Hard Problems in CS499

Yanjie Ze, June 2021

Set theory

Problem 6. A and B are countable sets. Prove that

- 1. $A \cup B$ is countable
- 2. $A \times B$ is countable

Tall or Width

Problem 4. Prove the following strengthening of the **Erd** \ddot{o} s-**Szekeres Lemma**: Let κ , ℓ be natural numbers. Then every sequence of real numbers of length $\kappa\ell+1$ contains an nondecreasing subsequence of length $\kappa+1$ or a decreasing subsequence of length $\ell+1$.

Counting

Problem 3. Calculate (i.e. express by a simple formula not containing a sum)

1.
$$\sum_{k=1}^{n} {k \choose m} \frac{1}{k}$$

2.
$$\sum_{k=0}^{n} \binom{k}{m} k$$

Problem 5. How many functions $f: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ are there that are monotone; that is, for i < j we have $f(i) \le f(j)$?

Problem5可以想像成求非负整数解个数的那个问题。

容斥原理

Problem 4. Count the permutations with exactly k fixed points. (Remark: π is a permutation of the set $\{1,2,\ldots,n\}$. Call an index i with $\pi(i)=i$ a fixed point of the permutation π .)

Solution. First choose the points that are fixed. It will have $\binom{n}{k}$ possible choices. The rest is counting the number of permutation without a fixed point, which is D(n-k).

In all, the answer is $\binom{n}{k} \cdot D(n-k)$.

Problem 6. How many ways are there to seat n married couples at a round table with 2n chairs in such a way that the couples never sit next to each other?

Solution.(hint)

 $A_i = \{\text{the ways of seating in which the } i\text{th couple is adjacent.}\}$

- $|A_i| = (2n-1)! \cdot 2^1/(2n-1);$
- $|A_i \cap A_j| = (2n-2)! \cdot 2^2/(2n-2)$ for $i \neq j$;
- · · · ;
- $|A_{i1} \cap \cdots \cap A_{ik}| = (2n-k)! \cdot 2^k/(2n-k)$ for different A_{ij} s.

The final result should be $(2n)!/(2n) - |A_1 \cup A_2 \cup \cdots \cup A_k|$. Then by PIE....

Generating Function

Problem 3. Let a_n be the number of ordered triples $\langle i, j, k \rangle$ of integer numbers such that $i \geq 0$, $j \geq 1$, $k \geq 1$, and i + 3j + 3k = n. Find the generating function of the sequence $(a_0, a_1, a_2, ...)$ and calculate a formula for a_n .

Solution.

$$(1 + x + x^{2} + x^{3} + \cdots)(x^{3} + x^{6} + x^{9} + \cdots)(x^{3} + x^{6} + x^{9} + \cdots)$$

$$= \frac{1}{1-x} \frac{x^{3}}{1-x^{3}} \frac{x^{3}}{1-x^{3}}$$

$$= \frac{x^{6}(1+x+x^{2})}{(1-x^{3})^{3}} = x^{6}(1+x+x^{2})(1-x^{3})^{-3}.$$

Then use the generalized binomial theorem.

Recurrence Function

Problem 1. Prove that any natural number $n \in \mathbb{N}$ can be written as a sum of mutually distinct Fibonacci numbers.

函数的渐进式比较

- **Problem 2.** 1. Find two functions f(x) and g(x) such that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$.
 - 2. Furthermore, we say a function $h : \mathbb{R} \to \mathbb{R}$ is monotonically increasing if it satisfies the property ' $x \le y \Rightarrow h(x) \le h(y)$ '. Find two monotonically increasing functions f(x) and g(x) such that $f(x) \ne O(g(x))$ and $g(x) \ne O(f(x))$.

(Please give the detailed proof that your functions satisfy the requirements.)

Solution.

1.
$$\begin{cases} f(x) = \sin(x); \\ g(x) = \cos(x). \end{cases}$$

2.
$$\begin{cases} f(x) = x^{\sin(x)+x}; \\ g(x) = x^{\cos(x)+x}. \end{cases}$$

Problem 6.

- a) Show that the product of all primes p with $m is at most <math>\binom{2m}{m}$.
- b) Using a), prove the estimate $\pi(x) = O(\frac{x}{\ln x})$, where $\pi(x)$ denote the number of primes not exceeding the number x.

