

CUSTOMER APPROVAL SHEET

C	Company Name	
	MODEL	A080SN01 V7
	CUSTOMER	Title :
	APPROVED	Name :
		TIONS ONLY (Spec. Ver) TIONS AND ES SAMPLE (Spec. Ver) TIONS AND CS SAMPLE (Spec. Ver)
AUO PM : P/N :		

Doc. version: 0.0

Total pages: 29

Date: 2009/06/04

Product Specification 8" COLOR TFT-LCD PANEL

Model Name: A080SN01 V7

Part no: 91.08A07.701

Planned Lifetime: From 2009/June To 2011/June
Phase-out Control: From 2011/Jan To 2011/June

EOL Schedule: 2011/June

< □ >Preliminary Specification

< >Final Specification

Note: The content of this specification is subject to change.

© 2009 AU Optronics All Rights Reserved, Do Not Copy.

Page: 1/29

Record of Revision

Version	Revise Date	Page	Content
0.0	2009/06/04	All	First Draft.

Version:

Page: 2/29

0.0

Contents

Α.	General Information	3
В.	Outline Dimension	4
	1. TFT-LCD Module – Front View	4
	2. TFT-LCD Module – Rear View	5
C.	Electrical Specifications	6
	1. TFT LCD Panel Pin Assignment	6
	2. Backlight driving section	8
	3. Absolute Maximum Ratings	8
	4. Electrical DC Characteristics	9
	5. Electrical AC Characteristics	12
	6. RGB Parallel Input Timing	12
	7. Serial Interface Characteristics	15
	8. Power On/Off Characteristics	19
D.	Optical Specification	22
E.	Reliability Test Items	24
F.	Packing and Marking	25
	1. Packing Form	25
	2. Module/Panel Label Information	26
	3. Carton Label Information	26
G.	Application Note	27
	1. Application Circuit	27
	2. System block	28
Н.	Precautions	29

Page: 3/29

A. General Information

This product is for portable DVD and digital photo frame application.

NO.	Item	Unit	Specification	Remark
1	Screen Size	inch	8(Diagonal)	
2	Display Resolution	dot	800RGB(W)x600(H)	
3	Overall Dimension	mm	170.1(W) × 132.3(H) × 1.44(D)	Note 1
4	Active Area	mm	162(W)x121.5(H)	
5	Pixel Pitch	mm	0.2025(W)x0.2025(H)	
6	Color Configuration		R. G. B. Stripe	Note 2
7	Color Depth	olor Depth 16.		Note 3
8	NTSC Ratio	%	50	
9	Display Mode		Normally White	
10	Panel surface Treatment		Anti-Glare, 3H	
11	Weight	g	65	
12	Panel Power Consumption	mW	230	Note 4
13	Backlight Power Consumption	W	xx	
	Viewing direction		6 o'clock (gray inversion)	

Note 1: Not include blacklight cable and FPC. Refer next page to get further information.

Note 2: Below figure shows dot stripe arrangement.

Note 3: The full color display depends on 24-bit data signal (pin 4~27).

Note 4: Please refer to Electrical Characteristics chapter.

0.0 Version: 4/29 Page:

B. Outline Dimension

1. TFT-LCD Module – Front View

1.General tolerance ±0.3mm. 2.The bending radius of FPC should be larger than 0.6mm 3.FPC connector:XF2M-6015-1AH BY omz

