

# Universidade Estadual de Campinas

### FACULDADE DE ENGENHARIA MECÂNICA

# ES828 - Laboratório de Controle de Sistemas

# Pré Relatório - Experimento 5

Controle de plantas eletrônicas utilizando um controlador atraso-avanço digital

 $egin{array}{lll} \emph{Nome:} & RA \\ \emph{Daniel Dello Russo Oliveira} & 101918 \\ \emph{Marcelli Tiemi Kian} & 117892 \\ \end{array}$ 

## 1 Objetivos

O objetivo desse experimento o projeto de um controlador Atraso-Avanço que atenda aos requisitos especificados utilizando uma técnica de controle no domínio da frequência.

## 2 Projeto do Controlador Atraso-Avanço digital

Consideramos a planta cuja função de transferência representada pela equação 1 que foi obtida usando as medidas realizadas durante o experimento 2 [3] para o projeto do controlador no formato apresentado pelo roteiro [1] na equação 2.

$$G(s) = \frac{\kappa_1 * \kappa_2 * \kappa_3 * \kappa_4}{(s * \tau_2 + 1)(s * \tau_3 + 1)s} \tag{1}$$

Tabela 1: Parâmetros numéricos da função de transferência

| Parâmetro  | Valor   |
|------------|---------|
| $\kappa_1$ | -0.1005 |
| $\kappa_2$ | -2.1508 |
| $\kappa_3$ | -4.6448 |
| $\kappa_4$ | -5.6307 |
| $	au_2$    | 0.0210  |
| $	au_3$    | 0.0244  |

$$C(s) = \kappa \frac{\alpha_v \tau_v s + 1}{\tau_v s + 1} \frac{\alpha_t \tau_t s + 1}{\tau_t s + 1}$$
(2)

#### 2.1 Requisitos do Sistema e Projeto

Seguindo o proposto no roteiro [1] as especificações do sistema são:

- Erro em regime permanente a uma entrada rampa de 2%.
- Margem de fase de pelo menos  $45^{\circ}$ .
- Sobrelevação de no máximo 20% para uma entrada degrau.
- Amplitude do sinal de controle não pode ultrapassar  $\pm 10$  [Volts].

Utilizando a metodologia indicada no roteiro[1], iniciamos o cumprimento do primeiro requisito considerando o controlador  $C(s) = \kappa$  e encontramos este valor para que o erro a uma entrada rampa seja de 2%. Para isso, utilizamos o teorema do valor final:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{s^2(1 + \kappa G(s))}$$
 (3)

Chegamos então a:

$$\kappa = \frac{50}{\kappa_1 \kappa_2 \kappa_3 \kappa_4} \tag{4}$$

Posteriormente, para os requisitos de margem de fase e sobrelevação (ambos ligados ao fator de amortecimento do sistema), calculamos a margem de fase de  $\kappa G(s)$  dada por  $M_f=17.4123$ , menor que margem de fase mínima de  $45^o$ . Como margem de segurança, adotaremos as margens de fase desejadas de  $M_{d1}=45^o$ ,  $M_{d2}=50^o$  e  $M_{d3}=55^o$  que também garantem sobrelevação menor que 20%. Projetamos três controladores de maneira a ter opções caso a implementação real do sistema não corresponda às simulações. Idealmente gostaríamos de adotar uma margem de fase mais elevada, porém, após comparar a sua resposta com a resposta do sistema com margem de  $45^o$ , decidimos implementar mais opções.

A partir destas margens de fase encontramos os parâmetros  $\alpha_v$  dos controladores utilizando as equações 5 e 6. Com o conhecimento de  $\alpha_v$  e da frequência  $\omega_g$  na qual  $\mod \kappa G(j\omega_g) = \sqrt{\alpha_v}$ , encontramos  $\tau_v$  pela equação 7. Os parâmetros  $\alpha_t$  e  $\tau_t$  são calculados pelas equações 8 e 9

$$\phi = M_d - M_f \tag{5}$$

$$\alpha_v = \frac{1 + \sin \phi}{1 - \sin \phi} \tag{6}$$

$$\tau_v = \frac{1}{\omega_g \sqrt{\alpha_v}} \tag{7}$$

$$\alpha_t = \frac{1}{\alpha_v} \tag{8}$$

$$\tau_t = 10 \frac{\alpha_v \tau_v}{\alpha_t} \tag{9}$$

Logo, a função de transferência dos controladores são dadas pela equação ?? e seus parâmetros pela tabela 2.

$$C(s) = \kappa \frac{\alpha_v \tau_v s + 1}{\tau_v s + 1} \frac{\alpha_t \tau_t s + 1}{\tau_t s + 1}$$
(10)

