Projektovanje baza podataka

Projektovanje šeme relacione BP

Anomalije ažuriranja, normalne forme, dekompozicija

Sadržaj

- Anomalije ažuriranja
- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Normalne forme i normalizacija
- Metoda dekompozicije
- Završne napomene

it

Anomalije ažuriranja

Motivacija za potrebu projektovanja šeme BP

- šema univerzalne relacije (*U*, *OGR*) se, praktično, ne može implementirati, jer
 - skupovi *U* i *OGR* su preglomazni
 (i do nekoliko hiljada obeležja i ograničenja)
 - nemoguće je (*U*, *OGR*) sagledati u celini, a to nema ni logičkog smisla
 - univerzalna relacija bi bila, takođe, prevelika
 - javljaju se anomalije ažuriranja
 - javlja se nepotrebna redundansa podataka

Vrste anomalija ažuriranja

- anomalije upisa
- anomalije brisanja
- anomalije modifikacije (redundanse)

it

Anomalije ažuriranja

Anomalije upisa

- moraju se, pri pokušaju upisa podataka o jednom entitetu, znati vrednosti obeležja svih povezanih entiteta
- potrebno je zadati sve vrednosti obeležja ključa
 - a neke od njih, međutim, nisu poznate u trenutku upisa

Anomalije brisanja

- brisanjem jedne torke gube se, na neželjen način, informacije o različitim realnim entitetima
 - koji su povezani sa entitetom kojeg reprezentuje brisana torka

it

Anomalije ažuriranja

Anomalije modifikacije (redundanse)

- modifikacija vrednosti obeležja istog realnog entiteta obavlja se na više mesta u relaciji
 - jer se nepotrebno ponavlja na više mesta u relaciji
- često, za takvu operaciju, zahteva se prolaz kroz celu relaciju

Primer

- semantika obeležja koja postoje u univerzalnom skupu obeležja
 - BRI broj indeksa
 - IME ime studenta
 - PRZ prezime studenta
 - BPI broj položenih ispita
 - OZP oznaka predmeta
 - NAP naziv predmeta
 - NAS prezime nastavnika
 - OCE ocena na ispitu

Primer

Student

BRI	IME	PRZ	BPI	OZP	NAP	NAS	OCE
159	Ivo	Ban	13	P1	Mat	Han	09
159	Ivo	Ban	13	P2	Fiz	Kun	08
013	Ana	Tot	09	P1	Mat	Pap	06
119	Eva	Kon	15	P3	Hem	Kiš	07
159	Ivo	Ban	13	P3	Hem	Kiš	10
119	Eva	Kon	15	P1	Mat	Han	09
159	Ivo	Ban	13	P4	Mat	Car	10
037	Eva	Tot	01	P4	Mat	Car	10

Primer

$$F = \{BRI \rightarrow IME + PRZ + BPI, IME + PRZ \rightarrow BRI, OZP \rightarrow NAP, NAS \rightarrow OZP + NAP, BRI + OZP \rightarrow OCE + NAS\}$$

- šema relacije Student ima četiri ključa
 - $K_1 = BRI + NAS$, $K_2 = IME + PRZ + NAS$,
 - $K_3 = BRI + OZP$, $K_4 = IME + PRZ + OZP$
- Pojam ključa
 - vrlo bitan za sagledavanje anomalija ažuriranja

- Primer nekih anomalija ažuriranja
 - Ne mogu se upisati podaci o novom studentu, dok student ne položi makar jedan ispit
 - $K_3 = BRI + OZP$
 - Brisanjem poslednjeg položenog ispita nekog studenta, gube se i osnovni podaci (*IME*, *PRZ* i *BPI*) o studentu
 - $K_3 = BRI + OZP$
 - Promena prezimena jednog studenta se mora sprovesti u više od jedne torke

Sadržaj

- Anomalije ažuriranja
- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Normalne forme i normalizacija
- Metoda dekompozicije
- Završne napomene

- U teoriji RMP polazi se od pretpostavke
 - da jedna šema relacije (*U*, *OGR*) predstavlja inicijalni model realnog sistema
- Projektovanje šeme BP
 - može se vršiti dekomponovanjem (rastavljanjem)
 šeme relacije (*U*, *OGR*) na više drugih šema relacija relacione šeme BP (*S*, *I*)

- Šema BP (S, I) treba da zadovolji sledeće kriterijume u odnosu na (U, OGR)
 - (K1)
 - da predstavlja dekompoziciju ŠUR

$$(\forall N_i \in S)(R_i \neq \emptyset) \land \cup_{N_i \in S}(R_i) = U$$

- -(K2)
 - da se garantuje spojivost bez gubitaka informacija

$$r(\mathbf{U}, \mathbf{OGR}) = \triangleright \triangleleft_{N_i \in S}(r_i(R_i))$$

- Šema BP (S, I) treba da zadovolji sledeće kriterijume u odnosu na (U, OGR)
 - -(K3)
 - skup svih ograničenja da bude ekvivalentan polaznom skupu ograničenja OGR

$$\bigcup_{N_i \in S} (O_i) \cup I \equiv OGR$$

- -(K4)
 - da se otklone sve anomalije ažuriranja
- U praksi je, često, nemoguće, ili nepotrebno strogo ispoštovati kriterijume K1-K4
 - kriterijumi se mogu, po potrebi, "oslabiti"

