Chapter 1

向量空间

1.1 向量空间

定义 1.1 <u>向量空间</u>: 交换群 (V,+) 和域 F, 数乘映射 $\alpha: F \times V \to V$, 若满足 $\alpha(r,u+v) = \alpha(r,u) + \alpha(r,v)$ (可简写为 r(u+v) = ru + rv),

- (2) $\alpha(r+t,u) = \alpha(r,u) + \alpha(t,u)$ (可简写为 (r+t)u = ru + tu),
- (3) $\alpha(r \cdot t, u) = \alpha(r, \alpha(t, u))$ (可简写为 (rt)u = r(tu)),
- (4) **有单位元**: $\exists 1 \in F$, s.t. $\alpha(1, u) = u$ (可简写为 1u = u),

则称 $V \neq F$ 上的向量空间.

例 1.1 直角坐标系: $(\mathbb{R}, +, \cdot)$ 为域, $(\mathbb{R}^2 \equiv \{(x, y) \mid x, y \in \mathbb{R}\}, +)$ 为交换群, 满足

$$(1) \ \ r((x_1,y_1)+(x_2,y_2)) = r(x_1+x_2,y_1+y_2) = (rx_1+rx_2,ry_1+ry_2) = (rx_1,ry_1)+(rx_2,ry_2) = r(x_1,y_1)+r(x_2,y_2),$$

(2)
$$(r+t)(x,y) = ((r+t)x,(r+t)y) = (rx+tx,ry+ty) = (rx,ry) + (tx,ty) = r(x,y) + t(x,y),$$

- (3) (rt)(x,y) = (rtx,rty) = r(tx,ty) = r(t(x,y)),
- (4) 1(x,y) = (x,y),

故 \mathbb{R}^2 为 \mathbb{R} 上的向量空间.

0v = 0. (注意两个 0 的区别, 等号左边的 0 为域 F 中的零元, 等号右边的 0 为 V 中的零向量.)

$$\mathbf{\tilde{u}}: 0v = (0+0)v = 0v + 0v \Longrightarrow 0v = 0.$$

 $r \in F, 0 \in V, 则 r0 = 0.$

$$\mathbf{ii}$$
: $r0 = r(0+0) = r0 + r0 \Longrightarrow r0 = 0$.

-1v = -v.

$$i E: -1v = -(1v) = -v.$$

例 1.2: \mathbb{R}^2 为 \mathbb{R} 上的向量空间.

 \mathbb{R}^2 为 \mathbb{Q} 上的向量空间.

: 对 $c \in \mathbb{C}, v \in \mathbb{R}^2, cv \notin \mathbb{R}^2, : \mathbb{R}^2$ 不是 \mathbb{C} 上的向量空间.

1. 向量空间 1.2. 子空间

例 1.3: $F^n \equiv \{(r_1, \dots, r_n) \mid r_i \in F\}$, 满足 $(r_1, \dots, r_n) + (l_1, \dots, l_n) = (r_1 + l_1, \dots, r_n + l_n)$, $r(r_1, \dots, r_n) = (r_1, \dots, r_n)$, 故 F^n 为 F 上的向量空间. \Box 证: $\cdots r((r_1, \dots, r_n) + (l_1, \dots, l_n)) = r(r_1 + l_1, \dots, r_n + l_n) = (r_1 + r_1, \dots, r_n + r_n) = (r_1, \dots, r_n) + (r_1, \dots, r_n) = r(r_1, \dots, r_n) + r(l_1, \dots, l_n)$, 且 $(r + t)(r_1, \dots, r_n) = ((r + t)r_1, \dots, (r + t)r_n) = (r_1 + tr_1, \dots, r_n + tr_n) = (r_1, \dots, r_n) + (tr_1, \dots, r_n)$, 且 $(r \cdot t)(r_1, \dots, r_n) = (r_1, \dots, r_n)$, 是 $(r \cdot t)(r_1, \dots, r_n) = (r_1, \dots, r_n)$,

1.2 子空间

 $:: F^n$ 为 F 上的向量空间.

