ISIMS - UNIVERSITY OF SFAX LSI ADBD - BACHELOR 2 2023/2024

DESCRIPTIVE AND INFERENTIAL STATISTICS

LECTURE IV DISCRETE PROBABILITY DISTRIBUTIONS

1 / 25

Lecture Content

- 1. The Probability Distribution for a Discrete Variable
 - Definition and Examples
 - ▶ The Cumulative Distribution Function
 - ► The Expected Value
 - ▶ The Variance and the Standard Deviation
- 2. Binomial Distribution
- 3. Poisson Distribution

PROBABILITY DISTRIBUTION FOR A DISCRETE **VARIABLE**

Introduction

Recall from chapter I that numerical variables can either be:

- discrete: integer values that represent count of something, or
- ► *Continuous*: values that arise from a measuring process.

Definition: A probability distribution for a discrete variable is a mutually exclusive list of all possible numerical outcomes for that variable and a probability of occurrence associated with each outcome.

Formaly, if x_i , $i \in \mathbb{N}$ is the set of possible values of the random variables X, and $p_i = P(X = x_i)$ the probability of occurrence of outcome i, then the probability distribution of X is the set of couples

$$(x_i, p_i)_{i \in \mathbb{N}}$$

.

Discrete Probability Distribution

Example 1: Probability Distribution of the number of interruptions per day is given in the table below, with a graphical representation.

Interruptions Per Day In Computer Network	Probability	
X i	P(x _i)	
0	0.35	
1	0.25	
2	0.20	
3	0.10	
4	0.05	
5	0.05	

Example 2: A six-sided die has faces for 1, 2, 3, 4, 5, and 6. Therefore for one roll of a fair six-sided die, the set of all possible values are the values 1 through 6. The probability distribution of the outcome is $P(X = k) = \frac{1}{6}$, $\forall k \in \{1, 2, 3, 4, 5, 6\}$.

Discrete probability Distribution

Exercise 1: A player tosses a fair six-sided die. If he obtains 1, 2 or 3 he wins the equivalent amount in euros. Otherwise he loses 2 euros. Let *X* be the outcome in euros. Give the probability distribution of *X*.

Exercise 2: In this game, he outcomes are still the equivalent in euros if he obtains 1, 2 or 3. However if the player obtains greater than 3, he will toss again the die. If he obtains at least 3 in the second toss, he wins 3 euros, otherwise he loses 5 euros. Let *Y* be the outcome of this new game. Give the probability distribution of *Y*.

Exercise 3: In a given country, the probability of graduating from High School is p. Give the probability distribution of the associated dummy variable.

Cumulative Distribution Function

Definition: The cumulative distribution function of a discrete random variable X, denoted as F(x) is,

$$\forall k \in \mathbb{R}, \quad F(x) = P(X \le x) = \sum_{x_i \le x} P(X = x_i)$$

Properties: F(x) satisfies the following properties:

- 1. $0 \le F(x) \le 1$
- 2. $F(-\infty) = 0$ and $F(+\infty) = 1$
- 3. If x < y, then F(x) < F(y)

Cumulative Distribution Function

Example 4: The Cumulative Distribution Function for the variable X in example 1 is,

$$F(x) = \begin{cases} 0 & \text{if} \quad x < 0 \\ 0.35 & \text{if} \quad 0 \le x < 1 \\ 0.60 & \text{if} \quad 1 \le x < 2 \\ 0.80 & \text{if} \quad 2 \le x < 3 \\ 0.90 & \text{if} \quad 3 \le x < 4 \\ 0.95 & \text{if} \quad 4 \le x < 5 \\ 1 & \text{if} \quad x \ge 5 \end{cases} \qquad F(y) = \begin{cases} 0 & \text{if} \quad y < 1 \\ 1/6 & \text{if} \quad 1 \le y < 2 \\ 2/6 & \text{if} \quad 2 \le y < 3 \\ 3/6 & \text{if} \quad 3 \le y < 4 \\ 4/6 & \text{if} \quad 4 \le y < 5 \\ 5/6 & \text{if} \quad 5 \le y < 6 \\ 1 & \text{if} \quad y \ge 6 \end{cases}$$

Example 5: The Cumulative Distribution Function for the variable Y in example 2 is,

$$F(y) = \begin{cases} 0 & \text{if} \quad y < 1\\ 1/6 & \text{if} \quad 1 \le y < 2\\ 2/6 & \text{if} \quad 2 \le y < 3\\ 3/6 & \text{if} \quad 3 \le y < 4\\ 4/6 & \text{if} \quad 4 \le y < 5\\ 5/6 & \text{if} \quad 5 \le y < 6\\ 1 & \text{if} \quad y \ge 6 \end{cases}$$

Exercise 4: For each of the above examples, represent the graph of F. **Exercise 5:** For each of the exercises 1, 2 and 3, find the CDF and represent its graph.

