LEnsE / Institut d'Optique Graduate School

Séance 4

SÉANCE 4 / DIODES

Pour ce TD, on pourra s'appuyer sur la fiche résumée : Diodes / LED / Photodiodes

Loi des mailles du circuit :

1.
$$V_{CC} + V_{D1} + R_p \cdot i_R - V_E = 0$$

2.
$$-V_{D2} + R_p \cdot i_R - V_e = 0$$

3.
$$V_{D2} = -V_S$$

Les éléments D_1 et D_2 ont des caractéristiques tension-courant non linéaires.

On peut modéliser les diodes de la manière suivante :

— si
$$u_D > V_F$$
, $i_d > 0$ et $u_d = V_F$

— sinon
$$i_d = 0$$

 V_F est la tension directe (forward) qui est un seuil de conduction dépendant du matériau utilisé. Cette valeur est fournie par le constructeur.

Montage

Comme il y a 2 éléments non linéaires dans le montage à étudier (et comme il y a peu de chance que les deux éléments conduisent ou soient bloquées en même temps), il y a 4 cas à traiter.

Nous allons partir d'une hypothèse sur la conduction des deux éléments et déterminer par la suite dans quelles conditions il est possible d'atteindre cet état.

 $CAS 1 D_1$ et D_2 bloquées.

On a $i_1 = i_2 = 0$. Par la loi des noeuds entre les diodes on peut aussi en déduire que $i_r = i_1 + i_2 = 0$.

Ainsi, les lois des mailles 2 et 3 donnent : $V_S = V_E$.

Pour être dans ce cas, il est impératif de vérifier les conditions suivantes : $V_{D1} < V_F$ (a) et $V_{D2} < V_F$ (b) (où V_F est la tension seuil de conduction des diodes).

Cas(a)

 $V_{D1} = V_E - V_{CC} - R_p \cdot i_R$ d'après 1

Ainsi $V_{D1} < V_F$ entraı̂ne $V_E - V_{CC} < V_F$ et donc

$$V_E < V_{CC} + V_F$$

.

Cas (b)

 $V_{D2} = -V_E + R_p \cdot i_R$ d'après 2

Ainsi $V_{D2} < V_F$ entraı̂ne $-V_E < V_F$ et donc

$$V_E > -V_F$$

.

Pour résumé, lorsque $-V_F < V_e < V_{CC} + V_F$, les deux diodes sont bloquées et $V_S = V_E$.

 $\pmb{CAS} \ \pmb{2} \ D_1$ bloquée et D_2 passante

On a $i_1 = 0$ mais $i_2 \neq 0$. Par la loi des noeuds entre les diodes on peut aussi en déduire que $i_r = -i_2$.

De plus, $V_{D2} = V_F$. D'après 3, on a alors

$$V_S = -V_F$$

Cette condition est réalisée lorsque $V_{D2} > V_F$, ce qui entraı̂ne $-V_E > V_F$ et donc

$$V_E < -V_F$$

.

On peut vérifier que dans cette condition, D_1 est bien bloquée.

 $CAS 3 D_1$ passante et D_2 bloquée

On a $i_1 \neq 0$ mais $i_2 = 0$. Par la loi des noeuds entre les diodes on peut aussi en déduire que $i_r = i_1$. De plus, $V_{D1} = V_F$. D'après 1, on a alors

$$V_S = V_{CC} + V_F$$

Cette condition est réalisée lorsque $V_{D1}>V_F,$ ce qui entraı̂ne $V_E-V_{CC}>V_F$ et donc

$$V_E > V_{CC} + V_F$$

.

On peut également vérifier que dans cette condition, D_2 est bien bloquée.

 $CAS \not A D_1$ et D_2 passantes

Ce cas est impossible, d'après les conditions calculées dans le cas 1 (si V_{CC} est strictement positif).

Mission 4.2 - Réguler une tension

Soit le montage suivant :

On donne une partie de la documentation d'une diode Zener de type 1N47xxA.

Expliquez le rôle de ce montage.

Diode Zener

Une diode Zener est un composant non linéaire, qui possède deux zones « passantes », contrairement à des diodes de signal plus classiques qui ne possède qu'une zone « passante » pour des tensions positives (voir caractéristique ci-dessous).