定义 1.2 <u>子空间</u>: $\emptyset \neq S \subseteq V$, 若 S 为 V 的子群, 且在相同的数乘下构成 F 上的向量空间, 则称 S 是 V 的子空间.

定理 1.1 <u>子空间的判定(课本定理1.1)</u>: S 为 V 的子空间 $\iff \forall a,b \in S, \forall r,t \in F, ra+tb \in S$ (即线性运算封闭).

证: " \Longrightarrow ": :: S 为 V 的子空间, :: S 构成 F 上的向量空间 $\Longrightarrow ra \in S$, $tb \in S$.

 $:: S \to V$ 的子空间, $S \to V$ 的子群 $\Longrightarrow ra + tb \in S$.

" \Leftarrow ": \diamondsuit r = 1, t = -1, \bar{q} $a - b \in S \Longrightarrow S < V$.

令 t = 0, 有 $ra \in S$, 故 S 为 V 的子空间.

综上, 得证.

子空间的交是子空间.

证: 设 S_1, \dots, S_n 为 V 的子空间, 则 S_1, \dots, S_n 为 V 的子群 $\Longrightarrow \bigcap_{i=1}^n S_i$ 为 V 的子群.

 $\forall u, v \in \bigcap_{i=1}^{n} S_i, \forall k, u, v \in S_k \Longrightarrow u, v$ 满足与 F 中向量相同的数乘映射.

综上, 得证.

子空间的并未必是子空间.

证: :: 子群的并未必是子群, :: 子空间的并未必是子空间.

若 S,T 是 V 的子空间,则 $S+T \equiv \{u+v \mid u \in S, v \in T\}$ 为 V 的子空间.

 $i \mathbb{E}$: $\forall w_1, w_2 \in S + T, r, t \in F$,

 $w_1 \in S + T \Longrightarrow w_1 = u_1 + v_1, u_1 \in S, v_1 \in T,$

 $w_2 \in S + T \Longrightarrow w_2 = u_2 + v_2, u_2 \in S, v_2 \in T$

 $\implies rw_1 + tw_2 = r(u_1 + v_1) + t(u_2 + v_2) = (ru_1 + tu_2) + (rv_1 + tv_2),$ 其中 $ru_1 + tu_2 \in S$, $rv_1 + tv_2 \in T \implies rw_1 + tw_2 \in S + T$, 故 S + T 为 V 的子空间.

1.3 生成集和线性无关

1. 向量空间 1.3. 生成集和线性无关

定义 1.3 生成子空间和生成集: $\emptyset \neq S \subseteq V$, S 的生成子空间 $\langle S \rangle \equiv$ 包含 S 的最小子空间 $= \{\sum_{i=1}^n r_i u_i \mid r_i \in F, u_i \in S, n \in \mathbb{N}\}$, 其中称 S 为生成集.

例 1.4: 向量空间 \mathbb{R}^2 中,

 $S_x = \langle \{(1,0)\} \rangle = \{(x,0) \mid x \in \mathbb{R}\} = x \text{ in},$

 $S_y = \langle \{(0,1)\} \rangle = \{(0,y) \mid y \in \mathbb{R}\} = y \text{ in},$

 $\langle \{(1,0),(0,1)\} \rangle = \langle \{(1,1),(1,-1)\} \rangle = \mathbb{R}^2$,故对同一生成子空间,生成集不唯一.

定义 1.4 <u>线性无关</u>: 非零元 u_1, \dots, u_m , 若 $r_1u_1 + \dots + r_mu_m = 0 \Longrightarrow r_1 = \dots = r_m = 0$, 则称 u_1, \dots, u_m 线性无关.

若 S 中任意有限个元素线性无关,则称 S 线性无关.

