

Unidade 2 - Funções

Conteúdo

- Funções
 - Definição
 - Representação
 - Gráfico de uma função
 - Domínio e Imagem
- Translação de funções
- Função Composta
- Funções Sobrejetora, Injetora e Bijetora
- Função Inversa
- Funções Polinomiais
 - Funções Lineares
 - Funções Quadráticas
 - Funções Potências

- Funções Racionais
- Funções Algébricas
- Funções Transcendentais
 - Função Exponencial
 - Função Logarítmica
 - Funções Trigonométricas
- Exercícios
- Respostas dos exercícios

Uma *regra* ou *lei* que associa a cada elemento de um conjunto um único elemento de outro conjunto é chama de função.

TESTE DA RETA VERTICAL

Ao traçar uma reta vertical por pontos do eixo x (domínio), esta deve interceptar o gráfico num único ponto. Pois conforme a **definição de função, para cada x (no domínio)deve existir em correspondência um único y (no contradomínio)**.

Se esta reta vertical cortar o gráfico em mais de um ponto, então este gráfico não representa uma função.

não é função

(associa um elemento de x a dois elementos de y)
(a reta vertical corta o gráfico da função em dois pontos de y)

não é função

(associa um elemento de x a dois elementos de y) (a reta vertical corta o gráfico da função em dois pontos de y)

Funções - representação

É possível representar uma função das seguintes maneiras:

Numericamente (tabela de pontos)

Ano	População (milhões)
1900	1 650
1910	1 750
1920	1 860
1930	2 070
1940	2 300
1950	2 560
1960	3 040
1970	3 710
1980	4 450
1990	5 280
2000	6 080

$$P(t) \approx f(t) = (0.008079266).(1.013731)^{t}$$

Gráfico de uma função

O método mais comum de visualizar uma função consiste em fazer seu gráfico.

Dada uma função $f: A \rightarrow B$. O **gráfico de** f será o conjunto dos pares ordenados:

$$G(f) = \{(x,f(x)) \mid x \in A\}$$

Funções - Domínio e Imagem

As teclas pré-programadas de uma calculadora são exemplos de funções como máquinas;

Dada uma função $f: A \rightarrow B$. O conjunto A é chamado de **domínio da função f** e é denotado por D(f).

B é chamado de contradomínio da função f.

A **imagem de** f é o conjunto de todos os valores possíveis de f(x) quando x varia por todo o D(f):

$$Im(f) = \{f(x) \mid x \in D(f)\}$$

$$D(f) = A = \{a, b, c\} \text{ (domínio de f)}$$

$$B = \{f(a), w, f(b), y, f(c), z\} \text{ (contradomínio de f)}$$

$$Im(f) = \{f(a), f(b), f(c)\} \text{ (imagem de f)}$$

Observe que $Im(f) \subset B$ (a imagem é subconjunto do contradomínio)

Função	Domínio (x)	Imagem (y)
$y = x^2$	(-∞, ∞)	[0, ∞)
y = 1/x	$(-\infty,0)\cup(0,\infty)$	(-∞, 0)∪(0, ∞)
$y = \sqrt{x}$	[0, ∞)	[0, ∞)
$y = \sqrt{4-x}$	(-∞, 4]	[0, ∞)
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

Função	Domínio (x)	lmagem <mark>y</mark> r)
$f(x)=x^2$	$D = \Re$	$Im = \Re^+$

Função	Domínio (x)	lmagem(<mark>y</mark>)
f(x) = 1/x	$D = \Re^*$	$Im = \Re^*$

Função	Domínio (x)	Imagem <mark>y</mark> ()
$f(x) = \sqrt{1 - x^2}$	D = [-1,1]	Im = [0,1]

Translação de funções

Translação Vertical

$$y = f(x) + k$$

Translada o gráfico k unidades para cima se k > 0Translada o gráfico |k| unidades para baixo se k < 0

Exemplo:

Translação de funções

Translação Horizontal

$$y = f(x+h)$$

Translada o gráfico h unidades para esquerda se h > 0Translada o gráfico |h| unidades para direita se h < 0

Exemplo:

Função Composta

Suponha que alguns valores de uma função f estejam no domínio de uma função g. Pode-se então combinar f e g para formar uma nova função de x e cujos valores são os números g(f(x)).

Dizemos que a função g(f(x)) (lê-se "g de f de x") é a composta de g e f.

Notação: g o f

A composta $g \circ f$ só está definida quando o contradomínio da f é igual ao domínio da g. Em geral, $g \circ f \neq f \circ g$ e pode acontecer que somente uma das funções $g \circ f$ ou $f \circ g$ esteja definida.

Função Composta

Exemplo 1: (vendo um função como uma composição)

A função $y = \sqrt{1 - x^2}$ é a composição da função $g(x) = 1 - x^2$ com a função $f(x) = \sqrt{x}$. Ela pode ser pensada calculando-se primeiro $1 - x^2$ e depois tomando a raiz quadrada do resultado. Note que $1 - x^2$ não pode ser negativa. O domínio da composição é [-1,1].

Exemplo 2: (encontrando uma fórmula para uma função composta)

Dado $g(x) = x^2 e f(x) = x - 7$. Qual o valor de f(g(2))?

Para encontrar f(g(x)), substitui-se x na fórmula f(x) = x - 7 pela expressão dada para g(x):

$$f(x) = x - 7 \Rightarrow f(g(x)) = g(x) - 7 = x^2 - 7 \Rightarrow f(g(2)) = (2)^2 - 7 = -3$$

Função Sobrejetora

$$f: A \rightarrow B, f \in sobrejetora \Leftrightarrow \forall y \in B, \exists x \in A \mid f(x) = y$$

Nota-se que $f: A \rightarrow B$ é sobrejetora se, e somente se, Im(f) = B.

Se traçarmos **retas horizontais** e cada uma delas cortar o gráfico da função em um ou mais pontos, então ela é sobrejetora.

Função Injetora

$$f: A \rightarrow B, f \in injetora \Leftrightarrow (\forall x1, x2 \in A)(f(x1) = f(x2) \Rightarrow x1 = x2)$$

É toda a função onde cada *x* encontra um *y* e os elementos distintos têm imagens distintas.

A B B

Se traçarmos **retas horizontais** e cada uma delas cortar o gráfico da função em um só ponto ou não cortar o gráfico, então ela é injetora.

Função Bijetora

$$f: A \rightarrow B, f \in bijetora \Leftrightarrow \forall y \in B, \exists ! x \in A \mid f(x) = y$$

Nota-se que f é bijetora se, e somente se é sobrejetora e injetora

Se traçarmos **retas horizontais** e cada uma delas cortar o gráfico da função em um só ponto, então ela é bijetora.

Se f é uma função bijetora de A em B, a relação inversa de f é uma função de B em A que denominamos *função inversa* de f e indicamos por f^1 .

Seja $f: A \rightarrow B$, f^1 é uma função de B em $A \Leftrightarrow f$ é bijetora

A inversa de f^1 é a própria função f:

$$(f^{-1})^{-1} = f$$

Regra prática

Dada a função bijetora f de A em B, definida pela sentença y = f(x), para obtermos a sentença aberta que define f^1 , procedemos assim:

- 1º) na sentença y = f(x) fazemos a mudança de variável, isto é, trocamos x por y e y por x, obtendo x = f(y);
- 2°)transformamos algebricamente a expressão x = f(y), expressando y em função de x para obtermos $y = f^{1}(x)$.

Exemplo: Qual é a função inversa da função bijetora em \mathcal{R} definida por f(x) = 3x + 2?

$$1^{\circ}$$
) $f(x) = 3x + 2 \Rightarrow x = 3y + 2$

$$2^{\circ}$$
) $x = 3y + 2 \Rightarrow 3y = x - 2 \Rightarrow y = \frac{x-2}{3} \Rightarrow f^{-1}(x) = \frac{x-2}{3}$.

Gráficos de f e f¹

Os gráficos de fef^1 são simétricos em relação à bissetriz dos quadrantes 1 e 3 do plano cartesiano.

A composta de funções inversas entre si:

$$f^1 \circ f = x \quad e \quad f \circ f^1 = y$$

A composta de funções inversas entre si resulta a função identidade.

A inversa da composta:

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

A inversa da composta é igual a composta das inversas.

Unicidade da inversa:

A função inversa, quando existe, é única.

Uma função f é uma função **polinomia**l se f(x) é um polinômio, isto é, se:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

onde os coeficientes a_0 , a_1 , ..., a_n são números reais e os expoentes são inteiros não-negativos.

Se $a_n \neq 0$ então f é de **grau** n.

Exemplo: $P(x) = 2x^6 - x^4 + \frac{2}{5}x^3 + \sqrt{2}$ é um polinômio de grau 6.

Casos especiais:

grau 0:

f(x) = a

grau 1:

f(x) = ax + b

grau 2:

 $f(x) = ax^2 + bx + c$

grau 3:

 $f(x) = ax^3 + bx^2 + cx + d$

função constante

função linear

função quadrática

função cúbica

Exemplos:

Os polinômios são utilizados comumente para modelar diversas quantidades que ocorrem em ciências sociais e naturais.