Il existe alors deux limites de conduction :

- si $u_d > V_F$, alors $i_d > 0$ (sens direct)
- si $u_d < -V_Z$, alors $i_d < 0$ (sens Zener)
- sinon $i_d = 0$

Montage Zener

Loi des mailles : $V_{CC} - R_0 \cdot i_0 + u_d = 0$

Ainsi : $u_d = R_0 \cdot i_0 - V_{CC}$

Cas 1 (sens direct)

Pour que la diode soit passante dans le sens direct, il faut que $u_d > V_F$, c'est à dire que $R_0 \cdot i_0 - V_{CC} > V_F$. On obtient alors, à la limite de conduction (lorsque $i_0 = 0^+$), la condition que $V_{CC} < -V_F$.

Par principe V_{CC} sera positif. Ce cas est donc impossible.

Cas 2 (sens Zener)

Pour que la diode soit passante dans le sens Zener, il faut que $u_d < -V_Z$, c'est à dire que $R_0 \cdot i_0 - V_{CC} < -V_Z$. On obtient alors, à la limite de conduction (lorsque $i_0 = 0^+$), la condition que $V_{CC} > V_Z$. Dans cette condition, $u_d = -V_Z$ et donc $V_S = -u_d = V_Z$!

Dans cette condition, la tension V_S de ce montage est (quasi)constante et égale à la tension Zener.

On obtient un régulateur de tension.

Mission 4.3 - Redresser une tension

Soient les circuits suivants :

Donnez l'allure du signal de sortie $V_S(t)$ des circuits a et b suivants pour un signal d'entrée de forme sinusoïdale telle que $V_e(t) = A \cdot \sin(\omega t)$ dans le cas d'une diode idéale. Puis dans le cas d'une diode avec une tension de seuil V_d . On supposera que $A > V_d$.

On peut également simuler ce montage (à l'aide du logiciel LTSpice par exemple). On obtient alors, dans le cas d'une diode « classique », la figure suivante - cas (a) à gauche et cas (b) à droite ($A = 10 \,\mathrm{V}$ et $f = 10 \,\mathrm{Hz}$ - en haut les tensions $V_E(t)$ et $V_S(t)$ et en bas le courant dans la diode pour le cas (a) et dans la résistance R pour le cas (b)):

Mission 4.4 - Modifier la forme d'une tension

On considère les deux montages suivants :

- 1. Dans le cas du montage de la figure (a) et d'utilisation de diodes parfaites et idéales, que doivent valoir R_1 et R_2 pour obtenir la caractéristique tracée dans le graphe I(V)?
- 2. Dans le cas du montage de la figure (b), les diodes ont pour seuil 0, 6 V. Que doivent valoir R_1, R_2 et R_3 et le nombre de diodes N (N=2 a été dessiné arbitrairement) pour obtenir la caractéristique tracée dans le graphe I(V)?

Question 1 / Montage a

 R_1 donne la pente lorsque V<0, on a alors : $R_1=\Delta V=\Delta I=10/5\cdot 10^{-3}=2\,\mathrm{k}\Omega$ De même, R_2 donne la pente lorsque V>0, on a alors : $R_2=\Delta V=\Delta I=10/2\cdot 10^{-3}=5\,\mathrm{k}\Omega$

Question 1 / Montage b

Entre $-2.4\,\mathrm{V}$ et $+2.4\,\mathrm{V}$, seule la résistance R_3 intervient, les diodes des autres branches sont bloquées. On a alors : $R3 = \Delta V = \Delta I = 2.4/10^{-3} = 2.4\,\mathrm{k}\Omega$

Pour un changement de comportement à $+2.4 \,\mathrm{V}$, il faut au total N=4 diodes en série $(4\cdot0.6 \,\mathrm{V}=2.4 \,\mathrm{V})$.

Les pentes avant $-2.4 \,\mathrm{V}$ et après $2.4 \,\mathrm{V}$ étant les mêmes, $R_1 = R_2$

De plus, dans cette zone-là, $R_1//R_3 = R_1 \cdot R_3/(R_1 + R_3) = \Delta V = \Delta I = 2.4/4 \cdot 10^{-3} = 600 \,\Omega$ Ainsi, $R_1 = 800 \,\Omega$.

