Séance 11 (12 décembre 2018)

Exercice 1.

Que vaut

$$\sum_{n=0}^{\infty} H_n \frac{1}{10^n} ?$$

(Rappel : H_n est le n-ème nombre harmonique.)

Exercice 2. (Examen janvier 2011.)

Calculer la somme de chacune des séries suivantes.

$$1. \sum_{n=0}^{\infty} \frac{H_n}{2^n}$$

$$2. \sum_{n=0}^{\infty} \binom{n}{2} \frac{1}{10^n}$$

Exercice 3. (Examen août 2011.)

Calculer la somme de chacune des séries suivantes.

$$1. \sum_{n=1}^{\infty} \frac{1}{2^n}$$

$$2. \sum_{n=1}^{\infty} \frac{n}{2^n}$$

$$3. \sum_{n=1}^{\infty} \frac{1}{n2^n}$$

Exercice 4.

Trouver les fonctions génératrices ordinaire et exponentielle de $(2^n+3^n)_{n\in\mathbb{N}}$, en forme close.

1

Exercice 5. (Examen Janvier 2018)

Considérons la suite $(a_n)_{n\in\mathbb{N}}$ telle que $a_0=4, a_1=7$ et pour $n\geq 2$,

$$a_n = 7a_{n-1} + 8a_{n-2} + 7n + 5/2.$$

- 1. Calculez a_n avec la méthode vue au chapitre sur les récurrences linéaires.
- 2. Soit $(b_n)_{n\in\mathbb{N}}$ telle que $b_0=4,b_1=7$ et pour $n\geq 2$,

$$b_n = 7b_{n-1} + 8b_{n-2}.$$

Soit $f(x) = \sum_{n\geq 0} b_n x^n$ la fonction génératrice ordinaire de la suite $(b_n)_{n\in\mathbb{N}}$. Déterminez f(x).

3. À l'aide de f(x), retrouvez b_n pour $n \ge 2$.

Exercice 6. Un collectionneur excentrique rafolle des pavages de rectangles $2 \times n$ par des dominos verticaux 2×1 et horizontaux 1×2 . Il paye sans hésiter 4Euro par domino vertical et 1Euro par domino horizontal. Pour combien de pavages sera-t-il prêt à payer nEuro ?

Exercice 7.

Pour $n \in \mathbb{N}$, désignons par a_n le nombre de manières de rendre n eurocents de monnaie avec des pièces de 1, 5 et 10 eurocents.

- 1. Déterminer a_n pour $n \in \{0, \dots, 10\}$.
- 2. Trouver la fonction génératrice ordinaire A(x) de la suite $(a_n)_{n\in\mathbb{N}}$.
- 3. Déterminer a_n pour $n \in \{2010, 2011\}$.