# EDIN01: Cryptography — Reference Sheet Lund University

# Karl Hallsby

Last Edited: September 22, 2020

# Contents

| Li | List of Theorems v |                                                                             |                       |
|----|--------------------|-----------------------------------------------------------------------------|-----------------------|
| 1  | <b>Cry</b> 1.1     | Historical Cryptography                                                     | 1<br>1<br>1<br>1<br>1 |
| 2  |                    | mber Theory                                                                 | 2                     |
|    | 2.1 $2.2$          | Integer Long Division                                                       | 2<br>3                |
|    | $\frac{2.2}{2.3}$  | Least Common Multiple                                                       | ა<br>3                |
|    | $\frac{2.5}{2.4}$  | Primality                                                                   | 3                     |
|    |                    | 2.4.1 Number of Primes                                                      | 3                     |
|    | 2.5                | Unique Factorization                                                        | 3                     |
|    |                    | 2.5.1 Greatest Common Divisor and Least Common Multiple with Unique Factors | 4                     |
|    | 2.6                | Euler Phi Function                                                          | 4                     |
|    | 2.7                | The Integers modulo $n$                                                     | 6                     |
|    | 2.8                | Equivalence Classes                                                         | 7                     |
| 3  | Nur                | $\mathbb{Z}_n$                                                              | <b>7</b>              |
|    | $\frac{3.1}{3.2}$  | Inverse in $\mathbb{Z}_n$                                                   | 8                     |
|    | $\frac{3.2}{3.3}$  | Chinese Remainder Theorem                                                   | 10                    |
|    | 3.4                | Multiplicative Groups, $\mathbb{Z}_n^*$                                     | 11                    |
|    | 3.5                | Euler's Theorem                                                             | 12                    |
|    | 3.6                | Generators                                                                  | 12                    |
|    | 3.7                | Quadratic Residues                                                          | 13                    |
| 4  | <b>Abs</b> 4.1     | stract Algebra Groups                                                       | <b>13</b><br>13       |
|    | 7.1                | 4.1.1 Examples of Groups                                                    | 15                    |
|    |                    | 4.1.2 Definitions for Groups                                                | 15                    |
|    | 4.2                | Properties of Groups                                                        | 17                    |
|    |                    | 4.2.1 Lagrange's Theorem                                                    | 17                    |
|    | 4.3                | Rings                                                                       | 17                    |
|    |                    | 4.3.1 Examples of Rings                                                     | 17                    |
|    | 4.4                | Fields                                                                      | 18                    |
|    |                    | 4.4.1 Examples of Fields                                                    | 19                    |
|    | 4.5                | Polynomial Rings                                                            | 19                    |
|    |                    | 4.5.1 Long Division of Polynomials                                          | 21                    |
|    |                    | 4.5.2 Properties of Polynomial Rings                                        | $\frac{22}{23}$       |

| 5 | Clas                                                 | ssical Cryptography 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                      |
|---|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|   | 5.1                                                  | Types of Attacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27                                                                                     |
|   | 5.2                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27                                                                                     |
|   |                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                                                                                     |
|   | 5.3                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28                                                                                     |
|   | 0.0                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28                                                                                     |
|   | 5.4                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28                                                                                     |
|   | 0.4                                                  | v ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                                                                                     |
|   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |
|   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                                                                     |
|   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                                                                     |
|   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                                                                     |
|   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80                                                                                     |
|   |                                                      | 5.4.4 The Hill Cipher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                                                                                     |
| c | тс                                                   | , m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |
| 6 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                      |
|   | 6.1                                                  | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80                                                                                     |
|   | 6.2                                                  | Discrete Random Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |
|   |                                                      | 6.2.1 Independent Discrete Random Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |
|   |                                                      | 6.2.2 Conditional Probability of Discrete Random Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |
|   | 6.3                                                  | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                                                                     |
|   |                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                     |
|   |                                                      | * V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                                                                     |
|   |                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                      |
|   | 6.4                                                  | Relative Entropy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                      |
|   |                                                      | 6.4.1 Conditional Relative Entropy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                      |
|   | 6.5                                                  | Mutual Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                      |
|   |                                                      | 6.5.1 Properties of Mutual Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                      |
|   |                                                      | 6.5.2 Conditional Mutual Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                      |
|   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |
| 7 | Sha                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                      |
|   | 7.1                                                  | Attack and Security Assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34                                                                                     |
|   | 7.2                                                  | Security Scenarios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                     |
|   | 7.3                                                  | Shannon's Theory with Discrete Random Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85                                                                                     |
| 0 | C.                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                      |
| 8 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                      |
|   | 8.1                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87                                                                                     |
|   | 8.2                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88                                                                                     |
|   | 8.3                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |
|   |                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88                                                                                     |
|   |                                                      | Linear Feedback Shift Registers Sequences and Extension Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89                                                                                     |
|   | 8.4                                                  | Linear Feedback Shift Registers Sequences and Extension Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89<br>10                                                                               |
|   | 8.4<br>8.5                                           | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39<br>10<br>12                                                                         |
|   | 8.4                                                  | Linear Feedback Shift Registers Sequences and Extension Fields38.4.1 Properties of Linear Feedback Shift Registers4Berlekamp-Massey Algorithm4Cycle Sets4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39<br>10<br>12<br>12                                                                   |
|   | 8.4<br>8.5                                           | Linear Feedback Shift Registers Sequences and Extension Fields38.4.1 Properties of Linear Feedback Shift Registers4Berlekamp-Massey Algorithm4Cycle Sets48.6.1 Properties of Cycle Sets4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19<br>10<br>12<br>12                                                                   |
|   | 8.4<br>8.5                                           | Linear Feedback Shift Registers Sequences and Extension Fields38.4.1 Properties of Linear Feedback Shift Registers4Berlekamp-Massey Algorithm4Cycle Sets48.6.1 Properties of Cycle Sets4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39<br>10<br>12<br>12                                                                   |
|   | 8.4<br>8.5<br>8.6                                    | Linear Feedback Shift Registers Sequences and Extension Fields38.4.1 Properties of Linear Feedback Shift Registers4Berlekamp-Massey Algorithm4Cycle Sets48.6.1 Properties of Cycle Sets4Decimation4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19<br>10<br>12<br>12                                                                   |
|   | 8.4<br>8.5<br>8.6<br>8.7                             | Linear Feedback Shift Registers Sequences and Extension Fields38.4.1 Properties of Linear Feedback Shift Registers4Berlekamp-Massey Algorithm4Cycle Sets48.6.1 Properties of Cycle Sets4Decimation4Statistical Properties4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19<br>10<br>12<br>12<br>13                                                             |
|   | 8.4<br>8.5<br>8.6<br>8.7<br>8.8                      | Linear Feedback Shift Registers Sequences and Extension Fields38.4.1 Properties of Linear Feedback Shift Registers4Berlekamp-Massey Algorithm4Cycle Sets48.6.1 Properties of Cycle Sets4Decimation4Statistical Properties48.8.1 Autocorrelation Function4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39<br>40<br>42<br>42<br>43<br>43<br>44                                                 |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8                      | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4                                                                                                                                                                                                                                                                                                                                                                                                                       | 39<br>10<br>12<br>12<br>13<br>13<br>14                                                 |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8                      | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4                                                                                                                                                                                                                                                                                                                                                                          | 39<br>10<br>12<br>12<br>13<br>13<br>14<br>14                                           |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8                      | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4                                                                                                                                                                                                                                                                                                                                | 39<br>10<br>12<br>12<br>13<br>13<br>14                                                 |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8                      | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4         9.1.2 SP Network       4                                                                                                                                                                                                                                                                                               | 39<br>10<br>12<br>12<br>13<br>13<br>14<br>14<br>15<br>15<br>15                         |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8                      | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4         9.1.2 SP Network       4         Modes of Operation       4                                                                                                                                                                                                                                                            | 39<br>40<br>42<br>42<br>43<br>43<br>44<br>45<br>45<br>45<br>45<br>45                   |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8<br><b>Blo</b>        | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4         9.1.2 SP Network       4         Modes of Operation       4                                                                                                                                                                                                                                                            | 39<br>10<br>12<br>12<br>13<br>13<br>14<br>14<br>15<br>15<br>15                         |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8<br><b>Blo</b>        | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4         9.1.2 SP Network       4         Modes of Operation       4         9.2.1 Electronic Codebook (ECB) Mode       4                                                                                                                                                                                                       | 39<br>40<br>42<br>42<br>43<br>43<br>44<br>45<br>45<br>45<br>45<br>45                   |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8<br><b>Blo</b>        | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4         9.1.2 SP Network       4         Modes of Operation       4         9.2.1 Electronic Codebook (ECB) Mode       4         9.2.1.1 Problems with Electronic Codebook (ECB) Mode       4                                                                                                                                  | 19<br>10<br>12<br>12<br>13<br>13<br>14<br>15<br>15<br>15<br>16                         |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8<br><b>Blo</b>        | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4         9.1.2 SP Network       4         Modes of Operation       4         9.2.1 Electronic Codebook (ECB) Mode       4         9.2.1.1 Problems with Electronic Codebook (ECB) Mode       4         9.2.2 Cipher Block Chaining (CBC) Mode       4                                                                           | 39<br>10<br>12<br>13<br>13<br>14<br>15<br>15<br>16<br>16                               |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8<br><b>Blo</b>        | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4         9.1.2 SP Network       4         Modes of Operation       4         9.2.1 Electronic Codebook (ECB) Mode       4         9.2.1.1 Problems with Electronic Codebook (ECB) Mode       4         9.2.2 Cipher Block Chaining (CBC) Mode       4         9.2.3 Counter Mode       4                                        | 19<br>10<br>12<br>12<br>13<br>13<br>14<br>15<br>15<br>16<br>16<br>16                   |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8<br><b>Blo</b><br>9.1 | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4         9.1.2 SP Network       4         Modes of Operation       4         9.2.1 Electronic Codebook (ECB) Mode       4         9.2.2 Cipher Block Chaining (CBC) Mode       4         9.2.3 Counter Mode       4         Advanced Encryption Scheme       4                                                                  | 39<br>10<br>12<br>12<br>13<br>13<br>14<br>15<br>15<br>15<br>16<br>16<br>16<br>17       |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8<br><b>Blo</b><br>9.1 | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4         9.1.2 SP Network       4         Modes of Operation       4         9.2.1 Electronic Codebook (ECB) Mode       4         9.2.2 Cipher Block Chaining (CBC) Mode       4         9.2.3 Counter Mode       4         Advanced Encryption Scheme       4         9.3.1 AddRoundKey       4                                | 39<br>10<br>12<br>12<br>13<br>13<br>14<br>14<br>15<br>15<br>16<br>16<br>16<br>17<br>17 |
| 9 | 8.4<br>8.5<br>8.6<br>8.7<br>8.8<br><b>Blo</b><br>9.1 | Linear Feedback Shift Registers Sequences and Extension Fields       3         8.4.1 Properties of Linear Feedback Shift Registers       4         Berlekamp-Massey Algorithm       4         Cycle Sets       4         8.6.1 Properties of Cycle Sets       4         Decimation       4         Statistical Properties       4         8.8.1 Autocorrelation Function       4         ck Ciphers       4         Examples of Iterated Ciphers       4         9.1.1 Feistel Ciphers/DES       4         9.1.2 SP Network       4         Modes of Operation       4         9.2.1 Electronic Codebook (ECB) Mode       4         9.2.2 Cipher Block Chaining (CBC) Mode       4         9.2.3 Counter Mode       4         Advanced Encryption Scheme       4         9.3.1 AddRoundKey       4         9.3.2 SubBytes       4 | 39<br>10<br>12<br>12<br>13<br>13<br>14<br>15<br>15<br>16<br>16<br>17<br>17             |

| 10           | 0 Public-Key Encryption                                              |      | 4 | 49 |
|--------------|----------------------------------------------------------------------|------|---|----|
|              | 10.1 RSA Public-Key Encryption Scheme                                | <br> |   | 49 |
|              | 10.1.1 Security of the RSA Public-Key Encryption Scheme              |      |   | 50 |
|              | 10.1.2 Implementation of the RSA Public-Key Encryption Scheme        |      |   | 51 |
|              | 10.2 Primality Testing                                               |      |   | 51 |
|              | 10.2.1 Tillianty Testing                                             | <br> | • | 51 |
|              | 10.2.1 Probabilistic Algorithms for Testing Primality                | <br> | • |    |
|              | 10.2.1.1 Fermat's Little Theorem                                     |      |   | 52 |
|              | 10.3 Factoring                                                       |      |   | 52 |
|              | 10.3.1 Pollard's $(p-1)$ -Method                                     |      |   | 52 |
|              | 10.3.2 Other Factoring Methods                                       |      |   | 52 |
|              | 10.3.3 Computational Complexity of Factoring                         |      |   | 53 |
|              | 10.4 Uses of Public-Key Cryptography                                 |      |   | 53 |
|              | 10.4.1 Digital Certificates and Certificate Authorities              | <br> |   | 53 |
|              | 10.5 The Discrete Logarithm Problem                                  | <br> |   | 53 |
|              | 10.6 Key Exchange                                                    |      |   | 53 |
|              | 10.6.1 Diffie Hellman Key Exchange                                   |      |   | 54 |
|              |                                                                      |      |   |    |
| 11           | 1 Hash Functions                                                     |      | ļ | 54 |
|              | 11.1 Usages of Hash Functions                                        | <br> |   | 55 |
|              | 11.2 Merkle-Damgård Construction                                     |      |   | 55 |
|              | 11.3 SHA-1                                                           |      |   | 55 |
|              | 11.4 Security Status of Various Hash Functions                       |      |   | 56 |
|              | 11.5 SHA-3                                                           |      |   | 56 |
|              | 11.6 Message Authentication Codes                                    |      |   | 56 |
|              | 11.6.1 HMAC                                                          |      |   | 57 |
|              | 11.6.2 Usages of Message Authentication Codes                        |      |   | 57 |
|              | 11.0.2 Usages of Message Authentication Codes                        | <br> | • | 91 |
| 12           | 2 Authentication                                                     |      |   | 57 |
|              | 12.1 Message Authentication Codes with Authentication                |      |   | 57 |
|              | 12.1.1 Problems with Message Authentication Codes and Authentication |      |   | 57 |
|              | 12.1.2 CBC-MAC for Authentication                                    |      |   | 57 |
|              | 12.2 Digital Signatures                                              |      |   | 57 |
|              | 12.2.1 Security Assumptions for Digital Signatures                   |      |   | 58 |
|              | 12.3 Authentication Codes                                            |      |   | 58 |
|              |                                                                      |      |   | 58 |
|              | 12.3.1 The Unconditionally Secure Model                              |      |   |    |
|              | 12.3.2 Attacks on Authentication Codes                               |      |   | 58 |
|              | 12.3.2.1 Impersonation Attacks                                       |      |   | 59 |
|              | 12.3.2.2 Substitution Attacks                                        |      |   | 59 |
|              | 12.3.3 Constructing Authentication Codes                             |      |   | 60 |
|              | 12.4 Systematic Authentication Codes                                 |      |   | 60 |
|              | 12.4.1 Vector Space Construction                                     |      |   | 61 |
|              | 12.4.2 Polynomial Evaluation Construction                            | <br> |   | 61 |
|              |                                                                      |      |   |    |
| 13           | 3 Secret Sharing Schemes                                             |      |   | 61 |
|              | 13.1 Shamir Threshold Scheme                                         |      |   | 61 |
|              | 13.1.1 How can $k$ Participants Reconstruct $a(x)$ ?                 |      |   | 62 |
|              | 13.1.2 Why $k-1$ Participants Cannot Reconstruct $a(x)$ ?            |      |   | 64 |
|              | 13.2 Alternative Way to Calculate Secret Polynomial                  |      |   | 64 |
|              | 13.3 Simplified Construction for $(k, k)$ -Threshold Schemes         | <br> | • | 65 |
|              | 13.4 Access Structures                                               | <br> |   | 65 |
|              | 13.4.1 Properties of Access Structures                               | <br> |   | 65 |
|              | 13.4.2 Constructing a Perfect For Any Access Structure               | <br> |   | 66 |
|              |                                                                      |      |   |    |
| $\mathbf{A}$ | A Complex Numbers                                                    |      |   | 68 |
|              | A.1 Parts of a Complex Number                                        | <br> |   | 68 |
|              | A.2 Binary Operations                                                | <br> |   | 68 |
|              | A.2.1 Addition                                                       | <br> |   | 68 |
|              | A.2.2 Multiplication                                                 | <br> |   | 69 |
|              | A.3 Complex Conjugates                                               |      |   | 69 |
|              | A.3.1 Notable Complex Conjugate Expressions                          |      |   | 69 |
|              | A.3.2 Properties of Complex Conjugates                               |      |   | 70 |

|   | A.4        | Geometry of Complex Numbers                             |     |
|---|------------|---------------------------------------------------------|-----|
|   |            | A.4.1 Modulus of a Complex Number                       | 71  |
|   |            | A.4.1.1 Algebraic Effects of the Modulus' Property (i)  | 71  |
|   |            | A.4.1.2 Conceptual Effects of the Modulus' Property (i) | 71  |
|   | A.5        | Circles and Complex Numbers                             |     |
|   |            | A.5.1 Annulus                                           | 72  |
|   | A.6        | Polar Form                                              | 72  |
|   |            | A.6.1 Converting Between Cartesian and Polar Forms      | 73  |
|   |            | A.6.2 Benefits of Polar Form                            |     |
|   |            | A.6.2.1 Multiplication                                  |     |
|   |            | A.6.2.2 Division                                        |     |
|   |            | A.6.2.3 Exponentiation                                  |     |
|   | A.7        | Roots of a Complex Number                               |     |
|   |            | Arguments                                               |     |
|   |            | Complex Exponentials                                    |     |
|   | 11.0       | A.9.1 Complex Conjugates of Exponentials                |     |
|   | Δ 10       | O Complex Logarithms                                    |     |
|   | 11.10      | A.10.1 Complex Conjugates of Logarithms                 |     |
|   | Λ 11       | l Complex Trigonometry                                  |     |
|   | Α.11       | A.11.1 Complex Angle Sum and Difference Identities      |     |
|   |            | A.11.1 Complex Angle Sum and Difference Identities      |     |
|   |            | A.11.2 Complex Conjugates of Sinusoids                  | 80  |
| В | Trio       | gonometry                                               | 81  |
| D |            |                                                         |     |
|   |            |                                                         |     |
|   |            | Angle Sum and Difference Identities                     |     |
|   |            |                                                         |     |
|   |            | 8                                                       |     |
|   |            | Half-Angle Formulae                                     |     |
|   |            | Exponent Reduction Formulae                             |     |
|   |            | Product-to-Sum Identities                               |     |
|   | B.8        | Sum-to-Product Identities                               |     |
|   |            | <b>₹</b> 0                                              |     |
|   |            | Rectangular to Polar                                    |     |
|   | B.11       | Polar to Rectangular                                    | 82  |
| ~ | <i>~</i> 1 | •                                                       | 0.0 |
| C |            | culus                                                   | 83  |
|   |            | L'Hôpital's Rule                                        |     |
|   |            | Fundamental Theorems of Calculus                        |     |
|   | C.3        | Rules of Calculus                                       | 83  |
|   |            | C.3.1 Chain Rule                                        |     |
|   |            | Useful Integrals                                        |     |
|   |            | Leibnitz's Rule                                         |     |
|   | C.6        | Laplace's Equation                                      | 84  |
| _ | <b>.</b>   | 1 m a                                                   |     |
| D |            | place Transform                                         | 85  |
|   |            | Laplace Transform                                       | 85  |
|   |            | Inverse Laplace Transform                               |     |
|   | D.3        | Properties of the Laplace Transform                     | 85  |
|   |            | D.3.1 Linearity                                         | 85  |
|   |            | D.3.2 Time Scaling                                      | 85  |
|   |            | D.3.3 Time Shift                                        | 85  |
|   |            | D.3.4 Frequency Shift                                   | 85  |
|   |            | D.3.5 Integration in Time                               | 85  |
|   |            | D.3.6 Frequency Multiplication                          | 85  |
|   |            | D.3.7 Relation to Fourier Transform                     | 85  |
|   | D.4        | Theorems                                                | 86  |
|   | D.5        |                                                         |     |
|   |            | Higher-Order Transforms                                 |     |
|   | -          |                                                         |     |

# List of Theorems

| 1               | Defn (Cryptographic Primitive)                                                                                                     |            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2               | Defn (Cryptographic Protocol)                                                                                                      | 1          |
| 3               | Defn (Cryptology)                                                                                                                  |            |
| 4               | Defn (Cryptography)                                                                                                                |            |
| 5               | Defn (Cryptanalysis)                                                                                                               |            |
| 6               | Defn (Monoalphabetic Cipher)                                                                                                       |            |
| 7               | Defn (Polyalphabetic Cipher)                                                                                                       |            |
| 8               | Defn (Kerckhoff's Principle)                                                                                                       |            |
| 9               | Defn (Intractable)                                                                                                                 |            |
| 10              | Defn (Number Theory)                                                                                                               |            |
| 11              | Defn (Divides)                                                                                                                     |            |
|                 |                                                                                                                                    |            |
| 12              | Defn (Quotient)                                                                                                                    |            |
| 13              | Defn (Remainder)                                                                                                                   |            |
| 14              | Defn (Common Divisor)                                                                                                              |            |
| 15              | Defn (Greatest Common Divisor)                                                                                                     |            |
| 16              | Defn (Least Common Multiple)                                                                                                       |            |
| 17              | Defn (Relatively Prime)                                                                                                            |            |
| 18              | Defn (Prime)                                                                                                                       |            |
| 19              | Defn (Composite)                                                                                                                   |            |
| 20              | Defn (Euler Phi Function)                                                                                                          |            |
| 21              | Defn (Euclidean Algorithm)                                                                                                         |            |
| 22              | Defn (Extended Euclidean Algorithm)                                                                                                |            |
| 23              | Defn (Congruence)                                                                                                                  |            |
| 24              | Defn (Equivalence Class)                                                                                                           |            |
| $\frac{24}{25}$ |                                                                                                                                    |            |
|                 | Defn $(\mathbb{Z}_n)$                                                                                                              |            |
| 26              | Defn (Multiplicative Inverse)                                                                                                      |            |
| 27              | Defn (Division in $\mathbb{Z}_n$ )                                                                                                 |            |
| 28              | Defn (Invertible)                                                                                                                  |            |
| 29              | $\label{eq:Defn} Defn \; (Gauss's \; Algorithm) \;\; \dots \;\;$ |            |
| 30              | Defn (Chinese Remainder Theorem)                                                                                                   | 10         |
| 31              | Defn (Multiplicative Group, $\mathbb{Z}_n^*$ )                                                                                     | 11         |
| 32              | Defn (Set Order)                                                                                                                   | 11         |
| 33              | Defn (Element Order)                                                                                                               | 11         |
| 34              | Defn (Generator)                                                                                                                   |            |
| 35              | Defn (Quadratic Residue)                                                                                                           |            |
| 36              | Defn (Quadratic Non-Residue)                                                                                                       |            |
| 37              | Defn (Binary Operation)                                                                                                            |            |
| 38              | Defn (Group)                                                                                                                       |            |
| 39              | Defn (Abelian)                                                                                                                     |            |
| 40              | Defn (Subgroup)                                                                                                                    |            |
|                 | ( 0 1)                                                                                                                             |            |
| 41              | Defn (Cyclic)                                                                                                                      |            |
| 42              | Defn (Element Order)                                                                                                               |            |
| 43              | Defn (Left Coset)                                                                                                                  |            |
| 44              | Defn (Ring)                                                                                                                        |            |
| 45              | Defn (Invertible Element)                                                                                                          |            |
| 46              | Defn (Field)                                                                                                                       |            |
| 47              | Defn (Characteristic)                                                                                                              |            |
| 48              | Defn (Finite Field)                                                                                                                |            |
| 49              | Defn (Subfield)                                                                                                                    | 18         |
| 50              | Defn (Isomorphism)                                                                                                                 | 18         |
| 51              | Defn (Polynomial)                                                                                                                  |            |
| 52              | Defn (Degree)                                                                                                                      |            |
| 53              | Defn (Monic)                                                                                                                       |            |
| 54              | Defn (Polynomial Ring)                                                                                                             |            |
| 55              | Defn (Irreducible)                                                                                                                 |            |
| 56              | Defn (Polynomial Long Division)                                                                                                    |            |
|                 | Defn (Polynomial Quotient)                                                                                                         |            |
| 57<br>58        | Defn (Polynomial Remainder)                                                                                                        |            |
| .10             | Deni il ormonnal penianoeri                                                                                                        | <i>)</i> : |

| 59       | Defn         | (Divide)                                                                                                                                             |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60       |              | (Congruent)                                                                                                                                          |
| 61       | Defn         | (Equivalence Class)                                                                                                                                  |
| 62       |              | (Representative)                                                                                                                                     |
| 63       |              | (Commutative Ring)                                                                                                                                   |
| 64       |              | (Field)                                                                                                                                              |
| 65       |              | (Finite Field)                                                                                                                                       |
| 66       |              | (Multiplicative Group)                                                                                                                               |
| 67       |              | (Primitive Element)                                                                                                                                  |
| 68       |              | (Greatest Common Divisor)                                                                                                                            |
| 69       |              | (Polynomial Euclidean Algorithm)                                                                                                                     |
| 70       |              | (Polynomial Extended Euclidean Algorithm)                                                                                                            |
| 71       |              |                                                                                                                                                      |
|          | Defin        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                              |
| 72       |              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                |
| 73       |              | (Symmetric Encryption)                                                                                                                               |
| 74       |              | (Plaintext)                                                                                                                                          |
| 75<br>76 |              | (Alphabet)                                                                                                                                           |
| 76       |              | (Ciphertext)                                                                                                                                         |
| 77       |              | (Keyspace)                                                                                                                                           |
| 78       |              | (Encryption Rule)                                                                                                                                    |
| 79       |              | (Decryption Rule)                                                                                                                                    |
| 80       |              | (Kasiski's Method)                                                                                                                                   |
| 81       |              | (Measure of Roughness)                                                                                                                               |
| 82       |              | $(Index \ of \ Coincidence) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $                                                                                  |
| 83       |              | (Random Experiment)                                                                                                                                  |
| 84       |              | (Sample Space)                                                                                                                                       |
| 85       |              | (Elementary Event)                                                                                                                                   |
| 86       |              | (Event)                                                                                                                                              |
| 87       |              | (Probability)                                                                                                                                        |
| 88       | Defn         | $(Random\ Variable)\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$                                                                                         |
| 89       |              | (Discrete Random Variable)                                                                                                                           |
| 90       |              | (Probability Distribution)                                                                                                                           |
| 91       |              | (Expected Value/Mean of Single Discrete Random Variable)                                                                                             |
| 92       |              | $(Independent) \ldots \ldots$ |
| 93       | ${\rm Defn}$ | (Conditional Probability)                                                                                                                            |
| 94       | ${\rm Defn}$ | (Entropy)                                                                                                                                            |
| 95       | ${\rm Defn}$ | (Entropy of Binary Discrete Random Variable)                                                                                                         |
| 96       | ${\rm Defn}$ | (Conditional Entropy)                                                                                                                                |
| 97       | Defn         | (Relative Entropy)                                                                                                                                   |
| 98       | Defn         | (Conditional Relative Entropy)                                                                                                                       |
| 99       | Defn         | (Mutual Information)                                                                                                                                 |
| 100      |              | (Conditional Mutual Information)                                                                                                                     |
| 101      | Defn         | (Shannon's Theory of Secrecy)                                                                                                                        |
| 102      |              | (Ciphertext-Only Attack)                                                                                                                             |
| 103      |              | (Known-Plaintext Attack)                                                                                                                             |
| 104      |              | (Chosen-Plaintext Attack)                                                                                                                            |
| 105      |              | (Chosen-Ciphertext Attack)                                                                                                                           |
|          |              | (Related-Key Attack)                                                                                                                                 |
| 107      |              | (Side Channel Attack)                                                                                                                                |
|          |              | (Unconditional Security)                                                                                                                             |
| 109      |              | (Computational Security)                                                                                                                             |
|          |              | (Provable Security)                                                                                                                                  |
| 111      |              | (Heuristic Security)                                                                                                                                 |
|          |              | (Perfect Secrecy)                                                                                                                                    |
|          |              | (Key Entropy)                                                                                                                                        |
|          |              | (Message Entropy)                                                                                                                                    |
|          |              | (Nessage Entropy)                                                                                                                                    |
|          |              | (Message Equivocation)                                                                                                                               |
|          |              | (Alphabet Size)                                                                                                                                      |
|          |              | (Rate of the Alphabet)                                                                                                                               |
| TIO      | וווטע        | 116000 OI UIIO 111piidiboul                                                                                                                          |

| 119          | Dofn | (Entropy Per Alphabet Symbol)                                                                                             | S        |
|--------------|------|---------------------------------------------------------------------------------------------------------------------------|----------|
|              |      |                                                                                                                           |          |
| 120          | Dem  | (Redundancy)                                                                                                              |          |
| 121          | Defn | (Unicity Distance)                                                                                                        |          |
| 122          |      | (Stream Cipher)                                                                                                           | 7        |
| 123          | Defn | (Keystream)                                                                                                               | 7        |
| 124          |      | (Key Recovery Attack)                                                                                                     | 8        |
| 125          |      | (Distinguishing Attack)                                                                                                   |          |
| 126          |      | (Linear Feedback Shift Register)                                                                                          |          |
| 127          | Dofn | (Shift Register Equation)                                                                                                 |          |
|              | Dem  | Sint Register Equation)                                                                                                   |          |
| 128          |      | (Connection Polynomial)                                                                                                   |          |
| 129          |      | (D-Transform)                                                                                                             |          |
| 130          | Defn | $(m	ext{-Sequence})$                                                                                                      |          |
| 131          | Defn | (Polynomial Period)                                                                                                       | O        |
| 132          | Defn | (Cycle Set)                                                                                                               | 2        |
| 133          | Defn | $egin{aligned} 	ext{Autocorrelation Function} & \dots & $ | 4        |
|              |      | (Block Cipher)                                                                                                            |          |
| 135          | Dofn | (Round Function)                                                                                                          |          |
|              |      |                                                                                                                           |          |
|              |      | (Round Key)                                                                                                               |          |
|              |      | (Feistel Cipher)                                                                                                          |          |
| 138          |      | (SP Network)                                                                                                              |          |
| 139          | Defn | (S-Box)                                                                                                                   | 5        |
| 140          | Defn | (Mode of Operation)                                                                                                       | 5        |
| 141          | Defn | (Initialization Vector)                                                                                                   | 5        |
| 142          |      | (Cipher Block Chaining Mode)                                                                                              |          |
|              |      | (Counter Mode)                                                                                                            |          |
|              |      | (Advanced Encryption Scheme)                                                                                              |          |
| 144          |      |                                                                                                                           |          |
|              |      | (Public-Key Encryption Scheme)                                                                                            |          |
|              |      | (One-Way Function)                                                                                                        |          |
| 147          | Defn | (Trapdoor One-Way Function)                                                                                               | 9        |
| 148          | Defn | (RSA Public-Key Encryption Scheme)                                                                                        | 9        |
| 149          | Defn | Square and Multiply Algorithm)                                                                                            | 1        |
| 150          | Defn | (Pseudo-Prime)                                                                                                            | 2        |
| 151          |      | (Carmichael Number)                                                                                                       |          |
| $151 \\ 152$ |      | (Digital Certificate)                                                                                                     |          |
| -            |      |                                                                                                                           |          |
|              |      | (Certificate Authority)                                                                                                   |          |
|              |      | (Discrete Logarithm Problem)                                                                                              |          |
| 155          | Defn | (Key Exchange)                                                                                                            | 3        |
| 156          | Defn | Diffie Hellman Key Exchange)                                                                                              | 4        |
| 157          | Defn | (Hash Function)                                                                                                           | 4        |
|              |      | Preimage Resistant)                                                                                                       | 4        |
|              |      | (Second Preimage Resistant)                                                                                               |          |
|              |      | (Collision Resistant)                                                                                                     |          |
|              |      |                                                                                                                           |          |
|              |      | (Merkle-Damgård Construction)                                                                                             |          |
|              |      | (Length Strengthening)                                                                                                    |          |
|              |      | (SHA-3)                                                                                                                   | 3        |
| 164          | Defn | (Message Authentication Code)                                                                                             | $\delta$ |
| 165          | Defn | (Digital Signature)                                                                                                       | 7        |
| 166          | Defn | Authentication Code)                                                                                                      | 8        |
|              |      | (Probability of Deception)                                                                                                |          |
|              |      | (Impersonation Attack)                                                                                                    |          |
|              |      | ,                                                                                                                         |          |
|              |      | (Substitution Attack)                                                                                                     |          |
| 170          |      | (Systematic Authentication Code)                                                                                          |          |
| 171          |      | (Threshold Scheme)                                                                                                        |          |
| 172          | Defn | (Shamir Threshold Scheme)                                                                                                 | 1        |
| 173          | Defn | (Lagrange Interpolation Formula)                                                                                          | 4        |
|              |      | Access Structure)                                                                                                         | 5        |
|              |      | (Perfect)                                                                                                                 |          |
|              |      | $(\operatorname{Ideal})$                                                                                                  |          |
|              |      | (Closure)                                                                                                                 |          |
|              |      |                                                                                                                           |          |
| 1/8          | реm  | (Monotone)                                                                                                                | a        |

| A.0.1Defn | (Complex Number)                         |
|-----------|------------------------------------------|
| A.1.1Defn | (Real Part)                              |
| A.1.2Defn | (Imaginary Part)                         |
| A.3.1Defn | (Complex Conjugate)                      |
| A.4.1Defn | (Argand Plane)                           |
| A.4.2Defn | (Modulus)                                |
| A.5.1Defn | (Annulus)                                |
| A.6.1Defn | (de Moiver's Law)                        |
|           | (Argument)                               |
| A.8.2Defn | (Principal Argument)                     |
| A.10.Defn | (Complex Logarithm)                      |
| C.2.1Defn | (First Fundamental Theorem of Calculus)  |
| C.2.2Defn | (Second Fundamental Theorem of Calculus) |
| C.2.3Defn | (argmax)                                 |
| C.3.1Defn | (Chain Rule)                             |
| D.1.1Defn | (Laplace Transform)                      |
| D 2 1Defn | (Inverse Lanlace Transform)              |

# 1 Cryptography Introduction

**Defn 1** (Cryptographic Primitive). A *cryptographic primitive* is an algorithm with basic cryptographic properties. These are solutions to different problems where cryptography is required.

**Defn 2** (Cryptographic Protocol). A *cryptographic protocol* involves the back-and-forth communication among two or more parties.

Remark 2.1 (Bob and Alice). Typically, the parties are named Bob and Alice. These are arbitrary names, but these are the most commonly used ones.

There are have been several Cryptographic Protocols.

- 1. Symmetric-key cryptography Methods in which both the sender and receiver share the same key
  - (a) Block ciphers
  - (b) Stream ciphers
  - (c) MAC algorithms
- 2. Public-key cryptography: 2 different, but mathematically related keys are used. A public key and a private key.
  - (a) The public key cannot decrypt something that was encrypted with the private key.
  - (b) The public key can be shared freely, because the private key cannot be generated from the public key.
- 3. Cryptographic hash functions are a related and important class of cryptographic algorithms.
  - (a) This is a keyless Cryptographic Primitive.
  - (b) Takes an arbitrary length input and produces a fixed-length output.
  - (c) The mapping between the input and output is such that the output cannot generate the input, therefore making it cryptographic.

