

Alcohol Consumption and Students' School Performance

Group - Sober Students

Kennedy Tranel, Jaeyeon Won, Ashley Sackpraseuth

- What is the dataset?
 - Student Alcohol Consumption
 - More details explained in Stage 2

Research Questions

- How is Student Weekday Alcohol Consumption related to Students' Overall Math Grades?
- What is the predicted Students' Overall Math Grades based on their weekday alcohol consumption?

Benefits of this Project

- Identify students' alcohol consumption trends
- Identify the relationship between Student Weekday Alcohol Consumption and Students' School Performance (Overall Math Grades)
- Predict Students' Overall Math Grades based on Student Weekday Alcohol Consumption using linear regression model

- Dataset Description
 - O What is our data?
 - Student Alcohol Consumption
 - What is the source of our data?
 - Kaggle https://www.kaggle.com/uciml/student-alcohol-consumption
 - Only used student-mat dataset
 - No need to obtain more related dataset

Dataset Description

- What does our data provide?
- The Student Alcohol Consumption dataset contains 395 observations with 33 variables about students in secondary school
- 28 social, demographic, and study information variables:
 - "age", "sex", "studytime", and etc.
- 2 variables about alcohol consumption on the scale of 1 (very low) to 5 (very high):
 - "Dalc" (workday alcohol consumption), "Walc" (weekend alcohol consumption)
- 3 variables about students' grade on the scale of 0 to 20:
 - "G1" (1st period grade), "G2" (2nd period grade), "G3" (final grade)

Getting Started

- Importing all necessary functions

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import train_test_split, KFold, cross_val_score, cross_val_predict
from sklearn import metrics
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
```

Getting Started

Reading in our dataset ("student-mat")

alcohol_consumption = pd.read_csv('student-mat.csv')

- Information of our dataset

alco	ohol_cor	nsump	tion.	head()																	
	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob		famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0	GP	F	18	U	GT3	А	4	4	at_home	teacher		4	3	4	1	1	3	6	5	6	6
1	GP	F	17	U	GT3	Т	1	1	at_home	other	••••	5	3	3	1	1	3	4	5	5	6
2	GP	F	15	U	LE3	Т	1	1	at_home	other		4	3	2	2	3	3	10	7	8	10
3	GP	F	15	U	GT3	Т	4	2	health	services		3	2	2	1	1	5	2	15	14	15
4	GP	F	16	U	GT3	Т	3	3	other	other		4	3	2	1	2	5	4	6	10	10

lcol	nol_consumpt	ion.i	info()	
Rang	ss 'pandas.c elndex: 395 columns (to	entri	ies, 0 to 39	
#	Column		-Null Count	Dtype
0	school	395	non-null	object
1	sex	395	non-null	object
2	age	395	non-null	int64
3	address	395	non-null	object
4	famsize	395	non-null	object
5	Pstatus	395	non-null	object
6	Medu	395	non-null	int64
7	Fedu	395	non-null	int64
8	Miob	395	non-null	object
9	Fjob	395	non-null	object
10	reason	395	non-null	object
11	guardian	395	non-null	object
12	traveltime	395	non-null	int64
13	studytime	395	non-null	int64
14	failures	395	non-null	int64
15	school sup	395	non-null	object
16	famsup	395	non-null	object
17	paid	395	non-null	object
18	activities	395	non-null	object
19	nursery	395	non-null	object
20	higher	395	non-null	object
21	internet	395	non-null	object
22	romantic	395	non-null	object
23	famrel	395	non-null	int64
24	freetime	395	non-null	int64
25	goout	395	non-null	int64
26	Dalc	395	non-null	int64
27	Walc	395	non-null	int64
28	health	395	non-null	int64
29	absences	395	non-null	int64
30	G1	395	non-null	int64
31	G2	395	non-null	int64

Data Cleaning

- Checked if there is any missing value (no missing values found)

```
#Checking for missing values alcohol_consumption.isnull().values.any() #We don't have any missing values

False
```

Dropped duplicates and reset index

```
#Dropping duplicates and resetting index
alcohol_consumption.drop_duplicates()
alcohol_consumption = alcohol_consumption.reset_index(drop=True)
```

Data Preparation

- Created "overall_grade", which is the mean of "G1", "G2", and "G3" (on the scale of 0 to 20)

