EINFÜHRUNG IN DIE FUNKTIONALANALYSIS

Inhaltsverzeichnis

Organisatorisches	2	
1. Normierte Räume	2	
1.1. Eigenschaften normierter Räume	8	
1.2. Quotientenräume und die Räume L^p	14	
2. Beschränkte lineare Operatoren	20	14.11.13
2.1. Dualräume	24	
2.2. Satz von Hahn-Banach	25	
2.3. Trennungssatz für konvexe Mengen	26	
3. Hauptsätze für lineare Operatoren auf Ba	anachräumen 33	
3.1. Bairesche Kategoriensatz	33	
3.2. Prinzip der gleichmäßigen Beschränkthe	eit 33	
3.3. Satz von der offenen Abbildung	35	
3.4. Der Satz von abgeschlossenen Graphen	37	
4. Hilberträume	38	
4.1. Grundlegendes	38	
4.2. Projektionen und der Rieszsche Darstel	lungssatz 40	
4.3. Orthonormalsysteme	43	
5. Übungsblätter	44	
5.1. Übungsblatt 1	44	
5.2. Übungsblatt 2	45	
5.3. Übungsblatt 3	47	
5.4. Übungsblatt 8	49	
5.5. Übungsblatt 10	51	

Organisatorisches

Vorlesung: Di 12.15 - 13.45 HS4; Mi 14.15 - 15.45 HS4

15.10.13

Übung: Do 16.00 - 17.30 HS4

Dozent: Christian Lageman christian.lageman@mathematik.uni-wuerzburg.de Sprechstunde: Mi 10.00 - 11.30 Übungsblätter: Abgabe Vorlesung Dienstag

Wuecampus:

Klausur: 5.4.2014, 14:00 HS4

Literatur: D. Werner, Funktionalanalysis, Springer-Verlag 2011 F. Hirzebruch, W. Scharlau, Einführung in die Funktionalanalysis, Sprektrum Akademischer Verlage, 1991 E. Kreyzig, Introduction Functional Analysis with Applications, John Wiley & Songs, 1989 R. Meise, D. Vogt, Einführung in die Funktionalanalysis, Vieweg + Teubner Verlag, 2011

Voraussetzungen: Lineare Algebra I und II: Analysis I und II: Veriefung Analysis; insbesondere metrische Räume, Folgen in metrischen Räumen, offene und abgeschlossene Mengen, Integration im \mathbb{R}^n

1. Normierte Räume

Sprechen wir von einem \mathbb{K} -Vektorraum, so meinen wir einen \mathbb{R} - oder \mathbb{C} -Vektorraum, d.h. die entsprechenden Definitionen und Sätze gelten sowohl für reelle als auch für komplexe Vektorräume. Wir verwenden \mathbb{K} als Platzhalter für \mathbb{R} bzw. \mathbb{C} in den Sätzen und Definitionen.

Definition 1. Sei X ein K-Vektorraum. Wir nennen eine Funktion $\|\cdot\|: X \to \mathbb{R}$ $[0,\infty)$ eine Halbnorm auf X, falls gilt:

- (1) $\forall_{v \in X, \lambda \in \mathbb{K}} : ||\lambda v|| = |\lambda| \cdot ||v||$ (2) $\forall_{v, w \in X} : ||v + w|| \le ||v|| + ||w||$ (Dreiecksungleichung)

Gilt zusätzlich noch $\forall v \in X : ||v|| = 0 \implies v = 0$, so nennen wir $||\cdot||$ eine Norm auf X. Ist $\|\cdot\|$ eine Norm auf X, so bezeichnen wir $(X, \|\cdot\|)$ als normierten Raum.

Eine Norm $\|\cdot\|$ auf einem K-Vektorraum X induziert durch $d(v,w) = \|v-w\|$ eine Metrik $d: X \times X \to [0, \infty)$ auf X, die wir als kanonische Metrik auf $(X, \|\cdot\|)$ bezeichnen.

Ein normierter Raum ist damit auch ein metrischer Raum. Die Begriffe von offenen und abgeschlossenen Mengen, Konvergenz von Folgen, Cauchy-Folgen, Vollständigkeit, Stetigkeit von Abbildungen ergeben sich für normierte Räume aus den entsprechenden Begriffen für metrische Räume.

Sei $(X, \|\cdot\|)$ ein normierter Raum. Eine Folge (v_n) in X heißt konvergent gegen $v^* \in X$ falls gilt:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}: \|v_n - v^*\| < \varepsilon$$

wobei $||v_n - v^*|| = d(v_n, v^*)$ mit der kanonischen Metrik d ist.

Für einen normierten Raum $(X, \|\cdot\|)$ notieren wir:

- (1) den Abschluss einer Menge $M \subset X$ mit \overline{M} ,
- (2) den Rand einer Menge $M \subset X$ mit ∂M ,
- (3) das Innere einer Menge $M \subset X$ mit int M,

Aus der entsprechenden Definitionen für metrische Räume ergibt sich: eine Folge (v_n) in einem normierten Raum $(X, \|\cdot\|)$ heißt Cauchy-Folge, falls gilt

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}: ||v_n-v_m||<\varepsilon.$$

Ein metrischer Raum und entsprechend auch ein normierter Raum, in dem jede Cauchy-Folge konvergiert, nennt man $vollst \ddot{a}n dig$.

(1) die offene Kugel um $v \in X$ mit Radius r mit $U_r(v) = \{w \in X : ||v-w|| < r\}$.

Definition 2. Einen vollständigen normierten Raum bezeichnet man als *Banach-raum*.

Beispiel 1. zur Verdeutlichung.

- (1) Versehen wir \mathbb{R}^n bzw \mathbb{C}^n mit einer Norm $\|\cdot\|$, so ist der normierte Raum $(\mathbb{R}^n,\|\cdot\|)$ bzw. $(\mathbb{C}^n,\|\cdot\|)$ ein Banachraum. Es sei daran erinnert, dass auf einem endlich-dimensionalen Vektorraum alle Normen äquivalent sind, d.h. sind $\|\cdot\|_*$, $\|\cdot\|_+$ Normen auf einem endlichen-dimensionalen \mathbb{K} -Vektorraum X, so gibt es Konstanten m, M > 0 mit $\forall_{v \in X} : m\|v\|_* \leq \|v\|_+ \leq M\|v\|_*$. Die Vollständigkeit im \mathbb{R}^n bzw. \mathbb{C}^n ist damit nur für eine Norm nachzuweisen und aus der Analysis bekannt.
- (2) Sei M eine nicht-leere Menge. Wir bezeichnen mit $l^{\infty}(M)$ den \mathbb{K} -Vektorraum der beschränkten Funktionen $M \to \mathbb{K}$. Wir definieren auf $l^{\infty}(M)$ die Norm $\|\cdot\|_{\infty}$ durch $\|f\|_{\infty} = \sup_{x \in M} |f(x)|$ für $f \in l^{\infty}(M)$. Die Norm ist wohldefiniert, da f beschränkt ist. Man bezeichnet $\|\cdot\|_{\infty}$ auch als die sogenannte Supremumsnorm. $\|\cdot\|_{\infty}$ ist eine Norm, denn:
 - (a) für $f \in l^{\infty}(M)$, $\lambda \in \mathbb{K}$ gilt: $\|\lambda f\|_{\infty} = \sup_{x \in M} |\lambda f(x)| = \sup_{x \in M} |\lambda| \|f(x)\| = \|\lambda\| \|f\|_{\infty}$.
 - (b) für $f, g \in l^{\infty}(M)$ gilt: $||f+g||_{\infty} = \sup_{x \in M} |(f+g)(x)| = \sup_{x \in M} |f(x)+g(x)| \le \sup_{x \in M} |f(x)| + |g(x)| \le \sup_{x \in M} |f(x)| + \sup_{x \in M} |g(x)| = ||f||_{\infty} + ||g||_{\infty}.$
 - (c) für $f \in l^{\infty}(M)$ gilt: $||f||_{\infty} = 0 \implies \sup_{x \in M} |f(x)| = 0 \implies \forall_{x \in M} : |f(x)| = 0 \implies f \equiv 0.$

 $(l^{\infty}(M), \|\cdot\|_{\infty})$ ist also ein normierter Raum. Wir zeigen nun, dass der Raum vollständig ist. Sei dazu (f_n) eine Cauchy-Folge in $l^{\infty}(M)$. Es gilt also $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}:\|f_n-f_m\|<\varepsilon$. Es gilt außerdem $\|f_n-f_m\|=\sup_{x\in M}|f_n(x)-f_m(x)|$. Dies impliziert, dass $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}\forall_{x\in M}:|f_n(x)-f_m(x)|<\varepsilon$. Insbesondere gilt für alle $x\in M$ daher $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}:|f_n(x)-f_m(x)|<\varepsilon$, und also ist $(f_n(x))$ eine Cauchy-Folge für jedes $x\in M$. Da \mathbb{R} und \mathbb{C} vollständig sind, ist für jedes $x\in M$ die Folge $(f_n(x))$ konvergent. Wir erhalten die Funktion $f^*:M\to\mathbb{K}$ durch $\forall_{x\in M}:f^*(x)=\lim_{n\to\infty}f_n(x)$. Wir erhalten eine Funktion $f^*:M\to\mathbb{K}$ mit $\forall_{x\in M}:f^*(x)=\lim_{n\to\infty}f_n(x)$. Wir hatten uns überlegt, dass

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}\forall_{x\in M}:|f_n(x)-f_m(x)|<\varepsilon.$$

Damit gibt es ein $N \in \mathbb{N}$ mit $\forall_{n,m>N} \forall_{x \in M} : |f_n(x) - f_m(x)| < 1$. (Dies ist äquivalent zu $f_m(x) \in U_1(f_n(x))$.) Also $\forall_{m>N} \forall_{x \in M} : f_m(x) \in U_1(f_{N+1}(x))$. Somit $\forall_{x \in M} : f^*(x) \in U_1(f_{N+1}(x))$. Damit $\forall_{x \in M} : |f_{N+1}(x) - f^*(x)| \leq 1$. Da $f_{N+1} \in l^{\infty}(M)$, also beschränkt ist, muss auch f^* beschränkt sein. Wir erhalten $f^* \in l^{\infty}(M)$. Wir zeigen nun die Konvergenz von (f_n) gegen f^* . Sei $\varepsilon > 0$ gegeben. Dann gibt es sein $N \in \mathbb{N}$, so dass $\forall_{n,m>N} \forall_{x \in M} : f^*(M) \in \mathbb{N}$.

 $|f_n(x)-f_m(x)|<\frac{\varepsilon}{3}$. Also $\forall_{x\in M}\forall_{n>N}\forall_{m>N}:|f_n(x)-f_m(x)|<\frac{\varepsilon}{3}$. Da es zu jedem $x\in M$ und n>N ein $m(x,n)\in\mathbb{N}, m(x,n)>N$ gibt mit

$$|f_{m(x,n)}(x) - f^*(x)| < \underbrace{\frac{\varepsilon}{2} - |f_n(x) - f_{m(x,n)}(x)|}_{> \frac{\varepsilon}{2} - \frac{\varepsilon}{2} = \frac{1}{6}\varepsilon}.$$

folgt

$$\forall_{x \in M} \forall_{n > N} : \underbrace{|f_n(x) - f_{m(x,n)}(x)| + |f_{m(x,n)}(x) - f^*(x)|}_{|f_n(x) - f^*(x)| \le} < \frac{\varepsilon}{2} - |f_n(x) - f_{m(x,n)}(x)| + |f_n(x) - f_{m(x,n)}(x)| < \frac{\varepsilon}{2}.$$

Also $\forall_{n>N}\forall_{x\in M}: |f_n(x)-f^*(x)|<\frac{\varepsilon}{2}.$ Damit $\forall_{n>N}: \|f_n-f^*\|_{\infty}\leq \frac{\varepsilon}{2}\leq \varepsilon.$ Damit konvergiert (f_n) gegen $f^*.$ Somit ist $(l^{\infty}(M),\|\cdot\|_{\infty})$ ein Banachraum.

Theorem 1. Sei $(X, \|\cdot\|)$ ein normierter Raum und $U \subset X$ ein Unterraum von X.

Ist $(X, \|\cdot\|)$ ein Banachraum und U eine abgeschlossene Teilmenge von X, so ist $(U, \|\cdot\|)$ ein Banachraum.

Ist U vollständig, so ist U eine abgeschlossene Teilmenge von X.

Beweis. Der Beweis gliedert sich in zwei Teile.

- (1) Sei (u_n) eine Cauchy-Folge in $(U, \|\cdot\|)$. Dann ist (u_n) eine Cauchy-Folge in $(X, \|\cdot\|)$. Also konvergiert (u_n) gegen ein $u^* \in X$. Damit ist $u^* \in \overline{U}$, also $u^* \in U$. Somit ist U vollständig.
- (2) Sei U vollständig. Ist $u^* \in \overline{U} \setminus U$, so gibt es Folge (u_n) in U die gegen u^* konvergiert. Diese Folge ist eine Cauchy-Folge in U und konvergiert somit gegen einen Grenzwert $u^{**} \in U$. Wegen der Eindeutigkeit von Grenzwerten folgt $u^* = u^{**} \in U$. Also $\overline{U} \setminus U = \emptyset$ und U abgeschlossen.

Beispiel 2. Wir verwenden die Notation $l^{\infty} = l^{\infty}(\mathbb{N})$. Da eine Folge in \mathbb{K} eine Funktion $\mathbb{N} \to \mathbb{K}$ ist, ist l^{∞} also der Raum aller beschränkten Folgen in \mathbb{K} . Wir definieren die folgenden Unterräume von l^{∞} : $c = \{(x_n)|x_n \in \mathbb{K}, (x_n) \text{ konvergent }\}$, $c_0 = \{(x_n)|x_n \in \mathbb{K}, \lim_{n \to \infty} x_n = 0\}$, $d = \{(x_n)|x_n \in \mathbb{K}, x_n \text{bis auf endlich viele Folgenglieder gleich }0\}$. Da die konvergente Folge in \mathbb{K} in \mathbb{R} bzw. \mathbb{C} beschränkt ist, folgt $d \subset c_0 \subset c \subset l^{\infty}$. Sei $\|\cdot\|_{\infty}$ die Supremumsnorm auf l^{∞} . Es sind $(d, \|\cdot\|_{\infty})$, $(c_0, \|\cdot\|_{\infty})$, $(c, \|\cdot\|_{\infty})$ normierte Räume. Welche dieser Räume sind Banachräume? Mit Satz 1 reicht es zu zeigen, dass der entsprechende Raum abgeschlossen in l^{∞} ist.

Sei (f_n) eine Folge in c, die konvergent gegen ein $f^* \in l^{\infty}$ ist. Um Doppelindizes zu vermeiden, verwenden wir die Darstellung von Folgen als Funktionen $\mathbb{N} \to \mathbb{K}$. Da (f_n) eine Folge in c ist, können wir durch $x_n = \lim_{m \to \infty} f_n(m)$ eine Folge (x_n) in \mathbb{K} definieren. Es gilt $|x_n - x_l| \leq \sup_{m \in \mathbb{N}} |f_n(m) - f_l(m)| = ||f_n - f_l||_{\infty}$. Da (f_n) eine Cauchy-Folge ist, ist durch diese Abschätzung die Folge (x_n) eine Cauchy-Folge in \mathbb{K} . Also konvergiert (x_n) gegen ein $x^* \in \mathbb{K}$. Wir wollen nun zeigen, dass f^* gegen x^* konvergiert. Sei $\varepsilon > 0$. Wähle $N \in \mathbb{N}$, so dass $||f^* - f_N|| < \frac{\varepsilon}{3}$ und $|x_N - x^*| < \frac{\varepsilon}{3}$. Wähle $M \in \mathbb{N}$, so dass für alle m > M gilt $|f_N(m) - x_N| < \frac{\varepsilon}{3}$. Dann gilt für alle m > M

$$|f^*(m)-x^*| \leq \underbrace{|f^*(m)-f_N(m)|}_{\leq ||f^*-f_N||_{\infty}} + |\underbrace{f_N(m)-x_N}_{\leq \frac{\varepsilon}{3}}| + |\underbrace{x_N-x^*}_{\leq \frac{\varepsilon}{3}}| \leq \underbrace{||f^*-f_N||_{\infty}}_{\leq \frac{\varepsilon}{3}} + \frac{2}{3}\varepsilon < \varepsilon.$$

22.10.13

Also ist f^* konvergente Folge und $f^* \in c$. Damit ist c abgeschlossen und nach Satz 1 ein Banachraum.

Sei (f_n) eine Folge in c_0 die konvergent gegen ein $f^* \in l^{\infty}$ ist. Wiederholen wir das obige Argument, so erhalten wir zusätzlich dass (x_n) kontant 0 ist. Damit ist $x^* = 0$ und $f^* \in c_0$. Somit ist c_0 abgeschlossen und nach Satz 1 ein Banachraum. Der Raum $(d, \|\cdot\|_{\infty})$ ist kein Banachraum.

Wir definieren nun weitere Folgenräume.

Definition 3. Für $p \in \mathbb{R}$ mit $1 \le p < \infty$ setzen wir $l^p = \{(x_n) | x_n \in \mathbb{K}, \sum_{n=1}^{\infty} |x_n|^p < \infty \}$ und $\|(x_n)\|_p = (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}}$ für $(x_n) \in l^p$. Wir wollen im Folgenden zeigen, dass $(l^p, \|\cdot\|_p)$ Banachräume sind.

Theorem 2. Für $1 \le p < \infty$ ist l^p versehen mit der Addition und Skalarmultiplikation von Folgen ein \mathbb{K} -Vektorraum.

Beweis. Offensichtlich ist die konstante Folge (a_n) für alle $n \in \mathbb{N}$ $a_n = 0$ in l^p enthalten. Desweiteren ist für $\lambda \in \mathbb{K}$ und $(x_n) \in l^p$ auch $(\lambda x_n) \in l^p$, da $\sum_{n=1}^{\infty} |\lambda x_n|^p = |\lambda|^p \sum_{n=1}^{\infty} |x_n|^p$ konvergiert. Schließlich, sind $(x_n), (y_n) \in l^p$, so gilt $\sum_{n=1}^{\infty} |x_n + y_n|^p \le \sum_{n=1}^{\infty} (|x_n| + |y_n|)^p \le \sum_{n=1}^{\infty} (2 \max\{|x_n|, |y_n|\})^p = 2^p \sum_{n=1}^{\infty} (\max\{|x_n|, |y_n|\})^p \le 2^p \sum_{n=1}^{\infty} |x_n|^p + |y_n|^p = 2^p (\sum_{n=1}^{\infty} |x_n|^p + \sum_{n=1}^{\infty} |y_n|^p) < \infty$. Also $(x_n + y_n) \in l^p$. \square

Theorem 3. Holdesche Ungleichung

Sind $(x_n) \in l^1$ und $(y_n) \in l^{\infty}$, so ist $(x_n y_n) \in l^1$ und $\|(x_n y_n)\|_1 \leq \|(x_n)\|_1 \|(y_n)\|_{\infty}$. Sei $1 und <math>q = \frac{p}{p-1}$. Sind $(x_n) \in l^p$ und $(y_n) \in l^q$, so ist $(x_n y_n) \in l^1$ und $\|(x_n y_n)\|_1 \leq \|(x_n)\|_p \|(y_n)\|_q$

Beweis. Der Beweis besteht aus zwei Teilen.

(1) Es gilt
$$\sum_{n=1}^{\infty} |x_n y_n| \le \sum_{n=1}^{\infty} |x_n| \|(y_n)\|_{\infty} = \|(y_n)\|_{\infty} \sum_{n=1}^{\infty} |x_n| = \|(y_n)\|_{\infty} \|(x_n)\|_{1} < \sum_{n=1}^{\infty} |x_n y_n| \le \sum_{n=1}^{\infty} |x_n y_n| \le \sum_{n=1}^{\infty} |x_n| \|(y_n)\|_{\infty} = \|(y_n)\|_{\infty} \sum_{n=1}^{\infty} |x_n y_n| \le \sum_$$

(2) Wir haben $\frac{1}{p} + \frac{1}{q} = 1$. Sei a, b > 0 und $A = p \log a$ sowie $B = q \log b$. Die Funktion $t \mapsto \exp(t)$ ist konvenx, also $\exp(\frac{1}{p}A + \frac{1}{q}B) \le \frac{1}{p}\exp(A) + \frac{1}{q}\exp(B)$. Somit

$$ab = \exp(\underbrace{\log a}_{=\frac{1}{p}A} + \underbrace{\log b}_{=\frac{1}{q}B}) \le \frac{1}{p} \exp(\underbrace{p \log a}_{A}) + \frac{1}{q} \exp(\underbrace{q \log b}_{B}) = \frac{1}{p}a^{p} + \frac{1}{q}b^{q}.$$

Wir haben für $(x_n) \in l^p, (y_n) \in l^q$ mit $||(x_n)||_p = 1 = ||(y_n)||_q$. Es gilt

$$(1.1) \sum_{n=1}^{\infty} |x_n| |y_n| \le \sum_{n=1}^{\infty} \left(\frac{1}{p} |x_n|^p + \frac{1}{q} |y_n|^q\right) = \frac{1}{p} \sum_{n=1}^{\infty} |x_n|^p + \frac{1}{q} \sum_{n=1}^{\infty} |y_n|^q = \frac{1}{p} + \frac{1}{q} = 1.$$

Sind $(x_n) \in l^p$, $(y_n) \in l^q$ mit $||(x_n)||_p \neq 0$ und $||(y_n)||_q \neq 0$, so ist mit (1.1)

$$\underbrace{\sum_{n=1}^{\infty} |x_n y_n|}_{=\|(x_n)\|_p} = \|(x_n)\|_p \|(y_n)\|_q \sum_{m=1}^{\infty} \frac{|x_m|}{\|(x_n)\|_p} \cdot \frac{|y_m|}{\|(y_n)\|_q} \le \|(x_n)\|_p \|(y_n)\|_q \cdot 1.$$

Sind $(x_n) \in l^p$ und $(y_n) \in l^q$ mit $||(x_n)||_p = 0$ oder $||(y_n)||_q = 0$, so ist $(x_n y_n) \in l^1$ und $||(x_n y_n)||_1 = 0$.

Theorem 4. Minkowskische Ungleichung. Sei $1 \le p < \infty$. Für $(x_n), (y_n) \in l^p$ gilt $\|(x_n + y_n)\|_p \le \|(x_n)\|_p + \|(y_n)\|_p$.

Beweis. Für p=1 erhalten wir die Ungleichung direkt. Sei p>1 und $q=\frac{p}{p-1}$. Weiterhin seien $(x_n), (y_n) \in l^p$. Nach Satz 2 ist $(x_n+y_n) \in l^p$ und $\sum_{n=1}^{\infty} |x_n+y_n|^p = \sum_{n=1}^{\infty} (|x_n+y_n|^{p-1})^q$ konvergent¹. Somit ist $(|x_n+y_n|^{p-1}) \in l^q$. Nach Satz 3 ist damit $(|x_n||x_n+y_n|^{p-1}) \in l^1$ und $(|y_n||x_n+y_n|^{p-1}) \in l^1$ und wir erhalten

$$\sum_{n=1}^{\infty} |x_n| |x_n + y_n|^{p-1} = \|(|x_n| |x_n + y_n|^{p-1})\|_1$$

$$\leq \|(x_n)\|_p \|(|x_n + y_n|^{p-1})\|_q$$

$$= \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} (|x_n + y_n|^{p-1})^q\right)^{\frac{1}{q}}$$

$$= \|(x_n)\|_p (\|(x_n + y_n)\|_p)^{p-1}.$$

Also $\sum_{n=1}^{\infty} |y_n| |x_n + y_n|^{p-1} \le ||(x_y)||_p (||(x_n + y_n)||_p)^{p-1}$. Somit

$$\begin{aligned} \|(x_n + y_n)\|_p^p &= \sum_{n=1}^{\infty} \underbrace{|x_n + y_n|^p}_{=|x_n + y_n| \cdot |x_n + y_n|^{p-1}} \\ &\leq \sum_{n=1}^{\infty} (|x_n| + |y_n|) \cdot |x_n + y_n|^{p-1} \\ &\leq \sum_{n=1}^{\infty} |x_n| |x_n + y_n|^{p-1} + \sum_{n=1}^{\infty} |y_n| |x_n + y_n|^{p-1} \\ &\leq \|(x_n)\|_p (\|(x_n + y_n)\|_p)^{p-1} + \|(y_n)\|_p (\|(x_n + y_n)\|_p)^{p-1} \\ &= (\|(x_n)\|_p + \|(y_n)\|_p) \|(x_n + y_n)\|_p^{p-1}. \end{aligned}$$

Für $||(x_n+y_n)||_p \neq 0$ liefert Division die Minkowski-Ungleichung. Für $||(x_n+y_n)||_p = 0$ ist die Minkowski-Ungleichung trivial.

Theorem 5. Für $1 \le p < \infty$ ist $(l^p, \|\cdot\|_p)$ ein Banachraum. Ebenso ist $(l^\infty, \|\cdot\|_\infty)$ ein Banachraum.

¹Nebenrechnung: (p-1)q = p.

Beweis. Die Behauptung für l^{∞} wurde bereits in Beispiel 1 gezeigt. Sei $1 \leq p < \infty$. Nach Satz 2 ist l^p ein \mathbb{K} -Vektorraum. Für all $(x_n) \in l^p$, $\lambda \in \mathbb{K}$ ist $\|(\lambda x_n)\|_p = (\sum_{n=1}^{\infty} |\lambda x_n|^p)^{\frac{1}{p}} = |\lambda| (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}} = |\lambda| \|(x_n)\|_p$. Die Dreiecksungleichung gilt für $\|\cdot\|_p$ nach Satz 4. Ist für $(x_n) \in l^p$, $\|(x_n)\|_p = 0$, so ist $\sum_{n=1}^{\infty} |x_n|^p = 0$, also $x_n = 0$ für alle $n \in \mathbb{N}$. Insgesamt ist $\|\cdot\|_p$ also eine Norm auf l^p .

Sei (f_n) eine Cauchy-Folge in l^p . Wir verwenden für den Rest des Beweises die Schreibweise von Elementen aus l^p als Funktionen $\mathbb{N} \mapsto \mathbb{K}$. Für $m, n, k \in \mathbb{N}$ gilt

$$|f_n(m) - f_k(m)| = (|f_n(m) - f_k(m)|^p)^{\frac{1}{p}} \le \left(\sum_{l=1}^{\infty} |f_n(l) - f_k(l)|^p\right)^{\frac{1}{p}} = ||f_n - f_k||_p.$$

Wie schon für l^{∞} folgt, dass für jedes $m \in \mathbb{N}$ die Folge $(f_n(m))_n$ eine Cauchy-Folge in \mathbb{K} ist. Somit konvergiert für jedes $m \in \mathbb{N}$ die Folge $(f_n(m))_n$ und wir erhalten eine Funktion $f^* : \mathbb{N} \to \mathbb{K}$ mit $f^*(m) = \lim_{n \to \infty} f_n(m)$. Sei $\varepsilon > 0$ gegeben. Wähle $N \in \mathbb{N}$ so dass $\forall_{n,k>N} : ||f_n - f_k|| < \frac{\varepsilon}{2}$. Somit gilt $\forall_{n,k>N}$ und alle $M \in \mathbb{N}$

$$\left(\sum_{m=1}^{M} |f_n(m) - f_k(m)|^p\right)^{\frac{1}{p}} \le ||f_n - f_k||_p < \frac{\varepsilon}{2}.$$

Für $k \to \infty$ erhalten wir $\forall_{n>N}, \forall_{M \in \mathbb{N}}$

$$\left(\sum_{m=1}^{M} |f_n(m) - f^*(m)|^p\right)^{\frac{1}{p}} \le \frac{\varepsilon}{2}.$$

Also $\forall_{n>N}$

$$\left(\sum_{m=1}^{\infty} |f_n(m) - f^*(m)|^p\right)^{\frac{1}{p}} \le \frac{\varepsilon}{2}.$$

Somit $f_n - f^* \in l^p$ für n > N, also wegen $f^* = f_n - (f_n - f^*)$ auch $f^* \in l^p$. Desweiteren $\forall_{n > N} : ||f_n - f^*||_p < \varepsilon$. Also konvergiert (f_n) gegen f^* . Damit ist $(l^p, ||\cdot||_p)$ ein Banachraum.

