GDSC Sunway University presents

Getting Started with Natural Language Processing

Welcome everybody!

Sit back and relax, the session will begin shortly 😌

While waiting...

Create a Kaggle Account:

https://www.kaggle.com/

Download/Open slide:

https://github.com/Grg0rry/NLP-Workshop

What is Google Developer Student Clubs (GDSC)?

Fancy name but what is it about?

University based community groups for students interested in Google developer technologies.

Students grow their knowledge in a **peer-to-peer learning** environment and **build solutions** that solve local problems.

Sunway Tech Club x GDSC Sunway University

A partnership with Google Developers!

Sunway Tech Club (STC) is partnered with the Google Developer Student Clubs (GDSC) program in Sunway University!

Google Developer Student Clubs Sunway University

Workshop:
"Getting Started with
Natural Language Processing"

By Gregory:)

Overview

- Introduction to Natural Language Processing
- Machine Learning Workflow
 - Data Preprocessing
 - Feature Extraction BoW & TFIDF only:'(
 - Model Fitting
 - Model Evaluation
- Hands On Session (Prediction on tweets dataset)

Real World Examples

What is Natural Language Processing?

66

Natural language processing (NLP) refers to the branch of computer science—and more specifically, the **branch of artificial intelligence** or Al—concerned with giving computers the **ability to understand text and spoken words** in much the same way human beings can.

"

- stolen from the internet (IBM)

Challenges to Natural Language Processing

Mostly Unstructured Data

Not standardized and Lacks a set of rules/format that the data follows (eg. Age → Integer 0 to 100++, Marital status → single, married, widowed, divorced)

Ambiguous & Uniqueness of Language

- Words with multiple meaning
- Local slang
- Short forms/acronym
- Misspellings
- Different languages

Require Translation

Text to numerical form for computation needs

How does Natural Language Processing work?

Natural Language Processing						
Natural Language Understanding	Natural Language Generation					
Involve with understanding the	 Involve with finding out how to communicate, form its sentences, and use appropriate wording so that it can be well understood					
(aka. meaning of a given text)	by the reader/listener					

Use Cases of Natural Language Processing

Machine Learning Workflow

Getting Started with Natural Language Processing

Hands On Sesh :o

https://github.com/GrgOrry/NLP-Workshop

Dataset and Notebook URLs

https://www.kaggle.com/competitions/nlp-getting-started/data?select=train.csv

https://colab.research.google.com/drive/1WGOwNNVwVMLQO6qSbFOkt0A7m5c6pFDo?usp=sharing

Frequently Used Terminology

ChatGPT Quotes No "Love is a powerful emotion that can **Document** inspire kindness and compassion." "Technology has transformed the way we connect and access information." 'Education': 1. 'is':1. 3. "Exercise benefits physical health, mental Vocabulary Corpus 'essential': 1. well-being, and emotional resilience." 'for': 1, ... More 4. "Education is essential for social and economic progress." "The arts enrich human culture through Word creative expression and exploration."

Getting Started with Natural Language Processing

Data Preprocessing

https://github.com/GrgOrry/NLP-Workshop

01. Data Preprocessing

Purpose of Data Preprocessing:

- 1. Reduce words/complexity
 - Quicker processing (Reduced training and prediction time)
 - Reduces noise that could disrupt the model's performance
- 2. Normalizes text data
 - Reduce ambiguity in text
 - Standardizes the corpus of text

01. Data Preprocessing (Cont.)

Tokenization

Breaks down text into words/sentences (String to List of tokens)

Filter Noises

Filter out unwanted characters (eg. symbols, punctuations, etc.)

Remove Stopwords

Remove words that don't carry much meaning (eg. the, I, you, etc.)

Stemming/ Lemmatization

Transform words to root form (eg. running to run, cooked to cook)

Additional Preprocessing Methods:

- Removal of PII data (Entity Extraction),
- Spelling Correction,

01. Data Preprocessing (Cont.)

Difference between Stemming and Lemmatization:

Stemming	Lemmatization
 Faster preprocessing Possibility of incorrect context Eg. "universal", "university", "universe" → "univers" 	 Slower preprocessing Carries more accurate text context Part-of-Speech (POS) Tagging Returns root word based of POS

Part-of-Speech (POS) Tagging Example:

Why	not	tell	someone	?
adverb	adverb	verb	noun	punctuation mark, sentence closer

Getting Started with Natural Language Processing

Feature Extraction

https://github.com/GrgOrry/NLP-Workshop

02. Feature Extraction

Purpose of Feature Extraction:

- Represent text in numerical form
- Maintains the context and meaning

How it works?

Text vectorization

- Represented as vectors in vector space
- Capture the semantics and relationship between words

$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_d \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_1 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_2 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_4 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} X_1 \\ X_3 \\ X_3 \end{bmatrix}$$

$$X_$$

Sample Corpus:

Document 1: The movie was bad!

