indice

Eduardo Bologna

28/12/2020

Lectura de las bases de datos

Selección de la base a usar

```
base<-eph_1_20
```

Organización

rotular variables, crear grupos de edades, recodificar y eliminar valores perdidos

Tasa de actividad

solo mayores de 9 años

Por grupos

```
actividad_sexo<-mayores_9 %>%
  group_by(CH04) %>%
  summarise(valor=(((addmargins(wtd.table(ESTADO, weights = PONDERA)))[1]+
                      (addmargins(wtd.table(ESTADO, weights = PONDERA)))[2])/
                     (addmargins(wtd.table(ESTADO, weights = PONDERA)))[4]))
actividad_region<-mayores_9 %>%
  group_by(REGION) %>%
  summarise(valor=(((addmargins(wtd.table(ESTADO, weights = PONDERA)))[1]+
                      (addmargins(wtd.table(ESTADO, weights = PONDERA)))[2])/
                     (addmargins(wtd.table(ESTADO, weights = PONDERA)))[4]))
actividad_edad<-mayores_9 %>%
  group_by(grupos_edades) %>%
  summarise(valor=(((addmargins(wtd.table(ESTADO, weights = PONDERA)))[1]+
                      (addmargins(wtd.table(ESTADO, weights = PONDERA)))[2])/
                     (addmargins(wtd.table(ESTADO, weights = PONDERA)))[4]))
actividad_educacion<-mayores_9 %>%
  group_by(NIVEL_ED) %>%
  summarise(valor=(((addmargins(wtd.table(ESTADO, weights = PONDERA)))[1]+
                      (addmargins(wtd.table(ESTADO, weights = PONDERA)))[2])/
                     (addmargins(wtd.table(ESTADO, weights = PONDERA)))[4]))
```

Desocupación

solo personas económicamente activas

```
actives<-subset(base, base$ESTADO==1 | base$ESTADO==2)

tasa_desocupacion <- addmargins(wtd.table(actives$ESTADO, weights = actives$PONDERA))[2]/
   addmargins(wtd.table(actives$ESTADO, weights = actives$PONDERA))[3]

tasa_desocupacion<-as.numeric(tasa_desocupacion)</pre>
```

Por grupos

```
desocupacion_sexo<-actives %>%
  group_by(CH04) %>%
  summarise(valor=(addmargins(wtd.table(ESTADO, weights = PONDERA))[2]/
                     addmargins(wtd.table(ESTADO, weights = PONDERA))[3]))
desocupacion_region<-actives %>%
  group by (REGION) %>%
  summarise(valor=(addmargins(wtd.table(ESTADO, weights = PONDERA))[2]/
                     addmargins(wtd.table(ESTADO, weights = PONDERA))[3]))
desocupacion edad<-actives %>%
  group_by(grupos_edades) %>%
  summarise(valor=(addmargins(wtd.table(ESTADO, weights = PONDERA))[2]/
                     addmargins(wtd.table(ESTADO, weights = PONDERA))[3]))
desocupacion_educacion<-actives %>%
  group_by(NIVEL_ED) %>%
  summarise(valor=(addmargins(wtd.table(ESTADO, weights = PONDERA))[2]/
                     addmargins(wtd.table(ESTADO, weights = PONDERA))[3]))
```

Proporción de personas que trabajan por cuenta propia

solo personas ocupadas

```
ocupades<-subset(base, base$ESTADO==1)
prop_independientes<-(addmargins(wtd.table(ocupades$CAT_OCUP, weights = ocupades$PONDERA)))[2]/
   (addmargins(wtd.table(ocupades$CAT_OCUP, weights = ocupades$PONDERA)))[5]
prop_independientes<-as.numeric(prop_independientes)</pre>
```

Por grupos

```
prop_independientes_sexo<-ocupades %>%
  group_by(CH04) %>%
  summarise(valor=(addmargins(wtd.table(CAT_OCUP, weights = PONDERA)))[2]/
              (addmargins(wtd.table(CAT OCUP, weights = PONDERA)))[5])
prop_independientes_region<-ocupades %>%
  group_by(REGION) %>%
  summarise(valor=(addmargins(wtd.table(CAT_OCUP, weights = PONDERA))[2]/
                     addmargins(wtd.table(CAT_OCUP, weights = PONDERA))[5]))
prop_independientes_edad<-ocupades %>%
  group_by(grupos_edades) %>%
  summarise(valor=(addmargins(wtd.table(CAT_OCUP, weights = PONDERA))[2]/
                     addmargins(wtd.table(CAT_OCUP, weights = PONDERA))[5]))
prop_independientes_educacion<-ocupades %>%
  group by (NIVEL ED) %>%
  summarise(valor=(addmargins(wtd.table(CAT_OCUP, weights = PONDERA))[2]/
                     addmargins(wtd.table(CAT_OCUP, weights = PONDERA))[5]))
```

```
gap_prop_independientes_edad<-100*round(
  (max(prop_independientes_edad[,2])-
      min(prop_independientes_edad[,2]))/max(prop_independientes_edad[,2]),4)

gap_prop_independientes_educacion<-100*round(
  (max(prop_independientes_educacion[,2])-
      min(prop_independientes_educacion[,2]))/max(prop_independientes_educacion[,2]),4)</pre>
```

