

CSEN1095 Data Engineering

Lecture 4 Data Preprocessing II

Mervat Abuelkheir mervat.abuelkheir@guc.edu.eg

Data Cleaning (Cont.)

Handling Noisy Data – Outliers

- Outlier: an object that <u>deviates</u> significantly from the rest of the objects
 - e.g. a student with exceptionally high grades?
- Normal versus anomalous data objects → how to define normalcy?
- Outliers versus noise → randomness, repetition patterns
 - Noise should be removed or fixed before outlier detection?
- Outliers are interesting: they violate the mechanism that generates normal data, and they may be the most interesting objects to analyze
- Outlier detection vs. novelty detection: early stage outlier; but later merged into the model

Why Do We Need to Handle Outliers?

- They increase error variance
- If non-randomly distributed, they can decrease dataset normality
- They can impact assumptions of some ML techniques (e.g. regression)

Handling Noisy Data – Outlier Types

Global (point anomaly)

Deviate significantly from the rest of the dataset

• Ex: abnormally large age value

How to measure deviation?

Contextual

(conditional outlier)

Deviate with respect to context (e.g. time, location)

- Ex: Temperature values 40° in Cairo, when is it an outlier?
- Contextual attributes used to evaluate context

How to define context?

Behavioral attributes used to evaluate outlier behavior

Collective

A subset of objects collectively deviates significantly from the dataset

• Ex: Multiple order delays

How to define group behavior?

Handling Noisy Data – Outlier Detection Methods

- o Statistical → e.g. boxplots, histograms
- o Model-based → e.g. regression
- o Distributional → e.g. clustering

Detecting Noisy Data - Statistical Outlier Detection

- \circ Parametric: assume normal data is generated by a distribution with parameter θ
 - *PDF* of distribution $f(x, \theta)$ yields probability that x is generated by distribution \rightarrow smaller means outlier
 - For univariate outliers → boxplots → parameters are median and IQR
 - For multivariate outliers $\rightarrow \chi^2$ -statistic \rightarrow parameter is mean
- Nonparametric: learn normal model from input data
 - histograms

Histograms

- An approximate representation of the distribution of numerical data
 - e.g. original observations of number of products for each price value in a store
- Divide the entire range of values into a series of intervals then count how many values fall into each interval

Binning

- You can "bin/bucket" the range of values and further merge observations
 - Bins are consecutive, non-overlapping intervals
- To reduce further → change width of bins/buckets (e.g. from example \$10 range)

Detecting Noisy Data - Statistical Outlier Detection

- Histograms → e.g. a transaction with the amount of \$7500 is considered an outlier
 - Does not belong to any of the bins (0.2% of transactions > \$5000)
- Problem → hard to choose an appropriate bin size for histogram
 - Too small bin size → normal objects in empty/rare bins, false positives
 - Too big bin size → outliers in some frequent bins, false negatives

Detecting Noisy Data - Distributional Outlier Detection

- \circ Distance-based \rightarrow for object o, examine the number of other objects in its r-neighborhood
 - if < fraction threshold π then flag \boldsymbol{o} as outlier
 - r is a <u>distance threshold</u>, π is a <u>fraction threshold</u> (min # objects needed in neighborhood)
- Density-based → for object o, examine its
 density <u>relative to</u> density of its local neighbors
 - A <u>local outlier factor</u> (LOF) is computed in terms of the *K-Nearest Neighbors* of an object in comparison to its neighbors

KNN as an Outlier Detector

- For each object, identify distance to its kth nearest neighbor, use distance as an outlier score
- Define a distance threshold and flag as outliers the objects whose outlier score (i.e. *k*th NN distance) is larger than the distance threshold
- Alternatively, use average distance of the k
 nearest neighbors as object's outlier score, and
 compare to threshold

LOF scores visualized

How to Handle Outliers?

