

HiPerFET™ **MOSFET Module**

VMO 650-01F

 $V_{DSS} = 100 V$ $I_{D25} = 690 \text{ A}$ $R_{DS(on)} = 1.8 \text{ m}\Omega$

N-Channel Enhancement Mode

Preliminary Data

KS	s	S G KS
Maximum Ra	atings	
100	V	
100	V	
±20		

D = Drain	S = Source
KS = Kelvin Source	G = Gate

Symbol	Test Conditions		Maximum	Maximum Ratings		
V _{DSS}	T _J = 25°C to 15	50°C	100	V		
\mathbf{V}_{DGR}	$T_J = 25^{\circ}C \text{ to } 15^{\circ}$	60°C ; $R_{\text{GS}} = 10 \text{ k}\Omega$	100	V		
V _{gs}	Continuous		±20	V		
$V_{\rm GSM}$	Transient		±30	V		
 _{D25} _{D80}	$T_s = 25^{\circ}C$ $T_s = 80^{\circ}C$		690 520	A A		
I _{DM}	$T_s = 25^{\circ}C$	pulse width limited b	oy T _{JM} 2780	Α		
P _D	T _c = 25°C T _s = 25°C		2500 1740	W W		
T _J			-40+150	°C		
T _{JM}			150	°C		
T_{stg}			-40 +125	°C		
V _{ISOL}	$50/60 \text{ Hz}$ $I_{ISOL} \le 1 \text{ mA}$	t = 1 min t = 1 s	3000 3600	V~		
M _d		5 1 ()		Nm/lb.in. Nm/lb.in.		
Weight	typical including screws		250	g		

Features

- International standard package
- Direct Copper Bonded Al₂O₃ ceramic base plate
- Isolation voltage 3600 V~
- Low R_{DS(on)} HDMOS[™] process
 Low package inductance for high speed switching
- · Kelvin Source contact for easy drive

Symbol	Test Conditions	Characteristic Values		
		(T _J = 25°C, unless otherwise specified)		
		min tun may		

		min.	typ.	max.	
V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 7 \text{ mA}$	100			V
$V_{\rm GS(th)}$	$V_{DS} = 20 \text{ V}, I_{D} = 130 \text{ mA}$	3		6	V
I _{gss}	$V_{GS} = \pm 20 \text{ V DC}, V_{DS} = 0$			±500	nA
I _{DSS}	$V_{DS} = 0.8 \bullet V_{DSS}$ $V_{GS} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$			mA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 0.5 \bullet I_{D25}$ Pulse test, $t \le 300 \mu\text{s}, \text{ duty}$	cycle d ≤ 2 %		1.8	mΩ

Applications

- · AC motor speed control for electric vehicles
- · DC servo and robot drives
- · Switched-mode and resonant-mode power supplies
- · DC choppers

Advantages

- · Easy to mount
- · Space and weight savings
- · High power density
- Low losses

Symbol	Test Conditions Characteristic Va $ (T_{_J} = 25^{\circ}\text{C}, \text{ unless otherwise spec} \\ $				
g _{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 \cdot I_{D25} \text{ pulsed}$	390	S		
C _{iss})	59	nF		
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	20.8	nF		
\mathbf{C}_{rss}	J	10.4	nF		
t _{d(on)})	250	ns		
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	500	ns		
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 2 \Omega \text{ (external)}$	800	ns		
$\mathbf{t}_{_{\mathrm{f}}}$)	200	ns		
\mathbf{Q}_{g})	2300	nC		
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	455	nC		
\mathbf{Q}_{gd})	1110	nC		
R _{thJC}			0.048 K/W		
R _{thJS}	with 30 μm heat transfer paste		0.072 K/W		

Source-Drain Diode

Characteristic Values

 $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$

Symbol	Test Conditions mil	n.	typ.	max.	
I _s	V _{GS} = 0 V			690	Α
I _{sm}	Repetitive; pulse width limited by T_{JM}			2760	Α
$\mathbf{V}_{\mathtt{SD}}$	$\begin{array}{l} I_{_F} = I_{_S}; \ V_{_{GS}} = 0 \ V, \\ \text{Pulse test, } t \leq 300 \ \mu s, \ \text{duty cycle d} \leq 2 \ \% \end{array}$		0.9	1.2	V
t _{rr}	$I_F = I_S$, -di/dt = 1000 A/ μ s, $V_{DS} = 0.5 \bullet V_{DSS}$		300		ns