

分析学基础

作者: 邹文杰

组织:无

时间:September 2, 2025

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

目录

第一章	章 实数基本定理与上下极限	1
1.1	1 实数基本定理	1
	1.1.1 定理介绍	1
	1.1.2 综合应用	1
1.2	2 上下极限	5
第二章	章 极限与渐近分析方法	9
	1 基本的渐进估计与求极限方法	9
	2.1.1 基本极限计算	9
	2.1.1.1 基本想法	9
	2.1.1.2 带 ln 的极限计算	
	2.1.1.3 幂指函数的极限问题	
	2.1.1.4 拟合法求极限	
	2.1.2 Taylor 公式	
	2.1.2.1 直接利用 Taylor 公式计算极限	
	2.1.3 利用 Lagrange 中值定理求极限	
	2.1.4 L'Hospital'rules	19
	2.1.5 与方程的根有关的渐近估计	
	2.1.5.1 可以解出 n 的类型	27
	2.1.5.2 迭代方法	28
2.2	2 估计和式的常用方法	
	2.2.1 和式放缩成积分	29
	2.2.2 强行替换 (拟合法) 和凑定积分	30
	2.2.3 和式内部对 n 可求极限 (极限号与求和号可换序)	31
	2.2.4 利用 Taylor 公式计算和式极限 (和式内部 n,k 不同阶)	33
	2.2.5 分段估计 (Toeplitz 定理)	36
	2.2.6 Euler-Maclaurin 公式 (E-M 公式)	41
2.3	3 Stirling 公式	50
2.4	4 Abel 变换	52
2.5	5 Stolz 定理	53
	2.5.1 数列 Stolz 定理	53
	2.5.1.1 利用 Stolz 定理求数列极限	56
	2.5.1.2 利用 Stolz 定理求抽象数列极限	60
	2.5.2 函数 Stolz 定理	65
2.6	5 递推数列求极限和估阶	69
	2.6.1 "折线图 (蛛网图)"分析法 (图未完成, 但已学会)	69
	2.6.2 单调性分析法	71
	2.6.3 利用上下极限求递推数列极限	73
	2.6.4 类递增/类递减递推数列	75
	2.6.5 压缩映像	80
	2.6.6 利用不等放缩求递推数列极限	83

	2.6.7 可求通项和强求通项	
	2.6.7.1 三角换元求通项	
	2.6.8 直接求通项公式法	
	2.6.8.1 凑出可求通项的递推数列	
	2.6.8.2 直接凑出通项	
	2.6.8.3 凑裂项	
	2.6.8.4 母函数法求通项	
	2.6.8.5 强求通项和强行裂项	91
	2.6.9 递推数列综合问题	
2.7	分部积分	04
2.8	Laplace 方法	06
2.9	Riemann 引理	22
2.10	极限问题综合 1	28
第三章	函数与微分 1	39
3.1	基本定理	39
3.2	微分学计算	39
	3.2.1 单变量微分学计算 1	39
		46
	Hermite 插值定理	
4.2	函数构造类	
	4.2.1 单中值点问题 (一阶构造类)	
	4.2.2 多中值点问题	54
	4.2.3 只能猜的类型	55
4.3	中值极限问题	56
4.4	性态分析类	57
4.5	微分不等式问题	63
	4.5.1 一阶/二阶构造类 1	63
	4.5.2 双绝对值问题	65
	4.5.3 极值原理	67
笋玉音	函数性态分析 1	69
	基本性 态分析模型	
	函数方程	
	函数刀柱····································	
3.3		
	5.3.1 凸函数	
	5.3.2 上半连续函数	
	一致连续	
	函数列极限	
	更弱定义的导数	
5.7	逼近方法	
	5.7.1 Bernstein 多项式	
	5.7.2 可积函数的逼近	
	5.7.3 齐次微分不等式问题 2	17
5.8	函数性态分析综合	19

第六章	反常积分	232
6.1	反常积分敛散性判别	232
6.2	反常积分收敛抽象问题	248
		255
	著名积分不等式	
7.2	积分不等式的应用	
7.3	重积分方法	
7.4	直接求导法	272
7.5	凸性相关题型	276
7.6	数值比较类	277
7.7	Fourier 积分不等式	279
7.8	其他	281
笋八辛	积分计算	307
	不定积分计算	
0.1	8.1.1 直接猜原函数	
	8.1.1 直接循原函数	
0.2	· · · · · · · · · · · · · · · · · · ·	
8.2	定积分	
	8.2.1 建立积分递推	
	8.2.2 区间再现	
	8.2.3 Frullani(傅汝兰尼) 积分	
	8.2.4 化成多元累次积分 (换序)	
	8.2.5 化成含参积分 (求导)	
	8.2.6 级数展开方法	
	8.2.7 重积分计算	
	8.2.8 其他	
	含参量积分	
8.4	Euler 积分	331
第九章	仍 <i>为</i>	332
	30.00	
9.1	9.1.1 级数的敛散性	
	9.1.1 级数的数似性	
0.2	9.1.3 Cauchy 积	
9.2	具体级数敛散性判断	
	9.2.1 估阶法	
	9.2.2 带对数换底法	
	9.2.3 Taylor 公式法	
	9.2.4 分组判别法	
	9.2.5 杂题	
9.3	级数计算	
	9.3.1 裂项方法	
	9.3.2 凑已知函数	
	9.3.3 生成函数和幂级数计算方法	363
	9.3.4 多重求和	366

	目录
9.3.5 级数特殊算法 (换序法)	
9.5 级数证明	
第十章 Fourier 级数 10.1 Fourier 级数及基本性质	397
第十一章 多元函数 11.1 多元函数的连续性和微分	
第十二章 无理数初步	410
第十三章 求和与求积符号 13.1 求和符号	411 415
第十四章 未分类习题 14.1 杂题	418 418
附录 A 常用公式 A.1 常用 Taylor 级数	428
A.Z.1 个风吹刀	44ZC

A.2.2 定积分429A.3 常用初等不等式430A.4 重要不等式430A.5 基本组合学公式435A.6 三角函数相关436A.6.1 三角函数436A.6.2 反三角函数437A.6.3 双曲三角函数438

440

附录 B 小技巧

第一章 实数基本定理与上下极限

1.1 实数基本定理

1.1.1 定理介绍

定理 1.1 (实数基本定理)

- 1. 确界存在定理: 有上界的非空数集一定有上确界.
- 2. 单调有界原理: 单调有界数列一定收敛.
- 3. 柯西收敛准则: 数列 $\{x_n\}$ 收敛当且仅当任意 $\varepsilon > 0$, 存在 N 使得任意 m,n > N 都有 $|x_m x_n| < \varepsilon$.
- 4. 闭区间套定理: 闭区间套 $I_n = [a_n, b_n]$ 满足 $I_{n+1} \subset I_n$ 并且 $\lim_{n \to \infty} (a_n b_n) = 0$, 则存在唯一的 ξ , 使得 ξ 属于每一个 I_n .
- 5. 聚点定理: 有界数列必有收敛子列.
- 6. 有限覆盖定理: 有界闭集的任意一族开覆盖, 都存在有限子覆盖.

定义 1.1 (点集相关概念)

- 1. 如果存在 r > 0 使得 $(a r, a + r) \subset A$, 则称 a 是集合 A 的内点 (高维改为开球即可).
- 2. 如果一个集合 A 中的每一个点都是内点, 则称 A 是开集.
- 3. 如果集合 A 中的任意一个收敛序列 x_n 的极限点 x, 都有 $x \in A$, 则称 A 是闭集.
- 4. 设 $B \subset A$, 如果对任意 r > 0 和任意 $x \in A$, 都有 $(x r, x + r) \cap B \neq \emptyset$, 则称 B 在 A 中稠密.

1.1.2 综合应用

例题 1.1 设 f(x): $[0,1] \rightarrow [0,1]$ 单调递增且 f(0) > 0, f(1) < 1, 证明: 存在 x 使得 f(x) = x.

笔记 因为题目条件中的函数 f 只是一个实值函数,并没有其他更进一步的性质 (连续性、可微性、凸性等). 所以我们只能利用最基本的实数基本定理证明. 证明存在性,考虑反证法会更加简便.

注 f 并不是连续函数,不能用介值定理.

证明 (反证法) 假设对 $\forall x \in [0,1]$, 都有 $f(x) \neq x$. 将闭区间 [0,1] 记作 $[a_1,b_1]$, 且由条件可知 $f(a_1) > a_1,f(b_1) < b_1$. 令 $c_1 = \frac{a_1 + b_1}{2}$, 若 $f(c_1) > c_1$, 则取 $[a_2,b_2] = [c_1,b_1]$; 若 $f(c_1) < c_1$, 则取 $[a_2,b_2] = [a_1,c_1]$. 从而得到闭区间 $[a_2,b_2] \subset [a_1,b_1]$,并且 $f(a_2) > a_2,f(b_2) < b_2$. 以此类推,可得到一列闭区间 $\{[a_n,b_n]\}$,并且 $[a_n,b_n] \subset [a_{n+1},b_{n+1}],f(a_n) > a_n,f(b_n) < b_n,\forall n \in \mathbb{N}_+$.

根据闭区间套定理, 可知存在唯一 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, 且 $\xi \in [a_n, b_n]$, $\forall n \in \mathbb{N}_+$. 又由 f(x) 在 [0, 1] 上单调递增及 $f(a_n) > a_n$, $f(b_n) < b_n$, $\forall n \in \mathbb{N}_+$, 可知 $a_n < f(a_n) \leqslant f(\xi) \leqslant f(b_n) < b_n$. 令 $n \to \infty$ 可得 $\xi \leqslant f(\xi) \leqslant \xi$, 即 $f(\xi) = \xi$. 这与假设矛盾.

引理 1.1 (Lebesgue 数引理)

如果 $\{O_{\alpha}\}$ 是区间 [a,b] 的一个开覆盖,则存在一个正数 $\delta > 0$,使得对于区间 [a,b] 中的任何两个点 x',x'',只要 $|x'-x''| < \delta$,就存在开覆盖中的一个开区间,它覆盖 x',x''.(称这个数 δ 为开覆盖的 Lebesgue 数.)

管记 本题谢惠民上的证明是利用有限覆盖定理, 而 CMC 红宝书上通过直接构造出 δ 进行证明. 这里我们采用的是聚点定理进行证明.

证明 (反证法) 假设对 $\forall n \in \mathbb{N}_+$, 取 $\delta = \frac{1}{n} > 0$, 都存在相应的 $x_n, y_n \in [a, b]$ 且 $|x_n - y_n| < \delta$, 使得对 $\forall I \in \{O_\alpha\}$, 要 $\Delta x_n \notin I$, 要 $\Delta y_n \notin I$. 由聚点定理可知, 有界数列 $\{x_n\}$, $\{y_n\}$ 一定存在收敛子列. 设 $\{x_{n_k}\}$, $\{y_{m_k}\}$ 为相应的收敛子列, 则由 $|x_n - y_n| < \delta = \frac{1}{n}$, $\forall n \in \mathbb{N}_+$ 可知 x_{n_k} , y_{m_k} 收敛于同一个极限点. 故设 $\lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} y_{m_k} = x_0 \in [a, b]$.

因为 $\{O_{\alpha}\}$ 是区间 [a,b] 的一个开覆盖, 所以存在 $I_0 \in \{O_{\alpha}\}$, 使得 $x_0 \in I_0$. 又由于 I_0 是开集, 因此存在 $\eta > 0$, 使得 $(x_0 - \eta, x_0 + \eta) \subset I_0$. 从而由 $\lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} y_{m_k} = x_0 \in [a,b]$ 可知, 存在充分大的 K, 使得 $|x_{n_K} - x_0| < \eta$, $|y_{m_K} - x_0| < \eta$. 于是 x_{n_K} , $y_{m_K} \in (x_0 - \eta, x_0 + \eta) \subset I_0$. 即开区间 $I_0 \in \{O_{\alpha}\}$ 同时覆盖了 x_{n_K} , y_{m_K} 这两个点, 与假设矛盾.

注 注意对于两个收敛子列 $\{x_{n_k}\}$, $\{y_{m_k}\}$, 此时 $n_k = m_k$ 并不一定对 $\forall k \in \mathbb{N}_+$ 都成立, 即这两个收敛子列的指标集 $\{n_k\}_{k=1}^{\infty}$, $\{m_k\}_{k=1}^{\infty}$, 不相同也不一定有交集, 故无法利用聚点定理反复取子列的方法取到两个指标相同且同时收敛 的子列 $\{x_{n_k}\}_{k=1}^{\infty}$, $\{y_{n_k}\}_{k=1}^{\infty}$ (取 $\{x_n\}$ 为一个奇子列收敛, 偶子列发散的数列; 取 $\{y_n\}$ 为一个奇子列发散, 偶子列收敛的数列就能得到反例。).

例题 1.2

- 1. 设 f(x) 定义在 \mathbb{R} 中且对任意 x, 都存在与 x 有关的 r > 0, 使得 f(x) 在区间 (x r, x + r) 中为常值函数, 证明: f(x) 是常值函数.
- 2. 设 f(x) 是定义在 [a,b] 中的实值函数, 如果对任意 $x \in [a,b]$, 均存在 $\delta_x > 0$ 以及 M_x , 使得 $|f(y)| \leq M_x$, $\forall y \in (x \delta_x, x + \delta_x) \cap [a,b]$, 证明: f(x) 是有界的.
- 3. 设 f(x) 定义在 \mathbb{R} 上, 对任意 $x_0 \in \mathbb{R}$ 均存在与 x_0 有关的 $\delta > 0$, 使得 f(x) 在 $(x_0 \delta, x_0 + \delta)$ 是单调递增的, 证明: f 在整个 \mathbb{R} 上也是单调递增的.

证明

1. 证法一 (有限覆盖定理)(不建议使用):对任意 $x \in [a,b]$, 存在 $r_x > 0$ 使得 f(t) 在区间 $(x - r_x, x + r_x)$ 为常值函数,则 $\bigcup_{x \in [a,b]} (x - r_x, x + r_x) \supset [a,b]$, 故存在其中有限个区间 $(x_k - r_k, x_k + r_k)$, $1 \le k \le n$ 使得他们的并集包

含 [a, b].

直观来看只需要将这些区间"从小到大"排列,就可以依次推出每一个区间上都是相同的一个常值函数,但是所谓"从小到大"排列目前是无法准确定义的,所以这样说不清楚,优化如下:

方案 1: 选择其中个数尽可能少的区间,使得它们的并集可以覆盖 [a,b] 但是任意删去一个都不可以(这是能够准确定义的一个操作),此时区间具备性质 "任意一个不能被其余的并集盖住",接下来将这些区间按照左端点的大小关系来排序,去论证它们确实是如你所想的那样 "从小到大"排列的(关注右端点),进而得证.方案 2: 利用Lebesgue 数引理,将区间 [a,b] 分为有限个 $[a,a+\delta]$, $[a+\delta,a+2\delta]$,…,, $[a+n\delta,b]$,其中 δ 是Lebesgue 数.则每一个闭区间都可以被开覆盖中的某一个开区间覆盖住,于是分段常值函数,并且还能拼接起来,所以是常值函数.

证法二 (确界存在定理):(反证法) 假设存在 $a,b \in \mathbb{R}$, 使得 $f(a) \neq f(b)$. 构造数集

$$E = \{x \in [a, b] | f(t) = f(a), \forall t \in [a, x]\}.$$

从而 $E \neq \emptyset$ 且 $E \in [a,b]$. 于是由确界存在定理, 可知数集 E 存在上确界, 设 $x_0 = \sup E$.

如果 $f(a) \neq f(x_0)$, 则由条件可知, 存在 $r_0 > 0$, 使得 $f(t) = f(x_0)$, $\forall t \in (x_0 - r_0, x_0 + r_0)$. 由 $x_0 = \sup E$ 可知, 存在 $x_1 \in (x_0 - r_0, x_0)$ 且 $x_1 \in E$. 于是 f(t) = f(a), $\forall t \in [a, x_1]$. 从而 $f(t) = f(a) = f(x_0)$, $\forall t \in (x_0 - r_0, x_1)$. 这与 $f(x_0) \neq f(a)$ 矛盾.

如果 $f(a) = f(x_0)$, 则由条件可知, 存在 $r_1 > 0$, 使得 $f(t) = f(x_0) = f(a)$, $\forall t \in (x_0 - r_1, x_0 + r_1)$. 又由 $x_0 = \sup E$ 可知, 存在 $x_2 \in (x_0 - r_1, x_0)$ 且 $x_2 \in E$. 于是 f(t) = f(a), $\forall t \in [a, x_2]$. 进而对 $\forall t \in [a, x_2] \cup (x_0 - r_1, x_0 + \frac{r_1}{2}] = [a, x_0 + \frac{r_1}{2}]$, 有 f(t) = f(a). 从而 $x_0 + \frac{r_1}{2} \in E$, 这与 $x_0 = \sup E$ 矛盾. 故假设不成立,命题得证.

证法三 (闭区间套定理):(反证法) 假设存在 $a,b \in \mathbb{R}$, 使得 $f(a) \neq f(b)$. 不妨设 f(a) < f(b), 则记闭区间 $[a,b] = [a_1,b_1]$. 若 $f(\frac{a_1+b_1}{2}) > f(a_1)$, 则记闭区间 $[a_1,\frac{a_1+b_1}{2}] = [a_2,b_2]$; 若 $f(\frac{a_1+b_1}{2}) < f(b_1)$, 则记闭区间 $[a_1,\frac{a_1+b_1}{2}] = [a_2,b_2]$; 若 $f(\frac{a_1+b_1}{2}) < f(b_1)$, 则记闭区间 $[a_1,b_1]$, 满足 $[a_n,b_n] \subset [a_{n+1},b_{n+1}]$, $f(a_n) < f(b_n)$, $\forall n \in \mathbb{N}_+$. 由闭区间套定理,可知存在唯一 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$,且 $\xi \in [a_n,b_n]$. 又由条件可知,存在

r > 0, 使得 $f(t) = f(\xi), \forall t \in (\xi - r, \xi + r)$. 从而存在充分大的 $N \in \mathbb{N}_+$, 使得 $|a_N - \xi| < r, |b_N - \xi| < r$, 即 $a_N, b_N \in (\xi - r, \xi + r)$. 于是 $f(a_N) = f(b_N)$, 这与 $f(a_N) < f(b_N)$ 矛盾.

- 2. (聚点定理):(反证法) 假设 f(x) 在 [a,b] 上无界,则对 $\forall n > 0$,都存在 $x_n \in [a,b]$,使得 $|f(x_n)| > n$. 从而得到一个有界数列 $\{x_n\}$. 由聚点定理,可知其存在收敛子列 $\{x_{n_k}\}$,设 $\lim_{k \to \infty} x_{n_k} = x_0$. 由条件可知,存在 $\delta_{x_0} > 0$ 以及 M_{x_0} ,使得 $|f(y)| \leq M_{x_0}$, $\forall y \in (x_0 \delta_{x_0}, x_0 + \delta_{x_0})$. 又由 $\lim_{k \to \infty} x_{n_k} = x_0$ 可知,存在 $K > M_{x_0}$,使得 $|x_{n_K} x_0| < \delta_{x_0}$,即 $x_{n_K} \in (x_0 \delta_{x_0}, x_0 + \delta_{x_0})$. 于是 $|f(x_{n_K})| \leq M_{x_0}$. 而 $|f(x_{n_K})| > n_K \geq K > M_{x_0}$ 矛盾.
- 3. (闭区间套定理):(反证法) 假设存在 $a,b \in \mathbb{R}$, 使得 $f(a) \geqslant f(b)$. 记闭区间 $[a,b] = [a_1,b_1]$, 若 $f\left(\frac{a_1+b_1}{2}\right) \leqslant f(a_1)$, 则记闭区间 $\left[a_1,\frac{a_1+b_1}{2}\right] = [a_2,b_2]$; 若 $f\left(\frac{a_1+b_1}{2}\right) \geqslant f(b_1)$, 则记闭区间 $\left[\frac{a_1+b_1}{2},b_1\right] = [a_2,b_2]$. 以此类推, 可以得到一列闭区间 $\{[a_n,b_n]\}$, 满足 $[a_n,b_n] \subset [a_{n+1},b_{n+1}]$, $f(a_n) \geqslant f(b_n)$, $\forall n \in \mathbb{N}_+$. 由闭区间 套定理, 可知存在唯一 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, 且 $\xi \in [a_n,b_n]$. 由条件可知, 存在 $\delta > 0$, 使得 f(x) 在区间 $(\xi \delta, \xi + \delta)$ 上单调递增. 又由 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ 可知, 存在 N > 0, 使得 $|a_N \xi| < \delta$, $|b_N \xi| < \delta$, 即 $a_N,b_N \in (\xi \delta,\xi + \delta)$, 且 $a_N < b_N$. 于是 $f(a_N) \leqslant f(b_N)$. 而 $f(a_N) \geqslant f(b_N)$, 这就产生了矛盾.

引理 1.2

设 f(x) 定义在区间 I 中,则 f(x) 的全体极值构成的集合是至多可数集.

证明 极值只有极大值和极小值,因此只要证明极大值全体与极小值全体都是至多可数的即可.

设 f(x) 的全体极小值构成的集合为 A,则

$$A = \{ f(x) | \exists \delta > 0, \forall t \in (x - \delta, x + \delta), f(t) \geqslant f(x) \}.$$

故对 $\forall y \in A$, 都存在 $x \in I$, 使得 y = f(x), 并且 $\exists \delta > 0$, $\forall t \in (x - \delta, x + \delta)$, $f(t) \geqslant f(x)$. 由有理数的稠密性可知, 存在 $r \in (x - \delta, x) \cap \mathbb{Q}$, $s \in (x, x + \delta) \cap \mathbb{Q}$. 从而 $(r, s) \subset (x - \delta, x + \delta)$, 于是对 $\forall t \in (r, s)$, 同样有 $f(t) \geqslant f(x)$.

再设全体有理开区间构成的集合为 B, 现在定义一个映射

$$\varphi: A \longrightarrow B; \quad y \longmapsto (r, s).$$

任取 $y_1, y_2 \in A$ 且 $y_1 \neq y_2$, 则存在 $x_1, x_2 \in I$, 使得 $f(x_1) = y_1, f(x_2) = y_2$. 假设 $\varphi(y_1) = \varphi(y_2) = (r_0, s_0)$, 则 对 $\forall t \in (r_0, s_0)$, 都有 $f(t) \geqslant y_1, y_2$. 于是 $y_1 = f(x_1) \geqslant y_2, y_2 = f(x_2) \geqslant y_1$, 从而 $y_1 = y_2$, 这产生了矛盾. 故 $\varphi(y_1) \neq \varphi(y_2)$, 因此 φ 是单射.

而由全体有理开区间构成的集合 B 是至多可数的, 因此 f(x) 的全体极小值构成的集合 A 也是至多可数的. 同理, f(x) 的全体极大值构成的集合也是至多可数的.

注 由全体有理开区间构成的集合 B 是可数集的原因:

构造一个映射

$$\phi: B \longrightarrow \mathbb{Q} \times \mathbb{Q}; \quad (r, s) \longmapsto (r, s).$$

显然 ϕ 是一个双射, 而 $\mathbb{Q} \times \mathbb{Q}$ 是可数集, 故 B 也是可数集.

例题 1.3 设 f(x) 在区间 I 中连续, 并且在每一点 $x \in I$ 处都取到极值, 证明: f(x) 是常值函数.

注 连续这一条件不可删去, 也不可减弱为至多在可数个点不连续. 反例: 考虑黎曼函数即可, 它处处取极值, 并且在有理点不连续, 无理点连续.

证明 证法一 (引理 1.2):(反证) 假设 f(x) 不是常值函数,则存在 $a,b \in I$,使得 $f(a) \neq f(b)$.由 f 的连续性及连续函数的介值性可知,f(x) 可以取到 f(a),f(b) 中的一切值.故 f(x) 的值域是不可数集 (区间都是不可数集).又由条件可知,f(x) 的值域就是由 f(x) 的全体极值构成的.于是根据引理 1.2可得,f(x) 的值域是至多可数集.这与 f(x) 的值域是不可数集矛盾.

证法二 (闭区间套定理):假设 f(x) 不是常值函数,则存在 $a_1,b_1 \in I$,使得 $f(a_1) \neq f(b_1)$. 不妨设 $f(a_1) < f(b_1)$. 因为 f 在 I 上连续,所以由介值定理可知,存在 $c_1 \in [a_1,b_1]$,使得 $f(a_1) < f(c_1) = \frac{f(a_1) + f(b_1)}{2} < f(b_1)$. 若 $b_1 - c_1 \leq \frac{b_1 - a_1}{2}$,则令 $[a_2,b_2] = [c_1,b_1]$;若 $c_1 - a_1 \leq \frac{b_1 - a_1}{2}$,则令 $[a_2,b_2] = [a_1,c_1]$. 无论哪种情况,都有

 $f(a_2) < f(b_2).$

在 $[a_2,b_2]$ 上重复上述操作, 并依次类推下去, 得到一列闭区间套 $\{[a_n,b_n]\}$ 满足

$$[a_n,b_n] \subset [a_{n+1},b_{n+1}], f(a_n) < f(b_n), \forall n \in \mathbb{N}_+.$$

由闭区间套定理可知, 存在唯一 $x_0 \in \bigcap_{n=1}^{\infty} [a_n, b_n]$, 使得 $x_0 = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$. 再由 f 的连续性以及 Heine 归结原则可知, $f(a_n)$ 严格递增收敛于 $f(x_0)$, $f(b_n)$ 严格递减收敛于 $f(x_0)$. 故 $f(a_n) < f(x_0) < f(b_n)$, $\forall n \in \mathbb{N}_+$. 因此对 $\forall \delta > 0$, 都存在 N > 0, 使得 $|a_N - x_0| < \delta$, $|b_N - x_0| < \delta$, 并且 $f(a_N) < f(x_0) < f(b_N)$. 从而 $x_0 \in I$ 不是 f(x) 的极值点, 这与 f 在 I 上处处取极值矛盾.

定理 1.2 (Baire 纲定理)

- 1. 设 $A_n \subset \mathbb{R}$ 是一列没有内点的闭集,则 $\bigcup_{n=1}^{\infty} A_n$ 也没有内点.
- 2. 设 $A_n \subset \mathbb{R}$ 是一列开集并且都在 \mathbb{R} 稠密, 则 $\bigcap_{n=1}^{\infty} A_n$ 也在 \mathbb{R} 中稠密.
- n=1 3. 设 $A_n\subset\mathbb{R}$ 是一列闭集, 并且 $A=\bigcup_{n=1}^\infty A_n$ 也是闭集, 则存在开区间 (a,b)(可以无穷区间) 和正整数 N 使得 $(a,b)\cap A\subset A_N$.
- 4. 设 A_n 是一列无处稠密集 (闭包没有内点), 则 $\bigcup_{n=1}^{\infty} A_n$ 也没有内点.

证明

1. 用反证法. 设 $x_0 \in A = \bigcup_{n=1}^{\infty} A_n$ 为内点,则存在 $\delta_0 > 0$,使得 $[x_0 - \delta_0, x_0 + \delta_0] \subset A$. 因为 A_1 没有内点,故存在 $x_1 \in (x_0 - \delta_0, x_0 + \delta_0) - A_1$.由于 A_1 为闭集,故存在 $\delta_1 > 0$,使得

$$[x_1 - \delta_1, x_1 + \delta_1] \subset (x_0 - \delta_0, x_0 + \delta_0), \quad [x_1 - \delta_1, x_1 + \delta_1] \cap A_1 = \emptyset$$

不妨设 $\delta_1 < 1$. 因为 A_2 没有内点, 故存在 $x_2 \in (x_1 - \delta_1, x_1 + \delta_1) - A_2$. 由于 A_2 为闭集, 故存在 $\delta_2 > 0$, 使得

$$[x_2 - \delta_2, x_2 + \delta_2] \subset (x_1 - \delta_1, x_1 + \delta_1), \quad [x_2 - \delta_2, x_2 + \delta_2] \cap A_2 = \emptyset$$

不妨设 $\delta_2 < \frac{1}{2}$. 如此继续, 我们得到闭区间套

$$[x_1 - \delta_1, x_1 + \delta_1] \supset [x_2 - \delta_2, x_2 + \delta_2] \supset \cdots \supset [x_n - \delta_n, x_n + \delta_n] \supset \cdots$$

使得 $[x_n - \delta_n, x_n + \delta_n] \cap A_n = \emptyset$, $\delta_n < \frac{1}{n} (n \ge 1)$. 根据闭区间套原理, 存在 $\xi \in [x_n - \delta_n, x_n + \delta_n]$, $\forall n \ge 1$. 因此 $\xi \notin \bigcup_{n \ge 1} A_n = A$, 这和 $\xi \in [x_1 - \delta_1, x_1 + \delta_1] \subset (x_0 - \delta_0, x_0 + \delta_0) \subset A$ 相矛盾.

- 2.
- 3.
- 4.

例题 1.4 设数列 a_n 单调递增趋于正无穷, 并且 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} \le 1$, 函数 f(x) 定义在 $(0,+\infty)$ 中且对任意 $x\ge 1$ 都有 $\lim_{n\to\infty} f(a_nx)=0$.

- 1. 若 f(x) 是连续函数, 证明: $\lim_{x \to +\infty} f(x) = 0$;
- 2. 若删去连续这一条件, 或者虽然连续, 但是 $\overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} > 1$, 则上述结论均不成立.

证明

1. 对任意 $\varepsilon > 0$, 定义 $E_n = \{x \ge 1 | \forall k \ge n, | f(a_k x)| \le \varepsilon \}$, 则 E_n 是一列闭集, 根据条件有 $\bigcup_{n=1}^{\infty} E_n = [1, +\infty)$. 于 是根据 baire 纲定理可知存在正整数 N 和区间 (u, v) 使得 $(u, v) \subset E_N$, 也就是说, 任意 $x \in (u, v)$, 任意 $n \ge N$ 都有 $|f(a_n x)| \le \varepsilon$, 换句话说我们得到了一个一致的 N. 因此 |f(x)| 在区间 $(a_N u, a_N v)$, $(a_{N+1} u, a_{N+1} v)$, … 中

П

都是不超过 ε 的,只要这些区间在 n 很大之后能够相互有重叠,一个接着下一个,全覆盖就行了. 换句话说,我们要证明: 存在 N_0 使得任意 $n \ge N_0$ 都有 $a_{n+1}u < a_nv$,这等价于 $\frac{a_{n+1}}{a_n} < \frac{v}{u}$,注意条件: 极限等于 1 并且 右端 $\frac{v}{u} > 1$,所以上式成立. 将前面推导的东西梳理一下,就是说: 任意 $\varepsilon > 0$,存在 M 使得 x > M 时恒有 $|f(x)| < \varepsilon$,结论得证.

2. 例如考虑 $a_n = n$, 定义 f(x) 为: 当 $x = m \cdot 2^{\frac{1}{k}}$, $m \in \mathbb{N}^+$ 时候取 1, 其余情况都取 0, 则对任意的 x > 0, 数列 f(nx) 中都至多只有一项为 1, 因此极限总是 0, 但是很明显 f(x) 的极限并不存在. 另外一个反例, 可以考虑 $a_n = e^n$, 现在有连续性, 条件为

$$\lim_{n \to \infty} f(e^n) = \lim_{n \to \infty} f(e^{n + \ln x}) = 0$$

将 $\ln x \in \mathbb{R}$ 看成一个变量,相应的考虑 $g(x) = f(e^x)$,则连续函数 g(x) 定义在 \mathbb{R} 上且满足 $\lim_{n \to \infty} g(y+n) = \lim_{n \to \infty} f(e^{y+n}) = 0$, $\forall y \in \mathbb{R}$,我们构造一个例子使得 g(x) 在无穷处极限非零或者不存在即可. 这与经典的命题有关: 设 f(x) 一致连续且 $f(x+n) \to 0$ 对任意 x 成立,则 $f(x) \to 0$,现在删去了一致连续性命题自然是错的,具体构造留作习题.

 $\dot{\mathbf{L}}$ 通常, 点态收敛 (上题) 或者数列极限 (本题) 这种非一致性的条件, 描述起来是"任意 $x \in (0,1)$, 任意 $\varepsilon > 0$, 存在 N 使得任意 n > N 都有 $|f_n(x) - f(x)| < \varepsilon$ "或者"任意 x > 0, 任意 $\varepsilon > 0$, 存在 N 使得任意 n > N 都有 $|f(a_n x)| < \varepsilon$ ",很明显这里的 N 是与 x, ε 都有关系的, 如果我们事先取定 $\varepsilon > 0$, 那么这个过程可以说是"给定 x,去找对应的 N".而 baire 纲定理的想法就是反过来找:不同的 x 对应的 x 对应的 x 确实可以不一样, 那就先取好 x ,我们看都有哪些 x 对应到这一个 x ,也就是说事先取定 x 。0,然后对每一个 x 去定义集合,反找 x 。所有 baire 纲定理相关的问题,思想都是如此,根据定理便能得到一个一致的东西,拿来做事情。

例题 **1.5** 设 f(x) 在区间 (0,1) 中可导, 证明: f'(x) 在 (0,1) 中的一个稠密子集中连续. 证明

引理 1.3

有界数列 x_n 如果满足 $\lim_{n\to\infty}(x_{n+1}-x_n)=0$, 则 x_n 的全体聚点构成一个闭区间.

证明

例题 **1.6** 设连续函数 $f(x):[0,1] \to [0,1], x_1 \in [0,1], x_{n+1} = f(x_n)$, 证明: 数列 $\{x_n\}$ 收敛的充要条件是 $\lim_{n \to \infty} (x_{n+1} - x_n) = 0$.

证明 必要性 (⇒): 若 $\{x_n\}$ 收敛, 则 $\lim_{n\to\infty} (x_{n+1}-x_n)=0$ 显然成立. 充分性 (⇐):

1.2 上下极限

命题 1.1 (子列极限命题)

- (a): 给定 $x \in \mathbb{R} \cup \{+\infty, -\infty\}$, $\lim_{n \to \infty} x_n = x$ 的充分必要条件是对任何广义存在的 $\lim_{k \to \infty} x_{n_k}$, 都有 $\lim_{k \to \infty} x_{n_k} = x$.
- (b): 设 $m \in \mathbb{N}$, 若 $\lim_{n \to \infty} x_{mn+r}$, $\forall r = 0, 1, 2, \cdots, m-1$ 相同, 则 $\lim_{n \to \infty} x_n$ 存在且 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{mn}$.
- 予 笔记 当 m=2, 上述命题是在说如果序列奇偶子列极限存在且为同一个值, 则序列的极限存在且极限和偶子列极限值相同. 所谓奇偶, 就是看除以 2 的余数是 1 还是 0. 对一般的 $m \in \mathbb{N}$, 我们也可以看除以 m 的余数是

 $\{0,1,2,\cdots,m-1\}$ 中的哪一个来对整数进行分类, \mathbb{P} mod \mathbb{P} 分类. 严格的说, 我们有无交并

$$\mathbb{Z} = \bigcup_{r=0}^{m-1} \{ mk + r : k \in \mathbb{Z} \}.$$

证明 对 (a): 考虑上下极限即可.

对 (b): 记 $A riangleq \lim_{n \to \infty} x_{mn}$. 事实上对任何 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得当 k > N 时, 我们有

$$|x_{mk+r} - A| < \varepsilon, \forall r \in \{0, 1, 2, \cdots, m - 1\}.$$
 (1.1)

我们知道对任何正整数 n > mN + m - 1, 存在唯一的 $r \in \{0, 1, 2, \dots, m - 1\}$ 和 k > N, 使得 n = km + r, 于是运用(1.1)我们有 $|x_n - A| < \varepsilon$, 因此我们证明了

$$\lim_{n\to\infty} x_n = A = \lim_{n\to\infty} x_{mn}.$$

定义 1.2 (上下极限的定义)

我们定义

$$\overline{\lim}_{n \to \infty} a_n \stackrel{\triangle}{=} \lim_{n \to \infty} \sup_{k \geqslant n} a_k, \underline{\lim}_{n \to \infty} a_n \stackrel{\triangle}{=} \lim_{n \to \infty} \inf_{k \geqslant n} a_k.$$
 (1.2)

♀ 笔记 注意到由定义, $\sup a_k$ 是单调递减的, $\inf a_k$ 是单调递增的. 因此(1.2)式的极限存在或为确定符号的 ∞.

命题 1.2 (上下极限的等价定义)

假定 $\{a_n\}$ 是个实数列,则有

- (1): 设 A 是某个实数,则 $\overline{\lim}_{n\to\infty} a_n = A$ 的充分必要条件是对任何 $\varepsilon > 0$,存在 N > 0,使得当 n > N 时,有 $x_n < A + \varepsilon$ 且存在子列 $\{x_{n_k}\}$,使得 $x_{n_k} > A \varepsilon$, $k = 1, 2, \cdots$.
- (2): $\overline{\lim} \ a_n = +\infty$ 的充分必要条件是对任何 A > 0, 存在 n, 使得 $a_n > A$.
- (3): 设 A 是某个实数,则 $\lim_{n\to\infty} a_n = A$ 的充分必要条件是对任何 $\varepsilon > 0$,存在 N > 0,使得当 n > N 时,有 $x_n > A \varepsilon$ 且存在子列 $\{x_{n_k}\}$,使得 $x_{n_k} < A + \varepsilon, k = 1, 2, \cdots$.
- (4): $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = -\infty$ 的充分必要条件是对任何 A < 0, 存在 n, 使得 $a_n < A$.

命题 1.3 (上下极限的性质)

我们有如下的

- 1. $\overline{\lim}_{n\to\infty}(a_n+b_n)\leqslant \overline{\lim}_{n\to\infty}a_n+\overline{\lim}_{n\to\infty}b_n$.
- $2. \overline{\lim}_{n \to \infty} a_n = \underline{\lim} (-a_n).$
- 3. $\underline{\lim}_{n\to\infty} (a_n + b_n) \geqslant \underline{\lim}_{n\to\infty} a_n + \underline{\lim}_{n\to\infty} b_n$.
- 4. 若 $\lim_{n\to+\infty} b_n = b$, $\overline{\lim}_{n\to+\infty} a_n = a$, 则 $\overline{\lim}_{n\to+\infty} a_n b_n = ab$.
- 全 笔记 上下极限的性质都可以通过考虑其子列的极限快速得到证明. 因此我们一般不需要额外记忆上下极限的性质, 只需要熟悉通过考虑子列极限直观地得到结论即可. 并且因为上下极限就是(最大/最小)子列极限, 所以一般极限的性质对于上下极限都成立.
 - 证明 1.
 - 2.
 - 3.
 - 4. 由于 $\overline{\lim}_{n \to +\infty} a_n = a$, 因此我们可设 $\lim_{k \to +\infty} a_{n_k} = a$. 根据极限的四则运算法则, 可知 $\lim_{n \to +\infty} a_{n_k} b_{n_k} = ab$. 从而 $\overline{\lim}_{n \to +\infty} a_n b_n \geqslant \lim_{n \to +\infty} a_{n_k} b_{n_k} = ab$. 又由上下极限的性质, 可知 $\overline{\lim}_{n \to +\infty} a_n b_n \leqslant \overline{\lim}_{n \to +\infty} a_n \cdot \overline{\lim}_{n \to +\infty} b_n = ab$. 故 $\overline{\lim}_{n \to +\infty} a_n b_n = ab$.

ab.

例题 1.7 求上极限

$$\overline{\lim}_{n \to +\infty} n \sin\left(\pi\sqrt{n^2 + 1}\right).$$

解 注意到

$$n\sin\left(\pi\sqrt{n^2+1}\right) = n\sin\left(\pi\sqrt{n^2+1} - n\pi + n\pi\right) = (-1)^n n\sin\left(\pi\sqrt{n^2+1} - n\pi\right) = (-1)^n n\sin\frac{\pi}{\sqrt{n^2+1} + n}.$$

又因为

$$\lim_{n \to +\infty} n \sin \frac{\pi}{\sqrt{n^2 + 1} + n} = \lim_{n \to +\infty} \frac{n\pi}{\sqrt{n^2 + 1} + n} = \lim_{n \to +\infty} \frac{\pi}{\sqrt{1 + \frac{1}{n^2} + 1}} = \frac{\pi}{2}.$$

所以

$$\overline{\lim}_{n \to +\infty} n \sin \left(\pi \sqrt{n^2 + 1} \right) = \overline{\lim}_{n \to +\infty} (-1)^n n \sin \frac{\pi}{\sqrt{n^2 + 1} + n} = \frac{\pi}{2}.$$

注 本题最后一个等号其实是直接套用了一个上极限的性质得到的.

命题 1.4

对任何 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

$$f_1(n,\varepsilon) \leqslant a_n \leqslant f_2(n,\varepsilon), \forall n \geqslant N,$$

这里

$$\lim_{\varepsilon \to 0^+} \lim_{n \to \infty} f_2(n, \varepsilon) = \lim_{\varepsilon \to 0^+} \lim_{n \to \infty} f_1(n, \varepsilon) = A \in \mathbb{R}.$$

证明 $\lim_{n\to\infty} a_n = A$.

Ŷ 笔记 以后可以直接使用这个命题. 但是要按照证法一的格式书写.

证明 证法一(利用上下极限)(也是实际做题中直接使用这个命题的书写步骤):

已知对 $\forall \varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

$$f_1(n,\varepsilon) \leqslant a_n \leqslant f_2(n,\varepsilon), \forall n \geqslant N,$$

上式两边令 $n \to +\infty$, 则有

$$\underline{\lim_{n\to +\infty}} f_1(n,\varepsilon) \leq \underline{\lim_{n\to +\infty}} a_n, \overline{\lim_{n\to +\infty}} a_n \leq \overline{\lim_{n\to +\infty}} f_2(n,\varepsilon), \forall \varepsilon > 0.$$

由 ε 的任意性,两边令 $\varepsilon \to 0^+$,可得

$$A = \lim_{\varepsilon \to 0^+} \varliminf_{n \to +\infty} f_1(n,\varepsilon) \le \varliminf_{n \to +\infty} a_n, \varlimsup_{n \to +\infty} a_n \le \varliminf_{\varepsilon \to 0^+} \varlimsup_{n \to +\infty} f_2(n,\varepsilon) = A.$$

又显然有 $\underline{\lim}_{n\to+\infty} a_n \leq \overline{\lim}_{n\to+\infty} a_n$, 于是

$$A = \lim_{\varepsilon \to 0^+} \underline{\lim}_{n \to +\infty} f_1(n, \varepsilon) \le \underline{\lim}_{n \to +\infty} a_n \le \overline{\lim}_{n \to +\infty} a_n \le \lim_{\varepsilon \to 0^+} \overline{\lim}_{n \to +\infty} f_2(n, \varepsilon) = A.$$

故由夹逼准则可得 $\lim a_n = A$.

证法二
$$(\varepsilon - \delta$$
 语言):

 $\forall \varepsilon > 0$, 记 $g_1(\varepsilon) = \lim_{n \to +\infty} f_1(n, \varepsilon), g_2(\varepsilon) = \lim_{n \to +\infty} f_2(n, \varepsilon)$. 由 $\lim_{\varepsilon \to 0^+} g_1(\varepsilon) = \lim_{\varepsilon \to 0^+} g_2(\varepsilon) = A$, 可知对 $\forall \eta > 0$, 存在 $\delta > 0$, 使得

$$g_1(\delta) > A - \frac{\eta}{2}, g_2(\delta) < A + \frac{\eta}{2}.$$

由于 $g_1(\delta) = \lim_{n \to +\infty} f_1(n, \delta), g_2(\delta) = \lim_{n \to +\infty} f_2(n, \delta),$ 因此存在 $N' \in \mathbb{N}$, 使得

$$f_1(n,\delta) > g_1(\delta) - \frac{\eta}{2}, f_2(n,\delta) < g_2(\delta) + \frac{\eta}{2}, \forall n > N'.$$

又由条件可知,存在 $N \in \mathbb{N}$,使得

$$f_1(n,\delta) \leqslant a_n \leqslant f_2(n,\delta), \forall n > N.$$

于是当 $n > \max\{N, N'\}$ 时, 对 $\forall \eta > 0$, 我们都有

$$A-\eta < g_1(\delta) - \frac{\eta}{2} < f_1(n,\delta) \leqslant a_n \leqslant f_2(n,\delta) < g_2(\delta) + \frac{\eta}{2} < A + \eta.$$

故由夹逼准则可知 $\lim_{n\to+\infty} a_n = A$.

第二章 极限与渐近分析方法

2.1 基本的渐进估计与求极限方法

2.1.1 基本极限计算

2.1.1.1 基本想法

裂项、作差、作商的想法是解决极限问题的基本想法.

例题 2.1 对正整数
$$v$$
, 求极限 $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k(k+1)\cdots(k+v)}$.

🕏 笔记 直接裂项即可.

解

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)\cdots(k+\nu)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\nu} \left[\frac{1}{k(k+1)\cdots(k+\nu-1)} - \frac{1}{(k+1)(k+2)\cdots(k+\nu)} \right]$$
$$= \lim_{n \to \infty} \frac{1}{\nu} \left[\frac{1}{\nu!} - \frac{1}{n(n+1)\cdots(n+\nu)} \right] = \frac{1}{\nu!\nu}.$$

例题 2.2 设 $p_0 = 0, 0 \le p_j \le 1, j = 1, 2, \cdots$ 求 $\sum_{i=1}^{\infty} \left(p_j \prod_{i=0}^{j-1} (1 - p_i) \right) + \prod_{i=1}^{\infty} (1 - p_j)$ 的值.

Ŷ 笔记 遇到求和问题, 可以先观察是否存在裂项的结构.

解 记 $q_i = 1 - p_i$, 则有

$$\sum_{j=1}^{\infty} p_j \prod_{i=0}^{j-1} (1 - p_i) + \prod_{j=1}^{\infty} (1 - p_j) = \sum_{j=1}^{\infty} (1 - q_j) \prod_{i=0}^{j-1} q_i + \prod_{i=0}^{\infty} q_i$$
$$= \sum_{j=1}^{\infty} \left(\prod_{i=0}^{j-1} q_i - \prod_{i=0}^{j} q_i \right) + \prod_{i=0}^{\infty} q_i = q_0 - \prod_{i=0}^{\infty} q_i + \prod_{i=0}^{\infty} q_i = q_0.$$

例题 2.3 设 |x| < 1, 求极限 $\lim_{n \to \infty} (1+x)(1+x^2)\cdots(1+x^{2^n})$.

 $\stackrel{n\to\infty}{\succeq}$ 如果把幂次 $1,2,2^2,\cdots$ 改成 $1,2,3,\cdots$, 那么显然极限存在, 但是并不能求出来, 要引入别的特殊函数, 省流就是: 钓鱼题.

Ŷ 笔记 平方差公式即可

解

$$\lim_{n \to \infty} (1+x)(1+x^2) \cdots (1+x^{2^n}) = \lim_{n \to \infty} \frac{(1-x)(1+x)(1+x^2) \cdots (1+x^{2^n})}{1-x}$$

$$= \lim_{n \to \infty} \frac{(1-x^2)(1+x^2) \cdots (1+x^{2^n})}{1-x}$$

$$= \cdots = \lim_{n \to \infty} \frac{1-x^{2^{n+1}}}{1-x} = \frac{1}{1-x}.$$

例题 2.4 对正整数 n, 方程 $\left(1+\frac{1}{n}\right)^{n+t}=e$ 的解记为 t=t(n), 证明 t(n) 关于 n 递增并求极限 $(t\to +\infty)$. 解 解方程得到

 $\left(1+\frac{1}{n}\right)^{n+t}=e \Leftrightarrow (n+t)\ln\left(1+\frac{1}{n}\right)=1 \Leftrightarrow t=\frac{1}{\ln\left(1+\frac{1}{n}\right)}-n.$

读
$$f(x) = \frac{1}{\ln\left(1 + \frac{1}{x}\right)} - x, x > 0$$
, 则

$$f'(x) = \frac{1}{\ln^2\left(1 + \frac{1}{x}\right)} \frac{1}{x^2 + x} - 1 > 0 \Leftrightarrow \ln^2\left(1 + \frac{1}{x}\right) < \frac{1}{x^2 + x} \Leftrightarrow \ln\left(1 + t\right) < \frac{t}{\sqrt{1 + t}}, t = \frac{1}{x} \in (0, 1).$$

最后的不等式由关于 \ln 的常用不等式可知显然成立,于是 f(x) 单调递增,故 t(n) = f(n) 也单调递增.再来求极限

$$\lim_{n \to \infty} t(n) = \lim_{n \to \infty} \left(\frac{1}{\ln\left(1 + \frac{1}{n}\right)} - n \right) = \lim_{n \to \infty} \frac{1 - n\ln\left(1 + \frac{1}{n}\right)}{\ln\left(1 + \frac{1}{n}\right)}$$

$$= \lim_{x \to +\infty} \frac{1 - x\ln\left(1 + \frac{1}{x}\right)}{\ln\left(1 + \frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{1 - x\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}}$$

$$\frac{\text{L' Hospital}}{\text{E Hospital}} \frac{1}{2}.$$

命题 2.1

$$\prod_{k=1}^{n} \left(1 + \frac{1}{k} \right)^k = \frac{(n+1)^n}{n!} \sim \frac{e^{n+1}}{\sqrt{2\pi n}}.$$

证明

$$\prod_{k=1}^{n} \left(1 + \frac{1}{k} \right)^{k} = \prod_{k=1}^{n} \left(\frac{1+k}{k} \right)^{k} = \left(\frac{2}{1} \right) \left(\frac{3}{2} \right)^{2} \left(\frac{4}{3} \right)^{3} \cdots \left(\frac{n+1}{n} \right)^{n}$$

$$= \frac{(n+1)^{n}}{n!} \sim \frac{(n+1)^{n} e^{n}}{\sqrt{2\pi n} n^{n}} = \frac{\left(1 + \frac{1}{n} \right)^{n} e^{n}}{\sqrt{2\pi n}} \sim \frac{e^{n+1}}{\sqrt{2\pi n}}.$$

例题 2.5 计算极限 $\lim_{n\to+\infty} \sqrt{n} \prod_{k=1}^n \frac{e^{1-\frac{1}{k}}}{(1+\frac{1}{k})^k}$.

解 因为

$$\sqrt{n} \prod_{k=1}^{n} \frac{e^{1-\frac{1}{k}}}{(1+\frac{1}{k})^{k}} = \sqrt{n} \frac{e^{n-(1+\frac{1}{2}+\cdots+\frac{1}{n})}}{(\frac{2}{1})(\frac{3}{2})^{2}(\frac{4}{3})^{3}\cdots(\frac{n+1}{n})^{n}} = \frac{\sqrt{n}n!e^{n}}{(n+1)^{n}e^{1+\frac{1}{2}+\cdots+\frac{1}{n}}}$$

由 Stirling 公式 $n! \sim \sqrt{2\pi n} (\frac{n}{\rho})^n (n \to +\infty)$ 及

$$1 + \frac{1}{2} + \dots + \frac{1}{n} = \ln n + \gamma + o(1), \quad n \to +\infty$$

得

$$\lim_{n \to +\infty} \sqrt{n} \prod_{k=1}^{n} \frac{e^{1-\frac{1}{k}}}{(1+\frac{1}{k})^k} = \lim_{n \to +\infty} \frac{\sqrt{2\pi}n}{(1+1/n)^n e^{\ln n + \gamma}} = \sqrt{2\pi}e^{-(1+\gamma)}$$

命题 2.2 (数列常见的转型方式)

数列常见的转型方式:

(1)
$$a_n = a_1 + \sum_{k=1}^{n-1} (a_{k+1} - a_k);$$

(2)
$$a_n = a_1 \prod_{k=1}^{n-1} \frac{a_{k+1}}{a_k};$$

从而我们可以得到

1. 数列
$$\{a_n\}_{n=1}^{\infty}$$
 收敛的充要条件是 $\sum_{n=1}^{\infty} (a_{n+1} - a_n)$ 收敛.

2. 数列
$$\{a_n\}_{n=1}^{\infty}$$
 $(a_n \neq 0)$ 收敛的充要条件是 $\prod_{n=1}^{\infty} \frac{a_{n+1}}{a_n}$ 收敛.

注 在关于数列的问题中, **将原数列的等式或不等式条件转化为相邻两项的差或商的等式或不等式条件**的想法是非常常用的.

\$

笔记 这个命题给我们证明数列极限的存在性提供了一种想法: 我们可以将数列的收敛性转化为级数的收敛性, 或者将数列的收敛性转化为累乘的收敛性. 而累乘可以通过取对数的方式转化成级数的形式, 这样就可以利用级数的相关理论来证明数列的收敛性.

这种想法的具体操作方式:

- (i) 先令数列相邻两项作差或作商, 将数列的极限写成其相邻两项的差的级数或其相邻两项的商的累乘形式.(如果是累乘的形式, 那么可以通过取对数的方式将其转化成级数的形式.)
- (ii) 若能直接证明累乘或级数收敛, 就直接证明即可. 若不能, 则再利用级数的相关理论来证明上述构造的级数的收敛性, 从而得到数列的极限的存在性. 此时, 我们一般会考虑这个级数的通项, 然后去找一个通项能够控制住所求级数通项的收敛级数 (几何级数等), 最后利用级数的比较判别法来证明级数收敛

证明

1. 必要性 (⇒) 和充分性 (⇐) 都可由
$$\lim_{n\to\infty} a_n = a_1 + \lim_{n\to\infty} \sum_{k=1}^{n-1} (a_{k+1} - a_k)$$
 直接得到.

2. 必要性 (⇒) 和充分性 (⇐) 都可由
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_1 \prod_{k=1}^{n-1} \frac{a_{k+1}}{a_k}$$
 直接得到.

例题 2.6 设 $a_n = \left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \frac{1}{2n+1}$, 证明: 数列 a_n 收敛到一个正数. 证明 由条件可得 $\forall n \in \mathbb{N}_+$, 都有

 $\frac{a_{n+1}}{a_n} = \frac{\left(\frac{(2n+2)!!}{(2n+1)!!}\right)^2 \frac{1}{2n+3}}{\left(\frac{(2n+2)!!}{(2n+1)!!}\right)^2 \frac{1}{2n+3}} = \frac{(2n+2)^2}{(2n+1)^2} \cdot \frac{2n+1}{2n+3} = \frac{(2n+2)^2}{(2n+1)(2n+3)} = 1 + \frac{1}{(2n+1)(2n+3)} > 1.$

从而 $\forall n \in \mathbb{N}_+$, 都有

 $a_n = \prod_{k=1}^{n-1} \left[1 + \frac{1}{(2k+1)(2k+3)} \right] = e^{\sum_{k=1}^{n-1} \ln\left[1 + \frac{1}{(2k+1)(2k+3)}\right]}.$ (2.1)

注意到

$$\ln\left[1 + \frac{1}{(2n+1)(2n+3)}\right] \sim \frac{1}{(2n+1)(2n+3)}, n \to \infty.$$

而
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n+3)}$$
 收敛, 故 $\lim_{n\to\infty} \sum_{k=1}^{n-1} \ln\left[1+\frac{1}{(2k+1)(2k+3)}\right]$ 存在. 于是由 (2.1)式可知

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} e^{\sum_{k=1}^{n-1} \ln\left[1 + \frac{1}{(2k+1)(2k+3)}\right]} = e^{\lim_{n \to \infty} \sum_{k=1}^{n-1} \ln\left[1 + \frac{1}{(2k+1)(2k+3)}\right]}$$

也存在.

2.1.1.2 带 ln 的极限计算

通常, 带着一堆 \ln 的极限算起来都非常烦人, 并不是简单的一个泰勒就秒杀的, 比如这种题. 这种题不建议用泰勒, 很多时候等价无穷小替换、拆项和加一项减一项会方便不少.

注 另外, 做这种题一定要严格处理余项, 不要想当然.

例题 2.7 求极限
$$\lim_{x \to +\infty} \left(\frac{(2x^2 + 3x + 1) \ln x}{x \ln(1+x)} \arctan x - \pi x \right).$$

不要想当然, 比如下面的做法就是错的 (过程和答案都不对)

$$\frac{(2x^2 + 3x + 1)\ln x}{x\ln(1+x)} \arctan x - \pi x \approx (2x+3) \frac{\ln x}{\ln(1+x)} \arctan x - \pi x \approx (2x+3) \cdot 1 \cdot \frac{\pi}{2} - \pi x = \frac{3\pi}{2}.$$

解 根据洛必达法则, 显然
$$\lim_{x\to +\infty} \frac{\ln x}{\ln(1+x)} = \lim_{x\to +\infty} \frac{\frac{1}{x}}{\frac{1}{1+x}} = 1$$
, 拆分一下有

$$\lim_{x \to +\infty} \left(\frac{(2x^2 + 3x + 1) \ln x}{x \ln(1 + x)} \arctan x - \pi x \right)$$

$$= \lim_{x \to +\infty} \left((2x + 3) \frac{\ln x}{\ln(1 + x)} \arctan x - \pi x \right) + \lim_{x \to +\infty} \frac{\ln x}{x \ln(1 + x)} \arctan x$$

$$= \lim_{x \to +\infty} \left(\frac{2x \ln x}{\ln(1 + x)} \arctan x - \pi x \right) + 3 \lim_{x \to +\infty} \frac{\ln x}{\ln(1 + x)} \arctan x$$

$$= 2 \lim_{x \to +\infty} x \left(\frac{\ln x}{\ln(1 + x)} \arctan x - \frac{\pi}{2} \right) + \frac{3}{2}\pi$$

$$= 2 \left(\lim_{x \to +\infty} \frac{x \ln x}{\ln(1 + x)} \left(\arctan x - \frac{\pi}{2} \right) + \frac{\pi}{2} \lim_{x \to +\infty} x \left(\frac{\ln x}{\ln(1 + x)} - 1 \right) \right) + \frac{3}{2}\pi$$

$$= 2 \left(\lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) - \frac{\pi}{2} \lim_{x \to +\infty} \frac{x \ln(1 + \frac{1}{x})}{\ln(1 + x)} \right) + \frac{3}{2}\pi$$

$$= 2 \left(\lim_{x \to +\infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}} - \frac{\pi}{2} \lim_{x \to +\infty} \frac{1}{\ln(1 + x)} \right) + \frac{3}{2}\pi$$

$$= 2 \lim_{x \to +\infty} \frac{-\frac{1}{1 + x^2}}{\frac{1}{x^2}} + \frac{3}{2}\pi = \frac{3}{2}\pi - 2.$$

2.1.1.3 幂指函数的极限问题

幂指函数的极限问题、一律写成 e^{\ln} 形式、并利用等价无穷小替换和加一项减一项去解决、方便、

注 不要用泰勒做这个题, 因为你需要分别展开好几项直到余项是高阶无穷小才可以, 等价无穷小替换则只需要看 Taylor 展开的第一项并且是严谨的, 泰勒则需要展开好几项, 计算量爆炸.

例题 2.8 求极限
$$\lim_{r\to 0^+} \frac{x^{\sin x} - (\sin x)^x}{r^3 \ln x}$$
.

例题 2.8 求极限 $\lim_{x\to 0^+} \frac{x^{\sin x} - (\sin x)^x}{x^3 \ln x}$. 注 不要用泰勒做这个题, 因为你需要分别展开好几项直到余项是高阶无穷小才可以, 等价无穷小替换则只需要看 第一项并且是严谨的, 泰勒则至少需要展开三项, 计算量爆炸, 大致如下

$$x^{\sin x} = e^{\sin x \ln x} = 1 + \sin x \ln x + \frac{1}{2} \sin^2 x \ln^2 x + \frac{1}{6} \sin^3 x \ln^3 x + O(x^4 \ln^4 x)$$

$$(\sin x)^x = e^{x \ln \sin x} = 1 + x \ln \sin x + \frac{1}{2} x^2 \ln^2 \sin x + \frac{1}{6} x^3 \ln^3 \sin x + O(x^4 \ln^4 \sin x)$$

然后你不仅需要看第一项,还要检查并验证平方项,三次方项作差后对应的极限是零,麻烦.

 $\mathbf{\hat{u}}$ 先说明写成 e^{\ln} 形式后, 指数部分都是趋于零的, 然后等价无穷小替换即可,

解 注意到

 $\lim_{x \to 0^+} \sin x \ln x = \lim_{x \to 0^+} x \ln x = 0, \lim_{x \to 0^+} x \ln \sin x = \lim_{x \to 0^+} \sin x \ln \sin x = \lim_{x \to 0^+} x \ln x = 0.$

从而

$$\lim_{x \to 0^+} (\sin x)^x = \lim_{x \to 0^+} e^{x \ln \sin x} = 1.$$

于是我们有

$$\lim_{x \to 0^+} \frac{x^{\sin x} - (\sin x)^x}{x^3 \ln x} = \lim_{x \to 0^+} (\sin x)^x \frac{e^{\sin x \ln x - x \ln \sin x} - 1}{x^3 \ln x} = \lim_{x \to 0^+} \frac{e^{\sin x \ln x - x \ln \sin x} - 1}{x^3 \ln x}$$

$$\begin{split} &= \lim_{x \to 0^+} \frac{\sin x \ln x - x \ln \sin x}{x^3 \ln x} = \lim_{x \to 0^+} \frac{\sin x \ln x - x \ln x + x \ln x - x \ln \sin x}{x^3 \ln x} \\ &= \lim_{x \to 0^+} \frac{\sin x - x}{x^3} + \lim_{x \to 0^+} \frac{\ln x - \ln \sin x}{x^2 \ln x} = -\frac{1}{6} - \lim_{x \to 0^+} \frac{\ln \frac{\sin x}{x}}{x^2 \ln x} (\frac{\sin x}{x} - 1 - \frac{1}{6}x^2, x \to 0^+) \\ &= -\frac{1}{6} - \lim_{x \to 0^+} \frac{\ln (1 + \frac{\sin x - x}{x})}{x^2 \ln x} = -\frac{1}{6} - \lim_{x \to 0^+} \frac{\sin x - x}{x^3 \ln x} = -\frac{1}{6} + \frac{1}{6} \lim_{x \to 0^+} \frac{1}{\ln x} = -\frac{1}{6}. \end{split}$$

例题 2.9 求极限 $\lim_{x\to 0} x^2 \left(e^{(1+\frac{1}{x})^x} - \left(1+\frac{1}{x}\right)^{ex}\right)$.

解 注意到

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e, \lim_{x \to \infty} ex \ln \left(1 + \frac{1}{x} \right) = e.$$

从而

$$\lim_{x \to 0^{+}} \left(1 + \frac{1}{x} \right)^{ex} = \lim_{x \to 0^{+}} e^{ex \ln\left(1 + \frac{1}{x}\right)} = e^{e}.$$

于是我们有

$$\begin{split} &\lim_{x \to \infty} x^2 \left(e^{(1 + \frac{1}{x})^x} - \left(1 + \frac{1}{x} \right)^{ex} \right) = \lim_{x \to \infty} x^2 \left(1 + \frac{1}{x} \right)^{ex} \left(e^{(1 + \frac{1}{x})^x - ex \ln(1 + \frac{1}{x})} - 1 \right) \\ &= e^e \lim_{x \to \infty} x^2 \left(e^{(1 + \frac{1}{x})^x - ex \ln(1 + \frac{1}{x})} - 1 \right) = e^e \lim_{x \to \infty} x^2 \left(\left(1 + \frac{1}{x} \right)^x - ex \ln\left(1 + \frac{1}{x}\right) \right) \\ &= e^e \lim_{x \to \infty} x^2 \left(e^{x \ln(1 + \frac{1}{x})} - ex \ln\left(1 + \frac{1}{x}\right) \right) = e^{e+1} \lim_{x \to \infty} x^2 \left(e^{x \ln(1 + \frac{1}{x})} - x \ln\left(1 + \frac{1}{x}\right) \right) \\ &= \frac{Taylor \, \mathbb{R}^{\#}}{2} e^{e+1} \lim_{x \to \infty} x^2 \frac{1}{2} \left(x \ln\left(1 + \frac{1}{x}\right) - 1 \right)^2 = \frac{e^{e+1}}{2} \lim_{x \to \infty} \left(x^2 \ln\left(1 + \frac{1}{x}\right) - x \right)^2 = \frac{e^{e+1}}{8} \end{split}$$

2.1.1.4 拟合法求极限

例题 **2.10** 求极限 $\lim_{n\to\infty} \frac{\ln^3 n}{\sqrt{n}} \sum_{k=0}^{n-2} \frac{1}{\ln k \ln(n-k) \ln(n+k) \sqrt{n+k}}$.

笔记 核心想法是**拟合法**,但是最后的极限估计用到了**分段估计**的想法. 证明 注意到 $\frac{\ln n}{\ln(2n)} \to 1$,所以

$$\lim_{n \to \infty} \frac{\ln^3 n}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\ln k \ln(n-k) \ln(n+k) \sqrt{n+k}} = \lim_{n \to \infty} \frac{\ln^2 n}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\ln k \ln(n-k) \sqrt{n+k}}$$

显然

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\sqrt{n+k}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=2}^{n-2} \frac{1}{\sqrt{1+\frac{k}{n}}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{\sqrt{1+\frac{k}{n}}} = \int_0^1 \frac{1}{\sqrt{1+x}} dx = 2\sqrt{2} - 2$$

我们用上面的东西来拟合, 所以尝试证明

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=2}^{n-2} \frac{1}{\sqrt{n+k}} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=2}^{n-2} \frac{1}{\sqrt{1+\frac{k}{n}}} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) = 0$$

注意求和里面的每一项都是正的, 并且 $\frac{1}{\sqrt{1+\frac{k}{2}}} \in \left[\frac{1}{\sqrt{2}}, 1\right]$, 所以只需证

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=2}^{n-2} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) = 0$$

注意对称性,证明 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{\frac{n}{2}}\left(\frac{\ln^2 n}{\ln k\ln(n-k)}-1\right)=0$ 即可, 待定一个 m 来分段放缩. 首先容易看出数列 $\ln k\ln(n-k)$

k) 在 $2 \le k \le \frac{n}{2}$ 时是单调递增的, 这是因为

$$f(x) = \ln x \ln(n-x), f'(x) = \frac{\ln(n-x)}{x} - \frac{\ln x}{n-x} > 0$$

$$\Leftrightarrow (n-x)\ln(n-x) > x \ln x, \forall x \in \left(2, \frac{n}{2}\right)$$

显然成立, 所以待定 $m \in [2, \frac{n}{2}]$, 于是

$$\frac{1}{n} \sum_{k=2}^{m} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) \leqslant \frac{1}{n} \sum_{k=2}^{m} \left(\frac{\ln^2 n}{\ln 2 \ln(n-2)} - 1 \right) = \frac{m}{n} \left(\frac{\ln^2 n}{\ln 2 \ln(n-2)} - 1 \right)$$

$$\frac{1}{n} \sum_{k=m}^{\frac{n}{2}} \left(\frac{\ln^2 n}{\ln k \ln(n-k)} - 1 \right) \leqslant \frac{1}{n} \sum_{k=m}^{\frac{n}{2}} \left(\frac{\ln^2 n}{\ln m \ln(n-m)} - 1 \right) \leqslant \frac{\ln^2 n}{\ln m \ln(n-m)} - 1$$

为了让第一个趋于零,可以取 $m = \frac{n}{2 \ln^2 n}$,然后代入检查第二个极限

$$\lim_{n \to \infty} \frac{\ln^2 n}{\ln m \ln(n - m)} - 1 = \lim_{n \to \infty} \frac{\ln^2 n}{\ln \frac{n}{2 \ln^2 n} \ln \left(n - \frac{n}{2 \ln^2 n}\right)} - 1 = 0$$

所以结论得证(过程中严格来讲应补上取整符号,这里方便起见省略了).

2.1.2 Taylor 公式

定理 2.1 (带 Peano 余项的 Taylor 公式)

设f在x = a是n阶右可微的,则

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + o((x - a)^n), x \to a^+.$$
 (2.2)

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + O((x-a)^n), x \to a^+.$$
 (2.3)

\$

笔记 用 Taylor 公式计算极限, 如果展开 n 项还是不方便计算, 那么就多展开一项或几项即可.

证明 (1) 要证明(2.2)式等价于证明

$$\lim_{x \to a^{+}} \frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}}{(x - a)^{n}} = 0.$$

对上式左边反复使用 n-1 次 L'Hospital'rules, 可得

$$\lim_{x \to a^{+}} \frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}}{(x - a)^{n}} = \frac{L'Hospital'rules}{\sum_{k=0}^{n} \frac{f^{(k)}(a)}{(k-1)!} (x - a)^{k-1}} \frac{f'(x) - \sum_{k=1}^{n} \frac{f^{(k)}(a)}{(k-1)!} (x - a)^{k-1}}{n (x - a)^{n-1}}$$

$$\frac{L'Hospital'rules}{\sum_{k=0}^{n} \frac{f^{(k)}(a)}{(k-2)!} (x - a)^{k-2}} = \frac{L'Hospital'rules}{\sum_{k=0}^{n} \frac{f^{(k)}(a)}{(k-2)!} (x - a)^{n-2}}$$

$$\frac{L'Hospital'rules}{\sum_{k=0}^{n} \frac{f^{(k)}(a)}{(k-2)!} (x - a)^{n-2}} = \frac{1}{n!} \lim_{x \to a^{+}} \frac{f^{(n-1)}(x) - f^{(n-1)}(a)}{x - a} - \frac{f^{(n)}(a)}{n!} \frac{n \text{ in } \text{ in$$

故(2.2)式成立.

(2) 要证明(2.3)式等价于证明: 存在 C > 0 和 $\delta > 0$, 使得

$$\left| \frac{f(x) - \sum\limits_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k}{(x - a)^n} \right| \leqslant C, \forall x \in [a, a + \delta].$$

2.1.2.1 直接利用 Taylor 公式计算极限

例题 **2.11** 设 $\lim_{n \to +\infty} \frac{f(n)}{n} = 1$, 计算

$$\lim_{n \to +\infty} \left(1 + \frac{1}{f(n)} \right)^n.$$

拿 笔记 由 $\frac{f(n)}{n} = 1 + o(1), n \to +\infty$, 可得 $f(n) = n + o(n), n \to +\infty$. 这个等式的意思是: f(n) = n + o(n) 对 $\forall n \in \mathbb{N}_+$ 都成立. 并且当 $n \to +\infty$ 时, 有 $\lim_{n \to +\infty} \frac{f(n)}{n} = \lim_{n \to +\infty} \frac{n + o(n)}{n} = 1 + \lim_{n \to +\infty} \frac{o(n)}{n} = 1$. 其中 o(n) 表示一个 (类) 数列, 只 不过这个(类)数列具有 $\lim_{n\to+\infty} \frac{o(n)}{n} = 0$ 的性质. 解解法一(一般解法):

$$\lim_{n\to +\infty} \left(1+\frac{1}{f(n)}\right)^n = \lim_{n\to +\infty} e^{n\ln\left(1+\frac{1}{f(n)}\right)} = e^{\lim_{n\to +\infty} n\ln\left(1+\frac{1}{f(n)}\right)} = e^{\lim_{n\to +\infty} \frac{n}{f(n)}} = e.$$

解法二 (渐进估计):
$$\text{由} \lim_{n \to +\infty} \frac{f(n)}{n} = 1, \text{ 可知}$$

$$\frac{f(n)}{n} = 1 + o(1), n \to +\infty.$$

$$\left(1 + \frac{1}{f(n)}\right)^n = \left[1 + \frac{1}{n} \cdot \frac{1}{1 + o(1)}\right]^n = \left[1 + \frac{1}{n}(1 + o(1))\right]^n = \left[1 + \frac{1}{n} + o\left(\frac{1}{n}\right)\right]^n = e^{n\ln\left[1 + \frac{1}{n} + o\left(\frac{1}{n}\right)\right]}, n \to +\infty.$$

$$\lim_{n\to +\infty} \left(1+\frac{1}{f(n)}\right)^n = \lim_{n\to +\infty} e^{n\ln\left[1+\frac{1}{n}+o\left(\frac{1}{n}\right)\right]} = \lim_{n\to +\infty} e^{n\left[\frac{1}{n}+o\left(\frac{1}{n}\right)\right]} = \lim_{n\to +\infty} e^{1+o(1)} = e.$$

例题 2.12 计算

1.
$$\lim_{x\to 0} \frac{\cos \sin x - \cos x}{x^4}$$
.
2. $\lim_{x\to +\infty} \left[\left(x^3 - x^2 + \frac{x}{2} \right) e^{\frac{1}{x}} - \sqrt{1 + x^6} \right]$.

2.

例题 2.13 求极限 $\lim_{n\to +\infty} (\sqrt[q]{n}-1)^{\frac{1}{(\ln n)^{\alpha}}} (\alpha>0).$

笔记 利用 Taylor 公式即可得到结果. 类似 $\ln(xe^{-x}-1) \sim \ln(xe^{-x}+o(xe^{-x})) \sim \ln(xe^{-x})$ 的等价关系可以直接凭 直觉写出,要严谨证明的话,只需要利用L'Hospital 法则即可.

解由

$$(\sqrt[n]{n}-1)^{\frac{1}{(\ln n)^{\alpha}}} = e^{\frac{\ln(\sqrt[n]{n}-1)}{(\ln n)^{\alpha}}}$$

从而

$$\lim_{n \to +\infty} \frac{\ln(\sqrt[n]{n} - 1)}{(\ln n)^{\alpha}} = \lim_{x \to +\infty} \frac{\ln(e^{xe^{-x}} - 1)}{x^{\alpha}} = \lim_{x \to +\infty} \frac{\ln(xe^{-x})}{x^{\alpha}}$$

$$= \lim_{x \to +\infty} \frac{\ln x - x}{x^{\alpha}} = \lim_{x \to +\infty} \left(\frac{\ln x}{x^{\alpha}} - \frac{1}{x^{\alpha - 1}} \right) = -\lim_{x \to +\infty} \frac{1}{x^{\alpha - 1}}$$

$$= \begin{cases} 0, & \alpha > 1, \\ -1, & \alpha = 1, \\ -\infty, & 0 < \alpha < 1. \end{cases}$$

于是

$$\lim_{n \to +\infty} (\sqrt[n]{n} - 1)^{\frac{1}{(\ln n)^{\alpha}}} = \begin{cases} 1, & \alpha > 1, \\ e^{-1}, & \alpha = 1, \\ 0, & 0 < \alpha < 1. \end{cases}$$

例题 2.14 计算 $(1+\frac{1}{x})^x, x \to +\infty$ 的渐进估计. 解 由带 Peano 余项的 Taylor 公式, 可得

$$\left(1 + \frac{1}{x}\right)^{x} = e^{x \ln(1 + \frac{1}{x})} = e^{x \left[\frac{1}{x} - \frac{1}{2x^{2}} + \frac{1}{3x^{3}} + o\left(\frac{1}{x^{3}}\right)\right]} = e^{1 - \frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)} = e \cdot e^{-\frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)}$$

$$= e \left[1 - \frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right) + \frac{1}{2}\left(-\frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)\right)^{2} + o\left(-\frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)\right)^{2}\right]$$

$$= e \left[1 - \frac{1}{2x} + \frac{1}{3x^{2}} + \frac{1}{8x^{2}} + o\left(\frac{1}{x^{2}}\right)\right]$$

$$e - \frac{e}{2x} + \frac{11e}{24x^{2}} + o\left(\frac{1}{x^{2}}\right)$$

故

$$\left(1+\frac{1}{x}\right)^x=e-\frac{e}{2x}+\frac{11e}{24x^2}+o\left(\frac{1}{x^2}\right), x\to +\infty.$$

于是

$$\lim_{x \to +\infty} x \left[e - \left(1 + \frac{1}{x} \right)^x \right] = \frac{e}{2}, \lim_{x \to +\infty} x \left[x \left(e - \left(1 + \frac{1}{x} \right)^x \right) - \frac{e}{2} \right] = -\frac{11e}{24}. \tag{2.4}$$

注 反复利用上述(2.4)式构造极限的方法, 再求出相应极限, 就能得到 e 的更精确的渐进估计. 这也是计算渐进估 计的一般方法.

例题 2.15 计算

$$\lim_{x\to 0}\frac{1-\cos x\cos(2x)\cdots\cos(nx)}{x^2}.$$

解 记 $I = \lim_{x \to 0} \frac{1 - \cos x \cos(2x) \cdots \cos(nx)}{x^2}$, 则由带 Peano 余项的 Taylor 公式, 可得

$$\cos x \cos(2x) \cdots \cos(nx) = \left[1 - \frac{1}{2}x^2 + o(x^2)\right] \left[1 - \frac{(2x)^2}{2} + o(x^2)\right] \cdots \left[1 - \frac{(nx)^2}{2} + o(x^2)\right]$$
$$= 1 - \frac{1^2 + 2^2 + \dots + n^2}{2}x^2 + o(x^2) = 1 - \frac{n(n+1)(2n+1)}{2 \cdot 6}x^2 + o(x^2), x \to 0.$$

故 $I = \frac{n(n+1)(2n+1)}{12}$. 例题 **2.16** 计算

$$\lim_{x\to 0} \frac{x - \overline{\sin \sin \cdots \sin x}}{x^3}.$$

解 先证明 $\underbrace{\sin(\sin(\sin(\cdots(\sin x))\cdots))}_{\text{contains}} = x - \frac{n}{6}x^3 + o(x^3), x \to 0.$

当 k=1 时, 由 Taylor 公式结论显然成立. 假设 k=n 时, 结论成立. 则当 k=n+1 时, 我们有

$$\begin{split} &\sin\left(x - \frac{n}{6}x^3 + o(x^3)\right) \\ &= x - \frac{n}{6}x^3 + o(x^3) - \frac{1}{6}\left(x - \frac{n}{6}x^3 + o(x^3)\right)^3 + o\left(\left(x - \frac{n}{6}x^3 + o(x^3)\right)^3\right) \\ &= x - \frac{n+1}{6}x^3 + o(x^3), x \to 0. \end{split}$$

由数学归纳法得
$$\underbrace{\sin(\sin(\sin(\cdots(\sin x))\cdots))}_{n \not\sim \xi \hat{\Phi}} = x - \frac{n}{6}x^3 + o(x^3), x \to 0.$$
 故 $\lim_{x \to 0} \frac{x - \frac{n \not\sim \xi \hat{\Phi}}{\sin \sin \cdots \sin x}}{x^3} = \frac{n}{6}.$

例题 2.17 计算

 $\lim_{n\to\infty} n\sin(2\pi e n!).$

解 由带 Lagrange 余项的 Taylor 展开式可知

$$e^x = \sum_{k=0}^{n+1} \frac{x^k}{k!} + \frac{e^{\theta} x^{n+2}}{(n+2)!}, \theta \in (0, x).$$

从而

$$e = \sum_{k=0}^{n+1} \frac{1}{k!} + \frac{e^{\theta}}{(n+2)!}, \theta \in (0,1).$$

于是

$$2\pi e n! = 2\pi n! \sum_{k=0}^{n+1} \frac{1}{k!} + \frac{2\pi n! e^{\theta}}{(n+2)!}, \theta \in (0,1).$$

而
$$n! \sum_{k=0}^{n} \frac{1}{k!} \in \mathbb{N}$$
, 因此

$$n\sin(2\pi e n!) = n\sin\left(2\pi n! \sum_{k=0}^{n+1} \frac{1}{k!} + \frac{2\pi n! e^{\theta}}{(n+2)!}\right) = n\sin\left(\frac{2\pi n!}{(n+1)!} + \frac{2\pi n! e^{\theta}}{(n+2)!}\right)$$
$$= n\sin\left(\frac{2\pi}{n+1} + \frac{2\pi e^{\theta}}{(n+1)(n+2)}\right) \sim n\left[\frac{2\pi}{n+1} + \frac{2\pi e^{\theta}}{(n+1)(n+2)}\right] \to 2\pi, n \to +\infty.$$

2.1.3 利用 Lagrange 中值定理求极限

Lagrange 中值定理不会改变原数列或函数的阶, 但是可以更加精细地估计原数列或函数的阶. 以后利用 Lagrange 中值定理处理数列或函数的阶的过程都会直接省略.

例题 2.18 计算

$$\lim_{n\to\infty} [\sin(\sqrt{n+1}) - \sin(\sqrt{n})].$$

解 由 Lagrange 中值定理, 可知对 $\forall n \in \mathbb{N}_+$, 存在 $\theta_n \in (\sqrt{n+1}, \sqrt{n})$, 使得

$$\sin(\sqrt{n+1}) - \sin(\sqrt{n}) = (\sqrt{n+1} - \sqrt{n})\cos\theta_n = \frac{1}{\sqrt{n+1} + \sqrt{n}} \cdot \cos\theta_n.$$

从而当 $n \to +\infty$ 时, 有 $\theta_n \to +\infty$. 于是

$$\lim_{n \to \infty} \left[\sin(\sqrt{n+1}) - \sin(\sqrt{n}) \right] = \lim_{n \to \infty} \left[\frac{1}{\sqrt{n+1} + \sqrt{n}} \cdot \cos \theta_n \right] = 0.$$

例题 2.19 计算

$$\lim_{n\to\infty} n^2 \left(\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1}\right).$$

17

证明 由 Lagrange 中值定理, 可知对 $\forall n \in \mathbb{N}$, 存在 $\theta_n \in (\frac{2024}{n}, \frac{2024}{n+1})$, 使得

$$\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1} = \frac{1}{1+\theta_n^2} \cdot \left(\frac{2024}{n} - \frac{2024}{n+1}\right).$$

并且 $\lim_{n\to +\infty} \theta_n = 0$. 故

$$\lim_{n \to \infty} n^2 \left(\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1} \right) = \lim_{n \to \infty} \frac{n^2}{1 + \theta^2} \cdot \left(\frac{2024}{n} - \frac{2024}{n+1} \right) = 2024 \lim_{n \to \infty} \frac{n^2}{n(n+1)} = 2024.$$

例题 2.20

- 1. 对 $\alpha \neq 0$, 求 $(n+1)^{\alpha} n^{\alpha}$, $n \rightarrow \infty$ 的等价量;
- 2. 求 $n \ln n (n-1) \ln (n-1), n \to \infty$ 的等价量.

笔记 熟练这种利用 Lagrange 中值定理求极限的方法以后, 这类数列或函数的等价量我们应该做到能够快速口算 出来. 因此, 以后利用 Lagrange 中值定理计算数列或函数的等价量的具体过程我们不再书写, 而是直接写出相应 的等价量.

注 不难发现利用 Lagrange 中值定理计算数列或函数的等价量, 并不改变原数列或函数的阶.

解 1. 根据 Lagrange 中值定理, 可知对 $n \in \mathbb{N}$, 都有

$$(n+1)^{\alpha} - n^{\alpha} = \alpha \cdot \theta_n^{\alpha-1}, \theta_n \in (n, n+1).$$

不妨设 $\alpha>1$, 则有 $\alpha n^{\alpha-1}\leqslant \alpha \theta_n^{\alpha-1}\leqslant \alpha (n+1)^{\alpha-1} (若 \alpha\leqslant 1, 则有 \alpha (n+1)^{\alpha-1}\leqslant \alpha \theta_n^{\alpha-1}\leqslant \alpha n^{\alpha-1}).$ 故

$$\alpha = \lim_{n \to \infty} \frac{\alpha n^{\alpha - 1}}{n^{\alpha - 1}} \leqslant \lim_{n \to \infty} \frac{\alpha \theta_n^{\alpha - 1}}{n^{\alpha - 1}} \leqslant \lim_{n \to \infty} \frac{\alpha (n + 1)^{\alpha - 1}}{n^{\alpha - 1}} = \alpha.$$

因此 $(n+1)^{\alpha} - n^{\alpha} \sim \alpha n^{\alpha-1}, n \to \infty$

2. 由 Lagrange 中值定理, 可知对 $n \in \mathbb{N}$, 都有

$$\lim_{n\to\infty}\frac{n\ln n-(n-1)\ln(n-1)}{\ln n}=\lim_{n\to\infty}\frac{(n-(n-1))\cdot(1+\ln\theta_n)}{\ln n}=\lim_{n\to\infty}\frac{1}{\ln n}+\lim_{n\to\infty}\frac{\ln\theta_n}{\ln n}=\lim_{n\to\infty}\frac{\ln\theta_n}{\ln n}, n-1<\theta_n< n.$$

$$\mathbb{X}\cdot\frac{\ln(n-1)}{\ln n}<\frac{\ln\theta_n}{\ln n}=1, \text{ in }\frac{\ln\theta_n}{\ln n}=1, \text{ in }\frac{\ln\theta_n}{\ln\theta_n}=1, \text$$

又
$$\frac{\ln(n-1)}{\ln n} < \frac{\ln \theta_n}{\ln n} < \frac{\ln n}{\ln n} = 1$$
,故 $\lim_{n \to \infty} \frac{\ln \theta_n}{\ln n} = 1$,从而

$$\lim_{n\to\infty} \frac{n\ln n - (n-1)\ln(n-1)}{\ln n} = \lim_{n\to\infty} \frac{\ln \theta_n}{\ln n} = 1.$$

于是 $n \ln n - (n-1) \ln (n-1) \sim \ln n, n \rightarrow +\infty$.

例题 2.21 计算

$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x}.$$

证明 由 Lagrange 中值定理, 可知对 $\forall x \in U(0)$, 都有

$$\cos(\sin x) - \cos x = (x - \sin x)\sin\theta, \theta \in (\sin x, x).$$

从而

$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x} = \lim_{x \to 0} \frac{(x - \sin x)\sin\theta}{\frac{1}{2}x^2 \cdot x^2} = \lim_{x \to 0} \frac{\frac{1}{6}x^3 \cdot \sin\theta}{\frac{1}{2}x^4} = \frac{1}{3}\lim_{x \to 0} \frac{\sin\theta}{x}.$$

又由 $\sin x < \theta < x, \forall x \in U(0)$ 可知

$$1 = \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin (\sin x)}{x} < \lim_{x \to 0} \frac{\sin \theta}{x} \leqslant \lim_{x \to 0} \frac{\theta}{x} < \lim_{x \to 0} \frac{x}{x} = 1.$$

故
$$\sin \theta \sim \theta \sim x, x \to 0$$
. 因此 $\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x} = \frac{1}{3} \lim_{x \to 0} \frac{\sin \theta}{x} = \frac{1}{3} \lim_{x \to 0} \frac{x}{x} = \frac{1}{3}$.

2.1.4 L'Hospital'rules

定理 2.2 (上下极限 L'Hospital 法则)

1. 设 f, g 在 (a, b) 内可微, 满足 (i) $\forall x \in (a, b), g'(x) \neq 0.$ (ii) $\lim_{x \to a^+} g(x) = +\infty$. 则

$$\underline{\lim}_{x \to a^{+}} \frac{f'(x)}{g'(x)} \leqslant \underline{\lim}_{x \to a^{+}} \frac{f(x)}{g(x)} \leqslant \overline{\lim}_{x \to a^{+}} \frac{f(x)}{g'(x)} \leqslant \overline{\lim}_{x \to a^{+}} \frac{f'(x)}{g'(x)}$$
(2.5)

且

$$\underline{\lim}_{x \to a^{+}} \left| \frac{f'(x)}{g'(x)} \right| \leqslant \underline{\lim}_{x \to a^{+}} \left| \frac{f(x)}{g(x)} \right| \leqslant \overline{\lim}_{x \to a^{+}} \left| \frac{f(x)}{g(x)} \right| \leqslant \overline{\lim}_{x \to a^{+}} \left| \frac{f'(x)}{g'(x)} \right|. \tag{2.6}$$

2. 设 f, g 在 (a, b) 内可微, 满足 (i) $\forall x \in (a, b), g'(x) \neq 0.$ (ii) $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0.$ 则

$$\underline{\lim}_{x \to a^{+}} \frac{f'(x)}{g'(x)} \leqslant \underline{\lim}_{x \to a^{+}} \frac{f(x)}{g(x)} \leqslant \overline{\lim}_{x \to a^{+}} \frac{f(x)}{g(x)} \leqslant \overline{\lim}_{x \to a^{+}} \frac{f'(x)}{g'(x)} \tag{2.7}$$

且

$$\underline{\lim}_{x \to a^{+}} \left| \frac{f'(x)}{g'(x)} \right| \leqslant \underline{\lim}_{x \to a^{+}} \left| \frac{f(x)}{g(x)} \right| \leqslant \overline{\lim}_{x \to a^{+}} \left| \frac{f(x)}{g(x)} \right| \leqslant \overline{\lim}_{x \to a^{+}} \left| \frac{f'(x)}{g'(x)} \right|. \tag{2.8}$$

笔记 此定理第一部分(2.5)和(2.7)可以直接使用且以后可以不必再担心分子分母同时求导之后极限不存在而不能使用洛必达法则的情况。但(2.6)和(2.8)一般是不能直接用的,需要给证明。

证明 以第一问为例,事实上,固定x,由 Cauchy 中值定理,我们有

$$\frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f'(\xi)}{g'(\xi)}, x < \xi < y.$$

我们断言对 $A \in \mathbb{R} \cup \{+\infty\}$, 必有

$$\lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} \right| = A \Leftrightarrow \lim_{n \to \infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = A. \tag{2.9}$$

若 $\lim_{n\to\infty} \left| \frac{f(y_n)}{g(y_n)} \right| = A$. 首先利用极限的四则运算, 我们有

$$\lim_{n\to\infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = \lim_{n\to\infty} \left| \frac{\frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)}}{1 - \frac{g(x)}{g(y_n)}} \right| = \lim_{n\to\infty} \left| \frac{1}{1 - \frac{g(x)}{g(y_n)}} \right| \cdot \lim_{n\to\infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| = \lim_{n\to\infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right|.$$

利用

$$\left|\frac{f(y_n)}{g(y_n)}\right| - \left|\frac{f(x)}{g(y_n)}\right| \leqslant \left|\frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)}\right| \leqslant \left|\frac{f(y_n)}{g(y_n)}\right| + \left|\frac{f(x)}{g(y_n)}\right|, \lim_{n \to \infty} g(y_n) = \infty,$$

我们知道

$$\lim_{n \to \infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = \lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| = A.$$

反之设 $\lim_{n\to\infty} \left| \frac{f(y_n) - f(x)}{g(y_n) - g(x)} \right| = A$, 同样的由四则运算, 我们有

$$\lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)} \right| = A.$$

于是由

$$\left|\frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)}\right| - \left|\frac{f(x)}{g(y_n)}\right| \le \left|\frac{f(y_n)}{g(y_n)}\right| \le \left|\frac{f(y_n)}{g(y_n)} - \frac{f(x)}{g(y_n)}\right| + \left|\frac{f(x)}{g(y_n)}\right|, \lim_{n \to \infty} |g(y_n)| = \infty,$$

我们知道

$$\lim_{n \to \infty} \left| \frac{f(y_n)}{g(y_n)} \right| = A.$$

现在就证明了(2.9).

于是结合 $x \to +\infty$, 我们容易得到

$$\begin{split} & \overline{\lim}_{y \to +\infty} \left| \frac{f(y)}{g(y)} \right| = \overline{\lim}_{y \to +\infty} \left| \frac{f(y) - f(x)}{g(y) - g(x)} \right| = \overline{\lim}_{y \to +\infty} \left| \frac{f'(\xi)}{g'(\xi)} \right| \leqslant \overline{\lim}_{y \to +\infty} \left| \frac{f'(y)}{g'(y)} \right| \\ & \lim_{y \to +\infty} \left| \frac{f(y)}{g(y)} \right| = \underline{\lim}_{y \to +\infty} \left| \frac{f(y) - f(x)}{g(y) - g(x)} \right| = \underline{\lim}_{y \to +\infty} \left| \frac{f'(\xi)}{g'(\xi)} \right| \geqslant \underline{\lim}_{y \to +\infty} \left| \frac{f'(y)}{g'(y)} \right| \end{split}$$

这就完成了证明.

例题 2.22 若 $f \in D^1[0, +\infty)$.

(1) 设

$$\lim_{x \to +\infty} [f(x) + f'(x)] = s \in \mathbb{R},$$

$$\lim_{x \to +\infty} \left[f'(x) + \frac{2x}{\sqrt[3]{1+x^3}} f(x) \right] = s \in \mathbb{R},$$

证明 $\lim_{x \to +\infty} f(x) = \frac{s}{2}$.

笔记 (2) 中的构造思路: 根据条件构造相应的微分方程, 然后求解这个微分方程, 再常数变易得到我们需要构造的 函数. 具体步骤如下:

构造微分方程: $y' + \frac{2x}{\sqrt[3]{1+x^3}}y = 0$,整理可得 $\frac{y'}{y} = -\frac{2x}{\sqrt[3]{1+x^3}}$, 再对其两边同时积分得到 $\ln y = -\int_0^x \frac{2x}{\sqrt[3]{1+x^3}} dx + \frac{2x}{\sqrt[3]{1+x^3}} dx$ C_0 . 从而 $y = Ce^{-\int_0^x \frac{2x}{\sqrt[3]{1+x^3}} \mathrm{d}x}$,于是 $C = ye^{\int_0^x \frac{2x}{\sqrt[3]{1+x^3}} \mathrm{d}x}$. 故我们要构造的函数就是 $C(x) = f(x)e^{\int_0^x \frac{2x}{\sqrt[3]{1+x^3}} \mathrm{d}x}$. 并且此时 C(x) 满足 $C'(x) = f'(x) + \frac{2x}{\sqrt[3]{1+x^3}} f(x)$.

(1)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x f(x)}{e^x} = \lim_{x \to +\infty} \frac{e^x [f(x) + f'(x)]}{e^x} = \lim_{x \to +\infty} [f + f'] = s$$

(1)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x f(x)}{e^x} = \lim_{x \to +\infty} \frac{e^x [f(x) + f'(x)]}{e^x} = \lim_{x \to +\infty} [f + f'] = s.$$

(2) $\lim \frac{2t}{\sqrt[3]{1+t^3}} \geqslant \frac{2t}{\sqrt[3]{2t^3}} = 2^{\frac{2}{3}}, \forall t > 1 \text{ } \exists \text$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{f(x) \cdot e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}}{e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}} \xrightarrow{\underline{L' \text{Hospital' rules}}} \lim_{x \to +\infty} \frac{\left[f'(x) + \frac{2x}{\sqrt[3]{1+x^3}} f(x) \right] e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}}{\frac{2x}{\sqrt[3]{1+x^3}} e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}}$$

$$= \lim_{x \to +\infty} \frac{\sqrt[3]{1+x^3}}{2x} \left[f(x) + \frac{2x}{\sqrt[3]{1+x^3}} f'(x) \right] = \frac{s}{2}.$$

例题 2.23 设可微函数 $a,b,f,g:\mathbb{R}\to\mathbb{R}$ 满足

$$f(x) \ge 0, g(x) > 0, g'(x) > 0, \frac{f'(x)}{g'(x)} + a(x)\frac{f(x)}{g(x)} = b(x), \quad \forall x \in \mathbb{R},$$

$$\lim_{x\to +\infty} a(x) = A > 0, \lim_{x\to +\infty} b(x) = B > 0, \lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} g(x) = +\infty.$$

证明:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{B}{A+1}.$$

注 如果直接使用 L'Hospital 法则, 再结合条件会得到

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x \to +\infty} \left[b(x) - a(x) \frac{f(x)}{g(x)} \right].$$

但是注意这里并不能直接使用极限运算的四则运算法则得到结果,这是因为 $\lim_{x\to \infty} \frac{f(x)}{g(x)}$ 不一定存在.

证明 $\diamondsuit p(x) = e^{\int_0^x a(x) \frac{g'(x)}{g(x)} dx}$,则

$$\frac{p'(x)}{p(x)} = \frac{a(x)\frac{g'(x)}{g(x)}e^{\int_0^x a(x)\frac{g'(x)}{g(x)}dx}}{e^{\int_0^x a(x)\frac{g'(x)}{g(x)}dx}} = a(x)\frac{g'(x)}{g(x)}.$$
(2.10)

于是由条件可得

$$f'(x) + a(x)\frac{g'(x)}{g(x)}f(x) = b(x)g'(x) \Longleftrightarrow f'(x) + \frac{p'(x)}{p(x)}f(x) = b(x)g'(x), \quad \forall x \in \mathbb{R}.$$
 (2.11)

又由 $\lim_{x \to +\infty} a(x) = A > 0$ 可知, 存在 M > 0, 使得

$$a(x) \geqslant \frac{A}{2}, \quad \forall x > M.$$

从而对 $\forall x > M$, 我们有

$$p(x) = e^{\int_0^x a(x) \frac{g'(x)}{g(x)} dx} \geqslant e^{\int_M^x a(x) \frac{g'(x)}{g(x)} dx}$$
$$\geqslant e^{\frac{A}{2} \int_M^x \frac{g'(x)}{g(x)} dx} = e^{\frac{A}{2} \ln \frac{g(x)}{g(M)}} = \left[\frac{g(x)}{g(M)}\right]^{\frac{A}{2}}.$$

 $\Leftrightarrow x \to +\infty$, 则由 $\lim_{x \to +\infty} g(x) = +\infty$ 可知 $\lim_{x \to +\infty} p(x) = +\infty$. 因此, 利用 L'Hospital 法则, 再结合 (2.10) 和 (2.11) 式, 可得

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f(x)p(x)}{g(x)p(x)} \xrightarrow{\text{L'Hospital}} \lim_{x \to +\infty} \frac{f'(x)p(x) + f(x)p'(x)}{g'(x)p(x) + g(x)p'(x)}$$

$$= \lim_{x \to +\infty} \frac{f'(x) + \frac{p'(x)}{p(x)}f(x)}{g'(x) + \frac{p'(x)}{p(x)}g(x)} = \lim_{x \to +\infty} \frac{b(x)g'(x)}{g'(x) + a(x)\frac{g'(x)}{g(x)}g(x)}$$

$$= \lim_{x \to +\infty} \frac{b(x)}{1 + a(x)} = \frac{B}{A + 1}.$$

命题 2.3 (L'Hospital 法则 (复变函数版本))

设
$$f(x) = u(x) + iv(x), g(x)$$
 为实值函数, 且 $\lim_{x \to a^+} g(x) = +\infty$, 若 $\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = z_0$, 则 $\lim_{x \to a^+} \frac{f(x)}{g(x)} = z_0$.

证明 由实数 L' Hospital 法则可得

$$\lim_{x \to a^+} \left(\frac{u'(x)}{g'(x)} + i \frac{v'(x)}{g'(x)} \right) = z_0 \Rightarrow \lim_{x \to a^+} \frac{u(x)}{g(x)} = \text{Re}z_0, \quad \lim_{x \to a^+} \frac{v(x)}{g(x)} = \text{Im}z_0$$

$$\Rightarrow \lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{u(x) + iv(x)}{g(x)} = z_0.$$

例题 **2.24** 设 f(x) 在 \mathbb{R} 上二阶可微且 $a,b \in \mathbb{R}$, 满足 $a > 0,a^2 - 4b < 0$ 或者 $a > 0,b > 0,a^2 - 4b > 0$ 且有 $\lim_{x \to +\infty} (f''(x) + af'(x) + bf(x)) = \ell \in \mathbb{R}$, 证明: $\lim_{x \to +\infty} f(x) = \frac{\ell}{b}$, $\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} f''(x) = 0$.

🕏 笔记 对于二阶微分方程而言, 一般考虑降阶. 本题利用 L'Hospital 法则实现降阶.

证明 不妨设 l=0, 否则用 $f(x)-\frac{l}{h}$ 代替 f(x) 即可.

①当 a > 0、b > 0、 $a^2 - 4b > 0$ 时, 考虑二次方程 $x^2 + ax + b = 0$, 则此时该方程必有两负根. 设这两个负根分别为 $\lambda_1, \lambda_2 < 0$, 则 $x^2 + ax + b = x^2 + (\lambda_1 + \lambda_2)x + \lambda_1\lambda_2$. 注意到

$$\left[e^{-\lambda_2 x}\left(f'(x)-\lambda_1 f(x)\right)\right]'=e^{\lambda_2 x}\left[f''(x)+(\lambda_1+\lambda_2)f'(x)+\lambda_1\lambda_2 f(x)\right]=e^{\lambda_2 x}\left[f''(x)+af'(x)+bf(x)\right],$$

因此由条件可得

$$\frac{\left[e^{-\lambda_2 x}\left(f'(x) - \lambda_1 f(x)\right)\right]'}{\left(e^{-\lambda_2 x}\right)'} = \frac{f''(x) + af'(x) + bf(x)}{-\lambda_2} \to 0, \ x \to +\infty.$$

从而利用 L'Hospital 法则可得

$$\lim_{x\to +\infty}\left[f'(x)-\lambda_1f(x)\right]=\lim_{x\to +\infty}\frac{e^{-\lambda_2x}\left(f'(x)-\lambda_1f(x)\right)}{e^{-\lambda_2x}}=\lim_{x\to +\infty}\frac{\left[e^{-\lambda_2x}\left(f'(x)-\lambda_1f(x)\right)\right]'}{\left(e^{-\lambda_2x}\right)'}=0.$$

又注意到

$$\left[e^{-\lambda_1 x}f(x)\right]' = e^{-\lambda_1 x}\left[f'(x) - \lambda_1 f(x)\right],\,$$

因此

$$\frac{\left[e^{-\lambda_1 x} f(x)\right]'}{\left(e^{-\lambda_1 x}\right)'} = \frac{f'(x) - \lambda_1 f(x)}{-\lambda_1} \to 0, \ x \to +\infty.$$

于是再利用 L'Hospital 法则可得

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^{-\lambda_1 x} f(x)}{e^{-\lambda_1 x}} = \lim_{x \to +\infty} \frac{\left[e^{-\lambda_1 x} f(x)\right]'}{\left(e^{-\lambda_1 x}\right)'} = 0.$$

故由 $\lim_{x\to \infty} [f'(x) - \lambda_1 f(x)] = 0$ 和极限的四则运算法则可得

$$\lim_{x\to +\infty}f'(x)=\lim_{x\to +\infty}\left[f'(x)-\lambda_1f(x)\right]+\lambda_1\lim_{x\to +\infty}f(x)=0.$$

进而再由 $\lim_{x\to +\infty} \left[f''(x) + af'(x) + bf(x) \right] = 0$ 可得

$$\lim_{x \to +\infty} f''(x) = \lim_{x \to +\infty} \left[f''(x) + af'(x) + bf(x) \right] - a \lim_{x \to +\infty} f'(x) - b \lim_{x \to +\infty} f(x) = 0.$$

②当 a > 0、 $a^2 - 4b < 0$ 时, 考虑二次方程 $x^2 + ax + b = 0$, 则此时该方程必有两复根, 并且 $\lambda_1 + \lambda_2 = a < 0$.

于是设这两个复根分别为 $\lambda_1=-u+v\mathrm{i}$ 、 $\lambda_2=-u-v\mathrm{i}(u>0,v\in\mathbb{R}\setminus\{0\})$,则 $x^2+ax+b=x^2+(\lambda_1+\lambda_2)x+\lambda_1\lambda_2$.

从而由L'Hospital 法则可得

$$\lim_{x \to +\infty} e^{\mathrm{i}vx} \left[f'(x) - \lambda_1 f(x) \right] = \lim_{x \to +\infty} \frac{e^{(u+\mathrm{i}v)x} \left[f'(x) - \lambda_1 f(x) \right]}{e^{ux}} \underbrace{\frac{\mathrm{L' Hospital} \, \mathbb{E}\mathbb{P} \left(\mathbf{g} \, \mathbf{g} \,$$

因此

$$0 = \lim_{x \to +\infty} \left[f'(x) - \lambda_1 f(x) \right] = \lim_{x \to +\infty} \left[f'(x) + u f(x) + i v f(x) \right].$$

于是

$$\lim_{x \to +\infty} \left[f'(x) + u f(x) \right] = \lim_{x \to +\infty} v f(x) = 0.$$

又因为 u>0、 $v\neq0$,所以 $\lim_{x\to+\infty}f(x)=0$,进而 $\lim_{x\to+\infty}f'(x)=0$. 再由 $\lim_{x\to+\infty}\left[f''(x)+af'(x)+bf(x)\right]=0$ 可得 $\lim_{x\to+\infty}f''(x)=0$. 综上,结论得证.

注 第②中情况中不使用L'Hospital 法则 (复变函数版本)的方法: 考虑

$$e^{-\lambda_2 x} \left[f'(x) - \lambda_1 f(x) \right] = e^{(u+\mathrm{i}v)x} \left[f'(x) - (-u+\mathrm{i}v)f(x) \right] = e^{ux} (\cos vx + \mathrm{i}\sin vx) \left[f'(x) + uf(x) - \mathrm{i}vf(x) \right].$$

则上述复变函数实部和虚部分别为

实部:
$$e^{ux} \left[(f'(x) + uf(x)) \cos vx + vf(x) \sin vx \right];$$

虚部: $e^{ux} \left[(f'(x) + uf(x)) \sin vx - vf(x) \cos vx \right].$

于是利用 L'Hospital 法则可得

$$\lim_{x \to +\infty} \left[(f'(x) + uf(x))\cos vx + vf(x)\sin vx \right] = \lim_{x \to +\infty} \frac{e^{ux} \left[(f'(x) + uf(x))\cos vx + vf(x)\sin vx \right]}{e^{ux}}$$

$$= \lim_{x \to +\infty} \frac{\left[e^{ux} \left((f'(x) + uf(x))\cos vx + vf(x)\sin vx \right) \right]'}{(e^{ux})'}$$

$$= \lim_{x \to +\infty} \frac{e^{ux}\cos vx \left[f''(x) + af'(x) + bf(x) \right]}{ue^{ux}}$$

$$= \lim_{x \to +\infty} \frac{\cos vx \left[f''(x) + af'(x) + bf(x) \right]}{u} = 0.$$

同理利用 L'Hospital 法则可得

$$\lim_{x \to +\infty} \left[(f'(x) + uf(x)) \sin vx - vf(x) \cos vx \right] = 0.$$

因此当 $x \to +\infty$ 时, $e^{-\lambda_2 x} [f'(x) - \lambda_1 f(x)]$ 的实部和虚部都趋于 0, 故

$$\lim_{x \to +\infty} e^{-\lambda_2 x} \left[f'(x) - \lambda_1 f(x) \right] = 0.$$

 $\lim_{x\to +\infty} e^{-\lambda_2 x} \left[f'(x) - \lambda_1 f(x) \right] = 0.$ 从而 $\lim_{x\to +\infty} \left[f'(x) - \lambda_1 f(x) \right] = 0$,后续同理可证 $\lim_{x\to +\infty} f'(x) = \lim_{x\to +\infty} f''(x) = 0$.

例题 2.25 给定正整数 n, 设 $f(x) \in C^n[-1,1], |f(x)| \leq 1$, 证明: 存在与 f(x) 无关的常数 C, 使得只要 $|f'(0)| \geq$ $C, f^{(n)}(x)$ 在 (-1,1) 中就会有至少 n-1 个不同的根.

证明 证明见豌豆 (2024-2025 竞赛班下数学类讲义洛必达法则部分), 本题证明直观上定性分析比较容易, 但是要 严谨地书写过程比较繁琐(证明太麻烦没看).

例题 2.26 设 f(x) 在 (0,1) 中任意阶可导且各阶导数均非负,证明: f(x) 是实解析函数.(伯恩斯坦定理) 类似的, 如果 $(-1)^n f^{(n)}(x) \ge 0$ 恒成立, 则 f(x) 也是实解析的.

证明 对 $\forall x \in (0,1)$, 固定 x, 则任取 h > 0, 使得 $x + 2h \in (0,1)$. 于是由 Taylor 定理可知

$$f(x+2h) = f(x) + f'(x) \cdot 2h + \dots + \frac{f^{(n)}(x)}{n!} (2h)^n + \frac{1}{n!} \int_x^{x+2h} f^{(n+1)}(t)(x+2h-t)^n dt.$$

又由于 f 任意阶导数均非负, 故 f 的任意阶导数都是单调递增函数. 从而

$$\frac{1}{n!} \int_{x}^{x+h} f^{(n+1)}(t)(x+h-t)^{n} dt \leqslant \frac{1}{n!} \int_{x}^{x+h} f^{(n+1)}(2t-x)(x+h-t)^{n} dt$$

$$\frac{u=2t-x}{2^{n+1}n!} \frac{1}{2^{n+1}n!} \int_{x}^{x+2h} f^{(n+1)}(u)(x+2h-u)^{n} du$$

$$= \frac{1}{2^{n+1}} \left[f(x+2h) - \left(f(x) + f'(x) \cdot 2h + \dots + \frac{f^{(n)}(x)}{n!} (2h)^{n} \right) \right]$$

$$\leqslant \frac{f(x+2h) - f(x)}{2^{n+1}} \to 0, \quad n \to \infty.$$

因此f可以在x的任意右邻域展开成幂级数(因为余项趋于0),即

$$f(y) = f(x) + f'(x)(y - x) + \dots + \frac{f^{(n)}(x)}{n!}(y - x)^n + \dots = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x)}{n!}(y - x)^n, \quad \forall y \in U_+(x).$$

但是同样的方法对于x < 0 时似乎难以处理,因为单调性对不上,所以换个方法(可以一次解决问题,直接对高阶

导数进行估计, 由此说明余项趋于零, 也无需讨论正负) 设 |f(x)| 在 $[-\frac{3}{4},\frac{3}{4}]$ 中的最大值为 M, 对任意 $|x|<\frac{1}{4}$ 有

$$f\left(x+\frac{1}{2}\right) = f(x) + \sum_{k=1}^{n-1} \frac{f^{(k)}(x)}{k!} \frac{1}{2^k} + \frac{f^{(n)}(x)}{n!} \frac{1}{2^n} + \frac{f^{(n+1)}(\xi)}{(n+1)!} \frac{1}{2^{n+1}} \geqslant f(x) + \frac{f^{(n)}(x)}{n!} \frac{1}{2^n}$$

由此得到

$$0 \leqslant \frac{f^{(n)}(x)}{n!} \leqslant 2^n \left(f\left(x + \frac{1}{2}\right) - f(x) \right) \leqslant 2^{n+1} M, \forall x \in \left(-\frac{1}{4}, \frac{1}{4} \right)$$

进而

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} \right| = \frac{|f^{(n+1)}(\xi)|}{(n+1)!} |x|^{n+1} \leqslant 2^{n+2} M |x|^{n+1} \leqslant 2^{n+2} M \frac{1}{4^{n+1}} \to 0, n \to \infty$$

所以 $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n, \forall x \in \left(-\frac{1}{4}, \frac{1}{4}\right)$, 这就证明了实解析

对于第二问. 考虑函数 f(-x) 即可.

例题 2.27 设 g(x) 是 $(0, +\infty)$ 中恒正的连续函数,a > 0 使得 $\lim_{x \to +\infty} \frac{g(x)}{r^{1+a}} = +\infty$, 若 f(x) 在 $(0, +\infty)$ 中恒正且二阶可导, 满足 f''(x) + f'(x) > g(f(x)) 恒成立, 证明: lim f(x) = 0. 证明 由 $f''(x) + f'(x) > g(f(x)) > 0, \forall x \in (0, +\infty)$ 可得

$$(e^x f'(x))' = e^x (f''(x) + f'(x)) > 0, \forall x \in (0, +\infty).$$

从而 $e^x f'(x)$ 在 $(0,+\infty)$ 上严格递增.

(i) 若 $e^x f'(x)$ 在 (0,+∞) 上无零点, 则

$$e^x f'(x) > 0 \Rightarrow f'(x) > 0, \forall x \in (0, +\infty).$$

(ii) 若 $e^x f'(x)$ 在 $(0,+\infty)$ 上有零点,则由其严格递增性可知,存在唯一的 a>0,使得 $e^a f'(a)=0$.于是

$$e^x f'(x) > e^a f'(a) = 0, \forall x \in (a, +\infty).$$

故一定存在 X > 0, 使得 f'(x) > 0, $\forall x \in (X, +\infty)$. 从而 f(x) 在 $(X, +\infty)$ 上严格递增.

由 $f''(x) + f'(x) > g(f(x)) > 0, \forall x \in (0, +\infty)$ 还可以得到

$$[f'(x) + f(x)]' = f''(x) + f'(x) > 0, \forall x \in (0, +\infty).$$

于是 f'(x) + f(x) 在 $(0, +\infty)$ 上严格递增. 从而 $\lim_{x \to +\infty} [f'(x) + f(x)] = L$ 为有限数或 $+\infty$ (广义存在). 由L'Hospital 法则可得

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x f(x)}{e^x} = \lim_{x \to +\infty} \frac{e^x \left[f'(x) + f(x) \right]}{e^x} = \lim_{x \to +\infty} \left[f'(x) + f(x) \right] = L.$$

又由 f 恒正可知 $L \ge 0$. 反证, 假设 $L \ne 0$,

①当 $L \in (0, +\infty)$ 时,此时,由 $\lim_{x \to +\infty} \left[f'(x) + f(x) \right] = \lim_{x \to +\infty} f(x) = L$ 可得 $\lim_{x \to +\infty} f'(x) = 0$. 再对 f''(x) + f'(x) > g(f(x)) 两边同时令 $x \to +\infty$,可得

$$\liminf_{x \to +\infty} f''(x) + \lim_{x \to +\infty} f'(x) \geqslant \lim_{x \to +\infty} g(f(x)) = g\left(\lim_{x \to +\infty} f(x)\right).$$

即 $\liminf f''(x) \ge g(L)$. 于是由 Lagrange 中值定理可知, 存在 c > X+1, 使得

$$f'(x) = f'(X+1) + f''(c)(x-X-1) \geqslant f'(X+1) + g(L)(x-X-1), \forall x > X+1.$$

 $\Leftrightarrow x \to +\infty$, 得 $\lim_{x \to +\infty} f'(x) = +\infty$, 这与 $\lim_{x \to +\infty} f'(x) = 0$ 矛盾!

② 当 $L = +\infty$ 时, 此时 $\lim_{x \to +\infty} \left[f'(x) + f(x) \right] = \lim_{x \to +\infty} f(x) = +\infty$. 由 f''(x) + f'(x) > g(f(x)) 可得

$$\frac{f''(x) + f'(x)}{(f(x))^{1+a}} > \frac{g(f(x))}{(f(x))^{1+a}} = \frac{g(x)}{x^{1+a}}.$$

从而由 $\lim_{x \to +\infty} \frac{g(x)}{x^{1+a}} = +\infty$ 可得 $\lim_{x \to +\infty} \frac{f''(x) + f'(x)}{(f(x))^{1+a}} = +\infty$.

$$\frac{f''(x)+f'(x)}{(f(x))^{1+a}} = \frac{(f''(x)+f'(x))(f'(x)+f(x))}{(f(x))^{1+a}\left(f'(x)+f(x)\right)} < \frac{(f''(x)+f'(x))(f'(x)+f(x))}{(f(x))^{1+a}\left(f'(x)+f(x)\right)}.$$

令
$$x \to +\infty$$
, 得 $\lim_{x \to +\infty} \frac{(f''(x) + f'(x))(f'(x) + f(x))}{(f(x))^{1+a} f'(x)} = +\infty$.
又由 L'Hospital 法则可知

$$\lim_{x \to +\infty} \frac{(f'(x) + f(x))^2}{(f(x))^{2+a}} = \lim_{x \to +\infty} \frac{\left[(f'(x) + f(x))^2 \right]'}{\left[(f(x))^{2+a} \right]'} = \lim_{x \to +\infty} \frac{(f''(x) + f'(x)) \left(f'(x) + f(x) \right)}{(2+a) \left(f(x) \right)^{1+a} f'(x)} = +\infty.$$

于是 $\lim_{x \to +\infty} \frac{f'(x) + f(x)}{(f(x))^{1+\frac{a}{2}}} = +\infty$. 又由 $\lim_{x \to +\infty} f(x) = +\infty$ 可得 $\lim_{x \to +\infty} \frac{f(x)}{(f(x))^{1+\frac{a}{2}}} = 0$. 因此 $\lim_{x \to +\infty} \frac{f'(x)}{(f(x))^{1+\frac{a}{2}}} = +\infty$. 故存在 M > X + 1, 使得

$$\frac{f'(x)}{(f(x))^{1+\frac{a}{2}}} > 1, \forall x > M.$$

两边同时积分可得

$$\int_{M}^{+\infty} \frac{1}{x^{1+\frac{a}{2}}} \, \mathrm{d}x = \int_{M}^{+\infty} \frac{1}{(f(x))^{1+\frac{a}{2}}} \, \mathrm{d}f(x) = \int_{M}^{+\infty} \frac{f'(x)}{(f(x))^{1+\frac{a}{2}}} \, \mathrm{d}x \geqslant \int_{M}^{+\infty} \, \mathrm{d}x = +\infty.$$

而
$$\int_{M}^{+\infty} \frac{1}{x^{1+\frac{a}{2}}} dx$$
 收敛, 矛盾!

例题 2.28 设 f(x) 非负且二阶可导, $\lim_{x\to+\infty}\frac{f''(x)}{f(x)(1+f'^2(x))^2}=+\infty$, 证明:

$$\lim_{x \to +\infty} \int_0^x \frac{\sqrt{1 + f'^2(t)}}{f(t)} dt \int_x^{+\infty} f(t) \sqrt{1 + f'^2(t)} dt = 0.$$

证明 由条件可知存在X > 0使得

$$\frac{f^{\prime\prime}(x)}{f(x)(1+f^{\prime2}(x))^2}>0\quad,\forall x>X\implies f^{\prime\prime}(x)>0\quad,\forall x>X.$$

从而 f(x) 在 $(X, +\infty)$ 上下凸 f'(x) 在 $(X, +\infty)$ 上递增于是由下凸函数的单调性可知 f 在 $(X, +\infty)$ 上的单调性只有三种情况递减、递增、先递减再递增若 f(x) 在 $(X, +\infty)$ 上递增或者先递减再递增则一定存在 $X_2 > X$ 使得 f(x) 在 $(X_2, +\infty)$ 上递增现在只在 $(X_2, +\infty)$ 上进行考虑由 f 递增且非负可知 $\lim_{x \to +\infty} f(x) \triangleq A_1$ 为正数或 $+\infty$ 假设 A_1 为 某个正数则

$$+\infty = \lim_{x \to +\infty} \frac{f''(x)}{f(x)(1+f'^2(x))^2} = \frac{1}{A_1} \lim_{x \to +\infty} \frac{f''(x)}{(1+f'^2(x))^2}.$$

从而 $\lim_{x\to +\infty} f''(x) = +\infty$ 于是由 Lagrange 中值定理可知存在 $\eta > X_2 + 1$ 使得

$$f'(x) = f'(X_2 + 1) + f''(\eta)(x - X_2 - 1) \quad , \forall x > X_2 + 1.$$

令 $x \to +\infty$ 则 $\lim_{x \to +\infty} f'(x) = +\infty$ 再利用 Lagrange 中值定理同理可得 $\lim_{x \to +\infty} f(x) = +\infty$ 这与 $\lim_{x \to +\infty} f(x) \triangleq A_1$ 为某个正数矛盾故 $\lim_{x \to +\infty} f(x) = +\infty$ 再利用 L' Hospital 法则可得

$$\lim_{x \to +\infty} \frac{-\frac{1}{1+(f'(x))^2}}{f^2(x)} = \lim_{x \to +\infty} \frac{\left[-\frac{1}{1+(f'(x))^2}\right]'}{\left[f^2(x)\right]'} = \lim_{x \to +\infty} \frac{\frac{2f''(x)f'(x)}{(1+f'^2(x))^2}}{2f(x)f'(x)}$$
$$= \lim_{x \to +\infty} \frac{f''(x)}{f(x)(1+f'^2(x))^2} = +\infty.$$

而 $\lim_{x \to +\infty} \frac{-\frac{1}{1+(f'(x))^2}}{f^2(x)} \le 0$ 矛盾故 f(x) 在 $(X, +\infty)$ 上必然单调递减则 f'(x) < 0 $\forall x > X$ 又 f(x) > 0 故 $\lim_{x \to +\infty} f(x) \triangleq A \ge 0$ 由 f'(x) 在 $(X, +\infty)$ 上递增可知 $\lim_{x \to +\infty} f'(x)$ 存在且 $\lim_{x \to +\infty} f'(x) \le 0$ 假设 $\lim_{x \to +\infty} f'(x) \triangleq A' < 0$ 则存在 $X_1 > X$ 使得

$$f'(x) < \frac{A'}{2} < 0 \quad \forall x > X_1.$$

于是由 Lagrange 中值定理可知存在 $\xi > X_1 + 1$ 使得

$$f(x) = f(X_1 + 1) + f'(\xi)(x - X_1 - 1) < f(X_1 + 1) + \frac{A'}{2}(x - X_1 - 1) \quad \forall x > X_1 + 1.$$

令 $x \to +\infty$ 得 $\lim_{x \to +\infty} f(x) = -\infty$ 这与 $\lim_{x \to +\infty} f(x) \geqslant 0$ 矛盾故 $\lim_{x \to +\infty} f'(x) = 0$ 从而再由条件可得

$$\lim_{x\to +\infty}\frac{f''(x)}{f(x)(1+f'^2(x))^2}=\lim_{x\to +\infty}\frac{f''(x)}{f(x)}=+\infty.$$

再考虑 $\lim_{x\to +\infty} f(x)$ 已知 $\lim_{x\to +\infty} f(x) \triangleq A\geqslant 0$ 假设 A>0 则由 $\lim_{x\to +\infty} f'(x)=0$ 及条件可得

$$+\infty = \lim_{x \to +\infty} \frac{f''(x)}{f(x)(1+f'^2(x))^2} = \frac{1}{A} \lim_{x \to +\infty} f''(x) \implies \lim_{x \to +\infty} f''(x) = +\infty.$$

于是存在 $M > X_1 + 1$ 使得

$$f''(x) > 1 \quad \forall x > M.$$

从而由 Lagrange 中值定理可知存在 $\xi_1 > M+1$ 使得

$$f'(x) = f'(M+1) + f''(\xi_1)(x-M-1) > f'(M+1) + (x-M-1) \quad \forall x > M+1.$$

令 $x \to +\infty$ 则 $\lim_{x \to +\infty} f'(x) = +\infty$ 再利用 Lagrange 中值定理同理可得 $\lim_{x \to +\infty} f(x) = +\infty$ 这与 $\lim_{x \to +\infty} f(x) = A > 0$ 矛盾 故 $\lim_{x \to +\infty} f(x) = 0$ 综上可知 f(x) 在 $(X, +\infty)$ 上递减进而 $f'(x) \le 0$ 并且 f'(x) 在 $(X, +\infty)$ 上递增还有

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f'(x) = 0, \quad \lim_{x \to +\infty} \frac{f''(x)}{f(x)} = +\infty.$$

于是显然 $f(x) \ge 0$ 从而存在 X' > X 使得

$$f'(x) \leqslant 1 \quad \forall x > X'. \tag{2.12}$$

又因为 $f \in D^2(\mathbb{R})$ 所以 f, f' 都连续从而在 [0, X'] 上都有界即存在 L > 0 使得

$$|f(x)|, |f'(x)| < L \quad \forall x \in [0, X'].$$
 (2.13)

由 $\lim_{x \to +\infty} \frac{f''(x)}{f(x)} = +\infty$ 可知存在 X'' > X' 使得

$$f''(x) > f(x) \quad \forall x > X''.$$

从而结合 $\lim_{x \to +\infty} f'(x) = 0$ 可得

$$\int_{x}^{+\infty} f(t) \, \mathrm{d}t < \int_{x}^{+\infty} f''(t) \, \mathrm{d}t = f'(+\infty) - f'(x) = -f'(x) \quad \forall x > X''. \tag{2.14}$$

于是由 $\lim_{x \to +\infty} f'(x) = 0$ 可得

$$\lim_{x \to +\infty} \int_{x}^{+\infty} f(t) \, \mathrm{d}t = 0. \tag{2.15}$$

利用 L'Hospital 法则可得

$$\lim_{x \to +\infty} \frac{(f'(x))^2}{(f(x))^2} = \lim_{x \to +\infty} \frac{[(f'(x))^2]'}{[(f(x))^2]'} = \lim_{x \to +\infty} \frac{f''(x)f'(x)}{f(x)f'(x)} = \lim_{x \to +\infty} \frac{f''(x)}{f(x)} = +\infty.$$

又因为 $f'(x) \leq 0$ $f(x) \geq 0$ 所以

$$\lim_{x \to +\infty} \frac{|f'(x)|}{|f(x)|} = \lim_{x \to +\infty} \frac{-f'(x)}{f(x)} = +\infty \implies \lim_{x \to +\infty} \frac{f(x)}{f'(x)} = 0.$$

再结合 (2.15) 式及 $\lim_{x\to+\infty} f(x) = 0$ 利用 L'Hospital 法则可得

$$\lim_{x \to +\infty} \frac{\int_x^{+\infty} f(t) \, \mathrm{d}t}{f(x)} = \lim_{x \to +\infty} \frac{f(x)}{f'(x)} = 0. \tag{2.16}$$

 $\Rightarrow g(x) = \frac{1}{f(x)}$ 则由 $\lim_{x \to +\infty} f(x) = 0$ 可知 $\lim_{x \to +\infty} g(x) = +\infty$ 并且

$$0 = -\lim_{x \to +\infty} \frac{f(x)}{f'(x)} = -\lim_{x \to +\infty} \frac{\frac{1}{g(x)}}{-\frac{g'(x)}{g^2(x)}} = \lim_{x \to +\infty} \frac{g(x)}{g'(x)}.$$

由L'Hospital 法则可得

$$\lim_{x \to +\infty} f(x) \int_0^x \frac{1}{f(t)} dt = \lim_{x \to +\infty} \frac{\int_0^x g(t) dt}{g(x)} = \lim_{x \to +\infty} \frac{g(x)}{g'(x)} = 0.$$
 (2.17)

于是由(2.12)(2.13)(2.14)式可得

$$\int_{0}^{x} \frac{\sqrt{1+f'^{2}(t)}}{f(t)} dt \int_{x}^{+\infty} f(t)\sqrt{1+f'^{2}(t)} dt \leq \left(\int_{0}^{X''} \frac{\sqrt{1+f'^{2}(t)}}{f(t)} dt + \int_{X''}^{x} \frac{1}{f(t)} dt\right) \sqrt{2} \int_{x}^{+\infty} f(t) dt$$

$$\leq \sqrt{2} \left(\int_{0}^{X''} \frac{\sqrt{1+L^{2}}}{-L} dt + \int_{0}^{x} \frac{1}{f(t)} dt\right) \int_{x}^{+\infty} f(t) dt$$

$$\leq -\sqrt{2} \left(\frac{X''\sqrt{1+L^{2}}}{-L} + \int_{0}^{x} \frac{1}{f(t)} dt\right) \int_{x}^{+\infty} f(t) dt$$

$$= \frac{\sqrt{2}X''\sqrt{1+L^{2}}}{L} \int_{x}^{+\infty} f(t) dt - \sqrt{2} \int_{0}^{x} \frac{1}{f(t)} dt \int_{x}^{+\infty} f(t) dt$$

$$\leq \frac{\sqrt{2}X''\sqrt{1+L^{2}}}{L} f'(x) - \sqrt{2}f(x) \int_{0}^{x} \frac{1}{f(t)} dt \frac{\int_{x}^{+\infty} f(t) dt}{f(x)} , \forall x > X''.$$

令 $x \to +\infty$ 则由 (2.17) (2.16) 式和 $\lim_{x \to +\infty} f'(x) = 0$ 可得

$$\limsup_{x \to +\infty} \int_0^x \frac{\sqrt{1 + f'^2(t)}}{f(t)} dt \int_x^{+\infty} f(t) \sqrt{1 + f'^2(t)} dt \leqslant 0.$$

故结论得证.

2.1.5 与方程的根有关的渐近估计

2.1.5.1 可以解出 n 的类型

例题 2.29 设 $x^{2n+1} + e^x = 0$ 的根记为 x_n , 计算

$$\lim_{n\to\infty} x_n, \lim_{n\to\infty} n(1+x_n)$$

解 注意到 $0^{2n+1} + e^0 > 0$, $(-1)^{2n+1} + e^{-1} < 0$ 且 $x^{2n+1} + e^x$ 严格单调递增, 所以由零点存在定理可知, 对每个 $n \in \mathbb{N}$, 存在唯一的 $x_n \in (-1,0)$, 使得

$$x_n^{2n+1} + e^{x_n} = 0 \Rightarrow \frac{x_n}{\ln(-x_n)} = 2n + 1 \to +\infty, n \to +\infty.$$

任取 $\{x_n\}$ 的一个收敛子列 $\{x_{n_k}\}$,又 $x_n \in (-1,0)$,因此可设 $\lim_{k \to \infty} x_{n_k} = c \in [-1,0]$,则 $\lim_{k \to +\infty} \frac{x_{n_k}}{\ln \left(-x_{n_k}\right)} = \frac{c}{\ln (-c)}$. 又 因为 $\lim_{k \to +\infty} \frac{x_n}{\ln \left(-x_{n_k}\right)} = +\infty$ 所以中 Heine 周结原则可知 $\lim_{k \to +\infty} \frac{x_{n_k}}{\ln \left(-x_{n_k}\right)} = +\infty$ 从 π

因为
$$\lim_{n \to +\infty} \frac{x_n}{\ln{(-x_n)}} = +\infty$$
, 所以由 Heine 归结原则可知 $\lim_{k \to +\infty} \frac{x_{n_k}}{\ln{(-x_{n_k})}} = +\infty$. 从而

$$\lim_{k\to +\infty}\frac{x_{n_k}}{\ln\left(-x_{n_k}\right)}=\frac{c}{\ln(-c)}=+\infty,$$

故 c = -1. 于是由子列极限命题 (a)知 $\lim_{n \to \infty} x_n = -1$. 因此

$$\lim_{n \to \infty} n(1+x_n) = \frac{1}{2} \lim_{n \to \infty} (2n+1)(1+x_n) = \frac{1}{2} \lim_{n \to \infty} \frac{x_n(1+x_n)}{\ln(-x_n)} = \frac{1}{2} \lim_{x \to -1^+} \frac{x(1+x)}{\ln(-x)} = \frac{1}{2}.$$

例题 2.30 设 $a_n \in (0,1)$ 是 $x^n + x = 1$ 的根, 证明

$$a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

证明 注意到 $0^n + 0 - 1 < 0, 1^n + 1 - 1 > 0$, 且 $x^n + x - 1$ 在 (0, 1) 上严格单调递增, 所以由零点存在定理可知, 对 $\forall n \in \mathbb{N}_+$, 存在唯一的 $a_n \in (0, 1)$, 使得

$$a_n^n + a_n = 1 \Rightarrow \frac{\ln(1 - a_n)}{\ln a_n} = n \to +\infty, n \to +\infty.$$
 (2.18)

任取 $\{a_n\}$ 的一个收敛子列 $\{a_{n_k}\}$,又 $a_n \in (0,1)$,因此可设 $\lim_{k \to +\infty} a_{n_k} = c \in [0,1]$,则 $\lim_{k \to +\infty} \frac{\ln(1-a_{n_k})}{\ln a_{n_k}} = \frac{\ln(1-c)}{\ln c}$. 又由(2.18)式可知 $\lim_{n \to +\infty} \frac{\ln(1-a_n)}{\ln a_n} = +\infty$,所以由 Heine 归结原则可知 $\lim_{k \to +\infty} \frac{\ln(1-a_{n_k})}{\ln a_n} = +\infty$. 从而

$$\lim_{k\to+\infty}\frac{\ln(1-a_{n_k})}{\ln a_{n_k}}=\frac{\ln(1-c)}{\ln c}=+\infty.$$

故 c=1, 于是由子列极限命题 (a)可知

$$\lim_{n \to +\infty} a_n = c = 1. \tag{2.19}$$

而要证 $a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right), n \to +\infty$, 等价于证明 $\lim_{n \to +\infty} \frac{a_n - 1 + \frac{\ln n}{n}}{\frac{\ln n}{n}} = \lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = 0.$ 利用(2.18)(2.19)式可得

$$\lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = \lim_{n \to +\infty} \left[\frac{\frac{\ln(1 - a_n)}{\ln a_n} \cdot a_n - \frac{\ln(1 - a_n)}{\ln a_n}}{\ln \frac{\ln(1 - a_n)}{\ln a_n}} + 1 \right] = \lim_{n \to +\infty} \left[\frac{(a_n - 1)\ln(1 - a_n)}{\ln a_n \left(\ln \frac{\ln(1 - a_n)}{\ln a_n}\right)} + 1 \right]$$

$$= \lim_{x \to 1^-} \left[\frac{(x - 1)\ln(1 - x)}{\ln x \left(\ln \frac{\ln(1 - x)}{\ln x}\right)} + 1 \right] = \lim_{x \to 0^-} \left[\frac{x \ln(-x)}{\ln(1 + x) \left(\ln \frac{\ln(-x)}{\ln(1 + x)}\right)} + 1 \right]. \tag{2.20}$$

由 L'Hospital's rules 可得

$$\lim_{x \to 0^{-}} \frac{x \ln(-x)}{\ln(1+x) \left(\ln \frac{\ln(-x)}{\ln(1+x)}\right)} = \lim_{x \to 0^{-}} \frac{\ln(-x)}{\ln \frac{\ln(-x)}{\ln(1+x)}} \xrightarrow{\frac{L' \text{Hospital's rules}}{L' \text{Hospital's rules}}} \lim_{x \to 0^{-}} \frac{\frac{1}{x}}{\frac{\ln(1+x)}{\ln(1+x)} \cdot \frac{\frac{1}{x} \ln(1+x) - \frac{1}{1+x} \ln(-x)}}{\frac{1}{\ln^{2}(1+x)}}$$

$$= \lim_{x \to 0^{-}} \frac{\ln(-x) \cdot \ln(1+x)}{\ln(1+x) - \frac{x}{1+x} \ln(-x)} = \lim_{x \to 0^{-}} \frac{x \ln(-x)}{\ln(1+x) - \frac{x}{1+x} \ln(-x)}$$

$$= \lim_{x \to 0^{-}} \frac{x}{\frac{\ln(1+x)}{\ln(-x)} - \frac{x}{1+x}} = \lim_{x \to 0^{-}} \frac{x}{-\frac{x}{1+x}} = -1. \tag{2.21}$$

于是结合(2.20)(2.21)式可得

$$\lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = \lim_{x \to 0^-} \left[\frac{x \ln(-x)}{\ln(1+x) \left(\ln \frac{\ln(-x)}{\ln(1+x)} \right)} + 1 \right] = -1 + 1 = 0.$$

故
$$a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right), n \to +\infty.$$

例题 2.31 设 $f_n(x) = x + x^2 + \dots + x^n, n \in \mathbb{N}, f_n(x) = 1$ 在 [0, 1] 的根为 x_n . 求 $\lim_{n \to \infty} x_n$.

解 注意到 $f_n(x) - 1$ 严格单调递增, 且 $f_n(0) - 1 = -1 < 0$, $f_n(1) - 1 = n - 1 > 0$, $\forall n \ge 2$. 故由零点存在定理可知, 当 $n \ge 2$ 时, 存在唯一的 $x_n \in (0,1)$, 使得 $f_n(x_n) = 1$. 从而

$$f_n(x_n) = \frac{x_n - x_n^{n+1}}{1 - x_n} = 1 \Rightarrow x_n - x_n^{n+1} = 1 - x_n \Rightarrow x_n^{n+1} = 2x_n - 1 \Rightarrow n + 1 = \frac{\ln(2x_n - 1)}{\ln x_n}.$$
 (2.22)

由上式(2.22)可知 $x_n^{n+1} = 2x_n - 1$ 且 $x_n \in (0,1)$,因此

$$0 \leqslant x_n^{n+1} = 2x_n - 1 \leqslant 1 \Rightarrow x_n \in \left(\frac{1}{2}, 1\right).$$

任取 $\{x_n\}$ 的收敛子列 $\{x_{n_k}\}$, 设 $\lim_{k\to+\infty} x_{n_k} = a \in \left[\frac{1}{2},1\right]$, 则由(2.22)式和 Heine 归结原则可知

$$\lim_{k\to +\infty}\frac{\ln(2x_{n_k}-1)}{\ln x_{n_k}}=\frac{\ln(2a-1)}{\ln a}=+\infty.$$

故
$$a = \frac{1}{2}$$
, 再由子列极限命题 (a)可知 $\lim_{n \to +\infty} x_n = a = \frac{1}{2}$.

2.1.5.2 迭代方法

例题 2.32 设 x_n 是 $x = \tan x$ 从小到大排列的全部正根,设

$$\lim_{n\to\infty} n(x_n - An - B) = C,$$

求 A, B, C.

学 笔记 主要想法是结合 $\arctan x$ 的性质: $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$,x > 0, 再利用迭代法计算渐近展开. 解 令 $f(x) = \tan x - x$, $x \in (n\pi, n\pi + \frac{\pi}{2})$, $n = 1, 2, \cdots$, 则 $f'(x) = \tan^2 x > 0$, $\forall x \in (n\pi, n\pi + \frac{\pi}{2})$, $n = 1, 2, \cdots$. 因此 f(x) 在 $(n\pi, n\pi + \frac{\pi}{2})$ 上严格单调递增,其中 $n = 1, 2, \cdots$. 又注意到 $\lim_{x \to (n\pi)^+} (\tan x - x) = -n\pi < 0$, $\lim_{x \to (n\pi + \frac{\pi}{2})^+} (\tan x - x) = +\infty > 0$. 故由零点存在定理可知,存在唯一的 $x_n \in (n\pi, n\pi + \frac{\pi}{2})$, $n = 1, 2, \cdots$, 使得 $\tan x_n = x_n$.

从而 $x_n - n\pi \in (0, \frac{\pi}{2})$, 于是

$$x_n = \tan x_n = \tan(x_n - n\pi) \Rightarrow x_n = \arctan x_n + n\pi.$$
 (2.23)

又因为 $x_n \in (n\pi, n\pi + \frac{\pi}{2}), n = 1, 2, \cdots$, 所以当 $n \to +\infty$ 时, 有 $x_n \to +\infty$. 再结合(2.23)式可得

$$x_n = \arctan x_n + n\pi = n\pi + \frac{\pi}{2} + o(1), n \to +\infty.$$
 (2.24)

注意到
$$\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}, x > 0$$
,从而 $\arctan x = \frac{\pi}{2} - \arctan \frac{1}{x}$.于是利用(2.24)式可得
$$x_n = \arctan x_n + n\pi = \frac{\pi}{2} + n\pi - \arctan \arctan \frac{1}{x_n} = \frac{\pi}{2} + n\pi - \arctan \arctan \frac{1}{n\pi + \frac{\pi}{2} + o(1)}$$
$$= \frac{\pi}{2} + n\pi - \arctan \left(\frac{1}{n\pi} \frac{1}{1 + \frac{1}{2n} + o(\frac{1}{n})}\right) = \frac{\pi}{2} + n\pi - \arctan \left[\frac{1}{n\pi} \left(1 + O(\frac{1}{n})\right)\right]$$
$$= \frac{\pi}{2} + n\pi - \arctan \left[\frac{1}{n\pi} + O(\frac{1}{n^2})\right] = \frac{\pi}{2} + n\pi - \frac{1}{n\pi} + O(\frac{1}{n^2}), n \to +\infty.$$

因此
$$\lim_{n\to+\infty} n\left(x_n - \frac{\pi}{2} - n\pi\right) = -\frac{1}{\pi}$$
.

命题 2.4 (Lampert W 的渐进估计)

设
$$x_n > 0$$
 满足 $x_n e^{x_n} = n, n = 1, 2, \dots$, 证明

$$x_n = \ln n - \ln \ln n + \frac{\ln \ln n}{\ln n} + o\left(\frac{\ln \ln n}{\ln n}\right), n \to \infty.$$

证明 注意到

$$1 \leqslant x_n = \ln n - \ln x_n \leqslant \ln n \Rightarrow x_n = O(\ln n), n = 3, 4, \cdots,$$

于是

$$\begin{split} \ln x_n &= \ln \ln n + \ln \left(1 - \frac{\ln x_n}{\ln n}\right) = \ln \ln n - \frac{\ln x_n}{\ln n} + o\left(\frac{\ln x_n}{\ln n}\right) = \ln \ln n - \frac{\ln O(\ln n)}{\ln n} + o\left(\frac{\ln O(\ln n)}{\ln n}\right) \\ &= \ln \ln n - \frac{\ln \ln n + \ln O(1)}{\ln n} + o\left(\frac{\ln \ln n + \ln O(1)}{\ln n}\right) \\ &= \ln \ln n - \frac{\ln \ln n}{\ln n} + o\left(\frac{\ln \ln n}{\ln n}\right), \end{split}$$

即

$$x_n = \ln n - \ln \ln n + \frac{\ln \ln n}{\ln n} + o\left(\frac{\ln \ln n}{\ln n}\right).$$

2.2 估计和式的常用方法

2.2.1 和式放缩成积分

命题 2.5

设 f 在 (0,1) 单调且 $\int_0^1 f(x) dx$ 收敛,则

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f(x) dx.$$

证明 不妨设 f 递减,则一方面,我们有

$$\frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) \geqslant \sum_{k=1}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) \, \mathrm{d}x = \int_{\frac{1}{n}}^{1} f(x) \, \mathrm{d}x.$$

<math> <math>

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) \geqslant \int_0^1 f(x) \, \mathrm{d}x.$$

另一方面,我们有

$$\frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) \leqslant \sum_{k=1}^{n-1} \int_{\frac{k}{n}}^{\frac{k}{n}} f(x) \, \mathrm{d}x = \int_{0}^{1 - \frac{1}{n}} f(x) \, \mathrm{d}x.$$

<math> <math>

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) \leqslant \int_0^1 f(x) \, \mathrm{d}x.$$

故

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f(x) \, \mathrm{d}x.$$

2.2.2 强行替换(拟合法)和凑定积分

例题 2.33 计算

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + \frac{i^2 + 1}{n}}.$$

室记 证明的想法要么是凑定积分定义.要么强行替换为自己熟悉的结构(拟合法),无需猜测放缩手段. 注注意定积分定义是任意划分任意取点,而不只是等分取端点.

解 解法一:注意到

$$\frac{i}{n} < \frac{\sqrt{i^2 + 1}}{n} < \frac{i + 1}{n}, i = 1, 2, \dots, n,$$

于是由定积分定义有

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + \frac{i^2 + 1}{n}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{\sqrt{i^2 + 1}}{n}\right)^2} = \int_0^1 \frac{1}{1 + x^2} dx = \frac{\pi}{4}.$$

解法二:注意到

$$0 \leqslant \left| \sum_{i=1}^{n} \frac{1}{n + \frac{i^2 + 1}{n}} - \sum_{i=1}^{n} \frac{1}{n + \frac{i^2}{n}} \right| \leqslant \sum_{i=1}^{n} \frac{1}{n \left(n + \frac{i^2 + 1}{n}\right) \left(n + \frac{i^2}{n}\right)} \leqslant \sum_{i=1}^{n} \frac{1}{n^3} = \frac{1}{n^2} \to 0, n \to \infty,$$

故

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + \frac{i^2 + 1}{n}} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + \frac{i^2}{n}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + \frac{i^2}{n^2}} = \int_{0}^{1} \frac{1}{1 + x^2} dx = \frac{\pi}{4}.$$

例题 2.34 计算

$$\lim_{n \to \infty} \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n}.$$

拿 笔记 长得神似定积分定义且很容易观察到 $\frac{i+4}{n^2+\frac{1}{i}}$ 和 $\frac{i}{n^2}$ 没有区别,懒得去寻求放缩方法,直接采用强行替换的方法,即做差 $\frac{i+4}{n^2+\frac{1}{i}} - \frac{i}{n^2}$ 强估证明不影响极限.

证明 注意到

$$\left| \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n} - \sum_{i=1}^{2n} \frac{i}{n^2} \sin^4 \frac{\pi i}{n} \right| = \left| \sum_{i=1}^{2n} \left(\frac{i+4}{n^2 + \frac{1}{i}} - \frac{i}{n^2} \right) \sin^4 \frac{\pi i}{n} \right|$$

$$\leq \sum_{i=1}^{2n} \frac{4n^2 - 1}{n^2 \left(n^2 + \frac{1}{i} \right)} \leq \sum_{i=1}^{2n} \frac{4n^2 - 1}{n^4} = \frac{2n(4n^2 - 1)}{n^4},$$

于是

$$0 \leqslant \lim_{n \to \infty} \left| \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n} - \sum_{i=1}^{2n} \frac{i}{n^2} \sin^4 \frac{\pi i}{n} \right| \leqslant \lim_{n \to \infty} \frac{2n(4n^2 - 1)}{n^4} = 0.$$

因此

$$\lim_{n \to \infty} \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{2n} \frac{i}{n} \sin^4 \frac{\pi i}{n}$$

$$= \int_0^2 x \sin^4 \pi x dx = \frac{\text{Imps}}{\frac{1}{2} + 2 - y} \int_0^2 (2 - y) \sin^4 \pi (2 - y) dy$$

$$= \int_0^2 (2 - y) \sin^4 \pi y dy = \int_0^2 \sin^4 \pi x dx = \frac{1}{\pi} \int_0^{2\pi} \sin^4 x dx$$

$$= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \sin^4 x dx = \frac{4}{\pi} \cdot \frac{3!!}{4!!} \cdot \frac{\pi}{2} = \frac{3}{4}.$$

2.2.3 和式内部对 n 可求极限 (极限号与求和号可换序)

当和式内部对 \mathbf{n} 可求极限时, 极限号与求和号可以换序.(当和式内部对 \mathbf{n} 求极限是 $\frac{\infty}{\infty}$ 或 $\frac{0}{0}$ 等都不能换序) 本质上就是**控制收敛定理**的应用.

注 不能按照极限号与求和号可换序的想法书写过程, 应该利用不等式放缩、夹逼准则和上下极限进行严谨地书写证明.

例题 2.35 求极限

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k}.$$

拿 笔记 求这种前 n 项和关于 n 的极限 (n 既和求和号上限有关, 又和通项有关) 的思路是: 先假设极限存在 (这里极限号内是数列不是级数, 所以这里是数列收敛). 于是由数列收敛的柯西收敛准则可知, 对 $\forall \varepsilon > 0$, 存在 $N_0 \in \mathbb{N}_+$, 使得对 $\forall n > N_0$, 都有

$$\varepsilon > \left| \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^{k}} - \sum_{k=0}^{N_{0}+1} \frac{\cos \sqrt{\frac{k}{N_{0}+1}}}{2^{k}} \right| = \left| \sum_{k>N_{0}}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^{k}} + \sum_{k=0}^{N_{0}+1} \frac{\cos \sqrt{\frac{k}{n}} - \cos \sqrt{\frac{k}{N_{0}+1}}}{2^{k}} \right| > \sum_{k>N_{0}}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^{k}}.$$

从而由数列极限的定义, 可知对 $\forall N > N_0$, 都有 $\lim_{n \to +\infty} \sum_{k > N}^n \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = 0$.

因此对 $\forall N > N_0$, 我们有

$$\lim_{n \to +\infty} \sum_{k=0}^n \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \lim_{n \to +\infty} \sum_{k=0}^N \frac{\cos \sqrt{\frac{k}{n}}}{2^k} + \lim_{n \to +\infty} \sum_{k>N}^n \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \lim_{n \to +\infty} \sum_{k=0}^N \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \sum_{k=0}^N \lim_{n \to +\infty} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \sum_{k=0}^N \frac{1}{2^k}.$$

再令
$$N \to +\infty$$
, 得到 $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \lim_{N \to +\infty} \sum_{k=0}^{N} \frac{1}{2^k} = 2$.

综上所述, 我们在假设原极限收敛的前提下能够得到原极限就是 2, 因此我们可以凭借直觉不严谨地断言原极限实际上就是 2(如果原极限不是 2, 那么原极限只能发散, 否则与上述证明矛盾. 而出题人要我们求解的极限一般都不发散, 并且凭借直觉也能感觉到这个极限不发散).

注意: 因为这里我们并不能严谨地证明原数列收敛, 所以只凭借上述论证并不能严谨地得到原极限等于 2. (上述论证实际上就是一种"猜测"这种极限的值的方法)

虽然只凭借上述论证我们并不能直接得到原极限等于 2 的证明, 但是我们可以得到一个重要的结果: 原极限的值就是 2. 我们后续只需要证明这个结果是正确的即可. 后续证明只需要适当放缩原本数列, 再利用上下极限和夹逼定理即可(因为我们已经知道极限的值, 放缩的时候就能更容易地把握放缩的"度"). 并且我们根据上述论

证可知(放缩的时候我们可以利用下述想法,即将不影响整体的阶的余项通过放缩去掉),原和式的极限等于其前 N 项的极限, 原和式除前 N 项外的余项的极限趋于 0, 即余项并不影响原数列的极限, 可以通过放缩将其忽略. 我 们只需要考虑前N项的极限即可.

后续证明的套路一般都是: 放大: 可以直接通过一些常用不等式得到: 放小: 将原级数直接放缩成有限项再取 下极限.

注: 关键是如何利用上述想法直接计算出极限的值, 后续的放缩证明只是为了保证其严谨性的形式上的证明. 注 上述思路本质上就是控制收敛定理的应用, 也可以使用 Toplitz 定理的分段估计想法解决本题. 于是我们今后遇 到类似问题可以分别采取这两种思路解决.

这里我们可以采取两种方法去书写证明过程 (夹逼定理和 Toplitz 定理).

一方面, 注意到
$$\sum_{k=0}^n \frac{\cos\sqrt{\frac{k}{n}}}{2^k} \leqslant \sum_{k=0}^n \frac{1}{2^k} = \frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}},$$
 于是 $\lim_{n \to +\infty} \sum_{k=0}^n \frac{\cos\sqrt{\frac{k}{n}}}{2^k} \leqslant \lim_{n \to +\infty} \frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} = 2.$
$$\mathcal{B} - \bar{r} \text{ and } \tilde{r} \text{ is } \tilde{r} \text{ and } \tilde{r$$

例题 2.36 计算 $\lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n}$. 注 注意倒序求和与顺序求和相等.(看到求和号内部有两个变量, 都可以尝试一下倒序求和)

 $\stackrel{ ext{$\widehat{\mathbf{y}}$}}{ ext{$\widehat{\mathbf{y}}$}}$ 笔记 解法一的思路: 我们利用上一题的想法计算 $\lim_{n\to+\infty}\sum_{k=1}^n e^{n\ln\left(1-\frac{k-1}{n}\right)}$. 先假设级数 $\sum_{k=1}^n \left(\frac{k}{n}\right)^n$ 收敛, 则由 Cauchy收敛准则可知, 存在 N' > 0, 使得

$$\lim_{n \to +\infty} \sum_{k=1}^{n} e^{n \ln\left(1 - \frac{k-1}{n}\right)} = \lim_{n \to +\infty} \sum_{k=1}^{N} e^{n \ln\left(1 - \frac{k-1}{n}\right)} = \sum_{k=1}^{N} \lim_{n \to +\infty} e^{n \ln\left(1 - \frac{k-1}{n}\right)} = \sum_{k=1}^{N} e^{1-k}, \forall N > N'.$$

令 $N \to +\infty$, 则 $\lim_{n \to +\infty} \sum_{k=1}^{n} e^{n \ln \left(1 - \frac{k-1}{n}\right)} = \lim_{N \to +\infty} \sum_{k=1}^{N} e^{1-k} = \frac{e}{e-1}$. 然后再根据计算出来的结果对原级数进行适当放 缩, 最后利用上下极限和夹逼准则得到完整的证明

解 解法一: 注意到

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n = \sum_{k=1}^{n} \left(\frac{n-k+1}{n}\right)^n = \sum_{k=1}^{n} \left(1 - \frac{k-1}{n}\right)^n = \sum_{k=1}^{n} e^{n \ln\left(1 - \frac{k-1}{n}\right)}, \forall n \in \mathbb{N}_+.$$

一方面, 利用 $ln(1+x) \leq x, \forall x \in \mathbb{R}$, 我们有

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} = \sum_{k=1}^{n} e^{n \ln\left(1 - \frac{k-1}{n}\right)} \leqslant \sum_{k=1}^{n} e^{n \cdot \left(-\frac{k-1}{n}\right)} = \sum_{k=1}^{n} e^{1-k}, \forall n \in \mathbb{N}_{+}.$$

$$\Leftrightarrow n \to +\infty, \text{ Mod } \lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} \leqslant \lim_{n \to +\infty} \sum_{k=1}^{n} e^{1-k} = \frac{e}{e-1}.$$

另一方面, 注意到
$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n = \sum_{k=1}^{n} e^{n \ln(1 - \frac{k-1}{n})} \geqslant \sum_{k=1}^{N} e^{n \ln(1 - \frac{k-1}{n})}, \forall N \in \mathbb{N}_+$$
. 两边同时对 n 取下极限, 可得对

 $\forall N \in \mathbb{N}_+,$ 都有

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} \geqslant \lim_{n \to +\infty} \sum_{k=1}^{N} e^{n \ln\left(1 - \frac{k-1}{n}\right)} = \lim_{n \to +\infty} \sum_{k=1}^{N} e^{n \ln\left(1 - \frac{k-1}{n}\right)}$$

$$= \sum_{k=1}^{N} \lim_{n \to +\infty} e^{n \ln\left(1 - \frac{k-1}{n}\right)} = \sum_{k=1}^{N} \lim_{n \to +\infty} e^{n \cdot \left(-\frac{k-1}{n}\right)} = \sum_{k=1}^{N} e^{1-k}$$

$$\Leftrightarrow N \to +\infty$$
, 则 $\lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} \geqslant \lim_{N \to +\infty} \sum_{k=1}^{N} e^{1-k} = \frac{e}{e-1}$. 故 $\lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n} = \frac{e}{e-1}$.

解法二(单调有界定理): 因为

$$S_n = \left(\frac{1}{n}\right)^n + \left(\frac{2}{n}\right)^n + \dots + \left(\frac{n-1}{n}\right)^n,$$

$$S_{n+1} = \left(\frac{1}{n+1}\right)^{n+1} + \left(\frac{2}{n+1}\right)^{n+1} + \dots + \left(\frac{n-1}{n+1}\right)^{n+1} + \left(\frac{n}{n+1}\right)^{n+1}.$$

所以证明 $\left(\frac{k}{n}\right)^n \le \left(\frac{k+1}{n+1}\right)^{n+1}$, $1 \le k \le n-1$ 即可, 这等价于 $\frac{(n+1)^{n+1}}{n^n} \le \frac{(k+1)^{n+1}}{k^n}$. 实际上 $a_k = \frac{(k+1)^{n+1}}{k^n}$, $1 \le k \le n$ 是单调递减数列, 因为

$$\frac{a_{k+1}}{a_k} = \frac{k^n (k+2)^{n+1}}{(k+1)^{2n+1}} = \frac{(x-1)^n (x+1)^{n+1}}{x^{2n+1}} = \left(1 - \frac{1}{x^2}\right)^n \left(1 + \frac{1}{x}\right), x = k+1 \in [2,n].$$

又由于

$$n \ln \left(1 - \frac{1}{x^2}\right) + \ln \left(1 + \frac{1}{x}\right) \leqslant -\frac{n}{x^2} + \frac{1}{x} = \frac{x - n}{x^2} \leqslant 0, \forall x = k + 1 \in [2, n].$$

从而 $\left(1-\frac{1}{x^2}\right)^n \left(1+\frac{1}{x}\right) = e^{n\ln\left(1-\frac{1}{x^2}\right)+\ln\left(1+\frac{1}{x}\right)} \leqslant e^0 = 1, \forall x = k+1 \in [2,n],$ 故 $a_{k+1} \leqslant a_k, \forall 1 \leqslant k \leqslant n$. 于是 $\frac{(k+1)^{n+1}}{k^n} = a_k \geqslant a_n = \frac{(n+1)^{n+1}}{n^n},$ 也即 S_n 单调递增. 注意

$$S_n = \sum_{k=1}^{n-1} \left(\frac{k}{n}\right)^n = \sum_{k=1}^{n-1} \left(1 - \frac{k}{n}\right)^n = \sum_{k=1}^{n-1} e^{n \ln\left(1 - \frac{k}{n}\right)} \leqslant \sum_{k=1}^{n-1} e^{-k} \leqslant \sum_{k=1}^{\infty} e^{-k} = \frac{1}{e - 1}$$

所以单调有界, 极限一定存在, 设为 S. 对任意正整数 n > m, 先固定 m, 对 n 取极限有

$$S_n = \sum_{k=1}^{n-1} \left(1 - \frac{k}{n}\right)^n \geqslant \sum_{k=1}^m \left(1 - \frac{k}{n}\right)^n \Rightarrow S = \lim_{n \to \infty} S_n \geqslant \sum_{k=1}^m \lim_{n \to \infty} \left(1 - \frac{k}{n}\right)^n = \sum_{k=1}^m e^{-k}$$

这对任意正整数 m 均成立, 再令 $m \to \infty$ 有 $S \ge \frac{1}{e-1}$, 从而所求极限为 $\frac{1}{e-1}$.

2.2.4 利用 Taylor 公式计算和式极限 (和式内部 n,k 不同阶)

只有当和式内部 n,k 不同阶时, 我们才可以直接利用 Taylor 展开进行计算. 但是书写过程不能用 Taylor 展开书写 (关于 o 和 O 余项的求和估计不好说明), 这样书写不严谨 (见例题 2.37 证法一).

我们可以采用**拟合法** (见<mark>例题 2.38)、夹逼准则</mark> (见例题 2.39)、 $\varepsilon - \delta$ 语言 (见例题 2.37 证法二) 严谨地书写过程

\$

筆记 虽然这三种方法都比较通用, 但是更推荐**拟合法和夹逼准则**, 一般比较简便.

虽然 $\varepsilon - \delta$ 语言书写起来比较繁琐, 但是当有些和式不容易放缩、拟合的时候, 用这个方法更简单.

这类和式内部 n, k 不同阶的问题的处理方式: 先利用 Taylor 展开计算极限 (可以先不算出极限), 并判断到底要展开多少项, 然后根据具体问题综合运用**拟合法、夹逼准则、** $\varepsilon - \delta$ 语言严谨地书写过程 (怎么书写简便就怎么写)

 $\dot{\mathbf{r}}$ 这类和式内部 n,k 不同阶的问题.Taylor 公式是本质, **拟合法、夹逼准则**、 $\varepsilon - \delta$ 语言只是形式上的过程.

例题 2.37 设 f 在 0 处可微, f(0) = 0, 证明:

$$\lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) = \frac{f'(0)}{2}.$$

Ŷ 笔记 本题如果使用例题 2.35的方法求极限, 那么我们将得到

$$\lim_{n\to\infty}\sum_{i=1}^n f\left(\frac{i}{n^2}\right) = \lim_{N\to\infty}\lim_{n\to\infty}\sum_{i=1}^N f\left(\frac{i}{n^2}\right) = \lim_{N\to\infty}\sum_{i=1}^N\lim_{n\to\infty} f\left(\frac{i}{n^2}\right) = \lim_{N\to\infty}\sum_{i=1}^N f\left(0\right) = \lim_{N\to\infty}(N\cdot 0) = +\infty\cdot 0.$$

而 $+\infty \cdot 0$ 我们是无法确定其结果的, 故本题并不适用这种方法. 不过, 我们也从上述论述结果发现我们需要更加精细地估计原级数的阶, 才能确定出上述 " $+\infty \cdot 0$ "的值, 进而得到原级数的极限. 因此我们使用 Taylor 展开并引入 余项方法和 $\varepsilon - \delta$ 方法更加精细地估计原级数的阶.

 $\dot{\mathbf{L}}$ 虽然使用余项证明这类问题并不严谨, 但是在实际解题中, 我们仍使用这种余项方法解决这类问题. 因为严谨的 ε – δ 语言证明比较繁琐. 我们只在需要书写严谨证明的时候才使用严谨的 ε – δ 语言进行证明.

证明 证法一 (不严谨的余项方法): 由 f 在 0 处可微且 f(0) = 0 和带 Peano 余项的 Taylor 公式, 可知

$$f(x) = f'(0)x + o(x), x \to 0.$$

于是

$$\begin{split} &\sum_{i=1}^n f\left(\frac{i}{n^2}\right) = \sum_{i=1}^n \left[f'(0)\cdot\frac{i}{n^2} + o\left(\frac{i}{n^2}\right)\right] = \frac{f'(0)(n+1)}{2n} + \sum_{i=1}^n o\left(\frac{i}{n^2}\right) \\ &= \frac{f'(0)(n+1)}{2n} + \sum_{i=1}^n o\left(\frac{1}{n}\right) = \frac{f'(0)(n+1)}{2n} + n\cdot o\left(\frac{1}{n}\right) \to \frac{f'(0)}{2}, n \to +\infty. \end{split}$$

证法二 $(\varepsilon - \delta)$ 严谨的证明): 由 Taylor 定理, 可知对 $\forall \varepsilon \in (0,1), \exists \delta > 0$, 当 $|x| \leq \delta$ 时, 有 $|f(x) - f'(0)x| \leq \varepsilon |x|$. 只要 $n > \frac{1}{\delta}$, 有 $\left|\frac{i}{n^2}\right| \leq \delta$, $\forall i = 1, 2, \cdots, n$, 故 $\left|f\left(\frac{i}{n^2}\right) - f'(0)\frac{i}{n^2}\right| \leq \varepsilon \frac{i}{n^2}, i = 1, 2, \cdots, n$. 从而

$$f'(0)(1-\varepsilon)\frac{i}{n^2} \leqslant f\left(\frac{i}{n^2}\right) \leqslant f'(0)(1+\varepsilon)\frac{i}{n^2}.$$

进而

$$\frac{f'(0)}{2}(1-\varepsilon)\cdot\frac{n+1}{n}=f'(0)(1-\varepsilon)\sum_{i=1}^n\frac{i}{n^2}\leqslant \sum_{i=1}^nf\left(\frac{i}{n^2}\right)\leqslant f'(0)(1+\varepsilon)\sum_{i=1}^n\frac{i}{n^2}=\frac{f'(0)}{2}(1+\varepsilon)\cdot\frac{n+1}{n}.$$

于是

$$-\frac{\varepsilon f'(0)}{2} \leqslant \frac{n}{n+1} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) - \frac{f'(0)}{2} \leqslant \frac{f'(0)\varepsilon}{2}.$$

即

$$\left| \frac{n}{n+1} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) - \frac{f'(0)}{2} \right| \leqslant \frac{|f'(0)|}{2} \varepsilon.$$

因此
$$\lim_{n\to\infty} \frac{n}{n+1} \sum_{i=1}^n f\left(\frac{i}{n^2}\right) = \frac{f'(0)}{2}$$
,故 $\lim_{n\to\infty} \sum_{i=1}^n f\left(\frac{i}{n^2}\right) = \frac{\lim_{n\to\infty} \frac{n}{n+1} \sum_{i=1}^n f\left(\frac{i}{n^2}\right)}{\lim_{n\to\infty} \frac{n}{n+1}} = \frac{f'(0)}{2}$.

例题 2.38 求极限: $\lim_{n\to\infty} \sqrt{n} \left(1 - \sum_{k=1}^n \frac{1}{n+\sqrt{k}}\right)$.

Ŷ 笔记 本题采用**拟合法**书写过程.

解 由于对 $\forall k \in \mathbb{N}_+$, 都有 $\frac{\sqrt{k}}{n} \to +\infty$, $n \to \infty$, 故由 Taylor 定理可得, 对 $\forall k \in \mathbb{N}_+$, 都有

$$\frac{1}{n+\sqrt{k}} = \frac{1}{n} \frac{1}{1+\frac{\sqrt{k}}{n}} = \frac{1}{n} \left(1 - \frac{\sqrt{k}}{n} + \frac{k}{n^2} + \cdots \right), n \to \infty.$$

于是考虑拟合

$$\lim_{n\to\infty} \sqrt{n} \left(1 - \sum_{k=1}^n \frac{1}{n+\sqrt{k}}\right) = \lim_{n\to\infty} \sqrt{n} \left(1 - \frac{1}{n} \sum_{k=1}^n \left(1 - \frac{\sqrt{k}}{n}\right) - \frac{1}{n} \sum_{k=1}^n \left(\frac{1}{1 + \frac{\sqrt{k}}{n}} - 1 + \frac{\sqrt{k}}{n}\right)\right).$$

又由于

$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \left(\frac{1}{1 + \frac{\sqrt{k}}{n}} - 1 + \frac{\sqrt{k}}{n} \right) = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{k}{n^2} \frac{1}{1 + \frac{\sqrt{k}}{n}} \leqslant \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{k}{n^2} \leqslant \frac{1}{\sqrt{n}} \to 0.$$

因此

例题 2.39 求极限 $\lim_{n\to\infty}\sum_{k=1}^n\left(\sqrt{1+\frac{k}{n^2}}-1\right)$.

笔记 本题采用**央逼准则**书写过程. 注意 n, k 不同阶, 因此有理化然后直接把无穷小量放缩掉, 然后使用夹逼准则即可.

证明 注意到

$$\frac{\frac{k}{n^2}}{\sqrt{1+\frac{1}{n}+1}} \leqslant \sqrt{1+\frac{k}{n^2}} - 1 = \frac{\frac{k}{n^2}}{\sqrt{1+\frac{k}{n^2}}+1} \leqslant \frac{k}{2n^2}, \forall k \in \mathbb{N}.$$

所以

$$\frac{n+1}{2n\left(\sqrt{1+\frac{1}{n}}+1\right)} = \sum_{k=1}^{n} \frac{\frac{k}{n^2}}{\sqrt{1+\frac{1}{n}}+1} \leqslant \sum_{k=1}^{n} \left(\sqrt{1+\frac{k}{n^2}}-1\right) \leqslant \sum_{k=1}^{n} \frac{k}{2n^2} = \frac{n+1}{4n}$$

根据夹逼准则可知所求极限是 $\frac{1}{4}$.

例题 2.40 计算 $\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{\sqrt{n^2+k}}\right)^n$.

笔记 证法二综合运用了拟合法和夹逼准则书写过程(只用其中一种方法的话,书写起来很麻烦). 解 证法一(不严谨的余项方法):注意到

$$\lim_{n\to\infty}\left(\sum_{k=1}^n\frac{1}{\sqrt{n^2+k}}\right)^n=\lim_{n\to\infty}e^{n\ln\sum\limits_{k=1}^n\frac{1}{\sqrt{n^2+k}}}=\lim_{n\to\infty}e^{n\ln\left(\sum\limits_{k=1}^n\frac{1}{n}\frac{1}{\sqrt{1+\frac{k}{n^2}}}\right)}.$$

由带 Peano 余项的 Taylor 公式, 可知

$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} = \frac{1}{n} \sum_{k=1}^{n} \left[1 - \frac{k}{2n^2} + O\left(\frac{k^2}{n^4}\right) \right] = \frac{1}{n} \left[n - \frac{\sum_{k=1}^{n} k}{2n^2} + \sum_{k=1}^{n} O\left(\frac{1}{n^2}\right) \right]$$

$$= 1 - \frac{n+1}{4n^2} + O\left(\frac{1}{n^2}\right) = 1 - \frac{1}{4n} - \frac{1}{4n^2} + O\left(\frac{1}{n^2}\right) = 1 - \frac{1}{4n} + O\left(\frac{1}{n^2}\right), n \to +\infty.$$

从而

$$\lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}} \right)^n = \lim_{n \to \infty} e^{n \ln \left(\sum_{k=1}^n \frac{1}{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} \right)} = \lim_{n \to \infty} e^{n \ln \left(1 - \frac{1}{4n} + O\left(\frac{1}{n^2}\right) \right)} = \lim_{n \to \infty} e^{n \cdot \left(-\frac{1}{4n} + O\left(\frac{1}{n^2}\right) \right)} = \lim_{n \to \infty} e^{-\frac{1}{4} + O\left(\frac{1}{n}\right)} = e^{-\frac{1}{4}}.$$

证法二(严谨地书写过程): 注意到

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} \right)^n = \lim_{n \to \infty} e^{n \ln \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}} = \lim_{n \to \infty} e^{n \ln \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} \right)}.$$
 (2.25)

因为对 $\forall k \in \mathbb{N}_+$, 有 $\frac{k}{n^2} \to 0, n \to \infty$, 所以利用 Taylor 公式可得

$$\frac{1}{\sqrt{1+\frac{k}{n^2}}}=1-\frac{k}{2n^2}+\cdots,n\to\infty.$$

从而考虑拟合

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} = \lim_{n \to \infty} \left[\frac{1}{n} \sum_{k=1}^{n} \left(\frac{1}{\sqrt{1 + \frac{k}{n^2}}} - 1 + \frac{k}{2n^2} \right) + \frac{1}{n} \sum_{k=1}^{n} \left(1 - \frac{k}{2n^2} \right) \right].$$

由于

$$\frac{1}{n}\sum_{k=1}^{n}\left(\frac{1}{\sqrt{1+\frac{k}{n^2}}}-1+\frac{k}{2n^2}\right)=\sum_{k=1}^{n}\left(\frac{1}{\sqrt{n^2+k}}+\frac{k}{2n^3}\right)-1\leqslant\sum_{k=1}^{n}\left(\frac{1}{n}+\frac{k}{2n^3}\right)-1=\frac{n+1}{4n^2}\to 0, n\to\infty.$$

因此

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(1 - \frac{k}{2n^2}\right) = 1 - \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{2n^3} = 1.$$

于是

$$\lim_{n \to \infty} n \ln \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} = \lim_{n \to \infty} n \left(\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} - 1 \right) = \lim_{n \to \infty} n \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} - 1 \right)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} - n \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{\sqrt{1 + \frac{k}{n^2}}} - 1 \right)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{n}{\sqrt{n^2 + k}} - 1 \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n - \sqrt{n^2 + k}}{\sqrt{n^2 + k}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{-k}{\sqrt{n^2 + k} \left(n + \sqrt{n^2 + k} \right)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{-k}{n^2 + k + n\sqrt{n^2 + k}}.$$
(2.26)

注意到

$$-\frac{n+1}{2\left(n+1+\sqrt{n^2+n}\right)} = \sum_{k=1}^n \frac{-k}{n^2+n+n\sqrt{n^2+n}} \leqslant \sum_{k=1}^n \frac{-k}{n^2+k+n\sqrt{n^2+k}} \leqslant \sum_{k=1}^n \frac{-k}{2n^2} = -\frac{n+1}{4n}, \forall n \in \mathbb{N}_+.$$

令 $n \to \infty$, 则由夹逼准则可得 $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{-k}{n^2 + k + n\sqrt{n^2 + k}} = -\frac{1}{4}$. 再结合(2.25)(2.26)式可知

$$\lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}} \right)^n = \lim_{n \to \infty} e^{n \ln \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}} = e^{\lim_{n \to \infty} n \ln \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}} = e^{\lim_{n \to \infty} \sum_{k=1}^n \frac{-k}{n^2 + k + n \sqrt{n^2 + k}}} = e^{-\frac{1}{4}}.$$

2.2.5 分段估计 (Toeplitz 定理)

对于估计级数或积分的极限或阶的问题,当问题难以直接处理时,我们可以尝试分段估计,分段点的选取可以直接根据级数或积分的性质选取,也可以根据我们的需要待定分段点m,然后再选取满足我们需要的m作为分段点.

定理 2.3 (Toeplitz 定理)

(a): 设
$$\{t_{nk}\}_{1 \leq k \leq n} \subset [0, +\infty)$$
 满足 $\lim_{n \to \infty} \sum_{k=1}^{n} t_{nk} = 1$ 和 $\lim_{n \to \infty} t_{nk} = 0$. 若 $\lim_{n \to \infty} a_n = a \in \mathbb{R}$. 证明
$$\lim_{n \to \infty} \sum_{k=1}^{n} t_{nk} a_k = a. \tag{2.27}$$

(b): 设
$$\{t_{nk}\}_{n,k=1}^{\infty} \subset [0,+\infty)$$
 满足 $\lim_{n\to\infty} \sum_{k=1}^{\infty} t_{nk} = 1$ 和 $\lim_{n\to\infty} t_{nk} = 0$. 若 $\lim_{n\to\infty} a_n = a \in \mathbb{R}$. 证明
$$\lim_{n\to\infty} \sum_{k=1}^{\infty} t_{nk} a_k = a.$$
 (2.28)

笔记 无需记忆 Toeplitz 定理的叙述, 其证明的思想更为重要. 一句话证明 Toeplitz 定理, 即当 n 比较小的时候, 用 t_{nk} 趋于 0 来控制, 当 n 比较大的时候, 用 a_n 趋于 a 来控制.

我们需要熟悉蕴含在 Toeplitz 定理当中的一个关键想法: 分段估计 (分段的方式要合理才行).

Toeplitz 定理只是先对和式进行分段处理, 将和式分成两部分, 一部分是和式的前充分多项 (前有限项/前 N 项), 另一部分是余项 (从 N+1 项开始包括后面的所有项). 然后在这种分段估计的基础上, 利用已知的极限条件, 分 别控制(放缩)和式的前充分多项(前有限项/前N项)和余项(从N+1项开始包括后面的所有项).

注 注意区分 (a),(b) 两者的条件:
$$\lim_{n\to+\infty}\sum_{k=1}^{\infty}t_{nk}=\lim_{n\to+\infty}\lim_{n\to+\infty}\sum_{k=1}^{m}t_{nk}\neq\lim_{n\to+\infty}\sum_{k=1}^{n}t_{nk}$$
. 证明 (a): 事实上, 不妨设 $a=0$, 否则用 a_n-a 代替 a_n 即可.

对 $\forall N \in \mathbb{N}$, 当 n > N 时, 我们有

$$\left| \sum_{k=1}^{n} t_{nk} a_k \right| = \left| \sum_{k=1}^{N} t_{nk} a_k + \sum_{k=N+1}^{n} t_{nk} a_k \right| \leqslant \left| \sum_{k=1}^{N} t_{nk} a_k \right| + \sum_{k=N+1}^{n} |t_{nk} a_k|.$$

$$\overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{n} t_{nk} a_k \right| \leq \overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{N} t_{nk} a_k \right| + \overline{\lim_{n \to +\infty}} \sum_{k=N+1}^{n} |t_{nk} a_k| \leq \sup_{k \geq N+1} |a_k| \cdot \overline{\lim_{n \to +\infty}} \sum_{k=1}^{n} t_{nk} = \sup_{k \geq N+1} |a_k|, \forall N \in \mathbb{N}.$$

由 N 的任意性, 再令 $N \to +\infty$.

$$\overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{n} t_{nk} a_k \right| \leqslant \lim_{N \to +\infty} \sup_{k \geqslant N+1} |a_k| = \overline{\lim_{n \to +\infty}} |a_n| = \overline{\lim_{n \to +\infty}} a_n = \lim_{n \to +\infty} a_n = 0.$$

故(2.27)式成立.

(b): 事实上, 不妨设 a = 0, 否则用 $a_n - a$ 代替 a_n 即可

对 $\forall N \in \mathbb{N}$, 我们有

$$\left|\sum_{k=1}^{\infty} t_{nk} a_k\right| = \left|\sum_{k=1}^{N} t_{nk} a_k + \sum_{k=N+1}^{\infty} t_{nk} a_k\right| \leqslant \left|\sum_{k=1}^{N} t_{nk} a_k\right| + \sum_{k=N+1}^{\infty} |t_{nk} a_k|.$$

$$\overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{\infty} t_{nk} a_k \right| \leq \overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{N} t_{nk} a_k \right| + \overline{\lim_{n \to +\infty}} \sum_{k=N+1}^{\infty} |t_{nk} a_k| \leq \sup_{k \geq N+1} |a_k| \cdot \overline{\lim_{n \to +\infty}} \sum_{k=1}^{\infty} t_{nk} = \sup_{k \geq N+1} |a_k|, \forall N \in \mathbb{N}.$$

$$\overline{\lim}_{n\to+\infty} \left| \sum_{k=1}^{\infty} t_{nk} a_k \right| \leqslant \lim_{N\to+\infty} \sup_{k\geqslant N+1} |a_k| = \overline{\lim}_{n\to+\infty} |a_n| = \overline{\lim}_{n\to+\infty} a_n = \lim_{n\to+\infty} a_n = 0.$$

故(2.28)式成立.

例题 **2.41** 设 $p_k > 0, k = 1, 2, \dots, n$ 且

$$\lim_{n\to\infty}\frac{p_n}{p_1+p_2+\cdots+p_n}=0,\,\lim_{n\to\infty}a_n=a.$$

证明

$$\lim_{n\to\infty} \frac{p_n a_1 + \dots + p_1 a_n}{p_1 + p_2 + \dots + p_n} = a.$$

笔记 理解到本质之后不需要记忆Toeplitz 定理, 但是这里可以直接套用 Toeplitz 定理我们就引用了. 今后我们不 再直接套用 Toeplitz 定理, 而是利用 Toeplitz 定理的证明方法解决问题.

证明 记
$$t_{nk} = \frac{p_{n-k+1}}{p_1 + p_2 + \dots + p_n} \geqslant 0, k = 1, 2, \dots, n.$$
 则 $\sum_{k=1}^n t_{nk} = \frac{\sum_{k=1}^n p_{n-k+1}}{p_1 + p_2 + \dots + p_n} = 1.$ 又因为
$$0 \leqslant \lim_{n \to \infty} t_{nk} \leqslant \lim_{n \to \infty} \frac{p_{n-k+1}}{p_1 + p_2 + \dots + p_{n+k+1}} = 0.$$

所以由夹逼准则可知, $\lim_{n\to\infty} t_{nk} = 0$. 故由Toeplitz 定理得

$$\lim_{n \to \infty} \frac{p_n a_1 + \dots + p_1 a_n}{p_1 + p_2 + \dots + p_n} = \lim_{n \to \infty} \sum_{k=1}^n t_{nk} a_k = a.$$

设
$$\lim_{n\to\infty} a_n = a$$
 且 $b_n \geqslant 0$. 记 $S_n = \sum_{k=1}^n b_k$,若 $\lim_{n\to\infty} S_n = S$. 证明

$$\lim_{n \to \infty} (a_n b_1 + a_{n-1} b_2 + \dots + a_1 b_n) = aS.$$

证明
$$(i)$$
 若 $S=0$, 则 $b_n\equiv 0$. 此时结论显然成立.
 (ii) 若 $S>0$, 则令 $t_{nk}=\frac{1}{S}b_{n-k+1}, k=1,2,\cdots,n$. 从而

$$\sum_{k=1}^{\infty} t_{nk} = \lim_{n \to +\infty} \sum_{k=1}^{n} t_{nk} = \frac{1}{S} \lim_{n \to +\infty} \sum_{k=1}^{n} b_{n-k+1} = \frac{1}{S} \lim_{n \to +\infty} S_n = 1.$$

又因为 $\lim_{n\to+\infty} S_n$ 存在, 所以 $\lim_{n\to+\infty} b_n = \lim_{n\to+\infty} (S_n - S_{n-1}) = 0$. 故 $\lim_{n\to+\infty} t_{nk} = 0$. 于是

$$\lim_{n \to \infty} (a_n b_1 + a_{n-1} b_2 + \dots + a_1 b_n) = \lim_{n \to \infty} \sum_{k=1}^n a_k b_{n-k+1} = S \cdot \lim_{n \to \infty} \sum_{k=1}^n a_k t_{nk}.$$

不妨设 a=0, 则对 $\forall N \in \mathbb{N}$, 当 n>N 时, 有

$$0 \leqslant \left| \sum_{k=1}^{n} a_k t_{nk} \right| \leqslant \left| \sum_{k=1}^{N} a_k t_{nk} \right| + \left| \sum_{k=N+1}^{n} a_k t_{nk} \right| \leqslant \left| \sum_{k=1}^{N} a_k t_{nk} \right| + \sup_{k \geq N+1} |a_k| \sum_{k=N+1}^{n} t_{nk} \leqslant \left| \sum_{k=1}^{N} a_k t_{nk} \right| + \sup_{k \geq N+1} |a_k| \sum_{k=1}^{n} t_{nk}.$$

$$\overline{\lim_{n\to+\infty}} \left| \sum_{k=1}^{n} a_k t_{nk} \right| \leqslant \lim_{n\to+\infty} \left(\sup_{k\geq N+1} |a_k| \sum_{k=1}^{n} t_{nk} \right) = \sup_{k\geq N+1} |a_k|, \forall N \in \mathbb{N}.$$

再令 $N \to +\infty$, 可得

$$\overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{n} a_k t_{nk} \right| \leqslant \lim_{N \to +\infty} \sup_{k \ge N+1} |a_k| = \overline{\lim_{n \to +\infty}} |a_k| = \lim_{n \to +\infty} |a_k| = \lim_{n \to +\infty} |a_k| = 0.$$

于是
$$\lim_{n\to+\infty}\sum_{k=1}^{n}a_kt_{nk}=a.$$
 故 $\lim_{n\to\infty}(a_nb_1+a_{n-1}b_2+\cdots+a_1b_n)=S\cdot\lim_{n\to\infty}\sum_{k=1}^{n}a_kt_{nk}=aS.$

例题 2.42 设 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$. 且存在常数 K > 0, 使得 $\sum_{i=0}^n |y_i| \leqslant K, \forall n \in \mathbb{N}$, 证明

$$\lim_{n \to \infty} \sum_{i=1}^{n} x_i y_{n-i} = 0.$$

证明 对 $\forall N \in \mathbb{N}$. 当 n > N 时, 有

$$\left|\sum_{i=1}^{n} x_{i} y_{n-i}\right| \leqslant \left|\sum_{i=1}^{N} x_{i} y_{n-i}\right| + \left|\sum_{i=N+1}^{n} x_{i} y_{n-i}\right| \leqslant \left|\sum_{i=1}^{N} x_{i} y_{n-i}\right| + \sup_{i\geqslant N+1} |x_{i}| \cdot \sum_{i=N+1}^{n} |y_{n-i}| \leqslant \left|\sum_{i=1}^{N} x_{i} y_{n-i}\right| + K \cdot \sup_{i\geqslant N+1} |x_{i}|.$$

$$\Leftrightarrow n \to +\infty, \text{ M} |\overline{\lim_{n\to\infty}} \left|\sum_{i=1}^{n} x_{i} y_{n-i}\right| \leqslant K \cdot \sup_{i\geqslant N+1} |x_{i}|.$$

由N任意性得

$$\lim_{n\to\infty}\sum_{i=1}^n x_iy_{n-i} = \lim_{N\to\infty}\sup_{i\geq N+1}|x_i| = \overline{\lim_{n\to\infty}}|x_n| = \lim_{n\to\infty}x_n = 0.$$

设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, 证明

$$\lim_{n\to\infty}\frac{a_1b_n+a_2b_{n-1}+\cdots+a_nb_1}{n}=ab.$$

笔记 可以不妨设 a=b=0 的原因: 假设当 a=b=0 时, 结论成立. 则当 a,b 至少有一个不为零时, 我们有 $\lim_{n\to\infty} (a_n - a) = 0, \lim_{n\to\infty} (b_n - b) = 0. 从而由假设可知$

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} (a_k - a) (b_{n-k+1} - b)}{n} = 0.$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{\sum_{k=1}^{n} a_k b_{n-k+1}}{n} + ab - a \cdot \lim_{n \to \infty} \frac{\sum_{k=1}^{n} b_{n-k+1}}{n} - b \cdot \lim_{n \to \infty} \frac{\sum_{k=1}^{n} a_k}{n} = 0$$

又由Stolz 定理可知

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^na_k}{n}=\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}\frac{\sum\limits_{k=1}^nb_{n-k+1}}{n}=\lim_{n\to\infty}b_n=b.$$
 故 $\lim_{n\to\infty}\frac{\sum\limits_{k=1}^na_kb_{n-k+1}}{n}=a\cdot\lim_{n\to\infty}\frac{\sum\limits_{k=1}^nb_{n-k+1}}{n}+b\cdot\lim_{n\to\infty}\frac{\sum\limits_{k=1}^na_k}{n}-ab=ab.$ 证明 不妨设 $a=b=0$, 否则用 a_n-a 代替 a_n ,用 b_n-b 代替 b_n . 对 $\forall N\in\mathbb{N}$,当 $n>N$ 时,有

$$\left| \frac{\sum_{k=1}^{n} a_k b_{n-k+1}}{n} \right| \leqslant \frac{\left| \sum_{k=1}^{N} a_k b_{n-k+1} \right|}{n} + \frac{\left| \sum_{k=N+1}^{n} a_k b_{n-k+1} \right|}{n}$$

$$\leqslant \frac{1}{n} \left| \sum_{k=1}^{N} a_k b_{n-k+1} \right| + \sup_{k \geqslant N+1} |a_k| \cdot \frac{1}{n} \sum_{k=N+1}^{n} |b_{n-k+1}|$$

$$\leqslant \frac{1}{n} \left| \sum_{k=1}^{N} a_k b_{n-k+1} \right| + \sup_{k \geqslant N+1} |a_k| \cdot \frac{1}{n} \sum_{k=1}^{n} |b_k|.$$

 $+ \infty$, 则

$$\overline{\lim_{n\to\infty}} \left| \frac{1}{n} \sum_{k=1}^{n} a_k b_{n-k+1} \right| \leqslant \sup_{k \geq N+1} |a_k| \cdot \overline{\lim_{n\to\infty}} \frac{\sum_{k=1}^{n} |b_k|}{n} \leqslant \sup_{k \geq N+1} |a_k| \cdot \overline{\lim_{n\to\infty}} b_n = 0.$$

故
$$\overline{\lim}_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}a_kb_{n-k+1}=0.$$

例题 2.43 求 $\lim_{n\to\infty}\sum_{k=1}^n\frac{n^{\frac{1}{k}}}{n}$.

例题 2.44 设 $\lim x_n = x$, 证明:

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k = x.$$

笔记 可以不妨设 x=0 的原因: 假设当 x=0 时, 结论成立, 则当 $x\neq 0$ 时, 令 $y_n=x_n-x$, 则 $\lim_{n\to+\infty}y_n=0$. 从而由假

设可知

$$0 = \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k y_k = \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k (x_k - x) = \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k - x \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k - x.$$

$$\text{$\not \exists \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k = x.$}$$

证明 不妨设 x = 0, 则对 $\forall N > 0$, 当 n > N 时, 我们有

$$0 \leqslant \left| \frac{1}{2^{n}} \sum_{k=0}^{n} C_{n}^{k} x_{k} \right| = \left| \frac{1}{2^{n}} \sum_{k=0}^{N} C_{n}^{k} x_{k} \right| + \left| \frac{1}{2^{n}} \sum_{k=N+1}^{n} C_{n}^{k} x_{k} \right|$$

$$\leqslant \left| \frac{1}{2^{n}} \sum_{k=0}^{N} C_{n}^{k} x_{k} \right| + \frac{1}{2^{n}} \sum_{k=N+1}^{n} C_{n}^{k} \sup_{k \geqslant N+1} |x_{k}| \leqslant \left| \frac{1}{2^{n}} \sum_{k=0}^{N} C_{n}^{k} x_{k} \right| + \frac{1}{2^{n}} \sum_{k=0}^{n} C_{n}^{k} \sup_{k \geqslant N+1} |x_{k}|$$

$$= \left| \frac{1}{2^{n}} \sum_{k=0}^{N} C_{n}^{k} x_{k} \right| + \sup_{k \geqslant N+1} |x_{k}|$$

上式两边同时令 $n \to +\infty$,则结合 $\overline{\lim}_{n \to +\infty} \left| \frac{1}{2^n} \sum_{k=0}^N C_n^k x_k \right| = \overline{\sum_{k=0}^n \sum_{k=0}^n C_n^k x_k} = \overline{\sum_{k>0}^n \sum_{k>0}^n C_n^k x_k} = \overline{\sum_{k>0}^n C_n^k x_$

由 N 的任意性, 上式两边令 $N \to +\infty$, 则

$$\overline{\lim_{n \to +\infty}} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| \leqslant \overline{\lim}_{N \to +\infty} \sup_{k \geqslant N+1} |x_k|.$$

又根据上极限的定义,可知 $\lim_{N\to +\infty}\sup_{k\geqslant N+1}|x_k|=\varlimsup_{n\to +\infty}|x_n|=\lim_{n\to +\infty}x_n=0.$ 从而

$$0 \leqslant \lim_{n \to +\infty} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| \leqslant \lim_{n \to +\infty} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| \leqslant 0.$$

$$\text{th} \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k = \lim_{n \to +\infty} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| = 0. \text{ \mathbb{R} $\widehat{\sigma}$ \mathbb{H} $\widehat{\psi}$ $\widehat{\psi}$$$

注 取 $m = [\sqrt{\sqrt{n \ln n}}] + 1$ 的原因: 我们希望找到一个合适的分段点 m, 使得 $\lim_{n \to \infty} \sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n} = 1$, $\lim_{n \to \infty} \sum_{k=2}^{m} \frac{n^{\frac{1}{k}}}{n} = 0$. 由 $\sum_{k=2}^{m} \frac{n^{\frac{1}{k}}}{n} \le \frac{(m-1)\sqrt{n}}{n} = \frac{(m-1)}{\sqrt{n}}$ 可知,我们可以希望 $\frac{(m-1)}{\sqrt{n}} \to 0$,即 $m = o(\sqrt{n})$. 又由上述证明的积分放缩可知, $\lim_{n \to \infty} \sum_{k=2}^{m} \frac{n^{\frac{1}{k}}}{n} = \lim_{n \to \infty} \frac{n^{\frac{1}{m}}}{n} (n-m+1) = \lim_{n \to \infty} n^{\frac{1}{m}}$,从而我们希望 $\lim_{n \to \infty} n^{\frac{1}{m}} = 1$,即 $\lim_{n \to \infty} n^{\frac{1}{m}} = 1$,也即 $\lim_{n \to \infty} \frac{\ln n}{m} = 0$.

笔记 本题核心想法是: **分段估计**. 分段后的估计方式和分段点的选取方法较多.(清疏讲义上有另一种分段估计的做法)

注意: 本题使用 Stolz 定理解决不了, 直接放缩也不行.

证明 取
$$m = [\sqrt{\sqrt{n \ln n}}] + 1$$
, 考虑 $\sum_{k=1}^{n} \frac{n^{\frac{1}{k}}}{n} = 1 + \sum_{k=2}^{m} \frac{n^{\frac{1}{k}}}{n} + \sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n}$. 不难发现
$$\frac{m}{n} \leqslant \frac{\sqrt{\sqrt{n \ln n}}}{n} \to 0, n \to \infty.$$

$$\sum_{k=2}^{m} \frac{n^{\frac{1}{k}}}{n} \leqslant \frac{(m-1)\sqrt{n}}{n} \leqslant \frac{\sqrt{\sqrt{n \ln n}}}{\sqrt{n}} = \sqrt{\frac{\ln n}{\sqrt{n}}} \to 0, n \to \infty.$$

因此 $\lim_{n\to\infty} \frac{m}{n} = \lim_{n\to\infty} \sum_{k=1}^{m} \frac{n^{\frac{1}{k}}}{n} = 0$. 并且一方面, 我们有

$$\sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n} = \frac{1}{n} \sum_{k=m}^{n} \int_{k-1}^{k} n^{\frac{1}{k}} dx \leq \frac{1}{n} \sum_{k=m}^{n} \int_{k-1}^{k} n^{\frac{1}{k}} dx = \frac{1}{n} \int_{m-1}^{n} n^{\frac{1}{k}} dx$$
$$= \frac{1}{n} \int_{\frac{1}{n}}^{\frac{1}{m-1}} \frac{n^{x}}{x^{2}} dx \leq \frac{n^{\frac{1}{m-1}}}{n} \int_{\frac{1}{n}}^{\frac{1}{m-1}} \frac{1}{x^{2}} dx = \frac{n^{\frac{1}{m-1}}}{n} (n-m+1).$$

另一方面, 我们有

$$\sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n} = \frac{1}{n} \sum_{k=m}^{n} \int_{k}^{k+1} n^{\frac{1}{k}} dx \geqslant \frac{1}{n} \sum_{k=m}^{n} \int_{k}^{k+1} n^{\frac{1}{x}} dx = \frac{1}{n} \int_{m}^{n+1} n^{\frac{1}{x}} dx$$
$$= \frac{1}{n} \int_{\frac{1}{m+1}}^{\frac{1}{m}} \frac{n^{x}}{x^{2}} dx \geqslant \frac{n^{\frac{1}{m}}}{n} \int_{\frac{1}{m+1}}^{\frac{1}{m}} \frac{1}{x^{2}} dx = \frac{n^{\frac{1}{m}}}{n} (n-m+1).$$

又注意到

$$\lim_{n\to\infty} n^{\frac{1}{m-1}} = \lim_{n\to\infty} e^{\frac{\ln n}{\sqrt{\sqrt{n}\ln n}}} = \lim_{n\to\infty} e^{\frac{1}{\sqrt{\frac{n}{\ln n}}}} = 1,$$

$$\lim_{n \to \infty} n^{\frac{1}{m}} = \lim_{n \to \infty} e^{\frac{\ln n}{\sqrt{\sqrt{n} \ln n}}} = \lim_{n \to \infty} e^{\frac{1}{\sqrt{\frac{\sqrt{n}}{\ln n}}}} = 1.$$

故

$$1 = \underline{\lim_{n \to \infty} \frac{n^{\frac{1}{m}}}{n}}(n - m + 1) \leqslant \underline{\lim_{n \to \infty} \sum_{k = m}^{n} \frac{n^{\frac{1}{k}}}{n}} \leqslant \overline{\lim_{n \to \infty} \sum_{k = m}^{n} \frac{n^{\frac{1}{k}}}{n}} \leqslant \overline{\lim_{n \to \infty} \frac{n^{\frac{1}{m-1}}}{n}}(n - m + 1) = 1.$$

因此
$$\lim_{n \to \infty} \sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n} = 1$$
. 于是 $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n^{\frac{1}{k}}}{n} = \lim_{n \to \infty} \left(1 + \sum_{k=2}^{m} \frac{n^{\frac{1}{k}}}{n} + \sum_{k=m}^{n} \frac{n^{\frac{1}{k}}}{n} \right) = 1 + 0 + 1 = 2$.

2.2.6 Euler-Maclaurin 公式 (E-M 公式)

定理 2.4 (0 阶 Euler-Maclaurin 公式)

设 $a, b \in \mathbb{Z}, f \in D[a, b], f' \in L^1[a, b]$, 让我们有

$$\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(x)dx + \frac{f(a) + f(b)}{2} + \int_{a}^{b} \left(x - [x] - \frac{1}{2}\right) f'(x)dx.$$

注 如果考试中要使用 0 阶欧拉麦克劳林公式,则一定要先证明 0 阶欧拉麦克劳林公式 (按照下面的证明书写即 可), 再使用.

E-M 公式求和通项与求和号上限无关. **笔记** 在 [0,1) 上 $x-[x]-\frac{1}{2}=x-\frac{1}{2}$,它也是 $x-\frac{1}{2}$ 做周期 1 延拓得到的函数. 故 $-\frac{1}{2}\leqslant x-[x]-\frac{1}{2}\leqslant \frac{1}{2}$, $\forall x\in\mathbb{R}$.

$$\int_{a}^{b} \left(x - [x] - \frac{1}{2} \right) f'(x) dx = \sum_{k=1}^{b-1} \int_{k}^{k+1} \left(x - [x] - \frac{1}{2} \right) f'(x) dx$$

$$= \sum_{k=a}^{b-1} \int_{k}^{k+1} \left(x - k - \frac{1}{2} \right) f'(x) dx = \sum_{k=a}^{b-1} \int_{0}^{1} \left(x - \frac{1}{2} \right) f'(x+k) dx$$

$$= \sum_{k=a}^{b-1} \left[\frac{1}{2} f(1+k) + \frac{1}{2} f(k) - \int_{0}^{1} f(x+k) dx \right]$$

$$= \sum_{k=a}^{b-1} \left[\frac{f(k) + f(k+1)}{2} - \int_{k}^{k+1} f(x) dx \right]$$

$$= \frac{1}{2} \sum_{k=a}^{b-1} \left[f(k) + f(k+1) \right] - \int_{a}^{b} f(x) dx$$

$$= -\frac{f(a) + f(b)}{2} + \sum_{k=a}^{b} f(k) - \int_{a}^{b} f(x) dx.$$

注 假设已知 f'(x) 在 \mathbb{R} 上连续,记 $b_1(x) = x - [x] - \frac{1}{2}$,使用 0 阶 E-M 公式后,由于 $-\frac{1}{2} \leqslant x - [x] - \frac{1}{2} \leqslant \frac{1}{2}$, $\forall x \in \mathbb{R}$,因此直接将 $b_1(x)$ 放大成 $\frac{1}{2}$ 就可以得到原级数的一个较为粗略的估计. 具体例题见例题 2.45.

因此直接将 $b_1(x)$ 放大成 $\frac{1}{2}$ 就可以得到原级数的一个较为粗略的估计. 具体例题见例题 2.45. 但是如果我们想要得到原级数更加精确的估计, 就需要对 $b_1(x)$ 使用分部积分. 但是由于 b_1 并非连续函数, 为了把 $\int_a^b (x-[x]-\frac{1}{2})f'(x)\mathrm{d}x$ 继续分部积分, 我们需要寻求 b_1 的原函数 b_2 使得

$$\int_a^b b_1(x)f'(x)\mathrm{d}x = \int_a^b f'(x)db_2(x),$$

即期望 $b_2(x)$ 是 $b_1(x)$ 的一个原函数并且仍然有周期 1(因为求导不改变周期性, 又由于 $b_1(x)$ 周期为 1, 故原函数 $b_2(x)$ 的周期也必须为 1). 相当于需要

$$b_2(x) = \int_0^x b_1(y) dy, b_2(x+1) = b_2(x), \forall x \in \mathbb{R}.$$

(构造 $b_2(x)$ 的想法: 先找到 $x \in [0,1)$ 这个特殊情况下的 $b_2(x)$, 再由此构造出 $x \in \mathbb{R}$ 这个一般情况下的 $b_2(x)$, 即由特殊推广到一般)

先考虑 $x \in [0,1)$ 的情况 (因为此时 $[x] \equiv 0$, 方便后续计算得到原函数 $b_2(x)$), 于是就需要 $\int_0^1 b_1(x) dx = b_2(1) = b_2(0) = 0$. 显然

$$b_2(1) = \int_0^1 b_1(x) dx = \int_0^1 \left(x - \frac{1}{2}\right) dx = 0 = b_2(0)$$

是自带条件. 并且还需要 $b_2(x) = \int_0^x b_1(y) \, \mathrm{d}y = \int_0^x \left(y - \frac{1}{2}\right) \, \mathrm{d}y = \frac{1}{2} x^2 - \frac{1}{2} x + c$ (其中c为任意常数), $x \in [0,1)$. 又因为我们需要 $b_2(x)$ 在 \mathbb{R} 上连续且周期为 1, 所以再将 $\frac{1}{2} x^2 - \frac{1}{2} x + c$ 做周期 1 延拓到 \mathbb{R} 上,得到在 \mathbb{R} 上连续且周期为 1 的 $b_2(x)$ (易知此时 $b_2(x)$ 在 \mathbb{R} 上只有至多可数个不可导点). 由此我们可以得到 $b_2(x)$ 在 \mathbb{R} 上的表达式为

$$b_2(x) = b_2(x - [x]) = \int_0^{x - [x]} b_1(y) \, dy = \int_0^{x - [x]} \left(y - \frac{1}{2} \right) dy = \frac{1}{2} (x - [x])^2 - \frac{1}{2} (x - [x]) + c, \forall x \in \mathbb{R}.$$

此时又由 $\int_0^1 b_1(y) \, dy = 0$ 可得

$$b_{2}(x) = b_{2}(x - [x]) = \int_{0}^{x - [x]} b_{1}(y) dy = \int_{[x]}^{x} b_{1}(y - [x]) dy = \int_{[x]}^{x} b_{1}(y) dy$$

$$= \sum_{k=0}^{[x]-1} \int_{0}^{1} b_{1}(y) dy + \int_{[x]}^{x} b_{1}(y) dy = \sum_{k=0}^{[x]-1} \int_{0}^{1} b_{1}(y + k) dy + \int_{[x]}^{x} b_{1}(y) dy$$

$$= \sum_{k=0}^{[x]-1} \int_{k}^{k+1} b_{1}(y) dy + \int_{[x]}^{x} b_{1}(y) dy = \int_{0}^{[x]} b_{1}(y) dy + \int_{[x]}^{x} b_{1}(y) dy$$

$$= \int_{0}^{x} b_{1}(y) dy, \forall x \in \mathbb{R}.$$

故此时周期延拓得到的 $b_2(x)$ 恰好就是 $b_1(x)$ 的一个原函数. 即 $b_1(x)$ 在 \mathbb{R} 上有连续且周期为 1 的原函数 $b_2(x)$, f'(x)在 \mathbb{R} 上连续. 因此我们可以对 $b_1(x)$ 进行分部积分. 即此时

$$\int_a^b b_1(x)f'(x)\mathrm{d}x = \int_a^b f'(x)db_2(x)$$

成立. 并且此时 $b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + c$, $\forall x \in \mathbb{R}$. 其中 c 为任意常数. 如果我们想要继续分部积分, 就需要 $b_3(x)$ 是 $b_2(x)$ 的一个原函数. 按照上述构造的想法, 实际上, 我们只需期 望 $b_3(1) = b_3(0)$ 和 $b_3(x) = \int_0^x b_2(y) \, dy, \forall x \in [0, 1)$. 即

$$\int_0^1 b_2(x) dx = b_3(1) = b_3(0) = 0,$$

$$b_3(x) = \int_0^x b_2(y) dy, \forall x \in [0, 1).$$

然后以此构造出 [0,1) 上的 $b_3(x)$, 再对其做周期 1 延拓, 就能得到 \mathbb{R} 上的 $b_3(x)$, 并且 $b_3(x)$ 满足在 \mathbb{R} 上连续且周 期为 1. 进而可以利用这个 $b_3(x)$ 继续对原积分进行分部积分, 得到更加精细的估计.

而由
$$\int_0^1 b_2(x) dx = b_3(1) = b_3(0) = 0$$
 可知

$$\int_{0}^{1} b_{2}(x) dx = \int_{0}^{1} \left(\frac{1}{2} x^{2} - \frac{1}{2} x + c \right) dx = 0 \Rightarrow c = \frac{1}{12}.$$

于是如果我们还需要继续分部积分的话, 此时 $b_1(x)$ 的原函数 $b_2(x)$ 就被唯一确定了 (如果只进行一次分部积分, 那么c可以任取.但是一般情况下,无论是否还需要继续分部积分,我们都会先取定这里的 $c=\frac{1}{12}$).此时这个唯一 确定的 $b_2(x)$ 在 \mathbb{R} 上连续且周期为 1,并且

$$b_2(x) = \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{12}, x \in [0, 1);$$

$$b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}, b_2(x) = \int_0^x b_1(y) \, \mathrm{d}y, |b_2(x)| \le \frac{1}{12}, \forall x \in \mathbb{R}.$$

依次下去我们给出计算 $b_n, n \in \mathbb{N}$ 的算法.

定义 **2.1** $(b_n(x)$ 定义和算法)

我们令 $b_1(x)$ 为 $x-\frac{1}{2},x\in[0,1)$ 的周期 1 延拓. 对所有 $n=2,3,\cdots,b_n(x)$ 是 $b_{n-1}(x)$ 的一个原函数.

笔记 $b_n(x)$ 的算法:

根据上述构造 $b_2(x), b_3(x)$ 的想法可知, 我们只需期望 $b_n(1) = b_n(0)$ 和 $b_n(x) = \int_0^x b_{n-1}(y) \, \mathrm{d}y, \forall x \in [0, 1)$. 即

$$\int_0^1 b_{n-1}(x) dx = b_n(1) = b_n(0) = 0,$$

$$b_n(x) = \int_0^x b_{n-1}(y) dy, \forall x \in [0, 1).$$

然后以此构造出 [0,1) 上的 $b_n(x)$, 再对其做周期 1 延拓, 就能得到 $\mathbb R$ 上的 $b_n(x)$, 并且 $b_n(x)$ 满足在 $\mathbb R$ 上连续且周 期为 1. 并且根据 $\int_0^1 b_{n-1}(x) dx = b_n(1) = b_n(0) = 0$ 我们可唯一确定 $b_{n-1}(x)$ 在 [0,1) 上的表达式. 从而可以唯一确 定 $b_n(x)$ 之前的所有 $b_{n-1}(x)$ 在 \mathbb{R} 上的表达式. 又因为这个过程可以无限地进行下去, 所以我们其实可以唯一确定 所有的 $b_n(x)$ 在 \mathbb{R} 上的表达式, 方便我们后续可按照我们的需要对原积分进行多次分部积分.

根据上述 $b_n(x)$ 的定义和算法, 可知 $b_n(x)$ 是连续且周期为 1 的函数. 而连续的周期函数一定有界, 故一定存 在 $M_n > 0$, 使得对 $\forall x \in \mathbb{R}$, 有 $|b_n(x)| \leq M_n$.

 \dot{L} 我们可以利用这些 $b_n(x)$ 不断地对原积分进行分部积分, 得到更加精细的估计, 而且这个过程可以一直进行下 去. 因此无论我们需要多么精确的估计, 都可以通过这样的分部积分方式来得到. 具体例题见例题 2.6,例题 2.45. 结论 我们计算一些 $b_n(x)$ 以备用:

$$b_1(x) = x - \frac{1}{2}, x \in [0, 1).$$

$$b_1(x) = x - [x] - \frac{1}{2}, |b_1(x)| \le \frac{1}{2}, x \in \mathbb{R}.$$

$$\begin{split} b_2(x) &= \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{12}, x \in [0,1)\,. \\ b_2(x) &= \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}, |b_2(x)| \leqslant \frac{1}{12}, x \in \mathbb{R}. \end{split}$$

$$b_3(x) = \frac{x^3}{6} - \frac{x^2}{4} + \frac{x}{12}, x \in [0, 1).$$

$$b_3(x) = \frac{(x - [x])^3}{6} - \frac{(x - [x])^2}{4} + \frac{(x - [x])}{12}, |b_3(x)| \le \frac{2\sqrt{3} - 3}{36}, x \in \mathbb{R}.$$

$$b_4(x) = \frac{x^4}{24} - \frac{x^3}{12} + \frac{x^2}{24} - \frac{1}{720}, x \in [0, 1).$$

$$b_4(x) = \frac{(x - [x])^4}{24} - \frac{(x - [x])^3}{12} + \frac{(x - [x])^2}{24} - \frac{1}{720}, |b_4(x)| \le \frac{1}{720}, x \in \mathbb{R}.$$

命题 2.8 $(b_n(x)$ 的傅立叶级数表达式)

对 $k \in \mathbb{N}$, 我们有

$$b_1(x) \sim -\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n\pi x)}{n},$$

$$b_{2k}(x) = \frac{2(-1)^{k+1}}{(2\pi)^{2k}} \sum_{n=1}^{\infty} \frac{\cos(2n\pi x)}{n^{2k}},$$

$$b_{2k+1}(x) = \frac{2(-1)^{k+1}}{(2\pi)^{2k+1}} \sum_{n=1}^{\infty} \frac{\sin(2n\pi x)}{n^{2k+1}}.$$

$$-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n\pi x)}{n} = \begin{cases} b_1(x), & x \land \text{LEE} \\ 0, & x \text{LEE} \end{cases}.$$

证明

命题 **2.9** $(b_n(x))$ 基本性质)

对每个 $k \in \mathbb{N}$, 我们有

1.

$$b_{2k+1}(0) = 0, \quad b_{2k}(0) = \frac{B_{2k}}{(2k)!}.$$

其中 B_{2k} 是 Bernoulli 数.

2.

$$|b_k(x)| \leqslant \frac{2\zeta(k)}{(2\pi)^k}$$
.

其中 $\zeta(x)$ 是 Riemann Zeta 函数, 定义为

$$\zeta(x) \triangleq \sum_{n=1}^{\infty} \frac{1}{n^x}, \ x > 1 \quad \tilde{\not \propto} \quad \zeta(s) = \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{x^{s-1}}{e^x - 1} \mathrm{d}x, \ s > 1.$$

证明

定理 2.5 (Euler-Maclaurin 公式)

设 $a, b \in \mathbb{Z}, m \in \mathbb{N}, f \in D^{2m}[a, b], f^{(2m)} \in L^{1}[a, b].$ 则有

$$\sum_{k=a}^{b} f(k) - \int_{a}^{b} f(x) \mathrm{d}x = \frac{f(b) + f(a)}{2} + \sum_{k=1}^{m} \left[f^{(2k-1)}(b) - f^{(2k-1)}(a) \right] b_{2k}(0) - \int_{a}^{b} b_{2m}(x) f^{(2m)}(x) \mathrm{d}x.$$

证明 由定理 2.4, 我们有

$$\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(x)dx + \frac{f(a) + f(b)}{2} + \int_{a}^{b} b_{1}(x)f'(x)dx.$$
 (2.29)

现在利用 b2 周期性和分部积分得

$$\int_{a}^{b} b_{1}(x)f'(x)dx = \int_{a}^{b} f'(x)db_{2}(x) = [f'(b) - f'(a)]b_{2}(0) - \int_{a}^{b} b_{2}(x)f''(x)dx.$$

代入等式 (2.29), 就证明了定理中m=2的情况, 类似的反复分部积分即可对一般m得到等式

$$\sum_{k=a}^{b} f(k) - \int_{a}^{b} f(x) dx = \frac{f(b) + f(a)}{2} + \sum_{k=2}^{m} \left[f^{(k-1)}(b) - f^{(k-1)}(a) \right] b_{k}(0) + (-1)^{m+1} \int_{a}^{b} b_{m}(x) f^{(m)}(x) dx.$$

又因为命题 2.9中的 $b_{2k+1}(0)=0, k\in\mathbb{N}$, 代入上式, 这就完成了定理的证明. **例题 2.45** 估计 $\sum_{k=1}^n \frac{1}{k}, n\to\infty$.

$$\sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{k} dx \geqslant \sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} dx = \int_{1}^{n+1} \frac{1}{x} dx = \ln(n+1).$$

另一方面,对 $∀n ∈ \mathbb{N}$ 我们也

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{k} dx \le 1 + \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x} dx = 1 + \int_{1}^{n} \frac{1}{x} dx = 1 + \ln n.$$

于是对 $\forall n \in \mathbb{N}$ 都有

$$\ln(n+1) \leqslant \sum_{k=1}^{n} \frac{1}{k} \leqslant 1 + \ln n.$$

从而对 $\forall n \in \mathbb{N}$ 都有

$$\frac{\ln(n+1)}{\ln n} \leqslant \frac{\sum\limits_{k=1}^{n} \frac{1}{k}}{\ln n} \leqslant \frac{1}{\ln n} + 1.$$

令 $n \to \infty$, 由夹逼准则可知 $\lim_{n \to \infty} \frac{\sum\limits_{k=1}^{\frac{1}{k}}}{\ln n} = 1$. 即 $\sum\limits_{k=1}^{n} \frac{1}{k} \sim \ln n, n \to \infty$.

$$\sum_{k=1}^{n} \frac{1}{k} = \int_{1}^{n} \frac{1}{x} dx + \frac{1 + \frac{1}{n}}{2} - \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x^{2}} dx = \ln n + \frac{1}{2n} + \frac{1}{2} - \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x^{2}} dx. \tag{2.30}$$

因为
$$\int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx \leqslant \int_{1}^{n} \frac{1}{2x^{2}} dx$$
, 而 $\lim_{n \to \infty} \int_{1}^{n} \frac{1}{2x^{2}} dx$ 存在, 所以可设

$$\lim_{n\to\infty} \int_1^n \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^2} \mathrm{d}x = \int_1^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^2} \mathrm{d}x \triangleq C < \infty.$$

于是
$$\int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x^2} dx = C - \int_{0}^{+\infty} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x^2} dx$$
. 从而

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2n} + \frac{1}{2} - \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x^{2}} dx$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - \left[C - \int_{n}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx\right]$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$$

$$\leq \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \frac{1}{2x^{2}} dx$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \frac{1}{2n}.$$

故 $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2} - C + \frac{1}{2n} + O\left(\frac{1}{n}\right) = \ln n + \frac{1}{2} - C + +O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}.$ 此时令 $\frac{1}{2} - C = \frac{1}{2} - \int_{1}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^2} \mathrm{d}x \triangleq \gamma$ (欧拉常数). 则

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}.$$
 (2.31)

由 $b_n(x)$ 的构造和分部积分可知,上述结果只是对 $\sum_{k=1}^n \frac{1}{k}$ 的一个最粗糙的估计。实际上,我们可以利用分部积分得到更加精细的估计。记 $b_1(x) = x - [x] - \frac{1}{2}, b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}$. 则不难发现 $b_2(x)$ 是连续且周期为 1 的函数, $b_2(x)$ 是 $b_1(x)$ 在 \mathbb{R} 上的一个原函数,并且 $|b_2(x)| \leq \frac{1}{12}, x \in \mathbb{R}$. 而由 Dirichlet 判别法可知 $\int_1^{+\infty} \frac{b_1(x)}{x^2} dx$ 收敛,于是设 $\int_1^{+\infty} \frac{b_1(x)}{r^2} dx \triangleq C$. 从而再对(2.30)分部积分得到

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2n} + \frac{1}{2} - \int_{1}^{n} \frac{b_{1}(x)}{x^{2}} dx = \ln n + \frac{1}{2n} + \frac{1}{2} - \left(\int_{1}^{+\infty} \frac{b_{1}(x)}{x^{2}} dx - \int_{n}^{+\infty} \frac{b_{1}(x)}{x^{2}} dx \right)$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \frac{b_{1}(x)}{x^{2}} dx = \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \frac{1}{x^{2}} db_{2}(x)$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \frac{b_{2}(x)}{x^{2}} \Big|_{n}^{+\infty} + 2 \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{3}} dx$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + 2 \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{3}} dx - \frac{b_{2}(n)}{n^{2}}.$$
(2.32)

又由 $|b_2(x)| \leq \frac{1}{12}, \forall x \in \mathbb{R}$ 可知

$$\left|2\int_{n}^{+\infty}\frac{b_{2}\left(x\right)}{x^{3}}\mathrm{d}x-\frac{b_{2}\left(n\right)}{n^{2}}\right|\leqslant2\left|\int_{n}^{+\infty}\frac{b_{2}\left(x\right)}{x^{3}}\mathrm{d}x\right|+\frac{\left|b_{2}\left(n\right)\right|}{n^{2}}\leqslant\frac{1}{6}\left|\int_{n}^{+\infty}\frac{1}{x^{3}}\mathrm{d}x\right|+\frac{1}{12n^{2}}=\frac{1}{6n^{2}},\forall n\in\mathbb{N}.$$

即

$$2\int_{n}^{+\infty} \frac{b_{2}(x)}{x^{3}} dx - \frac{b_{2}(n)}{n^{2}} = O\left(\frac{1}{n^{2}}\right), \forall n \in \mathbb{N}.$$
 (2.33)

再结合(2.32)和(2.33)式可得

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2n} + \frac{1}{2} - C + O\left(\frac{1}{n^2}\right), \forall n \in \mathbb{N}.$$

记 $\gamma \triangleq \frac{1}{2} - C(\gamma)$ 为欧拉常数),则我们就得到了比(2.31)式更加精细的估计:

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + O\left(\frac{1}{n^2}\right), \forall n \in \mathbb{N}.$$

例题 2.46 计算

$$\lim_{m \to \infty} \sum_{n=1}^{m} (-1)^{n-1} \frac{\ln n}{n}.$$

Ŷ 笔记 估计交错级数的想法:将原交错级数分奇偶子列,观察奇偶子列的关系 (一般奇偶子列的阶相同),再估计奇

子列或偶子列,进而得到原级数的估计.

解 注意到原级数的奇子列有

$$\sum_{n=1}^{2m-1} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} + (-1)^{2m-2} \frac{\ln(2m-1)}{2m-1} = \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} + \frac{\ln(2m-1)}{2m-1}, \forall m \in \mathbb{N}.$$

从而

$$\sum_{n=1}^{2m-1} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} + o(1), m \to +\infty.$$
 (2.34)

因此我们只需要估计原级数的偶子列 $\sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n}$ 即可. 又注意到

$$\sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{m} \left[(-1)^{2n-2} \frac{\ln(2n-1)}{2n-1} + (-1)^{2n-1} \frac{\ln 2n}{2n} \right] = \sum_{n=1}^{m} \left[\frac{\ln(2n-1)}{2n-1} - \frac{\ln 2n}{2n} \right]$$

$$= \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2n}{2n} - \sum_{n=1}^{m} \frac{\ln 2n}{2n} = \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2n}{n}$$

$$= \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2 + \ln n}{n}.$$
(2.35)

由例题 2.45可知

$$\sum_{n=1}^{m} \frac{\ln 2}{n} = \ln 2(\ln m + \gamma + o(1)) = \ln 2 \cdot \ln m + \gamma \ln 2 + o(1), m \to +\infty.$$
 (2.36)

又由E-M 公式可知

$$\sum_{n=1}^{m} \frac{\ln n}{n} = \frac{\ln m}{2m} + \int_{1}^{m} \frac{\ln x}{x} dx + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx$$

$$= \frac{\ln m}{2m} + \frac{1}{2} \ln^{2} m + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx. \tag{2.37}$$

因为

$$\left| \int_1^m \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^2} dx \right| \leqslant \frac{1}{2} \left| \int_1^m \frac{1 - \ln x}{x^2} dx \right|, \forall m \in \mathbb{N}.$$

并且
$$\int_{1}^{m} \frac{1 - \ln x}{x^{2}} dx$$
 收敛, 所以 $\lim_{m \to +\infty} \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx = \int_{1}^{+\infty} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx = C < \infty.$ 即
$$\int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx = C + o(1), m \to +\infty. \tag{2.38}$$

于是结合(2.37)(2.38)式可得

$$\sum_{n=1}^{m} \frac{\ln n}{n} = \frac{\ln m}{2m} + \frac{1}{2} \ln^2 m + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^2} dx$$

$$= o(1) + \frac{1}{2} \ln^2 m + C + o(1)$$

$$= \frac{1}{2} \ln^2 m + C + o(1), m \to +\infty. \tag{2.39}$$

因此由(2.35)(2.36)(2.39)式可得

$$\begin{split} \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} &= \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2 + \ln n}{n} = \frac{1}{2} \ln^2 2m + C + o(1) - \left[\ln 2 \cdot \ln m + \gamma \ln 2 + o(1) + \frac{1}{2} \ln^2 m + C + o(1) \right] \\ &= \frac{1}{2} \ln^2 2m - \frac{1}{2} \ln^2 m - \ln 2 \cdot \ln m - \gamma \ln 2 + o(1) = \frac{1}{2} (\ln 2 + \ln m)^2 - \frac{1}{2} \ln^2 m - \ln 2 \cdot \ln m - \gamma \ln 2 + o(1) \\ &= \frac{\ln^2 2}{2} - \gamma \ln 2 + o(1), m \to +\infty. \end{split}$$

即
$$\lim_{m\to+\infty} \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} = \frac{\ln^2 2}{2} - \gamma \ln 2$$
. 再结合(2.34)式可得

$$\lim_{m \to +\infty} \sum_{n=1}^{2m-1} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to +\infty} \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} = \frac{\ln^2 2}{2} - \gamma \ln 2.$$

故
$$\lim_{m \to +\infty} \sum_{n=1}^{m} (-1)^{n-1} \frac{\ln n}{n} = \frac{\ln^2 2}{2} - \gamma \ln 2.$$

例题 2.47 设 $f \in C^1[1, +\infty)$ 且 $\int_1^\infty |f'(x)| dx < \infty$, 证明 $\int_1^\infty f(x) dx$ 收敛等价于 $\lim_{n \to \infty} \sum_{k=1}^n f(k)$ 存在.

Ŷ 笔记 关键想法参考:E-M 公式和命题 6.4.

证明 由E-M 公式可知

$$\sum_{k=1}^{n} f(k) = \frac{f(1) + f(n)}{2} + \int_{1}^{n} f(x) dx + \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) f'(x) dx.$$
 (2.40)

注意到 $0 \leqslant \left| \left(x - [x] - \frac{1}{2} \right) f'(x) \right| \leqslant \frac{1}{2} |f'(x)|$,并且 $\int_1^\infty |f'(x)| \, \mathrm{d}x \, \, \mathrm{thg}$,因此 $\int_1^\infty \left| \left(x - [x] - \frac{1}{2} \right) f'(x) \, \mathrm{d}x \, \, \mathrm{thgg}$. 从而 $\int_1^\infty \left(x - [x] - \frac{1}{2} \right) f'(x) \, \mathrm{d}x \, \, \mathrm{thgg}$,故由 Henie 归结原则可知 $\lim_{n \to +\infty} \int_1^n \left(x - [x] - \frac{1}{2} \right) f'(x) \, \mathrm{d}x$ 存在.

(1) 若 $\int_{1}^{\infty} f(x) dx$ 存在,则由 Henie 归结原则可知 $\lim_{n \to +\infty} \int_{1}^{n} f(x) dx$ 存在.又由 $\int_{1}^{\infty} |f'(x)| dx < \infty$ 可知 $\int_{1}^{\infty} f'(x) dx$ 收敛.于是

$$\lim_{x \to +\infty} [f(x) - f(1)] = \lim_{x \to +\infty} \int_1^x f'(y) \mathrm{d}y = \int_1^\infty f'(x) \mathrm{d}x < \infty.$$

由此可知 $\lim_{x\to +\infty} f(x)$ 存在. 从而由 Henie 归结原则可知 $\lim_{n\to +\infty} f(n)$ 也存在. 又由 $\lim_{n\to +\infty} \int_1^n \left(x-[x]-\frac{1}{2}\right) f'(x) dx$ 存在, 再结合(2.40)式可知 $\lim_{n\to +\infty} \sum_{k=1}^n f(k)$ 存在.

(2) 若 $\lim_{n \to +\infty} \sum_{k=1}^{n} f(k)$ 存在,则 $\lim_{x \to +\infty} f(x) = \lim_{n \to +\infty} f(n) = 0$. 又由 $\lim_{n \to +\infty} \int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) f'(x) dx$ 存在,再结

合(2.40)式可知 $\lim_{n \to +\infty} \int_{1}^{n} f(x) dx$ 也存在. 于是对 $\forall x \geq 1$, 一定存在 $n \in \mathbb{N}$, 使得 $n \leq x < n+1$. 从而可得

$$\int_{1}^{x} f(x)dx = \int_{1}^{n} f(x)dx + \int_{x}^{x} f(x)dx.$$
 (2.41)

并且

$$\int_{n}^{x} f(x) dx \le \int_{n}^{x} |f(x)| dx \le \int_{n}^{n+1} |f(x)| dx \le \sup_{y \ge n} |f(y)|.$$
 (2.42)

对(2.42)式两边同时令 $x \to +\infty$,则 $n \to +\infty$. 进而可得

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \lim_{n \to +\infty} \sup_{y \geqslant n} |f(y)| = \overline{\lim}_{x \to +\infty} |f(x)|.$$

由于此时 $\lim_{x \to +\infty} f(x) = 0$, 因此 $\overline{\lim}_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} f(x) = 0$. 从而

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \overline{\lim}_{x \to +\infty} |f(x)| = 0.$$

故 $\lim_{x\to+\infty}\int_n^x f(x)\mathrm{d}x = 0$. 于是再对(2.41)式两边同时令 $x\to+\infty$, 则 $n\to+\infty$. 从而可得

$$\int_{1}^{\infty} f(x)dx = \lim_{x \to +\infty} \int_{1}^{x} f(x)dx = \lim_{n \to +\infty} \int_{1}^{n} f(x)dx + \lim_{x \to +\infty} \int_{n}^{x} f(x)dx = \lim_{n \to +\infty} \int_{1}^{n} f(x)dx.$$

又因为此时
$$\lim_{n\to+\infty} \int_1^n f(x) dx$$
 存在, 所以 $\int_1^\infty f(x) dx$ 也存在.

例题 2.48

1. 先证明

$$\lim_{n\to\infty} \left(\sum_{k=2}^{n} \frac{1}{k \ln k} - \ln \ln n \right)$$

存在.

2. 再用积分放缩法求 $\sum_{k=2}^{n} \frac{1}{k \ln k}, n \to \infty$ 的等价无穷大.

🕏 笔记 研究和式的收敛性, 可以考虑研究差分的阶, 使得容易估计.

证明

1. 设

$$a_n \triangleq \sum_{k=2}^n \frac{1}{k \ln k} - \ln \ln n, n = 2, 3, \cdots$$

我们有

$$a_{n+1} - a_n = \frac{1}{(n+1)\ln(n+1)} - \ln\ln(n+1) + \ln\ln n$$

$$= \frac{1}{(n+1)\ln(n+1)} - \ln\left[\ln n + \ln\left(1 + \frac{1}{n}\right)\right] + \ln\ln n$$

$$= \frac{1}{(n+1)\ln(n+1)} - \ln\ln n - \ln\left(1 + \frac{\ln\left(1 + \frac{1}{n}\right)}{\ln n}\right) + \ln\ln n$$

$$= \frac{1}{(n+1)\ln(n+1)} - \ln\left(1 + \frac{1}{n\ln n} + O\left(\frac{1}{n^2\ln n}\right)\right)$$

$$= \frac{1}{(n+1)\ln(n+1)} - \frac{1}{n\ln n} + O\left(\frac{1}{n^2\ln n}\right).$$

注意到

$$\sum_{n=2}^{\infty} \left| O\left(\frac{1}{n^2 \ln n}\right) \right| < \infty, \sum_{n=2}^{\infty} \left[\frac{1}{(n+1) \ln(n+1)} - \frac{1}{n \ln n} \right] = -\frac{1}{2 \ln 2},$$

于是

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \left[\sum_{k=2}^n (a_{k+1} - a_k) + a_2 \right]$$

存在.

2. 注意到对 $\forall n \geq 2$ 且 $n \in \mathbb{N}$, 都有

$$\sum_{k=2}^{n} \frac{1}{k \ln k} = \sum_{k=2}^{n} \int_{k}^{k+1} \frac{1}{k \ln k} dx \geqslant \sum_{k=2}^{n} \int_{k}^{k+1} \frac{1}{x \ln x} dx = \int_{2}^{n+1} \frac{1}{x \ln x} dx = \ln \ln(n+1) - \ln \ln 2.$$
 (2.43)

同时,也有

$$\sum_{k=2}^{n} \frac{1}{k \ln k} = \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{k \ln k} dx \leqslant \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x \ln x} dx = \int_{1}^{n} \frac{1}{x \ln x} dx = \ln \ln n.$$
 (2.44)

从而对 $\forall n \geq 2$ 且 $n \in \mathbb{N}$, 由(2.43)(2.44)式可得

$$\ln \ln (n+1) - \ln \ln 2 \leqslant \sum_{k=2}^{n} \frac{1}{k \ln k} \leqslant \ln \ln n.$$

于是对 $\forall n \ge 2$ 且 $n \in \mathbb{N}$, 我们有

$$\frac{\ln \ln (n+1) - \ln \ln 2}{\ln \ln n} \leqslant \frac{\sum\limits_{k=2}^{n} \frac{1}{k \ln k}}{\ln \ln n} \leqslant 1.$$

例题 2.49 用积分放缩法得到 $\sum_{n=1}^{\infty} x^{n^2}, x \to 1^-$ 的等价无穷大.

