Lecture 8

Matrix Multiplication
Using Shared Memory

Announcements

- A2 Due
- Friday's makeup lecture 4:00 to 5:20pm in EBU3B 2154
- Next Tuesday's lecture: be prepared to discuss the assigned paper in class: "Debunking to 100X GPU vs CPU myth ...

Project Proposals

- Due 2/24
- What are the goals of your project? Are they realistic?
- What are your hypotheses?
- What is your experimental method for proving or disproving your hypotheses?
- What experimental result(s) do you need to demonstrate?
- What would be the significance of those results?
- What code will you need to implement? What software packages or previously written software will use?
- A tentative division of labor among the team members
- A preliminary list of milestones—with completion dates

Today's lecture

- Matrix Multiplication with Global Memory
- Using Shared Memory part I

Recapping from last time

Many Multithreaded Vector Units

Warp scheduling on Fermi

- Assign threads to an SM in units of a thread block
- Hardware is free to assign blocks to any SM, multiple blocks per SM
- Blocks are divided into *warps* of 32 (SIMD) threads, a schedulable unit
 - Dynamic instruction reordering
 - All threads in a Warp execute the same instruction
 - Multiple warps simultaneously active, hiding data transfer delays
 - All registers in all the warps are available, 0 overhead scheduling

Occupancy

- A minimum number of warps needed to hide memory latency
- Occupancy: # active warps ÷ max # warps supported by vector unit
- Limited by vector unit resources
 - Amount of shared memory
 - Number of registers
 - Maximum number of threads
- Consider a kernel (16x16 block size)
 - Shared memory/block = 2648 bytes
 - Reg/thread=38 [38*256 = 9728 < 16k]
 - # available registers is the limiting factor
- Tradeoff: more blocks with fewer threads or more threads with fewer blocks
 - Locality: want small blocks of data (and hence more plentiful warps) that fit into fast memory
 - Register consumption

Data motion cost

- Communication performance is a major factor in determining the overall performance of an application
- The α - β model: α + β - 1_{∞} n

n = message length

 α = message startup time

 β_{∞} = peak bandwidth (bytes / second)

Machine	β _∞ (Dev)	H-D	D-H
Forge	103 GB/s	2.3	1.3
Lilliput	73.6	3.3	2.8
CseClass01	122	3.4	2.7
CseClass04	56.1	5.2	4.1

As reported by bandwidthTest

Consequences of data motion cost

- Consider saxpy z[i] = a*x[i]+y[i]
- This is a bandwidth bound kernel
- Running time under the $\alpha-\beta$ model: $\alpha+\beta^{-1}_{\infty}$ n $\alpha=4~\mu s$ $\beta_{\infty}=127~GB/sec$
- Flop rate bounded by $(2n \text{ flops/12n bytes})^* \beta_{\infty}$
 - (1/6) flops per byte of bandwidth: 27 Gflops/sec
- $N_{1/2}$ half power (bandwidth) point: $N \approx 42,000$
 - The transfer size required to achieve $\frac{1}{2} \beta \infty$
 - Matrix multiplication takes 4 μs
 - But the largest matrix that fits into memory is $1GB \sim (16K)^2$
 - Consequence: saxpy takes constant time to run

Half power point

• We define the *half power point* $n_{1/2}$ as the transfer size required to achieve $\frac{1}{2} \beta_{\infty}$

$$\frac{1}{2} \beta^{-1} \infty = n_{1/2} / T(n_{1/2}) \Rightarrow \beta^{-1}(n_{1/2}) = \frac{1}{2} \beta^{-1} \infty$$

- In theory, this occurs when $\alpha = \beta^{-1} \infty$ $n_{1/2} \Rightarrow n_{1/2} = \alpha \beta \infty$
- Formula may not be accurate

(SDSC Blue Horizon)

Latency

• Instructions waits on dependencies

```
x = a + b; // ~20

y = a + c; // independent

(stall)

z = x + d; // dependent
```

- How many warps are needed to hide latency if minimum latency is 4 cycles per instruction?
- Latencies, can vary but for single precision
 - GT200 (C1060, Lilliput): 24 CP * 8 cores / SM = 192 ops/cycle
 - GF100 (GTX-580, Cseclass01/02): 18 CP * 32 = 576
 - GF104 (GTX 460, Cseclass03-07): 18 CP * 48 = 864
- Measuring latencies
 - a = a*b+c, unrolled, 1 scalar thread on entire device
 - No overflow
 - Hardware not optimized for special values 0,1

Thread vs instruction level parallelism

- We are told to maximize the number of threads
- But we can also use instruction level parallelism to boost performance at a lower occupancy
- See Volkov's presentation: http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
- On the GF104, we must use ILP to go beyond 66% of peak
 - 48 cores/SM, half warp issues at a time
 - But we have only 2 schedulers
 - We must issue 2 instructions per warp in the same cycle

```
#pragma unroll UNROLL
for( int i = 0; i < N_ITERATIONS; i++ ){
    a = a*b+c;
    d = d * b + c;
}</pre>
```

