Introduction to the Curry-Howard correspondence The logic of types in functional programming languages

Sergei Winitzki

Academy by the Bay

February 17, 2018

Type constructions in functional programming

The common ground between OCaml, Haskell, Scala, Rust, and other languages

Type constructions common in FP languages:

- Tuple ("product") type: Int × String
- Function type: Int ⇒ String
- Disjunction ("sum") type: Int + String
- Unit type ("empty tuple"): 1
- \bullet Type parameters: List T

Up to differences in syntax, the FP languages share all these features

Type constructions: Scala syntax

```
• Tuple type: (Int, String)
     Create: val pair: (Int, String) = (123, "abc")
     ▶ Use: val y: String = pair._2

    Function type: Int ⇒ String

     ▶ Create: val f: (Int \Rightarrow String) = x \Rightarrow "Value is " + x.toString
     ► Use: val v: String = f(123)

    Disjunction type: Either[Int, String] defined in standard library

     Create:
        val x: Either[Int, String] = Left(123)
        val y: Either[Int, String] = Right("abc")
     ▶ Use: val z: Boolean = x match {
        case Left(i) \Rightarrow i > 0
        case Right(_) ⇒ false

    Unit type: Unit

     ► Create: val x: Unit = ()
```

Type constructions: OCaml syntax

- Tuple type: int * string ► Create: let pair: int * string = (123, "abc") ▶ Use: let y: string = snd pair Function type: int -> string Create: let f: int -> string = fun x -> Printf.sprintf "Value is %d" x ▶ Use: let y: string = f 123 Disjunction type: type e = Left of int | Right of string Create. let x: e = Left 123let v: e = Right "abc" ▶ Use: let z: bool = match x with Left $i \rightarrow i > 0$ Right _ -> false Unit type: unit
- Sergei Winitzki (ABTB)

Create: let x: unit = ()

Type constructions: Haskell syntax

• Tuple type: (Int, String) Create: pair = (123, "abc") ▶ Use: (_, y) = pair Function type: Int -> String ▶ Create: $f = \x ->$ "Value is " ++ show x • Use: y = f 123 Disjunction type: data E = Left Int | Right String Create. x = Left 123y = Right "abc" \blacktriangleright Use: z = case x ofLeft $i \rightarrow i > 0$ Right _ -> false Unit type: Unit ightharpoonup Create: x = ()

From types to propositions

The code val x: T = ... shows that we can compute a value of type T as part of our program expression

- Let's denote this *proposition* by $\mathcal{CH}(T)$ "Code \mathcal{H} as a value of type τ "
- Correspondence between types and propositions, for a given program:

Туре	Proposition	Short notation
Т	$\mathcal{CH}(T)$	T
(A, B)	CH(A) and $CH(B)$	$A \wedge B$; $A \times B$
Either[A, B]	CH(A) or $CH(B)$	$A \vee B$; $A + B$
$A \Rightarrow B$	CH(A) implies $CH(B)$	$A \Rightarrow B$
Unit	True	1

- Type parameter [T] in a function type means $\forall T$
- Example: def dupl[A]: A \Rightarrow (A, A). The type of this function, $A \Rightarrow A \times A$, corresponds to the theorem $\forall A : A \Rightarrow A \wedge A$

Translating language constructions into the logic I

What are the derivation rules for the logic of types?

Code expressions create logical relationships between propositions $\mathcal{CH}(...)$

- To make connection with logic, represent code fragments as sequents
 - \blacktriangleright A, B \vdash C represents an expression of type C that uses x: A and y: B
 - ★ Sequents only describe the *types* of expressions and their parts
 - ▶ In $A, B, ... \vdash C$ the **premises** are A, B, ... and the **goal** is C
- Sequents are also proof tasks; proofs are achieved via derivation rules
 - ▶ Tuple type A × B
 - ★ Create: $A, B \vdash A \times B$
 - ★ Use: $A \times B \vdash A$ and also $A \times B \vdash B$
 - ▶ Function type $A \Rightarrow B$
 - **★** Create: if we have $A \vdash B$ then we will have $\emptyset \vdash A \Rightarrow B$
 - ★ Use: $A \Rightarrow B, A \vdash B$
 - ▶ Disjunction type A + B
 - ★ Create: $A \vdash A + B$ and also $B \vdash A + B$
 - **★** Use: A + B, $A \Rightarrow C$, $B \Rightarrow C \vdash C$
 - ▶ Unit type 1
 - ★ Create: ∅ ⊢ 1

