Review of Mathematics Foundation - Part 2

Yan Liu

CSCI 566 Deep Learning and Its Applications

September 2, 2024

Outline

- Probability and Statistics: basic concepts
- Convex Optimization: convex, concave, basic algorithms

Basic concepts

Probability and Statistics

Probability

Sample Space: set of all possible outcomes or realizations.

Example: Toss a coin twice; the sample space is $\Omega = \{HH, HT, TH, TT\}.$

Event: A subset of sample space

Example: the event that at least one toss is a head is

 $A = \{HH, HT, TH\}.$

Probability: We assign a real number P(A) to each event A, called the probability of A.

Probability Axioms: The probability P must satisfy three axioms:

- $P(A) \ge 0$ for every A;
- **2** $P(\Omega) = 1;$
- **3** If A_1, A_2, \ldots are disjoints, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Random Variable

Definition: A random variable is a measurable function that maps a probability space into a measurable space, i.e. $X:\Omega\to R$, that assigns a real number $X(\omega)$ to each outcome ω .

Example: if $\Omega=\{(x,y): x^2+y^2\leq 1\}$ and our outcomes are samples (x,y) from the unit disk, then these are some examples of random variables: $X(\omega)=x,\ Y(\omega)=y,\ Z(\omega)=x+y.$

Data and Statistics The data are specific realizations of random variables; A statistics is just any function of the data or random variables.

Distribution Function

Definition: Suppose X is a random variable, x is a specific value of it, Cumulative distribution function (CDF) is the function $F: R \to [0,1]$, where $F(x) = P(X \le x)$.

If X is discrete \Rightarrow probability mass function: f(x) = P(X = x). If X is continuous \Rightarrow probability density function for X if there exists a function f such that $f(x) \geq 0$ for all x , $\int_{-\infty}^{\infty} f(x) dx = 1$ and for every $a \leq b$,

$$P(a \le X \le b) = \int_a^b f(x)dx.$$

If F(x) is differentiable everywhere, f(x) = F'(x).

Expectation

Expected Values

- Discrete random variable X, $E[g(X)] = \sum_{x \in \mathcal{X}} g(x) f(x)$;
- Continuous random variable X, $E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x)$

Mean and Variance $\mu=E[X]$ is the mean; $var[X]=E[(X-\mu)^2]$ is the variance.

We also have $var[X] = E[X^2] - \mu^2$.

Common Distributions

Discrete variable	Probability function	Mean	Variance
Uniform $X \sim U[1, \dots, N]$	1/N	$\frac{N+1}{2}$	
Binomial $X \sim Bin(n, p)$	$\binom{x}{n} p^x (1-p)^{(n-x)}$	np	
Geometric $X \sim Geom(p)$	$(1-p)^{x-1}p$	1/p	
Poisson $X \sim Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	
Continuous variable	Probability density function	Mean	Variance
Uniform $X \sim U(a,b)$	1/ (b-a)	(a + b)/2	
Gaussian $X \sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$	μ	
Gamma $X \sim \Gamma(\alpha, \beta)$ ($x \ge 0$)	$\frac{\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{1}{2\sigma^2}(x-\mu)^2)}{\frac{1}{\Gamma(\alpha)\beta^a}x^{a-1}e^{-x/\beta}}$	$\frac{\alpha}{\beta}$	
	$\frac{1}{\beta}e^{-\frac{x}{\beta}}$	β	

Multivariate Distributions

Definition:

$$F_{X,Y}(x,y) := P(X \le x, Y \le y),$$

and

$$f_{X,Y}(x,y) := \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y},$$

Marginal Distribution of X (Discrete case):

$$f_X(x) = P(X = x) = \sum_y P(X = x, Y = y) = \sum_y f_{X,Y}(x, y)$$

or $f_X(x) = \int_{\mathcal{U}} f_{X,Y}(x,y) dy$ for continuous variable.