```
#Creating "overall_grade" variable, which is the mean of G1, G2, and G3 alcohol_consumption["overall_grade"] = (alcohol_consumption["G1"] + alcohol_consumption["G2"] + alcohol_consumption["G3"])/3 alcohol_consumption.head()
```

school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 freetime	goout	Dalc	Walc	health	absences	G1	G2	G3	overall_grade
GP	F	18	U	GT3	А	4	4	at_home	teacher	 3	4	1	1	3	6	5	6	6	5.666667
GP	F	17	U	GT3	Т	1	1	at_home	other	 3	3	1	1	3	4	5	5	6	5.333333
GP	F	15	U	LE3	Т	1	1	at_home	other	 3	2	2	3	3	10	7	8	10	8.333333
GP	F	15	U	GT3	Т	4	2	health	services	 2	2	1	1	5	2	15	14	15	14.666667
GP	F	16	U	GT3	Т	3	3	other	other	 3	2	1	2	5	4	6	10	10	8.666667

Data Preparation

Created dummy variables for "Dalc"

```
#Making dummy variables for "Dalc" alcohol_consumption = pd.get_dummies(alcohol_consumption, columns = ["Dalc"]) alcohol_consumption.head()
```

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 absences	G1	G2	G3	overall_grade	Dalc_1	Dalc_2	Dalc_3	Dalc_4
0	GP	F	18	U	GT3	А	4	4	at_home	teacher	 6	5	6	6	5.666667	1	0	0	0
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 4	5	5	6	5.333333	1	0	0	0
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 10	7	8	10	8.333333	0	1	0	0
3	GP	F	15	U	GT3	Т	4	2	health	services	 2	15	14	15	14.666667	1	0	0	0
4	GP	F	16	U	GT3	Т	3	3	other	other	 4	6	10	10	8.666667	1	0	0	0

Data Preparation

- Dropped all variables other than "sex", "age", "overall_grade", "Dalc", and dummy variables for "Dalc" ("Dalc_2", "Dalc_3", "Dalc_4", "Dalc_5")

```
#Selecting the variables needed
alcohol_consumption = alcohol_consumption[["sex", "age", "overall_grade", "Dalc_2", "Dalc_3", "Dalc_4", "Dalc_5"]]
alcohol_consumption2 = pd.read_csv('student-mat.csv')
alcohol consumption["Dalc"] = alcohol consumption2["Dalc"]
alcohol consumption.head()
   sex age overall_grade Dalc_2 Dalc_3 Dalc_4 Dalc_5 Dalc
                5.666667
                                    0
     F 17
                5.333333
                8.333333
                                    0
     F 15
               14.666667
                                    0
       16
                8.666667
                                     0
```

- Dataset Description
 - What are our Explanatory and Response Variables?
 - Explanatory Variable: "Dalc"
 - Response Variable: "overall_grade"

Hypothesis

- Weekday alcohol consumption is negatively correlated with students' overall math grade
- The predicted overall math grade will be lower as the weekday alcohol consumption goes from "very low" to "very high"

Histograms of Quantitative Variables

Code

```
#Histograms of Quantitative Variables
#Age
plt.figure(figsize = (7.5))
histogram1 = sns.distplot(alcohol_consumption["age"] kde=False, color = "orange")
histogram1.set_title( Histogram of Age", fontsize = 15)
histogram1.set_xlabel("Age", fontsize = 10)

#overall_grade
plt.figure(figsize = (7.5))
histogram3 = sns.distplot(alcohol_consumption["overall_grade"], kde=False, color = "blue")
histogram3.set_title("Histogram of Overall Grade", fontsize = 15)
histogram3.set_xlabel("Overall Grade", fontsize = 10)
```

- Used sns.distplot
- Set KDE = False because we did not want to plot a gaussian kernel density estimate
- Set the title and x label manually

Histograms of Quantitative Variables

Visualization

- Skewed right
- Unimodal
- Outliers in age group 20 22

- Symmetric
- Unimodal
- No outliers

- Correlation of Quantitative Variables
 - Code
 - Correlations

