T.D. III - Matrices inversibles

I - Résolution de systèmes

Exercice 1. (Résoudre les systèmes linéaires suivants :

1.
$$(S_1)$$

$$\begin{cases}
5x + y - 2z &= 3 \\
x + 4y + z &= 2 \\
-3x + 2y + 3z &= -2
\end{cases}$$

1.
$$(S_1)$$

$$\begin{cases} 5x + y - 2z &= 3 \\ x + 4y + z &= 2 \\ -3x + 2y + 3z &= -2 \end{cases}$$
2. (S_2)
$$\begin{cases} 2x + 3y - z &= 1 \\ 5x + 2y + 3z &= 0 \\ -x + y + z &= 5 \end{cases}$$
3. (S_3)
$$\begin{cases} x + y - z &= 2 \\ 3x + 5y - z &= 1 \\ 2x + 2y + z &= 1 \end{cases}$$
4. (S_4)
$$\begin{cases} x + 2y - z &= 1 \\ 3x + 4y - z &= 2 \\ x + 3y + z &= 10 \end{cases}$$

Exercice 2. Résoudre les systèmes linéaires suivants :
$$\begin{cases} 2x + y + z + t &= 3 \\ x + y + z + t &= 12 \\ 3x + 2y + 2z + t &= 3 \\ 3x + y + 2z + 3t &= 5 \end{cases}$$
 2. (S_2)
$$\begin{cases} 2x + 2y + z + t &= 1 \\ x + y + 3z + t &= 2 \\ 3x + y + 2z + 2t &= -1 \\ 3x + y + 2z + 3t &= 5 \end{cases}$$
 II.2 - Polynômes de matrices

2.
$$(S_2)$$

$$\begin{cases} 2x + 2y + z + t &= 1\\ x + y + 3z + t &= 2\\ 3x + y + 2z + 2t &= -1\\ 3x + y + 2z + 3t &= 5 \end{cases}$$

II - Inverses

II.1 - Calculs directs

Exercice 3. (4) Dans chacune des questions suivantes, calculer le produit AB, en déduire que A est inversible et exprimer A^{-1} .

1.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 2 \\ 0 & 3 & 3 \end{pmatrix}$$
 et $B = \frac{1}{3} \begin{pmatrix} 0 & -3 & 2 \\ -3 & -3 & 3 \\ 3 & 3 & -2 \end{pmatrix}$.

2.
$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 3 & 3 & 3 \end{pmatrix}$$
 et $B = \frac{1}{3} \begin{pmatrix} -1 & -2 & 1 \\ -2 & -1 & 1 \\ 3 & 3 & -1 \end{pmatrix}$.

3.
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 2 & -2 \\ -2 & -1 & 3 \end{pmatrix}$.

4.
$$A = \begin{pmatrix} 0 & -2 & 2 \\ -3 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & -4 & 6 \\ -4 & 2 & 6 \\ 5 & 2 & 6 \end{pmatrix}$.

Exercice 4. On reprend les matrices de l'exercice précédent. Déterminer l'inverse de AB lorsque :

1.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 2 \\ 0 & 3 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

2.
$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 3 & 3 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & -2 & 2 \\ -3 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Exercice 5. (\bigcirc 3) On pose $A = \begin{pmatrix} 1 & -2 & 2 \\ -3 & 0 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.

- 1. Calculer $A^3 2A^2 12A + 19I_3$.
- **2.** En déduire que A est inversible et déterminer A^{-1} .

Exercice 6. ($\mathfrak{A}_{\bullet}^{\bullet}$) On pose $A = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 1 \end{pmatrix}$.

- 1. Calculer $A^3 2A^2 + 3A + 14I_3$
- **2.** En déduire que A est inversible et déterminer A^{-1} .

II.3 - Non inversibilité

Exercice 7. (\mathscr{P}) On pose $A = \begin{pmatrix} 0 & 2 & -2 \\ -1 & -4 & 3 \\ -2 & -6 & 4 \end{pmatrix}$.

- 1. Calculer A^2 puis A^3 .
- 2. En déduire que A n'est pas inversible.

Exercice 8. (**) On pose
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 2 & 2 & -1 \\ 1 & 4 & 3 \\ 0 & 3 & 3 \end{pmatrix}$.

