Global premature mortality due to exposure to air pollution from fossil fuels

Karn Vohra, Alina Vodonos, Joel Schwartz, Eloise A. Marais, Melissa P. Sulprizio, Loretta J. Mickley

Vohra et al.: https://www.sciencedirect.com/science/article/pii/S0013935121000487 Research Group website: https://maraisresearchgroup.co.uk/

18 May 2021

Global distribution of fine particles (PM_{2.5})

PM_{2.5} derived with satellite observations and a model

Dominant sources can be natural or anthropogenic and vary spatially and seasonally

PM_{2.5} from burning fossil fuels

PM_{2.5} precursors emitted from a range of activities that combust fossil fuels

Combustion for transport, industry, energy generation, and domestic heating, lighting and cooking

PM_{2.5} is a mix of primary and secondary components

Black carbon primary

Sulfate
Nitrate
Ammonium

Other inorganics
Organic aerosols primary+secondary

PM_{2.5} includes a mix of components

Challenging to isolate fossil-fuel PM_{2.5} using observations

Satellite products (left) and surface measurements (right) provide total PM_{2.5}

Even with measurements of the individual $PM_{2.5}$ components, it is challenging to tease out the contribution from fossil fuels, **so we use a model**.

Simulate surface PM_{2.5} using the GEOS-Chem model

Model estimate of fossil fuel PM_{2.5}

Difference between model simulations with and without fossil fuel PM_{2.5}

Hotspots are in China, Bangladesh, India, and central Europe

Standard and widely used risk assessment models

Integrated Exposure-Response (IER)

[Burnett et al., 2014]

Data includes active and passive smoking to address outdoor $PM_{2.5} > 40 \mu g m^{-3}$

Global Exposure Mortality Model (GEMM)

[Burnett et al., 2018]

41 cohort studies and model constrained using 4 parameters

Updated risk assessment model used in our study

- Flexible shape of concentration-response function
- More cohort studies, and wider concentration and age range than previous approaches
- Includes death from allcauses

Methodology for health impact calculation

Fossil-fuel PM_{2.5} from GEOS-Chem

Baseline mortality from Global Burden of Disease

mortality estimates

We use the derived fossil-fuel PM_{2.5} with baseline mortality in the meta-analysis concentration-response function to estimate global premature mortality

function from cohort studies

Estimated global premature mortality from fossil fuel combustion

10.2 million premature deaths attributed to fossil-fuel $PM_{2.5}$ in 2012

[-47 million, 17 million]

[Vohra et al., 2021]

Regional premature mortality from fossil fuel combustion

Regional premature mortality from fossil fuel combustion

Policies can help mitigate these premature deaths

Dramatic reduction in $PM_{2.5}$ in China from 2012 to 2018 decreases premature deaths by 1.5 million

Children are also affected by air pollution from fossil fuels

More than 2000 premature deaths from lower respiratory infection alone for children < 5 years old

Implications of and response to our findings

We calculate global premature mortality that is much greater than previous estimates (updated risk assessment model, higher spatial resolution PM_{2.5})

Swell of media attention from leading news agencies and advocacy groups

https://www.theguardian.com/environment/2021/feb/09/fossil-fuels-pollution-deaths-research

Translated into many languages for audiences in France, Spain, India, Canada, China, Central and South America

Heightened immediate urgency to transition to cleaner and more sustainable energy sources