这一题很难想啊。第一小问的答案就不放了,看到了自己想想,第二小问的解答:

First proof: Combing a), w.l.o.g. assume n is even and n = 2m. It is obvious that

$$B \le \sum_{i=0}^{2m} \binom{2m}{i} = 4^m$$

With a) we have $\prod_{m (p is prime, as above). It follows that$

$$\sum_{m$$

Then count the number of primes between m and 2m, i.e. the number of $p \in (m, 2m]$,

$$\pi(2m) - \pi(m) = \sum_{m$$

For any given x, there exists $k \ge 1$ such that $x \in (2^{k-1}, 2^k]$. Finally with the above analysis

$$\pi(x) \le \pi(2^k) = \sum_{i=1}^k \left(\pi(2^i) - \pi(2^{i-1}) \right) = O\left(\sum_{i=1}^k \frac{2^j}{j}\right) = O\left(\frac{2^k}{k}\right) = O\left(\frac{x}{\ln x}\right).$$

图同构

Problem 3. How many graphs on the vertex set $\{1, 2, ..., 2n\}$ are isomorphic to the graph consisting of n vertex-disjoint edges (i.e. with edge set $\{\{1,2\},\{3,4\},...,\{2n-1,2n\}\}$?

Solution.
$$\frac{(2n\cdot(2n-1))((2n-2)\cdot(2n-3))\cdots(2\cdot1)}{2^n\cdot n!} = (2n-1)(2n-3)\cdots 5\cdot 3.$$

思路:

- 先2n选2, 再2n-2选2, 再...
- 最后要除以n!, 因为之前的选法其实做了一个组合。

Problem 6. Given a sequence (d_1, d_2, \ldots, d_n) of positive integers (where $n \ge 1$):

- (i) There exists a tree with score (d_1, d_2, \ldots, d_n) .
- (ii) $\sum_{i=1}^{n} d_i = 2n 2$.

Prove that (i) and (ii) are equivalent.

1到2很简单,2到1需要用一下归纳法。注意: 归纳法从n+1去掉一个叶节点构造出n的树,而不是从n加一个点变成n+1的树。后者没有证明到generality。

具体过程如下。

Solution.

- 1. $(i) \Rightarrow (ii)$ is obvious.
- 2. To prove $(ii) \Rightarrow (i)$:

By induction on the number n.

For n=1,2 the implication holds trivially, so let n>2. Suppose the implication holds for any n-1 long positive sequence (d_1,d_2,\ldots,d_{n-1}) with $\sum_{i=1}^{n-1} d_i = 2(n-1)-2$.

For the induction step, consider an length n positive sequence $\ell = (d_1, d_2, \dots, d_n)$ with $\sum_{i=1}^{n} d_i = 2n - 2$:

Since the sum of the d_i is smaller than 2n, there exists an i with $d_i = 1$. w.l.o.g. we assume $d_1 = 1$. With a similar argument we can also conclude that there must exist some index j such that $d_j \ge 2$. We take $k = \min\{j \mid d_j \ge 2\}$.

Now the sequence $\ell = (d_1, d_2, \dots, d_k, \dots, d_n) = (1, d_2, \dots, d_k - 1 + 1, \dots, d_n)$, we can derive a new sequence $\ell' = (d_2, \dots, d_k - 1, \dots, d_n)$. Obviously ℓ' is a n-1 length sequence (all positive) with the summation to be 2n-2-1-1=2(n-1)-2. Then according to the induction hypothesis, there exists a tree \mathcal{T}' which corresponds to ℓ' .

Then $\mathcal{T} = (V(\mathcal{T}') \cup \{v_1\}, E(\mathcal{T}') \cup \{v_1, v_k\})$ is the tree which witnesses the validity of the sequence ℓ .

树的同构

TODO: 再把这一题看一下

Problem 7. Let N_k denote the number of spanning trees of K_n in which the vertex n has degree k, k = 1, 2, ..., n - 1 (recall that we assume $V(K_n) = \{1, 2, ..., n\}$).

- *i)* Prove that $(n-1-k)N_k = k(n-1)N_{k+1}$.
- ii) Using i), derive $N_k = \binom{n-2}{k-1}(n-1)^{n-1-k}$.
- iii) Prove Cayley's formula from ii).

Solution.