# 1.1 Historical Cryptography

**Defn 3** (Cryptology). Cryptology was the science of secret writing.

**Defn 4** (Cryptography). Cryptography dealt with the development of systems for secret writing.

**Defn 5** (Cryptanalysis). Cryptanalysis was the analysis of existing cryptographic systems to break them.

Just to give a super quick background on how we've gotten to where we are today when it comes to cryptography.

#### 1.1.1 Monoalphabetic Ciphers

**Defn 6** (Monoalphabetic Cipher). In a *monoalphabetic cipher* a single letter is replaced by the cipher's mapping. Since the cipher can do this to arbitrary letters, this could continue indefinitely for any single letter.

These were some of the first ciphers developed by Man. These include simple substitute ciphers, and letter shifting ciphers. However, these can be broken with *frequency analysis*.

# 1.1.2 Polyalphabetic Ciphers

**Defn 7** (Polyalphabetic Cipher). In a *polyalphabetic cipher* multiple letters are replaced by the cipher's mapping. Additionally, since the cipher can output multiple letters, the ciphered letters could be run through the cipher again.

These were developed in response to Monoalphabetic Ciphers being broken. However, these can also be broken, with extended frequency analysis.

Eventually, it was realized that the secrecy of the cipher is not sensible/possible. This leads us to the conclusion that any cryptographic scheme should remain secure even if the adversary understands the cipher algorithm itself.

# 1.1.3 Cryptographic Keys

The use of keys as ciphers is a slightly more modern occurrence.

**Defn 8** (Kerckhoff's Principle). Kerckhoff's Principle states that the security of the key used should alone be sufficient for a good cipher to maintain confidentiality under an attack. Essentially, the security of the key used should be sufficient such that the cipher can be maintained confidently while under attack.

However, only since the mid-1970s, has public key cryptography has been possible.

Computers can efficiently encrypt, given the following constraints:

| Symmetric-Key Cryptography   | Public-Key Cryptography                                     |
|------------------------------|-------------------------------------------------------------|
| Block ciphers Stream ciphers | Public-Key encryption Digital Signature Schemes             |
| Cryptographic Hash Functions | Key exchange protocols                                      |
|                              | Electronic Cash/Cryptocurrency<br>Interactive Proof Systems |

Table 1.1: Uses of Key-Based Cryptography

- 1. Some modern techniques can only keep the keys secret if certain mathematical problems are Intractable.
  - (a) Integer factorization
  - (b) Discrete logarithm problems
- 2. However, there are no absolute proofs that a cryptographic technique is secure.

**Defn 9** (Intractable). An *intractable* problem is one in which there are no **efficient** algorithms to solve them.

# 2 Number Theory

Before we can start with any of the deeper cryptography stuff, we need to start with some basic number theory.

**Defn 10** (Number Theory). *Number theory* is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. Number theorists study prime numbers as well as the properties of objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers).

**Defn 11** (Divides). For  $a, b \in \mathbb{Z}$ , we say that a divides b (written  $a \mid b$ ) if there exists an integer c such that b = ac. Properties:

- (i) a | a
- (ii) If  $a \mid b$  and  $b \mid c$ , then  $a \mid c$ .
- (iii) If  $a \mid b$  and  $a \mid c$ , then  $a \mid (bx + cy)$  for any  $x, y \in \mathbb{Z}$ .
- (iv) If  $a \mid b$  and  $b \mid a$ , then  $a = \pm b$ .

# 2.1 Integer Long Division

For  $a, b \in \mathbb{Z}$ , with  $b \ge 1$ . Then an ordinary long division of a by b, i.e.  $a \div b$  yields two integers q and r such that

$$a = qb + r, \text{ where } 0 \le r < b \tag{2.1}$$

q and r are called the Quotient and Remainder, respectively, and are **unique**.

**Defn 12** (Quotient). The quotient, q, of a divided by b is denoted a div b.

**Defn 13** (Remainder). The *remainder*, r, of a divided by b is denoted  $a \mod b$ .

# Example 2.1: Integer Long Division. Lecture 1, Example 1

If a = 53 and b = 9, what is  $a \mod b$ ?

$$53 = q9 + r$$

$$q = 5$$

$$r = 8$$

Thus,  $53 \mod 9 = 8$ .

#### 2.2 Greatest Common Divisor

**Defn 14** (Common Divisor). An integer c is a common divisor of a and b if  $c \mid a$  and  $c \mid b$ .

**Defn 15** (Greatest Common Divisor). A non-negative integer d is called the *greatest common divisor* (GCD) of integers a and b if:

- 1. d is a Common Divisor of a and b.
- 2. For every other common divisor c it holds that  $c \mid d$ .

The greatest common divisor is denoted

$$\gcd(a,b) \tag{2.2}$$

gcd(a, b) is the **largest positive** integer dividing both a and b (except for gcd(0, 0) = 0).

Remark 15.1. If  $a, b \in \mathbb{Z}^+$ , then  $lcm(a, b) \cdot gcd(a, b) = a \cdot b$ 

#### Example 2.2: Greatest Common Divisor. Lecture 1, Example 2

What is the gcd(18, 24)?

Common Divisors =  $\{\pm 1, \pm 2, \pm 4, \pm 6\}$ .

Since we can only allow positive integers,

$$\gcd(18, 24) = +6$$

# 2.3 Least Common Multiple

**Defn 16** (Least Common Multiple). A non-negative integer d is called the *least common multiple* (LCM) of integers a and b if:

- 1.  $a \mid d$  and  $b \mid d$
- 2. For every integer c such that  $a \mid c$  and  $b \mid c$ , we have  $d \mid c$ .

The least common multiple is denoted

$$lcm(a,b) (2.3)$$

lcm(a, b) is the **smallest positive** integer divisible by both a and b.

Remark 16.1. If  $a, b \in \mathbb{Z}^+$ , then  $lcm(a, b) \cdot gcd(a, b) = a \cdot b$ 

#### 2.4 Primality

**Defn 17** (Relatively Prime). a, b are called *relatively prime* if gcd(a, b) = 1.

**Defn 18** (Prime). An integer  $p \ge 2$  is called *prime* if its only positive divisors are 1 and p. Otherwise, p is called a Composite.

**Defn 19** (Composite). An integer  $p \ge 2$  is called *composite* if it has more positive divisors than just 1 and p. Otherwise, p is called a Prime.

# 2.4.1 Number of Primes

The number of primes  $\leq x$  is denoted

$$\pi(x) \tag{2.4}$$

- 1. There are infinitely many primes
- 2.  $\lim_{x \to \infty} \frac{\pi(x)}{\frac{1}{\ln(x)}} = 1$
- 3. For  $x \ge 17$ ,  $\frac{x}{\ln(x)} < \pi(x) < \frac{1.25506x}{\ln(x)}$

#### 2.5 Unique Factorization

**Theorem 2.1** (Unique Factorization Theorem). Every integer  $n \geq 2$  can be written as a product of prime powers,

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$

where  $p_1, p_2, \dots p_k$  are distinct primes and  $e_1, e_2, \dots e_k$  are positive integers. Furthermore, the factorization is unique up to rearrangement of the factors.

#### 2.5.1 Greatest Common Divisor and Least Common Multiple with Unique Factors

If  $a = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$  and  $b = p_1^{f_1} p_2^{f_2} \cdots p_k^{e_k}$ , where  $e_i, f_i, i = 1, 2, ..., k$  are non-negative integers, then

$$\gcd(a,b) = p_1^{\min(e_1,f_1)} p_2^{\min(e_2,f_2)} \cdots p_k^{\min(e_k,f_k)}$$
(2.5)

and

$$lcm(a,b) = p_1^{\max(e_1,f_1)} p_2^{\max(e_2,f_2)} \cdots p_k^{\max(e_k,f_k)}$$
(2.6)

#### 2.6 Euler Phi Function

**Defn 20** (Euler Phi Function). For  $n \ge 1$ , let  $\phi(n)$  denote the number of integers in the interval [1, n], which are Relatively Prime to n. This function is called the *Euler Phi Function*.

$$\phi(n) = (p_1^{e_1} - p_1^{e_1 - 1}) (p_2^{e_2} - p_2^{e_2 - 1}) \cdots (p_k^{e_k} - p_k^{e_k - 1})$$

$$(2.7)$$

Remark 20.1. The Euler Phi Function is closely related to Set Order.

**Theorem 2.2** (Euler Phi Function). There are a few properties of the Euler Phi Function that we will treat as true because of this theorem.

- (i) If p is a Prime, then  $\phi(p) = p 1$ .
- (ii) If gcd(a,b) = 1, then  $\phi(ab) = \phi(a)\phi(b)$ .
- (iii) If  $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ , then

$$\phi(n) = (p_1^{e_1} - p_1^{e_1-1}) (p_2^{e_2} - p_2^{e_2-1}) \cdots (p_k^{e_k} - p_k^{e_k-1})$$

#### Example 2.3: Euler Phi Function. Exercise 1, Question 1.2a

Find the value of  $\phi(36)$ ?

First, we note that 36 is not a Prime number, thus we need to find a set of primes that are equal to 36. The divisors of 36 are

$$\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 9, \pm 12, \pm 18, \pm 36\}$$

And all possible prime numbers present as divisors of 36 are

So, there must be some combination of  $2^x \cdot 3^y$  that yields 36. In fact,  $2^2 \cdot 3^2 = 4 \cdot 9 = 36$ . Since 36 can be broken up as a product of 2 Prime numbers raised to some power, we can use Property (iii) of the Euler Phi Function to simplify this. But first, we need to separate the two values from each other using Property (ii) of the Euler Phi Function to apply Property (iii).

We need to check  $gcd(2^2, 3^2) = 1$ .

$$\gcd(2^2, 3^2) = \gcd(4, 9)$$
$$9 = a4 + b$$
$$= 2 \cdot 4 + 1$$
$$4 = a \cdot 1 + b$$
$$= 4 \cdot 1 + 0$$

So,  $gcd(2^2, 3^2) = 1$ , so we can use Property (ii).

$$\phi\left(2^2 \cdot 3^2\right) = \phi\left(2^2\right)\phi\left(3^2\right)$$

And now we can apply Property (iii) to find our answer.

$$\phi(2^{2}) \phi(3^{2}) = (2^{2} - 2^{2-1}) (3^{2} - 3^{2-1})$$

$$= (4 - 2)(9 - 3)$$

$$= (2)(6)$$

$$= 12$$

Thus,  $\phi(36) = 12$ .

$$\gcd(a,b) = \gcd(b, a \bmod b) \tag{2.8}$$

Remark. This can be repeated to efficiently calculate the gcd(a,b). This is called the Euclidean Algorithm.

**Defn 21** (Euclidean Algorithm). The euclidean algorithm is a way to efficiently calculate the gcd(a,b).

# Algorithm 2.1: Euclidean Algorithm

Input: Two non-negative integers a, b where  $a \ge b$ .

Output:  $\gcd(a, b)$ .

1 Set  $r_0 \leftarrow a, r_1 \leftarrow b, i \leftarrow 1$ 2 while  $r_i \ne 0$  do

3 | Set  $r_{i+1} \leftarrow r_{i-1} \mod r_i$ 4 |  $i \leftarrow i + 1$ 5 return  $r_i$ 

### Example 2.4: Euclidean Algorithm. Exercise 1, Question 1.1a

Find the Greatest Common Divisor of 222 and 1870?

$$1870 = a222 + b$$

$$= 8 \cdot 222 + 94$$

$$222 = a94 + b$$

$$= 2 \cdot 94 + 34$$

$$94 = a34 + b$$

$$= 2 \cdot 34 + 26$$

$$34 = a26 + b$$

$$= 1 \cdot 26 + 8$$

$$26 = a8 + b$$

$$= 3 \cdot 8 + 2$$

$$8 = a2 + b$$

$$= 4 \cdot 2 + 0$$

Thus, since  $4 \cdot 2 = 8$ , 2 is the Greatest Common Divisor of 222 and 1870.

**Theorem 2.3.** There exist integers x, y such that gcd(a, b) can be written as

$$\gcd(a,b) = ax + by \tag{2.9}$$

Proof.

$$\gcd(a,b) = r_i$$

$$= r_{i-2} - q_{i-1}r_{i-1}$$

$$= r_{i-2} - q_{i-1}(r_{i-3} - q_{i-2}r_{i-2})$$

$$\vdots$$

$$= r_0x + r_1y$$

$$= ax + by$$

for some integers  $x, y \in \mathbb{Z}$ .

This means that the Euclidean Algorithm can be extended to return the values of x and y from Equation (2.9).

**Defn 22** (Extended Euclidean Algorithm). The extended euclidean algorithm is a way to efficiently calculate the linear pair of integers  $(x, y \in \mathbb{Z})$  that satisfy Equation (2.9).

$$\gcd(a,b) = ax + by$$

#### Algorithm 2.2: Extended Euclidean Algorithm (Bezout's Theorem)

# Example 2.5: Extended Euclidean Algorithm. Exercise 1, Question 1.1b

Find the integers x and y such that gcd(222, 1870) = 222x + 1870y?

From Example 2.4, we know gcd(222, 1870) = 2, so we can plug that in. We now know that

$$2 = 222x + 1870y$$

Now, we essentially run the Euclidean Algorithm backwards.

$$\begin{split} 2 &= 26 - 3 \cdot 8 \\ &= 26 - 3(34 - 1 \cdot 26) = 26 - 3 \cdot 34 + 3 \cdot 26 \\ &= 4 \cdot 26 - 3 \cdot 34 \\ &= 4(94 - 2 \cdot 34) - 3 \cdot 34 = 4 \cdot 94 - 8 \cdot 34 - 3 \cdot 34 \\ &= 4 \cdot 94 - 11 \cdot 34 \\ &= 4 \cdot 94 - 11(222 - 2 \cdot 94) = 4 \cdot 94 - 11 \cdot 222 + 22 \cdot 94 \\ &= 26 \cdot 94 - 22 \cdot 222 \\ &= 26(1870 - 8 \cdot 222) - 22 \cdot 222 = 26 \cdot 1870 - 208 \cdot 222 - 11 \cdot 222 \\ &= -219 \cdot 222 + 26 \cdot 1870 \end{split}$$

Now we need to check the solution we might have found

$$-219 \cdot 222 + 26 \cdot 1870 = 2$$
$$-48618 + 48620 = 2$$
$$2 = 2$$

Thus,

$$x = -219$$
$$y = 26$$

# 2.7 The Integers modulo n

Let n be a positive integer.

**Defn 23** (Congruence). If a and b are integers, then a is said to be congruent to b modulo n, which is written as

$$a \equiv b \pmod{n} \tag{2.10}$$

If n divides (a - b), i.e. n | (a - b), then we call n the modulus of the congruence.

**Theorem 2.4.** For  $a, a_1, b, b_1, c \in \mathbb{Z}$ , we have

- (i)  $a \equiv b \pmod{n}$  if and only if a and b leave the same Remainder when divided by n.
- (ii)  $a \equiv a \pmod{n}$
- (iii) If  $a \equiv b \pmod{n}$ , then  $b \equiv a \pmod{n}$
- (iv) If  $a \equiv b \pmod{n}$  adn  $b \equiv c \pmod{n}$ , then  $a \equiv c \pmod{n}$
- (v) If  $a \equiv a_1 \pmod{n}$  and  $b \equiv b_1 \pmod{n}$ , then  $a + b = a_1 + b_1 \pmod{n}$  and  $ab = a_1b_1 \pmod{n}$ .

Properties (ii) to (iv) are called reflexivity, symmetry, and transitivity, respectively.

#### Example 2.6: Integers modulo n. Exercise 1, Question 1.2b

Write all the units (Invertible Element) in  $\mathbb{Z}_{36}$ ?

First, we start by constructing our set of integers modulo n.

$$\mathbb{Z}_{36} = \{[0], [1], [2], [3], [4], \dots, [35]\}$$

Since we are only worried about the units of  $\mathbb{Z}_{36}$ , we need to find the integers that satisfy Equation (4.3). This is done by finding an a value that has a Multiplicative Inverse, which requires that Equation (3.1) be true, namely

$$gcd(a, n) = 1$$

This leaves us with

$$\mathbb{Z}_{36} = \{[1], [5], [7], [11], [13], [17], [19], [23], [25], [29], [31], [35]\}$$

which is the solution.

# 2.8 Equivalence Classes

**Defn 24** (Equivalence Class). Congruence modulo n partitions  $\mathbb{Z}$  into n sets, called *equivalence classes*, where each integer belongs to exactly one equivalence class.

For example, these are all congruent to each other modulo n:

$$[0] = \{\dots, -2n, -n, 0, n, 2n, \dots\}$$
(2.11a)

$$[1] = \{\dots -2n+1, -n+1, 1, n+1, 2n+1\dots\}$$
(2.11b)

$$[r] = \mathbb{Z}_r = (x \bmod r) + n \, \mathbb{Z} \tag{2.11c}$$

Since all elements in an equivalent class have the same Remainder, r, we use r as a representative for the equivalence class.

Remark 24.1. In this case, the representatives of the equivalence classes shown in Equations (2.11a) to (2.11b) are 0 and 1, respectively, and consist of all integers that are mod 0 or mod 1, respectively.

# 3 Number Theory on Sets

While this section is not technically different than Section 2, it is worth it to split these up, since Section 2 does not deal with sets. However, using what we learned in Section 2, Number Theory, it is natural to extend these to sets of numbers.

# 3.1 $\mathbb{Z}_n$

**Defn 25** ( $\mathbb{Z}_n$ ). The Integers modulo n, denoted  $\mathbb{Z}_n$ , is the set of (Equivalence Classes of) integers  $\{[0], [1], \ldots, [n-1]\}$ . Addition, subtraction, and multiplication are all performed with modulo n. Examples 3.1 to 3.3 demonstrate this.

#### Example 3.1: Addition on Integers mod n.

When dealing with the set of integers  $\mathbb{Z}_{15}$ , what is the sum of 5 and 9?

$$5 \mod 15 + 9 \mod 15 = 11 \mod 15$$

Thus, the answer is 11.

#### Example 3.2: Subtraction on Integers mod n.

When dealing with the set of integers  $\mathbb{Z}_{15}$ , what is 5 minus 9?

$$5 \mod 15 - 9 \mod 15 = 5 \mod 15 + (-9 \mod 15)$$

$$= 5 \mod 15 + \underbrace{-9 \mod 15}_{-9+15=6}$$

$$= 5 \mod 15 + 6 \mod 15$$

$$= 11 \mod 15$$

Thus, the answer is, again, 11.

#### Example 3.3: Multiplication on Integers mod n.

When dealing with the set of integers  $\mathbb{Z}_{15}$ , what is the product of 5 and 9?

$$5 \mod 15 \cdot 9 \mod 15 = 45 \mod 15$$
  
= 0

Thus, the answer is 0, because  $45 = 3 \cdot 15$ .

### 3.2 Inverse in $\mathbb{Z}_n$

Addition, subtraction, and multiplication can be performed trivially in  $\mathbb{Z}_n$ , as shown in Examples 3.1 to 3.3. However, the concept of division is a little bit more difficult.

**Defn 26** (Multiplicative Inverse). Let  $a \in \mathbb{Z}_n$ . The *multiplicative inverse* of a is an integer  $x \in \mathbb{Z}_n$ , such that ax = 1. If such an integer, x, exists, then a is said to be *invertible* and x is called the inverse of a, denoted as  $a^{-1}$ .

**Defn 27** (Division in  $\mathbb{Z}_n$ ). Division of a by an element  $b \in \mathbb{Z}_n$  (written a/b) is defined as  $ab^{-1}$ , and is only defined if b has a Multiplicative Inverse.

**Defn 28** (Invertible). Let  $a \in \mathbb{Z}_n$ . Then a is invertible if and only iff

$$\gcd(a, n) = 1 \tag{3.1}$$

*Proof.* Assume that gcd(a, n) = 1. We know that 1 = gcd(a, n) = xa + yn for some  $x, y \in \mathbb{Z}$ . Since yn is a multiple of n, namely  $yn \mod n = 0$ , it is removed from the equation. Then  $x \mod n$  is an inverse to a.

Now assume gcd(a, n) > 1. If a has an inverse x, then  $ax = 1 \mod n$ , which means 1 = ax + ny for some  $x, y \in \mathbb{Z}$ , directly contradicting the assumption that gcd(a, n) = 1.

The two possible cases of division, i.e. possible and impossible, are shown in Examples 3.4 to 3.5.

#### Example 3.4: Possible Division on Integers mod n.

When dealing with the set of integers  $\mathbb{Z}_{15}$ , what is the result from the division of 5 by 11?

$$5 \mod 15 \div 11 \mod 15 = 5 \cdot 11^{-1}$$

Now we need to find the Multiplicative Inverse of 1.

$$11^{-1} = \gcd(11, 15)$$

We can compute the Greatest Common Divisor efficiently with the Euclidean Algorithm.

$$15 = 1 \cdot 11 + 4$$

$$11 = 2 \cdot 4 + 3$$

$$4 = 1 \cdot 3 + 1$$

$$3 = 3 \cdot 1 + 0$$

Thus, the Euclidean Algorithm gives us gcd(11, 15) = 1. Since gcd(11, 15) = 1 = 1, 11 **does** have a Multiplicative Inverse, making the division possible. Now we need to run through the Extended Euclidean Algorithm, to find the values  $x, y \in \mathbb{Z}$ .

$$1 = 4 - 1 \cdot 3$$

$$= 4 - 1 \cdot (11 - 2 \cdot 4) = 3 \cdot 4 - 1 \cdot 11$$

$$= 3(15 - 1 \cdot 11) - 1 \cdot 11$$

$$= 3 \cdot 15 - 3 \cdot 11 - 1 \cdot 11$$

$$= 3 \cdot 15 - 4 \cdot 11$$

Thus,

$$x = -4$$
$$y = 3$$

Now we know

$$(11 \mod 15)^{-1} = -4 \mod 15$$

Since -4 is not part of  $\mathbb{Z}_{15}$ , we need to find the additive inverse. -4+15=11. Thus,

$$(11 \mod 15)^{-1} = 11 \mod 15$$

Now, we perform a simple substitution.

$$5 \mod 15/11 \mod 15 = 5 \mod 15 \cdot (11 \mod 15)^{-1}$$
  
=  $5 \mod 15 \cdot 11 \mod 15$   
=  $55 \mod 15$   
=  $10$ 

So, the result of the division of 5 by 11 is 10.

#### Example 3.5: Impossible Division on Integers mod n.

When dealing with the set of integers  $\mathbb{Z}_{15}$ , what is the result from the division of 5 by 9?

$$5 \mod 15 \div 9 \mod 15 = 5 \cdot 9^{-1}$$

Now we need to find the Multiplicative Inverse of 9.

$$9^{-1} = \gcd(9, 15)$$

We can compute the Greatest Common Divisor efficiently with the Euclidean Algorithm.

$$15 = 1 \cdot 9 + 6$$
$$9 = 1 \cdot 6 + 3$$
$$3 = 1 \cdot 3 + 0$$

Thus, the Euclidean Algorithm gives us gcd(9,15) = 3. Since  $gcd(9,15) = 3 \neq 1$ , 9 does **not** have a Multiplicative Inverse, making the division impossible.

#### 3.3 Chinese Remainder Theorem

**Theorem 3.1** (Chinese Remainder Theorem). Let the integers  $n_1, n_2, \ldots, n_k$  be pairwise Relatively Prime. Then the system of Congruences

$$x \equiv a_1 \pmod{n_1}$$
  
 $x \equiv a_2 \pmod{n_2}$   
 $\vdots$   
 $x \equiv a_k \pmod{n_k}$ 

has a unique solution modulo  $n = n_1 n_2 \cdots n_k$ .

**Defn 29** (Gauss's Algorithm). The solution x to the system of Congruences promised by the Chinese Remainder Theorem can be calculated as

$$x = \left(\sum_{i=1}^{k} a_i N_i M_i\right) \bmod n \tag{3.2}$$

where  $N_i = \frac{n}{n_i}$  and  $M_i = N_i^{-1} = \left(\frac{n}{n_i}\right)^{-1} \mod n_i$  ( $M_i$  is the Multiplicative Inverse of  $N_i \mod n_i$ ).

**Defn 30** (Chinese Remainder Theorem). The *Chinese Remainder Theorem* allows us to change the way we represent elements of our set,  $\mathbb{Z}_n$ .

The integers modulo n,  $\mathbb{Z}_n$ , where  $n = n_1 n_2$  and  $\gcd(n_1, n_2) = 1$ . An element  $a \in \mathbb{Z}_n$  has a unique representation:  $(a \mod n_1, a \mod n_2)$ . We can denote this mapping by  $\gamma : \mathbb{Z}_n \to \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ .

- (i)  $\gamma(a) = \gamma(b)$  if and only if a = b.
- (ii) For all  $(a_1, a_2) \in \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ , there exists an a such that  $\gamma(a) = (a_1, a_2)$ .
- (iii)  $\gamma(a+b) = \gamma(a) + \gamma(b)$
- (iv)  $\gamma(ab) = \gamma(a)\gamma(b)$

These properties (Properties (i) to (iv)) make  $\gamma$  an *Isomorphism*.

Remark 30.1. In the case of large integers for cryptography, knowing just one part of the number can ehlp get the other part. However, if the number is very large, 2048 bits for instance, these calculations start becoming Intractable.

#### Example 3.6: Chinese Remainder Theorem Mapping.

Find the mapping of 7 when in  $\mathbb{Z}_{15}$ ?

We need to find a prime factorization for 15.

$$15 = 3^1 \cdot 5^1$$

\_\_\_\_\_\_

So, the 2 modulos we will use are 3 and 5. Additionally, since 7 is an element in  $\mathbb{Z}_{15}$  we can simply say,

$$7 \Leftrightarrow (7 \mod 3, 7 \mod 5) = (1, 2)$$

#### Example 3.7: Reverse Chinese Remainder Theorem Mapping 1.

Which element of  $\mathbb{Z}_{168}$  corresponds to the pair  $([7],[5]) \in \mathbb{Z}_8 \times \mathbb{Z}_{21}$ ?

If we apply the Extended Euclidean Algorithm to 8 and 21, we get  $1 = 8 \cdot 8 + (-3) \cdot 21$ . Note that  $8 \cdot 8 = 64$  is congruent to 0 mod 8 and 1 mod 21, and  $(-3) \cdot 21 = -63$  is congruent to 1 mod 8 and 0 mod 21. Therefore

$$5 \cdot 64 + 7 \cdot (-63) \equiv 5 \cdot 0 + 7 \cdot 1 = 7 \pmod{8}$$
$$5 \cdot 64 + 7 \cdot (-63) \equiv 5 \cdot 1 + 7 \cdot 0 = 5 \pmod{21}$$

so.

$$5 \cdot 64 + 7 \cdot (-63) = -121 \equiv 47 \pmod{168}$$

works, that is,  $[47] \Leftrightarrow ([7], [5])$ .

#### Example 3.8: Reverse Chinese Remainder Theorem Mapping 2.

Given elements  $z_2 \in \mathbb{Z}_2$  and  $z_5 \in \mathbb{Z}_5$ , find the corresponding element  $z_{10} \in \mathbb{Z}_{10}$ ?

Because the gcd(2,5) = 1, we can also use the Extended Euclidean Algorithm. It returns  $1 = 1 \cdot 5 - 2 \cdot 2$ . Now we need to match the terms up with modulo factors that do not reduce them, i.e. any element  $z_5$  should not be matched with 5, and likewise with  $z_2$  and 2.

Thus,

$$z_{10} = (z_2 \cdot 5 - z_5 \cdot 2) \mod 10$$

# 3.4 Multiplicative Groups, $\mathbb{Z}_n^*$

**Defn 31** (Multiplicative Group,  $\mathbb{Z}_n^*$ ). Define the *multiplicative group* of  $\mathbb{Z}_n$ , denoted  $\mathbb{Z}_n^*$  as the set of all elements in  $\mathbb{Z}_n$  with Multiplicative Inverses.

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, b) = 1 \}$$

$$(3.3)$$

**Defn 32** (Set Order). The *order a set*, for example,  $\mathbb{Z}_n^*$ , is the number of elements in  $\mathbb{Z}_n^*$  ( $|\mathbb{Z}_n^*|$ ). From the definition of the Euler Phi Function

$$|\mathbb{Z}_n^*| = \phi(n) \tag{3.4}$$

Remark 32.1 (Closed Under Multiplication). Since the produce of two elements with Multiplicative Inverses is another element with a Multiplicative Inverse, we say that  $|\mathbb{Z}_n^*|$  is closed under multiplication.

**Defn 33** (Element Order). The order of an element  $a \in \mathbb{Z}_n^*$ , denoted  $\operatorname{ord}(a)$  is defined as the least positive integer t  $(t \in \mathbb{Z})$  such that

$$a^t \bmod n = 1 \tag{3.5}$$

**Lemma 3.1.1** (Element Order). Let  $a \in \mathbb{Z}_n^*$ . If  $a^s$  for some s, then  $ord(a) \mid s$ . In particular,  $ord(a) \mid \phi(n)$  must be true.

#### Example 3.9: Element Order. Exercise 1, Problem 1.6b

Find the ord(5) in  $\mathbb{Z}_8^*$ ?

We need to solve

$$a^t \bmod n = 1$$

where a = 5 and n = 8.

$$5^t \mod 8 = 1$$

Now we test values for t until we satisfy the equation.

$$t = 1 \to 5^1 \mod 8 = 5 \mod 8 = 5 \neq 1$$
  
 $t = 2 \to 5^2 \mod 8 = 25 \mod 8 = 1 = 1$ 

Since t = 2 satisfies our equation, the ord(5) = 2.

Element Order. Let t = ord(a). By long division, s = qt + r, where r < t. Then  $a^s = a^{qt+r} = a^{qt}a^r$  and since  $a^t = 1$ , from Equation (3.5), we have  $a^s = a^r$  and  $a^r = 1$ . This reduction is shown below:

$$a^{s} = a^{qt+r}$$

$$= a^{qt}a^{r}$$

$$= (a^{t})^{q}a^{r}$$

$$= (1)^{q}a^{r}$$

$$= 1^{q}a^{r}$$

$$= 1a^{r}$$

$$= a^{r}$$

But, r < t, so we must have r = 0, and so  $ord(a) \mid s$ .

#### 3.5 Euler's Theorem

**Theorem 3.2** (Euler's Theorem). If  $a \in \mathbb{Z}_n^*$ , then

$$a^{\phi(n)} \equiv 1 \pmod{n} \tag{3.6}$$

Euler's Theorem. Let  $\mathbb{Z}_n^* = \{a_1, a_2, \dots, a_{\phi(n)}\}$ . Looking at the set of elements  $A = \{aa_1, aa_2, \dots, aa_{\phi(n)}\}$ , it is easy to see that  $A = a \mathbb{Z}_n^*$ . So we have 2 ways of writing the product of all of the elements, i.e.

$$\prod_{i=1}^{\phi(n)} a a_i = \prod_{i=1}^{\phi(n)} a_i$$

This leads to

$$\prod_{i=1}^{\phi(n)} a = a^{\phi(n)} = 1$$

which is the same as what we said in Equation (3.6).

#### 3.6 Generators

**Defn 34** (Generator). Let  $a \in \mathbb{Z}_n^*$ . If the Element Order of a is equal to the Euler Phi Function, i.e.  $\operatorname{ord}(a) = \phi(n)$ , then a is said to be a *generator* (or a *primitive element*) of  $\mathbb{Z}_n^*$ .

$$ord(a) = \phi(n) \tag{3.7a}$$

$$\operatorname{ord}(a) = |\mathbb{Z}_n^*| \tag{3.7b}$$

Furthermore, if  $\mathbb{Z}_n^*$  has a generator, then  $\mathbb{Z}_n^*$  is said to be *Cyclic*.

Remark 34.1. It is clear that if  $a \in \mathbb{Z}_n^*$  is a Generator, then every element in  $\mathbb{Z}_n^*$  can be expressed as  $a^i$  for some integer i  $(i \in \mathbb{Z})$ . So, we can write

$$\mathbb{Z}_n^* = \{ a^i | 0 \le i \le \phi(n) - 1 \} \tag{3.8}$$

# Example 3.10: Cyclic Group. Exercise 1, Problem 1.6c

Is  $\mathbb{Z}_8^*$  a Cyclic Group?

We need to find an a that satisfies  $\operatorname{ord}(a) = \phi(n)$ . In this case n = 8. First, we will calculate  $\phi(n)$ .

$$\phi(n) = \phi(8)$$

We need to find a Prime factorization of 8.

$$\phi(8) = \phi(2^3)$$
=  $(2^3 - 2^{3-1})$   
=  $(2^3 - 2^2)$   
=  $(8 - 4)$   
=  $4$ 

So,  $\phi(8) = 4$ .

Now we need to solve

$$ord(a) = 4$$

All of the terms in  $\mathbb{Z}_8^*$  must be Invertible, so they **must** satisfy  $\gcd(z,8)=1,\ z\in\mathbb{Z}_8$ . All of the terms in  $\mathbb{Z}_8$  are:

$$\mathbb{Z}_8 = \{[0], [1], [2], [3], [4], [5], [6], [7]\}$$

Now we check the Greatest Common Divisors for  $z \in \mathbb{Z}_8$ .

$$\gcd(0,8) = 8$$
  $\gcd(4,8) = 2$   $\gcd(5,8) = 1$   $\gcd(5,8) = 2$   $\gcd(3,8) = 1$   $\gcd(7,8) = 1$ 

So,

$$\mathbb{Z}_8^* = \{[1], [3], [5], [7]\}$$

Now we test ord a = 4,  $a \in \mathbb{Z}_8^*$ .

$$ord(1) = 1$$

$$ord(3) = 3^t \mod 8 = 1 \to t = 2 \to ord(3) = 2$$

$$\operatorname{ord}(5) = 2$$

$$ord(7) = 7^t \mod 8 = 1 \to t = 2 \to ord(7) = 2$$

Since no element from  $\operatorname{ord}(\mathbb{Z}_8^*) = \phi(8) = 4$ ,  $\mathbb{Z}_8^*$  is **NOT** Cyclic.

# 3.7 Quadratic Residues

**Defn 35** (Quadratic Residue). An element  $a \in \mathbb{Z}_n^*$  is said to be a *quadratic residue* modulo n (or a *square*) if there exists an  $x \in \mathbb{Z}_n^*$  such that  $x^2 = a$ .

$$a \in \mathbb{Z}_n \,\exists x \in \mathbb{Z}_n^* \, x^2 = a \pmod{n}$$
 (3.9a)

$$a \in \mathbb{Z}_n \, \exists x \in \mathbb{Z}_n^* \, a \equiv x^2 \pmod{n}$$
 (3.9b)

Remark 35.1 (Square Root). If  $x^2 = a$ , then x is called the square root of a mod n.

Otherwise, a is called a Quadratic Non-Residue modulo n.

**Defn 36** (Quadratic Non-Residue). An element  $a \in \mathbb{Z}_n^*$  is said to be a quadratic non-residue modulo n if there does not exist an  $x \in \mathbb{Z}_n^*$  such that  $x^2 = a$ .

$$a \in \mathbb{Z}_n \not\exists x \in \mathbb{Z}_n^* \ x^2 = a \pmod{n}$$

Otherwise, a is called a Quadratic Residue modulo n.

# 4 Abstract Algebra

In the beginning of this course, we covered some basic abstract algebra. These include:

- Aspects covering integers and calculus modulo n
- Covering a few examples of algebraic structures
- Some basic concepts from abstract algebra, which provide a more general treatment of algebraic structures
- In cryptography, we are generally interested in *finite* sets

#### 4.1 Groups

**Defn 37** (Binary Operation). A binary operation, denoted \* on a set S, is a mapping from S\*S to S.

Remark 37.1. Note that \* is **NOT** multiplication nor any kind of convolution. It is just a placeholder for some Binary Operation that can be done.

