ResNet DenseNet

Pattern Recognition & Machine Learning Laboratory Geonjun Yang, Aug. 3rd, 2021

Goal

- Provide evidence that residual network (ResNet) is easier to optimize
- Gain high level of accuracy from considerably increased depth

Motivation

- > The more layers are stacked, the higher accuracy you get
 - Problem of vanishing/exploding gradients
- Offer a substantially deeper and simpler model

Contribution

- ➤ Won 1st place on the ILSVRC 2015
- Achieved 3.57% error on the ImageNet test set using ensemble
- Obtain 28% relative improvement on the COCO object detection dataset
- ResNet is still used as backbone framework of lots of tasks

Training error and test error on CI-FAR-10

Residual block

- Reduce the optimization difficulty of network by using residual block
 - The deeper network is, the more difficult to train as you wanted
 - Simply stacking a lot of layers doesn't guarantee high performance

Instead of training, which is an inherent mapping and difficult to train immediately train

Network architectures

- Plain Network
 - Mainly inspired by the philosophy of VGG nets
 - 3x3 filters
 - If the feature map size is halved, the number of filters is doubled
 - Down sampling by conv layers that have a stride of 2
 - 1000 fully connected layer with softmax
- Residual network
 - Insert shortcut connections based on plain network
 - Identity shortcuts can be directly used when input and output are of the same dimensions
 - Zero padding
 - Projection shortcut (done by 1x1 convolutions)
 - Adopt batch normalization
 - Learning rate starts from 0.1 and is divided by 10 when the error plateaus

Network architectures for ImageNet

Experiments

- ImageNet Classification
 - Plain networks
 - 34-layer plain net has higher validation error than 18-layer net
 - Degradation problem observed
 - Unlikely caused by vanishing gradients
 - May have exponentially low convergence rates

Residual Networks

- 34-layer ResNet is better than 18-layer ResNet
- Considerably lower training error and generalizable to the validation data
- Faster convergence at the early stage

ResNet-18
ResNet-34
20
10
20
30
40
34-layer
20
iter. (1e4)

18 layers

34 layers

Training on ImageNet

Top-1 error on ImageNet validation

plain

27.94

28.54

ResNet

27.88

25.03

Densely Connected Convolutional Networks [G. Huang et al., 2017] (1/4)

Goal

- Offer Dense Convolutional Network (DenseNet) which has less parameters and shows better performance than ResNet
- Lower computation cost

Motivation

- > All recent network topologies create short paths
- DenseNet connects each layer to every layer

Contribution

- Alleviates the vanishing gradient problem, strengthen feature propagation
- Encourages feature reuse, reduce the number of parameters
- Obtain significant improvements over the state-of-the-art at that time

Dense block

Densely Connected Convolutional Networks[G. Huang et al., 2017] (1/4)

Dense block

- Connect all layers directly with each other
 - preserve the feed-forward nature
- Combine features by concatenating
 - To concatenate features, the sizes of all feature maps should be the same
 - Contains transition layer consisting of batch normalization, 1x1 conv, 2x2 average pooling

Connectivity

- > ResNet
 - contains convolution layer or pooling, batch normalization, ReLU
 - May impede the information flow in the network
- DenseNet

DenseNet with three dense blocks

Densely Connected Convolutional Networks [G. Huang et al., 2017] (1/4)

Advantages of DenseNet connectivity

- Strong gradient flow
 - Arrow signal can be easily propagated
 - Implicit and direct deep supervision
- Parameter & computational efficiency
 - In normal conv net, the number of parameters is proportional to (: layer width)
 - In DenseNet the number of parameters is proportional to (growth rate)
- Maintains low complexity features
 - In standard conv net, classification is done based on the last layer
 - However, in DenseNet classifier uses features of all complexity levels
 - Uses both complex features and simple features
 - Gives smooth decision boundaries and high generalization performance

Use features of all complexity levels

 $h_4(x)$

 $+w_2h_2(x)$

 $+w_3h_3(x)$

 $+w_4h_4(x)$

Densely Connected Convolutional Networks [G. Huang et al., 2017] (1/4)

Results on CIFAR-10

- With data augmentation
 - DenseNet with much less parameters (0.8M)_{1.0} shows similar performance to ResNet with 10.2M parameters
- Without data augmentation
 - DenseNet shows significantly lower test error than ResNet
 - Much better performance than previous SOTA

Results on ImageNet

- DenseNet-BC refers to DenseNet with
 - : # channels in transition layer
 - # output channel
- At the same level of test error, DenseNet-BC shows three times less parameters than those of ResNet

Results on CIFAR-10

Results on ImageNet