计算机组成原理

定点加减法运算

王浩宇,教授

haoyuwang@hust.edu.cn

https://howiepku.github.io/

目录

- 位运算与逻辑运算
- 定点加法、减法运算
- 二进制加法减法器

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

■ A&B = 1 when both A=1 and B=1

■ A|B = 1 when either A=1 or B=1

Not

Exclusive-Or (Xor)

■ ~A = 1 when A=0

■ A^B = 1 when either A=1 or B=1, but not both

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

```
#include <stdio.h>
int main() {
    unsigned int i = 0x12345678;
    unsigned int j = 0xFF;
    unsigned int k = i & j;
    printf("%X\n",k);
}
```

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - **&** &&, ||,!
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

```
#include <stdio.h>
int main() {
    unsigned int x = 0x12345678;
    unsigned int i = !x;
    unsigned int j = ~x;
    unsigned int m = !!x;
    unsigned int n = ~~x;
    printf("%u %u\n",i,j);
    printf("%u %u\n",m,n);
}
```

```
root@ubuntu:/opt/shell# ./hello
0 3989547399
1 305419896
```

Shift Operations

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010	
<< 3	00010 <i>000</i>	
Log. >> 2	<i>00</i> 101000	
Arith. >> 2	<i>11</i> 101000	

定点加法、减法运算

- ■补码加法
- ■补码减法
- ■溢出概念与检验方法
- ■基本的二进制加法、减法器

补码加法

■ 补码加法运算基本公式

■ 定点整数: $[x+y]_{\dot{N}} = [x]_{\dot{N}} + [y]_{\dot{N}} \pmod{2^{n+1}}$ 定点小数: $[x+y]_{\dot{N}} = [x]_{\dot{N}} + [y]_{\dot{N}} \pmod{2}$

■ 证明

(1)
$$[x]_{i} = \begin{cases} x & 1 > x \ge 0 \\ 2+x = 2 - |x| & 0 \ge x \ge -1 \end{cases}$$
 (mod 2)

- (2) 证明思路: 分三种情况。
 - (a) $x \times y$ 均为正值(x > 0, y > 0)
 - (b) x, y一正一负(x > 0, y < 0, 或者 x < 0, y > 0)
 - (c) x、y均为负值(<u>x <0, y <0</u>)

补码加法公式证明(1/2)

证明:

(a)
$$x > 0$$
, $y > 0$
 $[x]_{\frac{1}{4}h} + [y]_{\frac{1}{4}h} = x + y = [x+y]_{\frac{1}{4}h}$ (mod 2)
(b) $x < 0$, $y < 0$
 $\therefore [x]_{\frac{1}{4}h} = 2 + x$, $[y]_{\frac{1}{4}h} = 2 + y$
 $\therefore [x]_{\frac{1}{4}h} + [y]_{\frac{1}{4}h} = 2 + x + 2 + y = 2 + (2 + x + y)$
 $= 2 + [x+y]_{\frac{1}{4}h}$ (mod 2)
 $= [x+y]_{\frac{1}{4}h}$

补码加法公式证明(2/2)

```
(c) X > 0, Y < 0 (x < 0, y > 0的证明与此相同)
   [x]_{\lambda h} = x, [y]_{\lambda h} = 2 + y
   [x]_{\lambda h} + [y]_{\lambda h} = x+2+y = 2+(x+y)
   当x+y>0时,2+(x+y)>2,进位2必丢失;
   因(x+y)> 0 ,故[x]<sub>k</sub>+[y]<sub>k</sub>= x+y =[x+y]<sub>k</sub> (mod 2)
   当x+y<0时, 2+(x+y) < 2
   因(x+y) < 0,故[x]_{\lambda h} + [y]_{\lambda h} = 2 + (x+y)
                                      = [x+y]_{\lambda h} \pmod{2}
```