**Defn 38** (Group). A group is a set G and a Binary Operation, \*, on G denoted as (G,\*), which satisfies the following properties:

- (i) a \* (b \* c) = (a \* b) \* c for all  $a, b, c \in G$  (Associativity)...
- (ii) There is a special element  $1 \in G$  such that a \* 1 = 1 \* a = a for all  $a \in G$  (Identity).

$$\exists 1 \in G \forall a \in G \ (a * 1 = 1 * a = a)$$

(iii) For each  $a \in G$  there is an element  $a^{-1} \in G$  such that  $a * a^{-1} = a^{-1} * a = 1$  (Inverse).

We call 1 the *identity element* as defined in Property (ii), and call  $a^{-1}$  the *inverse* of a. Furthermore,

(iv) If a \* b = b \* a for all  $a, b \in G$  (Abelian/Commutativity).

$$\forall a, b \in G \ (a * b = b * a)$$

# Example 4.1: Show Set Is Group. Exercise 1, Problem 1.8a

Let S be the set of binary triples,  $S = \{(s_0, s_1, s_2) | s_i \in \mathbb{Z}_2\}$ . Let the operation be bitwise addition.

*Remark.* In this case, "bitwise addition" means element-wise addition, i.e. each element of each triple gets added together. Additionally, all additions are done in modulo 2.

I will define the bitwise addition Binary Operation with the symbol .+, like how MATLAB or GNU Octave define it. We will need to prove that Properties (i) to (ii) are true. Property (iv) is *not* necessary to show that a set is a Group. Property (iv) only shows that the Group is Abelian

First, the elements present in the set S:

$$S = \Big\{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\Big\}$$

To prove that S is a group with an element-wise addition Binary Operation, I will arbitrarily select

$$a = (0, 1, 0)$$
  
 $b = (0, 1, 1)$   
 $c = (1, 1, 0)$ 

Starting with Property (i):

$$a. + (b. + c) = (a. + b). + c$$

$$(0,1,0). + ((0,1,1). + (1,1,0)) = ((0,1,0). + (0,1,1)). + (1,1,0)$$

$$(0,1,0). + ((1,0,1)) = ((0,0,1)). + (1,1,0)$$

$$(1,1,1) = (1,1,1)$$

Thus, Property (i) is satisfied.

Now, Property (ii)

$$a. + 1 = a$$
  
 $(0, 1, 0). + 1 = (0, 1, 0)$   
 $1 = (0, 1, 0). + (-(0, 1, 0))$ 

It is important to remamber that these additions are done in the modulo 2 domain, so addition and subtraction yield the same results, making negatives irrelevant.

$$1 = (0, 1, 0) \cdot + (0, 1, 0)$$
  
 $1 = (0, 0, 0)$ 

Thus, Property (ii) is satisfied, and 1 = (0, 0, 0). Lastly, we need to prove Property (iii).

$$a \cdot + a^{-1} = 1$$

$$(0, 1, 0) \cdot + a^{-1} = (0, 0, 0)$$

$$a^{-1} = (0, 0, 0) \cdot + (-(0, 1, 0))$$

Like before, addition and subtraction are irrelevant here.

$$a^{-1} = (0, 0, 0) \cdot + (0, 1, 0)$$
  
 $a^{-1} = (0, 1, 0)$ 

Thus, Property (iii) is satisfied, where each element a is its own inverse.

Since Properties (i) to (iii) are satisfied, S is a Group with the bitwise addition Binary Operation.

Defn 39 (Abelian). An abelian group, also called a commutative Group, is a group in which the result of applying the group

operation to two group elements does not depend on the order in which they are written. That is, these are the groups that obey the axiom of commutativity.

#### 4.1.1 Examples of Groups

- $\mathbb{Z}$  with the addition Binary Operation, denoted  $(\mathbb{Z},+)$  is a Group.
- Finite Groups are  $(\mathbb{Z}_n, +)$  and  $(\mathbb{Z}_n^*, \cdot)$ , where  $\cdot$  denotes multiplication modulo n
- **NOTE:**  $(\mathbb{Z}_n, \cdot)$  is **NOT** a Group, nor is  $(\mathbb{Z}, \cdot)$ .

#### 4.1.2 Definitions for Groups

**Defn 40** (Subgroup). A non-empty subset H of a Group G is called a *subgroup* of G, if H itself is a Group with respect to the operation of G.

# Example 4.2: Find Subgroups. Exercise 1, Problem 1.10

Find all Subgroups in the multiplicative group  $\mathbb{Z}_{19}^*$  (under the multiplication Binary Operation)?

The goal here is to find a Generator that can be raised to some set of exponents that can generate Subgroups of  $\mathbb{Z}_{19}^*$ . The first thing to note is that 19 is a Prime, so

$$|\mathbb{Z}_{19}^*| = 18 = \phi(n)$$

We can also apply Lagrange's Theorem to restrict the number of Subgroups possible. Because  $\mathbb{Z}_{19}^*$  is a finite Group, and we are considering G to be a Subgroup of  $\mathbb{Z}_{19}^*$ , we apply Lagrange's Theorem. This means  $|G| ||\mathbb{Z}_{19}^*||$  must be true. Thus,

$$|G| = \{1, 2, 3, 6, 9, 18\}$$

Now, we can find a Generator for the Group  $\mathbb{Z}_{19}^*$ . This means, we need to find some element a that raised to some power t, modulo 19 will yield 1. We know that t must equal 18, because  $\phi(n) = 18$ , and we want to find a Generator. So, we solve for a.

$$a^{18} \mod 18 = 1$$

In this case, a = 2, making 2 a Generator of  $\mathbb{Z}_{19}^*$ , or < 2 >. Now, all possible Subgroups of  $\mathbb{Z}_{19}^*$  are:

$$G_{1} = \left\{ \begin{bmatrix} 2^{18} \end{bmatrix} \right\}$$

$$G_{2} = \left\{ \begin{bmatrix} 2^{9} \end{bmatrix}, \begin{bmatrix} 2^{18} \end{bmatrix} \right\}$$

$$G_{3} = \left\{ \begin{bmatrix} 2^{6} \end{bmatrix}, \begin{bmatrix} 2^{12} \end{bmatrix}, \begin{bmatrix} 2^{18} \end{bmatrix} \right\}$$

$$G_{6} = \left\{ \begin{bmatrix} 2^{3} \end{bmatrix}, \begin{bmatrix} 2^{6} \end{bmatrix}, \begin{bmatrix} 2^{9} \end{bmatrix}, \begin{bmatrix} 2^{12} \end{bmatrix}, \begin{bmatrix} 2^{15} \end{bmatrix}, \begin{bmatrix} 2^{18} \end{bmatrix} \right\}$$

$$G_{9} = \left\{ \begin{bmatrix} 2^{2} \end{bmatrix}, \begin{bmatrix} 2^{4} \end{bmatrix}, \begin{bmatrix} 2^{6} \end{bmatrix}, \begin{bmatrix} 2^{8} \end{bmatrix}, \begin{bmatrix} 2^{10} \end{bmatrix}, \begin{bmatrix} 2^{12} \end{bmatrix}, \begin{bmatrix} 2^{14} \end{bmatrix}, \begin{bmatrix} 2^{16} \end{bmatrix}, \begin{bmatrix} 2^{18} \end{bmatrix} \right\}$$

$$G_{18} = \left\{ \begin{bmatrix} 2^{0} \end{bmatrix}, \begin{bmatrix} 2^{1} \end{bmatrix}, \dots, \begin{bmatrix} 2^{18} \end{bmatrix} \right\}$$

**Defn 41** (Cyclic). G is cyclic if there is an element  $a \in G$  such that each  $b \in G$  can be written as  $a^i$  for some integer i. The element a is called a G-enerator of G.

# Example 4.3: Cyclic.

Find a, the Cyclic term in the Group  $\mathbb{Z}_{15}$ ?

$$\mathbb{Z}_{15} = \{3, 6, 9, 12, 0, \ldots\}$$
  
=  $\{3, 3 + 3, 3 + 3 + 3, 3 + 3 + 3 + 3, 5 \cdot 3, \ldots\}$ 

Thus,  $\langle a \rangle = 3 \rightarrow \langle 3 \rangle$ .

**Defn 42** (Element Order). The order of an element a, denoted ord(a) is defined as the least positive integer t ( $t \in \mathbb{Z}$ ) such that

$$a^t = 1 (4.1)$$

If such an integer t does not exist, then the order of a is defined to be  $\infty$ .

Remark 42.1. NOTE:

- The a<sup>t</sup> part does not mean exponentiation, but rather repeated uses of the Binary Operation used to create the Group.
- The 1 is not a value 1, but the Identity of the Group, as defined by Property (ii).

#### Example 4.4: Order of Element in Group. Exercise 1, Problem 1.8c

Given the element (1,1,1,) from the group of bit triples,  $S = \{(s_0,s_1,s_2) | s_i \in \mathbb{Z}_2\}$ , using an bitwise addition Binary Operation, what is the Element Order of (1,1,1)? The identity element of this Group is 1 = (0,0,0).

It is important to remember the note in Remark 42.1, especially for this problem.

Since the given Binary Operation was "bitwise", i.e. element-wise, I will define the operation to be .+. In this case, the Element Order of any element in this Group will be the number of element-wise additions that must occur to get the identity element, 1.

For this problem, since we are working in the modulo 2 domain, we have some basic facts:

$$(0+0) \mod 2 = 0$$

$$(1+0) \mod 2 = 1$$

$$(0+1) \mod 2 = 1$$

$$(1+1) \mod 2 = 0$$

And for subtraction:

$$(0-0) \bmod 2 = 0$$

$$(1-0) \mod 2 = 1$$

$$(0-1) \mod 2 = -1 \mod 2 = 1$$

$$(1-1) \mod 2 = 0$$

We start by constructing the equation needed to solve this problem.

$$(1,1,1)$$
.  $+a = (0,0,0)$ 

Now we can move the (1,1,1) term over to the left, and since we are working in the modulo 2 domain, the "negative" that would be introduced by normal subtraction (negative addition) is irrelevant. Thus, we end up with

$$a = (0,0,0). + (1,1,1)$$
  
= (1,1,1)

This means that if t from Equation (4.1) is 2, we get the identity element 1. So, our answer is t = 2, thus ord [(1, 1, 1)] = 2.

**Lemma 4.0.1.** Let  $a \in G$  be an element of finite Element Order t. Then the set of all powers of a forms a Cyclic Subgroup of G, denoted by a > 0. Furthermore, the Element Order of a > 0 is a > 0.

**Defn 43** (Left Coset). Let H be a Subgroup in G and pick an element  $a \in G$ . A set of elements of the form

$$aH = \{ah|h \in H\} \tag{4.2}$$

is called the *left coset* of H. If G is commutative, it is simply called a *coset*.

The set consisting of all such left cosets is written G/H. Note that H itself is a left coset. Furthermore, every left coset contains the same number of elements (the order of H) and every element is contained in exactly one left coset.

So, the elements of G are partitioned into |G|/|H| different cosets, each containing |H| elements.

# 4.2 Properties of Groups

- (i) Suppose  $a^n = 1$  for some n > 0. We must have  $ElementOrder(a) \mid n$ .
  - 1. Write  $n = k \cdot \operatorname{ord}(a) + r$ , where  $0 \le r \le \operatorname{ord}(a)$ .
  - 2. Then,  $1 = a^n = a^{k \cdot \operatorname{ord}(a) + r} = a^r$  and r = 0.
- (ii) There is a k such that  $a^k = 1$  for all  $a \in G$ .
  - 1. If G is a finite Group, all elements must have finite Element Order.
  - 2. Choose k as the product of the Element Order of all different elements in G.
  - 3. Then,  $a^k = 1$  for all  $a \in G$

# 4.2.1 Lagrange's Theorem

**Theorem 4.1** (Lagrange's Theorem). If G is a finite group and H is a Subgroup of G, then |H| divides |G|. In particular if  $a \in G$ , then the order of a divides |G|.

Remark. If |G| is a Prime number, then the order of an element a is either 1 or |G|. In particular, if |G| is a Prime number, then G must be Cyclic.

# 4.3 Rings

**Defn 44** (Ring). A ring (with unity) consists of a set R with two Binary Operations. A ring is denoted as (R, +, \*), where + and \* are **not** addition and multiplication respectively, but placeholders for the two Binary Operations. A ring must also satisfy the following conditions:

- (i) (R, +) is an Abelian Group with an identity element denoted 0.
- (ii)  $a \cdot (b \cdot c) = (a \cdot b) \cdot c$  for all  $a, b, c \in R$  (Associativity).

$$\forall a, b, c \in R \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

- (iii) There is a multiplicative identity, denoted 1, with the multiplicative identity not being equal to the identity element of the underlying Abelian Group  $(1 \neq 0)$ , such that  $1 \cdot a = a \cdot 1 = a$  for all  $a \in R$  (Multiplicative Identity).
- (iv)  $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$  and  $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$  for all  $a, b, c \in R$  (Distributive).

$$\forall a, b, c \in R \ a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
$$\forall a, b, c \in R \ (b+c) \cdot a = (b \cdot a) + (c \cdot a)$$

A commutative ring is a ring where additionally

(v)  $a \cdot b = b \cdot a$  for all  $a, b \in R$  (Commutativity)

$$\forall a,b \in R \ a \cdot b = b \cdot a$$

Remark 44.1 (Ring Multiplicative Inverses). Note that we haven't said anything about multiplicative inverses yet.

**Defn 45** (Invertible Element). An element  $a \in R$  is called an *invertible element* or a *unit* if there is an element  $b \in R$  such that

$$a \cdot b = b \cdot a = 1 \tag{4.3}$$

Remark 45.1. The set of Invertible Elements in a Ring R forms a Group under multiplication. For example, the Group of Invertible Elements of the Ring  $\mathbb{Z}_n$  is  $\mathbb{Z}_n^*$ .

Remark 45.2 (Multiplicative Inverse). The Multiplicative Inverse of an element  $a \in R$  is denoted by  $a^{-1}$ , assuming it exists. The division expression a/b should then be interpreted as  $a \cdot b^{-1}$ .

# 4.3.1 Examples of Rings

- A commutative ring is  $(\mathbb{Z}, +, \cdot)$ , where + and  $\cdot$  are the susual operations of addition and multiplication.
- Finite Ring:  $\mathbb{Z}_n$  with addition and multiplication modulo n
  - The additive inverse of  $a \in R$  is denoted -a. So the subtraction expression a-b should be interpreted as a+(-b).
  - The multiplication of  $a \cdot b$  is equivalently written ab.
  - Similarly  $a^2 = aa = a \cdot a$ .

# 4.4 Fields

**Defn 46** (Field). A *field* is a commutative Ring where all nonzero elements from the underlying set have Multiplicative Inverses.

#### Example 4.5: Prove Set is Not Field. Exercise 1, Problem 1.11

Prove that  $\mathbb{Z}_4$  is not a Field?

We begin by checking that all elements from the underlying set,  $\mathbb{Z}_4$ , have Multiplicative Inverses, for all the <u>non-zero</u> elements.

 $\mathbb{Z}_4 = \left\{ [0], [1], [2], [3] \right\}$ 

First, we check 1.

$$1^{-1} = \gcd(1,4) = 1a + 4b$$

$$\gcd(1,4) \Rightarrow 4 = q1 + r$$
$$= 4 \cdot 1 + 0$$
$$\gcd(1,4) = 1$$

$$1 = 1(-3) + 4(1)$$

$$a = -3$$

$$b = 1$$

Since a = -3, we need to find the additive inverse:

$$-3 \mod 4 = (-3 + 4) \mod 4$$
  
= 1 mod 4  
= 1

So, 1 has a Multiplicative Inverse.

Now we check 2.

$$2^{-1} = \gcd(2,4) = 2a + 4b$$

$$\gcd(2,4) \Rightarrow 4 = q2 + r$$
$$= 2 \cdot 2 + 0$$
$$\gcd(2,4) = 2$$

Since  $gcd(2,4) \neq 0$ , 2 is <u>not</u> invertible, meaning it has no Multiplicative Inverses.

 $\mathbb{Z}_4$  is NOT a Field because 2 is **not** invertible.

**Defn 47** (Characteristic). The *characteristic* of a field is the smallest integer m > 0 such that

$$\overbrace{1+1+\cdots+1}^{m}=0 \tag{4.4}$$

If no such integer m exists, the characteristic is defined to be 0.

**Defn 48** (Finite Field). A Field is *finite* only if Theorem 4.2 is satisfied.

**Theorem 4.2** (Finite Field).  $\mathbb{Z}_n$  is a Field if and only if n is a Prime number. If n is a Prime, the Characteristic of  $\mathbb{Z}_n$  is n

**Defn 49** (Subfield). A subset F of a Field E is called a *subfield* of E if F is itself a Field with respect to the operations of E

Remark 49.1 (Extension Field). Likewise, we say E is an extension field of F.

**Defn 50** (Isomorphism). Two Fields are *isomorphic* if they are structurally the same, but elements have a different representation. For example, for a Prime, p,  $\mathbb{Z}_p$  is a Field or Set Order p. So we associate the Finite Field  $\mathbb{F}_{p^w}$  ith  $\mathbb{Z}_p$  and its representation.

#### 4.4.1 Examples of Fields

- The rational Numbers:  $\mathbb{Q}$
- The Real Numbers:  $\mathbb{R}$
- The Complex Numbers: C
- Finite Field:
  - $-\mathbb{Z}_p$ , where p is Prime

# 4.5 Polynomial Rings

Polynomial Rings are getting their own subsection separate from other Rings, because they are actually a more general case of what we have learned already.

**Defn 51** (Polynomial). A polynomial in the indeterminate x over the Ring R is an expression of the form

$$f(x) = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0 \tag{4.5}$$

where each  $a_i \in R$ ,  $a_n \neq 0$ , and  $n \geq 0$ .

Remark 51.1. Remember that even integers can be polynomials! This means that everything we have learned about Rings already is actually a special case of Polynomial Rings.

$$1 = 0x^m + 0x^{m-1} + \dots + 0x + 1$$

**Defn 52** (Degree). We say that f(x) has degree n, denoted

$$\deg f(x) = n \tag{4.6}$$

Remark 52.1. We also allow f(x) to be the Polynomial with all coefficients being zero, in which case, the Degree is defined to be  $-\infty$ .

**Defn 53** (Monic). A Polynomial is said to be *monic* if the leading coefficient is equal to 1.

$$a_n = 1 (4.7)$$

**Defn 54** (Polynomial Ring). Let R be a commutative Ring (i.e. Property (v) is fulfilled). Then the *polynomial ring*, denoted by R[x] is the ring formed by the set of all Polynomials in the indeterminate x having coefficients from R. The operations are addition and multiplication of Polynomials, with the coefficient arithmetic performed in R.

#### Example 4.6: Polynomial Ring. Lecture 2

Find the Polynomial Ring formed when the underlying Ring is  $\mathbb{Z}_2$ ?

$$\mathbb{Z}_2 \Longrightarrow_{R[x]} \mathbb{Z}_2[x] = \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x, x^2 + x + 1, \ldots\}$$

If you consider the F[x], where F denotes an arbitrary Field. F[x] has many properties in common with integers.

**Defn 55** (Irreducible). A polynomial  $f(x) \in F[x]$ , of Degree  $d \ge 1$  is *irreducible* if f(x) cannot be written as a product of 2 polynomials,  $g(x), h(x) \in F[x]$ , where the deg g(x) and deg h(x) are both less than d.

Remark 55.1 (Sum to Zero). It seems that Irreducible Polynomials, f(x), where  $f(x) \in \mathbb{F}_{p^q}$  must sum to a non-zero value for all values of x from the underlying set of integers,  $\mathbb{Z}_p$ .

Remark 55.2 (Relation Between Irreducible Polynomials and Prime Numbers). Irreducible polynomials are the Polynomial Ring counterpart of Prime numbers.

#### Example 4.7: Irreducible Polynomial. Exercise 1, Problem 1.14a

Is  $f(x) = x^4 + x + 1$  in  $\mathbb{Z}_2$  an Irreducible Polynomial and/or a Primitive Element?

We start by checking the Sum to Zero conditions.

$$f(0) = 0^4 + 0 + 1 = 1$$
$$f(1) = 1^4 + 1 + 1 = 1$$

The Sum to Zero conditions for this Polynomial.

Because our Polynomial is of Degree 4, we can factor it 2 ways:

1.

$$(x^{2} + y) (x^{2} + z) = x^{4} + yx^{2} + zx^{2} + yz$$
$$x^{4} + yx^{2} + zx^{2} + yz = x^{4} + x + 1$$

This cannot work, because there are no  $x^2$  terms in the potential factorization.

2.

$$(x+y)(x^3+z) = x^4 + yx^3 + zx + yz$$
  
 $x^4 + yx^3 + zx + yz = x^4 + x + 1$ 

This also cannot work, because the coefficient's terms do not line up  $(y \neq 0 \text{ because } yz = 1)$ .

Thus, f(x) is an Irreducible.

Now we need to check if f(x) is a Primitive Element.

$$\alpha^0 = 1 \qquad \qquad \alpha^8 = \alpha^4 + \alpha^2 + \alpha = \alpha^2 + \alpha + \alpha + 1 = \alpha^2 + 1$$

$$\alpha^1 = \alpha \qquad \qquad \alpha^9 = \alpha^3 + \alpha$$

$$\alpha^2 = \alpha^2 \qquad \qquad \alpha^{10} = \alpha^4 + \alpha^2 = \alpha^2 + \alpha + 1$$

$$\alpha^3 = \alpha^3 \qquad \qquad \alpha^{11} = \alpha^3 + \alpha^2 + \alpha$$

$$\alpha^4 = \alpha + 1 \qquad \qquad \alpha^{12} = \alpha^4 + \alpha^3 + \alpha^2 = \alpha^3 + \alpha^2 + \alpha + 1 = \alpha^3 + \alpha^2 + \alpha + 1$$

$$\alpha^5 = \alpha^2 + \alpha \qquad \qquad \alpha^{13} = \alpha^4 + \alpha^3 + \alpha^2 + \alpha = \alpha + 1 + \alpha + 1 = \alpha^3 + \alpha^2 + 1$$

$$\alpha^6 = \alpha^3 + \alpha^2 \qquad \qquad \alpha^{14} = \alpha^4 + \alpha^3 + \alpha = \alpha + 1 + \alpha^3 + \alpha = \alpha^3 + 1$$

$$\alpha^7 = \alpha^4 + \alpha^3 = \alpha^3 + \alpha + 1$$

$$\alpha^{15} = \alpha^4 + \alpha = \alpha + 1 + \alpha = 1$$

Because  $\alpha^4 = \alpha + 1$  can generate all Polynomials in  $\mathbb{F}_{2^4}$ , f(x) is also Primitive Element.

Thus, the Polynomial, f(x) is both Irreducible and a Primitive Element.

#### Example 4.8: Reducible Polynomial. Exercise 1, Problem 1.14c

Is  $f(x) = x^4 + x + 1$  in  $\mathbb{Z}_2$  an Irreducible Polynomial and/or a Primitive Element?

Just by inspection, Sum to Zero holds up.

Now we have to check if the Polynomial is reducible. I will arbitrarily choose to start with a factorization of

$$(x^{2} + c) (x^{2} + c) = x^{4} + 2cx^{2} + c^{2}$$
$$x^{4} + 2cx^{2} + c^{2} = x^{4} + x^{2} + 1$$
$$x^{4} + c^{2} = x^{4} + x^{2} + 1$$
$$c^{2} = x^{2} + 0x + 1$$

Because of the modulo addition we are doing here,  $2 \mod 2 = 0$ , eases the factorization.

$$c^{2} = x^{2} + 2x + 1$$
$$c^{2} = (x+1)(x+1)$$
$$c = x+1$$

So, f(x) is reducible.

We can check if f(x) is a Irreducible, though we don't have to.

$$\alpha^4 = \alpha^2 + 1$$

$$\alpha^{0} = 1$$

$$\alpha^{1} = \alpha$$

$$\alpha^{2} = \alpha^{2}$$

$$\alpha^{3} = \alpha^{3}$$

$$\alpha^{4} = \alpha^{2} + 1$$

$$\alpha^{5} = \alpha^{3} + \alpha$$

$$\alpha^{6} = \alpha^{4} + \alpha^{2} + \alpha^{2} + 1 + \alpha^{2} = 1$$

Thus, f(x) is reducible and NOT a Primitive Element.

# Example 4.9: Reducible Polynomial By Sum. Exercise 1, Problem 1.14d

Is  $f(x) = x^4 + x + 1$  in  $\mathbb{Z}_3$  an Irreducible Polynomial and/or a Primitive Element?

We can start by looking at Remark 55.1.

$$f(x = 0) = 0^4 + 0 + 1 = 1 \mod 3 = 1$$
$$f(x = 1) = 1^4 + 1 + 1 = 3 \mod 3 = 0$$
$$f(x = 2) = 2^4 + 2 + 1 = 19 \mod 3 = 1$$

Since there is a case where f(x) = 0 in the set  $\mathbb{Z}_3$ , f(x) is reducible. We can make the table of  $\alpha$ :

$$\alpha^4 = \alpha + 1$$

$$\alpha^0 = 1 \qquad \qquad \alpha^8 = \alpha^4 + \alpha^2 + \alpha = \alpha + 1 + \alpha^2 + \alpha = \alpha^2 + 1$$

$$\alpha^1 = \alpha \qquad \qquad \alpha^9 = \alpha^3 + \alpha$$

$$\alpha^2 = \alpha^2 \qquad \qquad \alpha^{10} = \alpha^4 + \alpha^2 = \alpha^2 + \alpha + 1$$

$$\alpha^3 = \alpha^3 \qquad \qquad \alpha^{11} = \alpha^3 + \alpha^2 + \alpha$$

$$\alpha^4 = \alpha + 1 \qquad \qquad \alpha^{12} = \alpha^4 + \alpha^3 + \alpha^2 = \alpha^3 + \alpha^2 + \alpha + 1$$

$$\alpha^5 = \alpha^2 + \alpha \qquad \qquad \alpha^{13} = \alpha^4 + \alpha^3 + \alpha^2 + \alpha = \alpha + \alpha + \alpha^3 + \alpha^2 + 1 = \alpha^3 + \alpha^2 + 1$$

$$\alpha^6 = \alpha^3 + \alpha^2 \qquad \qquad \alpha^{14} = \alpha^4 + \alpha^3 + \alpha = \alpha + 1 + \alpha^3 + \alpha = \alpha^3 + 1$$

$$\alpha^7 = \alpha^4 + \alpha^3 = \alpha^3 + \alpha + 1$$

$$\alpha^{15} = \alpha^4 + \alpha = \alpha + 1 + \alpha = 1$$

Thus, f(x) is reducible and MAY be a Primitive Element.

# 4.5.1 Long Division of Polynomials

Similarly as for integers (Section 2.1), we have a division algorithm for polynomials.

**Defn 56** (Polynomial Long Division). If  $a(x), b(x) \in F[x]$ , with  $b(x) \neq 0$ , then there are polynomials  $q(x), r(x) \in F[x]$  such that

$$a(x) = q(x)b(x) + r(x) \tag{4.8}$$

where

•  $\deg r(x) < \deg b(x)$ .

- q(x) and r(x) are unique.
- q(x) is referred to as the Polynomial Quotient
- r(x) is referred to as the Polynomial Remainder

**Defn 57** (Polynomial Quotient). The *Polynomial quotient*, q(x), of a(x) divided by b(x) ( $a(x) \div b(x)$ , a(x)/b(x)) is denoted a(x) div b(x).

**Defn 58** (Polynomial Remainder). The *Polynomial remainder*, r(x), of a(x) divided by b(x) ( $a(x) \div b(x)$ , a(x)/b(x)) is denoted  $a(x) \mod b(x)$ .

# Example 4.10: Long Division of Polynomials. Lecture 3

Calculate  $(x^3 + 11x^2 + x + 7) \mod (x^2 + x + 3)$  while working in the Field  $Z_{13}[x]$ ?

First thing to note is that  $Z_{13}[x]$  is a Finite Field because 13 is a Prime. Now, we perform long division:

$$\begin{array}{r}
x+10 \\
x^2+x+3) \overline{\smash) x^3+11x^2+x+7} \\
\underline{-x^3-x^2-3x} \\
10x^2-2x+7 \\
\underline{-10x^2-10x-30} \\
-12x-23
\end{array}$$

Since our Polynomial Remainder is (-12x-23) mod 13, we perform some reduction. Thus, the Polynomial Remainder is:

$$-12x \bmod 13 = 1x \bmod 13$$
$$-23 \bmod 13 = -10 \bmod 13 = 3 \bmod 13$$

So, the reduced Polynomial Quotient and Polynomial Remainder are:

$$q(x) = x + 10$$
$$r(x) = x + 3$$

#### 4.5.2 Properties of Polynomial Rings

**Defn 59** (Divide). If  $g(x), h(x) \in F[x]$ , then h(x) is said to divide g(x), written

$$h(x) \mid g(x) \text{ if } g(x) \bmod h(x) = 0 \tag{4.9}$$

**Defn 60** (Congruent). Let  $g(x), h(x) \in F[x]$ . Then, g(x) is said to be *congruent* to  $h(x) \mod f(x)$  if f(x) | (g(x) - h(x)). We denote this

$$g(x) \equiv h(x) \pmod{f(x)} \tag{4.10}$$

- (i)  $g(x) \equiv h(x) \pmod{f(x)}$  if and only if g(x) and h(x) leave the same remainder when divided by f(x).
- (ii)  $g(x) \equiv g(x) \pmod{f(x)}$ .
- (iii) If  $g(x) \equiv h(x) \pmod{f(x)}$ , the  $h(x) \equiv g(x) \pmod{f(x)}$ .
- (iv) If  $g(x) \equiv h(x) \pmod{f(x)}$  and  $h(x) \equiv s(x) \pmod{f(x)}$ , then  $g(x) \equiv s(x) \pmod{f(x)}$ .
- (v) If  $g(x) \equiv g_1(x) \pmod{f(x)}$  and  $h(x) \equiv h_1(x) \pmod{f(x)}$ , then:
  - $g(x) + h(x) \equiv g_1(x) + h_1(x) \pmod{f(x)}$
  - $g(x)h(x) \equiv g_1(x)h_1(x) \pmod{f(x)}$

We can divide F[x] into sets called Equivalence Class, where each Equivalence Class contains all Polynomials that leaves a certain Polynomial Remainder when divided by f(x).

**Defn 61** (Equivalence Class). By F[x]/f(x), we denote the set of equivalence classes of Polynomials in F[x] of degree less than deg f(x0). The addition and multiplication operations are performed f(x).

**Defn 62** (Representative). Since the Polynomial Remainder, r(x) itself is a Polynomial in the Equivalence Class we use it as a representative of the Equivalence Class.

Defn 63 (Commutative Ring). A commutative Ring for Polynomials is defined as

$$F[x]/f(x) \tag{4.11}$$

Remark 63.1. Note that this is the inverse condition of when a Polynomial Ring is a Field.

**Defn 64** (Field). If  $f(x) \in F[x]$  is Irreducible, then F[x]/f(x) is a Field.

Remark 64.1. Note that this is the inverse condition of when a Polynomial Ring is a Commutative Ring

**Defn 65** (Finite Field). A *finite Field* is a Field which contains a finite number of elements, i.e. the Set Order of the Field is not  $\infty$ .

- (i) If F is a Finite Field, then the Set Order of F is  $p^m$  for some Prime p and integer  $m \ge 1$ .
- (ii) For every Prime power order  $p^m$ , there is a unique (up to Isomorphism) Finite Field of Set Order  $p^m$ . This Field is denoted by  $\mathbb{F}_{p^m}$  or  $GF(p^m)$ .
- (iii) If  $\mathbb{F}_q$  is a Finite Field of Set Order  $q = p^m$ , i.e.  $\mathbb{F}_{p^m}$ , the the *Characteristic* of  $\mathbb{F}_q$  is p. Furthermore, F[q] contains a copy of  $\mathbb{Z}_p$  as a *Subfield*.
- (iv) Let  $\mathbb{F}_q$  be a Finite Field of Set Order  $q = p^m$ , i.e.  $\mathbb{F}_{p^m}$ . Then every Subfield of  $\mathbb{F}_q$  has Set Order  $p^n$  for some positive integer n where  $n \mid m$ . Conversely, if  $n \mid m$ , then there is exactly one Subfield of  $\mathbb{F}_q$  of Set Order  $p^n$ .
- (v) An element  $a \in \mathbb{F}_q$  is in the Subfield  $\mathbb{F}_{p^n}$  if and only if  $a^{p^n-1} = 1$ .

**Defn 66** (Multiplicative Group). The non-zero elements of  $\mathbb{F}_{q^a}$  ll have inverses and thus, they form a Group under multiplication. This Group is called the *multiplicative group* of  $\mathbb{F}_{q^a}$  nd denoted by  $\mathbb{F}_q^*$ . It can be shown that  $\mathbb{F}_q^*$  is a Cyclic Group (of Set Order q-1). Especially, this means that  $a^{q-1}=1$  for all  $a\in\mathbb{F}_q$ .

**Defn 67** (Primitive Element). A Generator of the Cyclic Group  $\mathbb{F}_q^*$  is called a *primitive element*.

# 4.5.3 Extension of Greatest Common Divisor, Euclidean Algorithm, and Extended Euclidean Algorithm

**Defn 68** (Greatest Common Divisor). Let  $g(x), h(x) \in \mathbb{Z}_p[x]$ , where not both are zero. Then the *greatest common divisor*, GCD, of g(x) and h(x), denoted gcd(g(x), h(x)), is the Monic of greatest Degree in  $\mathbb{Z}_p[x]$  which Divides both g(x) and h(x). Remark 68.1. By definition gcd(0,0) = 0.

**Theorem 4.3** (Unique Factorization of Polynomials). Every non-zero polynomial  $f(x) \in \mathbb{Z}_p[x]$  has a factorization

$$f(x) = af_1(x)^{e_1} f_2(x)^{e_2} \cdots f_k(x)^{e_k}$$
(4.12)

where each  $f_i(x)$  is a distinct Monic Irreducible Polynomial in  $Z_p[x]$ , the  $e_i$  are positive integers, and  $a \in \mathbb{Z}_p$ , where p is for Primes. The factorization is unique up to the rearrangement of factors.

**Defn 69** (Polynomial Euclidean Algorithm). The *polynomial Euclidean Algorithm* is an extension of the traditional Euclidean Algorithm to Polynomial Fields.

# Algorithm 4.1: Polynomial Euclidean Algorithm

**Input**: Two non-negative Polynomials  $a(x), b(x) \in \mathbb{F}_q[x]$ .

Output: gcd(a(x),b(x)).

- 1 Set  $r_0(x) \leftarrow a(x), r_1(x) \leftarrow b(x), i \leftarrow 1$ .
- 2 while  $r_i(x) \neq 0$  do
- 3 | Set  $r_{i+1}(x) \leftarrow r_{i-1}(x) \mod r_i(x), i \leftarrow i+1.$
- 4 return  $r_i(x)$

This is demonstrated in Example 4.11

# Example 4.11: Polynomial Euclidean Algorithm. Lecture 3

Given  $f(x) = x^3 + x$ , where  $f(x) \in Z_2[x]$ , find the Greatest Common Divisor of f(x) given that  $f(x)g(x) = 1 \mod (x^4 + x + 1)$ . Assume f(x)g(x) is Irreducible.

