

Research

Hands-on Tutorial

Supported by Microsoft Research

Program overview

- The CADRE project (Val Pentchev)
- Hands on intro to CADRE (Mat Hutchinson)
- Interactive demo with packages and notebooks (Filipi Silva)
- CADRE fellow presentation (Yi Bu)
- Demo for scalability and Reproducibility (Xiaoran Yan)
- Q&A and conclusion

Microsoft Academic Graph

https://academic.microsoft.com/home

Research more, search less

Try a topic, author, journal, etc. or any combination of these

Publications

210,365,701

Coming soon

Authors

254,317,172

Learn more

Proceedings of the 24th

International Conference on World Wide Web 2015.

229,763

Fields of Study

9

Conferences

4,341

Learn more

Journals

48,659

Learn more

25,439

Learn more

Research

The CADRE project

Val Pentchev

The CADRE team

CADRE Leadership

Partners

University of Iowa Libraries

University of Michigan Libraries

Michigan State University Libraries

INDIANA UNIVERSITY

NETWORK SCIENCE INSTITUTE

University of Minnesota Libraries

Ohio State University Libraries

Penn State University Libraries

Purdue University Libraries

Rutgers University Libraries

Health Partners

Pervasive Technology Institute

Midwest Big Data Hub

South Big Data Hub

West Big Data Hub

Microsoft Research

Web of Science Group

Topic 1

Content

Topic 2

Content

Content

Research

Hands on intro to CADRE

Mat Hutchinson

Demo 1

https://github.com/iuni-cadre/ISSI-tutorial

Questions?

Research

Interactive demo

Filipi Silva

Demo 2

https://github.com/iuni-cadre/ISSI-tutorial

Demo 3

https://github.com/iuni-cadre/ISSI-tutorial

Questions?

Research

CADRE Fellows

Xiaoran Yan

CADRE related events

- 2019 CADRE meeting
- CADRE Fellowship open
- 1st Fellows announced
- ISSI workshop & tutorial
- 2020 CADRE meeting
- BTAA Library Conference 2020
- 2020 CADRE hack-a-thon

CADRE Fellowship program

- Gain access to the big bibliometric data sets
- Receive data and technical support for your project
- Join the CADRE community on Slack channels,
 GitHub repositories and other platforms
- Have early access to free cloud computing resources
- Receive travel scholarships

Utilizing Data Citation for Aggregating, Contextualizing, and Engaging with Research Data in STEM Education Research

Researchers: Michael Witt, Loran Carleton Parker, Ann Bessenbacher Affiliation: Purdue University

MCAP: Mapping Collaborations and Partnerships in SDG Research

Researchers: Jane Payumo, Devin Higgins, Scout Calvert, Guangming He Affiliation: Michigan State University

The global network of air links and scientific collaboration – a quasi-experimental analysis

Researchers: Katy Börner, Adam Ploszaj, Lisel Record, Bruce Herr II Affiliation: Indiana University Bloomington and University of Warsaw

Measuring and Modeling the Dynamics of Science Using the CADRE Platform

Researchers: Russell Funk, Michael Park, Thomas Gebhart, Britta Glennon, Julia Lane, Raviv Murciano-Goroff, Matthew Ross, Jina Lee, Erin Leahey

Affiliation: University of Minnesota, University of Pennsylvania, New York University, Boston University, University of Arizona

Comparative analysis of legacy and emerging journals in mathematical biology

Researchers: Marisa Conte, Samuel Hansen, Scott Martin, Santiago Schnell

Affiliation: University of Michigan and University of Michigan Medical School

Systematic over-time study of the similarities and differences in research across mathematics and the sciences

Researcher: Samuel Hansen

Affiliation: University of Michigan

A user story from CADRE fellows

Understanding citation impact of scientific publications through ego-centered citation networks

Researchers: Yi Bu, Chao Min, Ying Ding Affiliation: Indiana University Bloomington and Nanjing University

