

Introduction of Machine Learning

Machine Learning ≈ Looking for Function

Speech Recognition

$$f($$
)= "How are you"

Image Recognition

$$f($$
 $)=$ "Cat"

Playing Go

$$f($$
 $)=$ "5-5" (next move)

Different types of Functions

Regression: The function outputs a scalar.

<u>Classification</u>: Given options (classes), the function outputs the correct one.

Different types of Functions

<u>Classification</u>: Given options (classes), the function outputs the correct one.

How to find a function?
A Case Study

The function we want to find ...

no. of views on 2/26

一 節選器						
影片 流量來源 地理位置 觀眾年齡 觀眾性別	日期	#1	陽狀態	訂閱來源	播放演	單
	= 97	80人敵		加入数	w	(看次)
2021年1月26日	54	4.9%	69	5.5%	6,788	5.2
2021年1月27日	60	5.4%	71	5.6%	6.242	4.7
2021年1月28日	36	3.2%	63	5.0%	5,868	4.5
2021年1月29日	27	2.4%	40	3.2%	4,413	3.4
2021年1月30日	40	3.6%	40	3.2%	4.372	3.3
2021年1月31日	47	4.2%	51	4.0%	5,135	3.9
2021年2月1日	61	5.5%	29	2.3%	5,527	4.2
2021年2月2日	49	4.4%	43	3.4%	5,911	4.5
2021年2月3日	26	2.3%	44	3.5%	5,248	4.0
2021年2月4日	43	3.9%	33	2.6%	4,771	3.6
2021年2月5日	45	4.0%	49	3.9%	3,850	2.9
2021年2月6日	29	2.6%	42	3.3%	3,828	2.9
2021年2月7日	26	2.3%	46	3.6%	4,559	3.5
2021年2月8日	38	3.4%	26	2.1%	4,772	3.6
2021年2月9日	29	2.6%	25	2.0%	3.847	2.9

1. Function with Unknown Parameters

Model $y = b + wx_1$ based on domain knowledge

feature

y: no. of views on 2/26, x_1 : no. of views on 2/25 w and b are unknown parameters (learned from data) weight bias

2. Define Loss from Training Data > Loss: how good a set of

4.9k

- Loss is a function of parameters L(b, w)
- values is.

$$L(0.5k, 1)$$
 $y = b + wx_1 \longrightarrow y = 0.5k + 1x_1$ How good it is?

Data from 2017/01/01 – 2020/12/31

2. Define Loss from Training Data > Loss: how good a set of

- Loss is a function of parameters L(b, w)
- values is.

$$L(0.5k, 1)$$
 $y = b + wx_1 \longrightarrow y = 0.5k + 1x_1$ How good it is?

Data from 2017/01/01 – 2020/12/31

2. Define Loss from Training Data > Loss: how good a set of

- Loss is a function of parameters L(b, w)
- values is.

Loss:
$$L = \frac{1}{N} \sum_{n} e_n$$

$$e = |y - \hat{y}|$$
 L is mean absolute error (MAE)

$$e = (y - \hat{y})^2$$
 L is mean square error (MSE)

If y and \hat{y} are both probability distributions \longrightarrow Cross-entropy

2. Define Loss from Training Data > Loss: how good a set of Model $y = b + wx_1$

Large L

- > Loss is a function of parameters L(b, w)
 - values is.

Gradient Descent

Gradient Descent

 w^1

 \triangleright (Randomly) Pick an initial value w^0

hyperparameters

W

Gradient Descent

$$w^*, b^* = arg \min_{w,b} L$$

- \triangleright (Randomly) Pick initial values w^0 , b^0
- Compute

$$\frac{\partial L}{\partial w}|_{w=w^{0},b=b^{0}} \qquad w^{1} \leftarrow w^{0} - \eta \frac{\partial L}{\partial w}|_{w=w^{0},b=b^{0}}$$

$$\frac{\partial L}{\partial b}|_{w=w^{0},b=b^{0}} \qquad b^{1} \leftarrow b^{0} - \eta \frac{\partial L}{\partial b}|_{w=w^{0},b=b^{0}}$$

