JH-ACU-4 S2.0 Diagnostic Communication Specification For KWP2000

Document No. : JD0.630.003

Version : 1.0

Date :Dec.20,2012

Beijing Wonder Careway
Automotive Technology Co., Ltd

Version History

Version	Date	Description	Editor
1.0	Dec.20,2012	Initial draft	Cao Tianyi
1.1	Oct.9,2014	Deleted fault code 8303 , added 8305 and 8	Cao Tianyi
		306.	

Document No.	JD0.630.003					
Issue Date	Oct.9,2014	Oct.9,2014				
Application Model	JH-ACU-4	JH-ACU-4				
Version	1.1	Status	Release			
Written by	Cao Tianyi	e-signed				
Approved by	Wang Chaosheng	e-signed				

Customer Countersign	Name	Sign
Company(car maker) name		
Company(system supplier) name		

Contents

1. INT	RODUCTION	5
2. SER	TAL DIAGNOSTIC COMMUNICATION LINK	5
2.1. SO	COPE	5
2.2. G	ENERAL CONFIGURATION	5
2.3. SI	IGNAL SPECIFICATION	6
2.4. El	LECTRICAL SPECIFICATION	7
2.4.1.	General	7
2.4.2.	ACU Interface	8
2.4.3.	Tester Interface	8
2.4.4.	Wiring	9
3. DAT	TA LINK LAYER	9
3.1. M	IESSAGE STRUCTURE	9
3.1.1.	Message format	9
3.1.2.	FORMAT BYTE	
3.1.3.	Target and Source address byte	10
3.1.4.	Length byte	10
3.1.5.	Data Bytes	10
3.1.6.	CHECKSUM BYTE	10
3.2. FA	AST INITIALIZATION	11
3.3. TI	IMING	11
3.3.1.	TIMING PARAMETERS DEFINITION	11
3.3.2.	Timing parameter set	12
3.4. El	RROR HANDLING	12
3.4.1.	START COMMUNICATION SERVICE	12
3.4.2.	JH-ACU-4 ACU DETECTED TESTER TRANSMISSION ERROR	12
3.4.3.	JH-ACU-4 ACU DETECTED ERROR IN ACU RESPONSE	12
4. CON	MMUNICATION SERVICES	13
4.1. IN	MPLEMENTED KWP2000 DIAGNOSTIC SERVICE	13
4.2. ST	FART COMMUNICATION SERVICE	13
4.2.1.	Request Message	13

4.2.	.2.	POSITIVE RESPONSE	13
4.3.	ST	OP COMMUNICATION SERVICE	13
4.3.	.1.	REQUEST MESSAGE	13
4.3.	.2.	Positive Response	14
4.3.	.3.	NEGATIVE RESPONSE	12
4.4.	TE	STER PRESENT SERVICE	14
4.4.	.1.	REQUEST MESSAGE	14
4.4.	.2.	Positive Response	14
4.4.	.3.	NEGATIVE RESPONSE	14
4.5.	RE	AD ACU IDENTIFICATION SERVICE	15
4.5.	.1.	REQUEST MESSAGE	15
4.5.	.2.	POSITIVE RESPONSE	15
4.5.	.3.	NEGATIVE RESPONSE	15
4.6.	RE	AD DIAGNOSTIC TROUBLE CODES SERVICE	15
4.6.	.1.	Request Message	15
4.6.	.2.	Positive Response	16
4.6.	.3.	NEGATIVE RESPONSE	16
4.7.	CL	EAR DIAGNOSTIC INFORMATION SERVICE	17
4.7.	.1.	REQUEST MESSAGE	17
4.7.	.2.	Positive Response	17
4.7.	.3.	NEGATIVE RESPONSE	17
4.8.	RE	AD DATA BY LOCAL IDENTIFIER SERVICE	17
4.8.	.1.	REQUEST MESSAGE	18
4.8.	1.1.	OVERVIEW OF RECORD LOCAL IDENTIFIER	18
4.8.	.2.	Positive Response	18
4.8.	.2.1.	RECORD VALUE - REAL TIME DATA(08H)	18
4.8.	.2.2.	RECORD VALUE - FRONT CRASH INFORMATION(D1H)	19
4.8.	.2.3.	RECORD VALUE – FRONT NEAR DEPLOYMENT DATA(D2H)	20
4.8.	.3.	NEGATIVE RESPONSE	22
APPE	ENDI	X A	23
APPE	ENDI	Х В	24
APPE	ENDE	X C	25

1. Introduction

This standard specifies the requirements for setting up the interchange of digital information between JH-ACU-4 ACU (airbag control unit) of the vehicle and the diagnostic tester.

