CMSC 603 High-Performance Distributed Systems

Introduction to CUDA

Dr. Alberto Cano Associate Professor Department of Computer Science acano@vcu.edu The CPU vs the GPU: purposes

CPU

- General-purpose computation
- Small number of highly specialized complex cores
- Fast execution of a single stream of instructions (minimize latency)
- Pipelining, caching, branch prediction, our-of-order execution, interruptions
- Main DDR4 memory ~64 GB/s

GPU

- Originally for graphics computing
- Large number of simple cores for parallel SIMD computation
- Large FP bandwidth for massive parallel number of operations
- No fancy hardware tricks except for asynchronous data / execution
- GPU GDDR6X memory > 512 GB/s
- GPU HBM3 memory > 3 TB/s

The CPU vs the GPU: architectures

CPU (AMD Zen 3)

GPU (NVIDIA A100)

4,8,16 cores

4.15 billion transistors

967 GFlops FP32

L2 Cache

DRAM

6912 cores

432 tensor cores

54 billion transistors

19.5 TFlops FP32 (x2 FP16)

The GPU architecture (NVIDIA A100)

- Streaming Multiprocessors (SMs)
- FP16/FP32 and INT8/INT4 mixed-precision

	Peak Performance		
Transistor Count	54 billion		
Die Size	826 mm²		
FP64 CUDA Cores	3,456		
FP32 CUDA Cores	6,912		
Tensor Cores	432		
Streaming Multiprocessors	108		
FP64	9.7 teraFLOPS		
FP64 Tensor Core	19.5 teraFLOPS		
FP32	19.5 teraFLOPS		
TF32 Tensor Core	156 teraFLOPS 312 teraFLOPS*		
BFLOAT16 Tensor Core	312 teraFLOPS 624 teraFLOPS*		
FP16 Tensor Core	312 teraFLOPS 624 teraFLOPS*		
INT8 Tensor Core	624 TOPS 1,248 TOPS*		
INT4 Tensor Core	1,248 TOPS 2,496 TOPS*		
GPU Memory	40 GB		
GPU Memory Bandwidth	1.6 TB/s		
	NVLink 600 GB/s		
Interconnect	PCIe Gen4 64 GB/s		
Multi-Instance GPUs	Various Instance sizes with up to 7MIGs @5G		
Form Factor	4/8 SXM GPUs in HGX A100		
Max Power	400W (SXM)		

The GPU evolution, performance and bandwidth

Exploiting the GPU

- CUDA C/C++
- CUDA Fortran
- OpenCL
- PyCUDA
- jCUDA
- Matlab
- TensorFlow
- OpenCV

Many Different Approaches

- Application level integration
- High level, implicit parallel languages
- Abstraction layers & API wrappers
- High level, explicit language integration
- Low level device APIs

Introduction to CUDA

Some interesting libraries for high-performance computing

Thrust: parallel algorithms and data structures,
 e.g. transformation, reductions, sorting

 cuDNN: CUDA Deep Neural Network is a GPU-accelerated library of primitives for neural networks

• nvGRAPH: Graph Analytics Library for GPUs

• cuRAND: Random Number Generation library

• cuBLAS: Basic Linear Algebra Subroutines

Terminology

- Host: the CPU and its memory space
- **Device**: the GPU and its memory space
- Code, computation, and memory spaces managed differently
- Parallel code in a GPU is implemented in a kernel function

Thread hierarchy in a GPU

- Thread: executes a sequence of instructions implemented in a kernel function
- **Block**: group of threads defined by the programmer
- Grid: group of blocks defined by the programmer

Please read the <u>NVIDIA CUDA programming guide</u>

- 2^74

CUDA multi-dimensional thread hierarchy

- Programmer defines 1/2/3-dimensional blocks of threads (max 1024 threads/block)
- Programmer defines 1/2/3-dimensional grid of blocks (max [2^32, 64k, 64k] blocks)

