Linear Approximation

Linear Approximation

Consider a particle moving from point (a,b) to point (atk,bth). If the particle travels at a constant speed and the total duration of the motion is 1 second, find in terms of time (in seconds), a formula for the position (x,y).

Consider a function f(x,y) such that its first partial derivatives exist for all points near (a,b). If (x,y) is a point on the line segment found above, find a formula for the rate of change of f with respect to f.

For a small change in time Δt , let the corresponding change in x be from a be Δx , the corresponding change in y from b be Δy and Δf be the corresponding change in f from f(a,b). Then we have $\frac{\Delta f}{\Delta t} \approx \frac{df}{db}|_{t=0}$. We want to show that $\Delta f \approx \frac{2f}{2x}|_{a,b}$. $\Delta x + \frac{2f}{2y}|_{a,b}$. Δy where $\Delta f = f(a + \Delta x, b + \Delta y) - f(a,b)$. This Δf is called the Linear Approximation of change in f when (x,y) changes from (a,b) to $(a + \Delta x, b + \Delta y)$.

$$\Delta t \longrightarrow \Delta x \approx \frac{dx}{dt}$$
 $\Delta f = \frac{f(t+h) - f(t)}{h}$
 $f(t+h) - f(t) \approx \frac{2f}{2x} (a,b) \Delta x + \frac{2f}{2y} (a,b) \Delta y$

Example:

1. A two-variable function f(x,y) has selected values given by

-1.0 6.0 6.5 8.0

-1.5 6.5 7.0 8.5

-2.0 5.8 6.9 7.8

şing	th	e	ce	ntr	al	dif	fer	enc	e	est	ima	nte	for	2	<u>f</u> 13	3.5,	-1.	5) (and	H	1e	es.	tim	ate	0	F	
x (3	.5,	-1.	5)	ap	Pro	xin	nat	g	the	NO	lue	0	ff	13	.2,-	-].1)										
C		ماه				~ [1 -			<u>ə</u> f ((-a)	L.	<u>əf</u>		\ 1										
701	AVIL	AIA	1	· (X	(1)	~ 1	rla	ים,	+	OX I	a,b) (X	(-a)	۲	34 1	(A,E) (y - E)								
est	im	ate	s:	94 94	13.	5,-	1.5) ≈	0.	2		9f 9x	l3,	-1.9	s) ≈	3											
lin	eai	r an	ppr	o xi	ma	tio	n:				2	æ							2	f.							
			f(3.2	,-1.	1) 9	e f	(3.	5 ,-	1.5)	+ =	x (3.5,	-1.5	3)(3.2	-3	.5)	+ 3	ابرا	3.5	,-1	.5)	L-1.	1+1	.5)	
							= 0		1	21	۷ 3٬	\ L	0.2	10	21 \												
								,,,		3(-	0.5.	1	3.0	(0.	1)												
							= 1	7.6	8																		
Let	9	(x,	4)	<u> </u>	4->	(2 ty	Z '.	Us	ino	liv	near	ra	ppi	rox	im	atio	on	of	91	K,X) 0	+ (1,1), 6	esti	ma	te
the	e f	foll	OU	in	9 1	alu	es		1-		,		1		. ^				١ -	1.		0,					
(A)	the	2 C	hai	nge	in	31	x,4)	V C	ne 1	n	(x,1) C	han	ges	tr	om	C	,()	10	CI.	1,0	18)					
(P)	the	5 F		en	1 °	ba	nos	J.č) <u>(</u>	ı (x	11	w	nen	ly	u)	ch	ano	PC	fro	M	(1.1	7 1	-0	(11	0.9	2)	
											at				1 1/	CIR			110		113			1	, Ο .(
(a)	00) = 3	※ (a,t). (VX.	+ 31	₹ (0	,b	. (۲	4		<i>(p)</i>	Df	= t	(Q+	Δx.	,bt	(YO	-t	(a.	(d					
	90			2	21	1/2 ,								^	10	01											
						1/z ()						-0	15 =	- +(1.1,	8.0	/ L	(1,	(1) 22						
	_[(1,1)	- Z 	74	12+	12	(-2	.()											8.0			+1						
			4															0.8									
	90 90	= 1/2	(4-	x²+	Y2)	·1/2 (24)																			
		= 2	14-	12+12	.(2	(1)	ļ.						(c)	pe	rce	nt	ch	and	ge =	- 10	00.	f(o	(d,b)				
		= 1/2												'				•									
			11.			\								7.	cho	ang	je:	= 10 = 92	0.	2							
						<u>₹</u> (0.		1)										- 42	3	/.							
					0.		۷)						(4)	ומו	X /1)≈	ala	2.6	+ 2	9(1	(h.)	(y.	-0)	30	10	y)(v	1-1
			0. I		0.								\U	131	ren	,	J''	190	. 0	~ /,	150	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<i>(</i> ,)	. 0	, , ,	JU/(1
																=	2+	$(-\frac{1}{2}$	()	(-1))+(1)(Ŋ-	1)			
																=	2-	ZX	+ 1/2	+ 1/2							
																=	2-	ZX	+ 1	N							

Exit Ticket Chain Rule

Chain Rule Let z = f(x, y), x = g(s, t), and y = h(s, t) be functions of two variables. The partial derivatives $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ can be found by the chain rules:

1.
$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}$$

2.
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}$$

Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ for the functions below:

1.
$$z = x^2 + 2xy$$
, $y = s + t$, $x = s^2 + 4t$
 $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}$

= $(2x+2)(2s) + (2)(1)$

= $(2(s^2+4t)+2)(2s)+2)$

= $4s^3+16st+4s+2$

$$= 8 \times + 9 + 2$$

$$= 8 \times + 9 + 2$$

$$= 8 \times + 10$$

$$= 8 \times + 10$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}$$

$$= \left[\frac{1}{1} 4(2x - 1) \right] (3t^{2}) + \left(-4 \cdot \frac{x^{2} - x}{y^{5}} \right) (0)$$

$$= \frac{3t^{2}}{\cos^{4}(2s)} (2t^{3} - 1) + 0$$

$$= \frac{(0t^{5} - 3t^{2})}{\cos^{4}(2s)}$$

2.
$$z = x\cos(x) + y^2$$
, $x = 3t + 1$, $y = s^2 + t^2$

4.
$$z = \sqrt{x^2 + y^2} + \frac{y}{x}$$
, $x = \sin(t)$, $y = s^2 + t^2$