Considering that  $Z_2[x]/f(x)$  where  $f(x) \in Z_2[x]$  and f(x) is Irreducible, this is a Polynomial Ring. Since the order of the Polynomial Ring is a Prime power, this is a Finite Field. Because this is a Finite Field,  $\mathbb{F}_{2^4}[] = 2^4 = 16$  elements.

Now, we calculate the Polynomial Euclidean Algorithm.

$$\gcd((x^{4} + x + 1), (x^{3} + x))$$
$$x^{4} + x + 1 = q(x)(x^{3} + x) + r(x)$$

We can perform Polynomial Long Division to find q(x) and r(x) for this iteration.

$$\begin{array}{c}
x \\
x^3 + x \overline{\smash) x^4 + x + 1} \\
\underline{-x^4 - x^2} \\
-x^2 + x + 1
\end{array}$$

So,

$$q(x) = x$$
$$r(x) = (-x^2 + x + 1) \mod 2$$

We need to correct the coefficients in r(x) with modulo 2 (where the coefficients come from in the first place).

$$r(x) = (-x^2 + x + 1) \mod 2$$
$$= x^2 + x + 1$$
$$x^4 + x + 1 = x(x^3 + x) + (x^2 + x + 1)$$

Now, the next iteration of Polynomial Euclidean Algorithm.

$$x^{3} + x = q(x) (x^{2} + x + 1) + r(x)$$

$$x^{2} + x + 1) \underbrace{x^{3} + x - 1}_{-x^{3} - x^{2} - x}$$

$$-x^{2}$$

$$\underline{x^{2} + x + 1}_{x + 1}$$

$$q(x) = x - 1$$
  

$$r(x) = x + 1$$
  

$$x^{3} + x = (x - 1)(x^{2} + x + 1) + (x + 1)$$

Another iteration:

$$x^{2} + x + 1 = q(x)(x+1) + r(x)$$

$$x + 1) \frac{x}{x^{2} + x + 1}$$

$$-x^{2} - x$$
1

$$q(x) = x$$
  

$$r(x) = 1$$
  

$$x^{2} + x + 1 = x(x+1) + 1$$

Another iteration (the last):

$$x + 1 = q(x) \cdot 1 + r(x)$$
$$q(x) = x + 1$$
$$r(x) = 0$$
$$x + 1 = (x + 1) \cdot 1 + 0$$

Thus, the  $gcd(x^4 + x + 1, x^3 + x) = 1$ .

**Defn 70** (Polynomial Extended Euclidean Algorithm). Let a(x) and b(x) be two non-negative polynomials in  $F_q[x]$ . Then, there exists polynomials s(x), t(x) such that gcd(a(x), b(x)) can be written as

$$\gcd(a(x), b(x)) = a(x)s(x) + b(x)t(x)$$

$$(4.13)$$

# Algorithm 4.2: Polynomial Extended Euclidean Algorithm (Bezout's Theorem)

```
Input: Two non-negative Polynomials a(x), b(x) \in \mathbb{F}_q[x].
    Output: d(x) = \gcd(a(x), b(x)) and two Polynomials u(x), v(x) such that d(x) = a(x)u(x) + b(x)v(x).
 1 if b(x) = 0 then
 2 | return a(x), u(x) \leftarrow 1, v(x) \leftarrow 0
 3 Set u_2(x) \leftarrow 1, u_1(x) \leftarrow 0, v_2(x) \leftarrow 0, and v_1(x) \leftarrow 1.
 4 while b(x) > 0 do
        Set q(x) \leftarrow a(x) \div b(x).
 \mathbf{5}
        Set r(x) \leftarrow a(x) - q(x)b(x)
 6
        Set u(x) \leftarrow u_2(x) - q(x)u_1(x)
 7
        Set v(x) \leftarrow v_2(x) - q(x)v_1(x)
 8
        Set a(x) \leftarrow b(x)
 9
        Set b(x) \leftarrow r(x)
10
        Set u_2(x) \leftarrow u_1(x)
11
        Set u_1(x) \leftarrow u(x)
12
        Set v_2(x) \leftarrow v_1(x)
13
        Set v_1(x) \leftarrow v(x)
15 Set d(x) \leftarrow a(x), u(x) \leftarrow u_2(x), v(x) \leftarrow v_2(x).
16 return d(x), u(x), v(x)
```

This is demonstrated in Example 4.12

#### Example 4.12: Polynomial Extended Euclidean Algorithm. Lecture 3

Given  $f(x) = x^3 + x$ , where  $f(x) \in Z_2[x]$ , find g(x) of f(x) given that  $f(x)g(x) = 1 \mod (x^4 + x + 1)$ . Assume f(x)g(x) is Irreducible.

Since we know that the gcd  $(x^4 + x + 1, x^3 + x) = 1$ , from Example 4.11, we can solve Equation (4.13).

$$1 = (x^{2} + x + 1) - x(x + 1)$$

$$= (x^{2} + x + 1) - x((x^{3} + x) - (x - 1)(x^{2} + x + 1)) = (x^{2} + x + 1) - x(x^{3} + x) - x(x - 1)(x^{2} + x + 1)$$

$$= (1 - x(x - 1))(x^{2} + x + 1) - x(x^{3} + x)$$

$$= (1 - x(x - 1))((x^{4} + x + 1) - x(x^{3} + x)) - x(x^{3} + x)$$

$$= (1 - x(x - 1))(x^{4} + x + 1) - x(1 - x(x - 1))(x^{3} + x) - x(x^{3} + x)$$

$$= [1 - x(x - 1)](x^{4} + x + 1) - [x(1 - x(x - 1)) - x](x^{3} + x)$$

$$s(x) = 1 - x(x - 1) = -x^{2} - x - 1$$
  
$$t(x) = x(1 - x(x - 1)) - x = -x^{3} + x^{2}$$

Now, we reduce the coefficients with respect to modulo 2.

$$s(x) = x^2 + x + 1$$
$$t(x) = x^3 + x^2$$

So, we end up with:

$$1 \bmod (x^{4} + x + 1) = (x^{2} + x + 1) (x^{4} + x + 1) + (x^{3} + x^{2}) (x^{3} + x)$$

$$= ((x^{2} + x + 1) (x^{4} + x + 1) + (x^{3} + x^{2}) (x^{3} + x)) \bmod (x^{4} + x + 1)$$

$$= 0 + (x^{3} + x^{2}) (x^{3} + x)$$

$$= (x^{3} + x)$$

$$= (x^{3} + x^{2}) f(x)$$

Thus,  $g(x) = x^3 + x^2$ .

**Defn 71** (Polynomial Basis Representation). The most common representation of element of a Finite Field  $\mathbb{F}_q$ , where  $q = p^m$ , p is a Prime, and is a polynomial basis representation.

**Theorem 4.4.** Let  $f(x) \in \mathbb{Z}_p[x]$  be an Irreducible of Degree m. Then  $\mathbb{Z}_p[x]/f(x)$  is a Finite Field of Set Order  $p^m$ . The elements are all Polynomials of Degree less than m. Addition and multiplication of elements is performed modulo f(x).

**Lemma 4.4.1.** For each  $m \geq 1$ , there exists a Monic that is also an Irreducible of Degree m over  $\mathbb{Z}_p$ .

# 5 Classical Cryptography

**Defn 72** (Cryptosystem). A cryptosystem five-tuple  $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$  where the following conditions are satisfied:

- 1.  $\mathcal{P}$  is a finite set of possible *Plaintext*, producing a message,  $\mathbf{m}$ .
- 2. C is a finite set of possible Ciphertext
- 3. K, the Keyspace, is a finite set of all possible keys
- 4. For each  $K \in \mathcal{K}$ , there is an Encryption Rule  $e_K \in \mathcal{E}$  and a corresponding Decryption Rule  $d_K \in \mathcal{D}$ . Each  $e_K : \mathcal{P} \to \mathcal{C}$  and  $d_K : \mathcal{C} \to \mathcal{P}$  are functions such that  $d_K (e_K(x)) = x$  for every Plaintext element  $x \in \mathcal{P}$ .

This can be illustrated with the Shannon Model for Symmetric Encryption.

Figure 5.1: Shannon Model for Symmetric Encryption

**Defn 73** (Symmetric Encryption). A *symmetric encryption* system has Alice and Bob both share the **same** key. We make the assumption that Alice can share the key with Bob in a way such that Eve cannot use the key. Figure 5.1 gives a visualization of this type of system.

A convention is to give the various parties in play names:

- Alice
- Bob
- Caesar
- Eve (The enemy)

**Defn 74** (Plaintext). Plaintext is the information that Alice wants to send to Bob, and is denoted  $\mathcal{P}$  This information can be in any arbitrary format, we do not care, however the elements in the message are drawn from the Alphabet. However, Alice does not want Eve to be able to understand what she sends to Bob.

The message to be sent is:

$$\mathbf{m} \in \mathcal{P} = (m_1, m_2, \dots, m_n) \,\forall m \in \mathcal{A} \tag{5.1}$$

**Defn 75** (Alphabet). Let  $\mathcal{A}$  be a finite set, which is called the *alphabet*. We often use the English letters as the alphabet, we number them  $a = 0, b = 1, \ldots, z = 25$ . This given  $\mathcal{A} = \mathbb{Z}_{26}$  and  $|\mathcal{A}| = 26$ .

**Defn 76** (Ciphertext). A *ciphertext* is a piece of Plaintext information that has been run through an element of Encryption Rule set.

A message that has been transformed with an Encryption Rule is a cipher message.

$$\mathbf{c} = e_K(\mathbf{m}) \tag{5.2}$$

| a | 0.0804 | j | 0.0016 | s | 0.0654 |
|---|--------|---|--------|---|--------|
| b | 0.0154 | k | 0.0067 | t | 0.0925 |
| С | 0.0306 | 1 | 0.0414 | u | 0.0271 |
| d | 0.0399 | m | 0.0253 | v | 0.0099 |
| е | 0.1251 | n | 0.0709 | W | 0.0192 |
| f | 0.0230 | 0 | 0.0760 | x | 0.0019 |
| g | 0.0196 | р | 0.0200 | У | 0.0173 |
| h | 0.0549 | q | 0.0011 | z | 0.0009 |
| i | 0.0726 | r | 0.0612 |   |        |

Table 5.1: Frequency of Letters in the English Alphabet

**Defn 77** (Keyspace). Keyspace, denoted K. Each key in the keyspace describes a certain function

$$e_K: \mathcal{P}^n \to \mathcal{C}^{n'}$$
 (5.3)

**Defn 78** (Encryption Rule). The encryption rule is an element  $e_K$  from the set of all encryption rules,  $\mathcal{E}$ .

$$e_K: \mathcal{P} \to \mathcal{C} \text{ where } e_K \in \mathcal{E}$$
 (5.4)

Namely, the encryption rule element is used to map the Plaintext pieces of information that Alice wants to send to a corresponding Ciphertext that she can send to Bob.

Remark 78.1 (Invertible). Each Encryption Rule must be invertible, thus allowing decryption of the ciphertext.

**Defn 79** (Decryption Rule). The decryption rule is an element  $d_K$  from the set of all decryption rules,  $\mathcal{D}$ .

$$d_K: \mathcal{C} \to \mathcal{P} \text{ where } d_K \in \mathcal{D}$$
 (5.5)

Namely, the decryption rule element is used to map the Ciphertext pieces of information that Alice sent to a corresponding Plaintext that Bob can use.

Remark 79.1.

$$pd_K(e_K(\mathbf{m})) = \mathbf{m} \ \forall \, \mathbf{m} \in \mathcal{P} \tag{5.6}$$

# 5.1 Types of Attacks

There are 2 main types of attacks:

- 1. Ciphertext-only: A ciphertext-only attack is an attack in which the enemy has access to the ciphertext  $\mathcal{C}$  and tries to recover the plaintext  $\mathcal{P}$  or the key K.
- 2. Known Plaintext: A known-plaintext attack is an attack in which the enemy has access to not only the ciphertext, C, but may also have some or all of the P, and is trying to recover the key K.

#### 5.2 The Caesar Cipher

The Caesar Cipher is a Monoalphabetic Cipher in which each letter is shifted 3 steps.

This can be generalized to shift not just 3, but K positions, where  $K \in \{0, 1, ..., 25\}$  is the secret key. In this case, the Keyspace, K, is the set of shifts in position possible.

$$K \in \mathcal{K}, \ \mathcal{K} = \{0, 1, \dots, 25\}$$

To encrypt a message, each individual character is encrypted according to Equation (5.7).

$$e_K(m) = m + k \bmod 26 \tag{5.7}$$

The Decryption Rule for The Caesar Cipher is used to decrypt a message encrypted according to Equation (5.7).

$$d_K(c) = c - k (5.8)$$

# 5.2.1 Cryptanalysis of The Caesar Cipher

The Caesar Cipher can be broken with an exhaustive key search.

# Example 5.1: Cryptanalysis of The Caesar Cipher. Lecture 4

Given the input string wklvlvdphvvdjhwrbrx, decrypt and find the message. The message was encrypted using The Caesar Cipher

| $\overline{K}$ | Plaintext Equivalent         |
|----------------|------------------------------|
| 0              | wklvlvdphvvdjhwrbrx          |
| 1              | vjkukucoguucigvqaqw          |
| 2              | $\verb"uijtjtbnfttbhfupzpv"$ |
| 3              | thisisamessagetoyou          |
| 4              | sghrhrzldrrzfdsnxnt          |
| 5              | rfgqgqykcqqyecrmwms          |
| :              | :                            |
| 25             | xlmwmweqiwwekixscsy          |

So, the key used in this Caesar Cipher was K=3, and the message was thisisamessagetoyou.

# 5.3 The Simple Substitution Cipher

The Simple Substitution Cipher operates on the individual characters in  $\mathcal{P}$ . However, the key, K is now an arbitrary permutation of the characters.

The set of all permutations on  $\mathbb{Z}_{26}$  is written as

$$\mathcal{E} = \{\pi_1, \pi_2, \dots, \pi_{|\mathcal{K}|}\}$$

The keyspace, K for this cipher is:

$$\mathcal{K} = \{0, 1, 2, \dots, 26! - 1\}$$
  
 $|\mathcal{K}| = 26!$ 

The Encryption Rule for this cipher is:

$$e_K(m) = \pi_K(m) \tag{5.9}$$

The Decryption Rule for this cipher's output is:

$$d_K(c) = \pi_k^{-1}(c) \tag{5.10}$$

# 5.3.1 Cryptanalysis of The Simple Substitution Cipher

We could attemp to perform an exhaustive key search, but because the keyspace is all integers from 0 to 26! - 1, which is incredibly large, it makes more sense to exploit the statistical nature of the plaintext source.

We could try matching the most common letters present in the Ciphertext against the most common letter in the Plaintext Alphabet, using Table 5.1. However, these 1-grams are only good for the most common letters in the English Alphabet.

If we take use n-grams we will have better luck, because there is a dependence between consecutive letters.

# 5.4 Polyalphabetic Ciphers

Polyalphabetic ciphers operate differently on different portions of the Plaintext.

The simplist Polyalphabetic Cipher is a number of Monoalphabetic Ciphers with different keys are used sequentially, the cyclically repeated. The Vigenére Cipher is one example of this kind of cipher.

### 5.4.1 The Vigenére Cipher

Cyclically uses t Caesar ciphers, where t is the period of the cipher.

The Encryption Rule maps the Plaintext message  $\mathbf{m} = m_1, m_2, \dots$  to the Ciphertext  $\mathbf{c} = c_1, c_2, \dots$  through

$$\mathbf{c} = e_{\mathbf{K}}(m_1, m_2, \dots, m_t), e_{\mathbf{K}}(m_{t+1}, m_{t+2}, \dots, m_{t+t}), \dots$$
(5.11)

where

$$e_{\mathbf{K}}(m_1, m_2, \dots, m_t) = (m_1 + k_1, m_2 + k_2, \dots, m_t + k_t)$$

and **K** consists of t characters  $\mathbf{K} = (k_1, k_2, \dots, k_t)$ .

Remark. The key,  $\mathbf{K}$  is often chosen to be a word, called a keyword.

# Example 5.2: Encryption Using The Vigenere Cipher. Lecture $\bf 4$

The Plaintext youmustvisitmetonight is to be encrypted using a Vigenére Cipher, with a period 4, where **K** = lucy.

| у | 0 | u | m | u | s | t | v | i | ន | i | t | m | е | t | 0 |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |  |
| 1 | u | С | У | 1 | u | С | У | 1 | u | С | У | 1 | u | С | У |  |
| j | i | W | k | f | m | v | t | t | m | k | r | x | У | v | m |  |

The resulting Ciphertext is jiwkfmvttmkrxyvm.

#### **5.4.1.1** Cryptanalysis of The Vigenére Cipher There are 2 steps to breaking The Vigenére Cipher:

- 1. Determine the period of the cipher, t. Generally, Kasiski's Method is used.
- 2. Reconstruct the t different The Simple Substitution Cipher Alphabets used.

**Defn 80** (Kasiski's Method). *Kasiski's Method* relies on the observation that repeated portions of Plaintext input will yield a repeating Ciphertext output, with some cyclic distance, t between each occurrence. This distance will be a multiple of the keyword length.

To solve this, you calculate the Greatest Common Divisor of these distances.

Now we move onto the second part of breaking The Vigenére Cipher. There are 2 main ways to do this.

- 1. Split the Ciphertext characters into t different multisets, where each character should have been shifted according to a Simple Substitution Cipher. The key of each Monoalphabetic Cipher can be determined with the statistics in Table 5.1 and some trial-and-error.
- 2. Measure of Roughness and Index of Coincidence

**Defn 81** (Measure of Roughness).

$$MR = \sum_{i=a\to 1}^{z\to 26} \left(p_i - \frac{1}{26}\right)^2$$

$$= \sum_{i=a\to 1}^{z\to 26} (p_i)^2 - \frac{1}{26}$$
(5.12)

Defn 82 (Index of Coincidence). The index of coincidence uses values found in the Measure of Roughness.

$$IC = \frac{\sum_{i=a\to 1}^{z\to 26} f_i (f_1 - 1)}{n(n-1)}$$
(5.13)

However, it does not return the period of The Vigenére Cipher.

#### 5.4.2 The Vernam Cipher (One-Time Pad)

This is a special case of the The Vigenére Cipher, where the period of the key,  $\mathbf{K}$  is chosen to be the same length as the output ciphertext,  $\mathbf{C}$ . More concretely, for a ciphertext,  $\mathbf{C}$  of length n, pick a Vigenére Cipher key with a period t. Where,

$$n = t$$

**5.4.2.1** Cryptanalysis of The Vernam Cipher (One-Time Pad) The Vernam Cipher (One-Time Pad) is an example of Perfect Secrecy (unbreakable) if the the elements of the key  $\mathbf{K}$  are chosen uniformly at random among all possible  $\mathbb{Z}_{26}^n$  possible values.

#### 5.4.3 Transposition Cipher (Permutation Cipher)

This cipher reorders all the letters in a block of length t. The Encryption Rule's key, K that permutes all the characters in a word block. Equation (5.14) is an example of how the Encryption Rule is constructed.

$$\pi_e(2,5,1,3,4) \Longrightarrow \pi(1) = 2$$

$$\pi(2) = 5$$

$$\pi(3) = 1$$

$$\pi(4) = 3$$

$$\pi(5) = 4$$

$$(5.14)$$

The Decryption Rule for Equation (5.14) is given in Equation (5.15).

$$\pi_d(4, 3, 1, 5, 2) \Longrightarrow \pi(1) = 4$$

$$\pi(2) = 3$$

$$\pi(3) = 1$$

$$\pi(4) = 5$$

$$\pi(5) = 2$$
(5.15)

Remark 82.1. The number on the **right-hand side** is assigned to the position present on the **left-hand side**.

# Example 5.3: Transposition Cipher. Lecture 5

Given the plaintext message  $\mathbf{M} = \text{findi}$ , and the Encryption Rule shown in Equation (5.14), what is the resulting ciphertext message?

$$\pi(1) = 2$$
 $\pi(2) = 5$ 
 $\pi(3) = 1$ 
 $\pi(4) = 3$ 
 $\pi(5) = 4$ 

So, each character in the input "findi" is moved around to result in "iifnd".

#### 5.4.4 The Hill Cipher

The Hill Cipher acts on t-grams from  $\mathbb{Z}_{26}$  through a key that is an Invertible  $t \times t$  matrix.

# 6 Information Theory

Information theory is heavily influenced by probability and its theories. For **much** greater detail on some of the concepts presented here, refer to the Math 374 - Probability and Statistics document.

**Defn 83** (Random Experiment). A random experiment is an experiment whose outcome varies in an unpredictable fashion when performed under the same conditions.

#### 6.1 Sample Space

**Defn 84** (Sample Space). The sample space is the set of all possible outcomes, the Elementary Events, denoted

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_n\} \tag{6.1}$$

**Defn 85** (Elementary Event). The possible outcomes in a Sample Space are called *elementary events*. In Equation (6.1), they are denoted

$$\omega_i$$
 (6.2)

**Defn 86** (Event). An *event* is any subset of  $\Omega$ .

$$E \subset \Omega \tag{6.3}$$

**Defn 87** (Probability). The *probability* of an Event E is given by

$$P(E) = \sum_{\omega \in E} P(\omega) \tag{6.4}$$

**Defn 88** (Random Variable). A random variable X is a function that assigns a real number  $X(\zeta)$  to each outcome  $\zeta$  in the Sample Space of the Random Experiment.

#### 6.2 Discrete Random Variables

**Defn 89** (Discrete Random Variable). A discrete random variable is a Random Variable that assumes values from a finite set,  $\mathcal{X}$  It is a mapping

$$X(\omega): \Omega \to \mathcal{X}$$
 (6.5)

**Defn 90** (Probability Distribution). A Discrete Random Variable has a probability distribution P(X=x)

$$P(X = x) = \sum_{\omega: X(\omega) = x} P(x)$$
(6.6)

If  $E \subset \mathcal{X}$ , then  $X \in E$  is an Event and

$$P(X \in E) = \sum_{x \in E} P(x) \tag{6.7}$$

- (i) A pair of Random Variables defined on the same Sample Space can be considered as a single Random Variable, say Z = (X, Y).
- (ii) Z takes values in  $\mathcal{X} \times \mathcal{Y}$ , with  $Z(\omega) = (X(\omega), Y(\omega))$
- (iii) P(Z) = P(X, Y)
- (iv) Consider the joint Event G as both Events E and F occurring. Then G corresponds to the Event  $G = E \cap F$ .
- (v) The probability of the joint event  $P(G) = P(E, F) = P(E \cap F)$

**Defn 91** (Expected Value/Mean of Single Discrete Random Variable). The *expected value* or *mean* of a single discrete random variable X is defined by

$$m_X = \mathbb{E}\left[X\right] = \sum_{x \in S_X} x \cdot p_X\left(x\right) \tag{6.8}$$

Remark 91.1. If X is countably infinite, you will have an infinite series that exists only if

$$\sum_{s \in S_X} |x| \cdot p_X(x) \tag{6.9}$$

is absolutely convergent.

#### 6.2.1 Independent Discrete Random Variables

**Defn 92** (Independent). 2 Events, E and F, are said to be *independent* if

$$P(E, F) = P(E) P(F)$$
(6.10)

2 Random Variables, X and Y, are said to be independent Random Variables if

$$P(X = x, Y = y) = P(X = x) P(Y = y), \forall x \in \mathcal{X}, y \in \mathcal{Y}$$
(6.11)

#### 6.2.2 Conditional Probability of Discrete Random Variables

**Defn 93** (Conditional Probability). The *conditional probability* P(E | F) (Read as "the probability of E given F") is defined as

$$P(E \mid F) = \frac{P(E, F)}{P(F)} \text{ where } P(F) \neq 0$$
(6.12)

For Random Variables, a similar definition is used.

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
(6.13)

# 6.3 Entropy

**Defn 94** (Entropy). The *entropy* H(X) of a Discrete Random Variable X is defined as

$$H(X) = -\sum_{x \in \mathcal{X}} P(x) \log_2(P(x))$$
(6.14)

Remark 94.1 (Probability is 0). By convention,

$$0\log_2(0) = 0 \tag{6.15}$$

This can be justified by saying  $\lim_{x\to 0} x \log_2(x) = 0$ 

Remark 94.2 (Entropy Bits). Since this logarithm is expressed in base-2, the output has the units of "bits". These are not the same as bits in a computer. They are just a unit, if the natural logarithm ln were used, the unit would be "nats".

Equation (6.14) can be expressed using the Expected Value/Mean of Single Discrete Random Variable.

$$H(X) = \mathbb{E}\left[-\log_2(P(X))\right] \tag{6.16}$$

The Entropy of multiple Discrete Random Variables can be expressed as

$$H(X,Y) = -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(x,y) \log_2(P(x,y))$$
(6.17)

- $\bullet$  The actual values of X are not used or needed in the calculation of Entropy, only the Probability Distribution
- The Entropy of X can be calculated even if X does not take on numerical values.
- An interpretation of Entropy can be seen as *uncertainty* about the outcome of the Random Variable.
- If X takes one value with P(X=x)=1, and all other values have  $P(X\neq x)=0$ , then the Entropy is 0 bits.
- If the probabilities are evenly distributed among the possible outcomes, then the Entropy is log<sub>2</sub>(Num Outcomes).

#### 6.3.1 Properties of Entropy

(i) If X is a Discrete Random Variable taking values in the set  $\mathcal{X} = \{x_1, x_2, \dots, x_{|\mathcal{X}|}\}$ , then

$$0 \le H(X) \le \log_2|\mathcal{X}| \tag{6.18}$$

- (ii) H(X) = 0 if and only if P(x) = 1 for some  $x \in \mathcal{X}$ .
- (iii)  $H(X) = \log_2 |\mathcal{X}|$  if and only if  $P(x) = \frac{1}{|\mathcal{X}|}$  for all  $x \in \mathcal{X}$ .
- (iv) If there are multiple Discrete Random Variables, the Entropy of their combination can be broken up

$$H(X_1 X_2 ... X_n) = H(X_1) + H(X_2 | X_1) + H(X_3 | X_1 X_2) + \dots + H(X_n | X_1 X_2 ... X_{n-1})$$
(6.19)

(v) Property (iv) leads to the very useful equation

$$H(XY) = H(X) + H(Y | X) = H(Y) + H(X | Y)$$
(6.20)

(vi) Due to Properties of Conditional Entropy in Paragraph 6.3.2.1, if and only if X and Y are Independent,

$$H(XY) = H(X) + H(Y) \tag{6.21}$$

**Defn 95** (Entropy of Binary Discrete Random Variable). In the special case, when  $|\mathcal{X}| = 2$ , there is a special notation

$$h(p) = -p \log_2(p) - (1-p) \log_2(1-p)$$
(6.22)

# 6.3.2 Conditional Entropy

**Defn 96** (Conditional Entropy). The *conditional Entropy*,  $H(X \mid Y)$  (Read as "the entropy of X given Y occurs") is defined as

$$H(X \mid Y) = -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(x, y) \log_2(P(x \mid y))$$
(6.23)

Equation (6.23) can be expressed with Expected Value/Mean of Single Discrete Random Variable.

$$H(X \mid Y) = \mathbb{E}\left[-\log_2(P(X \mid Y))\right] \tag{6.24}$$

If  $P(y) \neq 0$ , we can introduce the notation

$$H(X | Y) = \sum_{y \in \mathcal{Y}} P(y) H(X | Y = y)$$
 (6.25)

#### 6.3.2.1 Properties of Conditional Entropy

(i) If X and Y are Discrete Random Variables taking values from the sets  $\mathcal{X} = \{x_1, x_2, \dots, x_{|\mathcal{X}|}\}$  and  $\mathcal{Y} = \{y_1, y_2, \dots, y_{|\mathcal{Y}|}\}$ , respectively, then

$$0 \le \mathrm{H}(X \mid Y) \le \log_2 |\mathcal{X}| \tag{6.26}$$

- (ii) H(X|Y) = 0 if and only if, for every y, P(x|Y) = 1 for some  $x \in \mathcal{X}$ .
- (iii)  $H(x|Y) = \log_2 |\mathcal{X}|$  if and only if for every y,  $P(x|y = \frac{1}{|\mathcal{X}|})$  for all  $x \in \mathcal{X}$ .
- (iv) Similar properties hold for H(X | Y = y)
- (v) The Entropy of a Random Variable, X, can never increase by knowledge of the outcome of another Random Variable.

$$H(X \mid Y) \le H(X) \tag{6.27}$$

# 6.4 Relative Entropy

**Defn 97** (Relative Entropy). The relative entropy between 2 Probability Distributions of 2 Discrete Random Variables, P(X) and Q(X) is defined as

$$D(P(X) \parallel Q(X)) = \sum_{x \in \mathcal{X}} P(x) \log_2 \left(\frac{P(x)}{Q(x)}\right)$$
(6.28)

Equation (6.28) can also be written using Expected Value/Mean of Single Discrete Random Variable.

$$D(P(X) \parallel Q(X)) = \mathbb{E}_P \left[ \log_2 \left( \frac{P(x)}{Q(x)} \right) \right]$$
(6.29)

Remark 97.1 (Distance). The Relative Entropy is a measure of "distance" between 2 Probability Distributions. It can be thought of as the inefficiency of assuming the Probability Distribution Q(x) when P(x) is actually correct.

#### 6.4.1 Conditional Relative Entropy

**Defn 98** (Conditional Relative Entropy). Conditional relative entropy is defined similarly to the previous cases on conditionals.

$$D(P(X \mid Z) \parallel P(X \mid Z)) = \sum_{z \in \mathcal{Z}} P(z) \sum_{x \in \mathcal{X}} P(x \mid z) \log_2 \left(\frac{P(x \mid z)}{Q(x \mid z)}\right)$$

$$(6.30)$$

#### 6.5 Mutual Information

**Defn 99** (Mutual Information). The *mutual information* I(X;Y) (Read "the mutual information between X and Y") measures the amount of information (in bits) we receive about the Random Variable X when observing the outcome of the Random Variable Y. It is defined as

$$I(X;Y) = D(P(X,Y) || P(X) P(Y))$$
(6.31)

Equation (6.31) can be equivalently rewritten using using only summations.

$$I(X;Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(x,y) \log_2 \left( \frac{P(x,y)}{P(x)P(y)} \right)$$
(6.32)

# 6.5.1 Properties of Mutual Information

- (i) I(X;Y) = I(Y;X)
- (ii) I(X;Y) = H(X) H(X | Y)
- (iii) I(X; Y) = H(Y) H(Y | X)
- (iv) I(X;Y) = H(X) + H(Y) H(X,Y)
- (v) I(X; X) = H(X)

#### 6.5.2 Conditional Mutual Information

**Defn 100** (Conditional Mutual Information). The *conditional mutual information* is defined similarly as the other conditional cases.

$$I(X;Y|Z) = D(P(X,Y|Z) || P(X|Z) P(Y|Z))$$
(6.33)

where D(P(X|Z) || P(Y|Z)) is the Conditional Relative Entropy.

# 7 Shannon's Theory of Secrecy

**Defn 101** (Shannon's Theory of Secrecy). Shannon's Theory of Secrecy was developed by Claude Shannon. It is an attack/defense model for a Symmetric Encryption system.

This model operates under the assumptions that there is Unconditional Security and only Ciphertext-Only Attacks.

*Remark* 101.1 (Flaws of this Model's Assumptions). These assumptions are very strong. In reality, these assumptions would correspond to the **absolute best-case scenario**.

There is a set of Encryption Rules, one for each k, which maps Plaintext letters in a message  $\mathbf{m} = m_1, m_2, \dots, m_i \in \mathcal{P}$  to Ciphertext letters  $\mathbf{c} = c_1, c_2, \dots, c_i \in \mathcal{C}$ .

# 7.1 Attack and Security Assumptions

There are several possible assumptions for Eve's attack on Alice's message.

- 1. Ciphertext-Only Attack: Eve has only the ciphertext C, and wants to get the key K or the plaintext message M.
- 2. Known-Plaintext Attack: Eve has both the ciphertext C and the plaintext message M, and wants the key K.
- 3. Chosen-Plaintext Attack: Eve knows M and and can arbitrarily choose M to get C back. She wants to get the key K.
- 4. Chosen-Ciphertext Attack: Eve has the Decryption Rule,  $d_K$  and can feed in any arbitrary C. She is attempting to find the key K.
- 5. Related-Key Attack: The message M is encrypted with a key K similar to another.
- 6. Side Channel Attack: Eve is attacking the implementation of the Encryption Rule,  $e_K$ , by observing some other outputs.
  - The power consumed by the algorithm
  - The network communications occurring

**Defn 102** (Ciphertext-Only Attack). In a *ciphertext-only attack*, Eve has only the ciphertext C, and wants to get the key K or the plaintext message M.

**Defn 103** (Known-Plaintext Attack). In a *known-plaintext attack*, Eve has both the ciphertext C and the plaintext message M, and wants the key K.

**Defn 104** (Chosen-Plaintext Attack). In a *chosen-plaintext attack*, Eve knows M and and can arbitrarily choose M to get C back. She wants to get the key K.

**Defn 105** (Chosen-Ciphertext Attack). In a chosen-ciphertext attack, Eve has the Decryption Rule,  $d_K$  and can feed in any arbitrary C. She is attempting to find the key K.

Remark 105.1 (Lunchtime Attack). Sometimes the Chosen-Ciphertext Attack is called a *lunchtime attack*, because an arbitrary Plaintext can be fed through the Encryption Rule quickly. This means the output can be found quickly, for example, while a coworker is having lunch.

**Defn 106** (Related-Key Attack). In a *related-key attack*, the message M is encrypted with a key K similar to another, already broken key.

**Defn 107** (Side Channel Attack). In a *side channel attack*, Eve is attacking the implementation of the Encryption Rule,  $e_K$ , by observing some other outputs.

- The power consumed by the algorithm
- The network communications occurring

# 7.2 Security Scenarios

There are several scenarios we have for our Encryption Rule and Decryption Rule. In the order of **strongest security** to **weakest security**:

- 1. *Unconditional Security*: A Cryptographic Primitive is unconditionally secure if it cannot be broken even if Eve has infinite computational power.
  - This means she can also perform an exhautive key search (Brute Force)
- 2. Computational Security: A Cryptographic Primitive is computationally secure if the best algorithm to break the key requires at least T operations, where T is a very large number.
- 3. Provable Security: A Cryptographic Primitive is provably secure if the key can be reduced to a well known and well-studied problem.
  - Semiprime Integer Factorization is an example a key that is provably secure.

4. Heuristic Security: If there is no known method of breaking the Cryptographic Primitive, but the security cannot be proven in any sense.

**Defn 108** (Unconditional Security). A Cryptographic Primitive has unconditional security, is unconditionally secure, if it cannot be broken even if Eve has infinite computational power.

• This means she can also perform an exhautive key search (Brute Force)

**Defn 109** (Computational Security). A Cryptographic Primitive has computational security, is computationally secure, if the best algorithm to break the key requires at least T operations, where T is a very large number.

**Defn 110** (Provable Security). A Cryptographic Primitive has *provable security*, is *provably secure*, if the key can be reduced to a well known and well-studied problem.

• Semiprime Integer Factorization is an example a key that is provably secure.

**Defn 111** (Heuristic Security). A Cryptographic Primitive has *heuristic security*, is *heuristically secure*, if there is no known method of breaking the Cryptographic Primitive, but the security cannot be proven in any sense.

