Probabilistic Model Selection in Regression

Song Liu (song.liu@bristol.ac.uk)

Reference

Today's class *roughly* follows Chapter 3.4-3.52.

Pattern Recognition and Machine Learning

Christopher Bishop, 2006

Apple Stock Price Jul – Sep

Frequentist Model Selection

- We want to minimize the expected (squared) error:
- $\mathbb{E}_D[\sum_{i \in D_1}[[y_i f(x_i; w)]^2 | x_i]]$, expectation over the testing error.
- $\mathbb{E}_D[[y_i f(x_i; w)]^2 | x_i]$ is minimized
 - when bias and variance is balanced
- This cannot be done in practice as, $\mathbb{E}_D[[y_i f(\mathbf{x}_i; \mathbf{w})]^2 | \mathbf{x}_i]$ cannot be calculated.
 - We do not know g and ϵ .
- Use out sample error (can be approximated):

•
$$\mathbb{E}_{x} \left[\mathbb{E}_{D} \left[[y - f(x_{i}; w)]^{2} | x \right] \right] \approx \frac{1}{K} \sum_{k=1...K} \frac{1}{n'} \sum_{(y,x) \in D_{1}^{(k)}} \left(y - f_{LS}^{(k)}(x) \right)^{2}$$

Frequentist Model Selection

- There are issues regarding this model selection approach.
- This frequentist approach requires us to hold out sample during training.
 - We lose information in part of our dataset.
 - CV helps, but calculation is heavy.
 - Our dataset may not be IID.

 How would we select a model if we adopt a probabilistic view?

Probabilistic Model "Selection"

- Build uncertainty of models using priors over models:
- Let $m \in \{m_1 ... m_K\}$,
- If we choose p(m) as a model prior.
- Then we can write posterior of model using Bayes rule:
- $p(m|D) \propto p(D|m)p(m)$

- This express the preference over models given D.
- How do we choose a model for prediction?

Probabilistic Model Average

- Bayesians never choose, they marginalize:
- $p(\hat{y}|D) = \sum_{m \in \{...\}} p(\hat{y}|D,m) \ p(m|D)$
 - a weighted sum
 - If $p(\hat{y}|D, m_1)$ gives a different prediction than $p(\hat{y}|D, m_2)$, instead of picking one, we keep both.

Probabilistic Model Average

- $p(\hat{y}|D) = \sum_{m \in \{\dots\}} p(\hat{y}|D,m)p(m|D)$
 - Probabilistic model sel.: Using all probable models given by p(m|D) to approx. $p(\hat{y}|D)$.
- In comparison with frequentist model sel.

$$\widehat{m} = \underset{m}{\operatorname{argmin}} \sum_{i=1..n}^{m} \mathbb{E}_{D}[[y - f(\mathbf{x}_{i}; \mathbf{w}, \mathbf{m})]^{2} | \mathbf{x}_{i}]$$

- We can see:
- Frequentist minimizes, Bayesian marginalizes.

Probabilistic Model Selection

•
$$p(\hat{y}|D) = \sum_{m \in \{\dots\}} p(\hat{y}|D,m)p(m|D)$$

• How can you calculate p(m|D)?

$$p(m|D) \propto p(D|m)p(m)$$

model evidence prior

Model Evidence

- Suppose your model m is governed a set of parameters ${f w}$
- Then $p(D|m) = \int p(D|w,m)p(w|m)dw$
- Note: model evidence is the normalizer of para. posterior

•
$$p(\mathbf{w}|D,m) = \frac{p(D|\mathbf{w},m)p(\mathbf{w}|m)}{p(D|m)}$$

- Let us consider the simplest approximation of
- $p(D|m) = \int p(D|\mathbf{w}, m)p(\mathbf{w}|m)d\mathbf{w}$
- Note: $p(w|D,m) \propto p(D|w,m)p(w|m)$
- Suppose $p(\mathbf{w}|D,m)$ plateaus at w_{MAP}

 $\Delta posterior$

- Then $\int p(D|\mathbf{w}, m)p(\mathbf{w}|m)d\mathbf{w}$ $\approx p(D|\mathbf{w}_{\text{MAP}}, m)p(\mathbf{w}_{\text{MAP}}|m) \cdot \Delta posterior$
- as $\int f(x) dx \approx f(x_0) \cdot \Delta x$, if f can be approx. by a step function with "length" Δx peaks at x_0
- If $p(\mathbf{w}|m)$ is flat as well, then $p(\mathbf{w}|m) = \frac{1}{\Delta \text{prior}}$
- $p(D|m) \approx p(D|w_{\text{MAP}}, m) \frac{\Delta posterior}{\Delta prior}$

 $\Delta posterior$

- $\log p(D|m) \approx \log p(D|w_{\text{MAP}}, m) + \log \frac{\Delta posterior}{\Delta prior}$
- As posterior is almost always sharper than prior, $\frac{\Delta posterior}{\Delta prior} < 1$.
- The second term is always negative. In fact, the sharper our posterior is, more negative it is.
- Trade-off is made between $\log p(D|w_{\rm MAP},m)$ and $\log \frac{\Delta posterior}{\Delta prior}$

- Now, analyze a model with b parameters:
- Assuming $\frac{\Delta posterior}{\Delta prior}$ is the same for all w_i and w_i are independent
- $\log p(D|m) \approx \log p(D|w_{\text{MAP}}, m) + b \log \frac{\Delta posterior}{\Delta prior}$
 - Why? Prove this.
 - If too many parameters in a model, $b \log \frac{\Delta posterior}{\Delta prior}$ decreases!
 - $\log p(D|w_{\text{MAP}}, m)$ increases (why?).
 - Model evidence prefers intermediate model complexity.