Microsoft[®] Research

Exploring ego-centered citation networks: A technical introduction

Yi Bu¹, Chao Min², and Ying Ding¹

1: School of Informatics, Computing, and Engineering, Indiana University, U.S.A.
2: School of Information Management, Nanjing University, China

- Citation impact as a type of impact
 - ✓ Citation impact among all types of impact
 - ✓ Citation impact of scientific publications
- Benefits from understanding citation impact
 - ✓ Measuring citation impact offers a useful way of examining the scientific impact of a publication.
 - ✓ Measuring citation impact can also assist in understanding knowledge diffusion and the use of information.

- Previous ways of understanding citation impact of scientific publications:
 - ✓ Count-based strategies: raw citation count, normalized citation measures...
 - ✓ Network-based strategies: PageRank, EigenFactor...

- Local details are missing!
 - √ "Deep" or "wide" impact?

- Local details are missing!
 - ✓ How does an article impact other research, and what are the patterns? The direct citations between citing publications (DCCPs) offer a good way to mine how a publication impacts other research.

	citing publication							
		SSH	BHS	PSE	LES	MCS	subtotal	
Cited publication	SSH	11138	224	16	5	37	11420	
	BHS	440	1254	2	11	1	1708	
	PSE	137	1	19	3	18	178	
	LES	57	13	3	11	0	84	
	MCS	194	0	17	0	26	237	
	subtotal	11966	1492	57	30	82	13627	

year SSH BHS PSE LES MC 2006 13 0 0 0 0 2007 111 0 0 0 0 2008 455 0 2 2 2 2009 753 9 3 0 0	
2007 111 0 0 0 2008 455 0 2 2 4	
2008 455 0 2 2 4	
2000 752 0 2 0	
2009 733 9 3 0 0	
2010 1155 19 0 1 0	
2011 1310 80 2 1 1	2
2012 1092 39 3 1 9	
2013 1440 187 19 3 4	
2014 1110 449 30 2 3	
2015 1161 361 12 12 1:	,
2016 1491 290 44 57 60)
2017 1329 274 63 5 66	,

Ego-centered citation networks as a tool to understand citation impact

Preliminary research questions

- Do DCCPs occur frequently?
- How does DCCPs different in papers with different citation impacts and in different years?

Preliminary results: The universality of DCCPs

Preliminary results (cont.)

Technical details: Extracting citing relationships from the raw WoS tables

SQL extraction as a .txt file:

```
import psycopg2
conn = psycopg2.connect(database = 'core_data', user = 'buyi', password =
cur = conn.cursor()
cur.execute("SELECT paper_id, paper_reference_id FROM mag_core.paper_references;")
outFile = open("mag_citing.txt", "w+")
lines = ['citing id=====cited id']
for row in cur:
if str(row[0]) in paper_id_set and str(row[1]) in paper_id_set:
lines.append('{:}======{:}'.format(str(row[0]), str(row[1])))
if len(lines) % 1000000 == 0:
outFile.write('\n'.join(lines) + '\n')
lines = []
outFile.write('\n'.join(lines) + '\n')
cur.close()
```

- .txt file to a Python dictionary:
 - √ If paper in paper_citing.keys()

Difficulty 1: How to extract DCCPs?

Difficulty 1: How to extract DCCPs? (cont.)

- This task is computationally expensive:
 - ✓ In MAG, we have ~0.1 billion papers. The below Python script will perhaps take forever...

```
indirect_citation = defaultdict(list)
for paper in paper_year.keys(): # for papers that have pub_year information
  for citing_paper_1 in paper_citing[paper]:
    for citing_paper_2 in paper_citing[paper]:
    if citing_paper_1 in paper_citing[citing_paper_2]:
        temp = []
        temp.append(citing_paper_1)
        temp.append(citing_paper_2)
        indirect_citation[paper].append(temp)
```

Difficulty 2: Self-citations in ego-centered citation networks?