Beispiel 3. zur Verdeutlichung.

(1) Sei X ein metrischer Raum mit Metrik $d: X \times X \to [0, \infty)$. Wir bezeichnen $C^b(X)$ den Vektorraum der stetigen, beschränkten Funktionen $X \to \mathbb{K}$. $C^b(X)$ ist ein Unterraum von $l^\infty(X)$, also ist $C^b(X)$ versehen mit der Supremumsnorm $\|\cdot\|_{\infty}$ ein normierter Raum.

Die Konvergenz in $C^b(X)$ bezüglich $\|\cdot\|_{\infty}$ entspricht der gleichmäßigen Konvergenz wie wir sie aus der Analysis kennen.

Sei (f_n) eine Folge in $C^b(X)$, die gegen ein $f^* \in l^{\infty}(X)$ konvergiert. Aus der Analysis wissen wir, dass dann f^* stetig, also $f^* \in C^b(X)$ ist. Also ist $C^b(X)$ abgeschlossener Unterraum von $l^{\infty}(X)$ und $(C^b(X), \|\cdot\|_{\infty})$ ist ein Banachraum.

Ist der Raum X kompakt, z.B. eine kompakte Teilmenge des \mathbb{R}^n mit der euklidschen Metrik, so sind alle stetigen Funktionen $X \to \mathbb{K}$ beschränkt, also $C^b(X) = C(X) = \{f : X \to \mathbb{K} | f \text{ stetig} \}.$

(2) Sei $a, b \in \mathbb{R}$, a < b. Wir bezeichnen mit $C^1([a, b])$ den Vektorraum der stetig differenzierbaren Funktionen $[a, b] \to \mathbb{K}$. Es ist $C^1([a, b]) \subset l^{\infty}([a, b])$. Der Raum $(C^1([a, b]), \|\cdot\|_{\infty})$ ist kein Banachraum (siehe 3. Übungsblatt). Wir

können auf $C^1([a,b])$ jedoch eine andere Norm definieren und zwar $||f|| := ||f||_{\infty} + ||f'||_{\infty}$. Mit dieser Norm versehen ist $C^1([a,b])$ ein Banachraum. Dies folgt aus dem nächsten Beispiel.

(3) Sei $\Omega \subset \mathbb{R}^n$ eine offene Menge. Ist $f:\Omega \to \mathbb{K}$ eine r-mal stetig differenzierbare Funktion so verwenden wir die Multiindexschreibweise $D^{\alpha}f$ mit $\alpha \in \mathbb{N}_0^n$ für die partielle Ableitung

$$\frac{\partial^{\alpha_1}\partial^{\alpha_2}\cdots\partial^{\alpha_n}}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots\partial x_n^{\alpha_n}}f(x_1,...,x_n)$$

der Ordnung $|\alpha| = \alpha_1 + ... + \alpha_n \le r$, $\alpha = (\alpha_1, ..., \alpha_n)$. Ist $\Omega \subset \mathbb{R}^n$ offen und beschränkt, so können wir durch

 $C^r(\overline{\Omega}) = \{f : \Omega \to \mathbb{K} : f \text{ ist } r\text{-mal stetig differenzierbar, für alle Multiindizes } \alpha \in \mathbb{N}_0^n \text{mit } 0 \le |\alpha| \le r \text{ist } D^{\alpha}f \text{auf interval}$ einen Unterraum von $l^{\infty}(\Omega)$ definieren. Durch

$$||f|| := \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} ||D^{\alpha} f||_{\infty}$$

für $f \in C^r(\overline{\Omega})$ definieren wir eine Norm auf $C^r(\overline{\Omega})$ (siehe 2. Übungsblatt). Der normierte Raum $(C^r(\overline{\Omega}), \|\cdot\|)$ ist ein Banachraum.

1.1. Eigenschaften normierter Räume.

Lemma 1. Sei $(X, \|\cdot\|)$ ein normierter Raum. Es gilt

- $(1) \ \forall_{v,w \in X} : |||v|| ||w||| \le ||v w||.$
- (2) Die Abbildung $\|\cdot\|: x \mapsto [0, \infty)$ ist stetig.
- (3) Eine Folge (x_n) in X konvergiert genau dann gegen $x \in X$ wenn $\lim_{n\to\infty} ||x_n x|| = 0$.

Beweis. Für 1 und 2 siehe erstes Übungsblatt. 3 folgt direkt aus der entsprechenden Eigenschaft für metrische Räume. $\hfill\Box$

Theorem 6. Sei $(X, \|\cdot\|)$ ein metrischer Raum.

- (1) Konvergiert die Folge (x_n) in X gegen $x \in X$ und die Folge (y_n) in X gegen $y \in X$, so konvergiert für alle $\lambda, \mu \in \mathbb{K}$ die Folge $(\lambda x_n + \mu y_n)$ gegen $\lambda x + \mu y$.
- (2) Ist U ein Unterraum von X, so ist auch \overline{U} ein Unterraum von X.

Beweis. In zwei Teilen.

- (1) Für alle $\lambda, \mu \in \mathbb{R}$ gilt $\|\lambda x_n + \mu y_n (\lambda x + \mu y)\| \le \|\lambda x_n \lambda x + \mu y_n \mu y\| \le \|\lambda\| \|x_n x\| + \|\mu\| \|y_n y\|$. Mit Lemma 1 (3) folgt dann die Behauptung.
- (2) Sei $x, y \in \overline{U}$. Dann gibt es Folgen $(x_n), (y_n)$ in U mit $\lim_{n\to\infty} x_n = x, \lim_{n\to\infty} y_n = y$. Sei $\lambda, \mu \in \mathbb{K}$. Da U linearer Unterraum von X ist, ist $(\lambda x_n + \mu y_n)$ Folge in U. Nach 1 ist $(\lambda x_n + \mu y_n)$ konvergent mit $\lim_{n\to\infty} \lambda x_n + \mu y_n = \lambda x + \mu y$. Also $\lambda x + \mu y \in \overline{U}$. Da $U \neq \emptyset$ und $\underline{U} \subset \overline{U}$ ist $\overline{U} \neq \emptyset$. Damit ist \overline{U} Unterraum von X.

Definition 4. Sei X ein \mathbb{K} -Vektorraum. Zwei Normen $\|\cdot\|_a$, $\|\cdot\|_b$ auf X heißen äquivalent, falls es m, M > 0 gibt, so dass $\forall_{v \in X} m \|v\|_a \leq \|v\|_b \leq M \|v\|_a$.

Lemma 2. Die Äquivalenz von Normen auf einem \mathbb{K} -Vektorraum X definiert eine Äquivalenzrelation auf der Menge der Normen auf X.

Beweis. Siehe 2. Übungsblatt.

Theorem 7. Sei X ein \mathbb{K} -Vektorraum und $\|\cdot\|_a$, $\|\cdot\|_b$ Normen auf X. Die folgenden Aussagen sind äquivalent:

- (1) Die Normen $\|\cdot\|_a$ und $\|\cdot\|_b$ sind äquivalent.
- (2) Eine Folge (x_n) in X konvergiert genau dann gegen $x \in X$ bzgl. $\|\cdot\|_a$, wenn sie gegen x bzgl. $\|\cdot\|_b$ konvergiert.
- (3) Eine Folge (x_n) in X konvergiert genau dann gegen 0 bzgl. $\|\cdot\|_a$, wenn sie gegen 0 bzgl. $\|\cdot\|_b$ konvergiert.

Beweis. $1 \implies 2$: Sei $m, M, \widetilde{m}, \widetilde{M} > 0$ mit $\forall_{v \in X} : m \|v\|_a \le \|v\|_b \le M \|v\|_a$ und $\forall_{v \in X} : \widetilde{m} \|v\|_b \le \|v\|_a \le \widetilde{M} \|v\|_b$ (siehe Lemma 2). Dann gilt für Folge (x_n) in X und $x \in X$ stets $\|x_n - x\|_a \le \widetilde{M} \|x_n - x\|_b$ und $\|x_n - x\|_b \le M \|x_n - x\|_a$.

 $2 \implies 3$: 3 ist Sonderfall von 2.

 $3 \implies 1: \text{Angenommen } \|\cdot\|_a \text{ und } \|\cdot\|_b \text{ sind nicht äquivalent. Dann gibt es kein} \qquad 29.10.1$ M>0 oder kein $\widetilde{M}>0$ so dass für alle $v\in X$: $\|v\|_b \le M\|v\|_a$ und $\|v\|_a \le \widetilde{M}\|v\|_b$. Damit gibt es eine Folge (v_n) in X so dass für alle $n\in\mathbb{N}$ gilt $v_n\neq 0$ und $\left(\frac{\|v_n\|_b}{\|v_n\|_a}\right)_{n\in\mathbb{N}}$ ist unbeschränkt. Damit gibt es eine Teilfolge $(v_{n_m})_{m\in\mathbb{N}}$ von (v_n) , so dass $\left(\frac{\|v_{n_m}\|_a}{\|v_{n_m}\|_b}\right)_{m\in\mathbb{N}}$ gegen 0 konvergiert. Also konvergiert $\left(\|\frac{1}{\|v_{n_m}\|_b}v_{n_m}\|_a\right)_{m\in\mathbb{N}}$ gegen 0. Damit ist $\left(\frac{1}{\|v_{n_m}\|_b}v_{n_m}\right)_{m\in\mathbb{N}}$ konvergent gegen $0\in X$ bezüglich $\|\cdot\|_a$. Da für alle $m\in\mathbb{N}$ jedoch gilt

$$\|\frac{v_{n_m}}{\|v_{n_m}\|_b}\|_b = \frac{\|v_{n_m}\|_b}{\|v_{n_m}\|_b} = 1,$$

ist $\left(\frac{1}{\|v_{n_m}\|_b}v_{n_m}\right)_{m\in\mathbb{N}}$ nicht konvergent gegen $0\in X$ bezüglich $\|\cdot\|_b$.

Theorem 8. Ist X ein endlich-dimensionaler \mathbb{K} -Vektorraum, so sind auf X alle Normen äquivalent.

Beweis. O.B.d.A. ist $X=\mathbb{K}^n$. Sei $\|\cdot\|$ eine Norm auf dem \mathbb{K}^n . Bekanntlich ist $\|(x_1,...,x_n)\|_2=\left(\sum_{j=1}^n|x_j|^2\right)^{\frac{1}{2}}$ auch eine Norm auf dem \mathbb{K}^n . Sei $\{e_1,...,e_n\}$ die Standardbasis des \mathbb{K}^n . Für $x=(x_1,...,x_n)$ gilt (mit der Hölderschen Ungleichung)

$$||x|| = ||\sum_{j=1}^{n} x_j e_j|| \le \sum_{j=1}^{n} |x_j| \cdot ||e_j|| \le \left(\sum_{j=1}^{n} |x_j|^2\right)^{\frac{1}{2}} \underbrace{\left(\sum_{j=1}^{n} ||e_j||^2\right)^{\frac{1}{2}}}_{M} = M \cdot ||x||_2.$$

Insbesondere gilt für alle $x, y \in \mathbb{K}^n$ dass $|||x|| - ||y||| \le ||x - y|| \le M||x - y||_2$. Damit ist $||\cdot||$ stetig bezüglich $||\cdot||_2$. Die Menge $S = \{x \in \mathbb{K}^n : ||x||_2 = 1\}$ ist abgeschlossen und beschränkt, also nach Heine-Borel kompakt. $||\cdot||$ nimmt also auf

S ihr Minimum an. Da $0 \notin S$, gilt $m = \min_{x \in S} ||x|| > 0$. Da für alle $x \in \mathbb{K}^n \setminus \{0\}$ gilt $\frac{x}{||x||_2} \in S$ haben wir

$$||x||_2 m \le ||x||_2 \underbrace{||\frac{x}{||x||_2}||}_{\geq \min_{y \in S} ||y||} = ||x||$$

für alle $x \in \mathbb{K}^n \setminus \{0\}$.

Im unendlich-dimensionalen gilt eine solche allgemeine Äquivalent nicht, wie das folgende Beispiel zeigt.

Beispiel 4. Wir betrachten C([0,1]). Auf diesen Raum können wir durch $||f||_1 = \int_0^1 |f(s)| ds$ eine Norm auf C([0,1]) definieren. Diese Norm ist nicht äquivalent zur Supremumsnorm $||\cdot||_{\infty}$, denn sei für $n \in \mathbb{N}$ $f_n : [0,1] \to \mathbb{K}$

$$f_n(s) = \begin{cases} 1 - ns & s \in [0, \frac{1}{n}], \\ 0 & s \in (\frac{1}{n}, 1]. \end{cases}$$

Offensichtlich ist $f_n \in C([0,1])$ für alle $n \in \mathbb{N}$. Weiterhin ist für alle $n \in \mathbb{N}$ die Supremumsnorm $\|f_n\|_{\infty} = 1$. Also konvergiert (f_n) nicht gegen $0 \in C([0,1])$ bezüglich $\|\cdot\|_{\infty}$. Es ist aber für alle $n \in \mathbb{N}$ stets $\|f_n\|_1 = \int_0^1 |f_n(s)| ds = \int_0^{\frac{1}{n}} |f_n(s)| ds = \int_0^{\frac{1}{n}} (1-ns) ds = [s-\frac{1}{n}s^2]_0^{\frac{1}{n}} = \frac{1}{2n} \to_{n\to\infty} 0$. Also konvergiert (f_n) gegen $0 \in C([0,1])$ bezüglich $\|\cdot\|_1$. Nach Satz 7 sind $\|\cdot\|_1$ und $\|\cdot\|_{\infty}$ nicht äquivalent auf C([0,1]).

Korollar 1. Sei $(X, \|\cdot\|)$ ein endlich-dimensionaler, normierter Raum. Dann sind beschränkte, abgeschlossene Mengen kompakt.

Beweis. O.B.d.A. $X = \mathbb{K}^n$. Für die Norm $\|(x_1,...,x_n)\|_2 = \left(\sum_{j=1}^n |x_j|^2\right)^{\frac{1}{2}}$ liefert der Satz von Heine-Borel die Behauptung. Da $\|\cdot\|$ zu $\|\cdot\|_2$ äquivalent ist, stimmen sowohl abgeschlossene beschränkte und kompakte Mengen bezüglich der beiden Normen überein.

Wir werden zeigen, dass die Aussage von Korollar 1 nur im endlich-dimensionalen gilt.

Lemma 3. Sei $(X, \|\cdot\|)$ ein normierter Raum und $U \subset X$ ein abgeschlossener Unterraum von X mit $U \neq X$. Für jedes $\delta \in (0,1)$ existiert ein $x_{\delta} \in X$ mit $\|x_{\delta}\| = 1$ und $\|x_{\delta} - u\| \ge 1 - \delta$ für alle $u \in U$.

Beweis. Wähle $x \in X \setminus U$. Setze $d := \inf\{\|x - u\| : u \in U\}$. Ist d = 0, so gibt es eine Folge (u_n) in U mit $\|x - u_n\| \to 0$ für $n \to \infty$, also $\lim_{n \to \infty} u_n = x$ und $x \in \overline{U} = U$. Widerspruch. Damit ist d > 0. Insbesondere ist $\frac{d}{1 - \delta} > d$. Damit gibt es ein $u_\delta \in U$ mit $d \le \|x - u_\delta\| < \frac{d}{1 - \delta}$. Sei

$$x_{\delta} = \frac{x - u_{\delta}}{\|x - u_{\delta}\|}.$$

Klar ist $||x_{\delta}|| = 1$. Für $u \in U$ gilt nun

$$||x_{\delta}-u|| = ||\frac{x-u_{\delta}}{||x-u_{\delta}||}-u|| = \frac{1}{||x-u_{\delta}||} \cdot \underbrace{||x-u_{\delta}|| \cdot (||x-u_{\delta}||u))}_{\geq d} || \ge \frac{1}{||x-u_{\delta}||} d \ge \frac{1-\delta}{d} d = 1-\delta.$$

 \Box 30.10.13

Theorem 9. Sei $(X, \|\cdot\|)$ ein normierter Raum. Die folgenden Aussagen sind äquivalent:

- (1) X ist endlich-dimensional
- (2) $\{x \in X : ||x|| \le 1\}$ ist kompakt
- (3) Jede beschränkte Folge besitzt eine konvergente Teilfolge

Beweis. Gliederung in folgende Teile:

- $1 \implies 2$: Korollar 1.
- $2 \implies 3$: Sei (x_n) beschränkte Folge in X und r > 0 mit $\forall_{n \in \mathbb{N}} : ||x_n|| < r$. Dann ist $\left(\frac{1}{r}x_n\right)_{n \in \mathbb{N}}$ Folge in $B = \{x \in X : ||x|| \le 1\}$. Da B kompakt ist besitzt $\left(\frac{1}{r}x_n\right)$ eine konvergente Teilfolge. Mit Satz 6 besitzt dann auch $(x_n)_{n \in \mathbb{N}} = \left(r \cdot \frac{1}{r}x_n\right)_{n \in \mathbb{N}}$ eine konvergente Teilfolge.
- 3 ⇒ 1: Beweis per Kontroposition. Sei X unendlich-dimensional. Wir konstruieren eine beschränkte Folge (x_n) in X wie folgt: Wähle $x_1 \in X$ mit $||x_1|| = 1$. Wähle $\delta \in (0,1)$ fest. Haben wir $x_1, ..., x_n$ mit $||x_1|| = ... = ||x_n|| = 1$ gewählt, so sei $U_n := \operatorname{span}\{x_1, ..., x_n\}$. Da dim $U_n \leq n$ ist $(U_n, ||\cdot||)$ vollständig (Satz 8) und nach Satz 1 ist U_n abgeschlossen in X. Weiterhin $X \neq U_n$. Nach Lemma 3 gibt es x_{n+1} in X mit $||x_{n+1}|| = 1$ und $\forall_{u \in U_n} : ||x_{n+1} u|| \geq 1 \delta$. Wir erhalten Folge (x_n) in X mit $||x_n|| = 1$ für alle $n \in \mathbb{N}$. Per Konstruktion gilt für $n, m \in \mathbb{N}$, n > m stets $||x_n x_m|| \geq 1 \delta$. Damit kann es keine Teilfolge von (x_n) geben, die eine Cauchy-Folge ist. Insbesondere hat (x_n) keine konvergente Teilfolge (konvergente Folgen sind nämlich Cauchy-Folgen).

Definition 5. Sei $(X, \|\cdot\|)$ ein normierter Raum. Wir nennen X separabel, falls es eine abzählbare Menge $M \subset X$ gibt mit $\overline{M} = X$, d.h. M ist dicht in X.

Theorem 10. Sei $(X, \|\cdot\|)$ ein normierter Raum. Es sind äquivalent:

- (1) X ist separabel
- (2) Es gibt abzählbare Teilmenge M von X mit $X = \overline{\text{span}M}$.

Beweis. In zwei Teilen.

- 1 \Longrightarrow 2: Sei $M\subset X$ abzählbar mit $\overline{M}=X$. Dann ist $X=\overline{M}\subset\overline{\operatorname{span} M}\subset X$ also $\overline{\operatorname{span} M}=X$.
- 2 \Longrightarrow 1: Wir betrachten zunächst den Fall $\mathbb{K} = \mathbb{R}$. Für $B = \{\sum_{j=1}^n q_j v_j | n \in \mathbb{N}, q_j \in \mathbb{Q}, v_j \in M\}$ gilt span $B \subset \overline{B}$ da \mathbb{Q} dicht in \mathbb{R} ist. Somit ist $X = \overline{\text{span}M} \subset \overline{B} \subset X$, also $X = \overline{B}$. Da B abzählbar ist, ist X separabel. $\mathbb{K} = \mathbb{C}$ ist analog mit $B = \{\sum_{j=1}^n (q_j + ip_j) | n \in \mathbb{N}, p_j, q_j \in \mathbb{Q}, v_j \in M\}$.

Beispiel 5. Zur Verdeutlichung.

(1) \mathbb{R}^n und \mathbb{C}^n sind separabel bezüglich jeder Norm, denn \mathbb{Q}^n und $\mathbb{Q}^n + i\mathbb{Q}^n$ sind dicht in \mathbb{R}^n bzw. \mathbb{C}^n .

(2) $(l^p, \|\cdot\|_p)$ für $1 \leq p < \infty$ ist separabel: Für $e_j : \mathbb{N} \to \mathbb{K}$,

$$e_j(m) := \begin{cases} 1 & j = m, \\ 0 & \text{sonst.} \end{cases}$$

ist $d = \text{span}\{e_j : j \in \mathbb{N}\}$. Ist nun $f \in l^p$ so können wir die Folge (f_n) in d definieren mit

$$f_n(m) = \begin{cases} f(m) & m \le n, \\ 0 & \text{sonst.} \end{cases}$$

für $n \in \mathbb{N}$. Dann ist f Grenzwert von (f_n) in $(l^p, ||\cdot||_p)$, denn

$$||f - f_n||_p = \left(\sum_{j=n+1}^{\infty} |f(j)|^p\right)^{\frac{1}{p}} \to 0$$

für $n \to \infty$. Somit $l^p = \overline{d}$. Nach Satz 10 ist l^p separabel.

- (3) $(C_0, \|\cdot\|_{\infty})$ ist separabel (Beweis in der Übung).
- (4) $(l^{\infty}, \|\cdot\|_{\infty})$ ist nicht separabel.

Beweis. Für $M \subseteq \mathbb{N}$ definiere $f_M : \mathbb{N} \to \mathbb{K}$ durch

$$f_M(m) = \begin{cases} 1 & m \in M, \\ 0 & m \notin M. \end{cases}$$

Offensichtlich ist $f_M \in l^{\infty}$ für alle $M \in \mathbb{N}$. Dann ist $W := \{f_M | M \subset \mathbb{N}\}$ überabzählbar. Weiterhin ist für alle $M, N \subset \mathbb{N}, \ M \neq N$ stets $\|f_M - f_N\|_{\infty} = 1$. Sei $A \subset l^{\infty}$ abzählbar mit $\overline{A} = l^{\infty}$. Für $a \in A$ kann $U_{\frac{1}{4}}(a)$ nur höchstens ein Element aus W enthalten, denn

$$x, y \in U_{\frac{1}{4}}(a) \cap W \implies ||x - y||_{\infty} \le ||x - a||_{\infty} + ||y - a||_{\infty} < \frac{1}{2} \implies x = y$$

Widerspruch zu A abzählbar und $\overline{A} = l^{\infty}$.

Wir wollen zeigen, dass für jedes kompakte, nicht-leere Intervall [a,b] der Raum $(C([a,b]),\|\cdot\|_{\infty})$ separabel ist.

Theorem 11. Sei $P([a,b]) = \{f : [a,b] \to \mathbb{K} | \exists_{p \in \mathbb{K}[x]} \forall_{x \in [a,b]} : f(x) = p(x) \}$ der Raum der Polynomfunktionen $[a,b] \to \mathbb{K}$. Dann ist P([a,b]) dicht in $(C([a,b]), \| \cdot \|_{\infty})$.

Beweis. Wir betrachten zunächst den Fall $a=0,\,b=1$. Für $n\in\mathbb{N}$ definieren wir $c_n:=\left(\int (1-s^2)^n ds\right)^{-1}$. Wir zeigen zunächst die Abschätzung $c_n\leq e\sqrt{n}$ für hinreichend große $n\in\mathbb{N}$. Es gilt

$$c_n^{-1} = \int_{-1}^1 (1-s^2)^n ds \geq \int_{\frac{-1}{2}}^{\frac{1}{\sqrt{n}}} (1-s^2)^n ds = 2 \int_{0}^{\frac{1}{\sqrt{n}}} (1-s^2)^n ds \geq 2 \int_{0}^{\frac{1}{\sqrt{n}}} (1-\frac{1}{n})^n ds = 2 \sqrt{n}^{-1} (1-\frac{1}{n})^n.$$

Da $\lim_{n\to\infty} (1-\frac{1}{n})^n = \frac{1}{e}$ ist für hinreichend große $n\in\mathbb{N}$ stets $(1-\frac{1}{n})^n\geq \frac{1}{2e}$. Also für hinreichend große $n\in\mathbb{N}$ stets $c_n^{-1}\geq \frac{1}{\sqrt{n}e}$. Wir definieren nun für $n\in\mathbb{N}$ Polynome $\varphi_n(x):=C_n(1-x^2)^n$. Es gilt

- (1) Für alle $n \in \mathbb{N}$ und $x \in [-1, 1]$ gilt $\varphi_n(x) \geq 0$.
- (2) $\int_{-1}^{1} \varphi_n(x) dx = 1$ per Definition von c_n .

(3) Für alle $\delta\in(0,1]$ ist $\lim_{n\to\infty}\sup_{x\in[\delta,1]}\varphi_n(x)=0$, da $\sup_{x\in[\delta,1]}\varphi_n(x)=c_n(1-\delta^2)^n$ und

$$\lim_{n \to \infty} \sqrt{n} (1 - \delta^2)^n = \lim_{n \to \infty} e^{\frac{\frac{1}{2}(\log n) + n \underbrace{\log(1 - \delta^2)}_{<0}}} = 0.$$

Sei $f \in C([0,1])$. Wir betrachten zuerst den Fall f(0) = f(1) = 0. Wir definieren die stetige Funktion $\widetilde{f} : \mathbb{R} \to \mathbb{K}$ durch

$$\widetilde{f}(x) = \begin{cases} f(x) & (x \in [0,1]), \\ 0 & (\text{sonst}). \end{cases}$$

Da f gleichmäßig stetig auf [0,1] ist, ist \widetilde{f} gleichmäßig stetig auf \mathbb{R} . Wir definieren nun Funktionen $p_n: \mathbb{R} \to \mathbb{K}$, $p_n(x) = \int_{-1}^1 \widetilde{f}(x-s)\varphi_n(s)ds$ für $n \in \mathbb{N}$. p_n ist für jedes $n \in \mathbb{N}$ eine Polynomfunktion, denn mit Substitution s = t + x ergibt sich

$$\int_{-1}^{1} \widetilde{f}(x-s)\varphi_n(s)ds = \underbrace{\int_{-1-x}^{\in [0,1]}}_{\in [-2,-1]} \widetilde{f}(-t)\varphi_n(t-x)dt = \int_{-1}^{0} \widetilde{f}(-t)\varphi_n(t+x)dt,$$

denn $\widetilde{f}|_{\mathbb{R}\backslash [0,1]}\equiv 0.$ Dies ergibt dann weiterhin das Polynom

$$= \int_{-1}^{0} \widetilde{f}(-t)c_n(1 - (t+x)^2)^n dt.$$

Da $\int_{-1}^{1} \varphi_n(s) ds = 1$ ist $p_n(x) - \widetilde{f}(x) = \int_{-1}^{1} \left(\widetilde{f}(x-s) - \widetilde{f}(x) \right) \varphi_n(s) ds$. Also für alle $\delta \in (0,1)$ und $x \in [-1,1]$ gilt $|p_n(x) - \widetilde{f}(x)| \le \int_{-1}^{1} |\widetilde{f}(x-s) - \widetilde{f}(x)| \varphi_n(s) ds = 1$

$$= \int_{-\delta}^{\delta} \underbrace{\left| \widetilde{f}(x-s) - \widetilde{f}(x) \right|}_{\leq \sup_{s \in [-\delta,\delta]} |\widetilde{f}(x-s) - \widetilde{f}(x)|} \varphi_n(s) ds + \int_{-1}^{\delta} \underbrace{\left| \widetilde{f}(x-s) - \widetilde{f}(x) \right|}_{\leq 2 \sup_{y \in [0,1]} |f(y)|} \varphi_n(s) ds + \int_{\delta}^{1} \underbrace{\left| \widetilde{f}(x-s) - \widetilde{f}(x) \right|}_{\leq 2 \sup_{y \in [0,1]} |f(y)|} \varphi_n(s) ds$$

$$\leq \sup_{s \in [-\delta, \delta]} \left| \widetilde{f}(x-s) - \widetilde{f}(x) \right| \cdot \underbrace{\int_{-\delta}^{\delta} \varphi_n(s) ds}_{t} + 4 \sup_{y \in [0, 1]} |f(y)| \cdot \sup_{s \in [\delta, 1]} \varphi_n(s)$$

$$(1.2) \leq \sup_{s \in [-\delta, \delta]} \left| \widetilde{f}(x - s) - \widetilde{f}(x) \right| + 4 \sup_{y \in [0, 1]} |f(y)| \sup_{s \in [\delta, 1]} \varphi_n(s)$$

Sei $\varepsilon > 0$ gegeben. Wähle $\delta \in (0,1)$ so dass für alle $x \in \mathbb{R}$

$$\sup_{s \in [-\delta, \delta]} \left| \widetilde{f}(x - s) - \widetilde{f}(x) \right| \le \frac{\varepsilon}{2}.$$

Dies ist möglich, da \widetilde{f} gleichmäßig stetig ist. Wähle nun $N\in\mathbb{N}$ so dass für alle n>N

$$\sup_{s \in [\delta,1]} \varphi_n(s) < \frac{1}{4 \max\{1, \sup_{y \in [0,1]} |f(y)|\}} \frac{\varepsilon}{2}.$$

Dies ist möglich, da $\lim_{n\to\infty} \sup_{s\in[\delta,1]} \varphi_n(s) = 0$. Mit (1.2) folgt für alle n>N und $x\in[0,1]$ dass $|p_n(x)-f(x)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, also

$$||p_n|_{[0,1]} - f||_{\infty} < \varepsilon.$$

Damit wird f durch p_n auf [0,1] approximiert.