```
#Correlations of Quantitative Variables + Weekday alcohol consumption alcohol_consumption3 = alcohol_consumption[["age", "overall_grade", "Dalc"]] corr = alcohol_consumption3.corr() corr.style.background_gradient cmap = 'coolwarm').set_precision(2)
```

- sns.pairplot

```
#Relationships amongst Quantitative Variables by Dalc sns.pairplot(alcohol_consumption, vars = ['age', 'overall_grade', 'Dalc'], diag_kind = 'hist')
```

Correlation of Quantitative Variables

Visualization

	age	overall_grade	Dalc
age	1.00	-0.13	0.13
overall_grade	-0.13	1.00	-0.07
Dalc	0.13	-0.07	1.00

- Age and Overall Grade are negatively and very weakly correlated
- Age and Weekday Alcohol Consumption are positively and weakly correlated
- Overall Grade and Weekday Alcohol Consumption are negatively and weakly correlated

Bar Graphs of Categorical Variables

Code

```
#Barplots of Cateogrical Variables
#Sex
my_pal = {"F" : "lightcoral", "M": "skyblue"}
plt_figure(figsize = (7.5))
bar1 = sns.catplot data = alcohol_consumption, x = "sex", kind = "count", height = 6, palette = my_pal)
xlabels1 = | "Female", "Male"]
bar1.set xticklabels(xlabels1, fontsize = 13)
bar1.fig.suptitle("Bar Plot of Sex", fontsize = 15)
plt.xlabel("Sex", fontsize = 13)
plt.ylabel("Count", fontsize = 13)
#Dalc
plt.figure(figsize = (7,5))
bar2 = sns.catplot data = alcohol_consumption, x = "Dalc", kind = "count", height = 6, palette = "husl")
xlabels2 = ["Very Low", "Low", "Medium", "High", "Very High"]
bar2.set_xticklabels(xlabels2, fontsize = 13)
bar2.fig.suptitle("Bar Plot of Weekday Alcohol Consumption", fontsize = 15)
plt.xlabel("Weekday Alcohol Consumption", fontsize = 13)
plt.ylabel("Count", fontsize = 13)
```

- Used sns.catplot
- Set the names of the levels of the variable manually
- Set the title, y label, and x label manually

Bar Graphs of Categorical Variables

Visualization

 Not much difference between the number of female students and male students

Decreasing trend of weekday alcohol consumption from "very low" to "very high"

- Students' Alcohol Consumption Trends
 - Code

```
#Boxplots
#Boxplot of "Dalc" by "age"
plt.figure(figsize=(10,7))
boxplot1 = sns.boxplot data = alcohol_consumption, y = "age", x = "Dalc", orient = "h", palette = "Set2")
boxplot1.set_title("Box plot for Weekday Alcohol Consumption by Age", fontsize = 20)
boxplot1.set_xlabel("Weekday Alcohol Consumption", fontsize = 15)
boxplot1.set_ylabel("Age", fontsize = 15)

#Boxplot of "Dalc" by "sex"

my_pal = {"F" : "lightcoral", "M": "skyblue"}
plt.figure(figsize=(10,7))
boxplot2 = sns.boxplot data = alcohol_consumption, y = "sex", x = "Dalc", palette = my_pal)
boxplot2.set_title("Box plot for Weekday Alcohol Consumption by Sex", fontsize = 20)
boxplot2.set_xlabel("Weekday Alcohol Consumption", fontsize = 15)
boxplot2.set_ylabel("Sex", fontsize = 15)
```

- Used sns.boxplot
- Orient = "h" to visualize the plots horizontally
- Set the title, y label, and x label manually

Students' Alcohol Consumption Trends by Age

Visualization

- Weekday alcohol consumption is largely spread out from Very Low to Very High for age group 15
- Age groups 16 ~ 19 have very similar pattern on weekday alcohol consumption
- Age group 21 and 22 are lacking of the number of observations

Students' Alcohol Consumption Trends by Sex

Visualization

- 50% of male students consume "very low" or "low" alcohol on weekday
- Female students' weekday alcohol consumption is largely spread out from "very low" to "very high"

- Problems to our Dataset
 - Potentially want more observations
- Improvements to our Dataset
 - Could obtain more observations and more updated datasets in the future
 - to see clearer trends of weekday alcohol consumption by students' demographics
 - to predict students' school performance more accurately

- Machine Learning Model
 - Why Linear Regression Model?
 - Want to understand the relationship between "weekday alcohol consumption" and a quantitative variable ("overall_grade")
 - Want to predict the value of a quantitative variable ("overall_grade")

Modeling the Data