证明 注意到对 $\forall x \in (0,1)$, 固定 x, 都有

$$\sum_{n=1}^{\infty} x^{n^2} = -1 + \sum_{n=0}^{\infty} x^{n^2} = -1 + \sum_{n=0}^{\infty} \int_{n}^{n+1} x^{n^2} dt \geqslant -1 + \sum_{n=0}^{\infty} \int_{n}^{n+1} x^{t^2} dt = -1 + \lim_{n \to \infty} \int_{0}^{n} x^{t^2} dt.$$
 (2.45)

同时也有

$$\sum_{n=1}^{\infty} x^{n^2} = \sum_{n=1}^{\infty} \int_{n-1}^{n} x^{n^2} dt \leqslant \sum_{n=1}^{\infty} \int_{n-1}^{n} x^{t^2} dt = \lim_{n \to \infty} \int_{0}^{n} x^{t^2} dt.$$
 (2.46)

又由于 $x \in (0,1)$, 因此 $\ln x \in (-\infty,0)$. 从而

$$\int_0^\infty x^{t^2} dt = \int_0^\infty e^{t^2 \ln x} dt \xrightarrow{\frac{4}{2} y = t\sqrt{-\ln x}} \frac{1}{\sqrt{-\ln x}} \int_0^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$

故 $\int_0^\infty x^{t^2} dt = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}$ 收敛. 于是由 Henie 归结原则可知

$$\lim_{n \to \infty} \int_0^n x^{t^2} dt = \int_0^\infty x^{t^2} dt = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$
 (2.47)

从而对 $\forall x \in (0,1)$, 结合(2.45)(2.46)(2.47)式可得

$$-1 + \frac{\sqrt{\pi}}{2\sqrt{-\ln x}} = -1 + \lim_{n \to \infty} \int_{1}^{n} x^{t^{2}} dt \leqslant \sum_{n=1}^{\infty} x^{n^{2}} \leqslant \lim_{n \to \infty} \int_{0}^{n} x^{t^{2}} dt = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$

即

$$-\sqrt{-\ln x} + \frac{\sqrt{\pi}}{2} \leqslant \sqrt{-\ln x} \sum_{n=1}^{\infty} x^{n^2} \leqslant \frac{\sqrt{\pi}}{2}, \forall x \in (0,1).$$

又由 $\ln(1+x) \sim x, x \to 0$ 可知 $-\ln x = -\ln(1+x-1) \sim 1-x, x \to 1^-$. 因此

$$\sum_{n=1}^{\infty} x^{n^2} \sim \frac{\sqrt{\pi}}{2\sqrt{-\ln x}} \sim \frac{\sqrt{\pi}}{2\sqrt{1-x}}, x \to 1^-.$$

2.3 Stirling 公式

对于阶乘问题, 最好用的估计工具就是 Stirling 公式. 与组合数相关的极限问题, 都可以尝试将其全部转化为阶乘然后估计大小.

定理 2.6 (Stirling 公式)

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, n \to \infty.$$

证明 由E-M 公式可知, 对 $\forall n \in \mathbb{N}$, 都有

$$\sum_{k=1}^{n} \ln k = \frac{\ln n}{2} + \int_{1}^{n} \ln x dx + \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x} dx = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x} dx. \tag{2.48}$$

由 Dirichlet 判別法可知, $\int_1^{+\infty} \left(x-[x]-\frac{1}{2}\right)\frac{1}{x}\mathrm{d}x$ 收敛.则可设 $\lim_{n\to\infty}\int_1^n \left(x-[x]-\frac{1}{2}\right)\frac{1}{x}\mathrm{d}x=\int_1^{+\infty} \left(x-[x]-\frac{1}{2}\right)\frac{1}{x}\mathrm{d}x$ 鱼

 $C_0 < \infty$. 记 $b_1(x) = x - [x] - \frac{1}{2}$,再令 $b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}$, $x \in \mathbb{R}$. 则不难发现 $b_2(x)$ 在 \mathbb{R} 上连续且周期为 1,并且

$$b_2(x) = \int_0^x b_1(y) dy, \quad |b_2(x)| \le \frac{1}{12}, \forall x \in \mathbb{R}.$$

从而对(2.48)式使用分部积分可得

$$\begin{split} \sum_{k=1}^{n} \ln k &= \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{n} \frac{b_{1}(x)}{x} \mathrm{d}x = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{+\infty} \frac{b_{1}(x)}{x} \mathrm{d}x - \int_{n}^{+\infty} \frac{b_{1}(x)}{x} \mathrm{d}x \\ &= \frac{\ln n}{2} + n \ln n - n + 1 + C_{0} - \int_{n}^{+\infty} \frac{1}{x} db_{2}(x) = \frac{\ln n}{2} + n \ln n - n + 1 + C_{0} - \frac{b_{2}(x)}{x} \Big|_{n}^{+\infty} - \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{2}} \mathrm{d}x \\ &= \left(n + \frac{1}{2}\right) \ln n - n + 1 + C_{0} + \frac{b_{2}(n)}{n} - \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{2}} \mathrm{d}x, \forall n \in \mathbb{N}. \end{split}$$

又因为 $|b_2(x)| \leq \frac{1}{12}$, $\forall x \in \mathbb{R}$. 所以对 $\forall n \in \mathbb{N}$, 我们有

$$\left| \frac{b_2(n)}{n} - \int_n^{+\infty} \frac{b_2(x)}{x^2} dx \right| \leqslant \frac{1}{12} \left(\frac{1}{n} + \int_n^{+\infty} \frac{1}{x^2} dx \right) = \frac{1}{6n}.$$

$$\text{in } \frac{b_2(n)}{n} - \int_n^{+\infty} \frac{b_2(x)}{x^2} dx = O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}. \quad \text{for } E \neq \mathbb{N}. \quad \text{for } C = 1 + C_0, \text{ for } M = 1 + C_0$$

$$\sum_{n=0}^{\infty} \ln k = \left(n + \frac{1}{2} \right) \ln n - n + C + O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}. \quad (2.49)$$

注意到

$$(2n)!! = 2^n n!, n = 0, 1, 2, \cdots.$$
(2.50)

于是由 Wallis 公式: $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to \infty$. 再结合(2.49)(2.50)可得

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{(2n)!!}{(2n-1)!! \sqrt{n}} = \lim_{n \to \infty} \frac{[(2n)!!]^2}{(2n)! \sqrt{n}} = \lim_{n \to \infty} \frac{(2^n n!)^2}{(2n)! \sqrt{n}} = \lim_{n \to \infty} \frac{4^n n! \cdot n!}{(2n)! \sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{4^n n!}{\sqrt{n}} \prod_{k=1}^{n-1} \frac{k}{k} = \lim_{n \to \infty} \frac{4^n n! e^{\sum_{k=1}^{n} \ln k}}{\sqrt{n} e^{\sum_{k=1}^{n} \ln k}} = \lim_{n \to \infty} \frac{4^n n! e^{(n+\frac{1}{2}) \ln n - n + C + O(\frac{1}{n})}}{\sqrt{n} e^{(2n+\frac{1}{2}) \ln 2n - 2n + C + O(\frac{1}{n})}}$$

$$= \lim_{n \to \infty} \frac{4^n n! e^{(n+\frac{1}{2}) \ln n - n + C + O(\frac{1}{n}) - [(2n+\frac{1}{2}) \ln 2n - 2n + C + O(\frac{1}{n})]}}{\sqrt{n}} = \lim_{n \to \infty} \frac{4^n n! e^{-n \ln n + n - (2n+\frac{1}{2}) \ln 2 + O(\frac{1}{n})}}{\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{4^n n! 2^{-2n - \frac{1}{2}} e^n}{n^n \sqrt{n}} e^{O(\frac{1}{n})} = \lim_{n \to \infty} \frac{n! e^n}{n^n \sqrt{2n}} e^{O(\frac{1}{n})}.$$

从而 $\lim_{n\to\infty}\frac{n!e^n}{n^n\sqrt{2n}}=\frac{\sqrt{\pi}}{\lim e^{O(\frac{1}{n})}}=\sqrt{\pi}.$ 因此 $\lim_{n\to\infty}\frac{n!}{\sqrt{n}\left(\frac{n}{e}\right)^n}=\lim_{n\to\infty}\frac{n!e^n}{n^n\sqrt{n}}=\sqrt{2\pi}.$ 故 $n!\sim\sqrt{2\pi n}\left(\frac{n}{e}\right)^n,n\to\infty.$

例题 **2.50** 设 n, v 为正整数且 1 < v < n, 满足 $\lim_{n \to \infty} \frac{v - \frac{n}{2}}{\sqrt{n}} = \lambda > 0$, 证明: $\lim_{n \to \infty} \frac{\sqrt{n}}{2^n} C_n^v = \sqrt{\frac{2}{\pi}} e^{-2\lambda^2}$.

证明 根据条件, 显然在 $n \to \infty$ 时 v 也会趋于无穷, 设 $v = \frac{n}{2} + w\sqrt{n}$, 则 $w = \frac{v - \frac{n}{2}}{\sqrt{n}}$, 从而 $\lim_{n \to \infty} w = \lambda > 0$, 则有

$$\frac{\sqrt{n}}{2^n}C_n^v = \frac{\sqrt{n}}{2^n} \frac{n!}{v!(n-v)!}, n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, n \to \infty.$$

从而

$$\lim_{n \to \infty} \frac{\sqrt{n}}{2^n} C_n^{\nu} = \lim_{n \to \infty} \frac{\sqrt{n}}{2^n} \frac{n!}{\nu! (n - \nu)!} = \lim_{n \to \infty} \frac{\sqrt{n}}{2^n} \frac{\sqrt{2\pi \nu} \left(\frac{\nu}{e}\right)^{\nu} \sqrt{2\pi (n - \nu)} \left(\frac{n - \nu}{e}\right)^{n - \nu}}{\sqrt{2\pi \nu} \left(\frac{\nu}{e}\right)^{\nu} \sqrt{2\pi (n - \nu)} \left(\frac{n - \nu}{e}\right)^{n - \nu}}$$

$$= \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \frac{n^n}{2^n \nu^{\nu} (n - \nu)^{n - \nu}} \frac{n}{\sqrt{\nu (n - \nu)}} = \sqrt{\frac{2}{\pi}} e^{-2\lambda^2}$$

$$\iff \lim_{n \to \infty} \frac{n^n}{2^n \left(\frac{n}{2} + w\sqrt{n}\right)^{\nu} \left(\frac{n}{2} - w\sqrt{n}\right)^{n-\nu}} \frac{n}{2\sqrt{\nu(n-\nu)}} = e^{-2\lambda^2}.$$

又

$$\lim_{n\to\infty} \frac{n}{2\sqrt{v(n-v)}} = \lim_{n\to\infty} \frac{n}{2\sqrt{\left(\frac{n}{2} + w\sqrt{n}\right)\left(\frac{n}{2} - w\sqrt{n}\right)}} = \lim_{n\to\infty} \frac{1}{\sqrt{1 - \frac{4w^2}{\sqrt{n}}}} = 1,$$

故

$$\lim_{n \to \infty} \frac{n^n}{2^n \left(\frac{n}{2} + w\sqrt{n}\right)^v \left(\frac{n}{2} - w\sqrt{n}\right)^{n-v}} \frac{n}{2\sqrt{v(n-v)}} = e^{-2\lambda^2}$$

$$\iff \lim_{n \to \infty} \frac{n^{\left(\frac{n}{2} + w\sqrt{n}\right) + \left(\frac{n}{2} - w\sqrt{n}\right)}}{2^{\left(\frac{n}{2} + w\sqrt{n}\right) + \left(\frac{n}{2} - w\sqrt{n}\right) \left(\frac{n}{2} + w\sqrt{n}\right)^{\frac{n}{2} + w\sqrt{n}}} \left(\frac{n}{2} - w\sqrt{n}\right)^{\frac{n}{2} - w\sqrt{n}}} = e^{-2\lambda^2}$$

$$\iff \lim_{n \to \infty} \frac{n^{\left(\frac{n}{2} + w\sqrt{n}\right) + \left(\frac{n}{2} - w\sqrt{n}\right)}}{\left(n + 2w\sqrt{n}\right)^{\frac{n}{2} + w\sqrt{n}} \left(n - 2w\sqrt{n}\right)^{\frac{n}{2} - w\sqrt{n}}} = e^{-2\lambda^2}$$

$$\iff \lim_{n \to \infty} \frac{1}{\left(1 + \frac{2w}{\sqrt{n}}\right)^{\frac{n}{2} + w\sqrt{n}} \left(1 - \frac{2w}{\sqrt{n}}\right)^{\frac{n}{2} - w\sqrt{n}}} = e^{-2\lambda^2}$$

$$\iff \lim_{n \to \infty} \left[\left(\frac{n}{2} + w\sqrt{n}\right) \ln\left(1 + \frac{2w}{\sqrt{n}}\right) + \left(\frac{n}{2} - w\sqrt{n}\right) \ln\left(1 - \frac{2w}{\sqrt{n}}\right)\right] = 2\lambda^2. \tag{2.51}$$

又由 Taylor 公式可得

$$\left(\frac{n}{2} + w\sqrt{n}\right) \ln\left(1 + \frac{2w}{\sqrt{n}}\right) + \left(\frac{n}{2} - w\sqrt{n}\right) \ln\left(1 - \frac{2w}{\sqrt{n}}\right)$$

$$= \left(\frac{n}{2} + w\sqrt{n}\right) \left(\frac{2w}{\sqrt{n}} - \frac{2w^2}{n} + O\left(\frac{1}{n\sqrt{n}}\right)\right) + \left(\frac{n}{2} - w\sqrt{n}\right) \left(-\frac{2w}{\sqrt{n}} - \frac{2w^2}{n} + O\left(\frac{1}{n\sqrt{n}}\right)\right)$$

$$= w\sqrt{n} + w^2 + O\left(\frac{1}{\sqrt{n}}\right) - w\sqrt{n} + w^2 + O\left(\frac{1}{\sqrt{n}}\right) = 2w^2 + O\left(\frac{1}{\sqrt{n}}\right), n \to \infty.$$

再结合 $\lim_{n\to\infty} w = \lambda$ 可知(2.51)式成立, 因此结论得证

2.4 Abel 变换

设 $\{a_n\}_{n=1}^N,\{b_n\}_{n=1}^N$ 是数列, 则有恒等式

$$\sum_{k=1}^{N} a_k b_k = (a_1 - a_2)b_1 + \dots + (a_{N-1} - a_N)(b_1 + b_2 + \dots + b_{N-1}) + a_N(b_1 + b_2 + \dots + b_N)$$

$$= \sum_{i=1}^{N-1} (a_j - a_{j+1}) \sum_{i=1}^{j} b_i + a_N \sum_{i=1}^{N} b_i.$$

笔记 Abel 变换的证明想法"强行裂项"是一种很重要的思想. 证明 为了计算 $\sum_{i=1}^{N-1} (a_j - a_{j+1}) \sum_{i=1}^{j} b_i + a_N \sum_{i=1}^{N} b_i$,我们来强行构造裂项,差什么就给他补上去再补回来,即:

$$\begin{split} &\sum_{j=1}^{N-1} (a_j - a_{j+1}) \sum_{i=1}^{j} b_i + a_N \sum_{i=1}^{N} b_i = \sum_{j=1}^{N-1} \left(a_j \sum_{i=1}^{j} b_i - a_{j+1} \sum_{i=1}^{j} b_i \right) + a_N \sum_{i=1}^{N} b_i \\ &= \sum_{j=1}^{N-1} \left(a_j \sum_{i=1}^{j} b_i - a_{j+1} \sum_{i=1}^{j+1} b_i \right) + \sum_{j=1}^{N-1} \left(a_{j+1} \sum_{i=1}^{j+1} b_i - a_{j+1} \sum_{i=1}^{j} b_i \right) + a_N \sum_{i=1}^{N} b_i \end{split}$$

$$=a_1b_1-a_N\sum_{i=1}^Nb_i+\sum_{j=1}^{N-1}a_{j+1}b_{j+1}+a_N\sum_{i=1}^Nb_i=\sum_{j=1}^Na_jb_j.$$

命题 2.10 (经典乘积极限结论)

设
$$a_1\geqslant a_2\geqslant \cdots \geqslant a_n\geqslant 0$$
 且 $\lim_{n\to\infty}a_n=0$,极限 $\lim_{n\to\infty}\sum_{k=1}^na_kb_k$ 存在. 证明
$$\lim (b_1+b_2+\cdots+b_n)a_n=0.$$

拿 笔记 为了估计 $\sum_{j=1}^n b_j$,前面的有限项不影响. 而要用上极限 $\sum_{n=1}^\infty a_n b_n$ 收敛,自然想到 $\sum_{j=1}^n b_j = \sum_{j=1}^n \frac{b_j a_j}{a_j}$ 和Abel 变换. 而 a_j 的单调性能用在Abel 变换之后去绝对值.

证明 不妨设 $a_1 \geqslant a_2 \geqslant \cdots \geqslant a_n > 0$. 则由于级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛, 存在 $N \in \mathbb{N}$, 使得

$$\left|\sum_{i=N+1}^{m} a_i b_i\right| \leq \varepsilon, \forall m \geq N+1.$$

当 $n \ge N + 1$, 由Abel 变换, 我们有

$$\begin{split} \left| \sum_{j=N+1}^{n} b_{j} \right| &= \left| \sum_{j=N+1}^{n} \frac{a_{j} b_{j}}{a_{j}} \right| = \left| \sum_{j=N+1}^{n-1} \left(\frac{1}{a_{j}} - \frac{1}{a_{j+1}} \right) \sum_{i=N+1}^{j} a_{i} b_{i} + \frac{1}{a_{n}} \sum_{i=N+1}^{n} a_{i} b_{i} \right| \\ &\leqslant \sum_{j=N+1}^{n-1} \left(\left| \frac{1}{a_{j}} - \frac{1}{a_{j+1}} \right| \cdot \left| \sum_{i=N+1}^{j} a_{i} b_{i} \right| \right) + \frac{1}{|a_{n}|} \left| \sum_{i=N+1}^{n} a_{i} b_{i} \right| \\ &\leqslant \left| \sum_{i=N+1}^{n} a_{i} b_{i} \right| \cdot \sum_{j=N+1}^{n-1} \left(\left| \frac{1}{a_{j}} - \frac{1}{a_{j+1}} \right| \right) + \frac{1}{|a_{n}|} \left| \sum_{i=N+1}^{n} a_{i} b_{i} \right| \\ &\leqslant \varepsilon \left[\sum_{j=N+1}^{n-1} \left(\frac{1}{a_{j+1}} - \frac{1}{a_{j}} \right) + \frac{1}{a_{n}} \right] = \varepsilon \left(\frac{2}{a_{n}} - \frac{1}{a_{N+1}} \right). \end{split}$$

因此我们有

$$\overline{\lim}_{n\to\infty} \left| a_n \sum_{j=1}^n b_j \right| \leqslant \overline{\lim}_{n\to\infty} \left| a_n \sum_{j=1}^N b_j \right| + \overline{\lim}_{n\to\infty} \left| a_n \sum_{j=N+1}^n b_j \right| \leqslant \overline{\lim}_{n\to\infty} \left| a_n \sum_{j=1}^N b_j \right| + \varepsilon \overline{\lim}_{n\to\infty} \left(2 - \frac{a_n}{a_{N+1}} \right) = 2\varepsilon.$$
由 ε 任意性即可得 $\overline{\lim}_{n\to\infty} \left| a_n \sum_{j=1}^n b_j \right| = 0$,于是就证明了 $\lim_{n\to\infty} (b_1 + b_2 + \dots + b_n) a_n = 0$.

2.5 Stolz 定理

2.5.1 数列 Stolz 定理

定理 2.8 (Stolz 定理)

(a): 设
$$x_n$$
 是严格递增数 列且满足 $\lim_{n\to\infty} x_n = +\infty$, 则

$$\underline{\lim_{n\to\infty}} \frac{y_{n+1}-y_n}{x_{n+1}-x_n} \leqslant \underline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}$$

(b): 设 x_n 是严格递减数列且满足 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$, 则

$$\underline{\lim_{n\to\infty}} \frac{y_{n+1} - y_n}{x_{n+1} - x_n} \leqslant \underline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}.$$

(c): 分别在 (a),(b) 的条件基础上, 若还有 $\lim_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}$ 存在或者为确定符号的 ∞ , 则

$$\lim_{n \to \infty} \frac{y_n}{x_n} = \lim_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}.$$
 (2.52)

注 注意 (c) 由 (a),(b) 是显然的, 且只有 $\lim_{n\to\infty} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}$ 存在或者为确定符号的 ∞ 时才(2.52)式成立. 他和我们的洛必达法则有一定的相似程度. 即Stolz 定理是离散的洛必达法则.

证明 我们仅证明 x_n 是严格递增数列且满足 $\lim_{n\to\infty}x_n=+\infty$ 和 $\lim_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}<\infty$ 时有

$$\overline{\lim_{n \to \infty} \frac{y_n}{x_n}} \leqslant \overline{\lim_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}}.$$
(2.53)

记 $A \triangleq \overline{\lim}_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}$,由上极限定义我们知道对任何 $\varepsilon > 0$,存在 $N \in \mathbb{N}$,使得 $\frac{y_{n+1} - y_n}{x_{n+1} - x_n} \leqslant A + \varepsilon, \forall n \geqslant N$. 利用 x_n 严格递增时,成立 $y_{n+1} - y_n \leqslant (A + \varepsilon)(x_{n+1} - x_n), n \geqslant N$,然后求和得

$$\sum_{i=N}^{n-1} (y_{j+1} - y_j) \leqslant (A + \varepsilon) \sum_{i=N}^{n-1} (x_{j+1} - x_j), \forall n \geqslant N + 1.$$

即

$$y_n - y_N \le (A + \varepsilon)(x_n - x_N), \forall n \ge N + 1.$$

$$\varlimsup_{n\to\infty}\frac{y_n}{x_n}=\varlimsup_{n\to\infty}\frac{\frac{y_n}{x_n}-\frac{y_N}{x_n}}{1-\frac{x_N}{x_n}}=\varlimsup_{n\to\infty}\frac{y_n-y_N}{x_n-x_N}\leqslant A+\varepsilon.$$

由 ε 任意性得到式(2.53).

命题 2.11 (Cauchy 命题)

若 $\lim y_n$ 存在或者为确定符号的 ∞ , 则有

$$\lim_{n\to\infty}\frac{y_1+y_2+\cdots+y_n}{n}=\lim_{n\to\infty}y_n.$$

\$

笔记 这个命题说明Stolz 定理是一种有效的把求和消去的降阶方法.

证明 容易由Stolz 定理的 (a)直接得出.

<u>定理 2.9 (反向 Stolz 定理/反向 Cauchy</u> 命题)

对某个 C > 0, 如果有 $n(a_n - a_{n-1}) \ge -C$, $\forall n \ge 2$, 且

$$\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=a\in\mathbb{R},$$

则我们有

$$\lim_{n\to\infty}a_n=a.$$

\$

笔记 反向 Stolz 定理本身是习题, 作为定理去应用的机会非常少.

拿 笔记 不妨设 a = 0, 记

$$b_1 = a_1, \ b_n = a_n - a_{n-1}, \ \forall n \geqslant 2, \ S_n = a_1 + a_2 + \dots + a_n.$$

证明的想法是用 S_n, S_m 来表示 a_n, m 是一个待定的自然数. 即由

$$S_{n+m} = S_n + ma_n + mb_{n+1} + (m-1)b_{n+2} + \dots + b_{n+m}$$

推出

$$a_n = \frac{S_{n+m} - S_n}{m} - \frac{mb_{n+1} + (m-1)b_{n+2} + \dots + b_{n+m}}{m}$$

$$\leq \frac{|S_{n+m}| + |S_n|}{m} + \frac{1}{m} \left[m \frac{C}{n+1} + (m-1) \frac{C}{n+2} + \dots + \frac{C}{n+m} \right].$$

然后想办法取合适的 m 即可

证明 不妨设 a=0, 记

$$b_1 = a_1, \ b_n = a_n - a_{n-1}, \ \forall n \geqslant 2, \ S_n = a_1 + a_2 + \dots + a_n.$$

我们有 $b_n \geqslant -\frac{C}{n}$.

对任何 $\varepsilon \in (0,1)$, 存在 $N \in \mathbb{N}$, 使得 $|S_n| \leq n\varepsilon$, $\forall n \geq N$, 于是当 $n \geq N$, 有

$$a_{n} = \frac{S_{n+[n\sqrt{\varepsilon}]} - S_{n}}{[n\sqrt{\varepsilon}]} - \frac{1}{[n\sqrt{\varepsilon}]} \left([n\sqrt{\varepsilon}]b_{n+1} + ([n\sqrt{\varepsilon}] - 1)b_{n+2} + \dots + b_{n+[n\sqrt{\varepsilon}]} \right)$$

$$\leq \frac{|S_{n+[n\sqrt{\varepsilon}]}| + |S_{n}|}{[n\sqrt{\varepsilon}]} + \frac{1}{[n\sqrt{\varepsilon}]} \left([n\sqrt{\varepsilon}] \frac{C}{n+1} + ([n\sqrt{\varepsilon}] - 1) \frac{C}{n+2} + \dots + \frac{C}{n+[n\sqrt{\varepsilon}]} \right)$$

$$\leq \frac{|S_{n+[n\sqrt{\varepsilon}]}| + |S_{n}|}{[n\sqrt{\varepsilon}]} + \frac{1}{[n\sqrt{\varepsilon}]} \left([n\sqrt{\varepsilon}] \frac{C}{n} + ([n\sqrt{\varepsilon}] - 1) \frac{C}{n} + \dots + \frac{C}{n} \right)$$

$$= \frac{|S_{n+[n\sqrt{\varepsilon}]}| + |S_{n}|}{[n\sqrt{\varepsilon}]} + \frac{[n\sqrt{\varepsilon}] + 1}{2n} C$$

$$\leq \frac{2n\varepsilon}{[n\sqrt{\varepsilon}]} + \frac{[n\sqrt{\varepsilon}] + 1}{2n} C + \varepsilon, \tag{2.54}$$

于是我们得到

$$\overline{\lim_{n\to\infty}} a_n \leqslant 2\sqrt{\varepsilon} + \frac{C}{2}\sqrt{\varepsilon} + \varepsilon.$$

于是我们得到

$$\lim_{n \to \infty} a_n \geqslant -2\sqrt{\varepsilon} - \frac{C}{2} \frac{\sqrt{\varepsilon}}{1 - \sqrt{\varepsilon}} + \varepsilon.$$

由ε任意性即得

$$\lim_{n\to\infty}a_n=0.$$

命题 2.12

若 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l \in \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$ 且 $a_n > 0$,则 $\lim_{n\to\infty} \sqrt[n]{a_n} = l$.

证明 由 Stolz 定理可得

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} e^{\frac{\ln a_n}{n}} \xrightarrow{\text{Stolz } \not\in \underline{\mathcal{Z}}} \lim_{n\to\infty} e^{\ln a_{n+1} - \ln a_n} = \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l.$$

命题 2.13

若
$$\lim_{n\to\infty} \sqrt[n]{a_n} = l \in \mathbb{R}, a_n > 0$$
,并且对某个 $C > 0$,如果有 $n(a_n - a_{n-1}) \geqslant -C$, $\forall n \geqslant 2$,则 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$.

证明 由反向 Stolz 定理可得

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} e^{\ln a_{n+1} - \ln a_n} \xrightarrow{\text{$\not L$ fin} \text{Stolz } \not \!\!\!\!/} \lim_{n \to \infty} e^{\frac{\sum\limits_{k=0}^n (\ln a_{k+1} - \ln a_k)}{n}} = \lim_{n \to \infty} e^{\frac{\ln a_n - \ln a_0}{n}} = \lim_{n \to \infty} e^{\frac{\ln a_n}{n}} = \lim_{n \to \infty} e^{$$

2.5.1.1 利用 Stolz 定理求数列极限

例题 2.51 计算

$$\lim_{n\to\infty} \frac{\ln n}{\ln \sum_{k=1}^{n} k^{2020}}.$$

室记 本题计算过程中使用了 Lagrange 中值定理, 只是过程省略了而已 (以后这种过程都会省略).
证明 由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\ln n}{\ln \sum_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{\ln (n+1) - \ln n}{\ln \sum_{k=1}^{n+1} k^{2020} - \ln \sum_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{\ln (1 + \frac{1}{n})}{\ln \sum_{k=1}^{n+1} k^{2020}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\ln (1 + \frac{(n+1)^{2020}}{\sum_{k=1}^{n} k^{2020}})}.$$

又由Stolz 定理可知

$$\lim_{n \to \infty} \frac{(n+1)^{2020}}{\sum\limits_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{(n+2)^{2020} - (n+1)^{2020}}{(n+1)^{2020}} = \lim_{n \to \infty} \frac{2020 \cdot n^{2019}}{(n+1)^{2020}} = 0.$$

于是再利用Stolz 定理可得

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{\ln\left(1 + \frac{(n+1)^{2020}}{\sum_{k=1}^{n} k^{2020}}\right)} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\sum_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} k^{2020}}{n \cdot (n+1)^{2020}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} k^{2020}}{n^{2021}}$$

$$= \lim_{n \to \infty} \frac{(n+1)^{2020}}{(n+1)^{2021} - n^{2021}} = \lim_{n \to \infty} \frac{(n+1)^{2020}}{2021 \cdot n^{2020}} = \frac{1}{2021}.$$

$$\text{im}_{n \to \infty} \frac{\ln n}{\ln \sum_{k=1}^{n} k^{2020}} = \frac{1}{2021}.$$

例题 2.52

(1) 计算极限
$$\lim_{n\to\infty} \frac{\sum\limits_{k=1}^{n} \frac{1}{k}}{\ln n}$$
.

(2) 证明下述极限存在
$$\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n\right)$$
.

(3) 计算
$$\lim_{n\to\infty} n \left(\sum_{k=1}^n \frac{1}{k} - \ln n - \gamma \right)$$
.

 $\hat{\mathbf{v}}$ 笔记 注意, $\gamma \triangleq \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) \approx 0.577 \cdots$ 是沒有初等表达式的, 我们只能规定为一个数字, 这个数字叫做欧

拉常数,截至目前,人类甚至都不知道γ会不会是一个分数.

解

(1) 直接由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\ln(n+1) - \ln n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1.$$

(2) 记
$$c_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$
, 则

$$c_{n+1} - c_n = \frac{1}{n+1} + \ln n - \ln(n+1) = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right)$$
$$= \frac{1}{n+1} - \left[\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right] = -\frac{1}{n(n+1)} + O\left(\frac{1}{n^2}\right)$$
$$= O\left(\frac{1}{n^2}\right), n \to +\infty.$$

从而存在常数 C > 0, 使得 $|c_{n+1} - c_n| \leq \frac{C}{n^2}$, 又因为 $\sum_{n=1}^{\infty} \frac{C}{n^2}$ 收敛, 所以由比较原则可知 $\sum_{n=1}^{\infty} |c_{n+1} - c_n|$ 也收敛.

由于数列级数绝对收敛一定条件收敛, 因此 $\sum_{n=1}^{\infty} (c_{n+1} - c_n)$ 也收敛, 即 $\lim_{n \to \infty} \sum_{k=1}^{n} (c_{k+1} - c_k) = \lim_{n \to \infty} (c_{n+1} - c_1)$

存在. 故
$$\lim_{n\to\infty} c_n = \lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n \right)$$
 也存在.

(3) 由Stolz 定理可得

$$\lim_{n \to \infty} n \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n - \gamma \right) = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k} - \ln n - \gamma}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n+1} - \ln \left(1 + \frac{1}{n}\right)}{\frac{1}{n+1} - \frac{1}{n}}$$

$$\lim_{n \to \infty} \frac{1}{\left(\frac{1}{n+1} - \frac{1}{n}\right) n^2} \cdot \lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \ln \left(1 + \frac{1}{n}\right) \right] = \lim_{n \to \infty} \frac{1}{-\frac{1}{n(n+1)} \cdot n^2} \cdot \lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \ln \left(1 + \frac{1}{n}\right) \right]$$

$$= -\lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) \right] = \frac{1}{2}.$$

因此我们得到了调和级数的渐进估计:

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right), n \to \infty.$$

例题 2.53 计算

1. $\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}$;

2. $\lim_{n\to\infty} (\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!}).$

证明

1. 由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n \to \infty} \frac{e^{\sum_{k=1}^{n} \ln k}}{n} = \lim_{n \to \infty} e^{\sum_{k=1}^{n} \ln k} - \ln n = e^{\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln k - n \ln n}{n}}$$

$$= e^{\lim_{n \to \infty} \frac{\ln(n+1) - (n+1) \ln(n+1) + n \ln n}{1}} = e^{\lim_{n \to \infty} n \ln \frac{n+1}{n}}$$

$$= e^{\lim_{n \to \infty} n \left(\frac{n}{n+1} - 1\right)} = e^{-1}.$$

2. 注意到

$$\lim_{n \to \infty} \binom{n+1}{\sqrt{(n+1)!}} - \sqrt[n]{n!} = \lim_{n \to \infty} \left(e^{\frac{\sum_{k=1}^{n+1} \ln k}{n+1}} - e^{\frac{\sum_{k=1}^{n} \ln k}{n}} \right) = \lim_{n \to \infty} e^{\frac{\sum_{k=1}^{n} \ln k}{n}} \left(e^{\frac{\sum_{k=1}^{n+1} \ln k}{n+1}} - \frac{\sum_{k=1}^{n} \ln k}{n} - 1 \right).$$

由上一小题可知

$$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n\to\infty} \frac{e^{\sum_{k=1}^{n} \ln k}}{n} = e^{-1}.$$

故
$$e^{\sum_{k=1}^{n} \ln k} \sim \frac{n}{e}, n \to \infty$$
. 并且

$$\lim_{n \to \infty} \left(\frac{\sum_{k=1}^{n+1} \ln k}{n+1} - \frac{\sum_{k=1}^{n} \ln k}{n} \right) = \lim_{n \to \infty} \frac{n \sum_{k=1}^{n+1} \ln k - (n+1) \sum_{k=1}^{n} \ln k}{n (n+1)} = \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n (n+1)}$$

$$=-\lim_{n\to\infty}\frac{\sum_{k=1}^{n}\ln k}{n(n+1)}\frac{\text{Stolz }\underline{\mathbb{R}}\underline{\mathbb{I}}}{n(n+1)}-\lim_{n\to\infty}\frac{\ln n}{2(n+1)}=0.$$

因此

$$\lim_{n \to \infty} \left(\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} \right) = \lim_{n \to \infty} e^{\frac{\sum_{k=1}^{n} \ln k}{n}} \left(e^{\frac{n+1}{\sum_{k=1}^{n} \ln k}} - \frac{\sum_{k=1}^{n} \ln k}{n} - 1 \right) = \lim_{n \to \infty} \frac{n}{e} \cdot \left(\frac{\sum_{k=1}^{n+1} \ln k}{n+1} - \frac{\sum_{k=1}^{n} \ln k}{n} \right)$$

$$= \frac{1}{e} \lim_{n \to \infty} n \cdot \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n (n+1)} = \frac{1}{e} \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n+1}$$

$$\frac{\text{Stolz } \cancel{\mathbb{E}} \cancel{\mathbb{E}}}{e} \frac{1}{e} \lim_{n \to \infty} \left[(n+1) \ln (n+2) - \sum_{k=1}^{n+1} \ln k - n \ln (n+1) + \sum_{k=1}^{n} \ln k \right]$$

$$= \frac{1}{e} \lim_{n \to \infty} \left[(n+1) \ln (n+2) - (n+1) \ln (n+1) \right] = \frac{1}{e} \lim_{n \to \infty} (n+1) \ln \left(1 + \frac{1}{n+1} \right)$$

$$= \frac{1}{e} \lim_{n \to \infty} (n+1) \left[\frac{1}{n+1} + o\left(\frac{1}{n+1}\right) \right] = \frac{1}{e}.$$

例题 2.54 计算

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^n\ln C_n^k}{n^2}.$$

组合数的定义和性质可以参考 Binomial Coefficient.

结论
$$C_a^b = \frac{a}{b}C_{a-1}^{b-1}$$
.
解 由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln C_{n}^{k}}{n^{2}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n+1} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{n^{2} - (n-1)^{2}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n+1} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln \left(\frac{n+1}{k}C_{n}^{k-1}\right) - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln(n+1) - \sum_{k=1}^{n} \ln k + \sum_{k=1}^{n} \left(\ln C_n^{k-1} - \ln C_n^k \right)}{2n} = \lim_{n \to \infty} \frac{n \ln(n+1) - \sum_{k=1}^{n} \ln k - \left(\ln C_n^0 - \ln C_n^n \right)}{2n}$$

$$= \lim_{n \to \infty} \frac{n \ln(n+1) - \sum_{k=1}^{n} \ln k}{2n} = \frac{1}{2} \lim_{n \to \infty} \frac{(n+1) \ln(n+2) - n \ln(n+1) - \ln(n+1)}{1}$$

$$= \frac{1}{2} \lim_{n \to \infty} (n+1) \ln \frac{n+2}{n+1} = \frac{1}{2} \lim_{n \to \infty} (n+1) \left(\frac{n+2}{n+1} - 1 \right) = \frac{1}{2}.$$

例题 2.55 求极限 $\lim_{n\to\infty}\sum_{k=1}^n \frac{n+1}{2^k(n+1-k)}$

・ 筆记 倒序求和与顺序求和相等!(看到 n+1−k、就应该想到倒序求和)

解 由 Stolz 公式可得

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n+1}{2^{k}(n+1-k)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n+1}{2^{n+1-k}k} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{2^{k}}{k}}{\frac{2^{n+1}}{n+1}} = \lim_{n \to \infty} \frac{\frac{2^{n}}{n}}{\frac{2^{n+1}}{n+1} - \frac{2^{n}}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{2^{n+1}}{n+1} - \frac{1}{n}} = 1.$$

例题 2.56 求极限 $\lim_{n\to\infty} n(H_n-\ln n-\gamma)$, 其中 γ 为欧拉常数, $H_n=1+\frac{1}{2}+\cdots+\frac{1}{n}$.

$$\begin{split} \lim_{n \to \infty} n(H_n - \ln n - \gamma) &= \lim_{n \to \infty} \frac{H_n - \ln n - \gamma}{\frac{1}{n}} = \lim_{n \to \infty} \frac{H_{n+1} - H_n - \ln(n+1) + \ln n}{\frac{1}{n+1} - \frac{1}{n}} \\ &= \lim_{n \to \infty} \frac{\frac{1}{n+1} - \ln(1 + \frac{1}{n})}{-\frac{1}{n^2}} = \lim_{n \to \infty} n^2 \left(\ln(1 + \frac{1}{n}) - \frac{1}{n+1} \right) = \lim_{n \to \infty} n^2 \left(\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{n+1} \right) = \frac{1}{2} \end{split}$$

注 类似的, 你可以继续计算 $\lim_{n\to\infty} \left(n(H_n-\ln n-\gamma)-\frac{1}{2}\right)$, 并且仅用 stolz 公式就能证明存在一列 c_1,\cdots,c_k 使得

$$H_n = \ln n + \gamma + \frac{c_1}{n} + \frac{c_2}{n^2} + \dots + \frac{c_k}{n^k} + O\left(\frac{1}{n^{k+1}}\right), n \to \infty.$$

例题 2.57 求极限 $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{1+\frac{k}{n}}$.

🕏 笔记 这题也可以凑定积分定义是显然的.

证明

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{1 + \frac{k}{n}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \sqrt{n+k}}{n\sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{2n+1} + \sqrt{2n+2} - \sqrt{n+1}}{\frac{3}{2}\sqrt{n}} = \frac{2}{3}(2\sqrt{2} - 1).$$

命题 2.14

设 $\alpha \in (0,1)$,证明

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \frac{n^{1-\alpha}}{1-\alpha} + o\left(n^{1-\alpha}\right).$$

证明 由 Stolz 公式可得

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^n\frac{1}{k^\alpha}}{n^{1-\alpha}}=\lim_{n\to\infty}\frac{\frac{1}{(n+1)^\alpha}}{(n+1)^{1-\alpha}-n^{1-\alpha}}=\lim_{n\to\infty}\frac{1}{n^\alpha\cdot(1-\alpha)n^{-\alpha}}=\frac{1}{1-\alpha}.$$

59

2.5.1.2 利用 Stolz 定理求抽象数列极限

例题 2.58 设 $x_1 > 0, x_{n+1} = x_n + \frac{1}{x_1 \sqrt{n}},$ 求极限 $\lim_{n \to \infty} n^{-\frac{1}{4}} x_n$.

证明 归纳易证 x_n 单调递增, 如果 x_n 有界则设 $x_n \leqslant A < \infty$, 代入条件可知 $x_{n+1} - x_n = \frac{1}{\sqrt{nx_n}} \geqslant \frac{1}{A\sqrt{n}}$, 从而

 $x_{n+1} = \sum_{k=1}^{n} (x_{k+1} - x_k) \geqslant \sum_{k=1}^{n} \frac{1}{A\sqrt{n}}$. 而这个不等式右边发散, 故 x_n 也发散, 矛盾. 所以 x_n 单调递增趋于无穷, 下面用

$$\lim_{n \to \infty} \frac{x_n^2}{\sqrt{n}} = \lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{(x_{n+1} - x_n)(x_{n+1} + x_n)}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{\frac{1}{x_n\sqrt{n}}\left(2x_n + \frac{1}{x_n\sqrt{n}}\right)}{\frac{1}{2\sqrt{n}}} = 2\lim_{n \to \infty} \left(2 + \frac{1}{x_n^2\sqrt{n}}\right) = 4.$$

注

1. 直接用 stolz 会做不出来:

$$\lim_{n \to \infty} \frac{x_n}{n^{\frac{1}{4}}} = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{\frac{1}{4}n^{-\frac{3}{4}}} = \lim_{n \to \infty} \frac{4\frac{1}{x_n\sqrt{n}}}{n^{-\frac{3}{4}}} = 4\lim_{n \to \infty} \frac{n^{-\frac{1}{4}}}{x_n}.$$

设 $\lim_{n\to\infty}\frac{x_n}{n^{\frac{1}{4}}}=A$, 则由上式可得 $A=\frac{4}{A}$, 解得 A=2.

:们事先并没有论证上式最后一个极限存在, 所以不满足 Stolz 定理的条件, 这导致前面的等号都 不一定成立. 因此不可以"解方程"得到所求极限为 2.

2. 上述证明中最后一步求原式平方的极限而不求其他次方的极限的原因: 我们也可以待定系数自己探索出数 列的阶并算出这样的结果, 待定 a, b > 0, 则由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{x_n^a}{n^b} = \lim_{n \to \infty} \frac{x_{n+1}^a - x_n^a}{bn^{b-1}} = \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n\sqrt{n}}\right)^a - x_n^a}{bn^{b-1}} = \lim_{n \to \infty} \frac{x_n^a \left(\left(1 + \frac{1}{x_n^2\sqrt{n}}\right)^a - 1\right)}{bn^{b-1}} = \lim_{n \to \infty} \frac{x_n^a \frac{a}{x_n^2\sqrt{n}}}{bn^{b-1}} = \frac{a}{b} \lim_{n \to \infty} \frac{x_n^{a-2}}{n^{b-\frac{1}{2}}}.$$

我们希望上式最后一个极限能够直接算出具体的数, 因此令 $a=2,b=\frac{1}{2},$ 则 $\lim_{n\to\infty}\frac{x_n^a}{n^b}=\lim_{n\to\infty}\frac{x_n^2}{\sqrt{n}}=\frac{a}{b}=4.$ 故

实际书写中我们只需要利用 Stolz 定理求出 $\lim_{n\to\infty} \frac{x_n^2}{\sqrt{n}}$ 即可.

类似题目的最后一步求的极限式都是通过这种待定系数的方式得到的,并不是靠猜.

例题 2.59 设 $0 < x_0 < y_0 < \frac{\pi}{2}, x_{n+1} = \sin x_n, y_{n+1} = \sin y_n \ (n \geqslant 0)$. 证明: $\lim_{n \to +\infty} \frac{x_n}{y_n} = 1$. 证明 因为 $x_{n+1} = \sin x_n < x_n \ (n \geqslant 0)$,所以数列 $\{x_n\}$ 严格递减有下界. 设 $\lim_{n \to +\infty} x_n = a$,则 $\sin a = a$,于是 a = 0,即

对任意的正整数n有

$$y_{n+\ell} < x_n < y_n$$

进而

$$\frac{y_{n+\ell}}{y_n} < \frac{x_n}{y_n} < 1$$

注意到 $\lim_{n\to +\infty}\frac{y_{n+\ell}}{y_n}=1$,由夹逼准则即得 $\lim_{n\to +\infty}\frac{x_n}{y_n}=1$. 注 事实上,通过待定系数,利用 Stolz 公式做形式计算可以得到 x_n 的阶. 待定 $\alpha,\beta>0$,由 Stolz 公式可得

$$\lim_{n \to \infty} n^{\beta} x_n^{\alpha} = \lim_{n \to \infty} \frac{n^{\beta}}{\frac{1}{x_n^{\alpha}}} = \lim_{n \to \infty} \frac{\beta n^{\beta - 1}}{\frac{1}{\sin^{\alpha} x_n} - \frac{1}{x_n^{\alpha}}}$$

$$= \beta \lim_{n \to \infty} \frac{n^{\beta - 1} x_n^{\alpha} \sin^{\alpha} x_n}{x_n^{\alpha} - \sin^{\alpha} x_n} = \beta \lim_{n \to \infty} \frac{n^{\beta - 1} x_n^{2\alpha}}{x_n^{\alpha} - (x_n - \frac{1}{6} x_n^3 + o(x_n^3))^{\alpha}}$$

$$=\beta \lim_{n\to\infty} \frac{n^{\beta-1}x_n^{2\alpha}}{C_\alpha^1x_n^{\alpha-1}\cdot \frac{1}{6}x_n^3+o\left(x_n^{\alpha+2}\right)} = \frac{6\beta}{\alpha} \lim_{n\to\infty} \frac{n^{\beta-1}}{x_n^{2-\alpha}+o\left(x_n^{2-\alpha}\right)}.$$

于是取 $\alpha=2,\beta=1$,可得 $\lim_{n\to\infty}nx_n^2=\frac{6\cdot 1}{2}=3$. 同理可得 $\lim_{n\to\infty}ny_n^2=3$.. 故 $\lim_{n\to+\infty}\sqrt{n}x_n=\lim_{n\to+\infty}\sqrt{n}y_n=\sqrt{3}$. 例题 **2.60** 设 $k\geqslant 2, a_0>0, a_{n+1}=a_n+\frac{1}{\sqrt[4]{a_n}}$,求极限 $\lim_{n\to\infty}\frac{a_n^{k+1}}{n^k}$.

实际上, 我们也可以同例题 2.58一样, 待定系数自己探索出数列的阶并算出这样的结果, 待定 a,b>0, 则由 Stolz 定理可得

$$\begin{split} &\lim_{n\to\infty}\frac{a_n^{a(k+1)}}{n^{bk}}=\lim_{n\to\infty}\frac{a_{n+1}^{a(k+1)}-a_n^{a(k+1)}}{bkn^{bk-1}}=\lim_{n\to\infty}\frac{\left(a_n+a_n^{-\frac{1}{k}}\right)^{a(k+1)}-a_n^{a(k+1)}}{bkn^{bk-1}}\\ &=\lim_{n\to\infty}\frac{a_n^{a(k+1)}\left[\left(1+a_n^{-\frac{1}{k}-1}\right)^{a(k+1)}-1\right]}{bkn^{bk-1}}=\lim_{n\to\infty}\frac{a_n^{a(k+1)}\frac{\frac{1}{k}+1}{\frac{1}{k}}}{bkn^{bk-1}}=\frac{k+1}{bk^2}\lim_{n\to\infty}\frac{a_n^{a(k+1)-\frac{k+1}{k}}}{n^{bk-1}}. \end{split}$$

我们希望上式最后一个极限能够直接算出具体的数值,因此令 $a=b=\frac{1}{k}$,于是 $\lim_{n\to\infty}\frac{a_n^{a(k+1)}}{n^{bk}}=\lim_{n\to\infty}\frac{a_n^{1+\frac{1}{k}}}{n}=\frac{k+1}{k}$. 故实际书写中我们只需要利用 Stolz 定理求出 $\lim_{n\to\infty}\frac{a_n^{1+\frac{1}{k}}}{n}$ 即可.

证明 归纳易证 a_n 单调递增,假设 a_n 有界,则由单调有界定理可知, a_n 收敛,设 $\lim_{n\to\infty}a_n=A<\infty$. 则由递推条件可得, $A=A+\frac{1}{\sqrt[4]{A}}$,无解,矛盾. 于是 a_n 单调递增且无上界,故 $\lim_{n\to\infty}a_n=+\infty$. 根据 Stolz 公式有

$$\lim_{n \to \infty} \frac{a_n^{1 + \frac{1}{k}}}{n} = \lim_{n \to \infty} \left(a_{n+1}^{1 + \frac{1}{k}} - a_n^{1 + \frac{1}{k}} \right) = \lim_{n \to \infty} \left(\left(a_n + a_n^{-\frac{1}{k}} \right)^{1 + \frac{1}{k}} - a_n^{1 + \frac{1}{k}} \right) = \lim_{n \to \infty} a_n^{1 + \frac{1}{k}} \left(\left(1 + a_n^{-\frac{1}{k} - 1} \right)^{1 + \frac{1}{k}} - 1 \right) = \lim_{x \to +\infty} x^{1 + \frac{1}{k}} \left(\left(1 + \frac{1}{k} \right) x^{-(1 + \frac{1}{k})} \right) = 1 + \frac{1}{k}$$

因此所求极限是 $\left(1+\frac{1}{k}\right)^k$.

 $\frac{1}{n}$ 如果题目没给出需要求的极限 $\lim_{n\to\infty}\frac{a_n^{k+1}}{n^k}$,而是问求 a_n 的渐近展开式 (只展开一项),那么我们就需要待定系数 自己探索 a_n 的阶. 待定 $\alpha>0$,由 Taylor 公式得到

$$\begin{split} a_{n+1}^{\alpha} &= \left(a_n + \frac{1}{\sqrt[k]{a_n}}\right)^{\alpha} = a_n^{\alpha} + \alpha a_n^{\alpha-1} \frac{1}{\sqrt{a_n}} + o\left(a_n^{\alpha-\frac{3}{2}}\right) \\ &\Rightarrow a_{n+1}^{\alpha} \approx a_n^{\alpha} + \alpha a_n^{\alpha-\frac{3}{2}} \Rightarrow a_{n+1}^{\alpha} - a_n^{\alpha} \approx \alpha a_n^{\alpha-\frac{3}{2}}. \end{split}$$

从而令 $\alpha = \frac{3}{2}$,则

$$a_{n+1}^{\frac{3}{2}} = a_{n+1}^{\alpha} = \sum_{k=1}^{n} \left(a_{k+1}^{\alpha} - a_{k}^{\alpha} \right) \approx \sum_{k=1}^{n} \alpha a_{k}^{\alpha - \frac{3}{2}} = \sum_{k=1}^{n} \frac{3}{2} a_{k}^{\frac{3}{2} - \frac{3}{2}} = \frac{3n}{2}.$$

这样就能写出 a_n 渐近展开式的第一项, 即 $a_n = \left(\frac{3n}{2}\right)^{\frac{2}{3}} + o\left(n^{\frac{2}{3}}\right)$.

例题 2.61 设 k 为正整数, 正数列 $\{x_n\}$ 满足 $\lim_{n\to\infty} x_n(x_1^k+x_2^k+\cdots+x_n^k)=1$, 证明: $\lim_{n\to\infty} nx_n^{k+1}=\frac{1}{k+1}$. 证明 设 $S_n=x_1^k+x_2^k+\cdots+x_n^k$, 则 S_n 单调递增. 如果 S_n 有界, 则 x_n 趋于零, $x_nS_n\to 0$, 这与已知条件矛盾, 所以 S_n 单调递增趋于正无穷, 进一步结合条件可知 x_n 趋于零. 注意到

$$\lim_{n \to \infty} x_{n+1} S_n = \lim_{n \to \infty} \frac{x_{n+1} S_{n+1} S_n}{S_{n+1}} = \lim_{n \to \infty} \frac{S_n}{S_{n+1}} = \lim_{n \to \infty} \frac{1}{1 + \frac{x_{n+1}}{S_{n+1}}} = 1.$$

下面运用等价无穷小替换和 Stolz 公式来求极限:

$$\lim_{n \to \infty} n x_n^{k+1} = \lim_{n \to \infty} \frac{n x_n^{k+1} S_n^{k+1}}{S_n^{k+1}} = \lim_{n \to \infty} \frac{n}{S_n^{k+1}} = \lim_{n \to \infty} \frac{1}{S_{n+1}^{k+1} - S_n^{k+1}}$$

$$= \lim_{n \to \infty} \frac{1}{(S_{n+1} - S_n)(S_{n+1}^k + S_{n+1}^{k-1} S_n + \dots + S_{n+1} S_n^{k-1} + S_n^k)}$$

$$= \lim_{n \to \infty} \frac{1}{x_{n+1}^k (S_{n+1}^k + S_{n+1}^{k-1} S_n + \dots + S_{n+1} S_n^{k-1} + S_n^k)}$$

$$= \lim_{n \to \infty} \frac{1}{(x_{n+1} S_{n+1})^k + (x_{n+1} S_{n+1})^{k-1} (x_{n+1} S_n) + \dots + (x_{n+1} S_{n+1})(x_{n+1} S_n)^{k-1} + (x_{n+1} S_n)^k}$$

$$= \frac{1}{k+1}.$$

例题 2.62 设 $\lim_{n\to\infty} a_n \sum_{k=1}^n a_k^2 = 1$, 计算 $\lim_{n\to\infty} \sqrt[q]{n} a_n$.

解 因为 $\left\{\sum_{k=1}^{n}a_{k}^{2}\right\}$ 单调递增,故由单调有界定理可知, $\left\{\sum_{k=1}^{n}a_{k}^{2}\right\}$ 的极限要么为有限数,要么为 $+\infty$. 设 $\lim_{n\to\infty}\sum_{k=1}^{n}a_{k}^{2}=$

 $c < \infty$, 则由级数收敛知 $\lim_{n \to \infty} a_n = 0$, 于是 $\lim_{n \to \infty} a_n \sum_{k=1}^n a_k^2 = 0 \neq 1$ 矛盾! 故 $\lim_{n \to \infty} \sum_{k=1}^n a_k^2 = +\infty$. 从而

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n \sum_{k=1}^n a_k^2 \cdot \lim_{n \to \infty} \frac{1}{\sum_{k=1}^n a_k^2} = 0.$$

并且由 $\lim_{n\to\infty}a_n\sum_{k=1}^na_k^2=1$ 可知 $a_n\sim\frac{1}{\sum\limits_{k=1}^na_k^2},n\to\infty$. 于是

$$\lim_{n \to \infty} \frac{1}{n a_n^3} = \lim_{n \to \infty} \frac{\left(\sum_{k=1}^n a_k^2\right)^3}{n} = \lim_{n \to \infty} \left[\left(\sum_{k=1}^{n+1} a_k^2\right)^3 - \left(\sum_{k=1}^n a_k^2\right)^3 \right]$$

$$= \lim_{n \to \infty} \left[\left(a_{n+1}^2 + \sum_{k=1}^n a_k^2\right)^3 - \left(\sum_{k=1}^n a_k^2\right)^3 \right]$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^n a_k^2\right)^3 \left[\left(\frac{a_{n+1}^2}{\sum_{k=1}^n a_k^2} + 1\right)^3 - 1 \right]$$

又由于 $\lim_{n\to\infty} \frac{a_{n+1}^2}{\sum\limits_{k=1}^n a_k^2} = \lim_{n\to\infty} a_{n+1}^2 a_n = 0$,因此由 Taylor 公式可知 $\left(\frac{a_{n+1}^2}{\sum\limits_{k=1}^n a_k^2} + 1\right)^3 - 1 \sim \frac{3a_{n+1}^2}{\sum\limits_{k=1}^n a_k^2}, n \to \infty$. 从而上式可化为

$$\lim_{n \to \infty} \frac{1}{na_n^3} = \lim_{n \to \infty} \left(\sum_{k=1}^n a_k^2 \right)^3 \left[\left(\frac{a_{n+1}^2}{\sum_{k=1}^n a_k^2} + 1 \right)^3 - 1 \right] = \lim_{n \to \infty} \left(\sum_{k=1}^n a_k^2 \right)^3 \frac{3a_{n+1}^2}{\sum_{k=1}^n a_k^2}$$

$$= 3 \lim_{n \to \infty} a_{n+1}^2 \left(\sum_{k=1}^n a_k^2 \right)^2 = 3 \lim_{n \to \infty} a_{n+1}^2 \left(\sum_{k=1}^{n+1} a_k^2 - a_{n+1}^2 \right)^2$$

$$= 3 \lim_{n \to \infty} \left[a_{n+1}^2 \left(\sum_{k=1}^{n+1} a_k^2 \right)^2 - 2a_{n+1}^4 \sum_{k=1}^{n+1} a_k^2 + a_{n+1}^6 \right]$$

$$= 3 + 0 + 0 = 3.$$

$$\mathbb{E} \, \, \lim_{n \to \infty} \sqrt[3]{n} a_n = \frac{1}{\sqrt[3]{\lim_{n \to \infty} \frac{1}{n a_n^2}}} = \frac{1}{\sqrt[3]{3}}.$$

例题 2.63

2. 设 $x_{n+1} = \sin x_n, n = 1, 2, \dots, x_1 \in (0, \pi)$, 计算 $\lim_{n \to \infty} \frac{n}{\ln n} (1 - \sqrt{\frac{n}{3}} x_n)$.

解

1. 由 $\ln(1+x) \le x, \forall x \in \mathbb{R}$ 可知 $x_{n+1} \le x_n, \forall n \in \mathbb{N}$. 并且 $x_1 > 0$, 假设 $x_n > 0$, 则 $x_{n+1} = \ln(1+x_n) > 0$. 从而由数学归纳法, 可知 $x_n > 0, \forall n \in \mathbb{N}$. 于是由单调有界定理, 可知数列 $\{x_n\}$ 收敛. 设 $\lim_{n \to \infty} x_n = a \ge 0$. 对 $x_{n+1} = \ln(1+x_n)$ 两边同时令 $n \to \infty$, 可得

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \ln(1 + x_n) = \ln(1 + a).$$

故 $\lim_{n\to\infty} x_n = a = 0$. 进而, 由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{1}{nx_n} = \lim_{n \to \infty} \frac{\frac{1}{x_n}}{n} = \lim_{n \to \infty} \left(\frac{1}{x_{n+1}} - \frac{1}{x_n} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{\ln(1+x_n)} - \frac{1}{x_n} \right) = \lim_{x \to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x} \right)$$

$$= \lim_{x \to 0} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^2}{2} + o(x^2)\right)}{x^2} = \frac{1}{2}.$$

因此 $\lim_{n\to\infty} nx_n = 2$. 即 $x_n \sim \frac{2}{n}, n\to\infty$. 因而, 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{n(nx_n - 2)}{\ln n} = \lim_{n \to \infty} \frac{nx_n \left(n - \frac{2}{x_n}\right)}{\ln n} = 2 \lim_{n \to \infty} \frac{n - \frac{2}{x_n}}{\ln n}$$

$$= 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{x_{n+1}}}{\ln \left(1 + \frac{1}{n}\right)} = 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{x_{n+1}}}{\frac{1}{n}}$$

$$= 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{\ln(1+x_n)}}{\frac{x_n}{2}} = 4 \lim_{x \to 0} \frac{1 + \frac{2}{x} - \frac{2}{\ln(1+x)}}{x}$$

$$= 4 \lim_{x \to 0} \frac{(x+2)\ln(1+x) - 2x}{x^2 \ln(1+x)} = 4 \lim_{x \to 0} \frac{(x+2)\left(x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)\right) - 2x}{x^3}$$

$$= 4 \lim_{x \to 0} \frac{-\frac{x^3}{2} + \frac{2x^3}{3} + o(x^3)}{x^3} = \frac{2}{3}.$$

实际上, 由上述计算我们可以得到 x_n 在 $n \to \infty$ 时的渐进估计:

$$\frac{n(nx_n - 2)}{\ln n} = \frac{2}{3} + o(1) \Rightarrow nx_n - 2 = \frac{2\ln n}{3n} + o\left(\frac{\ln n}{n}\right)$$
$$\Rightarrow x_n = \frac{2}{n} + \frac{2\ln n}{3n^2} + o\left(\frac{\ln n}{n^2}\right), n \to \infty.$$

2. 由 $\sin x \leq x, \forall x \in \mathbb{R}$ 可知 $x_{n+1} \leq x_n, \forall n \in \mathbb{N}$. 又由于 $0 < x_1 < \pi$ 及 $0 < x_{n+1} = \sin x_n < 1, \forall n \in \mathbb{N}_+$,故归纳可得 $0 \leq x_n \leq 1, \forall n \geq 2$. 因此 $\{x_n\}$ 极限存在,设 $\lim_{n \to \infty} x_n = a < \infty$. 从而对 $x_{n+1} = \sin x_n$ 两边同时令 $n \to \infty$ 可得

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \sin x_n = \sin a.$$

故 $\lim_{n\to\infty} x_n = a = 0$. 于是由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{3}{nx_n^2} = 3 \lim_{n \to \infty} \frac{\frac{1}{x_n^2}}{n} = 3 \lim_{n \to \infty} \left(\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} \right) = 3 \lim_{n \to \infty} \left(\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} \right)$$

$$= 3 \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = 3 \lim_{x \to 0} \frac{x^2 - \left(x - \frac{x^3}{3!} + o(x^3)\right)^2}{x^4}$$
$$= 3 \lim_{x \to 0} \frac{\frac{x^4}{3} + o(x^4)}{x^4} = 1.$$

因此 $\lim_{n\to\infty}\sqrt{\frac{n}{3}}x_n=\lim_{n\to\infty}\sqrt{\frac{1}{\frac{3}{nx_n^2}}}=1, \lim_{n\to\infty}nx_n^2=3.$ 即 $x_n\sim\sqrt{\frac{3}{n}}, n\to\infty$. 进而, 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(1 - \sqrt{\frac{n}{3}} x_n \right) \xrightarrow{\frac{\pi}{3}} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \lim_{n \to \infty} \frac{n \left(1 - \frac{n}{3} x_n^2 \right)}{\ln n \left(1 + \sqrt{\frac{n}{3}} x_n \right)} = \lim_{n \to \infty} \frac{n x_n^2 \left(\frac{1}{x_n^2} - \frac{n}{3} \right)}{\ln n \left(1 + \sqrt{\frac{n}{3}} x_n \right)}$$

$$= \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{x_n^2} - \frac{n}{3}}{\ln n} = \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} - \frac{1}{3}}{\ln \left(1 + \frac{1}{n} \right)}$$

$$= \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{\frac{1}{n}} = \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{\frac{x_n^2}{3}}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{x^2} = \frac{9}{2} \lim_{n \to \infty} \frac{x^2 - \sin^2 x - \frac{1}{3} x^2 \sin^2 x}{x^4 \sin^2 x}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{x^2 - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5) \right)^2 - \frac{1}{3} x^2 \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5) \right)^2}{x^6}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{-\frac{x^6}{36} - \frac{x^6}{60} + \frac{x^6}{9} + o\left(x^6\right)}{x^6} = \frac{3}{10}.$$

(最后几步的计算除了用 Taylor 展开也可以用洛朗展开计算, 即先用长除法算出 $\frac{1}{\sin^2 x} = \frac{1}{x^2} + \frac{1}{3} + \frac{1}{15}x^2 + o\left(x^2\right)$, 再直接带入计算得到结果, 实际上利用洛朗展开计算更加简便.)

3. 由条件可知 $x_{n+1}=x_n+\frac{1}{x_n}\geqslant x_n, \forall n\in\mathbb{N}_+$. 又 $x_1=1>0$, 故归纳可得 $x_n>0, \forall n\in\mathbb{N}_+$. 由单调有界定理可知数列 $\{x_n\}$ 的极限要么是 $+\infty$, 要么是有限数. 假设 $\lim_{n\to\infty}x_n=a<\infty$, 则对 $x_{n+1}=x_n+\frac{1}{x_n}$ 两边同时令 $n\to\infty$, 可得 $a=a+\frac{1}{n}\Rightarrow\frac{1}{n}=0$ 矛盾. 故 $\lim_{n\to\infty}x_n=+\infty$. 于是由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{x_n}{\sqrt{n}} = \sqrt{\lim_{n \to \infty} \frac{x_n^2}{n}} = \sqrt{\lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2}{n+1-n}} = \sqrt{\lim_{n \to \infty} \left(\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2\right)}$$
$$= \sqrt{\lim_{n \to \infty} \left(2 + \frac{1}{x_n^2}\right)} = \sqrt{2}.$$

因此 $x_n \sim \sqrt{2n}, n \to \infty$. 从而 $x_n + \sqrt{2n} \sim 2\sqrt{2n}, n \to \infty$. 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sqrt{2n}(x_n - \sqrt{2n})}{\ln n} = \frac{+ \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{\sqrt{2n}(x_n^2 - 2n)}{(x_n + \sqrt{2n}) \ln n}}{\ln n} = \lim_{n \to \infty} \frac{\sqrt{2n}(x_n^2 - 2n)}{2\sqrt{2n} \ln n}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x_n^2 - 2n}{\ln n} = \frac{1}{2} \lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2 - 2}{\ln(n+1) - \ln n}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2 - 2}{\frac{1}{n}} = \frac{1}{2} \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2 - 2}{\frac{2}{x_n^2}}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{\frac{2}{x_n^2}}{\frac{2}{x_n^2}} = \frac{1}{2}.$$

例题 2.64 设 $a_1 = 1, a_{n+1} = a_n + \frac{1}{S_n}, S_n = \sum_{k=1}^n a_k$, 计算 $\lim_{n \to \infty} \frac{a_n}{\sqrt{\ln n}}$.

解 由于 $a_{n+1}=a_n+\frac{1}{S_n}$, $\forall n\in\mathbb{N}_+$, 并且 $a_1>0$, 故由数学归纳法可知 $a_n>0$, $\forall n\in\mathbb{N}_+$. 又 $a_2=a_1+a_1>a_1$, 再根据 递推式, 可以归纳得到数列 $\{a_n\}$ 单调递增. 因此, 数列 $\{a_n\}$ 要么 $\lim_{n\to\infty}a_n=a<\infty$, 要么 $\lim_{n\to\infty}a_n=+\infty$. 由条件可知 $a_{n+1}-a_n=\frac{1}{S_n}\geqslant \frac{1}{na_1}=\frac{1}{n}$, $\forall n\in\mathbb{N}_+$. 从而对 $\forall n\in\mathbb{N}_+$, 都有

$$a_n = a_n - a_{n-1} + a_{n-1} - a_{n-2} + \dots + a_2 - a_1 \geqslant \frac{1}{n-1} + \frac{1}{n-2} + \dots + 1 = \sum_{k=1}^{n-1} \frac{1}{k}.$$

而 $\lim_{n\to\infty}\sum_{k=1}^{n-1}\frac{1}{k}=+\infty$, 故 $\lim_{n\to\infty}a_n=+\infty$. 于是由 Stolz 定理, 可知

$$\lim_{n \to \infty} \frac{a_n^2}{\ln n} = \lim_{n \to \infty} \frac{a_{n+1}^2 - a_n^2}{\ln(1 + \frac{1}{n})} = \lim_{n \to \infty} n(a_{n+1}^2 - a_n^2)$$

$$= \lim_{n \to \infty} n \left[\left(a_n + \frac{1}{S_n} \right)^2 - a_n^2 \right] = \lim_{n \to \infty} n \left(\frac{2a_n}{S_n} + \frac{1}{S_n^2} \right).$$

根据 Stolz 定理, 可得

$$\lim_{n \to \infty} \frac{n}{S_n^2} = \lim_{n \to \infty} \frac{1}{a_{n+1}^2} = 0;$$

$$\lim_{n \to \infty} \frac{na_n}{S_n} = \lim_{n \to \infty} \frac{(n+1)a_{n+1} - na_n}{a_{n+1}} = \lim_{n \to \infty} \left[n + 1 - \frac{na_n}{a_{n+1}} \right].$$

由递推公式, 可得对 $\forall n \in \mathbb{N}_+$, 有

$$1 = n + 1 - n \le n + 1 - \frac{na_n}{a_{n+1}} = n + 1 - \frac{na_n}{a_n + \frac{1}{S_n}} = 1 + \frac{\frac{n}{a_n S_n}}{1 + \frac{1}{a_n S_n}}$$

$$= 1 + \frac{n}{1 + a_n S_n} \le 1 + \frac{n}{1 + a_1 S_n} = 1 + \frac{n}{1 + S_n}.$$

又由 Stolz 定理, 可得 $\lim_{n\to\infty}\frac{n}{1+S_n}=\lim_{n\to\infty}\frac{1}{a_{n+1}}=0$. 故由夹逼准则可知, $\lim_{n\to\infty}\frac{na_n}{S_n}=\lim_{n\to\infty}\left[n+1-\frac{na_n}{a_{n+1}}\right]=1$. 于是

$$\lim_{n \to \infty} \frac{a_n^2}{\ln n} = \lim_{n \to \infty} n \left(\frac{2a_n}{S_n} + \frac{1}{S_n^2} \right) = 2 \lim_{n \to \infty} \frac{na_n}{S_n} + \lim_{n \to \infty} \frac{n}{S_n^2} = 2 + 0 = 2.$$

因此 $\lim_{n\to\infty} \frac{a_n}{\sqrt{\ln n}} = \sqrt{2}$.

2.5.2 函数 Stolz 定理

定理 2.10 (函数 Stolz 定理)

设 $T > 0, f, g: [0, +\infty) \to \mathbb{R}$ 是内闭有界函数.

(1) 设 g(x+T) > g(x), 若有 $\lim_{x \to +\infty} g(x) = +\infty$ 且

$$\lim_{x \to +\infty} \frac{f(x+T) - f(x)}{g(x+T) - g(x)} = A \in \mathbb{R} \bigcup \{-\infty, +\infty\}.$$

则有

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A.$$

(2) 设 0 < g(x+T) < g(x), 若有

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0,$$

且

$$\lim_{x\to +\infty}\frac{f(x+T)-f(x)}{g(x+T)-g(x)}=A\in\mathbb{R}\bigcup\{-\infty,+\infty\}.$$

则有

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A.$$

注 考试中, 如果要用函数 Stolz 定理, 不要直接证明这个抽象的版本 (直接证明这个定理太繁琐). 而是根据具体问题, 利用夹逼准则和数列 Stolz 定理进行证明. 具体可见例题 2.65.

证明 我们仅考虑 $A \in \mathbb{R}$, 其余情况类似, 为了书写方便, 我们不妨设 A = 0, 否则用 f - Ag 代替 f 即可. 不妨设 T = 1, 否则用 f(Tx) 代替 f 即可.

(1) 对任何 $\varepsilon > 0$, 由条件知存在某个 $X \in \mathbb{N}$, 使得对任何x > X都有

$$|f(x+1) - f(x)| < \varepsilon[g(x+1) - g(x)], g(x) > 0.$$
(2.56)

于是对 $\forall x > X$, 利用(2.56)式, 我们有

$$\left| \frac{f(x)}{g(x)} \right| = \frac{\sum_{k=1}^{\lfloor x \rfloor - X} [f(x - k + 1) - f(x - k)]}{g(x)} + \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|$$

$$\leq \left| \frac{\sum_{k=1}^{\lfloor x \rfloor - X} [f(x - k + 1) - f(x - k)]}{g(x)} \right| + \left| \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|$$

$$\stackrel{(2.56) \neq}{\leq} \varepsilon \frac{\sum_{k=1}^{\lfloor x \rfloor - X} [g(x - k + 1) - g(x - k)]}{|g(x)|} + \left| \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|$$

$$= \varepsilon \frac{g(x) - g(x - \lfloor x \rfloor + X)}{|g(x)|} + \left| \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|$$

$$\stackrel{(2.56) \neq}{\leq} \varepsilon + \left| \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|.$$

于是利用 f 在 [X, X+1] 有界及 $X \leq x - [x] + X < X + 1$, 我们有

$$\overline{\lim}_{x \to +\infty} \left| \frac{f(x)}{g(x)} \right| \leqslant \varepsilon,$$

由ε任意性即得

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0.$$

这就完成了证明.

(2) 任何 $\varepsilon > 0$, 由条件可知存在某个 $X \in \mathbb{N}$, 使得对任何 x > X 都有

$$|f(x+1) - f(x)| < \varepsilon[g(x) - g(x+1)].$$
 (2.57)

于是对 $\forall x > X, \forall n \in \mathbb{N},$ 利用(2.57)可得

$$\left| \frac{f(x)}{g(x)} \right| = \left| \frac{\sum_{k=1}^{n} [f(x+k-1) - f(x+k)] + f(x+n)}{g(x)} \right|$$

$$\leq \frac{\sum_{k=1}^{n} |f(x+k-1) - f(x+k)|}{g(x)} + \frac{|f(x+n)|}{g(x)}$$

$$\leq \varepsilon \frac{\sum_{k=1}^{n} [g(x+k-1) - g(x+k)]}{g(x)} + \frac{|f(x+n)|}{g(x)}$$

$$= \varepsilon \frac{g(x) - g(x+n)}{g(x)} + \frac{|f(x+n)|}{g(x)}$$

$$\leq \varepsilon + \frac{|f(x+n)|}{g(x)}.$$

再利用 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$ 得

$$\lim_{n \to \infty} \frac{|f(x+n)|}{g(x)} = 0 \Rightarrow \left| \frac{f(x)}{g(x)} \right| \leqslant \varepsilon, \forall x > X.$$

从而结论得证.

例题 2.65

(1) 设 $\alpha > -1$, 计算 $\lim_{x \to +\infty} \frac{\int_0^x t^{\alpha} |\sin t| dt}{x^{\alpha+1}}$.

(2) 计算 $\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x}$.

(3) 计算 $\lim_{x\to+\infty} \frac{1}{x} \int_{0}^{\infty} (t-[t])dt$, 这里 [·] 表示向下取整函数.

笔记 虽然这个几个问题的思路都是函数 Stolz 定理, 但是注意在考试中我们不能直接使用这个定理, 需要我们结 合具体问题给出这个定理的证明. 具体可见下述证明.

注 第 (1) 题如果直接洛必达得

$$\lim_{x \to +\infty} \frac{\int_0^x t^{\alpha} |\sin t| dt}{x^{\alpha+1}} = \lim_{x \to +\infty} \frac{|\sin x|}{\alpha+1}$$
 不存在,

因此无法运用洛必达,但也无法判断原本的极限,而需要其他方法确定其极限,

证明

(1) 直接使用函数 Stolz 定理:由函数 Stolz 定理、Lagrange 中值定理和积分中值定理可知

$$\lim_{x \to +\infty} \frac{\int_0^x t^\alpha |\sin t| \, \mathrm{d}t}{x^{\alpha+1}} = \lim_{x \to +\infty} \frac{\int_0^{x+\pi} t^\alpha |\sin t| \, \mathrm{d}t - \int_0^x t^\alpha |\sin t| \, \mathrm{d}t}{(x+\pi)^{\alpha+1} - x^{\alpha+1}}$$

$$= \frac{\text{Lagrange \neq \mathring{a} $ \mathbb{E}}}{x^{\alpha+1}} \lim_{x \to +\infty} \frac{\int_x^{x+\pi} t^\alpha |\sin t| \, \mathrm{d}t}{\pi \, (\alpha+1) \, x^\alpha} = \frac{\Re \beta + \mathring{a} \mathbb{E}^{\frac{\alpha}{2}}}{x^{\alpha+1}} \lim_{x \to +\infty} \frac{\theta_x^\alpha \int_x^{x+\pi} |\sin t| \, \mathrm{d}t}{\pi \, (\alpha+1) \, x^\alpha},$$

其中 $x \leq \theta_x \leq x + \pi$. 从而 $\theta_x \sim x, x \to +\infty$

$$\lim_{x\to +\infty} \frac{\int_0^x t^\alpha \left|\sin t\right| \,\mathrm{d}t}{x^{\alpha+1}} = \lim_{x\to +\infty} \frac{\theta_x^\alpha \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t}{\pi \left(\alpha+1\right) x^\alpha} = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_0^\pi \left|\sin t\right| \,\mathrm{d}t = \frac{2}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^{x+\pi} \left|\sin t\right| \,\mathrm{d}t = \frac{1}{\pi \left(\alpha+1\right)} \lim_{x\to +\infty} \int_x^$$

不直接使用函数 Stolz 定理(考试中的书写):对 $\forall x \in (0, +\infty)$, 存在唯一的 $n \in \mathbb{N}$, 使得 $n\pi \leq x \leq (n+1)\pi$. 故

$$\frac{\int_0^{n\pi} t^{\alpha} |\sin t| dt}{[(n+1)\pi]^{\alpha+1}} \leqslant \frac{\int_0^x t^{\alpha} |\sin t| dt}{x^{\alpha+1}} \leqslant \frac{\int_0^{(n+1)\pi} t^{\alpha} |\sin t| dt}{(n\pi)^{\alpha+1}}, \forall x \in [0, +\infty).$$
 (2.58)

又由数列 Stolz 定理、Lagrange 中值定理和积分中值定理可知

$$\lim_{x \to +\infty} \frac{\int_{0}^{(n+1)\pi} t^{\alpha} \left| \sin t \right| dt}{(n\pi)^{\alpha+1}} \xrightarrow{\underline{\text{Stolz }} \not\equiv \underline{\pi}} \frac{1}{\pi^{\alpha+1}} \lim_{x \to +\infty} \frac{\int_{n\pi}^{(n+1)\pi} t^{\alpha} \left| \sin t \right| dt}{(n+1)^{\alpha+1} - n^{\alpha+1}}$$

$$\frac{\underline{\mathcal{R}} \beta + \underline{\mathsf{dr}} \not\equiv \underline{\pi}}{\underline{\mathsf{Lagrange}}} \frac{1}{\pi^{\alpha+1}} \lim_{x \to +\infty} \frac{(n\pi)^{\alpha} \int_{n\pi}^{(n+1)\pi} \left| \sin t \right| dt}{(\alpha+1) n^{\alpha+1}} = \frac{2}{\pi (\alpha+1)},$$

$$\lim_{x \to +\infty} \frac{\int_{0}^{n\pi} t^{\alpha} \left| \sin t \right| dt}{[(n+1)\pi]^{\alpha+1}} \xrightarrow{\underline{\mathsf{Stolz }} \not\equiv \underline{\pi}} \frac{1}{\pi^{\alpha+1}} \lim_{x \to +\infty} \frac{\int_{(n-1)\pi}^{n\pi} t^{\alpha} \left| \sin t \right| dt}{(n+1)^{\alpha+1} - n^{\alpha+1}}$$

$$\underline{\underline{\mathcal{R}} \beta + \underline{\mathsf{dr}} \not\equiv \underline{\pi}}}{\underline{\mathsf{Lagrange}}} \frac{1}{\pi^{\alpha+1}} \lim_{x \to +\infty} \frac{(n\pi)^{\alpha} \int_{(n-1)\pi}^{n\pi} t^{\alpha} \left| \sin t \right| dt}{(\alpha+1) n^{\alpha+1}} = \frac{2}{\pi (\alpha+1)}.$$
(2.59)

又因为 $n\pi \le x \le (n+1)\pi, \forall x \in (0,+\infty)$, 所以 $n \to +\infty$ 等价于 $x \to +\infty$. 于是利用(2.58)(2.59)(2.60)式, 由夹逼 准则可得

$$\lim_{x \to +\infty} \frac{\int_0^x t^{\alpha} |\sin t| \mathrm{d}t}{x^{\alpha+1}} = \lim_{n \to \infty} \frac{\int_0^x t^{\alpha} |\sin t| \mathrm{d}t}{x^{\alpha+1}} = \frac{2}{\pi(\alpha+1)}.$$

П

(2) 直接使用函数 Stolz 定理:由函数 Stolz 定理、Lagrange 中值定理和积分中值定理可知

$$\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \lim_{x \to +\infty} \frac{\int_0^{x+\pi} \frac{|\sin t|}{t} dt - \int_0^x \frac{|\sin t|}{t} dt}{\ln (x+\pi) - \ln x} \xrightarrow{\text{Lagrange } + \text{d} \in \mathbb{Z}} \lim_{x \to +\infty} \frac{\int_x^{x+\pi} \frac{|\sin t|}{t} dt}{\frac{\pi}{x}}$$

$$\frac{\# \text{d} + \text{d} \notin \mathbb{Z}}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x} \int_x^{x+\pi} |\sin t| dt = \frac{1}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x} \int_0^{\pi} |\sin t| dt = \frac{2}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x}. \tag{2.61}$$

其中 $x \le \theta_x \le x + \pi$. 从而 $\theta_x \sim x, x \to +\infty$. 再结合(2.61)式可得

$$\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \frac{2}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x} = \frac{2}{\pi}$$

不直接使用函数 Stolz 定理(考试中的书写):对 $\forall x \in (0, +\infty)$, 存在唯一的 $n \in \mathbb{N}$, 使得 $n\pi \le x \le (n+1)\pi$. 故

$$\frac{\int_0^{n\pi} \frac{|\sin t|}{t} dt}{\ln((n+1)\pi)} \leqslant \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} \leqslant \frac{\int_0^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln(n\pi)}, \forall x > 0.$$
 (2.62)

又由数列 Stolz 定理和积分中值定理可知

$$\lim_{n \to \infty} \frac{\int_{0}^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln(n\pi)} \xrightarrow{\frac{1}{n \to \infty}} \lim_{n \to \infty} \frac{\int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln(n\pi) - \ln((n-1)\pi)}$$

$$\frac{\frac{\Re \beta + \text{d} \epsilon^{\frac{1}{2}}}{\ln n} \lim_{n \to \infty} \frac{\frac{1}{n\pi} \int_{n\pi}^{(n+1)\pi} |\sin t| dt}{\ln(1 + \frac{1}{n-1})} = \lim_{n \to \infty} \frac{2(n-1)}{n\pi} = \frac{2}{\pi},$$

$$\lim_{n \to \infty} \frac{\int_{0}^{n\pi} \frac{|\sin t|}{t} dt}{\ln((n+1)\pi)} \xrightarrow{\frac{\text{Stolz } \epsilon^{\frac{1}{2}}}{\ln n \to \infty}} \lim_{n \to \infty} \frac{\int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln((n+2)\pi) - \ln((n+1)\pi)}$$

$$\frac{\frac{1}{n \to \infty} \frac{1}{n \to \infty} \int_{n\pi}^{(n+1)\pi} |\sin t| dt}{\ln(1 + \frac{1}{n+1})} = \lim_{n \to \infty} \frac{2(n+1)}{n\pi} = \frac{2}{\pi}.$$
(2.64)

又因为 $n\pi \le x \le (n+1)\pi$, $\forall x \in (0,+\infty)$, 所以 $n \to +\infty$ 等价于 $x \to +\infty$. 于是利用(2.62)(2.63)(2.64)式, 由夹逼准则可得

$$\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \lim_{n \to \infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \frac{2}{\pi}.$$

(3) 直接使用函数 Stolz 定理:注意到 t-[t] 是 \mathbb{R} 上周期为 1 的非负函数, 故由函数 Stolz 定理可知

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x (t - [t]) dt = \lim_{x \to +\infty} \frac{\int_0^{x+1} (t - [t]) dt - \int_0^x (t - [t]) dt}{x + 1 - x} = \lim_{x \to +\infty} \int_x^{x+1} (t - [t]) dt$$

$$= \lim_{x \to +\infty} \int_x^{x+1} (t - [t]) dt = \lim_{x \to +\infty} \int_0^1 (t - [t]) dt = \lim_{x \to +\infty} \int_0^1 t dt = \frac{1}{2}.$$

不直接使用函数 Stolz 定理(考试中的书写):对 $\forall x \in (0, +\infty)$, 存在唯一的 $n \in \mathbb{N}$, 使得 $n \leq x \leq n+1$. 故

$$\frac{\int_0^n (t - [t]) dt}{n+1} \leqslant \frac{1}{x} \int_0^x (t - [t]) dt \leqslant \frac{\int_0^{n+1} (t - [t]) dt}{n}, \forall x > 0.$$
 (2.65)

又由数列 Stolz 定理可知

$$\lim_{n \to \infty} \frac{\int_0^{n+1} (t - [t]) dt}{n} \xrightarrow{\text{Stolz } \not\equiv \underline{\underline{\underline{H}}}} \lim_{n \to \infty} \int_n^{n+1} (t - [t]) dt = \int_0^1 (t - [t]) dt = \int_0^1 t dt = 1, \tag{2.66}$$

$$\lim_{n \to \infty} \frac{\int_0^n (t - [t]) dt}{n + 1} = \lim_{n \to \infty} \int_{n-1}^n (t - [t]) dt = \int_0^1 (t - [t]) dt = \int_0^1 t dt = 1.$$
 (2.67)

又因为 $n \le x \le n+1, \forall x \in (0, +\infty)$, 所以 $n \to +\infty$ 等价于 $x \to +\infty$. 于是利用(2.65)(2.66)(2.67)式, 由夹逼准则可得

$$\lim_{x \to +\infty} \frac{1}{x} \int_{0}^{x} (t - [t]) dt = \lim_{n \to \infty} \frac{1}{x} \int_{0}^{x} (t - [t]) dt = 1.$$

2.6 递推数列求极限和估阶

2.6.1 "折线图 (蛛网图)" 分析法 (图未完成, 但已学会)

关于递推数列求极限的问题,可以先画出相应的"折线图",然后根据"折线图 (蛛网图)"的性质来判断数列的极限.这种方法可以帮助我们快速得到数列的极限,但是对于数列的估阶问题,这种方法并不适用.

注 这种方法只能用来分析问题, 严谨的证明还是需要用单调性分析法或压缩映像法书写.

一般的递推数列问题, 我们先画"折线图 (蛛网图)"分析, 分析出数列 (或奇偶子列) 的收敛情况, 就再用单调分析法或压缩映像法严谨地书写证明.

如果递推函数是单调递增的,则画蛛网图分析起来非常方便,书写证明过程往往用单调有界 (单调性分析法)就能解决问题.

例题 **2.66** 设 $u_1 = b, u_{n+1} = u_n^2 + (1 - 2a)u_n + a^2$, 求 a, b 的值使得 a_n 收敛, 并求其极限.

笔记 显然递推函数只有一个不动点 x = a, 画蛛网图分析能够快速地得到取不同初值时, u_n 的收敛情况. 但是注意需要严谨地书写证明过程.

解 由条件可得

$$u_{n+1} = u_n^2 + (1 - 2a)u_n + a^2 = (u_n - a)^2 + u_n \ge u_n$$

故 u_n 单调递增. (i) 若 b>a, 则由 u_n 单调递增可知, $u_n>a$, $\forall n\in\mathbb{N}_+$. 又由单调有界定理可知 u_n 要么发散到 $+\infty$, 要么收敛到一个有限数. 假设 u_n 收敛, 则可设 $\lim_{n\to\infty}u_n=u>u_1>a$. 从而由递推条件可得

$$u = (u - a)^2 + u \Rightarrow u = a$$

矛盾. 故 $\lim_{n \to +\infty} u_n = +\infty$.

(ii) 若 b=a, 则由递推条件归纳可得 $u_n=a, \forall n \in \mathbb{N}_+$.

$$a-1 < a - \frac{1}{4} = f\left(\frac{2a-1}{2}\right) \leqslant f(x) \leqslant \max\{f(a-1), f(a)\} = a, \forall x \in [a-1, a].$$

由于 $u_1 = b \in [a-1,a]$, 假设 $u_n \in [a-1,a]$, 则

$$a-1 \leqslant u_{n+1} = f(u_n) \leqslant a$$
.

由数学归纳法可得 $u_n \in [a-1,a], \forall n \in \mathbb{N}_+$. 于是由单调有界定理可知 u_n 收敛. 再对 $u_{n+1} = u_n^2 + (1-2a)u_n + a^2$ 两边同时取极限, 解得 $\lim_{n \to \infty} u_n = a$.

(iv) 若 b < a - 1. 则

$$u_2 = (u_1 - a)^2 + u_1 > a \Leftrightarrow (b - a)^2 + b > a \Leftrightarrow (b - a)(b - a + 1) > 0.$$

由 b < a-1 可知上式最后一个不等式显然成立, 故 $u_2 > a$. 于是由 (i) 同理可证 $\lim_{n \to \infty} u_n = +\infty$.

综上, 只有当 $a \in \mathbb{R}, b \in [a-1,a]$ 时, 数列 u_n 才收敛, 极限为 a.

例题 **2.67** 设 $x_1 > 0, x_1 \neq 1, x_{n+1} = \frac{x_n^2}{2(x_n - 1)}$, 证明 x_n 收敛并求极限.

 $\hat{\mathbf{y}}$ 笔记 显然递推函数有两个个不动点 x=0,2, 画蛛网图分析能够快速地得到取不同初值时, x_n 的收敛情况. 这里利用压缩映像书写过程更加简便.

 \mathbf{H} (i) 如果 $x_1 > 1$, 则归纳易证 $x_n \ge 2$, $\forall n \ge 2$, 所以

$$|x_{n+1}-2| = \left|\frac{x_n^2}{2(x_n-1)}-2\right| = \frac{(x_n-2)^2}{2(x_n-1)} = |x_n-2| \left|\frac{x_n-2}{2(x_n-1)}\right| \leqslant \frac{1}{2}|x_n-2| \leqslant \cdots \leqslant \frac{1}{2^n}|x_1-2|$$

令 $n \to \infty$, 由此可知 x_n 的极限是 2.

(ii) 如果 $x_1 \in (0,1)$, 则归纳易证 $x_n \leq 0, \forall n \geq 2$, 所以

$$|x_{n+1}| = \left| \frac{x_n^2}{2(x_n - 1)} \right| = |x_n| \left| \frac{x_n}{2(x_n - 1)} \right| \le \frac{1}{2} |x_n| \le \dots \le \frac{1}{2^n} |x_1|$$

令 $n \to \infty$, 由此可知 x_n 的极限是 0. 例题 **2.68** 设 $S_1 = 1$, $S_{n+1} = S_n + \frac{1}{S_n} - \sqrt{2}$, 证明: $\lim_{n \to \infty} S_n = \frac{1}{\sqrt{2}}$.

笔记 递推函数性质及例题分析递推函数递减时候, 意味着奇偶两个子列具有相反的单调性, 本题没有产生新的不 动点,是容易的.

画蛛网图分析表明递推函数 (在 (0,1) 内) 是递减的, 所以数列不单调, 但是奇偶子列分别单调, 并且 (这一步 只能说"似乎",因为对于不同的递减的递推式,可能结论是不一样的,取决于二次复合有没有新的不动点) 奇子列单调递增趋于 $\frac{1}{\sqrt{2}}$,偶子列单调递减趋于 $\frac{1}{\sqrt{2}}$,数列的范围自然是在 $[S_1,S_2]$ 之间,显然不动点只有 $\frac{1}{\sqrt{2}}$ 一个,因

证明 $S_1 = 1, S_2 = 2 - \sqrt{2}$, 先证明 $S_n \in [2 - \sqrt{2}, 1]$ 恒成立, 采用归纳法. n = 1, 2 时显然成立, 如果 n 时成立, 则 n + 1 时, 注意 $f(x) = x + \frac{1}{x} - \sqrt{2}$ 在区间 (0, 1) 中单调递减, 所以

$$2 - \sqrt{2} \leqslant S_{n+1} = S_n + \frac{1}{S_n} - \sqrt{2} \leqslant 2 - \sqrt{2} + \frac{1}{2 - \sqrt{2}} - \sqrt{2} = 2 - 2\sqrt{2} + \frac{2 + \sqrt{2}}{2} = 3 - \frac{3}{2}\sqrt{2} \leqslant 1$$

这就证明了 S_n 是有界数列, 且 $S_3 \leq S_1, S_4 \geq S_2$, 下面证明 S_{2n-1} 递减, S_{2n} 递增: 注意函数 $f(x) = x + \frac{1}{x} - \sqrt{2}$ 在区 间 (0,1) 中单调递减, 所以如果已知 $S_{2n+1} \leq S_{2n-1}, S_{2n+2} \geq S_{2n}$, 则

$$S_{2n+3} = f(S_{2n+2}) \leqslant f(S_{2n}) = S_{2n+1}, S_{2n+4} = f(S_{2n+3}) \geqslant f(S_{2n+1}) = S_{2n+2}$$

根据归纳法可得单调性, 这说明 S_{2n-1} , S_{2n} 都是单调有界的, 因此极限存在, 设

$$\lim_{n \to \infty} S_{2n-1} = a, \lim_{n \to \infty} S_{2n} = b, a, b \in [2 - \sqrt{2}, 1]$$

在递推式 $S_{n+1}=S_n+\frac{1}{S_n}-\sqrt{2}$ 中分别让 n 取奇数, 偶数, 然后令 $n\to\infty$ 取极限, 可得关于极限 a,b 的方程组 $a = b + \frac{1}{b} - \sqrt{2}, b = a + \frac{1}{a} - \sqrt{2},$ 希望证明 $a = b = \frac{1}{\sqrt{2}}$, 为了解这个方程组, 三种方法:

$$a = b + \frac{1}{b} - \sqrt{2} = a + \frac{1}{a} - \sqrt{2} + \frac{1}{a + \frac{1}{a} - \sqrt{2}} - \sqrt{2} = \frac{1 - 3\sqrt{2}a + 7a^2 - 3\sqrt{2}a^3 + a^4}{a(1 - \sqrt{2}a + a^2)}$$
$$1 - 3\sqrt{2}a + 7a^2 - 3\sqrt{2}a^3 + a^4 - a^2(1 - \sqrt{2}a + a^2) = -\left(\sqrt{2}a - 1\right)^3 = 0$$

由此可知 $a=b=\frac{1}{\sqrt{2}}$, 所以数列 S_n 收敛于 $\frac{1}{\sqrt{2}}$.

方法二:上面硬算起来实在太麻烦了,我们可以先对递推式变形化简,减小计算量

$$S_{n+1} = S_n + \frac{1}{S_n} - \sqrt{2} = \frac{S_n^2 - \sqrt{2}S_n + 1}{S_n} = \frac{\left(S_n - \frac{\sqrt{2}}{2}\right)^2 + \frac{1}{2}}{S_n}$$

$$\Rightarrow S_{n+1} - \frac{\sqrt{2}}{2}$$

$$= \frac{\left(S_n - \frac{\sqrt{2}}{2}\right)^2 + \frac{1}{2} - \frac{\sqrt{2}}{2}S_n}{S_n} = \frac{\left(S_n - \frac{\sqrt{2}}{2}\right)(S_n - \sqrt{2})}{S_n}$$

然后对奇偶子列(代入递推式)分别取极限可得方程组

$$a - \frac{\sqrt{2}}{2} = \frac{\left(b - \frac{\sqrt{2}}{2}\right)(b - \sqrt{2})}{b}, b - \frac{\sqrt{2}}{2} = \frac{\left(a - \frac{\sqrt{2}}{2}\right)(a - \sqrt{2})}{a}$$

如果 a,b 之中有一个是 $\frac{1}{\sqrt{2}}$,则另一个也是,显然数列 S_n 收敛于 $\frac{1}{\sqrt{2}}$,如果都不是则

$$a - \frac{\sqrt{2}}{2} = \frac{\left(b - \frac{\sqrt{2}}{2}\right)(b - \sqrt{2})}{b} = \frac{\left(a - \frac{\sqrt{2}}{2}\right)(a - \sqrt{2})(b - \sqrt{2})}{ab}$$

$$\Rightarrow \left(a - \sqrt{2}\right)\left(b - \sqrt{2}\right) - ab = 2 - \sqrt{2}(a + b) = 0 \Rightarrow a + b = \sqrt{2}$$

$$\Rightarrow a - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} - b = \frac{\left(b - \frac{\sqrt{2}}{2}\right)(b - \sqrt{2})}{b} \Rightarrow b - \sqrt{2} = -b, b = \frac{\sqrt{2}}{2} = a.$$

导致矛盾.

方法三:(最快的方法): 如果
$$a \neq b$$
, 则根据方程组 $a = b + \frac{1}{b} - \sqrt{2}$, $b = a + \frac{1}{a} - \sqrt{2}$ 有

$$ab = b^2 - \sqrt{2}b + 1 = a^2 - \sqrt{2}a + 1 \Rightarrow a^2 - b^2 = \sqrt{2}(a - b) \Rightarrow a + b = \sqrt{2}$$

$$\Rightarrow b = a + \frac{1}{a} - \sqrt{2} = \sqrt{2} - a \Rightarrow 2\sqrt{2} = 2a + \frac{1}{a} \geqslant 2\sqrt{2a \cdot \frac{1}{a}} = 2\sqrt{2}$$

最后一个不等式等号成立当且仅当 $a = \frac{\sqrt{2}}{2}$, 由此可知 $a = b = \frac{1}{\sqrt{2}}$ 矛盾.

 \dot{z} 一般来说, 递推函数递减时候是否收敛完全取决于递推函数二次复合之后在区间内 (这个数列的最大, 最小值对应的区间) 是否会有新的不动点, 如果没有就收敛, 如果有, 则通常奇偶子列收敛到不同极限, 于是数列不收敛. 可以看到核心是二次复合后是否有新的不动点, 也即解方程 f(f(x)) = x, 一般不建议硬算, 尤其是多项式或者分式类型, 往往化为两个方程 a = f(b), b = f(a) 然后作差会比较方便, 只有出现超越函数时候, 才有必要真的把二次复合化简算出来, 然后硬解方程, 或者求导研究问题, 这样"迫不得已"的例子见最后一个练习题.

例题 **2.69** 定义数列 $a_0 = x, a_{n+1} = \frac{a_n^2 + y^2}{2}, n = 0, 1, 2, \dots, 求 D \triangleq \{(x, y) \in \mathbb{R}^2 : 数列<math>a_n$ 收敛} 的面积.

2.6.2 单调性分析法

命题 2.15 (不动点)

设数列 $\{x_n\}$ 满足递推公式 $x_{n+1}=f(x_n), n\in\mathbb{N}_+$. 若有 $\lim_{n\to\infty}x_n=\xi$, 同时又成立 $\lim_{n\to\infty}f(x_n)=f(\xi)$ 则极限 ξ 一定是方程 f(x)=x 的根 (这时称 ξ 为函数 f 的不动点).

证明 对 $x_{n+1} = f(x_n)$ 两边取极限即得.

关于递推数列求极限和估阶的问题,单调性分析法只适用于

$$x_{n+1} = f(x_n), n \in \mathbb{N}.$$

f 是递增或者递减的类型,且大多数情况只适用于 f 递增情况,其余情况不如压缩映像思想方便快捷.显然递推数列 $x_{n+1} = f(x_n)$ 确定的 x_n 如果收敛于 $x \in \mathbb{R}$,则当 f 连续时一定有 f(x) = x,此时我们也把这个 x 称为 f 的不动点. 因此 f(x) = x 是 x_n 收敛于 $x \in \mathbb{R}$ 的必要条件.

命题 2.16 (递增函数递推数列)

设 f 是递增函数,则递推

$$x_{n+1} = f(x_n), n \in \mathbb{N}. \tag{2.68}$$

确定的 x_n 一定单调, 且和不动点大小关系恒定.

章 **笔记** 本结论表明由递增递推(2.68)确定的数列的单调性和有界性, 完全由其 $x_2 - x_1$ 和 x_1 与不动点 x_0 的大小关系确定. 即 $x_2 > x_1 \Rightarrow x_{n+1} > x_n, \forall n \in \mathbb{N}_+, x_1 > x_0 \Rightarrow x_n > x_0, \forall n \in \mathbb{N}_+.$

证明 我们只证一种情况, 其余情况是完全类似的. 设 x_0 是 f 的不动点且 $x_1 \leq x_0, x_2 \geq x_1$, 则若 $x_n \leq x_{n+1}, x_n \leq x_0, n \in \mathbb{N}$, 运用 f 递增性有

$$x_{n+1} = f(x_n) \leqslant f(x_0) = x_0, x_{n+2} = f(x_{n+1}) \geqslant f(x_n) = x_{n+1}.$$

由数学归纳法即证明了命题 2.16

命题 2.17 (递减函数递推数列)

设 f 是递减函数, 则递推

$$x_{n+1} = f(x_n), n \in \mathbb{N}. \tag{2.69}$$

确定的 $\{x_n\}$ 一定不单调, 且和不动点大小关系交错. 但 $\{x_n\}$ 的两个奇偶子列 $\{x_{2k-1}\}$ 和 $\{x_{2k}\}$ 分别为单调数列, 且具有相反的单调性.

章记 我们注意到 $f \circ f$ 递增就能把 f 递减转化为递增的情况,本结论无需记忆或证明,只记得思想即可. x_n 和不动点关系交错,即若 x_0 为数列 x_n 的不动点,且 $x_1 \geqslant x_0, x_2 \leqslant x_0$,则 $x_3 \geqslant x_0, \cdots, x_{2n} \leqslant x_0, x_{2n-1} \geqslant x_0, \cdots$;并且 $x_2 \leqslant x_1, x_3 \geqslant x_1, x_4 \leqslant x_2, x_5 \geqslant x_3, \cdots, x_{2n} \leqslant x_{2n-2}, x_{2n-1} \geqslant x_{2n-3}, \cdots$.

证明 由命题 2.16类似证明即可.

例题 2.70 递增/递减递推数列

- 3. $\forall x_1 = 2, x_n + (x_n 4)x_{n-1} = 3, (n = 2, 3, \dots), \text{ \vec{x} } \text{ \vec{k} } \text{ $\vec{k$
- 4. $\forall x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} 1, n = 1, 2, \dots, \text{ π ki R } \lim_{n \to \infty} x_n.$

拿 笔记

1. 不妨设 $x_1 \ge 0$ 的原因: 我们只去掉原数列 $\{x_n\}$ 的第一项,得到一个新数列,并且此时新数列是从原数列 $\{x_n\}$ 的第二项 x_2 开始的. 对于原数列 $\{x_n\}$ 而言,有 $x_{n+1} = \sqrt{6+x_n} \ge 0$, $\forall n \in \mathbb{N}_+$. 故新数列的每一项都大于等于 0. 将新数列重新记为 $\{x_n\}$,则 $x_1 \ge 0$. 若此时能够证得新数列收敛到 x_0 ,则由于数列去掉有限项不会影响数列的敛散性以及极限值,可知原数列也收敛到 x_0 . 故不妨设 $x_1 \ge 0$ 是合理地.

(简单地说, 就是原数列用 x_2 代替 x_1 , 用 x_{n+1} 代替 $x_n, \forall n \in \mathbb{N}_+$, 而由 $x_1 > -6$, 可知 $x_2 = \sqrt{6 + x_1} \ge 0$.)

注 这种不妨设的技巧在数列中很常用,能减少一些不必要的讨论.实际上就是去掉数列中有限个有问题的项,而去掉这些项后对数列的极限没有影响.

解

1. 不妨设 $x_1 \ge 0$, 则设 $f(x) = \sqrt{6+x}$, 则 f(x) 单调递增. 当 $x_1 < 3$ 时, 由条件可知

$$x_2 - x_1 = \sqrt{6 + x_1} - x_1 = \frac{(3 - x_1)(2 + x_1)}{\sqrt{6 + x_1} + x_1}.$$
 (2.70)

从而此时 $x_2 > x_1$. 假设当 n = k 时, 有 $x_k < 3$. 则当 n = k + 1 时, 就有

$$x_{k+1} = f(x_k) = \sqrt{6 + x_k} < \sqrt{6 + 3} = 3.$$

故由数学归纳法, 可知 $x_n < 3, \forall n \in \mathbb{N}_+$.

假设当 n = k 时, 有 $x_{k+1} \ge x_k$. 则当 n = k+1 时, 就有

$$x_{k+2} = f(x_{k+1}) \geqslant f(x_k) = x_{k+1}.$$

故由数学归纳法, 可知 $\{x_n\}$ 单调递增. 于是由单调有界定理, 可得数列 $\{x_n\}$ 收敛.

当 $x_1 \ge 3$ 时, 由(2.70)式可知, 此时 $x_2 \le x_1$. 假设当 n = k 时, 有 $x_k \ge 3$. 则当 n = k + 1 时, 就有

$$x_{k+1} = f(x_k) = \sqrt{6 + x_k} \ge \sqrt{6 + 3} = 3.$$

故由数学归纳法, 可知 $x_n \ge 3, \forall n \in \mathbb{N}_+$.

假设当 n = k 时, 有 $x_{k+1} \leq x_k$. 则当 n = k+1 时, 就有

$$x_{k+2} = f(x_{k+1}) \le f(x_k) = x_{k+1}.$$

故由数学归纳法,可知 $\{x_n\}$ 单调递减. 于是由单调有界定理,可得数列 $\{x_n\}$ 收敛.

综上, 无论 $x_1 > 3$ 还是 $x_1 \leqslant 3$, 都有数列 $\{x_n\}$ 收敛. 设 $\lim_{n \to \infty} x_n = a$. 则对 $x_{n+1} = \sqrt{6 + x_n}$ 两边同时令 $n \to \infty$

可得 $a = \sqrt{6+a}$, 解得 $\lim_{n \to \infty} x_n = a = 3$.

2.

3.

4.

例题 2.71 设 $c, x_1 \in (0, 1)$, 数列 $\{x_n\}$ 满足 $x_{n+1} = c(1-x_n^2), x_2 \neq x_1$, 证明 x_n 收敛当且仅当 $c \in \left(0, \frac{\sqrt{3}}{2}\right)$.

证明 根据题目显然有 $x_n \in (0,1)$, 考虑函数 $f(x) = c(1-x^2)$, 则 f(x) 单调递减, 并且 f(x) = x 在区间 (0,1) 中有唯 - 解 $t_0 = \frac{\sqrt{1+4c^2}-1}{2c}$, 则 $x_1 \neq t_0$, 不妨设 $x_1 \in (0,t_0)$ (若不然 $x_1 > t_0$, 则 $x_2 = f(x_1) < f(t_0) = t_0$, 从 x_2 开始考虑即可), 所以 $x_2 > t_0$, $x_3 < t_0$, $x_4 < t_0$ 也即 $x_2 > t_0$, $x_2 > t_0$, $x_3 < t_0$, $x_4 < t_0$ 也即 $x_2 > t_0$, $x_3 < t_0$ 也即 $x_3 < t_0$ 也即

为了研究奇偶子列的单调性,考虑二次复合,计算有

$$f(f(x)) - x = c\left(1 - c^2(1 - x^2)^2\right) - x = (-cx^2 + c - x)(c^2x^2 + cx + 1 - c^2)$$

两个因子都是二次函数, 前者开口向下, 在 (0,1) 区间中与 y=x 的唯一交点 (横坐标) 是 $t_0=\frac{\sqrt{1+4c^2}-1}{2c}$, 后者开口向上, 解方程有 $(形式上)x=\frac{-c\pm\sqrt{4c^2-3}}{2c}$.

因此我们应该以 $c = \frac{\sqrt{3}}{2}$ 分类, 当 $c \in \left(0, \frac{\sqrt{3}}{2}\right)$ 时, $c^2x^2 + cx + 1 - c^2 \ge 0$ 也即当 $x \in (0, t_0)$ 时 $f(f(x)) \ge x, x \in (t_0, 1)$ 时 $f(f(x)) \le x$, 代入可知

$$x_1 \leqslant x_3 \leqslant x_5 \leqslant \cdots \leqslant t_0, x_2 \geqslant x_4 \geqslant x_6 \geqslant \cdots \geqslant t_0$$

也即奇子列单调递增有上界 t_0 , 偶子列单调递减有下界 t_0 , 所以奇偶子列分别都收敛, 解方程 f(f(x)) = x 可知其在 (0,1) 中有唯一解 $t_0 = \frac{\sqrt{1+4c^2}-1}{2c}$, 所以奇偶子列收敛到同一值, 数列收敛.

2c 当 $c > \frac{\sqrt{3}}{2}$ 时,方法一:显然有 $\frac{-c - \sqrt{4c^2 - 3}}{2c} < \frac{\sqrt{1 + 4c^2 - 1}}{2c} < \frac{-c + \sqrt{4c^2 - 3}}{2c}$,从左至右依次记为 $t_1 < t_0 < t_2$. 采用反证法,如果 x_n 收敛,则解方程 f(x) = x 可知 $x_n \to t_0$,注意 $x_{2n-1} \in (0,t_0), x_{2n} \in (t_0,1)$ 并且反证法表明这两个子列也都收敛到 t_0 ,则存在 N 使得 n > N 时恒有 $x_{2n-1} \in (t_1,t_0), x_{2n} \in (t_0,t_2)$.注意

$$f(f(x)) - x = (-cx^2 + c - x)(c^2x^2 + cx + 1 - c^2)$$

因此在区间 (t_1,t_0) 中 f(f(x)) < x, 区间 (t_0,t_2) 中 f(f(x)) > x, 所以 n > N 时奇子列单调递减, 偶子列单调递增, 根据单调有界, 只能奇子列收敛到 t_1 , 偶子列收敛到 t_2 , 这与 $x_n \to t_0$ 矛盾.

方法二:这个方法可以快速说明 $c>\frac{\sqrt{3}}{2}$ 时数列一定不收敛,但是剩下一半似乎用不了. 显然 f(x)=x 的解是 $t_0=\frac{\sqrt{1+4c^2}-1}{2c}$,如果 $c>\frac{\sqrt{3}}{2}$,求导有 f'(x)=-2cx, $|f'(t_0)|=\sqrt{1+4c^2}-1>1$. 所以在 t_0 附近的一个邻域内都有 $|f'(x)|\geqslant 1+\delta>1$,而如果此时 x_n 收敛,则必然收敛到 t_0 ,也就是说存在 x_N 落入 t_0 附近一个去心邻域内 (条件 $x_2\neq x_1$ 保证了 $x_n\neq t_0$ 恒成立),于是

$$|x_{N+1} - t_0| = |f(x_N) - f(t_0)| = |f'(\xi)||x_N - t_0| \ge (1 + \delta)|x_N - t_0|$$

以此类推下去,显然 $x_n 与 t_0$ 的距离只会越来越远,因此不可能收敛到 t_0 导致矛盾.

注 方法一是标准方法也是通用的, 注意多项式时候一定有整除关系 $f(x)-x\mid f(f(x))-x$ 所以必定能因式分解. 方法二则是回忆之前讲过的"极限点处导数大于等于 1 时候就不可能压缩映射", 利用这个原理我们很快能发现 c 的分界线, 同时也能快速说明 $c>\frac{\sqrt{3}}{2}$ 时数列一定不收敛.

2.6.3 利用上下极限求递推数列极限

利用上下极限求递推数列极限,首先要先确定数列有界,进而说明上下极限存在.其次,运用这种方法前提是:需要递推式中出现分式或负号,这样对递推式两边分别取上、下极限后,才会得到一个关于上极限和下极限的值的等式.只有通过这个等式将上、下极限的值联系起来后,才能利用反复抽子列或其他方法证明上、下极限相等.

例题 2.72 设 $A, B > 0, a_1 > A$ 以及 $a_{n+1} = A + \frac{B}{a_n}, n \in \mathbb{N}_+$, 计算 $\lim_{n \to \infty} a_n$.

证明 显然 $a_n > A > 0$, $\forall n \in \mathbb{N}_+$. 从而 $a_{n+1} = A + \frac{B}{a_n} \leqslant A + \frac{B}{A}$, $\forall n \in \mathbb{N}_+$. 故数列 $\{a_n\}$ 有界. 于是可设 $a = \overline{\lim_{n \to \infty}} a_n < A$

 $\infty, b = \underline{\lim}_{n \to \infty} a_n < \infty$. 对等式 $a_{n+1} = A + \frac{B}{a_n}$ 两边同时关于 $n \to +\infty$ 取上下极限得到

$$a = \overline{\lim}_{n \to \infty} a_{n+1} = A + \overline{\lim}_{n \to \infty} \frac{B}{a_n} = A + \frac{B}{\underline{\lim}_{n \to \infty} a_n} = A + \frac{B}{b},$$

$$b = \underline{\lim}_{n \to \infty} a_{n+1} = A + \underline{\lim}_{n \to \infty} \frac{B}{a_n} = A + \frac{B}{\underline{\lim}_{n \to \infty} a_n} = A + \frac{B}{a}.$$

于是我们有 $\begin{cases} ab = Ab + B \\ ab = Aa + B \end{cases}, 解得 \ a = b0 = \frac{A \pm \sqrt{A^2 - 4B}}{2}. \ \text{又由} \ a_n > A > 0, 可知 \ a = b = \frac{A + \sqrt{A^2 - 4B}}{2}.$ 故

 $\lim_{n \to \infty} a_n = \frac{A + \sqrt{A^2 - 4B}}{2}.$

例题 2.73 设 $x_0, y_0 > 0, x_{n+1} = \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1}, y_{n+1} = \frac{1}{2x_n^2 + x_n y_n + y_n^2 + 1}$, 证明: 数列 x_n, y_n 都收敛且极限相

注 $1 + \frac{3}{4}u^2$ 的放缩思路: 我们希望 $\frac{x}{(1 + \frac{3}{4}x^2)^2} < 1$, 待定 m > 0, 利用均值不等式可知

$$\left(1 + \frac{3}{4}x^2\right)^2 = \left(\frac{3}{4}x^2 + \frac{1}{m} + \frac{1}{m} + \dots + \frac{1}{m}\right)^2 \geqslant \left((m+1)^{\frac{m+1}{\sqrt{3}}}\sqrt{\frac{3}{4}x^2 \cdot \frac{1}{m^m}}\right)^2 = \left(\frac{3}{4}\right)^{\frac{2}{m+1}} \cdot \frac{m+1}{m^{\frac{2m}{m+1}}}x^{\frac{4}{m+1}}.$$

从而我们希望 $x^{\frac{4}{m+1}} = x$, 即 m = 3. 这样就能使得

$$\frac{x}{(1+\frac{3}{4}x^2)^2} \leqslant \left(\frac{3}{4}\right)^{\frac{2}{m+1}} \cdot \frac{m+1}{m^{\frac{2m}{m+1}}} x^{\frac{4}{m+1}} = \left(\frac{3}{4}\right)^{\frac{2}{3+1}} \cdot \frac{3+1}{3^{\frac{2\cdot 3}{3+1}}} < 1.$$

故取 m=3.

证明 根据条件可知 $x_n, y_n > 0$, 并且进一步归纳易证 $x_n, y_n \in [0, 1]$, 所以上下极限也都在 [0, 1] 之间.

$$x_{n+1} - y_{n+1} = \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1} - \frac{1}{2x_n^2 + x_n y_n + y_n^2 + 1}$$
$$= \frac{x_n^2 - y_n^2}{(x_n^2 + x_n y_n + 2y_n^2 + 1)(2x_n^2 + x_n y_n + y_n^2 + 1)}$$

由均值不等式可得

$$x^{2} + xy + y^{2} = (x+y)^{2} - xy \ge (x+y)^{2} - \left(\frac{x+y}{2}\right)^{2} = \frac{3}{4}(x+y)^{2}.$$

记 $u = x_n + y_n \ge 0$, 则由均值不等式可得

$$1 + \frac{3}{4}u^2 = \frac{3}{4}u^2 + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \Rightarrow 4\sqrt[4]{\frac{u^2}{36}} = 4\sqrt{\frac{|u|}{6}} \Rightarrow \frac{u}{(1 + \frac{3}{4}u^2)^2} \le \frac{8}{3}.$$

于是

$$\begin{aligned} |x_{n+1} - y_{n+1}| &= \frac{|x_n - y_n|(x_n + y_n)}{(x_n^2 + x_n y_n + 2y_n^2 + 1)(2x_n^2 + x_n y_n + y_n^2 + 1)} \\ &\leq |x_n - y_n| \frac{x_n + y_n}{(x_n^2 + x_n y_n + y_n^2 + 1)(x_n^2 + x_n y_n + y_n^2 + 1)} \\ &\leq |x_n - y_n| \frac{x_n + y_n}{(1 + \frac{3}{4}(x_n + y_n)^2)^2} &= |x_n - y_n| \frac{u}{(1 + \frac{3}{4}u^2)^2} \end{aligned}$$

故

$$|x_{n+1} - y_{n+1}| \le \frac{3}{8}|x_n - y_n| \le \dots \le (\frac{3}{8})^n|x_1 - y_1|.$$

上式两边同时令 $n \to \infty$, 得到 $\lim_{n \to \infty} (x_n - y_n) = 0$. 因此, 设 $\overline{\lim_{n \to \infty}} x_n = \overline{\lim_{n \to \infty}} y_n = A$, $\underline{\lim_{n \to \infty}} x_n = \underline{\lim_{n \to \infty}} y_n = B$, $A, B \in \mathbb{R}$ $[0,1], A \ge B$ 利用上下极限的基本性质有

$$A = \overline{\lim}_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1} \leqslant \frac{1}{4B^2 + 1}$$

$$B = \underline{\lim}_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1} \geqslant \frac{1}{4A^2 + 1}$$

$$\Rightarrow A \leqslant \frac{1}{4B^2 + 1} \leqslant \frac{1}{\frac{4}{(4A^2 + 1)^2} + 1} = \frac{(4A^2 + 1)^2}{(4A^2 + 1)^2 + 4}$$

方法一:去分母并化简, 因式分解得到 (这个方法难算, 建议用 mma, 或者慢慢手动拆)

$$A((4A^2+1)^2+4)-(4A^2+1)^2=(2A-1)^3(2A^2+A+1)\leqslant 0$$

于是 $A\leqslant\frac{1}{2}$,同理可知 $B\geqslant\frac{1}{2}$,所以 $A=B=\frac{1}{2}$,因此 x_n,y_n 都收敛到 $\frac{1}{2}$. 方法二:最后计算 A,B 时候如果采用上述方法硬做有点难算,其实有巧妙一些的选择. 因为 $\lim_{n\to\infty}(x_n-y_n)=0$, 所以 $\lim_{n\to\infty} (4x_n^2 - (x_n^2 + x_n y_n + 2y_n^2)) = \lim_{n\to\infty} x_n (x_n - y_n) + 2 \lim_{n\to\infty} (x_n + y_n) (x_n - y_n) = 0$ (有界量乘无穷小量). 进而上下极限也有等式 $\overline{\lim}_{n\to\infty} (x_n^2 + x_n y_n + 2y_n^2) = \overline{\lim}_{n\to\infty} 4x_n^2 = 4A^2$, $\underline{\lim}_{n\to\infty} (x_n^2 + x_n y_n + 2y_n^2) = \underline{\lim}_{n\to\infty} 4x_n^2 = 4B^2$ 代入可知

$$A = \overline{\lim}_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1} = \frac{1}{4B^2 + 1}$$

$$B = \underline{\lim}_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} \frac{1}{x_n^2 + x_n y_n + 2y_n^2 + 1} = \frac{1}{4A^2 + 1}$$

$$\Rightarrow 4AB^2 + A = 4A^2B + B = 1, (4AB - 1)(B - A) = 0$$

所以若 A=B 则显然成立, 进而由递推条件可得 $A=B=\frac{1}{2}$. 若 $A\neq B$ 则 $AB=\frac{1}{4}$, 代入有 A+B=1, 显然解出 $A = B = \frac{1}{4}$ 矛盾.

 $\stackrel{4}{\succeq}$ 有必要先来证明 $x_n-y_n\to 0$ 而不是上来直接设 x_n,y_n 的上下极限一共四个数字, 这样的话根本算不出来 (用 mma 都算不出来), 而如果证明了 $x_n - y_n \to 0$, 则只有两个变量了. 方法二好做是因为都是等式了, 所以可以作差 然后简单的因式分解解出来,而方法一那样无脑硬算,就要麻烦.本题运用的若干上下极限性质都可以在任何一 本数学分析教材上面找到证明. 只要你记住三点:

- 1. 逐项 (包括加法也包括乘法) 取上下极限通常都会成立一个确定方向的不等式.
- 2. 计算上下极限时候, 如果其中某一项极限就是存在的, 那么上下极限的不等式将会成为等式,
- 3. 对于都是正数的问题, 取倒数的上下极限运算规则就是你脑海中最自然的那种情况. 这样考试时候就算忘 了具体的结论,也可以通过画图和举例快速确定下来.

2.6.4 类递增/类递减递推数列

例题 2.74 类递增模型

- 2. 设 $a_k \in (0,1), 1 \leq k \leq 2021$ 且 $(a_{n+2021})^{2022} = a_n + a_{n+1} + \cdots + a_{n+2020}, n = 1, 2, \cdots$, 这里 $a_n > 0, \forall n \in \mathbb{N}$ 证明 $\lim a_n$ 存在.
- 笔记 解决此类问题一般先定界 (即确定 c_n 的上下界的具体数值), 再对等式两边同时取上下极限即可.
 - 1. 记 $b ext{ ≤ max}\{c_1, c_2, 4\}$ 的原因: 为了证明数列 c_n 有界, 我们需要先定界(即确定 c_n 的上下界的具体数值), 然后 再利用数学归纳法证得数列 c_n 有界.显然 c_n 有一个下界0,但上界无法直接观察出来.为了确定出数列 c_n 的 一个上界, 我们可以先假设 c_n 有一个上界 b(此时 b 是待定常数). 则 $c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}} \leqslant \sqrt{b} + \sqrt{b} = 2\sqrt{b} \leqslant b$, 由此解得 $b \ge 4$. 又由数学归纳法的原理, 可知需要保证 b 同时也是 c_1, c_2 的上界. 故只要取 $b \ge 4, c_1, c_2$ 就 一定能归纳出 $b \in c_n$ 的一个上界. 而我们取 $b \triangleq \max\{c_1, c_2, 4\}$ 满足这个条件.

2. 记 M = 的原因: 同上一问, 假设数列 a_n 有一个上界 M(此时 M 是待定常数), 则

$$a_{n+2021} = \sqrt[2022]{a_n + a_{n+1} + \dots + a_{n+2020}} \le \sqrt[2022]{M + M + \dots + M} = \sqrt[2022]{2021} \le M.$$

由此解得 $M \ge (2021)^{\frac{1}{2021}}$. 又由数学归纳法的原理, 可知需要保证 M 同时也是 $a_1, a_2, \cdots, a_{2020}$ 的上界. 故只 要取 $M \geqslant (2021)^{\frac{1}{2021}}, a_1, a_2, \cdots, a_{2020}$ 就一定能归纳出 M 是 a_n 的一个上界. 而我们取 $M = \max\left\{(2021)^{\frac{1}{2021}}, a_1, a_2, \cdots, a_{2020}\right\}$ 满足这个条件.

解

1. 记 $b \triangleq \max\{c_1, c_2, 4\}$, 则 $0 < c_1, c_2 \le b$. 假设 $0 < c_n \le b$, 则

$$0 < c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}} \le \sqrt{b} + \sqrt{b} = 2\sqrt{b} \le b.$$

由数学归纳法, 可知对 $\forall n \in \mathbb{N}_+$, 都有 $0 < c_n \le b$ 成立. 即数列 $\{c_n\}$ 有界.

因此可设 $L = \overline{\lim_{n \to \infty}} c_n < \infty, l = \underline{\lim_{n \to \infty}} c_n < \infty.$ 令 $c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}}$ 两边同时对 $n \to \infty$ 取上下极限, 可得

$$L = \overline{\lim}_{n \to \infty} c_{n+1} = \overline{\lim}_{n \to \infty} (\sqrt{c_n} + \sqrt{c_{n-1}}) \leqslant \overline{\lim}_{n \to \infty} \sqrt{c_n} + \overline{\lim}_{n \to \infty} \sqrt{c_{n-1}} = 2\sqrt{L} \Rightarrow L \leqslant 4,$$

$$l = \underline{\lim}_{n \to \infty} c_{n+1} = \underline{\lim}_{n \to \infty} (\sqrt{c_n} + \sqrt{c_{n-1}}) \geqslant \underline{\lim}_{n \to \infty} \sqrt{c_n} + \underline{\lim}_{n \to \infty} \sqrt{c_{n-1}} = 2\sqrt{l} \Rightarrow l \geqslant 4.$$

又 $l = \lim_{n \to \infty} c_n \leq \overline{\lim}_{n \to \infty} c_n = L$, 故 L = l = 4. 即 $\lim_{n \to \infty} c_n = 4$.

2. 取 $M = \max\left\{(2021)^{\frac{1}{2021}}, a_1, a_2, \cdots, a_{2020}\right\}$, 显然 $a_n > 0$ 且 $a_1, a_2, \cdots, a_{2020} \leqslant M$. 假设 $a_k \leqslant M, k = 1, 2, \cdots, n$ 则由条件可得

$$a_{n+1} = \sqrt[2022]{a_{n-2020} + a_{n-2019} + \dots + a_n} \le \sqrt[2022]{M + M + \dots + M} = \sqrt[2022]{2021M} \le M.$$

由数学归纳法, 可知 $0 < a_n \leq M, \forall n \in \mathbb{N}_+$. 即数列 a_n 有界. 因此可设 $A = \overline{\lim_{n \to \infty}} a_n < \infty, a = \underline{\lim_{n \to \infty}} a_n < \infty$. 由条 件可得

$$a_{n+2021} = \sqrt[2022]{a_n + a_{n+1} + \dots + a_{n+2020}}.$$

上式两边同时对 $n \to \infty$ 取上下极限得到

$$A = \overline{\lim}_{n \to \infty} a_{n+2021} = \overline{\lim}_{n \to \infty} {}^{2022}\sqrt{a_n + a_{n+1} + \dots + a_{n+2020}} = {}^{2022}\sqrt{\overline{\lim}_{n \to \infty}} (a_n + a_{n+1} + \dots + a_{n+2020})$$

$$\leq {}^{2022}\sqrt{\overline{\lim}_{n \to \infty}} a_n + \overline{\lim}_{n \to \infty} a_{n+1} + \dots + \overline{\lim}_{n \to \infty} a_{n+2020} = {}^{2022}\sqrt{A + A + \dots + A} \Rightarrow A \leq (2021)^{\frac{1}{2021}},$$

$$a = \underline{\lim}_{n \to \infty} a_{n+2021} = \underline{\lim}_{n \to \infty} {}^{2022}\sqrt{a_n + a_{n+1} + \dots + a_{n+2020}} = {}^{2022}\sqrt{\frac{\lim}{n \to \infty}} (a_n + a_{n+1} + \dots + a_{n+2020})$$

$$\geq {}^{2022}\sqrt{\frac{\lim}{n \to \infty}} a_n + \underline{\lim}_{n \to \infty} a_{n+1} + \dots + \underline{\lim}_{n \to \infty} a_{n+2020} = {}^{2022}\sqrt{a + a + \dots + a} \Rightarrow a \geq (2021)^{\frac{1}{2021}}.$$

又 $a = \underline{\lim}_{n \to \infty} a_n \leq \overline{\lim}_{n \to \infty} a_n = A$, 故 $A = a = (2021)^{\frac{1}{2021}}$. 即 $\lim_{n \to \infty} a_n = (2021)^{\frac{1}{2021}}$.

1. 设 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}$, $a_1, a_2 > 0$, $n = 1, 2, \cdots$. 证明 $\lim_{n \to \infty} a_n$ 存在. 2. 设 $x_1 = a > 0$, $x_2 = b > 0$, $x_{n+2} = 3 + \frac{1}{x_{n+1}^2} + \frac{1}{x_n^2}$, $n = 1, 2, \cdots$. 证明 $\lim_{n \to \infty} x_n$ 存在.

笔记 此类问题一定要记住, 先定界. 这里我们提供两种方法:

第一题我们使用上下极限, 再隔项抽子列的方法.(这里就算我们解不出不动点也能用这个方法证明极限存 在.)

第二题我们使用构造二阶差分的线性递推不等式的方法. (这里也可以设出不动点 x_0 , 由条件可知, $x_0 = 3 + \frac{1}{x_0^2} + \frac{1}{x_0^2}$, 解出不动点. 然后两边减去不动点, 类似的去构造一个二阶线性递推数列, 然后待定系数放缩一下说明收

这类题如果不记住做题时会难以想到. 与类递增模型一样, 一开始要定界.

注 第二题的极限是一个无理数,特征方程比较难解,因此我们只证明极限的存在性.

1. 取 $a = \min \left\{ a_1, a_2, \frac{2}{a_1}, \frac{2}{a_2} \right\} > 0$, 则有 $0 < a \le a_1, a_2 \le \frac{2}{a}$ 成立. 假设 $0 < a \le a_n, a_{n+1} \le \frac{2}{a}$, 则由条件可得 $a = \frac{a}{2} + \frac{a}{2} \le a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} \le \frac{1}{a} + \frac{1}{a} = \frac{2}{a}$

由数学归纳法, 可知 $0 < a \leqslant a_n \leqslant \frac{2}{a}, \forall n \in \mathbb{N}_+$. 即数列 a_n 有界. 于是可设 $A = \overline{\lim_{n \to \infty}} a_n < \infty, B = \underline{\lim_{n \to \infty}} a_n < \infty$.由 致密性定理, 可知存在一个子列 $\{a_{n_k}\}$, 使得

$$\lim_{k\to\infty}a_{n_k+2}=A, \lim_{k\to\infty}a_{n_k+1}=l_1<\infty, \lim_{k\to\infty}a_{n_k}=l_2<\infty, \lim_{k\to\infty}a_{n_k-1}=l_3<\infty.$$

并且根据上下极限的定义, 可知 $B \leq l_1, l_2, l_3 \leq A$. 对等式 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}$ 两边同时关于 $n \to +\infty$ 取上下 极限得到

$$\begin{split} A &= \varlimsup_{n \to \infty} a_{n+2} = \varlimsup_{n \to \infty} \left(\frac{1}{a_{n+1}} + \frac{1}{a_n} \right) \leqslant \varlimsup_{n \to \infty} \frac{1}{a_{n+1}} + \varlimsup_{n \to \infty} \frac{1}{a_n} \\ &= \frac{1}{\varliminf_{n \to \infty} a_{n+1}} + \frac{1}{\varliminf_{n \to \infty} a_n} = \frac{1}{B} + \frac{1}{B} = \frac{2}{B} \Rightarrow AB \leqslant 2. \end{split}$$

$$B = \underbrace{\lim_{n \to \infty} a_{n+2}}_{n \to \infty} = \underbrace{\lim_{n \to \infty}}_{n \to \infty} \left(\frac{1}{a_{n+1}} + \frac{1}{a_n} \right) \geqslant \underbrace{\lim_{n \to \infty}}_{n \to \infty} \frac{1}{a_{n+1}} + \underbrace{\lim_{n \to \infty}}_{n \to \infty} \frac{1}{a_n}$$
$$= \underbrace{\frac{1}{\lim_{n \to \infty}} a_{n+1}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty}} a_n}_{n \to \infty} = \frac{1}{A} + \underbrace{\frac{1}{A}}_{A} = \frac{2}{A} \Rightarrow AB \geqslant 2.$$

故 AB=2. 因为 $\{a_{n_k}\}$ 是数列 a_n 的一个子列, 所以 $\{a_{n_k}\}$ 也满足 $a_{n_k+2}=\frac{1}{a_{n_k+1}}+\frac{1}{a_{n_k}}, \forall k\in\mathbb{N}_+$. 并且子列 $\{a_{n_k-1}\},\{a_{n_k}\},\{a_{n_k+1}\},\{a_{n_k+2}\}$ 的极限都存在,于是对 $a_{n_k+2}=\frac{1}{a_{n_k+1}}+\frac{1}{a_{n_k}}$ 等式两边同时关于 $k\to +\infty$ 取极 限, 再结合 $B \leq l_1, l_2, l_3 \leq A$ 得到

$$A = \lim_{k \to \infty} a_{n_k+2} = \lim_{k \to \infty} \frac{1}{a_{n_k+1}} + \lim_{k \to \infty} \frac{1}{a_{n_k}}$$
$$= \frac{1}{l_1} + \frac{1}{l_2} \leqslant \frac{1}{l_2} + \frac{1}{l_3} = \frac{2}{l_3} = A \Rightarrow l_1 = l_2 = B.$$

同理再对 $a_{n_k+1} = \frac{1}{a_{n_k}} + \frac{1}{a_{n_k+1}}$ 等式两边同时关于 $k \to +\infty$ 取极限, 再结合 $B \leqslant l_1, l_2, l_3 \leqslant A$ 得到

$$B = l_1 = \lim_{k \to \infty} a_{n_k + 1} = \lim_{k \to \infty} \frac{1}{a_{n_k}} + \lim_{k \to \infty} \frac{1}{a_{n_k - 1}}$$
$$= \frac{1}{l_2} + \frac{1}{l_3} \geqslant \frac{1}{A} + \frac{1}{A} = \frac{2}{A} = B \Rightarrow l_2 = l_3 = A.$$

故 $A=B=l_1=l_2=l_3$, 又由于 AB=2, 因此 $\overline{\lim_{n\to\infty}}a_n=\underline{\lim_{n\to\infty}}a_n=A=B=\sqrt{2}$. 即 $\lim_{n\to\infty}a_n=\sqrt{2}$. 2. 证法一:根据递推条件显然, $x_n\geqslant 3$, $\forall n\geqslant 3$. 从而 $x_5=3+\frac{1}{x_4^2}+\frac{1}{x_3^2}\leqslant 3+\frac{1}{9}+\frac{1}{9}<4$. 假设 $x_n\leqslant 4$, $\forall n\geqslant 5$, 则

$$x_{n+1} = 3 + \frac{1}{x_n^2} + \frac{1}{x_{n-1}^2} \le 3 + \frac{1}{9} + \frac{1}{9} < 4.$$

由数学归纳法可知 $x_n \in [3,4], \forall n \geq 5$. 可设 $\overline{\lim}_{n \to \infty} x_n = L < \infty, \underline{\lim}_{n \to \infty} x_n = l < \infty$. 对 $x_{n+2} = 3 + \frac{1}{x_{n+1}^2} + \frac{1}{x_n^2}$ 两边令 $n \to \infty$ 并分别取上、下极限得

$$L = 3 + \frac{2}{l^2}, \quad l = 3 + \frac{2}{L^2}.$$
 (2.71)

由致密性定理知, 存在子列 $\{x_{n_k}\}$, 使得 $\lim_{k\to\infty} x_{n_k+2} = L$, $\lim_{k\to\infty} x_{n_k+1} = l_1 < \infty$, $\lim_{k\to\infty} x_{n_k} = l_2 < \infty$, $\lim_{k\to\infty} x_{n_k-1} = l_3 < \infty$

$$\infty$$
. 显然 $l \leq l_1, l_2, l_3 < L$. 再对 $x_{n_k+2} = 3 + \frac{1}{x_{n_k+1}^2} + \frac{1}{x_{n_k}^2}$ 两边同时令 $k \to \infty$ 得

$$L = 3 + \frac{1}{l_1^2} + \frac{1}{l_2^2} \le 3 + \frac{2}{l^2}.$$

由(2.71)式知, 上式等号成立, 故 $l_1=l_2=l$. 同理对 $x_{n_k+1}=3+\frac{1}{x_{n_k}^2}+\frac{1}{x_{n_k-1}^2}$ 两边同时令 $k\to\infty$ 得

$$l = l_1 = 3 + \frac{1}{l_2^2} + \frac{1}{l_3^2} \geqslant 3 + \frac{2}{L^2}.$$

由(2.71)式知, 上式等号成立, 故 $l_2=l_3=L$. 综上可知 $l=l_2=L$. 故 $\lim_{n\to\infty}x_n$ 存在.

证法二:根据递推条件显然, $x_n \ge 3$, $\forall n \ge 3$. 从而 $x_5 = 3 + \frac{1}{x_4^2} + \frac{1}{x_3^2} \le 3 + \frac{1}{9} + \frac{1}{9} < 4$. 假设 $x_n \le 4$, $\forall n \ge 5$, 则

$$x_{n+1} = 3 + \frac{1}{x_n^2} + \frac{1}{x_{n-1}^2} \le 3 + \frac{1}{9} + \frac{1}{9} < 4.$$

由数学归纳法可知 $x_n \in [3,4], \forall n \geq 5$. 于是

$$\begin{aligned} |x_{n+2} - x_{n+1}| &= \left| \frac{1}{x_{n+1}^2} - \frac{1}{x_{n-1}^2} \right| \leqslant \left| \frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} \right| + \left| \frac{1}{x_n^2} - \frac{1}{x_{n-1}^2} \right| = \frac{|x_n^2 - x_{n+1}^2|}{x_{n+1}^2 x_n^2} + \frac{|x_{n-1}^2 - x_n^2|}{x_{n+1}^2 x_{n-1}^2} \\ &= \frac{x_n + x_{n+1}}{x_{n+1}^2 x_n^2} |x_{n+1} - x_n| + \frac{x_n + x_{n-1}}{x_n^2 x_{n-1}^2} |x_n - x_{n-1}| \\ &= \frac{1}{x_{n+1} x_n} \left(\frac{1}{x_{n+1}} + \frac{1}{x_n} \right) |x_{n+1} - x_n| + \frac{1}{x_n x_{n-1}} \left(\frac{1}{x_n} + \frac{1}{x_{n-1}} \right) |x_n - x_{n-1}| \\ &\leqslant \frac{2}{27} |x_{n+1} - x_n| + \frac{2}{27} |x_n - x_{n-1}|, \forall n \geqslant 6. \end{aligned}$$

记 $q = \frac{1}{2} \in (0,1), \lambda = \frac{1}{3}, u_n = |x_n - x_{n-1}|$,则由上式可得

$$u_{n+2} \leqslant \frac{2}{27} u_{n+1} + \frac{2}{27} u_n \leqslant (q-\lambda) u_{n+1} + q \lambda u_n, \forall n \geqslant 6.$$

$$\Leftrightarrow u_{n+2} + \lambda u_{n+1} \leqslant q(u_{n+1} + \lambda u_n), \forall n \geqslant 6.$$

从而对 $\forall n \geq 10 (n 大于 7 就行)$, 我们有

$$u_n \le u_n + \lambda u_{n-1} \le q(u_{n-1} + \lambda u_{n-2}) \le \dots \le q^{n-7}(u_7 + \lambda u_6).$$

于是对 $\forall n \geq 10$, 我们有

$$x_n \leqslant \sum_{k=10}^n |x_{k+1} - x_k| + x_6 = \sum_{k=10}^n u_k + x_6 \leqslant (u_7 + \lambda u_6) \sum_{k=10}^n q^{k-7} + x_6.$$

令 $n \to \infty$, 则由上式右边收敛可知, x_n 也收敛.

注

1. (1) 取 $a = \min \left\{ a_1, a_2, \frac{2}{a_1}, \frac{2}{a_2} \right\}$ 的原因: 为了证明数列 a_n 有界, 我们需要先定界, 然后再利用数学归纳法证得数列 a_n 有界. 显然 a_n 有一个下界 0, 但上界无法直接观察出来. 为了确定出数列 a_n 的上下界, 我们可以先假设 b 为数列 a_n 的一个上界 (此时 b 是待定常数), 但是我们根据 $a_n > 0$ 和 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}$ 只能得到 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} < +\infty$, 无法归纳法出 $a_n \leq b$, 故我们无法归纳出 $0 < a_n < b$, $\forall n \in \mathbb{N}_+$. 因此仅待定一个上界并不够,下界并不能简单的取为 0, 我们还需要找到一个更接近下确界的大于零的下界,不妨先假设这个下界为 a > 0(此时 a 也是待定常数). 利用这个下界和递推式 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}$ 归纳出 $0 < a \leq a_n \leq b$, $\forall n \in \mathbb{N}_+$ (此时 a, b 都是待定常数). 于是由已知条件可得

$$a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} \leqslant \frac{1}{a} + \frac{1}{a} = \frac{2}{a} \leqslant b \Rightarrow ab \geqslant 2,$$

$$a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} \geqslant \frac{1}{b} + \frac{1}{b} = \frac{2}{b} \geqslant a \Rightarrow ab \leqslant 2.$$

从而 ab = 2, 即 $b = \frac{2}{a}$. 进而 $0 < a \le a_n \le \frac{2}{a}$. 又由数学归纳法的原理, 可知我们需要同时保证 $0 < a \le a_1, a_2 \le \frac{2}{a}$. 因此找到一个合适的 a,使得 $0 < a \le a_1, a_2 \le \frac{2}{a}$ 成立就一定能归纳出 $0 < a \le a_n \le \frac{2}{a}$, $\forall n \in \mathbb{N}_+$,即数列 $\{a_n\}$ 有界. 而当我们取 $a = \min\left\{a_1, a_2, \frac{2}{a_1}, \frac{2}{a_2}\right\}$ 时,有 $a_1, a_2 \le a$, $\frac{2}{a} \ge \frac{2}{\frac{2}{a}} = \frac{2}{a}$ $a_1, \frac{2}{a} \ge \frac{2}{2} = a_2$. 恰好满足这个条件.

- (2) 能取到一个子列 a_{n_k} , 使得 $\lim_{k\to\infty} a_{n_k+2} = A$, $\lim_{k\to\infty} a_{n_k+1} = l_1 < \infty$, $\lim_{k\to\infty} a_{n_k} = l_2 < \infty$, $\lim_{k\to\infty} a_{n_k-1} = l_3 < \infty$ ∞ 成立的原因: 由 $A = \overline{\lim_{n \to \infty}} a_n$ 和上极限的定义 (上极限就是最大的子列极限), 可知存在一个子列 $\{a_{n_k}\}$, 使得 $\lim_{k\to\infty}a_{n_k+2}=A$. 因为数列 $\{a_{n_k+1}\}$ 有界 (因为数列 $\{a_n\}$ 有界), 所以由致密性定理可知 $\{a_{n_k+1}\}$ 一定存在一个收敛的子列 $\{a_{n_{k_j}+1}\}$, 并记 $\lim_{i\to\infty}a_{n_{k_j}+1}=l_1<\infty$. 又因为 $\{a_{n_{k_j}+2}\}$ 是 $\{a_{n_k+2}\}$ 的子列, 所以 $\lim_{k\to\infty}a_{n_{k_j}+2}=A$. 由于 $\{a_{n_{k_j}}\}$ 仍是 $\{a_n\}$ 的一个子列, 因此不妨将 $\{a_{n_{k_j}}\}$ 记作 $\{a_{n_k}\}$, 则此时有 $\lim_{k\to\infty}a_{n_k+2}=A,\lim_{k\to\infty}a_{n_k+1}=l_1<\infty.$ 同理由于数列 $\{a_{n_k}\}$ 有界, 所以由致密性定理可知 $\{a_{n_k}\}$ 存在一个收敛的子列 $\{a_{n_{k_l}}\}$,并记 $\lim_{l \to \infty} a_{n_{k_l}} = l_2$. 又因为 $\{a_{n_{k_l}+2}\}$ 是 $\{a_{n_k+2}\}$ 的子列, $\{a_{n_{k_l}+1}\}$ 是 $\{a_{n_k+1}\}$ 的子列, 所以 $\lim_{l \to \infty} a_{n_{k_l}+2} = A$, $\lim_{l \to \infty} a_{n_{k_l}+1} = l_1$. 由于 $\{a_{n_{k_l}}\}$ 仍是 $\{a_n\}$ 的一个子列, 因此不妨将 $\{a_{n_{k_{l}}}\}$ 记作 $\{a_{n_{k}}\}$, 则此时有 $\lim_{k\to\infty}a_{n_{k}+2}=A$, $\lim_{k\to\infty}a_{n_{k}+1}=l_{1}<\infty$, $\lim_{k\to\infty}a_{n_{k}}=l_{2}<\infty$. 再同理由于数列 $\{a_{n_{k}}\}$ 有界, 所以由致密性定理可知 $\{a_{n_{k}}\}$ 存在一个收敛的子列 $\{a_{n_{k_{s}}}\}$, 并记 $\lim_{s\to\infty}a_{n_{k_{s}}}=l_{3}$. 又因 为 $\{a_{n_{k_s}+2}\}$ 是 $\{a_{n_k+2}\}$ 的子列, $\{a_{n_{k_s}+1}\}$ 是 $\{a_{n_k+1}\}$ 的子列, $\{a_{n_{k_s}}\}$ 是 $\{a_{n_k}\}$ 的子列, $\widetilde{\mathbb{R}}$ 以 $\lim_{s\to\infty}a_{n_{k_s}+2}=0$ $A, \lim_{s \to \infty} a_{n_{k_s}+1} = l_1, \lim_{s \to \infty} a_{n_{k_s}} = l_2$. 由于 $\{a_{n_k}\}$ 仍是 $\{a_n\}$ 的一个子列, 因此不妨将 $\{a_{n_k}\}$ 记作 $\{a_{n_k}\}$, 则
- 此时有 $\lim_{k\to\infty} a_{n_k+2} = A$, $\lim_{k\to\infty} a_{n_k+1} = l_1 < \infty$, $\lim_{k\to\infty} a_{n_k} = l_2 < \infty$, $\lim_{k\to\infty} a_{n_k-1} = l_3 < \infty$.

 2. 记 $q = \frac{1}{2} \in (0,1), \lambda = \frac{1}{3}$ 的原因: 记 $u_n = |x_n x_{n-1}|$, 则 $u_{n+2} \leq \frac{2}{27}(u_{n+1} + u_n)$, 类比二阶线性递推数列方法, 希望找到 $\lambda > 0, q \in (0,1)$ 使得 $u_{n+2} + \lambda u_{n+1} \leqslant q(u_{n+1} + \lambda u_n)$ 恒成立, 这样一直递推下去就有 $u_{n+2} + \lambda u_{n+1} \leqslant q(u_{n+1} + \lambda u_n)$ $Cq^n, C > 0$, 说明 $|x_{n+1} - x_n|$ 是以等比数列速度趋于零的, 根据级数收敛的比较判别法显然 x_n 收敛, 结论成 而对比已知不等式 $u_{n+2} \leq \frac{2}{27}(u_{n+1}+u_n)$ 和目标不等式 $u_{n+2} \leq (q-\lambda)u_{n+1}+q\lambda u_n$ 可知, 只要满足 $u_{n+2} \leq u_{n+2}$ $\frac{2}{27}(u_{n+1}+u_n)\leqslant (q-\lambda)u_{n+1}+q\lambda u_n, q\in (0,1), \lambda>0$ 即可达到目的. 即只需取合适的 q,λ 使其满足 $q-\lambda\geqslant 0$ $\frac{2}{27}$, $q\lambda \ge \frac{2}{27}$, $q \in (0,1)$, $\lambda > 0$ 即可. 这明显有很多可以的取法, 例如 $q = \frac{1}{2}$, $\lambda = \frac{1}{3}$, 因此得证.

例题 **2.76** 设 $a_1, \dots, a_k, b_1, \dots, b_k > 0, k \ge 2, a_n = \sum_{i=1}^k \frac{b_i}{a_{n-i}}, n \ge k+1$, 证明: $\lim_{n\to\infty} a_n = \sqrt{\sum_{i=1}^k b_i}$.

笔记 本题是例题 2.75 第一题的推广. 核心想法就是反复抽收敛子列.

证明 先证明数列是有界的,为此取充分大的正数
$$M$$
 使得
$$a_n \in \left[\frac{b_1+b_2+\cdots+b_k}{M},M\right], n=1,2,\cdots,k$$

然后归纳证明对任意 $n \in \mathbb{N}^+$ 都有上述不等式成立, 若 n 时成立, 则 n+1 时

$$a_{n+1} = \frac{b_1}{a_n} + \frac{b_2}{a_{n-1}} + \dots + \frac{b_k}{a_{n-k+1}} \geqslant \frac{b_1 + b_2 + \dots + b_k}{M}$$

$$a_{n+1} = \frac{b_1}{a_n} + \frac{b_2}{a_{n-1}} + \dots + \frac{b_k}{a_{n-k+1}} \leqslant \frac{b_1}{\frac{b_1 + \dots + b_k}{M}} + \frac{b_2}{\frac{b_1 + \dots + b_k}{M}} + \dots + \frac{b_k}{\frac{b_1 + \dots + b_k}{M}} = M$$

因此 a_n 是有界数列,设其上极限为 L,下极限为 l,则 $L \geqslant l$. 在递推式两边取上下极限可知

$$L = \overline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} \left(\frac{b_1}{a_{n-1}} + \frac{b_2}{a_{n-2}} + \dots + \frac{b_k}{a_{n-k}} \right) \leqslant \overline{\lim}_{n \to \infty} \frac{b_1}{a_{n-1}} + \overline{\lim}_{n \to \infty} \frac{b_2}{a_{n-2}} + \dots + \overline{\lim}_{n \to \infty} \frac{b_k}{a_{n-k}} = \frac{b_1 + b_2 + \dots + b_k}{l}$$

$$l = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{b_1}{a_{n-1}} + \frac{b_2}{a_{n-2}} + \dots + \frac{b_k}{a_{n-k}} \right) \geqslant \lim_{n \to \infty} \frac{b_1}{a_{n-1}} + \lim_{n \to \infty} \frac{b_2}{a_{n-2}} + \dots + \lim_{n \to \infty} \frac{b_k}{a_{n-k}} = \frac{b_1 + b_2 + \dots + b_k}{L}$$

所以 $Ll = b_1 + b_2 + \cdots + b_k$, 只要证明 L = l 便可得到需要的结论.

根据上极限定义,可以取子列 $a_{n_i} \to L$,不妨要求 $n_{i+1} - n_i > 2k + 2$,然后关注各个 a_{n_i} 的上一项 $a_{n_{i-1}}$ 构成的数列,这也是一个有界数列,所以一定存在收敛子列,我们可以将其记为 $a_{n_{i_j}-1}$, $j=1,2,\cdots$,那么对于这个子列的每一项,它后面的那一项 $a_{n_{i_j}}$ 构成的数列,是之前取的数列 $a_{n_i} \to L$ 的子列,自然成立 $\lim_{j \to \infty} a_{n_{i_j}-1} = l_1 \in [l,L]$, $\lim_{j \to \infty} a_{n_{i_j}} = L$,为了方便起见,我们将这两个数列分别记为 $a_{n_{i-1}}$, a_{n_i} .(n_{i_j} 的指标集是可列集,按对角线或正方形法则排序)

进一步考虑每个 a_{n_i-1} 的上一项构成的数列, 作为有界数列一定存在收敛子列, 然后取出这个收敛子列, 则对于这个子列, 它后面一项构成的数列趋于 l_1 , 它后面第二项构成的数列趋于 L.

以此类推反复操作有限次(可以保证每次取的子列 $n_{i+1}-n_i \ge 2$,从而反复取k+1次后就有 $n_{i+1}-n_i \ge 2(k+1)$,但本题用不上这个条件),最终我们可以得到一列正整数 n_i 单调递增趋于无穷,满足

 $a_{n_i} \to L, a_{n_i-1} \to l_1, a_{n_i-2} \to l_2, \cdots, a_{n_i-k} \to l_k, a_{n_i-k-1} \to l_{k+1}, n_{i+1} - n_i \geqslant 2k + 2, l_1, \cdots, l_{k+1} \in [l, L]$ 代入到条件递推式中, 取极限有

$$L = \lim_{i \to \infty} a_{n_i} = \lim_{i \to \infty} \left(\frac{b_1}{a_{n_i - 1}} + \frac{b_2}{a_{n_i - 2}} + \dots + \frac{b_k}{a_{n_i - k}} \right) = \frac{b_1}{l_1} + \frac{b_2}{l_2} + \dots + \frac{b_k}{l_k} \leqslant \frac{b_1 + b_2 + \dots + b_k}{l} = L$$

$$\Rightarrow l_1 = l_2 = \dots = l_k = l$$

$$l_1 = \lim_{i \to \infty} a_{n_i - 1} = \lim_{i \to \infty} \left(\frac{b_1}{a_{n_i - 2}} + \frac{b_2}{a_{n_i - 3}} + \dots + \frac{b_k}{a_{n_i - k - 1}} \right) = \frac{b_1}{l_2} + \frac{b_2}{l_3} + \dots + \frac{b_k}{l_{k + 1}} \geqslant \frac{b_1 + b_2 + \dots + b_k}{L} = l_1$$

$$\Rightarrow l_2 = l_3 = \dots = l_{k + 1} = L$$

于是 $L = l_1 = l_2 = l$ (这是公共的一个值, 注意 $k \ge 2$), 结论得证. 再对递推条件两边取极限得到极限值.

2.6.5 压缩映像

我们来看一种重要的处理模型, 压缩映像方法, 它是我们以后解决基础题的重要方法. 其思想内核有两种, 一种是找到不动点 x_0 , 然后得到某个 $L \in (0,1)$, 使得

$$|x_n - x_0| \le L|x_{n-1} - x_0| \le \dots \le L^{n-1}|x_1 - x_0|.$$

还有一种是得到某个 $L \in (0,1)$, 使得

$$|x_n - x_{n-1}| \le L|x_{n-1} - x_{n-2}| \le \dots \le L^{n-2}|x_2 - x_1|.$$

当数列由递推确定时,我们有

$$|x_n - x_0| = |f(x_{n-1}) - f(x_0)|, |x_n - x_{n-1}| = |f(x_{n-1}) - f(x_{n-2})|,$$

因此往往可适用中值定理或者直接放缩法来得到渴望的 $L \in (0,1)$, 特别强调 L = 1 是不对的.

笔记 常规的递减递推数列求极限问题我们一般使用压缩映像证明. 压缩映像的书写过程往往比用递推函数的二次复合和数学归纳法的书写要简便的多.

注 当递推函数的不动点/极限点处导数大于等于 1 的时候, 就不可能压缩映射.

例题 2.77

2. 求数列 $\sqrt{7}$, $\sqrt{7-\sqrt{7}}$, $\sqrt{7-\sqrt{7+\sqrt{7}}}$, ... 极限.

解

1. 解法一 (递减递推归纳法): 不妨设 $x_1 > 0$ (因为 $x_2 = \frac{1}{1+x_1} > 0$), 归纳可知 $x_n > 0$. 由于原递推函数是递减函数, 因此考虑递推函数的二次复合 $x_{n+2} = \frac{1}{1+\frac{1}{1+x_n}} = \frac{1+x_n}{2+n}$, 这个递推函数一定是单调递增的. 进而考虑

$$\frac{1+x}{2+x} - x = \frac{\left(x + \frac{\sqrt{5}+1}{2}\right) \left(\frac{\sqrt{5}-1}{2} - x\right)}{2+x}.$$

于是当 $x_1 \geqslant \frac{\sqrt{5}-1}{2}$ 时,有 $x_3-x_1 = \frac{1+x_1}{2+x_1}-x_1 \leqslant 0$,即 $x_3 \leqslant x_1$. 从而由递增递推结论可知, $\{x_{2n-1}\}$ 单调递减且 $x_{2n-1} > \frac{\sqrt{5}-1}{2}$, $\forall n \in \mathbb{N}_+$. 此时 $x_2 < \frac{\sqrt{5}-1}{2}$ (由 $x = \frac{1}{1+x}$ 以及 $x_n > 0$ 可以解得不动点 $x_0 = \frac{\sqrt{5}-1}{2}$,又因为原数列是递减递推,所以 x_n 与 x_0 大小关系交错. 而 $x_1 \geqslant \frac{\sqrt{5}-1}{2}$,故 $x_2 < \frac{\sqrt{5}-1}{2}$). 于是 $x_4-x_2 = \frac{1+x_2}{2+x_2}-x_2 > 0$,即 $x_4 > x_2$. 从而由递增递推结论可知, $\{x_{2n}\}$ 单调递增且 $x_{2n} > \frac{\sqrt{5}-1}{2}$, $\forall n \in \mathbb{N}_+$.

因此由单调有界定理可知, $\{x_{2n}\}$, $\{x_{2n-1}\}$ 收敛. 设 $\lim_{n\to\infty} x_{2n} = a > 0$, $\lim_{n\to\infty} x_{2n-1} = b > 0$. 又由 $x_{2n} = \frac{1}{1+x_{2n}}$, $x_{2n-1} = \frac{1}{1+x_{2n-1}}$, $\forall n \in \mathbb{N}_+$, 再令 $n\to\infty$, 可得 $a=\frac{1}{1+a}$, $b=\frac{1}{1+b}$, 进而解得 $a=b=\frac{\sqrt{5}-1}{2}$. 故 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_{2n} = \frac{1}{1+x_{2n-1}}$

$$\lim_{n\to\infty} x_{2n-1} = \frac{\sqrt{5}-1}{2}. \ \text{同理}, \ \text{$\frac{\sqrt{5}-1}{2}$ th, 0 at $\lim_{n\to\infty} x_n = \frac{\sqrt{5}-1}{2}$.}$$

解法二 (压缩映像):不妨设 $x_1 > 0$ (用 $x_2 = \frac{1}{1+x_1} > 0$ 代替 x_1), 归纳可知 $x_n > 0$. 设 $x = \frac{\sqrt{5}-1}{2}$, 则

$$|x_{n+1} - x| = \left| \frac{1}{1+x_n} - x \right| = \left| \frac{1}{1+x_n} - \frac{1}{1+x} \right| = \frac{|x_n - x|}{(1+x_n)(1+x)} \leqslant \frac{1}{1+x} |x_n - x|.$$

从而

$$|x_{n+1}-x| \leqslant \frac{1}{1+x} |x_n-x| \leqslant \frac{1}{(1+x)^2} |x_{n-1}-x| \leqslant \cdots \leqslant \frac{1}{(1+x)^n} |x_1-x|.$$

于是令 $n \to \infty$, 得到 $\lim_{n \to \infty} |x_{n+1} - x| = 0$, 因此 $\lim_{n \to \infty} x_n = x = \frac{\sqrt{5} - 1}{2}$.

2. 由条件可知, $x_{n+2} = \sqrt{7 - \sqrt{7 + x_n}}, \forall n \in \mathbb{N}_+$ (由此可解得 x = 2 为不动点). 于是

$$|x_{n+2} - 2| = |\sqrt{7 - \sqrt{7 + x_n}} - 2| = \frac{|3 - \sqrt{7 + x_n}|}{\sqrt{7 - \sqrt{7 + x_n}} + 2}$$
$$= \frac{|2 - x_n|}{(\sqrt{7 - \sqrt{7 + x_n}} + 2)(3 + \sqrt{7 + x_n})} \le \frac{1}{6}|x_n - 2|.$$

从而对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{2n} - 2| \leqslant \frac{1}{6} |x_{2n-2} - 2| \leqslant \frac{1}{6^2} |x_{2n-4} - 2| \leqslant \dots \leqslant \frac{1}{6^{n-1}} |x_2 - 2|;$$

$$|x_{2n+1} - 2| \leqslant \frac{1}{6} |x_{2n-1} - 2| \leqslant \frac{1}{6^2} |x_{2n-3} - 2| \leqslant \dots \leqslant \frac{1}{6^n} |x_1 - 2|.$$

上式两边同时令 $n \to \infty$, 得到 $\lim_{n \to \infty} |x_{2n} - 2| = \lim_{n \to \infty} |x_{2n+1} - 2| = 0$. 因此 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = 2$.

例题 2.78 设数列 $x_1 \in \mathbb{R}, x_{n+1} = \cos x_n, n \in \mathbb{N}, \bar{x} \lim_{n \to \infty} x_n$.

解 令 $g(x) = x - \cos x$, 则 $g'(x) = 1 + \sin x \ge 0$, 且 g'(x) 不恒等于 0. 又 g(0) = -1 < 0, $g(1) = 1 - \cos 1 > 0$, 因此由零点存在定理可知,g 存在唯一零点 $x_0 \in (0,1)$. 不妨设 $x_1 \in [-1,1]$ (用 x_2 代替 x_1),则 $x_n \in [-1,1]$. 再令 $f(x) = \cos x$,则 $f'(x) = -\sin x$. 于是记 $C \triangleq \max_{x \in [-1,1]} |f'(x)| \in (0,1)$.

故由 Lagrange 中值定理, 可得存在 $\theta_n \in (\min\{x_n, x_0\}, \max\{x_n, x_0\})$, 使得对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| = |f(x_n) - f(x_0)| = |f'(\theta_n)||x_n - x_0| \leqslant C|x_n - x_0|.$$

进而对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1}-x_0| \leqslant C|x_n-x_0| \leqslant C^2|x_{n-1}-x_0| \leqslant \cdots \leqslant C^n|x_1-x_0|.$$

上式两边同时令 $n \to \infty$, 再结合 $C \in (0,1)$, 可得 $\lim_{n \to \infty} |x_{n+1} - x_0| = 0$. 即 $\lim_{n \to \infty} x_n = x_0$.

命题 2.18 (加强的压缩映像)

设可微函数 $f:[a,b] \rightarrow [a,b]$ 满足 $|f'(x)| < 1, \forall x \in [a,b]$. 证明: 对

$$x_1 \in [a, b], x_{n+1} = f(x_n), n \in \mathbb{N},$$

必有 $\lim x_n$ 存在.

注 注意到 f' 未必是连续函数, 所以 sup |f'(x)| 未必可以严格小于 1. $x \in [a,b]$

笔记 实际上, 用压缩映像证明 $\{x_n\}$ 的极限是 x_0 , 也同时蕴含了 x_0 就是这个递推数列的唯一不动点 (反证易得). 证明 令 g(x) = x - f(x), 则 $g(a) = a - f(a) \le 0$, $g(b) = b - f(b) \ge 0$. 由零点存在定理可知, 存在 $x_0 \in [a, b]$, 使

证明 令
$$g(x) = x - f(x)$$
, 则 $g(a) = a - f(a) \le 0$, $g(b) = b - f(b) \ge 0$. 由零点存在定理可知, 存在 $x_0 \in [a, b]$, 使 得 $x_0 = f(x_0)$. 令 $h(x) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0}, & x \neq x_0 \\ f'(x_0), & x = x_0 \end{cases}$, 则由导数定义可知 $h \in C[a, b]$. 又由 $|f'(x)| < 1$, $\forall x \in [a, b]$, 可知 $|h(x_0)| < 1$. 对 $\forall x \neq x_0$, 由 Lagrange 中值定理可知

 $|h(x_0)| < 1$. 对 $\forall x \neq x_0$, 由 Lagrange 中值定理可知

$$|h(x)| = \left| \frac{f(x) - f(x_0)}{x - x_0} \right| = |f'(\theta_x)| < 1, \quad \theta_x \in (\min\{x, x_0\}, \max\{x, x_0\})$$

故 $|h(x)| < 1, \forall x \in [a,b]$. 于是记 $L \triangleq \max_{x \in [a,b]} |h(x)| \in (0,1)$. 因此再由 Lagrange 中值定理可得, 对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| = |f(x_n) - f(x_0)| = |f'(\xi_n)| |x_n - x_0|, \quad \xi_n \in (\min\{x_n, x_0\}, \max\{x_n, x_0\})$$

从而对 $\forall n \in \mathbb{N}_+$, 都有

$$|f'(\xi_n)| = \left| \frac{f(x_n) - f(x_0)}{x_n - x_0} \right| = |h(x_n)| \leqslant L$$

进而对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| = |f'(\xi_n)||x_n - x_0| \le L|x_n - x_0| \le L^2|x_{n-1} - x_0| \le \dots \le L^n|x_1 - x_0|$$

上式两边同时令 $n \to \infty$, 则 $\lim_{n \to \infty} |x_{n+1} - x_0| = 0$. 即 $\lim_{n \to \infty} x_n = x_0$.

命题 2.19 (反向压缩映像)

设 $x_{n+1} = f(x_n), n \in \mathbb{N}$ 满足

 $\lim x_n = a \in \mathbb{R}, x_n \neq a, \forall n \in \mathbb{N},$

证明: 若 f 在 x = a 可导, 则 $|f'(a)| \leq 1$.

证明 (反证法) 假设 |f'(a)| > 1, 由导数定义及极限保号性可知, 存在 $r > 1, \delta > 0$, 使得

$$\left|\frac{f(x)-f(a)}{x-a}\right|\geqslant r>1,\quad \forall x\in [a-\delta,a+\delta].$$

即

$$|f(x) - f(a)| \ge r|x - a|, \quad \forall x \in [a - \delta, a + \delta].$$

因为 f 在 x = a 可导以及 $\lim_{n \to \infty} x_n = a$, 所以由 Heine 归结原则可知 $\lim_{n \to \infty} f(x_n) = f(a)$. 又 $x_{n+1} = f(x_n), \forall n \in \mathbb{N}_+$, 从而 等式两边同时令 $n\to\infty$, 可得 a=f(a). 由于 $\lim_{n\to\infty}|x_n-a|=0$, 因此存在 $N\in\mathbb{N}$, 使得对 $\forall n\geqslant N$, 有

$$|x_{n+1} - a| = |f(x_n) - f(a)| \ge r|x_n - a|$$
.

故对 $\forall n \geq N$, 有

$$|x_{n+1} - a| \ge r|x_n - a| \ge r^2|x_{n-1} - a| \ge \cdots \ge r^n|x_1 - x_0|.$$

上式两边同时令 $n \to \infty$, 得到 $\lim_{n \to \infty} |x_{n+1} - a| = +\infty$, 矛盾.

2.6.6 利用不等放缩求递推数列极限

例题 2.79 对 $x \ge 0$, 定义 $y_n(x) = \sqrt[n]{[x[x\cdots[x]\cdots]]}$, 这里一共 n 层取整, 求极限 $\lim_{n\to\infty} y_n(x)$.

笔记 这里求极限运用了递推的想法找关系,如果直接对取整函数用不等式放缩,只能得到 $x-1 < y_n(x) \leq x$,这没 什么用处,因为放缩太粗糙了.

实际上, 由 Stolz 定理可知, 数列 $\frac{1}{n}$ 次幂的极限与其相邻两项项除的极限近似相等. 解 显然 $x\in[0,1)$ 时 $y_n(x)=0$, $x\in[1,2)$ 时 $y_n(x)=1$, 这两个式子对任意 n 都成立, 下面来看 $x\geqslant 2$ 时的极限.

令 $u_n(x) = (y_n(x))^n = [x[\cdots[x]\cdots]] \geqslant 0$, 由于单调递增函数的复合仍是单调递增函数, 且 [x] 在 $[0,+\infty)$ 上单 调递增, 故 $u_n(x)$ 在 $[0,+\infty)$ 上单调递增. 从而由 $u_n(x)$ 的单调性可得

$$u_n(x) \geqslant u_n(2) = \underbrace{[2[\cdots[2]\cdots]]}_{n \not = 2} = 2^n \to \infty, n \to \infty.$$

再结合 [x] 的基本不等式: $x-1 < [x] \le x$ 可知

$$\begin{aligned} xu_{n-1}(x) - 1 &\leq u_n(x) = [xu_{n-1}(x)] \leq xu_{n-1}(x), \forall x \geq 2. \\ \Rightarrow &1 - \frac{1}{u_{n-1}(x)} \leq \frac{u_n(x)}{u_{n-1}(x)} \leq x \Rightarrow \lim_{n \to \infty} \frac{u_n(x)}{u_{n-1}(x)} = x, \forall x \geq 2. \end{aligned}$$

再根据 Stolz 公式有

$$\lim_{n \to \infty} y_n(x) = \lim_{n \to \infty} u_n(x)^{\frac{1}{n}} = e^{\lim_{n \to \infty} \frac{\ln u_n(x)}{n}} = e^{\lim_{n \to \infty} (\ln u_n(x) - \ln u_{n-1}(x))} = \lim_{n \to \infty} \frac{u_n(x)}{u_{n-1}(x)} = x.$$

因此

$$\lim_{n \to \infty} y_n(x) = \begin{cases} 0, & x \in [0, 1) \\ 1, & x \in [1, 2) \\ x, & x \geqslant 2 \end{cases}$$

2.6.7 可求通项和强求通项

2.6.7.1 三角换元求通项

先来看能够直接构造出数列通项的例子. 这类问题只能靠记忆积累. 找不到递推数列通项就很难处理. 一般我 们可以猜递推数列通项就是三角函数或双曲三角函数的形式,再利用三角函数或双曲三角函数的性质递推归纳.

例题 **2.80** 设 $a_1 \in (0,1), a_{n+1} = \sqrt{\frac{1+a_n}{2}}, n = 1, 2, \dots,$ 求 $\lim_{n \to \infty} a_1 a_2 \cdots a_n$.

筆記, 本题是经典的例子, 注意此类问题如果不能求出通项就无法求出具体值, 本题便是一个能求出通项从而算出 极限值的经典例子.

注 这类问题只能靠记忆积累.

解 利用

$$\cos\frac{\theta}{2} = \sqrt{\frac{1+\cos\theta}{2}}, \theta \in \mathbb{R},$$

因为 $a_1 \in (0,1)$, 所以一定存在 $\theta \in (0,\frac{\pi}{2})$, 使得 $a_1 = \cos\theta$. 则 $\theta = \arccos a_1,\sin\theta = \sqrt{1-a_1^2}$. 并且由 $a_{n+1} = \cos\theta$. $\sqrt{\frac{1+a_n}{2}}, n=1,2,\cdots$ 可得

$$a_2 = \cos \frac{\theta}{2}, a_3 = \cos \frac{\theta}{2^2}, \cdots, a_n = \cos \frac{\theta}{2^{n-1}}.$$

因此

$$\lim_{n\to\infty} a_1 a_2 \cdots a_n = \lim_{n\to\infty} \prod_{k=0}^{n-1} \cos\frac{\theta}{2^k} = \lim_{n\to\infty} \frac{\sin\frac{\theta}{2^{n-1}}}{\sin\frac{\theta}{2^{n-1}}} \prod_{k=0}^{n-1} \cos\frac{\theta}{2^k} = \lim_{n\to\infty} \frac{\sin\frac{\theta}{2^{n-2}}}{2\sin\frac{\theta}{2^{n-1}}} \prod_{k=0}^{n-2} \cos\frac{\theta}{2^k}$$

$$= \cdots = \lim_{n \to \infty} \frac{\sin 2\theta}{2^n \sin \frac{\theta}{2^{n-1}}} = \frac{\sin 2\theta}{2\theta} = \frac{\sin(2 \arccos a_1)}{2 \arccos a_1} = \frac{a_1 \sqrt{1 - a_1^2}}{\arccos a_1}.$$

例题 **2.81** 设 $x_1 = \sqrt{5}, x_{n+1} = x_n^2 - 2$, 计算

$$\lim_{n\to\infty}\frac{x_1x_2\cdots x_n}{x_{n+1}}.$$

笔记 这类问题只能靠记忆积累. 找不到递推数列通项就很难处理. 一般我们可以猜递推数列通项就是三角函数/双 曲三角函数的形式,再利用三角函数/双曲三角函数的性质递推归纳.

解 注意到 $\cos x = \frac{\sqrt{5}}{2}$ 在 \mathbb{R} 上无解, 因此推测类似的 \mathbf{Z} 曲三角函数 可以做到. 设 $x_1 = 2\cosh\theta, \theta \in (0, +\infty)$. 利用

$$\cosh x = 2\cosh^2\frac{x}{2} - 1, \forall x \in \mathbb{R},$$

我们归纳可证

$$x_n = 2\cosh(2^{n-1}\theta), n = 1, 2, \cdots$$

于是利用 $sinh(2x) = 2 sinh x cosh x, \forall x \in \mathbb{R}$, 我们有

$$\lim_{n\to\infty}\frac{x_1x_2\cdots x_n}{x_{n+1}}=\lim_{n\to\infty}\frac{2^n\prod\limits_{k=0}^{n-1}\cosh(2^k\theta)}{2\cosh(2^n\theta)}=\lim_{n\to\infty}\frac{2^n\sinh\theta\prod\limits_{k=0}^{n-1}\cosh(2^k\theta)}{2\sinh\theta\cosh(2^n\theta)}=\lim_{n\to\infty}\frac{2^{n-1}\sinh(2\theta)\prod\limits_{k=1}^{n-1}\cosh(2^k\theta)}{2\sinh\theta\cosh(2^n\theta)}$$

$$=\lim_{n\to\infty}\frac{2^{n-2}\sinh(2^2\theta)\prod\limits_{k=2}^{n-1}\cosh(2^k\theta)}{2\sinh\theta\cosh(2^n\theta)}=\lim_{n\to\infty}\frac{\sinh 2^n\theta}{2\sinh\theta\cosh(2^n\theta)}=\lim_{n\to\infty}\frac{\tanh 2^n\theta}{2\sinh\theta}=\frac{1}{2\sinh\theta}=1,$$

这里倒数第二个等号来自 $\lim_{x\to +\infty} \tanh x = 1$.

及里倒級n-1 为 $a_n = \frac{1}{x \to +\infty}$ 例题 **2.82** 设 $a_1 = 3$, $a_n = 2a_{n-1}^2 - 1$, $n = 2, 3, \cdots$, 则计算 $\lim_{n \to \infty} \frac{a_n}{2^n a_1 a_2 \cdots a_{n-1}}$

$$\lim_{n\to\infty}\frac{a_n}{2^n a_1 a_2 \cdots a_{n-1}}.$$

注 因为双曲三角函数 $\cosh x$ 在 $(0,+\infty)$ 上的值域为 $(1,+\infty)$, 并且 $\cosh x$ 在 $(0,+\infty)$ 上严格递增, 所以一定存在唯一 的 $\theta \in (0, +\infty)$, 使得 $a_1 = \cosh \theta = 3$.

证明 设 $a_1 = \cosh \theta = 3, \theta \in (0, +\infty)$. 则利用 $\cosh 2\theta = 2 \cosh^2 \theta - 1$, 再结合条件归纳可得

$$a_n = 2a_{n-1}^2 - 1 = \cosh 2^{n-1}\theta, \quad n = 2, 3, \dots$$

于是

$$\lim_{n \to \infty} \frac{a_n}{2^n a_1 a_2 \cdots a_{n-1}} = \lim_{n \to \infty} \frac{\cosh 2^{n-1} \theta}{2^n \prod_{k=1}^{n-1} \cosh 2^{k-1} \theta} = \lim_{n \to \infty} \frac{\sinh \theta \cosh 2^{n-1} \theta}{2^n \sinh \theta \prod_{k=1}^{n-1} \cosh 2^{k-1} \theta}$$

$$= \lim_{n \to \infty} \frac{\sinh \theta \cosh 2^{n-1} \theta}{2^{n-1} \sinh 2\theta \prod_{k=2}^{n-1} \cosh 2^{k-1} \theta} = \dots = \lim_{n \to \infty} \frac{\sinh \theta \cosh 2^{n-1} \theta}{2 \sinh 2^{n-1} \theta}$$

$$= \lim_{n \to \infty} \frac{\sinh \theta}{2 \tanh 2^{n-1} \theta} \frac{\lim_{n \to \infty} \tanh 2^{n-1} \theta = 1}{2} \frac{\sinh \theta}{2} = \frac{\sqrt{\cosh^2 \theta - 1}}{2} = \sqrt{2}.$$

例题 **2.83** 设 $y_0 \ge 2$, $y_n = y_{n-1}^2 - 2$, $n \in \mathbb{N}$, 计算 $\sum_{n=0}^{\infty} \frac{1}{y_0 y_1 \cdots y_n}$.

笔记 关于求和的问题,要注意求和的通项能否凑成相邻两项相减的形式,从而就能直接求和消去中间项,进而将 求和号去掉.

注 因为双曲三角函数 $2\cosh x$ 在 $(0,+\infty)$ 上的值域为 $(1,+\infty)$, 并且 $2\cosh x$ 在 $(0,+\infty)$ 上严格递增, 所以一定存在 唯一的 $\theta \in (0, +\infty)$, 使得 $y_0 = 2 \cosh \theta \ge 2$.

证明 设 $y_0 = 2 \cosh \theta, \theta \in (0, +\infty)$, 则利用 $\cosh 2\theta = 2 \cosh^2 \theta - 1$, 再结合条件归纳可得

$$y_1 = y_0^2 - 2 = 4\cosh^2\theta - 2 = 2(2\cosh^2\theta - 1) = 2\cosh 2\theta,$$

$$y_2 = y_1^2 - 2 = 4\cosh^2 2\theta - 2 = 2(2\cosh^2 2\theta - 1) = 2\cosh 2^2\theta,$$

$$\dots$$

$$y_n = y_{n-1}^2 - 2 = 4\cosh^2 2^{n-1}\theta - 2 = 2(2\cosh^2 2^{n-1}\theta - 1) = 2\cosh 2^n\theta,$$

于是

$$\sum_{n=0}^{\infty} \frac{1}{y_0 y_1 \cdots y_n} = \sum_{n=0}^{\infty} \frac{1}{\prod_{k=0}^{n} 2^{n+1} \cosh 2^k \theta} = \sum_{n=0}^{\infty} \frac{\sinh \theta}{2^{n+1} \sinh \theta} \prod_{k=0}^{n} \cosh 2^k \theta$$

$$= \sum_{n=0}^{\infty} \frac{\sinh \theta}{2^n \sinh 2\theta} \prod_{k=1}^{n} \cosh 2^k \theta = \cdots = \sum_{n=0}^{\infty} \frac{\sinh \theta}{\sinh 2^{n+1} \theta}$$

$$= 2 \sinh \theta \sum_{n=0}^{\infty} \frac{1}{e^{2^{n+1} \theta} - e^{-2^{n+1} \theta}} = 2 \sinh \theta \sum_{n=0}^{\infty} \frac{e^{2^{n+1} \theta}}{e^{2^{n+2} \theta} - 1}$$

$$= 2 \sinh \theta \sum_{n=0}^{\infty} \left(\frac{1}{e^{2^{n+1} \theta} - 1} - \frac{1}{e^{2^{n+2} \theta} - 1} \right) = \frac{2 \sinh \theta}{e^{2\theta} - 1}$$

$$= \frac{e^{\theta} - e^{-\theta}}{e^{\theta} \left(e^{\theta} - e^{-\theta} \right)} = e^{-\theta} = \cosh \theta - \sinh \theta$$

$$= \frac{y_0}{2} - \sqrt{\cosh^2 \theta - 1} = \frac{y_0}{2} - \sqrt{\frac{y_0^2}{4} - 1}.$$

例题 2.84

1. 设
$$x_1 = \sqrt{5}$$
, $x_{n+1} = x_n^2 - 2$, 计算

$$\lim_{n\to\infty}\frac{x_1x_2\cdots x_n}{x_{n+1}}.$$

2. 设
$$a_1 = 3$$
, $a_n = 2a_{n-1}^2 - 1$, $n = 2, 3, \dots$, 则计算

$$\lim_{n\to\infty}\frac{a_n}{2^n a_1 a_2 \cdots a_{n-1}}.$$

3. 设
$$y_0 > 2$$
, $y_n = y_{n-1}^2 - 2$, $n \in \mathbb{N}$, 计算

$$\prod_{n=0}^{\infty} \left(1 - \frac{1}{y_n} \right).$$

解

- 1.
- 2.
- 3.

2.6.8 直接求通项公式法

直接利用高中知识, 求出几类递推数列的通项, 进而求出极限.

命题 2.20 (可直接求通项——类型一)

已知数列 $\{a_n\}$ 满足 $a_{n+1} = pa_n + q$, 则 $\{a_n\}$ 的通项公式为

$$a_n = \begin{cases} a_1 + (n-1)q, & p = 1; \\ \left(a_1 - \frac{q}{1-p}\right)p^{n-1} + \frac{q}{1-p}, & p \neq 1. \end{cases}$$

于是, 当 p=1 时, $\{a_n\}$ 收敛等价于 q=0; 当 $p\neq 1$ 时, $\{a_n\}$ 收敛等价于 |p|<1 或 $a_1=\frac{q}{1-p}$.

证明 当 p=1 时, 有 $a_{n+1}-a_n=q$, 所以 $\{a_n\}$ 是以 q 为公差的等差数列, 从而 $a_n=a_1+(n-1)q$.

当 $p \neq 1$ 时, 可设 $a_{n+1} - A = p(a_n - A)$, 即 $a_{n+1} = pa_n + (1-p)A$, 由对应系数相等可知 (1-p)A = q, 即 $A = \frac{q}{1-p}$, 此时 $\left\{a_n - \frac{q}{1-p}\right\}$ 是以 p 为公比的等比数列, 于是

$$a_n - \frac{q}{1-p} = \left(a_1 - \frac{q}{1-p}\right)p^{n-1}.$$

$$\mathbb{F} a_n = \left(a_1 - \frac{q}{1-p}\right) p^{n-1} + \frac{q}{1-p}.$$

命题 2.21 (可直接求通项——类型二)

已知数列 $\{a_n\}$ 满足 $a_{n+2}+pa_{n+1}+qa_n=0$ (p,q 不全为零), 则可以构造特征方程 $x^2+px+q=0$, 根据 $\Delta=p^2-4q$ 来分类:

- (1) 当 $\Delta = 0$ 时, 此时特征方程有二重根, 设为 x_0 , 则 $a_n = (nC_1 + C_2)x_0^n$;
- (2) 当 $\Delta \neq 0$ 时, 设特征方程的两个根为 x_1, x_2 , 则 $a_n = C_1 x_1^n + C_2 x_2^n$.

其中 C_1, C_2 是待定常数, 具体可将 a_1, a_2 的值代入解得.

证明 设 $\{a_n\}$ 满足 $a_{n+2} - Aa_{n+1} = B(a_{n+1} - Aa_n)$, 即 $a_{n+2} - (A+B)a_{n+1} + ABa_n = 0$, 结合已知可得 A+B=-p, AB=q, 即 A,B 就是特征方程 $x^2 + px + q = 0$ 的两个解.

(1) 当 $\Delta = 0$ 时, 此时设特征方程的二重根为 x_0 , 即 $A = B = x_0 \neq 0$, 于是

$$a_{n+2} - Aa_{n+1} = A(a_{n+1} - Aa_n).$$

从而

$$a_n - Aa_{n-1} = A(a_{n-1} - Aa_{n-2}) = \cdots = A^{n-2}(a_2 - Aa_1).$$

两边同除以 A^n 就有

$$\frac{a_n}{A^n} - \frac{a_{n-1}}{A^{n-1}} = \frac{a_2 - Aa_1}{A^2}.$$

于是

$$\frac{a_n}{A^n} = \frac{a_1}{A} + \sum_{k=2}^n \left(\frac{a_k}{A^k} - \frac{a_{k-1}}{A^{k-1}} \right) = \frac{a_1}{A} + (n-1) \cdot \frac{a_2 - Aa_1}{A^2} \stackrel{\text{def}}{=} nC_1 + C_2.$$

于是 $a_n = (nC_1 + C_2)A^n = (nC_1 + C_2)x_0^n$.

(2) 当 $\Delta \neq 0$ 时, 此时设特征方程的两个根为 x_1, x_2 , 则 $A = x_1, B = x_2$ 或 $A = x_2, B = x_1$, 于是

$$\begin{cases} a_{n+2} - x_1 a_{n+1} = x_2 (a_{n+1} - x_1 a_n); \\ a_{n+2} - x_2 a_{n+1} = x_1 (a_{n+1} - x_2 a_n). \end{cases}$$

从而

$$\begin{cases} a_n - x_1 a_{n-1} = x_2 (a_{n-1} - x_1 a_{n-2}) = x_2^2 (a_{n-2} - x_1 a_{n-3}) = \dots = x_2^{n-2} (a_2 - x_1 a_1); \\ a_n - x_2 a_{n-1} = x_1 (a_{n-1} - x_2 a_{n-2}) = x_1^2 (a_{n-2} - x_2 a_{n-3}) = \dots = x_1^{n-2} (a_2 - x_2 a_1). \end{cases}$$

上面第一个式子两端乘以 x_1 减去第二个式子两端乘以 x_2 得

$$(x_1 - x_2)a_n = x_1^{n-1}(a_2 - x_2a_1) - x_2^{n-1}(a_2 - x_1a_1).$$

即

$$a_n = \frac{x_1^{n-1}(a_2 - x_2 a_1) - x_2^{n-1}(a_2 - x_1 a_1)}{x_1 - x_2} \stackrel{\text{def}}{=} C_1 x_1^n + C_2 x_2^n.$$

命题 2.22 (可直接求通项——类型三)

已知数列 $\{a_n\}$ 满足 $a_{n+1}=\frac{Aa_n+B}{Ca_n+D}$, 此时对应的特征函数为 $f(x)=\frac{Ax+B}{Cx+D}$, 则

- (1) 当方程 f(x) = x 只有一个解 x_0 时, 则数列 $\left\{\frac{1}{a_n x_0}\right\}$ 是等差数列;
- (2) 当方程 f(x) = x 有两个解 x_1, x_2 时, 则数列 $\left\{\frac{a_n x_1}{a_n x_2}\right\}$ 是等比数列.

证明

命题 2.23 (可直接求通项——类型四)

已知数列 $\{a_n\}$ 满足 $a_{n+1} = \frac{Aa_n^2 + B}{2Aa_n + D}$, 此时对应的特征函数为 $f(x) = \frac{Ax^2 + B}{2Ax + D}$, 则

- (1) 当方程 f(x) = x 有两个解 x_1, x_2 时, 则数列 $\left\{ \frac{a_n x_1}{a_n x_2} \right\}$ 满足 $\frac{a_n x_1}{a_n x_2} = \left(\frac{a_{n-1} x_1}{a_{n-1} x_2} \right)^2$;
- (2) 当方程 f(x) = x 只有一个解 x_0 时,则数列 $\{a_n x_0\}$ 是等比数列.

证明

例题 2.85 设 $a_2 > a_1 > 0$, $a_n = \sqrt{a_{n-1}a_{n-2}}(n=3,4,\cdots)$, 证明数列 $\{a_n\}$ 收敛, 并求极限值. 证明 由条件可知

$$\ln a_n = \frac{\ln a_{n-1} + \ln a_{n-2}}{2}, n = 3, 4, \cdots.$$

从而

$$\ln a_n - \ln a_{n-1} = \frac{\ln a_{n-2} - \ln a_{n-1}}{2} = -\frac{1}{2} \left(\ln a_{n-1} - \ln a_{n-2} \right)$$
$$= \left(-\frac{1}{2} \right)^{n-2} \left(\ln a_2 - \ln a_1 \right), n = 3, 4, \cdots.$$

于是

$$\ln a_n = \ln a_1 + \sum_{k=2}^n (\ln a_k - \ln a_{k-1}) = \ln a_1 + (\ln a_2 - \ln a_1) \sum_{k=2}^n \left(-\frac{1}{2}\right)^{k-2}$$

$$= \ln a_1 + (\ln a_2 - \ln a_1) \frac{1 - \left(-\frac{1}{2}\right)^{n-1}}{1 + \frac{1}{2}} \to \ln a_1 + \frac{2(\ln a_2 - \ln a_1)}{3}, n \to \infty.$$

 $\text{ti} \lim_{n \to \infty} a_n = a_1 \left(\frac{a_2}{a_1} \right)^{\frac{2}{3}} = a_1^{\frac{1}{3}} a_2^{\frac{2}{3}}.$

2.6.8.1 凑出可求通项的递推数列

利用比值换元等方法,可以将原本不能直接求通项的递推数列转化成可三角换元或用高中方法求通项的递推数列.求出通项后,后续问题就很简单了.

例题 **2.86** 设
$$a > b > 0$$
, 定义 $a_0 = a, b_0 = b, a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \frac{2a_n b_n}{a_n + b_n}$, 求 $\lim_{n \to \infty} a_n, \lim_{n \to \infty} b_n$.

注 这是算数-调和平均数数列, 与算术-几何平均不同, 这个通项以及极限值都可以求出来.

থ 笔记 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right)$ 是一个经典的可求通项的递推数列 (高中学过),处理方法必须掌握. 即先求解其特征方程,然后用 x_{n+1} 分别减去两个特征根再作商,再将递推式代入这个分式,反复递推得到一个等比数列,进而得到 x_n 的通项. 具体步骤见下述证明.

证明 由条件可得

$$a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \frac{2a_n b_n}{a_n + b_n} = \frac{a_n b_n}{a_{n+1}} \Rightarrow a_{n+1} b_{n+1} = a_n b_n = \dots = a_0 b_0 = ab.$$
因此 $a_{n+1} = \frac{1}{2} \left(a_n + \frac{ab}{a_n} \right). \diamondsuit a_n = \sqrt{ab} x_n, x_0 = \sqrt{\frac{a}{b}} > 1, 则 x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right), \forall n \in \mathbb{N}_+. 从而$

$$\frac{x_{n+1} - 1}{x_{n+1} + 1} = \frac{\frac{x_{n+1}^2 - 1}{2x_{n+1}}}{\frac{x_{n+1}^2 + 1}{2x_{n+1}}} = \frac{(x_n - 1)^2}{(x_n + 1)^2} = \dots = \left(\frac{x_0 - 1}{x_0 + 1} \right)^{2^{n+1}} \Rightarrow \frac{x_n - 1}{x_n + 1} = C^{2^n}, C = \frac{x_0 - 1}{x_0 + 1} \in (0, 1).$$
于是 $x_n = \frac{1 + C^{2^n}}{1 - C^{2^n}}$. 再由 $a_n = \sqrt{ab} x_n$ 可得
$$a_n = \sqrt{ab} \frac{1 + C^{2^n}}{1 - C^{2^n}} \to \sqrt{ab}, n \to \infty.$$

$$a_n = \sqrt{ab} \frac{1+C}{1-C^{2^n}} \to \sqrt{ab}, n \to \infty$$
$$b_n = \frac{ab}{a_n} \to \sqrt{ab}, n \to \infty.$$

例题 2.87 设 $a_{n+1} = \frac{2a_nb_n}{a_n + b_n}$, $b_{n+1} = \sqrt{a_{n+1}b_n}$, 证明: a_n , b_n 收敛到同一极限, 并且在 $a_1 = 2\sqrt{3}$, $b_1 = 3$ 时, 上述极限值为 π .

注 这是几何 - 调和平均数列, 通项也能求出来, 自然求极限就没有任何问题.

 $\stackrel{ullet}{\widehat{\mathbf{y}}}$ 笔记 (1) 因为 a_n,b_n 的递推式都是齐次式, 所以我们尝试比值换元, 将其转化为可求通项的递推数列. 实际上, 我们利用的比值换元是 $c_n=\frac{b_n}{a_n}$, 但是为了避免讨论数列 a_n 能否取 0 的情况, 我们就取 $b_n=a_nc_n$.

(2) 三角换元求通项的一些问题: 由递推条件易证 $a_n,b_n \ge 0$, 其实当 a_n,b_n 中出现为零的项时, 由递推条件易知 a_n,b_n 后面的所有项都为零, 此时结论平凡. 因此我们只需要考虑 $a_n,b_n > 0$ 的情况. 此时直接设 $\cos x_1 = c_1 = \frac{b_1}{a_1}$ 似乎不太严谨. 因为虽然 $c_1 > 0$, 但是 c_1 不一定在 (0,1) 内, 所以我们需要对其进行分类讨论.

当
$$c_1 \in (0,1)$$
 时,设 $\cos x_1 = c_1 = \frac{b_1}{a_1}$,其中 $x_1 \in (0,\frac{\pi}{2})$;
当 $c_1 > 1$ 时,设 $\cosh x_1 = c_1 = \frac{b_1}{a_1}$,其中 $x_1 \in (0,+\infty)$.

实际上, 我们直接设 $\cos x_1 = c_1 = \frac{b_1}{a_1}$, 只要将 x_1 看作一个复数, 就可以避免分类讨论. 因为由复变函数论可知, $\cos x$ 在复数域上的性质与极限等结论与在实数域上相同, 而且由 $c_1 > 0$ 可知, 一定存在一个复数 x_1 , 使得 $\cos x_1 = c_1$. 所以这样做是严谨地.(考试的时候最好还是分类讨论书写)

证明 设 $b_n = a_n c_n$ 代入有

由此可见

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \frac{b_1 x_1}{\sin x_1} = \frac{b_1 \arccos \frac{b_1}{a_1}}{\sqrt{1 - \frac{b_1^2}{a_1^2}}} = \frac{a_1 b_1 \arccos \frac{b_1}{a_1}}{\sqrt{a_1^2 - b_1^2}}$$

所以收敛到同一极限对于 $a_1 = 2\sqrt{3}, b_1 = 3$ 的情况有

$$\cos x_1 = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}, x_1 = \frac{\pi}{6}, \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \frac{b_1 x_1}{\sin x_1} = \pi$$

结论得证.

例题 2.88 设 $a_n = 2^{n-1} - 3a_{n-1}, n \ge 1$, 求 a_0 的所有可能值, 使得 a_n 严格单调递增.

证明 直接裂项,求通项即可得到

$$\frac{a_{n+1}}{(-3)^{n+1}} = \frac{a_n}{(-3)^n} + \frac{2^n}{(-3)^{n+1}} \Rightarrow \frac{a_{n+1}}{(-3)^{n+1}} - \frac{a_n}{(-3)^n} = \frac{2^n}{(-3)^{n+1}}$$

$$\Rightarrow \frac{a_{n+1}}{(-3)^{n+1}} = \frac{a_0}{(-3)^0} - \frac{1}{3} \left(1 + \left(-\frac{2}{3} \right) + \dots + \left(-\frac{2}{3} \right)^n \right) = a_0 - \frac{1}{3} \frac{1 - \left(-\frac{2}{3} \right)^{n+1}}{\frac{5}{3}}$$

$$\Rightarrow \frac{a_n}{(-3)^n} = a_0 - \frac{1}{5} \left(1 - \left(-\frac{2}{3} \right)^n \right) \Rightarrow a_n = \left(a_0 - \frac{1}{5} \right) (-3)^n + \frac{1}{5} 2^n.$$

由此可见 $a_0 = \frac{1}{5}$ 是唯一解.

例题 **2.89** 设 $x_1 > 0, x_{n+1} = 1 + \frac{1}{x_n}$, 求极限 $\lim_{n \to \infty} x_n$.

证明 解方程 $x^2 - x - 1 = 0 \Rightarrow \lambda_1 = \frac{1 + \sqrt{5}}{2}, \lambda_2 = \frac{1 - \sqrt{5}}{2}$, 于是

$$\frac{x_{n+1} - \lambda_1}{x_{n+1} - \lambda_2} = \frac{1 + \frac{1}{x_n} - \lambda_1}{1 + \frac{1}{x_n} - \lambda_2} = \frac{(1 - \lambda_1)x_n + 1}{(1 - \lambda_2)x_n + 1} = \frac{\lambda_2 x_n + 1}{\lambda_1 x_n + 1} = \frac{\lambda_2}{\lambda_1} \frac{x_n + \frac{1}{\lambda_2}}{x_n + \frac{1}{\lambda_1}} = \frac{\lambda_2}{\lambda_1} \frac{x_n - \lambda_1}{x_n - \lambda_2}$$

$$\Rightarrow \frac{x_{n+1} - \lambda_1}{x_{n+1} - \lambda_2} = \left(\frac{\lambda_2}{\lambda_1}\right)^n \frac{x_1 - \lambda_1}{x_1 - \lambda_2} \to 0, n \to \infty.$$

故 $\lim_{n\to\infty} x_n = \lambda_1 = \frac{1+\sqrt{5}}{2}$.

例题 **2.90** 设 $a_{n+1} = \sqrt{a_n + 2}$, 求 a_n 的通项公式

证明 设 $a_n = 2b_n$ 则问题转化为已知 $b_{n+1} = \sqrt{\frac{b_n + 1}{2}}$, 求 b_n 的通项公式. 由例题 2.87, 立即得到

$$a_n = 2\cos\frac{\theta_1}{2^{n-1}}, \cos\theta_1 = \frac{1}{2}a_1.$$

2.6.8.2 直接凑出通项

例题 **2.91** 设 $a_1 = \frac{1}{2}$, $a_{n+1} = 2a_n^2 + 2a_n$, 求 a_n 的通项公式. 证明

$$a_{n+1} = 2a_n^2 + 2a_n = 2\left(a_n + \frac{1}{2}\right)^2 - \frac{1}{2} \Rightarrow 2a_{n+1} + 1 = (2a_n + 1)^2 = \dots = (2a_1 + 1)^{2^n}$$
$$\Rightarrow a_n = \frac{(2a_1 + 1)^{2^{n-1}} - 1}{2} = \frac{2^{2^{n-1}} - 1}{2}.$$

2.6.8.3 凑裂项

凑裂项: 根据已知的递推式, 将需要求解的累乘或求和的通项凑成裂项的形式, 使得其相邻两项相乘或相加可以抵消中间项, 从而将累乘或求和号去掉.

例题 **2.92** 设
$$a_1 = 1, a_n = n(a_{n-1} + 1), x_n = \prod_{k=1}^n \left(1 + \frac{1}{a_k}\right), 求极限 \lim_{n \to \infty} x_n.$$

证明 由条件可知 $a_n + 1 = \frac{a_{n+1}}{n+1}$, 从而

$$x_n = \prod_{k=1}^n \left(1 + \frac{1}{a_k} \right) = \prod_{k=1}^n \frac{a_k + 1}{a_k} = \prod_{k=1}^n \frac{a_{k+1}}{(k+1)a_k} = \frac{a_{n+1}}{a_1} \frac{1}{(n+1)!} = \frac{a_{n+1}}{(n+1)!}.$$

再根据 $a_n = n(a_{n-1} + 1)$ 可得

$$\frac{a_n}{n!} = \frac{a_{n-1}}{(n-1)!} + \frac{1}{(n-1)!}.$$

故

$$x_n = \frac{a_{n+1}}{(n+1)!} = \frac{a_n}{n!} + \frac{1}{n!} = \frac{a_{n-1}}{(n-1)!} + \frac{1}{(n-1)!} + \frac{1}{n!} = \dots = \sum_{k=0}^n \frac{1}{k!} \to e.$$

例题 **2.93** 设 $y_0 > 2$, $y_n = y_{n-1}^2 - 2$, $n \in \mathbb{N}$, 计算 $\prod_{n=0}^{\infty} (1 - \frac{1}{y_n})$.

笔记 关于累乘的问题,要注意累乘的通项能否凑成相邻两项相除的形式,从而就能直接累乘消去中间项,进而将累乘号去掉。

本题是利用已知条件和平方差公式将累乘的通项能否凑成相邻两项相除的形式.

注 本题实际上可以三角换元求通项, 见例题 2.83.

证明 一方面

$$y_n + 1 = y_{n-1}^2 - 1 = (y_{n-1} - 1)(y_{n-1} + 1) \Rightarrow y_{n-1} - 1 = \frac{y_n + 1}{y_{n-1} + 1} \Rightarrow y_n - 1 = \frac{y_{n+1} + 1}{y_n + 1}$$

另外一方面

$$y_n - 2 = y_{n-1}^2 - 4 = (y_{n-1} - 2)(y_{n-1} + 2) \Rightarrow y_n - 2 = (y_{n-1} - 2)y_{n-2}^2 \Rightarrow y_n = \sqrt{\frac{y_{n+2} - 2}{y_{n+1} - 2}}.$$

于是结合 $\lim_{m\to\infty} y_m = +\infty$ 我们有

$$\begin{split} \prod_{n=0}^{\infty} \left(1 - \frac{1}{y_n}\right) &= \prod_{n=0}^{\infty} \frac{y_n - 1}{y_n} = \prod_{n=0}^{\infty} \left(\frac{y_{n+1} + 1}{y_n + 1} \cdot \sqrt{\frac{y_{n+1} - 2}{y_{n+2} - 2}}\right) = \lim_{m \to \infty} \prod_{n=0}^{m} \left(\frac{y_{n+1} + 1}{y_n + 1} \cdot \sqrt{\frac{y_{n+1} - 2}{y_{n+2} - 2}}\right) \\ &= \lim_{m \to \infty} \frac{y_{m+1} + 1}{y_0 + 1} \cdot \sqrt{\frac{y_1 - 2}{y_{m+2} - 2}} = \lim_{m \to \infty} \frac{y_{m+1} + 1}{\sqrt{y_{m+1}^2 - 4}} \cdot \frac{\sqrt{y_0^2 - 4}}{y_0 + 1} = \frac{\sqrt{y_0^2 - 4}}{y_0 + 1}. \end{split}$$

2.6.8.4 母函数法求通项

例题 **2.94** 设 $a_{n+1}=a_n+\frac{2}{n+1}a_{n-1}, n\geqslant 1, a_0>0, a_1>0,$ 求极限 $\lim_{n\to\infty}\frac{a_n}{n^2}$ 注 本题采用单调有界只能证明极限存在, 而并不能算出来极限值:

$$\frac{a_{n+1}}{(n+1)^2} - \frac{a_n}{n^2} = \frac{a_n + \frac{2}{n+1}a_{n-1}}{(n+1)^2} - \frac{a_n}{n^2} = \frac{2n^2a_{n-1} - (2n+1)(n+1)a_n}{n^2(n+1)^3} < 0$$

证明 这类线性递推数列问题采用母函数方法是无敌的, 因为能求出来通项公式. 设 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ 则根据条件有

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n = a_1 + \sum_{n=1}^{\infty} (n+1) \left(a_n + \frac{2}{n+1} a_{n-1} \right) x^n$$
$$= a_1 + \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=1}^{\infty} a_n x^n + 2 \sum_{n=1}^{\infty} a_{n-1} x^n = a_1 + x f'(x) + f(x) - a_0 + 2x f(x)$$

$$\Rightarrow f'(x) + \frac{2x+1}{1-x}f(x) = \frac{a_1 - a_0}{1-x}, f(0) = a_0, f'(0) = a_1$$

这是一阶线性微分方程,容易求出

$$f(x) = \frac{2x^2 - 6x + 5}{(1 - x)^3} \frac{a_1 - a_0}{4} + \frac{e^{-2x}}{(1 - x)^3} \frac{9a_0 - 5a_1}{4} = \sum_{n=0}^{\infty} a_n x^n$$

然后对左边这两个函数 (先不看系数) 做泰勒展开, 关注 x^n 前面的 n^2 项系数, 就对应极限.(利用Cauchy 积计算级数乘积)

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \Rightarrow \frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n, \frac{1}{(1-x)^3} = \sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2} x^n$$

$$\frac{2x^2 - 6x + 5}{(1-x)^3} = (2x^2 - 6x + 5) \sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2} x^n = \sum_{n=0}^{\infty} (5b_n - 6b_{n-1} + 2b_{n-2})x^n$$

$$b_n = \frac{(n+2)(n+1)}{2} \Rightarrow 5b_n - 6b_{n-1} + 2b_{n-2} = \frac{1}{2}n^2 + O(n)$$

由此可见第一部分对应着极限 $\frac{a_1-a_0}{8}$, 然后算第二部分

$$\frac{e^{-2x}}{(1-x)^3} = \sum_{m=0}^{\infty} \frac{(-2)^m}{m!} x^m \sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2} x^n = \sum_{k=0}^{\infty} \sum_{m+n=k} \frac{(-2)^m}{m!} \frac{(n+2)(n+1)}{2} x^k$$

所以每一个 x^m 项相应的系数是

$$\sum_{k=0}^{m} \frac{(-2)^m}{m!} \frac{(k+2-m)(k+1-m)}{2} = \frac{1}{2} \sum_{k=0}^{m} \frac{(-2)^m}{m!} (m-(k-1))(m-(k-2))$$

由 Stolz 公式和 e^x 的无穷级数展开式可得, 对应的极限为

$$\frac{1}{2} \lim_{m \to \infty} \frac{\sum_{k=0}^{m} \frac{(-2)^m}{m!} (m^2 - (2k - 3)m + (k - 1)(k - 2))}{m^2} = \frac{1}{2} \lim_{m \to \infty} \sum_{k=0}^{m} \frac{(-2)^m}{m!} = \frac{1}{2e^2}$$

这是因为括号里面的 m 一次项和常数项部分,对应的求和的极限是零,由 stolz 公式是显然的. 所以第二部分提供了 $\frac{9a_0-5a_1}{8e^2}$,最终所求极限为 $\lim_{n\to\infty}\frac{a_n}{n^2}=\frac{a_1-a_0}{8}+\frac{9a_0-5a_1}{8e^2}$.

2.6.8.5 强求通项和强行裂项

若数列 $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足下列递推条件之一:

- 1. $a_n = d_n a_{n-1} + b_n, n = 1, 2, \cdots;$
- 2. $\lim (a_n d_n a_{n-1}) = A$.

则我们都可以考虑对 a_n 进行强行裂项和强求通项, 从而可以将 a_n 写成关于 b_n, d_n 或 A, d_n 的形式, 进而将题目条件和要求进行转化.

命题 2.24 (强求通项和强行裂项)

(1) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件:

$$a_n = d_n a_{n-1} + b_n, n = 1, 2, \cdots,$$
 (2.73)

则令
$$c_n = \prod_{k=1}^n \frac{1}{d_k}, n = 0, 1, \dots, -定有$$

$$a_n = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots$$

(2) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件:

$$\lim_{n \to \infty} (a_n - d_n a_{n-1}) = A,\tag{2.74}$$

則令
$$c_n = \prod_{k=1}^n \frac{1}{d_k}, n = 0, 1, \cdots$$
,再令 $b_0 = 1, b_n = a_n - \frac{c_{n-1}a_{n-1}}{c_n}, n = 1, 2, \cdots$,一定有
$$\lim_{n \to \infty} b_n = A,$$

$$a_n = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots.$$

- 拿 笔记 也可以通过观察原数列 a_n 的递推条件直接得到需要构造的数列,从而将 a_n 强行裂项和强求通项.具体可见例题 2.95 解法一. (1) 的具体应用可见例题 2.96 笔记; (2) 的具体应用可见例题 2.95 笔记.
 - 证明 (强行裂项和强求通项的具体步骤)
 - (1) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件(2.73)式, 则令 $c_0=1$, 待定 $\{c_n\}_{n=0}^{\infty}$, 由递推条件(2.73)式可得

$$c_n a_n = c_n d_n a_{n-1} + c_n b_n, n = 1, 2, \cdots$$
 (2.75)

我们希望
$$c_n d_n = c_{n-1}, n = 2, 3, \dots$$
, 即 $\frac{c_n}{c_{n-1}} = \frac{1}{d_n}, n = 2, 3, \dots$ 从而 $c_n = c_0 \prod_{k=1}^n \frac{c_k}{c_{k-1}} = \prod_{k=1}^n \frac{1}{d_k}, n = 1, 2, \dots$, 且

该式对 n=0 也成立. 因此, 令 $c_n=\prod_{k=1}^n\frac{1}{d_k}, n=0,1,\cdots$, 则由(2.75)式可知

$$c_n a_n = c_n d_n a_{n-1} + c_n b_n \Rightarrow c_n a_n - c_{n-1} a_{n-1} = c_n b_n, n = 1, 2, \cdots$$

于是

$$a_n = \frac{1}{c_n}(c_n a_n - c_0 a_0 + c_0 a_0) = \frac{1}{c_n} \left[\sum_{k=1}^n (c_k a_k - c_{k-1} a_{k-1}) + c_0 a_0 \right] = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots$$

这样就完成了对 a_n 的强行裂项和强求通项,并将 a_n 写成了关于 b_n,d_n 的形式.

(2) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件(2.74)式, 则令 $c_0=1$, 待定 $\{c_n\}_{n=0}^{\infty}$, 由递推条件(2.74)式可得

$$\lim_{n \to \infty} (a_n - d_n a_{n-1}) = \lim_{n \to \infty} \frac{c_n a_n - c_n d_n a_{n-1}}{c_n} = A.$$
 (2.76)

我们希望
$$c_n d_n = c_{n-1}, n = 2, 3, \dots$$
, 即 $\frac{c_n}{c_{n-1}} = \frac{1}{d_n}, n = 2, 3, \dots$. 从而 $c_n = c_0 \prod_{k=1}^n \frac{c_k}{c_{k-1}} = \prod_{k=1}^n \frac{1}{d_k}, n = 1, 2, \dots$, 且

该式对 n=0 也成立. 因此, 令 $c_n=\prod_{k=1}^n\frac{1}{d_k}, n=0,1,\cdots$, 则由(2.76)式可知

$$\lim_{n \to \infty} (a_n - d_n a_{n-1}) = \lim_{n \to \infty} \frac{c_n a_n - c_n d_n a_{n-1}}{c_n} = \lim_{n \to \infty} \frac{c_n a_n - c_{n-1} a_{n-1}}{c_n} = A.$$
 (2.77)

于是令 $b_0 = 1$, 待定 $\{b_n\}_{n=0}^{\infty}$, 希望 b_n 满足 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}, n = 1, 2, \cdots$, 即 $b_n = \frac{c_n a_n - c_{n-1} a_{n-1}}{c_n} = a_n - \frac{c_{n-1} a_{n-1}}{c_n}, n = 1, 2, \cdots$, 因此, 令 $b_0 = 1$, $b_n = a_n - \frac{c_{n-1} a_{n-1}}{c_n}, n = 1, 2, \cdots$, 则 b_n 满足

$$c_n b_n = c_n a_n - c_{n-1} a_{n-1}, n = 1, 2, \cdots$$
 (2.78)

并且由(2.77)式可知

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{c_na_n-c_{n-1}a_{n-1}}{c_n}=A.$$

从而由(2.78)式可得

$$a_n = \frac{1}{c_n}(c_n a_n - c_0 a_0 + c_0 a_0) = \frac{1}{c_n} \left[\sum_{k=1}^n (c_k a_k - c_{k-1} a_{k-1}) + c_0 a_0 \right] = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots$$

这样就完成了对 a_n 的强行裂项和强求通项.

例题 **2.95** 设 $\{a_n\}_{n=0}^{\infty}$ 满足 $\lim_{n\to\infty} (a_n - \lambda a_{n-1}) = a, |\lambda| < 1$, 计算 $\lim_{n\to\infty} a_n$.

 $\stackrel{ extbf{?}}{ extbf{?}}$ 笔记 解法二构造数列 c_n, b_n 的思路: 待定数列 c_n 且 $c_0 = 1$, 由条件可得 $\lim_{n \to \infty} \frac{c_n a_n - \lambda c_n a_{n-1}}{c_n} = a$. 希望 $c_{n-1} = \lambda c_n$,

即 $\frac{c_n}{c_{n-1}} = \frac{1}{\lambda}$, 等价于 $c_n = c_0 \prod_{k=1}^n \frac{c_k}{c_{k-1}} = \frac{1}{\lambda^n}$. 该式对 n = 0 也成立. 于是令 $c_n = \frac{1}{\lambda^n}$, 则由条件可知

$$a = \lim_{n \to \infty} \frac{c_n a_n - \lambda c_n a_{n-1}}{c_n} = \lim_{n \to \infty} \frac{c_n a_n - c_{n-1} a_{n-1}}{c_n}$$

从而待定 b_n ,希望 b_n 满足 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$,即 $\frac{b_n}{\lambda^n} = \frac{a_n}{\lambda^n} - \frac{a_{n-1}}{\lambda^{n-1}} = \frac{a_n - \lambda a_{n-1}}{\lambda^n}$.于是令 $b_n = a_n - \lambda a_{n-1}$,则由条件可知 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - \lambda a_{n-1}) = a_n c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 因此

$$a_n = \frac{1}{c_n} (c_n a_n - c_0 a_0 + c_0 a_0) = \frac{1}{c_n} \left[\sum_{k=1}^n (c_k a_k - c_{k-1} a_{k-1}) + c_0 a_0 \right]$$
$$= \frac{1}{c_n} \left(\sum_{k=1}^n c_k b_k + c_0 a_0 \right) = \lambda^n \sum_{k=1}^n \frac{b_k}{\lambda^k} + a_0 \lambda^n.$$

这样就完成了对 a_n 的强行裂项和强求通项.后续计算极限的方法与解法一相同.

解 解法一 (通过观察直接构造出裂项数列 b_n): 当 $\lambda=0$ 问题时显然的, 当 $\lambda\neq0$, 记 $b_n=a_n-\lambda a_{n-1}, n=1,2,\cdots$, 我们有

$$\frac{b_n}{\lambda^n} = \frac{a_n - \lambda a_{n-1}}{\lambda^n} = \frac{a_n}{\lambda^n} - \frac{a_{n-1}}{\lambda^{n-1}}, n = 1, 2, \cdots.$$

上式对 $n=1,2,\cdots$ 求和得

$$a_n = \lambda^n \sum_{k=1}^n \frac{b_k}{\lambda^k} + a_0 \lambda^n, n = 1, 2, \cdots$$
 (2.79)

由于 $|\lambda|<1$, 我们知道 $\lim_{n\to\infty}a_0\lambda^n=0$. 于是由 Stolz 定理, 可知当 $\lambda>0$ 时, 我们有

$$\lim_{n\to\infty} \frac{\sum\limits_{k=1}^{\infty} \frac{b_k}{\lambda^k}}{\frac{1}{\lambda^n}} = \lim_{n\to\infty} \frac{\frac{b_{n+1}}{\lambda^{n+1}}}{\frac{1}{\lambda^{n+1}} - \frac{1}{\lambda^n}} = \lim_{n\to\infty} \frac{b_{n+1}}{1 - \lambda} = \frac{a}{1 - \lambda}.$$

当 $\lambda < 0$ 时 (此时分母 $\frac{1}{\lambda^n}$ 不再严格单调递增趋于 $+\infty$, 不满足 Stolz 定理条件. 但是不难发现其奇偶子列严格单调递增趋于 $+\infty$ 满足 Stolz 定理条件, 因此需要分奇偶子列讨论), 对于(2.79)式的偶子列, 由 Stolz 定理, 我们有

$$\lim_{n \to \infty} \frac{\sum\limits_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{\lambda^{2n}}} = \lim_{n \to \infty} \frac{\sum\limits_{k=1}^{2n+2} \frac{b_k}{\lambda^k} - \sum\limits_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{\lambda^{2n+2}} - \frac{1}{\lambda^{2n}}} = \lim_{n \to \infty} \frac{\frac{b_{2n+2}}{\lambda^{2n+2}} + \frac{b_{2n+1}}{\lambda^{2n+1}}}{\frac{1}{\lambda^{2n+2}} - \frac{1}{\lambda^{2n}}} = \lim_{n \to \infty} \frac{b_{2n+2} + \lambda b_{2n+1}}{1 - \lambda^2} = \frac{a + \lambda a}{1 - \lambda^2} = \frac{a}{1 - \lambda}.$$

对于(2.79)式的奇子列, 由 Stolz 定理, 我们有

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n-1}\frac{b_k}{\lambda^k}}{(\frac{1}{\ell})^{2n-1}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n-1}\frac{b_k}{\lambda^k}}{\frac{1}{22n}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n}\frac{b_k}{\lambda^k}}{\frac{1}{12n}}-\frac{1}{\lambda}\lim_{n\to\infty}\frac{\frac{b_{2n}}{\lambda^{2n}}}{\frac{1}{12n}}=\frac{\|\beta\|\beta\|\beta\|\beta\|\delta\|\delta\|}{\lambda(1-\lambda)}-\frac{a}{\lambda}=\frac{a}{1-\lambda}.$$

因此无论如何我们都有 $\lim_{n\to\infty} a_n = \frac{a}{1-\lambda}$.

解法二 (强求通项和强行裂项的标准解法): 令 $c_n = \frac{1}{\lambda^n}, n = 0, 1, \cdots, b_n = a_n - \lambda a_{n-1}, n = 1, 2, \cdots$,则由条件可知 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - \lambda a_{n-1}) = a, c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 从而对 $\forall n \in \mathbb{N}$,都有

$$a_{n} = \frac{1}{c_{n}} (c_{n} a_{n} - c_{0} a_{0} + c_{0} a_{0}) = \frac{1}{c_{n}} \left[\sum_{k=1}^{n} (c_{k} a_{k} - c_{k-1} a_{k-1}) + c_{0} a_{0} \right]$$

$$= \frac{1}{c_{n}} \left(\sum_{k=1}^{n} c_{k} b_{k} + c_{0} a_{0} \right) = \lambda^{n} \sum_{k=1}^{n} \frac{b_{k}}{\lambda^{k}} + a_{0} \lambda^{n}.$$
(2.80)

由于 $|\lambda| < 1$, 我们知道 $\lim_{n \to \infty} a_0 \lambda^n = 0$. 于是由 Stolz 定理, 可知当 $\lambda > 0$ 时, 我们有

$$\lim_{n\to\infty} \frac{\sum\limits_{k=1}^n \frac{b_k}{\lambda^k}}{\frac{1}{\lambda^n}} = \lim_{n\to\infty} \frac{\frac{b_{n+1}}{\lambda^{n+1}}}{\frac{1}{\lambda^{n+1}} - \frac{1}{\lambda^n}} = \lim_{n\to\infty} \frac{b_{n+1}}{1 - \lambda} = \frac{a}{1 - \lambda}.$$

当 $\lambda < 0$ 时 (分母 $\frac{1}{\lambda^n}$ 不再严格单调递增趋于 $+\infty$, 不满足 Stolz 定理条件. 而我们发现其奇偶子列恰好严格单调递增趋于 $+\infty$ 满足 Stolz 定理条件, 因此需要分奇偶子列讨论), 对于(2.80)式的偶子列, 由 Stolz 定理, 我们有

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{12n}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{2n+2} \frac{b_k}{\lambda^k} - \sum_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{12n+2} - \frac{1}{12n}} = \lim_{n \to \infty} \frac{\frac{b_{2n+2}}{\lambda^{2n+2}} + \frac{b_{2n+1}}{\lambda^{2n+1}}}{\frac{1}{12n+2} - \frac{1}{12n}} = \lim_{n \to \infty} \frac{b_{2n+2} + \lambda b_{2n+1}}{1 - \lambda^2} = \frac{a + \lambda a}{1 - \lambda^2} = \frac{a}{1 - \lambda}.$$

对于(2.80)式的奇子列, 由 Stolz 定理, 我们有

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n-1}\frac{b_k}{\lambda^k}}{(\frac{1}{\ell})^{2n-1}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n-1}\frac{b_k}{\lambda^k}}{\frac{1}{\ell^{2n}}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n}\frac{b_k}{\lambda^k}}{\frac{1}{\ell^{2n}}}-\frac{1}{\lambda}\lim_{n\to\infty}\frac{\frac{b_{2n}}{\lambda^{2n}}}{\frac{1}{\ell^{2n}}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{a}{\lambda(1-\lambda)}-\frac{a}{\lambda}=\frac{a}{1-\lambda}.$$

因此无论如何我们都有 $\lim_{n\to\infty} a_n = \frac{a}{1-\lambda}$. 例题 **2.96** 设 $a_1=2, a_n=\frac{1+\frac{1}{n}}{2}a_{n-1}+\frac{1}{n}, n\geqslant 2$, 证明: $\lim_{n\to\infty} na_n$ 存在.

笔记 构造数列 c_n, b_n 的思路: 待定数列 c_n 且 $c_1 = 1$, 由条件可得 $c_n a_n = \frac{n+1}{2n} c_n a_{n-1} + \frac{c_n}{n}$, 希望 c_n 满足 $\frac{n+1}{2n} c_n = \frac{n+1}{2n} c_n a_n = \frac{n+1}{2n} c_n = \frac{n$ $c_{n-1}, n=2,3,\cdots$,即 $\frac{c_n}{c_{n-1}}=\frac{n+1}{n}$,等价于 $c_n=\prod_{k=2}^n\frac{2k}{k+1}=\frac{(2n)!!}{(n+1)!}$ 且该式对 n=1 也成立. 于是令 $c_n=\frac{(2n)!!}{(n+1)!}$

$$c_n a_n = \frac{n+1}{2n} c_{n-1} + \frac{c_n}{n} = c_{n-1} a_{n-1} + \frac{c_n}{n}, n = 2, 3, \cdots$$

于是待定 b_n , 希望 b_n 满足 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$, 即 $c_n b_n = \frac{1}{n}$. 从而令 $b_n = \frac{1}{n}$, 则 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 因此 对 $\forall m \in \mathbb{N}_+$, 都有

$$a_m = \frac{1}{c_m} \left(c_m a_m - c_1 a_1 + c_1 a_1 \right) = \frac{1}{c_m} \left[\sum_{n=1}^m \left(c_n a_n - c_{n-1} a_{n-1} \right) + c_1 a_1 \right]$$
$$= \frac{1}{c_m} \left(\sum_{n=1}^m c_n b_n + c_1 a_1 \right) = \frac{(m+1)!}{(2m)!!} \left(\sum_{n=1}^m \frac{(2n)!!}{n(n+1)!} + 2 \right).$$

这样就完成了对 a_n 的强行裂项和强求通项. 后续再利用 Stolz 定理计算极限即可. 证明 令 $c_n = \frac{(2n)!!}{(n+1)!}, b_n = \frac{1}{n}, n=1,2,\cdots$,则由条件可知 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 从而对 $\forall m \in \mathbb{N}$,都有

$$c_m a_m - 2 = c_m a_m - c_1 a_1 = \sum_{n=2}^{m} (c_n a_n - c_{n-1} a_{n-1}) = \sum_{n=1}^{m} \frac{c_n}{n} = \sum_{n=1}^{m} \frac{(2n)!!}{n(n+1)!},$$

从而

$$a_m = \frac{1}{c_m} \left(2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!} \right) = \frac{(m+1)!}{(2m)!!} \left(2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!} \right).$$

再由 Stolz 定理可得

$$\lim_{m \to \infty} m a_m = \lim_{m \to \infty} m \frac{(m+1)!}{(2m)!!} \left(2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!} \right) = \lim_{m \to \infty} \frac{2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!}}{\frac{(2m)!!}{m(m+1)!}}$$

$$\frac{\text{Stolz } \mathcal{E}^{\underline{H}}}{m} \lim_{m \to \infty} \frac{\frac{(2m+2)!!}{(m+1)(m+2)!}}{\frac{(2m+2)!!}{(m+1)(m+2)!}} = \lim_{m \to \infty} \frac{\frac{2m+2}{m+1}}{\frac{2m+2}{m+1}} = \frac{2}{2-1} = 2.$$

例题 **2.97** 设 $\lim_{n\to\infty} b_n = b$ 存在, 令

$$a_{n+1} = b_n - \frac{na_n}{2n+1},$$

证明 $\lim_{n\to\infty} a_n$ 存在.

拿 笔记 构造数列 c_n 的思路: 令 $c_1 = 1$, 待定 $\{c_n\}_{n=1}^{+\infty}$, 由条件可知 $c_{n+1}a_{n+1} = c_{n+1}b_n - \frac{n}{2n+1}c_{n+1}a_n$. 希望 $-\frac{n}{2n+1}c_{n+1} = c_{n+1}a_n$. c_n , 则 $\frac{c_{n+1}}{c_n} = -\frac{2n+1}{n}$, 从而

$$c_n = \prod_{k=1}^{n-1} \frac{c_{k+1}}{c_k} = \prod_{k=1}^{n-1} \left(-\frac{2k+1}{k} \right) = (-1)^{n-1} \frac{(2n-1)!!}{(n-1)!}$$

该式对 n=1 也成立. 因此令 $c_n=(-1)^{n-1}\frac{(2n-1)!!}{(n-1)!}$, 则由条件可知

$$c_{n+1}a_{n+1} = c_{n+1}b_n + c_na_n \Rightarrow c_{n+1}a_{n+1} - c_na_n = c_{n+1}b_n$$

从而

$$a_n = \frac{1}{c_n} \left[\sum_{k=2}^n (c_k a_k - c_{k-1} a_{k-1}) + c_1 a_1 \right] = \frac{1}{c_n} \left[\sum_{k=2}^n c_k b_{k-1} + c_1 a_1 \right]$$

到结果,并且此时 $(-1)^n$ 仍未消去. 因此我们不采用这种处理方式. 如果此时我们将(2.81)中的 $\frac{(-1)^n(2n+1)!!}{n!}$ 看作分母,则由于 $(-1)^n$ 的振荡性,导致这个分母不再严格单调递

增趋于 $+\infty$, 不满足 Stolz 定理条件. 但是不难发现其奇偶子列严格单调递增趋于 $+\infty$ 满足 Stolz 定理条件, 因此我

们可以分奇偶子列进行讨论. 证明 令 $c_n = (-1)^{n-1} \frac{(2n-1)!!}{(n-1)!}, n=1,2,\cdots$,则由条件可知

$$c_{n+1}a_{n+1} = c_{n+1}b_n - \frac{n}{2n+1}c_{n+1}a_n = c_{n+1}b_n + c_na_n, \quad \forall n \in \mathbb{N}_+.$$

从而 $c_{n+1}a_{n+1}-c_na_n=c_{n+1}b_n$, $\forall n\in\mathbb{N}_+$. 于是

$$a_{n+1} = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} (c_{k+1} a_{k+1} - c_k a_k) + c_1 a_1 \right] = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} c_{k+1} b_k + c_1 a_1 \right]$$

$$= \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} c_{k+1} b_k + a_1 \right] = \frac{(-1)^n n!}{(2n+1)!!} \left[\sum_{k=1}^{n} (-1)^k \frac{(2k+1)!!}{k!} b_k + a_1 \right], n \in \mathbb{N}_+.$$
(2.81)

下面计算 $\lim_{n \to \infty} a_n$. 由Wallis 公式可知

$$\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to \infty.$$

从而我们有

$$\frac{n!}{(2n+1)!!} = \frac{n!}{(2n+1)(2n-1)!!} = \frac{(2n)!!}{(2n+1)2^n(2n-1)!!} \sim \frac{\sqrt{\pi n}}{n2^{n+1}} = \frac{\sqrt{\pi}}{2^{n+1}\sqrt{n}}, n \to \infty.$$
 (2.82)

于是由(2.81)(2.82)式以及 Stolz 定理和 $\lim_{n\to\infty} b_n = b$ 可知, 一方面, 考虑 $\{a_n\}$ 的奇子列, 我们有

$$\lim_{n \to \infty} a_{2n+1} = \lim_{n \to \infty} \frac{(-1)^{2n} (2n)!}{(4n+1)!!} \left[\sum_{k=1}^{2n} (-1)^k \frac{(2k+1)!!}{k!} b_k + a_1 \right] = \lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^n \frac{(4k-1)!!}{(2k)!} b_{2k} - \sum_{k=1}^n \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} + a_1 \right]}{2^{2n+1} \sqrt{2n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^n \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^n \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} \right]}{2^{2n+1} \sqrt{2n}} \xrightarrow{\text{Stolz } \not\equiv \mathbb{Z}} \lim_{n \to \infty} \frac{\sqrt{\pi} \left[\frac{(4n+1)!!}{(2n)!} b_{2n} - \frac{(4n-1)!!}{(2n-1)!} b_{2n-1} \right]}{2^{2n+1} \sqrt{2n} - 2^{2n-1} \sqrt{2n-2}}$$

$$= \frac{\sqrt{\pi}}{\sqrt{2}} \lim_{n \to \infty} \frac{\frac{(4n-1)!!}{(2n-1)!} \left(\frac{4n+1}{2n}b_{2n} - b_{2n-1}\right)}{2^{2n+1}\sqrt{n} - 2^{2n-1}\sqrt{n-1}} = \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{2^{2n}\sqrt{2n-1} \left(\frac{4n+1}{2n}b_{2n} - b_{2n-1}\right)}{2^{2n+1}\sqrt{n} - 2^{2n-1}\sqrt{n-1}}$$

$$= \frac{2}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{2n-1} \left(\frac{4n+1}{2n}b_{2n} - b_{2n-1}\right)}{4\sqrt{n} - \sqrt{n-1}} = \frac{2}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{2n-1}}{4\sqrt{n} - \sqrt{n-1}} \cdot \lim_{n \to \infty} \left(\frac{4n+1}{2n}b_{2n} - b_{2n-1}\right)$$

$$= \frac{2}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{2-\frac{1}{n}}}{4 - \sqrt{1-\frac{1}{n}}} \cdot (2b-b) = \frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{3} \cdot b = \frac{2}{3}b. \tag{2.83}$$

另一方面,考虑 $\{a_n\}$ 的偶子列,我们有

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} \frac{(-1)^{2n-1} (2n-1)!}{(4n-1)!!} \left[\sum_{k=1}^{2n-1} (-1)^k \frac{(2k+1)!!}{k!} b_k + a_1 \right] = -\lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^{n-1} \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^{n} \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} + a_1 \right]}{2^{2n} \sqrt{2n-1}}$$

$$= -\lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^{n-1} \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^{n} \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} \right]}{2^{2n} \sqrt{2n-1}} = -\lim_{n \to \infty} \frac{\sqrt{\pi} \left[\frac{(4n-3)!!}{(2n-2)!} b_{2n-2} - \frac{(4n-1)!!}{(2n-1)!} b_{2n-1} \right]}{2^{2n} \sqrt{2n-1} - 2^{2n-2} \sqrt{2n-3}}$$

$$= -\sqrt{\pi} \lim_{n \to \infty} \frac{\frac{(4n-3)!!}{(2n-2)!} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)}{2^{2n} \sqrt{2n-1} - 2^{2n-2} \sqrt{2n-3}} = -\lim_{n \to \infty} \frac{2^{2n-1} \sqrt{2n-2} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)}{2^{2n} \sqrt{2n-1} - 2^{2n-2} \sqrt{2n-3}}$$

$$= -2 \lim_{n \to \infty} \frac{\sqrt{2n-2} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)}{4\sqrt{2n-1} - \sqrt{2n-3}} = -2 \lim_{n \to \infty} \frac{\sqrt{2n-2}}{4\sqrt{2n-1} - \sqrt{2n-3}} \cdot \lim_{n \to \infty} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)$$

$$= -2 \lim_{n \to \infty} \frac{\sqrt{2-\frac{2}{n}}}{4\sqrt{2-\frac{1}{n}} - \sqrt{2-\frac{3}{n}}} = -2 \cdot \frac{\sqrt{2}}{3\sqrt{2}} \cdot (-b) = \frac{2}{3}b.$$
(2.84)

故由(2.83)(2.84)式, 再结合子列极限命题 (b)可知

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1} = \frac{2}{3}b.$$

例题 2.98 设 $a_n, b_n > 0, a_1 = b_1 = 1, b_n = a_n b_{n-1} - 2, n \geqslant 2$ 且 b_n 有界, 求 $\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{a_1 a_2 \cdots a_k}$.