Sei $f \in C([0,1])$ mit $f(0) \neq f(1)$ oder $f(0) \neq 0$. Konstruiere obige Folge $(p_n)_n$ für $\widehat{f}(x) = f(x) - (1-x)f(0) - xf(1)$, dann ist $\widehat{f} \in C([0,1])$ und $\widehat{f}(0) = \widehat{f}(1) = 0$. Dann sind $q_n(x) = p_n(x) + (1-x)f(0) + xf(1)$ für $n \in \mathbb{N}$ Polynomfunktionen und $||f - q_n|_{[0,1]}||_{\infty} = \sup_{x \in [0,1]} ||f(x) - p_n(x) - (1-x)f(0) - xf(1)| = ||\widehat{f} - p_n|_{[0,1]}||_{\infty} \to 0$ für $n \to \infty$. Damit wird \widehat{f} durch q_n auf [0,1] approximiert.

Sei $f \in C([a,b])$, $a,b \in \mathbb{R}$, a < b. Dann liefert $\widehat{f}(x) = f(a+(b-a)x)$ ein $\widehat{f} \in C([0,1])$. Konstruiere q_n wie oben. Definiere

$$r_n(x) = q_n\left(\frac{x-a}{b-a}\right).$$

Da

$$\frac{(a+(b-a)x)-a}{b-a} = x$$

ist

$$||f - r_n||_{\infty} = \sup_{x \in [a,b]} |f(x) - r_n(x)| = \sup_{y \in [0,1]} |f(x) - r_n(x)|$$
$$= \sup_{y \in [0,1]} |f(a + (b-a)y) - r_n(a + (b-a)y)| = ||\widehat{f} - q_n|_{[0,1]}||_{\infty} \to 0$$

für $n \to \infty$. Also wird f durch r_n auf [a, b] approximiert.

Korollar 2. Für $a, b \in \mathbb{R}$, a < b ist $(C([a, b]), \|\cdot\|_{\infty})$ separabel.

Beweis. Da P([a,b]) dicht in $(C([a,b]), \|\cdot\|_{\infty})$, ist

$$C([a,b]) = \overline{\operatorname{span}\{t^n : n \in \mathbb{N}\}}$$

Mit Satz 10 folgt die Behauptung.

1.2. Quotientenräume und die Räume L^p . Wir übertragen zunächst die Begriffe der Cauchy-Folge und Vollständigkeit auf \mathbb{K} -Vektorräume mit einer Halbnorm.

Definition 6. Sei X ein \mathbb{K} -Vektorraum mit Halbnorm $\|\cdot\|$. Wir nennen eine Folge (x_n) in X Cauchy-Folge, falls $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}:\|x_n-x_m\|<\varepsilon$. Wir nennen X vollständig, falls zu jeder Cauchy-Folge in X ein $x\in X$ existiert mit $\lim_{n\to\infty}\|x_n-x\|=0$.

Bemerkung 1. Man beachte, dass in einem vollständigen \mathbb{K} -Vektorraum X mit Halbnorm $\|\cdot\|$, dass $x^* \in X$ zu einer Cauchy-Folge (x_n) mit $\lim_{n\to\infty} \|x_n - x^*\| = 0$ nicht unbedingt eindeutig ist.

Theorem 12. Sei X ein \mathbb{K} -Vektorraum mit Halbnorm $\|\cdot\|$. Es gilt

(1)
$$N = \{x \in X | ||x|| = 0\}$$
 ist ein Unterraum von X.

- (2) ||x+N|| := ||x|| definiert eine Norm auf X/N.
- (3) Ist X vollständig (in Sinne von Definition 6), so ist X/N mit der Norm ||x + N|| vollständig.

Beweis. In drei Teilen.

- (1) $0 \in N$, da ||0|| = 0. Für $x, y \in \mathbb{N}$, $\lambda, \mu \in \mathbb{K}$ gilt $||\lambda x + \mu y|| \le |\lambda|||x|| + |\mu|||y|| \le$ 0 und damit $\lambda x + \mu y \in N$.
- (2) $\|\cdot\|$ ist auf X/N wohldefiniert, denn für x+N=y+N gilt (x-y)+N=N, d.h. $x-y \in N$, und daher gilt $|||x|| - ||y||| \le ||x-y|| = 0$. Es folgt ||x|| = ||y||. Überprüfung der Normaxiome:
 - (a) Für $x \in X$, $\lambda \in \mathbb{K}$ gilt $||\lambda x + N|| = ||\lambda x|| = ||\lambda|||x|| = ||\lambda|||x + N||$.
 - (b) Für $x, y \in X$ gilt $||(x+N) + (y+N)|| = ||(x+y) + N|| = ||x+y|| \le$ ||x|| + ||y|| = ||x + N|| + ||y + N||.
 - (c) Sei $x \in X$ mit ||x+N|| = 0. Damit ||x|| = 0, also $x \in N$ und x+N = N. Somit ist $\|\cdot\|$ eine Norm auf X/N.
- (3) Sei $(x_k+N)_{k\in\mathbb{N}}$ Cauchy-Folge in X/N. Da $\forall_{k,m\in\mathbb{N}}$: $\|(x_k+N)-(x_m+N)\|=$ $||x_k - x_m||$ ist (x_k) Cauchy-Folge in X. Somit gibt es ein $x \in X$ mit $\lim_{k\to\infty} \|x_k - x\| = 0$. Damit ist $\lim_{k\to\infty} \|(x_k + N) - (x + N)\| = \lim_{k\to\infty} \|x_k - x\|$ |x|| = 0. Also konvergiert $(x_k + N)$.

Theorem 13. Sei $(X, \|\cdot\|)$ ein normierter Raum und $U \subset X$ ein Unterraum.

- (1) $||x||_d := \inf\{||x-u|||u \in U\} \text{ für } x \in X \text{ definiert eine Halbnorm.}$
- (2) Ist U abgeschlossen, so definiert $||x + U||_q := ||x||_d$ eine Norm auf X/U.
- (3) Ist X vollständig und U abgeschlossen, so ist $(X/U, \|\cdot\|_q)$ ein Banachraum.

Beweis. In drei Teilen.

- (1) Nachweis der Halbnormaxiome:
 - (a) Für $\lambda \in \mathbb{K}$ ist $\|\lambda x\|_d = \inf\{\|\lambda x u\| | u \in U\} = \inf\{\|\lambda x \lambda u\| | u \in U\}$ U = $|\lambda| ||x||_d$. Für $\lambda = 0$ ist $||\lambda x||_d = \inf\{||u|| | u \in U\} = 0$.
 - (b) Für $x, y \in X$ ist $||x + y||_d = \inf\{||x + y u|| | u \in U\} = \inf\{||x + y u u|| | u \in U\}$ $v||u, v \in U\} \le \inf\{||x - u|| + ||y - v|||u \in U, v \in U\} \le \inf\{||x - u|||u \in U\}$ $U\} + \inf\{\|y - v\| | v \in U\} = \|x\|_d + \|y\|_d.$
- (2) Sei $N = \{x \in X | ||x||_d = 0\}$. Es ist $U \subset N$. Sei $x \in N$, also $||x||_d = 0$. Dann gibt es eine Folge (u_n) in U mit $\lim_{n\to\infty} ||u_n - x|| = 0$. Damit $x \in \overline{U} = U$. Also $U \subset N \subset U$ und U = N. Nach Satz 12 ist $\|\cdot\|_q$ eine Norm auf X/U.
- (3) Sei (x_n) Cauchy-Folge in X bezüglich $\|\cdot\|_d$. Wähle Teilfolge (x_{n_k}) von (x_n) mit $\forall_{k \in \mathbb{N}}$: $||x_{n_k} - x_{n_{k+1}}||_d < 2^{-k}$. Wir konstruieren Folge (u_k) in U, so dass $\forall_{k \in \mathbb{N}}$: $||x_{n_k} + u_k - (x_{n_{k+1}} + u_{k+1})|| < 2^{-k}$. Wähle $u_1 = 0$. Haben wir $u_1,...,u_k$ in U für $k\in\mathbb{N}$ gewählt, so ist $2^{-k}>\|x_{n_k}-x_{n_{k+1}}\|_d=\|x_{n_k}+u_k-x_{n_k}\|_d$ $x_{n_{k+1}}\|_d = \inf\{\|(x_{n_k} + u_k) - (x_{n_{k+1}} + u)\||u \in U\}$. Somit haben wir $\widetilde{u} \in U$ mit $2^{-k} > \|(x_{n_k} + u_k) - (x_{n_{k+1}} + \widetilde{u})\|$. Setze $u_{k+1} = \widetilde{u}$. Wir erhalten induktiv die gesuchte Folge (u_k) in U. Wir definieren die Folge (z_k) durch $z_k = x_{n_k} + u_k$. Da für $m, k \in \mathbb{N}, m > k$ gilt $||z_m - z_k|| \le \sum_{j=k}^{m-1} ||z_j - z_{j+1}|| < \sum_{j=k}^{m-1} 2^{-j}$ und die Reihe $\sum_{i=1}^{\infty} 2^{-j}$ konvergiert, ist (z_k) Cauchy-Folge in $(X, \|\cdot\|)$. Da

X vollständig ist, konvergiert (z_k) gegen $\widetilde{z} \in X$ bezüglich $\|\cdot\|$. Da für alle $k \in \mathbb{N}$ gilt, dass

$$\|\widetilde{z} - x_{n_k}\|_d \le \underbrace{\|\widetilde{z} - z_k\|_d}_{\le \|\widetilde{z} - z_k\|} + \underbrace{\|\underbrace{z_k - x_{n_k}}_{x_{n_k} + u_k - x_{n_k} = u_k}}\|_d$$

folgt $\|\widetilde{z} - x_{n_k}\|_d \to 0$ für $k \to \infty$.

Sei $\varepsilon > 0$ gegeben. Wähle $K \in \mathbb{N}$ so, dass $\forall_{k>K} : \|\widetilde{z} - x_{n_k}\|_d < \frac{\varepsilon}{2}$ und

$$\forall_{m,l>\min\{n_k\in\mathbb{N}|k>K\}}: ||x_l-x_m||<\frac{\varepsilon}{2}.$$

Dann gilt $\forall_{m \geq \min\{n_k \in \mathbb{N} | k > K\}} : \|\widetilde{z} - x_m\|_d \leq \|\widetilde{z} - x_{n_{k+1}}\|_d + \|x_{n_{k+1}} - x_m\|_d < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$. Also $\|x_k - \widetilde{z}\|_d \to 0$ für $k \to \infty$. Damit ist X bezüglich $\|\cdot\|_d$ vollständig. Nach Satz 12 ist X/U vollständig.

Wir kommen nun zu den L^p -Räumen. Dazu wiederholen wir zunächst ein paar Fakten aus der Integrationstheorie. Ist $Q = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ ein nicht-leerer Quader, so definiert man das Volumen $\operatorname{vol}(Q) := \prod_{j=1}^n (b_j - a_j)$. Für $M \subset \mathbb{R}^n$ definiert man das äußere Lebesgue-Maß durch

$$\lambda^{\alpha}(M) = \inf\{\sum_{j=1}^{\infty} \operatorname{vol}(Q_{j}) | Q_{j} \text{ nicht-leere Quader im } \mathbb{R}^{n}, M \subset \bigcup_{j=1}^{\infty} Q_{j}\}.$$

Wir nennen $M \subset \mathbb{R}^n$ Lebesgue-Messbar, falls

$$\forall_{D \subset \mathbb{R}^n} : \lambda^*(D) = \lambda^*(M \cap D) + \lambda^*((\mathbb{R}^n \setminus M))$$

Ist $M \subset \mathbb{R}^n$ Lebesgue-messbar, so definieren wir das Lebesgue-Maß von M als $\lambda(M) := \lambda^A(M)$.

Bemerkung 2. Es gilt:

- (1) Offene und abgeschlossene Mengen sind Lebesgue-messbar.
- (2) Endliche Schnitte, Komplemente und abzählbare Vereinigungen Lebesguemessbarer Mengen sind Lebesgue-messbar.

Wir nennen eine Funktion $f:M\to\mathbb{K}$ mit $M\subset\mathbb{R}^n$ Lebesgue-messbar, falls für jede offene Menge $U\subset\mathbb{K}$ gilt, dass $f^{-1}(U)$ Lebesgue-messbar ist. Ist $f:M\to\mathbb{K}$ Lebesgue-messbar, so ist $M=f^{-1}(\mathbb{K})$ Lebesgue-messbar.

Bemerkung 3. Es gilt:

- (1) Stetige Funktionen sind stets Lebesgue-messbar.
- (2) Sei $M \subset \mathbb{R}^n$ messbar. Dann ist $\mathcal{M} := \{f : M \to \mathbb{K} | f \text{ Lebesgue-messbar} \}$ ein Unterraum des Raumes der Funktionen $M \to \mathbb{K}$. Desweiteren sind Produkte Lebesgue-messbarer Funktionen $M \to \mathbb{K}$ wieder Lebesgue-messbar.

Wir nennen eine Lebesgue-messbare Teilmenge $M \subset \mathbb{R}^n$ Lebesgue-Nullmenge falls $\lambda(M) = 0$. Jede Teilmenge einer Lebesgue-Nullmenge ist eine Lebesgue-Nullmenge.

Im Folgenden meinten wir mit "messbar" stets "Lebesgue-messbar" und mit "Nullmenge" stets "Lebesgue-Nullmenge".

Sind $A_1,...,A_m \subset \mathbb{R}^n$ messbare Mengen, $c_1,...,c_m \in \mathbb{K}$ und χ_{A_j} die charakteristische Funktion der Menge A_j , so setzen wir

$$\int_{\mathbb{R}^n} \sum_{j=1}^m c_j \chi_{A_j} d\lambda = \sum_{j=1}^m c_j \lambda(A_j)$$

wobei wir die Rechenregeln $\infty \pm c := \infty$ für $c \in \mathbb{C} \cup \{\infty\}$, $\infty \cdot 0 = 0 \cdot \infty = 0$, $\infty \cdot c = c \cdot \infty = \infty$ für $c \in (\mathbb{C} \setminus \{0\}) \cup \{\infty\}$ und die A_i paarweise disjunkt sind. Wir nennen eine Funktion $f: M \to \mathbb{K}$, $M \subset \mathbb{R}^n$ messbar, Lebesgue-integrierbar, falls es eine Folge von Funktionen $\varphi_k : \mathbb{R}^n \to \mathbb{K}$ gibt mit

- $\varphi_k(x) = \sum_{j=1}^{m_k} c_{j,k} \chi_{A_{j,k}}(x)$ mit $A_{j,k} \subset M$ messbar und $A_{j,k} = \varphi_k^{-1}(c_{j,k})$.
- $\forall_{\varepsilon>0} \exists_{N\in\mathbb{N}} \forall_{k,l>N}$: $\int_{\mathbb{R}^n} |\varphi_k \varphi_l| d\lambda < \varepsilon$. Der Integrant lässt sich als $\sum_{j=1}^{r_{k,l}} b_{j,kl} \chi_{B_{j,kl}}$ mit $B_{j,kl}$ messbar, $B_{j,kl} = \{x \in \mathbb{R}^n | |\varphi_k(x) \varphi_l(x)| = b_{j,kl}\}, \ b_{j,kl} \neq b_{i,kl}$ für $i \neq j$ schreiben.
- es gibt Nullmenge $N \subset M$ so dass $\forall_{x \in M \setminus N}$: $\lim_{k \to \infty} \varphi_k(x) = f(x)$.

Ist f eine Lebesgue-integrierbar, so ist f messbar und wir setzen

$$\int_{M} f \, d\lambda := \lim_{k \to \infty} \int_{\mathbb{R}^n} \varphi_k \, d\lambda.$$

Definition 7. Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$. Für $1 \leq p < \infty$ sei

$$\begin{split} \mathcal{L}^p(M) &= \{f: M \to \mathbb{K} | f \text{ messbar}, \int_M |f|^p \, d\lambda < \infty \}, \\ \mathcal{L}^\infty(M) &= \{f: M \to \mathbb{K} | f \text{ messbar}, \\ &\quad \text{es gibt Nullmenge } N_f \subset M \text{und } c \in \mathbb{R} \text{mit } \forall_{x \in M \setminus N_f} : |f(x)| < c \} \end{split}$$

Für $1 \leq p < \infty$ und $f \in \mathcal{L}^p(M)$ definieren wir

$$||f||_p = \left(\int_M |f|^p \, d\lambda\right)^{\frac{1}{p}}$$

und für $f \in \mathcal{L}^{\infty}(M)$

$$||f||_{\infty} = \inf_{N \subset M} \sup_{x \in M \setminus N} |f(x)|$$

mit N Nullmenge. Wir zeigen nun, dass $\mathcal{L}^p(M)$ ein vollständiger Vektorraum bezüglich der $\|\cdot\|_p$ Halbnorm ist.

Theorem 14. (Höldische Ungleichung) Sei $M \subset \mathbb{R}^n$ messbar und $M \neq \emptyset$. Sei $1 und <math>q = \frac{p}{p-1}$. Für $f \in \mathcal{L}^p(M)$ und $g \in \mathcal{L}^q(M)$ ist $f \cdot g \in \mathcal{L}^1(M)$ mit

$$(1.3) ||f \cdot g||_1 \le ||f||_p ||g||_q.$$

Für $f \in \mathcal{L}^1(M)$ und $g \in \mathcal{L}^{\infty}(M)$ ist $f \cdot g \in \mathcal{L}^1(M)$ mit

$$(1.4) ||f \cdot g||_1 \le ||f||_1 ||g||_{\infty}.$$

Beweis. Nach Bemerkung zu messbaren Funktionen ist $f \cdot g$ und damit $|f \cdot g|$ messbar. In der Übung wird gezeigt, dass für $f \in \mathcal{L}^p(M)$, $g \in \mathcal{L}^{\frac{p}{p-1}}(M)$ gilt

$$\int_{M} |f \cdot g| \, d\lambda \le ||f||_{p} ||g||_{\frac{p}{p-1}}$$

für $1 . Für <math>f \in \mathcal{L}^1(M)$, $g \in \mathcal{L}^\infty(M)$ wird gezeigt, dass

$$\int_{M} |f \cdot g| \, d\lambda \le ||f||_1 ||g||_{\infty}.$$

Damit folgt $f \cdot g \in \mathcal{L}^1(M)$ und (1.3) bzw. (1.4).

Theorem 15. (Minkowskische Ungleichung) Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$, und $p \in [1, \infty) \cup {\infty}$. Für $f, g \in \mathcal{L}^p(M)$ ist $f + g \in \mathcal{L}^p(M)$ und es gilt

$$(1.5) ||f + g||_p \le ||f||_g + ||g||_p.$$

Beweis. f+g ist messbar. Die Ungleichung (1.5) wird in der Übung gezeigt. Somit ist $f + g \in \mathcal{L}^p(M)$.

Theorem 16. Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$ und $p \in [1,\infty) \cup \{\infty\}$. Dann ist $\mathcal{L}^p(M)$ ein \mathbb{K} -Vektorraum mit Halbnorm $\|\cdot\|_p$.

Beweis. Wir zeigen die Halbnorm-Axiome.

(1) Sei $\mu \in \mathbb{K}, f \in \mathcal{L}^p(M)$. Dann ist $\mu \cdot f$ messbar und für $p < \infty$ gilt

$$\left(\int_{M} |\mu \cdot f|^{p} \, d\lambda \right)^{\frac{1}{p}} = \left(|\mu|^{p} \int_{M} |f|^{p} \, d\lambda \right)^{\frac{1}{p}} = |\mu| \left(\int_{M} |f|^{p} \, d\lambda \right)^{\frac{1}{p}} = |\mu| ||f||_{p}.$$

Für $p = \infty$ gilt mit Nullmengen N

$$\inf_{N \subset M} \sup_{x \in M \setminus N} |\mu f(x)| = |\mu| \inf_{N \subset M} \sup_{x \in M \setminus N} |f(x)| = |\mu| ||f||_{\infty}.$$

- Also $\mu \cdot f \in \mathcal{L}^p(M)$ und $\|\mu \cdot f\|_p = |\mu| \|f\|_p$. (2) Sei $f, g \in \mathcal{L}^p(M)$. Nach Satz 15 ist $f + g \in \mathcal{L}^p(M)$ mit $\|f + g\|_p \le \|f\|_p + \|f\|_p$
- (3) $\mathcal{L}^p(M) \neq 0$ da $M \neq \emptyset$ ist $f(x) \equiv 0$ konstant in $\mathcal{L}^p(M)$.

Lemma 4. Sei $M \subset \mathbb{R}^n$, $M \neq \emptyset$, M messbar. Für $f \in \mathcal{L}^{\infty}(M)$ gilt: Es gibt Nullmenge $N_f \subset M$, so dass $||f||_{\infty} = \sup_{x \in M \setminus N_f} |f(x)|$.

Beweis. Definiere $N_f := \bigcup_{k \in \mathbb{N}} A_k$ mit $A_k = \{x \in M : |f(x)| > ||f||_{\infty} + \frac{1}{k}\}$. Zu jedem A_k gibt es eine Nullmenge $N_k \subset M$ mit $A_k \subset N_k$, da sonst $\sup_{x \in M \setminus N} |f(x)| >$ $||f||_{\infty} + \frac{1}{k}$ für alle Nullmengen $N \subset M$. Also sind die A_k alle Nullmengen. Die abzählbare Vereinigung von Nullmengen ist eine Nullmenge, also ist N_f Nullmenge. Per Definition ist

$$\sup_{x \in M \setminus N_f} |f(x)| = ||f||_{\infty}.$$

Bemerkung 4. Sei $f: M \to \mathbb{R}$ messbar, $M \subset \mathbb{R}^n$, $\forall_{x \in M}: f(x) \geq 0$. Dann gibt es monoton wachsende Folge (φ_k) von messbaren, nicht negativen Funktionen φ_k $\sum_{j=1}^{m_k} c_{j,k} \chi_{A_{j,k}}(x)$, $A_{i,k}$ und $A_{j,k}$ paarweise disjunkt und $\forall_{x \in M}$: $\lim_{k \to \infty} \varphi_k(x) =$ f(x) und alle $A_{j,k} \subset M$.

Es gibt nun zwei Möglichkeiten:

- (1) $\left(\int_{\mathbb{R}^n} \varphi_k d\lambda\right)$ ist beschränkte Folge in \mathbb{R} . Nach Satz von Beppo Levi ist f
- Lebesgue-integrierbar mit $\int_{\mathbb{R}^n} f \, d\lambda = \lim_{k \to \infty} \int_{\mathbb{R}^n} \varphi_k \, d\lambda$. (2) Eins der $\int_{\mathbb{R}^n} \varphi_k \, d\lambda$ ist ∞ oder $\lim_{k \to \infty} \int_{\mathbb{R}^n} \varphi_k \, d\lambda = +\infty$. Dies gilt für alle solchen Folgen (φ_k) . Man kann hier $\int_M f d\lambda = \infty$ definieren.

Theorem 17. Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$ und $p \in [1,\infty) \cup \{\infty\}$. Dann ist $\mathcal{L}^p(M)$ bezüglich der Halbnorm $\|\cdot\|_p$ vollständig.

Beweis. Wir unterscheiden zwei Fälle.

(1) Im Fall $p = \infty$ sei (f_k) Cauchy-Folge in $\mathcal{L}^{\infty}(M)$ bezgülich $\|\cdot\|_{\infty}$. Nach Lemma 4 gibt es für $k, m \in \mathbb{N}$ eine Nullmenge $N_{k,m} \subset M$ mit

$$||f_k - f_m||_{\infty} = \sup_{x \in M \setminus N_{k,m}} |f_k(x) - f_m(x)|.$$

Setze $N_q = \bigcup_{k,m \in \mathbb{N}} N_{k,m} \subset M$. Da $\mathbb{N} \times \mathbb{N}$ abzählbar ist, ist N_q Nullmenge. Da für alle $k, m \in \mathbb{N}$ gilt $N_{k,m} \subset N_q$ folgt für alle $m, k \in \mathbb{N}$:

$$||f_k - f_m||_{\infty} = \sup_{x \in M \setminus N_{k,m}} |f_k(x) - f_m(x)| \ge \sup_{x \in M \setminus N_q} |f_k(x) - f_m(x)|$$

$$\ge \inf_{N \subset M} \sup_{x \in M \setminus N} \dots$$

.... TODO Also $\forall_{m,k\in\mathbb{N}} : \sup_{x\in M\setminus N_q} |f_k(x) - f_m(x)| = ||f_k - f_M||_{\infty}.$ Analog erhält man Nullmenge $N_u \subset M$ mit $\forall_{k \in \mathbb{N}}$: $\sup_{x \in M \setminus N_u} |f_k(x)| =$ $||f_k||_{\infty}$. Da $N = N_q \cup N_u \subset M$ Nullmenge ist, gilt mit analogen Argument die Aussagen

(1.6)
$$\forall_{k,m \in \mathbb{N}} : \sup_{x \in M \setminus N} |f_k(x) - f_m(x)| = \|f_k - f_m\|_{\infty},$$

(1.7)
$$\forall_{k \in \mathbb{N}} : \sup_{x \in M \setminus N} |f_k(x)| = ||f_k||_{\infty}.$$

Wegen (1.7) ist $(f_k|_{M\setminus N})$ Folge in $l^{\infty}(M\setminus N)$. Wegen (1.6) ist $(f_k|_{M\setminus N})$ Cauchy-Folge in $l^{\infty}(M \setminus N)$ bezüglich der Supremumsnorm. Damit konvergiert $(f_k|_{M\setminus N})$ gegen $f:M\setminus N\to \mathbb{K}, f\in l^\infty(M\setminus N)$ bezüglich der Supremumsnorm. Sei $\widetilde{f}: M \to \mathbb{K}$,

$$\widetilde{f}(x) = \begin{cases} f(x) & (x \in M \setminus N) \\ 0 & (x \in N) \end{cases}$$

Da \widetilde{f} beschränkt, ist $\widetilde{f} \in \mathcal{L}^{\infty}(M)$. Weiterhin gilt

$$\lim_{k \to \infty} \|f_k - \widetilde{f}\|_{\infty} \leq \lim_{k \to \infty} \sup_{x \in M \setminus N} |f_k(x) - \widetilde{f}(x)|$$

$$= \lim_{k \to \infty} \underbrace{\|f_k|_{M \setminus N} - f\|_{\infty}}_{\text{Supremumgsnorm auf } l^{\infty}(M \setminus N)} = 0.$$

(2) Im Fall $1 \leq p < \infty$ sei (f_k) eine Cauchy-Folge in $\mathcal{L}^p(M)$. Wähle Teilfolge (f_{k_l}) von (f_k) mit $\forall_{l \in \mathbb{N}} : \|f_{k_{l+1}} - f_{k_l}\|_p < 2^{-l}$. Wir definieren Folgen (g_l) und (h_m) in $\mathcal{L}^p(M)$ durch $g_l := f_{k_{l+1}} - f_{k_l}$ für $l \in \mathbb{N}$ und $h_m = \sum_{l=1}^m |g_l|$ für $m \in \mathbb{N}$. Wegen der Minkowski-Ungleichung (Satz 15) gilt für $m \in \mathbb{N}$ stets

$$\int_{M} (h_m)^p d\lambda = \left(\|\sum_{j=1}^m |g_l| \|_p \right)^p \le \left(\sum_{l=1}^m \|g_l\| \right)^p \le \left(\sum_{l=1}^\infty 2^{-l} \right)^p = 1.$$

Die $(h^p_m)_{m\in\mathbb{N}}$ ist eine Folge in $\mathcal{L}^1(M)$ mit $h^p_m \leq h^p_{m+1}$ und $(\int_M h^p_m \, d\lambda)$ beschränkt Nach dem Satz von Beppo Levi gibt es eine Funktion $h:M\to [0,\infty), h^p\in\mathcal{L}^1(M)$ und Nullmenge N so dass $\forall_{x\in M\setminus N}$ gilt $\lim_{m\to\infty} h^p_m(x)=h^p(x)$. Insbesondere $h\in\mathcal{L}^p(M)$. Die Reihe $\sum_{l=1}^\infty g_l(x)$ konvergiert für $x\in M\setminus N$ absolut. Also ist die Funktion $g:M\to\mathbb{K}$,

$$g(x) = \begin{cases} \sum_{l=1}^{\infty} g_l(x) & (x \in M \setminus N), \\ 0 & (x \in N) \end{cases}$$

wohldefiniert und messbar. Es ist $(\sum_{l=1}^{m} g_l)_{m \in \mathbb{N}}$ eine Folge in $\mathcal{L}^p(M)$ mit $|\sum_{l=1}^{m} g_l(x)|^p \leq (h(x))^p$ für alle $x \in M$, $m \in \mathbb{N}$. Da $h^p \in \mathcal{L}^1(M)$ folgt nach dem Konvergenzsatz von Lebesgue, dass $g^p \in \mathcal{L}^1(M)$ mit $\lim_{m \to \infty} \int_M (\sum_{l=1}^{m} g_l)^p d\lambda = \int_M g^p d\lambda$. Also $g \in \mathcal{L}^p(M)$. Also $g \in \mathcal{L}^p(M)$. Es gilt nun²: $||g + f_{k_1} - f_{k_m}||_p = ||g - \sum_{l=m+1}^{m} g_l||_p = \sum_{l=m+1}^{\infty} g_l||_p \leq \sum_{l=m+1}^{\infty} ||g_l||_p \leq \sum_{l=m+1}^{\infty} 2^{-l} = 2^{-m} \to 0$ für $m \to \infty$. Nach analogen Argument zum Beweis von Satz 13 (Teil 3) folgt $||f_k - (g + f_{k_1})||_p \to 0$ für $k \to \infty$.