The Expected Value of a Discrete Variable

The **expected value** of a discrete variable is the population mean, μ , of its probability distribution.

$$\mu = E(X) = \sum_{i=1}^{N} x_i p_i$$

where,

 x_i = the *i*th value of the discrete variable X.

 $p_i = P(X = x_i)$ = probability of occurrence of the ith value of X.

N = number of values of the discrete variable X.

Exercise 6: For each of the previous examples calculate the expected value of the corresponding discrete random variable.

Variance and Standard Deviation of a Discrete Variable

The variance of a discrete variable is,

$$\sigma^{2} = \sum_{i=1}^{N} [x_{i} - E(X)]^{2} p_{i}$$

The standard deviation of a discrete variable is,

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{i=1}^{N} [x_i - E(X)]^2 p_i}$$

Exercise 7: Calculate the variance and the standard deviation of the discrete random variable number of interruptions per day.

Discrete Probability Distributions - Exercise

Exercise 8: In a semester in college, data was collected of the number of student absences and was correlated with whether students passed the class or not. The data was collected as follows:

Number of absences	Frequency	
0	150	
1	120 67 50	
2		
3		
4	40	
5	10 5	
6		
7	2	
8	1	

- 1. Calculate the expected number of absences per semester.
- 2. Calculate the standard deviation.

Discrete Probability Distributions - Exercise

Exercise 9: You are trying to develop a strategy for investing in two different stocks. The anticipated annual return for a \$1,000 investment in each stock under four different economic conditions has the following probability distribution:

		Returns	
Probability	Economic Condition	Stock X	Stock Y
0.1	Recession	- 50	- 100
0.3	Slow growth	20	50
0.4	Moderate growth	100	130
0.2	Fast growth	150	200

Compute the

- 1. expected return for stock X and for stock Y.
- 2. standard deviation for stock X and for stock Y
- 3. Would you invest in stock *X* or stock *Y* ?

BINOMIAL DISTRIBUTION

The Binomial Distribution

Consider the following random experiments and random variables:

- ► Flip a coin 10 times. Let X = number of heads obtained.
- ► A worn machine tool produces 1% defective parts. Let *X* = number of defective parts in the next 25 parts produced.
- ▶ A multiple-choice test contains 10 questions, each with four choices, and you guess at each question. Let *X* = the number of questions answered correctly.
- ▶ In 20 births at a hospital, let X = the number of female births.
- ▶ Of all patients suffering a particular illness, 35% experience improvement from a particular medication. In the next 100 patients administered the medication, let *X* = the number of patients who experience improvement.

The Binomial Distribution

Each of these random experiments can be thought of as consisting of a series of repeated, random trials: 10 flips of the coin in experiment 1, the production of 25 parts in experiment 2, and so forth.

- ► Each trial has only two possible outcomes: either a *success* or a *failure*. These two terms are just labels. We can just as well use A and B or 0 or 1.
- ► These trials are called **Bernoulli trials**, and have two properties:
 - 1. independent.
 - 2. probability of success in each trial is constant and equals π
 - 3. probability of failure is (1π)

The Binomial Distribution - Formal Definition

Consider a random experiment consisting of *n* Bernoulli trials such that

- 1. The trials are independent.
- 2. Each trial results in only two possible outcomes, labeled as "success" and "failure."
- 3. The probability of a success in each trial, denoted as π , remains constant.

The random variable X that equals the number of trials resulting in a success is a binomial random variable with parameters $0 < \pi < 1$ and $n = 1, 2, \ldots$ The probability distribution of X is given by:

$$P(X = k) = \frac{n!}{k!(n-k)!} \pi^k (1-\pi)^{n-k}$$

The term $\frac{n!}{k!(n-k)!}$ is the number of combinations of the x events of interest from the n observations possible.

The Binomial Distribution - Expectation and Variance

Theorem: If X is a binomial random variable with parameters π and n, the mean (expected value) and variance of X are given by,

$$\mu = E(X) = n\pi$$
 and $\sigma^2 = V(X) = n\pi(1 - \pi)$

Example 6: The increase or decrease in the price of a stock between the beginning and the end of a trading days assumed to be an equally likely random event. To calculate the probability that a stock will show an increase in its closing price on three days out of five, use the formula.

With n = 5 and $\pi = 0.5$ we have, $P(X = 3) = \frac{5!}{3! \times 2!} 0.5^3 0.5^2$ Or simply, instead of your calculator use the table of the,

BINOMIAL DISTRIBUTION CUMULATIVE PROBABILITIES

$$P(X = 3) = P(X \le 3) - P(X \le 2) = 0.8125 - 0.5 = 0.3125$$

The Binomial Distribution - Exercises

Exercise 10: Let X be a random variable following a binomial distribution with parameters n = 20 and p = 0.1.

