Fourier Series: Complex Form

For a function f(t), with period $T=2\pi$, there exists values c_k such that

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{ikt}$$

How do we calculate c_k ?

Example

• Find the matching Fourier series for the square step function with period $T=2\pi$

Convert to Fourier Series form

Find a_k, b_k such that

$$f(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos\left(\frac{2\pi kt}{T}\right) + \sum_{k=1}^{\infty} b_k \sin\left(\frac{2\pi kt}{T}\right)$$

• Find c_k such that

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{ikt}$$

• Exercise (for you): Show that the two representations are equivalent.

Approximating f(t)

- For most f(t), there is little information in high frequency harmonics
 - "noise" in a audio signal
 - Edges in an image
 - "power" in the frequency k/T for electrical signal

Power Spectrum of $f(t) = \sum_{k=-\infty}^{\infty} c_k e^{ikt}$ Plot $|c_k|^2$ = power of kth harmonic

As $|k| \rightarrow \infty$, terms are less significant, and can be dropped.

Approximating f(t)

Truncate the sum for some M>0:

$$f(t) \cong \sum_{k=-M}^{M} c_k e^{ikt}$$

How many terms in the series do we "need"? Using a_0 and $b_1,b_3,b_5,...,b_p$ terms

How much is gained using more terms?