Queda de uma bola

Uma bola é solta a partir do posto de observação de uma torre, 450 m acima do chão, e sua altura é registrada em intervalos de 1 segundo:

Tempo (s)	Altura (m)
0	450
1	445
2	431
3	408
4	375
5	332
6	279
7	216
8	143
9	61

Custo de produção

Em geral, é apropriado representar a função custo de produção de *x* unidades de um produto por um polinômio:

$$C(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

 $a_0 \rightarrow$ custos gerais indiretos (aluguel, aquecimento, manutenção)

 $a_1 \rightarrow$ matérias-primas

a₂ → mão de obra (poderia depender de potências mais altas de x, em decorrência dos custos de horas extras e ineficiências em operações de larga escala.

 $a_n \rightarrow outros custos$

Funções Lineares

Função Linear

Um aplicação de \Re em \Re recebe o nome de função linear quando a cada elemento de $x \in \Re$:

$$f(x) = ax \quad (a \neq 0)$$

 $Im(f) = \Re$ e o gráfico de f é uma reta que passa pela origem:

Funções Lineares

Função Afim

Um aplicação de \Re em \Re recebe o nome de função afim quando a cada elemento de $x \in \Re$:

$$f(x) = ax + b \quad (a \neq 0)$$

O gráfico de f é uma reta. Note que para b = 0 a função afim se transforma na função linear y = ax. Pode-se dizer, então, que a função linear é uma particular função afim.

O número -b/a é o zero da função afim

Funções Lineares

O número a é o coeficiente angular ou declividade da reta:

 $a > 0 \Rightarrow declividade positiva$

 $a < 0 \Rightarrow declividade negativa$

 $a = 0 \Rightarrow paralela ao eixo x (função constante)$

Funções Quadráticas

Função Quadrática

Um aplicação de \Re em \Re recebe o nome de função quadrática ou do 2° . grau quando a cada elemento de $x \in \Re$:

$$f(x) = ax^2 + bx + c \quad (a \neq 0)$$

O gráfico de f é uma parábola.

Zeros de um função quadrática

Os zeros ou raízes de uma função quadrática são os valores de x reais tais que f(x) = 0 e, portanto, as soluções da equação do segundo grau:

$$ax^2 + bx + c = 0$$

Ou seja,
$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$
.

Funções Quadráticas

Número de raízes

(duas raízes diferentes)

$$\Delta > 0 \Rightarrow x = \frac{-b + \sqrt{\Delta}}{2a} \quad ou \quad x = \frac{-b - \sqrt{\Delta}}{2a}$$

$$ax^{2} + bx + c = 0 \Leftrightarrow \begin{cases} \Delta = 0 \Rightarrow x = \frac{-b}{2a} & \text{(duas raízes iguais)} \\ \Delta < 0 \Rightarrow n\tilde{a}o \text{ existem raízes reais} \end{cases}$$

Funções Quadráticas

Tipos de gráficos

Funções Quadráticas

Vértice e pontos de máximo e mínimo

Funções Potências

Função Potência

Uma função da forma $f(x) = x^a$, onde a é uma constante, é chamada função potência.

(i) a = n, onde $n \in um$ inteiro positivo

São polinômios de um só termo.

$$y = x^2$$
, $y = x^3$, $y = x^4$, $y = x^5$, ...

Funções Potências

(ii) a = 1/n, onde $n \in um$ inteiro positivo

A função $f(x) = x^{1/n} = \sqrt[n]{x}$ é uma função raiz.

$$f(x) = x^{1/2} = \sqrt[2]{x}$$

$$f(x) = x^{1/3} = \sqrt[3]{x}$$

$$f(x) = x^{1/4} = \sqrt[4]{x}$$

$$f(x) = x^{1/5} = \sqrt[5]{x}$$

...

Funções Potências

(iii) a = -1, onde $n \in um$ inteiro positivo

A função $f(x) = x^{-1} = 1/x$ é a função recíproca.

Funções Racionais

Função Racional

Uma função racional f é a razão de dois polinômios: $\mathbf{f}(x) = \frac{P(x)}{Q(x)}$

em que P e Q são polinômios. O domínio consiste em todos os valores de x tais que $Q(x) \neq 0$.

Um simples exemplo de função racional é a função f(x) = 1/x, cujo domínio é \Re^* .

A função $f(x) = \frac{2x^4 - x^2 + 1}{x^2 - 4}$ é uma função racional com domínio $\{x | x \neq \pm 2\}$.

Funções Transcendentais

Funções Transcendentais são as funções <u>não algébricas</u>.

O conjunto das funções transcendentais incluem as funções:

- Exponenciais
- Logarítmicas
- Trigonométricas
- Trigonométricas inversas

Em geral, uma função exponencial é uma função da forma: $f(x) = a^x$.

