2° de Secundaria Unidad 2 2024-2025

Ottillid Tevision det doc

Practica la reposición a la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:

- Comprende los conceptos de velocidad y aceleración.
- Describe, representa y experimenta la fuerza como la interacción entre objetos y reconoce distintos tipos de fuerza.
- Identifica y describe la presencia de fuerzas en interacciones cotidianas (fricción, flotación, fuerzas en equilibrio).
- Analiza la gravitación y su papel en la explicación del movimiento de los planetas y en la caída de los cuerpos (atracción) en la superficie terrestre.

Puntuación:

Pregunta	1	2	3	4	5	6	7	8	9
Puntos	6	8	6	5	8	4	2	2	8
Obtenidos									
Pregunta	10	11	12	13	14	15	16	17	Total
Pregunta Puntos	10	11	12 6	13 8	14 10	15 5	16 10	17 8	Total 100

Máquinas simples

Plano inclinado y palancas

$$F_1 \cdot r_1 = F_2 \cdot r_2$$

Figura 1: Diagrama de una palanca simple; también llamada palanca de primer género.

Ley de la Gravitación Universal

La fuerza ejercida entre dos cuerpos de masas m_1 y m_2 separados por una distancia d es igual al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir:

$$F = G \frac{m_1 m_2}{d^2}$$

donde $G=6.67384\times 10^{-11} \rm N~m^2~kg^{-2}$ es la constante gravitacional.

Vocabulario

 $\mathbf{signo} \to \mathbf{caracter}$ ística + o - de una cantidad. $\mathbf{inercia} \to \mathbf{estado}$ de movimiento.

Las leyes de Newton

 Ley de la Inercia o Equilibrio Todo objeto permanece en reposo o movimiento constante, a menos que una fuerza lo cambie.

$$F = 0$$

2. Ley de cambio en la Inercia La fuerza es directamente proporcional al cambio de movimiento de un objeto, y su constante de proporcionalidad es la masa.

$$F = ma$$

3. Ley de acción y reacción Con toda acción ocurre siempre una reacción igual y contraria.

$$F - F_r = 0$$

de 6 puntos Ejercicio 1

Analiza el siguiente problema y selecciona la respuesta correcta para cada una de las preguntas:

En el beisbol el pitcher es el jugador encargado de lanzar la pelota a la posición del bateador del equipo contrario. Cada año, los pitcher de las Grandes Ligas intentan batir el récord mundial de velocidad de lanzamiento, que en el año 2006 pertenecía a Joel Zumaya, con una marca de 46.9 m/s. Cuatro años más tarde, Neftali Feliz colocó la bola a 20 m del montículo en 0.43 segundos, y el "Misil Cubano", Aroldis Chapman, lo hizo en 0.42 segundos.

- a ¿Con qué rapidez viajó la bola que lanzó Neftali Feliz?
- (A) 45.6 m/s (B) 47.6 m/s (C) 46.5 m/s (D) 43.5 m/s
- b ¿Qué rapidez alcanzó la bola de Aroldis Chapman?
 - (A) 46.7 m/s (B) 46.5 m/s (C) 47.3 m/s (D) 47.6 m/s

- c ¿De quién fue el lanzamiento más rápido?, ¿Por qué?
 - A El de Joel Zumaya, porque recorrió la misma distancia que los otros dos lanzamientos, pero en un menor tiempo.
 - (B) El de Aroldis Chapman, porque su lanzamiento recorrió la misma distancia en la menor cantidad de tiempo.
 - © El de Neftali Feliz, porque recorrió la misma distancia en menor tiempo.
 - (D) El lanzamiento de Neftali Feliz, porque recorrió la misma distancia en mayor tiempo.

Ejercicio 2 de 8 puntos

Analiza el siguiente problema y selecciona la respuesta correcta para cada una de las preguntas:

Las 24 Horas de Le Mans es una competencia automovilística disputada en el Circuito de la Sarthe, en Le Mans, Francia; es la carrera de resistencia más peligrosa y cruel del mundo: el ganador es el piloto que recorre la mayor distancia en 24 horas. En 1966, Bruce McLaren, Ken Miles y Ronnie Bucknum, miembros de la misma escudería, cruzaron juntos la meta pero no todos dieron las mismas vueltas al circuito, y por lo tanto recorrieron diferentes distancias: 4 906.46 km, 4 906.44 km, y 4 743.2 km, respectivamente.

- ¿Cuál fue la rapidez media de Bruce McLaren?