- **1.** Calculer AB et AC.
- 2. En déduire que A n'est pas inversible.

III - Cas particuliers

Exercice 9. (*) Pour chacune des matrices d'ordre 2 suivante, déterminer si elle est inversible et, le cas échéant, déterminer son inverse.

1.
$$\begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$$
 4. $\begin{pmatrix} -1 & 5 \\ 1 & 1 \end{pmatrix}$

 2. $\begin{pmatrix} 1 & 2 \\ -4 & 1 \end{pmatrix}$
 5. $\begin{pmatrix} -1 & 3 \\ 1 & -3 \end{pmatrix}$

 3. $\begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}$
 6. $\begin{pmatrix} 5 & -1 \\ 10 & -2 \end{pmatrix}$

Exercice 10. (Pour chacune des matrices suivantes, déterminer si elle est inversible et, le cas échéant, déterminer son inverse.

1.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
. **2.** $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

3.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
. 4. $\begin{pmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Exercice 11. (\$\omega\$) Pour chacune des matrices suivantes, déterminer si elle est inversible.

1.
$$\begin{pmatrix} 1 & 3 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
. 3. $\begin{pmatrix} 0 & -5 & 75 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$

1.
$$\begin{pmatrix} 1 & 3 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
.
2. $\begin{pmatrix} 3 & 0 & 0 \\ 12 & 0 & 0 \\ 27 & -4 & 0 \end{pmatrix}$.
3. $\begin{pmatrix} 0 & -5 & 75 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$.
4. $\begin{pmatrix} -3 & 0 & 25 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

IV - Pivot de Gauss

Exercice 12. () Inverser les matrices suivantes en résolvant le système AX = Y.

1.
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. 4. $\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 1 & 1 \end{pmatrix}$.

2.
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
. **5.** $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$.

3.
$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. 6. $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 3 \\ -2 & -1 & 1 \end{pmatrix}$.

Exercice 13. Inverser les matrices suivantes en utilisant la méthode du pivot sur la matrice identité.

1.
$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 2 \\ -2 & 0 & 1 \end{pmatrix}$$
. 2. $\begin{pmatrix} 2 & 0 & 1 \\ -1 & 0 & 1 \\ -2 & 1 & 1 \end{pmatrix}$.

V - Calculs de puissances

Exercice 14. On considère les matrices

$$A = \begin{pmatrix} 4 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 4 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}, D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix},$$

et
$$Q = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
.

- 1. Calculer PQ. En déduire que P est inversible et expliciter P^{-1} .
- **2.** Vérifier que $A = PDP^{-1}$.
- **3.** Pour tout n entier naturel, expliciter D^n .
- **4.** Montrer par récurrence que pour tout entier naturel $n \ge 0$, on a $A^n = PD^nP^{-1}.$
- **5.** En déduire que pour tout entier naturel $n \ge 0$,

$$A^{n} = \frac{1}{2} \begin{pmatrix} 3^{n} + 5^{n} & 0 & 3^{n} - 5^{n} \\ 0 & 2^{n+1} & 0 \\ 3^{n} - 5^{n} & 0 & 3^{n} + 5^{n} \end{pmatrix}.$$

- **6.** La matrice D est-elle inversible? Si oui, expliciter son inverse.
- 7. En déduire que A est inversible et déterminer son inverse.

Exercice 15. On considère les matrices

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}, M = \begin{pmatrix} 4 & 0 & -2 \\ -1 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix},$$

et
$$Q = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
.

1. Montrer par récurrence que pour tout entier naturel $n \ge 0$, on a

$$A^n = \begin{pmatrix} 2^n & 0 & 3^n - 2^n \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix}.$$

- **2.** Calculer PQ. En déduire que P est inversible et déterminer son inverse P^{-1} .
- 3. Vérifier que $PMP^{-1} = A$.
- **4.** Montrer par récurrence que pour tout entier naturel n, on a $M^n = P^{-1}A^nP$.
- En déduire que pour tout entier naturel n, on a

$$M^{n} = \begin{pmatrix} 2 \times 3^{n} - 2^{n} & 0 & 2(2^{n} - 3^{n}) \\ -n3^{n-1} & 3^{n} & n3^{n-1} \\ 3^{n} - 2^{n} & 0 & 2^{n+1} - 3^{n} \end{pmatrix}.$$