

Designed by: Thuat NGUYEN-KHANH

Lecturer at The Faculty of Computer Networks & Communications - UIT - VNU-HCM

Email: thuatnk@uit.edu.vn

Chapter 2: IoT Hardwares

- Hardware Platforms
- Hardware Classes
- Some used hardwares
- Sensors and Actuators

IoT Layered Architecture

Source: ZTE

IoT Hardware Platforms

IoT Hardware Classes

- Class0 devices have the smallest resources (<<10kB of RAM and <<100kB Flash); e.g., a specialized mote in a Wireless Sensor Network (WSN).
- Class1 devices have medium-level resources (≈10kB of RAM and ≈100kB Flash)
- Class2 devices have more resources, but are still very constrained compared to high-end IoT devices and traditional Internet hosts

TelosB

- IEEE 802.15.4 Compliant
- 250 kbps, High Data Rate Radio
- 2.4 to 2.4835 GHz, a globally compatible ISM band
- TI MSP430 Microcontroller with
- 10kB RAM
- Integrated Onboard Antenna
- Data Collection and Programming via USB Interface
- Open-source Operating System
- Integrated Temperature, Light and Humidity Sensor

TelosB

- Support TinyOS 1.1, 2.0 and 2.1
- Power: 2 Pin AA 1.5V
- Communication to Gateway/PC via USB connector

TelosB

- Applications:
 - Platform for Low Power Research Development
 - Wireless Sensor Network Experimentation

MicaZ

- IEEE 802.15.4 compliant RF transceiver
- 2.4 to 2.48 GHz, a globally compatible ISM band
- 250 kbps data rate
- Expansion Connector for Light, Temperature, RH, Barometric Pressure, Acceleration/Seismic, Acoustic, Magnetic and other MEMSIC Sensor Boards

MPR2400 Block Diagram

MicaZ

- Applications:
 - Indoor Building Monitoring and Security
 - Acoustic, Video, Vibration and Other High Speed Sensor Data
 - Large Scale SensorNetworks (1000+ Points)

- Microcontroller ATmega328
- Operating Voltage 5V
- Input Voltage (recommended) 7-12V
- Input Voltage (limits) 6-20V
- Digital I/O Pins 14 (of which 6 provide PWM output)

- Analog Input Pins 6
- DC Current per I/O Pin 40 mA
- DC Current for 3.3V Pin 50 mA
- Flash Memory 32 KB (ATmega328) of which 0.5 KB used by bootloader
- SRAM 2 KB (ATmega328)
- EEPROM 1 KB (ATmega328)
- Clock Speed 16 MHz

Arduino Uno R3

• Communication:

- Ethernet Shield
- Zigbee Shield
- LoRa Shield
- Wifi Shield (ESP8266)
- Arduino GSM, GPRS, GPS,
 Bluetooth SIM808 Shield

• Processor:

- Broadcom BCM2837B0,quad-core A53 (ARMv8)64-bit SoC @1.4GHz
- RAM: 1GB LPDDR2 SDRAM

- 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE
- Gigabit Ethernet over USB 2.0 (maximum throughput 300Mbps)
- $-4 \times USB 2.0 ports$

- Access:
 - Extended 40-pin GPIO header
- Video & sound:
 - $-1 \times \text{full size HDMI}$
 - MIPI DSI display port
 - MIPI CSI camera port
 - 4 pole stereo output and composite video port
- SD card support:
 - Micro SD format for loading operating system and data storage

- Raspberry PI 3 can be used as
 - End devices
 - Edge/Fog/Gateway
- Operating system:
 - Raspbian
- Programming Languages:
 - Python, C/C++, JAVA, HTML5, JavaScript, ...
- Some libraries:
 - TensorFlow
 - OpenCV

- Processor:
 - Sitara AM3358BZCZ100 1GHz
- RAM:
 - 512MB DDR3L 800MHZ
- Flash:
 - 4GB, 8bit Embedded MMC
- Connectivity:
 - USB Client for power and communications
 - USB Host
 - Ethernet
 - Micro HDMI

- Access:
 - Extended 40-pin GPIO header
- Video & sound:
 - HDMI
- SD card support:
 - Micro SD format for loading operating system and data storage

- Can be used as
 - End devices
 - Edge/Fog/Gateway
- Operating system:
 - Angstrom Linux
 - Android
 - Ubuntu
 - Cloud9 IDE on Node.js with BoneScript

- Programming Languages:
 - C, C++, Python, Perl, Ruby,Java, or even a shell script, ...
- Some libraries:
 - OpenCV

- GPU:
 - 128-core MaxwellTM GPU
- CPU:
 - ARM® Cortex®-A57 CPU
- RAM: 4GB 64-bit LPDDR4
- Storage:
 - microSD (devkit)
 - 16GB eMMC flash

• Video:

Encode: 4K @ 30 (H.264/H.265)

Decode: 4K @ 60 (H.264/H.265)

