Computability and Complexity Problem Set 10

Reductions and complexity classes

Y. Deville

- C. Bertrand Van Ouytsel & V. Coppé & A. Gerniers & N. Golenvaux & M. Parmentier $May,\ 2021$
- 1. Algorithmic versus functional reduction.
 - (a) Prove that for every set A, $A \leq_a \bar{A}$.
 - (b) Prove that for all sets A, B, if $A \leq_f B$ and B is recursively enumerable, then A is recursively enumerable.
 - (c) Show an example for which the relation $A \leq_f \bar{A}$ does not hold.
 - (d) Show an example for which the following relation does not hold: if $A \leq_a B$ and B is recursively enumerable, then A is recursively enumerable.
- 2. Prove the following relations.
 - (a) Does $A \leq_a B$ imply $A \leq_f B$?
 - (b) Does $A \leq_f B$ imply $A \leq_a B$?
- 3. Let $re = \{A | A \text{ is recursively enumerable}\}.$
 - (a) State the conditions to prove that HALT is re-complete wrt \leq_a .
 - (b) Prove the conditions.
- 4. Does the class $DTIME(n^2)$ depend of your calculus model (e.g. Java language)? And what about the class P? Justify your answers.
- 5. Let A be a recursive set and f a total function from $\mathbb N$ to $\mathbb N$. Is the following implication true? Explain.

$$A \in NTIME(f) \Rightarrow \exists c > 1 : A \in DTIME(c^f)$$

6. Let A be a recursive set and f a total function from \mathbb{N} to \mathbb{N} . Is the following implication true? Explain.

$$A \in DTIME(f) \Rightarrow A \in DSPACE(f)$$