Seguridad

solo personas asalariadas

estabilidad + obra social +aguinaldo + vacaciones + dias por enfermedad + descuento jubilatorio

```
asalariades<-subset(base, base$CAT_OCUP==3)
asalariades$PP07C[asalariades$PP07C==0]<-NA
asalariades PP07C [asalariades PP07C==9] <-NA
asalariades$estabilidad<-asalariades$PP07C-1
asalariades$PP07G1[asalariades$PP07G1==0]<-NA
asalariades$PP07G1[asalariades$PP07G1==9]<-NA
asalariades$vacaciones <-asalariades$PP07G1
asalariades$vacaciones[asalariades$vacaciones==2]<-0
asalariades$PP07G2[asalariades$PP07G2==0]<-NA
asalariades$PP07G2[asalariades$PP07G2==9]<-NA
asalariades$aguinaldo<-asalariades$PP07G2
asalariades$aguinaldo[asalariades$aguinaldo==2]<-0
asalariades$PP07G3[asalariades$PP07G3==0]<-NA
asalariades$PP07G3[asalariades$PP07G3==9]<-NA
asalariades$dias_enfermedad<-asalariades$PP07G3
asalariades$dias_enfermedad[asalariades$dias_enfermedad==2]<-0
asalariades$PP07G4[asalariades$PP07G4==0]<-NA
asalariades$PP07G4[asalariades$PP07G4==9]<-NA
asalariades$obra_social<-asalariades$PP07G4
asalariades$obra_social[asalariades$obra_social==2]<-0
asalariades$PP07H[asalariades$PP07H==0]<-NA
asalariades$PP07H[asalariades$PP07H==9]<-NA
asalariades$aporte_jubilatorio<-asalariades$PP07H
asalariades$aporte_jubilatorio[asalariades$aporte_jubilatorio==2]<-0
asalariades$seguridad<-(asalariades$estabilidad + asalariades$vacaciones+
                          asalariades$aguinaldo + asalariades$dias_enfermedad+
```

```
asalariades$obra_social+
asalariades$aporte_jubilatorio)/6

seguridad<-round(wtd.mean(asalariades$seguridad, weights = asalariades$PONDERA),3)
sd_seguridad<-weightedSd(asalariades$seguridad, weights = asalariades$PONDERA,
na.rm=TRUE)
```

Por grupos

```
seguridad_sexo<-asalariades %>%
  group_by(CH04) %>%
  summarise(valor=wtd.mean(seguridad, weights = PONDERA))

seguridad_region<-asalariades %>%
  group_by(REGION) %>%
  summarise(valor=wtd.mean(seguridad, weights = PONDERA))

seguridad_edad<-asalariades %>%
  group_by(grupos_edades) %>%
  summarise(valor=wtd.mean(seguridad, weights = PONDERA))

seguridad_educacion<-asalariades %>%
  group_by(NIVEL_ED) %>%
  summarise(valor=wtd.mean(seguridad, weights = PONDERA))
```

Ingresos salariales

solo personas ocupadas con ingreso no nulo

```
ocupades$PP08D1[ocupades$PP08D1==-9]<-NA
ocupades$PP08D1[ocupades$PP08D1==0]<-NA
ocupades$ingresos<-ocupades$PP08D1
ingresos<-wtd.mean(ocupades$ingresos, weights = ocupades$PONDERA)</pre>
```

Por grupos

```
ingreso_sexo<-ocupades %>%
  group_by(CH04) %>%
  summarise(valor=wtd.mean(ingresos, weights = PONDERA))

ingreso_region<-ocupades %>%
  group_by(REGION) %>%
  summarise(valor=wtd.mean(ingresos, weights = PONDERA))

ingreso_edad<-ocupades %>%
  group_by(grupos_edades) %>%
  summarise(valor=wtd.mean(ingresos, weights = PONDERA))

ingreso_educacion<-ocupades %>%
  group_by(NIVEL_ED) %>%
  summarise(valor=wtd.mean(ingresos, weights = PONDERA))
```

Gaps

Ingreso - hora

```
ocupades$horas_semana<-ocupades$PP3E_TOT
ocupades$horas_semana[ocupades$horas_semana==0]<-NA
```

```
ocupades$horas_semana[ocupades$horas_semana>84]<-NA
ocupades$ingreso_hora<-ocupades$ingresos/(ocupades$horas_semana*4)
ingreso_hora<-wtd.mean(ocupades$ingreso_hora, weights = ocupades$PONDERA)</pre>
```

