Attention and Transformers

Arjun Majumdar Georgia Tech

Lecture Outline

- Machine Translation with RNNs
- RNNs with Attention
- From Attention to Transformers
- What can Transformers do?

Sequence Modeling with RNNs

Machine Translation

we are eating bread

estamos comiendo pan

Machine Translation

estamos comiendo pan

RNN Encoder

RNN Decoder

we are eating bread

Encoder: $h_t = f_W(x_t, h_{t-1})$

Encoder: $h_t = f_W(x_t, h_{t-1})$

Encoder: $h_t = f_W(x_t, h_{t-1})$ estamos Decoder: $s_t = g_U(y_t, s_{t-1})$ **y**₁ h_0 h_2 h_3 h_4 h_1 s_0 S_1 x_2 X_3 **y**₀ \mathbf{X}_{1} X_4 [START] eating bread we are

Encoder: $h_t = f_W(x_t, h_{t-1})$

Decoder: $s_t = g_U(y_t, s_{t-1})$

estamos comiendo

Encoder: $h_t = f_W(x_t, h_{t-1})$ estamos comiendo [STOP] pan Decoder: $s_t = g_U(y_t, s_{t-1}, c)$ bottleneck Problem: Input sequence bottlenecked through h_0 h_3 h_2 h_4 h_1 S_0 fixed-sized vector. X_1 X_2 X_3 X_4 [START] eating bread comiendo estamos we are

Encoder: $h_t = f_W(x_t, h_{t-1})$ estamos comiendo [STOP] pan Decoder: $s_t = g_U(y_t, s_{t-1}, c)$ bottleneck Idea: use new context vector at each step of h_0 h_3 h_2 h_4 h_1 S_0 decoder! X_1 X_2 X_3 X_4 [START] eating bread comiendo estamos we are

From final hidden state: **Initial decoder state** s₀

Compute alignment scores

$$e_{t,i} = f_{att}(s_{t-1}, h_i)$$
 (f_{att} is an MLP)

Compute alignment scores

$$e_{t,i} = f_{att}(s_{t-1}, h_i)$$
 (f_{att} is an MLP)

Normalize to get attention weights

$$0 < a_{t,i} < 1$$
 $\sum_{i} a_{t,i} = 1$

Compute alignment scores

$$e_{t,i} = f_{att}(s_{t-1}, h_i)$$
 (f_{att} is an MLP)

Normalize to get attention weights

$$0 < a_{t,i} < 1$$
 $\sum_{i} a_{t,i} = 1$

Set context vector **c** to a linear combination of hidden states

$$c_t = \sum_i a_{t,i} h_i$$

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

This is all differentiable! Do not supervise attention weights – backprop through everything

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Slide credit: Justin Johnson

backprop through everything

Repeat: Use s_1 to compute new context vector c_2

Repeat: Use s_1 to compute new context vector c_2

Use c_2 to compute s_2 , y_2

Use a different context vector in each timestep of decoder Input sequence not bottlenecked through single vector [STOP] comiendo estamos pan At each timestep of decoder, context vector "looks at" different parts of the input sequence **y**₂ **y**₃ **y**₄ h_2 h_4 S_1 S_2 S_3 S_4 h_3 S_0 X_3 X_1 X_2 X_4 C_1 **y**₀ C_2 C_3 **y**₂ C_4 **y**₃ eating bread we are [START] estamos comiendo pan

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights at i accord sur la zone économique européenne été signé en août 1992 <end>

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means accord words correspond in sur order zone économique européenne été signé en août **Diagonal attention means** 1992 words correspond in order <end>

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Visualize attention weights at i

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights atti **Diagonal attention means** accord words correspond in sur order la zone **Attention figures** économique out different word européenne orders été signé en août **Diagonal attention means** 1992 words correspond in order <end>

Inputs:

State vector: s_i (Shape: D_0)

Hidden vectors: h_i (Shape: $N_X \times D_H$)

Similarity function: fatt

Computation:

Similarities: e (Shape: N_X) $e_i = f_{att}(s_{t-1}, h_i)$

Attention weights: a = softmax(e) (Shape: N_X)

Output vector: $y = \sum_{i} a_i h_i$ (Shape: D_X)

Inputs:

Query vector: **q** (Shape: D_Q)

Input vectors: X (Shape: $N_X \times D_X$)

Similarity function: fatt

Computation:

Similarities: e (Shape: N_X) $e_i = f_{att}(\mathbf{q}, \mathbf{X}_i)$

Attention weights: a = softmax(e) (Shape: N_X)

