

WH-GN100 硬件设计手册

文件版本: V1.0.2

显显

Ħ	录	2
	3 绪论	
	模块芯片工作原理	
3	模块管脚定义	4
4	模块性能	6
	模块外形尺寸	
6	硬件设计注意事项	8
7	NMEA0183 协议	8
	7.1 NMEA0183 讲述	
	7.2 NMEA 命令	8
8	GNSS 工具 Navitrack	9
9	联系方式	10
10	免责声明	11
11	更新历史	12

1 绪论

本文档描述了 WH-GN100 模块的硬件应用接口,可以帮助用户快速的了解 WH-GN100 模块的接口定义、电气性能和结构尺寸的详细信息。结合本文档和其他的 WH-GN100 模块的应用文档,用户可以快速的使用 WH-GN100 模块来设计应用方案。

WH-GN100 模块是上海稳恒研制的一款高性能、高集成度的多模卫星定位导航模块。体积小、功耗低,可用于车载导航、智能穿戴、无人机等 GNSS 定位的应用中。而且提供了和其他模块厂商兼容的软、硬件接口,大幅减少了用户的开发周期。

2 模块芯片工作原理

产品采用了国科微的 GK9501 GNSS 芯片,该芯片支持 GPS/Beidou/GLONASS/Galileo/QZSS/SBAS,采用了射频基带一体化设计,集成了 DC/DC、LDO、LNA、射频前端、基带处理、32 位 RISC CPU、RAM、FLASH 存储、RTC 和电源管理等功能。提供超高的性能,即使在弱信号的地方,也能快速、准确的定位。

3 模块管脚定义

1	NC	GND	24
2	NC	VGPS_Main	23
3] 1PPS	VBKP [22
4	NC	RXD	21
5	FORCE_ON	TXD	20
6	GPIO15	RX1	19
7	GPIO14	TX1	18
8	HRST_B	NC [17
9	VGPS_Main	NC [16
10	GND	NC [15
11	RF_IN	NC [14
12	GND	GND	13

Top view

Pin 脚编号	Pin 脚定义	Pin 脚描述	
1	NC	预留	
2	NC	预留	
3	1PPS	定位指示灯,定位成功会输出方波	
4	NC	预留	
5	FORCE_ON	休眠唤醒引脚,模块进入超低功耗时拉高 该引脚退出超低功耗模式(此引脚电平电 压为 1.1V,若控制脚电平不是 1.1V,需要 分压处理)	
6	GPI015	GPIO15	
7	GPI014	GPI014	
8	RSTN	复位脚,默认拉高,拉低复位。	
9	VCCRF	RF 电源输出,给有源天线供电使用(此 RF 输出电源电压等于 VCC)	
10	GND	地	
11	RF_IN	RF 输入	

WH-GN100 硬件设计手册

Wireless High-reliability

12	GND	地	
13	GND	地	
14	NC	预留	
15	NC	预留	
16	NC	预留	
17	NC	预留	
18	TX1	UART1 输出(预留, 2.8V 电平)	
19	RX1	UART1 输入 (预留, 2.8V 电平)	
20	TXD	UART 输出 (AT口, 2.8V 电平)	
21	RXD	UART 输入 (AT 口, 2.8V 电平)	
22	VBKP	RTC 电源输入,RTC 电源必须供电,模块	
		才能正常工作(2V-4.2V)	
23	VCC	模块电源(2.8V-4.2V)	
24	GND	地	

4 模块性能

类别	指标项	典型值	单位
	冷启动	27.5	S
定位时间	热启动	<1	s
[测试条件 1]	重新捕获	<1	S
	A-GNSS	<10	S
灵敏度	冷启动	-148	dBm
[测试条件 2]	热启动	-162	dBm
	重新捕获	-164	dBm
	跟踪	-166	dBm
精度	水平定位精度	2.5	m
[测试条件 3]	高度定位精度	3.5	m
	速度精度	0.1	m/s
	授时精度	30	ns
功耗	捕获电流值@3.3v	30	mA
[测试条件 4]	跟踪电流值@3.3v	20	mA
工作温度		-35°C- 85°C	
储存温度		-55°C- 100°C	
湿度		5% - 95%	