Conditional probability of X given Y = y is

$$f_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

Bayes Rule

Law of total Probability: X takes values x_1, \ldots, x_n and y is a value of Y, we have

$$f_Y(y) = \sum_j f_{Y|X}(y|x_j) f_X(x_j)$$

Bayes Rule:

(Simple Form)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

(Discrete Random Variables)

$$f_{X|Y}(x_i|y) = \frac{f_{Y|X}(y|x_i)f_X(x_i)}{\sum_j f_{Y|X}(y|x_j)f_X(x_j)}$$

(Continuous Random Variables)

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{\int_x f_{Y|X}(y|x)f_X(x)dx}$$

Independence

Independent Variables X and Y are *independent* if and only if:

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

or $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all values x and y.

IID variables: *Independent and identically distributed* (IID) random variables are drawn from the same distribution and are all mutually independent.

If X_1, \ldots, X_n are independent, we have

$$E[\prod_{i=1}^{n} X_{i}] = \prod_{i=1}^{n} E[X_{i}], \quad var[\sum_{i=1}^{n} a_{i}X_{i}] = \sum_{i=1}^{n} a_{i}^{2}var[X_{i}]$$

Linearity of Expectation: Even if X_1, \ldots, X_n are not independent,

$$E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i].$$

Correlation

Covariance

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_y)],$$

Correlation coefficients

$$corr(X, Y) = Cov(X, Y)/\sigma_x \sigma_y$$

• Independence \Rightarrow Uncorrelated (corr(X,Y)=0).

However, the reverse is generally not true.

The important special case: multi-variate Gaussian distribution.

Exponential family

Definition A family of pdf or pmfs is called an exponential family if

$$f(x|\theta) = h(x)c(\theta) \exp(\sum_{i=1}^{k} w_i(\theta)t_i(x))$$

Natural parameterization Form: For k = 1, we have

$$f(x|\eta) = h(x) \exp(\eta t(x) - A(\eta)),$$

where $A(\eta) = \log \int h(x) \exp(\eta t(x)) dx$ and:

- \bullet t(x) is a *sufficient statistics* of the distribution,
- ullet η is called the *natural parameter*,
- ullet $A(\eta)$ is a normalization factor, or log-partition function.

Properties:

$$E[t(x)] = A'(\eta), \ Var[t(x)] = A''(\eta).$$

Examples: Gaussian, Exponential, Poisson, Bionomial distributions. Note that uniform distribution is NOT.

Statistics

Suppose X_1, \ldots, X_n are random variables:

Sample Mean:

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Sample Variance:

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}.$$

If X_i are iid:

$$E[\bar{X}] = E[X_i] = \mu,$$

$$Var(\bar{X}) = \sigma^2/N,$$

$$E[S^2] = \sigma^2$$

Point Estimation

Definition The *point estimator* $\hat{\theta}_N$ is a function of samples X_1, \ldots, X_N that approximates a parameter θ of the distribution of X_i .

Sample Bias: The bias of an estimator is

$$bias(\hat{\theta}_N) = E_{\theta}[\hat{\theta}_N] - \theta$$

An estimator is *unbiased estimator* if $E_{\theta}[\hat{\theta}_N] = \theta$

Standard error The standard deviation (i.e. the square-root of variance) of $\hat{\theta}_N$ is called the *standard error*

$$se(\hat{\theta}_N) = \sqrt{Var(\hat{\theta}_N)}.$$

Optimization

Definition: Optimization refers to choosing the best element from some set of available alternatives. A general form is as follows:

minimize
$$f_0(x)$$
 (1) subject to $f_i(x) \leq 0, i = 1, \dots, m$
$$h_i(x) = 0, i = 1, \dots, p.$$

Difficulties:

- Local or global optimimum?
- 2 Difficulty to find a feasible point,
- Stopping criteria,
- Poor convergence rate,
- numerical issues

Convex Optimization

Convex Functions: if for any two points x_1 and x_2 in its domain X and any $t \in [0,1]$,

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2).$$

A function f is said to be *concave* if -f is convex.

Convex Set a set S is convex if and only if for any $x_1, x_2 \in S$,

 $tx_1+(1-t)x_2\in S$ for any $t\in [0,1]$,

Convex Optimization is minimization (maximization) of a convex (concave) function over a convex set.

Examples: Linear Programming (LP), Quadratic Programming (QP), and Semi-Definite Programming (SDP).

Popular convex optimization algorithms:

- Gradient descent
- Conjugate gradient
- Newton's method

- Quasi-Newton method
- Subgradient method