_Convertor 23

UTM (Convei	rtor
-------	--------	------

Convert UTM to other coordinate reference system.

Description

Converts UTM coordinates to the other coordinate reference system.

Usage

```
UTM_Convertor(point_ID, zone, northing, easting,
    CRS_To = "+proj=aea +lat_1=50 +lat_2=58.5 +lat_0=45 +lon_0=-126 +x_0=1000000\n
    class = "sp")
```

Arguments

point_ID	character, Data point ID.
zone	integer, UTM zone.
northing	integer, UTM northing.
easting	integer, UTM easting.
CRS_To	character, Defines the spatial coordination reference that you wish to transform. Default is BC Albers reference system.
class	character, Define the class of returned objective. Currently this function supports either table or sp class. Default is table.

Value

Reprojected objective.

Author(s)

Yong Luo

Examples

Index

```
annualGrowthRateCalculator, 2
                                                standardizeSpeciesName, data.table, character-method
appendedCat, 3
                                                        (standardizeSpeciesName), 16
areaProportion, 3
                                                stemMappingExtension, 17
                                                stemMappingExtension_square, 18
bec, 8
                                                taperCoeffsGenerator, 20
BEC2IC, 4
BEC2IC, character-method (BEC2IC), 4
                                                taperCoeffsGenerator, character-method
                                                        (taperCoeffsGenerator), 20
biomassCalculator, 4
                                                taperCoeffsGenerator,missing-method
checkSize_remeas, 5
                                                        (taperCoeffsGenerator), 20
                                                taperImplementor, 20
DBHClassifier, 6
                                                taperImplementor, character, data.table, character, character
DIB_ICalculator, 7
                                                        (taperImplementor), 20
{\tt DIB\_ICalculator, character, character, character, character}_{t} {\tt rumesic-method}
        (DIB_ICalculator), 7
                                                tsa, 8
getSpatial, 7
                                                UTM_Convertor, 23
HegyiCICalculator, 9
heightEstimateForBTOP_D, 10, 11
heightEstimateForBTOP_H, 10, 11
lm, 11, 12
lm_group, 11
lm_group,character,data.table,character-method
        (lm_group), 11
lm_group, character, data.table, missing-method
        (lm_group), 11
merge, 12, 13
merge_dupUpdate, 12
merge_dupUpdate,data.table,data.table,character,logical-method
        (merge_dupUpdate), 12
merge_dupUpdate,data.table,data.table,character,missing-method
        (merge_dupUpdate), 12
PHFCalculator, 13
randomStemMapping, 14
SIInBC, 15
speciesCode2speciesType, 15
speciesCode2speciesType,character-method
        (speciesCode2speciesType), 15
standardizeSpeciesName, 16
```