April 3 rd (Morday) Zoad map for the 2nd half of the ITOT (Industrial IDT) Data Validation - FIF.T Fast Fourier Transform) (2) - Power Spectrum Technique 3 Hardware Architecture Aspects IDNSelective Electrode Sensors (Many Applications i'n different Industry Sector. Homework Extension Next Monday with Demo Project: Due the 2nd of the Senester. Implementation (PID.

(1/3) 330/0 TZC Sensor FUM Motor Control Pre-processing CKT. Research Put; PRT Tresentation Technology in the Embedded world. Report (Gruideline) thoposal (pre tame), submit to the CANVAS. for Atoronal By Wednesday Monday Next

Demo & Presentation! By the end of

Working Principle of Battery - Electrical E...

Fig. 3

Observation: Use Battery As An Example to Demonstrate Ion Selective Electrode Sensor. See NH3/NH4+

Sewar in Fig. 1.

Characteristic

Typical NH3 Calibration Curve

Note |. We like to have the Linear Characteristics from the Calibration

Chrue, Snuh as [1,10], [10,100], [100, 1000], etc.

Visit Note 2: For the Now Linear Tart, Let's Perform Linearitation — By using Fiece-wise Linear Lines.

Piece-Mise Line !. Piece-Mise Une Z

Next Stop is to formulate Each Line by using Linear Equation.

$$\frac{x^{2}-x^{1}}{A^{2}-A^{1}}=\frac{x-x^{1}}{A^{2}-A^{1}}\qquad \qquad (1)$$

Solve for y=bx+c (see the trevious Notes).

With Simplification By Removing Very Low Concentration Part, we have

Then, Chargethe Cal-Curve
to the Characteristic Curve
e.g. Hovitontal Axis is
voltage for the Design of
interfere.

Why is 4-20 mA Current Used for Industrial Analog Sensors?

ADS1015 12-Bit ADC - 4 Channel with Programmable Gain Amplifier - STEMMA QT / Qwiic

Product ID: 1083

\$9.95

Fig.3

TEXAS INSTRUMENTS Note: Input Voltage

Range

ADS1013 ADS1014 ADS1015

www.ti.com

SBAS473C -MAY 2009-REVISED OCTOBER 2009

ELECTRICAL CHARACTERISTICS

All specifications at -40 °C to +125 °C, VDD = 2.3V, and Full-Scale (FS) = ± 2.048 V, unless otherwise noted.

Typical values are at +25 °C.

TEST CONDITIONS	ADS1013, ADS1014, ADS1015			
	MIN	TYP	MAX	UNIT
$V_{IN} = (AIN_P) - (AIN_N)$		±4.096/PGA)	V
AIN _P or AIN _N to GND	GND		VDD	V
		See Table 2		
$FS = \pm 6.144V^{(1)}$		10		МΩ
FS = ±4.096V ⁽¹⁾ , ±2.048V		6		МΩ
FS = ±1.024V		3		МΩ
FS = ±0.512V, ±0.256V		100		МΩ
	$V_{IN} = (AIN_P) - (AIN_N)$ $AIN_P \text{ or } AIN_N \text{ to } GND$ $FS = \pm 6.144V^{(1)}$ $FS = \pm 4.096V^{(1)}, \pm 2.048V$ $FS = \pm 1.024V$	TEST CONDITIONS MIN $V_{IN} = (AIN_P) - (AIN_N)$ $AIN_P \text{ or } AIN_N \text{ to } GND$ $FS = \pm 6.144V^{(1)}$ $FS = \pm 4.096V^{(1)}, \pm 2.048V$ $FS = \pm 1.024V$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEST CONDITIONS MIN TYP MAX $V_{IN} = (AIN_P) - (AIN_N)$ $\pm 4.096/PGA$ $\pm 4.096/PGA$ AIN_P or AIN_N to GND GND VDD See Table 2 FS = $\pm 6.144V^{(1)}$ 10 FS = $\pm 4.096V^{(1)}$, $\pm 2.048V$ 6 FS = $\pm 1.024V$ 3

Zo Design Objective: To Design A tre-process unit to make the Analog Sensor Onlynt match to the AVC input dynamic Range.

Note 1. For more generalized Case, Let

Unin = 65 inv, Vmax = 350 mV.

Fig. 1a then, the Upper Bound after

Offset is

Umax - Umin

Step 2. To magnify the Sensor Owtent Range to Match the Entire Dynamic Range of the ADC.

Concentration

Find the Gain for the Magnification

Where 3,3 UDC is from 1015 ADC for Example.

Example: Hardware Design for the the processing.

1-Olecture 10_Op Amp Circuits.pdf -

Note: Wing Dating for the processing.