例 1.5: (1,0) 与 (0,1) 线性无关.

$$i \mathbb{E}$$
: $r_1(1,0) + r_2(0,1) = (r_1, r_2) = 0 = (0,0) \Longrightarrow r_1 = 0, r_2 = 0.$

例 1.6: ℝ² 上线性无关,即两非零元夹角非零.

例 1.7: \mathbb{R}^3 上三个向量线性无关, 即其立体角均非零且不共面.

单个非零元 v 线性无关.

证: rv = 0 且 $v \neq 0 \Longrightarrow r = 0$, 故 v 线性无关.

定义 1.5 <u>线性相关</u>: u_1, \dots, u_m , 若 \exists 不全为零的 r_1, \dots, r_m , s.t. $\sum_{i=1}^m r_i u_i = 0$, 则称 u_1, \dots, u_m 线性相关.

若 u,v 线性相关,则两者共线.

证: $\because u, v$ 线性无关, $\therefore \exists r, t$ 不全为零, s.t. $ru + tv = 0 \Longrightarrow ru = -tv$.

无妨设 $0 \neq r \in F$, 则 $ru = -tv \Longrightarrow u = r^{-1}ru = -r^{-1}tv = -\frac{u}{r}v$

定义 1.6 线性表示: v 可由 u_1, \dots, u_n 线性表示 $\iff \exists r_1, \dots, r_n \in F$, s.t. $v = \sum_{i=1}^n r_i u_i$.

定理 1.2 (课本定理1.6): S 线性无关 \iff $\langle S \rangle$ 中的每个向量可由 S 中元素唯一地线性表示 \iff S 中任一向量不能由 S 中其余向量线性表示.

证: 设 $S = \{u_1, \dots, u_m\}.$

第一个 " \Longrightarrow ": $v \in \langle S \rangle$, 则 v 可由 S 中的元素线性表示, 即 $\exists r_1, \dots, r_m, \text{ s.t. } v = r_1 u_1 + \dots + r_m u_m.$

要证这种线性表示是唯一的, 假设 v 的另一种线性表示为 $v = r'_1 u_1 + \cdots + r'_m u_m$.

 $v-v=(r_1-r_1')u_1+\cdots+(r_m-r_m')u_m=0,$ 又 : S 线性无关, 即 u_1,\cdots,u_m 线性无关, $:: r_1-r_1'=\cdots=r_m-r_m'=0 \Longrightarrow r_1'=r_1,\cdots,r_m'=r_m,$ 故两种线性表示相同.

第一个 " \iff ": $0 \in \langle S \rangle$, : $0 = 0u_1 + \cdots + 0u_m$ 是且是 0 唯一的线性表示, : S 线性无关.

第二个 " \Longrightarrow ": 不妨假设 u_1 可由 u_2, \dots, u_m 线性表示, 即 $u_1 = t_2 u_2 + \dots + t_m u_m$.

若 $r_1u_1 + \cdots + r_mu_m = 0$, 则 $r_1 = \cdots = r_m = 0$ 或 $r_1 \neq 0$, $r_2 = -r_1t_2$, \cdots , $r_m = -r_mt_m$, 从而 S 线性相关, 矛盾, 故假设错误, u_1 不可由 u_2, \cdots, u_m 线性表示.

第二个 "←": 假设 S 线性相关, 则 \exists 不全为零的 $r_1, \cdots, r_m,$ s.t. $r_1u_1 + \cdots + r_mu_m = 0$, 不妨设 r_1 非零, 则 $u_1 = -\frac{r_2}{r_1}u_2 - \cdots - \frac{r_m}{r_1}u_m$, 即 u_1 可由 S 中其余向量线性表示, 矛盾, 故假设错误, S 线性无关.