Translating language constructions into the logic II

Additional rules for the logic of types

In addition to constructions that use types, we have "trivial" constructions:

- a single, unmodified value of type A is a valid expression of type A
 - For any A we have the sequent $A \vdash A$
- if a value can be computed using some given data, it can also be computed if given additional data
 - ▶ If we have $A, ..., C \vdash G$ then also $A, ..., C, D \vdash G$ for any D
 - ightharpoonup For brevity, we denote by Γ a sequence of arbitrary premises
- the order in which data is given does not matter, we can still compute all the same things given the same premises in different order
 - ▶ If we have Γ , A, $B \vdash G$ then we also have Γ , B, $A \vdash G$

Syntax conventions:

- the implication operation associates to the right
 - $ightharpoonup A \Rightarrow B \Rightarrow C \text{ means } A \Rightarrow (B \Rightarrow C)$
- precedence order: implication, disjunction, conjunction
 - ▶ $A + B \times C \Rightarrow D$ means $(A + (B \times C)) \Rightarrow D$

Quantifiers: implicitly, all our type variables are universally quantified

• When we write $A \Rightarrow B \Rightarrow A$, we mean $\forall A : \forall B : A \Rightarrow B \Rightarrow A$

The logic of types I

Now we have all the axioms and the derivation rules of the logic of types.

- What theorems can we derive in this logic?
- Example: $A \Rightarrow B \Rightarrow A$
 - ▶ Start with an axiom $A \vdash A$; add an unused extra premise $B: A, B \vdash A$
 - ▶ Use the "create function" rule with B and A, get $A \vdash B \Rightarrow A$
 - ▶ Use the "create function" rule with A and $B \Rightarrow A$, get the final sequent $\emptyset \vdash A \Rightarrow B \Rightarrow A$ showing that $A \Rightarrow B \Rightarrow A$ is a **theorem** since it is derived from no premises
- What code does this describe?
 - ▶ The axiom $A \vdash A$ represents the expression x where x is of type A
 - ▶ The unused premise *B* corresponds to unused variable *y* of type *B*
 - ▶ The "create function" rule gives the function $y \Rightarrow x$
 - ▶ The second "create function" rule gives $x \Rightarrow (y \Rightarrow x)$
 - ▶ Scala code: def f[A, B]: A \Rightarrow B \Rightarrow A = (x: A) \Rightarrow (y: B) \Rightarrow x
- Any code expression's type can be translated into a sequent
- A proof of a theorem directly guides us in writing code for that type

Correspondence between programs and proofs

By construction, any theorem can be implemented in code

Proposition	Code
$\forall A: A \Rightarrow A$	def identity[A](x: A): A = x
$\forall A: A \Rightarrow 1$	<pre>def toUnit[A](x: A): Unit = ()</pre>
$\forall A \forall B : A \Rightarrow A + B$	<pre>def inLeft[A,B](x:A): Either[A,B] = Left(x)</pre>
$\forall A \forall B : A \times B \Rightarrow A$	def first[A,B](p: (A,B)): A = p1
$\forall A \forall B : A \Rightarrow B \Rightarrow A$	$def const[A,B](x: A): B \Rightarrow A = (y:B) \Rightarrow x$

- Also, non-theorems cannot be implemented in code
 - Examples of non-theorems: $\forall A: 1 \Rightarrow A; \quad \forall A \forall B: A + B \Rightarrow A; \\ \forall A \forall B: A \Rightarrow A \times B; \quad \forall A \forall B: (A \Rightarrow B) \Rightarrow A$
- Given a type's formula, can we implement it in code? Not obvious.
 - ► Example: $\forall A \forall B : ((((A \Rightarrow B) \Rightarrow A) \Rightarrow A) \Rightarrow B) \Rightarrow B$
 - ★ Can we write a function with this type? Can we prove this formula?

