Countable models

A structure \overline{M} is atomic iff $\operatorname{tp}^{\overline{M}}(\overline{a})$ is isolated, for all positive integers m and all $\overline{a} \in {}^{n}M$.

Theorem 10.1. Let \mathcal{L} be a countable language, and T a complete theory in \mathcal{L} with infinite models. Let \overline{M} be a model of T. Then \overline{M} is prime iff it is countable and atomic.

- **Proof.** \Rightarrow : Assume that \overline{M} is prime. If t is a type of T which is not isolated, then by the omitting types theorem 6.26, T has a model \overline{N} which omits t. Since \overline{M} can be elementarily embedded in \overline{N} , it follows that \overline{M} also omits t. Thus for any type t of T, t isolated $\Rightarrow M$ omits t. Hence any type which \overline{M} realizes is isolated; this means that \overline{M} is atomic. since T has countable models by the downward Löwenheim-Skolem theorem, and \overline{M} can be elementarily embedded in any model of T, \overline{M} is countable.
- \Leftarrow : Suppose that \overline{M} is countable and atomic, and \overline{N} is any model of T; we want to construct an elementary embedding of \overline{M} into \overline{N} . Let $\langle a_i : i \in \omega \rangle$ enumerate the elements of M, and for each $i \in \omega$ let $\theta_i(\overline{v})$ isolate $\operatorname{tp}^{\overline{M}}(a_0, \ldots, a_i)$. We will now construct elementary maps $f_0 \subseteq f_1 \subseteq \ldots$ from subsets of M into N, where the domain of f_i is $\{a_0, \ldots, a_{i-1}\}$. Let $f_0 = \emptyset$. It is elementary since $\overline{M} \equiv \overline{N}$ (because T is complete). Suppose that f_i has been constructed, an elementary map. Then $\overline{M} \models \theta_i(a_0, \ldots, a_i)$, hence $\overline{M} \models \exists v \theta_i(a_0, \ldots, a_{i-1}, v)$. Since f_i is an elementary map, it follows that $\overline{N} \models \exists v \theta_i(f_i(a_0), \ldots, f_i(a_{i-1}), v)$. Choose $b \in N$ such that $\overline{N} \models \theta_i(f_i(a_0), \ldots, f_i(a_{i-1}), b)$, and let $f_{i+1} = f_i \cup \{(i,b)\}$. To see that f_{i+1} is elementary, suppose that $\overline{M} \models \psi(a_0, \ldots, a_i)$, Thus $\psi(\overline{v}) \in \operatorname{tp}^{\overline{M}}(a_0, \ldots, a_i)$, so $T \models \theta_i \to \psi$. Since $\overline{N} \models \theta_i(f_i(a_0), \ldots, f_i(a_{i-1}), b)$, it follows that $\overline{N} \models \psi(f_i(a_0), \ldots, f_i(a_{i-1}), b)$. Thus f_{i+1} is elementary.

Now $\bigcup_{i\in\omega} f_i$ is an elementary, as desired.

Corollary 10.2. If \mathcal{L} is a countable language and T is a complete theory with infinite models, then T has a prime model iff T has an atomic model.

Proof. \Rightarrow : by Theorem 10.1.

 \Leftarrow : Suppose that \overline{M} is an atomic model of T. Let \overline{N} be a countable elementary substructure of \overline{M} . Then for any $n \in \omega$ and any $\overline{a} \in {}^n N$ we have $\operatorname{tp}^{\overline{N}}(\overline{a}) = \operatorname{tp}^{\overline{M}}(\overline{a})$, and hence $\operatorname{tp}^{\overline{N}}(\overline{a})$ is isolated. So \overline{N} is prime by Theorem 10.1.

Proposition 10.3. If \overline{M} is an atomic model of T, then it is ω -homogeneous.