Mission 4.B1 - Emettre des photons à partir d'une LED

On souhaite réaliser un montage émetteur à l'aide d'une **diode rouge** de type KingBright L-53HD. On propose d'étudier le montage suivant :

On donne une partie de la documentation :

Absolute Maximum Ratings at TA=25°C

Parameter	Bright Red				
Power dissipation	120	mW			
DC Forward Current	25	mA			
Peak Forward Current [1]	130	mA			
Reverse Voltage	5	V			
Operating/Storage Temperature	-40°C To +85°C				
Lead Solder Temperature [2]	260°C For 5 Seconds				

Notes

- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
- 2. 2mm below package base.
- 1. Cas 1 : La source de tension V_P est une **source continue**. Elle délivre une différence de potentiel de 5 V.
 - (a) Quelle est la valeur maximale du courant que la diode peut supporter dans ces conditions?
 - (b) Quelle est la valeur minimale que doit avoir R_{LED} pour respecter cette condition?
 - (c) Quel sera alors le courant moyen qui traversera la LED?
- 2. Cas 2 : La source de tension V_P est une **source impulsionnelle**. Elle délivre des impulsions de $5\,\mathrm{V}$ de durée $0.1\,\mathrm{ms}$ avec une fréquence de répétition de $1\,\mathrm{kHz}$.
 - (a) Quelle est la valeur maximale du courant que la diode peut supporter dans ces conditions?
 - (b) Quelle est la valeur minimale que doit avoir R_{LED} pour respecter cette condition?
 - (c) Quel sera alors le courant moyen qui traversera la LED?

Cas 1

Question 1.a

Une tension continu (et donc un courant continu) sera appliqué sur la LED dans les conditions décrites. Ainsi, la donnée qui nous intéresse est le courant direct maximal (ou DC Forward Current). $I_{FMAXDC} = 25 \,\mathrm{mA}$.

Question 1.b

Lorsque la diode est passante, elle est soumise à une différence de potentiel nommée tension directe ou V_F (Forward Voltage). Cette différence de potentiel est donnée pour un courant continu de 20 mA. $V_F = 2.5 \,\mathrm{V}$.

La loi des mailles donne ensuite : $V_P = R_{LED} \cdot I_F + V_F$. On a alors le courant I_F qui vaut : $I_F = \frac{V_P - V_F}{R_{LED}}$. Or on souhaite que $I_F < I_{FMAXDC}$. On obtient alors que

$$R_{LED} > \frac{V_P - V_F}{I_{FMAXDC}} = 100\,\Omega$$

Question 1.c

 $\langle I_F \rangle = I_{FMAXDC}$

Cas 2

Question 2.a

La durée de l'impulsion délivrée est $t_{on}=0.1\,\mathrm{ms}$. La période du signal est $T=1/f=1\,\mathrm{ms}$. Le rapport cyclique vaut alors $D=\frac{t_{on}}{T}=0.1$.

D'après la documentation technique, dans ces conditions d'utilisation, il est possible d'utiliser un courant plus important, la LED ayant le temps entre deux impulsions de « refroidir ». Ainsi, le courant $I_{FMAX} = 130 \,\mathrm{mA}$.

Question 2.b

De la même manière que précédemment, on a $R_{LED} > \frac{V_P - V_F}{I_{FMAX}} = 19\,\Omega$

Question 2.c

$$< I_F > = \int_0^T i(t) dt = D \cdot I_{FMAX} = 13 \,\text{mA}$$

www.vishay.com

Vishay Semiconductors

Zener Diodes

FEATURES

- Silicon planar power Zener diodes
- For use in stabilizing and clipping circuits with high power rating
- Standard Zener voltage tolerance is ± 5 %
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

PRIMARY CHARACTERISTICS					
PARAMETER	VALUE	UNIT			
V _Z range nom.	3.3 to 75	V			
Test current I _{ZT}	3.3 to 76	mA			
V _Z specification	Thermal equilibrium				
Circuit configuration	Single				

APPLICATIONS

Voltage stabilization

ORDERING INFORMATION						
DEVICE NAME	ORDERING CODE	TAPED UNITS PER REEL	MINIMUM ORDER QUANTITY			
1N4728A to 1N4761A	1N4728A to 1N4761A -series-TR	5000 per 13" reel	25 000/box			
1N4728A to 1N4761A	1N4728A to 1N4761A-series-TAP	5000 per ammopack (52 mm tape)	25 000/box			

