

In []: df = pd.read_csv("dataset/phase1_df.csv") df.head()

Out[]:	Age	Gender City	Education_Level	Joining Designation	joining date	joining month	joining year	ReportCount	Active	TBV_avg	QR_avg	Income_avg	Grade_avg	income_diff_pattern	tbv_diff_pattern	qr_diff_pattern	grade_diff_pattern
	0 28.000000	0.0 C23	2	1	24	12	18	3	0	571860.000000	2.000000	57387.0	1.0	0.0	-2381060.0	0.0	0.0
	1 29.000000	0.0 C9	0	1	1	9	19	3	0	40120.000000	1.000000	46368.0	1.0	0.0	0.0	0.0	0.0
	2 29.608696	0.0 C19	2	1	28	5	15	23	0	444045.217391	1.260870	119227.0	4.0	0.0	-250000.0	0.0	0.0
	3 30.000000	1.0 C23	0	2	30	11	18	2	0	173400.000000	1.000000	52963.0	2.0	0.0	-346800.0	0.0	0.0
	4 42.142857	0.0 C20	2	1	3	6	18	7	0	145377.142857	1.428571	51099.0	1.0	0.0	-100000.0	-1.0	0.0

In []: df.describe(include="object")

Out[]: City **count** 2381 unique 29 top C20

In []: df.describe()

freq 152

Out[]:		Age	Gender	Education_Level	Joining Designation	joining date	joining month	joining year	ReportCount	Active	TBV_avg	QR_avg	Income_avg	Grade_avg	income_diff_pattern	tbv_diff_pattern	qr_diff_pattern	grade_diff_pattern
	count	2381.000000	2381.000000	2381.00000	2381.000000	2381.000000	2381.000000	2381.000000	2381.00000	2381.000000	2.381000e+03	2381.000000	2381.000000	2381.000000	2381.000000	2.381000e+03	2381.000000	2381.000000
	mean	33.369192	0.410332	1.00756	1.820244	16.186896	6.958001	18.536329	8.02352	0.321294	3.120854e+05	1.566304	59232.460484	2.081713	125.096178	-2.440566e+04	-0.058379	0.018060
	std	5.890732	0.491997	0.81629	0.841433	8.959616	3.221762	1.609597	6.78359	0.467071	4.495705e+05	0.719652	28298.214012	0.932257	968.511766	1.182482e+06	0.933703	0.133195
	min	21.000000	0.000000	0.00000	1.000000	1.000000	1.000000	13.000000	1.00000	0.000000	-1.979329e+05	1.000000	10747.000000	1.000000	0.000000	-9.658160e+06	-3.000000	0.000000
	25%	29.000000	0.000000	0.00000	1.000000	9.000000	5.000000	18.000000	3.00000	0.000000	0.000000e+00	1.000000	39104.000000	1.000000	0.000000	-1.166600e+05	0.000000	0.000000
	50%	33.000000	0.000000	1.00000	2.000000	15.000000	7.000000	19.000000	5.00000	0.000000	1.506244e+05	1.000000	55285.000000	2.000000	0.000000	0.000000e+00	0.000000	0.000000
	75%	37.000000	1.000000	2.00000	2.000000	24.000000	10.000000	20.000000	10.00000	1.000000	4.294988e+05	2.000000	75835.000000	3.000000	0.000000	0.000000e+00	0.000000	0.000000
	max	58.000000	1.000000	2.00000	5.000000	31.000000	12.000000	20.000000	24.00000	1.000000	3.972128e+06	4.000000	188418.000000	5.000000	12155.000000	2.391754e+07	3.000000	1.000000

In []: fig=plt.figure(figsize=(20,14)) # width*height

for ind_number, col_name in enumerate(df.describe().columns): if ind_number<16:</pre>

> plt.subplot(4,4,ind_number+1) sns.kdeplot(df[col_name], fill=True)

In []: df[df["income_diff_pattern"]>10000]

Out[]:	Age	Gender City	Education_Level	Joining Designation	joining date	joining month	joining year	ReportCount	Active	TBV_avg	QR_avg	Income_avg	Grade_avg	income_diff_pattern	tbv_diff_pattern	qr_diff_pattern gr	ade_diff_pattern
	10 41.833333	0.0 C14	2	1	5	7	18	24	1	2.911162e+06	3.083333	126132.333333	3.416667	11048.0	1210110.0	-2.0	1.0
	240 36.666667	0.0 C16	2	2	13	7	13	24	1	2.283013e+06	3.125000	139347.500000	4.125000	11492.0	1313620.0	-2.0	1.0
	456 52.583333	0.0 C15	2	1	6	8	18	24	1	2.124457e+06	3.375000	136744.750000	3.250000	12155.0	-2900660.0	-2.0	1.0
	938 48.333333	1.0 C9	2	1	6	3	18	24	1	1.803128e+06	3.250000	126779.250000	3.250000	11269.0	1376900.0	-2.0	1.0

Understanding:

- Mean income lies around 50k for all the drives.
- We have drivers with either reporting count as 5 and it keeps on droping till a certain band and then increase after 20.
- Getting a increase in number of drivers joining on yearly basis.
- June seems to be the favaouable month to join OLA for Drivers.

In []: fig=plt.figure(figsize=(16,4)) # width*height

plt.subplot(1,3,1) sns.boxplot(data=df["income_diff_pattern"])

plt.subplot(1,3,2)

sns.boxplot(data=df["tbv_diff_pattern"])

plt.subplot(1,3,3) sns.boxplot(data=df["qr_diff_pattern"])