笔记 构造数列 c_n 的思路: 观察已知的数列递推条件: $b_n = a_n b_{n-1} - 2$, 可知我们只能对 b_n 进行强行裂项和强求通项. 于是令 $c_1 = 1$, 待定 $\{c_n\}_{n=1}^{+\infty}$, 则由条件可知 $c_n b_n = a_n c_n b_{n-1} - 2c_n$, $n \ge 2$. 希望 $a_n c_n = c_{n-1}$, 则 $\frac{c_n}{c_{n-1}} = \frac{1}{a_n}$,

从而
$$c_n = \prod_{k=2}^n \frac{1}{a_k} = \prod_{k=1}^n \frac{1}{a_k}$$
. 该式对 $n=1$ 也成立. 因此, 令 $c_n = \prod_{k=1}^n \frac{1}{a_k}$, 则由条件可知

$$c_n b_n = a_n c_n b_{n-1} - 2c_n = c_{n-1} b_{n-1} - 2c_n, n \geqslant 2.$$

于是

$$c_n b_n - c_{n-1} b_{n-1} = -2c_n, n \geqslant 2.$$

故

$$b_{n+1} = \frac{1}{c_{n+1}} \left[\sum_{k=1}^n \left(c_{k+1} b_{k+1} - c_k b_k \right) + c_1 b_1 \right] = \frac{1}{c_n} \left(1 - 2 \sum_{k=1}^n c_k \right).$$

这样就完成了对 b_n 的强行裂项和强求通项, 而我们发现 $\sum_{k=1}^n c_k = \sum_{k=1}^n \frac{1}{a_1 a_2 \cdots a_k}$ 恰好就是题目要求的数列极限.

证明 令 $c_n = \prod_{k=1}^n \frac{1}{a_k}$,则由条件可知 $c_n > 0$,且

$$c_n b_n = a_n c_n b_{n-1} - 2c_n = c_{n-1} b_{n-1} - 2c_n, n \geqslant 2.$$

于是

$$c_n b_n - c_{n-1} b_{n-1} = -2c_n, n \geqslant 2.$$

故

$$b_{n+1} = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} (c_{k+1}b_{k+1} - c_k b_k) + c_1 b_1 \right] = \frac{1}{c_n} \left(1 - 2 \sum_{k=1}^{n} c_{k+1} \right) . \forall n \in \mathbb{N}_+.$$

由此可得

$$\sum_{k=1}^{n} \frac{1}{a_1 a_2 \cdots a_k} = \sum_{k=1}^{n} c_k = 1 + \sum_{k=1}^{n} c_{k+1} = 1 + \frac{1 - b_{n+1} c_n}{2} = \frac{3}{2} - \frac{c_n b_{n+1}}{2}, \forall n \in \mathbb{N}_+.$$
 (2.85)

由于 $a_n, b_n, c_n > 0$, 再结合(2.85)式, 可知 $\sum_{k=1}^n \frac{1}{a_1 a_2 \cdots a_k}$ 单调递增且 $\sum_{k=1}^n \frac{1}{a_1 a_2 \cdots a_k} = \frac{3}{2} - \frac{c_n b_{n+1}}{2} \leqslant \frac{3}{2}$, 因此

 $\lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{a_{1}a_{2}\cdots a_{k}}-$ 定存在. 故 $\lim_{n\to\infty}\frac{1}{a_{1}a_{2}\cdots a_{n}}=\lim_{n\to\infty}c_{n}=0$. 从而再结合(2.85)式和 b_{n} 有界可得

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{a_1 a_2 \cdots a_k} = \lim_{n \to \infty} \left(\frac{3}{2} - \frac{c_n b_{n+1}}{2} \right) = \frac{3}{2}.$$

2.6.9 递推数列综合问题

再次回顾命题 2.2的想法. 这个想法再解决递推数列问题中也很常用.

例题 2.99 设 $a_n, b_n \ge 0$ 且 $a_{n+1} < a_n + b_n$, 同时 $\sum_{i=1}^{n} b_n$ 收敛, 证明: a_n 也收敛.

 \dot{L} 不妨设 $m_k > n_k$ 的原因: 由假设 a_n 不收敛可知, 存在 $\delta > 0$, 对 $\forall N > 0$, 都存在 $m \in \mathbb{N}$, 使得 $|a_m - A| \geqslant \delta$. 从而

取 $N = n_1 > 0$, 则存在 $m_1 \in \mathbb{N}$, 使得 $|a_{m_1} - A| \ge \delta$.

取 $N = n_2 > 0$, 则存在 $m_2 \in \mathbb{N}$, 使得 $|a_{m_2} - A| \ge \delta$.

.

取 $N = n_k > 0$, 则存在 $m_k \in \mathbb{N}$, 使得 $|a_{m_k} - A| \ge \delta$.

.

这样就得到了一个子列 $\{a_{m_k}\}$ 满足对 $\forall n \in \mathbb{N}_+$, 都有 $m_k > n_k$ 且 $|a_{m_k} - A| \ge \delta$.

证明 由 $a_{n+1} < a_n + b_n$ 可得

$$a_n = a_1 + \sum_{i=1}^{n-1} (a_{i+1} - a_i) < a_1 + \sum_{i=1}^{n-1} b_i, \forall n \geqslant 2.$$
 (2.86)

又 $\sum_{n=1}^{\infty} b_n$ 收敛, 故对 $\forall n \in \mathbb{N}$, 有 $\sum_{i=1}^{n} b_i$ 有界. 再结合 (2.86) 式可知, a_n 也有界. 由聚点定理可知, 存在一个收敛子列 $\{a_{n_k}\}$, 设 $\lim_{k \to \infty} a_{n_k} = A < \infty$.

(反证) 假设 a_n 不收敛,则存在 $\delta > 0$ 和一个子列 $\{a_{m_k}\}$,使得

$$|a_{m_k} - A| \geqslant \delta, \forall n \in \mathbb{N}_+.$$

不妨设 $m_k > n_k, \forall n \in \mathbb{N}_+$. 此时分两种情况讨论.

(i) 如果有无穷多个 k, 使得 $a_{m_k} \ge A + \delta$ 成立. 再结合条件可得, 对这些 k, 都有

$$a_{m_k} - a_{n_k} = \sum_{i=n_k}^{m_k-1} (a_{i+1} - a_i) < \sum_{i=n_k}^{m_k-1} b_i,$$
(2.87)

$$a_{m_k} - a_{n_k} = (a_{m_k} - A) + (A - a_{n_k}) \geqslant \delta + (A - a_{n_k}). \tag{2.88}$$

又因为 $\sum_{n=1}^{\infty} b_n$ 收敛和 $\lim_{k\to\infty} a_{n_k} = A$, 所以

$$\lim_{k \to \infty} \sum_{i=n_k}^{m_k - 1} b_i = \lim_{k \to \infty} (A - a_{n_k}) = 0.$$

于是对 (2.87)(2.88) 式两边同时令 $k \to \infty$, 得到

$$0 < \delta \leqslant \lim_{k \to \infty} (a_{m_k} - a_{n_k}) \leqslant \lim_{k \to \infty} \sum_{i=n_k}^{m_k - 1} b_i = 0.$$

上述不等式矛盾.

(ii) 如果有无穷多个 k, 使得 $a_{m_k} \leq A - \delta$ 成立. 取 $\{a_{n_k}\}$ 的一个子列 $\{a_{t_k}\}$, 使得 $t_k > m_k, \forall n \in \mathbb{N}_+$, 则 $\lim_{k \to \infty} a_{t_k} = \lim_{k \to \infty} a_{n_k} = A$. 再结合条件可得, 对这些 k, 都有

$$a_{t_k} - a_{m_k} = \sum_{i=m_k}^{t_k - 1} (a_{i+1} - a_i) < \sum_{i=m_k}^{t_k - 1} b_i,$$
(2.89)

$$a_{t_k} - a_{m_k} = (a_{t_k} - A) + (A - a_{m_k}) \geqslant (a_{t_k} - A) + \delta.$$
 (2.90)

又因为 $\sum_{n=1}^{\infty} b_n$ 收敛和 $\lim_{k\to\infty} a_{t_k} = A$, 所以

$$\lim_{k \to \infty} \sum_{i=m_k}^{t_k - 1} b_i = \lim_{k \to \infty} (a_{t_k} - A) = 0.$$

于是对 (2.89)(2.90)式两边同时令 $k \to \infty$, 得到

$$0 < \delta \leqslant \lim_{k \to \infty} (a_{t_k} - a_{m_k}) \leqslant \lim_{k \to \infty} \sum_{i=m_k}^{t_k - 1} b_i = 0.$$

上述不等式矛盾. 结论得证. **例题 2.100** 设 $a_{n+1} = \ln\left(\frac{e^{a_n}-1}{a_n}\right), a_1 = 1$, 证明: 极限 $\lim_{n\to\infty} 2^n a_n$ 存在.

Ŷ 笔记 本题证明的思路分析:

注意到递推函数 $f(x) = \ln\left(\frac{e^x - 1}{x}\right)$ 在 $(0, +\infty)$ 上单调递增, 且 $a_1 = 1 > 0$. 因此直接利用单调分析法归纳证明 $\{a_n\}$ 单调有界且 $a_n \in (0, 1]$. 进而得到 $\lim_{n \to \infty} a_n = 0$. 再利用命题 2.2将 $2^n a_n$ 转化为级数的形式. 因为递推函数与 $\ln n \neq 0$ 0,所以我们考虑作差转换, 即

$$2^{n+1}a_{n+1} = \sum_{k=1}^{n} (2^{k+1}a_{k+1} - 2^k a_k) = \sum_{k=1}^{n} 2^{k+1} \left(\ln \left(\frac{e^{a_k} - 1}{a_k} \right) - \frac{1}{2} a_k \right).$$

因此我们只需证明级数 $\sum_{k=1}^n 2^{k+1} \left(\ln \left(\frac{e^{a_k}-1}{a_k} \right) - \frac{1}{2} a_k \right)$ 收敛即可. 考虑其通项 $2^{n+1} \left(\ln \left(\frac{e^{a_n}-1}{a_n} \right) - \frac{1}{2} a_n \right)$. 由于 $\lim_{k \to \infty} a_n = 0$,因此利用 Taylor 公式可得

$$\ln\left(\frac{e^{a_n}-1}{a_n}\right) - \frac{1}{2}a_n = \ln\frac{a_n + \frac{a_n^2}{2} + \frac{a_n^3}{6} + o(a_n^3)}{a_n} - \frac{1}{2}a_n = \ln\left(1 + \frac{a_n}{2} + \frac{a_n^2}{6} + o(a_n^2)\right) - \frac{1}{2}a_n$$

$$= \frac{a_n}{2} + \frac{a_n^2}{6} + o(a_n^2) - \left(\frac{a_n}{2} + \frac{a_n^2}{6} + o(a_n^2)\right)^2 + o(a_n^2) - \frac{1}{2}a_n = \frac{a_n^2}{24}, n \to \infty.$$

故当 n 充分大时, 我们有

$$2^{n+1} \left(\ln \left(\frac{e^{a_n} - 1}{a_n} \right) - \frac{1}{2} a_n \right) = \frac{1}{24} 2^{n+1} a_n^2.$$

于是我们只须证级数 $\sum_{k=1}^{n} \frac{1}{24} 2^{n+1} a_n^2$ 收敛即可. 因此我们需要找到一个收敛级数 $\sum_{k=1}^{n} c_n$, 使得 $2^{n+1} a_n^2$ 被这个收敛级

数的通项 c_n 控制, 即当 n 充分大时, 有

$$2^{n+1}a_n^2 \leqslant c_n.$$

又题目要证 $\lim_{n\to\infty} 2^n a_n$ 存在, 说明 $\lim_{n\to\infty} 2^n a_n$ 一定存在, 从而一定有

$$a_n \sim \frac{c}{2^n}, n \to \infty,$$
 (2.91)

其中 c 为常数. 虽然无法直接证明 (2.91) 式, 但是 (2.91)式给我们提供了一种找 c_n 的想法.(2.91)式表明 a_n 与几何级数的通项近似, 于是一定存在 $\lambda \in (0,1)$, 使得 $a_n \approx \frac{c}{2^n} \leqslant c_0 \lambda^n, n \to \infty$. 其中 c_0 为常数. 从而

$$2^{n+1}a_n^2 \leqslant c_0^2 2^{n+1}\lambda^{2n} = c_1(2\lambda^2)^n, n \to \infty.$$

故我们只需要保证 $\sum_{n=1}^{\infty} (2\lambda^2)^n$ 收敛, 就能由级数的比较判别法推出 $\sum_{k=1}^{n} \frac{1}{24} 2^{n+1} a_n^2$ 收敛. 因此我们待定 $\lambda \in (0,1)$, 使

得
$$\sum_{n=1}^{\infty} (2\lambda^2)^n$$
 恰好就是一个几何级数. 于是 $2\lambda^2 < 1 \Rightarrow \lambda < \frac{\sqrt{2}}{2}$. 故我们只要找到一个恰当的 $\lambda \in \left(0, \frac{\sqrt{2}}{2}\right)$, 使得

$$a_n \leqslant c_0 \lambda^n, n \to \infty.$$
 (2.92)

其中 c_0 为常数,即可. 我们需要与已知的递推条件联系起来,因此考虑

$$a_{n+1} \leqslant c_0 \lambda^{n+1}, n \to \infty.$$
 (2.93)

又 $a_n \in (0,1]$, 显然将(2.92)与(2.93) 式作商得到

$$a_n \leqslant c_0 \lambda^n, n \to \infty \Leftrightarrow \frac{a_{n+1}}{a_n} \le \lambda, n \to \infty \Leftrightarrow \frac{f(a_n)}{a_n} \le \lambda, n \to \infty$$

又 $\lim_{n\to\infty} a_n = 0$, 故上式等价于

$$\lim_{x \to 0^+} \frac{f(x)}{x} \leqslant \lambda \Leftrightarrow \lim_{x \to 0^+} \frac{\ln\left(\frac{e^x - 1}{x}\right)}{x} \leqslant \lambda$$

注意到 $\lim_{x\to 0^+}\frac{\ln\left(\frac{e^x-1}{x}\right)}{x}=\lim_{x\to 0^+}\frac{\frac{x}{2}+o(x)}{x}=\frac{1}{2},$ 所以任取 $\lambda\in\left(\frac{1}{2},\frac{\sqrt{2}}{2}\right)$ 即可. 最后根据上述思路严谨地书写证明即可

(注: 也可以利用 f(x) 的凸性去找 $\lambda \in \left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right)$, 见下述证明过程.)

$$f(x) < x \Leftrightarrow \ln\left(\frac{e^x - 1}{x}\right) < x \Leftrightarrow \frac{e^x - 1}{x} < e^x \Leftrightarrow \ln x > 1 - \frac{1}{x}$$

$$\Leftrightarrow \ln \frac{1}{t} > 1 - t, \ \mbox{\sharp} \ \mbox{\dag} \ \mbox{\dag} \ \mbox{$t = \frac{1}{x} > 0$} \Leftrightarrow \ln t < t - 1, \ \mbox{\sharp} \ \mbox{\dag} \mbox{\dag} \ \mbox{\dag} \m$$

上式最后一个不等式显然成立. 因此

$$f(x) = \ln\left(\frac{e^x - 1}{x}\right) < x, \forall x > 0.$$
(2.94)

由 $e^x - 1 > x$, $\forall x \in \mathbb{R}$ 可知

$$f(x) = \ln\left(\frac{e^x - 1}{x}\right) > \ln 1 = 0, \forall x > 0.$$
 (2.95)

从而由 (2.94)(2.95) 式及 $a_1 = 1$, 归纳可得 $\forall n \in \mathbb{N}_+$, 都有

$$a_{n+1} = f(a_n) < a_n, \quad a_{n+1} = f(a_n) > 0.$$

故数列 $\{a_n\}$ 单调递减且有下界 0. 于是 $a_n\in(0,1]$,并且由单调有界原理可知 $\lim_{n\to\infty}a_n=A\in[0,1]$. 对 $a_{n+1}=\ln\left(\frac{e^{a_n}-1}{a_n}\right)$ 两边同时令 $n\to\infty$,得到

$$A = \ln\left(\frac{e^A - 1}{A}\right) \Leftrightarrow Ae^A = e^A - 1 \Leftrightarrow (1 - A)e^A = 1.$$

显然上述方程只有唯一解:A=0. 故 $\lim_{n\to\infty}a_n=0$. 下面证明 $\lim_{n\to\infty}2^na_n$ 存在. 由 $a_{n+1}=\ln\left(\frac{e^{a_n}-1}{a_n}\right)$ 可得, 对 $\forall n\in\mathbb{N}_+$, 都有

$$2^{n+1}a_{n+1} - 2^n a_n = 2^{n+1} \left[\ln \left(\frac{e^{a_n} - 1}{a_n} \right) - \frac{1}{2} a_n \right].$$

从而

$$2^{n+1}a_{n+1} = 2a_1 + \sum_{k=1}^{n} 2^{k+1} \left(\ln \left(\frac{e^{a_k} - 1}{a_k} \right) - \frac{1}{2}a_k \right) = 2 + \sum_{k=1}^{n} 2^{k+1} \left(\ln \left(\frac{e^{a_k} - 1}{a_k} \right) - \frac{1}{2}a_k \right), \forall n \in \mathbb{N}_+.$$

故要证 $\lim_{n\to\infty} 2^n a_n$ 存在, 即证 $\sum_{k=1}^n 2^{k+1} \left(\ln\left(\frac{e^{a_k}-1}{a_k}\right) - \frac{1}{2}a_k\right)$ 收敛. 注意到

$$\lim_{x \to 0} \frac{\ln \frac{e^x - 1}{x} - \frac{1}{2}x}{x^2} = \lim_{x \to 0} \frac{\ln \frac{x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)}{x} - \frac{1}{2}x}{x^2} = \lim_{x \to 0} \frac{\ln \left(1 + \frac{x}{2} + \frac{x^2}{6} + o(x^2)\right) - \frac{1}{2}x}{x^2}$$

$$= \lim_{x \to 0} \frac{\frac{x}{2} + \frac{x^2}{6} + o(x^2) - \left(\frac{x}{2} + \frac{x^2}{6} + o(x^2)\right)^2 + o(x^2) - \frac{1}{2}x}{x^2}$$

$$= \lim_{x \to 0} \frac{\frac{x^2}{24} + o(x^2)}{x^2} = \frac{1}{24} < 1,$$

再结合 $\lim_{n\to\infty}a_n=0$ 可得, $\lim_{n\to\infty}\frac{\ln\left(\frac{e^{a_n}-1}{a_n}\right)-\frac{1}{2}a_n}{a_n^2}=\frac{1}{24}<1$. 故存在 $N\in\mathbb{N}_+$, 使得

$$\ln\left(\frac{e^{a_n} - 1}{a_n}\right) - \frac{1}{2}a_n < a_n^2, \forall n > N.$$
(2.96)

由 $f(x) = \ln\left(\frac{e^x - 1}{x}\right)$ 可知, $f'(x) = \frac{e^x}{e^x - 1} - \frac{1}{x}$, $f''(x) = \frac{1}{x^2} - \frac{e^x}{(e^x - 1)^2}$. 注意到对 $\forall x \in (0, 1]$, 都有

$$f''(x) > 0 \Leftrightarrow \frac{1}{x^2} > \frac{e^x}{(e^x - 1)^2}$$
$$\Leftrightarrow \frac{1}{\ln^2 t} > \frac{t}{(t - 1)^2}, \ \ \sharp \ \forall t = e^x > 1$$
$$\Leftrightarrow \ln t < \frac{t - 1}{t} = \sqrt{t} - \frac{1}{t} \quad \ \ \sharp \ \ \exists t = t - e^x$$

 $\Leftrightarrow \ln t < \frac{t-1}{\sqrt{t}} = \sqrt{t} - \frac{1}{\sqrt{t}}, \ \ \sharp = t = e^x > 1$

而上式最后一个不等式显然成立 (见关于 \ln 的常用不等式??). 故 $f''(x) > 0, \forall x \in (0,1]$. 故 f 在 (0,1] 上是下凸函数. 从而由下凸函数的性质 (切割线放缩) 可得, $\forall x \in (0,1]$, 固定 x, 对 $\forall y \in (0,x)$, 都有

$$f'(y)x \le f(x) \le [f(1) - f(y)]x = [\ln(e - 1) - f(y)]x. \tag{2.97}$$

注意到

$$\begin{split} &\lim_{y \to 0^+} f(y) = \lim_{y \to 0^+} \ln \left(\frac{e^y - 1}{y} \right) = \ln \left(\lim_{y \to 0^+} \frac{e^y - 1}{y} \right) = \ln 1 = 0, \\ &\lim_{y \to 0^+} f'(y) = \lim_{y \to 0^+} \left(\frac{e^y}{e^y - 1} - \frac{1}{y} \right) = \lim_{y \to 0^+} \frac{e^y (y - 1) + 1}{y (e^y - 1)} \\ &= \lim_{y \to 0^+} \frac{(1 + y + \frac{1}{2}y^2 + o(y^2))(y - 1) + 1}{y^2} = \lim_{y \to 0^+} \frac{\frac{1}{2}y^2 + o(y^2)}{y^2} = \frac{1}{2}. \end{split}$$

于是令 (2.97) 式 $y \to 0^+$, 得到

$$\frac{1}{2}x = \lim_{y \to 0^+} f'(y)x \leqslant f(x) \leqslant [\ln(e-1) - \lim_{y \to 0^+} f(y)]x = x \ln(e-1), \forall x \in (0, 1].$$

又 $a_n \in (0,1]$, 故

$$\frac{1}{2}a_n \leqslant a_{n+1} = f(a_n) \leqslant \ln(e-1)a_n, \forall n \in \mathbb{N}_+.$$

从而

$$\frac{1}{2} \leqslant \frac{a_{n+1}}{a_n} \leqslant \ln(e-1) < \frac{\sqrt{2}}{2}, \forall n \in \mathbb{N}_+.$$

$$(2.98)$$

因此

$$a_n = a_1 \prod_{k=1}^{n-1} \frac{a_{k+1}}{a_k} \le [\ln(e-1)]^{n-1}, \forall n \in \mathbb{N}_+.$$
 (2.99)

于是结合 (2.96)(2.99) 式可得对 $\forall n > N$, 我们有

$$2^{n+1}\left(\ln\left(\frac{e^{a_n}-1}{a_n}\right)-\frac{1}{2}a_n\right)<2^{n+1}a_n^2\leqslant 2^{n+1}[\ln(e-1)]^{2n-2}=\frac{2}{\ln^2(e-1)}[2\ln^2(e-1)]^n.$$

又由 (2.98)式可知, $2 \ln^2(e-1) < 2 \cdot \left(\frac{\sqrt{2}}{2}\right)^2 = 1$. 故 $\sum_{k=1}^n \frac{2}{\ln^2(e-1)} [2 \ln^2(e-1)]^k$ 收敛. 从而由比较判别法知

$$\sum_{k=1}^{n} 2^{k+1} \left(\ln \left(\frac{e^{a_k} - 1}{a_k} \right) - \frac{1}{2} a_k \right)$$

也收敛.结论得证.

例题 **2.101 Herschfeld** 判别法 设 p > 1, 令 $a_n = \sqrt[p]{b_1 + \sqrt[p]{b_2 + \cdots + \sqrt[p]{b_n}}}, b_n > 0$, 证明: 数列 a_n 收敛等价于数列 $\frac{\ln b_n}{p^n}$ 有界.

注 这个很抽象的结果叫做 Herschfeld 判别法, 但是证明起来只需要单调有界.

证明 由条件可知 $a_2 > a_1$, 假设 $a_n > a_{n-1}$, 则由 $b_n > 0$ 可得

$$a_{n+1} = \sqrt[p]{b_1 + \sqrt[p]{b_2 + \dots + \sqrt[p]{b_n + \sqrt[p]{b_{n+1}}}}} > \sqrt[p]{b_1 + \sqrt[p]{b_2 + \dots + \sqrt[p]{b_n}}} = a_n.$$

由数学归纳法可知 {an} 单调递增.

若 a_n 收敛,则由单调有界定理可知, a_n 有上界. 即存在 M>0, 使得 $a_n < M, \forall n \in \mathbb{N}_+$. 从而

$$M > a_n = \sqrt[p]{b_1 + \sqrt[p]{b_2 + \dots + \sqrt[p]{b_n}}} > \sqrt[p]{0 + \sqrt[p]{0 + \dots + \sqrt[p]{b_n}}} = b_n^{\frac{1}{p^n}}, \forall n \in \mathbb{N}_+.$$

故

$$\frac{\ln b_n}{p^n} = \ln b_n^{\frac{1}{p^n}} < \ln M, \forall n \in \mathbb{N}_+.$$

即 $\frac{\ln b_n}{p^n}$ 有界.

 $\stackrel{\leftarrow}{z}$ $\frac{\ln b_n}{p^n}$ 有界,则存在 $M_1 > 0$, 使得

$$\frac{\ln b_n}{n^n} < M_1, \forall n \in \mathbb{N}_+. \tag{2.100}$$

记 $C = e^{M_1}$, 则由 (2.100)式可得

$$b_n < e^{M_1 p^n} = C^{p^n}, \forall n \in \mathbb{N}_+.$$

从而

$$a_n = \sqrt[p]{b_1 + \sqrt[p]{b_2 + \dots + \sqrt[p]{b_n}}} < \sqrt[p]{C^p + \sqrt[p]{C^{p^2} + \dots + \sqrt[p]{C^{p^n}}}} = C\sqrt[p]{1 + \sqrt[p]{1 + \dots + \sqrt[p]{1}}}.$$
 (2.101)

考虑数列 $x_1=1, x_{n+1}=\sqrt[p]{1+x_n}, \forall n\in\mathbb{N}_+.$ 显然 $x_n>0,$ 记 $f(x)=\sqrt[p]{1+x},$ 则

$$f'(x) = \frac{1}{p}(1+x)^{\frac{1}{p}-1} < \frac{1}{p} < 1, \forall x > 0.$$

而显然 f(x) = x 有唯一解 a > 1, 从而由 Lagrange 中值定理可得 $\forall n \in \mathbb{N}_+$, 存在 $\xi_n \in (\min\{x_n, a\}, \max\{x_n, a\})$, 使得

$$|x_{n+1} - a| = |f(x_n) - f(a)| = f'(\xi_n)|x_n - a| < \frac{1}{n}|x_n - a|.$$

于是

$$|x_{n+1} - a| < \frac{1}{p}|x_n - a| < \frac{1}{p^2}|x_{n-1} - a| < \dots < \frac{1}{p^n}|x_1 - a| \to 0, n \to \infty.$$

故 x_n 收敛到 a, 因此 x_n 有界, 即存在 K, 使得 $x_n < K$, $\forall n \in \mathbb{N}_+$. 于是结合 (2.101) 可得

$$a_n = C \sqrt[p]{1 + \sqrt[p]{1 + \dots + \sqrt[p]{1}}} = Cx_n < CK, \forall n \in \mathbb{N}_+.$$

即 a_n 有界, 又因为 $\{a_n\}$ 单调递增, 所以由单调有界定理可知, a_n 收敛.

引理 2.1 (有界数列差分极限为 0 则其闭包一定是闭区间)

有界数列 x_n 如果满足 $\lim_{n\to\infty}(x_{n+1}-x_n)=0$, 则 x_n 的全体聚点构成一个闭区间 (且这个闭区间的端点就是数列的上下极限).

§

笔记 先根据条件直观地画图分析,分析出大致的思路后,再考虑严谨地书写证明.

证明 当数列 x_n 收敛时, x_n 的聚点集为单点集,结论显然成立.

当数列 x_n 不收敛时, 因为数列 x_n 有界, 所以可设 $\limsup_{n\to\infty} x_n = L < \infty, \liminf_{n\to\infty} x_n = l < L$. 假设 $\exists A \in (l,L)$, 使得 A 不是 x_n 的极限点. 则 $\exists \delta \in (0, \min\{L-A, A-l\})$, 使得区间 $(A-\delta, A+\delta) \subseteq (l,L)$ 中只包含了数列 x_n 中有限项. 因此存在 $N_1 \in \mathbb{N}$, 使得当 $n > N_1$ 时, 有 $|x_n - A| \ge \delta$. 即

$$\exists n > N_1$$
时,要么 $x_n \ge A + \delta$,要么 $x_n \le A - \delta$. (2.102)

由 $\lim_{n \to \infty} (x_{n+1} - x_n) = 0$ 可知, 存在 $N_2 \in \mathbb{N}$, 使得

$$|x_{n+1} - x_n| < \delta, \forall n > N_2.$$
 (2.103)

取 $N = \max\{N_1, N_2\}$. 由 $\limsup_{n \to \infty} x_n = L$ 和 $\liminf_{n \to \infty} x_n = l$ 可知, 对 $\forall \varepsilon \in \left(0, \min\{L - A - \delta, A - l - \delta, \frac{L - l}{2}\}\right)$, 存在子列 $\{x_{n_k}\}, \{x_{m_k}\}$, 使得对 $\forall k \in \mathbb{N}_+ \cap (N, +\infty)$, 都有

$$x_{m_k} < l + \varepsilon \leq A - \delta < A + \delta \leq L - \varepsilon < x_{n_k}$$
.

任取 $K \in \mathbb{N}_+ \cap (N, +\infty)$, 则 $x_{m_K} < l + \varepsilon \le A - \delta < A + \delta \le L - \varepsilon < x_{n_K}$. 不妨设 $n_K > m_K$, 则 $n_K > m_K \geqslant K > N$. 现在考虑 $x_{m_K}, x_{m_K+1}, \cdots, x_{n_{K-1}}, x_{n_K}$ 这些项. 将其中最后一个小于等于 $A - \delta$ 的项记为 x_s , 显然 $n_K - 1 \geqslant s \geqslant m_K \geqslant K > N$, 进而 $s + 1 \in [m_K + 1, n_K]$, 于是 $x_{s+1} > A - \delta$. 又因为 $s + 1 \geqslant m_K + 1 > K > N$, 所以结合(2.102)可知, $x_{s+1} \geqslant A + \delta$. 因此 $|x_{s+1} - x_s| \geqslant 2\delta$. 这与(2.103)式矛盾! 因此 x_n 的全体聚点构成一个闭区间 [l, L].

例题 **2.102** 设连续函数 $f(x):[0,1] \rightarrow [0,1], x_1 \in [0,1], x_{n+1} = f(x_n)$, 证明: 数列 $\{x_n\}$ 收敛的充要条件是

$$\lim_{n\to\infty}(x_{n+1}-x_n)=0.$$

笔记 先根据条件直观地画图分析,分析出大致的思路后,再考虑严谨地书写证明.

证明 必要性: 如果 x_n 收敛,则显然 $\lim_{n\to\infty} (x_{n+1} - x_n) = 0$.

充分性: 假设数列 x_n 不收敛. 设 $\overline{\lim_{n\to\infty}} x_n = L$, $\underline{\lim_{n\to\infty}} x_n = l$, 则由条件可知 l < L 且 $[l,L] \subseteq [0,1]$. 从而由引理 2.1可知, 数列 x_n 的全体聚点构成一个闭区间 [l,L]. 于是 $\forall A \in [l,L]$, 则存在一个子列 $\{x_{n_k}\}$, 使得 $\lim_{k\to\infty} x_{n_k} = A$. 由 $\lim_{n\to\infty} (x_{n+1}-x_n) = 0$ 可知, $\lim_{k\to\infty} x_{n_k+1} = \lim_{k\to\infty} x_{n_k} = A$. 根据 $x_{n+1} = f(x_n)$ 可得 $x_{n_k+1} = f(x_{n_k})$, 令 $x_n \in A$. 根据 $x_n \in A$.

$$A = f(A), \forall A \in [l, L]. \tag{2.104}$$

因此取 $A = \frac{l+L}{2}$, 这也是 x_n 的一个极限点, 从而令 $\varepsilon_0 = \frac{L-l}{2}$ 存在 $N \in \mathbb{N}$, 使得

$$l = A - \varepsilon_0 < x_N < A + \varepsilon_0 = L$$
.

即 $x_N \in [l, L]$. 于是由 $x_{n+1} = f(x_n)$ 及(2.104)式可得 $x_{N+1} = f(x_N) = x_N$. 从而归纳可得 $x_n = x_N, \forall n \in \mathbb{N}_+ \cap (N, +\infty)$. 显然此时 x_n 收敛到 x_N , 这与 x_n 不收敛矛盾! 故数列 x_n 收敛.

例题 2.103 设 d 为正整数, 给定 $1 < a \le \frac{d+2}{d+1}, x_0, x_1, \cdots, x_d \in (0, a-1), 令 x_{n+1} = x_n(a-x_{n-d}), n \ge d$, 证明: $\lim_{n\to\infty} x_n$ 存在并求极限.

证明 证明见 lsz(2024-2025) 数学类讲义的不动点与蛛网图方法部分.

例题 2.104 设 x_n 满足当 $|i-j| \le 2$ 时总有 $|x_i-x_j| \ge |x_{i+1}-x_{j+1}|$, 证明: $\lim_{n\to\infty}\frac{x_n}{n}$ 存在.

 $\mathbf{\dot{z}}$ 仅凭 $|x_{n+1}-x_n|$ 单调递减无法保证极限存在, 只能说明数列 $\frac{x_n}{n}$ 有界, 但是完全有可能其聚点集合是一个闭区

间, 所以 $|x_{n+2}-x_n|$ 的递减性是必要的. 本题其实画图来看走势很直观.

证明 条件等价于 $|x_{n+1}-x_n|, |x_{n+2}-x_n|$ 这两个数列都是单调递减的, 显然非负, 所以它们的极限都存在.

- (i) 如果 $\lim_{n\to\infty} |x_{n+1}-x_n| = 0$, 则由 stolz 公式显然 $\lim_{n\to\infty} \frac{x_n}{n} = \lim_{n\to\infty} x_{n+1} x_n = 0$. (ii) 如果 $\lim_{n\to\infty} |x_{n+2}-x_n| = 0$, 则奇偶两个子列分别都有

$$\lim_{n \to \infty} \frac{x_{2n}}{2n} = \lim_{n \to \infty} x_{2n+2} - x_{2n} = 0, \lim_{n \to \infty} \frac{x_{2n+1}}{2n+1} = \lim_{n \to \infty} x_{2n+1} - x_{2n-1} = 0$$

所以 $\lim_{n \to \infty} \frac{x_n}{n} = 0$, 因此下面只需讨论 $|x_{n+1} - x_n|$, $|x_{n+2} - x_n|$ 的极限都非零的情况.

 $n \to \infty$ n不妨设 $|x_{n+1} - x_n|$ 单调递减趋于 1 (如果极限不是 1 而是别的正数, 考虑 kx_n 这样的数列就可以了), 由于非负 递减数列 $|x_{n+2}-x_n|$ 的极限非零,故存在 $\delta \in (0,1)$ 使得 $|x_{n+2}-x_n| \ge \delta$ 恒成立.

- (i) 如果 x_n 是最终单调的, 也就是说存在 N 使得 n > N 时 $x_{n+1} x_n$ 恒正或者恒负, 则 $\lim_{n \to \infty} x_{n+1} x_n = 1$ 或者 $\lim_{n\to\infty} x_{n+1} - x_n = -1$, 再用 stolz 公式可知极限 $\lim_{n\to\infty} \frac{x_n}{n}$ 存在.
- (ii) 如果 x_n 不是最终单调的,因为 $\lim_{n\to\infty}|x_{n+1}-x_n|=1$,所以存在 N 使得 n>N 时恒有 $|x_{n+1}-x_n|\in\left|1,1+\frac{\delta}{2}\right|$,

$$n\to\infty$$

并且 $n>N$ 时 x_n 不是单调的, 故存在 $n>N$ 使得以下两种情况之一成立
(a):1 $\leq x_{n+1}-x_n \leq 1+\frac{\delta}{2}, 1 \leq x_{n+1}-x_{n+2} \leq 1+\frac{\delta}{2} \Rightarrow |x_{n+2}-x_n| \leq \frac{\delta}{2}.$
(b):1 $\leq x_n-x_{n+1} \leq 1+\frac{\delta}{2}, 1 \leq x_{n+2}-x_{n+1} \leq 1+\frac{\delta}{2} \Rightarrow |x_{n+2}-x_n| \leq \frac{\delta}{2}.$
可见不论哪种情况成立, 都会与 $|x_{n+2}-x_n| \geq \delta$ 恒成立矛盾, 结论得证.

例题 2.105 设四个正数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$, $\{t_n\}$ 满足

$$t_n \in (0,1), \sum_{n=1}^{\infty} t_n = +\infty, \sum_{n=1}^{\infty} b_n < +\infty, \lim_{n \to \infty} \frac{a_n}{t_n} = 0, x_{n+1} \leqslant (1-t_n)x_n + a_n + b_n$$

证明: $\lim_{n\to\infty} x_n = 0$.

笔记 这类问题直接强求通项即可.

证明 根据条件有

$$\frac{x_{n+1}}{(1-t_n)\cdots(1-t_1)} \leqslant \frac{x_n}{(1-t_{n-1})\cdots(1-t_1)} + \frac{a_n+b_n}{(1-t_n)\cdots(1-t_1)}$$

$$\frac{x_{n+1}}{(1-t_n)\cdots(1-t_1)} \leqslant x_1 + \sum_{k=1}^n \frac{a_k+b_k}{(1-t_k)\cdots(1-t_1)}$$

$$x_{n+1} \leqslant x_1(1-t_n)\cdots(1-t_1) + \sum_{k=1}^n (a_k+b_k)(1-t_{k+1})\cdots(1-t_n)$$

换元令 $u_n = 1 - t_n \in (0, 1)$, 则

$$\ln \prod_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \ln u_n \leqslant \sum_{n=1}^{\infty} (u_n - 1) = -\sum_{n=1}^{\infty} t_n = -\infty \Rightarrow \prod_{n=1}^{\infty} u_n = 0$$

代入有

$$x_{n+1} \le x_1 u_1 u_2 \cdots u_n + \sum_{k=1}^n a_k u_{k+1} u_{k+2} \cdots u_n + \sum_{k=1}^n b_k u_{k+1} u_{k+2} \cdots u_n$$

显然 $x_1u_1u_2\cdots u_n\to 0$, 于是只需要看后面两项. 对于最后一项, 我们待定正整数 $N\leqslant n$, 则有

$$\sum_{k=1}^{n} b_k u_{k+1} u_{k+2} \cdots u_n = \sum_{k=1}^{N} b_k u_{k+1} u_{k+2} \cdots u_n + \sum_{k=N+1}^{n} b_k u_{k+1} u_{k+2} \cdots u_n$$

其中 $\sum_{k=N+1}^{n} b_k u_{k+1} u_{k+2} \cdots u_n \leqslant \sum_{k=N+1}^{n} b_k < \sum_{k=N}^{\infty} b_k$,于是对任意 $\varepsilon > 0$,可以取充分大的 N 使得 $\sum_{k=N+1}^{n} b_k u_{k+1} u_{k+2} \cdots u_n < \sum_{k=N+1}^{n} b_k u_{k+2} \cdots u_n < \sum$ ε . 现在 N 已经取定. 再对前面有限项取极限有

$$\overline{\lim}_{n\to\infty} \sum_{k=1}^{n} b_k u_{k+1} u_{k+2} \cdots u_n \leqslant \sum_{k=1}^{N} b_k \overline{\lim}_{n\to\infty} (u_{k+1} u_{k+2} \cdots u_n) + \varepsilon = \varepsilon$$

由此可见最后一项的极限是零,最后来看中间一项,记 $s_n = \frac{a_n}{t_n} = \frac{a_n}{1-u_n} \to 0$,则对任意 N 有

$$\sum_{k=1}^{n} a_k u_{k+1} u_{k+2} \cdots u_n = \sum_{k=1}^{n} s_k (1 - u_k) u_{k+1} u_{k+2} \cdots u_n$$

$$= \sum_{k=1}^{N} s_k (1 - u_k) u_{k+1} u_{k+2} \cdots u_n + \sum_{k=N+1}^{n} s_k (1 - u_k) u_{k+1} u_{k+2} \cdots u_n$$

$$\sum_{k=N+1}^{n} s_k (1 - u_k) u_{k+1} u_{k+2} \cdots u_n \leqslant \sup_{k\geqslant N} s_k \sum_{k=N+1}^{n} (1 - u_k) u_{k+1} u_{k+2} \cdots u_n \leqslant \sup_{k\geqslant N} s_k$$

$$\lim_{n\to\infty} \sum_{k=N+1}^{n} a_k u_{k+1} u_{k+2} \cdots u_n \leqslant \lim_{n\to\infty} \sum_{k>N}^{N} s_k (1 - u_k) u_{k+1} u_{k+2} \cdots u_n + \sup_{k\geqslant N} s_k = \sup_{k\geqslant N} s_k$$

再令 $N \to \infty$, 由此可见这一部分的极限也是零, 结论得证.

2.7 分部积分

分析学里流传着一句话:"遇事不决分部积分".

分部积分在渐近分析中的用法:

- (1) 有时候分部积分不能计算出某一积分的具体值, 但是我们可以利用分部积分去估计原积分 (或原含参积分)的范围. 并且我们可以通过不断分部积分来提高估计的精确程度.
- (2) 分部积分也可以转移被积函数的导数.
- (3) 分部积分可以改善阶. 通过分部积分提高分母的次方从而增加收敛速度方便估计. 并且可以通过反复分部积分得到更加精细的估计.

定理 2.11 (Newton-Leibniz 公式)

1. 若 $f \in \mathbf{R}[a,b]$, 且有原函数 F, 则有

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

2. 若函数 f 在 $[a,+\infty)$ 上的无穷积分收敛, 且有原函数 F, 则有

$$\int_{a}^{+\infty} f(x) \, \mathrm{d}x = F(+\infty) - F(a).$$

若函数 f 在 $(-\infty, a]$ 上无穷积分收敛, 且有原函数 F, 则有

$$\int_{-\infty}^{a} f(x) \, \mathrm{d}x = F(a) - F(-\infty).$$

若函数 f 在 $(-\infty, +\infty)$ 上的无穷积分收敛, 且有原函数 F, 则有

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = F(+\infty) - F(-\infty).$$

定理 2.12 (分部积分公式)

1. 设函数 u, v 在 [a, b] 上连续可微, 则

$$\int_{a}^{b} u(x) v'(x) dx = u(x) v(x) \Big|_{a}^{+\infty} - \int_{a}^{b} u'(x) v(x) dx.$$

2. 设函数 u,v 在 $[a,+\infty)$ 上连续可微且极限 $\lim_{\substack{x\to +\infty\\ x\to +\infty}} u(x)v(x)$ 存在. 若 u'v 和 uv' 中有一个在 $[a,+\infty)$ 上的 无穷积分也收敛, 且

$$\int_{a}^{+\infty} u(x)v'(x) dx = u(x)v(x)\Big|_{a}^{+\infty} - \int_{a}^{+\infty} u'(x)v(x) dx.$$

注 广义积分的分部积分公式形式上与常义积分的分部积分公式一样, 既可用来计算(已知收敛的)广义积分, 也能

用来证明广义积分收敛.

例题 2.106

$$f(x) = \int_{x}^{x+1} \sin(t^2) dt.$$

证明 $|f(x)| \leq \frac{1}{x}, x > 0.$

~ 笔记 证明的想法是利用分部积分在渐近分析中的用法 (1).

证明 由分部积分可得, 对 $\forall x > 0$, 都有

$$|f(x)| = \left| \int_{x}^{x+1} \sin(t^{2}) dt \right| = \left| \int_{x^{2}}^{(x+1)^{2}} \frac{\sin u}{2\sqrt{u}} du \right| = \left| -\frac{1}{4} \int_{x^{2}}^{(x+1)^{2}} u^{-\frac{3}{2}} \cos u du - \frac{\cos u}{2\sqrt{u}} \Big|_{x^{2}}^{(x+1)^{2}} \right|$$

$$\leq \left| \frac{1}{4} \int_{x^{2}}^{(x+1)^{2}} u^{-\frac{3}{2}} du \right| + \left| \frac{\cos x}{2x} - \frac{\cos(x+1)}{2(x+1)} \right| = \frac{1}{2} \left| \frac{1}{x} - \frac{1}{x+1} \right| + \frac{1}{2} \left| \frac{\cos x}{x} - \frac{\cos(x+1)}{(x+1)} \right|$$

$$= \frac{1}{2x(x+1)} + \frac{x \left[\cos x - \cos(x+1) \right] + \cos x}{2x(x+1)} = \frac{1}{2x(x+1)} + \frac{2 \sin \frac{1}{2} x \sin \frac{2x+1}{2} + \cos x}{2x(x+1)}$$

$$\leq \frac{1}{2x(x+1)} + \frac{x+1}{2x(x+1)} = \frac{1}{2x(x+1)} + \frac{1}{2x} \leq \frac{1}{x}.$$

例题 **2.107** 设 $f(x) = \int_0^x \sin \frac{1}{y} dy$, 求 f'(0).

笔记 证明的想法是利用分部积分在渐近分析中的用法 (3).

解 注意到

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{\int_{0}^{x} \sin \frac{1}{y} dy}{x} = \lim_{x \to 0^{+}} \frac{\int_{+\infty}^{\frac{1}{x}} \sin y d\frac{1}{y}}{x} = \lim_{x \to 0^{+}} \frac{\int_{\frac{1}{x}}^{+\infty} \frac{\sin y}{y^{2}} dy}{x} \xrightarrow{\frac{4}{x}t = \frac{1}{x}} \lim_{t \to +\infty} t \int_{t}^{+\infty} \frac{\sin y}{y^{2}} dy, (1.1)$$
 (2.105)

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{\int_{0}^{x} \sin \frac{1}{y} dy}{x} = \lim_{x \to 0^{-}} \frac{\int_{+\infty}^{\frac{1}{x}} \sin y d\frac{1}{y}}{x} = \lim_{x \to 0^{-}} \frac{\int_{\frac{1}{x}}^{+\infty} \frac{\sin y}{y^{2}} dy}{x} \xrightarrow{\frac{1}{x} = \frac{1}{x}} \lim_{t \to -\infty} t \int_{t}^{-\infty} \frac{\sin y}{y^{2}} dy. \tag{2.106}$$

由分部积分可得

$$\int_{t}^{+\infty} \frac{\sin y}{y^{2}} dy = -\int_{t}^{+\infty} \frac{1}{y^{2}} d\cos y = \frac{\cos y}{y^{2}} \Big|_{+\infty}^{t} + \int_{t}^{+\infty} \cos y d\frac{1}{y^{2}} = \frac{\cos t}{t^{2}} - 2 \int_{t}^{+\infty} \frac{\cos y}{y^{3}} dy.$$

故对 $\forall t > 0$, 我们有

$$\left| \int_t^{+\infty} \frac{\sin y}{y^2} \mathrm{d}y \right| = \left| \frac{\cos t}{t^2} - 2 \int_t^{+\infty} \frac{\cos y}{y^3} \mathrm{d}y \right| \leqslant \frac{1}{t^2} + 2 \int_t^{+\infty} \frac{1}{y^3} \mathrm{d}y \ = \frac{2}{t^2}.$$

即 $\int_{t}^{+\infty} \frac{\sin y}{y^2} dy = O\left(\frac{1}{t^2}\right), \forall t > 0.$ 再结合(2.105)式可知

$$f'_{+}(0) = \lim_{t \to +\infty} t \int_{t}^{+\infty} \frac{\sin y}{y^2} dy = 0.$$

同理可得 $f'_{-}(0) = \lim_{t \to -\infty} t \int_{t}^{-\infty} \frac{\sin y}{y^2} dy = 0$. 故 $f'(0) = f'_{+}(0) = f'_{-}(0) = 0$.

例题 2.108 设 f 是区间 [0,1] 上的连续函数并满足 $0 \le f(x) \le x$. 求证:

$$\int_0^1 f(x) dx - \left(\int_0^1 f(x) dx \right)^2 \geqslant \int_0^1 x^2 f(x) dx \geqslant \left(\int_0^1 f(x) dx \right)^2.$$

并且上式成为等式当且仅当 f(x) = x.

证明 证法一: 设 f 是连续函数满足所给的条件, $F(x) = \int_0^x f(t) dt$, 则 F' = f. 由 $0 < f(x) \le x$ 得 $F(x) \le \int_0^x t dt = \frac{1}{2}x^2$. 因而

$$\int_0^1 x^2 f(x) dx \ge \int_0^1 2F(x) F'(x) dx = F^2(x) \Big|_0^1 = \left(\int_0^1 f(x) dx \right)^2.$$

利用分部积分,得

$$\int_{0}^{1} x^{2} f(x) dx = x^{2} F(x) \Big|_{0}^{1} - \int_{0}^{1} 2x F(x) dx$$

$$= \int_{0}^{1} f(x) dx - \int_{0}^{1} 2x F(x) dx$$

$$\leq \int_{0}^{1} f(x) dx - \int_{0}^{1} 2f(x) F(x) dx$$

$$= \int_{0}^{1} f(x) dx - F^{2}(x) \Big|_{0}^{1}$$

$$= \int_{0}^{1} f(x) dx - \left(\int_{0}^{1} f(x) dx \right)^{2}.$$

由证明过程可知只有当f(x) = x时,所证不等式成为等式.

证法二(直接求导法):令

$$F(x) = \int_0^x t^2 f(t) dt - \left(\int_0^x f(t) dt \right)^2,$$

则

$$F'(x) = x^2 f(x) - 2f(x) \int_0^x f(t) dt \ge x^2 f(x) - 2f(x) \int_0^x t dt = 0.$$

故

$$\int_0^1 t^2 f(t) dt - \left(\int_0^1 f(t) dt \right)^2 = F(1) \geqslant F(0) = 0.$$

令 $h(x) = \int_0^x f(t)dt$, 则 f(x) = h'(x), 从而

$$\int_{0}^{1} x^{2} f(x) dx = \int_{0}^{1} x^{2} h'(x) dx \xrightarrow{\hat{\mathcal{D}} \text{ in } R \hat{\mathcal{D}}} \int_{0}^{1} f(x) dx - 2 \int_{0}^{1} x h(x) dx.$$

因此

$$\int_{0}^{1} x^{2} f(x) dx \le \int_{0}^{1} f(x) dt - \left(\int_{0}^{1} f(x) dx \right)^{2} \Longleftrightarrow 2 \int_{0}^{1} x h(x) dx \ge \left(\int_{0}^{1} f(x) dx \right)^{2}. \tag{2.107}$$

再令

$$G(x) = 2 \int_0^x th(t)dt - \left(\int_0^x f(t)dt\right)^2,$$

则

$$G'(x) = 2x \int_0^x f(t) dt - 2f(x) \int_0^x f(t) dt \geqslant 0.$$

故

$$2\int_0^1 x h(x) dx - \left(\int_0^1 f(x) dx\right)^2 = G(1) \ge G(0) = 0.$$

因此(2.107)式成立.

2.8 Laplace 方法

Laplace 方法适用于估计形如 $\int_a^b \left[f(x) \right]^n g(x) \, \mathrm{d}x, n \to \infty$ 的渐近展开式, 其中 $f, g \in C[a, b]$ 且 g 在 [a,b] 上有界; 或者 $\int_a^b e^{f(x,y)} g(y) \, \mathrm{d}y, x \to +\infty$ 的渐近展开式, 其中 $f, g \in C[a, b]$ 且 g 在 [a,b] 上有界. 实际上, 若要估计的是

前者,我们可以将其转化为后者的形式如下:

$$\int_{a}^{b} \left[f(x) \right]^{n} g(x) dx = \int_{a}^{b} e^{n \ln f(x)} g(x) dx.$$

若参变量 n,x 在积分区间上, 或者估计的不是 $n,x\to +\infty$ 处的渐近展开式, 而是其他点处 $(x\to x_0)$ 处的渐近展开式. 我们都可以通过积分换元将其转化为标准形式 $\int_a^b e^{f(x,y)}g(y)\mathrm{d}y,x\to +\infty$, 其中 $f,g\in C[a,b]$.

思路分析: 首先, 由含参量积分的计算规律 (若被积函数含有 $e^{f(x)}$, 则积分得到的结果中一定仍含有 $e^{f(x)}$), 我们可以大致估计积分 $\int_a^b e^{f(x,y)}g(y)\mathrm{d}y,x \to +\infty$ 的结果是 $C_1h_1(x)e^{f(x,b)} - C_2h_2(x)e^{f(x,b)}e^{f(x,a)}$, 其中 C 为常数. 因为指数函数的阶远大于一般初等函数的阶, 这个结果的阶的主体部分就是 $e^{f(x,b)}$ 和 $e^{f(x,a)}$. 而我们注意到到改变指数函数 e^{px+q} 的幂指数部分的常数 p 会对这个指数函数的阶 $(x \to +\infty)$ 产生较大影响, 而改变 q 不会影响这个指数函数的阶. 比如, e^{2x} 比 e^x 高阶 $(x \to +\infty)$. 由此我们可以发现 $e^{f(x,b)}$ 和 $e^{f(x,a)}$ 中的幂指数部分中 f(x,a), f(x,b) 中除常数项外的含 x 项的系数 (暂时叫作指数系数) 对这个函数的阶影响较大. 然而这些系数都是由被积函数中的 f(x,y) 和积分区间决定的, 但是在实际问题中 f(x,y) 的形式已经确定, 因此这些系数仅仅由积分区间决定. 于是当我们只计算某些不同点附近 (充分小的邻域内) 的含参量积分时,得到的这些系数一般不同,从而导致这些积分的阶不同. 故我们可以断言这类问题的含参量积分在每一小段上的阶都是不同的. 因此我们只要找到这些不同的阶中最大的阶 (此时最大阶就是主体部分) 就相当于估计出了积分在整个区间 [a,b] 上的阶. 由定积分的几何意义,我们不难发现当参变量 x 固定时,并且当积分区间为某一点 y_0 附近时,只要被积函数的 $e^{f(x,y)}$ 在 y_0 处 (关于 y) 的取值越大,积分后得到的(值/充分小邻域内函数与 x 轴围成的面积)指数系数就会越大,从而在 y_0 附近的积分的阶也就越大. 综上所述,当参变量 x 固定时,f(x,y)(关于 y) 的最大值点附近的积分就是原积分的主体部分,在其他区间上的积分全都是余项部分.

然后, 我们将原积分按照上述的积分区间分段, 划分为主体部分和余项部分. 我们知道余项部分一定可以通过放缩、取上下极限等操作变成 0(余项部分的放缩一般需要结合具体问题, 并使用一些放缩技巧来实现. 但是我们其实只要心里清楚余项部分一定能够通过放缩、取上下极限变成 0 即可), 关键是估计主体部分的阶. 我们注意到主体部分的积分区间都包含在某一点的邻域内, 而一般估计在某个点附近的函数的阶, 我们都会想到利用 Taylor 定理将其在这个点附近展开. 因此我们利用 Taylor 定理将主体部分的被积函数的指数部分 f(x,y) 在最大值点附近 (关于 y) 展开 (注意: 此时最多展开到 x^2 项, 如果展开项的次数超过二次, 那么后续要么就无法计算积分, 要么计算就无法得到有效结果, 比如最后积分、取极限得到 $\infty + \infty$ 或 $0 \cdot \infty$ 等这一类无效的结果). Taylor 展开之后, 我们只需要利用欧拉积分和定积分, 直接计算得到结果即可.

事实上, 若原积分中的有界连续函数 g(x) 在 f 的极值点处不为 0, 则 g(x) 只会影响渐进展开式中的系数, 对整体的阶并不造成影响. 在实际估计中处理 g(x) 的方法:(i) 在余项部分, 直接将 g(x) 放缩成其在相应区间上的上界或下界即可.(ii) 在主体部分, 因为主体部分都包含在 f(x,y)(关于 y) 的某些最大值点 y_i 的邻域内, 所以结合 g(x) 的连续性, 直接将 g(x) 用 $g(y_i)$ 代替即可 (将 g(x) 放缩成 $g(y_i)$ ± ε 即可). 即相应的主体部分 (y_i 点附近) 乘以 g(x) 相应的函数值 $g(y_i)$. 具体例题见例题 2.117. 也可以采取拟合法处理 g(x), 具体例题见例题 2.118.

若原积分中的有界连续函数 g(x) 在 f 的极值点处为 0,则在估计积分的阶的时候就要将 g(x) 考虑进去. 需要结合 g(x) 的具体结构、性质进行分析.

严谨的证明过程最好用上下极限和 ε – δ 语言书写. 具体严谨的证明书写见例题:例题 2.112,例题 2.113,例题 2.114,例题 2.117.

extstyle ex

注上述 Laplace 方法得到的渐近估计其实比较粗糙, 想要得到更加精细的渐近估计需要用到更加深刻的想法和技巧(比如 Puiseux 级数展开(见清疏讲义)等).

例题 **2.109** 设 $a_1, a_2, \dots, a_m > 0, m \in \mathbb{N}$, 则

$$\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max_{1 \le i \le m} a_j.$$

注 熟知, 极限蕴含在 a_1, a_2, \cdots, a_m 的最大值中.

证明 显然

$$\max_{1 \leqslant j \leqslant m} a_j = \lim_{n \to \infty} \sqrt[n]{\max_{1 \leqslant j \leqslant m} a_j^n} \leqslant \lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} \leqslant \max_{1 \leqslant j \leqslant m} a_j \cdot \lim_{n \to \infty} \sqrt[n]{m} = \max_{1 \leqslant j \leqslant m} a_j, \tag{2.108}$$

从而我们证明了(2.108).

例题 2.110 设非负函数 $f \in C[a, b]$, 则

$$\lim_{n \to \infty} \sqrt[n]{\int_a^b f^n(x) dx} = \max_{x \in [a,b]} f(x).$$

注 熟知, 极限蕴含在 f 的最大值中.

笔记 这两个基本例子也暗示了离散和连续之间有时候存在某种类似的联系.

证明 事实上记 $f(x_0) = \max_{x \in [a,b]} f(x), x_0 \in [a,b]$, 不失一般性我们假设 $x_0 \in (a,b)$. 那么对充分大的 $n \in \mathbb{N}$, 我们由积 分中值定理知道存在 $\theta_n \in (x_0 - \frac{1}{2n}, x_0 + \frac{1}{2n})$, 使得

$$f(\theta_n) \sqrt[n]{\frac{1}{n}} = \sqrt[n]{\int_{x_0 - \frac{1}{2n}}^{x_0 + \frac{1}{2n}} f^n(x) dx} \leqslant \sqrt[n]{\int_a^b f^n(x) dx} \leqslant \sqrt[n]{\int_a^b f^n(x_0) dx} = f(x_0) \sqrt[n]{b - a}.$$
 (2.109)

两边取极限即得(2.109).

例题 2.111 设非负严格递增函数 $f \in C[a,b]$, 由积分中值定理我们知道存在 $x_n \in [a,b]$, 使得

$$f^{n}(x_{n}) = \frac{1}{b-a} \int_{a}^{b} f^{n}(x) dx.$$

计算 $\lim_{n\to\infty} x_n$. 证明 由(上一题) 例题 2.110, 我们知道

$$\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} \sqrt[n]{\frac{1}{b-a}} \cdot \lim_{n\to\infty} \sqrt[n]{\int_a^b f^n(x) \mathrm{d}x} = f(b).$$

注意到 $\{x_n\}_{n=1}^{\infty} \subset [a,b]$, 我们知道对任何 $\lim_{k\to\infty} x_{n_k} = c \in [a,b]$, 都有 $\lim_{k\to\infty} f(x_{n_k}) = f(c) = f(b)$. 又由于 f 为严格递增函数, 因此只能有 c = b, 利用命题 1.1 的 (a)(Heine 归结原理), 我们知道 $\lim_{n\to\infty} x_n = b$. 证毕!

定理 2.13 (Wallis 公式)

$$\frac{(2n)!!}{(2n-1)!!} = \sqrt{\pi n} + \frac{\sqrt{\pi}}{8} \cdot \frac{1}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right). \tag{2.110}$$

 $\frac{\mathbf{k}}{2n}$ 我们只需要记住 $\frac{(2n)!!}{(2n-1)!!}\sim \sqrt{\pi n}, n\to +\infty$ 及其证明即可, 更精细的渐近表达式一般用不到

笔记 (2.110) 式等价于

$$\lim_{n \to \infty} \sqrt{n} \left[\frac{(2n)!!}{(2n-1)!!} - \sqrt{\pi n} \right] = \frac{\sqrt{\pi}}{8}.$$
 (2.111)

证明的想法是把(2.111)式用积分表示并运用 Laplace 方法进行估计. 证明 我们只证明 $\frac{(2n)!!}{(2n-1)!!}\sim \sqrt{\pi n}, n\to +\infty$,更精细的渐近表达式一般不会被考察,故在此不给出证明.(更精细的

注意到经典积分公式

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!}.$$
 (2.112)

利用 Taylor 公式的 Peano 余项, 我们知道

$$\ln \sin^2 x = -\left(x - \frac{\pi}{2}\right)^2 + o\left[\left(x - \frac{\pi}{2}\right)^2\right],\tag{2.113}$$

即 $\lim_{x \to (\frac{\pi}{2})} \frac{\ln \sin^2 x}{-(x - \frac{\pi}{2})^2} = -1$. 于是利用(2.113), 对任何 $\varepsilon \in (0, 1)$, 我们知道存在 $\delta \in (0, 1)$, 使得对任何 $x \in [\frac{\pi}{2} - \delta, \frac{\pi}{2}]$,

都有

$$-(1+\varepsilon)\left(x-\frac{\pi}{2}\right)^2 \leqslant \ln\sin^2 x \leqslant -(1-\varepsilon)\left(x-\frac{\pi}{2}\right)^2. \tag{2.114}$$

利用(2.114)式, 现在一方面, 我们有

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \int_0^{\frac{\pi}{2}} e^{n \ln \sin^2 x} dx \leqslant \int_0^{\frac{\pi}{2} - \delta} e^{n \ln \sin^2(\frac{\pi}{2} - \delta)} dx + \int_{\frac{\pi}{2} - \delta}^{\frac{\pi}{2}} e^{-n(1 - \varepsilon)(x - \frac{\pi}{2})^2} dx$$

$$= (\frac{\pi}{2} - \delta) \sin^{2n}(\frac{\pi}{2} - \delta) + \int_0^{\delta} e^{-n(1 - \varepsilon)y^2} dy$$

$$= (\frac{\pi}{2} - \delta) \sin^{2n}(\frac{\pi}{2} - \delta) + \frac{1}{\sqrt{(1 - \varepsilon)n}} \int_0^{\delta \sqrt{(1 - \varepsilon)n}} e^{-z^2} dz$$

$$\leqslant (\frac{\pi}{2} - \delta) \sin^{2n}(\frac{\pi}{2} - \delta) + \frac{1}{\sqrt{(1 - \varepsilon)n}} \int_0^{\infty} e^{-z^2} dz.$$

另外一方面,我们有

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x dx \geqslant \int_{\frac{\pi}{2} - \delta}^{\frac{\pi}{2}} e^{-n(1+\varepsilon)(x-\frac{\pi}{2})^2} dx = \int_0^{\delta} e^{-n(1+\varepsilon)y^2} dy = \frac{1}{\sqrt{n(1+\varepsilon)}} \int_0^{\delta\sqrt{n(1+\varepsilon)}} e^{-z^2} dz.$$

因此我们有

$$\frac{1}{\sqrt{1+\varepsilon}}\int_0^\infty e^{-z^2}\mathrm{d}z\leqslant \lim_{n\to\infty}\sqrt{n}\int_0^{\frac{\pi}{2}}\sin^{2n}x\mathrm{d}x\leqslant \frac{1}{\sqrt{1-\varepsilon}}\int_0^\infty e^{-z^2}\mathrm{d}z,$$

由ε任意性即可得

$$\lim_{n \to \infty} \sqrt{n} \int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \int_0^{\infty} e^{-z^2} dz = \frac{\sqrt{\pi}}{2}.$$

再结合(2.112)式可得

$$\lim_{n \to \infty} \frac{\pi \sqrt{n}}{2} \frac{(2n-1)!!}{(2n)!!} = \frac{\sqrt{\pi}}{2}.$$

即

$$\lim_{n\to\infty} \sqrt{\pi n} \cdot \frac{(2n-1)!!}{(2n)!!} = 1.$$

故
$$\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to +\infty.$$

例题 2.112 求 $\int_0^\infty \frac{1}{(2+x^2)^n} \mathrm{d}x, n \to \infty$ 的等价无穷小. 解 由 Taylor 定理可知, 对 $\forall \varepsilon \in (0,1)$, 存在 $\delta > 0$, 使得当 $x \in [0,\delta]$ 时, 有

$$\frac{x^2}{2} - \varepsilon x^2 \leqslant \ln\left(1 + \frac{x^2}{2}\right) \leqslant \frac{x^2}{2} + \varepsilon x^2.$$

现在,一方面我们有

$$\int_{0}^{\infty} \frac{1}{(2+x^{2})^{n}} dx = \frac{1}{2^{n}} \int_{0}^{\infty} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx = \frac{1}{2^{n}} \left(\int_{0}^{\delta} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx + \int_{\delta}^{\infty} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx \right)$$

$$= \frac{1}{2^{n}} \left(\int_{0}^{\delta} e^{-n\ln\left(1+\frac{x^{2}}{2}\right)} dx + \int_{\delta}^{\infty} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx \right)$$

$$\leqslant \frac{1}{2^{n}} \left(\int_{0}^{\delta} e^{-n\left(\frac{x^{2}}{2}-\varepsilon x^{2}\right)} dx + \int_{\delta}^{\infty} \frac{1}{1+\frac{x^{2}}{2}} \cdot \frac{1}{\left(1+\frac{\delta^{2}}{2}\right)^{n-1}} dx \right)$$

$$\frac{\Rightarrow y = x\sqrt{n(\frac{1}{2}-\varepsilon)}}{2^{n}} \frac{1}{2^{n}} \left(\frac{1}{\sqrt{n\left(\frac{1}{2}-\varepsilon\right)}} \int_{0}^{\delta\sqrt{n(\frac{1}{2}-\varepsilon)}} e^{-y^{2}} dy + \frac{\sqrt{2}}{\left(1+\frac{\delta^{2}}{2}\right)^{n-1}} \left(\frac{\pi}{2} - \arctan\frac{\delta}{\sqrt{2}}\right) \right)$$

$$\leqslant \frac{1}{2^n} \left(\frac{1}{\sqrt{n\left(\frac{1}{2} - \varepsilon\right)}} \int_0^\infty e^{-y^2} \mathrm{d}y + \frac{\pi\sqrt{2}}{2\left(1 + \frac{\delta^2}{2}\right)^{n-1}} \right) = \frac{1}{2^n} \left(\frac{\sqrt{\pi}}{2\sqrt{n\left(\frac{1}{2} - \varepsilon\right)}} + \frac{\pi\sqrt{2}}{2\left(1 + \frac{\delta^2}{2}\right)^{n-1}} \right).$$

于是

$$\int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} \mathrm{d}x \leqslant \frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}-\varepsilon\right)}} + \frac{\pi\sqrt{2n}}{2\left(1+\frac{\delta^2}{2}\right)^{n-1}}.$$

上式两边同时令 $n \to \infty$ 并取上极限得到

$$\overline{\lim_{n\to\infty}}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}\mathrm{d}x \leqslant \overline{\lim_{n\to\infty}}\left(\frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}-\varepsilon\right)}} + \frac{\pi\sqrt{2n}}{2\left(1+\frac{\delta^2}{2}\right)^{n-1}}\right) = \frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}-\varepsilon\right)}}.$$

再由 ε 的任意性可得 $\overline{\lim}_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}\mathrm{d}x \leqslant \frac{\sqrt{\pi}}{2\sqrt{\frac{1}{3}}} = \sqrt{\frac{\pi}{2}}.$

另外一方面, 我们有

$$\begin{split} \int_0^\infty \frac{1}{(2+x^2)^n} \mathrm{d}x &= \frac{1}{2^n} \int_0^\infty \frac{1}{\left(1+\frac{x^2}{2}\right)^n} \mathrm{d}x \geqslant \frac{1}{2^n} \int_0^\delta \frac{1}{\left(1+\frac{x^2}{2}\right)^n} \mathrm{d}x \\ &= \frac{1}{2^n} \int_0^\delta e^{-n\ln\left(1+\frac{x^2}{2}\right)} \mathrm{d}x \geqslant \frac{1}{2^n} \int_0^\delta e^{-n\left(\frac{x^2}{2}+\varepsilon x^2\right)} \mathrm{d}x \\ &\stackrel{\text{\Rightarrow y=x\sqrt{n\left(\frac{1}{2}+\varepsilon\right)}$}}{=} \frac{1}{2^n \sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} \int_0^{\delta\sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} e^{-y^2} \mathrm{d}y. \end{split}$$

于是

$$\int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} \mathrm{d}x \geqslant \frac{1}{\sqrt{\left(\frac{1}{2}+\varepsilon\right)}} \int_0^{\delta\sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} e^{-y^2} \mathrm{d}y.$$

上式两边同时今 $n \to \infty$ 并取下极限得到

$$\underline{\lim_{n\to\infty}} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \geqslant \underline{\lim_{n\to\infty}} \frac{1}{\sqrt{\left(\frac{1}{2}+\varepsilon\right)}} \int_0^{\delta \sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} e^{-y^2} dy = \underline{\lim_{n\to\infty}} \frac{1}{\sqrt{\left(\frac{1}{2}+\varepsilon\right)}} \int_0^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}+\varepsilon\right)}}.$$

再由 ε 的任意性可得 $\lim_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}\mathrm{d}x\geqslant \frac{\sqrt{\pi}}{2\sqrt{\frac{1}{2}}}=\sqrt{\frac{\pi}{2}}.$

因此, 再结合
$$\lim_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n} \mathrm{d}x \leqslant \overline{\lim}_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n} \mathrm{d}x$$
, 我们就有

$$\sqrt{\frac{\pi}{2}} \leqslant \lim_{n \to \infty} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} \mathrm{d}x \leqslant \overline{\lim}_{n \to \infty} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} \mathrm{d}x \leqslant \sqrt{\frac{\pi}{2}}.$$

故
$$\lim_{n \to \infty} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx = \sqrt{\frac{\pi}{2}}$$
. 即 $\int_0^\infty \frac{1}{(2+x^2)^n} dx = \frac{\sqrt{\pi}}{2^n \sqrt{2n}} + o\left(\frac{1}{2^n \sqrt{n}}\right), n \to \infty$.

例题 2.113 求 $\int_0^x e^{-y^2} dy, x \to +\infty$ 的渐近估计 (仅两项).

拿 笔记 因为 $\lim_{x\to +\infty} \int_0^x e^{-y^2} dy = \frac{\sqrt{\pi}}{2}$, 所以实际上只需要估计

$$\frac{\sqrt{\pi}}{2} - \int_0^x e^{-y^2} dy = \int_0^\infty e^{-y^2} dy - \int_0^x e^{-y^2} dy = \int_x^\infty e^{-y^2} dy, x \to +\infty.$$

解 由 Taylor 定理可知, 对 $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得当 $x \in [0, \delta]$ 时, 有

$$2x - \varepsilon x \le x^2 + 2x \le 2x + \varepsilon x$$
.

现在,一方面我们有

$$\int_{x}^{\infty} e^{-y^2} dy \stackrel{\stackrel{\diamond}{\Rightarrow} y = xu}{=} x \int_{1}^{\infty} e^{-(xu)^2} du \stackrel{\stackrel{\diamond}{\Rightarrow} t = u - 1}{=} x \int_{0}^{\infty} e^{-(xt + x)^2} dt$$

$$= x \int_{0}^{\infty} e^{-(xt)^{2} - 2x^{2}t - x^{2}} dt = xe^{-x^{2}} \int_{0}^{\infty} e^{-x^{2}(t^{2} + 2t)} dt$$

$$= xe^{-x^{2}} \left(\int_{0}^{\delta} e^{-x^{2}(t^{2} + 2t)} dt + \int_{\delta}^{\infty} e^{-x^{2}(t^{2} + 2t)} dt \right)$$

$$\leq xe^{-x^{2}} \left(\int_{0}^{\delta} e^{-x^{2}(2t + \varepsilon t)} dt + \int_{\delta}^{\infty} e^{-x^{2}(t + 2t)} e^{-x^{2}\delta} dt \right)$$

$$= xe^{-x^{2}} \left(\frac{1 - e^{-(2+\varepsilon)x^{2}\delta}}{(2+\varepsilon)x^{2}} + \frac{e^{-2x^{2}(\delta+1)}}{x^{2}} \right)$$

$$= \frac{e^{-x^{2}}}{x} \left(\frac{1 - e^{-(2+\varepsilon)x^{2}\delta}}{2+\varepsilon} + e^{-2x^{2}(\delta+1)} \right).$$

于是就有

$$xe^{x^2}\int_{x}^{\infty}e^{-y^2}\mathrm{d}y\leqslant \frac{1-e^{-(2+\varepsilon)x^2\delta}}{2+\varepsilon}+e^{-2x^2(\delta+1)}.$$

上式两边同时令 $x \to +\infty$ 并取上极限得到

$$\overline{\lim}_{x\to +\infty} x e^{x^2} \int_x^\infty e^{-y^2} \mathrm{d}y \leqslant \overline{\lim}_{x\to +\infty} \left(\frac{1-e^{-(2+\varepsilon)x^2\delta}}{2+\varepsilon} + e^{-2x^2(\delta+1)} \right) = \frac{1}{2+\varepsilon}.$$

再由 ε 的任意性可得 $\overline{\lim}_{x \to +\infty} x e^{x^2} \int_x^\infty e^{-y^2} dy \leqslant \frac{1}{2}$.

另外一方面, 我们有

$$\int_{x}^{\infty} e^{-y^{2}} dy \xrightarrow{\frac{4}{3}y = xu} x \int_{1}^{\infty} e^{-(xu)^{2}} du \xrightarrow{\frac{4}{3}t = u - 1} x \int_{0}^{\infty} e^{-(xt + x)^{2}} dt$$

$$= x \int_{0}^{\infty} e^{-(xt)^{2} - 2x^{2}t - x^{2}} dt = xe^{-x^{2}} \int_{0}^{\infty} e^{-x^{2}(t^{2} + 2t)} dt$$

$$\geqslant xe^{-x^{2}} \int_{0}^{\delta} e^{-x^{2}(t^{2} + 2t)} dt \geqslant xe^{-x^{2}} \int_{0}^{\delta} e^{-x^{2}(2t - \varepsilon t)} dt$$

$$= xe^{-x^{2}} \cdot \frac{1 - e^{-(2 - \varepsilon)x^{2}\delta}}{(2 - \varepsilon)x^{2}}.$$

于是就有

$$xe^{x^2}\int_x^\infty e^{-y^2}\mathrm{d}y \geqslant \frac{1-e^{-(2-\varepsilon)x^2}\delta}{(2-\varepsilon)x^2}.$$

上式两边同时令 $x \to +\infty$ 并取下极限得到

$$\underline{\lim}_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy \geqslant \underline{\lim}_{x \to +\infty} \frac{1 - e^{-(2-\varepsilon)x^2} \delta}{(2-\varepsilon)x^2} = \frac{1}{2-\varepsilon}.$$

再由 ε 的任意性可得 $\lim_{x \to +\infty} xe^{x^2} \int_x^{\infty} e^{-y^2} dy \ge \frac{1}{2}$.

因此, 再结合
$$\lim_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy \leqslant \overline{\lim}_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy$$
, 我们就有
$$\frac{1}{2} \leqslant \underline{\lim}_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy \leqslant \overline{\lim}_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy \leqslant \frac{1}{2}.$$

故
$$\lim_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy = \frac{1}{2}$$
, 即 $\int_x^{\infty} e^{-y^2} dy = \frac{e^{-x^2}}{2x} + o\left(\frac{e^{-x^2}}{x}\right), x \to +\infty$.

因此 $\int_0^x e^{-y^2} dy = \frac{\sqrt{\pi}}{2} - \int_x^{\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{2} - \frac{e^{-x^2}}{2x} + o\left(\frac{e^{-x^2}}{x}\right), x \to +\infty$.

例题 **2.114** 计算
$$\lim_{n\to\infty}\int_0^{10n}\left(1-\left|\sin\left(\frac{x}{n}\right)\right|\right)^n\mathrm{d}x$$
.

解 由 Taylor 定理可知, 对 $\forall \varepsilon \in (0,1)$, 存在 $\delta \in (0,\frac{\pi}{4})$, 使得当 $x \in [0,\delta]$ 时, 有

$$-t - \varepsilon t \leq \ln(1 - \sin t) \leq -t + \varepsilon t$$
.

此时, 我们有

$$\int_{0}^{10n} (1 - |\sin(\frac{x}{n})|)^{n} dx \stackrel{\triangleq x = nt}{=} n \int_{0}^{10} (1 - |\sin t|)^{n} dt = n \int_{0}^{10} e^{n \ln(1 - |\sin t|)} dt
= n \int_{0}^{\delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\delta}^{\pi - \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\pi - \delta}^{\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\pi + \delta}^{2\pi - \delta} e^{n \ln(1 - |\sin t|)} dt
+ n \int_{2\pi - \delta}^{2\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{2\pi + \delta}^{3\pi - \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{3\pi - \delta}^{3\pi + \delta} e^{n \ln(1 - |\sin t|)} dt
= n \int_{0}^{\delta} e^{n \ln(1 - \sin t)} dt + n \int_{\delta}^{\pi - \delta} e^{n \ln(1 - \sin t)} dt + n \int_{\pi - \delta}^{\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\pi + \delta}^{2\pi - \delta} e^{n \ln(1 - |\sin t|)} dt
+ n \int_{2\pi - \delta}^{2\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{2\pi + \delta}^{3\pi - \delta} e^{n \ln(1 - \sin t)} dt + n \int_{3\pi - \delta}^{3\pi + \delta} e^{n \ln(1 - |\sin t|)} dt. \tag{2.115}$$

由积分换元可得

$$n\int_{\pi-\delta}^{\pi}e^{n\ln(1-\sin t)}\mathrm{d}t \stackrel{\stackrel{\diamondsuit}{=}u=\pi-t}{=} -n\int_{\delta}^{0}e^{n\ln(1-\sin(\pi-u))}\mathrm{d}u = n\int_{0}^{\delta}e^{n\ln(1-\sin u)}\mathrm{d}u,$$

$$n\int_{\pi}^{\pi+\delta}e^{n\ln(1+\sin t)}\mathrm{d}t \stackrel{\stackrel{\diamondsuit}{=}u=t-\pi}{=} n\int_{0}^{\delta}e^{n\ln(1+\sin(\pi+u))}\mathrm{d}u = n\int_{0}^{\delta}e^{n\ln(1-\sin u)}\mathrm{d}u,$$

$$n\int_{\pi+\delta}^{2\pi-\delta}e^{n\ln(1+\sin t)}\mathrm{d}t \stackrel{\stackrel{\diamondsuit}{=}u=t-\pi}{=} \int_{\delta}^{\pi-\delta}e^{n\ln(1+\sin(\pi+u))}\mathrm{d}u = \int_{\delta}^{\pi-\delta}e^{n\ln(1-\sin u)}\mathrm{d}u,$$

$$n\int_{2\pi+\delta}^{3\pi-\delta}e^{n\ln(1-\sin t)}\mathrm{d}t \stackrel{\stackrel{\diamondsuit}{=}u=t-2\pi}{=} \int_{\delta}^{\pi-\delta}e^{n\ln(1-\sin(2\pi+u))}\mathrm{d}u = \int_{\delta}^{\pi-\delta}e^{n\ln(1-\sin u)}\mathrm{d}u.$$

从而

$$n\int_{\pi-\delta}^{\pi+\delta}e^{n\ln(1-|\sin t|)}\mathrm{d}t=n\int_{\pi-\delta}^{\pi}e^{n\ln(1-\sin t)}\mathrm{d}t+n\int_{\pi}^{\pi+\delta}e^{n\ln(1-\sin t)}\mathrm{d}t=2n\int_{0}^{\delta}e^{n\ln(1-\sin t)}\mathrm{d}t.$$

同理,
$$n\int_{2\pi-\delta}^{2\pi+\delta} e^{n\ln(1-|\sin t|)} dt = n\int_{3\pi-\delta}^{3\pi+\delta} e^{n\ln(1-|\sin t|)} dt = 2n\int_0^\delta e^{n\ln(1-\sin t)} dt$$
. 于是原积分(2.115)式可化为
$$\int_0^{10n} (1-|\sin(\frac{x}{n})|)^n dx = 7n\int_0^\delta e^{n\ln(1-\sin t)} dt + 3\int_\delta^{\pi-\delta} e^{n\ln(1-\sin t)} dt.$$

进而,一方面我们有

$$\int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx = 7n \int_0^{\delta} e^{n \ln(1 - \sin t)} dt + 3 \int_{\delta}^{\pi - \delta} e^{n \ln(1 - \sin t)} dt$$

$$\leq 7n \int_0^{\delta} e^{n(-t + \varepsilon t)} dt + 3n \int_{\delta}^{\pi - \delta} e^{n \ln(1 - \sin \delta)} dt$$

$$= 7 \cdot \frac{e^{(\varepsilon - 1)n\delta} - 1}{\varepsilon - 1} + 3ne^{n \ln(1 - \sin \delta)} (\pi - 2\delta).$$

上式两边同时令 $n \to \infty$ 并取上极限得到

$$\overline{\lim_{n\to\infty}}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^n\mathrm{d}x\leqslant\overline{\lim_{n\to\infty}}\left[7\cdot\frac{e^{(\varepsilon-1)n\delta}-1}{\varepsilon-1}+3ne^{n\ln(1-\sin\delta)}(\pi-2\delta)\right]=\frac{7}{1-\varepsilon}.$$

再由 ε 的任意性可得 $\overline{\lim_{n\to\infty}}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^n\mathrm{d}x\leqslant 7.$

另外一方面, 我们有

$$\int_{0}^{10n} (1 - |\sin(\frac{x}{n})|)^{n} dx = 7n \int_{0}^{\delta} e^{n \ln(1 - \sin t)} dt + 3 \int_{\delta}^{\pi - \delta} e^{n \ln(1 - \sin t)} dt$$

$$\geqslant 7n \int_{0}^{\delta} e^{n \ln(1 - \sin t)} dt \geqslant 7n \int_{0}^{\delta} e^{n(-t - \varepsilon t)} dt = 7 \cdot \frac{1 - e^{-(\varepsilon + 1)n\delta}}{\varepsilon + 1}$$

上式两边同时令 $n \to \infty$ 并取下极限得到

$$\underline{\lim}_{n \to \infty} \int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx \geqslant \underline{\lim}_{n \to \infty} 7 \cdot \frac{1 - e^{-(\varepsilon + 1)n\delta}}{\varepsilon + 1} = \frac{7}{\varepsilon + 1}.$$

再由
$$\varepsilon$$
 的任意性可得 $\lim_{n\to\infty}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^n\mathrm{d}x\geqslant \frac{7}{\varepsilon+1}.$

因此, 再结合
$$\lim_{n\to\infty}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^n\mathrm{d}x\leqslant \overline{\lim}_{n\to\infty}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^n\mathrm{d}x$$
, 我们就有

$$7 \leqslant \underline{\lim_{n \to \infty}} \int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx \leqslant \overline{\lim_{n \to \infty}} \int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx \leqslant 7.$$

$$tilde{tilde{\text{dim}} \int_{n \to \infty}^{10n} \int_{0}^{10n} (1 - |\sin(\frac{x}{n})|)^{n} dx} = 7.$$

例题 2.115 求极限 $\lim_{n\to\infty} \frac{\int_0^1 \left(1-\frac{x}{2}\right)^n \left(1-\frac{x}{4}\right)^n dx}{\int_0^1 \left(1-\frac{x}{2}\right)^n dx}.$

证明 首先注意到

$$\int_0^1 \left(1 - \frac{x}{2}\right)^n dx = \frac{2}{n+1} \left(1 - \frac{x}{2}\right)^{n+1} \Big|_1^0 = \frac{2}{n+1} \left(1 - \frac{1}{2^{n+1}}\right). \tag{2.116}$$

接着,由 Taylor 定理可知

$$\ln\left(1 - \frac{3}{4}x + \frac{x^2}{8}\right) = -\frac{3}{4}x + o(x).$$

从而对 $\forall \varepsilon \in \left(0, \frac{1}{4}\right)$, 都存在 $\delta \in (0, 1)$, 使得

$$-\frac{3}{4}x - \varepsilon x \leqslant \ln\left(1 - \frac{3}{4}x + \frac{x^2}{8}\right) \leqslant -\frac{3}{4}x + \varepsilon x, \forall x \in [-\delta, \delta].$$

于是一方面, 我们有

$$\int_{0}^{1} \left(1 - \frac{x}{2}\right)^{n} \left(1 - \frac{x}{4}\right)^{n} dx = \int_{0}^{1} e^{n \ln\left(1 - \frac{3}{4}x + \frac{x^{2}}{8}\right)} dx = \int_{0}^{\delta} e^{n \ln\left(1 - \frac{3}{4}x + \frac{x^{2}}{8}\right)} dx + \int_{\delta}^{1} e^{n \ln\left(1 - \frac{3}{4}x + \frac{x^{2}}{8}\right)} dx$$

$$\leq \int_{0}^{\delta} e^{n(-\frac{3}{4}x + \varepsilon x)} dx + \int_{\delta}^{1} e^{n(-\frac{3}{4}x + \varepsilon x)} dx \leq \frac{1}{n} \int_{0}^{n\delta} e^{(-\frac{3}{4}x + \varepsilon)x} dx + \int_{\delta}^{1} e^{n(-\frac{3}{4}x + \varepsilon)\delta} dx$$

$$\leq \frac{1}{n} \int_{0}^{\infty} e^{(-\frac{3}{4}x + \varepsilon)x} dx + e^{n(-\frac{3}{4}x + \varepsilon)\delta} (1 - \delta) = -\frac{1}{(-\frac{3}{4}x + \varepsilon)} + e^{n(-\frac{3}{4}x + \varepsilon)\delta} (1 - \delta).$$

另一方面,我们有

$$\int_{0}^{1} \left(1 - \frac{x}{2}\right)^{n} \left(1 - \frac{x}{4}\right)^{n} dx = \int_{0}^{1} e^{n \ln\left(1 - \frac{3}{4}x + \frac{x^{2}}{8}\right)} dx = \int_{0}^{\delta} e^{n \ln\left(1 - \frac{3}{4}x + \frac{x^{2}}{8}\right)} dx + \int_{\delta}^{1} e^{n \ln\left(1 - \frac{3}{4}x + \frac{x^{2}}{8}\right)} dx$$

$$\geqslant \int_{0}^{\delta} e^{n\left(-\frac{3}{4}x - \varepsilon x\right)} dx + \int_{\delta}^{1} e^{n\left(-\frac{3}{4}x - \varepsilon x\right)} dx \geqslant \frac{1}{n} \int_{0}^{n\delta} e^{\left(-\frac{3}{4} - \varepsilon\right)x} dx + \int_{\delta}^{1} e^{n\left(-\frac{3}{4} - \varepsilon\right)} dx$$

$$= \frac{e^{\left(-\frac{3}{4} - \varepsilon\right)n\delta} - 1}{\left(-\frac{3}{4} - \varepsilon\right)n} + e^{n\left(-\frac{3}{4} - \varepsilon\right)} (1 - \delta).$$

因此

$$\frac{e^{\left(-\frac{3}{4}-\varepsilon\right)n\delta}-1}{-\frac{3}{4}-\varepsilon}+ne^{n\left(-\frac{3}{4}-\varepsilon\right)}\left(1-\delta\right)\leqslant n\int_{0}^{1}\left(1-\frac{x}{2}\right)^{n}\left(1-\frac{x}{4}\right)^{n}\mathrm{d}x\leqslant -\frac{1}{-\frac{3}{4}+\varepsilon}+ne^{n\left(-\frac{3}{4}+\varepsilon\right)\delta}\left(1-\delta\right).$$

上式两边同时令 $n \to \infty$,得

$$-\frac{1}{-\frac{3}{4}-\varepsilon} \leqslant \underline{\lim}_{n \to \infty} n \int_0^1 \left(1 - \frac{x}{2}\right)^n \left(1 - \frac{x}{4}\right)^n dx \leqslant \overline{\lim}_{n \to \infty} n \int_0^1 \left(1 - \frac{x}{2}\right)^n \left(1 - \frac{x}{4}\right)^n dx \leqslant -\frac{1}{-\frac{3}{4}+\varepsilon}.$$

再令 $\varepsilon \to 0^+$, 得

$$\lim_{n \to \infty} n \int_0^1 \left(1 - \frac{x}{2} \right)^n \left(1 - \frac{x}{4} \right)^n dx = \frac{4}{3}.$$

故
$$\int_0^1 \left(1 - \frac{x}{2}\right)^n \left(1 - \frac{x}{4}\right)^n dx = \frac{4}{3n} + o\left(\frac{1}{n}\right)$$
. 于是再结合(2.116)式可得
$$\lim_{n \to \infty} \frac{\int_0^1 \left(1 - \frac{x}{2}\right)^n \left(1 - \frac{x}{4}\right)^n dx}{\int_0^1 \left(1 - \frac{x}{2}\right)^n dx} = \lim_{n \to \infty} \frac{\frac{4}{3n} + o\left(\frac{1}{n}\right)}{\frac{2}{n+1} \left(1 - \frac{1}{2n+1}\right)} = \frac{2}{3}.$$

例题 2.116 证明极限 $\lim_{n\to+\infty} \frac{\int_0^1 \ln^n (1+x) x^{-n} dx}{\int_0^1 \frac{\sin^n x}{x^{n-1}} dx}$ 存在并求其值.

② 笔记 原式可写成 $\frac{\int_0^1 \left[\frac{\ln(1+x)}{x}\right]^n dx}{\int_0^1 x \left(\frac{\sin x}{x}\right)^n dx}$, 求导可知 $\frac{\sin x}{x}$ 和 $\frac{\ln(1+x)}{x}$ 在 (0,1] 上单调递增, 故原式分子和分母的阶都集 中在 x=0 处. 因为分母积分的被积函数除指数部分外,x 在 0 处取值也为 0, 所以我们在估阶的时候需要将 x 也考虑进去. 利用 Laplace 方法估计分子、分母的阶, 但是此时 $\frac{\sin x}{x}$ 和 $\frac{\ln(1+x)}{x}$ 在极值点 x=0 处间断, 故我们需要 先对 $\frac{\sin x}{x}$ 和 $\frac{\ln (1+x)}{x}$ 补充定义,使相关函数光滑,才能进行 Taylor 展开证明 由 Taylor 公式可知

$$\ln\left(\frac{\sin x}{x}\right) = \ln\frac{x - \frac{1}{6}x^3 + o\left(x^3\right)}{x} = \ln\left(1 - \frac{x^2}{6} + o\left(x^2\right)\right) = -\frac{x^2}{6} + o\left(x^2\right),$$

$$\ln\left(\frac{\ln\left(1 + x\right)}{x}\right) = \ln\frac{x - \frac{x^2}{2} + \frac{x^3}{3} + o\left(x^3\right)}{x} = \ln\left(1 - \frac{x}{2} + \frac{x^2}{3} + o\left(x^2\right)\right) = -\frac{x}{2} + \frac{x^2}{3} + o\left(x^2\right).$$

从而对 $\forall \varepsilon \in \left(0, \frac{1}{6}\right)$, 都存在 $\delta \in (0, 1)$, 使得

$$-\frac{x^2}{6} - \varepsilon x^2 \le \ln\left(\frac{\sin x}{x}\right) \le -\frac{x^2}{6} + \varepsilon x^2, \forall x \in [-\delta, \delta],$$
$$-\frac{x}{2} - \varepsilon x \le \ln\left(\frac{\ln(1+x)}{x}\right) \le -\frac{x}{2} + \varepsilon x, \forall x \in [-\delta, \delta].$$

于是一方面,我们有

$$\int_{0}^{1} x \left(\frac{\sin x}{x}\right)^{n} dx = \int_{0}^{1} x e^{n \ln\left(\frac{\sin x}{x}\right)} dx = \int_{0}^{\delta} x e^{n \ln\left(\frac{\sin x}{x}\right)} dx + \int_{\delta}^{1} x e^{n \ln\left(\frac{\sin x}{x}\right)} dx$$

$$\leq \int_{0}^{\delta} x e^{n\left(-\frac{x^{2}}{6} + \varepsilon x^{2}\right)} dx + \int_{\delta}^{1} x e^{n\left(-\frac{x^{2}}{6} + \varepsilon x^{2}\right)} dx \leq \frac{1}{n} \int_{0}^{\sqrt{n}\delta} x e^{\left(-\frac{1}{6} + \varepsilon\right)x^{2}} dx + \int_{\delta}^{1} e^{n\left(-\frac{1}{6} + \varepsilon\right)\delta^{2}} dx$$

$$\leq \frac{1}{n} \int_{0}^{\infty} x e^{\left(-\frac{1}{6} + \varepsilon\right)x^{2}} dx + e^{n\left(-\frac{1}{6} + \varepsilon\right)\delta^{2}} (1 - \delta) = -\frac{1}{2\left(-\frac{1}{6} + \varepsilon\right)n} + e^{n\left(-\frac{1}{6} + \varepsilon\right)\delta^{2}} (1 - \delta).$$

$$\begin{split} \int_0^1 \left[\frac{\ln{(1+x)}}{x} \right]^n \mathrm{d}x &= \int_0^1 e^{n\ln{\left(\frac{\ln{(1+x)}}{x}\right)}} \mathrm{d}x = \int_0^\delta e^{n\ln{\left(\frac{\ln{(1+x)}}{x}\right)}} \mathrm{d}x + \int_\delta^1 e^{n\ln{\left(\frac{\ln{(1+x)}}{x}\right)}} \mathrm{d}x \\ &\leqslant \int_0^\delta e^{n\left(-\frac{x}{2}+\varepsilon x\right)} \mathrm{d}x + \int_\delta^1 e^{n\left(-\frac{x}{2}+\varepsilon x\right)} \mathrm{d}x \leqslant \frac{1}{n} \int_0^{n\delta} e^{\left(-\frac{1}{2}+\varepsilon\right)x} \mathrm{d}x + \int_\delta^1 e^{n\left(-\frac{1}{2}+\varepsilon\right)\delta} \mathrm{d}x \\ &\leqslant \frac{1}{n} \int_0^\infty e^{\left(-\frac{1}{2}+\varepsilon\right)x} \mathrm{d}x + e^{n\left(-\frac{1}{2}+\varepsilon\right)\delta} \left(1-\delta\right) = -\frac{1}{\left(-\frac{1}{2}+\varepsilon\right)n} + e^{n\left(-\frac{1}{2}+\varepsilon\right)\delta} \left(1-\delta\right). \end{split}$$

另一方面, 我们有

$$\begin{split} \int_0^1 x \left(\frac{\sin x}{x}\right)^n \mathrm{d}x &= \int_0^1 x e^{n \ln\left(\frac{\sin x}{x}\right)} \mathrm{d}x = \int_0^\delta x e^{n \ln\left(\frac{\sin x}{x}\right)} \mathrm{d}x + \int_\delta^1 x e^{n \ln\left(\frac{\sin x}{x}\right)} \mathrm{d}x \\ &\geqslant \int_0^\delta x e^{n \left(-\frac{x^2}{6} - \varepsilon x^2\right)} \mathrm{d}x + \int_\delta^1 x e^{n \left(-\frac{x^2}{6} - \varepsilon x^2\right)} \mathrm{d}x \geqslant \frac{1}{n} \int_0^{\sqrt{n}\delta} x e^{\left(-\frac{1}{6} - \varepsilon\right)x^2} \mathrm{d}x + \int_\delta^1 e^{n \left(-\frac{1}{6} - \varepsilon\right)} \mathrm{d}x \\ &\geqslant \frac{1}{n} \int_0^\infty x e^{\left(-\frac{1}{6} - \varepsilon\right)x^2} \mathrm{d}x + e^{n \left(-\frac{1}{6} - \varepsilon\right)} \left(1 - \delta\right) = -\frac{1}{2\left(-\frac{1}{6} - \varepsilon\right)n} + e^{n \left(-\frac{1}{6} - \varepsilon\right)} \left(1 - \delta\right). \end{split}$$

$$\int_0^1 \left[\frac{\ln\left(1 + x\right)}{x}\right]^n \mathrm{d}x = \int_0^1 e^{n \ln\left(\frac{\ln\left(1 + x\right)}{x}\right)} \mathrm{d}x = \int_0^\delta e^{n \ln\left(\frac{\ln\left(1 + x\right)}{x}\right)} \mathrm{d}x + \int_\delta^1 e^{n \ln\left(\frac{\ln\left(1 + x\right)}{x}\right)} \mathrm{d}x \end{split}$$

$$\geqslant \int_0^\delta e^{n(-\frac{x}{2} - \varepsilon x)} dx + \int_\delta^1 e^{n(-\frac{x}{2} - \varepsilon x)} dx \geqslant \frac{1}{n} \int_0^{n\delta} e^{(-\frac{1}{2} - \varepsilon)x} dx + \int_\delta^1 e^{n(-\frac{1}{2} - \varepsilon)} dx$$
$$\geqslant \frac{1}{n} \int_0^\infty e^{(-\frac{1}{2} - \varepsilon)x} dx + e^{n(-\frac{1}{2} - \varepsilon)} (1 - \delta) = -\frac{1}{(-\frac{1}{2} - \varepsilon)n} + e^{n(-\frac{1}{2} - \varepsilon)} (1 - \delta).$$

因此,我们就有

$$-\frac{1}{2\left(-\frac{1}{6}-\varepsilon\right)}+ne^{n\left(-\frac{1}{6}-\varepsilon\right)}\left(1-\delta\right)\leqslant n\int_{0}^{1}x\left(\frac{\sin x}{x}\right)^{n}\mathrm{d}x\leqslant -\frac{1}{2\left(-\frac{1}{6}+\varepsilon\right)}+ne^{n\left(-\frac{1}{6}+\varepsilon\right)\delta}\left(1-\delta\right),$$

$$\frac{1}{\frac{1}{2}+\varepsilon}+ne^{n\left(-\frac{1}{2}-\varepsilon\right)}\left(1-\delta\right)\leqslant n\int_{0}^{1}\left[\frac{\ln\left(1+x\right)}{x}\right]^{n}\mathrm{d}x\leqslant -\frac{1}{-\frac{1}{2}+\varepsilon}+ne^{n\left(-\frac{1}{2}+\varepsilon\right)\delta}\left(1-\delta\right).$$

$$-\frac{1}{2\left(-\frac{1}{6}-\varepsilon\right)} \leqslant \lim_{n \to \infty} n \int_0^1 x \left(\frac{\sin x}{x}\right)^n dx \leqslant \overline{\lim_{n \to \infty}} n \int_0^1 x \left(\frac{\sin x}{x}\right)^n dx \leqslant -\frac{1}{2\left(-\frac{1}{6}+\varepsilon\right)}$$

$$\frac{1}{\frac{1}{2}+\varepsilon} \leqslant \lim_{n \to \infty} n \int_0^1 \left[\frac{\ln(1+x)}{x}\right]^n dx \leqslant \overline{\lim_{n \to \infty}} n \int_0^1 \left[\frac{\ln(1+x)}{x}\right]^n dx \leqslant -\frac{1}{-\frac{1}{2}+\varepsilon}$$

再令 $\varepsilon \to 0^+$,得

$$\lim_{n \to \infty} n \int_0^1 x \left(\frac{\sin x}{x} \right)^n dx = \frac{1}{3}, \quad \lim_{n \to \infty} n \int_0^1 \left[\frac{\ln (1+x)}{x} \right]^n dx = 2.$$

故

$$\int_0^1 x \left(\frac{\sin x}{x}\right)^n dx = \frac{1}{3n} + o\left(\frac{1}{n}\right), \quad \int_0^1 \left[\frac{\ln(1+x)}{x}\right]^n dx = \frac{2}{n} + o\left(\frac{1}{n}\right).$$

进而

$$\lim_{n \to \infty} \frac{\int_0^1 \ln^n (1+x) x^{-n} dx}{\int_0^1 \frac{\sin^n x}{x^{n-1}} dx} = \lim_{n \to \infty} \frac{\int_0^1 \left[\frac{\ln(1+x)}{x} \right]^n dx}{\int_0^1 x \left(\frac{\sin x}{x} \right)^n dx} = \lim_{n \to \infty} \frac{\frac{2}{n} + o\left(\frac{1}{n}\right)}{\frac{1}{3n} + o\left(\frac{1}{n}\right)} = \frac{2}{3}.$$

例题 2.117 计算 $\lim_{n\to\infty} \frac{\int_0^1 (1-x^2+x^3)^n \ln(x+2) dx}{\int_0^1 (1-x^2+x^3)^n dx}$.

奎记 我们首先可以求解出被积函数带 n 次幂部分的最大值点即 $1-x^2+x^3$ 的最大值点为 x=0,1. 于是被积函数的阶一定集中在这两个最大值点附近.

注 注意由 $\ln(1-x^2+x^3)=x-1+o(x-1),x\to 1$. 得到的是 $\ln(1-x^2+x^3)=x-1+o(x-1),x\to 1$. 而不是. 证明 由 Taylor 定理可知,

$$\ln(1 - x^2 + x^3) = -x^2 + o(x^2), x \to 0;$$

$$\ln(1 - x^2 + x^3) = x - 1 + o(x - 1), x \to 1.$$

从而对 $\forall \varepsilon \in (0, \frac{1}{2})$, 存在 $\delta_1 \in (0, \frac{1}{10})$, 使得

$$-x^{2} - \varepsilon x^{2} \le \ln(1 - x^{2} + x^{3}) \le -x^{2} + \varepsilon x^{2}, \forall x \in (0, \delta_{1});$$

$$x - 1 - \varepsilon(x - 1) \le \ln(1 - x^{2} + x^{3}) \le x - 1 + \varepsilon(x - 1), \forall x \in (1 - \delta_{1}, 1).$$

设 $f \in C[0,1]$ 且 f(0), f(1) > 0, 则由连续函数最大值、最小值定理可知, f 在闭区间 $[0,\frac{1}{2}]$ 和 $[\frac{1}{2},1]$ 上都存在最大值和最小值. 设 $M_1 = \sup_{x \in [0,\frac{1}{2}]} f(x)$, $M_2 = \sup_{x \in [\frac{1}{2}]} f(x)$. 又由连续性可知, 对上述 ε , 存在 $\delta_2 > 0$, 使得

$$f(0) - \varepsilon < f(x) < f(0) + \varepsilon, \forall x \in [0, \delta_2];$$

$$f(1) - \varepsilon < f(x) < f(1) + \varepsilon, \forall x \in [1 - \delta_2, 1].$$

取 $\delta = \min\{\delta_1, \delta_2\}$, 则一方面我们有

$$\int_0^{\frac{1}{2}} (1 - x^2 + x^3)^n f(x) dx = \int_0^{\delta} (1 - x^2 + x^3)^n f(x) dx + \int_{\delta}^{\frac{1}{2}} (1 - x^2 + x^3)^n f(x) dx$$

115

$$= \int_0^{\delta} e^{n \ln(1-x^2+x^3)} f(x) dx + \int_{\delta}^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx$$

$$\leq (f(0)+\varepsilon) \int_0^{\delta} e^{n(-x^2+\varepsilon x^2)} dx + \int_{\delta}^{\frac{1}{2}} M_1 \left(\frac{7}{8}-\delta^2\right)^n dx$$

$$= \frac{f(0)+\varepsilon}{\sqrt{n(1-\varepsilon)}} \int_0^{\delta \sqrt{n(1-\varepsilon)}} e^{-y^2} dy + M_1 \left(\frac{7}{8}-\delta^2\right)^n \left(\frac{1}{2}-\delta\right),$$

又易知 $1-x^2+x^3$ 在 $[0,\frac{2}{3}]$ 上单调递减,在 $(\frac{2}{3},1]$ 上单调递增. 再结合 $\delta < \frac{1}{10}$ 可知, $1-(\frac{1}{2})^2+(\frac{1}{2})^3 < 1-(\frac{1}{10})^2+(\frac{1}{10})^3 < 1-(1-\delta)^2+(1-\delta)^3$. 从而当 $x \in (\frac{1}{2},1-\delta)$ 时,我们就有 $1-x^2+x^3 < 1-(1-\delta)^2+(1-\delta)^3 < 1$. 进而可得

$$\begin{split} \int_{\frac{1}{2}}^{1} (1-x^2+x^3)^n f(x) \mathrm{d}x &= \int_{\frac{1}{2}}^{1-\delta} (1-x^2+x^3)^n f(x) \mathrm{d}x + \int_{1-\delta}^{1} (1-x^2+x^3)^n f(x) \mathrm{d}x \\ &= \int_{\frac{1}{2}}^{1-\delta} (1-x^2+x^3)^n f(x) \mathrm{d}x + \int_{1-\delta}^{1} e^{n \ln(1-x^2+x^3)} f(x) \mathrm{d}x \\ &\leq \int_{\frac{1}{2}}^{1-\delta} M_2 \left(1-(1-\delta)^2+(1-\delta)^3\right)^n \mathrm{d}x + (f(1)+\varepsilon) \int_{1-\delta}^{1} e^{n[x-1+\varepsilon(x-1)]} \mathrm{d}x \\ &= M_2 \left(1-(1-\delta)^2+(1-\delta)^3\right)^n \left(\frac{1}{2}-\delta\right) + \frac{f(1)+\varepsilon}{n(1+\varepsilon)} \left(1-e^{-n\delta(1+\varepsilon)}\right). \end{split}$$

于是就有

$$\begin{split} & \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) \mathrm{d}x \leqslant \frac{f(0)+\varepsilon}{\sqrt{1-\varepsilon}} \int_0^{\delta\sqrt{n(1-\varepsilon)}} e^{-y^2} \mathrm{d}y + \sqrt{n} M_1 \left(\frac{7}{8}-\delta^2\right)^n \left(\frac{1}{2}-\delta\right), \\ & n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) \mathrm{d}x \leqslant n M_2 \left(\frac{3}{4}+(1-\delta)^3\right)^n \left(\frac{1}{2}-\delta\right) + \frac{f(1)+\varepsilon}{1+\varepsilon} \left(1-e^{-n\delta(1+\varepsilon)}\right). \end{split}$$

上式两边同时令 $n \to \infty$ 并取上极限得到

$$\overline{\lim}_{n \to \infty} \sqrt{n} \int_0^{\frac{1}{2}} (1 - x^2 + x^3)^n f(x) dx \leqslant \frac{f(0) + \varepsilon}{\sqrt{1 - \varepsilon}} \int_0^{\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{2\sqrt{1 - \varepsilon}} (f(0) + \varepsilon),$$

$$\overline{\lim}_{n \to \infty} n \int_{\frac{1}{2}}^1 (1 - x^2 + x^3)^n f(x) dx \leqslant \frac{f(1) + \varepsilon}{1 + \varepsilon}.$$

再由 ε 的任意性可得 $\overline{\lim}_{n\to\infty} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx \leqslant \frac{\sqrt{\pi}}{2} f(0), \overline{\lim}_{n\to\infty} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx \leqslant f(1).$ 另外一方面 我们有

$$\int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx \ge \int_{0}^{\delta} (1 - x^{2} + x^{3})^{n} f(x) dx = \int_{0}^{\delta} e^{n \ln(1 - x^{2} + x^{3})} f(x) dx$$

$$\ge (f(0) - \varepsilon) \int_{0}^{\delta} e^{n(-x^{2} - \varepsilon x^{2})} dx = \frac{f(0) - \varepsilon}{\sqrt{n(1 + \varepsilon)}} \int_{0}^{\delta \sqrt{n(1 + \varepsilon)}} e^{-y^{2}} dy,$$

$$\int_{\frac{1}{2}}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx \ge \int_{1 - \delta}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx = \int_{1 - \delta}^{1} e^{n \ln(1 - x^{2} + x^{3})} f(x) dx$$

$$\ge (f(1) - \varepsilon) \int_{1 - \delta}^{1} e^{n[x - 1 - \varepsilon(x - 1)]} dx = \frac{f(1) - \varepsilon}{n(1 + \varepsilon)} \left(1 - e^{-n\delta(1 - \varepsilon)}\right).$$

于是就有

$$\sqrt{n} \int_0^{\frac{1}{2}} (1 - x^2 + x^3)^n f(x) dx \geqslant \frac{f(0) - \varepsilon}{\sqrt{1 + \varepsilon}} \int_0^{\delta \sqrt{n(1 + \varepsilon)}} e^{-y^2} dy,$$

$$n \int_{\frac{1}{2}}^1 (1 - x^2 + x^3)^n f(x) dx \geqslant \frac{f(1) - \varepsilon}{1 + \varepsilon} \left(1 - e^{-n\delta(1 - \varepsilon)} \right).$$

上式两边同时令 $n \to \infty$ 并取下极限得到

$$\lim_{n \to \infty} \sqrt{n} \int_0^{\frac{1}{2}} (1 - x^2 + x^3)^n f(x) dx \geqslant \frac{f(0) - \varepsilon}{\sqrt{1 + \varepsilon}} \int_0^{\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{2\sqrt{1 + \varepsilon}} (f(0) - \varepsilon),$$

$$\lim_{n \to \infty} n \int_{\frac{1}{2}}^1 (1 - x^2 + x^3)^n f(x) dx \geqslant \frac{f(1) - \varepsilon}{1 + \varepsilon}.$$

再由 ε 的任意性可得 $\lim_{n\to\infty} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx \geqslant \frac{\sqrt{\pi}}{2} f(0), \lim_{n\to\infty} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx \geqslant f(1).$ 因此,我们就有

$$\frac{\sqrt{\pi}}{2}f(0) \leqslant \lim_{n \to \infty} \sqrt{n} \int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant \overline{\lim}_{n \to \infty} \sqrt{n} \int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant \frac{\sqrt{\pi}}{2} f(0),$$

$$f(1) \leqslant \lim_{n \to \infty} n \int_{\frac{1}{2}}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant \overline{\lim}_{n \to \infty} n \int_{\frac{1}{2}}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant f(1).$$

故 $\lim_{n\to\infty} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx = \frac{\sqrt{\pi}}{2} f(0), \lim_{n\to\infty} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx = f(1).$ 从而

$$\int_0^{\frac{1}{2}} (1 - x^2 + x^3)^n f(x) dx = \frac{f(0)\sqrt{\pi}}{2\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right), n \to \infty;$$

$$\int_{\frac{1}{2}}^1 (1 - x^2 + x^3)^n f(x) dx = \frac{f(1)}{n} + o\left(\frac{1}{n}\right), n \to \infty.$$

故 $\int_0^1 (1-x^2+x^3)^n f(x) dx = \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx + \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx = \frac{f(0)\sqrt{\pi}}{2\sqrt{n}} + \frac{f(1)}{n} + o\left(\frac{1}{n}\right), n \to \infty.$ 从而当 $f \equiv 1$ 时,上式等价于 $\int_0^1 (1-x^2+x^3)^n dx = \frac{\sqrt{\pi}}{2\sqrt{n}} + \frac{1}{n} + o\left(\frac{1}{n}\right), n \to \infty;$ 当 $f(x) = \ln(x+2)$ 时,上式等价于 $\int_0^1 (1-x^2+x^3)^n \ln(x+2) dx = \frac{\sqrt{\pi}\ln 2}{2\sqrt{n}} + \frac{\ln 3}{n} + o\left(\frac{1}{n}\right), n \to \infty.$ 于是

$$\lim_{n \to \infty} \frac{\int_0^1 (1 - x^2 + x^3)^n \ln(x + 2) dx}{\int_0^1 (1 - x^2 + x^3)^n dx} = \lim_{n \to \infty} \frac{\frac{\sqrt{\pi} \ln 2}{2\sqrt{n}} + \frac{\ln 3}{n} + o\left(\frac{1}{n}\right)}{\frac{\sqrt{\pi}}{2\sqrt{n}} + \frac{1}{n} + o\left(\frac{1}{n}\right)} = \ln 2.$$

例题 2.118 设 $f \in R[0,1]$ 且 f 在 x = 1 连续, 证明

$$\lim_{n \to \infty} n \int_0^1 f(x) x^n dx = f(1).$$

' 笔记 这种运用 Laplace 方法估阶的题目, 也可以用拟合法进行证明.

证明 由于 $f \in R[0,1]$, 因此存在 M > 0, 使得 $|f(x)| \leq M, \forall x \in [0,1]$. 于是对 $\forall n \in \mathbb{N}_+, \forall \delta \in (0,1)$, 有

$$\left| n \int_{0}^{1} f(x)x^{n} dx - n \int_{0}^{1} f(1)x^{n} dx \right| = \left| n \int_{0}^{1} [f(x) - f(1)]x^{n} dx \right|$$

$$\leq n \int_{0}^{1} |[f(x) - f(1)]x^{n}| dx = n \int_{0}^{\delta} |f(x) - f(1)|x^{n} dx + n \int_{\delta}^{1} |f(x) - f(1)|x^{n} dx$$

$$\leq n \int_{0}^{\delta} |M + f(1)|\delta^{n} dx + n \sup_{x \in [\delta, 1]} |f(x) - f(1)| \int_{\delta}^{1} x^{n} dx$$

$$\leq n |M + f(1)|\delta^{n+1} + n \sup_{x \in [\delta, 1]} |f(x) - f(1)| \int_{0}^{1} x^{n} dx$$

$$= n |M + f(1)|\delta^{n+1} + \frac{n}{n+1} \sup_{x \in [\delta, 1]} |f(x) - f(1)|.$$

上式两边同时令 $n \to \infty$,并取上极限可得

$$\overline{\lim}_{n\to\infty} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \leqslant \sup_{x\in[\delta,1]} |f(x) - f(1)|, \quad \forall \delta \in (0,1).$$

再根据 δ 的任意性, φ $\delta \rightarrow 1^-$ 可得

$$\overline{\lim}_{n\to\infty} \left| n \int_0^1 f(x) x^n \mathrm{d}x - n \int_0^1 f(1) x^n \mathrm{d}x \right| \leqslant \lim_{\delta \to 1^-} \sup_{x \in [\delta, 1]} |f(x) - f(1)| = \overline{\lim}_{\delta \to 1^-} |f(x) - f(1)|.$$

又因为 f 在 x = 1 处连续, 所以 $\overline{\lim}_{S \to 1^-} |f(x) - f(1)| = 0$. 故

$$0 \leqslant \underline{\lim}_{n \to \infty} \left| n \int_0^1 f(x) x^n \mathrm{d}x - n \int_0^1 f(1) x^n \mathrm{d}x \right| \leqslant \overline{\lim}_{n \to \infty} \left| n \int_0^1 f(x) x^n \mathrm{d}x - n \int_0^1 f(1) x^n \mathrm{d}x \right| \leqslant 0.$$

因此
$$\lim_{n\to\infty} n \int_0^1 f(x) x^n dx = \lim_{n\to\infty} n \int_0^1 f(1) x^n dx = f(1) \lim_{n\to\infty} \frac{n}{n+1} = f(1).$$
 例题 2.119 f 是 $[0,1]$ 上 Riemann 可积的函数, 且在 $x=1$ 处存在导数, $f(1)=0$, $f'(1)=-1$, 证明

$$\lim_{n \to \infty} n^2 \int_0^1 x^n f(x) dx = 1.$$

笔记 本题也可以类似例题 2.118用拟合法进行证明.

证明 由 Taylor 定理可知, 存在 $\delta \in (0,1)$, 对 $\forall x \in [\delta,1]$, 存在 $\theta \in (x,1)$, 使得

$$f(x) = f'(1)(x-1) + \frac{f''(\theta)}{2}(x-1)^2 = 1 - x + \frac{f''(\theta)}{2}(x-1)^2.$$

记 $M \triangleq \sup_{[0,1]} f, m \triangleq \inf_{[0,1]} f, 则一方面, 我们有$

$$\begin{split} n^2 \int_0^1 x^n f(x) \mathrm{d}x &= n^2 \int_0^\delta x^n f(x) \mathrm{d}x + n^2 \int_\delta^1 x^n f(x) \mathrm{d}x \leqslant M n^2 \delta^n + n^2 \int_\delta^1 x^n \left[1 - x + \frac{f''(\theta)}{2} (x - 1)^2 \right] \mathrm{d}x \\ &\leqslant M n^2 \delta^n + n^2 \int_0^1 \left[x^n - x^{n+1} + \frac{f''(\theta)}{2} (x^{n+2} - 2x^{n+1} + x^n) \right] \mathrm{d}x \\ &= M n^2 \delta^n + \frac{n^2}{(n+1)(n+2)} + \frac{n^2 f''(\theta)}{(n+1)(n+2)(n+3)}. \end{split}$$

$$\overline{\lim}_{n \to \infty} n^2 \int_0^1 x^n f(x) \mathrm{d}x \leqslant 1.$$

$$n^{2} \int_{0}^{1} x^{n} f(x) dx = n^{2} \int_{0}^{\delta} x^{n} f(x) dx + n^{2} \int_{\delta}^{1} x^{n} f(x) dx \geqslant n^{2} \min\{0, m\delta^{n}\} + n^{2} \int_{\delta}^{1} x^{n} \left[1 - x + \frac{f''(\theta)}{2} (x - 1)^{2}\right] dx$$

$$= n^{2} \min\{0, m\delta^{n}\} + \frac{n^{2}}{(n + 1)(n + 2)} - n^{2} \left(\frac{\delta^{n+1}}{n + 1} - \frac{\delta^{n+2}}{n + 2}\right) + \frac{n^{2} f''(\theta)}{(n + 1)(n + 2)(n + 3)} - n^{2} \left(\frac{\delta^{n+3}}{n + 3} - \frac{2\delta^{n+2}}{n + 2} + \frac{\delta^{n+1}}{n + 1}\right).$$

$$\underline{\lim_{n\to\infty}} n^2 \int_0^1 x^n f(x) \mathrm{d}x \geqslant 1.$$

故

$$\lim_{n \to \infty} n^2 \int_0^1 x^n f(x) dx = 1.$$

例题 2.120 Possion 核 设 $f \in R[0,1]$ 且 f 在 x = 0 连续, 证明

$$\lim_{t \to 0^+} \int_0^1 \frac{t}{x^2 + t^2} f(x) dx = \frac{\pi}{2} f(0).$$

证明 因为 $f \in R[0,1]$, 所以存在 M > 0, 使得 $|f(x)| \leq M, \forall x \in [0,1]$. 于是对 $\forall \delta \in (0,1)$, 固定 δ , 再对 $\forall t > 0$, 我们

$$\left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \le \int_0^1 \frac{t}{x^2 + t^2} |f(x) - f(0)| dx$$

$$= \int_0^\delta \frac{t}{x^2 + t^2} |f(x) - f(0)| dx + \int_\delta^1 \frac{t}{x^2 + t^2} |f(x) - f(0)| dx$$

$$\leq \sup_{x \in [0, \delta]} |f(x) - f(0)| \int_0^{\delta} \frac{t}{x^2 + t^2} dx + \int_0^1 \frac{t}{\delta^2 + t^2} |M + f(0)| dx$$

$$= \sup_{x \in [0, \delta]} |f(x) - f(0)| \arctan \frac{x}{t} \Big|_0^{\delta} + \frac{t}{\delta^2 + t^2} |M + f(0)|$$

$$= \sup_{x \in [0, \delta]} |f(x) - f(0)| \cdot \arctan \frac{\delta}{t} + \frac{t}{\delta^2 + t^2} |M + f(0)|.$$

上式两边同时令 $t \to 0^+$ 并取上极限, 可得

$$\overline{\lim_{t \to 0^+}} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leq \frac{\pi}{2} \sup_{x \in [0, \delta]} |f(x) - f(0)|, \forall \delta \in (0, 1).$$

再根据 δ 的任意性, $\delta \rightarrow 0^+$ 可得

$$\overline{\lim_{t \to 0^+}} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \le \frac{\pi}{2} \lim_{\delta \to 0^+} \sup_{x \in [0, \delta]} |f(x) - f(0)| = \frac{\pi}{2} \overline{\lim_{x \to 0^+}} |f(x) - f(0)|.$$

又由于 f 在 x = 0 处连续, 从而 $\overline{\lim}_{x \to 0^+} |f(x) - f(0)| = 0$. 故

$$0 \leqslant \lim_{t \to 0^+} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leqslant \overline{\lim}_{t \to 0^+} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leqslant 0.$$

 $\boxplus \lim_{t \to 0^+} \int_0^1 \frac{t}{x^2 + t^2} f(x) dx = \lim_{t \to 0^+} \int_0^1 \frac{t}{x^2 + t^2} f(0) dx = f(0) \lim_{t \to 0^+} \arctan \frac{1}{t} = \frac{\pi}{2} f(0).$

例题 2.121 Fejer 核 设 $f \propto x = 0$ 连续且在 $\left[-\frac{1}{2}, \frac{1}{2}\right]$ 可积,则

$$\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(x) \, \mathrm{d}x = f(0) \, .$$

证明 因为 $f \in R\left[-\frac{1}{2},\frac{1}{2}\right]$, 所以存在 M > 0, 使得 $|f(x)| \leq M, \forall x \in \left[-\frac{1}{2},\frac{1}{2}\right]$. 又因为 $\sin x \sim x, x \to 0$, 所以对 $\forall \varepsilon \in (0,1)$, 存在 $\delta_0 > 0$, 使得当 $|x| \leq \delta_0$ 时, 有 $\sin x \geq (1-\varepsilon)x$. 于是对 $\forall \delta \in (0,\min\left\{\frac{1}{2},\delta_0\right\})$, 我们有

$$\left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} [f(x) - f(0)] dx \right| \leq \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} |f(x) - f(0)| dx$$

$$= \int_{|x| \leq \delta} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} |f(x) - f(0)| dx + \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} |f(x) - f(0)| dx$$

$$\leq \sup_{|x| \leq \delta} |f(x) - f(0)| \int_{|x| \leq \delta} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} dx + \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{1}{N} \frac{1}{\sin^{2}(\pi \delta)} |M + f(0)| dx$$

$$\leq \frac{\sup_{|x| \leq \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{|x| \leq \delta} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{(\pi x)^{2}} dx + \frac{1}{N} \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{|M + f(0)|}{\sin^{2}(\pi \delta)} dx$$

$$= \frac{\sup_{|x| \leq \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^{2}(\pi y)}{(\pi y)^{2}} dy + \frac{1}{N} \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{|M + f(0)|}{\sin^{2}(\pi \delta)} dx$$

$$= \frac{\sup_{|x| \leq \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^{2}(\pi y)}{(\pi y)^{2}} dy + \frac{1}{N} \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{|M + f(0)|}{\sin^{2}(\pi \delta)} dx$$

上式两边同时今 $N \to +\infty$ 并取上极限, 得到

$$\overline{\lim_{N\to+\infty}} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| \leqslant \frac{\sup_{|x| \leqslant \delta} |f(x) - f(0)|}{1-\varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy.$$

又由 Dirichlet 判别法 (由命题 8.3可知积分值), 可知 $\int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy$ 收敛. 从而根据 δ 的任意性, 上式两边同时令 $\delta \to 0^+$, 再结合 f 在 x = 0 处连续, 可得

$$\overline{\lim}_{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right|$$

$$\leqslant \lim_{\delta \to 0^+} \frac{\sup_{|x| \leqslant \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy$$

$$= \frac{\int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy}{1 - \varepsilon} \lim_{x \to 0^+} |f(x) - f(0)| = 0.$$

从而

$$0 \leqslant \lim_{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| \leqslant \overline{\lim}_{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| \leqslant 0.$$

故 $\lim_{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| = 0.$ 即 $\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(x) dx = \lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx.$ 而 - 方 面,我们有

$$\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx \geqslant \lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{(\pi x)^2} f(0) dx$$

$$\xrightarrow{\frac{\Phi}{y} = N x}} \lim_{N \to +\infty} \int_{-\frac{N}{2}}^{\frac{N}{2}} \frac{\sin^2(\pi y)}{(\pi y)^2} f(0) dy = \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} f(0) dy \xrightarrow{\frac{\Phi}{M}} \frac{8.3}{8.3} f(0).$$

另一方面, 对 $\forall \varepsilon \in (0,1)$ 我们有

$$\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx = \lim_{N \to +\infty} \int_{|x| \leqslant \delta} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx + \lim_{N \to +\infty} \int_{\delta \leqslant |x| \leqslant \frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx$$

$$\leqslant f(0) \lim_{N \to +\infty} \int_{|x| \leqslant \delta} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} dx + \lim_{N \to +\infty} \int_{\delta \leqslant |x| \leqslant \frac{1}{2}} \frac{1}{N} \frac{1}{\sin^2(\pi \delta)} f(0) dx \leqslant \frac{f(0)}{1 - \varepsilon} \lim_{N \to +\infty} \int_{|x| \leqslant \delta} \frac{1}{N} \frac{\sin^2(\pi N x)}{(\pi x)^2} dx$$

$$\frac{4}{N} \frac{\sin^2(\pi N x)}{1 - \varepsilon} \lim_{N \to +\infty} \int_{|y| \leqslant N \delta} \frac{\sin^2(\pi y)}{(\pi y)^2} dy = \frac{f(0)}{1 - \varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy \xrightarrow{\frac{4}{N}} \frac{1}{N} \frac{1}{1 - \varepsilon} \frac{\sin^2(\pi N x)}{1 - \varepsilon} dx$$

再根据 ε 的任意性,可知

$$\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx \leqslant f(0).$$

因此, 由夹逼准则, 可知 $\lim_{N\to+\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx = f(0).$

例题 **2.122** 设 $\varphi_n(x) = \frac{n}{\sqrt{\pi}} e^{-n^2 x^2}, n = 1, 2, \cdots, f$ 是 \mathbb{R} 上的有界实值连续函数, 证明:

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}f(y)\varphi_n(x-y)\mathrm{d}y=f(x).$$

证明 由条件可知, 存在 M>0, 使得 $|f(x)|\leqslant M, \forall x\in\mathbb{R}$. 于是对 $\forall x\in\mathbb{R}$, 固定 x, 再对 $\forall \delta>0$, 我们有

$$\begin{split} & \overline{\lim}_{n \to \infty} \left| \int_{-\infty}^{\infty} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x - y)^2} \mathrm{d}y \right| \leqslant \overline{\lim}_{n \to \infty} \int_{-\infty}^{\infty} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x - y)^2} \mathrm{d}y \\ & \leqslant \overline{\lim}_{n \to \infty} \int_{|x - y| \leqslant \delta} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x - y)^2} \mathrm{d}y + \overline{\lim}_{n \to \infty} \int_{|x - y| \geqslant \delta} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x - y)^2} \mathrm{d}y \\ & \leqslant \sup_{|x - y| \leqslant \delta} |f(y) - f(x)| \overline{\lim}_{n \to \infty} \int_{|x - y| \leqslant \delta} \frac{n}{\sqrt{\pi}} e^{-n^2(x - y)^2} \mathrm{d}y + \overline{\lim}_{n \to \infty} \int_{|x - y| \geqslant \delta} 2M \frac{n}{\sqrt{\pi}} e^{-n^2 \delta^2} \mathrm{d}y \\ & \stackrel{\frac{4}{\gamma}z = n(x - y)}{= |x - y| \leqslant \delta} \sup_{|x - y| \leqslant \delta} |f(y) - f(x)| \overline{\lim}_{n \to \infty} \int_{|z| \leqslant n\delta} \frac{1}{\sqrt{\pi}} e^{-z^2} \mathrm{d}z \\ & = \sup_{|x - y| \leqslant \delta} |f(y) - f(x)| \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} e^{-z^2} \mathrm{d}z = \sup_{|x - y| \leqslant \delta} |f(y) - f(x)|. \end{split}$$

$$\overline{\lim_{n\to\infty}} \left| \int_{-\infty}^{\infty} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} \mathrm{d}y \right| \leq \lim_{\delta\to 0^+} \sup_{|x-y| \leq \delta} |f(y) - f(x)| = \lim_{y\to x} |f(y) - f(x)| = 0.$$

故

$$\begin{split} &\lim_{n\to\infty}\int_{-\infty}^{\infty}f(y)\frac{n}{\sqrt{\pi}}e^{-n^2(x-y)^2}\mathrm{d}y = \lim_{n\to\infty}\int_{-\infty}^{\infty}f(x)\frac{n}{\sqrt{\pi}}e^{-n^2(x-y)^2}\mathrm{d}y \\ &= f(x)\lim_{n\to\infty}\int_{-\infty}^{\infty}\frac{n}{\sqrt{\pi}}e^{-n^2(x-y)^2}\mathrm{d}y \xrightarrow{\frac{4}{7}z=n(x-y)}f(x)\lim_{n\to\infty}\int_{|z|\leqslant n\delta}\frac{1}{\sqrt{\pi}}e^{-z^2}\mathrm{d}z \\ &= f(x)\int_{-\infty}^{+\infty}\frac{1}{\sqrt{\pi}}e^{-z^2}\mathrm{d}z = f(x). \end{split}$$

例题 2.123 设 $f(x) \in C[0,1]$, f'(0) 存在, 证明: 对任意正整数 m, 在 $n \to \infty$ 时有

$$\int_0^1 f(x^n) dx = f(0) + \sum_{k=0}^{m-1} \frac{1}{n^{k+1}} \int_0^1 \frac{f(x) - f(0)}{x} \frac{\ln^k x}{k!} dx + O\left(\frac{1}{n^{m+1}}\right).$$

注 这里积分换元之后,再 Taylor 展开,但是后续的积分与求和的换序以及余项的估计并不好处理.

笔记 估计抽象函数的渐近展开一般考虑拟合和分段. 如果考虑积分与求和换序的话并不好处理, 一般只有估计具体函数的渐近才会考虑换序.

这里分段的想法也是将原积分分成主体部分和余项部分. 容易观察 (直观地分析一下即可) 到这里积分的阶的主体部分集中在 0 附近.

证明 记 $g(x) = \frac{f(x) - f(0)}{x}$, 则由条件可知, $g \in C[0,1]$, 从而

$$|g(x)| \le C, \forall x \in [0, 1].$$
 (2.117)

于是

$$\int_0^1 f(x^n) dx - f(0) = \int_0^1 \left[f(x^n) - f(0) \right] dx \xrightarrow{\frac{d}{2}y = x^n} \int_0^1 \frac{x^{\frac{1}{n} - 1}}{n} \left[f(x) - f(0) \right] dx$$
$$= \frac{1}{n} \int_0^1 e^{\frac{\ln x}{n}} \frac{f(x) - f(0)}{x} dx = \frac{1}{n} \int_0^1 e^{\frac{\ln x}{n}} g(x) dx.$$

因此原问题等价于证明对 $\forall m \in \mathbb{N}_+$, 当 $n \to \infty$ 时, 都有

$$\frac{1}{n} \int_0^1 e^{\frac{\ln x}{n}} g(x) dx = \sum_{k=0}^{m-1} \frac{1}{n^{k+1}} \int_0^1 \frac{\ln^k x}{k!} g(x) dx + O\left(\frac{1}{n^{m+1}}\right).$$

由 Taylor 公式可知, $\forall x \in [\delta, 1]$, 对 $\forall m \in \mathbb{N}_+$, 都有

$$e^{\frac{\ln x}{n}} = \sum_{k=0}^{m-1} \frac{\ln^k x}{k! n^k} + O\left(\frac{1}{n^m}\right), n \to \infty.$$

即存在 M>0, 使得 $\forall x \in [\delta,1]$, 对 $\forall m \in \mathbb{N}_+$, 存在 N>0, 使得 $\forall n>N$, 都有

$$\left| e^{\frac{\ln x}{n}} - \sum_{k=0}^{m-1} \frac{\ln^k x}{k! n^k} \right| \leqslant \frac{M}{n^m}. \tag{2.118}$$

取 $\delta = \frac{1}{n^{2m}} \in (0,1)$, 则对 $\forall m \in \mathbb{N}_+$, 当 n > N 时, 结合 (2.117)(2.118) 式, 我们有

$$\left| \frac{1}{n} \int_{0}^{1} e^{\frac{\ln x}{n}} g(x) dx - \sum_{k=0}^{m-1} \frac{1}{n^{k+1}} \int_{0}^{1} \frac{\ln^{k} x}{k!} g(x) dx \right| = \left| \frac{1}{n} \int_{0}^{1} e^{\frac{\ln x}{n}} g(x) dx - \frac{1}{n} \sum_{k=0}^{m-1} \int_{0}^{1} \frac{\ln^{k} x}{k! n^{k}} g(x) dx \right|$$

$$= \left| \frac{1}{n} \int_{0}^{1} e^{\frac{\ln x}{n}} g(x) dx - \frac{1}{n} \int_{0}^{1} \sum_{k=0}^{m-1} \frac{\ln^{k} x}{k! n^{k}} g(x) dx \right| = \left| \frac{1}{n} \int_{0}^{1} \left(e^{\frac{\ln x}{n}} - \sum_{k=0}^{m-1} \frac{\ln^{k} x}{k! n^{k}} \right) g(x) dx \right|$$

$$\leq \frac{1}{n} \int_{0}^{\delta} \left| e^{\frac{\ln x}{n}} - \sum_{k=0}^{m-1} \frac{\ln^{k} x}{k! n^{k}} \right| g(x) dx + \frac{1}{n} \int_{\delta}^{1} \left| e^{\frac{\ln x}{n}} - \sum_{k=0}^{m-1} \frac{\ln^{k} x}{k! n^{k}} \right| g(x) dx$$

$$\leq \frac{C}{n} \int_{0}^{\delta} \left(x^{\frac{1}{n}} + \sum_{k=0}^{m-1} \frac{|\ln x|^{k}}{k! n^{k}} \right) dx + \frac{C}{n} \int_{\delta}^{1} \left| e^{\frac{\ln x}{n}} - \sum_{k=0}^{m-1} \frac{\ln^{k} x}{k! n^{k}} \right| dx \leq \frac{C}{n} \int_{0}^{\delta} \left(1 + \sum_{k=0}^{m-1} |\ln x|^{k} \right) dx + \frac{C}{n} \int_{0}^{1} \frac{M}{n^{m}} dx$$

$$\leq \frac{C}{n} \int_{0}^{\delta} \left(1 + m \left| \ln x \right|^{m-1} \right) dx + \frac{MC}{n^{m+1}} = \frac{C}{n} \int_{0}^{\frac{1}{n^{2m}}} \left(1 - m \ln^{m-1} x \right) dx + \frac{MC}{n^{m+1}} \\
= \frac{C}{n^{2m+1}} - \frac{mC}{n} \int_{0}^{\frac{1}{n^{2m}}} \ln^{m-1} x dx + \frac{MC}{n^{m+1}} \leq \frac{MC + C}{n^{m+1}} + \frac{mC}{n} \left| \int_{0}^{\frac{1}{n^{2m}}} \ln^{m-1} x dx \right|.$$
(2.120)

注意到

$$\int \ln^n x dx = x (a_0 + a_1 \ln x + \dots + a_n \ln^n x) + c = x \left(a_0 + \sum_{k=1}^n a_k \ln k \right) + c,$$

其中 a_0, a_1, \cdots, a_n, c 都是常数. 又因为对 $\forall n \in \mathbb{N}_+$,都成立 $\lim_{x \to +\infty} \frac{\ln^n x}{x} = 0$,所以一定存在 N' > 0,使得当 n > N' 时,我们有

$$\left| \int_{0}^{\frac{1}{n^{2m}}} \ln^{m-1} x dx \right| = \left| x \left(b_{0} + b_{1} \ln x + \dots + b_{m-1} \ln^{m-1} x \right) \right|_{0}^{\frac{1}{n^{2m}}} = \left| \frac{1}{n^{2m}} \left(b_{0} + b_{1} \ln \frac{1}{n^{2m}} + \dots + b_{m-1} \ln^{m-1} \frac{1}{n^{2m}} \right) \right|$$

$$\leq \frac{mB}{n^{2m}} \left| \ln^{m-1} \frac{1}{n^{2m}} \right| = \frac{2m^{2}B \ln^{m-1} n}{n^{2m}} \leq \frac{2m^{2}B}{n^{2m-1}} \leq \frac{2m^{2}B}{n^{m}}, \tag{2.121}$$

其中 $b_0, b_1, \cdots, b_{m-1}$ 都是常数, $B = \max\{b_0, b_1, \cdots, b_{m-1}\}$. 因此由 (2.120)(2.121) 式可得, 对 $\forall m \in \mathbb{N}_+$, 当 $n > \max\{N, N'\}$ 时, 我们有

$$\left| \frac{1}{n} \int_{0}^{1} e^{\frac{\ln x}{n}} g(x) dx - \sum_{k=0}^{m-1} \frac{1}{n^{k+1}} \int_{0}^{1} \frac{\ln^{k} x}{k!} g(x) dx \right| \leq \frac{MC + C}{n^{m+1}} + \frac{mC}{n} \left| \int_{0}^{\frac{1}{n^{2m}}} \ln^{m-1} x dx \right|$$

$$\leq \frac{MC + C}{n^{m+1}} + \frac{mC}{n} \cdot \frac{2m^{2}B}{n^{m}} = \frac{MC + C - 2m^{3}BC}{n^{m+1}}.$$

即
$$\frac{1}{n} \int_0^1 e^{\frac{\ln x}{n}} g(x) dx - \sum_{k=0}^{m-1} \frac{1}{n^{k+1}} \int_0^1 \frac{\ln^k x}{k!} g(x) dx = O\left(\frac{1}{n^{m+1}}\right), n \to \infty.$$
 结论得证.

2.9 Riemann 引理

定理 2.14 (Riemann 引理)

设 $E \subset \mathbb{R}$ 是区间且 f 在 E 上绝对可积. g 是定义在 \mathbb{R} 的周期 T > 0 函数, 且在任何有界闭区间上 Riemann 可积. 则我们有

$$\lim_{x \to +\infty} \int_{E} f(y)g(xy)dy = \frac{1}{T} \int_{E} f(y)dy \int_{0}^{T} g(y)dy.$$
 (2.122)

考试中,Riemann 引理不能直接使用,需要我们根据具体问题给出证明.具体可见例题 2.124.

🕏 笔记

(1) 不妨设 $E = \mathbb{R}$ 的原因: 若 (1.1) 式在 $E = \mathbb{R}$ 时已得证明, 则当 $E \subseteq \mathbb{R}$ 时, 令 $\widetilde{f}(y) = f(y) \cdot X_E, y \in \mathbb{R}$, 则由 f(y) 在 E 上绝对可积, 可得 $\widetilde{f}(y)$ 在 \mathbb{R} 上也绝对可积. 从而由假设可知

$$\lim_{x \to +\infty} \int_{\mathbb{D}} \widetilde{f}(y) g(xy) dy = \frac{1}{T} \int_{\mathbb{D}} \widetilde{f}(y) dy \int_{0}^{T} g(y) dy.$$

于是

$$\lim_{x \to +\infty} \int_{E} f(y)g(xy)dy = \lim_{x \to +\infty} \int_{\mathbb{R}} \widetilde{f}(y)g(xy)dy = \frac{1}{T} \int_{\mathbb{R}} \widetilde{f}(y)dy \int_{0}^{T} g(y)dy = \frac{1}{T} \int_{E} f(y)dy \int_{0}^{T} g(y)dy$$

(2) 不妨设 $\sup |g| > 0$ 的原因: 若 $\sup |g| = 0$, 则 $g(x) \equiv 0$, 此时结论显然成立. 因此我们只需要考虑当 $\sup |g| > 0$ 时的情况.

(3) 不妨设T=1的原因: 若 (2.122) 式在T=1时已得证明,则当T≠1时,有

$$\frac{1}{T} \int_{E} f(y) dy \int_{0}^{T} g(y) dy \xrightarrow{\frac{4}{2} y = Tx} \int_{E} f(y) dy \int_{0}^{1} g(Tx) dx = \int_{E} f(y) dy \int_{0}^{1} g(Ty) dy. \tag{2.123}$$

由于 g(y) 是 \mathbb{R} 上周期为 $T \neq 1$ 的函数, 因此 g(Ty) 就是 \mathbb{R} 上周期为 1 的函数. 从而由假设可知

$$\lim_{x \to +\infty} \int_{E} f(y)g(Txy)dy = \int_{E} f(y)dy \int_{0}^{1} g(Ty)dy.$$
 (2.124)

又由(2.123) 式及T > 0 可得

$$\int_{E} f(y) dy \int_{0}^{1} g(Ty) dy = \frac{1}{T} \int_{E} f(y) dy \int_{0}^{T} g(y) dy$$

$$\lim_{x \to +\infty} \int_{E} f(y) g(Txy) dy \xrightarrow{\frac{c}{T} = Tx} \lim_{t \to +\infty} \int_{E} f(y) g(ty) dy = \lim_{x \to +\infty} \int_{E} f(y) g(xy) dy$$

再结合(2.124)式可得 $\lim_{x\to+\infty}\int_E f(y)g(xy)dy = \frac{1}{T}\int_E f(y)dy\int_0^T g(y)dy$. 故可以不妨设 T=1.

(4) 不妨设 $\int_0^1 g(y) dy = 0$ 的原因: 若 (2.122) 式在 $\int_0^1 g(y) dy = 0$ 时已得证明, 则当 $\int_0^1 g(y) dy \neq 0$ 时, 令 $G(y) = g(y) - \int_0^1 g(t) dt$, 则 G(y) 是 \mathbb{R} 上周期为 1 的函数, 并且 $\int_0^1 G(y) dy = 0$. 于是由假设可知

$$\lim_{x \to +\infty} \int_{E} f(y)G(xy) \mathrm{d}y = \int_{E} f(y) \mathrm{d}y \int_{0}^{1} G(y) \mathrm{d}y$$

$$\Leftrightarrow \lim_{x \to +\infty} \int_{E} f(y) \left[g(xy) - \int_{0}^{1} g(t) \mathrm{d}t \right] \mathrm{d}y = \int_{E} f(y) \mathrm{d}y \int_{0}^{1} \left[g(y) - \int_{0}^{1} g(t) \mathrm{d}t \right] \mathrm{d}y$$

$$\Leftrightarrow \lim_{x \to +\infty} \left(\int_{E} f(y)g(xy) \mathrm{d}y - \int_{E} f(y) \int_{0}^{1} g(t) \mathrm{d}t \mathrm{d}y \right) = \int_{E} f(y) \mathrm{d}y \int_{0}^{1} g(y) \mathrm{d}y - \int_{E} f(y) \mathrm{d}y \int_{0}^{1} g(t) \mathrm{d}t = 0$$

$$\Leftrightarrow \lim_{x \to +\infty} \int_{E} f(y)g(xy) \mathrm{d}y = \int_{E} f(y) \int_{0}^{1} g(t) \mathrm{d}t \mathrm{d}y$$

再结合(2)可知, 此时原结论成立. 故可以不妨设 $\int_0^1 g(y) dy = 0$.

证明 不妨设 $E = \mathbb{R}, \sup_{\mathbb{R}} |g| > 0, T = 1$, 再不妨设 $\int_0^1 g(y) dy = 0$. 因此只需证 $\lim_{x \to +\infty} \int_{\mathbb{R}} f(y) g(xy) dy = 0$. 由 g 的周期 为 1 及 $\int_0^1 g(y) dy = 0$ 可得, 对 $\forall n \in \mathbb{N}$, 都有

从而对 $\forall \beta > \alpha > 0$, 我们有

$$\left| \int_{\alpha}^{\beta} g(t) dt \right| = \left| \int_{0}^{\beta} g(t) dt - \int_{0}^{\alpha} g(t) dt \right| = \left| \int_{-[\beta]}^{\beta - [\beta]} g(t + [\beta]) dt - \int_{-[\alpha]}^{\alpha - [\alpha]} g(t + [\alpha]) dt \right|$$

$$= \left| \int_{-[\beta]}^{\beta - [\beta]} g(t) dt - \int_{-[\alpha]}^{\alpha - [\alpha]} g(t) dt \right| = \left| \int_{0}^{\beta - [\beta]} g(t) dt - \int_{0}^{\alpha - [\alpha]} g(t) dt \right|$$

$$= \left| \int_{\alpha - [\alpha]}^{\beta - [\beta]} g(t) dt \right| \leqslant \sup_{\mathbb{R}} |g|.$$

故

$$\left| \int_{\alpha}^{\beta} g(xy) dy \right| \xrightarrow{\frac{\alpha}{2} t = xy} \frac{1}{x} \left| \int_{x\alpha}^{x\beta} g(t) dt \right| \leqslant \frac{\sup_{\alpha} |g|}{x}, \quad \forall x > 0, \forall \beta > \alpha > 0.$$
 (2.125)

因为 f 在 \mathbb{R} 上绝对可积, 所以由 Cauchy 收敛准则可知, 对 $\forall \varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

$$\left| \int_{|y| > N} f(y) \mathrm{d}y \right| < \frac{\varepsilon}{3 \sup_{\mathbb{R}} |g|}. \tag{2.126}$$

由于 f 在 \mathbb{R} 上绝对可积, 从而 f 在 \mathbb{R} 上也 Riemann 可积, 因此由可积的充要条件可知, 存在划分

$$-N = t_0 < t_1 < t_2 < \cdots < t_n = N,$$

使得

$$\sum_{i=1}^{n} \left(\sup_{[t_{i-1},t_i]} f - \inf_{[t_{i-1},t_i]} f \right) (t_i - t_{i-1}) \leqslant \frac{\varepsilon}{3 \sup_{\mathbb{R}} |g|}.$$
 (2.127)

于是当
$$x > \frac{6N\sum\limits_{j=1}^{n}|\inf\limits_{[t_{j-1},t_{j}]}f|\cdot\sup\limits_{\mathbb{R}}|g|}{\varepsilon}$$
 时, 结合(2.125)(2.126)(2.127)可得

$$\left| \int_{-\infty}^{+\infty} f(y)g(xy) dy \right| \leqslant \left| \int_{-N}^{N} f(y)g(xy) dy \right| + \left| \int_{|y| > N} f(y)g(xy) dy \right|^{(2.126)} \left| \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} f(y)g(xy) dy \right| + \frac{\varepsilon}{3} \sup_{\mathbb{R}} |g|$$

$$\leqslant \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} [f(y) - \inf_{[t_{j-1},t_{j}]} f]g(xy) dy \right| + \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} \inf_{[t_{j-1},t_{j}]} f \cdot g(xy) dy \right| + \frac{\varepsilon}{3}$$

$$\stackrel{(2.125)}{\leqslant} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} [f(y) - \inf_{[t_{j-1},t_{j}]} f] dy \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f| dy + \frac{\varepsilon}{3}$$

$$\leqslant \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} (\sup_{[t_{i-1},t_{i}]} f - \inf_{[t_{j-1},t_{j}]} f) dy \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f| dy + \frac{\varepsilon}{3}$$

$$= \sum_{j=1}^{n} (\sup_{[t_{i-1},t_{i}]} f - \inf_{[t_{j-1},t_{j}]} f) (t_{j} - t_{j-1}) \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f| dy + \frac{\varepsilon}{3}$$

$$\stackrel{(2.127)}{\leqslant} \frac{\varepsilon}{3} \sup_{\mathbb{R}} |g| \cdot \sup_{\mathbb{R}} |g| + \frac{\mathbb{R}}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f| dy + \frac{\varepsilon}{3}$$

$$\stackrel{(2.127)}{\leqslant} \frac{\varepsilon}{3} \sup_{\mathbb{R}} |g| \cdot \sup_{\mathbb{R}} |g| + \frac{\mathbb{R}}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f| dy + \frac{\varepsilon}{3}$$

因此 $\lim_{x \to +\infty} \int_{\mathbb{R}} f(y)g(xy)dy = 0$. 结论得证.

定理 2.15 (L^p 版本 Riemann 引理)

设 E 是有界勒贝格可测集, $f \in L^p(E), x \in L^q[0,T], \frac{1}{p} + \frac{1}{q} = 1, p > 1$ 且 x 周期为 T > 0. 则

$$\lim_{y \to +\infty} \int_E f(t)x(yt)dt = \frac{1}{T} \int_E f(t)dt \int_0^T x(t)dt.$$

证明 见清疏讲义.

定理 2.16

设 $E \subset \mathbb{R}$ 是可测集且 $f \in L^1(E)$, g 是定义在 \mathbb{R} 的有界可测函数, 满足

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x g(t) dt = A \in \mathbb{R}.$$

则我们有

$$\lim_{x \to +\infty} \int_{E} f(y)g(xy)dy = A \cdot \int_{E} f(y)dy.$$

证明 见清疏讲义.

例题 2.124 设 $f \in R[0, 2\pi]$, 不直接使用Riemann 引理计算

$$\lim_{n\to\infty} \int_0^{2\pi} f(x) |\sin(nx)| dx.$$

证明 对 $\forall n \in \mathbb{N}_+$, 固定 n. 将 $[0, 2\pi]$ 等分成 2n 段, 记这个划分为

$$T: 0 = t_0 < t_1 < \cdots < t_{2n} = 2\pi,$$

其中 $t_i = \frac{i\pi}{n}, i = 0, 1, \dots, n$. 此时我们有

$$\int_{t_{i-1}}^{t_i} |\sin(nx)| dx = \int_{\frac{(i-1)\pi}{n}}^{\frac{i\pi}{n}} |\sin(nx)| dx = \frac{1}{n} \int_{(i-1)\pi}^{i\pi} |\sin x| dx = \frac{2}{n}.$$
 (2.128)

由 $f \in R[0, 2\pi]$ 可知, $f \in [0, 2\pi]$ 上有界也内闭有界. 从而利用(2.128)式可知, 对 $\forall n \in \mathbb{N}_+$, 一方面, 我们有

$$\int_{0}^{2\pi} f(x) |\sin(nx)| dx = \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} f(x) |\sin(nx)| dx \leqslant \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} \sup_{[t_{i-1},t_{i}]} f \cdot |\sin(nx)| dx = \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1},t_{i}]} f = \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1},t_{i}]} f \cdot \frac{\pi}{n} = \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1},t_{i}]} f \cdot (t_{i} - t_{i-1}).$$

$$(2.129)$$

另一方面, 我们有

$$\int_{0}^{2\pi} f(x) |\sin(nx)| dx = \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} f(x) |\sin(nx)| dx \geqslant \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} \inf_{[t_{i-1}, t_{i}]} f \cdot |\sin(nx)| dx \xrightarrow{\underline{(2.128)} \stackrel{?}{R}} \frac{2}{n} \sum_{i=1}^{2n} \inf_{[t_{i-1}, t_{i}]} f$$

$$= \frac{2}{\pi} \sum_{i=1}^{2n} \inf_{[t_{i-1}, t_{i}]} f \cdot \frac{\pi}{n} = \frac{2}{\pi} \sum_{i=1}^{2n} \inf_{[t_{i-1}, t_{i}]} f \cdot (t_{i} - t_{i-1}). \tag{2.130}$$

由 $f \in R[0, 2\pi]$ 和 Riemann 可积的充要条件可知

$$\int_0^{2\pi} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{2n} \sup_{[t_{i-1}, t_i]} f \cdot (t_i - t_{i-1}) = \lim_{n \to \infty} \sum_{i=1}^{2n} \inf_{[t_{i-1}, t_i]} f \cdot (t_i - t_{i-1}).$$

于是对(2.129)(2.130)式两边同时令 $n \to \infty$,得到

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) |\sin(nx)| dx = \frac{2}{\pi} \int_0^{2\pi} f(x) dx.$$

例题 2.125 设 f 是 \mathbb{R} 上周期 2π 函数且在 $[-\pi,\pi]$ 上 Riemann 可积, 设

$$S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x+t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt, n = 1, 2, \cdots$$

若 x_0 ∈ $(-\pi, \pi)$ 是 f 在 $[-\pi, \pi]$ 唯一间断点且存在下述极限

$$A = \lim_{x \to x_0^+} f(x), B = \lim_{x \to x_0^-} f(x), \lim_{x \to x_0^+} \frac{f(x) - A}{x - x_0}, \lim_{x \to x_0^-} \frac{f(x) - B}{x - x_0}.$$

证明:

$$\lim_{n \to \infty} S_n(x_0) = \frac{\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x)}{2}.$$

全 笔记

(1) 计算
$$I_1 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$
 的思路: 由于 $\frac{f(x_0 + t)}{2\sin\frac{t}{2}}$ 在 $[0, \pi]$ 上只可能有奇点 $t = 0$,因此

 $\frac{f(x_0+t)}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上不一定绝对可积. 从而不能直接利用 Riemann 引理. 于是我们需要将 $\frac{f(x_0+t)}{2\sin\frac{t}{2}}$ 转化为在 且 Riemann 可积, 就一定绝对可积. 进而满足 Riemann 引理的条件, 再利用 Riemann 引理就能求解出 I_1 . 具

体处理方式见下述证明. 计算 $I_2=\frac{1}{\pi}\int_0^\pi \frac{f(x_0-t)}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t$ 的思路同理, 也是要排除 t=0 这个可能的奇点, 再利用 Riemann

引理进行求解. 具体计算方式见下述证明. (2) 计算 $\lim_{n \to \infty} \int_0^\pi \frac{1}{2 \sin \frac{t}{2}} \sin \left(\frac{2n+1}{2} t \right) \mathrm{d}t$ 的思路: 注意由于 $\frac{1}{2 \sin \frac{t}{2}}$ 在 $[0,\pi]$ 上有一个奇点 t=0,并且对 $\forall t \in \mathbb{R}$

$$\left|\frac{1}{2\sin\frac{t}{2}}\right| \geqslant \left|\frac{1}{2\cdot\frac{2}{\pi}\cdot\frac{t}{2}}\right| = \frac{\pi}{2t} > 0.$$

而 $\int_0^\pi \frac{\pi}{2t} dt$ 是发散的, 故 $\int_0^\pi \left| \frac{1}{2\sin\frac{t}{2}} \right| dt$ 也发散. 因此 $\frac{1}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上一定不是绝对可积的, 从而不能利 用 Riemann 引理计算 $\lim_{n\to\infty}\int_0^{\pi}\frac{1}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)dt$. 真正能计算 $\lim_{n\to\infty}\int_0^{\pi}\frac{1}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)dt$ 的方法 有多种,下述证明利用的是强行替换/拟合法

证明 注意到

$$S_{n}(x_{0}) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt + \frac{1}{\pi} \int_{-\pi}^{0} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$= \frac{4}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt + \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} - t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt \qquad (2.131)$$

记 $I_1 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t)}{2 \sin \frac{t}{2}} \sin \left(\frac{2n+1}{2} t \right) dt, I_2 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t)}{2 \sin \frac{t}{2}} \sin \left(\frac{2n+1}{2} t \right) dt,$ 则由(2.131)式可得

$$\lim_{n \to \infty} S_n(x_0) = \lim_{n \to \infty} (I_1 + I_2). \tag{2.132}$$

于是

$$I_{1} = \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t) - A}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt + \frac{A}{\pi} \int_{0}^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt, \tag{2.133}$$

$$I_2 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t) - B}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt + \frac{B}{\pi} \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt.$$
 (2.134)

由条件可知 $\lim_{t\to 0^+} \frac{f(x_0+t)-A}{2\sin\frac{t}{2}} = \lim_{t\to 0^+} \frac{f(x_0+t)-A}{t} = \lim_{x\to x_0^+} \frac{f(x)-A}{x-x_0}$ 存在, $\lim_{t\to 0^-} \frac{f(x_0-t)-B}{2\sin\frac{t}{2}} = \lim_{t\to 0^-} \frac{f(x_0-t)-B}{t} = \lim_{t\to 0^+} \frac{f(x_0-t)-B}{t} = \lim_{t\to 0^+} \frac{f(x_0-t)-B}{x-x_0}$ 存在, 因此 $\frac{f(x_0-t)-A}{2\sin\frac{t}{2}}$ 存在, 因此 $\frac{f(x_0-t)-B}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 都没有奇点且 Riemann 可积, 从而

$$\lim_{n \to \infty} \int_0^{\pi} \frac{f(x_0 + t) - A}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt, \lim_{n \to \infty} \int_0^{\pi} \frac{f(x_0 - t) - B}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt$$

都满足 Riemann 引理的条件. 于是由 Riemann 引理可得

$$\lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t) - A}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2} t \right) dt = 0, \quad \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t) - B}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2} t \right) dt = 0. \tag{2.135}$$

下面计算 $\lim_{n\to\infty} \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$.

$$\left| \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt - \int_0^{\pi} \frac{1}{t} \sin\left(\frac{2n+1}{2}t\right) dt \right| = \left| \int_0^{\pi} \frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt \right|. \tag{2.136}$$

而
$$\lim_{t\to 0} \frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}} = \lim_{t\to 0} \frac{t-2\sin\frac{t}{2}}{t^2} = \lim_{t\to 0} \frac{t-2\sin\frac{t}{2}}{t^2} = \lim_{t\to 0} \frac{1-\cos\frac{t}{2}}{2t} = 0$$
,因此 $\frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上无奇点且 Riemann 可

积, 从而由 Riemann 引理可知 $\lim_{n\to\infty}\int_0^\pi \frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t=0$. 于是再结合 (2.136) 式可得

$$\lim_{n \to \infty} \int_0^{\pi} \frac{1}{2 \sin \frac{t}{2}} \sin \left(\frac{2n+1}{2} t \right) dt = \lim_{n \to \infty} \int_0^{\pi} \frac{1}{t} \sin \left(\frac{2n+1}{2} t \right) dt = \lim_{n \to \infty} \int_0^{\frac{2n+1}{2} \pi} \frac{\sin t}{t} dt = \int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}. \quad (2.137)$$

因此,由(2.133)(2.134)(2.135)(2.137)式可得

$$\lim_{n\to\infty}I_1=\lim_{n\to\infty}\frac{1}{\pi}\int_0^\pi\frac{f(x_0+t)-A}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t+\lim_{n\to\infty}\frac{A}{\pi}\int_0^\pi\frac{1}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t=0+\frac{A}{\pi}\cdot\frac{\pi}{2}=\frac{A}{2},$$

$$\lim_{n\to\infty}I_2=\lim_{n\to\infty}\frac{1}{\pi}\int_0^\pi\frac{f(x_0-t)-B}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t+\lim_{n\to\infty}\frac{B}{\pi}\int_0^\pi\frac{1}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t=0+\frac{B}{\pi}\cdot\frac{\pi}{2}=\frac{B}{2}.$$

再结合 (2.132)式可得

$$\lim_{n \to \infty} S_n(x_0) = \lim_{n \to \infty} (I_1 + I_2) = \lim_{n \to \infty} I_1 + \lim_{n \to \infty} I_2 = \frac{A + B}{2}.$$

例题 **2.126** 设 $f \in C^1[0, \frac{\pi}{2}], f(0) = 0$, 计算

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin^2 x} f(x) dx.$$

注 由于 x=0 可能是 $\frac{f(x)}{\sin^2 x}$ 在 $\left[0,\frac{\pi}{2}\right]$ 上的奇点,因此我们需要将其转化为在 $\left[0,\frac{\pi}{2}\right]$ 上不含奇点的函数,才能利用Riemann 引理进行计算.

证明 由 $f \in C^1[0, \frac{\pi}{2}]$ 可知,f 的 Berstein 多项式的 k(k=0,1,2) 阶导数一致收敛于 f. 故可以不妨设 $f \in D^2[0, \frac{\pi}{2}]$. 注意到

$$\frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x)}{\sin^2 x} \sin^2(nx) dx = \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx + \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx.$$
 (2.138)

先计算 $\lim_{n\to\infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx$. 由于 $f \in D^2\left[0, \frac{\pi}{2}\right]$, 故利用 L'Hospital 法则可知

$$\lim_{x \to 0^+} \frac{f(x) - f'(0)x}{\sin^2 x} = \lim_{x \to 0^+} \frac{f'(x) - f'(0)}{2\sin x \cos x} = \frac{1}{2} \lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x} = \frac{f''(0)}{2}.$$

于是 $\frac{f(x)-f'(0)x}{\sin^2 x}$ 在 $\left[0,\frac{\pi}{2}\right]$ 上无奇点且 Riemann 可积, 从而绝对可积. 故由Riemann 引理可得

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} dx \int_0^{\pi} \sin^2 x dx$$

$$= \lim_{n \to \infty} \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} dx < \infty. \tag{2.139}$$

利用(2.139)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \cdot \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = 0.$$
 (2.140)

下面计算 $\lim_{n\to\infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx$. 对 $\forall n \in \mathbb{N}_+$, 我们有

$$\left| \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx - \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)}{x} \sin^2(nx) dx \right| = \left| \frac{f'(0)}{\ln n} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx \right|. \tag{2.141}$$

又 $\lim_{x \to 0^+} \frac{x^2 - \sin^2 x}{x \sin^2 x} = \lim_{x \to 0^+} \frac{x^2 - \left(x - \frac{x^3}{6} + o(x^3)\right)^2}{x^3} = \lim_{x \to 0^+} \frac{-\frac{x^3}{3} + o(x^3)}{x^3} = -\frac{1}{3}$,故 $\frac{x^2 - \sin^2 x}{x \sin^2 x}$ 在 $\left[0, \frac{\pi}{2}\right]$ 上无奇点且 Riemann 可积,从而绝对可积.于是由Riemann 引理可得

$$\lim_{n\to\infty} f'(0) \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) \mathrm{d}x = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \mathrm{d}x \int_0^{\pi} \sin^2 x \mathrm{d}x = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \mathrm{d}x < \infty. \tag{2.142}$$

利用(2.142)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \cdot \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = 0.$$
 (2.143)

因此, 对(2.141)式两边同时令 $n \rightarrow \infty$, 利用(2.143)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_{0}^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^{2}x} \sin^{2}(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \int_{0}^{\frac{\pi}{2}} \frac{f'(0)}{x} \sin^{2}(nx) dx = \lim_{n \to \infty} \frac{f'(0)}{\ln n} \int_{0}^{\frac{n\pi}{2}} \frac{\sin^{2}x}{x} dx$$

$$\frac{\text{Stolz } \mathbb{R}^{\underline{H}}}{f'(0)} \lim_{n \to \infty} \frac{\int_{n \to \infty}^{\frac{(n+1)\pi}{2}} \frac{\sin^{2}x}{x} dx}{\ln \left(1 + \frac{1}{n}\right)} \xrightarrow{\frac{\Re h}{1} + \text{figs.}} \frac{\pi}{n \to \infty} \left(\frac{2}{\pi n} \int_{n \to \infty}^{\frac{(n+1)\pi}{2}} \frac{1}{2} - \cos 2x\right) dx$$

$$= \frac{2f'(0)}{\pi} \lim_{n \to \infty} \left(\frac{\pi}{2} - \frac{1}{2} \int_{0}^{\pi} \cos(x + n\pi) dx\right) = \frac{2f'(0)}{\pi} \lim_{n \to \infty} \left(\frac{\pi}{2} - \frac{(-1)^{n}}{2} \int_{0}^{\pi} \cos x dx\right) = \frac{f'(0)}{2}. \tag{2.144}$$

利用(2.140)(2.144)式,对(2.138)式两边同时令 $n \to \infty$,可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x)}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx + \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx = \frac{f'(0)}{2}.$$

2.10 极限问题综合

例题 2.127 设二阶可微函数 $f:[1,+\infty) \to (0,+\infty)$ 满足

$$f''(x) \le 0$$
, $\lim_{x \to +\infty} f(x) = +\infty$.

求极限

$$\lim_{s \to 0^+} \sum_{n=1}^{\infty} \frac{(-1)^n}{f^s(n)}.$$

Ŷ 笔记 本例非常经典,深刻体现了"拉格朗日中值定理"保持阶不变和"和式和积分"转化的思想.

证明 由条件 $f''(x) \le 0$ 可知, f 是上凸函数. 而上凸函数只能在递增、递减、先增后减中发生一个. 又 $\lim_{x \to +\infty} f(x) = +\infty$, 因此 f 一定在 $[1, +\infty)$ 上递增. 再结合 $f''(x) \le 0$ 可知 $f' \ge 0$ 且单调递减. 下面来求极限.

由 Lagrange 中值定理可得, 对 $\forall n \in \mathbb{N}_+$, 存在 $\theta_n \in (2n-1,2n)$, 使得

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{f^s(n)} = \sum_{n=1}^{\infty} \left[\frac{1}{f^s(2n)} - \frac{1}{f^s(2n-1)} \right] \xrightarrow{\text{Lagrange \neq digz}} s \sum_{n=1}^{\infty} \frac{-f'(\theta_n)}{f^{s+1}(\theta_n)}. \tag{2.145}$$

由于 $\theta_n \in (2n-1,2n), \forall n \in \mathbb{N}_+$ 且 $f \geqslant 0$ 单调递增, $f' \geqslant 0$ 单调递减, 因此

$$s\sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} \leqslant s\sum_{n=1}^{\infty} \frac{-f'(\theta_n)}{f^{s+1}(\theta_n)} \leqslant s\sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)}.$$
 (2.146)

又因为 $\left[\frac{-f'(x)}{f^{s+1}(x)}\right]' = \frac{f''(x)f(x) - (s+1)f'(x)}{f^{s+2}(x)} \leqslant 0$,所以 $\frac{-f'(x)}{f^{s+1}(x)}$ 单调递减. 从而一方面,我们有

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)} \leqslant -\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \int_{n-1}^{n} \frac{f'(2x)}{f^{s+1}(2x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{2n-1}^{2n} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{1}{f^{s+1}(x)} df(x)$$

$$= \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{1}^{+\infty} = -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(1)} \right] = -\frac{1}{2}. \tag{2.147}$$

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)} \geqslant -\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{f'(2x)}{f^{s+1}(2x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{2n}^{2n+1} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{2}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{2}^{+\infty} \frac{1}{f^{s+1}(x)} df(x)$$

$$= \lim_{s \to 0^+} \frac{s}{2} \cdot \frac{1}{s f^s(x)} \Big|_2^{+\infty} = -\lim_{s \to 0^+} \left[\frac{s}{2} \cdot \frac{1}{s f^s(2)} \right] = -\frac{1}{2}.$$
 (2.148)

于是利用(2.147)(2.148)式, 由夹逼准则可得

$$\lim_{s \to 0^+} s \sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)} = -\frac{1}{2}.$$
 (2.149)

另一方面,我们有

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} \leqslant -\lim_{s \to 0^{+}} s \left[\frac{f'(1)}{f^{s+1}(1)} + \sum_{n=2}^{\infty} \int_{n-1}^{n} \frac{f'(2x-1)}{f^{s+1}(2x-1)} dx \right] = -\lim_{s \to 0^{+}} s \left[\frac{f'(1)}{f^{s+1}(1)} + \frac{1}{2} \sum_{n=2}^{\infty} \int_{2n-3}^{2n-1} \frac{f'(x)}{f^{s+1}(x)} dx \right]$$

$$= -\lim_{s \to 0^{+}} s \left[\frac{f'(1)}{f^{s+1}(1)} + \frac{1}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx \right] = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{1}{f^{s+1}(x)} df(x) = \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{1}^{+\infty}$$

$$= -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(1)} \right] = -\frac{1}{2}. \tag{2.150}$$

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} \geqslant -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{2n-1}^{2n+1} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{1}{f^{s+1}(x)} df(x)$$

$$= \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{1}^{+\infty} = -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(1)} \right] = -\frac{1}{2}. \tag{2.151}$$

于是利用(2.150)(2.151)式,由夹逼准则可得

$$\lim_{s \to 0^+} s \sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} = -\frac{1}{2}.$$
 (2.152)

故结合(2.145)(2.146)(2.149)(2.152)式, 由夹逼准则可得

$$\lim_{s \to 0^+} \sum_{n=1}^{\infty} \frac{(-1)^n}{f^s(n)} = \lim_{s \to 0^+} s \sum_{n=1}^{\infty} \frac{-f'(\theta_n)}{f^{s+1}(\theta_n)} = -\frac{1}{2}.$$

例题 2.128 求极限 $\lim_{n\to\infty} n \sup_{x\in[0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k}$.

证明 根据对称性,不妨设 $x \in \left[0, \frac{1}{2}\right]$,先尝试找到最大值点. 在 $x = 0, \frac{1}{2}$ 时代入,很明显对应的极限是零,考虑 $x \in \left(0, \frac{1}{2}\right)$,根据等比数列求和公式有

$$\sum_{k=1}^{n-1} x^k (1-x)^{n-k} = (1-x)^n \sum_{k=1}^{n-1} \left(\frac{x}{1-x}\right)^k = \frac{x(1-x)}{1-2x} ((1-x)^n - x^n)$$

如果 $\delta \in \left(0, \frac{1}{2}\right)$ 已经取定,则在区间 $\left[\delta, \frac{1}{2}\right]$ 中

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} \leqslant n\sum_{k=1}^{n-1} \left(\frac{1}{2}\right)^k (1-\delta)^{n-k} \leqslant n(1-\delta)^n \sum_{k=0}^{\infty} \left(\frac{1}{2(1-\delta)}\right)^k = \frac{n(1-\delta)^n}{1-\frac{1}{2(1-\delta)}}$$

右端是指数级趋于零的并且上式不依赖于x,所以函数会一致趋于零.因此最大值点应该在x=0附近,近似的有

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} = \frac{nx(1-x)}{1-2x} ((1-x)^n - x^n) \approx nx(1-x)^n$$

取 $x = \frac{1}{n}$ 显然极限是 $\frac{1}{n}$, 我们猜测这就是答案, 下面开始证明. 首先取 $x = \frac{1}{n}$ 有

$$\lim_{n\to\infty}n\sum_{k=1}^{n-1}\left(\frac{1}{n}\right)^k\left(1-\frac{1}{n}\right)^{n-k}=\lim_{n\to\infty}\frac{1-\frac{1}{n}}{1-\frac{2}{n}}\left(\left(1-\frac{1}{n}\right)^n-\left(\frac{1}{n}\right)^n\right)=\frac{1}{e}$$

由此可知 $\lim_{n\to\infty} n \sup_{x\in[0,1]} \sum_{i=1}^{n-1} x^k (1-x)^{n-k} \geqslant \frac{1}{e}$,下面估计上极限. 根据对称性, 不妨只考虑 $x\in\left[0,\frac{1}{2}\right]$,对任意 $\delta\in$ $\left(0,\frac{1}{2}\right)$ 取定, 当 $x \in \left[\delta,\frac{1}{2}\right]$ 时总有

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} \leqslant n\sum_{k=1}^{n-1} \left(\frac{1}{2}\right)^k (1-\delta)^{n-k} \leqslant n(1-\delta)^n \sum_{k=0}^{\infty} \left(\frac{1}{2(1-\delta)}\right)^k = \frac{n(1-\delta)^n}{1-\frac{1}{2(1-\delta)}}$$

当 $x \in [0, \delta]$ 时,结合均值不等式有

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} = \frac{nx(1-x)}{1-2x} ((1-x)^n - x^n) \approx \frac{nx(1-x)^n}{1-2\delta} \leqslant \frac{\left(1 - \frac{1}{n+1}\right)^{n+1}}{1-2\delta} \leqslant \frac{1}{e} \frac{1}{1-2\delta}$$

所以可以取 n > N 充分大, 使得 $\frac{n(1-\delta)^n}{1-\frac{1}{2(1-\delta)}} < \frac{1}{e}$, 此时便有

$$n \sup_{x \in [0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k} \leqslant \frac{1}{e} \frac{1}{1-2\delta} \Rightarrow \overline{\lim}_{n \to \infty} n \sup_{x \in [0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k} \leqslant \frac{1}{e} \frac{1}{1-2\delta}$$

最后,根据 δ 的任意性,可知结论成立.

例题 2.129 设 $x_n > 0, k$ 为正整数, 证明: $\overline{\lim}_{n \to \infty} \frac{x_1 + x_2 + \dots + x_{n+k}}{x_n} \geqslant \frac{(k+1)^{k+1}}{k^k}$ 且常数是最佳的.

笔记 此类问题反证法将会带来一个恒成立的不等式,有很强的效果,所以一般都用反证法,证明的灵感来源于 k=1 时的情况.

证明 设 $S_n = x_1 + x_2 + \cdots + x_n$, 采用反证法, 则存在 N 使得 $n \ge N$ 时恒成立

$$S_{n+k} \leqslant \lambda(S_n - S_{n-1}), \lambda \in \left[1, \frac{(k+1)^{k+1}}{k^k}\right)$$

显然 S_n 是单调递增的, 如果 S_n 有界, 则在不等式两端取极限可知 S_n 收敛到零, 矛盾, 所以 S_n 严格单调递增趋于 正无穷, 因此对任意 $n \ge N$ 有 $S_n > S_{n-1}$. 如果已经得到了 $S_n > cS_{n-1}$ 对任意 $n \ge N$ 恒成立, 这里 c 是正数, 则对 任意 $n \ge N$ 有

$$S_{n+k} > cS_{n+k-1}, S_{n+k-1} > cS_{n+k-2}, \cdots, S_{n+1} > cS_n \Rightarrow S_{n+k} > c^k S_n$$
$$0 < S_{n+k} - c^k S_n \leqslant (\lambda - c^k) S_n - \lambda S_{n-1} \Rightarrow S_n > \frac{\lambda}{\lambda - c^k} S_{n-1}$$

这样不等式就加强了, 记 $c'=\frac{\lambda}{\lambda-c^k}$, 我们得到 $S_n>c'S_{n-1}$ 对任意 $n\geqslant N$ 恒成立. 定义数列 u_n 为 $u_1=1,u_{n+1}=1$ $\frac{\lambda}{\lambda - u_n^k}$,则重复以上过程可知 $S_n > u_m S_{n-1}$ 对任意 m 以及 $n \ge N$ 都恒成立, 所以 u_m 这个数列必须是有界的, 下面 我们就由此导出矛盾. 因为 $u_{n+1}>u_n \Leftrightarrow (\lambda-u_n^k)u_n<\lambda \Leftrightarrow (\lambda-u_n^k)^ku_n^k<\lambda^k$, 由均值不等式有

$$kx^k(\lambda - x^k)^k \leqslant \left(\frac{k\lambda}{k+1}\right)^{k+1} < k\lambda^k \Leftrightarrow \lambda < \frac{(k+1)^{k+1}}{k^k}$$

设 $S_n=x_1+x_2+\cdots+x_n$, 则 $S_n>0$ 严格单调递增, 如果 S_n 收敛, 则 $\ln x_n\to -\infty$ 与条件矛盾, 所以 S_n 单调递 增趋于正无穷.

因为
$$\frac{\ln x_n}{\ln n} = \frac{\ln x_n}{S_n} \frac{S_n}{\ln n}, \frac{\ln x_n}{S_n} \to -1$$
, 所以等价的只要证明 $\frac{S_n}{\ln n} \to 1$.

条件为 $\lim_{n\to\infty}\frac{\ln x_n}{S_n}=-1$, 设想作为等式, 对应着 $S_n-S_{n-1}=e^{-S_n}$ 是一个隐函数类型的递推式, 不方便使用, 所以考虑

$$\lim_{n \to \infty} \frac{\ln x_{n+1}}{S_n} = \lim_{n \to \infty} \frac{\ln x_{n+1}}{S_{n+1}} \frac{S_{n+1}}{S_n} = -\lim_{n \to \infty} \left(1 + \frac{x_{n+1}}{S_n} \right) = -1$$

现在等价的, 已知 S_n 单调递增趋于无穷且 $\lim_{n\to\infty}\frac{\ln(S_{n+1}-S_n)}{S_n}=-1$, 要证明 $\lim_{n\to\infty}\frac{S_n}{\ln n}=1$. 由极限定义, 对任意 $\varepsilon>0$, 存在 N 使得任意 n>N 都有 $(-1-\varepsilon)S_n<\ln(S_{n+1}-S_n)<(-1+\varepsilon)S_n$ 也即

$$\left(\frac{1}{e} - \varepsilon\right)^{S_n} + S_n < S_{n+1} < \left(\frac{1}{e} + \varepsilon\right)^{S_n} + S_n, \forall n \geqslant N$$

不妨要求 $S_N > 1$, 考虑

$$f(x) = \left(\frac{1}{e} + \varepsilon\right)^x + x, f'(x) = 1 + \left(\frac{1}{e} + \varepsilon\right)^x \ln\left(\frac{1}{e} + \varepsilon\right) > 1 - \left(\frac{1}{e} + \varepsilon\right)^x > 0$$

再定义 $u_N=S_N, u_{n+1}=\left(\frac{1}{e}+\varepsilon\right)^{u_n}+u_n$,于是若有 $u_n\leqslant S_n$ 则结合单调性可知 $u_{n+1}=f(u_n)\leqslant f(S_n)=S_{n+1}$,这说明 $S_n\leqslant u_n$ 对任意 $n\geqslant N$ 恒成立. 同样考虑

$$g(x) = \left(\frac{1}{e} - \varepsilon\right)^x + x, g'(x) = 1 - \left(\frac{1}{e} - \varepsilon\right)^x \ln\left(\frac{1}{e} - \varepsilon\right) \geqslant 1 - \left(\frac{1}{e} - \varepsilon\right) \ln\left(\frac{1}{e} - \varepsilon\right) > 0$$

再定义 $v_N = S_N, v_{n+1} = \left(\frac{1}{e} - \varepsilon\right)^{v_n} + v_n$, 同样道理 $S_n \geqslant v_n$ 恒成立, 于是 $\frac{v_n}{\ln n} \leqslant \frac{S_n}{\ln n} \leqslant \frac{u_n}{\ln n}, n \geqslant N$.

注意 u_n, v_n 具备完全一样的形式, 所以统一的考虑 $a_1 > 1, a_{n+1} = a_n + e^{ca_n}$, 其中 c 在 $\frac{1}{e}$ 附近, 显然这个数列是单调递增趋于正无穷的, 我们用 stolz 公式来计算相应的极限, 则有

$$\lim_{n \to \infty} \frac{\ln a_n}{n} = \lim_{n \to \infty} \frac{\ln a_{n+1} - \ln a_n}{1} = \lim_{n \to \infty} \frac{e^{-ca_n}}{c^{-a_n} - 1} = \lim_{n \to \infty} \frac{1}{e^{-a_{n+1}} - e^{-a_n}} = \lim_{n \to \infty} \frac{1}{e^{-ca_n}(e^{-(a_{n+1} - a_n)} - 1)}$$

$$= \lim_{n \to \infty} \frac{e^{ca_n}}{e^{-e^{ca_n}} - 1} = \lim_{x \to +\infty} \frac{e^{cx}}{e^{-x \ln c} - 1} = \lim_{x \to 0+} \frac{x}{e^{-x \ln c} - 1} = \frac{1}{-\ln c}$$

所以

$$\lim_{n\to\infty}\frac{u_n}{\ln n}=\frac{1}{-\ln(\frac{1}{e}+\varepsilon)}=\frac{1}{1-\ln(1+e\varepsilon)}, \lim_{n\to\infty}\frac{v_n}{\ln n}=\frac{1}{-\ln(\frac{1}{e}-\varepsilon)}=\frac{1}{1-\ln(1-e\varepsilon)}$$

这意味着

$$\varlimsup_{n\to\infty}\frac{S_n}{\ln n}\leqslant\frac{1}{1-\ln(1+e\varepsilon)},\varliminf_{n\to\infty}\frac{S_n}{\ln n}\geqslant\frac{1}{1-\ln(1-e\varepsilon)},\forall\varepsilon>0$$

由此可知结论成立.

例题 2.131 设 $n \in \mathbb{N}$, 计算

$$\lim_{x\to 0}\frac{1-\cos x\sqrt{\cos(2x)}\cdot\sqrt[3]{\cos(3x)}\cdot\cdots\cdot\sqrt[n]{\cos(nx)}}{x^2}.$$

解 由 Taylor 公式知

$$\cos x = 1 - \frac{x^2}{2} + o(x^2), x \to 0.$$

$$\sqrt[k]{1+x} = 1 + \frac{x}{k} + o(x), x \to 0.$$

于是

$$\sqrt[k]{\cos x} = \sqrt[k]{1 - \frac{x^2}{2} + o(x^2)} = 1 + \frac{-\frac{x^2}{2} + o(x^2)}{k} + o(x^2) = 1 - \frac{k}{2}x^2 + o(x^2), x \to 0.$$

从而

$$\prod_{k=1}^{n} \sqrt[k]{\cos kx} = \prod_{k=1}^{n} \left(1 - \frac{k}{2}x^2 + o(x^2) \right) = 1 - \left(\sum_{k=1}^{n} \frac{k}{2} \right) x^2 + o(x^2), x \to 0.$$

故

$$\lim_{x \to 0} \frac{1 - \prod_{k=1}^{n} \sqrt[k]{\cos kx}}{x^2} = \lim_{x \to 0} \frac{\left(\sum_{k=1}^{n} \frac{k}{2}\right) x^2 + o(x^2)}{x^2} = \frac{n(n+1)}{4}.$$

例题 2.132 计算

$$\lim_{n\to\infty} \sqrt{n} \left(1 - \sum_{i=1}^n \frac{1}{n+\sqrt{i}} \right).$$

Ŷ 笔记 注意到

$$\sum_{i=1}^{n} \frac{1}{n + \sqrt{i}} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + \frac{\sqrt{i}}{n}},$$

对 $\forall i \in \mathbb{N}$, 都有

$$\frac{\sqrt{i}}{n} \leqslant \frac{1}{\sqrt{n}} \to 0, n \to \infty.$$

故 $\sum_{i=1}^{n} \frac{1}{1 + \frac{\sqrt{i}}{n}}$ 中的每一项 $\frac{1}{1 + \frac{\sqrt{i}}{n}}$ 都可以 Taylor 展开.

解 由 Taylor 公式知

$$\begin{split} \sum_{i=1}^{n} \frac{1}{n+\sqrt{i}} &= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\frac{\sqrt{i}}{n}} = \frac{1}{n} \sum_{i=1}^{n} \left(1-\frac{\sqrt{i}}{n}+\frac{i}{n^2}+O\left(\frac{i\sqrt{i}}{n^3}\right)\right) \\ &= \frac{1}{n} \left[n-\frac{\sum\limits_{i=1}^{n} \sqrt{i}}{n}+\frac{\sum\limits_{i=1}^{n} i}{n^2}+nO\left(\frac{1}{n\sqrt{n}}\right)\right] \\ &= 1-\frac{\sum\limits_{i=1}^{n} \sqrt{i}}{n^2}+\frac{n+1}{2n^2}+O\left(\frac{1}{\sqrt{n}}\right) \\ &= 1-\frac{\sum\limits_{i=1}^{n} \sqrt{i}}{n^2}+O\left(\frac{1}{n}\right). \end{split}$$

于是

$$\lim_{n\to\infty} \sqrt{n} \left(1 - \sum_{i=1}^n \frac{1}{n+\sqrt{i}} \right) = \lim_{n\to\infty} \frac{\sum_{i=1}^n \sqrt{i}}{n\sqrt{n}} = \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n \sqrt{\frac{i}{n}} = \int_0^1 \sqrt{x} dx = \frac{2}{3}.$$

例题 2.133 设 $f \in R[0,1]$, 证明

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (-1)^k f\left(\frac{k}{n}\right) = 0.$$

$$\frac{1}{2n} \sum_{k=1}^{2n} (-1)^k f\left(\frac{k}{2n}\right) = \frac{1}{2n} \sum_{k=1}^n f\left(\frac{2k}{2n}\right) - \frac{1}{2n} \sum_{k=1}^n f\left(\frac{2k-1}{2n}\right)$$

$$= \frac{1}{2n} \sum_{k=1}^n f\left(\frac{k}{n}\right) - \frac{1}{2n} \sum_{k=1}^n f\left(\frac{k-\frac{1}{2}}{n}\right)$$

$$\to \frac{1}{2} \int_0^1 f(x) \, \mathrm{d}x - \frac{1}{2} \int_0^1 f(x) \, \mathrm{d}x = 0, n \to \infty.$$

$$\frac{1}{2n-1} \sum_{k=1}^{2n-1} (-1)^k f\left(\frac{k}{2n-1}\right) = \frac{1}{2n-1} \sum_{k=1}^{n-1} f\left(\frac{2k}{2n-1}\right) - \frac{1}{2n-1} \sum_{k=1}^n f\left(\frac{2k-1}{2n-1}\right)$$
$$= \frac{n}{2n-1} \cdot \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{2k}{2n-1}\right) - \frac{n}{2n-1} \cdot \frac{1}{n} \sum_{k=1}^n f\left(\frac{2k-1}{2n-1}\right)$$
$$\to \frac{1}{2} \int_0^1 f(x) \, \mathrm{d}x - \frac{1}{2} \int_0^1 f(x) \, \mathrm{d}x = 0, n \to \infty.$$

故由子列极限命题 (b)可知

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n(-1)^kf\left(\frac{k}{n}\right)=0.$$

例题 2.134 设 $x_{n+1} = x_n - x_n^3, x_1 \in \mathbb{R}$, 判断 $\lim_{n \to \infty} x_n$ 收敛性.

拿 笔记 因为递推函数 $g(x) = x(1-x^2)$ 关于原点对称, 而 $\{x_n\}$ 的敛散性只由 x_1 决定, 所以我们只需要考虑 $x_1 > 0$ 的情况即可, 由于 g(x) 关于原点对称, 故 $x_1 < 0$ 的情况和 $x_1 > 0$ 的情况类似. 因此我们可以直接考虑数列 $\{|x_n|\}$. 这样能避免很多分类讨论. 注意这个递推函数 g(x) 只有一个不动点 x = 0.

如果不加绝对值, 原递推函数的蛛网图会比较杂乱, 加上绝对值后讨论会比较清晰. 实际上, 通过蛛网图分析, 也能得到使得 $\{x_n\}$ 发散的 x_1 的临界点满足 $g(x_1) = x_2, g(x_2) = x_1$, 即 $g(g(x_1)) = x_1$. 于是就有

$$-x_1^6 + 3x_1^4 - 3x_1^2 + 2 = 0. (2.153)$$

但是当 $x_1 = \pm 1, \pm 2$ 上式不成立,故上述方程没有有理根. 令 $t = x_1^2$,则上式可化为

$$-t^3 + 3t^2 - 3t + 2 = 0.$$

当t=2时,上式成立,故上式可化为

$$(t-2)(-t^2+t-1)=0.$$

因此上式只有一个实根 t=2, 即(2.153)式只有当 $x_1^2=2$ 时才有实根. 故(2.153)式只有两个实根 $x_1=\pm\sqrt{2}$.

考虑 $|x_{n+1}| = |x_n - x_n^3| = |x_n||1 - x_n^2|$, 记 $f(x) = x|1 - x^2|$, 则 f(x) 有两个不动点 $x = \pm \sqrt{2}$.

证明 考虑 $|x_{n+1}| = |x_n - x_n^3| = |x_n||1 - x_n^2|$, 则

- (1) 当 $|x_1| > \sqrt{2}$ 时,则 $|x_{n+1}| = |x_n||x_n^2 1| \ge |x_n| > \sqrt{2}$. 故此时 $\{|x_n|\}$ 递增,且有下界 $\sqrt{2}$. 而 f 没有大于 $\sqrt{2}$ 的不动点,因此 $\lim_{n \to \infty} |x_n| = +\infty$.
- (2) 当 $|x_1| \leq \sqrt{2}$ 时,则 $|x_{n+1}| = |x_n||x_n^2 1| \leq |x_n| \leq \sqrt{2}$. 故此时 $\{|x_n|\}$ 递减,且有下界 $\sqrt{2}$.于是 $A \triangleq \lim_{n \to \infty} |x_n|$ 存在. 对 $|x_{n+1}| = |x_n||x_n^2 1|$ 两边同时取极限得 A = 0 或 $\sqrt{2}$.
 - (i) 若 A=0, 则由 $\lim_{n\to\infty}|x_n|=A=0$ 可知 $\lim_{n\to\infty}x_n=0$.
- (ii) 若 $A = \sqrt{2}$, 则由 $\{|x_n|\}$ 遊减, 且 $|x_n| \le \sqrt{2}$ 知 $\sqrt{2} = \lim_{n \to \infty} |x_n| \le |x_n| \le \sqrt{2} \Rightarrow |x_n| = \sqrt{2}, n = 1, 2, \cdots$. 此时 $x_1 = \pm \sqrt{2}$, 再代入 $x_{n+1} = x_n x_n^3$ 得 $x_n = (-1)^n x_1, n = 2, 3, \cdots$. 故此时 $\{x_n\}$ 发散. 综上

$$\lim_{n\to\infty} x_n = \begin{cases} \not \text{\sharp t}, |x_1| \geqslant \sqrt{2} \\ 0, |x_1| < \sqrt{2} \end{cases}.$$

例题 2.135 设函数 $f:[a,b] \rightarrow [a,b]$ 满足

$$|f(x) - f(y)| \le |x - y|, \forall x, y \in [a, b]$$

设递推

$$x_1 \in [a, b], x_{n+1} = \frac{1}{2}(x_n + f(x_n)), n = 1, 2, \dots$$

证明 $\lim_{n\to\infty} x_n$ 存在.

证明 由于 $a \leq f(x) \leq b$, 因此归纳易得 $a \leq x_n \leq b$. 令 $g(x) = \frac{x + f(x)}{2}$, 则

$$g(y)-g(x)=\frac{y-x-[f(y)-f(x)]}{2}\geqslant 0, \forall y\geqslant x.$$

由命题可知递增递推数列 $\{x_n\}$ 一定单调, 故 $\lim_{n\to\infty} x_n$ 存在.

例题 **2.136** 设 $f(x) \in C[0,1], f(x) > 0$, 证明

$$\lim_{n \to \infty} \frac{\int_0^1 f^{n+1}(x) dx}{\int_0^1 f^n(x) dx} = \max_{[0,1]} f.$$

笔记 回顾例题 2.110和 命题 2.12. 因此我们只需证明命题 2.12的反向, 再结合例题 2.110就能得证. 但是反向 Stolz 定理一般不会直接应用,因此我们可以尝试利用单调有界定理证明比值极限存在,再利用命题 2.12就能直接得证. 实际上, 只要证明了单调性, 就能利用反向 Stolz 定理证明命题 2.12的反向也成立, 再利用例题 2.110就能得到 结论.

证明 注意到

$$\frac{\int_{0}^{1} f^{n+2}(x) dx}{\int_{0}^{1} f^{n+1}(x) dx} \geqslant \frac{\int_{0}^{1} f^{n+1}(x) dx}{\int_{0}^{1} f^{n}(x) dx} \Longleftrightarrow \int_{0}^{1} f^{n+2}(x) dx \int_{0}^{1} f^{n}(x) dx \geqslant \left(\int_{0}^{1} f^{n+1}(x) dx\right)^{2}. \tag{2.154}$$

由 Cauchy 不等式知

$$\int_0^1 f^{n+2}(x) \mathrm{d}x \int_0^1 f^n(x) \mathrm{d}x \geqslant \left(\int_0^1 f^{\frac{n+2}{2}}(x) f^{\frac{n}{2}}(x) \mathrm{d}x \right)^2 = \left(\int_0^1 f^{n+1}(x) \mathrm{d}x \right)^2.$$

故(2.154)式成立, 即 $\left\{ \frac{\int_0^1 f^{n+1}(x) \mathrm{d}x}{\int_0^1 f^n(x) \mathrm{d}x} \right\}_{n=0}^{\infty}$ 单调递增. 因此 $\lim_{n \to \infty} \frac{\int_0^1 f^{n+1}(x) \mathrm{d}x}{\int_0^1 f^n(x) \mathrm{d}x} \in \mathbb{R} \cup \{+\infty\}$. 由例题 2.110可知

$$\lim_{n \to \infty} \sqrt[n]{\int_0^1 f^n(x) dx} = \max_{[0,1]} f.$$

再根据命题 2.12可知

$$\lim_{n \to \infty} \frac{\int_0^1 f^{n+1}(x) dx}{\int_0^1 f^n(x) dx} = \lim_{n \to \infty} \sqrt[n]{\int_0^1 f^n(x) dx} = \max_{[0,1]} f.$$

例题 2.137

1. 设 $\{x_n\}_{n=1}^{\infty}$ ⊂ $(0,+\infty)$ 满足

$$x_n + \frac{1}{x_{n+1}} < 2, \ n = 1, 2, \cdots$$

证明: $\lim_{n\to\infty} x_n$ 存在并求极限. 2. 设 $\{a_n\}_{n=1}^{\infty} \subset (0,+\infty)$ 满足

$$a_{n+1} + \frac{4}{a_n} < 4, \ n = 1, 2, \cdots$$

证明: $\lim_{n\to\infty} a_n$ 存在并求极限. 3. 设 $\{x_n\}_{n=1}^{\infty}\subset (0,+\infty)$ 满足

$$x_n + \frac{4}{x_{n+1}^2} < 3, \ n = 1, 2, \cdots$$

证明: $\lim_{n\to\infty} x_n$ 存在并求极限. 4. 设 $\{x_n\}_{n=1}^{\infty} \subset (0,+\infty)$ 满足

$$\ln x_n + \frac{1}{x_{n+1}} < 1, \ n = 1, 2, \cdots$$

证明: $\lim_{n\to\infty} x_n$ 存在并求极限.

笔记 此类问题其实就是把 x_{n+1}, x_n 部分全部换成 x_n 数字部分往往是 x 部分的一个最值, 从把这个数字用不等式

放缩为数列来得到估计.

证明

1. 由均值不等式可知

$$x_n + \frac{1}{x_{n+1}} < 2 \leqslant x_{n+1} + \frac{1}{x_{n+1}} \Rightarrow x_{n+1} \geqslant x_n.$$

并且 $x_n < 2 - \frac{1}{x_{n+1}} < 2$, 故 $\lim_{n \to \infty} x_n \triangleq x$ 存在. 于是

$$2 \leqslant x + \frac{1}{x} = \lim_{n \to \infty} \left(x_n + \frac{1}{x_{n+1}} \right) \leqslant 2 \Rightarrow x + \frac{1}{x} = 2 \Rightarrow x = 1.$$

因此 $\lim_{n\to\infty} x_n = 1$.

2.

3.

4.

例题 2.138 设 $f(x) \in C^1(\mathbb{R}), |f(x)| \leq 1, f'(x) > 0$, 证明: 对任意 b > a > 0 有

$$\lim_{n \to \infty} \int_a^b f'\left(nx - \frac{1}{x}\right) dx = 0.$$

证明 证法一:

$$\int_{a}^{b} f'\left(nx - \frac{1}{x}\right) dx = \int_{a}^{b} \frac{1}{n + \frac{1}{x^{2}}} \left(n + \frac{1}{x^{2}}\right) f'\left(nx - \frac{1}{x}\right) dx = \int_{a}^{b} \frac{1}{n + \frac{1}{x^{2}}} df\left(nx - \frac{1}{x}\right)$$

$$= \frac{f\left(nb - \frac{1}{b}\right)}{n + \frac{1}{b^{2}}} - \frac{f\left(na - \frac{1}{a}\right)}{n + \frac{1}{a^{2}}} + \int_{a}^{b} f\left(nx - \frac{1}{x}\right) \frac{2}{x^{3} \left(n + \frac{1}{x^{2}}\right)^{2}} dx$$

$$\leqslant \frac{1}{n + \frac{1}{b^{2}}} + \frac{1}{n + \frac{1}{a^{2}}} + \frac{2}{a^{3} \left(n + \frac{1}{b^{2}}\right)^{2}} \int_{a}^{b} f\left(nx - \frac{1}{x}\right) dx$$

$$\leqslant \frac{1}{n + \frac{1}{b^{2}}} + \frac{1}{n + \frac{1}{a^{2}}} + \frac{2(b - a)}{a^{3} \left(n + \frac{1}{b^{2}}\right)^{2}} \to 0, n \to \infty.$$

证法二:令
$$y = nx - \frac{1}{x}$$
,则 $x = \frac{y + \sqrt{y^2 + 4n}}{2n} > a > 0$.于是
$$\int_{a}^{b} f'\left(nx - \frac{1}{x}\right) dx = \int_{na - \frac{1}{a}}^{nb - \frac{1}{b}} f'(y) \frac{1 + \frac{y}{\sqrt{y^2 + 4n}}}{2n} dy = \int_{na - \frac{1}{a}}^{nb - \frac{1}{b}} \frac{1 + \frac{y}{\sqrt{y^2 + 4n}}}{2n} df(y)$$

$$= \frac{1 + \frac{nb - \frac{1}{b}}{\sqrt{(nb - \frac{1}{b})^2 + 4n}}}{2n} f\left(nb - \frac{1}{b}\right) - \frac{1 + \frac{na - \frac{1}{a}}{\sqrt{(na - \frac{1}{a})^2 + 4n}}}{2n} f\left(na - \frac{1}{a}\right) - \int_{na - \frac{1}{a}}^{nb - \frac{1}{b}} f(y) \frac{\sqrt{y^2 + 4n} + \frac{y^2}{\sqrt{y^2 + 4n}}}}{4n^2(y^2 + 4n)} dy$$

$$\leq \frac{1 + \frac{nb - \frac{1}{b}}{\sqrt{(nb - \frac{1}{b})^2 + 4n}}}{2n} + \frac{1 + \frac{na - \frac{1}{a}}{\sqrt{(na - \frac{1}{a})^2 + 4n}}}{2n} + \int_{na - \frac{1}{a}}^{nb - \frac{1}{b}} \frac{\sqrt{(nb - \frac{1}{b})^2 + 4n} + \frac{(nb - \frac{1}{b})^2}{\sqrt{(na - \frac{1}{a})^2 + 4n}}}}{4n^2\left((na - \frac{1}{a})^2 + 4n\right)} dy$$

例题 2.139 求极限

$$\lim_{n\to\infty}\int_0^\infty \frac{\sin nx}{x}e^{-x}\mathrm{d}x.$$

证明 证法一:对 $\forall \delta > 0$, 我们有

 $\rightarrow 0, n \rightarrow +\infty.$

$$\int_{\delta}^{\infty} \frac{e^{-x}}{x} \mathrm{d}x < \frac{1}{\delta} \int_{\delta}^{\infty} \frac{1}{e^{x}} \mathrm{d}x < +\infty.$$

于是由Riemman 引理可知

$$\int_{\delta}^{\infty} \frac{\sin nx}{x} e^{-x} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \sin x dx \int_{\delta}^{\infty} \frac{e^{-x}}{x} dx = 0.$$

注意到

$$\int_0^\delta \frac{\sin nx}{x} e^{-x} dx \sim \int_0^\delta \frac{\sin nx}{x} dx, \ \delta \to 0^+,$$

$$\int_0^\delta \frac{\sin nx}{x} dx = \int_0^{n\delta} \frac{\sin x}{x} dx \to \int_0^\infty \frac{\sin x}{x} dx \xrightarrow{\text{ϕ} \ensuremath{\mathbb{R}} 8.3(2)$}} \frac{\pi}{2}, \ n \to \infty,$$

故

$$\int_0^\infty \frac{\sin nx}{x} e^{-x} dx = \int_0^\delta \frac{\sin nx}{x} e^{-x} dx + \int_\delta^\infty \frac{\sin nx}{x} e^{-x} dx = \frac{\pi}{2}.$$

证法二:记 $p(x) = \frac{e^{-x} - 1}{x}$, p(0) = -1, 则 p(x) 可导, 并且

$$\int_{0}^{\infty} \frac{\sin nx}{x} e^{-x} dx = \int_{0}^{\infty} \frac{e^{-x} - 1}{x} \sin nx dx + \int_{0}^{\infty} \frac{\sin nx}{x} dx \xrightarrow{\text{$\Rightarrow \not = 8.3(2)$}} \int_{0}^{\infty} p(x) \sin nx dx + \frac{\pi}{2} dx = \frac{\pi}{2} - \int_{0}^{\infty} p(x) dx = \frac{\pi}{2} - \frac{1}{2} \left(1 - \int_{0}^{\infty} p'(x) \cos nx dx \right).$$

求导有
$$p'(x) = \frac{1 - xe^{-x} - e^{-x}}{x^2}, p'(0) = \frac{1}{2},$$
 所以 $\left| \int_0^\infty p'(x) \cos nx dx \right| \le \int_0^\infty \frac{1 - xe^{-x} - e^{-x}}{x^2} dx < \infty.$ 由此可知
$$\lim_{n \to \infty} \int_0^\infty \frac{\sin nx}{x} e^{-x} dx = \frac{\pi}{2}.$$

例题 2.140 设 $f(x), g(x) \in C[0,1]$ 且 $\lim_{x\to 0^+} \frac{g(x)}{x}$ 为有限数,证明:

$$\lim_{n \to \infty} n \int_0^1 f(x)g(x^n) dx = f(1) \int_0^1 \frac{g(x)}{x} dx.$$

证明 证法一: 注意到

$$n\int_{0}^{1} f(x)g(x^{n})dx = \int_{0}^{1} f\left(x^{\frac{1}{n}}\right)g(x)x^{\frac{1}{n}-1}dx = \int_{0}^{1} \frac{g(x)}{x} \cdot x^{\frac{1}{n}}f\left(x^{\frac{1}{n}}\right)dx.$$

$$n\int_0^1 f(x)g(x^n)\mathrm{d}x = \int_0^1 h(x) \cdot x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) \mathrm{d}x.$$

 $\forall \varepsilon > 0$, \mathbb{R} $\delta = \varepsilon$, $\forall x \in [\delta, 1]$, $\lim_{n \to \infty} x^{\frac{1}{n}} = 1$ \mathcal{R} $f \in C[0, 1]$ \mathcal{T} \mathcal{R} , \mathcal{R} $\delta = 0$, \mathcal{R}

$$\left|x^{\frac{1}{n}}-1\right|<\varepsilon,\quad \left|f\left(x^{\frac{1}{n}}\right)-f(1)\right|<\varepsilon, \forall n>N.$$

设 $|h(x)|, |f(x)| \leq M \in \mathbb{R}$, 则

$$\left| \int_{0}^{1} h(x) \cdot x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) dx - f(1) \int_{0}^{1} h(x) dx \right| = \left| \int_{0}^{1} h(x) \left[x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) - f(1) \right] dx$$

$$\leq \int_{0}^{\delta} |h(x)| \left| x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) - f(1) \right| dx + \int_{\delta}^{1} |h(x)| \left| x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) - f(1) \right| dx$$

$$\leq 2M^{2} \delta + \int_{\delta}^{1} |h(x)| \left[\left| x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) - x^{\frac{1}{n}} f(1) \right| + \left| x^{\frac{1}{n}} f(1) - f(1) \right| \right] dx$$

$$= 2M^{2} \delta + \int_{\delta}^{1} |h(x)| \left[x^{\frac{1}{n}} \left| f\left(x^{\frac{1}{n}}\right) - f(1) \right| + f(1) \left| x^{\frac{1}{n}} - 1 \right| \right] dx$$

$$< 2M^{2} \varepsilon + \int_{\varepsilon}^{1} M \left[1 + f(1) \right] \varepsilon dx = \left(2M^{2} + M \left[1 + f(1) \right] (1 - \varepsilon) \right) \varepsilon.$$

故

$$\lim_{n \to \infty} \int_0^1 h(x) \cdot x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) dx = f(1) \int_0^1 h(x) dx.$$

即

$$\lim_{n \to \infty} n \int_0^1 f(x)g(x^n) dx = f(1) \int_0^1 \frac{g(x)}{x} dx.$$

证法二:因为可以用在两个端点, 插值于 f 的多项式 (f 的 Berstein 多项式也可以) 在 [0,1] 上一致逼近 f, 所以只需对连续可导的函数 f 证明.

対
$$x \in (0,1]$$
 定义 $G(x) = \int_0^x \frac{g(t)}{t} dt$, 则 G 可导, 且 $G'(x) = \frac{g(x)}{x}$. 因而 $\left(\frac{1}{n}G(x^n)\right)' = \frac{g(x^n)}{x}$. 用分部积分法, 得
$$n \int_0^1 f(x)g(x^n) dx = n \int_0^1 x f(x) \cdot \frac{g(x^n)}{x} dx$$

$$= n \left[x f(x) \cdot \frac{1}{n}G(x^n) \Big|_0^1 - \int_0^1 \left(f(x) + x f'(x) \right) \frac{1}{n}G(x^n) dx \right]$$

$$= f(1)G(1) - \int_0^1 \left(f(x) + x f'(x) \right) G(x^n) dx$$

$$= f(1) \int_0^1 \frac{g(x)}{x} dx - \int_0^1 \left(f(x) + x f'(x) \right) G(x^n) dx.$$

因为 $\lim_{x\to 0^+} \frac{g(x)}{x}$ 收敛, 所以存在 M>0, 使得

$$|f(x) + xf'(x)| \le M$$
, $G'(x) = \frac{|g(x)|}{x} \le M$ $(x \in [0, 1])$.

因此 $|G(x)| \leq Mx$.

故

$$\left| \int_0^1 \left(f(x) + x f'(x) \right) G(x^n) \, \mathrm{d}x \right| \leqslant M^2 \int_0^1 x^n \, \mathrm{d}x = \frac{M^2}{n+1} \to 0, n \to \infty.$$

因此

$$\lim_{n \to +\infty} n \int_0^1 f(x) g(x^n) \, \mathrm{d}x = f(1) \int_0^1 \frac{g(x)}{x} \, \mathrm{d}x.$$

例题 2.141 设 $f: \mathbb{R} \to \mathbb{R}$, 且 f(0) = 0, 当 $x \neq 0$ 时, $f(x) = \int_0^x \cos \frac{1}{t} \cos \frac{3}{t} \cos \frac{5}{t} \cos \frac{7}{t} dt$, 求证: f 是可导的, 并求 f'(0).

₹记 此类问题一般都是利用Riemman 引理解决.

证明 由Riemman 引理可知

$$\int_{1}^{\infty} \frac{\cos nx}{x^2} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \cos x dx \int_{1}^{\infty} \frac{1}{x^2} dx = 0, \forall n \in \mathbb{N}.$$

于是

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{1}{x} \int_{0}^{x} \cos \frac{1}{t} \cos \frac{3}{t} \cos \frac{5}{t} \cos \frac{7}{t} dt$$

$$= \frac{t = \frac{1}{u}}{u} \lim_{x \to 0^{+}} \frac{1}{x} \int_{\frac{1}{x}}^{\infty} \frac{\cos u \cos 3u \cos 5u \cos 7u}{u^{2}} du = \lim_{\lambda \to +\infty} \lambda \int_{\lambda}^{\infty} \frac{\cos u \cos 3u \cos 5u \cos 7u}{u^{2}} du$$

$$= \lim_{\lambda \to +\infty} \int_{1}^{\infty} \frac{\cos(\lambda x) \cos(3\lambda x) \cos(5\lambda x) \cos(7\lambda x)}{x^{2}} dx$$

$$= \lim_{\lambda \to +\infty} \int_{1}^{\infty} \frac{\frac{1}{2} (\cos(2\lambda x) + \cos(4\lambda x)) \cos(5\lambda x) \cos(7\lambda x)}{x^{2}} dx$$

$$= \lim_{\lambda \to +\infty} \int_{1}^{\infty} \frac{\frac{1}{4} (\cos(3\lambda x) + \cos(7\lambda x) + \cos(9\lambda x) + \cos(\lambda x)) \cos(7\lambda x)}{x^{2}} dx$$

$$= \lim_{\lambda \to +\infty} \int_{1}^{\infty} \frac{\frac{1}{8} \left[\cos(16\lambda x) + \cos(14\lambda x) + \cos(10\lambda x) + \cos(6\lambda x) + \cos(4\lambda x) + \cos(2\lambda x) + 1 \right]}{x^2} dx$$

$$= \frac{1}{8} \lim_{\lambda \to +\infty} \int_{1}^{\infty} \frac{1}{x^2} dx = \frac{1}{8}.$$

例题 2.142 证明:

$$\lim_{n \to \infty} n \left(n \int_{n\pi}^{2n\pi} \frac{|\sin x|}{x^2} dx - \frac{1}{\pi^2} \right) = 0.$$

 $\stackrel{ ext{$\widehat{\Sigma}$}}{=}$ 笔记 如果需要估计得更精确, 就需要利用 E-M 公式对 $\sum_{k=n}^{2n-1} \frac{1}{(x+k\pi)^2}$ 进行更精确的估计和计算.

证明 注意到

$$\int_{n\pi}^{2n\pi} \frac{|\sin x|}{x^2} dx = \int_0^{n\pi} \frac{|\sin x|}{(x+n\pi)^2} dx = \sum_{k=1}^n \int_0^{k\pi} \frac{|\sin x|}{(x+n\pi)^2} dx$$

$$= \sum_{k=1}^n \int_0^{\pi} \frac{|\sin x|}{(x+(n+k-1)\pi)^2} dx = \int_0^{\pi} \sin x \sum_{k=1}^n \frac{1}{(x+(n+k-1)\pi)^2} dx$$

$$= \int_0^{\pi} \sin x \sum_{k=n}^{2n-1} \frac{1}{(x+k\pi)^2} dx.$$

对 $\forall x \in [0, \pi]$, 我们有

$$\sum_{k=n}^{2n-1} \frac{1}{[(k+1)\pi]^2} \leqslant \sum_{k=n}^{2n-1} \frac{1}{(x+k\pi)^2} \leqslant \sum_{k=n}^{2n-1} \frac{1}{(k\pi)^2}.$$

又因为

$$\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)} \leqslant \frac{1}{k^2} \leqslant \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}, \, \forall k \in \mathbb{N},$$

所以一方面, 我们有

$$\lim_{n \to \infty} n \int_{n\pi}^{2n\pi} \frac{|\sin x|}{x^2} dx = \lim_{n \to \infty} n \int_0^{\pi} \sin x \sum_{k=n}^{2n-1} \frac{1}{(x+k\pi)^2} dx \le \lim_{n \to \infty} n \int_0^{\pi} \sin x \sum_{k=n}^{2n-1} \frac{1}{(k\pi)^2} dx$$

$$\le \frac{1}{\pi^2} \lim_{n \to \infty} n \sum_{k=n}^{2n-1} \left(\frac{1}{k-1} - \frac{1}{k} \right) \int_0^{\pi} \sin x dx$$

$$= \frac{2}{\pi^2} \lim_{n \to \infty} n \left(\frac{1}{n-1} - \frac{1}{2n-1} \right) = \frac{1}{\pi^2}.$$

另一方面, 我们有

$$\lim_{n \to \infty} n \int_{n\pi}^{2n\pi} \frac{|\sin x|}{x^2} dx = \lim_{n \to \infty} n \int_0^{\pi} \sin x \sum_{k=n}^{2n-1} \frac{1}{(x+k\pi)^2} dx \geqslant \lim_{n \to \infty} n \int_0^{\pi} \sin x \sum_{k=n}^{2n-1} \frac{1}{[(k+1)\pi]^2} dx$$

$$\geqslant \frac{1}{\pi^2} \lim_{n \to \infty} n \sum_{k=n}^{2n-1} \left(\frac{1}{k+1} - \frac{1}{k+2} \right) \int_0^{\pi} \sin x dx$$

$$= \frac{2}{\pi^2} \lim_{n \to \infty} n \left(\frac{1}{n+1} - \frac{1}{2n+1} \right) = \frac{1}{\pi^2}.$$

故由夹逼准则可知

$$\lim_{n \to \infty} \left(n \int_{n\pi}^{2n\pi} \frac{|\sin x|}{x^2} \mathrm{d}x - \frac{1}{\pi^2} \right) = 0.$$

第三章 函数与微分

3.1 基本定理

常见的反例: $f(x) = x^m \sin \frac{1}{x^n}$.

定理 3.1 (Leibniz 公式)

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)}(x)g^{(k)}(x).$$

例题 3.1 设 f(x) 定义在 [0,1] 中且 $\lim_{x\to 0^+} f\left(x\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)\right)=0$, 证明: $\lim_{x\to 0^+} f(x)=0$.

笔记 将极限定义中的 ε , δ 适当地替换成 $\frac{1}{n}$, $\frac{1}{N}$ 往往更方便我们分析问题和书写过程.

证明 用 $\{x\}$ 表示 x 的小数部分, 则 $x\left(\frac{1}{r} - \begin{bmatrix} 1\\ r \end{bmatrix}\right) = x\left\{\frac{1}{r}\right\}$.

对任意 $\varepsilon > 0$, 依据极限定义, 存在 $\delta > 0$ 使得任意 $x \in (0, \delta)$ 都有 $\left| f\left(x\left\{ \frac{1}{r} \right\} \right) \right| < \varepsilon$. 取充分大的正整数 N 使得 $\frac{1}{N} < \delta$, 则任意 $x \in \left(\frac{1}{N+1}, \frac{1}{N}\right)$ 都有 $\left|f\left(x\left\{\frac{1}{r}\right\}\right)\right| < \varepsilon$. 考虑函数 $x\left\{\frac{1}{r}\right\}$ 在区间 $\left(\frac{1}{N+1},\frac{1}{N}\right)$ 中的值域, 也就是连续函数

$$g(u)=\frac{u-[u]}{u}=\frac{u-N}{u}, u\in (N,N+1)$$

的值域, 考虑端点处的极限可知 g(u) 的值域是 $\left(0, \frac{1}{N+1}\right)$, 且严格单调递增. 所以对任意 $y \in \left(0, \frac{1}{N+1}\right)$, 都存在 也就是说,任意 $\varepsilon > 0$,存在正整数 N,使得任意 $y \in \left(0, \frac{1}{N+1}\right)$,都有 $|f(y)| < \varepsilon$,结论得证.

例题 3.2

证明

3.2 微分学计算

3.2.1 单变量微分学计算

例题 3.3

(1) 设 $f(x) = \prod_{k=0}^{n} (x - k)$. 对整数 $0 \le j \le n$, 求导数 f'(j). (2) 设 $g(x) = \prod_{k=0}^{n} (e^{x} - k)$, 求 $g'(\ln j)$, $j = 0, 1, 2, \dots, n$.

(2)
$$\begin{tabular}{l} \begin{tabular}{l} \begin$$

(1) 解法一:注意到
$$f'(x) = \sum_{\substack{i=0 \ k \neq i}}^{n} \prod_{\substack{k=0 \ k \neq i}}^{n} (x - k)$$
, 故

$$f'(j) = \sum_{i=0}^{n} \prod_{\substack{k=0\\k\neq i}}^{n} (j-k) = \prod_{\substack{k=0\\k\neq j}}^{n} (j-k) + \sum_{\substack{i=0\\i\neq j}}^{n} \prod_{\substack{k=0\\k\neq i}}^{n} (j-k)$$
$$= (-1)^{n-j} j! (n-j)! + \sum_{\substack{i=0\\i\neq j}}^{n} (j-j) \prod_{\substack{k=0\\k\neq i,j}}^{n} (j-k)$$
$$= (-1)^{n-j} j! (n-j)!$$

解法二:

$$f'(j) = \lim_{x \to j} \frac{f(x) - f(j)}{x - j} = \lim_{x \to j} \frac{\prod_{k=0}^{n} (x - k) - \prod_{k=0}^{n} (j - k)}{x - j}$$

$$= \prod_{\substack{k=0 \ k \neq j}}^{n} (j - k) + \lim_{\substack{k \to j \ k \neq j}} \frac{(j - j) \prod_{\substack{k=0 \ k \neq j}}^{n} (j - k)}{x - j}$$

$$= \prod_{\substack{k=0 \ k \neq j \ k \neq j}}^{n} (j - k) = (-1)^{n-j} j! (n - j)!$$

(2) 记
$$f(x) = \prod_{i=0}^{n} (x - k)$$
, 则 $g(x) = f(e^{x})$. 从而 $g'(x) = e^{x} f'(e^{x})$, 于是由 (1) 可知

$$g'(\ln j) = jf'(j) = j \cdot (-1)^{n-j} j!(n-j)!$$

例题 3.4 对 $n \in \mathbb{N}$,

(1) 设 $f(x) = \sin(ax), a \in \mathbb{R}$, 求 $f^{(n)}$.

(2)
$$\% f(x) = e^x \cos x, \% f^{(n)}.$$

(2)
$$\[\] f(x) = e^{-\cos x}, \[\] x f^{(n)}.$$
(3) $\[\] f(x) = \frac{\ln x}{x}, \[\] x f^{(n)}.$
(4) $\[\] f(x) = \frac{1}{1 - x^2}, \[\] x f^{(n)}.$

(5) 设 $f(x) = \arctan x, x > 0$, 求 $f^{(n)}$.

解

(1) 我们断言

$$f^{(n)}(x) = a^n \sin\left(ax + \frac{n}{2}\pi\right), \quad \forall n \in \mathbb{N}.$$
 (3.1)

当 n=0 时, 上式显然成立. 假设当 n=k 时上式成立, 则

$$f^{(k+1)}(x) = a^{k+1} \cos\left(ax + \frac{k}{2}\pi\right) = a^{k+1} \sin\left(ax + \frac{k+1}{2}\pi\right).$$

故由数学归纳法可知 (3.1) 式成立.

(2) 由 Euler 公式可知, $\cos x = \text{Re}(e^{ix})$, 从而 $f(x) = \text{Re}[e^{(1+i)x}]$. 于是

$$f^{(n)}(x) = \text{Re}[(1+i)^n e^{(1+i)x}], \quad \forall n \in \mathbb{N}.$$

注意到

$$1 + i = \sqrt{2} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \right) = \sqrt{2} e^{\frac{\pi}{4}i},$$

进而
$$(1+i)^n = 2^{\frac{n}{2}} e^{\frac{n\pi}{4}i}$$
. 故

$$f^{(n)}(x) = \text{Re}\left[2^{\frac{n}{2}}e^{\frac{n\pi}{4}i+(1+i)x}\right] = 2^{\frac{n}{2}}e^{x}\text{Re}\left[e^{\left(x+\frac{n\pi}{4}\right)i}\right] = 2^{\frac{n}{2}}e^{x}\cos\left(x+\frac{n\pi}{4}\right).$$

(3) 令 $y = f(x) = \frac{\ln x}{x}$, 则 $\ln x = xy$. 对 $\forall n \in \mathbb{N}$, 两边同时对 x 求 n 阶导, 得

$$(\ln x)^{(n)} = (xy)^{(n)} \Longleftrightarrow \frac{(-1)^{n-1}(n-1)!}{x^n} = \sum_{k=0}^n x^{(k)} y^{(n-k)} = xy^{(n)} + ny^{(n-1)}.$$

从而对 $\forall n \in \mathbb{N}$, 都有

$$xy^{(n)} + ny^{(n-1)} = \frac{(-1)^{n-1} (n-1)!}{x^n}$$

$$\iff (-1)^n x^{n+1} y^{(n)} - (-1)^{n-1} nx^n y^{(n-1)} = -(n-1)!$$

$$\iff \frac{(-1)^n x^{n+1} y^{(n)}}{n!} - \frac{(-1)^{n-1} x^n y^{(n-1)}}{(n-1)!} = -\frac{1}{n}.$$

于是

$$\frac{(-1)^n x^{n+1} y^{(n)}}{n!} - xy = \sum_{k=1}^n \left(-\frac{1}{k} \right).$$

故

$$f^{(n)}(x) = y^{(n)} = \frac{(-1)^n n!}{x^{n+1}} \left(\sum_{k=1}^n \left(-\frac{1}{k} \right) - \ln x \right).$$

(4) 注意到
$$f(x) = \frac{1}{2} \left(\frac{1}{1-x} + \frac{1}{1+x} \right)$$
, 则 $f^{(n)}(x) = \frac{n!}{2} \left(\frac{1}{(1-x)^{n+1}} + \frac{(-1)^n}{(1+x)^{n+1}} \right)$.

(5) 注意到
$$f'(x) = \frac{1}{1+x^2} = \frac{1}{2i} \left(\frac{1}{x-i} - \frac{1}{x+i} \right)$$
, 故

$$f^{(n)}(x) = \left(\frac{1}{1+x^2}\right)^{(n-1)} = \frac{(-1)^{n-1}(n-1)!}{2\mathrm{i}} \left[\frac{1}{(x-\mathrm{i})^n} - \frac{1}{(x+\mathrm{i})^n}\right] = \frac{(-1)^{n-1}(n-1)!}{2\mathrm{i}(x^2+1)^n} \left[(x+\mathrm{i})^n - (x-\mathrm{i})^n\right]$$

$$= \frac{(-1)^{n-1}(n-1)!}{2\mathrm{i}(x^2+1)^n} \left[\left(\sqrt{1+x^2}e^{\mathrm{i}\arctan\frac{1}{x}}\right)^n - \left(\sqrt{1+x^2}e^{-\mathrm{i}\arctan\frac{1}{x}}\right)^n\right]$$

$$= \frac{(-1)^{n-1}(n-1)!}{2\mathrm{i}(x^2+1)^{\frac{n}{2}}} \left(e^{\mathrm{i}\arctan\frac{1}{x}} - e^{-\mathrm{i}\arctan\frac{1}{x}}\right) = \frac{(-1)^{n-1}(n-1)!}{2\mathrm{i}(x^2+1)^{\frac{n}{2}}} \cdot 2\mathrm{i} \cdot \sin\left(\arctan\frac{1}{x}\right)$$

$$= \frac{(-1)^{n-1}(n-1)!}{(x^2+1)^{\frac{n}{2}}} \sin\left(\arctan\frac{1}{x}\right).$$

例题 3.5 设 $f(x) = x^2 \ln(x + \sqrt{1 + x^2})$, 计算 $f^{(n)}(0), n \in \mathbb{N}$.

 igotimes 笔记 此类问题都是通过背 Taylor 公式之后通过拼凑来得到 $f^{(n)}(0)$, 这是因为

$$f(x) \sim \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

解 注意到

于是

$$\ln\left(x+\sqrt{1+x^2}\right) = \sum_{n=0}^{\infty} \frac{C_{-\frac{1}{2}}^n}{2n+1} x^{2n+1} = x + \sum_{n=0}^{\infty} \frac{C_{-\frac{1}{2}}^n}{2n+1} x^{2n+1}$$

$$= x + \sum_{n=0}^{\infty} \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2} - 1\right)\cdots\left(-\frac{1}{2} - n + 1\right)}{(2n+1)\cdot n!} x^{2n+1}$$
$$= x + \sum_{n=0}^{\infty} \frac{(-1)^n (2n-1)!!}{(2n+1)\cdot n!} x^{2n+1}.$$

从而
$$f(x) = x^3 + \sum_{n=0}^{\infty} \frac{(-1)^n (2n-1)!!}{(2n+1) \cdot n!} x^{2n+3}$$
,因此

命题 3.1

$$\arcsin^2 x = \sum_{n=1}^{\infty} \frac{2^{2n-1}((n-1)!)^2}{(2n)!} x^{2n}, \ x \in (-1,1).$$

例题 3.6 生成级数或者建立递推法求解高阶导数值 对 $n \in \mathbb{N}_0$,

- (1) $\% f(x) = \arcsin^2 x, \% f^{(n)}(0).$
- (2) 设 $f(x) = \arcsin x \cdot \arccos x$, 求 $f^{(n)}(0)$.
- (3) $\[\mathcal{C} f(x) = (x + \sqrt{x^2 + 1})^m, m \in \mathbb{N}, \] \[\mathcal{R} f^{(n)}(0). \]$
- (4) 设 $f(x) = \arctan^2 x$, 求 $f^{(n)}(0)$.

笔记 此类问一般是先建立函数满足的微分方程,然后用乘积求导法则或者形式幂级数对比系数来得到导数的递推,从而完成了证明.

