Relatório Introdução a Inteligência Artificial

Misael S. Rezende¹

¹Departamento de Ciência da Computação – Universidade Federal de Minas Gerais (UFMG)

Av. Antônio Carlos, 6627 – Prédio do ICEx Pampulha – 31.270-901 Belo Horizonte – MG – Brazil

{misaelrezende}@dcc.ufmg.br

1. Introdução

O objetivo do trabalho é fazer uma análise comparativa de vários algoritmos de busca em espaço de estados. Para isso, é usado o jogo Pac-Man. O jogo contém vários mapas, sendo que cada um é representado por um conjunto de estados. Para encontrar a solução o agente tem que encontrar uma sequência de ações que o leve ao estado final. É importante considerar que é necessário evitar repetir estados já visitados, pois podem ocasionar o agente não encontrar uma solução para o problema, e ficar travado em algum local. Uma técnica utilizada para mitigar isso é guardar os estados explorados na memória, e antes de explorar um estado, testar se este já fora explorado.

A solução implementada é baseada nas soluções apresentadas no livro [Russell and Norvig 2021]. Também foi consultado o material disponível da disciplina [Chaimowicz b], [Chaimowicz a].

Os algoritmos de busca utilizados são divididos em duas partes: sem informação e com informação.

- Algoritmos de busca sem informação usam apenas a informação sobre os estados obtida na formulação do problema. Ou seja, não têm percepção sobre o quão próximo estão do objetivo. São utilizados os algoritmos Breadth-first search (BFS), Depth-first search (DFS) e Uniform-cost search (UCS).
- Já os algoritmos de busca com informação podem usar algumas percepções sobre a localização dos objetivos. Para isso, é utilizado uma função de avaliação heurística que ajuda a encontrar o melhor caminho para o objetivo. Os algoritmos usados são Greedy Search (GS) e A* (A-star).

2. Metodologia e Análise Experimental

O planejamento para comparação dos algoritmos é feito considerando algumas métricas disponibilizadas pelo próprio programa fornecido. Algumas delas são importantes, pois ajudam a demonstrar como os algoritmos se comportam ao explorar os diferentes mapas do jogo. As métricas a serem comparadas são: o número de nós de busca expandidos, custo do caminho encontrado, pontuação média e tempo gasto para encontrar uma solução.

O único mapa abordado neste relatório para comparação dos algoritmos é a *open-Maze*. Nesse mapa (assim como em todos testados para esse relatório), só há uma comida (food) disponível para o agente (pac-man), e não há agentes adversários (ghosts). Todos algoritmos implementados encontraram uma solução para as fases experimentadas.

O computador utilizado para fazer os experimentos foi um *Intel i5 2400*, usando o sistema operacional *Linux Ubuntu 20.04*. Foi observado poucas diferenças no tempo utilizado pelos algoritmos para encontrar uma solução. As maiores diferenças ficaram próximas a 30%.

As figuras 1 e 2 apresentam a fase *openMaze*. Essa fase (assim como a *contours-Maze*), apresenta maior liberdade (menos barreiras) para o algoritmo explorar caminhos. Como é possível observar na tabela 1, o algoritmo DFS obteve o menor número de estados explorados (nós expandidos) e maior custo. De acordo com observações empíricas, esse algoritmo obteve o menor desempenho em todos os outros mapas, tomando como base o custo. Isso se deve ao DFS explorar os estados mais profundos primeiro, sem antes verificar os estados vizinhos, como pode ser observado na figura 2. A parte em vermelho mais claro evidencia que o algoritmo explorou toda a parte superior do mapa, antes de prosseguir.

Já os outros algoritmos seguiram empatados em todas métricas, exceto no tempo, onde houve algumas pequenas diferenças. O empate pode ser explicado, em parte, pelas similaridades entre esses algoritmos. Embora, usem estratégias diferentes para a busca no espaço de estados, esses algoritmos podem ser implementados de maneira bem similar, com características próximas ao algoritmo Best-First-Search.

Figura 1. Algoritmo A* (*nullHeuristic*) explorando o mapa *openMaze*. As cores em vermelho mais claro indicam os estados explorados inicialmente.

3. Conclusão

Esse relatório apresenta uma análise comparativa de algoritmos de busca em espaço de estados. Foi implementado alguns algoritmos para resolver o problema no jogo pacman. Com isso, foi possível praticar os conceitos de Agentes de Solução de Problemas (Problem-Solving Agents) e testar diferentes soluções de problemas por busca.

Figura 2. Algoritmo DFS explorando o mapa *openMaze*. As cores em vermelho mais claro indicam os estados explorados inicialmente.

Table 1. Resultados da fase openMaze.

	DFS	BFS	UCS	GS	A *
Nós expandidos	576	682	682	682	682
Custo	298	54	54	54	54
Pontuação Média	212	456	456	456	456

Como não foi implementado uma heurística para resolver o problema em mapas com mais de um objetivo (comida) disponível, fica a dúvida se os resultados seriam os mesmos nessas fases.

References

Chaimowicz, L. Busca em espaço de estados.

Chaimowicz, L. Solução de problemas por busca.

Russell, S. and Norvig, P. (2021). *Artificial Intelligence: A Modern Approach, US Edition*. Pearson Education Limited, 4^a edition.