 - (A) 204.436 km/h (B) 204.430 km/h (C) 197.63 km/h
- \bigcirc 202.435 km/h
- b ¿Qué rapidez media tuvo Ken Miles?
- (A) 204.433 km/h (B) 203.436 km/h (C) 204.435 km/h (D) 197.63 km/h
- c ¿Con qué rapidez viajó Ronnie Bucknum?
- (A) 204.435 km/h (B) 197.63 km/h (C) 204.436 km/h (D) 195.63 km/h
- d ¿Quién fue el más rápido?, ¿Por qué?
 - A Bonnie Bucknun, porque recorrió la menor distancia en la misma cantidad de tiempo.
 - B Bruce McLaren porque recorrió la mayor distancia en la misma cantidad de tiempo.
 - C Fueron igual de rápidos.
 - (D) Ken Miles, porque recorrió una gran distancia en la misma cantidad de tiempo.

Unidad 2

de 6 puntos
orrecta para cada una de las preguntas:
geniería animal" es el número de unidades de longitud de El guepardo, considerado el animal terrestre más veloz lide 1.3 m, por tanto, se desplaza 20.5 longitudes de su m y se mueve a razón de 27.3 m/s, y un ácaro viaja a
c ¿Cuál de estos animales es el más rápido en relación con su tamaño corporal?, ¿Por qué?
de 5 puntos
portaciones de Newton a la ciencia.
d La fuerza de gravedad que actúa entre dos cuerpos es siempre de repolsión, es inversamente proporcional al producto de sus masas y directamente proporcional al cuadrado de su distancia.
□ Sí □ No e Todo cuerpo tiende a mantener su estado de reposo o de movimiento con velocidad constante, a menos que una fuerza que actúe sobre él le obligue a cambiar ese estado. □ Sí □ No

Ejercicio 5

de 8 puntos

Un mono trepa de manera vertical. Su movimiento se muestra en la siguiente gráfica (Fig. $\ref{fig. 27}$) de la posición vertical, $\ref{fig. 27}$, en función del tiempo, $\ref{fig. 27}$.

Figura 2: La gráfica representa el movimiento del mono.

- \circ ¿Cuál es la rapidez instantánea del mono en t=5 s?
 - \bigcirc 5 m/s
 - (B) 0 m/s
 - \bigcirc 2.5 m/s
 - \bigcirc 0.4 m/s
- **b** ¿Cuál es la velocidad instantánea del mono en $t=8~\mathrm{s}$?
 - \bigcirc 1.5 m/s
 - \bigcirc 0.42 m/s
 - \bigcirc 2 m/s
 - \bigcirc 1 m/s

- **c** ¿Cuál es la rapidez instantánea del mono en t = 2 s?
 - \bigcirc 1 m/s
 - (B) 2 m/s
 - \bigcirc -1 m/s
 - \bigcirc -2 m/s
- **d** ¿Cuál es la rapidez promedio del mono t=4 s y t=10 s?
 - \bigcirc 1.5 m/s
 - \bigcirc 0.5 m/s
 - © 0 m/s
 - $\bigcirc -0.5 \text{ m/s}$
- e ¿Cuál es la rapidez promedio del mono t = 0 s y t = 7 s?
 - \bigcirc 0.5 m/s
 - (B) 1.5 m/s
 - (C) 0 m/s
 - \bigcirc -0.5 m/s
- **f** ¿Cuál es la rapidez promedio del mono t = 0 s y t = 10 s?
 - \bigcirc -0.1 m/s
 - B 1.5 m/s
 - $\bigcirc 0~\mathrm{m/s}$
 - \bigcirc -0.5 m/s

Ejercicio 6 de 4 puntos Completa las afirmaciones de acuerdo con la información que presenta la gráfica de la figrua 3. O Después del primer esfuerzo, el atleta permaneció en reposo durante _ segundos. 15 m b La distancia total recorrida fue de _____ metros. c ¿Cuál fue la magnitud de la velocidad media durante el primer segundo de entrenamiento? 10m 5 m d ¿Cuál fue la magnitud de la velocidad media durante los primeros 6 segundos de entrenamiento? 2s 4s 6s 8s 10s Figura 3: La gráfica representa el desplazamiento de un atleta durante su entrenamiento. Ejercicio 7 Ejercicio 8 de 2 puntos de 2 puntos ¿Qué fuerza tendrías que aplicar para subir un sillón de 25 N de peso a una altura de 4 m si utilizas un plano inclinado de 5 m?