解

(1) 解法一:注意到

$$f'(x) = \frac{2\arcsin x}{\sqrt{1 - x^2}} \Longleftrightarrow \sqrt{1 - x^2} f' = 2\arcsin x,$$

$$-\frac{x}{\sqrt{1-x^2}}f' + \sqrt{1-x^2}f'' = \frac{2}{\sqrt{1-x^2}} \Longleftrightarrow -xy' + (1-x^2)y'' = 2.$$

再对上式两边同时对x 求 $n(n \ge 2)$ 阶导,得

$$\left[-xy' + (1 - x^2)y'' \right]^{(n)} = 2^{(n)}$$

$$\iff -\left[ny^{(n)} + xy^{(n+1)} \right] + \left[\binom{n}{2} \cdot (-2)y^{(n)} + \binom{n}{1} (-2x)y^{(n+1)} + (1 - x^2)y^{(n+2)} \right] = 0$$

将x=0代入上式得

$$f^{(n+2)}(0) = n^2 f^{(n)}(0), \forall n \ge 2.$$
(3.2)

显然上式对 n=1 也成立. 又注意到 f''(0)=2, 因此对 $\forall n \in \mathbb{N}_1$, 由(3.2) 式可得

$$\frac{f^{(2n+2)}(0)}{f^{(2n)}(0)} = 4n^2 \Rightarrow \frac{f^{(2n+2)}(0)}{f^{(2)}(0)} = \prod_{i=1}^n 4i^2 \Rightarrow f^{(2n+2)}(0) = 2^{2n+1}(n!)^2.$$

显然上式对 n=0 也成立. 故

$$f^{(2n+2)}(0)=2^{2n+1}(n!)^2, \forall n\in\mathbb{N}_0.$$

又 f'''(0) = 0, 故由(3.2)式可得

$$f^{(2n-1)}(0) = (2n-1)^2 f^{(2n-3)}(0) = \cdots = [(2n-1)!!]^2 f^{(3)}(0) = 0, \forall n \in \mathbb{N}_1.$$

解法二:注意到

$$f'(x) = \frac{2 \arcsin x}{\sqrt{1 - x^2}} \longleftrightarrow \sqrt{1 - x^2} f' = 2 \arcsin x,$$

令 y = f(x),则对上式两边同时求导得

$$-\frac{x}{\sqrt{1-x^2}}f' + \sqrt{1-x^2}f'' = \frac{2}{\sqrt{1-x^2}} \Longleftrightarrow -xy' + (1-x^2)y'' = 2.$$
 (3.3)

因为 $f \in C^{\infty}(\mathbb{R})$, 所以由 Taylor 公式可知

$$y = \sum_{n=0}^{\infty} a_n x^n$$
, $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$, $y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$,

其中 $a_n = \frac{f^{(n)}(0)}{n!}, n \in \mathbb{N}_0$. 再将上式代入(3.3) 式可得

$$2 = -\sum_{n=1}^{\infty} n a_n x^n + \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2} - \sum_{n=2}^{\infty} n(n-1) a_n x^n$$

$$= -\sum_{n=0}^{\infty} n a_n x^n + \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n - \sum_{n=0}^{\infty} n(n-1) a_n x^n$$

$$= \sum_{n=0}^{\infty} [(n+2)(n+1) a_{n+2} - n a_n - n(n-1) a_n] x^n.$$

比较上式两边系数, 得对 $\forall n \in \mathbb{N}_1$, 都有

$$(n+2)(n+1)a_{n+2} - na_n - n(n-1)a_n = 0$$

$$\iff (n+2)(n+1) \cdot \frac{f^{(n+2)}(0)}{(n+2)!} - n \cdot \frac{f^{(n)}(0)}{n!} - n(n-1) \cdot \frac{f^{(n)}(0)}{n!} = 0$$

$$\iff f^{(n+2)}(0) = n^2 f^{(n)}(0). \tag{3.4}$$

又 f''(0) = 2, 因此对 $\forall n \in \mathbb{N}_1$, 由 (3.4)式可得

$$\frac{f^{(2n+2)}(0)}{f^{(2n)}(0)} = 4n^2 \Rightarrow \frac{f^{(2n+2)}(0)}{f^{(2)}(0)} = \prod_{i=1}^n 4i^2 \Rightarrow f^{(2n+2)}(0) = 2^{2n+1}(n!)^2.$$

显然上式对 n=0 也成立. 故

$$f^{(2n+2)}(0) = 2^{2n+1}(n!)^2, \forall n \in \mathbb{N}_0.$$

又 f'''(0) = 0, 故由(3.4)式可得

$$f^{(2n-1)}(0) = (2n-1)^2 f^{(2n-3)}(0) = \dots = [(2n-1)!!]^2 f^{(3)}(0) = 0, \forall n \in \mathbb{N}_1.$$

- (2)
- (3)
- (4)

命题 3.2

设f在a处n+1 阶连续可导的,证明:

$$\lim_{x \to a} \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left[\frac{f(x) - f(a)}{x - a} \right] = \frac{f^{(n+1)}(a)}{n+1}.$$

注 不妨设 a = 0, f(a) = 0 的原因: 先证不妨设 f(a) = 0 成立. 假设 f(a) = 0 时结论成立, 则当 $f(a) \neq 0$ 时, 令 g(x) = f(x) - f(a), 则 g(a) = 0, 从而由假设可知

$$\lim_{x \to a} \frac{d^n}{dx^n} \left[\frac{f(x) - f(a)}{x - a} \right] = \lim_{x \to a} \frac{d^n}{dx^n} \left[\frac{g(x)}{x - a} \right] = \frac{g^{(n+1)}(a)}{n+1} = \frac{f^{(n+1)}(a)}{n+1}.$$

故可以不妨设 f(a) = 0.

再证不妨设 a=0 成立. 假设 a=0 时结论成立, 则当 $a\neq 0$ 时, 令 g(x)=f(x+a), 则由假设可知

$$\lim_{x \to 0} \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left[\frac{g(x)}{x} \right] = \frac{g^{(n+1)}(0)}{n+1}.$$

从而

$$\lim_{x \to a} \frac{d^n}{dx^n} \left[\frac{f(x)}{x - a} \right] = \lim_{x \to 0} \frac{d^n}{dx^n} \left[\frac{f(x + a)}{x} \right] = \lim_{x \to 0} \frac{d^n}{dx^n} \left[\frac{g(x)}{x} \right]$$
$$= \frac{g^{(n+1)}(0)}{n+1} = \frac{f^{(n+1)}(a)}{n+1}.$$

故可以不妨设 a=0.

证明 不妨设 a = 0, f(a) = 0, 从而

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \left[\frac{f(x)}{x} \right] = \sum_{k=0}^n \mathsf{C}_n^k f^{(k)}(x) \frac{(-1)^{n-k} (n-k)!}{x^{n-k+1}} = \frac{n! (-1)^n}{x^{n+1}} \sum_{k=0}^n \frac{1}{k!} f^{(k)}(x) (-x)^k.$$

于是由L'Hospital 法则可得

$$\lim_{x \to 0} \frac{d^n}{dx^n} \left[\frac{f(x)}{x} \right] = n! (-1)^n \lim_{x \to 0} \frac{\sum_{k=0}^n \frac{1}{k!} f^{(k)}(x) (-x)^k}{x^{n+1}}$$

$$\frac{\text{L'Hospital} \, \not \pm \mathbb{M}}{n!} n! (-1)^n \lim_{x \to 0} \frac{\sum_{k=0}^n \frac{1}{k!} f^{(k+1)}(x) (-x)^k - \sum_{k=1}^n \frac{1}{(k-1)!} f^{(k)}(x) (-x)^{k-1}}{(n+1)x^n}$$

$$= n! (-1)^n \lim_{x \to 0} \frac{\sum_{k=0}^n \frac{1}{k!} f^{(k+1)}(x) (-x)^k - \sum_{k=0}^{n-1} \frac{1}{(k)!} f^{(k+1)}(x) (-x)^k}{(n+1)x^n}$$

$$= n! (-1)^n \lim_{x \to 0} \frac{\frac{1}{n!} f^{(n+1)}(x) (-x)^n}{(n+1)x^n}$$

$$= \frac{f^{(n+1)}(0)}{n+1}.$$

例题 3.7 设 $f \in C^{\infty}(\mathbb{R}), n \in \mathbb{N}$ 满足

$$f^{(j)}(0) = 0$$
 $i = 0, 1, 2, \dots, n-1$ $f^{(n)}(0) \neq 0$

$$f^{(j)}(0) = 0, j = 0, 1, 2, \cdots, n - 1, f^{(n)}(0) \neq 0.$$
 证明: $g(x) = \begin{cases} \frac{f(x)}{x^n}, & x \neq 0 \\ \frac{f^{(n)}(0)}{n!}, & x = 0 \end{cases}$ 在R上无穷次可微.

笔记 本题不能对 Taylor 公式的 peano 余项求导来说明 g 可微分性, 这是不严格的.

证明 当 n=0 时, $g=f\in C^{\infty}(\mathbb{R})$ 显然成立. 假设命题对 $n\in\mathbb{N}$ 成立, 考虑 n+1 的情形. 令 $h(x)=\frac{f(x)}{x}$, 则

$$\frac{f(x)}{x^{n+1}} = \frac{\frac{f(x)}{x}}{x^n} = \frac{h(x)}{x^n}.$$
 (100.2412424234—-2-4-::::-24..119)

对 $\forall k \in \mathbb{N}$, 由命题 3.2可知

$$\lim_{x \to 0} h^{(k)}(x) = \lim_{x \to 0} \left[\frac{f(x)}{x} \right]^{(k)} = \frac{f^{(k+1)}(0)}{k+1}.$$

于是由导数极限定理可知 $h^{(k)}(0)=\frac{f^{(k+1)}(0)}{k+1}, \forall k\in\mathbb{N},$ 故 h 在 x=0 处无穷次可微. 又由 $f\in C^\infty(\mathbb{R})$, 从而 $h\in C^\infty(\mathbb{R})$ $C^{\infty}(\mathbb{R}\setminus\{0\})$, 故 $h\in C^{\infty}(\mathbb{R})$. 于是

$$h^{(j)}(0) = \lim_{x \to 0} h^{(j)}(x) = \frac{f^{(j+1)}(0)}{j+1} = 0, \quad 0 \leqslant j \leqslant n-1,$$

$$h^{(n)}(0) = \lim_{x \to 0} h^{(n)}(x) = \frac{f^{(n+1)}(0)}{n+1} \neq 0.$$
(3.5)

因此 h(x) 满足归纳假设条件, 进而由归纳假设及(3.4)(3.5)式可知

$$g(x) = \begin{cases} \frac{f(x)}{x^{n+1}} & , x \neq 0 \\ \frac{f^{(n+1)}(0)}{(n+1)!} & , x = 0 \end{cases} = \begin{cases} \frac{h(x)}{x^n} & , x \neq 0 \\ \frac{h^{(n)}(0)}{n!} & , x = 0 \end{cases} \in C^{\infty}(\mathbb{R}).$$

因此由数学归纳法可知,结论成立.

第四章 微分中值定理

4.1 Hermite 插值定理

<u>定</u>理 4.1 (Taylor 定理)

(1) 带 Peano 余项:

设 f(x) 在 x_0 处 n 阶可导. 则 $\exists \delta > 0$, 使得当 $x \in U(x_0, \delta)$ 时, 有

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$$

(2) 带 Lagrange 余项:

设 f(x) 在 [a,b] 上存在 n 阶连续导数, 且 (a,b) 上存在 n+1 阶导数, x_0 为 [a,b] 内一定点,则对于任意的 $x \in [a,b]$, 在 x,x_0 之间存在一个数 ε 使得

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(k+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

(3) 带积分型余项:

设 f(x) 定义是在 $U(x_0, \delta)$ 上的函数 f(x) 在 x_0 处 n+1 阶可导, 对任意 $x \in U(x_0, \delta)$, t 在 x 与 x_0 之间, 都有

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t) (x - t)^n dt.$$

(4) 带 Cauchy 型余项:

设 f(x) 定义是在 $U(x_0, \delta)$ 上的函数 f(x) 在 x_0 处 n+1 阶可导, 对任意 $x \in U(x_0, \delta)$, 都存在 ξ 在 x 与 x_0 之间, 使得

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} f^{(n+1)}(\xi) (x - \xi)^n (x - x_0).$$

证明

(1) 带 Peano 余项:

- (2) 带 Lagrange 余项:
- (3) 带积分型余项:
- (4) 带 Cauchy 型余项:

定理 **4.2** (Hermite 插值定理)

给定 $a < x_1 < x_2 < \cdots < x_m < b$ 和非负整数 $s_j, j = 0, 1, 2, \cdots, m$. 设 $f \in C^{\sum\limits_{j=1}^m (s_j+1)-1} [a,b]$ 且 $f \in D^{\sum\limits_{j=1}^m (s_j+1)} (a,b)$,设 p(x) 满足条件: 对闭区间 [a,b] 中的 m 个点 $a \leqslant x_1 < x_2 < \cdots < x_m \leqslant b, s_j \in \mathbb{N}_0, j = 1, 2, \cdots, m$,都有唯一的次数不超过 $\sum\limits_{j=1}^m (s_j+1)-1$ 的多项式 $p(x) \in \mathbb{R}[x]$,并且

$$p^{(i)}(x_j) = f^{(i)}(x_j), i = 0, 1, \dots, s_j, j = 1, 2, \dots, m.$$

并称满足上述条件的多项式 p(x) 为 **Hermite 插值多项式**, 则对每个 $x \in [a,b]$, 都存在 $\theta \in (\min\{x,x_1\}, x_2\}$

 $\max\{x,x_m\}$), 使得

$$f(x) = p(x) + \frac{\int_{j=1}^{(m)} (s_j + 1)}{\left(\sum_{j=1}^{m} (s_j + 1)\right)!} (x - x_1)^{s_1 + 1} (x - x_2)^{s_2 + 1} \cdots (x - x_m)^{s_m + 1}.$$

学 笔记 p(x) 的求法: 先由各插值点的次数确定 p(x) 的最高次数 (即 $\sum_{j=1}^{m} (s_j + 1) - 1$), 再由方程 $p^{(i)}(x_j) = f^{(i)}(x_j)$, $i = 0, 1, \cdots, s_j, j = 1, 2, \cdots, m$. 直接解出. 证明

命题 4.1 (Lagrange 插值公式)

设 $f \in C[a,b] \cap D^2(a,b)$, 证明: 对 $\forall x \in [a,b]$, 存在 $\theta \in (a,b)$ 使得

$$f(x) = \frac{x - b}{a - b}f(a) + \frac{x - a}{b - a}f(b) + \frac{f''(\theta)}{2}(x - a)(x - b).$$

注 考试中先用 K 值法证明, 再直接用.

 $\stackrel{\triangleright}{\mathbf{Y}}$ 笔记 K 值法: 先令要证的中值等式中的高阶导数中值点 (本题为 $f''(\theta)$) 为常数, 再构造函数由 Rolle 中值定理推出结论即可.

证明 当x = a或b时,结论显然成立.

对 $\forall x \in (a,b)$, 固定 x, 记

$$K = \frac{2\left[f(x) - \frac{x-b}{a-b}f(a) - \frac{x-a}{b-a}f(b)\right]}{(x-a)(x-b)}.$$

$$\Rightarrow g(y) = f(y) - \frac{y-b}{a-b}f(a) - \frac{y-a}{b-a}f(b) - \frac{K}{2}(y-a)(y-b), \text{ }$$

$$g'(y) = f'(y) - \frac{f(a)}{a-b} - \frac{f(b)}{b-a} - \frac{K}{2}(2y-a-b), \quad g''(y) = f''(y) - K.$$

从而 g(a) = g(b) = g(x) = 0, 由 Rolle 中值定理可知, 存在 $\theta_1 \in (a, x), \theta_2 \in (x, b)$, 使得

$$g'(\theta_1) = g'(\theta_2) = 0.$$

再由 Rolle 中值定理可得, 存在 $\theta \in (\theta_1, \theta_2) \subset (a, b)$, 使得 $g''(\theta) = f''(\theta) - K = 0$, 即 $f''(\theta) = K$.

定理 4.3 (带积分型余项的 Lagrange 插值公式)

设 f 是 [a,b] 上的二阶可微函数且 f'' 在 [a,b] 可积,则成立

$$f(x) = \frac{b - x}{b - a}f(a) + \frac{x - a}{b - a}f(b) + \int_{a}^{b} f''(y)k(x, y)dy,$$

这里

$$k(x, y) = \begin{cases} \frac{x - a}{b - a}(y - b), & b \geqslant y \geqslant x \geqslant a, \\ \frac{b - x}{b - a}(a - y), & b \geqslant x \geqslant y \geqslant a. \end{cases}$$

特别的, 若还有 f(a) = f(b) = 0, 则有

$$f(x) = \int_{a}^{b} f''(y)k(x, y)dy.$$
 (4.1)

拿 笔记 k(x, y) 也叫 Green 函数. 容易验证 |k(x, y)| ≤ |k(x, x)|.

证明 考虑

$$g(x) = f(x) - \frac{b-x}{b-a}f(a) - \frac{x-a}{b-a}f(b), x \in [a, b],$$

则有 g''(x) = f''(x), g(a) = g(b) = 0. 因此只需对 g 证明式(4.1).

事实上, 由分部积分可得

$$\int_{a}^{b} g''(y)k(x,y)dy = \frac{b-x}{b-a} \int_{a}^{x} g''(y)(a-y)dy + \frac{x-a}{b-a} \int_{x}^{b} g''(y)(y-b)dy$$

$$= \frac{b-x}{b-a} \left[(a-x)g'(x) - \int_{a}^{x} g'(y)dy \right] + \frac{x-a}{b-a} \left[-g'(x)(x-b) + \int_{x}^{b} g'(y)dy \right]$$

$$= \frac{b-x}{b-a} [(a-x)g'(x) + g(x)] + \frac{x-a}{b-a} [-g'(x)(x-b) + g(x)]$$

$$= g(x).$$

这就证明了(4.1)式.

例题 4.1 设 $f \in D^3[0,1]$ 满足 f(0) = -1, f'(0) = 0, f(1) = 0, 证明对任何 $x \in [0,1]$, 存在 $\theta \in (0,1)$, 使得

$$f(x) = -1 + x^2 + \frac{x^2(x-1)}{6}f'''(\theta).$$

证明 当 x = 0 或 1 时, 结论显然.

対
$$\forall x \in (0,1)$$
, 固定 x , 记 $K = \frac{6[f(x)+1-x^2]}{x^2(x-1)}$. 令 $g(y) = f(y)+1-y^2-\frac{y^2(y-1)}{6}K$, 则
$$g'(y) = f'(y)-2y-\frac{y(y-1)}{3}K-\frac{y^2}{6}K,$$
$$g''(y) = f''(y)-2-\frac{2y-1}{3}K-\frac{y}{3}K,$$
$$g'''(y) = f'''(y)-K.$$

从而 g(0) = g(1) = g(x) = 0, 由 Rolle 中值定理可知, 存在 $\theta_1 \in (0, x), \theta_2 \in (x, 1)$, 使得

$$g'(\theta_1) = g'(\theta_2) = 0.$$

又由 f'(0) = 0 可知

$$g'(0) = g'(\theta_1) = g'(\theta_2) = 0.$$

再由 Rolle 中值定理可得, 存在 $\xi_1 \in (0, \theta_1), \xi_2 \in (\theta_1, \theta_2)$, 使得

$$g''(\xi_1) = g''(\xi_2) = 0.$$

于是再由 Rolle 中值定理可得, 存在 $\theta \in (\xi_1, \xi_2) \subset (0, 1)$, 使得 $g'''(\theta) = f'''(\theta) - K$. 即 $f'''(\theta) = K$. **例题 4.2** 设 $f \in C[0, 2] \cap D(0, 2)$ 满足 $f(0) = f(2) = 0, |f'(x)| \leq M, \forall x \in (0, 2)$. 证明

$$\left| \int_0^2 f(x) \, \mathrm{d}x \right| \leqslant M.$$

🔮 笔记 靠近哪个点就用哪个点的插值多项式.(原因是: 越靠近插值点, 拟合的效果越好)

证明 当 $x \in [0,1]$, 由 Lagrange 中值定理 (插值定理), 我们有

$$f(x) = f(0) + \frac{f'(\theta(x))}{1!}(x - 0) = f'(\theta(x))x,$$

于是

$$|f(x)| \le |f'(\theta(x))| \cdot x \le Mx. \tag{4.2}$$

当 $x \in [1,2]$, 由 Lagrange 中值定理 (插值定理), 我们有

$$f(x) = f(2) + \frac{f'(\zeta(x))}{1!}(x-2) = f'(\zeta(x))(x-2),$$

于是

$$|f(x)| \le |f'(\zeta(x))| \cdot |x - 2| \le M(2 - x).$$
 (4.3)

结合(4.2) 和(4.3), 我们有

$$\left| \int_0^2 f(x) \, dx \right| \le \left| \int_0^1 f(x) \, dx \right| + \left| \int_1^2 f(x) \, dx \right| \le \int_0^1 |f(x)| \, dx + \int_1^2 |f(x)| \, dx$$
$$\le \int_0^1 (Mx) \, dx + \int_1^2 (M(2-x)) \, dx = M.$$

例题 4.3 设 $f \in D^2[0,1], f(0) = f(1) = 0, |f''(x)| \leq M$, 证明

$$\left| \int_0^1 f(x) \, \mathrm{d}x \right| \leqslant \frac{M}{12}.$$

笔记 最多可以拟合 f(0), f(1) 两个条件, 需要插值一次多项式, 余项需要 2 阶导数, 条件完美符合. 因此先由 Hermite 插值定理 (Lagrange 插值公式) 直接写出插值多项式和余项: 存在 $\theta(x) \in (0,1)$, 使得

$$f(x) = \frac{f''(\theta(x))}{2} x(x-1), \forall x \in [0,1].$$

但是注意考试时,需要先用 K 值法证明上式再使用

证明 由 Hermite 插值定理可知, 存在 $\theta(x) \in (0,1)$, 使得

$$f(x) = \frac{f''(\theta(x))}{2} x(x-1), \forall x \in [0,1].$$

积分并取绝对值就有

$$\left| \int_0^1 f(x) \, \mathrm{d}x \right| = \left| \int_0^1 \frac{f''(\theta(x))}{2} x(x-1) \, \mathrm{d}x \right| \leqslant \int_0^1 \left| \frac{f''(\theta(x))}{2} \right| |x(x-1)| \, \mathrm{d}x \leqslant \frac{M}{2} \int_0^1 x(1-x) \, \mathrm{d}x = \frac{M}{12}.$$

例题 **4.4** 设 $f \in D^2[a,b]$, 证明存在 $\xi \in (a,b)$, 使得

$$\int_{a}^{b} f(x) dx = (b - a) \frac{f(a) + f(b)}{2} - \frac{(b - a)^{3}}{12} f''(\xi).$$

笔记 题目并没有明确给出插值点的相关条件,需要我们自己选取合适的插值点.(一般插值点都是特殊点,比如:端 点、中点、极值点等)

我们观察到需要证明的等式中含有 a,b 两点并且 f2 阶可导, 因此直接选取这两点作为插值点即可.

注 考试中下述证明中的 Lagrange 插值公式也需要先用 K 值法证明才能使

本题也可以直接用 K 值法证明. 只需令
$$g(y) = \int_a^y f(x) dx = (y-a) \frac{f(a) + f(y)}{2} - \frac{(y-a)^3}{12} K$$
 即可.

证明 由 Lagrange 插值公式 (或Hermite 插值定理) 可知, 对 $\forall x \in [a,b]$, 存在 $\theta(x) \in (a,b)$ 使得

$$f(x) = \frac{x-b}{a-b}f(a) + \frac{x-a}{b-a}f(b) + \frac{f''(\theta(x))}{2}(x-a)(x-b). \tag{4.4}$$

两边同时积分得到

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \frac{x-b}{a-b} f(a)dx + \int_{a}^{b} \frac{x-a}{b-a} f(b)dx + \frac{1}{2} \int_{a}^{b} f''(\theta(x))(x-a)(x-b)dx. \tag{4.5}$$

由(4.4)式可得

$$f''(\theta(x)) = \frac{2\left[f(x) - \frac{x-b}{a-b}f(a) - \frac{x-a}{b-a}f(b)\right]}{(x-a)(x-b)} \in C(a,b).$$

又由 L'Hospital 法则可得

$$\lim_{x \to a^{+}} f''(\theta(x)) = \lim_{x \to a^{+}} \frac{2\left(f(x) - \frac{x-b}{a-b}f(a) - \frac{x-a}{b-a}f(b)\right)}{(x-a)(x-b)} = \frac{2}{a-b} \lim_{x \to a^{+}} \frac{f(x) - \frac{x-b}{a-b}f(a) - \frac{x-a}{b-a}f(b)}{x-a}$$

$$= \frac{2}{a-b} \lim_{x \to a^{+}} \frac{f'(x) - \frac{f(a)}{a-b} - \frac{f(b)}{b-a}}{1} = \frac{2}{b-a} \left[\frac{f(b) - f(a)}{b-a} - f'(a)\right],$$

$$\lim_{x\to b^{-}}f^{\prime\prime}\left(\theta\left(x\right)\right)=\lim_{x\to b^{-}}\frac{2\left(f(x)-\frac{x-b}{a-b}f(a)-\frac{x-a}{b-a}f(b)\right)}{(x-a)(x-b)}=\frac{2}{b-a}\lim_{x\to b^{-}}\frac{f\left(x\right)-\frac{x-b}{a-b}f(a)-\frac{x-a}{b-a}f\left(b\right)}{x-a}$$

$$= \frac{2}{b-a} \lim_{x \to b^{-}} \frac{f'(x) - \frac{f(a)}{a-b} - \frac{f(b)}{b-a}}{1} = \frac{2\left[f'(b) - \frac{f(b)-f(a)}{b-a}\right]}{b-a}.$$

从而 $f''(\theta(x))$ 可以连续延拓到 [a,b] 上,又因为改变有限个点的函数值后,其积分结果不变,所以可以不妨设 $f''(\theta(x)) \in C[a,b]$. 于是由积分中值定理可知,存在 $\xi \in (a,b)$,使得

$$\frac{1}{2} \int_{a}^{b} f''(\theta(x))(x-a)(x-b) \, \mathrm{d}x = \frac{f''(\xi)}{2} \int_{a}^{b} (x-a)(x-b) \, \mathrm{d}x \tag{4.6}$$

利用(4.5)和(4.6)式可得

$$\int_{a}^{b} f(x) dx = (b-a) \cdot \frac{f(a) + f(b)}{2} + \frac{f''(\xi)}{2} \int_{a}^{b} (x-a)(x-b) dx$$
$$= (b-a) \frac{f(a) + f(b)}{2} - \frac{(b-a)^{3}}{12} f''(\xi).$$

例题 **4.5** 设 $f \in C^2[a,b]$, 证明存在 $\xi \in (a,b)$, 使得

$$\int_{a}^{b} f(x) dx = (b - a) f\left(\frac{a + b}{2}\right) + \frac{(b - a)^{3}}{24} f''(\xi).$$

笔记 本题需要我们选取合适的插值点和插值条件,这里我们应该选 $f(\frac{a+b}{2})$, $f'(\frac{a+b}{2})$ 作为插值条件, 插值多项式为 1 次, 余项需要 2 阶导数.

注 本题也可以直接用 K 值法证明.

证明 由 Taylor 定理 (Hermite 插值定理) 可知, 存在 $\theta \in (a, b)$, 使得

$$f\left(x\right) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(x - \frac{a+b}{2}\right) + \frac{f''\left(\theta\right)}{2}\left(x - \frac{a+b}{2}\right)^{2}.$$

两边同时积分,并由积分中值定理可知,存在 $\xi \in (a,b)$

$$\int_{a}^{b} f(x) dx = (b - a) f\left(\frac{a + b}{2}\right) + \int_{a}^{b} \frac{f''(\theta)}{2} \left(x - \frac{a + b}{2}\right)^{2} dx = (b - a) f\left(\frac{a + b}{2}\right) + \frac{f''(\xi)}{2} \int_{a}^{b} \left(x - \frac{a + b}{2}\right)^{2} dx$$

$$= (b - a) f\left(\frac{a + b}{2}\right) + \frac{(b - a)^{3}}{24} f''(\xi).$$

例题 4.6 设 $f \in C^2[0,1]$ 满足 f(0) = f(1) = 0, 证明

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \mathrm{d}x \geqslant 4.$$

证明 由带积分余项的 Lagrange 插值定理可知, 我们有

$$f(x) = \int_0^1 f''(y)k(x,y) \, dy, \quad \not \exists \, \forall \quad k(x,y) = \begin{cases} \frac{x-0}{1-0}(y-1), & 1 \ge y \ge x \ge 0, \\ \frac{1-x}{1-0}(0-y), & 1 \ge x \ge y \ge 0. \end{cases}$$

从而

$$|f(x)| \le \int_0^1 |f''(y)| |k(x,y)| \, \mathrm{d}y \le |k(x,x)| \int_0^1 |f''(y)| \, \mathrm{d}y$$
$$= x(1-x) \int_0^1 |f''(y)| \, \mathrm{d}y \le \frac{1}{4} \int_0^1 |f''(y)| \, \mathrm{d}y.$$

故

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geqslant \int_0^1 \frac{|f''(x)|}{\frac{1}{4} \int_0^1 |f''(y)| dy} dx = \frac{4}{\int_0^1 |f''(y)| dy} \int_0^1 |f''(x)| dx = 4.$$

但实际上, 我们可以得到

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \, \mathrm{d}x \geqslant \int_0^1 \frac{|f''(x)|}{x(1-x) \int_0^1 |f''(y)| \, \mathrm{d}y} \, \mathrm{d}x = \frac{1}{\int_0^1 |f''(y)| \, \mathrm{d}y} \int_0^1 \frac{|f''(x)|}{x(1-x)} \, \mathrm{d}x.$$

4.2 函数构造类

4.2.1 单中值点问题 (一阶构造类)

例题 4.7

1. 设 $f \in C[0,2] \cap D(0,2)$ 满足 f(0) = f(2) = 0, $\lim_{r \to 1} \frac{f(x) - 2}{r - 1} = 5$. 则存在 $\xi \in (0,2)$ 使得

$$f'(\xi) = \frac{2\xi - f(\xi)}{\xi}.$$

2. 设 $f \in C[0,1] \cap D(0,1)$, f(0) = 0, 证明: 存在 $u \in (0,1)$, 使

$$f'(u) = \frac{uf(u)}{1 - u}.$$

3. 设 $f \in C[-1,2] \cap D(-1,2)$ 且有 $f(-1) = f(2) = -\frac{1}{2}, f(\frac{1}{2}) = 1$. 证明对任何实数 $\lambda \in \mathbb{R}$, 都存在 $\xi \in (-1,2)$, 使

$$f'(\xi) = \lambda \left[f(\xi) - \frac{\xi}{2} \right] + \frac{1}{2}.$$

笔记 我们在草稿纸上构造函数,构造过程无需展示给别人或者卷面.构造的本质是猜测,所以无需严格的逻辑.

1. Step1 考虑微分方程 $y' = \frac{2x - y}{x}$, 解得 $y = \frac{c}{x} + x$. Step2 分离常数 c 得 c = x(y - x), 常数变易得构造函数 c(x) = x(f(x) - x). 2. Step1 考虑微分方程 $y' = \frac{xy}{1 - x}$, 解得 $y = \frac{ce^{-x}}{x - 1}$. Step2 分离常数 c 得 $c = e^{x}(x - 1)y$, 常数变易得构造函数 $c(x) = e^{x}(x - 1)f(x)$. 3. Step1 考虑微分方程 $y' = \lambda \left[y - \frac{x}{2} \right] + \frac{1}{2}$, 解得 $y = ce^{\lambda x} + \frac{x}{2}$.

Step2 分离常数 c 得 $c = \frac{y - \frac{x}{2}}{cdx}$, 常数变易得构造函数 $c(x) = \frac{f(x) - \frac{x}{2}}{cdx}$.

证明

1. 由 $\lim_{x \to 1} \frac{f(x) - 2}{x - 1} = 5$ 及 $f \in C[0, 2]$ 可知

$$f(1) = \lim_{x \to 1} f(x) = 5 \lim_{x \to 1} (x - 1) + 2 = 2.$$

从而

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{f(x) - 2}{x - 1} = 5.$$

构造函数 c(x) = x(f(x) - x), 我们求导得

$$c'(x) = f(x) - 2x + xf'(x). (4.7)$$

注意到

$$c(0) = 0, c(1) = 1, c(2) = -4.$$

于是由 Lagrange 中值定理得 $\alpha \in (0,1), \beta \in (1,2)$, 使得

$$c'(\alpha) = \frac{c(1) - c(0)}{1 - 0} = 1, c'(\beta) = \frac{c(1) - c(2)}{1 - 2} = -5.$$

由导数介值定理知存在 $\xi \in (0,\eta)$ 使得 $c'(\xi) = 0$. 由(4.7)知

$$f'(\xi) = \frac{2\xi - f(\xi)}{\xi}.$$

这就完成了证明.

2. 构造 $c(x) = e^{x}(x-1)f(x)$,则 c(0) = c(1) = 0,由罗尔中值定理,存在 $u \in (0,1)$,使得 c'(u) = 0,这恰好是

$$f'(u) = \frac{uf(u)}{1 - u}.$$

3. 构造 $c(x) = \frac{f(x) - \frac{x}{2}}{a^{3}x}$. 注意到

$$c(-1) = 0, c(2) = -\frac{3}{2e^{2\lambda}}, c\left(\frac{1}{2}\right) = \frac{3}{4e^{\frac{\lambda}{2}}}.$$

由零点定理知存在 $\theta \in (\frac{1}{2},2)$, 使得 $c(\theta)=0$. 再由罗尔中值定理知存在 $\xi \in (-1,\theta) \subset (-1,2)$, 使 $c'(\xi)=0$, 即

$$f'(\xi) = \lambda \left[f(\xi) - \frac{\xi}{2} \right] + \frac{1}{2}.$$

例题 4.8 设 $f \in D[0,1]$ 且 f(0) > 0, f(1) > 0, $\int_0^1 f(x) dx = 0$, 证明存在 $\xi \in (0,1)$, 使得

$$f'(\xi) + 3f^3(\xi) = 0.$$

 $\dot{\mathbf{L}}$ 虽然本题直接考虑微分方程: $\mathbf{v}' + 3\mathbf{v}^2 = 0$ 解出 \mathbf{v} , 然后常数变易也不难得到构造函数. 但是下述证明的方法旨在 介绍一种新的解决这类问题的方法.

 $\stackrel{ extbf{Q}}{ extbf{Q}}$ 笔记 此类构造虽然仍然是一阶构造, 但是要把部分 f 视为已知函数来构造, 对于本题, 即 $3f^2$ 视为已知的函数. 考 虑 $y' + 3f^2y = 0$. 解得 $y = ce^{-\int_0^x 3f^2(t)dt}$, 分离变量得构造函数 $c(x) = f(x)e^{\int_0^x 3f^2(t)dt}$.

证明 证法一: 构造函数 $c(x) = f(x)e^{\int_0^x 3f^2(t)dt}$, 注意到

$$c'(x) = e^{\int_0^x 3f^2(t)dt} [f'(x) + 3f^3(x)].$$

以及由积分中值定理, 我们知道存在 $\theta \in (0,1)$, 使得

$$f(\theta) = \int_0^1 f(x) \mathrm{d}x = 0.$$

注意到若 f 只有一个零点,则因为 f(0) > 0, f(1) > 0, 我们知道 f(x) > 0, $\forall x \in [0, \theta) \cup (\theta, 1]$, 从而 $\int_0^1 f(x) dx > 0$, 这就是一个矛盾! 于是存在 $\theta_1 \neq \theta_2$, 使得 $f(\theta_1) = f(\theta_2) = 0$. 现在就有 $c(\theta_1) = c(\theta_2) = 0$, 由罗尔中值定理, 存在 $\xi \in (0,1)$, 使得 $c'(\xi) = 0$, 即

$$f'(\xi) + 3f^3(\xi) = 0.$$

证法二: 构造函数 $c(x) = f(x)e^{\int_0^x 3f^2(t)dt}$, 注意到

$$c'(x) = e^{\int_0^x 3f^2(t)dt} [f'(x) + 3f^3(x)].$$

以及由积分中值定理, 我们知道存在 $\theta \in (0,1)$, 使得

$$f(\theta) = \int_0^1 f(x) \mathrm{d}x = 0.$$

从而 $c(\theta) = 0$. 因为 f(0), f(1) > 0, 所以 c(0), c(1) > 0. 又由 $c \in C[0,1]$, 故 c(x) 在 [0,1] 上可取到最大、最小值. 由 于 $c(\theta) = 0 < c(0), c(1)$, 因此 c(x) 只能在 (0,1) 上可取到最小值, 即存在 $\xi \in (0,1)$, 使得 $c(\xi) \leq c(x)$, $\forall x \in [0,1]$. 由 费马引理可知 $c'(\xi) = 0$, 即

$$f'(\xi) + 3f^3(\xi) = 0.$$

例题 **4.9** 设 $f \in C^1[0,1]$, 证明存在 $\xi \in [0,1]$, 使得

$$f'(\xi) = \int_0^1 (12x - 6)f(x) dx.$$

② 笔记 核心想法: 分部积分转移导数, 但是需要控制非积分部分为零. 注 $\int_0^1 (12x-6)f(x) dx = \int_0^1 (6x^2-6x)' f(x) dx$ 的原因: 我们希望利用分部积分后能够直接转移导数而没有多余部 分, 因此我们待定 $\int_0^1 (12x-6)f(x)dx = \int_0^1 (ax^2+bx+c)'f(x)dx$, 即 $12x-6=(ax^2+bx+c)'$. 分部积分得到 $\int_0^1 (12x - 6)f(x) dx = \int_0^1 (ax^2 + bx + c)' f(x) dx = (ax^2 + bx + c)f(x) \Big|_0^1 - \int_0^1 (ax^2 + bx + c)f'(x) dx.$

我们希望 $(ax^2 + bx + c)f(x)\Big|_0^1 = (a + b + c)f(1) - cf(0) = 0$, 即希望 x = 0, 1 恰好是 $ax^2 + bx + c$ 的根, 并且 $12x - 6 = (ax^2 + bx + c)'$. 从而

$$\begin{cases} a+b+c=0\\ c=0\\ 2a=12\\ b=-6 \end{cases} \Rightarrow \begin{cases} a=6\\ b=-6\\ c=0 \end{cases}.$$

由此可知, 满足我们期望的二次函数只有 $6x^2-6x$, 即 $\int_0^1 (12x-6)f(x)dx = \int_0^1 (6x^2-6x)'f(x)dx$. 证明

$$\int_{0}^{1} (12x - 6) f(x) dx = \int_{0}^{1} (6x^{2} - 6x) f(x) dx \xrightarrow{\underline{\text{ fine fixed}}} - \int_{0}^{1} (6x^{2} - 6x) f(x) dx$$

$$\underline{\frac{\text{ fine fixed}}{\text{ fine fixed}}} f'(\xi) \int_{0}^{1} (6x - 6x^{2}) dx = f'(\xi), \xi \in [0, 1].$$

例题 4.10

1. 设 $f \in D^2[0,1]$ 使得 f(0) = f(1), 证明存在 $\eta \in (0,1)$ 使得

$$f''(\eta) = \frac{2f'(\eta)}{1-\eta}.$$

2. 设 $f \in D^2[0, \frac{\pi}{4}], f(0) = 0, f'(0) = 1, f(\frac{\pi}{4}) = 1$, 证明存在 $\xi \in (0, \frac{\pi}{4})$, 使得

$$f''(\xi) = 2f(\xi)f'(\xi).$$

注

1. 考虑微分方程 $y'' = \frac{2y'}{1-x}$, 解得 $y' = \frac{c}{(1-x)^2}$, 常数变易得到构造函数 $c(x) = (1-x)^2 f'(x)$.

2. 虽然我们可以通过解微分方程得到构造函数,但是也不要忘记直接猜测构造函数的想法. 当需要考虑的微分方程比较难解时,就只能猜测构造函数.

考虑微分方程:y''=2yy',解得 $y'=y^2+c$,得到构造函数 $c(x)=f'(x)-f^2(x)$. 但是根据这个构造函数结合已知条件再利用中值定理无法得到结论. $(f(\frac{\pi}{4})=1$ 用不了) 因此需要构造更加具体的函数才行.

然而原问题等价于利用 Rolle 中值定理找一个中值点 $\xi \in (0, \frac{\pi}{4})$, 使得 $c'(\xi) = 0$. 但由条件只能得到 c(0) = 1, $c(\frac{\pi}{4})$ 无法确定. 因此我们希望还能找一个点 $x_0 \in (0, \frac{\pi}{4})$, 使得 $c(x_0) = f'(x_0) - f^2(x_0) = 1$.

将这个看作一个新的中值问题, 即已知设 $f \in D^2[0, \frac{\pi}{4}], f(0) = 0, f'(0) = 1, f(\frac{\pi}{4}) = 1$, 证明: 存在 $x_0 \in (0, \frac{\pi}{4}),$ 使得

$$c(x_0) = f'(x_0) - f^2(x_0) = 1.$$

考虑微分方程: $y'-y^2=1$, 解得 $\arctan y=x+C$, 常数变易得到新的构造函数 $g(x)=\arctan f(x)-x$. 由条件可知 $g(0)=g(\frac{\pi}{4})=0$, 从而由 Rolle 中值定理可知, 存在 $x_0\in(0,\frac{\pi}{4})$, 使得 $g'(x_0)=0\Leftrightarrow f'(x_0)-f^2(x_0)=1$. 从而找到了满足我们需求的中值点 x_0 , 故结论得证.(具体证明见下述证明)

证明

1. 令 $c(x) = (1-x)^2 f'(x)$, 则 $c'(x) = 2(x-1)f'(x) + (1-x)^2 f''(x)$. 由 f(0) = f(1) 及 Rolle 中值定理可得, 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$. 从而 $c(1) = c(\xi) = 0$, 再根据 Rolle 中值定理可得, 存在 $\eta \in (0,1)$, 使得

$$c'(\eta) = 0 \Leftrightarrow f''(\eta) = \frac{2f'(\eta)}{1 - \eta}.$$

2. 令 $c(x) = f'(x) - f^2(x)$, $g(x) = \arctan f(x) - x$, 则 $g'(x) = \frac{f'(x) - f^2(x) - 1}{1 + f^2(x)}$. 进而由条件可得 $g(0) = g(\frac{\pi}{4}) = 0$, g'(0) = 0. 于是由 Rolle 中值定理可知, 存在 $a \in (0, \frac{\pi}{4})$, 使得 g'(a) = 0, 即 $f'(a) = f^2(a) + 1$. 从而 c(a) = 0

 $1, c(0) = f'(0) - f^2(0) = 1$, 故再由 Rolle 中值定理可得, 存在 $\xi \in (0, \frac{\pi}{4})$, 使得

$$c(1) = 0 \Leftrightarrow f''(\xi) = 2f(\xi)f'(\xi).$$

4.2.2 多中值点问题

例题 4.11 设 $f \in C[0,1] \cap D(0,1)$ 且 f(0) = 0, f(1) = 1. 证明存在互不相同的 $\lambda, \mu \in (0,1)$ 使得

$$f'(\lambda)(1+f'(\mu))=2.$$

笔记 核心想法:插入一个点 c,将两个中值点问题转换为如何确定这单个插入点 c 的问题.

注 思路分析: 待定 $c \in (0,1)$, 运用拉格朗日中值定理, 我们知道存在 $\lambda \in (0,c)$, $\mu \in (c,1)$, 使得

$$f'(\lambda) = \frac{f(c) - f(0)}{c - 0} = \frac{f(c)}{c}, f'(\mu) = \frac{f(c) - f(1)}{c - 1} = \frac{f(c) - 1}{c - 1}.$$

需要

$$2 = f'(\lambda)(1 + f'(\mu)) = \frac{f(c)}{c} \left[1 + \frac{f(c) - 1}{c - 1} \right],$$

只需找到一个 $c \in (0,1)$ 使得上式成立. 但是直接考虑上式比较困难, 我们希望能找到一个特殊的 c 从而将上式化简. 因此待定 k, 我们希望 f(c) 同时满足 $\frac{f(c)-1}{c-1}=k$ (这里期望 f(c) 满足 $\frac{f(c)}{c}=k$ 也可以), 从而上式就转化为

$$2 = \frac{kc - k + 1}{c} \cdot (k + 1) \Leftrightarrow \left(k^2 + k - 2\right)c - \left(k^2 - 1\right) = 0$$
$$\Leftrightarrow (k - 1)\left[(k + 2)c - k - 1\right] = 0 \Leftrightarrow k = 1 \stackrel{\longrightarrow}{\text{rig}} k = \frac{1 - 2c}{c - 1}.$$

若取 k=1, 则我们只需找到一个 $c\in(0,1)$, 使得 $\frac{f(c)-1}{c-1}=1$, 即 f(c)=c. 此时令 g(x)=f(x)-x, 则现在我们只需找到一个 $c\in(0,1)$, 使得 g(c)=0 即可. 但是由条件可知 g(0)=g(1)=0, 无法用中值定理直接找出 $c\in(0,1)$, 使得 g(c)=0. 故取 k=1 不能找到满足我们的需求的 c.

若取 $k = \frac{1-2c}{c-1}$,则我们只需找到一个 $c \in (0,1)$,使得 $\frac{f(c)-1}{c-1} = \frac{1-2c}{c-1}$,即 f(c) = 2-2c.此时令 g(x) = f(x) + 2x - 2,则现在我们只需找到一个 $c \in (0,1)$,使得 g(c) = 0 即可. 由条件可知 g(0) = -2,g(1) = 1,从而由连续函数介值定理可得,存在 $c \in (0,1)$,使得 g(c) = 0. 故取 $k = \frac{1-2c}{c-1}$ 能找到满足我们的需求的 c,进而就确定了满足题目要求的 λ 和 μ .

证明 令 g(x) = f(x) + 2x - 2, 则由条件可知 g(0) = -2, g(1) = 1, 从而由连续函数介值定理可得, 存在 $c \in (0,1)$, 使得 g(c) = 0, 即 f(c) = 2 - 2c. 运用 Lagrange 中值定理, 我们知道存在 $\lambda \in (0,c)$, $\mu \in (c,1)$, 使得

$$f'(\lambda) = \frac{f(c) - f(0)}{c - 0} = \frac{f(c)}{c}, f'(\mu) = \frac{f(c) - f(1)}{c - 1} = \frac{f(c) - 1}{c - 1}.$$

再结合 f(c) = 2 - 2c 可得

$$f'(\lambda)(1+f'(\mu)) = \frac{f(c)}{c} \left[1 + \frac{f(c)-1}{c-1} \right] = 2.$$

故结论得证.

例题 **4.12** 设 $f \in C[0,1] \cap D(0,1)$ 使得 f(0) = 0, f(1) = 1, 正实数满足 $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$. 证明存在互不相同的 $x_1, x_2, \cdots, x_n \in (0,1)$, 使得

$$\sum_{i=1}^{n} \frac{\lambda_i}{f'(x_i)} = 1.$$

 $\widehat{\mathbb{Y}}$ 笔记 核心想法:插入n-1个点 y_i ,将n个中值点问题转换为如何确定这些插入点 y_i 的问题.

注 思路分析: 证明的想法就是插入 n-1 个点 $0=y_0 < y_1 < y_2 < \cdots < y_{n-1} < y_n = 1$ 之后用 Lagrange 定理得

$$f'(x_i) = \frac{f(y_i) - f(y_{i-1})}{y_i - y_{i-1}}, x_i \in (y_{i-1}, y_i), i = 1, 2, \dots, n.$$

于是需要满足

$$1 = \sum_{i=1}^{n} \frac{\lambda_i}{f'(x_i)} = \sum_{i=1}^{n} \frac{\lambda_i(y_i - y_{i-1})}{f(y_i) - f(y_{i-1})}.$$

自然期望

$$f(y_i) - f(y_{i-1}) = \lambda_i, i = 1, 2, \dots, n.$$
 (4.8)

此时就有

$$\sum_{i=1}^{n} \frac{\lambda_i}{f'(x_i)} = \sum_{i=1}^{n} (y_i - y_{i-1}) = 1.$$

而为了得到(4.8), 我们只需反复用介值定理即可. 由条件可知 $0 = f(0) < \lambda_1 < f(1) = 1$, 从而由连续函数介值定理可得, 存在 $y_1 \in (0,1)$, 使得 $f(y_1) = \lambda_1$. 进而 $\lambda_1 = f(y_1) < \lambda_1 + \lambda_2 < f(1) = 1$, 于是再由连续函数介值定理可得, 存在 $y_2 \in (y_1,1)$, 使得 $f(y_2) = \lambda_1 + \lambda_2$. 以此类推, 反复利用介值定理即可得到

$$f(y_i) = \lambda_1 + \lambda_2 + \dots + \lambda_i, i = 1, 2, \dots, n - 1.$$

其中 $0 = y_0 < y_1 < y_2 < \cdots < y_{n-1} < y_n = 1$.

证明 由条件可知 $0 = f(0) < \lambda_1 < f(1) = 1$, 从而由连续函数介值定理可得, 存在 $y_1 \in (0,1)$, 使得 $f(y_1) = \lambda_1$. 进而 $\lambda_1 = f(y_1) < \lambda_1 + \lambda_2 < f(1) = 1$, 于是再由连续函数介值定理可得, 存在 $y_2 \in (y_1,1)$, 使得 $f(y_2) = \lambda_1 + \lambda_2$. 以此类推, 反复利用介值定理即可得到

$$f(y_i) = \lambda_1 + \lambda_2 + \dots + \lambda_i, i = 1, 2, \dots, n - 1.$$

其中 $0 = y_0 < y_1 < y_2 < \cdots < y_{n-1} < y_n = 1$. 再利用 Lagrange 定理得

$$f'(x_i) = \frac{f(y_i) - f(y_{i-1})}{y_i - y_{i-1}}, x_i \in (y_{i-1}, y_i), i = 1, 2, \dots, n.$$

于是

$$\sum_{i=1}^{n} \frac{\lambda_i}{f'(x_i)} = \sum_{i=1}^{n} \frac{\lambda_i(y_i - y_{i-1})}{f(y_i) - f(y_{i-1})} \sum_{i=1}^{n} (y_i - y_{i-1}) = 1.$$

故结论得证.

4.2.3 只能猜的类型

来看一种很无趣的需要自己猜的类型. 此类问题的核心是两个中值参数相互制约, 此时需要你自己复原中值参数.

例题 **4.13** 设 $f \in C[0,1] \cap D(0,1)$ 且 f(0) = 0 且 $f(x) \neq 0$, ∀ $x \in (0,1]$, 证明对任何 $\alpha > 0$, 存在 $\xi \in (0,1)$ 使得

$$\alpha \frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)}.$$

注 注意到

$$\alpha \frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)} \Leftrightarrow \alpha f'(\xi) f(1-\xi) - f(\xi) f'(1-\xi) = 0.$$

因此想到构造函数 $g(x) = f^{\alpha}(x)f(1-x)$.

笔记 不妨设 $f(x) > 0, \forall x \in (0,1]$ 的原因: 如果 f(x) < 0, 则 $f^{\alpha}(x)$ 可能无意义.

由 $f \in C[0,1]$ 且 $f(x) \neq 0$, $\forall x \in (0,1]$ 可知, f(x) 在 (0,1] 要么恒大于零, 要么恒小于零. 否则由零点存在定理得到矛盾! 假设结论对 f(x) > 0, $\forall x \in (0,1]$ 成立, 则当 f(x) < 0, $\forall x \in (0,1]$ 时, 令 F(x) = -f(x) > 0, $\forall x \in (0,1]$, 则 F(0) = 0. 从而由假设可知, 对 $\forall \alpha > 0$, 存在 $\xi \in (0,1)$, 使得

$$\alpha \frac{F'(\xi)}{F(\xi)} = \frac{F'(1-\xi)}{F(1-\xi)} \Leftrightarrow \alpha \frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)}.$$

故不妨设成立.

知, 存在 $\xi \in (0,1)$, 使得

$$g'(\xi)=0\Rightarrow g'(\xi)=\alpha f^{\alpha-1}(\xi)f'(\xi)f(1-\xi)-f^{\alpha}(\xi)f'(1-\xi)\Rightarrow \alpha\frac{f'(\xi)}{f(\xi)}=\frac{f'(1-\xi)}{f(1-\xi)}.$$

4.3 中值极限问题

此类问题有一个固定操作,即对中值点再套一次中值定理,使得中值参数可以暴露出来,从而解出参数求极限 得到证明.

例题 **4.14** 设 $f \in C^2[0,1]$, f'(0) = 0, $f''(0) \neq 0$, 证明对任何 $x \in (0,1)$, 存在 $\xi(x) \in (0,1)$, 使得

$$\int_0^x f(t) dt = f(\xi(x))x,$$

且

$$\lim_{x \to 0^+} \frac{\xi(x)}{x} = \frac{1}{\sqrt{3}}.$$

证明 对 $\forall x \in (0,1)$, 由积分中值定理可知, 存在 $\mathcal{E}(x) \in (0,1)$. 使得

$$\int_0^x f(t)dt = f(\xi(x))x.$$

从而对 $\forall x \in (0,1)$, 由 Taylor 定理可知, 存在 $\theta(x) \in (0,\xi(x))$, 使得

$$f(\xi(x)) = f(0) + f'(0)\xi(x) + \frac{1}{2}f''(\theta(x))\xi^{2}(x) = f(0) + \frac{f''(\theta(x))}{2}\xi^{2}(x).$$

从而将 $\int_0^x f(t)dt = f(\xi(x))x$ 代入上式可得

$$\int_0^x f(t)\mathrm{d}t = x\left[f(0) + \frac{f^{\prime\prime}(\theta(x))}{2}\xi^2(x)\right].$$

故 $f''(\theta(x))\xi^2(x) = 2\left(\frac{\int_0^x f(t)dt}{x} - f(0)\right)$. 于是

$$\lim_{x \to 0^+} \theta(x) = 0 \Rightarrow \lim_{x \to 0^+} f''(\theta(x)) = f''(0).$$

因此由 L'Hospital 法则可得

$$f''(0) \lim_{x \to 0^{+}} \frac{\xi^{2}(x)}{x^{2}} = \lim_{x \to 0^{+}} \frac{f''(\theta(x))\xi^{2}(x)}{x^{2}} = \lim_{x \to 0^{+}} \frac{2\left(\int_{0}^{x} f(t)dt - xf(0)\right)}{x^{3}}$$
$$= \lim_{x \to 0^{+}} \frac{2\left(f(x) - f(0)\right)}{3x^{2}} = \lim_{x \to 0^{+}} \frac{f'(x)}{3x} = \frac{f''(0)}{3}.$$

又 $f''(0) \neq 0$, 故 $\lim_{x\to 0^+} \frac{\xi^2(x)}{x^2} = \frac{1}{3}$, 因此 $\lim_{x\to 0^+} \frac{\xi(x)}{x} = \frac{1}{\sqrt{3}}$. 例题 **4.15** 设 f 在 x = a 的邻域 n + p 阶可导且 $p \geqslant 1$, 于是有

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(x - a)^{n-1} + \frac{f^{(n)}(c)}{n!}(x - a)^n.$$
(4.9)

如果对于 $j = 1, 2, \dots, p-1$ 都有 $f^{(n+j)}(a) = 0, f^{(n+p)}(a) \neq 0$, 求极限 $\lim_{x \to a} \frac{c-a}{r-a}$ 证明 由 Taylor 中值定理及条件可知, 存在 $\theta \in U(a)$, 使得

$$f^{(n)}(c) = f^{(n)}(a) + \frac{f^{(n+p)}(\theta)}{p!}(c-a)^p.$$
(4.10)

从而结合上式,再利用带 Peano 余项的 Taylor 公式可得

$$\lim_{x \to a^+} f^{(n+p)}(\theta) = \lim_{x \to a^+} p! \frac{f^{(n)}(c) - f^{(n)}(a)}{(c-a)^p} = \lim_{x \to a^+} p! \frac{\frac{f^{(n+p)}(a)}{p!}(c-a)^p + o((c-a)^p)}{(c-a)^p} = f^{(n+p)}(a).$$

于是利用(4.9)(4.10)式, 再结合带 Peano 余项的 Taylor 公式可得

4.4 性态分析类

定理 4.4 (积分中值定理)

(1) $f(x) \in R[a,b], g(x)$ 是 [a,b] 上的非负递减函数,则存在 $\zeta \in [a,b]$,使得

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\zeta} f(x)dx.$$

(2) $f(x) \in R[a,b], g(x)$ 是 [a,b] 上的非负递增函数,则存在 $\zeta \in [a,b]$,使得

$$\int_{a}^{b} f(x)g(x)dx = g(b) \int_{\zeta}^{b} f(x)dx.$$

(3) $f(x) \in R[a,b], g(x)$ 是 [a,b] 上的单调函数, 则存在 $\zeta \in [a,b]$, 使得

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\zeta} f(x)dx + g(b) \int_{\zeta}^{b} f(x)dx.$$

(4) $f(x) \in R[a,b]$ 且不变号, $g(x) \in R[a,b]$, 则存在 η 介于 g(x) 上下确界之间, 使得

$$\int_{a}^{b} f(x)g(x)dx = \eta \int_{a}^{b} f(x)dx.$$

(5) $f(x) \in R[a, b]$ 且不变号, $g(x) \in C[a, b]$, 则存在 $\zeta \in (a, b)$, 使得

$$\int_{a}^{b} f(x)g(x)dx = g(\zeta) \int_{a}^{b} f(x)dx.$$

(6) 若 (1),(2),(3) 中再加入条件 g(x) 在 (a,b) 中不为常数,则结论可以加强到 $\zeta \in (a,b)$.

定理 4.5 (Hadamard 不等式)

f 是 [a,b] 上的下凸函数,则

$$\frac{f(a) + f(b)}{2} \geqslant \frac{1}{b - a} \int_{a}^{b} f(x) dx \geqslant f\left(\frac{a + b}{2}\right).$$

聲 笔记 一句话积累证明: 一边是区间再现, 一边是换元到区间 [0,1].

注 左边的不等式证明中的线性换元构造思路: 我期望找到一个线性函数 g(t), 使得令 x = g(t) 换元后, 有

$$\int_a^b f(x) dx \xrightarrow{x=g(t)} \int_0^1 f(g(t))g'(t) dt.$$

即 g(0) = a, g(1) = b. 因此 $g(t) = \frac{b-a}{1-0}t + a = a + (b-a)t$. 从而

$$\int_{a}^{b} f(x) dx \xrightarrow{x=a+(b-a)t} (b-a) \int_{0}^{1} f(a+(b-a)t) dt = (b-a) \int_{0}^{1} f((1-t)a+bt) dt.$$

证明 由 f 在 [a,b] 上下凸, 一方面, 我们有

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = \int_{0}^{1} f(a(1-t)+bt) dt \leqslant \int_{0}^{1} [(1-t)f(a)+tf(b)] dt = \frac{f(a)+f(b)}{2}.$$

另一方面,我们有

$$\frac{1}{b-a} \int_a^b f(x) dx = \frac{1}{b-a} \int_a^b f(a+b-x) dx = \frac{1}{2(b-a)} \int_a^b [f(a+b-x) + f(x)] dx$$
$$\geqslant \frac{1}{b-a} \int_a^b f\left(\frac{a+b}{2}\right) dx = f\left(\frac{a+b}{2}\right).$$

故结论成立.

例题 4.16 若 f 在 [0,1] 上有二阶导数且 f(0) = 0, f(1) = 1, $\int_0^1 f(x) dx = 1$, 证明存在 $\eta \in (0,1)$ 使得 $f''(\eta) < -2$. 注 通过 $f''(x) + 2 \ge 0$, $\forall x \in (0,1)$ 来推出 $f + x^2$ 在 [0,1] 下凸: 实际上, 令 $g = f + x^2$, 则 $g'' \ge 0$, $\forall x \in (0,1)$, 从而 g 在 (0,1) 下凸. 因为 $g = f + x^2 \in C[0,1]$ 和 g 在 (0,1) 下凸我们就有

$$g(\lambda x + (1 - \lambda)y) \leq \lambda g(x) + (1 - \lambda)g(y), \forall x, y \in (0, 1), \lambda \in [0, 1].$$

上式中令 x 趋于 0 或者 1 也成立, 再令 y 趋于 1 或者 0 也成立. 因此 g 在 [0,1] 下凸.

证明 若不然, 对任何 $x \in (0,1)$ 都有 $f''(x) \ge -2$, 于是 $f(x) + x^2$ 是 [0,1] 的下凸函数. 于是由Hadamard 不等式我们知道

$$\frac{4}{3} = \int_0^1 [f(x) + x^2] dx \leqslant \frac{f(0) + 0^2 + f(1) + 1^2}{2} = \frac{2}{2} = 1,$$

矛盾! 现在存在 $\eta \in (0,1)$ 使得 $f''(\eta) < -2$.

命题 4.2

设 $f \in C^3(\mathbb{R})$ 满足

$$\frac{\int_{a}^{b} f(x) dx}{b - a} \geqslant f\left(\frac{a + b}{2}\right), \quad \forall b \neq a.$$

证明: f 是下凸函数.

 $\dot{\mathbf{L}}$ 本题对一般情况 $f \in C(\mathbb{R})$ 也成立, 需要取磨光函数如卷积磨光核. 详细见清疏讲义.

💡 笔记 这就是Hadamard 不等式的反向结果.

证明 当 $f \in C^3(\mathbb{R})$ 时,由 L'Hospital 法则可得

$$\lim_{b \to a^{+}} \frac{\int_{a}^{b} f(x) dx - (b-a) f(\frac{a+b}{2})}{\frac{1}{6}(b-a)^{3}}$$

$$= \lim_{b \to a^{+}} \frac{f(b) - f(\frac{a+b}{2}) - \frac{b-a}{2} f'(\frac{a+b}{2})}{\frac{1}{2}(b-a)^{2}}$$

$$= \lim_{b \to a^{+}} \frac{f'(b) - f'(\frac{a+b}{2}) - \frac{b-a}{4} f''(\frac{a+b}{2})}{b-a}$$

$$= \lim_{b \to a^{+}} \left(f''(b) - \frac{3}{4} f''\left(\frac{a+b}{2}\right) - \frac{b-a}{8} f'''\left(\frac{a+b}{2}\right) \right)$$

$$= \frac{1}{4} f''(a) \ge 0.$$

因此

$$f''(x) \geqslant 0, \forall x \in \mathbb{R},$$

所以 f 是下凸函数.

定理 4.6 (Darboux 中值定理/导数介值定理)

设 $f \in D[a,b]$, 对任何介于 f'(a), f'(b) 之间的 η, 存在 $c \in [a,b]$ 使得 f'(c) = η.

 $\overline{\mathbf{u}}$ 明 和连续函数介值定理一样, 我们只需证明导数满足零点定理. 即不妨设 f'(a) < 0 < f'(b), 去找 $c \in [a,b]$ 使 得 f'(c) = 0. 事实上由极限保号性和

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = f'(a) < 0, \lim_{x \to b^-} \frac{f(x) - f(b)}{x - b} = f'(b) > 0,$$

我们知道存在 $\delta > 0$. 使得

$$f(x) < f(a), \forall x \in (a, a + \delta], f(x) < f(b), \forall x \in [b - \delta, b).$$

因此 f 最小值在内部取到, 此时由费马引理知最小值的导数为 0, 从而证毕!

定理 4.7 (加强的 Rolle 中值定理)

(a): 设 $f \in D(a,b)$ 且在 [a,b] 上 f 有介值性,则若 f(a) = f(b),必然存在 $\theta \in (a,b)$,使得 $f'(\theta) = 0$.

(b): 设
$$f \in C[a, +\infty) \cap D^1(a, +\infty)$$
 满足 $f(a) = \lim_{x \to +\infty} f(x)$, 则存在 $\theta \in (a, +\infty)$ 使得 $f'(\theta) = 0$.

笔记 一旦罗尔成立, 所有中值定理和插值定理都会有类似的结果, 可以具体情况具体分析.

证明 对于 (a): 不妨设 f 不恒为常数,则可取 $x_0 \in (a,b)$,使得 $f(x_0) \neq f(a)$,不妨设 $f(x_0) > f(a)$,则由 f 的介值性, 我们知道存在 $x_1 \in (a, x_0), x_2 \in (x_0, b)$, 使得

$$f(x_1) = \frac{f(a) + f(x_0)}{2}, f(x_2) = \frac{f(b) + f(x_0)}{2}.$$

因为 f(a) = f(b), 我们知道 $f(x_1) = f(x_2)$, 由 Rolle 中值定理 $(f \in C[x_1, x_2] \cap D(x_1, x_2))$ 可知, 存在 $\theta \in (a, b)$, 使得 $f'(\theta) = 0$. 这就完成了 (a) 的证明.

对于 (b): 若对任何 $x \in (0, +\infty)$ 使得 $f'(x) \neq 0$, 则由导数介值性可知, f' 恒大于 0 或恒小于 0(否则, 由导数介 值性可得到一个零点). 从而 f 在 $[0,+\infty)$ 严格单调, 不妨设为递增. 现在

$$f(x) \geqslant f(a+1) > f(a), \forall x \geqslant a+1,$$

于是

$$f(a) = \lim_{x \to +\infty} f(x) \geqslant f(a+1) > f(a),$$

这就是一个矛盾! 因此我们证明了存在 $\theta \in (a, +\infty)$ 使得 $f'(\theta) = 0$.

例题 4.17 设 f 在 [a,b] 连续,(a,b) 可微且不是线性函数,证明:存在 $\xi \in (a,b)$ 使得

$$f'(\xi) > \frac{f(b) - f(a)}{b - a}.$$

笔记 $g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$ 这个线性构造必须记忆! 证明 考虑

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a),$$

则 g(a) = g(b) = 0 且 g 不是常值函数. 因 $g' \leq 0$ 恒成立会导致 g 在 [a,b] 递减, 从而 0 = g(b) < g(a) = 0, 这不可 能! 现在存在 $\xi \in (a,b)$ 使得 $g'(\xi) > 0$, 即结论成立.

例题 4.18

1. 设 $f ∈ C[0, \pi] \cap D(0, \pi)$ 满足

$$\int_0^{\pi} f(x) \cos x dx = \int_0^{\pi} f(x) \sin x dx = 0.$$

证明存在 $\xi \in (0, \pi)$, 使得 $f'(\xi) = 0$. 2. 设 $f \in C[0, \frac{\pi}{2}]$ 满足

$$\int_0^{\frac{\pi}{2}} f(x) dx = \int_0^{\frac{\pi}{2}} f(x) \cos x dx = \int_0^{\frac{\pi}{2}} f(x) \sin x dx = 0.$$
 (4.11)

证明:f 在 $(0,\frac{\pi}{2})$ 至少有三个互不相同的零点.

笔记 此类给出积分等式的问题, 往往就是寻求给定积分等式的线性组合来实现目标. 即本题我们要寻求合适的 $a,b \in \mathbb{R}$, 考虑积分

$$\int_0^{\pi} f(x)(a\cos x + b\sin x) dx = 0.$$

一句话证明本题 1 问, 就是寻求合适的 $a,b \in \mathbb{R}$, 使得 $a\cos x + b\sin x$ 和 f 的符号一致. 第 2 问可以待定系数解方程来得到线性组合.

证明

1. 我们只需断言 f 在 $[0,\pi]$ 至少有两个不相同的零点,之后由罗尔定理就给出了存在 $\xi \in (0,\pi)$,使得 $f'(\xi) = 0$. 由积分中值定理可知,存在 $x_0 \in (0,\pi)$,使得

$$\int_0^{\pi} f(x) \sin x dx = f(x_0) \int_0^{\pi} \sin x dx = 2f(x_0) = 0.$$

即 $f \in (0,\pi)$ 上有一个零点 x_0 . 若 $f \in [0,\pi]$ 只有一个零点,则 $f \in [0,x_0)$, $(x_0,\pi]$ 不同号 (否则 f 不变号,则 由 $\int_0^\pi f(x) \sin x dx = 0$ 知 f = 0,与 f 只有一个零点矛盾!).不妨设

$$f(x) < 0, \forall x \in [0, x_0), f(x) > 0, \forall x \in (x_0, \pi].$$

此时根据条件就有

$$\int_{0}^{\pi} f(x) \sin(x - x_{0}) dx = \int_{0}^{\pi} f(x) (\cos x_{0} \sin x - \sin x_{0} \cos x) dx = \cos x_{0} \int_{0}^{\pi} f(x) \sin x dx - \sin x_{0} \int_{0}^{\pi} f(x) \cos x dx = 0.$$

$$\text{\mathbb{Z} \vec{r} \vec{n} \vec{n} }$$

$$f(x)\sin(x-x_0) > 0, \forall x \in [0,\pi] \setminus \{x_0\},\$$

故 $0 = \int_0^{\pi} f(x) \sin(x - x_0) dx > 0$, 矛盾! 这就完成了证明.

2. 不妨设 f 不恒为 0, 由积分中值定理和(4.11)式知 f 在 $(0,\frac{\pi}{2})$ 至少有一个零点且变号. 若 f 在 $(0,\frac{\pi}{2})$ 只变号一次, 设在 x_1 变号, 则 f 在 x_1 两侧符号相反. 由(4.11)式得

$$\int_0^{\frac{\pi}{2}} f(x)\sin(x-x_1)\mathrm{d}x = 0.$$

但是 $f(x)\sin(x-x_1)$ 不变号, 这就推出 f=0 而矛盾! 若 f 在 $(0,\frac{\pi}{2})$ 只变号两次, 设变号处为 x_1,x_2 , 考虑

$$g(x) \triangleq \sin x - \frac{\sin x_2 - \sin x_1}{\cos x_2 - \cos x_1} \cos x + \frac{\sin(x_2 - x_1)}{\cos x_2 - \cos x_1}, x \in [0, \frac{\pi}{2}].$$

注意到

$$g'(x) = \cos x + \frac{\sin x_2 - \sin x_1}{\cos x_2 - \cos x_1} \sin x = \frac{\sin x_2 - \sin x_1}{\cos x_2 - \cos x_1} \cos x \left(\tan x - \frac{\cos x_1 - \cos x_2}{\sin x_2 - \sin x_1} \right),$$

我们知 g' 在 $(0, \frac{\pi}{2})$ 有且只有一个零点. 注意 $g(x_1) = g(x_2) = 0$, 我们由罗尔中值定理知道 g' 在 (x_1, x_2) 有零点, 因此 g 当且仅当在 x_1, x_2 变号. 现由(4.11)式得

$$\int_0^{\frac{\pi}{2}} f(x)g(x)\mathrm{d}x = 0.$$

但是 fg 不变号, 故 f=0, 这就是一个矛盾! 至此我们证明了 f 在 $(0,\frac{\pi}{2})$ 至少有三个互不相同的零点.

例题 4.19 设 $f \in C([0, \pi])$, 证明: 不能同时有

$$\int_0^{\pi} |f(x) - \sin x|^2 \, \mathrm{d}x < \frac{\pi}{4} \quad \text{III} \quad \int_0^{\pi} |f(x) - \cos x|^2 \, \mathrm{d}x < \frac{\pi}{4}. \tag{4.12}$$

又问何时上面的两个不等式成为等式?

证明 利用 Cauchy-Schwarz 不等式,有

$$\int_0^{\pi} (\sin x - f(x))(f(x) - \cos x) \, \mathrm{d}x \le \left(\int_0^{\pi} |\sin x - f(x)|^2 \, \mathrm{d}x \right)^{1/2} \left(\int_0^{\pi} |f(x) - \cos x|^2 \, \mathrm{d}x \right)^{1/2}.$$

因此当式(4.12)中的两个不等式同时成立时,有

$$\int_0^{\pi} |\sin x - \cos x|^2 dx = \int_0^{\pi} |\sin x - f(x) + f(x) - \cos x|^2 dx$$

$$= \int_0^{\pi} |\sin x - f(x)|^2 dx + \int_0^{\pi} |f(x) - \cos x|^2 dx + 2 \int_0^{\pi} (\sin x - f(x))(f(x) - \cos x) dx$$

$$< \frac{\pi}{4} + \frac{\pi}{4} + 2 \cdot \frac{\pi}{4} = \pi.$$

但是,另一方面

$$\int_0^{\pi} |\sin x - \cos x|^2 dx = \int_0^{\pi} (1 - \sin 2x) dx = \pi.$$

于是所证结论成立.

当式(4.12)中两个不等式都是等式时,应有

$$\int_0^{\pi} (\sin x - f(x))(f(x) - \cos x) \, \mathrm{d}x = \left(\int_0^{\pi} |\sin x - f(x)|^2 \, \mathrm{d}x \right)^{1/2} \left(\int_0^{\pi} |f(x) - \cos x|^2 \, \mathrm{d}x \right)^{1/2} = \frac{\pi}{4}.$$

此时,有

$$\int_0^{\pi} \left(f(x) - \frac{\sin x + \cos x}{2} \right)^2 dx = \int_0^{\pi} \left(\frac{\sin x - f(x)}{2} - \frac{f(x) - \cos x}{2} \right)^2 dx$$

$$= \frac{1}{4} \int_0^{\pi} |\sin x - f(x)|^2 dx + \frac{1}{4} \int_0^{\pi} |f(x) - \cos x|^2 dx - \frac{1}{2} \int_0^{\pi} (\sin x - f(x))(f(x) - \cos x) dx$$

$$= \frac{\pi}{16} + \frac{\pi}{16} - \frac{\pi}{8} = 0.$$

注意到 f 为连续函数, 有 $f(x) = \frac{\sin x + \cos x}{2}$

例题 4.20 设 $f(x) \in C[0,1]$, 证明:

(1) 存在唯一的 $\xi \in (0,1)$, 使得

$$\int_0^{\xi} e^{f(t)} dt = \int_{\xi}^1 e^{-f(t)} dt$$

(2) 对任何大于 1 的正整数 n, 存在唯一的 $\xi_n \in (0,1)$, 使得

$$\int_{\frac{1}{n}}^{\xi_n} e^{f(t)} dt = \int_{\xi_n}^1 e^{-f(t)} dt$$

并求极限 $\lim_{n\to\infty} \xi_n$.

证明

(1)
$$\Leftrightarrow F(x) = \int_0^x e^{f(t)} dt - \int_x^1 e^{-f(t)} dt$$
, $y = \int_0^1 e^{-f(t)} dt < 0$, $y = \int_0^1 e^{f(t)} dt > 0$. $y = \int_0^1 e^{f(t)} dt = \int_0^1 e^{f(t)} dt = \int_0^1 e^{f(t)} dt = \int_0^1 e^{f(t)} dt$.

(2) 令
$$F_n(x) = \int_{\frac{1}{n}}^x e^{f(t)} dt - \int_x^1 e^{-f(t)} dt$$
, 则 $F_n\left(\frac{1}{n}\right) = -\int_{\frac{1}{n}}^1 e^{-f(t)} dt < 0, F_n(1) = \int_x^1 e^{-f(t)} dt > 0$. 又 $F'_n(x) = e^{f(x)} + e^{-f(x)} > 0$, 故由零点存在定理可知, 存在唯一的 $\xi_n \in \left(\frac{1}{n}, 1\right)$, 使得 $F(\xi_n) = 0$, 即

$$\int_{\frac{1}{n}}^{\xi_n} e^{f(t)} dt = \int_{\xi_n}^1 e^{-f(t)} dt.$$
 (4.13)

因为 $\xi_n \in (0,1)$, $\forall n \in \mathbb{N}$, 所以由聚点定理可知, $\{\xi_n\}$ 存在收敛子列. 任取 $\{\xi_n\}$ 的一个收敛子列 $\{\xi_{n_k}\}$, 设 $\lim_{k\to\infty}\xi_{n_k}=a$, 则由(4.13)式可知

$$\int_{\frac{1}{n}}^{\xi_{n_k}} e^{f(t)} \mathrm{d}t = \int_{\xi_{n_k}}^1 e^{-f(t)} \mathrm{d}t.$$

$$\int_0^a e^{f(t)} dt = \int_a^1 e^{-f(t)} dt.$$

由 (1) 可知 $a = \xi$. 故由命题 1.1(a)可知 $\lim_{n \to \infty} \xi_n = \xi$.

例题 **4.21** $f \in C(0,1)$ 且存在互不相同的 $x_1, x_2, x_3, x_4 \in (0,1)$ 满足

$$a = \frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_4) - f(x_3)}{x_4 - x_3} = b.$$

证明对任何 $\lambda \in (a,b)$, 存在互不相同的 $x_5, x_6 \in (0,1)$, 使得 $\lambda = \frac{f(x_6) - f(x_5)}{x_6 - x_5}$ 证明 要证原结论, 等价于对 $\forall \lambda \in (a,b)$, 存在 $x_5 \neq x_6$ 且 $x_5, x_6 \in (0,1)$, 使得

$$f(x_6) - f(x_5) = \lambda(x_6 - x_5) \Leftrightarrow f(x_6) - \lambda x_6 = f(x_5) - \lambda x_5.$$

即证 $f(x)-\lambda x$ 在 (0,1) 上不是单射. 又由命题 5.10及 $f \in C(0,1)$, 故只须证 $f(x)-\lambda x$ 不是严格单调的. 对 $\forall \lambda \in (a,b)$,

$$\frac{g(x_2)-g(x_1)}{x_2-x_1}=a-\lambda<0,\quad \frac{g(x_4)-g(x_3)}{x_4-x_3}=b-\lambda>0.$$

从而 $g(x_2) < g(x_1), g(x_4) > g(x_3)$, 故 g 在 (0,1) 上非严格单调, 结论得证.

例题 **4.22** $f \in D[a,b]$, 且在 (a,b) 上 f' 有零点. 证明: 存在 $\theta \in (a,b)$, 使得

$$f'(\theta) = \frac{f(\theta) - f(a)}{b - a}.$$

注 先考虑微分方程: $y' = \frac{y - f(a)}{b - a}$,解出微分方程的解,再常数变易得到构造函数: $g(x) = \frac{f(x) - f(a)}{e^{\frac{x}{b - a}}}$.

证明 令 $g(x) = \frac{f(x) - f(a)}{e^{\frac{x}{b-a}}}$,则 $g'(x) = \frac{f'(x) - \frac{f(x) - f(a)}{b-a}}{e^{\frac{x}{b-a}}}$. 由条件可设 $f'(c) = 0, c \in (a, b)$. 从而 $g'(c) = \frac{-\frac{f(c) - f(a)}{b-a}}{e^{\frac{c}{b-a}}}$.

(ii) 若 g'(c) > 0, 则 f(c) < f(a). 从而 $g(c) = \frac{f(c) - f(a)}{c} < 0$. 于是存在 $\delta > 0$, 使得

$$g(x) \le g(c) < 0, \forall x \in (c - \delta, c + \delta).$$

又因为g(a) = 0, 所以

$$g(x) \leq g(c) < g(a), \forall x \in (c - \delta, c + \delta). \tag{4.14}$$

由于 $g \in C[a,c]$, 因此g在[a,c]上存在最小值.由(4.14)式可知,g在[a,c]上的最小值一定在(a,c)上取到.故存在 $\theta \in (a,c)$, 使得

$$g(\theta) = \min_{x \in (a,c)} g(x).$$

由 Fermat 引理可知, $g'(\theta) = 0$, 即 $f'(\theta) = \frac{f(\theta) - f(a)}{b - a}$.

(iii) 若
$$g'(c) < 0$$
, 则由 (ii) 同理可证, 存在 $\theta \in (a,b)$, 使得 $f'(\theta) = \frac{f(\theta) - f(a)}{b - a}$.

例题 **4.23** 设 $f \in C[0,1]$ 满足 $\int_0^1 f(x) dx = 0$, $\int_0^1 x f(x) dx = 1$, 证明: 存在 $\xi \in [0,1]$ 使得 $|f(\xi)| = 4$.

笔记 考虑题目条件的线性组合, 待定 $a \in \mathbb{R}$ 考虑

$$1 = \left| \int_0^1 (x - a) f(x) \, \mathrm{d}x \right| \leqslant \int_0^1 |x - a| \cdot |f(x)| \, \mathrm{d}x \leqslant \max_{x \in [0, 1]} |f(x)| \cdot \int_0^1 |x - a| \, \mathrm{d}x.$$

为了使放缩最精确, 我们希望右边积分 $\int_0^1 |x-a| dx$ 达到最小, 容易知道是 $a=\frac{1}{2}$.

证明 注意到

$$1 = \left| \int_0^1 (x - \frac{1}{2}) f(x) \, \mathrm{d}x \right| \le \int_0^1 |x - \frac{1}{2}| \cdot |f(x)| \, \mathrm{d}x \le \max_{x \in [0, 1]} |f(x)| \cdot \int_0^1 |x - \frac{1}{2}| \, \mathrm{d}x = \frac{1}{4} \max_{x \in [0, 1]} |f(x)|.$$

故 $\max_{x \in [0,1]} |f(x)| \ge 4$. 又因为 $\int_0^1 f(x) dx = 0$, 所以由积分中值定理可知, 存在 $\theta \in (0,1)$, 使得 $f(\theta) = |f(\theta)| = 0$. 从而 由介值定理可知, 存在 ξ ∈ [0,1], 使得 $|f(\xi)|$ = 4.

4.5 微分不等式问题

4.5.1 一阶/二阶构造类

例题 **4.24 Gronwall** 不等式 设 $\alpha, \beta, \mu \in C[a, b]$ 且 β 非负, 若还有

$$\mu(t) \leqslant \alpha(t) + \int_{a}^{t} \beta(s)\mu(s)ds, \forall t \in [a, b]. \tag{4.15}$$

证明:

$$\mu(t) \leqslant \alpha(t) + \int_{a}^{t} \beta(s)\alpha(s)e^{\int_{s}^{t} \beta(u)du}ds, \forall t \in [a, b].$$

若还有 α 递增,我们有

$$\mu(t) \leqslant \alpha(t)e^{\int_a^t \beta(s)ds}, \forall t \in [a, b].$$

 $\stackrel{ ext{$\hat{\mathbb{P}}$}}{}$ 笔记 解微分方程即得构造函数. 参考单中值点问题. 考虑 $F(t)=\int_a^t eta(s)\mu(s)ds$, 则

$$F'(t) = \beta(t)\mu(t) \leqslant \beta(t)\alpha(t) + \beta(t)F(t).$$

于是考虑微分方程

$$y' = \beta(t)\alpha(t) + \beta(t)y \Rightarrow y = ce^{\int_a^t \beta(s)ds} + \int_a^t \beta(s)\alpha(s)e^{\int_s^t \beta(u)\mathrm{d}u}ds.$$

故得到构造函数

$$c(t) = \frac{F(t) - \int_a^t \beta(s)\alpha(s)e^{\int_s^t \beta(u)du}ds}{e^{\int_a^t \beta(s)ds}} = F(t)e^{-\int_a^t \beta(s)ds} - \int_a^t \beta(s)\alpha(s)e^{\int_s^a \beta(u)du}ds, t \in [a,b].$$

证明 令

$$c(t) = F(t)e^{-\int_a^t \beta(s)ds} - \int_a^t \beta(s)\alpha(s)e^{\int_s^a \beta(u)du}ds, t \in [a, b],$$

$$(4.16)$$

这里 $F(t) = \int_a^t \beta(s)\mu(s)ds$. 由不等式(4.15)知

$$F'(t) \leqslant \alpha(t)\beta(t) + F(t)\beta(t), \forall t \in [a, b]. \tag{4.17}$$

于是由(4.16)和(4.17)可知

$$c'(t) = [F'(t) - \alpha(t)\beta(t) - \beta(t)F(t)]e^{\int_t^a \beta(s)ds} \leq 0,$$

因此 c(t) 在 [a,b] 上单调递减,从而

$$c(t) \leqslant c(a) = 0$$
,

这就得到了

$$F(t)e^{-\int_a^t \beta(s)ds} \leqslant \int_a^t \beta(s)\alpha(s)e^{\int_s^a \beta(u)du}ds.$$

再用一次不等式(4.15), 即得

$$\mu(t) \leqslant \alpha(t) + F(t) \leqslant \alpha(t) + \int_{a}^{t} \beta(s)\alpha(s)e^{\int_{s}^{t} \beta(u)du}ds, \forall t \in [a,b].$$

特别的, 当 α 递增, 对 $\forall t \in [a,b]$, 固定 t, 记 $G(s) = \int_{s}^{t} \beta(u) du$, 我们有不等式

$$\mu(t) \leqslant \alpha(t) + \alpha(t) \int_{a}^{t} \beta(s) e^{\int_{s}^{t} \beta(u) du} ds = \alpha(t) + \alpha(t) \int_{a}^{t} -G'(s) e^{G(s)} ds$$
$$= \alpha(t) - \alpha(t) \int_{a}^{t} e^{G(s)} dG(s) = \alpha(t) + \alpha(t) \left[e^{G(a)} - 1 \right] = \alpha(t) e^{\int_{a}^{t} \beta(s) ds}.$$

例题 4.25 设 f 在 [0,+∞) 二阶可微且

$$f(0), f'(0) \ge 0, f''(x) \ge f(x), \forall x \ge 0.$$
 (4.18)

证明:

$$f(x) \ge f(0) + f'(0)x, \forall x \ge 0.$$
 (4.19)

 $\stackrel{?}{\circ}$ 笔记 通过 f'' - f' = f - f' 视为一阶构造类来构造函数. (也可以尝试考虑 f''f' = ff', 但是这样得到的构造函数处理本题可能不太方便) 注意双曲三角函数和三角函数有着类似的不等式关系.

$$h'(x) = (f''(x) - f'(x) + f'(x) - f(x))e^x = (f''(x) - f(x))e^x \ge 0.$$

故

$$h(x) \ge h(0) = f'(0) - f(0) \Rightarrow [f'(x) - f(x)]e^x \ge f'(0) - f(0) = h(0).$$

继视为一阶构造类可得

$$c(x) = \frac{f(x) + \frac{1}{2}e^{-x}h(0)}{e^x}, c'(x) = \frac{[f'(x) - f(x)]e^x - h(0)}{e^{3x}} \geqslant 0.$$

于是

$$\frac{f(x) + \frac{1}{2}e^{-x}h(0)}{e^x} \geqslant f(0) + \frac{1}{2}h(0) = \frac{f'(0) + f(0)}{2}.$$

继续利用(4.18)即得

$$f(x) \geqslant \frac{e^x + e^{-x}}{2} f(0) + \frac{e^x - e^{-x}}{2} f'(0) \geqslant f(0) + f'(0)x,$$

这里

$$\cosh x = \frac{e^x + e^{-x}}{2} \geqslant 1, \sinh x = \frac{e^x - e^{-x}}{2} \geqslant x.$$

可以分别了利用均值不等式和求导进行证明.

例题 4.26 设 $f \in C^1[0, +\infty) \cap D^2(0, +\infty)$ 且满足

$$f''(x) - 5f'(x) + 6f(x) \ge 0, f(0) = 1, f'(0) = 0.$$
(4.20)

证明:

$$f(x) \ge 3e^{2x} - 2e^{3x}, \forall x \ge 0.$$
 (4.21)

证明 把不等式(4.20)改写为

$$f''(x) - 2f'(x) \ge 3(f'(x) - 2f(x)).$$

考虑 $g_1(x) = f'(x) - 2f(x)$, 则上式可化为

$$g_1'(x) \geqslant 3g_1(x)$$
.

视为一阶构造类来构造函数,解得构造函数为 $g_2(x) = \frac{g_1(x)}{e^{3x}}$. 于是有

$$g_2'(x) \geqslant 0 \Rightarrow g_2(x) \geqslant g_1(0) = -2 \Rightarrow f'(x) - 2f(x) \geqslant -2e^{3x}$$
.

进一步视为一阶构造类来构造函数,解得构造函数:

$$g_3(x) = \frac{f(x)}{e^{2x}} + 2e^x, g_3'(x) = \frac{f'(x) - 2f(x) + 2e^{3x}}{e^{2x}} \geqslant 0,$$

于是

$$g_3(x) \geqslant g_3(0) = 3 \Rightarrow f(x) \geqslant 3e^{2x} - 2e^{3x}$$
.

我们完成了证明.

例题 4.27 设 f 在 \mathbb{R} 上二阶可导且满足等式

$$f(x) + f''(x) = -xg(x)f'(x), g(x) \geqslant 0.$$
(4.22)

证明 f 在 \mathbb{R} 上有界.

笔记 f+f'' 的出现暗示我们构造 $|f(x)|^2+|f'(x)|^2$, 这已是频繁出现的事实. 因为等式右边有一个未知函数 g(x), 所以我们考虑局部的微分方程, 即只考虑等式左边, 以此来得到构造函数. 考虑 $f+f''=0 \Leftrightarrow ff'=-f''f'$, 两边同时积分得到 $\frac{1}{2}f^2=-\frac{1}{2}(f')^2+C$. 由此得到构造函数 $C(x)=|f(x)|^2+|f'(x)|^2$.

证明 构造 $h(x) = |f(x)|^2 + |f'(x)|^2$, 则由(4.22)知

$$h'(x) = 2f'(x)[f(x) + f''(x)] = -2xg(x)[f'(x)]^{2}.$$

于是 h 在 $(-\infty, 0]$ 递增, $[0, +\infty)$ 递减. 现在我们有

$$h(x) \leqslant h(0) \Rightarrow |f(x)|^2 \leqslant h(0),$$

即 f 有界.

4.5.2 双绝对值问题

注意区分齐次微分不等式问题和双绝对值问题.

例题 4.28 对某个 D > 0,

1. 设 $f \in D(\mathbb{R}), f(0) = 0$, 使得

$$|f'(x)| \le D|f(x)|, \forall x \in \mathbb{R}. \tag{4.23}$$

证明 $f \equiv 0$.

2. 设 $f \in C^{\infty}(\mathbb{R}), f^{(j)}(0) = 0, \forall j \in \mathbb{N}_0$, 使得

$$|xf'(x)| \leqslant D|f(x)|, \forall x \in \mathbb{R}. \tag{4.24}$$

证明 $f(x) = 0, \forall x \geq 0.$

笔记 双绝对值技巧除了正常解微分方程构造函数外,还需要对构造函数平方进行处理.对于第一题,解微分方程y'=dy,y'=-dy 得构造函数

$$C_1(x) = \frac{y(x)}{e^{dx}}, C_2(x) = y(x)e^{dx}.$$

但我们还要手动平方一下. 第二题是类似的.

证明

1. 构造
$$C_1(x) = \frac{f^2(x)}{e^{2dx}}, C_2(x) = f^2(x)e^{2dx}$$
, 我们有

$$C_1'(x) = \frac{2f(x)f'(x) - 2Df^2(x)}{e^{2\mathrm{d}x}}, C_2'(x) = [2f(x)f'(x) + 2Df^2(x)]e^{2\mathrm{d}x}.$$

由条件(4.23), 我们知道

$$\pm f'(x)f(x) \le |f'(x)||f(x)| \le D|f(x)|^2,$$

于是 C_1 递减, C_2 递增,故

$$\frac{f^2(x)}{e^{2\mathrm{d}x}} \leqslant \frac{f^2(0)}{e^{20}} = 0, \forall x \geqslant 0, f^2(x)e^{2\mathrm{d}x} \leqslant f^2(0)e^{20} = 0, \forall x \leqslant 0,$$

于是就得到了 $f \equiv 0, \forall x \in \mathbb{R}$.

П

2. 构造 $C(x) = \frac{f^2(x)}{x^{2D}}, x > 0$ (因为只需证明 $f(x) = 0, \forall x \ge 0$, 所以我们只考虑一边), 则

$$C'(x) = \frac{2f(x)f'(x)x - 2Df^{2}(x)}{x^{2D+1}}.$$

由(4.24), 我们有

$$xf'(x)f(x) \leqslant x|f'(x)||f(x)| \leqslant D|f(x)|^2,$$

即 C 递减. 由 Taylor 公式的 Peano 余项, 我们有 $f(x) = o(x^m), \forall m \in \mathbb{N} \cap (D, +\infty)$, 于是

$$C(x) \leqslant \lim_{x \to 0^+} \frac{f^2(x)}{x^{2D}} = \lim_{x \to 0^+} \frac{o(x^m)}{x^{2D}} = 0,$$

故 $f(x) = 0, \forall x \geq 0.$

例题 **4.29** 设 $f \in D^2[0, +\infty)$ 满足 f(0) = f'(0) = 0 以及

$$|f''(x)|^2 \leqslant |f(x)f'(x)|, \forall x \geqslant 0.$$

证明 $f(x) = 0, \forall x \ge 0.$

筆记 本题的加强版本见命题 5.30.

$$g(x) = e^{-Mx} [|f(x)|^2 + |f'(x)|^2], x \ge 0.$$

利用 $1+t^2 \geqslant \sqrt{t}, \forall t \geqslant 0$, 我们有

$$1 + \frac{|f|^2}{|f'|^2} \geqslant \sqrt{\frac{|f|}{|f'|}} \Rightarrow |f'|^2 + |f|^2 \geqslant |f|^{\frac{1}{2}} |f'|^{\frac{M}{2}} = |f'|\sqrt{|ff'|}. \tag{4.25}$$

于是

$$\begin{split} g'(x) &= e^{-Mx} \left[2ff' + 2f'f'' - Mf^2 - M(f')^2 \right] \\ &\leqslant e^{-Mx} \left[2|ff'| + 2|f'|\sqrt{|ff'|} - Mf^2 - M(f')^2 \right] \\ &\leqslant e^{-Mx} \left[2|ff'| + 2|f'|^2 + 2|f|^2 - Mf^2 - M(f')^2 \right] \\ &\stackrel{\langle 4.25 \rangle}{\leqslant} e^{-Mx} \left[2|ff'| + 2|f'|^2 + 2|f|^2 - Mf^2 - M(f')^2 \right] \\ &\stackrel{\langle 4.25 \rangle}{\leqslant} e^{-Mx} \left[|f|^2 + |f'|^2 + 2|f'|^2 + 2|f|^2 - Mf^2 - M(f')^2 \right] = 0. \end{split}$$

只要取充分大的 M, 就有 g 递减, 从而 $0 \le g(x) \le g(0) = 0$, 故 $f(x) \equiv 0$.

例题 **4.30** 设 $f \in D^2(\mathbb{R})$ 满足 f(0) = f'(0) = 0 且

$$|f''(x)| \leq |f'(x)| + |f(x)|, \forall x \in \mathbb{R}.$$

证明:

$$f(x) = 0, \forall x \in \mathbb{R}.$$

🔮 笔记 本题的加强版本见命题 5.31.

证明
$$\diamondsuit g(x) = e^{-Mx} [|f(x)|^2 + |f'(x)|^2], 则$$

$$\begin{split} g'(x) &= e^{-Mx} \left[2ff' + 2f'f'' - Mf^2 - M(f')^2 \right] \\ &\leqslant e^{-Mx} \left[f^2 + (f')^2 + 2f' \left(|f| + |f'| \right) - Mf^2 - M(f')^2 \right] \\ &\leqslant e^{-Mx} \left[f^2 + (f')^2 + 2(f')^2 + f^2 + (f')^2 - Mf^2 - M(f')^2 \right] \\ &= e^{-Mx} \left[(2 - M)f^2 + (4 - M)(f')^2 \right]. \end{split}$$

取充分大的 M, 就有 $g'(x) \le 0$. 于是 $g(x) \le g(0) = 0$, $\forall x \ge 0$. 又注意到 $g(x) = e^{-Mx} \left[|f(x)|^2 + |f'(x)|^2 \right] \ge 0$, 因此 $g(x) \equiv 0$, $\forall x \ge 0$. 故 f(x) = 0, $\forall x \ge 0$.

例题 **4.31** 设 $f \in D^2(\mathbb{R})$ 满足 f(0) = f'(0) = 0 且

$$|f''(x)| \le |f'(x)f(x)|, \forall x \in \mathbb{R}.$$

证明:

$$f(x) = 0, \forall x \geqslant 0.$$

注 与例题 4.29不同的是, 本题的不等式左右两边并不齐次, 如果还使用例题 4.29的方法, 那么在放缩过程中会使得系数不含 M 的项的次数大于系数含 M 的项, 从而无法直接通过控制 M 的取值, 使得 g'(x) ≤ 0. 因此本题我们需要使用另外的方法.

这里我们将本题与<mark>例题 4.28</mark>类比,采用同样的方法. 因为只需证明 f(x) = 0, $\forall x \ge 0$, 所以将原不等式视为 (等式) 函数构造类. 此时需要考虑的微分方程是 f'' = ff'. 我们将其中的 f 看作已知函数, 考虑的微分方程转化为 y'' = fy', 则

$$y'' = fy' \Rightarrow \frac{y''}{y'} = f \Rightarrow \ln y' = \int_0^x f(t) dt + C \Rightarrow y' = Ce^{\int_0^x f(t) dt}.$$

于是常数变易, 再开平方得到构造函数 $C(x) = \frac{\left[f'(x)\right]^2}{e^{2\int_0^x |f(t)| \mathrm{d}t}}$.

证明 令
$$C(x) = \frac{[f'(x)]^2}{e^2 \int_0^x |f(t)| dt}$$
, 则

$$C'(x) = \frac{2f'(x)f''(x) - 2|f(x)|[f'(x)]^2}{e^{2\int_0^x |f(t)|dt}}.$$

又因为

$$f'f'' \leqslant |f'f''| \leqslant |f|(f')^2.$$

所以 $C'(x) \le 0$, 故 $C(x) \le C(0) = 0$. 又注意到 $C(x) = \frac{[f'(x)]^2}{e^2 \int_0^x |f(t)| dt} \ge 0$, 故 C(x) = 0. 于是 f'(x) = 0, $\forall x \ge 0$. 进而 f 就是常值函数,又 f(0) = 0,故 f(x) = 0, $\forall x \ge 0$.

4.5.3 极值原理

例题 **4.32** 设 $f \in C^2[0,1]$ 且 f(0) = f(1) = 0, 若还有

$$f''(x) - g(x)f'(x) = f(x). (4.26)$$

证明: $f(x) = 0, \forall x \in [0, 1].$

证明 如果 f 在 (0,1) 取得在 [0,1] 上的正的最大值, 设最大值点为 c 且 f(c) > 0, f'(c) = 0, $c \in (0,1)$, 代入(4.26)式知 f''(c) = f(c) > 0. 又由极值的充分条件, 我们知道 c 是严格极小值点, 这就是一个矛盾!

同样的考虑 f 在 (0,1) 取得在 [0,1] 上的负的最小值,设最小值点为 c 且 $f(c) < 0, f'(c) = 0, c \in (0,1)$,代 $\lambda(4.26)$ 式知 f''(c) = f(c) < 0. 又由极值的充分条件,我们知道 c 是严格极大值点,这就是一个矛盾!

综上,f在(0,1)上没有正的最大值,也没有负的最小值.即

$$0 \leqslant f(x) \leqslant 0$$
.

 $f(x) = 0, \forall x \in [0, 1].$

例题 **4.33** 设 $f \in C(a,b)$ 且

$$\lim_{h \to 0} \frac{1}{h^3} \left\{ \int_0^h [f(x+u) + f(x-u) - 2f(x)] \, \mathrm{d}u \right\} = 0, \forall x \in (a,b),$$

证明: f 是线性函数.

奎记 还可以不妨设 a = 0, b = 1, 否则用 f(a(1-x)+bx) = f((b-a)x+a) 代替 f 即可. 这样就可以直接不妨设 $f \in C[0,1]$ 且 f(0) = f(1) = 0.

不妨设 a = 0, b = 1 的原因: 令 $g(x) \triangleq f((b-a)x + a)$, 则对 $\forall x \in (0,1)$, 记 $y = (b-a)x + a \in [a,b]$, 则

$$\lim_{h \to 0} \frac{1}{h^3} \left\{ \int_0^h \left[g(x+u) + g(x-u) - 2g(x) \right] du \right\}$$

$$= \lim_{h \to 0} \frac{1}{h^3} \left\{ \int_0^h \left[f(y + (b - a)u) + f(y - (b - a)u) - 2f(y) \right] du \right\}$$

$$= \lim_{h \to 0} \frac{1}{(b - a)h^3} \left\{ \int_0^{(b - a)h} \left[f(y + u) + f(y - u) - 2f(y) \right] du \right\}$$

$$= (b - a)^2 \lim_{h \to 0} \frac{1}{(b - a)^3 h^3} \left\{ \int_0^{(b - a)h} \left[f(y + u) + f(y - u) - 2f(y) \right] du \right\}$$

$$= (b - a)^2 \lim_{h \to 0} \frac{1}{h^3} \left\{ \int_0^h \left[f(y + u) + f(y - u) - 2f(y) \right] du \right\} = 0.$$

因此 g 仍然满足题目条件. 若已证 g ≡ 0, 就有

$$f\left((b-a)x+a\right)=0, \forall x\in [0,1] \Longleftrightarrow f\left(x\right)=0, \forall x\in [a,b]\,.$$

故可以不妨设 a = 0, b = 1.

证明 不妨设 $f \in C[a,b]$, 否则内闭的考虑或修改 f 在端点的值即可. 用 $f(x) - \frac{f(b) - f(a)}{b - a}(x - a) - f(a)$ 代替 f 可以不妨设 f(a) = f(b) = 0. 此时只需证 $f \equiv 0$ 即可.

若

$$f(x_0) = \max_{x \in [a,b]} f(x) > 0,$$

则 $x_0 \in (a,b)$. 取 $\varepsilon > 0$ 使得

$$f(x_0) + \varepsilon(x_0 - a)(x_0 - b) > 0.$$

考虑

$$f_{\varepsilon}(x) \triangleq f(x) + \varepsilon(x - a)(x - b),$$

则存在 $x_1 \in (a,b)$, 使得

$$f_{\varepsilon}(x_1) = \max_{x \in [a,b]} f_{\varepsilon}(x) \geqslant f_{\varepsilon}(x_0) > 0.$$

现在

$$0 = \lim_{h \to 0} \frac{1}{h^3} \left\{ \int_0^h \left[f_{\varepsilon}(x_1) + f_{\varepsilon}(x_1) - 2f_{\varepsilon}(x_1) \right] du \right\}$$

$$\geqslant \lim_{h \to 0} \frac{1}{h^3} \left\{ \int_0^h \left[f_{\varepsilon}(x_1 + u) + f_{\varepsilon}(x_1 - u) - 2f_{\varepsilon}(x_1) \right] du \right\}$$

$$= \lim_{h \to 0} \frac{\int_0^h 2\varepsilon u^2 du}{h^3} = \lim_{h \to 0} \frac{\frac{2}{3}\varepsilon h^3}{h^3} = \frac{2}{3}\varepsilon > 0,$$

这就是一个矛盾! 因此我们有

$$\max_{x \in [a,b]} f(x) \leqslant 0 \Longrightarrow f(x) \leqslant 0, \forall x \in [a,b].$$

考虑 -f, 令 $-f_{\varepsilon}(x) = -f(x) - \varepsilon(x-a)(x-b)$, 同理可得

$$\max_{x \in [a,b]} (-f(x)) \leqslant 0 \Longrightarrow -f(x) \leqslant 0, \forall x \in [a,b] \Longrightarrow f(x) \geqslant 0, \forall x \in [a,b].$$

现在就有

$$f(x) = 0, \forall x \in [a, b],$$

即所求函数 f 为线性函数.

第五章 函数性态分析

5.1 基本性态分析模型

命题 5.1 (多个函数取最值或者中间值)

设 f,g,h 是定义域上的连续函数,则 $(a):\max\{f,g\},\min\{f,g\}$ 是定义域上的连续函数. $(b):\min\{f,g,h\}$ 是定义域上的连续函数.

 $\mathbf{\dot{z}}$ 这里 $\mathrm{mid}\{f,g,h\}$ 表示取中间值函数,显然这个命题可以推广到多个函数的情况.

证明 只需要注意到

$$\begin{split} \max\{f,g\} &= \frac{f+g+|f-g|}{2},\\ \min\{f,g\} &= \frac{f+g-|f-g|}{2},\\ \min\{f,g,h\} &= f+g+h-\max\{f,g,h\}-\min\{f,g,h\}. \end{split}$$

命题 5.2

若f是区间I上处处不为零的连续函数,则f在区间I上要么恒大于零,要么恒小于零.

证明 用反证法, 若存在 $x_1, x_2 \in I$, 使得 $f(x_1) = f(x_2) = 0$, 则由零点存在定理可知, 存在 $\xi \in (\min x_1, x_2, \max x_1, x_2)$, 使得 $f(\xi) = 0$ 矛盾.

命题 5.3

设f为区间I上的可微函数,证明:f'为I上的常值函数的充分必要条件是f为线性函数.

证明 充分性显然, 下证必要性. 设 $f'(x) \equiv C$, 其中 C 为某一常数. $\forall x \in I$, 任取固定点 $x_0 \in I$, 由 Lagrange 中值定理可知, 存在 $\xi \in (\min\{x_0, x\}, \max\{x_0, x\})$, 使得

$$f(x) = f'(\xi)(x - x_0) + f(x_0) = C(x - x_0) + f(x_0).$$

故 f(x) 为线性函数.

定理 5.1 (闭区间上单调函数必可积)

设f在[a,b]上单调,则 $f \in R[a,b]$.

证明

命题 5.4 (连续的周期函数的基本性质)

设 $f \in C(\mathbb{R})$ 且以T > 0为周期,则

- (1) f在 R 上有界.
- (2) f 在 \mathbb{R} 上一致连续.

证明

- (1)
- (2)

命题 5.5 (导数有正增长率则函数爆炸)

设 f 在 $[a, +\infty)$ 可微且 $\lim_{x \to a} f'(x) = c > 0$, 证明

$$\lim_{x \to +\infty} f(x) = +\infty.$$

室记 类似的还有趋于 -∞ 或者非极限形式的结果,读者应该准确理解含义并使得各种情况都能复现,我们引用本结论时未必就是本结论本身,而是其蕴含的思想.

证明 因为 $\lim_{x\to +\infty} f'(x)=c>0$,所以存在 X>a,使得 $f'(x)>\frac{c}{2}$, $\forall x\geqslant X$. 于是由 Lagrange 中值定理得到,对 $\forall x\geqslant X$,存在 $\theta\in (X,x)$,使得

$$f(x) = f(X) + f'(\theta)(x - X) \geqslant f(X) + \frac{c}{2}(x - X), \forall x \geqslant X.$$

让 $x \to +\infty$ 就得到

$$\lim_{x \to +\infty} f(x) = +\infty.$$

命题 5.6 (函数不爆破则各阶导数必然有趋于 0 的子列)

设 $k \in \mathbb{N}, a \in \mathbb{R}$ 且 $f \in D^k[a, +\infty)$,若 $\lim_{x \to +\infty} |f(x)| \neq +\infty$,那么存在趋于正无穷的 $\{x_n\}_{n=1}^{\infty} \subset [a, +\infty)$ 使得

$$\lim_{n\to\infty} f^{(k)}(x_n) = 0.$$

Ŷ 笔记

(1) 存在 X > 0 使得 $f^{(k)}$ 在 $(X, +\infty)$ 要么恒正, 要么恒负的原因: 否则, 对 $\forall X > 0$, 存在 $x_1, x_2 \in (X, +\infty)$, 使得 $f^{(k)}(x_1) > 0$, $f^{(k)}(x_2) < 0$. 从而由导数的介值性可知, 存在 $\xi_X \in (x_1, x_2)$, 使得 $f^{(k)}(\xi_X) = 0$. 于是

令
$$X = 1$$
, 则存在 $y_1 > 1$, 使得 $f^{(k)}(y_1) = 0$;

令
$$X = \max\{2, y_1\}$$
, 则存在 $y_2 > \max\{2, y_1\}$, 使得 $f^{(k)}(y_2) = 0$;

.

令 $X = \max\{n, y_{n-1}\}$,则存在 $y_n > \max\{n, y_{n-1}\}$,使得 $f^{(k)}(y_n) = 0$;

.

这样得到一个数列 $\{y_n\}_{n=1}^{\infty}$ 满足

$$\lim_{n \to \infty} y_n = +\infty \mathbb{E} f^{(k)}(y_n) = 0, \forall n \in \mathbb{N}_+.$$

这与假设矛盾!

(2) 存在 m > 0, 使得 $f^{(k)}(x) \ge m > 0$, $\forall x \ge X$ 的原因: 假设对 $\forall m > 0$, 有 $m > f^{(k)}(x) > 0$, $\forall x \ge X$. 再令 $m \to 0^+$, 则由夹逼准则可得 $f^{(k)}(x) = 0$, $\forall x \ge X$. 这与假设矛盾! (也可以用下极限证明)

证明 注意到若不存在 $\{x_n\}_{n=1}^{\infty}$ 使得 $\lim_{n\to\infty} f^{(k)}(x_n) = 0$ 成立那么将存在 X>0 使得 $f^{(k)}$ 在 $(X,+\infty)$ 要么恒正, 要么恒负 (见笔记 (1)).如果找不到子列使得 $\lim_{n\to\infty} f^{(k)}(x_n) = 0$ 成立, 那么不妨设存在 X>0 使得

$$f^{(k)}(x) > 0, \forall x \geqslant X.$$

从而一定存在m > 0(见笔记(2)), 使得

$$f^{(k)}(x) \geqslant m > 0, \forall x \geqslant X. \tag{5.1}$$

则由 Taylor 中值定理, 我们知道对每个x > X, 运用(5.1), 都有

$$f(x) = \sum_{i=0}^{k-1} \frac{f^{(j)}(X)}{j!} (x - X)^j + \frac{f^{(k)}(\theta)}{k!} (x - X)^k \geqslant \sum_{i=0}^{k-1} \frac{f^{(j)}(X)}{j!} (x - X)^j + \frac{m}{k!} (x - X)^k,$$

于是 $\lim_{x\to +\infty} f(x) = +\infty$, 这就是一个矛盾! 因此我们证明了必有子列使得 $\lim_{n\to \infty} f^{(k)}(x_n) = 0$ 成立.

定理 5.2 (严格单调和导数的关系)

- 1. 设 $f \in C[a,b] \cap D(a,b)$ 且 f 递增, 则 f 在 [a,b] 严格递增的充要条件是对任何 $[x_1,x_2] \subset [a,b]$ 都存在 $c \in (x_1,x_2)$ 使得 f'(c) > 0.
- 2. 设 $f \in C[a,b] \cap D(a,b)$ 且 f 递减, 则 f 在 [a,b] 严格递减的充要条件是对任何 $[x_1,x_2] \subset [a,b]$ 都存在 $c \in (x_1,x_2)$ 使得 f'(c) < 0.

证明 若 f 在 [a,b] 严格递增,则对任何 $[x_1,x_2] \subset [a,b]$,由 Lagrange 中值定理可知,存在 $c \in (x_1,x_2)$,使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) > 0.$$

反之对任何 $[x_1,x_2] \subset [a,b]$ 都存在 $c \in (x_1,x_2)$ 使得 f'(c) > 0. 任取 $[s,t] \subset [a,b]$, 现在有 $c \in (s,t)$ 使得 f'(c) > 0, 则根据 $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{f(c) - f(c-h)}{h} > 0$, 再结合 f 递增, 可知存在充分小的 h > 0 使得 $f(s) \leq f(c-h) < f(c) < f(c+h) \leq f(t)$,

这就证明了f严格递增.严格递减是类似的,我们完成了证明.

定理 5.3 (单侧导数极限定理)

设 $f \in C[a,b] \cap D^1(a,b]$ 且 $\lim_{x \to a^+} f'(x) = c$ 存在, 证明 f 在 a 右可导且 $f'_+(a) = c$.

注 本结果当然也可对应写出左可导的版本和可导的版本,以及对应的无穷版本 (即 a,b,c 相应的取 $\pm \infty$).

 $^{\circ}$ 笔记 本结果告诉我们可在 f 连续的时候用 f' 的左右极限存在性来推 f 可导性.

证明 运用 Lagrange 中值定理, 我们知道

$$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^{+}} f'(\theta(x)) = c,$$

其中 $\theta(x) \in (a,x)$, $\lim_{x \to a^+} \theta(x) = a$. 这就完成了这个定理的证明.

例题 5.1 经典光滑函数 考虑

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & |x| > 0\\ 0, & |x| = 0 \end{cases}$$

则 $f \in C^{\infty}(\mathbb{R})$ 且 $f^{(n)}(0) = 0, \forall n \in \mathbb{N}$.

证明 我们归纳证明, 首先 $f \in C^0(\mathbb{R}) = C(\mathbb{R})$, 假定 $f \in C^k(\mathbb{R})$, $k \in \mathbb{N}$. 注意到存在多项式 $p_{k+1} \in \mathbb{R}[x]$, 使得

$$f^{(k+1)}(x) = p_{k+1}\left(\frac{1}{x}\right)e^{-\frac{1}{x^2}}, \forall x \neq 0.$$

于是

$$\lim_{x \to 0} f^{(k+1)}(x) = \lim_{x \to 0} p_{k+1} \left(\frac{1}{x}\right) e^{-\frac{1}{x^2}} = \lim_{x \to \infty} p_{k+1}(x) e^{-x^2} = 0,$$

运用导数极限定理, 我们知道 $f^{(k+1)}(0)=0$. 由数学归纳法我们知道 $f^{(n)}(0)=0, \forall n\in\mathbb{N}$, 这就完成了证明.

定理 5.4 (连续函数中间值定理)

设 $p_1, p_2, \cdots, p_n \geqslant 0$ 且 $\sum_{j=1}^n p_j = 1$. 则对有介值性函数 $f: [a, b] \to \mathbb{R}$ 和 $a \leqslant x_1 \leqslant x_2 \leqslant \cdots \leqslant x_n \leqslant b$, 必然 存在 $\theta \in [x_1, x_n]$, 使得

$$f(\theta) = \sum_{j=1}^{n} p_j f(x_j).$$

 \Diamond

 $\stackrel{ extstyle }{ extstyle }$ 笔记 中间值可以通过介值定理取到是非常符合直观的. 特别的当 $p_1=p_2=\cdots=p_n=rac{1}{n}$, 就是所谓的平均值定理

$$f(\theta) = \frac{1}{n} \sum_{j=1}^{n} f(x_j).$$

证明 设

$$M = \max_{1 \le i \le n} f(x_i), m = \min_{1 \le i \le n} f(x_i).$$

于是

$$m = m \sum_{j=1}^{n} p_{j} \leqslant \sum_{j=1}^{n} p_{j} f(x_{j}) \leqslant M \sum_{j=1}^{n} p_{j} = M.$$

因此由 f 的介值性知: 必然存在 $\theta \in [x_1, x_n]$, 使得 $f(\theta) = \sum_{j=1}^n p_j f(x_j)$ 成立.

命题 5.7

若 $f \in C[a,b] \cap D(a,b)$, 则 f' 没有第一类间断点与无穷间断点.

注 也可以利用Darboux 定理进行证明.

证明 若 f' 存在第一类间断点 $c \in [a,b]$, 则由单侧导数极限定理可知

$$f'(c^{-}) = f'_{-}(c), \quad f'(c^{+}) = f'_{+}(c).$$

又因为 f 在 x = c 处可导, 所以 $f'_{-}(c) = f'_{+}(c)$. 从而

$$f'(c^{-}) = f'_{-}(c) = f'_{+}(c) = f'(c^{+}).$$

即 f 在 x = c 处既左连续又右连续, 故 f 在 x = c 处连续, 矛盾!

由于单侧导数极限定理同样适用于单侧导数为无穷大的情况,因此对于无穷大的情况可同理证明.

命题 5.8

设 f 是一个定义在区间 I \subset \mathbb{R} 上的单调函数, 并且满足 f(I)=I', 其中 I' \subset \mathbb{R} 是一个区间, 则 f 在区间 I 上 连续, 即 f \in C(I).

证明 反证, 假设 f 在某个点 $c \in I$ 处间断. 若 c 在区间 I 的内部, 则由 f 在区间 I 上单调递增, 利用单调有界定理 可知 $\lim_{x \to c^+} f(x)$ 和 $\lim_{x \to c^-} f(x)$ 存在, 并且

$$\lim_{x \to c^{-}} f(x) \leqslant f(c) \leqslant \lim_{x \to c^{+}} f(x).$$

又因为 f(x) 在 x = c 处间断, 所以上式至少有一个严格不等号成立, 故不妨设

$$\lim_{x \to c^-} f(x) \leqslant f(c) < \lim_{x \to c^+} f(x).$$

对 $\forall x > c$, 固定 x, 由 f 在 I 上递增可知

$$f(x) > f(y), \quad \forall y \in (c, x).$$

令 $y \to c^+$, 得 $f(x) \geqslant \lim_{x \to c^+} f(x)$. 对 $\forall x < c$, 由 f 在 I 上递增可知 $f(x) \leqslant f(c)$. 因此 $f(I) \subset (-\infty, f(c)] \cup [\lim_{x \to c^+} f(x), +\infty)$, 故 $(f(c), \lim_{x \to c^+} f(x)) \not\subset f(I)$, 但 $(f(c), \lim_{x \to c^+} f(x)) \subset I'$. 这与 f(I) = I' 矛盾!

若 c 是区间 I 的端点,则同理可得矛盾!

命题 5.9

定义在区间 I 上的单调函数 f 只有第一类间断点,特别地,若 x_0 在区间 I 的内部,则 x_0 要么是跳跃间断点,要么就是连续点.

证明

命题 5.10 (连续单射等价严格单调)

设 f 是区间 I 上的连续函数, 证明 f 在 I 上严格单调的充要条件是 f 是单射.

证明 必要性是显然的,只证充分性. 如若不然,不妨考虑 $f(x_3) < f(x_1) < f(x_2), x_1 < x_2 < x_3$ (其他情况要么类似,要么平凡),于是由连续函数介值定理知存在 $\theta \in [x_2, x_3]$ 使得 $f(\theta) = f(x_1)$,这就和 f 在 I 上单射矛盾! 故 f 严格单调.

例题 5.2 证明不存在 \mathbb{R} 上的连续函数 f 满足方程

$$f(f(x)) = e^{-x}.$$

Ŷ 笔记 注意积累二次复合的常用处理手法,即运用命题 5.10.

证明 假设存在满足条件的函数 f. 设 f(x) = f(y), 则

$$e^{-x} = f(f(x)) = f(f(y)) = e^{-y}$$
.

由 e^{-x} 的严格单调性我们知 x = y, 于是 f 是单射. 由命题 5.10知 f 严格单调. 又递增和递增复合递增, 递减和递减复合也递增, 我们知道 $f(f(x)) = e^{-x}$ 递增, 这和 e^{-x} 严格递减矛盾! 故这样的 f 不存在.

例题 5.3 求 $k \in \mathbb{R}$ 的范围, 使得存在 $f \in C(\mathbb{R})$ 使得 $f(f(x)) = kx^9$.

证明 当 k < 0 时, 假设存在满足条件的函数 f. 设 f(x) = f(y), 则

$$kx^9 = f(f(x)) = f(f(y)) = ky^9.$$

由 kx^9 的严格单调性我们知 x = y, 于是 f 是单射. 由命题 5.10 知 f 严格单调. 又递增和递增复合递增, 递减和递减复合也递增. 我们知道 $f(f(x)) = kx^9$ 递增. 这和 kx^9 严格递减矛盾! 故这样的 f 不存在.

当
$$k \ge 0$$
 时,取 $f(x) = \sqrt[4]{k}x^3$, 此时 $f(x)$ 满足条件.

命题 **5.11** ([a,b] 到 [a,b] 的连续函数必有不动点)

设 $f:[a,b] \rightarrow [a,b]$ 是连续函数,证明 f 在 [a,b] 上有不动点.

堂 笔记 注意 [a,b] → [a,b] 表示 f 是从 [a,b] → [a,b] 的映射, 右端的 [a,b] 是像集而不是值域, f 可能取不到整个 [a,b].

证明 考虑 $g(x) = f(x) - x \in C[a, b]$, 注意到 $g(a) \ge 0$, $g(b) \le 0$, 由连续函数的零点定理知道 f 在 [a, b] 上有不动点.

命题 5.12 (没有极值点则严格单调)

设 $f \in C[a,b]$ 且 f 在 (a,b) 没有极值点, 证明 f 在 [a,b] 严格单调.

证明 因为闭区间上连续函数必然取得最值,且在(a,b)的最值点必然是极值点,因此由假设我们不妨设 f 在 [a,b]端点取得最值.不失一般性假设

$$f(a) = \min_{x \in [a,b]} f(x), f(b) = \max_{x \in [a,b]} f(x).$$

此时若在 [a,b] 上 f 严格单调,则只能是严格单调递增. 若在 [a,b] 上 f 不严格递增,则存在 $x_2 > x_1$,使得 $f(x_2) \leq f(x_1)$.

若 $x_1 = a, x_2 < b$, 则注意到 $f(x_2) \leq \min\{f(a), f(b)\}$, 同样的 f 在 (a, b) 取得极小值而矛盾.

$$\ddot{x}_1 = a, x_2 = b,$$
则 f 恒为常数而矛盾! 这就完成了证明.

命题 5.13 (函数值相同的点导数值相同就一定单调)

设 $f \in D(a,b)$ 满足 $f(x_1) = f(x_2), x_1, x_2 \in (a,b)$, 必有 $f'(x_1) = f'(x_2)$, 证明 f 在 (a,b) 是单调函数.

章 笔记 令 $\sigma = \max \{x \in [c, \xi] : f(x) = f(d)\}$ 的原因: 设 $E = \{x \in [c, \xi] : f(x) = f(d)\}$. 实际上, 这里取 $\sigma = \sup\{x \in [c, \xi] : f(x) = f(d)\}$ 也可以, 效果类似.

(1) σ 的存在性证明: 由 f 的介值性知, 存在 $\eta \in (c, \xi)$, 使得

$$f(\xi) \leqslant f(\eta) = f(d) \leqslant f(c)$$
.

从而 $\eta \in E = \{x \in [c, \xi] : f(x) = f(d)\}$, 故 E 非空. 又由 E 的定义, 显然 E 有界, 故由确界存在定理可知, E 存在上确界. 于是令 $\sigma = \sup\{x \in [c, \xi] : f(x) = f(d)\} \le [c, \xi]$. 下证 $\sigma = \sup\{x \in [c, \xi] : f(x) = f(d)\} = \max\{x \in [c, \xi] : f(x) = f(d)\}$, 即 $\sigma \in E = \{x \in [c, \xi] : f(x) = f(d)\}$.

由上确界的性质可知, 存在 $\{x_n\}_{n=1}^\infty$ 满足 $x_n \in E$ 且 $\lim_{n \to \infty} x_n = \sigma$. 从而 $f(x_n) = f(d)$. 于是由 f 的连续性可得

$$\lim_{n\to\infty}f\left(x_{n}\right)=f\left(\lim_{n\to\infty}x_{n}\right)=f\left(\sigma\right)=f\left(d\right).$$

故 $\sigma \in E$. 这样就完成了证明.

(2) 取 $\sigma = \max \{x \in [c, \xi] : f(x) = f(d)\}$ 的原因: 当 $f(c) \ge f(d)$ 时, $E = \{x \in [c, \xi] : f(x) = f(d)\}$ 中的其他点 $a \in E$, 可能有 f'(a) > 0, 也可能有 $f'(a) \le 0$. 而 σ 一定只满足 $f'(\sigma) \le 0$.

证明 若 f 不在 (a,b) 是单调,则不妨设 a < c < d < b, 使得 f'(c) < 0 < f'(d).

由 $f'(d) = \lim_{x \to d^-} \frac{f(x) - f(d)}{x - d} > 0$ 知在 d 的左邻域内, f(x) < f(d). 由 $f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} < 0$ 知 f 在 c 的 右邻域内有 f(x) < f(c),于是 f(c),f(d) 不是 f 在 [c,d] 上的最小值, 又由 $f \in C[c,d]$ 可知 f 在 [c,d] 上一定存在最小值. 故可以设 f 在 [c,d] 最小值点为 $\xi \in (c,d)$.

当 $f(c) \ge f(d)$ 时,令

$$\sigma = \max\{x \in [c, \xi] : f(x) = f(d)\}.$$

注意到 $\sigma < \xi$. 显然 $f'(\sigma) \le 0$, 因为如果 $f'(\sigma) > 0$ 会导致在 σ 右邻域内有大于 f(d) 的点, 由介值定理可以找到 $\xi > \sigma' > \sigma$, 使得 $f(\sigma') = f(d)$ 而和 σ 是最大值矛盾! 而函数值相同的点导数值也相同, 因此 $f'(\sigma) = f'(d) > 0$, 这与 $f'(\sigma) \le 0$ 矛盾!

当 $f(c) \leq f(d)$ 时类似可得矛盾! 我们完成了证明.

命题 5.14 (一个经典初等不等式)

设 $a,b \ge 0$, 证明:

$$\begin{cases} a^{p} + b^{p} \leqslant (a+b)^{p} \leqslant 2^{p-1}(a^{p} + b^{p}), & p \geqslant 1, p \leqslant 0 \\ a^{p} + b^{p} \geqslant (a+b)^{p} \geqslant 2^{p-1}(a^{p} + b^{p}), & 0
(5.2)$$

 $\stackrel{ extbf{?}}{ extbf{?}}$ 笔记 不等式左右是奇次对称的, 我们可以设 $t=rac{a}{b}\in[0,1]$, 于是(5.2)两边同时除以 b^p 得

$$\begin{cases} t^p + 1 \leq (t+1)^p \leq 2^{p-1}(t^p + 1), & p \geq 1, p \leq 0 \\ t^p + 1 \geq (t+1)^p \geq 2^{p-1}(t^p + 1), & 0$$

证明 考虑 $f(t) \triangleq \frac{(t+1)^p}{1+t^p}, t \in [0,1]$, 我们有

$$f'(t) = p(t+1)^{p-1} \frac{1 - t^{p-1}}{(1 + t^p)^2} \begin{cases} \ge 0, & p \ge 1, p \le 0 \\ < 0, & 0 < p < 1 \end{cases}$$

于是

$$\begin{cases} 2^{p-1} = f(1) \geqslant f(t) \geqslant f(0) = 1, & p \geqslant 1, p \leqslant 0 \\ 2^{p-1} = f(1) \leqslant f(t) \leqslant f(0) = 1, & 0$$

这就完成了证明.

定理 5.5 (反函数存在定理)

设 $y = f(x), x \in D$ 为严格增 (滅) 函数, 则 f 必有反函数 f^{-1} , 且 f^{-1} 在其定义域 f(D) 上也是严格增 (减) 函数.

证明 设 $f \in D$ 上严格增. 对任一 $y \in f(D)$, 有 $x \in D$ 使 f(x) = y. 下面证明这样的 x 只能有一个. 事实上, 对于 D 中任一 $x_1 \neq x$, 由 f 在 D 上的严格增性, 当 $x_1 < x$ 时, $f(x_1) < y$, 当 $x_1 > x$ 时, 有 $f(x_1) > y$, 总之 $f(x_1) \neq y$. 这就说明, 对每一个 $y \in f(D)$, 都只存在唯一的一个 $x \in D$, 使得 f(x) = y, 从而函数 f 存在反函数 $x = f^{-1}(y)$, $y \in f(D)$.

现证 f^{-1} 也是严格增的. 任取 $y_1, y_2 \in f(D), y_1 < y_2$. 设 $x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2), 则 y_1 = f(x_1), y_2 = f(x_2)$. 由 $y_1 < y_2$ 及 f 的严格增性, 显然有 $x_1 < x_2$, 即 $f^{-1}(y_1) < f^{-1}(y_2)$. 所以反函数 f^{-1} 是严格增的.

定理 5.6 (反函数连续定理)

若函数 f 在 [a,b] 上严格单调并连续,则反函数 f^{-1} 在其定义域 [f(a),f(b)] 或 [f(b),f(a)] 上连续.

证明 不妨设 f 在 [a,b] 上严格增. 此时 f 的值域即反函数 f^{-1} 的定义域为 [f(a),f(b)]. 任取 $y_0 \in (f(a),f(b))$, 设 $x_0 = f^{-1}(y_0)$, 则 $x_0 \in (a,b)$. 于是对任给的 $\varepsilon > 0$, 可在 (a,b) 上 x_0 的两侧各取异于 x_0 的点 $x_1, x_2(x_1 < x_0 < x_2)$, 使它们与 x_0 的距离小于 ε .

设与 x_1, x_2 对应的函数值分别为 y_1, y_2 , 由f 的严格增性知 $y_1 < y_0 < y_2$. 令

$$\delta = \min\{y_2 - y_0, y_0 - y_1\}$$

则当 $y \in U(y_0; \delta)$ 时, 对应的 $x = f^{-1}(y)$ 的值都落在 $x_1 = x_2$ 之间, 故有

$$|f^{-1}(y) - f^{-1}(y_0)| = |x - x_0| < \varepsilon$$

这就证明了 f^{-1} 在点 y_0 连续, 从而 f^{-1} 在 (f(a), f(b)) 上连续.

类似地可证 f^{-1} 在其定义区间的端点 f(a) 与 f(b) 分别为右连续与左连续. 所以 f^{-1} 在 [f(a),f(b)] 上连续.

定理 5.7 (反函数求导定理)

设 y=f(x) 为 $x=\varphi(y)$ 的反函数, 若 $\varphi(y)$ 在点 y_0 的某邻域上连续, 严格单调且 $\varphi'(y_0)\neq 0$, 则 f(x) 在点 $x_0(x_0=\varphi(y_0))$ 可导, 且

$$f'(x_0) = \frac{1}{\varphi'(y_0)}.$$

证明 设 $\Delta x = \varphi(y_0 + \Delta y) - \varphi(y_0)$, $\Delta y = f(x_0 + \Delta x) - f(x_0)$. 因为 φ 在 y_0 的某邻域上连续且严格单调, 故 $f = \varphi^{-1}$ 在 x_0 的某邻域上连续且严格单调. 从而当且仅当 $\Delta y = 0$ 时 $\Delta x = 0$, 并且当且仅当 $\Delta y \to 0$ 时 $\Delta x \to 0$. 由 $\varphi'(y_0) \neq 0$, 可得

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{\Delta y}{\Delta x} = \frac{1}{\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y}} = \frac{1}{\varphi'(y_0)}$$

5.2 函数方程

定义 5.1

我们称 $f: \mathbb{R} \to \mathbb{R}$ 满足的方程

$$f(x + y) = f(x) + f(y).$$

为 Cauchy 方程.

 $\widehat{\mathbf{Y}}$ 笔记 显然 $f(x) = cx, c \in \mathbb{R}$ 为 Cauchy 方程的解, 一个自然的问题是, 满足 Cauchy 方程的函数 f 是否一定是 cx?

命题 5.15 (Cauchy 方程基本性质)

设 $f: \mathbb{R} \to \mathbb{R}$ 是 Cauchy 方程: f(x+y) = f(x) + f(y) 的解, 则

$$f(rx) = r f(x), \forall r \in \mathbb{Q}.$$

证明 $\forall x \in \mathbb{R}$, 由条件可知 f(2x) = f(x) + f(x) = 2f(x), 然后就有

$$f(3x) = f(2x) + f(x) = 2f(x) + f(x) = 3f(x).$$

依次下去可得

$$f(nx) = nf(x), \forall n \in \mathbb{N}_+. \tag{5.3}$$

现在对 $\forall r = \frac{q}{p} \in \mathbb{Q}, p \neq 0, q, p \in \mathbb{Z}$. 我们由条件可得

$$rf(x) = f(rx) \Leftrightarrow qf(x) = pf\left(\frac{q}{p}x\right).$$
 (5.4)

利用 (5.3)式可得

$$pf\left(\frac{q}{p}x\right) = f(qx) = qf(x).$$

故由 (5.4)式可知, 对 $\forall x \in \mathbb{R}$, 有 rf(x) = f(rx), $\forall r \in \mathbb{Q}$ 成立.

定理 5.8

设 $f: \mathbb{R} \to \mathbb{R}$ 满足 Cauchy 方程: f(x+y) = f(x) + f(y) 且 f 在 \mathbb{R} 上连续, 则

$$f(x) = f(1)x, \forall x \in \mathbb{R}.$$

证明 由命题 5.15可知, 对 $\forall x \in \mathbb{R}$, 有

$$r f(x) = f(rx), \forall r \in \mathbb{Q}. \tag{5.5}$$

成立. 现在对每个无理数 a, 由有理数的稠密性可知, 存在有理数列 $\{r_n\}_{n=1}^{\infty}$, 使得 $\lim_{n\to\infty}r_n=a$. 于是由 f 的连续性及 (5.5) 式可得

$$f(ax) = \lim_{n \to \infty} f(r_n x) = \lim_{n \to \infty} r_n f(x) = a f(x), \forall x \in \mathbb{R}.$$

故 $f(ax) = af(x), \forall a, x \in \mathbb{R}$. 取 x = 1, 则 $f(a) = f(1)a, \forall a \in \mathbb{R}$.

定理 5.9 (Cauchy 方程基本定理)

设 $f: \mathbb{R} \to \mathbb{R}$ 是 Cauchy 方程: f(x+y) = f(x) + f(y) 的解,则满足下述条件之一:

- 1. f 在某点连续.
- 2. f在某个区间有上界或者下界.
- 3. f 在某个区间上单调.
- 4. f 在一个正测集上有界.

- 5. f 可测.
- 6. $\{(x, f(x)) : x \in \mathbb{R}\}$ 在 \mathbb{R}^2 不稠密.

我们就有 $f(x) = f(1)x, \forall x \in \mathbb{R}$.

 \Diamond

注 不妨设 f 在包含原点的对称区间 I 上有上界原因: 假设已证 f 在 (-a,a) 上有上界时, 结论成立.

如果 f 在 (c,d) 上有上界, 那么记 $x_0 = \frac{c+d}{2}$, $a = \frac{d-c}{2}(x_0)$ 可根据我们的期望, 待定系数得到, 具体见豌豆讲义), 则 $(c,d) = (x_0 - a, x_0 + a)$, 即 f 在 $(x_0 - a, x_0 + a)$ 上有上界. 从而令 $g(x) = f(x + x_0) - f(x_0)$, 则由条件可得

$$g(x + y) = f(x + y + x_0) - f(x_0) = f(x + y + 2x_0 - x_0) - f(x_0)$$

$$= f(x + x_0) + f(y + x_0 - x_0) - f(x_0) = f(x + x_0) + f(y + x_0) - 2f(x_0)$$

$$= g(x) + g(y).$$

故 g(x) 满足 Cauchy 方程且在 (-a,a) 上有上界, 于是由假设可知, g(x) = g(1)x, $\forall x \in \mathbb{R}$. 又注意到

$$g(x) = f(x + x_0) - f(x_0) = f(x + x_0) + f(-x_0) = f(x).$$

故 $f(x) = g(x) = g(1)x = f(1)x, \forall x \in \mathbb{R}$. 因此不妨设合理.

证明

1. 如果 f 在 x_0 连续,则对任何 $x' \in \mathbb{R}$,有

$$\lim_{x \to x'} f(x) = \lim_{x \to x'} f(x - x' + x_0) + \lim_{x \to x'} f(x' - x_0) = f(x_0) + f(x' - x_0) = f(x').$$

于是我们证明了 f 在 x' 连续. 于是由定理 5.8我们知道 $f(x) = f(1)x, \forall x \in \mathbb{R}$.

2. 不妨设 f 在包含原点的对称区间 I 上有上界. 下证 f 在原点连续. 注意到由命题 5.15我们知道

$$f(x) = \frac{f(rx)}{r}, \forall r \in \mathbb{Q} \setminus \{0\}, x \in \mathbb{R}.$$
 (5.6)

现在对任何 $\lim_{n\to\infty} x_n = 0$, 取 $r_n \in \mathbb{Q} \setminus \{0\}$ 使得

$$\lim_{n \to \infty} r_n = +\infty, \lim_{n \to \infty} r_n x_n = 0.$$
(5.7)

注意到在(5.6)中令r = -1 知 f 是奇函数,从而 f 在 I 上有下界. 现在由于有界和无穷小之积也为无穷小,我们由(5.6)和(5.7)得

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{f(r_n x_n)}{r_n} = 0.$$

由 Heine 归结原理即得 f 在 x=0 连续. 故由第一点知 $f(x)=f(1)x, \forall x \in \mathbb{R}$.

- 3. 在区间单调自然在子区间上有界, 用第二点即得 $f(x) = f(1)x, \forall x \in \mathbb{R}$.
- 4. 其依托于经典结论

结论 设勒贝格可测集 A,B的勒贝格测度都非 0,则 A+B包含一个区间.

上述结论可以在任何一本实变函数习题集中找到, 例如徐森林. 运用此结论假设 f 在 E 上有界, E 的勒贝格测度非 0. 则 E+E 包含一个区间 I, 于是对 $z \in I$, 存在 $x,y \in E$ 使得 z=x+y, 然后

$$|f(z)| \leqslant |f(x)| + |f(y)| \leqslant 2 \sup_{E} |f|.$$

由第二点即得 $f(x) = f(1)x, \forall x \in \mathbb{R}$.

- 5. 由 Lusin 定理, 存在有正测度的紧集 K 和 \mathbb{R} 上的连续函数 g 使得 $f(x) = g(x), \forall x \in K$, 故 f 在 K 上有界. 现在我们就可以运用上一条知 $f(x) = f(1)x, \forall x \in \mathbb{R}$.
- 6. 若存在 $x_0 \in \mathbb{R}$ 使得 $f(x_0) \neq f(1)x_0$, 显然 $x_0 \neq 0, 1$. 于是

$$\Rightarrow \mathbb{R}^2 = \overline{\{(x, f(x)) : x \in \mathbb{R}\}},$$

这就证明了 $\{(x, f(x)) : x \in \mathbb{R}\}$ 在 \mathbb{R}^2 稠密. 这是一个矛盾!

例题 5.4 求函数方程 2f(2x) = f(x) + x 的所有 \mathbb{R} 上在 x = 0 的连续解.

聲 笔记 这里也能利用强求通项和强行裂项的想法. 具体操作如下:

 $\forall x \in \mathbb{R}$, 固定 x, 则由条件可知

$$f(x) = \frac{f\left(\frac{x}{2}\right)}{2} + \frac{x}{4}.$$

从而由上式归纳可得

$$f\left(\frac{x}{2^n}\right) = \frac{f\left(\frac{x}{2^{n+1}}\right)}{2} + \frac{x}{2^{n+2}}, \forall n \in \mathbb{N}_+.$$

于是令
$$x_n = f\left(\frac{x}{2^n}\right), n = 0, 1, 2, \dots, 则$$

$$x_n = \frac{x_{n+1}}{2} + \frac{x}{2^{n+2}}, \forall n \in \mathbb{N}_+.$$

对上式进行强行裂项并强求通项得到

$$\frac{x_n}{2^{n-1}} = \frac{x_{n+1}}{2^n} + \frac{x}{2^{2n+1}}, \forall n \in \mathbb{N}_+.$$

即

$$\frac{f\left(\frac{x}{2^n}\right)}{2^{n-1}} = \frac{f\left(\frac{x}{2^{n+1}}\right)}{2^n} + \frac{x}{2^{2n+1}}, \forall n \in \mathbb{N}_+.$$

从而

$$2x_0 - \frac{x_{n+1}}{2^n} = \sum_{k=0}^n \left(\frac{x_k}{2^{k-1}} - \frac{x_{k+1}}{2^k} \right) = \sum_{k=0}^n \frac{x}{2^{2k+1}}, \forall n \in \mathbb{N}_+.$$

于是

$$f(x) = x_0 = \sum_{k=0}^{n} \frac{x}{2^{2k+2}} + \frac{x_{n+1}}{2^{n+1}} = \sum_{k=0}^{n} \frac{x}{2^{2k+2}} + \frac{f\left(\frac{x}{2^{n+1}}\right)}{2^{n+1}}, \forall n \in \mathbb{N}_+.$$

这就完成了对 x_n 的强行裂项并强求通项.

注 只有除以 2 的迭代才能与 f 在 x=0 处连续联系起来, 如果是乘 2 的迭代则不行.

证明 设 f 在 x = 0 处连续, $\forall x \in \mathbb{R}$,固定 x,则由条件可知

$$f(x) = \frac{f\left(\frac{x}{2}\right)}{2} + \frac{x}{4},$$

$$f(0) = f(0) \Rightarrow f(0) = 0.$$
(5.8)

从而由 f 在 x = 0 处连续可知, $f(0) = \lim_{x \to 0} f(x)$. 由 (5.8)式归纳可得

$$f\left(\frac{x}{2^n}\right) = \frac{f\left(\frac{x}{2^{n+1}}\right)}{2} + \frac{x}{2^{n+2}}, \forall n \in \mathbb{N}_+.$$

注意到

$$\frac{f\left(\frac{x}{2^n}\right)}{2^{n-1}} = \frac{f\left(\frac{x}{2^{n+1}}\right)}{2^n} + \frac{x}{2^{2n+1}}, \forall n \in \mathbb{N}_+.$$

于是

$$f\left(x\right) = x_0 = \sum_{k=0}^{n} \frac{x}{2^{2k+2}} + \frac{x_{n+1}}{2^{n+1}} = \sum_{k=0}^{n} \frac{x}{2^{2k+2}} + \frac{f\left(\frac{x}{2^{n+1}}\right)}{2^{n+1}}, \forall n \in \mathbb{N}_+.$$

<math> <math>

$$f(x) = \sum_{k=0}^{\infty} \frac{x}{2^{2k+2}} + \lim_{n \to \infty} \frac{f\left(\frac{x}{2^{n+1}}\right)}{2^{n+1}} = \frac{\frac{1}{4}x}{1 - \frac{1}{4}} = \frac{x}{3}.$$

根据 x 的任意性, 可知 $f(x) = \frac{x}{3}$, $\forall x \in \mathbb{R}$ 就是原方程符合条件的一个解. 再将 $f(x) = \frac{x}{3}$ 代入原方程, 仍然成立. 故 $f(x) = \frac{x}{3}$, $\forall x \in \mathbb{R}$ 就是原方程符合条件的所有解. 例题 5.5 \mathbb{R} 上的既凸又凹的连续函数是直线 \mathbb{R} 上的既凸又凹的连续函数是直线.

笔记 容易由证明知道任何开区间 (a, b) 上的既凸又凹的连续函数也是直线.

证明 设函数 f 在 \mathbb{R} 上既凸又凹,则

$$f\left(\frac{x+y}{2}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y).$$

考虑 g(x) = f(x) - f(0), 则运用 $f(x+y) + f(0) = 2f\left(\frac{x+y}{2}\right)$ 知 g 满足 Cauchy 方程, 于是由定理 5.8可得 f(x) = f(0) + [f(1) - f(0)]x.

例题 5.6 求方程 f(xy) = xf(y) + yf(x) 的全部连续解.

证明 设 $f \in C(\mathbb{R})$, 则由条件可得

$$f(0) = x f(0), \forall x \in \mathbb{R} \Rightarrow f(0) = 0.$$

$$f(x) = xf(1) + f(x), \forall x \in \mathbb{R} \Rightarrow xf(1) = 0, \forall x \in \mathbb{R} \Rightarrow f(1) = 0.$$

$$f(1) = -f(-1) - f(-1) \Rightarrow f(-1) = 0.$$

$$f(-x) = x f(-1) - f(x), \forall x \in \mathbb{R} \Rightarrow f(x) + f(-x) = x f(-1) = 0, \forall x \in \mathbb{R} \Rightarrow f$$
是 R上的奇函数.

于是对 $\forall x, y > 0$, 我们取 $x = e^s, y = e^t, \forall s, t \in \mathbb{R}$. 则由条件可得

$$\frac{f(e^{s+t})}{e^{s+t}} = \frac{f(e^s)}{e^s} + \frac{f(e^t)}{e^t}.$$

从而 $\frac{f(e^x)}{a^x}$ 满足 Cauchy 方程, 且 $f \in C(\mathbb{R})$, 因此由定理 5.8可得

$$\frac{f(e^x)}{e^x} = \frac{f(e)}{e}x, \forall x \in \mathbb{R} \Rightarrow f(x) = \frac{f(e)}{e}x \ln x, \forall x > 0.$$

又因为f是奇函数,所以

$$f(x) = \begin{cases} \frac{f(e)}{e} x \ln x, & x > 0 \\ 0, & x = 0 \\ \frac{f(e)}{e} x \ln(-x), & x < 0 \end{cases}$$

最后, 将上述 f(x) 代入原方程, 等式仍成立. 故上述 f(x) 就是原方程的全部连续解.

5.3 凸函数与上半连续函数

5.3.1 凸函数

定义 5.2 (下凸函数的定义)

对集 $S \subset \mathbb{R}^n$, 我们称

1. $f: S \to \mathbb{R}$ 是一个 Jensen 下凸函数, 如果对任何 $x, y \in S$, 只要

$$\{\lambda x + (1 - \lambda)y : \lambda \in [0, 1]\} \subset S$$
,

就有

$$f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2},$$

2. $f: S \to \mathbb{R}$ 是一个严格 Jensen 下凸函数, 如果对任何 $x \neq y \in S$, 只要

$$\{\lambda x + (1-\lambda)y : \lambda \in [0,1]\} \subset S$$
,

就有

$$f\left(\frac{x+y}{2}\right) < \frac{f(x)+f(y)}{2},$$

3. 称 $f: S \to \mathbb{R}$ 是一个下凸函数, 如果对任何 $x, y \in S$, 只要

$$\{\lambda x + (1 - \lambda)y : \lambda \in [0, 1]\} \subset S$$
,

就有

$$f(\lambda x + (1-\lambda)y) \leqslant \lambda f(x) + (1-\lambda)f(y), \forall \lambda \in [0,1].$$

4. 称 $f: S \to \mathbb{R}$ 是一个严格下凸函数, 如果对任何 $x \neq y \in S$, 只要

$$\{\lambda x + (1-\lambda)y : \lambda \in [0,1]\} \subset S,$$

就有

$$f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y), \forall \lambda \in (0,1).$$

注 同理可以定义上凸函数.

- 1. 我们常用 $\{\lambda x + (1 \lambda)y : \lambda \in [0, 1]\}$ 来表示连接 x, y 的线段.
- 2. 显然 f 在 S 上各种凸的充要条件都是对任何含于 S 的线段 ℓ , 都有 $f|_{\ell}$ 上是对应的那种一元凸函数.
- 3. 开集上的二阶可微函数为下凸函数等价于 Hess 矩阵半正定可以在任何一般数学分析教材上找到.
- 4. 显然下凸蕴含 Jensen 下凸, 实际运用中我们更偏爱下凸而不是 Jensen 下凸, 推导二者的联系是重要的命题.

命题 5.16

闭区间上的连续函数如果在开区间内是下凸函数,则必然在闭区间上也是下凸函数.

证明

命题 5.17 (下凸函数的基本性质)

1. 下凸函数恒在割线下方

(1) 设I为一区间, $f:I\to\mathbb{R}$,则f在I上下凸的充要条件是对任何 $[s,t]\subset I$ 成立

$$f(x) \leqslant \frac{f(s) - f(t)}{s - t}(x - s) + f(s) = \frac{t - x}{t - s}f(s) + \frac{x - s}{t - s}f(t), \forall x \in [s, t].$$

(2) 设I为一区间, $f:I\to\mathbb{R}$,则f在I上严格下凸的充要条件是对任何 $[s,t]\subset I$ 成立

$$f(x)<\frac{f(s)-f(t)}{s-t}(x-s)+f(s)=\frac{t-x}{t-s}f\left(s\right)+\frac{x-s}{t-s}f\left(t\right),\forall x\in[s,t].$$

2. 下凸函数割线斜率递增

(1) 设 I 为一区间, $f:I\to\mathbb{R}$, 则 f 在 I 上下凸的充要条件是对 $x_1 < x_2 < x_3, x_1, x_2, x_3 \in I$, 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

(2) 设 I 为一区间, $f: I \to \mathbb{R}$, 则 f 在 I 上严格下凸的充要条件是对 $x_1 < x_2 < x_3, x_1, x_2, x_3 \in I$, 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

- 3. 可微的下凸函数恒在切线上方
 - (1) 设 $f:(a,b)\to\mathbb{R}$ 是可微函数,则 f 在 (a,b) 下凸的充要条件是对任何 $x_0\in(a,b)$, 我们都有

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0), \forall x \in (a, b).$$

(2) 设 $f:(a,b) \to \mathbb{R}$ 是可微函数,则 f 在 (a,b) 严格下凸的充要条件是对任何 $x_0 \in (a,b)$, 我们都有 $f(x) > f(x_0) + f'(x_0)(x - x_0), \forall x \in (a,b) \setminus \{x_0\}.$

注 上述下凸函数的性质都可以通过几何作图直观地得到.

奎记 下凸函数割线斜率递增也表明: 下凸函数对 $\forall x_0 \in I$, 都有 $\frac{f(x) - f(x_0)}{x - x_0}$ 单调递增.(但是不能由这个结论推出 f 下凸)

证明

1. 函数恒在割线下方

(1) 首先证明充分性 (⇒): 对 $\forall [s,t] \subset I, \forall x \in [s,t]$, 可设 $x = \lambda s + (1 - \lambda)t$, 其中 $\lambda \in [0,1]$. 由 f 在 I 上下凸可知,对 $\forall x \in [s,t]$,有

$$f(x) = f(\lambda s + (1 - \lambda)t) \leqslant \lambda f(s) + (1 - \lambda)f(t) = (\lambda - 1)[f(s) - f(t)] + f(s).$$

再结合 $\lambda = \frac{x-t}{s-t}$ 可得

$$f(x) \le \left(\frac{x-t}{s-t} - 1\right) [f(s) - f(t)] + f(s) = \frac{f(s) - f(t)}{s-t} (x-s) + f(s), \quad \forall x \in [s, t].$$

接着证明必要性 (\Leftarrow): 对 $\forall s, t \in I$, 不妨设 s < t, 则 $[s,t] \subset I$. 对 $\forall x \in [s,t]$, 可设 $x = \lambda s + (1 - \lambda)t$, 其中 $\lambda \in [0,1]$. 则由条件可知, 对 $\forall x \in [s,t]$, 有

$$f(x) = f(\lambda s + (1 - \lambda)t) \leqslant \frac{f(s) - f(t)}{s - t}(\lambda s + (1 - \lambda)t - s) + f(s) = \lambda f(s) + (1 - \lambda)f(t).$$

即 $\forall s, t \in I$, 都有 $f(\lambda s + (1 - \lambda)t) \leq \lambda f(s) + (1 - \lambda)f(t)$. 故 f 在 I 上下凸.

(2) 显然(1)证明中的不等号可以全部改为严格不等号.

2. 下凸函数割线斜率递增

(1) 首先证明充分性 (⇒): 对于任意的 $x_1, x_2, x_3 \in I$ 且 $x_1 < x_2 < x_3$, 取 $\lambda = \frac{x_2 - x_1}{x_3 - x_1} \in (0, 1)$. 因为函数 f 在区间 I 上下凸, 所以有

$$f(x_2) = f(\lambda x_3 + (1 - \lambda)x_1) \leqslant \lambda f(x_3) + (1 - \lambda)f(x_1) = \frac{x_2 - x_1}{x_3 - x_1}f(x_3) + \frac{x_3 - x_2}{x_3 - x_1}f(x_1).$$

即

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

接下来证明必要性 (\leftarrow): 由已知条件可知, 对于任意的 $x_1, x_2, x_3 \in I$ 且 $x_1 < x_2 < x_3$, 都满足

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

这等价于

$$f(x_2) \leqslant \frac{x_2 - x_1}{x_3 - x_1} f(x_3) + \frac{x_3 - x_2}{x_3 - x_1} f(x_1). \tag{5.9}$$

进而, 对于任意的 $x_1, x_3 \in I$ 且 $x_1 < x_3$,以及任意的 $\lambda \in [0, 1]$,令 $x_2 = \lambda x_1 + (1 - \lambda)x_3 \in (x_1, x_3)$,此时 $\lambda = \frac{x_3 - x_2}{x_3 - x_1}$.于是, 根据(5.9)式可以得到

$$f(\lambda x_1 + (1 - \lambda)x_3) = f(x_2) \leqslant \frac{x_2 - x_1}{x_3 - x_1} f(x_3) + \frac{x_3 - x_2}{x_3 - x_1} f(x_1) = \lambda f(x_1) + (1 - \lambda)f(x_3).$$

所以,函数 f 在区间 I 上下凸.

(2) 显然 (1) 证明中的不等号可以全部改为严格不等号.

3. 可微的下凸函数恒在切线上方

(1) 首先证明充分性 (⇒): 由下凸函数割线斜率递增可知, 对于任意的 $x_0 \in (a,b)$, 函数 $\frac{f(x) - f(x_0)}{x - x_0}$ 在 (a,b) 上单调递增.

对于任意的 $x \in (x_0, b)$, 取 $x' \in (x_0, x)$, 根据 $\frac{f(x) - f(x_0)}{x - x_0}$ 的递增性, 有

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant \frac{f(x') - f(x_0)}{x' - x_0}.$$

令 $x' \rightarrow x_0^+$,则可得

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant \lim_{x' \to x_0^+} \frac{f(x') - f(x_0)}{x' - x_0} = f'(x_0), \quad \forall x \in (x_0, b).$$

同理, 对于任意的 $x \in (a, x_0)$, 取 $x'' \in (x, x_0)$, 由 $\frac{f(x) - f(x_0)}{x - x_0}$ 的递增性可知

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant \frac{f(x'') - f(x_0)}{x'' - x_0}.$$

令 $x'' \rightarrow x_0^-$, 则有

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant \lim_{x'' \to x_0^-} \frac{f(x'') - f(x_0)}{x'' - x_0} = f'(x_0), \quad \forall x \in (a, x_0).$$

因此,对于任意的 $x_0 \in (a,b)$,都有

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant f'(x_0) \Leftrightarrow f(x) \geqslant f(x_0) + f'(x_0)(x - x_0).$$

接下来证明必要性 (\Leftarrow): 由已知条件可知, 对于任意的 $x_1, x_2, x_3 \in I$ 且 $x_1 < x_2 < x_3$, 都有

$$f(x_1) \ge f'(x_2)(x_1 - x_2) + f(x_2), \quad f(x_3) \ge f'(x_2)(x_3 - x_2) + f(x_2).$$

由此可以推出

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant f'(x_2) \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

所以,由下凸函数割线斜率递增可知 f 在 I 上下凸.

(2) 首先证明充分性 (⇒): 由下凸函数割线斜率递增可知, 对于任意的 $x_0 \in (a,b)$, 函数 $\frac{f(x) - f(x_0)}{x - x_0}$ 在 (a,b) 上单调递增.

对于任意的 $x \in (x_0, b)$, 取 $x' \in \left(x_0, \frac{x + x_0}{2}\right)$, 根据 $\frac{f(x) - f(x_0)}{x - x_0}$ 的递增性, 有

$$\frac{f(x) - f(x_0)}{x - x_0} > \frac{f\left(\frac{x + x_0}{2}\right) - f(x_0)}{\frac{x + x_0}{2} - x_0} > \frac{f(x') - f(x_0)}{x' - x_0}.$$

令 $x' \rightarrow x_0^+$, 则可得

$$\frac{f(x) - f(x_0)}{x - x_0} > \frac{f\left(\frac{x + x_0}{2}\right) - f(x_0)}{\frac{x + x_0}{2} - x_0} \geqslant \lim_{x' \to x_0^+} \frac{f(x') - f(x_0)}{x' - x_0} = f'(x_0), \quad \forall x \in (x_0, b).$$

同理, 对于任意的 $x \in (a, x_0)$, 取 $x'' \in \left(x_0, \frac{x + x_0}{2}\right)$, 由 $\frac{f(x) - f(x_0)}{x - x_0}$ 的递增性可知

$$\frac{f(x) - f(x_0)}{x - x_0} > \frac{f\left(\frac{x + x_0}{2}\right) - f(x_0)}{\frac{x + x_0}{2} - x_0} > \frac{f(x'') - f(x_0)}{x'' - x_0}.$$

 $令 x'' \rightarrow x_0^-$, 则有

$$\frac{f(x)-f(x_0)}{x-x_0} > \frac{f\left(\frac{x+x_0}{2}\right)-f(x_0)}{\frac{x+x_0}{2}-x_0} \geqslant \lim_{x''\to x_0^-} \frac{f(x'')-f(x_0)}{x''-x_0} = f'(x_0), \quad \forall x\in(a,x_0).$$

因此,对于任意的 $x_0 \in (a,b)$,都有

$$\frac{f(x) - f(x_0)}{x - x_0} > f'(x_0) \Leftrightarrow f(x) > f(x_0) + f'(x_0)(x - x_0).$$

接下来证明必要性 (\leftarrow): 由已知条件可知, 对于任意的 $x_1, x_2, x_3 \in I$ 且 $x_1 < x_2 < x_3$, 都有

$$f(x_1) > f'(x_2)(x_1 - x_2) + f(x_2), \quad f(x_3) > f'(x_2)(x_3 - x_2) + f(x_2).$$

由此可以推出

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} < f'(x_2) < \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

所以,由下凸函数割线斜率递增可知 f 在 I 上下凸.

例题 5.7 导数递增则割线斜率也递增 函数 f 在 (a,b) 可导,证明:

1. f' 递增的充要条件是对 $a < x_1 < x_2 < x_3 < b$, 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

2. f' 严格递增的充要条件是对 $a < x_1 < x_2 < x_3 < b$, 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

证明

(1) 首先证明必要性 (⇒): 对于满足 $a < x_1 < x_2 < x_3 < b$ 的情况, 根据 Lagrange 中值定理以及 f' 单调递增的性 质可知, 存在 $y_1 \in (x_1, x_2), y_2 \in (x_2, x_3)$, 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(y_1) \leqslant f'(y_2) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

由此,必要性得证.

接着证明充分性 (\Leftarrow): 由已知条件可知, 对于满足 $a < x_1 < x_2 < b$ 的情况, 取 $c = \frac{x_1 + x_2}{2}$, 则有

$$\frac{f(s) - f(x_1)}{s - x_1} \leqslant \frac{f(c) - f(x_2)}{c - x_2}, \quad \forall s \in (a, x_1),$$
$$\frac{f(c) - f(x_2)}{c - x_2} \leqslant \frac{f(t) - f(x_2)}{t - x_2}, \quad \forall t \in (x_2, b).$$

令 $s \rightarrow x_1^-, t \rightarrow x_2^+,$ 可得

$$f'(x_1) = \lim_{s \to x_1^-} \frac{f(s) - f(x_1)}{s - x_1} \leqslant \frac{f(c) - f(x_2)}{c - x_2}, \quad \frac{f(c) - f(x_2)}{c - x_2} \leqslant \lim_{t \to x_2^+} \frac{f(t) - f(x_2)}{t - x_2} = f'(x_2).$$

所以有 $f'(x_1) \leqslant \frac{f(c) - f(x_2)}{c - x_2} \leqslant f'(x_2)$. 再由 x_1, x_2 的任意性可知, f' 单调递增. (2) 首先证明必要性 (⇒): 对于满足 $a < x_1 < x_2 < x_3 < b$ 的情况, 根据 Lagrange 中值定理以及 f' 单调递增的性 质可知, 存在 $y_1 \in (x_1, x_2), y_2 \in (x_2, x_3)$, 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(y_1) < f'(y_2) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

由此,必要性得证.

接着证明充分性 (\leftarrow): 由条件可知, 对于满足 $a < x_1 < x_2 < b$ 的情况, 取 $c = \frac{x_1 + x_2}{2}$, 则有

$$\frac{f(s) - f(x_1)}{s - x_1} < \frac{f(c) - f(x_2)}{c - x_2}, \quad \forall s \in (a, x_1),$$
$$\frac{f(c) - f(x_2)}{c - x_2} < \frac{f(t) - f(x_2)}{t - x_2}, \quad \forall t \in (x_2, b).$$

$$f'(x_1) = \lim_{s \to x_1^-} \frac{f(s) - f(x_1)}{s - x_1} \leqslant \frac{f(c) - f(x_2)}{c - x_2}, \quad \frac{f(c) - f(x_2)}{c - x_2} \leqslant \lim_{t \to x_2^-} \frac{f(t) - f(x_2)}{t - x_2} = f'(x_2).$$

故 $f'(x_1) \leqslant \frac{f(c) - f(x_2)}{c - x_2} \leqslant f'(x_2)$. 若 $f'(x_1) = f'(x_2)$, 则由命题 5.3可知,f 在 $[x_1, x_2]$ 上为线性函数. 设 $f(x) = cx + d, x \in [x_1, x_2], 其中 c, d \in \mathbb{R}.$ 从而

$$\frac{f\left(\frac{x_1+x_2}{2}\right)-f(x_1)}{\frac{x_1+x_2}{2}-x_1}=c=\frac{f(x_2)-f\left(\frac{x_1+x_2}{2}\right)}{x_2-\frac{x_1+x_2}{2}}.$$

这与已知条件矛盾! 故 $f'(x_1) < f'(x_2), \forall x_1, x_2 \in (a, b)$ 且 $a < x_1 < x_2 < b$, 即 f' 递增.

命题 5.18

设 f 在 (a,b) 上的下凸函数,则 f 在 (a,b) 有上界的充要条件是 $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 存在.

笔记 由这个命题及命题 5.16可知: 如果下凸函数 f 在 (a,b) 上有上界,则 f 可连续延拓到 [a,b](补充定义端点的 函数值等于端点的左右极限即可), 使得 f 在 [a, b] 上仍是下凸函数.

证明 (\Leftarrow): 由开区间下凸函数左右导数处处存在可知,f 在 (a,b) 上连续. 又因为 $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 存在, 所以

由Cantor 定理可知,f 可以连续延拓到 [a,b] 上, 故 f 在 [a,b] 上有界,从而在 (a,b) 上有界. (⇒):由下凸函数割线斜率递增可知,对 $\forall x_0 \in (a,b)$,有 $\frac{f(x)-f(x_0)}{x-x_0}$ 在 $(a,x_0) \cup (x_0,b)$ 上递增.由 f 在 (a,b)上有上界可知,存在M > 0,使得

$$|f(x)| \leqslant M, \forall x \in (a, b). \tag{5.10}$$

由 $\frac{f(x) - f(x_0)}{x - x_0}$ 的递增性及(5.10)式可知

$$\frac{f(x) - f(x_0)}{x - x_0} \leqslant \frac{M - f(x_0)}{x - x_0}, \forall x \in (x_0, b).$$
 (5.11)

又因为 $\lim_{x\to b^-} \frac{M-f(x_0)}{x-x_0} = \frac{M-f(x_0)}{b-x_0}$, 所以 $\frac{M-f(x_0)}{x-x_0}$ 在 (x_0,b) 上有界. 从而存在 K>0, 使得

$$\frac{M - f(x_0)}{x - x_0} \leqslant K, \forall x \in (x_0, b). \tag{5.12}$$

于是结合(5.11)(5.12)式可知, $\frac{f(x)-f(x_0)}{x-x_0} \leqslant K$, $\forall x \in (x_0,b)$. 进而由单调有界定理可知 $\lim_{x \to b^-} \frac{f(x)-f(x_0)}{x-x_0}$ 存在. 于

$$\lim_{x \to b^{-}} f(x) = \lim_{x \to b^{-}} \left[\frac{f(x) - f(x_{0})}{x - x_{0}} \cdot (x - x_{0}) + f(x_{0}) \right] = (b - x_{0}) \lim_{x \to b^{-}} \frac{f(x) - f(x_{0})}{x - x_{0}} + f(x_{0}).$$

故 $\lim_{x \to a} f(x)$ 也存在. 同理可得 $\lim_{x \to a} f(x)$ 也存在.

命题 5.19 (下凸函数的单调性刻画)

1. 闭区间凸函数的单调性刻画

设 f 是 [a,b] 上的下凸函数, 则 f 只有下述三种情况:

- (1) f在[a,b) 递减,
- (2) f在(a,b] 递增,
- (3) 存在 $c \in (a,b)$, 使得 f 在 [a,c] 递减, 在 [c,b] 递增.
- 2. 开区间凸函数的单调性刻画

设 $f \in (a,b)$ 上的下凸函数, a 允许取 $-\infty$, b 允许取 $+\infty$, 则 f 只有下述三种情况:

- (1) f 在 (a, b) 递减;
- (2) f在(a,b)递增;
- (3) 存在 $c \in (a, b)$, 使得 f 在 (a, c] 递减, 在 [c, b) 递增.

证明

1. 闭区间凸函数的单调性刻画

由下凸函数恒在割线下方, 我们有

$$f\left(x\right) \leqslant \frac{f\left(b\right) - f\left(a\right)}{b - a}\left(x - a\right) + f\left(a\right) \leqslant \frac{f\left(b\right) - f\left(a\right)}{b - a}\left(b - a\right) + f\left(a\right), \forall x \in [a, b].$$

因此 f 在 [a,b] 上有上界. 于是由命题 5.18可知, f 可以连续延拓到 [a,b], 并且仍然在 [a,b] 上下凸. 记这个 连续延拓函数为 \overline{f} ,则 $\overline{f} \in C[a,b]$ 且 \overline{f} 在[a,b]上也下凸. 下证

$$f(a) \geqslant \tilde{f}(a), f(b) \geqslant \tilde{f}(b).$$
 (5.13)

事实上, 由下凸函数割线斜率递增可知 $\frac{f(x)-f(x_0)}{x-x_0}$ 在 $(x_0,b]$ 递增, 从而

$$\tilde{f}(b) = \lim_{x \to b^{-}} f(x) = \lim_{x \to b^{-}} \left[(x - x_{0}) \frac{f(x) - f(x_{0})}{x - x_{0}} + f(x_{0}) \right]$$

$$\leqslant \lim_{x \to b^{-}} \left[(x - x_{0}) \frac{f(b) - f(x_{0})}{b - x_{0}} + f(x_{0}) \right] = f(b),$$

类似可得 $f(a) \ge \tilde{f}(a)$, 这就证明了(5.13). 下面证明 \overline{f} 的单调性.

由上述证明可知 $\overline{f} \in C[a,b]$ 且在 [a,b] 上下凸. 不妨设 \overline{f} 最小值为 0. 现在设 $c \in [a,b]$ 是 f 的最小值点. 若 $c \in (a,b)$, 则对 $b \ge x_2 > x_1 > c$, 我们有

$$\frac{\overline{f}(x_2) - \overline{f}(c)}{x_2 - c} \geqslant \frac{\overline{f}(x_1) - \overline{f}(c)}{x_1 - c} \Rightarrow \overline{f}(x_2) \geqslant \frac{x_2 - c}{x_1 - c} \overline{f}(x_1) \geqslant \overline{f}(x_1).$$
 (5.14)

故 \overline{f} 在 [c,b] 递增. 类似可知 \overline{f} 在 [a,c] 递减. 这就证明了第三种情况. 若 c=a,则不等式(5.14)也成立,故 \overline{f} 在 [a,b] 递增. 同样的若 c=b 则 \overline{f} 在 [a,b] 递减.

于是再结合(5.13)可知

- (i) 当 \overline{f} 的最小值 c = b 时, 若 $f(b) > \overline{f}(b)$, 则 f 只在 [a,b] 上单调递减; 若 $f(b) = \overline{f}(b)$, 则 f 在 [a,b] 上单调递减. 故此时无论如何, f 一定在 [a,b] 上单调递减.
- (ii) 当 \overline{f} 的最小值 c = a 时, 若 $f(a) > \overline{f}(a)$, 则 f 只在 (a,b] 上单调递增; 若 $f(a) = \overline{f}(a)$, 则 f 在 [a,b] 上单调递增. 故此时无论如何, f 一定在 (a,b] 上单调递增.
- (iii) 当 \overline{f} 的最小值 $c \in (a,b)$ 时, f 的单调性与 \overline{f} 相同, 即 f 在 [c,b] 递增, 在 [a,c] 递减. 因此结论得证.
- 2. **开区间凸函数的单调性刻画** 由 (1) 的证明类似, 只是不再额外需要考虑 f 的两个端点, 同理证明即可.

定理 5.10 (Jensen 不等式)

对集 $S \subset \mathbb{R}^n$, 设 $f: S \to \mathbb{R}$ 是一个 Jensen 下凸函数, 则对完全含于 S 内的一条线段上的点 x_1, x_2, \cdots, x_m 和

$$\sum_{k=1}^{m} \lambda_k = 1, \lambda_k \in [0, 1] \cap \mathbb{Q},$$

我们有

$$f\left(\sum_{k=1}^{m} \lambda_k x_k\right) \leqslant \sum_{k=1}^{m} \lambda_k f(x_k). \tag{5.15}$$

特别的,

$$f\left(\frac{1}{m}\sum_{k=1}^{m}x_k\right)\leqslant\sum_{k=1}^{m}\frac{1}{m}f(x_k). \tag{5.16}$$

 $\stackrel{ extbf{?}}{ extbf{?}}$ 笔记 初等的, 如果 S 性质足够好且 f 二阶可微, 读者可以通过把 f 在 $\sum_{k=1}^m \lambda_k x_k$ Taylor 展开, 然后丢掉二阶微分那

项来得到不等式 $f\left(\sum_{k=1}^{m} \lambda_k x_k\right) \leqslant \sum_{k=1}^{m} \lambda_k f(x_k)$. 本部分的证明尽可能追求一般性.

证明 首先不等式(5.16)的建立是经典高中数学习题,一个参考可以见Jensen 不等式. 我们归纳证明不等式(5.15), 当 m=2, 设有理数 $\frac{p}{a}\in[0,1],q>0$, 运用不等式(5.16), 我们有

$$f\left(\frac{p}{q}x + \left(1 - \frac{p}{q}\right)y\right) = f\left(\underbrace{\frac{x}{q} + \frac{x}{q} + \dots + \frac{x}{q}}_{p} + \underbrace{\frac{y}{q} + \frac{y}{q} + \dots + \frac{y}{q}}_{q-p}\right) \leqslant \frac{p}{q}f(x) + \left(1 - \frac{p}{q}\right)f(y).$$

这就证明了(5.15)的 m=2 的情况. 假定 m 时不等式(5.15)成立, 当 m+1 时, 我们不妨设 $\sum_{i=1}^m \lambda_i \neq 0$, 否则不等

式(5.15)是平凡的. 现在

$$\sum_{j=1}^{m+1} \lambda_j f(x_j) = \sum_{i=1}^m \lambda_i \cdot \sum_{j=1}^m \frac{\lambda_j}{\sum\limits_{i=1}^m \lambda_i} f(x_j) + \lambda_{m+1} f(x_{m+1})$$

$$\geqslant \sum_{i=1}^m \lambda_i \cdot f\left(\sum_{j=1}^m \frac{\lambda_j}{\sum\limits_{i=1}^m \lambda_i} x_j\right) + \lambda_{m+1} f(x_{m+1})$$

$$\geqslant f\left(\sum_{i=1}^m \lambda_i \cdot \sum_{j=1}^m \frac{\lambda_j}{\sum\limits_{i=1}^m \lambda_i} x_j + \lambda_{m+1} x_{m+1}\right) = f\left(\sum_{j=1}^{m+1} \lambda_i x_j\right),$$

这里最后一个不等号来自m=2时的不等式.于是就对一般的 $m \in \mathbb{N}$,我们证明了(5.15).

引理 5.1

设 $f ext{ } ext{$\epsilon$ } ext{κ} ext{κ}$

证明 要证 f 在 x_0 连续, 只须证 $f(x_0) \leqslant \underline{\lim}_{x \to x_0} f(x) \leqslant \overline{\lim}_{x \to x_0} f(x) \leqslant f(x_0)$.

由条件可知

$$-\infty < f(x_0) \leqslant \frac{f(x_0-x)+f(x_0+x)}{2}, \quad \forall x \in U(0).$$

$$-\infty < f(x_0) \leqslant \lim_{x \to 0} \frac{f(x_0 - x) + f(x_0 + x)}{2} \leqslant \frac{1}{2} \lim_{x \to 0} f(x_0 - x) + \frac{1}{2} \lim_{x \to 0} f(x_0 + x) = \frac{1}{2} \lim_{x \to x_0} f(x) + \frac{1}{2} \lim_{x \to x_0} f(x). \quad (5.17)$$

根据条件可得

$$f(x) \leqslant \frac{f(x_0) + f(2x - x_0)}{2}, \quad \forall x \in U(x_0).$$

$$\overline{\lim}_{x \to x_0} f(x) \leqslant \overline{\lim}_{x \to x_0} \frac{f(x_0) + f(2x - x_0)}{2} \leqslant \frac{f(x_0)}{2} + \frac{1}{2} \overline{\lim}_{x \to x_0} f(2x - x_0) = \frac{f(x_0)}{2} + \frac{1}{2} \overline{\lim}_{x \to x_0} f(x).$$

于是 $\overline{\lim}_{x \to x_0} f(x) \leqslant f(x_0)$. 将其代入 (5.17) 式得到

$$-\infty < f(x_0) \leqslant \frac{1}{2} \lim_{x \to x_0} f(x) + \frac{1}{2} \lim_{x \to x_0} f(x) \leqslant \frac{1}{2} \lim_{x \to x_0} f(x) + \frac{1}{2} f(x_0) \Rightarrow f(x_0) \leqslant \lim_{x \to x_0} f(x).$$

因此 $f(x_0) \leqslant \underline{\lim}_{x \to x_0} f(x) \leqslant \overline{\lim}_{x \to x_0} f(x) \leqslant f(x_0)$. 即 f 在 x_0 处连续.

定理 5.11 (开区间下凸函数左右导数处处存在)

(a,b)上的下凸函数 f 在每一点左右导数都存在,从而 f 在 (a,b) 连续.

证明 由下凸函数割线斜率递增可知, 对 $\forall x_0 \in (a,b)$, 有 $\frac{f(x)-f(x_0)}{x-x_0}$ 在 $(a,x_0) \cup (x_0,b)$ 上递增. 从而

$$\frac{f(x)-f(x_0)}{x-x_0} \leqslant \frac{f\left(\frac{x_0+b}{2}\right)-f(x_0)}{\frac{x_0+b}{2}-x_0}, \quad \forall x \in (a,x_0),$$

$$\frac{f(x) - f(x_0)}{x - x_0} \geqslant \frac{f\left(\frac{x_0 + a}{2}\right) - f(x_0)}{\frac{x_0 + a}{2} - x_0}, \quad \forall x \in (x_0, b).$$

于是
$$\frac{f(x)-f(x_0)}{x-x_0}$$
 在 (a,x_0) 上有上界 $\frac{f\left(\frac{x_0+b}{2}\right)-f(x_0)}{\frac{x_0+b}{2}-x_0}$, $\frac{f(x)-f(x_0)}{x-x_0}$ 在 (x_0,b) 上有下界 $\frac{f\left(\frac{x_0+a}{2}\right)-f(x_0)}{\frac{x_0+a}{2}-x_0}$.

故由单调有界定理可知 $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ 和 $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$ 都存在, 即 $f'_+(x_0)$ 和 存在. 进而

$$\lim_{x \to x_0^+} [f(x) - f(x_0)] = f'_+(x_0) \lim_{x \to x_0^+} (x - x_0) = 0,$$

$$\lim_{x \to x_0^-} [f(x) - f(x_0)] = f'_-(x_0) \lim_{x \to x_0^-} (x - x_0) = 0.$$

因此 $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$, 即 f 在 $x = x_0$ 处连续, 再根据 x_0 的任意性可知, f 在 (a, b) 上连续.

定理 5.12 (开区间上的下凸函数内闭 Lipschitz 连续)

(a,b)上的下凸函数 f 一定内闭 Lipschitz 连续.

证明 对 $\forall [A,B] \subset (a,b)$, 任取 $s \in (a,A), t \in (B,b)$, 固定 s,t. 则由下凸函数割线斜率递增可知

$$\frac{f(A) - f(s)}{A - s} \leqslant \frac{f(x) - f(y)}{x - y} \leqslant \frac{f(t) - f(B)}{t - B}, \quad \forall x, y \in [A, B].$$

故 f 在 (a,b) 上内闭 Lipschitz 连续.

定理 5.13

设 $f \in \mathbf{X}_0 \in \mathbb{R}^n$ 的邻域内是下凸函数,则 $f \in \mathbf{X}_0$ 连续.

<u>څ</u> ـــ

笔记 下述证明表明:n 元下凸函数一定也关于单变量下凸.

证明 仅证明 n=2 的情形, 一般情况是类似的.

由条件可知, 当 n=2 时, 设 $\delta>0$, f 在 $(x_0-\delta,y_0-\delta)\times(x_0+\delta,y_0+\delta)$ 上下凸, 则对 $\forall (x_1,y_1),(x_2,y_2)\in[x_0-\delta,y_0-\delta]\times[x_0+\delta,y_0+\delta], \forall \lambda\in[0,1]$, 有

$$f(\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2) \le \lambda f(x_1, y_1) + (1 - \lambda)f(x_2, y_2). \tag{5.18}$$

 $\forall x' \in [x_0 - \delta, x_0 + \delta]$, 固定 x', 在 (5.18)式中令 $x_1 = x_2 = x'$, 则对 $\forall v_1, v_2 \in [v_0 - \delta, v_0 + \delta]$, 都有

$$f(x', \lambda y_1 + (1 - \lambda)y_2) = f(\lambda x' + (1 - \lambda)x', \lambda y_1 + (1 - \lambda)y_2) \leqslant \lambda f(x', y_1) + (1 - \lambda)f(x', y_2).$$

故 f 关于单变量 y 在 $[y_0 - \delta, y_0 + \delta]$ 上下凸. 同理可得 f 关于单变量 x 在 $[x_0 - \delta, x_0 + \delta]$ 上下凸. 由开区间下凸函数左右导数处处存在可知 f 关于单变量 x 在 $[x_0 - \delta, x_0 + \delta]$ 上连续, 关于单变量 y 在 $[y_0 - \delta, y_0 + \delta]$ 上连续. 因此对 $\forall \varepsilon > 0$, 存在 $\delta_1 \in (0, \delta)$, 使得当 $|x - x_0| \leq \delta_1$ 时, 有

$$|f(x, y_0) - f(x_0, y_0)| < \frac{\varepsilon}{2}.$$
 (5.19)

任取 $x \in [x_0 - \delta, x_0 + \delta]$, 固定 x, 从而此时 f(x, y) 是在 $[y_0 - \delta, y_0 + \delta]$ 上关于 y 的一元连续下凸函数. 于是由开区 间上的下凸函数一定内闭 Lipschitz 连续可知, f(x, y) 在 $(y_0 - \delta, y_0 + \delta)$ 上内闭 Lipschitz 连续. 进而存在 $\delta_2 \in (0, \delta)$, 使得对 $\forall y \in [y_0 - \delta_2, y_0 + \delta_2]$, 有

$$|f(x,y) - f(x,y_0)| \le \max\left\{\frac{f(x,y_0 - \delta_2) - f(x,y_0 - \delta_2)}{\delta_2}, \frac{f(x,y_0 + \delta_2) - f(x,y_0 + \delta_2)}{\delta_2}\right\} \cdot |y - y_0|. \tag{5.20}$$

由 f 关于单变量 x 在 $[x_0 - \delta, x_0 + \delta]$ 上连续可知, $f(x, y_0 - \delta_2)$, $f(x, y_0 - \delta_2)$, $f(x, y_0 + \delta_2)$, $f(x, y_0 + \delta_2)$,在 $[x_0 - \delta, x_0 + \delta]$ 上都有界,从而我们记

$$L = \max \left\{ \sup_{x \in [x_0 - \delta, x_0 + \delta]} \frac{f(x, y_0 - \delta_2) - f(x, y_0 - \delta_2)}{\delta_2}, \sup_{x \in [x_0 - \delta, x_0 + \delta]} \frac{f(x, y_0 + \delta_2) - f(x, y_0 + \delta_2)}{\delta_2} \right\}.$$

令 $\delta' = \min\{\delta_1, \delta_2, \frac{\varepsilon}{2L}\}$, 于是由 (5.20) 式可知, 对 $\forall (x, y) \in [x_0 - \delta', x_0 + \delta'] \times [y_0 - \delta', y_0 + \delta']$, 都有

$$|f(x,y) - f(x,y_0)| \le L|y - y_0|.$$
 (5.21)

利用 (5.19) (5.21) 式可得, 对上述 ε , δ' , 当 $(x,y) \in [x_0 - \delta', x_0 + \delta'] \times [y_0 - \delta', y_0 + \delta']$ 时, 我们都有

$$|f(x,y) - f(x_0,y_0)| \le |f(x,y) - f(x,y_0)| + |f(x,y_0) - f(x_0,y_0)|$$
$$< L|y - y_0| + \frac{\varepsilon}{2} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

故 f 在 (x_0, y_0) 连续.

推论 5.1 (开集上的下凸函数必连续)

开集上的下凸函数是连续函数.

5.3.2 上半连续函数

定义 5.3 (半连续函数定义)

拓扑空间 X 上的一个函数 $f: X \to [-\infty, +\infty)$ 被称为上半连续的, 如果对每个 $c \in \mathbb{R}$ 都有

$$\{x \in X : f(x) < c\}$$

是X的开集.

注 下半连续函数同理定义.

Ŷ 笔记

- (1) 显然 f 连续等价于 f 上半连续且下半连续.
- (2) 上半连续等价于对 $\forall x_0 \in X$, 都有 $\overline{\lim}_{x \to x_0} f(x) \leqslant f(x_0)$.

命题 5.20 (上半连续函数基本性质)

设 X 是拓扑空间,

- (1) 若 f_{α} 是一族 X 上的上半连续函数, 则 $f = \inf f_{\alpha}$ 也是上半连续函数.
- (2) 若 $f \in X$ 上的上半连续函数,则对每一个紧集 $K \subset X$ 有 $a \in K$ 使得 $f(x) \leq f(a), \forall x \in K$.
- (3) 设 $I \subset [-\infty, +\infty)$ 是开区间, 如果 $f: X \to I$ 和 $g: I \to [-\infty, +\infty)$ 是上半连续函数且 g 递增, 则 $g \circ f$ 是上半连续函数.

注 下半连续函数同理也有相应的性质.

证明

1. 对任何 $x_0 \in X, \beta$, 由 f_α 下半连续和下确界的定义, 我们有

$$\overline{\lim}_{x \to x_0} \inf_{\alpha} f_{\alpha}(x) \leqslant \overline{\lim}_{x \to x_0} f_{\beta}(x) \leqslant f_{\beta}(x_0).$$

两边对β取下确界即得

$$\overline{\lim}_{x \to x_0} \inf_{\alpha} f_{\alpha}(x) \leqslant \inf_{\beta} f_{\beta}(x_0).$$

故 $f = \inf_{\alpha} f_{\alpha}$ 也是上半连续函数.

2. 注意到开覆盖 $K = \bigcup \{x \in K : f(x) < c\}$, 由 K 是紧集可知, 必有有限子覆盖

$$K = \bigcup_{i=1}^{n} \{x \in K : f(x) < c_i\}.$$

不妨设 c_1 是 c_i , $i=1,2,\cdots,n$ 的最大值, 则 $f(x) < c_1, \forall x \in K$. 即上半连续函数 f 在 K 上有上界. 取 $c=\sup_{K} f$,

如果 f 达不到最大值, 注意到

$$\overline{\lim_{x \to x_0}} \frac{1}{c - f(x)} \leqslant \frac{1}{c - \overline{\lim_{x \to x_0}} f(x)} \leqslant \frac{1}{c - f(x_0)}.$$

故 $\frac{1}{c-f(x)}$ 在 K 上上半连续. 因此同理可得 $\frac{1}{c-f(x)}$ 在 K 上也有上界. 于是存在 M>0, 使得

$$\frac{1}{c - f(x)} \leqslant M \Rightarrow f(x) \leqslant c - \frac{1}{M} < c.$$

这与 $c = \sup_K f$ 矛盾! 从而 f 能取到最大值,于是一定存在 $a \in K$,使得 c = f(a),故 f(x) < c = f(a), $\forall x \in K$.

3. 注意到 $\{x \in X : g(x) < c\} = [-\infty, \alpha_c)$, 因此

$$\{x \in X : g \circ f(x) < c\} = \{x \in X : f(x) < \alpha_c\},$$

这就证明了gof是上半连续函数.

定理 5.14 (半连续函数逼近定理)

设 X 是一个度量空间, f 是 X 上的上半连续函数, 则存在递减函数列 $f_n \subset C(X)$ 使得

$$\lim_{n \to \infty} f_n(x) = f(x), \forall x \in X$$

证明 如果 $f \equiv -\infty$, 取 $f_n = -n, n = 1, 2, \cdots$. 现在假定 $f \not\equiv -\infty$, 然后考虑 $g = e^{-f}: X \to (0, +\infty]$ 并定义

$$g_n(x) = \inf_{z \in X} \{g(z) + nd(x, z)\}, n = 1, 2, \cdots.$$

显然

$$g_n(x) \leqslant g_{n+1}(x) \leqslant g(x), \forall x \in X, n = 1, 2, \cdots$$

因为 $g \neq +\infty$, 我们知道 $g_n, n \in \mathbb{N}$ 都是有限函数. 若对某个 $n \in \mathbb{N}$ 和 $x \in X$, 有 $g_n(x) = 0$. 则存在 $z_m \in X$, $m \in \mathbb{N}$ 使

$$\lim_{m \to \infty} [g(z_m) + nd(z_m, x)] = 0,$$

即

$$\lim_{m \to \infty} d(z_m, x) = 0, \lim_{m \to \infty} f(z_m) = +\infty.$$

又由上半连续函数基本性质(2)和笔记知 f局部有上界,这就是矛盾!因此我们证明了

$$g_n(x) > 0, \forall x \in X, n \in \mathbb{N}.$$

为了说明 $f_n = -\ln g_n, n \in \mathbb{N}$ 是我们需要的函数, 我们只需证明

$$g_n \in C(X)$$
, $\lim_{n \to \infty} g_n = g$.

事实上,对任何 $x,y,z \in X$,我们有

$$g_n(x) \leqslant g(z) + nd(z, x) \leqslant g(z) + nd(y, z) + nd(x, y).$$

对
z
取下确界得

$$g_n(x) \leqslant g_n(y) + nd(x, y),$$

对称得

$$g_n(y) \leq g_n(x) + nd(x, y),$$

即

$$|g_n(y) - g_n(x)| \le nd(x, y).$$

故 g_n ∈ C(X), $\forall n \in \mathbb{N}$.

给定 $x \in X$ 和 $\varepsilon > 0$, 因为g 下半连续, 所以存在x 的半径为 $\delta > 0$ 的开球邻域U, 使得

$$g(z) > g(x) - \varepsilon, \forall z \in U.$$

于是由gn定义知

$$g_n(x) \geqslant \min\{g(x) - \varepsilon, n\delta\}.$$

当 n 充分大, 我们知道 $g(x) \geqslant g_n(x) \geqslant g(x) - \varepsilon$, 这就证明了 $\lim_{n \to \infty} g_n = g$. 我们完成了证明.

定理 5.15 (下凸函数的局部定义)

设开集 $V \subset \mathbb{R}^n$, f 在 V 上半连续, 如果对任何 $x \in V$, $y \in \mathbb{R}^n$, $\delta > 0$, 都存在 $h \in (0, \delta)$, 使得

$$f(x) \leqslant \frac{f(x+hy) + f(x-hy)}{2}.$$
 (5.22)

证明 f 是 V 上的下凸函数.

 igotimes 笔记 本定理表明下凸函数是个局部的概念, 只要局部是下凸函数, 整体也是下凸函数. 从证明可以看到, 若对 $y \neq 0$, 不等式(5.22)改为严格不等号,则 f 也是严格下凸的.

证明 对 $x \in V, y \in \mathbb{R}^n$, 满足 $x + wy \in V, \forall w \in [-1, 1]$, 考虑上半连续函数

$$g(w) = f(x + wy) - \frac{f(x + y) - f(x - y)}{2}w - \frac{f(x + y) + f(x - y)}{2},$$

现在有

$$g(1) = g(-1) = 0.$$

如果存在 $s \in (-1,1)$, 使得 g(s) > 0, 那么记

$$M \triangleq \sup_{[-1,1]} g > 0, A \triangleq \{x \in [-1,1] : g(x) = M\}.$$

显然 $A \in (-1,1)$ 中的紧集,设 A 的最大值点 w_0 ,则 $1-w_0>0$,现在运用条件不等式(5.22),我们知道存在充分小的 h>0,使得

$$f(x + w_0 y) \leqslant \frac{f(x + w_0 y + h y) + f(x + w_0 y - h y)}{2}.$$

于是对这个h,我们有

$$\begin{split} g(w_0) &= f(x+w_0y) - \frac{f(x+y) - f(x-y)}{2} w_0 - \frac{f(x+y) + f(x-y)}{2} \\ &\leqslant \frac{f(x+w_0y+hy) + f(x+w_0y-hy)}{2} - \frac{f(x+y) - f(x-y)}{2} w_0 - \frac{f(x+y) + f(x-y)}{2} \\ &= \frac{g(w_0+h) + g(w_0-h)}{2} < M, \end{split}$$

这是一个矛盾! 因此

$$g(w) \leq 0, \forall w \in [-1, 1],$$

因此

$$g(0) \leqslant 0 \Rightarrow f(x) \leqslant \frac{f(x+y) + f(x-y)}{2},$$

故 f 是 Jensen 下凸函数, 因为 f 上半连续, 所以 f 局部有上界, 所以由引理 f 5.1知 f 在 f 上连续, 因此我们证明了 f 是下凸函数.

例题 5.8 设有限函数

$$S(x) = \lim_{m \to \infty} \sum_{n=1}^{m} u_n(x), u_n \in C[a, b], n \in \mathbb{N}.$$

若 u_n , $n \in \mathbb{N}$ 非负, 证明 S(x) 在 [a,b] 达到最小值.

证明 对 $\forall m \in \mathbb{N}$, 由 $u_n \in C[a,b]$ 且非负可得

$$\underline{\lim}_{x \to x_0} S(x) = \underline{\lim}_{x \to x_0} \lim_{m \to +\infty} \sum_{n=1}^m u_n(x) \geqslant \underline{\lim}_{x \to x_0} \sum_{n=1}^m u_n(x)$$

$$\geqslant \sum_{n=1}^m \underline{\lim}_{x \to x_0} u_n(x) = \sum_{n=1}^m u_n(x_0).$$

令 $m \to +\infty$,则 $\lim_{x \to x_0} S(x) \geqslant S(x_0)$,故 S(x) 在 [a,b] 上下半连续. 由半连续函数的基本性质 (2)可知,S(x) 在 [a,b] 上达到最小值.

例题 5.9 设 $\{g_n\}_{n=1}^{\infty}$, $\{h_n\}_{n=1}^{\infty} \subset C[a,b]$, 若

$$h_n \geqslant h_{n+1}, g_{n+1} \geqslant g_n, n = 1, 2, \cdots, \lim_{n \to \infty} h_n = \lim_{n \to \infty} g_n$$
 存在.

证明: $\lim h_n$ 是连续函数.

证明 记 $h(x) = \lim_{n \to +\infty} h_n(x) = g(x) = \lim_{n \to +\infty} g_n(x)$,则一方面, 对 $\forall N \in \mathbb{N}$,由条件可知

$$h_n(x) \leqslant h_{n-1}(x) \leqslant \cdots \leqslant h_N(x), \forall n > N.$$

$$h(x) \leqslant h_N(x), \forall n > N.$$

 $\forall x_0 \in [a,b]$, 令 $x \to x_0$, 并取上极限, 结合 $h_N \in C[a,b]$ 可得

$$\overline{\lim}_{x \to x_{0}} h(x) \leqslant \overline{\lim}_{x \to x_{0}} h_{N}(x) = h_{N}(x_{0}), \forall n > N.$$

令 $N \to \infty$, 得到 $\overline{\lim}_{x \to x_0} h(x) \leqslant h(x_0)$. 故 h 在 [a,b] 上上半连续. 另一方面, 对 $\forall m \in \mathbb{N}$, 由条件可知

$$g_n(x) \geqslant g_{n-1}(x) \geqslant \cdots \geqslant g_m(x), \forall n > m.$$

$$g(x) \geqslant h_m(x), \forall n > m.$$

 $\forall x_0 \in [a,b]$, 令 $x \to x_0$, 并取上极限, 结合 $g_m \in C[a,b]$ 可得

$$\underline{\lim}_{x \to x_{0}} g(x) \geqslant \underline{\lim}_{x \to x_{0}} g_{m}(x) = g_{m}(x_{0}), \forall n > m.$$

令 $m \to \infty$, 得到 $\lim_{x \to x_0} g(x) \geqslant g(x_0)$. 故 g 在 [a,b] 上下半连续. 因此 h = g 在 [a,b] 上既上半连续又下半连续, 从 而 h = g 在 [a,b] 上连续.

5.4 一致连续

定埋 5.16

f 在区间 I 一致连续的充要条件是对任何 $\{x_n'\}_{n=1}^{\infty}, \{x_n''\}_{n=1}^{\infty} \subset I$ 且 $\lim_{n \to \infty} (x_n'' - x_n') = 0$ 都有 $\lim_{n \to \infty} (f(x_n'') - f(x_n')) = 0$.

定理 5.17 (Cantor 定理)

 $f \in C(a,b)$ 一致连续的充要条件是 $\lim_{x \to a^+} f(x)$, $\lim_{x \to b^-} f(x)$ 存在.

注 这个定理对 $f \in C(a,b]$ 和 $f \in C[a,b)$ 也成立.

推论 5.2

若 $f \in C[a,b]$, 则 f 在 [a,b] 上一致连续.

 \Diamond

命题 5.21

设 $f \in C[0, +\infty)$ 且 $\lim_{x \to +\infty} f(x)$ 存在. 证明: f 在 $[0, +\infty)$ 一致连续.

 $\dot{\mathbf{L}}$ 这个命题反过来并不成立, 反例: $f(x) = \sqrt{x}$. 因此这个条件只是函数一致连续的充分不必要条件.

证明 $\forall \varepsilon > 0$, 由 Cauchy 收敛准则可知, 存在 A > 0, 对 $\forall x_1, x_2 \ge A$, 有

$$|f(x_2) - f(x_1)| < \varepsilon. \tag{5.23}$$

由 Cantor 定理可知, f 在 [0, A+1] 上一致连续. 故存在 $\delta \in (0,1)$, 使得 $\forall x_1, x_2 \in [0, A+1]$ 且 $|x_2 - x_1| \leq \delta$, 有

$$|f(x_2) - f(x_1)| < \varepsilon. \tag{5.24}$$

现在对 $\forall |x_1 - x_2| \leq \delta < 1$, 必然有 $x_1, x_2 \in [0, A+1]$ 或 $x_1, x_2 \in [A, +\infty)$, 从而由(5.23)(5.24)式可知, 此时一定有

$$|f(x_2) - f(x_1)| < \varepsilon.$$

故 f 在 $[0,+\infty)$ 上一致连续.

命题 5.22

设 f 在 $[0,+\infty)$ 一致连续且 $g \in C[0,+\infty)$ 满足

$$\lim_{x \to +\infty} [f(x) - g(x)] = 0.$$

证明:g 在 $[0,+\infty)$ 一致连续.

证明 $\forall \varepsilon > 0$, 由 f 一致连续可知, 存在 $\delta \in (0,1)$, 使得对 $\forall x, y \in [0,+\infty)$ 且 $|x-y| \leq \delta$, 有

$$|f(x) - f(y)| < \frac{\varepsilon}{3}. ag{5.25}$$

由 $\lim_{x\to +\infty} [f(x)-g(x)] = 0$ 可知, 存在 A>0, 使得对 $\forall x \geqslant A$, 有

$$|f(x) - g(x)| < \frac{\varepsilon}{3}. ag{5.26}$$

由 Cantor 定理可知,g 在 [0,A+1] 上一致连续. 故存在 $\eta \in (0,1)$, 使得对 $\forall x,y \in [0,A+1]$ 且 $|x-y| \leq \eta$, 有

$$|g(x) - g(y)| < \frac{\varepsilon}{3}. ag{5.27}$$

故对 $\forall x,y \ge 0$ 且 $|x-y| \le \eta$, 要么都落在 [0,A+1], 要么都落在 $[A,+\infty)$.

- (i) 若 $x, y \in [0, A+1]$, 则由(5.27)式可得 $|g(x) g(y)| < \frac{\varepsilon}{3}$;
- (ii) 若 $x, y \in [A, +\infty)$, 则由(5.25)(5.26)式可得

$$|g(x)-g(y)| \leq |g(x)-f(x)| + |f(x)-f(y)| + |f(y)-g(y)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

故 g 在 $[0,+\infty)$ 上一致连续.

命题 5.23 (连续周期函数必一致连续)

设 f 是周期 T > 0 的 \mathbb{R} 上的连续函数, 则 f 在 \mathbb{R} 上一致连续.

证明 由 Cantor 定理,f 在 [0,2T] 一致连续, 所以对任何 $\varepsilon > 0$, 存在 $\delta \in (0,T)$ 使得对 $|x_1 - x_2| < \delta, x_1, x_2 \in [0,2T]$ 都有

$$|f(x_1) - f(x_2)| \leq \varepsilon.$$

现在对 $x_1, x_2 \in \mathbb{R}$ 使得 $0 < x_2 - x_1 < \delta$. 注意到

$$x_1 - \left\lfloor \frac{x_1}{T} \right\rfloor T \in [0,T), x_2 - \left\lfloor \frac{x_1}{T} \right\rfloor T \in [0,2T), |x_1 - x_2| < \delta,$$

我们有

$$|f(x_1) - f(x_2)| = \left| f\left(x_1 - \left| \frac{x_1}{T} \right| T\right) - f\left(x_2 - \left| \frac{x_1}{T} \right| T\right) \right| \leqslant \varepsilon,$$

这就证明了f在 \mathbb{R} 上一致连续.

命题 5.24

设 f 定义在区间 I 的函数. 证明 f 在区间 I 一致连续的充要条件是对任何 $\varepsilon > 0$, 存在 M > 0, 使得对任何 $x_1, x_2 \in I$, 都有

$$|f(x_2)-f(x_1)| \leq M|x_1-x_2|+\varepsilon.$$

注 这个命题相当重要! 但是考试中不能直接使用, 需要证明.

证明 充分性: 由条件可知, $\forall \varepsilon > 0, \exists M > 0$, 取 $\delta = \frac{\varepsilon}{M}$, 则当 $|x_2 - x_1| \leqslant \delta$ 且 $x_1, x_2 \in I$ 时, 有

$$|f(x_1) - f(x_2)| \leq M|x_1 - x_2| + \varepsilon \leq M \cdot \frac{\varepsilon}{M} + \varepsilon = 2\varepsilon.$$

故 f 在 I 上一致连续.

必要性: 由 f 在 I 上一致连续可知, $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得对 $\forall x_1, x_2 \in I$ 且 $|x_1 - x_2| \leq \delta$, 有

$$|f(x_1) - f(x_2)| < \varepsilon. \tag{5.28}$$

因此任取 $x, y \in I$,①当 $|x-y| \le \delta$ 时, 由(5.28)式可知 $|f(x)-f(y)| < \varepsilon \le M|x-y| + \varepsilon$. 由 x, y 的任意性可知结论成立.

②当 $|x-y| > \delta$ 时,(i) 当 $|f(x)-f(y)| \leq \varepsilon$ 时,此时结论显然成立;

(ii) 当 $|f(x)-f(y)| > \varepsilon$ 时, 不妨设 y > x, f(y) > f(x)(其它情况类似), 令 f(y)-f(x) = kt, 其中 $k \in \mathbb{N}, t \in (\varepsilon, 2\varepsilon]$. 由介值定理可知, 存在 $x = x_0 < x_1 < \cdots < x_k = y$, 使得

$$f(x) \le f(x_i) = f(x) + jt \le f(x) + kt = f(y), j = 0, 1, 2, \dots, k.$$

于是

$$f(x_j) - f(x_{j-1}) = t > \varepsilon, j = 1, 2, \dots, k.$$

此时由(5.28)式可知 $x_i - x_{i-1} > \delta, j = 1, 2, \dots, k$. 从而我们有

$$y - x = \sum_{j=1}^{k} (x_j - x_{j-1}) > k\delta \Rightarrow k < \frac{y - x}{\delta}.$$
 (5.29)

取 $M = \frac{2\varepsilon}{\delta} > 0$, 于是结合(5.29)式及 $t \in (\varepsilon, 2\varepsilon]$ 就有

$$|f(y) - f(x)| = kt \le \frac{t}{\delta}|y - x| \le \frac{2\varepsilon}{\delta}|y - x| = M|y - x|.$$

再由 x, y 的任意性可知结论成立.

一定相交. 于是一定存在 $k \in \mathbb{N}$, 使得 $f(y) - f(x) \in (k\varepsilon, 2k\varepsilon]$, 从而 $\frac{f(y) - f(x)}{k} \in (\varepsilon, 2\varepsilon]$. 故取 $t = \frac{f(y) - f(x)}{k} \in (\varepsilon, 2\varepsilon]$. 此时就有 f(y) - f(x) = kt.

推论 5.3 (一致连续函数被线性函数控制)

若 f 在 \mathbb{R} 一致连续且 f(0) = 0, 证明存在 M > 0 使得

$$|f(x)| \leq 1 + M|x|, \forall x \in \mathbb{R}.$$

笔记 读者应该积累大概的感觉:一致连续函数的增长速度不超过线性函数,这能帮助我们快速排除一些非一致连续函数。

证明 取命题 5.24中的 $\varepsilon = 1, x_1 = x \in \mathbb{R}, x_2 = 0$, 则一定存在 M > 0, 使得 $|f(x)| \le 1 + M|x|, \forall x \in \mathbb{R}$.

推论 5.4

若 f 在 I 上一致连续,则存在 M,c>0 使得

$$|f(x)| \leqslant c + M|x|, \forall x \in I.$$

 \Diamond

推论 5.5 (一致连续函数的阶的提升)

若 f 在 $[1,+\infty)$ 一致连续, 证明存在 M > 0 使得

$$\left|\frac{f(x)}{x}\right| \leqslant M, \forall x \geqslant 1.$$

证明 取命题 5.24中的 ε = 1, x_1 = x ≥ 1, x_2 = 1, 则一定存在 C > 0, 使得

$$|f(x) - f(1)| \le C|x - 1| + 1, \forall x \ge 1.$$

于是

$$\left|\frac{f\left(x\right)}{x}\right| \leqslant \left|\frac{f\left(x\right) - f\left(1\right)}{x}\right| + \frac{\left|f\left(1\right)\right|}{x} \leqslant \frac{C\left|x - 1\right| + 1}{x} + \left|f\left(1\right)\right|, \forall x \geqslant 1.$$

上式两边同时令 $x \to +\infty$,得到

$$\overline{\lim}_{x \to +\infty} \left| \frac{f(x)}{x} \right| \leqslant C.$$

由上极限的定义可知, 存在 X > 1, 使得 $\sup_{x \geqslant X} \left| \frac{f(x)}{x} \right| \leqslant C$. 从而我们有

$$\left| \frac{f(x)}{x} \right| \leqslant C, \forall x > X. \tag{5.30}$$

又因为 f 在 $[1,+\infty)$ 上一致连续, 所以由 Cantor 定理可知 f 在 [1,X] 上连续, 从而 f 在 [1,X] 上有界, 即存在 C'>0, 使得

$$\left| \frac{f(x)}{x} \right| \leqslant C', \forall x \in [1, X]. \tag{5.31}$$

于是取 $M = \max\{C, C'\}$,则由(5.30)(5.31)式可知

$$\left|\frac{f(x)}{x}\right| \leqslant M, \forall x \geqslant 1.$$

命题 5.25

证明区间 I 上的函数 f 一致连续的充要条件是对任何 $\varepsilon > 0$, 存在 $\ell > 0$, 使得当 $x_1 \neq x_2 \in I$, 就有:

$$\left|\frac{f(x_2) - f(x_1)}{x_2 - x_1}\right| > \ell \Rightarrow |f(x_2) - f(x_1)| < \varepsilon.$$

证明 必要性: 由命题 5.24可知, $\forall \varepsilon > 0$, $\exists M > 0$, 使得

$$|f(x) - f(y)| \le M|x - y| + \varepsilon, \forall x, y \in I.$$

取
$$\ell = \frac{\varepsilon}{\delta} + M$$
, 任取 $x_1 \neq x_2 \in I$, 当 $\left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| > \ell$ 时, 我们有

$$\ell < \left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| \le \frac{M|x_2 - x_1|}{|x_2 - x_1|} + \frac{\varepsilon}{|x_2 - x_1|} = M + \frac{\varepsilon}{|x_2 - x_1|}.$$

从而

$$|x_2 - x_1| < \frac{\varepsilon}{\ell - M} = \delta. \tag{5.32}$$

又由f在I上一致连续可知

$$|f(x') - f(x'')| < \varepsilon, \forall x', x'' \in I \, \mathbb{E} |x' - x''| < \delta. \tag{5.33}$$

因此结合(5.32)(5.33)式可得 $|f(x_2) - f(x_1)| < \varepsilon$. 故必要性得证.

充分性: 已知对 $\forall \varepsilon > 0$, 存在 $\ell > 0$, 使得 $\forall x_1 \neq x_2 \in I$, 有

$$\left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| > \ell \Rightarrow |f(x_2) - f(x_1)| < \varepsilon.$$
 (5.34)

取 $\delta \in \left(0, \frac{\varepsilon}{\ell}\right)$, 若 $|f(x_2) - f(x_1)| \ge \varepsilon$ 但 $|x_2 - x_1| \le \delta$, 则我们有

$$\left|\frac{f(x_2) - f(x_1)}{x_2 - x_1}\right| \geqslant \frac{\varepsilon}{\delta} > \ell.$$

而由(5.34)式可得, 此时 $|f(x_2) - f(x_1)| < \varepsilon$. 矛盾! 故 f 在 I 上一致连续.

命题 5.26 (一致连续函数的拼接)

设 $f \in C[0, +\infty)$, 若存在 $\delta > 0$ 使得 f 在 $[\delta, +\infty)$ 一致连续, 则 f 在 $[0, +\infty)$ 一致连续.

笔记 证明的想法比结论本身重要, 在和本命题叙述形式不同的时候需要快速准确判断出来 f 在 $[0,+\infty)$ 一致连

证明 $\forall \varepsilon > 0$, 由 Cantor 定理可知, f 在 $[0, \delta + 1]$ 上一致连续. 故存在 $\eta \in (0, 1)$, 使得 $\forall x, y \in [0, \delta + 1]$ 且 $|x - y| \leq \eta$, 都有

$$|f(x) - f(y)| < \varepsilon. \tag{5.35}$$

由 f 在 $[\delta, +\infty)$ 上一致连续可知, 对 $\forall x, y \in [\delta, +\infty)$ 且 $|x-y| \leq \eta$, 都有

$$|f(x) - f(y)| < \varepsilon. \tag{5.36}$$

现在对 $\forall x, y \in [0, +\infty)$, 都有 $|x - y| \leq \eta$.

- (i) 若 $x, y \in [0, \delta + 1]$ 或 $[\delta, +\infty)$, 则由(5.35)(5.36)式可直接得到 $|f(x) f(y)| < \varepsilon$;
- (ii) $\exists x \in [0, \delta + 1], y \in [\delta, +\infty)$, 则 $|x y| \ge 1 > η$, 这是不可能的.

例题 5.10 设 f 在 $[1,+\infty)$ 一致连续. 证明: $\frac{f(x)}{x}$ 也在 $[1,+\infty)$ 一致连续. 证明 由 f 在 $[1,+\infty)$ 上一致连续可知, $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得对 $\forall x,y \geqslant 1$ 且 $|x-y| \leqslant \delta$, 有

$$|f(x) - f(y)| < \frac{\varepsilon}{2}. ag{5.37}$$

由推论 5.5可知, $\left|\frac{f\left(x\right)}{x}\right|$ 有界. 故可设 $M \triangleq \sup_{x \geq 1} \left|\frac{f\left(x\right)}{x}\right| < +\infty$. 取 $\delta' = \min\left\{\delta, \frac{\varepsilon}{2M}\right\}$, 则对 $\forall x, y \geqslant 1$ 且 $|x-y| \leqslant \delta'$, 由(5.37)式可得

$$\left| \frac{f(x)}{x} - \frac{f(y)}{y} \right| = \frac{|yf(x) - xf(y)|}{xy} \leqslant \frac{|yf(x) - yf(y)| + |y - x| |f(y)|}{xy}$$

$$= \frac{|f(x) - f(y)|}{x} + \frac{|y - x|}{xy} |f(y)| \leqslant |f(x) - f(y)| + M |y - x|$$

$$< \frac{\varepsilon}{2} + M \cdot \frac{\varepsilon}{2M} = \varepsilon.$$

故 $\frac{f(x)}{r}$ 也在 $[1,+\infty)$ 一致连续.

命题 5.27 (函数爆炸一定不一致连续)

设 f 在 $[a, +\infty)$ 可微且 $\lim_{x \to \infty} f'(x) = +\infty$, 证明: f 在 $[a, +\infty)$ 不一致连续.

证明 证法一:假设 f 在 $[a,+\infty)$ 上一致连续,则由推论 5.4可知,存在 c,d>0,使得

$$|f(x)| \leqslant c|x| + d, \forall x \in [a, +\infty). \tag{5.38}$$

从而

$$\underline{\lim}_{x \to +\infty} \left| \frac{f(x)}{x} \right| \leqslant \overline{\lim}_{x \to +\infty} \left| \frac{f(x)}{x} \right| < +\infty. \tag{5.39}$$

由上下极限 L'Hospital 法则可得

$$\underline{\lim}_{x \to +\infty} \frac{f(x)}{x} \geqslant \underline{\lim}_{x \to +\infty} f'(x) = +\infty.$$

这与(5.39)式矛盾. 故 f 在 [a,+∞) 不一致连续.

证法二:假设 f 在 $[a,+\infty)$ 上一致连续,则由推论 5.4可知,存在 c,d>0,使得

$$|f(x)| \le c|x| + d, \forall x \in [a, +\infty). \tag{5.40}$$

由 $\lim_{x\to\infty} f'(x) = +\infty$ 可知, 存在 X > 0, 使得对 $\forall x \ge X$, 有

$$f'(x) \ge c + 1 \Leftrightarrow f'(x) - c + 1 \ge 0.$$

从而 f(x) - (c+1)x 在 $[X, +\infty)$ 上单调递增, 于是就有

$$f(x) - (c+1)x \geqslant f(X) - (c+1)X \triangleq D, \forall x \geqslant X.$$

故 $f(x) \ge (c+1)x + D, \forall x \ge X$. 再结合(5.40)式可得

$$(c+1)x + D \leqslant f(x) \leqslant cx + d, \forall x \geqslant X > 0.$$

即 $x \leq d - D, \forall x \geq X > 0.$ 令 $x \to +\infty$, 则

$$+\infty = \lim_{x \to +\infty} x \leqslant d - D.$$

矛盾. 故 f 在 $[a,+\infty)$ 不一致连续.

例题 5.11 判断下述函数的一致连续性:

- (1) $f(x) = \ln x$, $x \in (0, 1]$;
- (2) $f(x) = e^x \cos \frac{1}{x}, \quad x \in (0, 1];$
- (3) $f(x) = \frac{\sin x}{x}, \quad x \in (0, +\infty);$
- (4) $f(x) = \sin^2 x$, $x \in \mathbb{R}$;
- $(5) \ f(x) = e^x, \quad x \in \mathbb{R};$
- (6) $f(x) = \sin x^2$, $x \in [0, +\infty)$;
- (7) $f(x) = \sin(x \sin x), \quad x \in [0, +\infty);$
- (8) $f(x) = x \cos x$, $x \in [0, +\infty)$; (9) $\[\psi \] a > 0$, $f(x) = \frac{x+2}{x+1} \sin \frac{1}{x}$, $x \in (0, a) \] \[\pi \] x \in (a, +\infty)$;

笔记 关于三角函数找数列的问题, 一般 sin, cos 函数就多凑一个 $2n\pi$ 或 $2n\pi + \frac{\pi}{2}$.

注 (6)中找这两个数列 $x'_n = \sqrt{2n\pi}, x''_n = \sqrt{2n\pi} + \frac{1}{\sqrt{n}}$ 的方式: 待定 c_n , 令 $x'_n = \sqrt{2n\pi}, x''_n = \sqrt{2n\pi} + c_n$, 我们希望

$$\lim_{n\to\infty} \left(x_n'' - x_n' \right) = \lim_{n\to\infty} c_n = 0,$$

并且

$$\lim_{n\to\infty} \left[f\left(x_n''\right) - f\left(x_n'\right) \right] = \lim_{n\to\infty} \sin\left(2n\pi + c_n^2 + 2c_n\sqrt{2n\pi}\right) = \lim_{n\to\infty} \sin\left(c_n^2 + 2c_n\sqrt{2n\pi}\right) \neq 0.$$

再结合 $\lim c_n = 0$ 可得

$$\lim_{n\to\infty}\sin\left(c_n^2+2c_n\sqrt{2n\pi}\right)=\lim_{n\to\infty}\left(\sin c_n^2\cos 2c_n\sqrt{2n\pi}+\cos c_n^2\sin 2c_n\sqrt{2n\pi}\right)=\lim_{n\to\infty}\sin 2c_n\sqrt{2n\pi}.$$

故我们希望 $\lim_{n\to\infty} c_n = 0$ 且 $\lim_{n\to\infty} \sin 2c_n \sqrt{2n\pi} \neq 0$. 从而令 $c_n = \frac{1}{\sqrt{n}}$ 即可.

(7)(8) 找数列的方式与(6) 类似.

解

- (1) 不一致连续. 由 $\lim_{x\to 0^+} \ln x = +\infty$ 及Cantor 定理可得.
- (2) 不一致连续. 由 $\lim_{r\to 0^+} e^x \cos \frac{1}{r}$ 不存在及 Cantor 定理可得.
- (3) 一致连续. 由 $\lim_{x\to 0^+} f(1)$ 存在 (连续性), $\lim_{x\to 0^+} \frac{\sin x}{r} = 1$ 及 Cantor 定理可知, f 在 (0,1] 上一致连续. 又因为 $\lim_{x\to +\infty} \frac{\sin x}{x} = 0$, 所以由命题 5.21可知, f 在 $[1,+\infty)$ 上一致连续. 再根据一致连续函数的拼接可知, f 在 $(0,+\infty)$ 上一致连续.

- (4) 一致连续. 由 $(\sin^2 x)' = 2\sin x \cos x \le 2$ 及由 Lagrange 中值定理, 易知 f(x) 是 Lipschitz 连续的, 从而一致连续.
- (5) 不一致连续. 由 $\lim_{x\to 1} e^x = +\infty$ 及命题 5.27可得.
- (6) 不一致连续.令 $x'_n = \sqrt{2n\pi}, x''_n = \sqrt{2n\pi} + \frac{1}{\sqrt{n}}, \text{ 则 } \lim_{n \to \infty} (x'_n x''_n) = 0.$ 但是

$$\lim_{n \to \infty} \left(f\left(x_n''\right) - f\left(x_n'\right) \right) = \lim_{n \to \infty} \sin\left(2n\pi + \frac{1}{n} + 2\sqrt{2\pi}\right) = \lim_{n \to \infty} \sin\left(\frac{1}{n} + 2\sqrt{2\pi}\right)$$
$$= \lim_{n \to \infty} \left[\sin 2\sqrt{2\pi} \cos\frac{1}{n} + \cos 2\sqrt{2\pi} \sin\frac{1}{n} \right] = \sin 2\sqrt{2\pi} \neq 0.$$

故根据定理 5.16可知 f 不一致连续

(7) 不一致连续.令 $x'_n = 2n\pi, x''_n = 2n\pi + \frac{\pi}{2n}$, 则

$$\lim_{n \to \infty} \left(x_n' - x_n'' \right) = 0.$$

但是

$$\lim_{n \to \infty} \left(f\left(x_n''\right) - f\left(x_n'\right) \right) = \lim_{n \to \infty} \sin\left[\left(2n\pi + \frac{\pi}{2n} \right) \sin\left(2n\pi + \frac{\pi}{2n} \right) \right] = \lim_{n \to \infty} \sin\left[\left(2n\pi + \frac{\pi}{2n} \right) \sin\frac{\pi}{2n} \right]$$

$$= \lim_{n \to \infty} \sin\left[\left(2n\pi + \frac{\pi}{2n} \right) \sin\frac{\pi}{2n} \right] = \lim_{n \to \infty} \sin\left[\left(2n\pi + \frac{\pi}{2n} \right) \left(\frac{\pi}{2n} + o\left(\frac{1}{n} \right) \right) \right]$$

$$= \lim_{n \to \infty} \sin\left[\pi^2 + o\left(\frac{1}{n^2} \right) \right] = \lim_{n \to \infty} \left[\sin\pi^2 x \cos o\left(\frac{1}{n^2} \right) + \cos\pi^2 \sin o\left(\frac{1}{n^2} \right) \right]$$

$$= \sin\pi^2 \neq 0.$$

故根据定理 5.16可知 f 不一致连续.

(8) 不一致连续.令
$$x'_n = 2n\pi + \frac{\pi}{2}, x''_n = 2n\pi + \frac{\pi}{2} + \frac{1}{n}$$
,则
$$\lim_{n \to \infty} (x'_n - x''_n) = 0.$$

但是

$$\lim_{n \to \infty} \left(f\left(x_n'' \right) - f\left(x_n' \right) \right) = \lim_{n \to \infty} \left(2n\pi + \frac{\pi}{2} + \frac{1}{n} \right) \cos \left(2n\pi + \frac{\pi}{2} + \frac{1}{n} \right) = -\lim_{n \to \infty} \left(2n\pi + \frac{\pi}{2} + \frac{1}{n} \right) \sin \frac{1}{n} = -2\pi.$$

故根据定理 5.16可知 f 不一致连续.

(9) 在 (0, a) 上不一致连续, 在 $(a, +\infty)$ 上一致连续. 由 $\lim_{x \to 0^+} \frac{x+2}{x+1} \sin \frac{1}{x}$ 不存在, $\lim_{x \to +\infty} \frac{x+2}{x+1} \sin \frac{1}{x} = 0$ 及Cantor 定理可得.

命题 5.28 (一个重要不等式)

对 $\alpha \in (0,1)$, 证明

$$|x^{\alpha} - y^{\alpha}| \le |x - y|^{\alpha}, \, \forall x, y \in [0, +\infty).$$

证明 不妨设
$$y \ge x \ge 0$$
, 则只须证 $y^{\alpha} - x^{\alpha} \le (y - x)^{\alpha}$. 则只须证 $\left(\frac{y}{x}\right)^{\alpha} - 1 \le \left(\frac{y}{x} - 1\right)^{\alpha}$. 故只须证 $t^{\alpha} - 1 \le (t - 1)^{\alpha}, \forall t \ge 1$.

例题 5.12 证明: $f(x) = x^{\alpha} \ln x$ 在 $(0, +\infty)$ 一致连续的充要条件是 $\alpha \in (0, 1)$.

证明 当 $\alpha \ge 1$ 时,f 不被线性函数控制,故由一致连续函数被线性函数控制可知 f 不一致连续.

当 $\alpha \leq 0$ 时, $\lim_{x\to 0^+} f(x)$ 不存在, 由Cantor 定理可知, f 在 (0,2) 上不一致连续. 故此时 f 在 $(0,+\infty)$ 上不一致连续.

当 $\alpha \in (0,1)$ 时,有 $f'(x) = x^{\alpha-1}(\alpha \ln x - 1)$. 因此 $\lim_{x \to +\infty} f'(x) = 0$,于是 f'(x) 在 $[2,+\infty)$ 上有界,从而由 Lagrange 中值定理易得 f 在 $[1,+\infty)$ 上 Lipschitz 连续,故 f 在 $[2,+\infty)$ 上一致连续. 此时,注意到 $\lim_{x \to 0^+} f(x) = 0$,故

由Cantor 定理可知, f 在 (0,2] 上一致连续. 于是由一致连续的拼接可得, f 在 $(0,+\infty)$ 上一致连续.

例题 **5.13** 设 $f(x) = \begin{cases} x^{\alpha} \cos \frac{1}{x}, & x > 0 \\ 0, & x = 0 \end{cases}$. 求 α 的范围使得 f 在 $[0, +\infty)$ 一致连续.

章 笔记 找这两个数列 $x'_n = 2n\pi, x''_n = 2n\pi + n^{1-\alpha}$ 的方法: 当 $\alpha > 1$ 时, 待定 c_n , 令 $x'_n = 2n\pi, x''_n = 2n\pi + c_n$. 我们希望 $\lim_{n \to \infty} (x''_n - x'_n) = \lim_{n \to \infty} c_n = 0$, 并且 $\lim_{n \to \infty} [f(x''_n) - f(x'_n)] \neq 0$. 注意到

$$\begin{split} f\left(x_n^{\prime\prime}\right) - f\left(x_n^{\prime}\right) &= (2n\pi + c_n)^{\alpha} \cos\frac{1}{2n\pi + c_n} - (2n\pi)^{\alpha} \cos\frac{1}{2n\pi} \\ &= (2n\pi)^{\alpha} \left(1 + \frac{c_n}{2n\pi}\right)^{\alpha} \cos\frac{1}{2n\pi + c_n} - (2n\pi)^{\alpha} \cos\frac{1}{2n\pi} \\ &= (2n\pi)^{\alpha} \left(1 + \frac{c_n}{2n\pi}\right)^{\alpha} \left[1 + O\left(\frac{1}{(2n\pi + c_n)^2}\right)\right] - (2n\pi)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right)\right] \\ &= (2n\pi)^{\alpha} \left(1 + \frac{c_n}{2n\pi}\right)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right)\right] - (2n\pi)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right)\right] \\ &= (2n\pi)^{\alpha} \left[\left(1 + \frac{c_n}{2n\pi}\right)^{\alpha} - 1\right] \left[1 + O\left(\frac{1}{n^2}\right)\right] \\ &= (2n\pi)^{\alpha} \left[\frac{\alpha c_n}{2n\pi} + O\left(\frac{c_n}{n^2}\right)\right] \left[1 + O\left(\frac{1}{n^2}\right)\right] \\ &= (2n\pi)^{\alpha} \left[\frac{\alpha c_n}{2n\pi} + O\left(\frac{c_n}{n^2}\right)\right], \quad n \to \infty. \end{split}$$

于是取 $c_n = n^{1-\alpha}$, 则 $\lim_{n \to \infty} c_n = 0$, 并且由上式可得

$$f(x_n'') - f(x_n') = (2n\pi)^{\alpha} \left[\frac{\alpha n^{-\alpha}}{2\pi} + O(n^{-\alpha - 1}) \right]$$
$$= \alpha (2\pi)^{\alpha - 1} + O\left(\frac{1}{n}\right) \to \alpha (2\pi)^{\alpha - 1} \neq 0, \quad n \to \infty.$$

故我们可取 $x'_n = 2n\pi, x''_n = 2n\pi + n^{1-\alpha}$.

证明 当 $\alpha \le 0$ 时, $\lim_{x \to 0^+} f(x)$ 不存在, 由Cantor 定理可知, f 在 (0,1) 上不一致连续. 故此时 f 在 $(0,+\infty)$ 上不一致连续.

当 α ∈ (0,1] 时,由条件可知,对 $\forall x \ge 1$.都有

$$|f'(x)| = \left| \left(x^{\alpha} \cos \frac{1}{x} \right)' \right| = \left| \alpha x^{\alpha - 1} \cos \frac{1}{x} - x^{\alpha - 2} \sin \frac{1}{x} \right| \leqslant \left| \alpha x^{\alpha - 1} \cos \frac{1}{x} \right| + \left| x^{\alpha - 2} \sin \frac{1}{x} \right| \leqslant \alpha + 1.$$

因此 f'(x) 在 $[1,+\infty)$ 上有界. 从而由 Lagrange 中值定理易得 f 在 $[1,+\infty)$ 上 Lipschitz 连续, 故 f 在 $[1,+\infty)$ 上一致连续. 此时, 注意到 $\lim_{x\to 0^+} f(x) = 0$, 故由Cantor 定理可知, f 在 [0,1] 上一致连续. 于是由一致连续的拼接可得, f 在 $[0,+\infty)$ 上一致连续.

当 $\alpha > 1$ 时,令 $x'_n = 2n\pi, x''_n = 2n\pi + n^{1-\alpha}$,则

$$\lim_{n \to \infty} \left(x_n'' - x_n' \right) = \lim_{n \to \infty} n^{1-\alpha} = 0.$$

此时我们有

$$f(x_n'') - f(x_n') = (2n\pi + n^{1-\alpha})^{\alpha} \cos \frac{1}{2n\pi + n^{1-\alpha}} - (2n\pi)^{\alpha} \cos \frac{1}{2n\pi}$$

$$= (2n\pi)^{\alpha} \left(1 + \frac{n^{-\alpha}}{2\pi}\right)^{\alpha} \cos \frac{1}{2n\pi + n^{1-\alpha}} - (2n\pi)^{\alpha} \cos \frac{1}{2n\pi}$$

$$= (2n\pi)^{\alpha} \left(1 + \frac{n^{-\alpha}}{2\pi}\right)^{\alpha} \left[1 + O\left(\frac{1}{(2n\pi + n^{1-\alpha})^2}\right)\right] - (2n\pi)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right)\right]$$

$$= (2n\pi)^{\alpha} \left(1 + \frac{n^{-\alpha}}{2\pi}\right)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right)\right] - (2n\pi)^{\alpha} \left[1 + O\left(\frac{1}{n^2}\right)\right]$$

$$= (2n\pi)^{\alpha} \left[\left(1 + \frac{n^{-\alpha}}{2\pi}\right)^{\alpha} - 1\right] \left[1 + O\left(\frac{1}{n^2}\right)\right]$$

$$\begin{split} &= (2n\pi)^{\alpha} \left[\frac{\alpha n^{-\alpha}}{2\pi} + O\left(n^{-\alpha - 1}\right) \right] \left[1 + O\left(\frac{1}{n^2}\right) \right] \\ &= (2n\pi)^{\alpha} \left[\frac{\alpha n^{-\alpha}}{2\pi} + O\left(n^{-\alpha - 1}\right) \right] \\ &= \alpha \left(2\pi \right)^{\alpha - 1} + O\left(\frac{1}{n}\right) \to \alpha \left(2\pi \right)^{\alpha - 1} \neq 0, \quad n \to \infty. \end{split}$$

故根据定理 5.16可知 f 在 $[0,+\infty)$ 上不一致连续.

例题 **5.14** 设 $f_n:(0,+\infty)\to\mathbb{R}, n=1,2,\cdots$ 是一致连续函数且 $f_n\to f$, 证明: f 在 $(0,+\infty)$ 一致连续.

证明 $\forall \varepsilon > 0, \exists N \in \mathbb{N}$, 使得当 $n \ge N$ 时, 有

$$|f_n(x) - f(x)| < \varepsilon, \quad \forall x \in (0, +\infty).$$
 (5.41)

由 f_N 一致连续, 可知 $\exists \delta > 0$, 使得 $\forall x, y \in (0, +\infty)$ 且 $|x - y| \leq \delta$, 有

$$|f_N(x) - f_N(y)| < \varepsilon. \tag{5.42}$$

于是对 $\forall x, y \in (0, +\infty)$ 且 $|x-y| \leq \delta$, 结合 (5.41) 和 (5.42) 式, 我们有

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < 3\varepsilon.$$

故 f 在 (0,+∞) 一致连续.

