

ON-LINE EXAMINATION INSTRUCTIONS

SLE133 Chemistry in our World

TRIMESTER 2 2023

READ INSTRUCTIONS BEFORE COMMENCING

- Plagiarism, Collusion and Contract Cheating, constitute cheating and are considered extremely serious breaches of Academic Integrity. Students identified to have engaged in any of these breaches will receive severe penalties.
- By submitting this assessment, you certify that the work is entirely your own except where
 work quoted or paraphrased is acknowledged in the text. You agree that Deakin College
 may make and retain copies of this work for the purposes of marking, review and checks of
 academic integrity.

Important Note:

- This is an open book exam
- You may use a calculator
- You may use an (non-electronic or electronic) dictionary

SLE133 EXAMINATION INSTRUCTIONS - TRIMESTER 2 2023

READ INSTRUCTIONS BEFORE COMMENCING

- 1. You have 2 hours and 15 minutes (within a 3hr time limit) to complete this exam. If you commence the exam late, you are still required to submit this document by the exam cut-off time. Any submissions made after the exam cut-off time will incur significant late penalties.
- **2.** All late submissions will be subject to penalties without an approved Special Consideration application. The penalties for late submissions are:

• 1 – 15 minutes late: a 25% mark reduction

• 16 – 30 minutes late: a 50% mark reduction

• Beyond 30 minutes late: a mark of zero (0) for the exam

- **3.** This is a submission based (Turnitin or Assignment) exam which requires you to upload and submit your completed work into Moodle, in order for it to be accepted. Please manage your time carefully and ensure that you complete the questions required and submit the document onto Moodle within the given time. Submissions made outside of Moodle (email, Facebook and other) are not accepted.
- **4.** This examination consists of **2 parts** and is marked out of **60 total marks.** It represents **40%** of the total assessment in this unit.

The exam sections are as follows:

Part 1: Short Answer = 20 marks
 Part 2: Extended Response = 40 marks

- 5. Attempt all questions. To be eligible for full marks for questions involving calculations, your response must provide full working. Submission is to be to the TurnItIn Dropbox under the final exam tab in Moodle. You may submit in any of the following ways:
 - 1. **Print, complete on the printed paper then upload the scanned pages** to Moodle as a single file (.pdf or .doc/.docx).
 - 2. If you do not have a printer, use some blank pieces of paper for this exam.
 Write the number and name of the question followed by your answer. Do this for all questions and answers. Once you have completed the exam, write the page number on each page. Upload all pages as a single .pdf or .doc/.docx scanned file.

If you do not have a scanner, you may use Office Lens, CamScanner or an equivalent app to scan your exam into a single file.

6. A formula sheet and periodic table is provided in a file titled "Formula Sheet and Periodic Table" provided just below this exam. You may print this off or leave it open whilst you complete your exam.

	Question	Possible Marks	Awarded Marks
	Part 1: Short Ar	iswer	
S1	Electron configuration	2	
S2	Isotopes	2	
S3	Ionic Formula	2	
S4	Avogadro's number	2	
S5	Line structure	2	
S6	Empirical Formula	2	
S 7	Atomic Mass Calculation	2	
S8	Ideal Gas Law	2	
S9	рН	2	
S10	Titration Calculation	2	
Р	art 2: Extended Response Quest	ions	
E1	Stoichiometric Calculations		
	a)	1	
	b)	2	
	c)	2	
	d)	2	
	e)	3	
	f)	2	

	g)	1	
E2	Thermodynamics and States of Matter		
	a)	3	
	b)	3	
	c)	2	
	d)	3	
	e)	2	
	f)	2	
E3	Molecular Structure and Bonding		
	a)	2	
	b)	2	
	c)	2	
	d)	1	
	e)	2	
	f)	3	
	Exam Total	60	

