Here \tilde{h} denotes the continuous extension of h/|h| to βX . Defining $T_1:=M_{\tilde{h}}^{-1}\tilde{R}M_{\tilde{h}}$ we have by (2.9)

(2.10)
$$T_1 1 = M_{\tilde{h}}^{-1} \tilde{R} \tilde{h} = 1$$
 and

$$(2.11) \quad \left|\mathbf{T}_{1}\mathbf{f}\right| = \left|\mathbf{M}_{\widetilde{\mathbf{h}}}^{-1}\widetilde{\mathbf{R}}\mathbf{M}_{\widetilde{\mathbf{h}}}\mathbf{f}\right| = \left|\widetilde{\mathbf{R}}\mathbf{M}_{\widetilde{\mathbf{h}}}\mathbf{f}\right| \leq \widetilde{\mathbf{T}}\left|\mathbf{M}_{\widetilde{\mathbf{h}}}\mathbf{f}\right| = \widetilde{\mathbf{T}}\left|\mathbf{f}\right| \quad \text{for all} \quad \mathbf{f} \ .$$

Hence we have $\|\mathbf{T}_1\| \le \|\tilde{\mathbf{T}}\| = 1$ (by (2.11), (2.9), (2.1)). Then it follows from Lemma 2.1 that \mathbf{T}_1 is a positive operator. Thus (2.11) implies that $0 \le \mathbf{T}_1 \le \tilde{\mathbf{T}}$ and therefore $\|\tilde{\mathbf{T}} - \mathbf{T}_1\| = \|(\tilde{\mathbf{T}} - \mathbf{T}_1)\mathbf{1}\| = 0$ (by (2.10), (2.9), (2.1)).

We are now able to prove a result which in some sense is the key to cyclicity results for the spectrum. These general results will be proved by reducing the problem in such a way that the following theorem can be applied.

Theorem 2.4.(a) Let T be a positive linear operator on $C_O(X)$, let $h \in C_O(X)$ and $\lambda \in C$, $|\lambda| = 1$. If $Th = \lambda h$ and T|h| = |h|, then we have $Th^{[n]} = \lambda^n h^{[n]}$ for every $n \in Z$ (cf. (2.4)). If h does not have zeros in X, then $\lambda T = S_h^{-1} T S_h$.

(b) Suppose A is the generator of a positive semigroup, $h \in C_O(X)$, $\alpha, \beta \in \mathbb{R}$ such that $Ah = (\alpha + i\beta)h$ and $A|h| = \alpha|h|$. Then we have $Ah^{[n]} = (\alpha + in\beta)h^{[n]}$ for every $n \in \mathbb{Z}$.

If h does not have zeros then $S_h^D(A) = D(A)$ and $i\beta + A = S_h^{-1}AS_h$.

<u>Proof.</u>(a) The closed principal ideal $\overline{E_h}$ which is canonically isomorphic to $C_0(X_1)$ with $X_1=\{x\in X:h(x)\neq 0\}$, is T-invariant. We give an object a tilde when we consider it as an element of $\overline{E_h}\cong C_0(X_1)$. Defining $\tilde{R}:=\overline{\lambda}\tilde{T}$, then \tilde{T} , \tilde{R} , \tilde{h} satisfy (2.8), hence we have

$$(2.12) \quad \widetilde{T} = S_{\widetilde{h}}^{-1} \circ \widetilde{R} \circ S_{\widetilde{h}} = \overline{\lambda} \cdot S_{\widetilde{h}}^{-1} \circ \widetilde{T} \circ S_{\widetilde{h}}$$

which by iteration yields

$$(2.13) \quad \tilde{\mathbf{T}} = \overline{\lambda}^n \cdot \mathbf{S}_{\tilde{\mathbf{h}}}^{-n} \circ \tilde{\mathbf{T}} \circ \mathbf{S}_{\tilde{\mathbf{h}}}^n \quad \text{for all} \quad \mathbf{n} \in \mathbf{Z} \ .$$

It follows that $\tilde{T}\tilde{h}^{\left\lceil n\right\rceil} = \tilde{T} \circ S_{\tilde{h}}^{n} |\tilde{h}| = \lambda^{n} \cdot S_{\tilde{h}}^{n} \circ \tilde{T} |\tilde{h}| = \lambda^{n} \cdot S_{\tilde{h}}^{n} \tilde{h} = \lambda^{n} \cdot \tilde{h}^{\left\lceil n\right\rceil}$ (see (2.7) and (2.12)), which is precisely $Th^{\left\lceil n\right\rceil} = \lambda^{n} h^{\left\lceil n\right\rceil}$ for all $n \in \mathbf{Z}$. If h does not have zeros, then $\overline{E_{h}} = E$, hence $T = \tilde{T}$, $h = \tilde{h}$ and the remaining assertion follows from (2.12).