COMP3203 Final Exam Notes

William Findlay
December 13, 2018

Contents

1	Test	t 1 Stuff (Brief and Important Only)	4
2	AR 0 2.1	Sliding Window	4
		2.1.1 Go Back N	4
	2.2	2.1.2 Selective Reject	4 5
	2.2	2.2.1 Errors in Stop and Wait	5
		2.2.2 Correctness	6
3	Mul	ltiaccess	7
	3.1	LANs	7
	3.2	The Problem with Shared Channels	7
	3.3	MAC Protocol	7
	3.4	Uncoordinated Access Control	7
	3.5	Ethernet	8
4		ordinated Access	8
	4.1	Tree Algorithm	8
	4.2	Binary Countdown	8
	4.3	Bitmap	8
5	Wir	reless	8
	5.1	Cellular	8
	5.2	Ad Hoc	8
		5.2.1 UDG	8
		5.2.2 Compass Routing	8
	- 0	5.2.3 Face Routing	8
	5.3	Bluetooth	8
6	GP		8
	6.1	Three Techniques	8
	6.2	Satellites	8
7	Rou	uting	8
	7.1	Distance Vector (RIP)	8
	7.2	Link State Protocol (LSP)	8
	7.3	MSTs	8
	7.4	Dijkstra	8
8	IP		8
	8.1	IPv4	8
		8.1.1 Classes of Address	8
		8.1.2 Subnets	8
	0.0	8.1.3 Subnet Masks	8
	8.2 8.3	IPv6	8
	8.4	ARP	8
	0.4	8.4.1 RARP	8
0	m C i	n	6
9	TCI 9.1	How it Works (Sliding Window)	8
	9.2	How it Builds Statistics	8

1 Test 1 Stuff (Brief and Important Only)

• test 1 stuff here

2 ARQs

- (A)utomatic (R)epeat Re(Q)uests
- strategy to handle errors detected by the CRC
 - or whatever other detection method
- main types
 - stop and wait
 - sliding window
 - go back N
 - · selective reject

2.1 Sliding Window

2.1.1 Go Back N

- most commonly used sliding window
- \bullet sequential frames numbered $n \mod N$
- send up to N-1 frames **before an ACK** is received
- unbounded sequence numbers is a hurdle for sliding window in non-FIFO channels

ACKs and NAKs

- if no error
 - send RR (ACK) for frame[n]
- if error
 - send REJ (NAK) for frame[n]
- if frame lost, send a NAK
- if no ACK or NAK received before timeout, assume lost

When Sender Receives a NAK[n]

 \bullet resend frame [n] and all frames sent since

When a Sender Receives No ACK or NAK

• go back to the previous ACK and resend all frames sent since

2.1.2 Selective Reject

- \bullet similar to go back N
- BUT we only resend the lost frame
 - out of order!
 - receiver needs *sorting logic* to store frames after a NAK
- in general, smaller window size

Figure 1: An example of the Selective Reject protocol.

2.2 Stop and Wait

- $\bullet\,$ also called an ${\bf ABP}$
 - alternating bit protocol
 - $-\,$ because the label bits alternate between 0 and $1\,$
- you can think of it as sliding "window" with a window size of 1
- ullet works only in **FIFO queues**
 - suitable for data link layer

Figure 2: A diagram of the Stop and Wait ARQ protocol.

2.2.1 Errors in Stop and Wait

- two main types
- frame errors
 - damaged frame
- ullet **ACK** errors
 - damaged acknowledgement

Frame Errors

Figure 3: A lost frame error in the Stop and Wait ARQ protocol.

- frame is damaged
 - one or more bits have been altered
- discard the frame
- source waits for ACK
 - if it doesn't receive one, it will resend

ACK Errors

- frame is received but ACK is damaged
- sender will resend message
- receiver will accept the same message twice
 - so we need to label frames
 - and label ACKs
 - use a bit for this
 - ACK[b] acknowledges frame $[b+1 \mod 2]$
 - says receiver is ready for frame[b]

2.2.2 Correctness

- satisfies:
 - safety
 - algorithm never gives an incorrect result
 - always results in a "corrected" error
 - liveness
 - never enters a deadlock condition

Figure 4: An ACK error in the Stop and Wait ARQ protocol.

3 Multiaccess

3.1 LANs

- two types
 - switched
 - lines, multiplexes, switches
 - hierarchical addressing scheme
 - routing tables
 - broadcast
 - no routing
 - flat addressing scheme
 - (M))edium (A))ccess (C))ontrol to coordinate transmissions
 - preferred over switched due to simplicity

3.2 The Problem with Shared Channels

- in *point-to-point* networks we have signal as a function of one transmitted signal
- in *shared* networks, we may have **more than one** transmission contributing to a signal

3.3 MAC Protocol

3.4 Uncoordinated Access Control

COME BACK HERE

3.5 Ethernet

4 Coordinated Access

- 4.1 Tree Algorithm
- 4.2 Binary Countdown
- 4.3 Bitmap
- 5 Wireless
- 5.1 Cellular
- 5.2 Ad Hoc
- 5.2.1 UDG
- 5.2.2 Compass Routing
- 5.2.3 Face Routing
- 5.3 Bluetooth
- 6 GPS
- 6.1 Three Techniques
- 6.2 Satellites
- 7 Routing
- 7.1 Distance Vector (RIP)
- 7.2 Link State Protocol (LSP)
- 7.3 MSTs
- 7.4 Dijkstra
- 8 IP
- 8.1 IPv4
- 8.1.1 Classes of Address
- 8.1.2 Subnets
- 8.1.3 Subnet Masks
- 8.2 IPv6
- 8.3 DHCP
- 8.4 ARP
- 8.4.1 RARP
- 9 TCP
- 9.1 How it Works (Sliding Window)
- 9.2 How it Builds Statistics
- 9.3 Equilibrium Model