

IN THE CLAIMS

In accordance with 37 C.F.R. § 1.121, please substitute the following clean copy text
for the pending claims of the same number:

1. (Currently Amended) An organic light emitting device, comprising:
 2. an electrode;
 3. a transparent current self-limiting structure comprising an anisotropic film,
 4. said current self-limiting structure comprising conducting regions, said conducting regions
 5. comprising a unitary material dispersed in a non-conducting matrix, said current self-limiting
 6. structure located between said electrode and a bus layer; and
 7. an organic stack located adjacent between said electrode and separated from
 8. said current self-limiting structure by said electrode.
1. 2. (Original) The device as defined in claim 1, wherein said current self-limiting
2. structure resides in contact with said electrode.
1. 3. (Original) The device as defined in claim 1, wherein said current self-limiting
2. structure is applied as a patterned lattice structure over said electrode.
1. 4. (Original) The device as defined in claim 1, wherein said current self-limiting
2. structure is applied as a grid defining windows in which said electrode is applied.
1. 5. (Cancelled)

1 6. (Original) The device as defined in claim 1, further including a photoresist
2 material in contact with said current self-limiting structure and said electrode.

1 7. (Canceled)

1 8. (Currently Amended) The device as defined in claim 7 1, wherein said
2 conducting bus layer is embedded within said current self-limiting structure.

1 9. (Currently Amended) The device as defined in claim 7 1, wherein said
2 conducting bus layer resides over said current self-limiting structure.

1 10. (Currently Amended) A method for increasing the reliability of an organic
2 light emitting device, comprising the steps of:
3 forming an organic light emitting device including an organic stack; and
4 incorporating a transparent current self-limiting structure comprising an
5 anisotropic film, said current self-limiting structure comprising conducting regions said
6 conducting regions comprising a unitary material dispersed in a non-conducting matrix within
7 said organic light emitting device, said current self-limiting structure residing between an
8 electrode and a bus layer, and wherein said current self-limiting is separated from said organic
9 stack by said electrode.

1 11. (Original) The method as defined in claim 10, wherein said current self-
2 limiting structure is formed in contact with an electrode of said organic light emitting device.

1 12. (Original) The method as defined in claim 10, wherein said current self-
2 limiting structure is formed as a patterned lattice in contact with an electrode of said organic
3 light emitting device.

1 13. (Original) The method as defined in claim 10, wherein said current self-
2 limiting structure is applied as a grid defining windows in which an electrode of said organic
3 light emitting device is applied.

1 14. (Canceled)

Claims 15-28 (Canceled)

1 29. (Previously Presented) The device as defined in claim 1, wherein the current
2 self-limiting structure is a ceramic material and the matrix is a photoresist material.

1 30. (Previously Presented) The device as defined in claim 1, wherein the current
2 self-limiting structure is a ceramic material and the matrix is a polymer.

1 31. (Previously Presented) The device as defined in claim 1, wherein the current
2 self-limiting structure is a polymer composite containing inorganic conducting particles.

1 32. (Previously Presented) The device as defined in claim 1, wherein the current
2 self-limiting structure is a conductive polymer.

1 33. (Previously Presented) The method as defined in claim 10, wherein the current
2 self-limiting structure is formed using a ceramic material and the matrix is formed using a
3 photoresist material.

1 34. (Previously Presented) The method as defined in claim 10, wherein the current
2 self-limiting structure is formed using a ceramic material and the matrix is formed using a
3 polymer.

1 35. (Previously Presented) The method as defined in claim 10, wherein the current
2 self-limiting structure is formed using a polymer composite containing inorganic conducting
3 particles.

1 36. (Previously Presented) The method as defined in claim 10, wherein the current
2 self-limiting structure is formed using a conductive polymer.