Math 61 HW #4 1) 50 = 1 11) SAH = 2(n+1) SA for every 120 5,= 210-17.1=2 [2.1.17 Sz = 2(1-1) · Z = 8 [2.2.2] $S_3 = 2(2+1) \cdot 2^3 = 48$ [24 · 3] Sy = 2(3+1) . 2",3 = 384 [25.4.3] Ss = 2(411). 25. 4. 3 = 3840 [26.5. 4.3] when nzl basis step · S, = 2.1.1 as defined by our sequence and seen above when $n = 1 \rightarrow 2^{1+1} \cdot \frac{1!}{2} = 2^{2} \cdot \frac{1}{2} = 4 \cdot \frac{1}{2} = 2$ 2 - 2 / (n=1) = s, / Inductive step We will assume that $S_n = 2^{n+1} \cdot \frac{n!}{2} \text{ for an } n \text{ when } n \ge 1$ Sn+1 = 2(n+1)5n = 2(n+1)(2 A+1. n!) $= 2^{n+2} (n+1) \cdot \frac{n!}{2}$ $= 7^{n+2}, \frac{(n+1)!}{2}$ By shaving this we see that Sn+1 = 2(n+1)+1. (n+1)! = 2n+2. (n+1)! V

This proof by induction shows that the explicit formula mentioned above is correct.

1 2,	1) 50 = 4 , 5, = 10	
	11) Sn+1 = 25n + 85n-1 for all n 21	2nd order linear homogeness
	5n = 25n + 85n - 2 for all n = 2	recusive relation that
	+ = 5+ 4 + 8+ 4-5	has anstant coefficients
	+n-8+n-2-2+n-1=0	Use theorem covered in
	+2-Z+-8=0	lecture to solve
	(++2)(+-4) = 0	
	t=-2 +=4	
	5n = 4" Tn = -2" -> next define a general solution	
•	as + bT will be solutions (as long as a and b	
1	SUBSTITUTE	
C	a4" + b(-2)" is a solution! for a, b ER	
	PLUG IN	
	50 = 4	
	$4 = a(4)^{\circ} + b(-2)^{\circ}$	
	$4 = a + b$ $\rightarrow 4 = a + b$	
	$10 = 0 \cdot (4)' + b \cdot (-2)'$	
); = (0	$10 = 4a - 2b$ $\rightarrow 2b = 4a - 10$ b = 2a - 5	
	0 · Lu -)	
	4= a+b	
	b = 2a - 5	
	$4 = \alpha + (2\alpha - 5)$	
	4 = 3a - 5	
	9 = 3a	
	a=3 b=1	
	Solution: Sn = 3.(4)" + (-2)"	