CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 11 · Solutions

Posted Monday 3 February 2014. Due 1pm Friday 14 February 2014.

11. [25 points]

Demonstrate whether or not each of the following is a linear operator.

- (a) $f: \mathbb{R}^n \to \mathbb{R}^m$ defined by $f(\mathbf{u}) = \mathbf{A}\mathbf{u} + \mathbf{b}$ for a fixed matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and fixed nonzero vector $\mathbf{b} \in \mathbb{R}^m$.
- (b) $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$.
- (c) $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ defined by $f(\mathbf{X}) = \mathbf{A}\mathbf{X} + \mathbf{X}\mathbf{B}$ for fixed matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$.
- (d) $L: C^1[0,1] \to C[0,1]$ defined by (Lu)(x) = u(x)u'(x).
- (e) $L: C^2[0,1] \to C[0,1]$ defined by $(Lu)(x) = u''(x) \sin(x)u'(x) + \cos(x)u(x)$.

Solution.

(a) [5 points] Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Then

$$f(\mathbf{u} + \mathbf{v}) = \mathbf{A}(\mathbf{u} + \mathbf{v}) + \mathbf{b} = \mathbf{A}\mathbf{u} + \mathbf{A}\mathbf{v} + \mathbf{b}$$

but

$$f(\mathbf{u}) + f(\mathbf{v}) = \mathbf{A}\mathbf{u} + \mathbf{b} + \mathbf{A}\mathbf{v} + \mathbf{b} = \mathbf{A}\mathbf{u} + \mathbf{A}\mathbf{v} + 2\mathbf{b}$$

and so $f(\mathbf{u} + \mathbf{v})$ does not equal $f(\mathbf{u}) + f(\mathbf{v})$ when $\mathbf{b} \neq \mathbf{0}$. Hence, f is not a linear operator.

(b) [5 points] Suppose $\mathbf{x} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$. Then

$$f(\alpha \mathbf{x}) = (\alpha \mathbf{x})^T (\alpha \mathbf{x}) = \alpha^2 \mathbf{x}^T \mathbf{x}$$

and

$$\alpha f(\mathbf{x}) = \alpha \mathbf{x}^T \mathbf{x}.$$

However, if $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\alpha = 2$ then $\mathbf{x}^T \mathbf{x} = 1$ and so

$$f(\alpha \mathbf{x}) = 2^2 = 4$$

but

$$\alpha f(\mathbf{x}) = 2.$$

Hence, f is not a linear operator.

(c) [5 points] Suppose $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n \times n}$. Then

$$f(\mathbf{X} + \mathbf{Y}) = \mathbf{A}(\mathbf{X} + \mathbf{Y}) + (\mathbf{X} + \mathbf{Y})\mathbf{B} = \mathbf{A}\mathbf{X} + \mathbf{X}\mathbf{B} + \mathbf{A}\mathbf{Y} + \mathbf{Y}\mathbf{B} = f(\mathbf{X}) + f(\mathbf{Y}),$$

and if $\alpha \in \mathbb{R}$, then

$$f(\alpha \mathbf{X}) = \mathbf{A}(\alpha \mathbf{X}) + (\alpha \mathbf{X})\mathbf{B} = \alpha(\mathbf{A}\mathbf{X} + \mathbf{X}\mathbf{B}) = \alpha f(\mathbf{X}).$$

Hence, f is a linear operator.

(d) [5 points] Suppose that $u \in C^1[0,1]$ and $\alpha \in \mathbb{R}$. Then

$$\alpha(Lu)(x) = \alpha u(x)u'(x)$$

and

$$(L(\alpha u))(x) = (\alpha u)(x)(\alpha u)'(x) = \alpha^2 u(x)u'(x).$$

However, if u(x) = x and $\alpha = 2$ then

$$\alpha(Lu)(x) = 2x$$

but

$$(L(\alpha u))(x) = 2^2 x = 4x.$$

Hence, L is not a linear operator.

(e) [5 points] Suppose that $u, v \in C^2[0, 1]$. Then

$$(L(u+v))(x) = (u+v)''(x) - \sin(x)(u+v)'(x) + \cos(x)(u+v)(x)$$

= $u''(x) - \sin(x)u'(x) + \cos(x)u(x) + v''(x) - \sin(x)v'(x) + \cos(x)v(x)$
= $(Lu)(x) + (Lv)(x)$,

and for all $\alpha \in \mathbb{R}$,

$$(L(\alpha u))(x) = (\alpha u)''(x) - \sin(x)(\alpha u)'(x) + \cos(x)(\alpha u)(x)$$

= $\alpha (u''(x) - \sin(x)u'(x) + \cos(x)u(x))$
= $\alpha (Lu)(x)$.

Hence, L is a linear operator.