4 ω を $x^3=1$ の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて,次の規則で 4 つの複素数 $0,\,1,\,\omega,\,\omega^2$ を並べていくことにより,複素数の列 $z_1,\,z_2,\,z_3,\,\cdots$ を定める。

 $z_1 = 0$ とする。

 z_k まで定まったとき,さいころを投げて,出た目を t とする。このとき z_{k+1} を以下のように定める。

$$z_k=0$$
 ගඋප් , $z_{k+1}=\omega^t$ උする。

$$z_k \neq 0, \, t = 1, \, 2$$
 のとき , $z_{k+1} = 0$ とする。

$$z_k \neq 0, t = 3$$
 のとき , $z_{k+1} = \omega z_k$ とする。

$$z_k \neq 0, t = 4$$
 のとき , $z_{k+1} = \overline{\omega z_k}$ とする。

$$z_k
eq 0,\, t=5$$
 のとき , $z_{k+1}=z_k$ とする。

$$z_k \neq 0, t = 6$$
 のとき , $z_{k+1} = \overline{z_k}$ とする。

ここで複素数 z に対し $, \overline{z}$ は z と共役な複素数を表す。以下の問いに答えよ。

- (1) $\omega^2 = \overline{\omega}$ となることを示せ。
- (2) $z_n = 0$ となる確率を n の式で表せ。
- (3) $z_3=1$, $z_3=\omega$, $z_3=\omega^2$ となる確率をそれぞれ求めよ。
- (4) $z_n = 1$ となる確率を n の式で表せ。