Lema 1 Si $B = [b_{ij}]$ es una matriz $n \times n$ real y si la forma cuadrática asociada

$$H: \mathbb{R}^n \to \mathbb{R}, (h_1, \dots, h_n) \mapsto \frac{1}{2} \sum_{i,j=1}^n b_{ij} h_i h_j$$

es definida positiva, entonces existe una constante M>0 tal que para todo $\mathbf{h}\in\mathbb{R}^n$;

$$H(\mathbf{h}) \ge M \|\mathbf{h}\|^2$$
.

Demostración Para $\|\mathbf{h}\| = 1$, tomamos $g(\mathbf{h}) = H(\mathbf{h})$. Entonces g es una función continua de \mathbf{h} para $\|\mathbf{h}\| = 1$ y por tanto alcanza su valor mínimo, digamos, por ejemplo, M. Dado que H es cuadrática, tenemos

$$H(\mathbf{h}) = H\left(\frac{\mathbf{h}}{\|\mathbf{h}\|}\|\mathbf{h}\|\right) = H\left(\frac{\mathbf{h}}{\|\mathbf{h}\|}\right)\|\mathbf{h}\|^2 = g\left(\frac{\mathbf{h}}{\|\mathbf{h}\|}\right)\|\mathbf{h}\|^2 \geq M\|\mathbf{h}\|^2$$

para cualquier $h \neq 0$. (Obviamente, el resultado es válido si h = 0.)

Obsérvese que la forma cuadrática asociada con la matriz simétrica $\frac{1}{2}(\partial^2 f/\partial x_i\,\partial x_j)$ es exactamente la hessiana.

Demostración del Teorema 5 Recuérdese que si $f: U \subset \mathbb{R}^n \to \mathbb{R}$ es una función de clase C^3 y $\mathbf{x}_0 \in U$ es un punto crítico, el teorema de Taylor se puede expresar de la forma

$$f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) = Hf(\mathbf{x}_0)(\mathbf{h}) + R_2(\mathbf{x}_0, \mathbf{h}),$$

donde $(R_2(\mathbf{x}_0, \mathbf{h}))/\|\mathbf{h}\|^2 \to 0$ cuando $\mathbf{h} \to \mathbf{0}$.

Dado que $Hf(\mathbf{x}_0)$ es definida positiva, el Lema 1 nos asegura que existe una constante M > 0 tal que para todo $\mathbf{h} \in \mathbb{R}^n$

$$Hf(\mathbf{x}_0)(\mathbf{h}) > M ||\mathbf{h}||^2$$
.

Como $R_2(\mathbf{x}_0, \mathbf{h})/\|\mathbf{h}\|^2 \to 0$ cuando $\mathbf{h} \to \mathbf{0}$, existe un $\delta > 0$ tal que para $0 < \|\mathbf{h}\| < \delta$

$$|R_2(\mathbf{x}_0, \mathbf{h})| < M \|\mathbf{h}\|^2$$
.

Por tanto, $0 < Hf(\mathbf{x}_0)(\mathbf{h}) + \mathbf{R}_2(\mathbf{x}_0, \mathbf{h}) = f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0)$ para $0 < \|\mathbf{h}\| < \delta$, de modo que \mathbf{x}_0 es un punto de mínimo relativo; de hecho, es un punto de mínimo relativo estricto.

La demostración para el caso de que la función sea definida negativa es similar; también se puede obtener aplicando lo anterior a -f, lo que se deja como ejercicio.

 $^{^6}$ Aquí estamos usando, sin demostración, un teorema análogo a uno del cálculo que establece que toda función continua en un intervalo [a,b] alcanza un máximo y un mínimo; véase el Teorema 7.