PACKAGE							
PACKAGE NAME WEIGHT		MOLDING COMPOUND FLAMMABILITY RATING	MOISTURE SENSITIVITY LEVEL	SOLDERING CONDITIONS			
DO-41 (DO-204AL)	310 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C			

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Power dissipation	Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature	P _{tot}	1300	mW			
Zener current		I _Z	P_V/V_Z	mA			
Thermal resistance junction to ambient air	Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature	R _{thJA}	110	K/W			
Junction temperature		Tj	175	°C			
Storage temperature range		T _{stg}	-65 to +175	°C			
Forward voltage (max.)	I _F = 200 mA	V _F	1.2	V			

www.vishay.com

Vishay Semiconductors

PART NUMBER	ZENER VOLTAGE RANGE (1)	TEST CURRENT		REVERSE LEAKAGE CURRENT		DYNAMIC RESISTANCE f = 1 kHz		SURGE CURRENT (3)	REGULATOR CURRENT (2)
	V _Z at I _{ZT1}	I _{ZT1}	I _{ZT2}	I _R at V _R		Z _{ZT} at I _{ZT1} Z _{ZK} at I _{ZT2}		I _R	I _{ZM}
	V	mA	mA	μA	V	Ω		mA	mA
	NOM.			MAX.		TYP.	MAX.		MAX.
1N4728A	3.3	76	1	100	1	10	400	1380	276
1N4729A	3.6	69	1	100	1	10	400	1260	252
1N4730A	3.9	64	1	50	1	9	400	1190	234
1N4731A	4.3	58	1	10	1	9	400	1070	217
1N4732A	4.7	53	1	10	1	8	500	970	193
1N4733A	5.1	49	1	10	1	7	550	890	178
1N4734A	5.6	45	1	10	2	5	600	810	162
1N4735A	6.2	41	1	10	3	2	700	730	146
1N4736A	6.8	37	1	10	4	3.5	700	660	133
1N4737A	7.5	34	0.5	10	5	4	700	605	121
1N4738A	8.2	31	0.5	10	6	4.5	700	550	110
1N4739A	9.1	28	0.5	10	7	5	700	500	100
1N4740A	10	25	0.25	10	7.6	7	700	454	91
1N4741A	11	23	0.25	5	8.4	8	700	414	83
1N4742A	12	21	0.25	5	9.1	9	700	380	76
1N4743A	13	19	0.25	5	9.9	10	700	344	69
1N4744A	15	17	0.25	5	11.4	14	700	304	61
1N4745A	16	15.5	0.25	5	12.2	16	700	285	57
1N4746A	18	14	0.25	5	13.7	20	750	250	50
1N4747A	20	12.5	0.25	5	15.2	22	750	225	45
1N4748A	22	11.5	0.25	5	16.7	23	750	205	41
1N4749A	24	10.5	0.25	5	18.2	25	750	190	38
1N4750A	27	9.5	0.25	5	20.6	35	750	170	34
1N4751A	30	8.5	0.25	5	22.8	40	1000	150	30
1N4752A	33	7.5	0.25	5	25.1	45	1000	135	27
1N4753A	36	7	0.25	5	27.4	50	1000	125	25
1N4754A	39	6.5	0.25	5	29.7	60	1000	115	23
1N4755A	43	6	0.25	5	32.7	70	1500	110	22
1N4756A	47	5.5	0.25	5	35.8	80	1500	95	19
1N4757A	51	5	0.25	5	38.8	95	1500	90	18
1N4758A	56	4.5	0.25	5	42.6	110	2000	80	16
1N4759A	62	4	0.25	5	47.1	125	2000	70	14
1N4760A	68	3.7	0.25	5	51.7	150	2000	65	13
1N4761A	75	3.3	0.25	5	56	175	2000	60	12

Notes

⁽¹⁾ Based on DC measurement at thermal equilibrium while maintaining the lead temperature (T_L) at 30 °C + 1 °C, 9.5 mm (3/8") from the diode body

⁽²⁾ Valid provided that electrodes at a distance of 4 mm from case are kept at ambient temperature

⁽³⁾ $t_p = 10 \text{ ms.}$