Sovled Example: Multiple Linear Regression

Dataset: n = 4

Predictor variables = > Independent Variables: X_1 and X_2

Response variable => Dependent Variables: y

	X ₁	X ₂	у
	50	20	120
	62	25	150
	70	16	200
	75	11	215
Sum	257	72	685
Mean	64.25	18	171.25

Step 1: Prepare Regression Table

	X_1^2	X_2^2	X ₁ X ₂	X ₁ y	X ₂ y
	2500	400	1000	6000	2400
	3844	625	1550	9300	3750
	4900	256	1120	14000	3200
	5625	121	825	16125	2365
Σ	16869	1402	4495	45425	11715
Σ	356.75	356.75	-131	1413.75	-615

Step 2: Calculate Regression Sums

$$\begin{split} \Sigma x_1{}^2 &= \Sigma X_1{}^2 - (\Sigma X_1)^2 \ / \ n = \\ \Sigma X_2{}^2 &= \Sigma X_2{}^2 - (\Sigma X_2)^2 \ / \ n = \\ \Sigma X_1 X_2 &= \Sigma X_1 X_2 - (\Sigma X_1 \Sigma X_2) \ / \ n = \\ \Sigma X_1 y &= \Sigma X_1 y - (\Sigma X_1 \Sigma y) \ / \ n = \\ \Sigma X_2 y &= \Sigma X_2 y - (\Sigma X_2 \Sigma y) \ / \ n = \\ \end{split}$$

Step 3: Calculate bo, b1, and b2

$$\begin{array}{lll} b_1 = & \left[(\Sigma X_2{}^2)(\Sigma X_1 y) - (\Sigma X_1 X_2)(\Sigma X_2 y) \right] \ / \left[(\Sigma x_1{}^2) \left(\Sigma X_2{}^2 \right) - (\Sigma X_1 X_2){}^2 \right] = & 3.3548 \\ b_2 = & \left[(\Sigma X_1{}^2)(\Sigma X_2 y) - (\Sigma X_1 X_2)(\Sigma X_1 y) \right] \ / \left[(\Sigma x_1{}^2) \left(\Sigma X_2{}^2 \right) - (\Sigma X_1 X_2){}^2 \right] = & -1.6558 \\ b_0 = & \bar{y} - b_1 \bar{x}_1 - b_2 \bar{x}_2 = & -14.4937 \end{array}$$

Reg

Step 4: Place bo, b1, and b2 in the estimated linear regression equation.

Estimated linear regression equation; ŷ

$$\hat{y} = b_0 + b_1 X_1 + b_2 X_2$$

 $\hat{y} = -14.494 + 3.355 * X_1 + -1.656 * X_2$

Interpret a Multiple Linear Regression Equation

 $b_0 = -14.494$ means => if $X_1 = X_2 = 0$, then y = -14.494

 $b_1 = 3.355 \Rightarrow 1$ unit increase in X_1 is associated with a 3.355 unit increase in Y_2 is constant.

 $b_2 = -1.656 \Rightarrow 1$ unit increase in X_2 is associated with a -1.656 unit decrease in y; if X_1 is constant.