Лекция 2: Полиноми на Чебишов. "Минимизиране" на грешката при интерполиране

Гено Николов, ФМИ, СУ "Св. Климент Охридски"

Съдържание на лекцията

- Минимизиране на грешката при интерполиране
- Полиноми на Чебишов от първи род: дефиниция и свойства
- Оптимални възли за интерполиране

Минимизиране на грешката при интерполиране

От доказаната в Лекция 1 Теорема 2 следва, че за всяко $x \in [a,b]$,

$$|f(x)-L_n(f;x)| \leq \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} |(x-x_0)(x-x_1)\cdots(x-x_n)|,$$

където M_{n+1} е горна граница на $|f^{(n+1)}(x)|$ в [a,b]. Оттук се вижда, че оценката на грешката при приближаване с интерполационния полином на Лагранж зависи съществено от избора на интерполационните възли x_0, \ldots, x_n , тъй като величината

$$\max_{x \in [a,b]} |(x-x_0)(x-x_1)\cdots(x-x_n)|$$

зависи от тях. Така възниква следната екстремална задача:

Екстремална задача

Екстремална задача

Да се намерят тези точки $\{x_k^*\}_{k=0}^n, \ a \leq x_0^* < \dots < x_n^* \leq b,$ при които

$$\max_{a \leq x \leq b} |(x - x_0^*) \cdots (x - x_n^*)| = \inf_{a \leq x_0 < \cdots < x_n \leq b} \max_{a \leq x \leq b} |(x - x_0) \cdots (x - x_n)|.$$

С други думи, трябва да се намери полином от вида $(x - x_0)(x - x_1) \cdots (x - x_n)$, който се отклонява минимално от нулата в [a, b]. Решението на тази задача се дава чрез така наречените полиноми на Чебишов от първи род.

Полиноми на Чебишов: дефиниция

Полиномът на Чебишов от първи род от n-та степен се бележи обикновено с $T_n(x)$ и се определя в интервала [-1,1] чрез равенството

$$T_n(x) = \cos(n\arccos x), \quad x \in [-1, 1]. \tag{1}$$

Ще покажем най-напред, че изразът в (1) е полином от степен n. Непосредствено от определението следва, че

$$T_0(x) = 1,$$

 $T_1(x) = \cos(\arccos x) = x.$

Освен това, съгласно формулата за събиране на косинуси,

$$T_{n+1}(x) + T_{n-1}(x) = \cos((n+1)\arccos x) + \cos((n-1)\arccos x)$$

= $2\cos(\arccos x).\cos(n\arccos x)$

$$= 2x T_n(x), \qquad n \geq 1.$$

Полиноми на Чебишов: дефиниция

Оттук получаваме рекурентната връзка

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$$
 (3)

С нейна помощ можем да построим в явен вид следващите няколко полинома на Чебишов.

$$T_2(x) = 2xT_1(x) - T_0(x) = 2x \cdot x - 1 = 2x^2 - 1,$$

$$T_3(x) = 2xT_2(x) - T_1(x) = 4x^3 - 3x.$$

Аналогично,

$$T_4(x) = 8x^4 - 8x^2 + 1,$$

 $T_5(x) = 16x^5 - 20x^3 + 5x,$
 $T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1.$

Полиноми на Чебищов: свойства

От рекурентната връзка се вижда, че коефициентът пред x^n в $T_n(x)$ се получава от коефициента пред x^{n-1} в $T_{n-1}(x)$ чрез умножение с 2. Тъй като $T_1(x) = 2^0 x$, то $T_n(x)$ ще бъде от вида

$$T_n(x) = 2^{n-1}x^n + \cdots$$

Така показахме, че при $n \geq 1$, $T_n(x)$ е алгебричен полином от степен n с коефициент 2^{n-1} пред x^n . Сега да отбележим и други интересни свойства на $T_n(x)$. От определението (1) веднага следва, че

$$|T_n(x)| \le 1$$
 за всяко $x \in [-1, 1]$. (4)

Равенство се достига само за тези точки x от [-1,1], за които $|\cos(n \arccos x)| = 1$, т.е. при

n arccos $x = k\pi$, където k е цяло число.