Theorem 18. Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$, und $p \in [1, \infty) \cup \{\infty\}$. Wir definieren $\mathcal{N}_p(M) := \{f : M \to \mathbb{K} | f \text{ messbar}, \|f\|_p = 0\}.$

Auf dem Quotientenraum

$$L^p(M) := \mathcal{L}^p(M)/\mathcal{N}^p(M)$$

ist durch $||f + \mathcal{N}_p(M)||_p := ||f||_p$ eine Norm definiert. Der Raum $(L^p(M), ||\cdot||_p)$ ist ein Banachraum.

Beweis. Nach Satz 16 ist $\|\cdot\|_p$ Halbnorm auf $\mathcal{L}^p(M)$. Damit folgt mit Satz 12 dass $\|f + \mathcal{N}_p(M)\|_p := \|f\|_p$ ist Norm auf $L^p(M)$. Satz 17 sagt, dass $\mathcal{L}^p(M)$ vollständig bezüglich $\|\cdot\|_p$ ist und damit folgt mit Satz 12 dass $(L^p(M), \|\cdot\|)$ Banachraum. \square

2. Beschränkte lineare Operatoren

14.11.13

Definition 8. TODO

Wir wollen uns nun mit stetigen linearen Abbildungen beschäftigen.

Theorem 19. Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ normierte Räume. Sei T eine lineare Abbildung von X nach Y. Dann sind äquivalent:

(1) T ist stetig.

 $^{^2}$ Denn für Lebesgue-Integrale ist egal, wie der Integrand auf Nullmengen definiert ist

- (2) T ist stetig in θ .
- (3) Es existiert ein M > 0, so dass für alle $x \in X$ gilt $||Tx||_Y \le M||x||_X$.
- (4) T ist gleichmäßig stetig.

Beweis. TODO

Bemerkung 5. Wegen Satz 19 bezeichnet man stetige lineare Operatoen/Funktionale als beschränkte lineare Operatoren/Funktionale.

Definition 9. Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ metrische Räume und T ein stetiger linearer Operator von X nach Y. Wir definieren die Operatornorm $\|T\|$ von T als

$$||T|| = \sup\{\frac{||Tx||_Y}{||x||_X} \mid x \in X, x \neq 0\}.$$

Wegen Satz 19 ist ||T|| wohldefiniert.

Definition 10. Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ metrische Räume. $L(X, Y) = \{T: X \to Y \mid T \text{ linear und stetig}\}$ ist der Raum der stetigen linearen Operatoren. L(X) := L(X, X). L(X, Y) hängt von den Normen auf X und Y ab (falls X unendlich-dimensional).

Theorem 20. Seien $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ und $(Z, \|\cdot\|_Z)$ normierte Räume. Es gilt

(1) $F\ddot{u}r T \in L(X,Y)$ ist

$$\begin{split} \|T\| &= \sup\{\|Tx\|_Y \,|\, x \in X, \|x\|_X = 1\} \\ &= \sup\{\|Tx\|_Y \,|\, x \in X, \|x\|_X \le 1\} \\ &= \inf\{M \ge 0 \,|\, \forall_{x \in X} : \|Tx\|_Y \le M \cdot \|x\|_X\} \end{split}$$

- (2) $F\ddot{u}r\ T\ aus\ L(X,Y)\ ist\ ||Tx||_Y \le ||T|| \cdot ||x||_X$.
- (3) L(X,Y) ist versehen mit $\|\cdot\|$ ein normierter Raum.
- (4) Ist Y vollständig, so ist $(L(X,Y), \|\cdot\|)$ ein Banachraum.
- (5) $F\ddot{u}r T \in L(X,Y), T \in L(Y,Z) \text{ ist } R \circ T \in L(X,Z) \text{ mit } ||R \circ T|| \le ||R|| \cdot ||T||.$

Beweis. Beweis von (1), (2) und (5) in der Übung. Beweis von (3): L(X,Y) ist ein \mathbb{K} -Vektorraum. Wir zeigen, dass $\|\cdot\|$ Norm auf L(X,Y) ist.

(1) Sei $\lambda \in \mathbb{K}$, $T \in L(X,Y)$. Damit

$$\begin{split} \|\lambda T\| &= \sup\{\|(\lambda T)x\|_Y \,|\, x \in X, \|x\|_X = 1\} \\ &= \sup\{\|\lambda (Tx)\|_Y \,|\, x \in X, \|x\|_X = 1\} = |\lambda| \|T\|. \end{split}$$

(2) Sei $S, T \in L(X, Y)$.

$$\begin{split} \|S+T\| &= \sup\{\|(S+T)x\|_Y \,|\, x \in X, \|x\|_X = 1\} \\ &= \sup\{\|Sx+Tx\|_Y \,|\, x \in X, \|x\|_X = 1\} \\ &\leq \sup\{\|Sx\|_Y + \|Tx\|_Y \,|\, x \in X, \|x\|_Y = 1\} \leq \|S\| + \|T\| \end{split}$$

(3) Sei $T \in L(X, Y)$ mit ||T|| = 0. Dann ist

$$\sup \left\{ \frac{\|Tx\|_Y}{\|x\|_X} \, | \, x \in X, x \neq 0 \right\} = 0.$$

Also für alle $x \in X$, $x \neq 0$ ist $||Tx||_Y = 0$. Also ist T konstant 0.

Beweis von (4): Sei $(Y, \|\cdot\|_Y)$ vollständig und (T_n) Cauchy-Folge in $(L(X,Y), \|\cdot\|)$. Für jedes $x \in X$ ist $(T_n x)_{n \in \mathbb{N}}$ Cauchy-Folge in Y, da für alle $n, m \in \mathbb{N}$ gilt $\|T_n x - T_m x\| = \|(T_n - T_m)x\| \le \|T_n - T_m\| \cdot \|x\|_X$. Da $(Y, \|\cdot\|_Y)$ vollständig ist, konvergiert $(T_n x)$. Definiere $T: X \to Y$ durch $Tx := \lim_{n \to \infty} (T_n x)$. T ist linear, da für $a, b \in \mathbb{K}$, $x_1, x_2 \in X$ gilt $T(ax_1 + bx_2) = \lim_{n \to \infty} T_n(ax_1 + bx_2) = \lim_{n \to \infty} (aT_n x_1 + bT_n x_2) = a\lim_{n \to \infty} T_n x_1 + b\lim_{n \to \infty} T_n x_2 = aTx_1 + bTx_2$. $(\|T_n\|)_{n \in \mathbb{N}}$ ist Cauchy-Folge in \mathbb{R} , da für alle $n, m \in \mathbb{N}$ gilt $\|T_n\| - \|T_m\| \le \|T_n - T_m\|$. Also $(\|T_n\|)$ konvergent gegen $c \in \mathbb{R}$. Für alle $x \in X$ gilt $\|Tx\|_Y = \lim_{n \to \infty} \|T_n x\|_Y \le \lim_{n \to \infty} \|T_n\|\|x\|_X = c\|x\|_X$. Nach Satz 19 ist T daher stetig. Sei $\varepsilon > 0$ gegeben. Wähle $N \in \mathbb{N}$, so dass für alle $n, m \in \mathbb{N}$ gilt $\|T_n - T_m\| < \frac{\varepsilon}{2}$ gilt. Sei $x \in X$. Wähle $M_x \in \mathbb{N}$ mit $M_x > N$ und $\forall_{m \geq M_x} : \|Tx - T_m x\|_Y < \frac{\varepsilon}{2}$. Für alle n > N und $x \in X$ ist $\|x\|_X = 1$. Es gilt $\|Tx - T_n x\|_Y \le \|Tx - T_m x\|_Y + \|T_{M_x} - T_n x\|_Y < \frac{\varepsilon}{2} + \|T_{M_x} - T_n \|\|x\|_X < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Also für alle n > N: $\|T - T_n\| = \sup\{\|Tx - T_n x\|_Y \mid x \in X, \|x\|_X = 1\} \le \varepsilon$.

20.11.13

Beispiel 6.

- (1) Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Der identische Operator Id : $X \to X$, Id x := x ist stetig und $\|\operatorname{Id}\| = 1$
- (2) Betrachte $(C([0,1]), \|\cdot\|_{\infty}), p \in [0,1] \text{ und } T_p : C([0,1]) \to \mathbb{K}, T_p f := f(p).$ $T_p \text{ ist linear, } T_p \text{ ist stetig, den für } f \in C[0,1] \text{ gilt } |T_p f| = |f(p)| \le ||f||_{\infty}.$ Da es $f \in C([0,1])$ gibt mit $|f(p)| = ||f||_{\infty} \ne 0$ ist

$$\sup \left\{ \frac{|T_p f|}{\|f\|_{\infty}} \, | \, f \in C([0, 1]), f \neq 0 \right\} \ge 1.$$

Somit $||T_p|| = 1$. Betrachten wir $||f||_1 = \int_0^1 |f(s)| ds$ auf C([0,1]), so ist $T_p: (C([0,1]), ||\cdot||_1) \to \mathbb{K}$ unstetig, denn es gibt Folge (f_n) in C([0,1]) mit $||f_n||_1 = 1$ für alle $n \in \mathbb{N}$ und $||f_n(p)||_1 \to \infty$ für $n \to \infty$.

(3) Betrachte $(C([0,1]), \|\cdot\|_{\infty})$. Sei $k \in C([0,1] \times [0,1])$. Für $f \in C([0,1])$ ist die Abbildung $[0,1] \to \mathbb{K}$, $t \mapsto \int_0^1 k(t,s)f(s)\,ds$ wohldefiniert und stetig, da $(t,s) \mapsto k(t,s)f(s)$ gleichmäßig stetig auf $[0,1] \times [0,1]$ ist. Wir erhalten eine Abbildung $T: C([0,1]) \to C([0,1])$, $(Tf)(t) := \int_0^1 k(t,s)f(s)\,ds$. Man sieht, dass T linear ist. Man spricht von einem Integraloperator und von k als den Kern von T. Da gilt

$$|\int_{0}^{1} k(t,s)f(s) ds| \le \int_{0}^{1} |k(t,s)| \cdot |f(s)| ds$$

 $\le ||f||_{\infty} \int_{0}^{1} |k(t,s)| ds$

ist $\|\int_0^1 k(t,s)f(s) ds\|_{\infty} \le \|f\|_{\infty} \sup_{t \in [0,1]} \int_0^1 |k(t,s)| ds$, also T stetig und $\|T\| \le \sup_{t \in [0,1]} \int_0^1 |k(t,s)| ds$. Für alle $\varepsilon > 0$, $t \in [0,1]$ fest gilt

$$\int_0^1 k(t,s) \frac{\overline{k(t,s)}}{|k(t,s)| + \varepsilon} ds = \int_0^1 \frac{|k(t,s)|^2}{|k(t,s)| + \varepsilon} ds$$

$$\geq \int_0^1 \frac{|k(t,s)|^2 - \varepsilon^2}{|k(t,s)| + \varepsilon} ds$$

$$= \int_0^1 (|k(t,s)| - \varepsilon) ds$$

$$= \int_0^1 |k(t,s)| ds - \varepsilon$$

und

$$\sup_{s \in [0,1]} \left| \frac{\overline{k(t,s)}}{|k(t,s)| + \varepsilon} \right| < 1.$$

Also zu jedem $\varepsilon > 0$, $t \in [0,1]$ gibt es $f_t \in C([0,1])$ mit $||f_t||_{\infty} < 1$ und $(Tf)(t) \ge \int_0^1 |k(t,s)| \, ds - \varepsilon$. Also für $T \ne 0$ und $\varepsilon > 0$ hinreichend klein, gibt es $t_0 \in C([0,1])$ mit $||Tf_{t_0}||_{\infty} \ge \int_0^1 |k(t,s)| \, ds - \varepsilon$ und $\int_0^1 |k(t_0,s)| \, ds = \sup_{t \in [0,1]} \int_0^1 |k(t,s)| \, ds$. Da dies für alle $\varepsilon > 0$ hinreichend klein gilt, ist $||T|| = \sup\{||Tf||_{\infty} | f \in C([0,1]), f \ne 0, ||f||_{\infty} \le 1\} \ge \sup_{t \in [0,1]} \int_0^1 |k(t,s)| \, ds$. Somit $||T|| = \sup_{t \in [0,1]} \int_0^1 |k(t,s)| \, ds$.

(4) Wir betrachten $X = C^1([0,1])$ und Y = C([0,1]). Wir definieren $T: X \to Y$ durch Tf = f'. Versehen wir X und Y mit der Supremumsnorm, so int T ungestign dans $f^{(0)} = f(t)$.

- (4) Wir betrachten $X = C^1([0,1])$ und Y = C([0,1]). Wir definieren $T: X \to Y$ durch Tf = f'. Versehen wir X und Y mit der Supremumsnorm, so ist T unstetig, denn für $f_n(x) := x^n$ ist (f_n) Folge in X mit $||f_n||_{\infty} = 1$ für alle $n \in \mathbb{N}$ und $||Tf_n||_{\infty} = n$ da $f'_n(x) = nx^{n-1}$. Also gibt es kein M > 0 mit $\forall f \in X : ||Tf||_{\infty} \le M||f||_{\infty}$. Versehen wir X mit der Norm $||f|| = ||f||_{\infty} + ||f'||_{\infty}$ und Y mit der Supremumsnorm, so ist T stetig, denn für alle $f \in X$ gilt $||Tf||_{\infty} = ||f'||_{\infty} < ||f||_{\infty} + ||f||_{\infty} = ||f||$.
- für alle $f \in X$ gilt $||Tf||_{\infty} = ||f'||_{\infty} \le ||f||_{\infty} + ||f||_{\infty} = ||f||$. (5) Wir betrachten $X = \{f \in C([0,1]) \mid f(1) = 0\} \subset C([0,1])$ mit $|| \cdot ||_{\infty}$. Wir definieren $T: X \to \mathbb{K}$, $Tf = \int_0^1 f(s) \, ds$. T ist linear und T ist stetig, da $||Tf|| = ||\int_0^1 f(s) \, ds| \le \int_0^1 ||f(s)|| \, ds \le ||f||_{\infty}$. Insbesondere $||T|| \le 1$. Für $f_n(x) = 1 - x^n$ ist (f_n) Folge in X mit $||f_n||_{\infty} = 1$ für alle $n \in \mathbb{N}$ und es gilt $||Tf_n|| = ||\int_0^1 (1 - x^n) \, dx| = |1 - \frac{1}{n+1}|$. Somit $||T|| \ge 1 - \frac{1}{n+1}$ für alle $n \in \mathbb{N}$. Also ||T|| = 1. Angenommen es gäbe $f \in X$ mit $||f||_{\infty} = 1$ und ||Tf|| = 1. O.B.d.A. Tf = 1. Dann gilt $0 = \int_0^1 f(s) \, ds - 1 = \int_0^1 (f(s) - 1) \, ds$. Da $||f(s)|| \le 1$ für alle $s \in [0, 1]$ ist $\Re g(s) \le 0$ für alle $s \in [0, 1]$. Da g(s) stetig ist $\Re g(s) = 0$ für alle $s \in [0, 1]$. Somit $\Re f(1) = \Re g(1) + 1 = 0 + 1$, im Widerspruch zu f(1) = 0.

Definition 11. Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ normierte Räume. Wir nennen eine lineare Abbildung $T: X \to Y$ Isometrie oder isometrisch falls für alle $x \in X$ gilt

$$||Tx||_{Y} = ||x||_{X}.$$

Wir nennen einen stetigen linearen Operator $T:X\to Y$ einen Isomorphismus, falls T eine Bijektion und T^{-1} stetig ist.

Existiert ein Isomorphismus $T: X \to Y$, so nennt man $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ isomorph. Ist der Isomorphismus auch eine Isometrie, so nennen wir $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ isometrisch isomorph.

Beispiel 7. $(c, \|\cdot\|_{\infty})$ ist isomorph zu $(c_0, \|\cdot\|_{\infty})$.

Beweis. Wir definieren $l: c \to \mathbb{K}$ durch $l(f) = \lim_{m \to \infty} f(m)$. l ist lineares Funktional, denn für $\alpha, \beta \in \mathbb{K}$, $f, g \in c$ ist $l(\alpha f + \beta g) = \lim_{m \to \infty} \alpha f(m) + \beta g(m) = \alpha l(f) + \beta l(g)$. l ist stetig, denn für $f \in c$ ist $|l(f)| = |\lim_{m \to \infty} f(m)| = \lim_{m \to \infty} |f(m)| \le \sup_{m \in \mathbb{N}} |f(m)| = ||f||_{\infty}$.

Wir definieren $T: c \to c_0$ durch

$$(Tf)(m) = \begin{cases} l(f) & (m=1), \\ f(m-1) - l(f) & (m>1). \end{cases}$$

Offensichtlich ist T linear und $Tf \in c_0$ für $f \in c$. T ist stetig denn für $f \in c$ ist $\|Tf\|_{\infty} = \sup_{m \in \mathbb{N}} |Tf(m)| \le |l(f)| + |l(f)| + \|f\|_{\infty} \le 3\|f\|_{\infty}$.

Wir definieren $S: c_0 \to c_0$ durch

$$(Sf)(m) = f(m+1) + f(1).$$

S ist linear und stetig denn für $f \in c_0$ ist $||Sf||_{\infty} = ||f(m+1) + f(1)||_{\infty} \le 2||f||_{\infty}$. Für $f \in c_0$ ist $\lim_{m \to \infty} Sf(m) = f(1)$. Also ist $(T \circ S)f(m) = T(S(f))(m)$,

$$T(f(m+1) + f(1)) = \begin{cases} l(sf) & (m=1), \\ Sf(m-1) - l(Sf) & (m>1), \end{cases}$$
$$= \begin{cases} f(1) & (m=1), \\ f(m) + f(1) - f(1) & (m>1). \end{cases}$$

Also $T \circ S = \mathrm{Id}_{c_0}$. Für $f \in c$ ist $(S \circ T)f(m) = S(Tf)(m) = Tf(m+1) + Tf(1) = f(m) + l(f) - l(f) = f(m)$ für alle $m \in \mathbb{N}$, also $S \circ T = \mathrm{Id}_c$ und somit $S = T^{-1}$ und T ist ein Isomorphismus.

2.1. Dualräume.

Definition 12. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Wir bezeichnen $L(X, \mathbb{K})$ als *Dualraum* von X. Wir verwenden die Notation X' für $L(X, \mathbb{K})$ und bezeichnen die Elemente von X' mit f', g', x', y' usw. Man beachte, dass $f' \in X'$ stetig ist.

Korollar 3. (TODO) Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Dann ist X' versehen mit der Operatornorm ein Banachraum.

Beweis. Satz
$$20$$
 (4).

Theorem 21. (1) Betrachte $(l^p, \|\cdot\|_p)$ für $p \in (1, \infty)$, dann ist $((l^p)', \|\cdot\|)$ isometrisch isomorph zu $(l^q, \|\cdot\|_q)$ mit $q = \frac{p}{p-1}$.

(2) *TODO*

Theorem 22. Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$.

(1) Betrachte $(L^p(M), \|\cdot\|_p)$ für $p \in (1, \infty)$. Dann ist $((L^p(M)', \|\cdot\|)$ isometrisch isomorph zu $(L^q(M), \|\cdot\|_q)$ für $q = \frac{p}{p-1}$ vermöge der Abbildung $T: L^q(M) \to (L^p(M))', (Tf)(g) := \int_M f \cdot g \, d\lambda$.

(2) Betrachte $(L^1(M), \|\cdot\|_1)$. Dann ist $((L^1(M))', \|\cdot\|)$ isometrisch isomorph zu $(L^{\infty}(M), \|\cdot\|_{\infty})$ vermöge der Abbildung $T: L^{\infty}(M) \to (L^1(M))', (Tf)(g) = \int_M f \cdot g \, d\lambda$.

Dabei ist jeweils mit $\int_M f \cdot g \, d\lambda$ gemeint, dass ein Repräsentant \widetilde{f} bzw. \widetilde{g} aus der Äquivalenzklasse f bzw. g gewählt wird und man $\int_M \widetilde{f} \cdot \widetilde{g} \, d\lambda$ berechnet. Der Wert von $\int_M \widetilde{f} \cdot \widetilde{g} \, d\lambda$ hängt nicht von der Wahl der Repräsentanten ab und $Tf : L^p(M) \to \mathbb{K}$ ist wohldefiniert.

Bemerkung 6. Für $(l^{\infty}, \|\cdot\|_{\infty})$ bzw. $(L^{\infty}(M), \|\cdot\|_{\infty})$ ist $(l^{\infty})'$ bzw. $(L^{\infty}(M))'$ nicht isomorph zu l^1 bzw. $L^1(M)$.

2.2. Satz von Hahn-Banach. Wir wiederholen das Lemma von Zorn. Sei dazu M eine nicht-leere Menge. Eine Relation \leq heißt Ordnungsrelation, falls für alle $x,y\in M$ gilt $x\leq x, \ (x\leq y\wedge y\leq z) \Longrightarrow x\leq z$ und $(x\leq y\wedge y\leq x) \Longrightarrow x=y$. Wir nennen (M,\leq) eine geordnete Menge. Sei (M,\leq) eine geordnete Menge. Wir nennen $m\in M$ maximal, falls $\forall_{x\in M}: x\leq m$. Ist $A\subset M$, so nennen wir $s\in M$ obere Schranke, falls $\forall_{x\in A}: x\leq s.$ $A\subset M$ heißt Kette, falls für alle $x,y\in A$ gilt: $x\leq y$ oder $y\leq x.$ M heißt induktiv geordnet, falls jede Kette eine obere Schranke besitzt.

Theorem (Das Lemma von Zorn). Eine induktiv geordnete Menge besitzt (mindestens) ein maximales Element.

Definition 13. Sei X ein \mathbb{K} -Vektorraum. Wir nennen $p:X\to\mathbb{R}$ sublinear, falls gilt

- (1) Für alle $x \in X, \lambda \in \mathbb{R}^+$: $p(\lambda x) = \lambda p(x)$
- (2) Für alle $x, y \in X$: $p(x+y) \le p(x) + p(y)$

Beispiel 8. (1) Jede Halbnorm ist sublinear.

(2) Lineare Funktionale auf einem \mathbb{R} -Vektorraum sind sublinear.

Theorem 23 (Satz von Hahn-Banach). Sei X ein \mathbb{R} -Vektorraum, $p: X \to \mathbb{R}$ sublinear, $U \subset X$ ein Unterraum und $f: U \to \mathbb{R}$ linear mit $f(x) \leq p(x)$ für alle $x \in U$. Dann gibt es eine lineare Abbildung $F: X \to \mathbb{R}$ mit $F|_U = f$ und $F(x) \leq p(x)$ für alle $x \in X$.

Beweis. TODO □

Theorem 24 (Hahn-Banach für \mathbb{C} -Vektorräume). Sei X ein \mathbb{C} -Vektorraum, $p: X \to \mathbb{R}$ sublinear, $U \subset X$ ein Unterraum und $f: U \to \mathbb{C}$ linear mit $\Re f(x) \leq p(x)$ für alle $x \in U$. Dann gibt es eine lineare Abbildung $F: X \to \mathbb{C}$ mit F(x) = f(x) für alle $x \in U$ und $\Re F(x) \leq p(x)$ für alle $x \in X$.

Beweis. TODO \Box 3.12.13

Definition (Nachtrag zu Definition 9). Seien $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ normierte Räume. Ist $X = \{0\}$ so gibt es *genau eine* lineare Abbildung $T: X \to Y$ und zwar die konstante Abbildung Tx = 0. Diese Abbildung ist stetig, man setzt in diesem Fall $\|T\| = 0$. Die Aussagen von Satz 20 (2), (3), (4), (5) gelten auch für $X = \{0\}$. Im Folgenden sind normierte Räume stets nicht trivial, d.h. ungleich $\{0\}$, sofern nicht anders vermerkt. Definitionen 11 (TODO) und 12 (TODO) gelten auch

für den Fall, dass einer der Räume $\{0\}$ ist. Ebenso darf in den Sätzen 23 und 24 $U = \{0\}$ sein.

Theorem 25. Sei $(X, \|\cdot\|_X)$ ein normierter Raum, $U \subset X$ ein Unterraum und $u' \in U'$. Dann gibt es $x' \in X'$ mit $\|u'\| = \|x'\|$ und u'(v) = x'(v) für alle $v \in U$.

Beweis. Setze $p(x) = ||u'|| \cdot ||x||_X$, $p: X \to \mathbb{R}$. p ist sublinear.

