Principles of Abstract Interpretation MIT press

Ch. 22, Chaotic iterations

Patrick Cousot

pcousot.github.io

PrAbsInt@gmail.com github.com/PrAbsInt/

These slides are available at http://github.com/PrAbsInt/slides/slides-22--chaotic-iterations-PrAbsInt.pdf

Chapter 22

Ch. 22, Chaotic iterations

Chaotic Iterations

- Problem: solve systems of equations iteratively
- In general the result depends on the iteration strategy
- Chaotic iterations allow to choose at each iteration which components evolve while the others are unchanged
- Result: for continuous equations on complete partial orders, the limit of the chaotic iterates is always the least fixpoint.

en.wikipedia.org/wiki/Iterative_method

Systems of equations

System of equations

- Let $\vec{D} = \prod_{i=1}^n D_i$ be the cartesian product of $n \ge 1$ sets D_i .
- Let $\vec{F} \in \vec{D} \to \vec{D}$.
- When we write the vectorial equation

$$\vec{X} = \vec{F}(\vec{X})$$

we mean the system of equations

$$\begin{cases} X_i = F_i(X_1, \dots, X_n) \\ i = 1, \dots, n \end{cases}$$

where

- $\vec{X} = \langle X_1, ..., X_n \rangle \in \vec{D}$ is a vector of variables
- the i^{th} component of $\vec{F}(\vec{X})$ is

$$F_i(X_1,\ldots,X_n) \triangleq |\det \langle X_1',\ldots,X_n'\rangle = \vec{F}(\langle X_1,\ldots,X_n\rangle) \text{ in } X_i'$$

Solutions to systems of equations — I

- The variables $X_i \in V$, i = 1, ..., n are identifiers with values in D_i
- $\vec{F} \in \vec{D} \to \vec{D}$ so $\vec{F}(\vec{X})$ is an abuse of notation since $\vec{D} \neq \prod_{i=1}^n V$.
- It is meant that a solution to

$$\begin{cases} X_i &= F_i(X_1,\ldots,X_n)\\ i=1,\ldots,n \end{cases}$$
 is a map $\rho \in \{X_i \in V \mid i=1,\ldots,n\} \mapsto \rho(X_i) \in D_i$ such
$$\begin{cases} \rho(X_i) &= F_i(\rho(X_1),\ldots,\rho(X_n))\\ i=1,\ldots,n \end{cases}$$

where now $F_i \in \vec{D} \to D_i$.

Solutions to systems of equations — II

- $\vec{X} = \vec{F}(\vec{X})$ confuses the function \vec{F} with its denotation
- To be fully rigorous, the denotation \vec{F} of \vec{F} is written in some formally defined language
- This language has a semantics $\mathcal{S}[\vec{\mathsf{F}}] = \vec{\mathsf{F}}$
- A solution to $\vec{X} = \vec{\mathsf{F}}(\vec{X})$ is $\rho(\vec{X}) = \mathbf{\mathcal{S}}[\![\vec{\mathsf{F}}]\!](\rho(\vec{X}))$
- Outside of mathematical logic, function notations \vec{F} are identified with the function $\vec{F} = \mathcal{S}[\vec{F}]$ that they denote
- Variables X_i are identified with their value $\rho(X_i)$
- Ignoring the incoherence, write $\vec{X} = \vec{F}(\vec{X})$ for brevity!

en.wikipedia.org/wiki/System_of_equations

Historical iterative methods

Jacobi iterations

All components evolve simultaneously at all iterations.

$$\left\{ \begin{array}{ll} X_i^{k+1} &=& F_i(X_1^k,\ldots,X_n^k) \\ i=1,\ldots,n, k=1,\ldots,+\infty \end{array} \right.$$

- Two arrays are needed to record both \vec{X}^k and \vec{X}^{k+1} .
- This is the iteration method considered in Chapter **15** (Fixpoints), $\vec{X}^0 = 0$, $\vec{X}^{k+1} = \vec{F}(\vec{X}^k)$, and pass to the limit $\bigsqcup_{i \in \mathbb{N}} \vec{X}^{k+1}$.

en.wikipedia.org/wiki/Jacobi_method
en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi

Gauss-Seidel (or successive) iterations

One array is enough to program Gauss-Seidel (or successive) iteration(s) method [Isaacson and Keller, 1994, Sect. 4.2]

$$\begin{cases} X_i^{k+1} = F_i(X_1^{k+1}, \dots, X_{i-1}^{k+1}, X_i^k, \dots, X_n^k) \\ i = 1, \dots, n, k = 1, \dots, +\infty \end{cases}$$

where the components evolve one after another.

en.wikipedia.org/wiki/Gauss-Seidel_method
en.wikipedia.org/wiki/Carl_Friedrich_Gauss
en.wikipedia.org/wiki/Philipp_Ludwig_von_Seidel

The result depends on the iteration strategy (Example 22.1)

In general the two iteration strategies yield different results.