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 5/29

2. TFT-LCD Module - Rear View

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 6/29

C. Electrical Specifications

1. TFT LCD Panel Pin Assignment

Recommended connector: XF2M-6015-1AH

Pin no	Symbol	I/O	Description	Remark
1	AGND	Р	Analog Ground	
2	AVDD	Р	Analog Power	
3	VCC	Р	Digital Power	
4	R0	I	Data input (LSB)	
5	R1	I	Data input	
6	R2	I	Data input	
7	R3	I	Data input	
8	R4	I	Data input	
9	R5	I	Data input	
10	R6	I	Data input	
11	R7	I	Data input (MSB)	
12	G0	I	Data input (LSB)	
13	G1	I	Data input	
14	G2	I	Data input	
15	G3	I	Data input	
16	G4	I	Data input	
17	G5	I	Data input	
18	G6	I	Data input	
19	G7	I	Data input (MSB)	
20	В0	I	Data input (LSB)	
21	B1	I	Data input	
22	B2	I	Data input	
23	В3	I	Data input	
24	В4	I	Data input	
25	B5	I	Data input	
26	В6	I	Data input	
27	В7	I	Data input (MSB)	
28	DCLK	I	Clock input	
29	DE	I	Data enable signal	
30	HSYNC	I	Horizontal sync input. Negative polarity	
31	VSYNC	I	Vertical sync input. Negative polarity	
32	SCL	I	Serial communication clock input	
33	SDA	I	Serial communication data input	
34	CSB	I	Serial communication chip select	

Page: 7/29

		l		
35	NC	-	For test, do not connect (Please leave it open)	
36	VCC	Р	Digital Power	
37	NC	-	For test, do not connect (Please leave it open)	
38	GND	Р	Digital ground	
39	AGND	Р	Analog ground	
40	AVDD	Р	Analog Power	
41	VCOMin	I	For external VCOM DC input (Optional)	
42	DITH	I/O	Dithering setting DITH = "L" 6bit resolution(LSB last 2 bits of input data turncated) DITH = "H" 8bit resolution(Default setting)	
43	NC	-	For test, do not connect (Please leave it open)	
44	VCOM	0	connect a capacitor	
45	V10	Р	Gamma correction voltage reference	
46	V9	Р	Gamma correction voltage reference	
47	V8	Р	Gamma correction voltage reference	
48	V7	Р	Gamma correction voltage reference	
49	V6	Р	Gamma correction voltage reference	
50	V5	Р	Gamma correction voltage reference	
51	V4	Р	Gamma correction voltage reference	
52	V3	Р	Gamma correction voltage reference	
53	V2	Р	Gamma correction voltage reference	
54	V1	Р	Gamma correction voltage reference	
55	NC	-	For test, do not connect (Please leave it open)	
56	VGH	Р	Positive power for TFT	
57	VCC	Р	Digital Power	
58	VGL	Р	Negative power for TFT	
59	GND	Р	Digital Ground	
60	NC	-	NC PIN	

I: Input; P: Power; G: Ground; C: Capacitor

Page: 8/29

2. Backlight driving section

No.	Symbol	I/O	Description	Remark
1	VLED	I	LED power supply	
2	GNDLED	-	LED ground	

3. Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
	V _{CC}	GND=0	-0.5	5	V	
	AV_DD	AGND=0	-0.5	15	V	
	V_{GH}		-0.3	42	V	
Power voltage	$V_{\sf GL}$	GND=0	-20	0.3	V	
	$V_{\text{GH}} - V_{\text{GL}}$		-	40	V	
	Vı		-0.3	V _{CC} +0.3	V	Note 1
Input signal voltage	VCOM		0	6.5	V	
Operating temperature	Тора		-10	60	$^{\circ}\! \mathbb{C}$	
Storage temperature	Tstg		-20	70	$^{\circ}\! C$	

Note 1: HS, VS, DE, Digital Data.

Note 2: Functional operation should be restricted under ambient temperature (25 $^{\circ}$ C).