Matrix Multiplication (code in \$PUB/Examples/CUDA/MM)

Naïve Host Code

```
// "ijk" kernel

for i := 0 to n-1

for j := 0 to n-1

C[i,j]

for k := 0 to n-1

C[i,j] += A[i,k] * B[k,j]
```

```
for (unsigned int i = 0; i < N; i++)
    for (unsigned int j = 0; j < N; j++) {
        DOUBLE sum = 0;
        for (unsigned int k = 0; k < N; k++)
            sum += A[i * N + k] * B[k * N + j];
        C[i * N + j] = (DOUBLE) sum;
    }</pre>
```

Naïve kernel implementation

- Each thread computes one element of C
 - Loads a row of matrix A
 - Loads a column of matrix B
 - Computes a dot product
- Every value of A and B is loaded N times from global memory

Naïve Kernel

```
global void
matMul(DOUBLE* C, DOUBLE* A, DOUBLE* B) {
 int I = blockldx.x*blockDim.x + threadldx.x;
 int J = blockldx.y*blockDim.y + threadIdx.y;
 int N = blockDim.y*gridDim.y; // Assume a square matrix
 if ((I < N) \&\& (J < N)){
     float c = 0;
     for (unsigned int k = 0; k < N; k++) {
        float a = A[I * N + k];
                                 for (unsigned int i = 0; i < N; i++)
        float b = B[k * N + J];
                                     for (unsigned int j = 0; j < N; j++) {
        c += a * b;
                                        DOUBLE sum = 0;
                                       for (unsigned int k = 0; k < N; k++)
                                          sum += A[i * N + k] * B[k * N + j];
     C[I * N + J] = \_c;
                                        C[i * N + j] = (DOUBLE) sum;
```

CUDA code on the host side

```
unsigned int n2 = N*N*sizeof(DOUBLE);
DOUBLE *h_A = (DOUBLE*) malloc(n2);
DOUBLE *h B = (DOUBLE*) malloc(n2);
// Check that allocations went OK
assert(h A); assert(h B);
genMatrix(h A, N, N); genMatrix(h B, N, N); // Initialize matrices
DOUBLE *d A, *d B, *d C;
cudaMalloc((void**) &d A, n2); ... &d A ... &d B
checkCUDAError("Error allocating device memory arrays");
// copy host memory to device
cudaMemcpy(d A, h A, n2, cudaMemcpyHostToDevice);
cudaMemcpy(d B, h B, n2, cudaMemcpyHostToDevice);
checkCUDAError("Error copying data to device");
```

Host code - continued

```
// setup execution configurations
  dim3 threads(ntx, nty,1); // ntx & nty are user input
  dim3 grid(n / threads.x, N / threads.y);
   // launch the kernel
   matMul<<< grid, threads >>>(d C, d A, d B);
   // retrieve result
   cudaMemcpy(h_C, d_C, n2, cudaMemcpyDeviceToHost);
   checkCUDAError("Unable to retrieve result from device");
// Free device storage
   assert(cudaSuccess ==cudaFree(d A));
   assert(cudaSuccess ==cudaFree(d B));
   assert(cudaSuccess ==cudaFree(d C));
```

Configuration variables

- Types to manage thread geometries
- dim3 gridDim, blockDim
 - Dimensions of the grid in blocks (gridDim.z not used)
 - Dimensions of a thread block in threads
- dim3 blockIdx, threadIdx;
 - Block index within the grid
 - Thread index within the block

```
__global___ void KernelFunc(...);
dim3 DimGrid(40, 30); // 1200 thread blocks
dim3 DimBlock(4, 8, 16); // 512threads per block
Kernel<<< DimGrid, DimBlock, >>>(...);
```

Performance

- Baseline [N=512]
 - Lilliput, C1060, 2.0 GHz Intel Xeon E5504, 4MB L3, peak 8.0 GF / core
 - Forge, M2070 14×32 cores
 - 21 GF on 4 CPU cores (MPI), 25 Gflops for N=2K

				(1111 1)	1	1		
Gflops dp Lilliput	9.8	8.5	7.4	5.9	5.3	5.1	3.0	2.7
Geometry	2×256	2×128	2×64	4×128	4×64 2×32	4×32	8×64	8×32
Gflops sp Lilliput	8.6	7.7	6.2	4.6	3.9	3.5	2.0	1.8
Geometry	2×256	2×128	2×32 2×64	4×128	4×64	4×32	8×64	8×32
Gflops sp Forge dp	65 <u>48</u> 64 46	56 39	52 29 50 28	46 29	33 27	21	8.6	6.8 6.2
Geometry	2×128 2×256	2×64	4×128 4×64	4×32	2×32 8×64	16×32	32×16	32×8 32×4

Memory Hierarchy

Name	Latency (cycles)	Cached
Global	DRAM – 100s	No
Local	DRAM – 100s	No
Constant	1s - 10s - 100s	Yes
Texture	1s - 10s - 100s	Yes
Shared	1	
Register	1	

