Skaliarinė sandauga

Paulius Drungilas

Vilniaus universitetas Matematikos ir informatikos fakultetas

2014 m. rugsėjo 3 d.

Kampas tarp vektorių

 \vec{a} ir \vec{b} – nenuliniai vektoriai.

Atidedame vektorius \vec{a} ir \vec{b} nuo vieno taško A.

Vektorių \vec{a} ir \vec{b} sudaromas kampas $(\in [0^{\circ}, 180^{\circ}])$ vadinamas **kampu** tarp šių vektorių.

Skaliarinė sandauga

Nenulinių vektorių \vec{a} ir \vec{b} skaliarine sandauga vadinamas skaičus

$$\vec{a} \cdot \vec{b} := |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha,$$

kur α – kampas tarp vektorių \vec{a} ir \vec{b} . Jei bent vienas iš vektorių \vec{a} ir \vec{b} yra nulinis, tai apibrėžiame $\vec{a} \cdot \vec{b} := 0$.

Skaliarinės sandaugos savybės

Teiginys 1

Bet kuriems vektoriams \vec{a} , \vec{b} , \vec{c} ir bet kuriam realiajam skaičiui α teisingos tokios lygybės:

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
 (komutatyvumas)
 $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$ (distributyvumas)
 $(\alpha \cdot \vec{a}) \cdot \vec{b} = \alpha \cdot (\vec{a} \cdot \vec{b})$ (asociatyvumas)

Skaliarinė sandauga plokštumoje

Išvada 2

Vektorių $\vec{a}(x_1, y_1)$ ir $\vec{b}(x_2, y_2)$ skaliarinė sandauga

$$\vec{a}\cdot\vec{b}=x_1x_2+y_1y_2.$$

Taigi kampas α tarp nenulinių vektorių $\vec{a}(x_1, y_1)$ ir $\vec{b}(x_2, y_2)$ randamas iš lygybės

$$\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}}.$$

Vektoriai $\vec{a}(x_1, y_1)$ ir $\vec{b}(x_2, y_2)$ yra statmeni tada ir tik tada, kai jų skaliarinė sandauga lygi nuliui, t.y.

$$\vec{a} \perp \vec{b} \iff x_1x_2 + y_1y_2 = 0.$$

Skaliarinė sandauga erdvėje

Išvada 3

Vektorių $\vec{a}(x_1,y_1,z_1)$ ir $\vec{b}(x_2,y_2,z_2)$ skaliarinė sandauga

$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

Taigi kampas α tarp nenulinių vektorių $\vec{a}(x_1, y_1, z_1)$ ir $\vec{b}(x_2, y_2, z_2)$ randamas iš lygybės

$$\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

Be to,

$$\vec{a} \perp \vec{b} \iff x_1x_2 + y_1y_2 + z_1z_2 = 0.$$