例题 5.15 设 f 在 $[0, +\infty)$ 一致连续且对任何 $x \ge 0$ 都有 $\lim_{n \to \infty} f(x+n) = 0$, 证明 $\lim_{x \to +\infty} f(x) = 0$. 并说明如果去掉一致连续则结论不对.

笔记 证明的想法即把点拉回到 [0,1] 并用一致连续来解决. 反例可积累

$$f(x) = \frac{x \sin(\pi x)}{1 + x^2 \sin^2(\pi x)}.$$

核心想法:分段放缩、取整平移、一致连续.

证明 由 f 在 $[0,+\infty)$ 上一致连续可知, $\forall \varepsilon > 0,\exists \delta > 0$, 使得当 $x,y \in [0,+\infty)$ 且 $|x-y| \leq \delta$ 时, 有

$$|f(x) - f(y)| < \varepsilon. \tag{5.43}$$

把 [0,1] 做 N 等分, 其中 $N=\frac{1}{\delta}$. 由 $\lim_{n\to\infty}f\left(\frac{i}{N}+n\right)=0, i=0,1,\cdots,N$ 可知, 存在 $N'\in\mathbb{N}$, 使得 $\forall n\geqslant N'$, 有

$$\left| f\left(\frac{i}{N} + n\right) \right| < \varepsilon, \quad i = 0, 1, \dots, N.$$
 (5.44)

从而对 $\forall x \geqslant 1+N',$ 一定存在 $i \in \{0,1,\cdots,N-1\}, n \in \mathbb{N} \cap \left[N',+\infty\right),$ 使得 $x \in \left[\frac{i}{N}+n,\frac{i+1}{N}+n\right].$ 注意到此时

$$\left|x - \left(\frac{i}{N} + n\right)\right| \leqslant \left|\left(\frac{i+1}{N} + n\right) - \left(\frac{i}{N} + n\right)\right| = \frac{1}{N} = \delta.$$

于是结合 (5.43) 和 (5.44) 式我们就有

$$|f(x)| \le \left| f(x) - f\left(\frac{i}{N} + n\right) \right| + \left| f\left(\frac{i}{N} + n\right) \right| < 2\varepsilon.$$

故 $\lim_{x \to +\infty} f(x) = 0$.

5.5 函数列极限

定理 5.18 (Dini 定理)

若 $\{f_n\}_{n\in\mathbb{N}}\subset C([a,b]),f\in C([a,b])$ 且对每一个 $x\in[a,b]$, 都有 $f_n(x)$ 关于 n 单调并成立

$$\lim_{n\to\infty} f_n(x) = f(x).$$

证明: $\lim_{n\to\infty} f_n(x) = f(x)$ 关于 $x \in [a,b]$ 一致. 即 $f_n(x)$ 一致收敛到 f(x).

注 不妨设 f(x) = 0 的原因: 假设当 f(x) = 0 时结论已经成立, 则当 $f(x) \neq 0$ 时, 令 $g_n(x) = f_n(x) - f(x)$, 此时

证明 不妨设 f(x) = 0, 不妨设对 $\forall x \in [a, b]$, 都有 $f_n(x)$ 关于 n 单调递减, 则由 $\lim_{n \to \infty} f_n(x) = 0$ 可知, 对 $\forall x \in [a, b]$, 都有

$$f_n(x) \geqslant 0, \forall n \in \mathbb{N}_1.$$

对 $\forall \varepsilon > 0$, 考虑 $U_n \triangleq \{x \in [a,b] | f_n(x) < \varepsilon\}$, 由 $\lim_{n \to \infty} f_n(x) = 0$ 可得

$$[a,b]\subset\bigcup_{n=1}^{+\infty}U_n.$$

因为 $\{f_n\}_{n\in\mathbb{N}}\in C[a,b]$, 又注意 $f_n^{-1}(-\varepsilon,\varepsilon)=U_n$, 所以 U_n 是开集. 又由于对 $\forall x\in[a,b]$, 都有 $f_n(x)$ 关于 n 单调递减, 因此 $U_n\subset U_{n+1}$, $\forall n\in\mathbb{N}_1$. 这是因为对 $\forall x\in U_n$, 都有 $f_{n+1}(x)\leqslant f_n(x)<\varepsilon$, 于是 $x\in U_{n+1}$. 从而由有限覆盖定理可知, 存在 $n_1,n_2,\cdots,n_m\in\mathbb{N}_1$, 使得

$$[a,b]\subset\bigcup_{k=1}^m U_{n_k}.$$

取 $N \triangleq \max\{n_1, n_2, \dots, n_m\}$, 则此时 $[a, b] \subset U_N$. 故对 $\forall n \geqslant N$, 由 $U_n \subset U_{n+1}, \forall n \in \mathbb{N}_1$ 可知, $[a, b] \subset U_N \subset U_n$, 即 对 $\forall n \geqslant N$, 都有 $f_n(x) < \varepsilon$, $\forall x \in [a, b]$. 因此 $f_n(x)$ 一致收敛到 0. 故原定理得证.

定理 5.19 (Dini 定理函数单调版本)

设 $f_n \in C[a,b], n=1,2,\cdots$ 都是单调函数. 若

$$\lim_{n \to \infty} f_n(x) = f(x) \in C[a, b].$$

则 $\lim_{n\to\infty} f_n(x) = f(x)$ 是一致的. 即 $f_n(x)$ 一致收敛到 f(x).

证明 由 Cantor 定理可知, 对 $\forall n \in \mathbb{N}$, 都有 f_n 在 [a,b] 上一致连续. 从而对 $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得

$$|f(y) - f(x)| < \varepsilon, \forall |y - x| \le \delta. \tag{5.45}$$

设 $a = x_0 < x_1 < \dots < x_m = b$, 使得 $x_i - x_{i+1} \le \delta$, $i = 0, 1, 2, \dots, m$. 由 $\lim_{n \to \infty} f_n(x) = f(x)$ 可知, 存在 $N \in \mathbb{N}$, 使得当 $n \ge N$ 时, 有

$$|f_n(x_i) - f(x_i)| < \varepsilon, \forall i \in \{0, 1, 2, \dots, m\}.$$
 (5.46)

对 $\forall x \in [a,b]$, 当 $n \ge N$ 时, 一定存在 $i \in \{1,2,\cdots,m\}$, 使得 $x \in [x_{i-1},x_i]$. 从而当 $n \ge N$ 时, 利用(5.45)和 (5.46) 式以及 f_n 的单调性可得

$$|f_{n}(x) - f(x)| \leq |f_{n}(x) - f_{n}(x_{i})| + |f_{n}(x_{i}) - f(x_{i})| + |f(x_{i}) - f(x)| < |f_{n}(x_{i+1}) - f_{n}(x_{i})| + \varepsilon + \varepsilon$$

$$\leq |f_{n}(x_{i+1}) - f(x_{i+1})| + |f(x_{i+1}) - f(x_{i})| + |f(x_{i}) - f_{n}(x_{i})| + 2\varepsilon$$

$$< \varepsilon + \varepsilon + \varepsilon + 2\varepsilon = 5\varepsilon.$$

故 $f_n(x)$ 一致收敛到 f(x).

5.6 更弱定义的导数

定理 5.20 (最弱递增条件)

1. 设 $f \in C[a,b]$ 满足对任何 $x_0 \in (a,b)$ 都有

$$\overline{\lim}_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0,$$

则 f 在 [a,b] 递增.

2. 设 $f \in C[a,b]$ 满足对任何 $x_0 \in (a,b)$ 都有

$$\overline{\lim}_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} > 0, \tag{5.47}$$

则 f 在 [a,b] 严格递增.

3. 设 $f \in C(a,b)$ 满足对任何 $x \in (a,b)$, 都有

$$\varliminf_{h\to 0^+}\frac{f(x+h)-f(x-h)}{h}>0.$$

证明 f 在 (a,b) 严格递增.

4. 设 $f \in C(a,b)$ 满足对任何 $x \in (a,b)$, 都有

$$\underline{\lim_{h \to 0^+}} \frac{f(x+h) - f(x-h)}{h} \geqslant 0.$$

证明 f 在 (a, b) 递增.

注 只需证明 $f(b) \ge f(a)$ 或 f(b) > f(a) 的原因: 假设 $f(b) \ge f(a)$ 或 f(b) > f(a) 已经成立. 任取 $c,d \in (a,b)$ 或 [a,b],则我们考虑 (c,d) 或 [c,d] 这个区间,并且已知 f 在 (c,d) 或 [c,d] 上连续且满足上述条件,于是由假设可知 $f(d) \ge f(c)$ 或 f(d) > f(c). 故我们只需证明 $f(b) \ge f(a)$ 或 f(b) > f(a) 即可.

证明

1. 只需证明 $f(b) \ge f(a)$. 由 f 的连续性和极限保号性, 我们只需证明对充分小的 $\varepsilon > 0$, 有 $f(b) \ge f(a+\varepsilon)$. 考虑

$$F(x) = f(x) - f(a + \varepsilon) - \frac{f(b) - f(a + \varepsilon)}{b - a - \varepsilon} (x - a - \varepsilon).$$

则 $F(b) = F(a+\varepsilon) = 0$, $\overline{\lim}_{x \to x_0^+} \frac{F(x) - F(x_0)}{x - x_0} = \overline{\lim}_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} - \frac{f(b) - f(a+\varepsilon)}{b - a - \varepsilon}$, $\forall x_0 \in [a+\varepsilon,b)$. 于是设 $F(a+\varepsilon,b)$ 最大值点为 C,

(i) 当 $c \in [a + \varepsilon, b)$ 时,则

$$0 \geqslant \overline{\lim}_{x \to c^+} \frac{F(x) - F(c)}{x - c} = \overline{\lim}_{x \to c^+} \frac{f(x) - f(c)}{x - c} - \frac{f(b) - f(a + \varepsilon)}{b - a - \varepsilon} \geqslant -\frac{f(b) - f(a + \varepsilon)}{b - a - \varepsilon}$$

故 $f(b) \geqslant f(a+\varepsilon)$.

(ii) 当 c = b 时,则对 $\forall x \in [a + \varepsilon, b]$,都有 $0 = F(b) = F(c) \geqslant F(x)$.从而

$$F(x) = f(x) - f(a+\varepsilon) - \frac{f(b) - f(a+\varepsilon)}{b - a - \varepsilon} (x - a - \varepsilon) \leqslant 0$$

$$\Rightarrow \frac{f(x) - f(a+\varepsilon)}{x - a - \varepsilon} \leqslant \frac{f(b) - f(a+\varepsilon)}{b - a - \varepsilon}$$

$$\Rightarrow \frac{f(b) - f(a+\varepsilon)}{b - a - \varepsilon} \geqslant \overline{\lim_{x \to (a+\varepsilon)^+} \frac{f(x) - f(a+\varepsilon)}{x - a - \varepsilon}} > 0$$

$$\Rightarrow f(b) > f(a+\varepsilon)$$

证毕.

2. 若 f 在 [a,b] 不严格增,则存在 [c,d] \subset [a,b] 使得 f(d)=f(c),注意到由第 1 问可知 f 在 [c,d] 递增,从而只能为常数,于是 f(c) 三 f(c).不妨设 [c,d] \subset (a,b),否则任取 [a,b] 一个子区间即可. 因此

$$\overline{\lim}_{x \to c^+} \frac{f(x) - f(c)}{x - c} = 0.$$

这显然和(5.47)矛盾! 故我们证明了 f 在 [a,b] 严格递增

3. 对 [c,d] ⊂ (a,b), 我们断言存在 $x_1 \in (c,d)$ 使得

$$\frac{f(d) - f(c)}{d - c} \geqslant \lim_{h \to 0^+} \frac{f(x_1 + h) - f(x_1 - h)}{2h}$$
 (5.48)

现在我们用 $g(x) = \frac{f(d) - f(c)}{d - c}(x - c) + f(c) - f(x)$ 代替 f. 于是考虑 $g \in C^1[c, d]$, g(d) = g(c) = 0, 此时要

证明(5.48), 就只需证明存在 $x_1 \in (c,d)$ 使得

$$\overline{\lim}_{h \to 0^+} \frac{g(x_1 + h) - g(x_1 - h)}{2h} \geqslant 0 \tag{5.49}$$

若 $g \equiv 0$, 已经得到了不等式(5.49).

若 $t \in (a,b)$ 是 g 的最大值点使得 g(t) > 0. 取 $k \in (0,g(t))$,则构造非空有界集 $U = \{x \in [c,t]: g(x) > k\}$. 记 $x_1 = \inf U$, 则存在 $t_n \in U$, $n \in \mathbb{N}$ 使得 $t_n \geq x_1$, $\lim_{n \to \infty} t_n = x_1$. 注意 $x_1 \neq c$, 若 $g(x_1) > k$, 则 且由函数连续性知 x_1 左侧仍有 g>k ,这和 x_1 是 inf 矛盾! 故我们只有 $x_1\not\in U$ 且 $g(x_1)=k$.注意到 $\frac{g(x_1+t_n-x_1)-g(x_1-(t_n-x_1))}{2(t_n-x_1)}\geqslant \frac{k-k}{2(t_n-k_1)}=0$ 这就给出了(5.49). 若 f 有负的最小值 g(t)<0 .取 $k\in(g(c),0)$,构造非空有界集 $V=\{x\in[t,d]:g(x)< k\}$.并取 $x_1=\sup V$,同样的 $g(x_1)=k$ 且 $x_1\neq d$.存在 $s_n\in V$ 使得 $\lim_{n\to\infty}s_n=x_1$.于是由 $\frac{g(x_1+x_1-s_n)-g(x_1-(x_1-s_n))}{2(x_1-s_n)}\geqslant$

$$\frac{k-k}{2(x_1-s_n)}=0$$
 知(5.49)成立.

现在由不等式(5.48)和题目条件就证明了f(d) > f(c),从而f严格递增.

4. 注意到 $f(x) + \varepsilon x$, $\varepsilon > 0$ 满足第 3 问要求, 因此 $f(y) + \varepsilon y > f(x) + \varepsilon x$, $\forall b > y > x > a$, $\varepsilon > 0$. 让 $\varepsilon \to 0^+$, 我 们有 $f(y) \ge f(x)$, 这就证明了 f 在 (a,b) 递增.

5.7 逼近方法

5.7.1 Bernstein 多项式

Bernstein 多项式都能定义在 [a,b] 上, 因为只差一个换元法, 因此我们不妨设 [a,b] = [0,1].

定义 5.4 (一维 Bernstein 多项式)

设 $f \in C[0,1], n \in \mathbb{N}_0$, 定义 f 的 **Bernstein 多项式**为

$$B_n(f,x) \triangleq \sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k}.$$

设 $f \in C[a,b], n \in \mathbb{N}_0$, 定义 f 的 **Bernstein 多项式**为

$$B_n(f,x) \triangleq \sum_{k=0}^n f\left((b-a)\frac{k}{n} + a\right) C_n^k \frac{(x-a)^k (b-x)^{n-k}}{(b-a)^n}.$$

注 [a, b] 区间上的 Bernstein 多项式可由 [0, 1] 区间上的 Bernstein 多项式换元得到.

设 $f \in C[a, b], n \in \mathbb{N}_0$, 令 $x = (b - a)y + a, \forall x \in [a, b]$, 则 $y \in [0, 1]$, 并且

$$y = \frac{x-a}{b-a}, 1-y = \frac{b-x}{b-a}.$$

再令 g(y) = f((b-a)y+a), 则由 $f \in C[a,b]$ 可知 $g \in C[0,1]$. 于是 g 在 [0,1] 区间上的 Bernstein 多项式为

$$B_n(g,y) \triangleq \sum_{k=0}^n g\left(\frac{k}{n}\right) C_n^k y^k (1-y)^{n-k}.$$

故 [a,b] 区间上 f 的 Bernstein 多项式可定义为

$$B_n(f,x) \triangleq \sum_{k=0}^n f\left((b-a)\frac{k}{n} + a\right) C_n^k \frac{(x-a)^k (b-x)^{n-k}}{(b-a)^n}.$$

1.
$$B_n(C, x) = C \sum_{k=0}^n C_n^k x^k (1-x)^{n-k} = C.$$

2.
$$B_n(x,x) = \sum_{k=0}^n \frac{k}{n} C_n^k x^k (1-x)^{n-k} = x.$$

3.
$$\sum_{k=0}^{n} \left(\frac{k}{n} - x \right) C_n^k x^k (1 - x)^{n-k} = 0.$$

4.
$$\sum_{k=0}^{n} \left(\frac{k}{n} - x \right)^{2} C_{n}^{k} x^{k} (1 - x)^{n-k} = \frac{x(1 - x)}{n}.$$

证明

1. 由二项式定理可得 $B_n(C,x) = C \sum_{k=0}^n C_n^k x^k (1-x)^{n-k} = C (x+1-x)^n = C.$

2.
$$B_n(x,x) = \sum_{k=0}^n \frac{k}{n} C_n^k x^k (1-x)^{n-k} = \frac{(1-x)^n}{n} \sum_{k=0}^n k C_n^k \left(\frac{x}{1-x}\right)^k$$
. 由幂级数可逐项求导得
$$\sum_{k=0}^n k C_n^k y^{k-1} = \left(\sum_{k=0}^n C_n^k y^k\right)' = \left[(1+y)^n\right]' = n(1+y)^{n-1}.$$

因此

$$\sum_{k=0}^{n} k C_n^k y^k = ny (1+y)^{n-1}.$$

故

$$B_n(x,x) = \frac{(1-x)^n}{n} \sum_{k=0}^n k C_n^k \left(\frac{x}{1-x}\right)^k = \frac{(1-x)^n}{n} \frac{nx}{1-x} \left(1 + \frac{x}{1-x}\right)^{n-1}$$
$$= \frac{(1-x)^n}{n} \frac{nx}{1-x} \left(\frac{1}{1-x}\right)^{n-1} = x.$$

- 3. 由 2 的结论可直接得到.
- 4. 首先,展开得到

$$\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} C_{n}^{k} x^{k} (1 - x)^{n-k} = (1 - x)^{n} \sum_{k=0}^{n} \left(x^{2} - \frac{2xk}{n} + \frac{k^{2}}{n^{2}}\right) C_{n}^{k} \left(\frac{x}{1 - x}\right)$$

$$= x^{2} \sum_{k=0}^{n} C_{n}^{k} x^{k} (1 - x)^{n-k} - \frac{2x (1 - x)^{n}}{n} \sum_{k=0}^{n} k C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k} + \frac{(1 - x)^{n}}{n^{2}} \sum_{k=0}^{n} k^{2} C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k}$$

$$= x^{2} - \frac{2x (1 - x)^{n}}{n} \sum_{k=0}^{n} k C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k} + \frac{(1 - x)^{n}}{n^{2}} \sum_{k=0}^{n} k^{2} C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k}.$$

$$(5.50)$$

接着, 计算 $\sum_{k=0}^{n} k C_n^k y^k$ 和 $\sum_{k=0}^{n} k^2 C_n^k y^k$. 由幂级数可逐项求导得

$$\sum_{k=0}^{n} k C_n^k y^{k-1} = \left(\sum_{k=0}^{n} C_n^k y^k\right)' = \left[(1+y)^n\right]' = n(1+y)^{n-1}.$$

$$\sum_{k=0}^{n} k^2 C_n^k y^k = y \left[\left(\sum_{k=0}^{n} k C_n^k y^k\right)'\right] = y \left[\left(y \left(\sum_{k=0}^{n} C_n^k y^k\right)'\right)'\right]$$

$$= y \left[\left(y \left((1+y)^n\right)'\right)'\right] = y \left[\left(ny \left(1+y\right)^{n-1}\right)'\right]$$

$$= y \left[n \left(1+y\right)^{n-1} + n \left(n-1\right) y \left(1+y\right)^{n-2}\right]$$

$$= ny \left(1+y\right)^{n-2} \left[\left(1+y\right) + \left(n-1\right) y\right]$$

$$= ny \left(1+y\right)^{n-2} \left(ny+1\right).$$

$$\Rightarrow y = \frac{x}{1-x}$$
,则由上式可得

$$\sum_{k=0}^{n} k C_n^k \left(\frac{x}{1-x}\right)^k = n \left(\frac{x}{1-x}\right) \left(1 + \frac{x}{1-x}\right)^{n-1} = \frac{nx}{1-x} \left(\frac{1}{1-x}\right)^{n-1} = \frac{nx}{(1-x)^n}.$$

$$\sum_{k=0}^{n} k^2 C_n^k \left(\frac{x}{1-x}\right)^k = n \left(\frac{x}{1-x}\right) \left(1 + \frac{x}{1-x}\right)^{n-2} \left(\frac{nx}{1-x} + 1\right) = \frac{nx}{1-x} \left(\frac{1}{1-x}\right)^{n-2} \frac{(n-1)x+1}{1-x} = \frac{nx \left[(n-1)x+1\right]}{(1-x)^n}.$$

将上式代入(5.50)可得

$$\begin{split} \sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} C_{n}^{k} x^{k} \left(1 - x\right)^{n-k} &= x^{2} - \frac{2x \left(1 - x\right)^{n}}{n} \sum_{k=0}^{n} k C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k} + \frac{(1 - x)^{n}}{n^{2}} \sum_{k=0}^{n} k^{2} C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k} \\ &= x^{2} - \frac{2x \left(1 - x\right)^{n}}{n} \cdot \frac{nx}{(1 - x)^{n}} + \frac{(1 - x)^{n}}{n^{2}} \cdot \frac{nx \left[(n - 1)x + 1\right]}{(1 - x)^{n}} \\ &= x^{2} - 2x^{2} + \frac{(n - 1)x^{2} + x}{n} = \frac{x \left(1 - x\right)}{n}. \end{split}$$

定理 5.21 (Bernstein 多项式的性质)

(1) 设
$$\varphi(x) = n \left[f\left(\frac{n-1}{n}x + \frac{1}{n}\right) - f\left(\frac{n-1}{n}x\right) \right], n = 1, 2, 3, \dots, 则有$$

$$B'_n(f, x) = B_{n-1}(\varphi, x), n \in \mathbb{N}. \tag{5.51}$$

- (2) 若 f 递增或者递减,则 $B_n(f,x),n \in \mathbb{N}_0$ 也递增或者递减.
- (3) 若 f 是 [0,1] 的凸或者凹函数,则对每个 $n \in \mathbb{N}_0$ 都有 $B_n(f,x)$ 是 [0,1] 的凸或者凹函数.
- (4) 设 $f \in C^k[0,1], k \in \mathbb{N}_0$, 则关于 $x \in [0,1]$, 一致的有

$$\lim_{n \to \infty} B_n(f, x) = f(x), \lim_{n \to \infty} B'_n(f, x) = f'(x), \dots, \lim_{n \to \infty} B_n^{(k)}(f, x) = f^{(k)}(x).$$
 (5.52)

注 性质 (4) 对任意光滑的情况并不成立!

即当 $f \in C^{\infty}[0,1]$ 时, 对 $\forall k \in \mathbb{N}$, 都有 $\lim_{n \to \infty} B_n^{(k)}(f,x) = f^{(k)}(x)$ 不成立!

也即当 $f \in C^{\infty}[0,1]$ 时, 对 $\forall k \in \mathbb{N}$, 存在一个 N(与 k 无关, 公共的 N), 使得 $\forall n > N$, 都有 $B_n^{(k)}(f,x) \Rightarrow f^{(k)}(x)$ 不成立!

证明

(1) 对 $n \ge 1$, 直接计算得

$$\begin{split} B_n'(f,x) &= \left[\sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k} \right]' \\ &= \sum_{k=1}^n k f\left(\frac{k}{n}\right) C_n^k x^{k-1} (1-x)^{n-k} - \sum_{k=0}^{n-1} (n-k) f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} (k+1) f\left(\frac{k+1}{n}\right) C_n^{k+1} x^k (1-x)^{n-k-1} - \sum_{k=0}^{n-1} (n-k) f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} \left[(k+1) f\left(\frac{k+1}{n}\right) C_n^{k+1} - (n-k) f\left(\frac{k}{n}\right) C_n^k \right] x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} \left[(k+1) f\left(\frac{k+1}{n}\right) \frac{n!}{(k+1)! (n-k-1)!} - (n-k) f\left(\frac{k}{n}\right) \frac{n!}{k! (n-k)!} \right] x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} \left[n f\left(\frac{k+1}{n}\right) \frac{(n-1)!}{k! (n-k-1)!} - n f\left(\frac{k}{n}\right) \frac{(n-1)!}{k! (n-k-1)!} \right] x^k (1-x)^{n-k-1} \end{split}$$

$$= \sum_{k=0}^{n-1} n \left[f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right) \right] C_{n-1}^k x^k (1-x)^{n-k-1}$$

$$= \sum_{k=0}^{n-1} \varphi\left(\frac{k}{n-1}\right) C_{n-1}^k x^k (1-x)^{n-k-1}$$

$$= B_{n-1}(\varphi, x),$$

这就给出了式(5.51).

- (2) 如果 f 递增, 那么就有 $\varphi \ge 0$, 则由(5.51)知 $B'_n(f,x) = B_{n-1}(\varphi,x) \ge 0$, 故 $B_n(f,x)$ 递增. 类似可得递减.
- (3) 如果 f 下凸, 对 n=1 的情况是否符合条件都可以单独验证, 我们略去过程, 下设 $n \ge 2$. 注意继续由(5.51)知

$$B_n^{\prime\prime}(f,x)=B_{n-1}^{\prime}(\varphi,x)=B_{n-2}(\psi,x), \psi(x)=(n-1)\left[\varphi\left(\frac{n-2}{n-1}x+\frac{1}{n-1}\right)-\varphi\left(\frac{n-2}{n-1}x\right)\right],$$

从而由 f 的下凸性可得

$$\begin{split} B_{n-2}(\psi,x) &= \sum_{j=0}^{n-2} \psi\left(\frac{j}{n-2}\right) C_{n-2}^{k} (1-x)^{n-2-j} x^{j} \\ &= \sum_{j=0}^{n-2} \left[\varphi\left(\frac{j+1}{n-1}\right) - \varphi\left(\frac{j}{n-1}\right) \right] \frac{(n-1)!}{j!(n-2-j)!} (1-x)^{n-2-j} x^{j} \\ &= n \sum_{j=0}^{n-2} \left[f\left(\frac{j+2}{n}\right) - f\left(\frac{j+1}{n}\right) - f\left(\frac{j+1}{n}\right) + f\left(\frac{j}{n}\right) \right] \frac{(n-1)!}{j!(n-2-j)!} (1-x)^{n-2-j} x^{j} \\ &= 2n \sum_{j=0}^{n-2} \left[\frac{f\left(\frac{j+2}{n}\right) + f\left(\frac{j}{n}\right)}{2} - f\left(\frac{j+1}{n}\right) \right] \frac{(n-1)!}{j!(n-2-j)!} (1-x)^{n-2-j} x^{j} \\ &= 2n \sum_{j=0}^{n-2} \left[\frac{f\left(\frac{j+2}{n}\right) + f\left(\frac{j}{n}\right)}{2} - f\left(\frac{\frac{j+2}{n} + \frac{j}{n}}{2}\right) \right] \frac{(n-1)!}{j!(n-2-j)!} (1-x)^{n-2-j} x^{j} \\ &\geqslant 0, \end{split}$$

这就证明了 $B_n(f,x)$ 下凸. 类似的可讨论上凸情况.

(4) **Step1** 我们证明 k=0 时命题成立. 对任何 $\varepsilon > 0$, 存在 $\delta > 0$, 使得只要 $|x-y| \leq \delta$, 就有

$$|f(x) - f(y)| \le \varepsilon.$$

注意到

$$|B_{n}(f,x) - f(x)| = \left| \sum_{k=0}^{n} \left[f\left(\frac{k}{n}\right) - f(x) \right] C_{n}^{k} x^{k} (1-x)^{n-k} \right|$$

$$\leqslant \sum_{\left|\frac{k}{n} - x\right| \leqslant \delta} \left| \left[f\left(\frac{k}{n}\right) - f(x) \right] C_{n}^{k} x^{k} (1-x)^{n-k} \right| + \sum_{\left|\frac{k}{n} - x\right| > \delta} \left| \left[f\left(\frac{k}{n}\right) - f(x) \right] C_{n}^{k} x^{k} (1-x)^{n-k} \right|$$

$$\leqslant \varepsilon \sum_{\left|\frac{k}{n} - x\right| \leqslant \delta} \left| C_{n}^{k} x^{k} (1-x)^{n-k} \right| + 2 \sup |f| \sum_{\left|\frac{k}{n} - x\right| > \delta} \left| C_{n}^{k} x^{k} (1-x)^{n-k} \right|$$

$$\stackrel{\text{#}}{\leqslant} C_{n}^{k} x^{k} (1-x)^{n-k} + \frac{2 \sup |f|}{\delta^{2}} \sum_{\left|\frac{k}{n} - x\right| > \delta} \left(\frac{k}{n} - x\right)^{2} C_{n}^{k} x^{k} (1-x)^{n-k}$$

$$\leqslant \varepsilon + \frac{2 \sup |f|}{\delta^{2}} \sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} C_{n}^{k} x^{k} (1-x)^{n-k}$$

$$\stackrel{\text{#}}{\leqslant} \varepsilon + \frac{2 \sup |f|}{n\delta^{2}} x (1-x),$$

于是从上式立得

$$\sup_{x \in [0,1]} |B_n(f,x) - f(x)| \le \varepsilon + \frac{\sup |f|}{2n\delta^2}.$$

$$\overline{\lim}_{n\to\infty} \sup_{x\in[0,1]} |B_n(f,x) - f(x)| \leqslant \varepsilon.$$

再由ε的任意性可知

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |B_n(f,x) - f(x)| = 0.$$

故我们得到了k = 0时,式(5.52)成立.

Step2 (*) 我们定义

$$T_n f(x) = n \left[f\left(\frac{n-1}{n}x + \frac{1}{n}\right) - f\left(\frac{n-1}{n}x\right) \right], n \in \mathbb{N}.$$

$$B'_n(f, x) = B_{n-1}(T_n f, x), \forall n \in \mathbb{N}.$$

归纳证明

$$T_{n-j+1}\cdots T_n f(x) = (n-j+1)\cdots (n-1)n \sum_{k=0}^{j} (-1)^{k+j} C_j^k f\left(\frac{n-j}{n}x + \frac{k}{n}\right), \forall j \in \mathbb{N}.$$

事实上, 当 j=1, 由(5.51)可知命题显然成立, 假设命题对 $j \in \mathbb{N}$ 成立, 则

$$\begin{split} & = T_{n-j} \left((n-j+1) \cdots (n-1) n \sum_{k=0}^{j} (-1)^{k+j} C_j^k f \left(\frac{n-j}{n} x + \frac{k}{n} \right) \right) \\ & = \frac{n!}{(n-j)!} \sum_{k=0}^{j} (-1)^{k+j} C_j^k T_{n-j} \left(f \left(\frac{n-j}{n} x + \frac{k}{n} \right) \right) \\ & = \frac{n!(n-j)}{(n-j)!} \sum_{k=0}^{j} (-1)^{k+j} C_j^k \left[f \left(\frac{n-j-1}{n} x + \frac{k+1}{n} \right) - f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \right] \\ & = \frac{n!(-1)^j \left[f \left(\frac{n-j-1}{n} x + \frac{1}{n} \right) - f \left(\frac{n-j-1}{n} x \right) \right]}{(n-j-1)!} \\ & + \frac{n!}{(n-j-1)!} \sum_{k=1}^{j} (-1)^{k+j} C_j^k f \left(\frac{n-j-1}{n} x + \frac{k+1}{n} \right) \\ & - \frac{n!}{(n-j-1)!} \sum_{k=1}^{j} (-1)^{k-1+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & + \frac{n!}{(n-j-1)!} \sum_{k=1}^{j} (-1)^{k+j} C_j^k f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!(-1)^j \left[f \left(\frac{n-j-1}{n} x + \frac{1}{n} \right) - f \left(\frac{n-j-1}{n} x \right) \right]}{(n-j-1)!} \\ & + \frac{n!}{(n-j-1)!} \sum_{k=1}^{j} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & + \frac{n!}{(n-j-1)!} \sum_{k=1}^{j} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!} \sum_{k=1}^{j+1} (-1)^{k+l+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ & = \frac{n!}{(n-j-1)!}$$

因此我们证明了对j+1,结论也成立,因此由数学归纳法,对所有 $j \in \mathbb{N}$,命题都成立.

Step3 (*) 我们证明一个中值定理的结果. 由Hermite 插值定理, 对 $x \in [0, 1]$, 存在 $\theta \in [0, 1]$, 我们有

$$f(x) = \sum_{k=1}^{j} \prod_{s \neq k} \frac{\left(x - \frac{s+i}{n}\right)}{\left(\frac{k+i}{n} - \frac{s+i}{n}\right)} f\left(\frac{k+i}{n}\right) + \frac{f^{(j)}(\theta)}{j!} \prod_{s=1}^{j} \left(x - \frac{s+i}{n}\right).$$

特别的存在 $\theta \in [\frac{i}{n}, \frac{i+j}{n}]$, 使得

$$\begin{split} f\left(\frac{i}{n}\right) &= \sum_{k=1}^{j} \prod_{s \neq k} \frac{(\frac{i}{n} - \frac{s+i}{n})}{(\frac{k+i}{n} - \frac{s+i}{n})} \cdot f\left(\frac{k+i}{n}\right) + \frac{f^{(j)}(\theta)}{j!} \prod_{s=1}^{j} \left(\frac{i}{n} - \frac{s+i}{n}\right) \\ &= \sum_{k=1}^{j} \prod_{s \neq k} \frac{(-\frac{s}{n})}{(\frac{k-s}{n})} \cdot f\left(\frac{k+i}{n}\right) + \frac{(-1)^{j} f^{(j)}(\theta)}{n^{j}} \\ &= \sum_{k=1}^{j} \prod_{s \neq k} \frac{s}{s-k} \cdot f\left(\frac{k+i}{n}\right) + \frac{(-1)^{j} f^{(j)}(\theta)}{n^{j}} \\ &= \sum_{k=1}^{j} \frac{j!}{k(j-k)!(k-1)!} (-1)^{k-1} f\left(\frac{k+i}{n}\right) + \frac{(-1)^{j} f^{(j)}(\theta)}{n^{j}} \\ &= \sum_{k=1}^{j} (-1)^{k-1} C_{j}^{k} f\left(\frac{k+i}{n}\right) + \frac{(-1)^{j} f^{(j)}(\theta)}{n^{j}}, \end{split}$$

从而

$$\sum_{k=0}^{j} (-1)^k C_j^k f\left(\frac{k+i}{n}\right) = \frac{(-1)^j f^{(j)}(\theta)}{n^j}.$$

Step4 (*) 注意到

$$B_n^{(j)}(f,x) = B_{n-j}(T_{n-j+1}\cdots T_{n-1}T_nf,x), 1 \le j \le k, n > k.$$

于是运用 Step3, 我们有

$$\begin{split} &|B_{n}^{(j)}(f,x)-f^{(j)}(x)|\leqslant |B_{n-j}(f^{(j)},x)-f^{(j)}(x)|+|B_{n-j}(f^{(j)},x)-B_{n-j}(T_{n-j+1}\cdots T_{n-1}T_{n}f,x)|\\ &\leqslant |B_{n-j}(f^{(j)},x)-f^{(j)}(x)|+\sum_{i=0}^{n-j}|f^{(j)}\left(\frac{i}{n-j}\right)-T_{n-j+1}\cdots T_{n-1}T_{n}f\left(\frac{i}{n-j}\right)|C_{n-j}^{i}x^{i}(1-x)^{n-j-i}\\ &=|B_{n-j}(f^{(j)},x)-f^{(j)}(x)|+\sum_{i=0}^{n-j}|f^{(j)}\left(\frac{i}{n-j}\right)-\frac{n!}{(n-j)!}\sum_{k=0}^{j}(-1)^{k+j}C_{j}^{k}f\left(\frac{k+i}{n}\right)|C_{n-j}^{i}x^{i}(1-x)^{n-j-i}\\ &=|B_{n-j}(f^{(j)},x)-f^{(j)}(x)|+\sum_{i=0}^{n-j}|f^{(j)}\left(\frac{i}{n-j}\right)-\frac{n!}{(n-j)!n^{j}}|C_{n-j}^{i}x^{i}(1-x)^{n-j-i}\\ &\leqslant |B_{n-j}(f^{(j)},x)-f^{(j)}(x)|+\sum_{i=0}^{n-j}|f^{(j)}\left(\frac{i}{n-j}\right)-f^{(j)}(\theta)|C_{n-j}^{i}x^{i}(1-x)^{n-j-i}\\ &+\sum_{i=0}^{n-j}\left|1-\frac{n!}{(n-j)!n^{j}}\right|\cdot|f^{(j)}(\theta)|C_{n-j}^{i}x^{i}(1-x)^{n-j-i}. \end{split}$$

Step5 (*) **Step1** 告诉我们关于 $x \in [0,1]$, 一致的有

$$\lim_{n \to \infty} B_n \left(f^{(j)}, x \right) = f^{(j)}(x), j = 0, 1, 2, \dots, k.$$

同时注意到

$$\lim_{n\to\infty}\left(1-\frac{n!}{(n-j)!n^j}\right)=0,$$

以及

$$\left|\frac{i}{n} - \frac{i}{n-j}\right| = \frac{ji}{n(n-j)} \leqslant \frac{j}{n}, \left|\frac{i+j}{n} - \frac{i}{n-j}\right| \leqslant \frac{2j}{n}, \forall n > j.$$

我们同时假设

$$M_j \triangleq \sup_{x \in [0,1]} |f^{(j)}(x)|, j = 0, 1, 2, \dots, k.$$

并注意到 $f^{(j)}$ 是一致连续的. 现在对任何 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$ 和 $\delta > 0$, 使得

$$\left| B_{n-j} \left(f^{(j)}, x \right) - f^{(j)}(x) \right| < \frac{\varepsilon}{3}, \forall x \in [0, 1],$$

$$\left| 1 - \frac{n!}{(n-j)!n^j} \right| < \frac{\varepsilon}{3M_j}, \forall n > N,$$

$$\left| f^{(j)}(x) - f^{(j)}(y) \right| < \frac{\varepsilon}{3}, \forall |x-y| < \delta, x, y \in [0, 1].$$

因此当正整数 $n > \max\left\{\frac{2j}{\delta}, j, N\right\}$, 利用 **Step4**, 我们有

$$\left|B_n^{(j)}(f,x)-f^{(j)}(x)\right|<\varepsilon, \forall x\in [a,b],$$

这就完成了证明.

命题 5.29

设 f ∈ C[0, 1] 使得

$$\int_0^1 f(x)x^n dx = 0, \forall n = 0, 1, 2, \dots.$$

证明

$$f(x) = 0, \forall x \in [0, 1].$$

 $\mathbf{E}_{n}(x)$ 的良定义性可由Bernstein 多项式的性质 (4)得到. 实际上, 我们这里取的 $p_{n}(x)$ 就是 g 的 Bernstein 多项式 $B_{n}(g,x)$.

证明 由条件可知,对任意实系数多项式 p(x),都有

$$\int_0^1 f(x)p(x)\mathrm{d}x = 0, \forall p(x) \in \mathbb{R}[x].$$

对 $\forall g \in C[0,1]$, 取 $p_n(x) \in \mathbb{R}[x]$, 使得 $p_n(x) \rightrightarrows g(x)$, 则

$$\int_0^1 f(x)g(x)\mathrm{d}x = \int_0^1 \lim_{n \to \infty} f(x)p_n(x)\mathrm{d}x = \lim_{n \to \infty} \int_0^1 f(x)p_n(x)\mathrm{d}x = 0.$$

于是

$$\int_0^1 f(x)g(x)dx = 0, \forall g \in C[a, b].$$

再取g = f,则由上式可得

$$\int_0^1 f^2(x) dx = 0 \Rightarrow f(x) \equiv 0.$$

例题 5.16 设 $f \in C[0,\pi]$ 满足: 对 $n=0,1,2,\cdots$, 有 $\int_0^\pi f(x)\cos nx \, dx = 0$. 求证: $f(x) \equiv 0$. 证明 由定理 A.13可知, $\cos^n x$ 可表示为 $1,\cos x,\cos 2x,\cdots$, $\cos nx$ 的线性组合. 于是由条件, 对于 $n=0,1,2,\cdots$, 有 $\int_0^\pi f(x) \left(\cos^n x - \cos^{n+2} x\right) dx = 0$.

作变换 $x = \arccos t$ 得

$$\int_{-1}^{1} f(\arccos t) \sqrt{1 - t^2} t^n dt = 0, \quad n = 0, 1, \dots.$$

根据**命**题 **5.29**可知 $f(\arccos t)\sqrt{1-t^2}\equiv 0$ ($t\in[-1,1]$). 因而 $f(x)\equiv 0$. **注** 这里在积分中考虑 $(\cos^n x - \cos^{n+2} x)$ 是为了防止变换后分母上出现 $\sqrt{1-t^2}$, 从而避免讨论无界函数的积分.

定理 5.22

设 $f(x) \in C^k[a,b]$, 这里 a < b, $a,b \in \mathbb{R}$, $k \in \mathbb{N}_0$, 那么对任意 $\varepsilon > 0$, 存在多项式 p(x), 使得

$$\left|f^{(s)}(x) - p^{(s)}(x)\right| \leqslant \varepsilon, \forall x \in [a, b], s = 0, 1, 2, \dots, k.$$

注 q(x) 的良定义性可由 $f^{(k)}$ 的连续性和 Bernstein 多项式的性质 (4) 直接得到. 实际上, $q(x) = B(f^{(k)}, x)$. 证明 由带积分型余项的 Taylor 公式可知

$$f(x) = \sum_{i=0}^{k-1} \frac{f^{(j)}(a)}{j!} (x-a)^j + \frac{1}{(k-1)!} \int_a^x (x-t)^{k-1} f^{(k)}(t) dt.$$

对 $\forall \varepsilon > 0$, 取 $q \in \mathbb{R}[x]$, 使得

$$|q(x) - f^{(k)}(x)| \le \varepsilon, \forall x \in [a, b]. \tag{5.53}$$

设

$$p(x) = \sum_{i=0}^{k-1} \frac{f^{(j)}(a)}{j!} (x-a)^j + \frac{1}{(k-1)!} \int_a^x (x-t)^{k-1} q(t) dt,$$

则对 p 求导可得, 对 $\forall s \in \mathbb{N}$, 我们有

$$p^{(s)}(x) = \sum_{i=0}^{k-s-1} \frac{f^{(j+s)}(a)}{j!} (x-a)^j + \frac{1}{(k-s-1)!} \int_a^x (x-t)^{k-s-1} q(t) dt.$$
 (5.54)

由带积分型余项的 Taylor 公式可知, 对 $\forall s \in \mathbb{N}$, 我们有

$$f^{(s)}(x) = \sum_{j=0}^{k-s-1} \frac{f^{(j+s)}(a)}{j!} (x-a)^j + \frac{1}{(k-s-1)!} \int_a^x (x-t)^{k-s-1} f^{(k)}(t) dt.$$
 (5.55)

于是利用(5.53)(5.54)(5.55)式可得, 对 $\forall s \in \mathbb{N}$, 我们有

$$|f^{(s)}(x) - p^{(s)}(x)| = \left| \frac{1}{(k-s-1)!} \int_{a}^{x} (x-t)^{k-s-1} [f^{(k)}(t) - q(t)] dt \right| \leqslant \frac{\varepsilon (b-a)^{k-s}}{(k-s)!}, \forall x \in [a,b].$$

故结论得证.

例题 5.17 设多项式列 p_n , $n=1,2,\cdots$ 在 \mathbb{R} 一致收敛到 f, 证明 f 为多项式.

证明 由条件可知,存在 $N \in \mathbb{N}$,使得

$$|p_m(x) - p_n(x)| \le 1, \forall m > n \ge N, x \in \mathbb{R}.$$

由于有界的多项式函数一定是常值函数,因此 $p_m(x) - p_n(x) = C, \forall m > n \ge N, x \in \mathbb{R}$. 其中 C 是一个常数. 故

$$p_n(x) = p_N(x) + c_n, \forall n \geqslant N, x \in \mathbb{R}.$$
 (5.56)

其中 $\{c_n\}$ 是一个常数列. 从而任取 $x_0 \in \mathbb{R}$, 结合 $\lim_{n \to \infty} p_n(x) = f(x)$ 可得

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} [p_n(x_0) - p_N(x_0)] = f(x_0) - p_N(x_0).$$

故 $\lim c_n = c$ 存在. 于是由 x_0 的任意性可得

$$c = \lim_{n \to \infty} c_n = f(x) - p_N(x), x \in \mathbb{R}.$$

即 $f(x) = p_N(x) + c, \forall x \in \mathbb{R}$. 因此结论得证. 或者对(5.56)式两边同时令 $n \to \infty$, 也能得到

$$f(x) = p_N(x) + c, \forall x \in \mathbb{R}.$$

5.7.2 可积函数的逼近

定理 5.23 (可积被连续函数逼近)

(1) 设 $f \in R[a,b]$, 则对任何 $\varepsilon > 0$, 存在 $g \in C[a,b]$, 使得

$$\int_{a}^{b} |f(x) - g(x)| \mathrm{d}x < \varepsilon.$$

(2) 设 $f \in R[a,b]$, 则对任何 $\varepsilon > 0$, 存在多项式 P(x), 使得

$$\int_{a}^{b} |f(x) - P(x)| \mathrm{d}x < \varepsilon.$$

(3) 设 $f \in R[a,b]$, 则对任何 $\varepsilon > 0$, 存在 $g \in C_c(a,b)$, 使得

$$\int_{a}^{b} |f(x) - g(x)| \mathrm{d}x < \varepsilon.$$

这里 $g \in C_c(a,b)$ 表示 g 是有含于 (a,b) 的紧支撑的连续函数.

(4) 设 $p \ge 1$ 且反常积分 $\int_{-\infty}^{\infty} |f(x)|^p dx < \infty$, 则对任何 $\varepsilon > 0$, 存在 $g \in C_c(\mathbb{R})$, 使得

$$\int_{-\infty}^{\infty} |f(x) - g(x)|^p dx < \varepsilon.$$

这里 $g \in C_c(\mathbb{R})$ 表示g是有含于 \mathbb{R} 的紧支撑的连续函数.

က

🔮 笔记 证明的想法即分段线性连接. 紧支撑逼近也叫紧化方法. 第三问对勒贝格积分也是对的.

证明

(1) 对任何 $\varepsilon > 0$, 因为 $f \in R[a,b]$, 所以存在一个划分 $a = x_0 < x_1 < \cdots < x_n = b$ 使得

$$\sum_{i=1}^{n} w_i(f)(x_i - x_{i-1}) \le \varepsilon, w_i(f) \ \text{$\bar{\kappa}$}, f \ \text{$\bar{\alpha}$}[x_{i-1}, x_i], i = 1, 2, \cdots, n$ bk \text{\bar{m}}.$$

构造 [a,b] 上的连续函数 g 使得它的图像就是连接各点 $(x_{i-1},f(x_{i-1}))$ 的折线,即

$$g(x) = \frac{f\left(x_{i}\right) - f\left(x_{i-1}\right)}{x_{i} - x_{i-1}}\left(x - x_{i-1}\right) + f\left(x_{i-1}\right) = \frac{x - x_{i-1}}{x_{i} - x_{i-1}}f(x_{i}) + \frac{x_{i} - x}{x_{i} - x_{i-1}}f(x_{i-1}), \quad x \in [x_{i-1}, x_{i}],$$

不难发现 $\sup_{x \in [a,b]} |g| \leqslant \sup_{x \in [a,b]} |f|$, 则

$$\int_{a}^{b} |f(x) - g(x)| dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |f(x) - g(x)| dx$$

$$\leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |f(x) - f(x_{i-1})| dx + \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |g(x) - f(x_{i-1})| dx$$

$$\leq \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) + \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \left| \frac{f(x_{i}) - f(x_{i-1})}{x_{i} - x_{i-1}} (x - x_{i-1}) \right| dx$$

$$\leq \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) + \sum_{i=1}^{n} w_{i}(f) \int_{x_{i-1}}^{x_{i}} \frac{x - x_{i-1}}{x_{i} - x_{i-1}} dx$$

$$= \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) + \frac{1}{2} \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) \leq \frac{3}{2} \varepsilon,$$

这就完成了证明.

(2) 根据第1问可知,存在 $g \in C[a,b]$,使得

$$\int_{a}^{b} |f(x) - g(x)| \mathrm{d}x < \frac{\varepsilon}{2}.$$

由定理 5.22可知, 存在多项式 P(x) 使得

$$\max_{a \le x \le b} |g(x) - P(x)| < \frac{\varepsilon}{2(b-a)}.$$

由此可得

$$\int_{a}^{b} |f(x) - P(x)| \, \mathrm{d}x \le \int_{a}^{b} |f(x) - g(x)| \, \mathrm{d}x + \int_{a}^{b} |g(x) - P(x)| \, \mathrm{d}x$$
$$\le \frac{\varepsilon}{2} + \int_{a}^{b} \frac{\varepsilon}{2(b-a)} \, \mathrm{d}x = \varepsilon.$$

(3) 对任何 $\varepsilon \in (0,1)$, 由第 1 问可知, 存在 $g \in C[a,b]$ 使得

$$\int_{a}^{b} |f(x) - g(x)| \mathrm{d}x < \frac{\varepsilon}{4}.$$

取充分小的 $\delta > 0$, 使得

$$\int_{a}^{a+\delta} |f(x)| dx < \frac{\varepsilon}{4}, \int_{b-\delta}^{b} |f(x)| dx < \frac{\varepsilon}{4}, \int_{a+\delta}^{a+2\delta} |g(x)| dx < \frac{\varepsilon}{16}, \int_{b-2\delta}^{b-\delta} |g(x)| dx < \frac{\varepsilon}{16}.$$

再取 $h \in C^{\infty}(\mathbb{R})$ 使得

(a): $0 \le h(x) \le 1, \forall x \in \mathbb{R}$;

(b): $h(x) = 0, \forall x \in (-\infty, a + \delta) \cup (b - \delta, +\infty);$

(c): $h(x) = 1, \forall x \in [a + 2\delta, b - 2\delta].$

于是取 $g_1(x) = h(x)g(x) \in C_c(a,b)$,由第 1 问可知 $\sup_{x \in [a,b]} |g| \leqslant \sup_{x \in [a,b]} |f|$,从而 $\sup_{x \in [a,b]} |g_1| \leqslant \sup_{x \in [a,b]} |f|$.从而

$$\begin{split} &\int_{a}^{b}|f(x)-g_{1}(x)|\mathrm{d}x = \int_{a}^{b}|f(x)-g(x)h(x)|\mathrm{d}x \\ &\leqslant \int_{a}^{a+\delta}|f(x)|\mathrm{d}x + \int_{b-\delta}^{b}|f(x)|\mathrm{d}x + \int_{a+\delta}^{b-\delta}|f(x)-h(x)g(x)|\mathrm{d}x \\ &\leqslant \int_{a}^{a+\delta}|f(x)|\mathrm{d}x + \int_{b-\delta}^{b}|f(x)|\mathrm{d}x + \int_{a+\delta}^{a+2\delta}|f(x)-g(x)|\mathrm{d}x + \int_{a+\delta}^{b-\delta}|g(x)-h(x)g(x)|\mathrm{d}x \\ &\leqslant \int_{a}^{a+\delta}|f(x)|\mathrm{d}x + \int_{b-\delta}^{b}|f(x)|\mathrm{d}x + \int_{a}^{b}|f(x)-g(x)|\mathrm{d}x + \int_{a+\delta}^{b-\delta}|g(x)-h(x)g(x)|\mathrm{d}x \\ &\leqslant \frac{3\varepsilon}{4} + \int_{a+\delta}^{a+2\delta}|g(x)-h(x)g(x)|\mathrm{d}x + \int_{b-2\delta}^{b-\delta}|g(x)-h(x)g(x)|\mathrm{d}x \\ &\leqslant \frac{3\varepsilon}{4} + 2\int_{a+\delta}^{a+2\delta}|g(x)|\mathrm{d}x + 2\int_{b-2\delta}^{b-\delta}|g(x)|\mathrm{d}x \\ &\leqslant \varepsilon. \end{split}$$

这就完成了证明.

(4) 证明的想法和第3问类似. 由条件可知, 对任何 $\varepsilon > 0$, 存在X > 0, 使得

$$\int_{|x|\geqslant X} |f(x)|^p dx = \int_X^\infty |f(x)|^p dx + \int_{-\infty}^{-X} |f(x)|^p dx < \varepsilon.$$

因为 f 在 [-X,X] 黎曼可积, 所以由第 2 问, 存在 $g \in C_c(-X,X)$ 使得

$$\int_{-X}^{X} |f(x) - g(x)| dx < \frac{\varepsilon}{1 + \sup_{[-X,X]} |2f|^{p-1}}.$$

从前两问的构造可以看到

$$\sup_{[-X,X]}|g|\leqslant \sup_{[-X,X]}|f|,$$

于是

$$\int_{-\infty}^{\infty} |f(x) - g(x)|^p dx = \int_{|x| \geqslant X} |f(x)|^p dx + \int_{-X}^X |f(x) - g(x)|^p dx$$

$$\leqslant \varepsilon + \sup_{[-X,X]} |f - g|^{p-1} \int_{-X}^X |f(x) - g(x)| dx$$

$$\leqslant \varepsilon + \sup_{[-X,X]} (2|f|)^{p-1} \int_{-X}^X |f(x) - g(x)| dx$$

 $< \varepsilon + \varepsilon$,

这就完成了证明.

例题 **5.18** 设 f(x) 是 [0,1] 上的凹函数, 且 f(1) = 1. 求证:

(1)

$$\int_0^1 f^2(x) \, \mathrm{d}x \geqslant \frac{1}{4},\tag{5.57}$$

(2)

$$\int_0^1 f^2(x) \, \mathrm{d}x \geqslant \frac{2}{3} \int_0^1 f(x) \, \mathrm{d}x. \tag{5.58}$$

注 若取 f(x) = x, 则式 (5.58) 成为等式, 因而 (5.58) 式中的系数 $\frac{2}{3}$ 是最佳的.

注 (5.59)式实际上就是凹函数的割线放缩, 用凹函数的定义表示了而已.

拿 笔记 构造 f_{δ} 的想法就是将端点与其邻域内一点连接, 其余点的值不变, 使得 $f_{\delta} \in C[0,1]$. 但后续分部积分需要 f_{δ} 二阶连续可微, 于是再用 Berstein 多项式 $B(f_{\delta},n)$ 逼近 f_{δ} , 从而 $B(f_{\delta},n) \rightrightarrows f_{\delta}$, 并且 Berstein 多项式 $B(f_{\delta},n)$ 任 意阶连续可微, 端点值不变. 但是注意此时不一定有 $B^k(f_{\delta},n) \rightrightarrows f_{\delta}^k$, 因为 f_{δ} 不可导!

证明 (1) 由定理 5.11知, 凹函数在定义域内部是连续的, 且在两个端点的单边极限存在, 修改 f 在 0 的值为 $\lim_{x\to 0^+} f(x)$, 这不改变积分的值, 此时 f 在 0 处连续, 故可不妨设 $f \in C[0,1)$. 对于给定的 $\delta \in (0,1)$ 以及 $x \in (\delta,1)$, 有

$$x = \frac{1-x}{1-\delta}\delta + \left(1 - \frac{1-x}{1-\delta}\right) \cdot 1.$$

因为 f 是凹函数, 有

$$f(x) \geqslant \frac{1-x}{1-\delta}f(\delta) + \left(1 - \frac{1-x}{1-\delta}\right)f(1). \tag{5.59}$$

由上式和条件 f(1)=1, 得 $\lim_{x\to 1^-}f(x)\geqslant 1$. 若 f 在 1 处不连续, 则 $\lim_{x\to 1^-}f(x)>1$. 可取 δ 充分靠近 1, 使得在 $(\delta,1)$ 上 f(x)>1. 令

$$f_{\delta}(x) = \begin{cases} f(x), & 0 \leqslant x \leqslant \delta, \\ \frac{x - \delta}{1 - \delta} \cdot 1 + \frac{1 - x}{1 - \delta} f(\delta), & \delta < x \leqslant 1, \end{cases}$$

则 f_{δ} 是 [0,1] 上连续的凹函数且 $f_{\delta}(1) = 1$, $f_{\delta}(x) \leq f(x)$. 由此可知, 只需对连续的凹函数证明式 (5.57). 又由于连续函数的 Bernstein 多项式在两个端点插值、保持凸性且一致收敛到该连续函数, 只需对有二阶连续导数的凹函数来证明式 (5.57). 因此, 不妨设 $f \in C^2[0,1]$.

解法一:设 a,b 是两个待定常数,有

$$0 \le \int_0^1 (f(x) - ax - b)^2 dx = \int_0^1 f^2(x) dx - 2 \int_0^1 (ax + b) f(x) dx + \int_0^1 (ax + b)^2 dx$$
$$= \int_0^1 f^2(x) dx - 2 \int_0^1 (ax + b) f(x) dx + \frac{a}{2} + ab + b^2,$$
 (5.60)

$$\int_0^1 (ax+b)f(x) \, \mathrm{d}x = \left[\left(\frac{1}{2}ax^2 + bx \right) f(x) \right]_0^1 - \int_0^1 \left(\frac{1}{2}ax^2 + bx \right) f'(x) \, \mathrm{d}x = \frac{1}{2}a + b - \int_0^1 \left(\frac{1}{2}ax^2 + bx \right) f'(x) \, \mathrm{d}x$$

$$= \frac{1}{2}a + b - \left[\left(\frac{ax^3}{6} + \frac{bx^2}{2} \right) f'(x) \right]_0^1 + \int_0^1 \left(\frac{ax^3}{6} + \frac{bx^2}{2} \right) f''(x) \, \mathrm{d}x.$$

取 $a = \frac{3}{2}, b = -\frac{1}{2}$, 则有

$$\int_0^1 \left(\frac{3}{2}x - \frac{1}{2}\right) f(x) \, \mathrm{d}x = \frac{1}{4} + \frac{1}{4} \int_0^1 (x - 1)x^2 f''(x) \, \mathrm{d}x.$$

由于 f 是凹函数, 有 $f''(x) \leq 0$. 因而

$$\int_0^1 \left(\frac{3}{2}x - \frac{1}{2}\right) f(x) \, \mathrm{d}x \geqslant \frac{1}{4}.$$

将此代入式 (5.60), 可得式 (5.57).

解法二:设a,b是两个待定常数,由Cauchy不等式可得

$$\int_0^1 (ax+b)^2 dx \int_0^1 f^2(x) dx \ge \left(\int_0^1 (ax+b) f(x) dx\right)^2$$

$$\iff \left(\frac{a}{2} + ab + b^2\right) \int_0^1 f^2(x) dx \ge \left(\int_0^1 (ax+b) f(x) dx\right)^2. \tag{5.61}$$

利用分部积分可得

$$\int_0^1 (ax+b) f(x) dx = \frac{a}{2} + b - \int_0^1 \left(\frac{ax^2}{2} + bx\right) f'(x) dx$$
$$= \frac{a}{2} + b - \left(\frac{a}{6} + \frac{b}{2}\right) f'(1) + \frac{1}{6} \int_0^1 x^2 (ax+3b) f''(x) dx.$$

由
$$\begin{cases} \frac{a}{6} + \frac{b}{2} = 0 \\ \frac{a}{2} + b = \frac{1}{4} \end{cases}$$
 解得 $a = \frac{3}{2}, b = -\frac{1}{2}$. 于是取 $a = \frac{3}{2}, b = -\frac{1}{2}$, 代入上式得

$$\int_0^1 (ax+b) f(x) dx = \frac{1}{4} + \frac{1}{4} \int_0^1 x^2 (x-1) f''(x) dx.$$

由 $f \in [0,1]$ 上的凹函数可知, $f''(x) \leq 0$. 从而

$$\int_0^1 (ax+b) f(x) dx = \frac{1}{4} + \frac{1}{4} \int_0^1 x^2 (x-1) f''(x) dx \geqslant \frac{1}{4}.$$

再代入(5.61)即得

$$\frac{1}{4} \int_{0}^{1} f^{2}(x) dx \geqslant \left(\frac{1}{4}\right)^{2} \Longrightarrow \int_{0}^{1} f^{2}(x) dx \geqslant \frac{1}{4}.$$

(2) 设 $c \in (0,1)$ 是待定系数,则 $g(x) = \frac{f(x) - c}{1 - c}$ 仍是 [0,1] 上的凹函数且 g(1) = 1. 由式 (5.57) 有

$$\int_0^1 g^2(x) \, \mathrm{d}x \geqslant \frac{1}{4},$$

即

$$\int_0^1 f^2(x) \, \mathrm{d}x - 2c \int_0^1 f(x) \, \mathrm{d}x + c^2 \geqslant \frac{1}{4} (1 - c)^2.$$

取 $c = \frac{1}{3}$, 则 $c^2 = \frac{1}{4}(1-c)^2$. 于是

$$\int_0^1 f^2(x) \, \mathrm{d}x \geqslant \frac{2}{3} \int_0^1 f(x) \, \mathrm{d}x.$$

引理 5.3

二元函数 *K*(x,t) 定义为

$$K(x,t) = \begin{cases} t(1-x), & 0 \leqslant t \leqslant x \leqslant 1 \\ x(1-t), & 0 \leqslant x \leqslant t \leqslant 1 \end{cases}.$$

(1) 对 $\forall p \in \mathbb{Z}$, 都有

$$\int_0^1 K^p(x,t) dx = \frac{t^p (1-t)^p}{p+1}, \quad \int_0^1 K^p(x,t) dt = \frac{x^p (1-x)^p}{p+1}.$$

(2) $\[\mathcal{C}_{0}^{2}[0,1], \] \] \] \[f(0) = f(1) = 0, \] \]$

$$f(x) = \int_0^1 K(x, t)(-f''(t)) dt, \forall x \in [0, 1].$$

证明

$$\int_0^1 K^p(x,t) dx = \int_0^t x^p (1-t)^p dx + \int_t^1 t^p (1-x)^p dx$$

$$= \frac{t^{p+1} (1-t)^p}{p+1} + \frac{t^p (1-t)^{p+1}}{p+1}$$

$$= \frac{t^p (1-t)^p}{p+1}.$$

$$\int_0^1 K^p(x,t) dt = \int_0^x t^p (1-x)^p dt + \int_x^1 x^p (1-t)^p dt$$

$$= \frac{x^{p+1} (1-x)^p}{p+1} + \frac{x^p (1-x)^{p+1}}{p+1}$$

(2)

$$\int_{0}^{1} K(x,t) \left(-f''(t)\right) dt = \int_{0}^{x} K(x,t) \left(-f''(t)\right) dt + \int_{x}^{1} K(x,t) \left(-f''(t)\right) dt$$

$$= \int_{0}^{x} t (1-x) \left(-f''(t)\right) dt + \int_{x}^{1} x (1-t) \left(-f''(t)\right) dt$$

$$= -x (1-x) f'(x) + \int_{0}^{x} (1-x) f'(t) dt + x (1-x) f'(x) - \int_{x}^{1} x f'(t) dt$$

$$= \int_{0}^{x} f'(t) dt - \int_{0}^{x} x f'(t) dt - \int_{x}^{1} x f'(t) dt$$

$$= f(x) - x \int_{0}^{1} f'(t) dt$$

$$= f(x) - x \left[f(1) - f(0) \right]$$

$$= f(x).$$

 $=\frac{x^{p}(1-x)^{p}}{x+1}$.

定理 5.24 (Favard 不等式)

若 f 是区间 [0,1] 上的非负凹函数,则有对 $p \ge 1$,

$$\int_0^1 f^p(x) \, \mathrm{d}x \leqslant \frac{2^p}{p+1} \left(\int_0^1 f(x) \, \mathrm{d}x \right)^p.$$

注(1)可以用连续函数的积分来逼近可积函数的积分;

- (2) 对 [0,1] 上的凸或凹的连续函数 f, 可以用 Bernstein 多项式列 $B_n(f;x)$ 一致逼近 f, 且 $B_n(f;x)$ 与 f 有相同的凸性或凹性, 而且 $B_n(f;x)$ 在两个端点与 f 的值相同;
 - (3) 当 f 二阶连续可导且在两个端点 0 和 1 取零值时, f 可表示为

$$\int_0^1 K(x,t)(-f''(t)) dt.$$

证明 由定理 5.11知, 凹函数在内点是连续的, 且在两个端点的单边极限存在, 修改 f 在 0 的值为 $\lim_{\substack{x\to 0^+\\ x\to 1^-}} f(x)$ 这不改变积分的值, 此时 f 在 0, 1 处连续, 故可不妨设 $f\in C[0,1]$. 选充分小的 $\delta>0$, 并修改 f 在 $[0,\delta]$ 和 $[1-\delta,1]$ 上的值, 使得修改后的函数是在 [0,1] 的连续凹函数, 且在 0, 1 取零值:

$$f_{\delta}(x) = \begin{cases} \frac{f(\delta)}{\delta}x, & x \in [0, \delta), \\ f(x), & x \in [\delta, 1 - \delta), \\ \frac{f(1 - \delta)}{\delta}(1 - x), & x \in [1 - \delta, 1]. \end{cases}$$

易知

$$\int_0^1 f_{\delta}(x) \, \mathrm{d}x = \frac{\delta [f(\delta) + f(1 - \delta)]}{2} + \int_{\delta}^{1 - \delta} f(x) \, \mathrm{d}x.$$

因而

$$\lim_{\delta \to 0^+} \int_0^1 f_{\delta}(x) \, \mathrm{d} x = \int_0^1 f(x) \, \mathrm{d} x.$$

因此只需对 [0,1] 上满足 f(0)=f(1)=0 的连续凹函数证明. 又因为 f 的 Bernstein 多项式

$$B_n(f;x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}, \quad n = 1, 2, \dots$$

在 [0,1] 上一致收敛于 f, 且 $B_n(f;x)$ 仍是在两个端点取零值的凹函数. 因此只需对有二阶连续导数的函数证明. 此时有 $f''(x) \le 0$. 由 f(0) = 0, 得

$$f(x) = \int_0^x f'(t) dt = xf'(x) - \int_0^x tf''(t) dt.$$

再由 f(1) = 0, 可得

$$f'(1) = \int_0^1 t f''(t) \, \mathrm{d}t,$$

由定理 5.3(2) 可知

$$f(x) = x(f'(x) - f'(1)) + xf'(1) - \int_0^x tf''(t) dt$$

$$= -x \int_x^1 f''(t) dt + x \int_0^1 tf''(t) dt - \int_0^x tf''(t) dt$$

$$= -\int_0^1 K(x, t)f''(t) dt,$$

其中二元函数 K(x,t) 定义为

$$K(x,t) = \begin{cases} t(1-x), & 0 \leqslant t \leqslant x \leqslant 1\\ x(1-t), & 0 \leqslant x \leqslant t \leqslant 1. \end{cases}$$

由 f 是凹函数可知 $f'' \leq 0$. 于是由Minkowski 不等式可得

$$\left(\int_{0}^{1} f^{p}(x) dx\right)^{\frac{1}{p}} = \left(\int_{0}^{1} \left(\int_{0}^{1} K(x,t)(-f''(t)) dt\right)^{p} dx\right)^{\frac{1}{p}}$$

$$\leq \int_{0}^{1} \left(\int_{0}^{1} K^{p}(x,t)(-f''(t))^{p} dx\right)^{\frac{1}{p}} dt$$

$$\frac{\cancel{\mathbb{E}} 2 \cdot \cancel{\mathbb{E}} 5 \cdot \cancel{\mathbb{E}} (1)}{(p+1)^{\frac{1}{p}}} \int_{0}^{1} t(1-t)|f''(t)| dt$$

$$= -\frac{1}{(p+1)^{\frac{1}{p}}} \int_{0}^{1} t(1-t)f''(t) dt.$$

另一方面,有

$$\int_0^1 f(x) \, dx = -\int_0^1 \left(\int_0^1 K(x, t) f''(t) \, dt \right) \, dx$$

$$= -\int_0^1 \left(\int_0^1 K(x, t) f''(t) \, dx \right) \, dt$$

$$\frac{\text{gr 5.3(1)}}{\text{gr 5.3(1)}} - \frac{1}{2} \int_0^1 t (1 - t) f''(t) \, dt.$$

因此

$$\int_0^1 f^p(x) \, \mathrm{d}x \leqslant \frac{2^p}{p+1} \left(\int_0^1 f(x) \, \mathrm{d}x \right)^p.$$

引理 5.4

证明: 若 $A, B, C \in \mathbb{R}$, 则存在 $C_p > 0$, 使得

$$|A + B + C|^p \le C_p(|A|^p + |B|^p + |C|^p).$$

室 笔记 利用齐次化方法证明齐次不等式的应用.

证明 令

$$S \triangleq \{(A, B, C) \mid |A|^p + |B|^p + |C|^p = 1\},$$

则 $S \in \mathbb{R}^3$ 上的有界闭集, 从而 S 是紧集. 于是 $|A+B+C|^p$ 可以看作紧集 S 上关于 (A,B,C) 的连续函数, 故一定存在 $C_p > 0$, 使得

$$|A + B + C|^p \le C_p, \forall (A, B, C) \in S.$$
 (5.62)

对 $\forall (A, B, C) \in \mathbb{R}^3$, 固定 A, B, C, 不妨设 A, B, C 不全为零, 否则不等式显然成立. 令

$$L = \frac{1}{\sqrt[p]{|A|^p + |B|^p + |C|^p}}$$

考虑 (LA, LB, LC), 则此时

$$|LA|^p + |LB|^p + |LC|^p = 1.$$

因此 $(LA, LB, LC) \in S$. 从而由(5.62)式可知

$$|LA + LB + LC|^p \leqslant C_p$$
.

于是

$$|A + B + C|^p \leqslant \frac{C_p}{I_p} = C_p(|A|^p + |B|^p + |C|^p).$$

故结论得证.

定理 5.25 (积分的绝对连续性)

设 $p \ge 1$ 且反常积分 $\int_{-\infty}^{\infty} |f(x)|^p dx < \infty$, 证明

$$\lim_{h \to 0} \int_{-\infty}^{\infty} |f(x+h) - f(x)|^p dx = 0.$$
 (5.63)

室 笔记 本结果对勒贝格积分也是正确的,但我们证明只对黎曼积分进行.

证明 Step1: 当 $f \in C_c(\mathbb{R})$ 时,则存在 X > 0, 使得

$$f(x) = 0, \forall |x| \geqslant X.$$

从而当 $h \in (-1,1)$ 时,就有

$$f(x) = 0, \forall |x| \geqslant X + 1.$$

又因为 $f \in C[-X-1,X+1]$, 所以由 Cantor 定理可知 f 在 [-X-1,X+1] 上一致连续. 于是

$$\lim_{h \to 0} \int_{-\infty}^{+\infty} |f(x+h) - f(x)|^p dx = \lim_{h \to 0} \int_{|x| \leqslant X+1} |f(x+h) - f(x)|^p dx$$
$$= \int_{|x| \leqslant X+1} \lim_{h \to 0} |f(x+h) - f(x)|^p dx = 0.$$

Step2: 对一般的 f, 满足 $\int_{-\infty}^{\infty} |f(x)|^p dx < \infty$. 对 $\forall \varepsilon > 0$, 由定理 5.23(3)可知, 存在 $g \in C_c(\mathbb{R})$, 使得

$$\int_{-\infty}^{+\infty} |f(x) - g(x)|^p \mathrm{d}x < \varepsilon.$$

从而

$$\int_{-\infty}^{+\infty} |f(x+h) - f(x)|^p dx \le \int_{-\infty}^{+\infty} |f(x+h) - g(x+h) + g(x+h) - g(x) + g(x) - f(x)|^p dx$$

利用齐次化方法得到引理 5.4, 从而可知若 $A, B, C \in \mathbb{R}$, 则存在 $C_p > 0$, 使得

$$|A + B + C|^p \le C_p(|A|^p + |B|^p + |C|^p).$$

故

$$\int_{-\infty}^{+\infty} |f(x+h) - f(x)|^p dx \leq C_p \left(\int_{-\infty}^{+\infty} |f(x+h) - g(x+h)|^p dx + \int_{-\infty}^{+\infty} |g(x+h) - g(x)|^p dx + \int_{-\infty}^{+\infty} |f(x) - g(x)|^p dx \right)$$

$$= \frac{\frac{4\pi}{\sqrt{2}}}{y = x + h} 2C_p \int_{-\infty}^{+\infty} |f(x) - g(x)|^p dx + C_p \int_{-\infty}^{+\infty} |g(x+h) - g(x)|^p dx$$

$$\leq 2\varepsilon C_p + C_p \int_{-\infty}^{+\infty} |g(x+h) - g(x)|^p dx. \tag{5.64}$$

由 $g \in C_c(\mathbb{R})$, 结合 **Step1** 可知

$$\lim_{h \to 0} \int_{-\infty}^{+\infty} |g(x+h) - g(x)|^p dx = 0.$$
 (5.65)

于是由(5.64)(5.65) 式可得

$$\overline{\lim_{h\to 0}} \int_{-\infty}^{+\infty} |f(x+h) - f(x)|^p dx \leqslant 2\varepsilon C_p.$$

再由ε的任意性得证.

5.7.3 齐次微分不等式问题

命题 5.30

设 $f \in D^s(0, +\infty) \cap C[0, +\infty), s \in \mathbb{N}$ 且满足

$$f^{(j)}(0) = 0, j = 0, 1, 2, \dots, s - 1.$$

若还存在 $\lambda_1, \lambda_2, \dots, \lambda_s \geqslant 0, \sum_{i=1}^s \lambda_i = 1, C > 0, 满足$

$$|f^{(s)}(x)| \le C |f(x)|^{\lambda_1} |f'(x)|^{\lambda_2} \cdots |f^{(s-1)}(x)|^{\lambda_s}, \forall x \ge 0.$$
 (5.66)

证明 $f(x) = 0, \forall x \ge 0.$

证明 令 $g(x) = e^{-Mx} \left[f^2 + (f')^2 + (f'')^2 + \dots + (f^{(s-1)})^2 \right], M > 0$, 显然 $g(x) \ge 0$, $\forall x \ge 0$. 则利用均值不等式和条件 (5.66) 式可得, 对 $\forall x \ge 0$, 都有

$$g'(x) = e^{-Mx} \left[2ff' + 2f'f'' + 2f''f''' + \cdots + 2f^{(s-1)}f^{(s)} - Mf^2 - M(f')^2 - \cdots - M(f^{(s-1)})^2 \right]$$

$$\stackrel{\text{biff}}{\leqslant} e^{-Mx} \left[f^2 + (f')^2 + (f')^2 + (f'')^2 + \cdots + (f^{(s-1)})^2 + \left| f^{(s)} \right|^2 - Mf^2 - M(f')^2 - \cdots - M(f^{(s-1)})^2 \right]$$

$$\stackrel{(5.66)}{\leqslant} e^{-Mx} \left[(1 - M) f^2 + (2 - M) (f')^2 + \cdots + (2 - M) (f^{(s-1)})^2 + C^2 |f(x)|^{2\lambda_1} |f'(x)|^{2\lambda_2} \cdots \left| f^{(s-1)}(x) \right|^{2\lambda_s} \right].$$

$$(5.67)$$

我们先证明 $x_1^{2\lambda_1}x_2^{2\lambda_2}\cdots x_n^{2\lambda_n}\leqslant K\left(x_1^2+x_2^2+\cdots+x_n^2\right), \forall x_1,x_2,\cdots,x_n\geqslant 0.$ 令 $S\triangleq\left\{(x_1,x_2,\cdots,x_n)|x_1^2+x_2^2+\cdots+x_n^2=1\right\},$ 则 $S\in\mathbb{R}^n$ 上的有界闭集,从而 S 是紧集.于是 $x_1^{2\lambda_1}x_2^{2\lambda_2}\cdots x_n^{2\lambda_n}$

为紧集 S 上的连续函数, 故一定存在 K > 0, 使得

$$x_1^{2\lambda_1} x_2^{2\lambda_2} \cdots x_n^{2\lambda_n} \leqslant K, \forall (x_1, x_2, \cdots, x_n) \in S.$$

$$(5.68)$$

 $\forall x_1, x_2, \cdots, x_n \geq 0, \ \exists \exists x_1, x_2, \cdots, x_n. \ \mathsf{不妨} \ \exists x_1, x_2, \cdots, x_n. \ \mathsf{不<table-cell> <table-cell> d} \ \mathsf{x}_1, x_2, \cdots, \mathsf{x}_n. \ \mathsf{不} \ \mathsf{x}_n \ \mathsf$

 $\sqrt[3]{-1}$ 0, 考虑 $(Lx_1, Lx_2, \cdots, Lx_n)$, 则此时 $(Lx_1)^2 + (Lx_2)^2 + \cdots + (Lx_n)^2 = 1$, 因此 $(Lx_1, Lx_2, \cdots, Lx_n) \in S$. 从而由(5.68)式可知

$$(Lx_1)^{2\lambda_1}(Lx_2)^{2\lambda_2}\cdots(Lx_n)^{2\lambda_n}\leqslant K.$$

于是

$$x_1^{2\lambda_1} x_2^{2\lambda_2} \cdots x_n^{2\lambda_n} \leqslant \frac{K}{L^{2\lambda_1 + 2\lambda_2 + \cdots + 2\lambda_n}} = \frac{K}{L^2} = K \left(x_1^2 + x_2^2 + \cdots + x_n^2 \right).$$

故由 x_1, x_2, \cdots, x_n 的任意性可得

$$x_1^{2\lambda_1} x_2^{2\lambda_2} \cdots x_n^{2\lambda_n} \leqslant K\left(x_1^2 + x_2^2 + \dots + x_n^2\right), \forall x_1, x_2, \dots, x_n \geqslant 0.$$
 (5.69)

因此由(5.67) (5.69) 式可得, 对 $\forall x \ge 0$, 都有

$$\begin{split} g'\left(x\right) &\leqslant e^{-Mx} \left[\left(1-M\right) f^2 + \left(2-M\right) \left(f'\right)^2 + \dots + \left(2-M\right) \left(f^{(s-1)}\right)^2 + C^2 \left|f(x)\right|^{2\lambda_1} \left|f'(x)\right|^{2\lambda_2} \dots \left|f^{(s-1)}(x)\right|^{2\lambda_s} \right] \\ &\leqslant e^{-Mx} \left[\left(1-M\right) f^2 + \left(2-M\right) \left(f'\right)^2 + \dots + \left(2-M\right) \left(f^{(s-1)}\right)^2 + KC^2 \left(f^2 + \left(f'\right)^2 + \left(f'\right)^2 + \left(f''\right)^2 + \dots + \left(f^{(s-1)}\right)^2\right) \right] \\ &= e^{-Mx} \left[\left(KC^2 + 1 - M\right) f^2 + \left(KC^2 + 2 - M\right) \left(f'\right)^2 + \dots + \left(KC^2 + 2 - M\right) \left(f^{(s-1)}\right)^2 \right]. \end{split}$$

于是任取 $M > KC^2 + 2$, 利用上式就有 $g'(x) \le 0$, $\forall x \ge 0$. 故 g(x) 在 $[0, +\infty)$ 上单调递减, 因此 $g(x) \le g(0) = 0$. 又 因为 $g(x) \ge 0$, $\forall x \ge 0$, 所以 g(x) = 0, $\forall x \ge 0$. 故 $f(x) = f'(x) = \cdots = f^{(s-1)}(x) = 0$, $\forall x \ge 0$.

命题 5.31

设 $f \in D^s(0, +\infty) \cap C[0, +\infty), s \in \mathbb{N}$ 且满足

$$f^{(j)}(0) = 0, j = 0, 1, 2, \dots, s - 1.$$

若还存在 $\lambda_1, \lambda_2, \cdots, \lambda_s \ge 0$, 满足

$$\left| f^{(s)}(x) \right| \leqslant \lambda_1 \left| f(x) \right| + \lambda_2 \left| f'(x) \right| + \dots + \lambda_s \left| f^{(s-1)}(x) \right|, \forall x \geqslant 0.$$
 (5.70)

证明 $f(x) = 0, \forall x \ge 0.$

证明 令 $g(x) = e^{-Mx} \left[f^2 + (f')^2 + (f'')^2 + \dots + (f^{(s-1)})^2 \right], M > 0$, 显然 $g(x) \ge 0, \forall x \ge 0$. 则利用均值不等式和条件(5.70) 式可得, 对 $\forall x \ge 0$, 都有

$$g'(x) = e^{-Mx} \left[2ff' + 2f'f'' + 2f''f''' + \cdots + 2f^{(s-1)}f^{(s)} - Mf^2 - M(f')^2 - \cdots - M(f^{(s-1)})^2 \right]$$

$$\stackrel{\text{biff}}{\leqslant} e^{-Mx} \left[f^2 + (f')^2 + (f')^2 + (f'')^2 + \cdots + (f^{(s-1)})^2 + \left| f^{(s)} \right|^2 - Mf^2 - M(f')^2 - \cdots - M(f^{(s-1)})^2 \right]$$

$$\stackrel{(5.70)}{\leqslant} e^{-Mx} \left[(1 - M)f^2 + (2 - M)(f')^2 + \cdots + (2 - M)(f^{(s-1)})^2 + \left(\lambda_1 |f| + \lambda_2 |f'| + \cdots + \lambda_s \left| f^{(s-1)} \right| \right)^2 \right].$$

$$(5.71)$$

我们先证明 $(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_s x_s)^2 \leq K(x_1^2 + x_2^2 + \dots + x_n^2), \forall x_1, x_2, \dots, x_n \geq 0.$

令 $S \triangleq \{(x_1, x_2, \cdots, x_n) | x_1^2 + x_2^2 + \cdots + x_n^2 = 1\}$, 则 $S \in \mathbb{R}^n$ 上的有界闭集, 从而 $S \in \mathbb{R}$ 是紧集. 于是 $(\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_s x_s)^2$ 为紧集 S 上的连续函数, 故一定存在 K > 0, 使得

$$x_1^2 + x_2^2 + \dots + x_n^2 \leqslant K, \forall (x_1, x_2, \dots, x_n) \in S.$$
 (5.72)

 $\forall x_1, x_2, \cdots, x_n \geqslant 0, 固定 x_1, x_2, \cdots, x_n. 不妨设 x_1, x_2, \cdots, x_n 不全为零, 否则结论显然成立. 取 L = \frac{1}{\sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}} > 0, 考虑 (Lx_1, Lx_2, \cdots, Lx_n), 则此时 (Lx_1)^2 + (Lx_2)^2 + \cdots + (Lx_n)^2 = 1, 因此 (Lx_1, Lx_2, \cdots, Lx_n) \in S. 从而由 (5.72) 式$

可知

$$(\lambda_1 L x_1 + \lambda_2 L x_2 + \dots + \lambda_s L x_s)^2 \leqslant K.$$

于是

$$(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_s x_s)^2 \leqslant \frac{K}{L^2} = K \left(x_1^2 + x_2^2 + \dots + x_n^2 \right).$$

故由 x_1, x_2, \cdots, x_n 的任意性可得

$$(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_s x_s)^2 \leqslant K(x_1^2 + x_2^2 + \dots + x_n^2), \forall x_1, x_2, \dots, x_n \geqslant 0.$$
 (5.73)

因此由 (5.71) (5.73)式可得, 对 $\forall x \geq 0$, 都有

$$g'(x) \leq e^{-Mx} \left[(1-M) f^2 + (2-M) (f')^2 + \dots + (2-M) (f^{(s-1)})^2 + (\lambda_1 |f| + \lambda_2 |f'| + \dots + \lambda_s |f^{(s-1)}|)^2 \right]$$

$$\leq e^{-Mx} \left[(1-M) f^2 + (2-M) (f')^2 + \dots + (2-M) (f^{(s-1)})^2 + K (f^2 + (f')^2 + \dots + (f^{(s-1)})^2) \right]$$

$$= e^{-Mx} \left[(K+1-M) f^2 + (K+2-M) (f')^2 + \dots + (K+2-M) (f^{(s-1)})^2 \right].$$

于是任取 M > K + 2, 利用上式就有 $g'(x) \le 0$, $\forall x \ge 0$. 故 g(x) 在 $[0, +\infty)$ 上单调递减, 因此 $g(x) \le g(0) = 0$. 又因 为 $g(x) \ge 0, \forall x \ge 0$, 所以 $g(x) = 0, \forall x \ge 0$. 故 $f(x) = f'(x) = \cdots = f^{(s-1)}(x) = 0, \forall x \ge 0$.

5.8 函数性态分析综合

例题 5.19 设 $f:(a,b) \to (a,b)$ 满足对任意的 $x,y \in (a,b)$, 当 $x \neq y$ 时, 有 |f(x) - f(y)| < |x - y|. 任取 $x_1 \in (a,b)$, $\diamond x_{n+1} = f(x_n), n = 1, 2, \dots,$ 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 收敛.

(1) 存在子列 $\{x_{n_k}\}$ 满足 $\lim_{k\to\infty} x_{n_k} = \xi - A$, $\lim_{k\to\infty} x_{n_k+1} = \xi + A$ 的原因: 记 $X = \xi - A$, $Y = \xi + A$, 假设存在 $k_0 \in \mathbb{N}$, 对 $\forall n > k_0$, 有

$$x_n \notin (X - \frac{1}{k_0}, X + \frac{1}{k_0}) \overrightarrow{\boxtimes} x_{n+1} \notin (Y - \frac{1}{k_0}, Y + \frac{1}{k_0}).$$
 (5.74)

因为 $\{x_n\}$ 有且仅有两个聚点X和Y,所以对上述 ε , $\{x_n\}$ 中都有无穷多项落在 $(X-\frac{1}{k_0},X+\frac{1}{k_0})\cup (Y-\frac{1}{k_0},Y+\frac{1}{k_0})$ 内. 从而存在 $N \in \mathbb{N}$, 使得 $\forall n > N$, 有

$$x_n \in (X - \frac{1}{k_0}, X + \frac{1}{k_0}) \cup (Y - \frac{1}{k_0}, Y + \frac{1}{k_0}).$$
 (5.75)

于是由(5.74)(5.75)式可得, 当 $n > \max\{N, k_0\}$ 时, 我们有

$$x_n \in (X - \frac{1}{k_0}, X + \frac{1}{k_0}) \overrightarrow{\boxtimes} x_{n+1} \in (Y - \frac{1}{k_0}, Y + \frac{1}{k_0}).$$

因此若 $x_n \in (Y - \frac{1}{k_0}, Y + \frac{1}{k_0}), \forall n > \max\{N, k_0\}, 则\{x_n\}$ 最多只有有限项落在 $(X - \frac{1}{k_0}, X + \frac{1}{k_0})$ 内, 这与 X 是 $\{x_n\}$ 的一个聚点矛盾. 若 $x_{n+1}\in (X-\frac{1}{k_0},X+\frac{1}{k_0}), \forall n>\max\{N,k_0\},$ 则 $\{x_n\}$ 最多只有有限项落在 $(Y-\frac{1}{k_0},Y+\frac{1}{k_0})$ 内, 这与 Y 是 $\{x_n\}$ 的一个聚点矛盾. 故假设不成立, 从而对 $\forall k\in\mathbb{N},$ 都存在 $n_k>k$, 使得

$$x_{n_k} \in (X - \frac{1}{k}, X + \frac{1}{k}) \coprod x_{n_k + 1} \in (Y - \frac{1}{k}, Y + \frac{1}{k}).$$

于是根据 k 的任意性可知 $\lim_{k\to\infty}x_{n_k}=X=\xi-A, \lim_{k\to\infty}x_{n_k+1}=Y=\xi+A.$ (2) $\xi-A,\xi+A\in(a,b)$ 的原因: 一定存在 $k_1,k_2\in\mathbb{N},$ 使得

$$x_{n_{k_1}} < \xi, x_{n_{k_2}} > \xi. \tag{5.76}$$

否则, 对 $\forall k_1, k_2 \in \mathbb{N}$, 都有

$$x_{n_{k_1}} \geqslant \xi, \quad x_{n_{k_2}} \leqslant \xi.$$

 $\diamond k_1, k_2 \to \infty$, 再结合 $\lim_{k \to \infty} x_{n_k} = \xi - A$, $\lim_{k \to \infty} x_{n_k+1} = \xi + A$ 得到

$$\xi - A = \lim_{k_1 \to \infty} x_{n_{k_1}} \geqslant \xi > \xi - A, \quad \xi + A = \lim_{k_2 \to \infty} x_{n_{k_2}} \leqslant \xi < \xi + A.$$

显然矛盾! 又因为 $\{|x_n - \xi|\}$ 单调递减趋于 A, 所以

$$|x_n - A| \geqslant A, \forall n \in \mathbb{N}.$$

从而由 $x_n \in (a,b)$ 及(5.76)式可得

$$A \leq |x_{n_{k_1}} - \xi| = \xi - x_{n_{k_1}} < \xi - a \Rightarrow \xi - A > a,$$

$$A \leq |x_{n_{k_2}} - \xi| = x_{n_{k_2}} - \xi < b - \xi \Rightarrow \xi + A < b.$$

因此 $\xi - A, \xi + A \in (a, b)$.

证明 注意到 $x_1 \in (a,b)$, 假设 $x_k \in (a,b)$, 则 $x_{k+1} = f(x_k) \in (a,b)$, 故由数学归纳法可知 $x_n \in (a,b)$, $\forall n \in \mathbb{N}$. 又由条件可知, 对 $\forall \varepsilon > 0$, 令 $\delta = \varepsilon > 0$, 当 $x, y \in (a,b)$ 且 $0 < |x-y| < \delta$ 时, 有

$$|f(x) - f(y)| < |x - y| < \delta = \varepsilon.$$

故 f 在 (a,b) 上一致连续. 从而 $f \in C(a,b)$, 令 F(x) = f(x) - x, 则 $F \in C(a,b)$. 下面我们对 F 进行分类讨论.

(1) 若 F 在 (a,b) 上不变号,则由 $F \in C(a,b)$ 可知,F 要么恒大于零,要么恒小于零. 不妨设 F 在 (a,b) 上恒大于零,即 f(x) > x, $\forall x \in (a,b)$. 从而

$$x_{n+1} = f(x_n) > x_n, \forall n \in \mathbb{N}.$$

即 $\{x_n\}$ 单调递增. 又因为 $x_n \in (a,b), \forall n \in \mathbb{N},$ 所以由单调有界定理可知 $\{x_n\}$ 收敛.

(2) 若 F 在 (a,b) 上变号,则由 $F \in C(a,b)$ 及介值定理可得,存在 $\xi \in (a,b)$,使得 $f(\xi) = \xi$. 若存在 $\xi' \in (a,b)$ 且 $\xi' \neq \xi$,使得 $f(\xi') = \xi'$,则由条件可得到

$$|\xi - \xi'| = |f(\xi) - f(\xi')| < |\xi - \xi'|.$$

显然矛盾! 因此存在唯一的 $\xi \in (a,b)$, 使得 $f(\xi) = \xi$. 从而

$$|x_{n+1} - \xi| = |f(x_n) - f(\xi)| < |x_n - \xi|, \forall n \in \mathbb{N}.$$

于是 $\{|x_n - \xi|\}$ 单调递减且有下界 0, 故由单调有界定理可知 $\lim |x_n - \xi| = A \ge 0$ 存在.

- (ii) 当 A > 0 时, 若 $\{x_n\}$ 收敛, 则结论已经成立. 若 $\{x_n\}$ 发散, 则由 $x_n \in (a,b)$, $\forall n \in \mathbb{N}$ 及聚点定理可知, $\{x_n\}$ 至少有一个聚点. 若 $\{x_n\}$ 只有一个聚点, 则 $\{x_n\}$ 收敛与假设矛盾! 因此 $\{x_n\}$ 至少有两个聚点. 任取收敛子列 $\{x_{n_k}\} \subset \{x_n\}$, 设 $\lim_{n \to \infty} x_{n_k} = B$, 则

$$A = \lim_{n \to \infty} |x_n - \xi| = |B - \xi|.$$

从而 $B = \xi - A$ 或 $\xi + A$. 因此 $\{x_n\}$ 最多有两个聚点 $\xi - A$ 和 $\xi + A$. 又因为 $\{x_n\}$ 至少有两个聚点, 所以 $\{x_n\}$ 有且仅有两个聚点 $\xi - A$ 和 $\xi + A$. 进而一定存在收敛子列 $\{x_{n_k}\}$ $\subset \{x_n\}$, 使得

$$\lim_{k\to\infty}x_{n_k}=\xi-A, \lim_{k\to\infty}x_{n_k+1}=\xi+A\#\, \exists \xi-A, \xi+A\in (a,b).$$

从而由条件可知

$$x_{n_k+1} = f(x_{n_k}).$$

令 $k \to \infty$, 由 $f \in C(a,b)$ 及归结原则可得

$$\xi + A = f(\xi - A)$$
.

再结合 $\xi = f(\xi), \xi - A, \xi + A \in (a, b)$ 及条件可得

$$A = |\xi - (\xi + A)| = |f(\xi) - f(\xi - A)| < |\xi - (\xi - A)| = A.$$

显然矛盾! 故 A > 0 不成立, 于是 A = 0. 再由 (1) 可得 $\lim_{n \to \infty} x_n = \xi$, 即 $\{x_n\}$ 收敛, 与假设 $\{x_n\}$ 发散矛盾!

命题 5.32

设 f' 在 $[0,+\infty)$ 一致连续且 $\lim_{x\to+\infty} f(x)$ 存在,证明 $\lim_{x\to+\infty} f'(x) = 0$.

拿 笔记 本题也有积分版本: 设 f 在 $[0,+\infty)$ 一致连续且 $\int_0^\infty f(x) \, \mathrm{d}x$ 收敛, 则 $\lim_{x \to +\infty} f(x) = 0$.(令 $F = \int_0^x f(x) \, \mathrm{d}x$ 就可以将这个积分版本转化为上述命题)

证明 反证, 若 $\lim_{x\to+\infty} f'(x) \neq 0$, 则可以不妨设存在 $\delta > 0, \{x_n\}_{n=1}^{\infty}$, 使得

$$x_n \to +\infty \, \mathbb{E} f'(x_n) \geqslant \delta, \forall n \in \mathbb{N}.$$

由 f' 在 $[0,+\infty)$ 上一致连续可知, 存在 $\eta > 0$, 使得对 $\forall n \in \mathbb{N}$, 都有

$$f'(x) \ge f'(x_n) - \frac{\delta}{2} \ge \frac{\delta}{2}, \forall x \in [x_n - \eta, x_n + \eta].$$

从而对 $\forall n \in \mathbb{N}$, 都有

$$f(x_n + \eta) - f(x_n) = \int_{x_n}^{x_n + \eta} f'(x) dx \geqslant \int_{x_n}^{x_n + \eta} \frac{\delta}{2} dx = \frac{\delta \eta}{2} > 0, \forall x \in [x_n - \eta, x_n + \eta].$$

 $\Diamond n \to \infty$, 由 $\lim_{x \to +\infty} f(x)$ 存在可得 $0 \ge \frac{\delta \eta}{2} > 0$, 矛盾! 故 $\lim_{x \to +\infty} f'(x) = 0$. 例题 5.20 时滞方程 设 f 在 \mathbb{R} 上可微且满足

$$\lim_{x \to +\infty} f'(x) = 1, \quad f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}.$$

证明存在常数 $C \in \mathbb{R}$ 使得 $f(x) = x + C, \forall x \in \mathbb{R}$.

证明 由 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 及 $f \in D(\mathbb{R})$ 可知 $f' \in C(\mathbb{R})$. 对 $\forall x_1 \in \mathbb{R}$, 固定 x_1 , 记

$$A = \{z > x_1 \mid f'(z) = f'(x_1)\}.$$

由 Lagrange 中值定理及 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 可知

$$\exists x_2 \in (x_1, x_1 + 1) \text{ s.t. } f'(x_1) = f(x_1 + 1) - f(x_1) = f'(x_2).$$

故 $x_2 \in A$, 从而 A 非空. 现在考虑 $y \triangleq \sup A \in (x_1, +\infty)$, 下证 $y = +\infty$. 若 $y < +\infty$, 则存在 $\{z_n'\}_{n=1}^{\infty}$, 使得

$$z'_n \rightarrow y \coprod f'(z'_n) = f'(x_1).$$

两边同时令 $n \to \infty$, 由 $f' \in C(\mathbb{R})$ 可得

$$f'(x_1) = \lim_{n \to \infty} f'(z'_n) = f'(y).$$

又由 Lagrange 中值定理及 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 可得

$$\exists y' \in (y, y+1) \text{ s.t. } f'(y) = f(y+1) - f(y) = f'(y').$$

从而 $y' \in A$ 且 y' > y, 这与 $y = \sup A$ 矛盾! 故 $y = +\infty$. 于是存在 $\{z_n\}_{n=1}^{\infty}$, 使得

$$z_n \to +\infty \coprod f'(z_n) = f'(x_1).$$

两边同时令 $n \to \infty$, 由 $f' \in C(\mathbb{R})$ 及 $\lim_{x \to +\infty} f'(x) = 1$ 可得

$$f'(x_1) = \lim_{n \to \infty} f'(z_n) = \lim_{x \to +\infty} f'(x) = 1.$$

因此由 x_1 的任意性得,存在C为常数,使得 $f(x) = x + C, \forall x \in \mathbb{R}$.

例题 5.21 设 $f \in C^2(\mathbb{R})$ 满足 $f(1) \leq 0$ 以及

$$\lim_{x \to \infty} [f(x) - |x|] = 0. \tag{12.27}$$

证明: (1): 存在 $\xi \in (1, +\infty)$, 使得 $f'(\xi) > 1$.

(2): 存在 $\eta \in \mathbb{R}$, 使得 $f''(\eta) = 0$.

证明 (1) 如果对任何 $x \in (1, +\infty)$, 都有 $f'(x) \le 1$, 那么 $[f(x) - x]' \le 0$ 知 f(x) - x 在 $[1, +\infty)$ 单调递减. 从而

$$-1 \ge f(1) - 1 \ge \lim_{x \to +\infty} [f(x) - x] = \lim_{x \to \infty} [f(x) - |x|] = 0,$$

这就是一个矛盾! 于是我们证明了 (1).

(2) 若对任何 $x \in \mathbb{R}$, 我们有 $f''(x) \neq 0$. 从而 f''(x) 要么恒大于零, 要么恒小于零, 否则由零点存在定理可得矛盾! 任取 $\mathcal{E} \in \mathbb{R}$.

当 $f''(x) > 0, \forall x \in \mathbb{R}$, 我们知道 f 在 \mathbb{R} 上是下凸函数. 由 (1) 和下凸函数切线总是在函数下方, 我们知道

$$f(x) \geqslant f(\xi) + f'(\xi)(x - \xi), \forall x > \xi.$$

于是

$$0 = \lim_{x \to +\infty} [f(x) - x] \geqslant \lim_{x \to +\infty} [f(\xi) - f'(\xi)\xi + (f'(\xi) - 1)x] = +\infty,$$

这就是一个矛盾!

当 $f''(x) < 0, \forall x \in \mathbb{R}$, 我们知道 f 在 \mathbb{R} 上是上凸函数. 由 (1) 和上凸函数切线总是在函数上方, 我们有

$$f(x) \leqslant f(\xi) + f'(\xi)(x - \xi), \forall x < \xi.$$

于是

$$0 = \lim_{x \to -\infty} [f(x) + x] \le \lim_{x \to -\infty} [f(\xi) - f'(\xi)\xi + (f'(\xi) + 1)x] = -\infty,$$

这就是一个矛盾! 因此我们证明了 (2).

例题 5.22 设 f 在 [a,b] 上每一个点极限都存在,证明:f 在 [a,b] 有界.

笔记 极限存在必然局部有界,本题就是说局部有界可以推出在紧集上有界.在大量问题中会有一个公共现象:即局部的性质等价于在所有紧集上的性质.证明的想法就是有限覆盖.

证明 对 $\forall c \in [a,b]$, 由 $\lim_{x \to c} f(x)$ 存在可知, 存在 c 的邻域 U_c 和 M > 0, 使得

$$\sup_{x \in U_c \cap [a,b]} |f(x)| \leqslant M_c.$$

注意 $[a,b] \subset \bigcup_{c \in [a,b]} U_c$, 由有限覆盖定理得, 存在 $c_1, c_2, \cdots, c_n \in [a,b]$, 使得

$$[a,b]\subset\bigcup_{k=1}^n U_{c_k}.$$

故 $\sup_{x \in [a,b]} |f(x)| \leq \max_{1 \leq k \leq n} M_k$.

例题 5.23 设 f 是 $(a, +\infty)$ 有界连续函数,证明对任何实数 T,存在数列 $\lim_{n\to\infty} x_n = +\infty$ 使得

$$\lim_{n\to\infty} [f(x_n+T) - f(x_n)] = 0.$$

注 因为 $|f(x+T) - f(x)| \ge 0$, 所以

$$0 \leqslant \lim_{x \to +\infty} |f(x+T) - f(x)| \leqslant \overline{\lim}_{x \to +\infty} |f(x+T) - f(x)|.$$

原结论的反面只用考虑 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} |f(x+T) - f(x)|$ 即可. 若 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} |f(x+T) - f(x)| = 0$,则一定存在子列 $x_n \to +\infty$,使得结论成立. 因此原结论等价于 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} |f(x+T) - f(x)| = 0$.故原结论的反面就是 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} |f(x+T) - f(x)| > 0$.

🔮 笔记 考虑反证法之后, 再进行定性分析 (画 f(x) 的大致走势图), 就容易找到矛盾.

证明 当 T=0 时, 显然存在这样的数列. 不妨设 T>0, 假设 $\lim_{x\to +\infty}|f(x+T)-f(x)|>0$, 则存在 $\varepsilon_0>0$, X>0, 使得

$$|f(x+T) - f(x)| \ge \varepsilon_0 > 0, \quad \forall x \ge X$$
 (5.77)

令 $g(x) \triangleq f(x+T) - f(x)$,则若存在 $x_1, x_2 \ge X$,使得

$$g(x_1) = f(x_1 + T) - f(x_1) \ge \varepsilon_0 > 0, \quad g(x_2) = f(x_2 + T) - f(x_2) \le -\varepsilon_0 < 0.$$

不妨设 $x_1 < x_2$, 由 g 连续及介值定理可知, 存在 $x_3 \in (x_1, x_2)$, 使得

$$g(x_3) = f(x_3 + T) - f(x_3) = 0$$

与(5.77) 式矛盾! 故 g(x) riangleq f(x+T) - f(x) 在 $[X, +\infty)$ 上要么恒大于 ε_0 , 要么恒小于 ε_0 . 于是不妨设

$$f(x+T) - f(x) \ge \varepsilon_0, \quad \forall x \ge X.$$
 (5.78)

从而对 $\forall k \in \mathbb{N}$, 存在 $X_k \geqslant X$, 使得当 $x \geqslant X_1$ 时, 有 x + (k-1)T > X. 于是由(5.78)式可得

$$f(x+kT) - f(x+(k-1)T) \ge \varepsilon_0, \quad \forall x \ge X_k. \tag{5.79}$$

因此对 $\forall n \in \mathbb{N}$, 取 $K_n = \max\{X_1, X_2, \cdots, X_k\}$, 则由(5.79)式可知

$$f(x+kT) - f(x+(k-1)T) \geqslant \varepsilon_0, \forall x \geqslant K_n, \forall k \in \{1, 2, \dots, n\}.$$

进而对上式求和可得,对 $\forall n \in \mathbb{N}$,都有

$$\sum_{k=1}^{n} [f(x+kT) - f(x+(k-1)T)] = f(x+nT) - f(x) \geqslant n\varepsilon_0, \quad \forall x \geqslant K_n$$

任取 $x_0 \ge K_n$,则 $f(x_0 + nT) - f(x_0) \ge n\varepsilon_0$, $\forall n \in \mathbb{N}$. 令 $n \to \infty$,得 $\lim_{x \to +\infty} f(x) = +\infty$. 这与 f 在 $(a, +\infty)$ 上有界矛盾!

命题 5.33

1. 设 $f_n \in C[a,b]$ 且关于 [a,b] 一致的有

$$\lim_{n\to\infty} f_n(x) = f(x).$$

证明: 对 $\{x_n\} \subset [a,b]$, $\lim_{n \to \infty} x_n = c$, 有

$$\lim_{n\to\infty} f_n(x_n) = f(c).$$

2. 设 $f_n(x): \mathbb{R} \to \mathbb{R}$ 满足对任何 $x_0 \in \mathbb{R}$ 和 $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$, $\lim_{n \to \infty} x_n = x_0$, 都有

$$\lim_{n \to \infty} f_n(x_n) = f(x_0),$$

证明: $f \in C(\mathbb{R})$.

证明

1. 由 f_n 一致收敛到 f(x) 可知, 对 $\forall \varepsilon > 0$, 存在 $N_0 \in \mathbb{N}$, 使得对 $\forall N \geq N_0$, 当 $n \geq N$ 时, 对 $\forall x \in [a,b]$, 都有

$$|f_n(x) - f_N(x)| < \varepsilon.$$

从而由上式可得

$$|f_n(x_n) - f(c)| \le |f_n(x_n) - f_N(x_n)| + |f_N(x_n) - f_N(c)| + |f_N(c) - f(c)|$$

$$\le \varepsilon + |f_N(x_n) - f_N(c)| + |f_N(c) - f(c)|.$$

$$\overline{\lim}_{n\to\infty} |f_n(x_n) - f(c)| \leqslant \varepsilon + |f_N(c) - f(c)|.$$

再令 $N \to +\infty$, 由 $\lim_{n \to \infty} f_n(x) = f(x), \forall x \in [a, b]$ 可知

$$\overline{\lim}_{n\to\infty} |f_n(x_n) - f(c)| \leqslant \varepsilon.$$

2. 反证, 若 f 在 $x_0 \in \mathbb{R}$ 处不连续, 则存在 $\varepsilon_0 > 0$, 使得 $\forall m \in \mathbb{N}$, 存在 $y_m \in (x_0 - \frac{1}{m}, x_0 + \frac{1}{m})$, 使得

$$|f(y_m) - f(x_0)| \geqslant \varepsilon_0. \tag{5.80}$$

$$|f_{n_m}(y_m) - f(y_m)| < \frac{\varepsilon_0}{2}.$$
 (5.81)

从而由(5.80)(5.81)式可知, 对 $\forall m \in \mathbb{N}$, 都有

$$|f(y_{n_m}) - f(x_0)| \geqslant \varepsilon_0, \tag{5.82}$$

$$|f_{n_m}(y_{n_m}) - f(y_{n_m})| < \frac{\varepsilon_0}{2}.$$
 (5.83)

因此由(5.82)(5.83)式可得,对 $\forall m \in \mathbb{N}$,都有

$$|f_{n_m}(y_{n_m}) - f(x_0)| \ge |f(y_{n_m}) - f(x_0)| - |f_{n_m}(y_{n_m}) - f(y_{n_m})| \ge \varepsilon_0 - \frac{\varepsilon_0}{2} = \frac{\varepsilon_0}{2}.$$
 (5.84)

注意到 $y_m \to x_0$, 于是 $y_{n_m} \to x_0$. 从而由已知条件可知 $\lim_{m \to \infty} f_{n_m}(y_{n_m}) = f(x_0)$. 这与(5.84)式矛盾! 故 $f \in C(\mathbb{R})$.

例题 5.24 设 $g \in C(\mathbb{R})$ 且以 T > 0 为周期, 且有

$$f(f(x)) = -x^3 + g(x). (5.85)$$

证明: 不存在 $f \in C(\mathbb{R})$, 使得(5.85)式成立.

证明 由连续的周期函数的基本性质可知, 存在 M > 0, 使得 $|g(x)| \leq M$. 反证, 假设存在 $f \in C(\mathbb{R})$, 使得(5.85)式成立. 则

$$\lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} \left(-x^3 + g(x) \right) = -\infty, \tag{5.86}$$

$$\lim_{x \to -\infty} f(f(x)) = \lim_{x \to -\infty} \left(-x^3 + g(x) \right) = +\infty. \tag{5.87}$$

假设 $\lim_{x \to \infty} f(x) = A \in \mathbb{R}$, 则存在 $x_n \to +\infty$, 使得 $f(x_n) \to A$. 从而由(5.85)式可得

$$f(A) = \lim_{n \to \infty} f(f(x_n)) = \lim_{n \to \infty} (-x_n^3 + g(x_n)) = -\infty.$$

上式显然矛盾! 又因为 $f \in C(\mathbb{R})$, 所以 $\lim_{x \to +\infty} f(x) = +\infty$ 或 $-\infty$. 否则, 当 $x \to +\infty$ 时, f(x) 振荡, 则由零点存在定理可知, 存在 $y_n \to +\infty$, 使得 $f(y_n) = 0$, $n = 1, 2, \cdots$. 从而由(5.86)式可知

$$-\infty = \lim_{x \to +\infty} f(f(x)) = \lim_{n \to \infty} f(f(y_n)) = f(0).$$

显然矛盾!

(i) 若 $\lim_{x \to +\infty} f(x) = +\infty$, 则

$$+\infty = \lim_{x \to +\infty} f(x) = f(+\infty) = \lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} [-x^3 + g(x)] = -\infty.$$

显然矛盾!

(ii) 若 $\lim_{x \to +\infty} f(x) = -\infty$, 则

$$f(-\infty) = \lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} [-x^3 + g(x)] = -\infty.$$
 (5.88)

从而对上式两边同时作用 f 可得

$$f(-\infty) = f(f(-\infty)) = \lim_{x \to -\infty} [-x^3 + g(x)] = +\infty.$$
 (5.89)

于是(5.88)式与(5.89)式显然矛盾! 综上, $f \in C(\mathbb{R})$ 的解不存在.

例题 5.25

- 1. 设 $f \in C[0, +\infty)$ 是有界的. 若对任何 $r \in \mathbb{R}$, 都有 f(x) = r 在 $[0, +\infty)$ 只有有限个或者无根, 证明: $\lim_{x \to +\infty} f(x)$ 存在.
- 2. 设 $f \in C(\mathbb{R})$,n 是一个非 0 正偶数, 使得对任何 $y \in \mathbb{R}$, 都有 $\{x \in \mathbb{R} : f(x) = y\}$ 是 n 元集. 证明: 这样的 f 不存在.

证明

1. 反证,设 $\lim_{x \to +\infty} f(x)$ 不存在,由 f 有界,可设 $\overline{\lim}_{x \to +\infty} f(x) = A > B = \underline{\lim}_{x \to +\infty} f(x)$. 任取 $C \in (B,A)$,则由 $\overline{\lim}_{x \to +\infty} f(x) = A > C$ 可知,存在 $x_1 \ge 0$,使得 $f(x_1) > C$.又由 $\underline{\lim}_{x \to +\infty} f(x) = B < C$ 可知,存在 $x_2 > x_1 + 1$,使得 $f(x_2) < C$.于是再由 $\overline{\lim}_{x \to +\infty} f(x) = A > C$ 可知,存在 $x_3 > x_2 + 1$,使得 $f(x_3) > C$.又由 $\underline{\lim}_{x \to +\infty} f(x) = B < C$ 可知,存在

 $x_4 > x_3 + 1$, 使得 $f(x_4) < C$. 依此类推, 可得递增数列 $\{x_n\}$, 使得

$$x_{n+1} > x_n + 1$$
, $f(x_{2n-1}) > C$, $f(x_{2n}) < C$, $n = 1, 2, \cdots$

从而由 $f \in C[0, +\infty)$ 及介值定理可得, 对 $\forall n \in \mathbb{N}$, 存在 $y_n \in (x_{2n-1}, x_{2n})$, 使得 $f(y_n) = C$, 矛盾!

2. 设 $x_1 < x_2 < \cdots < x_n$ 是 f 的所有零点, 记 $x_0 = -\infty, x_{n+1} = +\infty$, 则由 f 的连续性及介值定理可知, f 在 (x_{i-1},x_i) 上不变号. 这里共有n+1个区间,现在考虑 (x_{i-1},x_i) , $i=2,3,\cdots,n$,这n-1个区间.于是由抽屉原 理可知, 这n-1 个区间中必存在 $\frac{n}{2}$ 区间, 使 f 在这 $\frac{n}{2}$ 个区间内都同号.

不妨设 f 在这 $\frac{n}{2}$ 个区间内恒大于 0, 记 f 在 $[x_{i-1},x_i]$ 上的最大值记为 $f(m_i) \triangleq M_i > 0$, 其中 $m_i \in (x_{i-1},x_i)$, i = 1 $2, 3, \dots, n$. 由介值定理知, 至少存在 $c_i \in (x_{i-1}, m_i), c_i' \in (m_i, x_i)$, 使得

$$f(c_i) = f(c'_i) = \frac{1}{2} \min_{2 \le i \le n} M_i > 0, i = 2, 3, \dots, n.$$

注意到在 (x_0,x_1) , (x_n,x_{n+1}) 上 f 必不同号. 否则, 不妨设在 (x_0,x_1) , (x_n,x_{n+1}) 上 f 恒大于 0, 则由 $f \in C(\mathbb{R})$ 可 知, 存在 M > 0, 使得 |f(x)| < M, $\forall x \in [x_1, x_{n+1}]$. 从而 $f(x) \ge -M$, $\forall x \in \mathbb{R}$. 这与对 $\forall y \in \mathbb{R}$, f(x) = y 都有根矛 盾!

不妨设 f 在 (x_0, x_1) 上恒小于 0, 在 (x_n, x_{n+1}) 上恒大于 0, 则 f 在 (x_n, x_{n+1}) 上无上界. 否则, 存在 K > $\max_{2 \le i \le n} M_i > 0$, 使得 $f(x) < K, \forall x \in (x_n, x_{n+1})$. 又因为 $f(x) < 0 < K, \forall x \in (x_0, x_1)$, $f(x) \le \max_{2 \le i \le n} M_i < \infty$ $K, \forall x \in (x_1, x_n)$. 所以 $f(x) < K, \forall x \in \mathbb{R}$. 这与对 $\forall y \in \mathbb{R}, f(x) = y$ 都有根矛盾!

又 $f(x_n) = 0$, 故至少存在一个 $c \in (x_n, x_{n+1})$, 使得 $f(c) = \frac{1}{2} \min_{2 \le i \le n} M_i > 0$. 综上, 至少有 n+1 个点使得 $f(x) = \frac{1}{2} \min_{0 \le i \le n} M_i > 0.$ 这与 $\{x \in \mathbb{R} : f(x) = \frac{1}{2} \min_{0 \le i \le n} M_i \}$ 是 n 元集矛盾!

例题 5.26 设 $f \in C^2[0, +\infty), g \in C^1[0, +\infty)$ 且存在 $\lambda > 0$ 使得 $g(x) \geqslant \lambda, \forall x \geqslant 0$. 若 g' 至多只有有限个零点且

$$f''(x) + g(x)f(x) = 0, \quad \forall x \geqslant 0,$$

证明: f 在 [0,+∞) 有界.

笔记 形式计算分析需要的构造函数: 由条件微分方程可得

$$y'y'' = -gyy' \Rightarrow \frac{(y')^2}{2} = -\int gyy' dx = -\frac{1}{2} \int g dy^2 = -\frac{1}{2}gy^2 + \frac{1}{2} \int y^2 dg$$
$$\Rightarrow (y')^2 = -gy^2 + \int y^2 dg \Rightarrow \frac{(y')^2}{g} + y^2 = \int y^2 dg.$$

于是考虑构造函数 $F_1(x) riangleq rac{|f'(x)|^2}{g(x)} + f^2(x), F_2(x) riangleq |f'(x)|^2 + g(x)f^2(x).$ 证明 因为 g' 至多只有有限个零点, 所以存在 X > 0, 使得 $g'(x) \neq 0, \forall x \geqslant X$. 从而由导数介值性可知, g' 在 $[X, +\infty)$ 上要么恒大于 0, 要么恒小于 0. 令 $F_1(x) riangleq rac{|f'(x)|^2}{g(x)} + f^2(x), x \geqslant X$, 则结合条件 f'' = -gf 可得

$$F_1'(x) = \frac{2f'f''g - g'(f')^2 + 2ff'g}{g^2} = \frac{-2f'fg^2 - g'(f')^2 + 2ff'g^2}{g^2} = -\frac{g'(f')^2}{g^2}.$$
 (5.90)

(i) 若 $g'(x) > 0, \forall x \ge X$, 则由(5.90)式可知 $F'(x) \le 0$, 即 F(x) 在 $[X, +\infty)$ 上递减. 于是再结合 $g(x) > \lambda > 0, \forall x > 0$ 0可知,存在C>0,使得

$$f^2(x) \leq F_1(x) \leq C, \quad \forall x \geq X.$$

故 f(x) 在 $[X, +\infty)$ 上有界. 又 $f \in C[0, +\infty)$, 故 f 在 [0, X] 上必有界. 因此 f 在 $[0, +\infty)$ 上有界.

(ii) 若 $g'(x) < 0, \forall x \ge X$, 令 $F_2(x) \triangleq |f'(x)|^2 + g(x)f^2(x)$, 则结合条件 f'' = -gf 可得

$$F_2'(x) = 2f'f'' + g'f^2 + 2gff' = -2f'fg + g'f^2 + 2gff' = g'f^2 \le 0.$$
 (5.91)

从而 $F_2(x)$ 在 $[X, +\infty)$ 上递减,于是存在 C' > 0,使得

$$g(x) f^2(x) \le F_2(x) \le C, \quad \forall x \ge X.$$

进而由 $g(x) > \lambda > 0, \forall x > 0$ 可得

$$f^2(x) \leqslant \frac{C}{g(x)} \leqslant \frac{C}{\lambda}, \quad \forall x \geqslant X.$$

故 f(x) 在 $[X, +\infty)$ 上有界. 又 $f \in C[0, +\infty)$, 故 f 在 [0, X] 上必有界. 因此 f 在 $[0, +\infty)$ 上有界. **例题 5.27** 设 a, b > 1 且 $f: \mathbb{R} \to \mathbb{R}$ 在 x = 0 邻域有界. 若

$$f(ax) = b f(x), \quad \forall x \in \mathbb{R}$$

证明:f 在 x = 0 连续.

证明 注意到

$$f(0) = bf(0) \Rightarrow f(0) = 0.$$

由条件可得

$$f(ax) = bf(x) \Rightarrow f(x) = \frac{f(ax)}{b} = \frac{f(a^2x)}{b^2} = \dots = \frac{f(a^nx)}{b^n}, \forall n \in \mathbb{N}.$$
 (5.92)

因为 f 在 x=0 邻域有界, 所以存在 $\delta>0$, 使得

$$|f(x)| \le M, \forall x \in (-\delta, \delta). \tag{5.93}$$

从而对 $\forall \varepsilon > 0$, 取 $N \in \mathbb{N}$, 使得

$$\frac{M}{h^N} < \varepsilon. (5.94)$$

于是当 $x \in \left(-\frac{\delta}{a^N}, \frac{\delta}{a^N}\right)$ 时, 结合(5.92)(5.93)(5.94)式, 我们有

$$|f(x)| = \left| \frac{f(a^N x)}{b^N} \right| \leqslant \frac{M}{b^N} < \varepsilon.$$

故 $\lim_{x\to 0} f(x) = f(0) = 0.$

例题 5.28 设 $f \in C(\mathbb{R})$ 满足 f(x), $f(x^2)$ 都是周期函数, 证明: f 为常值函数.

证明 由连续周期函数必一致连续可知,f(x), $f(x^2)$ 在 \mathbb{R} 上一致连续. 于是对任意满足 $\lim_{n\to\infty}(x_n'-x_n'')=0$ 的数列 $\{x_n'\},\{x_n''\},\{x_n''\},\{x_n''\}\}$

$$|f(x'_n) - f(x''_n)|, |f((x'_n)^2) - f((x''_n)^2)| \to 0, \quad n \to \infty.$$
 (5.95)

设 f(x) 的周期为 T>0, 则对 $\forall c \in \mathbb{R}$, 取 $x_n' = \sqrt{nT + c}$, $x_n'' = \sqrt{nT}$, 显然 $x_n' - x_n'' = \frac{c}{\sqrt{nT + c} + \sqrt{nT}} \rightarrow 0$. 从而由 (5.95) 式可得

$$|f((x'_n)^2) - f((x''_n)^2)| = f(nT + c) - f(nT) = f(c) - f(0) \to 0.$$

故 $f(c) = f(0), \forall c \in \mathbb{R}$. 故 f 为常值函数.

例题 5.29 计算函数方程 $f(\log_2 x) = f(\log_3 x) + \log_5 x$ 所有 \mathbb{R} 上的连续解.

笔记 注意到

$$f\left(\frac{\ln x}{\ln 2}\right) = f\left(\frac{\ln x}{\ln 3}\right) + \frac{\ln x}{\ln 5}, x > 0.$$

为了凑裂项的形式, 我们待定

$$f\left(\frac{\ln a_n}{\ln 2}\right) = f\left(\frac{\ln a_n}{\ln 3}\right) + \frac{\ln a_n}{\ln 5}, n \in \mathbb{N}.$$

注意到我们有两种选择

$$\frac{\ln a_n}{\ln 2} = \frac{\ln a_{n+1}}{\ln 3}, \quad \frac{\ln a_n}{\ln 3} = \frac{\ln a_{n+1}}{\ln 2}.$$

前者公比 $\frac{\ln 3}{\ln 2} > 1$,后者公比 $\frac{\ln 2}{\ln 3} < 1$,为了求和方便我们选取后者.

证明 设 $f \in C(\mathbb{R})$, 对 $\forall x \in \mathbb{R}$, 取 $a_1 = x, \ln a_n = \left(\frac{\ln 2}{\ln 3}\right)^{n-1} \cdot \ln x, n \in \mathbb{N}$. 则 $\lim_{n \to \infty} \ln a_n = 0$. 此时有

$$\frac{\ln a_n}{\ln 3} = \frac{\ln a_{n+1}}{\ln 2}, \forall n \in \mathbb{N}.$$

于是由条件可得

$$f\left(\frac{\ln x}{\ln 2}\right) = f\left(\frac{\ln x}{\ln 3}\right) + \frac{\ln x}{\ln 5} \Rightarrow f\left(\frac{\ln a_n}{\ln 2}\right) = f\left(\frac{\ln a_n}{\ln 3}\right) + \frac{\ln a_n}{\ln 5}$$
$$\Rightarrow f\left(\frac{\ln a_n}{\ln 2}\right) = f\left(\frac{\ln a_{n+1}}{\ln 2}\right) + \frac{\ln a_n}{\ln 5}, n = 1, 2, \cdots$$

因此

$$\sum_{n=1}^{\infty} \left[f\left(\frac{\ln a_n}{\ln 2}\right) - f\left(\frac{\ln a_{n+1}}{\ln 2}\right) \right] = \sum_{n=1}^{\infty} \frac{\ln a_n}{\ln 5} = \frac{1}{\ln 5} \cdot \frac{\ln x}{1 - \frac{\ln 2}{\ln 3}}.$$

$$\sum_{n=1}^{\infty} \left[f\left(\frac{\ln a_n}{\ln 2}\right) - f\left(\frac{\ln a_{n+1}}{\ln 2}\right) \right] = f\left(\frac{\ln a_1}{\ln 2}\right) - \lim_{n \to \infty} f\left(\frac{\ln a_{n+1}}{\ln 2}\right) = f\left(\frac{\ln x}{\ln 2}\right) - f(0).$$

故

$$\frac{1}{\ln 5} \cdot \frac{\ln x}{1 - \frac{\ln 2}{\ln 3}} = f\left(\frac{\ln x}{\ln 2}\right) - f(0) \stackrel{y = \frac{\ln x}{\ln 2}}{\Rightarrow} f(y) = f(0) + \frac{y \ln 2 \ln 3}{\ln 5 \ln \frac{3}{2}}.$$

例题 5.30 设 $n \in \mathbb{N}, f \in C^{n+2}(\mathbb{R})$ 使得存在 $\theta \in \mathbb{R}$ 满足对任何 $x, h \in \mathbb{R}$ 都有

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \dots + \frac{f^{(n-1)}(x)}{(n-1)!}h^{n-1} + \frac{f^{(n)}(x+\theta h)}{n!}h^n$$

证明: f 是不超过 n+1 次的多项式.

证明 对 $\forall x, h \in \mathbb{R}$, 由 Taylor 公式可知

$$f^{(n)}(x+\theta h) = f^{(n)}(x) + f^{(n+1)}(x)\theta h + \frac{f^{(n+1)}(\xi)}{2}\theta^2 h^2.$$

再结合条件可得

$$f(x+h) = \sum_{j=0}^{n-1} \frac{f^{(j)}(x)}{j!} h^j + \frac{f^{(n)}(x+\theta h)}{n!} h^n$$

$$= \sum_{j=0}^{n} \frac{f^{(j)}(x)}{j!} h^j + \frac{f^{(n+1)}(x)\theta h + \frac{f^{(n+1)}(\xi)}{2}\theta^2 h^2}{n!} h^n,$$
(5.96)

由 Taylor 公式可知

$$f(x+h) = \sum_{i=0}^{n+1} \frac{f^{(j)}(x)}{j!} h^j + \frac{f^{(n+2)}(\eta)}{(n+2)!} h^{n+2}.$$
 (5.97)

比较(5.96)式和(5.97)式得

$$\left[\frac{1}{(n+1)!} - \frac{\theta}{n!}\right] f^{(n+1)}(x) = \left[\frac{\theta^2 f^{(n+2)}(\xi)}{2n!} - \frac{f^{(n+2)}(\eta)}{(n+2)!}\right] h. \tag{5.98}$$

$$\frac{\theta^2 f^{(n+2)}(\xi)}{2n!} = \frac{f^{(n+2)}(\eta)}{(n+2)!}.$$

对上式令 $h \to 0$, 则 $\xi, \eta \to x$, 故此时就有

$$\frac{f^{(n+2)}(x)}{2n!(n+1)^2} = \frac{f^{(n+2)}(x)}{(n+2)!} \Rightarrow f^{(n+2)}(x) = 0.$$

当 $\theta \neq \frac{1}{n+1}$ 时, 对(5.98)式令 $h \to 0$, 则 $\xi, \eta \to x$, 故此时就有

$$\left[\frac{1}{(n+1)!} - \frac{\theta}{n!}\right] f^{(n+1)}(x) = 0 \Rightarrow f^{(n+1)}(x) = 0.$$

因此, 无论如何都有 f 是不超过 n+1 次的多项式.

例题 5.31

1. 设

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n, \quad n = 1, 2, \cdots$$
 (5.99)

- 证明多项式 P_n 的全部根都是实数且分布在 (-1,1). 2. 设 $g(x) = e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$, 证明 g 是只有实根的多项式.
- 笔记 本题第1问叫做 Legendre(勒让德) 多项式, 第2问叫做 Hermite 多项式. 第2问用 Rolle 定理时注意无穷远 点也会提供零点.

证明

- 1. 显然 P_n 是 n 次多项式, 且 ±1 是 $\frac{d^k}{dx^k}(x^2-1)^n$ 的 n-k 重根 $(0 \le k \le n)$. 由 Rolle 定理可知, $\frac{d}{dx}(x^2-1)^n$ 在 (-1,1) 有一个实根. 于是再由 Rolle 定理可知, $\frac{d^2}{dx^2}(x^2-1)^n$ 在 (-1,1) 有两个不同实根. 反复利用 Rolle 定理可 得, $\frac{d^n}{dx^n}(x^2-1)^n$ 在 (-1,1) 有 n 个不同实根. 而 n 次多项式有且仅有 n 个根, 故 P_n 的全部根都是实数且分布
- 2. 设 $\frac{d^k}{dx^k}(e^{-x^2}) = P_k(x)e^{-x^2}$, $P_k \neq k$ 次多项式, $k \in \mathbb{N}$, 显然 $P_0(x) = 1$, 于是

$$\frac{d^{k+1}}{dx^{k+1}}(e^{-x^2}) = \left[P_k'(x) - 2xP_k(x)\right]e^{-x^2}.$$

令 $P_{k+1}(x) = P_k'(x) - 2xP_k(x)$, 则由 P_k 是 k 次多项式可知 $P_{k+1}(x)$ 是 k+1 次多项式. 故由数学归纳法可知

$$\frac{d^n}{dx^n}(e^{-x^2}) = P_n(x)e^{-x^2}, \quad P_n \in \mathbb{R}[x], \quad n \in \mathbb{N}.$$

因此 $g(x) = e^{-x^2} \frac{d^n}{dx^n} (e^{-x^2}) = P_n(x)$ 是 n 次多项式 $(n \in \mathbb{N})$. 设 P_k 是有 k 个不同实根的多项式, 这 k 个根为

$$x_1 < x_2 < \cdots < x_k$$
.

从而这k个根也是 $P_k(x)e^{-x^2}$ 的根.由 Rolle 定理可知

$$P_{k+1}(x) = e^{-x^2} \frac{d^k}{dx^k} (e^{-x^2}) = e^{-x^2} \frac{d}{dx} \left(P_k(x) e^{-x^2} \right)$$

在 (x_{j-1},x_j) , $j=2,3,\cdots$, k 有实根. 而 $\lim_{x\to+\infty} P_k(x)e^{-x^2}=0$, 故由 Rolle 定理可知 $P_{k+1}(x)$ 在 $(-\infty,x_1)$, $(x_k,+\infty)$ 上还各有一个实根. 因此 $P_{k+1}(x)$ 有 k+1 个根. 故由数学归纳法可知 $P_n(x)$ 有 n 个实根 $(n \in \mathbb{N})$. 又因为 $g(x) = P_n(x)$ 是 n 次多项式, 而 n 次多项式有且仅有 n 个根, 所以 $g(x) = P_n(x)$ 是只有实根的多项式.

例题 5.32 设 $f \in C^2(\mathbb{R})$ 且 f, f', f'' 都是正值函数. 若存在 a, b > 0 使得

$$f''(x) \le a f(x) + b f'(x), \quad \forall x \in \mathbb{R}.$$

求 $f'(x) \leq c f(x)$ 恒成立的最小的 c.

证明 考虑微分方程 v'' = av + bv', 其特征方程为

$$x^{2} - bx - a = 0 \Rightarrow x_{1} = \frac{b + \sqrt{b^{2} + 4a}}{2} > 0, \quad x_{2} = \frac{b - \sqrt{b^{2} + 4a}}{2} < 0.$$

于是

$$f''(x) \leqslant af(x) + bf'(x) \Longleftrightarrow f''(x) - x_1f'(x) \leqslant x_2 \left[f'(x) - x_1f(x) \right].$$

$$c'(x) = \frac{g'(x) - x_2 g(x)}{e^{x_2 x}} \leqslant 0 \Rightarrow c(x) \leqslant \lim_{x \to -\infty} c(x) = \lim_{x \to -\infty} \frac{f'(x) - x_1 f(x)}{e^{x_2 x}}, \quad \forall x \in \mathbb{R}.$$

由 f'', f', f > 0 可知 f, f' 递增有下界. 故 $\lim_{x \to -\infty} f(x)$ 和 $\lim_{x \to -\infty} f'(x)$ 都存在. 因此

$$c(x) \le \lim_{x \to -\infty} \frac{f'(x) - x_1 f(x)}{e^{x_2 x}} = 0, \quad \forall x \in \mathbb{R}.$$

即

$$f'(x) \leqslant x_1 f(x), \quad \forall x \in \mathbb{R}.$$

取 $f(x) = e^{x_1 x}$, 此时等号成立. 故 $c_{\min} = x_1 = \frac{b + \sqrt{b^2 + 4a}}{2}$.

注 若存在 $c < x_1$, 使得 $f'(x) \leq c f(x), \forall x \in \mathbb{R}$, 则

$$f'(x) \le c f(x) < x_1 f(x), \quad \forall x \in \mathbb{R}.$$

但是取当 $f(x) = e^{x_1 x}$ 时, $f'(x) = x_1 f(x)$ 矛盾! 故 $c_{\min} = x_1$.

例题 5.33 设 $f \in C^n(\mathbb{R}), n \in \mathbb{N}, f^{(k)}(x_0) = 0, k = 0, 1, 2, \dots, n-1$. 若对某个 M > 0 和 $\lambda_0, \lambda_1, \dots, \lambda_{n-2} \geqslant 0, \lambda_{n-1} \geqslant 1$ 有不等式

$$|f^{(n)}(x)| \leqslant M \prod_{k=0}^{n-1} |f^{(k)}(x)|^{\lambda_k}, \forall x \in \mathbb{R}.$$

证明 $f(x) \equiv 0$.

Ŷ 笔记 因为原不等式是绝对值不等式, 所以考虑两个微分方程

$$f^{(n)} = f^{(n-1)} \cdot g \Rightarrow \frac{f^{(n)}}{f^{(n-1)}} = g \Rightarrow \ln f^{(n-1)} = \int_{x_0}^x g(y) dy + C \Rightarrow f^{(n-1)} = Ce^{\int_{x_0}^x g(y) dy}.$$

$$f^{(n)} = -f^{(n-1)} \cdot g \Rightarrow \frac{f^{(n)}}{f^{(n-1)}} = -g \Rightarrow \ln f^{(n-1)} = -\int_{x_0}^x g(y) dy + C \Rightarrow f^{(n-1)} = Ce^{-\int_{x_0}^x g(y) dy}.$$

分离常量得到构造函数 $c_1(x) \triangleq \frac{f^{(n-1)}(x)}{e^{\int_{x_0}^x g(y) \mathrm{d}y}}, c_2(x) \triangleq f^{(n-1)}(x)e^{\int_{x_0}^x g(y) \mathrm{d}y}.$ 回顾双绝对值问题的构造函数, 我们需要的构造函数应是 $C_1(x) \triangleq c_1^2(x) = \frac{[f^{(n-1)}(x)]^2}{e^{2\int_{x_0}^x g(y) \mathrm{d}y}}, C_2(x) \triangleq c_2^2(x) = [f^{(n-1)}(x)]^2 e^{2\int_{x_0}^x g(y) \mathrm{d}y}.$

证明 由条件可知

$$|f^{(n)}(x)| \le |f^{(n-1)}(x)| \cdot g(x),$$

其中
$$g(x) = M \prod_{k=1}^{n-1} |f^{(k)}(x)|^{\lambda_k - 1}$$
. 从而 $f^{(n)}(x)f^{(n-1)}(x) \leq |f^{(n)}(x)f^{(n-1)}(x)| \leq |f^{(n-1)}(x)|^2 \cdot g(x)$.

(5.100)

令 $C_1(x) \triangleq \frac{[f^{(n-1)}(x)]^2}{e^{2\int_{x_0}^x g(y)dy}}$, 则由 (5.100) 式可知

$$C_1'(x) = \frac{2f^{(n-1)}(x)f^{(n)}(x) - 2g(x)[f^{(n-1)}(x)]^2}{e^{2\int_{X_0}^x g(y)dy}} \le 0.$$

故 $C_1(x) \leqslant C_1(x_0) = 0$, $\forall x \geqslant x_0$. 因此 $C_1(x) = 0$, $\forall x \geqslant x_0$. 进而 $f^{(n-1)}(x) = 0$, $\forall x \geqslant x_0$. 令 $C_2(x) \triangleq [f^{(n-1)}(x)]^2 e^{2\int_{x_0}^x g(y) dy}$, 则由 (5.100) 式可知

$$C_2'(x) = \left[2f^{(n-1)}(x)f^{(n)}(x) + 2g(x)(f^{(n-1)}(x))^2\right]e^{2\int_{x_0}^x g(y)\mathrm{d}y} \geqslant 0.$$

故 $C_2(x) \leqslant C_2(x_0) = 0$, $\forall x \leqslant x_0$. 因此 $C_2(x) = 0$, $\forall x \leqslant x_0$. 进而 $f^{(n-1)}(x) = 0$, $\forall x \leqslant x_0$. 综上, $f^{(n-1)}(x) \equiv 0$, $x \in \mathbb{R}$. 又 $f^{(k)}(x_0) = 0$, $k = 0, 1, \dots, n-1$, 故 $f(x) \equiv 0$.

例题 5.34 设 f 是直线上的非常值连续周期函数. 若 $g \in C(\mathbb{R})$ 且 $\overline{\lim_{x \to +\infty}} \frac{|g(x)|}{x} = +\infty$, 证明: $f \circ g$ 不是周期函数.

拿 $\overline{\lim}_{x\to +\infty} |g(x+\delta)-g(x)|=+\infty$. 的证明类似函数 Stolz 定理的证明. 实际上就是利用了上极限版的函数 Stolz 定理, 只不过我们之前并没有写出这个定理.

证明 若 $f \circ g$ 是周期函数,则由连续周期函数必一致连续可知 $f \circ g$ 在 \mathbb{R} 上一致连续. 设 f 的周期为 T > 0, 记 $a \triangleq \max f - \min f > 0$, 则存在 $\delta > 0$, 使

$$|f(g(x)) - f(g(y))| < a, \forall |x - y| \le \delta. \tag{5.101}$$

先证 $\overline{\lim_{x \to +\infty}} |g(x+\delta) - g(x)| = +\infty$. 若 $\overline{\lim_{x \to +\infty}} |g(x+\delta) - g(x)| \neq +\infty$, 则存在 A > 0, 使 $|g(x+\delta) - g(x)| \leqslant A$, $\forall x \geqslant 0$. 对

 $x \in [n\delta, (n+1)\delta), n \in \mathbb{N}$, 我们有

$$\left| \frac{g(x)}{x} \right| \leqslant \frac{|g(x - n\delta)|}{n\delta} + \sum_{k=0}^{n-1} \left| \frac{g(x - k\delta) - g(x - (k+1)\delta)}{n\delta} \right| \leqslant \frac{1}{n\delta} \sup_{x \in [0, \delta]} |g(x)| + \frac{A}{\delta}.$$

故 $\overline{\lim}_{x \to +\infty} \left| \frac{g(x)}{x} \right| \leqslant \frac{A}{\delta}$ 矛盾! 因此 $\overline{\lim}_{x \to +\infty} |g(x+\delta) - g(x)| = +\infty$. 于是存在 $x_0 \in \mathbb{R}$, 使得 $|g(x_0+\delta) - g(x_0)| \geqslant T$. 由介值 定理可知, 存在 $s,t \in [x_0,x_0+\delta]$, 使得 $f(g(s)) = \max f$, $f(g(t)) = \min f$. 从而由 (5.101) 式可知

$$a = |f(g(s)) - f(g(t))| < a$$

矛盾! 故 $f \circ g$ 不是周期函数 ($f \circ g$ 甚至不是一致连续函数).

例题 5.35 已知 $f(x) \in C[a,b]$, 且

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} x f(x) dx = 0.$$

证明: f(x) 在 (a,b) 上至少 2 个零点.

证明 设 $F_1(x) = \int_a^x f(t) dt$, 则 $F_1(a) = F_1(b) = 0$. 再设 $F_2(x) = \int_a^x F_1(t) dt = \int_a^x \left[\int_a^t f(s) ds \right] dt$, 则 $F_2(a) = 0$, $F_2'(x) = 0$ $F_1(x), F_2''(x) = F_1'(x) = f(x)$. 由条件可知

$$0 = \int_{a}^{b} x f(x) dx = \int_{a}^{b} x F_{1}'(x) dx = \int_{a}^{b} x dF_{1}(x) = x F_{1}(x) \Big|_{a}^{b} - \int_{a}^{b} F_{1}(x) dx = -F_{2}(b).$$

于是由 Rolle 中值定理可知, 存在 $\xi \in (a,b)$, 使得 $F_2'(\xi) = F_1(\xi) = 0$. 从而再由 Rolle 中值定理可知, 存在 $\eta_1 \in$ $(a,\xi),\eta_2 \in (\xi,b), \ \notin \ F_1'(\eta_1) = F_1'(\eta_2) = 0. \ \ \text{If} \ \ f(\eta_1) = f(\eta_2) = 0.$

例题 5.36 已知 $f(x) \in C[a,b]$, 且

$$\int_{a}^{b} x^{k} f(x) dx = 0, k = 0, 1, 2, \dots, n.$$

证明: f(x) 在 (a,b) 上至少 n+1 个零点

笔记 利用分部积分转换导数的技巧. 证明 令 $F(x) = \int_a^x \int_a^{x_n} \cdots \int_a^{x_3} \left[\int_a^{x_2} f(x_1) dx_1 \right] dx_2 \cdots dx_n$. 则 $F(a) = F'(a) = \cdots = F^{(n)}(a) = 0$, $F^{(n+1)}(x) = f(x)$. 由已知条件,再反复分部积分,可得当 $1 \le k \le n$ 且 $k \in \mathbb{N}$ 时,有

$$0 = \int_{a}^{b} f(x) dx = \int_{a}^{b} F^{(n+1)}(x) dx = F^{(n)}(x) \Big|_{a}^{b} = F^{(n)}(b),$$

$$0 = \int_{a}^{b} x f(x) dx = \int_{a}^{b} x F^{(n+1)}(x) dx = \int_{a}^{b} x dF^{(n)}(x) = x F^{(n)}(x) \Big|_{a}^{b} - \int_{a}^{b} F^{(n)}(x) dx = -F^{(n-1)}(b),$$

$$0 = \int_{a}^{b} x^{n} f(x) dx = \int_{a}^{b} x^{n} F^{(n+1)}(x) dx = \int_{a}^{b} x^{n} dF^{(n)}(x) = x^{n} F^{(n)}(x) \Big|_{a}^{b} - n \int_{a}^{b} x^{n-1} F^{(n)}(x) dx$$
$$= -n \int_{a}^{b} x^{n-1} F^{(n)}(x) dx = \dots = (-1)^{n} n! \int_{a}^{b} F'(x) dx = (-1)^{n} n! F(b).$$

从而 $F(b) = F'(b) = \cdots = F^{(n)}(b) = 0$. 于是由 Rolle 中值定理可知, 存在 $\xi_1^1 \in (a,b)$, 使得 $F'(\xi_1^1) = 0$. 再利 用 Rolle 中值定理可知存在 $\xi_1^2, \xi_2^2 \in (a,b)$, 使得 $F''(\xi_1^2) = F''(\xi_2^2) = 0$. 反复利用 Rolle 中值定理可得, 存在 $\xi_1^{n+1}, \xi_2^{n+1}, \cdots, \xi_{n+1}^{n+1} \in (a,b), \ \notin \ F^{(n+1)}(\xi_1^{n+1}) = F^{(n+1)}(\xi_2^{n+1}) = \cdots = F^{(n+1)}(\xi_{n+1}^{n+1}) = 0. \ \ \text{If} \ \ f(\xi_1^{n+1}) = f(\xi_2^{n+1}) = \cdots = f(\xi_2^{n+1}) = f(\xi_2^{n+1}) = \cdots = f(\xi_2^{n+1}) = f(\xi_2^{n+1})$ $f(\xi_{n+1}^{n+1}) = 0.$

例题 5.37 已知 $f(x) \in D^2[0,1]$, 且

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{1}{6}, \int_0^1 x f(x) \, \mathrm{d}x = 0, \int_0^1 x^2 f(x) \, \mathrm{d}x = \frac{1}{60}.$$

证明: 存在 $\xi \in (0,1)$, 使得 $f''(\xi) = 16$.

笔记 构造 $g(x) = f(x) - (8x^2 - 9x + 2)$ 的原因: 受到上一题的启发, 我们希望找到一个 g(x) = f(x) - p(x), 使得

$$\int_0^1 x^k g(x) dx = \int_0^1 x^k [f(x) - p(x)] dx = 0, \quad k = 0, 1, 2.$$

成立.即

$$\int_0^1 x^k f(x) dx = \int_0^1 x^k p(x) dx, \quad k = 0, 1, 2.$$

待定 $p(x) = ax^2 + bx + c$, 则代入上述公式, 再结合已知条件可得

$$\frac{1}{6} = \int_0^1 p(x) dx = \int_0^1 \left(ax^2 + bx + c \right) dx = \frac{a}{3} + \frac{b}{2} + c,$$

$$0 = \int_0^1 x p(x) dx = \int_0^1 \left(ax^3 + bx^2 + cx \right) dx = \frac{a}{4} + \frac{b}{3} + \frac{c}{2},$$

$$\frac{1}{60} = \int_0^1 x^2 p(x) dx = \int_0^1 \left(ax^4 + bx^3 + cx^2 \right) dx = \frac{a}{5} + \frac{b}{4} + \frac{c}{3}.$$

解得:a = 8, b = -9, c = 2. 于是就得到 $g(x) = f(x) - (8x^2 - 9x + 2)$.

$$\int_0^1 x^k g(x) dx = 0, \quad k = 0, 1, 2.$$

再令
$$G(x) = \int_0^x \left[\int_0^t \left(\int_0^s g(y) dy \right) ds \right] dt$$
, 则 $G(0) = G'(0) = G''(0) = 0$, $G'''(x) = g(x)$. 利用分部积分可得
$$0 = \int_0^1 g(x) dx = \int_0^1 G'''(x) dx = G''(1),$$

$$0 = \int_0^1 xg(x) dx = \int_0^1 xG'''(x) dx = \int_0^1 xdG''(x) = xG''(x) \Big|_0^1 - \int_0^1 G''(x) dx = -G'(1),$$

$$0 = \int_0^1 x^2g(x) dx = \int_0^1 x^2G'''(x) dx = \int_0^1 x^2dG''(x) = x^2G''(x) \Big|_0^1 - 2\int_0^1 xG''(x) dx$$

$$= -2\int_0^1 xdG'(x) = 2\int_0^1 G'(x) dx - 2xG'(x) \Big|_0^1 = 2G(1).$$

从而 G(1) = G'(1) = G''(1) = 0. 于是由 Rolle 中值定理可知, 存在 $\xi_1^1 \in (0,1)$, 使得 $G'(\xi_1^1) = 0$. 再利用 Rolle 中值定理可知, 存在 $\xi_1^2, \xi_2^2 \in (0,1)$, 使得 $G''(\xi_1^2) = G''(\xi_2^2) = 0$. 反复利用 Rolle 中值定理可得, 存在 $\xi_1^3, \xi_2^3, \xi_3^3 \in (0,1)$, 使得 $G'''(\xi_1^3) = G'''(\xi_2^3) = G'''(\xi_3^3) = 0$. 即 $g(\xi_1^3) = g(\xi_2^3) = g(\xi_3^3) = 0$. 再反复利用 Rolle 中值定理可得, 存在 $\xi \in (0,1)$, 使得 $g''(\xi) = 0$. 即 $f''(\xi) = 16$.

第六章 反常积分

6.1 反常积分敛散性判别

定理 6.1 (Cauchy 收敛准则)

广义积分 $\int_a^\infty f(x) dx$ 收敛等价于对任意 $\varepsilon > 0$, 存在 A > a 使得任意 $x_1, x_2 > A$ 都有 $\left| \int_{x_1}^{x_2} f(t) dt \right| < \varepsilon$.

定理 6.2

设在 $[a,+\infty)$ 上 $f\geqslant 0$, f 在 $[a,+\infty)$ 的任何有界子区间上可积,则无穷积分 $\int_a^{+\infty}f(x)\,\mathrm{d}x$ 收敛的充要条件是: 存在 M>0 使得对任何 b>a 都有

$$\int_{a}^{b} f(x) \, \mathrm{d}x < M,$$

即 $F(b) = \int_a^b f(x) dx$ 对于任何 b 有界.

定理 6.3 (比较判别法)

设 f 和 g 在 $[a, +\infty)$ 上有定义, 对任意 b > a, f 和 g 在 [a, b] 可积, 且对充分大的 x, 成立不等式 $0 \le f(x) \le g(x)$. 若 $\int_a^{+\infty} g(x) dx$ 收敛, 则 $\int_a^{+\infty} f(x) dx$ 收敛.

定理 6.4 (比较判别法极限形式)

如果 f 和 g 在 $[a, +\infty)$ 上有定义且非负,并且对任意 b > a, f 和 g 在 [a, b] 上可积, $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k$,那 么有 (1) 若 $0 < k < +\infty$,则 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 与 $\int_a^{+\infty} g(x) \, \mathrm{d}x$ 同致散; (2) 若 k = 0,则当 $\int_a^{+\infty} g(x) \, \mathrm{d}x$ 收敛时, $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 也收敛; (3) 若 $k = +\infty$,则当 $\int_a^{+\infty} g(x) \, \mathrm{d}x$ 发散时, $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 也发散.

定理 6.5 (A-D 判别法)

设 f(x), g(x) 在任何闭区间上黎曼可积, 其 f, g 在 x = a 处都有界.

- 1. Abel 判别法: 若 $\int_{a}^{+\infty} f(x) dx$ 收敛, 并且 g(x) 在 $[a, +\infty)$ 上单调有界, 则 $\int_{a}^{\infty} f(x) g(x) dx$ 收敛.
- 2. Dirichlet 判别法: 若 $\int_a^x f(x) dx$ 在 $[a, +\infty)$ 上有界, 并且 g(x) 在 $[a, +\infty)$ 上单调, $\lim_{x \to +\infty} g(x) = 0$, 则 $\int_a^\infty f(x)g(x) dx$ 收敛.

注 Dirichlet 判别法要强于 Abel 判别法. 因为可以由 Dirichlet 判别法直接推出 Abel 判别法. 证明如下:

设 f(x), g(x) 在任何闭区间上黎曼可积,其 f, g 在 x = a 处都有界.若 $\int_a^{+\infty} f(x) dx$ 收敛,并且 g(x) 在 $[a, +\infty)$ 上单调有界,则 $\lim_{x \to +\infty} g(x) \triangleq A \in \mathbb{R}$,令 h(x) = g(x) - A,则 $\lim_{x \to +\infty} h(x) = 0$,并且 h(x) 与 g(x) 有相同单调性.由 $\int_a^{\infty} f(x) dx$ 收敛可知, $\int_a^x f(t) dt$ 在 $[a, +\infty)$ 上必有界.从而由 Dirichlet 判别法可知 $\int_a^{\infty} f(x) h(x) dx$ 收敛.于是

例题 6.1 设 f(x) 在 $[0, +\infty)$ 中非负且递减,证明: $\int_0^{+\infty} f(x) dx$, $\int_0^{+\infty} f(x) \sin^2 x dx$ 同敛散性.

证明 (i) 若 $\int_0^\infty f(x) dx < \infty$, 则由条件可知

$$f(x)\sin^2 x \le f(x), \quad \forall x \in [0, +\infty).$$

故由比较判别法可得 $\int_{0}^{\infty} f(x) \sin^{2} x \, dx < \infty$.

(ii) 若 $\int_0^\infty f(x) \sin^2 x \, dx < \infty$, 则由 f 非负递减, 故 $\lim_{x \to +\infty} f(x)$ 存在且 $\lim_{x \to +\infty} f(x) \geqslant 0$. 若 $\lim_{x \to +\infty} f(x) \triangleq a > 0$, 则 存在M > 0, 使得

$$f(x)\sin^2 x > \frac{a}{2}\sin^2 x, \quad \forall x \in [M, +\infty).$$
 (6.1)

又因为

$$\int_0^\infty \sin^2 x \, \mathrm{d}x = \lim_{b \to +\infty} \int_0^b \frac{1 - \cos 2x}{2} \, \mathrm{d}x = \frac{1}{2} \lim_{b \to +\infty} \left(b - \frac{\sin 2b}{2} \right),$$

而上式右边极限不存在, 所以 $\int_0^\infty \sin^2 x \, dx \,$ 发散. 从而结合 (6.1) 式, 由比较判别法可知 $\int_0^\infty f(x) \sin^2 x \, dx \,$ 发散, 矛 盾! 故 $\lim_{x \to +\infty} f(x) = 0$. 注意到

$$\int_0^\infty f(x)\sin^2 x \, \mathrm{d}x = \frac{1}{2} \int_0^\infty f(x)(1-\cos 2x) \, \mathrm{d}x < \infty.$$

即 $\int_{0}^{\infty} f(x)(1-\cos 2x) dx < \infty$. 考虑 $\int_{0}^{\infty} f(x)\cos 2x dx$, 注意到

$$\int_0^C \cos 2x \, \mathrm{d}x = \frac{\sin 2C}{2} < 1, \quad \forall C > 0.$$

又由于 f(x) 在 $[0,+\infty)$ 上单调递减趋于 0,故由狄利克雷判别法可知 $\int_0^\infty f(x)\cos 2x\,\mathrm{d}x < \infty$. 因此

$$\int_0^\infty f(x) \, \mathrm{d}x = \int_0^\infty f(x)(1 - \cos 2x) \, \mathrm{d}x + \int_0^\infty f(x) \cos 2x \, \mathrm{d}x < \infty.$$

(iii) 当 $\int_0^\infty f(x) dx$ 或 $\int_0^\infty f(x) \sin^2 x dx$ 发散时,实际上, $\int_0^\infty f(x) dx$ 或 $\int_0^\infty f(x) \sin^2 x dx$ 发散的情形就是 (i)(ii)

命题 6.1

设
$$f(x), g(x)$$
 在任何闭区间上黎曼可积, 其 f, g 在 $x = a$ 处都有界.

(1) 若 $\int_{a}^{\infty} f(x) dx$ 绝对收敛, 则 $\int_{a}^{\infty} f(x) dx$ 一定条件收敛.

(2) 若
$$\int_{a}^{\infty} f(x) dx$$
, $\int_{a}^{\infty} g(x) dx$ 都绝对收敛, 则 $\int_{a}^{\infty} [f(x) \pm g(x)] dx$ 也绝对收敛.

(3) 若
$$\int_a^\infty f(x) dx$$
 绝对收敛, $\int_a^\infty g(x) dx$ 条件收敛, 则 $\int_a^\infty \left[f(x) \pm g(x) \right] dx$ 条件收敛, 但不绝对收敛.

(4) 若
$$\int_{a}^{\infty} f(x) dx$$
, $\int_{a}^{\infty} g(x) dx$ 都条件收敛, 则 $\int_{a}^{\infty} [f(x) \pm g(x)] dx$ 的收敛性无法直接判断.

证明

- (1) 由 $f(x) \leq |f(x)|$ 立得.
- (2) 由 $|f(x) \pm g(x)| \le |f(x)| + |g(x)|$ 立得. (3) 由 (1) 可知 $\int_{a}^{\infty} f(x) dx$, $\int_{a}^{\infty} g(x) dx$ 都条件收敛, 从而 $\int_{a}^{\infty} \left[f(x) \pm g(x) \right] dx$ 也条件收敛. 若 $\int_{a}^{\infty} |f(x) \pm g(x)| dx < 1$ ∞ , 注意到 g(x) = [f(x) + g(x)] - f(x), 从而由 (2) 可知 $\int_{a}^{\infty} g(x) dx = \int_{a}^{\infty} [(f(x) + g(x)) - f(x)] dx$ 也绝对 收敛,矛盾!

(4)

例题 **6.2** 判断如下积分的收敛性: 1.
$$\int_0^\infty \frac{1}{\sqrt[3]{x(x-1)^2(x-2)}} dx;$$

2.
$$\int_0^1 \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} dx, m, n \in \mathbb{N};$$

3.
$$\int_{2}^{\infty} (\sqrt{x+1} - \sqrt{x})^{p} \ln \frac{x+1}{x-1} dx$$
.

1. 四个瑕点 $x = 0, 1, 2, \infty$, 分别估阶讨论即得收敛.

2. 注意到

$$\frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[m]{x}} \sim \frac{x^{\frac{2}{m}}}{x^{\frac{1}{n}}} = \frac{1}{x^{\frac{1}{n}-\frac{2}{m}}}, x \to 0^+.$$

$$\mathbb{Z} \frac{1}{n} < 1 + \frac{2}{m}, \forall m, n \in \mathbb{N}, \text{ it } \int_0^{\frac{1}{2}} \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[m]{x}} \mathrm{d}x \, (\forall m, n \in \mathbb{N}) \text{ it is } \mathbb{R}$$

$$\frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[m]{x}} \sim \ln^{\frac{2}{m}}(1-x), x \to 1^-.$$

并且对 $\forall m \in \mathbb{N}$, 都有

$$\int_0^{\frac{1}{2}} \ln^{\frac{2}{m}} (1-x) dx = \int_0^{\frac{1}{2}} \ln^{\frac{2}{m}} x dx \xrightarrow{\underline{x=e^t}} \int_{-\infty}^{-\ln 2} t^{\frac{2}{m}} e^t dt$$

$$\xrightarrow{\underline{t=-u}} \int_{\ln 2}^{\infty} u^{\frac{2}{m}} e^{-u} du \leqslant \int_0^{\infty} u^{\frac{2}{m}} e^{-u} du$$

$$= \Gamma \left(1 + \frac{2}{m}\right) < +\infty.$$

故
$$\int_0^{\frac{1}{2}} \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[m]{x}} \mathrm{d}x \, (\forall m,n \in \mathbb{N}) \,$$
收敛. 综上, $\int_0^1 \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[m]{x}} \mathrm{d}x \, (\forall m,n \in \mathbb{N}) \,$ 收敛.

3. 由于
$$(\sqrt{x+1} - \sqrt{x})^p \ln \frac{x+1}{x-1} \sim \frac{1}{x^{1+\frac{p}{2}}}, x \to +\infty.$$
 故 $\int_2^\infty (\sqrt{x+1} - \sqrt{x})^p \ln \frac{x+1}{x-1} dx$ 收敛当且仅当 $p > 0$.

例题 6.3 设 p,q > 0, 判断 $\int_{1}^{\infty} \frac{1}{x^{p} \ln^{q} x} dx$ 收敛性.

拿 笔记 一个经验上的小结论. 在幂函数次数不为 1 时, 趋于无穷或者趋于 0 时 \ln 可忽略. 证明 先讨论 $\int_{1}^{2} \frac{1}{r^{p} \ln^{q} r} dx$ 的收敛性. 由于

$$\frac{1}{r^p \ln^q r} \sim \frac{1}{(r-1)^q}, x \to 1^+.$$

因此
$$\int_{1}^{2} \frac{1}{x^{p} \ln^{q} x} dx$$
 收敛当且仅当 $q < 1$.
再讨论 $\int_{2}^{\infty} \frac{1}{x^{p} \ln^{q} x} dx$ 的收敛性.
①当 $p > 1$ 时, 我们有

$$\frac{\frac{1}{x^p \ln^q x}}{\frac{1}{\ln^q x}} = \frac{1}{\ln^q x} \to 0, x \to +\infty.$$

从而存在C > 0, 使得

$$\frac{1}{x^p \ln^q x} < \frac{C}{x^p} \to 0, x \to +\infty.$$

而
$$\int_2^\infty \frac{C}{x^p} dx$$
 收敛, 故 $\int_2^\infty \frac{1}{x^p \ln^q x} dx$ 此时收敛.

②当 $0 时,取<math>\varepsilon > 0$,使得 $p + \varepsilon < 1$,从而

$$\frac{\frac{1}{x^p \ln^q x}}{\frac{1}{x^{p+\varepsilon}}} = \frac{x^{\varepsilon}}{\ln^q x} \to +\infty, x \to +\infty.$$

于是存在M>0,使得

$$\frac{1}{x^p \ln^q x} > \frac{M}{x^{p+\varepsilon}}, x \to +\infty.$$

而 $\int_2^\infty \frac{M}{x^{p+\varepsilon}} dx$ 发散,故 $\int_2^\infty \frac{1}{x^p \ln^q x} dx$ 此时发散.

$$\int_{2}^{\infty} \frac{1}{x \ln^{q} x} dx = \int_{2}^{\infty} \frac{1}{\ln^{q} x} d\ln x = \int_{\ln 2}^{\infty} \frac{1}{t^{q}} dt.$$

于是此时 $\int_{2}^{\infty} \frac{1}{r \ln^{q} x} dx$ 收敛当且仅当 q > 1.

综上所述,
$$\int_{1}^{\infty} \frac{1}{x^{p} \ln^{q} x} dx$$
 收敛当且仅当 $p > 1, q < 1$.

例题 **6.4** 对 $a, b \in \mathbb{R}$, 判断 $\int_{0}^{\infty} \frac{\sin x^{b}}{x^{a}} dx$ 的收敛性和绝对收敛性.

- 证明 收敛性:
 1. 当 b = 0 时, 此时 $\int_0^\infty \frac{\sin 1}{x^a} dx$ 必定发散.
 - 2. 当 b ≠ 0 时, 我们有

$$\int_0^{+\infty} \frac{\sin x^b}{x^a} dx \xrightarrow{\underline{y=x^b}} \frac{1}{|b|} \int_0^{+\infty} \frac{\sin y}{y^{\frac{a}{b}}} y^{\frac{1}{b}-1} dy = \frac{1}{|b|} \int_0^{+\infty} \frac{\sin y}{y^{\frac{a-1}{b}+1}} dy. \tag{6.2}$$

(a). 先考虑 $\int_0^1 \frac{\sin y}{v^{\frac{a-1}{b}+1}} dy$. 注意到

$$\frac{\sin y}{y^{\frac{a-1}{b}+1}} \sim \frac{1}{y^{\frac{a-1}{b}}}, x \to 0^+.$$

因此 $\int_{0}^{1} \frac{\sin y}{\frac{a-1}{h}} dy$ 收敛当且仅当 $\frac{a-1}{h} < 1$

(b). 再考虑 $\int_{1}^{+\infty} \frac{\sin y}{v^{\frac{a-1}{b}+1}} dy.$

I. 当
$$\frac{a-1}{b} + 1 \le 0$$
 时, 我们有

$$\left| \int_{\frac{\pi}{4} + 2n\pi}^{\frac{\pi}{2} + 2n\pi} \frac{\sin y}{y^{\frac{a-1}{b} + 1}} dy \right| \geqslant \left(\frac{\pi}{4} + 2n\pi \right)^{-\left(\frac{a-1}{b} + 1\right)} \left| \int_{\frac{\pi}{4} + 2n\pi}^{\frac{\pi}{2} + 2n\pi} \sin y dy \right|$$

$$= \left(\frac{\pi}{4} \right)^{-\left(\frac{a-1}{b} + 1\right)} \left| \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin y dy \right| = \left(\frac{\pi}{4} \right)^{-\left(\frac{a-1}{b} + 1\right)} \left(1 - \frac{\sqrt{2}}{2} \right), \forall n \in \mathbb{N}.$$

因此由 Cauchy 收敛准则可知, 此时 $\int_{1}^{+\infty} \frac{\sin y}{v^{\frac{a-1}{b}+1}} dy$ 发散.

II. 当 $\frac{a-1}{b} + 1 > 0$ 时, 我们有

$$\left| \int_0^x \sin y \, \mathrm{d}y \right| \leqslant 2 \, (\forall x > 0), \quad \frac{1}{v^{\frac{a-1}{b}+1}} \, \dot{\mathbb{P}} \, \ddot{\mathbb{E}} \, \ddot{\mathbb{E}} \, \pm \, 0 \, (y \to +\infty).$$

于是由 Dirichlet 判别法可知, 此时 $\int_{1}^{+\infty} \frac{\sin y}{y^{\frac{q-1}{p-1}+1}} dy$ 收敛.

综上,
$$\int_0^\infty \frac{\sin x^b}{x^a} dx$$
 收敛当且仅当 $b \neq 0$ 且 $-1 < \frac{a-b}{b} < 1$.

绝对收敛性: 在
$$-1 < \frac{a-1}{b} < 1, b \neq 0$$
 情况下, 先考虑 $\int_0^1 \frac{|\sin y|}{v^{\frac{a-1}{b}+1}} \mathrm{d}y$. 我们有

$$\frac{|\sin y|}{v^{\frac{a-1}{b}+1}} \sim \frac{1}{v^{\frac{a-1}{b}}}, x \to 0^+.$$

又因为
$$\frac{a-1}{b} < 1$$
, 所以 $\int_0^1 \frac{1}{y^{\frac{a-1}{b}}} \mathrm{d}y$ 必收敛, 因此 $\int_0^1 \frac{|\sin y|}{y^{\frac{a-1}{b}+1}} \mathrm{d}y$ 必绝对收敛.

再考虑
$$\int_{1}^{+\infty} \frac{|\sin y|}{y^{\frac{a-1}{b}+1}} dy$$
. 当 $\frac{a-1}{b} > 0$, 注意到由(6.2)知道

$$\int_{1}^{+\infty} \frac{\sin x^{b}}{x^{a}} \mathrm{d}x = \frac{1}{|b|} \int_{1}^{\infty} \frac{|\sin y|}{v^{\frac{a-1}{b}+1}} \mathrm{d}y \leqslant \frac{1}{|b|} \int_{1}^{\infty} \frac{1}{v^{\frac{a-1}{b}+1}} < \infty,$$

故此时 $\int_1^{+\infty} \frac{|\sin y|}{y^{\frac{a-1}{b}+1}} dy$ 绝对收敛.

当
$$\frac{a-1}{b} \leq 0$$
, 我们有

$$\frac{1}{|b|} \int_{1}^{\infty} \frac{|\sin y|}{y^{\frac{a-1}{b}+1}} dy \geqslant \frac{1}{|b|} \int_{1}^{\infty} \frac{|\sin y|^{2}}{y^{\frac{a-1}{b}+1}} dy = \frac{1}{2|b|} \int_{1}^{\infty} \frac{1 - \cos(2y)}{y^{\frac{a-1}{b}+1}} dy
= \frac{1}{2|b|} \int_{1}^{\infty} \frac{1}{y^{\frac{a-1}{b}+1}} dy - \frac{1}{2|b|} \int_{1}^{\infty} \frac{\cos(2y)}{y^{\frac{a-1}{b}+1}} dy$$

显然
$$\int_1^\infty \frac{1}{v^{\frac{a-1}{b}+1}} \mathrm{d}y$$
 收敛, 由 Dirichlet 判别法可知 $\int_1^\infty \frac{\cos(2y)}{v^{\frac{a-1}{b}+1}} \mathrm{d}y$ 发散. 故此时 $\int_1^{+\infty} \frac{|\sin y|}{v^{\frac{a-1}{b}+1}} \mathrm{d}y$ 发散.

综上, 这就证明了原积分在 $-1 < \frac{a-1}{b} \le 0, b \ne 0$ 情况下条件收敛, $0 < \frac{a-1}{b} < 1, b \ne 0$ 情况下绝对收敛. \square

例题 6.5 判断收敛性 $\int_{e^2}^{\infty} \frac{1}{\ln^{\ln x} x} dx$.

拿 笔记 注意运用 x□ = e□ ln x = (e□) ln x

证明 注意到

$$\int_{e^2}^{\infty} \frac{1}{\ln^{\ln x} x} dx = \int_{e^2}^{\infty} \frac{1}{e^{\ln x \cdot \ln \ln x}} dx = \int_{e^2}^{\infty} \frac{1}{e^{\ln x \cdot \ln \ln x}} dx$$

$$= \int_{e^2}^{+\infty} \frac{1}{x^{\ln \ln x}} dx = \int_{e^2}^{e^{e^2}} \frac{1}{x^{\ln \ln x}} dx + \int_{e^{e^2}}^{\infty} \frac{1}{x^{\ln \ln x}} dx$$

$$\leq \int_{e^2}^{e^{e^2}} \frac{1}{x^{\ln \ln x}} dx + \int_{e^{e^2}}^{\infty} \frac{1}{x^2} dx < +\infty.$$

故原积分收敛.

例题 66 判断收敛性和绝对收敛性

1.
$$\int_{1}^{\infty} \tan\left(\frac{\sin x}{x}\right) dx,$$

$$2. \int_{2}^{\infty} \frac{\sin x}{x^p (x^p + \sin x)} \mathrm{d}x, p > 0.$$

拿 笔记 经验上,Taylor 公式应该展开到余项里面的函数绝对收敛为止.

证明

1. 由 Taylor 公式可知

$$\tan\frac{\sin x}{x} = \frac{\sin x}{x} + O\left(\frac{\sin^3 x}{x^3}\right), x \to +\infty. \tag{6.3}$$
由 Dirichlet 判别法可知 $\int_1^\infty \frac{\sin x}{x} \mathrm{d}x$ 收敛, 显然有 $\int_1^\infty \frac{\sin x}{x} \mathrm{d}x$ 条件收敛. 注意到
$$\left|O\left(\frac{\sin^3 x}{x^3}\right)\right| \leqslant M \left|\frac{\sin x}{x}\right|^3 \leqslant \frac{M}{x^3}, x \to +\infty.$$

故
$$\int_1^\infty O\left(\frac{\sin^3 x}{x^3}\right) \mathrm{d}x$$
 绝对收敛. 因此由(6.3)式可得 $\int_1^\infty \tan\frac{\sin x}{x} \mathrm{d}x$ 条件收敛.

2. 注意到

$$\int_{2}^{+\infty} \frac{\sin x}{x^{p}(x^{p} + \sin x)} dx = \int_{2}^{+\infty} \frac{\frac{\sin x}{x^{p}}}{x^{p}(1 + \frac{\sin x}{x^{p}})} dx.$$

取 $m \in \mathbb{N}$, 使 $m > \frac{1}{p} - 1$. 由 Taylor 公式可知

$$\frac{t}{1+t} = t - t^2 + \dots + (-1)^m t^{m-1} + O(t^m), t \to 0^+.$$

从而

$$\frac{\frac{\sin x}{x^p}}{x^p(1+\frac{\sin x}{x})} = \frac{\sin x}{x^{2p}} - \frac{\sin^2 x}{x^{3p}} + \dots + (-1)^m \frac{\sin^{m-1} x}{x^{mp}} + O\left(\frac{\sin^m x}{x^{(m+1)p}}\right), x \to +\infty.$$
 (6.4)

注意到

$$\frac{\sin^2 x}{x^{3p}} = \frac{1}{2x^{3p}} - \frac{\cos 2x}{x^{3p}},\tag{6.5}$$

(i) 当 $p \le \frac{1}{3}$ 时,有 $\int_{2}^{+\infty} \frac{1}{2x^{3p}} dx$ 发散,从而此时 $\int_{2}^{+\infty} \frac{\sin x}{x^{p}(x^{p} + \sin x)} dx$ 发散.

(ii) 当 $p > \frac{1}{3}$ 时,有 $\int_{2}^{+\infty} \frac{1}{2x^{3p}} dx$ 收敛,并且由 Dirichlet 判别法可知 $\int_{2}^{+\infty} \frac{\sin x}{x^{2p}} dx$, $\int_{2}^{+\infty} \frac{\cos 2x}{x^{3p}} dx$ 收敛. 从而由(6.5)式可知,此时 $\int_{2}^{+\infty} \frac{\sin^{2} x}{x^{3p}} dx$ 收敛. 又因为对 $\forall k \geq 2$,都有

$$\left|\frac{\sin^k x}{x^{(k+1)p}}\right| \leqslant \frac{1}{x^{(k+1)p}} \leqslant \frac{1}{x^{3p}}, \forall x > 2.$$

而 $\int_{2}^{+\infty} \frac{1}{x^{3p}} dx$ 收敛, 所以此时 $\int_{2}^{+\infty} \frac{\sin^{k} x}{x^{(k+1)p}} dx$ 都绝对收敛. 故由(6.4)式可知, 此时原积分收敛.

综上, 原积分在 $p \leq \frac{1}{3}$ 时发散, $p > \frac{1}{3}$ 收敛. 再讨论绝对收敛性.

(a). 当 $p > \frac{1}{2}$ 时,由 M 判别法易知 $\int_{2}^{+\infty} \frac{\sin^{k} x}{x^{(k+1)p}} dx (1 \leqslant k \leqslant m)$ 绝对收敛. 再由(6.4)式可知,此时原积分绝对收敛.

(b). 当 $\frac{1}{3} 时, 我们有$

$$\left|\frac{\sin x}{x^{2p}}\right| \geqslant \frac{\sin^2 x}{x^{2p}} = \frac{1}{2x^{2p}} - \frac{\cos 2x}{2x^{2p}}.$$
 显然 $\int_2^{+\infty} \frac{1}{2x^{2p}} dx$ 发散, 故此时 $\int_2^{+\infty} \frac{\sin x}{x^{2p}} dx$ 条件收敛. 注意到对 $\forall k \geqslant 2$, 都有
$$\left|\frac{\sin^k x}{x^{(k+1)p}}\right| \leqslant \frac{1}{x^{(k+1)p}} \leqslant \frac{1}{x^{3p}}, \forall x > 2.$$

而显然此时 $\int_2^{+\infty} \frac{1}{x^{3p}} dx$ 收敛, 故 $\int_2^{+\infty} \frac{\sin^k x}{x^{(k+1)p}} dx (2 \leqslant k \leqslant m)$ 绝对收敛. 因此再由(6.4)式及命题 6.1(3)可知原积分此时条件收敛.

例题 6.7 设 f(x) 在 \mathbb{R} 上非负连续,对任意正整数 k 有 $\int_{-\infty}^{+\infty} e^{-\frac{|x|}{k}} f(x) dx \leqslant 1$, 证明: $\int_{-\infty}^{+\infty} f(x) dx \leqslant 1$. 注 实际上,由实变函数相关结论可直接得到

$$\lim_{k \to \infty} \int_{\mathbb{R}} e^{-\frac{|x|}{k}} f(x) dx = \int_{\mathbb{R}} \left[\lim_{k \to \infty} e^{-\frac{|x|}{k}} f(x) \right] dx = \int_{\mathbb{R}} f(x) dx.$$

证明 由条件可得,对 $\forall A>0$,我们有

$$1 \geqslant \int_{-A}^{A} e^{-\frac{|x|}{k}} f(x) dx \geqslant e^{-\frac{1}{k}} \int_{-A}^{A} f(x) dx. \Rightarrow \int_{-A}^{A} f(x) dx \leqslant e^{-\frac{1}{k}}, \forall k \in \mathbb{N}.$$

令
$$k \to \infty$$
, 则 $\int_{-A}^{A} f(x) dx \le 1$, $\forall A > 0$. 于是再令 $A \to +\infty$, 可得 $\int_{\mathbb{R}} f(x) dx \le 1$.

实际上再由单调有界可知
$$\int_{\mathbb{R}} f(x) dx$$
 收敛.

例题 6.8 对实数 a, 讨论 $\int_0^\infty \frac{x}{\cos^2 x + x^a \sin^2 x} dx$ 的敛散性. 证明 证法一: 先讨论 $\int_0^1 \frac{x}{\cos^2 x + x^a \sin^2 x} dx$ 的敛散性. 注意到

$$\int_0^1 \frac{x}{\cos^2 x + x^a \sin^2 x} dx \leqslant \int_0^1 \frac{1}{\cos^2 x} dx = \tan x \Big|_0^1 = \tan 1 < \infty, \quad \forall a \in \mathbb{R}.$$

故 $\forall a \in \mathbb{R}$, 都有 $\int_0^1 \frac{x}{\cos^2 x + x^a \sin^2 x} dx$ 收敛. 再讨论 $\int_1^\infty \frac{x}{\cos^2 x + x^a \sin^2 x} dx$ 的敛散性.

$$\int_{1}^{\infty} \frac{x}{\cos^{2} x + x^{a} \sin^{2} x} dx \geqslant \int_{1}^{\infty} \frac{x}{\cos^{2} x + x^{2} \sin^{2} x} dx \geqslant \int_{1}^{\infty} \frac{x}{x^{2} + 1} dx = \frac{1}{2} \int_{1}^{\infty} \frac{1}{x^{2} + 1} d(x^{2} + 1) = +\infty.$$

$$\int_{n\pi}^{(n+1)\pi} \frac{x}{\cos^2 x + x^a \sin^2 x} dx = \int_0^{\pi} \frac{x + n\pi}{\cos^2 x + (x + n\pi)^a \sin^2 x} dx \sim n\pi \int_0^{\pi} \frac{1}{\cos^2 x + (n\pi)^a \sin^2 x} dx, \quad n \to \infty.$$
(6.6)

注意到对 $\forall \lambda > 0$, 我们都有

$$\int_0^\pi \frac{1}{\cos^2 x + \lambda \sin^2 x} dx = 2 \int_0^{\frac{\pi}{2}} \frac{1}{\cos^2 x + \lambda \sin^2 x} dx = 2 \int_0^{\frac{\pi}{2}} \frac{1}{1 + \lambda \tan^2 x} \cdot \frac{1}{\cos^2 x} dx = 2 \int_0^\infty \frac{1}{1 + \lambda t^2} dt = \frac{\pi}{\sqrt{\lambda}}.$$
故再结合(6.6)式可知

$$\int_{n\pi}^{(n+1)\pi} \frac{x}{\cos^2 x + x^a \sin^2 x} dx \sim n\pi \int_0^{\pi} \frac{1}{\cos^2 x + (n\pi)^a \sin^2 x} dx \sim n\pi \frac{\pi}{(n\pi)^{\frac{a}{2}}} \sim \frac{1}{n^{\frac{a}{2}-1}}, \quad n \to \infty.$$

$$\int_{1}^{\infty} \frac{x}{\cos^{2} x + x^{a} \sin^{2} x} dx \sim \int_{\pi}^{\infty} \frac{x}{\cos^{2} x + x^{a} \sin^{2} x} dx = \sum_{n=1}^{\infty} \int_{n\pi}^{(n+1)\pi} \frac{x}{\cos^{2} x + x^{a} \sin^{2} x} dx \sim \sum_{n=1}^{\infty} \frac{1}{n^{\frac{a}{2}-1}}, \quad n \to \infty.$$

从而当 $\frac{a}{2}-1 \le 1$ 时,即 $2 < a \le 4$, $\int_{1}^{\infty} \frac{x}{\cos^2 x + x^a \sin^2 x} dx$ 发散;当 $\frac{a}{2}-1 > 1$,即a > 4时, $\int_{1}^{\infty} \frac{x}{\cos^2 x + x^a \sin^2 x} dx$

综上, 当 a > 4 时, $\int_0^\infty \frac{x}{\cos^2 x + x^a \sin^2 x} dx$ 收敛; 当 $a \le 4$ 时, $\int_0^\infty \frac{x}{\cos^2 x + x^a \sin^2 x} dx$ 发散. 证法二:由于被积函数非负, 因此由命题 6.3可知

$$\int_0^{+\infty} \frac{x}{\cos^2 x + x^a \sin^2 x} dx = \lim_{n \to \infty} \int_0^{n\pi} \frac{x}{\cos^2 x + x^a \sin^2 x} dx$$

$$= \sum_{n=1}^{\infty} \int_{(n-1)\pi}^{n\pi} \frac{x}{\cos^2 x + x^a \sin^2 x} dx$$

$$= \sum_{n=1}^{\infty} \int_0^{\pi} \frac{(n-1)\pi + y}{\cos^2 y + [(n-1)\pi + y]^a \sin^2 y} dy.$$

一方面,我们有

$$\begin{split} \sum_{n=1}^{\infty} \int_{0}^{\pi} \frac{(n-1)\pi + y}{\cos^{2} y + \left[(n-1)\pi + y \right]^{a} \sin^{2} y} \mathrm{d}y & \leq \sum_{n=1}^{\infty} \int_{0}^{\pi} \frac{n\pi}{\cos^{2} y + \left[(n-1)\pi \right]^{a} \sin^{2} y} \mathrm{d}y \\ & = \sum_{n=1}^{\infty} \int_{0}^{\frac{\pi}{2}} \frac{2n\pi}{\cos^{2} y + \left[(n-1)\pi \right]^{a} \sin^{2} y} \mathrm{d}y \\ & = \sum_{n=1}^{\infty} \int_{0}^{\frac{\pi}{2}} \frac{\frac{2n\pi}{\cos^{2} y}}{1 + \left[(n-1)\pi \right]^{a} \tan^{2} y} \mathrm{d}y \end{split}$$

$$\frac{t = \tan y}{2\pi} 2\pi \sum_{n=1}^{\infty} n \int_{0}^{+\infty} \frac{dt}{1 + [(n-1)\pi]^{a} t^{2}}$$

$$= \pi^{2} \sum_{n=1}^{\infty} \frac{n}{\sqrt{[(n-1)\pi]^{a}}} \sim \sum_{n=1}^{\infty} \frac{C_{1}}{n^{\frac{a}{2}-1}}, n \to \infty.$$

故当 a < 4 时, 有 $\frac{a}{2} - 1 < 1$, 此时原积分收敛. 另一方面, 我们有

$$\begin{split} \sum_{n=1}^{\infty} \int_{0}^{\pi} \frac{(n-1)\pi + y}{\cos^{2}y + \left[(n-1)\pi + y\right]^{a} \sin^{2}y} \mathrm{d}y & \geqslant \sum_{n=1}^{\infty} \int_{0}^{\pi} \frac{(n-1)\pi}{\cos^{2}y + (n\pi)^{a} \sin^{2}y} \mathrm{d}y \\ & = \sum_{n=1}^{\infty} \int_{0}^{\frac{\pi}{2}} \frac{2(n-1)\pi}{\cos^{2}y + (n\pi)^{a} \sin^{2}y} \mathrm{d}y \\ & = \sum_{n=1}^{\infty} \int_{0}^{\frac{\pi}{2}} \frac{\frac{2(n-1)\pi}{\cos^{2}y}}{1 + (n\pi)^{a} \tan^{2}y} \mathrm{d}y \\ & = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (n-1) \int_{0}^{+\infty} \frac{\mathrm{d}t}{1 + (n\pi)^{a} t^{2}} \\ & = \pi^{2} \sum_{n=1}^{\infty} \frac{n-1}{\sqrt{(n\pi)^{a}}} \sim \sum_{n=1}^{\infty} \frac{C_{2}}{n^{\frac{a}{2}-1}}, n \to \infty. \end{split}$$

故当 $a \ge 4$ 时, 有 $\frac{a}{2} - 1 \ge 1$, 此时原积分发散.

例题 **6.9** 对 x > 0, 判断积分 $\int_0^\infty \frac{[t] - t + a}{t + x} dt$ 收敛性.

证明 注意到

$$\lim_{n \to \infty} \int_{1}^{n} \frac{[t] - t + a}{t + x} dt = \lim_{n \to \infty} \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{k - t + a}{t + x} dt = \sum_{k=1}^{\infty} \int_{k}^{k+1} \frac{k - t + a}{t + x} dt$$

$$= \sum_{k=1}^{\infty} \left[(a + k + x) \ln \left(1 + \frac{1}{k + x} \right) - 1 \right] = \sum_{k=1}^{\infty} \left[\frac{a - \frac{1}{2}}{k} + O\left(\frac{1}{k^{2}}\right) \right]. \tag{6.7}$$

故当 $a \neq \frac{1}{2}$ 时,有 $\sum_{k=1}^{\infty} \frac{a-\frac{1}{2}}{k}$ 发散,从而结合(6.7)式可知,此时 $\lim_{n\to\infty} \int_{1}^{n} \frac{[t]-t+\frac{1}{2}}{t+x} dt$ 不存在. 因此由子列极限命题 (a)可知,此时 $\int_{0}^{\infty} \frac{[t]-t+a}{t+x} dt$ 发散.

当
$$a=\frac{1}{2}$$
 时,有

$$\lim_{n \to \infty} \int_{1}^{n} \frac{[t] - t + \frac{1}{2}}{t + x} dt = \sum_{k=1}^{\infty} O\left(\frac{1}{k^{2}}\right) \leqslant M \sum_{k=1}^{\infty} \frac{1}{k^{2}} < \infty.$$
 (6.8)

对 $\forall y > 0$, 存在唯一 $n \in \mathbb{N}$, 使得 $n \leq y < n+1$. 于是

$$\int_0^y \frac{[t] - t + \frac{1}{2}}{t + x} dt = \int_0^n \frac{[t] - t + \frac{1}{2}}{t + x} dt + \int_n^y \frac{[t] - t + \frac{1}{2}}{t + x} dt.$$
 (6.9)

注意到

$$\left| \int_{n}^{y} \frac{[t] - t + \frac{1}{2}}{t + x} dt \right| \leqslant \int_{n}^{y} \frac{1 + \frac{1}{2}}{t + x} dt \leqslant \frac{3}{2} \int_{n}^{n+1} \frac{1}{t + x} dt = \frac{3}{2} \ln \frac{n + 1 + x}{n + x}.$$

当 $y \to +\infty$ 时, 有 $n \to +\infty$, 故 $\int_{0}^{y} \frac{[t]-t+\frac{1}{2}}{t+x} dt \to 0, y \to +\infty$. 再结合(6.8)(6.9)式可知

$$\int_0^\infty \frac{[t]-t+\frac{1}{2}}{t+x} dt = \lim_{n \to \infty} \int_0^n \frac{[t]-t+\frac{1}{2}}{t+x} dt < \infty.$$

故当
$$a = \frac{1}{2}$$
 时, $\int_0^\infty \frac{[t] - t + \frac{1}{2}}{t + x} dt$ 收敛.

例题 **6.10** 对正整数 n, 讨论 $\int_{0}^{+\infty} x^{n} e^{-x^{12} \sin^{2} x} dx$ 的敛散性.

$$\int_{k\pi}^{(k+1)\pi} x^n e^{-x^{12}\sin^2 x} dx = \int_0^{\pi} (x+k\pi)^n e^{-(x+k\pi)^{12}\sin^2 x} dx \sim (k\pi)^n \int_0^{\pi} e^{-(x+k\pi)^{12}\sin^2 x} dx, \quad k \to \infty.$$
 (6.10)

$$\int_0^{\pi} e^{-\lambda \sin^2 x} dx = 2 \int_0^{\frac{\pi}{2}} e^{-\lambda \sin^2 x} dx \geqslant 2 \int_0^{\frac{\pi}{2}} e^{-\lambda x^2} dx = \frac{2}{\sqrt{\lambda}} \int_0^{\frac{\pi}{2}\sqrt{\lambda}} e^{-x^2} dx \sim \sqrt{\frac{\pi}{\lambda}}, \quad \lambda \to +\infty,$$

$$\int_0^{\pi} e^{-\lambda \sin^2 x} dx = 2 \int_0^{\frac{\pi}{2}} e^{-\lambda \sin^2 x} dx \leqslant 2 \int_0^{\frac{\pi}{2}} e^{-\lambda \frac{4}{\pi^2} x^2} dx = \frac{\pi}{\sqrt{\lambda}} \int_0^{\sqrt{\lambda}} e^{-x^2} dx \sim \frac{\pi \sqrt{\pi}}{2\sqrt{\lambda}}, \quad \lambda \to +\infty.$$

故 $\int_0^{\pi} e^{-\lambda \sin^2 x} dx \sim \frac{C}{\sqrt{L}}, \lambda \to +\infty,$ 其中 C 为某一常数. 因此

$$\int_0^{\pi} e^{-(k\pi)^{12} \sin^2 x} dx \sim \frac{C}{(k\pi)^6}, \quad k \to +\infty,$$

$$\int_0^{\pi} e^{-[(k+1)\pi]^{12} \sin^2 x} dx \sim \frac{C}{[(k+1)\pi]^6}, \quad k \to +\infty.$$

又因为

$$\int_0^{\pi} e^{-[(k+1)\pi]^{12} \sin^2 x} \mathrm{d}x \leqslant \int_0^{\pi} e^{-(x+k\pi)^{12} \sin^2 x} \mathrm{d}x \leqslant \int_0^{\pi} e^{-(k\pi)^{12} \sin^2 x} \mathrm{d}x,$$

所以 $\int_{0}^{\pi} e^{-(x+k\pi)^{12}\sin^2 x} dx \sim \frac{C_1}{k^6}, k \to +\infty$, 其中 C_1 为某一常数. 于是结合(6.10)式可知

$$\int_{k\pi}^{(k+1)\pi} x^n e^{-x^{12} \sin^2 x} dx = \int_0^{\pi} (x + k\pi)^n e^{-(x + k\pi)^{12} \sin^2 x} dx \sim (k\pi)^n \int_0^{\pi} e^{-(x + k\pi)^{12} \sin^2 x} dx \sim C_2 k^{n-6}, \quad k \to \infty.$$

其中 C_2 为某一常数. 因此

$$\int_{\pi}^{\infty} x^n e^{-x^{12} \sin^2 x} dx = \sum_{k=1}^{\infty} \int_{k\pi}^{(k+1)\pi} x^n e^{-x^{12} \sin^2 x} dx \sim \sum_{k=1}^{\infty} C_2 k^{n-6}, \quad k \to \infty.$$

故当 n < 5 时, $\int_{-\infty}^{\infty} x^n e^{-x^{12} \sin^2 x} dx$ 收敛; 当 $n \ge 5$ 时, $\int_{-\infty}^{\infty} x^n e^{-x^{12} \sin^2 x} dx$ 发散. 又因为

$$\int_0^\pi x^n e^{-x^{12}\sin^2 x} \mathrm{d}x \leqslant \pi^n,$$

所以 $\int_{-\pi}^{\pi} x^n e^{-x^{12} \sin^2 x} dx$ 对 $\forall n \in \mathbb{N}$ 都收敛. 从而由

$$\int_0^\infty x^n e^{-x^{12}\sin^2 x} dx = \int_0^\pi x^n e^{-x^{12}\sin^2 x} dx + \int_\pi^\infty x^n e^{-x^{12}\sin^2 x} dx,$$

可知当 n < 5 时, $\int_{0}^{\infty} x^{n} e^{-x^{12} \sin^{2} x} dx$ 收敛; 当 $n \ge 5$ 时, $\int_{0}^{\infty} x^{n} e^{-x^{12} \sin^{2} x} dx$ 发散.

例题 6.11 设 p,q 为正整数, 求反常积分 $I(p,q) = \int_0^{+\infty} \frac{\cos^p x - \cos^q x}{x} \mathrm{d}x$ 收敛的充要条件. 证明 因为当 p=q 时, 积分显然收敛, 所以只需考虑 $p \neq q$ 的情形. 由 I(q,p) = -I(p,q) 可知, 可以不妨设 p > q,

否则用 I(q,p) = -I(p,q) 代替 I(p,q) 即可

先讨论 $\int_{-r}^{1} \frac{\cos^p x - \cos^q x}{r} dx$ 的敛散性. 由 Taylor 定理可知, 对 $\forall \varepsilon \in (0,1)$, 存在 $\delta > 0$, 使得

$$-\frac{x^2}{2} - \varepsilon x^2 \leqslant \cos x \leqslant 1 - \frac{x^2}{2} + \varepsilon x^2, \quad \forall x \in [0, \delta].$$

于是

$$\int_0^1 \frac{\cos^p x - \cos^q x}{x} dx = \int_0^\delta \frac{\cos^p x - \cos^q x}{x} dx + \int_\delta^1 \frac{\cos^p x - \cos^q x}{x} dx$$

$$\leq \int_0^\delta \frac{(1 - \frac{x^2}{2} + \varepsilon x^2)^p - (1 - \frac{x^2}{2} - \varepsilon x^2)^q}{x} dx + \frac{2}{\delta} (1 - \delta)$$

$$\leq \int_0^\delta \frac{\frac{q - p + (p - q)\varepsilon}{2} x^2 + (p + q)C_p^2 x^4}{x} dx + \frac{2}{\delta} (1 - \delta)$$

$$= \frac{q - p + (p - q)\varepsilon}{4} \delta + \frac{(p + q)C_p^2}{4} \delta + \frac{2}{\delta} (1 - \delta).$$

 $\oint \varepsilon \to 0^+$, 得 $\int_0^1 \frac{\cos^p x - \cos^q x}{x} dx \leqslant \frac{q-p}{4} \delta + \frac{(p+q)C_p^2}{4} \delta + \frac{2}{\delta} (1-\delta)$. 故对 $\forall p > q \perp p, q \in \mathbb{N}$, 都有 $\int_0^1 \frac{\cos^p x - \cos^q x}{x} dx$

收敛. 再讨论 $\int_{1}^{\infty} \frac{\cos^{p} x - \cos^{q} x}{x} dx$ 的敛散性. (i) 当 p,q 都是奇数时, 由定理 A.13可知

$$\cos^{p} x = \sum_{k=1}^{p} p_{k} \cos kx, \quad \sharp + p_{k} \in \mathbb{R}, k = 1, 2, \cdots, p.$$

$$\cos^{q} x = \sum_{k=1}^{q} q_{k} \cos kx, \quad \sharp + q_{k} \in \mathbb{R}, k = 1, 2, \cdots, q.$$

从而此时

$$\int_{1}^{\infty} \frac{\cos^{p} x - \cos^{q} x}{x} dx = \int_{1}^{\infty} \frac{\sum_{k=1}^{p} p_{k} \cos kx - \sum_{k=1}^{q} q_{k} \cos kx}{x} dx$$

$$= \sum_{k=1}^{q} (p_{k} - q_{k}) \int_{1}^{\infty} \frac{\cos kx}{x} dx + \sum_{k=q+1}^{p} p_{k} \int_{1}^{\infty} \frac{\cos kx}{x} dx.$$

注意到对 $\forall k \in \mathbb{N}$ 都有

$$\int_{1}^{x} \cos kt dt = \frac{\sin kx - \sin k}{k} < 2, \quad \forall x > 1.$$

并且 $\frac{1}{x}$ 在 $[1,+\infty)$ 上单调递减趋于 0, 故由 Dirichlet 判别法可知, $\int_{1}^{\infty} \frac{\cos kx}{x} dx (k \in \mathbb{N})$ 都收敛. 因此再结合(??)式可 知, $\int_{1}^{\infty} \frac{\cos^{p} x - \cos^{q} x}{x} dx$ 收敛.

 \Box 至少有一个是偶数时, 不妨设 p 是偶数 q 不是偶数, 则由定理 A.13可知

$$\cos^{p} x = \frac{1}{2^{p-1}} \sum_{k=0}^{\frac{p}{2}-1} C_{p}^{k} \cos 2\left(\frac{p}{2} - k\right) x + \frac{C_{p}^{\frac{p}{2}}}{2^{p}}.$$

$$\cos^{q} x = \sum_{k=1}^{q} q_{k} \cos kx \quad \sharp \, \forall q_{k} \in \mathbb{R} \quad k = 1, 2, \cdots, q.$$

于是

$$\int_{1}^{\infty} \frac{\cos^{p} x - \cos^{q} x}{x} dx = \int_{1}^{\infty} \frac{\frac{1}{2^{p-1}} \sum_{k=0}^{\frac{p}{2}-1} C_{p}^{k} \cos 2\left(\frac{p}{2} - k\right) x - \sum_{k=1}^{q} q_{k} \cos kx + \frac{C_{p}^{\frac{p}{2}}}{2^{p}}}{x} dx}{x}$$

$$= \int_{1}^{\infty} \frac{\frac{1}{2^{p-1}} \sum_{k=0}^{\frac{p}{2}-1} C_{p}^{k} \cos 2\left(\frac{p}{2} - k\right) x - \sum_{k=1}^{q} q_{k} \cos kx}{x} dx + \frac{C_{p}^{\frac{p}{2}}}{2^{p}} \int_{1}^{\infty} \frac{1}{x} dx.$$

$$\pm \int_{1}^{\infty} \frac{1}{x} dx \ \not \Xi_{p}^{k}, \ \not \Xi_{p}^$$

证明 对 / 进行积分换元可得

$$I = \int_0^1 \frac{\cos\left(\frac{1}{1-x}\right)}{\sqrt[p]{1-x^2}} dx \xrightarrow{u=\frac{1}{1-x}} \int_1^\infty \frac{\cos u}{\left(1-\left(1-\frac{1}{u}\right)^2\right)^{\frac{1}{p}}} \cdot \frac{1}{u^2} du$$
$$= \int_1^\infty \frac{\cos u}{\left(\frac{2}{u}-\frac{1}{u^2}\right)^{\frac{1}{p}} u^2} du = \int_1^\infty \frac{\cos u}{\left(2-\frac{1}{u}\right)^{\frac{1}{p}} u^{2-\frac{1}{p}}} du. \tag{6.11}$$

(i) 当
$$p > \frac{1}{2}$$
 时, 令 $f(u) = \left[\left(2 - \frac{1}{u} \right)^{\frac{1}{p}} u^{2 - \frac{1}{p}} \right]^p = \left(2 - \frac{1}{u} \right) u^{2p-1}$, 则显然有 $\lim_{u \to +\infty} f(u) = +\infty$ 且 $f(u)$ 递增. 于 是 $\frac{1}{\left(\frac{2}{u} - \frac{1}{u^2} \right)^{\frac{1}{p}} u^2} = \frac{1}{\sqrt[p]{f(u)}}$ 在 $[1, +\infty)$ 上单调递减趋于 0. 又显然有 $\int_1^A \cos x dx$ 关于 A 有界,所以结合(6.11)式,再

由 Dirichlet 判别法可知
$$I$$
 收敛.

(ii) 当 $p \in \left[0, \frac{1}{2}\right]$ 时,若 $p = \frac{1}{2}$,则 $\lim_{u \to +\infty} \frac{1}{\left(2 - \frac{1}{u}\right)^{\frac{1}{p}} u^{2 - \frac{1}{p}}} = 2$;若 $p \in \left[0, \frac{1}{2}\right)$,则 $\lim_{u \to +\infty} \frac{1}{\left(2 - \frac{1}{u}\right)^{\frac{1}{p}} u^{2 - \frac{1}{p}}} = +\infty$. 因

此对 $\forall p \in \left[0, \frac{1}{2}\right]$, 都存在 K > 0, 使得

$$\frac{1}{\left(2 - \frac{1}{u}\right)^{\frac{1}{p}} u^{2 - \frac{1}{p}}} \geqslant 1, \forall u > K.$$

于是对 $\forall k \in \mathbb{N} \cap (K, +\infty)$, 都有

$$\left| \int_{\frac{k\pi}{2}}^{\frac{(k+1)\pi}{2}} \frac{\cos u}{\left(2 - \frac{1}{u}\right)^{\frac{1}{p}} u^{2 - \frac{1}{p}}} du \right| \geqslant \left| \int_{\frac{k\pi}{2}}^{\frac{(k+1)\pi}{2}} \cos u du \right| = 1.$$

故由 Cauchy 收敛准则可知, $I = \int_1^\infty \frac{\cos u}{(2-\frac{1}{a})^{\frac{1}{p}} u^{2-\frac{1}{p}}} du$ 发散.

$$g'(u) = \frac{2}{p} u^{-\frac{1}{p}} \left(2 - \frac{1}{u}\right)^{\frac{1}{p} - 1} + \left(2 - \frac{1}{p}\right) \left(2 - \frac{1}{u}\right)^{\frac{1}{p}} u^{1 - \frac{1}{p}} > 0, \forall u \in [1, +\infty) \,.$$

因此 g(u) 单调递增, 于是 $\frac{1}{\left(2-\frac{1}{u}\right)^{\frac{1}{p}}u^{2-\frac{1}{p}}}=\frac{1}{g(u)}$ 单调递减趋于 0. 又显然有 $\int_{1}^{A}\cos x \mathrm{d}x$ 关于 A 有界, 所以结

合(6.11)式, 再由 Dirichlet 判别法可知 I 收敛. **例题 6.13** 对实数 p, 讨论反常积分 $\int_0^\infty \frac{\sin\left(x+\frac{1}{x}\right)}{x^p} \mathrm{d}x$ 的敛散性.

$$\int_{1}^{\infty} \frac{\sin\left(x + \frac{1}{x}\right)}{x^{p}} \mathrm{d}x = \int_{u}^{\infty} \frac{\sin u}{\left(u + \sqrt{u^{2} - 4}\right)^{p}} \left(1 + \frac{u}{\sqrt{u^{2} - 4}}\right) \mathrm{d}u.$$

显然 $\int_0^A \sin u du$ 关于 A 有界. 再证明 $\frac{1+\frac{u}{\sqrt{u^2-4}}}{\left(u+\sqrt{u^2-4}\right)^p}$ 单调递减趋于 0, 就能利用 Dirichlet 判别法得到 $\int_1^\infty \frac{\sin\left(x+\frac{1}{x}\right)}{x^p} dx$

收敛. 再同理讨论 $\int_0^1 \frac{\sin\left(x+\frac{1}{x}\right)}{x^p} dx$ 即可. 这种方法虽然能做, 但是比较繁琐, 不适合考场中使用.

证明 显然
$$\int_0^\infty \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} dx$$
 有两个奇点 $x = 0, +\infty$.

(1) 当
$$p \leq 0$$
 时, 考虑区间 $\left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{3\pi}{4}\right]$, 则

$$x + \frac{1}{x} \in \left[2n\pi + \frac{\pi}{4} + \frac{1}{2n\pi + \frac{\pi}{4}}, 2n\pi + \frac{3\pi}{4} + \frac{1}{2n\pi + \frac{3\pi}{4}} \right].$$

于是当n > 10时,我们有

$$\int_{2n\pi + \frac{\pi}{4}}^{2n\pi + \frac{3\pi}{4}} \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} dx \geqslant \int_{2n\pi + \frac{\pi}{4}}^{2n\pi + \frac{3\pi}{4}} \sin\left(x + \frac{1}{x}\right) dx$$

$$\geqslant \int_{2n\pi + \frac{\pi}{4}}^{2n\pi + \frac{3\pi}{4}} \sin\left(2n\pi + \frac{3\pi}{4} + \frac{1}{2n\pi + \frac{3\pi}{4}}\right) dx$$

$$= \frac{\pi}{2} \sin\left(\frac{3\pi}{4} + \frac{1}{2n\pi + \frac{3\pi}{4}}\right) > 0.$$

因此由 Cauchy 收敛准则可知 $\int_1^\infty \frac{\sin\left(x+\frac{1}{x}\right)}{x^p} \mathrm{d}x$ 发散. 故此时 $\int_0^\infty \frac{\sin\left(x+\frac{1}{x}\right)}{x^p} \mathrm{d}x$ 发散.

(2) 当
$$p > 0$$
 时, 先考虑
$$\int_{1}^{\infty} \frac{\sin\left(x + \frac{1}{x}\right)}{x^{p}} dx.$$

(i) 若 p > 1, 则

$$\int_{1}^{\infty} \left| \frac{\sin\left(x + \frac{1}{x}\right)}{x^{p}} \right| \mathrm{d}x \leqslant \int_{1}^{\infty} \frac{1}{x^{p}} \mathrm{d}x < \infty.$$

因此 $\int_{1}^{\infty} \frac{\sin\left(x + \frac{1}{x}\right)}{x^{p}} dx$ 绝对收敛.

$$\int_{1}^{\infty} \frac{\sin\left(x + \frac{1}{x}\right)}{x^{p}} dx = \int_{1}^{\infty} \sin x \frac{\cos\frac{1}{x}}{x^{p}} dx + \int_{1}^{\infty} \cos x \frac{\sin\frac{1}{x}}{x^{p}} dx. \tag{6.12}$$

显然 $\int_{1}^{A} \cos x dx$ 关于 A 有界, 并且 $\frac{\sin \frac{1}{x}}{x^{p}}$ 在 $[1, +\infty)$ 上单调递减趋于 0, 故由 Dirichlet 判别法可知 $\int_{1}^{\infty} \frac{\cos x}{x^{p}} \sin \frac{1}{x} dx$ 收敛. 令 $f(u) = u^{p} \cos u$, 则当 $u \in \left(0, \frac{4p}{\pi}\right)$ 时, 有

$$f'(u) = pu^{p-1}\cos u - u^p\sin u = u^{p-1}\cos u \,(p - u\tan u) > 0.$$

于是 f(u) 在 $\left(0,\frac{4p}{\pi}\right)$ 上单调递增,从而 $\frac{\cos\frac{1}{x}}{x^p}=f\left(\frac{1}{x}\right)$ 在 $\left(\frac{\pi}{4}p,+\infty\right)$ 上单调递减趋于 0. 又显然 $\int_{\frac{\pi}{4}p}^A \sin x dx$ 关于 A 有界,故由 Dirichlet 判别法可知 $\int_{\frac{\pi}{4}p}^\infty \frac{\sin x}{x^p} \cos\frac{1}{x} dx$ 收敛,又 $\frac{\pi}{4}p<1$,故此时 $\int_1^\infty \frac{\sin x}{x^p} \cos\frac{1}{x} dx$ 收敛. 因此再由 $\left(6.12\right)$ 式可知 $\int_1^\infty \frac{\sin\left(x+\frac{1}{x}\right)}{x^p} dx$ 收敛.

$$\int_{1}^{\infty} \frac{\left|\sin\left(x + \frac{1}{x}\right)\right|}{x^{p}} \mathrm{d}x \geqslant \int_{1}^{\infty} \frac{\sin^{2}\left(x + \frac{1}{x}\right)}{x^{p}} \mathrm{d}x = \frac{1}{2} \int_{1}^{\infty} \frac{1}{x^{p}} \mathrm{d}x + \frac{1}{2} \int_{1}^{\infty} \frac{\cos\left(2x + \frac{2}{x}\right)}{x^{p}} \mathrm{d}x.$$

显然 $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ 发散. 故此时 $\int_{1}^{\infty} \frac{\sin\left(x + \frac{1}{x}\right)}{x^{p}} dx$ 条件收敛, 但不绝对收敛. 再考虑 $\int_{0}^{1} \frac{\sin\left(x + \frac{1}{x}\right)}{x^{p}} dx$.

(i) 若 $p \in (0,1)$, 则

$$\int_0^1 \frac{\left|\sin\left(x + \frac{1}{x}\right)\right|}{x^p} \mathrm{d}x \leqslant \int_0^1 \frac{1}{x^p} \mathrm{d}x < \infty.$$

故此时 $\int_0^1 \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} dx$ 绝对收敛.

(ii) 若 *p* ≥ 1, 则

$$\int_0^1 \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} dx \stackrel{x = \frac{1}{t}}{===} \int_1^\infty \frac{\sin\left(t + \frac{1}{t}\right)}{t^{2-p}} dt$$

此时 $2-p \le 1$. 于是当 $2-p \le 0$ 即 $p \ge 2$ 时,由 (1)可知 $\int_0^1 \frac{\sin\left(x+\frac{1}{x}\right)}{x^p} dx$ 发散.当 $2-p \in (0,1]$ 即 $p \in [1,2)$ 时,

由 (i) 可知 $\int_0^1 \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} dx$ 条件收敛, 但不绝对收敛.

综上, 当 $p \leqslant 0$ 时, $\int_0^\infty \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} \mathrm{d}x$ 发散; 当 $p \in (0, 2)$ 时, $\int_0^\infty \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} \mathrm{d}x$ 条件收敛; 当 $p \geqslant 2$ 时, $\int_0^\infty \frac{\sin\left(x + \frac{1}{x}\right)}{x^p} \mathrm{d}x$ 发散.

例题 6.14 判断广义积分 $\int_1^\infty \frac{1}{x} e^{\cos x} \cos(2\sin x) dx$, $\int_0^\infty \frac{1}{x} e^{\cos x} \sin(\sin x) dx$ 的敛散性.

证明 (1) 由于 $e^{\cos x} \sin(2\sin x)$ 是周期为 2π 的奇函数, 故

$$\int_0^{2\pi} e^{\cos x} \sin(2\sin x) \, dx = \int_{-\pi}^{\pi} e^{\cos x} \sin(2\sin x) \, dx = 0.$$

$$\int_0^{2\pi} |e^{\cos x} \sin(2\sin x)| \, dx \le \int_0^{2\pi} e \, dx = 2\pi e.$$

于是

$$\int_{0}^{A} e^{\cos x} \sin(2\sin x) \, dx = \int_{0}^{2\pi \left[\frac{A}{2\pi}\right]} e^{\cos x} \sin(2\sin x) \, dx + \int_{2\pi \left[\frac{A}{2\pi}\right]}^{A} e^{\cos x} \sin(2\sin x) \, dx$$

$$\leq 0 + \int_{2\pi \left[\frac{A}{2\pi}\right]}^{A} |e^{\cos x} \sin(2\sin x)| \, dx \leq \int_{2\pi \left[\frac{A}{2\pi}\right]}^{2\pi \left[\frac{A}{2\pi}\right]} |e^{\cos x} \sin(2\sin x)| \, dx$$

$$= \int_{0}^{2\pi} |e^{\cos x} \sin(2\sin x)| \, dx \leq 2\pi e, \forall A > 2\pi.$$

又显然有 $\frac{1}{x}$ 单调趋于 0, 故由 Dirichlet 判别法可知 $\int_0^\infty e^{\cos x} \sin(2\sin x) dx$ 收敛.

(2) 对 $\forall n \in \mathbb{N}$, 我们有

$$\int_{2n\pi}^{2(n+2)\pi} \frac{1}{x} e^{\cos x} \cos(2\sin x) \, \mathrm{d}x \geqslant \frac{C}{n},$$

其中C为某一常数.(这里需要对上述积分进行数值估计,C需要具体确定出来,太麻烦暂时省略)于是

$$\int_{1}^{\infty} \frac{1}{x} e^{\cos x} \cos(2\sin x) dx = \sum_{n=1}^{\infty} \int_{2n\pi}^{2(n+2)\pi} \frac{1}{x} e^{\cos x} \cos(2\sin x) dx \geqslant \sum_{n=1}^{\infty} \frac{C}{n} = \infty.$$

故
$$\int_{1}^{\infty} \frac{1}{x} e^{\cos x} \cos(2\sin x) dx$$
 发散.

例题 **6.15** 设 $f(x) \in C^1[1, +\infty), 0 \le f(x) \le x^2 \ln x, f'(x) > 0$, 证明: $\int_1^{+\infty} \frac{1}{f'(x)} dx$ 发散.

拿 笔记 首先形式计算一下,假如 $f(x) = x^2 \ln x$,则 $f'(x) = 2x \ln x + x$,量级是 $x \ln x$,代入进去刚刚好积分是发散的,可以把这个视为取等条件,然后对着这个取等,使用柯西不等式(目标是去掉难以处理的分母).

证明 对任意充分大的 b > a, 令 $A = e^a$, $B = e^b$, 则由 Cauchy 不等式有

$$\int_A^B \frac{f'(x)}{x^2 \ln^2 x} \mathrm{d}x \int_A^B \frac{1}{f'(x)} \mathrm{d}x \geqslant \left(\int_A^B \frac{1}{x \ln x} \mathrm{d}x \right)^2 = (\ln \ln B - \ln \ln A)^2 = \left(\ln \frac{\ln B}{\ln A} \right)^2.$$

注意到

$$\int_{A}^{B} \frac{f'(x)}{x^{2} \ln^{2} x} dx = \int_{A}^{B} \frac{1}{x^{2} \ln^{2} x} df(x) = \frac{f(B)}{B^{2} \ln^{2} B} - \frac{f(A)}{A^{2} \ln^{2} A} + 2 \int_{A}^{B} \frac{f(x) (\ln x + 1)}{x^{3} \ln^{3} x} dx,$$

故

$$\left(\ln \frac{\ln B}{\ln A}\right)^{2} \leqslant \int_{A}^{B} \frac{1}{f'(x)} dx \left[\frac{f(B)}{B^{2} \ln^{2} B} - \frac{f(A)}{A^{2} \ln^{2} A} + 2 \int_{A}^{B} \frac{f(x) (\ln x + 1)}{x^{3} \ln^{3} x} dx \right]$$

$$\leq \int_{A}^{B} \frac{1}{f'(x)} dx \left[\frac{f(B)}{B^{2} \ln^{2} B} - \frac{f(A)}{A^{2} \ln^{2} A} + 4 \int_{A}^{B} \frac{f(x)}{x^{3} \ln^{2} x} dx \right]
\leq \int_{A}^{B} \frac{1}{f'(x)} dx \left(\frac{1}{\ln B} + 4 \int_{A}^{B} \frac{1}{x \ln x} dx \right)
= \int_{A}^{B} \frac{1}{f'(x)} dx \left(\frac{1}{\ln B} + 4 \ln \frac{\ln B}{\ln A} \right).$$

从而

$$\left(\ln \frac{b}{a}\right)^{2} \leqslant \int_{e^{a}}^{e^{b}} \frac{1}{f'(x)} dx \left(\frac{1}{b} + 4 \ln \frac{b}{a}\right) \Rightarrow \int_{e^{a}}^{e^{b}} \frac{1}{f'(x)} dx \geqslant \frac{\left(\ln \frac{b}{a}\right)^{2}}{\left(\frac{1}{b} + 4 \ln \frac{b}{a}\right)}.$$

于是对任意充分大的 a, 取 b = 2a, 则

$$\int_{e^a}^{e^{2a}} \frac{1}{f'(x)} \mathrm{d}x \geqslant \frac{(\ln 2)^2}{\left(\frac{1}{2a} + 4\ln 2\right)} \to \frac{\ln 2}{4}, a \to +\infty.$$

因此由 Cauchy 收敛准则可知 $\int_{1}^{+\infty} \frac{1}{f'(x)} dx$ 发散.

例题 **6.16** 设 f(x) 在 $[1,+\infty)$ 单调递减趋于零,p>1, 若 $\int_1^\infty \frac{f^{p-1}(x)}{x^{\frac{1}{p}}} \, \mathrm{d}x$ 收敛, 证明: $\int_1^\infty f^p(x) \, \mathrm{d}x$ 收敛.

全 笔记 首先要搞清楚一个误区: 一定不存在 C > 0, 使得

$$\int_{1}^{\infty} f^{p}(x) \mathrm{d}x \leqslant C \int_{1}^{\infty} \frac{f^{p-1}(x)}{x^{\frac{1}{p}}} \mathrm{d}x \tag{6.13}$$

成立. 因为如果上式成立, 则对 $\forall k > 0$, 用 k f(x) 代替 f(x) 就有

$$k^{p} \int_{1}^{\infty} f^{p}(x) dx \leqslant C k^{p-1} \int_{1}^{\infty} \frac{f^{p-1}(x)}{x^{\frac{1}{p}}} dx$$

$$\Rightarrow \frac{k}{C} \int_{1}^{\infty} f^{p}(x) dx \leqslant \int_{1}^{\infty} \frac{f^{p-1}(x)}{x^{\frac{1}{p}}} dx.$$

令 $k\to\infty$ 得 $\int_1^\infty \frac{f^{p-1}(x)}{x^{\frac{1}{p}}}\mathrm{d}x>+\infty$,矛盾! 因此, 只有(6.13)式左右 f 的次数相同 (齐次不等式), 才可能存在上述的 C. 由此得到启发, 我们可以尝试建立如下不等式

$$\int_0^\infty f^p(x) \mathrm{d}x \leqslant C \left(\int_0^\infty \frac{f^{p-1}(x)}{x^{\frac{1}{p}}} \mathrm{d}x \right)^{\frac{p}{p-1}}.$$

因为 $\int_0^1 \frac{1}{r^{\frac{1}{p}}} dx$ 收敛, 所以

$$\int_0^1 \frac{f^{p-1}(x)}{x^{\frac{1}{p}}} \mathrm{d}x \le \int_0^1 \frac{f(1)}{x^{\frac{1}{p}}} \mathrm{d}x < +\infty.$$

故 $\int_0^\infty \frac{f^{p-1}(x)}{x^{\frac{1}{p}}} \mathrm{d}x$ 收敛. 从而可以不妨将积分下限改成 0, 方便后续计算. 定义 $F(x) \triangleq \begin{cases} f(1), x \in [0,1] \\ f(x), x > 1 \end{cases}$,则

F(x) 递减, F(x) = f(x), $\forall x \ge 1$, 并且

$$\int_0^\infty \frac{F^{p-1}(x)}{x^{\frac{1}{p}}} \mathrm{d}x = \int_0^1 \frac{f(1)}{x^{\frac{1}{p}}} \mathrm{d}x + \int_1^\infty \frac{f^{p-1}(x)}{x^{\frac{1}{p}}} \mathrm{d}x < +\infty.$$

待定 C > 0, 令 $g(x) = \int_0^x F^p(t) dt - C \left(\int_0^x \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} dt \right)^{\frac{p}{p-1}}$, 则 g(0) = 0, 形式计算 (f 不一定连续, g 不一定可导)可得

$$g'(x) = F^{p}(x) - \frac{Cp}{p-1} \left(\int_{0}^{x} \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} dt \right)^{\frac{1}{p-1}} \frac{F^{p-1}(x)}{x^{\frac{1}{p}}}$$

$$= \frac{F^{p-1}(x)}{x^{\frac{1}{p}}} \left[F(x) x^{\frac{1}{p}} - \frac{Cp}{p-1} \left(\int_0^x \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} dt \right)^{\frac{1}{p-1}} \right].$$

由F递减可得

$$\frac{Cp}{p-1} \left(\int_0^x \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} \mathrm{d}t \right)^{\frac{1}{p-1}} \geqslant \frac{Cp}{p-1} \left(F^{p-1}(x) \int_0^x \frac{1}{t^{\frac{1}{p}}} \mathrm{d}t \right)^{\frac{1}{p-1}} = C \left(\frac{p}{p-1} \right)^{\frac{p}{p-1}} \cdot F(x) x^{\frac{1}{p}}.$$

从而取 $C = \left(1 - \frac{1}{p}\right)^{\frac{p}{p-1}}$,则上式可化为

$$\left(1 - \frac{1}{p}\right)^{\frac{1}{p-1}} \left(\int_{0}^{x} \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} dt\right)^{\frac{1}{p-1}} \geqslant \left(1 - \frac{1}{p}\right)^{\frac{p}{p-1}} \left(\frac{p}{p-1}\right)^{\frac{p}{p-1}} \cdot F(x) x^{\frac{1}{p}} = F(x) x^{\frac{1}{p}}, \forall x \geqslant 1.$$
(6.14)

于是 $g'(x) \leq 0$, $\forall x \geq 1$ 再结合 g(0) = 0 就有

$$\int_{0}^{x} F^{p}(t) dt - \left(1 - \frac{1}{p}\right)^{\frac{1}{p-1}} \left(\int_{0}^{x} \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} dt\right)^{\frac{p}{p-1}} = g(x) \leqslant g(0) = 0, \forall x \geqslant 1.$$

令 x → ∞ 得

$$\int_0^\infty F^p(x)\mathrm{d}x \leqslant \left(1 - \frac{1}{p}\right)^{\frac{1}{p-1}} \left(\int_0^\infty \frac{F^{p-1}(x)}{x^{\frac{1}{p}}}\mathrm{d}x\right)^{\frac{p}{p-1}} < +\infty.$$

但是注意上述 g 不一定可导, 所以还是需要通过定性地放缩得到严谨的证明, 只需注意到(6.14)式始终成立.

当然也可以通过逼近方法,构造一个折线函数 h(x) 逼近 F(x),此时 h(x) 连续,从而用 h(x) 代替 g(x) 中的 F(x) 得到的新的 G(x) 是可导的.就能按照上述方法进行严谨证明.(逼近得到的不等式系数往往更加精确)

证明 定义
$$F(x) \triangleq \begin{cases} f(1), x \in [0,1] \\ f(x), x > 1 \end{cases}$$
 , 则 $F(x)$ 递减, $F(x) = f(x)$, $\forall x \geqslant 1$, 并且

$$\int_0^\infty \frac{F^{p-1}(x)}{x^{\frac{1}{p}}} \mathrm{d}x = \int_0^1 \frac{f(1)}{x^{\frac{1}{p}}} \mathrm{d}x + \int_1^\infty \frac{f^{p-1}(x)}{x^{\frac{1}{p}}} \mathrm{d}x < +\infty.$$

待定
$$C > 0$$
, 令 $g(x) = \int_0^x F^p(t) dt - C\left(\int_0^x \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} dt\right)^{\frac{p}{p-1}}$, 则由 F 递减可得

$$\frac{Cp}{p-1} \left(\int_0^x \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} \mathrm{d}t \right)^{\frac{1}{p-1}} \geqslant \frac{Cp}{p-1} \left(F^{p-1}(x) \int_0^x \frac{1}{t^{\frac{1}{p}}} \mathrm{d}t \right)^{\frac{1}{p-1}} = C \left(\frac{p}{p-1} \right)^{\frac{p}{p-1}} \cdot F(x) x^{\frac{1}{p}}.$$

从而取 $C = \left(1 - \frac{1}{p}\right)^{\frac{p}{p-1}}$,则上式可化为

$$\left(1 - \frac{1}{p}\right)^{\frac{1}{p-1}} \left(\int_{0}^{x} \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} dt\right)^{\frac{1}{p-1}} \geqslant \left(1 - \frac{1}{p}\right)^{\frac{p}{p-1}} \left(\frac{p}{p-1}\right)^{\frac{p}{p-1}} \cdot F(x) x^{\frac{1}{p}} = F(x) x^{\frac{1}{p}}, \forall x \geqslant 1.$$

由 $\int_0^\infty \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} dt$ 收敛可知, 存在 C > 0, 使得

$$F(x)x^{\frac{1}{p}} \leqslant \left(1 - \frac{1}{p}\right)^{\frac{1}{p-1}} \left(\int_0^x \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} \mathrm{d}t\right)^{\frac{1}{p-1}} \leqslant \left(1 - \frac{1}{p}\right)^{\frac{1}{p-1}} \left(\int_0^\infty \frac{F^{p-1}(t)}{t^{\frac{1}{p}}} \mathrm{d}t\right)^{\frac{1}{p-1}} < C, \forall x \geqslant 1.$$

于是

$$\int_0^\infty F^p(x) dx = \int_0^\infty \frac{F^{p-1}(x)}{x^{\frac{1}{p}}} \cdot F(x) x^{\frac{1}{p}} dx \leqslant C \int_0^\infty \frac{F^{p-1}(x)}{x^{\frac{1}{p}}} dx < +\infty.$$

命题 6.2

设 f(x) 在 $[0,+\infty)$ 中连续, 证明: 广义积分 $\int_0^{+\infty} f(x) dx$ 收敛的充要条件有

- 1. 存在 u(x), v(x) 使得 f(x) = u(x)v(x), 其中 u(x) 单调趋于零, $\int_{0}^{A} v(x) dx$ 有界.
- 2. 存在 u(x), v(x) 使得 f(x) = u(x)v(x), 其中 u(x) 单调有界, $\int_0^{+\infty} v(x) dx$ 收敛,
- 拿 笔记 这个命题说明:A-D 判别法"几乎"是充要条件(只有确定 f 的分解逆命题才成立),并且"逆命题"当中,依然是 Dirichlet 判别法强于 Abel 判别法,级数版本见命题 9.10.

证明 充分性由 A-D 判别法立得. 下证明必要性.

1. 由 $\int_0^{+\infty} f(x) dx$ 收敛及 Cauchy 收敛准则可知, 对 $\forall \varepsilon > 0$, $\exists M > 0$, $\forall B > A > M$, 有

$$\left| \int_{A}^{B} f(x) \mathrm{d}x \right| < \varepsilon.$$

对 $\forall n \in \mathbb{N}$, 取 $\varepsilon = \frac{1}{n^3}$, 则存在 $M_n > 0$, 对 $\forall B > M_n$, 有

$$\left| \int_{M_n}^B f(x) \mathrm{d}x \right| < \frac{1}{n^3}. \tag{6.15}$$

取 $\varepsilon = \frac{1}{(n+1)^3}$, 则存在 $M_{n+1} > M_n + 1$, 对 $\forall B > M_{n+1}$, 有

$$\left| \int_{M_{n+1}}^{B} f(x) \mathrm{d}x \right| < \frac{1}{(n+1)^3}.$$

由 $M_{n+1} > M_n + 1$ 及(6.15)式可知

$$\left| \int_{M_n}^{M_{n+1}} f(x) \mathrm{d}x \right| < \frac{1}{n^3}.$$

令 $u(x) \triangleq \begin{cases} \frac{1}{n}, & x \in [M_n, M_{n+1}) \\ 1, & x \in [0, M_1) \end{cases}, v(x) \triangleq \frac{f(x)}{u(x)}, 则 u(x) 单调递减, 且 \lim_{x \to +\infty} u(x) = 0. 对 \forall A > 0, 存在 <math>n \in \mathbb{N}$, 使

得 $A \in [M_n, M_{n+1})$. 从而

$$\left| \int_{0}^{A} \frac{f(x)}{u(x)} dx \right| = \left| \int_{0}^{M_{1}} \frac{f(x)}{u(x)} dx + \int_{M_{1}}^{M_{2}} \frac{f(x)}{u(x)} dx + \dots + \int_{M_{n-1}}^{M_{n}} \frac{f(x)}{u(x)} dx + \int_{M_{n}}^{A} \frac{f(x)}{u(x)} dx \right|$$

$$\leq \left| \int_{0}^{M_{1}} f(x) dx \right| + \left| \int_{M_{1}}^{M_{2}} f(x) dx \right| + \dots + \left| \int_{M_{n-1}}^{M_{n}} (n-1) f(x) dx \right| + \left| \int_{M_{n}}^{A} n f(x) dx \right|$$

$$\leq \left| \int_{0}^{M_{1}} f(x) dx \right| + 1 + \dots + \frac{1}{(n-1)^{2}} + \frac{1}{n^{2}}$$

$$< \left| \int_{0}^{M_{1}} f(x) dx \right| + \frac{\pi^{2}}{6} < +\infty.$$

这就完成了证明.

2. 由第 1 问可知, 存在 u(x), v(x), 使得 f(x) = u(x)v(x), 其中 u(x) 单调趋于 0, $\int_0^A v(x) dx$ 有界. 令 $u_1(x) = \sqrt{u(x)}$, $v_1(x) = \sqrt{u(x)}v(x)$, 则 $f(x) = u_1(x)v_1(x)$. 由 u(x) 单调趋于 0 可知, $u_1(x)$ 单调有界. 因为 $\sqrt{u(x)}$ 单调趋于 0, $\int_0^A v(x) dx$ 有界, 所以由第 1 问可知

$$\int_0^\infty v_1(x)\mathrm{d}x = \int_0^\infty \sqrt{u(x)}v(x)\mathrm{d}x < +\infty.$$

故 $u_1(x)$, $v_1(x)$ 就是第 2 问中我们要找的分解

6.2 反常积分收敛抽象问题

命题 6.3

设 f 为 $[a, +\infty)$ 上的非负可积函数, 若存在一个数列 $\{x_n\}$, 满足 $x_n \to +\infty$, 使得 $\lim_{n \to \infty} \int_a^{x_n} f(y) \, \mathrm{d}y \in \mathbb{R} \cup \{+\infty\}$, 则

$$\int_{a}^{+\infty} f(x) dx = \lim_{n \to \infty} \int_{a}^{x_n} f(y) dy.$$

进而可得

(i)
$$\int_{a_{a+\infty}}^{+\infty} f(x) dx$$
 收敛的充要条件是存在一个数列 $\{x_n\}$,满足 $x_n \to +\infty$, 使得 $\lim_{n \to \infty} \int_{a_{a+\infty}}^{x_n} f(y) dy$ 存在.

$$(ii)$$
 $\int_{a}^{+\infty} f(x) dx$ 发散的充要条件是存在一个数列 $\{x_n\}$, 满足 $x_n \to +\infty$, 使得 $\lim_{n \to \infty} \int_{a}^{x_n} f(y) dy = +\infty$.

注 对于瑕积分也有类似的结论.