Courtesy DavidKirk/NVIDIA and Wen-mei Hwu/UIUC

Shared Memory/Cache

- On-chip local store: pshared memory, partially L1
 - 16KB shared memory + 48 KB L1 cache
 - 48KB shared memory + 16 KB L1 cache
 - 1 for each vector unit
 - All threads in a block share this on-chip memory
 - A collection of warps share a portion of the local store
- Cache accesses to local or global memory, including temporary register spills
- L2 cache shared by all vector units
- Cache inclusion (L1 ⊂ L2?) partially configurable on per-access basis with mem. ref. instruction modifiers
- 128 byte cache line size
- Set the mode using cudaFuncSetCacheConfig() cudaFuncSetCacheConfig(boundariesX,PREFERENCE)
 PREFERENCE = {cudaFuncCachePreferShared, cudaFuncCachePreferL1}

A better matrix multiply

- Use shared memory to increase re-use
- Avoid thread divergence
- Memory Coalescing, avoid Bank Conflicts
 - Next time

Improving locality

Naïve algorithm

- Each thread loads all the data it needs, independently loads a row and column of input
- Each input element loaded multiple times
- Each thread computes 1 MAD + 2 loads + 1 store

Blocked algorithm

- Threads cooperate to load a block of A&B into on-chip shared memory
- Each thread in the block performs the *ijk* loop within shared memory
- Each thread:b mpy-adds + 1 load + 1 store

Using shared memory (uncoalesced glbl)

```
global void matMul(float* C, float* A, float* B, int N) {
 const unsigned int bx = BLOCK X, by = BLOCK Y;
 const unsigned int tx = threadIdx.x, ty = threadIdx.y;
 const unsigned int I = blockldx.x*bx + tx, J = blockldx.y*by + ty;
 const unsigned int gx = gridDim.x, gy = gridDim.y;
shared float a[BLOCK X][BLOCK Y], b[BLOCK X][BLOCK Y];
 if ((I < N) \&\& (J < N)){
   float c = 0.0f;
   for (unsigned int k=0; k < gy; k++){
      a[tx][ty] = A[I*N+k*by+ty];
      b[ty][tx] = B[J+N*(k*bx+tx)];
      syncthreads(); // Synchronizes all threads in a block
      for (unsigned int kk=0; kk< bx; kk++)
         c += a[kk][tx]*b[kk][ty];
      __syncthreads(); // Avoids memory hazards
   C[I*N+J] = c;
```

Results – shared memory – C1060

- N=512, double precision
- Different thread geometries
- Baseline: 23 GFlops on 4 cores of Lilliput 69 Gflops on 8 cores of Triton (double)

Geometry	16 × 16	8 × 8	4 × 4
Uncoalesced	9.2	8.9	8.2
Coalesced	125 (57)	53 (41)	12 (15)

Occupancy Calculator

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

Determining occupancy

- Recall the definition for occupancy # active warps ÷ max # warps supported by vector unit
- Maximizing the occupancy doesn't always maximize performance
- NVIDIA provides an occupancy calculator
- Determine resource usage from nvcc nvcc --ptxas-options=-v Used 10 registers, 2092+16 bytes smem

Occupancy calculation with 16 x 16 threads

Occupancy =
$$\frac{\text{\# active warps per SM}}{\text{Maximum possible # active warps}}$$

CUDA GPU Occupancy Calculator

Just follow steps 1, 2, and 3 below! (or click here for help)

1.) Select Compute Capability (click):

1.3

2.) Enter your resource usage:
Threads Per Block
Registers Per Thread
Shared Memory Per Block (bytes)

(Don't edit anything below this line)

3.) GPU Occupancy Data is displayed here and in the graphs:
Active Threads per Multiprocessor
Active Warps per Multiprocessor
Active Thread Blocks per Multiprocessor

Physical Limits for GPU:	1.3
Threads / Warp	32
Warps / Multiprocessor	32
Threads / Multiprocessor	1024
Thread Blocks / Multiprocessor	8
Total # of 32-bit registers / Multiprocessor	16384
Register allocation unit size	512
Shared Memory / Multiprocessor (bytes)	16384
Warp allocation granularity (for register allocation)	2
Allocation Per Thread Block	
Warps	8
Registers	2560
Shared Memory	2560
These data are used in computing the occupancy data in b	olue
Maximum Thread Blocks Per Multiprocessor	Blocks
Limited by Max Warps / Multiprocessor	4
Limited by Registers / Multiprocessor	6
Limited by Shared Memory / Multiprocessor	6
Thread Block Limit Per Multiprocessor highlighted	RED

Full occupancy

©2012 Scott B. Baden / CSE 260/ Winter 2012

8 x 8 thread blocks

2.) Enter your resource usage:	
Threads Per Block	64
Registers Per Thread	10
Shared Memory Per Block (bytes)	2092

Maximum Thread Blocks Per Multiprocessor	Blocks
Limited by Max Warps / Multiprocessor	8
Limited by Registers / Multiprocessor	16
Limited by Shared Memory / Multiprocessor	6

Thread Block Limit Per Multiprocessor highlighted RED

