Theoretical Models of MapReduce-type Computation

张晓达

Paper Presentations

- Howard Karloff, Siddharth Suri, Sergei Vassilvitskii. A Model of Computation for MapReduce. SODA '10.
- Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang.
 Shuffles and Circuits: (On Lower Bounds for Modern Parallel Computation). SPAA '16. [Best Paper Award]
- Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient Massively Parallel Methods for Dynamic Programming. STOC '17.

Outline

- Background
 - Traditional PRAM and NC
 - MapReduce
- The fundamental problems introduced by MapReduce
- The model and a particular problem [KSV SODA '10]
- The model and its *lower bound* [RVW SPAA '16]
- The model and a specific algorithm design technique [IMS STOC '17]

Background

- The synchronous parallel random assess machine (PRAM) model
 - Global memory (M locations), P processors (each has a constant number of local registers)
 - Computation proceeds in a series of synchronous parallel steps, each consisting:
 - each processor chooses a mem. location and reads;
 - each does some computation;
 - · each chooses a mem. location and writes;
 - By synchrony, every processor finishes executing step i before any processor begins executing step i+1
- Whether or not allowing concurrent read/write
 - EREW, CREW, CRCW

Background

- What problems can be solved in polylog time on a PRAM with a polynomial number of processors?
 - Polylog time serves as gold-standard for parallel running time;
 - Polynomial number of processors provides a necessary condition for *efficiency*.
- The class NC (Nick's class) is defined as the set of such problems
 - ▶ Definition 12.1: The class NC consists of languages L that have a PRAM algorithm A such that for any $x \in \Sigma^*$
 - $x \in L \Rightarrow A(x)$ accepts;
 - $x \notin L \Rightarrow A(x)$ rejects;
 - the number of processors used by A on x is polynomial in |x|;
 - the number of steps used by A on x is polylogarithmic in |x|.

Background

- MapReduce
 - Map phase, (shuffle), Reduce phase
 - Tasks in Map phase compute over disjoint input splits and output intermediate data *locally*
 - Tasks in Reduce phase take as input the intermediate data,
 and contribute the parts of the final output

The fundamental problems

• What is *efficiently* (*e.g.* in polylog rounds) computable in the MapReduce paradigm?

 What is the fundamental *limitations* on how efficiently algorithms implemented on MapReduce?

• Is there a *meta-algorithm* that task as input a sequential algorithm and outputs an efficient distributed (MapReduce) algorithm?

The **MRC**

The input to a **MRC** problem is a finite sequence of pairs $\langle kj, vj \rangle$, for $j = 1, 2, 3, \ldots$ The length of the input is $n = \sum_{j} (|k_j| + |v_j|)$.

randomized version

DEFINITION Fix an $\epsilon > 0$. An algorithm in \mathcal{MRC}^i consists of a sequence $\langle \mu_1, \rho_1, \mu_2, \rho_2, \dots, \mu_R, \rho_R \rangle$ of operations which outputs the correct answer with probability at least $^{3}/_{4}$ where:

number of machines is sublinear $O(n^{1-\epsilon})$

- sublinear space in each machine
- Each μ_r is a randomized mapper implemented by a RAM with $O(\log n)$ -length words, that uses $O(n^{1-\epsilon})$ space and time polynomial in n.
- Each ρ_r is a randomized reducer implemented by a RAM with $O(\log n)$ -length words, that uses $O(n^{1-\epsilon})$ space and time polynomial in n.
- 允许mapper阶段的 输出有duplication, 但不是任意 duplication
- The total space $\sum_{\langle k;v\rangle \in U'_r} (|k| + |v|)$ used by $\langle key; value \rangle$ pairs output by μ_r is $O(n^{2-2\epsilon})$.
- The number of rounds $R = O(\log^{i} n)$

Restriction is only applied to mapper, not reducer.

 (deterministic MRC) DMRC's relationship with P/NC

- DMRC is in P

THEOREM If $\mathcal{P} \neq \mathcal{NC}$ then $\mathcal{DMRC} \not\subseteq \mathcal{NC}$.

PROOF: From a **P-complete** language (Circuit Value), construct another language which is solvable in **DMRC**. Since **P-complete** language is not in **NC**, **DMRC** is not in **NC**.