Note 3: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

Page: 9/29

4. Electrical DC Characteristics

a. (VCC = +3.3V, AVDD=11.68V, AGND=GND=0V, TOPR = -10° C to $+60^{\circ}$ C)

lte	em	Symbol	Min.	Тур.	Max.	Unit	Remark
		V_{CC}	3.0	3.3	3.6	V	
		AV_DD	11	11.68	12	V	
Dower	supply	V_{GH}	14	15	16	V	
1 OWEI	Supply	V_{GL}	-7.5	-6.75	-5	V	
Po	wer	Р	-	230	260	mW	Black Pattern
VC	ОМ	V_{CDC}	3.4	3.6	3.8	V	DC component
Input	H Level	V_{IH}	0.7 V _{CC}	-	V_{CC}	>	
signal	L Level	V_{IL}	0	-	0.3 V _{CC}	>	Note 1
Input level of V1~V5		Vx	0.4*AVDD	-	AVDD-0.5	V	Positive gamma correction voltage Note 2
Input level of V6~V10		Vx	0.5	-	0.6*AVDD	V	Negative gamma correction voltage Note 2

Note 1: HS , VS , DE, Digital Data

Note 2: AGND <V10<V9V<8V7<V6<V5<V4<V3<V2<V1<AVDD

Page: 10/29

b. Gamma voltage suggested circuit is as follows

c.Vcom buffer suggested circuit is as follows

Page: 11/29

d. Current Consumption (AGND=GND=0V)

Parameter	Symbol Condition		Min.	Тур.	Max.	Unit	Remark
Input current for VCC	I_{VCC}	V _{CC} =3.3V	-	11	14	mA	Black Pattern
Inpur current for AVDD	I _{AVDD}	AVDD=11.7V	-	16	20	mA	Black Pattern
Input current for VGH	I _{VGH}	VGH=15V	-	0.16	0.2	mA	Black Pattern
Inpur current for VGL	$I_{ m VGL}$	VGL=-6.75V	-	0.16	0.2	mA	Black Pattern

e. Backlight Driving Conditions

This is panel only module without BLU structure.

Page: 12/29

5. Electrical AC Characteristics

a. Signal AC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Clock High time	T _{WCL}	8	-	-	ns	
Clock Low time	T _{WCH}	8	-	-	ns	
Hsync setup time	T _{HSU}	5	-	-	ns	
Hsync hold time	T _{HHD}	10	-	-	ns	
Vsync setup time	T _{VSU}	0	-	-	ns	
Vsync hold time	T _{VHD}	2	-	-	ns	
Data setup time	T _{DSU}	5	-	-	ns	
Data hold time	T _{DHD}	10	-	-	ns	
Data enable set-up time	T _{ESU}	4	-	-	ns	
Data enable hold time	T _{EHD}	2	-	-	ns	

6. RGB Parallel Input Timing

a. Horizontal timing

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
DCLK frequency	F _{DCLK}	25	40	45	MHz	
DCLK period	T _{DCLK}	22	25	40	ns	
Hsync period (= T _{HD} + T _{HBL})	T _H	986	1056	1183	DCLK	
Active Area	T _{HD}	-	800	-	DCLK	

Page: 13/29

Horizontal blanking (= T _{HF} + T _{HE})	T _{HBL}	186	256	383	DCLK	
Hsync front porch	T _{HF}	-	40	-	DCLK	
Delay from Hsync to 1 st data input (= T _{HW} + T _{HB})	T _{HE}	88	216	343	DCLK	Function of HDL[70] settings
Hsync pulse width	T _{HW}	1	128	136	DCLK	
Hsync back porch	T _{HB}	10	88	342	DCLK	

Horizontal input timing (HV mode)

Horizontal input timing (DE mode)

Page: 14/29

b. Vertical timing

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Vsync period (= T _{VD} + T _{VBL})	T _V	620	628	635	Th	
Active lines	T_{VD}	-	600	-		
Vertical blanking (= T _{VF} + T _{VE})	T _{VBL}	20	28	35	Th	
Vsync front porch	T_{VF}	-	1	-	Th	
GD start pulse delay	T _{VE}	19	27	34	HS	Function of VDL[30] settings
Vsync pulse width	c pulse width T _{VW} 1 3 16		Th			
Hsync/Vsync phase shift	T _{VPD}	2	320	-	DCLK	

Vertical timing (HV mode)

Vertical timing (DE mode)

Page: 15/29

7. Serial Interface Characteristics

a. Serial Control Interface AC Characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Serial data setup time	T _{IST}	120	-	-	ns	
Serial data hold time	T_IHD	120	-	-	ns	
CSB setup time	T _{CST}	120	-	-	ns	
CSB hold time	T _{CHD}	120	-	-	ns	
Serial clock high/low	T _{SSW}	120	-	-	ns	
Serial clock	T _{SCK}	320	-	-	ns	
Delay from CSB to VSYNC	T _{CV}	120	-	-	us	
Chip select distinguish	T _{CD}	120	-	-	us	
Serial data output delay	T _{ID}	-	-	60	ns	CL=20pF

AC serial interface read mode timings

Page: 16/29

b. Register Bank

There is a total of 6 registers each containing several parameters. For a detailed description of the parameters refer to register table. The serial register has read/write function. D[15:12] are the register address, D[11] defines the read or write mode and D[10:0] are the data.

Serial interface write/read sequence

- 1. At power-on, the default values specified for each parameter are taken.
- 2. If less than 16-bit data are read during the CS low time period, the data is cancelled.
 - a. The write operation is cancelled.
 - b. The read operation is interrupt.
- 3. If more than 16-bit data are read during the CS low time period, the last 16 bits are kept.
 - a. Address & R/W are always defined form CSB falling edge.
 - b. The write operation load last 11 bit data before CSB rising edge.
 - c. The read operation is "D0" is output to SDA until CSB rising edge.
- 4. All items are set at the falling edge of the vertical sync, except R0[1:0].
- 5. When GRB is activated through the serial interface, all registers are cleared, except the GRB value.
- 6. Register R/W setting: D11 = "L" → write mode; D11 = "H" → read mode.
- 7. The register setting values are valid when VCC already goes to high and after VSYNC starts.
- 8. It is suggested that VSYNC, HSYNC, DCLK always exists in the same time. But if HSYNC, DCLK stops, only VSYNC operating, the register setting is still valid.
- 9. If the chip goes to standby mode, the register value will still keep. MCU can wake up the chip only by changing standby mode value from low to high.
- 10. The register setting values are rewritten by the influence of static electricity, a noise, etc. to unsuitable value, incorrect operating may occur. It is suggested that the SPI interface will setup as frequently as possible.

Page: 17/29

c. Register Table (Default Value)

➤ When GRB is low, all registers reset to default values, which are in the brackets.

Serial commands are executed at next VSYNC signal.

Reg	,	ADDI	RES	3	R/W						DATA							
No.	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		
DO	•	•	٠	•	•		(01)	(0	4)	(4)	(0)	(0)	(4)	(0)	GRB	STB		
R0	0	0	0	0	0		(01)	(0	1)	(1)	(0)	(1)	(1)	(0)	(1)	(1)		
R1	0	0	0	1	0	×	(0)	(1)	(01) (2Fh)									
R2	0	0	1	0	0	×	×	×	HDL									
KZ	"	0	'	0		^	^	^	(80h)									
R3	0	0	1	1	0	×	×	(0) (0) (0) (0)		(0)		VI	DL					
13	"	0	'	'		^	^	(0)	(0)	(0)	(0)	(0)		(10	00)			
R4	0	1	0	0	0	×	×	(0)	(0)	(0)	(0)	(1)	(1111)					
R6			. 0					×		EnGB12	EnGB11	EnGB10	(0)	(0)	EnGB5	EnGB4	EnGB3	
ΙζΟ	0	1	1	0		^	(0)	(1)	(1)	(1)	(0)	(0)	(1)	(1)	(1)	(0)		

[&]quot;x" => reserved bit, please set to '0'.

d. Register Description

- > When GRB is low, all registers reset to default values, which are in the brackets.
- > Serial commands are executed at next VSYNC signal.

