ECE C147/C247, Winter 2022

Homework #3

Neural Networks & Deep Learning

Prof. J.C. Kao

University of California, Los Angeles; Department of ECETAs: T. Monsoor, T. Wang, P. Lu & Y. Li

Due Monday, 31 Jan 2022, by 11:59pm to Gradescope. 100 points total.

1. (15 points) **Backpropagation for autoencoders.** In an autoencoder, we seek to reconstruct the original data after some operation that reduces the data's dimensionality. We may be interested in reducing the data's dimensionality to gain a more compact representation of the data.

For example, consider $\mathbf{x} \in \mathbb{R}^n$. Further, consider $\mathbf{W} \in \mathbb{R}^{m \times n}$ where m < n. Then $\mathbf{W}\mathbf{x}$ is of lower dimensionality than \mathbf{x} . One way to design \mathbf{W} so that $\mathbf{W}\mathbf{x}$ still contains key features of \mathbf{x} is to minimize the following expression

$$\mathcal{L} = \frac{1}{2} \left\| \mathbf{W}^T \mathbf{W} \mathbf{x} - \mathbf{x} \right\|^2$$

with respect to **W**. (To be complete, autoencoders also have a nonlinearity in each layer, i.e., the loss is $\frac{1}{2} \| f(\mathbf{W}^T f(\mathbf{W} \mathbf{x})) - x \|^2$. However, we'll work with the linear example.)

- (a) (3 points) In words, describe why this minimization finds a W that ought to preserve information about x.
- (b) (3 points) Draw the computational graph for \mathcal{L} . Hint: You can set up the computational graph to this problem in a way that will allow you to solve for part (d) without taking 4D tensor derivative.
- (c) (3 points) In the computational graph, there should be two paths to \mathbf{W} . How do we account for these two paths when calculating $\nabla_{\mathbf{W}} \mathcal{L}$? Your answer should include a mathematical argument.
- (d) (6 points) Calculate the gradient: $\nabla_{\mathbf{W}} \mathcal{L}$.
- 2. (20 points) Backpropagation for Gaussian-process latent variable model. (Optional for students in C147: Please write 'I am a C147 student' in the solution and you will get full credit for this problem). An important component of unsupervised learning is visualizing high-dimensional data in low-dimensional spaces. One such nonlinear algorithm to do so is from Lawrence, NIPS 2004, called GP-LVM. GP-LVM optimizes the maximum-likelihood of a probabilistic model. We won't get into the details here, but rather to the bottom line: in this paper, a log-likelihood has to be differentiated with respect to a matrix to derive the optimal parameters.

To do so, we will apply the chain rule for multivariate derivatives via backpropagation. The log-likelihood is:

$$\mathcal{L} = -c - \frac{D}{2}\log|\mathbf{K}| - \frac{1}{2}\mathrm{tr}(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^T)$$

where $\mathbf{K} = \alpha \mathbf{X} \mathbf{X}^T + \beta^{-1} \mathbf{I}$ and c is a constant. To solve this, we'll take the derivatives with respect to the two terms with dependencies on \mathbf{X} :

$$\mathcal{L}_{1} = -\frac{D}{2} \log |\alpha \mathbf{X} \mathbf{X}^{T} + \beta^{-1} \mathbf{I}|$$

$$\mathcal{L}_{2} = -\frac{1}{2} \operatorname{tr} \left((\alpha \mathbf{X} \mathbf{X}^{T} + \beta^{-1} \mathbf{I})^{-1} \mathbf{Y} \mathbf{Y}^{T} \right)$$

Hint: To receive full credit, you will be required to show all work. You may use the following matrix derivative without proof:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{K}} = -\mathbf{K}^{-T} \frac{\partial \mathcal{L}}{\partial \mathbf{K}^{-1}} \mathbf{K}^{-T}.$$

Also, consider the matrix operation, $\mathbf{Z} = \mathbf{X}\mathbf{Y}$. If we have an upstream derivative, $\partial \mathcal{L}/\partial \mathbf{Z}$, then backpropagate the derivatives in the following way:

$$\begin{array}{rcl} \frac{\partial \mathcal{L}}{\partial \mathbf{X}} & = & \frac{\partial \mathcal{L}}{\partial \mathbf{Z}} \mathbf{Y}^T \\ \frac{\partial \mathcal{L}}{\partial \mathbf{Y}} & = & \mathbf{X}^T \frac{\partial \mathcal{L}}{\partial \mathbf{Z}} \end{array}$$

- (a) (3 points) Draw a computational graph for \mathcal{L}_1 .
- (b) (6 points) Compute $\frac{\partial \mathcal{L}_1}{\partial \mathbf{X}}$.
- (c) (3 points) Draw a computational graph for \mathcal{L}_2 .
- (d) (6 points) Compute $\frac{\partial \mathcal{L}_2}{\partial \mathbf{X}}$.
- (e) (2 points) Compute $\frac{\partial \mathcal{L}}{\partial \mathbf{X}}$.
- 3. (40 points) **2-layer neural network.** Complete the two-layer neural network Jupyter notebook. Print out the entire notebook and relevant code and submit it as a pdf to gradescope. Download the CIFAR-10 dataset, as you did in HW #2.
- 4. (25 points) **General FC neural network.** Complete the FC Net Jupyter notebook. Print out the entire notebook and relevant code and submit it as a pdf to gradescope.