Tabela 2: Parâmetros numéricos da função de transferência dos controladores Avanço-Atraso

| Parâmetro  | Controlador 1 | Controlador 2 | Controlador 3 |
|------------|---------------|---------------|---------------|
|            | $M_d = 45^o$  | $M_d = 50^o$  | $M_d = 55^o$  |
| $\kappa$   | 8.8445        | 8.8445        | 8.8445        |
| $\alpha_v$ | 2.7251        | 3.3345        | 4.1279        |
| $	au_v$    | 0.0257        | 0.0250        | 0.0243        |
| $\alpha_t$ | 0.3670        | 0.2999        | 0.2423        |
| $	au_t$    | 1.9108        | 2.7768        | 4.1334        |

### 2.2 Simulação e Comparação

Com o auxílio do Simulink simulamos as respostas dos 3 controladores à uma onda quadrada de amplitude 1V e frequência de 0,25Hz, que podem ser vistas nas figuras  $1,\ 3$  e 5, e os seus esforços de controle, mostrados nas figuras  $2,\ 4$  e 6.



Figura 1: Resposta à onda quadrada do controlador projetado para margem de fase de  $45^o$ 



Figura 2: Esforço de controle para onda quadrada do controlador projetado para margem de fase de  $45^o$ 



Figura 3: Resposta à onda quadrada do controlador projetado para margem de fase de  $50^o$ 



Figura 4: Esforço de controle para onda quadrada do controlador projetado para margem de fase de  $50^o$ 



Figura 5: Resposta à onda quadrada do controlador projetado para margem de fase de  $55^o$ 



Figura 6: Esforço de controle para onda quadrada do controlador projetado para margem de fase de  $55^o$ 

Simulamos também as respostas destes controladores à uma rampa, estas são mostradas nas figuras 7,8 e 9. Como podemos ver, o erro estacionário para essa entrada é próxima de 2% para todos os controladores, conforme desejado.



Figura 7: Resposta à rampa do controlador projetado para margem de fase de  $45^o$ 



Figura 8: Resposta à rampa do controlador projetado para margem de fase de  $50^o$ 



Figura 9: Resposta à rampa do controlador projetado para margem de fase de  $55^o$ 

O controlador com margem de fase de  $45^{o}$  é o que apresenta o menor tempo de estabilização e erro estacionário. Porém os outros controladores não apresentam a sobrelevação relativamente elevada que o primeiro controlador apresenta. A tabela 3 apresenta as características das respostas desses controladores, obtida com o auxílio da função stepinfo do Matlab.

Tabela 3: Características da resposta dos controladores Avanço-Atraso

| Características            | Controlador 1 | Controlador 2 | Controlador 3 |
|----------------------------|---------------|---------------|---------------|
|                            | $M_d = 45^o$  | $M_d = 50^o$  | $M_d = 55^o$  |
| Sobrelevação               | 12.3698%      | 4.0867%       | 3.4618%       |
| Tempo de estabilização     | 0.7454s       | 1.0142s       | 1.3472s       |
| Tempo de subida            | 0.0503s       | 0.0553s       | 0.0628s       |
| Erro estacionário (degrau) | 0.3%          | 0.6%          | 1%            |
| Erro estacionário (rampa)  | 2%            | 2.5%          | 3%            |

Comparamos esse controlador com os controladores projetados no durante o pré relatório do experimento 3 [2]. Para o controlador PID projetado com SISO Tool, cuja performance pode ser vista nas figuras 10, 11 e o controlador proporcional projetado para obter o menor tempo de estabilização, cuja performance pode ser vista nas figuras 12 e 13.



Figura 10: Resposta ao degrau para o sistema com controlador PID projetado com o auxílio do SISOTool



Figura 11: Resposta à rampa para o sistema com controlador PID projetado com o auxílio do SISOTool



Figura 12: Resposta ao degrau do sistema com controlador proporcional



Figura 13: Resposta à rampa do sistema com controlador proporcional

Como podemos perceber os controladores Avanço-Atraso apresentam uma resposta mais lenta que os controladores PID e proporcional. Porém suas respostas à rampa apresentam um erro estacionário significativamente menor que o controlador proporcional e sabemos que a margem de fase do sistema é maior para esse controlador que ela é para o PID projetado pelo SISOTool. Embora o controlador PID tenha apresentado um desempenho simulado significativamente melhor, sabemos que quando implementado o mesmo foi inferior, logo não podemos comparar efetivamente ambos os controladores sem antes implementá-los.

#### 3 Referências

- [1] Roteiro do experimento disponibilizado para os alunos
- [2] KIAN, Marcelli; OLIVEIRA, Daniel. Pré Relatório Experimento 3: Controle de plantas eletrônicas utilizando um controlador PID digital.
- [3] KIAN, Marcelli; OLIVEIRA, Daniel. *Relatório Experimento 2:* Identificação de plantas eletrônicas.