Computer Organization and Architecture (EET 2211)

Lecture 22

EXTERNAL MEMORY

TOPICS TO BE COVERED

- 1. RAID (RAID LEVEL 0 RAID LEVEL 6)
- 2. Optical Memory (CD, DVD, High-Definition Optical Disks)

LERNING OBJECTIVES

- After studying this chapter you should be able to:
- Explain the concept of RAID and describe the various levels.
- 2. Understand the differences among the different optical disk storage media.

CONTENTS

- We will examine the use of disk arrays to achieve greater performance, looking specifically at the family of systems known as RAID (Redundant Array of Independent Disks).
- Then optical memory is examined.

INTRODUCTION

- Magnetic disks are the foundation of external memory on virtually all computer systems.
- A disk is a circular platter constructed of non-magnetic material, called the substrate, coated with a magnetizable material.
- Earlier the substrate was made of aluminum or aluminum alloy material.
- Recently glass substrates are used.
- Benefits of using glass substrate are:
- 1. Improvement in the uniformity of the many surface to increase disk

Contd.

- Benefits of using glass substrate are:
- Improvement in the uniformity of the magnetic film surface to increase disk reliability.
- 2. A significant reduction in overall surface defects to help reduce read-write errors.
- 3. Better stiffness to reduce disk dynamics.
- 4. Greater ability to withstand shock and damage.

Contd.

- Typical Hard Disk Drive Parameters are:
- Application (Enterprise / Desktop / laptop)
- 2. Capacity (in TB)
- 3. Average seek time
- 4. Spindle speed
- 5. Average latency
- 6. Maximum sustained transfer rate
- Bytes per sector
- 8. Tracks per cylinder (number of platter surfaces)

Q

RAID

- The rate in improvement in secondary storage performance has been considerably less than the rate for processors and main memory.
- This mismatch has made the disk storage system perhaps the main focus of concern in improving overall computer system performance.
- With the use of multiple disks, there is a wide variety of ways in which the data can be organized and in which redundancy can be added to improve reliability.
- RAID (Redundant Array of Independent Disks) is standardized scheme for multiple-disk database design.
- The RAID scheme consists of seven levels, zero through six.

These levels share three common characteristics:

- RAID is a set of physical disk drives viewed by the operating system as a single logical drive.
- ➤ Data are distributed across the physical drives of an array in a scheme known as striping, described subsequently.
- Redundant disk capacity is used to store parity information, which guarantees data recoverability in case of a disk failure.

- The term *RAID* was originally coined in a paper by a group of researchers at the University of California at Berkeley.
- The paper outlined various RAID configurations and applications and introduced the definitions of the RAID levels that are still used.
- The RAID strategy employs multiple disk drives and distributions data in such a way as to enable simultaneous access to data from multiple drives, thereby improving I/O performance and allowing easier incremental increases in capacity.
- The unique contribution of the RAID proposal is to ely the need for redundancy.

RAID LEVELS

Category	Level	Description	Disks Required	Data Availability	Large I/O Data Transfer Capacity	Small I/O Request Rate
Striping	0	Nonredundant	N	Lower than single disk	Very high	Very high for both read and write
Mirroring	1	Mirrored	2.N	Higher than RAID 2, 3, 4, or 5; lower than RAID 6	Higher than single disk for read; similar to single disk for write	Up to twice that of a single disk for read; similar to single disk for write
Parallel access	2	Redundant via Hamming code	N + m	Much higher than single disk; comparable to RAID 3, 4, or 5	Highest of all listed alternatives	Approximately twice that of a single disk
	3	Bit-interleaved parity	N + 1	Much higher than single disk; comparable to RAID 2, 4, or 5	Highest of all listed alternatives	Approximately twice that of a single disk
Independent access	4	Block-interleaved parity	N + 1	Much higher than single disk; comparable to RAID 2, 3, or 5	Similar to RAID 0 for read; significantly lower than single disk for write	Similar to RAID 0 for read; significantly lower than single disk for write
	5	Block-interleaved distributed parity	N + 1	Much higher than single disk; comparable to RAID 2, 3, or 4	Similar to RAID 0 for read; lower than single disk for write	Similar to RAID 0 for read; generally lower than single disk for write
	6	Block-interleaved dual distributed parity	N + 2	Highest of all listed alternatives	Similar to RAID 0 for read; lower than RAID 5 for write	Similar to RAID 0 for read; significantly lower than RAID 5 for write

Note: N = number of data disks; m proportional to $\log N$

Figure 6.6 RAID Levels (Continued)

(g) RAID 6 (Dual redundancy)

Figure 6.6 RAID Levels (Continued)

RAID Level 0:

- RAID level 0 is not a true member of the RAID family because it does not include redundancy to improve performance.
- For RAID, the user and system data are distributed across all of the disks in the array.
- **ADVANTAGE**: Two requests can be issued in parallel, reducing the I/O queuing time (if two different I/O requests are pending for two different blocks of data, then there is a good chance that the requested blocks are on different disks)
- But RAID 0, as with all of the RAID levels, goes further than simply distributing the data across a disk array.
- The data are *striped* across the available disks.

Figure 6.7 Data Mapping for a RAID Level 0 Array

RAID 0 for high data transfer capacity:

- The performance of any of the RAID levels depends critically on the request patterns of the host system and on the layout of the data.
- These issues can be most clearly addressed in RAID 0, where the impact of redundancy does not interfere with the analysis.
- For applications to experience a high transfer rate, two requirements must be met.
- First, a high transfer capacity must exist along the entire path between host memory and the individual disk drives.
- The second requirement is that the application must take I/O requests that drive the disk array efficiently.

RAID 0 for high I/O request rate:

- In a transaction-oriented environment, the user is typically more concerned with response time than with transfer rate.
- For an individual I/O request for a small amount of data, the I/O time is dominated by the motion of the disk heads (seek time) and the movement of the disk (rotational latency).
- A disk array can provide high I/O execution rates by balancing the I/O load across multiple disks.
- The performance will also be influenced by the strip size.

THANK YOU