# Identifying COVID-19 Hotspots in Florida

\_\_\_\_\_ By: Sushmita Persaud and Justin \_\_\_\_\_ Prince

# **Background on COVID-19**

- COVID-19 is caused by SARS-CoV-2
  - First reported cases in Florida on March 1, 2020
  - A sharp increase in cases occurred in June 2020
- Airborne disease
  - This means it is easily communicable especially in densely populated areas
- Prevention Measures include:
  - Curfews
  - Limited human interaction
  - Rapid testing
  - Hygiene Practices

# **Research Questions**

- Main question:
  - What are the hotspot counties in Florida that there is an increased risk of contracting the virus?
  - Is it possible to identify the zones for early response to future outbreaks?
- Dataset
  - Classification problem
  - Explores various external factors
    - Gender
    - Age Distribution
    - Population Density
    - Income

## **State of the Art**

#### Previous Research

- In an article published by NIH, they used R-programming to visualize the hotspots in the United States (Rimal Y, 2021)
- The research utilizes multiple libraries such as "(leaflet), (tidy verse), (ggmap), (htmltools), (leaflet. extras), (maps), (ggplot2), (mapproj), (mapdata), (spData)" (Rimal Y, 2021)
- They were able to filter through the dataset and identify clusters throughout the states and identify the hotspots through red dots on the map to separate the clusters

## **Materials and Methods**

#### Datasets

- There were two datasets used in this project
- The <u>Florida Covid Cases</u> dataset was sourced from ArcGIS Hub and archived by the University of South Florida Libraries
- It contained information on Covid instances and testing metrics for every Florida county
- The second dataset was sourced from the <u>Covid-19 Data Repository</u> at Johns Hopkins University
- This dataset contained detailed demographic and population data for every county in the United States
- Both of our chosen datasets contained numerical data however some records had missing data which meant they were disregarded for the purpose of this study

## **Materials and Methods**

#### - Methods

- Preprocessing the data involved removing records and features which were not relevant to the study (we made use of 30 of the 348 features in the JHU dataset)
- Using the Florida Covid dataset, we determined the infection rate per 1000 residents in each Florida county as of May 2020
- A rate of 3.52 cases per 1000 residents was one SD above the mean
- Counties with an infection rate greater than 3.52 cases per 1000 people (as of May 2020) were labeled as hotspots (24 of the 67 counties)
- The label was added to the JHU dataset allowing us to evaluate the counties by their demographic data to determine the correlation with the hotspot status
- The addition of the label made this a supervised learning exercise

## **Materials and Methods**

#### Evaluation

- The first model applied to the dataset was a Logistic Regression with the goal of identifying hotspot areas. The model was then tuned using cross validation
- A Support Vector Machine allowed us to rank which counties were the biggest Covid hotspots
- The SVM was adjusted with grid search and used to predict which areas had outstanding infection rates (above 3.52/1000)
- A Random Forest Classifier was used to identify the features with the greatest importance when assessing the target variable
- The Random Forest Model was retrained to identify hotspots based on the population data and optimized with a grid search for the best parameters

## Results

- Most Viral Areas
  - The following counties were identified as the top four Covid hotspots in Florida:
    - Dade
    - Broward
    - Palm Beach
    - Hillsborough
- Key Takeaways
  - The three chosen models had high yet varying degrees of accuracy when determining which counties had high infection rates
  - Apart from population density, the most significant factors appear to be socioeconomic conditions
  - Education level, median income and unemployment rate had the highest correlation with high Covid case rates

## **Results**



### **Hotspot Prediction Performance**

| Model               | Tuning           | Score                 |
|---------------------|------------------|-----------------------|
| Random Forest       | Grid Search      | 92.9% (93% after GS)  |
| SVM                 | Grid Search      | 78.6 % (86% after GS) |
| Logistic Regression | Cross Validation | 85.7% (75% after CV)  |

Using grid search to optimize parameters allowed the SVM to adapt to the data without underfitting or overfitting however, the LRM performs worse with cross-validation which suggests that it may not generalize well beyond the original train-test-split

The best prediction model was a RF with parameters: {'max\_depth': 3, 'min\_samples\_leaf': 10, 'min\_samples\_split': 2, 'n\_estimators': 50}

## **Conclusion and Future Work**

#### - Conclusion

- It is possible to determine which areas are Covid hotspots based on US census demographic data with a high degree of accuracy
- Future Research Questions
  - Is this research applicable to other airborne viral infections?
  - To what extent does the vector of a disease determine the regions where it spreads most rapidly?