Example: Integers Form a Ring

Example: Integers Form a Ring

The set of integers \mathbb{Z} with usual addition and multiplication forms a Ring, denoted $(\mathbb{Z}, +, \cdot)$.

Ring Axioms Verification

Additive Group Structure

The integers form an abelian Group under addition: - **Associativity**: (a+b)+c=a+(b+c) for all $a,b,c\in\mathbb{Z}$ - **Identity**: 0 is the additive identity - **Inverses**: For each $a\in\mathbb{Z}$, the inverse is -a - **Commutativity**: a+b=b+a for all $a,b\in\mathbb{Z}$

Multiplication Structure

Multiplication satisfies: - **Associativity**: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in \mathbb{Z}$ - **Identity**: 1 is the multiplicative identity

Distributive Laws

For all $a,b,c\in\mathbb{Z}$: - Left distributivity: $a\cdot(b+c)=a\cdot b+a\cdot c$ - Right distributivity: $(a+b)\cdot c=a\cdot c+b\cdot c$

Special Properties

 \mathbb{Z} is actually a **commutative ring with unity**: - **Commutativity**: $a \cdot b = b \cdot a$ for all $a, b \in \mathbb{Z}$ - **Unity**: The multiplicative identity 1 exists

Furthermore, \mathbb{Z} is an **integral domain** since it has no zero divisors: if $a \cdot b = 0$, then either a = 0 or b = 0.

Dependency Graph

Local dependency graph