Proof. See just before Lemma 7.28 for the definition of ω -homogeneous. Suppose that A is a finite subset of M and $f: A \to M$ is a partial elementary map. Let \overline{a} enumerate A. Let $b \in M$. Let $\varphi(\overline{v}, w)$ isolate the type $\operatorname{tp}^{\overline{M}}(\overline{a}, b)$. Then $\overline{M} \models \exists w \varphi(\overline{a}, w)$. So, since f is partial elementary, we get $\overline{M} \models \exists w \varphi(f \circ \overline{a}, w)$ Choose $d \in M$ such that $\overline{M} \models \varphi(f \circ \overline{a}, d)$. Let $g = f \cup \{(b, d)\}$. To see that g is partial elementary, suppose that $\overline{M} \models \psi(\overline{a}, b)$. Then $T \models \varphi \to \psi$ and $\overline{M} \models \varphi(f \circ \overline{a}, d)$, so $\overline{M} \models \psi(f \circ \overline{a}, d)$, as desired.

Corollary 10.4. If T is a complete theory in a countable language, then any two prime models of T are isomorphic.

Proof. Let \overline{M} and \overline{N} be prime models of T. Then by Theorem 10.1 they are both countable and atomic. By Proposition 10.3 they are also both ω -homogeneous. Now every

type realized in \overline{M} is isolated. Also, if t is an isolated type, say isolated by $\varphi(\overline{v})$, then $T \models \exists \overline{v} \varphi(\overline{v})$, hence \overline{M} realizes t. So a type is isolated iff it is realized in \overline{M} . The same is true of \overline{N} , so \overline{M} and \overline{N} realize the same types. Hence they are isomorphic by Theorem 7.31.

Theorem 10.5. If \overline{M} is κ -saturated, then \overline{M} is κ -homogeneous.

Proof. Suppose that $A \in [M]^{<\kappa}$, $f: A \to M$ is partial elementary, and $b \in M \backslash A$. Let

$$\Gamma = \{ \varphi(v, f \circ \overline{a}) : \exists m \in \omega [\overline{a} \in {}^{m}A \text{ and } \overline{M} \models \varphi(b, \overline{a})] \}.$$

Let Δ be a finite subset of Γ . For each member χ of Δ , choose $m_{\chi} \in \omega$, φ_{χ} , and $\overline{a}_{\chi} \in {}^{m}A$ such that $\overline{M} \models \varphi_{\chi}(b, \overline{a}_{\chi})$ and $\chi = \varphi_{\chi}(v, f \circ \overline{a}_{\chi})$. Then there is an $n \in \omega$, $\overline{a}' \in {}^{n}A$, and a formula ψ such that the following conditions hold:

- (1) $\overline{M} \models \psi(b, \overline{a}')$.
- $(2) \models \bigwedge \Delta \leftrightarrow \psi(v, f \circ \overline{a}').$

Now from (1) we get $\overline{M} \models \exists v \psi(v, \overline{a}')$. Hence, since f is elementary, $\overline{M} \models \exists v \psi(v, f \circ \overline{a}')$. Hence by (2), $\overline{M} \models \exists v \bigwedge \Delta$. Thus Γ is finitely satisfiable. So since \overline{M} is ω -saturated we get $c \in M$ such that $\overline{M} \models \varphi(c, f \circ \overline{a})$ for each $\varphi(v, f \circ \overline{a}) \in \Gamma$. So $f \cup \{(b, c)\}$ is elementary. \square

Theorem 10.6. Suppose that \overline{M} is a model of T. Then \overline{M} is ω -saturated iff \overline{M} is ω -homogeneous and for every $m \in \omega$, \overline{M} realizes all types in $S_m(T)$.

Proof. \Rightarrow : by Theorem 10.5.

 \Leftarrow : Let $m, n \in \underline{\omega}, \overline{a} \in {}^{m}M$, and $p \in S_{n}^{\overline{M}}(\overline{a})$. Let $q \in S_{n+m}(T)$ be the type $\{\varphi(\overline{v}, \overline{w}) : \varphi(\overline{v}, \overline{a}) \in p\}$. Since \overline{M} realizes all types in $S_{m+n}(T)$, choose $(\overline{b}, \overline{c})$ realizing q. Now

$$(*) \operatorname{tp}^{\overline{M}}(\overline{a}) = \operatorname{tp}^{\overline{M}}(\overline{c}).$$

In fact, let $\psi(\overline{w}) \in \operatorname{tp}^{\overline{M}}(\overline{a})$. Let ψ' be $\overline{v} = \overline{v} \wedge \psi$. Then $\psi'(\overline{v}, \overline{a}) \in \underline{p}$, since otherwise $\neg \psi'(\overline{v}, \overline{a}) \in p$ and hence, since every finite subset of p is satisfiable in \overline{M} , we get \overline{e} such that $\overline{M} \models \neg \psi'(\overline{e}, \overline{a})$, i.e., $\overline{M} \models \neg \psi(\overline{a})$, contradiction. So $\psi'(\overline{v}, \overline{a}) \in p$, hence $\psi'(\overline{v}, \overline{w}) \in q$, hence $\overline{M} \models \psi'(\overline{b}, \overline{c})$, so $\overline{M} \models \psi(\overline{c})$. This proves (*).

