YEAR 11 SPECIALIST: CIRCLE GEOMETRY

8B Tangents & Secants

Theorem 5: Tangent is perpendicular to radius

A tangent to a circle is perpendicular to the radius drawn from the point of contact.

The angle between a tangent and the radius drawn at the point of contact is a right angle.

Theorem 5: Tangent is perpendicular to radius

A tangent to a circle is perpendicular to the radius drawn from the point of contact.

PQ

proof by contradiction

let T be the point of contact of tangent suppose 20TP is NOT a right angle let s be a point on PQ, not s, such that OSP is a right angle : Dost has a right angle at S thus OT > 05 as OT is the hypotenuse of DOST This implies s is inside the circle as ot is a radius Thus a line through Tes must e a recent But PR Na tangent; this is a contradiction .. LOTP is a right angle

Theorem 6: Two tangents from the same point

The two tangents drawn from an external point to a circle are the same length.

Theorem 6: Two tangents from the same point

The two tangents drawn from an external point to a circle are the same length.

The alternate segment theorem

In the diagram:

- The shaded segment is called the **alternate segment** in relation to $\angle STQ$.
- The unshaded segment is alternate to $\angle STP$.

Theorem 7: Alternate segment theorem

The angle between a tangent and a chord drawn from the point of contact is equal to any angle in the alternate segment.

Theorem 7: Alternate segment theorem

The angle between a tangent and a chord drawn from the point of contact is equal to any angle in the alternate segment.

Theorem 7: Alternate segment theorem

The angle between a tangent and a chord drawn from the point of contact is equal to any angle in the alternate segment.

Let
$$\angle STQ = X'$$
, $\angle RTS = y'$, $\angle TRS = z'$
RT is a diameter
 $\angle RST = 90^{\circ}$ (angle subtended by a diameter)
 $\therefore y + z = 90$
also, $\angle RTQ = 90^{\circ}$ (tangent \bot radius)
 $\therefore x + y = 90^{\circ}$
Thus $x = z$
But $\angle TxS$ is in the same segment as $\angle TRS$
 $\therefore \angle TxS = x^{\circ}$

Find the magnitudes of the angles x and y in the diagram.

Find the magnitudes of the angles *x* and *y* in the diagram.

Solution

Triangle *PST* is isosceles (Theorem 6, two tangents from the same point).

Therefore $\angle PST = \angle PTS$ and so y = 75.

The alternate segment theorem gives x = y = 75.

Find the values of x and y, where PT is tangent to the circle centre O.

Find the values of x and y, where PT is tangent to the circle centre O.

Solution

x = 30 as the angle at the circumference is half the angle subtended at the centre, and so y = 60 as $\angle OTP$ is a right angle.

The tangents to a circle at F and G meet at H. A chord FK is drawn parallel to HG. Prove that triangle FGK is isosceles.

The tangents to a circle at F and G meet at H. A chord FK is drawn parallel to HG. Prove that triangle FGK is isosceles.

Solution

Let $\angle XGK = y^{\circ}$.

Then $\angle GFK = y^{\circ}$ (alternate segment theorem) and $\angle GKF = y^{\circ}$ (alternate angles).

Therefore triangle FGK is isosceles with FG = KG.