Experimental studies of the $\Lambda(1405)$ physics654 – Seminar on exotic multi-quark states

Jakob Krause

➤ krause@hiskp.uni-bonn.de | • krausejm

Tutor: Georg Scheluchin

✓ scheluchin@physik.uni-bonn.de

18.06.2021

Motivation

What is special about the $\Lambda(1405)$?

- ▶ its mass does not fit well into constituent quark models which do predict baryon masses well for other baryons
- ▶ invariant mass distribution (line shape) differs significantly from usual BREIT-WIGNER shapes
- ightharpoonup candidate for an exotic multiquark state (bound system of $\overline{K}N$) since its mass lies just below threshold

There are (very) many different theoretical approaches to explain this behavior

 \rightarrow There is need for more experimental data!

some plots/pictures?

Table of contents

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

Continuous Electron Beam Accelerator Facility (CEBAF)

Figure 1: CEBAF layout at Jefferson Lab, [Mecking et al. 2003]

CEBAF Large Acceptance Spectrometer (CLAS)

Figure 2: CLAS layout at Jefferson Lab, [Mecking et al. 2003]

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

Reaction kinematics

Reaction	Strong Final State	Undetected	Particles X		
		$K^+ p \pi^-(X)$	$K^{+}\pi^{+}\pi^{-}(X)$		
$\gamma + p \rightarrow K^{+} + $	Λ(1405) Λ(1520)				
	$\begin{array}{c} \sim 33\% \\ \sim 33\% \\ \end{array} \qquad \begin{array}{c} \Sigma^+ \pi^- \\ \Sigma^0 \pi^0 \end{array}$	π^0 (52%) π^0 γ (64%)	n (48%)	$\Sigma^{+} \to p\pi^{0}$ $\Sigma^{+} \to n\pi^{+}$	
	$\sim 33\%$ $\Sigma^- \pi^+$		n (100%)	$\Sigma^0 \to \gamma \Lambda$ $\Sigma^- \to n\pi^-$	$\rightarrow \gamma p \pi^-$
$\gamma + p \rightarrow K^+ + \Sigma^0 (1385) \xrightarrow{87\%} K^+ \Lambda \pi^0$		π^0 (64%)		$\Lambda \to p\pi^-$	
$\gamma + p \to K^{*+} + \Sigma^0$		π^0 (64%) π^0 γ (64%)			
$\gamma + p \to K^{*0} + \Sigma^+$		π^{0} (52%)	n (48%)		

Figure 3: Possible and studied reactions in the analysis of the lineshapes of $\Lambda(1405)$, taken from [Moriya, Schumacher, Adhikari et al. 2013]

There are two sets of reactions that the detector sees

- 1. $K^+p\pi^-$
- 2. $K^{+}\pi^{+}\pi^{-}$

There are many cuts that can be made that apply to both

Initial selection of particles

- ► Initial final state Kaon selection
- ▶ fiducial cuts
- \blacktriangleright remove false K^+ due to π^+ or p
- ► Loose Δ TOF cut (Δ TOF = $t_{\text{meas}} t_{\text{calc}} = t_{\text{meas}} \frac{l\sqrt{p^2 + m_0^2}}{cp}$)
- \triangleright vertex z cut
- ightharpoonup minimum $|\mathbf{p}|$ cuts
- \triangleright Precise \triangle TOF cuts

In all channels, the data was divided into 10 bins of energy spanning 100 MeV in the CMS energy $W = \sqrt{s}$ and 20 angle bins in the CMS kaon angle.

 \rightarrow the following analysis was performed independently in every bin of energy and angle!

extracting $\Lambda \pi^0$ and $\Sigma^+ \pi^-$

- reminder: $\Lambda \to p\pi^-, \Sigma^+ \to p\pi^0$
- final state particles: $K^+p\pi^-(\pi^0)$
- determine p_{π} via missing mass fit
- apply cuts based on fits to the invariant masses $M_{p\pi^-}$ and $M_{p\pi^0}$

extracting $\Sigma^+\pi^-$ and $\Sigma^-\pi^+$

- reminder: $\Sigma^{\pm} \to n\pi^{\pm}$
- final state particles: $K^+\pi^+\pi^-(n)$
- determine p_n via missing mass fit
- apply cuts based on fits to the invariant masses $M_{n\pi^{\pm}}$

Figure 4: Dalitz-like plots of the above mentioned invariant masses, taken from [Moriya, Schumacher, Adhikari et al. 2013]

extracting $\Sigma^0 \pi^0$

- reminder: $\Sigma^0 \to \gamma \Lambda \to \gamma p \pi^-$
- final state particles: $K^+p\pi^-(\gamma\pi^0)$ missing mass fit is not applicable here: demand the missing mass is sufficiently greater than m_{π}
- make cuts based on the invariant mass $M_{p\pi^-}$
- now the missing mass $(\gamma p \to K^+ X)$ gives the $\Sigma^0 \pi^0$ lineshape

Figure 5: Invariant mass of the $\gamma\pi$ system, selection range in magenta. Taken from [Moriya, Schumacher, Adhikari et al. 2013]

- ▶ Now the signal regions have been established
- ▶ he true lineshape of the $\Lambda(1405)$ has to be extracted from the vast of reactions \rightarrow any other contributions have to be excluded
- ► Strategy: use of Monte-Carlo fits to the data, simulating the contribution of other resonances

I will not really go into detail here...(??)

