Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Электричество и магнетизм

Свободные и вынужденные колебания в электрическом контуре.

Таранов Александр Группа Б01-206

Содержание

1	Теоретическое введение	1
	1.1 Последовательный RLC контур	1
	1.2 Свободные затухающие колебания	1
	1.3 Апериодические колебания	1
2	Экспериментальная установка	2
3	Ход работы	3
	3.1 Проверка формулы Томсона	3
	3.2 Определение критического сопротивления и декремента затухания	5
	3.3 Добротность контура	6
4	Заключение	9

Цель работы: исследования свободных и вынужденных колебаний в колебательном контуре.

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, индуктивность, электронный осциллограф.

1. Теоретическое введение

1.1. Последовательный RLC контур

Рассмотрим электрический контур, состоящий из последовательно соединённых конденстора C, катушки индуктивности L и резистора R. Обозначим разность потенциалов на конденсаторе U_C , а ток, текущий в контуре, через I. Тогда

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0 (1)$$

Вводя обозначения $\gamma = \frac{R}{2L}$, $\omega_0^2 = \frac{1}{LC}$, получим уравнение

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0 \tag{2}$$

Общее решение этого уравнения имеет следующий вид:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t), \tag{3}$$

где $\kappa = \sqrt{\gamma^2 - \omega_0^2}, \, U_0 = U_C$ – начальное напряжение на конденсаторе.

1.2. Свободные затухающие колебания

В случае, когда $\gamma < \omega_0$, имеем $\kappa = i\omega$, где $\omega = \sqrt{\omega_0^2 - \gamma^2}$ – частоты свободных (собственных) колебаний. Тогда ток

$$I = -\frac{U_0}{L\omega}e^{-\gamma t}\sin(\omega t) \tag{4}$$

затухает и имеет колебательный характер. Величина γ определяет затухание колебаний: $\gamma=\frac{1}{\tau}$, где τ – время затухание амплитуды в e раз. Формулы для наряжение на кондесаторе и тока в цепи можно переписать иначе:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta),$$

$$I = -\frac{U_0}{L} e^{-\gamma t} \cos(\omega t - \theta).$$
(5)

1.3. Апериодические колебания

В случае $\gamma > \omega_0$, формулы для тока и напряжения на конденсаторе имеют следующий вид:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t),$$

$$U_C = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t) \right).$$
(6)

Процесс в этом случае не является колебательным, его называют апериодическим. Режим, соответствующий $\gamma = \omega_0$, называются *критическим*. В этом случае предельный переход $\omega \to 0$ в (6) даст

$$I = -\frac{U_0}{L} t e^{-\gamma t},$$

$$U_C = U_0 e^{-\gamma t} (1 + \gamma t).$$
(7)

Сопротивление в этом случае

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}} \tag{8}$$

называется критическим сопротивлением контура.

Добротность контура по определению

$$Q = 2\pi \frac{W}{\Delta W},\tag{9}$$

где W — запасённая энергия, ΔW — потери за период. Тогда

$$Q = 2\pi \frac{CU_0^2/2 \cdot e^{-2\gamma t}}{CU_0^2/2 \cdot (e^{-2\gamma t} - e^{-2\gamma (T+t)})} = \frac{\pi}{\gamma T} = \frac{1}{R} \sqrt{\frac{L}{C}}.$$
 (10)

Логарифмическим декрементом затухания называются число

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \ln e^{\gamma T} = \gamma T. \tag{11}$$

или

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}.$$
(12)

2. Экспериментальная установка

Рис. 1: Экспериментальная установка

Колебательный контур состоит из постоянной индуктивности L с активным споротивлением R_L , переменной емкостью C и сопротивлением R. Картина колеюаний напряжения на емкости наблюдается на экране двухканального осциллографа. Для возбуждения затухающих колебаний используется генератор сигналов специальной формы. Сигнал с генератора поступает через конденсатор C_1 на вход колебательного

контура. Данная емкость необходима чтобы ваходной импеданс генератора был много меньше импеданса колебательного контура и не влиял на процессы, проходящие в контуре.