- Pojmovi relacionog MP, važni za projektovanje relacione šeme BP
 - funkcionalna zavisnost $X \rightarrow Y$, $XY \subseteq U$ $(\forall u, v \in r)(u[X] = v[X] \Rightarrow u[Y] = v[Y])$
 - projekcija skupa fz \boldsymbol{F} na skup obeležja $X \subseteq \boldsymbol{U}$ $\boldsymbol{F}|_X = \{V \rightarrow W \mid \boldsymbol{F}|= V \rightarrow W \land VW \subseteq X\}$
 - projekcija relacije r na skup obeležja $X \subseteq R$ $\pi_X(r(R)) = \{t[X] \mid t \in r(R)\}$
 - prirodni spoj relacija $r_1(R_1, \mathbf{F}_1)$ i $r_2(R_2, \mathbf{F}_2)$ $r_1 \triangleright \triangleleft r_2 = \{t \mid t[R_1] \in r_1 \land t[R_2] \in r_2\}$

Sadržaj

- Anomalije ažuriranja
- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Normalne forme i normalizacija
- Metoda dekompozicije
- Završne napomene

it

- Motivacija problema
 - prirodni spoj služi za dobijanje odgovora na upite koji traže spajanje baznih relacija
 - bazne relacije su dobijene od hipotetičke univerzalne relacije
 - dekomponovanjem, primenom operatora projekcije
 - prirodnim spajanjem relacija bi se morala dobiti hipotetička univerzalna relacija
 - nažalost, nije uvek tako

Primer

```
- (U, F), U = \{N, I, P\}, F = \{N \rightarrow I, P \rightarrow I\}
```

- *N* nastavnik
- / institut
- P predmet

semantika fz

- nastavnik radi na tačno jednom institutu
- predmet pripada tačno jednom institutu

Moguća dekompozicija (*U*, *F*)

Polazna relacija

Bazne relacije

r	N	1	Р
	n_1	i ₁	p_1
	n_1	i ₁	p_2
	n_2	i ₁	p_1
	n_3	i_2	p_3

r(NI)	N	1
	n_1	<i>i</i> ₁
	n_2	i ₁
	n_3	<i>i</i> ₂

r(PI)	Р	1
	p_1	<i>i</i> ₁
	p_2	i ₁
	p_3	i_2

Posmatra se upit

SELECT N, I, P

FROM Nastavnik NATURAL JOIN Predmet

(alternativno, WHERE Nastavnik.I = Predmet.I)

$r(NI) \rhd \lhd r(PI)$	N	1	Р
	n_1	i ₁	p_1
	n_1	<i>i</i> ₁	p_2
	n_2	<i>i</i> ₁	p_1
	n_2	i ₁	p_2
	n_3	i ₂	p_3

r	N	1	P
	n_1	i ₁	p_1
	n_1	<i>i</i> ₁	p_2
	n_2	i ₁	p_1
	n_3	i_2	p_3

$r(NI) \rhd \lhd r(PI)$	N	1	Р
	n_1	<i>i</i> ₁	p_1
	n_1	i ₁	p_2
	n_2	<i>i</i> ₁	p_1
	n_2	i ₁	p_2
	n_3	i ₂	p_3

Javila se lažna torka

$$(n_2, i_1, p_2)$$

- što predstavlja gubitak informacije
 - zbog viška podataka
- ne zna se koje torke predstavljaju tačne, a koje lažne podatke
 - $r(NPI) \neq r(NI) \rhd \lhd r(PI)$

Druga moguća dekompozicija (*U*, *F*)

r(NI)	N	1
	n_1	<i>i</i> ₁
	n_2	<i>i</i> ₁
	n_3	i ₂

r(NP)	N	Р
	n_1	p_1
	n_1	p_2
	n_2	p_1
	n_3	p_3

$r(NI) \rhd \lhd r(NP)$	N	1	Р
	n_1	i ₁	p_1
	n_1	i ₁	p_2
	n_2	i ₁	p_1
	n_3	i ₂	p_3

r	N	1	Р
	n_1	i ₁	p_1
	n_1	<i>i</i> ₁	p_2
	n_2	i ₁	p_1
	n_3	i_2	p_3

$r(NI) \rhd \lhd r(NP)$	N	1	Р
	n_1	i ₁	p_1
	n_1	<i>i</i> ₁	p_2
	n_2	i ₁	p_1
	n_3	i ₂	p_3

- Spojivost bez gubitaka je, u slučaju primene drugog načina dekomponovanja, očuvana
- Zapažanje
 - ključ šeme relacije Nastavnik sadržan je u šemi relacije Povera:

$$N \subseteq NI \cap NP$$

it

- Pravilo za dekomponovanje i spajanje bez gubitaka za dve šeme relacije
 - pri projektovanju šeme BP, polazni (*U*, *F*) treba dekomponovati na šeme relacije

$$(R_1, F_1) i (R_2, F_2)$$

- tako da bude zadovoljeno
 - $R_1 \cup R_2 = U$
 - $K_1 \subseteq R_1 \cap R_2$ ili $K_2 \subseteq R_1 \cap R_2$ - K_1 - ključ šeme relacije (R_1, F_1) , K_2 - ključ šeme relacije (R_2, F_2)
 - jedna šema relacije mora sadržati ključ druge šeme relacije
- relacije nad (R_1, F_1) i (R_2, F_2) se smeju spajati samo ako važi

