SONAR Rock vs Mine Prediction using Logistic Regression

The enemy countries have planted some mines (which become explosives when an object comes into contact with them) in the ocean. However, there will be some rocks present in the ocean. Finally, the task is to build a system to predict rock or mine using SONAR data.

Steps Followed

- 1. Collect sonar data
- 2. Data Preprocessing
- 3. Train Test Split
- 4. Logistic Regression Model (Binary Classification)
- 5. Predictions on old data (train and test)
- 6. Model Performance Results
- 7. Creating predictive system

```
import numpy as np
import pandas as pd

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

1. Collect/Load Sonar Data

2. Data Preprocessing

onar_	_df.head()											
ut[3]	 :											
	•											
	0 1	2	3	4	5	6	7	8	9		51	_
0.0	200 0.0371	0.0428	0.0207	0.0954	0.0986	0.1539	0.1601	0.3109	0.2111		0.0027	,
1 0.0	453 0.0523	0.0843	0.0689	0.1183	0.2583	0.2156	0.3481	0.3337	0.2872		0.0084	
2 0.0	262 0.0582	0.1099	0.1083	0.0974	0.2280	0.2431	0.3771	0.5598	0.6194		0.0232	
0.0	100 0.0171	0.0623	0.0205	0.0205	0.0368	0.1098	0.1276	0.0598	0.1264		0.0121	
0.0	762 0.0666	0.0481	0.0394	0.0590	0.0649	0.1209	0.2467	0.3564	0.4459		0.0031	
rows	× 61 colum	าร										
											•	
Γ4.	ı.											
1 [4]												
mar	_df.shape											
_	•											
ut[4]												
ıt[4]	:											
it[4]	61)											
t[4] 08, [5]	61)											
08,	61)	be()										
[5] nar_	: 61) : _df.descri	be()										
t[4] 08, [5] nar_	: 61) : _df.descri	be()		2		2		4	E			
[5] nar_ tt[5]	: 61) : _df.descri		1	2		3		4	5	208	6	-
t[4] .08, 	: 61) : df.descri	208.000	000 2	208.000000	208.00	0000	208.00000	0 208.0	00000		000000	=
208, n [5] onar_ ut[5]	: 61) : df.descri	208.000	000 2	0.043832	208.00	0000	208.00000 0.07520	0 208.0 2 0.1	00000 04570	0.	000000 121747	=
onar_std	: 61) : df.descri : 0 208.000000 0.029164 0.022991	208.000 0.038 0.032	000 2 437 960	0.043832 0.038428	208.00 0.05 0.04	0000 3892 6528	208.00000 0.07520 0.05555	0 208.0 2 0.1 2 0.0	00000 04570 59105	0.	000000 121747 061788	=
ount nean std min	: 61) : df.descri : 0 208.000000 0.029164 0.022991 0.001500	208.000 0.038 0.032 0.000	960 600	0.043832 0.038428 0.001500	208.00 0.05 0.04 0.00	0000 3892 6528 5800	208.00000 0.07520 0.05555 0.00670	0 208.0 2 0.1 2 0.0 0 0.0	00000 04570 59105 10200	0. 0. 0.	000000 121747 061788 003300	=
t[4] 08, [5] nar_ t[5] ount nean std min 25%	: 61) : df.descri : 0 208.000000 0.029164 0.022991	208.000 0.038 0.032	960 600 4450	0.043832 0.038428	208.000 0.05 0.04 0.000 0.02	0000 3892 6528	208.00000 0.07520 0.05555	0 208.0 2 0.1 2 0.0 0 0.0 0 0.0	00000 04570 59105	0. 0. 0.	000000 121747 061788	=
ount mean std	:	208.000 0.038 0.032 0.000 0.016	000 2 437 960 600 450	0.043832 0.038428 0.001500 0.018950	208.000 0.05 0.04 0.000 0.02 0.04	0000 3892 6528 5800 4375	208.00000 0.07520 0.05555 0.00670 0.03805	0 208.0 2 0.1 2 0.0 0 0.0 0 0.0	00000 04570 59105 10200 67025	0. 0. 0. 0.	000000 121747 061788 003300 080900	=
[5] nar_ tt[5]	: 61) : df.descri	208.000	000 2	0.043832	208.00	0000	208.00000 0.07520	0 208.0 2 0.1	00000 04570	0.	000000 121747	=
[5] 08, [5] nar_ tt[5] bunt lean std min 25%	:	208.000 0.038 0.032 0.000 0.016	960 600 4450	0.043832 0.038428 0.001500 0.018950	208.000 0.05 0.04 0.000 0.02	0000 3892 6528 5800 4375	208.00000 0.07520 0.05555 0.00670 0.03805	0 208.0 2 0.1 2 0.0 0 0.0 0 0.0	00000 04570 59105 10200 67025	0. 0. 0.	000000 121747 061788 003300 080900	=
ount nean std min 25% 50%	:	208.000 0.038 0.032 0.000 0.016 0.030	000 2 437 960 600 450 800	0.043832 0.038428 0.001500 0.018950 0.034300	208.000 0.05 0.04 0.000 0.02 0.04 0.06	0000 3892 6528 5800 4375 4050	208.00000 0.07520 0.05555 0.00670 0.03805 0.06250	0 208.0 2 0.1 2 0.0 0 0.0 0 0.0 0 0.0 5 0.1	00000 04570 59105 10200 67025 92150	0. 0. 0. 0. 0.	000000 121747 061788 003300 080900 106950	=

