CÓDIGO DE HAMMING

Técnicas Digitales I

Luis Eduardo Toledo

CUBO n Y DISTANCIA

VISUALIZACIÓN DE CÓDIGOS

El diseño de un código de Grey de **n** bits es equivalente a encontrar un camino que recorra todos los vértices de un cubo **n** solo una vez con distancia 1.

Camino para el Código de Grey de 3 bits.

VISUALIZACIÓN DE CÓDIGOS

Camino para el Código de Grey de 4 bits.

DETECCIÓN DE ERRORES EN CÓDIGOS DE N BITS

Un código es simplemente un subconjunto de los vértices de un cubo n.

A fin de que el código detecte los errores de un bit, ninguna palabra del código (presente en un vértice) debe ser adyacente a otra palabra presente en otro vértice.

= noncode word

Distancia = 1

b) Un código que si detecta error.

Distancia mínima = 2

CONSTRUCCIÓN DE UN CÓDIGO DETECTOR DE UN ÚNICO ERROR (1 BIT)

Necesitamos **n+1** bits para construir un código detector de un único error con **2**ⁿ palabras de código.

Los primeros **n** bits de una palabra de código, llamados bits de información, pueden ser cualquiera de las **2**ⁿ palabras de n bits.

Para obtener un código con distancia mínima de 2, agregamos un bit extra llamado *bit de paridad*.

Código con distancia 2 y 3 bits de información							
Bits de	Código	Código paridad					
Información	paridad par	impar					
000	0000	0001					
001	0011	0010					
010	0101	0100					
011	0110	0111					
100	1001	1000					
101	1010	1011					
110	1100	1101					
111	1111	1110					

CONSTRUCCIÓN DE UN CÓDIGO DETECTOR Y CORRECTOR DE UN ÚNICO ERROR (1 BIT)

Usando mas de un *bit de paridad o bits de comprobación* y de acuerdo a reglas bien seleccionadas se puede construir un código cuya distancia mínima sea mayor a dos.

En 1950 W. R. Hamming describió un método general para construir códigos con distancia mínima de 3, ahora llamado código de Hamming.

Para cualquier valor de *i* , su método conduce a:

 2^{i} - 1 bits de código con i bits de comprobación, y con 2^{i} - 1 - i bits de información.

Las posiciones de los bits en una palabra del código de Hamming puede enumerarse del $\mathbf{1}$ al $\mathbf{2}^i$ - $\mathbf{1}$. Cualquier posición cuyo número es una potencia de 2 corresponde a un bit de paridad o comprobación y las restantes posiciones son bits de información.

MATRIZ DE COMPROBACIÓN DE PARIDAD

Cada uno de los bit de paridad o comprobación se agrupa con un subconjunto de los bits de información de acuerdo a la matriz de comprobación de paridad.

Cada bit de paridad o comprobación se agrupa con las posiciones de información cuyos números tengan un 1 en el mismo bit cuando se lo expresa en binario.

Para una combinación dada de valores de *bits de información*, cada *bit de paridad o comprobación* se escoge para que produzca paridad par, de manera que el número total de unos en su grupo sea par.

CÓDIGO CON DISTANCIA MÍNIMA DE 3

Código con	distancia							
mínima de 3								
bits de	bits de							
información	paridad							
0000	000							
0001	011							
0010	101							
0011	110							
0100	110							
0101	101							
0110	011							
0111	000							
1000	111							
1001	100							
1010	010							
1011	001							
1100	001							
1101	010							
1110	100							
1111	111							

CÁLCULO DE LOS BITS DE REDUNDANCIA EN EL CÓDIGO DE HAMMING PARA DATO: 7b

CÁLCULO DE LOS BITS DE REDUNDANCIA EN EL CÓDIGO DE HAMMING PARA DATO: 7b

	11	10	9	8	7	6	5	4	3	2	1
	1	0	0		1	1	0		1		
rl	11	10	9	8	7	6	5	4	3	2	1
	1	0	0		1	1	0		1		1
r2	11	10	9	8	7	6	5	4	3	2	1
	1	0	0		1	1	0		1	0	1
r4	11	10	9	8	7	6	5	4	3	2	1
	1	0	0		1	1	0	0	1	0	1
r8	11	10	9	8	7	6	5	4	3	2	1
	1	0	0	1	1	1	0	0	1	0	1

DETECCIÓN Y CORRECCIÓN DE ERROR USANDO EL CÓDIGO DE HAMMING

CIRCUITO CODIFICADOR DEL CÓDIGO DE HAMMING PARA 4 BITS DE DATOS

ENCODER OF HAMMING CODE FOR 4 BIT DATA

CIRCUITO GENERADOR DEL BIT DE COMPROBACIÓN EN EL CÓDIGO DE HAMMING DE 4 BITS DE DATOS