定理 1.3 (课本定理1.7): $\emptyset \neq S \subseteq V$, 下列等价:

- (1) S 线性无关, 且 $V = \langle S \rangle$.
- (2) $\forall v \in V$, 可用 S 中元素唯一地线性表示.
- (3) $S \in V$ 的极小生成集 (即 S 去除任意元素都无法生成 V, 或 S 的任意真子集都无法生成 V).
- (4) $S \neq V$ 的极大线性无关集 (即 S 增加任意元素都线性相关, $\forall u \in V$ 且 $u \notin S$, $S \cup \{u\}$ 线性相关).

证: 由定理 1.2 证得 (1)(2) 等价.

设 $S = \{u_1, \dots, u_m\}.$

- (1) \Longrightarrow (3): 假设 $\exists S' \subsetneq S$, s.t. $V = \langle S' \rangle$, 则 $\forall v \in S S' \subseteq V$, $v = \sum_{i=1}^{m} r_i u_i$, 其中 $r_i \in F$, $u_i \in S'$, $m \in \mathbb{N}$, 即 v 可由 S 中的部分向量线性表示,与 S 线性无关矛盾,故假设错误,S 是 V 的极小生成集.
 - $(3)\Longrightarrow (1)$: S 为 V 的生成集, 即 $V=\langle S\rangle$.

假设 S 线性相关, 即 $\exists r_1, \dots, r_m$ 不全为零, s.t. $\sum_{i=1}^m r_i u_i = 0$, 不妨设 $r_1 \neq 0$, 则 $u_1 = -\frac{r_2}{r_1} u_2 + \dots + \frac{r_m}{r_1} u_m$, 则 $S - \{u_1\}$ 仍可以生成 V, 矛盾, 故假设错误, S 线性无关.

(1)⇒(4): 假设 S 不是极大线性无关集, 则 $\exists v \in V \setminus \langle S \rangle$, s.t. $S \cup \{v\}$ 线性无关.

又 :: $V = \langle S \rangle$, :: $v = \sum_{i=1}^{m} r_i u_i$, 其中 $r_i \in F$, $u_i \in S$, $m \in \mathbb{N}$, 即线性无关集 $S \cup \{v\}$ 中的向量 v 可由其中的部分向量线性表示, 与 $S \cup \{v\}$ 线性无关矛盾, 故假设错误, S 是极大线性无关集.

 $(4)\Longrightarrow(1)$: $:S \in V$ 的极大线性无关集, :S 线性无关.

假设 $V \neq \langle S \rangle$, $\exists v \in V \setminus \langle S \rangle$, s.t. v 无法由 S 中的元素线性表示 $\Longrightarrow S \cup \{v\}$ 为线性无关集, 与 S 为最大线性无关集矛盾, 故假设错误, $V = \langle S \rangle$.

综上, 得证.

定义 1.7 基: 任何生成向量空间 V 的线性无关集. 基的阶数称为 V 的维数, 记作 $\dim V$.

定理 1.4 (课本定理1.12): 向量空间的任何基都有相同的阶, 即 $\dim V$ 不依赖于基的选取.

例 1.8: $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$ 为 F^n 的一组基.

证: $r_1e_1 + \cdots + r_ne_n = (r_1, \cdots, r_n) = 0 \Longrightarrow r_1 = \cdots = r_n = 0$, 故 e_1, \cdots, e_n 线性无关.

又 $\langle \{e_1, \dots, e_n\} \rangle = \{r_1e_1 + \dots + r_ne_n = (r_1, \dots, r_n) \mid r_i \in F,$ 其中 $i = 1, \dots, n\} = F$, 故得证.

找基的方法:

- (1) 若 $0 \neq u_1 \in V$, 则 $\{u_1\}$ 线性无关.
- (2) 若 $u_2 \in V \setminus \langle u_1 \rangle$ 且 u_2 与 u_1 线性无关,则 $\{u_1, u_2\}$ 线性无关.
- (3) 重复以上操作, 直至无法找到新的线性无关元素, 即得到极大线性无关集, 此即向量空间的基.