- Delete outlier observations/objects
 - If # outlier observations is small
 - If outliers are random and not interesting phenomena
- Transform entire attribute to smooth out outliers
 - Binning
 - Log transformation
- Impute outlier values with mean or estimated value
- Keep and use outlier analysis methods
 - Clustering

Handling Noisy Data – Binning/Bucketing

- Binning → smooth a sorted data value by consulting its "neighborhood"
- o sorted values are partitioned into a number of "buckets," or bins → local smoothing
- equal-depth bins → each bin has same frequency of values
- equal-width bins → interval range per bin is constant
- Either method produces uniform bins
 - Smoothing by bin means → each bin value is replaced by the bin mean
 - Smoothing by bin medians → each bin value is replaced by the bin median
- >Cluster-based binning technique will be discussed in transformation

Handling Noisy Data – **Binning**

Example: Sorted data for *price* (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins

Bin 1: 4, 8, 15

Bin 2: 21, 21, 24

Bin 3: 25, 28, 34

Smoothing by bin means

Bin 1: 9, 9, 9

Bin 2: 22, 22, 22

Bin 3: 29, 29, 29

Handling Noisy Data – **Binning**

Example: Sorted data for *price* (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins

Bin 1: 4, 8, 15

Bin 2: 21, 21, 24

Bin 3: 25, 28, 34

Smoothing by bin means

Bin 1: 9, 9, 9

Bin 2: 22, 22, 22

Bin 3: 29, 29, 29

Handling Noisy Data – **Binning**

Example: Sorted data for *price* (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins

Bin 1: 4, 8, 15

Bin 2: 21, 21, 24

Bin 3: 25, 28, 34

Smoothing by bin means

Bin 1: 9, 9, 9

Bin 2: 22, 22, 22

Bin 3: 29, 29, 29

Food for Thought

NaNs and Noise in location data

2/2/2008 13:38	116.48088	39.89025
2/2/2008 13:43	116.48087	39.89023
2/2/2008 13:53	116.48087	39.8902
2/2/2008 13:58	116.48088	39.89019
2/2/2008 14:03	116.47666	39.88997
2/2/2008 14:08	116.46695	39.89574
2/2/2008 14:13	116.46694	39.89579
2/2/2008 14:18	116.46695	39.8958
2/2/2008 14:23	116.46708	39.8956
2/2/2008 14:33	116.46701	39.89598
2/2/2008 14:38	116.46699	39.89597
2/2/2008 14:43	116.46698	39.89596
2/2/2008 14:48	116.46697	39.89595
2/2/2008 14:48	116.46697	39.89595
2/2/2008 14:53	116.46711	39.8954
2/2/2008 14:58	116.46685	39.89582
2/2/2008 15:03	116.467	39.89588
2/2/2008 15:08	116.4669	39.89587
2/2/2008 15:12	116 /6689	29 2952/

Last observation carried forward (LOCF) and baseline observation carried forward (BOCF)

Food for Thought

NaNs and Noise in time series data

	m date	# open	# high	# low	# close	# volume	A Name
1	2013-02- 08	15.07	15.12	14.63	14.75	8407500	AAL
2	2013-02- 11	14.89	15.01	14.26	14.46	8882000	AAL
3	2013-02- 12	14.45	14.51	14.1	14.27	8126000	AAL
4	2013-02- 13	14.3	14.94	14.25	14.66	10259500	AAL
5	2013-02- 14	14.94	14.96	13.16	13.99	31879900	AAL
6	2013-02- 15	13.93	14.61	13.93	14.5	15628000	AAL
7	2013-02- 19	14.33	14.56	14.08	14.26	11354400	AAL
8	2013-02- 20	14.17	14.26	13.15	13.33	14725200	AAL
9	2013-02- 21	13.62	13.95	12.9	13.37	11922100	AAL
10	2013-02- 22	13.57	13.6	13.21	13.57	6071400	AAL
11	2013-02- 25	13.6	13.76	13.0	13.02	7186400	AAL
12	2013-02- 26	13.14	13.42	12.7	13.26	9419000	AAL

- More on imputation can be found in the book: Flexible Imputation of Missing Data (available online at https://stefvanbuuren.name/fimd/)
- Or try the Kaggle project <u>here</u>

baseline observation carried forward (BOCF)

Additional read

Last observation carried forward (LOCF) and

Thank You

