Big Data Analytics

Learning theory

Souhaib Ben Taieb

March 19, 2021

University of Mons

Table of contents

Error measures and noisy targets

The bias and variance tradeoff

Learning curves

Table of contents

Error measures and noisy targets

The bias and variance tradeoff

Learning curves

Learning diagram

The learning diagram - where we left it

© Treator: Yaser Abu-Mostafa - LFD Lecture 4

Learning diagram (with error measure)

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 4

How to choose the error measure?

How to choose the error measure

Fingerprint verification:

Two types of error:

false accept and false reject

How do we penalize each type?

(c) (d) Creator: Yaser Abu-Mostafa - LFD Lecture 4

The supermarket example

The error measure - for supermarkets

Supermarket verifies fingerprint for discounts

False reject is costly; customer gets annoyed!

False accept is minor; gave away a discount and intruder left their fingerprint $\ \odot$

(c) (d) Creator: Yaser Abu-Mostafa - LFD Lecture 4

The CIA example

The error measure - for the CIA

CIA verifies fingerprint for security

False accept is a disaster!

False reject can be tolerated
Try again; you are an employee ③

$$\begin{array}{c|ccccc} & & f \\ & +1 & -1 \\ \hline h & +1 & 0 & 1000 \\ -1 & 1 & 0 \\ \end{array}$$

(c) FIII Creator: Yaser Abu-Mostafa - LFD Lecture 4

Noisy targets

Noisy targets

The 'target function' is not always a function

Consider the credit-card approval:

age	23 years
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000

two 'identical' customers \longrightarrow two different behaviors

(c) (T) Greator: Yaser Abu-Mostafa - LFD Lecture 4

Target distribution

Target 'distribution'

Instead of $y = f(\mathbf{x})$, we use target distribution:

$$P(y \mid \mathbf{x})$$

 (\mathbf{x}, y) is now generated by the joint distribution:

$$P(\mathbf{x})P(y \mid \mathbf{x})$$

Noisy target = deterministic target $f(\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$ plus noise $y - f(\mathbf{x})$

Deterministic target is a special case of noisy target:

$$P(y \mid \mathbf{x})$$
 is zero except for $y = f(\mathbf{x})$

(c) TE Creator: Yaser Abu-Mostafa - LFD Lecture 4

Final learning diagram

Table of contents

Error measures and noisy targets

The bias and variance tradeoff

Learning curves

In-sample and out-of-sample errors

Consider

$$f = \underset{h: \mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} E_{\operatorname{out}}(h),$$

$$g^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} E_{\operatorname{out}}(h),$$

and

$$g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} E_{\operatorname{in}}(h).$$

Approximation-generalization tradeoff

The difference between the out-of-sample error of g and f can be decomposed as follows

$$E_{\text{out}}(g) - E_{\text{out}}(f) = \underbrace{\left[E_{\text{out}}(g^*) - E_{\text{out}}(f)\right]}_{\text{Approximation error}} + \underbrace{\left[E_{\text{out}}(g) - E_{\text{out}}(g^*)\right]}_{\text{Estimation error}}$$

- Approximation error is how far the entire hypothesis set is from f. Larger hypothesis sets have lower approximation error.
- **Estimation error** is how good *g* is with respect to the best in the hypothesis set. Larger hypothesis sets have higher estimation error because it is harder to find a good prediction function based on limited data.

This is called the **approximation-generalization** tradeoff.

Quantifying the approximation-generalization tradeoff

The VC analysis is one approach to quantify the tradeoff:

- $d_{VC} \uparrow \Longrightarrow$ better chance of **approximating** $f(E_{in} \approx 0)$
- $d_{VC} \downarrow \Longrightarrow$ better chance of **generalizing** to out-of-sample $(E_{\rm in} \approx E_{\rm out})$

The VC analysis uses binary errors (classification).

The VC analysis only depends on \mathcal{H} (through d_{VC}):

$$E_{\rm out} \leq E_{\rm in} + \Omega(d_{\rm VC})$$

 \implies Independent of the target function f, the input distribution p(x) and the learning algorithm \mathcal{A} .

Quantifying the approximation-generalization tradeoff

The **bias-variance** analysis approach is another way to quantify the tradeoff:

- How well can the learning approximate f
 - ... as opposed to how well **did** the learning approximate f in-sample (E_{in})
- How close can you get to that approximation with a finite data set
 - ... as opposed to how close is E_{in} to E_{out}

The bias-variance analysis applies to **squared errors** (classification and regression).

The bias-variance analysis can take into account the **learning** algorithm \mathcal{A} .

 Different learning algorithms can have different E_{out} when applied to the same H!

