Lenguajes y Autómatas I

TAREA 3

- 1. Dado el lenguaje $L = \{ sa, ro \}$, obtenga L^3 .
- 2. Dado el lenguaje $L = \{ \varepsilon, ab \}$, obtener $L^0, L^1, L^2, L^3 y L^4$.
- 3. Sean $A = \{ a \} y B = \{ b \}$, indique cuáles son las cadenas que forman los siguientes lenguajes: A*B, AB*y (AB)*.
- 4. Dados los lenguajes: $A = \{ 011, 001, 11 \} y B = \{ 11, 110 \}$ sobre el alfabeto $\Sigma = \{ 0, 1 \}$, obtenga los lenguajes que resultan de las operaciones siguientes: $(A \cap B)^*$, $(A \oplus B)^R$, $(B A)^+$, BA.
- 5. Dados los lenguajes: $A = \{ 101, 01, 010 \}$ y $B = \{ 10, 010 \}$ sobre el alfabeto $\Sigma = \{ 0, 1 \}$, obtenga los lenguajes que resultan de las operaciones siguientes: $(A \cap B)^3$, $(A^R \oplus B^R)$, $(B A)^*$, BA.
- 6. Dados los lenguajes $A = \{ \epsilon, \mathbf{0}, \mathbf{10}, \mathbf{11} \}$ y $B = \{ \epsilon, \mathbf{1}, \mathbf{01}, \mathbf{11} \}$ sobre el alfabeto $\Sigma = \{ \mathbf{0}, \mathbf{1} \}$, obtenga los lenguajes: AB, BA, A \cup B, A \cap B, A \cap B, A \cap B, A \cap B, B \cap A, A*, B² y A \oplus B.
- 7. Dados los lenguajes: $A = \{ \epsilon \}$, $B = \{ aa, ab, bb \}$, $C = \{ \epsilon, aa, ab \}$ y $D = \emptyset$, obtener los lenguajes: $A \cup B$, $A \cup C$, $A \cup D$, $A \cap B$, $A \cap D$, $B \cap C$, $B \cup D$ y $C \cap A$.
- 8. Dados los lenguajes: $A = \{ ab, b, cb \} y B = \{ a, ba \}$ obtener los lenguajes que resultan de las operaciones de lenguajes: $(A \cup B^2)$, $(B \cup A)^R$, (AB), $(A^2 \cap BA)$, $(A \oplus B^R)$ $y (A^R B)^2$.
- 9. Dados los lenguajes: $A = \{ \mathbf{01}, \mathbf{11} \}$ y $B = \{ \mathbf{011}, \mathbf{101}, \mathbf{11} \}$ obtener los lenguajes que resultan de las operaciones: $(A \cup B)^R$, $(B A)^2$, $(A B)^+$, $(A \cap B)^*$, A^RB .
- 10. Responda Verdadero o Falso según corresponda:
 - a) Para todo lenguaje L se cumple que: $\emptyset \cdot L = L$
 - b) Para todo lenguaje L infinito, se cumple que L^C es finito.
 - c) Para todo lenguaje L regular, entonces $\varepsilon \notin L^+$.
 - d) La cerradura de Kleene del lenguaje vacío Ø es igual ε.
 - e) La cerradura de Kleene de cualquier lenguaje L es infinita.
 - f) El lenguaje universal de cualquier alfabeto Σ siempre es infinito.