Out[]: <Axes: ylabel='qr_diff_pattern'>


```
In [ ]: # income_diff_pattern : based on box plot let us categorize in 5 bins 1,2,3,4,5
        # Define bin edges
        bin_edges = [0, 2000, 4000, 8000, 10000, df['income_diff_pattern'].max()]
        # Define bin labels
        bin_labels = [1, 2, 3, 4, 5]
        # Create a new column 'income diff pattern' based on the bins
        df['income_diff_pattern'] = pd.cut(df['income_diff_pattern'], bins=bin_edges, labels=bin_labels, include_lowest=True).astype(int)
In [ ]: # tbv_diff_pattern : based on box plot
        Q1 = df["tbv_diff_pattern"].quantile(0.05)
        Q2 = df["tbv_diff_pattern"].quantile(0.15)
        Q3 = df["tbv_diff_pattern"].quantile(0.85)
        Q4 = df["tbv_diff_pattern"].quantile(0.95)
        print(Q1,Q2,Q3,Q4, df['tbv_diff_pattern'].max())
        # Define bin edges
        bin_edges = [df['tbv_diff_pattern'].min(), Q1, Q2, 0, Q3, Q4, df['tbv_diff_pattern'].max()]
        # Define bin labels
        bin_labels = [-3, -2, -1, 1, 2, 3]
        # Create a new column 'income diff pattern' based on the bins
        df['tbv_diff_pattern'] = pd.cut(df['tbv_diff_pattern'], bins=bin_edges, labels=bin_labels, include_lowest=True).astype(int)
       -1048330.0 -398770.0 261100.0 950000.0 23917540.0
In [ ]: df.head()
                Age Gender City Education_Level Joining Designation joining date joining month joining year ReportCount Active
                                                                                                                        TBV_avg QR_avg Income_avg Grade_avg income_diff_pattern tbv_diff_pattern qr_diff_pattern grade_diff_pattern
Out[ ]:
                       0.0 C23
                                                                                                                 0 571860.000000 2.000000
                                                                                                                                                                                                       0.0
                                                                                                                                                                                                                        0.0
        0 28.000000
                                                                       24
                                                                                    12
                                                                                                                                            57387.0
                                                                                                                                                          1.0
                                                                                                                                                                                                       0.0
                       0.0 C9
                                                                                              19
                                                                                                                                                                                                                        0.0
        1 29.000000
                                                                                                                 0 40120.000000 1.000000
                                                                                                                                            46368.0
                                                                                                                                                          1.0
        2 29.608696
                       0.0 C19
                                            2
                                                                       28
                                                                                              15
                                                                                                                 0 444045.217391 1.260870
                                                                                                                                           119227.0
                                                                                                                                                          4.0
                                                                                                                                                                                           -1
                                                                                                                                                                                                       0.0
                                                                                                                                                                                                                        0.0
                                                                       30
                                                                                                                                                                                                       0.0
                                                                                                                                                                                                                        0.0
        3 30.000000
                       1.0 C23
                                                                                              18
                                                                                                                 0 173400.000000 1.000000
                                                                                                                                            52963.0
                                                                                                                                                          2.0
                                                                                              18
        4 42.142857
                                            2
                                                                                                                                                          1.0
                                                                                                                                                                                                       -1.0
                                                                                                                                                                                                                        0.0
                       0.0 C20