定点数补码加法举例

$$[x]_{\frac{1}{2}h} = 0 \ 1001, [y]_{\frac{1}{2}h} = 0 \ 0101$$

$$[x]_{\frac{1}{2}h} \quad 0 \ 1001$$

$$+[y]_{\frac{1}{2}h} \quad 0 \ 0101$$

$$[x + y]_{\frac{1}{2}h} \quad 0 \ 1110$$

所以
$$x + y = +1110$$

补码减法

■ 补码减法运算基本公式

- ■定点整数: [x-y]_补=[x]_补-[y]_补=[x]_补+[-y]_补 (mod 2ⁿ⁺¹)
- ■定点小数: [x-y]_补=[x]_补-[y]_补=[x]_补+[-y]_补 (mod 2)

■证明: 只需要证明 [¬y]_补=¬[y]_补

- ■已证明[x+y]_补 = [x]_补 + [y]_补 , 故[y]_补=[x+y]_补-[x]_补
- ■可得[y]_补 + [-y]_补=[x+y]_补+ [x-y]_补-[x]_补-[x]_补 $=[x+y+x-y]_{\dot{h}}-[x]_{\dot{h}}-[x]_{\dot{h}}$ $=[x+x]_{\dot{h}}-[x]_{\dot{h}}-[x]_{\dot{h}}=0$
- ■[-y]_补等于[y]_补的各位取反,末位加1 (lec-2)

■ 解:

•
$$[x]_{\frac{1}{2}} = 0 \ 1101, \ [y]_{\frac{1}{2}} = 0 \ 0110, \ [-y]_{\frac{1}{2}} = 1 \ 1010$$

$$[x - y]_{\frac{1}{2}} = [x]_{\frac{1}{2}} + [-y]_{\frac{1}{2}}$$

$$= 0 1101 + 1 1010$$

$$= 10 0111$$

$$= 0 0111$$

$$= 0 0111$$

$$x - y = +0111$$

定点数补码加减法运算

■基本公式

■ 定点整数:

$$[x \pm y]_{\lambda h} = [x]_{\lambda h} + [\pm y]_{\lambda h} \pmod{2^{n+1}}$$

■ 定点小数:

$$[x \pm y]_{\lambda h} = [x]_{\lambda h} + [\pm y]_{\lambda h} \pmod{2}$$

- 定点数补码加减法运算
 - 符号位和数值位可同等处理;
 - 只要结果不溢出,将结果按2n+1或2取模,即为本次运算结果。

溢出概念与检测方法

- ■溢出
 - 在定点数机器中,数的大小超出定点数能表示范围
- ■上溢
 - 数据大于机器所能表示的最大正数;
- ■下溢
 - 数据小于机器所能表示的最小负数;
- 例如,4位补码表示的定点整数,范围为[-8,+7]
 - 若x = 5, y = 4, 则x+y产生上溢
 - 若x = -5, y = -4, 则x+y产生下溢
 - 若x = 5, y = -4, 则x-y产生上溢

例题

溢出判别方法——直接判别法

- 方法:
 - 同号补码相加,结果符号位与加数相反;
 - 异号补码相减,结果符号位与减数相同;
- 特点: 硬件实现较复杂
- 举例:
 - 若[x]_{ネh}=0101, [y]_{ネh}=0100, 则[x+y]_{ネh}=1001 <u>上溢</u>
 - 若[x]_{ネト}=1011, [y]_{ネト}=1100, 则[x+y]_{ネト}=0111 下溢
 - 若[x]_{ネト}=0101, [y]_{ネト}=1100, 则[x-y]_{ネト}=1001 上溢

溢出判别方法——变形补码判别法

■ 变形补码,也叫模4补码:采用双符号位表示补码

■ 判别方法:

双符号位	结果
00	正
01	上溢
10	下溢
11	负

- 特点: 硬件实现简单, 只需对结果符号位进行异或
- 举例:
 - 若[x]_补=00101, [y]_补=00100, 则[x+y]_补=01001 <u>上溢</u>
 - 若[x]_补=11011, [y]_补=11100, 则[x+y]_补=10111 下溢
 - 若[x]_补=00101, [y]_补=11100,则[x-y]_补=01001 上溢

溢出判别方法——进位判别法

■ 判别方法:

■ 最高数值位的进位与符号位的进位是否相同;

