Consider a random process X(t) where each realization of the process is defined as $X(t)=A\cos(\omega t+\phi)$, where A and ω are constants, and ϕ is uniformly distributed in $[0,2\pi)$. Find the mean E[X(t)] of this process.

Solution:

Since ϕ is uniformly distributed, the probability density function (PDF) of ϕ is $f_{\phi}(\phi)=\frac{1}{2\pi}$. The mean is:

$$E[X(t)] = E[A\cos(\omega t + \phi)] = A\int_0^{2\pi}\cos(\omega t + \phi)\cdotrac{1}{2\pi}d\phi$$

Using the fact that $\int_0^{2\pi}\cos(\omega t + \phi)d\phi = 0$, we get:

$$E[X(t)] = 0$$

2

For the random process $Y(t)=Be^{j\theta}$ where B is constant and θ is uniformly distributed over $[0,2\pi)$, find E[Y(t)].

Solution:

Since heta is uniformly distributed, the mean of Y(t) is:

$$E[Y(t)] = B \int_0^{2\pi} e^{j heta} \cdot rac{1}{2\pi} d heta$$

By solving this integral, we get:

$$E[Y(t)] = B \cdot 0 = 0$$

If X(t)=Z+Wt, where Z and W are independent random variables with means E[Z]=3 and E[W]=2, find E[X(t)] as a function of t.

Solution:

The expectation is:

$$E[X(t)] = E[Z+Wt] = E[Z] + E[W] \cdot t = 3+2t$$

4

Problem 1:

Given a random process $X(t)=A\sin(\omega t)+B\cos(\omega t)$, where A and B are zero-mean random variables with variances σ_A^2 and σ_B^2 respectively, find $E[X(t)^2]$.

Solution:

$$E[X(t)^2] = E[(A\sin(\omega t) + B\cos(\omega t))^2]$$

Expanding and using $E[A^2] = \sigma_A^2$ and $E[B^2] = \sigma_B^2$:

$$E[X(t)^2] = \sigma_A^2 \sin^2(\omega t) + \sigma_B^2 \cos^2(\omega t)$$

5

For a random process $Y(t)=C\sin(\omega t)$ where C is a random variable with E[C]=0 and $\mathrm{Var}(C)=4$, find the variance $\mathrm{Var}(Y(t)).$

Solution:

$$Var(Y(t)) = E[Y(t)^2] - (E[Y(t)])^2$$

Since E[Y(t)] = 0, we get:

$$Var(Y(t)) = E[C^2 \sin^2(\omega t)] = 4 \sin^2(\omega t)$$

Let Z(t)=X(t)+Y(t) where X(t) and Y(t) are independent random processes with variances $\sigma_X^2=1$ and $\sigma_Y^2=2$, respectively. Find the variance ${
m Var}(Z(t))$.

Solution:

$$\operatorname{Var}(Z(t)) = \operatorname{Var}(X(t)) + \operatorname{Var}(Y(t)) = 1 + 2 = 3$$

7

Consider a random process $X(t)=A\cos(\omega t+\phi)$, where ϕ is uniformly distributed on $[0,2\pi)$. Determine if X(t) is wide-sense stationary.

Solution:

- Define Wide-Sense Stationarity (WSS): A process is WSS if:
 - Its mean E[X(t)] is constant and does not depend on t.
 - Its autocorrelation function $R_X(t_1,t_2)=E[X(t_1)X(t_2)]$ depends only on the time difference t_1-t_2 , not on the individual times t_1 or t_2 .
- 2. **Calculate** E[X(t)]: Since ϕ is uniformly distributed over $[0,2\pi)$, the expected value of $\cos(\omega t + \phi)$ over one period is zero:

$$E[X(t)] = A \cdot E[\cos(\omega t + \phi)] = A \cdot 0 = 0$$

Therefore, E[X(t)] is constant.

3. Check the Autocorrelation Function $R_X(t_1,t_2)$: The autocorrelation function is:

$$R_X(t_1,t_2) = E[X(t_1)X(t_2)]$$

Expanding $X(t) = A\cos(\omega t + \phi)$, we get:

$$R_X(t_1,t_2) = A^2 \cdot E[\cos(\omega t_1 + \phi)\cos(\omega t_2 + \phi)]$$

Using trigonometric identities, we find that $R_X(t_1,t_2)$ depends only on t_1-t_2 , satisfying WSS.

4. Conclusion:

Since both conditions of WSS are met, X(t) is wide-sense stationary.

For a process Y(t)=Z+Wt, where Z and W are independent random variables, check if Y(t) is wide-sense stationary.

Solution:

1. Calculate E[Y(t)]:

$$E[Y(t)] = E[Z + Wt] = E[Z] + E[W]t$$

Since E[Y(t)] depends on t, it is not constant over time.

2. Conclusion:

Since E[Y(t)] depends on t, Y(t) does not satisfy the condition for WSS and is not widesense stationary.

