вариант	факултетен номер	група	курс	специалност
1				СИ
Име:				

Първо контролно по ДС1 02.12.2017

Зад. 1. а) (1.5 т.) Нека $Y, X_0, X_1, \dots, X_n, \dots$ са произволни множества. Докажете, че

$$\mathcal{P}\Big(\bigcap_{i=0}^{\infty} X_i\Big) \setminus \mathcal{P}(Y) = \Big(\bigcap_{i=0}^{\infty} \mathcal{P}(X_i)\Big) \setminus \mathcal{P}(Y);$$

б) (0.25 т.) Намерете множеството $\mathcal{P}(\mathcal{P}(\emptyset) \times A)$, където

$$A = ((\{\emptyset, 2, 3\} \setminus \{2, 3, 4\}) \cap (\{2, 3, 4\} \setminus \{\emptyset, 2, 3\})).$$

Зад. 2. Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията R в A, където:

- а) (0.25 т.) $A = \mathbb{N}$ и $R = \emptyset$;
- б) (0.25 т.) $A = \mathbb{N}$ и $R = A \times A$;
- в) $(0.25 \text{ т.}) A = \{0,1\}$ и $R = \{(0,1)\};$
- г) $(0.25 \text{ т.}) A = \{0,1\}$ и $R = \{(0,0),(1,1)\};$
- д) (1.25 т.) $A = \{a+bi \mid a,b \in \mathbb{Z}\} \setminus \{0\}$ и R е релацията в A, определена чрез:

$$xRy\iff (\exists p\in\mathbb{Z})[x=py$$
 или $xy=p].$

Обосновете отговора си. Като следствие определете дали R е частична наредба или релация на еквивалентност.

Зад. 3. (1 т.) Намерете редицата $\{a_n\}_{n\in\mathbb{N}}$, удовлетворяваща рекурентната зависимост:

$$a_{n+1} = 3a_n + 2^n + 5,$$

и началното условие $a_0 = 0$.

оценка = 1 + точки

вариант	факултетен номер	група	курс	специалност
1				СИ
Име:				

Първо контролно по ДС1 02.12.2017

Зад. 1. а) (1.5 т.) Нека $Y, X_0, X_1, \ldots, X_n, \ldots$ са произволни множества. Докажете, че

$$\mathcal{P}\Big(\bigcap_{i=0}^{\infty} X_i\Big) \setminus \mathcal{P}(Y) = \Big(\bigcap_{i=0}^{\infty} \mathcal{P}(X_i)\Big) \setminus \mathcal{P}(Y);$$

б) (0.25 т.) Намерете множеството $\mathcal{P}(\mathcal{P}(\emptyset) \times A)$, където

$$A = ((\{\emptyset, 2, 3\} \setminus \{2, 3, 4\}) \cap (\{2, 3, 4\} \setminus \{\emptyset, 2, 3\}))$$

Зад. 2. Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията R в A, където:

- а) (0.25 т.) $A = \mathbb{N}$ и $R = \emptyset$;
- б) (0.25 т.) $A=\mathbb{N}$ и $R=A\times A;$
- в) $(0.25 \text{ т.}) A = \{0,1\}$ и $R = \{(0,1)\};$
- г) $(0.25 \text{ т.}) \ A = \{0,1\}$ и $R = \{(0,0),(1,1)\};$
- д) (1.25 т.) $A = \{a+bi \mid a,b \in \mathbb{Z}\} \setminus \{0\}$ и R е релацията в A, определена чрез:

$$xRy\iff (\exists p\in\mathbb{Z})[x=py$$
 или $xy=p].$

Обосновете отговора си. Като следствие определете дали R е частична наредба или релация на еквивалентност.

Зад. 3. (1 т.) Намерете редицата $\{a_n\}_{n\in\mathbb{N}}$, удовлетворяваща рекурентната зависимост:

$$a_{n+1} = 3a_n + 2^n + 5,$$

и началното условие $a_0 = 0$.