- 1. Calculate P(X = 5), $P(X \le 2)$, P(X < 4), P(X = 1.5), $P(3 \le X \le 4)$, $P(2 < X \le 8)$
- 2. Find the values of x such that $P(X \ge x) \le 0.75$
- 3. Let Y be a binomial random variable with parameters n = 20 and p = 0.9. Calculate P(Y = 16).

Exercise 11: A multiple-choice test contains 25 questions, each with four answers. Assume that a student just guesses on each question.

- 1. What is the probability that the student answers more than 20 questions correctly?
- 2. What is the probability that the student answers fewer than 5 questions correctly?

The Binomial Distribution - Exercises

Exercise 12: An article in *QSR Magazine* reports, about Wendy's fast-food-chain drives, that the percentage of orders filled correctly was approximately 86.9%. Suppose that you go to the drive-through window at Wendy's with your two friends and place an order.

- 1. What are the probabilities that all three, that none of the three, and that at least two of the three orders will be filled correctly?
- 2. What are the mean and standard deviation of the binomial distribution for the number of orders filled correctly?

Exercise 13: Let X be a random variable following a binomial distribution Bin(n, p).

Y is another random variable defined by Y = X if $X \neq 0$ and Y takes randomly a value in $\{0, 1, ..., n\}$ if X = 0.

Give the distribution of Y and calculate E(Y).

POISSON DISTRIBUTION

The Poisson Distribution

Poisson distribution is used to calculate probabilities of the numbers of occurrences of an event in situations if the following properties hold:

- ▶ We are interested in counting the number of times a particular event occurs in a fixed interval of time or space, often referred to as an *area of opportunity*.
- ► The probability that an event occurs in a given area of opportunity is the same for all the areas of opportunity.
- ► The number of events that occur in one area of opportunity is independent of the number of events that occurs in any other area of opportunity.
- ► The number that two or more events will occur approaches zero as the area opportunity becomes smaller.

The Poisson Distribution

Example of variables that follow the Poisson distribution are:

- ► The number of networks failure in a day
- ► The number of passengers in a given train trip
- ► The number of fleas on the body of a dog.
- ► The number of customers arriving during the lunch hour at a bank

The Poisson distribution has one parameter called λ . The Poisson distribution gives the formula for computing the probability of (X = x) events,

$$P(X = x | \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$$

Theorem: If X is a random variable following a Poisson distribution with parameter λ , then,

$$\mu = E(X) = \lambda$$
 and $\sigma^2 = V(X) = \lambda$

The Poisson Distribution

Example: Suppose the mean number of customers who arrive per minute at a bank during the noon-to-1 P.M. hour is equal to 3.

► The probability that in a given minute, exactly two customers will arrive is

$$P(X = 2|\lambda = 3) = \frac{e^{-3}3^2}{2!} = 0.224$$

► The probability that more than two customers will arrive in a given minute is,

$$P(X > 2 | \lambda = 3) = 1 - P(X \le 2)$$

$$= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$

$$= 1 - \left[\frac{e^{-3}3^0}{0!} + \frac{e^{-3}3^1}{1!} + \frac{e^{-3}3^2}{2!}\right]$$

$$= 0.5768$$

Or simply, instead of your calculator use the table of the,

POISSON DISTRIBUTION CUMULATIVE PROBABILITIES

$$P(X < 2) = 0.4232$$

The Poisson Distribution - Exercises

Exercise 14: A toll-free phone number is available from 9 A.M. to 9 P.M. for your customers to register complaints about a product purchased from your company. Past history indicates that a mean of 0.8 calls is received per minute.

- 1. What properties must be true about the situation described here in order to use the Poisson distribution to calculate probabilities concerning the number of phone calls received in a one-minute period?
- 2. Assuming that this situation matches the properties discussed in (1), what is the probability that during a one-minute period,
 - 2.1 zero phone calls will be received?
 - 2.2 three or more phone calls will be received?
 - 2.3 what is the minimum number of phone calls that will be received in a one-minute period 99.99% of the time?

The Poisson Distribution - Exercises

Exercise 15: The article "An Association Between Fine Particles and Asthma Emergency Department Visits for Children in Seattle" [Environmental Health Perspectives June, 1999 107(6)] used Poisson models for the number of asthma emergency department (ED) visits per day. For the zip codes studied, the mean ED visits were 1.8 per day. Determine the following:

- 1. Probability of more than five visits in a day.
- 2. Probability of fewer than five visits in a week.
- 3. Instead of a mean of 1.8 per day, determine the mean visits per day such that the probability of more than five visits is 0.1.

Exercise 16: Let *X* be a random variable following a Poisson distribution with parameter $\lambda = 5$.

- 1. Calculate P(X = 6), P(X < 4), $P(X \ge 5)$, $P(\pi/2 < X < \pi)$
- 2. Find the value of x such that $P(X < x) \ge 0.95$