1	2	3	4	5	6	7	8	9	CALIF.

Apellido y Nombre:

Condición:

Libre

Regular

Algebra III - Final 8 de julio de 2022

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos. Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 30 pts. en la parte práctica.

Parte Teórica (30 pts.)

- 1. (14 pts) Enunciar y demostrar el Teorema de Cayley-Hamilton generalizado.
- 2. (12 pts) Enunciar y probar el Teorema de Ortogonalización de Gram-Schmidt.
- 3. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Sea V un k-espacio vectorial de dimensión $n \geq 2, \lambda \in \mathbb{k}$ y $T: V \to V$ una transformación lineal tal que $m_T = (x - \lambda)^n$. Entonces existen exactamente n subespacios T-invariantes.
 - (b) (3 pts) Si S es un conjunto de 8 matrices $A \in \mathbb{C}^{6\times 6}$ tales que $A^3 = 0$, entonces hay dos matrices en S que son equivalentes.
 - (c) (3 pts) Toda isometría (es decir, transformación lineal que preserva normas) de un espacio vectorial con producto interno es un isomorfismo

Parte Práctica (70 pts.)

5. (15 pts) Sea V el espacio vectorial de los polinomios de grado ≤ 4 , y $T:V\to V$ la transformación lineal dada por T(p)=xp'-p+p(1). Hallar los polinomios minimal y característico de T.

Decidir si es diagonalizable y si existe un vector cíclico.

Hallar la forma de Jordan y una base en la cual tiene dicha forma.

- 6. (15 pts) Sea $T: \mathbb{R}^5 \to \mathbb{R}^5$ una transformación lineal tal que $T^3 = I$ y la dimensión del autoespacio asociado al 1 es 1. Hallar todas las formas racionales posibles para T. Hacer lo mismo pero considerando $T: \mathbb{C}^5 \to \mathbb{C}^5$.
- 7. (15 pts) Sea V un \mathbb{C} -espacio vectorial de dimensión finita con producto interno, $T:V\to V$ una transformación lineal. Probar que T^* es un polinomio en T si y sólo si T es normal.
- 8. Sea $A \in \mathbb{R}^{3\times 3}$ una matriz simétrica con autovalores $\lambda_1, \lambda_2, \lambda_3, T : \mathbb{R}^{3\times 3} \to \mathbb{R}^{3\times 3}, T(B) = AB + BA$.
 - (a) (8 pts) Sea \mathcal{A} el subespacio de $\mathbb{R}^{n\times n}$ de las matrices antisimétricas. Probar que \mathcal{A} es T-invariante.
 - (b) (12 pts) Probar que si $\lambda_i + \lambda_j \neq 0$ para todo par $i \neq j$, entonces $T_{|\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ es un isomorfismo.
- 9. Sean V, W dos k-espacios vectoriales de dimensión finita, $\mathcal{L}(V, W)$ el espacio vectorial de todas las transformaciones lineales de V en W y $\{w_1, \dots, w_n\}$ una base de W.
 - (a) (5 pts) Dados $f_1, \dots, f_n \in V^*$, definimos $T_{f_1,\dots,f_n}: V \to W, T_{f_1,\dots,f_n}(v) = \sum_{i=1}^n f_i(v)w_i$. Probar que T_{f_1,\dots,f_n} es una transformación lineal.
 - (b) (10 pts) Sea $\Phi: \underbrace{V^* \times \cdots \times V^*}_n \to \mathcal{L}(V, W)$ la función dada por $\Phi(f_1, \cdots, f_n) = T_{f_1, \cdots, f_n}$. Probar que Φ es un isomorfismo.