"Finite" Number Representations

- Multiple meanings for "finite"
- ♦ Bits = binary integer = $(0, 1) = (\uparrow, \downarrow)$
- **♦** All computer numbers ultimately binary
- ♦ Integers: $N \text{ bits} \Rightarrow 2^N \text{ max}$
- ♦ ⇒ Limited range $[0, 2^{N-1}]$ (1 sign, 32 b ⇒ 10^9)
- ♦ Binary: 110010010101: OK if computer
- ◆ People: octal, decimal, hexadecimal ()
- **♦** Decimal: nice but reduces precision, final output

Finite Number Representations (2)

- ♦ "Word length" = # bits for stored number
- ◆ 1 byte = 1 B = 8 bits ()
- ♦ Careful: $1 \text{ K} = 1 \text{ KB} = 2^{10} \text{ B} = 1024 \text{ B}$
- ◆ 1 byte ≈ memory for 1 character ("a")
- ◆ 1 typed page ≈ 3 KB
- ♦ 1st PCs: 8-b words (2⁷= 128)
- ♦ "Overflow": too large a number; "Underflow"
- ♦ Now: 32, 64 bit PC, fastest processing
- ♦ $2^{31} \approx 2 \times 10^9$: OK for banks, signals, not science

Fixed-point Numbers (ints)

$$I_{fix} = \pm \left(\alpha_n 2^n + \alpha_{n-1} 2^{n-1} + \dots + \alpha_0 2^0 + \dots + \alpha_{-m} 2^{-m}\right) \tag{1}$$

- 1 bit: sign, N-1 bits: α_i
- ♦ N, m, n values: machine-dependent
- \bullet 32-bit machine \rightarrow 4B for *int*
- Good: absolute error $\equiv 2^{-(m+1)}$ (left off)
- ◆ Bad: large relative error for small #
- ♦ Bad: small range:
 - $-2147483648 \le int \le 2147483647$

IEEE Number Types

Name	Type	Bits	Range			
boolean	logical	1	true or false			
char	string	16	'\u0000' ↔ '\uFFFF'			
byte	integer	8	-128 ↔ +127			
short	integer	16	-32,768 ↔ +32,767			
int	integer	32	-2,147,483,648 ↔ +2,147,483,647			
long	integer	64				
-9,223,372,036,854,775,808 ↔ +9,223,372,036,854,775,807						
float	floating point	32	1.401298 X 10 ⁻⁴⁵ ↔ 3.402923 X 10 ⁺³⁸			
double	floating point	64				
4.94065645841246544 X 10 ⁻³²⁴ ↔ 1.7976931348623157 X 10 ⁺³⁰⁸						

IEEE Floating Point

- Binary version of scientific notation
- \diamond $c \approx +2.997924 \times 10^8 \, \text{m/sec}$
- ◆ 2.997924 = mantissa,7 significant figures
- +8 = exponent
- ♦ . = decimal point (base 10)
- ◆ Storage: (sign) (exponent) (mantissa)

IEEE Standard Float (how)*

$$x_{\mathsf{Float}} = (-1)^s \times 1.f \times 2^{\mathsf{e-bias}}$$

- ♦ Sign s = single bit = 0 (+), 1 (-)
- \bullet f = fractional part after *binary* point
 - assume 1st bit = 1 (phantom)
 - maintains same relative precision
- e = stored exponent always > 0
- \bullet bias: fixed, e < bias \Rightarrow p = true exp < 0
- ♦ Normal numbers: 0 < e < 255</p>
- ◆ *Subnormal* numbers: e=0, e=255
 - special cases & numbers (table)

IEEE Special Cases

<u>Number Name</u>	Values of s, e & f	Value of Single
Normal	0 < e < 255	$(-1)^s \times 2^{e-127} \times 1.f$
Subnormal	$e=0,\ f eq 0$	$(-1)^s \times 2^{-126} \times 0.f$
Signed Zero	$e=0,\ f=0$	$(-1)^s \times 0.0$
$+\infty$ (\neq math)	$s=0,\ e=255,\ f=0$	+INF
$-\infty$ (\neq math)	$s=1, \ e=255, \ f=0$	-INF
Not a Number	$s=u, \ e=255, \ f\neq 0$	NaN

Implementation: IEEE Single (float)*

Position	S	e		f	
32 Bit word	31	30 2	23	22	0

Conversion of Exponent e

• biased exponent e: 8 bits

$$(-1)^s \times 1.f \times 2^{e-127}$$
 (1)

• normal: 0 < e < 255

•
$$\Rightarrow$$
 1 \leq e \leq 254

• bias =
$$127_{10}$$
 $\Rightarrow p = e_{10}$ - 127

• $-126 \le p \le 127$ (see limits)

Specials

•
$$e = f = 0$$
: ± 0

$$(-1)^s \times 0.f \times 2^{e-126}$$
 (2)

• e = 0, $f \neq 0$: mantissa = 0.f

E.G.: Largest, Normal, 32-bit Float*

$$e_{max}$$
 (normal) = 254 $\Rightarrow p = e - 127 = 127$ (1)

$$s = 0 (2)$$

$$f_{\text{max}} = 1.1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ (3)$$

$$= 1 + 0.5 + 0.25 + \dots \simeq 2 \tag{4}$$

$$\Rightarrow$$
 $(-1)^s \times 1.f \times 2^{p=e-127} \simeq 2 \times 2^{127}$ (5)

$$\simeq 3.4 \times 10^{38} \tag{6}$$