Now by ω -homogeneity we get \overline{d} such that $\operatorname{tp}^{\overline{M}}(\overline{b},\overline{c}) = \operatorname{tp}^{\overline{M}}(\overline{d},\overline{a})$. Thus for any $\varphi(\overline{v},\overline{a}) \in p$ we have $\varphi(\overline{v},\overline{w}) \in q$, hence $\overline{M} \models \psi(\overline{b},\overline{c})$, so $\varphi(\overline{v},\overline{w}) \in \operatorname{tp}^{\overline{M}}(\overline{b},\overline{c})$, hence $\varphi(\overline{v},\overline{w}) \in \operatorname{tp}^{\overline{M}}(\overline{d},\overline{a})$, so $\overline{M} \models \varphi(\overline{d},\overline{a})$. This shows that \overline{d} realizes p.

Corollary 10.7. If \overline{M} and \overline{N} are countable saturated models of T, then $\overline{M} \cong \overline{N}$.

Proof. By Theorem 10.6, both \overline{M} and \overline{N} are ω -homogeneous and realize all types in any $S_m(T)$. By Theorem 7.31 they are isomorphic.

Now we need some variants of 7.38–7.39.

Lemma 10.8. Suppose that \overline{M} is a model of T and $\overline{a}, \overline{b}, c \in M$, $\operatorname{tp}^{\overline{M}}(\overline{a}) = \operatorname{tp}^{\overline{M}}(\overline{b})$. Then there exist an elementary extension \overline{N} of \overline{M} such that |M| = |N| and an element $d \in N$ such that $\operatorname{tp}^{\overline{N}}(\overline{a}, c) = \operatorname{tp}^{\overline{N}}(\overline{b}, d)$.

Proof. Apply the compactness theorem to the set Eldiag $(\overline{M}) \cup \{\varphi(\overline{b}, u) : \overline{M} \models \varphi(\overline{a}, c)\}\ (u \text{ a new constant})$ **Theorem 10.9.** Suppose that \overline{M} is a model of T. Then there exists an elementary extension \overline{N} of \overline{M} such that |M| = |N| and for all $\overline{a}, \overline{b}, c \in M$ there is a $d \in N$ such that $\operatorname{tp}^{\overline{N}}(\overline{a}, c) = \operatorname{tp}^{\overline{N}}(\overline{b}, d).$ **Proof.** Iterate Lemma 10.8. **Theorem 10.10.** Suppose that \overline{M} is a model of T. Then there is an elementary extension \overline{N} of \overline{M} such that \overline{N} is ω -homogeneous and |M| = |N|. **Proof.** Iterate Lemma 10.9 ω times. **Theorem 10.11.** T has a countable saturated model iff $|S_n(T)| < \aleph_0$ for all n. **Proof.** \Rightarrow : If \overline{M} is a countable saturated model, then it realizes only countably many types; but it realizes all types, so $|S_n(T)| \leq \aleph_0$ for all n. \Leftarrow : Let t_0, t_1, \ldots list all members of $\bigcup_{n \in \omega} S_n(T)$. By the compactness theorem, for any countable model \overline{N} of T and any $i \in \omega$ there is a countable elementary extension \overline{P} of \overline{N} with an element which realizes t_i . So if we start with \overline{M} and iterate this process ω times we obtain an elementary chain $\overline{M} = \overline{N}_0 \preceq \overline{N}_1 \preceq \cdots$ such that each \overline{N}_i is countable and \overline{N}_{i+1} has an element realizing t_i . Let $\overline{P} = \bigcup_{i \in \omega} \overline{N}_i$. Then \overline{P} is an elementary extension of \overline{M} which realizes every type over T. By Theorem 10.10 let \overline{Q} be a countable elementary extension of \overline{P} which is ω -homogeneous. By Theorem 10.6, \overline{Q} is ω -saturated. **Theorem 10.12.** If \mathscr{L} is countable, T is a theory in \mathscr{L} , and $|S_n(T)| \leq \omega$ for all $n \in \omega$, then T has a countable atomic model. **Proof.** By Theorem 6.26 (the omitting types theorem), let \overline{M} be a countable model of T which omits all non-isolated types. Thus \overline{M} is atomic. Corollary 10.13. If \mathcal{L} is countable and T is a theory in \mathcal{L} which has an ω -saturated model, then T has a countable atomic model. **Proof.** By Theorems 10.11 and 10.12.