$$K_1 \subseteq R_1 \cap R_2$$
 ili $K_2 \subseteq R_1 \cap R_2$

Teorema o spojivosti bez gubitaka

- dati su (\boldsymbol{U} , \boldsymbol{F}), (R_1 , F_1) i (R_2 , F_2), tako da je
 - $R_1 \cup R_2 = U$
 - $F_1 = F|_{R1} i F_2 = F|_{R2}$
- ⊳ \triangleleft (R_1 , R_2) označava zavisnost spoja
 - kojom se garantuje spojivost bez gubitaka za (*U*, *F*), (*R*₁, *F*₁) i (*R*₂, *F*₂)
- važi ekvivalencija
 - $F \models \triangleright \triangleleft (R_1, R_2)$ akko
 - $\mathbf{F} \models R_1 \cap R_2 \rightarrow R_1 \setminus R_2 \vee \mathbf{F} \models R_1 \cap R_2 \rightarrow R_2 \setminus R_1$

Sadržaj

- Anomalije ažuriranja
- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Normalne forme i normalizacija
- Metoda dekompozicije
- Završne napomene

Očuvanje skupa ograničenja

Dekompozicija (*U*, *F*)

- očuvava spojivost bez gubitaka informacija, ali
- ne očuvava polazni skup fz

Očuvanje skupa ograničenja

Dekompozicija (*U*, *F*)

- očuvava polazni skup fz, ali
- ne očuvava spojivost bez gubitaka informacija

Očuvanje skupa ograničenja

Treće rešenje: dekompozicija (*U*, *F*)

- očuvava polazni skup fz i
- očuvava spojivost bez gubitaka informacija

Sadržaj

- Anomalije ažuriranja
- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Normalne forme i normalizacija
- Metoda dekompozicije
- Završne napomene

Normalne forme i normalizacija

- Moguće je izbegavanje, ili u idealnom slučaju, potpuno uklanjanje anomalija ažuriranja
- Šema BP treba da zadovolji kriterijum odgovarajuće normalne forme
- Postoji sedam normalnih formi
 - 1NF, 2NF, 3NF, BCNF
 - 4NF, 5NF (PJNF), 6NF (DKNF)
- Za praksu su najbitnije prve četiri
 - temelje se na pojmovima fz i ključa

Normalne forme i normalizacija

- Prva normalna forma (1NF)
 - šema relacije N(R, O) je u 1NF ako
 - R sadrži samo elementarna obeležja
 - za svaku pojavu r(N) važi da su sve vrednosti svih obeležja iz R atomarne
 - ne predstavljaju niz, ili skup drugih vrednosti iz domena obeležja
- Šema BP (S, I) je u 1NF ako su sve šeme relacija skupa S u 1NF

Normalne forme i normalizacija

Primer

– 1NF, ¬1NF

r	N	1	Р
	n_1	i ₁	p_1
	n_1	i ₁	p_2
	n_2	i ₁	p_1
	n_3	i ₂	p_3

Normalne forme i normalizacija

Druga normalna forma (2NF)

- šema relacije N(R, F) sa skupom ključeva K je u 2NF ako je
 - u 1NF i
 - ako je svako neprimarno obeležje u potpunoj funkcionalnoj zavisnosti od svakog ključa

$$(\forall A \in R \setminus Kpr)(\forall X \in K)(\forall Y \subset X)(F \neq Y \rightarrow A)$$

 $-\mathit{Kpr} = \bigcup_{X \in \mathit{K}}(\mathit{K})$ - skup primarnih obeležja šeme relacije N

 Šema BP (S, I) je u 2NF ako su sve šeme relacija skupa S u 2NF

- Primer
 - 1NF i –2NF

$$Student(\{BRI, PRZ, IME, BPI, OZP, NAP\},\\ \{BRI \rightarrow PRZ + IME + BPI, OZP \rightarrow NAP\})$$

- *K* = {*BRI*+*OZP*}
- BRI+OZP→NAP
 - NAP neprimarno obeležje
 - nepotpuna fz
 - sledi iz OZP→NAP
- BRI+OZP→PRZ+IME+BPI
 - PRZ, IME, BPI neprimarna obeležja
 - nepotpuna fz
 - sledi iz BRI→PRZ+IME+BPI

Normalne forme i normalizacija

Treća normalna forma (3NF)

- šema relacije N(R, F) sa skupom ključeva K je u 3NF ako je
 - u 1NF i
 - ako je svako neprimarno obeležje samo u netranzitivnoj funkcionalnoj zavisnosti od svakog ključa

$$(\forall A \in R \setminus Kpr)(\forall X \in K)(\forall Y \subseteq R \setminus A)(F \mid Y \rightarrow A \Rightarrow F \mid Y \rightarrow X)$$

 $-\mathit{Kpr} = \bigcup_{K \in \mathcal{R}} (K)$ - skup primarnih obeležja šeme relacije N

 Šema BP (S, I) je u 3NF ako su sve šeme relacija skupa S u 3NF

Normalne forme i normalizacija

- Primer
 - 2NF i ¬3NF

Student({BRI, PRZ, IME, SOD, NAQ}, $\{BRI \rightarrow PRZ + ME + SOD, SOD \rightarrow NAO\}$)

- $K = \{BRI\}$
- BRI→NAO
 - tranzitivna FZ
 - BRI je ključ
 - NAO je neprimarno obeležje
 - sledi iz BRI→SOD i SOD→NAO i $\neg(SOD$ →BRI)