- If two papers (A and B) share at least one co-author and B cites A, such citation is called a self-citation (first-order self-citation).
- How about these circumstances, when B cites A?
 - ✓ A and B don't share co-authors, but A and C do, and B and C do. [second-order self-citations]
 - ✓ A and B don't share co-authors, but A and C do, B and D do, and C and D do. [third-order self-citations]
 - ✓ This indicates how researchers' social distance impacts on their self-citation patterns.
- How to technically achieve these?

Difficulty 2: Self-citations in ego-centered citation networks?

- Completing this task is also computationally expensive:
 - ✓ Deriving n-order self-citations need to know the shortest paths and their lengths in the co-authorship and citation networks
 - ✓ Such networks are quite huge (hundreds of millions of nodes in the citation network, and millions of nodes in the co-authorship network)

Questions?

Presenter: Yi Bu, Indiana University

Email: buyi@iu.edu

Website: https://buyi08.wixsite.com/yi-bu

Research

Scalability & Reproducibility

Xiaoran Yan

Difficulty 1: How to extract DCCPs?

Difficulty 1: How to extract DCCPs? (cont.)

- This task is computationally expensive:
 - ✓ In MAG, we have ~0.1 billion papers. The below Python script will perhaps take forever...

```
indirect_citation = defaultdict(list)
for paper in paper_year.keys(): # for papers that have pub_year information
  for citing_paper_1 in paper_citing[paper]:
    for citing_paper_2 in paper_citing[paper]:
    if citing_paper_1 in paper_citing[citing_paper_2]:
        temp = []
        temp.append(citing_paper_1)
        temp.append(citing_paper_2)
        indirect_citation[paper].append(temp)
```

- An easy to use graphical interface of a query builder with preview functionality
- A unified engine with optimized combinations of solutions based on relational/graph/document databases
- For users who want intuitive and quick access of data, no programing skills required
- In development: APIs for power users

Access over 220 million scientific publications

Effortlessly query data and analyze results

Reproduce research & leverage tools

Demo 4

https://github.com/iuni-cadre/ISSI-tutorial

Questions?

Presenter: Xiaoran Yan, Indiana University

Email: yan30@iu.edu

Access over 220 million scientific publications

Effortlessly query data and analyze results

Reproduce research & leverage tools

The reproducibility "Crisis"

Spectrum of Reproducibility

Computational

Empirical

Stodden, Victoria. "Resolving Irreproducibility in Empirical and Computational Research" (2013)

Current solutions

Big data pipelines in the industry

Empowered by the open-source ecosystem

The old way: Applications on host

Heavyweight, non-portable Relies on OS package manager

The new way: Deploy containers

Small and fast, portable Uses OS-level virtualization

Reproducible notebooks on Kubernetes

Turn a Git repo into a collection of interactive notebooks

Have a repository full of Jupyter notebooks? With Binder, open those notebooks in an executable environment, making your code immediately reproducible by anyone, anywhere.

Demo 5

https://github.com/iuni-cadre/ISSI-tutorial

The CADRE ecosystem

3 rd party	Plugins and extensionsComputing resourcesOther data sets
RAC	Package marketplaceDerivatives dataPipeline builder
CADRE core	Centralized databasesData APICoding environment

Reproducible notebooks on Kubernetes

Turn a Git repo into a collection of interactive notebooks

Have a repository full of Jupyter notebooks? With Binder, open those notebooks in an executable environment, making your code immediately reproducible by anyone, anywhere.

SHARED BIGDATA-GATEWAY FOR RESEARCH LIBRARIES (SBD-GATEWAY)

Microsoft Research

Q&A

The CADRE TEAM

CADRE related events

- 2019 CADRE meeting
- CADRE Fellowship open
- 1st Fellows announced
- ISSI workshop & tutorial
- 2020 CADRE meeting
- BTAA Library Conference 2020
- 2020 CADRE hackathon

Contact Us

