Math 299 Notes

Lance Remigio

August 30, 2025

Contents

Zorn's Lemma

1 Zorn's Lemma		's Lemma	1	
	1.1	Partially Ordered Sets	1	
	1.2	Applications	2	
2		n-Banach Theorem	2	
	2.1	What is the Hahn-Banach Theorem?	2	
_	_			
1	Zo	orn's Lemma		
1.	1 P	Partially Ordered Sets		

Definition (Partially Ordered Set, Chain). A partially ordered set is a set M on which there is defined a partial ordering, that is, a binary relation which is written \leq and satisfies the conditions

(PO1) $a \le a$ for every $a \in M$ (Reflexivity)

(P02) If $a \le b$ and $b \le a$, then a = b. (Antisymmetry)

(PO3) If $a \le b$ and $b \le c$, then $a \le c$ (Transitivity)

- The term "partially" means that there may exist elements a and b such that neither $a \leq b$ nor $b \leq a$. When this is the case, we call the set M to be **incomparable**.
- On the other hand, we say that a and b are **comparable** if they satisfy $a \le b$ or $b \le a$ (or both).

Definition (Totally Ordered Set/Chain). We call a set M to be totally ordered or chain if it is a partially ordered set such that every two elements of the set are comparable.

Definition (Upper Bound). An **upper bound** of a subset W of a partially ordered set M is an element $u \in M$ such that

$$x \leq u \ \, \forall x \in W.$$

- Another way to think about a chain is that it does not contain any elements that are incomparable.
- Note that the depending on the properties of M and W, the existence of such an element may or may not exist.

Definition (Maximal Element). We call a number $m \in M$ a maximal element of M if

$$m \le x \implies m = x.$$

Similarly, M may or may not have maximal elements and that they need not be an upper bound.

Theorem (Zorn's Lemma). Let $M \neq \emptyset$ be a partially ordered set. Suppose that every chain $C \subseteq M$ has an upper bound. Then M has at least one maximal element.

The above is to be taken as an axiom.

1.2 Applications

Theorem (Existence of a Hamel Basis). Every vector space $X \neq \{0\}$ contains a Hamel basis.

Proof. Let M be the set of all linearly independent subsets of X. Since $X \neq \{0\}$, there exists an element $x \neq 0$ and $\{x\} \in M$ such that $M \neq \emptyset$. Set inclusion defines a partial ordering on M. Every chain $C \subseteq M$ has an upper bound, namely, the union of all subsets of X which are elements of C. By Zorn's Lemma, M contains a maximal element B.

Now, we will show that B is a Hamel Basis for X. Let $Y = \operatorname{span} B$. Then Y is a subspace of X, and Y = X since otherwise $B \cup \{z\}$ where $z \in X$ and $z \notin Y$, would be a linearly independent set containing B as a proper subset, contrary to the maximality of B.

Before we go over the second example pertaining to Orthonormal sets, we recall some terms used within the proof.

Definition (Total Orthonormal Sets). A **total set** (or **fundamental set**) in a normed space X is a subset $M \subseteq X$ whose span is **dense** in X. Accordingly, an orthonormal set (or sequence or family) in an inner product space X which is total in X is called a **total orthonormal set** (or a sequence or family, respectively) in X.

Definition (Total Orthonormal Set). In every Hilbert space $H \neq \{0\}$, there exists a total orthonormal set.

Theorem (Totality (Theorem 3.6-2)). Let M be a subset of an inner product space X. Then:

(a) If M is total in X, then there does not exist a nonzero $x \in X$ which is orthogonal to every element of M; briefly,

$$x \perp M \implies x = 0.$$

(b) If X is complete, that condition is also sufficient for the totality of M in X.

Proof. Let M be the set of all orthonormal subsets of H. Since $H \neq \{0\}$, it contains an element $x \neq 0$, and an orthonormal subset of H is $\{y\}$, where $y = ||x||^{-1}x$. Thus, $M \neq \emptyset$ and that set inclusion defines a partial ordering on M. Every chain $C \subseteq M$ has an upper bound, namely, the union of all subsets of X which are elements of C. By Zorn's Lemma, M contains a maximal element F.

We will show that F is total in H. Suppose for sake of contradiction that F is NOT total. Then using Theorem 3.6-2 (see book for details), there exists a nonzero $z \in H$ such that $z \perp F$. Hence, $F_1 = F \cup \{e\}$, where $e = ||z||^{-1}z$ is orthonormal, and F is a proper subset of F_1 . This contradicts the maximality of F.

2 Hahn-Banach Theorem

2.1 What is the Hahn-Banach Theorem?

- It is an extension theorem for linear functionals in normed spaces (in a real vector space).
- It guarantees the abundance of bounded linear functionals on a normed space.
- It characterizes the extent to which values of a linear functional can be pre-assigned.

Roughly speaking, when we talk about extending an object, we usually refer to preserving desired properties from one space to another. More specifically, the object of interest in the Hahn-Banach theorem is a linear functional f that is defined on a subspace Z of a vector space X and satisfies a certain boundedness property which will be represented in terms of a **sublinear functional**.