定理 1.5 (课本定理1.9): 线性无关集 $I \subseteq V$, $S \in V$ 的生成集, 且 $I \subseteq S$, 则 $\exists V$ 的基 \mathcal{B} , s.t. $I \subseteq \mathcal{B} \subseteq S$.

1.4 直和

定义 1.8 直和: (1) 外直和: 若 V_1, \dots, V_n 是 F 上的向量空间, $V_1 \oplus \dots \oplus V_n \equiv \{(v_1, \dots, v_n) \mid v_i \in V_i\}$, 满足

- $-(v_1, \dots, v_n) + (u_1, \dots, u_n) = (v_1 + u_1, \dots, v_n + u_n),$
- $-\forall r \in F, r(v_1, \cdots, v_n) = (rv_1, \cdots, rv_n),$

则 $V_1 \oplus \cdots \oplus V_n$ 为 F 的向量空间, $V_1 \oplus \cdots \oplus V_n$ 为 V_1, \cdots, V_n 的外直和.

- (2) **内直和**: $V \in F$ 上的向量空间, $V_1, \dots, V_n \in V$ 的子空间, 满足
 - $-V = \sum_{i=1}^{n} V_i$, 其中 $v_i \in V_i$,
 - $-V_i \cap \left(\sum_{j \neq i} V_j\right) = \{0\},\$

则 V 为 V_1, \dots, V_m 的内直和, 记作 $V = \bigoplus_{i=1}^n V_i$, 称 V_i 为直和项.

内/外直和的关系: $V = V_1 \oplus \cdots \oplus V_n$, $V_1' = \{(v_1, 0, \cdots, 0) \mid v_i \in V_i\}$, \cdots , $V_m' = \{(0, 0, \cdots, v_m) \mid v_m \in V_m\}$ 是 V 的子空间, 则 $V = \sum_{i=1}^n V_i'$ 且 $V_i' \cap (\cup_{j \neq i} V_j') = \{0\} \Longrightarrow V_i = \bigoplus_{i=1}^m V_i'$, 故内/外直和是等价的, 以下我们不明确区分内/外直和, 均用内直和.

例 1.9: $\mathbb{R}^2 = S_x \oplus S_y$.

定理 1.6 (课本定理1.5): $\{V_i \mid i \in J\}$ 是 V 的子空间集合, $V = \sum_{i \in J} V_i$, 则下列等价:

- (1) $V = \bigoplus_{i \in J} V_i$.
- (2) $V_i \cap (\sum_{j \neq i} V_j) = \{0\}.$
- (3) $0 = 0 + \cdots + 0$ 是 0 的唯一分解式.
- (4) V 中任一向量 v 具有唯一分解式 $v=v_1+\cdots+v_n$,分解式中的有限个非零元 $v_i\in V_i$ 组成的集合称为支 **集**.

 $\mathbf{\overline{u}}$: (1) \iff (2): 由直积的定义即得证.

(2) ⇒(3): 假设 $0 = s_{i1} + \dots + s_{in}$ 且 s_{ij} 不全为零, 不妨设 $s_{i1} \neq 0$, 则 $V_{i1} \ni s_{i1} = -s_{i2} - \dots - s_{ij} \in \sum_{j=2}^{n} V_{ij}$ ⇒ $s_{i_1} \in V_{i_1} \cap (\bigcup_{i=2}^{n} V_{ij})$, $s_{i_1} \neq 0$ 与 $V_{i_1} \cap (\bigcup_{i=2}^{n} V_{ij}) = \{0\}$ 矛盾, 故假设错误, $0 = 0 + \dots + 0$ 是 0 的唯一分解式.

 $(3)\Longrightarrow (4): \forall v \in V, v = u_1 + \cdots + u_n, \not \sqsubseteq v_i.$

假设 $v = w_1 + \cdots + w_m$, 其中 $w_i \in V_i$.