OpAmp Device As a Buffering Stage

Both Analog and Digital Circuit

Note Z: Backyround

(1) To protect the previous stage's output signal, which is the input to the next stage, while sampling/connecting the signal to its next stage Voren Copp logic circuit. (2) Unit gain non-inverting OpAmp

Ideal OpAmp Properties: (1) very large gain, A>>M; (2) draws very little current, I ~0, e.g., very Smiler high impedance; (3) $V_0 = A(V_+ - V_-)$ is finite range, which leads to $V_+ = V_-$.

For Example 100 MIS ON

Free for Down Load, Originated from Linear Analog Devices https://www.analog.com > Itspice-simulator A Silison Valley Company

LTspice Information Center

LTspice® is a powerful, fast, and free SPICE simulator software, schematic capture and waveform viewer with enhancements and models for improving the ...

EasyEDA https://easyeda.com

EasyEDA - Online PCB design & circuit simulator

EasyEDA is a free and easy to use circuit design, circuit simulator and in your web browser.

Requirements: To Be Able to Run SPICE Similator

Apriliz (Wed).

Note 1. The Last Project Preparation.

(Requires the Semester End

Presentation)

Notez. Implementation of AX Noit.

P.O.T. 47Kor 470Korsimilar.

ADC -> Target -> PWM-> Controller

Note3. ADC Data Validation

FFT. Power Speatrum.

Note t. Road Map.

IIOT (Analog Sensors. 4~ ZomA)

Preprocessing

OpAmp (Ou-Line Simulation Tool)

Note: 3. Similation of the

Sensor Ordent

As the input to

the pre-process in a

Grant.

April 17 (Monday).

1° Project (Integration of Honework

+ ADC). The May 7 (Sunday)

Plus Research Pont (Presentation.

2° Bonus Prints (5%) for

BLDC Motor Control;

3° Sphose (4, 1, 1, 12) Motor

Control.

3° Spice Simulation for

Example: Continuation. Trovide: "offset"

NH3 Concentration (M)

10-1

ppm

350-b5=285 rmv

mv

T0,4095]

s t

Background/Formulation. F to Validate (x(n) &, or (x(n) | n=0,1,2, ..., } Eulau Formula Background/Formulation. eja= cosa+jusina ... (3) $\propto (n)$ D.F.T (Discrebe Fourier Transform) is Power Spectrum of I (m). defined as follows. Time Index

X(m) = 1 \(\sum_{N=0}^{N-1} \times (n) \) e \(\sum_{N=0}^{N-1} \) \(\sum_{N=0}^ physial meaning: I(m), Discusto Famier
Transform.

M: Frequency Index

M=0, DC. Index; I(0) DC. Component. Let's Define the Power Spectrum as: +(m) = 1 Pe[X[m)]+Im [X[m)] Where N-1 (4)

Re[X(m)] = Re[D]X(n)ejzmn

Re[X(m)] In[X(m)]=Im[] ZXIN)ejzmn m=1, X(1) Foundamental Frequency Correspondent. Example:

Ref: github

N=4

2 13 4 4 xinst N: Opereriod. To tal No. of Points Per a period. Such as N=1024, 2048, 4069.etc. N=ZX for FFT Doly. (Fast Fourier Transform) x(0) = 2 , x(1) = 3 , x(3) = 4 , x(3) = 46-)SK D = COS SK D-)SIN SK D Find I(m) D.F.T. X(m)= 4 5 x(n)e)21 4 ... (5)

Pext. From Egyls) Part II: Pesearch. PPT. Unte 3: Fresentation Date $X(0) = \frac{1}{4} \sum_{n=0}^{\infty} \chi(n) e^{-\int_{0}^{2\pi} N} \int_{0}^{2\pi} \chi(n)$ 8th (monday) 10th Final (18th, Th) 12:15-2:30 pm. $=\frac{1}{4}\left(\times(0)+\chi(1)+\chi(2)+\chi(2)\right)$ 1) Presentation. Last Day of Class X(1)= 1 2 x(n)e-124. 1.1 15th. (Monday) Review. = 4 120).1+x(1)e)27+ Example: Continuation of D.F.T. Example. x(z)e-jzn= + x(z)e-jzn=4) For M=Z, from Egy (1) PP58 = + 2 x(n)e jzm 2.1 Aprilia (Wed) Final Exam Schedule: 18th (Thur) = + (x(0)e) + x(1)e) = + x(2)e Group I Classes 12:15-2:30 pm Group I classes are those classes which meet M, W, F, MTW, MWR, MTWF, MWRF, MTWRF, MW, WF, MWF, MF, TW, WR, MT, WS. + X(3)e-725-35-7 **Final Examination Days Regular Class Start Times Final Examination Time** 7:00 through 8:25 AM Friday, May 19 7:15-9:30 AM 8:30 through 9:25 AM Tuesday, May 23 7:15-9:30 AM 9:30 through 10:25 AM Thursday, May 18 7:15-9:30 AM X(m)= + J x(n)e-j 2 34 10:30 through 11:25 AM Monday, May 22 9:45 AM-12:00 PM 11:30 AM through 12:25 PM Wednesday, May 17 9:45 AM-12:00 PM 12:30 through 1:25 PM Friday, May 19 12:15-2:30 PM 12:15-2:30 PM 1:30 through 2:25 PM Tuesday, May 23 2:30 through 3:25 PM 12:15-2:30 PM Thursday, May 18 (x(v)e-j-0x()e)===+x(z)e-j==== 3:30 through 4:25 PM* Monday, May 22 2:45-5:00 PM 4:30* through 5:25 PM* Wednesday, May 17 2:45-5:00 PM Note: Final Examis in the + X(0)e-jz=3+7 Same formulas the midterm. Be Swe to Bring your Rotoly pe System. Note Z: Project DN CANVAS. Part | & Parti. 25pts.