Can be done in one line in most deep learning frameworks

 \triangleright Update w and b interatively

Model
$$y = b + wx_1$$

 $w^*, b^* = arg \min_{w,b} L$

Machine Learning is so simple

 $y = b + wx_1$

 $w^* = 0.97, b^* = 0.1k$ $L(w^*, b^*) = 0.48k$

Step 1: function with unknown

Step 2: define loss from training data

Step 3: optimization

$$y = 0.1k + 0.97x_1$$

Red: real no. of views

blue: estimated no. of views

$$y = b + wx_1$$

$$L = 0.48k$$

$$L' = 0.58k$$

$$y = b + \sum_{j=1}^{r} w_j x_j$$

$$L = 0.38k$$

$$L' = 0.49k$$

b	w_1^*	w_2^*	w_3^*	w_4^*	w_5^*	w_6^*	w_7^*
0.05k	0.79	-0.31	0.12	-0.01	-0.10	0.30	0.18

$$y = b + \sum_{j=1}^{28} w_j x_j$$

$$L = 0.33k \qquad \qquad L' = 0.46k$$

$$y = b + \sum_{i=1}^{30} w_i x_i$$

$$2017 - 2020$$
 $L = 0.32k$

$$2021$$

$$L' = 0.46k$$

<u>Linear models</u>

Linear models are too simple ... we need more sophisticated modes.

Linear models have severe limitation. *Model Bias*We need a more flexible model!

All Piecewise Linear Curves

= constant + sum of a set of

More pieces require more

Beyond Piecewise Linear?

To have good approximation, we need sufficient pieces.

red curve = constant + sum of a set of

How to represent this function?

Hard Sigmoid

 x_1

Sigmoid Function

$$y = c \frac{1}{1 + e^{-(b + wx_1)}}$$

 $= c sigmoid(b + wx_1)$

 x_1

New Model: More Features

$$y = b + wx_1$$

$$y = b + \sum_{i} c_{i} sigmoid(b_{i} + w_{i}x_{1})$$

$$y = b + \sum_{j} w_{j} x_{j}$$

$$y = b + \sum_{i} c_{i} sigmoid \left(\underbrace{b_{i} + \sum_{j} w_{ij} x_{i}}_{j} \right)$$

$$y = b + \sum_{i} c_{i} \ sigmoid \left(b_{i} + \sum_{j} w_{ij} x_{j}\right) \ \ i: 1,2,3$$
 no. of features $i: 1,2,3$

 $r_1 = b_1 + w_{11}x_1 + w_{12}x_2 + w_{13}x_3 + \cdots + w_{1n}x_{1n} + w_{1n}x_{1n}$

 w_{ij} : weight for x_j for i-th sigmoid

$$r_2 = b_2 + w_{21}x_1 + w_{22}x_2 + w_{23}x_3$$

$$r_3 = b_3 + w_{31}x_1 + w_{32}x_2 + w_{33}x_3$$

$$y = b + \sum_{i} c_{i} \operatorname{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right) \quad i: 1, 2, 3$$
$$j: 1, 2, 3$$

$$r_1 = b_1 + w_{11}x_1 + w_{12}x_2 + w_{13}x_3$$

$$r_2 = b_2 + w_{21}x_1 + w_{22}x_2 + w_{23}x_3$$

$$r_3 = b_3 + w_{31}x_1 + w_{32}x_2 + w_{33}x_3$$

$$\begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} + \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$|r| = |b| + |w|$$

$$y = b + \sum_{i} c_{i} sigmoid \left(b_{i} + \sum_{j} w_{ij} x_{j}\right) \quad i: 1,2,3$$
$$j: 1,2,3$$

$$|r| = |b| + |W| x$$

$$y = b + \sum_{i} c_{i} \operatorname{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right)$$
 i: 1,2,3 j: 1,2,3

$$a_{1} \leftarrow f_{1} \leftarrow r_{1} \leftarrow r_{1} \leftarrow r_{1}$$

$$a_{1} = sigmoid(r_{1}) = \frac{1}{1 + e^{-r_{1}}}$$

$$a_{2} \leftarrow f_{1} \leftarrow r_{2} \leftarrow r_{2}$$

$$a_{2} \leftarrow f_{2} \leftarrow r_{3} \leftarrow r_{3} \leftarrow r_{3}$$

$$a_{1} = \sigma(r_{1}) \quad a_{3} \leftarrow f_{2} \leftarrow r_{3} \leftarrow r$$

Function with unknown parameters

$$y = b + c^T \sigma(b + W x)$$

x feature

Unknown parameters

W b

 c^T b

Back to ML Framework

Loss

- \triangleright Loss is a function of parameters $L(\theta)$
- > Loss means how good a set of values is.