```
#Regression model
#To predict "overall grade"
X1 = alcohol_consumption[['Dalc_2', 'Dalc_3', 'Dalc_4', 'Dalc_5']]
y1 = alcohol_consumption['overall_grade']
#Split train and test sets
X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size = 0.2, random_state = 100)
#Model initialization
model1 = LinearRegression()
model1.fit(X1_train, y1_train)
#Predict
v1 pred = model1.predict(X1 test)
#Comparing Actual values and predicted values
df1 = pd.DataFrame({'Actual': y1_test, 'Predicted': y1_pred})
print(df1,head(10))
#Model evaluation
mae1 = round(mean absolute error(v1 test, v1 pred), 4)
rmse1 = round(np.sgrt(mean_squared_error(y1_test, y1_pred)), 4
r21 = round(r2\_score(y1\_test, y1\_pred), 4)
#Printing values
print('The coefficients are {}'.format(model1.coef_, 4))
print('The intercept is {}'.format(model1.intercept_))
print('Mean absolute error (MAE) of the model is {}'.format(mae1))
print('Root mean squared error (RMSE) of the model is {}',format(rmse1))
print('R-squared score is {}'.format(r21))
```

- Model: Linear regression model
- Train/Test Split: 80% training, 20% testing
- o Random State: 100

```
Predicted
       Actual
     8.000000
               10.859729
365
    10.000000
                9.748538
     12.000000
               10.859729
353
     8.000000
               10.608696
    10 000000
                9.748538
     9.333333
                9.748538
    11.000000
                10.859729
     6.666667
                9.748538
    14.3333333
                10.859729
    11.000000
                9.748538
```

Fitted Model

Predicted overall math grade = 10.8597 -1.1112 * (Low) -0.2510 * (Medium) -1.2407 * (High) -0.4431 * (Very High)

Interpretations

- If a student has a very low weekday alcohol consumption, the predicted overall math grade is 10.8597
- If a student has a low weekday alcohol consumption, the predicted overall math grade is 9.7485
- If a student has a medium weekday alcohol consumption, the predicted overall math grade is 10.6087
- If a student has a high weekday alcohol consumption, the predicted overall math grade is 9.6190
- If a student has a very high weekday alcohol consumption, the predicted overall math grade is 10.4166

Accuracy Measurement

- Mean Absolute Error (MAE): 2.5355
- The average magnitude of the errors in a set of predictions without considering their direction is 2.5355
- Root Mean Squared Error (RMSE): 3.1679
- The square root of the average of squared differences between the prediction and the actual observation is 3.1679
- **R squared**: 0.0013
- 0.1% of the variation in the response variable ("overall_grade") is explained by the regression model with the explanatory variable ("Dalc")
- Underfitting

6 - Fold Cross - Validation

- Can't use accuracy score as our evaluation because we are doing a regression problem
- Used RMSE for cross-validated score

```
#Regression model - Perform 6 fold cross validation
scores1 = cross_val_score(model1, X1, y1, cv = 6, scoring = neg_root_mean_squared_error)
print('Cross-validated scores:', scores1)

rmse_scores1 = - scores1
print('Cross-validated root mean squared error scores:', rmse_scores1)

print('Final Cross-validation RMSE score:', round(rmse_scores1.mean(), 4), '(', round(rmse_scores1.std(), 4), ')')
```

- Used 6-fold cross validation
- Calculated negative RMSE for cross validation score first because Python does not provide RMSE for scoring
- Calculated RMSE by multiplying -1 to the negative RMSE
- Found the final cross validation RMSE score by averaging the scores from 6 folds and its standard deviation

- 6 Fold Cross Validation
 - Cross Validated Root Mean Squared Error Scores:
 - [3.5017, 3.8215, 4.2362, 3.6730, 3.3116, 3.7171]
 - Final Cross Validated RMSE Score:
 - 3.7102 (sd = 0.2886)
 - Final cross validated RMSE score is slightly higher than the RMSE of the independent test set

Model Evaluation

Decision Tree Regressor