```
In [6]:
                                                                                  H
sonar_df[60].value_counts()
Out[6]:
    111
М
     97
Name: 60, dtype: int64
In [7]:
                                                                                  H
sonar_df.groupby(60).mean()
Out[7]:
         0
                        2
60
   R 0.022498 0.030303 0.035951 0.041447 0.062028 0.096224 0.114180 0.117596 0.13739:
2 rows × 60 columns
3. Train Test Split
In [8]:
                                                                                  H
# Importing the required class
from sklearn.model_selection import train_test_split
# Specifying the columns as predictor and target variable
predictors = sonar_df.drop(columns=60,axis=1)
target = sonar_df[60]
# Spliting the data in training and test set in 90:10 ratio
X_train, X_test, Y_train, Y_test = train_test_split(predictors, target, test_size=0.1,
                                                 stratify=target,random_state=1)
In [9]:
                                                                                  H
print("Shape of X_train:", X_train.shape)
print("Shape of y_train:", Y_train.shape)
print("Shape of X_test:", X_test.shape)
print("Shape of y_test:", Y_test.shape)
```

```
localhost:8888/notebooks/Desktop/ML Projects/SONAR Rock vs Mine Prediction/SONAR Project File.ipynb#SONAR-Rock--vs-Mine-Prediction
```

Shape of X_train: (187, 60) Shape of y_train: (187,) Shape of X_test: (21, 60) Shape of y_test: (21,) In [10]:

4. Logistic Regression Model (Binary Classification)