The contents to be not defined in this specification refer to the Appendix A.

2. Serial Diagnostic Communication Link

2.1. Scope

This chapter describes the technical requirements with reference to on-board workshop diagnostics for the ACU (Airbag Control Unit) subsystem. The main purpose of on board diagnostic is to determine failures in the electronic system or its periphery in a simple, reliable and effective way.

2.2. General Configuration

Communication between the ACU and the tester takes place on a serial data link which shall be implemented as a half-duplex Universal Asynchronous Receiver/Transmitter (UART) bus. The ACU shall support a one wire communication connection to the diagnostic tester in accordance with ISO 9141-2, with line K only and without line L (see diagram below). Line K is a bidirectional data line used to convey request messages from the diagnostic tester to the ACU and response messages from the ACU to the diagnostic tester.

Figure 1-Subsystem - Tester Configuration

2.3. Signal Specification

Coding type

NRZ (non return zero)

Transmission rate (Initialization & Subsequent communication)

 $10.4kbps \pm 1.7\%$ (ECU)

10.4kbps ± 1% (diagnostic tester)

Bit transmission

LSB first

1 start bit - logic '0' for one bit duration

8 data bits - the LSB being sent first

1 stop bit - logic '1' for one bit duration

Normal state

Logic '1'

Signal voltage level

Logi	c '1'	Logi	ic '0'
Transmitter	Receiver	Transmitter	Receiver
Greater than	Greater than	Less than 20%	Less than 30%
80% Vbatt	70% Vbatt	Vbatt	Vbatt

Figure 2 - Signal voltage levels, Worst case

- Slope time shall be less than 10% of the bit time.
- Slope times are defined as the time taken for the voltage change from 20% to 80% Vb, and from 80% to 20% Vb for transmitter.
- Bit time is defined as half of the time between the 50% Vb. levels of successive rising or falling edges of alternating '1' and '0' bits.

2.4. Electrical Specification

2.4.1. General

The following electrical specification is taken directly from ISO 9141-2 (i.e. there are no additional electrical requirements in this document other than those in ISO 9141-2.)

The electrical specification shall apply:

- over a working temperature range of 0°C and +50°C
- to a nominal 12 V system for which the serial communication shall operate correctly within the normal operating voltage range of the ACU. V_{BATT} is defined as battery voltage.

Communication Schematics

2.4.2. ACU Interface

At logic "1", or in receiving state, the ACU will look like a resistance to ground of at least 50 k Ω . At logic "0" the ACU will have an equivalent sink resistance not more than 110 Ω between K-line and Ground.

When the serial communication is not in operation and the ACU is connected to the tester, the K-line shall not be at logic "0".

Maximum allowed capacitance C_{ACU} between line K and ground is 500 pF.

The serial communication input/output circuitry of the ACU shall withstand transients and overvoltage present on the K-line via the tester source resistance, limited to -1 V to +40 V.

The serial communication input/output circuitry of the ACU shall withstand permanent short-circuit (also during communication) on K-line to battery voltage V_{BATT} and to Ground.

2.4.3. Tester Interface

The K-line shall be connected to V_{BATT} via nominal 510 Ω , R1, internally in the tester. Transmission state:

- At logic "1", without any ACU's coupled to the K-line, the tester shall have an equivalent voltage source greater than 90% of V_{BATT} sourced from the vehicle positive voltage VBATT, and an equivalent resistance R1 of 510 Ω %5%.
- At logic "0", the tester shall have an equivalent voltage of less than 10% of VBATT, at a maximum sink current of 2A.

Receiving state:

- The equivalent resistance of the line K of the tester shall be 510 Ω ‰5%.

The total capacitance of the diagnostic tester, its cable and connector, C_{Te} , shall not exceed 2nF. The tester shall expect a resistance of 5 K Ω or higher to ground when connected to the vehicle.

2.4.4. Wiring

The capacitance C_{OBW} of the serial communication line built into the vehicle shall not exceed 2 nF, when measured without any ACU connected. Battery voltage and ground shall also be made available to the diagnostic tester, but need not come directly from an ACU.