Normalne forme i normalizacija

- Boyce-Codd normalna forma (BCNF)
 - šema relacije N(R, F) sa skupom ključeva K je u BCNF ako je
 - u 1NF i
 - svaka netrivijalna funkcionalna zavisnost bilo kog atributa mora sadržati ključ s leve strane

$$(\forall A \in R)(\forall Y \subseteq R \setminus A)(F |= Y \rightarrow A \Rightarrow (\exists X \in K)(X \subseteq Y))$$

 Šema BP (S, I) je u BCNF ako su sve šeme relacija skupa S u BCNF

Normalne forme i normalizacija

- Primer
 - 3NF i ¬BCNF

Poveravanje({OZP, NAP, OZN}, {OZP→NAP, NAP→OZP})

- *K* = {*OZP*+*OZN*, *NAP*+*OZN*}
- OZP+OZN→NAP
 - OZP+OZN je ključ
 - nepotpuna fz
 - sledi iz OZP→NAP

- Odnos uslova normalnih formi 1NF BCNF
 - 1NF je potreban uslov za sve više normalne forme
 - ugrađen u definicije uslova svih ostalih normalnih formi
 - $-3NF \Rightarrow 2NF$
 - dokaz
 - $\neg 2NF \Rightarrow \neg 3NF$
 - $-\neg 2\mathsf{NF} \Rightarrow (\exists A \in R \setminus \mathit{Kpr})(\exists X \in \mathit{K})(\exists Y \subset \mathit{X})(F \models Y \rightarrow A)$
 - $-\Rightarrow$ Za takve X, Y i A važi: $X \rightarrow Y$, $Y \rightarrow A$ i $\neg(Y \rightarrow X)$
 - $-\Rightarrow X \rightarrow A$ je tranzitivna fz od ključa $\Rightarrow \neg 3NF$
 - komentari, za sve netrivijalne fz iz F⁺
 - 2NF i 3NF zabranjuju postojanje nepotpunih fz neprimarnih obeležja od ključa
 - 2NF dozvoljava postojanje fz između neprimarnih obeležja
 - 3NF zabranjuje postojanje fz između neprimarnih obeležja
 - » sve fz neprimarnih obeležja sadrže ključ s leve strane

- Odnos uslova normalnih formi 1NF BCNF
 - Alternativna (ekvivalentna) formulacija uslova 3NF
 - 1NF i
 - svaka netrivijalna funkcionalna zavisnost bilo kog neprimarnog atributa mora sadržati ključ s leve strane

$$(\forall A \in R \setminus Kpr)(\forall Y \subseteq R \setminus \{A\})(F |= Y \rightarrow A \Rightarrow (\exists X \in K)(X \subseteq Y))$$

- dokaz, obratom po kontrapozicji (⇒)
 - $-A \in R \setminus Kpr, Y \subseteq R \setminus A$, važi $F \models Y \rightarrow A \land (\forall X \in K)(X \not\subseteq Y)$
 - $\Rightarrow (\forall X \in K)(F \mid= X \rightarrow Y \land F \mid= Y \rightarrow A \land F \not\models Y \rightarrow X)$
 - » inače bi Y sadržao ključ, što je suprotno $(\forall X \in K)(X \not\subseteq Y)$
 - $\Rightarrow F = X \rightarrow A$ je tranzitivna fz, što je kontradiktorno def. 3NF
- dokaz, obratom po kontrapozicji (⇐)
 - $-A \in R \setminus Kpr, Y \subseteq R \setminus A$, važi $F \models Y \rightarrow A \land F \not\models Y \rightarrow X$
 - $-\Rightarrow A \in R \setminus Kpr, Y \subseteq R \setminus \{A\}, \text{ važi } F \models Y \rightarrow A \land (\forall X \in K)(X \not\subseteq Y)$
 - \Rightarrow postoji fz $Y \rightarrow A$, takva da Y ne sadrži ni jedan ključ kontrad.

- Odnos uslova normalnih formi 1NF BCNF
 - BCNF \Rightarrow 3NF
 - $(\forall A \in R)(\forall Y \subseteq R \setminus A)(F \mid Y \to A \Rightarrow (\exists X \in K)(X \subseteq Y))$
 - $\Rightarrow (\forall A \in R \setminus Kpr)(\forall Y \subseteq R \setminus \{A\})(F \models Y \rightarrow A \Rightarrow (\exists X \in K)(X \subseteq Y))$ » pošto je R \ Kpr ⊆ R
 - → 3NF, po prethodnom tvrđenju
 - komentari, za sve netrivijalne fz iz F⁺
 - 2NF zabranjuje postojanje nepotpunih fz neprimarnih obeležja od ključa
 - 2NF dozvoljava postojanje fz između neprimarnih obeležja
 - 3NF zabranjuje postojanje fz između neprimarnih obeležja
 » sve fz neprimarnih obeležja sadrže ključ s leve strane
 - 3NF dozvoljava postojanje fz primarnih obeležja, koje ne sadrže ključ s leve strane
 - BCNF zabranjuje postojanje fz koje ne sadrže ključ s leve strane