Interpretation of the results

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

Theoretical basics

The $\Lambda(1405)$ is so far (mostly) assumed to have $J^P = \frac{1}{2}^-$, but this has not been determined experimentally

Measuring spin

- \blacktriangleright consider the strong decay $Y^* \to Y\pi$, with J^P the spin and parity of Y^*
- \blacktriangleright the $Y\pi$ angular distribution will only depend on J

$$I(\theta_Y) = \text{const.}$$
 $J = 1/2$
 $I(\theta_Y) \propto 1 + \frac{3(1-2p)}{2p+1} \cos^2 \theta_Y$ $J = 3/2$,

where θ_Y is the polar angle of the decay direction of Y in the Y* rest frame, p describes the fraction of spin projections along the z axis

 \blacktriangleright uniform decay pattern is best evidence for spin J=1/2

[Moriya, Schumacher, Aghasyan et al. 2014]

Theoretical basics

Measuring parity

- ightharpoonup the key to accessing the parity lies in determining the Polarization transfer to the decay product Y which we will denote \mathbf{Q}
- ► the angular distribution of **Q** will only depend on **P**

$$\mathbf{Q}(\theta_Y) = \text{const.}$$
 $J^P = 1/2^ \mathbf{Q}(\theta_Y) = -\mathbf{P} + 2(\mathbf{P} \cdot \mathbf{q})\mathbf{q}$ $J^P = 1/2^+$

 $ightharpoonup \mathbf{Q}$ can be measured from weak decay angular distribution of Y

Figure 6: Polarization transfer in the strong decay $Y^* \to Y\pi$, taken from [Moriya, Schumacher, Aghasyan et al. 2014]

[Moriya, Schumacher, Aghasyan et al. 2014 and Ref. therein]

Event selection

- ► select kinematic region where the $\Sigma \pi$ invariant mass is dominated by the $\Lambda(1405) \to M_{\Sigma \pi} \in$ 1.30 GeV to 1.45 GeV
- ▶ inspect nine bins in energy and angle, namely with CM energy at 2.6, 2.7 and 2.8 GeV and the three forwardmost kaon angle bins each

Figure 7: $\Sigma\pi$ and $K\pi$ invariant mass in the vicinity of the $\Lambda(1405)$, taken from [Moriya, Schumacher, Aghasyan et al. 2014]

Analysis procedure

- ▶ plot the angular distribution of the projections $\cos \theta_{\Sigma}$ and $\cos \theta_p$ for each bin
- ▶ test each spin hypothesis using MONTE-CARLO maximum likelihood fits, which employ angular decay probability distributions according to each hypothesis for $\Sigma \pi$ and $p\pi$. From the fit Q_z will be determined
- test parity hypotheses by determining $Q_z(\cos\theta_{\Sigma})$
- \blacktriangleright compare each hypothesis by calculating a χ^2 probability

Result: data is consistent with $J^P = 1/2^-$ but does in principle not rule out $J^P = 3/2^+$. $1/2^+$ and $3/2^-$ can be discarded.

Figure 8: Distributions of the projections of (a)cos θ_{Σ} and (b) cos θ_p @ 2.65 < W < 2.75 GeV and 0.70 < cos θ < 0.80, taken from [Moriya, Schumacher, Aghasyan et al. 2014]

Figure 9: angular distribution of the polarization Q_z @ $2.65 < W < 2.75 \,\text{GeV}$ and $0.70 < \cos \theta < 0.80$. Red: average, blue: expectation for P-wave decay. Taken from [Moriya, Schumacher, Aghasyan et al. 2014]

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

References

- Mecking, B.A. et al. (2003). 'The CEBAF large acceptance spectrometer (CLAS)'. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 503.3, pp. 513-553. ISSN: 0168-9002. DOI: https://doi.org/10.1016/S0168-9002(03)01001-5. URL: https://www.sciencedirect.com/science/article/pii/S0168900203010015.
 Moriya, K., R. A. Schumacher, K. P. Adhikari et al. (Mar. 2013). 'Measurement of the Σπ photoproduction line shapes near the Λ(1405)'. In:
- https://link.aps.org/doi/10.1103/PhysRevC.87.035206.
 Moriya, K., R. A. Schumacher, M. Aghasyan et al. (Feb. 2014). 'Spin and parity measurement of the Λ(1405) baryon'. In: Phys. Rev. Lett. 112 (8), p. 082004. DOI: 10.1103/PhysRevLett.112.082004. URL: https://link.aps.org/doi/10.1103/PhysRevLett.112.082004.

Phys. Rev. C 87 (3), p. 035206. DOI: 10.1103/PhysRevC.87.035206. URL: