64-040 Modul IP7: Rechnerstrukturen

http://tams.informatik.uni-hamburg.de/ lectures/2012ws/vorlesung/rs

Kapitel 6 –

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

卣

Wintersemester 2012/2013

Kapitel 6

Arithmetik

Addition und Subtraktion

Multiplikation

Division

Höhere Funktionen

Mathematische Eigenschaften

Literatur

Rechner-Arithmetik

- ► Wiederholung: Stellenwertsystem
- Addition: Ganzzahlen, Zweierkomplementzahlen
- ▶ Überlauf
- Multiplikation
- Division
- Schiebe-Operationen

Wiederholung: Stellenwertsystem ("Radixdarstellung")

- Wahl einer geeigneten Zahlenbasis b ("Radix")
 - ▶ 10: Dezimalsystem
 - 16: Hexadezimalsystem (Sedezimalsystem)
 - 2: Dualsystem
- ▶ Menge der entsprechenden Ziffern $\{0, 1, ..., b-1\}$
- ▶ inklusive einer besonderen Ziffer für den Wert Null
- Auswahl der benötigten Anzahl n von Stellen

$$|z| = \sum_{i=0}^{n-1} a_i \cdot b^i$$

b Basis a; Koeffizient an Stelle i

universell verwendbar, für beliebig große Zahlen

C:

- Zahlenbereiche definiert in Headerdatei /usr/include/limits.h LONG_MIN, LONG_MAX, ULONG_MAX, etc.
- Zweierkomplement (signed), Ganzzahl (unsigned)
- ▶ die Werte sind plattformabhängig (!)

Java:

- ▶ 16-bit, 32-bit, 64-bit Zweierkomplementzahlen
- Wrapper-Klassen Short, Integer, Long

```
Short.MAX_VALUE = 32767

Integer.MIN_VALUE = -2147483648

Integer.MAX_VALUE = 2147483647

Long.MIN_VALUE = -9223372036854775808L
```

Werte sind für die Sprache fest definiert

Addition im Dualsystem

- ► funktioniert genau wie im Dezimalsystem
- ► Addition mehrstelliger Zahlen erfolgt stellenweise
- Additionsmatrix:

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 10 \\ \end{array}$$

► Beispiel

unsigned Addition: Visualisierung

[BO11]

- ▶ Wortbreite der Operanden ist w, hier 4-bit
- ▶ Zahlenbereich der Operanden x, y ist 0 .. $(2^w 1)$
- ▶ Zahlenbereich des Resultats s ist 0 .. $(2^{w+1}-2)$

A. Mäder

unsigned Addition: Visualisierung (cont.)

[BO11]

- ▶ Wortbreite der Operanden und des Resultats ist w
- \Rightarrow Überlauf, sobald das Resultat größer als $(2^w 1)$
 - oberstes Bit geht verloren

unsigned Addition: Überlauf

- Wortbreite ist w
- ▶ Zahlenbereich der Operanden x, y ist 0 .. $(2^w 1)$
- ▶ Zahlenbereich des Resultats s ist 0 .. $(2^{w+1} 2)$
- ▶ Werte $s \ge 2^w$ werden in den Bereich 0 .. $2^w 1$ abgebildet

Subtraktion im Dualsystem

- ► Subtraktion mehrstelliger Zahlen erfolgt stellenweise
- ► (Minuend Subtrahend), Überträge berücksichtigen
- Beispiel

$$\begin{array}{rcl}
1011 0011 & = & 179 \\
-0011 1001 & = & 57 \\
\hline
\ddot{U} 1111 & & & \\
\hline
111 1010 & = & 122
\end{array}$$

 Alternative: Ersetzen der Subtraktion durch Addition des b-Komplements

Subtraktion mit b-Komplement

bei Rechnung mit fester Stellenzahl *n* gilt:

$$K_b(z) + z = b^n = 0$$

weil bⁿ gerade nicht mehr in n Stellen hineinpasst

also gilt für die Subtraktion auch:

$$x - y = x + K_b(y)$$

- ⇒ Subtraktion kann also durch Addition des b-Komplements ersetzt werden
 - und für Integerzahlen gilt außerdem

$$x - y = x + K_{b-1}(y) + 1$$

signed Addition: Visualisierung

2-Komplement

[BO11]