Output vector: $y = \sum_i a_i X_i$ (Shape: D_X)

Inputs:

Query vector: **q** (Shape: D_Q)

Input vectors: **X** (Shape: N_X x D_Q) **Similarity function**: dot product

Computation:

Similarities: e (Shape: N_X) $e_i = \mathbf{q} \cdot \mathbf{X}_i$

Attention weights: a = softmax(e) (Shape: N_x)

Output vector: $y = \sum_{i} a_i X_i$ (Shape: D_X)

Changes:

Use dot product for similarity

Inputs:

Query vector: **q** (Shape: D_Q)

Input vectors: X (Shape: $N_X \times D_0$)

Similarity function: scaled dot product

Computation:

Similarities: e (Shape: N_X) $e_i = \mathbf{q} \cdot \mathbf{X}_i / \operatorname{sqrt}(D_Q)$

Attention weights: a = softmax(e) (Shape: N_X)

Output vector: $y = \sum_{i} a_i X_i$ (Shape: D_X)

Changes:

Use scaled dot product for similarity

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$)
Input vectors: X (Shape: $N_X \times D_Q$)

Computation:

Similarities: $E = QX^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot X_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$) Output vectors: Y = AX (Shape: $N_Q \times D_X$) $Y_i = \sum_i A_{i,j} X_i$

Changes:

- Use dot product for similarity
- Multiple query vectors

Inputs:

Query vectors: **Q** (Shape: $N_Q \times D_Q$) **Input vectors**: **X** (Shape: $N_X \times D_X$)

Key matrix: W_K (Shape: $D_X \times D_Q$) **Value matrix:** W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^{T}$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j$ / $sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

Changes:

- Use dot product for similarity
- Multiple query vectors
- Separate key and value

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

 X_1

 X_2

 X_3

 Q_1

 Q_2

 Q_3

 Q_4

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

 Q_1

 Q_2

 Q_3

 Q_4

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_0 \times N_x$)

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

One query per input vector

```
Inputs:
```

```
Input vectors: X (Shape: N_X \times D_X)
Key matrix: W_K (Shape: D_X \times D_Q)
Value matrix: W_V (Shape: D_X \times D_V)
Query matrix: W_Q (Shape: D_X \times D_Q)
```

Computation:

```
Query vectors: Q = XW_Q
```

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

 X_1 X_2 X_3

One query per input vector

Inputs:

```
Input vectors: X (Shape: N_X \times D_X)
Key matrix: W_K (Shape: D_X \times D_Q)
Value matrix: W_V (Shape: D_X \times D_V)
Query matrix: W_Q (Shape: D_X \times D_Q)
```

Computation:

```
Query vectors: Q = XW_Q
```

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

```
Input vectors: X (Shape: N_X \times D_X)
Key matrix: W_K (Shape: D_X \times D_Q)
Value matrix: W_V (Shape: D_X \times D_V)
Query matrix: W_Q (Shape: D_X \times D_Q)
```

Computation:

```
Query vectors: Q = XW_Q
```

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

```
Input vectors: X (Shape: N_X \times D_X)
Key matrix: W_K (Shape: D_X \times D_Q)
Value matrix: W_V (Shape: D_X \times D_V)
Query matrix: W_Q (Shape: D_X \times D_Q)
```

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$)

Consider **permuting** the input vectors:

Queries and Keys will be the same, but permuted

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$)

Consider **permuting** the input vectors:

Similarities will be the same, but permuted

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$)

Consider **permuting** the input vectors:

Attention weights will be the same, but permuted

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$)

Consider **permuting** the input vectors:

Values will be the same, but permuted

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Consider **permuting** the input vectors:

Outputs will be the same, but permuted

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) **Key matrix**: W_K (Shape: $D_X \times D_0$) **Value matrix:** W_V (Shape: $D_X \times D_V$) Query matrix: W_0 (Shape: $D_X \times D_0$)

Computation:

Query vectors: $Q = XW_0$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_0$)

Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_x \times N_x$)

Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_i A_{i,i} V_i$

Consider **permuting** the input vectors:

Outputs will be the same, but permuted

Self-attention layer is **Permutation**

Equivariant

f(s(x)) = s(f(x))

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$) Self attention doesn't "know" the order of the vectors it is processing!

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) **Key matrix**: W_K (Shape: $D_X \times D_0$) **Value matrix:** W_V (Shape: $D_X \times D_V$) Query matrix: W_0 (Shape: $D_X \times D_0$)

Computation:

Query vectors: $Q = XW_0$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_0$)

Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_x \times N_x$)

Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_i A_{i,i} V_i$

Self attention doesn't "know" the order of the vectors it is processing!

