Progressive wave = An oscillation that travels through matter or a vacuum and transfers energy

Transverse wave = Progressive wave where oscillations are perpendicular to direction of energy transfer

Longitudinal wave = A progressive wave where oscillations are parallel to the direction of energy transfer

Displacement = Distance from the equilibrium position

Amplitude = Maximum displacement from the equilibrium position

Wavelength = Minimum distance between two points, in phase on adjacent waves

Period = Time taken for one oscillation or wave to travel 1λ past a given point

Frequency = Number of wavelengths passing a point per unit time

Wave speed = Distance travelled by the wave per unit time

Phase difference = Difference between displacements of particles along a wave

Path difference = Difference in the distance travelled

Reflection = When a wave changes direction at a boundary between 2 different media, remaining in the original medium

Wavefront = A line joining points of the wave which are in phase

Refraction = When wave changes direction as it changes speed when passes from one medium to another

Diffraction = When waves pass through a gap or travel around an obstacle and spread

Polarisation = Particles only oscillating in one direction, the wave being confined to a single plane

Partially polarised = When transverse waves reflect off a surface (so more waves are oscillating in one particular plane)

Intensity = Radiant power passing through a surface per unit area

EM Waves = Electric and magnetic fields oscillating at right angles to each other

Refractive index = Angle at which light is bent depending on relative speed of light

Total internal reflection = All light reflecting back into the medium

Principle of superposition = When 2 waves meet at a point, resultant displacement there is equal to the sum of the displacements of the individual waves

Interference = When 2 waves (progressive) continuously pass through each other, superpose, and produce a resultant wave

Coherence = Waves from 2 sources having a constant phase difference

Stationary wave = When 2 waves with the same frequency and ideally amplitude superpose, travelling in opposite directions

Node = A point on stationary wave where displacement is permanently 0

Antinode = The point of greatest amplitude on stationary wave

Fundamental frequency = The minimum frequency of a stationary wave (string)

Harmonics	n_	Ax	100	AND A STREET
1 0 o f b 1 = 2L	Central max.	0	0	Constructive
2 or $2f_0$ $\lambda_1 = \frac{\lambda_1}{2}$	1st min'	上入	TC	$\Delta \phi = 2n\pi$
2 10 M2 = 1	Ist max.	λ	2π	$\Delta x = n\lambda$
3 or 3 f. $\lambda_3 = \frac{\lambda_1}{3}$	2nd min	327	3π	Destructive
4 $\lambda_4 = \frac{\lambda_1}{4}$	2nd max			$\Delta \phi = (2n+1)\pi$ $\Delta x = (n+\frac{1}{2}) \lambda$
$v = f\lambda$ $\lambda = \frac{\alpha x}{\rho}$ $n\lambda = d\sin\theta$ $f = \frac{1}{\tau}$ $n_1 \sin\theta_1 = n_2 \sin\theta_2$ $n = \frac{c}{v}$				
Intensity & Amplitude] a < D [I	$=\frac{P}{4\pi r^2}=\frac{P}{A}$	Di Law	= 8, (neflection)	$\phi = \frac{y}{x} \times 360,$

