Math 151A

HW #6, due on Friday, November 22, 2024 at 11:59pm PST.

- [1] [Centered difference approximation of second derivative] Let $f \in C^4([a,b])$.
 - (a) Use Taylor's theorem to write f as a third order (cubic) Taylor polynomial plus a fourth order (quartic) remainder term. Expand about the point x_0 .
 - (b) Use the result from (a) to evaluate f(x) at the points $x = x_0 + h$ and $x = x_0 h$. Add the two results together to derive the centered difference approximation to the second derivative:

$$\frac{f(x_0+h)-2f(x_0)+f(x_0-h)}{h^2}=f''(x_0)+\frac{h^2}{4!}(f^{(4)}(\xi_1)+f^{(4)}(\xi_2))$$

- (c) What is the order or this method in terms of big-O notation?
- [2] In Lecture 18 we derived a formula for the error in the $O(h^2)$ approximation of f'. In particular we showed that if $\varepsilon_1, \varepsilon_2$ are the roundoff errors respectively in $f(x_0 + h), f(x_0 h)$ and $\varepsilon = \max\{\varepsilon_1, \varepsilon_2\}$, then

$$\left| f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} \right| \le \left| -\frac{h^2 M}{6} \right| + \left| \frac{\varepsilon}{h} \right|$$

Assume h > 0, $\varepsilon > 0$. Find a formula for the optimal h.

[3] [Richardson extrapolation for a 2nd order accurate approximation] Using Taylor's theorem, it can be shown that if $f \in C^5([a,b])$, then the centered difference approximation formula for the first derivative is given by

$$\underbrace{f'(x_0)}_{\text{true value}} = \underbrace{\frac{f(x_0 + h) - f(x_0 - h)}{2h}}_{\text{approximation}} - \underbrace{\left(\underbrace{\frac{h^2}{6}f'''(x_0) + \frac{h^4}{120}f^{(5)}(\xi)}_{\text{error}}\right)}_{\text{error}}$$
(*)

- (a) Re-write this formula using step size h/2 instead of h.
- (b) Multiply your answer from (a) by 4, subtract (*) from the result, and then divide everything by 3. We now should have an approximation to $f'(x_0)$ based on $f(x_0 + h, f(x_0 h), f(x_0 + h/2))$ and $f(x_0 h/2)$. What is the error in this new approximation $f'(x_0)$?

[4]

Let $f(x) = \sin(x)$. Use the backwards difference formula to approximate $f'(x = \pi/3)$ using h = 0.1, h = 0.01, and h = 0.001 and record the absolute error. By how much does the error decrease each time?

[5]

Let $f(x) = 3xe^x - \cos(x)$. Use the data below and your answer to exercise [1] to approximate f''(1.3) with h = 0.1 and h = 0.01. Compare your results to the true f''(1.3) using the relative error.

x	1.20	1.29	1.30	1.31	1.40
f(x)	11.59006	13.78176	14.04276	14.30741	16.86187

[6] Computational Problem

Consider the function $f(x) = x^2 \ln(x)$. We want to numerically approximate the derivative of the function at the point x = 2.

(a) Use the first order forward difference scheme

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

to approximate f'(2).

- (b) Write a code to find the optimal h (the h for which the error is smallest) by numerical experimentation. Report your estimate of the optimal h.
- (c) Create a graph that shows how the error decreases and then starts to increase as h continues to decrease. Why isn't the error always decreasing?

Hint: It might be helpful to use a log-log plot to visualize the error. Additionally when thinking about values of h to try you can try different increments, but a good starting place is incrementing by $1/10^n$ for $n=1,\ldots$

Note: You can identify the "optimal" h as the value that gives the lowest error when using different h vectors. You can calculate the true derivative of f by hand.