Preduásta 13 - Newtourva metoda
opacko - Newtouva metoda:
· Xxx Ziskam jaleo resem Jxx Xxx = Jxx - F(xx)
Lede [] = OFi (xx) je Jacobilio matice F
o (potend konverguje, pale $\frac{\ x^* - x_{k+1}\ }{\ x^* - x_k\ ^2} \xrightarrow{k \to +\infty} (\pm 0)$
tzv. kvadratická konv.
· Xen ziskam jaleo resem J _{xi} X _{k+1} = J _{xk} - F(x _k) kale [J _x] = OFi (x _k) je Jacobilov matice F v boda x _k o (pokud konverguje, pak X*-X _k m k=>+0) (x*-X _k m k=>+0)

Problem 1: co ledy 2 netonverguje?

-) Newton je odvozený pomocí Taylora =) o surgeje jen lokálně" tj. můžeme zaruzit konvergenci pokud začneme v xo dostatečně blízko přesného řešení x*.

· Desen 1 - "zazmi blizko"

-> mužeme začít z musha bodů (a doufat, že nějaký zkonverguje) m) pokud nějaký fungeje, uvidine to velní rystle díky kvadratické korv.

-> můžeme použit jinou metodu pro «počáteční fáži" a postupue zkoušet pouštét Newtona mo jak odvodit «jiné metody"? pomocí reformulace na hledání tov. permého bodu.

 $\widetilde{\chi}$ je pevny bod $F(x) (=) F(\widetilde{\chi}) = \widetilde{\chi}$

Tedy nepri: x^* je koren F(x) (=) x^* je pevny bod for F(x)+x $f_{i} \cdot x^* = F(x^*) + x^*$

.... a na hledam plung I bodu mame hezken vetu:

Banarova veta o pernem bode Neart M=R je vzavrene a 6: M -> M je zobrazem pro které platí: Yak] [x + , ze G(x) = x a nevic prohibashe xo plati, Ze posloupuost x_0 , $G(x_0)$, $G(G(x_0))$, $G(G(G(x_0)))$, --- konverguje x_0 linearné s ryglostiq, ti. lim $\frac{11 \times km - \tilde{\chi} N}{N \times k - \tilde{\chi} N} = q$. Toznámka: pokud taEM platí II [\$G(a)] II = q < 1, pak platí i (*).

foriklad: $F(x) = x^2 + x - 2$ $F(x) = x^2 + x - 2$ F(x) =foriklad:

G, (x) = \(2-x \)

• $G_1(\alpha) = \frac{-1}{2\sqrt{2-\alpha}} \longrightarrow |G_1(\alpha)| = \frac{1}{2\sqrt{2-\alpha}} \longrightarrow |G_1(\alpha)| < 1 \iff \frac{1}{4} < 2-\alpha \iff \alpha < \frac{4}{4}$

· (c,d) c (-∞,7/4) => G((c,d)) = (G(d), G(c)) = (√2-d, √2-2) -> d < 7/4 & √2-c < d & √2-d > c. => vernene libovolné d< 7/4 ... uapri d=3/2. Pak c t, =e 122=d, t. c=-1/4. Pak G((-1/4,3/2)) = (1/2,3/2) = (1/2,3/2) c (-1/4,3/2) c (-0,7/4)

· Tudié le použit vetu a podoupnost xo, G(xo), G(G(xo)), --- konverguje ke borenn F Pro lib. xo ∈ [-1/4,3/2]

G2(K) = -1 + 2/x

- (c,d) < (-∞,-√2) => G₂((c,d)) = (2/4-1, 4/2-1) ~~ d<-√2 & 2/2-1 < d & 2/4-1 ≥ c <=> 2/4-1 ≤ c ≤ 2/1 & Napr. d = -3/2 & c ∈ [-4,-4/3]. Pak G₂([-4,-3/2]) = [-4/3, -3/2] < [-4,-3/2] < (-∞,-√2) & d<-
- (c,d) ⊂ (\(\overline{\pi}_1+00\) => \(G_2\)((c,d)) = (\frac{2}{4}-1,\frac{2}{6}-1)\) mm> \(c>\overline{\pi}_2\) & \(\frac{2}{4}-1>C\) & \(\frac{2}{6}-1\) & \(\overline{\pi}_1\) \(\overline{\pi}_1
- · Tudié le ponéit vetu a podoupnost xo, G(xo), G(G(xo)), --- konverguje ke borenn F pro lib. xo e [-4,-3/2]

Python demos: konvergence & iterace funkci (Julia &)

Resem 2 - « swer dobry, staci neprestrelit
-> blasicken problèmen je situace & obrázku z minuté prednásky:
-> blasickým problémem je situace z obrážku z minuté přednásky: Začali jsne se přibližovat zprava ke kořem, ale pak jsne (přestrelili) (a diky steskích jsne zkonvergovali k druhému kořem).
-) un'sto tolo læ postuporat «ume reneji": spozítame resem [Jidu = Fixe) a
položíme (Xxx) = Xx + \(\frac{7}{2}\)dx o \(\tau_{\text{i}}\) je tev. směr Newtonovy metody délka kroku ve sněrudk
Jedna moznost (ta. Armijovale): T = 2 hade me N je mejmensi por irozene cislo
pro Eteré $\ F(x_k+2^md_k)\ \leq (1-\alpha 2^m)\ F(x_k)\ $ voluj pouranet, skudardui volka ~ 10^{-4}
Problém 2: jak získat Jx ?
-> v praxi pro hodué problémin meman explicitur sormulten
pro F m> mém pouse program, který spozíta x -> F(x)
(a i toto vyhoduocení může trvat dlonho a být náročne).
m) nemen pristup & OF; =) musim aproximovat.
$\frac{\partial F_{i}}{\partial x_{j}}(a) = \lim_{h \to 0} \frac{F_{i}(a_{n},,a_{j,n},a_{j}+h,a_{j,n},,a_{n}) - F_{i}(a_{n},,a_{j,n},a_{j}-h,a_{j,n},,a_{n})}{2h}$ finite différence (konezná diference) $\frac{\partial F_{i}}{\partial x_{j}}(a) = \lim_{h \to 0} \frac{F_{i}(a_{n},,a_{j,n},a_{j}+h,a_{j,n},,a_{n}) - F_{i}(a_{n},,a_{j,n},a_{j}-h,a_{j,n},,a_{n})}{2h}$ finite différence (konezná diference) $\frac{\partial F_{i}}{\partial x_{j}}(a) = \lim_{h \to 0} \frac{F_{i}(a_{n},,a_{j,n},a_{j}+h,a_{j,n},,a_{n}) - F_{i}(a_{n},,a_{j,n},a_{j}-h,a_{j,n},,a_{n})}{2h}$
$ \approx \underbrace{F_{i}\left(a_{n},,a_{jn},a_{j}+h,a_{jn},,a_{n}\right) - F_{i}\left(a_{n},,a_{jn},a_{i}-h,a_{jn},,a_{n}\right)}_{72} = : \underbrace{F_{j}\left(F_{i},a_{i},h\right)}_{1} $

=) matici J_{x_k} le aproximovat matici \tilde{J}_{x_k} definovamon jako $\left[\tilde{J}_{x_k}\right]_{ij} = FD_j\left(F_{i,x_k,h}\right)$, pro nejaké malé h>0. m) le sestavem J_x potrebujeme 2n vycislem F(x) na 1 krok-) to muze byt prilis vypocetné márocné mo existují dalsi aproximacuí Varianty, Eteré za cenu daloid aproximaci dale sm'zi potrebny pocet vycíslení Fu pro 1 iteraci m tev. Quasi-Newton

metody.