Por grupos

```
ingreso_hora_sexo<-ocupades %>%
  group_by(CH04) %>%
  summarise(valor=wtd.mean(ingreso_hora, weights = PONDERA))

ingreso_hora_region<-ocupades %>%
  group_by(REGION) %>%
  summarise(valor=wtd.mean(ingreso_hora, weights = PONDERA))

ingreso_hora_edad<-ocupades %>%
  group_by(grupos_edades) %>%
  summarise(valor=wtd.mean(ingreso_hora, weights = PONDERA))

ingreso_hora_educacion<-ocupades %>%
  group_by(NIVEL_ED) %>%
  summarise(valor=wtd.mean(ingreso_hora, weights = PONDERA))
```

Gaps

Cociente de la renta media per cápita del 10% más rico al 50% más pobre

```
base$IPCF[base$IPCF==0]<-NA
ingresos_bajos<-subset(
  base, base$IPCF<=quantile(base$IPCF,.50, na.rm = TRUE))
ingresos_altos<-subset(</pre>
```

```
base, base$IPCF>=quantile(base$IPCF,.90, na.rm = TRUE))
p90_p50_total<-wtd.mean(
  ingresos_altos$IPCF, weights = ingresos_altos$PONDERA)/
  wtd.mean(ingresos_bajos$IPCF, weights = ingresos_bajos$PONDERA)</pre>
```

Por grupos

```
ingresos bajos sexo<-base %>% group by(CH04) %>%
  subset(IPCF<=quantile(IPCF,.50, na.rm = TRUE))%>%
    summarise(media_ingresos_bajos=wtd.mean(IPCF, weights = PONDERA))
ingresos_altos_sexo<-base %>% group_by(CH04) %>%
  subset(IPCF>=quantile(IPCF, .90, na.rm = TRUE))%>%
  summarise(media_ingresos_altos=wtd.mean(IPCF, weights = PONDERA))
p90_p50_sexos<-merge(ingresos_bajos_sexo, ingresos_altos_sexo)
p90_p50_sexos$diferencia<-p90_p50_sexos$media_ingresos_altos/p90_p50_sexos$media_ingresos_bajos
ingresos bajos region<-base %>% group by (REGION) %>%
  subset(IPCF<=quantile(IPCF,.50, na.rm = TRUE))%>%
  summarise(media_ingresos_bajos=wtd.mean(IPCF, weights = PONDERA))
ingresos_altos_region<-base %>% group_by(REGION) %>%
  subset(IPCF>=quantile(IPCF,.90, na.rm = TRUE))%>%
  summarise(media_ingresos_altos=wtd.mean(IPCF, weights = PONDERA))
p90_p50_region<-merge(ingresos_bajos_region, ingresos_altos_region)
p90_p50_region$diferencia<-p90_p50_region$media_ingresos_altos/p90_p50_region$media_ingresos_bajos
ingresos_bajos_edad<-base %>% group_by(grupos_edades) %>%
  subset(IPCF<=quantile(IPCF,.50, na.rm = TRUE))%>%
  summarise(media_ingresos_bajos=wtd.mean(IPCF, weights = PONDERA))
ingresos_altos_edad<-base %>% group_by(grupos_edades) %>%
  subset(IPCF>=quantile(IPCF, .90, na.rm = TRUE))%>%
  summarise(media_ingresos_altos=wtd.mean(IPCF, weights = PONDERA))
p90_p50_edad<-merge(ingresos_bajos_edad, ingresos_altos_edad)
p90_p50_edad$diferencia<-p90_p50_edad$media_ingresos_altos/p90_p50_edad$media_ingresos_bajos
ingresos_bajos_educacion<-base %>% group_by(NIVEL_ED) %>%
  subset(IPCF<=quantile(IPCF,.50, na.rm = TRUE))%>%
  summarise(media_ingresos_bajos=wtd.mean(IPCF, weights = PONDERA))
ingresos_altos_educacion<-base %>% group_by(NIVEL_ED) %>%
  subset(IPCF>=quantile(IPCF,.90, na.rm = TRUE))%>%
  summarise(media_ingresos_altos=wtd.mean(IPCF, weights = PONDERA))
```

```
p90_p50_educacion<-merge(ingresos_bajos_educacion, ingresos_altos_educacion)
p90_p50_educacion$diferencia<-p90_p50_educacion$media_ingresos_altos/p90_p50_educacion$media_ingresos_b
```

