EDA

```
library(tidyverse)

#metadata

mdata <- read_csv("data/expta_metadata.csv")
knitr::kable(mdata)</pre>
```

attribute	description			
experiment a	spatial associations			
year	calendar year			
census	1, 2, 3			
date	calendar date in d/m/year format			
site code	match to regional key file			
rep	just a sequential ordering for burrows you spot, reset at each new site			
microsite	shrub or open, eyeball it, within 1m of shrub = shrub			
lat	degrees decimal			
long	degrees decimal			
diameter	burrow diameter at widest point			
activity	evidence of digging or current use, just yes or no here			
sites.csv	the sites csv file lists plot size, site_code, and lat long of centroids			

```
sites <- read_csv("data/expta_sites.csv")
knitr::kable(sites)</pre>
```

year	census	date	$site_code$	lat	long	$plot_size_m2$	plot_dims
2023	1	20/02/2022	Tecopa	35.85114	-116.1859	2500	50 x 50
2023	1	20/02/2023	Tecopa_open	35.85537	-116.1786	2500	50×50
2023	1	22/02/2023	Carrizo_4	35.11974	-119.6290	500	10×50
2023	1	23/02/2023	Semitropic	35.65999	-119.6051	1250	$50 \ge 25$
2023	1	23/02/2023	$Carrizo_soda_open$	35.05619	-119.6000	625	$25 \ge 25$
2023	1	28/02/2023	Heartofmojave	34.69762	-115.6836	2500	50×50
2023	1	28/02/2023	Sheephole	34.20535	-115.7181	2500	50×50
2023	1	02/03/2023	Carrizo_soda_shrub	35.07029	-119.6438	625	$25 \ge 25$
2023	1	03/03/2023	Cuyama_3	34.93829	-119.4803	625	25×25
2023	1	03/03/2023	Cuyama_1	34.84841	-119.4833	625	$25 \ge 25$
2023	1	03/03/2023	Cuyama_2	34.85328	-119.4860	625	25×25

```
plots <- sites %>%
    select(site_code, plot_size_m2)

#data
data <- read_csv("data/expta.csv")
#str(data)

d1 <- data %>%
    group_by(site_code, microsite) %>%
    summarise(n = n())

d1 <- left_join(d1, plots) %>%
    mutate(burrow_density = n/plot_size_m2)
```

```
ggplot(d1, aes(reorder(site_code, n), n)) +
  geom_col() +
  coord_flip()
```



```
ggplot(d1, aes(reorder(site_code, burrow_density), burrow_density)) +
  geom_col() +
  coord_flip()
```



```
ggplot(d1, aes(microsite, n, fill = site_code)) +
  geom_col() +
  coord_flip() +
  scale_fill_brewer(palette = "Paired")
```



```
ggplot(d1, aes(microsite, burrow_density, fill = site_code)) +
  geom_col() +
  coord_flip() +
  scale_fill_brewer(palette = "Paired")
```

