Here's a guide to help you understand **when to use charts, graphs, or maps** for data visualization, along with tricks to guess the correct choice based on a given statement.

1. Charts

Best For:

Showing comparisons, proportions, or distributions within categories.

• Examples of Charts and When to Use Them:

1. Bar Chart:

- Compare data across categories (e.g., sales by region).
- Trick: Look for words like compare or categories.

2. Pie Chart:

- Show proportions of a whole (e.g., percentage of market share).
- *Trick:* Look for words like **percentage**, **parts of a whole**, or **distribution**.

3. Stacked Bar Chart:

- Compare proportions within categories (e.g., gender distribution across departments).
- Trick: Look for multiple parts making up a total.

2. Graphs

Best For:

Showing trends, relationships, or changes over time.

• Examples of Graphs and When to Use Them:

1. Line Graph:

- Show trends or changes over time (e.g., temperature over a week).
- *Trick:* Look for time-related keywords like **over time**, **trend**, or **progression**.

2. Scatter Plot:

- Show relationships between two variables (e.g., study hours vs. exam scores).
- *Trick:* Look for phrases like **relationship**, **correlation**, or **two variables**.

3. Histogram:

- Show frequency distribution (e.g., number of students scoring within certain grade ranges).
- Trick: Look for words like frequency, distribution, or range of values.

3. Maps

Best For:

Geographical or spatial data.

• Examples of Maps and When to Use Them:

1. Choropleth Map:

- Show data intensity by region (e.g., population density).
- *Trick:* Look for **location-based comparisons** like **regions**, **countries**, or **areas**.

2. Heat Map:

- Show intensity or frequency in a spatial area (e.g., traffic congestion in a city).
- Trick: Look for patterns in a location or hotspots.

3. Point Map:

- Pinpoint locations of events (e.g., COVID-19 cases across a country).
- Trick: Look for data about specific locations or events.

Tricks to Guess from a Statement

1. Look for keywords in the problem:

- o Time-based data: Use a line graph.
- Location or geography: Use a map.
- Comparison across categories: Use a bar chart.
- Proportion or percentage: Use a pie chart.
- Relationships between variables: Use a scatter plot.
- Frequency of ranges: Use a histogram.

2. Identify the type of data:

- o If it's quantitative data changing over time \rightarrow Graph (line graph).
- If it's categorical data \rightarrow Chart (bar or pie chart).
- If it involves a place or region → Map.

3. Visualize the question:

- Ask yourself:
 - What's being compared? (Use a chart.)
 - Is it changing over time? (Use a graph.)

Is it tied to a location? (Use a map.)

Examples for Practice

1. Question Statement:

"Show how Ireland's COVID-19 cases evolved over 2020."

o **Answer:** Line graph \rightarrow It's time-based.

2. Question Statement:

"Compare sales across five product categories in Q1."

Answer: Bar chart \rightarrow It compares categories.

3. Question Statement:

"Highlight population density in different counties of Ireland."

o **Answer:** Choropleth map → It's about geographical regions.

4. Question Statement:

"Show the correlation between hours studied and exam scores."

o **Answer:** Scatter plot \rightarrow It's about relationships between two variables.

Quick Summary

Data Focus Use This Visualization Key Words

Time-based trends Line graph Over time, trends, progression

Comparison of categories Bar chart Compare, categories

Proportions of a whole Pie chart Percentage, proportion

Geographical data Map Region, location, geography

Relationship between two Scatter plot Correlation, relationship

Good luck on your exam!

Here's a guide to help you quickly understand when to identify **qualitative**, **quantitative**, **nominal**, **ordinal**, **continuous**, **discrete**, **interval**, and **ratio** data, along with tricks to guess based on a statement.

1. Qualitative vs. Quantitative

Qualitative Data

- Definition: Data that describes qualities, categories, or labels. No numerical meaning.
- Examples:
 - Colors of cars (red, blue, green).
 - Modes of transport (bus, train, bike).
 - Names of students.
- Trick to Guess: Look for descriptions or labels with no numerical value.
 - Question clue: "What is your favorite ice cream flavor?" → Qualitative.