Comparaciones simples

```
sexo<-c("varones", "mujeres")</pre>
region<-c("Gran Buenos Aires", "NOA",
          "NEA", "Cuyo", "Pampeana", "Patagónica")
edad<-c("menos de 25", "25 -39", "40 - 54", "55 y más")
educacion <- c ("primario incompleto o menos", "primario completo",
             "secundario incompleto", "secundario completo",
             "superior incompleto", "superior completo")
grupos<-c("general", sexo, region, edad, educacion)</pre>
valores actividad<-c(tasa actividad[[1]], actividad sexo[[2]],
                     actividad_region[[2]], actividad_edad[[2]],
                     actividad educacion[[2]])
valores_desocupacion<-c(tasa_desocupacion[[1]], desocupacion_sexo[[2]],</pre>
                        desocupacion region[[2]], desocupacion edad[[2]],
                        desocupacion educacion[[2]])
valores_prop_independientes<- c(prop_independientes[[1]], prop_independientes_sexo[[2]],
                                 prop_independientes_region[[2]], prop_independientes_edad[[2]],
                                 prop_independientes_educacion[[2]])
valores_seguridad<-c(seguridad[[1]], seguridad_sexo[[2]], seguridad_region[[2]],</pre>
                     seguridad_edad[[2]], seguridad_educacion[[2]])
valores_ingreso<-c(ingresos[[1]], ingreso_sexo[[2]], ingreso_region[[2]],</pre>
                   ingreso_edad[[2]], ingreso_educacion[[2]])
valores_ingreso_hora<-c(ingreso_hora[[1]], ingreso_hora_sexo[[2]], ingreso_hora_region[[2]],
                        ingreso_hora_edad[[2]], ingreso_hora_educacion[[2]])
valores_diferencia_p90_p50<-c(p90_p50_sexos$diferencia, p90_p50_region$diferencia,
                               p90_p50_edad$diferencia, p90_p50_educacion$diferencia)
compara_grupos<-data.frame(grupos, 100*round(valores_actividad,3),</pre>
                           100*round(valores_desocupacion,3),
                           100*round(valores_prop_independientes,3),
                           round(valores_seguridad,3), round(valores_ingreso,2),
                           round(valores_ingreso_hora,2),
                           round(valores_diferencia_p90_p50,1))
names(compara_grupos)<-c("grupo", "tasa de actividad", "tasa de desocupación",
                          "proporción de trabajadores por cuenta propia", "seguridad",
                          "ingreso medio", "ingreso-hora medio",
                         "renta media 10% más rico a 50% más pobre")
kable(compara_grupos, format="latex", booktabs=TRUE) %>%
```

```
kable_styling(latex_options="scale_down")%>%
column_spec(2:17, width = "2cm")%>%
  row_spec(0, align = "c") # qué paso que repite columnas???
```

grupo	tasa de actividad	tasa de des- ocupación	proporción de trabajadores por cuenta propia	seguridad	ingreso medio	ingreso-hora medio	renta media 10% más rico a 50% más pobre	grupo	tasa de actividad	tasa de des- ocupación	proporción de trabajadores por cuenta propia	seguridad	ingreso medio	ingreso-hora medio	renta media 10% más rico a 50% más pobre	grupo
general varones mujeres Gran Buenos Aires NOA	54.7 63.7 46.5 56.1 53.2	10.4 9.7 11.2 11.5 9.9	22.3 23.3 21.0 21.4 22.6	0.755 0.729 0.792 0.762 0.714	29877.64 33455.70 25766.91 31803.43 23255.61	216.33 215.70 217.11 232.90 166.95	8.8 8.9 7.9 9.8 7.3									
NEA Cuyo Pampeana Patagónica menos de 25	50.2 55.2 53.3 49.5 26.7	5.4 7.2 10.1 7.3 27.3	23.8 23.6 24.7 16.3 14.3	0.736 0.693 0.753 0.860 0.469	22857.03 25713.37 28769.84 43902.19 17052.13	162.16 182.94 211.74 285.09 131.70	7.3 7.5 7.4 7.6 7.8									
25 -39 40 - 54 55 y más primario incompleto o menos primario completo	81.6 83.2 37.4 20.8 50.0	9.7 6.1 6.7 10.2 9.0	18.6 22.7 33.1 35.7 29.6	0.746 0.848 0.804 0.448 0.627	29213.48 33872.46 32605.76 16869.50 21715.92	200.03 248.26 261.61 131.07 160.75	7.7 9.2 6.8 6.7 7.3									
secundario incompleto secundario completo superior incompleto superior completo	38.6 69.4 60.6 78.8	14.5 11.5 14.0 4.1	25.2 20.1 18.6 18.7	0.586 0.777 0.748 0.899	21241.63 28117.77 29888.43 43080.39	158.00 189.46 220.13 338.39	7.0 6.9 9.0 6.8									

Normalización de los valores al intervalo [0 - 100]

Labor Unequality Index (LaUnIn)

Índice aditivo

Gráfico