堂 笔记 这个命题说明: 非负可积函数的反常积分的敛散性完全由其子列的变限积分决定. 证明 证法一: 令 $g(x) = \int_a^x f(y) \, \mathrm{d}y$,则 g(x) 在 $[a, +\infty)$ 上非负单调递增. 由单调收敛定理可知 $\lim_{x \to +\infty} g(x) \in \mathbb{R} \cup \{+\infty\}$.

从而由子列极限命题 (a)可知

$$\lim_{x\to +\infty}g(x)=\lim_{n\to \infty}g(x_n)\in \mathbb{R}\cup \{+\infty\}.$$

因此

$$\int_{a}^{+\infty} f(x) dx = \lim_{x \to +\infty} g(x) = \lim_{n \to \infty} g(x_n) \in \mathbb{R} \cup \{+\infty\}.$$

证法二: 令 $g(x) = \int_a^x f(y) \, dy$, 则由 $f \in R[a, +\infty)$ 可知, $g \in [a, +\infty)$. 从而由 Henie 归结原则可知

$$\lim_{x \to +\infty} g(x) = \lim_{n \to \infty} g(x_n) \in \mathbb{R} \cup \{+\infty\}.$$

命题 6.4

$$\vec{E} \ f \in R[a,+\infty), \lim_{n \to +\infty} \int_a^n |f(x)| \mathrm{d}x \ \dot{F}$$
在且 $\overline{\lim}_{x \to +\infty} |f(x)| = 0$,则 $\int_a^\infty f(x) \mathrm{d}x \ -$ 定存在.

笔记 若已知 $\int_a^\infty f(x) \mathrm{d}x$ 存在,则由 Heine 归结原则可知 $\lim_{n \to +\infty} \int_a^n f(x) \mathrm{d}x$ 一定存在. 但是反过来, $\lim_{n \to +\infty} \int_a^n f(x) \mathrm{d}x$ 只是 $\int_a^\infty f(x) \mathrm{d}x$ 的一个子列极限,故 $\int_a^\infty f(x) \mathrm{d}x$ 不一定存在. 还需要额外的条件才能使得 $\int_a^\infty f(x) \mathrm{d}x$ 存在. 证明 对 $\forall x \geqslant a$, 一定存在 $n \in \mathbb{N}$, 使得 $n \leqslant x < n+1$. 从而可得

$$\int_{a}^{x} f(x)dx = \int_{a}^{n} f(x)dx + \int_{n}^{x} f(x)dx.$$
(6.16)

并且

$$\int_{n}^{x} f(x) dx \le \int_{n}^{x} |f(x)| dx \le \int_{n}^{n+1} |f(x)| dx \le \sup_{y \ge n} |f(y)|.$$
 (6.17)

对(6.17)式两边同时令 $x \to +\infty$, 则 $n \to +\infty$. 进而可得

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \lim_{n \to +\infty} \sup_{y \geqslant n} |f(y)| = \overline{\lim}_{x \to +\infty} |f(x)|.$$

由于此时 $\lim_{x \to +\infty} f(x) = 0$, 因此 $\overline{\lim}_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} f(x) = 0$. 从而

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \overline{\lim}_{x \to +\infty} |f(x)| = 0.$$

故 $\lim_{x\to+\infty}\int_{n}^{x}f(x)\mathrm{d}x=0$. 于是再对(6.16)式两边同时令 $x\to+\infty$, 则 $n\to+\infty$. 从而可得

$$\int_{a}^{\infty} f(x)dx = \lim_{x \to +\infty} \int_{a}^{x} f(x)dx = \lim_{n \to +\infty} \int_{a}^{n} f(x)dx + \lim_{x \to +\infty} \int_{n}^{x} f(x)dx = \lim_{n \to +\infty} \int_{a}^{n} f(x)dx.$$

又因为此时 $\lim_{n\to+\infty}\int_a^n f(x)dx$ 存在, 所以 $\int_a^\infty f(x)dx$ 也存在.

命题 6.5 (积分收敛必有子列趋于 0)

设连续函数满足 $\int_0^\infty f(x) dx$ 收敛, 则

- (1) 存在趋于 $+\infty$ 的 $\{x_n\}_{n=1}^{\infty} \subset (0, +\infty)$, 使得 $\lim_{n \to \infty} f(x_n) = 0$.
- (2) 若 f 不一定连续, 但有 $\int_0^\infty |f(x)| \mathrm{d}x < \infty$, 则存在严格递增的 $\lim_{n \to \infty} x_n = +\infty$, 使得 $\lim_{n \to \infty} x_n \ln x_n f(x_n) = 0$.
- 拿 笔记 连续性是否可以去掉构成一个有趣的话题. 第一问结论可以直接用, 第二问主要告诉我们积分绝对收敛性, 我们总能找到很好的子列极限. 并且 (2) 中结论的 $x_n lnx_n$ 可以换成任意数列 $\{a_n\}$, 只要满足 $\int_a^\infty a_n dx = +\infty$ 即可证明
 - (1) 运用积分中值定理, 我们知道

$$\int_{A}^{A+1} f(x) dx = f(\theta(A)), A + 1 > \theta(A) > A.$$

由 Cauchy 收敛准则, 我们知道

$$0 = \lim_{A \to +\infty} \int_{A}^{A+1} f(x) dx = \lim_{A \to +\infty} f(\theta(A)), \lim_{A \to +\infty} \theta(A) = +\infty.$$

这就完成了证明.

(2) 若 $|f(x)| > \frac{1}{x \ln x}$, $\forall x > e$, 则由 $\int_{e}^{\infty} \frac{1}{x \ln x} dx = +\infty$ 可得 $\int_{e}^{\infty} |f(x)| dx = +\infty$ 矛盾! 故存在 $x_1 > e$ 使得 $|f(x_1)| \le \frac{1}{x_1 \ln x_1}$. 同样的, 如果 $|f(x)| > \frac{1}{2x \ln x}$, $\forall x > x_1 + 1$, 同理可得矛盾! 因此必然存在 $x_2 > x_1 + 1$ 使得 $|f(x_2)| \le \frac{1}{2x \ln x}$. 依次下去我们得到

$$|f(x_n)| \leqslant \frac{1}{nx_n \ln x_n}, n = 1, 2, \cdots,$$

即

$$\lim_{n\to\infty} x_n \ln x_n \cdot |f(x_n)| = 0.$$

命题 6.6

设 $f:[0,+\infty)\to\mathbb{R}$ 满足 $\int_0^{+\infty}f(y)\mathrm{d}y$ 收敛, 证明

$$\lim_{x \to +\infty} \frac{\int_0^x y f(y) dy}{x} = 0.$$

笔记 本题不可直接洛必达. 这个命题是命题 9.1的连续版本, 在那里我们先 abel 变换再 Stolz 定理, 于是在这里我们先分部积分再洛必达.

证明 记 $F(x) \triangleq \int_0^x f(y) dy$, 则

$$\int_0^x y f(y) dy \xrightarrow{\text{R-S } \mathcal{H} / \mathcal{D}} \int_0^x y dF(y) = x F(x) - \int_0^x F(y) dy.$$

由 $F \in C[0, +\infty)$, 利用 L'Hospital 法则得

$$\lim_{x \to +\infty} \frac{\int_0^x y f(y) dy}{x} = \lim_{x \to +\infty} F(x) - \lim_{x \to +\infty} \frac{1}{x} \int_0^x F(y) dy \xrightarrow{\text{L'Hospital } \underline{x} \underline{\mathbb{N}}} \int_0^{+\infty} f(y) dy - \int_0^{+\infty} f(y) dy = 0.$$

(1) 设
$$\int_{a}^{+\infty} f(x) dx$$
 收敛, 且 $f(x)$ 单调, 则 $\lim_{x \to +\infty} x f(x) = 0$.

(2) 若
$$\int_{a}^{a+\infty} f(x) dx$$
 收敛且 $xf(x)$ 单调,则 $\lim_{x \to +\infty} x \ln x f(x) = 0$.

证明

(1) 不妨设 f 递减, 否则用 -f 代替 f, 从而

$$Af(A) \geqslant \int_A^{2A} f(x) dx, \quad \frac{A}{2} f(A) \leqslant \int_{\frac{A}{3}}^A f(x) dx.$$

进而

$$\int_A^{2A} f(x) \, \mathrm{d}x \leqslant A f(A) \leqslant 2 \int_{\frac{A}{2}}^A f(x) \, \mathrm{d}x.$$

由 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛的 Cauchy 收敛准则可知

$$\int_{\frac{A}{2}}^{A} f(x) \, \mathrm{d}x \to 0, A \to +\infty, \quad \int_{A}^{2A} f(x) \, \mathrm{d}x \to 0, A \to +\infty.$$

故 $\lim_{A\to +\infty} Af(A)=0$. (2) 不妨设 xf 递减, 否则用 -f 代替 f 即可. 于是

$$\frac{1}{2}A\ln A f(A) = A f(A) \int_{\sqrt{A}}^{A} \frac{1}{x} \, dx \le \int_{\sqrt{A}}^{A} \frac{x f(x)}{x} \, dx = \int_{\sqrt{A}}^{A} f(x) \, dx,$$
$$\int_{A}^{A^{2}} f(x) \, dx = \int_{A}^{A^{2}} \frac{x f(x)}{x} \, dx \le A f(A) \int_{A}^{A^{2}} \frac{1}{x} \, dx = A \ln A f(A).$$

从而

$$\int_{A}^{A^{2}} f(x) dx \leqslant A \ln A f(A) \leqslant 2 \int_{\sqrt{A}}^{A} f(x) dx$$

又由 $\int_{x}^{+\infty} f(x) dx$ 收敛的 Cauchy 收敛准则可知

$$\int_{\sqrt{A}}^{A} f(x) \, \mathrm{d}x \to 0, A \to +\infty. \quad \int_{A}^{A^2} f(x) \, \mathrm{d}x \to 0, A \to +\infty.$$

故由夹逼准则可知 $\lim_{A \to \infty} A \ln A f(A) = 0$.

若
$$f$$
 在 $[0,+\infty)$ 上一致连续, 且 $\int_0^{+\infty} f(x) \, \mathrm{d}x < \infty$, 则 $\lim_{x \to +\infty} f(x) = 0$.

证明

例题 6.17 设 f(x) 单调下降, 且 $\lim_{x\to +\infty} f(x) = 0$, 证明: 若 f'(x) 在 $[0,+\infty)$ 上连续, 则反常积分 $\int_{0}^{+\infty} f'(x) \sin^2 x dx$ 收 敛.

证明

例题 6.18 设 $f \in D^1(0, +\infty)$ 且 |f'| 在 $(0, +\infty)$ 递减. 若 $\lim_{x \to +\infty} f(x)$ 存在, 证明: $\lim_{x \to +\infty} x f'(x) = 0$. 证明 若存在 a > 0, 使得 f'(a) = 0, 则由 |f'| 在 $(0, +\infty)$ 递减可得

$$f'(x) = 0, \quad \forall x > a.$$

此时结论显然成立.

若 $f' \neq 0, \forall x \in (0, +\infty)$, 则由导数介值性可知, f' 在 $(0, +\infty)$ 上要么恒大于零, 要么恒小于零. 于是不妨设 $f' > 0, \forall x \in (0, +\infty)$, 故此时 f 在 $(0, +\infty)$ 上严格递增. 并且此时 f' = |f'| 在 $(0, +\infty)$ 递减, 故此时 f' 在 $(0, +\infty)$ 内 Riemann 可积. 从而由微积分基本定理可知

$$\int_{1}^{x} f'(y) \, \mathrm{d}y = f(x) - f(1).$$

又因为 $\lim_{x \to +\infty} f(x)$ 存在, 所以 $\int_{1}^{+\infty} f'(y) \, dy$ 收敛. 于是由命题 6.7(1)可知 $\lim_{x \to +\infty} x f'(x) = 0$. **例题 6.19** 设 f 在 $(a, +\infty)$ 可导. 如果 f 有界且 x f' 为单调函数, 证明

$$\lim_{x \to +\infty} x \ln x f'(x) = 0.$$

证明 由 xf' 单调可知, $g(x) ext{ } ext{$

$$xf'(x) > C \Rightarrow f'(x) > \frac{C}{x}, \quad x \in (\max\{a, 0\}, +\infty). \tag{6.18}$$

对 (6.18) 式两边同时积分得到

$$f(x) > \int_a^x \frac{c}{t} dt = c \ln|x| - c \ln a.$$

 $\diamondsuit x \to +\infty$, 得到 $\lim_{x\to +\infty} f(x) = +\infty$, 这与 f 有界矛盾! 于是由 $\lim_{x\to +\infty} x f'(x) \leqslant 0$ 可知存在 $X > \max\{a,0\}$, 使得

$$x f'(x) \leq 0 \Rightarrow f'(x) \leq 0, \quad x \in (X, +\infty).$$

故 f 在 $(X, +\infty)$ 上递减. 又因为 f 有界, 所以 $\lim_{x \to \infty} f(x)$ 存在. 根据微积分基本定理可得

$$\int_{a}^{x} f'(t) dt = f(x) - f(a).$$

例题 6.20 设 $f \in D[a, +\infty)$, $\lim_{x \to +\infty} f'(x) = +\infty$ 且 f' 严格递增, 证明 $\int_0^\infty \sin f(x) \, \mathrm{d}x$ 收敛.

证明 由命题 5.7和命题 5.9可知, $f' \in C[a, +\infty)$. 又由命题 5.5可知 $\lim_{x \to +\infty} f(x) = +\infty$. 故存在 X > 0, 使得 f', f 在 $[X, +\infty)$ 上恒正, 且 f 在 $[X, +\infty)$ 上严格单调递增. 从而由反函数存在定理可知, f 存在严格单调递增的反函数

$$g:[f(X),+\infty)\to [X,+\infty).$$

于是令x = g(y),则

$$\int_{X}^{+\infty} \sin f(x) dx = \int_{f(X)}^{+\infty} \sin y g'(y) dy.$$

又由反函数求导定理可知 g'(y)f'(g(y)) = 1, 并且 f(g(y)) = y, 故上式可化为

$$\int_{X}^{+\infty} \sin f(x) dx = \int_{f(X)}^{+\infty} \sin y g'(y) dy = \int_{f(X)}^{+\infty} \frac{\sin y}{f'(g(y))} dy.$$

因为 f',g 都严格递增趋于 $+\infty$, 所以 $\frac{1}{f'(g(x))}$ 严格递增趋于 0. 又注意到

$$\left| \int_{f(X)}^{A} \sin y \, \mathrm{d}y \right| \leqslant 2, \forall A \geqslant f(X).$$

故由 Dirchlet 判别法可知 $\int_{0}^{\infty} \sin f(x) dx$ 收敛.

例题 6.21

(1) 设 f 内闭可积且 $f(x) > 0, x_0 > 0$. 若

$$\lim_{x \to +\infty} \frac{f(x+x_0)}{f(x)} = \ell \in [0, +\infty) \bigcup \{+\infty\}$$

我们就有

$$\int_{a}^{\infty} f(x) dx \, \mathcal{E} \left\{ \begin{array}{ll} \text{\text{ψ}} & \ell < 1 \\ \text{\text{ξ}} & \ell > 1 \end{array} \right.$$

(2) 设 f > 0 内闭可积, 若有常数 k > 1 使得

$$\lim_{x \to +\infty} \frac{f(kx)}{f(x)} = \ell \in [0, +\infty) \bigcup \{+\infty\},\,$$

则

(3) 设 f > 0 内闭可积, 若

$$\lim_{x \to +\infty} \frac{\ln f(x)}{\ln x} = p,$$

则

$$\int_{a}^{+\infty} f(x) dx \begin{cases} \psi \otimes, & -\infty \leqslant p < -1 \\ \xi \otimes, & -1 < p \leqslant +\infty \end{cases}.$$

注 第 (1) 题中当 ℓ = 1 时无法判断反常积分的敛散性!

第 (3) 题中当 p=1 时无法判断反常积分的敛散性! 注 第 (3) 题的条件 $\lim_{x\to +\infty} \frac{\ln f(x)}{\ln x} = p$ 可改为 $\lim_{x\to +\infty} \frac{xf'(x)}{f(x)} = p$. 因为由 L'Hospital 法则可知

$$\lim_{x \to +\infty} \frac{\ln f(x)}{\ln x} = \lim_{x \to +\infty} \frac{x f'(x)}{f(x)} = p.$$

证明

(1) 注意到

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x = \sum_{n=1}^{\infty} \int_{a+(n-1)x_0}^{a+nx_0} f(x) \, \mathrm{d}x \triangleq \sum_{n=1}^{\infty} a_n.$$

对 $\forall \varepsilon > 0$, 由题设可知, 存在 X > a, 使得

$$\ell - \varepsilon \leqslant \frac{f(x_0 + x)}{f(x)} \leqslant \ell + \varepsilon, \forall x \geqslant X.$$

从而当 $n > \frac{X-a}{x_0}$ 时,就有 $a + nx_0 > X$,进而

$$a_{n+1} = \int_{a+nx_0}^{a+(n+1)x_0} f(x) \, \mathrm{d}x = \int_{a+(n-1)x_0}^{a+nx_0} f(x+x_0) \, \mathrm{d}x \in \left[(\ell - \varepsilon) \, a_n, (\ell + \varepsilon) \, a_n \right],$$

故

$$\ell - \varepsilon \leqslant \frac{a_{n+1}}{a_n} \leqslant \ell + \varepsilon, \forall n > \frac{X - a}{x_0}.$$

因此 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\ell$, 再由比值判别法得证. (2) 根据题设, 令 $x=e^t$, 任取 c>0, 则

$$\int_{c}^{\infty} f(x) dx = \int_{\ln c}^{\infty} f(e^{t}) e^{t} dt.$$

$$\lim_{t \to +\infty} \frac{f\left(e^{t+\ln k}\right) e^{t+\ln k}}{f\left(e^{t}\right) e^{t}} = k \lim_{t \to +\infty} \frac{f\left(ke^{t}\right)}{f\left(e^{t}\right) e^{t}} = k\ell.$$

于是由(??)可知结论成立.

(3) 只讨论 $p \in \mathbb{R}$ 的情况, 其余 $p = \pm \infty$ 情况类似. 由题意可知, $\forall \varepsilon > 0$, 存在X > e, 使得当x > X时, 有

$$p - \varepsilon \leqslant \frac{\ln f(x)}{\ln x} \leqslant p + \varepsilon \Longleftrightarrow x^{p-\varepsilon} \leqslant f(x) \leqslant x^{p+\varepsilon}$$

于是

$$\frac{1}{x^{-p+\varepsilon}} \leqslant f(x) \leqslant \frac{1}{x^{-p-\varepsilon}}, \forall x > X.$$

再由比较判别法即得结论.

 $\dot{\Sigma}$ 上述例题第 (3) 题的证明中, 令 $\varepsilon \to 0$, 并不能得到

$$\frac{1}{x^{-p}} \leqslant f(x) \leqslant \frac{1}{x^{-p}}, \forall x > X.$$

因为 X 是与 ε 有关的. 因此只有固定 ε 时,才有 $\frac{1}{x^{-p+\varepsilon}} \leqslant f(x) \leqslant \frac{1}{x^{-p-\varepsilon}}, \forall x > X$ 成立. 故再利用比较判别法式,不能令 $\varepsilon \to 0$.

例题 6.22 若 $f \in C^1[0,+\infty)$ 且 f(0) > 0, f'(x) > 0. 若 $\int_0^\infty \frac{1}{f(x) + f'(x)} \mathrm{d}x < \infty$, 证明 $\int_0^\infty \frac{1}{f(x)} \mathrm{d}x < \infty$.

室记 利用拟合法的想法证明反常积分收敛.

证明 由条件可知 f(x) 严格递增且恒正, 从而 $f(+\infty) \in \mathbb{R}^+ \cup \{+\infty\}$, 进而

$$\frac{1}{f(+\infty)} \in \mathbb{R}^+ \cup \{0\}.$$

于是

$$\int_{0}^{\infty} \left| \frac{1}{f(x) + f'(x)} - \frac{1}{f(x)} \right| dx = \int_{0}^{\infty} \frac{f'(x)}{f(x) \left[f(x) + f'(x) \right]} dx \leqslant \int_{0}^{\infty} \frac{f'(x)}{f^{2}(x)} dx = \int_{0}^{\infty} \frac{1}{f^{2}(x)} df(x) = \frac{1}{f(0)} - \frac{1}{f(+\infty)} < +\infty.$$

$$\frac{1}{f(x)} \le \left| \frac{1}{f(x)} - \frac{1}{f(x) + f'(x)} \right| + \frac{1}{f(x) + f'(x)}.$$

$$\not \subset \int_0^\infty \frac{1}{f(x) + f'(x)} \, \mathrm{d}x < +\infty, \ \not \boxtimes \int_0^\infty \frac{1}{f(x)} \, \mathrm{d}x < \infty.$$

例题 6.23 设非负函数 $f \in C(\mathbb{R})$ 使得对任何 $k \in \mathbb{N}$ 都有 $\int_{-\infty}^{\infty} e^{-\frac{|x|}{k}} f(x) dx \leqslant M$, 证明 $\int_{-\infty}^{\infty} f(x) dx$ 收敛且 $\int_{-\infty}^{\infty} f(x) dx \leqslant M$.

🔮 笔记 利用拟合法的想法证明反常积分收敛.

证明 证法一: $\forall a < b$, 注意到 $1 - x \leq e^{-x}$, $\forall x \in \mathbb{R}$. 从而对 $\forall k \in \mathbb{N}$, 都有

$$\int_a^b \left(1 - \frac{|x|}{k}\right) f(x) \, \mathrm{d}x \leqslant \int_a^b e^{-\frac{|x|}{k}} f(x) \, \mathrm{d}x \leqslant M.$$

于是

$$\int_a^b f(x) \, \mathrm{d}x \leqslant \frac{1}{k} \int_a^b |x| f(x) \, \mathrm{d}x + M.$$

令 $k \to +\infty$ 得 $\int_a^b f(x) dx \leqslant M$. 再由 a, b 的任意性可得 $\int_{-\infty}^{+\infty} f(x) dx \leqslant M$.

证法二·由Fatou引理可得

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{+\infty} \underline{\lim}_{k \to +\infty} e^{-\frac{|x|}{k}} f(x) \, \mathrm{d}x \leqslant \underline{\lim}_{k \to +\infty} \int_{-\infty}^{+\infty} e^{-\frac{|x|}{k}} f(x) \, \mathrm{d}x \leqslant M.$$

例题 6.24 设 $f \in C^1[0, +\infty)$ 满足

$$|f'(x)| \leq M, \forall x \geq 0, \int_0^\infty |f(x)|^2 dx < \infty.$$

证明

$$\lim_{x \to +\infty} f(x) = 0.$$

证明 由条件可得

$$\int_0^{+\infty} \left| f^2(x) f'(x) \right| \, \mathrm{d}x \leqslant M \int_0^{+\infty} |f(x)|^2 \, \, \mathrm{d}x < +\infty.$$

故
$$\int_0^{+\infty} f^2(x)f'(x) dx$$
 收敛. 于是

$$\int_{0}^{+\infty} f^{2}(x)f'(x) dx = \lim_{x \to +\infty} f^{3}(x) - f^{3}(0) < \infty.$$

从而 $\lim_{x \to +\infty} f^3(x)$ 存在. 由 $\int_0^{+\infty} |f(x)|^2 dx < \infty$ 及命题 6.5(1)可知, 存在 $\{x_n\}$, 满足 $x_n \to +\infty$, 使得 $f(x_n) \to 0$. 故 $\lim_{x \to +\infty} f^3(x) = \lim_{n \to \infty} f^3(x_n) = 0$, 因此 $\lim_{x \to +\infty} f(x) = 0$.

例题 6.25 设 $f \in D^2[0, +\infty)$ 且

$$\int_0^\infty |f(x)|^2 \mathrm{d}x < \infty, \int_0^\infty |f''(x)|^2 \mathrm{d}x < \infty.$$

证明 $\int_0^\infty |f'(x)|^2 \mathrm{d} x < \infty.$

证明 由 Cauchy 不等式得

$$\int_0^{+\infty} |f(x)f''(x)| \, \mathrm{d} x \le \sqrt{\int_0^{+\infty} |f(x)|^2 \, \mathrm{d} x \int_0^{+\infty} |f''(x)|^2 \, \mathrm{d} x} < +\infty.$$

故 $\int_0^{+\infty} |f(x)f''(x)| dx$ 收敛. 利用分部积分得

$$\int_0^x |f'(y)|^2 dy = f(x)f'(x) - f(0)f'(0) - \int_0^x f(y)f''(y) dy$$
(6.19)

由命题 6.3可知, 只须找一个 $x_n \to +\infty$, 使 $f(x_n)f'(x_n)$ 极限存在即可.

由于 $\int_0^\infty |f(x)|^2 dx < +\infty$, 故由命题 6.5(1)可知存在 $a_n \to +\infty$, 使得 $\lim_{n \to \infty} |f(a_n)|^2 = 0$, 从而 $\lim_{x \to +\infty} |f(x)|^2 \neq +\infty$. 于是再由命题 5.6可知, 存在 $x_n \to +\infty$, 使得

$$\lim_{n \to \infty} [f^2(x_n)]' = 0 \Longleftrightarrow \lim_{n \to \infty} 2f(x_n)f'(x_n) = 0.$$

从而由命题 6.3及(6.19)式可知结论成立.

例题 6.26

证明

第七章 积分不等式

7.1 著名积分不等式

定理 7.1 (Young 不等式初等形式)

设 $(x_i)_{i=1}^n \subset [0,+\infty), (p_i)_{i=1}^n \subset (1,+\infty), \sum_{i=1}^n \frac{1}{p_i} = 1$, 则有

$$\prod_{i=1}^n x_i \leqslant \sum_{i=1}^n \frac{x_i^{p_i}}{p_i}.$$

且等号成立条件为所有 x_i , $i = 1, 2, \dots, n$ 相等.

笔记 最常用的是 Young 不等式的二元情形: 对任何 $a,b\geqslant 0, \frac{1}{p}+\frac{1}{q}=1, p>1$ 有 $ab\leqslant \frac{a^p}{p}+\frac{b^q}{q}$. 证明 不妨设 $x_i\neq 0, (i=1,2,\cdots,n)$. 本结果可以取对数用Jensen 不等式证明, 即

$$\prod_{i=1}^{n} x_i \leqslant \sum_{i=1}^{n} \frac{x_i^{p_i}}{p_i} \Leftrightarrow \sum_{i=1}^{n} \ln x_i \leqslant \ln \left(\sum_{i=1}^{n} \frac{x_i^{p_i}}{p_i} \right) \Leftrightarrow \sum_{i=1}^{n} \frac{1}{p_i} \ln x_i^{p_i} \leqslant \ln \left(\sum_{i=1}^{n} \frac{x_i^{p_i}}{p_i} \right),$$

而最后一个等价之后就是 In 的上凸性结合Jensen 不等式给出

 $d\mu = g(x)dx$, 这里 g 是一个在区间上内闭黎曼可积的函数.

(2) 若
$$E \subset \mathbb{Z}$$
, 则 $\int_{E} f(x) d\mu = \sum_{n \in E} f(n)$.

定理 7.2 (Cauchy 不等式)

$$\left(\int_E f(x)g(x)\mathrm{d}\mu\right)^2 \leqslant \int_E |f(x)|^2 \mathrm{d}\mu \int_E |g(x)|^2 \mathrm{d}\mu.$$

等号成立当且仅当存在不全为零的 c_1, c_2 , 使得 $c_1 f(x) + c_2 g(x) = 0$.

证明 只需证

$$\int_{E} |f(x)g(x)| \mathrm{d}\mu \leqslant \sqrt{\int_{E} |f(x)|^{2} \mathrm{d}\mu \int_{E} |g(x)|^{2} \mathrm{d}\mu}.$$

当 $\int_E |f(x)| \mathrm{d}\mu$ 或 $\int_E |g(x)| \mathrm{d}\mu = 0$ 时, 不等式右边为 0, 结论显然成立.

当
$$\int_{E} |f(x)| d\mu \neq 0$$
 且 $\int_{E} |g(x)| d\mu \neq 0$ 时, 不妨设 $\int_{E} |f(x)|^{2} d\mu = \int_{E} |g(x)|^{2} d\mu = 1$, 否则, 用 $\frac{f(x)}{\sqrt{\int_{E} |f(x)|^{2} d\mu}}$ 代

替 f(x), $\frac{g(x)}{\sqrt{\int_{E}|g(x)|^{2}du}}$ 代替 g(x) 即可. 利用 Young 不等式可得

$$\int_{E} |f(x)||g(x)| \mathrm{d}\mu \leqslant \int_{E} \frac{|f(x)|^{2} + |g(x)|^{2}}{2} \mathrm{d}\mu = \frac{1}{2} + \frac{1}{2} = 1.$$

等号成立当且仅当存在不全为零的 c_1, c_2 , 使得 $c_1 f(x) + c_2 g(x) = 0$.

定理 7.3 (Jensen 不等式 (积分形式))

设 φ 是下凸函数且 $p(x) \ge 0$, $\int_a^b p(x) dx > 0$, 则在有意义时, 必有 $\varphi\left(\frac{\int_a^b p(x) f(x) dx}{\int_a^b p(x) dx}\right) \le \frac{\int_a^b p(x) \varphi(f(x)) dx}{\int_a^b p(x) dx}. \tag{7.1}$

§

笔记 1. 类似的对上凸函数, 不等式(7.1)反号.

2. 一般情况可利用下凸函数可以被 C^2 的下凸函数逼近得到, 例如定理 Bernstein 多项式保凸性一致逼近.

3.Jensen 不等式 (积分形式) 考试中不能直接使用, 需要证明.

证明 为书写简便, 我们记 $\mathrm{d}\mu = \frac{p(x)}{\int_a^b p(y)\mathrm{d}y}\mathrm{d}x$, 那么有 $\int_a^b 1\mathrm{d}\mu = 1$. 于是我们记 $x_0 = \int_a^b f(x)\mathrm{d}\mu$ 并利用下凸函数恒 在切线上方

$$\varphi(x) \geqslant \varphi(x_0) + \varphi'(x_0)(x - x_0),$$

就有

$$\int_a^b \varphi(f(x)) d\mu \geqslant \int_a^b [\varphi(x_0) + \varphi'(x_0)(f(x) - x_0)] d\mu = \varphi(x_0) = \varphi\left(\int_a^b f(x) d\mu\right),$$

这就完成了证明.

例题 7.1 对连续正值函数 f, 我们有

$$\ln\left(\frac{1}{b-a}\int_{a}^{b}f(x)\mathrm{d}x\right)\geqslant\frac{1}{b-a}\int_{a}^{b}\ln f(x)\mathrm{d}x.$$

证明 令 $\mathrm{d}\mu = \frac{1}{b-a}\mathrm{d}x$, 则 $\int_a^b\mathrm{d}\mu = 1$, 再令 $x_0 \triangleq \int_a^b f(x)\mathrm{d}\mu > 0$, 则由 $\ln x$ 的上凸性可知

$$\ln x \leqslant \ln x_0 + \frac{1}{x_0}(x - x_0), \forall x > 0.$$

从而

$$\int_{a}^{b} \ln f(x) d\mu \leqslant \int_{a}^{b} \ln x_{0} d\mu + \frac{1}{x_{0}} \int_{a}^{b} (f(x) - x_{0}) d\mu$$

$$= \ln x_{0} + \frac{1}{x_{0}} \left(\int_{a}^{b} f(x) d\mu - x_{0} \int_{a}^{b} d\mu \right)$$

$$= \ln x_{0} = \ln \int_{a}^{b} f(x) d\mu.$$

故结论得证.

定理 7.4 (Hold 不等式)

设 V 是 \mathbb{R}^n 中有体积的有界集, f 和 g 都在 V 上可积, 又设 p, q 是满足 $\frac{1}{p} + \frac{1}{q} = 1$ 的正数, 且 p > 1, 则有

$$\int_{V} |f(x)g(x)| \, \mathrm{d}x \le \left(\int_{V} |f(x)|^{p} \, \mathrm{d}x \right)^{\frac{1}{p}} \left(\int_{V} |g(x)|^{q} \, \mathrm{d}x \right)^{\frac{1}{q}}$$

当且仅当 $\frac{f^{P}(x)}{g^{q}(x)}$ 几乎处处为同一个常数时取等 (若一个取零,则另一个也取零).

 $\dot{\mathbf{L}}$ 这是最重要的基本结论了 (必须掌握), 很多需要"调幂次"的积分不等式, 都得用赫尔德不等式, 同时这也是用来证明很多定理或者题目的工具, 也包括下面两个, 对于 $p \in (0,1)$ 的情况会有反向赫尔德不等式.

证明 不妨设 $f,g \ge 0$, 否则用 |f|,|g| 代替 f,g. 由Young 不等式可知

$$f(x)g(x) \leqslant \frac{f^p(x)}{p} + \frac{g^q(x)}{q}.$$

由于 f,g 在 V 上都可积, 故可不妨设 $\int_V f^p(x) \mathrm{d}x = \int_V g^q(x) \mathrm{d}x = 1$, 否则用 $\frac{f}{\left(\int_V f^p(x) \mathrm{d}x\right)^{\frac{1}{p}}}, \frac{g}{\left(\int_V g^q(x) \mathrm{d}x\right)^{\frac{1}{q}}}$ 代替 f,g. 从而

$$\int_{V} f(x)g(x)dx \leqslant \frac{1}{p} \int_{V} f^{p}(x)dx + \frac{1}{q} \int_{V} g^{q}(x)dx = 1 = \left(\int_{V} f^{p}(x)dx \right)^{\frac{1}{p}} \left(\int_{V} g^{q}(x)dx \right)^{\frac{1}{q}}.$$

如果上述不等式等号成立,那么

$$f(x)g(x) \leqslant \frac{f^p(x)}{p} + \frac{g^q(x)}{q}$$

在V上几乎处处取等. 根据Young 不等式的取等条件可知, 此即 $\frac{f^p(x)}{g^q(x)}$ 几乎处处为一个常数 (若一个取零, 则另一个也取零).

定理 7.5 (Minkowski 不等式)

若 f 是 $[a,b] \times [c,d]$ 上的非负连续函数,则对 $p \ge 1$ 有 (若 $p \in (0,1)$ 则不等式反向)

$$\left(\int_a^b \left(\int_c^d f(x,y) \mathrm{d}y\right)^p \mathrm{d}x\right)^{\frac{1}{p}} \leqslant \int_c^d \left(\int_a^b f^p(x,y) \mathrm{d}x\right)^{\frac{1}{p}} \mathrm{d}y.$$

Ŷ 笔记 证明的核心就一句话: 拆一个幂次出来, 然后换序, 再用赫尔德不等式.

 $\frac{1}{12}$ 注意观察, 积分顺序变了, 另外, 可以简单的记为"绝对值不等式", 就像直觉那样, 先取绝对值再算积分要大 (先算积分再取绝对值要小), 用 p 范数来写会好记并且清晰:

$$\left\| \int_{c}^{d} f(x, y) dy \right\|_{p} \leqslant \int_{c}^{d} \|f(x, y)\|_{p} dy.$$

对于 $p \in (0,1)$ 的情形, 证明方法是完全类似的, 只需要运用反向赫尔德不等式.

证明 假设 $p \ge 1$, 记 $g(x) = \int_a^d f(x, y) dy$, 换序并利用赫尔德不等式有

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right)^{p} dx = \int_{a}^{b} \int_{c}^{d} f(x, y) dy \cdot \left(\int_{c}^{d} f(x, y) dy \right)^{p-1} dx$$

$$= \int_{a}^{b} \int_{c}^{d} f(x, y) g^{p-1}(x) dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) g^{p-1}(x) dx dy$$

$$\leq \int_{c}^{d} \left(\int_{a}^{b} f^{p}(x, y) dx \right)^{\frac{1}{p}} \cdot \left(\int_{a}^{b} g^{q(p-1)}(x) dx \right)^{\frac{1}{q}} dy$$

$$= \left(\int_{a}^{b} g^{p}(x) dx \right)^{1-\frac{1}{p}} \cdot \int_{c}^{d} \left(\int_{a}^{b} f^{p}(x, y) dx \right)^{\frac{1}{p}} dy$$

$$= \left(\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right)^{p} dx \right)^{1-\frac{1}{p}} \cdot \int_{c}^{d} \left(\int_{a}^{b} f^{p}(x, y) dx \right)^{\frac{1}{p}} dy.$$

其中 $\frac{1}{p} + \frac{1}{q} = 1$, 进而 q(p-1) = p. 两边约掉 $\int_a^b \left(\int_c^d f(x,y) dy \right)^p dx$ 就有

$$\left(\int_a^b \left(\int_c^d f(x,y) dy\right)^p dx\right)^{\frac{1}{p}} \leqslant \int_c^d \left(\int_a^b f^p(x,y) dx\right)^{\frac{1}{p}} dy.$$

定理 7.6 (Hardy 不等式)

设 p > 1 或 p < 0, f(x) 恒正且连续, 记 $F(x) = \int_0^x f(t) dt$, 则

$$\int_0^\infty \left(\frac{F(x)}{x}\right)^p dx \leqslant \left(\frac{p}{p-1}\right)^p \int_0^\infty f^p(x) dx.$$

 $^{\circ}$

注 这个不等式及其离散形式经常会考,证明的方法就是分部积分然后赫尔德 (连续版),或者作差 (离散版) 然后求和再赫尔德,结构是类似的,系数也是最佳的,不过并不能找到一个函数使得刚刚好取等,只能是逼近取等,另外p < 0 的情况证明完全类似,利用反向赫尔德即可.

证明 假设p>1,对任意M>0,利用分部积分和赫尔德不等式有

$$\begin{split} & \int_0^M \left(\frac{F(x)}{x}\right)^p \mathrm{d}x = -\frac{1}{p-1} \int_0^M F^p(x) d\frac{1}{x^{p-1}} = -\frac{1}{p-1} \left(\frac{F^p(x)}{x^{p-1}}\Big|_0^M - \int_0^M \frac{1}{x^{p-1}} dF^p(x)\right) \\ & = -\frac{1}{p-1} \frac{F^p(M)}{M^{p-1}} + \frac{p}{p-1} \int_0^M \frac{F^{p-1}(x) f(x)}{x^{p-1}} \mathrm{d}x \leqslant \frac{p}{p-1} \int_0^M \left(\frac{F(x)}{x}\right)^{p-1} f(x) \mathrm{d}x \\ & \leqslant \frac{p}{p-1} \left(\int_0^M \left(\frac{F(x)}{x}\right)^p \mathrm{d}x\right)^{\frac{p-1}{p}} \left(\int_0^M f^p(x) \mathrm{d}x\right)^{\frac{1}{p}}. \end{split}$$

其中利用了

$$\lim_{x \to 0^+} \frac{F^p(x)}{x^{p-1}} = \lim_{x \to 0^+} F(x) \left(\frac{F(x)}{x}\right)^{p-1}, \lim_{x \to 0^+} \frac{F(x)}{x} \xrightarrow{\text{L'Hospital}} \lim_{x \to 0^+} f(x) = f(0).$$

所以

$$\frac{F^p(x)}{x^{p-1}}\bigg|_0^M = \frac{F^p(M)}{M^{p-1}} - \lim_{x \to 0^+} \frac{F^p(x)}{x^{p-1}} = \frac{F^p(M)}{M^{p-1}}.$$

现在约掉相同的部分, 再令 $M \to \infty$ 就有

$$\int_0^\infty \left(\frac{F(x)}{x}\right)^p \mathrm{d}x \leqslant \left(\frac{p}{p-1}\right)^p \int_0^\infty f^p(x) \mathrm{d}x.$$

推论 7.1 (离散版 Hardy 不等式)

设数列 a_n 非负,对任意 p > 1 或者 p < 0,都有

$$\sum_{k=1}^{n} \left(\frac{a_1 + a_2 + \dots + a_k}{k} \right)^p \leqslant \left(\frac{p}{p-1} \right)^p \sum_{k=1}^{n} a_k^p.$$

注 如果 p < 0, 则同样使用反向赫尔德不等式即可完成

证明 记 $S_k = a_1 + a_2 + \cdots + a_k$, 不妨设 p > 1, 利用均值不等式或者 Young 不等式容易证明

$$\frac{S_k^p}{k^p} - \frac{p}{p-1} \frac{S_k^{p-1}}{k^{p-1}} a_k \leqslant \frac{1}{p-1} \left((k-1) \frac{S_{k-1}^p}{(k-1)^p} - k \frac{S_k^p}{k^p} \right)$$

求和有

$$\sum_{k=1}^{n} \left(\frac{a_1 + a_2 + \dots + a_k}{k} \right)^p \leqslant \frac{p}{p-1} \sum_{k=1}^{n} \left(\frac{a_1 + a_2 + \dots + a_k}{k} \right)^{p-1} a_k.$$

效果上就和前面分部积分完全一样,然后再用赫尔德不等式即可.

7.2 积分不等式的应用

例题 7.2 设 f 在区间 [0,1] 上可积且满足

$$\int_0^1 f(x) dx = \int_0^1 x f(x) dx = 1.$$

求证: $\int_0^1 f^2(x) dx \ge 4.$

证明 证法一: 对于任意常数 a 和 b 有 $\int_0^1 (f(x) - ax - b)^2 dx \ge 0$. 由此并根据条件可得

$$\int_0^1 (f(x) - ax - b)^2 dx = \int_0^1 f^2(x) dx - 2 \int_0^1 (ax + b) f(x) dx + \int_0^1 (ax + b) dx \ge 0$$

$$\implies \int_0^1 f^2(x) dx \ge 2 \int_0^1 (ax + b) f(x) dx - \int_0^1 (ax + b)^2 dx = 2(a + b) - \frac{1}{3}a^2 - ab - b^2.$$

取 a = 6, b = -2 即得所证.

证法二:对 $\forall a,b \in \mathbb{R}$, 由 Cauchy 不等式可知

$$\int_0^1 (ax+b)^2 dx \int_0^1 f^2(x) dx \ge \left[\int_0^1 (ax+b) f(x) dx \right]^2 = (a+b)^2.$$

从而

$$\int_0^1 f^2(x) dx \geqslant \frac{(a+b)^2}{\int_0^1 (ax+b)^2 dx} = \frac{a^2 + 2ab + b^2}{\frac{a^2}{3} + ab + b^2} = 3 - \frac{3\frac{a}{b} + 6}{\frac{a^2}{b^2} + 3\frac{a}{b} + 3}.$$

再由 a,b 的任意性知

$$\int_{0}^{1} f^{2}(x) dx \ge 3 + \sup_{a,b \in \mathbb{R}} \left\{ -\frac{3\frac{a}{b} + 6}{\frac{a^{2}}{b^{2}} + 3\frac{a}{b} + 3} \right\}.$$
 (7.2)

 $\Rightarrow g(x) = -\frac{3x+6}{x^2+3x+3}, \text{ [M]}$

$$g'(x) = \frac{3(x+1)(x+3)}{(x^2+3x+3)^2} = 0 \Rightarrow x = -1, -3.$$

又 g(-1) = -3 < 1 = g(-3), 故 $\max_{\mathbb{R}} g(x) = 1$. 因此

$$\sup_{a,b \in \mathbb{R}} \left\{ -\frac{3\frac{a}{b} + 6}{\frac{a^2}{b^2} + 3\frac{a}{b} + 3} \right\} = \max_{\mathbb{R}} g(x) = 1.$$

再由(7.2)式可知

$$\int_0^1 f^2(x) \mathrm{d}x \geqslant 4.$$

并且这个不等式右边不可改进.

例题 7.3 设 $f \in C^1[0,1]$, 解决下列问题.

1. 若 f(0) = 0, 证明:

$$\int_0^1 |f(x)|^2 dx \le \frac{1}{2} \int_0^1 |f'(x)|^2 dx.$$

2. 若 f(0) = f(1) = 0, 证明:

$$\int_0^1 |f(x)|^2 \mathrm{d}x \leqslant \frac{1}{8} \int_0^1 |f'(x)|^2 \mathrm{d}x.$$

注 牛顿莱布尼兹公式也可以看作带积分余项的插值公式 (插一个点). 证明

1. 由牛顿莱布尼兹公式可知

$$f(x) = f(0) + \int_0^x f'(y) dy = \int_0^x f'(y) dy.$$

从而

$$|f(x)|^2 = \left| \int_0^x f'(y) dy \right|^2 \leqslant \int_0^x 1^2 dy \int_0^x |f'(y)|^2 dy = x \int_0^x |f'(y)|^2 dy \leqslant x \int_0^1 |f'(y)|^2 dy.$$

于是对上式两边同时积分可得

$$\int_0^1 |f(x)|^2 \mathrm{d}x \le \int_0^1 x \mathrm{d}x \int_0^1 |f'(y)|^2 \mathrm{d}y = \frac{1}{2} \int_0^1 |f'(y)|^2 \mathrm{d}y.$$

2. 由牛顿莱布尼兹公式(带积分型余项的插值公式)可得

$$f(x) = \int_0^x f(y) dy, x \in \left[0, \frac{1}{2}\right]; \quad f(x) = \int_x^1 f'(y) dy, x \in \left[\frac{1}{2}, 1\right].$$

从而

$$|f(x)|^{2} = \left| \int_{0}^{x} f'(y) dy \right|^{2} \leqslant \int_{0}^{x} 1^{2} dy \int_{0}^{x} |f'(y)|^{2} dy = x \int_{0}^{x} |f'(y)|^{2} dy \leqslant x \int_{0}^{\frac{1}{2}} |f'(y)|^{2} dy, x \in \left[0, \frac{1}{2}\right].$$

$$|f(x)|^{2} = \left| \int_{x}^{1} f'(y) dy \right|^{2} \leqslant \int_{0}^{x} 1^{2} dy \int_{x}^{1} |f'(y)|^{2} dy \leqslant (1-x) \int_{\frac{1}{2}}^{1} |f'(y)|^{2} dy, x \in \left[\frac{1}{2}, 1\right].$$

于是对上面两式两边同时积分可得

$$\int_0^{\frac{1}{2}} |f(x)|^2 dx \le \int_0^{\frac{1}{2}} x dx \int_0^{\frac{1}{2}} |f'(y)|^2 dy = \frac{1}{8} \int_0^{\frac{1}{2}} |f'(y)|^2 dy.$$

$$\int_{\frac{1}{2}}^1 |f(x)|^2 dx \le \int_{\frac{1}{2}}^1 (1-x) dx \int_{\frac{1}{2}}^1 |f'(y)|^2 dy = \frac{1}{8} \int_0^{\frac{1}{2}} |f'(y)|^2 dy.$$

将上面两式相加得

$$\int_0^1 |f(x)|^2 \mathrm{d}x \leqslant \frac{1}{8} \int_0^1 |f'(y)|^2 \mathrm{d}y.$$

例题 7.4 opial 不等式

特例:

1. 设 $f \in C^1[a,b]$ 且 f(a) = 0, 证明

$$\int_a^b |f(x)f'(x)| \mathrm{d}x \leqslant \frac{b-a}{2} \int_a^b |f'(x)|^2 \mathrm{d}x.$$

2. 设 $f \in C^1[a,b]$ 且 f(a) = 0, f(b) = 0, 证明

$$\int_a^b |f(x)f'(x)| \mathrm{d}x \leqslant \frac{b-a}{4} \int_a^b |f'(x)|^2 \mathrm{d}x.$$

一般情况:

1. 设 $f \in C^1[a, b], p \ge 0, q \ge 1$ 且 f(a) = 0. 证明

$$\int_{a}^{b} |f(x)|^{p} |f'(x)|^{q} dx \le \frac{q(b-a)^{p}}{p+q} \int_{a}^{b} |f'(x)|^{p+q} dx.$$
 (7.3)

2. 若还有 f(b) = 0. 证明

$$\int_{a}^{b} |f(x)|^{p} |f'(x)|^{q} dx \leqslant \frac{q(b-a)^{p}}{(p+q)2^{p}} \int_{a}^{b} |f'(x)|^{p+q} dx.$$
 (7.4)

🕏 笔记 说明了证明的想法就是注意变限积分为整体凑微分.

证明 结例:

1. 令
$$F(x) \triangleq \int_a^x |f'(y)| dy$$
, 则 $F'(x) = |f'(x)|$, $F(a) = 0$. 从而

$$f(x) = \int_0^x f'(y) dy \Rightarrow |f(x)| \leqslant \int_a^x |f'(y)| dy = F(x).$$

于是

$$\int_{a}^{b} |f(x)f'(x)| dx \leq \int_{a}^{b} F(x)F'(x) dx = \frac{1}{2}F^{2}(x) \Big|_{a}^{b} = \frac{1}{2}F^{2}(b) = \frac{1}{2} \left(\int_{a}^{b} |f'(y)| dx \right)^{2}$$

$$\leq \frac{1}{2} \int_{a}^{b} 1^{2} dx \int_{a}^{b} |f'(y)|^{2} dx = \frac{b-a}{2} \int_{a}^{b} |f'(y)|^{2} dx.$$

2. 由第1问可知

$$\int_{a}^{\frac{a+b}{2}} |f(x)f'(x)| \mathrm{d}x \leqslant \frac{\frac{a+b}{2} - a}{2} \int_{a}^{\frac{a+b}{2}} |f'(y)|^2 \mathrm{d}y = \frac{b-a}{4} \int_{a}^{\frac{a+b}{2}} |f'(y)|^2 \mathrm{d}y.$$

$$\int_{\frac{a+b}{2}}^{b} |f(x)f'(x)| \mathrm{d}x \leqslant \frac{\frac{a+b}{2} - a}{2} \int_{\frac{a+b}{2}}^{b} |f'(y)|^2 \mathrm{d}y = \frac{b-a}{4} \int_{\frac{a+b}{2}}^{b} |f'(y)|^2 \mathrm{d}y.$$

将上面两式相加可得

$$\int_a^b |f(x)f'(x)| \mathrm{d}x \leqslant \frac{b-a}{4} \int_a^b |f'(y)|^2 \mathrm{d}y.$$

一般情况:

1. 只证q > 1. q = 1 可类似得到. 考虑

$$f(x) = \int_{a}^{x} f'(y) dy, F(x) = \int_{a}^{x} |f'(y)|^{q} dy.$$

则由Hold 不等式, 我们知道

$$|f(x)|^{p} \leqslant \left(\int_{a}^{x} |f'(y)| \mathrm{d}y\right)^{p} \leqslant \left(\int_{a}^{x} |f'(y)|^{q} \mathrm{d}y\right)^{\frac{p}{q}} \left(\int_{a}^{x} 1^{\frac{q}{q-1}} \mathrm{d}y\right)^{\frac{p(q-1)}{q}} = F^{\frac{p}{q}}(x)(x-a)^{\frac{p(q-1)}{q}},$$

这里 $\frac{1}{p} + \frac{1}{q} = 1$. 于是

$$\int_{a}^{b} |f(x)|^{p} |f'(x)|^{q} dx \leq \int_{a}^{b} F^{\frac{p}{q}}(x)(x-a)^{\frac{p(q-1)}{q}} |f'(x)|^{q} dx = \int_{a}^{b} F^{\frac{p}{q}}(x)(x-a)^{\frac{p(q-1)}{q}} dF(x)$$

$$\leq (b-a)^{\frac{p(q-1)}{q}} \int_{a}^{b} F^{\frac{p}{q}}(x) dF(x) = \frac{q}{q+p} (b-a)^{\frac{p(q-1)}{q}} F^{\frac{p+q}{q}}(b)$$

$$= \frac{q}{q+p} (b-a)^{\frac{p(q-1)}{q}} \left(\int_{a}^{b} |f'(y)|^{q} dy \right)^{\frac{p+q}{q}}$$

$$\leq \frac{q}{q+p} (b-a)^{\frac{p(q-1)}{q}} \left(\int_{a}^{b} |f'(y)|^{q(\frac{p+q}{q})} dy \right)^{\frac{q}{q+p}} \left(\int_{a}^{b} 1^{(\frac{p+q}{q-1})} dy \right)^{\frac{q-1}{q+p}}$$

$$= \frac{q(b-a)^{p}}{p+q} \int_{a}^{b} |f'(y)|^{p+q} dy,$$

这就证明了不等式(7.3).

2. 由第一问得

$$\int_{a}^{\frac{a+b}{2}} |f(x)|^{p} |f'(x)|^{q} dx \leqslant \frac{q(b-a)^{p}}{(p+q)2^{p}} \int_{a}^{\frac{a+b}{2}} |f'(x)|^{p+q} dx,$$

对称得

$$\int_{\frac{a+b}{2}}^{b} |f(x)|^{p} |f'(x)|^{q} dx \leqslant \frac{q(b-a)^{p}}{(p+q)2^{p}} \int_{\frac{a+b}{2}}^{b} |f'(x)|^{p+q} dx.$$

故上面两式相加得到(7.4)式.

例题 7.5 设 $f \in C[0,1]$ 满足 $\int_0^1 f(x) dx = 0$, 证明:

$$\left(\int_0^1 x f(x) \mathrm{d}x\right)^2 \leqslant \frac{1}{12} \int_0^1 f^2(x) \mathrm{d}x.$$

拿 笔记 从条件 $\int_0^1 f(x) dx = 0$ 来看, 我们待定 $a \in \mathbb{R}$, 一定有

$$\int_0^1 x f(x) \mathrm{d}x = \int_0^1 (x - a) f(x) \mathrm{d}x.$$

然后利用 Cauchy 不等式得

$$\left(\int_0^1 (x-a)f(x)dx\right)^2 \le \int_0^1 (x-a)^2 dx \int_0^1 f^2(x)dx.$$

为了使得不等式最精确, 我们自然希望 $\int_0^1 (x-a)^2 dx$ 达到最小值. 读者也可以直接根据对称性猜测出 $a=\frac{1}{2}$ 就是

达到最小值的 a.

证明 利用 Cauchy 不等式得

$$\frac{1}{12} \int_0^1 f^2(x) dx = \int_0^1 \left(x - \frac{1}{2} \right)^2 dx \int_0^1 f^2(x) dx$$

$$\geqslant \left(\int_0^1 \left(x - \frac{1}{2} \right) f(x) dx \right)^2$$

$$= \left(\int_0^1 x f(x) dx \right)^2,$$

这就证明了(??)式.

例题 7.6 设 $f \in C^1[0,1], \int_{\frac{1}{2}}^{\frac{2}{3}} f(x) dx = 0$, 证明

$$\int_0^1 |f'(x)|^2 dx \ge 27 \left(\int_0^1 f(x) dx \right)^2.$$

章 笔记 为了分部积分提供 0 边界且求导之后不留下东西, 设 g(0) = g(1) = 0 且 g 是一次函数, 这不可能, 于是只能是分段函数 $g(x) = \begin{cases} x-1, & c \leq x \leq 1 \\ x, & 0 \leq x \leq c \end{cases}$. 为了让 g 连续会发现 c = c-1, 这不可能. 结合 $\int_{\frac{1}{3}}^{\frac{2}{3}} f(x) dx = 0$, 所以我们插入一段来使得连续, 因此真正构造的函数为

$$g(x) = \begin{cases} x - 1, & \frac{2}{3} \leqslant x \leqslant 1\\ 1 - 2x, & \frac{1}{3} \leqslant x \leqslant \frac{2}{3}\\ x, & 0 \leqslant x \leqslant \frac{1}{3} \end{cases}.$$

证明 令

$$g(x) = \begin{cases} x - 1, & \frac{2}{3} \leqslant x \leqslant 1\\ 1 - 2x, & \frac{1}{3} \leqslant x \leqslant \frac{2}{3}\\ x, & 0 \leqslant x \leqslant \frac{1}{3} \end{cases}$$

于是由 Cauchy 不等式, 我们有

$$\int_{0}^{1} |f'(x)|^{2} dx \int_{0}^{1} |g(x)|^{2} dx \ge \left(\int_{0}^{1} f'(x)g(x) dx \right)^{2} \xrightarrow{\text{$\frac{\phi}{3}$ iff}} \left(\int_{0}^{1} f(x)g'(x) dx \right)^{2}$$

$$= \left(\int_{0}^{\frac{1}{3}} f(x) dx - 2 \int_{\frac{1}{3}}^{\frac{2}{3}} f(x) dx + \int_{\frac{2}{3}}^{1} f(x) dx \right)^{2}$$

$$= \left(\int_{0}^{\frac{1}{3}} f(x) dx + \int_{\frac{1}{3}}^{\frac{2}{3}} f(x) dx + \int_{\frac{2}{3}}^{1} f(x) dx \right)^{2} = \left(\int_{0}^{1} f(x) dx \right)^{2},$$

结合 $\int_0^1 |g(x)|^2 dx = \frac{1}{27}$, 这就完成了证明.

例题 7.7 设 $f \in C[a,b] \cap D(a,b)$ 且 f(a) = f(b) = 0 且 f 不恒为 0, 证明存在一点 $\xi \in (a,b)$ 使得

$$|f'(\xi)| > \frac{4}{(b-a)^2} \left| \int_a^b f(x) \mathrm{d}x \right|.$$

注 不妨设 $\int_a^b f(x) dx > 0$ 的原因: 若 $\int_a^b f(x) dx < 0$ 则用 -f 代替 $f, \int_a^b f(x) dx = 0$ 是平凡的.

证明 反证, 若 $|f'(x)| \leq \frac{4}{(b-a)^2} \left| \int_a^b f(x) dx \right| \triangleq M$, 则不妨设 $\int_a^b f(x) dx > 0$, 由 Hermite 插值定理可知, 存在

 $\theta_1 \in (a,x), \theta_2 \in (x,b)$, 使得

$$f(x) = f(a) + f'(\theta_1)(x - a) \leqslant M(x - a), \forall x \in \left[a, \frac{a + b}{2}\right].$$

$$f(x) = f(b) + f'(\theta_2)(x - b) \leqslant -M(x - b) = M(b - x), \forall x \in \left\lceil \frac{a + b}{2}, b \right\rceil.$$

从而

$$\int_{a}^{b} |f(x)| \mathrm{d}x \leq \int_{a}^{\frac{a+b}{2}} M(x-a) \mathrm{d}x + \int_{\frac{a+b}{2}}^{b} M(b-x) \mathrm{d}x = \frac{M(b-a)^{2}}{4} = \int_{a}^{b} |f(x)| \mathrm{d}x.$$

于是结合f的连续性可得

$$\int_{a}^{\frac{a+b}{2}} f(x) dx = \int_{a}^{\frac{a+b}{2}} M(x-a) dx \Rightarrow f(x) = M(x-a), \forall x \in \left[a, \frac{a+b}{2}\right].$$

$$\int_{\frac{a+b}{2}}^{b} f(x) dx = \int_{\frac{a+b}{2}}^{b} M(b-x) dx \Rightarrow f(x) = M(b-x), \forall x \in \left[\frac{a+b}{2}, b\right].$$

故 f 在 $x = \frac{a+b}{2}$ 处不可导, 这与 $f \in D(a,b)$ 矛盾!

例题 7.8 设 $f \in C^1[0,\pi]$ 且满足 $\int_0^{\pi} f(x) dx = 0$, 证明:

$$|f(x)| \leq \sqrt{\frac{\pi}{3} \int_0^{\pi} |f'(t)|^2 \mathrm{d}t}, \forall x \in [0, \pi].$$

注 原不等式等价于

$$f^{2}(x) \le \frac{\pi}{3} \int_{0}^{\pi} |f'(t)|^{2} dt, \forall x \in [0, \pi].$$

显然要利用 Cauchy 不等式, 先待定 g(x), 由 Cauchy 不等式可得

$$\int_{0}^{\pi} |f'(t)|^{2} dt \int_{0}^{\pi} g^{2}(t) dt \ge \left(\int_{0}^{\pi} f'(t)g(t) dt \right)^{2}, \forall x \in [0, \pi].$$
 (7.5)

此时, 我们希望对 $\forall x \in [0, \pi]$, 固定 x, 都有 $\int_0^\pi f'(t)g(t)dt = kf(x)$, 其中 k 为某一常数. 因此 g(t) 必和 x 有关, 于是

$$g(t) = \begin{cases} t - \pi, & t \in [x, \pi] \\ t, & t \in [0, x] \end{cases},$$

再代入(7.5)式验证即可.

实际上, 回忆定理 4.3中的 Green 函数, 可以发现上述构造的 $g(x) = \frac{\mathrm{d}k(x,t)}{\mathrm{d}x}, x,t \in [0,\pi].$

希望 $\int_0^\pi f(t)g'(t)dt = f(x)$, 考虑广义导数, 使得 $g'(x) = \delta(x)$. 实际上, 这里的 g 就是 H 函数 (详细参考 rudin 的泛函分析).

证明 令

$$g(t) = \begin{cases} t - \pi, & t \in [x, \pi] \\ t, & t \in [0, x] \end{cases},$$

则对 $\forall x \in [0, \pi]$, 都有

$$\left(\int_{0}^{\pi} f'(t)g(t)dt\right)^{2} = \left(\int_{x}^{\pi} (t-\pi)f'(t)dt + \int_{0}^{x} tf'(t)dt\right)^{2}$$

$$\xrightarrow{\frac{\partial \# \mathcal{H} \mathcal{H}}{\partial x}} \left(-(x-\pi)f'(x) - \int_{x}^{\pi} f(t)dt + xf(x) - \int_{0}^{x} f(t)dt\right)^{2}$$

$$= \pi^{2}|f(x)|^{2}$$

$$\int_{0}^{\pi} g^{2}(t)dt = \int_{x}^{\pi} (t-\pi)^{2}dt + \int_{0}^{x} t^{2}dt = \frac{\pi}{3}(3x^{2} - 3\pi x + \pi^{2})$$

故由 Cauchy 不等式可得

$$\frac{\pi}{3}(3x^2 - 3\pi x + \pi^2) \int_0^\pi |f'(t)|^2 \mathrm{d}t = \int_0^\pi |f'(t)|^2 \mathrm{d}t \int_0^\pi g^2(t) \mathrm{d}t \geqslant \left(\int_0^\pi f'(t)g(t) \mathrm{d}t\right)^2 = \pi^2 |f(x)|^2, \forall x \in [0,\pi]$$

即

$$|f(x)|^2 \leqslant \frac{1}{3\pi} (3x^2 - 3\pi x + x^2) \int_0^{\pi} |f'(t)|^2 dt \leqslant \frac{\pi}{3} \int_0^{\pi} |f'(t)|^2 dt, \forall x \in [0, \pi]$$

命题 7.1 (反向 Cauchy 不等式)

设 $f, g \in R[a, b], g \ge 0, 0 < m \le f \le M$, 证明

$$\left(\int_{a}^{b}g\left(x\right)\,\mathrm{d}x\right)^{2}\leqslant\int_{a}^{b}\frac{g\left(x\right)}{f\left(x\right)}\,\mathrm{d}x\int_{a}^{b}f\left(x\right)g\left(x\right)\,\mathrm{d}x\leqslant\frac{1}{4}\left(\sqrt{\frac{M}{m}}+\sqrt{\frac{m}{M}}\right)^{2}\left(\int_{a}^{b}g\left(x\right)\,\mathrm{d}x\right)^{2}.$$

证明 由 Cauchy 不等式可得

$$\left(\int_a^b g(x) \, \mathrm{d}x\right)^2 = \left(\int_a^b \sqrt{f(x)g(x)} \cdot \sqrt{\frac{g(x)}{f(x)}} \, \mathrm{d}x\right)^2 \leqslant \int_a^b \left[\sqrt{f(x)g(x)}\right]^2 \, \mathrm{d}x \int_a^b \left[\sqrt{\frac{g(x)}{f(x)}}\right]^2 \, \mathrm{d}x = \int_a^b f(x)g(x) \, \mathrm{d}x \int_a^b \frac{g(x)}{f(x)} \, \mathrm{d}x.$$

故第一个不等式成立. 下证第二个不等式. 由条件和均值不等式可知

$$\int_{a}^{b} \frac{\left[f(x) - m\right] \left[M - f(x)\right]}{f(x)} g(x) dx \ge 0 \iff \int_{a}^{b} \frac{Mf(x) + mf(x) - mM - f^{2}(x)}{f(x)} g(x) dx \ge 0$$

$$\iff (M + m) \int_{a}^{b} g(x) dx \ge mM \int_{a}^{b} \frac{g(x)}{f(x)} dx + \int_{a}^{b} f(x) g(x) dx \ge 2\sqrt{mM} \sqrt{\int_{a}^{b} \frac{g(x)}{f(x)} dx \int_{a}^{b} f(x) g(x) dx}.$$

故

$$\int_{a}^{b} \frac{g(x)}{f(x)} dx \int_{a}^{b} f(x)g(x) dx \leqslant \left[\frac{(M+m)}{2\sqrt{mM}} \int_{a}^{b} g(x) dx \right]^{2}.$$

即

$$\int_{a}^{b} \frac{g(x)}{f(x)} dx \int_{a}^{b} f(x) g(x) dx \leq \frac{1}{4} \left(\sqrt{\frac{M}{m}} + \sqrt{\frac{m}{M}} \right)^{2} \left(\int_{a}^{b} g(x) dx \right)^{2}.$$

例题 7.9 设 $f,g \in R[a,b]$ 满足

$$0 < m \leqslant f(x) \leqslant M, \quad \int_a^b g(x) dx = 0.$$

证明:

$$\left(\int_{a}^{b} f(x) g(x) dx\right)^{2} \leqslant \left(\frac{M-m}{M+m}\right)^{2} \int_{a}^{b} f^{2}(x) dx \int_{a}^{b} g^{2}(x) dx.$$

注 待定常数 k, 由条件 $\int_a^b g(x) dx = 0$ 和 Cauchy 不等式可得

$$\left(\int_{a}^{b} f(x)g(x) \, \mathrm{d}x\right)^{2} = \left(\int_{a}^{b} (f(x) - k) g(x) \, \mathrm{d}x\right)^{2} \le \int_{a}^{b} (f(x) - k)^{2} \, \mathrm{d}x \int_{a}^{b} g^{2}(x) \, \mathrm{d}x.$$

于是我们希望

$$\int_{a}^{b} (f(x) - k)^{2} dx \int_{a}^{b} g^{2}(x) dx \le \left(\frac{M - m}{M + m}\right)^{2} \int_{a}^{b} f^{2}(x) dx \int_{a}^{b} g^{2}(x) dx.$$

从而希望

$$(f(x) - k)^2 \leqslant \left(\frac{M - m}{M + m}\right)^2 f^2(x).$$

又因为 $m \leq f(x) \leq M$, 所以只需要下式成立即可

$$(t-k)^2 \leqslant \left(\frac{M-m}{M+m}\right)^2 t^2, \quad \forall t \in [m,M]. \tag{7.6}$$

我们只需要找到出一个合适的k, 使这个k 满足上式即可.

现在, 我们先求不等式 $(t-k)^2 \le Ct^2, \forall t \in [m,M]$ 的最佳系数 C. 即求最小的 C>0, 存在 $k \in \mathbb{R}$, 使得

$$(t-k)^2 \leqslant Ct^2, \quad \forall t \in [m, M].$$

上式等价于

$$\left(1-\frac{k}{t}\right)^2 \leqslant C, \quad \forall t \in [m,M] \Longleftrightarrow \left(1-\frac{k}{M}\right)^2, \left(1-\frac{k}{m}\right)^2 \leqslant C.$$

(画图) 易知 h(x) 的最小值就在 $\left(1-\frac{x}{M}\right)^2$ 和 $\left(1-\frac{x}{m}\right)^2$ 中间的一个交点处取到, 即 $k\in\left(\frac{1}{M},\frac{1}{m}\right)$. 于是由 $\left(1-\frac{x}{M}\right)^2=\left(1-\frac{x}{M}\right)^2$ 可得

(i)
$$1 - \frac{x}{M} = 1 - \frac{x}{m} \Longrightarrow x = 0$$
, $h(0) = 1$.

(ii)
$$1 - \frac{x}{M} = \frac{x}{m} - 1 \Longrightarrow 2 = \left(\frac{1}{m} + \frac{1}{M}\right)x \Longrightarrow x = \frac{2mM}{M+m}, \quad h\left(\frac{2mM}{M+m}\right) = \left(\frac{M-m}{M+m}\right)^2.$$

故 $k = \frac{2mM}{M+m}$, $C = \left(\frac{M-m}{M+m}\right)^2$. 再结合 (7.6) 式, 可知原不等式的系数就是最佳系数, 并且此时我们找到了证明需要的 $k = \frac{2mM}{M+m}$. 证明只需要将 $k = \frac{2mM}{M+m}$ 代入上述步骤验证即可.

证明 由条件 $\int_a^b g(x) dx = 0$ 和 Cauchy 不等式可得

$$\left(\int_{a}^{b} f(x)g(x) dx\right)^{2} = \left(\int_{a}^{b} \left(f(x) - \frac{2mM}{M+m}\right)g(x) dx\right)^{2}$$

$$\leq \int_{a}^{b} \left(f(x) - \frac{2mM}{M+m}\right)^{2} dx \int_{a}^{b} g^{2}(x) dx. \tag{7.7}$$

注意到

$$\left(t - \frac{2mM}{M+m}\right)^2 - \left(\frac{M-m}{M+m}\right)^2 t = \frac{4mM\left(t-M\right)\left(m-t\right)}{\left(m+M\right)^2} \leqslant 0, \quad \forall t \in [m,M].$$

因此由 $f(x) \in [m, M], \forall x \in \mathbb{R}$ 可得

$$\left(f(x) - \frac{2mM}{M+m}\right)^2 \leqslant \left(\frac{M-m}{M+m}\right)^2 f^2(x), \quad \forall x \in \mathbb{R}.$$

于是再结合 (7.7) 式可得

$$\left(\int_a^b f(x)g(x)\,\mathrm{d}x\right)^2 \leqslant \int_a^b \left(f(x) - \frac{2mM}{M+m}\right)^2\,\mathrm{d}x\int_a^b g^2(x)\,\mathrm{d}x \leqslant \left(\frac{M-m}{M+m}\right)^2\int_a^b f^2(x)\,\mathrm{d}x\int_a^b g^2(x)\,\mathrm{d}x, \forall x\in\mathbb{R}.$$

例题 **7.10** 设 $f \in C^2[0,1]$ 满足 f(0) = f(1) = f'(0) = 0, f'(1) = 1. 证明

$$\int_0^1 |f''(x)|^2 \mathrm{d}x \geqslant 4.$$

注 待定 g(x), 由 Cauchy 不等式及条件可得

$$\int_{0}^{1} |f''(x)|^{2} dx \int_{0}^{1} g^{2}(x) dx \ge \left(\int_{0}^{1} f''(x)g(x) dx \right)^{2}$$

$$\frac{-\frac{2}{3}}{3} \frac{\partial f}{\partial x} \left(g(1) - \int_{0}^{1} f'(x)g'(x) dx \right)^{2}$$

将上式两边与要证不等式对比, 我们希望 $g''(x) \equiv 0$, 从而 $\int_0^1 f(x)g''(x) dx = 0$, 于是上式可化为

$$\int_{0}^{1} |f''(x)|^{2} dx \int_{0}^{1} g^{2}(x) dx \geqslant g^{2}(1)$$

$$\iff \int_{0}^{1} |f''(x)|^{2} dx \geqslant \frac{g^{2}(1)}{\int_{0}^{1} g^{2}(x) dx}.$$
(7.8)

因此只要 g(x) 还满足 $\frac{g^2(1)}{\int_0^1 g^2(x) dx} \ge 4$ 即可.

因为 $g''(x) \equiv 0$, 所以我们可以设 g(x) 为一次函数, 即 $g(x) = ax + b, a \neq 0$. 又因为 $\frac{g^2(1)}{\int_0^1 g^2(x) dx}$ 越大, 不等式

(7.8) 越强, 所以现在我们想要找到一个一次函数 g(x) 使得 $\frac{g^2(1)}{\int_0^1 g^2(x) dx}$ 达到最大值.

不妨设 $g(x) = ax - 1, a \neq 0$, 否则用 -bg(x) 代替 g(x), 不改变 $\frac{g^2(1)}{\int_0^1 g^2(x) dx}$ 的取值. 此时, 我们有

$$\frac{g^2(1)}{\int_0^1 g^2(x) \, \mathrm{d}x} = 3 \cdot \frac{a^2 - 2a + 1}{a^2 - 3a + 3} = 3\left(1 + \frac{a}{a^2 - 3a + 3}\right).$$

令 $h(a) = \frac{a}{a^2 - 3a + 3}$, 则由 $h'(a) = \frac{3 - a^2}{(a^2 - 3a + 3)^2} = 0$ 可得 h 的极大值点为 $a = \sqrt{3}$. 又因为

$$\lim_{a \to -\infty} h(a) = \lim_{a \to -\infty} \frac{a}{a^2 - 3a + 3} = 0, \quad h(\sqrt{3}) = \frac{\sqrt{3}}{6 - 3\sqrt{3}} = \frac{3 + 2\sqrt{3}}{3}.$$

所以 $\max_{a \in \mathbb{R}} h(a) = \frac{2\sqrt{3} + 3}{3}$. 从而

$$\max_{a \in \mathbb{R}} \frac{g^2(1)}{\int_0^1 g^2(x) \, \mathrm{d}x} = \max_{a \in \mathbb{R}} 3\left(1 + \frac{a}{a^2 - 3a + 3}\right) = 3\left(1 + \max_{a \in \mathbb{R}} h(a)\right) = 6 + 2\sqrt{3} > 4.$$

综上, 取 $g(x) = \sqrt{3}x - 1$, 就能得到

$$\int_0^1 |f''(x)|^2 dx \geqslant \frac{g^2(1)}{\int_0^1 g^2(x) dx} = 6 + 2\sqrt{3} > 4.$$

$$g''(x) \equiv 0$$
, $g(1) = \sqrt{3} - 1$.

于是由 Cauchy 不等式及条件可得

$$\int_{0}^{1} |f''(x)|^{2} dx \int_{0}^{1} g^{2}(x) dx \geqslant \left(\int_{0}^{1} f''(x)g(x) dx\right)^{2}$$

$$\xrightarrow{\frac{\hat{\mathcal{F}}^{33}}{2}} \left(g(1) - \int_{0}^{1} f'(x)g'(x) dx\right)^{2} \xrightarrow{\frac{\hat{\mathcal{F}}^{33}}{2}} \left(g(1) + \int_{0}^{1} f(x)g''(x) dx\right)^{2}.$$

从而

$$\int_0^1 |f''(x)|^2 dx \ge \frac{g^2(1)}{\int_0^1 g^2(x) dx} = \frac{(\sqrt{3} - 1)^2}{\int_0^1 (\sqrt{3}x - 1)^2 dx} = 6 + 2\sqrt{3} > 4.$$

例题 7.11 设 $f \in C^2[0,2]$, 证明:

$$\int_0^2 |f''(x)|^2 dx \geqslant \frac{3}{2} [f(0) + f(2) - 2f(1)]^2.$$

注 不妨设 f(0) = f(2) = 0, f(1) = 1 的原因:

- (1) 当 f(0) + f(2) 2f(1) = 0 时, 结论显然成立.
- (2) 当 $f(0) + f(2) 2f(1) \neq 0$ 时, 则待定 a, b, c, 令 g(x) = cf(x) ax b, 希望 g(0) = g(2) = 0, g(1) = 1, 即

$$\begin{pmatrix} -2 & -1 & f(2) \\ 0 & -1 & f(0) \\ -1 & -1 & f(1) \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$
 (7.9)

注意到上述方程的系数行列式为

$$\begin{vmatrix} -2 & -1 & f(2) \\ 0 & -1 & f(0) \\ -1 & -1 & f(1) \end{vmatrix} = f(0) + f(2) - 2f(1) \neq 0.$$

故由 Cramer 法则可知, 存在唯一的解 $a=a_0,b=b_0,c=c_0$ 满足方程组 (7.9). 即 $g(x)=c_0f(x)-a_0x-b_0$ 满足 g(0)=g(2)=0,g(1)=1.

下证不妨设成立. 假设原不等式已经对 f(0) = f(2) = 0, f(1) = 1 的的情况成立, 则对一般的 f(x) 而言, 令 $g(x) = c_0 f(x) - a_0 x - b_0$, 显然 $g''(x) = c_0 f''(x)$, 并且由上述推导可知 g(0) = g(2) = 0, g(1) = 1. 从而此时由假设可得

$$\int_0^2 |g''(x)|^2 dx \geqslant \frac{3}{2} [g(0) + g(2) - 2g(1)]^2.$$

于是

$$|c_0|^2 \int_0^2 |f''(x)|^2 dx = \int_0^2 |g''(x)|^2 dx \geqslant \frac{3}{2} \left[g(0) + g(2) - 2g(1) \right]^2$$

$$= \frac{3}{2} \left[(c_0 f(0) - b_0) + (c_0 f(2) - 2a_0 - b_0) - 2 (c_0 f(1) - a_0 - b_0) \right]^2$$

$$= \frac{3|c_0|^2}{2} \left[f(0) + f(2) - 2f(1) \right]^2.$$

故

$$\int_0^2 |f''(x)|^2 dx \geqslant \frac{3}{2} \left[f(0) + f(2) - 2f(1) \right]^2.$$

因此不妨设成立.

于是我们可以不妨设 f(0) = f(2) = 0, f(1) = 1, 否则用 $c_0 f(x) - a_0 x - b_0$ 代替即可. 从而只须证

$$\int_0^2 |f''(x)|^2 dx \geqslant \frac{3}{2} \left[f(0) + f(2) - 2f(1) \right]^2 = 6.$$

显然要利用 Cauchy 不等式, 因此待定 g(x), 由 Cauchy 不等式可得

$$\int_0^2 |f''(x)|^2 dx \int_0^2 g^2(x) dx \ge \left(\int_0^2 f''(x)g(x) dx \right)^2.$$

对上式右边分部积分可得

$$\left(\int_0^2 f''(x)g(x) \, \mathrm{d}x\right)^2 = \left(f'(2)g(2) - f'(0)g(0) - \int_0^2 f'(x)g'(x) \, \mathrm{d}x\right)^2. \tag{7.10}$$

于是我们希望 $g'(x) \equiv C$, 其中 C 为某一常数,g(2) = g(0) = 0, 从而设 g(x) 为一次函数, 即设 g(x) = px + q. 从而由 g(2) = g(0) = 0 可得 q = p = 0, 进而 $g \equiv 0$, 显然不行!

因此我们猜测 g(x) 为满足 g(2) = g(0) = 0 的分段一次函数,则待定 m,令

$$g(x) = \begin{cases} x, & 0 \leqslant x \leqslant 1 \\ m(x-2), & 1 < x \leqslant 2 \end{cases}.$$

(因为有 f(1) = 1 这个条件, 所以选先 x = 1 为分段点) 又由 (7.10) 式可知需要 f 和 g 都连续才能分部积分, 因此 g

在 x = 1 处要连续, 故 m = 1, 即

$$g(x) = \begin{cases} x, & 0 \leqslant x \leqslant 1 \\ x - 2, & 1 < x \leqslant 2 \end{cases}.$$

再代入 (7.10) 式中验证即可得到证明.

证明 不妨设 f(0) = f(2) = 0, f(1) = 1, 否则用 $c_0 f(x) - a_0 x - b_0$ 代替即可. 令

$$g(x) = \begin{cases} x, & 0 \leqslant x \leqslant 1 \\ x - 2, & 1 < x \leqslant 2 \end{cases},$$

则

$$\int_0^2 g^2(x) \, \mathrm{d}x = \frac{2}{3}, \quad \left(\int_0^2 f'(x)g'(x) \, \mathrm{d}x \right)^2 = (-1 - 1)^2 = 4.$$

于是由 Cauchy 不等式可得

$$\int_0^2 |f''(x)|^2 dx \int_0^2 g^2(x) dx \ge \left(\int_0^2 f''(x)g(x) dx\right)^2 \xrightarrow{\text{$\frac{2}{3}$ fix β}} \left(\int_0^2 f'(x)g'(x) dx\right)^2$$

$$\iff \frac{2}{3} \int_0^2 |f''(x)|^2 dx \ge 4 \iff \int_0^2 |f''(x)|^2 dx \ge 6.$$

例题 7.12 设 $f \in C^1[0,1], f(0) = f(1) = -\frac{1}{6}$, 证明

$$\int_{0}^{1} |f'(x)|^{2} dx \ge 2 \int_{0}^{1} f(x) dx + \frac{1}{4}.$$

$$\int_0^1 |f'(x)|^2 dx \int_0^1 g^2(x) dx \geqslant \left(\int_0^1 f'(x)g(x) dx\right)^2 \xrightarrow{\text{$\frac{\phi}{2}$ in \mathbb{R}}} \left(-\frac{1}{6}g(1) + \frac{1}{6}g(0) - \int_0^1 f(x)g'(x) dx\right)^2. \tag{7.11}$$

将上式与要证不等式对比,于是我们希望 g'(x) = C, 其中 C 为某一常数. 这样才能使

$$\int_0^1 f(x)g'(x) \, dx = C \int_0^1 f(x) \, dx,$$

进而不等式右边才会出现我们需要的 $\int_0^1 f(x) dx$. 从而待定的 g(x) 为线性函数. 设 $g(x) = ax + c, a \neq 0$, 进而不妨设 g(x) = x + c, 否则用 $\frac{1}{a}g$ 代替 g 仍有不等式 (7.11)(因为不等式两边齐次). 于是不等式 (7.11) 可化为

$$\frac{3c^{2} + 3c + 1}{3} \int_{0}^{1} |f'(x)|^{2} dx = \int_{0}^{1} |f'(x)|^{2} dx \int_{0}^{1} (x + c)^{2} dx$$

$$\geqslant \left(-\frac{1}{6} (1 + c) + \frac{1}{6} c - \int_{0}^{1} f(x) dx \right)^{2}$$

$$= \left(\frac{1}{6} + \int_{0}^{1} f(x) dx \right)^{2}$$

$$\iff \int_{0}^{1} |f'(x)|^{2} dx \geqslant \frac{3}{3c^{2} + 3c + 1} \left(\frac{1}{6} + \int_{0}^{1} f(x) dx \right)^{2}.$$

$$(7.12)$$

因此只需要找到一个合适的c,使得上述不等式右边满足

$$\frac{3}{3c^2 + 3c + 1} \left(\frac{1}{6} + \int_0^1 f(x) \, \mathrm{d}x \right)^2 \ge 2 \int_0^1 f(x) \, \mathrm{d}x + \frac{1}{4}. \tag{7.13}$$

即对
$$\forall t = \int_0^1 f(x) \, \mathrm{d}x \in \mathbb{R}$$
, 找到一个 c , 记 $K = \frac{3}{3c^2 + 3c + 1} \in \mathbb{R}$, 使得

$$K\left(\frac{1}{6}+t\right)^2 \geqslant 2t+\frac{1}{4} \Longleftrightarrow \Delta = \frac{12-K}{3} \leqslant 0 \Longleftrightarrow K \geqslant 12.$$

因此取
$$c = -\frac{1}{2}$$
,得 $K = \frac{3}{3c^2 + 3c + 1} = 12$. 综上,令 $g(x) = x - \frac{1}{2}$,则由 (7.12) 和 (7.13) 式可知

$$\int_0^1 |f'(x)|^2 \, \mathrm{d}x \geqslant \frac{3}{3c^2 + 3c + 1} \left(\frac{1}{6} + \int_0^1 f(x) \, \mathrm{d}x \right)^2 \geqslant 2 \int_0^1 f(x) \, \mathrm{d}x + \frac{1}{4}.$$

只需要将 $g(x) = x - \frac{1}{2}$ 代入上述步骤进行验证即可得到证明.

证明 $\diamondsuit g(x) = x - \frac{1}{2}$, 则

$$\int_0^1 g^2(x) \, \mathrm{d}x = \frac{1}{12}, \quad g(1) = \frac{1}{2}, \quad g(0) = -\frac{1}{2}.$$

于是由 Cauchy 不等式和条件可得

$$\int_{0}^{1} |f'(x)|^{2} dx \int_{0}^{1} g^{2}(x) dx \ge \left(\int_{0}^{1} f'(x)g(x) dx \right)^{2} \xrightarrow{\text{$\frac{\triangle}{2}$ if $\Re \triangle}} \left(\frac{1}{6} + \int_{0}^{1} f(x) dx \right)^{2}$$

$$\iff \int_{0}^{1} |f'(x)|^{2} dx \ge \frac{1}{12} \left(\frac{1}{6} + \int_{0}^{1} f(x) dx \right)^{2}.$$

注意到 $\frac{1}{12} \left(\frac{1}{6} + t \right)^2 \ge 2t + \frac{1}{4}$ 对 $\forall t \in \mathbb{R}$ 恒成立, 故

$$\int_0^1 |f'(x)|^2 dx \ge \frac{1}{12} \left(\frac{1}{6} + \int_0^1 f(x) dx \right)^2 \ge 2 \int_0^1 f(x) dx + \frac{1}{4}.$$

例题 7.13(一类)Hilbert 不等式

1. 设 f(x), g(x) 在 $[0, +\infty)$ 中可积, 证明:

$$\iint_{[0,+\infty)} \frac{f(x)g(y)}{(\sqrt{x} + \sqrt{y})^2} \mathrm{d}x \mathrm{d}y \leqslant 2\sqrt{\int_0^\infty f^2(x) \mathrm{d}x \int_0^\infty g^2(x) \mathrm{d}x}.$$

2. 设N为正整数, a_k , b_k 为实数,证明

$$\sum_{m,n=1}^{N} \frac{a_m b_n}{(\sqrt{m} + \sqrt{n})^2} \leqslant 2\sqrt{\sum_{m=1}^{N} a_m^2 \cdot \sum_{n=1}^{N} b_n^2}.$$

证明

1.

2.

7.3 重积分方法

定理 7.7 (Chebeshev 不等式积分形式)

设 $p \in R[a,b]$ 且非负f,g在[a,b]上是单调函数,则

$$\left(\int_{a}^{b} p(x)f(x) dx\right) \left(\int_{a}^{b} p(x)g(x) dx\right) \leqslant \left(\int_{a}^{b} p(x) dx\right) \left(\int_{a}^{b} p(x)f(x)g(x) dx\right), f, g \neq i$$
 $\exists t \in \mathbb{N}$

$$\left(\int_a^b p(x)f(x)\,\mathrm{d}x\right)\left(\int_a^b p(x)g(x)\,\mathrm{d}x\right)\geqslant \left(\int_a^b p(x)\,\mathrm{d}x\right)\left(\int_a^b p(x)f(x)g(x)\,\mathrm{d}x\right), f,g \, \mbox{$\stackrel{\rightharpoonup}{=}$ ill d is the proof of the proof of$$

Ŷ 笔记 本不等式要牢记于心, 它是很多不等式的基本模型, 其特征就是出现单调性.

注 证法二中的 dμ 应该看作测度.

证明 证法一:

$$\left(\int_{a}^{b} p(x)f(x)dx\right)\left(\int_{a}^{b} p(x)g(x)dx\right) - \left(\int_{a}^{b} p(x)dx\right)\left(\int_{a}^{b} p(x)f(x)g(x)dx\right) \\
= \left(\int_{a}^{b} p(x)f(x)dx\right)\left(\int_{a}^{b} p(y)g(y)dy\right) - \left(\int_{a}^{b} p(x)dx\right)\left(\int_{a}^{b} p(y)f(y)g(y)dy\right) \\
= \iint_{[a,b]^{2}} p(x)p(y)g(y)[f(x) - f(y)]dxdy \\
\xrightarrow{\frac{1}{2} \iint_{[a,b]^{2}} p(x)p(y)[g(y) - g(x)][f(x) - f(y)]dxdy}$$

故结论得证.

证法二: 令
$$\frac{p(x)}{\int_a^b p(x) dx} dx = d\mu$$
, 则 $\int_a^b d\mu = \int_a^b \frac{p(x)}{\int_a^b p(x) dx} dx = 1$. 于是原不等式等价于
$$\int_a^b f(x) d\mu \int_a^b g(x) d\mu - \int_a^b f(x) g(x) d\mu$$

$$= \int_a^b f(x) d\mu \int_a^b g(y) d\mu - \int_a^b \int_a^b f(y) g(y) d\mu(y) d\mu(x)$$

$$= \int_a^b \int_a^b [f(x) - f(y)] g(y) d\mu(y) d\mu(x)$$

$$= \int_a^b \int_a^b [f(y) - f(x)] g(x) d\mu(y) d\mu(x)$$

$$= \frac{1}{2} \int_a^b \int_a^b [f(x) - f(y)] [g(y) - g(x)]$$

故结论得证.

例题 7.14 设 $f \in C[0,1]$ 递减恒正,证明

$$\frac{\int_{0}^{1} f^{2}(x) dx}{\int_{0}^{1} f(x) dx} \geqslant \frac{\int_{0}^{1} x f^{2}(x) dx}{\int_{0}^{1} x f(x) dx}$$

证明

$$\frac{\int_{0}^{1} f^{2}(x) dx}{\int_{0}^{1} f(x) dx} \geqslant \frac{\int_{0}^{1} x f^{2}(x) dx}{\int_{0}^{1} x f(x) dx}$$

原不等式等价于

$$\int_0^1 f(x) \mathrm{d}\mu \int_0^1 x \mathrm{d}\mu \geqslant \int_0^1 x f(x) \mathrm{d}\mu.$$

上式由Chebeshev 不等式积分形式可直接得到.

命题 7.2 (反向切比雪夫不等式)

设 $f,g \in R[a,b]$ 且 $m_1 \leqslant f(x) \leqslant M_1, m_2 \leqslant g(x) \leqslant M_2$, 证明

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x)g(x) dx - \frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx \right| \leqslant \frac{(M_{2} - m_{2})(M_{1} - m_{1})}{4}$$

注 不妨设 a = 0, b = 1 的原因: 假设当 a = 0, b = 1 时,

$$\left| \int_0^1 f(x)g(x) dx - \int_0^1 f(x) dx \int_0^1 g(x) dx \right| \leqslant \frac{(M_2 - m_2)(M_1 - m_1)}{4}$$

成立. 则对一般的 [a,b], 原不等式等价于

$$\left| \int_0^1 f(a+(b-a)x)g(a+(b-a)x)dx - \int_0^1 f(a+(b-a)x)dx \int_0^1 g(a+(b-a)x)dx \right| \leqslant \frac{(M_2-m_2)(M_1-m_1)}{4}.$$
 (7.14)

又注意到 $f(a+(b-a)x), g(a+(b-a)x) \in R[0,1]$, 且 $f(x) \in [m_1, M_1], g(x) \in [m_2, M_2]$. 故由假设可知(7.14)式成立. 因此不妨设也成立.

Ŷ 笔记 积累本题的想法.

证明 不妨设 a = 0, b = 1, 则记 $A = \int_{0}^{1} f(x) dx$, $B = \int_{0}^{1} g(x) dx$. 于是

$$\left| \int_{0}^{1} f(x)g(x)dx - \int_{0}^{1} f(x)dx \int_{0}^{1} g(x)dx \right|^{2} = \left| \int_{0}^{1} (f(x) - A)(g(x) - B)dx \right|^{2}$$

$$\leq \frac{Cauchy \checkmark \stackrel{\text{def}}{\Rightarrow}}{\leq} \int_{0}^{1} |f(x) - A|^{2}dx \cdot \int_{0}^{1} |g(x) - B|^{2}dx$$

$$= \left(\int_{0}^{1} |f(x)|^{2}dx - \left(\int_{0}^{1} f(x)dx \right)^{2} \right) \cdot \left(\int_{0}^{1} |g(x)|^{2}dx - \left(\int_{0}^{1} g(x)dx \right)^{2} \right).$$

注意到

$$\int_0^1 (M_1 - f)(f - m_1) dx = M_1 A + m_1 A - M_1 m_1 - \int_0^1 |f(x)|^2 dx,$$

于是我们有

$$\int_0^1 |f(x)|^2 dx - \left(\int_0^1 f(x) dx\right)^2 = \int_0^1 |f(x)|^2 dx - A^2$$

$$= (M_1 - A)(A - m_1) - \int_0^1 (M_1 - f)(f - m_1) dx$$

$$\leq (M_1 - A)(A - m_1) \leq \frac{(M_1 - m_1)^2}{4}.$$

最后一个不等号可由均值不等式或看出二次函数取最值得到. 类似的有

$$\int_0^1 |g(x)|^2 dx - \left(\int_0^1 g(x) dx\right)^2 \leqslant \frac{(M_2 - m_2)^2}{4},$$

这就证明了

$$\left| \int_0^1 f(x)g(x) dx - \int_0^1 f(x) dx \int_0^1 g(x) dx \right|^2 \leqslant \frac{(M_1 - m_1)^2}{4} \frac{(M_2 - m_2)^2}{4},$$

即原不等式成立.

例题 7.15 设 $f \in C[a,b]$ 且

$$0 \le f(x) \le M, \forall x \in [a, b].$$

证明

$$\left(\int_{a}^{b} f(x)\cos x dx\right)^{2} + \left(\int_{a}^{b} f(x)\sin x dx\right)^{2} + \frac{M^{2}(b-a)^{4}}{12} \geqslant \left(\int_{a}^{b} f(x) dx\right)^{2}.$$
 (7.15)

注 由 Taylor 公式可得不等式:

$$\cos x \geqslant 1 - \frac{x^2}{2}, \forall x \in \mathbb{R}. \tag{7.16}$$

 $\sin x < x$ 两边同时在 [0,1] 上积分也可得 $1 - \cos x \le \frac{x^2}{2}$.

证明 一方面

$$\left(\int_{a}^{b} f(x)\cos x dx\right)^{2} + \left(\int_{a}^{b} f(x)\sin x dx\right)^{2} = \int_{a}^{b} f(x)\cos x dx \int_{a}^{b} f(y)\cos y dy + \int_{a}^{b} f(x)\sin x dx \int_{a}^{b} f(y)\sin y dy$$

$$= \iint_{[a,b]^{2}} f(x)f(y)[\cos x \cos y + \sin x \sin y] dx dy = \iint_{[a,b]^{2}} f(x)f(y)\cos(x-y) dx dy.$$

另外一方面

$$\left(\int_a^b f(x)dx\right)^2 = \int_a^b f(x)\cos x dx \int_a^b f(y)\cos y dy = \iint_{[a,b]^2} f(x)f(y)dx dy.$$

于是不等式(7.15)变为

$$\iint_{[a,b]^2} f(x)f(y)[1 - \cos(x - y)] dx dy \leqslant \frac{M^2(b - a)^4}{12}.$$
 (7.17)

事实上

$$\iint_{[a,b]^2} f(x)f(y)[1-\cos{(x-y)}] \mathrm{d}x\mathrm{d}y \overset{(7.16)}{\leqslant} M^2 \iint_{[a,b]^2} \frac{(x-y)^2}{2} \mathrm{d}x\mathrm{d}y = \frac{M^2(b-a)^4}{12},$$

这就得到了不等式(7.17).

7.4 直接求导法

例题 7.16

1. 设 $f ∈ C^1[0, 1], f(0) = 0, 0 ≤ f'(x) ≤ 1$, 证明

$$\left[\int_0^1 f(x) dx\right]^2 \geqslant \int_0^1 f^3(x) dx,$$

并判断取等条件.

2. 设 f 在 [0,a] 可导且 $f(0) = 0, 0 \le f'(x) \le \lambda, \lambda > 0$ 为常数,证明

$$\left[\int_{0}^{a} f(x) dx \right]^{m} \geqslant \frac{m}{(2\lambda)^{m-1}} \int_{0}^{a} f^{2m-1}(x) dx, \tag{7.18}$$

并判断取等条件.

证明

1. 由 0 < f'(x)(x > 0) 及 f(0) = 0 可知 f(x) > 0 $(0 < x \le 1)$. 设

$$g(t) = \int_0^t f^3(x) dx - \left(\int_0^t f(x) dx \right)^2 \quad (t \in [0, 1]),$$

则

$$g'(t) = f(t) \left(f^2(t) - 2 \int_0^t f(x) dx \right).$$

令
$$h(t) = f^2(t) - 2 \int_0^t f(x) dx$$
, 则由 $0 < f'(x) \le 1(x > 0)$ 可知

$$h'\left(t\right)=2f\left(t\right)\left[f'\left(t\right)-1\right]\leqslant0,\forall t\in\left[0,1\right].$$

从而 $h(t) \leq h(0) = 0, \forall t \in [0,1]$. 于是 $g'(t) \leq 0, \forall t \in [0,1]$. 因而 g 在 [0,1] 上单调递减. 由 g(0) = 0 知 $g \leq 0$. 若

$$\int_0^1 f^3(x) \mathrm{d}x = \left(\int_0^1 f(x) \mathrm{d}x \right)^2,$$

则 g(1) = 0, 因而 $g(t) \equiv 0$. 所以

$$g'(t) = f(t) \left(f^2(t) - 2 \int_0^t f(x) dx \right) = 0.$$

这推出 $f \equiv 0$ 或 $f^2(t) = 2 \int_0^t f(x) dx$. 因而

$$2f(t)f'(t) = 2f(t) \quad (0 < t \le 1).$$

这推出 f'(t) = 1, 即 f(t) = t. 故当 $f(t) \equiv 0$ 或 f(t) = t 时等号成立.

2. 定义

$$g(x) = \left(\int_0^x f(t)dt\right)^m - \frac{m}{(2\lambda)^{m-1}} \int_0^x f^{2m-1}(t)dt.$$

求导得

$$g'(x) = mf(x) \left(\int_0^x f(t) dt \right)^{m-1} - \frac{m}{(2\lambda)^{m-1}} f^{2m-1}(x)$$
$$= mf(x) \left[\left(\int_0^x f(t) dt \right)^{m-1} - \frac{1}{(2\lambda)^{m-1}} f^{2m-2}(x) \right].$$

$$h'(x) = \left[\int_0^x f(t) dt - \frac{f^2(x)}{2\lambda} \right]' = f(x) - \frac{f(x)f'(x)}{\lambda} = \frac{f(x)}{\lambda} [\lambda - f'(x)] \geqslant 0,$$

从而 $h(x) \ge h(0) = 0$. 进而

$$h^{m-1}(x) \geqslant \left(\int_0^x f(t)dt\right)^{m-1} - \frac{1}{(2\lambda)^{m-1}} f^{2m-2}(x) \geqslant 0.$$

于是我们有

$$g'(x) \geqslant g'(0) = 0,$$

从而 g 递增且

$$g(a) \geqslant g(0) = 0,$$

这就是不等式(7.18). 要使得等号成立, 我们需要 g 为常数, 因此需要 $g' \equiv 0$, 故需要 $f \equiv 0$ 或者

$$\int_0^x f(t)dt - \frac{f^2(x)}{2\lambda} \equiv 0,$$

令 $y = \int_0^x f(t) dt$, 则上式等价于

$$y - \frac{(y')^2}{2\lambda} = 0$$

从而解上述微分方程得到取等条件是

$$f(x) = 0$$
或者 $f(x) = \lambda x$.

例题 7.17 设 $f,g \in C[a,b]$ 使得 f 递增且 $0 \le g \le 1$, 证明

$$\int_{a}^{a+\int_{a}^{b}g(t)\mathrm{d}t}f(x)\mathrm{d}x \leqslant \int_{a}^{b}f(x)g(x)\mathrm{d}x \leqslant \int_{b-\int_{a}^{b}g(t)\mathrm{d}t}^{b}f(x)\mathrm{d}x. \tag{7.19}$$

证明 考虑

$$h(y) = \int_{a}^{a + \int_{a}^{y} g(t)dt} f(x)dx - \int_{a}^{y} f(x)g(x)dx.$$

则利用

$$a + \int_{a}^{y} g(x) dx \leqslant a + \int_{a}^{y} 1 dx = y,$$

再结合 f 递增, 我们有

$$h'(y) = g(y)f\left(a + \int_a^y g(t)dt\right) - f(y)g(y) \leqslant 0 \to h(b) \leqslant h(a) = 0,$$

故不等式(7.19)左侧得证. 另一侧不等式同理可得, 这就证明了不等式(7.19).

命题 7.3

设 f 是 [a,b] 上单调递增的连续函数. 求证

$$\int_{a}^{b} x f(x) dx \geqslant \frac{a+b}{2} \int_{a}^{b} f(x) dx.$$

室记 许多有关连续函数积分的不等式可以通过变上限积分的性质来证明.
证明 令

$$F(t) = \int_{a}^{t} x f(x) dx - \frac{a+t}{2} \int_{a}^{t} f(x) dx.$$

只需证明 $F(b) \ge 0$. 由于 f 是连续函数, F 在 [a,b] 上可微, 且

$$F'(t) = tf(t) - \frac{1}{2} \int_{a}^{t} f(x) dx - \frac{a+t}{2} f(t)$$

$$= \frac{t-a}{2} f(t) - \frac{1}{2} \int_{a}^{t} f(x) dx$$

$$\geq \frac{t-a}{2} f(t) - \frac{1}{2} (t-a) f(t) = 0.$$

这说明 f 在 [a,b] 上单调递增. 因为 F(a) = 0, 所以 $F(b) \ge 0$.

例题 7.18 设 $f \in [0,1]$ 上正的可导函数, 且满足 $|f'| \le 1$. 记

$$m = \min f(x), \quad M = \max f(x), \quad \beta = \int_0^1 \frac{1}{f(x)} dx.$$
 (7.20)

- 1. 求证: $M \leq me^{\beta}$.
- 2. 求证: 对 n > -1, 有

$$\int_0^1 f^n(x) \, dx \le \frac{m^{n+1}}{n+1} \left(e^{(n+1)\beta} - 1 \right). \tag{7.21}$$

注 第 2 问中, 令 n=0, 可得 $\frac{m+1}{m} \le e^{\beta}$. 式 (7.21) 两边开 n 次方根, 再令 $n \to +\infty$, 可得 $M \le me^{\beta}$. 证明

1. 设 m = f(x), M = f(y), 则有

$$\ln M - \ln m = \ln f(y) - \ln f(x) = \int_{x}^{y} \frac{f'(t)}{f(t)} dt \le \int_{0}^{1} \frac{1}{f(t)} dt = \beta.$$

因而有 $M \leq me^{\beta}$.

2. 设

$$h_1(t) = \frac{e^{(n+1)\beta_1(t)} - 1}{n+1} f^{n+1}(t) - \int_0^t f^n(x) \, dx, \quad t \in [0, 1],$$

$$h_2(t) = \frac{e^{(n+1)\beta_2(t)} - 1}{n+1} f^{n+1}(t) - \int_t^1 f^n(x) \, dx, \quad t \in [0,1],$$

其中

$$\beta_1(t) = \int_0^t \frac{1}{f(x)} dx, \quad \beta_2(t) = \int_t^1 \frac{1}{f(x)} dx,$$

则有 $\beta_1 \ge 0$, $\beta_2 \ge 0$, $h_1(0) = 0$, $h_2(1) = 0$, 且

$$h'_1(t) = e^{(n+1)\beta_1(t)} f^n(t) + \left(e^{(n+1)\beta_1(t)} - 1 \right) f^n(t) f'(t) - f^n(t)$$

= $f^n(t) \left(e^{(n+1)\beta_1(t)} - 1 \right) \left(1 + f'(t) \right) \ge 0$,

$$h_2'(t) = -e^{(n+1)\beta_2(t)} f^n(t) + \left(e^{(n+1)\beta_2(t)} - 1 \right) f^n(t) f'(t) + f^n(t)$$

= $f^n(t) \left(e^{(n+1)\beta_2(t)} - 1 \right) \left(-1 + f'(t) \right) \le 0,$

这说明 h_1 在 [0,1] 上单调递增, 而 h_2 在 [0,1] 上单调递减. 于是 h_1 和 h_2 都是非负函数, 即

$$\int_0^t f^n(x) \, dx \le \frac{e^{(n+1)\beta_1(t)} - 1}{n+1} f^{n+1}(t),\tag{7.22}$$

$$\int_{t}^{1} f^{n}(x) dx \le \frac{e^{(n+1)\beta_{2}(t)} - 1}{n+1} f^{n+1}(t).$$
 (7.23)

将以上两式相加,可得

$$\int_0^1 f^n(x) \, dx \le \frac{e^{(n+1)\beta_1(t)} + e^{(n+1)\beta_2(t)} - 2}{n+1} f^{n+1}(t). \tag{7.24}$$

容易证明对任意 x > 0, y > 0 有

$$e^x + e^y - 2 < e^{x+y} - 1$$
.

因此从式 (7.24) 可得

$$\int_0^1 f^n(x)\,dx \leq \frac{e^{(n+1)(\beta_1(t)+\beta_2(t))}-1}{n+1} f^{n+1}(t) = \frac{e^{(n+1)\beta}-1}{n+1} f^{n+1}(t),$$

这里 $t \in [0,1]$ 是任意的. 故式 (7.21) 成立.

例题 7.19 设 $f \in C[a,b]$ 是一个正的连续函数, 且满足 Lipschitz 条件

$$|f(x) - f(y)| \le L|x - y|.$$

对于区间 [c,d] ⊂ [a,b], 记

$$\beta = \int_a^b \frac{1}{f(x)} dx, \quad \alpha = \int_c^d \frac{1}{f(x)} dx.$$

求证:

$$\int_{a}^{b} f(x) dx \leqslant \frac{e^{2L\beta} - 1}{2L\alpha} \int_{c}^{d} f(x) dx.$$
 (7.25)

证明 只需证明对任意的 $t \in [a,b]$, 有

$$\int_{a}^{b} f(x) \mathrm{d}x \leqslant \frac{\mathrm{e}^{2L\beta} - 1}{2L} f^{2}(t),\tag{7.26}$$

这是因为将式 (7.26) 两端除以 f(t), 然后关于变量 t 在区间 [c,d] 上积分, 即得式 (7.25). 不妨假设 a=0,b=1, 不然考虑新的函数 g(t)=(b-a)f(a(1-t)+bt)=(b-a)f(a+(b-a)t), $t\in[0,1]$. g 满足 Lipschitz 条件 $|g(x_1)-g(x_2)| \le L_1|x_1-x_2|$, $L_1=(b-a)^2L$. 由于 f 的 Bernstein 多项式 $B_n(f)$ 保持 f 的 Lipschitz 常数, 而且在 [0,1] 上一致收敛于 f, 我们一开始就可以假设 f 是可导的, 此时 $|f'| \le L$.

以下就在 a = 0, b = 1 且 $|f'| \le L$ 的条件下证明式 (7.26). 设

$$h_1(t) = \frac{e^{2L\beta_1(t)} - 1}{2L} f^2(t) - \int_0^t f(x) dx, \quad t \in [0, 1],$$

$$h_2(t) = \frac{e^{2L\beta_2(t)} - 1}{2L} f^2(t) - \int_0^1 f(x) dx, \quad t \in [0, 1],$$

其中

$$\beta_1(t) = \int_0^t \frac{1}{f(x)} dx, \quad \beta_2(t) = \int_t^1 \frac{1}{f(x)} dx.$$

则有 $h_1(0) = 0, h_2(1) = 0,$ 且

$$h'_1(t) = e^{2L\beta_1(t)} f(t) + \frac{e^{2L\beta_1(t)} - 1}{L} f(t) f'(t) - f(t)$$
$$= \frac{e^{2L\beta_1(t)} - 1}{L} f(t) (L + f'(t)) \ge 0,$$

$$h_2'(t) = -e^{2L\beta_2(t)} f(t) + \frac{e^{2L\beta_2(t)} - 1}{L} f(t)f'(t) + f(t)$$
$$= \frac{e^{2L\beta_2(t)} - 1}{L} f(t)(f'(t) - L) \le 0.$$

这说明 h_1 在 [0,1] 上单调递增, 而 h_2 在 [0,1] 上单调递减. 于是 h_1 和 h_2 都是非负函数, 即

$$\int_{0}^{t} f(x) dx \leqslant \frac{e^{2L\beta_{1}(t)} - 1}{2L} f^{2}(t), \tag{7.27}$$

$$\int_{t}^{1} f(x) dx \leqslant \frac{e^{2L\beta_{2}(t)} - 1}{2L} f^{2}(t). \tag{7.28}$$

将此两式相加,可得

$$\int_0^1 f(x) dx \le \frac{e^{2L\beta_1(t)} + e^{2L\beta_2(t)} - 2}{2L} f^2(t).$$
 (7.29)

容易证明对任意 x > 0, y > 0 有

$$e^x + e^y - 2 < e^{x+y} - 1$$
.

因此从式 (7.29) 可得

$$\int_0^1 f(x) \mathrm{d} x \leqslant \frac{\mathrm{e}^{2L(\beta_1(t) + \beta_2(t))} - 1}{2L} f^2(t) = \frac{\mathrm{e}^{2L\beta} - 1}{2L} f^2(t).$$

即式 (7.26) 成立.

7.5 凸性相关题型

例题 7.20 设 f 是 [a,b] 上的非负上凸函数. 证明对任何 $x \in (a,b)$, 都有

$$f(x) \leqslant \frac{2}{b-a} \int_{a}^{b} f(y) \mathrm{d}y. \tag{7.30}$$

特别的, 若 $f \in C[a, b]$, 则对 x = a, b, 也有(7.30)式成立.

 \succeq Step2 中的 g(x) 的构造可以类比 Lagrange 中值定理的构造函数 (关键是这个构造函数的几何直观).

 $\widehat{\mathbf{y}}$ **笔记** 这种只考虑函数端点函数值同为 0 的情形, 再通过构造 g(x) = f(x) - p(x)(其中 p(x) 是 f 过两个端点的直线), 将其推广到一般情况的想法很重要!

证明 由开集上的凸函数必连续可知, 开集上的上凸函数连续且有限个点不影响积分值. 又由凸函数单调性的刻画, 我们知道

$$\lim_{x \to a^+} f(x), \lim_{x \to b^-} f(x)$$

是存在的. 因此不妨设 $f \in C[a,b]$. 不妨设 a=0,b=1, 否则用 f(a+(b-a)x) 代替 f(x) 即可.

Step1 当

$$f(a) = f(b) = 0, x_0 \notin f(x)$$
 最大值点, $x_0 \in (a, b)$,

我们利用上凸函数一定在割线上放缩得不等式

$$\begin{cases} f(x) \geqslant \frac{f(x_0)}{x_0} x, & x \in [0, x_0] \\ f(x) \geqslant \frac{f(x_0)}{x_0 - 1} (x - 1), & x \in [x_0, 1] \end{cases}.$$

运用得到的不等式就有

$$\int_0^1 f(x) dx \geqslant \int_0^{x_0} \frac{f(x_0)}{x_0} x dx + \int_{x_0}^1 \frac{f(x_0)}{x_0 - 1} (x - 1) dx = \frac{1}{2} f(x_0),$$

这就相当于得到了不等式(7.30)。

当 $x_0 = a$ 或b 时, 由 f(a) = f(b) = 0 且 f 非负可知, 此时 $f(x) \equiv 0$ 结论显然成立.

Step2 一般情况可设

$$g(x) = f(x) - [f(1) - f(0)]x - f(0),$$

从而 g(0) = g(1) = 0, 于是 g 就满足 **Step1** 中的条件. 因此由(7.30)知

$$g(x) \le 2 \int_0^1 g(y) \, dy, \forall x \in [0, 1].$$
 (7.31)

于是利用(7.31)知

$$f(x) - \left[(f(1) - f(0))x + f(0) \right] \le 2 \int_0^1 f(y) \, dy - 2 \int_0^1 \left[(f(1) - f(0))y + f(0) \right] dy, \forall x \in [0, 1].$$

从而

$$f(x) - 2\int_{0}^{1} f(y) \, \mathrm{d}y \le \left[(f(1) - f(0))x + f(0) \right] - 2\int_{0}^{1} \left[(f(1) - f(0))y + f(0) \right] \, \mathrm{d}y, \forall x \in [0, 1].$$

注意到对 $\forall x \in [0,1]$, 都有

$$[(f(1) - f(0))x + f(0)] - 2 \int_0^1 [(f(1) - f(0))y + f(0)] dy \le 0$$

$$\Leftrightarrow [f(1) - f(0)]x + f(0) \le 2 \int_0^1 [(f(1) - f(0))x + f(0)] dx$$

$$\Leftrightarrow [f(1) - f(0)]x + f(0) \le f(1) + f(0)$$

$$\Leftrightarrow [f(1) - f(0)]x \le f(1)$$

$$\Leftrightarrow f(1)(1 - x) + f(0)x \ge 0$$

上述最后一个不等式可由 $x \in [0,1], f(1), f(0) \ge 0$ 直接得到. 于是我们完成了证明.

7.6 数值比较类

例题 7.21 证明如下积分不等式:

$$1. \int_0^{\sqrt{2\pi}} \sin x^2 \mathrm{d}x > 0.$$

$$2. \int_0^{\frac{\pi}{2}} \frac{\cos x}{1+x^2} dx \geqslant \int_0^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} dx.$$

3.
$$\int_0^1 \frac{\cos x}{\sqrt{1-x^2}} dx > \int_0^1 \frac{\sin x}{\sqrt{1-x^2}} dx.$$

室 笔记 此类问题都是考虑分母更小的时候正的更多,通过换元把负的区间转化到正的同一个区间.

证明

1.

$$\int_0^{\sqrt{2\pi}} \sin x^2 dx = \frac{x = \sqrt{y}}{2\sqrt{y}} \int_0^{2\pi} \frac{\sin y}{2\sqrt{y}} dy = \frac{1}{2} \int_0^{\pi} \frac{\sin y}{2\sqrt{y}} dy + \frac{1}{2} \int_{\pi}^{2\pi} \frac{\sin y}{2\sqrt{y}} dy$$
$$= \frac{1}{2} \int_0^{\pi} \frac{\sin y}{2\sqrt{y}} dy + \frac{1}{2} \int_0^{\pi} \frac{\sin (y + \pi)}{2\sqrt{y + \pi}} dy$$
$$= \frac{1}{2} \int_0^{\pi} \sin y \left(\frac{1}{2\sqrt{y}} - \frac{1}{2\sqrt{y + \pi}} \right) dy > 0.$$

 $\int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + x^{2}} dx = \int_{0}^{\frac{\pi}{4}} \frac{\cos x - \sin x}{1 + x^{2}} dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + x^{2}} dx = \sqrt{2} \int_{0}^{\frac{\pi}{4}} \frac{\sin\left(\frac{\pi}{4} - x\right)}{1 + x^{2}} dx + \sqrt{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{4} - x\right)}{1 + x^{2}} dx$ $= \sqrt{2} \int_{0}^{\frac{\pi}{4}} \frac{\sin y}{1 + \left(\frac{\pi}{4} - y\right)^{2}} dy + \sqrt{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin(-y)}{1 + \left(\frac{\pi}{4} + y\right)^{2}} dy$

$$= \sqrt{2} \int_0^{\frac{\pi}{4}} \sin y \left[\frac{1}{1 + \left(\frac{\pi}{4} - y\right)^2} - \frac{1}{1 + \left(\frac{\pi}{4} + y\right)^2} \right] dy > 0.$$

3. 本题稍有不同, 注意到

$$\int_0^1 \frac{\cos x}{\sqrt{1 - x^2}} dx = \frac{x = \sin y}{\int_0^{\frac{\pi}{2}} \cos(\sin y) dy}, \int_0^1 \frac{\sin x}{\sqrt{1 - x^2}} dx = \frac{x = \cos y}{\int_0^{\frac{\pi}{2}} \sin(\cos y) dy}.$$

现在利用 $\sin x < x, \forall x \in (0, \frac{\pi}{2})$ 可得不等式链 $\cos \sin x > \cos x > \sin \cos x, \forall x \in (0, \frac{\pi}{2})$, 于是

$$\int_0^1 \frac{\cos x}{\sqrt{1 - x^2}} dx > \int_0^1 \frac{\sin x}{\sqrt{1 - x^2}} dx.$$

定理 7.8 (Jordan 不等式)

 $sinx \geqslant \frac{2}{\pi}x, \forall x \in [0, \frac{\pi}{2}]$

证明 利用 sin x 的上凸性及割线放缩可得

$$\frac{\sin x - \sin 0}{x - 0} \geqslant \frac{\sin \frac{\pi}{2} - \sin x}{\frac{\pi}{2} - x}, \forall x \in \left[0, \frac{\pi}{2}\right].$$

例题 7.22 证明如下积分不等式

1. $\frac{\pi}{6} < \int_0^1 \frac{1}{\sqrt{4 - x^2 - x^3}} dx < \frac{\pi}{4\sqrt{2}}$.

$$2. \int_0^{\pi} e^{\sin^2 x} dx \geqslant \sqrt{e}\pi.$$

3. $\frac{\pi}{2}e^{-R} < \int_0^{\frac{\pi}{2}} e^{-R\sin x} dx < \frac{\pi(1-e^{-R})}{2R}, R > 0.$

5.
$$\frac{1}{2}e^{-x} < \int_{0}^{\infty} e^{-x} dx < \frac{1}{2R}$$
4. $\int_{0}^{n\pi} \frac{|\sin x|}{x} dx > \frac{2}{\pi} \ln(n+1), n \ge 2.$

$$\frac{1}{2} (2n)!! = 2^{n} \cdot n!.$$

证明

1.

$$\frac{\pi}{6} = \int_0^1 \frac{1}{\sqrt{4 - x^2}} \mathrm{d}x < \int_0^1 \frac{1}{\sqrt{4 - x^2 - x^3}} \mathrm{d}x < \int_0^1 \frac{1}{\sqrt{4 - x^2 - x^2}} \mathrm{d}x = \frac{\pi}{4\sqrt{2}}.$$

2.

$$\int_0^{\pi} e^{\sin^2 x} dx = \int_0^{\pi} \sum_{n=0}^{\infty} \frac{\sin^{2n} x}{n!} dx = \sum_{n=0}^{\infty} \frac{1}{n!} \int_0^{\pi} \sin^{2n} x dx$$
$$= \pi \left[1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{n!(2n)!!} \right] = \pi \left[1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{2^n (n!)^2} \right]$$
$$\stackrel{(2n-1)!! \geqslant n!}{\geqslant} \pi \sum_{n=0}^{\infty} \frac{1}{2^n n!} = \sqrt{e}\pi.$$

3.

$$\frac{\pi}{2}e^{-R} = \int_0^{\frac{\pi}{2}} e^{-R} dx < \int_0^{\frac{\pi}{2}} e^{-R\sin x} dx \overset{Jordan}{<} \overset{\#}{\lesssim} \int_0^{\frac{\pi}{2}} e^{-\frac{2R}{\pi}x} dx = \frac{\pi(1 - e^{-R})}{2R}, R > 0.$$

4.

$$\int_0^{n\pi} \frac{|\sin x|}{x} dx = \sum_{k=0}^{n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{x} dx = \sum_{k=0}^{x=k\pi+y} \sum_{k=0}^{n-1} \int_0^{\pi} \frac{|\sin y|}{k\pi + y} dy$$
$$> \sum_{k=0}^{n-1} \int_0^{\pi} \frac{|\sin y|}{(k+1)\pi} dy = \frac{2}{\pi} \sum_{k=0}^{n-1} \frac{1}{k+1}$$

$$> \frac{2}{\pi} \sum_{k=0}^{n-1} \ln\left(1 + \frac{1}{k+1}\right) = \frac{2}{\pi} \sum_{k=0}^{n-1} \left[\ln\left(k+2\right) - \ln\left(k+1\right)\right]$$

$$= \frac{2}{\pi} \ln\left(n+1\right).$$

还可以使用积分放缩法处理 $\frac{2}{\pi}\sum_{k=0}^{n-1}\frac{1}{k+1}$, 如下所示:

$$\frac{2}{\pi} \sum_{k=0}^{n-1} \frac{1}{k+1} = \frac{2}{\pi} \sum_{k=0}^{n-1} \int_{k}^{k+1} \frac{1}{k+1} dx \geqslant \frac{2}{\pi} \sum_{k=0}^{n-1} \int_{k}^{k+1} \frac{1}{x+1} dx = \frac{2}{\pi} \int_{0}^{n} \frac{1}{x+1} dx = \frac{2}{\pi} \ln (n+1).$$

7.7 Fourier 积分不等式

定理 7.9 (Fourier 型积分不等式)

若 $f(x) \in C^1[a,b]$, 则

(1)

$$\int_{a}^{b} |f(x)|^{2} dx - \frac{1}{b-a} \left(\int_{a}^{b} f(x) dx \right)^{2} \leqslant \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件为

$$f(x) = c_1 + c_2 \cos\left(\frac{\pi(x-a)}{b-a}\right), c_1, c_2 \in \mathbb{R}.$$

(2) 若 f(a) = f(b), 则

$$\int_{a}^{b} |f(x)|^{2} dx - \frac{1}{b-a} \left(\int_{a}^{b} f(x) dx \right)^{2} \leqslant \frac{(b-a)^{2}}{4\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件是

$$f(x) = c_1 + c_2 \cos\left(\frac{2\pi x}{b-a}\right) + c_3 \sin\left(\frac{2\pi x}{b-a}\right), c_1, c_2, c_3 \in \mathbb{R}.$$

(3) 若 f(a) = f(b) = 0, 则

$$\int_{a}^{b} |f(x)|^{2} dx \leq \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件是

$$f(x) = c \sin\left(\frac{\pi(x-a)}{b-a}\right), c \in \mathbb{R}.$$

注 (1) 中对 f 进行偶延拓的原因是: 使延拓后的区间端点函数值相等, 从而就能利用Fourier 级数的逐项微分定理.

- (2) 已经有区间端点函数值相等的条件了, 所以不需要进行延拓.
- (3) 中对 f 进行奇延拓的原因是: f 满足 f(a) = f(b) = 0, 此时对 f 做奇延拓后能使得 $f \in C^1[2a b, b]$, 进而就能得到更好的结论.(如果只有 $f(a) = f(b) \neq 0$, 那么 f 奇延拓后在 x = a 处间断.)

证明

(1) 把 f(x) 延拓到 [2a-b,b], 使得 f(x)=f(2a-x), $x \in [a,b)$, 则 f(b)=f(2a-b), $f \in C[2a-b,b]$ 且分段可微, 并且此时 f 关于 x=a 轴对称. 因此设 f(x) 有傅立叶级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{\pi n(x-a)}{b-a}\right),$$

进而由Fourier 级数的逐项微分定理可得

$$f'(x) \sim -\frac{\pi}{b-a} \sum_{n=1}^{\infty} [na_n \sin\left(\frac{\pi n(x-a)}{b-a}\right)].$$

这里

$$a_n = \frac{1}{b-a} \int_{2a-b}^{b} f(x) \cos\left(\frac{\pi n(x-a)}{b-a}\right) dx, n \in \mathbb{N}_0.$$

我们由Parseval 恒等式可得

$$\int_{2a-b}^{b} |f(x)|^2 dx = (b-a) \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 \right],$$
$$\int_{2a-b}^{b} |f'(x)|^2 dx = \frac{\pi^2}{b-a} \sum_{n=1}^{\infty} n^2 a_n^2.$$

从而有

$$\int_{2a-b}^{b} |f(x)|^2 dx - (b-a) \frac{a_0^2}{2} = (b-a) \sum_{n=1}^{\infty} a_n^2 \leqslant (b-a) \sum_{n=1}^{\infty} n^2 a_n^2 = \frac{(b-a)^2}{\pi^2} \int_{2b-a}^{b} |f'(x)|^2 dx$$

$$\iff \int_{2a-b}^{b} |f(x)|^2 dx - \frac{1}{2(b-a)} \left(\int_{2a-b}^{b} f(x) dx \right)^2 \le \frac{(b-a)^2}{\pi^2} \int_{2b-a}^{b} |f'(x)|^2 dx.$$

利用对称性,就有

$$\int_{a}^{b} |f(x)|^{2} dx - \frac{1}{(b-a)} \left(\int_{a}^{b} f(x) dx \right)^{2} \leqslant \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件为

$$f(x) = c_1 + c_2 \cos\left(\frac{\pi(x-a)}{b-a}\right), c_1, c_2 \in \mathbb{R}.$$

(2) 设

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi nx}{b-a}\right) + b_n \sin\left(\frac{2\pi nx}{b-a}\right) \right),$$

由Fourier 级数的逐项微分定理可得

$$f'(x) \sim \frac{2\pi}{b-a} \sum_{n=1}^{\infty} \left(-na_n \sin\left(\frac{2\pi nx}{b-a}\right) + nb_n \cos\left(\frac{2\pi nx}{b-a}\right) \right).$$

这里

$$a_n = \frac{2}{b-a} \int_a^b f(x) \cos\left(\frac{2\pi nx}{b-a}\right) dx,$$

$$b_n = \frac{2}{b-a} \int_a^b f(x) \sin\left(\frac{2\pi nx}{b-a}\right) dx.$$

由Parseval 恒等式, 我们有

$$\int_{a}^{b} |f(x)|^{2} dx = \frac{b-a}{2} \left[\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}) \right],$$

$$\int_{a}^{b} |f'(x)|^{2} dx = \frac{2\pi^{2}}{b-a} \sum_{n=1}^{\infty} n^{2} (a_{n}^{2} + b_{n}^{2}).$$

因此

$$\int_{a}^{b} |f(x)|^{2} dx - \frac{(b-a)a_{0}^{2}}{4} = \frac{b-a}{2} \sum_{n=1}^{\infty} \left(a_{n}^{2} + b_{n}^{2}\right) \leqslant \frac{b-a}{2} \sum_{n=1}^{\infty} n^{2} \left(a_{n}^{2} + b_{n}^{2}\right) = \frac{(b-a)^{2}}{4\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx$$

$$\iff \int_{a}^{b} |f(x)|^{2} dx - \frac{1}{b-a} \left(\int_{a}^{b} f(x) dx\right)^{2} \leq \frac{(b-a)^{2}}{4\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件是

$$f(x) = c_1 + c_2 \cos\left(\frac{2\pi x}{b-a}\right) + c_3 \sin\left(\frac{2\pi x}{b-a}\right).$$

(3) 令

$$f(x) = -f(2a - x), x \in [2a - b, a),$$

则 $f(x) \in C^1[2a-b,b]$, 并且此时 f 关于 (a,0) 点中心对称. 设 f(x) 有傅立叶级数

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin\left(\frac{\pi n(x-a)}{b-a}\right),$$

由Fourier 级数的逐项微分定理可得

$$f'(x) \sim \frac{\pi}{b-a} \sum_{n=1}^{\infty} nb_n \cos\left(\frac{\pi n(x-a)}{b-a}\right).$$

这里

$$b_n = \frac{1}{b-a} \int_{2a-b}^{b} f(x) \sin\left(\frac{\pi n(x-a)}{b-a}\right) dx, n \in \mathbb{N}_0.$$

我们由Parseval 恒等式可得

$$\int_{2a-b}^{b} |f(x)|^2 dx = (b-a) \sum_{n=1}^{\infty} b_n^2,$$
$$\int_{2a-b}^{b} |f'(x)|^2 dx = \frac{\pi^2}{b-a} \sum_{n=1}^{\infty} n^2 b_n^2.$$

从而有

$$\int_{2a-b}^{b} |f(x)|^2 dx = (b-a) \sum_{n=1}^{\infty} b_n^2 \leqslant (b-a) \sum_{n=1}^{\infty} n^2 b_n^2 = \frac{(b-a)^2}{\pi^2} \int_{2b-a}^{b} |f'(x)|^2 dx$$

$$\iff \int_{2a-b}^{b} |f(x)|^2 dx \leqslant \frac{(b-a)^2}{\pi^2} \int_{2b-a}^{b} |f'(x)|^2 dx.$$

利用对称性,我们有

$$\int_{a}^{b} |f(x)|^{2} dx \leq \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx,$$

等号成立条件是

$$f(x) = c \sin\left(\frac{\pi(x-a)}{b-a}\right).$$

7.8 其他

例题 7.23 设 $f:[0,1] \to (0,+\infty)$ 是连续递增函数, 记 $s=\frac{\int_0^1 x f(x) \mathrm{d}x}{\int_0^1 f(x) \mathrm{d}x}$. 证明

$$\int_0^s f(x) \mathrm{d}x \leqslant \int_s^1 f(x) \mathrm{d}x \leqslant \frac{s}{1-s} \int_0^s f(x) \mathrm{d}x.$$

笔记 看到函数复合积分就联想Jensen 不等式 (积分形式), 不过Jensen 不等式 (积分形式)考试中不能直接使用. 因此仍需要利用函数的凸性相关不等式进行证明.

$$F(x) \ge F(s) + F'(s)(x - s) = F(s) + f(s)(x - s), \quad \forall x \in [0, 1].$$

从而

$$\int_0^1 F(x)f(x) dx \geqslant \int_0^1 \left[F(s)f(x) + f(s)f(x)(x-s) \right] dx$$

$$= F(s) \int_0^1 f(x) \, dx + f(s) \int_0^1 \left[x f(x) - s f(x) \right] \, dx$$

$$= F(s) \int_0^1 f(x) \, dx + f(s) \left[\int_0^1 x f(x) \, dx - \frac{\int_0^1 x f(x) \, dx}{\int_0^1 f(x) \, dx} \int_0^1 f(x) \, dx \right]$$

$$= F(s) \int_0^1 f(x) \, dx.$$

又注意到

$$\int_0^1 F(x)f(x) \, \mathrm{d}x = \int_0^1 F(x) \, \mathrm{d}F(x) = \frac{1}{2} \left(\int_0^1 f(x) \, \mathrm{d}x \right)^2.$$

故

$$\frac{1}{2} \left(\int_0^1 f(x) \, \mathrm{d}x \right)^2 \geqslant F(s) \int_0^1 f(x) \, \mathrm{d}x \implies \frac{1}{2} \int_0^1 f(x) \, \mathrm{d}x \geqslant F(s) = \int_0^s f(x) \, \mathrm{d}x$$

$$\implies \int_0^s f(x) \, \mathrm{d}x + \int_s^1 f(x) \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x \geqslant 2 \int_0^s f(x) \, \mathrm{d}x$$

$$\implies \int_0^s f(x) \, \mathrm{d}x \leqslant \int_s^1 f(x) \, \mathrm{d}x.$$

由分部积分可得

$$s = \frac{\int_0^1 x f(x) \, dx}{\int_0^1 f(x) \, dx} = \frac{\int_0^1 x \, dF(x)}{F(1)} = 1 - \frac{\int_0^1 F(x) \, dx}{F(1)},$$

即 $\int_{0}^{1} F(x) dx = (1 - s)F(1)$. 又由 F 的下凸性可知

$$F(x) \leqslant \begin{cases} \frac{F(1) - F(s)}{1 - s} (x - s) + F(s), & x \in [s, 1] \\ \frac{1 - s}{s} x + F(0), & x \in [0, s] \end{cases}$$

于是

$$(1-s)F(1) = \int_0^1 F(x) \, \mathrm{d}x \le \int_0^s \left[\frac{F(1) - F(s)}{1-s} (x-s) + F(s) \right] \, \mathrm{d}x + \int_s^1 \left[\frac{F(s) - F(0)}{s} x + F(0) \right] \, \mathrm{d}x$$
$$= \frac{1}{2} F(s) + \frac{1-s}{2} F(1).$$

因此

$$\frac{1-s}{2}F(1) \leqslant \frac{1}{2}F(s) \implies F(1) \leqslant \frac{1}{1-s}F(s),$$

故

$$\int_{s}^{1} f(x) \, \mathrm{d}x = F(1) - F(s) \leqslant \left(\frac{1}{1 - s} - 1\right) F(s) = \frac{s}{1 - s} F(s) = \frac{s}{1 - s} \int_{0}^{s} f(x) \, \mathrm{d}x.$$

例题 7.24 求最小实数 C, 使得对一切满足 $\int_0^1 |f(x)| dx = 1$ 的连续函数 f, 都有

$$\int_0^1 |f(\sqrt{x})| \mathrm{d}x \leqslant C.$$

注 这类证明最佳系数的问题, 我们一般只需要找一个函数列, 是其达到逼近取等即可.

本题将要找的函数列需要满足其积分值集中在 x = 1 处, 联想到 Laplace 方法章节具有类似性质的被积函数 (即指数部分是 n 的函数), 类似进行构造函数列即可.

证明 显然有

$$\int_0^1 |f(\sqrt{x})| \, \mathrm{d}x = 2 \int_0^1 t |f(t)| \, \mathrm{d}t \le 2 \int_0^1 |f(t)| \, \mathrm{d}t = 2.$$

令
$$f_n(t) = (n+1)t^n$$
, 则 $\int_0^1 f_n(t) dt = 1$. 于是

$$\int_0^1 |f_n(\sqrt{x})| \, \mathrm{d}x = 2 \int_0^1 t |f(t)| \, \mathrm{d}t = 2 \int_0^1 t(n+1)t^n \, \mathrm{d}t = 2(n+1) \int_0^1 t^{n+1} \, \mathrm{d}t = \frac{2(n+1)}{n+2} \to 2, n \to \infty.$$

因此若 C < 2, 都存在 $N \in \mathbb{N}$, 使得 $\int_0^1 |f_N(\sqrt{x})| \, \mathrm{d}x > C$. 故 C = 2 就是最佳上界.

例题 7.25 设 $f \in C[0,1]$ 使得 $\int_0^1 x^k f(x) dx = 1, k = 0, 1, 2, \dots, n-1$. 证明

$$\int_0^1 |f(x)|^2 \mathrm{d}x \geqslant n^2.$$

证明 设 $a=(a_0,a_1,\cdots,a_{n-1})^T\in\mathbb{R}^n\setminus\{0\}$. 由 Cauchy 不等式及条件可知

$$\int_0^1 |f(x)|^2 dx \int_0^1 (a_0 + a_1 x + \dots + a_{n-1} x^{n-1})^2 dx \ge \left[\int_0^1 f(x) (a_0 + a_1 x + \dots + a_{n-1} x^{n-1}) dx \right]^2$$

$$= (a_0 + a_1 + \dots + a_{n-1})^2 = \left(\sum_{j=0}^{n-1} a_j \right)^2.$$

注意到

$$\int_0^1 (a_0 + a_1 x + \dots + a_{n-1} x^{n-1})^2 dx = \int_0^1 \left(\sum_{j=0}^{n-1} a_j x^j \right)^2 dx = \int_0^1 \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} a_j a_i x^{i+j} dx$$
$$= \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} a_j a_i \int_0^1 x^{i+j} dx = \sum_{i=0}^{n-1} \sum_{i=0}^{n-1} \frac{a_j a_i}{i+j+1}.$$

因此

$$\int_0^1 |f(x)|^2 \mathrm{d}x \geqslant \frac{\left(\sum\limits_{j=0}^{n-1} a_j\right)^2}{\sum\limits_{i=0}^{n-1} \sum\limits_{i=0}^{n-1} \frac{a_j a_i}{i+j+1}} = \frac{a^T J a}{a^T H a},$$

其中
$$J = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$
 , $H = \left(\frac{1}{i+j+1}\right)_{n \times n}$.于是我们只需求 $\sup_{a \neq 0} \frac{a^T J a}{a^T H a}$.设 λ 为 $\frac{a^T J a}{a^T H a}$ 的一个大于 0

的上界, 由例题 8.16(3)可知 H 正定, 则

$$\lambda \stackrel{}{\to} \frac{a^T J a}{a^T H a}$$
的一个上界 $\iff \lambda \geqslant \frac{a^T J a}{a^T H a}, \forall a \in \mathbb{R}^n$ $\iff a^T J a \leqslant \lambda a^T H a, \forall a \in \mathbb{R}^n$ $\iff a^T (\lambda H - J) a \geqslant 0, \forall a \in \mathbb{R}^n$ $\iff \lambda H - J + \mathbb{E}$ 定.

因此 $\sup_{a\neq 0} \frac{a^T J a}{a^T H a} = \min\{\lambda \mid \lambda H - J + \mathbb{E}\} = \inf\{\lambda \mid \lambda H - J + \mathbb{E}\}$. 设 H_k, J_k 分别为 H, J 的 k 阶顺序主子阵, 再根据打洞原理及例题 2.38(1)可得

$$|\lambda H_k - J_k| = |H_k||\lambda I_k - H_k^{-1} J_k| = |H_k||\lambda I_k - H_k^{-1} \mathbf{1}_k \mathbf{1}_k^T|$$

= $\lambda^{k-1} |H_k|(\lambda - \mathbf{1}_k^T H_k^{-1} \mathbf{1}_k).$

其中 $\mathbf{1}_k^T=(1,1,\cdots,1)_{1\times k}$. 由 H 正定可知 $|H_k|>0$, 又因为 $\lambda>0$, 所以再由引理 6.3可得

$$|\lambda H_k - J_k| > 0 \Longleftrightarrow \lambda > \mathbf{1}_k^T H_k^{-1} \mathbf{1}_k = \frac{\exists |\underline{\# 6.3}|}{\underline{\# 6.3}} n^2.$$

因此对 $\forall \lambda > n^2$, 都有 $\lambda H - J$ 的顺序主子式都大于 0, 故此时 $\lambda H - J$ 正定. 于是对 $\forall a \in \mathbb{R}^n \setminus \{0\}$, 固定 a, 都有 $a^{T}(\lambda H - J)a > 0, \forall \lambda > n^{2}$.

$$a^T(n^2H - J)a \geqslant 0.$$

故 n^2H-J 半正定. 因此 $n^2=\inf\{\lambda\mid \lambda H-J$ 半正定 $\}=\sup_{a\neq 0}\frac{a^TJa}{a^THa}$. 结论得证.

例题 7.26 设 A, B 都是 n 级实对称矩阵, 若 B 正定, 证明

$$\max_{\alpha \in \mathbb{R}^n \setminus \{0\}} \frac{\alpha^T A \alpha}{\alpha^T B \alpha} = \lambda_{\max}(AB^{-1}).$$

证明

设 $\alpha > 0, g \in C^1(\mathbb{R})$. 存在 $a \in \mathbb{R}$ 使得 $g(a) = \min_{x \in \mathbb{R}} g(x)$, 如果

$$|g'(x) - g'(y)| \leqslant M|x - y|^{\alpha}, \forall x, y \in \mathbb{R},$$
(7.32)

证明

$$|g'(x)|^{\alpha+1} \leqslant \left(\frac{\alpha+1}{\alpha}\right)^{\alpha} [g(x) - g(a)]^{\alpha} M, \forall x \in \mathbb{R}.$$
 (7.33)

证明 不妨设 g(a) = 0, 否则用 g(x) - g(a) 代替 g(x). 当 M = 0, 则不等式(7.33)显然成立. 当 $M \neq 0$ 可以不妨设 M=1.

现在对非负函数 g, 现在我们正式开始我们的证明, 当 $g'(x_0) = 0$, 不等式(7.33)显然成立. 当 $g'(x_0) > 0$, 则利 用(7.32)有

$$g(x_0) \geqslant g(x_0) - g(h) = \int_h^{x_0} g'(t) dt$$

$$\geqslant \int_h^{x_0} [g'(x_0) - |t - x_0|^{\alpha}] dt$$

$$= g'(x_0)(x_0 - h) - \frac{(x_0 - h)^{\alpha + 1}}{\alpha + 1},$$

取 $h = x_0 - |g'(x_0)|^{\frac{1}{\alpha}}$, 就得到了 $g(x_0) > \frac{\alpha}{\alpha + 1} |g'(x_0)|^{1 + \frac{1}{\alpha}}$, 即不等式(7.33)成立. 类似的考虑 $g'(x_0) < 0$ 可得(7.33). 当 $g'(x_0) < 0$, 则利用(7.32)有

$$g(x_0) \ge -g(h) + g(x_0) = -\int_{x_0}^h g'(t) dt$$

$$\ge -\int_{x_0}^h [g'(x_0) + |t - x_0|^{\alpha}] dt$$

$$= -g'(x_0)(h - x_0) - \frac{(h - x_0)^{\alpha + 1}}{\alpha + 1},$$

取 $h = x_0 + |g'(x_0)|^{\frac{1}{\alpha}}$, 就得到了 $g(x_0) > \frac{\alpha}{\alpha + 1} |g'(x_0)|^{1 + \frac{1}{\alpha}}$, 即不等式(7.33)成立.

命题 7.4 (Heisenberg(海森堡) 不等式)

设 $f \in C^1(\mathbb{R})$, 证明不等式

$$\left(\int_{\mathbb{R}} |f(x)|^2 \mathrm{d}x\right)^2 \leqslant 4 \int_{\mathbb{R}} x^2 |f(x)|^2 \mathrm{d}x \cdot \int_{\mathbb{R}} |f'(x)|^2 \mathrm{d}x. \tag{7.34}$$

注 直观上, 直接 Cauchy 不等式, 我们有

但是上述**分部积分**部分需要零边界条件 (即需要 $\lim_{\substack{x\to\infty\\ x\to\infty}} x|f(x)|^2=0$ 上式才成立). 但是其实专业数学知识告诉我们在 \mathbb{R} 上只要可积其实就可以分部积分的. 且看我们两种操作.

证明 Method 1 专业技术: 对一般的 $f \in C^1(\mathbb{R})$, 假定

$$4\int_{\mathbb{R}} x^2 |f(x)|^2 dx \cdot \int_{\mathbb{R}} |f'(x)|^2 dx < \infty.$$

取紧化序列 $h_n, n \in \mathbb{N}$, 则对每一个 $n \in \mathbb{N}$, 都有

$$\left(\int_{\mathbb{R}} |h_n(x)f(x)|^2 dx\right)^2 \le 4 \int_{\mathbb{R}} x^2 |h_n(x)f(x)|^2 dx \cdot \int_{\mathbb{R}} |(h_n f)'(x)|^2 dx$$

$$= 4 \int_{\mathbb{R}} x^2 |h_n(x)f(x)|^2 dx \cdot \int_{\mathbb{R}} |h'_n(x)f(x) + h_n(x)f'(x)|^2 dx.$$

右边让 $n \to +\infty$, 就有

$$\lim_{n\to\infty}\left[4\int_{\mathbb{R}}x^2|h_n(x)f(x)|^2\mathrm{d}x\cdot\int_{\mathbb{R}}|h_n'(x)f(x)+h_n(x)f'(x)|^2\mathrm{d}x\right]=\left[4\int_{\mathbb{R}}x^2|f(x)|^2\mathrm{d}x\cdot\int_{\mathbb{R}}|f'(x)|^2\mathrm{d}x\right].$$

但是左边暂时不知道是否有 $\left(\int_{\mathbb{R}} |f(x)|^2 \mathrm{d}x\right)^2 < \infty$, 因此不能直接换序. 但是Fatou 引理告诉我们

$$\left(\int_{\mathbb{R}} |f(x)|^2 dx\right)^2 = \left(\int_{\mathbb{R}} \lim_{n \to \infty} |h_n(x)f(x)|^2 dx\right)^2 \leqslant \lim_{n \to \infty} \left(\int_{\mathbb{R}} |h_n(x)f(x)|^2 dx\right)^2$$
$$\leqslant 4 \int_{\mathbb{R}} x^2 |f(x)|^2 dx \cdot \int_{\mathbb{R}} |f'(x)|^2 dx,$$

从而不等式(7.34)成立.

Method 2 正常方法: 对一般的 $f \in C^1(\mathbb{R})$, 假定

$$4\int_{\mathbb{R}} x^2 |f(x)|^2 \mathrm{d}x \cdot \int_{\mathbb{R}} |f'(x)|^2 \mathrm{d}x < \infty.$$

从分部积分需要看到,我们只需证明

$$\lim_{x \to \infty} x |f(x)|^2 = 0.$$

我们以正无穷为例. 注意到

$$\infty > \sqrt{\int_{x}^{\infty} y^{2} f^{2}(y) dy \cdot \int_{x}^{\infty} |f'(y)|^{2} dy} \stackrel{\text{Cauchy } \pi \notin \mathbb{R}}{\geqslant} \int_{x}^{\infty} y |f'(y) f(y)| dy \geqslant x \int_{x}^{\infty} |f'(y) f(y)| dy, \tag{7.35}$$

于是 $\int_x^\infty f(y)f'(y)\mathrm{d}y = \lim_{y \to +\infty} \frac{1}{2}|f(y)|^2 - \frac{1}{2}|f(x)|^2$ 收敛. 因此 $\lim_{y \to +\infty} \frac{1}{2}|f(y)|^2$ 存在. 注意 $\int_{\mathbb{R}} x^2|f(x)|^2\mathrm{d}x < \infty$, 因此 由积分收敛必有子列趋于 0可知, 存在 $x_n \to \infty$, 使得 $\lim_{n \to \infty} x_n|f(x_n)| = 0$, 于是再结合 $\lim_{y \to +\infty} \frac{1}{2}|f(y)|^2$ 存在可得

$$\lim_{n \to \infty} f(x_n) = 0 \Rightarrow \lim_{y \to +\infty} f(y) = 0.$$

现在继续用(7.35), 我们知道

$$\sqrt{\int_{x}^{\infty} y^{2} f^{2}(y) \mathrm{d}y \cdot \int_{x}^{\infty} |f'(y)|^{2} \mathrm{d}y} \geqslant x \int_{x}^{\infty} f'(y) f(y) \mathrm{d}y = \frac{x}{2} |f(x)|^{2},$$

令 $x \to +\infty$,由 Cauchy 收敛准则即得 $\sqrt{\int_x^\infty y^2 f^2(y) \mathrm{d}y} \cdot \int_x^\infty |f'(y)|^2 \mathrm{d}y \to 0$,从而 $\lim_{x \to +\infty} x |f(x)|^2 = 0$,这就完成了证明. 于是由分部积分和 Cauchy 不等式可知,对 $f \in C^\infty(\mathbb{R})$,我们有

$$\left(\int_{\mathbb{R}}|f(x)|^2\mathrm{d}x\right)^2 \xrightarrow{\underline{\mathcal{P}^{\text{in}}\mathcal{R}\mathcal{P}}} 4\left(\int_{\mathbb{R}}xf(x)f'(x)\mathrm{d}x\right)^2 \leqslant 4\int_{\mathbb{R}}x^2|f(x)|^2\mathrm{d}x \cdot \int_{\mathbb{R}}|f'(x)|^2\mathrm{d}x,$$

即不等式(7.34)成立.

例题 7.27 设 $f:[0,+\infty)\to(0,1)$ 是内闭 Riemman 可积函数, 若 $\int_0^{+\infty} f(x) dx$ 与 $\int_0^{+\infty} x f(x) dx$ 均收敛, 证明

$$\left(\int_0^{+\infty} f(x) \mathrm{d}x\right)^2 < 2 \int_0^{+\infty} x f(x) \mathrm{d}x. \tag{7.36}$$

证明 记 $a = \int_0^\infty f(x) dx > 0$, 待定 s > 0, 则不等式(7.36)等价于

$$\int_0^\infty x f(x) dx = \int_0^s x f(x) dx + \int_s^\infty x f(x) dx > \frac{a^2}{2}.$$

于是

$$\int_0^s x f(x) dx + s \int_s^\infty f(x) dx \ge \frac{a^2}{2} \Longleftrightarrow \int_0^s x f(x) dx + s \left(a - \int_0^s f(x) dx \right) \ge \frac{a^2}{2}$$

$$\iff \frac{a^2}{2} - sa + s \int_0^s f(x) dx - \int_0^s x f(x) dx \le 0 \Longleftrightarrow \frac{a^2}{2} - sa + \int_0^s (s - x) f(x) dx \le 0.$$

利用 f < 1, 取 s = a, 则我们有

$$\frac{a^2}{2} - sa + \int_0^s (s - x)f(x)dx = -\frac{a^2}{2} + \int_0^a (a - x)f(x)dx < -\frac{a^2}{2} + \int_0^a (a - x)dx = 0.$$

从而

$$\int_0^a x f(x) dx + a \int_a^\infty f(x) dx > \frac{a^2}{2}$$

成立. 因此

$$\int_0^\infty x f(x) \mathrm{d}x = \int_0^s x f(x) \mathrm{d}x + \int_s^\infty x f(x) \mathrm{d}x \geqslant \int_0^a x f(x) \mathrm{d}x + a \int_a^\infty f(x) \mathrm{d}x > \frac{a^2}{2}.$$

这就证明了不等式(7.36).

命题 7.5

设 $f \in [0,1]$ 上的单调函数. 求证: 对任意实数 a 有

$$\int_{0}^{1} |f(x) - a| \, \mathrm{d}x \geqslant \int_{0}^{1} \left| f(x) - f\left(\frac{1}{2}\right) \right| \, \mathrm{d}x. \tag{7.37}$$

证明 不妨设 f 是单调递增函数. 注意到 $\frac{1}{2}$ 是积分区间的中点, 将式 (7.37) 右端的积分从 $\frac{1}{2}$ 处分成两部分来处理.

$$\int_{0}^{1} \left| f(x) - f\left(\frac{1}{2}\right) \right| dx = \int_{0}^{\frac{1}{2}} \left(f\left(\frac{1}{2}\right) - f(x) \right) dx + \int_{\frac{1}{2}}^{1} \left(f(x) - f\left(\frac{1}{2}\right) \right) dx$$

$$= \int_{0}^{\frac{1}{2}} (-f(x)) dx + \int_{\frac{1}{2}}^{1} f(x) dx$$

$$= \int_{0}^{\frac{1}{2}} (a - f(x)) dx + \int_{\frac{1}{2}}^{1} (f(x) - a) dx$$

$$\leqslant \int_{0}^{\frac{1}{2}} |a - f(x)| dx + \int_{\frac{1}{2}}^{1} |f(x) - a| dx$$

$$= \int_{0}^{1} |f(x) - a| dx.$$

故式 (7.37) 成立.

例题 7.28 若 [a,b] 上的可积函数列 $\{f_n\}$ 在 [a,b] 上一致收敛于函数 f,则 f 在 [a,b] 上可积.

 $\overline{\mathbf{u}}$ 明 由已知条件,对任意正数 ε ,存在正整数 k 使得

$$|f_k(x) - f(x)| < \frac{\varepsilon}{4(b-a)}, \quad x \in [a,b].$$

因为 $f_k \in R([a,b])$, 所以存在 [a,b] 的一个分割

$$T: a = x_0 < x_1 < \cdots < x_n = b$$

使得

$$\sum_{j=1}^{n} \omega_j(f_k)(x_j - x_{j-1}) < \frac{\varepsilon}{2},$$

这里 $\omega_i(f_k)$ 是 f_k 在区间 $[x_{i-1},x_i]$ 上的振幅.因为

$$|f(x) - f(y)| \le |f(x) - f_k(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)|$$

 $\le \frac{\varepsilon}{2(b-a)} + |f_k(x) - f_k(y)|,$

所以

$$\omega_j(f) \leqslant \frac{\varepsilon}{2(b-a)} + \omega_j(f_k).$$

于是

$$\sum_{j=1}^{n} \omega_{j}(f) \left(x_{j} - x_{j-1} \right) \leqslant \frac{\varepsilon}{2} + \sum_{j=1}^{n} \omega_{j} \left(f_{k} \right) \left(x_{j} - x_{j-1} \right) < \varepsilon.$$

故 f 在 [a,b] 上可积.

例题 7.29 设 f 在 [a,b] 上非负可积. 求证: 数列 $I_n = \left(\frac{1}{b-a} \int_a^b f^n(x) dx\right)^{\frac{1}{n}}$ 是单调递增的.

注 当 f 是连续函数时,可以进一步证明 $\lim_{n\to+\infty}I_n=\max_{x\in[a,b]}f(x)$ (见例题 2.110). 证明 要比较 I_n 与 I_{n+1} 的大小,就要比较 f^n 的积分与 f^{n+1} 之间的关系. 这可以利用Hölder 不等式:

$$\int_{a}^{b} f^{n}(x) dx = \int_{a}^{b} 1 \cdot f^{n}(x) dx$$

$$\leq \left(\int_{a}^{b} 1^{n+1} dx \right)^{\frac{1}{n+1}} \left(\int_{a}^{b} (f^{n}(x))^{\frac{n+1}{n}} dx \right)^{\frac{n}{n+1}}$$

$$= (b-a)^{\frac{1}{n+1}} \left(\int_{a}^{b} f^{n+1}(x) dx \right)^{\frac{n}{n+1}},$$

即

$$\left(\frac{1}{b-a}\int_a^b f^n(x)\mathrm{d}x\right)^{\frac{1}{n}} \leqslant \left(\frac{1}{b-a}\int_a^b f^{n+1}(x)\mathrm{d}x\right)^{\frac{1}{n+1}}.$$

故 $\{I_n\}$ 是单调递增数列.

例题 7.30 设 f 在 [a,b] 上连续可导, 且 f(a) = 0. 求证: 对 $p \ge 1$ 有

$$\int_{a}^{b} |f(x)|^{p} dx \leq \frac{1}{p} \int_{a}^{b} \left[(b-a)^{p} - (x-a)^{p} \right] |f'(x)|^{p} dx.$$

证明 为了建立 $|f|^p$ 的积分与 $|f'|^p$ 的积分之间的关系, 先建立 |f| 与 |f'| 的积分的关系. 根据 Newton-Leibniz 公 式,有

$$f(x) = f(x) - f(a) = \int_{a}^{x} f'(t)dt, \quad x \in [a, b].$$

所以对于p > 1应用Hölder 积分不等式,可得

$$|f(x)| = \left| \int_a^x f'(t) dt \right| \le \left(\int_a^x 1^q dt \right)^{\frac{1}{q}} \left(\int_a^x |f'(t)|^p dt \right)^{\frac{1}{p}}$$
$$= (x - a)^{\frac{1}{q}} \left(\int_a^x |f'(t)|^p dt \right)^{\frac{1}{p}}.$$

其中 $\frac{1}{n} + \frac{1}{a} = 1$. 因而

$$|f(x)|^p \le (x-a)^{p-1} \int_a^x |f'(t)|^p dt, \quad x \in [a,b].$$

注意到上式对p=1也是成立的.上式两边在[a,b]上积分,可得

$$\int_a^b |f(x)|^p \mathrm{d}x \leqslant \int_a^b (x-a)^{p-1} \left(\int_a^x |f'(t)|^p \mathrm{d}t \right) \mathrm{d}x.$$

注意到 $\int_{a}^{x} |f'(t)|^p dt \ \mathbb{E} |f'|^p$ 的一个原函数. 对上式右端分部积分, 可得

$$\int_{a}^{b} |f(x)|^{p} dx \leq \frac{1}{p} (x - a)^{p} \int_{a}^{x} |f'(t)|^{p} dt \Big|_{a}^{b} - \frac{1}{p} \int_{a}^{b} (x - a)^{p} |f'(x)|^{p} dx$$

$$= \frac{1}{p} (b - a)^{p} \int_{a}^{b} |f'(t)|^{p} dt - \frac{1}{p} \int_{a}^{b} (x - a)^{p} |f'(x)|^{p} dx$$

$$= \frac{1}{p} \int_{a}^{b} \left[(b - a)^{p} - (x - a)^{p} \right] |f'(x)|^{p} dx.$$

例题 7.31 设 f 是 [0,a] 上的连续函数, 且存在正常数 M,c 使得

$$|f(x)| \leqslant M + c \int_0^x |f(t)| \mathrm{d}t,$$

求证: $|f(x)| \leq Me^{cx} (\forall x \in [0, a]).$

证明 证明注意对于包含变上限积分的不等式常可以转化为微分的不等式. 令

$$F(x) = \int_0^x |f(t)| \mathrm{d}t,$$

则条件中的不等式就是

$$F'(x) \leqslant M + cF(x)$$
.

令

$$G(x) = F(x)e^{-cx} + \frac{M}{c}e^{-cx},$$

则有

$$G'(x) = F'(t)e^{-cx} - cF(x)e^{-cx} - Me^{-cx}$$

$$= |f(x)|e^{-cx} - cF(x)e^{-cx} - Me^{-cx}$$

$$\leq (M + cF(x))e^{-cx} - cF(x)e^{-cx} - Me^{-cx} = 0.$$

这说明 G 在 [0,a] 上单调递减. 因为 $G(0)=\frac{M}{c}$, 所以 $G\leqslant\frac{M}{c}$. 因而

$$F(x) + \frac{M}{c} \leqslant \frac{M}{c} e^{cx}$$
.

再结合条件可得 $|f(x)| \leq M + cF(x) \leq Me^{cx}$.

例题 7.32 设 f 在区间 [0,1] 上连续且对任意 $x,y \in [0,1]$, 有

$$xf(y) + yf(x) \le 1.$$

求证: $\int_0^1 f(x) dx \le \frac{\pi}{4}$. 证明 结论中出现 π 且条件中要求 $x, y \in [0,1]$. 因此将条件中的 x, y 分别换成 $\sin t$ 和 $\cos t$, 有

$$f(\cos t)\sin t + f(\sin t)\cos t \le 1, \quad t \in \left[0, \frac{\pi}{2}\right].$$

将此式在 $\left[0,\frac{\pi}{2}\right]$ 上积分,得

$$\int_0^{\frac{\pi}{2}} f(\cos t) \sin t dt + \int_0^{\frac{\pi}{2}} f(\sin t) \cos t dt \leqslant \frac{\pi}{2}.$$

由对称性可知上式左端的两个积分相等. 因而

$$\int_0^{\frac{\pi}{2}} f(\sin t) \cos t dt \leqslant \frac{\pi}{4}.$$

作变换 $\sin t = x$ 即得 $\int_0^1 f(x) dx \leqslant \frac{\pi}{4}$.

例题 7.33 设 f 在区间 [0,1] 上连续且对任意 $x,y \in [0,1]$, 有

$$xf(y) + yf(x) \le 1.$$

求证: $\int_0^1 f(x) dx \leqslant \frac{\pi}{4}$.

 $\frac{70}{12}$ 结论中的 $\frac{\pi}{4}$ 是最佳的, 这只要取 $f(x) = \sqrt{1-x^2}$ 即可验证. 证明 结论中出现 π 且条件中要求 $x, y \in [0,1]$. 因此将条件中的 x, y 分别换成 $\sin t$ 和 $\cos t$, 有

$$f(\cos t)\sin t + f(\sin t)\cos t \le 1, \quad t \in \left[0, \frac{\pi}{2}\right].$$

将此式在 $\left[0,\frac{\pi}{2}\right]$ 上积分,得

$$\int_0^{\frac{\pi}{2}} f(\cos t) \sin t dt + \int_0^{\frac{\pi}{2}} f(\sin t) \cos t dt \leqslant \frac{\pi}{2}.$$

由区间再现恒等式可知上式左端的两个积分相等. 因而

$$\int_0^{\frac{\pi}{2}} f(\sin t) \cos t dt \leqslant \frac{\pi}{4}.$$

作变换 $\sin t = x$ 即得 $\int_0^1 f(x) dx \leqslant \frac{\pi}{4}$.

例题 7.34 设 f 在区间 [0,1] 上有可积的导函数且满足 f(0)=0, f(1)=1. 求证: 对任意 $a\geqslant 0$ 有

$$\int_0^1 |af(x) + f'(x)| \mathrm{d}x \geqslant 1.$$

证明 因为 $e^{-ax} \ge e^{-a}$ ($0 \le x \le 1$), 所以

$$\int_0^1 |af(x) + f'(x)| dx = \int_0^1 |(e^{ax} f(x))' e^{-ax}| dx \ge e^{-a} \int_0^1 |(e^{ax} f(x))'| dx$$
$$\ge e^{-a} \left| \int_0^1 (e^{ax} f(x))' dx \right| = e^{-a} |e^a f(1) - f(0)| = 1.$$

例题 7.35 设 f 在 [0,2] 上可导且 $|f'| \leq 1, f(0) = f(2) = 1$. 求证:

$$1 \leqslant \int_0^2 f(x) \, \mathrm{d}x \leqslant 3$$

证明 由 Taylor 中值定理可知, 存在 $\xi_1 \in [0,1], \xi_2 \in [1,2]$, 使得

$$f(x) = 1 + f'(\xi_1)x, \forall x \in [0, 1].$$

$$f(x) = 1 + f'(\xi_2)(x - 2), \forall x \in [1, 2].$$

于是

$$\int_0^2 f(x) dx = \int_0^1 f(x) dx + \int_1^2 f(x) dx$$

$$= \int_0^1 [1 + f'(\xi_1)x] dx + \int_1^2 [1 + f'(\xi_2)(x - 2)] dx$$

$$= 2 + \frac{f'(\xi_1)}{2} - \frac{1}{2} f'(\xi_2).$$

由 | f' | ≤ 1 可知

$$1 = 2 - \frac{1}{2} - \frac{1}{2} \le 2 + \frac{f'(\xi_1)}{2} - \frac{1}{2}f'(\xi_2) \le 2 + \frac{1}{2} + \frac{1}{2} = 3.$$

故

$$1 \leqslant \int_0^2 f(x) \mathrm{d}x \leqslant 3.$$

例题 7.36 设 f 在区间 [0,1] 上连续可导, 且 f(0) = f(1) = 0. 求证:

$$\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2 \leqslant \frac{1}{12} \int_0^1 \left(f'(x)\right)^2 \, \mathrm{d}x$$

且等号成立当且仅当 f(x) = Ax(1-x), 其中 A 是常数.

笔记 对于在两个端点取零值的连续可导函数,可以考虑 (ax+b)f'(x) 的积分,并利用分部积分公式得到一些结果. 证明 设 t 是任意常数,有

$$\int_0^1 (x+t)f'(x)\mathrm{d}x = (x+t)f(x)\Big|_0^1 - \int_0^1 f(x)\mathrm{d}x = -\int_0^1 f(x)\mathrm{d}x.$$

于是利用 Cauchy 积分不等式, 可得

$$\left(\int_{0}^{1} f(x) dx\right)^{2} = \left(\int_{0}^{1} (x+t)f'(x) dx\right)^{2}$$

$$\leq \int_{0}^{1} (x+t)^{2} dx \int_{0}^{1} (f'(x))^{2} dx$$

$$= \left(\frac{1}{3} + t + t^{2}\right) \int_{0}^{1} (f'(x))^{2} dx.$$

取 $t = -\frac{1}{2}$,即得所证不等式. 当所证不等式成为等式时, 上面所用的 Cauchy 不等式应为等式. 因此, 存在常数 C 使得 $f'(x) = C\left(x - \frac{1}{2}\right)$. 注意到 f(0) = f(1) = 0,可得 f(x) = Ax(1-x),这里 A 为任意常数.

例题 7.37 设 f,g 是区间 [0,1] 上的连续函数, 使得对 [0,1] 上任意满足 $\varphi(0)=\varphi(1)=0$ 的连续可导函数 φ 有

$$\int_0^1 \left[f(x)\varphi'(x) + g(x)\varphi(x) \right] dx = 0$$

求证:f 可导,且 f' = g.

证明 证明设

$$c = \int_0^1 f(t)dt - \int_0^1 g(t)dt + \int_0^1 tg(t)dt$$

考察函数

$$G(x) = \int_0^x g(t) dt + c$$

显然 G 可导且 $G'(x) = g(x), G(1) = \int_0^1 g(t) dt + c$. 只需证明 f = G. 令

$$\varphi(x) = \int_0^x \left[f(t) - G(t) \right] dt$$

则 φ 可导, 且 $\varphi(0) = 0$,

$$\varphi(1) = \int_0^1 f(t)dt - \int_0^1 G(t)dt$$

$$= \int_0^1 f(t)dt - \left[tG(t) \Big|_0^1 - \int_0^1 tg(t)dt \right]$$

$$= \int_0^1 f(t)dt - G(1) + \int_0^1 tg(t)dt$$

$$= \int_0^1 f(t)dt - \int_0^1 g(t)dt - c + \int_0^1 tg(t)dt$$

$$= 0$$

根据条件有

$$\int_0^1 \left[f(x)\varphi'(x) + g(x)\varphi(x) \right] dx = 0$$

因为

$$\int_0^1 g(x)\varphi(x)\mathrm{d}x = G(x)\varphi(x)\Big|_0^1 - \int_0^1 G(x)\varphi'(x)\mathrm{d}x = -\int_0^1 G(x)\varphi'(x)\mathrm{d}x$$

所以

$$\int_0^1 \left[f(x) - G(x) \right] \varphi'(x) \mathrm{d}x = 0$$

注意到 $\varphi' = f - G$. 我们有

$$\int_0^1 \left[f(x) - G(x) \right]^2 \mathrm{d}x = 0$$

于是 f = G.

命题 7.6

设 f 是区间 [a,b] 上的严格单调递减连续函数, f(a) = b, f(b) = a, g 是 f 的反函数. 求证:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx.$$

特别地, 对 p>0,q>0 取 $f(x)=(1-x^q)^{\frac{1}{p}},g(x)=(1-x^p)^{\frac{1}{q}},$ 可得

$$\int_0^1 (1 - x^p)^{\frac{1}{q}} dx = \int_0^1 (1 - x^q)^{\frac{1}{p}} dx.$$

证明 因为可以用在 a,b 分别插值于 f(a), f(b) 的严格单调递减的多项式 (也可以用 Bernstein 多项式) 在 [a,b] 上 一致逼近 f(x), 所以只需对 f 是连续可微函数的情况证明.

作变换 x = f(t), 有

$$\int_{a}^{b} g(x) dx = \int_{b}^{a} g(f(t))f'(t) dt = \int_{b}^{a} t f'(t) dt$$
$$= t f(t)|_{b}^{a} - \int_{b}^{a} f(t) dt = \int_{a}^{b} f(t) dt$$

故所证等式成立.

例题 7.38 设 f 是区间 [a,b] 上的连续可微函数. 求证:

$$\max_{a \leqslant x \leqslant b} f(x) \leqslant \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x + \int_a^b |f'(x)| \, \mathrm{d}x.$$

证明 由于有限闭区间上连续函数可取到最大值, 可设 $\max_{a \le x \le b} f(x) = f(y)$. 因此对任意 $x \in [a,b]$, 有

$$\max_{a \leqslant x \leqslant b} f(x) - f(x) = f(y) - f(x) = \int_{x}^{y} f'(t) dt \leqslant \int_{a}^{b} |f'(t)| dt$$

关于x在[a,b]上积分,即得

$$(b-a)\max_{a\leqslant x\leqslant b} f(x) - \int_a^b f(x) \,\mathrm{d} x \leqslant (b-a) \int_a^b |f'(t)| \,\mathrm{d} t.$$

两边除以 b-a 即得所证. **例题 7.39** 设 $\alpha \in \left[0,\frac{1}{2}\right], f \in C^1[0,1]$ 且满足 f(1)=0. 求证:

$$\int_0^1 |f(x)|^2 dx + \left(\int_0^1 |f(x)| dx \right)^2 \leqslant \frac{4}{3 - 4\alpha} \int_0^1 x^{2\alpha + 1} |f'(x)|^2 dx.$$

证明 设 $\alpha \in [0,1)$ 且 $\alpha \neq \frac{1}{2}$. 根据 Newton-Leibniz 公式和 Cauchy 不等式, 对 $x \in [0,1]$ 有

$$f^{2}(x) = \left(\int_{x}^{1} f'(t) dt\right)^{2} = \left(\int_{x}^{1} t^{-\alpha} \cdot t^{\alpha} f'(t) dt\right)^{2}$$

$$\leq \int_{x}^{1} t^{-2\alpha} dt \int_{x}^{1} t^{2\alpha} |f'(t)|^{2} dt = \frac{1}{1 - 2\alpha} (1 - x^{1 - 2\alpha}) \int_{x}^{1} t^{2\alpha} |f'(t)|^{2} dt$$

因此,由分部积分得

$$\int_{0}^{1} f^{2}(x) dx \leq \frac{1}{1 - 2\alpha} \int_{0}^{1} (1 - x^{1 - 2\alpha}) \left(\int_{x}^{1} t^{2\alpha} |f'(t)|^{2} dt \right) dx$$

$$= \frac{1}{1 - 2\alpha} \left[\left(x - \frac{x^{2 - 2\alpha}}{2 - 2\alpha} \right) \int_{x}^{1} t^{2\alpha} |f'(t)|^{2} dt \right|_{0}^{1}$$

$$+ \int_{0}^{1} \left(x - \frac{x^{2 - 2\alpha}}{2 - 2\alpha} \right) x^{2\alpha} |f'(x)|^{2} dx$$

即

$$\int_0^1 f^2(x) \, \mathrm{d}x \le \frac{1}{1 - 2\alpha} \int_0^1 x^{2\alpha + 1} |f'(x)|^2 \, \mathrm{d}x - \frac{1}{(1 - 2\alpha)(2 - 2\alpha)} \int_0^1 x^2 |f'(x)|^2 \, \mathrm{d}x. \tag{7.38}$$

另一方面,有

$$\int_0^1 |f(x)| \, \mathrm{d}x = \int_0^1 \left| \int_1^x f'(t) \, \mathrm{d}t \right| \, \mathrm{d}x \le \int_0^1 \left(\int_x^1 |f'(t)| \, \mathrm{d}t \right) \, \mathrm{d}x$$
$$= x \left(\int_x^1 |f'(t)| \, \mathrm{d}t \right) \Big|_0^1 + \int_0^1 x |f'(x)| \, \mathrm{d}x$$

因此

$$\int_0^1 |f(x)| \, \mathrm{d}x \leqslant \int_0^1 x |f'(x)| \, \mathrm{d}x. \tag{7.39}$$

再由 Cauchy 不等式,有

$$\left(\int_{0}^{1} |f(x)| \, \mathrm{d}x\right)^{2} \le \left(\int_{0}^{1} x^{\frac{1-2\alpha}{2}} \cdot x^{\frac{2\alpha+1}{2}} |f'(x)| \, \mathrm{d}x\right)^{2}$$

$$\le \left(\int_{0}^{1} x^{1-2\alpha} \, \mathrm{d}x\right) \left(\int_{0}^{1} x^{2\alpha+1} |f'(x)|^{2} \, \mathrm{d}x\right)$$

$$= \frac{1}{2-2\alpha} \int_{0}^{1} x^{2\alpha+1} |f'(x)|^{2} \, \mathrm{d}x$$

结合式 (7.38), 可得

$$\int_0^1 |f(x)|^2 dx + \left(\int_0^1 |f(x)| dx\right)^2 \le \frac{1}{(2\alpha - 1)(2 - 2\alpha)} \int_0^1 x^2 |f'(x)|^2 dx - \frac{3 - 4\alpha}{(2\alpha - 1)(2 - 2\alpha)} \int_0^1 x^{2\alpha + 1} |f'(x)|^2 dx$$
(7.40)

在上式中取 $\alpha = \frac{3}{4}$, 即得

$$\int_0^1 |f(x)|^2 dx + \left(\int_0^1 |f(x)| dx\right)^2 \le 4 \int_0^1 x^2 |f'(x)|^2 dx.$$
 (7.41)

对 $\alpha \in \left[0, \frac{1}{2}\right)$, 将式 (7.40) 两边乘以 $4(1-2\alpha)(2-2\alpha)$ 再与式 (7.41) 相加可得

$$\int_0^1 |f(x)|^2 dx + \left(\int_0^1 |f(x)| dx\right)^2 \le \frac{4}{3 - 4\alpha} \int_0^1 x^{2\alpha + 1} |f'(x)|^2 dx.$$

例题 7.40 设 f 在 [0,1] 上非负且连续可导. 求证:

$$\left| \int_0^1 f^3(x) \, \mathrm{d}x - f^2(0) \int_0^1 f(x) \, \mathrm{d}x \right| \le \max_{0 \le x \le 1} |f'(x)| \left(\int_0^1 f(x) \, \mathrm{d}x \right)^2$$

证明 记 $M = \max_{0 \le x \le 1} |f'(x)|$, 则有

$$-Mf(x) \leqslant f(x)f'(x) \leqslant Mf(x), \quad \forall x \in [0,1]$$

因此

$$-M \int_0^x f(t) dt \leqslant \frac{1}{2} f^2(x) - \frac{1}{2} f^2(0) \leqslant M \int_0^x f(t) dt, \quad \forall x \in [0, 1]$$

上式两边乘以 f 得

$$-Mf(x) \int_0^x f(t) \, \mathrm{d}t \leqslant \frac{1}{2} f^3(x) - \frac{1}{2} f^2(0) f(x) \leqslant Mf(x) \int_0^x f(t) \, \mathrm{d}t, \quad \forall x \in [0, 1]$$

将上式关于变量x在[0,1]上积分,得

$$-M\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2 \leqslant \int_0^1 f^3(x) \, \mathrm{d}x - f^2(0) \int_0^1 f(x) \, \mathrm{d}x \leqslant M\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2$$

结论得证.

例题 7.41 设 f 在 [0,1] 上非负单调递增连续函数, $0 < \alpha < \beta < 1$. 求证:

$$\int_0^1 f(x) \, \mathrm{d}x \geqslant \frac{1 - \alpha}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) \, \mathrm{d}x$$

并且 $\frac{1-\alpha}{\beta-\alpha}$ 不能换为更大的数.

注 当函数具有单调性时, 小区间上的积分与整体区间上的积分可比较大小.

证明 根据积分中值定理,存在 $\xi \in (\alpha, \beta)$ 使得

$$\int_{-\alpha}^{\beta} f(x) \, \mathrm{d}x = f(\xi)(\beta - \alpha)$$

因而由 f 的递增性, 有

$$\int_{\alpha}^{\beta} f(x) \, \mathrm{d}x \leqslant (\beta - \alpha) f(\beta)$$

于是

$$\int_{0}^{1} f(x) dx = \int_{0}^{\alpha} f(x) dx + \int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{1} f(x) dx$$

$$\geqslant \int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{1} f(x) dx \geqslant \int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{1} f(\beta) dx$$

$$= \int_{\alpha}^{\beta} f(x) dx + (1 - \beta) f(\beta) \geqslant \int_{\alpha}^{\beta} f(x) dx + \frac{1 - \beta}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx$$

$$= \frac{1 - \alpha}{\beta - \alpha} \int_{\alpha}^{\beta} f(x) dx.$$

取正整数 n 使得 $\alpha + \frac{1}{n} < \beta$. 构造函数

$$f_n(x) = \begin{cases} 0, & 0 \le x \le \alpha, \\ n(x - \alpha), & \alpha < x \le \alpha + \frac{1}{n}, \\ 1, & \alpha + \frac{1}{n} < x \le 1. \end{cases}$$

显然这是一个连续函数,且

$$\int_0^1 f_n(x) \, dx = 1 - \alpha - \frac{1}{2n}, \quad \int_\alpha^\beta f_n(x) \, dx = \beta - \alpha - \frac{1}{2n}.$$

因而

$$\lim_{n \to +\infty} \frac{\int_0^1 f_n(x) \, \mathrm{d}x}{\int_{\alpha}^{\beta} f_n(x) \, \mathrm{d}x} = \frac{1 - \alpha}{\beta - \alpha}$$

故题中 $\frac{1-\alpha}{\beta-\alpha}$ 不能换成更大的数.

例题 7.42 设函数 f 在 [0,1] 上连续的二阶导函数, f(0) = f(1) = 0, $f'(1) = \frac{a}{2}$. 求证:

$$\int_0^1 x(f''(x))^2 dx \geqslant \frac{a^2}{2}$$

并求上式成为等式的 f.

 $\dot{\mathbf{L}}$ 当 f 在端点的值为零, f' 在端点的值确定时, 可以考虑 f'' 与线性函数的乘积的积分.

证明 根据分部积分,Newton-Leibniz 公式和题设条件,有

$$0 \le \int_0^1 x(f''(x) - a)^2 dx = \int_0^1 x(f''(x))^2 dx - 2a \int_0^1 xf''(x) dx + a^2 \int_0^1 x dx$$

$$= \int_0^1 x(f''(x))^2 dx - 2a \left(xf'(x) \Big|_0^1 - \int_0^1 f'(x) dx \right) + \frac{a^2}{2}$$

$$= \int_0^1 x(f''(x))^2 dx - 2a \left(f'(1) - f(1) + f(0) \right) + \frac{a^2}{2}$$

$$= \int_0^1 x(f''(x))^2 dx - \frac{a^2}{2}$$

所以

$$\int_0^1 x (f''(x))^2 \, \mathrm{d}x \geqslant \frac{a^2}{2}$$

等式成立时,有

$$f''(x) = a$$

即
$$f(x) = \frac{1}{2}ax^2 + bx + c$$
. 因为 $f(0) = f(1) = 0, f'(1) = \frac{a}{2}$, 所以 $c = 0, b = -\frac{a}{2}$. 因此
$$f(x) = \frac{1}{2}ax(x-1).$$

例题 7.43 设 n 是正整数, 且 m > 2. 求证:

$$\int_0^{\pi/2} t \left| \frac{\sin nt}{\sin t} \right|^m dt \le \left(\frac{m \cdot n^{m-2}}{8(m-2)} - \frac{1}{4(m-2)} \right) \pi^2.$$

 $\frac{\mathbf{i}}{\mathbf{j}}$ 当利用积分的可加性把区间 [a,b] 上的积分分为区间 [a,c] 和区间 [c,b] 上的积分之和时,为了得到较好的估计,可以根据情况选择适当的 c.

证明 用数学归纳法容易证明 $|\sin nt| \le n \sin t, t \in \left[0, \frac{\pi}{2}\right]$. 另外又有

$$|\sin nt| \leqslant 1$$
, $\sin t \geqslant \frac{2t}{\pi}$, $t \in \left[0, \frac{\pi}{2}\right]$.

设 $a \in \left(0, \frac{\pi}{2}\right)$. 则有

$$\begin{split} \int_0^{\pi/2} t \left| \frac{\sin nt}{\sin t} \right|^m \, \mathrm{d}t &= \int_0^a t \left(\frac{\sin nt}{\sin t} \right)^m \, \mathrm{d}t + \int_a^{\pi/2} t \left(\frac{\sin nt}{\sin t} \right)^m \, \mathrm{d}t \\ &\leqslant \int_0^a t n^m \, \mathrm{d}t + \int_a^{\pi/2} t \left(\frac{1}{2t/\pi} \right)^m \, \mathrm{d}t \\ &= \frac{1}{2} n^m a^2 + \frac{1}{m-2} \left(\frac{\pi}{2} \right)^m \left(\frac{1}{a^{m-2}} - \frac{1}{(\pi/2)^{m-2}} \right). \end{split}$$

易知函数 $g(a) = \frac{1}{2} n^m a^2 + \frac{1}{m-2} \left(\frac{\pi}{2}\right)^m \frac{1}{a^{m-2}} \, \, \exists \, a = \frac{\pi}{2n} \, \,$ 时取最小值. 于是将上面的 a 换成 $\frac{\pi}{2n}$ 可得 $\int_0^{\pi/2} t \left| \frac{\sin nt}{\sin t} \right|^m \, \mathrm{d}t \leqslant \left(\frac{m \cdot n^{m-2}}{8(m-2)} - \frac{1}{4(m-2)} \right) \pi^2.$

例题 7.44 设 $n \ge 1$ 是自然数. 求证:

$$\frac{1}{\pi} \int_0^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} \, \mathrm{d}t < \frac{2n^2+1}{2n^2+n} + \frac{1}{2} \ln n.$$

证明 注意到

$$\int_0^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} dt = \int_0^{\pi/2n} \frac{|\sin(2n+1)t|}{\sin t} dt + \int_{\pi/2n}^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} dt.$$

因为当 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $\sin x > \frac{2x}{\pi}$,所以

$$\int_{\pi/2n}^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} \, \mathrm{d}t < \int_{\pi/2n}^{\pi/2} \frac{1}{2t/\pi} \, \mathrm{d}t = \frac{\pi}{2} \ln n.$$

另一方面,

$$\int_0^{\pi/2n} \frac{|\sin(2n+1)t|}{\sin t} dt = \int_0^{\pi/(2n+1)} \frac{\sin(2n+1)t}{\sin t} dt - \int_{\pi/(2n+1)}^{\pi/2n} \frac{\sin(2n+1)t}{\sin t} dt.$$

用数学归纳法容易证明当 $t \in \left[0, \frac{\pi}{2}\right]$ 时, 有 $|\sin nt| \le n \sin t$. 因此

$$\int_0^{\pi/(2n+1)} \frac{\sin(2n+1)t}{\sin t} dt = \int_0^{\pi/(2n+1)} \left(\frac{\sin 2nt \cos t}{\sin t} + \cos 2nt \right) dt = \int_0^{\pi/(2n+1)} \frac{\sin 2nt \cos t}{\sin t} dt + \frac{1}{2n} \sin \frac{2n\pi}{2n+1} dt = \int_0^{\pi/(2n+1)} 2n \cos t dt + \frac{1}{2n} \sin \frac{2n\pi}{2n+1} < 2n \sin \frac{\pi}{2n+1} + \frac{1}{2n} \sin \frac{2n\pi}{2n+1} dt = \left(2n + \frac{1}{2n} \right) \sin \frac{\pi}{2n+1},$$

$$-\int_{\pi/(2n+1)}^{\pi/2n} \frac{\sin{(2n+1)t}}{\sin{t}} dt = -\int_{\pi/(2n+1)}^{\pi/2n} \left(\frac{\sin{2nt}\cos{t}}{\sin{t}} + \cos{2nt}\right) dt < -\int_{\pi/(2n+1)}^{\pi/2n} \cos{2nt} dt = \frac{1}{2n}\sin{\frac{\pi}{2n+1}}.$$

因此

$$\int_0^{\pi/2n} \frac{|\sin(2n+1)t|}{\sin t} \, \mathrm{d}t < \left(2n + \frac{1}{n}\right) \sin \frac{\pi}{2n+1} < \left(2n + \frac{1}{n}\right) \frac{\pi}{2n+1} = \frac{2n^2 + 1}{2n^2 + n} \pi.$$

于是

$$\int_0^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} \, \mathrm{d}t < \frac{2n^2+1}{2n^2+n}\pi + \frac{\pi}{2} \ln n.$$

两边同时除以π得:

$$\frac{1}{\pi} \int_0^{\pi/2} \frac{|\sin(2n+1)t|}{\sin t} \, \mathrm{d}t < \frac{2n^2+1}{2n^2+n} + \frac{1}{2} \ln n.$$

例题 7.45 设 $f \neq 0$, 在 [a,b] 上可微, f(a) = f(b) = 0. 求证: 至少存在一点 $c \in [a,b]$ 使

$$|f'(c)| > \frac{4}{(b-a)^2} \int_a^b |f(x)| \, \mathrm{d}x. \tag{7.42}$$

证明 记上式右端为 M. 假设对一切 $c \in [a,b]$ 有 $|f'(c)| \leq M$, 下面推出矛盾. 首先根据微分中值定理, 对于 $x \in \left[a, \frac{a+b}{2}\right]$ 存在 $\xi \in (a,x)$, 使

$$f(x) = f(x) - f(a) = f'(\xi)(x - a),$$

由假设,有

$$|f(x)| \le M(x-a), \quad x \in \left[a, \frac{a+b}{2}\right],$$
 (7.43)

295

因而

$$\int_{a}^{\frac{a+b}{2}} |f(x)| \, \mathrm{d}x \leqslant \frac{1}{2} \left(\frac{b-a}{2}\right)^{2} M. \tag{7.44}$$

再根据微分中值定理, 对于 $x \in \left[\frac{a+b}{2}, b\right]$, 存在 $\eta \in (x,b)$, 使得

$$f(x) = f(x) - f(b) = f'(\eta)(x - b),$$

由假设,有

$$|f(x)| \le M(b-x), \quad x \in \left[\frac{a+b}{2}, b\right],$$
 (7.45)

因而

$$\int_{\underline{a+b}}^{b} |f(x)| \, \mathrm{d}x \leqslant \frac{1}{2} \left(\frac{b-a}{2}\right)^2 M. \tag{7.46}$$

将式 (7.44) 与式 (7.46) 相加可得

$$\int_a^b |f(x)| \, \mathrm{d}x \leqslant \left(\frac{b-a}{2}\right)^2 M = \int_a^b |f(x)| \, \mathrm{d}x.$$

这说明式 (7.44) 与式 (7.46) 必须是等式, 因而式 (7.43) 与式 (7.45) 必须成为等式, 于是

$$f^{2}(x) = \begin{cases} M^{2}(x-a)^{2}, & x \in \left[a, \frac{a+b}{2}\right], \\ M^{2}(b-x)^{2}, & x \in \left(\frac{a+b}{2}, b\right], \end{cases}$$

此分段函数在 $x = \frac{a+b}{2}$ 不可导, 这与 f 在 [a,b] 可导矛盾! 例题 7.46 设 f 是区间 [0,1] 上的下凸函数. 求证: 对一切 $t \in [0,1]$, 有

$$t(1-t)f(t) \le (1-t)^2 \int_0^t f(x) \, \mathrm{d}x + t^2 \int_t^1 f(x) \, \mathrm{d}x.$$

注 从本题结论知: 当 f 是区间 [0,1] 上的下凸函数时, 有

$$\int_0^1 t(1-t)f(t) dt \leqslant \frac{1}{3} \int_0^1 \left[t^3 + (1-t) \right]^3 f(x) dt.$$

因为

$$\int_{0}^{1} t (1-t) f(t) dt \leq \int_{0}^{1} (1-t)^{2} \left(\int_{0}^{t} f(x) dx \right) dt + \int_{0}^{1} t^{2} \left(\int_{t}^{1} f(x) dx \right) dt$$

$$= -\frac{1}{3} \int_{0}^{1} \left(\int_{0}^{t} f(x) dx \right) d(1-t)^{3} + \frac{1}{3} \int_{0}^{1} \left(\int_{t}^{1} f(x) dx \right) dt^{3}$$

$$\xrightarrow{\text{sign}(x)} \frac{1}{3} \int_{0}^{1} (1-t)^{3} f(x) dt + \frac{1}{3} \int_{0}^{1} t^{3} f(t) dt$$

$$= \frac{1}{3} \int_{0}^{1} \left[t^{3} + (1-t) \right]^{3} f(x) dt.$$

笔记 构造思路: 待定 a = a(t,x), b = b(t,x), 使得 t = ta + (1-t)b. 由 f 是下凸函数可知

$$f(t) \leqslant t f(a) + (1-t)f(b), \forall t \in (0,1).$$

并且上式两边对 x 在 [0,1] 上积分, 得

$$t \int_{0}^{1} f(a) dx + (1 - t) \int_{0}^{1} f(b) dx = \frac{t}{1 - t} \int_{t}^{1} f(x) dx + \frac{1 - t}{t} \int_{0}^{t} f(x) dx$$

$$\implies \int_{0}^{1} f(b) dx = \frac{1}{t} \int_{0}^{t} f(x) dx = \int_{0}^{1} f(tx) dx$$

$$\implies b = tx, t = ta + (1 - t) b$$

$$\implies a = t - tx + t^{2}x = t(1 - x + tx).$$

证明 对于 t = 0 和 t = 1 所证不等式是显然的. 设 $t \in (0,1)$, 由定理 5.11可知, 下凸函数在 t 点是连续的, 所以 f 在 [0,1] 上可积. 对于 $x \in [0,1]$, 有 t = (1-t)(tx) + t(1-x+tx). 因此根据下凸函数的定义, 得

$$f(t) \leqslant (1-t)f(tx) + tf(1-x+tx).$$

上式对变量x在[0,1]上积分,得

$$f(t) \le (1 - t) \int_0^1 f(tx) dx + t \int_0^1 f(1 - x + tx) dx$$
$$= \frac{1 - t}{t} \int_0^t f(x) dx + \frac{t}{1 - t} \int_t^1 f(x) dx.$$

命题 7.7

设 f 在区间 [0,a) 上有二阶连续导数,满足 f(0)=f'(0)=0 且 f''(x)>0 (0< x < a). 求证: 对任意 $x \in (0,a)$,有

$$\int_0^x \sqrt{1 + (f'(t))^2} \, \mathrm{d}t < x + \frac{f(x)f'(x)}{\sqrt{1 + (f'(x))^2} + 1}. \tag{7.47}$$

 $\dot{\mathbf{z}}$ 式 (7.47) 左端是弧长计算公式, 不等式 (7.47) 的几何意义是: 光滑下凸曲线段的起点 A 和终点 B 处的切线在曲线凸出的一侧相交于 C 点, 则直线段 AC 与 BC 的长度之和大于这条曲线段的长度.

证明 将式 (7.47) 右端第一项 x 移到左端, 有

$$\int_0^x \left(\sqrt{1 + (f'(t))^2} - 1 \right) dt = \int_0^x \frac{f'(t)}{\sqrt{1 + (f'(t))^2} + 1} \cdot f'(t) dt.$$

因为 f'(t) 和 $\frac{t}{\sqrt{1+t^2}+1}$ 都是单调递增函数, 所以 $\frac{f'(t)}{\sqrt{1+(f'(t))^2}+1}$ 是单调递增函数. 因此

$$\int_0^x \left(\sqrt{1 + (f'(t))^2} - 1 \right) dt < \frac{f'(x)}{\sqrt{1 + (f'(x))^2} + 1} \cdot \int_0^x f'(t) dt = \frac{f(x)f'(x)}{\sqrt{1 + (f'(x))^2} + 1}.$$

例题 7.47 f 是区间 [0,1] 上的正连续函数, $k \ge 1$. 求证:

$$\int_0^1 \frac{1}{1 + f(x)} \, \mathrm{d}x \int_0^1 f(x) \, \mathrm{d}x \le \int_0^1 \frac{f^{k+1}(x)}{1 + f(x)} \, \mathrm{d}x \int_0^1 \frac{1}{f^k(x)} \, \mathrm{d}x,\tag{7.48}$$

并讨论等号成立的条件.

证明 当 $k \ge 1$ 时, 函数 $\frac{t^k}{1+t}$ 和 t^{k+1} 都是单调递增的. 因此对于任意 $x, y \in [0,1]$, 有

$$\frac{1}{f^k(x)f^k(y)} \left(\frac{f^k(x)}{1+f(x)} - \frac{f^k(y)}{1+f(y)} \right) \left(f^{k+1}(x) - f^{k+1}(y) \right) \geqslant 0, \tag{7.49}$$

即

$$\frac{f(x)}{1+f(y)} + \frac{f(y)}{1+f(x)} \leq \frac{f^{k+1}(x)}{1+f(x)} \cdot \frac{1}{f^k(y)} + \frac{f^{k+1}(y)}{1+f(y)} \cdot \frac{1}{f^k(x)}.$$

在上式两端分别关于变量 x, y 在区间 [0,1] 上积分, 即得所证.

要使式 (7.48) 成为等式, 必须式 (7.49) 成为等式. 因此对任意 $x, y \in [0, 1]$, 有 f(x) = f(y), 即 f 在 [0, 1] 上为常数.

例题 7.48 设 $b \ge a + 2$. 函数 $f \in [a, b]$ 上为正连续函数, 且

$$\int_a^b \frac{1}{1+f(x)} \, \mathrm{d}x = 1.$$

求证:

$$\int_{a}^{b} \frac{f(x)}{b - a - 1 + f^{2}(x)} dx \le 1.$$
 (7.50)

并求式 (7.50) 成为等式的条件.

证明 令
$$g(x) = \frac{b-a}{1+f(x)}$$
,则 g 在 $[a,b]$ 上连续且 $\int_a^b g(x) dx = b-a$. 从 g 的定义可得 $f(x) = \frac{b-a-g(x)}{g(x)}$. 因此

$$\frac{f(x)}{b-a-1+f^2(x)} = \frac{\frac{b-a-g(x)}{g(x)}}{b-a-1+\left(\frac{b-a-g(x)}{g(x)}\right)^2} = \frac{1}{b-a} \cdot \frac{g(x)(b-a-g(x))}{g^2(x)-2g(x)+b-a}$$

$$= \frac{1}{b-a} \left[-1 + \frac{(b-a-2)g(x)+b-a}{(g(x)-1)^2+b-a-1} \right] \leqslant \frac{1}{b-a} \left[-1 + \frac{(b-a-2)g(x)+b-a}{b-a-1} \right]$$

$$= \frac{1}{b-a} \cdot \frac{(b-a-2)g(x)+1}{b-a-1},$$

故

$$\int_{a}^{b} \frac{f(x)}{b-a-1+f^{2}(x)} dx \le \int_{a}^{b} \frac{1}{b-a} \cdot \frac{(b-a-2)g(x)+1}{b-a-1} dx$$

$$= \frac{1}{b-a} \cdot \frac{(b-a-2)(b-a)+b-a}{b-a-1} = 1.$$

等号成立当且仅当 g(x) = 1, 即 f(x) = b - a - 1 时成立.

例题 7.49 设 f 是 $(-\infty, +\infty)$ 上连续函数, 且在 $(-\infty, a] \cup [b, +\infty)$ 上等于零. 又设

$$\varphi(x) = \frac{1}{2h} \int_{x=h}^{x+h} f(t) dt \quad (h > 0).$$

求证:

$$\int_a^b |\varphi(x)| \, \mathrm{d} x \le \int_a^b |f(x)| \, \mathrm{d} x.$$

证明 作变换 u = t - x, 得

$$\int_{x-h}^{x+h} |f(t)| \, \mathrm{d}t = \int_{-h}^{h} |f(u+x)| \, \mathrm{d}u.$$

因此

$$\int_{a}^{b} \int_{-h}^{h} |f(u+x)| \, \mathrm{d}u \, \mathrm{d}x = \int_{-h}^{h} \int_{a}^{b} |f(u+x)| \, \mathrm{d}x \, \mathrm{d}u.$$

作变换v = u + x,得

$$\int_{a}^{b} |f(u+x)| \, \mathrm{d}x = \int_{a+u}^{b+u} |f(v)| \, \mathrm{d}v = \begin{cases} \int_{a+u}^{b} |f(v)| \, \mathrm{d}v, & u \ge 0, \\ \int_{a+u}^{b+u} |f(v)| \, \mathrm{d}v, & u < 0 \end{cases} \leqslant \int_{a}^{b} |f(v)| \, \mathrm{d}v.$$

由此可知

$$\int_{a}^{b} |\varphi(x)| \, \mathrm{d}x = \int_{a}^{b} \left| \frac{1}{2h} \int_{x-h}^{x+h} f(t) \, \mathrm{d}t \right| \, \mathrm{d}x \leqslant \frac{1}{2h} \int_{a}^{b} \int_{x-h}^{x+h} |f(t)| \, \mathrm{d}t \, \mathrm{d}x$$

$$= \frac{1}{2h} \int_{a}^{b} \int_{-h}^{h} |f(u+x)| \, \mathrm{d}u \, \mathrm{d}x = \frac{1}{2h} \int_{-h}^{h} \int_{a}^{b} |f(u+x)| \, \mathrm{d}x \, \mathrm{d}u$$

$$\leqslant \frac{1}{2h} \int_{-h}^{h} \int_{a}^{b} |f(v)| \, \mathrm{d}v \, \mathrm{d}u = \int_{a}^{b} |f(v)| \, \mathrm{d}v.$$

例题 7.50 设 f 在区间 $[1,+\infty)$ 上连续并满足

$$x \int_{1}^{x} f(t) dt = (x+1) \int_{1}^{x} t f(t) dt.$$
 (7.51)

求 f.

解 假设 f 是满足条件的连续函数,则对式 (7.51) 两边求导得

$$\int_{1}^{x} f(t) dt = \int_{1}^{x} t f(t) dt + x^{2} f(x).$$
 (7.52)

由此可知,f(1) = 0, 且当 $x \ge 1$ 时,f 可导. 对式 (7.52) 两边求导得

$$f(x) = x f(x) + 2x f(x) + x^2 f'(x),$$

即

$$f'(x) = \frac{1 - 3x}{x^2} f(x), \quad x \ge 1.$$
 (7.53)

所以

$$|f'(x)| \le 2|f(x)|. \tag{7.54}$$

令 $g(x) = e^{-4x} f^2(x)$, 则有

$$g'(x) = 2e^{-4x} (f(x)f'(x) - 2f^2(x)).$$

结合式(7.54) 可知 $g' \le 0$, 这说明 g 单调递减. 因为 g(1) = 0, 所以 $g \le 0$. 但从 g 的定义知 $g \ge 0$. 于是 g = 0, 从而 f = 0.

实际上, 由(7.53)可解得 $f(x) = Ce^{\int_1^x \frac{1-3t}{t^2} dt} = Ce^{1-\frac{1}{x}-3\ln x}$, 再将 f(1) = 0 代入得 C = 0. 故 $f \equiv 0$. 总之, 原方程 (7.51) 的解只有 $f \equiv 0$.

例题 7.51 设 f 在任意有限区间上可积, 且对任意 x 及任意 $a \neq 0$ 满足

$$\frac{1}{2a} \int_{x-a}^{x+a} f(t) \, \mathrm{d}t = f(x).$$

试求函数 f.

解 易知线性函数满足上面的式子. 下面证明满足上式的函数必是线性函数. 由条件知, 对任意 x 和 a, 有

$$\int_{x-a}^{x+a} f(t) \, \mathrm{d}t = 2af(x).$$

因此

$$2af(x+y) = \int_{x+y-a}^{x+y+a} f(t) dt = \int_{y+x-a}^{y+a-x} f(t) dt + \int_{y+a-x}^{x+y+a} f(t) dt = 2(a-x)f(y) + 2xf(y+a).$$

取 a = 1, y = 0 就得

$$f(x) = (f(1) - f(0))x + f(0),$$

即 f 是线性函数.

例题 7.52 设 $f \in \mathbb{R}$ 上有下界的连续函数. 若存在常数 $a \in (0,1]$ 使得

$$f(x) - a \int_{x}^{x+1} f(t) dt$$

为常数,则 f 无穷可微且它的任意阶导函数都是非负的.

证明 不妨设 $m = \inf_{x \in \mathbb{R}} f(x) = 0$ (不然将 f 换为 f - m 之后再证明). 此时 $f \ge 0$. 记

$$A = f(x) - a \int_{x}^{x+1} f(t) dt,$$
 (7.55)

则 $f \ge A$. 因此, $A \le 0$. 由式 (7.55) 知 f 无穷可微, 且

$$f'(x) = af(x+1) - af(x). (7.56)$$

记 $a_1 = a$, 则

$$f'(x) + a_1 f(x) \ge 0.$$

假设存在 $a_n > 0$ 使得

$$f'(x) + a_n f(x) \ge 0. (7.57)$$

则 $(e^{a_n x} f(x))' \ge 0$. 这说明函数 $e^{a_n x} f(x)$ 是递增的. 由式 (7.55) 可得

$$f(x) \le a \int_{x}^{x+1} f(t) dt = a \int_{x}^{x+1} e^{a_{n}t} f(t)e^{-a_{n}t} dt$$

$$\le ae^{a_{n}(x+1)} f(x+1) \int_{x}^{x+1} e^{-a_{n}t} dt$$

$$= \frac{e^{a_{n}} - 1}{a_{n}} af(x+1)$$

$$= \frac{e^{a_{n}} - 1}{a_{n}} (f'(x) + af(x)).$$

由此可得

$$f'(x) + a_{n+1}f(x) \ge 0, (7.58)$$

其中

$$a_{n+1} = a - \frac{a_n}{e^{a_n} - 1}$$
.

若 $a_{n+1} \le 0$, 则由 (7.58) 得 $f' \ge 0$. 若 $a_{n+1} > 0$, 则接着可构造 a_{n+2} . 若 $\{a_n\}$ 均为正的, 则 $\{a_n\}$ 为递减正数列, 设其极限为 $r \ge 0$. 若 r > 0, 则从上式得 $r = a - \frac{r}{e^r - 1}$, 即 $a = \frac{re^r}{e^r - 1} > 1$. 这与条件不符, 因此必有 r = 0. 在式 (7.57)中令 $n \to +\infty$, 即得对一切 x 有 $f'(x) \ge 0$. 注意到

$$f^{(n)}(x) - a \int_{x}^{x+1} f^{(n)}(t) dt = 0, \quad n = 1, 2, \dots,$$

因而将前面的 f 换为 f', 可以得到 $f''(x) \ge 0$, 依次可以证明 $f^{(n)}(x) \ge 0$.

例题 7.53 求所有连续函数 $f: \mathbb{R} \to \mathbb{R}$ 使得对任意 $x \in \mathbb{R}$ 和任意正整数 n, 有

$$n^2 \int_x^{x+\frac{1}{n}} f(t) dt = nf(x) + \frac{1}{2}.$$

解设f是要求的一个连续函数,则f是可导的且

$$n\left[f\left(x+\frac{1}{n}\right)-f(x)\right]=f'(x). \tag{7.59}$$

由此知 f 二阶可导, 且

$$n\left[f'\left(x+\frac{1}{n}\right)-f'(x)\right]=f''(x). \tag{7.60}$$

将 (7.59) 中的 n 换成 2n, 得

$$2n\left[f\left(x+\frac{1}{2n}\right)-f(x)\right]=f'(x). \tag{7.61}$$

将上式中的x换成 $x + \frac{1}{2n}$ 得

$$2n\left[f\left(x+\frac{1}{n}\right)-f\left(x+\frac{1}{2n}\right)\right]=f'\left(x+\frac{1}{2n}\right). \tag{7.62}$$

将式 (7.59) 两边乘以 2 再减去式 (7.61) 两边, 得

$$2n\left[f\left(x+\frac{1}{n}\right)-f\left(x+\frac{1}{2n}\right)\right]=f'(x). \tag{7.63}$$

从式 (7.62) 和式 (7.63) 得

$$f'(x) = f'\left(x + \frac{1}{2n}\right), \quad \forall n \in \mathbb{Z}^+, \forall x \in \mathbb{R}.$$

由(7.60)式可知 f''=0. 因而存在常数 a,b 使得 f(x)=ax+b. 代入题设条件可得 a=1. 于是 f(x)=x+b, 这里 b 是任意常数.

例题 7.54 设 $f \in C[-1,1]$ 且对任意整数 n 满足

$$\int_0^1 f(\sin(nx)) \, \mathrm{d}x = 0. \tag{7.64}$$

求证: 对任意 $x \in [-1, 1]$ 有 f(x) = 0.

证明 在式 (7.64) 中取 n=0, 可得 f(0)=0. 对任意非零整数 n, 将式 (7.64) 中的积分作变换 t=nx 可得

$$\int_0^n f(\sin t) \, \mathrm{d}t = 0.$$

令

$$F(x) = \int_{x}^{x+1} f(\sin t) \, \mathrm{d}t,$$

则 F 可导, 且 F(n) = 0. 对整数 k 有

$$F(x + 2k\pi) = \int_{x+2k\pi}^{x+2k\pi+1} f(\sin t) dt = \int_{x}^{x+1} f(\sin(t + 2k\pi)) dt$$
$$= \int_{x}^{x+1} f(\sin t) dt = F(x).$$

因而 $F(n+2k\pi) = F(n) = 0$. 这说明 F 在集合 $A = \{n+2k\pi \mid n, k \in \mathbb{Z}\}$ 上取值为 0. 由于集合 A 在 \mathbb{R} 上是稠密的,由 F 的连续性可知 F(x) = 0 $(x \in \mathbb{R})$. 于是

$$F'(x) = f(\sin(x+1)) - f(\sin x) = 0.$$

这说明 $f(\sin x)$ 是以 1 和 2π 为周期的连续函数. 仍由集合 A 的稠密性可知 $f(\sin x)$ 是常数. 因此 f 在 [-1,1] 上是常数. 故 f(x) = f(0) = 0.

例题 7.55 设 f 是 $[0,2\pi]$ 上可导的凸函数, f' 有界, 试证

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, \mathrm{d}x \ge 0.$$

证明 因为 f 是可导的凸函数, 所以 f' 是单调递增的函数. 由 f' 的单调有界性, 知 f' 在 $[0,2\pi]$ 上可积. 根据分部积分公式, 得

$$\pi a_n = \int_0^{2\pi} f(x) \cos nx \, dx = f(x) \frac{\sin nx}{n} \Big|_0^{2\pi} - \frac{1}{n} \int_0^{2\pi} f'(x) \sin nx \, dx$$

$$= -\frac{1}{n} \int_0^{2\pi} f'(x) \sin nx \, dx = -\frac{1}{n} \sum_{k=1}^{2n} \int_{(k-1)\pi/n}^{k\pi/n} f'(x) \sin nx \, dx$$

$$= -\frac{1}{n} \sum_{k=1}^{2n} \int_0^{\frac{\pi}{n}} f' \left(x + \frac{(k-1)\pi}{n} \right) \sin \left((k-1)\pi + x \right) dx$$

$$= -\frac{1}{n} \sum_{k=1}^{2n} \int_0^{\frac{\pi}{n}} f' \left(x + \frac{(k-1)\pi}{n} \right) (-1)^{k-1} \sin x \, dx$$

$$= -\frac{1}{n} \int_0^{\frac{\pi}{n}} \sum_{k=1}^{2n} (-1)^{k-1} f' \left(x + \frac{(k-1)\pi}{n} \right) \sin x \, dx$$

$$= -\frac{1}{n} \int_0^{\frac{\pi}{n}} \sum_{k=1}^{n} \left(f' \left(x + \frac{(2k-2)\pi}{n} \right) - f' \left(x + \frac{(2k-1)\pi}{n} \right) \right) \sin x \, dx.$$

注意到 f' 是单调递增的, 即知 $a_n \ge 0$.

例题 7.56 设 f 在 [0,1] 上连续可微, f(0) = 0. 求证:

$$\int_{0}^{1} \frac{f^{2}(x)}{x^{2}} dx \le 4 \int_{0}^{1} (f'(x))^{2} dx, \tag{7.65}$$

且右边的系数 4 是最佳的.

证明 证法一:因为

$$f'(x) = x^{\frac{1}{2}} \left(x^{-\frac{1}{2}} f(x) \right)' + \frac{f(x)}{2x},$$

所以

$$\left(f'(x)\right)^2 = \left[x^{\frac{1}{2}}\left(x^{-\frac{1}{2}}f(x)\right)'\right]^2 + \left(x^{-\frac{1}{2}}f(x)\right)\left(x^{-\frac{1}{2}}f(x)\right)' + \frac{f^2(x)}{4r^2} \geqslant \left(x^{-\frac{1}{2}}f(x)\right)\left(x^{-\frac{1}{2}}f(x)\right)' + \frac{f^2(x)}{4r^2}.$$

因而

$$\int_0^1 (f'(x))^2 dx \geqslant \frac{1}{2} f^2(1) + \int_0^1 \frac{f^2(x)}{4x^2} dx \geqslant \int_0^1 \frac{f^2(x)}{4x^2} dx,$$

即所证不等式 (7.65) 成立.

若存在常数 $c \in (0,4)$ 使得

$$\int_0^1 \frac{f^2(x)}{x^2} dx \le c \int_0^1 (f'(x))^2 dx \tag{7.66}$$

对任意满足条件的 f 成立,则对 $\delta \in (0,1)$ 取

$$f(x) = \begin{cases} \sqrt{x}, & x \in [\delta, 1], \\ \frac{3}{2\sqrt{\delta}}x - \frac{1}{2\delta^{\frac{3}{2}}}x^2, & x \in [0, \delta). \end{cases}$$

此时,有

$$\int_0^1 \frac{f^2(x)}{x^2} dx = \int_0^\delta \left(\frac{3}{2\sqrt{\delta}} - \frac{1}{2\delta^{\frac{3}{2}}} x \right)^2 dx + \int_\delta^1 \frac{1}{x} dx$$

$$= \int_0^\delta \left(\frac{9}{4\delta} - \frac{3x}{2\delta^2} + \frac{x^2}{4\delta^3} \right) dx + \int_\delta^1 \frac{1}{x} dx$$

$$= \frac{19}{12} + \int_\delta^1 \frac{1}{x} dx,$$

$$\int_{0}^{1} (f'(x))^{2} dx = \int_{0}^{\delta} \left(\frac{3}{2\sqrt{\delta}} - \frac{1}{\delta^{\frac{3}{2}}}x\right)^{2} dx + \int_{\delta}^{1} \left(\frac{1}{2\sqrt{x}}\right)^{2} dx$$

$$= \int_{0}^{\delta} \left(\frac{9}{4\delta} - \frac{3x}{\delta^{2}} + \frac{x^{2}}{\delta^{3}}\right) dx + \frac{1}{4} \int_{\delta}^{1} \frac{1}{x} dx$$

$$= \frac{13}{12} + \frac{1}{4} \int_{\delta}^{1} \frac{1}{x} dx.$$

因此式(7.66)导致

$$\left(1 - \frac{c}{4}\right) \int_{\delta}^{1} \frac{1}{x} dx \leqslant \frac{13}{12}c - \frac{19}{12}.$$

此式当 δ 充分小时是不成立的. 这个矛盾说明 4 是最佳的.

证法二: 利用 Minkowski 不等式, 可得

$$\left(\int_{0}^{1} \frac{|f(x)|^{2}}{x^{2}} dx\right)^{\frac{1}{2}} = \left[\int_{0}^{1} \left(\int_{0}^{1} f'(xt) dt\right)^{2} dx\right]^{\frac{1}{2}}$$

$$\leq \int_{0}^{1} \left(\int_{0}^{1} |f'(xt)|^{2} dx\right)^{\frac{1}{2}} dt \xrightarrow{\frac{4\pi}{5}} \int_{0}^{1} \left(\frac{\int_{0}^{t} |f'(x)|^{2} dx}{t}\right)^{\frac{1}{2}} dt$$

$$\leq \left(\int_{0}^{1} |f'(x)|^{2} dx\right)^{\frac{1}{2}} \int_{0}^{1} \frac{1}{\sqrt{t}} dt = 2\left(\int_{0}^{1} |f'(x)|^{2} dx\right)^{\frac{1}{2}}.$$

从上式推导可以看出,对于不恒为零的f,严格不等号成立.

为说明相关常数不可改进, 任取 $\varepsilon \in (0,1)$, 考察不恒为零的 $\bar{f} \in C[\varepsilon,1]$ 使得

$$\frac{\int_{\varepsilon}^{1} \frac{|\bar{f}(x)|^{2}}{x^{2}} dx}{\int_{0}^{1} |\bar{f}'(x)|^{2} dx} = \lambda \equiv \sup_{\substack{f \in C[\varepsilon, 1] \\ f \not\equiv 0}} \frac{\int_{\varepsilon}^{1} \frac{|f(x)|^{2}}{x^{2}} dx}{\int_{\varepsilon}^{1} |f'(x)|^{2} dx}.$$

这样的 \bar{f} 的存在性一般需要用泛函分析. 这里只作形式推导. 任取 $\varphi \in C^1_c(\varepsilon, 1)$, 则

$$0 = \frac{\mathrm{d}}{\mathrm{d}s} \frac{\int_{\varepsilon}^{1} \frac{|\bar{f}(x) + s\varphi(x)|^{2}}{x^{2}} \mathrm{d}x}{\int_{\varepsilon}^{1} |\bar{f}'(x) + s\varphi'(x)|^{2} \mathrm{d}x} \bigg|_{s=0}$$

$$= \frac{2\lambda}{\int_{\varepsilon}^{1} |\bar{f}'(x)|^{2} \mathrm{d}x} \left(\frac{1}{\lambda} \int_{\varepsilon}^{1} \frac{\bar{f}(x)\varphi(x)}{x^{2}} \mathrm{d}x - \int_{\varepsilon}^{1} \bar{f}'(x)\varphi'(x) \mathrm{d}x \right)$$

$$= \frac{2\lambda}{\int_{\varepsilon}^{1} |\bar{f}'(x)|^{2} \mathrm{d}x} \int_{\varepsilon}^{1} \left(\bar{f}''(x) + \frac{1}{\lambda} \frac{\bar{f}(x)}{(x+\varepsilon)^{2}} \right) \varphi(x) \mathrm{d}x.$$

因此,尝试寻找 \bar{f} 满足

$$\bar{f}''(x) + \frac{1}{\lambda} \frac{\bar{f}(x)}{x^2} = 0, \quad x \in [\varepsilon, 1].$$

若取 $\alpha \in (0,1)$, 则 $\bar{f}(x) = x^{\alpha}$ 满足上述方程. 对应的 $\lambda = \frac{1}{\alpha(1-\alpha)}$, 为使得 λ 最大, 取 $\alpha = \frac{1}{2}$. 以上讨论启发我们考虑

$$f_{\varepsilon}' = \begin{cases} \frac{1}{2\sqrt{\varepsilon}}, & x \in [0, \varepsilon], \\ \frac{1}{2\sqrt{x}}, & x \in (\varepsilon, 1]. \end{cases}$$

则

$$f_{\varepsilon} = \begin{cases} \frac{x}{2\sqrt{\varepsilon}}, & x \in [0, \varepsilon], \\ \sqrt{x} - \frac{\sqrt{\varepsilon}}{2}, & x \in (\varepsilon, 1]. \end{cases}$$

直接计算得到

$$\lim_{\varepsilon \to 0^+} \frac{\int_0^1 \frac{|f_{\varepsilon}(x)|^2}{x^2} dx}{\int_0^1 |f_{\varepsilon}'(x)|^2 dx} = \lim_{\varepsilon \to 0^+} \frac{2\sqrt{\varepsilon} - \frac{\varepsilon}{4} - \ln \varepsilon - \frac{3}{2}}{\frac{1}{4} - \frac{\ln \varepsilon}{4}} = 4.$$

这就表明不等式中的常数 4 是最佳的.

例题 7.57 设 $f,g:[a,b]\to (0,+\infty)$ 都是连续函数, 且 $f\neq g,\int_a^b f(x)\mathrm{d}x=\int_a^b g(x)\mathrm{d}x$. 定义数列

$$I_n = \int_a^b \frac{f^{n+1}(x)}{g^n(x)} dx, \quad n = 0, 1, \dots$$

求证: $\{I_n\}$ 严格单调递增, 且 $\lim_{n\to+\infty}I_n=+\infty$.

证明 由 Cauchy 不等式,得

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \frac{f(x)}{\sqrt{g(x)}} \cdot \sqrt{g(x)} dx \leqslant \left(\int_{a}^{b} \frac{f^{2}(x)}{g(x)} dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} g(x) dx \right)^{\frac{1}{2}}$$
$$= \left(\int_{a}^{b} \frac{f^{2}(x)}{g(x)} dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} f(x) dx \right)^{\frac{1}{2}}$$

故

$$\int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} \frac{f^{2}(x)}{g(x)} dx$$

即 $I_0 \leq I_1$,等号成立当且仅当存在常数 c 使得 $\frac{f(x)}{\sqrt{g(x)}} = c\sqrt{g(x)}$,即 f(x) = cg(x). 再由条件 $\int_a^b f(x) dx = \int_a^b g(x) dx$ 可得 c = 1. 这与 $f \neq g$ 矛盾, 故 $I_0 < I_1$.

假设 $I_0 < I_1 < \cdots < I_n$, 根据 Hölder 不等式, 有

$$I_n = \int_a^b \frac{f^{n+1}(x)}{g^{\frac{(n+1)^2}{n+2}}(x)} \cdot g^{\frac{(n+1)^2}{n+2} - n}(x) dx$$

П

$$\leqslant \left(\int_{a}^{b} \left(\frac{f^{n+1}(x)}{g^{\frac{(n+1)^{2}}{n+2}}(x)} \right)^{\frac{n+2}{n+1}} dx \right)^{\frac{n+1}{n+2}} \left(\int_{a}^{b} \left(g^{\frac{(n+1)^{2}}{n+2} - n}(x) \right)^{n+2} dx \right)^{\frac{1}{n+2}} \\
= I_{n+1}^{\frac{n+1}{n+2}} \cdot I_{0}^{\frac{1}{n+2}} < I_{n+1}^{\frac{n+2}{n+2}} \cdot I_{n}^{\frac{1}{n+2}}$$

因而 $I_n < I_{n+1}$, 这样, 根据数学归纳法原理, 就证明了 $\{I_n\}$ 严格单调递增.

若对任意 $x \in (a,b)$, 有 $g(x) \ge f(x)$, 则 $g(x) - f(x) \ge 0$. 根据条件 g(x) - f(x) 连续且满足 $\int_a^b (g(x) - f(x)) dx = 0$, 这可推出 f = g, 与条件矛盾! 因此必存在 $x_0 \in (a,b)$ 使得 $f(x_0) > g(x_0)$, 因而存在正数 $\delta < \min\{x_0 - a, b - x_0\}$ 使得

$$f(x) > g(x), \quad x \in [x_0 - \delta, x_0 + \delta]$$

记 $m = \min_{x \in [x_0 - \delta, x_0 + \delta]} \frac{f(x)}{g(x)}, 则 m > 1, 因此$

$$I_n \geqslant \int_{x_0 - \delta}^{x_0 + \delta} \left(\frac{f(x)}{g(x)}\right)^n f(x) dx \geqslant m^n \int_{x_0 - \delta}^{x_0 + \delta} f(x) dx$$

 $\diamondsuit n \to +\infty \not\in \lim_{n \to +\infty} I_n = +\infty.$

例题 7.58 设 $f: \mathbb{R} \to \mathbb{R}$ 连续, 定义 $g(x) = f(x) \int_0^x f(t) dt \ (x \in \mathbb{R})$. 如果 $g \in \mathbb{R}$ 上的递减函数, 求证: $f \equiv 0$.

证明 记 $F(x) = \int_0^x f(t) dt$, 则 F 可导且 F' = f. 由条件知

$$(F^2(x))' = 2F'(x)F(x) = 2g(x)$$

是单调递减函数. 注意到 F(0)=0. 有 $(F^2(x))'\leqslant 0$ (x>0), $(F^2(x))'\geqslant 0$ (x<0). 这说明 $F^2(x)$ 当 $x\geqslant 0$ 时单调递减, 当 $x\leqslant 0$ 时单调递增. 因此 F^2 的最大值为 $F^2(0)=0$. 但显然 $F^2\geqslant 0$. 故 F=0, 于是 f=F'=0.

例题 7.59 设 $f \in C[0,1]$. 如果对任意 $x \in [0,1]$ 有

$$\int_0^x f(t) \, \mathrm{d}t \geqslant f(x) \geqslant 0,$$

求证: $f(x) \equiv 0$.

证明 记 $F(x) = \int_0^x f(t) dt$. 则 F 可导且 F' = f. 由条件知 $F(x) \ge F'(x)$. 因此 $(e^x F(x))' \le 0$, 即 $e^x F(x)$ 单调递减. 由 F(0) = 0, 得 $F(x) \le 0$. 但由条件 $F(x) \ge f(x) \ge 0$, 故 F(x) = 0, 于是 f(x) = F'(x) = 0.

命题 7.8

设 $g(x) \in C^2[0,1]$ 是递增的下凸函数,则有

$$\inf_{\substack{f \in C[0,1], \\ \int_{x^2}^x f(y) dy \geqslant g(x) - g(x^2)}} \int_0^1 |f(x)|^2 dx = \int_0^1 |g'(x)|^2 dx,$$
(7.67)

$$\inf_{\substack{f \in C[0,1], \\ \int_x^1 f(y) dy \geqslant g(1) - g(x)}} \int_0^1 |f(x)|^2 dx = \int_0^1 |g'(x)|^2 dx.$$
 (7.68)

笔记 这题的下确界 inf 可以改成最小值 min, 因为可取到等号.

证明 我们令

$$F(x) = \int_{x}^{1} f(y) dy + g(x),$$

则 $F(x^2) \geqslant F(x), \forall x \in [0,1]$, 因此由 F 连续性, 就有

$$F(x) \geqslant F\left(x^{\frac{1}{2}}\right) \geqslant F\left(x^{\frac{1}{4}}\right) \geqslant \cdots \geqslant \lim_{n \to \infty} F\left(x^{\frac{1}{2^n}}\right) = F(1), \forall x \in (0, 1],$$

于是我们有 $F(x) \ge F(1), \forall x \in [0, 1],$ 现在就有

$$\int_{x}^{1} f(y) dy \ge g(1) - g(x), \forall x \in [0, 1],$$

因此

$$\left\{ \int_{0}^{1} |f(x)|^{2} dx : f \in C[0, 1], \int_{x^{2}}^{x} f(y) dy \geqslant g(x) - g\left(x^{2}\right) \right\} \subset \left\{ \int_{0}^{1} |f(x)|^{2} dx : f \in C[0, 1], \int_{x^{2}}^{1} f(y) dy \geqslant g(1) - g\left(x^{2}\right) \right\}.$$

故

$$\inf_{\substack{f \in C[0,1], \\ \int_{x^2}^x f(y) \mathrm{d}y \geqslant g(x) - g(x^2)}} \int_0^1 |f(x)|^2 \mathrm{d}x \geqslant \inf_{\substack{f \in C[0,1], \\ \int_x^1 f(y) \mathrm{d}y \geqslant g(1) - g(x)}} \int_0^1 |f(x)|^2 \mathrm{d}x.$$

取 f(y) = g'(y), 可以知道(7.67)(7.68)式等号都成立. 从而

$$\int_0^1 |g'(x)|^2 \mathrm{d}x \geqslant \inf_{\substack{f \in C[0,1],\\ \int_{x^2}^x f(y) \mathrm{d}y \geqslant g(x) - g(x^2)}} \int_0^1 |f(x)|^2 \mathrm{d}x \geqslant \inf_{\substack{f \in C[0,1],\\ \int_x^1 f(y) \mathrm{d}y \geqslant g(1) - g(x)}} \int_0^1 |f(x)|^2 \mathrm{d}x.$$

故只须证明

$$\inf_{\substack{f \in C[0,1], \\ \int_{x}^{1} f(y) dy \geqslant g(1) - g(x)}} \int_{0}^{1} |f(x)|^{2} dx \geqslant \int_{0}^{1} |g'(x)|^{2} dx$$

$$\iff \forall \forall f \in C[0,1] \ \mathbb{E} \int_{x}^{1} f(y) dy \geqslant g(1) - g(x), \ \text{and} \ \int_{0}^{1} |f(x)|^{2} dx \geqslant \int_{0}^{1} |g'(x)|^{2} dx.$$

于是设 $f \in C[0,1]$ 且 $\int_{0}^{1} f(y) dy$, 由 Cauchy 不等式得

$$\int_{0}^{1} |g'(x)|^{2} dx \int_{0}^{1} |f(x)|^{2} dx \ge \left(\int_{0}^{1} f(x)g'(x) dx \right)^{2} = \left(\int_{0}^{1} g'(x) d \int_{x}^{1} f(y) dy \right)^{2}$$

$$= \left(-g'(0) \int_{0}^{1} f(y) dy - \int_{0}^{1} \left(\int_{x}^{1} f(y) dy \right) g''(x) dx \right)^{2}$$

$$= \left(g'(0) \int_{0}^{1} f(y) dy + \int_{0}^{1} \left(\int_{x}^{1} f(y) dy \right) g''(x) dx \right)^{2}$$

$$\ge \left(g'(0) \int_{0}^{1} f(y) dy + \int_{0}^{1} (g(1) - g(x))g''(x) dx \right)^{2}$$

$$= \left(g'(0) \int_{0}^{1} f(y) dy - g'(0)(g(1) - g(0)) + \int_{0}^{1} |g'(x)|^{2} dx \right)^{2}$$

$$\ge \left(\int_{0}^{1} |g'(x)|^{2} dx \right)^{2}$$

因此 $\int_0^1 |f(x)|^2 dx \ge \int_0^1 |g'(x)|^2 dx$. 这样我们就完成了证明.

推论 7.2

$$\inf_{\substack{f(x) \in C[0,1], \\ \int_{x^2}^x f(y) dy \geqslant \frac{x^2 - x^4}{2} - 0}} \int_0^1 |f(x)|^2 dx = \inf_{\substack{f(x) \in C[0,1], \\ \int_x^1 f(y) dy \geqslant \frac{1 - x^2}{2} - 0}} \int_0^1 |f(x)|^2 dx = \frac{1}{3}$$

$$\inf_{\substack{f(x) \in C[0,1], \\ \int_{x^2}^x f(y) dy \geqslant \frac{x^3 - x^6}{2} - 0}} \int_0^1 |f(x)|^2 dx = \inf_{\substack{f(x) \in C[0,1], \\ \int_x^1 f(y) dy \geqslant \frac{1 - x^3}{2} - 0}} \int_0^1 |f(x)|^2 dx = \frac{9}{20}$$

例题 7.60

证明

例题 7.61

证明

	7.8 其他
例题 7.62	
证明	
例题 7.63	
证明	
例题 7.64	
<mark>证明</mark>	

第八章 积分计算

8.1 不定积分计算

8.1.1 直接猜原函数

计算定积分,能直接猜出原函数,就直接写出原函数,然后求导验证即可.

例题 **8.1** 计算 $\int \frac{e^{-\sin x} \sin(2x)}{(1-\sin x)^2} dx$.

拿 笔记 因为 $e^{g(x)}$ 的原函数一定仍含有 $e^{g(x)}$,并且 $\frac{1}{1-sinx}$ 求导后一部分是 $\frac{1}{(1-sinx)^2}$,所以我们猜测原函数与 $\frac{e^{-\sin x}}{1-\sin x}$ 有关. 因此对其求导进行尝试. 证明 注意到

$$\left(\frac{e^{-\sin x}}{1-\sin x}\right)' = \frac{-\cos x e^{-\sin x} (1-\sin x) + \cos x e^{-\sin x}}{(1-\sin x)^2} = \frac{e^{-\sin x} \cos x \sin x}{(1-\sin x)^2}.$$

故原函数为 $\frac{2e^{-\sin x}}{1-\sin x}+C$, 其中 C 为任意常数. 求导验证:

$$\left(\frac{2e^{-\sin x}}{1-\sin x}\right)' = \frac{e^{-\sin x}(2\cos x\sin x)}{(1-\sin x)^2} = \frac{e^{-\sin x}\sin 2x}{(1-\sin x)^2}.$$

例题 **8.2** 计算 $\int \frac{1-\ln x}{(x-\ln x)^2} dx$.

拿 笔记 由 $(x - \ln x)^2$ 知可待定原函数 $\frac{f(x)}{x - \ln x}$, 从而猜出答案. 证明 注意到

$$\left(\frac{x}{x - \ln x}\right) \prime = \frac{x - \ln x - x\left(1 - \frac{1}{x}\right)}{(x - \ln x)^2} = \frac{1 - \ln x}{(x - \ln x)^2}.$$

故原函数为 $\frac{x}{x-\ln x} + C$, 其中 C 为任意常数.

8.1.2 换元积分

例题 8.3 设 $y(x-y)^2 = x$, 计算 $\int \frac{dx}{x-3y}$.