**Defn 112** (Perfect Secrecy). A cryptosystem has *perfect secrecy* if Equation (7.1) is true. Alternatively, Equation (7.2) is true.

$$I(M;C) = 0 = H(M) - H(M | C)$$
(7.1)

$$H(K) \ge H(M_1, M_2, \dots, M_n) \tag{7.2}$$

# 7.3 Shannon's Theory with Discrete Random Variables

Shannon's Theory of Secrecy can be modelled with 3 random variables:

$$\mathbf{M} = (M_1, M_2, \dots, M_N) \text{ and } P(\mathbf{M})$$

$$\mathbf{C} = (C_1, C_2, \dots, C_N) \text{ and } P(\mathbf{C})$$

$$K \in \mathcal{K} \text{ and } P(K)$$

$$(7.3)$$

**Defn 113** (Key Entropy). The *key Entropy* is the uncertainty Eve faces regarding an unknown key that she has no experience with.

$$H(K) = -\sum_{k \in K} P(k) \log_2(P(k))$$
(7.4)

Remark 113.1 (Key Entropy Upper Bound).

$$H(K) \le \log_2|\mathcal{K}| \tag{7.5}$$

**Defn 114** (Message Entropy). The message Entropy is the uncertainty regarding the transmitted message.

$$H(\mathbf{M}) = -\sum_{\mathbf{m} \in \mathcal{P}^N} P(\mathbf{m}) \log_2(P(\mathbf{m}))$$
(7.6)

Remark 114.1 (Message Entropy Upper Bound).

$$H(\mathbf{M}) \le \log_2 |\mathcal{P}|^N \tag{7.7}$$

**Defn 115** (Key Equivocation). Key equivocation is the case when Eve uses her knowledge of the Ciphertext to help break the key.

$$H(K \mid \mathbf{C}) = -\sum_{k \in \mathcal{K}, \mathbf{c} \in \mathcal{C}^N} P(k, \mathbf{c}) \log_2 (P(k \mid \mathbf{c}))$$
(7.8)

*Remark* 115.1 (Key Equivocation Upper Bound). The uncertainty of the key can never increase by observing **C**. Otherwise, why even encrypt the Plaintext?

$$H(K \mid \mathbf{C}) < H(K) \tag{7.9}$$

**Defn 116** (Message Equivocation). *Message equivocation* is the case when Eve uses her knowledge of the Ciphertext to help break the Plaintext.

$$H(\mathbf{M} \mid \mathbf{C}) = -\sum_{\mathbf{m} \in \mathcal{P}^{N}, \mathbf{c} \in \mathcal{C}^{N}} P(\mathbf{m}, \mathbf{c}) \log_{2} (P(\mathbf{m} \mid \mathbf{c}))$$
(7.10)

Remark 116.1 (Message Equivocation Upper Bound). The uncertainty of the message can never increase by observing C. Otherwise, why even encrypt the Plaintext?

$$H(\mathbf{M} \mid \mathbf{C}) < H(\mathbf{M}) \tag{7.11}$$

**Theorem 7.1** (Message Equivocation Bounded by Key Equivocation). For an encryption scheme, we have

$$H(\mathbf{M} \mid \mathbf{C}) \le H(K \mid \mathbf{C}) \tag{7.12}$$

Message Equivocation Bounded by Key Equivocation. The expression  $H(K, \mathbf{M} \mid \mathbf{C})$  can be written

$$H(K, \mathbf{M} \mid \mathbf{C}) = H(K \mid \mathbf{C}) + H(\mathbf{M} \mid \mathbf{C}, K)$$

When the key and ciphertext are given, the plaintext can be uniquely determined, so

$$H(\mathbf{M} \mid \mathbf{C}, K) = 0$$

Since  $Entropy(\mathbf{M} \mid \mathbf{C}) \leq H(K, \mathbf{M} \mid \mathbf{C})$ , we get

$$H(\mathbf{M} \mid \mathbf{C}) \le H(K \mid \mathbf{C})$$

**Defn 117** (Alphabet Size). The alphabet size, denoted L, is

$$|\mathcal{P}| = |\mathcal{C}| = L \tag{7.13}$$

**Defn 118** (Rate of the Alphabet). The rate of the alphabet is the **maximum Entropy** possible.

$$H_0 = \log_2(L) \tag{7.14}$$

**Defn 119** (Entropy Per Alphabet Symbol). The actual Entropy of the message source **per alphabet symbol** is denoted H(M) and is defined as

$$H(M) = \frac{H(\mathbf{M})}{N} \tag{7.15}$$

for a message  $\mathbf{M} = (M_1, M_2, \dots, M_N)$  of length N.

Remark 119.1 (Cases of Entropy Per Alphabet Symbol). There are 2 cases:

1. A memoryless source, meaning each message is sent independently or each other.

$$H(M) = N H(\mathbf{M}) \tag{7.16}$$

2. A non-memoryless source

**Defn 120** (Redundancy). The redundancy of a source, denoted D is

$$D = H_0 - \mathcal{H}(M) \tag{7.17}$$

A higher redundancy means there is more regularity in the message, which makes it easier to break.

Remark 120.1 (Benefits for Eve). Redundancy helps Eve! There are 2 ways to reduce redundancy in digital systems:

- 1. Compress the message before encryption, because regularities in the message are "removed" by compression.
- 2. Channel coding (the addition of parity bits for correct/detection of errors) should be done after encryption, because their regularity before will increase redundancy, hurting the key's strength.

**Theorem 7.2** (Shannon's Theory of Secrecy).

$$H(K \mid \mathbf{C}) \ge H(K) - ND \tag{7.18}$$

Shannon's Theory of Secrecy. Since  $H(K, \mathbf{M}, \mathbf{C}) = H(K, \mathbf{M}) = H(K, \mathbf{C})$  (assuming unique encryption/decryption, and non-probabilistic encryption).

Starting with  $H(K, \mathbf{M})$ , we have the relation

$$H(K, \mathbf{M}) = H(K) + H(\mathbf{M})$$

which can be simplified to

$$H(K, \mathbf{M}) = H(K) + N H(M)$$

On the other side,  $H(K, \mathbf{C})$ , we have the relation

$$H(K, \mathbf{C}) = H(\mathbf{C}) + H(K \mid \mathbf{C}) < NH_0 + H(K \mid \mathbf{C})$$

Putting these 2 together gives us

$$H(K \mid C) \ge N H(M) + H(K) - NH_0 = H(K) - ND$$

**Defn 121** (Unicity Distance). The unicity distance, denoted  $N_0$  is defined as

$$N_0 = \frac{\mathrm{H}(K)}{D} \tag{7.19}$$

The unicity distance, practically, gives the number of symbols in the Ciphertext we need to observe to go from having multiple possible keys to a single possible key.

**Theorem 7.3** (Drawback of Perfect Secrecy). For a cryptosystem with Perfect Secrecy, we have

$$H(\mathbf{M}) \leq H(K)$$

Drawback of Perfect Secrecy. We know

$$H(\mathbf{M} \mid \mathbf{C}) \le H(K \mid \mathbf{C}) \le H(K)$$

But the definition of Perfect Secrecy (Definition 112) implies

$$H(\mathbf{M} \mid \mathbf{C}) = H(\mathbf{M})$$

So, Theorem 7.3 follows.

$$H(\mathbf{M}) \le H(K \mid \mathbf{C}) \le H(K)$$

# 8 Stream Ciphers — LFSR Sequences

There are 2 main types of Symmetric Encryption algorithms:

- 1. Block Ciphers
- 2. Stream Ciphers

**Defn 122** (Stream Cipher). *Stream ciphers* encrypt individual characters of the Plaintext using an encryption transformation that varies with time. The 2 elements that make up a stream cipher are **memory** and a **combinatorial function**.

- 1. Memory
  - Linear Feedback Shift Registers
  - Tables (Arrays)
- 2. Combinatorial Function
  - Nonlinear Boolean functions, S-boxes
  - XOR, Modular addition, cyclic rotations, multiplication

**Defn 123** (Keystream). The *keystream* is the output of the generator, which gets used on the Plaintext message to form the Ciphertext

$$\mathbf{z} = z_1, z_2, \dots \tag{8.1}$$

Remark 123.1 (Attacks). For a synchronous Stream Cipher, a Known-Plaintext Attack, Chosen-Plaintext Attack, or Chosen-Ciphertext Attack is equivalent to having access to the Keystream.

Remark 123.2 (Secret Key). When the Keystream first starts, because it is a synchronous system, it needs to have a starting value with which to generate subsequent values. This first value may be fixed, and is the secret key, K, in this case.

# 8.1 Assumptions

We assume that

 $\bullet$  The output Keystream of length N is known to Eve.

#### 8.2 Attacks

An attack is considered successful only if the complexity of performing it is considerably lower than the exhaustive keysearch of complexity  $2^k$ .

The attack types that are of interest are:

- Key Recovery Attack: Eve tries to recover the Secret Key, K.
- Distinguishing Attack: Eve tries to determine whether a given sequence  $\hat{\mathbf{z}} = z_1, z_2, \dots, z_N$  is likely to have been generated from the considered Stream Cipher, or if it's a truly random sequence.

**Defn 124** (Key Recovery Attack). In a key recovery attack, Eve tries to recover the Secret Key, K.

**Defn 125** (Distinguishing Attack). In a distinguishing attack, Eve tries to determine whether a given sequence  $\hat{\mathbf{z}} = z_1, z_2, \dots, z_N$  is likely to have been generated from the considered Stream Cipher, or if it's a truly random sequence.

Let  $D(\mathbf{z})$  be an algorithm that takes in a sequence  $\mathbf{z}$  of length N, and outputs either "X" or "RANDOM". With probability  $\frac{1}{2}$ , the sequence  $\mathbf{z}$  is produced by a generator X otherwise, it is a random sequence. The probability that  $D(\mathbf{z})$  correctly determines the origin of  $\mathbf{z}$  is written  $P(D(\mathbf{z})) = \frac{1}{2} + \epsilon$ . If  $\epsilon$  is not very close to zero, then  $D(\mathbf{z})$  is a distinguisher for the generator X, because it can more often than not distinguish that the sequence is nonrandom.

Remark 125.1. A Distinguishing Attack is a much weaker attack than a Key Recovery Attack.

# 8.3 Linear Feedback Shift Registers

**Defn 126** (Linear Feedback Shift Register). A linear feedback shift register is a data storage element. A register has L delay (storage) elements, each of which is capable of storing one element from the field  $\mathbb{F}_q$ , and a clock signal. When the clock signal is applied, the register's delay elements are shifted one step, and the value shifted into the beginning is calculated as a linear function of the contents of the register.



Figure 8.1: Linear Feedback Shift Register

**Defn 127** (Shift Register Equation). The *shift register equation* is a way of describing the coefficients,  $c_1, c_2, \ldots, c_L \in \mathbb{F}_q$ , and their recurrence relation

$$s_{i} = -c_{1}s_{i-1} - c_{2}s_{i-2} - \dots - c_{L}s_{i-L}$$

$$(8.2)$$

for j = L, L + 1, ...

If  $c_0 = 1$ , we can write

$$\sum_{i=0}^{L} c_i s_{j-i} = 0, \text{ for } j = L, L+1, \dots$$
(8.3)

Remark 127.1 (Initial State). The first L symbols,  $s_0, s_1, \ldots, s_{L-1}$  form the initial state.

Remark 127.2 (Fibonacci Implementation). The Linear Feedback Shift Register setup shown in Figure 8.1 is implemented in a fibonacci-style.

**Defn 128** (Connection Polynomial). The coefficients,  $c_0, c_1, \ldots, c_L$  are summarized in the connection polynomial.

$$C(D) = 1 + c_1 D + c_2 D^2 + \dots + c_L D^L$$
(8.4)

*Remark* 128.1 (Alternate Form). We can write the Connection Polynomial in a slightly different form, to denote both the Connection Polynomial and the length.

$$\langle C(D), L \rangle$$
 (8.5)

**Defn 129** (D-Transform). The *D-Transform* is actually just the  $\mathbb{Z}$ -Transform, with a different indeterminate variable. The D-transform of a sequence  $\mathbf{s} = s_0, s_1, \ldots$  is defined as

$$S(D) = s_0 + s_1 D + s_2 D^2 (8.6)$$

if  $s_i \in \mathbb{F}_q$ .

The indeterminate D is the "delay", and the exponent indicates the number of delays.

Remark 129.1 (Our Assumptions). For this course, we assume that  $s_i = 0$  for i < 0, i.e. the signal is causal. The set of all such sequences having the form

$$f(D) = \sum_{i=0}^{\infty} f_i D^i$$

where  $f_i \in \mathbb{F}_q$  is denoted  $\mathbb{F}_q[[D]]$ , and is called the ring of formal power series.

**Theorem 8.1.** The set of sequences generated by the Linear Feedback Shift Register with Connection Polynomial C(D) is the set of sequences that have the D-Transform

$$S(D) = \frac{P(D)}{C(D)} \tag{8.7}$$

where P(D) is an arbitrary Polynomial of Degree at most L-1,

$$P(D) = p_0 + p_1 D + \dots + p_{L-1} D^{L-1}$$
(8.8)

The relation between the initial state of the Linear Feedback Shift Register and the P(D) Polynomial is given by the linear relation.

$$\begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_{L-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ c_1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ c_{L-1} & c_{L-2} & \cdots & 1 \end{pmatrix} \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{L-1} \end{pmatrix}$$

# 8.4 Linear Feedback Shift Registers Sequences and Extension Fields

Let  $\pi(x)$  be an Irreducible Polynomial over  $\mathbb{F}_q$  and assume its coefficients are

$$\pi(x) = x^{L} + c_1 x^{L-1} + \dots + c_L \tag{8.9}$$

This means that  $\pi(x)$  is the reciprocal Polynomial of the Connection Polynomial C(D).

We can construct an Extension Field  $\mathbb{F}_{q^L}$  through  $\pi(\alpha) = 0$ . The term  $\beta$  from  $\mathbb{F}_q$  can be expressed in a Polynomial basis as

$$\beta = \beta_0 + \beta_1 \alpha^1 + b_2 \alpha^2 + \dots + \beta_{L-1} + \alpha^{L-1}$$
(8.10)

where  $\beta_0, \beta_1, \ldots, \beta_{L-1} \in \mathbb{F}_q$ .

If we multiply Equation (8.10) by  $\alpha$ , we get

$$\alpha\beta = \beta_0\alpha + \beta_1\alpha^2 + \dots + \beta_{L-1}\alpha^L$$

Now, we can reduce the  $\alpha^L$  according to the  $\pi(\alpha) = 0$  relation we found earlier. This gives us

$$\alpha \beta = -c_L \beta_{L-1} + (\beta_0 - c_{L-1} \beta_{L-1}) \alpha + \dots + (\beta_{L-2} - c_1 \beta_{L-1}) \alpha^{L-1}$$
(8.11)



Figure 8.2: Linear Feedback Shift Register in Galois Form

We can check that this form, the Galois Form of this Linear Feedback Shift Register is the same as the other.

$$s_i = -c_1 s_{i-1} - c_2 s_{i-2} - \dots - c_L s_{i-L}$$

when  $j \geq L$ . Also,

$$p_0 = s_0, p_1 = s_1 + c_1 s_0, \dots$$

where  $p_0, p_1, \ldots, p_{L-1}$  is the initial state of the Linear Feedback Shift Register in its Galois Form.

The set of Linear Feedback Shift Register sequences, when C(D) is Irreducible, is exactly the set of sequences possible to produce by the implementation of multiplication of an element  $\beta$  by the fixed element  $\alpha$  in  $\mathbb{F}_{q^L}$ .

For a specific sequence specified as  $S(D) = \frac{P(D)}{C(D)}$ , the initial state if the first L symbols, whereas the same sequence is produced in Figure 8.2 if the initial state is  $p_0, p_1, \ldots, p_{L-1}$ .

#### 8.4.1 Properties of Linear Feedback Shift Registers

- (i) A sequence  $\mathbf{s} = \dots, s_0, s_1, \dots$  is called *periodic* if there is a positive integer T such that  $s_i = s_{i+T} \ \forall i \geq 0$ .
- (ii) The period is the least such positive integer T for which  $s_i = s_{i+T} \ \forall i \geq 0$
- (iii) The Linear Feedback Shift Register state runs through different values. The initial state will appear again after visiting a number of states. If  $\deg(C(D)) = L$ , the period of a sequence is the same as the number of different states visited, before returning to the initial state.
- (iv) If C(D) is Irreducible, the state corresponds to an element in  $\mathbb{F}_{q^L}$ , call it  $\beta$ .
- (v) The sequence of different states that we are entering is

$$\beta, \alpha\beta, \alpha^2\beta, \dots, \alpha^{T-1}\beta, (\alpha^T\beta = \beta)$$

where T is the Element Order of  $\alpha$ 

**Defn 130** (m-Sequence). An m-sequence is one where  $\alpha$  is a Primitive Element. This means we go through all  $q^L - 1$  states, where  $\operatorname{ord}(\alpha) = q^L - 1$ . These will only appear if and only if the Polynomial  $\pi(x)$  is a Primitive Element. A  $\pi(x)$  being Irreducible is not enough, it **must** also be Primitive Element.

A periodic and causal sequence, we denoted  $[s_0, s_1, \ldots, s_{T-1}]^{\infty}$ . This is equivalent to

$$s_0, s_1, \ldots, s_{T-1}, s_0, s_1, \ldots, s_{T-1}, s_0, \ldots$$

where  $s_i \in \mathbb{F}_q, i = 0, 1, ..., T - 1$ 

**Defn 131** (Polynomial Period). The period of a Polynomial C(D) is the least positive integer T such that  $C(D) \mid (1 - D^T)$ . This is calculated by dividing 1 by C(D) and continuing until you receive a remainder of the form  $1 \cdot D^N$ . The remainder **MUST** have the coefficient of 1. And the value of T = N.

# Example 8.1: Polynomial Period. Lecture 9, Example 4.6

Calculate the period of the Polynomial  $C(D) = 3 + D^2$  in  $\mathbb{F}_5$ ?

Start by dividing 1 by C(D).

$$\frac{1}{3+D^2} = 2 + D^2 + 3D^4 + 4D^6$$

with a remainder of  $1D^8$ .

Thus, the period of  $C(D) = 3 + D^2$  is T = 8. We can check this by making sure the remainder of the division is 0, with

$$(3+1D^2)) \frac{\frac{\frac{\left(1+-1D^8\right)}{\frac{1}{3+1D^2}}}{\left(1+-1D^8\right)}}{-\left(1+-1D^8\right)}$$

and it is, so we found the right answer.

**Theorem 8.2.** If gcd(C(D), P(D)) = 1, then the Connection Polynomial C(D) and the sequence **s** with D-Transform

$$S(D) = \frac{P(D)}{C(D)}$$

have the same period, the period of s is the same as the Polynomial Period C(D).

- This C(D) gives the shortest Linear Feedback Shift Register generating s.
- Any other C(D) generating **s** must be a multiple of C(D).

**Theorem 8.3.** If the 2 sequences  $s_A$  and  $s_B$ , with period  $T_A$  and  $T_B$  have D-Transforms

$$S_A(D) = \frac{P_A(D)}{C_A(D)}$$

$$S_B(D) = \frac{P_B(D)}{C_B(D)}$$

then the sum of the sequences  $\mathbf{s} = \mathbf{s}_A = \mathbf{s}_B$  has a D-Transform

$$S(D) = S_A(D) + S_B(D) (8.12)$$

and the shared period is

$$lcm(T_A, T_B) (8.13)$$

This all happens under the assumptions:

- $\gcd(P_A(D), C_A(D)) = 1$
- $\gcd(P_B(D), C_B(D)) = 1$
- $\gcd(C_A(D), C_B(D)) = 1$

# Example 8.2: Shortest LFSR Sequence. Lecture 9, Example 4.7

Given the sequence  $[1, 0, 1, 0, 0, 1, 1]^{\infty}$  in  $\mathbb{F}_2$ , what is the shortest Linear Feedback Shift Register that can produce this sequence?

Start by finding the general case of this sequence, in a D-Transformed state.

$$S(D) = \frac{1 + D^2 + D^5 + D^6}{1 + D^7}$$

The numerator is drawn from the given sequence. The denominator is found from the length of the period. However, this is not the shortest Linear Feedback Shift Register possible to generate this sequence. If we find a common factor, we can simplify this Linear Feedback Shift Register.

$$\gcd(1+D^2+D^5+D^6,1+D^7)$$

We solve this with the Polynomial Euclidean Algorithm.

$$1 + D^7 = q(D) (1 + D^2 + D^5 + D^6) + r(D)$$
  
=  $(D+1) (1 + D^2 + D^5 + D^6) + (D^5 + D^3 + D^2 + D)$ 

Since the remainder is not 0, we continue reducing.

$$(1 + D^{2} + D^{5} + D^{6}) = q(D) (D^{5} + D^{3} + D^{2} + D) + r(D)$$

$$= (D+1) (D^{5} + D^{3} + D^{2} + D) + (D^{4} + D^{2} + D + 1)$$

$$(D^{5} + D^{3} + D^{2} + D) = q(D) (D^{4} + D^{2} + D + 1) + r(D)$$

$$= (D) (D^{4} + D^{2} + D + 1) + 0$$

So, the  $gcd(1 + D^2 + D^5 + D^6, 1 + D^7) = D^4 + D^2 + D + 1$ . Now we factor that value out of the S(D) fraction, and reduce it out.

$$S(D) = \frac{\left(D^4 + D^2 + D + 1\right)\left(D^2 + D + 1\right)}{\left(D^4 + D^2 + D + 1\right)\left(D^3 + D + 1\right)}$$
$$= \frac{\left(D^2 + D + 1\right)}{\left(D^3 + D + 1\right)}$$

Thus, the shortest Linear Feedback Shift Register for the given sequence has a Connection Polynomial of  $C(D) = D^3 + D + 1$ , with an initial state D-Transform equation of  $P(D) = D^2 + D + 1$ .

# 8.5 Berlekamp-Massey Algorithm

I will present this algorithm in 2 ways, a algorithm table and a flow chart.

# Algorithm 8.1: Berlekamp-Massey Algorithm

```
Input: A sequence \mathbf{s} = (s_0, s_1, \dots, s_{N-1}) of length N.
   Output: The shortest LFSR \langle C(D), \text{ where } L \rangle generating s.
 1 Initialization: C(D) = 1, L = 0, C^*(D) = 1, d^* = 1, m = -1, and n = 0.
 2 while n < N do
        Compute the discrepancy d:
                                                               d = s_n - \sum_{i=1}^{L} -c_i s_{n-i}
       if d \neq 0 then
 4
            T(D) = C(D)
 5
            C(D) = C(D) - (d \cdot d^{-1}) \cdot (C^*(D))D^{n-m}
 6
           if L \leq \frac{n}{2} then
 7
                L = n + 1 - L
 8
                C^*(D) = T(D)
 9
10
       n = n + 1
12
13 return \langle C(D), L \rangle
```

Figure 8.3: Berlekamp-Massey Algorithm

# 8.6 Cycle Sets

**Defn 132** (Cycle Set). The *cycle set* for C(D) is the number of cycles of a given length. This is assuming  $L = \deg(C(D))$ . It is written

$$n_1(T_1) \oplus n_1(T_1) \oplus \cdots$$
 (8.14)

For example,  $1(1) \oplus 3(5)$  means there is one cycle of length one, and three cycles of length 5.

Remark 132.1 (Combining). You can combine cycle with the same period by simple addition.

$$n_1(T) \oplus n_2(T) = (n_1 + n_2)(T)$$
 (8.15)

# 8.6.1 Properties of Cycle Sets

(i) If C(D) is a Primitive Element of Degree L over  $\mathbb{F}_q$ , then the Cycle Set is

$$1(1) \oplus 1 \left( q^L - 1 \right) \tag{8.16}$$

(ii) If C(D) is an Irreducible Polynomial, then the Cycle Set is

$$1(1) \oplus \frac{\left(q^L - 1\right)}{T}(T) \tag{8.17}$$

where T is the Polynomial Period of C(D), or the Element Order of  $\alpha$  when  $\pi(\alpha) = 0$ .

**Theorem 8.4** (Connection Polynomial Multiple). If  $C(D) = C_1(D)^n$ , then the Cycle Set of C(D) is

$$1(1) \oplus \frac{\left(q^{L_1} - 1\right)}{T_1} \left(T_1\right) \oplus \frac{q^{L_1} \left(q^{L_1} - 1\right)}{T_2} \left(T_2\right) \oplus \dots \oplus \frac{q^{(n-1)L_1} \left(q^{L_1} - 1\right)}{T_n} \left(T_n\right) \tag{8.18}$$

where deg(C(D)) = L and  $T_j$  is the Polynomial Period of  $C_1(D)^j$ .

**Theorem 8.5** (Irreducible Connection Polynomial Multiple). if  $C_1(D)$  is Irreducible with period  $T_1$ , then the Polynomial Period of  $C_1(D)^j$  is

$$T_i = p^m T_1 \tag{8.19}$$

where p is the Characteristic of the Field and m is the integer satisfying

$$p^{m-1} < j \le p^m \tag{8.20}$$

#### Example 8.3: Cycle Set of Connection Polynomial. Lecture 9, Example 4.9

Compute the Cycle Set for the Connection Polynomial  $C(D) = (1 + D + D^2)^3$  in  $\mathbb{F}_2$ ?

The Connection Polynomial here is actually in the form  $C(D) = C_1(D)^3$ . In this case,  $C_1(D) = 1 + D + D^2$ , which is both Irreducible and Primitive Element.

We can find the Polynomial Period in 3 ways.

- 1. Because it's  $C_1(D)$  is a primitive Polynomial,  $T_1 = q^L 1 = 3$ .
- 2. Could perform a Polynomial Period, which yields the same thing.
- 3. Because it's  $C_1(D)$  is a primitive Polynomial,  $\pi(\alpha) = 0$ , and the ord  $(\alpha^2) = 3$ .

Now,  $T_2$  must be calculated with  $T_2 = 2^{m_2} \cdot 3$ , where  $2^{m_2-1} < 2 \le 2^{m_2}$ .  $m_2 = 1$ , plugging that back in gives  $T_2 = 2$ . Doing the same for  $T_3$  yields  $T_3 = 12$ .

Now we combine these into a single line.

$$1(1) \oplus \frac{\left(2^2 - 1\right)}{3}(3) \oplus \frac{2^2\left(2^2 - 1\right)}{3}(6) \oplus \frac{2^6\left(2^2 - 1\right)}{3}(12)$$
$$1(1) \oplus 1(3) \oplus 2(6) \oplus 4(12)$$

**Theorem 8.6** (Arbitrary Connection Polynomial). For a Connection Polynomial C(D) factoring like

$$C(D) = C_1(D)^{n_1} C_2(D)^{n_2} \cdots C_m(D)^{n_m}$$

 $C_i(D)$  is Irreducible, has a Cycle Set  $S_1 \times S_2 \times \cdots S_m$ , where  $S_i$  is the Cycle Set for  $C_i^{e_i}$ , and

$$n_1(T_1) \times n_2(T_2) = n_1 n_2 \gcd(T_1, T_2) \left( \operatorname{lcm}(T_1, T_2) \right)$$
 (8.21)

and the distributive law holds for  $\times$  and  $\oplus$ .

## 8.7 Decimation

An *m*-Sequence  $\mathbf{s} = s_0, s_1, s_2, \dots$ 

• Define the sequence s' obtained through decimation by k, defined by the sequence

$$\mathbf{s}' = s_0, s_k, s_{2k}, \dots$$

• s corresponds to a multiplication of  $\beta$  by the fixed element  $\alpha$ . Thus, s' corresponds to multiplication  $\beta$  by the fixed element  $\alpha^k$ , which means the cycle of different states corresponds to

$$\beta, \alpha^k \beta, \alpha^{2k} \beta, \dots, \alpha^{(T-1)k} \beta, (\alpha^{Tk} \beta = \beta)$$

• The period of  $\mathbf{s}'$  is ord  $(\alpha^k) = \frac{q^L - 1}{\gcd(q^L - 1, k)}$ .

#### 8.8 Statistical Properties

The importance of Linear Feedback Shift Register sequences and m-Sequences are due to their pseudorandomness properties.  $\mathbf{s} = s_0, s_1, \ldots$  is an m-Sequence, and an n-gram is a subsequence of length n,

$$(s_t, s_{t+1}, \dots, s_{t+n-1})$$

for t = 0, 1, ...

**Theorem 8.7.** Among the  $q^L - 1$  L-grams that can be constructed for  $t = 0, 1, ..., q^L - 2$ , ever nonzero vector appears exactly once.

#### 8.8.1 Autocorrelation Function

**Defn 133** (Autocorrelation Function). The autocorrelation function has:

- 2 binary sequences,  $\mathbf{x}, \mathbf{y}$  of the same length n.
- The autocorrelation  $C(\mathbf{x}, \mathbf{y})$  between the 2 sequences is defined as the number of positions of agreements minus the number of disagreements.
- The autocorrelation function  $C(\tau)$  is defined to be the correlation between a sequence **x** and its  $\tau$ th cyclic shift, i.e.,

$$C(\tau) = \sum_{i=1}^{n} (-1)^{x_i + x_{i+\tau}}$$
(8.22)

where subscripts are taken modulo n and addition in the exponent is  $\mod 2$  addition.

**Theorem 8.8** (Autocorrelation of m-Sequence). If s is an m-sequence of length  $2^L - 1$ , then

$$C(\tau) = \begin{cases} 2^L - 1 & \text{if } \tau \equiv 0 \text{ mod } n \\ -1 & \text{otherwise} \end{cases}$$
 (8.23)

# 9 Block Ciphers

**Defn 134** (Block Cipher). A block cipher encrypts a fixed-length block of plaintext bits x to a fixed-length block of ciphertext y. This transformation is controlled by the secret key K, and is written  $E_K(x) = y$ .

The secret key defines a fixed mapping of the plaintext block x to the ciphertext block y. This can sometimes make block ciphers a form of The Simple Substitution Cipher.

Block ciphers are usually implemented with several Round Functions, based on the Round Key.

**Defn 135** (Round Function). Block Ciphers are usually implemented as iterated ciphers, where a simple encryption function is iteratively applied for N rounds. This is called a *round function*. It is commonly denoted

$$h(w_{i-1}, k_i) \tag{9.1}$$

where

- *i* is the current round (current iteration).
- w is the input plaintext block.
- k is the Round Key on the ith iteration.
- h is the Round Function.

These functions must also be invertible, namely,

$$h^{-1}(h(w_{i-1}, k_i), k_i) = w_{i-1}$$
(9.2)

These functions must be efficient to compute, and be efficient to compute the inverse round function.

**Defn 136** (Round Key). The *round key* is derived from the key K. The way in which the round key is derived from K is called the *key schedule*.

If we want to mathematically illustrate the implementation of a Block Cipher's encryption with a iterative cipher, it is defined as:

$$w_{0} = x$$

$$w_{1} = h(w_{0}, k_{1})$$

$$w_{2} = h(w_{1}, k_{2})$$

$$\vdots$$

$$w_{N-1} = h(w_{N-2}, k_{N-1})$$

$$w_{N} = h(w_{N-1}, k_{N})$$

- x is the plaintext block.
- $w_i$  are intermediate values in the implementation of the iteration.
- $w_N$  is the final output from the cipher.

- $h(w_{i-1}, k_i)$  denotes the round function.
- $k_i$  is the round key used in the *i*th round.

For the same iterative cipher, the decryption function  $D_K(y)$  is just the application of the Round Keys in reverse order.

$$w_{N} = y$$

$$w_{N-1} = h^{-1}(w_{N}, k_{N})$$

$$w_{N-2} = h^{-1}(w_{N-1}, k_{N-2})$$

$$\vdots$$

$$w_{1} = h^{-1}(w_{2}, k_{2})$$

$$w_{0} = h^{-1}(w_{1}, k_{1}) = x$$

# 9.1 Examples of Iterated Ciphers

## 9.1.1 Feistel Ciphers/DES

**Defn 137** (Feistel Cipher). A *Feistel cipher* is a type of iterated cipher that is easy to implement in both hardware and software. However, it is not safe to use anymore.

An example of these is the DES encryption algorithm.

The block being run through the Round Function is split in half; a left and right half, denoted

$$w_i = (L_i, R_i) \tag{9.3}$$

The Round Function  $h(L_{i-1}, R_{i-1}, k_i)$  is implemented as

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus f(R_{i-1}, k_{i})$$
(9.4)

where  $f(R_{i-1}, k_i)$  can be any function.

The decryption function for the Feistel cipher is implemented as

$$L_{i-1} = R_i \oplus f(R_{i-1}, k_i)$$

$$R_{i-1} = L_i$$
(9.5)

and  $(L_0, R_0)$  gives back x.

#### 9.1.2 SP Network

**Defn 138** (SP Network). An SP network is a iterated Block Cipher that consists of a mix between substitutions (S) (The Simple Substitution Ciphers) and permutations (P) or linear transformations (Transposition Cipher (Permutation Cipher)s). The Round Key is added to the input to the Round Function in a simple way (Exclusive-OR, XOR,  $\oplus$ ).

An example of these is the AES (Advanced Encryption Scheme) cipher.

**Defn 139** (S-Box). An S-Box is the substitution portion of an SP Network. They are usually taken over a small alphabet, and only have 4, 6, or 8 bits as input.

# 9.2 Modes of Operation

**Defn 140** (Mode of Operation). A *mode of operation* describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block. This is helpful because, by themselves, Block Ciphers can only encrypt/decrypt one block. To accomplish this, the plaintext is split up into blocks, and each block is encrypted.

$$x_1, x_2, \ldots, x_N, x_{N+1}, \ldots$$

Let  $X_1 = (x_1, x_2, ..., x_N)$  be the first block with length N. Let  $X_2 = (x_{N+1}, x_{N+2}, ..., x_{2N})$  be the second block, also with length N. The encryption is then done block-wise

Most modes require a unique binary sequence, often called an Initialization Vector (IV), for each encryption operation.

There are 3 modes of operation that are discussed in this course:

- 1. Electronic Codebook (ECB) Mode
- 2. Cipher Block Chaining (CBC) Mode
- 3. Counter Mode

**Defn 141** (Initialization Vector). An *initialization vector* (*IV*) is a unique binary sequence that is used for each encryption operation. The IV has to be non-repeating and, for some modes, random as well.

#### 9.2.1 Electronic Codebook (ECB) Mode

$$C_I = E_K(X_i) \ i = 1, 2, \dots$$
 (9.6)

The steps required to operate a block cipher in ECB mode are illustrated in Figures 9.1a to 9.1b.



Figure 9.1: Electronic Codebook (ECB) Mode Steps

# **9.2.1.1** Problems with Electronic Codebook (ECB) Mode If 2 plaintext blocks are the same, then the 2 corresponding ciphertext blocks are also the same. For example,



(b) ECB Mode Encrypted Plaintext

Figure 9.2: Problem with ECB Mode

Notice how one could still make out the outline of the image in Figure 9.2b. This is undesirable, because some information is still leaked to the attacker, even after encryption. Obviously, we need something better than ECB Mode.

#### 9.2.2 Cipher Block Chaining (CBC) Mode

**Defn 142** (Cipher Block Chaining Mode). Cipher Block Chaining Mode (CBC Mode) follows a different rule.

$$Y_i = E_K(Y_{i-1} \oplus X_i) \tag{9.7}$$

where  $Y_0$  is the Initialization Vector.

The steps required to operate a block cipher in CBC mode are illustrated in Figures 9.3a to 9.3b.



Figure 9.3: Cipher Block Chaining Mode Steps

#### 9.2.3 Counter Mode

**Defn 143** (Counter Mode). *Counter Mode* is another Mode of Operation that actually turns our Block Cipher into a Stream Cipher. In this Mode of Operation, the *count* of which block we are working with is encrypted. Then, the encrypted count is XORed with the plaintext message, to produce our ciphertext message.