 $0 = v - v = u_1 + \dots + u_n - w_1 - \dots - w_n$,将属于相同子空间的元素合并到一起,得 $0 = (u_{t_1} - w_{t_1}) + \dots + (u_{t_k} - w_{t_k}) + \dots + (u_{t_n} - w_{t_n})$,由 (2) 知 $u_{t_i} = w_{t_i}$,故 v 具有唯一分解式 $v = v_1 + \dots + v_n$.

 $(4)\Longrightarrow(2)$: 假设 $V_i\cap(\cup_{j\neq i}V_j)\neq\{0\}$, 则 $V_i\cap(\sum_{j\neq i}V_j)\supsetneq\{0\}$, 即 $\exists 0\neq u\in V_i\cap(\cup_{j\neq i}V_j)$,

不妨设 $u \in V_1$ 且 $u \in V_2$, 则 $v = v_1 + \dots + v_n = (v_1 + u) + (v_2 - u) + \dots + v_n$, 其中 $v_i \in V_i$ 且 $v_1 + u \in V_1$, $v_2 - u \in V_2$, v 的分解式不唯一, 矛盾, 故假设错误, $V_i \cap (\sum_{j \neq i} V_j) = \{0\}$.

综上, 得证.

定理 1.7 (课本定理1.8): $\mathcal{B} = \{v_1, \dots, v_n\}$ 是向量空间 V 的基 $\iff V = \langle v_1 \rangle \oplus \dots \oplus \langle v_n \rangle$.

证: "⇒": $:: \mathcal{B}$ 为 V 的基, $:: V = \langle \mathcal{B} \rangle = \langle v_1, \cdots, v_n \rangle = \{ \sum_{i=1}^n r_i v_i \mid r_i \in F \} = \langle v_1 \rangle + \cdots + \langle v_n \rangle$. $:: \mathcal{B}$ 为 V 的基, $:: v_1, \cdots, v_n$ 线性无关 ⇒ $\forall 0 \neq u \in \langle v_i \rangle$, $u = r_i v_i$ 且无法由 $\{v_j \mid j \neq i\}$ 线性表示 ⇒ $u \notin V$

 $V_i \cap (\cup_{i \neq i} V_i).$

 $\mathbb{X} : 0 = 0v_i \in \langle v_i \rangle \text{ } \text{ } \mathbb{B} \text{ } 0 = \sum_{j \neq i} 0v_j \Longrightarrow 0 \in V_i \cap (\cup_{j \neq i} V_j), : V_i \cap (\cup_{j \neq i} V_j) = \{0\}.$

故 $V = \langle v_1 \rangle \oplus \cdots \oplus \langle v_n \rangle$.

"一方面, $V = \langle v_1 \rangle + \cdots + \langle v_n \rangle = \langle v_1, \cdots, v_n \rangle = \langle \mathcal{B} \rangle$;

另一方面, 假设 $\{v_1,\cdots,v_n\}$ 线性相关, 则 \exists 不全为零的 r_1,\cdots,r_n , s.t. $\sum_i r_i v_i = 0$,

不妨设 $r_i \neq 0$, 则 $r_i v_i = -\sum_{j \neq i} r_j v_j \Longrightarrow 0 \neq r_i v_i \in V_i$ 且 $r_i v_i = -\sum_{j \neq i} r_j v_j \in \cup_{j \neq i} V_j \Longrightarrow r_i v_i \in V_0 \cap (\cup_{j \neq i} V_j) \Longrightarrow V_0 \cap (\cup_{j \neq i} V_j) \neq \{0\}$, 与直和的定义矛盾, 故假设错误, $\{v_1, \cdots, v_n\}$ 线性无关.

故 $\mathcal{B} = \{v_1, \dots, v_n\}$ 是 V 的基.

综上, 得证.