                                                                                                                 0 145377.142857 1.428571
                                                                                                                                            51099.0
In [ ]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 2381 entries, 0 to 2380
       Data columns (total 18 columns):
        # Column
                                Non-Null Count Dtype
       ---
                                -----
        0
                                2381 non-null float64
           Age
                                2381 non-null float64
            Gender
                                2381 non-null object
        2
           City
            Education_Level
                                2381 non-null int64
            Joining Designation 2381 non-null int64
                                2381 non-null int64
            joining date
                                2381 non-null int64
            joining month
                                2381 non-null int64
            joining year
                                2381 non-null int64
        8
            ReportCount
                                2381 non-null int64
        9
            Active
                                2381 non-null float64
        10 TBV avg
        11 QR_avg
                                2381 non-null float64
                                2381 non-null float64
        12 Income_avg
                                2381 non-null float64
        13 Grade_avg
        14 income_diff_pattern 2381 non-null int64
        15 tbv_diff_pattern 2381 non-null int64
        16 qr_diff_pattern 2381 non-null float64
       17 grade_diff_pattern 2381 non-null float64
       dtypes: float64(8), int64(9), object(1)
       memory usage: 335.0+ KB
In [ ]: fig=plt.figure(figsize=(16,4)) # width*height
        plt.subplot(1,3,1)
        sns.kdeplot(data=df["income_diff_pattern"])
        plt.subplot(1,3,2)
        sns.kdeplot(data=df["tbv_diff_pattern"])
        plt.subplot(1,3,3)
        sns.kdeplot(data=df["qr_diff_pattern"])
Out[]: <Axes: xlabel='qr diff pattern', ylabel='Density'>
                                                               0.8
                                                                                                                     1.2
          5 -
                                                               0.7
                                                                                                                     1.0
                                                               0.6
                                                             0.5
St
                                                                                                                   isity
8.0
                                                            ان 0.4 ا
                                                                                                                   0.6 قا
                                                               0.3
                                                                                                                     0.4
                                                               0.2
                                                                                                                     0.2
                                                               0.1
                                                                                   tbv_diff_pattern
                                                                                                                                          qr_diff_pattern
                          income_diff_pattern
In [ ]: fig=plt.figure(figsize=(16,4)) # width*height
        plt.subplot(1,2,1)
        sns.countplot(df["City"], fill=True)
        plt.subplot(1,2,2)
        sns.histplot(df["Active"], fill=True)
Out[ ]: <Axes: xlabel='Active', ylabel='Count'>
                                                                                             1600
                                                                                             1400
                                                                                             1200
                                                                                             1000
                                                                                              800
                                                                                              600
                                                                                               400
                                                                                              200
                      20
                                        60
                                                80
                                                                  120
                                                                           140
                                                                                                                  0.2
                                                                                                                               0.4
                                                                                                                                           0.6
                                                                                                                                                        0.8
                                                                                                                                                                     1.0
                               40
                                                         100
                                                                                                     0.0
                                                                                                                                    Active
        Understanding:
         • Data seems unbalanced for both Active and Non-Active Drivers, but I think there is no need for Scaling.
          • Data seems balances for all the cities we have.
In [ ]: fig=plt.figure(figsize=(22,12))
        plt.subplot(3,3,1)
        sns.lineplot(y='Grade_avg', x='Education_Level', data=df)
        plt.subplot(3,3,2)
        sns.boxplot(y='Income_avg', x='Education_Level', data=df)
        plt.subplot(3,3,3)
        sns.boxplot(y='TBV_avg', x='Education_Level', data=df)
        plt.subplot(3,3,4)
        sns.lineplot(y='Income_avg', x='Grade_avg', data=df)
        plt.subplot(3,3,5)
        sns.lineplot(y='TBV_avg', x='Grade_avg', data=df)
        plt.subplot(3,3,6)
        sns.boxplot(y='Income_avg', x='City', data=df)
        plt.subplot(3,3,7)
        sns.boxplot(y='TBV_avg', x='City', data=df)
```