Loss:
$$L = \frac{1}{N} \sum_{n} e_n$$

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} L$$

$$m{ heta} = egin{bmatrix} heta_1 \\ heta_2 \\ heta_3 \\ heta_3 \end{bmatrix}$$

(Randomly) Pick initial values $oldsymbol{ heta}^0$

$$egin{aligned} oldsymbol{g} & egin{aligned} rac{\partial L}{\partial heta_1} |_{oldsymbol{ heta} = oldsymbol{ heta}^0} \ rac{\partial L}{\partial heta_2} |_{oldsymbol{ heta} = oldsymbol{ heta}^0} \ dots \end{aligned}$$

$$\mathbf{g} = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} |_{\theta = \theta^0} \\ \frac{\partial L}{\partial \theta_2} |_{\theta = \theta^0} \end{bmatrix} \quad \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \\ \vdots \end{bmatrix} \leftarrow \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \\ \vdots \end{bmatrix} - \begin{bmatrix} \frac{\partial L}{\partial \theta_1} |_{\theta = \theta^0} \\ \frac{\partial L}{\partial \theta_2} |_{\theta = \theta^0} \end{bmatrix}$$
 gradient

$$\mathbf{g} = \nabla L(\mathbf{\theta}^0)$$
 $\mathbf{\theta}^1 \leftarrow \mathbf{\theta}^0 - \mathbf{\eta} \mathbf{g}$

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} L$$

- \succ (Randomly) Pick initial values $oldsymbol{ heta}^0$
- ightharpoonup Compute gradient $g = \nabla L(\theta^0)$

$$\theta^1 \leftarrow \theta^0 - \eta g$$

ightharpoonup Compute gradient $g = \nabla L(\theta^1)$

$$\theta^2 \leftarrow \theta^1 - \eta g$$

ightharpoonup Compute gradient $g = \nabla L(\theta^2)$

$$\theta^3 \leftarrow \theta^2 - \eta g$$

$$m{ heta}^* = arg \min_{m{\theta}} L$$

> (Randomly) Pick initial values $m{ heta}^0$

B batch

Compute gradient $m{g} = \nabla L^1(m{\theta}^0)$

L batch

update $m{\theta}^1 \leftarrow m{\theta}^0 - \eta m{g}$

Compute gradient $m{g} = \nabla L^2(m{\theta}^1)$

update $m{\theta}^2 \leftarrow m{\theta}^1 - \eta m{g}$

batch

Compute gradient $m{g} = \nabla L^3(m{\theta}^2)$

update $m{\theta}^3 \leftarrow m{\theta}^2 - \eta m{g}$

batch

1 epoch = see all the batches once

Example 1

- \geq 10,000 examples (N = 10,000)
- \triangleright Batch size is 10 (B = 10)

How many update in 1 epoch?

1,000 updates

Example 2

- > 1,000 examples (N = 1,000)
- ➤ Batch size is 100 (B = 100)

How many update in 1 epoch?

10 updates

More variety of models ...

Sigmoid → ReLU

How to represent this function?

Rectified Linear Unit (ReLU)

 $c \max(0, b + wx_1)$

$$c' \max(0, b' + w'x_1)$$

 x_1

Sigmoid → ReLU

$$y = b + \sum_{i} c_{i} \underline{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right)$$

Activation function

$$y = b + \sum_{i} c_{i} \max \left(0, b_{i} + \sum_{j} w_{ij} x_{j}\right)$$

Which one is better?

Experimental Results

$$y = b + \sum_{i} c_{i} \max \left(0, b_{i} + \sum_{j} w_{ij} x_{j}\right)$$

	linear	10 ReLU	100 ReLU	1000 ReLU
2017 – 2020	0.32k	0.32k	0.28k	0.27k
2021	0.46k	0.45k	0.43k	0.43k

Even more variety of models ...

Experimental Results

- Loss for multiple hidden layers
 - 100 ReLU for each layer
 - input features are the no. of views in the past 56 days

	1 layer	2 layer	3 layer	4 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k
2021	0.43k	0.39k	0.38k	0.44k

It is not *fancy* enough.

Let's give it a *fancy* name!

Neural Network This mimics human brains ... (???)

Many layers means **Deep** Deep Learning

Deep = Many hidden layers

101

Why don't we go deeper?

- Loss for multiple hidden layers
 - 100 ReLU for each layer
 - input features are the no. of views in the past 56 days

	1 layer	2 layer	3 layer
2017 – 2020	0.28k	0.18k	0.14k
2021	0.43k	0.39k	0.38k

Why don't we go deeper?

- Loss for multiple hidden layers
 - 100 ReLU for each layer
 - input features are the no. of views in the past 56 days

	1 layer	2 layer	3 layer	4 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k
2021	0.43k	0.39k	0.38k	0.44k

Better on training data, worse on unseen data

