Лабораторная работа №1.4.5 Изучение колебаний струны

Гёлецян А.Г.

22 июля 2022 г.

1 Ход работы

m, г	F, H	$ u_1, \Gamma$ ц	$ u_2, \Gamma$ ц	ν_3, Γ ц	$ u_4, \Gamma$ ц	$ u_5, \Gamma$ ц	$ u_6, \Gamma$ ц	$ u_7, \Gamma$ ц	ν_8, Γ ц	$ u_9, \Gamma$ ц
1095.5	10.75	137.0	278.3	413.8	560.7	694.1	844.0	975.9	1127.0	1263.8
1577.3	15.48	164.3	330.0	495.5	661.0	827.6	994.4	1161.3	1329.0	1497.0
2064.7	20.27	188.0	377.3	565.9	755.4	945.0	1135.2	1325.9	1518.0	1709.0
2545.1	24.98	210.0	420.9	631.3	842.0	1053.6	1265.2	1477.0	1690.3	1903.7
3027.5	29.72	228.0	457.0	685.0	914.0	1141.0	1370.0	1599.0	1828.0	2061.0

Таблица 1: Измерения гармоник в зависимости от силы натяжения

Ускорение свободного падения $g=(9.8155\pm0.0005){\rm mc}^{-2}$. Погрешнось измерения массы $\Delta m=0.1{\rm r}$. Погрешность силы

$$\varepsilon_F = \sqrt{\left(\frac{\Delta g}{g}\right)^2 + \left(\frac{\Delta m}{m}\right)^2} \approx 10^{-4}$$

Это на порядки меньше остальных погрешностей, поэтому учитывать его не будем.

$$u=2l\nu_1$$

Где

$$l = (50.0 \pm 0.1)$$
cm

Из графиков получаем.

F, H	10.75	15.48	20.27	24.98	29.72
$ u_1, \Gamma$ ц	141.0	166.5	190.1	211.6	228.8
$\Delta \nu_1, \Gamma$ ц	1.1	0.3	0.4	0.4	0.4

Таблица 2: Зависимость частоты первой гармоники от натяжения

Так как 2l=1м то числовые значения и в мс $^{-1}$ совподают с значениями ν_1 в Γ ц.

Из графика $u^2(F)$ получаем

$$\frac{1}{\rho} = (1730 \pm 40) \text{м}^3 \text{кг}^{-1}$$

$$\Delta\left(\frac{1}{\rho}\right) = \frac{\Delta\rho}{\rho^2}$$

Подставляя чиссла получаем

$$\rho = (578 \pm 13) \mu \Gamma/\mathrm{m}$$

Что совпадает с реальным значением $\rho_l = 568.4 \mu \Gamma/{\rm M}$ в пределах погрешности.