$\langle x, y \rangle$	$F_1(x, y)$	$F_2(x, y)$
$\langle a, a \rangle$	b	b
$\langle a, b \rangle$	b	b
$\langle b, a \rangle$	b	а
$\langle b, b \rangle$	b	b

Jacobi iterations

Gauss-Seidel iterations

٦

Chaotic iterations

- At each step one can arbitrarily choose which components do evolve
- no component is omitted for ever (fairness condition)
- If all components evolve at each iteration, this is Jacobi iterations.
- If the components evolve one after another, this is Gauss-Seidel.
- A chaotic iteration is defined by an infinite sequence \Im of subsets of $\{1, ..., n\}$ specifying that all components in $\Im(k)$ should evolved at iterate k (while those in $\{1, ..., n\} \setminus \Im(k)$ remain unchanged).

Chaotic iterations

Definition 22.2

- Let $\vec{D} = \prod_{i=1}^n D_i$ be the cartesian product of $n \ge 1$ sets D_i .
- Let $\vec{F} \in \vec{D} \to \vec{D}$.
- Let $\mathfrak{F} \in \mathbb{N}^+ \to \wp(\{1,\ldots,n\}) \setminus \{\emptyset\}$ satisfying the fairness condition

$$\forall i \in \{1, \ldots, n\} : \forall k \in \mathbb{N} : \exists k' > k : i \in \mathfrak{F}(k') :$$

■ The chaotic iterations \vec{X}^k , $k \in \mathbb{N}$ from \vec{X}_0 defined by \mathfrak{T} for the system of equations $\vec{X} = \vec{F}(\vec{X})$ is

$$\left\{ \begin{array}{ll} \overrightarrow{X}_i^{k+1} & \triangleq & F_i(\overrightarrow{X}^k) & \text{ when } i \in \mathfrak{F}(k) \\ \overrightarrow{X}_i^{k+1} & \triangleq & \overrightarrow{X}_i^k & \text{ when } i \notin \mathfrak{F}(k) \ . \end{array} \right.$$

Convergence of chaotic iterations of continuous operators on complete partial orders

Convergence of chaotic iterations [P. Cousot and R. Cousot, 1977]

Theorem 22.4 The chaotic iterations of componentwise continuous operator $\vec{F} \in L^n \xrightarrow{uc} L^n$ on a CPO $\langle L^n, \, \dot{\sqsubseteq}, \, \dot{\bot}, \, \dot{\sqcup} \rangle$ from $\dot{\bot}$ converge to the lfp^{$\dot{\sqsubseteq}$} \vec{F} .

Proof of Theorem 22.4 — (1) We first prove that the iterates form an increasing chain less than $lfp^{\underline{c}}\vec{F}$ (which exists by Kleene/Scott iterative fixpoint Theorem 15.26).

- By recurrence.
- For the basis, $\vec{X}^0 = \dot{\perp} \sqsubseteq \mathsf{lfp}^{\sqsubseteq} \vec{F}$ by def. infimum $\dot{\perp}$.
- Assume, for the induction step, that for $k \in \mathbb{N}$, $\forall k' \leq k$. $\vec{X}^{k'} \stackrel{.}{\sqsubseteq} \vec{X}^k \stackrel{.}{\sqsubseteq} \mathsf{lfp}^{\stackrel{.}{\sqsubseteq}} \vec{F}$ so that $\forall i \in \{1, \ldots, n\}$. $\forall k' \leq k$. $\vec{X}^{k'}_i \stackrel{.}{\sqsubseteq} \vec{X}^k_i \stackrel{.}{\sqsubseteq} (\mathsf{lfp}^{\stackrel{.}{\sqsubseteq}} \vec{F})_i$ componentwise.
- Let $i \in \{1, ..., n\}$ be any component
 - If $i \notin \Im(k+1)$ then
 - $\vec{X}_i^{k+1} = \vec{X}_i^k$ by def. of the iterates
 - so $\vec{X}_i^k \sqsubseteq \vec{X}_i^{k+1} \sqsubseteq (\mathsf{lfp}^{\sqsubseteq} \vec{F})_i$ by reflexivity and induction hypothesis
 - so $\forall k' \leq k$. $\vec{X}_i^{k'} \sqsubseteq \vec{X}_i^{k+1} \sqsubseteq (\mathsf{lfp}^{\sqsubseteq} \vec{F})_i$ by transitivity.

