Name:	
Assignment 4: Fourier Series Expansion	
D	rue: Tuesday, May 12
1.	
2.	
3.	

1. (a) Show the basis functions $\{exp(jn\omega_0 t)\}\$ of Fourier series expansion are mutually orthogonal with the definition of the inner product

$$\langle f(t), g(t) \rangle = \frac{1}{T} \int_{0}^{T} f(t) g^{*}(t) dt$$

- (b) Extend the analysis for the basis functions $\{exp(jn\theta)\}\$ of DTFT.
- 2. Use your 7-digit perm number to produce a 7-point sequence $\{F_n\}$, where n=0,1,...,6.
 - (a) Use $\{F_n\}$ as the Fourier series coefficients to formulate and plot the periodic function f(t) for the interval (0, T).
 - (b) Apply DTFT onto the sequence $\{F_n\}$. Formulate and plot the DTFT spectrum for the interval $(0, 2\pi)$.
 - (c) Summarize your observations based on the results from Parts (a) and (b), and explain why so.
- 3. (a) Consider a real periodic signal, with period T. The signal has 6 harmonics, for n=0,1,...,5.

$$f(t) = \sum_{n=0}^{5} a_n \cos(n\omega_0 t + \theta_n)$$

Then we take 16 uniform samples within one period to form a short 16-point sequence $\{f(m)\}$. Subsequently, we take a 16-point DFT of the sequence

$$F(k) = DFT \{f(m)\}$$

Identify and list the 16-point *DFT* spectrum F(k) in terms of a_n and θ_n .

(b) Repeat the exercise with the periodic function g(t)

$$g(t) = \sum_{n=1}^{5} b_n \sin(n\omega_0 t + \varphi_n)$$