As funções exponenciais são úteis na modelagem de muitos fenômenos naturais, como crescimento populacional (se a > 1) e decaimento radioativo (se a < 1).

concentração do carbono 14 em ppb

Carbono 14 está presente em tecidos vivos (de animais, plantas, e do homem). É um isótopo radioativo instável, que decai a um ritmo lento a partir da morte de um organismo vivo. Utilizado para estimar a idade de fósseis.

Todos os gráficos dos membros da família de funções $y = a^x$ passam pelo mesmo ponto (0,1), pois $a^0 = 1$, para $a \ne 0$. A função exponencial cresce mais rapidamente à medida que a fica maior (para x > 0).

Função exponencial Natural - O número de euler (e)

As fórmulas de cálculo ficam muito simplificadas quando escolhemos como base aquela para a qual resulta uma reta tangente a $y = a^x$ em (0,1) com uma inclinação de exatamente 1.

 $e = 2,7182818284590452353602874713527^*$

Foi descoberto em 1727 pelo matemático suíço Leonhard Euler

Funções Logarítmicas

Se a > 0 e $a \ne 1$, a função exponencial $f(x) = a^x$ é crescente ou decrescente, e portanto, bijetora pelo teste das retas horizontais.

A **função inversa de f** é chamada de **função logarítmica com base a** denotada por \log_a . Tem **domínio** $(0,\infty)$ e a imagem \Re .

$$\log_a x = y \leftrightarrow a^y = x \qquad a^{\log_a x} = x$$

$$a^{\log_a x} = x$$

Funções Logarítmicas

O fato de que $y = a^x$ é uma função que cresce muito rapidamente para x > 0 está refletido no fato de que $y = \log_a x$ é uma função de crescimento muito lento para x > 1.

Uma vez que $\log_a a = 1$, os gráficos de todas as funções logarítmicas passam pelo ponto (1,0).

Funções Logarítmicas

Logaritmo Natural (ln)

O logaritmo na base e é chamado de logaritmo natural ($log_e x = lnx$).

A reta tangente ao ponto (1,0) no gráfico de ln(x) possui declividade igual a 1.

As funções trigonométricas são importantes devido à periodicidade (repetição). Podem representar vários fenômenos naturais periódicos, como:

- variações diárias na temperatura da atmosfera terrestre;
- comportamento ondulatório das notas musicais;
- pressão sanguínea no coração;
- nível de água em uma bacia marítima;

Equipamento para a comprovação das marés. Acima o esquema do dispositivo; em baixo, registro de 4 semanas das variações do nivel da água no es tremo Sul desse dispositivo. Compare as defasagens nos dias 4 e 11, por exemplo. Compare as amplitudes nos dias de Lua nova ou cheia com aque las nos dias de quarto crescente ou minguante.

$$f(x) = sen(x)$$

Propriedades:

- D(f) = R
- Im(f) = [-1; 1]
- f é função impar, pois f(-x) = sen(-x) = sen x = f(x)
- f é limitada 1 ≤ f(x) ≤ 1
- f é periódica, de periodo p = 2π

$$f(x) = \cos(x)$$

Propriedades:

- D(f) = R
- Im(f) = [-1; 1]
- $f \in \text{função par}$, pois $f(-x) = \cos(-x) = \cos x = f(x)$
- f é limitada 1 ≤ f(x) ≤ 1
- f é periódica, de periodo p = 2π

$$f(x) = tg(x)$$

Propriedades:

- $D(f) = \left\{ x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$
- $\operatorname{Im}(f) = \mathbb{R}$
- f é função impar, pois f(-x) = tg(-x) = -tg x = -f(x)
- f não é limitada
- f é periódica, de periodo p = π

Relações entre funções trigonométricas

$$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$$

$$sen^2x + cos^2x = 1$$

$$sen^2x = 1 + tg^2 x$$

Fórmulas de adição e subtração

$$tg (a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

$$cos(a+b) = cosa.cosb - sen a.sen b$$

 $cos(a-b) = cosa.cosb + sen a.sen b$

$$tg (a - b) = \frac{tg a - tg b}{1 + tg a \cdot tg b}$$

Inversas das funções trigonométricas

Em matemática, as funções trigonométricas inversas são chamadas de **função de arco**, pois retornam o arco correspondente a certa função trigonométrica.