Normalne forme i normalizacija

Odnos uslova normalnih formi 1NF - BCNF

Zabrane / Normalne forme	1NF	2NF	3NF	BCNF
nizovi ili skupovi vrednosti obeležja, umesto jedne vrednosti iz domena	NE	NE	NE	NE
nepotpune fz neprimarnih obeležja od ključa iz <i>F</i> ⁺	DA	NE	NE	NE
netrivijalne fz neprimarnih obeležja koje ne sadrže ključ s leve strane – tranzitivne fz neprimarnih obeležja iz <i>F</i> ⁺	DA	DA	NE	NE
netrivijalne fz iz <i>F</i> ⁺ koje ne sadrže ključ s leve strane	DA	DA	DA	NE

Normalne forme i normalizacija

Četvrta normalna forma (4NF)

- šema relacije N(R, C), $C = F \cup MV$, sa skupom ključeva K je u 4NF ako je
 - u 1NF i
 - svaka netrivijalna višeznačna zavisnost mora sadržati ključ s leve strane

$$(\forall Z \subseteq R)(\forall Y \subset R \setminus Z)(C \models Y \rightarrow \rightarrow Z \Rightarrow (\exists X \in K)(X \subseteq Y))$$

$$\Rightarrow X \rightarrow \rightarrow Y \text{ je trivijalna akko } Y \subseteq X \lor XY = R$$

 Šema BP (S, I) je u 4NF ako su sve šeme relacija skupa S u 4NF

Normalne forme i normalizacija

- Primer
 - BCNF i -4NF

NastPredDep({OZP, OZN, OZD}, {OZP \rightarrow } OZD})
• $K = \{OZP + OZN + OZD\}$

- $OZP \rightarrow \rightarrow OZD$
 - OZP+OZN+OZD je ključ
 - posledično važi i OZP→→ OZN
 - OZP ne sadrži ključ

- Odnos uslova normalnih formi BCNF 4NF
 - $-4NF \Rightarrow BCNF$
 - dokaz
 - $-\neg BCNF \Rightarrow \neg 4NF$
 - $-\neg\mathsf{BCNF} \Rightarrow (\exists A \in R)(\exists Y \subseteq R \setminus \{A\})(F \models Y \rightarrow A \land (\forall X \in K)(X \not\subseteq Y))$
 - ⇒ Za takve X, Y i A važi: Y → A i X $\not\subseteq$ Y
 - $-\Rightarrow F \models Y \rightarrow A \Rightarrow F \models Y \rightarrow \rightarrow A \Rightarrow C \models Y \rightarrow \rightarrow A$
 - $\Rightarrow (\exists A \in R)(\exists Y \subseteq R \setminus \{A\})(C \models Y \rightarrow \rightarrow A \land (\forall X \in K)(X \not\subseteq Y))$
 - $a) Y \subset R \setminus \{A\} \lor b) Y = R \setminus \{A\}$
 - $a) \Rightarrow (\exists A \in R)(\exists Y \subset R \setminus \{A\})(C \models Y \rightarrow \rightarrow A \land (\forall X \in K)(X \not\subseteq Y))$
 - ⇒ ¬4NF
 - b) $Y = R \setminus \{A\}$ i $X \nsubseteq Y \Rightarrow X = R$
 - $-X = R i F \models R \setminus \{A\} \rightarrow A \Rightarrow X \neq R \Rightarrow \square \text{ (kontradikcija)}$
 - $\Rightarrow \neg BCNF \Rightarrow \exists Y \subset R \setminus \{A\}, F \models Y \rightarrow A \land (\forall X \in K)(X \not\subseteq Y))$

- Odnos uslova normalnih formi BCNF 4NF
 - Alternativna (ekvivalentna) formulacija uslova 4NF
 - BCNF i
 - svaka višeznačna zavisnost je posledica skupa funkcionalnih zavisnosti

$$\mathsf{BCNF} \land (\forall Y \rightarrow \rightarrow Z \in MV)(F |= Y \rightarrow \rightarrow Z) \Leftrightarrow \mathsf{4NF}$$

- dokaz (⇒)
 - $(\forall Y \rightarrow \rightarrow Z \in MV)(F \mid= Y \rightarrow \rightarrow Z) \Rightarrow F \cup MV \equiv F \Rightarrow$
 - $\Rightarrow N(R, C) \equiv N(R, F), N(R, F) \land BCNF \Rightarrow 4NF$
- dokaz, obratom po kontrapoziciji (⇐)
 - $-\neg \mathsf{BCNF} \lor (\exists Y \rightarrow \rightarrow Z \in MV)(F \not\models Y \rightarrow \rightarrow Z)$
 - ¬BCNF ⇒ ¬4NF, ¬4NF ∧ 4NF ⇒ \square ⇒ BCNF mora važiti
 - $Y \rightarrow \rightarrow Z \in MV \land F \neq Y \rightarrow \rightarrow Z$
 - $4NF \land C \models Y \rightarrow Z \Rightarrow (\exists X \in K)(X \subseteq Y) \Rightarrow F \models X \rightarrow Z \Rightarrow$
 - $\Rightarrow F \models Y \rightarrow Z \Rightarrow F \models Y \rightarrow \rightarrow Z, F \not\models Y \rightarrow \rightarrow Z \Rightarrow \Box \text{ (kontradikcija)}$

Normalne forme i normalizacija

- Peta normalna forma (5NF)
- Normalna forma projekcije i spoja (PJNF)
 - šema relacije N(R, C), $C = F \cup JD$, sa skupom ključeva K je u 5NF (PJNF) ako je
 - u 1NF i
 - svaka netrivijalna zavisnost spoja, takva da je ∪_{i=1}^k(X_i)= R, mora biti posledica zavisnosti ključa iz K