- ▶ Wortbreite der Operanden ist w, hier 4-bit
- ▶ Zahlenbereich der Operanden x, y ist -2^{w-1} .. $(2^{w-1}-1)$
- ▶ Zahlenbereich des Resultats s ist -2^w .. $(2^w 2)$
- ⇒ Überlauf in beide Richtungen möglich

signed Addition: Überlauf

- ▶ Wortbreite des Resultats ist w: Bereich -2^{w-1} .. $(2^{w-1}-1)$
- ▶ Überlauf positiv wenn Resultat $\geq 2^{w-1}$: Summe negativ —"— negativ —"— $< -2^{w-1}$: Summe positiv

Universität Hamburg

64-040 Rechnerstrukturer

Überlauf: Erkennung

- ► Erkennung eines Überlaufs bei der Addition?
- wenn beide Operanden das gleiche Vorzeichen haben und sich das Vorzeichen des Resultats unterscheidet.
- Java-Codebeispiel

```
int a, b, sum;
                     // operands and sum
boolean ovf;
                     // ovf flag indicates overflow
sum = a + b;
ovf = ((a < 0) == (b < 0)) && ((a < 0) != (sum < 0));
```

Subtraktion mit Einer- und Zweierkomplement

► Subtraktion ersetzt durch Addition des Komplements

2's complement 1's complement Decimal 00001010 00001010 10 11111100 11111101 +(-3)00000110 +7 00000111 discarded carry 1 00000111

Subtraktion mit Einer- und Zweierkomplement (cont.)

▶ das b-Komplement einer Zahl z ist

$$K_b(z) = b^n - z$$
, für $z \neq 0$
= 0, für $z = 0$

▶ das (b-1)-Komplement einer Zahl z ist

$$K_{b-1}(z) = b^n - b^{-m} - z$$
, für $z \neq 0$
= 0, für $z = 0$

Veranschaulichung: Zahlenkreis

Beispiel für 4-bit Zahlen

2-Komplement

1-Komplement

Betrag+Vorzeichen

Komplement-Arithmetik als Winkeladdition

Zahlenkreis: Addition, Subtraktion

卣

0010+0100=0110 0100+0101=10010110-0010=0100

0010 1110

0100 0101 0110

2-Kompl.

Zahlenkreis: Addition, Subtraktion (cont.)

句

1110+1101=1011 1110+1001=0111 1110+0110=0100

1110 1101

1001 0110

Zahlenkreis: Addition, Subtraktion (cont.)

Zahlenkreis: Addition, Subtraktion (cont.)

1-Kompl.

1101+1100+1=1010 1101+1000=0101 1101+0110+1=0100

1101 1100 1000

in C: unsigned Zahlen

- ▶ für hardwarenahe Programme und Treiber
- ▶ für modulare Arithmetik ("multi-precision arithmetic")
- ▶ aber evtl. ineffizient (vom Compiler schlecht unterstützt)
- Vorsicht vor solchen Fehlern

```
unsigned int i, cnt = ...;
for( i = cnt-2; i >= 0; i-- ) {
   a[i] += a[i+1];
}
```

in C: Casting-Regeln

- ► Bit-Repräsentation wird nicht verändert
- kein Effekt auf positiven Zahlen
- ▶ Negative Werte als (große) positive Werte interpretiert

- Schreibweise für Konstanten:
 - ohne weitere Angabe: signed
 - Suffix "U" für unsigned: 0U, 4294967259U

in C: unsigned / signed Interpretation

- Arithmetische Ausdrücke:
 - ▶ bei gemischten Operanden: Auswertung als unsigned
 - ▶ auch für die Vergleichsoperationen <, >, ==, <=, >=
 - ▶ Beispiele für Wortbreite 32-bit:

Konstante 1	Relation	Konstante 2	Auswertung	Resultat
0	==	0 U	unsigned	1
-1	<	0	signed	1
-1	<	0 U	unsigned	0
2147483647	>	-2147483648	signed	1
2147483647U	>	-2147483648	unsigned	0
2147483647	>	(int) 2147483648U	signed	1
-1	>	-2	signed	1
(unsigned) -1	>	-2	unsigned	1

Fehler

Sign-Extension

- ► Gegeben: w-bit Integer x
- ▶ Umwandeln in w + k-bit Integer x' mit gleichem Wert?
- ► **Sign-Extension**: Vorzeichenbit kopieren

$$x' = x_{w-1}, \dots x_{w-1}, x_{w-1}, x_{w-2}, \dots x_0$$

0110 4-bit signed: +600000110 8-bit signed: +6+6

0000 0000 0000 0110 16-bit signed:

