TN Serie :

re should not be o on 1

=> rc should mot loe 2-1.1=1

$$\begin{cases} x + 2 & |x + 2| - |2x - 4| \\ |x + 2| - |2x - 4| > 0 \end{cases}$$

$$\mathbb{T}^{-}$$

$$\mathbb{X}^{m} = \frac{\mathbb{X}^{m+1}}{m+1}$$

ex:

•
$$f(x) = 5x^4$$
, $F(x) = 5x^5 = x^5$.) To Verify the process.

$$1)$$
 $\{(x) = \frac{3}{2}, F(x) = \frac{3}{x}$

2)
$$f(x) = \frac{5}{x^2} \Rightarrow F(x) = \frac{1}{5} \cdot \frac{1}{$$

$$F(x) = -\frac{S}{NL}$$

3)
$$f(x) = 4x - \frac{1}{x^2} = 5F(x) = \frac{4x^2}{9} + \frac{1}{x}$$

1)
$$f(x) = \frac{2}{x} = -2 \frac{1}{x}$$
, $F(x) = -2 \ln(x)$.

3)
$$f(x) = \frac{3}{3x} + \frac{1}{x^2} = 3 \cdot \frac{1}{x} + \frac{1}{x^2}$$

=> $f^2(x) = 3 \ln(x) - \frac{1}{x}$

250	Vu	
u' cos (u) u' sin (le)	ele Sin (le)	

2)
$$f(x) = \cos(2x) - 3\sin(3x - 1)$$

 $\rho \cos(2x) - 3\sin(2x)$

$$= -5i \left(2x\right) + \cos\left(3x - 1\right)$$

methade 2%

$$\frac{3(x)}{-1} = \cos(2x) - 3\sin(3x - 1)$$

$$-\frac{1}{2} = \cos(2x) - 3\sin(3x - 1)$$

=>
$$F(x) = \frac{1}{2} \cdot \sin(2x) + \cos(3xc-1)$$

$$3)$$
 $\{(x) = \frac{3x}{4x^2+2} = \frac{3}{2} = \frac{2x}{4x^2+2} = \sum_{x=1}^{2} F(x) = \frac{3}{2} \ln(-c^2+2)$

U=122+1 11'= 2x

Integnole.

I) Integration pon Portie:

Soit La formule suionte?

A=) se sin(x) dx

V = x V' = 1. U' = Sin(x) U = -CBS

A=aoc-(b.cdx.

= SA = -Sc cos(x) - (-cos(x) dx $= - x \cos(x) + \cos(x) = - x \cos(x)$ = -re cos(x) + Sin(x) + C

c = s constante

 $Seih o_{g}(x) = \frac{x}{\sqrt{x^{2}+1}}$ $Seih o_{g}(x) = \frac{x^{2}+1}{\sqrt{x^{2}+1}}, \quad o_{g}(x) = 2x \quad (co_{g}ii lebel).$ $S(x) = \frac{2x}{2\sqrt{x^{2}+1}} = \sqrt{x^{2}+1}.$

continue Later.

Integrale a vec hongement de Voniable.