– DMRC ?= P

DMRC实际定义的language是solvable by Turing machine simultaneously in space O($n^2 \log n$) and polynomial time。若证明**P** ≠ **MRC**,需找到一个language在**P** - **MRC**中,这样的language目前还不知道是否存在。

MRC-parallelizable function

MRC-parallelizable function as a building block:

Let S be a set. Call a function f on

```
applying g, and then h

1. For any partition T = \{T_1, T_2, \dots, T_k\} of S, where \cup_i T_i = S and T_i \cap T_j = \emptyset for i \neq j (of course), f can be expressed as: f(S) = h(g(T_1), g(T_2), \dots, g(T_k))

2. g and h can be computed in time polynomial in |S| and every output of g can be expressed in O(\log n) bits.
```

DEFINITION

 If one wants to compute f over S, one could do so by partitioning S arbitrarily, applying g to each part of the partition, and then applying h to the results.

The power of MRC-parallelizable function

LEMMA Consider a universe \mathcal{U} of size n and a collection $\mathcal{S} = \{S_1, \ldots, S_k\}$ of subsets of \mathcal{U} , where $S_i \subseteq \mathcal{U}$, $\sum_{i=1}^k |S_i| \leq n^{2-2\epsilon}$, and $k \leq n^{2-3\epsilon}$. Let $\mathcal{F} = \{f_1, \ldots, f_k\}$ be a collection of \mathcal{MRC} -parallelizable functions. Then the output $f_1(S_1), \ldots, f_k(S_k)$ can be computed using $O(n^{1-\epsilon})$ reducers each with $O(n^{1-\epsilon})$ space.

- 构造性证明: (两轮MapReduce)需要split 每个Si,让g先对每个partition进行计算,而后将用h再进行一次计算可得最后结果。
- The power of this lemma: focus on the structure of the problem and the input; the lemma will handle how to distribute the input across the reducers

- 1. Begin with every node $v \in V$ being active with label $\ell(v) = v$.
- 2. For $i = 1, 2, 3, ..., O(\log N)$ do:
 - (a) Call each active node a leader with probability 1/2.
 - (b) For every active non-leader node w, find the smallest (according to π) node $w^* \in \Gamma'(w)$.
 - (c) If w^* is not empty, mark w passive and relabel each node with label w by w^* .
- 3. Output true if s and t have the same labels, false otherwise.

- This Monte Carlo algorithm is correct
- It needs O(log N) rounds to terminate, w.h.p.
- The (a)(b)(c) step satisfies the conditions of the Function Lemma

- 1. Begin with every node $v \in V$ being active with label $\ell(v) = v$.
- 2. For $i = 1, 2, 3, ..., O(\log N)$ do:
 - (a) Call each active node a leader with probability 1/2.
 - (b) For every active non-leader node w, find the smallest (according to π) node $w^* \in \Gamma'(w)$.
 - (c) If w^* is not empty, mark w passive and relabel each node with label w by w^* .
- 3. Output true if s and t have the same labels, false otherwise.

- This Monte Carlo algorithm is correct
- It needs O(log N) rounds to terminate, w.h.p.
- The (a)(b)(c) step satisfies the conditions of the Function Lemma

- 1. Begin with every node $v \in V$ being active with label $\ell(v) = v$.
- 2. For $i = 1, 2, 3, ..., O(\log N)$ do:
 - (a) Call each active node a leader with probability 1/2.
 - (b) For every active non-leader node w, find the smallest (according to π) node $w^* \in \Gamma'(w)$.
 - (c) If w^* is not empty, mark w passive and relabel each node with label w by w^* .
- 3. Output true if s and t have the same labels, false otherwise.

- This Monte Carlo algorithm is correct
- It needs O(log N) rounds to terminate, w.h.p.
- The (a)(b)(c) step satisfies the conditions of the Function Lemma

- 1. Begin with every node $v \in V$ being active with label $\ell(v) = v$.
- 2. For $i = 1, 2, 3, ..., O(\log N)$ do:
 - (a) Call each active node a leader with probability 1/2.
 - (b) For every active non-leader node w, find the smallest (according to π) node $w^* \in \Gamma'(w)$.
 - (c) If w^* is not empty, mark w passive and relabel each node with label w by w^* .
- 3. Output true if s and t have the same labels, false otherwise.