The logic of types II

What kind of logic is this? Under what name is it known to mathematicians?

This is called "intuitionistic propositional logic", IPL (also "constructive")

- This is a "nonclassical" logic because it is different from Boolean logic
- Disjunction works very differently from Boolean logic
 - ▶ Example: $A \Rightarrow B + C \vdash (A \Rightarrow B) + (A \Rightarrow C)$ does not hold in IPL
 - This is counter-intuitive!
 - ▶ We cannot implement a function with this type:

$$\texttt{def q[A,B,C](f: A \Rightarrow Either[B, C]): Either[A \Rightarrow B, A \Rightarrow C]}$$

- ▶ Disjunction is "constructive": need to supply one of the parts
 - ★ But Either[A \Rightarrow B, A \Rightarrow C] is not a function of A
- Implication works somewhat differently
 - ▶ Example: $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$ holds in Boolean logic but not in IPL
 - ► Cannot compute an x: A because of insufficient data
- Conjunction works the same as in Boolean logic
 - Example:

$$A \Rightarrow B \times C \vdash (A \Rightarrow B) \times (A \Rightarrow C)$$

The logic of types III

How to determine whether a given IPL formula is a theorem?

- The IPL cannot have a truth table with a fixed number of truth values
 - ► This was shown by Gödel in 1932 (see Wikipedia page)
- The IPL has a decision procedure (algorithm) that either finds a proof for a given IPL formula, or determines that there is no proof
- There may be several inequivalent proofs of an IPL theorem
- Each proof can be automatically translated into code
 - ► The curryhoward library implements an IPL prover as a Scala macro, and generates Scala code from types
 - ► The djinn-ghc compiler plugin and the JustDolt plugin implement an IPL prover in Haskell, and generate Haskell code from types
- All these IPL provers use the same basic algorithm called LJT
 - and all cite the same paper [Dyckhoff 1992]
 - because most other papers on this subject are incomprehensible to non-specialists, or describe algorithms that are too complicated

Proof search I: looking for an algorithm

Why our initial presentation of IPL does not give a proof search algorithm

The FP type constructions give nine axioms and three derivation rules:

•
$$\Gamma$$
, A , $B \vdash A \times B$

•
$$\Gamma$$
, $A \times B \vdash A$

•
$$\Gamma$$
, $A \times B \vdash B$

•
$$\Gamma, A \Rightarrow B, A \vdash B$$

•
$$\Gamma, A \vdash A + B$$

•
$$\Gamma$$
, $B \vdash A + B$

•
$$\Gamma$$
, $A + B$, $A \Rightarrow C$, $B \Rightarrow C \vdash C$

- Try proving $A, B + C \vdash A \times B + C$: cannot find matching rules
- Need a better formulation of the logic

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}$$

$$\frac{\Gamma \vdash G}{\Gamma, D \vdash G}$$

$$\frac{\Gamma, A, B \vdash G}{\Gamma, B, A \vdash G}$$

Sergei Winitzki (ABTB)

Proof search II: Gentzen's calculus LJ (1935)

 A "complete and sound calculus" is a set of axioms and derivation rules that will yield all (and only!) theorems of the logic

$$\begin{array}{cccc} (X \text{ is atomic}) & \overline{\Gamma, X \vdash X} & Id & \overline{\Gamma \vdash \top} & \top \\ \hline \frac{\Gamma, A \Rightarrow B \vdash A & \Gamma, B \vdash C}{\Gamma, A \Rightarrow B \vdash C} & L \Rightarrow & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} & R \Rightarrow \\ \hline \frac{\Gamma, A \vdash C & \Gamma, B \vdash C}{\Gamma, A + B \vdash C} & L + & \frac{\Gamma \vdash A_i}{\Gamma \vdash A_1 + A_2} & R +_i \\ \hline \frac{\Gamma, A_i \vdash C}{\Gamma, A_1 \times A_2 \vdash C} & L \times_i & \frac{\Gamma \vdash A & \Gamma \vdash B}{\Gamma \vdash A \times B} & R \times \end{array}$$