The keystream sequence is given by

$$E_K(0), E_K(1), E_K(2), \dots$$
 (9.8)

The steps required to operate a block cipher in counter mode are illustrated in Figures 9.4a to 9.4b.



Figure 9.4: Cipher Block Chaining Mode Steps

# 9.3 Advanced Encryption Scheme

**Defn 144** (Advanced Encryption Scheme). The Advanced Encryption Scheme (AES) cipher is a SP Network Block Cipher. It was originally designed to be fast in both hardware and software. Today, it is faster to perform these calculations in software because CPU architectures support special instructions just for these calculations.

In AES, the block size is fixed to 128 bits. The key size is variable; either: 128 bits, 192 bits, or 256 bits. These different key sizes correspond to the the number of rounds that happen (10, 12, or 14, respectively).

AES operates on binary matrices. They are  $2 \times 2$  matrices where each element is a byte (8 bits). AES has several steps involved in it.

- 1. The first round is always a round of AddRoundKey.
- 2. Then, all subsequent rounds perform one of these actions
  - (a) AddRoundKey
  - (b) SubBytes
  - (c) ShiftRows
  - (d) MixColumns
    - This is *not* run on the last round.

AES has been broken in practice, but not in a practical sense. The best known attacks were on 7 rounds for 128-bit keys, 8 rounds for 192-bit keys, and 9 rounds for 256-bit keys. Side-Channel attacks are still possible (cache-timing attacks, differential fault analysis, etc.).

Remark 144.1 (Other Cryptographic Primitive's Reliance on Advanced Encryption Scheme). Many other Cryptographic Primitives rely on the security of Advanced Encryption Scheme. This means that these derived Cryptographic Primitives are as secure as Advanced Encryption Scheme.

#### 9.3.1 AddRoundKey

In the AddRoundKey step, each byte of the block is combined with the Round Key using bitwise XOR. Figure 9.6 illustrates this step.

#### 9.3.2 SubBytes

The SubBytes is a non-linear substitution step where each byte is replaced with another according to a lookup table. Figure 9.7 illustrates this step.

#### 9.3.3 ShiftRows

The ShiftRows step is a transposition step where each row of the state is shifted cyclically a certain number of steps. Figure 9.8 illustrates this step.



Figure 9.5: Advanced Encryption Scheme Structure



Figure 9.6: Advanced Encryption Scheme AddRoundKey



Figure 9.7: Advanced Encryption Scheme SubBytes



Figure 9.8: Advanced Encryption Scheme ShiftRows

# 9.3.4 MixColumns

The MixColumns step is a mixing operation which operates on the columns of the block, combining and evenly distributing the 4 bytes in each column. Figure 9.9 illustrates this step.



Figure 9.9: Advanced Encryption Scheme MixColumns

# 10 Public-Key Encryption

**Defn 145** (Public-Key Encryption Scheme). A public-key encryption scheme is a set of encryption transformations  $\{E_e : e \in \mathcal{K}\}$  and a set of decryption transformations  $\{D_d : d \in \mathcal{K}\}$ . For each  $e \in \mathcal{K}$  there is a corresponding  $d \in \mathcal{K}$  such that  $D_d(E_e(M)) = M, \forall M$ .

Furthermore, after choosing such a pair (e, d), the public key e (or the public parameter) is made public, while the associated secret key d is kept secret. For the scheme to be secure, it must be computationally infeasible to compute d and/or  $E_e^{-1}(C)$ , knowing the public value e. These types of schemes are built with One-Way Functions and/or Trapdoor One-Way Functions.

This means that the encryption key can be public, allowing anyone to send an encrypted message to the receiver. Then, only the receiver can decrypt the message, because the decryption key is kept secret.

Remark 145.1 (Construction). These are constructed through multiple Trapdoor One-Way Functions.

**Defn 146** (One-Way Function). An informal definition of a *one-way function* f(x) is a function from a set  $\mathcal{X}$  to a set  $\mathcal{Y}$  such that f(x) is easy to compute for all  $x \in \mathcal{X}$ , but for "essentially all" elements  $y \in \mathcal{Y}$  it is "computationally infeasible" to find any  $x \in \mathcal{X}$  such that f(x) = y.

Remark 146.1 ("Essentially All"). There are some special values where One-Way Functions to not behave normally, in that the function becomes computationally feasible to solve.

**Defn 147** (Trapdoor One-Way Function). A trapdoor one-way function f(x) is a One-Way Function  $f: \mathcal{X} \to \mathcal{Y}$  such that if one knows some specific information T, called the trapdoor information, then f(x) is computationally easy to invert f, i.e., for any  $y \in \mathcal{Y}$  it is easy to find a  $x \in \mathcal{X}$  such that f(x) = y. For anyone without knowledge of the trapdoor information T, f(x) is a One-Way Function.

#### 10.1 RSA Public-Key Encryption Scheme

**Defn 148** (RSA Public-Key Encryption Scheme). The RSA public-key encryption scheme is defined as follows. Let n = pq, where p and q are two large Primes. Let  $\mathcal{M} = \mathcal{C} = \mathbb{Z}_n$ . Pick a number e that is Relatively Prime to  $\phi(n)$  (the Set Order of  $\mathbb{Z}_n$ ) and calculate a number d such that  $ed = 1 \mod \phi(n)$ . The public key is the two numbers (n, e) and the public encryption transformation E(M) is

$$E(M) = M^e \bmod n \tag{10.1}$$

and the associated decryption transformation is

$$D(C) = C^d \bmod n \tag{10.2}$$

RSA Public-Key Encryption Scheme. To verify that the RSA Public-Key Encryption Scheme returns the plaintext after it was encrypted by the public key, we first assume that n, e, and d are all properly defined. By extension, this means that E(M) and D(C) are also well-defined.

We start be substituting the ciphertext, C in Equation (10.2) with the definition of the cipher text.

$$D(C) = C^d \mod n$$
$$= (M^e)^d \mod n$$
$$= M^{ed} \mod n$$

Now, we note that  $ed = 1 \mod \phi(n)$ , which means we can write

$$ed = 1 + t\phi(n)$$

for some integer t.

Also note that since  $ed = 1 \mod \phi(n)$ , this means that

$$d = e^{-1} \bmod \phi(n)$$

So, we continue, and use our two equations together.

$$D(C) = M^{ed} \mod n$$
$$= M^{1+\phi(n)} \mod n$$
$$= M \cdot M^{\phi(n)} \mod n$$

From Euler's formula, we know  $x^{\phi(n)} = 1$  for any  $x \in \mathbb{Z}_n^*$  (From Definition 26 of Multiplicative Inverse). We also assume that M is invertible, otherwise the entire scheme falls apart, since a non-invertible message means it cannot be decrypted once encrypted.

$$D(C) = M \cdot M^{\phi(n)} \mod n$$
$$= (M \cdot 1) \mod n$$
$$= M \mod n$$

# Example 10.1: RSA Public-Key Encryption Scheme. Lecture 12, Example 3

Let p = 47 and q = 167. Then, n = pq = 7849. Compute  $\phi(n)$ ,

$$\phi(n) = \phi(7849)$$

$$= \phi(47 \cdot 167)$$

$$= (47 - 1)(167 - 1)$$

$$= 7636$$

Now, we choose a value of e such that e and  $\phi(n)$  are Relatively Prime,  $\gcd(e,\phi(n))=1$ . We choose e=25. (This is just one correct e. There are many more.) Since we chose e where  $\gcd(e,\phi(n))=1$ , e is a Multiplicative Inverse in  $\mathbb{Z}_{\phi(n)}=\mathbb{Z}_{7636}$ .

We can use the Euclidean Algorithm and Bezout's lemma to find the inverse.

$$d = 2749$$

Thus,

$$25 \cdot 2749 = 1 \mod 7636$$

Since this is true, we publish our public key, (n, e) = (7636, 25).

Now, to send a message, Alice uses Equation (10.1). Her message has M = 2728.

$$C = M^e \mod n$$
  
=  $2728^{25} \mod 7849$   
=  $2401 \mod 7849$ 

When Bob receives this ciphertext, he can decrypt it using Equation (10.2).

$$M = C^d \mod n$$
  
=  $2401^{2749} \mod 7849$   
=  $2728 \mod 7849$ 

Thus, Bob gets Alice's original message, and he is likely the only one who was able to decrypt it.

#### 10.1.1 Security of the RSA Public-Key Encryption Scheme

The RSA Public-Key Encryption Scheme relies on the factorization problem. Namely, that for large semi-prime numbers, it is difficult to find its constituent Prime factors. However, this **does not** mean that breaking RSA is equivalent to solving a factorization problem. It is currently unknown if there is a way to break RSA without factoring the integer n.

#### 10.1.2 Implementation of the RSA Public-Key Encryption Scheme

In order to compute  $M^e \mod n$  we need  $L = \lceil \log_2 n \rceil$  bits to store a value from  $\mathbb{Z}_n$ .

To easily compute the exponentiation of M with e, we apply the square and multiply algorithm.

**Defn 149** (Square and Multiply Algorithm). The square and multiply algorithm is a way to efficiently compute exponents.

#### Algorithm 10.1: Square and Multiply Algorithm

**Input**: An integer M raised to some exponent e modulo some number n, written  $M^e \mod n$ .

**Output:** The result of the integer exponentiation modulo n.

1 Rewrite e as a sum of powers of 2.

$$e = e_0 + e_1 \cdot 2 + e_2 \cdot 2^2 + \dots + e_{L-1} w^{L-1}$$

where  $e_i \in \mathbb{Z}_2$  and  $0 \le i \le L - 1$ .

**2** Next, L-1 squarings of M occurs.

$$M^2$$
,  $(M^4 = (M^2)^2)$ ,  $(M^4 = (M^4)^2)$ , ...

in  $\mathbb{Z}_n$  (i.e. reducing modulo n every time).

**3** Lastly, we perform at most L-1 multiplications by computing  $M^e$  as

$$M^e = M^{e_0} \cdot (M^2)^{e_1} \cdot (M^4)^{e_2} \cdots (M^{2^{L-1}})^{e_{L-1}}$$

# Example 10.2: Square and Multiply Algorithm. Lecture 14, Example 1

Compute  $2728^{25}$  in  $\mathbb{Z}_{7849}$  using the Square and Multiply Algorithm?

First, rewrite 25 as a result of products of 2.

$$25 = 16 + 8 + 1$$
  
=  $1(2^4) + 1(2^3) + 0(2^2) + 1(2^1) + 1(2^0)$ 

This results in

$$2728^{25} = 2728^1 \cdot 2728^8 \cdot 2728^{16}$$

Now we perform the squarings required until we get to  $2728^{16}$ .

$$2728^{2} = 7441984 \mod 7849 = 1132$$

$$2728^{4} = (2728^{2})^{2} = 1132^{2} \mod 7849 = 2037$$

$$2728^{8} = (2728^{4})^{2} = 2037^{2} \mod 7849 = 5097$$

$$2728^{16} = (2728^{8})^{2} = 5097^{2} \mod 7849 = 7068$$

Now substituting our values in and multiplying through (ensuring we reduce modulo n at the end).

$$2728^{25} = 2728^{16+8+1}$$
=  $(2728 \cdot 5097 \cdot 7068) \mod 7849$   
=  $2401$ 

Our answer is  $2728^{25} \mod 7849 = 2401$ .

# 10.2 Primality Testing

How do we check whether a given number m is a Prime number?

The naïve approach said to perform trial divisions such that  $x \mid m$  for all integers x where  $2 \le x \le \sqrt{m}$ . The problem with this is that if m is a 1024-bit number, for instance, then  $\sqrt{m}$  is 512-bits, and performing  $2^{512}$  tests is not possible.

So, we have probabilistic theorems for determining primality of numbers.

#### 10.2.1 Probabilistic Algorithms for Testing Primality

#### 10.2.1.1 Fermat's Little Theorem

Theorem 10.1 (Fermat's Little Theorem). Fermat's Little Theorem states that

$$a^{m-1} = 1 \bmod m \tag{10.3}$$

if m is a Prime and a such that  $1 \le a \le m-1$ .

When m is not a Prime, we cannot know what we will receive when computing  $a^{m-1}$ . However, if  $a^{m-1} \neq 1 \mod m$ , we know for certain that m is not a Prime number.

Remark (Error Probability of Fermat's Little Theorem). The error probability after repeating the test k times would be less than  $\frac{1}{2k}$ .

**Defn 150** (Pseudo-Prime). A composite m such that  $a^{m-1} = 1 \mod m$  is said to be a pseudo-prime to the base a.

**Defn 151** (Carmichael Number). A number is called a *Carmichael number* if a composite m is such that it is a Pseudo-Prime for every base a with gcd(a, m) = 1.

Remark 151.1 (Smallest Carmichael Number). The smallest Carmichael Number is 561.

**Theorem 10.2** (Miller-Rabin Test). The Miller-Rabin test states that we choose a random integer as base, a. Then write  $m-1=2^b \cdot q$ , where q is odd.

If  $a^q = 1 \mod m$  or  $a^{2^c \cdot q} = -1 \mod m$  for any c < b then return "m probably Prime" and go back and choose a new base. Otherwise, return "m is definitely **not** Prime".

One can prove that the probability that m is probably Prime with to the below equation.

P ("m probably prime" | "m not prime") 
$$< \frac{1}{4}$$
 (10.4)

#### 10.3 Factoring

All Public-Key Encryption Schemes used today rely on the intractability of factoring large semi-primes.

#### 10.3.1 Pollard's (p-1)-Method

**Theorem 10.3** (Pollard's (p-1)-Method). Let n = pq and let p-1 factor as

$$p-1=q_1q_2\cdots q_k$$

where each  $q_i$  is a Prime power.

There is a condition where each  $q_i < B$  where B is a predetermined "bound". If this condition is valid, then we have

$$(p-1) | B!$$

We compute  $a = 2^{B!} \mod n$ . Now let  $a' = 2^{B!} \mod p$ . Since  $p \mid n$ , we must have  $a \mod p = a'$ .

Fermat's Little Theorem states that

$$2^{p-1} = 1 \bmod p$$

and since  $(p-1) \mid B!$ , we also have  $a' = 1 \mod p$ , which leads to  $a = 1 \mod p$ .

So,  $p \mid (a-1)$  and since  $p \mid n$ , we also have  $p = \gcd(a-1, n)$ .

The algorithm stands as:

- 1. Compute  $a^{2B!} \mod n$ .
- 2. Compute the unknown prime p as  $p = \gcd(a 1, n)$ .

An important conclusion to draw here is that the Primes p and q must be chosen such that p-1 and q-1 each contains a large Prime in their factorization. The usual approach is to generate a random Prime  $p_1$  and test whether  $p=2p_1+1$  is a prime number. If so, we choose p.

#### 10.3.2 Other Factoring Methods

There are many modern factoring methods that are more efficient than Pollard's (p-1)-Method.

- 1. Quadratic Sieve
- 2. Number Field Sieve
- 3. Elliptic Curve Factorization
- 4. Pollard's Rho Algorithm Method
- 5. etc.

#### 10.3.3 Computational Complexity of Factoring

We often use the function to model complexity of algorithms with sub-exponential behavior.

$$L_N(\alpha, \beta) = e^{\left(\beta + O(1)(\log(N))^{\alpha}\log(\log(N))^{1-\alpha}\right)}$$
(10.5)

Number field sieves are currently the most successful method for factoring semi-Prime numbers with more than 100 decimal digits. It can factor numbers of the size  $2^{512}$  Its complexity behavior is sub-exponential, with  $L_N(\frac{1}{3}, 1.923)$ .

# 10.4 Uses of Public-Key Cryptography

There are 3 basic Cryptographic Primitives that Public-Key Encryption Schemes are used for.

- 1. Public-Key Encryption Scheme: A messis encrypted with a recipient's public key and cannot be decrypted by anyone except the recipient possessing the private key.
- 2. Digital Signatures: A message signed with a sender's private key can be verified by anyone who has access to the sender's public key, thereby proving that the correct original sender signed it and that the message has not been tampered with during message transmission (authenticity and nonrepudiation).
- 3. Key Exchange: A cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret key.

The major problem with using a public key is linking it an entity or principal. The most common solution to this problem is the use of a Digital Certificate.

**Defn 152** (Digital Certificate). A *digital certificate* is a "stamp of approval" that the public key belongs to who the principal says it belongs to. There is a third-party called a Certificate Authority that handles the signing of entity's/principal's public keys to ensure they are authentic.

A digital certificate has the form of

**Defn 153** (Certificate Authority). A *certificate authority* or (CA) is a third-party that vouches for the validity of the public keys in use by an entity/principal.

# 10.4.1 Digital Certificates and Certificate Authorities

A Certificate Authority-based system works by establishing a "web of trust".

- 1. All users have a trusted copy of the public key of the **Certificate Authority**. For example, these are embedded in your web browser.
- 2. The Certificate Authority signs data strings containing the following information.

This data string and the associated signature is called a Digital Certificate. The Certificate Authority only signs the data if it believes the public key really belongs to Alice.

3. When Alice sends her public key, contained in the digital certificate, you now trust that the public key is really Alice's, since you trust the Certificate Authority and you checked their signature too.

#### 10.5 The Discrete Logarithm Problem

**Defn 154** (Discrete Logarithm Problem). Let (G, \*) be an Abelian Group. The discrete logarithm problem states that given  $g, h \in G$ , find an x (if it exists) such that  $g^x = h$ .

The difficulty of this problem depends on the group G chosen.

- Very Easy: Polynomial Time Algorithm.  $(\mathbb{Z}_n, +)$
- Hard: Sub-Exponential Time Algorithm.  $(\mathbb{F}_{p^*})$
- Very Hard: Exponential Time Algorithm. Elliptic Curve Groups (Not discussed in this course).

# 10.6 Key Exchange

**Defn 155** (Key Exchange). Key exchange is a cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret key.

#### 10.6.1 Diffie Hellman Key Exchange

**Defn 156** (Diffie Hellman Key Exchange). The *Diffie Hellman Key Exchange* is a type of Key Exchange that allows 2 parties to agree to a secret key over an insecure channel without having met before.

Let  $G = \mathbb{F}_{p^*}$  and  $g \in \mathbb{F}_{p^*}$ . The basic message flows for this protocol is:

- 1. Alice selects a secret a, and Bob selects a secret b.
- 2. Alice sends  $A = g^a \mod p$  to Bob.
- 3. Bob sends  $B = g^b \mod p$  to Alice.
- 4. Alice computes  $K_A = B^a \mod p = g^{b^a} = g^{ba}$ .
- 5. Bob computes  $K_B = A^b \mod p = g^{a^b} = g^{ab}$ .
- 6. If both  $K_A = K_B$ , then the secret key has been created for Alice and Bob.

Remark 156.1 (Flaws in Diffie Hellman Key Exchange). While this would work for most cases, the entire Diffie Hellman Key Exchange protocol is vulnerable to a Man-in-the-Middle attack.

#### Example 10.3: Diffie Hellman Key Exchange. Lecture 15, Example 1

Given the comain parameters p=2147482659, g=2 and the secret keys chosen by Alice a=12345 and Bob b=654323, compute their shared key?

Alice Bob  $a = 12345 \qquad b = 654323$   $A = g^a = 2^{12345} \mod{2147482659} = 428647416 \qquad B = g^b = 2^{654323} \mod{2147482659} = 450904856$   $K_A = B^a \mod{2147482659} \qquad K_B = A^b \mod{2147482659} = 428647416^{654323} \mod{2147482659} = 1333327162 \qquad = 1333327162$ 

Thus, Alice and Bob have managed to agree on a secret key of K = 1333327162.

# 11 Hash Functions

**Defn 157** (Hash Function). A cryptographic hash function h is a function which takes **arbitrary** length bit strings as input and produces a **fixed length** bit string as output, the hash value. There are a few requirements for hash functions:

- 1. It must be a One-Way Function
- 2. Preimage Resistant
- 3. Second Preimage Resistant
- 4. Collision Resistant

**Defn 158** (Preimage Resistant). A Hash Function given an output hash value of n bits, is considered *preimage resistant* if the time complexity for finding the input plaintext is  $O(2^n)$ .

Remark 158.1 (Assumption of Preimage Resistance). Assuming a Hash Function is Preimage Resistant for almost every element of the range of h is a weaker assumption than assuming it is either Second Preimage Resistant or Collision Resistant.

**Defn 159** (Second Preimage Resistant). A Hash Function that is *second preimage resistant* is one where given one message, it is difficult to find another message with the same hash value.

Remark 159.1 (Assumption of Second Preimage Resistance). Assuming a Hash Function is Second Preimage Resistant is a weaker assumption than assuming it is Collision Resistant.

**Defn 160** (Collision Resistant). A Hash Function is *collision resistant* if it is hard to find 2 plaintext messages with the exact same hash value.

Remark 160.1 (Assumption of Collision Resistance). Assuming a Hash Function is Collision Resistant is the strongest assumption we can make about a well-crafted Hash Function.

# 11.1 Usages of Hash Functions

There are several reasons to use Hash Functions.

- Commitment to messages by disclosing the hash of a message, then later showing the message. This allows the hash to be checked. However, this requires a few different things.
  - If the Hash Function is collision-resistant, you cannot cheat by substituting your original message for another.
- Verify integrity of downloaded files
  - Torrents use this to make sure you download the right contents. If something goes wrong, only the right small chunk can be redownloaded.
- Digital signatures for things that require confirmation of action from the user/requester.
- SSL/TLS for integrity protection
- Storing passwords in operating systems (/etc/shadow on \*nix machines) and websites.
  - You can add salt to change the hash around, usually for webserver passwords. These password databases store the userid, the salt added to the password, and the hashed password. At login time, the password and random number are hashed together again, and compared.

# 11.2 Merkle-Damgård Construction

**Defn 161** (Merkle-Damgård Construction). Since Hash Functions have an essentially infinite domain, due to their arbitrary length input, designing a Hash Function can be quite difficult. However, if we break the input down into blocks, we can use a *compression function* to map bits from input length s into output hash values of lengths n. These compression functions can be chained together to produce a function that acts on an infinite domain. The chaining method most frequently used by Hash Functions is the Merkle-Damgård Construction.

**Theorem 11.1.** If the compression function f is Collision Resistant, then the Hash Function h is also Collision Resistant.

**Defn 162** (Length Strengthening). The input message is preprocessed by first padding with zero bits to obtain a message which has length a multiple of l bits. Then a final block of l bits is added which encodes the original length of the unpadded message in bits. The construction is limited to hashing messages with length less than 2l bits.

#### 11.3 SHA-1

The internal state of the algorithm is a set of 5 32-bit values.

$$(H_1, H_2, H_3, H_4, H_5)$$

and 4 round constants

$$y_1, y_2, y_3, y_4$$

Length Strengthening is used, but is slightly modified in the SHA-1 algorithm. First, a one bit is appended to the plaintext message, to signal its end. Then zeros are padded until the length of the plaintext message is a multiple of 512-bits. Lastly, the number of bits of the message is appended as a separate, final, block.

#### Algorithm 11.1: SHA-1 Overview

```
Input: (H_1, H_2, H_3, H_4, H_5) and (y_1, y_2, y_3, y_4)

Output: Concatenation of (H_1, H_2, H_3, H_4, H_5)

1 (A, B, C, D, E) = (H_1, H_2, H_3, H_4, H_5)

2 for j = 16 to 79 do

3 \lfloor X_j = ((X_{j-3} \oplus X_{j-8} \oplus X_{j-14} \oplus X_{j-16}) \ll 1)

4 Execute Round 1 (Algorithm 11.2)

5 Execute Round 2 (Algorithm 11.3)

6 Execute Round 3 (Algorithm 11.4)

7 Execute Round 4 (Algorithm 11.5)
```

Each of the rounds in the SHA-1 algorithm is slightly different. First, different functions are applied to B, C, D and the round constant is also used in the corresponding round. The functions are defined as:

#### Algorithm 11.2: SHA-1 Round 1

1 for j = 0 to 19 do

$$t = (A \ll 5) + f(B, C, D) + E + X_j + y_1$$

$$(A, B, C, D, E) = (t, A, B \ll 30, C, D)$$

# Algorithm 11.3: SHA-1 Round 2

1 for j = 20 to 39 do

$$t = (A \ll 5) + h(B, C, D) + E + X_j + y_2$$

$$(A, B, C, D, E) = (t, A, B \ll 30, C, D)$$

# Algorithm 11.4: SHA-1 Round 3

1 for j = 40 to 59 do

$$t = (A \ll 5) + g(B, C, D) + E + X_j + y_3$$

$$(A, B, C, D, E) = (t, A, B \ll 30, C, D)$$

#### Algorithm 11.5: SHA-1 Round 4

1 for j = 60 to 79 do

$$t = (A \ll 5) + h(B, C, D) + E + X_i + y_4$$

$$(A, B, C, D, E) = (t, A, B \ll 30, C, D)$$

# 11.4 Security Status of Various Hash Functions

In practice, MD5 and SHA-1 are the most common, but are also broken.

- MD5 is broken in practice
- SHA-1 is broken in theory, no efficient implementation has been developed yet.

There are 2 new versions of the SHA family that have not been broken yet.

- 1. SHA-2
- 2. SHA-3
  - Output of an NIST competition in 2012.

#### 11.5 SHA-3

**Defn 163** (SHA-3). SHA-3 uses a sponge construction, where the message blocks are XORed together into the initial bits of the state.

#### 11.6 Message Authentication Codes

**Defn 164** (Message Authentication Code). A message authentication code is a Hash Function that uses a key.

Remark 164.1 (Relation to Block Ciphers). Many Block Ciphers provide a Mode of Operation to work with Message Authentication Codes.

There are 2 major designs:

- 1. HMAC (Based on Hash Function)
- 2. CBC-MAC (Based on Block Cipher in CBC-Mode)

There are 2 naïve implementations of a Message Authentication Codes.

1.

$$MAC_k(m) = h(m||k)$$

2.

$$MAC_k(m) = h(m||k|)$$

#### 11.6.1 HMAC

HMAC is a MAC based on a Hash Function.

$$HMAC_k(m) = h((k \oplus) || h((k \oplus ipad) || m))$$

$$(11.1)$$

- opad = 0x5c5c5c...
- ipad = 0x363636...

The implementation in Equation (11.1) was developed in 1996, and when used with MD5 and/or SHA-1, it is immune to previous attacks.

#### 11.6.2 Usages of Message Authentication Codes

- Authenticate origin of messages
  - A symmetric key is shared between the sender and receiver.
  - Both the sender and receiver can create and verify a MAC.

#### 12 Authentication

There are 3 ways we can confirm authenticity with authentication schemes:

- 1. Unconditionally Secure Authentication Codes
- 2. Message Authentication Code
- 3. Digital Signatures

# 12.1 Message Authentication Codes with Authentication

Message Authentication Codes can be used as an authentication technique that uses Cryptographic Primitives (Block Ciphers and Hash Functions) to provide authentication.

Remark. It is assumed that the sender and receiver both share the same key used for the Message Authentication Code.

#### 12.1.1 Problems with Message Authentication Codes and Authentication

Message Authentication Codes do not protect against an unlimited enemy, i.e. an unlimited number of attackers or an attacker with infinite computing power. However, they are able to authenticate many messages without changing the key.

# 12.1.2 CBC-MAC for Authentication

CBC-MAC is a Mode of Operation for Block Ciphers to operate with Message Authentication Codes. A Block Cipher is secure for fixed-length messages, but insecure for variable-length messages. The problem is that the same key K cannot be reused anywhere.

#### 12.2 Digital Signatures

**Defn 165** (Digital Signature). A *digitial signature* is a way to sign a message to ensure authenticity and that the sender cannot repudiate the message (say they didn't send it). A message signed with a sender's private key can be verified by anyone who has access to the sender's public key. Thereby proving that the correct original sender signed it and that the message has not been tampered with during message transmission (authenticity and nonrepudiation).

To generate the signature:

$$Message + Alice's Private Key = Signature$$
 (12.1)

To validate Alice's message's signature, ensuring it is from her,

$$Message + Signature + Alice's Private Key = YES/NO$$
 (12.2)

There are 3 important properties for security of a digital signature:

- (i) Message Integrity: The message was not altered DURING transit.
- (ii) Message Origin: The message WAS sent by Alice.
- (iii) Nonrepudiation: Alice cannot claim she did not send **THE** message.

This is an asymmetric (Public-Key Encryption Scheme) solution. The advantages of this are:

- No need to distribute/establish a common secret key
- Nonrepudiation, if the receiver received an authentic message, the sender cannot deny having sending it

The disadvantages of this are:

- Signature schemes rely on the hardness of problems, like semiprime integer factoring.
- These signature schemes also rely on large numbers.
- Both of these factors slow down the process of this technique compared to others.

#### 12.2.1 Security Assumptions for Digital Signatures

The 3 types of assumptions about the types of attacks that we can make are:

- 1. Key-Only Attack: Eve knows the public key and verification algorithm used.
- 2. Known Message Attack: Eve knows a list of signed messages.
- 3. Chosen Message Attack: Eve gets a list of messages of her choice signed.

The 3 different goals that an adversary could have are:

- 1. Total Break: The attacker attempts to find the secret signing key used to sign the message.
- 2. Selective Forgery: The attacker attempts to place a valid signature on a given message that has not been signed before.
- 3. Existential Forgery: The attacker tries to place a valid signature on any message that has not been signed before.

#### 12.3 Authentication Codes

**Defn 166** (Authentication Code). An *authentication code* is used to check if the received message was sent by the claimed sender. They are also used to verify that the message was not modified (by a third-party, not random errors) during transmission.

The authentication code requires there be *secret keys* that are known to the sender and receiver, but not to the enemy. There can be several models of authentication codes. In this course, we only look at The Unconditionally Secure Model. The formula defining this type of authentication code is given in Equation (12.3).

#### 12.3.1 The Unconditionally Secure Model

An unconditionally secure solution is given below.

- The transmitted information, the source message (Plaintext) is denoted s and  $s \in \mathcal{S}$ .
- The source message is mapped to a channel message m where  $m \in \mathcal{M}$ .
- Using the secret key k where  $k \in \mathcal{K}$ .

$$f: \mathcal{S} \times \mathcal{K} \to \mathcal{M}: (s, k) \to m$$
 (12.3)

- An important property of f is that if f(s,e) = m and f(s',e) = m, then s = s' (Injective for each  $k \in Keyspace$ ).
- Meaning the receiver must check whether a source message s even exists.
- If such an s exists, m is valid.
- Otherwise, the message m is not authentic.

The mapping f, along with S, M, and K define an Authentication Code (A-Code).

#### 12.3.2 Attacks on Authentication Codes

There are only 2 reasonable attacks on Authentication Codes possible.

- 1. Impersonation Attacks
- 2. Substitution Attacks

**Defn 167** (Probability of Deception). The *probability of deception* is the probability that a non-authentic message is authenticated by the Authentication Code system as a valid message. It is based off probabilities of success of Impersonation Attacks and Substitution Attacks.

$$P_D = \max(P_i, P_S) \tag{12.4}$$

**Theorem 12.1** (Square Root Bound). By first multiplying the Simmons' Bounds on the probabilities of success of each attack, we can find their combined probability. Using Theorem 12.4 and Theorem 12.6 and multiplying:

$$P_I P_S > 2^{-I(M;K)-H(K|M)} = 2^{-H(K)}$$

From  $H(K) \leq \log_2 |\mathcal{K}|$  we can find the square root bound of the Probability of Deception for any Authentication Code.

$$P_D \ge \frac{1}{\sqrt{|\mathcal{K}|}} \tag{12.5}$$

Theorem 12.2 (Tightness of the Square Root Bound). The Square Root Bound can only be tight if

$$|\mathcal{S}| \le \sqrt{|\mathcal{K}|} + 1 \tag{12.6}$$

Meaning a large source size demands the key be twice as large. This is not very practical.

# 12.3.2.1 Impersonation Attacks

**Defn 168** (Impersonation Attack). An *impersonation attack* is a form of a Man-in-the-Middle attack where the attacker inserts a message m' into the channel, and hope that it is accepted as authentic.

The equation to determine the probability of success is shown below.

$$P_I = \max_{m'} P(m' \text{ is valid}) \tag{12.7}$$

**Theorem 12.3** (Bounds of Impersonation Attack Success). For any Authentication Code,

$$P_I \ge \frac{|\mathcal{S}|}{|\mathcal{M}|} \tag{12.8}$$

where  $|\mathcal{M}| \gg |\mathcal{S}|$ .

**Theorem 12.4** (Simmons' Bound for Impersonation Attack). For any Authentication Code,

$$P_I \ge 2^{-I(M;E)}$$
 (12.9)

Meaning, for good protection  $P_I$  is small, we must give away a lot of information about they key.

#### 12.3.2.2 Substitution Attacks

**Defn 169** (Substitution Attack). A substitution attack is one in which an attacker observes a valid message sent by the sender, m, and replaces it with their message m', where  $m \neq n'$ . The attacker then hopes that the system recognizes m' as valid.

The equation to determine the probability of success is shown below.

$$P_{S} = \max_{\substack{m,m'\\m \neq m'}} P(m' \text{ is valid } | m \text{ is valid})$$

$$= \max_{\substack{m,m'\\m \neq m'}} \frac{|\mathcal{K}(m) \cap \mathcal{K}(m')|}{|\mathcal{K}(m)|}$$
(12.10)

which requires that they keys  $k \in \mathcal{K}$  be uniformly distributed.

#### Example 12.1: Probability of Substitution Attack Success. 2010 Final Exam, Question 2B

In an authentication system, Alice would like to send the source state S given as  $S = (s_1, s_2 2)$ , where  $s_i \in \mathbb{F}_3$ , i = 1, 2. The key (encoding rule)  $E_k$  is given as  $E_k = (e_1, e_2)$ , where  $e_1, e_2 \in \mathbb{F}_3$ . The transmitted message M is a 3-tuple generated as  $M = (s_1, s_2, t)$ , where

$$t = e_1 + s_1 e_2 + s_2 e_2^2$$

Find the value of  $P_S$ ? HINT:

$$P_S = \max_{\substack{M,M'\\M \neq M'}} P(M' \text{ valid} | M \text{ valid})$$

To start with, we can expand the equation they give to us.

$$P_{S} = \max_{\substack{M,M'\\M \neq M'}} \left( \frac{|M' \cap M|}{|M|} \right)$$

$$= \left( \frac{\text{Num keys for which } \begin{cases} t = k_{1} + s_{1}k_{2} + s_{2}k_{2}^{2} \\ t' = k_{1} + s'_{1}k_{2} + s'_{2}k_{2}^{2} \end{cases}}{\text{Num keys for which } t = k_{1} + s_{1}k_{2} + s_{2}k_{2}^{2}} \right)$$

We can start by reducing the denominator. If we fix  $k_2$ , and since  $s_i$  are not variables but values, for any option of  $k_2$ , we have a system of linear equations that we can solve, which yields  $k_1$ . This means there are 3 possible options for  $k_2$ , and the options for  $k_1$  become fixed once  $k_2$  is chosen.

$$P_{S} = \max_{\substack{M,M'\\M \neq M'}} \frac{\text{Num keys for which } \begin{cases} t = k_{1} + s_{1}k_{2} + s_{2}k_{2}^{2} \\ t' = k_{1} + s'_{1}k_{2} + s'_{2}k_{2}^{2} \end{cases}}{3}$$

We reduce the numerator now. To solve the system of linear equations, by performing t'-t, then we end up with

$$t' - t = k_1 + (s_1' - s_1)k_2 + (s_2' - s_2)k_2^2$$

Now,  $k_2$  can be varied to anything other than 0, because if we choose  $k_2 = 0$ , then we lose our message. Additionally,  $s_1' - s_1 \neq 0$  and  $s_2' - s_2 \neq 0$ , since  $M \neq M'$ . This means  $k_2$  can take on 2 values, and once it takes on a value,  $k_1$  becomes fixed.