» ⊳
$$\triangleleft(X_1,...,X_k)$$
 je trivijalna akko $(\exists i \in \{1,...,k\})(X_i = R)$

$$(\forall \triangleright \triangleleft (X_1,...,X_k))((\forall i \in \{1,...,k\})(X_i \neq R) \land C \models \triangleright \triangleleft (X_1,...,X_k) \Rightarrow (\forall X_i \in \{X_1,...,X_k\})(\exists X_j \in \{X_1,...,X_k\})((X_i \neq X_j) \land (X_i \cap X_j \in K))$$

 Šema BP (S, I) je u 5NF ako su sve šeme relacija skupa S u 5NF

- Primer
 - 4NF i ¬5NF

NastPredDep(
$$\{OZP, OZN, OZD\}$$
, $\{ \triangleright \triangleleft (OZP+OZN, OZN+OZD, OZP+OZD) \} \}$

- *K* = {*OZP*+*OZN*+*OZD*}
- ⊳⊲(*OZP*+*OZN*, *OZN*+*OZD*, *OZP*+*OZD*)
 - OZP+OZN+OZD je ključ
 - OZP, OZN i OZD ne sadrže ključ

Normalne forme i normalizacija

- Odnos uslova normalnih formi 4NF PJNF
 - PJNF (5NF) \Rightarrow 4NF
 - dokaz: $\neg 4NF \Rightarrow \neg 5NF \mid X \rightarrow Y \equiv \triangleright \triangleleft (XY,...,X(R \setminus Y))$
- Odnos uslova normalnih formi BCNF PJNF
 - Alternativna (ekvivalentna) formulacija uslova 5NF
 - BCNF i
 - svaka zavisnost spoja je posledica skupa funkcionalnih zavisnosti

$$\mathsf{BCNF} \land (\forall \rhd \lhd (X_1, ..., X_k) \in JD)(F | = \rhd \lhd (X_1, ..., X_k)) \Leftrightarrow \mathsf{5NF}$$

Posledica

$$\mathsf{5NF} \Leftrightarrow (\forall X_i \in \{X_1, \dots, X_k\})(\exists X \in K)(X \subseteq X_i)$$

- Šesta normalna forma (6NF)
- Normalna forma domena i ključeva (DKNF)
 - šema relacije N(R, C), sa skupom ključeva K i skupom ograničenja domena D je u DKNF ako je
 - u 1NF i
 - svaka zavisnost koja je posledica skupa ograničenja C mora biti posledica skupa zavisnosti ključa K i ograničenja domena D

$$(\forall c)(C \models c \Rightarrow K \cup D \models c)$$

- Šema BP (S, I) je u 6NF ako su sve šeme relacija skupa S u 6NF
 - $-6NF (DKNF) \Rightarrow 5NF (PJNF)$

Normalne forme i normalizacija

- Primer
 - PJNF i ¬DKNF

Student($\{SID, PRZ, IME, AVG, KLS\}, \{SID \rightarrow R, id(R)\}$)

- $K = \{SID\}$, potencijalno može i $AVG \rightarrow KLS$, narušenje 3NF
- *id*(*R*) = ({*id*(*N*, *A*) | *A*∈*R*}, *Uslov*), *Uslov* ::=
 - $-AVG \in [6.00, 7.50] \Rightarrow KLS = 'dovoljan' \land$
 - $-AVG \in [7.51, 8.50] \Rightarrow KLS = 'dobar' \land$
 - $-AVG \in [8.51, 9.50] \Rightarrow KLS = \text{`vrlo dobar'} \land$
 - -AVG ∈ [9.51, 10.00] \Rightarrow KLS = 'odličan'
- K ∪ {id(N, A) | A∈R} |≠ Uslov

Student({SID, PRZ, IME, AVG}, {SID}), DKNF KlasifAvg({KLS, AVGMin, AVGMax}, {AVGMin, KLS}), ¬DKNF

Alternativno: KlasifAvg({KLS, AVGMin}, {AVGMin, KLS}), DKNF

Normalne forme i normalizacija

Normalizacija

- postupak projektovanja takvog skupa šema relacija
 - kod kojeg su u celosti, ili delimično, ostvareni osnovni projektantski kriterijumi (K1-K4) i
 - zadovoljena je odgovarajuća normalna forma

- Dve metode normalizacije
 - Metoda dekompozicije
 - Metoda sinteze

Normalne forme i normalizacija

Metoda dekompozicije

- postupak sistematskog rastavljanja šeme relacije na po dve šeme relacije
- postupak započinje od univerzalne šeme relacije
- postupak završava kada se obezbedi da se anomalije ažuriranja u potpunosti, ili u traženoj meri izbegnu
 - postizanjem željene normalne forme (do 5NF)

Normalne forme i normalizacija

Metoda dekompozicije

- rastavljanje na osnovu fz (do BCNF) i drugih zavisnosti do viših normalnih formi
 - višeznačnih zavisnosti, do 4NF
 - zavisnosti spoja, do 5NF
- garantuje se očuvanje polaznog skupa obeležja
- garantuje se obezbeđenje spoja bez gubitaka
- ne garantuje se očuvanje polaznog skupa fz
 - može se garantovati očuvanje polaznog skupa fz, do zadovoljenja 3NF
 - može doći do narušavanja polaznog skupa fz, pri prelasku iz 3NF u BCNF