- Two axioms and eight derivation rules
- Each rule says: The sequent at bottom will be proved if proofs are given for sequent(s) at top
- Use these rules "bottom-up" to perform a proof search
 - Sequents are nodes and proofs are edges in the proof search tree

Proof search example I

Example: to prove
$$\emptyset \vdash ((R \Rightarrow R) \Rightarrow Q) \Rightarrow Q$$

- Root sequent $S_0:\emptyset \vdash ((R\Rightarrow R)\Rightarrow Q)\Rightarrow Q$
- S_0 with rule $R \Rightarrow$ yields $S_1 : (R \Rightarrow R) \Rightarrow Q \vdash Q$
- S_1 with rule $L \Rightarrow$ yields $S_2 : (R \Rightarrow R) \Rightarrow Q \vdash R \Rightarrow R$ and $S_3 : Q \vdash Q$
- Sequent S_3 follows from the Id axiom; it remains to prove S_2
- S_2 with rule $L \Rightarrow$ yields $S_4 : (R \Rightarrow R) \Rightarrow Q \vdash R \Rightarrow R$ and $S_5 : Q \vdash R \Rightarrow R$
 - We are stuck here because $S_4 = S_2$ (we are in a loop)
 - We can prove S_5 , but that will not help
 - ▶ So we backtrack (erase S_4 , S_5) and apply another rule to S_2
- S_2 with rule $R \Rightarrow$ yields $S_6 : (R \Rightarrow R) \Rightarrow Q; R \vdash R$
- Sequent S_6 follows from the Id axiom

Therefore we have proved S_0 . Q.E.D.

Proof search III: The calculus LJT

Vorobieff-Hudelmaier-Dyckhoff, 1950-1990

- The Gentzen calculus LJ will loop if rule $L \Rightarrow$ is applied ≥ 2 times
- ullet The calculus LJT keeps all rules of LJ except rule $L \Rightarrow$
- Replace rule $L \Rightarrow$ by pattern-matching on A in the premise $A \Rightarrow B$:

$$\begin{split} (X \text{ is atomic}) \frac{\Gamma, X, B \vdash D}{\Gamma, X, X \Rightarrow B \vdash D} \, L \Rightarrow_1 \\ \frac{\Gamma, A \Rightarrow B \Rightarrow C \vdash D}{\Gamma, (A \times B) \Rightarrow C \vdash D} \, L \Rightarrow_2 \\ \frac{\Gamma, A \Rightarrow C, B \Rightarrow C \vdash D}{\Gamma, (A + B) \Rightarrow C \vdash D} \, L \Rightarrow_3 \\ \frac{\Gamma, B \Rightarrow C \vdash A \Rightarrow B}{\Gamma, (A \Rightarrow B) \Rightarrow C \vdash D} \, L \Rightarrow_4 \end{split}$$

- When using LJT rules, the proof tree has no loops and terminates
 - ► See this paper for an explicit decreasing measure on the proof tree

Proof search IV: The calculus LJT

"It is obvious that it is obvious" - a mathematician after thinking for a half-hour

• Rule $L \Rightarrow_4$ is based on the key theorem:

$$((A \Rightarrow B) \Rightarrow C) \Rightarrow (A \Rightarrow B) \iff (B \Rightarrow C) \Rightarrow (A \Rightarrow B)$$

• The key theorem for rule $L \Rightarrow_4$ is attributed to Vorobieff (1958):

be extracted from Lemma 7 in [22]. One could also go further and make subproofs sensible.

LEMMA 2.
$$\vdash_{LJ} \Gamma, (C \supset D) \supset B \Rightarrow C \supset D \text{ iff } \vdash_{LJ} \Gamma, D \supset B \Rightarrow C \supset D.$$

PROOF. Trivial [34].