¿Qué fuerza tendrías que aplicar para subir un sillón de 25 N de peso a una altura de 4 m si utilizas un plano inclinado de 5 m?

inado de 1	ura de 8	

Ejercicio 9 ____ de 8 puntos

Todas las mañanas Montse y Ricardo se desplazan de sus casas a la escuela. A ella le gusta caminar y Ricardo utiliza su bicicleta. En la gráfica de la figura ?? se representan sus movimientos.

- Qué distancia hay entre la casa de Montse y la escuela?
 - (A) 4 km (B) 6 km (C) 8 km (D) 10 km
- **b** ¿Cuánto se desplazó Ricardo para llegar a la escuela?
 - (A) 4 km (B) 6 km (C) 8 km (D) 10 km
- c ¿Qué tiempo le tomó llegar a Montse?
 - (A) 20 min. (B) 25 min. (C) 30 min. (D) 35 min.
- d ¿Qué tiempo hizo Ricardo?
 - (A) 20 min. (B) 25 min. (C) 30 min. (D) 35 min.
- e ¿Cuál fue la rapidez media de Montse durante su recorrido?
- f ¿Cuál fue la rapidez media de Ricardo?
- 9 ¿Quién llegó primero a la escuela?
 - (A) Llegaron al mismo tiempo.
 - B No puede determinarse.
 - (C) Montse.
 - (D) Ricardo.

Figura 4: La gráfica representa los viajes de Montse y Ricardo desde sus casa a la escuela.

- h ¿Qué significa que sus gráficas se crucen?
 - A Que Montse y Ricardo viajaron con la misma rapidez durante su recorrido a la escuela.
 - B Que Montse y Ricardo tenían la misma velocidad después de 25 minutos de su recorrido.
 - Que Montse y Ricardo se encontraron 25 minutos después de que ambos partieron de sus casas.

de 2 puntos

(D) Todas las anteriores.

Ejercicio 11

Ejercicio 10	de 2 puntos
¿Qué fuerza se debe aplicar peso para subirla a un temp cm si se usa una rampa de 5	lete a una altura de 80

¿De qué longitud tendrá que ser el plano inclinado por utilizar si deseas subir un peso de 200 N a una altura de 1.2 m, si tu máxima capacidad te permite aplicar una fuerza de 50 N?

Ejercicio 12

de 6 puntos

Un tigre camina hacia adelante y hacia atrás a lo largo de un borde rocoso. Su movimiento se muestra en la siguiente gráfica (Fig. $\ref{fig. 1}$) de la posición vertical, $\ref{fig. 2}$, en función del tiempo, $\ref{fig. 2}$.

Figura 5: La gráfica representa el movimiento del tigre.

- \bigcirc ¿Cuál es la rapidez promedio del tigre entre t=0 s y t=12 s?
 - \bigcirc -0.17 m/s
 - (B) 0 m/s
 - \bigcirc 0.17 m/s
- **b** ¿Cuál es la rapidez promedio del tigre entre t=2 s y t=12 s?
 - \bigcirc 0.1 m/s
 - \bigcirc -0.1 m/s
 - \bigcirc 0.3 m/s
 - \bigcirc -0.75 m/s

- **c** ¿Cuál es la rapidez instantanea del tigre en t = 5 s?
 - (A) 2 m/s
 - (B) 5 m/s
 - \bigcirc 0.40 m/s
 - \bigcirc 0 m/s
- **d** ¿Cuál es la rapidez instantanea del tigre en t = 9 s?
 - \bigcirc -1 m/s
 - \bigcirc 0.5 m/s
 - $\bigcirc -0.5 \text{ m/s}$
 - \bigcirc -0.1 m/s
- **e** ¿Cuál es la rapidez instantanea del tigre en t=6 s?
 - \bigcirc 1.5 m/s
 - \bigcirc 2 m/s
 - © 0 m/s
 - \bigcirc -0.25 m/s
- f ¿Cuál es la rapidez instantanea del tigre en t=3 s?
 - (A) 1.5 m/s
 - (B) 2 m/s
 - © 0 m/s
 - \bigcirc 0.5 m/s

