ΘΕΜΑ 4

Ένα σώμα εκτοξεύεται από την επιφάνεια της Γης με αρχική ταχύτητα \vec{v}_0 , στη διεύθυνση της ακτίνας της Γης που περνάει από το σημείο εκτόξευσης και φορά τέτοια ώστε να απομακρύνεται από την επιφάνειά της. Το σώμα καταφέρνει να φτάσει σε ύψος h ίσο με την ακτίνα της Γης ($h=R_\Gamma$).

4.1.Να υπολογίσετε το μέτρο v_0 της αρχικής ταχύτητας με την οποία εκτοξεύθηκε το σώμα.

Μονάδες 6

4.2.Να υπολογίσετε το μέτρο της ταχύτητας διαφυγής ενός σώματος από σημείο που βρίσκεται σε ύψος $h=R_{\Gamma}$ από την επιφάνεια της Γης.

Μονάδες 6

Τη στιγμή που μηδενίζεται η ταχύτητα του σώματος στο ύψος $h=R_\Gamma$, μια ξαφνική έκρηξη διασπά το σώμα σε δύο άλλα σώματα ίσων μαζών ($m_1=m_2$), τα οποία κινούνται στην αρχική διεύθυνση κίνησης του σώματος. Το σώμα μάζας m_1 αμέσως μετά την έκρηξη κινείται προς τη Γη και φτάνει στην επιφάνειά της με ταχύτητα \vec{v}_1 μέτρου v_1 = $16 \ \frac{km}{s}$.

4.3.Να αποδείξετε ότι το σώμα μάζας m_2 θα διαφύγει από την έλξη της Γης προς το διάστημα.

Μονάδες 7

4.4.Να υπολογίσετε το μέτρο της ταχύτητας του σώματος μάζας m_2 με την οποία διαφεύγει στο διάστημα. **Μονάδες 6**

Η Γη θεωρείται σφαίρα ακίνητη και ομογενής ακτίνας $R_{\Gamma}=6400~{\rm km}$ και το μέτρο της έντασης του πεδίου βαρύτητας στην επιφάνειά της $g_0=10~{\rm m\over s^2}$. Θεωρούμε επίσης ότι οι αντιστάσεις από την ατμόσφαιρα της Γης μπορούν να αγνοηθούν.