1.. R0 setting

Address	Bit	Description		Default
0000	[100]	Bits 10-9	AUO Internal Use	01
		Bits7-8	AUO Internal Use	01
		Bit6	AUO Internal Use	1
		Bit5	AUO Internal Use	0
		Bit4	AUO Internal Use	1
		Bit3	AUO Internal Use	1
		Bit2	AUO Internal Use	0
		Bit1 (GRB)	Global reset.	1
		Bit0 (STB)	Standby mode setting.	1

Bit1	GRB function
0	The controller is reset. Reset all registers to default value.
1	Normal operation. (default)

Bit0 STB function

<Note> : Sending serial commands periodically is recommended to improve ESD protection ability.

Page: 18/29

0	T-CON, source driver and DC-DCs converters are off. All outputs are set to GND.
1	Normal operation. (default)

2. R2 setting

Address	Bit	Description		Default
0010	[70]	Bit7-0(HDL)	Horizontal start pulse adjustment function	80H

Bit7-0	HDL function
00h	T _{HE} = T _{HEtyp} - 128 CLK period.
80h	T _{HE} = T _{HEtyp} . (default)
FFh	$T_{HE} = T_{HEtyp} + 127$ CLK period.

3. R3 setting

Address	Bit	Description		Default
0011	[80]	Bit8	AUO Internal Use	0
		Bit7	AUO Internal Use	0
		Bit6	AUO Internal Use	0
		Bit5	AUO Internal Use	0
		Bit4	AUO Internal Use	0
		Bit3-0(VDL)	Vertical start pulse adjustment function	1000

Bit3-0	VDL function
0000	$T_{VE} = T_{VEtyp} - 8$ Hs period.
0001	$T_{VE} = T_{VEtyp} - 7$ Hs period.
0010	$T_{VE} = T_{VEtyp} - 6$ Hs period.
0011	$T_{VE} = T_{VEtyp} - 5$ Hs period.
0100	$T_{VE} = T_{VEtyp} - 4$ Hs period.
0101	$T_{VE} = T_{VEtyp} - 3$ Hs period.
0110	$T_{VE} = T_{VEtyp} - 2$ Hs period.
0111	$T_{VE} = T_{VEtyp} - 1$ Hs period.
1000	$T_{VE} = T_{VEtyp.}$ (default)
1001	$T_{VE} = T_{VEtyp} - 1$ Hs period.
1010	$T_{VE} = T_{VEtyp} - 2$ Hs period.
1011	$T_{VE} = T_{VEtyp} - 3$ Hs period.
1100	$T_{VE} = T_{VEtyp} - 4$ Hs period.

Page: 19/29

1101	$T_{VE} = T_{VEtyp} - 5$ Hs period.
1110	$T_{VE} = T_{VEtyp} - 6$ Hs period.
1111	$T_{VE} = T_{VEtyp} - 7$ Hs period.

4. R6 setting

Address	Bit	Description	Description				
0110	110 [90] Bits9		AUO Internal Use	0			
		Bits8(EnGB12)	Gamma buffer Enable for V9	1			
		Bits7(EnGB11)	Gamma buffer Enable for V8	1			
		Bits6(EnGB10)	Gamma buffer Enable for V7	1			
		Bits5	AUO Internal Use	0			
		Bits4	AUO Internal Use	0			
		Bits3(EnGB5)	Gamma buffer Enable for V4	1			
		Bits2(EnGB4)	Gamma buffer Enable for V3	1			
		Bits1(EnGB3)	Gamma buffer Enable for V2	1			
		Bits0	AUO Internal Use	0			

Bitx	EnGBx function
0	Gamma buffer for VX is disabled (High Z).
1	Gamma buffer is enabled. VX must be connected externally.

[&]quot;x" => reserved bit, please set to '0'.

