

Graphs

Saritha

Department of Computer Science & Engineering

Representation of Network Topology

Saritha

Department of Computer Science & Engineering

Applications: Network Topology

Graph data structure is mainly in Computer Networks, Telecommunication, Electronic Circuits and Transport Networks.

Networking uses the Notation G(N,L) instead of G(V,E) for a graph where N is the set of nodes and L is the set of links.

Applications: Network Topology

- Topology is the order in which nodes and edges are arranged in the network.
- How the computers are connected or related to one another in a computer.
- There are 2 types of Topology
 - 1. Physical
 - 2. Logical

Applications: Network Topology

- 1.Ring Topology
- 2.Star Topology
- 3.Mesh Topology
- 4.BusTopology

Representation of Graph

1.Adjacency Matrix

2.Adjacency List

Applications: Network Topology

1. Ring topology (cycle): A cycle graph is a simple graph which has two degrees of vertices.

Ring topology

	A	В	С	D	E	F
A	0	1	0	0	0	1
В	1	0	1	0	0	0
С	0	1	0	1	0	0
D	0	0	1	0	1	0
E	0	0	0	1	0	1
F	1	0	0	0	1	0

Applications: Network Topology

Applications: Network Topology

2.Star topology: Star topology is a network topology in the form of merging from the central vertex to each vertex .

	Α	В	С	D	E
Α	0	1	1	1	1
В	1	0	0	0	0
С	1	0	0	0	0
D	1	0	0	0	0
E	1	0	0	0	0

Star topology

Applications: Network Topology

3.Mesh topology: Mesh Topology is a complete graph in which all the vertex is connected to all other vertices

	Α	В	С	D	E	F
Α	0	1	1	1	1	1
В	1	0	1	1	1	1
С	1	1	0	1	1	1
D	1	1	1	0	1	1
E	1	1	1	1	0	1
F	1	1	1	1	1	0

Mesh Topology

Applications: Network Topology

Mesh Topology

Bus Topology

A Graph G with V vertices is said to represent a bus topology if

В

D

- 1. Every node except the starting and ending node has degree 2 and starting and ending node have degree 1.
- 2. Number of edges=Number of vertices -1

Α	В	С	D
0	1	0	0
1	0	1	0
0	1	0	1
0	0	1	0

Applications: Network Topology

Most networks a mix of rings, mesh – depending on network type, cost/traffic/reliability

THANK YOU

Saritha

Department of Computer Science & Engineering

Saritha.k@pes.edu

9844668963