- Else $i \in \Im(k+1)$.
 - If there is no $k' \leq k$ such that $i \in \mathfrak{F}(k')$ then
 - $\bullet \quad \bot = \vec{X}_i^0 = \dots = \vec{X}_i^k$
 - - by def. infimum ⊥, and
 - for all $\vec{X} \stackrel{.}{\sqsubseteq} |\text{ffp}^{\sqsubseteq} \vec{F}|$, we have $\vec{F}(\vec{X}) \stackrel{.}{\sqsubseteq} \vec{F}(|\text{ffp}^{\sqsubseteq} \vec{F}|) = |\text{ffp}^{\sqsubseteq} \vec{F}|$ since, by Exercise 15.24, \vec{F} is continuous hence increasing and by def. fixpoints so $F_i(\vec{X}) \triangleq \vec{F}(\vec{X})_i \stackrel{.}{\sqsubseteq} (|\text{ffp}^{\sqsubseteq} \vec{F})_i|$ by componentwise def. of $\stackrel{.}{\sqsubseteq}$.
 - Otherwise let $k' \leq k$ be the largest such that $i \in \mathfrak{T}(k')$ so that
 - $\vec{X}_i^{k'-1} \sqsubseteq \vec{X}_i^{k'} = \vec{X}_i^{k'+1} = \dots = \vec{X}_i^k \sqsubseteq (\mathsf{lfp}^{\sqsubseteq} \vec{F})_i$ by def. iterates and ind. hyp.
 - By def. of the iterates, it follows that $F_i(\vec{X}^{k'-1}) = \vec{X}_i^{k'} = \vec{X}_i^{k'+1} = \ldots = \vec{X}_i^k \sqsubseteq F_i(\vec{X}^k) = \vec{X}_i^{k+1} \sqsubseteq (\mathsf{lfp}^{\sqsubseteq}\vec{F})_i$ since F_i is continuous hence increasing.
 - By transitivity, $\forall k' \leq k \cdot \vec{X}_i^{k'} \sqsubseteq \vec{X}_i^{k+1} \sqsubseteq (\mathsf{lfp}^{\sqsubseteq} \vec{F})_i$.

- By componentwise definition of \sqsubseteq , we conclude that $\forall k' \leq k$. $\vec{X}^{k'} \stackrel{.}{\sqsubseteq} \vec{X}^k \stackrel{.}{\sqsubseteq} \mathsf{lfp}^{\stackrel{.}{\sqsubseteq}} \vec{F}$
- The iterates form an increasing chain bounded by $\mathsf{lfp}^{\mathsf{c}}\,\vec{F}.$
- By def. of a complete partial order in Section 10.9 and that of a lub, they have a limit $\bigsqcup_{k\in\mathbb{N}} \vec{X}^k \sqsubseteq \mathsf{lfp}^{\sqsubseteq} \vec{F}$.

- (2)
 - Let $\vec{J}^0 = \bot$, $\vec{J}^{k+1} = \vec{F}(\vec{J}^k)$ be the Jacobi iterates
 - by Kleene/Scott iterative fixpoint Theorem 15.26, $\vec{J}^{\omega} = \bigsqcup_{k \in \mathbb{N}} \vec{J}^k = \mathsf{lfp}^{\complement} \vec{F}$
 - We prove that any Jacobi iterate is ultimately bounded by a chaotic iterate *i.e.* $\forall k \in \mathbb{N}$. $\exists k' \geq k$. $\vec{J}^k \dot{\sqsubset} \vec{X}^{k'}$.
 - By the fairness hypothesis of Def. 22.2, $\eta(k) = \max\{\min\{k' \ge k \mid i \in \Im(k')\} \mid i \in \{1, ..., n\}\}$ is well defined.
 - In the chaotic iterations, all components have evolved at least once between k and $\eta(k)$.
 - Let us extract the subsequence $\lambda(0) = 0$ and $\lambda(k+1) = \eta(\lambda(k))$.
 - We have $\forall k \in \mathbb{N}$. $\vec{J}^k \stackrel{.}{\sqsubseteq} \vec{X}^{\lambda(k)}$ i.e. by waiting long enough, any Jacobi iterate will be overapproximated by some chaotic iterate.
 - The proof is by recurrence.