8. Power On/Off Characteristics

a. Recommended Power On Register Setting

Reg	,	ADDF	RESS		R/W		DATA					DATA				
No.	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	0	0	0	0	0	1	0	0	01 1 0 1 0 0 1 1				1			
R1	0	0	0	1	0	0	0	1	01 2Fh							
R2	0	0	1	0	0	0	0	0	80h							
R3	0	0	1	1	0	0	0	0	0	0	0	0	1000			
R4	0	1	0	0	0	0	0	1	1	0	00 1 1111					
R6	0	1	1	0	0	0	0	1	1	1	0	0	1	1	1	0

<Note> : Sending serial commands periodically is recommended to improve ESD protection ability.

Page: 20/29

b. Recommended Power On Sequence

Page: 21/29

c. Power Off Sequence

Page: 22/29

D. Optical Specification

All optical specification is measured under typical condition (Note 1, 2)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response Time					_		
Rise	Tr	0.00		4 16	8	ms	Note 1
Fall	Tf	θ=0°	-		32	ms	
Contrast ratio	CR	At optimized	400	500	1		Note 2
Contrast ratio	CR	viewing angle	400				Note 2
Тор			50	60			
Bottom			50	65			
Viewing Angle Left		CR≧10		70		deg.	Note 3
			60				
Right				70			
Transmission	Y _L	θ=0°	3.8	4.0		%	

Note 1: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 2.Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

 $\label{eq:contrast ratio} \textbf{(CR)} = \frac{\textbf{Photo detector output when LCD is at "White" status}}{\textbf{Photo detector output when LCD is at "Black" status}}$

Note 3. Definition of viewing angle, θ , Refer to figure as below.

Page: 23/29

Page: 24/29

E. Reliability Test Items

No.	Test items	Condition	Remark	
1	High Temperature Storage	Ta= 70 □	240Hrs	
2	Low Temperature Storage	Ta= -20□	240Hrs	
3	High Ttemperature Operation	Tp= 60 □ 240Hrs		
4	Low Temperature Operation	Ta= -10□	240Hrs	
5	High Temperature & High Humidity	Tp= 50□. 80% RH	240Hrs	Operation
6	Heat Shock	-10□~60□, 50 cycle,	1Hrs/cycle	Non-operation
7	Vibration (With Carton)	Random vibration: 0.015G ² /Hz from 5~200Hz –6dB/Octave from 200~500Hz		IEC 68-34
8	Drop (With Carton)	Height: 60c 1 corner, 3 edges, 6		

Note 1: Ta: Ambient Temperature. Tp: Panel Surface Temperature

Note 2: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 3: All the cosmetic specification is judged before the reliability stress.

Page: 25/29

F. Packing and Marking

1. Packing Form

0.0 Version:

26/29 Page:

2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for detailed location and size of the label. The label is composed of a 22-digit serial number and printed with code 39/128 with the following definition:

ABCDEFGHIJKLMNOPQRSTUV

For internal system usage and production serial numbers.

AUO Module or Panel factory code, represents the final production factory to complete the Product Product version code, ranging from 0~9 or A~Z (for Version after 9)

Week Code, the production week when the product is finished at its production process

3. Carton Label Information

The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is apparing in the following format:

ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton LDate from 01 to 31 Month, ranging from 1~9, A~C. A for Oct, B for Nov and C for Dec.

A.D. year, ranging from 1~9 and 0. The single digit code reprents the last number of the year

Refer to the drawing of packing format for the location and size of the carton label.

Page: 27/29

G. Application Note

1. Application Circuit

Page: 28/29

2. System block

According to there are some risks of EMI issue.

Please refer to this function block before design.

If add SSC (Spread Spectrum Clocking) IC on the clock of system may cause USB abnormal work. Please add USB controller to control USB data.

Page: 29/29

H. Precautions

- 1. Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with TFT display module.
- 15. Static electricity will damage the module, please do not touch the module without any grounded device.
- 16. Do not disassemble and reassemble the module by self.
- 17. Be careful do not touch the rear side directly.
- 18. No strong vibration or shock. It will cause module broken.
- 19. Storage the modules in suitable environment with regular packing.
- 20. Be careful of injury from a broken display module.
- 21. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.