(1) Falls X C-Vektorraum. Für alle $v \in U$

$$|\Re u'(v)| \le |u'(v)| \le ||u'|| \cdot ||v||_X = p(v)$$

denn $|z| = \sqrt{(\Re z)^2 + (\Im z)^2} \ge |\Re z|$. Nach Satz 24 gibt es lineare Abbildung $x': X \to \mathbb{C}$ mit $x'|_U = u'$ und $\Re x'(y) \le p(y)$ für alle $y \in X$. Damit für $y \in X$:

$$-\Re x'(y) = \Re x'(-y) \le p(-y) = \|u'\| \cdot \|-y\|_X = \|u'\| \cdot \|y\|_X = p(y).$$

Also $|\Re x'(y)| \leq p(y)$ für alle $y \in X$. Zu jedem $y \in X$ gibt es $\lambda_y \in \mathbb{C}$ mit $|\lambda_y| = 1$ und $\lambda_y \cdot x'(y) = |x'(y)|$. Somit gilt für alle $y \in X$:

$$|x'(y)| = \lambda_y \cdot x'(y) = x'(\lambda_y \cdot y) = \Re x'(\lambda_y \cdot y) \leq p(\lambda_y \cdot y) = ||u'|| \cdot ||\lambda_y \cdot y||_X = ||u'|||\lambda_y||y||_X = ||u'|||y||_X$$

Also ist x' stetig und $||x'|| \le ||u'||$. Da $x'|_U = u'$ folgt $||x'|| \ge ||u'||$, also ||x'|| = ||u'||.

(2) Falls X \mathbb{R} -Vektorraum, analog.

2.3. Trennungssatz für konvexe Mengen. Zunächst beweisen wir

Theorem 26. Sei X ein \mathbb{R} -Vektorraum, $M \subset X$ konvex und nicht-leer. Desweiteren sei $p: X \to \mathbb{R}$ sublinear. Dann existiert eine lineare Abbildung $f: X \to \mathbb{R}$ mit $f(x) \leq p(x)$ für alle $x \in X$ und $\inf_{x \in M} f(x) = \inf_{x \in M} p(x)$.

4.12.13

Beweis. (1) Falls $\inf_{x \in M} p(x) = -\infty$, folgt aus Satz 24 mit $U = \{0\}$ die Aussage, denn p sublinear impliziert dass p(0) = 0.

(2) Falls $\inf_{x \in M} p(x) = c \in \mathbb{R}$. Für $x \in X, y \in M$ und $t \in [0, \infty)$ ist

$$p(x+ty) - tc = p(-(-x) + ty) - tc \ge p(ty) - p(-x) - tc$$
$$= t(p(y) - c) - p(-x) \ge -p(-x)$$

Also ist $\widetilde{p}: X \to \mathbb{R}$, $\widetilde{p}(x) = \inf\{p(x+ty) - tc \mid y \in M, t \in [0,\infty)\}$ wohldefiniert. Für $\lambda \in (0,\infty)$, $x \in X$ ist

$$\begin{split} \widetilde{p}(\lambda x) &= \inf\{p(\lambda x + ty) - tc \,|\, y \in M, t \in [0, \infty)\} \\ &= \inf\{\lambda p(x + \frac{t}{\lambda}y) - tc \,|\, y \in M, t \in [0, \infty)\} \\ &= \inf\{\lambda (p(x + \frac{t}{\lambda}y) - \frac{t}{\lambda}c) \,|\, y \in M, t \in [0, \infty)\} \\ &= \lambda \inf\{p(x + \widetilde{t}y) - \widetilde{t}c \,|\, y \in M, \widetilde{t} \in [0, \infty)\} = \lambda \widetilde{p}(x). \end{split}$$

Sei $x_1, x_2 \in X$ und $\varepsilon > 0$. Es gibt $t_1, t_2 \in [0, \infty), y_1, y_2 \in M$ mit $\widetilde{p}(x_1) \ge p(x + t_1 y_1) - t_1 c - \frac{\varepsilon}{2}$ und $\widetilde{p}(x_2) \ge p(x_2 + t_2 y_2) - t_2 c - \frac{\varepsilon}{2}$. Da M konvex ist,

ist
$$\frac{t_1}{t_1+t_2}y_1 + \frac{t_2}{t_1+t_2}y_2 \in M$$
 für $t_1 + t_2 \neq 0$. Daher

$$\widetilde{p}(x_1 + x_2) - \varepsilon \leq p(x_1 + x_2 + (t_1 + t_2)(\frac{t_1}{t_1 + t_2}y_1 + \frac{t_2}{t_1 + t_2}y_2)) - (t_1 + t_2)c - \varepsilon$$

$$\leq p(x_1 + t_1y_1) - t_1c + p(x_2 + t_2y_2) - t_2c - \varepsilon$$

$$\leq \widetilde{p}(x_1) + \widetilde{p}(x_2).$$

Also $\widetilde{p}(x_1+x_2) \leq \widetilde{p}(x_1) + \widetilde{p}(x_2)$, da $\varepsilon > 0$ beliebig. Also \widetilde{p} sublinear. Durch Anwendung von Satz TODO für $U = \{0\}$ erhalten wir eine lineare Abbildung $f: X \to \mathbb{R}$ mit $f(x) \leq \widetilde{p}(x) \leq p(x)$ für alle $x \in X$. Ist $x \in M$ so gilt $f(-x) = -f(x) \leq \widetilde{p}(-x) \leq p(-x+x) - c$ und somit für alle $x \in M$: $c = \inf_{x \in M} p(x) \leq f(x)$.

Theorem 27. Sei $(X, \|\cdot\|_X)$ ein normierter \mathbb{R} -Vektorraum, $A, B \in X$ konvex, nicht-leer, mit

$$d(A, B) = \inf\{\|v - w\|_X \mid v \in A, w \in B\} > 0.$$

Dann gibt es $f' \in X'$ mit $f(A) \cap f(B) \neq \emptyset$.

Korollar 4. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Dann gibt es zu jedem $x \in X \setminus \{0\}$ ein $x' \in X'$ mit $\|x'\| = 1$ und $x'(x) = \|x\|_X$.

Beweis. Sei $U = \text{span}\{x\}$. Definiere $u': U \to \mathbb{K}$ durch $u'(\lambda x) = \lambda ||x||_X$. u' ist stetig da dim U = 1. Per Definition ist ||u'|| = 1. Nach Satz 25 gibt es $x' \in X'$ mit ||x'|| = ||u'|| und $x'|_U = u'$. Also $x'(x) = u'(x) = ||x||_X$.

Korollar 5. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Für $x \in X$ gilt $\|x\|_X = \sup\{|x'(x)| \mid x' \in X', \|x'\| \le 1\}$.

Beweis. Da für alle $y' \in X'$ gilt $|y'(x)| \leq ||y'|| ||x||_X$ folgt die Abschätzung " \geq ". Nach Korollar 4 gibt es $x' \in X$ mit $|x'(x)| = ||x||_X$ und ||x'|| = 1. Also folgt die Abschätzung " \leq ".

Korollar 6. Sei $(X, \|\cdot\|_X)$ ein normierter Raum, $U \subset X$ ein abgeschlossener Unterraum mit $X \neq U$ und $x \in X \setminus U$. Dann gibt es $x' \in X'$ mit $x'|_U = 0$ und $x'(x) \neq 0$.

Beweis. Übung. □

Korollar 7. Sei $(X, \|\cdot\|_X)$ ein normierter Raum und $U \subset X$ ein Unterraum. Dann sind äquivalent:

- (1) $X = \overline{U}$
- (2) Für alle $x' \in X'$ gilt: $x'|_U = 0 \implies x' = 0$.

Beweis. (1) \Longrightarrow (2): Übung

(2) \Longrightarrow (1): Beweis der Kontraposition. Sei $\overline{U} \neq X$. Wähle $x \in X \setminus \overline{U}$. Nach Korollar 6 gibt es $x' \in X$ mit $x'|_{\overline{U}} = 0$ und $x' \neq 0$ TODO

Theorem 28. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Ist X' separabel, so ist auch $(X, \|\cdot\|_X)$ separabel.

Beweis. Sei $A' \subset X'$ abzählbar mit $\overline{A'} = X'$. Dann ist $B' = \{\frac{a'}{\|a'\|} \mid a' \in A', a' \neq 0\}$ dicht in $S' = \{x' \in X' \mid \|x'\| = 1\}$. Sei U abzählbar mit $\forall_{u \in U} \exists_{b' \in B} : |b'(u)| \geq \frac{1}{2}$. U existiert, da $\forall_{b' \in B'}$ gilt $b' \neq 0$. Wir können U so wählen, dass $\forall_{b' \in B'} \exists_{u \in U} : |b'(u)| \geq \frac{1}{2}$. Setze $V = \operatorname{span} U$. Angenommen $\overline{V} \neq X$. Nach Korollar 7 gibt es $x' \in X'$ mit $x'|_V = 0$ und $x' \neq 0$. O.B.d.A. $\|x'\| = 1$. Da B' dicht in S' gibt es $b' \in B'$ mit $\|x' - b'\| \leq \frac{1}{4}$. Weiterhin gibt es $u \in U$ mit $|b'(u)| \geq \frac{1}{2}$ und $\|u\|_X = 1$. Es gilt

$$\frac{1}{2} \le |b'(u)| = |b'(u) - x'(u)| \le ||b' - x'|| \cdot ||u||_X \le \frac{1}{4},$$

also Widerspruch. Somit $\overline{V} = X$, und X separabel.

Korollar 8. Der Dualraum von $(l^{\infty}, \|\cdot\|_{\infty})$ ist nicht isomorph zu $(l^1, \|\cdot\|_1)$.

Beweis. $(l^{\infty}, \|\cdot\|_{\infty})$ ist nicht separabel, also $(l^{\infty})'$ nicht separabel. Aber $(l^{1}, \|\cdot\|_{1})$ separabel.

Definition 14. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Wir bezeichnen den Dualraum von $(X', \|\cdot\|)$ als den *Bidualraum* kurz X''.

Theorem 29. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Die kanonische Abbildung $i: X \to X''$ (auch i_X genannt) von X in seinen Bidualraum definiert durch

$$i(x)(y') = y'(x)$$

ist eine lineare Isometrie. Insbesondere ist i stetig und injektiv.

Beweis. Wir zeigen

(1) i ist wohldefiniert. Sei dazu $x \in X$ und $y', z' \in X'$, $\alpha, \beta \in \mathbb{K}$. Dann ist $i(x)(\alpha y' + \beta z') = (\alpha y' + \beta z')(x) = \alpha y'(x) + \beta z'(x) = \alpha i(x)(y') + \beta i(x)(z')$. Also ist $i(x): X' \to \mathbb{K}$ linear. i ist stetig, denn für $y' \in X'$ gilt

$$|i(x)(y')| = |y'(x)| \le ||y'|| \cdot ||x||_X = ||x||_X \cdot ||y'||.$$

Somit $i(x) \in X''$ für alle $x \in X$.

- (2) i ist linear. Seien $\alpha, \beta \in \mathbb{K}$, $x, y \in X$, $z' \in X'$. Dann ist $i(\alpha x + \beta y)(z') = z'(\alpha x + \beta y) = \alpha z'(x) + \beta z'(y) = \alpha i(x)(z') + \beta i(y)(z')$. Also $i(\alpha x + \beta y) = \alpha i(x) + \beta i(y)$.
- (3) i ist Isometrie. Es ist für alle $x \in X$, $y' \in X$ $|i(x)(y')| \le ||x||_X ||y'||$, also $||i(x)|| \le ||x||_X$. Nach Korollar 4 gibt es zu $x \in X$ ein $x' \in X'$ mit ||x'|| = 1 und $|x'(x)| = ||x||_X$. Somit $||i(x)|| = ||x||_X$ für alle $x \in X$. Damit ist i eine Isometrie.

Korollar 9. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Dann ist $(X, \|\cdot\|_X)$ isometrisch isomorph zu einem dichten Unterraum eines Banachraums $(Y, \|\cdot\|_Y)$. Dieser Banachraum ist bis auf Isomorphismen eindeutig.

Beweis. Die Abbildung i aus Satz 29 liefert eine bijektive, lineare Isometrie auf den Unterraum U=i(x) von X''. U ist per Definition dicht in \overline{U} . Da X'' ein Banachraum ist, ist \overline{U} auch ein Banachraum. Sei $(X,\|\cdot\|_X)$ isomorph zu einem Unterraum V eines Banachraums $(Z,\|\cdot\|_Z)$ mit $\overline{V}=Z$. Dann haben wir Isomorphismus $V\to U$. Nach Übungsaufgabe 8.1(b) sind dann $(\overline{U},\|\cdot\|)$ und $(Z,\|\cdot\|_Z)$ isomorph.

Definition 15. Ein normierter Raum $(X, \|\cdot\|_X)$ heißt *reflexiv*, falls die kanonische Abbildung $i: X \to X''$ surjektiv ist.

Beispiel 9. Ein paar Beispiele.

- (1) Jeder endlich-dimensionale normierte Raum ist reflexiv.
- (2) Die Räume $(l^p, \|\cdot\|_p)$ sind für 1 reflexiv.
- (3) Ist $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$, so sind die Räume $(L^p(M), \|\cdot\|_p)$ für 1 reflexiv.
- (4) $(l^1, \|\cdot\|_1)$, $(l^\infty, \|\cdot\|_\infty)$ sind nicht reflexiv.
- (5) Sei $M \subset \mathbb{R}^n$ messbar, $M \neq \emptyset$. Dann sind $(L^1(M), \|\cdot\|_1)$ und $(L^{\infty}(M), \|\cdot\|_{\infty})$ nicht reflexiv.

Theorem 30. Sei $(X, \|\cdot\|_X)$ ein normierter Raum.

- (1) Sei X reflexiv. Dann ist jeder abgeschlossene Unterraum von X reflexiv.
- (2) Ist X ein Banachraum, so ist X genau dann reflexiv, wenn X' reflexiv ist.

Beweis. In zwei Teilen.

(1) Sei U ein abgeschlossener Unterraum von X und X reflexiv. Wähle $u'' \in U''$. Die Abbildung $f: X' \to \mathbb{K}$, $f(x') = u''(x'|_U)$ ist linear und wohldefiniert. f ist stetig, da $|f(x')| = |u''(x'|_U)| \le ||u''|| ||x'|_U|| \le ||u''|| ||x'||$. Also $f \in X''$. Da X reflexiv ist, gibt es $x \in X$ mit i(x) = f, d.h. $\forall_{x' \in X'} f(x') = x'(x)$. Angenommen $x \notin U$. Dann gibt es nach Korollar G ein G ein G ein G with G in G und G ein G e

Sei nun $u' \in U'$ und $x' \in X'$ mit $x'|_U = u'$. x' existiert nach Satz 25. Dann gilt $u''(u') = u''(x'|_U) = f(x') = x'(x) = u'(x)$. Also $u'' = i_U(x)$ mit $i_U : U \to U''$ kanonische Abbildung.

(2) Sei X reflexiv und Banachraum. Wähle $x''' \in X'''$. Die Abbildung $x': X \to \mathbb{K}$, x'(x) := x'''(i(x)) ist wohldefiniert, linear und stetig. Also $x' \in X'$. Sei $y'' \in X''$. Da X reflexiv ist, gibt es $y \in X$ mit i(y) = y''. Es gilt x'''(y'') = x'''(i(y)) = x'(y) = i(y)(x') = y''(x'). Also $x''' = i_{X'}(x')$ mit $i_{X'}: X' \to X'''$ kanonische Abbildung. Somit $i_{X'}$ surjektiv und X' reflexiv. Sei X ein Banachraum und X' reflexiv. Nach obigen Argument ist X'' reflexiv. $i(x) \subset X''$ ist abgeschlossen, da X vollständig ist. Nach (1) ist i(x) dann auch reflexiv und somit X reflexiv.

Korollar 10. Sei $(X, \|\cdot\|_X)$ ein normierter reflexiver Raum. X ist genau dann separabel, wenn X' separabel ist.

Beweis. Satz 28

11.12.13

Definition 16. Sei $(X, \|\cdot\|_X)$ ein normierter Raum und (x_n) eine Folge in X. (x_n) heißt schwach konvergent gegen ein $x \in X$, falls gilt:

$$\forall_{y' \in X'} : \lim_{n \to \infty} y'(x_n) = y'(x)$$

Bemerkung 7. In diesem Zusammenhang spricht man von der Konvergenz in X bzgl. $\|\cdot\|_X$ dann oft auch von starker Konvergenz oder Konvergenz in der Norm.

Theorem 31. Sei $(X, \|\cdot\|_X)$ ein normierter Raum und (x_n) eine Folge in X.

- (1) Konvergiert (x_n) schwach gegen $x \in X$ und $y \in X$, so gilt x = y.
- (2) Ist (x_n) konvergent gegen $x \in X$, so konvergiert (x_n) auch schwach gegen x.
- (3) Ist dim $X < \infty$ und konvergiert (x_n) schwach gegen x, so konvergiert (x_n) gegen x (bezüglich $\|\cdot\|_X$).

Beweis. (1) Konvergiere (x_n) schwach gegen $x \in X$ und $y \in X$, $x \neq y$. Nach Korollar 4 gibt es $f' \in X'$ mit ||f'|| = 1 und $|f(x-y)| = ||x-y||_X \neq 0$. Somit ist $0 = \lim_{n \to \infty} (f'(x_n) - f'(x_n)) = \lim_{n \to \infty} f'(x_n) - \lim_{n \to \infty} f'(x_n) = f'(x) - f'(y) = f'(x-y) \neq 0$, Widerspruch.

- (2) Folgt aus der Stetigkeit von $f' \in X'$.
- (3) Übungsaufgabe 9.1: Wähle endliche Basis, Folge x_n in Basis darstellen. Koeffizienten konvergieren dann einzlen (Zeigen durch clevere Wahl der Funktionale; Korollare von Hahn-Banach verwenden).

Beispiel 10. Betrachte $(l^p, \|\cdot\|_p)$ für $1 . Sei <math>e_n : \mathbb{N} \to \mathbb{K}$, $e_n(m) = 1$ für n = m, sonst $e_n(m) = 0$. Sei $f' \in (l^p)'$. Wir können f'(g) schreiben als $f'(g) = \sum_{m=1}^{\infty} f(m)g(m)$ mit $f \in l^q$ mit $q = \frac{p}{p-1}$. Es ist $f'(e_n) = f(n)$. Somit $\lim_{n \to \infty} f'(e_n) = \lim_{n \to \infty} f(n) = 0$, da $f \in l^q$ mit $q < \infty$. Also

$$\forall_{f' \in X'} : \lim_{n \to \infty} f'(e_n) = 0 = f'(\underbrace{0}_{\in lp})$$

und damit ist (e_n) schwach konvergent gegen $0 \in l^p$. Da $\forall_{n \in \mathbb{N}} : ||e_n||_p = 1$ ist (e_n) nicht konvergent gegen 0 bezüglich $||\cdot||_p$.

Theorem 32. Ist $(X, \|\cdot\|_X)$ ein reflexiver, normierter Raum, so besitzt jede beschränkte Folge eine schwach konvergente Teilfolge.

Beweis. Falls X separabel: Nach Korollar 10 ist X' separabel. Also $X' = \{f'_m \in X' \mid m \in \mathbb{N}\}$. Sei (x_n) beschränkte Folge in X. Es gibt Teilfolge $(x_{n_{1,j}})_{j \in \mathbb{N}}$ von (x_n) so dass $(f'_1(x_{n_{1,j}}))_{j \in \mathbb{N}}$ konvergiert, da $(f'_1(x_n))_{n \in \mathbb{N}}$ beschränkt. Ist $(x_{n_{k,j}})_{j \in \mathbb{N}}$ Teilfolge von (x_n) so dass für l = 1, ..., k die Folgen $(f'_l(x_{k,j}))_{j \in \mathbb{N}}$ konvergieren, so gibt es Teilfolgen $(x_{n_{k+1,j}})_{j \in \mathbb{N}}$ von $(x_{n_{k,j}})_{j \in \mathbb{N}}$ so dass $(f'_{k+1}(x_{n_{k+1,j}}))_{j \in \mathbb{N}}$ konvergiert. Definiert man die Folge (y_k) in X durch $y_k = x_{n_{k,k}}$, so konvergiert per Definition $(f'_m(y_k))_{k \in \mathbb{N}}$. Sei $x' \in X'$ und $\varepsilon > 0$ gegeben. Definiere $M = \sup_{n \in \mathbb{N}} \|x_n\|_X$. Fall M = 0 impliziert, dass x_n Nullfolge ist. Sei M > 0. Wähle $k \in \mathbb{N}$ mit $\|f'_k - x'\| < \frac{1}{4M}\varepsilon$ und $N \in \mathbb{N}$ so dass für alle n, m > N gilt $\|f'_k(y_n) - f'_k(y_m)\| < \frac{\varepsilon}{2}$. Dann gilt für alle n, m > N dass $|x'(y_n) - x'(y_m)| \le |x'(y_n) - f'_k(y_n)| + |f'_k(y_n) - f'_k(y_m)| + |x'(y_m) + f'_k(y_n)|$

 $\leq \|x' - f_k'\| \cdot \|y_n\|_X + |f_k'(y_n) - f_k'(y_m)| + \|x' - f_k'\| \cdot \|y_m\|_X \leq \frac{1}{2M} M \varepsilon + \frac{\varepsilon}{2} = \varepsilon$. Also ist $(x'(y_n))_{n \in \mathbb{N}}$ Cauchy-Folge in \mathbb{K} und somit konvergent.

Setze $X' \to \mathbb{K}$, $l(x') = \lim_{n \to \mathbb{N}} x'(y_n)$. l ist wohldefiniert und linear. Es ist $|l(x')| = |\lim_{n \to \infty} x'(y_n)| = \lim_{n \to \infty} |x'(y_n)| \le \lim_{n \to \infty} ||x'|| ||y_n||_X \le ||x'|| \cdot M$. Also ist l stetig und $l \in X''$. Da X reflexiv ist, gibt es $y \in X$ mit l = i(x), d.h.

$$\forall_{x' \in X'} : x'(y) = i(y)(x') = l(x') = \lim_{n \to \infty} x'(y_n).$$

Falls X nicht separabel: $Y = \overline{\operatorname{span}\{x_n \mid n \in \mathbb{N}\}}$. Dann ist Y ist separabel und reflexiv (Satz 30). Nach obigen Argument gibt es Teilfolge (y_k) von (x_n) und $y \in Y$ mit $\forall_{y' \in Y'}$: $\lim_{k \to \infty} y'(y_k) = y'(y)$. Sei $x' \in X'$. Dann ist $x'|_Y \in Y'$ und somit $\lim_{n \to \infty} x'(y_n) = \lim_{n \to \infty} x'|_Y(y_n) = x'|_Y(y) = x'(y)$. Also konvergiert (y_n) schwach gegen y.

Definition 17. Seien $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ normierte Räume und $T \in L(X, Y)$. Wir nennen den stetigen linearen Operator $T': Y' \to X'$, definiert durch (T'y')(x) = y'(Tx) den adjungierten Operator zu T.

Bemerkung 8. T' ist stetig da für alle $y' \in Y'$, $x \in X$ gilt $|(T'y')(x)| \le ||y'|| ||T|| ||x||_X$. Also gilt für alle $y' \in Y'$ dass $||T'y'|| \le ||y'|| ||T||$.

Theorem 33. Seien $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y), (Z, \|\cdot\|_Z)$ normierte Räume.

- (1) Die Abbildung $\varphi: L(X,Y) \to L(Y',X')$ mit $\varphi(T) = T'$ ist linear und isometrisch.
- (2) $F\ddot{u}r\ T \in L(X,Y), \ S \in L(Y,Z) \ ist \ (S \circ T)' = T' \circ S'.$

17.12.13

Beweis. (1) φ ist linear: Seien $T,S \in L(X,Y), \ \alpha,\beta \in \mathbb{K}, \ y \in Y', \ x \in X$. Dann gilt $\varphi(\alpha T + \beta S)(y') = y'((\alpha T + \beta S)x) = \alpha y'(Tx) + \beta y'(Sx) = \alpha \varphi(T)(y')(x) + \beta \varphi(S)(y')(x)$. Für alle $T \in L(X,Y), y' \in Y'$ ist $\|\varphi(T)(y')\| = \|y' \circ T\| \le \|T\| \cdot \|y'\|$ und somit $\sup\{\|\varphi(T)(y')\| \|y' \in Y', \|y'\| \le 1\} \le \|T\|$, also $\|T'\| \le \|T\|$. Somit ist φ stetig mit $\|\varphi\| \le 1$. Desweiteren ist für $T \in L(X,Y)$ mit Korollar 5

$$\begin{split} \|T\| &= \sup\{\|Tx\|_Y \mid \|x\| \le 1\} \\ &= \sup\{\sup\{|y'(Tx)| \|y'\| \le 1, y' \in >'\} \mid \|x\|_X \le 1\} \\ &= \sup\{\sup\{|y'(Tx)| \|x\|_X \le 1, x \in X\} \mid y' \in Y', \|y'\| \le 1\} \\ &= \sup\{\|T'y'\| \mid y' \in Y', \|y'\| \le 1\} \\ &= \|T'\| = \|\varphi(T)\| \end{split}$$

also ist φ Isometrie.

(2) Sei $z' \in Z'$, $x \in X$, $T \in L(X,Y)$, $S \in L(Y,Z)$. Dann ist

$$(S \circ T)'(z')(x) = z'((S \circ T)(x))$$

$$= z'(S(Tx))$$

$$= (z' \circ S)(Tx)$$

$$= (S'z')(Tx)$$

$$= (T'(S'z'))(x)$$

$$= (T' \circ S')(z')(x).$$

Beispiel 11. Wir betrachten für $1 den Linkshift-Operator auf <math>(l^p, \|\cdot\|_p)$ $\sigma^+: l^p \to l^p, (\sigma^+ f)(m) = f(m+1)$. Es ergibt sich also:

$$(f(1),f(2),f(3),f(4),\ldots)\to_{\sigma^+}(f(2),f(3),f(4),f(5),\ldots)$$

 σ^+ ist linear und stetig. Wir können $f' \in (l^p)'$ schreiben als $f'(g) = \sum_{m=1}^{\infty} f(m)g(m)$ mit $f \in l^q$, $q = \frac{p}{p-1}$. Dann ist

$$f'(\sigma^{+}(g)) = \sum_{m=1}^{\infty} f(m)g(m+1)$$
$$= \sum_{m=2}^{\infty} f(m-1)g(m) + 0 \cdot g(1)$$
$$= \sum_{m=1}^{\infty} \widetilde{f}(m)g(m)$$

mit

$$\widetilde{f}(m) = \begin{cases} 0 & (m=1) \\ f(m-1) & (m \ge 2) \end{cases}$$

 $\widetilde{f} \in l^q$. Wir erhalten also:

$$(f(1), f(2), f(3), f(4), \dots) \rightarrow_{\sigma^{-}} (0, f(1), f(2), f(3), \dots)$$

Definieren wir also den Rechtsshift $\sigma^-: l^q \to l^q$ durch

$$(\sigma^{-}f)(m) = \begin{cases} 0 & (m=1) \\ f(m-1) & (m>1) \end{cases} und$$

sei $\varphi: l^q \to (l^p)'$ der isometrische Isomorphismus $\varphi(f)(g) = \sum_{m=1}^{\infty} f(m)g(m)$, so gilt $\varphi(f)(\sigma^+(g)) = \varphi(\sigma^-f)(g)$. Damit kommutiert das Diagramm

Abbildung 2.1. Das Diagramm kommutiert.

Definition 18. Sei $(X, \|\cdot\|_X)$ ein normierter Raum, $U \subset X$ und $V \subset X'$ Teilmengen. Wir definieren den *Annihilator* von U in X' durch

$$U^{\perp} = \{ x' \in X' \, | \, \forall_{x \in U} : x'(x) = 0 \}$$

und den Annihilator von V in X durch

$$V_{\perp} = \{ x \in X \mid \forall_{u' \in V} : y'(x) = 0 \}.$$

Theorem 34. Seien $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ normierte Räume und $T \in L(X, Y)$. Dann gilt

$$\overline{\operatorname{Bild} T} = (\ker T')_{\perp}.$$

Beweis. Sei $y \in \text{Bild } T$, $x \in X$ mit y = Tx. Für $z' \in \ker T'$ ist z'(y) = z'(Tx) = (T'z')(x) = 0. Also $y \in (\ker T')_{\perp}$. Also $y \in (\ker T')_{\perp}$ und Bild $T \subset (\ker T')_{\perp}$.