plt.subplot(3,3,8)

plt.subplot(3,3,9)

plt.show()

sns.boxplot(y='Income_avg', x='Active', data=df)

sns.boxplot(y='TBV_avg', x='Active', data=df)


```
• Correlation between driver ratings and factors like age, income, and education.
In [ ]: fig=plt.figure(figsize=(30,12))
        plt.subplot(3,3,1)
        sns.lineplot(y='Age', x='QR_avg', data=df)
        plt.subplot(3,3,2)
        sns.lineplot(y='Income_avg', x='QR_avg', data=df)
        plt.subplot(3,3,3)
        sns.boxplot(y='QR_avg', x='Education_Level', data=df)
        plt.subplot(3,3,4)
        sns.lineplot(y='TBV_avg', x='QR_avg', data=df)
        plt.subplot(3,3,5)
        sns.lineplot(y='ReportCount', x='QR_avg', data=df)
        plt.subplot(3,3,6)
        sns.lineplot(y='QR_avg', x='City', data=df)
        fig=plt.figure(figsize=(30,12))
        plt.subplot(3,3,7)
        sns.boxplot(y='QR_avg', x='joining month', data=df)
        plt.subplot(3,3,8)
        sns.lineplot(y='QR_avg', x='joining month', data=df)
Out[ ]: <Axes: xlabel='joining month', ylabel='QR_avg'>
                                                                                              140000
                                                                                                                                                                                          4.0
                                                                                                                                                                                                         0
          50
                                                                                              120000
                                                                                                                                                                                          3.5
          45
                                                                                              100000
                                                                                                                                                                                          3.0 -
                                                                                                                                                                                        OR avg
                                                                                               80000
                                                                                               60000
                                                                                                                                                                                          2.0 -
         30
                                                                                               40000
                                                                                                                                                                                          1.5
         25 -
                                                                                               20000
                                                                                                                                                                                          1.0 -
          20 -
               1.0
                          1.5
                                                2.5
                                                                       3.5
                                                                                  4.0
                                                                                                       1.0
                                                                                                                  1.5
                                                                                                                                        2.5
                                                                                                                                                    3.0
                                                                                                                                                              3.5
                                                                                                                                                                          4.0
                                     2.0
                                                           3.0
                                                                                                                             2.0
                                                                                                                                                                                                         0
                                                                                                                                       QR_avg
                                               QR_avg
                                                                                                                                                                                                                            Education_Level
                                                                                                 25.0
                                                                                                                                                                                          1.9
         3.0
                                                                                                22.5 -
                                                                                                                                                                                          1.8
                                                                                                 20.0
         2.5
                                                                                                                                                                                          1.7
                                                                                                ຼ 17.5
       2.0 avg
                                                                                               ರ್ಷ 15.0
                                                                                                D 12.5
         1.0
                                                                                                                                                                                          1.4
                                                                                                 7.5
         0.5
                                                                                                 5.0
                                                                                                                                                                                          1.3
         0.0
                                                                                                                                                                                               C23C9C19C20C17C29C10C24C14C13C28C15C25C5 C1 C4C18C11C6 C7 C3C21C2C12C22C16C26C8C27
               1.0
                          1.5
                                     2.0
                                                           3.0
                                                                       3.5
                                                                                  4.0
                                                                                                       1.0
                                                                                                                  1.5
                                                                                                                             2.0
                                                                                                                                        2.5
                                                                                                                                                    3.0
                                                                                                                                                              3.5
                                                                                                                                                                          4.0
                                                2.5
                                               QR_avg
                                                                                                                                       QR_avg
                               0
          4.0 -
                                                                                                                 1.8
                                                                                                000
         3.5
                                                                                                                 1.7
          3.0
       OR avg
                                                                                                               9. 1.6 -
         2.0 -
                                                                                                                 1.4 -
          1.5
                                                                                                                 1.3
          1.0
                1 2 3 4 5
                                                                                 10 11 12
                                                                                                                                                                                        10
                                                                                                                                                                                                       12
                                                   joining month
                                                                                                                                                           joining month
In [ ]: df.groupby("QR_avg")["TBV_avg"].mean()
Out[ ]: QR_avg
        1.\overline{000000}
                   3.802113e+04
        1.100000
                  1.000130e+05
        1.142857 7.172000e+04
                   1.754842e+05
        1.166667
                   1.477394e+05
        1.187500
        3.750000 1.588392e+06
        3.769231 1.798186e+06
        3.818182 2.426973e+06
        3.875000 1.277854e+06
        4.000000 2.051391e+06
        Name: TBV_avg, Length: 163, dtype: float64
In [ ]: print("Grade <-> Income")
        # Calculate Pearson correlation
```

