Projeto 4: Uma abordagem variacional unidimensional - aplicações.

Anderson Araujo de Oliveira 11371311

1 Parte 1

Realizamos a seguinte consideração sobre as constantes físicas $1 = \hbar = 2m$, utilizamos 10000 iterações para o projeto todo.

1.1 Parte A

Quando resolvemos a equação de Schrodinger a função de onda que obtemos, nas condições do poço definido no, chegamos.

$$\psi(x) = \sin(n\pi x) \tag{1}$$

Queremos saber a função de onda no esta fundamental, sendo $\psi_a(x) = \sin(\pi x)$, podemos fazer a diferença entre função de onda analítica e nossa função teste normalizada para que ambas fiquem igual no ponto $x = \frac{1}{2}$, assim podemos identificar que as funções são próximas.

$$\int_0^1 \sin(\pi x) - (x - x^2) 4 dx = 0,03005 \tag{2}$$

é uma aproximação razoável para o valor que queremos obter para energia, podemos ver melhor com imagem abaixo.

Figura 1: Função de onda analítica $\psi_a = \sin(\pi x)$ e função de onda teste $\psi_T(x) = 4(x - x^2)$

1.2 Parte B

Calcularemos energia da nossa função teste.

$$E_T = \frac{\int \psi_T^*(x) H \psi_T(x) dx}{\int \psi_T^*(x) \psi_T(x) dx}$$
(3)

Integraremos a parte de cima, temos que a parte $H\psi(x) = \frac{d^2\psi x}{dx^2} = 2$.

$$\int \psi_T^*(x)H\psi_T(x)dx = 2\int_0^1 x - x^2 dx = 2\left[\frac{x^2}{2} - \frac{x^3}{3}\right]_0^1 = 1 - \frac{2}{3} = \frac{1}{3}$$
 (4)

Vamos para a parte baixo.

$$\int_0^1 x^2 (1-x)^2 dx = \int_0^1 x^2 - 2x^3 + x^4 dx = \frac{1}{3} - \frac{1}{2} + \frac{1}{5} = \frac{1}{30}$$
 (5)

Assim chegamos que a energia analítica para função teste $\psi_T(x) = x - x^2$, será.

$$E_T = \frac{30}{3} = 10\tag{6}$$

1.3 Parte C

Usando como base a energia analítica que calculamos anteriormente utilizaremos como valor esperado para energia no código.

Δ	fração de acerto	energia(J)
0,3	0,86	9,65
0,5	0,77	9,65
07	0,68	9,74
0,90	0,60	9,90
1,1	0,53	10,05
1,3	0,46	10,21
1,5	0,41	10,34

Tabela 1: Energias obtidas em função do Δ

Observamos que o valor que mais se aproximo foi o $\Delta=1,1$ onde obtivemos uma aceitação aproximada ao $\Delta\approx0,5$ e valores maiores taxa de aceitação é menor.

2 Parte 2

Verificaremos quais parâmetros se coincide com valor analítico da energia definido por ω_x e ω_y a frequência do oscilador, α_x e α_y como largura da função exponencial. A energia analítica para esse sistema, sendo.

$$E = \frac{\omega_x}{2} + \frac{\omega_y}{2} \tag{7}$$

Obteremos a energia numérica e comparar com o valor analítico, efetuamos uma comparação com três frequência diferente

ω_x	ω_y	α_x	α_y	energia analítica	energia numérica
1.00	1.00	0.50	1.00	1.00	1.11
1.00	1.00	0.50	0.50	1.00	1.00
1,00	1,00	1,00	0,50	1,00	1,10
1,00	1,00	1,00	2,00	1,00	1,46
1,00	2,00	0,50	0,50	1,50	1,75
1,00	2,00	1,00	0,50	1,50	1,86
1,00	2,00	0,50	1,00	1,50	1,50
2,00	1,00	0,50	0,50	1,50	1,71
2,00	1,00	1,00	0,50	1,50	1,50
2,00	1,00	0,50	1,00	1,50	1,86

Tabela 2: Definimos o $\Delta = 2.0$ para os dados acima obtidos acima

O Princípio variacional é poderoso podemos observar o funcionamento, a energia que observamos a tabela acima mostra que $E_T \ge E_0$ quando colocamos o valor esperado da largura da função de onda.

$$\psi(x) = e^{\left(-\left(\alpha_x x^2 + \alpha_y y^2\right)\right)} \tag{8}$$

Assim temos que valores largura esperado é $\alpha_x = \frac{\omega_x}{2}$ e $\alpha_y = \frac{\omega_y}{2}$

3 Parte 3

Estudaremos o potencial Leonnard-Jones, mudamos as constantes físicas para $\hbar=m=1$ e mudamos um pouco o método para contar os passos do programa temos que antes de contabilizar para E_l realizamos 1000 passos antes.

$$H\psi(x) = -\frac{1}{2}\frac{\partial^2 \psi(x)}{\partial x^2} + 4\epsilon(x^{-12} - x^{-6})\psi(x)$$
(9)

A função teste que foi defina é.

$$\psi_T(x) = ae^{-(x-x_0)^2 a_x} \tag{10}$$

Utilizamos gnuplot para fazer uma aproximação das constantes a=2,27, x_0 =1,17 e a_x =42,95 da função teste e consideramos o ϵ = 200, colocando essas condições chegamos que a função teste com numérica obtida no projeto anterior.

Figura 2: Função de onda numérica ψ_n e função de onda teste ψ_T usando os parâmetros falados anteriormente.

A nossa energia local será definida como.

$$E_l = -(\alpha_x (2\alpha_x (x - x_0)^2 - 1)) + 800(x^{-12.0} - x^{-6})$$
(11)

Usamos $\Delta=0,4$, assim chegamos que a $E_T=-148,013$ a energia obtida numérica usando o programa do projeto anterior é E=-150,710.