Les transformations liée a des réactions acides et bases

Exercice 1: Ibuprofène 400mg

L'étiquette d'un médicament fournit l'information "Ibuprofène.... 400 mg ". On dissout un comprimé contenant l'ibuprofène selon un protocole bien défini afin d'obtenir une solution aqueuse (S) d'ibuprofène de volume $V_S=100mL$. Pour vérifier, la masse d'ibuprofène contenu dans ce comprimé, on procède à un titrage acido-basique du volume V_S par une solution aqueuse d'hydroxyde de sodium $(Na^+_{(aq)}+HO^-_{(aq)})$ de concentration molaire $C_B=1,94.10^{-1}mol.L^{-1}$, en utilisant le dispositif expérimental de la figure (1).

La figure (2) donne les courbes $pH = f(V_B)$ et $\frac{dpH}{dV_B} = g(V_B)$ obtenues lors de ce dosage.

- 1. Nommer les éléments du dispositif expérimental numérotés 1,2 ,3 et 4 sur la figure (1).
- 2. Parmi les courbes (1) et (2) de la figure (2), quelle est celle qui représente pH = f(VB)?
- 3. Déterminer graphiquement la valeur du volume V_{BE} , versé à l'équivalence.
- 4. Écrire l'équation de la réaction qui a eu lieu lors du dosage sachant qu'elle est totale.
- 5. Calculer la valeur de la quantité de matière nA d'ibuprofène dans la solution(S).
- 6. Déduire la valeur de la masse m d'ibuprofène dans le comprimé et la comparer à celle indiquée sur l'étiquette du médicament.

Exercice 2 : Dosage acide-base d'une solution diluée d'ammoniac.

Pour déterminer la concentration C_B d'une solution commerciale concentrée d'ammoniac, on procède par dosage acido-basique. On prépare par dilution une solution S de concentration $C' = \frac{C_B}{1000}$.

On réalise le dosage pH métrique d'un volume V=20mL de la solution S à l'aide d'une solution S_A d'acide chlorhydrique $(H_3O^+_{(aq)}+Cl^-_{(aq)})$ de concentration $C_A=0,015mol.L^{-1}$.

On mesure le pH du mélange après chaque addition d'un volume d'acide ; Les résultats obtenus permettent de tracer la courbe de dosage $pH=f(V_A)$ (fig 1). On atteint l'équivalence lorsqu'on ajoute du dosage.

- 1. En utilisant la valeur du pH correspondant à l'addition de 5mL d'acide chlorhydrique, calculer le taux d'avancement final de la réaction du dosage. Conclure.
- 2. Déterminer le volume V_{AE} En déduire C'et C_B .
- 3. Parmi les indicateurs colorés indiqués dans le tableau ci- dessous, choisir celui qui conviendra le mieux à ce dosage.

L'indicateur coloré	phénolphtaléine	Hélianthine	Rouge de Chlorophénol
Zone de virage	8,2 - 10	5,2 - 6,8	3,1- 4,4

Exercice 3 :Étude d'un système chimique à l'état d'équilibre

- 1. On considère une solution aqueuse (S_0) d'ammoniac NH_3 , de volume V_0 et de concentration molaire $C_0 = 1, 0.10^{-2} mol/L$. Le pH de cette solution à 25°C vaut pH = 10,6.
- 1.1. Écrire l'équation de la réaction modélisant la transformation entre l'ammoniac et l'eau.
- 1.2. Construire le tableau d'avancement.
- 1.3. Calculer le taux d'avancement de cette réaction.
- 1.4. Calculer la concentration molaire effective des ions ammonium NH_4^+ à l'état d'équilibre du système.
- 1.5. Calculer la constante d'équilibre K et déduire la valeur de pKA la constate d'acidité du couple NH^+/NH_3 .
- 1.6. On mélange un volume de la solution (S_0) d'ammonium avec un volume d'une solution de chlorure d'ammonium $(NH_{4(aq)}^+ + Cl_{(aq)}^-)$. le pH du mélange est pH = 6,2. Tracer le diagramme de prédominance du couple NH_4^+/NH_3 . En déduire l'espèce prédominante de ce couple dans le mélange.
- 2- Dosage d'un engrais :

Le nitrate d'ammonium NH_4NO_3 est un composée ionique présent dans divers engrais. Un sac d'engrais porte l'indication suivantes : " pourcentage en masse 75% de nitrate d'ammonium ".

Pour vérifier le pourcentage massique en nitrate d'ammonium indiqué par le producteur, on prépare une solution aqueuse (S_A) par dissolution de la masse m=15,0g d'engrais dans le volume $V_0=1L$ d'eau distillée. On dose les ions ammonium NH_4^+ présent dans un volume $V_A=10,0mL$ de la solution (S_A) par une solution aqueuse (S_B) d'hydroxyde de sodium $(Na_{(aq)}^+ + HO_{(aq)}^-)$ de concentration molaire $C_B=0,10mol.L-1$. Le volume de la solution (S_B) versé à l'équivalence est $V_{BE}=14,0mL$.

