NIO

Exercise 12: Bias & Variance

Duc Duy Pham, M.Sc.

Raum: BC 410

Tel.: 0203-379-3734

Email: duc.duy.pham@uni-due.de

Contents

- Model Flexibility
- Bias & Variance

Contents

- Model Flexibility
- Bias & Variance

Model Flexibility

- ML models can be:
 - Not flexible enough
 - Too flexible
 - (Just right)

Model Flexibility

- Other example of lack of flexibility:
 - Too low assumption of polynomial degree for regression problem
 - Leads to high error rate even in training data

Offen im Denken

Model Flexibility

- Other example of too flexible models:
 - Too high assumption of polynomial degree for regression problem
 - Leads to low error rate in training data
 - Bad generalization (high error rate in validation and test data)

Contents

- Model Flexibility
- Bias & Variance

$$D(w) \; = \; \lim_{M o \infty} rac{1}{2M} \sum_{m=1}^{M} \sum_{i=1}^{N_L} (y_i(x^m,w) - r_i^m)^2$$

$$D(w) = \underbrace{rac{1}{2}\sum\limits_{i=1}^{N_L}\int(y_i(x,w)-\langle r_i|x
angle)^2P(x)dx}_{ ext{Term I}} + \underbrace{rac{1}{2}\sum\limits_{i=1}^{N_L}\int(\langle r_i^2|x
angle-\langle r_i|x
angle^2)P(x)dx}_{ ext{Term II}}$$

What is the "expected" model output?

Model

Training Set 1

What is the "expected" model output?

Training Set 1

Training Set 2

Training Set 3

Training Set 4

- What is the "expected" model output?
- The expected model output over multiple training sets!

What is Bias?

What is Bias?

$$E_Tig(\underbrace{(E_T(y(x))-\langle r|x
angle)^2}_{ ext{Bias}_y^2(x)}ig)$$

What is Bias?

$$E_Tig(\underbrace{(E_T(y(x))-\langle r|x
angle)^2}_{ ext{Bias}_y^2(x)}ig)$$

$$(\mathsf{Bias}_y)^2 \; = \; rac{1}{2} \int \mathsf{Bias}_y^2(x) P(x) dx$$

- What is Bias?
 - Deviation from expected output of (trained) model and expected target given some observation

- What is Bias?
 - Deviation from expected output of (trained) model and expected target given some observation
 - High Bias
 strong deviation from expected output of model to desired output

CAUTION

- Model not flexible enough => high bias
- BUT: High bias does not automatically mean, that model is not flexible enough!

What is Variance?

What is Variance?

$$\underbrace{E_Tig((y(x)-E_T(y(x)))^2ig)}_{ ext{Varianz}_y(x)}$$

What is Variance?

$$\underbrace{E_Tig((y(x)-E_T(y(x)))^2ig)}_{ ext{Varianz}_y(x)}$$

$$\mathsf{Varianz}_y \ = \ rac{1}{2} \int \mathsf{Varianz}_y(x) P(x) dx$$

- What is Variance?
 - Expected (squared) deviation from model output and <u>expected model output</u>

- What is Variance?
 - Expected (squared) deviation from model output and <u>expected model output</u>
 - High Variance
 Model tends to strong deviations from expected output in training data

- What is Variance?
 - Expected (squared) deviation from model output and <u>expected model output</u>
 - High Variance
 - => Model tends to strong deviations from expected output in training data
 - => Model is strongly dependent on choice of training data!

- What is Variance?
 - Expected (squared) deviation from model output and <u>expected model output</u>
 - High Variance
 - => Model tends to strong deviations from expected output in training data
 - => Model is strongly dependent on choice of training data!
 - => Generalization is bad!
 - Often caused by too flexible model

CAUTION

- Model too flexible => high variance (often high bias on unseen data)
- Also: High variance does not automatically mean, that model is too flexible!

$$E_Tig((y(x)-\langle r|x
angle)^2ig) = \underbrace{E_Tig((y(x)-E_T(y(x)))^2ig)}_{ ext{Varianz}_y(x)} + igE_Tig(\underbrace{(E_T(y(x))-\langle r|x
angle)^2ig)}_{ ext{Bias}_y^2(x)}$$

Mittelung über alle x:

$$(\mathsf{Bias}_y)^2 \ = \ rac{1}{2} \int \mathsf{Bias}_y^2(x) P(x) dx$$
 $\mathsf{Varianz}_y \ = \ rac{1}{2} \int \mathsf{Varianz}_y(x) P(x) dx$

a) Beispiel mit linearer Modellfunktion: keine Varianz und kein Bias, wenn Daten tatsächlich linear verteilt sind.

b) Beispiel mit polynominaler Modellfunktion: Varianz und Bias abhängig von tatsächlicher Verteilung der Daten und verwendetem Grad des Polynoms.

c) Beispiel mit einer festen Funktion $\overline{f}(x)$ als Abbildungsfunktion y(x), wobei $\overline{f}(x)$ unabhängig von Ω_T sei. \overline{f} wird nicht gelernt, sondern a priori vorgegeben.

Varianz verschwindet, da $y(x)=\overline{f}(x)$, und somit $E_T(y(x))=\overline{f}(x)$.

Bias ist i.A. hoch, da Abhängigkeit von Trainingsmenge nicht berücksichtigt wurde.

d) Beispiel mit auswendig gelernten Funktionen $f_j(x)$, die die Trainingsmengen Ω_{T_j} jeweils perfekt widerspiegeln.

Für die Trainingselemente, die in der Schnittmenge der herangezogenen Ω_{T_j} liegen, $j \in \{1, \dots\}$, ist Bias und Varianz gleich 0.

Für die übrigen Trainingselemente ist Bias und Varianz i.A. sehr hoch.

What is the Bias-Variance-Dilemma?

- What is the Bias-Variance-Dilemma?
 - Want to minimize Bias and Variance at the same time
 - Tradeoff between Bias and Variance
 - Low Bias => (often) High Variance
 - Low Variance => High Bias
 - Need to find balance between both

Solution attempt?

- Solution attempt?
 - Use flexible model
 - Low expected Bias
 - High expected Variance
 - Reduce Variance by providing large amount of training data
 - Training data should cover a wide range of different samples
 - This strategy is often applied for CNNs (which tend to overfit!)

What is Cross Validation?

- What is Cross Validation?
 - Variable separation of (learning) data set into training and validation (evaluation) sets, i.e.

$$\Omega_L := \Omega_{T_j} \cup \Omega_{E_j} \quad , j \in \{1, 2, 3, \dots, K\}$$

- Systematic or random change of separation strategy
- Training of machine learning model for each train Ω_{T_j} set and validation (evaluation) with Ω_{E_j} respective
- K separations leads to K differently trained models!

Learning data set $\,\Omega_L\,$

Make K=3 Separations of Learning Set

What is Cross Validation used for?

- What is Cross Validation used for?
 - 1. Use case:
 - Check chosen machine learning model for its generalization capacities:
 - Question of interest: Are the chosen hyperparameters for model good? / Is chosen model good?
 - K separations => K validations (of chosen and fixed hyper parameters)
 - If validation error rates are all good=> assumed good generalization

- What is Cross Validation used for?
 - 2. Use case:
 - Construct more robust (ensemble) model from trained models:
 - Question of interest: How to create more robust model (with current hyperparameters/ with current model)?
 - K separations = > K differently trained models (with same hyper parameters)
 - Combine K differently trained models into one ensemble model