Definition (Sublinear Functional). We say that p defined on a vector space X is a sublinear functional if

- (1) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$; that is, p is **subadditive**
- (2) $p(\alpha x) = \alpha p(x)$ for all $\alpha \geq 0$ in \mathbb{R} and $x \in X$; that is, p is **positive-homogeneous**.
- We assume that the functional f to be extended is majorized (to be bounded) by a functional p (that is defined on X) that satisfies the above properties.
- We will extend f to a functional \tilde{f} which will retain the boundedness properties that f has on X instead of the subset of X.
- \bullet This version of the theorem will assume that X will be a real vector space.

Theorem (Hahn-Banach Theorem (Extension of linear functionals)). Let X be real vector space and p a sublinear functional on X. Furthermore, let f be a linear functional which is defined on a subspace Z of X and satisfies

$$f(x) \le p(x) \ \forall x \in Z.$$

Then f has a linear extension \tilde{f} from Z to X satisfying

$$\tilde{f}(x) \le p(x) \ \forall x \in X;$$
 (*)

that is, \tilde{f} is a linear functional on X, satisfies (*) on X and $\tilde{f}(x) = f(x)$ for every $x \in Z$.

Proof. We will proceed using the following steps below:

- (a) The set E of all linear extensions of g of f satisfying $g(x) \leq p(x)$ on their domain D(g) can be partially ordered and Zorn's lemma yields a maximal element of \tilde{f} of E.
- (b) f is defined on the entire space X.
- (c) An auxiliary relation which was used in (b).

To start, we will prove (a). Let E be the set of all linear extensions g of f for which

$$g(x) \le p(x) \ \forall x \in D(g).$$

Note that $E \neq \emptyset$ since $f \in E$ by assumption. On E we can define a partial ordering by $g \leq h$ meaning h is an extension of g, that is, by definition, $D(h) \supseteq D(g)$ and h(x) = g(x) for every $x \in D(g)$. For any chain $C \subseteq E$, we now define \hat{g} by

$$\hat{g}(x) = g(x) \text{ if } x \in D(g)$$
 $(g \in C)$

where it can be proven relatively easily that \hat{g} is a linear functional with the domain being

$$D(\hat{g}) = \bigcup_{g \in C} D(g)$$

which is a vector space since C is a chain. The definition of \hat{g} is well-defined. Indeed, for $x \in D(g_1) \cap D(g_2)$ with $g_1, g_2 \in C$, we have $g_1(x) = g_2(x)$ since C is a chain so that $g_1 \leq g_2$ or $g_2 \leq g_1$. Clearly, $g \leq \hat{g}$ for all $g \in C$. Hence, \hat{g} is an upper bound of C. Since $C \subseteq E$ was arbitrary, it follows from Zorn's lemma that E contains a maximal element \tilde{f} . By the definition of E, this is a linear extension of E which satisfies

$$\tilde{f}(x) \le p(x)$$
 . $(x \in D(\tilde{f}))$

Now, we will show that $D(\tilde{f})$ is all of X. Suppose for contradiction that $D(\tilde{f}) \neq X$. Then we can choose a $y_1 \in X \setminus D(\tilde{f})$ and consider the subspace $Y_1 = \text{span}(D(\tilde{f}) \cap \{y_1\})$. Note that $y_1 \neq 0$ since $0 \in D(\tilde{f})$. Any $x \in Y_1$ can be written as

$$x = y + \alpha y_1.. \qquad (y \in D(\tilde{f}))$$

Note that this representation is unique. Indeed, $y + \alpha y_1 = \tilde{y} + \beta y_1$ with $\tilde{y} \in D(\tilde{f})$ implies that

$$y - \tilde{y} = (\beta - \alpha)y_1.$$

Since $y_1 \notin D(\tilde{f})$, the only solution to the equation above is for $y - \tilde{y} = 0$ and $\beta - \alpha = 0$. This tells us now that our representation is unique.

A functional g_1 on Y_1 is defined by

$$g_1(y + \alpha y_1) = \tilde{f}(y) + \alpha c$$

where c is any real constant. It is not difficult to see that g_1 is linear. Furthermore, for $\alpha = 0$, we have $g_1(y) = \tilde{f}(y)$. Hence, g_1 is a proper extension of \tilde{f} , that is, an extension such that $D(\tilde{f})$ is a proper subset of $D(g_1)$. Thus, proving that $g_1 \in E$ by showing that $g_1(x) \leq p(x)$ for all $x \in D(g_1)$ will contradict the maximality of \tilde{f} and so the fact that $D(\tilde{f}) = X$ must be true.

Indeed, we must show that this is the case for a suitable c that satisfies the above desired result. We consider any y and z in $D(\tilde{f})$. We have

$$\tilde{f}(y) - \tilde{f}(z) = \tilde{f}(y - z) \le p(y - z)$$

$$= p(y + y_1 - y_1 - z)$$

$$\le p(y + y_1) + p(-y_1 - z).$$