UFR IM2AG

Planche d'exercices "Rappels sur les intégrales"

Exercice 1. Soit $f:[0,1] \to [0,1]$ continue non nulle telle que $\int_0^1 f(x) dx = \int_0^1 f(x)^2 dx$. Montrer que f(x) = 1 pour tout $x \in [0,1]$.

Exercice 2. Soit $f:[0,1]\to\mathbb{R}$ continue telle que $\int_0^1 f(x) dx = \frac{1}{2}$. Montrer qu'il existe $c \in]0,1[$ tel que f(c)=c.

Exercice 3. Soit $f:[a,b]\to\mathbb{R}$ continue telle que $|\int_a^b f(t)dt|=\int_a^b |f(t)|dt$. Montrer que f est de signe constant sur [a,b].

Exercice 4. Soient $f, g : [0,1] \to \mathbb{R}+$ continues telles que $fg \ge 1$. Montrer :

$$\int_{0}^{1} f \int_{0}^{1} g \ge 1.$$

Exercice 5. Montrer que la suite définie pour tout $n \ge 1$ par $u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}$ converge et calculer sa limite.

Exercice 6. Soient 0 < a < b. Soit f une fonction continue sur \mathbb{R}^+ . Déterminer :

$$\lim_{x \to 0^+} \int_{ax}^{bx} \frac{f(t)}{t} dt.$$

Exercice 7. Soit $f:[a,b]\to\mathbb{R}$ continue et $g:\mathbb{R}\to\mathbb{R}$ continue et convexe. Démontrer :

$$g\left(\frac{1}{b-a}\int_a^b f(t)dt\right) \le \frac{1}{b-a}\int_a^b g(f(t))dt.$$

Exercice 8. Déterminer les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, \ 2yf(x) = \int_{x-y}^{x+y} f(t)dt.$$

Exercice 9. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction continue, décroissante, de limite nulle en $+\infty$.On pose pour tout $n \in \mathbb{N}$, $u_n = \int_{n\pi}^{(n+1)\pi} f(t) \sin t dt$.

- 1. Montrer que la série de terme général u_n converge. 2. En déduire que l'intégrale $\int_0^{+\infty} f(t) \sin t dt$ est convergente.
- **3.** On suppose qu'il existe $x_0 > 0$ tel que $f(x) \ge 1/x$ pour $x \ge x_0$. Montrer que $\int_0^{+\infty} |f(t)\sin t| dt$ diverge.

Exercice 10.

1. Montrer que l'intégrale $\int_0^1 \frac{\ln t}{t^2 - 1} dt$ converge.

- **2.** Montrer, pour tout entier $n \ge 1$: $\sum_{k=0}^{n} \frac{1}{(2k+1)^2} = \int_0^1 \frac{\ln t}{t^2 1} dt \int_0^1 \frac{t^{2n+2} \ln t}{t^2 1} dt$.
- **3.** Montrer que la fonction $t \mapsto \frac{t^2 \ln t}{t^2 1}$ est bornée sur]0,1[et en déduire l'égalité :

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \int_0^1 \frac{\ln t}{t^2 - 1} dt.$$

Exercice 11.

- 1. Démontrer que $\int_{0}^{+\infty} e^{-t \sin t} dt$ diverge.
- 2. Montrer que les intégrales impropres $\int_0^{+\infty} \frac{\sin t}{t} dt$ et $\int_1^{+\infty} \frac{\cos t}{t} dt$ convergent.
- **3.** Montrer que l'intégrale impropre $\int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt$ diverge.

Exercice 12. Soit $a \in \mathbb{R}$ et f une focation continue de $[a, +\infty[$ dans \mathbb{R} , intégrable sur $[a, +\infty[$.

- 1. Montrer que si f admet une limite en $+\infty$, alors cette limite est nulle.
- 2. Montrer que si f est uniformément continue, alors elle tend vers 0 en $+\infty$.
- **3.** Qu'en est-il si f est seulement supposée continue?
- **4.** Montrer que si f est continue, alors il existe une suite croissante $(x_n)_n$, de limite $+\infty$, telle que la suite $(f(x_n))_n$ converge vers 0.