> 1110 4-bit signed: -2

-2 1111 1110 8-bit signed: 1111 1111 1111 1110 16-bit signed: -2

Java Puzzlers No.5

J. Bloch, N. Gafter: Java Puzzlers: Traps. Pitfalls, and Corner Cases, Addison-Wesley 2005

```
public static void main( String[] args ) {
  System.out.println(
    Long.toHexString( 0x100000000L + 0xcafebabe ));
```

- ▶ Programm addiert zwei Konstanten, Ausgabe in Hex-Format
- Was ist das Resultat der Rechnung?

```
Oxffffffffcafebabe (sign-extension!)
0 \times 0000000100000000
```

Ü 11111110

00000000cafebabe

Ariane-5 Absturz (cont.)

- ► Erstflug der Ariane-5 ("V88") am 04. Juni 1996
- ► Kurskorrektur wegen vermeintlich falscher Fluglage
- ▶ Selbstzerstörung der Rakete nach 36,7 Sekunden
- ► Schaden ca. 370 M\$ (teuerster Softwarefehler der Geschichte?)
- ▶ bewährte Software von Ariane-4 übernommen
- aber Ariane-5 viel schneller als Ariane-4
- ▶ 64-bit Gleitkommawert für horizontale Geschwindigkeit
- ▶ Umwandlung in 16-bit Integer: dabei Überlauf
- http://de.wikipedia.org/wiki/Ariane_V88

Arithmetik - Multiplikation

Multiplikation im Dualsystem

- ▶ funktioniert genau wie im Dezimalsystem
- $ightharpoonup p = a \cdot b$ mit Multiplikator a und Multiplikand b
- ▶ Multiplikation von a mit je einer Stelle des Multiplikanten b
- Addition der Teilterme
- Multiplikationsmatrix ist sehr einfach:

$$egin{array}{c|cccc} \times & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \hline \end{array}$$

 $= 1001\,0001\,0111$

= 0x917

Multiplikation im Dualsystem (cont.)

Beispiel

unsigned Multiplikation

- ▶ bei Wortbreite w bit
- ▶ Zahlenbereich der Operanden: $0 ... (2^w 1)$
- ► Zahlenbereich des Resultats: 0 .. $(2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
- ⇒ bis zu 2w bits erforderlich
 - ► C: Resultat enthält nur die unteren w bits
 - Java: keine unsigned Integer
 - Hardware: teilweise zwei Register high, low für die oberen und unteren Bits des Resultats

signed Multiplikation

2-Komplement

- ► Zahlenbereich der Operanden: -2^{w-1} .. $(2^{w-1}-1)$
- ▶ Zahlenbereich des Resultats: $-2^w \cdot (2^{w-1} 1) ... (2^{2w-2})$
- ⇒ bis zu 2w bits erforderlich
 - ▶ C, Java: Resultat enthält nur die unteren w bits
 - ▶ Überlauf wird ignoriert

int
$$i = 100*200*300*400$$
; // -1894967296

- ► Repräsentation der unteren Bits des Resultats entspricht der unsigned Multiplikation
- ⇒ kein separater Algorithmus erforderlich Beweis: siehe Bryant/O'Hallaron, 2.3.5

Arithmetik - Multiplikation

Java Puzzlers No. 3

J. Bloch, N. Gafter: Java Puzzlers: Traps. Pitfalls, and Corner Cases, Addison-Wesley 2005

```
public static void main( String args[] ) {
    final long MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;
    final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000;
    System.out.println( MICROS_PER_DAY / MILLIS_PER_DAY );
}
```

- ▶ druckt den Wert 5, nicht 1000...
- ► MICROS_PER_DAY mit 32-bit berechnet, dabei Überlauf
- ► Konvertierung nach 64-bit long erst bei Zuweisung
- ▶ long-Konstante schreiben: 24L * 60 * 60 * 1000 * 1000

Division im Dualsystem

- ightharpoonup d = a/b mit Dividend a und Divisor b
- ▶ funktioniert genau wie im Dezimalsystem
- schrittweise Subtraktion des Divisors
- ► Berücksichtigen des "Stellenversetzens"
- in vielen Prozessoren nicht (oder nur teilweise)
 durch Hardware unterstützt
- daher deutlich langsamer als Multiplikation

Arithmetik - Division

Division im Dualsystem (cont.)