拿 笔记 令 y = tx, 则 $t = \frac{y}{x}$ (这里是猜测过程,t 只是中间变量,不用考虑 x 是否取 0),从而由条件可得

$$tx(x - tx)^2 = x \Rightarrow tx^3(1 - t)^2 = x$$
$$\Rightarrow x^2 = \frac{1}{t(1 - t)^2} \Rightarrow x = \pm \frac{1}{\sqrt{t(1 - t)}}.$$

因为这里是猜测的过程(只要最后能得到一个正确的原函数即可),不需要保证严谨性,所以我们直接取 $x = \frac{1}{\sqrt{t(1-t)}}$

于是
$$\begin{cases} x = \frac{1}{\sqrt{t(1-t)}} \\ y = \frac{\sqrt{t}}{1-t} \end{cases}$$
 . 代入不定积分得

$$\int \frac{\mathrm{d}x}{x - 3y} = \int \frac{\mathrm{d}x}{x - 3y} = \int \frac{\mathrm{d}\left(\frac{1}{\sqrt{t}(1 - t)}\right)}{\frac{1}{\sqrt{t}(1 - t)} - \frac{3\sqrt{t}}{1 - t}}$$

$$= \int \frac{\mathrm{d}t}{2(t^2 - t)} = \frac{1}{2} \int \left(\frac{1}{t - 1} - \frac{1}{t}\right) \mathrm{d}t$$
$$= \frac{1}{2} \ln \left|\frac{t - 1}{t}\right| + C = \frac{1}{2} \ln \left|\frac{\frac{y}{x} - 1}{\frac{y}{x}}\right| + C$$
$$= \frac{1}{2} \ln \left|\frac{y - x}{y}\right| + C,$$

其中 C 为任意常数. 因此我们断言 $\int \frac{\mathrm{d}x}{x-3y} = \frac{1}{2} \ln \left| \frac{y-x}{y} \right| + C$. 证明 对原方程两边同时关于 x 求导得

$$y'(x-y)^2 + 2y(1-y')(x-y) = 1 \Rightarrow y' = \frac{1-2y(x-y)}{(x-y)(x-3y)}.$$

于是利用上式经过计算可得

$$\left(\frac{1}{2}\ln\left|\frac{y-x}{y}\right|+C\right)'=\frac{1}{x-3y}.$$

故
$$\int \frac{\mathrm{d}x}{x-3y} = \frac{1}{2} \ln \left| \frac{y-x}{y} \right| + C$$
, 其中 C 为任意常数.

8.2 定积分

8.2.1 建立积分递推

例题 8.4 计算 $\int_0^{\frac{\pi}{2}} \cos^n x \sin(nx) dx, n \in \mathbb{N}.$

证明 利用分部积分和和差化积公式可得

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \sin(nx) dx = \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cdot \cos x \sin(nx) dx$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cdot [\sin((n+1)x) + \sin((n-1)x)] dx$$

$$= \frac{I_{n-1}}{2} + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x [\sin(nx) \cos x + \cos(nx) \sin x] dx$$

$$= \frac{I_{n-1}}{2} + \frac{I_{n}}{2} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cos(nx) d\cos x$$

$$= \frac{I_{n-1} + I_{n}}{2} - \frac{1}{2n} \int_{0}^{\frac{\pi}{2}} \cos(nx) d\cos^{n} x$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n} x \sin(nx) dx$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} - \frac{I_{n}}{2}$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n}.$$

故 $I_n = \frac{I_{n-1}}{2} + \frac{1}{2n}$, 则两边同乘 2^n (强行裂项)

$$2^{n}I_{n} = 2^{n-1}I_{n-1} + \frac{2^{n-1}}{n}, n = 1, 2, \cdots$$

又注意到 $I_0 = 0$, 从而

$$2^{n}I_{n} = 0 + \sum_{k=1}^{n} \frac{2^{k-1}}{k} \Rightarrow I_{n} = \frac{1}{2^{n}} \sum_{k=1}^{n} \frac{2^{k-1}}{k}.$$

命题 8.1

证明:

(1)
$$\int_0^{\pi} \frac{\sin(nx)}{\sin x} dx = \begin{cases} 0, & n \to a \text{ math } x \\ \pi, & n \to a \text{ math } x \end{cases}.$$

(2)
$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin^2 x} dx = n\pi.$$

(3)
$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin x} dx = \sum_{k=1}^n \frac{2}{2k-1}.$$

证明

(1)
$$\operatorname{id} I_n = \int_0^\pi \frac{\sin(nx)}{\sin x} \, \mathrm{d}x, \, \operatorname{Im}$$

$$I_{n+2} - I_n = \int_0^{\pi} \frac{\sin((n+2)x) - \sin(nx)}{\sin x} dx = \int_0^{\pi} \frac{2\cos((n+1)x)\sin x}{\sin x} dx = 2\int_0^{\pi} \cos((n+1)x) dx = 0.$$

于是

$$\int_0^\pi \frac{\sin(nx)}{\sin x} \, \mathrm{d}x = I_n = I_{n-2} = \dots = \begin{cases} I_0, & n \text{ 为偶数} \\ I_1, & n \text{ 为奇数} \end{cases} = \begin{cases} 0, & n \text{ 为偶数} \\ \pi, & n \text{ 为奇数} \end{cases}.$$

$$I_{n+1} - I_n = \int_0^\pi \frac{\sin^2((n+1)x) - \sin^2(nx)}{\sin^2 x} dx = \int_0^\pi \frac{\sin x \cdot \sin((2n+1)x)}{\sin^2 x} dx$$
$$= \int_0^\pi \frac{\sin((2n+1)x)}{\sin x} dx \xrightarrow{\text{$\Rightarrow \not E 8.1(1)$}} \pi. \tag{8.1}$$

于是

$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin^2 x} dx = I_n = \pi + I_{n-1} = \dots = (n-1)\pi + I_1 = n\pi.$$

$$I_{n+1} - I_n = \int_0^\pi \frac{\sin^2((n+1)x) - \sin^2(nx)}{\sin x} dx = \int_0^\pi \frac{\sin x \cdot \sin((2n+1)x)}{\sin x} dx$$
$$= \int_0^\pi \sin((2n+1)x) dx = \frac{1}{2n+1} \cos((2n+1)x) \Big|_{\pi}^0 = \frac{2}{2n+1}.$$
 (8.2)

于是

$$\int_0^{\pi} \frac{\sin^2(nx)}{\sin x} dx = I_n = \frac{2}{2n-1} + I_{n-1} = \dots = \sum_{k=1}^{n-1} \frac{2}{2k+1} + I_1 = \sum_{k=0}^{n-1} \frac{2}{2k+1} = \sum_{k=1}^{n} \frac{2}{2k-1}.$$

例题 8.5 设 a > 1, 计算积分 $\int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) dx$.

注 很多情况下不需求出被积函数的原函数,只需充分利用换元、分部积分以及被积函数的性质,即可求出积分的值.见下述解法二.

解 解法一:设 $a_0 = a > 1$. 构造数列如下:

$$a_{n+1} = 2a_n^2 - 1$$
 $(n = 0, 1, \dots),$

则由例题 2.82可知, 存在 $x_0 > 0$ 使得

$$a_0 = \operatorname{ch}(x_0), \quad a_n = \operatorname{ch}(2^n x_0),$$

其中 $ch(x) = \frac{1}{2}(e^x + e^{-x})$. 可以解得

 $x_0 = \ln\left(a_0 + \sqrt{a_0^2 - 1}\right). \tag{8.3}$

故

$$a_n = \frac{e^{2^n x_0} + e^{-2^n x_0}}{2}.$$

设

$$I_n = \int_0^\pi \ln(a_n - \cos x) \, \mathrm{d}x,$$

则

$$I_{0} = \int_{0}^{\pi} \ln(a_{0} - \cos x) dx = \int_{0}^{\frac{\pi}{2}} \ln(a_{0} - \cos x) dx + \int_{\frac{\pi}{2}}^{\pi} \ln(a_{0} - \cos x) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \ln(a_{0} - \cos x) dx + \int_{0}^{\frac{\pi}{2}} \ln(a_{0} + \cos x) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \ln(a_{0}^{2} - \cos^{2} x) dx = \int_{0}^{\frac{\pi}{2}} \ln\left(a_{0}^{2} - \frac{1 + \cos 2x}{2}\right) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{a_{1} - \cos 2x}{2}\right) dx = \frac{1}{2} \int_{0}^{\pi} \ln\left(\frac{a_{1} - \cos x}{2}\right) dx = \frac{1}{2} I_{1} - \frac{\pi}{2} \ln 2.$$

同理,有

$$I_n = \frac{1}{2}I_{n+1} - \frac{\pi}{2}\ln 2. \tag{8.4}$$

由此递推公式,可得

$$I_0 = \frac{1}{2^n} I_n - \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}}\right) \frac{\pi}{2} \ln 2.$$
 (8.5)

因为

$$I_n = \int_0^{\pi} \ln(a_n - \cos x) \, dx = \int_0^{\pi} \ln\left(\frac{e^{2^n x_0} + e^{-2^n x_0}}{2} - \cos x\right) \, dx$$
$$= 2^n x_0 \pi + \int_0^{\pi} \ln\left(\frac{1 + e^{-2^{n+1} x_0}}{2} - e^{-2^n x_0} \cos x\right) \, dx,$$
$$\frac{1}{2^n} I_n \to x_0 \pi \quad (n \to +\infty).$$

所以

故从式 (8.5) 可得

$$I_0 = x_0 \pi - \pi \ln 2 = \pi \ln \left(\frac{a_0 + \sqrt{a_0^2 - 1}}{2} \right),$$

即所求的积分为

$$\int_0^{\frac{\pi}{2}} \ln(a^2 - \sin^2 x) \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) \, \mathrm{d}x = \pi \ln\left(\frac{a + \sqrt{a^2 - 1}}{2}\right).$$

解法二:我们有

$$F(a) = \int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) \, dx = \int_0^{\pi} \ln(a - \cos x) \, dx.$$

由定理8.7,关于 a 求导得到

$$F'(a) = \int_0^\pi \frac{1}{a - \cos x} \, \mathrm{d}x \, \frac{\pi \ln \Delta \vec{x}}{\int_0^{+\infty} \frac{2}{a(1 + t^2) - (1 - t^2)} \, \mathrm{d}t = \frac{\pi}{\sqrt{a^2 - 1}}, \quad a > 1.$$

因此

$$F(a) = \int_{1}^{a} F'(a) da = \pi \ln \left(a + \sqrt{a^2 - 1} \right) + C, \quad a > 1.$$

结合

$$F(1) = 2 \int_0^{\frac{\pi}{2}} \ln \sin x \, dx = -\pi \ln 2.$$

可得

$$\int_0^{\frac{\pi}{2}} \ln(a^2 - \cos^2 x) \, \mathrm{d}x = \pi \ln \left(\frac{a + \sqrt{a^2 - 1}}{2} \right), \quad a > 1.$$

8.2.2 区间再现

定理 8.1 (区间再现恒等式)

当下述积分有意义时, 我们有

1.

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx = \frac{1}{2} \int_{a}^{b} [f(x) + f(a+b-x)] dx = \int_{a}^{\frac{a+b}{2}} [f(x) + f(a+b-x)] dx.$$

2.

$$\int_0^\infty f(x) dx = \int_0^1 f(x) dx + \int_1^\infty f(x) dx = \int_0^1 \left[f(x) + \frac{f(\frac{1}{x})}{x^2} \right] dx.$$

证明 证明是显然的.(第1问中最后一个等号是由轴对称得到的)

命题 8.2

证明

1.
$$\int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{2} \ln 2.$$

2.
$$\int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$

3.
$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx = \frac{\pi}{8} \ln 2.$$

证明

1.

$$I = \int_0^{\frac{\pi}{2}} \ln \sin x dx = \int_0^{\frac{\pi}{4}} \left[\ln \cos x + \ln \left(\frac{\pi}{2} - x \right) \right] dx$$

$$= \int_0^{\frac{\pi}{4}} \ln (\cos x \sin x) dx = \int_0^{\frac{\pi}{4}} \ln \frac{1}{2} dx + \int_0^{\frac{\pi}{4}} \ln (\sin 2x) dx$$

$$= -\frac{\pi}{4} \ln 2 + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{4} \ln 2 + \frac{1}{2} I$$

$$\implies I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$

2.

$$I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = \int_0^{\frac{\pi}{2}} \ln \sin x dx = \int_0^{\frac{\pi}{4}} \left[\ln \cos x + \ln \left(\frac{\pi}{2} - x \right) \right] dx$$

$$= \int_0^{\frac{\pi}{4}} \ln (\cos x \sin x) dx = \int_0^{\frac{\pi}{4}} \ln \frac{1}{2} dx + \int_0^{\frac{\pi}{4}} \ln (\sin 2x) dx$$

$$= -\frac{\pi}{4} \ln 2 + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{4} \ln 2 + \frac{1}{2} I$$

$$\implies I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$

3.

$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx \xrightarrow{\underline{x=\tan\theta}} \int_0^{\frac{\pi}{4}} \frac{\ln(1+\tan\theta)}{1+\tan\theta^2} d\tan\theta = \int_0^{\frac{\pi}{4}} \frac{\sec^2\theta \cdot \ln(1+\tan\theta)}{\sec^2\theta} d\theta$$

$$= \int_0^{\frac{\pi}{4}} \ln(1+\tan\theta) d\theta = \int_0^{\frac{\pi}{8}} \left[\ln(1+\tan\theta) + \ln\left(1+\tan\left(\frac{\pi}{4}-\theta\right)\right) \right] d\theta$$

$$= \int_0^{\frac{\pi}{8}} \left[\ln(1+\tan\theta) + \ln\left(1+\frac{1-\tan\theta}{1+\tan\theta}\right) \right] d\theta$$

$$= \int_0^{\frac{\pi}{8}} \left[\ln(1+\tan\theta) + \ln\frac{2}{1+\tan\theta} \right] d\theta$$

$$= \int_0^{\frac{\pi}{8}} \ln 2d\theta = \frac{\pi}{8} \ln 2.$$

例题 **8.6** 计算
1.
$$\int_0^\infty \frac{\ln x}{x^2 + a^2} dx, a > 0.$$

$$2. \int_0^\infty \frac{\ln x}{x^2 + x + 1} \mathrm{d}x.$$

3.
$$\int_0^1 \frac{\ln x}{\sqrt{x-x^2}} dx$$
.

$$\int_{0}^{+\infty} \frac{\ln x}{x^{2} + a^{2}} dx = \frac{1}{a} \int_{0}^{+\infty} \frac{\ln(at)}{1 + t^{2}} dt = \frac{1}{a} \int_{0}^{+\infty} \frac{\ln a}{1 + t^{2}} dt + \frac{1}{a} \int_{0}^{+\infty} \frac{\ln t}{1 + t^{2}} dt = \frac{\pi \ln a}{2a} + \frac{1}{a} \int_{0}^{+\infty} \frac{\ln t}{1 + t^{2}} dt. \quad (8.6)$$

$$\text{Right}$$

$$\int_0^{+\infty} \frac{\ln t}{1 + t^2} dt \xrightarrow{\frac{t = \frac{1}{x}}{x}} \int_0^{+\infty} \frac{\ln \frac{1}{x}}{1 + \frac{1}{x^2}} \frac{1}{x^2} dx = \int_0^{+\infty} \frac{-\ln x}{1 + x^2} dx \Longrightarrow \int_0^{+\infty} \frac{\ln t}{1 + t^2} dt = 0.$$

于是再结合(8.6)式可得

$$\int_0^{+\infty} \frac{\ln x}{x^2 + a^2} \mathrm{d}x = \frac{\pi \ln a}{2a}.$$

2.

$$\int_0^\infty \frac{\ln x}{x^2+x+1} \mathrm{d}x \xrightarrow{x=\frac{1}{t}} \int_0^\infty \frac{-\ln t}{1+\frac{1}{t}+\frac{1}{t^2}} \mathrm{d}\frac{1}{t} = \int_0^{+\infty} \frac{-\ln t}{1+t+t^2} \mathrm{d}t \Longrightarrow \int_0^\infty \frac{\ln x}{x^2+x+1} \mathrm{d}x = 0.$$

$$\int_{0}^{1} \frac{\ln x}{\sqrt{x - x^{2}}} dx \xrightarrow{x = \sin^{2} y} \int_{0}^{\frac{\pi}{2}} \frac{\ln \sin^{2} y}{\sqrt{\sin^{2} y (1 - \sin^{2} y)}} d\sin^{2} y$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \ln \sin y dy \xrightarrow{\text{$\Leftrightarrow ± 8.2}} 4 \cdot \left(-\frac{\pi}{2} \ln 2\right) = -2\pi \ln 2.$$

1. $\forall n \in \mathbb{N}$, $\exists f = \frac{\sin(nx)}{(1+2^x)\sin x} dx$. 2. $\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^x}{1+\cos^2 x} dx$.

2.
$$\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^x}{1 + \cos^2 x} dx$$

3. 对 $n \in \mathbb{N}$, 计算 $\int_0^{2\pi} \sin(\sin x + nx) dx$.

$$\begin{split} & \int_{-\pi}^{\pi} \frac{\sin{(nx)}}{(1+2^x)\sin{x}} \mathrm{d}x = \int_{-\pi}^{0} \left[\frac{\sin{(nx)}}{(1+2^x)\sin{x}} + \frac{\sin{(nx)}}{(1+2^{-x})\sin{x}} \right] \mathrm{d}x = \int_{-\pi}^{0} \frac{\sin{(nx)}}{\sin{x}} \left(\frac{1}{1+2^x} + \frac{1}{1+2^{-x}} \right) \mathrm{d}x \\ & = \int_{-\pi}^{0} \frac{\sin{(nx)}}{\sin{x}} \cdot \frac{2+2^x+2^{-x}}{2+2^x+2^{-x}} \mathrm{d}x = \int_{-\pi}^{0} \frac{\sin{(nx)}}{\sin{x}} \mathrm{d}x = \int_{0}^{\pi} \frac{\sin{(nx)}}{\sin{x}} \mathrm{d}x \xrightarrow{\text{M$\otimes 8.1$}} \left\{ \begin{array}{l} 0, n \text{ in } \text{M$\otimes 8.1$} \\ \pi, n \text{ in } \text{in }$$

$$\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^{x}}{1 + \cos^{2} x} dx = \int_{-\pi}^{0} \left(\frac{x \sin x \arctan e^{x}}{1 + \cos^{2} x} + \frac{x \sin x \arctan e^{-x}}{1 + \cos^{2} x} \right) dx = \int_{-\pi}^{0} \frac{x \sin x}{1 + \cos^{2} x} (\arctan e^{x} + \arctan e^{-x}) dx$$

$$\stackrel{\text{\tiny $\# A.3(1)$}}{=} \int_{-\pi}^{0} \frac{x \sin x}{1 + \cos^{2} x} \cdot \frac{\pi}{2} dx = \frac{\pi}{2} \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$$

$$= \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \left(\frac{x \sin x}{1 + \cos^{2} x} + \frac{(\pi - x) \sin x}{1 + \cos^{2} x} \right) dx = \frac{\pi^{2}}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^{2} x} dx$$

$$= \frac{\pi^{2}}{2} \arctan \cos x \Big|_{\frac{\pi}{2}}^{0} = \frac{\pi^{2}}{2} \cdot \frac{\pi}{4} = \frac{\pi^{3}}{8}.$$

3.

$$\int_0^{2\pi} \sin(\sin x + nx) \, dx = \int_0^{2\pi} \sin[\sin(2\pi - x) + n(2\pi - x)] \, dx$$

$$= \int_0^{2\pi} \sin(-\sin x - nx) \, dx = -\int_0^{2\pi} \sin(\sin x + nx) \, dx$$

$$\implies \int_0^{2\pi} \sin(\sin x + nx) \, dx = 0.$$

例题 8.8 计算积分 $I = \int_0^1 \frac{\ln(1+x)}{1+x^2} dx$.

 J_0 $1+x^2$ **注** 此例中无法求出被积函数的原函数, 但通过积分的性质仍可算出积分的值. 解 解法一: 作变换 $x=\tan\varphi$, 则 $\mathrm{d}\varphi=\frac{1}{1+x^2}\mathrm{d}x$, 且当 x=0 时, $\varphi=0$; 当 x=1 时, $\varphi=\frac{\pi}{4}$. 于是

$$I = \int_0^{\frac{\pi}{4}} \ln\left(\frac{\cos\varphi + \sin\varphi}{\cos\varphi}\right) d\varphi$$

$$= \int_0^{\frac{\pi}{4}} \left\{ \ln\left(\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos\varphi + \frac{1}{\sqrt{2}}\sin\varphi\right)\right) - \ln(\cos\varphi) \right\} d\varphi$$

$$= \int_0^{\frac{\pi}{4}} \left\{ \ln\sqrt{2} + \ln\left(\sin\left(\varphi + \frac{\pi}{4}\right)\right) - \ln(\cos\varphi) \right\} d\varphi$$

$$= \frac{\pi}{8} \ln 2 + \int_0^{\frac{\pi}{4}} \ln\left(\sin\left(\varphi + \frac{\pi}{4}\right)\right) d\varphi - \int_0^{\frac{\pi}{4}} \ln(\cos\varphi) d\varphi.$$

因为

$$\int_0^{\frac{\pi}{4}} \ln\left(\sin\left(\varphi + \frac{\pi}{4}\right)\right) d\varphi \xrightarrow{\varphi = \frac{\pi}{4} - t} - \int_{\frac{\pi}{4}}^0 \ln\left(\sin\left(\frac{\pi}{2} - t\right)\right) dt = \int_0^{\frac{\pi}{4}} \ln(\cos t) dt,$$

所以 $I = \frac{\pi}{8} \ln 2$. 解法二:考虑含参量积分

$$\varphi(\alpha) = \int_0^1 \frac{\ln(1 + \alpha x)}{1 + x^2} dx, \quad \alpha \in [0, 1].$$

显然 $\varphi(0) = 0, \varphi(1) = I$, 且函数 $\frac{\ln(1 + \alpha x)}{1 + r^2}$ 在 $R = [0, 1] \times [0, 1]$ 上满足定理 8.7 的条件, 于是

$$\varphi'(\alpha) = \int_0^1 \frac{x}{(1+x^2)(1+\alpha x)} \, \mathrm{d}x.$$

因为

$$\frac{x}{(1+x^2)(1+\alpha x)} = \frac{1}{1+\alpha^2} \left(\frac{\alpha+x}{1+x^2} - \frac{\alpha}{1+\alpha x} \right),$$

所以

$$\varphi'(\alpha) = \frac{1}{1+\alpha^2} \left(\int_0^1 \frac{\alpha}{1+x^2} \, dx + \int_0^1 \frac{x}{1+x^2} \, dx - \int_0^1 \frac{\alpha}{1+\alpha x} \, dx \right)$$

$$= \frac{1}{1+\alpha^2} \left[\alpha \arctan x \Big|_0^1 + \frac{1}{2} \ln \left(1 + x^2 \right) \Big|_0^1 - \ln \left(1 + \alpha x \right) \Big|_0^1 \right]$$

$$= \frac{1}{1+\alpha^2} \left[\alpha \cdot \frac{\pi}{4} + \frac{1}{2} \ln 2 - \ln \left(1 + \alpha \right) \right].$$

因此

$$\int_0^1 \varphi'(\alpha) \, d\alpha = \int_0^1 \frac{1}{1+\alpha^2} \left[\frac{\pi}{4} \alpha + \frac{1}{2} \ln 2 - \ln (1+\alpha) \right] \, d\alpha$$

$$= \frac{\pi}{8} \ln \left(1 + \alpha^2 \right) \Big|_0^1 + \frac{1}{2} \ln 2 \arctan \alpha \Big|_0^1 - \varphi(1)$$

$$= \frac{\pi}{8} \ln 2 + \frac{\pi}{8} \ln 2 - \varphi(1)$$

$$= \frac{\pi}{4} \ln 2 - \varphi(1).$$

另一方面,

$$\int_0^1 \varphi'(\alpha) \, d\alpha = \varphi(1) - \varphi(0) = \varphi(1),$$

所以 $I = \varphi(1) = \frac{\pi}{8} \ln 2$.

8.2.3 Frullani(傅汝兰尼) 积分

定理 8.2 (Frullani(傅汝兰尼) 积分)

设 $f \in C(0, +\infty)$.

1. 若存在极限

$$\lim_{x \to 0^+} f(x), \lim_{x \to +\infty} f(x), \tag{8.7}$$

则对 a,b>0 有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[\lim_{x \to 0^+} f(x) - \lim_{x \to +\infty} f(x) \right] \ln \frac{b}{a}.$$

2. 若存在极限和积分

$$\lim_{x \to 0^+} f(x) = \alpha, \int_A^\infty \frac{f(x)}{x} dx. \tag{8.8}$$

则对 a, b > 0, 有

$$\int_{0}^{\infty} \frac{f(ax) - f(bx)}{x} dx = \alpha \ln \frac{b}{a}.$$

3. 若存在极限和积分

$$\lim_{x \to +\infty} f(x) = \alpha, \int_0^1 \frac{f(x)}{x} dx.$$
 (8.9)

则对 a,b>0, 有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \alpha \ln \frac{a}{b}.$$

4. 若 f 是周期 T > 0 函数且 $\lim_{x \to 0^+} f(x)$ 存在, 则对 a, b > 0 有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[\lim_{x \to 0^+} f(x) - \frac{1}{T} \int_0^T f(x) dx \right] \ln \frac{b}{a}.$$

5. 若 f 满足
$$\lim_{x \to 0^+} f(x)$$
, $\lim_{x \to +\infty} \frac{1}{x} \int_0^x f(y) dy$ 存在, 则对 $a, b > 0$ 有
$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[\lim_{x \to 0^+} f(x) - \lim_{x \to +\infty} \frac{1}{x} \int_0^x f(y) dy \right] \ln \frac{b}{a}.$$

笔记 傅汝兰尼积分有诸多变种, 无需记忆具体表达式, 知道有大概这么一个东西即可.
证明 不妨设 b > a.

1. 给定 $A > \delta > 0$, 考虑

$$\begin{split} \int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} \mathrm{d}x &= \int_{\delta}^{A} \frac{f(ax)}{x} \mathrm{d}x - \int_{\delta}^{A} \frac{f(bx)}{x} \mathrm{d}x \\ &= \int_{a\delta}^{aA} \frac{f(x)}{x} \mathrm{d}x - \int_{b\delta}^{bA} \frac{f(x)}{x} \mathrm{d}x \\ &= \int_{bA}^{aA} \frac{f(x)}{x} \mathrm{d}x - \int_{b\delta}^{a\delta} \frac{f(x)}{x} \mathrm{d}x \\ &= \frac{\pi \beta + \text{dig}\pi}{x} f(\theta_1) \int_{bA}^{aA} \frac{1}{x} \mathrm{d}x - f(\theta_2) \int_{b\delta}^{a\delta} \frac{1}{x} \mathrm{d}x, \end{split}$$

这里 $\theta_1 \in (aA, bA), \theta_2 \in (a\delta, b\delta)$, 于是让 $A \to +\infty, \delta \to 0^+$, 由(8.7), 我们知

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[\lim_{x \to 0^+} f(x) - \lim_{x \to +\infty} f(x) \right] \ln \frac{b}{a}.$$

2. 给定 $A > \delta > 0$, 考虑

$$\int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} dx = \int_{\delta}^{A} \frac{f(ax)}{x} dx - \int_{\delta}^{A} \frac{f(bx)}{x} dx$$

$$= \int_{a\delta}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{bA} \frac{f(x)}{x} dx$$

$$= \int_{bA}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{a\delta} \frac{f(x)}{x} dx$$

$$\frac{AA}{bA} + \frac{A}{bA} + \frac$$

这里 $\theta \in (a\delta, b\delta)$, 于是让 $A \to +\infty$, $\delta \to 0^+$, 由 (8.8), 我们知

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \alpha \ln \frac{b}{a}.$$

3. 给定 $A > \delta > 0$, 考虑

$$\begin{split} \int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} \mathrm{d}x &= \int_{\delta}^{A} \frac{f(ax)}{x} \mathrm{d}x - \int_{\delta}^{A} \frac{f(bx)}{x} \mathrm{d}x \\ &= \int_{a\delta}^{aA} \frac{f(x)}{x} \mathrm{d}x - \int_{b\delta}^{bA} \frac{f(x)}{x} \mathrm{d}x \\ &= \int_{bA}^{aA} \frac{f(x)}{x} \mathrm{d}x - \int_{b\delta}^{a\delta} \frac{f(x)}{x} \mathrm{d}x \\ &= \frac{\Re \beta + \text{dig} \#}{x} f(\theta) \int_{bA}^{aA} \frac{1}{x} \mathrm{d}x - \int_{b\delta}^{a\delta} \frac{f(x)}{x} \mathrm{d}x, \end{split}$$

这里 $\theta \in (aA, bA)$, 于是让 $A \to +\infty$, $\delta \to 0^+$, 由(8.9), 我们知

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \alpha \ln \frac{a}{b}.$$

4. 给定 $A > \delta > 0$, 考虑

$$\int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} dx = \int_{\delta}^{A} \frac{f(ax)}{x} dx - \int_{\delta}^{A} \frac{f(bx)}{x} dx$$

$$= \int_{a\delta}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{bA} \frac{f(x)}{x} dx$$

$$= \int_{bA}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{a\delta} \frac{f(x)}{x} dx$$

$$\frac{\Re \beta + \text{dig}}{\text{min}} = \int_{bA}^{aA} \frac{f(x)}{x} dx - f(\theta) \int_{b\delta}^{a\delta} \frac{1}{x} dx$$

$$= \int_{b}^{a} \frac{f(Ax)}{x} dx - f(\theta) \int_{b\delta}^{a\delta} \frac{1}{x} dx,$$

这里 $\theta \in (a\delta, b\delta)$. 现在

$$\lim_{\delta \to 0^+} \left(-f(\theta) \int_{b \, \delta}^{a \, \delta} \frac{1}{x} \mathrm{d}x \right) = \lim_{x \to 0^+} f(x) \ln \frac{b}{a}.$$

由Riemann 引理, 我们有

$$\lim_{A \to +\infty} \int_{b}^{a} \frac{f(Ax)}{x} dx = \int_{b}^{a} \frac{1}{x} dx \cdot \frac{1}{T} \int_{0}^{T} f(x) dx = -\frac{1}{T} \int_{0}^{T} f(x) dx \cdot \ln \frac{b}{a},$$

这就证明了

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[\lim_{x \to 0^+} f(x) - \frac{1}{T} \int_0^T f(x) dx \right] \ln \frac{b}{a}.$$

5. 上一问证明中把使用的Riemann 引理用平均值极限版本的 Riemann 引理代替即可.

8.2.4 化成多元累次积分(换序)

命题 8.3

证明:

(1)
$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
.

$$(2) \int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

(3)
$$\int_0^\infty \sin x^2 dx$$
, $\int_0^\infty \cos x^2 dx = \sqrt{\frac{\pi}{8}}$.

全 笔记 本结果可以直接使用.

证明

(1) 注意到

$$\left(\int_{0}^{+\infty} e^{-x^{2}} dx\right)^{2} = \left(\int_{0}^{+\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{+\infty} e^{-y^{2}} dy\right) = \frac{\# \int_{0}^{+\infty} e^{-y^{2}} dy \operatorname{ff}(\pi) \underbrace{\# \int_{0}^{+\infty} e^{-y^{2}} dy} \int_{0}^{+\infty} e^{-x^{2}} \left(\int_{0}^{+\infty} e^{-y^{2}} dx\right) dy}_{=\frac{\# e^{-x^{2}} \operatorname{ff}(\pi) \underbrace{\# \int_{0}^{+\infty} e^{-y^{2}} dx} \int_{0}^{+\infty} e^{-(x^{2}+y^{2})} dxdy}_{=\frac{\pi}{2} \int_{0}^{+\infty} e^{-r^{2}} dr} = \frac{\pi}{2} \int_{0}^{+\infty} r e^{-r^{2}} dr$$

$$= \frac{\pi}{4} \int_{0}^{+\infty} e^{-r^{2}} dr^{2} = \frac{\pi}{4}.$$

故
$$\int_0^\infty e^{-x^2} \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

(2) 注意到

$$\int_0^{+\infty} \sin x e^{-yx} \, dx = \operatorname{Im} \int_0^{+\infty} e^{ix - yx} \, dx = \operatorname{Im} \int_0^{+\infty} e^{-(y - i)x} \, dx = \operatorname{Im} \frac{1}{y - i} = \operatorname{Im} \frac{y + i}{y^2 + 1} = \frac{1}{y^2 + 1}.$$

因此就有

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \int_0^{+\infty} \sin x \left(\int_0^{+\infty} e^{-yx} \, dy \right) \, dx = \int_0^{+\infty} dy \int_0^{+\infty} \sin x e^{-yx} \, dx$$
$$= \int_0^{+\infty} dy \left(\text{Im} \int_0^{+\infty} e^{ix - yx} \right) \, dx = \int_0^{+\infty} \frac{1}{y^2 + 1} \, dy = \frac{\pi}{2}.$$

当然本题也可以直接利用分部积分计算 $\int_0^{+\infty} \sin x e^{-yx} dx = \frac{1}{y^2 + 1}$.

(3) 注意到

$$\int_0^{+\infty} (\cos x^2 - i \sin x^2) dx = \int_0^{+\infty} e^{-ix^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{i}} = \frac{1}{2} \sqrt{-i\pi}$$
$$= \frac{\sqrt{\pi}}{2} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right) = \frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i.$$

故

$$\int_0^{+\infty} \cos x^2 \, dx = \text{Re} \int_0^{+\infty} (\cos x^2 - i \sin x^2) \, dx = \text{Re} \left(\frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i \right) = \frac{\sqrt{2\pi}}{4} = \sqrt{\frac{\pi}{8}},$$

$$\int_0^{+\infty} \sin x^2 \, dx = \text{Im} \int_0^{+\infty} (\cos x^2 - i \sin x^2) \, dx = \text{Im} \left(\frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i \right) = \frac{\sqrt{2\pi}}{4} = \sqrt{\frac{\pi}{8}}.$$

例题 **8.9** 计算 $\int_0^1 \sin \ln \frac{1}{x} \cdot \frac{x^b - x^a}{\ln x} dx$ (b > a > 0).

证明

$$\int_{0}^{1} \sin \ln \frac{1}{x} \cdot \frac{x^{b} - x^{a}}{\ln x} dx = \int_{0}^{1} \sin \ln \frac{1}{x} \left(\int_{a}^{b} x^{y} dy \right) dx = \int_{a}^{b} dy \int_{0}^{1} x^{y} \sin \ln \frac{1}{x} dx$$

$$\xrightarrow{\underline{x = e^{-t}}} \int_{a}^{b} dy \int_{+\infty}^{0} e^{-ty} \sin t de^{-t} = \int_{a}^{b} dy \int_{0}^{+\infty} e^{-t(y+1)} \sin t dt$$

$$\xrightarrow{\underline{\phi} \not \equiv 8.3(2) \text{ biunder}} \int_{a}^{b} \frac{1}{1 + (y+1)^{2}} dy = \arctan (b+1) - \arctan (a+1).$$

8.2.5 化成含参积分(求导)

例题 8.10 设 $a, b \ge 0$ 且不全为 0, 计算 $\int_0^{\frac{\pi}{2}} \ln \left(a^2 \cos^2 x + b^2 \sin^2 x \right) dx$.

注 实际上, 根据 a>b 时得到的结果, 可以看出 $F(a,b)=\pi\ln\frac{a+b}{2}$ 对 a,b 有轮换对称性, 故这个结果对其他情况显然也成立.

证明 设 $F(a,b) = \int_0^{\frac{\pi}{2}} \ln \left(a^2 \cos^2 x + b^2 \sin^2 x \right) dx$, 当 a > b 时, 则

$$\frac{\partial}{\partial b}F(a,b) = \int_0^{\frac{\pi}{2}} \frac{\partial}{\partial b} \ln\left(a^2 \cos^2 x + b^2 \sin^2 x\right) dx = \int_0^{\frac{\pi}{2}} \frac{2b \sin^2 x}{a^2 \cos^2 x + b^2 \sin^2 x} dx$$

$$= \int_0^{\frac{\pi}{2}} \frac{2b \tan^2 x}{a^2 + b^2 \tan^2 x} dx = \int_0^{+\infty} \frac{2bt^2}{(a^2 + b^2t^2)(1 + t^2)} dt$$

$$= \frac{1}{a^2 - b^2} \int_0^{+\infty} \left(\frac{2a^2b}{a^2 + b^2t^2} - \frac{2b}{1 + t^2}\right) dt$$

$$= \frac{1}{a^2 - b^2} \int_0^{+\infty} \frac{2a^2b}{a^2 + b^2t^2} dt - \frac{2b}{a^2 - b^2} \int_0^{+\infty} \frac{1}{1 + t^2} dt$$

$$= \frac{2b}{a^2 - b^2} \int_0^{+\infty} \frac{1}{1 + \left(\frac{b}{a}t\right)^2} dt - \frac{b\pi}{a^2 - b^2}$$

$$= \frac{2b}{a^2 - b^2} \cdot \frac{a}{b} \cdot \frac{\pi}{2} - \frac{b\pi}{a^2 - b^2} = \frac{\pi}{a + b}.$$

于是

$$F(a,b) = F(a,0) + \int_0^b \frac{\partial}{\partial b'} F(a,b') db' = F(a,0) + \int_0^b \frac{\pi}{a+b'} db'$$
$$= 2 \int_0^{\frac{\pi}{2}} \ln(a\cos x) dx + \pi \ln \frac{a+b}{a} \frac{\text{M§ 8.2}}{a} \pi \ln \frac{a+b}{2}.$$

当 a < b 时, 类似可得 $F(a,b) = \pi \ln \frac{a+b}{2}$. 当 a = b 时, $F(a,b) = \int_0^{\frac{\pi}{2}} \ln a^2 dx = \pi \ln a = \pi \ln \frac{a+b}{2}$. 综上, 对 $\forall a,b \geqslant 0$, 都有 $F(a,b) = \pi \ln \frac{a+b}{2}$.

8.2.6 级数展开方法

积分和求和换序
$$\sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx$$
, 等价于
$$\lim_{m \to \infty} \sum_{n=1}^{m} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx.$$

又由于有限和随意交换,因此上式等价于

$$\lim_{m \to \infty} \int_a^b \sum_{n=1}^m f_n(x) dx = \int_a^b \sum_{n=1}^\infty f_n(x) dx,$$

于是

$$\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) \mathrm{d}x = \int_{a}^{b} \sum_{n=1}^{\infty} f_{n}(x) \mathrm{d}x \Longleftrightarrow \lim_{m \to \infty} \int_{a}^{b} \sum_{n=m+1}^{\infty} f_{n}(x) \mathrm{d}x = 0.$$

例题 8.11 计算 $\int_0^\infty \frac{x}{1+e^x} dx$.

解 由于

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \quad 0 < x < 1.$$

并且 $0 < e^{-x} < 1$,故

$$\int_0^{+\infty} \frac{x}{1+e^x} dx = \int_0^{+\infty} \frac{xe^{-x}}{1+e^{-x}} dx = \int_0^{+\infty} x \sum_{n=0}^{\infty} (-1)^n e^{-(n+1)x} dx$$

$$= \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} (-1)^n \int_0^{+\infty} xe^{-(n+1)x} dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^2}$$

$$= \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} - \sum_{n=0}^{\infty} \frac{1}{(2n)^2}.$$

又因为
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
, 所以

$$\sum_{n=0}^{\infty} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{24},$$

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=0}^{\infty} \frac{1}{(2n)^2} = \frac{\pi^2}{8}.$$

故

$$\int_0^{+\infty} \frac{x}{1 + e^x} dx = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} - \sum_{n=0}^{\infty} \frac{1}{(2n)^2} = \frac{\pi^2}{8} - \frac{\pi^2}{24} = \frac{\pi^2}{12}.$$

下面证明(??)式换序成立, 等价于证明 $\lim_{m\to +\infty} \int_0^{+\infty} \sum_{n=m}^{\infty} x(-1)^n e^{-(n+1)x} dx = 0$. 由交错级数不等式及 $xe^{-(n+1)x}$ 关于 n 非负递减、对 $\forall m \in \mathbb{N}$ 、都有

$$\int_{0}^{+\infty} \left| \sum_{n=m}^{\infty} x(-1)^{n} e^{-(n+1)x} \right| dx \leqslant \int_{0}^{+\infty} x e^{-(m+1)x} dx = -\frac{x e^{-(m+1)x}}{m+1} \Big|_{0}^{+\infty} + \frac{1}{m+1} \int_{0}^{+\infty} e^{-(m+1)x} dx = \frac{1}{(m+1)^{2}}.$$

$$\Leftrightarrow m \to +\infty, \ \mathcal{F} \lim_{m \to +\infty} \int_{0}^{+\infty} \sum_{n=0}^{\infty} x(-1)^{n} e^{-(n+1)x} dx = 0. \ \text{id}(??) \text{ if } \mathcal{F}_{\vec{K}} \vec{\Delta}.$$

命题 8.4

证明:

$$(1) \sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n} = \arctan \frac{q \sin x}{1 - q \cos x}, |q| \leqslant 1.$$

(2)
$$\sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n} = -\frac{1}{2} \ln(1 + q^2 - 2q \cos x), |q| \le 1.$$

(3)
$$\sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n!} = e^{q \cos x} \cos(q \sin x) - 1, |q| \leqslant 1, x \in \mathbb{R}.$$

$$(4) \sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n!} = e^{q \cos x} \sin(q \sin x), |q| \leqslant 1, x \in \mathbb{R}.$$

\$

笔记 在 ℂ上,

$$\operatorname{Ln} z = \ln |z| + i(\arg z + 2k\pi), k \in \mathbb{Z}.$$

我们定义主值支

$$ln z = ln |z| + i arg z.$$

本部分内容无需记忆, 只需要大概有个可以算的感觉即可, 实际做题中可以围绕这种级数给出构造. 证明 \mathfrak{I} 表示取虚部, \mathfrak{K} 表示取实部.

(1) 利用欧拉公式有

$$\sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n} = \Im\left(\sum_{n=1}^{\infty} \frac{q^n e^{inx}}{n}\right) = \Im\left(\sum_{n=1}^{\infty} \frac{(qe^{ix})^n}{n}\right) = \Im(-\ln(1 - qe^{ix}))$$
$$= -\Im\left(\ln|1 - qe^{ix}| + i\frac{-q\sin x}{1 - a\cos x}\right) = \arctan\frac{q\sin x}{1 - a\cos x}.$$

(2) 利用欧拉公式有

$$\sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n} = -\Re \left(\ln|1 - qe^{ix}| + i \frac{-q \sin x}{1 - q \cos x} \right) = -\frac{1}{2} \ln \left[(1 - q \cos x)^2 + q^2 \sin^2 x \right]$$
$$= -\frac{1}{2} \ln(1 + q^2 - 2q \cos x).$$

(3) 利用欧拉公式有

$$\sum_{n=1}^{\infty} \frac{q^n \cos(nx)}{n!} = \Re\left(\sum_{n=1}^{\infty} \frac{(qe^{ix})^n}{n!}\right) = \Re\left(e^{qe^{ix}} - 1\right) = \Re\left(e^{q\cos x + iq\sin x} - 1\right)$$
$$= \Re\left(e^{q\cos x}\cos(q\sin x) - 1 + ie^{q\cos x}\sin(q\sin x)\right)$$
$$= e^{q\cos x}\cos(q\sin x) - 1.$$

(4) 利用(3)有

$$\sum_{n=1}^{\infty} \frac{q^n \sin(nx)}{n!} = \Im \left(e^{q \cos x} \cos(q \sin x) - 1 + i e^{q \cos x} \sin(q \sin x) \right)$$
$$= e^{q \cos x} \sin(q \sin x).$$

例题 8.12 计算
1. $\int_0^{2\pi} e^{\cos x} \cos(\sin x) dx.$

2.
$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx, a \in (0, +\infty) \setminus \{1\}.$$

注由1的证明可得

$$e^{\cos x}\cos(\sin x) = \operatorname{Re}\left(\sum_{n=0}^{\infty} \frac{(e^{\mathrm{i}x})^n}{n!}\right) = \operatorname{Re}\left(\sum_{n=0}^{\infty} \frac{e^{\mathrm{i}nx}}{n!}\right) = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n!}.$$

实际上,上式就是命题 8.4(3)的结论.

注 第2问也可以用含参积分求导的方法进行计算(这个方法更容易想到).

证明

1.

$$\int_{0}^{2\pi} e^{\cos x} \cos(\sin x) \, dx = \text{Re} \left(\int_{0}^{2\pi} e^{\cos x} e^{i \sin x} \, dx \right) = \text{Re} \left(\int_{0}^{2\pi} e^{\cos x + i \sin x} \, dx \right)$$

$$= \text{Re} \left(\int_{0}^{2\pi} e^{e^{ix}} \, dx \right) = \text{Re} \left[\int_{0}^{2\pi} \sum_{n=0}^{+\infty} \frac{\left(e^{ix} \right)^{n}}{n!} \, dx \right] = \text{Re} \left[\sum_{n=0}^{+\infty} \int_{0}^{2\pi} \frac{\left(e^{ix} \right)^{n}}{n!} \, dx \right]$$

$$= \text{Re} \left(\sum_{n=0}^{+\infty} \int_{0}^{2\pi} \frac{e^{inx}}{n!} \, dx \right) = \text{Re} \left(\int_{0}^{2\pi} \frac{e^{i \cdot 0 \cdot x}}{n!} \, dx + \sum_{n=1}^{+\infty} \frac{e^{2\pi i x} - 1}{in \cdot n!} \right)$$

$$= \text{Re} \left(\int_{0}^{2\pi} 1 \, dx + 0 \right) = 2\pi.$$

2. 注意到当 $a \in (0,1)$ 时,有

$$\sum_{n=1}^{\infty} \frac{a^n \cos(nx)}{n} = \text{Re}\left[\sum_{n=1}^{\infty} \frac{(ae^{ix})^n}{n}\right] = -\text{Re}\left[\ln(1 - ae^{ix})\right]$$

$$= -\text{Re}\left[\ln|1 - ae^{ix}| + i\arg(1 - ae^{ix})\right] = -\ln|1 - ae^{ix}|$$

$$= -\ln|(1 - a\cos x) + ai\sin x| = -\frac{1}{2}\ln(1 + a^2 - 2a\cos x).$$

于是当 $a \in (0,1)$ 时,就有

$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = -\frac{1}{2} \int_0^{\pi} \sum_{n=1}^{\infty} \frac{a^n \cos(nx)}{n} dx = 0.$$

若 a > 1, 则 $\frac{1}{a} \in (0,1)$, 从而此时我们有

$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = \pi \ln a^2 + \int_0^{\pi} \ln\left(\frac{1}{a^2} - \frac{2}{a}\cos x + 1\right) dx = \pi \ln a^2 = 2\pi \ln a.$$

又由 $\ln(1-2a\cos x+a^2)$ 关于 a 的偏导存在可知 $\int_0^{\pi} \ln(1-2a\cos x+a^2) dx$ 关于 a 连续. 于是由

$$\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = 2\pi \ln a, \quad \forall a > 1.$$

可知当a=1时,我们有

$$\int_0^{\pi} \ln(2 - 2\cos x) dx = \lim_{a \to 1^+} \int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = \lim_{a \to 1^+} (2\pi \ln a) = 0.$$

定义 8.1 (多重对数函数-Li2 函数)

定义

$$\operatorname{Li}_2(x) \triangleq \sum_{n=1}^{\infty} \frac{x^n}{n^2}, \quad x \in [-1, 1].$$

命题 8.5

(1) $\operatorname{Li}_2(x) + \operatorname{Li}_2(1-x) = \frac{\pi^2}{6} - \ln x \cdot \ln(1-x), x \in (0,1).$

(2)
$$\operatorname{Li}_{2}(1) = \sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6}$$
, $\operatorname{Li}_{2}(0) = 0$, $\operatorname{Li}_{2}\left(\frac{1}{2}\right) = \frac{\pi^{2}}{12} - \frac{1}{2}\ln^{2}\frac{1}{2}$.

证明

(1) $\exists f(x) \triangleq \text{Li}_2(x), F(x) \triangleq f(x) + f(1-x) + \ln x \ln(1-x).$ $\exists f(x) \in \text{Li}_2(x), F(x) \triangleq f(x) + f(1-x) + \ln x \ln(1-x).$

$$f'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n} = -\frac{1}{x} \ln(1-x).$$

于是

$$F'(x) = -\frac{1}{x}\ln(1-x) + \frac{\ln x}{1-x} - \frac{\ln x}{1-x} + \frac{\ln(1-x)}{x} = 0.$$

故
$$F(x) \equiv F(1) = f(0) + f(1) = 0 + \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

(2) 显然 $\text{Li}_2(1) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, $\text{Li}_2(0) = 0$. 由 (1) 可得

$$\operatorname{Li}_2\left(\frac{1}{2}\right) + \operatorname{Li}_2\left(\frac{1}{2}\right) = 2\operatorname{Li}_2\left(\frac{1}{2}\right) = \frac{\pi^2}{6} - \ln^2\frac{1}{2} \implies \operatorname{Li}_2\left(\frac{1}{2}\right) = \frac{\pi^2}{12} - \frac{1}{2}\ln^2\frac{1}{2}.$$

例题 **8.13** 计算 $\int_0^{\frac{1}{2}} \frac{\ln x}{1-x} \, \mathrm{d}x$.

解

$$\int_{0}^{\frac{1}{2}} \frac{\ln x}{1 - x} \, dx = \int_{\frac{1}{2}}^{1} \frac{\ln(1 - x)}{x} \, dx = -\sum_{n=1}^{\infty} \frac{1}{n} \int_{\frac{1}{2}}^{1} x^{n-1} \, dx$$
$$= -\sum_{n=1}^{\infty} \frac{1}{n^{2}} + \sum_{n=1}^{\infty} \frac{1}{2^{n} n^{2}} = -\frac{\pi^{2}}{6} + \text{Li}_{2}\left(\frac{1}{2}\right)$$
$$\frac{2\pi}{2} \frac{1}{2} - \frac{\pi^{2}}{2} - \frac{1}{2} \ln^{2} \frac{1}{2}.$$

8.2.7 重积分计算

定理 8.3 (二重积分换序)

证明:

$$\int_{a}^{b} dx \int_{a}^{x} f(x, y) dy = \int_{a}^{b} dy \int_{y}^{b} f(x, y) dx,$$
(10)

其中 f(x,y) 是在由直线 y=a, x=b, y=x 所围成的三角形 (Δ) 上连续的任意函数.

证明

设 f(x) 在 [a,b] 上连续, 试证: 对任意 $x \in (a,b)$, 有

$$\int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} \cdots \int_{a}^{x_{n}} f(x_{n+1}) dx_{n+1} = \frac{1}{n!} \int_{a}^{x} (x - y)^{n} f(y) dy, \quad n = 1, 2, \cdots.$$

证明 当n=1时,由二重积分换序可知

$$\int_{a}^{x} dx_{1} \int_{a}^{x_{1}} f(x_{2}) dx_{2} = \int_{a}^{x} dx_{2} \int_{x_{2}}^{x} f(x_{2}) dx_{1} = \int_{a}^{x} (x - x_{2}) f(x_{2}) dx_{2} = \int_{a}^{x} (x - y) f(y) dy.$$

$$\int_{a}^{x_{1}} dx_{1} \cdots \int_{a}^{x_{k}} f(x_{k+1}) dx_{k+1} = \frac{1}{(k-1)!} \int_{a}^{x_{1}} (x_{1} - y)^{k-1} f(y) dy.$$

$$\int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} \cdots \int_{a}^{x_{k}} f(x_{k+1}) dx_{k+1} = \frac{1}{(k-1)!} \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} (x_{1} - y)^{k-1} f(y) dy$$

$$= \frac{1}{(k-1)!} \int_{a}^{x} dy \int_{y}^{x} (x_{1} - y)^{k-1} f(y) dx_{1}$$

$$= \frac{1}{k!} \int_{a}^{x} (x - y)^{k} f(y) dy.$$

故由数学归纳法知原结论成立.

例题 8.14 求定义在星形区域 $D = \{(x,y) \mid x^{\frac{2}{3}} + y^{\frac{2}{3}} \le 1\}$ 上满足 f(1,0) = 1 的正值连续函数 f 使得 $\iint \frac{f(x,y)}{f(y,x)} dxdy$

可得

$$I = \frac{1}{2} \iint\limits_{D} \left(\frac{f(x, y)}{f(y, x)} + \frac{f(y, x)}{f(x, y)} \right) dxdy \geqslant \iint\limits_{D} 1 dxdy = \sigma(D),$$

这里 $\sigma(D)$ 是 D 的面积.

$$I - \sigma(D) = \frac{1}{2} \iint\limits_{D} \left(\sqrt{\frac{f(x,y)}{f(y,x)}} - \sqrt{\frac{f(y,x)}{f(x,y)}} \right)^{2} dxdy \geqslant 0.$$

 $I = \sigma(D)$ 当且仅当 f(x, y) = f(y, x). 故所求函数为所有满足 f(x, y) = f(y, x) 及 f(1, 0) = 1 的连续正值函数. D的边界的参数方程为

$$x = \cos^3 \varphi$$
, $y = \sin^3 \varphi$ ($0 \le \varphi \le 2\pi$),

故I的最小值为

$$\sigma(D) = \iint\limits_{D} 1 \, dx dy = 4 \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant \frac{\pi}{2}}} 3r \sin^2 \varphi \cos^2 \varphi \, dr d\varphi$$

$$=6\int_0^{\frac{\pi}{2}}\sin^2\varphi\cos^2\varphi\,\mathrm{d}\varphi=\frac{3}{8}\pi.$$

所以所求最小值是 $\frac{3}{8}\pi$, 且当 f(x,y) = f(y,x) 并满足 f(1,0) = 1 时, 取到该最小值.

例题 8.15 求证: $\iint_{[0,1]^2} (xy)^{xy} \, dx dy = \int_0^1 t^t \, dt.$

[0,1]² 证明 首先化为累次积分

$$\iint_{[0,1]^2} (xy)^{xy} \, dxdy = \int_0^1 dx \int_0^1 (xy)^{xy} \, dy = \int_0^1 dx \int_0^x \frac{t^t}{x} \, dt = \int_0^1 \frac{f(x)}{x} \, dx,$$

其中 $f(x) = \int_0^x t^t dt$. 由分部积分,

$$\int_0^1 \frac{f(x)}{x} \, \mathrm{d}x = f(x) \ln x \Big|_0^1 - \int_0^1 x^x \ln x \, \mathrm{d}x = -\int_0^1 x^x \ln x \, \mathrm{d}x.$$

因为 $(x^x)' = x^x \ln x + x^x$, 所以

$$\int_0^1 x^x \ln x \, dx = \int_0^1 ((x^x)' - x^x) \, dx = -\int_0^1 x^x \, dx.$$

于是

$$\iint_{[0,1]^2} (xy)^{xy} \, dx dy = \int_0^1 t^t \, dt.$$

例题 8.16 计算二重积分 $I = \iint_D \operatorname{sgn}(x^2 - y^2 + 2) \, dx dy$, 其中 $D = \{(x, y) \mid x^2 + y^2 \le 4\}$.

解 设D在第一象限部分为 D_1 ,则由对称性

$$I = 4 \iint_{D_1} \operatorname{sgn}(x^2 - y^2 + 2) \, \mathrm{d}x \, \mathrm{d}y.$$

设 D_2 是 D_1 中使得 $x^2-y^2+2<0$ 的部分, D_3 是 D_1 中使得 $x^2-y^2+2\geqslant 0$ 的部分, 则 $D_1=D_2\cup D_3$. 因此

$$I = 4 \left[\iint_{D_3} dxdy - \iint_{D_2} dxdy \right] = 4[\sigma(D_3) - \sigma(D_2)]$$
$$= 4 \left[\frac{1}{4} \cdot \pi \cdot 2^2 - 2\sigma(D_2) \right] = 4\pi - 8\sigma(D_2),$$

其中 $\sigma(D_2)$, $\sigma(D_3)$ 分别表示 D_2 和 D_3 的面积. 在极坐标 $x = r\cos\varphi$, $y = r\sin\varphi$ 之下, D_2 为

$$\left\{ (r,\varphi) \mid \frac{\pi}{3} \leqslant \varphi \leqslant \frac{\pi}{2}, \sqrt{-\frac{2}{\cos 2\varphi}} \leqslant r \leqslant 2 \right\}.$$

因而

$$\begin{split} \sigma(D_2) &= \iint_{D_2} \mathrm{d}x \mathrm{d}y = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \mathrm{d}\varphi \int_{\sqrt{-\frac{2}{\cos 2\varphi}}}^{2} r \, \mathrm{d}r \\ &= \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \left(4 + \frac{2}{\cos 2\varphi} \right) \mathrm{d}\varphi = \frac{\pi}{3} + \frac{1}{2} \int_{\frac{2\pi}{3}}^{\pi} \frac{1}{\cos \varphi} \mathrm{d}\varphi \\ &= \frac{\pi}{3} - \frac{1}{2} \ln(2 + \sqrt{3}), \end{split}$$

故

$$I = \frac{4\pi}{3} + 4\ln(2 + \sqrt{3}).$$

例题 8.17 设 $D = \{(x, y) \mid x^2 + y^2 \le 1\}$. 求 $I = \iint \left| \frac{x + y}{\sqrt{2}} - x^2 - y^2 \right| dxdy$.

解 由极坐标变换 $x = r \cos \varphi$, $y = r \sin \varphi$, $0 \le r \le 1$, $0 \le \varphi \le 2\pi$, 有

$$\begin{split} I &= \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant 2\pi}} \left| \frac{\cos \varphi + \sin \varphi}{\sqrt{2}} - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi \\ &= \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant 2\pi}} \left| \sin \left(\varphi + \frac{\pi}{4} \right) - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi = \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant 2\pi}} \left| \sin \varphi - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi \\ &= \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant \pi}} \left| \sin \varphi - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi + \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ \pi \leqslant \varphi \leqslant 2\pi}} \left| \sin \varphi - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi \\ &= \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant \pi}} \left| \sin \varphi - r \right| r^2 \mathrm{d}r \mathrm{d}\varphi + \iint\limits_{\substack{0 \leqslant r \leqslant 1 \\ 0 \leqslant \varphi \leqslant \pi}} \left(\sin \varphi + r \right) r^2 \mathrm{d}r \mathrm{d}\varphi. \end{split}$$

因此,有

$$\begin{split} I &= \int_0^\pi \mathrm{d}\varphi \int_0^{\sin\varphi} (\sin\varphi - r) r^2 \mathrm{d}r + \int_0^\pi \mathrm{d}\varphi \int_{\sin\varphi}^1 (r - \sin\varphi) r^2 \mathrm{d}r \\ &+ \int_0^\pi \mathrm{d}\varphi \int_0^{\sin\varphi} (\sin\varphi + r) r^2 \mathrm{d}r + \int_0^\pi \mathrm{d}\varphi \int_{\sin\varphi}^1 (\sin\varphi + r) r^2 \mathrm{d}r \\ &= \int_0^\pi \mathrm{d}\varphi \int_0^{\sin\varphi} 2 \sin\varphi \cdot r^2 \mathrm{d}r + \int_0^\pi \mathrm{d}\varphi \int_{\sin\varphi}^1 2 r \cdot r^2 \mathrm{d}r \\ &= \int_0^\pi \frac{2}{3} \sin^4\varphi \mathrm{d}\varphi + \int_0^\pi \frac{1}{2} (1 - \sin^4\varphi) \mathrm{d}\varphi \\ &= \frac{1}{6} \int_0^\pi \sin^4\varphi \mathrm{d}\varphi + \frac{\pi}{2} = \frac{1}{6} \cdot \frac{3\pi}{8} + \frac{\pi}{2} = \frac{9}{16}\pi. \end{split}$$

例题 **8.18** 设 f 是定义在正方形 $S = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 1\}$ 上的四阶连续可微函数, 在 S 的边界上为零, 并且

 $\left| \frac{\partial^4 f}{\partial x^2 \partial y^2} \right| \leqslant M.$

求证:

$$\left| \iint_{S} f(x, y) \, \mathrm{d}x \mathrm{d}y \right| \leqslant \frac{1}{144} M.$$

证明 考虑函数 g(x, y) = x(1-x)y(1-y). 易知

$$\frac{\partial^4 g}{\partial x^2 \partial y^2} = 4, \quad \iint_S g(x, y) \, \mathrm{d}x \mathrm{d}y = \frac{1}{36}.$$

因为 f 在 S 的边界上为零, 所以 $\frac{\partial^2 f}{\partial v^2}$ 在 x = 0 和 x = 1 时为零. 于是

$$\iint_{S} \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}} \cdot g \, dx dy = \int_{0}^{1} dy \int_{0}^{1} \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}} \cdot g \, dx$$

$$= \int_{0}^{1} dy \left(\frac{\partial^{3} f}{\partial x \partial y^{2}} \cdot g \Big|_{x=0}^{1} - \int_{0}^{1} \frac{\partial^{3} f}{\partial x \partial y^{2}} \cdot \frac{\partial g}{\partial x} \, dx \right)$$

$$= -\int_{0}^{1} dy \int_{0}^{1} \frac{\partial^{3} f}{\partial x \partial y^{2}} \cdot \frac{\partial g}{\partial x} \, dx$$

$$= -\int_{0}^{1} dy \left(\frac{\partial^{2} f}{\partial y^{2}} \cdot \frac{\partial g}{\partial x} \Big|_{x=0}^{1} - \int_{0}^{1} \frac{\partial^{2} f}{\partial y^{2}} \cdot \frac{\partial^{2} g}{\partial x^{2}} \, dx \right)$$

$$= \int_{0}^{1} dy \int_{0}^{1} \frac{\partial^{2} f}{\partial y^{2}} \cdot \frac{\partial^{2} g}{\partial x^{2}} \, dx$$

$$= \iint_{S} \frac{\partial^{2} f}{\partial y^{2}} \cdot \frac{\partial^{2} g}{\partial x^{2}} dxdy.$$

同理,由于 $\frac{\partial^2 g}{\partial x^2}$ 在 y=0 和 y=1 时为零,作与上面类似的推导,可得

$$\iint_{S} \frac{\partial^{4} g}{\partial x^{2} \partial y^{2}} \cdot f \, dx dy = \iint_{S} \frac{\partial^{2} f}{\partial y^{2}} \cdot \frac{\partial^{2} g}{\partial x^{2}} \, dx dy.$$

因此

$$\iint_{S} \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}} \cdot g \, dx dy = \iint_{S} \frac{\partial^{4} g}{\partial x^{2} \partial y^{2}} \cdot f \, dx dy.$$

从而

$$\left| \iint_{S} f \, dx dy \right| = \frac{1}{4} \left| \iint_{S} 4f \, dx dy \right| = \frac{1}{4} \left| \iint_{S} \frac{\partial^{4} g}{\partial x^{2} \partial y^{2}} f \, dx dy \right|$$
$$= \frac{1}{4} \left| \iint_{S} \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}} \cdot g \, dx dy \right| \leqslant \frac{M}{4} \iint_{S} g \, dx dy = \frac{M}{144}.$$

定理 8.4 (Poincaré(庞加莱) 不等式)

设 φ, ψ 是 [a, b] 上的连续函数, f 在区域 $D = \{(x, y) \mid a \leq x \leq b, \varphi(x) \leq y \leq \psi(x)\}$ 上连续可微, 且有 $f(x, \varphi(x)) = 0$ $(x \in [a, b])$. 则存在 M > 0, 使得

$$\iint_D f^2(x, y) \, \mathrm{d}x \mathrm{d}y \leqslant M \iint_D (f_y'(x, y))^2 \, \mathrm{d}x \mathrm{d}y.$$

证明 由 Newton-Leibniz 公式和 Cauchy 不等式可得

$$f^{2}(x, y) = [f(x, y) - f(x, \varphi(x))]^{2} = \left(\int_{\varphi(x)}^{y} \frac{\partial f}{\partial t}(x, t) dt\right)^{2}$$

$$\leq (y - \varphi(x)) \int_{\varphi(x)}^{y} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} dt,$$

因此

$$\iint_{D} f^{2}(x, y) \, dxdy = \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f^{2}(x, y) \, dy$$

$$\leqslant \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} (y - \varphi(x)) \, dy \int_{\varphi(x)}^{y} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} \, dt$$

$$= \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} dt \int_{t}^{\psi(x)} (y - \varphi(x)) \, dy$$

$$\leqslant \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} dt \int_{\varphi(x)}^{\psi(x)} (y - \varphi(x)) \, dy$$

$$= \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} \frac{1}{2} (\psi(x) - \varphi(x))^{2} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} dt$$

$$\leqslant M \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} \left(\frac{\partial f}{\partial t}(x, t)\right)^{2} dt\right) dx$$

$$= M \iint_{D} \left(\frac{\partial f}{\partial y}(x, y)\right)^{2} dxdy,$$

这里 M 是满足 $M > \max_{a \le x \le b} \frac{1}{2} (\psi(x) - \varphi(x))^2$ 的常数.

例题 **8.19** 设 a > 0, $\Omega_n(a): x_1 + x_2 + \cdots + x_n \leq a, x_i \geq 0$ $(i = 1, 2, \cdots, n)$. 求积分

$$I_n(a) = \int \cdots \int_{\Omega_n(a)} x_1 x_2 \cdots x_n dx_1 dx_2 \cdots dx_n.$$

解 作变换 $x_i = at_i, i = 1, 2, \dots, n, 则$

$$I_n(a) = a^{2n} \int \cdots \int_{\Omega_n(1)} t_1 t_2 \cdots t_n dt_1 dt_2 \cdots dt_n = a^{2n} I_n(1).$$

再用累次积分,可得

$$I_{n}(1) = \int \cdots \int_{\Omega_{n}(1)} t_{1}t_{2} \cdots t_{n} dt_{1} dt_{2} \cdots dt_{n}$$

$$= \int_{0}^{1} t_{n} dt_{n} \int \cdots \int_{t_{1}+t_{2}+\cdots+t_{n-1} \leq 1-t_{n}} t_{1} \cdots t_{n-1} dt_{1} \cdots dt_{n-1}$$

$$= \int_{0}^{1} t_{n} I_{n-1}(1-t_{n}) dt_{n} = \int_{0}^{1} t_{n}(1-t_{n})^{2(n-1)} I_{n-1}(1) dt_{n}.$$

因此,

$$I_n(1) = \frac{1}{2n(2n-1)}I_{n-1}(1).$$

注意到
$$I_1(1) = \int_0^1 t dt = \frac{1}{2}$$
. 由上面的递推公式, 可得 $I_n(1) = \frac{1}{(2n)!}$. 故 $I_n(a) = \frac{a^{2n}}{(2n)!}$.

8.2.8 其他

例题 8.20 证明积分 $\int_0^\infty e^{-ax^2 - \frac{b}{x^2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{ab}}, a, b > 0.$

$$\int_{0}^{+\infty} e^{-x^{2} - \frac{b}{x^{2}}} dx = e^{-2\sqrt{b}} \int_{0}^{+\infty} e^{-\left(x - \frac{\sqrt{b}}{x}\right)^{2}} dx \xrightarrow{\frac{y = \frac{\sqrt{b}}{x}}{x}} e^{-2\sqrt{b}} \int_{0}^{+\infty} \frac{\sqrt{b}}{y^{2}} e^{-\left(\frac{\sqrt{b}}{y} - y\right)^{2}} dy$$

$$= \frac{e^{-2\sqrt{b}}}{2} \int_{0}^{+\infty} \left(1 + \frac{\sqrt{b}}{y^{2}}\right) e^{-\left(y - \frac{\sqrt{b}}{y}\right)^{2}} dy = \frac{e^{-2\sqrt{b}}}{2} \int_{0}^{+\infty} e^{-\left(y - \frac{\sqrt{b}}{y}\right)^{2}} d\left(y - \frac{\sqrt{b}}{y}\right)$$

$$= \frac{e^{-2\sqrt{b}}}{2} \int_{-\infty}^{+\infty} e^{-t^{2}} dt = \frac{\sqrt{\pi}}{2} e^{-2\sqrt{b}}.$$

于是对 $\forall a > 0$. 就有

$$\int_0^{+\infty} e^{-ax^2 - \frac{b}{x^2}} dx = \frac{1}{\sqrt{a}} \int_0^{+\infty} e^{-x^2 - \frac{ab}{x^2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{ab}}.$$

例题 8.21 计算 $\int_0^\infty \frac{\cos(ax)}{1+x^2} \mathrm{d}x, a \in \mathbb{R}$. 注 本题可以用复变函数的方法 (留数定理) 来计算. 但是我们这里用基本的高等数学的方法来计算. $\int_0^\infty \frac{\sin(ax)}{1+x^2} dx$ 这个积分没办法算出具体的初等数值.

$$\int_{0}^{+\infty} \frac{\cos(ax)}{1+x^{2}} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\cos(ax)}{1+x^{2}} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \cos(ax) \left(\int_{0}^{+\infty} e^{-(1+x^{2})y} dy \right) dx$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} e^{-(1+x^{2})y} \cos(ax) dy \right) dx = \frac{1}{2} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} e^{-(1+x^{2})y} \cos(ax) dy dx$$

$$= \frac{1}{2} \int_{0}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-(1+x^{2})y} \cos(ax) dx \right) dy = \frac{1}{2} \int_{0}^{+\infty} e^{-y} \left(\int_{-\infty}^{+\infty} e^{-x^{2}y} \cos(ax) dx \right) dy$$

$$= \frac{1}{2} \operatorname{Re} \left(\int_{0}^{+\infty} e^{-y} \left(\int_{-\infty}^{+\infty} e^{-x^{2}y + iax} dx \right) dy \right) = \frac{1}{2} \operatorname{Re} \left(\int_{0}^{+\infty} e^{-y} \left(\int_{-\infty}^{+\infty} e$$

$$\frac{y=t^2}{2} \sqrt{\pi} \int_0^{+\infty} e^{-t^2 - \frac{a^2}{4t^2}} dt = \frac{\emptyset \underbrace{\emptyset \underbrace{\emptyset 8.20}}}{2} \sqrt{\pi} \cdot \frac{\sqrt{\pi}}{2} e^{-|a|} = \frac{\pi}{2} e^{-|a|}$$

例题 8.22 计算 $\int_0^\infty \frac{1}{(1+x^8)^2} dx$. 注 由命题 8.7可知对 $\forall s>0$, 都有

$$\frac{1}{t^s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} y^{s-1} e^{-ty} dy, \forall t \in \mathbb{R}.$$

本题的核心想法就是利用上式将 $\frac{z}{1+r^8}$ 转化成积分形式.

$$\int_0^{+\infty} y e^{-(1+x^8)y} dy \xrightarrow{\frac{y=\frac{z}{1+x^8}}{1+x^8}} \frac{1}{(1+x^8)^2} \int_0^{+\infty} z e^{-z} dz = \frac{1}{(1+x^8)^2},$$

因此

$$\int_{0}^{+\infty} \frac{1}{(1+x^{8})^{2}} dx = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} y e^{-(1+x^{8})y} dy \right) dx = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} y e^{-(1+x^{8})y} dx \right) dy$$

$$= \int_{0}^{+\infty} y e^{-y} \left(\int_{0}^{+\infty} e^{-x^{8}y} dx \right) dy \xrightarrow{\frac{x=y^{-\frac{1}{8}}z^{\frac{1}{8}}}{2}} \int_{0}^{+\infty} y e^{-y} \left(\int_{0}^{+\infty} y^{-\frac{1}{8}} e^{-z} dz^{\frac{1}{8}} \right) dy$$

$$= \frac{1}{8} \int_{0}^{+\infty} y^{\frac{7}{8}} e^{-y} \left(\int_{0}^{+\infty} z^{-\frac{7}{8}} e^{-z} dz \right) dy = \frac{1}{8} \int_{0}^{+\infty} y^{\frac{7}{8}} e^{-y} \Gamma\left(\frac{1}{8}\right) dy$$

$$= \frac{1}{8} \Gamma\left(\frac{15}{8}\right) \Gamma\left(\frac{1}{8}\right) = \frac{1}{8} \cdot \frac{7}{8} \Gamma\left(\frac{7}{8}\right) \Gamma\left(\frac{1}{8}\right)$$

$$\frac{8.11}{64 \sin\left(\frac{\pi}{8}\right)} = \frac{7\pi}{32\sqrt{2-\sqrt{2}}}.$$

例题 **8.23** 计算积分 $I = \int_{-1}^{2} \frac{1+x^2}{1+x^4} dx$.

注 在此例中 $I \neq F(2) - F(-1)$. 这是因为 F 并不是 f 在区间 [-1,2] 上的原函数. 解 在不包含 0 的区间上作变换 $t = x - \frac{1}{x}$ 得

$$\int \frac{1+x^2}{1+x^4} \, dx = \int \frac{x - \frac{1}{x}}{2 + \left(x - \frac{1}{x}\right)^2} \, dx = \int \frac{dt}{2+t^2}$$
$$= \frac{1}{\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + C = \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{\sqrt{2}x} + C.$$

这说明在区间 [-1,0) 和 (0,2] 上, 函数 $f(x) = \frac{1+x^2}{1+x^4}$ 的一个原函数是

$$F(x) = \frac{1}{\sqrt{2}} \arctan \frac{x^2 - 1}{\sqrt{2}x}.$$

因此

$$\int_{-1}^{0} f(x) dx = F(0^{-}) - F(-1) = \frac{\pi}{2\sqrt{2}} - 0 = \frac{\pi}{2\sqrt{2}},$$

$$\int_{0}^{2} f(x) dx = F(2) - F(0^{+}) = \frac{1}{\sqrt{2}} \arctan \frac{3}{2\sqrt{2}} + \frac{\pi}{2\sqrt{2}}.$$

故

$$I = \int_{-1}^{0} f(x) dx + \int_{0}^{2} f(x) dx = \frac{\pi}{\sqrt{2}} + \frac{1}{\sqrt{2}} \arctan \frac{3}{2\sqrt{2}}.$$

8.3 含参量积分

定义 8.2 (含参量积分)

设 f(x,y) 是定义在矩形区域 $R = [a,b] \times [c,d]$ 上的二元函数. 当 x 取 [a,b] 上某定值时, 函数 f(x,y) 则是定义在 [c,d] 上以 y 为自变量的一元函数. 倘若这时 f(x,y) 在 [c,d] 上可积, 则其积分值是 x 在 [a,b] 上取值的函数, 记它为 $\varphi(x)$, 就有

$$\varphi(x) = \int_{c}^{d} f(x, y) \, \mathrm{d}y, \, x \in [a, b]. \tag{8.10}$$

一般地,设 f(x,y) 为定义在区域 $G = \{(x,y) \mid c(x) \leq y \leq d(x), a \leq x \leq b\}$ 上的二元函数,其中 c(x), d(x) 为定义在 [a,b] 上的连续函数,若对于 [a,b] 上每一固定的 x 值, f(x,y) 作为 y 的函数在闭区间 [c(x),d(x)] 上可积,则其积分值是 x 在 [a,b] 上取值的函数,记作 F(x) 时,就有

$$F(x) = \int_{c(x)}^{d(x)} f(x, y) \, \mathrm{d}y, \, x \in [a, b]. \tag{8.11}$$

用积分形式所定义的这两个函数 (8.10) 与 (8.11), 通称为定义在 [a,b] 上**含参量** x **的** (**正常**) **积分**, 或简称**含参量积分**.

定理 8.5 (连续性)

若二元函数 f(x,y) 在矩形区域 $R = [a,b] \times [c,d]$ 上连续, 则函数

$$\varphi(x) = \int_{c}^{d} f(x, y) \, dy, \quad \psi(y) = \int_{a}^{b} f(x, y) \, dx.$$

都在 [a,b] 上连续.

 $\dot{\mathbf{L}}$ 对于这个定理的结论也可以写成如下的形式: 若 f(x,y) 在矩形区域 \mathbf{R} 上连续, 则对任何 $x_0 \in [a,b]$, 都有

$$\lim_{x \to x_0} \int_{c}^{d} f(x, y) \, dy = \int_{c}^{d} \lim_{x \to x_0} f(x, y) \, dy.$$

这个结论表明, 定义在矩形区域上的连续函数, 其极限运算与积分运算的顺序是可以交换的.

证明 设 $x \in [a,b]$, 对充分小的 Δx , 有 $x + \Delta x \in [a,b]$ (若 x 为区间的端点, 则仅考虑 $\Delta x > 0$ 或 $\Delta x < 0$), 于是

$$\varphi(x + \Delta x) - \varphi(x) = \int_{c}^{d} [f(x + \Delta x, y) - f(x, y)] \, \mathrm{d}y. \tag{8.12}$$

由于 f(x,y) 在有界闭域 R 上连续, 从而一致连续, 即对任给的正数 ε , 总存在某个正数 δ , 对 R 内任意两点 (x_1,y_1) 与 (x_2,y_2) , 只要

$$|x_1 - x_2| < \delta$$
, $|y_1 - y_2| < \delta$,

就有

$$|f(x_1, y_1) - f(x_2, y_2)| < \varepsilon.$$
 (8.13)

所以由 (8.12),(8.13) 可推得: 当 $|\Delta x| < \delta$ 时,

$$|\varphi(x+\Delta x)-\varphi(x)| \leqslant \int_c^d |f(x+\Delta x,y)-f(x,y)| \,\mathrm{d} y < \int_c^d \varepsilon \,\mathrm{d} x = \varepsilon (d-c).$$

这就证明了 $\varphi(x)$ 在 [a,b] 上连续.

同理可证: 若 f(x, y) 在矩形区域 R 上连续, 则含参量 y 的积分

$$\psi(y) = \int_a^b f(x, y) \, \mathrm{d}x.$$

在 [c, d] 上连续. □

定理 8.6 (连续性)

设二元函数 f(x, y) 在区域

$$G = \{(x, y) \mid c(x) \leqslant y \leqslant d(x), a \leqslant x \leqslant b\}$$

上连续, 其中 c(x), d(x) 为 [a,b] 上的连续函数, 则函数

$$F(x) = \int_{C(x)}^{d(x)} f(x, y) \, \mathrm{d}y. \tag{8.14}$$

在 [a, b] 上连续.

证明 对积分(8.14)用换元积分法,令

$$y = c(x) + t(d(x) - c(x)).$$

当 y 在 c(x) 与 d(x) 之间取值时,t 在 [0,1] 上取值,且

$$dy = (d(x) - c(x)) dt.$$

所以从 (8.14) 式可得

$$F(x) \int_{c(x)}^{d(x)} f(x, y) \, \mathrm{d}y = \int_{0}^{1} f(x, c(x) + t(d(x) - c(x))) (d(x) - c(x)) \, \mathrm{d}t.$$

由于被积函数

$$f(x, c(x) + t(d(x) - c(x)))(d(x) - c(x))$$

在矩形区域 $[a,b] \times [0,1]$ 上连续, 由定理 8.5得积分 (8.14) 所确定的函数 F(x) 在 [a,b] 上连续.

定理 8.7 (可微性)

若函数 f(x,y) 与其偏导数 $\frac{\partial}{\partial x} f(x,y)$ 都在矩形区域 $R = [a,b] \times [c,d]$ 上连续,则

$$\varphi(x) = \int_{C}^{d} f(x, y) \, \mathrm{d}y$$

在 [a, b] 上可微, 且

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{c}^{d} f(x, y) \, \mathrm{d}y = \int_{c}^{d} \frac{\partial}{\partial x} f(x, y) \, \mathrm{d}y.$$

证明 对于 [a,b] 内任一点 x, 设 $x + \Delta x \in [a,b]$ (若 x 为区间端点, 则讨论单侧导数), 则

$$\frac{\varphi(x + \Delta x) - \varphi(x)}{\Delta x} = \int_{C}^{d} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \, \mathrm{d}y.$$

由微分学的拉格朗日中值定理及 $f_x(x,y)$ 在有界闭域 R 上连续 (从而一致连续), 对任给正数 ε , 存在正数 δ , 只要 当 $|\Delta x| < \delta$ 时, 就有

$$\left|\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}-f_x(x,y)\right|=|f_x(x+\theta\Delta x,y)-f_x(x,y)|<\varepsilon,$$

其中 $\theta \in (0,1)$. 因此

$$\left| \frac{\Delta \varphi}{\Delta x} - \int_{c}^{d} f_{x}(x, y) \, \mathrm{d}y \right| \leq \int_{c}^{d} \left| \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} - f_{x}(x, y) \right| \, \mathrm{d}y < \varepsilon(d - c).$$

这就证得对一切 $x \in [a,b]$,有

$$\frac{\mathrm{d}}{\mathrm{d}x}\varphi(x) = \int_{c}^{d} \frac{\partial}{\partial x} f(x, y) \,\mathrm{d}y.$$

定理 8.8 (可微性)

设 f(x,y), $f_x(x,y)$ 在 $R = [a,b] \times [p,q]$ 上连续,c(x), d(x) 为定义在 [a,b] 上其值含于 [p,q] 内的可微函数,则函数

$$F(x) = \int_{c(x)}^{d(x)} f(x, y) \, \mathrm{d}y$$

在 [a, b] 上可微, 且

$$F'(x) = \int_{c(x)}^{d(x)} f_x(x, y) \, \mathrm{d}y + f(x, d(x)) d'(x) - f(x, c(x)) c'(x). \tag{8.15}$$

证明 把 F(x) 看作复合函数

$$F(x) = H(x, c, d) = \int_{c}^{d} f(x, y) \, dy, c = c(x), d = d(x).$$

由复合函数求导法则及变限积分的求导法则,有

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = \frac{\partial H}{\partial x} + \frac{\partial H}{\partial c}\frac{\mathrm{d}c}{\mathrm{d}x} + \frac{\partial H}{\partial d}\frac{\mathrm{d}d}{\mathrm{d}x} = \int_{c(x)}^{d(x)} f_x(x,y)\,\mathrm{d}y + f(x,d(x))d'(x) - f(x,c(x))c'(x).$$

定理 8.9 (可积性)

若 f(x,y) 在矩形区域 $R = [a,b] \times [c,d]$ 上连续,则 $\varphi(x)$ 和 $\psi(y)$ 分别在 [a,b] 和 [c,d] 上可积. 这就是说: 在 f(x,y) 连续性假设下,同时存在两个求积顺序不同的积分:

$$\int_a^b \left[\int_c^d f(x, y) \, \mathrm{d}y \right] \, \mathrm{d}x \quad - \int_c^d \left[\int_a^b f(x, y) \, \mathrm{d}x \right] \, \mathrm{d}y.$$

为书写简便起见, 今后将上述两个积分写作

$$\int_a^b dx \int_c^d f(x, y) dy \quad = \int_c^d dy \int_a^b f(x, y) dx,$$

前者表示 f(x,y) 先对 y 求积然后对 x 求积, 后者则求积顺序相反. 它们统称为**累次积分**, 或更确切地称为**二次积分**.

证明

定理 8.10

若 f(x, y) 在矩形区域 $R = [a, b] \times [c, d]$ 上连续, 则

$$\int_{a}^{b} dx \int_{c}^{d} f(x, y) dy = \int_{c}^{d} dy \int_{a}^{b} f(x, y) dx.$$
 (8.16)

 $ilde{f Y}$ 笔记 这个定理指出,在 f(x,y) 连续性假设下, 累次积分与求积顺序无关.

证明 记

$$\varphi_1(u) = \int_a^u \mathrm{d}x \int_c^d f(x, y) \, \mathrm{d}y, \varphi_2(u) = \int_c^d \mathrm{d}y \int_a^u f(x, y) \, \mathrm{d}x,$$

其中 $u \in [a,b]$, 现在分别求 $\varphi_1(u)$ 与 $\varphi_2(u)$ 的导数.

$$\varphi'_1(u) = \frac{\mathrm{d}}{\mathrm{d}u} \int_a^u \varphi(x) \, \mathrm{d}x = \varphi(u).$$

对于 $\varphi_2(u)$, 令 $H(u,y) = \int_a^u f(x,y) dx$, 则有

$$\varphi_2(u) = \int_c^d H(u, y) \, \mathrm{d}y.$$

因为 H(u, y) 与 $H_u(u, y) = f(u, y)$ 都在 R 上连续, 由定理 8.7,

$$\varphi_2'(u) = \frac{\mathrm{d}}{\mathrm{d}u} \int_0^d H(u, y) \, \mathrm{d}y = \int_0^d H_u(u, y) \, \mathrm{d}y = \int_0^d f(u, y) \, \mathrm{d}y = \varphi(u).$$

故得 $\varphi_1'(u) = \varphi_2'(u)$, 因此对一切 $u \in [a, b]$, 有

$$\varphi_1(u) = \varphi_2(u) + k \quad (k 为常数).$$

当 u = a 时, $\varphi_1(a) = \varphi_2(a) = 0$, 于是 k = 0, 即得

$$\varphi_1(u) = \varphi_2(u), u \in [a, b].$$

取 u = b, 就得到所要证明的 (8.16) 式.

8.4 Euler 积分

定理 8.11 (余元公式)

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}, 0 < x < 1.$$

证明

命题 8.7

对 $\forall s > 0$, 都有

$$\frac{1}{t^s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} y^{s-1} e^{-ty} dy, \forall t \in \mathbb{R}.$$
 (8.17)

证明 已知 Γ函数:

$$\Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx, \quad s > 0.$$

$$\Gamma(s) = t^s \int_0^{+\infty} y^{s-1} e^{-ty} dy.$$

故

$$\frac{1}{t^s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} y^{s-1} e^{-ty} \mathrm{d}y.$$

第九章 级数

9.1 级数基本结论

9.1.1 级数的敛散性

定理 9.1 (交错级数不等式)

设 $\{a_n\}$ 递减非负数列,则对 $m, p \in \mathbb{N}_0$,必有

$$\left| \sum_{n=m}^{m+p} (-1)^n a_n \right| \leqslant a_m. \tag{9.1}$$

室 笔记 本不等式是最容易被遗忘的不等式,应该牢记于心.

证明 不妨设 m=0,则

$$\sum_{n=0}^{p} (-1)^n a_n = \begin{cases} a_0 - (a_1 - a_2) - (a_3 - a_4) - \dots - (a_{p-1} - a_p) & , p \not\ni \text{\textit{l}} \\ a_0 - (a_1 - a_2) - (a_3 - a_4) - \dots - (a_{p-2} - a_{p-1}) - a_p & , p \not\ni \text{\textit{f}} \end{cases} \leqslant a_0.$$

此外

$$\sum_{n=0}^{p} (-1)^n a_n = \begin{cases} (a_0 - a_1) + (a_2 - a_3) + \dots + (a_{p-2} - a_{p-1}) + a_p &, p \text{ in } m \text{ i$$

这就证明了不等式(9.1).

定理 9.2 (Leibniz(莱布尼兹) 判别法)

设 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 为交错级数, 若满足:

- (1) 数列 $\{u_n\}_{n=1}^{\infty}$ 单调递减;
- $(2)\lim_{n\to\infty}u_n=0,$

则级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 收敛, 且其和不超过 u_1 .

证明

定理 9.3 (A-D 判别法)

级数 $\sum_{n=1}^{\infty} a_n b_n$ 满足下列条件之一时收敛.

2. $\sum_{n=1}^{\infty} a_n$ 收敛, b_n 单调有界.

证明 由 Abel 变换, 注意到

$$\sum_{k=n}^{m} a_k b_k = \sum_{k=n}^{m-1} (b_k - b_{k+1}) \sum_{j=n}^{k} a_j + b_m \sum_{k=n}^{m} a_k.$$

于是对于第一种情况,设

$$M = 2 \sup_{n \geqslant 1} \left| \sum_{k=1}^{n} a_k \right|,$$

我们有

$$\left| \sum_{k=n}^{m} a_k b_k \right| \leq M \sum_{k=n}^{m-1} |b_k - b_{k+1}| + M|b_m| = Mb_n \to 0, \, \, \underline{\stackrel{}{=}} \, n, m \to \infty.$$

对于第二种情况, 因为 $\sum_{n=1}^{\infty} a_n$ 收敛, 故对任何 $\varepsilon > 0$, 当 n 充分大, 对任何 $p \in \mathbb{N}_0$, 必有

$$\left|\sum_{k=n}^{n+p} a_k\right| \leqslant \varepsilon.$$

于是当n,m充分大,我们有

$$\left|\sum_{k=n}^{m} a_k b_k\right| \leqslant \varepsilon \sum_{k=n}^{m-1} |b_k - b_{k+1}| + \varepsilon |b_m| = \varepsilon |b_m - b_n| + \varepsilon |b_m| \leqslant 3\varepsilon \sup_{n \geqslant 1} |b_n|.$$

因此无论如何都有级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

定理 9.4 (积分判别法)

若 f 是 $[1,+\infty)$ 的单调不变号函数, 则 $\sum_{n=1}^{\infty} f(n)$ 和 $\int_{1}^{\infty} f(x) dx$ 同敛散.

笔记 注意有限项不影响级数收敛性,有限区间不影响积分收敛性.方法是我们之前已经反复训练的.证明 不妨设 f 非负递减,注意到

$$\int_{1}^{\infty} f(x) dx = \sum_{n=1}^{\infty} \int_{n}^{n+1} f(x) dx \le \sum_{n=1}^{\infty} f(n) \le f(1) + \sum_{n=2}^{\infty} \int_{n-1}^{n} f(x) dx = f(1) + \int_{1}^{\infty} f(x) dx.$$

由夹逼准则即证.

定理 9.5 (比值判别法)

对级数 $\sum_{n=1}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N}, 有如下判别法:$

极限版:

1. 若
$$\overline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\underline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

不等式版:

1. 若存在
$$N \in \mathbb{N}$$
, $\delta \in (0,1)$ 使得 $\frac{a_{n+1}}{a_n} \leqslant \delta$, $\forall n \geqslant N$, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若存在
$$N \in \mathbb{N}$$
 使得 $\frac{a_{n+1}}{a_n} \geqslant 1, \forall n \geqslant N, 则 \sum_{n=1}^{\infty} a_n$ 发散.

注 极限版的 1 和不等式版的 1 是等价的, 极限版的 2 能推出不等式版的 2, 但不等式版的 2 不能推出极限版的 2.

定理 9.6 (Cauchy 链)

设正值递增函数 $F\in C^1[a,+\infty)$, $\frac{F'}{F}$ 在 $[a,+\infty)$ 递减. 若满足 $\sum^{\infty}F'(n)$ 发散,则对正项级数 $\sum^{\infty}a_n,a_n>$ $0, \forall n \in \mathbb{N}$ 有如下判别法:

极限版:

1. 若

$$\lim_{n \to \infty} \frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} > 1, \tag{9.2}$$

则
$$\sum_{n=1}^{\infty} a_n$$
 收敛;

$$\overline{\lim_{n \to \infty} \frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)}} < 1,$$
(9.3)

则
$$\sum_{n=1}^{\infty} a_n$$
 发散.

不等式版:

1. 若存在 $c > 1, N ∈ \mathbb{N}$ 使得

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} \geqslant c, \forall n \geqslant N,$$

则
$$\sum_{n=1}^{\infty} a_n$$
 收敛;
2. 若存在 $c \leq 1, N \in \mathbb{N}$ 使得

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} \leqslant c, \forall n \geqslant N,$$

则
$$\sum_{n=1}^{\infty} a_n$$
 发散.

笔记 极限版和不等式版的第1个结果的条件是等价的, 第2个结果不等式版条件要更弱, 因为如果改 (9.3)为 $\lim_{n\to\infty} \frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} \leqslant 1$,则 $\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)}$ 仍然可能在n 充分大严格超过 1. 注 取 $F(x) = e^x$,则

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} = \frac{n - \ln a_n}{n} = 1 - \ln \sqrt[n]{a_n},$$

这恰好是根值判别法.

取
$$F(x) = x$$
, 则

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} = \frac{-\ln a_n}{\ln n},$$

这恰好是对数判别法.

证明 Step 1 先证明

$$\lim_{x \to +\infty} F(x) = +\infty. \tag{9.4}$$

设 $\lim_{x \to +\infty} F(x) = A$, 则积分判别法表明

$$\sum_{n=1}^{\infty} \frac{F'(n)}{F(n)} \sim \int_{a}^{\infty} \frac{F'(x)}{F(x)} dx = \ln F(x) \Big|_{a}^{\infty},$$

即
$$\sum_{n=1}^{\infty} \frac{F'(n)}{F(n)}$$
 收敛. 但 $\sum_{n=1}^{\infty} \frac{F'(n)}{F(n)} \ge \sum_{n=1}^{\infty} \frac{F'(n)}{A}$, 这就和 $\sum_{n=1}^{\infty} F'(n)$ 发散矛盾! 故我们证明了 (9.4).

Step 2 当 (9.2) 成立, 再利用(9.4)式, 存在 $c > 1, N \in \mathbb{N}$ 使得

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} \geqslant c, F(N) > 1, \forall n \geqslant N.$$

因此

$$\frac{F'(n)}{a_n} \geqslant e^{c \ln F(n)} \Rightarrow \frac{F'(n)}{F^c(n)} \geqslant a_n, \forall n \geqslant N.$$

结合 $\frac{F'(n)}{F^c(n)} = \frac{F'(n)}{F(n)} \cdot \frac{1}{F^{c-1}(n)}$ 递减,由积分判别法,我们有

$$\sum_{n=1}^{\infty} \frac{F'(n)}{F^c(n)} \sim \int_{N}^{\infty} \frac{F'(x)}{F^c(x)} dx = \int_{F(N)}^{\infty} \frac{1}{y^c} dy < \infty,$$

因此 $\sum_{n=1}^{\infty} a_n$ 收敛.

Step 3 若存在 $c \leq 1, N \in \mathbb{N}$ 使得

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} \leqslant c, F(n) \geqslant 1, \forall n \geqslant N.$$

根据 **Step 2**, 同样的我们有 $\frac{F'(n)}{F(n)} \leqslant \frac{F'(n)}{F^c(n)} \leqslant a_n, \forall n \geqslant N$ 以及由积分判别法有

$$\sum_{n=1}^{\infty} \frac{F'(n)}{F(n)} \sim \int_{N}^{\infty} \frac{F'(x)}{F(x)} dx = \int_{F(N)}^{\infty} \frac{1}{y} dy = \infty,$$

因此
$$\sum_{n=1}^{\infty} a_n$$
 发散.

定理 9.7 (对数判别法)

对正项级数 $\sum_{n=1}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N}, 则有如下判别法:$

1. 若
$$\lim_{n\to\infty} \frac{\ln\frac{1}{a_n}}{\ln n} > 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\overline{\lim}_{n\to\infty} \frac{\ln\frac{1}{a_n}}{\ln n} < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

不等式版:

1. 若存在 c > 1. $N ∈ \mathbb{N}$ 使得

$$\frac{\ln \frac{1}{a_n}}{\ln n} \geqslant c, \forall n \geqslant N,$$

则
$$\sum_{n=1}^{\infty} a_n$$
 收敛;
2. 若存在 $c \leq 1, N \in \mathbb{N}$ 使得

$$\frac{\ln \frac{1}{a_n}}{\ln n} \leqslant c, \forall n \geqslant N,$$

则
$$\sum_{n=1}^{\infty} a_n$$
 发散.

定理 9.8 (根值判别法)

对正项级数 $\sum_{n=1}^{\infty} a_n$, 则有如下判别法:

1. 若
$$\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\lim_{n\to\infty} \sqrt[n]{a_n} > 1$$
, 则 $\sum_{n=1}^{n-1} a_n$ 发散.

1. 若存在 $c < 1, N ∈ \mathbb{N}$ 使得

$$\sqrt[n]{a_n} \leqslant c, \forall n \geqslant N,$$

则
$$\sum_{n=1}^{\infty} a_n$$
 收敛;
2. 若存在 $c \geqslant 1$ 和无穷多个 n 使得

$$\sqrt[n]{a_n} \geqslant c$$
,

则
$$\sum_{n=1}^{\infty} a_n$$
 发散.

注 值得注意的是, 对于根值判别法, 这里通过 Cauchy 链的叙述, 不应该是 $\overline{\lim}_{n\to\infty} \sqrt[q]{a_n} > 1$, 而应该是 $\underline{\lim}_{n\to\infty} \sqrt[q]{a_n} > 1$. 也不应是无穷多个n, 而是任何 $n \ge N$. 所以我们需要一些加强的证明.

证明 若存在 $c \ge 1$ 和无穷多个 n 使得

$$\sqrt[n]{a_n} \geqslant c$$
,

则存在 $n_k \to \infty$, 使得

$$\binom{n_k}{|a_{n_k}|} \geqslant c \geqslant 1 \Rightarrow |a_{n_k}| \geqslant 1 \Rightarrow \lim_{k \to \infty} |a_{n_k}| \neq 0,$$

于是
$$\sum_{n=1}^{\infty} a_n$$
 发散.

定理 9.9 (Kummer 链)

对正项级数 $\sum_{n=0}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N},$ 设

$$K_n = \frac{1}{d_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{d_{n+1}}, n = 1, 2, \dots, d_n > 0, \sum_{n=1}^{\infty} d_n = +\infty,$$

有如下判别法:

极限版:

1. 若
$$\lim_{n\to\infty} K_n > 0$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\overline{\lim}_{n\to\infty} K_n < 0$$
, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

不等式版:

1. 若存在
$$N \in \mathbb{N}$$
, $\delta > 0$ 使得 $K_n \geqslant \delta$, $\forall n \geqslant N$, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若存在
$$N \in \mathbb{N}$$
 使得 $K_n \leq 0, \forall n \geq N, 则 \sum_{n=1}^{\infty} a_n$ 发散.

 $\stackrel{ullet}{\widehat{\Sigma}}$ 笔记 极限版和不等式版的第 1 个结果的条件是等价的,第 2 个结果不等式版条件要更弱. 从证明可以看到,无论是极限版还是不等式版的 1,没用到条件 $\sum_{n=1}^{\infty} d_n = +\infty$.

注 当 $d_n = 1, n \in \mathbb{N}$. 我们有 $K_n = \frac{a_n}{a_{n+1}} - 1$, 这恰好就是比值判别法.

当
$$d_n = \frac{1}{n}, n \in \mathbb{N}$$
, 我们有 $K_n = n \frac{a_n}{a_{n+1}} - (n+1)$, 这恰好是拉比判别法.

当
$$d_n = \frac{1}{n \ln n}, n \in \mathbb{N}$$
, 我们有

$$K_n = n \ln n \cdot \frac{a_n}{a_{n+1}} - (n+1) \ln(n+1)$$

$$= n \ln n \cdot \frac{a_n}{a_{n+1}} - (n+1) \ln n - (n+1) \ln \left(1 + \frac{1}{n}\right)$$

$$= \ln n \cdot \left[n \left(\frac{a_n}{a_{n+1}} - 1\right) - 1\right] - (n+1) \ln \left(1 + \frac{1}{n}\right),$$

即得一个较为广泛的判别法. 要注意我们在阶的层面对 K_n 做了变形, 因此不再给出不等式版本的较为广泛的判别法.

证明 若存在 $N \in \mathbb{N}, \delta > 0$ 使得 $K_n \ge \delta, \forall n \ge N,$ 则

$$\frac{1}{\delta} \left(\frac{a_n}{d_n} - \frac{a_{n+1}}{d_{n+1}} \right) \geqslant a_{n+1}, \forall n \geqslant N.$$

现在

$$\sum_{k=N}^m a_{k+1} \leqslant \sum_{k=N}^m \frac{1}{\delta} \left(\frac{a_k}{d_k} - \frac{a_{k+1}}{d_{k+1}} \right) = \frac{1}{\delta} \left(\frac{a_N}{d_N} - \frac{a_{m+1}}{d_{m+1}} \right) \leqslant \frac{1}{\delta} \cdot \frac{a_N}{d_N},$$

所以 $\sum_{n=1}^{\infty} a_n$ 收敛.

若存在 $N \in \mathbb{N}$ 使得 $K_n \leq 0, \forall n \geq N$. 则 $\frac{a_{n+1}}{d_{n+1}} \geq \frac{a_n}{d_n}, \forall n \geq N$. 现在

$$a_{n+1} \geqslant \frac{a_N}{d_N} d_{n+1}, \forall n \geqslant N, \sum_{n=1}^{\infty} d_n = +\infty \Rightarrow \sum_{n=1}^{\infty} a_n = +\infty,$$

这就完成了证明.

定理 9.10 (拉比判别法)

对正项级数 $\sum_{n=1}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N}, 有如下判别法:$

极限版

1. 若
$$\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right) > 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\overline{\lim}_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right) < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

不等式版:

1. 若存在
$$N \in \mathbb{N}, \delta > 1$$
 使得 $n\left(\frac{a_n}{a_{n+1}} - 1\right) \geqslant \delta, \forall n \geqslant N, 则 \sum_{n=1}^{\infty} a_n$ 收敛;

2. 若存在
$$N \in \mathbb{N}$$
 使得 $n\left(\frac{a_n}{a_{n+1}}-1\right) \leqslant 1, \forall n \geqslant N, 则 \sum_{n=1}^{\infty} a_n$ 发散.

证明

定理 9.11 (较为广泛的判别法)

对正项级数 $\sum_{n=1}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N}, 有如下判别法:$

极限版 1:

1. 若
$$\lim_{n\to\infty} \ln n \cdot \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] > 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\overline{\lim}_{n\to\infty} \ln n \cdot \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

极限版 2:

1. 若
$$\lim_{n\to\infty} \ln n \left[n \ln \frac{a_n}{a_{n+1}} - 1 \right] > 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\overline{\lim}_{n\to\infty} \ln n \left[n \ln \frac{a_n}{a_{n+1}} - 1 \right] < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

1. 设 $t > 1, N \in \mathbb{N}$ 使得

$$\ln n \left[n \ln \frac{a_n}{a_{n+1}} - 1 \right] > t, \forall n \geqslant N.$$

然后

$$\ln \frac{a_n}{a_{n+1}} > \frac{1}{n} + \frac{t}{n \ln n}, \forall n \geq N.$$

现在求和得

$$\ln \frac{a_N}{a_{n+1}} > \sum_{k=N}^n \left(\frac{1}{k} + \frac{t}{k \ln k} \right), \forall n \geqslant N.$$

于是

$$a_{n+1} < a_N e^{-\sum\limits_{k=N}^n \left(\frac{1}{k} + \frac{t}{k \ln k}\right)}, \forall n \geqslant N.$$

现在由例题 2.52(2)和例题 2.48, 我们有

$$\sum_{k=N}^{n} \frac{1}{k} = \ln n + O(1), \sum_{k=N}^{n} \frac{1}{k \ln k} = \ln \ln n + O(1), n \to \infty.$$

于是

$$e^{-\sum_{k=N}^{n} \left(\frac{1}{k} + \frac{t}{k \ln k}\right)} = e^{-\ln n - \ln \ln n + O(1)} = \frac{e^{O(1)}}{n \ln^t n}$$

结合积分判别法有

$$\sum_{n=N}^{\infty} \frac{1}{n \ln^t n} \sim \int_{10}^{\infty} \frac{1}{x \ln^t x} dx = \int_{\ln 10}^{\infty} \frac{1}{y^t} dy < \infty,$$

我们知道 $\sum_{n=1}^{\infty} a_n$ 收敛.

2. 设 0 < t < 1. $N \in \mathbb{N}$ 使得

$$\ln n \left[n \ln \frac{a_n}{a_{n+1}} - 1 \right] < t, \forall n \geqslant N.$$

然后相似第1间的证明和

$$\sum_{n=N}^{\infty} \frac{1}{n \ln^t n} \sim \int_{10}^{\infty} \frac{1}{x \ln^t x} \, \mathrm{d}x = \int_{\ln 10}^{\infty} \frac{1}{y^t} \, \mathrm{d}y = +\infty,$$

我们有
$$\sum_{n=1}^{\infty} a_n$$
 发散.

定理 9.12 (Herschfeld 判别法)

设 p > 1 且 $\{a_n\}_{n=1}^{\infty} \subset [0, +\infty)$. 定义

$$t_n = \sqrt[p]{a_1 + \sqrt[p]{a_2 + \cdots + \sqrt[p]{a_n}}}, n \in \mathbb{N},$$

然后 $\{t_n\}_{n=1}^{\infty}$ 收敛的充要条件是 $a_n^{\frac{1}{p^n}}$ 有界. 显然 $\{t_n\}_{n=1}^{\infty}$ 单调递增.

证明 必要性: 若 $\{t_n\}_{n=1}^{\infty}$ 收敛,则由

$$t_n = \sqrt[p]{a_1 + \sqrt[p]{a_2 + \dots + \sqrt[p]{a_n}}} \geqslant \sqrt[p]{0 + \sqrt[p]{0 + \dots + \sqrt[p]{a_n}}} = a_n^{\frac{1}{p^n}}$$

和 $\{t_n\}_{n=1}^{\infty}$ 有界知 $a_n^{\frac{1}{p^n}}$ 有界.

充分性: 若 $a_n^{\frac{1}{p^n}}$ 有界, 则设 $a_n^{\frac{1}{p^n}} \leq M$, $\forall n \in \mathbb{N}$, 于是我们有 $a_n \leq M^{p^n}$, $\forall n \in \mathbb{N}$. 因此

$$t_{n} = \sqrt[p]{a_{1} + \sqrt[p]{a_{2} + \dots + \sqrt[p]{a_{n}}}} \leqslant \sqrt[p]{M^{p} + \sqrt[p]{M^{p^{2}} + \dots + \sqrt[p]{M^{p^{n}}}}}$$

$$= M\sqrt[p]{1 + \sqrt[p]{1 + \dots + \sqrt[p]{1}}} \leqslant M \lim_{n \to \infty} \sqrt[p]{1 + \sqrt[p]{1 + \dots + \sqrt[p]{1}}},$$

$$n \uparrow \text{ if } \exists \text{ if } \text{ if$$

其中最后一个等号的极限存在性可以考虑递增函数确定的递推

$$x_1 = \sqrt[p]{1}, x_{n+1} = \sqrt[p]{1 + x_n}, n \in \mathbb{N}.$$

注意到 $x_2 = \sqrt[q]{2} > 1 = x_1$,不动点 $x_0 > 1$ 满足 $x_0^p - x_0 - 1 = 0$. 因此由命题 2.16知 $\{x_n\}_{n=1}^{\infty}$ 递增有上界,从而极限存在.

命题 9.1

若
$$\sum_{n=1}^{\infty} a_n$$
 收敛, 则 $\lim_{n\to\infty} \frac{\sum_{k=1}^{n} ka_k}{n} = 0$.

笔记 这个命题是一个重要的需要记忆的结论,在很多难题时可能是一个很微不足道的中间步骤,但却会把人卡住。

这个命题是命题 6.6的离散版本.

注此外,此类问题还不是直接应用 Stolz 定理就可以的. 笔记如果我们直接使用 Stolz 定理,就有

$$\lim_{n\to\infty} \frac{\sum_{k=1}^{n} ka_k}{n} = \lim_{n\to\infty} \frac{na_n}{n - (n-1)} = \lim_{n\to\infty} na_n.$$

遗憾的是,上式最后的极限可能不存在,而 Stolz 定理不可以逆用.

证明 记 $s_k = \sum_{i=1}^k a_i$, 则由Abel 变换及 Stolz 公式可得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k a_k}{n} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n-1} [k - (k+1)] s_k + n s_n}{n}$$
$$= \lim_{n \to \infty} \left(s_n - \frac{\sum_{k=1}^{n-1} s_k}{n} \right)$$

$$= \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_n = 0.$$

设 $\sum_{n=1}^{\infty} a_n$ 收敛, 则

- \vec{E} 1. 若 a_n 单调,则 $\lim_{n\to\infty} na_n = 0$. 2. 若 na_n 单调,则 $\lim_{n\to\infty} n \ln n \cdot a_n = 0$.
- 3. 若 $n \ln n \cdot a_n$ 单调,则 $\lim_{n \to \infty} n \ln n \cdot \ln \ln n \cdot a_n = 0$.

证明

1. 不妨设 a_n 递减, 否则考虑 $-a_n$ 即可. 因为收敛级数末项趋于 0, 所以我们知道 a_n 递减到 0. 注意到由 a_n 递 减知

$$0 \leqslant 2na_{2n} \leqslant 2\sum_{k=n+1}^{2n} a_k, \ 0 \leqslant (2n-1)a_{2n-1} \leqslant 2na_{2n-1} \leqslant 2\sum_{k=n}^{2n-1} a_k.$$

现在由 Cauchy 收敛准则知

$$\lim_{n \to \infty} 2na_{2n} = \lim_{n \to \infty} (2n - 1)a_{2n-1} = 0.$$

由命题 1.1知 $\lim_{n\to\infty} na_n = 0$.

2. 不妨设 na_n 递减, 否则考虑 $-a_n$ 即可. 因为 $\lim_{n\to\infty}na_n=c\neq 0$ 会导致 $a_n\sim \frac{c}{n}$, 进而 $\sum_{n=0}^{\infty}a_n$ 发散, 所以我们知道 nan 递减到 0.

我们有

$$\sum_{\sqrt{n}-1\leqslant k\leqslant n-1} a_k = \sum_{\sqrt{n}-1\leqslant k\leqslant n-1} \frac{ka_k}{k} \geqslant na_n \sum_{\sqrt{n}-1\leqslant k\leqslant n-1} \frac{1}{k} \geqslant na_n \sum_{\sqrt{n}-1\leqslant k\leqslant n-1} \int_k^{k+1} \frac{1}{x} dx$$
$$= na_n \int_{|\sqrt{n}|}^n \frac{1}{x} dx = na_n \ln \frac{n}{|\sqrt{n}|} \geqslant na_n \ln \frac{n}{\sqrt{n}} = \frac{1}{2} na_n \ln n \geqslant 0,$$

利用 Cauchy 收敛准则和夹逼准则我们得到 $\lim_{n\to\infty} n \ln n \cdot a_n = 0$.

3. 不妨设 $n \ln n \cdot a_n$ 递减, 否则考虑 $-a_n$ 即可. 若 $\lim_{n \to \infty} (n \ln n \cdot a_n) = c \neq 0$. 注意到 $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ 发散, $\sum_{n=2}^{\infty} a_n$ 收敛, 这就和比较判别法矛盾! 因此 $\lim_{n\to\infty} (n \ln n \cdot a_n) = 0$, 从而 $a_n \ge 0$. 注意到

$$\begin{split} \sum_{[\ln n] \leqslant k \leqslant n} a_k &= \sum_{[\ln n] \leqslant k \leqslant n} \frac{k \ln k \cdot a_k}{k \ln k} \geqslant n \ln n \cdot a_n \sum_{[\ln n] \leqslant k \leqslant n} \frac{1}{k \ln k} \\ &\geqslant n \ln n \cdot a_n \sum_{[\ln n] \leqslant k \leqslant n} \int_k^{k+1} \frac{1}{x \ln x} \mathrm{d}x = n \ln n \cdot a_n \int_{[\ln n]}^{n+1} \frac{1}{x \ln x} \mathrm{d}x \\ &= n \ln n \cdot a_n \cdot \ln \frac{\ln (n+1)}{\ln [\ln n]} \geqslant n \ln n \cdot a_n \cdot \ln \frac{\ln n}{\ln \ln n} \sim n \ln n \cdot \ln \ln n \cdot a_n, \end{split}$$

利用 Cauchy 收敛准则就证明了 $\lim_{n\to\infty} n \ln n \cdot \ln \ln n \cdot a_n = 0$.

定理 9.13 (级数的控制收敛定理)

设
$$a_n(s), n = 1, 2, \cdots$$
 满足

$$|a_n(s)| \leqslant c_n, \sum_{n=1}^{\infty} c_n < \infty,$$

以及 $\lim_{s} a_n(s) = b_n \in \mathbb{R}$.

Ŋ١

$$\lim_{s} \sum_{n=1}^{\infty} a_n(s) = \sum_{n=1}^{\infty} b_n,$$

这里 \lim_{n} 表示 s 趋于某个 $s_0 \in \mathbb{R} \cup \{-\infty, +\infty\}$.

证明 事实上由极限保号性, 我们知道 $|b_n| \leqslant c_n, n=1,2,\cdots$, 因此 $\sum_{n=1}^{\infty} b_n$ 绝对收敛, 从而

$$\left| \sum_{n=1}^{\infty} a_n(s) - \sum_{n=1}^{\infty} b_n \right| \le \left| \sum_{n=1}^{m} (a_n(s) - b_n) \right| + \sum_{n=m+1}^{\infty} |a_n(s) - b_n|$$

$$\le \left| \sum_{n=1}^{m} (a_n(s) - b_n) \right| + 2 \sum_{n=m+1}^{\infty} c_n.$$

对s取极限得

$$\lim_{s} \left| \sum_{n=1}^{\infty} a_n(s) - \sum_{n=1}^{\infty} b_n \right| \leqslant 2 \sum_{n=m+1}^{\infty} c_n.$$

由 m 任意性及 $\sum_{n=1}^{\infty} c_n$ 收敛的 Cauchy 收敛准则得

$$\lim_{s} \left| \sum_{n=1}^{\infty} a_n(s) - \sum_{n=1}^{\infty} b_n \right| = 0.$$

我们完成了级数控制收敛定理的证明.

例题 9.1 求 $\lim_{n\to\infty}\sum_{k=1}^{n-1}\left(\frac{k}{n}\right)^n$.

解 注意到

$$\lim_{n \to \infty} \sum_{k=1}^{n-1} \left(\frac{k}{n}\right)^n = \lim_{n \to \infty} \sum_{k=1}^{n-1} \left(\frac{n-k}{n}\right)^n = \lim_{n \to \infty} \sum_{k=1}^{\infty} \left(1 - \frac{k}{n}\right)^n \chi_{\{1, 2, \dots, n-1\}}(k),$$

并且

$$\left|\left(1-\frac{k}{n}\right)^n\chi_{\{1,2,\cdots,n-1\}}(k)\right|\leqslant e^{n\ln\left(1-\frac{k}{n}\right)}\leqslant e^{n\cdot\left(-\frac{k}{n}\right)}=e^{-k}.$$

又 $\sum_{k=1}^{\infty} e^{-k} < \infty$, 故由级数的控制收敛定理及(??)式可知

$$\lim_{n \to \infty} \sum_{k=1}^{n-1} \left(\frac{k}{n}\right)^n = \sum_{k=1}^{\infty} \lim_{n \to \infty} \left(1 - \frac{k}{n}\right)^n \chi_{\{1, 2, \dots, n-1\}}(k) = \sum_{k=1}^{\infty} e^{-k}$$

$$= \frac{e^{-1}}{1 - e^{-1}} = \frac{1}{e - 1}.$$

定理 9.14 (级数的 Levi 定理)

若非负 $a_n(s), n=1,2,\cdots$ 满足 $a_n(s)$ 是 s 的关于趋近方向的递增函数 (注意如果取极限的方式是 $s\to s_0^+$, 那 么应该是关于 s 的递减函数) 且

$$\lim_{s} a_n(s) = b_n \in \mathbb{R} \bigcup \{+\infty\}.$$

证明

$$\lim_{s} \sum_{n=1}^{\infty} a_n(s) = \sum_{n=1}^{\infty} b_n.$$

 \Diamond

🔮 笔记 本定理即使级数发散, 极限数列发散, 也能使用.

证明 若 $\sum_{n=1}^{\infty} b_n$ 收敛, 那么由于 $0 \leqslant a_n(s) \leqslant b_n$, 取控制级数 $\sum_{n=1}^{\infty} b_n$ 即可使用控制收敛定理得到

$$\lim_{s} \sum_{n=1}^{\infty} a_n(s) = \sum_{n=1}^{\infty} b_n.$$

若 $\sum_{n=1}^{\infty} b_n$ 发散, 由于 $\sum_{n=1}^{\infty} a_n(s)$ 也单调递增, 故 $\lim_{s} \sum_{n=1}^{\infty} a_n(s)$ 广义存在. 假设

$$\lim_{s} \sum_{n=1}^{\infty} a_n(s) = m < \infty,$$

此时对任何 $N \in \mathbb{N}$, 都有

$$\sum_{n=1}^{N} b_n = \lim_{s} \sum_{n=1}^{N} a_n(s) \leqslant \lim_{s} \sum_{n=1}^{\infty} a_n(s) = m < \infty,$$

矛盾! 我们完成了 Levi 定理的证明.

引理 9.1 (级数的 Fatou 引理)

设非负数列 $a_n(s), n = 1, 2, \dots, 则$

$$\sum_{n=1}^{\infty} \underline{\lim}_{s} a_{n}(s) \leqslant \underline{\lim}_{s} \sum_{n=1}^{\infty} a_{n}(s).$$

室记本定理即使级数发散,极限数列发散,也能使用.

证明 不妨设 $s \to +\infty$, 考虑 $g_n(s) \triangleq \inf_{t \geq s} a_n(t)$, 则 g_n 关于趋于方向递增非负, 所以由级数的 Levi 定理知

$$\sum_{n=1}^{\infty} \underline{\lim}_{s} a_n(s) = \sum_{n=1}^{\infty} \lim_{s} g_n(s) = \lim_{s} \sum_{n=1}^{\infty} g_n(s) = \lim_{s} \sum_{n=1}^{\infty} \inf_{t \geqslant s} a_k(t) \leqslant \underline{\lim}_{s} \sum_{n=1}^{\infty} a_k(s),$$

这就完成了证明. □

定理 9.15 (级数的 Fubini 定理)

满足下述条件之一时,必有

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m,n}.$$
 (9.5)

1. $a_{m,n} \geqslant 0, \forall m, n \in \mathbb{N};$

2

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{m,n}| < \infty.$$

m

笔记 第一个条件级数发散也能用,再一次体现思想:非负级数无脑换.

证明

1. 由级数的 Levi 定理. 我们注意到 $\{\sum_{n=1}^{N}a_{m,n}\}$ 关于 N 非负递增,于是有

$$\sum_{m=1}^{\infty} \lim_{N \to \infty} \sum_{n=1}^{N} a_{m,n} = \lim_{N \to \infty} \sum_{m=1}^{\infty} \sum_{n=1}^{N} a_{m,n} = \lim_{N \to \infty} \sum_{n=1}^{N} \sum_{m=1}^{\infty} a_{m,n} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m,n},$$
(9.6)

这就是 (9.5).

2. 注意到

$$\sum_{m=1}^{\infty} \left| \sum_{n=1}^{N} a_{m,n} \right| \leqslant \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{m,n}| < \infty,$$

于是由级数的控制收敛定理知 (9.6) 仍然成立, 这就是 (9.5).

定理 9.16 (级数加括号的理解)

- 1. 收敛级数任意加括号也收敛且收敛到同一个值.
- 2. 级数加括号之后收敛,且括号内每个元素符号相同,则原级数收敛,且级数值和如此加括号后一致.

证明

1. 设加括号后新的级数是 $\sum_{k=1}^{\infty} \sum_{j=n_k+1}^{n_{k+1}} a_j$, 其中 n_k 递增趋于 $+\infty$. 则

$$\sum_{k=1}^{\infty} \sum_{j=n_k+1}^{n_{k+1}} a_j = \lim_{m \to \infty} \sum_{k=1}^{m} \sum_{j=n_k+1}^{n_{k+1}} a_j = \lim_{m \to \infty} \sum_{j=n_1+1}^{n_{m+1}} a_j = \sum_{j=n_1+1}^{\infty} a_j,$$

这就完成了证明.

2. 即证明对严格递增的 $\{n_k\}_{k=1}^{\infty}\subset\mathbb{N}, n_1=0,$ 如果 $\sum_{k=1}^{\infty}\sum_{j=n_k+1}^{n_{k+1}}a_j$ 收敛且对任何 $k\in\mathbb{N}$ 都有 $a_{n_k+1},a_{n_k+2},\cdots,a_{n_{k+1}}$

将符号相同,则 $\sum_{i=1}^{\infty} a_i$ 收敛且

$$\sum_{j=1}^{\infty} a_j = \sum_{k=1}^{\infty} \sum_{j=n_k+1}^{n_{k+1}} a_j. \tag{9.7}$$

事实上, 对每个 $n \in \mathbb{N}$, 存在唯一的 $m \in \mathbb{N}$, 使得 $n_m < n \leqslant n_{m+1}$, 此时

$$\sum_{j=1}^{n} a_j = \sum_{k=1}^{m-1} \sum_{j=n_k+1}^{n_{k+1}} a_j + \sum_{j=n_m+1}^{n} a_j.$$

则当 $a_j \ge 0, n_m < j \le n_{m+1}$, 我们有

$$\sum_{j=1}^{n} a_j \geqslant \sum_{k=1}^{m-1} \sum_{j=n_k+1}^{n_{k+1}} a_j, \sum_{j=1}^{n} a_j = \sum_{k=1}^{m} \sum_{j=n_k+1}^{n_{k+1}} a_j - \sum_{j=n+1}^{n_{m+1}} a_j \leqslant \sum_{k=1}^{m} \sum_{j=n_k+1}^{n_{k+1}} a_j.$$

$$(9.8)$$

若 $a_i ≤ 0, n_m < j ≤ n_{m+1}$, 可得 (9.8) 的类似式

$$\sum_{k=1}^{m} \sum_{j=n_k+1}^{n_{k+1}} a_j \leqslant \sum_{j=1}^{n} a_j \leqslant \sum_{k=1}^{m-1} \sum_{j=n_k+1}^{n_{k+1}} a_j.$$
(9.9)

让 $n \to +\infty$, 我们由 (9.8),(9.9) 和夹逼准则得 (9.7). 这就完成了证明.

命题 9.3

1. 设 $\{a_n\}_{n=1}^{\infty} \subset [0,+\infty), S_n = \sum_{k=1}^n a_k, n \in \mathbb{N}.$ 若 $\{a_n\}_{n=1}^{\infty}$ 不恒为 0, 不妨设 $a_1 \neq 0$, 则有

$$\sum_{n=1}^{\infty} \frac{a_n}{S_n^p} \begin{cases} \psi \mathfrak{D}, & p > 1, \\ \pi \sum_{n=1}^{\infty} a_n \, \text{distance}, & 0$$

2. 对
$$p > 0$$
 和收敛级数 $\sum_{n=1}^{\infty} a_n, a_n > 0$, 定义 $R_n = \sum_{k=n+1}^{\infty} a_k, n = 0, 1, 2, \cdots$, 证明
$$\sum_{n=1}^{\infty} \frac{a_n}{R_{n-1}^p} = \begin{cases} \psi \otimes_{,} & 0$$

<mark>筆记</mark> 本结果虽然不能直接使用, 但连同证明方法却要记住! 并且要学会联想和转化到本题的样子, 例如

$$\sum \left(1 - \frac{a_{n+1}}{a_n}\right), \sum \left(\frac{\ln \frac{a_n}{a_{n+1}}}{\ln a_n}\right)$$

等结构.

证明

1. 当 p > 1, 注意到

$$\sum_{n=2}^{\infty} \frac{a_n}{S_n^p} = \sum_{n=2}^{\infty} \frac{S_n - S_{n-1}}{S_n^p} = \sum_{n=2}^{\infty} \int_{S_{n-1}}^{S_n} \frac{1}{S_n^p} dx \leqslant \sum_{n=2}^{\infty} \int_{S_{n-1}}^{S_n} \frac{1}{x^p} dx = \int_{S_1}^{\sum_{n=1}^{\infty} a_n} \frac{1}{x^p} dx,$$

可以看到无论 $\sum_{i=1}^{\infty} a_n$ 收敛性如何都有 $\sum_{i=1}^{\infty} \frac{a_n}{S_n^p}$ 收敛.

当
$$0 ,若 $\sum_{n=1}^{\infty} a_n$ 收敛,则有 $\frac{a_n}{S_n^p} \sim \frac{a_n}{\left(\sum_{n=1}^{\infty} a_n\right)^p} = ca_n, n \to \infty$,其中 c 是某个常数,故 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^p}$ 收敛. 当$$

 $\sum_{n=0}^{\infty} a_n$ 发散, 我们对任何充分大的 $m,k \in \mathbb{N}$ 都有

$$1 - \frac{S_k}{S_{k+m}} = \frac{S_{k+m} - S_k}{S_{k+m}} = \sum_{n=k+1}^{k+m} \frac{a_n}{S_{k+m}} \leqslant \sum_{n=k+1}^{k+m} \frac{a_n}{S_n} \leqslant \sum_{n=k+1}^{k+m} \frac{a_n}{S_n^p}.$$

让 $m \to +\infty$, 利用 $S_{k+m} \to +\infty$, 于是我们有余项不能任意小, 因此由 Cauchy 收敛准则知 $\sum_{k=0}^{\infty} \frac{a_k}{S_k^p}$ 发散. 这就 完成了证明.

2. 一方面

$$\sum_{n=1}^{\infty} \frac{a_n}{R_{n-1}^p} = \sum_{n=1}^{\infty} \frac{R_{n-1} - R_n}{R_{n-1}^p} \leqslant \sum_{n=1}^{\infty} \int_{R_n}^{R_{n-1}} \frac{1}{x^p} \mathrm{d}x = \int_0^{R_0} \frac{1}{x^p} \mathrm{d}x.$$

故当 $0 有 <math>\sum_{n=1}^{\infty} \frac{a_n}{R_{n-1}^p}$ 收敛. 另外一方面, 当 $p \geqslant 1$, 对 $m, t \in \mathbb{N}^*$, 有

$$\sum_{n=m}^{m+t} \frac{a_n}{R_{n-1}^P} = \sum_{n=m}^{m+t} \frac{R_{n-1} - R_n}{R_{n-1}^P} \geqslant \sum_{n=m}^{m+t} \frac{R_{n-1} - R_n}{R_{m-1}^P} = \frac{R_{m-1} - R_{m+t}}{R_{m-1}^P}.$$

注意 $\lim_{t\to +\infty} R_{m+t} = 0$, 故

$$\lim_{t \to +\infty} \sum_{n=m}^{m+t} \frac{a_n}{R_{n-1}^p} \ge \begin{cases} 1, & p = 1, \\ \frac{1}{R_{m-1}^{p-1}} \ge \frac{1}{R_0^{p-1}} > 0, & p > 1. \end{cases}$$

即
$$\sum_{n=1}^{\infty} \frac{a_n}{R_{n-1}^p}$$
 发散.

9.1.2 幂级数阶与系数阶的关系

定理 9.17 (幂级数系数的阶蕴含幂级数和函数的阶)

(1) 设

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, x \in (-1, 1)$$
(9.10)

满足

$$b_n > 0$$
, $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, $\lim_{x \to 1^-} g(x) = +\infty$, (9.11)

则

$$\lim_{x \to 1^{-}} \frac{f(x)}{g(x)} = 0. \tag{9.12}$$

(2) 设

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, x \in (-1, 1)$$

满足

$$b_n > 0$$
, $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$, $\lim_{x \to 1^-} g(x) = +\infty$, (9.13)

则

$$\lim_{x \to 1^{-}} \frac{f(x)}{g(x)} = 1. \tag{9.14}$$

(3) 设

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, x \in \mathbb{R}$$
 (9.15)

满足

$$b_n > 0$$
, $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, (9.16)

则

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0. \tag{9.17}$$

(4) 设

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, x \in \mathbb{R}$$
 (9.18)

满足

$$b_n > 0$$
, $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$, (9.19)

则

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1. \tag{9.20}$$

注 一句话总结本结论: 即幂级数系数的阶蕴含幂级数和函数的阶.

证明

(1) 注意到

$$\frac{f(x)}{g(x)} = \sum_{n=0}^{\infty} \frac{a_n}{b_n} \frac{b_n x^n}{\sum_{k=0}^{\infty} b_k x^k}.$$

我们有

$$0 \leqslant \lim_{x \to 1^{-}} \frac{b_n x^n}{\sum_{k=0}^{\infty} b_k x^k} = \lim_{x \to 1^{-}} \frac{b_n x^n}{g(x)} = 0.$$

由Toeplitz 定理 (b)以及 (9.11) 即得 (9.12).

$$\lim_{x \to 1^{-}} \frac{f(x) - g(x)}{g(x)} = 0,$$

即得 (9.14).

(3) 注意到

$$\frac{f(x)}{g(x)} = \sum_{n=0}^{\infty} \frac{a_n}{b_n} \frac{b_n x^n}{\sum\limits_{k=0}^{\infty} b_k x^k}.$$

我们有

$$0 \leqslant \frac{b_n x^n}{\sum_{k=0}^{\infty} b_k x^k} \leqslant \frac{b_n x^n}{b_n x^n + b_{n+1} x^{n+1}} = \frac{b_n}{b_n + b_{n+1} x},$$

即 $\lim_{x \to +\infty} \frac{b_n x^n}{\sum_{k=0}^{\infty} b_k x^k} = 0$. 由Toeplitz 定理 (b)以及 (9.16) 我们就得到 (9.17).

(4) 由 $\lim_{n\to\infty} \frac{a_n - b_n}{b_n} = 0$ 和 (3) 问知

$$\lim_{x \to 1^{-}} \frac{f(x) - g(x)}{g(x)} = 0,$$

即得 (9.20).

例题 9.2 设 p 是 \mathbb{R} 上实解析函数且 $0 < \prod_{n=0}^{\infty} p^{(n)}(0) < \infty$, 求 $\lim_{x \to +\infty} \frac{p'(x)}{p(x)}$.

证明 注意到

$$1 = \lim_{m \to \infty} \frac{\prod_{n=0}^{m+1} p^{(n)}(0)}{\prod_{n=0}^{m} p^{(n)}(0)} = \lim_{m \to \infty} p^{(m)}(0),$$

所以 $\{p^{(n)}(0)\}_{n=0}^{\infty}$ 是有界数列, 故

$$p(x) = \sum_{n=0}^{\infty} \frac{p^{(n)}(0)}{n!} x^n, x \in \mathbb{R}.$$

在 R 上有定义且收敛. 于是

$$p'(x) = \sum_{n=0}^{\infty} \frac{p^{(n+1)}(0)}{n!} x^n, x \in \mathbb{R}.$$

由定理 9.17(3), 我们有

$$\lim_{n \to \infty} \frac{\frac{p^{(n)}(0)}{n!}}{\frac{p^{(n+1)}(0)}{n!}} = 1 \Rightarrow \lim_{x \to +\infty} \frac{p'(x)}{p(x)} = 1.$$

例题 9.3 计算

$$\sum_{n=1}^{\infty} \ln n \cdot x^n \sim \frac{\ln \frac{1}{1-x}}{1-x}, x \to 1^-.$$

解 注意到

$$\ln n \sim 1 + \frac{1}{2} + \dots + \frac{1}{n}, n \to \infty.$$

由定理 9.17可知

$$\sum_{n=1}^{\infty} \ln n \cdot x^n \sim \sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n \xrightarrow{\text{M} \underbrace{5.27}} \frac{-\ln (1-x)}{1-x} = \frac{\ln \frac{1}{1-x}}{1-x}, x \to 1^-.$$

例题 9.4 证明:

$$\lim_{y \to 1^{-}} \frac{1}{\ln(1-y)} \int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{(1-x^{2})(1-y^{2}x^{2})}} = -\frac{1}{2}.$$

证明 注意到

$$\int_{0}^{1} \frac{dx}{\sqrt{1 - x^{2}} \sqrt{1 - y^{2}x^{2}}} = \int_{0}^{1} \frac{1 + \sum_{k=1}^{\infty} \frac{(2k-1)!!}{2^{k}k!} x^{2k} y^{2k}}{\sqrt{1 - x^{2}}} dx = \int_{0}^{1} \frac{1}{\sqrt{1 - x^{2}}} dx + \sum_{k=1}^{\infty} \left[\frac{(2k-1)!!}{(2k)!!} \int_{0}^{1} \frac{x^{2k}}{\sqrt{1 - x^{2}}} dx \right] y^{2k}$$

$$\xrightarrow{x = \cos \theta} \frac{\pi}{2} + \sum_{k=1}^{\infty} \left[\frac{(2k-1)!!}{(2k)!!} \int_{0}^{\frac{\pi}{2}} \sin^{2k} \theta d\theta \right] y^{2k} = \frac{\pi}{2} + \frac{\pi}{2} \sum_{k=1}^{\infty} \left[\frac{(2k-1)!!}{(2k)!!} \right]^{2} y^{2k}.$$

又由Wallis 公式知

$$\frac{(2k)!!}{(2k-1)!!} \sim \sqrt{\pi k}, k \to \infty.$$

故由定理 9.17可得

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x^2}\sqrt{1-y^2x^2}} \sim \frac{\pi}{2} \sum_{k=1}^\infty \frac{y^{2k}}{\pi k} = \frac{1}{2} \sum_{k=1}^\infty \frac{(y^2)^k}{k} = -\frac{1}{2} \ln(1-y^2)$$
$$= -\frac{1}{2} \ln(1-y) - \frac{1}{2} \ln(1+y) \sim -\frac{1}{2} \ln(1-y), y \to 1^-.$$

例题 9.5 证明

$$\sum_{n=2}^{\infty} \frac{x^n}{\ln n} \sim \frac{1}{(1-x)\ln\frac{1}{1-x}}, x \to 1^-.$$

证明 注意到 $\sum_{n=2}^{\infty} \frac{x^n}{\ln n}$ 在 (-1,1) 上绝对收敛, 由Cauchy 积收敛定理及推论 9.1 可知

$$-\ln(1-x)\sum_{n=2}^{\infty} \frac{x^n}{\ln n} = \sum_{n=1}^{\infty} \frac{x^n}{n} \cdot \sum_{n=2}^{\infty} \frac{x^n}{\ln n} = \frac{\# \& 9.1}{\ln x} \sum_{n=3}^{\infty} \left(\sum_{k=2}^{n-1} \frac{1}{\ln k (n-k)}\right) x^n.$$

下证 $\lim_{n \to +\infty} \sum_{k=2}^{n-1} \frac{1}{(n-k)\ln k} = 1.$ 一方面, 我们有

$$\sum_{k=2}^{n-1} \frac{1}{(n-k)\ln k} \geqslant \sum_{k=2}^{n-1} \frac{1}{(n-k)\ln (n-1)} = \frac{\sum_{k=1}^{n-2} \frac{1}{k}}{\ln (n-1)} \to 1, n \to \infty.$$

另一方面, 对 $\forall \varepsilon \in (0,1)$, 我们有

$$\sum_{k=2}^{n-1} \frac{1}{(n-k)\ln k} \le \sum_{2 \le k \le \varepsilon n} \frac{1}{(n-k)\ln k} + \sum_{\varepsilon n \le k \le n-1} \frac{1}{(n-k)\ln k}$$

$$\leq \frac{1}{n(1-\varepsilon)} \sum_{2 \leq k \leq \varepsilon n} \frac{1}{\ln 2} + \sum_{\varepsilon n \leq k \leq n-1} \frac{1}{(n-k)\ln \varepsilon n}$$

$$\leq \frac{\varepsilon n}{n(1-\varepsilon)\ln 2} + \frac{\sum_{\varepsilon n \leq k \leq n-1} \frac{1}{k}}{\ln \varepsilon + \ln n}.$$

$$\varlimsup_{n\to\infty}\sum_{k=2}^{n-1}\frac{1}{(n-k)\ln k}\leqslant\frac{\varepsilon}{(1-\varepsilon)\ln 2}+1.$$

再令 $\varepsilon \to 0^+$ 得

$$\overline{\lim}_{n \to \infty} \sum_{k=2}^{n-1} \frac{1}{(n-k)\ln k} \leqslant 1.$$

故由夹逼准则知 $\lim_{n\to+\infty} \sum_{k=2}^{n-1} \frac{1}{(n-k)\ln k} = 1$. 于是由定理 9.17可知

$$-\ln(1-x)\sum_{n=2}^{\infty} \frac{x^n}{\ln n} = \sum_{n=3}^{\infty} \left(\sum_{k=2}^{n-1} \frac{1}{\ln k (n-k)}\right) x^n \sim \sum_{n=3}^{\infty} x^n = \frac{1}{1-x}, x \to 1^-.$$

$$\mathbb{E} \sum_{n=2}^{\infty} \frac{x^n}{\ln n} \sim \frac{1}{(1-x)\ln\frac{1}{1-x}}, x \to 1^-.$$

例题 9.6 设

$$a_0 = 1, a_1 = \frac{5}{4}, a_n = \frac{(2n+3)a_{n-1} + (2n-3)a_{n-2}}{4n}, n = 2, 3, \dots$$

求 $\lim_{n\to\infty} a_n$.

笔记 注意到形式幂级数法我们不需要担心考虑的 f 的幂级数是否收敛的问题. 因为这个方法最后往往可以算出一个具体的 f, 对这个 f 来说直接用数学归纳法计算验证会发现其 Taylor 多项式的系数恰好就是条件中的数列, 从而整个逻辑严谨. 因此这又是一个从逻辑上来说属于**先猜后证**的方法.

从证明可以看到本题实质上是通过幂级数法求出了 a_n 的通项. 此外考虑 $\frac{1}{1-x}f(x)$ 的幂级数并用 Cauchy 积可以导出 $\sum_{k=0}^{n}a_k$ 的信息.

如果要严谨地证明,就是用数学归纳法证明下述求出来的 a_n 通项表达式 (其实就是下面解出来的 f 的 Taylor 展开式中的通项) 就是满足题目条件的 a_n , 再直接计算其极限即可.

证明 记
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
,则 $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$.由条件可得
$$4na_n = (2n+3)a_{n-1} + (2n-3)a_{n-2}, \quad n = 2, 3, \cdots.$$

$$\Rightarrow 4 \sum_{n=2}^{\infty} n a_n x^n = \sum_{n=2}^{\infty} [(2n+3)a_{n-1} + (2n-3)a_{n-2}] x^n.$$

$$\Rightarrow 4 \sum_{n=1}^{\infty} n a_n x^n - 4a_1 x = \sum_{n=1}^{\infty} (2n+5)a_n x^{n+1} + \sum_{n=0}^{\infty} (2n+1)a_n x^{n+2}$$

$$\Rightarrow 4x \sum_{n=1}^{\infty} n a_n x^{n-1} - 5x = 2x^2 \sum_{n=1}^{\infty} n a_n x^{n-1} + 2x^3 \sum_{n=1}^{\infty} n a_n x^{n-1} + 5x \sum_{n=1}^{\infty} a_n x^n + x^2 \sum_{n=0}^{\infty} a_n x^n$$

$$\Rightarrow 4x \sum_{n=1}^{\infty} n a_n x^{n-1} - 5x = 2x^2 \sum_{n=1}^{\infty} n a_n x^{n-1} + 2x^3 \sum_{n=1}^{\infty} n a_n x^{n-1} + 5x \sum_{n=0}^{\infty} a_n x^n + x^2 \sum_{n=0}^{\infty} a_n x^n - 5x$$

$$\Rightarrow (2x^3 + 2x^2 - 4x) \sum_{n=1}^{\infty} n a_n x^{n-1} + (x^2 + 5x) \sum_{n=1}^{\infty} a_n x^n = 0$$

$$\Rightarrow (2x^3 + 2x^2 - 4x) f'(x) + (x^2 + 5x) f(x) = 0.$$

又注意到 $f(0) = a_0 = 1, f'(0) = a_1 = \frac{5}{4}$, 故分离变量解上述微分方程得

$$f(x) = \frac{1}{\sqrt{2}} \frac{\sqrt{x+2}}{1-x}.$$

因为 $\sqrt{x+2} \in C^{\infty}(\mathbb{R})$, 所以可记 $\sqrt{x+2} = \sum_{n=0}^{\infty} b_n x^n$, 则 $\sqrt{3} = \sum_{n=0}^{\infty} b_n$. 由Cauchy 积收敛定理及推论 9.1知

$$f(x) = \frac{1}{\sqrt{2}} \cdot \frac{1}{1 - x} \cdot \sqrt{x + 2} = \frac{1}{\sqrt{2}} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} b_k \right) x^n.$$

因此
$$a_n = \frac{1}{\sqrt{2}} \sum_{k=0}^n b_k$$
, 故 $\lim_{n \to \infty} a_n = \frac{1}{\sqrt{2}} \sum_{n=0}^\infty b_n = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{6}}{2}$.

9.1.3 Cauchy 积

定义 9.1 (Cauchy 积)

设 $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ 是两个收敛级数, 我们称

$$\sum_{n=0}^{\infty} c_n, c_n = \sum_{k=0}^{n} a_k b_{n-k}$$

为 $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ 的 **Cauchy**(**乘**) 积. 我们记

$$A_n = \sum_{k=0}^n a_k, B_n = \sum_{k=0}^n b_k, S_n = \sum_{k=0}^n c_k.$$

注 我们暂时并不清楚 $\sum_{n=0}^{\infty} c_n$ 是否收敛, 更不知道是否有

$$\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n.$$

结论 延续定义 9.1, 我们有

$$\begin{cases} a_0b_0 = c_0 \\ a_0b_1 + a_1b_0 = c_1 \\ a_0b_2 + a_1b_1 + a_2b_0 = c_2 \\ \vdots \\ a_0b_n + a_1b_{n-1} + a_2b_{n-2} + \dots + a_nb_0 = c_n \end{cases}$$

这可以看做一个线性方程组

$$\begin{pmatrix} a_0 & & & & & \\ a_1 & a_0 & & & & \\ a_2 & a_1 & a_0 & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

则当 $a_0 \neq 0$, 我们有

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_0 \\ a_1 & a_0 \\ a_2 & a_1 & a_0 \\ \vdots & \vdots & \vdots & \ddots \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}^{-1} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

本结论可以帮我们计算已知函数的倒数的 Taylor 展开. 例题 9.7 设 $a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}, n = 0, 1, \dots, 则$

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^n}{\sqrt{(n-k+1)(k+1)}}$$

发散.

注 这是一组 Cauchy 积不收敛的反例.

证明 事实上, 我们有

$$\left| \sum_{k=0}^{n} \frac{(-1)^{n}}{\sqrt{(n-k+1)(k+1)}} \right| = \sum_{k=0}^{n} \frac{1}{\sqrt{(n-k+1)(k+1)}} \geqslant \sum_{k=0}^{n} \frac{1}{\sqrt{\left(n-\frac{n}{2}+1\right)\left(\frac{n}{2}+1\right)}} = \frac{n+1}{\frac{n}{2}+1} \to 2,$$

上式的放缩实际上利用了二次函数 $(n-k+1)(k+1) = -k^2 + nk + n + 1$ 的最值大值点 $k = \frac{n}{2}$. 这就证明了

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^n}{\sqrt{(n-k+1)(k+1)}}$$

发散.

命题 9.4

延续定义 9.1, 我们有

$$\lim_{n \to \infty} \frac{\sum_{j=0}^{n} S_j}{n} = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$$
 (9.21)

证明 注意到

$$S_n = \sum_{k=0}^n \sum_{i=0}^k a_i b_{k-i} = \sum_{i=0}^n \sum_{k=i}^n a_i b_{k-i} = \sum_{i=0}^n a_i B_{n-i} = \sum_{i=0}^n a_{n-i} B_i,$$

于是我们有

$$\sum_{i=0}^{n} S_{j} = \sum_{i=0}^{n} \sum_{i=0}^{j} a_{j-i} B_{i} = \sum_{i=0}^{n} \sum_{j=i}^{n} a_{j-i} B_{i} = \sum_{i=0}^{n} A_{n-i} B_{i}$$

由命题 2.7可得(9.21).

设级数 $\sum_{n=0}^{\infty} a_n, \sum_{n=0}^{\infty} b_n$ 都收敛, 则它们的 Cauchy 积 $\sum_{n=0}^{\infty} c_n$ 收敛的充要条件是

$$\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n.$$

证明 延续定义 9.1, 充分性显然成立, 下证必要性. 由命题 9.4及 Stolz 定理可得

$$\sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n = \lim_{n \to \infty} \frac{\sum_{j=0}^{n} S_j}{n} = \lim_{n \to \infty} S_n = \sum_{n=0}^{\infty} c_n.$$

定理 9.18 (Cauchy 积收敛定理)

延续定义
$$9.1$$
, 我们有 $1. \stackrel{\sim}{E} \sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ 有一个绝对收敛, 则 $\sum_{n=0}^{\infty} c_n$ 收敛.

2. 若
$$\sum_{n=0}^{\infty} a_n$$
, $\sum_{n=0}^{\infty} b_n$ 都绝对收敛, 则 $\sum_{n=0}^{\infty} c_n$ 绝对收敛.

证明 1. 注意到

$$S_n = \sum_{k=0}^n \sum_{i=0}^k a_i b_{k-i} = \sum_{i=0}^n \sum_{k=i}^n a_i b_{k-i} = \sum_{i=0}^n a_i B_{n-i} = \sum_{i=0}^n a_{n-i} B_i,$$

因此我们只需证明

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{i=0}^n a_i B_{n-i}$$

收敛. 不妨设 (否则, 若 $\lim_{n\to\infty} B_n = B$, 则用 $B_n - B$ 代替 B_n)

$$\sum_{n=1}^{\infty} |a_n| < \infty, \lim_{n \to \infty} B_n = 0$$

于是运用命题 2.6就有

$$\lim_{n \to \infty} \left| \sum_{i=0}^{n} a_i B_{n-i} \right| \le \lim_{n \to \infty} \sum_{i=0}^{n} |a_i| \cdot |B_{n-i}| = \sum_{i=0}^{\infty} |a_i| \cdot 0 = 0$$

这就证明了 $\sum_{n=0}^{\infty} c_n$ 收敛.

2. 若
$$\sum_{n=0}^{\infty} a_n$$
, $\sum_{n=0}^{\infty} b_n$ 都绝对收敛. 注意到

$$\sum_{k=0}^{n} |c_k| \leqslant \sum_{k=0}^{n} \sum_{i=0}^{k} |a_i b_{k-i}| = \sum_{i=0}^{n} \sum_{k=i}^{n} |a_i b_{k-i}| = \sum_{i=0}^{n} \left(|a_i| \sum_{k=i}^{n} |b_{k-i}| \right)$$

于是由命题 2.6就有

$$\sum_{k=0}^{\infty} |c_k| \leqslant \lim_{n \to \infty} \sum_{i=0}^{n} \left(|a_i| \sum_{k=i}^{n} |b_{k-i}| \right) = \sum_{i=0}^{\infty} |a_i| \cdot \sum_{i=0}^{\infty} |b_i| < \infty$$

这就证明了 $\sum_{n=0}^{\infty} c_n$ 绝对收敛.

接下来我们研究 Cauchy 积和两个级数的积差距有多少.

延续定义 9.1, 我们有

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k \sum_{j=0}^{k-1} b_{n-j} = 0 \iff \sum_{n=0}^{\infty} c_n \, k \, \hat{\otimes} \,. \tag{9.22}$$

证明 注意到

$$S_n = \sum_{k=0}^n \sum_{i=0}^k a_i b_{k-i} = \sum_{i=0}^n \sum_{k=i}^n a_i b_{k-i} = \sum_{i=0}^n a_i B_{n-i} = \sum_{i=0}^n a_{n-i} B_i,$$

即
$$\sum_{i=0}^{n} b_{j} \sum_{k=0}^{n} a_{k} = \sum_{k=0}^{n} c_{k}$$
. 于是

$$\sum_{k=1}^{n} a_k \sum_{j=0}^{k-1} b_{n-j} = \sum_{k=1}^{n} a_k \left(\sum_{j=0}^{n} b_{n-j} - \sum_{j=k}^{n} b_{n-j} \right)$$

$$= \sum_{j=0}^{n} b_j \left(\sum_{k=0}^{n} a_k - a_0 \right) - \sum_{k=1}^{n} a_k \sum_{j=0}^{n-k} b_j$$

$$= \sum_{j=0}^{n} b_j \sum_{k=0}^{n} a_k - \sum_{k=0}^{n} \sum_{j=0}^{n-k} a_k b_j$$

$$= \sum_{j=0}^{n} b_j \sum_{k=0}^{n} a_k - \sum_{k=0}^{n} c_k$$

由于 Cauchy 积收敛,则由推论 9.1, 我们有

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k \sum_{j=0}^{k-1} b_{n-j} = 0 \iff \sum_{n=0}^{\infty} c_n \, \text{thg}$$

例题 9.8 设递减数列 $a_n, b_n > 0, n = 0, 1, 2, \dots$, 且 $\sum_{n=0}^{\infty} (-1)^n a_n$, $\sum_{n=0}^{\infty} (-1)^n b_n$ 收敛, 记 $c_n = \sum_{n=0}^{\infty} a_j b_{n-j}$, 证明

$$\sum_{n=0}^{\infty} (-1)^n c_n \psi \stackrel{\text{def}}{\otimes} \iff \lim_{n \to \infty} c_n = 0$$
(9.23)

证明 左推右显然, 现在假设 $\lim_{n\to\infty}c_n=0$, 由命题 9.5, 我们只需证明

$$\lim_{n \to \infty} \sum_{k=1}^{n} (-1)^k a_k \sum_{j=0}^{k-1} (-1)^{n-j} b_{n-j} = 0$$

现在

$$\left| \sum_{k=1}^{n} (-1)^{k} a_{k} \sum_{j=0}^{k-1} (-1)^{n-j} b_{n-j} \right| \leqslant \sum_{k=1}^{n} a_{k} \left| \sum_{j=0}^{k-1} (-1)^{n-j} b_{n-j} \right|$$

$$\leqslant \sum_{k=1}^{n} a_{k} b_{n-k+1} \leqslant \sum_{k=0}^{n+1} a_{k} b_{n-k+1} = c_{n+1}$$

其中第二个不等号来自于交错级数不等式. 于是我们有

$$\lim_{n \to \infty} \left| \sum_{k=1}^{n} (-1)^k a_k \sum_{j=0}^{k-1} (-1)^{n-j} b_{n-j} \right| = 0$$

我们证明了(9.23).

命题 9.6 设 $\{a_n\}_{n=0}^{\infty}$ ⊂ \mathbb{R} , 设

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, x \in (-1, 1).$$

记
$$S_n riangleq \sum_{k=0}^n a_k$$
,则

$$\frac{f(x)}{1-x} = \sum_{n=0}^{\infty} S_n x^n, x \in (-1, 1).$$

证明 由 Taylor 级数可知

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, x \in (-1, 1).$$

显然 $\sum_{n=0}^{\infty} x^n$ 在 (-1,1) 上绝对收敛, 故由Cauchy 积收敛定理可知 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ 和 $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ 的 Cauchy 积也

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} (a_k x^k) x^{n-k} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k x^n = \sum_{n=0}^{\infty} S_n x^n < +\infty.$$

故由推论 9.1可知

$$\frac{f(x)}{1-x} = \sum_{n=0}^{\infty} a_n x^n \cdot \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} S_n x^n.$$

9.2 具体级数敛散性判断

9.2.1 估阶法

例题 9.9 判断下述级数收敛性.
1.
$$\sum_{n=2}^{\infty} \frac{\ln(e^n + n^2)}{\sqrt[4]{n^8 + n^2 + 1} \cdot \ln^2(n+1)};$$

2.
$$\sum_{n=2}^{\infty} \frac{\sum_{k=1}^{n} \ln^{2} k}{n^{p}};$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{1} \frac{dt}{(1+t^{4})^{n}}.$$
证明

1. 注意到

$$\frac{\ln\left(e^{n}+n^{2}\right)}{\sqrt[4]{n^{8}+n^{2}+1}\cdot\ln^{2}(n+1)} = \frac{\ln\left(e^{n}\right)+\ln\left(1+\frac{n^{2}}{e^{n}}\right)}{\sqrt[4]{n^{8}+n^{2}+1}\cdot\ln^{2}(n+1)} \sim \frac{n}{n^{2}\cdot\ln^{2}n} = \frac{1}{n\ln^{2}n}, n \to \infty.$$

由积分判别法, 我们有

$$\sum \frac{1}{n \ln^2 n} \sim \int_2^\infty \frac{1}{x \ln^2 x} \mathrm{d}x = \int_{\ln 2}^\infty \frac{1}{y^2} \mathrm{d}y < \infty,$$

故原级数收敛.

2. 注意到运用 Stolz 定理, 我们有

$$\lim_{n \to \infty} \frac{1}{n \ln^2 n} \sum_{k=1}^n \ln^2 k = \lim_{n \to \infty} \frac{\ln^2 n}{n \ln^2 n - (n-1) \ln^2 (n-1)} = \frac{\frac{1}{10} \ln (1 + 1) \ln (1 + 1)}{\ln (1 + 1) \ln (1 + 1)} = \frac{\ln^2 n}{\ln^2 n + 2 \ln n} = 1.$$

于是

$$\sum_{n=2}^{\infty} \frac{\sum_{k=1}^{n} \ln^2 k}{n^p} \sim \sum_{n=2}^{\infty} \frac{n \ln^2 n}{n^p} = \sum_{n=2}^{\infty} \frac{\ln^2 n}{n^{p-1}}.$$

当 p > 2 时, 取 $\delta > 0$, 使得 $p - 1 - \delta > 1$. 又 $\lim_{n \to \infty} \frac{\ln^2 n}{n^{\delta}} = 0$, 故

$$\sum_{n=2}^{\infty} \frac{\ln^2 n}{n^{p-1}} = \sum_{n=2}^{\infty} \frac{1}{n^{p-1-\delta}} \cdot \frac{\ln^2 n}{n^{\delta}} < \sum_{n=2}^{\infty} \frac{C}{n^{p-1-\delta}} < +\infty.$$

当p ≤ 2 时,有

$$\sum_{n=2}^{\infty} \frac{\ln^2 n}{n^{p-1}} > \sum_{n=2}^{\infty} \frac{\ln^2 2}{n^{p-1}} = +\infty.$$

因此原级数收敛等价于 p > 2.

3. 由 Laplace 方法, 我们有

$$\int_0^1 \frac{\mathrm{d}t}{\left(1+t^4\right)^n} = \int_0^1 e^{-n\ln(1+t^4)} \mathrm{d}t \sim \int_0^\infty e^{-nt^4} \mathrm{d}t = \frac{1}{\sqrt[4]{n}} \int_0^\infty e^{-x^4} \mathrm{d}x, n \to \infty.$$

现在

$$\frac{1}{n}\int_0^1 \frac{\mathrm{d}t}{\left(1+t^4\right)^n} \sim \frac{C}{n^{\frac{5}{4}}}, n \to \infty,$$

故原级数收敛.

例题 9.10 设 $a_n = \int_0^{\frac{\pi}{2}} t \left| \frac{\sin^3(nt)}{\sin^3 t} \right| dt, n \in \mathbb{N}$, 判断 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛性.

 $\hat{\mathbf{y}}$ 笔记 如果需要 a_n 的一个精确的上界, 那么 (就是证法一) 我们可以先待定分段点 θ , 利用不等式 (这个不等式可用数学归纳法证明)

 $|\sin(nt)| \leq n |\sin t|, \forall n \in \mathbb{N}, t \in \mathbb{R},$

再结合 Jordan 不等式可得

$$\int_0^{\frac{\pi}{2}} t \left| \frac{\sin^3(nt)}{\sin^3 t} \right| dt = \int_0^{\theta} t \left| \frac{\sin^3(nt)}{\sin^3 t} \right| dt + \int_{\theta}^{\frac{\pi}{2}} t \left| \frac{\sin^3(nt)}{\sin^3 t} \right| dt$$

$$\leq \int_0^{\theta} \frac{t n^3 \sin^3 t}{\sin^3 t} dt + \int_{\theta}^{\frac{\pi}{2}} \frac{t}{\left(\frac{2}{\pi}t\right)^3} dt$$

$$= \frac{\theta^2 n^3}{2} + \frac{\pi^3}{8\theta} - \frac{\pi^2}{4} = g(\theta), \forall n \in \mathbb{N}.$$

此时再求出 $g(\theta)$ 的最小值点, 就能确定 θ 的取值, 进而得到一个较为精确的上界. 求导易知 $g(\theta) \geqslant g\left(\frac{\pi}{2n}\right) = \frac{3\pi^2}{8}n$, 即

$$\theta = \frac{\pi}{2n}, a_n \leqslant \frac{3\pi^2}{8}n, \forall n \in \mathbb{N}.$$

证明 证法一: 利用不等式

 $|\sin(nt)| \leq n|\sin t|, \forall n \in \mathbb{N}, t \in \mathbb{R},$

我们有

$$\int_0^{\frac{\pi}{2n}} t \left| \frac{\sin^3(nt)}{\sin^3 t} \right| dt \leqslant \int_0^{\frac{\pi}{2n}} \frac{t n^3 \sin^3 t}{\sin^3 t} dt = \frac{n^3}{2} \cdot \frac{\pi^2}{4n^2} = \frac{\pi^2}{8} n.$$

利用不等式 $\sin t \geqslant \frac{2}{\pi}t, \forall t \in \left[0, \frac{\pi}{2}\right],$ 我们有

$$\int_{\frac{\pi}{2n}}^{\frac{\pi}{2}} t \left| \frac{\sin^3(nt)}{\sin^3 t} \right| dt \leqslant \int_{\frac{\pi}{2n}}^{\frac{\pi}{2}} \frac{t}{\left(\frac{2}{2}t\right)^3} dt \leqslant \frac{\pi^3}{8} \int_{\frac{\pi}{2n}}^{\infty} \frac{1}{t^2} dt = \frac{\pi^3}{8} \cdot \frac{2n}{\pi} = \frac{\pi^2}{4} n, \forall n \in \mathbb{N}.$$

现在

$$\int_0^{\frac{\pi}{2}} t \left| \frac{\sin^3(nt)}{\sin^3 t} \right| \mathrm{d}t \leqslant \frac{\pi^2}{8} n + \frac{\pi^2}{4} n = \frac{3\pi^2}{8} n, \forall n \in \mathbb{N},$$

因此

$$\sum_{n=1}^{\infty} \frac{1}{a_n} \geqslant \frac{8}{3\pi^2} \sum_{n=1}^{\infty} \frac{1}{n} = +\infty.$$

证法二: 注意到 $\lim_{r\to 0} \frac{\sin^3 x}{r^3} = 1$, 故存在 c > 0, 使得

$$|\sin^3 x| \geqslant cx^3, x \in \left[0, \frac{\pi}{2}\right].$$

从而

$$a_n \leqslant \frac{1}{c} \int_0^{\frac{\pi}{2}} \frac{|\sin^3(nt)|}{t^2} dt = \frac{n}{c} \int_0^{\frac{n\pi}{2}} \frac{|\sin^3 y|}{v^2} dy \leqslant \frac{n}{c} \int_0^{\frac{n\pi}{2}} \frac{1}{v^2} dy \leqslant Kn, \ \forall n \in \mathbb{N}.$$

其中K为某个常数.于是

$$\sum_{n=1}^{\infty} \frac{1}{a_n} \geqslant \sum_{n=1}^{\infty} \frac{1}{Kn} = +\infty.$$

例题 9.11 对 x > 0, 判断级数 $\sum_{n=0}^{\infty} \left[(2-x) \left(2 - x^{\frac{1}{2}} \right) \cdots \left(2 - x^{\frac{1}{n}} \right) \right]$ 收敛性.

证明 当 $x=2^m, m\in\mathbb{N}$, 我们知道级数末项在 n 充分大时恒为 0, 因此原本的级数收敛. 下设 $x\neq 2^m, \forall m\in\mathbb{N}$. 此时

$$\lim_{n \to \infty} n \left(\frac{(2-x)\left(2-x^{\frac{1}{2}}\right)\cdots\left(2-x^{\frac{1}{n}}\right)}{(2-x)\left(2-x^{\frac{1}{2}}\right)\cdots\left(2-x^{\frac{1}{n+1}}\right)} - 1 \right) = \lim_{n \to \infty} n \left(\frac{1}{2-x^{\frac{1}{n+1}}} - 1 \right) = \lim_{n \to \infty} \frac{n\left(x^{\frac{1}{n+1}} - 1\right)}{2-x^{\frac{1}{n+1}}} = \lim_{n \to \infty} n \frac{\ln x}{n+1} = \ln x,$$

以及拉比判别法, 我们就有x > e 时级数收敛,x < e 时级数发散. 当x = e 时, 计算 Taylor 展开式得

$$\ln \frac{1}{2 - e^{\frac{1}{n+1}}} = \frac{1}{n} + \frac{1}{12n^4} + o\left(\frac{1}{n^4}\right), n \to \infty,$$

然后

$$\lim_{n\to\infty} \ln n \left[n \ln \frac{1}{2 - e^{\frac{1}{n+1}}} - 1 \right] = 0.$$

运用较为广泛的判别法 (极限版 2), 我们知道原级数发散. **例题 9.12** 判断级数 $\sum_{i=1}^{\infty} x^{\sin 1 + \sin \frac{1}{2} + \dots + \sin \frac{1}{n}}, x \in (0,1)$ 收敛性.

证明 注意到

$$\lim_{n \to \infty} n \left(\frac{x^{\sin 1 + \sin \frac{1}{2} + \dots + \sin \frac{1}{n}}}{x^{\sin 1 + \sin \frac{1}{2} + \dots + \sin \frac{1}{n+1}}} - 1 \right) = \lim_{n \to \infty} n \left(\frac{1}{x^{\sin \frac{1}{n+1}}} - 1 \right)$$

$$= \lim_{n \to \infty} n \left(e^{-\sin \frac{1}{n+1} \cdot \ln x} - 1 \right) = -\ln x \lim_{n \to \infty} n \sin \frac{1}{n+1} = -\ln x.$$

由拉比判别法, 我们有 $0 < x < \frac{1}{e}$ 时原级数收敛, $\frac{1}{e} < x < 1$ 时原级数发散. 当 $x = \frac{1}{e}$, 由较为广泛的判别法 (极限版

$$\lim_{n \to \infty} \ln n \left(n \ln \frac{x^{\sin 1 + \sin \frac{1}{2} + \dots + \sin \frac{1}{n}}}{x^{\sin 1 + \sin \frac{1}{2} + \dots + \sin \frac{1}{n+1}}} - 1 \right) = \lim_{n \to \infty} \ln n \left(n \ln \frac{1}{x^{\sin \frac{1}{n+1}}} - 1 \right)$$

$$= \lim_{n \to \infty} \ln n \left(n \ln e^{-\sin \frac{1}{n+1} \ln x} - 1 \right) = \lim_{n \to \infty} \ln n \left(n \left[e^{-\sin \frac{1}{n+1} \ln x} - 1 + O\left(\left(e^{-\sin \frac{1}{n+1} \ln x} - 1 \right)^2 \right) \right] - 1 \right)$$

$$= \lim_{n \to \infty} \ln n \left(n \left[-\sin \frac{1}{n+1} \ln x + O\left(\left(-\sin \frac{1}{n+1} \ln x \right)^2 \right) + O\left(\frac{1}{n^2} \right) \right] - 1 \right)$$

$$= \lim_{n \to \infty} \ln n \left(\left[n \sin \frac{1}{n+1} + O\left(\frac{1}{n} \right) \right] - 1 \right) = \lim_{n \to \infty} \left[\ln n \cdot O\left(\frac{1}{n} \right) \right] = 0,$$

我们有原级数在 $x = \frac{1}{a}$ 发散.

9.2.2 带对数换底法

例题 9.13 判断下列级数收敛性.

1.
$$\sum_{n=2}^{\infty} \frac{1}{r^{\ln n}} (r > 0);$$

$$2. \sum_{n=2}^{\infty} \frac{1}{\ln^{\ln n} n};$$

2.
$$\sum_{n=2}^{\infty} \frac{1}{\ln^{\ln n} n};$$
3.
$$\sum_{n=3}^{\infty} \frac{1}{(\ln \ln n)^{\ln n}};$$
4.
$$\sum_{n=3}^{\infty} \frac{1}{(\ln n)^{\ln \ln n}};$$

$$4. \sum_{n=3}^{\infty} \frac{1}{(\ln n)^{\ln \ln n}}$$

5.
$$\sum_{n=2}^{\infty} \frac{1}{n^{1+\frac{1}{\sqrt{\ln n}}}};$$

$$n=2 n^{1+\frac{1}{\sqrt{\ln n}}}$$
6. $\sum_{n=3}^{\infty} \frac{1}{n^{1+\frac{1}{\ln \ln n}} \ln n}$

1. 注意到

$$\sum_{n=2}^{\infty} \frac{1}{r^{\ln n}} = \sum_{n=2}^{\infty} \frac{1}{e^{\ln n \cdot \ln r}} = \sum_{n=2}^{\infty} \frac{1}{n^{\ln r}},$$

我们有原级数收敛等价于r > e.

2. 注意到

$$\sum_{n=100}^{\infty} \frac{1}{\ln^{\ln n} n} = \sum_{n=100}^{\infty} \frac{1}{e^{\ln n \cdot \ln \ln n}} = \sum_{n=100}^{\infty} \frac{1}{n^{\ln \ln n}} \leqslant \sum_{n=100}^{\infty} \frac{1}{n^{\ln \ln 100}} < \infty,$$

我们有原级数收敛.

3. 注意到

$$\sum_{n=[e^{e^e}]+1}^{\infty} \frac{1}{(\ln \ln n)^{\ln n}} = \sum_{n=[e^{e^e}]+1}^{\infty} \frac{1}{e^{\ln n \cdot \ln \ln \ln \ln n}} \leqslant \sum_{n=[e^{e^e}]+1}^{\infty} \frac{1}{e^{\ln n \cdot \ln \ln \ln \ln (e^{e^e}+1)}} = \sum_{n=[e^{e^e}]+1}^{\infty} \frac{1}{n^{\ln \ln \ln (e^{e^e}+1)}} < \infty,$$

我们有原级数收敛.

4. 由积分判别法, 我们有

$$\sum_{n=3}^{\infty} \frac{1}{(\ln n)^{\ln \ln n}} = \sum_{n=3}^{\infty} \frac{1}{e^{\ln^2 \ln n}} \sim \int_3^{\infty} \frac{1}{e^{\ln^2 \ln x}} dx \stackrel{x=e^y}{=} \int_{\ln 3}^{\infty} e^{y-\ln^2 y} dy = \infty,$$

故原级数发散.

5. 首先

$$\sum_{n=2}^{\infty} \frac{1}{n^{1+\frac{1}{\sqrt{\ln n}}}} = \sum_{n=2}^{\infty} \frac{1}{n e^{\sqrt{\ln n}}},$$

于是我们结合

$$\sum_{n=2}^{\infty} \frac{1}{ne^{\sqrt{\ln n}}} \leqslant \sum_{n=2}^{\infty} \int_{n-1}^{n} \frac{1}{xe^{\sqrt{\ln x}}} \mathrm{d}x = \int_{1}^{\infty} \frac{1}{xe^{\sqrt{\ln x}}} \mathrm{d}x = \int_{0}^{\infty} \frac{1}{e^{\sqrt{t}}} \mathrm{d}t < \infty$$

知原级数收敛.

6. 当 n 充分大有

$$\frac{1}{n^{1+\frac{1}{\ln \ln n}} \ln n} = \frac{1}{e^{\left(1+\frac{1}{\ln \ln n}\right) \ln n} \ln n} = \frac{1}{n \ln n} \le \frac{1}{n \ln n} \le \frac{1}{n \ln n} = \frac{1}{n \ln n} = \frac{1}{n \ln n e^{\ln \ln n}} = \frac{1}{n \ln n} \ln n$$

由积分判别法知

$$\sum \frac{1}{n \ln^2 n} \sim \int_2^\infty \frac{1}{x \ln^2 x} \mathrm{d}x = \int_{\ln 2}^\infty \frac{1}{y^2} \mathrm{d}y < \infty,$$

因此
$$\sum_{n=3}^{\infty} \frac{1}{n^{1+\frac{1}{\ln \ln n}} \ln n}$$
 收敛.

9.2.3 Taylor 公式法

例题 9.14 判断 $\sum_{n=1}^{\infty} \frac{(-1)^n}{(-1)^{n-1} + \sqrt[3]{n}}$ 收敛性.

笔记 此类问题可采用 Taylor 公式的 peano 余项方法, 主要要展开到余项的级数绝对收敛. 注意积累绝对 ± 绝对 = 绝对, 绝对 ± 条件 = 条件的结论.

证明 注意到

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(-1)^{n-1} + \sqrt[3]{n}} = \sum_{n=1}^{\infty} \frac{\frac{(-1)^n}{\sqrt[3]{n}}}{1 - \frac{(-1)^n}{\sqrt[3]{n}}} = \sum_{n=1}^{\infty} \left(\frac{(-1)^n}{\sqrt[3]{n}} + \frac{1}{n^{\frac{2}{3}}} + \frac{(-1)^n}{n} + O\left(\frac{1}{n^{\frac{4}{3}}}\right) \right).$$

于是由
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{\sqrt[3]{n}} + \frac{(-1)^n}{n} + O\left(\frac{1}{n^{\frac{4}{3}}}\right) \right)$$
 收敛, $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{2}{3}}}$ 发散知原级数发散.

9.2.4 分组判别法

例题 9.15 设 $a_n > 0$, $\sum_{n=1}^{\infty} a_n$ 收敛, 证明级数 $\sum_{n=1}^{\infty} a_n^{\frac{n}{n+1}}$ 收敛.

Ŷ **笔**记 待定常数 c, 记

$$M \triangleq \left\{n \in \mathbb{N}: a_n \leqslant ca_n^{\frac{n}{n+1}}\right\}, N \triangleq \left\{n \in \mathbb{N}: a_n > ca_n^{\frac{n}{n+1}}\right\}.$$

则对 $\forall n \in \mathbb{N}$, 有

$$a_n > ca_n^{\frac{n}{n+1}} \Rightarrow \frac{1}{c} > a_n^{\frac{1}{n+1}} \Rightarrow a_n < \left(\frac{1}{c}\right)^{n+1}.$$

现在我们想要利用几何级数将原级数进行分组,故只需任取c>1即可,不妨取c=2,就有下述证明.

证明 记

$$M \triangleq \left\{ n \in \mathbb{N} : a_n \leqslant \frac{1}{2} a_n^{\frac{n}{n+1}} \right\}, N \triangleq \left\{ n \in \mathbb{N} : a_n > \frac{1}{2} a_n^{\frac{n}{n+1}} \right\}.$$

现在

$$a_n^{\frac{1}{n+1}} \leqslant \frac{1}{2} \Rightarrow a_n \leqslant \left(\frac{1}{2}\right)^{n+1} \Rightarrow a_n^{\frac{n}{n+1}} \leqslant \left(\frac{1}{2}\right)^n, \forall n \in M,$$

我们有

$$\sum_{n=1}^{\infty} a_n^{\frac{n}{n+1}} = \sum_{n \in M} a_n^{\frac{n}{n+1}} + \sum_{n \in N} a_n^{\frac{n}{n+1}} \le \sum_{n \in M} \left(\frac{1}{2}\right)^n + 2\sum_{n \in N} a_n < \infty,$$

这就完成了证明.

例题 9.16 设 $a_n > 0$, $\sum_{n=1}^{\infty} a_n$ 收敛, 证明级数 $\sum_{n=1}^{\infty} \frac{a_n^{\frac{1}{p}}}{n^s}$, $s > 1 - \frac{1}{p}$, p > 1 收敛.

注 本题也可用分组判别法进行证明.

证明 利用Young 不等式, 我们有

$$\sum_{n=1}^{\infty} \frac{a_n^{\frac{1}{p}}}{n^s} \leqslant \sum_{n=1}^{\infty} \left(\frac{a_n}{p} + \frac{1}{qn^{sq}} \right) < \infty, sq = \frac{s}{1 - \frac{1}{p}} > 1,$$

这就完成了证明.

9.2.5 杂题

例题 9.17 证明: $\sum_{n=1}^{\infty} \frac{\sin n}{n}$, $\sum_{n=1}^{\infty} \frac{\cos n}{n}$ 条件收敛. 证明 相似(10.1)式的计算, 我们有

$$\left| \sum_{j=1}^{n} \sin j \right| = \left| \sum_{j=1}^{n} \frac{\sin j \cdot \sin \frac{1}{2}}{\sin \frac{1}{2}} \right| = \left| \sum_{j=1}^{n} \frac{\cos \left(j - \frac{1}{2} \right) - \cos \left(j + \frac{1}{2} \right)}{2 \sin \frac{1}{2}} \right|$$

$$= \left| \frac{\cos \frac{1}{2} - \cos \left(n + \frac{1}{2} \right)}{2 \sin \frac{1}{2}} \right| = \frac{1}{2} \left| \sin n - \cot \frac{1}{2} \cos n + \cot \frac{1}{2} \right|$$

$$\leqslant \frac{2}{2 \sin \frac{1}{2}} = \frac{1}{\sin \frac{1}{2}},$$

$$\left| \sum_{j=1}^{n} \cos j \right| = \left| \sum_{j=1}^{n} \frac{\cos j \cdot \sin \frac{1}{2}}{\sin \frac{1}{2}} \right| = \left| \sum_{j=1}^{n} \frac{\sin \left(j + \frac{1}{2} \right) - \sin \left(j - \frac{1}{2} \right)}{2 \sin \frac{1}{2}} \right|$$

$$= \left| \frac{\sin \left(n + \frac{1}{2} \right) - \sin \frac{1}{2}}{2 \sin \frac{1}{2}} \right| = \frac{1}{2} \left| \cos n + \cot \frac{1}{2} \sin n - 1 \right|$$

$$\leqslant \frac{2}{2 \sin \frac{1}{2}} = \frac{1}{\sin \frac{1}{2}},$$

都是有界的. 又 $\frac{1}{n}$ 递减到 0, 我们由A-D 判别法得 $\sum_{i=1}^{\infty} \frac{\sin n}{n}$, $\sum_{i=1}^{\infty} \frac{\cos n}{n}$ 收敛.

又

$$\sum_{n=1}^{\infty} \frac{|\sin n|}{n} \geqslant \sum_{n=1}^{\infty} \frac{|\sin n|^2}{n} = \sum_{n=1}^{\infty} \frac{1 - \cos(2n)}{2n} = \sharp \ \, \text{th} - \text{th} \ \, \text{th} = \sharp \ \, \text{th};$$

故
$$\sum_{n=1}^{\infty} \frac{\sin n}{n}$$
, $\sum_{n=1}^{\infty} \frac{\cos n}{n}$ 条件收敛.

例题 9.18 证明 $\sum_{n=1}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n}$ 收敛.

注 实际上, 对 $\forall n \in \mathbb{N}$, 都存在 $t \in \mathbb{N}$, 使得

$$t \le \sqrt{n} < t+1 \iff t^2 \le n \le (t+1)^2 - 1$$

因此

$$(-1)^{\lfloor \sqrt{k} \rfloor} = (-1)^t, \forall k \in [t^2, (t+1)^2 - 1].$$

证明 证法一:由级数加括号的理解

$$\sum_{n=1}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n} = \sum_{t=1}^{\infty} \sum_{k=t^2}^{(t+1)^2 - 1} \frac{(-1)^{\lfloor \sqrt{k} \rfloor}}{k} = \sum_{t=1}^{\infty} (-1)^t \sum_{k=t^2}^{(t+1)^2 - 1} \frac{1}{k}.$$

我们来证明上式右边级数符合莱布尼兹判别法

首先

$$0 \leqslant \lim_{t \to \infty} \sum_{k=t^2}^{(t+1)^2 - 1} \frac{1}{k} \leqslant \lim_{t \to \infty} \sum_{k=t^2}^{(t+1)^2 - 1} \int_{k-1}^k \frac{1}{x} dx = \lim_{t \to \infty} \sum_{k=t^2}^{(t+1)^2 - 1} \ln \frac{k}{k-1} = \lim_{t \to \infty} \ln \frac{(t+1)^2 - 1}{t^2 - 1} = 0,$$

即

$$\lim_{t \to \infty} \sum_{k=t^2}^{(t+1)^2 - 1} \frac{1}{k} = 0.$$

然后对 $t \in \mathbb{N}, t ≥ 3$, 我们有

$$\sum_{k=t^2}^{(t+1)^2-1} \frac{1}{k} - \sum_{k=(t+1)^2}^{(t+2)^2-1} \frac{1}{k} = \sum_{k=0}^{2t} \frac{1}{k+t^2} - \sum_{k=0}^{2t+2} \frac{1}{k+t^2+2t+1}$$

$$= \sum_{k=0}^{2t} \left(\frac{1}{k+t^2} - \frac{1}{k+t^2+2t+1} \right) - \frac{1}{t^2+4t+2} - \frac{1}{t^2+4t+3}$$

$$= \sum_{k=0}^{2t} \frac{2t+1}{(k+t^2)(k+t^2+2t+1)} - \frac{2t^2+8t+5}{(t^2+4t+2)(t^2+4t+3)}$$

$$\geqslant \frac{(2t+1)^2}{(2t+t^2)(2t+t^2+2t+1)} - \frac{2t^2+8t+5}{(t^2+4t+2)(t^2+4t+3)}$$

$$\geqslant \frac{(2t+1)^2}{(t^2+2t+2)(t^2+4t+3)} - \frac{2t^2+8t+5}{(t^2+4t+2)(t^2+4t+3)}$$

$$= \frac{2t^2-4t-4}{(t^2+4t+2)(t^2+4t+3)} \geqslant \frac{6t-4t-4}{(t^2+4t+2)(t^2+4t+3)} > 0,$$

这就证明了 $\sum_{k=t^2}^{(t+1)^2-1} \frac{1}{k}$ 单调递减! 现在由莱布尼兹判别法得 $\sum_{n=1}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n}$ 收敛.

证法二:由级数加括号的理解得

$$\sum_{n=1}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n} = \sum_{t=1}^{\infty} \sum_{k=t^2}^{(t+1)^2 - 1} \frac{(-1)^{\lfloor \sqrt{k} \rfloor}}{k} = \sum_{t=1}^{\infty} (-1)^t \sum_{k=t^2}^{(t+1)^2 - 1} \frac{1}{k}.$$

我们用估阶方法进行证明. 由例题 2.52(2)可知

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + O\left(\frac{1}{n}\right).$$

从而

$$\sum_{k=1}^{t^2-1} \frac{1}{k} = \ln(t^2 - 1) + \gamma + O\left(\frac{1}{t^2}\right),\,$$

$$\sum_{k=1}^{(t+1)^2 - 1} \frac{1}{k} = \ln\left[(t+1)^2 - 1 \right] + \gamma + O\left(\frac{1}{t^2}\right).$$

于是

$$\sum_{t=-2}^{(t+1)^2-1} \frac{1}{k} = \ln \frac{t^2 + 2t}{t^2 - 1} + O\left(\frac{1}{t^2}\right) = \ln\left(1 + \frac{2t+1}{t^2 - 1}\right) + O\left(\frac{1}{t^2}\right).$$

进而

$$\sum_{t=1}^{\infty} (-1)^t \sum_{k=t^2}^{(t+1)^2 - 1} \frac{1}{k} = \sum_{t=1}^{\infty} (-1)^t \left[\ln \left(1 + \frac{2t+1}{t^2 - 1} \right) + O\left(\frac{1}{t^2} \right) \right].$$

显然 $\ln\left(1+\frac{2t+1}{t^2-1}\right)+O\left(\frac{1}{t^2}\right)$ 单调递减趋于 0, 故由莱布尼兹判别法可知原级数收敛.

 $\dot{\mathbf{L}}$ 虽然这里的 O 估计只对 n 充分大时成立, 但实际上级数的前有限项的和一定是有限数, 因此讨论级数的敛散性时, 可以只讨论从 n 的充分大的一项开始的级数. 上述证明中省略了这步, 总体问题不大.

9.3 级数计算

9.3.1 裂项方法

例题 **9.19** 计算 $\sum_{n=1}^{\infty} \frac{1}{2^n(1+\sqrt[2^n]{2})}$.

Ŷ 笔记 继续采用强行裂项的想法,猜出裂项之后的模样之后还原看看差什么.

证明 注意到

$$\frac{1}{2^{n-1}\left(2^{\frac{1}{2^{n-1}}}-1\right)} - \frac{1}{2^{n}\left(2^{\frac{1}{2^{n}}}-1\right)} = \frac{2}{2^{n}\left(2^{\frac{1}{2^{n-1}}}-1\right)} - \frac{2^{\frac{1}{2^{n}}}+1}{2^{n}\left(2^{\frac{1}{2^{n-1}}}-1\right)} = -\frac{2^{\frac{1}{2^{n}}}-1}}{2^{n}\left(2^{\frac{1}{2^{n-1}}}-1\right)} = -\frac{1}{2^{n}\left(2^{\frac{1}{2^{n}}}-1\right)},$$

$$= -\frac{2^{\frac{1}{2^{n}}}-1}}{2^{n}\left(2^{\frac{1}{2^{n}}}+1\right)\left(2^{\frac{1}{2^{n}}}-1\right)} = -\frac{1}{2^{n}\left(2^{\frac{1}{2^{n}}}+1\right)},$$

我们有

$$\sum_{n=1}^{\infty} \frac{1}{2^n \left(2^{\frac{1}{2^n}} + 1\right)} = \lim_{n \to \infty} \left(\frac{1}{2^n \left(2^{\frac{1}{2^n}} - 1\right)}\right) - 1 = \frac{1}{\ln 2} - 1.$$

例题 9.20 计算

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+1)!}$$

🕏 笔记 想法的关键是强行裂项.

证明

$$\begin{split} \sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+1)!} &= \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) \frac{1}{(k+1)!} = \sum_{k=1}^{\infty} \left(\frac{1}{k(k+1)!} - \frac{1}{(k+1)(k+1)!}\right) \\ &= \sum_{k=1}^{\infty} \left(\frac{1}{k(k+1)!} - \frac{1}{(k+1)(k+2)!}\right) + \sum_{k=1}^{\infty} \left(\frac{1}{(k+1)(k+2)!} - \frac{1}{(k+1)(k+1)!}\right) \\ &= \frac{1}{2} - \sum_{k=1}^{\infty} \frac{1}{(k+2)!} \frac{e \bowtie \operatorname{Taylor} \mathbb{R}^{\frac{1}{H}}}{2} \frac{1}{2} - \left(e - 1 - 1 - \frac{1}{2}\right) = 3 - e. \end{split}$$

例题 9.21 计算级数

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n}$$

🔮 笔记 此类问题化部分和之后估阶.

证明 注意到

$$\sum_{n=1}^{2m+1} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} + \frac{\ln (2m+1)}{2m+1}.$$

$$\lim_{m \to \infty} \sum_{n=1}^{2m+1} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to \infty} \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n}.$$

于是由子列极限命题 (b)可得

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to \infty} \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to \infty} \sum_{n=1}^{m} \left(\frac{\ln(2n-1)}{2n-1} - \frac{\ln(2n)}{2n} \right)$$

$$= \lim_{m \to \infty} \left(\sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln(2n)}{2n} - \sum_{n=1}^{m} \frac{\ln(2n)}{2n} \right) = \lim_{m \to \infty} \left(\sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2}{n} \right)$$

利用例题 2.52(2), 我们知道

$$\sum_{m=1}^{m} \frac{\ln 2}{n} = \ln 2 \cdot \ln m + \ln 2 \cdot \gamma + o(1), m \to \infty$$

由0阶 E-M 公式知道

$$\sum_{m=1}^{m} \frac{\ln n}{n} = \frac{\ln m}{2m} + \int_{1}^{m} \frac{\ln x}{x} dx + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \left(\frac{\ln x}{x} \right)' dx$$

注意到 $\int_{1}^{m} \frac{\ln x}{x} dx = \frac{1}{2} \ln^2 m$ 以及

$$\left| \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \left(\frac{\ln x}{x} \right)' dx \right| = \left| \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^2} dx \right| \leqslant \frac{1}{2} \int_{1}^{\infty} \frac{|1 - \ln x|}{x^2} dx < \infty$$

于是我们有

$$\sum_{n=1}^{m} \frac{\ln n}{n} = \frac{1}{2} \ln^2 m + C + o(1), m \to \infty$$

这里 $C = \int_{1}^{\infty} \left(x - [x] - \frac{1}{2} \right) \left(\frac{\ln x}{x} \right)' dx$. 现在结合上述渐近估计式就有

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to \infty} \left[\frac{1}{2} \ln^2(2m) - \frac{1}{2} \ln^2 m - \ln 2 \cdot \ln m - \ln 2 \cdot \gamma + o(1) \right] = \frac{\ln^2 2}{2} - \ln 2 \cdot \gamma$$

例题 9.22

1. 计算

$$\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{(n+1)(n+2)}$$

2. 计算

$$\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{n(n+1)}$$

🕏 笔记 证明的想法即强行裂项.

证明

1. 记
$$H_n \triangleq 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
, 我们有

$$\begin{split} &\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{(n+1)(n+2)} = \lim_{m \to \infty} \left(\sum_{n=1}^{m} \frac{H_n}{n+1} - \sum_{n=1}^{m} \frac{H_n}{n+2} \right) \\ &= \lim_{m \to \infty} \left(\sum_{n=1}^{m} \frac{H_n}{n+1} - \sum_{n=1}^{m} \frac{H_{n+1}}{n+2} \right) + \lim_{m \to \infty} \left(\sum_{n=1}^{m} \frac{H_{n+1}}{n+2} - \sum_{n=1}^{m} \frac{H_n}{n+2} \right) \\ &= \lim_{m \to \infty} \left(\frac{H_1}{2} - \frac{H_{m+1}}{m+2} \right) + \sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)} = \frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) = 1. \end{split}$$

2. 我们有

$$\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{H_n}{n} - \frac{H_n}{n+1} \right)$$
$$= \sum_{n=1}^{\infty} \left(\frac{H_n}{n} - \frac{H_{n+1}}{n+1} \right) + \sum_{n=1}^{\infty} \left(\frac{H_{n+1}}{n+1} - \frac{H_n}{n+1} \right)$$
$$= H_1 + \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6}.$$

例题 9.23 计算

$$\sum_{n=1}^{\infty} \arctan \frac{1}{2n^2}$$

\$

笔记 证明的想法即利用合适范围内都成立的恒等式

$$\arctan x - \arctan y = \arctan \frac{x - y}{1 + xy}$$

来裂项.

证明 我们有

$$\sum_{n=1}^{\infty} \arctan \frac{1}{2n^2} = \sum_{n=1}^{\infty} \left(\arctan \frac{n}{n+1} - \arctan \frac{n-1}{n}\right) = \lim_{n \to \infty} \arctan \frac{n}{n+1} = \frac{\pi}{4}.$$

9.3.2 凑已知函数

例题 9.24 对 |x| < 1, 计算

$$\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$$

证明 我们有

$$\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n} = \sum_{n=0}^{\infty} (2n + 1)x^{2n} + 2\sum_{n=0}^{\infty} \frac{x^{2n}}{2n + 1}$$

$$= \left(\sum_{n=0}^{\infty} x^{2n+1}\right)' + \frac{2}{x} \int_{0}^{x} \sum_{n=0}^{\infty} y^{2n} dy$$

$$= \left(\frac{x}{1 - x^2}\right)' + \frac{2}{x} \int_{0}^{x} \frac{1}{1 - y^2} dy$$

$$= \begin{cases} \frac{1 + x^2}{(1 - x^2)^2} + \frac{1}{x} \ln \frac{1 + x}{1 - x} & , x \neq 0 \\ 3 & , x = 0 \end{cases}$$

例题 9.25 计算

$$1 - \frac{1}{6} - \sum_{k=2}^{\infty} \frac{(3k-4)(3k-7)\cdots 5\cdot 2}{6^k k!}.$$

证明 我们有

$$1 - \frac{1}{6} - \sum_{k=2}^{\infty} \frac{(3k-4)(3k-7)\cdots 5\cdot 2}{6^k k!} = 1 - \frac{1}{6} - \sum_{k=2}^{\infty} \frac{3^{k-1} \prod_{j=2}^{k} \left(j - \frac{4}{3}\right)}{6^k k!}$$
$$= 1 - \sum_{k=1}^{\infty} \frac{(-3)^{k-1} 3 \prod_{j=1}^{k} \left(\frac{1}{3} - j + 1\right)}{6^k k!} = 1 + \sum_{k=1}^{\infty} \left(\frac{1}{3}\right) \left(-\frac{1}{2}\right)^k = \left(1 - \frac{1}{2}\right)^{\frac{1}{3}} = 2^{-\frac{1}{3}}.$$

例题 9.26 对 |x| < 1, 计算

$$\sum_{k=1}^{\infty} \frac{1}{2^k} \tan \frac{x}{2^k}.$$

П

证明 相似例题 2.80的计算, 我们有恒等式

$$\frac{\sin x}{2^n \sin \frac{x}{2^n}} = \prod_{k=1}^n \cos \frac{x}{2^k}.$$

于是

$$\sum_{k=1}^{n} \ln \cos \frac{x}{2^k} = \ln \sin x - n \ln 2 - \ln \sin \frac{x}{2^n}.$$

两边求导有

$$-\sum_{k=1}^{n} \frac{1}{2^k} \tan \frac{x}{2^k} = \frac{\cos x}{\sin x} - \frac{\cos \frac{x}{2^n}}{2^n \sin \frac{x}{2^n}}.$$

于是就有

$$\sum_{k=1}^{\infty} \frac{1}{2^k} \tan \frac{x}{2^k} = -\frac{\cos x}{\sin x} + \lim_{n \to \infty} \frac{\cos \frac{x}{2^n}}{2^n \sin \frac{x}{2^n}} = \begin{cases} -\frac{\cos x}{\sin x} + \frac{1}{x}, & 0 < |x| < 1\\ 0, & x = 0 \end{cases}.$$

9.3.3 生成函数和幂级数计算方法

例题 9.27 计算

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n.$$

🕏 笔记 使用 Cauchy 积计算幂级数有一个特点, 即系数往往出现求和结构.

证明 考虑
$$a_n=1, n\in\mathbb{N}_0, b_n=\begin{cases} \dfrac{1}{n}, & n\in\mathbb{N}\\ 0 & n=0 \end{cases}$$
 注意到

$$\sum_{n=0}^{\infty} a_n x^n = \frac{1}{1-x}, \sum_{n=0}^{\infty} b_n x^n = -\ln(1-x),$$

并且上述级数在 (-1,1) 上绝对收敛,于是由Cauchy 积收敛定理及推论 9.1可知

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n = -\frac{\ln(1-x)}{1-x}, |x| < 1.$$

收敛域可以直接注意到

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1}}{1 + \frac{1}{2} + \dots + \frac{1}{n}} = 1,$$

以及

$$\lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) 1^n = \infty, \lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) (-1)^n = \infty$$

故收敛域就是 (-1,1).

例题 9.28 设

$$f(x) = \frac{1}{1 - x - x^2}, a_n = \frac{f^{(n)}(0)}{n!}, n = 0, 1, 2, \dots,$$

计算

$$\sum_{n=1}^{\infty} \frac{a_{n+1}}{a_n a_{n+2}}.$$

 $\hat{\mathbf{v}}$ 笔记 注意到形式幂级数法我们不需要担心考虑的 f 的幂级数是否收敛的问题. 因为这个方法最后往往可以算出一个具体的 f, 对这个 f 来说直接用数学归纳法计算验证会发现其 Taylor 多项式的系数恰好就是条件中的数列,从而整个逻辑严谨. 因此这又是一个从逻辑上来说属于**先猜后证**的方法.

对本题而言,f(x)已知,且容易求出其收敛半径.此时用形式幂级数法本身就是严谨地.

证明 考虑 $f(x) = \sum_{n=0}^{\infty} a_n x^n$, 则对任意在其收敛域内的 x 我们有

$$1 = (1 - x - x^{2}) \sum_{n=0}^{\infty} a_{n} x^{n} = \sum_{n=0}^{\infty} a_{n} x^{n} - \sum_{n=0}^{\infty} a_{n} x^{n+1} - \sum_{n=0}^{\infty} a_{n} x^{n+2}$$
$$= \sum_{n=0}^{\infty} a_{n} x^{n} - \sum_{n=1}^{\infty} a_{n-1} x^{n} - \sum_{n=2}^{\infty} a_{n-2} x^{n}$$
$$= a_{0} + a_{1} x - a_{0} x + \sum_{n=2}^{\infty} (a_{n} - a_{n-1} - a_{n-2}) x^{n},$$

于是对比系数得

$$a_0 = 1$$
, $a_1 = a_0 = 1$, $a_n = a_{n-1} + a_{n-2}$, $n = 2, 3, \cdots$.

显然有

$$a_n \in \mathbb{N} \Rightarrow \lim_{n \to \infty} a_n = \infty,$$

于是

$$\sum_{n=1}^{\infty} \frac{a_{n+1}}{a_n a_{n+2}} = \sum_{n=1}^{\infty} \left(\frac{1}{a_n} - \frac{1}{a_{n+2}} \right) = \frac{1}{a_1} + \frac{1}{a_2} = \frac{3}{2}.$$

 \dot{x} (证明可见复分析教材) 为了求出 f 收敛半径, 可以展开点为中心作圆并一直扩大直到接触到和函数在 \mathbb{C} 上第一个奇点为止. 对于 $f(x)=\frac{1}{1-x-x^2}$,第一个奇点即使得 $\frac{1}{1-x-x^2}$ 分母为 0 且模更小的点 $\frac{\sqrt{5}-1}{2}$. 于是 $f(x)=\sum_{n=0}^{\infty}a_nx^n$ 收敛半径为 $\frac{\sqrt{5}-1}{2}$. 于是我们得到一个极限

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \frac{2}{\sqrt{5} - 1} = \frac{\sqrt{5} + 1}{2}.$$

例题 9.29 设 $a_0 = 0$, $a_1 = \frac{2}{3}$, $(n+1)a_{n+1} = 2a_n + (n-1)a_{n-1}$, $n \in \mathbb{N}$, 计算 $\sum_{n=0}^{\infty} na_n x^n$ 收敛域和和函数.

证明 记 $f(x) = \sum_{n=0}^{\infty} a_n x^n$, 形式的, 我们有

$$\sum_{n=1}^{\infty} (n+1)a_{n+1}x^{n-1} = 2\sum_{n=1}^{\infty} a_n x^{n-1} + \sum_{n=1}^{\infty} (n-1)a_{n-1}x^{n-1}.$$

于是

$$\frac{1}{x}[f'(x) - a_1] = \frac{2}{x}[f(x) - a_0] + xf'(x) \Rightarrow \frac{1}{x}\left[f'(x) - \frac{2}{3}\right] = \frac{2}{x}f(x) + xf'(x).$$

故解微分方程得 $f(x) = \frac{2x}{3-3x}, x \in (-1,1)$. 这给出了 $a_n = \frac{2}{3}, n \in \mathbb{N}$. 于是

$$\sum_{n=0}^{\infty} n a_n x^n = \frac{2}{3} \sum_{n=0}^{\infty} n x^n = \frac{2}{3} x \left(\sum_{n=0}^{\infty} x^n \right)' = \frac{2}{3} x \left(\frac{1}{1-x} \right)' = \frac{2x}{3(1-x)^2}, x \in (-1,1).$$

例题 9.30

1. 计算

$$\sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} x^{2n+1}.$$

2. 计算

$$\sum_{n=1}^{\infty} \left[\left(\frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{3 \cdot 5 \cdot 7 \cdot \dots \cdot 2n + 1} \right) \cdot \frac{1}{n+1} \right].$$

注 第 2 问是第十届大学生数学竞赛非数学类决赛得分率非常低的一个题. 可以看到如果我们平时记忆 arcsin² x 展开, 就能快速解题而规避掉最容易考的构造微分方程求解幂级数的技巧. 这一点我们在<mark>命题</mark> 3.1中也提到过. 证明

1. 考虑

$$g(x) = \sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} x^{2n+1}, g'(x) = 1 + \sum_{n=1}^{\infty} \frac{(2n)!!}{(2n-1)!!} x^{2n},$$

我们有

$$g'(x) = 1 + x \sum_{n=1}^{\infty} \frac{(2n-2)!!}{(2n-1)!!} 2nx^{2n-1} = 1 + x \left(\sum_{n=1}^{\infty} \frac{(2n-2)!!}{(2n-1)!!} x^{2n} \right)'$$
$$= 1 + x \left(x \sum_{n=1}^{\infty} \frac{(2n-2)!!}{(2n-1)!!} x^{2n-1} \right)' = 1 + x [xg(x)]',$$

即

$$g'(x) - \frac{x}{1 - x^2}g(x) = \frac{1}{1 - x^2}, g(0) = 0.$$

由常数变易法得 $g(x) = \frac{\arcsin x}{\sqrt{1-x^2}}$. 于是收敛区间为 |x| < 1. 由

$$\lim_{x \to 1^{-}} g(x) = +\infty, \lim_{x \to -1^{+}} g(x) = +\infty$$

知幂级数在 $x = \pm 1$ 不收敛, 故收敛域为 |x| < 1.

2. 首先把级数写成

$$\sum_{n=1}^{\infty} \left[\left(\frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{3 \cdot 5 \cdot 7 \cdot \dots \cdot 2n + 1} \right) \cdot \frac{1}{n+1} \right] = \sum_{n=1}^{\infty} \left[\frac{n!}{(2n+1)!!} \cdot \frac{1}{n+1} \right].$$

然后利用等式 $(2n)!! = 2^n n!$ 可考虑

$$f(x) = \sum_{n=1}^{\infty} \frac{(2n)!!}{(2n+1)!!} \frac{x^{2n+2}}{n+1} = \frac{1}{2} \sum_{n=1}^{\infty} \left[\frac{n!}{(2n+1)!!} \cdot \frac{(\sqrt{2}x)^{2n+2}}{n+1} \right].$$

现在所求级数为 $2f\left(\frac{1}{\sqrt{2}}\right)$. 我们利用第 1 问有

$$f'(x) = 2\sum_{n=1}^{\infty} \frac{(2n)!!}{(2n+1)!!} x^{2n+1} = 2\left(\frac{\arcsin x}{\sqrt{1-x^2}} - x\right).$$

于是我们有

$$2f\left(\frac{1}{\sqrt{2}}\right) - 2f(0) = 2\int_0^{\frac{1}{\sqrt{2}}} \left[2\left(\frac{\arcsin x}{\sqrt{1 - x^2}} - x\right)\right] dx = \frac{\pi^2}{8} - 1.$$

例题 9.31 计算 $\sum_{n=0}^{\infty} \frac{1}{(4n)!}$.

证明 注意到

$$f(x) = \sum_{n=0}^{\infty} \frac{x^{4n}}{(4n)!}, f'(x) = \sum_{n=1}^{\infty} \frac{x^{4n-1}}{(4n-1)!}, f''(x) = \sum_{n=1}^{\infty} \frac{x^{4n-2}}{(4n-2)!}, f'''(x) = \sum_{n=1}^{\infty} \frac{x^{4n-3}}{(4n-3)!}.$$

于是我们有

$$f + f' + f'' + f''' = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

注意到 f(0) = 1, f'(0) = f'''(0) = f'''(0) = 0, 求解微分方程 (Euler 待定指数法) 得解 $f(x) = \frac{1}{4}(e^{-x} + e^x + 2\cos x)$.

9.3.4 多重求和

例题 9.32 计算

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (n3^m + m3^n)}.$$

Ŷ 笔记 二重级数一类题型往往会用对称性来简化结构

证明 直接计算有

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (n3^m + m3^n)} = \frac{\text{55 Mps} \text{ Fubini } \text{\mathbb{E}} \text{\mathbb{E}}}{\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \frac{mn^2}{3^n (m3^n + n3^m)}} = \frac{1}{2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{3^m mn^2 + 3^n m^2 n}{3^{n+m} (m3^n + n3^m)}$$
$$= \frac{1}{2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{mn}{3^{n+m}} = \frac{1}{2} \left(\sum_{m=1}^{\infty} \frac{m}{3^m} \right)^2 = \frac{9}{32},$$

这里最后的级数是一个差比数列, 高中数学的错位相减可以直接算出结果. 或者利用凑已知函数的方法计算:

$$\sum_{m=1}^{\infty} m x^m = x \left(\sum_{m=1}^{\infty} x^m \right)' = x \cdot \left(\frac{1}{1-x} \right)' = \frac{x}{(1-x)^2}.$$

将 $x = \frac{1}{3}$ 代入得

$$\sum_{m=1}^{\infty} \frac{m}{3^m} = \frac{3}{4} \Rightarrow \frac{1}{2} \left(\sum_{m=1}^{\infty} \frac{m}{3^m} \right)^2 = \frac{9}{32}.$$

例题 9.33 计算

$$\left[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{100m^2n}{2^m \left(n2^m + m2^n \right)} \right].$$

证明 我们有

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{100m^2n}{2^m (n2^m + m2^n)} \xrightarrow{\text{g $\sec m$ bini \tilde{x}}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{100mn^2}{2^n (m2^n + n2^m)} = 50 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\frac{m^2n}{2^m (n2^m + m2^n)} + \frac{n^2m}{2^n (m2^n + n2^m)} \right)$$

$$= 50 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\frac{mn \left(\frac{m}{2^m} + \frac{n}{2^n} \right)}{n2^m + m2^n} \right) = 50 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{mn}{2^{m+n}} = 50 \left(\sum_{n=1}^{\infty} \frac{n}{2^n} \right)^2 = 200.$$

9.3.5 级数特殊算法 (换序法)

例题 9.34

1. 证明:
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

2. 证明:
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3} = \frac{\pi^3}{32}.$$

3. 证明:
$$\sum_{n=1}^{\infty} \frac{1}{n^2 2^n} = \frac{\pi^2}{12} - \frac{\ln^2 2}{2}.$$

注 熟知 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

ATE RE

1. 我们有

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{8}.$$

2. (考试肯定会给提示或多设置一问) 注意到傅立叶展开 $f(x) = x^3 - \pi^2 x, x \in [-\pi, \pi]$ 得

$$x^3 - \pi^2 x \sim 12 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \sin(nx).$$

考虑 $x = \frac{\pi}{2}$ 即得

$$12\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \sin(nx) = -12\sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} \sin\left(\frac{\pi}{2}(2n-1)\right) = -12\sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} \sin\left(n\pi - \frac{\pi}{2}\right) = 12\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3}.$$

故
$$12\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3} = \frac{\pi^3}{32}.$$

3. 由命题 8.5(2)得到 $\sum_{n=1}^{\infty} \frac{1}{n^2 2^n} = \frac{\pi^2}{12} - \frac{\ln^2 2}{2}$.

例题 9.35 设 $f \in C^1[0,1]$, $f(x) \ge 0$, 证明下述级数收敛且求值

$$\sum_{n=1}^{\infty} (-1)^{n-1} \int_{0}^{1} x^{n} f(x) dx.$$

笔记 为了有换序

$$\sum_{n=1}^{\infty} \int f_n(x) dx = \int \sum_{n=1}^{\infty} f_n(x) dx,$$

我们只需要

$$\lim_{m \to \infty} \sum_{n=1}^{m} \int f_n(x) dx = \lim_{m \to \infty} \int \sum_{n=1}^{m} f_n(x) dx = \int \sum_{n=1}^{\infty} f_n(x) dx,$$

即需要证明

$$\lim_{m \to \infty} \int \sum_{n=m+1}^{\infty} f_n(x) \mathrm{d}x = 0.$$

注 实际上, 这里的换序就是控制收敛定理. 证明 显然 $\int_0^1 x^n f(x) dx$ 递减且

$$0 \leqslant \int_0^1 x^n f(x) dx \leqslant \max f \cdot \int_0^1 x^n dx \to 0, n \to \infty,$$

故由交错级数判别法知 $\sum_{i=0}^{\infty} (-1)^{n-1} \int_{0}^{1} x^{n} f(x) dx$ 收敛. 故

$$\sum_{n=1}^{\infty} (-1)^{n-1} \int_0^1 x^n f(x) dx = -\int_0^1 \sum_{n=1}^{\infty} (-x)^n f(x) dx = \int_0^1 \frac{x f(x)}{1+x} dx,$$

这里换序来自

$$\left| \int_0^1 \sum_{n=m}^\infty (-x)^n f(x) \mathrm{d}x \right| \overset{\text{xfisher}}{\leqslant} \int_0^1 x^m f(x) \mathrm{d}x \to 0, m \to \infty.$$

命题 9.7 (组合数的无穷和技巧)

1. 我们有

$$\sum_{n=0}^{\infty} a_n (y+x)^n = \sum_{k=0}^{\infty} b_k y^k \Rightarrow b_k = x^{-k} \sum_{n=k}^{\infty} C_n^k a_n x^n.$$

2. 我们有

$$\sum_{n=0}^{m} a_n (y+x)^n = \sum_{k=0}^{m} b_k y^k \Rightarrow b_k = x^{-k} \sum_{n=k}^{m} C_n^k a_n x^n.$$

证明

例题 9.36 计算

$$\sum_{n=k}^{\infty} C_n^k \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n, k \in \mathbb{N}.$$

证明 取 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}, n \in \mathbb{N}$. 由例题 9.27, 我们有

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) (y+x)^n = -\frac{\ln(1-x-y)}{1-x-y} = -\frac{\ln(1-x)}{1-x} \frac{1}{1-x} - \frac{1}{1-x} \frac{\ln\left(1-\frac{y}{1-x}\right)}{1-\frac{y}{1-x}}$$

$$= -\frac{\ln(1-x)}{1-x} \sum_{k=0}^{\infty} \frac{y^k}{(1-x)^k} + \frac{1}{1-x} \sum_{k=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{k} \right) \frac{y^k}{(1-x)^k}$$

$$= -\frac{\ln(1-x)}{1-x} + \sum_{k=1}^{\infty} \left[\frac{1 + \frac{1}{2} + \dots + \frac{1}{k} - \ln(1-x)}{(1-x)^{k+1}} \right] y^k$$

于是由命题 9.7, 我们有

$$\sum_{n=k}^{\infty} C_n^k \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n = b_k x^k = \left[\frac{1 + \frac{1}{2} + \dots + \frac{1}{k} - \ln(1-x)}{(1-x)^{k+1}} \right] x^k$$

注意到和函数第一个奇点是 x=1, 所以幂级数收敛半径是 1. 注意到和函数在 x=1 的左极限发散, 因此幂级数在 x=1 不收敛. 虽然和函数在 x=-1 的右极限收敛, 但并不能一定能推出幂级数在 x=-1 收敛, 为了判断 x=-1 的收敛性, 我们要使用小 o Tauber 定理.

若
$$\lim_{x\to 1^-}\sum_{n=k}^{\infty}C_n^k\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)(-x)^n$$
 存在, 则由小 o Tauber 定理知

$$\lim_{m \to \infty} \frac{1}{m} \sum_{n=k}^{k+m} \left[(-1)^n n C_n^k \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right] = 0.$$

注意到

$$\lim_{m \to \infty} \frac{1}{2m} \sum_{n=k}^{k+2m} \left[(-1)^n n C_n^k \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right] = 0.$$

$$\lim_{m \to \infty} \frac{1}{2m+1} \sum_{i=1}^{k+2m+1} \left[(-1)^n n C_n^k \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right] = 0.$$

我们有

$$\lim_{m \to \infty} \frac{(-1)^{k+2m+1}(k+2m+1)C_{k+2m+1}^k\left(1+\frac{1}{2}+\cdots+\frac{1}{k+2m+1}\right)}{2m+1} = 0.$$

又

$$\lim_{m \to \infty} C_{k+2m+1}^k = \lim_{m \to \infty} \frac{(k+2m+1)!}{k!(2m+1)!} = +\infty.$$

矛盾! 因此我们证明了原幂级数收敛域是 (-1,1).

9.4 级数一致收敛性判断

定理 9.19 (函数列一致收敛的柯西准则)

函数列 $\{f_n\}$ 在数集 D 上一致收敛的充要条件是: 对任给正数 ε , 总存在正数 N, 使得当 n, m > N 时, 对一 $\forall x \in D$, 都有

$$|f_n(x) - f_m(x)| < \varepsilon. \tag{9.24}$$

证明 必要性 设 $f_n(x) \rightrightarrows f(x)$ $(n \to \infty), x \in D$, 即对任给 $\varepsilon > 0$, 存在正数 N, 使得当 n > N 时, 对一切 $x \in D$, 都有

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2}. (9.25)$$

于是当 n, m > N, 由 (9.25) 就有

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

充分性 若条件 (9.24) 成立, 由数列收敛的柯西准则, $\{f_n\}$ 在 D 上任一点都收敛, 记其极限函数为 f(x), $x \in D$. 现固定 (9.24) 式中的 n, 让 $m \to \infty$, 于是当 n > N 时, 对一切 $x \in D$, 都有

$$|f_n(x) - f(x)| \le \varepsilon$$
.

因此, $f_n(x) \Rightarrow f(x) (n \to \infty), x \in D$.

定理 9.20

函数列 $\{f_n\}$ 在区间 D 上一致收敛于 f 的充要条件是:

$$\lim_{n \to \infty} \sup_{x \in D} |f_n(x) - f(x)| = 0.$$
 (9.26)

证明 必要性 若 $f_n(x) \rightrightarrows f(x)$ $(n \to \infty), x \in D$. 则对任给的正数 ε , 存在不依赖于 x 的正整数 N, 当 n > N 时, 有

$$|f_n(x) - f(x)| < \varepsilon, \ x \in D.$$

由上确界的定义,亦有

$$\sup_{x \in D} |f_n(x) - f(x)| \leqslant \varepsilon.$$

这就证得 (9.26) 式成立.

由假设, 对任给 $\varepsilon > 0$, 存在正整数 N, 使得当 n > N 时, 有

$$\sup_{x \in D} |f_n(x) - f(x)| < \varepsilon. \tag{9.27}$$

因为对一切 $x \in D$, 总有

$$|f_n(x) - f(x)| \leqslant \sup_{x \in D} |f_n(x) - f(x)|,$$

故由 (9.27) 式得

$$|f_n(x) - f(x)| < \varepsilon.$$

于是 $\{f_n\}$ 在 D 上一致收敛于 f.

推论 9.2

函数列 $\{f_n\}$ 在 D 上不一致收敛于 f 的充分且必要条件是: 存在 $\{x_n\} \subset D$, 使得 $\{f_n(x_n) - f(x_n)\}$ 不收敛于 0.

定理 9.21 (一致收敛的柯西准则)

函数项级数 $\sum u_n(x)$ 在数集 D 上一致收敛的充要条件为: 对任给的正数 ε , 总存在某正整数 N, 使得当 n>N 时, 对一切 $x\in D$ 和一切正整数 p, 都有

$$|S_{n+p}(x) - S_n(x)| < \varepsilon$$

或

$$|u_{n+1}(x) + u_{n+2}(x) + \cdots + u_{n+p}(x)| < \varepsilon.$$

推论 9.3

函数项级数 $\sum u_n(x)$ 在数集 D 上一致收敛的必要条件是函数列 $\{u_n(x)\}$ 在 D 上一致收敛于零.

C

定理 9.22

函数项级数 $\sum u_n(x)$ 在数集 D 上一致收敛于 S(x) 的充要条件是

$$\lim_{n\to\infty}\sup_{x\in D}|R_n(x)|=\lim_{n\to\infty}\sup_{x\in D}|S(x)-S_n(x)|=0.$$

0

定理 9.23 (A-D 判别法)

若 $\sum_{i=1}^{\infty} a_n(x)b_n(x)$ 在定义域内满足下列两条件之一,则其在定义域上一致收敛

(1) $\{a_n(x)\}$ 对于固定的 x 关于 n 单调, 且在定义域内一致有界; $\sum_{i=1}^n b_n$ 一致收敛.(Abel 判别法)

(2) $\{a_n(x)\}$ 对于固定的 x 关于 n 单调, 且一致趋于 0; $\sum_{i=1}^n b_n$ 一致有界.(Dirichlet 判别法)

~

定理 9.24

设函数列 $\{f_n\}$ 在 $(a,x_0) \cup (x_0,b)$ 上一致收敛于 f(x), 且对每个 n, $\lim_{x \to x_0} f_n(x) = a_n$, 则 $\lim_{n \to \infty} a_n$ 和 $\lim_{x \to x_0} f(x)$ 均存在且相等.

证明 先证 $\{a_n\}$ 是收敛数列. 对任意 $\varepsilon > 0$, 由于 $\{f_n\}$ 一致收敛, 故有 N, 当 n > N 时, 对任意正整数 p 和对一切 $x \in (a, x_0) \cup (x_0, b)$, 有

$$|f_n(x) - f_{n+p}(x)| < \varepsilon. \tag{9.28}$$

从而

$$|a_n - a_{n+p}| = \lim_{x \to x_0} |f_n(x) - f_{n+p}(x)| \leqslant \varepsilon.$$

这样由柯西准则可知 $\{a_n\}$ 是收敛数列.

设 $\lim_{n\to\infty} a_n = A$. 再证 $\lim_{x\to x_0} f(x) = A$.

由于 $f_n(x)$ 一致收敛于 f(x) 及 a_n 收敛于 A, 因此对任意 $\varepsilon > 0$, 存在正数 N, 当 n > N 时, 对任意 $x \in (a,x_0) \cup (x_0,b)$,

$$|f_n(x) - f(x)| < \frac{\varepsilon}{3} \quad \text{for} \quad |a_n - A| < \frac{\varepsilon}{3}$$

同时成立. 特别取 n = N + 1, 有

$$|f_{N+1}(x) - f(x)| < \frac{\varepsilon}{3}, \quad |a_{N+1} - A| < \frac{\varepsilon}{3}.$$

又 $\lim_{x \to x_0} f_{N+1}(x) = a_{N+1}$, 故存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时,

$$|f_{N+1}(x) - a_{N+1}| < \frac{\varepsilon}{3}.$$

这样, 当x满足 $0 < |x - x_0| < \delta$ 时,

$$\begin{split} |f(x)-A| &\leq |f(x)-f_{N+1}(x)| + |f_{N+1}(x)-a_{N+1}| + |a_{N+1}-A| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon, \end{split}$$

 $\mathbb{P}\lim_{x\to x_0} f(x) = A.$

定理 9.25 (连续性)

若函数列 $\{f_n\}$ 在区间 I 上一致收敛, 且每一项都连续, 则其极限函数 f 在 I 上也连续.

笔记 由这个定理可知,若各项为连续函数的函数列在区间/上其极限函数不连续,则此函数列在区间/上不一致收敛。

证明 设 x_0 为 I 上任一点. 由于 $\lim_{x \to x_0} f_n(x) = f_n(x_0)$, 于是由定理 9.24知 $\lim_{x \to x_0} f(x)$ 亦存在, 且 $\lim_{x \to x_0} f(x) = \lim_{n \to \infty} f_n(x_0) = f(x_0)$, 因此 f(x) 在 x_0 上连续.

推论 9.4

若连续函数列 $\{f_n\}$ 在区间 I 上内闭一致收敛于 f,则 f 在 I 上连续.

定理 9.26 (可积性)

若函数列 $\{f_n\}$ 在 [a,b] 上一致收敛, 且每一项都连续, 则

$$\int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$
 (9.29)

证明 设 f 为函数列 $\{f_n\}$ 在 [a,b] 上的极限函数. 由定理 9.25, f 在 [a,b] 上连续, 从而 f_n $(n=1,2,\cdots)$ 与 f 在 [a,b] 上都可积.

因为在 [a,b] 上 $f_n \Rightarrow f(n \to \infty)$, 故对任给正数 ε , 存在 N, 当 n > N 时, 对一切 $x \in [a,b]$, 都有

$$|f_n(x) - f(x)| < \varepsilon.$$

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} (f_{n}(x) - f(x)) dx \right|$$

$$\leq \int_{a}^{b} |f_{n}(x) - f(x)| dx$$

$$\leq \varepsilon (b - a).$$

这就证明了等式 (9.29).

定理 9.27 (可微性)

设 $\{f_n\}$ 为定义在 [a,b] 上的函数列, 若 $x_0 \in [a,b]$ 为 $\{f_n\}$ 的收敛点, $\{f_n\}$ 的每一项在 [a,b] 上有连续的导数, 且 $\{f'_n\}$ 在 [a,b] 上一致收敛, 则

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} f_n(x). \tag{9.30}$$

证明 设 $f_n(x_0) \to A$ $(n \to \infty), f'_n \rightrightarrows g$ $(n \to \infty), x \in [a, b]$. 我们要证明函数列 $\{f_n\}$ 在区间 [a, b] 上收敛, 且其极限函数的导数存在且等于 g.

由定理条件,对任 $-x \in [a,b]$,总有

$$f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(t) dt.$$

当 $n \to \infty$ 时, 右边第一项极限为 A, 第二项极限为 $\int_{t}^{x} g(t) dt$ (定理 9.26), 所以左边极限存在, 记为 f, 则有

$$f(x) = \lim_{n \to \infty} f_n(x) = f(x_0) + \int_{x_0}^x g(t) dt,$$

其中 $f(x_0) = A$. 由 g 的连续性及微积分学基本定理推得

$$f' = g$$
.

这就证明了等式 (9.30).

定理 9.28 (连续性)

若函数项级数 $\sum u_n(x)$ 在区间 [a,b] 上一致收敛, 且每一项都连续, 则其和函数在 [a,b] 上也连续.

笔记 这个定理指出:在一致收敛条件下,(无限项)求和运算与求极限运算可以交换顺序,即

$$\sum \left(\lim_{x \to x_0} u_n(x) \right) = \lim_{x \to x_0} \left(\sum u_n(x) \right).$$

定理 9.29 (逐项求积)

若函数项级数 $\sum u_n(x)$ 在 [a,b] 上一致收敛, 且每一项 $u_n(x)$ 都连续, 则

$$\sum \int_{a}^{b} u_n(x) dx = \int_{a}^{b} \sum u_n(x) dx.$$

定理 9.30 (逐项求导)

若函数项级数 $\sum u_n(x)$ 在 [a,b] 上每一项都有连续的导函数, $x_0 \in [a,b]$ 为 $\sum u_n(x)$ 的收敛点,且 $\sum u_n'(x)$

$$\sum \left(\frac{\mathrm{d}}{\mathrm{d}x}u_n(x)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(\sum u_n(x)\right).$$

例题 9.37 判断下列级数在指定区间一致收敛性: 1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n+\sqrt{x}}}$$
, $[0,+\infty)$;

2.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+x^2}{n^2}, [-a, a], a > 0;$$

3.
$$\sum_{n=1}^{\infty} \left(\frac{x^{n-1}}{n} - \frac{x^n}{n+1} \right), [-1, 1];$$

4.
$$\sum_{n=1}^{\infty} \frac{x^n}{(1+x)(1+x^2)\cdots(1+x^n)}, [0,+\infty);$$

5.
$$\sum_{n=1}^{\infty} \frac{x}{1 + nx^2} \sin \frac{1}{\sqrt{nx}} \arctan \left(\sqrt{\frac{x}{n}} \right), (0, +\infty);$$

6.
$$\sum_{n=1}^{\infty} \frac{\sin^2 x}{x + n^3 x^2}, (0, +\infty);$$

7.
$$\sum_{n=1}^{\infty} \left(\arctan \frac{x}{n^2 + x^2}\right)^2, [0, +\infty).$$

注 第 4 问可以通过裂项算出级数的和函数

$$\begin{split} \sum_{n=1}^{\infty} \frac{x^n}{(1+x)(1+x^2)\cdots(1+x^n)} &= \frac{x}{1+x} + \sum_{n=2}^{\infty} \frac{x^n}{(1+x)(1+x^2)\cdots(1+x^n)} \\ &= \frac{x}{1+x} + \sum_{n=2}^{\infty} \left[\frac{1}{(1+x)(1+x^2)\cdots(1+x^{n-1})} - \frac{1}{(1+x)(1+x^2)\cdots(1+x^n)} \right] \\ &= \frac{x}{1+x} + \frac{1}{1+x} - \lim_{n \to \infty} \frac{1}{(1+x)(1+x^2)\cdots(1+x^n)} \\ &= 1 - \lim_{n \to \infty} \frac{1}{(1+x)(1+x^2)\cdots(1+x^n)} = 1 - \prod_{n=1}^{\infty} \frac{1}{1+x^n}. \end{split}$$

但 $\prod_{n=1}^{\infty} \frac{1}{1+x^n}$ 的一致收敛性不好判断 (这个方法比较复杂), 因此我们不采取这个方法. 证明

1. 显然
$$\left|\sum_{j=1}^{n} (-1)^{j}\right| \leq 2$$
 以及对每一个 $x \in [0, +\infty)$ 都有 $\frac{1}{\sqrt[3]{n+\sqrt{x}}}$ 单调递减. 又
$$\frac{1}{\sqrt[3]{n+\sqrt{x}}} \leq \frac{1}{\sqrt[3]{n}} \to 0, n \to \infty,$$

我们由一致收敛的 A-D 判别法有 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n+\sqrt{x}}}$ 在 $[0,+\infty)$ 一致收敛.

2. 显然
$$\left| \sum_{j=1}^{n} (-1)^{j} \right| \le 2$$
 以及对每一个 $x \in [-a, a]$ 都有 $\frac{n+x^{2}}{n^{2}}$ 单调递减. 又

$$\frac{n+x^2}{n^2} \leqslant \frac{n+a^2}{n^2} \to 0, n \to \infty,$$

我们由一致收敛的 A-D 判别法有 $\sum_{i=0}^{\infty} (-1)^n \frac{n+x^2}{n^2}$ 在 [-a,a] 一致收敛.

3. 注意到

$$\lim_{m \to \infty} \sup_{x \in [-1,1]} \left| \sum_{n=m}^{\infty} \left(\frac{x^{n-1}}{n} - \frac{x^n}{n+1} \right) \right| = \lim_{m \to \infty} \sup_{x \in [-1,1]} \frac{x^m}{m+1} = \lim_{m \to \infty} \frac{1}{m+1} = 0,$$

我们有
$$\sum_{n=1}^{\infty} \left(\frac{x^{n-1}}{n} - \frac{x^n}{n+1} \right)$$
 在 [-1,1] 一致收敛.

$$\frac{x^n}{(1+x)(1+x^2)\cdots(1+x^{n-1})(1+x^n)} \leqslant \frac{1}{2^{n-1}}, \forall x \in [1,+\infty).$$

另外一方面, 对 $n \ge 2, x \in [0,1)$, 我们有

$$\frac{x^{2n+1}}{(1+x)(1+x^2)\cdots(1+x^{2n+1})} \le \frac{x^{2n}}{(1+x)(1+x^2)\cdots(1+x^{2n})}$$

$$\le \underbrace{\frac{x^{2n}}{(1+x^n)(1+x^n)\cdots(1+x^n)}}_{n} \le \frac{x^{2n}}{C_n^2x^{2n}} = \frac{2}{n(n-1)}.$$

即由 Weierstrass 判别法和

$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} < \infty, \sum_{n=2}^{\infty} \frac{2}{n(n-1)} < \infty,$$

我们知道原级数一致收敛.

5. 首先

$$\left|\sin\frac{1}{\sqrt{nx}}\arctan\left(\sqrt{\frac{x}{n}}\right)\right| \leqslant \sqrt{\frac{x}{n}}, \forall x > 0, n \in \mathbb{N}.$$

然后

$$\left(\frac{\sqrt{x}}{n}\frac{x}{1+nx^2}\right)' = \frac{\sqrt{x}(3-nx^2)}{2n(1+x^2n)^2} \Rightarrow \frac{\sqrt{x}}{n}\frac{x}{1+nx^2} \leqslant \frac{\sqrt{x}}{n}\frac{x}{1+nx^2}\bigg|_{x=\sqrt{\frac{3}{n}}} = \frac{3^{\frac{3}{4}}}{4}\left(\frac{1}{n}\right)^{\frac{7}{4}}.$$

于是

$$\sum_{n=1}^{\infty} \frac{x}{1+nx^2} \sin \frac{1}{\sqrt{nx}} \arctan \left(\sqrt{\frac{x}{n}}\right) \leqslant \sum_{n=1}^{\infty} \sqrt{\frac{x}{n}} \frac{x}{1+nx^2} \leqslant \sum_{n=1}^{\infty} \frac{3^{\frac{3}{4}}}{4} \left(\frac{1}{n}\right)^{\frac{7}{4}} < +\infty.$$

这就证明了 $\sum_{i=1}^{\infty} \frac{x}{1+nx^2} \sin \frac{1}{\sqrt{nx}} \arctan \left(\sqrt{\frac{x}{n}}\right)$ 在 $(0,+\infty)$ 一致收敛.

6. 我们有

$$\sum_{n=1}^{\infty} \frac{\sin^2 x}{x + n^3 x^2} \leqslant \sum_{n=1}^{\infty} \frac{\sin^2 x}{2n^{\frac{3}{2}} x^{\frac{3}{2}}} \leqslant \sup_{x \in (0, +\infty)} \frac{\sin^2 x}{2x^{\frac{3}{2}}} \cdot \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} < \infty,$$

即
$$\sum_{n=1}^{\infty} \frac{\sin^2 x}{x + n^3 x^2}$$
 在 $(0, +\infty)$ 一致收敛. 7. 因为

$$\left(\frac{x}{n^2 + x^2}\right)' = \frac{n^2 - x^2}{(x^2 + n^2)^2},$$

于是我们有

$$\sum_{n=1}^{\infty} \left(\arctan \frac{x}{n^2 + x^2}\right)^2 \leqslant \sum_{n=1}^{\infty} \left(\frac{x}{n^2 + x^2}\right)^2 \leqslant \sum_{n=1}^{\infty} \left(\frac{n}{n^2 + n^2}\right)^2 < \infty,$$

即
$$\sum_{n=1}^{\infty} \left(\arctan \frac{x}{n^2 + x^2}\right)^2$$
 在 $[0, +\infty)$ 一致收敛.

例题 9.38 级数 $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$ 在 $(0, \frac{\pi}{2})$ 是否一致收敛.

笔记 连续函数列 $\{f_n\}$ 在区间 I 一致收敛,则在 \overline{I} 也一致收敛,这是因为有等式

$$\sup_{x \in I} |f_n(x) - f_m(x)| = \sup_{x \in \overline{I}} |f_n(x) - f_m(x)|.$$

我们可以猜测级数值

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n} = \sum_{n=1}^{\infty} \Im\left(\frac{e^{inx}}{n}\right) = \Im\sum_{n=1}^{\infty} \frac{e^{inx}}{n} = \Im(-\ln(1 - e^{ix})) = -\arg(1 - e^{ix})$$

$$= -\arg(1 - \cos x - i\sin x) = -\arctan\frac{-\sin x}{1 - \cos x} = \arctan\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\sin^2\frac{x}{2}}$$

$$= \arctan\frac{1}{\tan\frac{x}{2}} = \frac{\pi}{2} - \arctan\tan\frac{x}{2} = \frac{\pi - x}{2},$$

然后对 $\frac{\pi-x}{2}$, $x \in (0,\pi)$ 做奇延拓之后在 $[-\pi,\pi]$ 展开为傅立叶级数, 从而得到

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n} = \frac{\pi - x}{2}, x \in (0, \pi).$$

这个级数结果应当记忆. 注意到上述和函数与x 有关, 故原级数一定不一致收敛, 下面将证明严格化. 证明 对 $\frac{\pi-x}{2}$, $x\in(0,\pi)$ 做奇延拓之后在 $[-\pi,\pi]$ 展开为傅立叶级数, 得到

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n} = \frac{\pi - x}{2}, x \in (0, \pi).$$

若 $\sum_{i=1}^{\infty} \frac{\sin(nx)}{n}$ 在 $(0, \frac{\pi}{2})$ 一致收敛,则在 $[0, \frac{\pi}{2})$ 也一致收敛. 但是

$$\sum_{n=1}^{\infty} \frac{\sin(n \cdot 0)}{n} = 0 \neq \lim_{x \to 0^{+}} \sum_{n=1}^{\infty} \frac{\sin(nx)}{n} = \lim_{x \to 0^{+}} \left(\frac{\pi - x}{2}\right) = \frac{\pi}{2},$$

这就和 $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$ 在 x = 0 应该连续矛盾! 因此 $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$ 在 $(0, \frac{\pi}{2})$ 不一致收敛.

例题 9.39 设 $f \in C^1(\mathbb{R})$, 令

$$f_n(x) = n \left[f\left(x + \frac{1}{n}\right) - f(x) \right], n = 1, 2, \cdots$$

试证明对任给区间 [a,b] 都有 $f_n(x)$ 一致收敛到 f'(x).