Normalne forme i normalizacija

Metoda sinteze

- postupak sintetizovanja ("sklapanja") skupa šema relacija, na osnovu definisanog skupa fz i skupa obeležja
- može se garantovati očuvanje polaznog skupa obeležja
- može se garantovati obezbeđenje spoja bez gubitaka, ukoliko je to potrebno
- garantuje se očuvanje polaznog skupa fz
- garantuje se očuvanje uslova 3NF
 - anomalije ažuriranja izbegavaju se do nivoa, definisanog uslovom 3NF

Sadržaj

- Anomalije ažuriranja
- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Normalne forme i normalizacija
- Metoda dekompozicije
- Završne napomene

Korak rastavljanja pri dekompoziciji

- postupak obezbeđuje spoj bez gubitaka, jer
 - X je sigurno superključ u (R_1, F_1) i prenet je u $R_2 \Rightarrow$
 - ključ od (R₁, F₁) sigurno je prenet u R₂

Kriterijumi izbora fz X→Y∈F

- po kojoj se realizuje jedan korak rastavljanja
 - (A) da je X→Y netrivijalna fz, takva da ne obuhvata ceo U
 - obezbeđenje progresa algoritma

$$(Y \subseteq X) \land (XY \subset U)$$

- (B) da je X→Y na kraju mogućih "lanaca izvođenja"
 - da se, u budućim koracima rastavljanja, obezbede što bolji uslovi za očuvanje polaznog skupa fz

$$(\forall W \rightarrow V \in F)((X)_{F}^{+} \neq (W)_{F}^{+} \Rightarrow X \rightarrow W \notin F^{+})$$

(C) da se očuvava ekvivalentnost s polaznim skupom fz F

$$F \equiv (F|_{XY} \cup F|_{(U \setminus Y)X})$$

- Strategije izbora fz $X \rightarrow Y \in F$
 - idealno je da se postigne ispunjenje svih uslova, ali to nije uvek moguće
 - S1: Idealna strategija
 - (A) ∧ (B) ∧ (C)
 - S2: Strategija očuvanja polaznog skupa fz
 - (A) ∧ (C)
 - S3: Strategija obezbeđenja progresa algoritma
 - (A) ∧ (B)

Primer

 analiza šeme relacije Student i njena dekompozicija do BCNF

$$F = \{BRI \rightarrow IME + PRZ + BPI, IME + PRZ \rightarrow BRI, OZP \rightarrow NAP, NAS \rightarrow OZP + NAP, BRI + OZP \rightarrow OCE + NAS\}$$

- Ključ: BRI+OZP
- BRI+OZP→IME+PRZ+BPI
 - nepotpuna fz neprimarnog obeležja od ključa
- šema relacije Student nije u 2NF

Metoda dekompozicije

- Dekompozicija polazne šeme relacije Student
 - na osnovu fz BRI→IME+PRZ+BPI
 - Student({BRI, IME, PRZ, BPI},{BRI→IME+PRZ+BPI, IME+PRZ→BRI}),
 - *K* = {*BRI*, *IME*+*PRZ*}

(BCNF)

- Ostalo1({BRI, OZP, NAP, NAS, OCE}, {OZP→NAP, BRI+OZP→OCE+NAS, NAS→OZP+NAP})
 - *K* = {*BRI*+*OZP*, *BRI*+*NAS*}
- primenjena strategija S1
 - polazni skup fz F je očuvan

Analiza šeme relacije Ostalo 1

$$F_1 = \{OZP \rightarrow NAP, NAS \rightarrow OZP + NAP,$$

 $BRI+OZP \rightarrow OCE+NAS$

- Ključ: BRI+OZP
- BRI+OZP→NAP
 - nepotpuna fz neprimarnog obeležja od ključa
- šema relacije Ostalo1 nije u 2NF

- Dekompozicija šeme relacije Ostalo 1
 - na osnovu fz OZP→NAP
 - Predmet({OZP, NAP}, {OZP→NAP})
 - K = { *OZP*}

(BCNF)

- Ostalo2({BRI, OZP, NAS, OCE}, {BRI+OZP→OCE+NAS, NAS→OZP})
 - *K* = {*BRI*+*OZP*, *BRI*+*NAS*}
- primenjena strategija S1
 - polazni skup fz F₁ je očuvan ⇒ očuvan polazni skup fz F

Analiza šeme relacije Ostalo2

$$F_2 = \{NAS \rightarrow OZP, BRI + OZP \rightarrow OCE + NAS\}$$

- Ključevi: BRI+OZP, BRI+NAS
- BRI+NAS→OZP
 - nepotpuna fz od ključa
- šema relacije Ostalo2 je u 3NF
- šema relacije Ostalo2 nije u BCNF

- Dekompozicija šeme relacije Ostalo2
 - na osnovu fz BRI+OZP→OCE
 - $Ispit(\{BRI, OZP, OCE\}, \{BRI+OZP\rightarrow OCE\})$
 - *K* = {*BRI*+*OZP*}

(BCNF)

- Ostalo3({BRI, OZP, NAS},
 - $\{BRI+OZP\rightarrow NAS, NAS\rightarrow OZP\})$
 - *K* = {*BRI*+*OZP*, *BRI*+*NAS*}
- primenjena strategija S1
 - polazni skup fz F₂ je očuvan ⇒ očuvan polazni skup fz F₁