Theorem 10.14. For T a theory in a countable language the following are equivalent: (i) T is \aleph_0 -categorical.

- (ii) For every $n < \omega$, every type in $S_n(T)$ is isolated.
- (iii) $|S_n(T)| < \aleph_0$ for every $n \in \omega$.
- (iv) For every $n \in \omega$ there is a finite set Γ of formulas with free variables among v_0, \ldots, v_{n-1} such that for every formula φ with free variables among v_0, \ldots, v_{n-1} there is a $\psi \in \Gamma$ such that $T \models \varphi \leftrightarrow \psi$.

Proof. (i) \Rightarrow (ii): Suppose that (ii) fails: there exist $n < \omega$ and a type $p \in S_n(T)$ which is not isolated. By the omitting types theorem 6.26, there is a countable model \overline{M} of T which omits p. But clearly there is also a countable model \overline{N} which admits p. Thus $\overline{M} \ncong \overline{N}$, so (i) fails.

(ii) \Rightarrow (iii): Assume (ii), but suppose that (iii) fails: there is an $n \in \omega$ such that $S_n(T)$ is infinite. For each $p \in S_n(T)$ let φ_p isolate p. Let \overline{c} be a sequence of new constants of length n, and consider the set

$$T' \stackrel{\text{def}}{=} T \cup \{ \neg \varphi_p(\overline{c}) : p \in S_n(T) \}.$$

We claim that T' has a model. For, take any finite subset T'' of T. Let P be the set of all types p such that $\neg \varphi_p(\overline{c})$ is in T''. Let $q \in S_n(T)$ be different from each member of P. Now $T \models \varphi_q \to \neg \varphi_p$ for each $p \in P$; otherwise $T \models \varphi_q \to \varphi_p$ for some $p \in P$ and then $T \models \varphi_q \to \psi$ for each $\psi \in p$, so that $p \subseteq q$, hence p = q, contradiction. Now take a model \overline{M} of T which realizes q, say $\overline{M} \models \varphi_q(\overline{a})$. Interpreting \overline{c} by \overline{a} in this model gives a model of T'', as desired.

Thus T' has a model, which gives a model \overline{N} of T with a sequence \overline{b} satisfying in \overline{N} each formula $\neg \varphi_p$. Thus $\operatorname{tp}^{\overline{N}}(\overline{b})$ cannot be in $S_n(T)$, contradiction.

(iii) \Rightarrow (iv): Assume (iii), and suppose that $n \in \omega$. For distinct $p, q \in S_n(T)$ choose $\varphi_{pq} \in p \setminus q$. For each $p \in S_n(T)$ let $\psi_p = \bigwedge \{ \varphi_{pq} : q \neq p \}$. Thus $\psi_p \in p$ while $\psi_p \notin q$ for all $q \neq p$. Now given χ with variables among v_0, \ldots, v_{n-1} we have $T \models \chi \leftrightarrow \bigvee \{ \underline{\psi_p} : \chi \in p \}$.

iv) \Rightarrow (i): Assume (iv). Let \overline{M} be a countable model of T; we show that \overline{M} is atomic; so T is \aleph_0 -categorical by Theorems 10.1 and 10.4. If $\overline{a} \in {}^n M$, then $\operatorname{tp}^{\overline{M}}(\overline{a})$ is isolated by

$$\bigwedge \{ \varphi_i(\overline{v}) : \overline{M} \models \varphi_i(\overline{a}) \} \land \bigwedge \{ \neg \varphi_i(\overline{v}) : \overline{M} \models \neg \varphi_i(\overline{a}) \}$$