- For k=0, $\vec{J}^0=\vec{X}^{\lambda(0)}=\vec{X}^0=\bot$ by def. λ so we conclude by reflexivity.
- Assume by induction hypothesis that $\forall k' \leq k \in \mathbb{N}$. $\vec{J}^{k'} \stackrel{.}{\sqsubseteq} \vec{X}^{\lambda(k')}$ where the \vec{J}^{ℓ} and \vec{X}^{ℓ} , $\ell \in \mathbb{N}$, are $\stackrel{.}{\sqsubseteq}$ -increasing.
- \vec{F} is continuous hence increasing so $\vec{J}^{k+1} = \vec{F}(\vec{J}^k) \stackrel{.}{\sqsubseteq} \vec{F}(\vec{X}^{\lambda(k)})$.
- For all $i \in \{1, ..., n\}$, the i^{th} component has evolved at least once at k_i' between $\lambda(k)$ and $\eta(\lambda(k)) = \lambda(k+1)$
- So the increasing chain has the form $\vec{X}^{\lambda(k)} \sqsubseteq \vec{X}^{k'_i-1} \sqsubseteq \vec{X}^{k'_i} \sqsubseteq \vec{X}^{\eta(\lambda(k))} = \vec{X}^{\lambda(k+1)}$ where $\vec{X}^{k'_i}_i = \vec{F}_i(\vec{X}^{k'_i-1})$.
- \vec{F} hence \vec{F}_i is continuous hence increasing so by def. of the iterates, $\vec{F}_i(\vec{X}^{\lambda(k)}) \sqsubseteq \vec{F}_i(\vec{X}^{k'_i-1}) = \vec{X}^{k'_i} \sqsubseteq \vec{X}^{\lambda(k+1)}$.
- By componentwise def. of \vec{F} and $\dot{\sqsubseteq}$, we have $\vec{F}(\vec{X}^{\lambda(k)}) \dot{\sqsubseteq} \vec{X}^{\lambda(k+1)}$ hence, by transitivity $\vec{J}^{k+1} \dot{\sqsubseteq} \vec{X}^{\lambda(k+1)}$.
- By recurrence $\forall k \in \mathbb{N} \cdot \vec{l}^k \sqsubseteq \vec{X}^{\lambda(k)}$.

П

- (3) In conclusion,
 - We have shown $\{\vec{X}^{\lambda(k)} \mid k \in \mathbb{N}\} \subseteq \{\vec{X}^k \mid k \in \mathbb{N}\}$
 - So Ifp $^{\stackrel{c}{=}} \vec{F} = \bigsqcup_{k \in \mathbb{N}} \vec{J}^k \stackrel{c}{=} \bigsqcup_{k \in \mathbb{N}} \vec{X}^{\lambda(k)} \stackrel{c}{=} \bigsqcup_{k \in \mathbb{N}} \vec{X}^k \stackrel{c}{=}$ Ifp $^{\stackrel{c}{=}} \vec{F}$ (by def. of lubs,)
 - So $\bigsqcup_{k \in \mathbb{N}} \vec{X}^k = \mathsf{lfp}^{\sqsubseteq} \vec{F}$ by antisymmetry.

Conclusion

- Chaotic iterations cover all iteration algorithms used to solve systems of equations in static analysis such as the *work list* [Kildall, 1973].
- The chaotic iterations generalize from continuous to increasing operators on CPOs using transfinite iterations and to asynchronous iterations where the components evolve in parallel [P. Cousot, 1977, 1978]¹

en.wikipedia.org/wiki/Data-flow_analysis

¹see also [Wei, 1993] (with stronger hypotheses).

Bibliography I

- Cousot, Patrick (Sept. 1977). Asynchronous iterative methods for solving a fixed point system of monotone equations in a complete lattice. Tech. rep. R.R. 88. 15 p. Grenoble, France: Laboratoire IMAG, Université scientifique et médicale de Grenoble.
- (Mar. 21, 1978). "Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique de programmes (in French)". Thèse d'État ès sciences mathématiques. Grenoble, France: Université de Grenoble Alpes.
- Cousot, Patrick and Radhia Cousot (1977). "Automatic synthesis of optimal invariant assertions: Mathematical foundations". SIGART Newsl. 64, pp. 1–12.
- Isaacson, Eugene and Herbert Bishop Keller (1994). *Analysis of Numerical Methods*. Dover Books on Mathematics.

Bibliography II

Kildall, Gary A. (1973). "A Unified Approach to Global Program Optimization". In: *POPL*. ACM Press, pp. 194–206.

Wei, Jiawang (1993). "Parallel Asynchronous Iterations of Least Fixed Points". *Parallel Computing* 19.8, pp. 887–895.

Home work

Read Ch. 22 "Chaotic iterations" of

Principles of Abstract Interpretation
Patrick Cousot
MIT Press

The End, Thank you