Nome	Notação 1	Notação 2	Definição	Domínio como função real	Imagem (em radianos)
arco seno	y = arcsen(x)	$y = \operatorname{sen}^{-1}(x)$	x = sen(y)	[-1,+1]	$-\pi/2 \le y \le \pi/2$
arco cosseno	y = arccos(x)	$y = \cos^{-1}(x)$	$x = \cos(y)$	[-1,+1]	0 ≤ <i>y</i> ≤ π
arco tangente	y = arctg(x)	$y = tg^{-1}(x)$	x = tg(y)	R	$-\pi/2 < y < \pi/2$
arco cotangente	y = arccot(x)	$y = \cot^{-1}(x)$	$x = \cot g(y)$	R	0 < y < π
arco secante	y = arcsec(x)	$y = \sec^{-1}(x)$	$x = \sec(y)$]-∞,-1] ou [1,+∞[$0 \le y < \pi/2 \text{ ou } \pi/2 < y \le \pi$
arco cossecante	y = arccosec(x)	$y = \operatorname{cosec}^{-1}(x)$	$x = \csc(y)$]-∞,-1] ou [1,∞[$-\pi/2 \le y < 0 \text{ ou } 0 < y \le \pi/2$

1-) Quais das relações abaixo definem uma função de A = {-1, 0, 1, 2} em B = {-2, -1, 0, 1, 2, 3}? Justifique.

2-) Quais das relações de \Re em \Re , cujos gráficos aparecem abaixo, são funções? Justifique.

3-) Dada a função $f(x) = -x^2 + 2x$, calcule:

$$a-)\frac{f(x)-f(1)}{x-1}$$

$$b-)\frac{f(x+h)-f(x)}{h}$$

4-) Nos gráficos cartesianos das funções abaixo, determine o domínio e a imagem:

(use o graphmatica ou algum outro software)

- **5-)** (função constante) Determine o domínio, imagem e o gráfico de f(x) = -3.
- **6-)** (função por partes) Determine o domínio, imagem e o gráfico de f(x) = |x|.
- **7-)** Construa os gráficos das funções abaixo e determine os seus domínios e imagens:

$$(a-)f(x) = x^2$$
 $(b-)p(x) = x^3$ $(c-)s(x) = \frac{1}{x}$

$$(g-)h(x) = \sqrt{x^3}$$
 $h-)r(x) = \sqrt[3]{x^2}$

8-) Obtenha o domínio e imagem da função representada no gráfico abaixo:

9-) Determine o domínio da função de variável real abaixo:

$$f(x) = \frac{(x-1)}{(x-2)(x-5)} + \sqrt{x-3}$$

10-) Determine o domínio da função de variável real abaixo:

$$f(x) = \frac{\sqrt{x+2}}{\sqrt{2x-1}}$$

- **11-)** Faça o gráfico da função f(x) = |x 2| 1. Determine também o domínio e imagem de f.
- **12-)** Associe as equações listada de (a) a (d) com as posições dos gráficos na figura seguinte.

(a)
$$y = (x - 1)^2 - 4$$

(b)
$$y = (x - 2)^2 + 2$$

(c)
$$y = (x + 2)^2 + 2$$

(d)
$$y = (x + 3)^2 - 2$$

13-) Dê uma equação para cada gráfico deslocado. Esboce o gráfico original e o gráfico deslocado, identificando cada gráfico com sua equação.

$$a-)x^2 + y^2 = 49$$
, abaixo 3, esquerda 2
 $b-)y = x^3$, esquerda 1, abaixo 1

c-)
$$y = x^{\frac{2}{3}}$$
, direita 1, abaixo 1

$$d-)y = -\sqrt{x}$$
, direita 3

e-)
$$y = \frac{1}{2}(x+1) + 5$$
, *abaixo 5, direita 1*

$$f$$
-) $y^2 = x$, esquerda1

14-) Se
$$f(x) = x + 5$$
 e $g(x) = x^2 - 3$, resolva:

a-)
$$f(g(0))$$
 b-) $g(f(0))$ c-) $f(g(x))$ d-) $g(f(x))$

e-)
$$f(f(-5))$$
 f-) $g(g(2))$ g-) $f(f(x))$ h-) $g(g(x))$

15-) Se
$$u(x) = 4x - 5$$
, $v(x) = x^2$ e $f(x) = 1/x$, encontre as formulas para:

a-)
$$u(v(f(x)))$$
 b-) $u(f(v(x)))$ c-) $v(u(f(x)))$

d-)
$$v(f(u(x)))$$
 e-) $f(u(v(x)))$ f-) $f(v(u(x)))$

16-) Se
$$f(x) = \sqrt{x}$$
 e $g(x) = x + 1$, determine a fórmula e o domínio das funções compostas abaixo:

a-)
$$(f \circ g)(x)$$
 b-) $(g \circ f)(x)$ c-) $(f \circ f)(x)$ d-) $(g \circ g)(x)$