Donnée : $M(NH_4NO_3) = 80g/mol$ et $K_e = 10^{-14}$

- 2.1. Écrire l'équation de la réaction qui se produit au cours du dosage.
- 2.2. Déterminer la valeur de la concentration molaire C_A des ions ammonium NH_4^+ dans la solution (S_A) .
- 2.3. Calculer le pourcentage massique en masse de nitrate d'ammonium contenu dans cet engrais. Comparer à la valeur annoncée par le fabriquant
- 2.4. Déterminer l'indicateur colorée convenable a ce dosage

On prépare une solution (S_B) de volume V, en diluant 100 fois une solution commerciale d'ammoniac S_0 de concentration C_0 . On réalise un dosage pH-métrique d'un volume Vb = 15 mL de la solution S_B par une solution aqueuse S_a d'acide chloridrique $(H_3O^+_{(aq)} + Cl^-_{(aq)})$ de concentration $C_a = 10^{-2} mol/L$. La courbe de la figure 1 représente les variations du pH du

- . La courbe de la figure 1 représente les variations du pH du mélange en fonction du volume Va versée de la solution S_b : $pH = f(V_a)$.
- 3.1. Écrire l'équation de la réaction de dosage.
- 3.2. Calculer K la constate d'équilibre associée à la réaction
- 3.3. Calculer la concentration C_b de la solution S_b . En déduire C_0 .
- 3.4. Choisir en justifiant, parmi les indicateurs colorés suivants, l'indicateur adéquat pour réaliser ce dosage.

L'indicateur coloré	phénolphtaléine	Hélianthine	Rouge de Chlorophénol
Zone de virage	8,2 - 10	5,2 - 6,8	3,1- 4,4

3.5. Calculer le taux d'avancement final, de la réaction de dosage lorsque le volume de la solution versé est S_a est $V_a = 9mL$.

Exercice 4 : Vérification du degré d'acidité du vinaigre commercial

Le vinaigre est une solution aqueuse d'acide éthanoïque (CH_3COOH) , il est caractérisé par son degré d'acidité (X°) qui représente la masse (en gramme) d'acide éthanoïque contenue dans 100 g de solution.

Données:

- Toutes les mesures ont été faites à 25°C.
- La masse volumique du vinaigre : $\rho = 1g/mL$.
- La masse molaire de l'acide éthanoïque : $M(CH_3COOH) = 60g/mol$.
- La conductivité molaire ionique de l'ion H_3O^+ .

On extrait un échantillon de vinaigre commetcial, de volume $V_0 = 1mL$, de concentration molaire C_0 et portant l'indication (7°), on y ajoute de l'eau distillée pour préparer une solution (S) de concentration molaire C_S et de volume $V_S = 100mL$.

On neutralise un échantillon de volume $V_A = 20mL$ de la solution (S) à l'aide d'une solution aqueuse (S_B) d'hydroxyde de sodium $(Na^+_{(aq)} + OH^-_{(aq)})$ de concentration molaire $C_B = 1, 5.10^{-2} mol/L$.

L'équivalence est obtenue lorsque le volume vérsé de la solution (S_B) est : $V_{BE} = 15,7mL$.

- 1. Ecrire l'équation modélisant la réaction ayant lieu au cours du dosage.
- 2. Calculer la valeur de C_S .
- 3. Déterminer le degré d'acidité du vinaigre étudié. Le résultat obtenu est-il en accord avec l'indication inscrite sur le vinaigre commercial ou non ?

Exercices Supplémentaires

Exercice 5:

On prépare une solution aqueuse (SA) d'acide éthanoïque CH_3COOH de volume V=1L et de concentration molaire C_A , en dissolvant une quantité de masse m de cet acide dans l'eau distillée

On dose un volume $V_A = 20mL$ de la solution (S_A) en suivant les variations du pH en fonction du volume VB versé d'une solution aqueuse d'hydroxyde de sodium $(Na^+_{(aq)} + HO^-_{(aq)})$ de concentration molaire $C_B = 2.10^{-2} mol/L$.

- courbe (C_2) .représentant $\frac{dpH}{dV_B} = g(V_B)$ 2.1. Déterminer le volume V_{BE} de la solution d'hydroxyde de sodium versé à l'équivalence.
- 2.2. Trouver la valeur de la masse m nécessaire à la préparation de la solution (S_A) .
- 2.3. Montrer que la réaction entre l'acide éthanoïque et l'eau est limitée.