Da $(\ker T')_{\perp}$ abgeschlossen ist, ist $\overline{\text{Bild }T} \subset (\ker T')_{\perp}$. Sei $U = \overline{\text{Bild }T}$ und $y \in Y \setminus U$. Nach Korollar 6 gibt es $y' \in Y'$ mit $y'|_U = 0$ und $y'(y) \neq 0$. Also y'(Tx) = 0 für alle $x \in X$. Somit $y' \in \ker T'$. Wäre $y \in (\ker T')_{\perp}$ so müsste $y'(y) \neq 0$, im Widerspruch zur Konstruktion. Mithin $(\ker T')_{\perp} \subset \overline{\text{Bild }T}$.

Korollar 11. Seien $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ normierte Räume, $T \in L(X, Y)$ mit Bild T abgeschlossen. Die Gleichung Tx = y ist genau dann lösbar (nach x), wenn für alle $y' \in Y'$ gilt: $T'y' = 0 \implies y'(y) = 0$.

3. HAUPTSÄTZE FÜR LINEARE OPERATOREN AUF BANACHRÄUMEN

3.1. Bairesche Kategoriensatz.

Definition 19. Sei X ein metrischer Raum und $M \subset X$ Teilmenge.

- (1) M heißt nirgends dicht, falls \overline{M} keine inneren Punkte enthält.
- (2) M heißt $von\ 1$. Kategorie (englisch $first\ category\ oder\ meager$), falls M abzählbare Vereinigung nirgends dichter Mengen ist.
- (3) M heißt $von\ 2$. Kategorie (englisch $second\ category\ oder\ nonmeager$), falls M nicht von 1. Kategorie ist.

Theorem 35 (Satz von Baire). Sei X ein vollständiger metrischer Raum und $(U_n)_{n\in\mathbb{N}}$ eine Folge offener, dichter Teilmengen. Dann ist $\bigcap_{n\in\mathbb{N}} U_n$ dicht in X.

Beweis siehe "Funktionalanalysis" von Werner.

Korollar 12. Sei X ein vollständiger, metrischer Raum. Ist $M \subset X$ von erster Kategorie, so ist $X \setminus M$ dicht in X.

Beweis. Es gilt für eine Folge von Mengen (M_n) in X dass $X \setminus \bigcup_{n \in \mathbb{N}} M_n = \bigcap_{n \in \mathbb{N}} (X \setminus M_n) \supset \bigcap_{n \in \mathbb{N}} (X \setminus \overline{M_n})$. Da das Komplement des Abschlusses einer nirgends dichten eine dichte, offene Menge ist, folgt mit dem Satz von Baire 35 die Behauptung. \square

18.12.13

Korollar 13. Ist X ein vollständiger Raum, $X \neq \emptyset$, so ist X von 2. Kategorie (in sich selbst).

Beweis. Wäre X von 1. Kategorie, so wäre nach Korollar 12 $X \setminus X$ dicht in X. \square

3.2. Prinzip der gleichmäßigen Beschränktheit.

Theorem 36 (Prinzip der gleichmäßigen Beschränktheit). Sei $(X, \|\cdot\|_X)$ ein Banachraum, $(Y, \|\cdot\|_Y)$ normierter Raum, Λ eine Indexmenge und $\{T_j \mid j \in \Lambda\} \subset L(X,Y)$. Ist für jedes $x \in X$ die Menge

$$N_x = \{ \|T_j x\|_Y \mid j \in \Lambda \}$$

beschränkt, dann ist die Menge

$$\{||T_i|| | j \in \Lambda\}$$

beschränkt.

Beweis. Sei für jedes $x \in X$ die Menge N_x beschränkt. Für $n \in \mathbb{N}$ sei $A_n = \{x \in X \mid \sup_{j \in \Lambda} \|T_j x\|_Y \leq n\}$. Da alle N_x beschränkt sind, ist jedes $x \in X$ in einem A_n enthalten für ein n hinreichend groß (abhängig von x). Also $X = \bigcup_{n \in \mathbb{N}} A_n$. Die Abbildungen $g_j : X \to \mathbb{R}$, $g_j(x) = \|T_j x\|_Y$ sind stetig und damit $g_j^{-1}([0,n])$ abgeschlossen. Da $A_n = \bigcap_{j \in \Lambda} g_j^{-1}([0,n])$ sind alle A_n abgeschlossen. Nach Korollar 13 ist X von 2. Kategorie und somit ist eines der A_n nicht nirgends dicht. Also enthält eines der A_n einen inneren Punkt.

Es gibt also $N \in \mathbb{N}$, $x \in A_N$, r > 0 mit $U_{2r}(x) \subset A_N$. Dann gilt für $j \in \Lambda$, $y \in X$ mit $||y||_X = 1$

$$||T_{j}y|| = \frac{1}{r}||T_{j}(ry)||_{Y} = \frac{1}{r}||T_{j}(ry+x-x)||_{Y} \le \frac{1}{r}\underbrace{||T_{j}(\underline{ry+x})||_{Y}}_{\leq N} + \frac{1}{r}\underbrace{||T_{j}x||_{Y}}_{\leq N} \le \frac{2N}{r}.$$

Somit gilt für alle $j \in \Lambda$: $||T_j|| \le 2\frac{N}{r}$.

Korollar 14. Sei $(X, \|\cdot\|_X)$ ein normierter Raum und $M \subset X$ Teilmenge. M ist genau dann beschränkt, wenn für alle $x' \in X'$ die Menge $\{x'(y) | y \in M\}$ beschränkt ist.

 $\begin{array}{ll} \textit{Beweis.} &\Longrightarrow & x' \in X' \text{ ist stetige lineare Abbildung } (|x'(y)| \leq \|x'\| \cdot \|y\|_X) \\ &\longleftarrow & X' \text{ ist Banachraum. Sei } \mathcal{N} = \{i(x) \, | \, x \in M\} \subset X'' \text{ mit } i : X \to X'' \\ & \text{kanonische Abbildung. Nach Voraussetzung ist für alle } x' \in X' \end{array}$

$$N_{x'} = \{|i(x)(x')| \mid x \in M\} = \{|x'(x)| \mid x \in M\}$$

beschränkt. Nach Satz 36 und mit Satz 29 ist $\{\|i(x)\|\,|\,x\in M\}=\{\|x\|_X\,|\,x\in M\}$ beschränkt.

Korollar 15. Sei $(X, \|\cdot\|_X)$ normierter Raum und (x_n) schwach konvergente Folge in X. Dann ist (x_n) beschränkt.

Beweis. Korollar 14.

Korollar 16. Sei $(X, \|\cdot\|_X)$ ein Banachraum und $M \subset X'$ Teilmenge. M ist genau dann beschränkt, wenn für alle $y \in X$ die Menge $\{x'(y) | x' \in M\}$ beschränkt ist.

Beweis. " \Longrightarrow " klar, " \Longleftrightarrow " Satz 36.

Korollar 17. Sei $(X, \|\cdot\|_X)$ ein Banachraum, $(Y, \|\cdot\|_Y)$ ein normierter Raum und (T_n) Folge in L(X,Y). Existiert für alle $x \in X$ der Grenzwert $\lim_{n\to\infty} T_n x$, so definiert $T: X \to Y$, $Tx = \lim_{n\to\infty} T_n x$ ein $T \in L(X,Y)$.

Beweis. Wir haben schon mehrfach gezeigt, dass ein solches T linear ist. Da $\lim_{n\to\infty} T_n x$ existiert, für alle $x\in X$, ist für alle $x\in X$ die Menge $\{\|T_nx\|_Y\,|\,n\in\mathbb{N}\}$ beschränkt. Nach Satz 36 gibt es M>0 so dass für alle $n\in\mathbb{N}$: $\|T_n\|< M$. Somit gilt für alle $x\in X$

$$||Tx||_Y = \lim_{n \to \infty} ||T_n x||_Y \le M \cdot ||x||_Y.$$

Also ist T stetig.

3.3. Satz von der offenen Abbildung.

Definition 20. Seien $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ normierte Räume. Eine Abbildung $T: X \to Y$ heißt *offen*, wenn sie offene Mengen auf offene Mengen abbildet.

Bemerkung 9. (1) Stetige Abbildungen sind *nicht* unbedingt offen, beispielsweise $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ bildet (-1, 1) auf [0, 1) ab.

(2) Offene Abbildungen bilden abgeschlossene Mengen nicht unbedingt auf abgeschlossene Mengen ab, beispielsweise $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = x$ ist offen. $M = \{(x,y) \in \mathbb{R}^2 \mid x \cdot y \geq 1\}$ abgeschlossen aber $f(M) = \mathbb{R} \setminus \{0\}$ ist offen und $\neq \mathbb{R}$.

Eine offene lineare Abbildung $T: X \to Y$ ist surjektiv, da Bild T einen offenen Ball $U_{\varepsilon}(0)$ enthält (Lemma 5, folgt) und dieser ganz Y erzeugt. Der Satz von der offenen Abbildung liefert die Umkehrung für Banachräume.

Lemma 5. Seien $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ normierte Räume und $T: X \to Y$ linear. Dann sind äquivalent:

- (1) T ist offen
- (2) T bildet für alle r > 0 $U_r(0)$ auf eine Umgebung von 0 ab, d.h. $\forall_{r>0} \exists_{\delta>0}$:

$$\underbrace{U_{\delta}(0)}_{\subset Y} \subset T(\underbrace{U_{r}(0)}_{\subset X})$$

(3) T bildet $U_1(0)$ auf Umgebung von 0 ab, d.h. $\exists_{\delta>0}: U_{\delta}(0) \subset T(U_1(0))$.

Beweis. (1) \Longrightarrow (2): klar

- $(2) \Longrightarrow (3)$: klar
- (3) \Longrightarrow (1): Sei $M \subset X$ offen. Sei $x \in M$. Es gibt r > 0 mit $U_r(x) \subset M$. Da $U_r(x) = rU_1(0) + x$ und T linear folgt $U_{r\delta}(Tx) = rU_{\delta}(0) + Tx \subset T(U_1(0)) + Tx = T(rU_1(0) + x) = T(U_r(x))$. Also $U_{r\delta}(Tx) \subset T(M)$. Damit ist T(M) offen.

Theorem 37 (Satz von der offenen Abbildung). Seien $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ Banachräume und $T \in L(X,Y)$ surjektiv. Dann ist T offen.

Beweis. Betrachte die Mengen $W_n = \overline{T(U_n(0))}$. Dann gilt $Y = T(X) = T(\bigcup_{n \in \mathbb{N}} U_n(0)) = \bigcup_{n \in \mathbb{N}} T(U_n(0))$, also insbesondere $Y = \bigcup_{n \in \mathbb{N}} \overline{T(U_n(0))} = \bigcup_{n \in \mathbb{N}} W_n$. Nach dem Baireschen Kategoriensatz 35 (angewandt auf Y) folgt, dass W_n für mindestens ein $n \in \mathbb{N}$ innere Punkte besitzt. Sei also y innerer Punkt von $W_{n_0} = \overline{T(U_{n_0}(0))}$, d.h. es existiert ein r > 0 mit $y + U_r(0) \subset \overline{T(U_{n_0}(0))}$.

Wir zeigen dass $0 \in Y$ innerer Punkt von $\overline{T(U_{n_0}(0))}$ ist. Dann sieht man leicht, dass auch $-(y+U_r(0))=-y+(-U_r(0))=-y+U_r(0)\subset \overline{T(U_{n_0}(0))}$. Beachte, da $U_{n_0}(0)$ konvex ist, ist auch $T(U_{n_0}(0))$ konvex und somit auch $\overline{T(U_{n_0}(0))}$. Sei nun $\|\Delta\| < r$. Dann gilt

(3.1)
$$\Delta = \frac{1}{2} \left(\underbrace{y + \Delta}_{T(U_{n_0}(0))} \right) + \frac{1}{2} \left(\underbrace{-y + \Delta}_{T(U_{n_0}(0))} \right) \in \overline{T(U_{n_0}(0))}.$$

Also gilt $U_r(0) \subset \overline{T(U_{n_0}(0))}$.

Aus Gleichung 3.1 folgt, dass $U_{\alpha r}(0) \subset \overline{T(U_{\alpha n_0}(0))}$ für alle $\alpha > 0$. Somit können wir o.B.d.A. $n_0 = 1$ annehmen. Dann erhalten wir

$$(3.2) U_{\alpha r'}(0) \subset \overline{T(U_{\alpha}(0))}$$

mit $r' = \frac{r}{n_0}$. Wir wollen zeigen, dass $U_{r'}(0) \subset T(U_2(0))$. Falls dies gezeigt ist, folgt die Behauptung unmittelbar aus Lemma 5.

Sei nun $y_0 \in U_r(0)$. Dann existiert nach Gleichung 3.2 (für $\alpha = 1$) ein $x_0 \in B_1(0)$ mit $||y_0 - Tx_0|| < \frac{r'}{2}$. Setze nun $y_1 = y_0 - Tx_0$. Dann existiert nach Gleichung 3.2 (für $\alpha = \frac{1}{2}$) ein $x_1 \in B_{\frac{1}{2}}(0)$ mit $||y_1 - Tx_1|| < \frac{r'}{4}$. Setze nun $y_2 := y_1 - Tx_1$ und wiederhole die obige Konstruktion. Dies liefert uns rekursiv eine Folge (x_n) mit folgenden Eigenschaften

$$(1) ||x_n|| = \left(\frac{1}{2}\right)^n$$

(1)
$$||x_n|| = \left(\frac{1}{2}\right)^n$$

(2) $||y_n - Tx_n|| < \left(\frac{1}{2}\right)^{n+1} r'$

Daraus folgt, dass die Reihe $x:=\sum_{n=0}^{\infty}x_n$ existiert (da Cauchy-Folge, benutze die geometrische Reihe als Majorante) und ferner erhalten wir

$$||y_0 - T(\sum_{k=0}^{\infty} x_k)|| = \lim_{n \to \infty} ||y_0 - \sum_{k=0}^{n} T(x_k)|| = \lim_{n \to \infty} ||y_{n+1}|| = 0,$$

d.h. $y_0 = Tx$. Ferner gilt

$$||x|| \le \sum_{n=0}^{\infty} ||x_n|| < \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 2.$$

Damit $x \in B_2(0)$.

Korollar 18 (Satz von der stetigen Inversen). Seien $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ Banachräume und sei $T \in L(X,Y)$. Dann gilt

- (1) Ist T bijektiv, so ist T^{-1} stetiq.
- (2) Sei T injektiv. Die lineare Abbildung T^{-1} : Bild $T \to X$ ist genau dann stetig, wenn das Bild von T abgeschlossen ist.

(1) Da T bijektiv ist, ist T insbesondere surjektiv und somit nach Satz Beweis. 37 offen. Aus der Offenheit folgt nun umittelbar die Stetigkeit von T^{-1} .

(2) Sei Bild T abgeschlossen. Dann ist W := Bild T ein Banachraum und somit $T: X \to W$ stetig und bijektiv, also ist $T^{-1}: W \to X$ nach (1) stetig. Sei T^{-1} : Bild $T \to X$ stetig. Dann ist T ein Isomorphismus von X nach $W := \operatorname{Bild} T$, und somit auch von W vollständig, also abgeschlossen in Y.

Bemerkung. Sei $T:X\to W$ Isomorphismus und sei Xvollständig. Dann ist auch W vollständig, denn es gilt: Sei (w_n) eine Cauchy-Folge in W. Dann ist $(T^{-1}w_n)$ eine Cauchy-Folge in X und somit gilt $\lim_{n\to\infty} T^{-1}w_n =: x$ (da X vollständig). Setze nun W = TX.

3.4. Der Satz von abgeschlossenen Graphen.

Definition 21. Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ normierte Räume und sei $U \subset X$ ein Unterraum. Wir bezeichnen eine lineare Abbildung $T: U \to Y$ als abgeschlossen, falls für jede Folge (x_n) in U mit $x_n \to x \in X$ und $Tx_n \to y \in Y$ gilt, dass $x \in U$ und Tx = y.

- Beispiel 12. (1) Seien X=d und $Y=l^{\infty}$ beide versehen mit der Supremumsnorm $\|\cdot\|_{\infty}$. Betrachte $T:d\to l^{\infty}$, Tf=f, d.h. U=d=X. Klar ist T stetig. Ist (f_n) Folge in d, die gegen $f\in d$ konvergiert, so konvergiert (Tf_n) in l^{∞} gegen f=Tf. Also ist T gemäß Definition 21 abgeschlossen. Aber Bild T=T(d)=d ist keine abgeschlossene Menge von l^{∞} , da d dicht in $c_0 \subsetneq l^{\infty}$.
 - (2) Setzten wir $X = Y = l^{\infty}$ versehen mit der Supremumsnorm $\|\cdot\|_{\infty}$ und U = d, so ist die lineare Abbildung $T : d \to l^{\infty}$, Tf = f, nicht abgeschlossen im Sinne von Definition 21. Es gibt Folge (f_n) in d die gegen ein $f \in c_0 \setminus d$ konvergiert. Für diese Folge konvergieren (f_n) und (Tf_n) in l^{∞} gegen $f \in l^{\infty} \setminus d$.

Aus Beispiel 12 folgt, dass

- stetige Abbildungen sind nicht unbedingt abgeschlossen sind,
- \bullet die Abgeschlossenheit einer linearen Abbildung von der Wahl des Raumes Xab, der Uenthält.

Beispiel 13. Sei X=Y=C([0,1]) versehen mit der Supremumsnorm $\|\cdot\|_{\infty}$ und sei T lineare Abbildung $T:C^1([0,1])\to C([0,1]),$ $(Tf)(t)=\frac{d}{dt}f(t).$ Diese lineare Abbildung ist nicht stetig (betrachte $f_n(t)=t^n$). Sei (f_n) Folge in $C^1([0,1])$ die gegen ein $f\in C([0,1])$ und für die (Tf_n) gegen $g\in C([0,1])$ konvergieren. Aus der Analysis wissen wir, dass damit $f\in C^1([0,1])$ und g=Tf gilt. Somit ist T abgeschlossen.

Theorem 38. Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ normierte Räume, $U \subset X$ ein Unterraum und $T: U \to Y$ eine lineare Abbildung. T ist genau dann abgeschlossen, wenn der Graph von T

$$\Gamma_T = \{(x, Tx) \in X \times Y \mid x \in U\}$$

in $X \times Y$ abgeschlossen bzgl. der Norm $\|\cdot\|_1$ definiert durch $\|(x,y)\|_1 = \|x\|_X + \|y\|_Y$ für $x \in X$, $y \in Y$ ist.

Beweis. Nach Übungsaufgabe 4.1 ist $\|\cdot\|_1$ auf $X \times Y$ äquivalent zur Norm $\|\cdot\|_\infty$ definiert durch $\|(x,y)\| = \max\{\|x\|_X,\|y\|_Y\}$ für $x \in X, y \in Y$. Also Γ_T genau dann abgeschlossen in $X \times Y$ bzgl. $\|\cdot\|_1$, wenn Γ_T abgeschlossen in $X \times Y$ bzgl. $\|\cdot\|_\infty$, genau dann wenn für Folge $((x_n,Tx_n))_{n\in\mathbb{N}}$ die in $U \times Y$ bzgl. $\|\cdot\|_\infty$ gegen $(x,y) \in X \times Y$ konvergiert, gilt dass $(x,y) \in \Gamma_T$ (d.h. y = Tx und $x \in U$).

Konvergenz einer Folge in $X \times Y$ bzgl. $\|\cdot\|_{\infty}$ ist äquivalent zur Konvergenz in der Xund Y-Komponente. Damit ist Γ_T genau dann abgeschlossen,w enn für jede Folge (x_n) in U, so dass (x_n) in X gegen $x \in X$ und (Tx_n) in Y gegen y konvergiert, gilt $x \in U$ und y = Tx.

Theorem 39 (Satz vom abgeschlossenen Graphen). Seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ Banachräume, $U \subset X$ ein Unterraum und $T: U \to Y$ eine abgeschlossene, lineare Abbildung. Ist U abgeschlossen, so ist T stetig.

Beweis. Wir versehen $X \times Y$ mit der Norm $\|\cdot\|_1$ wie im Satz 38. Nach Satz 38 ist Γ_T abgeschlossen in $X \times Y$. Γ_T ist ein Unterraum von $X \times Y$. Nach Übungsaufgabe 4.1 ist $(X \times Y, \|\cdot\|_1)$ vollständig. Damit ist $(\Gamma_T, \|\cdot\|_1)$ ein Banachraum. Da U abgeschlossen ist, ist $(U, \|\cdot\|_X)$ ein Banachraum. Die Abbildungen $\pi_1 : \Gamma_T \to U$, $\pi_2 : \Gamma_T \to Y$, $\pi_1(x,y) = x$, $\pi_2(x,y) = y$ sind linear und stetig. π_1 ist nach Konstruktion eine Bijektion. Nach Korollar 18 ist π_1^{-1} stetig.

$$x \mapsto_{\pi_1^{-1}} (x, Tx) \mapsto_{\pi_2} Tx$$

Da $T = \pi_2 \circ \pi_1^{-1}$ ist T stetig.

4. Hilberträume

4.1. Grundlegendes.

Definition 22. Sei X ein \mathbb{K} -Vektorraum. Wir nennen eine Abbildung $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$ ein Skalarprodukt falls $\langle \cdot, \cdot \rangle$ die folgenden Eigenschaften hat:

- (1) Für alle $x, y, z \in X$ gilt $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ und $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$,
- (2) Für alle $\lambda \in \mathbb{K}$, $x, y \in X$ gilt $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ und $\langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$,
- (3) Für alle $x, y \in X$ gilt $\langle x, y \rangle = \langle y, x \rangle$,
- (4) Für alle $x \in X$ gilt $\langle x, x \rangle \geq 0$,
- (5) Für alle $x \in X$ gilt $\langle x, x \rangle \iff x = 0$.

Theorem 40. Sei X ein \mathbb{K} -Vektorraum und $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf X. Es gilt

- (1) $\|\cdot\|: X \to \mathbb{R}$, $\|x\| := \langle x, x \rangle^{\frac{1}{2}}$ definiert eine Norm auf X.
- (2) für die Norm aus (1) gilt die Cauchy-Schwarzsche Ungleichung für alle $x, y \in X$:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Gleichheit gilt genau dann wenn x und y linear abhängig.

Definition 23. Sei $(X, \|\cdot\|_X)$ ein normierter Raum. Gibt es ein Skalarprodukt $\langle \cdot, \cdot \rangle$ auf X mit $\|x\|_X = \langle x, x \rangle^{\frac{1}{2}}$ so nennen wir X einen Prähilbertraum. Ist X zusätzlich vollständig, so nennen wir X einen Hilbertraum.

Theorem 41. Ein normierter Raum $(X, \|\cdot\|_X)$ ist genau dann ein Prähilbertraum, wenn die Norm die Parallelogrammgleichung

$$\forall_{x,y \in X} : ||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$

erfüllt.

Theorem 42. Sei $(X, \|\cdot\|_X)$ ein normierter Raum.

- (1) X ist genau dann ein Prähilbertraum wenn für alle Unterräume mit dim U = 2 der normierte Raum $(U, \|\cdot\|_X)$ ein Prähilbertraum ist.
- (2) Ist X ein Prähilbertraum und $U \subset X$ ein Unterraum, so ist U ein Prähilbertraum.

- (3) Ist X ein Hilbertraum und $U \subset X$ ein abgeschlossener Unterraum, so ist U ein Hilbertraum.
- (4) Ist $(Y, \|\cdot\|_Y)$ Banachraum, X ein Prähilbertraum, $T \in L(X, Y)$ eine Isometrie und das Bild vom T dicht in Y, so ist Y ein Hilbertraum.

Beweis. (1) Folgt aus Satz 41 (Parallelogrammgleichung)

- (2) trivial (Einschränkung des Skalarprodukts auf $U \times U$)
- (3) abgeschlossene Unterräume von Banachräumen sind vollständig.
- (4) Da T eine Isometrie ist, gilt auf Bild T die Parallelogrammgleichung. Da die Norm $\|\cdot\|_Y$ auf Y stetig ist, gilt die Parallelogrammgleichung auf ganz Y. Also ist Y ein Prähilbertraum.

Beispiel 14. (1) Auf dem \mathbb{R}^n ist

$$\langle (x_1, x_2, ..., x_n)^T, (y_1, y_2, ..., y_n)^T \rangle := \sum_{j=1}^n x_j y_j$$

ein Skalarprodukt. Also ist $(\mathbb{R}^n, \|\cdot\|_2)$ mit $\|x\|_2 = (\sum_{j=1}^n x_j^2)^{\frac{1}{2}}$ ein Hilbertraum, denn da dim $\mathbb{R}^n < \infty$ ist \mathbb{R}^n vollständig.

(2) Auf dem \mathbb{C}^n ist

$$\langle (x_1, x_2, ..., x_n)^T, (y_1, y_2, ..., y_n)^T \rangle := \sum_{j=1}^n x_j \overline{y_j}$$

ein Skalarprodukt. Also ist $(\mathbb{C}^n, \|\cdot\|_2)$ mit $\|x\|_2 = \sum_{j=1}^n |x_j|^2$ ein Hilbertraum.

(3) $(l^2, \|\cdot\|_2)$ ist ein Hilbertraum mit dem Skalarprodukt

$$\langle f, g \rangle = \sum_{m=1}^{\infty} f(m) \overline{g(m)}.$$

(4) Sei $\Omega \subset \mathbb{R}^n$ messbar, $\Omega \neq \emptyset$. Dann ist $(L^2(\Omega), \|\cdot\|_2)$ ein Hilbertraum mit Skalarprodukt

$$\langle f + \mathcal{N}, g + \mathcal{N} \rangle = \int_{\Omega} f \cdot \overline{g} \, d\lambda,$$

Existenz folgt aus der Hölderungleichung, das Skalarprodukt ist unabhängig von der Wahl der Repräsentanten.

Lemma 6. Sei X ein Prähilbertraum. Dann ist das Skalarprodukt stetig auf $X \times X$ bezüglich der Norm $\|\cdot\|_1$ (vgl. Übungsaufgabe 4.1). Weiterhin ist für alle $y \in X$ die Abbildung $x \mapsto \langle x, y \rangle$ stetig und linear.

Beweis. Übung.

4.2. **Projektionen und der Rieszsche Darstellungssatz.** Im Folgenden bezeichnet $\langle \cdot, \cdot \rangle$ bzw. $\langle \cdot, \cdot \rangle_X$ und $\langle \cdot, \cdot \rangle_Y$ usw. das Skalarprodukt eines Prähilbertraumes X, Y usw. und $\| \cdot \|$ bzw. $\| \cdot \|_X, \| \cdot \|_Y$ die entsprechenden Normen.

Definition 24. Sei X ein Prähilbertraum. Wir nennen $x, y \in X$ orthogonal, kurz $x \perp y$, falls $\langle x, y \rangle = 0$. Wir nennen Teilmengen $A, B \subset X$ orthogonal, kurz $A \perp B$, falls für alle $x \in A$, $y \in B$ gilt $x \perp y$. Ist $A \subset X$ Teilmenge, so nennen wir

$$A^{\perp} = \{ y \in X \mid \forall_{x \in A} : x \perp y \}$$

das $orthogonale\ Komplement\ von\ A.$

Theorem 43. Sei X ein Prählibertraum und $A \subset X$ eine Teilmenge. Dann gilt

- (1) A^{\perp} ist ein abgeschlossener Unterraum von X.
- $(2) A \subset (A^{\perp})^{\perp}$
- $(3) A^{\perp} = (\overline{\operatorname{span}}A)^{\perp}$

Beweis. (1) Für $y \in X$ sei $f_y : X \to \mathbb{K}$, $f_y(x) = \langle x, y \rangle$. Nach Lemma 6 ist $f_y \in X'$ für alle $y \in X$. Für $y \in A$ ist $A^{\perp} \subset \ker f_y$ und $A^{\perp} = \bigcap_{y \in A} \ker f_y$. Da alle $\ker f_y$ abgeschlossen (denn Urbild der abgeschlossenen Menge $\{0\}$) und Unterräume von X sind, ist A^{\perp} ein abgeschlossener Unterraum von X.

