

Тема 4. Цілі вирази. Одночлени. Многочлени

1. Степінь з натуральним показником

Означення. Степінь з натуральним показником - це алгебраїчна операція, яка повторює множення числа самого на себе. Якщо a є дійсним числом, а n є натуральним числом, то степінь числа a з показником n позначається як a^n і визначається як: $a^n = a \cdot a \cdot ... \cdot a$ (n разів), де: a називається основою, n називається показником степеня.

Основні властивості степенів з натуральним показником:

1.
$$a^n \cdot a^m = a^{n+m}$$

$$2. \quad a^n: a^m = \frac{a^n}{a^m} = a^{n-m}$$

3.
$$(a^n)^m = a^{n \cdot m}$$

4.
$$a^n \cdot b^n = (ab)^n$$

5.
$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$
, $b \neq 0$

6.
$$a^1 = a$$

7.
$$a^0 = 1$$

8.
$$0^n = 0$$

Приклади

1. Простий приклад піднесення до степеня:

$$2^3 = 2 \cdot 2 \cdot = 8$$

2. Використання властивостей степенів:

$$3^2 \cdot 3^3 = 3^{2+3} = 3^5 = 243$$

$$5^4 \div 5^2 = 5^{4-2} = 5^2 = 25$$

$$(2^3)^2 = 2^{3 \cdot 2} = 2^6 = 64$$

2. Цілі вирази

Означення. Цілі вирази в математиці - це спосіб вираження взаємозв'язку між числами, змінними, арифметичними діями та дужками. До цілих виразів відносяться одночлени та многочлени.

Означення. Одночлен - це цілий вираз, який складається з одного елемента. Він може бути числом, змінною, або добутком чисел і змінних.

Приклади: 5,
$$x$$
, 4 y , 3 x^2 .

Означення. Многочлен - це цілий вираз, що складається з двох або більше одночленів, з'єднаних додаванням або відніманням.

Приклади:
$$x + 5$$
, $3x^2 - 4x + 7$, $a^2 + 2ab + b^2$.

Означення. Степінь одночлена визначається сумою показників його змінних. Степінь многочлена визначається найвищим степенем серед його одночленів.

Приклади: степінь одночлена $3x^2$ - це 2; степінь одночлена $4y^3$ - це 3; у многочлені $3x^2$ - 4x + 7, найвищий степінь - це 2.

3. Операції з цілими виразами

Найголовніші операції над цілими виразами:

1. Додавання і віднімання многочленів

При додаванні або відніманні многочленів, потрібно додавати/віднімати одночлени, які мають однакові змінні — подібні одночлени. При такій операції коефіцієнти одночленів додаються/віднімаються, а степені змінних залишаються такими ж.

2. Множення одночлена на многочлен

Щоб помножити одночлен на многочлен, потрібно помножити цей одночлен на кожен член многочлена окремо.

3. Множення Многочленів

Щоб помножити два многочлени, кожен член одного многочлена множиться на кожен член іншого многочлена, а потім результати додаються разом.

4. Ділення Одночлена на Одночлен

Щоб поділити одночлен на одночлен, поділіть їх коефіцієнти і відніміть показники степеня змінних.

4. Завдання та приклади

1. Піднесення одночлена до степеня:

$$(2x^3y^5z)^4 = 2^4 \cdot (x^3)^4 \cdot (y^5)^4 \cdot z^4 = 16x^{12}y^{20}z^4.$$

2. Додавання многочленів. Зведіть подібні члени:

$$4x^2 + 3x - 2 + x^2 - 4x + 5 = 4x^2 + x^2 + 3x - 4x - 2 + 5 = 5x^2 - x + 3$$
.

3. Множення одночлена на многочлен:

$$3x(x^2 + 2x + 4) = 3x \cdot x^2 - 3x \cdot 2x + 3x \cdot 4 = 3x^3 - 6x^2 + 12x$$
.

4. Множення многочленів:

$$(2x - 3)(x + 4) = 2x \cdot x + 2x \cdot 4 - 3 \cdot x - 3 \cdot 4 = 2x^2 + 8x - 3x - 12 = 2x^2 + 5x - 12.$$

5. Ділення одночлена на одночлен:

$$6x^3: 2x = 3x^2.$$