Установка предназвачена для исследования не только возбужденных, но и свободных колебаний в электрической цепи. При изучении свободно затухающих колебаний генератор специальных сигналов на вход колебательноо контура подает периодические короткие импульсы, которые заряжают конденсатор . За время между последовательными импульсами происходит разрядка конденсатора через резистор и катушку индуктивности. Напряженние на конденсаторе U_C поступает на вход канала 1(X) электронного осциллографа. Для наблюдения фазовой картины затухающих колебаний на канал 2(Y) подается напряжение с резистора R (пунктирная линия на схеме установки), которое пропорционально току $I(IdU_C/dt)$.

При изучении возбужденных колебаний на вход колебательного контура подается синусоидальный сигнал. С помощью осциллографа возможно измерить зависимость амплитуды возбужденный колебаний в зависимости от частоты внешнего сигнала, из которого возмодно определить добротность колебаний. В этом случае генератор сигналов используется для подачи цугов синусоидальной формы.

3. Ход работы

3.1. Проверка формулы Томсона

Установим в контуре R=0,~C=0,~L=100 м Γ н. Для генератора импульсов имеем следующие настройки: длительность импульсов 10 мкс, частота повторения импульсов 100 Γ ц. и амплитуда сигнала 20 B.

При таких параметрах установки период колебаний T_0 равен 65 мкс.

Теперь узнаем нулевое значение ёмкости магазина ёмкости, которое мы будем использовать как добавочную ёмкость:

$$C_0 = \frac{T_0^2}{4\pi^2 L} = \frac{(65 \cdot 10^{-6})^2}{4\pi^2 0.1} = 1,07 \cdot 10^{-9} \Phi$$
 (13)

Увеличивая значение C, снимем зависимость T(C):

$T_{\text{эксп}}$, мкс	40	92	110	140	155	170	180	200
C , мк Φ	1.07	2.07	3.07	5.07	6.07	7.07	8.07	10.07
T_{reop} , MKC	65.0	90.4	110.1	141.5	154.8	167.1	178.5	199.4

Рис. 2: График зависимости $T_{\text{теор}}(T_{\text{эксп}})$

Из графика видно, что для цепи с R=0 действительно выполняется формула Томсона для периода свободных колебаний. Однако нужно учитывать, что у катушки всё ещё есть сопротивление R_L и формула Томсона описывает период колебаний лишь приблизительно.

3.2. Определение критического сопротивления и декремента затухания

Из формулы Томсона, имея значение индуктивности катушки, найдём такую ёмкость, при которой частота колебаний будет равна 6.5 к Γ ц: $C^*=6$ н Φ . Тогда поставим значение $C^*=6$ н Φ на магазине. Из полученных значений найдём критическое сопротивление из теоретической формлулы: $R_{\rm кp}=2\sqrt{L/C}=8165$ Ом.

Теперь найдём значение критического сопротивления, увеличивая сопротивление на магазине от нуля до тех пор, пока колебания не станут апериодическими: $R_{\rm \kappa p} = 4000 \pm 100~{\rm Om}$.

Теперь установим посчитанное значение ёмкости на магазине ёмкостей. Снимания значения амплитуд с осциллографа, посчитаем зависимость логарифмического декремента затухания от сопротивления:

R, Om	400	800	1000	1200	1400	1600	1800
Θ	0.43	0.85	1.02	1.18	1.33	1.65	1.94
U_m , B	3.18	2.4	2.08	1.8	1.57	1.35	1.18
U_{m+n} , B	0.88	0.44	0.27	0.17	0.11	0.26	0.17
n	3	2	2	2	2	1	1
Q_{reop}	10.21	5.10	4.08	3.40	2.92	2.55	2.28
Q	7.34	3.70	3.08	2.66	2.36	1.91	1.62

Таблица с результатами в фазовой плоскости:

R, Ом	400	600	800	1000	1200	1400	1600	1800
n	3	3	3	2	2	2	1	1
U_m , B	5.6	4.9	3.4	3.8	3.4	3	2.7	2.4
U_{m+n} , B	1.8	1	0.7	0.6	0.4	0.2	0.6	0.4
Θ	0.38	0.53	0.53	0.92	1.07	1.35	1.50	1.79
Q_{reop}	10.21	6.80	5.10	4.08	3.40	2.92	2.55	2.27
Q	8.30	5.93	5.96	3.41	2.94	2.32	2.09	1.75

Теперь построим зависимость $\frac{1}{\theta^2}(\frac{1}{R^2})$:

Рис. 3: График зависимости $\frac{1}{\theta^2}(\frac{1}{R^2})$

 \overline{x} σ_x^2 \overline{y} σ_y^2 r_{xy} a Δa b Δb 7.44e-07 1.85e-13 0.71 1.42e-01 1.61e-07 871282.13 54950.25 0.06 0.05 При этом критическое сопротивление связано с этим коэффициентом формулой $R_{\rm KP}=2\pi\sqrt{a}=5873\pm370$ Ом.