Bias and variance decomposition

Start with E_{out}

$$E_{\mathrm{Out}}(g^{(\mathcal{D})}) = \mathbb{E}_{\mathbf{x}} \Big[\big(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \big)^2 \Big]$$

$$\mathbb{E}_{\mathcal{D}}\left[E_{\text{out}}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\mathbf{x}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]\right]$$
$$= \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]\right]$$

Now, let us focus on:

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})
ight)^2
ight]$$

© M Creator: Yaser Abu-Mostafa - LFD Lecture 8

The average hypothesis

The average hypothesis

To evaluate
$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x})-f(\mathbf{x})\right)^2
ight]$$

we define the 'average' hypothesis $\bar{g}(\mathbf{x})$:

$$\bar{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\mathbf{x})\right]$$

Imagine **many** data sets $\mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_K$

$$\bar{g}(\mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} g^{(\mathcal{D}_k)}(\mathbf{x})$$

© M Creator: Yaser Abu-Mostafa - LFD Lecture 8

Using the average hypothesis

Using $\bar{g}(\mathbf{x})$

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) + \bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^{2} + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2} + 2\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^{2} + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$

© M Creator: Yaser Abu-Mostafa - LFD Lecture 8

Bias and variance

Bias and variance

$$\begin{split} \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] &= \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\text{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\text{bias}(\mathbf{x})} \end{split}$$
 Therefore,
$$\mathbb{E}_{\mathcal{D}}\left[E_{\text{out}}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]\right]$$

$$= \mathbb{E}_{\mathbf{x}}[\text{bias}(\mathbf{x}) + \text{var}(\mathbf{x})]$$

$$= \text{bias} + \text{var}$$

(c) M Creator: Yaser Abu-Mostafa - LFD Lecture 8

Bias and variance tradeoff

The tradeoff

$$\mathrm{bias} = \mathbb{E}_{\mathbf{x}} \left[\left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right] \qquad \qquad \mathrm{var} = \mathbb{E}_{\mathbf{x}} \left[\left. \mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] \right]$$

 \downarrow

 $\mathcal{H} \uparrow$

(c) (iii) Greator: Yaser Abu-Mostafa - LFD Lecture 8

Example: sine target

Example: sine target

$$f:[-1,1] \to \mathbb{R}$$
 $f(x) = \sin(\pi x)$

Only two training examples! $\qquad N=2$

Two models used for learning:

$$\mathcal{H}_0$$
: $h(x) = b$

$$\mathcal{H}_1$$
: $h(x) = ax + b$

Which is better, \mathcal{H}_0 or \mathcal{H}_1 ?

© M Creator: Yaser Abu-Mostafa - LFD Lecture 8

Example: Approximation

Example: Learning

Example: Bias and variance

Example: Bias and variance

Example: Bias and variance tradeoff

Lesson learned

Lesson learned

Match the 'model complexity'

to the data resources, not to the target complexity

(c) FIT Creator: Yaser Abu-Mostafa - LFD Lecture 8

Table of contents

Error measures and noisy targets

The bias and variance tradeoff

Learning curves

Learning curves

Expected E_{out} and E_{in}

Data set \mathcal{D} of size N

Expected out-of-sample error $\mathbb{E}_{\mathcal{D}}[E_{\mathrm{out}}(g^{(\mathcal{D})})]$

Expected in-sample error $\mathbb{E}_{\mathcal{D}}[E_{\mathrm{in}}(g^{(\mathcal{D})})]$

How do they vary with N?

(c) Fill Creator: Yaser Abu-Mostafa - LFD Lecture 8

Learning curves

VC versus bias-variance analysis

- VC^1 : Pick \mathcal{H} that can generalize and has a good chance to fit the data.
- **Bias-variance**²: Pick $(\mathcal{H}, \mathcal{A})$ to approximate f and not behave wildly.

 $^{^1}$ We take the expected values of all quantities with respect to ${\cal D}$ of size ${\it N}.$

²we assume, for every N, the average learned hypothesis \bar{g} has the same performance as the best approximation to f in the learning model.

Linear regression case

Linear regression case

Noisy target
$$y = \mathbf{w}^{*\mathsf{T}}\mathbf{x} + \mathsf{noise}$$

Data set
$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$$

Linear regression solution: $\mathbf{w} = (X^TX)^{-1}X^T\mathbf{y}$

In-sample error vector $= X\mathbf{w} - \mathbf{y}$

'Out-of-sample' error vector $= X\mathbf{w} - \mathbf{y}'$

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 8

Learning curves for linear regression

Learning curves for linear regression

Best approximation error $=\sigma^2$

Expected in-sample error $=\sigma^2\left(1-\frac{d+1}{N}\right)$

Expected out-of-sample error = $\sigma^2\left(1+\frac{d+1}{N}\right)$

Expected generalization error = $2\sigma^2\left(\frac{d+1}{N}\right)$

© 🕾 Creator: Yaser Abu-Mostafa - LFD Lecture 8