In order to make processing position-aware, concatenate input with positional encoding

E can be learned lookup table,

or fixed function

 Y_3

 $A_{3,3}$

 $A_{3,2}$

 $A_{3,1}$

 $E_{3,3}$

 Y_2

 $Product(\rightarrow)$, $Sum(\uparrow)$

 $A_{2,3}$

 $A_{2,2}$

 $A_{2,1}$

Softmax(↑)

 $E_{2,3}$

 $A_{1,3}$

 $A_{1,2}$

 $A_{1,1}$

 $E_{1,3}$

 V_3

 V_2

 V_1

 K_3

Masked Self-Attention Layer

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Don't let vectors "look ahead" in the sequence

Used for language modeling (predict next word)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Multihead Self-Attention Layer

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$)

Use H independent "Attention Heads" in parallel

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Recurrent Neural Network

Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

Recurrent Neural Network

1D Convolution

Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

Works on **Multidimensional Grids**

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

Recurrent Neural Network

1D Convolution

Self-Attention

Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

Works on **Multidimensional Grids**

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

Works on **Sets of Vectors**

- (+) Good at long sequences: after one self-attention layer, each output "sees" all inputs!
- (+) Highly parallel: Each output can be computed in parallel
- (-) Very memory intensive

Recurrent Neural Network

1D Convolution

Self-Attention

Attention is all you need

Vaswani et al, NeurIPS 2017

Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

Works on **Multidimensional Grids**

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

Works on **Sets of Vectors**

- (+) Good at long sequences: after one self-attention layer, each output "sees" all inputs!
- (+) Highly parallel: Each output can be computed in parallel
- (-) Very memory intensive

1

 X_2

X₃

 X_4

Vaswani et al, "Attention is all you need", NeurIPS 2017

MLP independently on each vector

MLP independently on each vector

Residual connection

Recall Layer Normalization:

Given
$$h_1$$
, ..., h_N (Shape: D)
scale: γ (Shape: D)
shift: β (Shape: D)
 $\mu_i = (1/D)\sum_j h_{i,j}$ (scalar)
 $\sigma_i = (\sum_j (h_{i,j} - \mu_i)^2)^{1/2}$ (scalar)
 $z_i = (h_i - \mu_i) / \sigma_i$
 $y_i = \gamma * z_i + \beta$

Ba et al, 2016

MLP independently on each vector

Residual connection

MLP independently on each vector

Residual connection

Residual connection

MLP independently on each vector

Residual connection

Transformer Block:

Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only interaction between vectors!

Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable

Transformer Block:

Input: Set of vectors x

Output: Set of vectors y

Self-attention is the only interaction between vectors!

Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable

A **Transformer** is a sequence of transformer blocks

Encoder-Decoder

GLUE Benchmark

	Rank	Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m	MNLI-mm	QNLI	RTE	WNLI	AX
	1	HFL IFLYTEK	MacALBERT + DKM		90.7	74.8	97.0	94.5/92.6	92.8/92.6	74.7/90.6	91.3	91.1	97.8	92.0	94.5	52.6
+	2	Alibaba DAMO NLP	StructBERT + TAPT		90.6	75.3	97.3	93.9/91.9	93.2/92.7	74.8/91.0	90.9	90.7	97.4	91.2	94.5	49.1
+	3	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6	73.5	97.2	94.0/92.0	93.0/92.4	76.1/91.0	91.6	91.3	97.5	91.7	94.5	51.2
	4	ERNIE Team - Baidu	ERNIE		90.4	74.4	97.5	93.5/91.4	93.0/92.6	75.2/90.9	91.4	91.0	96.6	90.9	94.5	51.7
	5	T5 Team - Google	Т5		90.3	71.6	97.5	92.8/90.4	93.1/92.8	75.1/90.6	92.2	91.9	96.9	92.8	94.5	53.1
	6	Microsoft D365 AI & MSR AI & GATECH	MT-DNN-SMART		89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0	90.8	99.2	89.7	94.5	50.2
+	7	Zihang Dai	Funnel-Transformer (Ensemble B10-10-10H1024)		89.7	70.5	97.5	93.4/91.2	92.6/92.3	75.4/90.7	91.4	91.1	95.8	90.0	94.5	51.6
+	8	ELECTRA Team	ELECTRA-Large + Standard Tricks		89.4	71.7	97.1	93.1/90.7	92.9/92.5	75.6/90.8	91.3	90.8	95.8	89.8	91.8	50.7
+	9	Huawei Noah's Ark Lab	NEZHA-Large		89.1	69.9	97.3	93.3/91.0	92.4/91.9	74.2/90.6	91.0	90.7	95.7	88.7	93.2	47.9
+	10	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.4	68.0	96.8	93.1/90.8	92.3/92.1	74.8/90.3	91.1	90.7	95.6	88.7	89.0	50.1
	11	Junjie Yang	HIRE-RoBERTa		88.3	68.6	97.1	93.0/90.7	92.4/92.0	74.3/90.2	90.7	90.4	95.5	87.9	89.0	49.3
	12	Facebook AI	RoBERTa		88.1	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	95.4	88.2	89.0	48.7
+	13	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0	42.8
	14	GLUE Human Baselines	GLUE Human Baselines		87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91.2	93.6	95.9	-
	15	Stanford Hazy Research	Snorkel MeTaL		83.2	63.8	96.2	91.5/88.5	90.1/89.7	73.1/89.9	87.6	87.2	93.9	80.9	65.1	39.9