- (2) folgt aus Definition von A^{\perp} .
- (3) Klar ist $(\overline{\operatorname{span} A})^{\perp} \subset A^{\perp}$. Sind $x_1, x_2 \in A$, $\alpha, \beta \in \mathbb{K}$, so gilt für $y \in A^{\perp}$ $\langle \alpha x_1 + \beta x_2, y \rangle = \alpha \langle x_1, y \rangle + \beta \langle x_2, y \rangle = 0$ und somit $y \perp \alpha x_1 + \beta x_2$. Ist (x_n) Folge in A mit $x_n \to x \in X$, und $y \in A^{\perp}$, so gilt $\langle x, y \rangle = \langle \lim_{n \to \infty} x_n, y \rangle = \lim_{n \to \infty} \langle x_n, y \rangle = 0$ und $x \perp y$. Somit $A^{\perp} \subset (\overline{\operatorname{span} A})^{\perp}$.

Theorem 44. Sei X ein Hilbertraum, $K \subset X$ eine abgeschlossene und konvexe Teilmenge, $K \neq \emptyset$. Für jedes $x_0 \in X$ existiert genau ein $x \in K$ mit $||x - x_0|| = \inf_{y \in K} ||y - x_0||$.

Beweis. Die Behauptung ist für $x_0 \in K$ trivial. Sei also $x_0 \in X \setminus K$. O.B.d.A. sei $x_0 = 0$ (denn die Behauptung ist translationsinvariant). Sei $d = \inf_{y \in K} \|y\|$. Es gibt Folge (y_n) in K mit $\|y_n\| \to d$. Da für $n, m \in \mathbb{N}$ gilt mit der Parallelogrammgleichung

$$\|\frac{1}{2}(y_n + y_m)\|^2 + \|\frac{1}{2}(y_n - y_m)\|^2 = 2\frac{1}{4}\|y_n\|^2 + 2\frac{1}{4}\|y_m\|^2$$
$$= \frac{1}{2}\|y_n\|^2 + \frac{1}{2}\|y_m\|^2 \to d^2$$

für $n, m \to \infty$. Weiterhin ist $\frac{1}{2}y_n + \frac{1}{2}y_m \in K$, da eine Konvexkombination, also $\|\frac{1}{2}(y_n + y_m)\|^2 \ge d^2$. Es folgt $\|\frac{1}{2}(y_n + y_m)\|^2 \to 0$ für $m, n \to \infty$. Also ist (y_n) eine Cauchy-Folge und da X vollständig ist konvergiert (y_n) gegen ein $y \in K$ (K ist abgeschlossen). Da $\|y_n\| \to d$ ist $\|y\| = d$.

Seien $x_1, x_2 \in K$ mit $||x_1|| = ||x_2|| = d$ und $x_1 \neq x_2$. Dann ist $||\frac{1}{2}(x_1 + x_2)||^2 < ||\frac{1}{2}(x_1 + x_2)||^2 + ||\frac{1}{2}(x_1 + x_2)||^2 = 2||\frac{1}{2}x_1||^2 + 2||\frac{1}{2}x_2||^2 = d^2$. Da $\frac{1}{2}(x_1 + x_2) \in K$ erhalten wir einen Widerspruch zur Definition von d.

Lemma 7. TODO

Beweis. (1) \Longrightarrow (2): Sei $d=\inf_{y\in U}\|y-x_0\|$ und $y\in U$. Wähle $\alpha\in\mathbb{C}, |\alpha|=1$, so dass $\langle x - x_0, \alpha y \rangle = -|\langle x - x_0, y \rangle|$. Für alle t > 0 gilt

$$d^{2} \leq \|x + t\alpha y - x_{0}\|^{2} = \|x - x_{0}\|^{2} + \langle x - x_{0}, t\alpha y \rangle + \overline{\langle x - x_{0}, t\alpha y \rangle} + \|t\alpha y\|^{2}$$

$$= \|x - x_{0}\|^{2} + 2(-t|\langle x - x_{0}, y \rangle|) + t^{2}\|y\|^{2}$$

$$= \underbrace{\|x - x_{0}\|}_{=d^{2}} - \underbrace{(2t|\langle x - x_{0}, y \rangle| - t^{2}\|y\|^{2})}_{=t(2|\langle x - x_{0}, y \rangle| - t\|y\|^{2}) < 0}$$

Also für alle t > 0: $2|\langle x - x_0, y \rangle| - t||y||^2 \le 0$ und somit $\langle x - x_0, y \rangle = 0$, d.h. $y \perp x - x_0$. Da y beliebiges Element aus U ist $x - x_0 \in U^{\perp}$.

 $(2) \Longrightarrow (1)$: Sei $\widetilde{y} \in U$. Dann gilt

$$\|\underbrace{(x+\widetilde{y})}_{y\in U} - x_0\|^2 = \|x - x_0 + \widetilde{y}\|^2 = \|x - x_0\|^2 + \|\widetilde{y}\|^2.$$

Somit $\inf_{y \in U} ||y - x_0|| = ||x - x_0||.$

Theorem 45 (Orthogonalprojektionen). Sei X ein Hilbertraum und $U \subset X$ ein abgeschlossener Unterraum mit $U \neq \{0\}$ und $U \neq X$. Dann ist $P_U: X \to U$, $P_U x$ definiert durch

$$||x - P_U x|| = \inf_{u \in U} ||x - u||$$

eine stetige, lineare Abbildung mit

- $||P_U|| = 1$, $\ker P_U = U^{\perp}$, $P_U^2 = P_U$.

Wir nennen P_U die Orthogonalprojektion auf U. Desweiteren ist $P_{U^{\perp}} = \operatorname{Id}_X - P_U$ und $(X, \|\cdot\|)$ ist isometrisch isomorph zu $(U \times U^{\perp}, \|\cdot\|_2)$ wobei $\|(u, v)\|_2 = (\|u\|^2 + \|\cdot\|_2)$ $||v||^2$ $||v||^2$ vermöge der Abbildung $x \mapsto (P_U x, P_{U^{\perp}} x)$.

Beweis. Nach Satz 44 ist P_U wohldefiniert. Nach Lemma 7 ist $P_U(x)$ eindeutig definiert durch

$$x - P_U(x) \in U^{\perp}$$
.

Für $x_1, x_2 \in X$, $\lambda_1, \lambda_2 \in \mathbb{K}$ gilt

$$\underbrace{\lambda_1 x_1 - \lambda_1 P_U(x_1)}_{\in U^{\perp}} + \underbrace{\lambda_2 x_2 - \lambda_2 P_U(x_2)}_{\in U^{\perp}} \in U^{\perp}$$

und

$$(\lambda_1 x_1 + \lambda_2 x_2) - (\underbrace{\lambda_1 P_U(x_1) + \lambda_2 P_U(x_2)}_{\in U}) \in U^{\perp}.$$

Somit $P_U(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 P_U(x_1) + \lambda_2 P_U(x_2)$. Also ist P_U linear.

Das Bild $P_U = U$ und $P_U|_U = \operatorname{Id}_U$, somit $P_U^2 = P_U$. Ist $x \in U^{\perp}$, so muss $P_U(x) \in U^{\perp} \cap U = \{0\}$. Ist $P_U(x) = 0$, so ist $x \in U^{\perp}$. Also $\ker P_U = U^{\perp}$.

 $\operatorname{Bild}(\operatorname{Id} - P_U) \subset U^{\perp}$. Da ker $P_U = U^{\perp}$ ist $(\operatorname{Id} - P_U)U^{\perp} = U^{\perp}$ und somit $\operatorname{Bild}(\operatorname{Id} - P_U) = U^{\perp}$ U^{\perp} . Für alle $x \in X$ ist $x - (\operatorname{Id} - P_U)(x) = P_U x \in U \subset (U^{\perp})^{\perp}$ nach Satz 43. Somit ist nach Lemma $7 P_{U^{\perp}} = \operatorname{Id}_X - P_U$.

Für alle $x \in X$ gilt

(4.1)
$$||x||^2 = ||P_U x + (\operatorname{Id} - P_U)x||^2 = ||P_U x||^2 + ||(\operatorname{Id}_X - P_U)x||^2$$

und somit $||P_Ux||^2 \le ||x||^2$ und

$$\|\underbrace{(\mathrm{Id}_X - P_U)}_{P_{U,1}} x\|^2 \le \|x\|^2.$$

Also sind P_U und $P_{U^{\perp}}$ stetig mit $||P_U||, ||P_{U^{\perp}}|| \leq 1$. Da $P_U|_U = \operatorname{Id}_U$ und $U \neq \{0\}$ folgt $||P_U|| = 1$. Die lineare Abbildung $T: X \to U \times U^{\perp}$, $Tx = (P_U x, P_{U^{\perp}} x)$ ist eine Isometrie bezüglich bzgl. der $||\cdot||_2$ Norm auf $U \times U^{\perp}$ nach Gleichung 4.1. Also T injektiv und stetig. Da Bild T die Unterräume $U \times \{0\}$ und $\{0\} \times U^{\perp}$ enthält, ist T surjektiv. Da T eine bijektive, lineare Isometrie ist, ist T ein Isomorphismus. \square

Korollar 19. Sei X ein Hilbertraum und $U \subset X$ ein abgeschlossener Unterraum. Dann gilt $U = (U^{\perp})^{\perp}$.

Beweis. Nach Satz 45 ist für $U \neq X$, $U \neq \{0\}$

$$P_U = \operatorname{Id} - (\underbrace{\operatorname{Id} - P_U}_{=P_{U^{\perp}}}) = \operatorname{Id} - P_{U^{\perp}} = P_{(U^{\perp})^{\perp}}.$$

Die Aussage von Korollar 19 ist falsch für nicht-vollständige Prähilberträume.

Beispiel 15. Wir betrachten den Prähilbertraum $d \subset l^2$. Wähle $f \in l^2 \setminus d$. Dann definiert $h': l^2 \to \mathbb{K}$, $h'(g) = \sum_{m=1}^{\infty} g(m) \overline{f(m)}$ ein $h' \in (l^2)'$ und $h'|_d =: k' \in (d)'$.

Es ist $\ker k' \neq d$ da $f \neq 0$ und somit existiert ein $e_n \in d$ mit $\langle e_n, f \rangle = k'(e_n) = h'(e_n) \neq 0$. In l^2 ist das orthogonale Komplement von $\ker h'$ genau $\operatorname{span}\{f\}$. Damit ist das orthogonale Komplement von $\ker k'$ in d gegeben durch $\operatorname{span}\{f\} \cap d = \{0\}$ (da d dicht in l^2). Somit ist in d dass ($(\ker k')^{\perp}$) $^{\perp} = d \neq \ker k'$.

Lemma 8. Sei X ein Hilbertraum und $U \subset X$ ein Unterraum. Ist $U^{\perp} = \{0\}$, so ist U dicht in X.

Beweis. Nach Korollar 19 und Satz 43 $\overline{U} = (\overline{U}^{\perp})^{\perp} = (U^{\perp})^{\perp} = (\{0\})^{\perp} = X$.

Theorem 46 (Rieszscher Darstellungssatz). Sei X ein Hilbertraum und $x' \in X'$. Dann gibt es genau ein $x \in X$ mit

$$\forall_{y \in X} : x'(y) = \langle y, x \rangle.$$

Des weiteren ist ||x|| = ||x'||.

Korollar 20. Jeder Hilbertraum ist reflexiv.

Beweis. Satz 46 definiert eine bijektive Abbildung $A: X \to X', x \mapsto \langle \cdot, x \rangle$. Diese Abbildung ist konjugiert linear, d.h. für $x, y \in X$ und $\alpha, \beta \in \mathbb{K}$ ist

$$A(\alpha x + \beta y) = \overline{\alpha}A(x) + \overline{\beta}A(y).$$

Desweiteren ist A isometrisch. X' ist ein Hilbertraum mit dem Skalarprodukt $\langle x', y' \rangle = \langle A^{-1}y', A^{-1}x' \rangle$ für $x', y' \in X'$.

Bemerkung. Ist $x' = \langle \cdot, x \rangle$, so ist $||x'||^2 = ||x||^2 = \langle x, x \rangle = \langle A^{-1}x', A^{-1}x' \rangle = \langle x', x' \rangle$.

Satz 46 liefert nun eine bijektive, konjugiert lineare, isometrische Abbildung $B: X' \to X''$. Dann ist $B \circ A$ eine lineare Bijektion und für die kanonische Abbildung $i_X: X \to X''$

$$\begin{split} i_X &= B \circ A \\ \text{denn für } x,y \in X, \ x' = \langle \cdot, x \rangle = Ax, \ y' = \langle \cdot, y \rangle = Ay \text{ ist} \\ (B \circ A)(x) &= B(x')(y') = \langle y', x' \rangle = \langle Ay, Ax \rangle = \langle x, y \rangle = y'(x) = i_X(x)(y'). \end{split}$$

4.3. Orthonormalsysteme.

Definition 25. Sei X ein Prähilbertraum. Eine Teilmenge $M \subset X$ nennen wir Orthonormalsystem, falls für alle $f,g \in M, \ f \neq g$ gilt $\|f\| = \|g\| = 1$ und $\langle f,g \rangle = 0$. M heißt Orthonormalbasis (oder vollständiges Orthonormalsystem), falls M Orthonormalsystem ist und für jedes andere Orthonormalsystem $N \subset X$ mit $M \subset N$ gilt, dass M = N.

Bemerkung 10. Eine Orthonormalbasis im Sinne von Definition 25 ist nicht unbedingt eine Vektorraumbasis im Sinne der linearen Algebra.

Beispiel 16. (1) In $(l^2, \|\cdot\|_2)$ ist $M = \{e_n \mid n \in \mathbb{N}\}$ mit Folge e_n überall 0 außer an Position n ein Orthonormalsystem.

(2) Im \mathbb{R} -Vektorraum $L^2([0,2\pi])$ (reellwertige Funktionen) ist

$$M = \{x \mapsto \frac{1}{\sqrt{2\pi}}\} \cup \{x \mapsto \frac{1}{\sqrt{\pi}}\cos(nx) \mid n \in \mathbb{N}\}$$
$$\cup \{x \mapsto \frac{1}{\sqrt{\pi}}\sin(nx) \mid n \in \mathbb{N}\}$$

ein Orthonormalsystem.

(3) Im C-Vektorraum $L^2([0,2\pi])$ (komplexwertige Funktionen) ist

$$M = \{x \mapsto \frac{1}{\sqrt{2\pi}} e^{inx} \mid n \in \mathbb{Z}\}$$

ein Orthonormalsystem.

5. Übungsblätter

5.1. Übungsblatt 1.

5.1.1. Aufgabe 1.1. Zunächst zeigen wir: $\forall_{x,y \in X} : ||x|| - ||y||| \le ||x - y||$:

$$||x|| - ||y|| = ||x - y + y|| - ||y|| \le ||x - y|| + ||y|| - ||y|| = ||x - y||$$

$$||y|| - ||x|| = ||y - x + x|| - ||x|| \le ||y - x|| + ||x|| - ||x|| = ||x - y||$$

Dies impliziert die Ungleichung.

Sei $x \in X$ gegeben und $\varepsilon > 0$. Wähle $\delta = \varepsilon$. Dann gilt für alle $y \in U_{\delta}(x) : ||x|| - ||y|| | \le ||x - y|| < \delta = \varepsilon$. Damit ist die Abbildung $x \mapsto ||x||$ stetig.

5.1.2. Aufgabe 1.2. Sei $v \in X$ und r > 0. Ist (w_n) Folge in $U_r(v)$, die gegen $w \in X$ konvergiert, so folgt wegen der Stetigkiet von $x \mapsto \|x\|$, dass $\|w-v\| = \lim_{n \to \infty} \|w_n - v\| \le r$. Also $\overline{U_r(v)} \subset \{w \in X : \|w-v\| \le r\}$. Sei $w \in X$ mit $\|w-v\| = r$. Definiere Folge (w_n) durch $w_n = v + (1 - \frac{1}{n})(w-v)$. Da $\|w-w_n\| = \|w-v-(1-\frac{1}{n})(w-v)\| = \|w-w+\frac{w}{n}-v+v-\frac{v}{n}\| = \|\frac{1}{n}(w-v)\| = \frac{1}{n}\|w-v\| = \frac{1}{n}r \to_{n\to\infty} 0$ konvergiert (w_n) gegen w. Weiterhin ist $\|v-w_n\| = \|v-v-(1-\frac{1}{n})(w-v)\| = (1-\frac{1}{n})\|w-v\| = (1-\frac{1}{n})r < r$ also (w_n) Folge in $U_r(v)$. Damit $\{w \in X | \|w-v\| \le r\} \subset \overline{U_r(v)}$ und es folgt die Gleichheit der Mengen. Gegenbeispiel für metrische Räume: Sei $X = \mathbb{Z}$ und d(v,w) = |v-w|. X ist mit d ein metrischer Raum und es gilt $\overline{\{w \in X : d(w,0) < 1\}} = \overline{\{0\}} = \{0\} \neq \{-1,0,1\} = \{w \in X : d(w,0) \le 1\}$.

5.1.3. Aufgabe 1.3. Behauptung: Für $1 gilt: <math>l^1 \subset l^p \subset l^q \subset l^\infty$. Beweis: Sei $(x_n) \in l^p$ für $1 \le p < \infty$. Dann ist die Reihe $\sum_{n=1}^{\infty} |x_n|^p$ konvergent. Damit konvergiert $(|x_n|^p)_{n \in \mathbb{N}}$ und somit (x_n) gegen 0. Also ist (x_n) beschränkt und $(x_n) \in l^\infty$.

Sei $q \in \mathbb{R}$ mit p < q. Da (x_n) gegen 0 konvergiert, gibt es $N \in \mathbb{N}$, so dass für alle n > N: $|x_n| < 1$. Damit ist für alle n > N: $|x_n|^q < |x_n|^p$. Da $\sum_{n=1}^{\infty} |x_n|^p$ konvergiert ist nach dem Majorantenkriterium auch $\sum_{n=1}^{\infty} |x_n|^q$ konvergent und $(x_n) \in l^q$.

Beweis, dass die Inklusionen echt sind: Sei $p \in \mathbb{R}$ mit $1 \leq p < \infty$. Die konstante Folge $(a_n), \forall_{n \in \mathbb{N}} a_n = 1$, ist beschränkt, also $(a_n) \in l^\infty$. Da $\sum_{n=1}^\infty |1|^p$ divergent, ist $(a_n) \notin l^p$. Sei $q \in \mathbb{R}$ mit p < q. Wähle $\alpha \in (\frac{1}{q}, \frac{1}{p})$. Dann ist $\alpha p < \frac{1}{p}p = 1$ und $\alpha q > \frac{1}{q}q = 1$. Betrachte die Folge $x = (\frac{1}{n^\alpha})_{n \in \mathbb{N}}$. Die Reihe $\sum_{n=1}^\infty (\frac{1}{n^\alpha})^p = \sum_{n=1}^\infty \frac{1}{n^{\alpha p}}$ ist divergent. Die Reihe $\sum_{n=1}^\infty (\frac{1}{n^\alpha})^p = \sum_{n=1}^\infty \frac{1}{n^{\alpha q}}$ ist konvergent. Damit $x \notin l^p$ und $x \in l^q$.

5.1.4. Aufgabe 1.4. Wir verwenden wieder die Schreibweise von Folgen als Funktionen $\mathbb{N} \to \mathbb{K}$. Wir definieren $f_n : \mathbb{N} \to \mathbb{K}$ für $n \in \mathbb{N}$ durch

$$f_n(m) = \begin{cases} \frac{1}{m} & (m < n) \\ 0 & (m \ge n) \end{cases}$$

(also (0,0,0,...), (1,0,0,0,...), $(1,\frac{1}{2},0,0,0,...)$, ...) und $f:\mathbb{N}\to\mathbb{K}, f(m)=\frac{1}{m}$. Es ist (f_n) Folge in d und $f\in c_0\setminus d$. Da

$$(f_n - f)(m) = \begin{cases} 0 & m < n \\ -\frac{1}{m} & m \ge n \end{cases}$$

folgt $||f_n - f||_{\infty} = \frac{1}{n}$. Also konvergiert (f_n) in $(c_0, ||\cdot||_{\infty})$ gegen f. Damit ist d nicht abgeschlossen in $(c_0, ||\cdot||_{\infty})$. Somit ist $(d, ||\cdot||_{\infty})$ nicht vollständig (nach Satz 1).

5.2. Übungsblatt 2.

5.2.1. Aufgabe 2.1.

- (1) Wir überprüfen die drei Normaxiome.
 - (a) Sei $\lambda \in \mathbb{K}$, $f \in C^r(\overline{\Omega})$. Es gilt $\|\lambda f\| = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|D^{\alpha}(\lambda f)\|_{\infty} = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|\lambda D^{\alpha} f\|_{\infty} = |\lambda| \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|D^{\alpha} f\|_{\infty} = |\lambda| \|f\|.$
 - (b) Seien $f, g \in C^r(\overline{\Omega})$. Es gilt $||f + g|| = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} ||D^{\alpha}(f + g)||_{\infty} = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} ||(D^{\alpha}f) + (D^{\alpha}g)||_{\infty} \le \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} (||D^{\alpha}f||_{\infty} + ||D^{\alpha}g||_{\infty}) = ||f|| + ||g||.$
 - (c) Sei $f \in C^r(\overline{\Omega})$. Es sei ||f|| = 0. Also $\sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} ||D^{\alpha} f||_{\infty} = 0$. Damit folgt $||D^0 f||_{\infty} = 0$ und somit $||f||_{\infty} = 0$. Da $f \in l^{\infty}(\Omega)$, folgt für alle $x \in \Omega$ dass f(x) = 0.
 - (d) Wir zeigen zuerst, dass f auf Ω stetig fortsetzbar ist. Konvergiere (f_m) auf Ω gleichmäßig gegen f, mit (f_m) Folge wie in Aufgabenstellung und $f:\Omega\to\mathbb{R}$ stetig. Dann ist für alle $x\in\Omega$: $\lim_{n\to\infty}f_n(x)=f(x)$. Die Folge $(f_m|_{\Omega})_{m\in\mathbb{N}}$ ist konvergent in $(l^{\infty}(\Omega),\|\cdot\|_{\infty})$, also Cauchy-Folge in $(l^{\infty}(\Omega),\|\cdot\|_{\infty})$. Da für alle $k,m\in\mathbb{N}$:

$$\underbrace{\sup_{x \in \Omega} |f_k(x) - f_m(x)|}_{\|f_k|_{\Omega} - f_m|_{\Omega}\|_{\infty}} = \underbrace{\sup_{x \in \overline{\Omega}} |f_k(x) - f_m(x)|}_{\|f_k - f_m\|_{\infty}}$$

ist $(f_m)_{m\in\mathbb{N}}$ Cauchy-Folge in $(l^{\infty}(\overline{\Omega}), \|\cdot\|_{\infty})$. Da dieser Raum ein Banachraum ist, gibt es $\widetilde{f} \in l^{\infty}(\overline{\Omega})$ mit $\lim_{k\to\infty} \|f_k - \widetilde{f}\|_{\infty} = 0$. Also konvergiert (f_m) gleichmäßig gegen \widetilde{f} und damit ist \widetilde{f} stetig. Da für alle $x \in \Omega$ gilt:

$$\widetilde{f}(x) = \lim_{m \to \infty} f_m(x) = f(x).$$

Damit ist f stetig fortsetzbar auf $\overline{\Omega}$. Analog für g_j . Nun zeigen wir die Differenzierbarkeit von f nach x_j : Wir schreiben $f(_,x_j,_)$ für $f(x_1,...,x_j,...,x_n)$ und $f(_,x_j+h,_)$ für $f(x_1,...,x_{j-1},x_j+h,x_{j+1},...,x_n)$. Sei $j \in \{1,...,n\}, x = (x_1,...,x_n) \in \Omega$. Wähle r > 0, so dass $U_r(x) \subset \Omega$ mit $U_r(x)$ bezüglich $\|\cdot\|_2$ -Norm auf \mathbb{R}^n . Nach dem Mittelwertsatz gibt es für jedes $h \in (-r,r)$ und $m \in \mathbb{N}$ ein $\zeta_{h,m} \in [-|h|,|h|]$ mit

(5.1)
$$\left| f_m(_, x_j + h, _) - f_m(_, x_j, _) - h \frac{d}{dx_j} f_m(_, x_j + \zeta_{h,m}, _) \right| = 0$$

 $(\zeta_{h,m})_{m\in\mathbb{N}}$ ist Folge in [-|h|,|h|]. Durch Übergang zu einer Teilfolge von (f_m) können wir o.B.d.A. annehmen, dass $(\zeta_{h,m})_{m\in\mathbb{N}}$ gegen ein $\zeta_h^* \in [-|h|,|h|]$ konvergiert. Mit der Abschätzung

$$\left| \frac{d}{dx_{j}} f_{m}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h}^{*}, _) \right|$$

$$\leq \left| \frac{d}{dx_{j}} f_{m}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h,m}, _) \right|$$

$$+ |g_{j}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h}^{*}, _)|$$

$$\leq \underbrace{\left\| \frac{d}{dx_{j}} f_{m} - g_{j} \right\|_{\infty}}_{\to 0} + \underbrace{\left| g_{j}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h}^{*}, _) \right|}_{\to 0}.$$

folgt, dass $\left(\frac{d}{dx_j}f_m(_,x_j+\zeta_{h,m},_)\right)_{m\in\mathbb{N}}$ gegen $g_j(_,x_j+\zeta_h^*,_)$ konvergiert. Für $m\to\infty$ folgt aus (5.1), dass

$$|f(_, x_j + h, _) - f_j(_, x_j, _) - hg_j(_, x_j + \zeta_h^*, _)| = 0.$$

Sei $(h_k)_{k\in\mathbb{N}}$ Folge in (-r,r) mit $h_k\to 0$ für $k\to\infty$ mit $h_k\neq 0$ für alle $k\in\mathbb{N}$. Dann folgt mit (5.1)

$$\lim_{k \to \infty} \frac{f(\underline{\ }, x_j + h_k, \underline{\ }) - f(\underline{\ }, x_j, \underline{\ })}{h_k}$$

$$= \lim_{k \to \infty} g_j(\underline{\ }, x_j + \underbrace{\zeta_{h_k}^*}_{\to 0 \ (k \to \infty)}, \underline{\ })$$

$$= g_j(\underline{\ }, x_j, \underline{\ })$$

mit $|\zeta_{h_k}^*| \leq |h_k|$ und g_j stetig. Somit ist f nach x_j partiell differenzierbar und $\frac{d}{dx_j}f(x) = g_j(x)$.

$5.2.2.\ \textit{Aufgabe 2.3}.$

(1) Seien $p,q \in \mathbb{R}$ mit $1 \leq p < q$. Wähle $\alpha \in (\frac{1}{q},\frac{1}{q})$. Dann gilt $\alpha p < 1$ und $\alpha q > 1$. Wir schreiben Elemente aus l^p als Funktionen $\mathbb{N} \to \mathbb{K}$. Wir definieren für $n \in \mathbb{N}$ die Funktionen $f_n : \mathbb{N} \to \mathbb{K}$ durch

$$f_n(m) = \begin{cases} \frac{1}{m^{\alpha}} & m \le n, \\ 0 & m > n. \end{cases}$$

Da $f_n \in d$ für alle $n \in \mathbb{N}$ ist $f_n \in l^p$ für alle $n \in \mathbb{N}$. Es ist die Folge $\left(\|f_n\|_p^p\right)_{n \in \mathbb{N}}$ divergent, da $\|f_n\|_p^p = \sum_{m=1}^n \frac{1}{m^{\alpha p}}$ mit $\alpha p < 1$. Die Folge $\left(\|f_n\|_q^q\right)_{n \in \mathbb{N}}$ ist konvergent, da $\|f_n\|_q^q = \sum_{m=1}^n \frac{1}{m^{\alpha q}}$ mit $\alpha q > 1$. Also ist die Folge $(\|f_n\|_p)_{n \in \mathbb{N}}$ divergent und die Folge $(\|f_n\|_q)_{n \in \mathbb{N}}$ ist konvergent. Damit können $\|\cdot\|_p$ und $\|\cdot\|_q$ nicht äquivalent sein, denn sonst gäbe es $M > 0 \ \forall_{n \in \mathbb{N}} : \|f_n\|_p \le M\|f_n\|_q$. (Unter Verwendung von Aufgabe 2.2.) Widerspruch.

