Measuring, exploring and estimating biodiversity

Jonathan Dushoff, McMaster University

McMaster CSE Seminar, March 2022

Why do we measure biodiversity?

- lt seems practically important:
 - ▶ How does it correlate with ecosystem function?
 - What can we do to protect it?
- It seems scientifically important
 - Maybe we can understand the world better even if we can't protect it
- ▶ But there's no consensus on how best to measure it, or how to compare the metrics themselves

Community diversity

- I am going to be talking about community diversity, often called α -diversity
 - How different are individuals in a given sampling unit?
- ▶ I am not going to be talking about diversity of units themselves, often called β -diversity
 - How different are two sampling units from each other?
- ▶ When I compare two different sampling units, I will be asking which one is more diverse, not how different they are

Comparing diversity

Comparing diversity

Comparing diversity

Richness

- ► How many species are there?
 - ► This is apparently what aliens want to know
- ► Can we ever know?
 - Other "diversity" measures combine diversity with relative abundance
 - but so does this one!
 - In practice

Simpson diversity

► What is the probability that two different individuals are from different species?

$$1-\sum p_i^2$$

Shannon diversity

- ► How much Shannon information is there in a particular observation?
- ▶ How many distinct ways of combining individuals?

$$\sum -p\log(p)$$

Richness is unstable

- ► If we assume an effectively infinite population, it's impossible to get good estimates of population richness
 - ▶ We don't know what we don't know

Simpson diversity seems stable

- We can get an unbiased estimate of Simpson diversity from two individuals!
- Recall: unbiased means that the expected value of the estimate is equal to the true value of the estimand
- ► This is equivalent to saying we get an "unbiased" estimate of an unfair coin from a single flip
- ► Of course, we'll always have more than 2 individuals, but we can always get an unbiased estimate

Effective number of species

- ▶ The value of Simpson or Shannon diversity is hard to interpret.
 - Or at least, easy to misinterpret.
- We can ask how do they map to an effective number of species?
 - On a given scale, the observed diversity is equivalent to E evenly distributed species

Hill diversity

$$H_q = \left(\sum p_i^q\right)^{1/1-q}$$

- Take limits as necessary
- Spans from richness (q=0) to Hill-Shannon (q=1) to Hill-Simpson
- ► Gives an effective species number
- Decreases with q

Rarity perspective

$$D_{\ell} = \left(\sum p_i(r_i)^{\ell}\right)^{1/\ell},$$

- ightharpoonup where $r_i = 1/p_i$ is the rarity
- $label{eq:lambda} \ell = 1 q \text{ has a natural interpretation in terms of power means:}$
 - ho $\ell=1$ is the arithmetic mean, corresponds to richness
 - ho $\ell=0$ is the geometric mean, corresponds to Hill-Shannon
 - $lacksquare \ell = -1$ is the harmonic mean, corresponds to Hill-Simpson

Leverage of rare species

- ▶ The higher values of ℓ are often described as giving more weight to rare species
- But this doesn't correspond to an actual weighting
- We use "leverage" to describe the increasing importance of rare species
- ► And illustrate with "seesaw" plots

DiversitySeesaw

https://github.com/mikeroswell/MeanRarity

Is Hill-Shannon just better?

- ► Geometric mean corresponds to ratio-based distance: 1:5 as 5:25
- ► E.g., The difference between 20% abundance (rarity of 5) and 10% abundance
 - ► Hill-Simpson: the same as the difference between 10% and 0% $(\infty \text{ rarity})!$
 - ► Richness: the same as the difference between 10% and 6.7% ► or 2% and 1.8%
 - ▶ Hill-Shannon: the same as the difference between 10% and 5%

Shannon equivalence

Simpson equivalence

Richness equivalence

How to compare *sampled* communities?

- We don't know the true diversity
- Rarefaction
 - Compare at equal number of individuals sampled
 - Or at equal "coverage"
- Asymptotic estimation
- Much of this goes back to the work of Turing, who was interested (effectively) in diversity metrics on coded messages and ciphertext

Comparing observed diversity

Ongoing work

- How biased are different asymptotic or sample-based measures?
- ► How *variable* are different asymptotic or sample-based measures?
- https://github.com/mikeroswell/MeanRarity

Bias-variance tradeoff

Bias-variance tradeoff

Future work

$$\hat{D}_{\ell} = \left(\sum p_i(\hat{r}_i)^{\ell}\right)^{1/\ell},$$

- Does the rarity perspective provide insight into estimation methods?
- p and r are typically treated the same, but actually play different roles:
 - if we had good estimates of \hat{r} , then \hat{D} becomes an unbiased estimator
 - not necessarily a low-variance estimator
- Does the rarity perspective allow us to expand our concept of coverage?

Thanks

- ► Collaborators: Mike Roswell, Rae Winfree and others
- Organizers
- Audience