17-) Obtenha a inversa das funções bijetoras abaixo, de \Re em \Re :

$$a-) f(x) = 2x + 3$$

$$b-)g(x) = \frac{4x-1}{3}$$

$$c-)h(x) = x^3 + 2$$

$$d-) p(x) = (x-1)^3 + 2$$

$$e-)q(x) = \sqrt[3]{x+2}$$

$$f-)r(x) = \sqrt[3]{x-1}$$

$$g-)s(x) = \sqrt[3]{1-x^3}$$

- **18-)** Dadas as funções f e g em \Re , definidas por f(x) = 3x-2 e g(x) = 2x+5, determine a função inversa de g o f.
- **19-)** Dadas as funções f e g em \Re , definidas por f(x) = x^3 e g(x) = 2x+3, determine a função inversa de g o f.

- **20-)** Seja a função f: $\Re \rightarrow R_+^*$ definida por f(x) = 3 + 2^{x-1}.
 - (a) Encontre a inversa de f.
 - (b) Se f(h(x)) = 3 + 2x, calcule h(1/4).

21-) Construa o gráfico e responda qual é a inclinação e o zero das funções lineares abaixo:

a-)
$$f(x) = -2x + 1$$

b-)
$$f(x) = 5x + 2$$

$$c-) f(x) = 3x$$

$$d-) f(x) = -6x$$

e-)
$$f(x) = -3$$

22-) (função por partes) Encontre uma fórmula para a função f cujo gráfico é dado abaixo. Determine também o domínio e a imagem da função.

23-) A tabela abaixo mostra o PIB e a emissão de poluição (CO_2) de 10 países. Escolha quaisquer dois pontos da tabela e determine a equação da reta que passa por esses dois pontos. Depois construa o gráfico da reta (usando o graphmatica ou outro software) e plote os 10 pontos no mesmo

gráfico.

PIB (em trilhões de dólares), x	Emissões de CO ₂ (em milhões de toneladas métricas), y
1,7	552,6
1,2	462,3
2,5	475,4
2,8	374,3
3,6	748,5
2,2	400,9
0,8	253,0
1,5	318,6
2,4	496,8
5,9	1.180,6

24-) Apresente uma análise sobre o valor m da função

$$f(x) = (m-1)x + 2$$

quanto ao comportamento/variação de f (crescente, decrescente ou constante).

25-) Calcule o valor de k de modo que a função $f(x) = 4x^2 - 4x - k$ não tenha raízes, isto é, o gráfico da parábola não possui ponto em comum com o eixo x.

26-) A construção de uma ponte como a do desenho abaixo pode ser realizada através dos cálculos obtidos de uma função quadrática definida por $f(x)=ax^2+bx+c$. Considere que a função quadrática utilizada para construir a ponte seja $f(x) = -0.5x^2 + 2x + 1$. Determine as coordenadas dos pontos A, B e C ilustrados na figura.

- **27-)** Determine o valor de m na função $f(x) = -3x^2 + 2(m-1)x + (m+1)$ para que o valor máximo seja 2.
- **28-)** Suponha que uma fábrica tenha estimado que o custo de produção de x unidades de um produto seja:

$$C(x) = 0.15 + 0.5x + 0.05x^2 + 0.001x^3$$

- a-) Que tipo de modelo (função) é esse(a) estimado(a) pela companhia?
- b-) Construa o gráfico.
- c-) Qual o custo de produção de 100 unidades?
- d-) Qual o custo que a fábrica possui caso não produza nada?
- e-) Aproximadamente quantos unidades de produtos é possível fabricar com R\$ 250,00?

29-) Leia e assista o vídeo da matéria jornalística que segue abaixo antes de fazer o exercício 2:

https://g1.globo.com/bemestar/coronavirus/noticia/2020/03/31/crescimento-exponencial-e-curva-epidemica-entenda-os-principais-conceitos-matematicos-que-explicam-a-pandemia-de-coronavirus.ghtml

- **30-)** Considere o cenário atual que estamos vivendo sobre a pandemia do Coronavírus, conforme contextualiza a matéria indicada no exercício 1. Suponha que estamos entrando no primeiro dia do período de pico da infecção da doença, e que o número de infectados com o coronavírus é de 8.000 casos e passa então a duplicar a cada dia.
- (a) Determine o modelo (fórmula) matemática para o número de infectados em função do tempo no período de pico;
- (b) Calculo o número de infectados no 5º. dia de pico;
- (c) Quanto tempo levará para atingir 2.000.000 infectados no período de pico?