3. Data Link Layer

3.1. Message structure

3.1.1. Message format

Header				Data bytes			Checksum	
Fmt	Tgt	Src	Len	SID	Data1	Data2		cs
4 Bytes header				Max 255	bytes		1 byte	

Header with address information, with additional length byte

Fmt: Format Byte

Tgt: Target Address Byte Src: Source Address Byte

Len: Length Byte Information of Data bytes

3.1.2. Format byte

The format byte contains 6 bit length information and 2 bit address mode information.

A1 A0 L5	L4	L3	L2	L1	L0
----------	----	----	----	----	----

A1	A0	Mode
1	0	Physical addressing with address information

L5 ~ L0	Remark
0	Length information bit is not used

3.1.3. Target and Source address byte

Request		He	ader		Data bytes	Checksum	
	Fmt ACh		F1h	Length		CS	
Response	Header				Data bytes	Checksum	
	Fmt F1h		ACh	Length		CS	

ACU supports F0hex ~ FDhex as Tester Address. (Normally, Tester Address is F1hex) Default ACU Address is AChex.

3.1.4. Length byte

					Len	gth	
Fmt	Tgt	Src	Length	SID	Data		 CS
4 Bytes				Max 25	5 bytes	1 byte	

The ACU expects a 4 Byte Header.

The ACU response is always with a 4 Byte Header, i.e. with a length byte.

3.1.5. Data Bytes

The data field may contain up to 255 bytes of information. The first byte of the data field is the Service Identification Byte. It may be followed by parameters and data depending on the selected service.

3.1.6. Checksum Byte

Fmt	Tgt	Src	Length	SID	Data	•••	•••	CS
4 bytes Max 255 bytes					1 byte			
	Checksum calculation							

The checksum byte (CS) inserted at the end of the message block is defined as the simple 8-bit sum series of all bytes in the message, excluding the checksum.

If the message is <1> <2> <3> ... <N> , <CS>

Then, $\langle CS \rangle = \langle 1 \rangle + \langle 2 \rangle + \langle 3 \rangle + ... + \langle N \rangle$

3.2. Fast Initialization

The tester shall send a Wake-up Pattern (WuP) on "K-Line", the pattern begins after an idle time on "K-line" with a low time of T_{inil} . The tester transmits the first bit of the Start Communication service after a time of T_{WuP} following the first falling edge.

3.3. Timing

During normal operation the following timing parameters are relevant:

Figure 4 - Message flow, timing

3.3.1. Timing parameters definition

Value	Description
P1	Inter byte time for ECU response
P2	Time between tester request and ECU response or two ECU responses
P3	Time between end of ECU responses and start of new tester request
P4	Inter byte time for tester request
T _{WuP}	High low sequence of the Wake-up-Pattern
T _{iniL}	Low sequence of the Wake-up-Pattern
T _{idle}	Idle time

3.3.2. Timing parameter set

Timing	m	minimum values [ms]				
Parameter	lower limit	default	Resolution	default	upper limit	Resolution
P1	0	0		20	20	
P2	0	25	0.5	50	50	25
P3	0	55	0.5	5000	5000	250
P4	0	5	0.5	20	20	
T_{WuP}	49	50		50	51	
T_{iniL}	24	25		25	26	
T_{idle}		300				

3.4. Error Handling

3.4.1. Start Communication service

If the tester detects an error during the "Start Communication Service" either by timing or by the bit stream, then the tester will wait for a period of Tidle before beginning the process again (starting with the wake up pattern). If an ECU detects an error in the sequence from the tester then it shall be immediately prepared to recognize another "Start Communication Service". Both tester and ACU are required to recognize failure to comply with maximum timing values. Minimum timing value transgressions need not be detected but are likely to cause bit stream errors.

3.4.2. JH-ACU-4 ACU detected Tester transmission error

JH-ACU-4 checks each message by its checksum and number of bytes received before P2max elapses. If either is in error then JH-ACU-4 send no response and will internally ignore the whole message. When JH-ACU-4 detects other errors in the format or content of messages, but which satisfy the checksum and length requirements, in order that the tester be aware that there is not a simple communications problem, JH-ACU-4 will respond with the appropriate negative response.

3.4.3. JH-ACU-4 ACU detected error in ACU response

JH-ACU-4 can not detect a difference between what it transmitted and what was detected on the "K-Line".

