Universität Augsburg Lehrstuhl für Algebra und Zahlentheorie Prof. Marc Nieper-Wißkirchen Ingo Blechschmidt

Übungsblatt 11 zur Homologischen Algebra I

Aufgabe 1. Basiswissen zu Gruppoiden

Ein Gruppoid ist eine Kategorie, in der alle Morphismen invertierbar sind.

- a) Erkläre, wie man aus einer Gruppe G einen Gruppoid BG mit genau einem Objekt machen kann.
- b) Verstehe, inwieweit Gruppoide mit genau einem Objekt dasselbe wie Gruppen sind.
- c) Erläutere, inwieweit eine G-Menge dasselbe ist wie ein Funktor $BG \to Set$.
- d) Finde (neben dem Fundamentalgruppoid aus der nächsten Aufgabe) natürliche Beispiele für Gruppoide mit mehr als einem Objekt.

Die Kardinalität eines Gruppoids X ist die reelle Zahl $|X| = \sum_{[x]} \frac{1}{|\operatorname{Aut}(X)X(x)|}$ (im Falle der Konvergenz). Die Summe geht über alle Isomorphieklassen von Objekten von X.

- e) Was ist die Kardinalität des Gruppoids der endlichen Mengen und Bijektionen?
- f) Inwieweit verallgemeinert die Gruppoidkardinalität die Kardinalität von Mengen?

Aufgabe 2. Überlagerungen und Darstellungen des Fundamentalgruppoids

Der Fundamentalgruppoid $\Pi_1(X)$ eines topologischen Raums X hat als Objekte die Punkte von X und als Morphismen von x zu y Homotopieklassen von Wegen von x nach y (wobei Homotopien die Endpunkte bewahren müssen). Als 1-Kategorie ist er eine Approximation des Fundamental-2-Gruppoids von X (welcher wiederum eine Approximation des Fundamental- ∞ -Gruppoids ist).

- a) Sei $x_0 \in X$. Mache dir klar, dass $\operatorname{End}_{\Pi_1(X)}(x_0) \cong \pi_1(X, x_0)$ als Gruppen.
- b) Sei $\pi: Y \to X$ eine Überlagerung. Dann erhält man eine mengenwertigen Darstellung von $\Pi_1(X)$, das heißt einen Funktor $\Pi_1(X) \to \text{Set.}$ Auf Objektniveau ist dieser durch die Setzung $x \mapsto \pi^{-1}[\{x\}]$ gegeben.

Erkläre, wie dieser auf Morphismenniveau spezifiert werden soll. Weise insbesondere die Wohldefiniertheit deiner Setzung nach.

Tipp: Es gibt ein Lemma über die eindeutige Liftbarkeit von Wegen.

Wenn X lokal wegweise zusammenhängend und semi-lokal einfach zusammenhängend ist, ist die Kategorie der Überlagerungen von X äquivalent zur Kategorie der mengenwertigen Darstellungen von $\Pi_1(X)$. Diese Kategorienäquivalent verfeinert die in der Vorlesung angesprochene Äquivalenz zwischen Überlagerungen und $\pi_1(X, x_0)$ -Mengen, die die eine Basispunktwahl erfordert und nur funktioniert, wenn X wegweise zusammenhängend ist.

- c) Verifiziere so viele Details dieser Äquivalenz oder der Äquivalenz der Vorlesung, wie du möchtest. Interessant ist insbesondere folgender Aspekt:
 - Sei \widetilde{X} die universelle Überlagerung von X bezüglich eines Basispunkts x_0 . Die Punkte von \widetilde{X} sind Homotopieklassen von Wegen, deren Anfangspunkt x_0 und deren Endpunkt beliebig ist. (Die Homotopien müssen Anfangs- und Endpunkt

bewahren.) Topologisiert wird \widetilde{X} als Quotientenraum eines Unterraums des Raums der Abbildungen $[0,1] \to X$; dieser trägt die Kompakt-Offen-Topologie. Es gibt eine kanonische stetige Abbildung $\pi:\widetilde{X} \to X$, die der Äquivalenzklasse eines Wegs ihren Endpunkt zuordnet.

Sei dann ein beliebiger bei x_0 beginnender Weg γ in X und ein Urbild z von x_0 unter π gegeben. Dann gibt es einen Lift von γ auf \widetilde{X} , das heißt einen Weg $\widetilde{\gamma}$ in \widetilde{X} mit $\widetilde{\gamma}(0) = z$ und $\pi \circ \widetilde{\gamma} = \gamma$.

Hinweis: Mit Notation aus Homotopietyptheorie macht der Beweis mehr Spaß.

d) Sei konkret $X = \mathbb{C} \setminus \{0\}$ und $Y \to X$ der Totalraum der Garbe

$$U \subseteq X \longmapsto \{y \in \Gamma(U, \mathcal{O}_X) \mid y'(z) = \frac{1}{2z}y(z) \text{ für alle } z \in U\}.$$

Da diese Garbe lokal konstant ist, ist $Y \to X$ eine Überlagerung und induziert damit eine Darstellung von $\Pi_1(X)$.

Zeige: Die Wirkung dieser Darstellung auf einer Schleife in X, die sich genau einmal um den Ursprung windet, ist die Abbildung $[y] \mapsto [-y]$.

Aufgabe 3. Ideale in Banachalgebren

Sei $\mathfrak{a} \subseteq A$ ein Ideal in einer Banachalgebra A. Zeige, dass der topologische Abschluss von \mathfrak{a} wieder ein Ideal ist. Folgere, dass maximale Ideale in Banachalgebren stets abgeschlossen sind.

Bemerkung: Die Äquivalenz zwischen C*-Algebren und kompakten Hausdorffräumen benötigt das Auswahlaxiom. Eine Verfeinerung dieser Äquivalenz gilt aber auch konstruktiv: C*-Algebren sind äquivalent zu vollständig regulären Örtlichkeiten. Dieses Resultat findet Anwendung in der Theorie der Bohr-Topoi zu quantenmechanischen Systemen.

Aufgabe 4. Pontrjagin-Dualität

Aufgabe 5. Absolute Galoisgruppe ohne Abschlusswahl