GLUE Benchmark

	Rank	Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP MNLI-m MNLI-mm		QNLI	RTE	WNLI	AX	
	1	HFL iFLYTEK	MacALBERT + DKM		90.7	74.8	97.0	94.5/92.6	92.8/92.6	74.7/90.6	91.3	91.1	97.8	92.0	94.5	52.6
+	2	Alibaba DAMO NLP	StructBERT + TAPT		90.6	75.3	97.3	93.9/91.9	93.2/92.7	74.8/91.0	90.9	90.7	97.4	91.2	94.5	49.1
+	3	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6	73.5	97.2	94.0/92.0	93.0/92.4	76.1/91.0	91.6	91.3	97.5	91.7	94.5	51.2
	4	ERNIE Team - Baidu	ERNIE		90.4	74.4	97.5	93.5/91.4	93.0/92.6	75.2/90.9	91.4	91.0	96.6	90.9	94.5	51.7
	5	T5 Team - Google	T5		90.3	71.6	97.5	92.8/90.4	93.1/92.8	75.1/90.6	92.2	91.9	96.9	92.8	94.5	53.1
	6	Microsoft D365 AI & MSR AI & GATECH	I MT-DNN-SMART		89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0	90.8	99.2	89.7	94.5	50.2
+	7	Zihang Dai	Funnel-Transformer (Ensemble B10-10-10H1024)		89.7	70.5	97.5	93.4/91.2	92.6/92.3	75.4/90.7	91.4	91.1	95.8	90.0	94.5	51.6
+	8	ELECTRA Team	ELECTRA-Large + Standard Tricks		89.4	71.7	97.1	93.1/90.7	92.9/92.5	75.6/90.8	91.3	90.8	95.8	89.8	91.8	50.7
+	9	Huawei Noah's Ark Lab	NEZHA-Large		89.1	69.9	97.3	93.3/91.0	92.4/91.9	74.2/90.6	91.0	90.7	95.7	88.7	93.2	47.9
+	10	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.4	68.0	96.8	93.1/90.8	92.3/92.1	74.8/90.3	91.1	90.7	95.6	88.7	89.0	50.1
	11	Junjie Yang	HIRE-RoBERTa		88.3	68.6	97.1	93.0/90.7	92.4/92.0	74.3/90.2	90.7	90.4	95.5	87.9	89.0	49.3
	12	Facebook AI	RoBERTa		88.1	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	95.4	88.2	89.0	48.7
+	13	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0	42.8
	14	GLUE Human Baselines	GLUE Human Baselines	♂	87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91.2	93.6	95.9	-
	15	Stanford Hazy Research	Snorkel MeTaL		83.2	63.8	96.2	91.5/88.5	90.1/89.7	73.1/89.9	87.6	87.2	93.9	80.9	65.1	39.9

SYSTEM PROMPT (HUMAN-WRITTEN)

science.

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)
The scientist named the population, after their distinctive horn, Ovid's
Unicorn. These four-horned, silver-white unicorns were previously unknown to

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. "By the time we reached the top of one peak, the water looked blue, with some crystals on top," said Pérez.

Source: OpenAI, "Better Language Models and Their Implications" https://openai.com/blog/better-language-models/

Can Attention/Transformers be used from more than text processing?

Vilbert Pre-Training

pop artist performs at the festival in a city.

a worker helps to clear the debris.

blue sofa in the living room.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

Vilbert: A Visolinguistic Transformer

VilBERT Demo:

https://vilbert.cloudcv.org/

Summary

Self-Attention

Transformer Model

VILBERT

