Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 10 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i) $A_1 = (\mathbb{C}, M^{A_1})$ und $\mathcal{B}_1 = (\mathbb{R}, M^{\mathcal{B}_1})$, wobei M ein 3-stelliges Relationssymbol ist und es gilt $(a, b, c) \in M^{A_1} \Leftrightarrow a \cdot b = c$ und für $a, b, c \in \mathbb{C}$ und $M^{\mathcal{B}_1} = M^{\mathcal{B}_1} \cap \mathbb{R}^3$

Die Duplikatorin gewinnt das 2-Runden Spiel

```
1. Zug: Fall 1. H wählt a_1 \in \mathbb{C} mit M(a_1, a_1, a_1)
D wählt b_1 \in \mathbb{R} mit M(b_1, b_1, b_1)
```

Fall 2. H wählt $a_1 \in \mathbb{C}$ mit $\neg (M(a_1, a_1, a_1))$ D wählt beliebiges $b_1 \in \mathbb{R}$

2. Zug: Fall 1. H wählt $a_2 \in \mathbb{C}$ mit $M(a_2, a_2, a_1) \land a_1 \neq a_2$ D wählt $b_2 \in \mathbb{R}$ mit $M(b_2, b_2, b_1) \land b_1 \neq b_2$

> Fall 2. H wählt $a_1 \in \mathbb{C}$ mit $\neg (M(a_2, a_2, a_1))$ D wählt beliebiges $b_1 \in \mathbb{R}$

Fall 3. H wählt $a_2 \in \mathbb{C}$ mit $a_2 = a_1$ D wählt $b_2 \in \mathbb{R}$ mit $b_2 = b_1$

Der Herausforderer gewinnt das 3-Runden Spiel

- 1. Zug: H wählt $a_1 \in \mathbb{C}$ mit $M(a_1, a_1, a_1)$ D wählt $b_1 \in \mathbb{R}$ mit $M(b_1, b_1, b_1)$ sonst verliert sie sofort.
- 2. Zug: H wählt $a_2 \in \mathbb{C}$ mit $M(a_2, a_2, a_1) \land a_1 \neq a_2$ D wählt $b_2 \in \mathbb{R}$ mit $M(b_2, b_2, b_1) \land b_1 \neq b_2$ sonst verliert sie sofort.
- 3. Zug: H wählt $a_3 \in \mathbb{C}$ mit $M(a_3, a_3, a_2) \land a_3 \neq a_2$ Dann gilt $M^{\mathcal{A}_1}(a_1, a_1, a_1)$, $M^{\mathcal{A}_1}(a_2, a_2, a_1)$, $M^{\mathcal{A}_1}(a_3, a_3, a_2)$ Da $M^{\mathcal{B}_1}(b_1, b_1, b_1)$ gelten muss, muss b_1 gleich 1 oder 0 sein. Da jedoch auch $M^{\mathcal{B}_1}(b_2, b_2, b_1)$ mit $b_2 \neq b_1$ gelten muss, muss $b_1 = 1$ und $b_2 = -1$ sein. Nun gibt es aber keine $b_3 \in \mathbb{R}$ mit $M^{\mathcal{B}_1}(b_3, b_3, b_2)$, in \mathbb{C} gibt es dafür $i \lor -i$

Aus dem Spiel folgt die Formel: $\exists a \exists b \exists c (M(a,a,a) \land M(b,b,a) \land M(c,c,b) \land (a \neq b) \land (b \neq c))$

- (ii) $A_1 = (\mathbb{C}, M^{A_1})$ und $B_1 = (\mathbb{R}, M^{B_1})$. Die Duplikatorin gewinnt das 1-Runden Spiel
 - 1. Zug: Fall 1. H wählt $a_1 \in \mathbb{Z}$ mit $R(a_1, a_1, a_1)$ D wählt $b_1 \in \mathbb{Z}$ mit $R(b_1, b_1, b_1)$ Fall 2. H wählt $a_1 \in \mathbb{Z}$ mit $\neg (R(a_1, a_1, a_1))$ D wählt beliebiges $b_1 \in \mathbb{Z}$

Der Herausforderer gewinnt das 2-Runden Spiel

- 1. Zug: H wählt $a_1 \in \mathbb{Z}$ mit $R(a_1, a_1, a_1)$ D wählt $b_1 \in \mathbb{Z}$ mit $R(b_1, b_1, b_1)$, sonst verliert sie sofort.
- 2. Zug: H wählt $a_2 \in \mathbb{Z}$ mit $R(a_2, a_2, a_2) \land a_1 \neq a_2$ Dann gilt $R^{\mathcal{A}_1}(a_1, a_1, a_1)$, $R^{\mathcal{A}_1}(a_2, a_2, a_2)$. $R^{\mathcal{B}_1}(b_1, b_1, b_1)$ gilt zwar auch, aber da $a_1 \neq a_2 \Rightarrow b_1 \neq b_2$ gelten muss, jedoch nur die 0 diese Bedingung erfüllt, gewinnt H das 2-Runden Spiel.

Aus dem Spiel folgt die Formel: $\exists a \exists b (R(a, a, a) \land R(b, b, b) \land b \neq a)$

Aufgabe 2

Aufgabe 3

Aufgabe 4