Part 1: Integration of TID Control

WAL'ATC

Sphing-2023 60 Howe, we can form a Col. Vector By Arranging X(0), X(1), ..., X(3) as follows. $\langle g \rangle \times$ $\propto (l)$ $\propto |z|$ X (3) Wiz, i for Row. j. for Col. Where Wij= e-jor "> .. (4) Where WDD WOL WOZ WOS From Enlar Egyatton Wio Wii Wiz Wis 6-jan JA COS SAJA - Jeinsuring WZO WZI WZZ WZ Find the Entry of E Medical.

ext 15+ Row, 16+ Col. Location. W30 W31 W32 W33 Wy & Since, we have tryn (5) Wight = 1, 1=2 6 - 154 - 15 = 6 - 154 - 15 Index for Row. Index for Col. From Eyr (1) \$ (2), we have 9=0 -1547 | 1,=0=1 $\langle g \rangle \times$ WOO WOI WOZ WOS for the 3rd Row, 2nd col. $\propto (1)$ N'O N" WIS M2 $\propto |$ WZO WZI WZZ WZ3 | (x (z)) W30 W31 W32 W33 e-jzm 10 | = -jzm 4

$$P(0) = \sqrt{R_c^2[X(0)] + Im^2[X(0)]}$$

$$= \sqrt{3.75 + 0^2} = 3.25$$

Now, Consider the Last Row, Lost (al. 1= N-1=3, j= N-1=3.

P-j21 3:3 = e-j 97 = e-j 87-j #

= 0-145-1= 1.05=

= (05½-jsin = 0-j.1=-j

X10)=4(2+3+4+4)=3.25 -I(1)= \f(2-3j-4+4j)= \f(-2+j) X(z) = + (2-3+4-4) = +(-1) 又(3)= +(2+3j-4-4j)=+(-2-j)

formel,

P(1) = \ P2[X1)]+In [X1)]

= 1 (34)2+(1/4)2 finish the evaluation

Cosza-jsinzn=1

April 24 (Monday).

From the Handont, Ref from the github. Example: FFT.C

$$\begin{bmatrix} X & 10 \\ X & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & j \end{bmatrix} \begin{bmatrix} 7 \\ 3 \\ 4 \\ 4 \end{bmatrix}$$

Stepl. Find ENXN. Z. Find D.F.T.

using Enxu And x(r).

Stop3. Find P(m) for m=0,1,..., N-1

Spring 2023 Note: You can Compile Build for Your Laptop platform. No Deed for 2 * Program is for CMPE class use, see Dr. Harry Li's lecture notes for details * Reference: Digital Signal Processing, by A.V. Oppenhaim; 3 * fft.c for calculting 4 points input, but you can easily expand this to 2^x inputs; Date: Sept. 2009; * Note: cross compiled for arm-linux-gcc, be sure to modify to link math lib when compiling, by adding -lm This code then was tested on ARM11 board. Feb 2015. ~/Desktop/SJSU/befor2018/EE264/EE264Ubuntu/OpenGL/CT/lec22FFTIFFT\$./fft Marry@harry-laptop: ~/Desktop/SJSU/befor2018/EE264 harry@harry-laptop:~/Desktop/SJSU/befor2018/EE264/ IFFT\$ ls //This program is converted from a FORTRAN program fft fft_cpp.cpp fft_ifft_cpp.cpp ifft_cpp.cpp //book by A.V. Oppenheix Note: To Compile harry@harry-laptop:~/Desktop/SJSU/befor2018/EE264/ - Im ON X86 Platform //Status: Tested; * *******Before***** //gcc fft.cpp -o fft X[1]:real == 2.000000 imaginary == 0.000000 //Additional information: See Dr. Hua Harry Li's h X[2]:real == 3.000000 imaginary == 0.000000 //fft.cpp for calculting 4 pts input, but can easil X[3]:real == 4.000000 imaginary == 0.000000 X[4]:real == 4.000000 imaginary == 0.000000 April 26 (Wed) ********After***** X[1]:real == 13.000000 imaginary == 0.000000 Example: Data Validation using Power X[2]:real == -2.000000 imaginary == 1.000000 X[3]:real == -1.000000 imaginary == 0.000000 Spectrum of the F.F.T. X[4]:real == -2.000000 imaginary == -1.000000 It took me 145 clicks (0.000000 seconds). harry@harry-laptop:~/Desktop/SJSU/befor2018/EE264/ Notel: Baseline Code 128 pts. Wrte: P(m)= + (m+ KN) ... (1) Power Spectrum. Periodical Function. Nyquest Sampling Theorem; Period= N tsampling 32fmax ... (1) P(m) = P(-m) Even function TC P(0) (rente 128 pts Data As a Buse Line Test. 64 pts One period. N=128

