Prediction of Mycotoxin Levels in Corn using CNN on Hyperspectral Imaging Data

Abinesh

March 2025

Abstract

This report presents an approach to predicting mycotoxin (vomitoxin) levels in corn using hyperspectral imaging and deep learning. A Convolutional Neural Network (CNN) was designed and optimized for processing hyperspectral data. We detail data preprocessing, dimensionality reduction using PCA, and model evaluation, achieving an R² score of 0.9442.

1 Introduction

Mycotoxins, particularly deoxynivalenol (DON), pose health risks in food products. Hyperspectral imaging provides a non-destructive method for detecting contamination. This project leverages deep learning to develop a predictive model based on hyperspectral reflectance data.

2 Methodology

2.1 Dataset and Preprocessing

- Features: Spectral reflectance values across 448 bands.
- Target Variable: DON concentration (continuous value).
- Standardized data using StandardScaler.
- Principal Component Analysis (PCA) reduced dimensions to 30 components.
- 80-20 train-test split applied.

2.2 Model Development

The model architecture comprises:

- Conv1D Layers: 128, 64, and 32 filters.
- Kernel Sizes: 9, 5, and 3.
- Regularization: Batch Normalization and Dropout.

• Optimizer: Adam with learning rate 0.0003.

• Trained for 200 epochs, batch size of 8.

3 Results and Discussion

The final model achieved:

• RMSE: 3948.47

• R² Score: 0.9442

Figure 1: Predicted vs. Actual DON Concentration

Future improvements include hybrid models (CNN+LSTM) and attention mechanisms for enhanced feature extraction.

4 Conclusion

This project successfully demonstrates the application of CNNs for predicting mycotoxin levels in corn using hyperspectral imaging. Further research could explore alternative architectures and domain adaptation techniques.

5 References

- Hyperspectral Imaging in Food Analysis Journal of Food Quality
- Deep Learning for Spectral Data Processing IEEE Transactions on AI