Quantitative Data

- Definition: Data that represents numbers or measurements and has mathematical meaning.
- Examples:
 - o Age (30 years).
 - Height (5.8 feet).
 - o Test scores (85%).
- Trick to Guess: Look for numerical data that you can count or measure.
 - Question clue: "How many books do you own?" → Quantitative.

2. Nominal vs. Ordinal

Nominal Data (Qualitative)

- **Definition:** Categories with **no meaningful order**.
- Examples:
 - Types of fruit (apple, orange, banana).
 - Gender (male, female).
 - o Eye color (brown, blue, green).
- Trick to Guess: Look for unordered categories.
 - o Question clue: "What is your blood type?" → Nominal.

Ordinal Data (Qualitative)

- **Definition:** Categories with a **meaningful order**, but the difference between values isn't measurable.
- Examples:
 - o Clothing sizes (Small, Medium, Large).
 - o Educational levels (High School, Bachelor's, Master's).
 - o Satisfaction ratings (Very satisfied, Satisfied, Neutral).
- Trick to Guess: Look for ranked or ordered categories.
 - o Question clue: "Rate your experience from 1 to 5." → Ordinal.

3. Continuous vs. Discrete (Both Quantitative)

Continuous Data

- Definition: Data that can take any value within a range, including fractions/decimals.
- Examples:
 - Height (5.6 feet).
 - o Weight (70.5 kg).
 - Temperature (36.6°C).
- Trick to Guess: Look for measurements with possible decimals.
 - Question clue: "How much time does it take to commute to work?" → Continuous.

Discrete Data

- Definition: Data that can only take specific values (countable numbers).
- Examples:
 - o Number of children (0, 1, 2, 3).
 - Number of cars owned (1, 2).
 - Number of students in a class.
- Trick to Guess: Look for countable items (whole numbers only).
 - *Question clue:* "How many pets do you have?" \rightarrow **Discrete.**

4. Interval vs. Ratio (Both Quantitative)

Interval Data

- Definition: Numerical data with equal intervals, but no true zero point.
- Examples:

- o Temperature in Celsius or Fahrenheit (0°C ≠ "no temperature").
- o Calendar years (2020, 2021).
- Trick to Guess: Look for numbers where zero doesn't mean "nothing."
 - \circ Question clue: "What is the temperature outside?" \rightarrow Interval.

Ratio Data

- **Definition:** Numerical data with equal intervals **and a true zero point**.
- Examples:
 - Height (0 feet means no height).
 - Weight (0 kg means no weight).
 - o Salary (0 dollars means no salary).
- Trick to Guess: Look for numbers where zero means "none."
 - Question clue: "How much does this item weigh?" → Ratio.

Cheat Sheet: Quick Tricks

Туре	Key Words to Look For	Examples		
Qualitative	Categories, labels, descriptions	Colors, transport modes, favorite movie		
Quantitative Numbers, measurements, calculations Age, height, scores				
Nominal	No order, just labels	Gender, fruit types, eye color		
Ordinal	Ordered categories, ranks	Satisfaction levels, education levels		
Continuous	Any value, measurements, decimals	Height, weight, temperature		
Discrete	Countable items, whole numbers	Number of pets, number of cars		
Interval	Numbers, no true zero	Temperature, years		
Ratio	Numbers, true zero exists	Height, weight, income		

Practice Questions

- 1. "What is the population of Ireland?"
 - o **Answer:** Quantitative, Discrete, Ratio.
- 2. "What is your preferred mode of transport?"
 - o **Answer:** Qualitative, Nominal.
- 3. "How tall are you?"

- o **Answer:** Quantitative, Continuous, Ratio.
- 4. "What is the year of your birth?"
 - o **Answer:** Quantitative, Discrete, Interval.
- 5. "How would you rate the service quality?"
 - o **Answer:** Qualitative, Ordinal.