Полиноми на Чебищов: свойства

От това уравнение определяме екстремалните точки η_k на $T_n(x)$ в [-1, 1] (т.е. точките η_k , за които $|T_n(\eta_k)| = 1$). Получаваме $\eta_k = \cos \frac{k\pi}{n}$. Когато k приема всички цели стойности, η_k описва циклично само n+1 различни точки. Затова всичките екстремални точки на T_n в [-1,1] са

$$\eta_k = \cos\frac{k\pi}{n}, \quad k = 0, \dots, n.$$

Директно се проверява, че

$$T_n(\eta_k) = (-1)^k, \quad k = 0, \dots, n.$$
 (5)

Полиномите T_n имат твърде интересно поведение в интервала [-1,1] (виж чертежа). Графиката на $T_n(x)$ лежи изцяло в квадрата $[-1,1] \times [-1,1]$, като се допира алтернативно в точките с абсциси η_k до правите y = 1 и y = -1. Казваме, че $T_n(x)$ осъществява алтернанс в точките $\{\eta_k\}_{k=0}^n$

Графика на $T_n(x)$, n=7

Полиноми на Чебищов: свойства

От (5) следва, че $T_n(x)$ има точно n различни реални нули в [-1, 1]. Очевидно $T_n(x) = 0$ при $n \arccos x = (2k - 1)\frac{\pi}{2}$, k = 1, 2, ... Оттук определяме нулите $\{\xi_k\}_{k=1}^n$ на $T_n(x)$:

$$\xi_k = \cos\frac{(2k-1)\pi}{2n}, \quad k = 1, \dots, n.$$

Теорема 1

Нека P(x) е произволен алгебричен полином от степен n с коефициент 2^{n-1} пред x^n . Тогава

$$\max_{x \in [-1,1]} |T_n(x)| \le \max_{x \in [-1,1]} |P(x)|. \tag{6}$$

Равенство имаме само при $P(x) \equiv T_n(x)$.

Доказателство на Теорема 1

Доказателство. От (4) знаем, че $\max_{x \in [-1,1]} |T_n(x)| = 1$. Да допуснем, че има полином $P(x) = 2^{n-1}x^n + \cdots$, за който $|P(x)| \le 1$ при всяко $x \in [-1, 1]$. Тогава полиномът

$$Q(x) := T_n(x) - P(x)$$

ще бъде най-много от степен n-1 (защото коефициентите пред x^n в $T_n(x)$ и P(x) са еднакви и се съкращават при изваждането). Освен това

$$Q(\eta_k) = (-1)^k - P(\eta_k), \quad k = 0, \dots, n.$$

Тъй като $|P(\eta_k)| \leq 1$, то знакът на $Q(\eta_k)$ е равен на знака на $(-1)^k$ или $Q(\eta_k) = 0$. И така, ако $Q(\eta_k) \neq 0$ и $Q(\eta_{k-1}) \neq 0$, то $Q(\eta_k).Q(\eta_{k-1})<0$ и следователно Q има поне една нула в $(\eta_k, \eta_{k-1}), k = 1, \ldots, n.$

Теорема 1 е доказана.

Ако $Q(\eta_k) = 0$ за някое k, тогава $P(\eta_k) = (-1)^k = T_p(\eta_k)$ и тъй като $|T_n(x)| \le 1$ и $|P(x)| \le 1$, графиките на P и на T_n се допират до правата $y = (-1)^k$ в точката η_k . Тогава $P'(\eta_k) = T'_p(\eta_k) = 0$ и следователно η_k е нула с кратност 2 за Q - едната можем да свържем с интервала (η_k, η_{k-1}) , а другата с интервала (η_{k+1}, η_k) . По този начин на всеки интервал $(\eta_i, \eta_{i-1}), i = 1, \dots, n$ ще съответства поне по една нула на Q. От тези разсъждения се вижда, че Q(x) има поне n нули в [-1, 1] (броени с кратностите им). Но $Q \in \pi_{n-1}$. Следователно $Q(x) \equiv 0$, т.е. $P(x) \equiv T_n(x)$.