3.3. Добротность контура

Рассчитаем теперь значения добротности для минимум и максимума логарифмического декремента, взятые из предыдущей таблицы с данными:

$$Q_{min} = \frac{\pi}{\theta_{max}} = 1.62 \pm 0, 10, \ Q_{max} = \frac{\pi}{\theta_{min}} = 7.34 \pm 0, 43$$
 (14)

Погрешности высоки из-за погрешностей измерения лоарифмических декрементов затухания.

Теперь найдём те же самые значения через спирали на фазовой плоскости, измеряя аналогично логарифмический декремент затухания:

$$Q_{min} = \frac{\pi}{\theta_{max}} = 1.75 \pm 0,08, \ Q_{max} = \frac{\pi}{\theta_{min}} = 8.30 \pm 0,49$$
 (15)

Теперь построим резонансные кривые в координатах $U/U_0=f(\nu/\nu_0)$, где $U_0=8.5$ В, $\nu_0=6.0$ кГц. Для R=400 Ом

ν , к Γ ц	6	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6.1	6.2	6.3	6.4
$2U_{Cres}$, B	17	7	7.9	10.7	12.5	14.5	16.1	16.1	15	13.6	10.9	10
$\Delta \phi$	1.40	2.52	2.47	2.27	2.09	1.91	1.66	1.13	0.95	0.74	0.54	0.42
Δx , MC	37.2	75.6	72.8	64.4	58.4	52.4	44.8	29.6	24.4	18.8	13.2	10
ω, c^{-1}	37.70	33.30	33.9	35.2	35.81	36.44	37.0	38.32	38.9	39.58	40.84	41.4
U/U_0	1	0.41	0.46	0.63	0.74	0.855	0.95	0.95	0.88	0.8	0.64	0.59
ν/ν_0	1	0.88	0.9	0.93	0.95	0.97	0.98	1.02	1.03	1.05	1.08	1.1

Рис. 4: График зависимости $U/U_0(\nu/\nu_0)$ при $R=400~{
m Om}$

Расчитаем добротность, используя дельту между точками на уровне $f(1)/\sqrt{2}$:

$$Q = \frac{\omega_0}{2\Delta\Omega} = \frac{1}{1.05 - 0.945} = (9.52 \pm 0.48) \tag{16}$$

Построим ФЧХ для различных значений сопротивлений. Для нахождения добротности отразим нашу кривую на уровне $\pi/2$

Найдём добротность, используя разницу циклических частот на уровне $\pi/4$:

$$Q = \frac{\omega_0}{\Delta\omega} = 37.7/(40.2 - 34.6) = (6.7 \pm 0.3) \tag{17}$$

Рис. 5: График зависимости $\phi(\omega)$ при $R=400~{\rm Om}$

4. Заключение

В результате эксперимента подтверждена формула Томсона для свободных колебаний, а так же измерены различные параметры RLC контура при различных значениях параметров контура.

Критическое сопротивление для контура было найдено тремя способами: $R_{\rm kp}=8165~{\rm OM}$ — посчитанное значение из теоретической формулы, $R_{\rm kp}=4000\pm100~{\rm OM}$ — напрямую, исследуя, когда колебания переходят в апериодические и $R_{\rm kp}=5873\pm370~{\rm OM}$ — значение, найденное косвенным способом через измерение логарифмических декрементов затухания при различных сопротивлениях.

Для добротностей имеем следующее: $Q_{min}=1.62\pm0.10,\ Q_{max}=7.34\pm0.43$ – значения, измеренные через логарифмические декременты затухания из ранее построенной таблицы, $Q_{min}=1.75\pm0,08,\ Q_{max}=8.30\pm0,49$ – значения, измеренные через спирали на фазовой диаграмме. Используя график зависимости резонансных кривых в координатах $U/U_0(\nu/\nu_0)$ получили $Q=9.52\pm0.48,\$ а используя график разности фаз от циклической частоты $Q=6.7\pm0.3$