4. Communication Services

4.1. Implemented KWP2000 Diagnostic Service

Diagnostic Service Name	Request	Positive	Negative	Rem-
	Value	Response	Response	arks
Start Communication	81h	C1h	NO	
Stop Communication	82h	C2h	7Fh	
Tester Present	3Eh	7Eh	7Fh	
Read ACU Identification	1Ah	5Ah	7Fh	
Read Diagnostic Trouble Codes	18h	58h	7Fh	
Clear Diagnostic Information	14h	54h	7Fh	
Read Data by Local Identifier ¹	21h	61h	7Fh	

4.2. Start Communication Service

4.2.1. Request Message

Byte	Parameter Name	Hex Value
#1	Start Communication Request Service Id	81h

4.2.2. Positive Response

Byte	Parameter Name	Hex Value
#1	Start Communication Positive Response Service Id	C1h
#2	Key byte #1	7Eh
#3	Key byte #2	ACh

4.3. Stop Communication Service

4.3.1. Request Message

Byte	Parameter Name	Hex Value
#1	Stop Communication Request Service Id	82h

This service is separated to detail services by request service identifier 2.

4.3.2. Positive Response

Byte	Parameter Name	Hex Value
#1	Stop Communication Positive Response Service Id	C2h

4.3.3. Negative Response

Byte	Parameter Name	Hex Value
#1	negative Response Service Id	7Fh
#2	Stop Communication Request Service Id	82h
#3	Response Code ²	xxh

4.4. Tester Present service

4.4.1. Request Message

Data Byte	Parameter Name	Hex Value
#1	Tester Present Request Service Id	3Eh

4.4.2. Positive Response

Data Byte	Parameter Name	Hex Value
#1	Tester Present Positive Response Service Id	7Eh

4.4.3. Negative Response

Data Byte	Parameter Name	Hex Value
#1	Negative Response Service Id	7Fh
#2	Tester Present Request Service Id	3Eh
#3	Response Code	xxh

² Refer the response codes to following Appendix B.

4.5. Read ACU Identification service

4.5.1. Request Message

This Command allows the diagnostic tester to read out the ACU identification.

Data Byte	Parameter Name	Hex Value
#1	Read ACU Identification Request Service Id	1Ah
#2	Identification Option	80h

4.5.2. Positive Response

The ACU responds by transmitting a message containing the following information:

Data Byte	Parameter Name	Hex Value
#1	Read ACU Identification Positive Response Service ID	5Ah
#2		xxh
:	ACU Serial No. (BCD,4bytes)	:
#5		xxh
#6	Manufacturing Information	xxh
:	Manufacturing Information (Label vargion 2bytes, MLER 2bytes)(ASCII)	:
#10	(Label version 2bytes, MLFB 3bytes)(ASCII)	xxh
#11		xxh
:	Parameter version (BCD,2bytes)	:
#12		xxh

4.5.3. Negative Response

Data Byte	Parameter Name	Hex Value
#1	Negative Response Service ID	7Fh
#2	Read ACU Identification Request Service ID	1Ah
#3	Response Code	xxh

4.6. Read Diagnostic Trouble Codes³ Service

4.6.1. Request Message

This command allows the diagnostic tester to read out the fault codes and status of faults. The

³ Refer the diagnostic trouble codes to following Appendix C.

tester initiates the request by transmitting the following message.

Data Byte	Parameter Name	Hex Value
#1	Read Diagnostic Trouble Codes Request Service ID	18h
	Status of DTC = [
#2	Active Fault	00h
#2	Historic Fault	01h
	1	
#3	Body Group (High byte)	80h
#4	Body Group (Low byte)	00h

4.6.2. Positive Response

The fault codes from the ACU will be taken and sent in fault recognized order. According to the number, the fault codes that can be stored in the ACU up to a maximum of 16 fault codes are transmitted to the tester. If the DTC 8611 (Crash record) or 8610 (Internal Fault) was entered, the fault memory can't be cleared by Diagnostic Service any more.

