Points to recall

► Heuristic function must be ______ for A* Graph Search Algorithm to give optimal solution.

Points to recall

- ► Heuristic function must be ______ for A* Graph Search Algorithm to give optimal solution.
- ► The heuristic function that _____ will lead to a fewer number of nodes being expanded.

➤ To the original state space for the 8-puzzle problem we add the following:

- ➤ To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.

- ➤ To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to an adjacent position, which may result in more than one tile being present at the same position.

- ➤ To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to an adjacent position, which may result in more than one tile being present at the same position.
- Each action can move one tile one position closer to its goal position.

- ➤ To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to an adjacent position, which may result in more than one tile being present at the same position.
- Each action can move one tile one position closer to its goal position.
- ▶ What will be the cost of the shortest path in this relaxed state space?

- ➤ To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to an adjacent position, which may result in more than one tile being present at the same position.
- Each action can move one tile one position closer to its goal position.
- What will be the cost of the shortest path in this relaxed state space? Manhattan distance (h_2)

h_2 is consistent in the relaxed state space for 8-puzzle

To prove : $h_2(n) \le c(n, a, n') + h_2(n')$

Proof:

Approach to generating a heuristic function

1. Relax a problem in such a manner that the shortest path cost in the relaxed problem becomes easy to compute.

Approach to generating a heuristic function

- 1. Relax a problem in such a manner that the shortest path cost in the relaxed problem becomes easy to compute.
- 2. The shortest path costs in any relaxed problem problem will be consistent.

Approach to generating a heuristic function

- 1. Relax a problem in such a manner that the shortest path cost in the relaxed problem becomes easy to compute.
- 2. The shortest path costs in any relaxed problem problem will be consistent.
- 3. Therefore, these shortest path costs can form a consistent heuristic for the original problem.

► To the original state space for the 8-puzzle problem we add the following:

- ► To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.

- ► To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to any position, which may result in more than one tile being present at the same position.

- ► To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to any position, which may result in more than one tile being present at the same position.
- Each action can move one tile to its correct position.

- ► To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to any position, which may result in more than one tile being present at the same position.
- Each action can move one tile to its correct position.
- What will be the cost of the shortest path in this relaxed state space?

- ► To the original state space for the 8-puzzle problem we add the following:
 - We allow additional states where more than one tile can be present at a position and more than one blank space can be present in the puzzle.
 - We allow additional actions where any tile can be moved to any position, which may result in more than one tile being present at the same position.
- Each action can move one tile to its correct position.
- What will be the cost of the shortest path in this relaxed state space? Number of misplaced tiles (h_1)

h_1 is consistent in the relaxed state space for 8-puzzle

To prove : $h_1(n) \le c(n, a, n') + h_1(n')$

Proof:

► Knowledge base

- ► Knowledge base
- Propositional logic

- Knowledge base
- Propositional logic
- Inference

Logical Agents

[2,3]

Logical Agents

Percept in each time step: [Stench, Breeze, Glitter, Bump, Scream]

First Two Steps

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
OK			
1,1 A	2,1	3,1	4,1
1	OV		
OK	OK		

A	= Agent
В	= Breeze
G	= Glitter, Gold
ОK	= Safe square
P	= Pit
S	= Stench
\mathbf{V}	= Visited
W	= Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1.,0	2,0	0,0	1,0
1,2	2,2 P?	3,2	4,2
	نتا		
OK			
1,1	2,1 A	3,1 P?	4,1
v	B	لث	
ок	ok		

Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial situation, after percept [None, None, None, None, None]. (b) After one move, with percept [None, Breeze, None, None, None].

Next Steps

Figure 7.4 Two later stages in the progress of the agent. (a) After the third move, with percept [Stench, None, None, None, None]. (b) After the fifth move, with percept [Stench, Breeze, Glitter, None, None].

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

► KB contains agent's percepts (in the first 2 steps) and rules of the Wumpus world

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
Ì			
ОК			
1,1	2,1 A	3,1 P?	4,1
v	B		
OK	OK		

- ► KB contains agent's percepts (in the first 2 steps) and rules of the Wumpus world
- Agent wants to know whether pit is present in [1,2],[2,2] and [1,3].

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- ► KB contains agent's percepts (in the first 2 steps) and rules of the Wumpus world
- Agent wants to know whether pit is present in [1,2],[2,2] and [1,3].
- $\alpha_1 \equiv$ "No pit in [1,2]"
- $\sim \alpha_2 \equiv$ "No pit in [2,2]"

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- ► KB contains agent's percepts (in the first 2 steps) and rules of the Wumpus world
- ► Agent wants to know whether pit is present in [1,2],[2,2] and [1,3].
- $ightharpoonup lpha_1 \equiv$ "No pit in [1,2]"
- $\sim \alpha_2 \equiv$ "No pit in [2,2]"
- \triangleright KB $\models \alpha_1$?

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- ► KB contains agent's percepts (in the first 2 steps) and rules of the Wumpus world
- Agent wants to know whether pit is present in [1,2],[2,2] and [1,3].
- $ightharpoonup \alpha_1 \equiv$ "No pit in [1,2]"
- ho $\alpha_2 \equiv$ "No pit in [2,2]"
- \blacktriangleright $KB \models \alpha_1?$
- \blacktriangleright KB $\models \alpha_2$?

$KB \models \alpha_2$?

Knowledge Base and Models