Ensemble Methods and Mixture Models

Maximilian Pfundstein (maxpf364) 27 November 2018

Contents

1 Ensemble Methods	1
2 Mixture Models	3
Appendix	3
Bibliography	5

1 Ensemble Methods

Let's load the dataset and have a look at it.

```
ggplot(adb_errors) +
  geom_line(aes(x = n, y = error_rate_training,
                colour = "AdaBoost Training"), linetype = "dashed") +
  geom_point(aes(x = n, y = error_rate_training), colour = "orange") +
  geom_line(aes(x = n, y = error_rate_validation,
                colour = "AdaBoost Validation")) +
  geom_point(aes(x = n, y = error_rate_validation), colour = "red") +
  geom_line(aes(x = n, y = error_rate_training,
                colour = "Random Forest Training"),
            data = rf_errors, linetype = "dashed") +
  geom_point(aes(x = n, y = error_rate_training),
             colour = "blue", data = rf_errors) +
  geom_line(aes(x = n, y = error_rate_validation,
                colour = "Random Forest Validation"), data = rf errors) +
  geom_point(aes(x = n, y = error_rate_validation),
             colour = "steelblue2", data = rf_errors) +
  labs(title = "Random Forest and AdaBoost", y = "Error Rate",
      x = "Number of Forests", color = "Legend") +
  scale_color_manual(values = c("orange", "red", "blue", "steelblue2"))
```

Random Forest and AdaBoost

print(rf_errors)

#	##		n	error_rate_training	error_rate_validation
#	##	1	10	0.005515899	0.06188282
#	##	2	20	0.003569111	0.04542462
#	##	3	30	0.002920182	0.05200790
#	##	4	40	0.004218040	0.05595787
#	##	5	50	0.003569111	0.05595787
#	##	6	60	0.003244646	0.05332456
#	##	7	70	0.003569111	0.05003292
#	##	8	80	0.003244646	0.05134957
#	##	9	90	0.003569111	0.05134957
#	##	10	100	0.003893576	0.04871626

print(adb_errors)

##		n	error_rate_training	<pre>error_rate_validation</pre>
##	1	10	0.13108371	0.13034891
##	2	20	0.10123297	0.10204082
##	3	30	0.07819598	0.07636603
##	4	40	0.07787151	0.07439105
##	5	50	0.07560026	0.07241606
##	6	60	0.07430240	0.07439105
##	7	70	0.07430240	0.07307439
##	8	80	0.07430240	0.07175774
##	9	90	0.07040883	0.06912442
##	10	100	0.07008436	0.06846610

2 Mixture Models

Appendix

```
knitr::opts_chunk$set(echo = TRUE)
library(mboost)
library(randomForest)
library(ggplot2)
library(knitr)
set.seed(1234567890)
spambase = read.csv("spambase.csv", sep=";", dec = ",")
spambase$Spam = as.factor(spambase$Spam)
n = dim(spambase)[1]
id = sample(1:n, floor(n*0.67))
train_spambase = spambase[id,]
val_spambase = spambase[-id,]
kable(head(spambase[,48:58]), caption = "spambase.csv")
# General Information
c_formula = Spam ~ .
tree_sizes = seq(from = 10, to = 100, by = 10)
# Random Forest
rf_errors = data.frame(n = numeric(), error_rate_training = numeric(),
                       error_rate_validation = numeric())
for (i in tree_sizes) {
  # Create the forest
  c_randomForest =
   randomForest(formula = c_formula, data = train_spambase, ntree = i)
  # Do the prediction on the validation dataset
  c_prediction_training =
   predict(object = c_randomForest, newdata = train_spambase)
  c_prediction_validation =
   predict(object = c_randomForest, newdata = val_spambase)
  # Get the error rate
  c_error_rate_training = 1 - sum(c_prediction_training ==
                                    train_spambase$Spam)/nrow(train_spambase)
  c_error_rate_validation = 1 - sum(c_prediction_validation ==
                                      val_spambase$Spam)/nrow(val_spambase)
  rf_errors = rbind(rf_errors,
                    list(n = i,
                         error_rate_training = c_error_rate_training,
                         error_rate_validation = c_error_rate_validation))
}
```

```
# AdaBoost
adb_errors = data.frame(n = numeric(), error_rate_training = numeric(),
                       error rate validation = numeric())
for (i in tree sizes) {
  # Create the model
  c_adaBoost = blackboost(formula = c_formula,
                          data = train_spambase,
                          family = AdaExp(),
                          control=boost_control(mstop=i))
  # Do the prediction on the validation dataset
  c_prediction_training =
   predict(object = c_adaBoost, newdata = train_spambase, type = "class")
  c_prediction_validation =
   predict(object = c_adaBoost, newdata = val_spambase, type = "class")
  # Get the error rate
  c_error_rate_training = 1 - sum(c_prediction_training ==
                                    train_spambase$Spam)/nrow(train_spambase)
  c_error_rate_validation = 1 - sum(c_prediction_validation ==
                                      val_spambase$Spam)/nrow(val_spambase)
  adb_errors = rbind(adb_errors,
                    list(n = i,
                         error_rate_training = c_error_rate_training,
                         error_rate_validation = c_error_rate_validation))
}
ggplot(adb_errors) +
  geom_line(aes(x = n, y = error_rate_training,
                colour = "AdaBoost Training"), linetype = "dashed") +
  geom_point(aes(x = n, y = error_rate_training), colour = "orange") +
  geom line(aes(x = n, y = error rate validation,
                colour = "AdaBoost Validation")) +
  geom_point(aes(x = n, y = error_rate_validation), colour = "red") +
  geom_line(aes(x = n, y = error_rate_training,
                colour = "Random Forest Training"),
            data = rf_errors, linetype = "dashed") +
  geom_point(aes(x = n, y = error_rate_training),
             colour = "blue", data = rf_errors) +
  geom_line(aes(x = n, y = error_rate_validation,
               colour = "Random Forest Validation"), data = rf_errors) +
  geom_point(aes(x = n, y = error_rate_validation),
            colour = "steelblue2", data = rf_errors) +
  labs(title = "Random Forest and AdaBoost", y = "Error Rate",
      x = "Number of Forests", color = "Legend") +
```

```
scale_color_manual(values = c("orange", "red", "blue", "steelblue2"))
print(rf_errors)
print(adb_errors)
```

Bibliography