Ejercicio 13	de 8 puntos
Con base en tu entendimiento de las fuerzas, contesta las	siguientes preguntas argumentando tu respuesta.
¿Cómo identificas cuando un objeto cambia su estado de movimiento?	c ¿Por qué las naves y sondas espaciales pueden mantener su movimiento?
b ¿Qué origina que un objeto cambie el estado de movimiento del punto anterior?	d ¿Qué relación existe entre el plano inclinado y la cuña?
Ejercicio 14	de 10 puntos
Ejercicio 14 Señala si son verdaderas o falsas las siguientes afirmacione	·
-	es: f La distancia siempre es una cantidad positiva.
Señala si son verdaderas o falsas las siguientes afirmaciono • La velocidad y la rapidez se miden en unidades dis-	es: f La distancia siempre es una cantidad positiva. Uerdadero Falso
Señala si son verdaderas o falsas las siguientes afirmaciono • La velocidad y la rapidez se miden en unidades distintas.	es: f La distancia siempre es una cantidad positiva.
Señala si son verdaderas o falsas las siguientes afirmacione • La velocidad y la rapidez se miden en unidades distintas. • Verdadero • Falso	es: f La distancia siempre es una cantidad positiva. Uerdadero Falso 9 En la aceleración se recorren distancias iguales en
 Señala si son verdaderas o falsas las siguientes afirmacione La velocidad y la rapidez se miden en unidades distintas. Verdadero Falso No es lo mismo desplazamiento que trayectoria. Verdadero Falso C La rapidez tiene magnitud y dirección. 	es: f La distancia siempre es una cantidad positiva. Uerdadero Falso 9 En la aceleración se recorren distancias iguales en tiempos iguales.
Señala si son verdaderas o falsas las siguientes afirmacione La velocidad y la rapidez se miden en unidades distintas. Verdadero Falso No es lo mismo desplazamiento que trayectoria. Verdadero Falso	f La distancia siempre es una cantidad positiva. Verdadero Falso 9 En la aceleración se recorren distancias iguales en tiempos iguales. Verdadero Falso h La aceleración es el cambio en el valor de la distan-
 Señala si son verdaderas o falsas las siguientes afirmacione La velocidad y la rapidez se miden en unidades distintas. Verdadero	f La distancia siempre es una cantidad positiva. Verdadero Falso 9 En la aceleración se recorren distancias iguales en tiempos iguales. Verdadero Falso h La aceleración es el cambio en el valor de la distancia. Verdadero Falso i La aceleración es una variable cinemática.
 Señala si son verdaderas o falsas las siguientes afirmacione La velocidad y la rapidez se miden en unidades distintas. Verdadero	f La distancia siempre es una cantidad positiva. Verdadero Falso 9 En la aceleración se recorren distancias iguales en tiempos iguales. Verdadero Falso h La aceleración es el cambio en el valor de la distancia. Verdadero Falso i La aceleración es una variable cinemática. Verdadero Falso
 Señala si son verdaderas o falsas las siguientes afirmacione La velocidad y la rapidez se miden en unidades distintas. Verdadero	f La distancia siempre es una cantidad positiva. Verdadero Falso 9 En la aceleración se recorren distancias iguales en tiempos iguales. Verdadero Falso h La aceleración es el cambio en el valor de la distancia. Verdadero Falso i La aceleración es una variable cinemática.

Ejercicio 15	de 5 ρuntos		
Elige la respuesta para cada pregunta, a partir de las imá	ágenes de la figura 6.		
AUTOBÚS ESCOLAR	 C Si la masa del segundo autobús es la mitad del primero y ambos conductores pisan el acelerador con la misma fuerza y mantienen el autobús en la misma dirección, ¿qué pasa con su aceleración? ☐ Se mantiene igual. 		
	☐ Es el doble que la del primero.		
	\square Es la mitad de la del primero.		
AUTOBUS ESCOLAR	d Si el conductor del autobús baja a algunos niños, de tal manera que su masa sea sólo un cuarto de su masa inicial, cuando el conductor pisa el acele-		
Figura 6: Dibujo de un autobus con muchos niños (arriba), y otro autobus con pocos niños.	rador con la misma fuerza y mantiene el camión en la misma dirección, ¿qué pasa con su acelaración?		
¿Cuál podría aumentar más rápido su velocidad? ☐ El autobús con más niños. ☐ El autobús con menos niños.	☐ Aumenta cuatro veces.☐ Se mantiene igual.☐ Disminuye a la cuarta parte.		
Los dos autobuses aumentan su velocidad con la misma rapidez.	e El conductor del autobús da vuelta hacia la derecha y los niños sienten una fuerza que los empuja. ¿En qué dirección sienten los niños esta fuerza?		
b Si ambos autobuses se mueven a la misma velocidad, ¿a cuál de ellos le resultaría más difícil frenar?	Los niños sienten que son empujados hacia abajo.		
\square Los dos autobuses requieren el mismo esfuerzo.	Los niños sienten que son empujados ha- cia la derecha del autobús.		
☐ El autobús con menos niños.	\square Los niños sienten que son empujados ha-		
☐ El autobús con más niños.	cia la izquierda del autobús.		

