Nanyang Technological University

SPMS/DIVISION OF MATHEMATICAL SCIENCES

2015/16 Semester 1

MH1810 Mathematics I

Tutorial 11

Topics: Reduction Formulae, Improper Integrals, Areas, Volumes.

- 1. Let $I_n = \int \cos^n x \, dx$ for $n = 0, 1, 2, 3, \dots$
 - (a) Prove the reduction formula

$$I_n = \frac{1}{n}\cos^{n-1}x\sin x + \frac{n-1}{n}I_{n-2} \text{ for } n \ge 2.$$

- (b) Use part(a) to evaluate
 - (i) $\int \cos^3 x \ dx.$
 - (ii) $\int_0^{\pi/2} \cos^4 x \ dx$.
- 2. Evaluate each of the following improper integrals.

(a)
$$\int_0^1 x \ln x \ dx$$

(b)
$$\int_0^1 \frac{4r}{\sqrt{1-r^4}} dr$$

(c)
$$\int_{1}^{\infty} \frac{1}{x^3} dx$$

(d)
$$\int_{5}^{\infty} \frac{1}{\sqrt{x-1}} \ dx$$

(e)
$$\int_{2}^{\infty} \frac{1}{x(\ln x)^2} dx$$

- 3. Sketch each of the region enclosed by the given lines and curves. Find the area of the enclosed region.
 - (a) $y = 2x x^2$ and y = -3
 - (b) $y = x^2 2x$ and y = x
 - (c) $x = y^2$ and x = y + 2
 - (d) $x = y^3 y^2$ and x = 2y
- 4. (a) Find the area of the region bounded by the parabola $y = x^2$, the tangent line to this parabola at (1,1), and the x-axis.
 - (b) Sketch the region bounded by the given curves and find the area of the region:

$$y = \sin x, y = e^x, x = 0, x = \pi/2$$

5. The base of a solid S is circular disk with radius r. Parallel cross-sections perpendicular to the base are squares. Show that the volume of the solid S is $\frac{16}{3}r^3$.

(Note that the equation of a circle with radius r and centered at (0,0) is $x^2 + y^2 = r^2$.)

6.	(a)	Find the volume of the solid obtained by revolving the region bounded by the curves $x = y - y^2$
		and $x = 0$ about the <i>y</i> -axis.

- (b) Find the volume of the solid generated by revolving the regions bounded by the curve $y = x^3$ and lines y = 0 and x = 2 about the x-axis.
- (c) Find the volume of the solid obtained by revolving the region bounded by the curves y = x and $y = \sqrt{x}$ about the line x = 2.
- 7. Find the volume of the solid generated by revolving the regions bounded by the lines and curves about the y-axis.
 - (a) $x = y^{3/2}, x = 0, y = 2$
 - (b) $x = \sqrt{2\sin 2y}, \ 0 \le y \le \pi/2, \ x = 0$
- 8. Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves x + y = 3 and $x = 4 - (y - 1)^2$ about the x-axis.
- 9. Consider the region bounded by the graphs of $y = \tan^{-1} x$, y = 0 and x = 1.
 - (a) Find the area of the region.
 - (b) Find the volume of the solid formed by revolving this region about the y-axis.

Answers

1. (b) (i) $\frac{1}{3}\cos^2 x \sin x + \frac{2}{3}\sin x + C$. (ii) $\frac{3\pi}{16}$

- (a) $-\frac{1}{4}$.
- (b) π .
- (c) $\frac{1}{2}$.
- (d) diverges
- (e) $\frac{1}{\ln 2}$.

- 2. Sketch each of the region enclosed by the given lines and curves. Find the area of the enclosed region.
 - (a) $\frac{32}{3}$
 - (b) $\frac{9}{2}$
 - (c) $\frac{9}{2}$
 - (d) $\frac{37}{12}$

3. (a) $\frac{1}{12}$. (b) $e^{\frac{\pi}{2}} - 2$.

......

- 6. (a) $\frac{\pi}{30}$
 - (b) $\frac{128\pi}{7}$

	(c) $\frac{8}{15}\pi$
7.	(a) 4π
	(b) 2π
8.	$\frac{27\pi}{2}$
9.	(a) $\frac{\pi}{4} - \frac{1}{2} \ln 2$ (b) $\pi(\frac{\pi}{2} - 1)$.