Exercice 13. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$, continue et décroissante, telle que $\int_0^{+\infty} f(t)dt$ converge. Montrer que $\lim_{x \to +\infty} x f(x) = 0.$

Exercice 14. Soit f une fonction continue de carré intégrable sur \mathbb{R}^+ .

- **1.** Montrer: $\forall 0 \le a \le b$, $\left| \int_a^b f(t)dt \right| \le \sqrt{b-a} \left(\int_a^b f^2(t)dt \right)^{1/2}$.
- **2.** En déduire : $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} \int_0^x f(t)dt = 0$.

Exercice 15.

- **1.** Montrer que la fonction $F: x \mapsto \int_{-\infty}^{+\infty} \frac{e^{-t}}{t} dt$ est définie sur $]0, +\infty[$.

- 2. Montrer que F est de classe C^1 sur $]0, +\infty[$ et calculer F'. 3. Calculer $\lim_{x\to 0^+} F(x)$ et $\lim_{x\to +\infty} F(x)$. 4. Montrer que la fonction $x\mapsto \int_x^1 \frac{e^{-t}}{t}dt + \ln x$ est bornée sur]0,1[. (On pourra écrire $\ln x$ sous forme intégrale) En déduire un équivalent de F en 0.
- **5.** Montrer: $\forall x > 0$, $\int_{x}^{+\infty} \frac{e^{-t}}{t^2} dt \leq \frac{1}{x} F(x)$.
- **6.** En déduire : $F(x) \sim \frac{e^{-x}}{x}$ lorsque $x \to +\infty$.

Exercice 16. Soit
$$f(x) = \int_0^x e^{-t^2} dt$$
 et $g(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{t^2+1} dt$.

Montrer que : $\forall x \geq 0, g(x) + f^2(x) = \frac{\pi}{4}$ et en déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$

Exercice 17. Soit $f: \mathbb{R} \to \mathbb{R}$, de classe \mathcal{C}^{∞} .

1. On suppose f(0) = 0 et on pose, pour $x \neq 0$, $g(x) = \frac{f(x)}{x}$. Montrer que pour $x \neq 0$, $g(x) = \int_0^1 f'(tx)dt$ et en déduire que g se prolonge en une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} .

2. Généraliser en supposant $f(0) = f'(0) = \cdots = f^{n-1}(0) = 0$.

Exercice 18. On pose, pour a > 0, $F(x) = \int_{-\infty}^{+\infty} e^{-itx} e^{-at^2} dt$.

1. Monterr que F est de classe \mathcal{C}^1 sur \mathbb{R} et vérifie, pour tout $x \in \mathbb{R}$:

$$F'(x) = -\frac{x}{2a}F(x).$$

2. En déduire :

$$\forall x \in \mathbb{R}, \ F(x) = \sqrt{\frac{\pi}{a}}e^{-x^2/4a}.$$

Exercice 19.

1 Donner l'ensemble de définition de la fonction Γ définie par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

2. Montrer : $\forall x > 0$, $\Gamma(x+1) = x\Gamma(x)$ et en déduire $\Gamma(n)$ pour tout $n \in \mathbb{N} \setminus \{0\}$. Donner un équivalent de Γ en 0.

Exercice 20. Soit $f: x \mapsto \int_0^{+\infty} \frac{t^{-x}}{1+t} dt$.

1. Donner l'ensemble de définition de f.

2. Montrer que : $\lim_{x\to 0} x \int_0^1 \frac{t^{-x}}{1+t} dt = 0$.

3. Montrer que $1 - x \int_{1}^{+\infty} \frac{t^{-x}}{1+t} dt = x \int_{1}^{+\infty} \frac{t^{-x-1}}{1+t} dt$ et en déduire $\lim_{x \to 0} 1 - x \int_{1}^{+\infty} \frac{t^{-x}}{1+t} dt$.

4. Conclure.

Exercice 21. Soit $g:[0,1]\to\mathbb{R}$ une application continue. pour tout x>0 on note

$$G(x) = \int_0^1 \frac{xg(t)}{x^2 + t^2} dt.$$

Montrer que G est bien définie et calculer $\lim_{x\to 0} G(x)$.