Data Byte	Parameter Name	Hex Value
#1	Read Diagnostic Trouble Codes Positive Response Service ID	58h
#2	Number of DTC	xxh
#3	DTC#1 (High byte)	xxh
#4	DTC#1 (Low byte)	xxh
#5	Status of DTC#1	xxh
#6	Number of DTC#1(0~255)	xxh
#7~8	DTC#1 lasting time(0 ~ FFF0 with a resolution of 5 minutes)	xxxxh
:	· ·	:
:	:	:
#6n-5	DTC#n (High byte)	xxh
#6n-4	DTC#n (Low byte)	xxh
#6n-3	Status of DTC#n	xxh
#6n-2	Number of DTC#1(0~255)	xxh
#6n-1~6n	DTC#1 lasting time(0 ~ FFF0 with a resolution of 5 minutes)	xxxxh

4.6.3. Negative Response

Data Byte	Parameter Name	Hex Value
#1	Negative Response Service ID	7Fh
#2	Read Diagnostic Trouble Codes Request Service ID	18h
#3	Response Code	xxh

4.7. Clear Diagnostic Information Service

4.7.1. Request Message

This command allows the diagnostic tester to clear the fault memory in the ACU. The ACU responds by transmitting either a Positive or a Negative response message back to the diagnostic tester. If the ACU cannot clear its fault memory (in case of an internal fault or if a crash is recorded), a Negative Response code \$10 (General Reject) will be transmitted. The message Positive Response will be transmitted immediately after the fault memory was cleared

Data Byte	Parameter Name	Hex Value
#1	Clear Diagnostic Information Request Service ID	14h
#2	Body Group (High byte)	80h
#3	Body Group (Low byte)	00h

4.7.2. Positive Response

Data Byte	Parameter Name	Hex Value
#1	Clear Diagnostic Information Positive Response Service ID	54h
#2	Body Group (High byte)	80h
#3	Body Group (Low byte)	00h

4.7.3. Negative Response

Data Byte	Parameter Name	Hex Value
#1	Negative Response Service ID	7Fh
#2	Clear Diagnostic Information Request Service ID	14h
#3	Response Code	xxh

4.8. Read Data by Local Identifier Service

4.8.1. Request Message

The ACU should send all data of record value specified in this specification via the read Data by Local Identifier response message. The information includes the crash information and Real time data, Deployment data, Crash pulse data. If the crash information and deployment data is not recorded, a Negative Response code \$10 (General Reject) will be transmitted.

Data Byte	Parameter Name	Hex Value
#1	Read Data by Local Identifier Request Service ID	21h
#2	Record Local Identifier	xxh

4.8.1.1. Overview of Record Local Identifier

Record Local Identifier	Hex Value
Real Time data	08h
Front Deployment data	D1h
Front Near Deployment data	D2h

4.8.2. Positive Response

Data Byte	Parameter Name	Hex Value
#1	Read Data by Local Identifier Positive Response Service ID	61h
#2	Record Local Identifier	xxh
#3	Record value #1	xxh
:	:	:
#n	Record value #m	xxh

4.8.2.1. Record Value – Real Time data(08h)

Byte	Bit #	Description	Record Value
#1		Battery Voltage	((xxh *0.0192)*59/12+0.7)V
#2		Energy reserve Voltage for DAB	
#3		Energy reserve Voltage for PAB	(xxh*0.0192*8)V
#4		Energy reserve Voltage for DRPT	(XXN*U.U192*0)V
#5		Energy reserve Voltage for PRPT	
#6		NOT USED	
#7		NOT USED	

#8		NOT USED	
#9		NOT USED	
#10		NOT USED	
#11		NOT USED	
#12		DAB resistance	
#13		PAB resistance	(xxh*10/255)Ω
#14		Retractor DPT resistance	(XXII*10/233)82
#15		Retractor PPT resistance	
#16		NOT USED	
#17		NOT USED	
#18		NOT USED	
#19		NOT USED	
#20		NOT USED	
#21		NOT USED	
	1,0	Driver Buckle Switch state	00 = Unbuckled
#22	3,2	Passenger Buckle Switch state	01 = Buckled 10 = Failure
	5,4	PADS state	11 = Not supported

4.8.2.2. Record Value - Front crash information(D1h)

Byte	Bit #	Description	Record Value
#1~#200		X sensor acceleration value ⁴	1ms filtered data
#1~#200		A Serisor acceleration value	if xxh >=128, xxh=xxh-256
	1,0	Driver airbag stage-1 st stage	
#204	3,2	Passenger airbag stage-1 st stage	00 = no fire
#201	5,4	Driver pretensioner stage	01 = fire 11 = not supported
	7,6	Passenger pretensioner stage	
#202	2,1,0	Driver pretensioner ignition times	xxh
#202	5,4,3	Passenger pretensioner ignition times	XXII
	1,0	Seat buckle status at the time of crash -	00 = unbuckle
#203		front Driver	01 = buckled
#203	0.0	Seat buckle status at the time of crash -	10 = fault
	3,2	front Passenger	11 = not supported

⁴ Acceleration value is total 200ms(20ms before algorithm start and 180ms after algorithm start) If TTF of the airbag is bigger than 180, the time window for recorded acceleration value shall be shifted.