Name: TBV_avg, Length: 163, dtype: float64

In []: print("Grade <-> Income")
 # Calculate Pearson correlation
 pearson_corr = df['Grade_avg'].corr(df['Income_avg'])
 print(f"Pearson Correlation: {pearson_corr}")
 # Calculate Spearman correlation
 spearman_corr = df['Grade_avg'].corr(df['Income_avg'], method='spearman')
 print(f"Spearman Correlation: {spearman_corr}")

print("\nGrade <-> Total Business Value")
 # Calculate Pearson correlation
 pearson_corr = df['Grade_avg'].corr(df['TBV_avg'])
 print(f"Pearson Correlation: {pearson_corr}")
Calculate Spearman correlation

spearman_corr = df['Grade_avg'].corr(df['TBV_avg'], method='spearman')

print(f"Spearman Correlation: {spearman_corr}")

Grade <-> Income Pearson Correlation: 0.7396736903173439 Spearman Correlation: 0.7102193516509495 Grade <-> Total Business Value

Pearson Correlation: 0.33291162712609945 Spearman Correlation: 0.19359942881616332

Understandings:

• Whenever Driver's Grade changes, total Business Values has imapct. Which shows Grading has positive correlation with Business values the Driver is providing.

• With change in Grade, you income increases.

In []: print("\Age <-> Quarterly Rating") # Calculate Pearson correlation pearson_corr = df['Age'].corr(df['QR_avg']) print(f"Pearson Correlation: {pearson_corr}") # Calculate Spearman correlation spearman_corr = df['Age'].corr(df['QR_avg'], method='spearman') print(f"Spearman Correlation: {spearman_corr}")

> \Age <-> Quarterly Rating Pearson Correlation: 0.19510169050688675 Spearman Correlation: 0.17632230499418575

In []: # 3. CATEGORICAL VS CATEGORICAL

categorical_col = ["Education_Level", "Gender", "Joining Designation", "City", "ReportCount"] fig=plt.figure(figsize=(28,16))

for ind_val, columns in enumerate(categorical_col):

if ind_val<6:</pre> plt.subplot(2,3,ind val+1)

cross tab = pd.crosstab(df["Active"], df[columns]) sns.heatmap(cross tab,annot=True, cmap="YlGnBu", fmt='d', cbar=True)

Set labels and title plt.xlabel(columns) plt.ylabel('Active')

Show the plot # plt.show()

Trade-Off Analysis:

- From the heatmaps plotted above, it doesn't seem to have any correlation between the Education and Driver's Attrition.
- From the heatmaps it clearly indicated that if we able to hold our Driver for long, the Churn is very less.

Recommendations based on understanding

Categorical Understandings:

- Their seems to be big Churn in City C20 as compare to other cities present, we should work and understand the reason and keep the business inpact from upcoming challenges.
- Designation 1 and 5 have high changes of Leaving as compare to other Designations.
- Gender and Education seems unbiased.

Visualization understanding

- No impact of cities on Driver's Income and Business Value.
- Active Drivers seems to have better Income and contributing more as compare to Non-Active Drivers.
- With increase in Grade there is increase in Income.
- No relationship between Driver's Education and Income/Business Value.

Outliers and Influence:

- It seems that there are outliers in Drivers Income and Business Values, but after understanding business perspective we should not remove them.
- They can act as valuable information when building the prediction models.

Skeness and Correlation

- It seems that both Income and Business Value are left skewed.
- Grade and Income are positively correlated, similarly Grade and Average_Business_Value is positively correlated

In []: df.shape

Out[

Out[]: (2381, 18)

In []: df.describe()

[]:		Age	Gender	Education_Level	Joining Designation	joining date	joining month	joining year	ReportCount	Active	TBV_avg	QR_avg	Income_avg	Grade_avg	income_diff_pattern	tbv_diff_pattern	qr_diff_pattern	grade_diff_pattern
	count	2381.000000	2381.000000	2381.00000	2381.000000	2381.000000	2381.000000	2381.000000	2381.00000	2381.000000	2.381000e+03	2381.000000	2381.000000	2381.000000	2381.000000	2381.000000	2381.000000	2381.000000
	mean	33.369192	0.410332	1.00756	1.820244	16.186896	6.958001	18.536329	8.02352	0.321294	3.120854e+05	1.566304	59232.460484	2.081713	1.040319	-0.559849	-0.058379	0.018060
	std	5.890732	0.491997	0.81629	0.841433	8.959616	3.221762	1.609597	6.78359	0.467071	4.495705e+05	0.719652	28298.214012	0.932257	0.314983	1.445759	0.933703	0.133195
	min	21.000000	0.000000	0.00000	1.000000	1.000000	1.000000	13.000000	1.00000	0.000000	-1.979329e+05	1.000000	10747.000000	1.000000	1.000000	-3.000000	-3.000000	0.000000
	25%	29.000000	0.000000	0.00000	1.000000	9.000000	5.000000	18.000000	3.00000	0.000000	0.000000e+00	1.000000	39104.000000	1.000000	1.000000	-1.000000	0.000000	0.000000
	50%	33.000000	0.000000	1.00000	2.000000	15.000000	7.000000	19.000000	5.00000	0.000000	1.506244e+05	1.000000	55285.000000	2.000000	1.000000	-1.000000	0.000000	0.000000
	75%	37.000000	1.000000	2.00000	2.000000	24.000000	10.000000	20.000000	10.00000	1.000000	4.294988e+05	2.000000	75835.000000	3.000000	1.000000	-1.000000	0.000000	0.000000
	max	58.000000	1.000000	2.00000	5.000000	31.000000	12.000000	20.000000	24.00000	1.000000	3.972128e+06	4.000000	188418.000000	5.000000	5.000000	3.000000	3.000000	1.000000