```
#DecisionTree Regressor
#Regression model
#To predict "overall grade"
X2 = alcohol_consumption[['Dalc_2', 'Dalc_3', 'Dalc_4', 'Dalc_5']]
y2 = alcohol_consumption['overall_grade']
#Split train and test sets
X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size = 0.2, random_state = 100)
#Model initialization
mode | 2 = DecisionTreeRegressor()
model2.fit(X2_train, y2_train)
#Predict
y2_pred = model2.predict(X2_test)
#Model evaluation
mae2 = mean_absolute_error(y2_test, y2_pred)
rmse2 = np.sqrt(mean_squared_error(y2_test, y2_pred))
r22 = r2_score(y2_test, y2_pred)
#Printing values
print('Mean absolute error of the model is {}:'.format(mae2))
print('Root mean squared error of the model is {}.'.format(rmse2))
print('R-squared score is {}.'.format(r22))
```

Model: Decision Tree Regressor

Train/Test Split: 80% training, 20% testing

Random State: 100

Model Evaluation

- Decision Tree Regressor
 - Mean Absolute Error (MAE): 2.5355
 - Root Mean Squared Error (RMSE): 3.1679
 - R squared: 0.0013

- Similar values of MAE, RMSE, and R-squared
- Very similar to Linear Regression Model

Model Evaluation

KNN

```
#To predict "overall grade"
X3 = alcohol_consumption[['Dalc_2', 'Dalc_3', 'Dalc_4', 'Dalc_5']]
y3 = alcohol_consumption['overall_grade']
#Split train and test sets
X3_train, X3_test, y3_train, y3_test = train_test_split(X3, y3, test_size = 0.2, random_state = 100)
#Model initialization
mode13 = KNeighborsRegressor(n neighbors = 1)
model3.fit(X3_train, y3_train)
#Predict
v3 pred = model3.predict(X3 test)
#Model evaluation
mae3 = mean_absolute_error(y3_test, y3_pred)
rmse3 = np.sqrt(mean_squared_error(y3_test, y3_pred))
r23 = r2 \text{ score}(y3 \text{ test. } y3 \text{ pred})
#Printing values
print('Mean absolute error of the model is {}:'.format(mae3))
print('Root mean squared error of the model is {}.'.format(rmse3))
print('R-squared score is {}.'.format(r23))
```

Model: Decision Tree Regressor

Train/Test Split: 80% training, 20% testing

Random State: 100

Model Evaluation

- O KNN
 - Mean Absolute Error (MAE): 3.6878
 - Root Mean Squared Error (RMSE): 4.7102
 - R squared: -1.2077

- Higher MAE and RMSE
- Lower R-squared
- Worse than Linear Regression
 Model

Conclusions

- Students' weekday alcohol consumption and overall math grades are negatively correlated as we hypothesized (but very weak)
- All three machine learning models tested (Linear Regression, Decision Tree Regressor, and KNN) are underfitted
- Comparing the three models, of those three models, Linear Regression and Decision Tree Regressor have slightly better accuracy (MAE, RMSE, R-squared)
- Weekday alcohol consumption is not a significant variable in predicting students' school performance (overall math grade)

Potential Implications of this Project

- After presenting these findings to the school district, we would suggest focusing improvement efforts towards more student involvement
- After school programs such as tutoring or sports clubs
 - Assuming the school is a drug-free zone, an after school program would allow the students to use the time they would've been drinking, to get extra help instead
- Raise awareness about the issue
 - Alcohol education program; inform the students about long term effects of their actions.
 - Provide more resources to reach out for help. I.e. a counselor
- Motivational speakers
 - Students are more than what they're told

Direct Benefit

- Student performance will increase, school district looks good
- School district will be eligible for more funding
- Continue to invest in students