Arquitetura de Computadores

Instruction Set Architecture (ISA)

Bib: B – secções A.1 a A.6

João Pedro Patriarca (<u>jpatri@cc.isel.ipl.pt</u>), Gabinete F.O.23 do edifício F ISEL, ADEETC, LEIC

ISA – Visão geral

• O que é o ISA?

• Significa *Instruction Set Architecture* e corresponde a uma codificação estruturada das instruções

• Distinção entre arquiteturas RISC e CISC no que diz respeito ao ISA

- CISC (Complex Instruction Set Computer): instruções com dimensões diferentes
- RISC (Reduced Intruction Set Computer): instruções com a mesma dimensão

• Principais aspetos que caracterizam um ISA

- Classes de instruções
- Tipos de operandos
- Modos de endereçamento

Arquiteturas RISC versus CISC

RISC	CISC	
Instruções simples, tipicamente, uma instrução corresponde a uma única ação	Instruções complexas com o objetivo de reduzir o número de instruções na tradução de um algoritmo	
O mesmo algoritmo é traduzido com menos instruções no âmbito de uma arquitetura CISC do que no âmbito de uma arquitetura RISC		
Instruções mais simples, menor número de ciclos de <i>clock</i> para executar uma instrução, tipicamente, com as mesmas temporizações para todas as instruções	Instruções mais complexas, maior número de ciclos de <i>clock</i> para executar uma instrução, tipicamente com temporizações diferentes de instrução para instrução	
As arquiteturas RISC simplificam a introdução do o	conceito Pipeline na arquitetura do processador	

Classes de instruções

• Instruções de transferência de dados

 Instruções que envolvem acessos a memória

IA32	Keil535	il535 P16	
mov (8), ax	mov 16, a	str r0, [r3]	
mov al, (ebx)	mov a, @R0	ldr r5, [r2]	

• Instruções de processamento de dados

- Instruções para realizar cálculo
- A execução destas instruções envolve operações aritméticas e lógicas (ALU)

IA32	Keil535	P16
add (8), ax	addc a, r4	sub r0, r1, r5
and al, (ebx)	xrl a, (50)	lsl r3, r1, 5

Instruções de controlo de fluxo

- Instruções de decisão e de ciclo implementadas com base nestas instruções
- A maioria da execução destas instruções baseia-se nas flags produzidas pela ALU

IA32	Keil535	P16
jge label	jnc label	bge label
jne label	jz label	bzs label

Tipos de operandos

- Registos
- Imediato
- Memória

	IA32	Keil535	P16
Registos	inc ecx	mov a, r5	mov r0, r1
	mov dx, ax	mov r3, a	cmp r4, r6
Imediato	mov ax, 15	mov a, #0x30	mov r0, #15
Memória	dec (ebx)	xrl a, 0x30	str r0, [r3]
	mov (16), ah	mov 16, a	ldr r5, [r2]

 Na mesma instrução podem aparecer operandos de diferentes tipos

illes lipos	IA32	Keil535	
Memória + imediato	mov (eax), 0x100	mov 30, #10	

 Nas arquiteturas RISC, operandos do tipo Memória apenas podem aparecer em instruções da classe transferência de dados, ou seja, em instruções LDR e STR

Modos de endereçamento

- Direto: o endereço é codificado diretamente na instrução
- Indireto: o endereço é especificado através do valor de um registo
- Baseado e indexado: o endereço é definido por um endereço base especificado por um registo e por um índice que pode corresponder ao valor de um registo ou a um valor imediato

	IA32	Keil535	P16
Direto	mov ax, (100)	mov a, 100	
Indireto	mov ax, (ecx)	mov a, @r1	ldr r0, [r1]
Baseado e indexado	mov ax, (ecx, 10) mov ax, (ecx, ebx)	movc a, @a+pc	str r0, [r3, r1] ldr r0, [r3, 6]

• Na arquitetura ARM (e P16) não existe endereçamento direto

P16 – características principais

- Todas as instruções são codificadas com o mesmo número de bits
- O código de cada instrução ocupa uma única palavra de memória
- Cada instrução é codificada com 16 bits
- Um subconjunto dos bits servem para identificar univocamente a instrução (código de operação);
 os restantes bits servem para codificar operandos

15 Código de operação Codificação dos operandos

- As classes de instruções dividem-se em Transferência de dados, Processamento de dados e Controlo de fluxo
- Não dispõe de endereçamento direto
- Register File constituído por 16 registos (RO a R15) sendo cada registo constituído por 16 bits
- ALU realiza operações de 16 bits

Quis 2 - ISA

Access code: CZ3SH