3 Given $S_0 = \$12$, $u = \frac{1}{d} = 2$ and r = 25%, we construct a binomial tree with the following stock prices:

$$S_1^u = \$24, \ S_1^d = \$6,$$

$$S_2^{uu} = \$48, \ S_2^{ud} = S_2^{du} = \$12, \ S_2^{dd} = \$3,$$

$$S_3^{uuu} = \$96, \ S_3^{uud} = S_3^{duu} = \$24, \ S_3^{udd} = S_3^{dud} = \$6, \ S_3^{ddd} = \$1.50.$$

Moreover, by $\mathbb{E}^*[S_1] = S_1^u p^* + S_1^d (1 - p^*) = S_0 (1 + r)$, we have:

$$p^* = \frac{S_0(1+r) - S_1^d}{S_1^u - S_1^d} = \frac{S_0(1+r) - S_0d}{S_0u - S_0d} = \frac{1+r-d}{u-d} = \frac{0.75}{1.5} = \frac{1}{2}.$$

(a) For an American put option struck at K = \$10, the payoff is $(K - S_n)^+$. Specifically,

$$V_3^{uuu} = \$0, V_3^{uud} = V_3^{udu} = V_3^{duu} = \$0, V_3^{udd} = V_3^{dud} = V_3^{ddu} = \$4, V_3^{ddd} = \$8.50.$$

Using these values, we compute the following:

$$\begin{split} V_2^{uu} &= \max \left\{ \frac{1}{1+r} \left[\underbrace{V_3^{uuu} p^*}_{=\$0} + \underbrace{V_3^{uud} (1-p^*)}_{=\$0} \right], \underbrace{(K-S_2^{uu})^+}_{=\$0} \right\} = \$0, \\ V_2^{ud} &= V_2^{du} = \max \left\{ \frac{1}{1+r} \left[\underbrace{V_3^{udu} p^*}_{=\$0} + \underbrace{V_3^{udd} (1-p^*)}_{=\$2} \right], \underbrace{(K-S_2^{ud})^+}_{=\$0} \right\} = \$1.60, \\ V_2^{dd} &= \max \left\{ \frac{1}{1+r} \left[\underbrace{V_3^{ddu} p^*}_{=\$2} + \underbrace{V_3^{ddd} (1-p^*)}_{=\$4.25} \right], \underbrace{(K-S_2^{ud})^+}_{=\$7} \right\} = \$7, \\ V_1^u &= \max \left\{ \frac{1}{1+r} \left[\underbrace{V_2^{uu} p^*}_{=\$0} + \underbrace{V_2^{ud} (1-p^*)}_{=\$0.80} \right], \underbrace{(K-S_1^u)^+}_{=\$0} \right\} = \$0.64, \\ V_1^d &= \max \left\{ \frac{1}{1+r} \left[\underbrace{V_2^{uu} p^*}_{=\$0.80} + \underbrace{V_2^{ud} (1-p^*)}_{=\$0.80} \right], \underbrace{(K-S_1^d)^+}_{=\$4} \right\} = \$4, \\ \therefore V_0^A &= \max \left\{ \frac{1}{1+r} \left[\underbrace{V_1^u p^*}_{=\$0.32} + \underbrace{V_1^d (1-p^*)}_{=\$0.32} \right], \underbrace{(K-S_0)^+}_{=\$0} \right\} = \$1.856. \end{split}$$

Similarly, for a corresponding European put option, its values $V_n^E = \frac{1}{1+r} \mathbb{E}^*[V_{n+1}^E]$ are computed as:

$$V_2^{uu,E} = \$0, \ V_2^{ud,E} = V_2^{du,E} = \$1.60, \ V_2^{dd,E} = \$5, \ V_1^{u,E} = \$0.64, \ V_1^{d,E} = \$2.64, \ V_0^E = \$1.312.$$

Hence, the required early exercise premium is $V_0^A - V_0^E = \$0.544 \approx \0.54 (2 d.p.).

