Solvants

Agrégation 2020

Expérience introductive

Expérience introductive

Permittivités relatives de quelques solvants

Solvant	Formule	Permittivité relative	
Eau	H H	80,10]
DMSO	O II S CH ₃	47,24	Solvants dissociants
Acétone	H ₃ C CH ₃	20,7	Solvants moyennement dissociants
Toluène	CH ₃	2,379	Solvants non
Cyclohexane		2,024	dissociants

Classement de quelques solvants

Solvant	Formule	Moment dipolaire	Permittivité relative	Catégorie	Solubilité	
Eau	H H	1,85 D	80,10	Polaire protique	Composés ioniques et partiellement ioniques (anions fortement solvatés)	
DMSO	O S CH ₃		47,24	Polaire aprotique	Composés ioniques et partiellement ioniques (cations fortement solvatés)	
Acétone	H ₃ C CH ₃	2,88 D	20,7	Polaire aprotique	Composés ioniques et partiellement ioniques (cations fortement solvatés)	
Toluène	CH ₃	0,37 D	2,379	Apolaire aprotique	Peu les composés ioniques, très bien les composés apolaires	
Cyclohexane		0 D	2,024	Apolaire aprotique	Peu les composés ioniques, très bien les composés apolaires	

5

Miscibilité

Miscibilité

Dissolution du diiode dans le mélange eau/cyclohexane

Mélange eau + cyclohexane

Dissolution du diiode dans le mélange eau/cyclohexane

Mélange eau + cyclohexane

Coefficient de partage du diiode (Cyclohexane/Eau)

Titrage colorimétrique

Extraction liquide-liquide

Les étapes de l'extraction liquide-liquide. Dans ce cas, le solvant S est moins dense que l'eau.

Hydrolyse du bromure de tertiobutyle

	Eau	Acétone	Volume de ^t Bu-Br
Mélange A	30 g	20 g	1 mL
Mélange B	25 g	25 g	1 mL

Solvolyse du chlorure de tertiobutyle

	^t Bu-Br	+	H ₂ O	=	^t Bu-OH	+	H+ +	⊦ Br⁻	
Etat initial	C_0		excès						
Etat intermédiaire t	C ₀ -x		excès						
Etat final t _∞			excès		C_0		C_0	C ₀	

$$\begin{cases} A \ t = 0 & \sigma = \sigma_0 \\ A \ t & \sigma = (\lambda_{H+}^{\circ} + \lambda_{Cl-}^{\circ}).x + \sigma_0 \\ A \ t = \infty & \sigma_{\infty} = (\lambda_{H+}^{\circ} + \lambda_{Cl-}^{\circ}).C_0 + \sigma_0 \end{cases}$$

Hypothèse 1er ordre:

$$v = -\frac{d[tBu - Br]}{dt} = k[^{t}Bu - Br] \text{ d'où } \frac{d[tBu - Br]}{[tBu - Br]} = -kdt$$

$$En \text{ intégrant entre } t = 0 \text{ et } t : ln(\frac{C_0}{C_0 - x}) = kt$$

$$\text{or } \frac{C_0}{C_0 - x} = \frac{\sigma_{\infty} - \sigma_0}{\sigma_{\infty} - \sigma} \text{ d'où } ln(\frac{\sigma_{\infty} - \sigma_0}{\sigma_{\infty} - \sigma(t)}) = kt$$

Résultats

Méthode de Guggenheim

$$ln(\frac{\sigma_{\infty} - \sigma_{0}}{\sigma_{\infty} - \sigma(t)}) = kt$$

d'où
$$\sigma(t) = (\sigma_0 - \sigma_\infty)$$
. $e^{-kt} + \sigma_0$

$$\Delta \sigma(t) = \sigma(t + \Delta t) - \sigma(t) = (\sigma_0 - \sigma_{\infty}) \cdot [e^{-k(t + \Delta t)} - e^{-kt}] = (\sigma_{\infty} - \sigma_0) \cdot [1 - e^{-k\Delta t}] \cdot e^{-kt}$$

Par passage au logarithme:

$$\ln(\Delta\sigma(t)) = \ln(\sigma_{\infty} - \sigma_0) + \ln(1 - e^{-k\Delta t}) - kt = A + Bt$$
 avec $B = k$