```
# Importing the required class
from sklearn.linear_model import LogisticRegression
# Creating the object of the class LogisticRegression
model = LogisticRegression()
# Fitting the model to the training data
model.fit(X_train,Y_train)
# Getting the intercept and the coefficients of the model
print("Intercept:", model.intercept_, "\nCoefficients:", model.coef_)
Intercept: [2.94224506]
Coefficients: [[-0.21882473 -0.22934564 -0.19024714 -0.40843118 -0.320930
88 -0.12470474
  0.08731375 -0.01502358 -0.87357141 -1.07822789 -1.52394522 -1.44966936
  -0.32304323 -0.65776606 -0.68501787 -0.50021218 -0.43324867 -0.3644048
  0.33952982 0.0533055 -0.13067547 -0.3489243 -0.35394463 -0.35069647
  0.85100622 -0.22878875 -0.11076488 0.14769486 0.54231878 1.28389545
  0.78820916 -0.23346495 -0.39136517 0.51960252 0.01620924 -0.66494894
  -0.87707093 -0.99885056 -1.61009839 -1.34113535 -0.77586003 -0.78351105
  -0.52640426 -0.03060355 -0.12948876 -0.10267112 -0.03449633 -0.06872122
  -0.01584387 -0.03740321 -0.00581692 -0.0652067 -0.05774097 -0.0240060
3]]
5. Predictions on old data (train and test)
In [11]:
                                                                               M
X_train_prediction = model.predict(X_train)
X train prediction
Out[11]:
'M',
                                                         'M',
          'M', 'R',
                        'Μ',
                             'R',
                                  'R', 'M', 'R', 'R',
                                                    'R',
      'R', 'R', 'R',
                    'M', 'M', 'R',
                                  'M', 'R', 'M', 'R', 'R',
                                                    'R',
      'M', 'R', 'M',
                    'M', 'R', 'M',
                                  'M', 'M', 'M', 'M',
                                                         'Μ',
                             'Μ',
                                  'R', 'M', 'R', 'R'
                    'M',
                        'R',
                                                     'M',
          'R', 'M',
                                                         'R',
                        'R',
                                  'M', 'M',
                    'R',
                             'R',
                                                    'R',
      'M', 'R', 'M',
                                           'M', 'M',
                                                         'R',
      'R', 'M', 'M',
                   'R', 'R', 'M',
                                  'R', 'M', 'M', 'M', 'M',
```

'R', 'M',

'R', 'M', 'M', 'R', 'M',

'R', 'R', 'M', 'R', 'R',

'R', 'R', 'M', 'M', 'M',

'R',

'M',

'R',

'R',

'M',

'R', 'M',

'M', 'M', 'M', 'M', 'R', 'R',

'M', 'M', 'M', 'M', 'M', 'M',

'R', 'R',

'M', 'R', 'M',

'R',

'Μ',

'M', 'M', 'R',

'M', 'R', 'M', 'M', 'M'], dtype=object)

'Μ',

M

```
In [12]:
```

```
X_test_prediction = model.predict(X_test)
X_test_prediction
```

Out[12]:

6. Model Performance Results

```
In [13]:

# Training Data Accuracy
```

```
# Training Data Accuracy
training_data_accuracy = accuracy_score(X_train_prediction,Y_train)
training_data_accuracy
```

Out[13]:

0.8342245989304813

```
In [14]: ▶
```

```
# Testing Data Accuracy
training_data_accuracy = accuracy_score(X_test_prediction,Y_test)
training_data_accuracy
```

Out[14]:

0.7619047619047619

Object is a Mine

7. Creating predictive system

```
M
In [15]:
# Creating predictive system
input_data = (0.0453,0.0523,0.0843,0.0689,0.1183,0.2583,0.2156,0.3481,0.3337,0.2872,0.49
# convert an list to an array
input_data_as_numpy_array = np.asarray(input_data)
# reshape the numpy array as we are predicting only one instance
input_data_reshape = input_data_as_numpy_array.reshape(1,-1)
prediction = model.predict(input_data_reshape)
print(prediction)
if prediction[0]=="R":
   print("Object is a Rock")
else:
   print("Object is a Mine")
['R']
Object is a Rock
In [16]:
                                                                                       M
input_data = (0.0522,0.0437,0.0180,0.0292,0.0351,0.1171,0.1257,0.1178,0.1258,0.2529,0.27
input_data_as_numpy_array = np.asarray(input_data)
# reshape the numpy array as we are predicting only one instance
input_data_reshape = input_data_as_numpy_array.reshape(1,-1)
prediction = model.predict(input_data_reshape)
print(prediction)
if prediction[0]=="R":
   print("Object is a Rock")
else:
   print("Object is a Mine")
['M']
```