Execution of the F.F.T and Computation of the Power Spedrum, Lend to the Similar Plot as in Figure . Plot1.

T(m) | Freq. Componnent at the highest Frequency Index m.

Now, Modify the Input Data to
bypts' 1"s + 32pts"," Leave
32pts "0",

e.g. q6 pts"1"5 plus 32 pts"0". plot the p(m), plot. Z

Observation: That I (butts"1"5)

has move fryher Freguency Components. OR, move precisely move energy in the higher Freguency Range.

Create 3rd Data Set, abtib = 112 "1"S.
fewer higher Frequency Comp.

Gribb's ~

Remark: The Simul Energy Distributions
in the Righer frequency Range
Can be demonstrated with These
3 plots. Therefore the Sampling

frequency for each of them satisfies the following condition

- Sampling = Sampling = Isamphing

20225-101-note-part2-cmpe242-2022-05-9.pdf

X(2)

N/Z

N/Z

Smaling

Note: The frampling sets Arant of each period of the P(m);
Note Z: The Higher Frequency Tempe.
The energy distribution of Non-Zevo.
P(m) Contributes to "Alisazing".
Note 3: To Validate ADC Data,
we define the following index

N= mED1 /N-1 P(m) -. (5)

where IZ, : Righer frequency Range.

Such as

Now = Now -...(b)

No ex defined lower

Bound of the Righ Freq.

Range.

Example, for N= 128. 1/2 Righert Freq. Index, N=64 then depending on the Application We can have Now = 50

7 5 + (m) ...

May 1st (Monday)

Example: Compute power spectrum for the data validation using N=4; Sol:

From the power spectrum P(0), P(1), P(2), P(3) for the entire period N;

Suppose we want validate the date based on equation (5), assuming the frequency index m = 1, and 2;

eta M \leq 20%

Hence,

The total energy = P(0) + P(1) ... + P(3); (please perform the calculation off line)

The energy in the higher frequncy range:

P(1) + P(2) + P(3)

Then the ration eta:

eta =
$$\frac{P(1) + P(2) + P(3)}{P(0) + P(1) + P(2) + P(3)}$$

Comparing this result to the limit set by the application requirement 20%

If not, then increase the sampling frequency per Nyquest Theorem.

Now consider the last part of the class, PWM and ADC Archietecture.

Example:

Ref. Timing/SPRs for PWM

/ 2022S / 2022S-107e-pwm-waveform-v3-2018-3-4.jpg

PWM Operation

FromSamsung ARM11 data sheet;

Ref: pp. 1

2022S-101-note-part2-cmpe242-2022-05-9.pdf

Ref: Samsung ARM 11 CPU datasheet

2021F-105-#0-cpu-a... Add files

Using the example from the lecture note, pp. 1

2022S / 2022S-107e-pwm-waveform-v3-2018-3-4.jpg

Five steps for defining (1) frequency of the PWM output; (2) the duty cycle; Note 1: CNT is responsible for defining f_pwm, the calculation of N, e.g., the number of counts is given in Equation (4) on this pape.

Note 2: f_pwm is achieved by counter down counting from N, once it reached to 0, then interrupt is triggered and then repeating the process, so f_pwm is achieved.

Note 3: for duty cycle definition, we compute 2 parts, the first one is the calculation of the counts number from the percentage of the desired duty cycle. Example: 69% duty cycle, 69% * N, if N in the waveform example is 159, then M = 109;

In summary, the 5 steps process of setting up f_pwm and duty_cycle is given below:

Example:

- Initialize the TCNTBn with 159(50+109) and the TCMPBn with 109.
- Start Timer by setting the start bit and manual update bit off.

The TCNTBn value of 159 is loaded into the down-counter, the output is driven low.

- 3. When down-counter counts down to the value in the TCMPBn register 109, the output is changed from low to high.
- 4. When the down-counter reaches 0, the interrupt request is generated.
- 5. The down-counter is automatically reloaded with TCNTBn, which restarts the cycl

	57