THEOREM 1. The systems LJ and LJT are equivalent.

Proof. As noted earlier, it is routine to show that any sequent provable

[R. Dyckhoff, Contraction-Free Sequent Calculi for Intuitionistic Logic, 1992]

• A stepping stone to this theorem:

$$((A \Rightarrow B) \Rightarrow C) \Rightarrow B \Rightarrow C$$

Proof (obviously trivial): $f^{(A\Rightarrow B)\Rightarrow C} \Rightarrow b^B \Rightarrow f(x^A \Rightarrow b)$

Details are left as exercise for the reader

Proof search V: From deduction rules to code

- The new rules are equivalent to the old rules, therefore...
 - ▶ Proof of a sequent $A, B, C \vdash G \Leftrightarrow \text{code/expression } t(a, b, c) : G$
 - ▶ Also can be seen as a function t from A, B, C to G
- Sequent in a proof follow from an axiom or from a transforming rule
 - ▶ The two axioms are fixed expressions, $x^A \Rightarrow x$ and 1
 - ▶ Each rule has a *proof transformer* function: $PT_{R\Rightarrow}$, PT_{L+} , etc.
- Examples of proof transformer functions:

$$\frac{\Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma, A + B \vdash C} L +$$

$$PT_{L+}(t_1^{A \Rightarrow C}, t_2^{B \Rightarrow C}) = x^{A+B} \Rightarrow x \text{ match } \begin{cases} a^A \Rightarrow t_1(a) \\ b^B \Rightarrow t_2(b) \end{cases}$$

$$\frac{\Gamma, A \Rightarrow B \Rightarrow C \vdash D}{\Gamma, (A \times B) \Rightarrow C \vdash D} L \Rightarrow_2$$

$$PT_{L \Rightarrow_2}(f^{(A \Rightarrow B \Rightarrow C) \Rightarrow D}) = g^{A \times B \Rightarrow C} \Rightarrow f(x^A \Rightarrow y^B \Rightarrow g(x, y))$$

Verify that we can indeed produce PTs for every rule of LJT

Proof search example II: deriving code

Once a proof tree is found, start from leaves and apply PTs

- For each sequent S_i , this will derive a **proof expression** t_i
- Example: to prove S_0 , start from S_6 backwards:

$$S_{6}: (R \Rightarrow R) \Rightarrow Q; R \vdash R \quad (axiom Id) \quad t_{6}(rrq, r) = r$$

$$S_{2}: (R \Rightarrow R) \Rightarrow Q \vdash (R \Rightarrow R) \quad \mathsf{PT}_{R \Rightarrow}(t_{6}) \quad t_{2}(rrq) = (r \Rightarrow t_{6}(rrq, r))$$

$$S_{3}: Q \vdash Q \quad (axiom Id) \quad t_{3}(q) = q$$

$$S_{1}: (R \Rightarrow R) \Rightarrow Q \vdash Q \quad \mathsf{PT}_{L \Rightarrow}(t_{2}, t_{3}) \quad t_{1}(rrq) = t_{3}(rrq(t_{2}(rrq)))$$

$$S_{0}: \emptyset \vdash ((R \Rightarrow R) \Rightarrow Q) \Rightarrow Q \quad \mathsf{PT}_{R \Rightarrow}(t_{1}) \quad t_{0} = (rrq \Rightarrow t_{1}(rrq))$$

• The proof expression for S_0 is then obtained as

$$t_0 = rrq \Rightarrow t_3 (rrq (t_2 (rrq))) = rrq \Rightarrow rrq (r \Rightarrow t_6 (rrq, r))$$

= $rrq \Rightarrow rrq (r \Rightarrow r)$

Simplified final code having the required type:

$$t_0: ((R \Rightarrow R) \Rightarrow Q) \Rightarrow Q = (rrq \Rightarrow rrq (r \Rightarrow r))$$

Type isomorphisms I: identities

Using known properties of propositional logic and arithmetic

Are A + B, $A \times B$ more like logic $(A \vee B, A \wedge B)$ or like arithmetic?