оценка = 1 + точки

вариант	факултетен номер	група	курс	специалност
2				СИ
Име:				

Първо контролно по ДС1 02.12.2017

Зад. 1. а) (1.5 т.) Нека $Y, X_0, X_1, \dots, X_n, \dots$ са произволни множества. Докажете, че

$$\mathcal{P}\Big(\bigcap_{i=0}^{\infty}X_i\Big)\cup\mathcal{P}(Y)=\Big(\bigcap_{i=0}^{\infty}\mathcal{P}(X_i)\Big)\cup\mathcal{P}(Y);$$

б) (0.25 т.) Намерете множеството $\mathcal{P}(A \times \mathcal{P}(\emptyset))$, където

$$A = ((\{1, 2, 3\} \setminus \{2, 3, \emptyset\}) \cap (\{2, 3, \emptyset\} \setminus \{1, 2, 3\})).$$

Зад. 2. Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията R в A, където:

- а) (0.25 т.) $A = \emptyset$ и $R = \emptyset$;
- б) (0.25 т.) $A = P(\mathbb{N})$ и $R = A \times A$;
- в) (0.25 т.) $A = \{0, 1\}$ и $R = \{(1, 0)\};$
- г) $(0.25 \text{ т.}) A = \{0,1\}$ и $R = \{(0,1),(1,0)\};$
- д) (1.25 т.) $A=\{a+b\sqrt{2}\mid a,b\in\mathbb{Z}\}\setminus\{0\}$ и R е релацията в A, определена чрез:

$$xRy \iff (\exists p \in \mathbb{Z})[y = px$$
 или $xy = p].$

Обосновете отговора си. Като следствие определете дали R е частична наредба или релация на еквивалентност.

Зад. 3. (1 т.) Намерете редицата $\{a_n\}_{n\in\mathbb{N}}$, удовлетворяваща рекурентната зависимост:

$$a_{n+1} = 2a_n + 3^n + 5,$$

и началното условие $a_0 = 0$.

оценка = 1 + точки

вариант	факултетен номер	група	курс	специалност
2				СИ
Име:				

Първо контролно по ДС1 02.12.2017

Зад. 1. а) (1.5 т.) Нека $Y, X_0, X_1, \ldots, X_n, \ldots$ са произволни множества. Локажете, че

$$\mathcal{P}\Big(\bigcap_{i=0}^{\infty} X_i\Big) \cup \mathcal{P}(Y) = \Big(\bigcap_{i=0}^{\infty} \mathcal{P}(X_i)\Big) \cup \mathcal{P}(Y);$$

б) (0.25 т.) Намерете множеството $\mathcal{P}(A \times \mathcal{P}(\emptyset))$, където

$$A = ((\{1, 2, 3\} \setminus \{2, 3, \emptyset\}) \cap (\{2, 3, \emptyset\} \setminus \{1, 2, 3\}))$$

Зад. 2. Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията R в A, където:

- а) (0.25 т.) $A = \emptyset$ и $R = \emptyset$;
- б) (0.25 т.) $A=P(\mathbb{N})$ и $R=A\times A;$
- в) $(0.25 \text{ т.}) A = \{0,1\}$ и $R = \{(1,0)\};$
- г) (0.25 т.) $A = \{0,1\}$ и $R = \{(0,1),(1,0)\};$
- д) (1.25 т.) $A = \{a+b\sqrt{2} \mid a,b\in\mathbb{Z}\}\setminus\{0\}$ и R е релацията в A, определена чрез:

$$xRy \iff (\exists p \in \mathbb{Z})[y = px$$
 или $xy = p].$

Обосновете отговора си. Като следствие определете дали R е частична наредба или релация на еквивалентност.

Зад. 3. (1 т.) Намерете редицата $\{a_n\}_{n\in\mathbb{N}}$, удовлетворяваща рекурентната зависимост:

$$a_{n+1} = 2a_n + 3^n + 5,$$

и началното условие $a_0 = 0$.

оценка = 1 + точки