	4	Warning lamp status at the time of	0 = on
	7	crash	1 = off
	5	Crash output	0 = not sent
	5	Crash output	1 = sent
	6	Crash recording completion status	0 = not completed
	O	Crash recording completion status	1 = completed
	1,0	Driver airbag-1 st stage status	00 – good
#204	3,2	Passenger airbag-1 st stage status	00 = good 01 = fault
#204	5,4	Driver pretensioner status	
	7,6	Passenger pretensioner status	11 = not supported
	4.0	Passenger Airbag disable switch status at	00 = off
"005	1,0	the time of crash	01 = on
#205	0.0	Passenger Airbag disable indicator status	10 = fault
	3,2	at the time of crash	11 = not supported
#206			0 ~ FFF0 with a resolution of 5 min.
#207		Warning lamp continuous on / off time	(max. 5460 hours or 227.5 days)
#200		Continuously ignition cycle count when	55
#208		warning lamp is on	00 ~ FF
#209		NOT USED	
#210		Driver airbag Firing Current time	xxh(Resolution : 100us)
#211		Passenger airbag Firing Current time	xxh(Resolution : 100us)
#212		Operation Counter High byte	xxh
#213		Operation Counter Mid byte	xxh
#214		Operation Counter Low byte	xxh
#215~			1 (D 1 (: 100)
216		Operation Counter	xxxxh (Resolution : 100ms)
#217		ACU Ignition Times High byte	xxh
#218		ACU Ignition Times Mid byte	xxh
#219		ACU Ignition Times Low byte	xxh
#220		DAB ignition time	ms
#221		PAB ignition time	ms
#222		pretensioner ignition time	ms

4.8.2.3. Record Value – Front Near Deployment Data (D2h)

Byte	Bit #	Description	Record Value
------	-------	-------------	--------------

#1~#200		X sensor acceleration value ⁵	1ms filtered data if xxh >=128, xxh=xxh-256
	1,0	Driver airbag-1 st stage	00 = no fire
#201	3,2	Passenger airbag-1 st stage	00 = 110 fire
#201	5,4	Driver pretensioner stage	11 = not supported
	7,6	Passenger pretensioner stage	TT = Not Supported
#202	2,1,0	Driver pretensioner ignition times	xxh
#202	5,4,3	Passenger pretensioner ignition times	AAII
	1,0	Seat buckle status at the time of crash – front Driver	00 = unbuckle 01 = buckled
		Seat buckle status at the time of crash	10 = fault
	3,2	– front Passenger	11 = not supported
	_	Warning lamp status at the time of	0 = on
#203	4	crash	1 = off
	_	Crash output	0 = not sent
	5		1 = sent
		Crack recording agreement in status	0 = not completed
	6	Crash recording completion status	1 = completed
	1,0	Driver airbag -1 st stage status	. 00 – good
#204	3,2	Passenger airbag-1 st stage status	00 = good 01 = fault
#204	5,4	Driver pretensioner status	11 = not supported
	7,6	Passenger pretensioner status	TT = not supported
	1,0	Passenger Airbag disable switch status	00 = off
#205	1,0	at the time of crash	01 = on
#200	3,2	Passenger Airbag disable indicator status	10 = fault
	0,2	at the time of crash	11=not supported
#206		Warning lamp continuous on / off time	0 ~ FFF0 with a resolution of 5 min.
#207		varing lamp continuous on / on time	(max. 5460 hours or 227.5 days)
#208		Continuously ignition cycle count when	00 ~ FF
17200	-	warning lamp is on	33 11
#209		NOT USED	
#210		Driver airbag Firing Current time	xxh (Resolution : 100us)
#211		Passenger airbag Firing Current time	xxh (Resolution : 100us)
#212		Operation Counter High byte	xxh
#213		Operation Counter Mid byte	xxh

⁵ Acceleration value is total 200ms(20ms before algorithm start and 180ms after algorithm start) If TTF of the airbag is bigger than 180, the time window for recorded acceleration value shall be shifted.