	An element has an atom subshells, of the element ion formed by this elemen	with this atomic number	er. Also provide the elec t	tron configuration of the
	Element:			
	Ion formed:			
	Calculate the number of p is provided for the ion .	protons, neutrons and e	lectrons in the ion prese	nted below. An example 2 Marks
		Protons:	Neutrons:	Electrons:
	¹⁹ F-	9	10	10
	⁶⁵ Cu ²⁺			
3.	Write the chemical formulany applicable metal cation	•		
	Calculate the amount in n 7.35×10 ²¹ carbon dioxide		CO2, in a sample of carbo	on dioxide gas containing 2 Marks

5. Provide the molecular formula and empirical formula of the compound presented in the below line structure. Remember to follow the correct order of elements as covered in SLE133.

	N H
Molecular Formula:	Empirical Formula:

6.	Determine the empirical formula of a compound that, upon being decomposed into its compound that	nponent
	elements, is found to be 26.58% K, 35.35% Cr and 38.07% O. Show full working.	2 Mark

7.	An imaginary element, Bz, has 2 naturally occurring isotopes. Bz-115 atoms have a 114.9885u and abundance of 33.71%. The second isotope, Bz-118 has a mass of 117.79	998u and
	abundance of 66.29%. Calculate the atomic mass of this imaginary element.	2 Marks
ጸ.	Calculate the mass of carbon dioxide gas, CO ₂ , contained in a 1.000L gas cylinder with a	pressure
О.	of 325.05kPa at 25.0°C. Show full working.	2 Marks
9.	Calculate the pH of a solution with a hydroxide ion concentration, OH^- of $[OH^-] = 4.28$ Remember to show units and full working.	× 10 ⁻¹⁰ M. 2 Marks

10. A solution of sulfuric acid, H_2SO_4 , is missing its label. It is titrated against so to find its concentration. A 20.00mL aliquot of sulfuric acid is titrated again NaOH, after which the acid-base indicator changes colour. Use this information of the sulfurious colours are sufficiently supported by the sulfurious colours.	nst 11.75 mL of 0.210M
concentration of sulfuric acid.	2 Marks

Part 2 – Extended Response

Question 1: Stoichiometry

[1+2+2+2+3+2+1 = 13 Marks]

Solid aluminium hydroxide $Al(OH)_3$ is used in several brands of antacid tablets. This reacts with stomach acid, which we will treat as a hydrochloric acid solution for this question, forming aluminium chloride $AlCl_3$ solution and liquid water.

a)	Calculate the molar mass of the compound Aluminium hydroxide, Al(OH) ₃ . Show full working. 1 Mark
o)	To test the effects of a quantity of antacid on the stomach, a 0.160 M solution of HCl is produced to a volume of 80.0 mL. Calculate the mass of HCl that would be in this solution. 2 Marks
	2 Walks
,	Motive delicered discontinuous facility of the constitution of the AVOUNT c
:)	Write a balanced chemical equation for the reaction between aluminium hydroxide, Al(OH) ₃ , and hydrochloric acid, HCl. Remember to include states.

	reagent in this reaction. Explain your answer.	2 Marks
e)	Calculate the theoretical yield, in grams, of aluminium chloride formed in this reaction.	3 Marks
f)	Calculate the number of ions of aluminium, Al ³⁺ , and chloride, Cl ⁻ , will be found in the al chloride solution formed in this reaction.	uminium 2 Marks
3)	If 489mg of AlCl₃ is recovered, calculate the percentage yield of aluminium chloride.	1 Mark
g)	If 489mg of AlCl ₃ is recovered, calculate the percentage yield of aluminium chloride.	1 Mark
g)	If 489mg of AlCl₃ is recovered, calculate the percentage yield of aluminium chloride.	1 Mark
g)	If 489mg of AICl ₃ is recovered, calculate the percentage yield of aluminium chloride.	1 Mark

For the following chemical reaction, the values for the change in enthalpy and entropy are provided:

2 NO (g) +
$$O_2$$
 (g) \rightarrow 2 NO₂ (g)

$$\Delta S_r = -146.5 \text{ J mol}^{-1} \text{ K}^{-1}, \Delta H_r = -114.1 \text{ kJ mol}^{-1}$$

a)	Calculate the Gibbs free energy change, ΔG_r for this reaction at 25.0°C. State clearly if this reaction	
	is spontaneous at this temperature. 3 Ma	arks
L۱		
b)	Based on your answer in a), at which temperature would the reaction either become or cease be spontaneous? Explain your answer. 3 Ma	
c)	Explain why the value for ΔS is negative in this reaction with respect to the trends in entr	onv
C)	change covered in SLE133. List 2 cases where the entropy change would be positive. 2 Mar	

$2 \text{ NO (g)} + O_2 (g) \rightarrow 2 \text{ NO}_2 (g)$	$\Delta H_r = -114.1 \text{ kJ mol}^{-1}$	
Find ΔH_r for the following reacti		
	$2 \text{ NO (g)} + O_2 (g) \rightarrow N_2O_4 (g)$	3 M
) IVI
	1.41 kPa is composed of 2 parts Nitrogen mon	
	1.41 kPa is composed of 2 parts Nitrogen mon ortial pressure of both gases in this gas mixtu	
oxygen gas, O2. Calculate the pa	rtial pressure of both gases in this gas mixtu	re. 2 M
Ealculate the amount of work	done by a piston when it expands from a v	re. 2 M
Ealculate the amount of work	rtial pressure of both gases in this gas mixtu	re. 2 M
Ealculate the amount of work	done by a piston when it expands from a v	re. 2 M a
Ealculate the amount of work	done by a piston when it expands from a v	re. 2 M
Ealculate the amount of work	done by a piston when it expands from a v	re. 2 M
Ealculate the amount of work	done by a piston when it expands from a v	re. 2 M
Ealculate the amount of work	done by a piston when it expands from a v	re. 2 M

d) Using the following chemical reactions and Hess' Law:

Question 3: Bonding and Intermolecular Forces

[2+2+2+1+2+3=12 Marks]

Propan-2-ol, also called Isopropyl Alcohol, has the chemical formula CH₃CHOHCH₃.

a)	Show the full electron configuration of the element C. Clearly mark the core and valence electron configuration.	lectrons 2 Marks
b)	Isopropyl alcohol has a density of 0.786 g mL ⁻¹ . Calculate the amount, in mole, of aceto 300mL sample of acetone.	one in a 2 Marks
c)	Isopropyl alcohol combusts according to the following reaction: $CH_3CHOHCH_3 \ (I) + O_2 \ (g) \rightarrow CO_2 \ (g) + H_2O \ (g)$	
	Balance the above chemical equation and calculate the amount of carbon dioxide for moles, from the combustion of 30.0mL of isopropyl alcohol.	med, in 2 Marks
d)	Identify the predominant intermolecular forces in isopropyl alcohol. Briefly explain your	answer. 1 Mark

	er of decreasing bond polarity.	2 Ma
_	formation from c), calculate the pressure of carb	
_	ormation from c), calculate the pressure of carb rs in a 15.0L container. The container is in a room v	vith a temperature of 28.5°C
_	-	vith a temperature of 28.5°C
_	-	vith a temperature of 28.5°C
_	-	
_	-	vith a temperature of 28.5°C
_	-	vith a temperature of 28.5°C
_	-	vith a temperature of 28.5°C
_	-	vith a temperature of 28.5°C
_	-	vith a temperature of 28.5°C
_	-	vith a temperature of 28.5°C
_	-	vith a temperature of 28.5°C