Analiza šeme relacije Ostalo3

$$F_3 = \{NAS \rightarrow OZP, BRI + OZP \rightarrow NAS\}$$

- Ključevi: BRI+OZP, BRI+NAS
- BRI+NAS→OZP
 - nepotpuna fz od ključa
- šema relacije Ostalo3 je u 3NF
- šema relacije Ostalo3 nije u BCNF

- Dekompozicija šeme relacije Ostalo3
 - na osnovu fz NAS→OZP
 - Povera({NAS, OZP}, {NAS→OZP})
 - *K* = {*NAS*}

(BCNF)

- Pohađa({BRI, NAS}, {})
 - *K* = {*BRI*+*NAS*}

(BCNF)

- primenjena strategija S3
 - Skup fz F₃ nije očuvan ⇒ izgubljena fz BRI+OZP→NAS

- Dobijen je skup šema relacija u BCNF
 - u notaciji N(R, K)
 - Student({BRI, IME, PRZ, BPI}, {BRI, IME+PRZ})
 - Predmet({ OZP, NAP}, { OZP})
 - Ispit({BRI, OZP, OCE}, {BRI+OZP})
 - Povera({NAS, OZP}, {NAS})
 - Pohađa({BRI, NAS}, {BRI+NAS})

- Objedinjavanje šema relacija sa ekvivalentnim ključevima
 - može dovesti do degradacije postignute normalne forme
 - šeme relacije sa ekvivalentnim ključevima
 - *Ispit*({*BRI*, *OZP*, *OCE*}, {*BRI*+*OZP*}) i
 - Pohađa({BRI, NAS}, {BRI+NAS})
 - objedinjuju se u jednu
 - *Ispit*({*BRI*, *OZP*, *NAS*, *OCE*}, {*BRI*+*OZP*, *BRI*+*NAS*})

(3NF)

- Nadoknađena je, prethodno izgubljena fz
 - BRI+OZP→NAS

- Konačan skup šema relacija u 3NF
 - Student({BRI, IME, PRZ, BPI}, {BRI, IME+PRZ}) (BCNF)
 - Predmet({ OZP, NAP}, { OZP})

(BCNF)

- Povera({NAS, OZP}, {NAS})

(BCNF)

Dekompozicija polazne, univerzalne relacije

Student

BRI	IME	PRZ	BPI	OZP	NAP	NAS	OCE
159	Ivo	Ban	13	P1	Mat	Han	09
159	Ivo	Ban	13	P2	Fiz	Kun	08
013	Ana	Tot	09	P1	Mat	Pap	06
119	Eva	Kon	15	P3	Hem	Kiš	07
159	Ivo	Ban	13	P3	Hem	Kiš	10
119	Eva	Kon	15	P1	Mat	Han	09
159	Ivo	Ban	13	P4	Mat	Car	10
037	Eva	Tot	01	P4	Mat	Car	10

Dekompozicija polazne, univerzalne relacije

BRI	IME	PRZ	BPI
159	Ivo	Ban	13
013	Ana	Tot	09
119	Eva	Kon	15
037	Eva	Tot	01

Predmet

OZP	NAP	
P1	Mat	
P2	Fiz	
P3	Hem	
P4	Mat	

Povera

NAS	OZP	
Han	P1	
Kun	P2	
Pap	P1	
Kiš	P3	
Car	P4	

Student

Ispit

BRI	OZP	NAS	OCE
159	P1	Han	09
159	P2	Kun	08
013	P1	Pap	06
119	P3	Kiš	07
159	P3	Kiš	10
119	P1	Han	09
159	P4	Car	10
037	P4	Car	10

- Analiza anomalija ažuriranja
 - pokazuje se da su one, uglavnom, izbegnute
- Kreiranje šeme BP
 - definisanje međurelacionih ograničenja
 - Povera[OZP] ⊆ Predmet[OZP]
 - Ispit[BRI] ⊆ Student[BRI]
 - Ispit[(NAS, OZP)] ⊆ Povera[(NAS, OZP)]
 - obezbeđuje i očuvanje fz NAS→OZP u šemi relacije Ispit

Sadržaj

- Anomalije ažuriranja
- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Normalne forme i normalizacija
- Metoda dekompozicije
- Završne napomene

Završne napomene

- Kada je broj obeležja mali (do 20) primena normalizacije se čini nepotrebnom
 - jer bi iste rezultate dao i intuitivni ekpertski pristup
- Kada je broj obeležja veliki
 - manuelna primena normalizacije je teška i podložna greškama
 - ekspertski pristup daje teško predvidive rezultate
- Rešenje
 - primena CASE / MDSD alata
 - projektovanje formalnih specifikacija konceptualne šeme BP
 - niz transformacija formalnih specifikacija za dolazak do
 - implementacione šeme BP
 - interne šeme BP / opisa šeme BP u jeziku ciljnog SUBP

Sadržaj

- Anomalije ažuriranja
- Osnovni projektantski kriterijumi
- Spojivost bez gubitaka
- Očuvanje skupa ograničenja
- Normalne forme i normalizacija
- Metoda dekompozicije
- Završne napomene

Pitanja i komentari

Projektovanje šeme relacione BP

Anomalije ažuriranja, normalne forme, dekompozicija