Master Chemistry PSL ICI

December 2021, Philippe Nghe, ESPCI Paris

Self-organization in dissipative systems

Self-organization in dissipative systems

CATABOLISM

Volume growth, division

REPLICATION

The cell as a bag of chemicals

~ 10³-10⁴ molecular species ~10⁴-10⁵ chemical reactions

Glycolysis, a catabolic pathway

Diauxie

(Jacques Monod, 1940)

The stringent response

Growth laws experimental test

Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z., & Hwa, T. (2010). Interdependence of cell growth and gene expression: origins and consequences. *Science*, *330*(6007), 1099-1102.

		translation mutants			antibiotics			
Strain Medium	EQ2	Xac	SmR	SmP	Xac in cAA+glc Cm conc. (μΜ)			
M63+glyc		0	Δ	∇	2	2		
M63+gluc		0	Δ	\triangle	4	4		
cAA+glyc		0		\triangle	8	8		
cAA+gluc		0	Δ	∇	12	12		
RDM+glyc		Historical Strain B/r; Ref. (10)						
RDM+gluc		data:						

Strain	EQ2/EQ3						
	Chloramphenicol conc. (μM)						
Medium	0	2	4	8	12		
M63+glyc		Q	4	8	12		
M63+gluc		2	4	8	12		
cAA+glyc		(4	©	(2)		
cAA+gluc		2	4	8	12		
RDM+glyc		3	4	3	1		
RDM+gluc		2	4	8	12		

Phenotypic heterogeneity in bacteria

Bacterial persistence

Stochasticity in cell differentiation

Intestinal crypts

Organoids

Drosophila Embryogenesis

Narrated by Philipp Keller, PhD Group Leader, Janelia Research Campus

Bicoid in drosophilia

Ephrussi, A., & St Johnston, D. (2004). Seeing is believing: the bicoid morphogen gradient matures. *Cell*, *116*(2), 143-152.

https://www.ibiology.org/development-and-stem-cells/bicoid/

Principles of Development

Fifth Edition

Zebrafish development from egg to embryo

Somitogenesis: vertebrates

Tissue specificiation: Hox genes

Hueber, S. D., Weiller, G. F., Djordjevic, M. A., & Frickey, T. (2010). Improving Hox protein classification across the major model organisms. *PloS one*, *5*(5), e10820.