End of Exam

Numerical Data

atomic mass unit	u	= $1.660 54 \times 10^{-27} \text{ kg}$
Avogadro constant	N_{A}	= $6.0221 \times 10^{23} \text{ mol}^{-1}$
electron mass	$m_{ m e}$	= $9.1094 \times 10^{-31} \text{ kg}$
proton mass	m_{p}	= $1.6726 \times 10^{-27} \text{ kg}$
neutron mass	m_{n}	= $1.6749 \times 10^{-27} \text{ kg}$
gas constant	R	$= 8.3145 \text{ J K}^{-1} \text{ mol}^{-1}$
Planck constant	h	= $6.6261 \times 10^{-34} \text{J s}$
Rydberg constant for hydrogen	R_{H}	= $2.1811 \times 10^{-18} \text{J}$
	$R_{\rm H}$ / h	= $3.2916 \times 10^{15} \text{Hz}$
elementary charge	e	= $1.6022 \times 10^{-19} \text{C}$
speed of light in vacuum	С	= $2.9979 \times 10^8 \text{ m s}^{-1}$
Faraday constant	F	= 96 485 C mol ⁻¹
Boltzmann constant	k	= $1.380 \ 66 \times 10^{-23} \ \text{J K}^{-1}$

Some Useful Formulae

Some Useful Formulae
$$\Delta E = hv \qquad S = k \ln W$$

$$\Delta E = R_H \left(\frac{1}{n_{lower}^2} - \frac{1}{n_{higher}^2} \right) \qquad E_{cell} = E_{cell}^o - \frac{RT}{nF} \ln \frac{[\text{products}]}{[\text{reactants}]}$$

$$c = \lambda v \qquad \Delta G = -nFE$$

$$\lambda = \frac{h}{mV}; \text{ in this equation, } v \text{ is the letter "vee"} \qquad Q = It$$

$$\mu = Qr \qquad \qquad q = m c \Delta T$$

$$\Delta G = \Delta H - T\Delta S \qquad \qquad k = Ae^{-E_a/RT}$$

$$\ln P = \frac{-\Delta H}{RT} + \text{constant} \qquad \qquad \ln k = \ln A - \frac{E_a}{RT}$$

$$\ln \frac{P_2}{P_1} = \frac{-\Delta H}{R} \frac{1}{V_{ap}} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \qquad \qquad \frac{1}{[A]_t} = kt + \frac{1}{[A]_o}$$

$$\ln K = \frac{-\Delta G}{RT} = \frac{-\Delta H}{RT} + \frac{\Delta S}{R} \qquad \qquad V = \frac{k_2[E]_o[S]}{K_M + [S]}$$

$$\Delta S = \frac{q_{rev}}{T}$$

Ionic product of water at 25 °C

Periodic Table of the Elements

1																	2
Н																	He
1.008														ı		•	4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.941	9.012											10.811	12.011	14.007	15.999	18.998	20.180
11 N												13	14 C:	15 D	16 C	17 CI	18
Na	Mg											Al	Si	Р	S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.847	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.798
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.818	118.710	121.760	127.60	126.904	131.29
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	57-71	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
400.00-	407.00-		470.40	100.05	400.07	100.01	100.00	100.00	105.05	100.0-	200 55	204.205	207.2	200.005	(200)	(240)	(222)
132.905	137.327		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.383	207.2	208.980	(209)	(210)	(222)
87	88	00 400	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	89-103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
(223)	(226)		(261)	(262)	(266)	(264)	(277)	(268)	(281)	(272)	(285)	(286)	(289)	(290)	(293)	(294)	(294)

Lanthanoid series	57 La	⁵⁸ Ce	59 P r	60 Nd	⁶¹ Pm	62 Sm	63 Eu	⁶⁴ Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Actinoid series	138.91 89 Ac	140.12 90 Th	140.91 91 Pa	144.24 92 U	93 Np	150.26 94 Pu	151.96 95 Am	157.25 96 Cm	158.93 97 Bk	162.50 98 Cf	164.9 99 ES	167.26 100 Fm	168.93 101 Md	173.04 102 No	174.97 103 Lr
	(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)