■ 判别公式

■ 溢出标志V= $C_f \oplus C_{n-1}$ 其中 C_f 为符号位产生的进位, C_{n-1} 为最高数值位产生 的进位。

■ 举例:

基本的二进制加法/减法器

- 继电器与逻辑门
 - 继电器是逻辑门中的基本组成单元

■ **逻辑门电路** 把继电器按照不同的方式组合起来,形成不同的逻辑门,用来表示逻辑

回顾逻辑门图形符号

基本的二进制加法/减法器

- ■一位二进制数据的半加器:
 - ■加数:A_i、B_i
 - ■结果: S_i(和)
 - C_{i+1}(本位向高位的进位)
- ■一位半加器示意图:

- ■一位二进制数据的全加器:
 - ■加数: A_i、B_i C_i(低位向本位的进位)
 - ■结果: S_i(和) C_{i+1}(本位向高位的进位)
- ■一位全加器示意图:

Si

 C_{i+1}

基本的二进制加法/减法器

计算和和计算进位逻辑电路构造

■ 二进制进位的计算

- 当两个加数都0,结果为0
- 其中一个是1,结果为0
- 两个都是1,结果为1

计算和的逻辑电路构造

计算和

异或门

全加器

一位二进制数据的全加器的逻辑结构

- 全加运算的真值表如右所示:
- 两个输出端的逻辑表达式

 - $C_{i+1} = A_i B_i + B_i C_i + C_i A_i = A_i B_i + (A_i \oplus B_i) C_i$
 - 全加器逻辑结构示例:

输入		输出		
$\mathbf{A_i}$	$\mathbf{B_{i}}$	C_{i}	S_{i}	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

补充内容

■ 典型门电路的时间延迟

门的种类/延时符号	延迟时间	
非门Tf	T	
与门Ta	2T	
或门To	2T	
与非门Tf	Т	
或非门Tf	Т	
异或门Teo	3T	

T通常采用一个与非门或者一个或非门的时间延迟作为度量单位

Universal Gates

- The NAND gate (与非门) and the NOR gate (或非门) are universal gates
- Combinations of them can be used to accomplish any of the basic operations and can thus produce an inverter, an OR gate or an AND gate
- The non-inverting gates do not have this versatility since they can't produce an invert.

NAND Gate Operations

NOR Gate Operations

补充内容小结

- 与非门和或非门具有函数完备性
 - 任何逻辑门都可以用与非门的组合或或非门的组合实现。
- 一个完整的处理器可以只用与非门或或非门制作出来。在使用多发射极晶体管的TTL集成电路中,与非门需要的晶体管也少于其他任何门电路
- 典型门电路的时间延迟(了解即可)

多位二进制数据加法器

- 两个n位的数据 $A=A_{n-1}A_{n-2}\cdots A_1A_0$, $B=B_{n-1}B_{n-2}\cdots B_1B_0$
- 和S= $S_{n-1}S_{n-2}$ ··· S_1S_0
- 采用进位判别法判断运算的溢出: V=C_n⊕C_{n-1}

多位二进制数据加法/减法器

■ 将减法转换成加法

- 由[B]_补 求[-B]_补
 - [B]_补 求各位取反,末位加1;
- ■将加减法电路合二为一
 - 使用异或运算;
 - 当M=0时, B_i'=B_i
 - 当M=1时, B_i'=¬B_i;

多位二进制数据加法/减法器

多位二进制加法/减法器的输出延迟

■ 假如每位均采用一位全加器并考虑溢出检测,n位行波进位加法器的延迟时间t_a为:

$$t_a = n*2T + 9T = (2n + 9)T$$

■ 如果不考虑溢出,则延迟时间ta由S_{n-1}的输出延迟决定:

$$t_a = (n-1)*2T+6T + 3T = (2(n-1)+9)T$$

- 延迟时间t』
 - 输入稳定后,**在最坏情况下**加法器得到稳定的输出所需的最长时间
 - 显然这个时间越小越好。

推荐阅读

■ The Hidden Language of Computer Hardware and Software, Charles Petzold 编码的奥秘-隐匿在计算机背后的软硬件语言