9

If $X(t) = A\cos(\omega t)$ with constant A and ω , is X(t) strictly stationary?

Solution:

- 1. **Define Strict Stationarity:** A process is strictly stationary if the joint distribution of $(X(t_1), X(t_2), \ldots, X(t_n))$ is identical to $(X(t_1 + \tau), X(t_2 + \tau), \ldots, X(t_n + \tau))$ for any time shift τ and any set of times t_1, t_2, \ldots, t_n .
- 2. Examine the Distribution:

Since A and ω are constants, X(t) is deterministic, meaning the values of X(t) do not change with a shift in time. The statistical properties remain unchanged over time.

3. Conclusion:

All joint distributions are invariant under time shift, so X(t) is strictly stationary.

Question:

Given a process $X(t)=A\cos(\omega t)$ where A is a random variable with E[A]=3. Is X(t) mean ergodic?

Solution:

- 1. **Define Mean Ergodicity:** A process is mean ergodic if the time average of each realization converges to the ensemble mean.
- 2. Calculate the Time Average of X(t): Since $A\cos(\omega t)$ is a function with a mean value equal to E[A]=3 over time, the time average equals the ensemble average.
- 3. **Conclusion:** X(t) is mean ergodic.

11

Question:

If Y(t)=B+Wt where B is a random variable with E[B]=2 and W is deterministic, is Y(t) mean ergodic?

Solution:

- 1. Calculate the Time Average of Y(t): The time average of Y(t) = B + Wt changes as t increases due to the Wt term. Therefore, it does not converge to a constant value.
- 2. Conclusion:

Since the time average does not converge to the ensemble mean, Y(t) is not mean ergodic.

Consider $Z(t)=A\sin(\omega t)$, where A is a random variable with $E[A^2]=5$. We need to determine if Z(t) is correlation ergodic.

Solution Steps:

Step 1: Define Correlation Ergodicity

A random process is **correlation ergodic** if its **time-averaged autocorrelation** equals its **ensemble-averaged autocorrelation**. Mathematically:

$$\lim_{T o\infty}rac{1}{T}\int_0^T Z(t)Z(t+ au)\,dt=E[Z(t)Z(t+ au)]$$

where τ is a time lag.

Step 2: Calculate the Time-Averaged Autocorrelation

Since $Z(t) = A\sin(\omega t)$, let's calculate Z(t)Z(t+ au) and then find its time average.

1. Express $Z(t)Z(t+\tau)$:

$$Z(t)Z(t+ au) = A\sin(\omega t) \cdot A\sin(\omega(t+ au)) = A^2\sin(\omega t)\sin(\omega(t+ au))$$

2. Use Trigonometric Identities to Simplify: Expanding $\sin(\omega t)\sin(\omega(t+ au))$ using the product-to-sum identity:

$$\sin(\omega t)\sin(\omega(t+ au))=rac{1}{2}\left[\cos(\omega au)-\cos(2\omega t+\omega au)
ight]$$

Therefore:

$$Z(t)Z(t+ au)=rac{A^2}{2}\left[\cos(\omega au)-\cos(2\omega t+\omega au)
ight]$$

3. Take the Time Average: Now, we time-average this expression over a long period T:

$$rac{1}{T}\int_0^T Z(t)Z(t+ au)\,dt = rac{A^2}{2}\sqrt{rac{1}{T}}\int_0^T \left[\cos(\omega au)-\cos(2\omega t+\omega au)
ight]dt$$

Separating the two terms:

$$rac{A^2}{2} \left(\cos(\omega au) - rac{1}{T} \int_0^T \cos(2\omega t + \omega au) \, dt
ight)$$

- First Term: The first part, $\cos(\omega au)$, is independent of t and remains as it is.
- Second Term: The second part, $\frac{1}{T}\int_0^T\cos(2\omega t+\omega \tau)\,dt$, is the time average of a cosine function with frequency 2ω . Over a long period $T\to\infty$, this integral will average out to zero because cosine oscillates symmetrically around zero over its period.

So, we get:

$$\lim_{T o\infty}rac{1}{T}\int_0^T Z(t)Z(t+ au)\,dt=rac{A^2}{2}\cos(\omega au)$$

ep 3: Calculate the Ensemble-Averaged Autocorrelation

ie ensemble-averaged autocorrelation is E[Z(t)Z(t+ au)].

. Calculate E[Z(t)Z(t+ au)]: Since $Z(t)=A\sin(\omega t)$,

$$E[Z(t)Z(t+ au)] = E\left[A^2\sin(\omega t)\sin(\omega(t+ au))\right]$$

Using the same trigonometric identity and simplifications as above, we get:

$$E[Z(t)Z(t+ au)] = rac{E[A^2]}{2}\cos(\omega au)$$

Given that $E[A^2] = 5$:

$$E[Z(t)Z(t+ au)]=rac{5}{2}\cos(\omega au)$$