- **31-)** Considere o número de usuários de uma provedora de internet durante o horário comercial. Suponhamos que tomando amostras do número de usuários em certos intervalos de tempo fique determinado que esse número decuplica (aumenta 10 vezes) a cada hora. Se o número de usuários no instante de tempo t for p(t), onde t é medido em horas, $0 \le t \le 8$, e o número de usuários já existentes antes de iniciar o horário comercial é sempre por volta de 500:
- (a) Determine o modelo (fórmula) do número de usuários em função do tempo. Faça o gráfico da função encontrada.
- (b) Qual o número de usuários depois de 4 horas?
- (c) Quanto tempo leva para que o número de usuários seja igual a 1.000.000?

32-) Encontre as inversas das funções abaixo:

- (a) f: R \rightarrow (-2, ∞), f(x) = 3^{x+5} 2
- (b) f: R \rightarrow (2, ∞), f(x) = 10^{x-3} + 2
- (c) f: $(1,\infty) \to R$, $f(x) = \log_5(x-1) 3$
- (d) f: $(-2, \infty) \to R$, f(x) = $\ln(x+2) 5$
- **33-)** Seja a função f: $\Re \rightarrow \mathbb{R}^*$ definida por $f(x) = 3 + 2^{x-1}$.
 - (a) Encontre a inversa de f.
 - (b) Se f(h(x)) = 3 + 2x, calcule h(1/4).

34-) As marés são fenômenos periódicos que podem ser descritos, simplesmente, pela função seno. Suponhamos que, para determinado porto, a variação da altura "h" da lâmina d'água (em metros) em função das horas "t" do dia seja dada pela função trigonométrica:

$$h(t) = 10 + sen\left(\frac{t.\pi}{12}\right)$$

- a-) Faça o gráfico de h(t).
- b-) Calcule a altura da lâmina d'água às 5 horas.
- c-) Calcule a altura da lâmina d'água a zero hora.
- d-) Depois de quantas horas a lâmina d'água estará a uma altura de 11 metros?

35-) Um objeto está preso à extremidade de uma mola, conforme mostra o desenho abaixo, e executa um movimento periódico em razão do seu peso e da reação que a mola produz. A altura h (em centímetros) do objeto em função do tempo é dada por:

$$h(t) = 1.5 + sen(2t + 1)$$

onde $t \ge 0$ é o tempo (em segundos).

- a-) Faça o gráfico de h(t).
- b-) Responda: o objeto estará mais alto no tempo t = 3 segundos ou no tempo t = 5 segundos? Justifique a sua reposta. (não esqueça de passar a calculadora para radianos)
- c-) Determine um tempo t em que o objeto estará a uma altura de 2,5 cm

- **1-)** Somente c e d definem funções de A em B.
- **2-)** Somente a, d, e e são funções.

3-)
$$a$$
-) $-(x$ -1) b -) $-2x$ - h +2

```
4-) a-) D(f) = \{-3, -2, -1, 0, 1, 2, 3\}, Im(f) = \{1, 2, 3, 4, 5\}; b-) D(f) = [-2, 3], Im(f) = [-3, 2]; c-) D(f) = [-2, 4], Im(f) = [1, 5]; d-) D(f) = [-3, 5), Im(f) = [1, 3); e-) D(f) = [-4, 4], Im(f) = [-3, 5]; f-) D(f) = [-3, 4), Im(f) = \{-3, -2, -1, 0, 1, 2, 3\}
5-) D(f) = (-\infty, \infty), Im(f) = \{-3\}
```


6-)
$$D(f) = (-\infty, \infty), Im(f) = [0, \infty)$$

7-)

8-)
$$a$$
-) $D(f) = [-2,6)$, $Im(f) = [-2,4]$

9-)
$$D(f) = [3, \infty) - \{5\}$$

10-) (1/2,
$$\infty$$
)

11-) $D(f) = (-\infty, \infty)$ e $Im(f) = [-1, \infty)$. O gráfico de f é o gráfico do valor absoluto deslocado duas unidades para a direita e uma unidade verticalmente.

12-) (a) = posição 4, (b) posição 1, (c) = posição 2, (d) posição 3.

13-)

$$a-(x+2)^2+(y+3)^2=49$$

$$b-)y = (x+1)^3 - 1$$

$$c$$
-) $y = (x-1)^{2/3} - 1$

$$c-) y = -\sqrt{x-3}$$

$$d-)y = (1/2)x$$

$$e^{-}$$
) $y^2 = x+1$

14-) a-) 2 b-) 22 c-)
$$x^2 + 2$$
 d-) $x^2 + 10x + 22$ e-) 5 f-) -2 g-) $x + 10$ h-) $x^4 - 6x^2 + 6$