Key to Success

- 1. Identify the type of data (categories or numbers?).
- 2. Check if there is order or ranking (nominal vs. ordinal).
- 3. **Decide if it's measurable or countable** (continuous vs. discrete).
- 4. Check for a true zero point (interval vs. ratio).

Good luck on your exam! You've got this!

Here's a simple guide to understanding the **Big Data Pipeline**—**gathering, processing, analyzing, presenting, and preserving**—along with tricks to identify the right step from a statement.

1. Gathering

- **Definition:** Collecting raw data from different sources.
- Examples:
 - o Scraping data from websites.
 - Pulling records from sensors or APIs.
 - Survey responses.
- Trick to Guess: Look for words like collect, acquire, fetch, or gather.
 - Question clue: "Getting traffic data from Dublin's cameras." → Gathering.

2. Processing

- **Definition:** Cleaning, filtering, and transforming raw data into a usable format.
- Examples:
 - o Removing duplicates from a dataset.
 - o Normalizing data (e.g., formatting dates to DD-MM-YYYY).

- o Converting file formats (e.g., CSV to JSON).
- Trick to Guess: Look for words like clean, prepare, transform, or structure.
 - Question clue: "Removing invalid survey entries." → **Processing.**

3. Analyzing

- **Definition:** Extracting insights and patterns from the processed data.
- Examples:
 - o Calculating the average commute time.
 - o Building predictive models (e.g., forecasting sales).
 - Identifying trends (e.g., increase in remote working).
- Trick to Guess: Look for words like calculate, predict, pattern, insight, or analyze.
 - \circ Question clue: "Identifying the busiest commuting times." \rightarrow Analyzing.

4. Presenting

- **Definition:** Communicating insights visually or in reports.
- Examples:
 - o Creating charts and dashboards.
 - Writing a report for policymakers.
 - Delivering a presentation on findings.
- Trick to Guess: Look for words like visualize, present, communicate, or report.
 - Question clue: "Building a dashboard to show footfall trends." → **Presenting.**

5. Preserving

- **Definition:** Storing data and results for future use or compliance.
- Examples:
 - o Archiving historical traffic data.
 - o Backing up analysis results to the cloud.
 - Creating a database for future queries.
- Trick to Guess: Look for words like store, archive, save, or retain.
 - o Question clue: "Saving the analysis results for policymaking." → **Preserving.**

Cheat Sheet: Big Data Pipeline

Step	What Happens Here	Key Words	Examples
Gathering	Collecting raw data from sources	Collect, fetch, scrape, gather	Fetching footfall data from sensors
Processing	Cleaning and preparing raw data for analysis	Clean, prepare, transform, format	Removing invalid entries, formatting dates
Analyzing	Extracting patterns, trends, or insights	Analyze, predict, calculate, trend	Identifying peak commuting times
Presenting	Communicating findings visually or in reports	Present, visualize, communicate, report	Creating a bar chart of survey results
Preserving	Storing data/results for future use or compliance	Store, archive, save, backup	Saving cleaned data to a database

Practice Questions

1. Question Statement:

"Removing outliers from traffic data for Dublin."

o **Answer:** Processing.

2. Question Statement:

"Forecasting the number of people commuting next year."

o **Answer:** Analyzing.

3. Question Statement:

"Gathering survey data from employees on remote working."

o **Answer:** Gathering.

4. Question Statement:

"Creating a heat map showing pedestrian traffic."

o **Answer:** Presenting.

5. Question Statement:

"Storing historical weather data for comparison."

o **Answer:** Preserving.

Key to Success

1. Focus on the action in the statement:

- o Getting data? → Gathering.
- Cleaning or fixing data? → Processing.

- \circ Finding patterns or insights? \rightarrow Analyzing.
- Making a visual or report? → Presenting.
- Saving or archiving data? → Preserving.

With this, you'll ace your questions about the Big Data Pipeline! Good luck! 😊