- This Monte Carlo algorithm is correct
- It needs O(log N) rounds to terminate, w.h.p.
- The (a)(b)(c) step satisfies the conditions of the Function Lemma

- 1. Begin with every node $v \in V$ being active with label $\ell(v) = v$.
- 2. For $i = 1, 2, 3, ..., O(\log N)$ do:
 - (a) Call each active node a leader with probability 1/2.
 - (b) For every active non-leader node w, find the smallest (according to π) node $w^* \in \Gamma'(w)$.
 - (c) If w^* is not empty, mark w passive and relabel each node with label w by w^* .
- 3. Output true if s and t have the same labels, false otherwise.

- This Monte Carlo algorithm is correct
- It needs O(log N) rounds to terminate, w.h.p.
- The (a)(b)(c) step satisfies the conditions of the Function Lemma

- 1. Begin with every node $v \in V$ being active with label $\ell(v) = v$.
- 2. For $i = 1, 2, 3, ..., O(\log N)$ do:
 - (a) Call each active node a leader with probability 1/2.
 - (b) For every active non-leader node w, find the smallest (according to π) node $w^* \in \Gamma'(w)$.
 - (c) If w^* is not empty, mark w passive and relabel each node with label w by w^* .
- 3. Output true if s and t have the same labels, false otherwise.

- This Monte Carlo algorithm is correct
- It needs O(log N) rounds to terminate, w.h.p.
- The (a)(b)(c) step satisfies the conditions of the Function Lemma

- 1. Begin with every node $v \in V$ being active with label $\ell(v) = v$.
- 2. For $i = 1, 2, 3, ..., O(\log N)$ do:
 - (a) Call each active node a leader with probability 1/2.
 - (b) For every active non-leader node w, find the smallest (according to π) node $w^* \in \Gamma'(w)$.
 - (c) If w^* is not empty, mark w passive and relabel each node with label w by w^* .
- 3. Output true if s and t have the same labels, false otherwise.

- This Monte Carlo algorithm is correct
- It needs O(log N) rounds to terminate, w.h.p.
- The (a)(b)(c) step satisfies the conditions of the Function Lemma

The s-shuffle model and lower bound

s-shuffle model

- few rounds s-shuffle computation and its connection to low-degree polynomials
 - translate a lower bound on the polynomial degree of a Boolean function to a lower bound of s-shuffle computation
- prove lower bounds on the polynomial degree (Boolean)

The s-shuffle model

Capturing core properties of massively parallel computation

- Computation proceeds in synchronous rounds
- In each round, each machine performs an arbitrary computation on its input, and send arbitrary information to arbitrary machines in the next round (shuffle)
- The only constraint is that each machine receives at most s
 bits each round

Definition (s-SHUFFLE Computation) An R-round s-SHUFFLE computation with inputs x_1, \ldots, x_n and outputs y_1, \ldots, y_k has the following ingredients:

- 1. A set V of *machines*, which includes one machine for each input bit x_i and each output bit y_i .
- 2. An assignment of a round r(v) to each machine $v \in V$. Machines corresponding to input bits have round 0. Machines corresponding to output bits have round R+1. All other machines have a round in $\{1, 2, \ldots, R\}$.
- 3. For each pair (u, v) of machines with r(u) < r(v), a function α_{uv} from $\{0, 1, \bot\}^s$ to $\{0, 1, \bot\}^s$.

The s-shuffle model

Definition (Result of an s-SHUFFLE Computation) The result of an s-SHUFFLE computation assigns a value $g(v) \in \{0, 1, \bot\}^s$ to every machine $v \in V$, and is defined inductively as follows.

- 1. For a round-0 machine v, corresponding to an input bit x_i , the value g(v) is the s-tuple $(x_i, \bot, \bot, \bot, \bot)$.
- 2. Given the value g(u) assigned to every machine u with r(u) < q, the value assigned to a machine v with r(v) = q is the \bot -sum, over all machines u with r(u) < r(v), of the message $\alpha_{uv}(g(u))$ sent to v by u:

The main theorem

Theorem 3.1 Suppose that an s-SHUFFLE computation computes the function $f: \{0,1\}^n \to \{0,1\}^k$ in r rounds. Then there are k polynomials $\{p_i(x_1,\ldots,x_n)\}_{i=1}^k$ of degree at most s^r such that $p_i(\mathbf{x}) = f(\mathbf{x})_i$ for all $i \in \{1,2,\ldots,k\}$ and $\mathbf{x} \in \{0,1\}^n$.