• Some standard identities in logic ($\forall A \forall B \forall C$ is assumed):

$$A \times 1 = A; \quad A \times B = B \times A$$

$$A \vee 1 = 1; \quad A + B = B + A$$

$$(A \times B) \times C = A \times (B \times C); \quad A \vee (B \times C) = (A \vee B) \times (A \vee C)$$

$$(A + B) + C = A + (B + C); \quad A \times (B + C) = (A \times B) + (A \times C)$$

$$(A \times B) \Rightarrow C = A \Rightarrow (B \Rightarrow C)$$

$$A \Rightarrow (B \times C) = (A \Rightarrow B) \times (A \Rightarrow C)$$

$$(A + B) \Rightarrow C = (A \Rightarrow C) \times (B \Rightarrow C)$$

- Each identity means 2 function types: X = Y is $X \Rightarrow Y$ and $Y \Rightarrow X$
 - ▶ These functions exist and convert values between types X and Y
 - ▶ Do these functions express *equivalence* of the types X and Y?

Type isomorphisms II

- Types A and B are isomorphic, $A \equiv B$, if there is a 1-to-1 correspondence between the sets of values of these types
 - ▶ Need to find two functions $f: A \Rightarrow B$ and $g: B \Rightarrow A$ such that $f \circ g = id$ and $g \circ f = id$

Example 1: Is $\forall A: A \times 1 \equiv A$? Types in Scala: (A, Unit) and A

• Two functions with types $\forall A : A \times 1 \Rightarrow A \text{ and } \forall A : A \Rightarrow A \times 1$:

```
def f1[A]: ((A, Unit)) \Rightarrow A = { case (a, ()) \Rightarrow a } def f2[A]: A \Rightarrow (A, Unit) = a \Rightarrow (a, ())
```

Verify that their compositions equal identity

Example 2: Is $\forall A: 1+A \equiv 1$? (The formula $\forall A: A \lor 1=1$ is a theorem!)

- Types in Scala: Option[A] and Unit
 - These types are obviously not equivalent

Some logic identities yield isomorphisms of types

• Which ones do not yield isomorphisms, and why?

Type isomorphisms III

Verifying type equivalence by implementing isomorphisms

• Need to verify that $f_1 \circ f_2 = id$ and $f_2 \circ f_1 = id$

Example 3:
$$\forall A \forall B \forall C : (A \times B) \times C \equiv A \times (B \times C)$$

def f1[A,B,C]: (((A, B), C))
$$\Rightarrow$$
 (A, (B, C)) = ???
def f2[A,B,C]: ((A, (B, C))) \Rightarrow ((A, B), C) = ???

Example 4:
$$\forall A \forall B \forall C : (A + B) \times C \equiv A \times C + B \times C$$

def f1[A,B,C]: ((Either[A,B], C))
$$\Rightarrow$$
 Either[(A,C), (B,C)] = ??? def f2[A,B,C]: Either[(A,C), (B,C)] \Rightarrow (Either[A, B], C) = ???

Example 5:
$$\forall A \forall B \forall C : (A + B) \Rightarrow C \equiv (A \Rightarrow C) \times (B \Rightarrow C)$$

def f1[A,B,C]: (Either[A, B]
$$\Rightarrow$$
 C) \Rightarrow (A \Rightarrow C, B \Rightarrow C) = ???? def f2[A,B,C]: ((A \Rightarrow C, B \Rightarrow C)) \Rightarrow Either[A, B] \Rightarrow C = ???

Example 6:
$$\forall A \forall B \forall C : A + B \times C \not\equiv (A + B) \times (A + C)$$
 – "information loss"

def f1[A,B,C]: Either[A,(B,C)]
$$\Rightarrow$$
 (Either[A,B],Either[A,C]) = ???? def f2[A,B,C]: ((Either[A,B],Either[A,C])) \Rightarrow Either[A,(B,C)] = ???