- Warp: group of 32 threads scheduled/executed in a multi-processor
- Multi-processor: group of physical CUDA cores executing the kernel function
- CUDA threads are lightweight, no creation overhead, context switching is essentially free and allows to easily hide data latencies

Memory hierarchy

• Thread local memory

Each thread has its private local memory

Block shared memory

Each thread block has its shared memory visible to all threads of the block and with the same lifetime as the active block

Device global memory

All threads have access to the same global memory. Lifetime of the program

Host global memory

Data on main memory (CPU side)

Introduction to CUDA

Heterogeneous programming

- Programs interleave code executed on the host (CPU) and GPU (device)
- GPU code is written in kernel functions
- Typically, the sequence of a program is:
 - 1. Allocate CPU memory inputs/outputs
 - 2. Allocate GPU memory inputs/outputs
 - 3. Copy inputs from host to device
 - 4. Execute GPU code
 - 5. Copy outputs from device to host

Multiple memory spaces vs unified memory

- CPU -> GPU -> CPU data transfers on isolated memory spaces
- h_variableName and d_variableName to reference memory spaces
- Single virtual address space for unified memory

No UVA: Multiple Memory Spaces

UVA: Single Address Space

Structure of a CUDA program

- NVIDIA compiler nvcc (can be used for programs with no GPU code)
 - \$ nvcc -o myprogram mycode.cu
- Threads are grouped into multi-dimensional blocks
- Blocks are grouped into a multi-dimensional grid

Thread indexing

- Thread space of up to 3D grid of 3D blocks
- Built-in variables within the kernel function

Grid size [x,y,z]	gridDim.x	gridDim.y	gridDim.z
Block size [x,y,z]	blockDim.x	blockDim.y	blockDim.z
Block ID [x,y,z]	blockIdx.x	blockIdx.y	blockIdx.z
Thread ID [x,y,z]	threadIdx.x	threadIdx.y	threadIdx.z

Indexing thread ID in a 1D grid of 1D blocks:

int tid = blockIdx.x * blockDim.x + threadIdx.x;

Memory allocation and transfer

```
cudaMallocHost(&h_ptr, count * sizeof(datatype));
cudaMalloc(&d_ptr, count * sizeof(datatype));

cudaMemcpy(dst_ptr, src_ptr, count * sizeof(datatype), cudaMemcpyKind);

cudaFreeHost(h_ptr);
cudaFree(d_ptr);
```

CUDA memory copy types (cudaMemcpyKind)

```
cudaMemcpyHostToDevice Host -> Device (+ HostToHost alternative)
cudaMemcpyDeviceToHost Device -> Host (+ DeviceToDevice alternative)
```

Kernel setup

```
dim3 gridDim(16,16,1); // 2D grid with 16x16x1 = 256 blocks [x,y,z] dim3 blockDim(16,8,4); // 3D block with 16x8x4 = 512 threads [x,y,z] MyKernel <<< gridDim, blockDim >>> (d_data ...);
```


VectorAdd example

```
global void vectorAdd(float *A, float *B, float *C) {
   int tid = blockDim.x * blockIdx.x + threadIdx.x;
   C[tid] = A[tid] + B[tid];
void main(void)
   float *h A = (float *)malloc(numElements * sizeof(float));
   cudaMalloc(&d A, numElements * sizeof(float));
   cudaMemcpy(d A, h A, numElements*sizeof(float), cudaMemcpyHostToDevice);
   vectorAdd<<<blooksPerGrid, threadsPerBlock>>>(d A, d B, d C);
   cudaMemcpy(h C, d C, numElements*sizeof(float), cudaMemcpyDeviceToHost);
```

- Careful! Let's see the full working code: see vectorAdd.cu
- Use *cuda-memcheck yourprogram* to find memory errors

CMSC 603 High-Performance Distributed Systems

Introduction to CUDA

Dr. Alberto Cano Associate Professor Department of Computer Science acano@vcu.edu