PROOF: Induction on the number of rounds.

We claim that for every non-output machine $v \in V$, value $\mathbf{z} \in \{0,1,\bot\}^s$, there is a polynomial $p_{v,z}(x_1,...,x_n)$ that evaluates to 1 on point \mathbf{x} for which the computation's assigned value g(v) to v is z and to 0 on all other points $\mathbf{x} \in \{0,1,\bot\}^n$. $p_{v,z}$ has degree at most $s^{r(v)}$.

Base case: for a machine v in round 0 (r(v) = 0). Each such machine corresponds to an input bit x_i and its value g(v) is (x_i , \bot , \bot ,..., \bot). The (degree-1) polynomial for $\mathbf{z} = (0, \bot, ..., \bot)$ and $\mathbf{z} = (1, \bot, ..., \bot)$ are $p_{v,z}(x_1, ..., x_n) = 1$ - x_i and $p_{v,z}(x_1, ..., x_n) = x_i$, respectively. All other values of \mathbf{z} are impossible for such a machine, so they have polynomials $p_{v,z}(x_1, ..., x_n) = 0$.

The main theorem

Theorem 3.1 Suppose that an s-SHUFFLE computation computes the function $f: \{0,1\}^n \to \{0,1\}^k$ in r rounds. Then there are k polynomials $\{p_i(x_1,\ldots,x_n)\}_{i=1}^k$ of degree at most s^r such that $p_i(\mathbf{x}) = f(\mathbf{x})_i$ for all $i \in \{1,2,\ldots,k\}$ and $\mathbf{x} \in \{0,1\}^n$.

Consider a machine v (neither an input bit nor an output bit).

Fix some potential value $\mathbf{z} \in \{0,1,\perp\}^s$ of g(v), and focus first on the *ith* coordinate of g(v). Consider some machine u of previous round. It sends z_i on port i to machine v when $\alpha_{\{uv\}}(g(u))$ has an ith entry of z_i .

By inductive hypothesis, for particular value g(u), there is a polynomial of degree at most $s^{r(v)-1}$ that indicates the inputs \mathbf{x} for which u receives this value.

To obtain a polynomial that represents the inputs x for which g(v) = z, just take the product, g(v)1 = z1, g(v)2 = z2, ..., g(v)s = zs. This produces a polynomial of degree $s^{r(v)}$.

The main theorem

Theorem Suppose that an s-SHUFFLE computation computes the function $f: \{0,1\}^n \to \{0,1\}^k$ in r rounds. Then there are k polynomials $\{p_i(x_1,\ldots,x_n)\}_{i=1}^k$ of degree at most s^r such that $p_i(\mathbf{x}) = f(\mathbf{x})_i$ for all $i \in \{1,2,\ldots,k\}$ and $\mathbf{x} \in \{0,1\}^n$.

逆否命题

Corollary If some output bit of the function $f: \{0,1\}^n \to \{0,1\}^k$ cannot be represented by a polynomial with degree less than d, then every s-SHUFFLE computation that computes f uses at least $\lceil \log_s d \rceil$ rounds.

s-shuffle computation (round)

Polynomials on Boolean function (degree)

The lower bound

Theorem The degree of the Boolean function for undirected ST-CONNECTIVITY on n vertices is $\binom{n}{2}$.

The model and an algorithm design technique (DP)

- The model
 - Let n be the input size, m be the number of machines.

polylogarithmic

factors

- local memory on each machine should be $\Theta(n/m)$, and the algorithm should allow for $n^{\epsilon} \leq m \leq n^{1-\epsilon}$, for some constant $\epsilon > 0$
- Are there principled guidelines for converting a sequential DP into an efficient (e.g. O(1) rounds) distributed DP?

Key Properties

- (1) **Monotonicity**: A sub-problem has no greater (smaller, resp.) optimum if the objective is to be maximized (minimized, resp.). (2) **Decomposibility**: The input can be decomposed into a two-level laminar family of partial input, where an upper level partial input is called a group and a lower level partial input is called a block, such that:
 - A nearly optimal solution (for the whole input) can be constructed by concatenating solutions for groups.
 - A nearly optimal solution for each group can be constructed from *O*(1) blocks.