定理 1.8 (课本定理1.4): $S \to V$ 的子空间, 则 $\exists V$ 的子空间 S^c , s.t. $V = S \oplus S^c$, 称 $S^c \to S$ 的补空间.

证: \mathcal{B}_1 为 S 的基, 则 \mathcal{B}_1 为 V 中的线性无关集.

 \mathcal{B}_1 总可以扩张 (即添加一些元素) 成 V 的基, 即 $\exists \mathcal{B}_2$, s.t. $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性无关且 $V = \langle \mathcal{B}_1 \rangle + \langle \mathcal{B}_2 \rangle \Longrightarrow V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$, 故 $S^c = \langle \mathcal{B}_2 \rangle$.

例 1.10: $\mathbb{R}^2 = S_x \oplus S_y = S_l \oplus S_{l'}$, 其中 S_l 和 $S_{l'}$ 分别为过原点、不共线的直线 l 和 l'.

补空间总存在, 但不唯一.

定理 1.9 (课本定理1.13): (1) $\mathcal{B} \in V$ 的基, 若 $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \perp \mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, 则 $V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$.

- (2) $V = S \oplus T$, 若 \mathcal{B}_1 是 S 的基, \mathcal{B}_2 是 T 的基, 则 $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, $\mathcal{B}_1 \cup \mathcal{B}_2$ 是 V 的基.
- 证: (1) $: \mathcal{B} \notin V$ 的基, $: \forall u \in V, u = \sum_{i=1}^k r_i v_i,$ 其中 $r_i \in F, v_i \in \mathcal{B}, k \in \mathbb{N}$.

 $\langle \mathcal{B}_1 \rangle = \{ \sum_{i=1}^n r_i v_i \mid r_i \in F, v_i \in \mathcal{B}_1, n \in \mathbb{N} \}, \langle \mathcal{B}_2 \rangle = \{ \sum_{i=1}^n r_i v_i \mid r_i \in F, v_i \in \mathcal{B}_2, n \in \mathbb{N} \}.$

 $u = \sum_{i=1}^{t} r_i v_i + \sum_{i=t+1}^{k} r_i v_i, \not \exists \psi \ v_1, \cdots, v_t \in \mathcal{B}_1, \ v_{t+1}, \cdots, v_k \in \mathcal{B}_2 \Longrightarrow V = \langle \mathcal{B}_1 \rangle + \langle \mathcal{B}_2 \rangle.$

 $\forall u \in \langle \mathcal{B}_1 \rangle \cap \langle \mathcal{B}_2 \rangle, u \in \langle \mathcal{B}_1 \rangle \Longrightarrow u = \sum_{i=1}^n r_i v_i, \ \not\exists \ \forall i \in F, \ v_i \in \mathcal{B}_1,$

且 $u \in \langle \mathcal{B}_2 \rangle \Longrightarrow u = \sum_{i=1}^n l_i w_i$, 其中 $l_i \in F$, $w_i \in \mathcal{B}_2$

 $\implies 0 = u - u = \sum r_i v_i - \sum l_i w_i.$

又 :: \mathcal{B} 为基, $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ 且 $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, :: r_i, w_i 线性无关 $\Longrightarrow r_i = l_i = 0 \forall i \Longrightarrow u = 0$.

综上, $V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$.

(2) $V = S \oplus T \iff V = S + T \perp S \cap T = \{0\}.$

假设 $\exists 0 \neq v \in \mathcal{B}_1 \cap \mathcal{B}_2$, 则 $\langle v \rangle = S \cap T = \{0\} \Longrightarrow v = 0$, 矛盾, 故假设错误, $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$.

 $\therefore V = S + T$, $\therefore \forall u \in V$, $u = u_1 + u_2$, 其中 $u_1 \in S$, $u_2 \in T$.

