DBMS-EXERCISE- SHEET-2

Shubh Pareek(112001039)

February 2023

1 ASSIGNMENT-1

 $\times \rho_M(\text{Employees}) \times \rho_E(\text{Employees})))$

B)

```
1) \Pi_{employee\_id,name}(\sigma_{department\_id=101} \lor department\_id=102(Departments))
    2) \Pi_{employee\_id,name}(\sigma_{department\_id=101}(Departments)) \cup \Pi_{employee\_id,name}(
\sigma_{department\_id=102}(Departments))
    1) \Pi_{name}(\sigma_{joining\_year < 2019}(\text{Employees}))
    2) \Pi_{name}(\text{Employees}) \setminus \Pi_{name}(\sigma_{joining\_year} > 2018(\text{Employees}))
    1) \Pi_{Employees.name}(\sigma_{(Salaries.salary\_amount>50000} \land Departments.department\_name="Sales")
(Salaries \bowtie_{(Salaries.employee\_id=Employees.employee\_id)}
                                                                       Employees
    \bowtie_{(Departments.department\_id=Employees.department\_id)} Departments)) \ \Pi_{Employees.name} (Managers
\bowtie_{(Managers.manager\_id=Employees.employee\_id)} Employees)
    2)\Pi_{Employees.name}
(\sigma_{(Salaries.salary\_amount>50000} \land Departments.department\_name="Sales") \land (Employees.employee\_id=Salaries.employee\_id))
Salaries \times Employees \times Departments)) \setminus \Pi_{Employees.name} (Managers
\bowtie_{(Managers.manager\_id=Employees.employee\_id)} \quad \text{Employees})
\mathbf{2}
       ASSIGNMENT-2
A)
    \Pi_{M.name,E.name}(\sigma_{M.employee\_id} = Managers.manager\_id \land E.employee\_id = Managers.employee\_id (Managers.manager)
```

- Expression 1 : $\Pi_{name}(\sigma_{department_id=10} \text{ (Employees} \bowtie \text{Departments)})$
- Expression 2: Π_{name} (Employees $\bowtie (\sigma_{department_id=10} \text{ Departments}))$

expression 2 is more optimised since , before joining the two table we have already constrained the Departments to values with department $\mathrm{id}=10$, this will cause lesser tuples to be accessed . whereas in expression 1 both the tables are joined first , so this will even contain dept id's that are not 10 and will be fill tered out by σ afterwards.

D)

minimum and maximum both will be 2000 since every salary will have exactly one employee for it, as employee id is a foreign key.

3 ASSIGNMENT-3

```
A)
```

 $\Pi_{department_id,dept_avg}(\text{department_id}\gamma_{avg(B)} \text{ as dept_avg}((\text{employee_id}\gamma_{avg(salary_amount}) \text{ as B(Salaries})) \bowtie \text{Employees}))$

B)

 $\Pi_{manager_id,count_employee}(\text{manager_id}\gamma_{count(employee_id}) \text{ as count_employee}(\text{Managers}))$

 \mathbf{C}

 $\Pi_{manager_id,A}(\text{manager}_id\gamma_{count(employee_id)} \text{ as count}(\text{Managers}) \bowtie_{count=A} \Pi_A(gamma_{max(H)} \text{ as } A(\text{manager}_id\gamma_{count(employee_id)} as H(Managers))))$

4 ASSIGNMENT-4

A)

{ E.employee_id | (E \in Employees) $\land \forall$ M ((M \in Managers) \land B m ((M \in Managers) \land M.manager_id = m.manager_id \land m.employee_id = E.employee_id))}

B)

```
\{T \mid \neg (T \in Employees) \lor T.name = 'ABC'\}
```

this relational expression means all the tuples such that they are not in employees table or name attribute is equal to 'ABC', is **unsafe** because it can have infinite values because of first predicate.

{employee_id | \exists manager_id , \neg (manager_id,employee_id) \in Manager \land \exists joining_year,employee_id (employee_id,joining_year,department_id) \in Employees}

this relational expression is safe because it will be finite , because at max it can return all the employees.

C)

{E.name | (E \in Employees) $\land \exists$ D (D \in Departments \land D.department_id = E.department_id \land D.department_name = "Sales") $\land \exists$ S (S \in Salaries \land S.employee_id = E.employee_id \land S.salary _ amount > 50,000) $\land \neg$ (\exists m (m \in managers \land m.manager_id = E.employee_id)) }