注:以上结果为 GPS/北斗双模工作模式

[测试条件 1]:接收卫星个数大于 6,所有卫星信号强度为-130dBm,测试 10 次取平均值,定位误差于 10 米。

[测试条件 2]: 外接 LNA 噪声系数 0.8,接收卫星个数大于 6,五分钟之内锁定或者不失锁条件下的接收信号强度值。

[测试条件 3]: 开阔没有遮挡环境,连续 24 小时开机测试,50%CEP。

[测试条件 4]:接收卫星个数大于 6,所有卫星信号强度为-130dBm。

5 模块外形尺寸

	单位(mm)
А	16.2±0.1
В	12.2±0.1
D	1.0±0.1
E	1.1±0.1
F	3.0±0.1
G	1.0±0.1
K	0.8±0.1
M	0.9±0.1

6 硬件设计注意事项

- 1. 模块所有 GND 需接地, 电压纹波峰值不要超过50mV。
- 2. 连接RF IN信号至天线,线路保持50欧姆阻抗匹配,尽量短,避免锐角。
- 3. 串口TXD, RXD是 LVTTL 2. 8V电平(请注意电平匹配), 若和 PC 连接, 需要通过 RS232 电平转换。用户可用此串口接收定位信息数据和软件升级。
- 4. 本模块是温度敏感设备,温度剧烈变化会导致其性能降低,使用中尽量远离高温气流与大功率 发热器件。

7 NMEA0183 协议

WH-GN100 模块支持 NMEA 0183 V4.1 协议并兼容以前版本,关于 NMEA 0183 V4.1 的详细信息请参照 NMEA 0183 V4.1 官方文档。

7.1 NMEA 0183 简述

GGA: 时间、位置、卫星数量

GLL: 经度、纬度、UTC时间

GSA: GPS 接收机操作模式,定位使用的卫星,DOP 值,定位状态

GSV: 可见 GPS 卫星信息、仰角、方位角、信噪比

RMC: 时间、日期、位置、速度

VTG: 地面速度信息

7.2 NMEA 命令

WH-GN100 定制了一些命令用来控制冷、热、温启动和卫星定位模式等,可以直接通过串口直接发送命令来控制模块,命令格式如下:

1). 启动命令

系统热启动命令: \$PGKC030, 1, 1*2C<CR><LF>

系统温启动命令: \$PGKC030, 2, 1*2F<CR><LF>

系统冷启动命令: \$PGKC030, 3, 1*2E<CR><LF>

系统重置冷启动: \$PGKC030, 4, 1*29<CR><LF>

2).卫星定位模式设置

单 GPS: \$PGKC115, 1, 0, 0, 0*2B<CR><LF>GPS+BEIDOU: \$PGKC115, 1, 0, 1, 0*2A<CR><LF>

GPS+GLONASS: \$PGKC115, 1, 1, 0, 0*2A<CR><LF>

8 GNSS 工具 naviTrack

naviTrack 是一个专为 WH-GN100 定制的 GNSS 工具,它为用户评估、控制 WH-GN100 模块提供了一个 易用、强大的可视化 PC 端工具。当然用户也可以使用诸如 u-Center、PowerGPS 等工具。

9 回流焊焊接曲线图

推荐焊接曲线如下:

9 联系方式

公 司: 上海稳恒电子科技有限公司

地 址: 上海市闵行区秀文路 898 号西子国际五号楼 611 室

网 址: www.mokuai.cn

邮 箱: sales@mokuai.cn

电 话: 021-52960996 或者 021-52960879

使命: 做芯片到产品的桥梁

愿景: 全球有影响力的模块公司

价值观: 信任 专注 创新

产品观:稳定的基础上追求高性价比

10 免责声明

本文档提供有关 WH-GN100 产品的信息,本文档未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我公司概不承担任何其它责任。并且,我公司对本产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

11 更新历史

修订表

编号	生成版本	修订章节与内容	修订日期
1	V1.0.0	生成第一个版本	2017-12-05
2	V1.0.1	修改部分不合理部分及完善 IO 说明	2018-09-18
3	V1.0.2	增加焊接曲线图	2020-04-08