Type isomorphisms IV

Logical CH vs. arithmetical CH

- WLOG consider types A, B, ... that have *finite* sets of possible values
 - ▶ Sum type A + B (size |A| + |B|) provides a disjoint union of sets
 - ▶ Product type $A \times B$ (size $|A| \cdot |B|$) provides a Cartesian product of sets
 - * Have identities (a + b) + c = a + (b + c), $(a \times b) \times c = a \times (b \times c)$, $1 \times a = a$, $(a + b) \times c = a \times c + b \times c$, ... as in "school-level" algebra
 - ▶ Function type $A \Rightarrow B$ provides the set of all maps between sets
 - ★ The size of $A \Rightarrow B$ is $|B|^{|A|}$
 - * Have identities $a^c \times b^c = (a \times b)^c$, $a^{b+c} = a^b \times a^c$, $a^{b \times c} = (a^b)^c$
- If the set size (cardinality) differs, A and B cannot be equivalent

The meaning of the type/logic/arithmetic correspondence:

- Arithmetical identities signify type equivalence (isomorphism)
- Logic identities only signify equal implementability of types

Reasoning about types is *school-level algebra* with polynomials and powers

- Exp-polynomial expressions: constants, sums, products, exponentials
 - exp-poly types: primitive types, disjunctions, tuples, functions
 - polynomial types are commonly called "algebraic types"

Making practical use of the CH correspondence I

Implications for actually writing code

What can we do now?

- Given a fully parametric type, decide whether it can be implemented in code ("type is inhabited")
- Let the computer generate the code from type when possible
 - ▶ This is often (not always) possible for fully type-parametric functions
- Decide type isomorphisms using the "arithmetical CH"
- Isomorphically transform types using school-level algebra

What problems cannot be solved with these tools?

- Automatically generate code satisfying properties (e.g. isomorphism)
- Express complicated conditions via types (e.g. "array is sorted")
- Generate code using type constructors with properties (e.g. map)
 - Scala type signature: (x: List[A]).map[B](f: A ⇒ B): List[B]
 - ▶ This formula has a quantifier *inside*: List^A \Rightarrow ($\forall B : f^{A \Rightarrow B} \Rightarrow \text{List}^B$)
 - ► This requires **first-order logic**, which is generally *undecidable* (no algorithm can guarantee finding a proof or showing its absence)

Some caveats

- The CH correspondence becomes informative only with parameterized types. For concrete types, e.g. Int, we can always produce *some* value even with no previous data, so $\mathcal{CH}(\operatorname{Int})$ is always true.
- Functions such as $(x: Int) \Rightarrow x + 1$ have type $Int \Rightarrow Int$, and the type signature is insufficient to specify the code. Only for fully type-parametric functions the type signature can be, in some cases, informative enough for deriving the code automatically.
- Having an arithmetic identity does not guarantee that we have a type equivalence via CH (it is a necessary but not a sufficient condition); but it does yield a type equivalence in all cases I looked at so far.
- Scala's type Nothing and Haskell's type Void correspond to the logical constant False; but the practical uses of False are extremely limited.
- We did not talk about the logical negation because it is defined as $\neg A \equiv A \Rightarrow False$ and its practical use is as limited as that of False.

Making practical use of the CH correspondence II

Implications for designing new programming languages

- The CH correspondence maps the type system of each programming language into a certain system of logical propositions
- Scala, Haskell, OCaml, F#, Swift, Rust, etc. are mapped into the full constructive logic (all logical operations are available)
 - C, C++, Java, C#, etc. are mapped to incomplete logics without "or" and without "true" / "false"
 - ▶ Python, JavaScript, Ruby, Clojure, etc. have only one type ("any value") and are mapped to logics with only one proposition
- The CH correspondence is a principle for designing type systems:
 - Choose a complete logic, free of inconsistency
 - Mathematicians have studied all kinds of logics and determined which ones are interesting, and found the minimal sets of axioms for them
 - ★ Modal logic, temporal logic, linear logic, etc.
 - ▶ Provide easy type constructions for basic operations (e.g. "or", "and")
 - ★ There should be a type for every logical formula and vice versa
 - ★ There should be a code construct for each rule of the logic