- i) Both sides of the equality count the number of pairs spanning trees (T, T^*) , where $deg_T(n) = k$, $deg_{T^*}(n) = k + 1$, and T^* arises from T by the following operation: pick an edge $\{i, j\} \in E(T)$ with $i \neq n \neq j$, delete it, and add either the edge $\{i, n\}$ or the edge $\{j, n\}$, depending on which of these edges connects the two components of $T \{i, j\}$.
 - From one T we can get n-1-k different T^* : the number of different edges in T which are not connected to n at the beginning;
 - And one T^* can be obtained from k(n-1) different T: pick any vertex $v \in \{1, 2, ..., n-1\}$. If one deletes all edges incident to n in a spanning tree from N_{k+1} , neighbours of n (denoted by $\ell_1, \ell_2, ..., \ell_{k+1}$) will lie in exactly k+1 different components. Suppose v lies in the last component, namely C_{k+1} . Add an edge between v and some ith leaf ℓ_i ($i \in \{1, 2, ..., k\}$) of n and remove the original edge (n, ℓ_i) simultaneously, one will get a different T. In all, there are n-1 ways to pick v and v ways to pick v and v

概率论

Problem 4. We have 27 fair coins and one <u>counterfeit coin</u> (28 coins in all), which looks like a fair coin but is a bit heavier. Show that one needs at least 4 weighings to determine the counterfeit coin. We have no calibrated weights, and in one weighing we can only find out which of two groups of some k coins each is heavier, assuming that if both groups consist of fair coins only the result is an equilibrium.

Solution. Each weighting has 3 possible outcomes, and hence 3 weightings can only distinguish one among 3³ possibilities.

概率方法

- **Problem 5.** 1. Prove that, for every integer n, there exists a coloring of the edges of the complete graph K_n by two colors so that the total number of monochromatic copies of K_4 is at most $\binom{n}{4}2^{-5}$.
 - 2. Give a randomized algorithm for finding a coloring with at most $\binom{n}{4}2^{-5}$ monochromatic (i.e. single-color) copies of K_4 that runs in expected time polynomial in n.

思路:

- 第一问用概率方法做
- 第二问类似于las vegas 算法。
- 第二问的解答:
 - 2. Color each edge independently and uniformly. Let $p = Pr(X \le \binom{n}{4}2^{-5})$ where X is the number of chromatic K_4 .

$${\binom{n}{4}}2^{-5} = \mathbf{E}(X)$$

$$= \sum_{i \le \binom{n}{4}}2^{-5} i \cdot Pr(X=i) + \sum_{i > \binom{n}{4}}2^{-5} i \cdot Pr(X=i)$$

$$\geq p + (1-p)\left(\binom{n}{4}2^{-5} + 1\right)$$

which implies $p \ge \frac{32}{\binom{n}{4}}$. The expected number of sampling before finding a suitable coloring is $1/p = \frac{\binom{n}{4}}{32}$. For each sampling, the time needs to count the number of chromatic K_4 is bounded by $\binom{n}{4}$ which is also polynomial. Thus the expected running time of this algorithm is polynomial.

Problem 6. Use the Lovasz local lemma to show that if

$$4\binom{k}{2}\binom{n}{k-2}2^{1-\binom{k}{2}} \le 1$$

then it is possible to color the edges of K_n with two colors so that it has no monochromatic (i.e. single color) K_k subgraph.

Solution. E_i : the i-th K_k is monochromatic. $Pr(E_i) = 2^{1-\binom{k}{2}}$. Consider the dependency graph, for any different E_i and E_j , they are adjacent if the corresponding K_k share at least one edge. Thus the degree of the dependency graph is bounded by $\binom{k}{2}\binom{n}{k-2}$.

According to the Lovasz local lemma, it is possible that none of the E_i happens under the given inequality.

这一题套一下lovasz local lemma就行,关键在于怎么设计p和d。

随机图

Problem 7. What is the expected number of trees with k vertices in $G \in \mathcal{G}(n, p)$?

Solution. By Cayley's formula and the linearity of expectation, it is $\binom{n}{k} k^{k-2} p^{k-1}$

Problem 8. Show that if almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_1 and almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_2 , then almost all $G \in \mathcal{G}(n, p)$ have both properties.

Problem 1. Show that, for constant $p \in (0,1)$, almost no graph in $\mathcal{G}(n,p)$ has a separating complete subgraph.

[Hint]

- 1. Recall the property $P_{i,j}$ from the slides
- 2. You may need to recall the definitions:

Problem 2. Consider G(n, p) with $p = \frac{1}{3n}$.

Use the second moment method to show that with high probability there exists a simple path of length 10.

这一题求期望的时候要分类讨论一下。