ARM® Cortex®-A57 CPU

• Interfaces:

- GigaEthernet
- Camera: 12-ch (3x4 OR 4x2) MIPI CSI-2 DPHY 1.1 (1.5Gbps)
- Display: HDMI 2.0, DP (DisplayPort)
- USB: 4x USB 3.0, USB 2.0 (Micro USB)
- Others: GPIO, I2C, I2S, SPI, UART

• Interfaces:

- GigaEthernet
- Camera: 12-ch (3x4 OR 4x2) MIPI CSI-2 DPHY 1.1 (1.5Gbps)
- Display: HDMI 2.0, DP (DisplayPort)
- USB: 4x USB 3.0, USB 2.0 (Micro USB)
- Others: GPIO, I2C, I2S, SPI, UART

- nicroSD card slot for main storage
- 2 40-pin expansion header
- 3 Micro-USB port for 5V power input or for data
- Gigabit Ethernet port

- USB 3.0 ports (x4)
- 6 HDMI output port
- DisplayPort connector
- B DC Barrel jack for 5V power input
- MIPI CSI camera connector

Deep Learning Inference Performance

Jetson Nano (FP16, batch size 1)

Network Model

- AI model:
 - Object Detection
 - Semantic Segmentation
 - Semantic Segmentation legacy,
 - Image processing


```
🔞 🗐 📵 khanhthuat@khanhthuat-desktop: ~/jetson-inference/build/aarch64/bin
networks/bvlc googlenet.caffemodel initialized.
class 0941 - 0.012485 (acorn squash)
class 0954 - 0.976454 (banana)
image is recognized as 'banana' (class #954) with 97.645438% confidence
       Timing Report networks/bvlc googlenet.caffemodel
       Network CPU 122.99757ms CUDA 120.21057ms
       Post-Process CPU 1.13659ms CUDA 1.11083ms
       Total
                     CPU 124.38725ms CUDA 123.41557ms
       note -- when processing a single image, run 'sudo jetson_clocks' before
                to disable DVFS for more accurate profiling/timing measurements
jetson.utils -- PyFont New()
jetson.utils -- PyFont_Init()
jetson.utils -- PyFont_Dealloc()
jetson.utils -- freeing CUDA mapped memory
PyTensorNet Dealloc()
```

Orange PI

- CPU
 - H3 Quad-core Cortex-A7 H.265/HEVC 4K
- GPU
 - Mali400MP2 GPU @600MHz
 - Supports OpenGL ES 2.0
- SDRAM
 - 1GB DDR3 (shared with GPU)
- Onboard storage
 - 8GB EMMC Flash

Orange PI

- Network:
 - 10/100 Ethernet RJ45
- Operating System
 - Android
 - Ubuntu
 - Debian
 - Armbian

Orange PI

Model	Application	Framework	NVIDIA Jetson Nano	Raspberry Pi 3	Raspberry Pi 3 + Intel Neural Compute Stick 2	Google Edge TPU Dev Board
ResNet-50 (224×224)	Classification	TensorFlow	36 FPS	1.4 FPS	16 FPS	DNR
MobileNet-v2 (300×300)	Classification	TensorFlow	64 FPS	2.5 FPS	30 FPS	130 FP5
SSD ResNet-18 (960×544)	Object Detection	TensorFlow	5 FPS	DNR	DNR	DNR
SSD ResNet-18 (480×272)	Object Detection	TensorFlow	16 FPS	DNR	DNR	DNR
SSD ResNet-18 (300×300)	Object Detection	TensorFlow	18 FPS	DNR	DNR	DNR
SSD Mobilenet-V2 (960×544)	Object Detection	TensorFlow	8 FPS	DNR	1.8 FPS	DNR
SSD Mobilenet-V2 (480×272)	Object Detection	TensorFlow	27 FPS	DNR	7 FPS	DNR
SSD Mobilenet-V2 (300×300)	Object Detection	TensorFlow	39 FPS	1 FPS	11 FPS	48 FPS
Inception V4 (299×299)	Classification	PyTorch	11 FPS	DNR	DNR	9 FPS
Tiny YOLO V3 (416×416)	Object Detection	Darknet	25 FPS	0.5 FPS	DNR	DNR
OpenPose (256×256)	Pose Estimation	Caffe	14 FPS	DNR	5 FPS	DNR
V6G-19 (224×224)	Classification	MXNet	10 FPS	0.5 FPS	5 FPS	DNR
Super Resolution (481×321)	Image Processing	PyTorch	15 FPS	DNR	0.6 FPS	DNR
Unet [1x512x512]	Segmentation	Caffe	18 FPS	DNR	5 FPS	DNR

Sensors

- Acceleration
- Gyroscope
- Magnetometer
- Temperature
- Pressure

- Image/Optical
- Rain
- Proximity
- Hall-effect
- Push-button/switch

Actuators

- Indicators (LEDs, bulbs, LCDs)
- Motors
- Relays
- Speakers/Buzzers
- Heaters

