Econométrie TP5

> Patrick Waelbroeck

Graphiqu

Lag

Autocorrélation

GLS

distribue

Cranger

Econométrie TP5

Séries temporelles

Patrick Waelbroeck

Telecom Paris

March 6, 2020

On utilise la base de données intdef.raw.

Graphique Lag

Autocorrélation

Exercice 1

Représenter graphiquement les séries i3, inf et def en fonction de l'année. Disctuer la stationnarité

df = pd.read_csv('intdef.raw', delim_whitespace=True, header=None)

```
year=df[0]
i3=df[1]
plt.plot(year, i3)
inf=df[2]
plt.plot(year,inf)
deficit=df[5]
plt.plot(year,deficit)
```


Graphic

Autocorrélation

Autocorrelat

GLS

Délais distribu

distribu

Grang

Exercice 2

Estimer le modèle y(t)=i3(t) en fonction d'une constante, de def(t-1) et inf(t-1)

Exercice à faire en deux étapes. Première étape, construire def(t-1) et inf(t-1). Pour cacluler les lags, on peut utiliser la fonction $\mathtt{shit}(-1)$ de panda, mais je ne le recommande pas, car on ne traite pas les valeurs manquantes de manière explicite. Deuxième étape : construire y(t)=i3(t) et X(t).

Attention aux indices et aux dimensions des array.

Remarque : on perd la première observation (normal, puisqu'on utilise une valeur laggée).

```
n=len(inf)
inf_1=inf[0:n-1]
def_1=deficit[0:n-1]
y=i3[1:n]
const=np.ones(n-1)
X=np.column_stack((const, inf_1,def_1))
```

```
Patrick
Wael-
broeck
```

Graphiq

Autocorrélation

Autocorrelatio

GLS

distribu

distribu

Causalit

model=sm.OLS(y,X)
results = model.fit()
print(results.summary())

Attention le nombre d'observation est 55.

Remarque : il s'agit d'une équation d'un système Vector Auto Regression (VAR) en supposant que les valeurs passées de *i*3 n'influence pas sa valeur actuelle. On peut tester cette hypothèse (voir plus loin).

Patrick Waelbroeck

Graphio

Lag

Autocorrélation

GLS

Délais

distribu

Grange

Dep. Variable: R-squared: 0.594 0.578 Model: OLS Adj. R-squared: Method: Least Squares F-statistic: 38.03 Date: Fri, 06 Mar 2020 Prob (F-statistic): 6.67e-11 09:48:57 Log-Likelihood: Time: -110.27 No. Observations: 55 AIC: 226.5 Df Residuals: 52 BTC: 232.6 Df Model: Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]				
const	1.8930	0.435	4.356	0.000	1.021	2.765				
x1	0.5672	0.083	6.865	0.000	0.401	0.733				
x2	0.5521	0.120	4.616	0.000	0.312	0.792				
Omnibus:		2.6	40 Durbin	-Watson:		0.812				
Prob(Omnibus):		0.2	0.267 Jarque-Bera (JB			2.043				
Skew:		-0.3	-0.317 Prob(JB):			0.360				
Kurtosis:		2.3	00 Cond.	No.		9.27				

Graphic

Lag

Autocorrélation

GLS

Délais distribu

distribu

Grang

Exercice 3

Tester l'autocorrélation des erreurs en testant l'hypothèse

 $H_0: \rho = 0$

dans l'équation u(t)=
ho u(t-1)+
u

ON récupère les erreurs on on construit la variable u(t-1). Attention : on perd à nouveau une observation !

```
u=results.resid
n=len(u)
u_1=u[0:n-1]
const=np.ones(n-1)
X=np.column_stack((const, u_1))
X=X[:,1]
y=u[1:n]
model=sm.OLS(y,X)
results1 = model.fit()
print(results1.summary())
```

p=0.0. On rejette l'hypothèse H_0 à 1%.

Patrick Waelbroeck

Graphio

Lag

Autocorrélation

GLS

distribu

distribu

Granger

	OLS F	tegression Result:	s		
Dep. Variable:	У	R-squared (unc	entered):		0.332
Model:			(uncentered):		0.319
Method:		F-statistic:			26.32
Date: Fri, 06 Mar 2020			tic):	4.20e-06	
Time:	10:34:49				-96.613
No. Observations:	54				195.2
Df Residuals:	53	BIC:			197.2
Df Model:	1				
Covariance Type:	nonrobust				
c	coef std err	t P> t	[0.025	0.975]	
4 0.5	700 0 440	F 400	0.040	0.700	
x1 0.5	738 0.112	5.130 0.000	0.349	0.798	
Omnibus:	2.025	Doubin Ustra		1 400	
		Durbin-Watson:	2	1.489	
Prob(Omnibus):	0.363		8):	1.963	
Skew:		Prob(JB):		0.375	
Kurtosis:	2.535	Cond. No.		1.00	

Graphiqu Lag

Autocorrélation

GLS

Delais

distribu

Grange

Exercice 4

Utiliser la transformation $y(t) - \rho y(t-1)$ et $X_k(t) - \rho X_k(t-1)$

rho=results1.params[0]

Attention aux indices sous Python.

```
Econométrie
TP5
```

Patrick Waelbroeck

Graphic

Autocorrélation

710000110101

GLS

Délais distribués

Carralia

Grange

```
Exercice 5
```

Introduire inf(t-2) et def(t-2) dans le modèle de l'exercice 2. Représentez les délais distribués

```
n=len(i3)
y=i3[2:n]
inf_1=inf[1:n-1]
inf_2=inf[0:n-2]
def_1=deficit[1:n-1]
def_2=deficit[0:n-2]
const=np.ones(n-2)
X=np.column_stack((const, inf_1,inf_2,def_1,def_2))
model=sm.OLS(y,X)
results = model.fit()
print(results.summary())
d_inf=(results.params[1], results.params[2])
x=(1,2)
plt.bar(x,d_inf)
```

Graphiq

Lag

Autocorrélation

Délais

distribu

Causalité Granger

Exercice 6

Test l'hypothèse de causalité de Granger de l'effet de l'inflation sur i3.

Résultat pour la statistique de Fisher et la p-value :

F=25.069

On rejette l'hypothèse $H_0(p < 0.01)$.