Следствия от Теорема 1

Следствие 1

За всеки полином P от n-та степен с коефициент 1 пред x^n е изпълнено неравенството

$$\frac{1}{2^{n-1}} = \max_{x \in [-1,1]} \frac{1}{2^{n-1}} |T_n(x)| \le \max_{x \in [-1,1]} |P(x)|.$$

Твърдението следва веднага от (6), като разделим двете страни на 2^{n-1} .

Оптимални възли за интерполиране в [-1, 1]

Следствие 2

За всяка система от точки $\{x_k\}_0^n$ имаме

$$\frac{1}{2^n} = \max_{x \in [-1,1]} |(x - x_0^*) \dots (x - x_n^*)|$$

$$\leq \max_{x \in [-1,1]} |(x - x_0) \dots (x - x_n)|,$$

където $\{x_k^*\}_{0}^n$ са нулите на полинома на Чебишов $T_{n+1}(x)$, т.е.

$$x_k^* = \cos \frac{(2k+1)\pi}{2(n+1)}$$
, $k = 0, ..., n$.

И така, нулите на $T_{n+1}(x)$ са най-добрите възли за интерполиране в интервала [-1,1], защото при тях получаваме най-добра оценка на грешката $R_n(f)$.

Оптимални възли за интерполиране в [a, b]

Да запишем тази оценка като приложим Следствие 2 и оценката, дадена в началото на тази лекция. Получаваме

$$|R_n(t)| \leq \frac{M_{n+1}}{(n+1)!} \frac{1}{2^n}.$$

Тази оценка се отнася за грешката при интерполиране в [-1,1]. Да видим сега как изглежда тя при произволен интервал [**a**, **b**].

Линейната смяна $X = \frac{2}{b-a}t - \frac{a+b}{b-a}$ и нейната обратна $t = \frac{b-a}{2} x + \frac{a+b}{2}$ трансформират интервалите [a, b] и [-1, 1] един в друг. Нека $\{t_k\}_{k=0}^n$ са произволни точки от интервала [**a**, **b**]. Да означим

$$x_k = \frac{2}{b-a}t_k - \frac{a+b}{b-a}, \quad k = 0, \dots, n.$$

Очевидно $x_k \in [-1, 1]$ за k = 0, ..., n.

Оптимални възли за интерполиране в [a, b]

Тъй като

$$|(t-t_0)\dots(t-t_n)| = \left| \prod_{k=0}^n \left[\left(\frac{b-a}{2}x + \frac{a+b}{2} \right) - \left(\frac{b-a}{2}x_k + \frac{a+b}{2} \right) \right] \right|$$

$$=\left(\frac{b-a}{2}\right)^{n+1}\left|\left(x-x_0\right)\cdots\left(x-x_n\right)\right|,$$

въз основа на Следствие 2 получаваме

$$\max_{t \in [a,b]} |(t-t_0) \dots (t-t_n)| \ge \left(\frac{b-a}{2}\right)^{n+1} \max_{x \in [-1,1]} |(x-x_0^*) \dots (x-x_n^*)|$$

$$=\left(\frac{b-a}{2}\right)^{n+1}\frac{1}{2^n}.$$

Оптимални възли за интерполиране в [a, b])

Следователно, ако за интерполационни възли в [a, b]изберем точките $t_k^* = \frac{b-a}{2} X_k^* + \frac{a+b}{2}$, където $\{X_k^*\}_0^n$ са нулите на полинома на Чебишов от първи род $T_{n+1}(x)$, то за грешката при интерполиране получаваме оценката

$$|R_n(f)| \leq \frac{(b-a)^{n+1}}{2^{2n+1}} \frac{M_{n+1}}{(n+1)!}.$$

Този избор на интерполационни възли на дава най-добрата оценка за грешката в интервал [a, b].

Край на лекцията!