Weighted Interval Selection (WIS)

Definition

- **Input**: a collection of intervals $\{I_i = (a_i, b_i)\}_{i \in [n]}$, with their respective weights $\{w_i\}_{i \in [n]}$
- Goal: choose a subset of disjoint intervals with the maximum weight.
- Standard sequential DP
 - Assume that intervals are ordered in increasing order of their start points
 Choose the ith interval or not?
 - Let $\mathit{OPT}(S)$ denote the optimal solution to the instance consisting of a subset S of intervals, (or the optima value). Let $\mathit{A}(i)$ denote $\mathit{OPT}(\{I_i, I_{i+1}, ..., I_n\})$. Goal is to compute $\mathit{A}(1)$ using the following recursion:

$$A(i) = \max\{A(i+1), w_i + A(j)\}\$$

where $j = \arg\min_{j'} (b_i < a_{j'})$ when $i \le n$; and A(n + 1) = 0.

Preliminaries

Goal

Theorem 4.1. For any $\epsilon, \delta > 0$, there exists a $(1 - \epsilon)$ -approximation for the Weighted Interval Selection problem running in $O(\frac{1}{\delta}(\log \frac{1}{\epsilon} + \log \frac{1}{\delta}))$ rounds when each machine has memory $\tilde{O}(n^{\delta})$.

Preprocessing

- 因为最后的结果只取决于interval开始和结束的相对位置,所以可以调整intervals, 使其starting and ending time are all distinct and not integers.
- 将输入均分到m machines上. The first n/m intervals go to machine 1, the next go to machine 2, and so on. Assume that machine k can only see intervals starting at time between k and k+1.

The beginning lemma

Definition

- block: a subset of disjoint intervals
- pairwise independent blocks: span disjoint sets of machines
- L-block: a block contains at most L crossing intervals

Lemma 4.2. For any even integer $L \ge 2$, there exists a (1 - 2/L)-approximate solution consisting of (pair-wise) independent L-blocks.

PROOF: Consider a fixed optimal solution. Partition the crossing intervals into *groups* so that each group contains *L* consecutive crossing intervals; (the last may contain less).

We remove the lightest interval from every group except the last. Clearly, we lose at most 1/L times the optimum. It is easy to see that the resulting solution consists of 2L-blocks that are pairwise independent.

Overview of the algorithm

- 如果a nearly optimal solution consisting only of 0-blocks 就好了
 - 那么只需要each machine compute the **best 'local'** solution from the local intervals on the machine, and simply **aggregate** the weights of the local solutions from all machines.
 - The aggregation can be done in $O(1/\delta)$, machine has $\tilde{O}(n^{\delta})$ memory.
 - However, the optimal solution may have lots of heavy crossing intervals, which can not be ignored.
- By the above lemma
 - We can construct a (1ϵ) -approximate solution from $2/\epsilon$ -blocks that are pairwise independent.

We compute such blocks approximately and memory-efficiently in O(1) rounds. 一旦我们有了这些blocks, we view each block as an **consolidated** interval. 这样, the new instance whose size is almost linear in the number of machines. 至多只需递归 $O(1/\delta)$ 次

Formally state the idea

Definition 4.3. For each interval I_i and a target weight μ , let $\mathsf{OPT}(i,\mu,L)$ be the smallest interval index $j \geq i$ such that there is a L-block of weight at least μ that is a subset of $\{I_i,I_{i+1},I_{i+2},\cdots I_n\}$ and is disjoint from $\{I_j,I_{j+1},\cdots,I_n\}$. Let $W:=\{0,\frac{1}{n^2},\frac{(1+\eta)}{n^2},\frac{(1+\eta)^2}{n^2},\cdots,n\}$ for η to be determined. A family $\mathcal{F}=\{D(i,\mu,L)\}_{i\in[n],\mu\in W}$ of blocks is said to be a $1-\gamma$ -approximate compact family of L-blocks if $D(i,\mu,L)$ has weight at least $(1-\gamma)\mu$ and $D(i,\mu,L) \leq \mathsf{OPT}(i,\mu,L)$. Here, $D(i,\mu,L)$ is analogously defined as $\mathsf{OPT}(i,\mu,L)$.