Document 2: Great movie!

Document 3: Bad writing, so boring

Bag-of-Words (BoW)

	the	movie	was	bad	great	writing	so	boring
The movie was bad!	1	1	1	1	0	0	0	0
Great movie!	0	1	0	0	1	0	0	0
Bad writing, so boring movie	0	1	0	1	0	1	1	1

- Count frequency of tokens repeating in the corpus (Vocabulary)
- More frequent = More important

<u>Term Frequency - Inverse Document Frequency (TF-IDF)</u>

Term Frequency:

 Count frequency of tokens same as BoW

Inverse Document Frequency:

• log(N / df)

N: number of documents df: number of documents with the word

	the	movie	was	bad	great	writing	so	boring
The movie was bad!	1	1	1	1	0	0	0	0
Great movie!	0	1	0	0	1	0	0	0
Bad writing, so boring movie	0	1	0	1	0	1	1	1

<u>Term Frequency - Inverse Document Frequency (TF-IDF)</u>

Term Frequency:

 Count frequency of tokens same as BoW

Inverse Document Frequency:

log(N / df)

N: number of documents df: number of documents with the word

		"the":			
	the		de e 2.	ng	
The movie was bad!	1	document 1: TF = 1,	<u>document 2:</u> TF = 0,		
Great movie!	0	IDF = log(3/1) = 0.4771	IDF = log(3/1) = 0.4771		
Bad writing, so boring movie	0	TF*IDF = 1 * 0.4771 = 0.4771	TF*IDF = 0 * 0.4771 = 0		

<u>Term Frequency - Inverse Document Frequency (TF-IDF)</u>

Term Frequency:

 Count frequency of tokens same as BoW

Inverse Document Frequency:

log(N / df)

N: number of documents df: number of documents with

the word

<u>Term Frequency - Inverse Document Frequency (TF-IDF)</u>

Term Frequency:

 Count frequency of tokens same as BoW

Inverse Document Frequency:

• log(N / df)

N: number of documentsdf: number of documents withthe word

	the	movie
The movie was bad!	0.48	1
Great movie!	0	1
Bad writing, so boring movie	0	1

<u>Term Frequency - Inverse Document Frequency (TF-IDF)</u>

Term Frequency:

 Count frequency of tokens same as BoW

Inverse Document Frequency:

• log(N / df)

N: number of documentsdf: number of documents withthe word

	the	movie
The movie was bad!	0.48	O
Great movie!	0	0
Bad writing, so boring movie	0	0

<u>Term Frequency - Inverse Document Frequency (TF-IDF)</u>

Term Frequency:

 Count frequency of tokens same as BoW

Inverse Document Frequency:

• log(N / df)

N: number of documents df: number of documents with the word

	the	movie	was	bad	great	writing	so	boring
The movie was bad!	0.48	0	0.48	0.18	0	0	0	0
Great movie!	0	0	0	0	0.48	0	0	0
Bad writing, so boring movie	0	0	0	0.18	0	0.48	0.48	0.48

- The more frequent the word across the corpus, the less important it is
- Reduces impact of noise words

N-grams

"Bad writing, so boring movie"

Bigrams (Two Words)

Bad writing so boring movie

Trigrams (Three Words)

Bad writing so boring movie
Bad writing so boring movie
Bad writing so boring movie

- Useful for predicting next word in sentence
- Identify words that are commonly together

Word Embeddings

Example Algorithm: word2vec, GloVe, fasttext

Word embeddings in a nutshell

https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/

Word Embeddings Vector Space: https://projector.tensorflow.org/

Getting Started with Natural Language Processing

Model Fitting

https://github.com/GrgOrry/NLP-Workshop

Choosing the Right Machine Learning Model

1. Identify the problem to solve

https://vitalflux.com/most-common-types-machine-learning-problems/

Choosing the Right Machine Learning Model

2. Identify the approach to take

Supervised Learning

• Learns off labelled dataset

Unsupervised Learning

Discover patterns with unlabelled dataset

Reinforcement Learning

• Learns off simulations (feedback/reward)

Data Splitting (Supervised Learning)

Model Evaluation (Classification)

Confusion Matrix:

Predicted Values

https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

Model Evaluation (Classification)

Overfitting and Underfitting

Overfitting:

Training accuracy >>> Testing accuracy

Underfitting:

Training accuracy < Testing accuracy

https://machinelearningmastery.com/overfitting-machine-learning-models/

Machine Learning Workflow

Getting Started with Natural Language Processing

Q&A

Follow Us on Social Media

Keep up with the cool kids

- https://gdsc.community.dev/sunway-university/
- fb.com/gdsc.sunway
- instagram.com/gdsc.sunway
- GDSC Sunway University Youtube Channel

Thank you!

- © @grgrrry
- in Tan Yong Jern (Gregory)