Ejercicio 16	de 10 puntos			
Elige la respuesta para cada pregunta, a partir de las imágenes de la figura ??.				
Sin Carga Con Carga Figura 7: Representación de dos vehículos de carga.	f ¿Cuál podría aumentar más rapido su velocidad? □ El camión sin carga. □ El camión cargado. □ Los dos camiones aumentan su velocidad con la misma rapidez.			
 Cuál de ellos será más fácil poner en movimiento? ☐ El camión sin carga. ☐ El camión cargado. ☐ Los dos camiones requieren el mismo esfuerzo. Bi ambos camiones se movieran a la misma velocidad, ¿a cuál de ellos le resultaría más dificil frenar? ☐ El camión sin carga. 	9 Si ambos camiones se movieran a la misma velocidad, ¿a cuál de ellos le resultaría más difícil frenar? ☐ El camión sin carga. ☐ El camión cargado. ☐ Los dos camiones requieren el mismo esfuerzo. h ¿Cuál de los camiones podría tomar una curva con más dificultad si ambos se están moviendo a la mis-			
 □ El camión cargado. □ Los dos camiones requieren el mismo esfuerzo. c ¿Cuál podría aumentar más rápido su velocidad? □ El camión sin carga. 	ma velocidad? □ El camión sin carga. □ El camión cargado. □ Los dos camiones requieren el mismo esfuerzo.			
☐ El camión cargado. ☐ Los dos camiones aumentan su velocidad con la misma rapidez. d ¿Cuál de los camiones podría tomar una curva con más facilidad si ambos se están moviendo a la misma velocidad? ☐ El camión sin carga. ☐ El camión cargado.	i Si se reduce la carga de arena de tal manera que la masa del camión sea la mitad de su masa inicial, mientras el conductor pisa el acelerador con la misma fuerza y mantiene el camión en la misma dirección, ¿qué pasa con la acelaración del camión? Aumenta al doble. Disminuye a la mitad. No cambia.			
 Los dos camiones requieren el mismo esfuerzo. e ¿Cuál de ellos será más difícil poner en movimiento? ☐ El camión sin carga. ☐ El camión cargado. ☐ Los dos camiones requieren el mismo esfuerzo. 	j Si el camión cargado va dejando gradualmente parte de su cargamento mientras el conductor pisa el acelerador con la misma fuerza y mantiene el camión en la misma dirección, ¿qué pasa con su rapidez? Aumenta. Disminuye. No cambia.			

Ejercicio 17	de 8 puntos
Elige a qué ley universal pertenece cada ejemplo.	
 □ La aceleración que experimenta un objeto es directamente proporcional a la fuerza aplicada e inversamente proporcional a su masa, y tiene lugar en la dirección de ella. □ 1° ley de Newton. □ 2° ley de Newton. □ Ley de la gravitación. b Si la Luna no fuera afectada por la Tierra, seguiría una trayectoria en línea recta a velocidad constante. □ 1° ley de Newton. □ 2° ley de Newton. □ 3° ley de Newton. □ 3° ley de Newton. □ Ley de la gravitación. 	e Si la fuerza gravitacional, al actuar sobre cualquier objeto, es directamente proporcional a su masa. □ 1° ley de Newton. □ 2° ley de Newton. □ 3° ley de Newton. □ Ley de la gravitación. f Cuando un objeto ejerce una acción sobre otro, este último ejerce una reacción de igual magnitud y en dirección opuesta. □ 1° ley de Newton. □ 2° ley de Newton. □ 3° ley de Newton. □ 1° ley de Newton.
 C Esta ley establece que la fuerza gravitacional entre dos objetos es directamente proporcional a sus masas e inversamente proporcional al cuadrado de la distancia que hay entre los dos. 1° ley de Newton. 2° ley de Newton. 3° ley de Newton. Ley de la gravitación. d Al empujar una caja que está sobre un suelo liso, ésta acelera. 1° ley de Newton. 2° ley de Newton. 3° ley de Newton. 1° ley	 9 Todo objeto tiende a mantener su estado de reposo o movimiento a velocidad constante, mientras una fuerza no actúe sobre él. □ 1° ley de Newton. □ 2° ley de Newton. □ Ley de la gravitación. h Un jet descarga un chorro de fluido hacia atrás a gran velocidad; sin embargo, la aeronave se mueve hacia adelante. □ 1° ley de Newton. □ 2° ley de Newton. □ 3° ley de Newton. □ 1° ley de la gravitación.