▶ Beispiele

$$\begin{array}{c} 100_{10}/3_{10} = 110\,0100_2/11_2 = 10\,0001_2 \\ \\ 1100100 \ / \ 11 = 0100001 \\ 1 & 0 \\ 11 & 1 \\ \hline -11 \\ \hline 0 & 0 \\ 0 & 0 \\ 10 & 0 \\ 100 & 1 \\ \hline -11 \\ \hline 1 & 1 \ (Rest) \\ \end{array}$$

Division im Dualsystem (cont.)

$$91_{10}/13_{10} = 101\ 1011_2/1101_2 = 111_2$$

1011011 /	1101 = 0111
1011	0
10110	1
-1101	
10011	1
-1101	
01101	1
-1101	
0	

Arithmetik - Höhere Funktionen

Höhere mathematische Funktionen

Berechnung von \sqrt{x} , $\log x$, $\exp x$, $\sin x$, ...?

- Approximation über Polynom (Taylor-Reihe) bzw.
 Approximation über rationale Funktionen
 - vorberechnete Koeffizienten für höchste Genauigkeit
 - Ausnutzen mathematischer Identitäten für Skalierung
- ► Sukzessive Approximation über iterative Berechnungen
 - ► Beispiele: Quadratwurzel und Reziprok-Berechnung
 - häufig schnelle (quadratische) Konvergenz
- ▶ Berechnungen erfordern nur die Grundrechenarten

Universität Hamburg

Reziprokwert: Iterative Berechnung von 1/x

▶ Berechnung des Reziprokwerts y = 1/x über

$$y_{i+1} = y_i \cdot (2 - x \cdot y_i)$$

- ▶ geeigneter Startwert y₀ als Schätzung erforderlich
- Beispiel x = 3, $y_0 = 0.5$:

$$y_1 = 0.5 \cdot (2 - 3 \cdot 0.5) = 0.25$$

$$y_2 = 0.25 \cdot (2 - 3 \cdot 0.25) = 0.3125$$

$$y_3 = 0.3125 \cdot (2 - 3 \cdot 0.3125) = 0.33203125$$

$$y_4 = 0.3332824$$

$$y_5 = 0.333333332557231$$

Quadratwurzel: Heron-Verfahren für \sqrt{x}

Babylonisches Wurzelziehen

• Sukzessive Approximation von $y = \sqrt{x}$ gemäß

$$y_{n+1} = \frac{y_n + x/y_n}{2}$$

- quadratische Konvergenz in der Nähe der Lösung
- Anzahl der gültigen Stellen verdoppelt sich mit jedem Schritt
- aber langsame Konvergenz fernab der Lösung
- ► Lookup-Tabelle und Tricks für brauchbare Startwerte y₀

Informationstreue

Welche mathematischen Eigenschaften gelten bei der Informationsverarbeitung, in der gewählten Repräsentation?

Beispiele:

• Gilt $x^2 > 0$?

▶ float: ja

signed integer: nein

• Gilt (x + y) + z = x + (y + z)?

integer: ja

float: nein

$$1.0E20 + (-1.0E20 + 3.14) = 0$$

Festkomma Addition

unsigned Arithmetik

- Wortbreite auf w begrenzt
- kommutative Gruppe / Abel'sche Gruppe

▶ Abgeschlossenheit
$$0 \le a \oplus_w^u b \le 2^w - 1$$

► Kommutativgesetz
$$a \oplus_{w}^{u} b = b \oplus_{w}^{u} a$$

Assoziativgesetz
$$a \oplus_{w}^{u} (b \oplus_{w}^{u} c) = (a \oplus_{w}^{u} b) \oplus_{w}^{u} c$$

▶ neutrales Element
$$a \oplus_{w}^{u} 0 = a$$

► Inverses
$$a \oplus_w^u \overline{a} = 0; \overline{a} = 2^w - a$$

Festkomma Addition (cont.)

signed Arithmetik

2-Komplement

- Wortbreite auf w begrenzt
- signed und unsigned Addition sind auf Bit-Ebene identisch

$$a \oplus_{w}^{s} b = U2S(S2U(a) \oplus_{w}^{u} S2U(b))$$

- \Rightarrow isomorphe Algebra zu \bigoplus_{w}^{u}
 - kommutative Gruppe / Abel'sche Gruppe

▶ Abgeschlossenheit
$$-2^{w-1} \le a \oplus_w^s b \le 2^{w-1} - 1$$

▶ Kommutativgesetz
$$a \oplus_w^s b = b \oplus_w^s a$$

Assoziativgesetz
$$a \oplus_{w}^{s} (b \oplus_{w}^{s} c) = (a \oplus_{w}^{s} b) \oplus_{w}^{s} c$$