Thus,

$$P_S = \frac{2}{3}$$

**Theorem 12.5** (Bounds of Substitution Attack Success). For any Authentication Code,

$$P_S \ge \frac{|\mathcal{S}| - 1}{|\mathcal{M}| - 1} \tag{12.11}$$

where  $|\mathcal{M}| \gg |\mathcal{S}|$ .

**Theorem 12.6** (Simmons' Bound for Substitution Attack). For any Authentication Code,

$$P_S \ge 2^{-H(K \mid M)}, \ if |S| \ge 2$$
 (12.12)

#### 12.3.3 Constructing Authentication Codes

Define  $\mathcal{K}(m)$  as the set of keys for which a message m is valid.

$$\mathcal{K}(m) = \{ k \in \mathcal{K}; exists \ s \in \mathcal{S}, f(s, e) = m \}$$
(12.13)

# 12.4 Systematic Authentication Codes

**Defn 170** (Systematic Authentication Code). An Authentication Code for which the mapping function  $f: \mathcal{S} \times \mathcal{K} \to \mathcal{M}$  can be written in the form

$$f: \mathcal{S} \times \mathcal{K} \to \mathcal{S} \times \mathcal{Z}: (s, k) \to (s, z)$$
 (12.14)

where  $s \in \mathcal{S}$  and  $z \in \mathcal{Z}$  is called a systematic authentication code (or Cartesian authentication code). z is the tag (or authenticator) and is taken from the tag alphabet  $\mathcal{Z}$ .

**Theorem 12.7** (Bounds of Attacks on Systematic Authentication Codes). For any Systematic Authentication Code,

$$P_S \ge P_I \tag{12.15}$$

#### 12.4.1 Vector Space Construction

Let  $|\mathcal{S}| = q^n$ ,  $|\mathcal{Z}| = q^n$ , and  $|\mathcal{K}| = q^{2n}$ . Decompose the keys as  $k = (k_1, k_2)$ , where  $s, z, k_1, k_2 \in \mathbb{F}_{q^m}$  For the transmission of a source message s, generate a message m = (s, z), where

$$z = k_1 + sk_2$$

#### 12.4.2 Polynomial Evaluation Construction

Let  $S = \{ \mathbf{s} = (s_1, s_2, \dots, s_n); s_i \in \mathbb{F}_q \}$ . Define the source message Polynomial to be

$$s(x) = s_1 x + s_2 x^2 + \dots + s_n x^n$$

. Let  $\mathcal{K} = \{k = (k_1, k_2); k_1, k_2 \in \mathbb{F}_q\}$  and  $\mathcal{Z} = \mathbb{F}_q$ . For the transmission of the source message **s**, the sender sends **s** together with the tag

$$z = k_1 + s(k_2)$$

 $s(k_2)$  is the application of the source message polynomial where x is replaced with  $k_2$ .

**Theorem 12.8** (Systematic Authentication Code Parameters). This Polynomial Evaluation Construction given a Systematic Authentication Code has parameters

$$|\mathcal{S}| = q^{n}$$

$$|\mathcal{K}| = q^{2}$$

$$|\mathcal{Z}| = q$$

$$P_{I} = \frac{1}{q}$$

$$P_{S} = \frac{k}{q}$$
(12.16)

# 13 Secret Sharing Schemes

**Defn 171** (Threshold Scheme). Let k and n be positive integers, where  $k \leq n$ . A (k, n)-threshold scheme is a method of sharing a secret key K among a set of n participants in such a way that any k participants can compute the value of the secret, but no group of k-1 or fewer may do so.

- The set of participants is denoted  $\mathcal{P}$ .
- The secret K is chosen by the dealer D.
- When D shares the secret K amount the participants in  $\mathcal{P}$ , D gives each participant some partial information, called a *share*.
- The shares are secret. No participant knows any other participant's share.
- At a later time, some participants, where  $\mathcal{B} \subseteq \mathcal{P}$ , would like to compute K. They members of  $\mathcal{B}$  pool their shares together and compute K.

#### 13.1 Shamir Threshold Scheme

**Defn 172** (Shamir Threshold Scheme). The Shamir threshold scheme is a famous Threshold Scheme. It uses:

- $\mathcal{P} = \{P_1, P_2, \dots, P_n\}.$
- $\mathcal{K}$  is the set of all secrets.
- $\mathcal{S}$  is the set of all shares.
- $\mathcal{K} = \mathbb{Z}_p$ , where  $p \geq n+1$  is a Prime.
- $S = \mathbb{Z}_p$ .

$$a(x) = \sum_{j=0}^{k-1} a_j x^j \bmod p$$
 (13.1)

#### Algorithm 13.1: Shamir Threshold Scheme

**Initialization:** D chooses n distinct non-zero elements from  $\mathbb{Z}_p$ , denoted  $x_i$ , where  $1 \leq i \leq n$ . All these values are public.

#### 1 Distribution of Shares

- **2** D wants to share the secret  $K \in \mathbb{Z}_p$ . D constructs a random Polynomial of Degree at most k-1. D randomly chooses k-1 elements of  $\mathbb{Z}_p$ , denoted  $a_1, a_2, \ldots, a_{k-1}$ .
- **3**  $K = a_0 = a(0)$ .
- 4 D computes  $y_i = a(x_i)$  for  $1 \le i \le n$ , using Equation (13.1).

5

$$a(x) = \sum_{j=0}^{k-1} a_j x^j \bmod p$$

- 6 D gives participant  $P_i$  the share  $y_i$  and the value  $x_i$  as a pair,  $(x_i, y_i)$ .
- 7 Now, any k participants can reconstruct the polynomial a(x) and get the secret K back.
- 8 However, if there are k-1 or fewer participants, there is no way to recover  $K=a_0=a(0)$ .

#### 13.1.1 How can k Participants Reconstruct a(x)?

- 1. Assume that  $\mathcal{B} = \{P_1, P_2, \dots, P_k\}.$
- 2. The participants in  $\mathcal{B}$  know

$$y_i = a(x_i), \ 1 \le i \le k$$

where  $a(x) \in \mathbb{Z}_p[x]$  is the secret Polynomial.

3. The Polynomial a(x) has Degree at most k-1, and can be written

$$a(x) = a_0 + a_1 x + \dots + a_{k-1} x^{k-1}$$

where the coefficients  $a_0, a_1, \ldots, a_{k-1}$  are unknown elements of  $\mathbb{Z}_p$  and  $a_0 = a(0) = K$  is the secret.

- 4. Each participant, knowing their  $y_i = a(x_i)$  can obtain one linear equation in the k unknowns  $(a_0, a_1, \ldots, a_{k-1})$ .
- 5. Now, the group of participants  $\mathcal{B}$  has k linear equations at its disposal.
- 6. If all k linear equations are linearly independent, there will be a unique solution, and  $a_0$  will be revealed. It can be written in 2 ways:
  - (a) As a system of linear equations.

$$P_0: a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_{k-1} x_0^{k-1} = y_0$$

$$P_1: a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_{k-1} x_1^{k-1} = y_1$$

$$\vdots$$

$$P_{k-1}: a_0 + a_1 x_{k-1} + x_2 x_{k-1}^2 + \dots + a_{k-1} x_{k-1}^{k-1} = y_{k-1}$$

(b) As a matrix.

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{k-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{k-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{k-1} & x_{k-1}^2 & \cdots & x_{k-1}^{k-1} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{k-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{k-1} \end{pmatrix}$$

- The matrix of coefficients,  $a_0, a_1, \ldots, a_{k-1}$  called A is a Vandermonde Matrix.
- The determinant of a Vandermonde Matrix has a formula, Equation (13.2).

$$\det A = \prod_{1 \le i \le j \le k} (x_i - x_j) \bmod p \tag{13.2}$$

- Since all  $x_i$ 's are distinct, the product cannot be 0, thus the det  $A \neq 0$ .
- A non-zero determinant implies a unique solution over  $\mathbb{Z}_p$ .

# Example 13.1: Shamir Threshold Scheme Reconstruct Secret. Lecture 15, Example 1

Given p = 17, k = 3, n = 5, and  $x_i = i$ , where i is the participant number, and

| i                                                        | Shares        |
|----------------------------------------------------------|---------------|
| $\begin{array}{c c} P_1 & \\ P_3 & \\ P_5 & \end{array}$ | 8<br>10<br>11 |

Find K?

First thing to note is that k=3 the degree of the secret Polynomial.

$$a(x) = a_0 + a_1 x + a_2 x^2$$

Using the public shares that each participant brings in, we can compute  $a_0 = K$ . Start by creating the system of linear equations. The first is:

$$a_0 + a_1 x_1 + a_2 x_1^2 = 8$$
$$a_0 + a_1(1) + a_2(1)^2 =$$
$$a_0 + a_1 + a_2 =$$

The second is:

$$a_0 + a_1 x_3 + a_2 x_3^2 = 10$$
  
 $a_0 + a_1(3) + a_2(3)^2 =$   
 $a_0 + 3a_1 + 9a_2 =$ 

The third is:

$$a_0 + a_1 x_5 + a_2 x_5^2 = 11$$

$$a_0 + a_1 (5) + a_2 (5)^2 =$$

$$a_0 + 5a_1 + 25a_2 \mod 17 =$$

$$a_0 + 5a_1 + 8a_2 =$$

So,

$$a_0 + a_1 + a_2 = 8$$
  
 $a_0 + 3a_1 + 9a_2 = 10$   
 $a_0 + 5a_1 + 8a_2 = 11$ 

Solving this system yields:

$$a_2 = 2$$
$$a_1 = 10$$
$$a_0 = 13$$

So, our secret is K = 13.

# **13.1.2** Why k-1 Participants Cannot Reconstruct a(x)?

Why can't k-1 participants reconstruct the secret?

- 1. Proceeding as above, the participants end up with k-1 linear equations, but k unknowns.
- 2. Suppose that  $K = y_0$ . Since  $K = a_0 = y_0$ , we have

$$y_0 = a(0)$$

which gives us our last kth equation.

- 3. Now there is a unique solution for a(x).
- 4. However, there is a unique solution for every possible value of  $y_0$  in the field. For every possible value  $y_0$  of the secret K, there is a unique Polynomial  $a_{y_0}(x)$  such that

$$y_i = a_{y_0}(x_i)$$

for  $1 \le i \le k-1$  and such that

$$y_0 = a_{y_0}(0)$$

5. Thus, this group cannot find the single unique solution, because all values are possible.

# 13.2 Alternative Way to Calculate Secret Polynomial

**Defn 173** (Lagrange Interpolation Formula). The Lagrange interpolation formula is an explicit formula for the unique Polynomial a(x) with degree at most k-1, when the values in k different points are given, i.e.

$$y_0 = a(x_0)$$

$$y_1 = a(x_1)$$

$$\vdots$$

$$y_{k-1} = a(x_{k-1})$$

$$a(x) = \sum_{i=0}^{k-1} y_i \prod_{0 \le j \le k, \ j \ne i} \frac{x - x_j}{x_i - x_j}$$
(13.3)

However, the group calculating the secret value  $K = a_0 = a(0)$  is only interested in the a(0) term, which yields this formula.

$$a(0) = K = \sum_{i=0}^{k-1} y_i \prod_{0 \le j \le k, \ j \ne i} \frac{x_j}{x_j - x_i}$$
(13.4)

# Example 13.2: Lagrange Interpolation Function. Lecture 16, Example 2

Given p = 17, k = 3, n = 5, and  $x_i = i$ , where i is the participant number, and

| i                                           | Shares  |
|---------------------------------------------|---------|
| $\begin{array}{c c} P_1 \\ P_3 \end{array}$ | 8<br>10 |
| $P_5$                                       | 11      |

Find K using Equation (13.4)?

We start by plugging in our values, and "interpreting" the actual equation.

$$a(0) = K = \sum_{i=0}^{k-1} y_i \prod_{0 \le j \le k, \ j \ne i} \frac{x_j}{x_j - x_i}$$

$$K = 8\left(\frac{3\cdot 5}{(3-1)(5-1)}\right) + 10\left(\frac{1\cdot 5}{(1-3)(5-3)}\right) + 11\left(\frac{1\cdot 3}{(1-5)(1-3)}\right)$$

$$= 8\left(\frac{15}{2\cdot 4}\right) + 10\left(\frac{5}{-2\cdot 2}\right) + 11\left(\frac{3}{-4\cdot -2}\right)$$

$$= 8\left(\frac{15}{8}\right) + 5\left(\frac{5}{-2}\right) + 11\left(\frac{3}{8}\right)$$

$$= 15 + 5(5)(-2^{-1} \bmod 17) + 11(3)(8^{-1} \bmod 17)$$

After evaluating the last line, you end up with

$$K = 13$$

just like before.

# 13.3 Simplified Construction for (k, k)-Threshold Schemes

Consider the following (k, k)-threshold scheme.

- 1. The dealer D chooses k random shares,  $y_1, y_2, \dots, y_k$  from  $\mathbb{Z}_m$  and gives  $y_i$  to participant i as their share.
- 2. The secret K is chosen to be

$$K = \sum_{i=1}^{k} y_i \bmod m \tag{13.5}$$

3. The k participants can recover the secret by just adding all their shares together. Though this requires **ALL** participants.

### 13.4 Access Structures

**Defn 174** (Access Structure). An access structure,  $\Gamma$ , is the subset of participants that are qualified to compute the secret K. The access structure  $\Gamma$  is a method of sharing a secret K among a set of n participants in such a way that the following properties hold.

- (i) If  $\mathcal{B} \in \Gamma$ , then  $H(K \mid B) = 0$
- (ii) If  $\mathcal{B} \notin \Gamma$ , then  $H(K \mid B) \ge \log_2 \alpha$ , where  $\alpha$  is a fixed value and  $\alpha > 1$ .

Let  $\Gamma$  be a subset of  $\mathcal{P}$ ,  $\Gamma \subseteq 2^{\mathcal{P}}$ . If  $\mathcal{B} \subseteq \mathcal{P}$ , then B denotes the set of shares for  $\mathcal{B}$ .

Remark 174.1 ((k, n)-Threshold Access Structure). A Shamir Threshold Scheme is a form of an access structure where

$$\Gamma = \{ \mathcal{B} \subset \mathcal{P}; |\mathcal{B}| > k \}$$

**Defn 175** (Perfect). A secret sharing scheme for which the equation below holds is called a *perfect* secret sharing scheme.

$$\alpha = |\mathcal{K}| \tag{13.6}$$

In a perfect sharing scheme, any non-qualified subset of participants cannot gather any information about the secret. Because no non-qualified subset of participants can gather **any** information about the secret, this is the most desirable aspect of a secret sharing scheme.

Remark 175.1 (Ability to Construct). A Perfect Access Structure can always be constructed with any Access Structure.

**Defn 176** (Ideal). A secret sharing scheme is *ideal* if it is both Perfect and if

$$|\mathcal{S}| = |\mathcal{K}| \tag{13.7}$$

An ideal secret sharing scheme is both Perfect and the number of shares distributed is equal to the total keyspace.

Remark 176.1 (Ability to Construct). A Ideal Access Structure can be created only with certain Access Structures.

#### 13.4.1 Properties of Access Structures

**Defn 177** (Closure). The *closure* of an Access Structure, denoted  $cl(\Gamma)$  are all the subsets that are qualified from the Access Structure  $\Gamma$ . The closure is defined in the equation below.

$$cl(\Gamma) = \{ \mathcal{C} \subseteq \mathcal{P}; \mathcal{B} \subseteq \mathcal{C}, \mathcal{B} \in \Gamma \}$$
(13.8)

For example,

$$\Gamma = \{\{P_1\}, \{P_1, P_2\}, \{P_1, P_3\}, \{P_1, P_2, P_3\}, \{P_2, P_3\}\}$$
$$\operatorname{cl}(\Gamma) = \{P_1, P_2 P_3\}$$

In this case,  $P_1$  can access the secret by themself. If anyone joins  $P_1$ , they also get access to the secret. However,  $P_2$  and  $P_3$  must combine their information to gather the secret if  $P_1$  is not available.

**Defn 178** (Monotone). Suppose  $\mathcal{B} \in \Gamma$  and we add one more participant (qualified or non-qualified) to the set  $\mathcal{B}$ , creating the set  $\mathcal{C}$ . The set  $\mathcal{C}$  must also be qualified, since it contains a subset that is qualified, namely  $\mathcal{B}$ . This Access Structure is called a *monotone* access structure.

If 
$$\mathcal{B} \in \Gamma$$
 and  $\mathcal{B} \subseteq \mathcal{C} \subseteq \mathcal{P}$ , then  $\mathcal{C} \in \Gamma$  (13.9)

Remark 178.1 (Monotone and Closures). An Access Structure is Monotone if and only if

$$\Gamma = \operatorname{cl}(\Gamma) \tag{13.10}$$

Remark 178.2 (Use of Access Structures in this Document). In this document and course, we assume that if  $\Gamma$  is **not** Monotone, we really mean the Closure of  $\Gamma$  (cl( $\Gamma$ )).

## 13.4.2 Constructing a Perfect For Any Access Structure

The algorithm below is usable for any  $\Gamma$ . It will always make a Perfect  $\Gamma$ , but may not always create an Ideal  $\Gamma$ .

### Algorithm 13.2: Construction of Perfect Sharing Scheme

**Initialization:** D chooses any Access Structure  $\Gamma$  such that

$$\operatorname{cl}(\Gamma) = \operatorname{cl}(\Gamma_0)$$

Write  $\Gamma$  in the form

$$\Gamma = \{\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_l\}$$

where  $\mathcal{B}_i \subseteq \mathcal{P}$  for  $1 \leq i \leq l$ .

 $\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_l$  is public information.

- 1 Distribution of Shares
- **2** Let  $\mathcal{K} = \mathbb{Z}_m$ .
- **3** For each  $\mathcal{B}_j = \{P_{i_1}, P_{i_2}, \dots, P_{i_k}, D \text{ does}:$
- 4 D constructs a (k, k)-threshold scheme for K with participants  $\mathcal{B}_j$ . Meaning D chooses k random values  $a_{j_1}, a_{j_2}, \ldots, a_{j_k}$  such that

$$K = a_{j_1} + a_{j_2} + \dots + a_{j_k} \mod \mathbb{Z}_m$$

- **5** D gives the value  $a_{j_m}$  to participant  $P_{i_m}, 1 \leq m \leq k$  as a piece of that participants share.
- 6 The share for participant i is then the set of pieces that they  $(P_i)$  has received.
- 7 The number of pieces as the same as the number of times that  $P_i$  can be found in the subsets  $\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_l$ .

## Example 13.3: Construct Perfect Secret Sharing Scheme. Lecture 17, Example 1

Let  $\Gamma_0 = \{P_1P_2P_4, P_1P_3P_4, P_2P_3\}$ . We are constructing for  $\operatorname{cl}(\Gamma_0)$  such that any subset that contains  $\Gamma_0$  can reconstruct the secret K. The keyspace  $K = \mathbb{Z}_m$ 

Select  $\Gamma = \Gamma_0$ .

$$\mathcal{B}_1 = P_1 P_2 P_4$$
  $\qquad \qquad \mathcal{B}_1 : K = a_1 + a_2 + a_3 \mod \mathbb{Z}_m$   $\qquad \mathcal{B}_2 = P_1 P_3 P_4$   $\qquad \qquad \mathcal{B}_2 : K = b_1 + b_2 + b_3 \mod \mathbb{Z}_m$   $\qquad \mathcal{B}_3 : K = c_1 + c_2 \mod \mathbb{Z}_m$ 

The variables  $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2$  are chosen randomly, and each equation is independent of the other.

Now, we distribute the keys:

 $P_1 \text{ gets } (a_1, b_1)$   $P_2 \text{ gets } (a_2, c_1)$   $P_3 \text{ gets } (b_2, c_2)$  $P_4 \text{ gets } (a_3, b_3)$ 

Thus, we have constructed a Perfect, but not Ideal Access Structure. It is not Ideal, because the number of shares the value-pairs distributed is greater than the number of keys we used to generate the pairs.

# A Complex Numbers

**Defn A.0.1** (Complex Number). A *complex number* is a hyper real number system. This means that two real numbers,  $a, b \in \mathbb{R}$ , are used to construct the set of complex numbers, denoted  $\mathbb{C}$ .

A complex number is written, in Cartesian form, as shown in Equation (A.1) below.

$$z = a \pm ib \tag{A.1}$$

where

$$i = \sqrt{-1} \tag{A.2}$$

Remark (i vs. j for Imaginary Numbers). Complex numbers are generally denoted with either i or j. Electrical engineering regularly makes use of j as the imaginary value. This is because alternating current i is already taken, so j is used as the imaginary value instad.

# A.1 Parts of a Complex Number

A Complex Number is made of up 2 parts:

- 1. Real Part
- 2. Imaginary Part

**Defn A.1.1** (Real Part). The *real part* of an imaginary number, denoted with the Re operator, is the portion of the Complex Number with no part of the imaginary value i present.

If 
$$z = x + iy$$
, then

$$Re\{z\} = x \tag{A.3}$$

Remark A.1.1.1 (Alternative Notation). The Real Part of a number sometimes uses a slightly different symbol for denoting the operation. It is:

Re

**Defn A.1.2** (Imaginary Part). The *imaginary part* of an imaginary number, denoted with the Im operator, is the portion of the Complex Number where the imaginary value i is present.

If 
$$z = x + iy$$
, then

$$Im\{z\} = y \tag{A.4}$$

Remark A.1.2.1 (Alternative Notation). The Imaginary Part of a number sometimes uses a slightly different symbol for denoting the operation. It is:

 $\mathfrak{Im}$ 

# A.2 Binary Operations

The question here is if we are given 2 complex numbers, how should these binary operations work such that we end up with just one resulting complex number. There are only 2 real operations that we need to worry about, and the other 3 can be defined in terms of these two:

- 1. Addition
- 2. Multiplication

For the sections below, assume:

$$z = x_1 + iy_1$$
$$w = x_2 + iy_2$$

### A.2.1 Addition

The addition operation, still denoted with the + symbol is done pairwise. You should treat i like a variable in regular algebra, and not move it around.

$$z + w := (x_1 + x_2) + i(y_1 + y_2)$$
 (A.5)

### A.2.2 Multiplication

The multiplication operation, like in traditional algebra, usually lacks a multiplication symbol. You should treat i like a variable in regular algebra, and not move it around.

$$zw := (x_1 + iy_1)(x_2 + iy_2)$$

$$= (x_1x_2) + (iy_1x_2) + (ix_1y_2) + (i^2y_1y_2)$$

$$= (x_1x_2) + i(y_1x_2 + x_1y_2) + (-1y_1y_2)$$

$$= (x_1x_2 - y_1y_2) + i(y_1x_2 + x_1y_2)$$
(A.6)

# A.3 Complex Conjugates

**Defn A.3.1** (Complex Conjugate). The conjugate of a complex number is called its *complex conjugate*. The complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. If we have a complex number as shown below,

$$z = a \pm bi$$

then, the conjugate is denoted and calculated as shown below.

$$\overline{z} = a \mp bi \tag{A.7}$$

The Complex Conjugate can also be denoted with an asterisk (\*). This is generally done for complex functions, rather than single variables.

$$z^* = \overline{z} \tag{A.8}$$

### A.3.1 Notable Complex Conjugate Expressions

There are 2 interesting things that we can perform with just the concept of a Complex Number and a Complex Conjugate:

- 1.  $z\overline{z}$
- $2. \frac{z}{z}$

The first is interesting because of this simplification:

$$z\overline{z} = (x+iy)(x-iy)$$

$$= x^2 - xyi + xyi - i^2y^2$$

$$= x^2 - (-1)y^2$$

$$= x^2 + y^2$$

Thus.

$$z\overline{z} = x^2 + y^2 \tag{A.9}$$

which is interesting because, in comparison to the input values, the output is completely real.

The other interesting Complex Conjugate is dividing a Complex Number by its conjugate.

$$\frac{z}{\overline{z}} = \frac{x + iy}{x - iy}$$

We want to have this end up in a form of a + ib, so we multiply the entire fraction by z, to cause the denominator to be completely real.

$$z\left(\frac{z}{\overline{z}}\right) = \frac{z^2}{z\overline{z}}$$

Using our solution from Equation (A.9):

$$= \frac{(x+iy)^2}{x^2 + y^2}$$
$$= \frac{x^2 + 2xyi + i^2y^2}{x^2 + y^2}$$

By breaking up the fraction's numerator, we can more easily recognize this to be teh Cartesian form of the Complex Number.

$$= \frac{\left(x^2 - y^2\right) + 2xyi}{x^2 + y^2}$$
$$= \frac{x^2 - y^2}{x^2 + y^2} + \frac{2xyi}{x^2 + y^2}$$

This is an interesting development because, unlike the multiplication of a Complex Number by its Complex Conjugate, the division of these two values does **not** yield a purely real number.

$$\frac{z}{\overline{z}} = \frac{x^2 - y^2}{x^2 + y^2} + \frac{2xyi}{x^2 + y^2} \tag{A.10}$$

## A.3.2 Properties of Complex Conjugates

Conjugation follows some of the traditional algebraic properties that you are already familiar with, namely commutativity. First, start by defining some expressions so that we can prove some of these properties:

$$z = x + iy$$
$$\overline{z} = x - iy$$

- (i) The conjugation operation is commutative.
- (ii) The conjugation operation can be distributed over addition and multiplication.

$$\overline{z+w} = \overline{z} + \overline{w}$$
$$\overline{zw} = \overline{zw}$$

Property (ii) can be proven by just performing a simplification.

Prove Property (ii). Let z and w be complex numbers  $(z, w \in \mathbb{C})$  where  $z = x_1 + iy_1$  and  $w = x_2 + iy_2$ . Prove that  $\overline{z + w} = \overline{z} + \overline{w}$ .

We start by simplifying the left-hand side of the equation  $(\overline{z+w})$ .

$$\overline{z+w} = \overline{(x_1+iy_1) + (x_2+iy_2)}$$

$$= \overline{(x_1+x_2) + i(y_1+y_2)}$$

$$= (x_1+x_2) - i(y_1+y_2)$$

Now, we simplify the other side  $(\overline{z} + \overline{w})$ .

$$\overline{z} + \overline{w} = \overline{(x_1 + iy_1)} + \overline{(x_2 + iy_2)}$$
  
=  $(x_1 - iy_1) + (x_2 - iy_2)$   
=  $(x_1 + x_2) - i(y_1 + y_2)$ 

We can see that both sides are equivalent, thus the addition portion of Property (ii) is correct.

*Remark.* The proof of the multiplication portion of Property (ii) is left as an exercise to the reader. However, that proof is quite similar to this proof of addition.

### A.4 Geometry of Complex Numbers

So far, we have viewed Complex Numbers only algebraically. However, we can also view them geometrically as points on a 2 dimensional Argand Plane.

**Defn A.4.1** (Argand Plane). An *Argane Plane* is a standard two dimensional plane whose points are all elements of the complex numbers,  $z \in \mathbb{C}$ . This is taken from Descarte's definition of a completely real plane.

The Argand plane contains 2 lines that form the axes, that indicate the real component and the imaginary component of the complex number specified.

A Complex Number can be viewed as a point in the Argand Plane, where the Real Part is the "x"-component and the Imaginary Part is the "y"-component.

By plotting this, you see that we form a right triangle, so we can find the hypotenuse of that triangle. This hypotenuse is the distance the point p is from the origin, referred to as the Modulus.

Remark. When working with Complex Numbers geometrically, we refer to the points, where they are defined like so:

$$z = x + iy = p(x, y)$$

Note that p is **not** a function of x and y. Those are the values that inform us where p is located on the Argand Plane.

### A.4.1 Modulus of a Complex Number

**Defn A.4.2** (Modulus). The *modulus* of a Complex Number is the distance from the origin to the complex point p. This is based off the Pythagorean Theorem.

$$|z|^2 = x^2 + y^2 = z\overline{z}$$

$$|z| = \sqrt{x^2 + y^2}$$
(A.11)

(i) The Law of Moduli states that |zw| = |z||w|..

We can prove Property (i) using an algebraic identity.

Prove Property (i). Let z and w be complex numbers  $(z, w \in \mathbb{C})$ . We are asked to prove

$$|zw| = |z||w|$$

But, it is actually easier to prove

$$\left|zw\right|^2 = \left|z\right|^2 \left|w\right|^2$$

We start by simplifying the  $|zw|^2$  equation above.

$$\left|zw\right|^2 = \left|z\right|^2 \left|w\right|^2$$

Using the definition of the Modulus of a Complex Number in Equation (A.11), we can expand the modulus.

$$=(zw)(\overline{zw})$$

Using Property (ii) for multiplication allows us to do the next step.

$$=(zw)(\overline{zw})$$

Using Multiplicative Associativity and Multiplicative Commutativity, we can simplify this further.

$$= (z\overline{z})(w\overline{w})$$
$$= |z|^2 |w|^2$$

Note how we never needed to define z or w, so this is as general a result as possible.

**A.4.1.1** Algebraic Effects of the Modulus' Property (i) For this section, let  $z = x_1 + iy_1$  and  $w = x_2 + iy_2$ . Now,

$$zw = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$
$$|zw|^2 = (x_1x_2 - y_1y_2)^2 + (x_1y_2 + x_2y_1)^2$$
$$= (x_1^2 + x_2^2)(x_2^2 + y_2^2)$$
$$= |z|^2|w|^2$$

However, the Law of Moduli (Property (i)) does **not** hold for a hyper complex number system one that uses 2 or more imaginaries, i.e. z = a + iy + jz. But, the Law of Moduli (Property (i)) does hold for hyper complex number system that uses 3 imaginaries,  $a = z + iy + jz + k\ell$ .

**A.4.1.2** Conceptual Effects of the Modulus' Property (i) We are interested in seeing if  $|zw| = (x_1^2 + y_1^2)(x_2^2 + y_2^2)$  can be extended to more complex terms (3 terms in the complex number).

However, Langrange proved that the equation below always holds. Note that the z below has no relation to the z above.

$$(x_1 + y_1 + z_1) \neq X^2 + Y^2 + Z^2$$

## A.5 Circles and Complex Numbers

We need to define both a center and a radius, just like with regular purely real values. Equation (A.12) defines the relation required for a circle using Complex Numbers.

$$|z - a| = r \tag{A.12}$$

### Example A.1: Convert to Circle. Lecture 2, Example 1

Given the expression below, find the location of the center of the circle and the radius of the circle?

$$|5iz + 10| = 7$$

This is just a matter of simplification and moving terms around.

$$|5iz + 10| = 7$$

$$|5i(z + \frac{10}{5i})| = 7$$

$$|5i(z + \frac{2}{i})| = 7$$

$$|5i(z + \frac{2}{i} - i)| = 7$$

$$|5i(z - 2i)| = 7$$

Now using the Law of Moduli (Property (i)) |ab| = |a||b|, we can simplify out the extra imaginary term.

$$|5i||z - 2i| = 7$$

$$5|z - 2i| = 7$$

$$|z - 2i| = \frac{7}{5}$$

Thus, the circle formed by the equation |5iz + 10| = 7 is actually  $|z - 2i| = \frac{7}{5}$ , with a center at a = 2i and a radius of  $\frac{7}{5}$ .

### A.5.1 Annulus

**Defn A.5.1** (Annulus). An annulus is a region that is bounded by 2 concentric circles. This takes the form of Equation (A.13).

$$r_1 \le |z - a| \le r_2 \tag{A.13}$$

In Equation (A.13), each of the  $\leq$  symbols could also be replaced with <. This leads to 3 different possibilities for the annulus:

- 1. If both inequality symbols are  $\leq$ , then it is a **Closed Annulus**.
- 2. If both inequality symbols are <, then it is an **Open Annulus**.
- 3. If only one inequality symbol < and the other  $\le$ , then it is not an **Open Annulus**.

The concept of an Annulus can be extended to angles and arguments of a Complex Number. A general example of this is shown below.

$$\theta_1 < \arg(z) < \theta_2$$

Angular Annuli follow all the same rules as regular annuli.

#### A.6 Polar Form

The polar form of a Complex Number is an alternative, but equally useful way to express a complex number. In polar form, we express the distance the complex number is from the origin and the angle it sits at from the real axis. This is seen in Equation (A.14).

$$z = r(\cos(\theta) + i\sin(\theta)) \tag{A.14}$$

*Remark.* Note that in the definition of polar form (Equation (A.14)), there is no allowance for the radius, r, to be negative. You must fix this by figuring out the angle change that is required for the radius to become positive.

Thus,

$$r = |z|$$
$$\theta = \arg(z)$$

## Example A.2: Find Polar Coordinates from Cartesian Coordinates. Lecture 2, Example 1

Find the complex number's  $z = -\sqrt{3} + i$  polar coordinates?

We start by finding the radius of z (modulus of z).

$$r = |z|$$

$$= \sqrt{\text{Re}\{z\}^2 + \text{Im}\{z\}^2}$$

$$= \sqrt{(-\sqrt{3})^2 + 1^2}$$

$$= \sqrt{3+1}$$

$$= \sqrt{4}$$

$$= 2$$

Thus, the point is 2 units away from the origin, the radius is 2 r = 2. Now, we need to find the angle, the argument, of the Complex Number.

$$\cos(\theta) = \frac{-\sqrt{3}}{2}$$
$$\theta = \cos^{-1}\left(\frac{-\sqrt{3}}{2}\right)$$
$$= \frac{5\pi}{6}$$

Now that we have one angle for the point, we also need to consider the possibility that there have been an unknown amount of rotations around the entire plane, meaning there have been  $2\pi k$ , where  $k=0,1,\ldots$  We now have all the information required to reconstruct this point using polar coordinates:

$$r = 2$$
 
$$\theta = \frac{5\pi}{6}$$
 
$$\arg(z) = \frac{5\pi}{6} + 2\pi k$$

## A.6.1 Converting Between Cartesian and Polar Forms

Using Equation (A.14) and Equation (A.1), it is easy to see the relation between r,  $\theta$ , x, and y.

Definition of a Complex Number in Cartesian form.

$$z = x + iy$$

Definition of a Complex Number in polar form.

$$z = r(\cos(\theta) + i\sin(\theta))$$
$$= r\cos(\theta) + ir\sin(\theta)$$

Thus,

$$x = r\cos(\theta)$$

$$y = r\sin(\theta)$$
(A.15)

### A.6.2 Benefits of Polar Form

Polar form is good for multiplication of Complex Numbers because of the way sin and cos multiply together. The Cartesian form is good for addition and subtraction. Take the examples below to show what I mean.

A.6.2.1 Multiplication For multiplication, the radii are multiplied together, and the angles are added.

$$\left(r_1(\cos(\theta) + i\sin(\theta))\right)\left(r_2(\cos(\phi) + i\sin(\phi))\right) = r_1r_2(\cos(\theta + \phi) + i\sin(\theta + \phi)) \tag{A.16}$$

A.6.2.2 Division For division, the radii are divided by each other, and the angles are subtracted.

$$\frac{r_1(\cos(\theta) + i\sin(\theta))}{r_2(\cos(\phi) + i\sin(\phi))} = \frac{r_1}{r_2}(\cos(\theta - \phi) + i\sin(\theta - \phi))$$
(A.17)

**A.6.2.3 Exponentiation** Because exponentiation is defined to be repeated multiplication, Paragraph A.6.2.1 applies. That this generalization is true was proven by de Moiver, and is called de Moiver's Law.