15-)
$$a-)\frac{4}{x^2}-5$$
 $b-)\frac{4}{x^2}-5$ $c-)\left(\frac{4}{x}-5\right)^2$ $d-)\left(\frac{1}{4x-5}\right)^2$ $e-)\frac{1}{4x^2-5}$ $f-)\frac{1}{(4x-5)^2}$

16-) Composta

Domínio

(a)
$$(f \circ g)(x) = f(g(x)) = \sqrt{g(x)} = \sqrt{x+1}$$
 [-1, \infty)
(b) $(g \circ f)(x) = g(f(x)) = f(x) + 1 = \sqrt{x} + 1$ [0, \infty)
(c) $(f \circ f)(x) = f(f(x)) = \sqrt{f(x)} = \sqrt{\sqrt{x}} = x^{1/4}$ [0, \infty)
(d) $(g \circ g)(x) = g(g(x)) = g(x) + 1 = (x+1) + 1 = x + 2$ (-\infty, \infty)

$$17-)a-)\frac{x-3}{2};b-)\frac{3x+1}{4};c-)\sqrt[3]{x-2};d-)1+\sqrt[3]{x-2};e-)x^3-2;f-)\frac{(x+1)^3}{x^3+1};g-)\sqrt[3]{1-x^3}$$

18-)
$$(g \circ f)^{-1}(x) = (f^1 \circ g^{-1})(x) = f^1(g^{-1}(x)) = (x-1)/6.$$

19-)
$$(gof)^{-1}(x) = \sqrt[3]{\frac{x-3}{2}}$$

20-)
$$a$$
-) $f^{-1}(x) = \log_2(x-3) + 1$

b-)
$$h(1/4) = 0$$

 $f(h(x)) = 3 + 2x$
 $f^{-1}(f(h(x))) = f^{-1}(3 + 2x)$
 $h(x) = \log_2(3 + 2x - 3) + 1$
 $h(x) = \log_2(2x) + 1$
 $h(x) = \log_2 2 + \log_2 x + 1$

$$h(x) = \log_2 x + 2 \Rightarrow h(1/4) = \log_2(1/4) + 2 = \log_2 2^{-2} + 2 = -2 + 2 = 0.$$

22-)
$$D(f) = [0, \infty), Im(f) = [0, 1]$$

$$f(x) = \begin{cases} x, & \text{se } 0 \le x \le 1 \\ 2 - x, & \text{se } 1 < x \le 2 \\ 0, & \text{se } x > 2 \end{cases}$$

23-) Uma resposta possível:

24-) crescente para m > 1; decrescente para m < 1 e constante (y = 2) para m = 1.

26-)
$$A = (-0.4495,0); B = (4.4495,0); C = (2,3)$$

27-)
$$m = -2$$
 ou $m = 1$

28-) a-) função polinomial de grau 3 (função cúbica)

- *c-*) *1550,15*
- *d-*) 0,15
- e-) Aproximadamente 48 unidades (tente pelo gráfico)

30-) a-)
$$N(t) = 2^t.8000$$

b-) $N(5) = 256.000$
c-) $t = 7,96 \approx 8 \text{ dias}$

31-) a-)
$$p(t) = 10^{t}.500$$

b-) $p(4) = 5.000.000$
c-) $t \approx 3.3$ horas

32-) a-) f⁻¹:
$$(-2,\infty) \to R$$
, f⁻¹(x) = $\log_3(x + 2) - 5$
b-) f⁻¹: $(2,\infty) \to R$, f⁻¹(x) = $\log(x - 2) + 3$
c-) f⁻¹: $R \to (1,\infty)$, f⁻¹(x) = $5^{x+3} + 1$
d-) f⁻¹: $R \to (-2,\infty)$, f⁻¹(x) = $e^{x+5} - 2$

33-)
$$a-f^{-1}(x) = \log_2(x-3) + 1$$

 $b-f^{-1}(x) = \log_2(x-3) + 1$
 $b-f^{-1}(h(x)) = 3 + 2x$
 $f^{-1}(f(h(x))) = f^{-1}(3 + 2x)$
 $h(x) = \log_2(3 + 2x - 3) + 1$
 $h(x) = \log_2(2x) + 1$
 $h(x) = \log_2 2 + \log_2 x + 1$
 $h(x) = \log_2 x + 2 \Rightarrow h(1/4) = \log_2(1/4) + 2 = \log_2 2^{-2} + 2 = -2 + 2 = 0$.

$$b$$
-) $h(5) = 10,96 m$

$$c$$
-) $h(0) = 10 m$

$$d$$
-) t = 6 horas

b-)
$$h(3) = 2.15 \text{ cm}$$
 e $h(5) = 0.5 \text{ cm}$
c-) $h(0) = 10 \text{ m}$

$$d$$
-) $t = 0.28 s$