#214	 Operation Counter Low byte	xxh
#215~216	 Operation Counter	xxxxh(Resolution: 100ms)
#217	 ACU Ignition Times High byte	xxh
#218	 ACU Ignition Times Mid byte	xxh
#219	 ACU Ignition Times Low byte	xxh

4.8.3. Negative Response

Data Byte	Parameter Name	Hex Value
#1	Negative Response Service ID	7Fh
#2	Read Data by Local Identifier Request Service ID	21h
#3	Response Code	xxh

Appendix A

- Normative Reference -

ISO 9141-2	Road vehicle-Diagnostic systems-Requirements for interchange of digital information
ISO 14230-1:1996	Road Vehicles - Diagnostic systems - Keyword Protocol 2000- Part 1: Physical Layer
ISO 14230-2:1996	Road Vehicles - Diagnostic systems - Keyword Protocol 2000- Part 2: Data link layer
ISO 14230-3:1996	Road Vehicles - Diagnostic systems - Keyword Protocol 2000- Part 3: Implementation
ISO 14230-4:1996	Road Vehicles - Diagnostic systems - Keyword Protocol 2000- Part 4: Requirements for Emission Related Systems
SAE J1930	E/E Systems Diagnostic Terms, Definitions, Abbreviations & Acronyms
SAE J1962	Diagnostic Connector
SAE J1978	OBD-II Scan Tool
SAE J1979	E/E Diagnostic Test Modes
SAE J2012	Diagnostic Trouble Code Definitions
SAE J2186	E/E Diagnostic Data Link Security
SAE J2190	Enhanced Diagnostic Test Modes

Appendix B

- Communication fault response codes -

Hex Value	Response Code
10h	General Reject
11h	Service Not Supported
12h	subFunction Not Supported-invalid Format
21h	busy-Repeat Request
22h	Conditions Not Correct or request Sequence Error
23h	Routine Not Complete
78h	Request Correctly Received-Response Pending

Appendix C

- Diagnostic Fault Codes -

0404	Detter voltege high
8101	Battery voltage high
8102	Battery voltage low
8201	Driver airbag resistance too High (1st stage)
8202	Driver airbag resistance too Low (1st stage)
8203	Driver airbag resistance circuit short to Ground (1st stage)
8204	Driver airbag resistance circuit short to Battery (1st stage)
8211	Passenger airbag resistance too High (1st stage)
8212	Passenger airbag resistance too Low (1st stage)
8213	Passenger airbag resistance circuit short to Ground (1st stage)
8214	Passenger airbag resistance circuit short to Battery (1st stage)
8221	Pretensioner front-Driver resistance too High
8222	Pretensioner front-Driver resistance too Low
8223	Pretensioner front-Driver resistance circuit short to Ground
8224	Pretensioner front-Driver resistance circuit short to Battery
8226	Pretensioner front-Passenger resistance too High
8227	Pretensioner front-Passenger resistance too Low
8228	Pretensioner front-Passenger resistance circuit short to Ground
8229	Pretensioner front-Passenger resistance circuit short to Battery
8710	Buckle Switch Driver open or short to Battery
8711	Buckle Switch Driver short or short to Ground
8712	Buckle Switch Passenger open or short to Battery
8713	Buckle Switch Passenger short or short to Ground
8714	Buckle Switch Driver defect
8715	Buckle Switch Passenger defect
8725	Passenger airbag deactivation switch open or short to Battery
8726	Passenger airbag deactivation switch short or short to Ground
8727	Passenger airbag deactivation switch defect
8616	Crash Output Short to Ground
8617	Crash Output Short to Battery
8611	Crash recorded in 1st stage only(Frontal – Replace ECU)
8614	Crash recorded in Belt pretensioner only
8615	Belt pretensioner 6 times deployment
8610	Internal fault – Replace ECU
<u> </u>	l .

8300	Warning lamp Fault – Open
8301	Warning lamp Fault – Short to GND
8302	Warning lamp Fault – Short to Battery
8305	Passenger airbag off warning lamp Fault - Short to GND
8306	Passenger airbag off warning lamp Fault - Short to Battery
8750	Vehicle Option Not Matched