Model Evidence Prefers Intermediate Model Complexity

Tuning Hyper Parameters

• In most cases, we select a model by selecting a hyper parameter, such as regularization parameter, the degree of the polynomial transform, etc.

 Can probabilistic model selection help us determine a hyper parameter?

Tuning Hyper Parameters

- We would like to calculate the predictive distribution:
- $p(\hat{y}|D) = \int p(\hat{y}|D,\alpha)p(\alpha|D)d\alpha$ = $\int \int p(\hat{y}|\mathbf{w},\alpha)p(\mathbf{w}|D,\alpha) p(\alpha|D)d\mathbf{w}d\alpha$
- However, integral w.r.t. α may not be easy ("intractable").
- If $p(\alpha|D)$ is super "pointy" at $\hat{\alpha}$, we only need to use one function evaluation to approximate the integral w.r.t. α .
- $\int \int p(\hat{y}|\mathbf{w},\alpha)p(\mathbf{w}|D,\alpha)p(\alpha|D)d\mathbf{w}d\alpha \approx \int p(\hat{y}|\mathbf{w},\hat{\alpha})p(\mathbf{w}|D,\hat{\alpha})d\mathbf{w}$

Model Evidence Approximation with Hyper Parameters

- To find $\hat{\alpha}$ at the peak, we need to maximize $p(\alpha|D)$
- $p(\alpha|D) \propto p(D|\alpha)p(\alpha) =$ $p(\alpha) \int p(D|\mathbf{w}, \alpha)p(\mathbf{w}|\alpha)d\mathbf{w}$ Model Evidence!
- If $p(\alpha)$ is relatively flat, we just
- $\hat{\alpha}$: = argmax $\int_{\alpha} p(D|\mathbf{w}, \alpha)p(\mathbf{w}|\alpha)d\mathbf{w}$
- "Marginalized Likelihood Maximization"
- Or "Evidence Approximation"

Example: Linear Regression

- Suppose we have a likelihood model:
- $p(\mathbf{y}_1 \dots \mathbf{y}_n | \mathbf{x}_1 \dots \mathbf{x}_n; \mathbf{w}, b) \coloneqq \prod_{i \in D} N_{\mathbf{y}_i} (\langle \mathbf{w}, \boldsymbol{\phi}_b(\mathbf{x}_i) \rangle, \sigma^2 \mathbf{I})$
- $p(\mathbf{w}; \sigma_{\mathbf{w}}, b) \coloneqq N_{\mathbf{w}}(\mathbf{0}, \sigma_{\mathbf{w}}^2 \mathbf{I}_b)$
- Marginalized Likelihood
- $p(\mathbf{y}_1 \dots \mathbf{y}_n | \mathbf{x}_1 \dots \mathbf{x}_n; b, \sigma, \sigma_w)$ $\equiv \int p(\mathbf{y}_1 \dots \mathbf{y}_n | \mathbf{x}_1 \dots \mathbf{x}_n; \mathbf{w}, b, \sigma, \sigma_w) p(\mathbf{w}) d\mathbf{w}$ $= N_{\mathbf{y}}(\mathbf{0}, \sigma_w^2 \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} + \sigma^2 \mathbf{I})$

hint: use Gaussian identity!

Example: Linear Regression

Example: Linear Regression

Conclusion

We introduced probabilistic model selection.

• The principle: Integrate over models w.r.t. model posterior.

- $p(m|D) \propto p(D|m)p(m)$
- Approximation using flat posterior and prior of w.
 - The log ratio term decreases as b increase.
- Approximation using marginalized likelihood.
 - Allows us to select hyper-parmeters

Homework

- Prove statement on page 14.
- Prove statement on page 19.

• Read PRML 3.52

Computing Lab

- Implementing least square regression with different choices of kernels:
- Linear kernel,
- Polynomial kernel,
- RBF kernel.

 Apply it on prostate cancer dataset. What choice of kernel/kernel parameters minimizes the CV error?

Computing Lab

• Generate, $x \sim U(0,2), y = \exp(1.5x-1) + \epsilon, \epsilon \sim N(0,1),$

- Select number of basis using marginalized likelihood for different basis:
- Polynomial basis
- Trigonometric basis
- RBF basis

(Fix σ and σ_w)