 $\therefore \mathcal{B}_1 \notin S$ 的基, $\mathcal{B}_2 \notin T$ 的基, $\therefore u_1 = \sum_{i=1}^k r_i v_i, u_2 = \sum_{i=k+1}^n,$ 其中 $r_i \in F,$ 对 $i = 1, \dots, k, v_i \in \mathcal{B}_1,$ 对 $i = k+1, \dots, n, v_i \in \mathcal{B}_2$

 $\Longrightarrow u = \sum_{i=1}^n r_i v_i, \not \exists r_i \in F, v_i \in \mathcal{B}_1 \cap \mathcal{B}_2, \not \exists V = \langle \mathcal{B}_1 \cup \mathcal{B}_2 \rangle.$

假设 $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性相关,则 $\exists r_i \in F$ 不全为零, $\sum_{i=1}^n r_i v_i = \sum_{i=1}^k r_i v_i + \sum_{i=k+1}^n r_i v_i = 0$,其中 $r_i \in F$,对 $i = 1, \dots, k, v_i \in \mathcal{B}_1$,对 $i = k+1, \dots, n, v_i \in \mathcal{B}_2$.

 $:: \mathcal{B}_1$ 和 \mathcal{B}_2 为基, $:: \mathcal{B}_1$ 和 \mathcal{B}_2 线性无关 $\Longrightarrow \sum_{i=1}^k r_i v_i \neq 0$, $\sum_{i=k+1}^n r_i v_i \neq 0$, 与 $0 = 0 + \cdots + 0$ 是 0 的唯一分解式矛盾, 故假设错误, $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性无关 $\Longrightarrow \mathcal{B}_1 \cup \mathcal{B}_2$ 是 V 的基.

综上, 得证.

定理 1.10 (课本定理1.14): S,T 为 V 的子空间, $\dim S + \dim T = \dim(S \cap T) + \dim(S + T)$. 特别地, 若 T 为 S 的补空间, 则 $\dim S + \dim T = \dim(S \oplus T)$.

证: 设 $S \cap T$ 的基为 \mathcal{B} .

- $:: S \cap T \to S$ 的子空间, :: 可将 \mathcal{B} 扩张成 S 的基 $\mathcal{A} \cup \mathcal{B}$, 其中 $\mathcal{A} \cap \mathcal{B} = \emptyset$.
- $:: S \cap T$ 为 T 的子空间, :: 可将 \mathcal{B} 扩张成 T 的基 $\mathcal{B} \cup \mathcal{C}$, 其中 $\mathcal{B} \cap \mathcal{C} = \emptyset$. 接下来需要用到这样一个事实: $\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ 是 $\mathcal{S} + T$ 的基. 所以先来证明它:

证: $\forall w \in S + T, \ w = u + v, \ \text{其中} \ u \in S, \ v \in T \Longrightarrow u \in \langle \mathcal{A} \cup \mathcal{B} \rangle, \ v \in \langle \mathcal{B} + \mathcal{C} \rangle, \ \text{故} \ \langle \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \rangle = S + T.$ 不妨设 $\sum_{i=1}^{n} r_i v_i = 0, \ \text{其中} \ v_i \in \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}.$

设 $v_1, \dots, v_k \in \mathcal{A}$, 则 $\sum_{i=1}^k r_i v_i = -\sum_{i=k+1}^n r_i v_i$.

 $\therefore x \in \langle \mathcal{A} \rangle, \therefore x \in S.$

又 : A 和 $\mathcal{B} \cup \mathcal{C}$ 线性独立, : $r_i = 0 \forall i \Longrightarrow \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ 线性无关.

综上, $A \cup B \cup C$ 是 S + T 的基.

故

 $\dim S + \dim T = |\mathcal{A} \cup \mathcal{B}| + |\mathcal{B} \cup \mathcal{C}| = |\mathcal{A}| + |\mathcal{B}| + |\mathcal{B}| + |\mathcal{C}| = |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + \dim(S \cap T) = \dim(S + T) + \dim(S \cap T).$

7 / 7