Idea

- there is a (1-2/L)-approximate solution consisting only of L-blocks. 对于each of those blocks, D*, the compact family contains 几乎和D*一样好的D, 其中D的weight is within (1-γ) of D*'s weight and ends no later than D*. 因此,如果我们将nearly optimal solution中的 block换成相应的the compact family中的block。 这样得到的solution是可行解且近似度是(1-2/L)(1-γ).

Formally state the idea

Lemma 4.4. If we can construct a $(1-O(\epsilon\delta))$ -approximate compact family of L-blocks in $O(\log\frac{1}{\epsilon} + \log\frac{1}{\delta})$ rounds where $L = \frac{2}{\epsilon\delta}$ and $\eta = \frac{\epsilon\delta}{10(\log(1/\epsilon) + \log(1/\delta))}$, then we can obtain a $(1-O(\epsilon))$ -approximate solution for the IS problem in $O(\frac{1}{\delta} \cdot (\log\frac{1}{\epsilon} + \log\frac{1}{\delta}))$ rounds.

 It now remains to show how to construct the Desired Compact Family using DP.

find a desired compact family, $\mathcal{F}(\ell) := \{D(i, \mu, 2^{\ell} - 1)\}_{i \in [n], \mu \in W}$, as stated in Lemma 4.4. Towards this end, we find such a family for $\ell = 0, 1, 2, \cdots, \ell_1 = \lceil \log 2/(\epsilon \delta) \rceil$ in this order until we have $2^{\ell} - 1 \ge L = 2/(\epsilon \delta)$. Since we will use an induction on the value of ℓ , we refine and strengthen the property that $\mathcal{F}(\ell)$ satisfies: our goal is to find $\mathcal{F}(\ell)$ that is $(1 - \eta)^{\ell}$ -approximate in increasing order of $\ell = 0, 1, 2, \cdots \ell_1$ in $O(\ell)$ rounds. Since $L = \frac{2}{\epsilon \delta}$, we only need $O(\log 1/\epsilon + \log 1/\delta)$ rounds, and we have $(1 - \eta)^{\ell_1} = 1 - O(\epsilon \delta)$ since $\eta = \frac{\epsilon \delta}{10(\log (1/\epsilon) + \log (1/\delta))}$.

Our remaining goal is to find $\mathcal{F}(\ell)$ that is $(1 - \eta)^{\ell}$ -approximate in increasing order of $\ell = 0, 1, 2, 3, \dots \ell_1$ in $O(\ell)$ rounds.

find F(l+1) from F(l) in O(1) rounds.

Show how to compute
$$D(i, \mu, 2^{\ell+1} - 1)$$

Consider any triplet $\mu_1, \mu_2, \mu_3 \in W$ such that

$$(1-\eta)\mu \le \mu_1 + \mu_2 + \mu_3 \le \mu$$
 $j_1 = D(i, \mu_1, 2^{\ell}-1)$

Machine

where C

ends

Which is the earliest ending crossing interval of weight at least \mu_2 starting no earlier than

 I_{j_2} is the earliest starting interval after the interval C ends.

Consider any triplet $\mu_1, \mu_2, \mu_3 \in W$ such that $(1 - \eta)\mu \le \mu_1 + \mu_2 + \mu_3 \le \mu$ $j_1 = D(i, \mu_1, 2^{\ell} - 1)$ Which is the earliest ending crossing interval of weight at least \mu 2 starting no earlier than I J1? Machine Machine Machine where C $\lfloor a_{j_1} \rfloor$ $\lfloor a_i \rfloor$ ends (having interval I_i) (where I J1 starts)

 I_{j_2} is the earliest starting interval after the interval C ends.

 $j_3 = D(j_2, \mu_3, 2^{\ell} - 1)$

2, 3 requires only O(1) rounds.

We take the minimum j_3 over all possible triplets in parallel.

There are at most

 $|W|^3 = O(\log_{1+\eta}^3 n)$ triplets to be considered for each *i*. Thus, each machine uses memory at most $(n/m)O(\log_{1+\eta}^3 n) = \tilde{O}(n/m)$.

Prove the approximation radio by induction.