证明 由Cantor 定理及 $f \in C^1(\mathbb{R})$ 可知 f' 内闭一致连续性,于是对任何 $\varepsilon > 0$,存在 $\delta > 0$ 使得当 $x \in [a,b], t \in [0,\delta]$, 我们有

$$|f'(x+t) - f'(x)| \le \varepsilon.$$

当 $n > \frac{1}{s}$, 我们对任何 $x \in [a,b]$ 有

$$|f_n(x) - f'(x)| = n \left| \int_x^{x + \frac{1}{n}} f'(y) - f'(x) dy \right|$$

$$\leq n \int_x^{x + \frac{1}{n}} |f'(y) - f'(x)| dy = n \int_0^{\frac{1}{n}} |f'(x + t) - f'(x)| dt$$

$$\leq \varepsilon n \int_0^{\frac{1}{n}} 1 dt = \varepsilon,$$

这就证明了 $f_n(x)$ 在 [a,b] 一致收敛到 f'(x).

例题 9.40 讨论下列函数在给定区间可微性. 1.
$$\sum_{n=1}^{\infty} e^{-n^2\pi x}$$
, $(0, +\infty)$;

$$2. \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3}, (-\infty, +\infty);$$

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} \arctan\left(\frac{x}{\sqrt{n}}\right), (-\infty, +\infty);$$

4.
$$\sum_{n=1}^{\infty} \sqrt{n} \tan^n x, \left(-\frac{\pi}{4}, \frac{\pi}{4}\right).$$

1. $\sum_{n=0}^{\infty} e^{-n^2\pi x}$ 显然收敛. 考虑逐项微分级数

$$\sum_{n=1}^{\infty} \left(e^{-n^2 \pi x} \right)' = \sum_{n=1}^{\infty} -n^2 \pi e^{-n^2 \pi x}.$$

对任何 [a,b] \subset (0,+∞), 我们有

$$\sum_{n=1}^{\infty} \left| -n^2 \pi e^{-n^2 \pi x} \right| \le \sum_{n=1}^{\infty} n^2 \pi e^{-n^2 \pi a} < \infty,$$

即内闭一致收敛, 因此由定理 9.30可知 $\sum_{i=1}^{\infty} e^{-n^2\pi x}$ 在 $(0,+\infty)$ 可微.

2. 注意到

$$\sum_{n=1}^{\infty} \left| \frac{\sin(nx)}{n^3} \right| \leqslant \sum_{n=1}^{\infty} \frac{1}{n^3} < \infty, \sum_{n=1}^{\infty} \left| \frac{\cos(nx)}{n^2} \right| \leqslant \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty,$$

于是我们有原级数和逐项微分级数一致收敛, 因此 $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3}$ 在 $(-\infty, +\infty)$ 可微.

3. 显然

$$\frac{1}{\sqrt{n}}\arctan\left(\frac{x}{\sqrt{n}}\right) \Longrightarrow 0, \forall x \in \mathbb{R},$$

于是由莱布尼兹判别法知原级数收敛. 考虑逐项微分级数

$$\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{\sqrt{n}} \arctan\left(\frac{x}{\sqrt{n}}\right) \right)' = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{1}{1 + \frac{x^2}{n}} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n + x^2}.$$

注意到

$$\left| \sum_{j=1}^{n} (-1)^{j+1} \right| \leqslant 1, \left| \frac{1}{n+x^2} \right| \leqslant 1, \forall x \in \mathbb{R}, n \in \mathbb{N},$$

以及对任何 $x \in \mathbb{R}$ 都有 $\frac{1}{n+x^2}$ 递减, 因此由一致收敛的 A-D 判别法我们知道逐项微分级数一致收敛. 因此 $\sum_{i=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} \arctan\left(\frac{x}{\sqrt{n}}\right) \div (-\infty, +\infty)$ 可微.

4. 显然 $\sum_{n=1}^{\infty} \sqrt{n} \tan^n x$ 在 $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ 收敛. 因为可微性是局部的概念, 我们来证明逐项微分级数

$$\sum_{n=1}^{\infty} n\sqrt{n} \tan^{n-1} x \left(\tan^2 x + 1 \right)$$

在任何 $[a,b] \subset \left(-\frac{\pi}{4},\frac{\pi}{4}\right)$ 一致收敛. 显然存在 $c_{a,b} \in (0,1)$ 使得

$$|\tan x| \leqslant c_{a,b}, \forall x \in [a,b].$$

于是我们知道

$$\sum_{n=1}^{\infty} \left| n\sqrt{n} \tan^{n-1} x \left(\tan^2 x + 1 \right) \right| \leqslant 2 \sum_{n=1}^{\infty} n\sqrt{n} c_{a,b}^{n-1} < \infty.$$

因此逐项微分级数

$$\sum_{n=1}^{\infty} n\sqrt{n} \tan^{n-1} x \left(\tan^2 x + 1 \right)$$

在 [a,b] 一致收敛, 从而 $\sum_{n=1}^{\infty} \sqrt{n} \tan^n x$ 在 $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ 可微.

例题 9.41 判断 $\sum_{n=1}^{\infty} \frac{nx}{(1+x)(1+2x)\cdots(1+nx)}$ 在 $[0,\lambda],\lambda>0$ 的一致收敛性.

证明 注意到

 $\frac{nx}{(1+x)(1+2x)\cdots(1+nx)} = \left[\frac{1}{(1+x)(1+2x)\cdots(1+(n-1)x)} - \frac{1}{(1+x)(1+2x)\cdots(1+nx)}\right], n = 2, 3, \cdots$ 于是我们有

$$\sum_{n=2}^{m} \frac{nx}{(1+x)(1+2x)\cdots(1+nx)} = \frac{1}{1+x} - \frac{1}{(1+x)(1+2x)\cdots(1+mx)}.$$

现在

$$\sum_{n=1}^{\infty} \frac{nx}{(1+x)(1+2x)\cdots(1+nx)} = \frac{x}{1+x} + \sum_{n=2}^{\infty} \frac{nx}{(1+x)(1+2x)\cdots(1+nx)}$$
$$= \begin{cases} \frac{x}{1+x} + \frac{1}{1+x}, & x > 0\\ 0, & x = 0 \end{cases}.$$

于是由级数和函数不连续知其在 $[0,\lambda],\lambda>0$ 不一致收敛

例题 9.42 判断 $\sum_{n=1}^{\infty} \frac{1}{n} \left[e^x - \left(1 + \frac{x}{n} \right)^n \right]$ 在 [0, b] 和 $[0, +\infty)$ 的一致收敛性.

证明 首先注意到

$$\left[e^{x} - \left(1 + \frac{x}{n}\right)^{n}\right]' = e^{x} - \left(1 + \frac{x}{n}\right)^{n-1} \geqslant 0,$$

我们有

$$e^x - \left(1 + \frac{x}{n}\right)^n \le e^b - \left(1 + \frac{b}{n}\right)^n.$$

由 Taylor 公式得

$$\begin{split} e^b - \left(1 + \frac{b}{n}\right)^n &= e^b \left[1 - e^{n \ln\left(1 + \frac{b}{n}\right) - b}\right] = e^b \left[1 - e^{n\left[\frac{b}{n} + O\left(\frac{1}{n^2}\right)\right] - b}\right] \\ &= e^b \left[1 - e^{O\left(\frac{1}{n}\right)}\right] = O\left(\frac{1}{n}\right), n \to \infty, \end{split}$$

(实际上我们可以写出具体的等价量 $e^b - \left(1 + \frac{b}{n}\right)^n \sim \frac{e^b b^2}{2n}, n \to \infty$) 于是我们有

$$\sum_{n=1}^{\infty} \frac{1}{n} \left[e^b - \left(1 + \frac{b}{n} \right)^n \right] < \infty.$$

故 $\sum_{n=1}^{\infty} \frac{1}{n} \left[e^x - \left(1 + \frac{x}{n} \right)^n \right]$ 在 [0, b] 一致收敛. 注意到

$$\sup_{x \in [0, +\infty)} \left| \frac{1}{n} \left[e^x - \left(1 + \frac{x}{n} \right)^n \right] \right| = +\infty,$$

我们知道 $\sum_{n=1}^{\infty} \frac{1}{n} \left[e^x - \left(1 + \frac{x}{n} \right)^n \right]$ 在 $[0, +\infty)$ 不一致收敛.

例题 9.43 对 $\alpha > 0$, 判断 $\sum_{n=1}^{\infty} x^{\alpha} e^{-nx}$ 在 $[0, +\infty)$ 一致收敛性.

证明 注意到

$$(x^{\alpha}e^{-nx})' = (\alpha - nx)x^{\alpha - 1}e^{-nx} = 0 \Rightarrow x = \frac{\alpha}{n}.$$

我们有

$$x^{\alpha}e^{-nx} \leqslant \left(\frac{\alpha}{n}\right)^{\alpha}e^{-\alpha}.$$

当 $\alpha > 1$, 我们由 $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < \infty$ 知原级数在 $[0, +\infty)$ 一致收敛.

β α ϵ [0,1), 注意到

$$\sum_{n=1}^{\infty} x^{\alpha} e^{-nx} = \begin{cases} \frac{x^{\alpha}}{e^{x} - 1}, & x > 0\\ 0, & x = 0 \end{cases}.$$

如果原级数在 $[0,+\infty)$ 一致收敛,那么上述和函数在 x=0 应该连续. 但是

$$\lim_{x \to 0^+} \frac{x^{\alpha}}{e^x - 1} \neq 0,$$

故原级数在[0,+∞)不一致收敛.

例题 9.44 求 α 的范围, 使得 $\sum_{n=1}^{\infty} \left(x-\frac{1}{n}\right)^n (1-x)^{\alpha}$ 在 $x \in [0,1]$ 一致收敛.

Ŷ 笔记 我们只需保证

$$\sum_{n=1}^{\infty} \sup_{x \in [0,1]} \left(x - \frac{1}{n} \right)^n (1-x)^{\alpha}$$

收敛. 虽然一般情况这并不能说明

$$\sum_{n=1}^{\infty} \sup_{x \in [0,1]} \left(x - \frac{1}{n} \right)^n (1-x)^{\alpha} = +\infty$$

时一定有 $\sum_{n=1}^{\infty} \left(x - \frac{1}{n}\right)^n (1-x)^{\alpha}$ 在 $x \in [0,1]$ 不一致收敛, 但是对具体例子, 我们通过对 x 赋值往往能实现这一点.

证明 当 $\alpha > 1$, 首先由

$$\left[\left(x-\frac{1}{n}\right)^n(1-x)^{\alpha}\right]' = \left(x-\frac{1}{n}\right)^{n-1}(1-x)^{\alpha-1}\left[n+\frac{\alpha}{n}-(n+\alpha)x\right] = 0 \Rightarrow x = \frac{n+\frac{\alpha}{n}}{n+\alpha} \text{ and } \text{if }$$

知

$$\begin{split} \sup_{x \in [0,1]} \left(x - \frac{1}{n} \right)^n (1-x)^\alpha &= \left(\frac{n + \frac{\alpha}{n}}{n + \alpha} - \frac{1}{n} \right)^n \left(1 - \frac{n + \frac{\alpha}{n}}{n + \alpha} \right)^\alpha = \left(\frac{n^3 - n^2}{n^3 + \alpha n^2} \right)^n \left(\frac{\alpha n - \alpha}{n^2 + \alpha n} \right)^\alpha \\ &\sim \frac{\alpha^\alpha}{n^\alpha} \left(\frac{n^3 - n^2}{n^3 + \alpha n^2} \right)^n = \frac{\alpha^\alpha}{n^\alpha} \left(1 - \frac{(1 + \alpha) n^2}{n^3 + \alpha n^2} \right)^n \\ &\sim \frac{\alpha^\alpha}{n^\alpha} e^{-\frac{(1 + \alpha) n^3}{n^3 + \alpha n^2}} \sim \frac{e^{-(1 + \alpha)} \alpha^\alpha}{n^\alpha}, n \to \infty. \end{split}$$

故由 Weierstrass 判别法可知 $\sum_{i=1}^{\infty} \left(x - \frac{1}{n}\right)^n (1 - x)^{\alpha}$ 在 $x \in [0, 1]$ 一致收敛.

当 $\alpha \leq 0$, 原级数在 x=1 时通项极限不等于 0, 故此时级数在 x=1 时发散.

当
$$0 < \alpha \le 1$$
, 当 $N \to +\infty$, 取 $x = n + \frac{\alpha}{n}$, 我们有

$$\begin{split} \sum_{n=N}^{2N-1} \left(\frac{N + \frac{\alpha}{N}}{N + \alpha} - \frac{1}{n} \right)^n \left(1 - \frac{N + \frac{\alpha}{N}}{N + \alpha} \right)^{\alpha} & \geqslant \sum_{n=N}^{2N-1} \left(\frac{N + \frac{\alpha}{N}}{N + \alpha} - \frac{1}{N} \right)^n \left(1 - \frac{N + \frac{\alpha}{N}}{N + \alpha} \right)^{\alpha} = \sum_{n=N}^{2N-1} \left(\frac{N^2 - N}{(N + \alpha)N} \right)^n \left(1 - \frac{N + \frac{\alpha}{N}}{N + \alpha} \right)^{\alpha} \\ & \geqslant N \left(\frac{N^2 - N}{(N + \alpha)N} \right)^{2N-1} \left(1 - \frac{N + \frac{\alpha}{N}}{N + \alpha} \right)^{\alpha} \geqslant N \left(\frac{N^2 - N}{(N + \alpha)N} \right)^{2N-1} \left(\frac{\alpha - \frac{\alpha}{N}}{N + \alpha} \right)^{\alpha} \\ & \sim N e^{-\frac{(1 + \alpha)(2N - 1)}{N + \alpha}} \cdot \frac{\alpha^{\alpha}}{N^{\alpha}} \sim \frac{\alpha^{\alpha} e^{-2(1 + \alpha)}}{N^{\alpha - 1}} \to +\infty, \end{split}$$

即
$$\sum_{n=1}^{\infty} \left(x - \frac{1}{n}\right)^n (1-x)^{\alpha}$$
 在 $x \in [0,1]$ 不一致收敛.

例题 **9.45** 设 $f_1 \in C[a,b], x_0 \in [a,b]$. 考虑函数列

$$f_{n+1}(x) = \int_{x_0}^{x} f_n(t) dt, n = 1, 2, \cdots$$

讨论 $\{f_n\}$ 在 [a,b] 一致收敛性.

$$|f_1(x)| \leqslant M \Rightarrow |f_2(x)| \leqslant \int_{x_0}^x M dx = M |x - x_0|$$

$$\Rightarrow |f_3(x)| \leqslant \int_{x_0}^x M |x - x_0| dx = \frac{M}{2} |x - x_0|^2 \Rightarrow \cdots$$

于是就有下述归纳.

注 要注意积分上下限大小问题. 如果积分上限小于下限,则绝对值不等式要反一下上下限使得上限大于下限,因此我们放缩时在积分号外面再加了一个绝对值(当然也可以分类讨论).

证明 设 $M \triangleq \sup_{x \in [a,b]} |f_1(x)|$, 我们归纳证明

$$|f_n(x)| \leqslant \frac{M}{(n-1)!} |x - x_0|^{n-1}. \tag{9.31}$$

现在(9.31)对 n=1 已经成立. 假设 n 时成立, 我们对 $x_0 \in [a,b]$ 有

$$|f_{n+1}(x)| = \left| \int_{x_0}^x f_n(t) dt \right| \leqslant \left| \int_{x_0}^x |f_n(t)| dt \right| \leqslant \frac{M}{(n-1)!} \int_{x_0}^x |x - x_0|^{n-1} dx = \frac{M}{n!} |x - x_0|^n.$$

现在由数学归纳法知对一切 $n \in \mathbb{N}$ 都有(9.31)成立,故

$$|f_n(x)|\leqslant \frac{M}{(n-1)!}|x-x_0|^{n-1}\leqslant \frac{M}{(n-1)!}\max\left\{|b-x_0|^{n-1},|x_0-a|^{n-1}\right\},$$
即 $\{f_n\}$ 在 $[a,b]$ 一致收敛到 0.

9.5 级数证明

例题 9.46 设 $f \in \mathbb{R}[x]$ 是只有正实根的多项式, 求 $\frac{f'(x)}{f(x)}$ 在 x = 0 幂级数展开和收敛域. 证明 设 $f(x) = a(x - x_1)^{k_1}(x - x_2)^{k_2} \cdots (x - x_n)^{k_n}$, 其中 $a \neq 0$, 并且

$$0 < x_1 < x_2 < \dots < x_n, k_i \in \mathbb{N}.$$

从而

$$\frac{f'(x)}{f(x)} = \left[\ln f(x)\right]' = \left[\ln a + k_1 \ln(x - x_1) + k_2 \ln(x - x_2) + \dots + k_n \ln(x - x_n)\right]'$$

$$= \frac{k_1}{x - x_1} + \frac{k_2}{x - x_2} + \dots + \frac{k_n}{x - x_n} = \sum_{j=1}^n \frac{k_j}{x - x_j}$$

$$= -\frac{k_j}{x_j} \sum_{j=1}^n \frac{1}{1 - \frac{x}{x_j}} = -\sum_{j=1}^n \frac{k_j}{x_j} \sum_{m=0}^\infty \left(\frac{x}{x_j}\right)^m$$

$$= -\sum_{m=0}^\infty \sum_{j=1}^n \frac{k_j}{x_j^{m+1}} x^m.$$

显然收敛半径就是 x_1 ,注意到

$$\lim_{m \to +\infty} \sum_{j=1}^{n} \frac{k_{j}}{x_{j}^{m+1}} x_{1}^{m} = \frac{k_{1}}{x_{1}} \neq 0,$$

故收敛域为 (-x₁,x₁).

例题 9.47 设 $e^{a_n}=a_n+e^{b_n}, a_n>0$, 若 $\sum_{n=1}^{\infty}a_n$ 收敛, 证明: $\sum_{n=1}^{\infty}b_n$ 收敛.

证明 显然 $e^{b_n}=e^{a_n}-a_n\geqslant 1$, 故 $b_n\geqslant 0$, 并且由 $\sum_{n=1}^\infty a_n$ 收敛知 $a_n\rightarrow 0$. 于是

$$b_n = \ln(e^{a_n} - a_n) = \ln e^{a_n} + \ln(1 - a_n e^{-a_n})$$

= $a_n + O(a_n e^{-a_n}), n \to \infty$.

注意到 $O(a_ne^{-a_n}) \leqslant a_n$, 故 $\sum_{n=1}^{\infty} O(a_ne^{-a_n})$ 也收敛, 因此 $\sum_{n=1}^{\infty} b_n$ 收敛.

例题 9.48 设 $\{a_n\}$ 是递减正数列且 $\sum_{n=1}^{\infty} a_n = +\infty$, 证明

$$\lim_{n \to \infty} \frac{a_2 + a_4 + \dots + a_{2n}}{a_1 + a_3 + \dots + a_{2n-1}} = 1.$$

证明 由条件可知对 $\forall n \in \mathbb{N}$. 都有

$$a_2 + a_4 + \cdots + a_{2n} \leq a_1 + a_3 + \cdots + a_{2n-1}$$

故 *A* ≤ 1. 注意到

$$\frac{a_2 + a_4 + \dots + a_{2n}}{a_1 + a_3 + \dots + a_{2n-1}} \ge \frac{a_3 + a_5 + \dots + a_{2n+1}}{a_1 + a_3 + \dots + a_{2n-1}} = 1 - \frac{a_1 - a_{2n+1}}{a_1 + a_3 + \dots + a_{2n-1}}$$
$$\ge 1 - \frac{a_1}{\frac{a_2 + a_4 + \dots + a_{2n}}{2} + \frac{a_1 + a_3 + \dots + a_{2n-1}}{2}} = 1 - \frac{2a_1}{\sum\limits_{i=1}^{n} a_i} \to 1, n \to \infty.$$

故 $A \geqslant 1$. 因此 A = 1.

命题 9.8

设 a_n 递减到 0, 证明: $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ 收敛的充要条件是 $\sum_{n=1}^{\infty} a_n$ 收敛, 并且 $\sum_{n=1}^{\infty} n(a_n - a_{n+1}) = \sum_{n=1}^{\infty} a_n$.

室记 (9.32)式可由Abel 变换直接得到,也可以采用下述证明一样的强行凑裂项的思路. 证明 注意到

$$\sum_{k=1}^{n} k (a_k - a_{k+1}) = \sum_{k=1}^{n} [k a_k - (k+1) a_{k+1}] + \sum_{k=1}^{n} [(k+1) a_{k+1} - k a_{k+1}]$$

$$= a_1 - (n+1) a_{n+1} + \sum_{k=1}^{n} a_{k+1} = \sum_{k=1}^{n+1} a_k - (n+1) a_{n+1}.$$
(9.32)

充分性: 若 $\sum_{n=1}^{\infty} a_n$ 收敛, 则由命题 9.2可知 $\lim_{n\to\infty} na_n = 0$. 再由(9.32)式可得

$$\sum_{k=1}^{\infty} k (a_k - a_{k+1}) = \sum_{k=1}^{\infty} a_k < +\infty.$$

必要性: 若 $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ 收敛,则由 $\{a_n\}$ 的单调性知,对 $\forall m \in \mathbb{N}$, 当 $n \geqslant m$ 时,有

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{m} a_k + \sum_{k=m+1}^{n} a_k \geqslant \sum_{k=1}^{m} a_k + (n-m) a_n.$$

又由(9.32)式和 $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ 收敛知, 存在 A > 0, 使得

$$\sum_{k=1}^{n-1} k (a_k - a_{k+1}) = \sum_{k=1}^{n} a_k - na_n \le A, \forall n \in \mathbb{N}.$$

故

$$A \geqslant \sum_{k=1}^{n} a_k - na_n \geqslant \sum_{k=1}^{m} a_k + (n-m)a_n - na_n = \sum_{k=1}^{m} a_k - ma_n.$$

 $\Diamond n \to +\infty$ 得 $\sum_{k=1}^{m} a_k \leqslant A$. 再由 m 的任意性可知 $\sum_{k=1}^{\infty} a_k$ 收敛. 此时由命题 9.2可知 $\lim_{n \to \infty} na_n = 0$, 再由(9.32)式可知

$$\sum_{k=1}^{\infty} k (a_k - a_{k+1}) = \sum_{k=1}^{\infty} a_k.$$

例题 9.49 设 a_n 递减到 0, 且 $\sum_{n=1}^{\infty} a_n$ 发散, 证明

$$\int_{1}^{\infty} \frac{\ln f(x)}{x^2} \mathrm{d}x$$

发散, 这里 $f(x) = \sum_{n=1}^{\infty} a_n^n x^n$.

证明 由 $\lim_{n\to\infty} a_n$ 可知 $\lim_{n\to\infty} \sqrt[n]{a_n^n} = \lim_{n\to\infty} a_n = 0$, 故 f(x) 的收敛域为 \mathbb{R} . 显然 f>0, x>0, 且 f 在 $(0,+\infty)$ 上递增. 待定 $\{b_n\}$ 满足: $b_n \nearrow +\infty$. 从而

$$\int_{b_{n}}^{b_{n+1}} \frac{\ln f(x)}{x^{2}} dx \geqslant \int_{b_{n}}^{b_{n+1}} \frac{\ln f(b_{n})}{x^{2}} dx = \ln f(b_{n}) \left(\frac{1}{b_{n}} - \frac{1}{b_{n+1}}\right)$$

$$\geqslant \ln\left(a_n^n b_n^n\right) \left(\frac{1}{b_n} - \frac{1}{b_{n+1}}\right) = n \ln\left(a_n b_n\right) \left(\frac{1}{b_n} - \frac{1}{b_{n+1}}\right).$$

取 $b_n = \frac{C}{a_n}, C > \max\{1, a_1\}, 则$

$$\int_{b_{n}}^{b_{n+1}} \frac{\ln f(x)}{x^{2}} dx \ge n \ln (a_{n}b_{n}) \left(\frac{1}{b_{n}} - \frac{1}{b_{n+1}} \right) = \frac{\ln C}{C} n (a_{n} - a_{n+1}).$$

由命题 9.8可知 $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ 发散. 故

$$\int_{1}^{+\infty} \frac{\ln f(x)}{x^2} \mathrm{d}x \geqslant \sum_{n=1}^{\infty} \int_{b_n}^{b_{n+1}} \frac{\ln f(x)}{x^2} \mathrm{d}x \geqslant \frac{\ln C}{C} \sum_{n=1}^{\infty} n \left(a_n - a_{n+1}\right) = +\infty.$$

例题 9.50 证明:

1.

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt[n]{n}} \leqslant p, \forall p \in (1,+\infty).$$

2.

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt[n]{n}} \geqslant p, \forall p \in (0,1).$$

Ŷ 笔记 注意强行凑裂项和熟悉Bernoulli 不等式.

证明

1.

$$\frac{1}{(n+1)\sqrt[q]{n}} \leqslant p\left(\frac{1}{\sqrt[q]{n}} - \frac{1}{\sqrt[q]{n+1}}\right)$$

$$\iff \sqrt[p]{1 - \frac{1}{n+1}} \leqslant 1 - \frac{1}{p(n+1)}.$$

$$\iff \sqrt[p]{1 - \frac{1}{n+1}} \leqslant 1 - \frac{1}{p(n+1)}.$$

$$\uparrow i \mathbb{E} \sqrt[p]{1 - \frac{1}{n+1}} \leqslant 1 - \frac{1}{p(n+1)}.$$

$$\uparrow i \mathbb{E} \sqrt[q]{1 - \frac{1}{n+1}} \leqslant 1 - \frac{1}{p(n+1)} \cdot \stackrel{\triangle}{\Rightarrow} f(x) \stackrel{\triangle}{=} \sqrt[q]{1 - x} - \frac{x}{p}, \text{ M}$$

$$f'(x) = -\frac{1}{p} (1 - x)^{\frac{1}{p} - 1} + \frac{1}{p} = \frac{1}{p} \left[1 - (1 - x)^{\frac{1}{p} - 1} \right] < 0.$$

故

$$f(x) \leqslant f(0) = 1 \Longleftrightarrow \sqrt[q]{1-x} \leqslant 1 - \frac{x}{p}.$$
 令 $x = \frac{1}{n+1}$ 得 $\sqrt[q]{1-\frac{1}{n+1}} \leqslant 1 - \frac{1}{p(n+1)}$,从而(9.33)式成立. 故

$$\sum_{n=1}^{\infty} \frac{1}{(n+1) \sqrt[n]{n}} \leqslant \sum_{n=1}^{\infty} p\left(\frac{1}{\sqrt[n]{n}} - \frac{1}{\sqrt[n]{n+1}}\right) = p.$$

2.

$$\frac{1}{(n+1)\sqrt[q]{n}} \geqslant p\left(\frac{1}{\sqrt[q]{n}} - \frac{1}{\sqrt[q]{n+1}}\right)
\iff \sqrt[q]{n}\left(\frac{1}{\sqrt[q]{n}} - \frac{1}{\sqrt[q]{n+1}}\right) = 1 - \sqrt[p]{1 - \frac{1}{n+1}} \leqslant \frac{1}{p(n+1)}
\iff \sqrt[q]{1 - \frac{1}{n+1}} \geqslant 1 - \frac{1}{p(n+1)}.$$
(9.34)

下证
$$\sqrt[p]{1 - \frac{1}{n+1}} \ge 1 - \frac{1}{p(n+1)}$$
. $\diamondsuit f(x) \triangleq \sqrt[q]{1-x} - \frac{x}{p}$, 则
$$f'(x) = -\frac{1}{p}(1-x)^{\frac{1}{p}-1} + \frac{1}{p} = \frac{1}{p}\left[1 - (1-x)^{\frac{1}{p}-1}\right] > 0.$$

故

$$f(x) \geqslant f(0) = 1 \Longleftrightarrow \sqrt[p]{1-x} \geqslant 1 - \frac{x}{p}.$$
 令 $x = \frac{1}{n+1}$ 得 $\sqrt[p]{1-\frac{1}{n+1}} \geqslant 1 - \frac{1}{p(n+1)}$,从而(9.34)式成立. 故

$$\sum_{n=1}^{\infty} \frac{1}{(n+1) \sqrt[n]{n}} \geqslant \sum_{n=1}^{\infty} p\left(\frac{1}{\sqrt[n]{n}} - \frac{1}{\sqrt[n]{n+1}}\right) = p.$$

例题 9.51 对 $t \in \mathbb{R}$, 证明:

$$\sum_{n=1}^{\infty} \frac{t^{n-1}}{n^n} = \int_0^1 \frac{1}{x^{tx}} dx.$$

证明

$$\int_{0}^{1} \frac{1}{x^{tx}} dx = \int_{0}^{1} e^{-tx \ln x} dx = \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-tx \ln x)^{n}}{n!} dx$$

$$= \sum_{n=0}^{\infty} \int_{0}^{1} \frac{(-tx \ln x)^{n}}{n!} dx = \sum_{n=0}^{\infty} \frac{(-t)^{n}}{n!} \int_{0}^{1} x^{n} \ln^{n} x dx$$

$$= \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \int_{0}^{+\infty} e^{-(n+1)y} y^{n} dy = \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \frac{t^{n}}{(n+1)^{n+1}} \int_{0}^{+\infty} e^{-y} y^{n} dy$$

$$= \sum_{n=0}^{\infty} \frac{t^{n} \Gamma(n+1)}{n!} = \sum_{n=0}^{\infty} \frac{t^{n}}{(n+1)^{n+1}} = \sum_{n=0}^{\infty} \frac{t^{n}}{n^{n}}.$$

命题 9.9

- 1. 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, $a_n > 0$, 则存在 A_n 使得 $a_n = o(A_n)$ 和 $\sum_{n=1}^{\infty} A_n$ 收敛.
- 2. 设正项级数 $\sum_{n=1}^{\infty} a_n$ 发散, $a_n > 0$, 则存在 A_n 使得 $A_n = o(a_n)$ 和 $\sum_{n=1}^{\infty} A_n$ 发散.

空 笔记 这个命题说明: 沒有收敛最慢的级数, 也沒有发散最慢的级数。
证明

1. 令

$$A_n \triangleq \sqrt{\sum_{k=n}^{\infty} a_k} - \sqrt{\sum_{k=n+1}^{\infty} a_k},$$

则

$$\sum_{n=1}^{\infty} A_n = \sqrt{\sum_{k=1}^{\infty} a_k} < +\infty.$$

$$\lim_{n\to\infty} \frac{a_n}{A_n} = \lim_{n\to\infty} \frac{a_n}{\sqrt{\sum\limits_{k=n}^{\infty} a_k} - \sqrt{\sum\limits_{k=n+1}^{\infty} a_k}} = \lim_{n\to\infty} \frac{a_n \left(\sqrt{\sum\limits_{k=n}^{\infty} a_k} + \sqrt{\sum\limits_{k=n+1}^{\infty} a_k}\right)}{a_n} = 0.$$

2. 令

$$A_1 = 1$$
, $A_n \triangleq \sqrt{\sum_{k=1}^n a_k} - \sqrt{\sum_{k=1}^{n-1} a_k}$, $n = 2, 3, \dots$

则

$$\sum_{n=2}^{\infty} A_n = \lim_{n \to \infty} \left(\sqrt{\sum_{k=1}^n a_k} - \sqrt{a_1} \right) = +\infty.$$

$$\lim_{n \to \infty} \frac{A_n}{a_n} = \lim_{n \to \infty} \frac{\sqrt{\sum_{k=1}^n a_k} - \sqrt{\sum_{k=1}^{n-1} a_k}}{a_n} = \lim_{n \to \infty} \frac{a_n}{a_n \left(\sqrt{\sum_{k=1}^n a_k} + \sqrt{\sum_{k=1}^{n-1} a_k} \right)} = 0.$$

故 $A_n = o(a_n), n \to \infty$.

例题 9.52 设正项级数 $\sum_{n=1}^{\infty} \frac{1}{p_n} < \infty$, 证明

$$\sum_{n=1}^{\infty} \frac{n^2 p_n}{(p_1+p_2+\cdots+p_n)^2} < \infty.$$

注 本题的想法就是把 $\sum_{n=1}^{\infty} \frac{n^2 p_n}{(p_1 + p_2 + \dots + p_n)^2}$ 放大为阶更小的量, 从而其收敛.

证明 记 $S_0 = 0, S_n = \sum_{k=1}^{n} p_k$, 则对 $N \ge 2$, 有

$$\begin{split} &\sum_{n=2}^{N} \frac{n^2 p_n}{(p_1 + p_2 + \dots + p_n)^2} = \sum_{n=2}^{N} \frac{n^2 p_n}{S_n^2} = \sum_{n=2}^{N} \frac{n^2 (S_n - S_{n-1})}{S_n^2} \\ &= \sum_{n=2}^{N} n^2 \int_{S_{n-1}}^{S_n} \frac{1}{S_n^2} \mathrm{d}x \leqslant \sum_{n=2}^{N} n^2 \int_{S_{n-1}}^{S_n} \frac{1}{x^2} \mathrm{d}x = \sum_{n=2}^{N} n^2 \left(\frac{1}{S_{n-1}} - \frac{1}{S_n}\right) \\ &= \sum_{n=2}^{N} \left[\frac{n^2}{S_{n-1}} - \frac{(n+1)^2}{S_n} \right] + \sum_{n=2}^{N} \frac{(n+1)^2 - n^2}{S_n} \\ &= \frac{4}{S_1} - \frac{(N+1)^2}{S_N} + \sum_{n=2}^{N} \frac{2n+1}{S_n} \\ &\leqslant \frac{4}{S_1} + 3 \sum_{n=2}^{N} \frac{n}{S_n} = \frac{4}{S_1} + 3 \sum_{n=2}^{N} \left(\frac{n\sqrt{p_n}}{S_n} \cdot \frac{1}{\sqrt{p_n}} \right) \\ &\stackrel{\text{Cauchy}}{\leqslant} \frac{4}{S_1} + 3 \sqrt{\sum_{n=2}^{N} \frac{n^2 p_n}{S_n^2}} \cdot \sum_{n=2}^{N} \frac{1}{p_n} \\ &\leqslant \frac{4}{S_1} + C \sqrt{\sum_{n=2}^{N} \frac{n^2 p_n}{S_n^2}}. \end{split}$$

从而

$$\sqrt{\sum_{n=2}^{N} \frac{n^2 p_n}{S_n^2}} \leqslant \frac{4}{S_1} \frac{1}{\sqrt{\sum_{n=2}^{N} \frac{n^2 p_n}{S_n^2}}} + C.$$

若
$$\sum_{n=2}^{\infty} \frac{n^2 p_n}{S_n^2}$$
 发散,则对上式令 $N \to +\infty$ 得 $+\infty \leqslant C$ 矛盾! 故 $\sum_{n=2}^{\infty} \frac{n^2 p_n}{S_n^2} < +\infty$.

例题 9.53

1. 设 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty} \subset (0, +\infty)$ 且

$$\lim_{n\to\infty}\frac{b_n}{n}=0, \lim_{n\to\infty}b_n\left(\frac{a_n}{a_{n+1}}-1\right)>0.$$

证明级数 $\sum_{n=1}^{\infty} a_n$ 收敛.

2. 设 $\alpha \in (0,1), \{a_n\}_{n=1}^{\infty} \subset (0,+\infty)$ 且满足

$$\underline{\lim_{n\to\infty}} n^{\alpha} \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lambda \in (0, +\infty).$$

证明: $\lim_{n\to\infty} n^k a_n = 0$.

注 由
$$\lim_{k \to \infty} \frac{o\left(\frac{1}{k^2}\right)}{\frac{1}{k^2}} = 0, \sum_{k=1}^{\infty} \frac{1}{k^2}$$
 收敛可知 $\sum_{k=1}^{\infty} o\left(\frac{1}{k^2}\right)$ 收敛, 故 $\sum_{k=1}^{n} o\left(\frac{1}{k^2}\right) = O(1), \forall n \in \mathbb{N}.$

证明

1. 由条件可知, 存在 $c > 0, N \in \mathbb{N}$, 使得对 $\forall n \ge N$ 有

$$b_n \leqslant \frac{c}{2}n$$
, $b_n \left(\frac{a_n}{a_{n+1}} - 1\right) > c > 0$.

不妨设 N=1,则

$$\frac{a_n}{a_{n+1}} > 1 + \frac{c}{b_n} \Longrightarrow a_1 > a_{n+1} \prod_{k=1}^n \left(1 + \frac{c}{b_k} \right).$$

于是

$$\begin{split} a_{n+1} &< a_1 \prod_{k=1}^n \frac{1}{1 + \frac{c}{b_k}} = a_1 e^{-\sum\limits_{k=1}^n \ln\left(1 + \frac{c}{b_k}\right)} \\ &\leqslant a_1 e^{-\sum\limits_{k=1}^n \ln\left(1 + \frac{2}{k}\right)} = a_1 e^{-\sum\limits_{k=1}^n \left[\frac{2}{k} + o\left(\frac{1}{k^2}\right)\right]} \\ &= a_1 e^{-2\sum\limits_{k=1}^n \frac{1}{k} + O(1)} = a_1 e^{-2[\ln n + O(1)] + O(1)} \\ &= a_1 e^{-2\ln n + O(1)} \sim \frac{C}{n^2}, n \to \infty. \end{split}$$

故
$$\sum_{n=1}^{\infty} a_n$$
 收敛.

n=1 2. 由条件可知, 当 n 充分大时, 有

$$n^{\alpha} \left(\frac{a_n}{a_{n+1}} - 1 \right) > 0 \Rightarrow \frac{a_n}{a_{n+1}} > 1.$$

从而不妨设 $\{a_n\}$ 递减. 再根据条件可知, 存在 $N \in \mathbb{N}$, 使得

$$n^{\alpha} \left(\frac{a_n}{a_{n+1}} - 1 \right) > \frac{\lambda}{2}, \forall n \geqslant N.$$

故

$$\frac{a_n}{a_{n+1}} > 1 + \frac{\lambda}{2n^{\alpha}}, \forall n \geq N.$$

于是对 $\forall n \geq N$, 有

$$= a_N e^{-\left[\frac{\lambda n^{1-\alpha}}{2(1-\alpha)} + O(n^{1-\alpha})\right]} \leqslant a_N e^{-Cn^{1-\alpha}}, n \to \infty.$$

注意到
$$\sum_{n=1}^{\infty} e^{-Cn^{1-\alpha}} < +\infty$$
, 故 $\sum_{n=1}^{\infty} a_n$ 收敛.

命题 9.10

证明:

- 1. 实级数 $\sum_{n=1}^{\infty} u_n$ 收敛等价于存在分解 $u_n = a_n b_n, n \in \mathbb{N}$ 使得 $\{a_n\}$ 单调趋于 0 且 $\sum b_n$ 部分和有界.
- 2. 实级数 $\sum_{n=1}^{\infty} u_n$ 收敛等价于存在分解 $u_n = a_n b_n, n \in \mathbb{N}$ 使得 $\{a_n\}$ 单调有界且 $\sum b_n$ 部分和收敛.

💡 笔记 这个命题说明:A-D 判别法是级数收敛的"充要条件". 积分版本见命题 6.2.

证明 充分性就是由级数收敛的 A-D 判别法. 下证必要性.

1. 设 $\sum_{n=1}^{\infty} u_n$ 收敛, 由 Cauchy 收敛准则, 对 $\forall i \in \mathbb{N}$, 存在 $n_i \in \mathbb{N}$, 使得

$$\left|\sum_{n=k}^{k+p} u_n\right| \leqslant \frac{1}{i^3}, \forall k \geqslant n_i, p \in \mathbb{N}.$$

定义

$$a_0 = 1, \quad a_n \triangleq \begin{cases} 1, 1 \le n \le n_1 \\ \frac{1}{i}, n_i < n \le n_{i+1} \end{cases}, i = 1, 2, \dots, b_n = \frac{u_n}{a_n}.$$

显然 $a_n \setminus 0$. 当 $1 \leq n \leq n_1$ 时, 我们有

$$\left|\sum_{k=1}^n b_k\right| = \left|\sum_{k=1}^n u_k\right| \leqslant \sum_{k=1}^{n_1} |u_k|.$$

当 $n > n_1$ 时,存在 $k \in \mathbb{N}$,使得 $n_k < n \leq n_{k+1}$,于是

$$\left| \sum_{j=1}^{n} b_{j} \right| = \left| \sum_{j=1}^{n_{1}} u_{j} + \sum_{i=1}^{k-1} \sum_{j=n_{i}+1}^{n_{i+1}} i u_{j} + k \sum_{j=n_{k}+1}^{n} u_{j} \right| \leq \sum_{j=1}^{n_{1}} \left| u_{j} \right| + \sum_{i=1}^{k-1} i \left| \sum_{j=n_{i}+1}^{n_{i+1}} u_{j} \right| + k \left| \sum_{j=n_{k}+1}^{n} u_{j} \right|$$

$$\leq \sum_{j=1}^{n_{1}} \left| u_{j} \right| + \sum_{i=1}^{k-1} \frac{i}{i^{3}} + \frac{k}{k^{3}} \leq \sum_{j=1}^{n_{1}} \left| u_{j} \right| + \sum_{j=1}^{\infty} \frac{1}{i^{2}} = \sum_{j=1}^{n_{1}} \left| u_{j} \right| + \frac{\pi^{2}}{6}.$$

2. 设 $\sum_{n=1}^{\infty} u_n$ 收敛, 由第 1 问可知, 存在 $\{\alpha_n\}$, $\{\beta_n\}$ 使得 $u_n = \alpha_n \beta_n$, 并且 $\{\alpha_n\}$ 单调递减趋于 $0, \sum \beta_n$ 部分和有界. 令

$$a_n \triangleq \sqrt{\alpha_n}, \quad b_n \triangleq \beta_n \sqrt{\alpha_n} = \beta_n a_n, \quad n = 1, 2, \cdots.$$

显然 $a_n \searrow 0$, 进而 $\{a_n\}$ 单调有界. 又 $\sum \beta_n$ 部分和有界, 故由 Dirichlet 判别法知, $\sum b_n$ 部分和收敛.

例题 9.54 设实级数 $\sum_{n=1}^{\infty} a_n = s$ 条件收敛, $\sum_{n=1}^{\infty} a_{f(n)} = t \neq s$ 是一个重排. 证明: 对任何 $N \in \mathbb{N}$, 存在 $n \in \mathbb{N}$ 使得 |n-f(n)| > N.

证明 若 $\exists N \in \mathbb{N}$, 使得 $\forall n \in \mathbb{N}$, 有 $|n - f(n)| \leq N$, 那么对 $\forall m > N$, 就有

$$\sum_{k=1}^{m+N} a_{f(k)} - \sum_{k=1}^{m} a_k + - 定不包含a_1, a_2, \cdots, a_m, a_{f(1)}, a_{f(2)}, \cdots, a_{f(m-N)}.$$
并且 $\sum_{k=1}^{m+N} a_{f(k)} - \sum_{k=1}^{m} a_k$ 至多含有 $m+N+m-(2m-N)=2N$ 项.

故对 $\forall \varepsilon > 0$, 存在 $N_1 \in \mathbb{N}$, 使得当 $n > N_1$ 时, 有 $|a_n| \leq \varepsilon$. 于是对 $\forall m > N_1$, 就有

$$\left| \sum_{k=1}^{m+N} a_{f(k)} - \sum_{k=1}^{m} a_k \right| \leqslant 2N\varepsilon.$$

令 $m \to +\infty$ 得 $|s-t| \le 2N\varepsilon$. 由 ε 的任意性知 s=t, 矛盾!

例题 9.55

- 1. 设 f 满足: 对任何绝对收敛级数 $\sum_{n=1}^{\infty} a_n$, 都有 $\sum_{n=1}^{\infty} f(a_n)$ 绝对收敛, 证明 $f(x) = O(x), x \to 0$.
- 2. 设 f 满足: 对任何收敛级数 $\sum_{n=1}^{\infty} a_n$,都有 $\sum_{n=1}^{\infty} f(a_n)$ 收敛,证明存在 $k \in \mathbb{R}$ 使得在 0 的某个邻域内有 f(x) = kx.

证明

1. 反证, 若 $\frac{f(x)}{x}$ 在 x = 0 邻域内无界, 则 $\exists x_n \to 0$, 使得

$$\left| \frac{f(x_n)}{x_n} \right| > n, \ n = 1, 2, \cdots$$
 (9.35)

取 $\{x_n\}$ 的子列 $\{x_{n_k}\}$, 使得

$$\left|x_{n_k}\right| < \frac{1}{k^2}, k = 1, 2, \cdots.$$

从而对 $\forall k \in \mathbb{N}$, 都有

$$\frac{2}{k^{2}\left|x_{n_{k}}\right|}-\frac{1}{k^{2}\left|x_{n_{k}}\right|}=\frac{1}{k^{2}\left|x_{n_{k}}\right|}>1,$$

于是存在正整数 m_k , 使得

$$\frac{1}{k^2 |x_{n_k}|} < m_k < \frac{2}{k^2 |x_{n_k}|}. (9.36)$$

令

$$a_n \triangleq x_{n_k}, \quad m_{k-1} < n \leqslant m_k.$$

则由(9.36)式可得

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} m_k |x_{n_k}| < \sum_{k=1}^{\infty} \frac{2}{k^2} < +\infty.$$

由条件可知

$$\sum_{k=1}^{\infty} |f(a_n)| = \sum_{k=1}^{\infty} m_k \left| f\left(x_{n_k}\right) \right| < +\infty.$$

$$(9.37)$$

又由(9.35)(9.36)式可得

$$\sum_{k=1}^{\infty} |f(a_n)| = \sum_{k=1}^{\infty} m_k |f(x_{n_k})| \geqslant \sum_{k=1}^{\infty} m_k n_k |x_{n_k}|$$
$$\geqslant \sum_{k=1}^{\infty} k m_k |x_{n_k}| \geqslant \sum_{k=1}^{\infty} \frac{1}{k} = +\infty.$$

这与(9.37)式矛盾!

2. 目标证明 f 在 x = 0 邻域满足 Cauchy 方程. 考虑 g(x,y) = f(x+y) + f(-x) + f(-y). 如果对任何 0 的开邻域 U 都有 g 在 $U \times U$ 上不恒为 0, 那么存在 $(x_n, y_n) \to (0,0)$ 使得 $g(x_n, y_n) \neq 0$. 考虑

$$\underbrace{(x_1+y_1)-x_1-y_1,(x_1+y_1)-x_1-y_1,\cdots,(x_1+y_1)-x_1-y_1}_{m_1} + \underbrace{(x_2+y_2)-x_2-y_2,(x_2+y_2)-x_2-y_2,\cdots,(x_2+y_2)-x_2-y_2}_{m_2} + \underbrace{(x_2+y_2)-x_2-y_2,(x_2+y_2)-x_2-y_2,\cdots,(x_2+y_2)-x_2-y_2}_{m_2} + \underbrace{(x_2+y_2)-x_2-y_2,(x_2+y_2)-x_2-y_2,\cdots,(x_2+y_2)-x_2-y_2}_{m_2} + \underbrace{(x_2+y_2)-x_2-y_2,(x_2+y_2)-x_2-y_2,\cdots,(x_2+y_2)-x_2-y_2}_{m_2} + \underbrace{(x_2+y_2)-x_2-y_2,(x_2+y_2)-x_2-y_2,\cdots,(x_2+y_2)-x_2-y_2}_{m_2} + \underbrace{(x_2+y_2)-x_2-y_2,(x_2+y_2)-x_2-y_2,\cdots,(x_2+y_2)-x_2-y_2}_{m_2} + \underbrace{(x_2+y_2)-x_2-y_2,\cdots,(x_2+y_2)-x_2-y_2}_{m_2} + \underbrace{(x_2+y_2)-x_2-y_2}_{m_2} + \underbrace{(x_2+y_2)-x_2-x_2-y_2}_{m_2} + \underbrace{(x_2+y_2)-x_2-x_2-x_2}_{m_2} + \underbrace{(x_2+y_2)-x_2-x_2-x_2}_{m_2} + \underbrace{(x_2+y_$$

:

上述级数的部分和只可能出现 $x_n + y_n, y_n, 0$, 而当 $n \to +\infty$ 时它们都趋于 0, 因此上述级数收敛. 由题目条件, 我们有

$$\underbrace{(f(x_1) + f(y_1)) + f(-x_1) + f(-y_1), \cdots, (f(x_1) + f(y_1)) + f(-x_1) + f(-y_1)}_{m_1} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2)}_{m_2} + \underbrace{(f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-y_2), \cdots, (f(x_2) + f(y_2)) + f(-x_2) + f(-x_2)$$

收敛. 由收敛级数加括号也收敛, 我们知道对任何一组 $\{m_n\}_{n=1}^\infty\subset\mathbb{N}$ 都有 $\sum_{n=1}^\infty m_n g(x_n,y_n)$ 收敛. 这显然不可 能! 因此我们证明了 f(x+y)+f(-x)+f(-y) 在某个 $U\times U$ 上恒为 0, 这里 U 是一个开区间. 现在由

$$f(0) + f(0) + f(0) = 0 \Rightarrow f(0) = 0$$

知

$$f(x-x)+f(x)+f(-x)=0 \Rightarrow f$$
是奇函数,

 $\mathbb{F} f(x+y) = f(x) + f(y).$

再证明 f 在 x=0 连续. 设 $x_n \to 0$, 我们考虑收敛级数 $x_1-x_1+x_2-x_2+\cdots$, 故级数

$$f(x_1) - f(x_1) + f(x_2) - f(x_2) + \cdots$$

收敛. 考虑上述级数部分和可得 $\lim_{n\to\infty} f(x_n)=0$, 从而 f 在 x=0 连续. 现在由定理 5.9知存在 $k\in\mathbb{R}$ 使得在 0的某个邻域内有 f(x) = kx.

例题 9.56 给定 $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$, 设

 $f(x) = \sum_{n=0}^{\infty} a_n x^n, \quad x \in (-1, 1).$

若

 $\lim_{n\to\infty}\sum_{k=0}^n a_k = +\infty(-\infty),$

证明

$$\lim_{x \to 1^{-}} f(x) = +\infty(-\infty),$$

并指出

$$\lim_{n \to \infty} \left| \sum_{k=0}^{n} a_k \right| = +\infty \Rightarrow \lim_{x \to 1^{-}} |f(x)| = +\infty.$$

笔记 熟记命题 9.6. 证明 记 $S_n = \sum_{k=0}^{n} a_k$, 不妨设

$$\lim_{n\to\infty} S_n = +\infty.$$

于是对任意 C > 0, 存在 $N \in \mathbb{N}$, 使得对任意 n > N, 成立 $S_n \ge C$. 注意到

$$\frac{\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (1 - x) \frac{f(x)}{1 - x} \xrightarrow{\frac{n}{2} + n} \frac{\lim_{x \to 1^{-}} (1 - x) \left[\sum_{n=0}^{\infty} S_{n} x^{n} \right]}{\lim_{x \to 1^{-}} (1 - x) \left[\sum_{n=0}^{N} S_{n} x^{n} + \sum_{n=N+1}^{\infty} S_{n} x^{n} \right]}$$

$$\geqslant \lim_{x \to 1^{-}} (1 - x) \left[\sum_{n=0}^{N} S_{n} x^{n} + C \sum_{n=N+1}^{\infty} x^{n} \right]$$

$$= C \lim_{x \to 1^{-}} (1 - x) \frac{x^{N+1}}{1 - x} = C,$$

由 C 任意性, 我们证明了

$$\lim_{x \to 1^{-}} f(x) = +\infty.$$

对于反例,考虑下面的函数即可

$$f(x) = \frac{x-1}{(1+x)^2} = \sum_{n=0}^{\infty} (-1)^{n+1} (2n+1)x^n.$$

命题 9.1

1. 设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是两两不同的实数, C_1, C_2, \cdots, C_n 为复数.证明:

$$\lim_{x \to +\infty} \sum_{j=1}^{n} C_j e^{\lambda_j x} = 0 \Leftrightarrow C_j = 0, j = 1, 2, \cdots, n.$$

2. 设 $m \ge 2, \lambda_1, \lambda_2, \cdots, \lambda_m \in \mathbb{R}, C_1, C_2, \cdots, C_m \in \mathbb{C}$. 若

$$\lambda_i - \lambda_k \neq 2\ell\pi, \forall 1 \leq i < k \leq m, \ell \in \mathbb{Z},$$

证明:

$$\lim_{n\to\infty}\sum_{j=1}^m C_j e^{ni\lambda_j}=0 \Leftrightarrow C_j=0, j=1,2,\cdots,m.$$

\$

笔记 想法即类比傅立叶系数,做积分使得系数暴露出来. 离散版本可以类似连续版本证明,连续的处理方式核心是乘上某个 $e^{-i\lambda x}$ 均值形式的积分取极限,从而离散的时候应该是乘上某个 $e^{-i\lambda y}$ 均值的取和.

证明

1. 充分性显然, 只需证明必要性. 考虑 $f(x) riangle \sum_{j=1}^n C_j e^{i\lambda_j x}$, 其中 i 是虚数单位. 对 $T>0, k=1,2,\cdots,n$, 我们有

$$\begin{split} &\int_{T}^{2T} e^{-i\lambda_k x} f(x) \, \mathrm{d}x = \int_{T}^{2T} e^{-i\lambda_k x} \left(\sum_{j=1}^{n} C_j e^{i\lambda_j x} \right) \, \mathrm{d}x \\ &= \sum_{j=1}^{n} C_j \int_{T}^{2T} e^{i(\lambda_j - \lambda_k) x} \, \mathrm{d}x = TC_k + \sum_{j \neq k} C_j \frac{e^{i(\lambda_j - \lambda_k) 2T} - e^{i(\lambda_j - \lambda_k) T}}{\lambda_j - \lambda_k}, \end{split}$$

从而

$$|C_k| = \frac{\left| \int_T^{2T} e^{-i\lambda_k x} f(x) \, \mathrm{d}x - \sum_{j \neq k} C_j \frac{e^{i(\lambda_j - \lambda_k)^{2T}} - e^{i(\lambda_j - \lambda_k)T}}{\lambda_j - \lambda_k} \right|}{T}$$

$$\leq \frac{\int_T^{2T} |f(x)| \, \mathrm{d}x + \sum_{j \neq k} |C_j| \frac{2}{|\lambda_j - \lambda_k|}}{T} = \frac{|f(\theta_T)|T + \sum_{j \neq k} |C_j| \frac{2}{|\lambda_j - \lambda_k|}}{T}$$

这里最后一个等号来自积分中值定理且 $\theta_T \in (T, 2T)$. 现在由 $\lim_{x \to +\infty} f(x) = 0$ 可知

$$\lim_{T\to+\infty}C_k=0, k=1,2,\cdots,n,$$

这就证明了 $C_i = 0, j = 1, 2, \dots, n$, 必要性得证

2. 充分性显然, 只需证明必要性. 对 $k = 1, 2, \dots, m$, 我们有

$$\lim_{n\to\infty}\left(C_k+\sum_{j\neq k}C_je^{in(\lambda_j-\lambda_k)}\right)=\lim_{n\to\infty}\left(e^{-in\lambda_k}\sum_{j=1}^mC_je^{in\lambda_j}\right)=0.$$

现在由 Stolz 定理我们有

$$\begin{split} C_k &= -\lim_{n \to \infty} \sum_{j \neq k} C_j e^{in(\lambda_j - \lambda_k)} = -\lim_{n \to \infty} \frac{\sum_{\ell=0}^n \sum_{j \neq k} C_j e^{i\ell(\lambda_j - \lambda_k)}}{n+1} \\ &= -\lim_{n \to \infty} \frac{\sum_{j \neq k} \sum_{\ell=0}^n C_j e^{i\ell(\lambda_j - \lambda_k)}}{n+1} = -\lim_{n \to \infty} \frac{\sum_{j \neq k} C_j \frac{1 - e^{i(n+1)(\lambda_j - \lambda_k)}}{1 - e^{i(\lambda_j - \lambda_k)}}}{n+1}. \end{split}$$

结合

$$0 \leqslant \lim_{n \to \infty} \frac{\left| \sum\limits_{j \neq k} C_j \frac{1 - e^{i(n+1)(\lambda_j - \lambda_k)}}{1 - e^{i(\lambda_j - \lambda_k)}} \right|}{n+1} \leqslant \lim_{n \to \infty} \frac{\sum\limits_{j \neq k} |C_j| \frac{2}{|1 - e^{i(\lambda_j - \lambda_k)}|}}{n+1} = 0,$$

我们知道 $C_i = 0, j = 1, 2, \dots, n$, 这就证明了必要性!

例题 9.57 设 $\{\alpha_i\}_{i=1}^m \subset \mathbb{R}$ 满足

$$\lim_{n\to\infty}\prod_{i=1}^m\sin(n\alpha_i)=0.$$

证明: 必有一个 $i \in \{1, 2, \dots, m\}$ 使得 $\frac{\alpha_i}{\pi} \in \mathbb{Z}$.

📀 笔记 本题是命题 9.11的一个应用

证明 由 Euler 公式得

$$\lim_{n\to\infty} \prod_{j=1}^m \frac{e^{in\alpha_j}-e^{-in\alpha_j}}{2i} = 0 \Rightarrow \lim_{n\to\infty} \prod_{j=1}^m (e^{in\alpha_j}-e^{-in\alpha_j}) = 0.$$

打开括号得

$$\lim_{n \to \infty} \sum_{\varepsilon_i \in \{-1,1\}} (-1)^{|\{i \in \{1,2,\cdots,m\}: \varepsilon_i = -1\}|} e^{in(\varepsilon_1 \alpha_1 + \varepsilon_2 \alpha_2 + \cdots + \varepsilon_m \alpha_m)} = 0. \tag{9.38}$$

注意到若有

$$\varepsilon_1 \alpha_1 + \varepsilon_2 \alpha_2 + \dots + \varepsilon_m \alpha_m = \varepsilon_1 \alpha_1 + \varepsilon_2 \alpha_2 + \dots + \varepsilon_m \alpha_m + 2\ell \pi, \ell \in \mathbb{Z}, \tag{9.39}$$

则

$$e^{in(\varepsilon_1\alpha_1+\varepsilon_2\alpha_2+\cdots+\varepsilon_m\alpha_m)}=e^{in(\varepsilon_1\prime\alpha_1+\varepsilon_2\prime\alpha_2+\cdots+\varepsilon_m\prime\alpha_m)}$$

因此将(9.38)式中满足(9.39)式的项合并, 得到新的和式的任意两项中的 $\varepsilon_1\alpha_1 + \varepsilon_2\alpha_2 + \cdots + \varepsilon_m\alpha_m$ 的差值都不等于 $2\ell\pi$, $\ell \in \mathbb{Z}$. 于是由命题 9.11知

$$\sum_{\varepsilon_i \in \{-1,1\}} (-1)^{|\{i \in \{1,2,\cdots,m\}: \varepsilon_i = -1\}|} e^{in(\varepsilon_1 \alpha_1 + \varepsilon_2 \alpha_2 + \cdots + \varepsilon_m \alpha_m)}$$

恒为 0. 否则, 上式每项系数 $(-1)^{|\{i\in\{1,2,\cdots,m\}:\varepsilon_i=-1\}|}=0$ 矛盾! 故现在就有 $\prod_{j=1}^m(e^{in\alpha_j}-e^{-in\alpha_j})=0$, $\forall n\in\mathbb{N}$, 取 n=1, 则必存在一个 $j\in\{1,2,\cdots,m\}$, 使得

$$e^{i\alpha_j} - e^{-i\alpha_j} = 0 \Longrightarrow e^{2i\alpha_j} = 0 \Longrightarrow 2\alpha_j = 2k\pi, k \in \mathbb{Z} \Longrightarrow \frac{\alpha_j}{\pi} = k \in \mathbb{Z}.$$

例题 9.58 设对 $n \in \mathbb{N}$ 都有

$$u_n = \lim_{m \to \infty} (u_{n+1}^2 + u_{n+2}^2 + \dots + u_{n+m}^2).$$

证明: 若 $\lim_{n\to\infty} (u_1+u_2+\cdots+u_n)$ 存在, 则 $u_n=0, \forall n\in\mathbb{N}$.

 $\dot{\mathbf{L}}$ 题目条件中写了极限等于 u_n 就是默认这个极限存在.

证明 注意到

$$u_n - u_{n+1} = u_{n+1}^2 \Longrightarrow u_{n+1} = \frac{\sqrt{1 + 4u_n} - 1}{2}, \ n = 1, 2, \cdots,$$
 (9.40)

由 $\lim_{n\to\infty}\sum_{k=1}^n u_k$ 存在知, $\lim_{n\to\infty}u_n=0$. 若 $u_n\neq 0$ $(n\in\mathbb{N})$, 由 Stolz 定理可得

$$\lim_{n \to \infty} n u_n = \lim_{n \to \infty} \left(\frac{1}{u_{n+1}} - \frac{1}{u_n} \right) = \lim_{n \to \infty} \left(\frac{2}{\sqrt{1 + 4u_n} - 1} - \frac{1}{u_n} \right)$$
$$= \lim_{x \to 0^+} \left(\frac{2}{\sqrt{1 + 4x} - 1} - \frac{1}{x} \right) = 1.$$

故 $u_n \sim \frac{1}{n}$, 从而 $\sum u_n$ 发散, 矛盾! 故存在 $n_0 \in \mathbb{N}$, 使得 $u_{n_0} = 0$. 于是由(9.40)式, 利用数学归纳法可知

$$u_{n+1} = \frac{\sqrt{1 + 4u_n} - 1}{2} = \dots = 0, \ \forall n > n_0.$$

$$u_n = u_{n+1}^2 + u_{n+1} = \dots = u_{n_0}^2 + u_{n_0} = 0, \ \forall n < n_0.$$

故此时 $u_n = 0$, $\forall n \in \mathbb{N}$.

例题 **9.59** 设
$$a_0=1, a_1=\frac{1}{2}, a_{n+1}=\frac{na_n^2}{1+(n+1)a_n}, n\in\mathbb{N}$$
. 证明: $\sum_{k=0}^{\infty}\frac{a_{k+1}}{a_k}$ 收敛并求值.

 $\stackrel{}{\not\equiv} \mathbb{N} \triangleq \{1, 2, \cdots, \}.$

注 级数可求值的情况只有两种:

- 1. 级数通项可求.
- 2. 级数通项可以写成裂项形式.

证明 归纳易得 $a_n \ge 0, n \in \mathbb{N}$. 注意到

$$a_{n+1}+(n+1)\,a_na_{n+1}=na_n^2 \Longrightarrow \frac{a_{n+1}}{a_n}=na_n-(n+1)\,a_{n+1}\geqslant 0, \forall n\in\mathbb{N}.$$

故 $\{na_n\}$ 递减且有下界 0. 设 $\lim_{n\to\infty} na_n = a$, 则

$$\sum_{k=0}^{\infty} \frac{a_{k+1}}{a_k} = \frac{a_1}{a_0} + \sum_{k=1}^{\infty} \left[k a_k - (k+1) a_{k+1} \right] = \frac{1}{2} + a_1 - \lim_{n \to \infty} n a_n = 1 - a < +\infty.$$

由 $\sum_{k=0}^{\infty} \frac{a_{k+1}}{a_k} < +\infty$ 知, $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = 0$, 从而存在 $N \in \mathbb{N}$, 使得

$$a_{k+1} \leqslant \frac{1}{2}a_k, \forall k \geqslant N.$$

于是对 $n \ge N$, 有

$$a_{n+1} \leqslant \frac{1}{2} a_n \leqslant \frac{1}{2^2} a_n \leqslant \cdots \leqslant \frac{1}{2^{n-N+1}} a_N.$$

因此

$$na_n \leqslant \frac{n}{2^{n-N+1}}a_N \to 0, n \to \infty.$$

故
$$a = 0$$
, 从而 $\sum_{k=0}^{\infty} \frac{a_{k+1}}{a_k} = 1$.

例题 9.60 设 $\{x_n\}_{n=1}^{\infty}$ 是单调递减的正数列并且满足 $\sum_{n=1}^{\infty} x_n = +\infty$, 并证明

$$\sum_{n=1}^{\infty} x_n e^{-\frac{x_n}{x_{n+1}}} = +\infty$$

💡 筆记 利用分组判别的想法.

证明 任取 M > 1, 定义

$$A_M \triangleq \left\{ n \in \mathbb{N} \mid \frac{x_n}{x_{n+1}} \leq M \right\}.$$

则

$$+\infty = \sum_{n=1}^{\infty} x_n = \sum_{n \in A_M} x_n + \sum_{n \in \mathbb{N} \backslash A_M} x_n.$$

若 $\sum_{n \in A_M} x_n = +\infty$, 则

$$\sum_{n \in A_M} x_n e^{-\frac{x_n}{x_{n+1}}} \geqslant \sum_{n \in A_M} x_n e^{-M} = +\infty.$$

若 $\sum_{n\in\mathbb{N}\backslash A_M} x_n = +\infty$, 显然 $\mathbb{N}\backslash A_M$ 中有无穷项, 记 $\mathbb{N}\backslash A_M = \{n_k\}$, 且满足 $n_k\nearrow +\infty$, 则

$$x_{n_{k+1}}\leqslant x_{n_k+1}<\frac{1}{M}x_{n_k}.$$

从而对 $\forall k \in \mathbb{N}$, 有

$$x_{n_k} \leqslant \frac{1}{M} x_{n_{k-1}} \leqslant \cdots \leqslant \frac{1}{M^{k-1}} x_{n_1} \to 0.$$

故

$$\sum_{n\in\mathbb{N}\setminus A_M} x_n = \sum_{k=1}^{\infty} x_{n_k} \leqslant C \sum_{k=1}^{\infty} \frac{1}{M^{k-1}} x_{n_1} < +\infty,$$

这与 $\sum_{n \in \mathbb{N} \setminus A_M} x_n = +\infty$ 矛盾! 综上可知

$$\sum_{n=1}^{\infty} x_n e^{-\frac{x_n}{x_{n+1}}} \geqslant \sum_{n \in A_M} x_n e^{-\frac{x_n}{x_{n+1}}} = +\infty.$$

例题 9.61 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 证明 $\sum_{n=1}^{\infty} \frac{a_n \ln \frac{1}{a_n}}{\ln(1+n)}$ 收敛.

🕏 笔记 利用分组判别的想法.

证明

例题 9.62 设 $\{\lambda_n\}$, $\{a_n\} \subset \mathbb{R}$.

- 1. 如果对任何收敛于 0 的数列 $\{\lambda_n\}$ 都有 $\sum_{n=1}^{\infty} \lambda_n a_n$ 收敛, 证明: $\sum_{n=1}^{\infty} a_n$ 绝对收敛.
- 2. 设 p>1, 如果对任何 $\sum_{n=1}^{\infty}|\lambda_n|^p<\infty$ 都有 $\sum_{n=1}^{\infty}\lambda_na_n$ 收敛, 证明: $\sum_{n=1}^{\infty}|a_n|^q<\infty$, 这里 $\frac{1}{p}+\frac{1}{q}=1$.

证明

1. 若
$$\sum_{n=1}^{\infty} |a_n| = +\infty$$
, 记 $S_n = \sum_{k=1}^n |a_k|$, 取 $\lambda_n = \frac{\operatorname{sgn} a_n}{S_n}$, 故由命题 9.3可知

$$\sum_{n=1}^{\infty} \lambda_n a_n = \sum_{n=1}^{\infty} \frac{|a_n|}{S_n} = +\infty$$

矛盾!

2. 若
$$\sum_{n=1}^{\infty} |a_n|^q = +\infty$$
, 记 $S_n = \sum_{k=1}^n |a_k|^q$, 取 $\lambda_n = \frac{|a_n|^{q-1} \operatorname{sgn} a_n}{S_n}$, 则由 $p > 1$ 和命题 9.3可知

$$\sum_{n=1}^{\infty} |\lambda_n|^p = \sum_{n=1}^{\infty} \frac{|a_n|^{\frac{p}{p-1}}}{S_n^p} = \sum_{n=1}^{\infty} \frac{|a_n|^q}{S_n^p} < +\infty.$$

再由命题 9.3可知

$$\sum_{n=1}^{\infty} \lambda_n a_n = \sum_{n=1}^{\infty} \frac{|a_n|^q}{S_n} = +\infty.$$

矛盾!

例题 9.63 设 a_n 递减到 0 且 $b_n = a_n - 2a_{n+1} + a_{n+2} \geqslant 0, n = 1, 2, \cdots$, 证明: $\sum_{n=1}^{\infty} nb_n$ 收敛并计算值.

证明 注意到

$$\begin{split} \sum_{n=1}^{m} nb_n &= \sum_{n=1}^{m} n \left(a_n - 2a_{n+1} + a_{n+2} \right) = \sum_{n=1}^{m} n \left[\left(a_n - a_{n+1} \right) - \left(a_{n+1} - a_{n+2} \right) \right] \\ &= \underbrace{\frac{\text{Abel } \underbrace{\#}}{\sum}}_{n=1}^{m-1} \left(j - \left(j + 1 \right) \right) \sum_{i=1}^{j} \left[\left(a_i - a_{i+1} \right) + \left(a_{i+1} - a_{i+2} \right) \right] + m \sum_{i=1}^{m} \left[\left(a_i - a_{i+1} \right) - \left(a_{i+1} - a_{i+2} \right) \right] \\ &= -\sum_{j=1}^{m-1} \left[\left(a_1 - a_2 \right) - \left(a_{j+1} - a_{j+2} \right) \right] + m \left[\left(a_1 - a_2 \right) - \left(a_{m+1} - a_{m+2} \right) \right] \\ &= a_1 - a_2 + a_2 - a_{m+1} - m \left(a_{m+1} - a_{m+2} \right) \\ &= a_1 - \left(m + 1 \right) a_{m+1} + m a_{m+2} \\ &= a_1 - \left(m + 1 \right) \left(a_{m+1} - a_{m+2} \right) - a_{m+2}. \end{split}$$

由 $b_n = (a_n - a_{n+1}) - (a_{n+1} - a_{n+2}) \ge 0$ 可知, $\{a_n - a_{n+1}\}$ 单调递减. 又 $\lim_{n \to \infty} a_n = 0$, 故

$$\sum_{n=1}^{\infty} (a_n - a_{n+1}) = \lim_{m \to \infty} \sum_{n=1}^{m} (a_n - a_{n+1}) = a_1 - \lim_{m \to \infty} a_m = a_1 < +\infty.$$

因此由命题 9.2可知

$$\lim_{m \to \infty} (m+1) (a_{m+1} - a_{m+2}) = 0.$$

于是

$$\sum_{n=1}^{m} nb_n = a_1 - (m+1)(a_{m+1} - a_{m+2}) - a_{m+2} \to a_1, m \to \infty.$$

例题 9.64 设 $\{a_n\}$, $\{b_n\} \subset (0, +\infty)$ 满足

$$b_{n+1} - b_n \ge \delta > 0, n = 1, 2, \cdots$$

若 $\sum_{n=1}^{\infty} a_n$ 收敛, 证明:

$$\sum_{n=1}^{\infty} \frac{n\sqrt[n]{(a_1a_2\cdots a_n)(b_1b_2\cdots b_n)}}{b_nb_{n+1}} < +\infty.$$

证明 由均值不等式可知

$$\frac{n\sqrt[n]{(a_1a_2\cdots a_n)(b_1b_2\cdots b_n)}}{b_nb_{n+1}} \leqslant \frac{\sum\limits_{j=1}^n a_jb_j}{b_nb_{n+1}} = \frac{\delta}{\delta} \frac{\sum\limits_{j=1}^n a_jb_j}{b_nb_{n+1}} \\ \leqslant \frac{b_{n+1}-b_n}{\delta b_nb_{n+1}} \sum\limits_{j=1}^n a_jb_j = \frac{1}{\delta} \left(\frac{1}{b_{n+1}} - \frac{1}{b_n}\right) \sum\limits_{j=1}^n a_jb_j.$$

由 $b_{n+1}-b_n>\delta>0$ 可得

$$b_n \geqslant b_1 + (n-1)\delta \Longrightarrow b_n \to +\infty.$$

于是

$$\begin{split} \sum_{n=1}^{\infty} \frac{n \sqrt[n]{(a_1 a_2 \cdots a_n)(b_1 b_2 \cdots b_n)}}{b_n b_{n+1}} &\leqslant \frac{1}{\delta} \sum_{n=1}^{\infty} \sum_{j=1}^{n} \left(\frac{1}{b_{n+1}} - \frac{1}{b_n} \right) a_j b_j \leqslant \frac{1}{\delta} \sum_{j=1}^{\infty} \sum_{n=j}^{\infty} \left(\frac{1}{b_{n+1}} - \frac{1}{b_n} \right) a_j b_j \\ &= \frac{1}{\delta} \sum_{j=1}^{\infty} a_j b_j \sum_{n=j}^{\infty} \left(\frac{1}{b_{n+1}} - \frac{1}{b_n} \right) = \frac{1}{\delta} \sum_{j=1}^{\infty} a_j b_j \sum_{n=j}^{\infty} \left(\frac{1}{b_{n+1}} - \frac{1}{b_n} \right) \\ &= \frac{1}{\delta} \sum_{j=1}^{\infty} a_j < +\infty. \end{split}$$

例题 9.65 设

$$S_n = \sum_{k=1}^n a_k$$
, $T_n = \sum_{k=1}^n \left(1 - \frac{k}{n+1}\right) a_k$, $n = 1, 2, \cdots$

若
$$\sum_{k=1}^{\infty} |S_k - T_k|^2 < \infty$$
, 证明: $\sum_{k=1}^{\infty} a_k < \infty$.

证明 注意到

$$T_n = S_n - \frac{1}{n+1} \sum_{k=1}^n k a_k,$$

故由条件可知

$$\sum_{n=1}^{\infty} |S_n - T_n|^2 = \sum_{n=1}^{\infty} \frac{\left(\sum_{k=1}^n k a_k\right)^2}{(n+1)^2} < +\infty.$$
(9.41)

注意到

$$\begin{split} &\sum_{n=1}^{m} \frac{\sum_{k=1}^{n} k a_{k}}{n \left(n+1\right)} = \sum_{n=1}^{m} \left(\frac{1}{n} - \frac{1}{n+1}\right) \sum_{k=1}^{n} k a_{k} \\ &\xrightarrow{\underline{\text{Abel } \underline{\psi} \underline{\psi}}} \sum_{j=1}^{m-1} \left(-\left(j+1\right) a_{j+1}\right) \sum_{i=1}^{j} \left(\frac{1}{i} - \frac{1}{i+1}\right) + \sum_{j=1}^{m} j a_{j} \sum_{i=1}^{m} \left(\frac{1}{i} - \frac{1}{i+1}\right) \\ &= -\sum_{j=1}^{m-1} j a_{j+1} + \frac{m}{m+1} \sum_{j=1}^{m} j a_{j} \\ &= \frac{m}{m+1} a_{1} + \frac{m}{m+1} \sum_{j=2}^{m} j a_{j} - \sum_{j=2}^{m} \left(j-1\right) a_{j} \\ &= \frac{m}{m+1} a_{1} + \sum_{j=2}^{m} a_{j} - \frac{1}{m+1} \sum_{j=2}^{m} j a_{j} \\ &= \sum_{j=1}^{m} a_{j} - \frac{1}{m+1} \sum_{j=1}^{m} j a_{j} \end{split}$$

$$=S_m - \frac{1}{m+1} \sum_{j=1}^m j a_j. \tag{9.42}$$

由 (9.41) 式得

$$0 = \lim_{n \to \infty} \frac{\left(\sum_{k=1}^{n} k a_k\right)^2}{(n+1)^2} = \lim_{n \to \infty} \frac{\left(\sum_{k=1}^{n} k a_k\right)^2}{n^2} \Longrightarrow \lim_{n \to \infty} \frac{\sum_{k=1}^{n} k a_k}{n} = 0.$$

因此只须证 $\sum_{n=1}^{\infty} \frac{\sum_{k=1}^{n} k a_k}{n(n+1)} < +\infty$, 即可由 (9.42) 式得

$$\sum_{n=1}^{\infty} a_n = \lim_{m \to \infty} S_m = \sum_{n=1}^{\infty} \frac{\sum_{k=1}^{n} k a_k}{n(n+1)} + \lim_{m \to \infty} \frac{1}{m+1} \sum_{j=1}^{m} j a_j = \sum_{n=1}^{\infty} \frac{\sum_{k=1}^{n} k a_k}{n(n+1)} < +\infty.$$

下证 $\sum_{k=1}^{\infty} \frac{\sum_{k=1}^{n} k a_k}{n(n+1)} < +\infty$. 由均值不等式和 (9.41) 式可得

$$\sum_{n=1}^{\infty} \frac{\sum_{k=1}^{n} k a_k}{n(n+1)} \leqslant \frac{1}{2} \sum_{n=1}^{\infty} \left[\frac{\left(\sum_{k=1}^{n} k a_k\right)^2}{(n+1)^2} + \frac{1}{n^2} \right] < +\infty.$$

故结论得证.

例题 9.66 设 $\{x_n\}_{n=1}^{\infty} \subset (0,+\infty)$ 满足 $\sum_{n=1}^{\infty} \frac{x_n}{2^{n-1}} = 1$, 证明

$$\sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{x_k}{n^2} \leqslant 2, \sum_{n=1}^{\infty} \frac{x_n}{n^2} < 1.$$

证明

例题 9.67 设 $a_n > 0, n \in \mathbb{N}$ 满足

 $(1)a_n - a_{n+1}$ 递减;

$$(2)$$
 $\sum_{n=1}^{\infty} a_n$ 收敛.
证明:

$$\lim_{n\to\infty} \left(\frac{1}{a_{n+1}} - \frac{1}{a_n} \right) = +\infty$$

证明 注意到

$$\sum_{n=1}^{\infty} a_n < +\infty \Longrightarrow \lim_{n \to \infty} a_n = 0 \Longrightarrow \lim_{n \to \infty} (a_n - a_{n+1}) = 0 \Longrightarrow a_n - a_{n+1} \geqslant 0.$$

从而 $\{a_n\}$ \ 0. 于是

$$\lim_{n\to\infty} \left(\frac{1}{a_{n+1}} - \frac{1}{a_n} \right) = \lim_{n\to\infty} \frac{a_n - a_{n+1}}{a_{n+1}a_n} \geqslant \lim_{n\to\infty} \frac{a_n - a_{n+1}}{a_n^2}.$$

注意到

$$a_n^2 = \sum_{k=n}^{\infty} \left(a_k^2 - a_{k+1}^2 \right) = \sum_{k=n}^{\infty} \left(a_k - a_{k+1} \right) \left(a_k + a_{k+1} \right)$$

$$\leq \left(a_n - a_{n+1} \right) \sum_{k=n}^{\infty} \left(a_k + a_{k+1} \right),$$

又
$$\sum_{n=1}^{\infty} a_n < +\infty$$
, 故 $\lim_{n \to \infty} \sum_{k=n}^{\infty} a_k = 0$. 故
$$\lim_{n \to \infty} \left(\frac{1}{a_{n+1}} - \frac{1}{a_n} \right) \geqslant \lim_{n \to \infty} \frac{a_n - a_{n+1}}{a_n^2} \geqslant \lim_{n \to \infty} \frac{1}{\sum_{k=n}^{\infty} (a_k + a_{k+1})} = +\infty.$$

例题 9.68 设 $\phi(x) = \sum_{k=0}^{\infty} \frac{a_k}{x^k} x > 0$, 证明 $\sum_{n=1}^{\infty} \phi(n)$ 收敛的充要条件是 $a_0 = a_1 = 0$.

证明
$$\diamondsuit g(x) = \phi\left(\frac{1}{x}\right) = \sum_{k=0}^{\infty} a_k x^k$$
, 则 $g \in C^{\infty}(\mathbb{R})$. 于是

$$g(x) = a_0 + a_1 x + O(x^2), x \to 0.$$

从而

$$\phi\left(n\right)=g\left(\frac{1}{n}\right)=a_{0}+\frac{a_{1}}{n}+O\left(\frac{1}{n^{2}}\right),n\rightarrow\infty.$$

故

$$\sum_{n=1}^{\infty} \phi(n) < +\infty \Longleftrightarrow \sum_{n=1}^{\infty} \left(a_0 + \frac{a_1}{n} \right) < +\infty \Longleftrightarrow a_0 = a_1 = 0.$$

9.6 特殊级数

命题 9.12 ($\frac{\sin x}{x}$ 因式分解)

对任意
$$x$$
 都有 $\frac{\sin x}{x} = \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)$, 这里 x 可以为复数.

证明

命题 9.13

1.
$$\cot x = \frac{\cos x}{\sin x} = \frac{1}{x} + \sum_{n=1}^{\infty} \left(\frac{1}{x + n\pi} + \frac{1}{x - n\pi} \right)$$
.

2.
$$\tan x = \sum_{n=1}^{\infty} \left(\frac{1}{(2n-1)\frac{\pi}{2} - x} - \frac{1}{(2n-1)\frac{\pi}{2} + x} \right)$$
.

3.
$$\frac{1}{\sin^2 x} = \frac{1}{x^2} + \sum_{n=1}^{\infty} \left(\frac{1}{(x + n\pi)^2} + \frac{1}{(x - n\pi)^2} \right) = \sum_{n \in \mathbb{Z}} \frac{1}{(x + n\pi)^2}$$

4.
$$\frac{1}{\sin x} = \frac{1}{x} + \sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{x + n\pi} + \frac{1}{x - n\pi} \right)$$
.

证明

1. 对命题 9.12中级数两边同时取对数得

$$\ln \frac{\sin x}{x} = \sum_{n=1}^{\infty} \ln \left(1 - \frac{x^2}{n^2 \pi^2} \right).$$

两边同时求导得

$$\frac{\cos x}{\sin x} - \frac{1}{x} = \sum_{n=1}^{\infty} \frac{-\frac{2x}{n^2 \pi^2}}{1 - \frac{x^2}{n^2 \pi^2}} = \sum_{n=1}^{\infty} \frac{2x}{x^2 - n^2 \pi^2} = \sum_{n=1}^{\infty} \left(\frac{1}{x + n\pi} + \frac{1}{x - n\pi} \right).$$

故

$$\cot x = \frac{1}{x} + \sum_{n=1}^{\infty} \left(\frac{1}{x + n\pi} + \frac{1}{x - n\pi} \right).$$

2. 由第 1 问及 $\cot\left(\frac{\pi}{2} - x\right) = \tan x$ 可得

$$\tan x = \cot\left(\frac{\pi}{2} - x\right) = \frac{1}{\frac{\pi}{2} - x} + \sum_{n=1}^{\infty} \left(\frac{1}{\frac{\pi}{2} - x + n\pi} + \frac{1}{\frac{\pi}{2} - x - n\pi}\right)$$

$$= \frac{1}{\frac{\pi}{2} - x} + \sum_{n=1}^{\infty} \left(\frac{1}{(2n+1)\frac{\pi}{2} - x} - \frac{1}{(2n-1)\frac{\pi}{2} + x}\right)$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{(2n-1)\frac{\pi}{2} - x} - \frac{1}{(2n-1)\frac{\pi}{2} + x}\right).$$

3.

4.

第十章 Fourier 级数

10.1 Fourier 级数及基本性质

我们首先需要熟悉傅立叶级数的现代形式:

定义 10.1

设f是周期1的的可积函数,则定义f的傅立叶系数为

$$\hat{f}(m) = \int_0^1 f(x)e^{-2\pi i mx} dx, m \in \mathbb{Z}.$$

f 的傅立叶级数为

$$f(x) \sim \sum_{m=-\infty}^{\infty} \hat{f}(m)e^{2\pi i mx}$$
.

注 定义 10.1中的傅立叶级数(??)不意味着收敛到 f 或者收敛.

定义 10.2

对每个 $N \in \mathbb{N}_0$,

1. 我们称

$$D_N(x) = \sum_{|m| \le N} e^{2\pi i m x} = \frac{\sin((2N+1)\pi x)}{\sin(\pi x)}.$$

为 Dirichlet 核.

2. 我们称

$$F_N(x) = \frac{1}{N+1} [D_0(x) + D_1(x) + \dots + D_N(x)]$$

$$= \sum_{j=-N}^{N} \left(1 - \frac{|j|}{N+1} \right) e^{2\pi i j x}$$

$$= \frac{1}{N+1} \left(\frac{\sin(\pi(N+1)x)}{\sin(\pi x)} \right)^2$$

为 Feir 核.

注 定义 10.2中的等式关系都是等比数列求和和欧拉公式,二重求和换序的应用. 我们略去证明下面我们在高数框架下给出 Dirichlet 核和 Fejér 核,为了形式上的统一,我们定义

定义 10.3

对每个 $n \in \mathbb{N}_0$

1. 我们称

$$D_0(x) = 1, D_n(x) = 1 + 2\sum_{k=1}^n \cos kx = \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\left(\frac{x}{2}\right)}, n = 1, 2, \cdots.$$
 (10.1)

为 Dirichlet 核.

2. 我们称

$$F_n(x) = \frac{1}{n+1} \sum_{j=0}^n D_j(x) = 1 + \frac{2}{n+1} \sum_{k=1}^n (n-k+1) \cos kx = \frac{1}{n+1} \left[\frac{\sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}} \right]^2$$
 (10.2)

为 Fejr 核.

证明 证明的关键是如下结论

结论 [三角函数复合等差数列时, 部分和计算方法] 三角函数复合等差数列时, 部分和计算方法可以通过欧拉公式之后用等比数列求和公式或者乘 $\frac{\sin \frac{nx}{2}}{\sin \frac{x}{2}}$ 之后对分子和差化积得到.

1. 我们有

$$1 + 2\sum_{k=1}^{n} \cos kx = 1 + 2\sum_{k=1}^{n} \frac{\sin\frac{x}{2}\cos kx}{2\sin\frac{x}{2}} = 1 + \frac{1}{\sin\frac{x}{2}}\sum_{k=1}^{n} [\sin\left(k + \frac{1}{2}\right)x - \sin\left(k - \frac{1}{2}\right)x]$$
$$= 1 + \frac{\sin\left(n + \frac{1}{2}\right)x - \sin\frac{x}{2}}{\sin\frac{x}{2}} = \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\frac{x}{2}}.$$

我们证明了式(10.1)式.

2. 我们有

$$F_n(x) = \frac{1}{n+1} \sum_{j=0}^n D_j(x) = \frac{1}{n+1} \left(1 + \sum_{j=1}^n \left(1 + 2 \sum_{k=1}^j \cos kx \right) \right)$$

$$= \frac{1}{n+1} \left(n+1 + 2 \sum_{j=1}^n \sum_{k=1}^j \cos kx \right) = \frac{1}{n+1} \left(n+1 + 2 \sum_{k=1}^n \sum_{j=k}^n \cos kx \right)$$

$$= \frac{1}{n+1} \left(n+1 + 2 \sum_{k=1}^n (n-k+1) \cos kx \right) = 1 + \frac{2}{n+1} \sum_{k=1}^n (n-k+1) \cos kx,$$

以及

$$F_n(x) = \frac{1}{n+1} \sum_{j=0}^n D_j(x) = \frac{1}{n+1} \sum_{j=0}^n \frac{\sin\left(j + \frac{1}{2}\right)x}{\sin\frac{x}{2}}$$

$$= \frac{1}{n+1} \cdot \frac{\sin\frac{x}{2}}{\sin^2\frac{x}{2}} \sum_{j=0}^n \sin\left(j + \frac{1}{2}\right)x = -\frac{1}{2(n+1)\sin^2\frac{x}{2}} \sum_{j=0}^n [\cos(j+1)x - \cos jx]$$

$$= -\frac{\cos(n+1)x - 1}{2(n+1)\sin^2\frac{x}{2}} = \frac{\sin^2\frac{n+1}{2}x}{(n+1)\sin^2\frac{x}{2}}.$$

这就证明了(10.2)式.

定理 10.1 (傅立叶部分和积分表达式)

设 f 是周期 2π 的可积函数, 其傳立叶系数为 a_n, b_n . 记 $S_0(x) = \sigma_0(x) = \frac{a_0}{2}$ 以及

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx), \sigma_n(x) = \frac{1}{n+1} \sum_{k=0}^n S_k(x), n = 1, 2, \cdots.$$

则我们有

Dirichlet:

$$S_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) D_n(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) \frac{\sin\left(n+\frac{1}{2}\right)t}{\sin\frac{t}{2}} dt, n = 0, 1, \cdots.$$

Fejr:

$$\sigma_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) F_n(t) dt = \frac{1}{2(n+1)\pi} \int_{-\pi}^{\pi} f(x+t) \frac{\sin^2 \frac{n+1}{2} t}{\sin^2 \frac{t}{2}} dt, n = 0, 1, \cdots.$$

笔记 根据经验, 取平均性质会更好一些, 因此 Fejér 是一个好核而 Dirichlet 核性质就相当糟糕, 在后面的证明中我们将充分感受到这一点.

证明 当 n=0, 这个定理显然成立. 当 n>0, 一方面, 我们有

$$S_{n}(x) = \frac{a_{0}}{2} + \sum_{k=1}^{n} (a_{k} \cos kx + b_{k} \sin kx)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) dy + \frac{1}{\pi} \sum_{k=1}^{n} \left(\int_{-\pi}^{\pi} f(y) \cos ky \cos kx dy + \int_{-\pi}^{\pi} f(y) \sin ky \sin kx dy \right)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) dy + \frac{1}{\pi} \sum_{k=1}^{n} \left(\int_{-\pi}^{\pi} f(y) \cos k(y - x) dy \right)$$

$$= \frac{1}{2\pi} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x + y) dy + \frac{1}{2\pi} \sum_{k=1}^{n} \left(\int_{-\pi}^{\pi} f(x + y) 2 \cos ky dy \right)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x + y) \left(1 + 2 \sum_{k=1}^{n} \cos ky \right) dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x + y) D_{n}(y) dy.$$

另外一方面, 我们有

$$\sigma_n(x) = \frac{1}{n+1} \sum_{j=0}^n S_j(x) = \frac{1}{n+1} \sum_{j=0}^n \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+y) D_j(y) dy$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+y) \frac{1}{n+1} \sum_{j=0}^n D_j(y) dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+y) F_n(y) dy.$$

这就证明了这个定理.

定理 10.2 (Fourier 级数的逐项积分定理)

设 f(x) 在 $[-\pi,\pi]$ 上可积或绝对可积,

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

则 f(x) 的 Fourier 级数可以逐项积分, 即对于任意 $c, x \in [-\pi, \pi]$,

$$\int_{c}^{x} f(t)dt = \int_{c}^{x} \frac{a_0}{2}dt + \sum_{n=1}^{\infty} \int_{c}^{x} (a_n \cos nt + b_n \sin nt)dt.$$

定理 10.3 (Fourier 级数的逐项微分定理)

设 f(x) 在 $[-\pi,\pi]$ 上连续,

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

 $f(-\pi) = f(\pi)$, 且除了有限个点外 f(x) 可导. 进一步假设 f'(x) 在 $[-\pi, \pi]$ 上可积或绝对可积 (注意: f'(x) 在有限个点可能无定义, 但这并不影响其可积性). 则 f'(x) 的 Fourier 级数可由 f(x) 的 Fourier 级数逐项微分得到, 即

$$f'(x) \sim \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{a_0}{2} \right) + \sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}x} (a_n \cos nx + b_n \sin nx) = \sum_{n=1}^{\infty} (-a_n n \sin nx + b_n n \cos nx).$$

推论 10.1

 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 是某个在 $[-\pi, \pi]$ 上可积或绝对可积函数的 Fourier 级数的必要条件是 $\sum_{n=1}^{\infty} \frac{b_n}{n}$ 收敛

定理 10.4 (Bessel 不等式)

设 f(x) 在 $[-\pi,\pi]$ 上可积或平方可积,则 f(x) 的 Fourier 系数满足不等式

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \leqslant \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx.$$

Ŷ 笔记 这表示 Fourier 系数的平方组成了一个收敛的级数.

定理 10.5 (Parseval 恒等式)

设 f(x) 在 $[-\pi,\pi]$ 上可积或平方可积,则 f(x) 的 Fourier 系数满足恒等式

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx.$$

引理 10.1

设 f 为 $[-\pi,\pi]$ 上的连续可微函数, 且 $f(-\pi) = f(\pi)$. a_n,b_n 为 f 的 Fourier 系数, a'_n,b'_n 为 f 的导函数 f' 的 Fourier 系数, 证明

$$a'_0 = 0, a'_n = nb_n, b'_n = -na'_n (n = 1, 2, \cdots).$$

注 分部积分的条件, 需要 f 的导函数 f' 在积分区域上连续.

证明 由于 f 为 $[-\pi,\pi]$ 上的连续可微函数, 因此 $f' \in C([-\pi,\pi])$. 又 $f(\pi) = f(-\pi)$, 故

$$a'_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) dx = \frac{1}{\pi} f(x) \Big|_{-\pi}^{\pi} = 0,$$

$$a'_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \cos nx dx = \frac{1}{\pi} f(x) \cos nx \Big|_{-\pi}^{\pi} + \frac{n}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = nb_{n}(n = 1, 2, \dots),$$

$$b'_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \sin nx dx = \frac{1}{\pi} f(x) \sin nx \Big|_{-\pi}^{\pi} - \frac{n}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = -na_{n}(n = 1, 2, \dots),$$

因此结论得证.

例题 10.1 设 f 以 2π 为周期且具有二阶连续的导函数, 证明 f 的 Fourier 级数在 $(-\infty, +\infty)$ 上一致收敛于 f. 证明 因为 f(x) 是以 2π 为周期的具有二阶连续导数的函数, 故 f(x), f'(x) 可展开成傅里叶级数, 不妨设

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \quad f'(x) = \frac{a'_0}{2} + \sum_{n=1}^{\infty} (a'_n \cos nx + b'_n \sin nx).$$

先证 $\frac{|a_0|}{2} + \sum_{n=1}^{\infty} (|a_n| + |b_n|)$ 收敛. 由引理 10.1 可知

$$a'_0 = 0, a'_n = nb_n, b'_n = -nb_n (n = 1, 2, \cdots),$$

从而

$$|a_n| + |b_n| = \frac{|b'_n|}{n} + \frac{|a'_n|}{n} \le \frac{1}{2} \left[(b'_n)^2 + \frac{1}{n^2} \right] + \frac{1}{2} \left[(a'_n)^2 + \frac{1}{n^2} \right] = \frac{1}{n^2} + \frac{1}{2} \left[(a'_n)^2 + (b'_n)^2 \right]. \tag{10.3}$$

又由Bessel 不等式可知

$$\frac{a_0'}{2} + \sum_{n=1}^{\infty} \left[(a_n')^2 + (b_n')^2 \right] \leqslant \frac{1}{\pi} \int_{-\pi}^{\pi} [f'(x)]^2 dx < +\infty.$$

故 $\sum_{n=1}^{\infty}\left[(a'_n)^2+(b'_n)^2\right]$ 收敛。 再结合 $\sum_{n=1}^{\infty}\frac{1}{n^2}$ 收敛及(10.3)式可知 $\sum_{n=1}^{\infty}(|a_n|+|b_n|)$ 收敛,进而 $\frac{|a_0|}{2}+\sum_{n=1}^{\infty}(|a_n|+|b_n|)$ 收敛,注意到

$$\left| \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \right| \le \frac{|a_0|}{2} + \sum_{n=1}^{\infty} (|a_n| + |b_n|), \forall x \in (-\infty, +\infty).$$

因此由 Weierstrass 判别法可知, $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ 在 $(-\infty, +\infty)$ 上一致收敛,即 f 的 Fourier 级数在 $(-\infty, +\infty)$ 上一致收敛于 f.

第十一章 多元函数

11.1 多元函数的连续性和微分

我们的极限采用聚点定义,即只需要沿着有定义的地方趋近即可.

例题 11.1 设
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 证明 f 沿着每条射线
$$\begin{cases} x = t\cos\alpha, & t > 0, \alpha \in [0, 2\pi) \\ y = t\sin\alpha, & t > 0, \alpha \in [0, 2\pi) \end{cases}$$
 趋于 $(0,0)$

时都趋于 0, 但是 f 在 (0,0) 不连

笔记 本结果表明, 使用极坐标求二重极限不一定正确. 实际上, 我们用极坐标求二重根极限时, 都是固定 α , 再 令 $t \rightarrow 0$ 求极限. 因此得到的只是沿着每个过原点的射线 (与 x 轴的夹角为 α) 趋于 (0,0) 的极限, 比如还可以沿 $v = kx^2$ 这条曲线趋于 (0.0).

证明 一方面,

$$\lim_{t\to 0^+} f(t\cos\alpha, t\sin\alpha) = \lim_{t\to 0^+} \frac{t^3\cos\alpha\sin\alpha}{t^4\cos^4\alpha + t^2\sin^2\alpha} = \lim_{t\to 0^+} \frac{t\cos\alpha\sin\alpha}{t^2\cos^4\alpha + \sin^2\alpha} = 0,$$

另外一方面

$$\lim_{x \to 0^+} f(x, kx^2) = \lim_{x \to 0^+} \frac{kx^4}{x^4 + k^2x^4} = \frac{k}{1 + k^2}.$$

故 f 在 (0,0) 不连续. 矛盾!

 $\dot{\mathbf{L}}$ 实际上, 使用极坐标变换求极限时, 只需要在 $t \to 0$ 的时候让 α 也发生变化 (不再固定 α), 再求极限才能得到正 确的极限值,但这样反而不方便求极限.

那么什么时候固定 α 后求出来的极限就是原函数的极限呢?实际上只需要极限关于 $\alpha \in [0, 2\pi)$ 一致,因为你 直接考察定义 $\varepsilon - \delta$ 语言即可. 实际做题中可以体现为

$$\lim_{t \to 0^+} \sup_{\alpha \in [0, 2\pi)} |f(t \cos \alpha, t \sin \alpha) - A| = 0$$

更直白的, 你需要得到形如

$$|f(t\cos\alpha, t\sin\alpha) - A| \le g(t)$$

的不等式且 $\lim_{t\to 0^+} g(t) = 0$.

命题 11.1

设二元函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义, 若对 $\forall \alpha \in [0,2\pi)$, 都有

$$\lim_{t \to 0^+} f(a + t \cos \alpha, b + t \sin \alpha) = A \in \mathbb{R},$$

并且

$$\lim_{t \to 0^+} \sup_{\alpha \in [0, 2\pi)} |f(t \cos \alpha, t \sin \alpha) - A| = 0,$$

或者存在函数 g(t) 满足对 $\forall \alpha \in [0, 2\pi)$, 都有

$$|f(a+t\cos\alpha,b+t\sin\alpha)-A|\leqslant g(t),\quad \lim_{t\to 0^+}g(t)=0,$$

则

$$\lim_{(x,y)\to(a,b)} f(x,y) = A.$$

证明 显然条件 $\lim_{t\to 0^+}\sup_{\alpha\in[0,2\pi)}|f(t\cos\alpha,t\sin\alpha)-A|=0$ 和条件存在函数 g(t) 满足对 $\forall \alpha\in[0,2\pi)$, 都有

$$|f(a+t\cos\alpha, b+t\sin\alpha) - A| \le g(t), \quad \lim_{t \to 0^+} g(t) = 0$$

等价. 由 $\lim_{t\to 0^+} g(t) = 0$ 知, $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得

$$|g(t)| < \varepsilon, \ \forall t \in (0, \delta).$$

对 $\forall (x, y)$, 满足 $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$, 令

$$t = \sqrt{(x-a)^2 + (y-b)^2}, \ \alpha = \arctan \frac{y-b}{x-a},$$

则 $x = a + t \cos \alpha, y = b + t \sin \alpha$. 于是

$$|f(x,y) - A| = |f(a + t\cos\alpha, b + t\sin\alpha) - A| \le g(t) < \varepsilon, \ \forall (x,y) \in B\left((a,b),\delta\right).$$

例题 11.2 计算

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x + y}$$

证明 考虑

$$|f(t\cos\alpha, t\sin\alpha)| = t^2 \left| \frac{\cos^3\alpha + \sin^3\alpha}{\cos\alpha + \sin\alpha} \right| = t^2 |\cos^2\alpha + \sin^2\alpha - \cos\alpha\sin\alpha| \le 2t^2,$$

于是

$$0 \le \lim_{t \to 0^+} |f(t\cos\alpha, t\sin\alpha)| \le 2\lim_{t \to 0^+} t^2 = 0$$

故我们得到了

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x + y} = 0.$$

例题 11.3 设 f 在 (0,0) 连续且满足

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - xy}{x^2 + y^2} = a > 0$$

求 a 的范围使得 f 在 (0,0) 一定取到极值. 再求 a 的范围使得 f 在 (0,0) 一定取不到极值. 笔记 注意到 $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$ 不存在, 但是

$$\left| \frac{xy}{x^2 + y^2} \right| \le \frac{1}{2}$$

即猜测 $\frac{1}{2}$ 是 a 的分界点. 证明 由条件容易得到

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - xy}{x^2 + y^2} = a$$

$$\implies \lim_{(x,y)\to(0,0)} f(x,y) = a \cdot \lim_{(x,y)\to(0,0)} (x^2 + y^2) + \lim_{(x,y)\to(0,0)} xy = 0$$

$$\implies f(0,0) = \lim_{(x,y)\to(0,0)} f(x,y) = 0$$

以及

$$f(x, y) = (a + g(x, y))(x^2 + y^2) + xy, \quad \lim_{(x,y)\to(0,0)} g(x,y) = 0.$$

当 $a > \frac{1}{2}$, 当 (x, y) 足够靠近 0 使得 $g(x, y) > \frac{1}{2} - a$. 此时我们有

$$f(x,y) = (a+g(x,y))(x^2+y^2) + xy > \frac{1}{2}(x^2+y^2) + xy = \frac{1}{2}(x+y)^2 \ge 0$$

故 $a > \frac{1}{2}$ 时, f 在 (0,0) 处取得极小值.

当 $0 < a < \frac{1}{2}$, 当 (x, y) 足够靠近 0 使得 $-a < g(x, y) < \frac{1-2a}{4}$, 则此时当 x > 0, y > 0 有 f(x, y) > 0. 但是

$$f(x,y) = (a+g(x,y))(x^2+y^2) + xy < \frac{1+2a}{4}(x^2+y^2) + xy$$

又 $\frac{1+2a}{4}(x^2+y^2)+xy$ 在 y=-x 上有

$$\frac{1+2a}{4}2x^2 - x^2 = \frac{2a-1}{2}x^2 < 0,$$

$$f(x,y) = \frac{1}{2}(x+y)^2 + x^2(x^2+y^2) > 0,$$

即 (0,0) 是极值. 但是考虑 $f(x,y) = \frac{1}{2}(x^2 + y^2) + xy - x(x^2 + y^2)$, 就有

$$f(x, -x) = x^2 - x^2 - 2x^3 = -2x^3 < 0, x > 0,$$

$$f(x,x) = x^2 + x^2 - 2x^3 = 2x^2 - 2x^3 > 0, 0 < x < 1.$$

即 (0,0) 不是极值.

定理 11.1

设 u = f(x, y), v = g(x, y) 在区域 $D \subset \mathbb{R}^2$ 上有连续偏导数,则 u 与 v 之间有函数关系当且仅当

$$J = \frac{\partial(u, v)}{\partial(x, y)} = 0.$$

证明 必要性. 假定 u,v 满足 F(u,v)=0, 则由 F(u,v)=F[f(x,y),g(x,v)] 可知

$$F'_{u} \cdot f'_{x} + F'_{v}g'_{x} = 0, \quad F'_{u}f'_{v} + F'_{v}g'_{v} = 0.$$

注意到 F'_u, F'_v 不同时为 0, 故上述方程组存在非零解, 从而有 $J = \frac{\partial(u,v)}{\partial(x,v)} = 0$.

充分性. 若 u_x', u_y', v_x', v_y' 全为 0, 则 u, v 是常数, 从而有关系 u = cv. 若上述四个值有一个非 0, 例如是 $v_y' \neq 0$, 则由隐函数存在定理, 可从 v=g(x,y) 可确定函数 $y=\psi(x,v)$. 代入 u=f(x,y) 可得 $u=f(x,\psi(x,v))$, 记为 F(x,v). 因此,我们有

$$0 = J = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} F'_x + F'_v v'_x & F'_v v'_y \\ v'_x & v'_y \end{vmatrix} = F'_x v'_y.$$

由此知 $F'_x = 0$. 这说明 F 不是 x 的函数, 即 u = F(v).

例题 11.4 设 $xf'_x + yf'_y = 0$, 证明 $f \in \frac{y}{x}$ 的函数.

证明 注意到

$$\begin{vmatrix} f_x' & f_y' \\ -\frac{y}{x^2} & \frac{1}{x} \end{vmatrix} = \frac{1}{x^2} \left(x f_x' + y f_y' \right) = 0, \frac{\partial \left(\frac{y}{x} \right)}{\partial x} = -\frac{y}{x^2}, \frac{\partial \left(\frac{y}{x} \right)}{\partial y} = \frac{1}{x}$$

我们由定理 11.1知 f 是 $\frac{y}{r}$ 的函数.

定理 11.2 (用矩阵判定极值)

设 f 是某个区域 $V \subset \mathbb{R}^n$ 的二阶连续可微函数, 我们定义其 Hess(黑塞) 矩阵为

$$Hf = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{1 \leqslant i, j \leqslant n},$$

则对 $\mathbf{x}_0 \in V$ 满足 $\frac{\partial f}{\partial x_i}(\mathbf{x}_0) = 0, i = 1, 2, \cdots, n$ 有 1. $Hf(\mathbf{x}_0)$ 是正定的,则 \mathbf{x}_0 是 f 严格极小值点;

- 2. $Hf(\mathbf{x}_0)$ 是负定的,则 \mathbf{x}_0 是 f 严格极大值点;
- 3. $Hf(\mathbf{x}_0)$ 是不定的 (既不是正定, 也不是负定), 则 \mathbf{x}_0 不是 f 极值点;
- 4. 若 \mathbf{x}_0 是 f 极小值点, 则 $Hf(\mathbf{x}_0)$ 是半正定的;
- 5. 若 \mathbf{x}_0 是 f 极大值点,则 $Hf(\mathbf{x}_0)$ 是半负定的.

证明

定义 11.1

我们称 $f: \mathbb{R}^2 \to \mathbb{R}$ 为**齐** $n(n \in \mathbb{N})$ 次函数, 如果 f 满足

$$f(tx,ty)=t^nf(x,y), \forall x,y\in\mathbb{R}, t>0.$$

命题 11.2 (齐次函数基本性质)

若 $f \in D^2(\mathbb{R}^2)$,则 f 是齐 n 次函数的充要条件是

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf.$$

证明 若 f 是齐 n 次函数,则

$$f(tx,ty)=t^nf(x,y), \forall x,y\in\mathbb{R}, t>0.$$

两边对t求导得

$$x\frac{\partial f}{\partial x}(tx, ty) + y\frac{\partial f}{\partial y}(tx, ty) = nt^{n-1}f(x, y),$$

于是

$$tx\frac{\partial f}{\partial x}(tx,ty) + ty\frac{\partial f}{\partial y}(tx,ty) = nt^n f(x,y) = nf(tx,ty),$$

再令 $\mathbf{x} = tx, \mathbf{y} = ty$, 即证.

反过来若

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf$$

成立, 固定 $x, y \in \mathbb{R}$ 并考虑 g(t) = f(tx, ty). 则有

$$tg'(t) = tx \frac{\partial f}{\partial x}(tx, ty) + ty \frac{\partial f}{\partial y}(tx, ty) = nf(tx, ty) = ng(t).$$

故解微分方程得 $g(t) = Ct^n$, 从而将 g(1) = f(x, y) 代入得 C = f(x, y), 于是

$$g(t) = f(tx, ty) = t^n f(x, y).$$

这就证明了

$$f(tx, ty) = t^n f(x, y), \forall x, y \in \mathbb{R}, t > 0.$$

例题 11.5 设 $\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial y} = 0$ 且 $u(0, y) = y^2, u(x, 1) = \cos x, 求 u$.

证明 对 $\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial y} = 0$ 两边关于 y 积分得 $\frac{\partial u}{\partial x} + u = C(x)$. 由 $u(x, 1) = \cos x$ 得

$$\frac{\partial u}{\partial x}(x,1) = -\sin x \Rightarrow \frac{\partial u}{\partial x}(x,1) + u(x,1) = C(x) = \cos x - \sin x.$$

又

$$\frac{\partial (ue^x)}{\partial x} = e^x \left(\frac{\partial u}{\partial x} + u \right) = e^x (\cos x - \sin x) \Rightarrow ue^x = e^x \cos x + C_2(y),$$

我们有

$$u(x, y) = \cos x + C_2(y)e^{-x}.$$

现在

$$y^2 = u(0, y) = 1 + C_2(y) \Rightarrow C_2(y) = y^2 - 1.$$

故

$$u(x, y) = \cos x + (y^2 - 1)e^{-x}$$
.

例题 11.6 设 l_1, l_2 夹角为 $\varphi \in (0, \pi)$ 且 f 连续可微, 证明

$$\left|\frac{\partial f}{\partial x}\right|^2 + \left|\frac{\partial f}{\partial y}\right|^2 \leqslant \frac{2}{\sin^2 \varphi} \left[\left|\frac{\partial f}{\partial l_1}\right|^2 + \left|\frac{\partial f}{\partial l_2}\right|^2\right].$$

证明 由可微时方向导数计算公式有

$$\frac{\partial f}{\partial l_1} = \cos a \cdot \frac{\partial f}{\partial x} + \sin a \cdot \frac{\partial f}{\partial y},$$
$$\frac{\partial f}{\partial l_2} = \cos(a + \varphi) \cdot \frac{\partial f}{\partial x} + \sin(a + \varphi) \cdot \frac{\partial f}{\partial y},$$

则

$$\begin{pmatrix} \frac{\partial f}{\partial l_1} \\ \frac{\partial f}{\partial l_2} \end{pmatrix} = \begin{pmatrix} \cos a & \sin a \\ \cos(a + \varphi) & \sin(a + \varphi) \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}.$$

于是

$$\left| \frac{\partial f}{\partial l_1} \right|^2 + \left| \frac{\partial f}{\partial l_2} \right|^2 = \left(\frac{\partial f}{\partial l_1} \quad \frac{\partial f}{\partial l_2} \right) \left(\begin{array}{c} \frac{\partial f}{\partial l_1} \\ \frac{\partial f}{\partial l_2} \end{array} \right)$$

$$= \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \right) \left(\begin{array}{c} \cos a & \sin a \\ \cos (a + \varphi) & \sin (a + \varphi) \end{array} \right)^T \left(\begin{array}{c} \cos a & \sin a \\ \cos (a + \varphi) & \sin (a + \varphi) \end{array} \right) \left(\frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \right)$$

$$= \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \right) \left(\begin{array}{c} \cos^2 a + \cos^2 (a + \varphi) & \sin (a + \varphi) \cos (a + \varphi) + \sin a \cos a \\ \sin (a + \varphi) \cos (a + \varphi) + \sin a \cos a \end{array} \right) \left(\begin{array}{c} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{array} \right).$$

利用

$$\begin{pmatrix} \cos^2 a + \cos^2(a + \varphi) & \sin(a + \varphi)\cos(a + \varphi) + \sin a \cos a \\ \sin(a + \varphi)\cos(a + \varphi) + \sin a \cos a & \sin^2 a + \sin^2(a + \varphi) \end{pmatrix}$$

的特征值为 $1 \pm \cos \varphi$ 和Rayleigh quotient(瑞丽商) 的基本性质, 我们知道

$$\left|\frac{\partial f}{\partial x}\right|^2 + \left|\frac{\partial f}{\partial y}\right|^2 \leqslant \frac{1}{1 - |\cos\varphi|} \left[\left|\frac{\partial f}{\partial l_1}\right|^2 + \left|\frac{\partial f}{\partial l_2}\right|^2 \right] \leqslant \frac{2}{\sin^2\varphi} \left[\left|\frac{\partial f}{\partial l_1}\right|^2 + \left|\frac{\partial f}{\partial l_2}\right|^2 \right],$$

即证. 上式最后一个不等式是因为

$$\frac{1}{1 - |\cos \varphi|} \ge \frac{2}{\sin^2 \varphi}$$

$$\iff 1 - |\cos \varphi| \le \frac{\sin^2 \varphi}{2}$$

$$\iff 2 - 2|\cos \varphi| \le 1 - \cos^2 \varphi$$

$$\iff \cos^2 \varphi - 2|\cos \varphi| + 1 \ge 0$$

$$\iff (|\cos \varphi| - 1)^2 \ge 0.$$

例题 11.7 设 D 为单位圆盘, 考虑 $f \in C^1(D) \cap C(\overline{D})$ 且 $|f| \leq 1$, 证明: 存在 D 中的一个点 (x_0, y_0) 使得

$$\left|\frac{\partial f}{\partial x}(x_0, y_0)\right|^2 + \left|\frac{\partial f}{\partial y}(x_0, y_0)\right|^2 \leqslant 16.$$

笔记 摄动想法, 考虑 $g(x,y) = f(x,y) + \varepsilon(x^2 + y^2)$, 其中 ε 待定. 此外很多同学疑惑构造函数咋来的, 实际上这是完 全没有必要的! 因为大家几乎都是记的. 本题有一些更高端的技术可以加强到最佳系数.

证明 考虑 $g(x,y) = f(x,y) + 2(x^2 + y^2)$, 则由 $|f| \le 1$ 知 $g|_{\partial D} \ge 1$, $g(0,0) = f(0,0) \le 1$. 故 g 最小值在 D 内取到. 又 由 $g \in C(D)$, 从而存在 D 中的一个 g 的最小值点 (x_0, y_0) 使得 $\frac{\partial g}{\partial x}(x_0, y_0) = 0$, $\frac{\partial g}{\partial y}(x_0, y_0) = 0$, 即

$$\frac{\partial f}{\partial x}(x_0, y_0) = -4x_0, \frac{\partial f}{\partial y}(x_0, y_0) = -4y_0,$$

这就得到了证明.

命题 11.3

设 f(x,y) 是 D 上的二元函数且偏导数都存在, 令 $x = r \cos \theta, y = r \sin \theta, g(r,\theta) = f(r \cos \theta, r \sin \theta)$, 则

$$r\frac{\partial g}{\partial r} = x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y},$$
$$\frac{\partial g}{\partial \theta} = -y\frac{\partial f}{\partial x} + x\frac{\partial f}{\partial y}.$$

证明 直接求导得证.

例题 11.8 设 $\lim_{r=\sqrt{x^2+y^2}\to+\infty} \left(x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}\right)=a>0$, 证明 f 在 \mathbb{R}^2 取得最小值. 注 本题关键是有一个隐藏条件: 条件极限关于角度 θ 的一致性.

笔记 积累想法设 $g(r,\theta) = f(r\cos\theta, r\sin\theta)$, 则

$$r\frac{\partial g}{\partial r} = x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}, \frac{\partial g}{\partial \theta} = -y\frac{\partial f}{\partial x} + x\frac{\partial f}{\partial y}.$$

即联想命题 11.3.

证明 注意到

$$\lim_{r \to +\infty} r g'_r = \lim_{r \to +\infty} r \frac{\partial g}{\partial r} = a > 0,$$

于是存在 $r_0 > 0$ 使得 $g'_r > 0$, $\forall r \ge r_0$. 则此即

$$g(r, \theta) \geqslant g(r_0, \theta), \forall r \geqslant r_0, \theta \in [0, 2\pi),$$

故 g 的最小值在 $D = \{(r, \theta) : r \in [0, r_0], \theta \in [0, 2\pi)\}$ 取到, 因此 $\min_{\substack{r \in [0, r_0], \theta \in [0, 2\pi]}} g(r, \theta)$ 为 g 最小值.

例题 11.9 设 f 是 \mathbb{R}^2 上的连续可微函数且 f(0,1) = f(1,0), 证明存在单位圆周上两个不同的点使得 $y\frac{\partial f}{\partial x} = x\frac{\partial f}{\partial y}$.

筆记 联想命题 11.3.

证明 令 $x = \cos\theta$, $y = \sin\theta$, 考虑 $g(\theta) = f(\cos\theta, \sin\theta)$, 注意到

$$g(0) = g\left(\frac{\pi}{2}\right) = g(2\pi).$$

由 Rolle 中值定理知, 存在 $\theta_1 \neq \theta_2 \in [0, 2\pi)$, 记 $x_i = \cos \theta_1$, $y_i = \sin \theta (i = 1, 2)$, 使得

$$g'(\theta_1) = g'(\theta_2) = 0$$

$$\iff \begin{cases}
-\sin\theta_1 \frac{\partial f}{\partial x} (\cos\theta_1, \sin\theta_1) + \cos\theta_1 \frac{\partial f}{\partial y} (\cos\theta_1, \sin\theta_1) = 0, \\
-\sin\theta_2 \frac{\partial f}{\partial x} (\cos\theta_2, \sin\theta_2) + \cos\theta_2 \frac{\partial f}{\partial y} (\cos\theta_2, \sin\theta_2) = 0.
\end{cases}$$

$$\iff \begin{cases} y_1 \frac{\partial f}{\partial x} (x_1, y_1) = x_1 \frac{\partial f}{\partial y} (x_1, y_1), \\ y_2 \frac{\partial f}{\partial x} (x_2, y_2) = x_2 \frac{\partial f}{\partial y} (x_2, y_2). \end{cases}$$

即单位圆周上有两个不同的点, 使得 $y \frac{\partial f}{\partial x} = x \frac{\partial f}{\partial y}$.

例题 11.10

- 1. 设 $f \in C^1(\mathbb{R}^2)$, f(0,0) = 0 且 $|\nabla f| \le 1$, 证明 $|f(1,2)| \le \sqrt{5}$.
- 2. 设 $f \in C^1(\mathbb{R}^2)$, f(0,0) = 0 且.

$$\left| \frac{\partial f}{\partial x} \right| \leqslant 2|x - y|, \left| \frac{\partial f}{\partial y} \right| \leqslant 2|x - y|,$$

证明: $|f(5,4)| \leq 1$.

注 梯度及其模定义为 $\nabla f \triangleq \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right), |\nabla f| \triangleq \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}.$

注 第二问如果和上一问完全类似,取积分路径为连接 (0,0),(5,4) 的线段,那么由第一型曲线积分和第二型曲面积分的联系和Cauchy 不等式 (离散版本)我们有

$$|f(5,4)| = \left| \int_{(0,0)}^{(5,4)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \right| = \left| \int_{(0,0)}^{(5,4)} \left(\frac{\partial f}{\partial x} \cos \left(\widehat{t,x} \right) + \frac{\partial f}{\partial y} \sin \left(\widehat{t,x} \right) \right) ds \right|$$

$$\leq \int_{(0,0)}^{(5,4)} |\nabla f| ds \leq \sqrt{8} \int_{(0,0)}^{(5,4)} |x - y| ds$$

$$= \frac{\sqrt{8}}{5} \int_{0}^{5} x \sqrt{1 + \left(\frac{4}{5} \right)^{2}} dx = \sqrt{82}.$$

其中 $\left(\cos\left(\widehat{t,x}\right),\sin\left(\widehat{t,y}\right)\right)$ 为积分路径曲线正切向的方向余弦. 没能成功的原因就是两类曲线积分转换时的损失,没有充分利用题目条件: 当 y=x 时,f 的两个偏导数都为 0. 上述证明中选取的积分路径与 y=x 这条直线关系不大.

证明

1. 注意到

$$f(1,2) - f(0,0) = \int_{(0,0)}^{(1,2)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right)$$

这里积分路径待定. 于是由第一型曲线积分和第二型曲面积分的联系和Cauchy 不等式 (离散版本)得

$$|f(1,2)| = \left| \int_{(0,0)}^{(1,2)} \left(\frac{\partial f}{\partial x} \cos\left(\widehat{t,x}\right) + \frac{\partial f}{\partial y} \sin\left(\widehat{t,x}\right) \right) ds \right|,$$

$$\leqslant \int_{(0,0)}^{(1,2)} |\nabla f| ds \leqslant \int_{(0,0)}^{(1,2)} 1 ds$$

其中 $\left(\cos\left(\widehat{t,x}\right),\sin\left(\widehat{t,y}\right)\right)$ 为积分路径曲线正切向的方向余弦. 为了得到这个方法最佳的估计, 我们取积分路径为连接 (0,0),(1,2) 的线段, 这恰好给出了 $|f(1,2)| \leq \sqrt{5}$.

路径为连接
$$(0,0)$$
, $(1,2)$ 的线段, 这恰好给出了 $|f(1,2)| \le \sqrt{5}$.

2. 先沿着 $y = x, 0 \le x \le 4$ 积分, 此时知积分 $\int_{(0,0)}^{(4,4)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\right)$ 为 0. 于是

$$|f(5,4)| = \left| \int_{(0,0)}^{(5,4)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \right| = \left| \int_{(4,4)}^{(5,4)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \right|$$
$$= \left| \int_{4}^{5} \frac{\partial f}{\partial x} dx \right| \leqslant 2 \int_{4}^{5} |x - 4| dx = 1.$$

11.2 重积分换元法

定理 11.3 (重积分换元法)

1. 考虑换元 $w: \begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$,则有

$$\iint_D f(x, y) dx dy = \iint_{w^{-1}(D)} f(x(u, v), y(u, v)) \cdot |\det J| du dv,$$

这里

$$J \triangleq \frac{\partial(x, y)}{\partial(u, v)} = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}.$$

2. 考虑换元
$$w$$
:
$$\begin{cases} x = x(u, v, w) \\ y = y(u, v, w) \end{cases}$$
, 则有
$$z = z(u, v, w)$$

$$\iiint_D f(x, y, z) dx dy dz = \iiint_{w^{-1}(D)} f(x(u, v, w), y(u, v, w), z(u, v, w)) \cdot |\det J| du dv dw,$$

这里

$$J \triangleq \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{pmatrix}.$$

Ŷ 笔记

1. 记忆结论

$$\left[\frac{\partial(u,v)}{\partial(x,y)}\right]^{-1} = \frac{\partial(x,y)}{\partial(u,v)}, \quad \left[\frac{\partial(u,v,w)}{\partial(x,y,z)}\right]^{-1} = \frac{\partial(x,y,z)}{\partial(u,v,w)},$$

于是有

$$\left| \det \frac{\partial(u,v)}{\partial(x,y)} \right| \cdot \left| \det \frac{\partial(x,y)}{\partial(u,v)} \right| = 1, \quad \left| \det \frac{\partial(u,v,w)}{\partial(x,y,z)} \right| \cdot \left| \det \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| = 1.$$

- 2. 换元法的区域确定重点是: 边界对应边界
- 3. 极坐标, 柱坐标, 球坐标等方法是换元法的特例, 我们课本上记忆的经典确定上下限的几何直观是他们独有的. 对于一般没有, 或者很难有几何意义的换元法, 只能把换元后的新变量用直角坐标的方法确定上下限. 特别的, 极坐标, 柱坐标, 球坐标等方法也可以视换元后的新变量用直角坐标的方法确定上下限.

第十二章 无理数初步

定理 12.1 (狄利克雷定理)

对于无理数 a, 则存在无穷多对互素的整数 p, q 使得 $\left|a-\frac{p}{q}\right| \leqslant \frac{1}{q^2}$, 而对有理数 a, 这样的互素整数对 (p,q) 只能是有限个.

🕙 笔记 这通常称为"**齐次逼近**",证明利用抽屉原理即可.

推论 12.1

对于实数 a,则 a 为无理数当且仅当任意 $\varepsilon > 0$, 存在整数 x, y 使得 $0 < |ax - y| < \varepsilon$.

证明 对任意正整数 N,将 [0,1] 均分为 N 个闭区间,每一个长度 $\frac{1}{N}$,则 n+1 个数 0, $\{a\}$, $\{2a\}$, \cdots , $\{Na\}$ 全部落在 [0,1] 中,根据抽屉原理必定有两个数落入同一区间,也即存在 $0 \le i < j \le N$ 使得 $\{ia\}$, $\{ja\} \in \left[\frac{k}{N}, \frac{k+1}{N}\right]$. 注: 因为 a 是无理数,所以任意 $i \ne j$ 都一定有 $\{ia\} \ne \{ja\}$,否则 ia-[ia]=ja-[ja] 意味着 a 是有理数. 所以

$$|\{ia\} - \{ja\}| = |(j-i)a - M| \leqslant \frac{1}{N} \Rightarrow \left|a - \frac{M}{j-i}\right| \leqslant \frac{1}{N(j-i)}$$

这里 M 是一个整数,现在不一定有 M 与 j-i 互素,但是我们可以将其写成既约分数 M=up,j-i=uq,其中 $(p,q)=1,u\in\mathbb{N}^+$,代入得到: 对任意正整数 N,都存在互素的整数 p,q,其中 $1\leqslant q\leqslant N$ 是正整数,使得 $\left|a-\frac{p}{q}\right|\leqslant \frac{1}{Nq}\leqslant \frac{1}{q^2}$. 现在还没有说明"无穷多个",采用反证法,假如使得 $\left|a-\frac{p}{q}\right|\leqslant \frac{1}{q^2}$ 成立的互素的整数 (p,q) 只有有限对,记为 $(p_1,q_1),\cdots$, (p_m,q_m) ,那么 (在上面证明的结论里面) 依次取 $N=3,4,\cdots$,则每一个 N 都能够对应这 m 对 (p,q) 中的某一个,而 $N=3,4,\cdots$ 是无限的,m 是有限的,所以必定有一个 (p_i,q_i) 对应了无穷多个正整数 N. 不妨设 i=1,换句话说: 存在一列正整数 N_k 单调递增趋于正无穷,使得 $\left|a-\frac{p_1}{q_1}\right|\leqslant \frac{1}{N_kq_1}$ 恒成立,令 $k\to\infty$ 可知 $a=\frac{p}{q}$ 是有理数,导致矛盾.

而如果 $a = \frac{m}{n}$ 是有理数,但是有无穷个互素的 (p,q) 使得 $\left|\frac{m}{n} - \frac{p}{q}\right| \le \frac{1}{q^2}$,则当 q 充分大时,所有这些 (p,q) 中的 p 也都会充分大 (相当于同时趋于无穷),然而不等式等价于 $\frac{1}{q} \ge \frac{|mq - np|}{n}$,则当 p,q 都充分大时 $mq - np \ne 0$ (不然会导致 p|mq 结合互素有 p|m(对充分大的 p 均成立),显然矛盾),于是 $\frac{1}{q} \ge \frac{|mq - np|}{n} \ge \frac{1}{n}$ 导致 q 有上界,还是矛盾,结论得证.

第十三章 求和与求积符号

13.1 求和符号

定义 13.1 (空和 (Empty sum))

$$\sum_{i=b+1}^{b} f(i) \stackrel{\triangle}{=} 0, b \in \mathbb{Z}.$$
 (13.1)

定理 13.1 (关于求和号下限大于上限的计算)

$$\sum_{i=a}^{c} f(i) \equiv -\sum_{i=c+1}^{a-1} f(i), a, c \in \mathbb{Z} \mathbb{A} a > c.$$
 (13.2)

笔记 上述空和的定义与关于求和号下限大于上限的计算定理都来自论文:Interpreting the summation notation when the lower limit is greater than the upper limit(Kunle Adegoke).

定理 13.2 (求和号基本性质)

1. (**倒序求和**) 当 n 为非负整数时, 有

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} a_{n-k+1}.$$

 \Diamond

拿 笔记

1. 看到求和号内部有两个变量,都可以尝试一下将其转化为倒序求和的形式.

13.1.1 求和号交换顺序

定理 13.3 (基本结论)

1. 当 n. m 均为非负整数时. 有

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij}.$$

2. 当 n, m 均为非负整数, $p \leq n, q \leq m \perp p, q \in \mathbb{N}_+$ 时,有

$$\sum_{\substack{p \le i \le n \\ o \le i \le m}} a_{ij} = \sum_{i=p}^{n} \sum_{j=q}^{m} a_{ij} = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij}.$$

3. 当 n 为非负整数时, 有

$$\sum_{1 \le i \le j \le n} a_{ij} = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{j} a_{ij}.$$

4. 当 n 为非负整数时, 有

$$\sum_{1 \leq i < j \leq n} a_{ij} = \sum_{i=1}^{n-1} \sum_{j=i+1}^n a_{ij} = \sum_{j=2}^n \sum_{i=1}^{j-1} a_{ij}.$$

5. 当 n 为非负整数时, 有

$$\sum_{i=1}^{n} a_i \cdot \sum_{j=1}^{n} b_j = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j.$$

6. 当 n 为非负整数时, 有

$$\left(\sum_{i=1}^{n} a_i\right)^2 = \sum_{i=1}^{n} a_i \cdot \sum_{j=1}^{n} a_j \geqslant 0, \forall a_1, a_2, \cdots, a_n \in \mathbb{R} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j.$$

\$

笔记 如果上述命题第 1 条中的 n 或 m 取到无穷, 第 2 条中的 n 取到无穷, 则求和号不能直接交换顺序. 此时, 往 往要添加一个条件, 相应的交换和号的结论才能成立. 比如, 著名的 Fubini 定理 (见关于无限和的 Fubinin 定理). 证明 1. 利用矩阵证明该结论.

设一个m行n列的矩阵A为

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}.$$

则矩阵 A 的第i 行的和记为

$$r_i = \sum_{j=1}^m a_{ij} (i = 1, 2, \dots, n).$$

矩阵 A 的第 j 列的和记为

$$c_j = \sum_{i=1}^n a_{ij} (j = 1, 2, \dots, m).$$

易知,矩阵所有元素的和等于所有行和 $r_i, i=1,2,\cdots,n$ 求和也等于所有列和 $c_j, j=1,2,\cdots,m$ 求和,即

$$\sum_{\substack{1\leq i\leq n\\1\leq j\leq n}}a_{ij}=\sum_{i=1}^nr_i=\sum_{i=1}^n\sum_{j=1}^ma_{ij},$$

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} a_{ij} = \sum_{j=1}^m c_j = \sum_{j=1}^m \sum_{i=1}^n a_{ij}.$$

故

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} = \sum_{\substack{1 \le i \le n \\ 1 < i < n}} a_{ij}.$$

2. 同理利用矩阵证明该结论.

设一个m行n列的矩阵A为

$$A = \begin{bmatrix} a_{pq} & a_{p,q+1} & \cdots & a_{pm} \\ a_{p+1,q} & a_{p+1,q+1} & \cdots & a_{p+1,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nq} & a_{n,q+1} & \cdots & a_{nm} \end{bmatrix}.$$

则矩阵 A 的第i 行的和记为

$$r_i = \sum_{j=q}^{m} a_{ij} (i = p, p + 1, \dots, n).$$

矩阵 A 的第 i 列的和记为

$$c_j = \sum_{i=p}^n a_{ij} (j = q, q+1, \cdots, m).$$

易知,矩阵所有元素的和等于所有行和 $r_i, i=p, p+1, \cdots, n$ 求和也等于所有列和 $c_i, j=q, q+1, \cdots, m$ 求和,即

$$\sum_{\substack{p \leq i \leq n \\ q \leq j \leq n}} a_{ij} = \sum_{i=p}^n r_i = \sum_{i=p}^n \sum_{j=q}^m a_{ij},$$

$$\sum_{\substack{p \le i \le n \\ a < j < n}} a_{ij} = \sum_{j=q}^{m} c_j = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij}.$$

故

$$\sum_{i=p}^{n} \sum_{j=q}^{m} a_{ij} = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij} = \sum_{\substack{p \le i \le n \\ a \le i \le n}} a_{ij}.$$

3. 根据 (1) 的结论可得

$$\sum_{i=1}^{n} \sum_{i=1}^{j} a_{ij} = \sum_{i=1}^{n} \sum_{i=1}^{n} a_{ij} \chi_{i \le j}(i) \xrightarrow{\text{1.bisiv}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \chi_{i \le j}(i) = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij}.$$

4. 根据 (1) 的结论可得

$$\sum_{j=2}^{n}\sum_{i=1}^{j-1}a_{ij}=\sum_{j=2}^{n}\sum_{i=1}^{n-1}a_{ij}\chi_{i< j}\left(i\right)\xrightarrow{\underline{\text{1.ib$\#$}\&}}\sum_{i=1}^{n-1}\sum_{j=2}^{n}a_{ij}\chi_{i< j}\left(i\right)=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}a_{ij}.$$

- 5. 结论是显然的.
- 6. 结论是显然的.

$$\chi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}.$$

称为集合 A 的示性函数.

例题 13.1 计算

$$\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)}.$$

解 令
$$I = \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)}, 则$$

$$\begin{split} I &= \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} \left(i+j\right)} \frac{\#_{i} \#_{\vec{k},j}, \#_{\vec{k},i}}{\left(\Re_{\vec{k}} \#_{\vec{k},i}\right)} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{j}{2^{i+j} \left(i+j\right)} \\ &= \frac{1}{2} \left(\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} \left(i+j\right)} + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{j}{2^{i+j} \left(i+j\right)} \right) = \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{i}{2^{i+j} \left(i+j\right)} + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{j}{2^{i+j} \left(i+j\right)} \right) \\ &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{i+j}{2^{i+j} \left(i+j\right)} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{2^{i+j}} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2^{i}} \cdot \sum_{j=1}^{n} \frac{1}{2^{j}} = \frac{1}{2} \left(\sum_{i=1}^{n} \frac{1}{2^{i}} \right)^{2} \\ &= \frac{1}{2} \left(\frac{\frac{1}{2} - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} \right)^{2} = \frac{1}{2} \left[1 - \frac{1}{2^{n}} \right]^{2} \, . \end{split}$$

例题 13.2 记

 $T = \{(a, b, c) \in \mathbb{N}^3 : a, b, c$ 可以构成某个三角形的三边长 $\}$.

证明:

$$\sum_{(a,b,c)\in T}A_{a,b,c}=\sum_{(x,y,z)\in\mathbb{N}^3且有相同的奇偶性}A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}.$$

拿 筆记 核心想法: 两个集合间可以建立一一映射。

结论 若 $x, y, z \in \mathbb{N}_+, x, y, z$ 具有相同奇偶性的充要条件为

$$x + y = 2a, y + z = 2b, x + z = 2c, \not = a, b, \in \mathbb{N}_{+}.$$

证明 必要性显然. 下面证明充分性. 假设 x,y,z 具有不同的奇偶性, 则不妨设 x,z 为奇数,y 为偶数. 从而 x+y 一定为奇数, 这与 x+y=2a 矛盾. 故 x,y,z 具有相同奇偶性.

证明 设 $T = \{(a,b,c) \in \mathbb{N}^3 : a,b,c \text{ 可以构成某个三角形的三边长}\}.$

$$\sum_{(a,b,c)\in T}A_{a,b,c}=\sum_{(x,y,z)\in\mathbb{N}^3\text{ }\mathbb{1}}A_{\text{ }\text{ }1}=1$$

记 $S=\{(x,y,z)\in\mathbb{N}^3: x,y,z$ 有相同的奇偶性}, 则对 $\forall (x,y,z)\in S$, 取 $a=\frac{x+y}{2},b=\frac{y+z}{2},c=\frac{z+x}{2}$. 此时我们有

$$a + b = \frac{x + 2y + z}{2} > \frac{z + x}{2} = c,$$

$$b + c = \frac{x + y + 2z}{2} > \frac{x + y}{2} = a,$$

$$a + c = \frac{2x + y + z}{2} > \frac{y + z}{2} = b.$$

从而 a,b,c 可以构成某个三角形的三边长, 即此时 $(a,b,c)=(\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2})\in T$. 于是我们可以构造映射

$$\tau:S\to T, (x,y,z)\mapsto (a,b,c)=(\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}).$$

反之, 对 $\forall (a, b, c) \in T$, 取 x = a + c - b, y = a + b - c, z = b + c - a. 此时我们有

$$x + y = 2a, y + z = 2b, x + z = 2c.$$

从而 x, y, z 具有相同的奇偶性, 即此时 $(x, y, z) = (a + c - b, a + b - c, b + c - a) \in S$.

于是我们可以构造映射

$$\tau': T \to S, (a, b, c) \mapsto (x, y, z) = (a + c - b, a + b - c, b + c - a).$$

因此对 $\forall (x, y, z) \in S$, 都有 $\tau \tau'(x, y, z) = \tau' \tau(x, y, z) = (x, y, z)$. 即 $\tau \tau' = I$. 故映射 τ 存在逆映射 τ' . 从而映射 τ 是双射.

因此集合 S 中的每一个元素都能在集合 T 中找到与之一一对应的元素. 于是两和式 $\sum_{(x,y,z)\in S}A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}$ 和

 $\sum_{(a,b,c)\in T} A_{a,b,c}$ 的项数一定相同. 并且任取 $\sum_{(x,y,z)\in S} A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}} + (x,y,z)$ 所对应的一项 $A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}, \sum_{(a,b,c)\in T} A_{a,b,c}$ 中一定存在与之一一对应的 $\tau(x,y,z)$ 所对应的一项 $A_{\tau(x,y,z)}$. 而 $\tau(x,y,z) = (\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2})$, 因此 $A_{\tau(x,y,z)} = A_{x+y}$ $\sum_{(x,y,z)\in S} A_{x+y}$

$$A_{\frac{x+y}{2}, \frac{y+z}{2}, \frac{z+x}{2}} \cdot \not t t \sum_{(x, y, z) \in S} A_{\frac{x+y}{2}, \frac{y+z}{2}, \frac{z+x}{2}} = \sum_{(a, b, c) \in T} A_{a, b, c}.$$

注 上述证明中逆映射的构造可以通过联立方程 $a=\frac{x+y}{2}, b=\frac{y+z}{2}, c=\frac{z+x}{2}$ 解出 x=a+c-b, y=a+b-c, z=b+c-a 得到.

定理 13.4 (关于无限和的 Fubinin 定理)

设 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ 是一个使得 $\sum_{(n,m) \in \mathbb{N} \times \mathbb{N}} f(n,m)$ 绝对收敛的函数. 那么

(1)

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} f(n,m) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(n,m).$$

(2)

$$\sum_{n=1}^{\infty} \sum_{m=1}^{n} f(n,m) = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} f(n,m).$$

全 笔

笔记 这个命题是关于求和号换序的基本结论的推广.

证明

例题 **13.3** (PutnamA3) 已知 a_0, a_1, \ldots, a_n, x 是实数, 且 0 < x < 1, 并且满足

$$\frac{a_0}{1-x} + \frac{a_1}{1-x^2} + \dots + \frac{a_n}{1-x^{n+1}} = 0.$$

证明:存在一个0< y < 1, 使得

$$a_0 + a_1 y + \dots + a_n y^n = 0.$$

证明 由题意可知,将 $\frac{1}{1-r^{k+1}}(k=0,1,\cdots,n)$ 根据幂级数展开可得

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{k=0}^{n} a_k \sum_{i=0}^{+\infty} x^{(k+1)i} = \sum_{k=0}^{n} \sum_{i=0}^{+\infty} a_k x^{(k+1)i}.$$

又因为0 < x < 1,所以几何级数 $\sum_{i=0}^{+\infty} x^{(k+1)i}$ 是绝对收敛的. 从而有限个绝对收敛的级数的线性组合 $\sum_{k=0}^{n} a_k \sum_{i=0}^{+\infty} x^{(k+1)i}$

也是绝对收敛的. 于是根据关于无限和的 Fubinin 定理可得

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{k=0}^{n} \sum_{i=0}^{+\infty} a_k x^{(k+1)i} = \sum_{i=0}^{+\infty} \sum_{k=0}^{n} a_k x^{(k+1)i} = \sum_{i=0}^{+\infty} x^i \sum_{k=0}^{n} a_k x^{ki}.$$

设 $f(y) = a_0 + a_1 y + \dots + a_n y^n = 0, y \in (0, 1), 则 f \in \mathbb{C}(0, 1).$ 假设对任意的 $y \in (0, 1), 有 f(y) \neq 0$. 则 f 要么恒为 正数,要么恒为负数. 否则,存在 $y_1, y_2 \in (0, 1)$,使得 $f(y_1) > 0$, $f(y_2) < 0$. 那么由连续函数介值定理可知,一定存在 $y_0 \in (0, 1)$,使得 $f(y_0) = 0$. 这与假设矛盾. 因此不失一般性,我们假设 f(y) > 0, $\forall y \in (0, 1)$. 又由 0 < x < 1 可知, $x^i \in (0, 1)$. 从而

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{i=0}^{+\infty} x^i \sum_{k=0}^{n} a_k x^{ki} = \sum_{i=0}^{+\infty} x^i f\left(x^i\right) > 0.$$

这与题设矛盾. 故原结论成立.

13.1.2 裂项求和

定理 13.5 (基本结论)

(1) 当 $a,b \in \mathbb{Z}$ 且 $a \leq b$ 时,有

$$\sum_{n=a}^{b} [f(n) - f(n+1)] = f(a) - f(b+1);$$

$$\sum_{n=a}^{b} [f(n+1) - f(n)] = f(b+1) - f(a);$$

$$\sum_{n=a}^{b} [f(n) - f(n-1)] = f(b) - f(a-1);$$

$$\sum_{n=a}^{b} [f(n-1) - f(n)] = f(a-1) - f(b).$$

(2) 当 $a,b,m \in \mathbb{Z}$ 且 $a \leq b$ 时,有

$$\sum_{n=a}^{b} \left[f(n+m) - f(n) \right] = \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n);$$
(13.3)

$$\sum_{n=a}^{b} \left[f(n) - f(n+m) \right] = \sum_{n=a}^{a+m-1} f(n) - \sum_{n=b+1}^{b+m} f(n).$$
 (13.4)

证明 (1) 将求和展开后很容易得到证明.

(2) 因为 (2) 中上下两个式子(13.3)(13.4)互为相反数, 所以我们只证明(13.3)即可.

当 $m \ge 0$ 时, 若 $m \le b - a$, 则

$$\sum_{n=a}^{b} [f(n+m) - f(n)]$$

$$= f(a+m) + \dots + f(b) + f(b+1) + \dots + f(b+m) - f(a) - \dots - f(a+m-1) - f(a+m) - \dots - f(b)$$

$$= f(b+1) + \dots + f(b+m) - f(a) - \dots - f(a+m-1)$$

$$= \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$$

若m > b - a,则

$$\sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$$

$$= f(b+1) + \dots + f(a+m-1) + f(a+m) + \dots + f(b+m) - f(a) - \dots - f(b) - f(b+1) - \dots - f(a+m-1)$$

$$= f(a+m) + \dots + f(b+m) - f(a) - \dots - f(b)$$

$$= \sum_{n=a}^{b} [f(n+m) - f(n)]$$

综上, 当
$$m \ge 0$$
时, 有 $\sum_{n=a}^{b} [f(n+m) - f(n)] = \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$.
当 $m < 0$ 时, 我们有 $-m > 0$, 从而

$$\sum_{n=a}^{b} [f(n+m) - f(n)] = \sum_{n=a+m}^{b+m} [f(n) - f(n-m)] = -\sum_{n=a+m}^{b+m} [f(n-m) - f(n)]$$

$$= -\left(\sum_{n=b+m+1}^{b+m-m} f(n) - \sum_{n=a+m}^{a+m-m-1} f(n)\right) = \sum_{n=a+m}^{a-1} f(n) - \sum_{n=b+m+1}^{b} f(n)$$

$$\frac{}{}$$
 $\frac{}{}$ $\frac{}}{}$ $\frac{}{}$ $\frac{$

综上所述,结论得证.

例题 13.4 1. 对
$$m \in \mathbb{N}$$
, 计算 $\sum_{n=1}^{m} (\sin n^2 \cdot \sin n)$. 2. 对 $n, m \in \mathbb{N}$, 计算 $\sum_{k=1}^{n} \frac{1}{k(k+m)}$.

解 1.

2.

$$\sum_{k=1}^{n} \frac{1}{k(k+m)} = \frac{1}{m} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+m} \right)$$
$$= \frac{1}{m} \left(1 + \frac{1}{2} \dots + \frac{1}{m} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n+m} \right)$$

13.2 求积符号

定义 13.2 (求积符号)

$$\prod_{k=1}^n a_k \stackrel{\triangle}{=\!\!\!=\!\!\!=} a_1 a_2 \cdots a_n.$$

定理 13.6 (基本结论)

当 $p,q \in \mathbb{Z}$ 且 $p \leq q$ 时, 有

$$\prod_{n=p}^{q} \frac{a_{n+1}}{a_n} = \frac{a_{q+1}}{a_p};$$

$$\prod_{n=p}^{q} \frac{a_n}{a_{n+1}} = \frac{a_p}{a_{q+1}}.$$

证明 由求积符号定义很容易得到证明.

注 对于正数列的乘积, 我们可以通过取对数的方式, 将其转化为 $\ln \prod_{k=1}^{n} a_k = \sum_{k=1}^{n} \ln a_k$ 来研究.

例题 13.5 计算: $\prod_{k=2}^{n} \frac{k^3-1}{k^3+1}$.

解

$$\begin{split} &\prod_{k=2}^{n} \frac{k^3 - 1}{k^3 + 1} = \prod_{k=2}^{n} \left(\frac{k - 1}{k + 1} \cdot \frac{k^2 + k + 1}{k^2 - k + 1} \right) = \prod_{k=2}^{n} \frac{k - 1}{k + 1} \cdot \prod_{k=2}^{n} \frac{k (k + 1) + 1}{k (k - 1) + 1} \\ &= \frac{1 \cdot 2 \cdot \dots n - 1}{3 \cdot 4 \cdot \dots n + 1} \cdot \frac{n (n + 1) + 1}{2 + 1} = \frac{2}{n + 1} \cdot \frac{n (n + 1) + 1}{3} \\ &= \frac{2n^2 + 2n + 2}{3n + 3} \end{split}$$

例题 13.6 证明:

$$\frac{(2n-1)!!}{2n!!} < \frac{1}{\sqrt{2n+1}}, \forall n \in \mathbb{N}.$$

 $\stackrel{ ext{$\stackrel{\circ}{$}$}}{ ext{$\stackrel{\circ}{$}$}}$ 笔记 利用"糖水"不等式: 对任意真分数 $\frac{b}{a},a,b,c>0$, 都有 $\frac{b}{a}<\frac{b+c}{a+c}$ 成立. 证明 根据"糖水"不等式, 对 $\forall n\in\mathbb{N}_+$, 我们有

$$\left[\frac{(2n-1)!!}{2n!!}\right]^2 = \left(\prod_{k=1}^n \frac{2k-1}{2k}\right)^2 = \prod_{k=1}^n \frac{2k-1}{2k} \cdot \prod_{k=1}^n \frac{2k-1}{2k}$$

$$< \prod_{k=1}^n \frac{2k-1}{2k} \cdot \prod_{k=1}^n \frac{2k}{2k+1} = \prod_{k=1}^n \frac{2k-1}{2k+1} = \frac{1}{2n+1}$$

故对 $\forall n \in \mathbb{N}_+$, 都有 $\frac{(2n-1)!!}{2n!!} < \frac{1}{\sqrt{2n+1}}, \forall n \in \mathbb{N}$ 成立.

第十四章 未分类习题

14.1 杂题

例题 **14.1** 设 $Y, x_0, \delta > 0$, 计算

$$\lim_{n\to\infty} \sqrt{n} \int_{x_0-\delta}^{x_0+\delta} e^{-nY(x-x_0)^2} \, \mathrm{d}x.$$

证明

$$\begin{split} \lim_{n\to\infty} \sqrt{n} \int_{x_0-\delta}^{x_0+\delta} e^{-nY(x-x_0)^2} \, \mathrm{d}x &= \lim_{n\to\infty} \sqrt{n} \int_{-\delta}^{\delta} e^{-nYx^2} \, \mathrm{d}x = \lim_{n\to\infty} \frac{1}{\sqrt{Y}} \int_{-\delta\sqrt{nY}}^{\delta\sqrt{nY}} e^{-x^2} \, \mathrm{d}x \\ &= \lim_{n\to\infty} \frac{2}{\sqrt{Y}} \int_0^{\delta\sqrt{nY}} e^{-x^2} \, \mathrm{d}x = \frac{2}{\sqrt{Y}} \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x \\ &= \sqrt{\frac{\pi}{Y}}. \end{split}$$

例题 14.2 设 $f \in C^3[0,x], x > 0$, 证明: 存在 $\xi \in (0,x)$ 使得

$$\int_0^x f(t) dt = \frac{x}{2} [f(0) + f(x)] - \frac{x^3}{12} f''(\xi).$$
 (14.1)

若还有 $f'''(0) \neq 0$, 计算 $\lim_{x\to 0^+} \frac{\xi}{x}$.

\$

笔记 我们当然可以直接用Lagrange 插值公式得到

$$f(t) = (f(x) - f(0))t + f(0) + f''(\xi)t(t - x), t \in [0, x].$$

两边同时对t在[0,x]上积分就能得到(14.1)式.

证明 设 $K \in \mathbb{R}$ 使得

$$\int_0^x f(t) dt = \frac{x}{2} [f(0) + f(x)] - \frac{x^3}{12} K,$$

则考虑

$$g(y) \triangleq \int_0^y f(t) dt - \frac{y}{2} [f(0) + f(y)] + \frac{y^3}{12} K,$$

于是

$$g'(y) = f(y) - \frac{1}{2}[f(0) + f(y)] - \frac{yf'(y)}{2} + \frac{y^2K}{4} = \frac{f(y) - f(0)}{2} - \frac{yf'(y)}{2} + \frac{y^2K}{4}$$

以及

$$g^{\prime\prime}(y)=-\frac{yf^{\prime\prime}(y)}{2}+\frac{yK}{2}.$$

由 g(x) = g(0) = 0 和罗尔中值定理得 $\xi_1 \in (0,x)$ 使得 $g'(\xi_1) = 0$. 注意到 g'(0) = 0. 再次由罗尔中值定理得 $\xi \in (0,x)$ 使得

$$g''(\xi) = -\frac{\xi f''(\xi)}{2} + \frac{\xi K}{2} = 0,$$

即 $K = f''(\xi)$, 这就得到了(14.1)式. 由(14.1)式得

$$f''(\xi) = -12 \frac{\int_0^x f(t) \, \mathrm{d}t - \frac{x}{2} [f(0) + f(x)]}{x^3}$$

由 Lagrange 中值定理得

$$f''(\xi) = f''(0) + f'''(\eta)\xi, \eta \in (0, \xi).$$

于是

$$f'''(\eta)\frac{\xi}{x} = \frac{-12\frac{\int_0^x f(t) dt - \frac{x}{2}[f(0) + f(x)]}{x^3} - f''(0)}{x}$$

现在利用 L'Hospital 法则就有

$$\begin{split} \lim_{x \to 0^{+}} f'''(\eta) \frac{\xi}{x} &= \lim_{x \to 0^{+}} \frac{-12 \frac{\int_{0}^{x} f(t) \, \mathrm{d}t - \frac{x}{2} [f(0) + f(x)]}{x^{3}} - f''(0)}{x} \\ &= \lim_{x \to 0^{+}} \frac{-12 \int_{0}^{x} f(t) \, \mathrm{d}t + 6x [f(0) + f(x)] - f''(0)x^{3}}{x^{4}} \\ &= \lim_{x \to 0^{+}} \frac{-12 f(x) + 6 [f(x) + f(0)] + 6x f'(x) - 3 f''(0)x^{2}}{4x^{3}} \\ &= \lim_{x \to 0^{+}} \frac{6x f''(x) - 6 f''(0)x}{12x^{2}} \\ &= \lim_{x \to 0^{+}} \frac{f''(x) - f''(0)}{2x} = \frac{1}{2} f'''(0). \end{split}$$

因为 $0 < \eta < \xi < x$,所以

$$\lim_{r \to 0^+} f'''(\eta) = f'''(0),$$

我们有

$$\lim_{x \to 0^+} \frac{\xi}{x} = \frac{1}{2}.$$

例题 14.3 设 f 是 $[0,+\infty)$ 上的递增正函数. 若 $g \in C^2[0,+\infty)$ 满足

$$g''(x) + f(x)g(x) = 0. (14.2)$$

证明:存在M>0使得

$$|g(x)| \le M, \quad |g'(x)| \le M\sqrt{f(x)}, \quad \forall x > 0. \tag{14.3}$$

证明 对 $\forall x > 0$, 有 f 在 [0,x] 上单调递增, 从而由闭区间上单调函数必可积可知 $f \in R[0,x], \forall x > 0$, f 在 $[0,+\infty)$ 上内闭连续. 由(14.2)知

$$\int_0^x g''(y)g'(y) \, \mathrm{d}y + \int_0^x f(y)g'(y)g(y) \, \mathrm{d}y = 0, \forall x > 0$$
 (14.4)

利用 f 递增和第二积分中值定理和 (14.4), 我们有

$$\int_0^x g''(y)g'(y) \, \mathrm{d}y + f(x) \int_{\xi}^x g'(y)g(y) \, \mathrm{d}y = 0, \xi \in [0, x].$$

即

$$\frac{1}{2}|g'(x)|^2 - \frac{1}{2}|g'(0)|^2 + \frac{[f(x)]^2}{2}\left[g^2(x) - g^2(\xi)\right] = 0.$$

现在一方面

$$|g'(x)|^2 = |g'(0)|^2 - f(x)g^2(x) + f(x)g^2(\xi) \le |g'(0)|^2 + f(x)g^2(\xi).$$
(14.5)

另外一方面由(14.2)得

$$\frac{g''(x)g'(x)}{f(x)} + g'(x)g(x) = 0, \forall x > 0.$$

即

$$\int_0^x \frac{g''(y)g'(y)}{f(y)} \, \mathrm{d}y + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0, \forall x > 0$$

由 f 递增和第二积分中值定理, 我们有

$$\frac{1}{f(0)} \int_0^{\eta} g''(y)g'(y) \, \mathrm{d}y + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0, \eta \in [0, x]$$

从而

$$\frac{1}{2f(0)} \left[|g'(\eta)|^2 - |g'(0)|^2 \right] + \frac{1}{2}g^2(x) - \frac{1}{2}g^2(0) = 0$$

即

$$|g(x)|^2 = g^2(0) - \frac{1}{f(0)} \left[|g'(\eta)|^2 - |g'(0)|^2 \right] \leqslant g^2(0) + \frac{|g'(0)|^2}{f(0)}, \forall x > 0.$$
 (14.6)

由 $g \in C[0, +\infty)$ 知 g 有界, 即存在 $C_1 > 0$, 使得 $|g(x)| < C_1, \forall x > 0$. 于是由(14.5)式知

$$|g'(x)|^2 \le |g'(0)|^2 + f(x)g^2(\xi) \le |g'(0)|^2 + C_1f(x), \forall x > 0.$$
 (14.7)

又因为 f 是递增正函数, 所以 $f(x) \ge f(0) > 0$, $\forall x > 0$. 从而存在 $C_2 > 0$, 使得

$$|g'(0)|^2 \leqslant C_2 f(0) \leqslant f(x), \forall x > 0.$$

于是取 $M = \max \left\{ C_1 + C_2, g^2(0) + \frac{|g'(0)|^2}{f(0)} \right\}$,则由(14.7)式和(14.6)式可得,对 $\forall x > 0$,有

$$|g(x)|^2 \le M \le M^2$$
,
 $|g'(x)|^2 \le C_2 f(x) + C_1 f(x) \le M f(x) \le M^2 f(x)$.

进而

$$|g(x)| \leq M, |g'(x)| \leq M\sqrt{f(x)}, \forall x > 0.$$

这就证明了(14.3).

例题 14.4 设 $f \in C^2[0,1]$, 证明

(a)

$$|f'(x)| \le 4 \int_0^1 |f(x)| dx + \int_0^1 |f''(x)| dx. \tag{14.8}$$

(b)

$$\int_0^1 |f'(x)| dx \le 4 \int_0^1 |f(x)| dx + \int_0^1 |f''(x)| dx.$$
 (14.9)

(c) 若 $f(0)f(1) \ge 0$, 则

$$\int_{0}^{1} |f'(x)| dx \le 2 \int_{0}^{1} |f(x)| dx + \int_{0}^{1} |f''(x)| dx.$$
 (14.10)

证明

(a) 注意到对任何 $\theta \in [0,1]$, 我们有

$$|f'(x)| \leq |f'(x) - f'(\theta)| + |f'(\theta)| \leq \left| \int_{\theta}^{x} f''(y) dy \right| + |f'(\theta)|$$

$$\leq \int_{0}^{1} |f''(y)| dy + |f'(\theta)|.$$

于是只需证明存在 $\theta \in [0,1]$ 使得

$$|f'(\theta)| \le 4 \int_0^1 |f(x)| dx.$$
 (14.11)

如果 f' 有零点,则显然存在 $\theta \in [0,1]$, 使得 $f(\theta) = 0$, 从而满足 (14.11) 式. 下设 f' 没有零点. 由 f' 的介值性可知, f' 要么恒正,要么恒负. 不妨设 f 严格递增. 若 f 没有零点,不妨设 f > 0,则由 Lagrange 中值定理可得

$$f(x) = f(0) + xf'(\eta) \geqslant xf'(\eta) \geqslant x \min_{[0,1]} |f'| \implies \int_0^1 |f(x)| dx \geqslant \min_{[0,1]} |f'| \geqslant \frac{1}{4} \min_{[0,1]} |f'|,$$

这也给出了 (14.11) 式. 若存在 $t \in [0,1]$, 使得 f(t) = 0. 由 Lagrange 中值定理可知

$$f(x) = f'(\theta)(x - t).$$

从而

$$\int_0^1 |f(x)| dx \geqslant \min_{[0,1]} |f'| \cdot \int_0^1 |x - t| dx \stackrel{\text{deg}. 7.5}{\geqslant} \min_{[0,1]} |f'| \cdot \int_0^1 \left| x - \frac{1}{2} \right| dx = \frac{1}{4} \min_{[0,1]} |f'|.$$

这也给出了(14.11)式。于是我们证明了不等式(14.8)式。

- (b) 直接对(14.8)式两边关于x在[0,1]上积分得(14.9)式.
- (c) 由 (a) 同理只需证明存在 $\theta \in [0,1]$ 使得

$$|f'(\theta)| \le 2 \int_0^1 |f(x)| dx.$$
 (14.12)

不妨假定 f' 没有零点且 $f(0) \ge 0$, 则当 f 递增, 由 Lagrange 中值定理, 我们有

$$f(x) = f(0) + xf'(\eta) \geqslant xf'(\eta) \geqslant x \cdot \min|f'| \Longrightarrow \int_0^1 |f(x)| dx \geqslant \min|f' \geqslant \frac{1}{2} \min|f'|.$$

当 f 递减, 由 Lagrange 中值定理, 我们有

$$f(x) = f(1) + (x - 1)f'(\alpha) \geqslant (1 - x)\min|f'| \implies \int_0^1 |f(x)| dx \geqslant \frac{1}{2}\min|f'|.$$

于是必有 (14.12) 式成立, 这就给出了(14.10)式.

例题 14.5 设函数 f(x) 在 $(a, +\infty)$ 上严格单调下降,证明: 若 $\lim_{n\to\infty} f(x_n) = \lim_{x\to +\infty} f(x)$,则 $\lim_{n\to\infty} x_n = +\infty$. 证明 反证, 假设 $\lim_{n\to\infty} x_n = c \in (a, +\infty)$,则存在子列 $\{x_{n_k}\}$,满足 $x_{n_k}\to c$. 记

$$\lim_{n \to \infty} f(x_n) = \lim_{x \to +\infty} f(x) = A,$$

则 $f(x_n)$ 的子列极限也收敛到 A, 即 $\lim_{k\to\infty} f(x_{n_k}) = A$. 由 $x_{n_k}\to c$ 知, 存在 $K\in\mathbb{N}$, 使得

$$x_{n_k} \in (c - \delta, c + \delta), \forall k > K.$$

其中 $\delta = \min \left\{ \frac{c-a}{2}, \frac{1}{2} \right\}$. 任取 $x_1, x_2 \in (c+\delta, +\infty)$ 且 $x_1 < x_2$, 则由 f 严格递减知

$$f(x_{n_k}) > f(x_1) > f(x_2) > f(x), \forall x > x_2, \forall k > K.$$

左边令 $k \to +\infty$, 右边令 $x \to +\infty$ 得

$$A = \lim_{k \to \infty} f\left(x_{n_k}\right) \geqslant f\left(x_1\right) > f\left(x_2\right) \geqslant \lim_{k \to +\infty} f\left(x\right) = A,$$

显然矛盾!

例题 14.6 设 $\{x_n\} \subset (0,1)$ 满足对 $i \neq j$, 有 $x_i \neq x_j$, 讨论函数 $f(x) = \sum_{n=1}^{\infty} \frac{\operatorname{sgn}(x - x_n)}{2^n}$ 连续性.

证明 由

$$\sum_{n=1}^{\infty} \left| \frac{\operatorname{sgn}(x - x_n)}{2^n} \right| \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} < \infty,$$

故级数一致收敛. 注意到对 $\forall n \in \mathbb{N}$, 都有 $\operatorname{sgn}(x - x_n)$ 在 $x = x_n$ 处间断, 在 $x \neq x_n$ 处连续.

当 $x \neq x_k$, $\forall k \in \mathbb{N}$ 时, f(x) 的每一项都连续. 又 f(x) 一致收敛, 故 f 在 $x \neq x_k$, $\forall k \in \mathbb{N}$ 处都连续. 当 $x = x_k$, $\forall k \in \mathbb{N}$ 时, 有

$$f(x) = \frac{\operatorname{sgn}(x - x_k)}{2^k} + \sum_{n \neq k} \frac{\operatorname{sgn}(x - x_n)}{2^n}$$

在 $x = x_k$ 处间断. 故 f(x) 在 $x = x_k$, $\forall k \in \mathbb{N}$ 处都间断.

例题 14.7 证明 $\sum_{t=1}^{\infty} (-1)^t \frac{t}{t^2 + x}$ 在 $x \in [0, +\infty)$ 一致收敛性.

证明 由Abel 变换得, 对 $\forall m \in \mathbb{N}, \forall x \geq 0$ 成立

$$\sum_{t=m}^{\infty} (-1)^t \frac{t}{t^2 + x} = \lim_{n \to \infty} \sum_{t=m}^{n} (-1)^t \frac{t}{t^2 + x}$$

$$\begin{split} &= \lim_{n \to \infty} \left[\sum_{t=m}^{n-1} \left(\frac{t}{t^2 + x} - \frac{t+1}{(t+1)^2 + x} \right) s_t + \frac{n}{n^2 + x} s_n \right] \\ &= \sum_{t=m}^{\infty} \left(\frac{t}{t^2 + x} - \frac{t+1}{(t+1)^2 + x} \right) s_t \\ &= \sum_{t=m}^{\infty} \frac{t^2 + t}{(x+t^2)(x+t^2 + 2t + 1)} s_t - \sum_{t=m}^{\infty} \frac{x}{(x+t^2)(x+t^2 + 2t + 1)} s_t, \end{split}$$

这里 $s_t = \sum_{i=1}^t (-1)^i = (-1)^t \in \{1, -1\}.$ 一方面

$$\left| \sum_{t=m}^{\infty} \frac{t^2 + t}{(x + t^2)(x + t^2 + 2t + 1)} s_t \right| \leqslant \sum_{t=m}^{\infty} \frac{t^2 + t}{t^2(t^2 + 2t + 1)},$$

另外一方面

$$\left| \sum_{t=m}^{\infty} \frac{x}{(x+t^2)(x+t^2+2t+1)} s_t \right| \leq \sum_{t=m}^{\infty} \frac{1}{t^2+t+1}.$$

而由
$$\sum_{t=1}^{\infty} \frac{t^2 + t}{t^2(t^2 + 2t + 1)}$$
 和 $\sum_{t=1}^{\infty} \frac{1}{t^2 + t + 1}$ 都收敛知

$$\lim_{m \to \infty} \sum_{t=m}^{\infty} \frac{1}{t^2 + t + 1} = \lim_{m \to \infty} \sum_{t=m}^{\infty} \frac{t^2 + t}{t^2 (t^2 + 2t + 1)} = 0.$$

于是我们有

$$\lim_{m\to\infty}\sum_{t=m}^{\infty}(-1)^{t}\frac{t}{t^{2}+x}=0, \, \not \in \exists x\in [0,+\infty) - \mathfrak{F},$$

这就证明了
$$\sum_{t=1}^{\infty} (-1)^t \frac{t}{t^2 + x} \stackrel{\cdot}{d} x \in [0, +\infty) - 致收敛.$$

命题 14.1

设 f(x) 是 [a,b] 上连续实值右可导函数, 记 $D^+f(x)$ 为 f(x) 的右导函数, 如果 f(a) = 0, 且 $D^+f(x) \leq 0$, 则 $f(x) \leq 0$, $x \in [a,b]$.

证明 (1) 先假定 $D^+f(x) < 0$, 如果结论不成立, 则存在 $x_1 \in (a,b)$, 使 $f(x_1) > 0$. 记

$$x_0 = \inf\{x \mid f(x) > 0\}.$$

由 x_0 的定义, 我们有序列 $\{x_n\}$, 使 x_n 单调递减趋于 x_0 , 且 $f(x_n) > 0$. 从而由 f(x) 的连续性知

$$f(x_0) = \lim_{n \to \infty} f(x_n) \geqslant 0. \tag{14.13}$$

根据 x_0 的定义可知, 对 $\forall x < x_0$, 都有 $f(x) < f(x_0)$, 否则与下确界定义矛盾! 于是有序列 $\{x'_n\}$ 单调递增趋于 x_0 , 且 $f(x'_n)$. 于是由 f(x) 的连续性知

$$f(x_0) = \lim_{n \to \infty} f\left(x_n'\right) \leqslant 0. \tag{14.14}$$

故由(14.13)(14.14)知 $f(x_0) = 0$. 于是

$$D^{+}f(x_{0}) = \lim_{n \to \infty} \frac{f(x_{n}) - f(x_{0})}{x_{n} - x_{0}} \geqslant 0,$$

这与 $D^+f(x_0) < 0$ 矛盾, 于是 $f(x) \le 0, x \in [a, b]$.

(2) 若 $D^+f(x) \leq 0$, 对任给的 $\varepsilon > 0$ 构造函数

$$f_{\varepsilon}(x) = f(x) - \varepsilon(x - a),$$

对 $f_{\varepsilon}(x)$ 有 $f_{\varepsilon}(a) = 0$ 且

$$D^+ f_{\varepsilon}(x) \leqslant -\varepsilon < 0.$$

从而由 (1) 得 $f_{\varepsilon}(x) \leq 0, x \in [a,b]$. 因此 $f(x) \leq \varepsilon(x-a) \leq \varepsilon(b-a)$, 由 ε 的任意性, 得 $f(x) \leq 0, x \in [a,b]$. 例题 14.8 设 $\varphi(x)$ 是 [a,b) 上连续且右可导的函数, 如果 $D^+\varphi(x)$ 在 [a,b) 上连续, 证明: $\varphi(x)$ 在 [a,b) 上连续可 导, $\varphi'(x) = D^+\varphi(x)$.

证明 设

$$f(x) = \varphi(a) + \int_{a}^{x} D^{+}\varphi(t)dt - \varphi(x), \quad x \in [a, b).$$

则 f(x) 在 [a,b) 上连续且右可导,并且

$$D^+ f(x) = D^+ \varphi(x) - D^+ \varphi(x) = 0.$$

又 f(a) = 0, 由命题 14.1得 $f(x) \le 0$. 又 -f(x) 满足 -f(a) = 0, $D^+[-f(x)] = 0$, 同理由命题 14.1得 $-f(x) \le 0$, 故 f(x) = 0. 于是

$$\varphi(x) = \varphi(a) + \int_{a}^{x} D^{+} \varphi(t) dt.$$

由 $D^+\varphi(x)$ 的连续性, 得 $\varphi'(x) = D^+\varphi(x)$.

例题 14.9 证明:

$$\sum_{k=1}^{n-1} \frac{1}{\sin \frac{k\pi}{n}} = \frac{2n}{\pi} \left(\ln 2n + \gamma - \ln \pi \right) + o\left(1 \right).$$

例题 **14.10**
$$\lim_{n\to\infty} \frac{\sum\limits_{k=1}^{n}{(-1)^k}\,\mathrm{C}_n^k\ln k}{\ln{(\ln n)}} = 1.$$
 证明 证法一:对任意充分大的 n , 由Frullani(傅汝兰尼) 积分知

$$\ln k = \int_0^{+\infty} \frac{e^{-x} - e^{kx}}{x} \mathrm{d}x.$$

再结合二项式定理可得

$$A \triangleq \sum_{k=1}^{n} (-1)^{k} C_{n}^{k} \ln k = \sum_{k=1}^{n} \left[(-1)^{k} C_{n}^{k} \left(\int_{0}^{+\infty} \frac{e^{-x} - e^{-kx}}{x} dx \right) \right] = \int_{0}^{+\infty} \frac{\sum_{k=1}^{n} (-1)^{k} C_{n}^{k} \left(e^{-x} - e^{-kx} \right)}{x} dx$$

$$= \int_{0}^{+\infty} \frac{\sum_{k=1}^{n} (-1)^{k} C_{n}^{k} \left(e^{-x} - e^{-kx} \right)}{x} dx = \int_{0}^{+\infty} \frac{1 - e^{-x} + \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} \left(e^{-x} - e^{-kx} \right)}{x} dx$$

$$= \int_{0}^{+\infty} \frac{1 - e^{-x} + e^{-x} \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} - \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} e^{-kx}}{x} dx = \int_{0}^{+\infty} \frac{1 - e^{-x} + e^{-x} (1 - 1)^{n} - (1 - e^{-x})^{n}}{x} dx$$

$$= \int_{0}^{+\infty} \frac{1 - e^{-x} - (1 - e^{-x})^{n}}{x} dx.$$

由Bernoulli 不等式知

$$(1 - e^{-x})^n \geqslant 1 - ne^{-x}$$
.

$$0 \leqslant \int_{M_n}^{+\infty} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx \leqslant \int_{M_n}^{+\infty} \frac{1 - e^{-x} - (1 - ne^{-x})}{M_n} dx = \frac{n}{M_n} \int_{M_n}^{+\infty} e^{-x} dx = \frac{n}{M_n e^{M_n}} = 1.$$

$$A = \int_0^{M_n} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx + \int_{M_n}^{+\infty} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx = \int_0^{M_n} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx + O(1). \quad (14.15)$$

因为 $M_n e^{M_n} = n$, 所以由命题 2.4知

$$M_n = \ln n + o(\ln n), n \to \infty. \tag{14.16}$$

于是

$$(1 - e^{-x})^{n-1} = e^{(n-1)\ln(1 - e^{-x})} \leqslant e^{-(n-1)e^{-x}} \leqslant e^{-(n-1)e^{-M_n}} = e^{-\frac{M_n(n-1)}{n}} \to 0, \forall x \in [0, M_n].$$

从而

$$\frac{\int_{0}^{M_{n}} \frac{(1 - e^{-x})^{n}}{x} dx}{\int_{0}^{M_{n}} \frac{1 - e^{-x}}{x} dx} \leq \frac{e^{-\frac{M_{n}(n-1)}{n}} \int_{0}^{M_{n}} \frac{1 - e^{-x}}{x} dx}{\int_{0}^{M_{n}} \frac{1 - e^{-x}}{x} dx} = e^{-\frac{M_{n}(n-1)}{n}} \to 0, n \to \infty.$$

$$\mathbb{P} \int_{0}^{M_{n}} \frac{(1 - e^{-x})^{n}}{x} dx = o\left(\int_{0}^{M_{n}} \frac{1 - e^{-x}}{x} dx\right), n \to \infty. \text{ id}$$

$$\int_{0}^{M_{n}} \frac{1 - e^{-x} - (1 - e^{-x})^{n}}{x} dx = \int_{0}^{M_{n}} \frac{1 - e^{-x}}{x} dx - \int_{0}^{M_{n}} \frac{(1 - e^{-x})^{n}}{x} dx = (1 + o(1)) \int_{0}^{M_{n}} \frac{1 - e^{-x}}{x} dx, n \to \infty.$$

$$(14.17)$$

注意到

$$\lim_{x\to 0} \frac{1-e^{-x}}{x} \stackrel{\text{L'Hospital}}{=} \lim_{x\to 0} e^x = 1,$$
故 $\frac{1-e^{-x}}{x}$ 在 $[0,1]$ 上有界, 进而 $\int_0^1 \frac{1-e^{-x}}{x} dx = O(1)$. 又注意到
$$\int_1^{M_n} \frac{-e^{-x}}{x} dx \leqslant -e^{-M_n} \int_1^{M_n} \frac{1}{x} dx \to 0, n \to \infty,$$
故 $\int_1^{M_n} \frac{-e^{-x}}{x} dx = O(1)$. 于是再结合 (14.16) 式可知
$$\int_0^{M_n} \frac{1-e^{-x}}{x} dx = \int_0^1 \frac{1-e^{-x}}{x} dx + \int_1^{M_n} \frac{-e^{-x}}{x} dx + \int_1^{M_n} \frac{1}{x} dx$$

$$= O(1) + \ln M_n = \ln(\ln n + o(\ln n)) + O(1)$$

$$= \ln \ln n + o(1) + O(1) = \ln \ln n + O(1), n \to \infty.$$

因此再由(14.17)式可知

$$\int_{0}^{M_{n}} \frac{1 - e^{-x} - (1 - e^{-x})^{n}}{x} dx = (1 + o(1)) \int_{0}^{M_{n}} \frac{1 - e^{-x}}{x} dx = (1 + o(1)) (\ln \ln n + O(1)) = \ln \ln n + o(\ln \ln n), n \to \infty.$$

$$b \pm (14.15) \mp 76$$

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} (-1)^k C_n^k \ln k}{\ln(\ln n)} = \lim_{n \to \infty} \frac{A}{\ln(\ln n)} = \lim_{n \to \infty} \frac{\int_0^{M_n} \frac{1 - e^{-x} - (1 - e^{-x})^n}{x} dx + O(1)}{\ln(\ln n)}$$
$$= \lim_{n \to \infty} \frac{\ln \ln n + o(\ln \ln n) + O(1)}{\ln(\ln n)} = 1.$$

证法二:注意到

$$S \triangleq \sum_{k=1}^{n} (-1)^{k} \binom{n}{k} \ln k = \sum_{k=1}^{n} (-1)^{k} \left[\binom{n-1}{k} + \binom{n-1}{k-1} \right] \ln k$$

$$= \sum_{k=1}^{n} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=1}^{n} (-1)^{k} \binom{n-1}{k-1} \ln k$$

$$= \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=0}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln(k+1)$$

$$= \sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} \ln k + \sum_{k=1}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln(k+1)$$

$$= -\sum_{k=1}^{n-1} (-1)^{k} \binom{n-1}{k} (\ln(k+1) - \ln k)$$

$$= -\sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \int_0^1 \frac{1}{k+x} dx.$$

又由二项式定理可知

$$\sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \frac{1}{k+y} = \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \int_0^1 t^{k+y-1} dt = \int_0^1 \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} t^{k+y-1} dt$$
$$= \int_0^1 t^{y-1} \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} t^k dt = \int_0^1 t^{y-1} \left[(1-t)^{n-1} - 1 \right] dt.$$

故

$$S = -\int_0^1 \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \frac{1}{k+y} dy = \int_0^1 \int_0^1 t^{y-1} \left[1 - (1-t)^{n-1} \right] dt dy$$

$$= \int_0^1 \int_0^1 t^{y-1} \left[1 - (1-t)^{n-1} \right] dy dt = \int_0^1 \frac{t-1}{t \ln t} \left[1 - (1-t)^{n-1} \right] dt$$

$$= \frac{t-e^{-x}}{t} \int_0^{+\infty} \frac{(1-e^{-x}) \left[1 - (1-e^{-x})^{n-1} \right]}{x} dx.$$

后续估阶与证法一相同.

证法三:注意到

$$\begin{split} S &\triangleq \sum_{k=1}^{n} (-1)^k \binom{n}{k} \ln k = \sum_{k=1}^{n} (-1)^k \left[\binom{n-1}{k} + \binom{n-1}{k-1} \right] \ln k \\ &= \sum_{k=1}^{n} (-1)^k \binom{n-1}{k} \ln k + \sum_{k=1}^{n} (-1)^k \binom{n-1}{k-1} \ln k \\ &= \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \ln k + \sum_{k=0}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln (k+1) \\ &= \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \ln k + \sum_{k=1}^{n-1} (-1)^{k+1} \binom{n-1}{k} \ln (k+1) \\ &= -\sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \left(\ln(k+1) - \ln k \right) \\ &= -\sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \int_0^1 \frac{1}{k+x} dx \\ &= -\int_0^1 \sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} \frac{1}{k+x} dx \\ &= \int_0^1 \left(\frac{1}{x} - \sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} \frac{1}{k+x} \right) dx \\ &= \int_0^1 \frac{1}{x} \left(1 - \frac{(n-1)!}{(x+1)(x+2)\cdots(x+(n-1))} \right) dx \\ &= \int_0^1 \frac{1}{x} \left(1 - \frac{1}{(1+x)\left(1 + \frac{x}{2}\right)\cdots\left(1 + \frac{x}{n-1}\right)} \right) dx. \end{split}$$

由命题 (3)(4)知

$$e^{x^2-x} \geqslant \frac{1}{1+x} \geqslant e^{-x}, \forall x > 0.$$

于是

$$e^{x^2-x} \cdot e^{\left(\frac{x}{2}\right)^2 - \frac{x}{2}} \cdots e^{\left(\frac{x}{n-1}\right)^2 - \frac{x}{n-1}} \geqslant \frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} \geqslant e^{-x} \cdot e^{-\frac{x}{2}} \cdots e^{-\frac{x}{n-1}},$$

即

$$e^{x^2\left(1+\frac{1}{2^2}+\cdots+\frac{1}{(n-1)^2}\right)-x\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)} \geqslant \frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} \geqslant e^{-x\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)}.$$

注意到

$$x^{2}\left(1+\frac{1}{2^{2}}+\cdots+\frac{1}{(n-1)^{2}}\right) \leqslant x\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}x < 2x, \forall x \in [0,1],$$

故

$$e^{-x\left(-2+\sum_{j=1}^{n-1}\frac{1}{j}\right)} \geqslant \frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} \geqslant e^{-x\sum_{j=1}^{n-1}\frac{1}{j}}.$$

从而由连续函数 e^{-x} 的介值性知, 存在 $C_n \in \left[-2 + \sum_{j=1}^{n-1} \frac{1}{j}, \sum_{j=1}^{n-1} \frac{1}{j} \right]$, 使得

$$\frac{1}{(1+x)\left(1+\frac{x}{2}\right)\cdots\left(1+\frac{x}{n-1}\right)} = e^{-C_n x}.$$

于是由
$$-2 + \sum_{j=1}^{n-1} \frac{1}{j} \leqslant C_n \leqslant \sum_{j=1}^{n-1} \frac{1}{j}$$
 知

$$C_n = \ln n + O(1), n \to \infty$$

因此

$$S = \int_0^1 \frac{1}{x} \left(1 - \frac{1}{(1+x)\left(1 + \frac{x}{2}\right)\cdots\left(1 + \frac{x}{n-1}\right)} \right) dx = \int_0^1 \frac{1}{x} \left(1 - e^{-C_n x} \right) dx$$
$$= \int_0^{C_n} \frac{1 - e^{-t}}{t} dt = \int_0^1 \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1}{t} dt.$$

注意到

$$\lim_{t \to 0} \frac{1 - e^{-t}}{t} \xrightarrow{\text{L'Hospital}} \lim_{t \to 0} e^{t} = 1,$$

故 $\frac{1-e^{-t}}{t}$ 在 [0,1] 上有界, 进而 $\int_0^1 \frac{1-e^{-t}}{t} dt = O(1)$. 又注意到

$$\int_{1}^{C_n} \frac{1 - e^{-t}}{t} dt \leqslant 1 - e^{-C_n} = 1 - e^{-\ln n + O(1)} \to 1, n \to \infty,$$

故
$$\int_{1}^{C_n} \frac{1 - e^{-t}}{t} dt = O(1)$$
. 从而

$$S = \int_0^1 \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1 - e^{-t}}{t} dt + \int_1^{C_n} \frac{1}{t} dt = \ln C_n + O(1)$$
$$= \ln (\ln n + O(1)) + O(1) = \ln \ln n + O(1), n \to \infty.$$

因此

$$\lim_{n \to \infty} \frac{\sum\limits_{k=1}^{n} (-1)^k \binom{n}{k} \ln k}{\ln \ln n} = \lim_{n \to \infty} \frac{S}{\ln \ln n} = \lim_{n \to \infty} \frac{\ln \ln n + O(1)}{\ln \ln n} = 1.$$

附录 A 常用公式

A.1 常用 Taylor 级数

1.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{6} + \dots + \frac{x^k}{k!} + \dots$$

2.
$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^k}{k+1} x^{k+1} + \dots, x \in (-1,1].$$

3.
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{6} + \frac{x^5}{120} - \dots + \frac{(-1)^k}{(2k+1)!} x^{2k+1} + \dots$$

4.
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots + \frac{(-1)^k}{(2k)!} x^{2k} + \dots$$

5.
$$\tan x = \sum_{n=0}^{\infty} \frac{(-1)^{n-1} 2^{2n} (2^{2n-1} - 1) B_{2n}}{(2n)!} x^{2n-1} = 2 \sum_{n=0}^{\infty} \frac{(4^n - 1)(2n)!}{(2n + 1)!} x^{2n+1} = x + \frac{1}{3} x^3 + \frac{2}{15} x^5 + \frac{17}{315} x^7 + \frac{62}{2835} x^9 + \frac{1382}{155925} x^{11} + o(x^{11}), x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

6.
$$\cot x = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} B_{2n}}{(2n)!} x^{2n-1} = \frac{1}{x} - \frac{1}{3} x + \frac{1}{45} x^3 - \frac{2}{945} x^5 - \cdots, x \in (0, \pi).$$

7.
$$\sec x = \sum_{n=0}^{\infty} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} = 1 + \frac{1}{2} x^2 + \frac{5}{24} x^4 + \frac{61}{720} x^6 + \frac{277}{8064} x^8 + \frac{50521}{3628800} x^{10} + o(x^{11}), x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), x \in (0, \pi).$$

8.
$$\csc x = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2(2^{2n-1} - 1) B_{2n}}{(2n)!} x^{2n-1} = \frac{1}{x} + \frac{1}{6}x + \frac{7}{360}x^3 + \frac{31}{15120}x^5 + \cdots, x \in (0, \pi).$$

9.
$$\arcsin x = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (2n+1)!} x^{2n+1} = x + \frac{1}{6} x^3 + \frac{3}{40} x^5 + \frac{5}{112} x^7 + \frac{35}{1152} x^9 + \frac{63}{2816} x^{11} + o(x^{11}), x \in (-1,1).$$

10.
$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \dots + \frac{(-1)^k}{2k+1} x^{2k+1} + \dots, x \in (-1,1).$$

11.
$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{1}{6}x^3 + \frac{1}{120}x^5 + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$$

12.
$$\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + \dots + \frac{x^{2k}}{(2k)!} + \dots$$

13.
$$\tanh x = \sum_{n=0}^{\infty} \frac{4^n (4^n - 1) B_{2n}}{(2n)!} x^{2n-1} = x - \frac{1}{3} x^3 + \frac{2}{15} x^5 - \frac{17}{315} x^7 + \frac{62}{2835} x^9 - \frac{1382}{155925} x^{11} + o(x^{11}), x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

14.
$$\operatorname{sech} x = \sum_{n=0}^{\infty} \frac{E_{2n} x^{2n}}{(2n)!} = 1 - \frac{1}{2} x^2 + \frac{5}{24} x^4 - \frac{61}{720} x^6 + \frac{277}{8064} x^8 - \frac{50521}{3628800} x^{10} + o(x^{11}), x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

15.
$$\operatorname{arsinh} x = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{4^n (2n+1)!} x^{2n+1} = x - \frac{1}{6} x^3 + \frac{3}{40} x^5 - \frac{5}{112} x^7 + \frac{35}{1152} x^9 - \frac{63}{2816} x^{11} + o(x^{11}), x \in (-1,1).$$

16.
$$\operatorname{artanh} x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} = x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \frac{1}{7}x^7 + \frac{1}{9}x^9 + \frac{1}{11}x^{11} + o(x^{11}), x \in (-1, 1).$$

$$17. \ e^{\sin x} = 1 + x + \frac{1}{2}x^2 - \frac{1}{8}x^4 - \frac{1}{15}x^5 - \frac{1}{240}x^6 + \frac{1}{90}x^7 + \frac{31}{5760}x^8 - \frac{1}{5670}x^9 - \frac{2951}{3628800}x^{10} + o(x^{10}).$$

18.
$$e^{\tan x} = 1 + x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + \frac{3}{8}x^4 + \frac{37}{120}x^5 + \frac{59}{240}x^6 + \frac{137}{720}x^7 + \frac{871}{5760}x^8 + \frac{41641}{3628800}x^9 + o(x^9).$$

19.
$$e^{\arcsin x} = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{5}{24}x^4 + \frac{1}{6}x^5 + \frac{17}{144}x^6 + \frac{13}{126}x^7 + \frac{629}{8064}x^8 + \frac{325}{4536}x^9 + o(x^9)$$
.

$$20. \ e^{\arctan x} = 1 + x + \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{7}{24}x^4 + \frac{1}{12}x^5 + \frac{29}{144}x^6 - \frac{1}{1008}x^7 - \frac{1249}{8064}x^8 - \frac{1163}{72576}x^9 + o(x^9).$$

21.
$$\tan(\tan x) = x + \frac{2}{3}x^3 + \frac{3}{5}x^5 + \frac{181}{315}x^7 + \frac{59}{105}x^9 + \frac{3455}{6237}x^{11} + o(x^{11}).$$

22.
$$\sin(\sin x) = x - \frac{1}{3}x^3 + \frac{1}{10}x^5 - \frac{8}{315}x^7 + \frac{13}{2830}x^9 - \frac{47}{49896}x^{11} + o(x^{11}).$$

23.
$$\tan(\sin x) = x + \frac{1}{6}x^3 - \frac{1}{40}x^5 - \frac{107}{5040}x^7 - \frac{73}{24192}x^9 + \frac{41897}{39916800}x^{11} + o(x^{11}).$$

24.
$$\sin(\tan x) = x + \frac{1}{6}x^3 + \frac{1}{40}x^5 - \frac{55}{846}x^7 - \frac{143}{3456}x^9 - \frac{968167}{39916800}x^{11} + o(x^{11}).$$

25.
$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \cdots + \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^k + \cdots, x \in (-1,1).$$

26.
$$(1+x)^{\frac{1}{x}} = e - \frac{e}{2}x + \frac{11e}{24}x^2 - \frac{7e}{16}x^3 + \frac{2447e}{5760}x^4 - \frac{959e}{2304}x^5 + \frac{281343e}{580608}x^6 - \frac{67223e}{168885}x^7 + o(x^7).$$

27.
$$(1+x^2)^{\frac{1}{x}} = 1 + x + \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{11}{24}x^4 + \frac{11}{120}x^5 + \frac{271}{720}x^6 + \frac{53}{2320}x^7 - \frac{4069}{13410}x^8 + o(x^8).$$

28.
$$(1+\sin x)^{\frac{1}{x}} = e - \frac{e}{2}x + \frac{7e}{24}x^2 - \frac{3e}{16}x^3 + \frac{139e}{560}x^4 - \frac{899e}{11520}x^5 + \frac{29811e}{580608}x^6 - \frac{180617e}{580608}x^7 + o(x^7).$$

A.2 常用积分公式

A.2.1 不定积分

1.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C (a > 0).$$

2.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C(a > 0).$$
 3.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C(a > 0).$$

3.
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 \pm a^2}} = \ln\left|x + \sqrt{x^2 \pm a^2}\right| + C(a > 0).$$

$$4. \int \ln x dx = x \ln x - x + C.$$

5. (1)
$$\int \sec x dx = \ln|\sec x + \tan x| + C$$
;
(2) $\int \csc x dx = \frac{1}{2} \ln \left| \frac{\cos x - 1}{\cos x + 1} \right| + C = \ln|\csc x - \cot x| + C = \ln|\tan \frac{x}{2}| + C$.

6.
$$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} \left[x \sqrt{x^2 \pm a^2} \pm a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \right] + C (a > 0);$$
$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} \left[x \sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} \right] + C (a > 0).$$

8.
$$\int x \cos nx dx = \frac{1}{n^2} \cos nx + \frac{x}{n} \sin nx + C (n \neq 0);$$

$$\int x \sin nx dx = \frac{1}{n^2} \sin nx - \frac{x}{n} \cos nx + C (n \neq 0).$$

9. $\forall I(m,n) = \int \cos^m x \sin^n x dx, \forall n, m \in \mathbb{N}, \mathbb{N}$

$$I(m,n) = \frac{\cos^{m-1} x \sin^{n+1} x}{m+n} + \frac{m-1}{m+n} I(m-2,n) \quad (m \ge 2, n \ge 0);$$

= $-\frac{\cos^{m+1} x \sin^{n-1} x}{m+n} + \frac{n-1}{m+n} I(m,n-2) \quad (m \ge 0, n \ge 2).$

证明

- 1.
- 2.
- 3.
- 4.
- 5. (1)
 - (2) 第一种:

$$\int \csc x dx = \int \frac{\sin x}{1 - \cos^2 x} dx = \int \frac{1}{\cos^2 x - 1} d(\cos x) = \frac{1}{2} \int \frac{1}{\cos x - 1} - \frac{1}{\cos x + 1} d(\cos x)$$
$$= \frac{1}{2} \ln|\cos x - 1| - \frac{1}{2} \ln|\cos x + 1| + C = \frac{1}{2} \ln\left|\frac{\cos x - 1}{\cos x + 1}\right| + C.$$

第二种:

$$\int \csc x dx = \frac{1}{2} \ln|\cos x - 1| - \frac{1}{2} \ln|\cos x + 1| + C = \ln|\tan \frac{x}{2}| + C.$$

第三种:

$$\int \csc x dx = \int \frac{\csc x (\csc x - \cot x)}{\csc x - \cot x} dx = \ln|\csc x - \cot x| + C$$
$$= \frac{\csc^2 x - \cot^2 x = 1}{\ln\left|\frac{1}{\csc x + \cot x}\right|} + C = -\ln|\csc x + \cot x| + C.$$

- 6.
- 7.
- 8.
- 9.

A.2.2 定积分

1. $\exists I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx, \forall n \in \mathbb{N}, \mathbb{M}$

$$I_n = \frac{n-1}{n} I_{n-2}, \quad \forall n \geqslant 2.$$

从而

$$I_n = \begin{cases} \frac{(n-1)!!}{n!!} I_0 = \frac{(n-1)!!}{n!!} \cdot \frac{\pi}{2} &, n$$
 (A.1)
$$\frac{(n-1)!!}{n!!} I_1 = \frac{(n-1)!!}{n!!} &, n$$
 (A.1)

$$J(m,n) = \frac{m-1}{m+n}J(m-2,n), \quad \forall n, m \geqslant 2.$$

$$J(m,n) = \frac{n-1}{m+n}J(m,n-2), \quad \forall n,m \geqslant 2.$$

从而

注 公式(A.1)(A.2)通常称为"点火公式".

A.3 常用初等不等式

命题 A.1 (常用不等式)

(1)
$$\ln(1+x) < \frac{x}{\sqrt{1+x}}, x > 0 \iff \ln x < \sqrt{x} - \frac{1}{\sqrt{x}}, x > 1.$$

(2) $e^x + e^y - 2 < e^{x+y} - 1, \forall x, y > 0.$
(3) $e^{-x} \leqslant \frac{1}{1+x} \leqslant e^{x^2-x}, \forall x > 0.$

(2)
$$e^x + e^y - 2 < e^{x+y} - 1, \forall x, y > 0.$$

(3)
$$e^{-x} \leqslant \frac{1}{1+x} \leqslant e^{x^2-x}, \forall x > 0.$$

(1) $\diamondsuit f(x) = \ln(1+x) - \frac{x}{\sqrt{1+x}}, x \ge 0, \text{ }$

$$f'(x) = \frac{2\sqrt{1+x}-x-2}{2\left(1+x\right)^{\frac{3}{2}}} = -\frac{1+x-2\sqrt{1+x}+1}{2\left(1+x\right)^{\frac{3}{2}}} = -\frac{\left(\sqrt{1+x}-1\right)^2}{2\left(1+x\right)^{\frac{3}{2}}} < 0, \forall x > 0.$$

故 f 在 $(0,+\infty)$ 上严格单调递减, 又 $f \in C[0,+\infty)$, 因此 f 在 $[0,+\infty)$ 上也严格单调递减. 从而

$$f(x) \leqslant f(0) = 0, \forall x > 0.$$

 $\mathbb{P} \ln(1+x) < \frac{x}{\sqrt{1+x}}, x > 0.$

(2) 注意到

$$(e^x - 1)(x^y - 1) > 0, \forall x, y > 0,$$

故

$$e^{x} + e^{y} < e^{x+y} + 1 \Longrightarrow e^{x} + e^{y} - 2 < e^{x+y} - 1, \forall x, y > 0.$$

(3) 由 $e^x \ge 1 + x, \forall x > 0$ 可得

$$e^{-x} = \frac{1}{e^x} \leqslant \frac{1}{1+y}, \forall x > 0.$$

$$e^{x^2 - x} \geqslant 1 + x^2 - x = \frac{1+x^3}{1+x} \geqslant \frac{1}{1+x}, \forall x > 0.$$

A.4 重要不等式

定理 A.1 (Cauchy 不等式)

对任何 $n \in \mathbb{N}, (a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n) \in \mathbb{R}^n,$ 有

$$\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2 \geqslant \left(\sum_{i=1}^{n} a_i b_i\right)^2. \tag{A.3}$$

且等号成立条件为 (a_1, a_2, \cdots, a_n) , (b_1, b_2, \cdots, b_n) 线性相关.

证明 (i) 当 b_i 全为零时,(A.3)式左右两边均为零,结论显然成立.

(ii) 当
$$b_i$$
 不全为零时, 注意到 $\left(\sum_{i=1}^n (a_i+tb_i)\right)^2\geqslant 0, \forall t\in\mathbb{R}$. 等价于
$$t^2\sum_{i=1}^n b_i^2+2t\sum_{i=1}^n a_ib_i+\sum_{i=1}^n a_i^2\geqslant 0, \forall t\in\mathbb{R}.$$

根据一元二次方程根的存在性定理, 可知 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 \leqslant 0.$

从而
$$\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2 \geqslant \left(\sum_{i=1}^{n} a_i b_i\right)^2$$
. 下证(A.3)式等号成立的充要条件.

若(A.3)式等号成立,则

(i) 当 b_i 全为零时,因为零向量与任意向量均线性相关,所以此时 $(a_1, a_2, \cdots, a_n), (b_1, b_2, \cdots, b_n)$ 线性相关.

(ii) 当 b_i 不全为零时, 此时我们有 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 = 0$. 根据一元二次方程根的存在性定理,可知存在 $t_0 \in \mathbb{R}$, 使得

$$\left(\sum_{i=1}^{n} (a_i + tb_i)\right)^2 = t_0^2 \sum_{i=1}^{n} b_i^2 + 2t_0 \sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{n} a_i^2 = 0.$$

于是 $a_i + t_0 b_i = 0, i = 1, 2, \cdots, n$. 即 $(a_1, a_2, \cdots, a_n), (b_1, b_2, \cdots, b_n)$ 线性相关. 反之, 若 $(a_1, a_2, \cdots, a_n), (b_1, b_2, \cdots, b_n)$ 线性相关,则存在不全为零的 $\lambda, \mu \in \mathbb{R}$, 使得

$$\lambda a_i + \mu b_i = 0, i = 1, 2, \dots, n.$$

不妨设
$$\lambda \neq 0$$
, 则 $a_i = -\frac{\mu}{\lambda} b_i$, $i = 1, 2, \cdots, n$. 从而当 $t = \frac{\mu}{\lambda}$ 时, $\left(\sum_{i=1}^n (a_i + tb_i)\right)^2 = 0$. 即一元二次方程 $\left(\sum_{i=1}^n (a_i + tb_i)\right)^2 = t_0^2 \sum_{i=1}^n b_i^2 + 2t_0 \sum_{i=1}^n a_i b_i + \sum_{i=1}^n a_i^2 = 0$ 有实根 $\frac{\mu}{\lambda}$. 因此 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 = 0$. 即(A.3)式等号成立.

例题 A.1 证明:

$$\sum_{i=1}^{n} \frac{1}{x_i} \geqslant \frac{n^2}{\sum_{i=1}^{n} x_i}, \forall n \in \mathbb{N}, x_1, x_2, \cdots, x_n > 0.$$

证明 对 $\forall n \in \mathbb{N}, x_1, x_2, \dots, x_n > 0$, 由Cauchy 不等式可得

$$\sum_{i=1}^{n} \frac{1}{x_i} \cdot \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \left(\frac{1}{\sqrt{x_i}} \right)^2 \cdot \sum_{i=1}^{n} \left(\sqrt{x_i} \right)^2 \geqslant \left(\sum_{i=1}^{n} \sqrt{x_i} \cdot \frac{1}{\sqrt{x_i}} \right)^2 = n^2.$$

故
$$\sum_{i=1}^{n} \frac{1}{x_i} \geqslant \frac{n^2}{\sum_{i=1}^{n} x_i}, \forall n \in \mathbb{N}, x_1, x_2, \cdots, x_n > 0.$$

例题 A.2 求函数 $y = \sqrt{x + 27} + \sqrt{13 - x} + \sqrt{x}$ 在定义域内的最大值和最小值.

笔记 首先我们猜测定义域的端点处可能存在最值, 然后我们通过简单的放缩就能得到 y(0) 就是最小值. 再利用Cauchy 不等式我们可以得到函数的最大值. 构造 Cauchy 不等式的思路是: 利用待定系数法构造相应的 Cauchy 不等式. 具体步骤如下:

设 A, B, C > 0, 则由 Cauchy 不等式可得

$$\left(\frac{1}{\sqrt{A}}\sqrt{Ax + 27A} + \frac{1}{\sqrt{B}}\sqrt{13B - Bx} + \frac{1}{\sqrt{C}}\sqrt{Cx}\right)^2 \leqslant \left(\frac{1}{A} + \frac{1}{B} + \frac{1}{C}\right)[(A + C - B)x + 27A + 13B]$$

并且当且仅当 $\sqrt{A} \cdot \sqrt{Ax + 27A} = \sqrt{B} \cdot \sqrt{13B - Bx} = \sqrt{C} \cdot \sqrt{Cx}$ 时, 等号成立.

令A+C-B=0(因为要求解y的最大值,我们需要将y放大成一个不含x的常数),从而与上式联立得到方程组

$$\begin{cases} \sqrt{A} \cdot \sqrt{Ax + 27A} = \sqrt{B} \cdot \sqrt{13B - Bx} = \sqrt{C} \cdot \sqrt{Cx} \\ A + C - B = 0 \end{cases}$$

解得:A = 1,B = 3,C = 2,x = 9.

从而得到我们需要构造的 Cauchy 不等式为

$$\left(\sqrt{x+27} + \frac{1}{\sqrt{3}}\sqrt{39-3x} + \frac{1}{\sqrt{2}}\sqrt{2x}\right)^2 \leqslant \left(1 + \frac{1}{3} + \frac{1}{2}\right)(x+27+39-3x+2x)$$

并且当且仅当 $\sqrt{x+27} = \sqrt{3} \cdot \sqrt{39-3x} = \sqrt{2} \cdot \sqrt{2x}$, 即 x = 9 时, 等号成立.

解 由题可知, 函数 y 的定义域就是: $0 \le x \le 13$. 而

$$y(x) = \sqrt{x + 27} + \sqrt{[\sqrt{13 - x} + \sqrt{x}]^2}$$
$$= \sqrt{x + 27} + \sqrt{13 + 2\sqrt{x(13 - x)}}$$
$$\geqslant \sqrt{27} + \sqrt{13} = 3\sqrt{3} + \sqrt{13} = y(0)$$

于是 y 的最小值为 $3\sqrt{3} + \sqrt{13}$. 由 Cauchy 不等式可得

$$y^{2}(x) = (\sqrt{x + 27} + \sqrt{13 - x} + \sqrt{x})^{2}$$

$$= (\sqrt{x + 27} + \frac{1}{\sqrt{3}}\sqrt{39 - 3x} + \frac{1}{\sqrt{2}}\sqrt{2x})^{2}$$

$$\leq (1 + \frac{1}{3} + \frac{1}{2})(x + 27 + 39 - 3x + 2x)$$

$$= 121 = y^{2}(9)$$

即 $y(x) \leq y(9) = 11$. 并且当且仅当 $\sqrt{x+27} = \sqrt{3} \cdot \sqrt{39-3x} = \sqrt{2} \cdot \sqrt{2x}$, 即 x = 9 时, 等号成立. 故 y 的最大值为 11.

定理 A.2 (均值不等式)

П

设 $a_1, a_2, \cdots, a_n > 0$, 则下述函数是连续递增函数

$$f(r) = \begin{cases} \left(\frac{a_1^r + a_2^r + \dots + a_n^r}{n}\right)^{\frac{1}{r}}, r \neq 0 \\ \sqrt[q]{a_1 a_2 \cdots a_n}, \qquad r = 0 \end{cases}$$
 (A.4)

其中若 $r_1 \neq r_2$, 则 $f(r_1) = f(r_2)$ 的充要条件是 $a_1 = a_2 = \cdots = a_n$.

笔记 均值不等式最重要的特例是下面的均值不等式常用形式.

定理 A.3 (均值不等式常用形式)

设 $a_1, a_2, \dots, a_n > 0$, 则

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n} \leqslant \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

例题 **A.3** 设 $f(x) = 4x(x-1)^2, x \in (0,1)$, 求 f 的最大值.

解 由均值不等式常用形式可得

$$f(x) = 4x (x - 1)^{2} = 2 \cdot 2x (1 - x) (1 - x)$$

$$= 2 \cdot \left[\sqrt[3]{2x (1 - x) (1 - x)} \right]^{3}$$

$$\leq 2 \cdot \left[\frac{2x + 1 - x + 1 - x}{3} \right]^{3}$$

$$= 2 \cdot \left(\frac{2}{3} \right)^{3} = \frac{16}{27}$$

并且当且仅当 2x = 1 - x, 即 $x = \frac{1}{3}$ 时等号成立.

定理 A.4 (Bernoulli 不等式)

设 $x_1, x_2, \cdots, x_n \ge -1$ 且两两同号,则

$$(1+x_1)(1+x_2)\cdots(1+x_n) \geqslant 1+x_1+x_2+\cdots+x_n.$$

证明 当 n=1 时, 我们有 $1+x_1 \ge 1+x_1$, 结论显然成立.

假设当n=k时,结论成立.则当n=k+1时,由归纳假设可得

$$(1+x_1)(1+x_2)\cdots(1+x_{k+1}) \ge (1+x_1+x_2+\cdots+x_k)(1+x_{k+1})$$

$$= 1+x_1+x_2+\cdots+x_k+x_{k+1}+x_1x_{k+1}+x_2x_{k+1}+\cdots+x_kx_{k+1}$$

$$\ge 1+x_1+x_2+\cdots+x_k+x_{k+1}$$

故由数学归纳法可知,结论成立.

定理 A.5 (Bernoulli 不等式特殊形式)

设 $x \ge -1$, $n \ge 0$, 则

$$(1+x)^n \geqslant 1 + nx.$$

定理 A.6 (Jesen 不等式)

设 $\lambda_i \geqslant 0, i = 1, 2, \cdots, n, \sum_{i=1}^n \lambda_i = 1$, 则对下凸函数 f, 有

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i).$$

对上凸函数 f, 有

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \geqslant \sum_{i=1}^n \lambda_i f(x_i).$$

定理 A.7 (Young 不等式)

对任何 $a,b\geqslant 0, \frac{1}{p}+\frac{1}{q}=1, p>1$ 有

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{a}$$
.

当且仅当 $a^p = b^q$ 时等号成立.

奎记 若 $\frac{1}{p} + \frac{1}{q} = 1$, 则我们称 p > q **共轭**.

注 这个 Young 不等式不等式和加权均值不等式等价.

证明 (i) 当 a,b 至少有一个为零时,结论显然成立.

(ii) 当 a, b 均不为零时, 我们有

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$

$$\Leftrightarrow \ln a + \ln b \leqslant \ln \left(\frac{a^p}{p} + \frac{b^q}{q}\right)$$

$$\Leftrightarrow \frac{1}{p} \ln a^p + \frac{1}{q} \ln b^q \leqslant \ln \left(\frac{a^p}{p} + \frac{b^q}{q}\right)$$

由Jesen 不等式和 $f(x) = \ln x$ 函数的上凸性可知,上述不等式成立. 等号成立的条件可由Jesen 不等式的等号成立条件直接得到. 故原结论也成立.

定理 A.8 (Hold 不等式)

设 $\frac{1}{p} + \frac{1}{q} = 1, p > 1, a_1, a_2, \dots, a_n \ge 0, b_1, b_2, \dots, b_n \ge 0$, 则有

$$\sum_{k=1}^n a_k b_k \le \sqrt[p]{\sum_{k=1}^n a_k^p} \cdot \sqrt[q]{\sum_{k=1}^n b_k^q}.$$

证明 (i) 当 a_1, a_2, \cdots, a_n 全为零时, 结论显然成立.

(ii) 当 a_1, a_2, \cdots, a_n 不全为零时,令

$$a'_{k} = \frac{a_{k}}{\sqrt[p]{\sum_{k=1}^{n} a_{k}^{p}}}, b'_{k} = \frac{b_{k}}{\sqrt[q]{\sum_{k=1}^{n} b_{k}^{q}}}, k = 1, 2, \dots, n.$$

从而只需证明 $\sum_{k=1}^{n} a_k' b_k' \leq 1$. 由Young 不等式可得

$$\sum_{k=1}^{n} a'_k b'_k \leqslant \sum_{k=1}^{n} \left[\frac{\left(a'_k \right)^p}{p} + \frac{\left(b'_k \right)^q}{q} \right] = \sum_{k=1}^{n} \left(\frac{a_k^p}{p \sum_{k=1}^{n} a_k^p} + \frac{b_k^p}{q \sum_{k=1}^{n} b_k^q} \right)$$

$$= \frac{\sum_{k=1}^{n} a_k^p}{p \sum_{k=1}^{n} a_k^p} + \frac{\sum_{k=1}^{n} b_k^p}{q \sum_{k=1}^{n} b_k^q} = \frac{1}{p} + \frac{1}{q} = 1.$$

故原结论成立.

定理 A.9 (排序和不等式)

设 $\{a_1, a_2, \cdots, a_n\} \subset \mathbb{R}, \{b_1, b_2, \cdots, b_n\} \subset \mathbb{R}$ 满足

$$a_1 \leqslant a_2 \leqslant \cdots \leqslant a_n, b_1 \leqslant b_2 \leqslant \cdots \leqslant b_n.$$

 $\{c_1, c_2, \dots, c_n\}$ 是 $\{b_1, b_2, \dots, b_n\}$ 的一个排列,则有

$$\sum_{i=1}^{n} a_{i} b_{n+1-i} \leqslant \sum_{i=1}^{n} a_{i} c_{i} \leqslant \sum_{i=1}^{n} a_{i} b_{i},$$

且等号成立的充要条件是 $a_i = a_j$, $1 \le i < j \le n$ 或者 $b_i = b_j$, $1 \le i < j \le n$.

警 笔记 简单记为倒序和 ≤ 乱序和 ≤ 同序和.

定理 A.10 (Chebeshev 不等式)

设 $\{a_1, a_2, \cdots, a_n\} \subset \mathbb{R}, \{b_1, b_2, \cdots, b_n\} \subset \mathbb{R}$ 满足

$$a_1 \leqslant a_2 \leqslant \cdots \leqslant a_n, b_1 \leqslant b_2 \leqslant \cdots \leqslant b_n.$$

 $\{c_1, c_2, \dots, c_n\}$ 是 $\{b_1, b_2, \dots, b_n\}$ 的一个排列,则有

$$\sum_{i=1}^{n} a_i b_{n+1-i} \leqslant \frac{1}{n} \sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i \leqslant \sum_{i=1}^{n} a_i b_i.$$

且等号成立的充要条件是 $a_i = a_j, 1 \leq i < j \leq n$ 或者 $b_i = b_j, 1 \leq i < j \leq n$.

 \Diamond

A.5 基本组合学公式

定义 A.1 (组合数定义的扩充)

对 $\forall n \in \mathbb{R}, k \in \mathbb{N}$, 定义

$$C_{n}^{k} = \binom{n}{k} \triangleq \begin{cases} 0 & , k < 0, \\ \frac{n(n-1)\cdots(n-k+1)}{k!} & , 0 < k \leq n, \\ 0 & , k > n. \end{cases}$$

特别地, $C_n^0 \triangleq 1$. 若 $n, k \in \mathbb{N}$ 且 $0 \leq k \leq n$, 则还有

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

定理 A.11 (二项式定理的推广)

$$(a_1 + b_1) \cdots (a_n + b_n) = \sum_{I \subset \{1, 2, \cdots, n\}} \left(\prod_{i \in I} a_i \prod_{j \in \{1, 2, \cdots, n\} - I} b_j \right).$$

证明 用数学归纳法证明即可.

命题 A.2

对 $\forall m \in \mathbb{N}, \forall x \in \mathbb{R} \setminus \{0\}$, 都有

$$\sum_{k=0}^{m} (-1)^k \binom{m}{k} \frac{1}{x+k} = \frac{m!}{x(x+1)\cdots(x+m)}.$$

证明 设

$$f(x) = \frac{m!}{x(x+1)\cdots(x+m)},$$

则由有理分式分解定理知,存在 $c_1,c_2,\cdots,c_m \in \mathbb{R}$,使得

$$f(x) = \sum_{j=0}^{m} \frac{c_j}{x+j},$$

两边同乘 $x + j(j = 0, 1, \dots, m)$, 再取 x = -j 得

$$\begin{split} c_j &= \left[(x+j)f(x) \right]_{x=-j} = \frac{m!}{-j(-j+1)\cdots(-j+j-1)(-j+j+1)\cdots(-j+m)} \\ &= (-1)^j \frac{m!}{j(j-1)\cdots 1\cdot 1\cdots (m-j)} = (-1)^j \frac{m!}{j!(m-j)!} \\ &= (-1)^j \binom{m}{j}, j = 0, 1, \cdots, m. \end{split}$$

故结论得证.

A.6 三角函数相关

A.6.1 三角函数

定理 A.12 (三角平方差公式)

 $\sin^2 x - \sin^2 y = \sin(x - y)\sin(x + y) = \cos(y - x)\cos(y + x) = \cos^2 y - \cos^2 x.$

证明 首先,我们有

$$\cos^2 x - \cos^2 y = 1 - \sin^2 x - (1 - \sin^2 y) = \sin^2 y - \sin^2 x.$$

接着,我们有

$$\sin(x - y)\sin(x + y) = (\sin x \cos y - \cos x \sin y)(\sin x \cos y + \cos x \sin y)$$

$$= \sin^2 x \cos^2 y - \cos^2 x \sin^2 y$$

$$= \sin^2 x (1 - \sin^2 y) - (1 - \sin^2 x)\sin^2 y$$

$$= \sin^2 x - \sin^2 y;$$

$$\cos(y - x)\cos(y + x) = (\cos x \cos y + \sin x \sin y)(\cos x \cos y - \sin x \sin y)$$

$$\cos(y - x)\cos(y + x) = (\cos x \cos y + \sin x \sin y)(\cos x \cos y - \sin x \sin y)$$

$$= \cos^2 x \cos^2 y - \sin^2 x \sin^2 y$$

$$= \cos^2 x \cos^2 y - (1 - \cos^2 x)(1 - \cos^2 y)$$

$$= \cos^2 x - \cos^2 y.$$

故结论得证.

定理 A.13

$$\sin(n\theta) = \sum_{\substack{r=0\\2r+1 \le n}} (-1)^r \binom{n}{2r+1} \cos^{n-2r-1}(\theta) \sin^{2r+1}(\theta).$$

2.

1.

$$\cos(n\theta) = \sum_{\substack{r=0\\2r \le n}} (-1)^r \binom{n}{2r} \cos^{n-2r}(\theta) \sin^{2r}(\theta).$$

3.

$$\tan(n\theta) = \frac{\sum\limits_{\substack{r=0\\2r+1 \le n}} (-1)^r \binom{n}{2r+1} \tan^{2r+1}(\theta)}{\sum\limits_{\substack{r=0\\2r \le n}} (-1)^r \binom{n}{2r} \tan^{2r}(\theta)}.$$

4.

$$\cos^{n}\theta = \begin{cases} \frac{1}{2^{n-1}} \sum_{\substack{r=0 \\ 2r < n}} \binom{n}{2r} \cos((n-2r)\theta) + \frac{1}{2^{n}} \binom{n}{\frac{n}{2}}, & n 为 偶数 \\ \frac{1}{2^{n-1}} \sum_{\substack{r=0 \\ 2r < n}} \binom{n}{2r} \cos((n-2r)\theta), & n 为 奇数 \end{cases}.$$

$$\sin^{n}\theta = \begin{cases} \frac{(-1)^{\frac{n}{2}}}{2^{n-1}} \sum_{\substack{r=0 \\ 2r < n}} (-1)^{r} \binom{n}{2r} \sin\left((n-2r)\theta\right), & n\beta \text{ if } M \\ \frac{(-1)^{\lfloor \frac{n}{2} \rfloor}}{2^{n-1}} \sum_{\substack{r=0 \\ 2r < n}} (-1)^{r} \binom{n}{2r} \cos\left((n-2r)\theta\right) + \frac{1}{2^{n}} \binom{n}{\frac{n}{2}}, & n\beta \xrightarrow{\text{fr}} M \end{cases}.$$

\$

笔记 上述结论 4 表明: $\cos^n x$ 可以表示为 $1, \cos x, \cdots, \cos nx$ 的线性组合.

证明 具体证明见Expansions of sin(nx) and cos(nx).

A.6.2 反三角函数

定理 A.14 (常用反三角函数性质)

1.

$$\arcsin x + \arcsin y = \begin{cases} \arcsin \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right) &, xy < 0 \not \not \exists x^2 + y^2 \leqslant 1 \\ \pi - \arcsin \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right) &, x > 0, y > 0, x^2 + y^2 > 1 \\ -\pi - \arcsin \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right) &, x < 0, y < 0, x^2 + y^2 > 1 \end{cases}$$

2.

$$\arcsin x - \arcsin y = \begin{cases} \arcsin \left(x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right) &, xy \ge 0 \, \text{ if } x^2 + y^2 \le 1 \\ \pi - \arcsin \left(x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right) &, x > 0, y < 0, x^2 + y^2 > 1 \\ -\pi - \arcsin \left(x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right) &, x < 0, y > 0, x^2 + y^2 > 1 \end{cases}$$

3.

$$\arccos x + \arccos y = \begin{cases} \arccos\left(xy - \sqrt{1 - x^2}\sqrt{1 - y^2}\right) &, x + y \ge 0\\ 2\pi - \arccos\left(xy - \sqrt{1 - x^2}\sqrt{1 - y^2}\right) &, x + y < 0 \end{cases}.$$

4.

$$\arccos x - \arccos y = \begin{cases} -\arccos\left(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}\right) &, x \geqslant y \\ \arccos\left(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}\right) &, x < y \end{cases}.$$

5.

$$\arctan x + \arctan y = \begin{cases} \arctan \frac{x+y}{1-xy}, & xy < 1 \\ \pi + \arctan \frac{x+y}{1-xy}, & x > 0 \\ -\pi + \arctan \frac{x+y}{1-xy}, & x < 0 \end{cases}, xy > 1.$$

6.

$$\arctan x - \arctan y = \begin{cases} \arctan \frac{x - y}{1 + xy}, & xy > -1 \\ \pi + \arctan \frac{x - y}{1 + xy}, & x > 0, xy < -1 \\ -\pi + \arctan \frac{x - y}{1 + xy}, & x < 0, xy < -1 \end{cases}$$

7.

$$2\arcsin x = \begin{cases} \arcsin\left(2x\sqrt{1-x^2}\right) &, |x| \leqslant \frac{\sqrt{2}}{2} \\ \pi - \arcsin\left(2x\sqrt{1-x^2}\right) &, \frac{\sqrt{2}}{2} < x \leqslant 1 \\ -\pi - \arcsin\left(2x\sqrt{1-x^2}\right) &, -1 \leqslant x < -\frac{\sqrt{2}}{2} \end{cases}$$

8.

$$2\arccos x = \begin{cases} \arccos\left(2x^2 - 1\right) &, 0 \leqslant x \leqslant 1\\ 2\pi - \arccos\left(2x^2 - 1\right) &, -1 \leqslant x < 0 \end{cases}.$$

9.

$$2 \arctan x = \begin{cases} \arctan \frac{2x}{1 - x^2}, |x| \le 1 \\ \pi + \arctan \frac{2x}{1 - x^2}, |x| > 1 \\ -\pi + \arctan \frac{2x}{1 - x^2}, |x| > 1 \end{cases}$$

10.

$$\cos\left(n\arccos x\right) = \frac{\left(x + \sqrt{x^2 - 1}\right)^n + \left(x - \sqrt{x^2 - 1}\right)^n}{2} \left(n \geqslant 1\right).$$

证明

命题 A.3

$$\arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2}, & x > 0\\ -\frac{\pi}{2}, & x < 0 \end{cases}.$$

$$f'(x) = \frac{1}{x^2 + 1} + \frac{1}{(\frac{1}{x})^2 + 1}(-\frac{1}{x^2}) = \frac{1}{x^2 + 1} - \frac{1}{x^2 + 1} = 0$$

故 f(x) 为常函数, 于是就有 $f(x) = f(1) = \frac{\pi}{2}, \forall x > 0$; $f(x) = f(-1) = -\frac{\pi}{2}, \forall x < 0$.

A.6.3 双曲三角函数

$$(1) \cosh x = \frac{e^x + e^{-x}}{2} \geqslant 1$$

命题 A.4

(1)
$$\cosh x = \frac{e^x + e^{-x}}{2} \ge 1$$
,

(2) $\sinh x = \frac{e^x - e^{-x}}{2} \ge x$.

证明 可以分别利用均值不等式和求导进行证明.

命题 A.5

- $1. \cosh^2 x \sinh^2 x = 1.$
- 2. $\cosh(2x) = 2\cosh^2 x 1 = 1 2\sinh^2 x$.
- 3. $\sinh(2x) = 2\sinh x \cosh x$.

证明

附录 B 小技巧

B.1 长除法

例题 **B.1** 利用多项式除法计算 **Taylor** 级数和 **Laurent** 级数
已知
$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \cdots$$
, $\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \cdots$.
1. 求 $\tan x$. 2. 求 $\frac{1}{\sin^2 x}$.

笔记 实际问题中需要多展开几项,展开得越多,得到的结果也越多.

解 1. 根据多项式除法可得

因此
$$\tan x = \frac{\sin x}{\cos x} = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \cdots$$
.

2. 根据多项式乘法可得

$$\sin^2 x = \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \dots\right) \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \dots\right) = x^2 - \frac{1}{3}x^4 + \dots$$

再根据多项式除法可得

因此
$$\frac{1}{\sin^2 x} = \frac{1}{x^2} - \frac{1}{3} + \cdots$$
.

B.2 将多项式分式分解为其部分因式的和

3. 分解
$$\frac{1}{(1+x^2)^2(1+x)}$$
.

4. 分解
$$\frac{1}{(1+x^2)^2(1+x)^2}$$
.

1. 根据代数学知识我们可以设

$$\frac{1}{(1+x^2)(1+ax)} = \frac{Ax+B}{1+x^2} + \frac{C}{1+ax}.$$
 (B.1)

其中 A, B, C 均为常数.

解法一(待定系数法):

将(B.1)式右边通分得到

$$\frac{Ax+B}{1+x^2} + \frac{C}{1+ax} = \frac{(Ax+B)(1+ax) + C(1+x^2)}{\left(1+x^2\right)(1+ax)} = \frac{(Aa+C)x^2 + (A+Ba)x + B + C}{\left(1+x^2\right)(1+ax)}.$$

比较上式左右两边分子各项系数可行

$$\begin{cases} Aa + C = 0 \\ A + Ba = 0 \\ B + C = 1 \end{cases}$$

解得:
$$A = -\frac{a}{1+a^2}$$
, $B = \frac{1}{1+a^2}$, $C = \frac{a^2}{1+a^2}$. 于是原式可分解为

$$\frac{1}{(1+x^2)(1+ax)} = \frac{-\frac{a}{1+a^2}x + \frac{1}{1+a^2}}{1+x^2} + \frac{\frac{a^2}{1+a^2}}{1+ax}$$

解法二(留数法):

(B.1) 式两边同时乘
$$1 + ax$$
, 得到 $\frac{1}{1 + x^2} = \frac{Ax + B}{1 + x^2} \cdot (1 + ax) + C$. 再令 $x \to -\frac{1}{a}$, 得 $C = \frac{1}{1 + \frac{1}{a^2}} = \frac{a^2}{1 + a^2}$.

(B.1) 式两边同时乘
$$1+x^2$$
, 得到 $\frac{1}{1+ax} = Ax + B + \frac{C}{1+ax} \cdot (1+x^2)$. 再分别令 $x \to \pm i$, 可得

$$\begin{cases} A\mathbf{i} + B = \frac{1}{1 + a\mathbf{i}} \\ -A\mathbf{i} + B = \frac{1}{1 - a\mathbf{i}} \end{cases}$$

解得: $A = -\frac{a}{1+a^2}$, $B = \frac{1}{1+a^2}$. 于是原式可分解为

$$\frac{1}{(1+x^2)(1+ax)} = \frac{-\frac{a}{1+a^2}x + \frac{1}{1+a^2}}{1+x^2} + \frac{\frac{a^2}{1+a^2}}{1+ax}$$

解法三(留数法+待定系数法):

(B.1) 式两边同时乘 1 + ax, 得到 $\frac{1}{1+x^2} = \frac{Ax+B}{1+x^2} \cdot (1+ax) + C$. 再令 $x \to -\frac{1}{a}$, 得 $C = \frac{1}{1+\frac{1}{a^2}} = \frac{a^2}{1+a^2}$.

容易直接观察出(B.1)式右边通分后分子的最高次项系数为 Aa+C, 常数项为 B+C. 并将其与(B.1)式左边的 分子对比, 可以得到

$$\begin{cases} Aa + C = 0 \\ B + C = 1 \end{cases}$$

解得:
$$A = -\frac{a}{1+a^2}$$
, $B = \frac{1}{1+a^2}$.

于是原式可分解为

$$\frac{1}{(1+x^2)(1+ax)} = \frac{-\frac{a}{1+a^2}x + \frac{1}{1+a^2}}{1+x^2} + \frac{\frac{a^2}{1+a^2}}{1+ax}.$$

2. 根据代数学知识我们可以设

$$\frac{1}{(1+x^2)(1+x)^2} = \frac{Ax+B}{1+x^2} + \frac{C}{1+x} + \frac{D}{(1+x)^2}.$$
 (B.2)

其中 A, B, C, D 均为常数.

(B.2) 式两边同时乘 $(1+x)^2$, 得到

$$\frac{1}{1+x^2} = \frac{Ax+B}{1+x^2} \cdot (1+x)^2 + C(1+x) + D.$$
 (B.3)

再令 $x \rightarrow -1$, 可得 $D = \frac{1}{2}$. 对(B.3)式两边同时求导得到

$$\left. \frac{-2x}{\left(1+x^2\right)^2} \right|_{x \to -1} = \left[\frac{Ax+B}{1+x^2} \cdot (1+x)^2 \right]' \Big|_{x \to -1} + C = C.$$

从而 $C=\frac{1}{2}$. 令(B.2)中的 x=0, 得到 1=B+C+D, 将 $C=D=\frac{1}{2}$ 代入解得:B=0. 再令(B.2)中的 x=1, 得到 $\frac{1}{8}=\frac{A+B}{2}+\frac{C}{2}+\frac{D}{4}$, 将 $C=D=\frac{1}{2}$, B=0 代入解得: $A=-\frac{1}{2}$. 于是原式可分解为

$$\frac{1}{\left(1+x^2\right)\left(1+x\right)^2} = \frac{-x}{2\left(1+x^2\right)} + \frac{1}{2+2x} + \frac{1}{2\left(1+x\right)^2}.$$

3.

4.

例题 **B.3** 分解 $\frac{1}{1+x^4}$. 解 首先我们注意到

$$\frac{1}{1+x^4} = \frac{1}{\left(1+x^2\right)-2x^2} = \frac{1}{\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)}.$$

然后根据代数学知识我们可以设

$$\frac{1}{1+x^4} = \frac{1}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)} = \frac{Ax + B}{x^2 - \sqrt{2}x + 1} + \frac{Cx + D}{x^2 + \sqrt{2}x + 1}.$$
 (B.4)

其中 A,B,C,D 均为常数. 将上式右边通分可得

$$\frac{1}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)} = \frac{(Ax + B)\left(x^2 + \sqrt{2}x + 1\right) + (Cx + D)\left(x^2 - \sqrt{2}x + 1\right)}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)}.$$

比较上式左右两边分子各项系数可得

$$\begin{cases} B+D=1\\ A+\sqrt{2}B+C-\sqrt{2}D=0\\ A\sqrt{2}+B-C\sqrt{2}+D=0\\ A+C=0 \end{cases}$$

解得: $A = -\frac{\sqrt{2}}{4}, B = \frac{1}{2}, C = \frac{\sqrt{2}}{4}, D = \frac{1}{2}.$ 于是原式可分解为

$$\frac{1}{1+x^4} = \frac{-\frac{\sqrt{2}}{4}x + \frac{1}{2}}{x^2 - \sqrt{2}x + 1} + \frac{\frac{\sqrt{2}}{4}x + \frac{1}{2}}{x^2 + \sqrt{2}x + 1}.$$

例题 **B.4** 分解 $\frac{x^4}{(1+x)(1+x^2)}$.

解 先利用多项式除法用 x^4 除以 $(1+x)(1+x^2)$ 得到 $x^4=(x-1)(1+x)\left(1+x^2\right)+1$. 从而

$$\frac{x^4}{(1+x)\left(1+x^2\right)} = \frac{(x-1)\left(1+x\right)\left(1+x^2\right)+1}{(1+x)\left(1+x^2\right)} = x-1+\frac{1}{(1+x)\left(1+x^2\right)}.$$

然后再利用多项式分式的分解方法 (待定系数法和留数法) 将 $\frac{1}{(1+x)\left(1+x^2\right)}$ 分解为部分因式的和. 最后我们可将原式分解为

$$\frac{x^4}{(1+x)\left(1+x^2\right)} = x - 1 + \frac{1}{2+2x} + \frac{-x+1}{2+2x^2}.$$