▶ neutrales Element
$$a \oplus_{w}^{s} 0 = a$$

Inverses
$$a \oplus_w^s \overline{a} = 0; \quad \overline{a} = -a, \ a \neq -2^{w-1}$$

 $a. \ a = -2^{w-1}$

Festkomma Multiplikation

unsigned Arithmetik

- Wortbreite auf w begrenzt
- ► Modulo-Arithmetik $a \otimes_{w}^{u} b = (a \cdot b) mod 2^{w}$
- $\triangleright \otimes_{w}^{u}$ und \bigoplus_{w}^{u} bilden einen kommutativen Ring
 - $ightharpoonup \oplus_{w}^{u}$ ist eine kommutative Gruppe
 - ▶ Abgeschlossenheit $0 \le a \otimes_w^u b \le 2^w 1$
 - Kommutativgesetz $a \otimes_w^u b = b \otimes_w^u a$
 - Assoziativgesetz $a \otimes^{u}_{w} (b \otimes^{u}_{w} c) = (a \otimes^{u}_{w} b) \otimes^{u}_{w} c$
 - neutrales Element $a \otimes^{u}_{w} 1 = a$
 - Distributivgesetz $a \otimes^{u}_{w} (b \oplus^{u}_{w} c) = (a \otimes^{u}_{w} b) \oplus^{u}_{w} (a \otimes^{u}_{w} c)$

卣

Festkomma Multiplikation (cont.)

signed Arithmetik

- signed und unsigned Multiplikation sind auf Bit-Ebene identisch
- **•** . . .

isomorphe Algebren

- unsigned Addition und Multiplikation; Wortbreite w
- 2-Kompl. signed Addition und Multiplikation; Wortbreite w
- ▶ isomorph zum Ring der ganzen Zahlen *modulo*2^w
- Ordnungsrelation im Ring der ganzen Zahlen

$$ightharpoonup a > 0 \longrightarrow a + b > b$$

$$\triangleright$$
 $a > 0, b > 0 \longrightarrow a \cdot b > 0$

diese Relationen gelten nicht bei Rechnerarithmetik

Überlauf!

Gleitkomma Addition

Vergleich mit kommutativer Gruppe

- ► Abgeschlossen?
- Kommutativ?
- Assoziativ? (Überlauf, Rundungsfehler)
- Null ist neutrales Element?
- ► Inverses Element existiert? (außer für NaN und Infinity)
- Monotonie? $a \ge b \longrightarrow (a+c) \ge (b+c)$ (außer für NaN und Infinity)

Ja

Ja

Nein

Ja

Fast

Fast

卣

Gleitkomma Multiplikation

Vergleich mit kommutativem Ring

- Abgeschlossen? (aber Infinity oder NaN möglich)
- Kommutativ?
- Assozativ? (Überlauf, Rundungsfehler)
- ► Eins ist neutrales Element?
- Distributivgesetz?
- ▶ Monotonie? $a \ge b$; $c \ge 0 \longrightarrow (a \cdot c) \ge (b \cdot c)$ (außer für NaN und Infinity)

Ja

Ja

Nein

Ja

Nein

Fast

卣

Universität Hamburg

64-040 Rechnerstrukturer

Literatur

- [BO11] R.E. Bryant, D.R. O'Hallaron:

 Computer systems A programmers perspective.

 2nd edition, Pearson, 2011. ISBN 0-13-713336-7
- [Tan06] A.S. Tanenbaum: Computerarchitektur: Strukturen, Konzepte, Grundlagen. 5. Auflage, Pearson Studium, 2006. ISBN 3-8273-7151-1
- [Tan09] A.S. Tanenbaum: Structured Computer Organization. 5th rev. edition, Pearson International, 2009. ISBN 0-13-509405-4

Arithmetik - Literatur

Literatur (cont.)

[Omo94] A.R. Omondi: Computer Arithmetic Systems – Algorithms, Architecture and Implementations. Prentice-Hall International, 1994. ISBN 0-13-334301-4

[Kor93] I. Koren: *Computer Arithmetic Algorithms*. Prentice-Hall, Inc., 1993. ISBN 0-13-151952-2

[Spa76] O. Spaniol: *Arithmetik in Rechenanlagen*. Teubner, 1976. ISBN 3-519-02332-6