**Defn A.6.1** (de Moiver's Law). Given a complex number  $z, z \in \mathbb{C}$  and a rational number  $n, n \in \mathbb{Q}$ , the exponentiation of  $z^n$  is defined as Equation (A.18).

$$z^{n} = r^{n} (\cos(n\theta) + i\sin(n\theta)) \tag{A.18}$$

# A.7 Roots of a Complex Number

de Moiver's Law also applies to finding roots of a Complex Number.

$$z^{\frac{1}{n}} = r^{\frac{1}{n}} \left( \cos \left( \frac{\arg z}{n} \right) + i \sin \left( \frac{\arg z}{n} \right) \right) \tag{A.19}$$

Remark. As the entire arg z term is being divided by n, the  $2\pi k$  is **ALSO** divided by n.

Roots of a Complex Number satisfy Equation (A.20). To demonstrate that equation,  $z = r(\cos(\theta) + i\sin(\theta))$  and  $w = \rho(\cos(\phi) + i\sin(\phi))$ .

$$w^n = z \tag{A.20}$$

A w that satisfies Equation (A.20) is an nth root of z.

# Example A.3: Roots of a Complex Number. Lecture 2, Example 2

Find the cube roots of  $z = -\sqrt{3} + i$ ?

From Example A.2, we know that the polar form of z is

$$z = 2\left(\cos\left(\frac{5\pi}{6} + 2\pi k\right) + i\sin\left(\frac{5\pi}{6} + 2\pi k\right)\right)$$

Because the question is asking for **cube** roots, that means there are 3 roots. Using Equation (A.19), we can find the general form of the roots.

$$z = 2\left(\cos\left(\frac{5\pi}{6} + 2\pi k\right) + i\sin\left(\frac{5\pi}{6} + 2\pi k\right)\right)$$
$$z^{\frac{1}{3}} = \sqrt[3]{2}\left(\cos\left(\frac{1}{3}\left(\frac{5\pi}{6} + 2\pi k\right)\right) + i\sin\left(\frac{1}{3}\left(\frac{5\pi}{6} + 2\pi k\right)\right)\right)$$
$$= \sqrt[3]{2}\left(\cos\left(\frac{\pi + 12\pi k}{18}\right) + i\sin\left(\frac{\pi + 12\pi k}{18}\right)\right)$$

Now that we have a general equation for **all** possible cube roots, we need to find all the unique ones. This is because after k=n roots, the roots start to repeat themselves, because the  $2\pi k$  part of the expression becomes effective, making the angle a full rotation. We simply enumerate  $k \in \mathbb{Z}^+$ , so  $k=0,1,2,\ldots$ 

$$k = 0$$

$$\sqrt[3]{2} \left( \cos \left( \frac{\pi + 12\pi(0)}{18} \right) + i \sin \left( \frac{\pi + 12\pi(0)}{18} \right) \right) = \sqrt[3]{2} \left( \cos \left( \frac{\pi}{18} \right) + i \sin \left( \frac{\pi}{18} \right) \right)$$

$$k = 1$$

$$\sqrt[3]{2} \left( \cos \left( \frac{\pi + 12\pi(1)}{18} \right) + i \sin \left( \frac{\pi + 12\pi(1)}{18} \right) \right) = \sqrt[3]{2} \left( \cos \left( \frac{13\pi}{18} \right) + i \sin \left( \frac{13\pi}{18} \right) \right)$$

$$k = 2$$

$$\sqrt[3]{2} \left( \cos \left( \frac{\pi + 12\pi(2)}{18} \right) + i \sin \left( \frac{\pi + 12\pi(2)}{18} \right) \right) = \sqrt[3]{2} \left( \cos \left( \frac{25\pi}{18} \right) + i \sin \left( \frac{25\pi}{18} \right) \right)$$

$$k = 3$$

$$\sqrt[3]{2} \left( \cos \left( \frac{\pi + 12\pi(3)}{18} \right) + i \sin \left( \frac{\pi + 12\pi(3)}{18} \right) \right) = \sqrt[3]{2} \left( \cos \left( \frac{\pi}{18} + \frac{36\pi}{18} \right) + i \sin \left( \frac{\pi}{18} + \frac{36\pi}{18} \right) \right)$$

$$= \sqrt[3]{2} \left( \cos \left( \frac{\pi}{18} + 2\pi \right) + i \sin \left( \frac{\pi}{18} + 2\pi \right) \right)$$

$$= \sqrt[3]{2} \left( \cos \left( \frac{\pi}{18} + 2\pi \right) + i \sin \left( \frac{\pi}{18} + 2\pi \right) \right)$$

$$= \sqrt[3]{2} \left( \cos \left( \frac{\pi}{18} + 2\pi \right) + i \sin \left( \frac{\pi}{18} + 2\pi \right) \right)$$

Thus, the 3 cube roots of z are:

$$\begin{split} z_1^{\frac{1}{3}} &= \sqrt[3]{2} \bigg( \cos \left( \frac{\pi}{18} \right) + i \sin \left( \frac{\pi}{18} \right) \bigg) \\ z_2^{\frac{1}{3}} &= \sqrt[3]{2} \bigg( \cos \left( \frac{13\pi}{18} \right) + i \sin \left( \frac{13\pi}{18} \right) \bigg) \\ z_3^{\frac{1}{3}} &= \sqrt[3]{2} \bigg( \cos \left( \frac{25\pi}{18} \right) + i \sin \left( \frac{25\pi}{18} \right) \bigg) \end{split}$$

# A.8 Arguments

There are 2 types of arguments that we can talk about for a Complex Number.

- 1. The Argument
- 2. The Principal Argument

**Defn A.8.1** (Argument). The *argument* of a Complex Number refers to **all** possible angles that can satisfy the angle requirement of a Complex Number.

### Example A.4: Argument of Complex Number. Lecture 3, Example 1

If z = -1 - i, then what is its **Argument**?

You can plot this value on the Argand Plane and find the angle graphically/geometrically, or you can "cheat" and use  $\tan^{-1}$  (so long as you correct for the proper quadrant). I will "cheat", as I cannot plot easily.

$$z = -1 - i$$

$$\arg(z) = \tan(\theta) = \frac{-i}{-1}$$

$$= \frac{\pi}{4}$$

Remember to correct for the proper quadrant. We are in quadrant IV.

$$=\frac{5\pi}{4}$$

Now, we have to account for all possible angles that form this angle.

$$\arg(z) = \frac{5\pi}{4} + 2\pi k$$

Thus, the argument of z = -1 - i is  $\arg(z) = \frac{5\pi}{4} + 2\pi k$ .

**Defn A.8.2** (Principal Argument). The *principal argument* is the exact or reference angle of the Complex Number. By convention, the principal Argument of a complex number z is defined to be bounded like so:  $-\pi < \text{Arg}(z) \le \pi$ .

## Example A.5: Principal Argument of Complex Number. Lecture 3, Example 1

If z = -1 - i, then what is its **Principal Argument**?

You can plot this value on the Argand Plane and find the angle graphically/geometrically, or you can "cheat" and use tan<sup>-1</sup> (so long as you correct for the proper quadrant). I will "cheat", as I cannot plot easily.

$$z = -1 - i$$

$$\arg(z) = \tan(\theta) = \frac{-i}{-1}$$

$$= \frac{\pi}{4}$$

Remember to correct for the proper quadrant. We are in quadrant IV.

$$=\frac{5\pi}{4}$$

Thus, the Principal Argument of z=-1-i is  $\operatorname{Arg}(z)=\frac{5\pi}{4}$ .

# A.9 Complex Exponentials

The definition of an exponential with a Complex Number as its exponent is defined in Equation (A.21).

$$e^z = e^{x+iy} = e^x(\cos(y) + i\sin(y))$$
 (A.21)

If instead of e as the base, we have some value a, then we have Equation (A.22).

$$a^{z} = e^{z \ln(a)}$$

$$= e^{\operatorname{Re}\{z \ln(a)\}} \left( \cos(\operatorname{Im}\{z \ln(a)\}) + i \sin(\operatorname{Im}\{z \ln(a)\}) \right)$$
(A.22)

In the case of Equation (A.21), z can be presented in either Cartesian or polar form, they are equivalent.

#### Example A.6: Simplify Simple Complex Exponential. Lecture 3

Simplify the expression below, then find its Modulus, Argument, and its Principal Argument?

$$e^{-1+i\sqrt{3}}$$

If we look at the exponent on the exponential, we see

$$z = -1 + i\sqrt{3}$$

which means

$$x = -1$$
$$y = \sqrt{3}$$

With this information, we can simplify the expression just by observation, with no calculations required.

$$e^{-1+i\sqrt{3}} = e^{-1}(\cos(\sqrt{3}) + i\sin(\sqrt{3}))$$

Now, we can solve the other 3 parts of this example by observation.

$$|e^{-1+i\sqrt{3}}| = |e^{-1}(\cos(\sqrt{3}) + i\sin(\sqrt{3}))|$$

$$= e^{-1}$$

$$\arg\left(e^{-1+i\sqrt{3}}\right) = \arg\left(e^{-1}(\cos(\sqrt{3}) + i\sin(\sqrt{3}))\right)$$

$$= \sqrt{3} + 2\pi k$$

$$\operatorname{Arg}\left(e^{-1+i\sqrt{3}}\right) = \operatorname{Arg}\left(e^{-1}(\cos(\sqrt{3}) + i\sin(\sqrt{3}))\right)$$

$$= \sqrt{3}$$

# Example A.7: Simplify Complex Exponential Exponent. Lecture 3

Given  $z = e^{-e^{-i}}$ , what is this expression in polar form, what is its Modulus, its Argument, and its Principal Argument?

We start by simplifying the exponent of the base exponential, i.e.  $e^{-i}$ .

$$e^{-i} = e^{0-i}$$
=  $e^{0} (\cos(-1) + i\sin(-1))$   
=  $1(\cos(-1) + i\sin(-1))$ 

Now, with that exponent simplified, we can solve the main question.

$$e^{-e^{-i}} = e^{-1(\cos(-1)+i\sin(-1))}$$
$$= e^{-1(\cos(1)-i\sin(1))}$$
$$= e^{-\cos(1)+i\sin(1)}$$

If we refer back to Equation (A.21), then it becomes obvious what x and y are.

$$x = -\cos(1)$$

$$y = \sin(1)$$

$$e^{-e^{-i}} = e^{-\cos(1)} \left(\cos(\sin(1)) + i\sin(\sin(1))\right)$$

Now that we have "simplified" this exponential, we can solve the other 3 questions by observation.

$$|e^{-e^{-i}}| = |e^{-\cos(1)} \left( \cos\left(\sin(1)\right) + i\sin\left(\sin(1)\right) \right)|$$

$$= e^{-\cos(1)}$$

$$\arg\left(e^{-e^{-i}}\right) = \arg\left(e^{-\cos(1)} \left(\cos\left(\sin(1)\right) + i\sin\left(\sin(1)\right)\right)\right)$$

$$= \sin(1) + 2\pi k$$

$$\operatorname{Arg}\left(e^{-e^{-i}}\right) = \operatorname{Arg}\left(e^{-\cos(1)} \left(\cos\left(\sin(1)\right) + i\sin\left(\sin(1)\right)\right)\right)$$

$$= \sin(1)$$

### Example A.8: Non-e Complex Exponential. Lecture 3

Find all values of  $z = 1^i$ ?

Use Equation (A.22) to simplify this to a base of e, where we can use the usual Equation (A.21) to solve this.

$$a^z = e^{z \ln(a)}$$
$$1^i = e^{i \ln(1)}$$

Simplify the logarithm in the exponent first, ln(1).

$$\begin{aligned} \ln(1) &= \log_e |1| + i \arg(1) \\ &= \log_e(1) + i(0 + 2\pi k) \\ &= 0 + 2\pi k i \\ &= 2\pi k i \end{aligned}$$

Now, plug ln(1) back into the exponent, and solve the exponential.

$$e^{i(2\pi ki)} = e^{2\pi ki^2}$$
$$= e^{2\pi k(-1)}$$
$$z = e^{-2\pi k}$$

Thus, all values of  $z = e^{-2\pi k}$  where  $k = 0, 1, \ldots$ 

$$\overline{e^z} = e^{\overline{z}} \tag{A.23}$$

# A.10 Complex Logarithms

There are some denotational changes that need to be made for this to work. The traditional real-number natural logarithm ln needs to be redefined to its defining form  $\log_e$ .

With that denotational change, we can now use ln for the Complex Logarithm.

**Defn A.10.1** (Complex Logarithm). The *complex logarithm* is defined in Equation (A.24). The only requirement for this equation to hold true is that  $w \neq 0$ .

$$e^{z} = w$$

$$z = \ln(w)$$

$$= \log_{e}|w| + i\arg(w)$$
(A.24)

Remark A.10.1.1. The Complex Logarithm is different than it's purely-real cousin because we allow negative numbers to be input. This means it is more general, but we must lose the precision of the purely-real logarithm. This means that each nonzero number has infinitely many logarithms.

### Example A.9: All Complex Logarithms of Simple Expression. Lecture 3

What are all Complex Logarithms of z = -1?

We can apply the definition of a Complex Logarithm (Equation (A.24)) directly.

$$\begin{split} \ln(z) &= \log_e |z| + i \arg(z) \\ &= \log_e |-1| + i \arg(-1) \\ &= \log_e(1) + i(\pi + 2\pi k) \\ &= 0 + i(\pi + 2\pi k) \\ &= i(\pi + 2\pi k) \end{split}$$

Thus, all logarithms of z=-1 are defined by the expression  $i(\pi+2\pi k), k=0,1,\ldots$ 

Remark. You can see the loss of specificity in the Complex Logarithm because the variable k is still present in the final answer.

### Example A.10: All Complex Logarithms of Complex Logarithm. Lecture 3

What are all the Complex Logarithms of  $z = \ln(1)$ ?

We start by simplifying z, before finding  $\ln(z)$ . We can make use of Equation (A.24), to simplify this value.

$$\begin{aligned} \ln(w) &= \log_e |w| + i \arg(w) \\ \ln(1) &= \log_e |1| + i \arg(1) \\ &= \log_e 1 + i(0 + 2\pi k) \\ &= 0 + 2\pi ki \\ &= 2\pi ki \end{aligned}$$

Now that we have simplified z, we can solve for  $\ln(z)$ .

$$\begin{split} \ln(z) &= \ln(2\pi k i) \\ &= \log_e |2\pi k i| + i \arg(2\pi k i) \\ &= \log_e (2\pi |k|) + \left(i \begin{cases} \frac{\pi}{2} + 2\pi m & k > 0 \\ \frac{-\pi}{2} + 2\pi m & k < 0 \end{cases}\right) \end{split}$$

The |k| is the **absolute value** of k, because k is an integer.

Thus, our solution of 
$$\ln(\ln(1)) = \log_e(2\pi|k|) + \left(i \begin{cases} \frac{\pi}{2} + 2\pi m & k > 0 \\ \frac{-\pi}{2} + 2\pi m & k < 0 \end{cases}\right)$$
.

# A.10.1 Complex Conjugates of Logarithms

$$\overline{\log(z)} = \log(\overline{z}) \tag{A.25}$$

# A.11 Complex Trigonometry

For the equations below,  $z \in \mathbb{C}$ . These equations are based on Euler's relationship, Appendix B.2

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2} \tag{A.26}$$

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} \tag{A.27}$$

## Example A.11: Simplify Complex Sinusoid. Lecture 3

Solve for z in the equation cos(z) = 5?

We start by using the defintion of complex cosine Equation (A.26).

$$\cos(z) = 5$$

$$\frac{e^{iz} + e^{-iz}}{2} = 5$$

$$e^{iz} + e^{-iz} = 10$$

$$e^{iz} (e^{iz} + e^{-iz}) = e^{iz} (10)$$

$$e^{iz^2} + 1 = 10e^{iz}$$

$$e^{iz^2} - 10e^{iz} + 1 = 0$$

Solve this quadratic equation by using the Quadratic Equation.

$$e^{iz} = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(1)}}{2(1)}$$

$$= \frac{10 \pm \sqrt{100 - 4}}{2}$$

$$= \frac{10 \pm \sqrt{96}}{2}$$

$$= \frac{10 \pm 4\sqrt{6}}{2}$$

$$= 5 \pm 2\sqrt{6}$$

Use the definition of complex logarithms to simplify the exponential.

$$\begin{split} iz &= \ln(5 \pm 2\sqrt{6}) \\ &= \log_e |5 \pm 2\sqrt{6}| + i \arg(5 \pm 2\sqrt{6}) \\ &= \log_e |5 \pm 2\sqrt{6}| + i(0 + 2\pi k) \\ &= \log_e |5 \pm 2\sqrt{6}| + 2\pi ki \\ z &= \frac{1}{i} \left( \log_e |5 \pm 2\sqrt{6}| + 2\pi ki \right) \\ &= \frac{-i}{-i} \frac{1}{i} \left( \log_e |5 \pm 2\sqrt{6}| \right) + 2\pi k \\ &= 2\pi k - i \log_e |5 \pm 2\sqrt{6}| \end{split}$$

Thus,  $z = 2\pi k - i \log_e |5 \pm 2\sqrt{6}|$ .

### A.11.1 Complex Angle Sum and Difference Identities

Because the definitions of sine and cosine are unsatisfactory in their Euler definitions, we can use angle sum and difference formulas and their Euler definitions to yield a set of Cartesian equations.

$$\cos(x \pm iy) = (\cos(x)\cosh(y)) \mp i(\sin(x)\sinh(y)) \tag{A.28}$$

$$\sin(x \pm iy) = (\sin(x)\cosh(y)) \pm i(\cos(x)\sinh(y)) \tag{A.29}$$

# Example A.12: Simplify Trigonometric Exponential. Lecture 3

Simply  $z = e^{\cos(2+3i)}$ , and find z's Modulus, Argument, and Principal Argument?

We start by simplifying the cos using Equation (A.28).

$$\cos(x+iy) = (\cos(x)\cosh(y)) - i(\sin(x)\sinh(y))$$
$$\cos(2+3i) = (\cos(2)\cosh(3)) - i(\sin(2)\sinh(3))$$

Now that we have put the cos into a Cartesian form, one that is usable with Equation (A.21), we can solve this.

$$\begin{split} e^z &= e^{x+iy} = e^x \big( \cos(y) + i \sin(y) \big) \\ x &= \cos(2) \cosh(3) \\ y &= -\sin(2) \sinh(3) \\ e^{\cos(2) \cosh(3) - i \sin(2) \sinh(3)} &= e^{\cos(2) \cosh(3)} \Big( \cos \big( -\sin(2) \sinh(3) \big) + i \sin \big( -\sin(2) \sinh(3) \big) \Big) \end{split}$$

Now that we have simplified z, we can solve for the modulus, argument, and principal argument by observation.

$$\begin{split} |z| &= |e^{\cos(2)\cosh(3)} \left( \cos\left(-\sin(2)\sinh(3)\right) + i\sin\left(-\sin(2)\sinh(3)\right) \right) \\ &= e^{\cos(2)\cosh(3)} \\ \arg(z) &= \arg(e^{\cos(2)\cosh(3)} \left( \cos\left(-\sin(2)\sinh(3)\right) + i\sin\left(-\sin(2)\sinh(3)\right) \right) \\ &= -\sin(2)\sinh(3) + 2\pi k \\ \operatorname{Arg}(z) &= \operatorname{Arg}(e^{\cos(2)\cosh(3)} \left( \cos\left(-\sin(2)\sinh(3)\right) + i\sin\left(-\sin(2)\sinh(3)\right) \right) \\ &= -\sin(2)\sinh(3) \end{split}$$

### A.11.2 Complex Conjugates of Sinusoids

Since sinusoids can be represented by complex exponentials, as shown in Appendix B.2, we could calculate their complex conjugate.

$$\overline{\cos(x)} = \cos(x) 
= \frac{1}{2} \left( e^{ix} + e^{-ix} \right)$$
(A.30)

$$\overline{\sin(x)} = \sin(x) 
= \frac{1}{2i} \left( e^{ix} - e^{-ix} \right)$$
(A.31)

# B Trigonometry

# **B.1** Trigonometric Formulas

$$\sin(\alpha) \pm \sin(\beta) = 2\sin\left(\frac{\alpha \pm \beta}{2}\right)\cos\left(\frac{\alpha \mp \beta}{2}\right)$$
 (B.1)

$$\cos(\theta)\sin(\theta) = \frac{1}{2}\sin(2\theta) \tag{B.2}$$

# B.2 Euler Equivalents of Trigonometric Functions

$$e^{\pm j\alpha} = \cos(\alpha) \pm j\sin(\alpha)$$
 (B.3)

$$\cos\left(x\right) = \frac{e^{jx} + e^{-jx}}{2} \tag{B.4}$$

$$\sin\left(x\right) = \frac{e^{jx} - e^{-jx}}{2j} \tag{B.5}$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 (B.6)

$$\cosh\left(x\right) = \frac{e^x + e^{-x}}{2} \tag{B.7}$$

# B.3 Angle Sum and Difference Identities

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) \tag{B.8}$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta) \tag{B.9}$$

### B.4 Double-Angle Formulae

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha) \tag{B.10}$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) \tag{B.11}$$

# B.5 Half-Angle Formulae

$$\sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 - \cos\left(\alpha\right)}{2}}\tag{B.12}$$

$$\cos\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 + \cos\left(\alpha\right)}{2}}\tag{B.13}$$

### B.6 Exponent Reduction Formulae

$$\sin^2(\alpha) = \left(\sin(\alpha)\right) = \frac{1 - \cos(2\alpha)}{2} \tag{B.14}$$

$$\cos^2(\alpha) = (\cos(\alpha)) = \frac{1 + \cos(2\alpha)}{2}$$
(B.15)

# B.7 Product-to-Sum Identities

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta) \tag{B.16}$$

$$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta) \tag{B.17}$$

$$2\sin(\alpha)\cos(\beta) = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$
(B.18)

$$2\cos(\alpha)\sin(\beta) = \sin(\alpha + \beta) - \sin(\alpha - \beta) \tag{B.19}$$

# B.8 Sum-to-Product Identities

$$\sin(\alpha) \pm \sin(\beta) = 2\sin\left(\frac{\alpha \pm \beta}{2}\right)\cos\left(\frac{\alpha \mp \beta}{2}\right)$$
 (B.20)

$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right)$$
(B.21)

$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right)$$
(B.22)

# B.9 Pythagorean Theorem for Trig

$$\cos^2(\alpha) + \sin^2(\alpha) = 1^2 \tag{B.23}$$

$$\cosh^2(\alpha) - \sinh^2(\alpha) = 1^2 \tag{B.24}$$

# B.10 Rectangular to Polar

$$a + jb = \sqrt{a^2 + b^2}e^{j\theta} = re^{j\theta} \tag{B.25}$$

$$\theta = \begin{cases} \arctan\left(\frac{b}{a}\right) & a > 0\\ \pi - \arctan\left(\frac{b}{a}\right) & a < 0 \end{cases}$$
(B.26)

# B.11 Polar to Rectangular

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta) \tag{B.27}$$

# C Calculus

# C.1 L'Hôpital's Rule

L'Hôpital's Rule can be used to simplify and solve expressions regarding limits that yield irreconcilable results.

Lemma C.0.1 (L'Hôpital's Rule). If the equation

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \begin{cases} \frac{0}{0} \\ \frac{\infty}{\infty} \end{cases}$$

then Equation (C.1) holds.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \tag{C.1}$$

### C.2 Fundamental Theorems of Calculus

**Defn C.2.1** (First Fundamental Theorem of Calculus). The first fundamental theorem of calculus states that, if f is continuous on the closed interval [a, b] and F is the indefinite integral of f on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
(C.2)

**Defn C.2.2** (Second Fundamental Theorem of Calculus). The second fundamental theorem of calculus holds for f a continuous function on an open interval I and a any point in I, and states that if F is defined by

 $F(x) = \int_{a}^{x} f(t) dt,$ 

then

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

$$F'(x) = f(x)$$
(C.3)

**Defn C.2.3** (argmax). The arguments to the *argmax* function are to be maximized by using their derivatives. You must take the derivative of the function, find critical points, then determine if that critical point is a global maxima. This is denoted as

 $\operatorname*{argmax}_{x}$ 

### C.3 Rules of Calculus

### C.3.1 Chain Rule

**Defn C.3.1** (Chain Rule). The *chain rule* is a way to differentiate a function that has 2 functions multiplied together. If

$$f(x) = g(x) \cdot h(x)$$

then,

$$f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$

$$\frac{df(x)}{dx} = \frac{dg(x)}{dx} \cdot g(x) + g(x) \cdot \frac{dh(x)}{dx}$$
(C.4)

# C.4 Useful Integrals

$$\int \cos(x) \ dx = \sin(x) \tag{C.5}$$

$$\int \sin(x) \, dx = -\cos(x) \tag{C.6}$$

$$\int x \cos(x) dx = \cos(x) + x \sin(x)$$
(C.7)

Equation (C.7) simplified with Integration by Parts.

$$\int x \sin(x) dx = \sin(x) - x \cos(x)$$
 (C.8)

Equation (C.8) simplified with Integration by Parts.

$$\int x^2 \cos(x) \, dx = 2x \cos(x) + (x^2 - 2) \sin(x) \tag{C.9}$$

Equation (C.9) simplified by using Integration by Parts twice.

$$\int x^2 \sin(x) \, dx = 2x \sin(x) - (x^2 - 2) \cos(x) \tag{C.10}$$

Equation (C.10) simplified by using Integration by Parts twice.

$$\int e^{\alpha x} \cos(\beta x) \, dx = \frac{e^{\alpha x} \left(\alpha \cos(\beta x) + \beta \sin(\beta x)\right)}{\alpha^2 + \beta^2} + C \tag{C.11}$$

$$\int e^{\alpha x} \sin(\beta x) \, dx = \frac{e^{\alpha x} \left(\alpha \sin(\beta x) - \beta \cos(\beta x)\right)}{\alpha^2 + \beta^2} + C \tag{C.12}$$

$$\int e^{\alpha x} dx = \frac{e^{\alpha x}}{\alpha} \tag{C.13}$$

$$\int xe^{\alpha x} dx = e^{\alpha x} \left( \frac{x}{\alpha} - \frac{1}{\alpha^2} \right) \tag{C.14}$$

Equation (C.14) simplified with Integration by Parts.

$$\int \frac{dx}{\alpha + \beta x} = \int \frac{1}{\alpha + \beta x} dx = \frac{1}{\beta} \ln(\alpha + \beta x)$$
 (C.15)

$$\int \frac{dx}{\alpha^2 + \beta^2 x^2} = \int \frac{1}{\alpha^2 + \beta^2 x^2} dx = \frac{1}{\alpha \beta} \arctan\left(\frac{\beta x}{\alpha}\right)$$
 (C.16)

$$\int \alpha^x \, dx = \frac{\alpha^x}{\ln(\alpha)} \tag{C.17}$$

$$\frac{d}{dx}\alpha^x = \frac{d\alpha^x}{dx} = \alpha^x \ln(x) \tag{C.18}$$

### C.5 Leibnitz's Rule

Lemma C.0.2 (Leibnitz's Rule). Given

$$g(t) = \int_{a(t)}^{b(t)} f(x, t) dx$$

with a(t) and b(t) differentiable in t and  $\frac{\partial f(x,t)}{\partial t}$  continuous in both t and x, then

$$\frac{d}{dt}g(t) = \frac{dg(t)}{dt} = \int_{a(t)}^{b(t)} \frac{\partial f(x,t)}{\partial t} dx + f[b(t),t] \frac{db(t)}{dt} - f[a(t),t] \frac{da(t)}{dt}$$
(C.19)

## C.6 Laplace's Equation

Laplace's Equation is used to define a harmonic equation. These functions are twice continuously differentiable  $f: U \to R$ , where U is an open subset of  $\mathbb{R}^n$ , that satisfies Equation (C.20).

$$\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = 0 \tag{C.20}$$

This is usually simplified down to

$$\nabla^2 f = 0 \tag{C.21}$$

# D Laplace Transform

# D.1 Laplace Transform

**Defn D.1.1** (Laplace Transform). The Laplace transformation operation is denoted as  $\mathcal{L}\{x(t)\}$  and is defined as

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
 (D.1)

## D.2 Inverse Laplace Transform

**Defn D.2.1** (Inverse Laplace Transform). The *inverse Laplace transformation* operation is denoted as  $\mathcal{L}^{-1}\{X(s)\}$  and is defined as

$$x(t) = \frac{1}{2j\pi} \int_{\sigma - \infty}^{\sigma + \infty} X(s)e^{st} ds$$
 (D.2)

## D.3 Properties of the Laplace Transform

### D.3.1 Linearity

The Laplace Transform is a linear operation, meaning it obeys the laws of linearity. This means Equation (D.3) must hold.

$$x(t) = \alpha_1 x_1(t) + \alpha_2 x_2(t) \tag{D.3a}$$

$$X(s) = \alpha_1 X_1(s) + \alpha_2 X_2(s) \tag{D.3b}$$

# D.3.2 Time Scaling

Scaling in the time domain (expanding or contracting) yields a slightly different transform. However, this only makes sense for  $\alpha > 0$  in this case. This is seen in Equation (D.4).

$$\mathcal{L}\left\{x(\alpha t)\right\} = \frac{1}{\alpha} X\left(\frac{s}{\alpha}\right) \tag{D.4}$$

#### D.3.3 Time Shift

Shifting in the time domain means to change the point at which we consider t = 0. Equation (D.5) below holds for shifting both forward in time and backward.

$$\mathcal{L}\left\{x(t-a)\right\} = X(s)e^{-as} \tag{D.5}$$

#### D.3.4 Frequency Shift

Shifting in the frequency domain means to change the complex exponential in the time domain.

$$\mathcal{L}^{-1}\left\{X(s-a)\right\} = x(t)e^{at} \tag{D.6}$$

### D.3.5 Integration in Time

Integrating in time is equivalent to scaling in the frequency domain.

$$\mathcal{L}\left\{ \int_0^t x(\lambda) \, d\lambda \right\} = \frac{1}{s} X(s) \tag{D.7}$$

### D.3.6 Frequency Multiplication

Multiplication of two signals in the frequency domain is equivalent to a convolution of the signals in the time domain.

$$\mathcal{L}\{x(t) * v(t)\} = X(s)V(s) \tag{D.8}$$

### D.3.7 Relation to Fourier Transform

The Fourier transform looks and behaves very similarly to the Laplace transform. In fact, if  $X(\omega)$  exists, then Equation (D.9) holds.

$$X(s) = X(\omega)|_{\omega = \frac{s}{2}} \tag{D.9}$$

# D.4 Theorems

There are 2 theorems that are most useful here:

- 1. Intial Value Theorem
- 2. Final Value Theorem

**Theorem D.1** (Intial Value Theorem). The Initial Value Theorem states that when the signal is treated at its starting time, i.e.  $t = 0^+$ , it is the same as taking the limit of the signal in the frequency domain.

$$x(0^+) = \lim_{s \to \infty} sX(s)$$

**Theorem D.2** (Final Value Theorem). The Final Value Theorem states that when taking a signal in time to infinity, it is equivalent to taking the signal in frequency to zero.

$$\lim_{t\to\infty}x(t)=\lim_{s\to0}sX(s)$$

# D.5 Laplace Transform Pairs

| Time Domain                                                                                                 | Frequency Domain                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x(t)                                                                                                        | X(s)                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\delta(t)$                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\delta(t-T_0)$                                                                                             | $e^{-sT_0}$                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{U}(t)$                                                                                            | $\frac{1}{s}$                                                                                                                                                                                                                                                                                                                                                                                          |
| $t^n\mathcal{U}(t)$                                                                                         | $\frac{n!}{s^{n+1}}$                                                                                                                                                                                                                                                                                                                                                                                   |
| $\mathcal{U}(t-T_0)$                                                                                        | $\frac{e^{-sT_0}}{s}$                                                                                                                                                                                                                                                                                                                                                                                  |
| $e^{at}\mathcal{U}(t)$                                                                                      | $\frac{1}{s-a}$                                                                                                                                                                                                                                                                                                                                                                                        |
| $t^n e^{at} \mathcal{U}(t)$                                                                                 | $\frac{n!}{(s-a)^{n+1}}$                                                                                                                                                                                                                                                                                                                                                                               |
| $\cos(bt)\mathcal{U}(t)$                                                                                    | $\frac{s}{s^2+b^2}$                                                                                                                                                                                                                                                                                                                                                                                    |
| $\sin(bt)\mathcal{U}(t)$                                                                                    | $\frac{b}{s^2+b^2}$                                                                                                                                                                                                                                                                                                                                                                                    |
| $e^{-at}\cos(bt)\mathcal{U}(t)$                                                                             | $\frac{s+a}{(s+a)^2+b^2}$                                                                                                                                                                                                                                                                                                                                                                              |
| $e^{-at}\sin(bt)\mathcal{U}(t)$                                                                             | $\frac{b}{(s+a)^2+b^2}$                                                                                                                                                                                                                                                                                                                                                                                |
| $re^{-at}\cos(bt+\theta)\mathcal{U}(t)$                                                                     | $a: \frac{sr\cos(\theta) + ar\cos(\theta) - br\sin(\theta)}{s^2 + 2as + (a^2 + b^2)}$                                                                                                                                                                                                                                                                                                                  |
|                                                                                                             | $b: \frac{1}{2} \left( \frac{re^{j\theta}}{s+a-jb} + \frac{re^{-j\theta}}{s+a+jb} \right)$                                                                                                                                                                                                                                                                                                             |
|                                                                                                             | $\begin{cases} r = \sqrt{\frac{A^2c + B^2 - 2ABa}{a^2c^2}} \end{cases}$                                                                                                                                                                                                                                                                                                                                |
|                                                                                                             | $\begin{cases} a: & \frac{sr\cos(\theta) + ar\cos(\theta) - br\sin(\theta)}{s^2 + 2as + (a^2 + b^2)} \\ b: & \frac{1}{2} \left( \frac{re^{j\theta}}{s + a - jb} + \frac{re^{-j\theta}}{s + a + jb} \right) \\ c: & \frac{As + B}{s^2 + 2as + c} \begin{cases} r & = \sqrt{\frac{A^2c + B^2 - 2ABa}{c - a^2}} \\ \theta & = \arctan\left(\frac{Aa - B}{A\sqrt{c - a^2}}\right) \end{cases} \end{cases}$ |
| $e^{-at} \left( A\cos(\sqrt{c-a^2}t) + \frac{B-Aa}{\sqrt{c-a^2}}\sin(\sqrt{c-a^2}t) \right) \mathcal{U}(t)$ | $\frac{As+B}{s^2+2as+c}$                                                                                                                                                                                                                                                                                                                                                                               |

# D.6 Higher-Order Transforms

| Time Domain            | Frequency Domain                                                                             |
|------------------------|----------------------------------------------------------------------------------------------|
| x(t)                   | X(s)                                                                                         |
| $x(t)\sin(\omega_0 t)$ | $\frac{j}{2}\left(X(s+j\omega_0)-X(s-j\omega_0)\right)$                                      |
| $x(t)\cos(\omega_0 t)$ | $\frac{1}{2}\left(X(s+j\omega_0)+X(s-j\omega_0)\right)$                                      |
| $t^n x(t)$             | $(-1)^n \frac{d^n}{ds^n} X(s) \ n \in \mathbb{N}$                                            |
| $\frac{d^n}{dt^n}x(t)$ | $s^{n}X(s) - \sum_{0}^{n-1} s^{n-1-i} \frac{d^{i}}{dt^{i}} x(t) _{t=0^{-}} n \in \mathbb{N}$ |