In []: df.describe(include="object")

Out[]:		City
		count	2381
		unique	29

top C20 **freq** 152 Data Modelling

In []: # Standard Scaler

from sklearn.preprocessing import MinMaxScaler

numeric_columns = ["TBV_avg", "Income_avg"]

numeric_columns = df.describe().columns

scaler = MinMaxScaler()

scaler.fit(df[numeric_columns]) df[numeric_columns] = scaler.transform(df[numeric_columns])

In []: df.head()

Age Gender City Education_Level Joining Designation joining date joining month joining year ReportCount Active TBV_avg | QR_avg | Income_avg | Grade_avg | Income_diff_pattern | tbv_diff_pattern | qr_diff_pattern | grade_diff_pattern | grade_diff_pattern | grade_diff_pattern | tbv_diff_pattern | qr_diff_pattern | grade_diff_pattern | qr_diff_pattern | grade_diff_pattern | qr_diff_pattern Out[]: **0** 0.189189 0.0 C23 0.086957 0.262508 0.00 0.0 0.000000 0.500000 0.0 1.0 0.00 0.766667 1.000000 0.714286 0.0 0.184600 0.333333 **1** 0.216216 0.0 C9 0.0 0.00 0.000000 0.727273 0.857143 0.086957 0.0 0.057086 0.000000 0.200489 0.00 0.0 0.333333 0.500000 0.0 **2** 0.232667 0.0 C19 1.0 0.00 0.900000 0.363636 0.285714 0.956522 0.0 0.153949 0.086957 0.610567 0.75 0.0 0.333333 0.500000 0.0 0.0 0.333333 **3** 0.243243 1.0 C23 0.25 0.966667 0.909091 0.714286 0.043478 0.0 0.089047 0.000000 0.237608 0.25 0.0 0.500000 0.0 1.0 0.0 **4** 0.571429 0.0 C20 0.00 0.454545 0.260870 0.227116 0.00 0.333333 0.333333 0.0 0.066667 0.714286 0.0 0.082327 0.142857

• Since we will be using Tree based approach I will be doing OHE on Cities

0: Non-Active users 1: Active users

In []: df["Active"].value_counts()

Out[]: Active 0.0 1616

1.0 765

Name: count, dtype: int64

In []: df.shape

Out[]: (2381, 18)

In []: df = pd.get_dummies(df,columns=["City"], dtype=int) df.shape

Out[]: (2381, 46)

In []: df.head()

joining Joining Designation joining joining Out[]: ReportCount Active TBV_avg QR_avg Income_avg Grade_avg income_diff_pattern tbv_diff_pattern grade_diff_pattern City_C1 City_C10 City_C11 City_C12 City_C13 City_C14 City_C15 City_C16 Age Gender Education_Level date month **0** 0.189189 0.0 0.00 0.000000 0.500000 1.0 0.00 0.766667 1.000000 0.714286 0.086957 0.0 0.184600 0.333333 0.262508 0.0 0.0 0 **1** 0.216216 0.0 0.0 0.00 0.000000 0.727273 0.857143 0.086957 0.200489 0.00 0.0 0.333333 0.500000 0.0 0.0 0.057086 0.000000 0.0 0.75 0.0 **2** 0.232667 1.0 0.00 0.900000 0.363636 0.285714 0.956522 0.0 0.153949 0.086957 0.610567 0.333333 0.500000 0.0 **3** 0.243243 1.0 0.0 0.25 0.966667 0.909091 0.714286 0.043478 0.237608 0.25 0.0 0.333333 0.500000 0.0 0.089047 0.000000 0.0 0.0 **4** 0.571429 0.0 1.0 0.00 0.066667 0.454545 0.714286 0.260870 0.0 0.082327 0.142857 0.227116 0.00 0.333333 0.333333

In []: df.to_csv("dataset/phase2_df.csv", index=False)