```
In [10]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

In [11]: from sklearn import preprocessing,svm

In [12]: df=pd.read_csv(r"C:\Users\my pc\Downloads\fiat500_VehicleSelection_Dataset.csv
df

Out[12]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1	lounge	51	882	25000	1	44.907242	8.611560
1	2	рор	51	1186	32500	1	45.666359	12.241890
2	3	sport	74	4658	142228	1	45.503300	11.417840
3	4	lounge	51	2739	160000	1	40.633171	17.634609
4	5	pop	73	3074	106880	1	41.903221	12.495650
1533	1534	sport	51	3712	115280	1	45.069679	7.704920
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
1535	1536	рор	51	2223	60457	1	45.481541	9.413480
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
1537	1538	рор	51	1766	54276	1	40.323410	17.568270

1538 rows × 9 columns

In [13]: df=df[["engine_power","price"]]

In [14]: df.columns=["power","price"]
df

Out[14]:

	power	price
0	51	8900
1	51	8800
2	74	4200
3	51	6000
4	73	5700
1533	51	5200
1534	74	4600
1535	51	7500
1536	51	5990
1537	51	7900

1538 rows × 2 columns

In [15]: df.head()

Out[15]:

	power	price
0	51	8900
1	51	8800
2	74	4200
3	51	6000
4	73	5700

In [16]: df.describe()

Out[16]:

	power	price
count	1538.000000	1538.000000
mean	51.904421	8576.003901
std	3.988023	1939.958641
min	51.000000	2500.000000
25%	51.000000	7122.500000
50%	51.000000	9000.000000
75%	51.000000	10000.000000
max	77.000000	11100.000000

Out[18]: <seaborn.axisgrid.FacetGrid at 0x2b3ce2e4850>


```
In [22]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1538 entries, 0 to 1537
         Data columns (total 2 columns):
              Column Non-Null Count Dtype
          0
              power
                      1538 non-null
                                       int64
          1
              price
                      1538 non-null
                                       int64
         dtypes: int64(2)
         memory usage: 24.2 KB
In [24]: #step 5:Training our model
         x=np.array(df["power"]).reshape(-1,1)
         y=np.array(df["price"]).reshape(-1,1)
In [26]: |x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         regr=LinearRegression()
         regr.fit(x_train,y_train)
         print("regr :",regr.score(x_test,y_test))
         regr: 0.06014392334120533
In [39]:
         #step 6:Exploring our results
         y pred=regr.predict(x test)
         plt.scatter(x_test,y_test,color="c")
         plt.plot(x_test,y_pred,color="g")
         plt.show()
           11000
           10000
            9000
            8000
            7000
            6000
            5000
```

60

65

70

4000

50

55

75

```
In [33]: #step 7:Working with smaller data
df500=df[:][1000:1500]
sns.lmplot(x="power",y="price",data=df500,order=1,ci=None)
```

Out[33]: <seaborn.axisgrid.FacetGrid at 0x2b3de0cfe50>


```
In [31]: x=np.array(df500["power"]).reshape(-1,1)
y=np.array(df500["price"]).reshape(-1,1)
```

```
In [32]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

```
In [41]: regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression :",regr.score(x_test,y_test))
```

Regression: 0.09561863165183249

```
In [42]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color="c")
    plt.plot(x_test,y_pred,color="g")
    plt.show()
```



```
In [43]: from sklearn.metrics import r2_score
#Train the model
model=LinearRegression()
model.fit(x_train,y_train)
#Evaluate the model on the test data
y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2 score :",r2)
```

R2 score: 0.09561863165183249

In []: |conclusion:-

The regression score is very less. The model is very poor. Even though we have therefore, Linear Rgression is not accurate for the engine power and the price

Rather than we can conclude that if engine power increases the price decreases