```
In [11]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from pandas.testing import assert_frame_equal
```

```
In [60]: data=pd.read_csv('/Users/diyaddin/Documents/Salary_dataset.csv')
    veri=data.copy()
    y=veri['Salary']
    X=veri['YearsExperience']
    plt.scatter(X,y)
    plt.show()
```



96e+04

02e+04

YearsExperience 9449.9623

In [19]: sabit=sm.add\_constant(X)
 model=sm.OLS(y,sabit).fit()
 print(model.summary())

| print(mode ersummar) (//                |           |                    |                                |        |          |       |  |
|-----------------------------------------|-----------|--------------------|--------------------------------|--------|----------|-------|--|
|                                         |           | OLS Regres         | sion Results                   | 5      |          |       |  |
| ======================================= |           |                    |                                |        |          | ===== |  |
| Dep. Variable:<br>7                     |           | Salary             | R-squared:                     |        |          | 0.95  |  |
| Model:                                  |           | 0LS                | Adj. R-squ                     | uared: |          | 0.95  |  |
| 5<br>Method:                            | Lea       | st Squares         | F-statisti                     | ic:    |          | 622.  |  |
| 5<br>Date:                              | Mon, 2    | 7 Nov 2023         | <pre>Prob (F-statistic):</pre> |        | 1.14e-2  |       |  |
| O<br>Time:                              |           | 06:03:03           | Log-Likelihood:                |        | -301.4   |       |  |
| No. Observations                        | :         | 30                 | AIC:                           |        |          | 606.  |  |
| 9<br>Df Residuals:<br>7                 |           | 28                 | BIC:                           |        |          | 609.  |  |
| Df Model:<br>Covariance Type:           |           | 1<br>nonrobust     |                                |        |          |       |  |
| ======                                  |           | =======<br>std err | ========<br>t                  | P> t   | [0.025   | ===== |  |
| 0.975]                                  |           |                    |                                | r/ t   |          |       |  |
| <br>const                               | 2.485e+04 | 2306.654           | 10.772                         | 0.000  | 2.01e+04 | 2.    |  |

378.755

24.950

0.000

8674.119

1.

```
Omnibus:
                                           2.140
                                                   Durbin-Watson:
                                                                                      1.64
         Prob(Omnibus):
                                           0.343
                                                   Jarque-Bera (JB):
                                                                                      1.56
         Skew:
                                           0.363
                                                   Prob(JB):
                                                                                      0.45
         6
                                           2.147
                                                   Cond. No.
         Kurtosis:
                                                                                       13.
         Notes:
         [1] Standard Errors assume that the covariance matrix of the errors is correc
         tly specified.
          from sklearn.linear_model import LinearRegression
In [20]:
          lr=LinearRegression()
In [24]:
          lr.fit(X.values.reshape(-1,1) ,y.values.reshape(-1,1))
          print(lr.intercept_, lr.coef_)
          [24848.20396652] [[9449.96232146]]
          print(lr.predict(X.values.reshape(-1,1) ))
In [26]:
          [[ 36188.15875227]
           [ 38078.15121656]
           [ 39968.14368085]
           [ 44693.12484158]
           [ 46583.11730587]
           [ 53198.09093089]
           [ 54143.08716303]
           [ 56033.07962732]
           [ 56033.07962732]
           [ 60758.06078805]
           [ 62648.05325234]
           [ 63593.04948449]
           [ 63593.04948449]
           [ 64538.04571663]
           [ 68318.03064522]
           [ 72098.0155738 ]
           [ 73988.00803809]
           [ 75878.00050238]
           [ 81547.97789525]
           [ 82492.9741274 ]
           [ 90052.94398456]
           [ 92887.932681
           [100447.90253816]
           [103282.8912346]
           [108007.87239533]
           [110842.86109176]
           [115567.84225249]
           [116512.83848464]
           [123127.81210966]
           [125017.80457395]]
```

## Our predict function

Y=24848.20396652+9449.96232146\*X

```
In [61]: plt.scatter(X,y)
    plt.plot(X,24848+9449*X , color='red')
```

Out[61]: [<matplotlib.lines.Line2D at 0x7f83786c1670>]



| In | []:  |  |
|----|------|--|
| In | []:  |  |
| In | []:  |  |
| In | []:  |  |
|    | []:  |  |
|    | []:  |  |
|    | []:  |  |
|    |      |  |
| In | []:  |  |
| In | []:  |  |
| In | []:  |  |
|    |      |  |
| In | [ ]: |  |
| In | []:  |  |
| In | []:  |  |
| _  |      |  |
| In | [ ]: |  |
| In | []:  |  |
| In | []:  |  |
| In | []:  |  |
|    |      |  |
| In | [ ]: |  |
| _  | r 7  |  |
| ΤN | []:  |  |