(b) For an American cash-or-nothing digital call option with strike price \$20 and a fixed payoff of \$1, we have the following corresponding values:

$$V_3^{uuu} = \$1, \ V_3^{uud} = V_3^{udu} = V_3^{duu} = \$1, \ V_3^{udd} = V_3^{dud} = \$0, \ V_3^{ddd} = \$0.$$

Using these values, we compute the following:

$$\begin{split} V_2^{uu} &= \max \left\{ \frac{1}{1+r} \left[\underbrace{\underbrace{V_3^{uuu}p^*}_{=\$0.50}} + \underbrace{V_3^{uud}(1-p^*)}_{=\$0.50} \right], \$1 \right\} = \$1, \\ V_2^{ud} &= V_2^{du} = \max \left\{ \frac{1}{1+r} \left[\underbrace{\underbrace{V_3^{udu}p^*}_{=\$0.50}} + \underbrace{V_3^{udd}(1-p^*)}_{=\$0} \right], \$0 \right\} = \$0.40, \\ V_2^{dd} &= \max \left\{ \frac{1}{1+r} \left[\underbrace{\underbrace{V_3^{ddu}p^*}_{=\$0}} + \underbrace{V_3^{ddd}(1-p^*)}_{=\$0} \right], \$0 \right\} = \$0, \\ V_1^u &= \max \left\{ \frac{1}{1+r} \left[\underbrace{\underbrace{V_2^{uu}p^*}_{=\$0.50}} + \underbrace{V_2^{ud}(1-p^*)}_{=\$0.20} \right], \$1 \right\} = \$1, \\ V_1^d &= \max \left\{ \frac{1}{1+r} \left[\underbrace{\underbrace{V_2^{du}p^*}_{=\$0.20}} + \underbrace{V_2^{dd}(1-p^*)}_{=\$0.20} \right], \$0 \right\} = \$0.16, \\ & \therefore V_0^A = \max \left\{ \frac{1}{1+r} \left[\underbrace{\underbrace{V_1^{uu}p^*}_{=\$0.50}} + \underbrace{V_1^{d}(1-p^*)}_{=\$0.08} \right], \$0 \right\} = \$0.464. \end{split}$$

Similarly, for a corresponding European put option, its values $V_n^E = \frac{1}{1+r} \mathbb{E}^*[V_{n+1}^E]$ are computed as:

$$V_2^{uu,E} = \$0.80, \ V_2^{ud,E} = V_2^{du,E} = \$0.40, \ V_2^{dd,E} = \$0, \ V_1^{u,E} = \$0.48, \ V_1^{d,E} = \$0.16, \ V_0^E = \$0.256.$$

Hence, the required early exercise premium is $V_0^A - V_0^E = \$0.208 \approx \0.21 (2 d.p.). Unfortunately, most candidates were not prepared and hence unable to tackle this question with full workings made, given the absence of additional examples for that part.

8 Given the payoff $\alpha + \beta \log \left(\frac{S_T}{2}\right) - \log(K)$ under the risk-neutral measure \mathbb{Q}^* modelled using the Black-Scholes model $dS_t = rS_t dt + \sigma S_t dW_t^*$ with solution $S_T = S_0 e^{\left(r - \frac{\sigma^2}{2}\right)T + \sigma W_T^*}$, we have, assuming the valuation formula for the European option, the value:

$$V_0^E = e^{-rT} \mathbb{E}^{\mathbb{Q}^*} \left[\alpha + \beta \log \left(\frac{S_T}{2} \right) - \log(K) \right] = e^{-rT} \left[\alpha + \beta \log \left(\frac{S_0}{2} \right) + \beta \left(r - \frac{\sigma^2}{2} \right) T - \log(K) \right].$$

For the **corresponding American option** (which some candidates interpreted), we set $\alpha + \beta \log \left(\frac{S_T}{2}\right) - \log(K) > 0$ and then perform the necessary integration steps to obtain the corresponding valuation formula for V_0^A . So long as candidates performed all steps correctly and obtained the correct formula for the American option, it should be fine.

10 Under the displaced-diffusion model, the final answer is $e^{-rT}\Phi(d_2)$, where d_2 is the constant obtained from the displaced-diffusion sub-part of Part 1 of the group project using the valuation formula for the cash-or-nothing digital call option. Unfortunately, most candidates were not prepared and hence unable to tackle this question with full workings made, given the absence of additional examples for that part.