(2) Sei $p \in \mathbb{R}$, $1 \leq p$. Für $n \in \mathbb{N}$ definieren wir $f_n : \mathbb{N} \to \mathbb{K}$ durch

$$f_n(m) = \begin{cases} 1 & m \le n, \\ 0 & m > n. \end{cases}$$

Wieder ist für alle $n \in \mathbb{N}$: $f_n \in d \subset l^p$, also (f_n) Folge in l^p . Es ist $||f_n||_{\infty} = 1$ für alle $n \in \mathbb{N}$ und

$$||f_n||_p = \left(\sum_{m=1}^n 1^p\right)^{\frac{1}{p}} = n^{\frac{1}{p}}.$$

Damit ist $(\|f_n\|_{\infty})_{n\in\mathbb{N}}$ konvergent und $(\|f_n\|_p)_{n\in\mathbb{N}}$ divergent. Analog zur obigen Aufgabe folgt, dass $\|\cdot\|_{\infty}$ und $\|\cdot\|_p$ nicht äquivalent sind.

5.3. Übungsblatt 3.

5.3.1. Aufgabe 3.1. Wir betrachten zunächst den Fall $a=-1,\,b=1.$ Wir definieren $f:\mathbb{R}\to\mathbb{R}$

$$f(x) = \begin{cases} |x| & |x| > 1, \\ \frac{1}{2}x^2 + \frac{1}{2} & |x| \le 1. \end{cases}$$

Es ist $f \in C^1(\mathbb{R})$. Wir definieren $n \in \mathbb{N}$ die Funktionen $f_n : [-1,1] \to \mathbb{R}$, $f_n(x) := \frac{1}{n} f(nx)$. Dann ist (f_n) Folge in $C^1([-1,1])$. (f_n) konvergiert in $(C([-1,1]), \|\cdot\|_{\infty})$ gegen g(x) = |x|, denn $\|f_n - g\|_{\infty} = \sup_{x \in [-1,1]} |f_n(x) - g(x)|$

$$= \max\{\underbrace{\sup_{x \in [-1,1] \setminus [-\frac{1}{n}, \frac{1}{n}]} | f_n(x) - g(x)|, \sup_{x \in [-\frac{1}{n}, \frac{1}{n}]} |f_n(x) - g(x)|\}}_{x \in [-\frac{1}{n}, \frac{1}{n}]}$$

$$= \sup_{x \in [-\frac{1}{n}, \frac{1}{n}]} \left| \frac{1}{n} \left(\frac{1}{2} (nx)^2 + \frac{1}{2} \right) - |x| \right|$$

$$\leq \frac{1}{n} + \sup_{x \in [-\frac{1}{n}, \frac{1}{n}]} \left| \frac{1}{2} n x^2 + \frac{1}{2n} \right|$$

$$\leq \frac{2}{n} \to 0$$

für $n \to \infty$. Also (f_n) Cauchy-Folge in $(C^1([-1,1]), \|\cdot\|_{\infty})$. Aber (f_n) nicht konvergent in $C^1([-1,1])$, da für einen Grenzwert \widetilde{f} in $C^1([-1,1])$ gilt $\widetilde{f} = g$ gelten müsste. Für $a,b \in \mathbb{R}$ sei $h:[a,b] \to [-1,1]$ durch $h(x) = 2\frac{x-a}{b-a} - 1$ definiert. Da $\|f_n \circ h\|_{\infty} = \|f_n\|_{\infty}$ ist $(f_n \circ h)_{n \in \mathbb{N}}$ Cauchy-Folge in $(C^1([a,b]), \|\cdot\|_{\infty})$ die nicht konvergiert (da Grenzwert $\widetilde{f} \in C^1([a,b])$ durch $\widetilde{f} \circ h^{-1}$ einen Grenzwert von (f_n) in $C^1([-1,1])$ liefert).

5.3.2. Aufgabe 3.2. Sei $a, b \in \mathbb{R}$, a < b.

(1) $\|\cdot\|_1$ ist Norm:

(a) Sei
$$f \in C([a,b])$$
, $\lambda \in \mathbb{K}$. $\|\lambda f\|_1 = \int_a^b |\lambda f(s)| ds = \int_a^b |\lambda| |f(s)| ds = \|\lambda\| \int_a^b |f(s)| ds = |\lambda| \|f\|_1$.

(b) Seien
$$f, g \in C([a, b])$$
. $||f + g||_1 = \int_a^b |f(s) + g(s)| ds \le \int_a^b |f(s) + g(s)| ds = ||f||_1 + ||g||_1$.

- (c) Sei $f \in C([a, b])$ mit $||f||_1 = 0$. Also $\int_a^b |f(s)| ds = 0$. Nach Ergebnissen aus der Analysis für stetige Funktionen folgt, dass f konstant 0 auf [a, b] ist.
- (2) $(C([a,b]), \|\cdot\|_1)$ ist nicht vollständig. Betrachte zunächst $a=0,\ b=2.$ Definiere für $n\in\mathbb{N},\ f_n:[0,2]\to\mathbb{K}$ durch

$$f_n(x) = \begin{cases} x & x \in [0, 1], \\ 1 & x \in [1, 2]. \end{cases}$$

Dann ist (f_n) Cauchy-Folge bezüglich $\|\cdot\|_1$, denn $\|f_n - f_m\|_1 = \int_0^1 |x^n - x^m| dx \leq \left[\frac{1}{n+1}x^{n+1} + \frac{1}{m+1}x^{m+1}\right]_0^1 = \frac{1}{n+1} + \frac{1}{m+1} \to 0$ für $n, m \to \infty$. Angenommen (f_n) hat Grenzwert $g \in C([0,2])$. Dann ist

$$\underbrace{\|f_n - g\|_1}_{\to_{n \to \infty} 0} = \int_0^1 |f_n(x) - g(x)| dx + \int_1^2 |f_n(x) - g(x)| dx$$

$$= \int_0^1 |x^n - g(x)| dx + \int_1^2 |1 - g(x)| dx$$

$$= \underbrace{\int_0^1 |x^n - g(x)| dx}_{\geq 0 \text{ und } \to_{n \to \infty} 0} + \underbrace{\int_1^2 |1 - g(x)| dx}_{\geq 0 \text{ und } \to_{n \to \infty} 0}$$

und also $||1 - g(x)|_{[1,2]}||_1 = \int_1^2 |1 - g(x)| dx = 0$ und damit $g(x)|_{[1,2]} \equiv 1$. Mit der $||\cdot||_1$ Norm auf C([0,1]) folgt

$$\int_{0}^{1} |x^{n} - g(x)| dx \ge \left| \underbrace{\int_{0}^{1} |x^{n}| dx}_{\to_{n \to \infty} 0} - \int_{0}^{1} |g(x)| dx \right|.$$

Es ergibt sich $||g|_{[0,1]}||_1 = 0$ und also g(x) = 0 für alle $x \in [0,1]$. Widerspruch.

5.3.3. Aufgabe 3.3. Nach Lemma 3 gibt es eine Folge (x_n) in X so dass für alle $n \in \mathbb{N}$ gilt $||x_1|| = 1$ und $\forall_{u \in U} : ||u - x_n|| > 1 - \frac{1}{n}$. Sei $S = \{x \in X | ||x|| = 1\}$. S ist abgeschlossen und beschränkt. Da X endlich dimensional ist, ist S kompakt ist. Somit gibt es eine konvergente Teilfolge (y_k) von (x_n) und Folge $\delta_k \in (0,1)$ mit $\forall_{u \in U} : ||u - y_k|| > 1 - \delta_k$ und $\delta_k \to 0$. Sei $y = \lim_{k \to \infty} y_k$. Ist $u \in U$, so ist $||u - y|| = \lim_{k \to \infty} ||u - y_k|| \ge \lim_{k \to \infty} 1 - \delta_k = 1$. Also $1 \le \inf\{||u - y|||u \in U\}$. Da $||0 - y|| = ||y|| = \lim_{k \to \infty} ||y_k|| = 1$ folgt die Gleichheit und ||y|| = 1.

5.3.4. Aufgabe 3.4. Sei $e_j \in d, e_j : \mathbb{N} \to \mathbb{K}$ definiert durch

$$e_j(m) = \begin{cases} 1 & j = m, \\ 0 & j \neq m. \end{cases}$$

Es ist $d = \text{span}\{e_j | j \in \mathbb{N}\}$. Sei $f \in c_0, f : \mathbb{N} \to \mathbb{K}$. Definiere für $n \in \mathbb{N}$ die Folge $f_n : \mathbb{N} \to \mathbb{K}$ durch

$$f_n(m) = \begin{cases} f(m) & m \le n, \\ 0 & m > n. \end{cases}$$

Dann ist (f_n) Folge in d. Da $||f-f_n||_{\infty} = \sup_{m \in \mathbb{N}} |f(m)-f_n(m)| = \sup_{m > n} |f(m)| \to 0$ für $n \to \infty$ ist f Grenzwert von (f_n) in $(c_0, ||\cdot||_{\infty})$. Also $c_0 = \overline{d} = \overline{\operatorname{span}\{e_j | j \in \mathbb{N}\}}$. Somit ist c_0 separabel.

5.3.5. Aufgabe 3.5. Sei $f \in C^r(\overline{\Omega})$. Alle Maxima und Summen beziehen sich auf Multiindizies $\alpha \in \mathbb{N}_0^n$ mit $0 \le |\alpha| \le r$. Dann gilt

$$\max \|D^{\alpha} f\|_{\infty} \le \sum \|D^{\alpha} f\|_{\infty}.$$

Umgekehrt gilt

$$\sum \|D^{\alpha} f\|_{\infty} \le (r+1)^n \max \|D^{\alpha} f\|_{\infty}.$$

Also $\forall_{f \in C^r(\overline{\Omega})} : ||f||_a \le ||f|| \le (r+1)^n ||f||_a.$

5.4. Übungsblatt 8.

5.4.1. Aufgabe 8.1(a). Wir definieren $\widetilde{T}: X \to Y$ wie folgt. Für $x \in X$ sei (x_n) Folge in U mit $x_n \to x$ für $x \to \infty$ (existiert, da $X = \overline{U}$). Zeige, dass $(Tx_n)_{n \in \mathbb{N}}$ Cauchy-Folge ist. Sei $M = \max\{\|T\|, 1\}$. Sei $\varepsilon > 0$ gegeben. (x_n) ist konvergent, also Cauchy-Folge. Dann gibt es $N \in \mathbb{N}$ mit $\forall_{n,m>N}: \|x_n - x_m\| < \frac{1}{M}\varepsilon$. Somit gilt für alle n, m > N

$$||Tx_n - Tx_m||_Y \le ||T|| \cdot ||x_n - x_m||_X \le M \frac{1}{M} \varepsilon = \varepsilon.$$

Somit (Tx_n) Cauchy-Folge. Da $(Y, \|\cdot\|_Y)$ vollständig ist, ist (Tx_n) konvergent gegen ein $y \in Y$. Setze $\widetilde{T}x := \lim_{n \to \infty} Tx_n$.

- (1) \widetilde{T} ist wohldefiniert: Sei $x \in X$ und (x_n) , (y_n) Folgen in U mit $x_n \to x$ und $y_n \to x$ für $n \to \infty$. Dann ist $\|\lim_{n \to \infty} Tx_n \lim_{n \to \infty} Ty_n\|_Y = \|\lim_{n \to \infty} T(x_n y_n)\|_Y = \lim_{n \to \infty} \|T(x_n y_n)\|_Y \leq \lim_{n \to \infty} \|T\|\|x_n y_n\|_X = 0$. Also $\lim_{n \to \infty} Tx_n = \lim_{n \to \infty} Ty_n$.
- (2) T ist linear: Sei $x, y \in X$, $\alpha, \beta \in \mathbb{K}$. Dann gibt es Folgen (x_n) , (y_n) in U mit $x_n \to x$ und $y_n \to y$ für $n \to \infty$. Es gilt $\widetilde{T}(\alpha x + \beta x) = \lim_{n \to \infty} T(\alpha x_n + \beta x_n) = \lim_{n \to \infty} \alpha T x_n + \beta T y_n = \alpha \lim_{n \to \infty} T x_n + \beta \lim_{n \to \infty} T y_n = \alpha \widetilde{T} x + \beta \widetilde{T} y$.
- (3) T ist stetig: Sei $x \in X$ und (x_n) Folge in U mit $x_n \to x$, $n \to \infty$. Dann gilt $\|\widetilde{T}x\|_Y = \|\lim_{n\to\infty} Tx_n\|_Y = \lim_{n\to\infty} \|Tx_n\|_Y \le \lim_{n\to\infty} \|T\| \cdot \|x_n\|_X \le \|T\| \|x\|_X$.
- (4) $\widetilde{T}|_U = T$. Sei $x \in U$ und (x_n) Folge in U mit $x_n \to x$ für $n \to \infty$. Dann gilt $\widetilde{T}x = \lim_{n \to \infty} Tx_n = Tx$.
- (5) \widetilde{T} ist eindeutig festgelegt: Seien $\widetilde{T}_1,\widetilde{T}_2 \in L(X,Y)$ mit $\widetilde{T}_1|_U = \widetilde{T}_2|_U = T$. Dann ist $(\widetilde{T}_1 - \widetilde{T}_2)|_U = 0 \in L(X,Y)$. Sei $x \in X \setminus U$ und (x_n) Folge in U mit $x_n \to x$ für $n \to \infty$. Dann ist $(\widetilde{T}_1 - \widetilde{T}_2)x = \lim_{n \to \infty} ((\widetilde{T}_1 - \widetilde{T}_2)x_n) = \lim_{n \to \infty} ((\widetilde{T}_1 - \widetilde{T}_2)0) = 0$. Somit $\widetilde{T}_1 = \widetilde{T}_2$.

Ohne Vollständigkeit von $(Y, \|\cdot\|_Y)$ ist die Aussage von Aufgabe 8.1(a) falsch. Gegenbeispiel: $X = l^1$, Y = d, beide versehen mit der Norm $\|\cdot\|_1$. Dann ist $\overline{d} = l^1$. Sei $T : d \to d$, Tf = f. T ist linear und stetig. Für eine Folge (f_n) mit $\lim_{n\to\infty} f_n = f \in l^1 \setminus d$ hat die Folge $(Tf_n) = (f_n)$ keinen Grenzwert in d. Gäbe

es eine Fortsetzung $\widetilde{T} \in L(l^1, d)$ von T, so müsste aber $(f_n) = (Tf_n)$ gegen $\widetilde{T}f \in d$ konvergieren. Widerspruch.

5.4.2. Aufgabe 8.1(b). Sei $\widetilde{T}: X \to Y$, $\widetilde{T} \in L(X,Y)$. Fortsetzung von T nach (a) und $\widehat{T} \in L(Y,X)$ Fortsetzung von T^{-1} nach (a). Es gilt $\widetilde{T} \circ \widehat{T}|_{V} = 1_{V}$ und $\widehat{T} \circ \widetilde{T}|_{U} = 1_{U}$. $\widehat{T} \circ \widehat{T}$ ist Fortsetzung von 1_{V} auf Y, $\widehat{T} \circ \widetilde{T}$ ist Fortsetzung von 1_{U} auf X. Andererseits ist 1_{Y} Fortsetzung von $1_{V}: V \to Y$ und 1_{X} Fortsetzung von $1_{U}: U \to X$. Nach der Eindeutigkeit aus (a) folgt $\widetilde{T} \circ \widehat{T} = 1_{Y}$ und $\widehat{T} \circ \widetilde{T} = 1_{X}$. Somit $\widehat{T} = \widetilde{T}^{-1}$, also \widetilde{T} Isomorphismus.

Aussage ohne Vollständigkeit von $(X, \|\cdot\|_X)$ im allgemeinen nicht richtig. Sei z.B. $X = d, Y = l^1$ beide mit $\|\cdot\|_1$ -Norm. Dann ist $T : d \to l^1, Tf = f$ stetig und linear. Dann ist das Bild von T dicht in l^1 . $T : d \to \text{Bild } T$ ist Isomorphismus, Aber d und l^1 nicht isomorph.

5.4.3. Aufgabe 8.2.

- (1) Aus der linearen Algebra ist bekannt, dass Π linear ist. Für alle $x \in X$ ist $\|\Pi(x)\|_q = \|x + U\|_q = \inf\{\|x v\|_X \mid v \in U\} \le \|x 0\|_X = \|x\|_X$. Also ist Π stetig.
- (2) Sei $U \neq X$ und $x \in X \setminus U$. Dann ist $\Pi(x) = x + U \neq U$. Also $\Pi(x) \neq 0 + U$. Nach Korollar 3 gibt es $g' \in (X/U)'$ mit ||g'|| = 1 und $g'(x + U) \neq 0$. Sei $f' \neq g' \circ \Pi$. Dann ist f' linear (denn g' und Π linear) und stetig da g' und Π stetig. Also $f' \in X'$. Für $u \in U$ ist $\Pi(u) = U$, also f'(u) = g'(U) = 0. Also $f'|_U = 0$. Per Konstruktion ist $f'(x) = g'(x + U) \neq 0$.

5.4.4. Aufgabe 8.3. Sei $f: X \to \mathbb{R}$ linear und ker $f \neq X$.

- (a) \Longrightarrow (b): Ist f stetig, so ist ker $f = f^{-1}(\{0\})$ abgeschlossen.
- (b) \Longrightarrow (c): Ist ker f abgeschlossen, so ist ker $f = \overline{\ker f}$. Wäre ker f dicht in X, so wäre ker $f = \overline{\ker f} = X$ im Widerspruch zu ker $f \neq X$.
- $(c) \Longrightarrow (a) \text{:} \quad (1) \text{ Sei } \Pi : X \to X/\ker f, \ \Pi(x) = x + \ker f. \text{ Es existiert ein } g : X/\ker f \to \mathbb{R} \text{ mit } g \circ \Pi = f \text{ da für alle } c \in \mathbb{R} \text{ gilt } f^{-1}(c) = v_c + \ker f \text{ mit } v_c \in X \ (v_c \text{ existiert, da } f \neq 0).$ Für $x,y \in X, \ w,v \in \ker f, \ \alpha,\beta \in \mathbb{R} \text{ gilt } f(\alpha x + v + \beta y + w) = \alpha f(x) + \beta f(y) = \alpha f(x+v) + \beta f(y+w).$ Somit nimmt f auf $\alpha(x+\ker f) + \beta(y+\ker f)$ den Wert $\alpha f(x) + \beta f(y)$ an. Damit ist $g(\alpha(x+\ker f) + \beta(y+\ker f)) = \alpha f(x) + \beta f(x) = \alpha g(x+\ker f) + \beta g(y+\ker f).$ Also g linear.
 - (2) Sei $x \in X \setminus \overline{\ker f}$ (existiert da $\overline{\ker f} \neq X$). Setze $U = \operatorname{span}\{x\}$. Da $\dim U = 1$ ist $f|_U$ stetig. Sei $M = \|f|_U\|$ (beachte M > 0). Definiere $p: X \to \mathbb{R}$ mit $p(x) = M \cdot \inf\{\|x v\|_X \mid v \in \overline{\ker f}\}$. p ist Halbnorm (Vorlesung), also sublinear. Per Definition von M ist für alle $u \in U$ dass $|f(u)| \leq p(u)$. Nach dem Satz von Hahn-Banach gibt es $h: X \to \mathbb{R}$ mit $h|_U = f|_U$ und $\forall_{x \in X}: h(x) \leq p(x)$, h linear. Insbesondere $\forall_{x \in X}: -h(x) = h(-x) \leq p(-x) = p(x)$, also $\forall_{x \in X}: |h(x)| \leq p(x) \leq M\|x 0\|_X = M\|x\|_X$. Damit ist h stetig. Da für $x \in \overline{\ker f}$ gilt p(x) = 0 folgt für $x \in \overline{\ker f}: |h(x)| = 0$. Also $\overline{\ker f} \subset \ker h$.

Insbesondere ist für alle $x \in X$ h auf $x + \ker f \subset x + \ker h$ konstant. Analog zu (1) gibt es $q: X/\ker f \to \mathbb{R}$ mit $q \circ \Pi = h$ und q linear.

Per Konstruktion ist $q \circ \Pi|_U = h|_U = f|_U = g \circ \Pi|_U$. Also ist rang $q \circ \Pi|_U = 1 = \text{rang } g \circ \Pi|_U$. Per Konstruktion ist $\ker g = \{0\}$ somit $\dim X/\ker f = 1$. Damit ist rang $\Pi|_U = 1$. Also $\Pi|_U : U \to X/\ker f$ linear und bijektiv. Somit g = q und f = h. Also f stetig, falls $\ker f \neq X$.

5.5. Übungsblatt 10.

5.5.1. Aufgabe 1. Angenommen $X\setminus \overline{M}$ nicht dicht in X. Dann gibt es $\varepsilon>0$ und $x\in X\setminus (X\setminus \overline{M})=\overline{M}$ so dass für alle $y\in X\setminus \overline{M}$ so dass $\delta(x,y)>\varepsilon$. Also ist der offene Ball $B=\{y\in X\mid \delta(x,y)<\varepsilon\}$ Teilmenge von \overline{M} und wegen $x\in B$ nicht leer. Also ist x ein innere Punkt von \overline{M} . Damit ist M nicht nirgends dicht. Widerspruch.

5.5.2. Aufgabe 2. Sei für $n \in \mathbb{N}$ die Menge $B_n^p(0) = \{f \in l^p \mid ||f||_p \leq n\}$ definiert. Sei $n \in \mathbb{N}$ fest und (f_k) Folge in $B_n^p(0)$ mit $||f_k - f||_q \to 0$ für $k \to \infty$ für ein $f \in l^q$. Für alle $m \in \mathbb{N}$ gilt $|f_k(m) - f(m)| = (|f_k(m) - f(m)|^q)^{\frac{1}{q}} \leq ||f_k - f||_q \to 0$ für $k \to \infty$. Weiterhin ist für alle $M \in \mathbb{N}$

$$\sum_{m=1}^{M} |\widetilde{f}(m)|^p \le \|\widetilde{f}\|_p^p \le n^p$$

für alle $\widetilde{f} \in B_n^p(0)$. Somit ist für alle $M, k \in \mathbb{N}$

$$\sum_{m=1}^{M} |f_k(m)|^p \le n^p.$$

Also gilt für alle $M \in \mathbb{N}$

$$\sum_{m=1}^{M} |f(m)|^p \le n^p.$$

Somit gilt $\sum_{m=1}^{\infty} |f(m)|^p \leq n^p$. Also $f \in l^p$ und $||f||_p = (\sum_{m=1}^{\infty} |f(m)|^p)^{\frac{1}{p}} \leq n$. Somit $f \in B_n^p(0)$. Damit sind die Mengen $B_n^p(0)$ abgeschlossen in l^q bzgl. $||\cdot||_q$.

Sei $f \in B_n^p(0)$. Wähle $g \in l^q \setminus l^p$ (Übungsaufgabe 1.3). Definiere Folge (g_k) in $l^q \setminus l^p$ durch

$$g_k(m) = \begin{cases} f(m) & (k \ge m) \\ g(m) & (k < m) \end{cases}$$

Alle $g_k \in l^q \setminus l^p$ da sonst $g \in l^p$ wäre. Da

$$||f - g_k||_q^q = \sum_{m=k+1}^{\infty} |f(m) - g(m)|^q \to 0$$

für $k \to \infty$ (da $f - g \in l^q$) konvergiert (g_k) gegen f bzgl. $\|\cdot\|_q$. Damit ist f kein innerer Punkt von $B_n^p(0)$. Somit ist für alle $n \in \mathbb{N}$ die Menge $B_n^p(0)$ nirgends dicht in l^q . Da $l^p = \bigcup_{n \in \mathbb{N}} B_n^p(0)$ ist l^p von erster Kategorie in l^q .

5.5.3. Aufgabe 3.

(1) Sei $f \in d$. Definiere $g \in d$ durch g(m) = mf(m) für $m \in \mathbb{N}$. Per Konstruktion ist Sg = f. Somit ist S surjektiv. Angenommen S wäre offen. Dann gibt es $\varepsilon > 0$ mit $U_{\varepsilon}(0) \subset S(U_1(0))$. Sei $M > \frac{2}{\varepsilon}$. Dann ist $g \in d$ definiert durch

$$g(m) = \begin{cases} \varepsilon/2 & (m = M) \\ 0 & \text{sonst} \end{cases}$$

Element von $U_{\varepsilon}(0)$. S ist injektiv, da $\ker S = \{0\}$. Für $f = S^{-1}g$ gilt $||f||_{\infty} = |f(M)| = M|g(M)| = M \cdot \frac{\varepsilon}{2} > \frac{2}{\varepsilon} \cdot \frac{\varepsilon}{2} = 1$. Also $f \notin U_1(0)$. Damit $U_{\varepsilon}(0) \nsubseteq S(U_1(0))$. Widerspruch. Also S nicht offen.

(2) Sei $f \in l^{\infty}$. Dann gilt $|(Tf)(m)| = |\frac{1}{m}f(m)| \leq \frac{1}{m}||f||_{\infty} \to 0$ für $m \to \infty$. Also $Tf \in c_0$ und Bild $T \subset c_0$. Da $c_0 \neq l^{\infty}$ ist T nicht surjektiv.

5.5.4. Aufgabe 4. Sei $S_1=\{x\in X\,|\,\|x\|_X=1\}$. Es reicht zu zeigen, dass $M=\{Tx\,|\,x\in S_1\}$ beschränkt ist. Nach Korollar 14 ist M genau dann beschränkt, wenn für alle $y'\in Y'$ die Menge $N_{y'}=\{y'(Tx)\,|\,x\in S_1\}$ beschränkt ist. Dann gibt es Folge (x_n) in S_1 , so dass $|y'(Tx_n)|\to\infty$ für $n\to\infty$. Durch Übergang zur Teilfolge können wir o.B.d.A. annehmen dass für alle $n\in\mathbb{N}$ gilt $n\le |y'(Tx_n)|$. Somit gilt für alle $n\in\mathbb{N}$ dass $1\le |y'(T\frac{x_n}{n})|$. Da (x_n) Folge in S_1 konvergiert $\frac{x_n}{n}$ gegen 0. Nach Voraussetzung konvergiert $(T\frac{x_n}{n})$ schwach gegen 0. Somit ist $\lim_{n\to\infty}y'(T\frac{x_n}{n})=y'(0)=0$, Widerspruch. Somit für alle $y'\in Y'$ ist Ny' beschränkt und damit M beschränkt.

5.5.5. Aufgabe 5. Sei X=Y=d versehen mit der Supremumsnorm $\|\cdot\|_{\infty}$. Für $n\in\mathbb{N}$ definiere $T_n:d\to d$ durch

$$(T_n f)(m) = \begin{cases} m f(m) & (m \le n) \\ f(m) & (m > n) \end{cases}$$

Offensichtlich ist $T_n \in L(d,d)$ mit $||T_n|| = n$. Sei $f \in d \setminus \{0\}$. Dann gibt es $M \in \mathbb{N}$ mit $f(M) \neq 0$ und f(m) = 0 für m > M. Es ist $\lim_{n \to \infty} T_n f = T_M f$ (Existenz von $\lim_{n \to \infty} T_n 0 = 0$ trivial). Definieren wir $T: d \to d$ durch $Tf = \lim_{n \to \infty} T_n f$ so erhalten wir (Tf)(m) = mf(m) für $m \in \mathbb{N}$. Dann ist für $e_n \in d_1$,

$$e_n(m) = \begin{cases} 1 & m = n \\ 0 & \text{sonst} \end{cases}$$

 $||Te_n||_{\infty} = n \cdot 1 = n$. Da für alle $n \in \mathbb{N}$ $||e_n||_{\infty} = 1$ ist T unstetig.