WHAT IS CLAIMED IS:

1. A compound of the formula

$$\begin{array}{c|c} R_3 & R_2 & H_2 \\ \hline R_5 & PR_4 & \end{array}$$

wherein the bond of atoms C_{22} and C_{23} is a single or double bond;

m is 0 or 1;

n is 0, 1 or 2;

p is 0 or 1;

R₁ is C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl or C₂-C₁₂-alkenyl;

 R_2 is H, C_1 - C_{12} -alkyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -hydroxyalkyl, OH, halogen, -N₃, SCN, NO₂, CN, C_3 - C_8 cycloalkyl unsubstituted or substituted by from one to three methyl groups, C_3 - C_8 halocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkyl), C_2 - C_1 2haloalkenyl, C_2 - C_1 2haloalkenyloxy, C_3 - C_1 2alkynyloxy, C_3 - C_1 2haloalkynyloxy, -P(=O)(OC_1- C_6 alkyl)₂, -Si(C_1 - C_6 alkyl)₃, -(CH₂)-Si(C_1 - C_6 alkyl)₃, -Si(O_1 - C_6 alkyl)₃, -N(R₉)₂, -(CH₂)-N(R₉)₂, wherein the two substituents R_9 are independent of each other, -C(=X)-R₇, -(CH₂)-C(=X)-R₇, -O-C(=X)-R₇, -(CH₂)-O-C(=X)-R₇, -S-C(=X)-R₇, -(CH₂)-S-C(=X)-R₇, -NR₉C(=X)R₇, -(CH₂)-NR₉C(=X)R₇, -(CH₂)-NR₉C(=X)R₇, -NR₉NHC(=X)-R₇, -NR₉-OR₁₀, -(CH₂)-NR₉-OR₁₀, -SR₉, -S(=O)R₁₁, -S(=O)₂R₁₁, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group

consisting of OH, halogen, CN, NO₂, SCN, -N₃, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyloxy, C₂-C₁₂haloalkynyloxy, C₃-C₁₂haloalkynyloxy and phenoxy;

or, when p is 1, R2 together with R3 is a bond;

or R_2 together with R_4 is =0 or =S;

or R_2 together with R_4 form with the carbon to which they are bound a three- to seven-membered ring, which may be monocyclic or bicyclic, and may be saturated or unsaturated, and that may contain one or two hetero atoms selected from the group consisting of N, O and S, and which is either unsubstituted or independently of one another mono- to pentasubstituted with substituents selected from OH, =O, SH, =S, halogen, CN, -N₃, SCN, NO₂, aryl, C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} alkoxyl, C_2 - C_8 alkenyl, C_2 - C_8 alkylthio, C_1 - C_1 2haloalkylthio, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyloxy, C_3 - C_1 2haloalkynyloxy, phenoxy, phenyl- C_1 - C_6 alkyl, -N(R_9)2 wherein the two R_9 are independent of each other, C_1 - C_6 alkylsulfinyl, C_3 - C_8 cycloalkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_3 - C_8 halocycloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_3 - C_8 cycloalkylsulfonyl, C_1 - C_6 haloalkylsulfonyl and C_3 - C_8 halocycloalkylsulfinyl, sulfonyl; or

 R_2 together with R_4 is =NN(R_{12})₂, wherein the two substituents R_9 are independent of each other;

or, when p is 0, R_2 together with R_4 and R_6 is $\equiv N$;

or when p is 0, R_2 together with R_6 is =NOR₁₂ or =NN(R₁₂)₂, wherein the two substituents R_9 are independent of each other;

 R_3 is H, C_1 - C_{12} -alkyl, halogen, halo- C_1 - C_2 alkyl, CN, -N₃, SCN, NO₂, C_3 - C_8 cycloalkyl unsubstituted or substituted by from one to three methyl groups, C_3 - C_8 halocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_1 - C_1 2-haloalkoxy, C_1 - C_1 2-alkylthio, C_3 - C_8 cycloalkylthio, C_1 - C_1 2-haloalkylsulfinyl, C_3 - C_8 cycloalkylsulfinyl, C_1 - C_1 2-haloalkylsulfinyl, C_3 - C_8 halocycloalkylsulfinyl, C_1 - C_1 2-alkylsulfonyl, C_3 - C_8 cycloalkylsulfonyl, C_1 - C_1 2-haloalkylsulfonyl, C_3 - C_8 halocycloalkylsulfonyl, C_2 - C_8 -alkenyl, C_2 - C_8 alkynyl, C_2 - C_1 2-haloalkenyl, C_2 - C_1 2-haloalkenyl, C_2 - C_1 2-haloalkylsulfonyl, C_3 - C_1 2-haloalkynyloxy, -N(R_9)2, wherein the two substituents R_9 are independent of each other, aryl, heterocyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and hetero-

cyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₂-C₈alkenyl, C₂-C₈alkenyl, C₂-C₈alkylyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkylyl and C₃-C₁₂haloalkynyloxy;

or when p is 1, R_3 together with R_2 is a bond;

is H, C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, C₁-C₁₂-hydroxyalkyl, OH, halogen, NO₂, CN, R₄ C₃-C₈cycloalkyl unsubstituted or substituted by from one to three methyl groups, C₃-C₈halocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 alkoxy- C_1 - C_1 - C_1 - C_1 - C_2 - C_1 - C_1 - C_2 - C_1 - C_2 - C_1 - C_2 - C_2 - C_1 - C_2 - C_2 - C_1 - C_2 - C_2 - C_3 - C_4 - C_4 - C_4 - C_5 - C_5 - C_5 - C_7 - $C_1-C_6 \\ alkoxy-C_1-C_6 \\ alkyl, \ C_2-C_{12} \\ alkenyl, \ C_2-C_{12} \\ haloalkenyl, \ C_2-C_{12} \\ haloalkenyloxy, \ C_2-C_{12} \\ alkenyloxy, \ C_2-C_{1$ kynyl, C_2 - C_{12} haloalkynyl, C_3 - C_{12} haloalkynyloxy, -P(=O)(OC₁- C_6 alkyl)₂, -Si(C₁- C_6 alkyl)₃, -(CH₂)-Si(C₁-C₆alkyl)₃, -Si(OC₁-C₆alkyl)₃, -N(R₉)₂, -(CH₂)-N(R₉)₂, wherein the two substituents R_9 are independent of each other, -C(=X)-R₇, -(CH₂)-C(=X)-R₇, -O-C(=X)-R₇, $-(CH_2)-O-C(=X)-R_7, \ -S-C(=X)-R_7, \ -(CH_2)-S-C(=X)-R_7, \ -NR_9C(=X)R_7, \ -(CH_2)-NR_9C(=X)R_7, \ -(CH_2)-NR_9C(=X)R_9C(=X)R_9$ $-NR_9NHC(=X)-R_7, -NR_9-OR_{10}, -(CH_2)-NR_9-OR_{10}, -SR_9, -S(=O)R_{11}, -S(=O)_2R_{11}, \ aryl, \ hetero-constraints and the second seco$ cyclyl, aryloxy or heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, $C_1-C_{12} alkylthio,\ C_1-C_{12} haloalkylthio,\ C_1-C_6 alkoxy-C_1-C_6 alkyl,\ C_2-C_8 alkenyl,\ C_2-C_8 alkynyl,\ C_8-C_8 alkynyl,\ C$ C2-C12haloalkenyl, C2-C12haloalkenyloxy, C2-C12haloalkynyl, C3-C12haloalkynyloxy and phenoxy;

or R_4 together with R_2 forms =0 or =S; or when p is 1, R_4 together with R_5 is a bond; or, when p is 0, together with R_2 and R_6 is =N;

 R_{5} and R_{6} independently of each other are H, $C_{1}\text{-}C_{12}\text{-}alkyl$, $-N_{3}$, CN, NO_{2} , OH, SH, halogen, halo- $C_{1}\text{-}C_{2}alkyl$, hydroxy- $C_{1}\text{-}C_{2}alkyl$, $C_{3}\text{-}C_{8}\text{cycloalkyl}$ that is unsubstituted or substituted by from one to two methyl groups, $C_{3}\text{-}C_{8}\text{halocycloalkyl}$, $C_{1}\text{-}C_{12}\text{alkoxy}$, $C_{1}\text{-}C_{6}\text{alkoxy-}$, $C_{1}\text{-}C_{6}\text{alkoxy-}$, $C_{1}\text{-}C_{6}\text{alkoxy-}$, $C_{1}\text{-}C_{6}\text{alkoxy-}$, $C_{1}\text{-}C_{6}\text{alkoxy-}$, $C_{1}\text{-}C_{6}\text{alkoxy-}$, $C_{2}\text{-}C_{12}\text{haloalkyl}$, $C_{2}\text{-}C_{12}\text{haloalkynyl}$, $C_{2}\text{-}C_{12}\text{haloalkenyl}$, $C_{2}\text{-}C_{12}\text{haloalkenyloxy}$, $C_{2}\text{-}C_{12}\text{haloalkynyl}$, $C_{3}\text{-}C_{12}\text{haloalkynyloxy}$, $-P(=O)(OC_{1}\text{-}C_{6}\text{alkyl})_{2}$,

 $- CH_2 - P(=O)(OC_1 - C_6 alkyl)_2, \ - Si(OC_1 - C_6 alkyl)_3, \ - N(R_9)_2, \ - O-N(R_9)_2, \ wherein the two substituents R_9 are independent of each other, - C(=X)-R_7, - CH=NOH, - CH=NOC_1 - C_6 alkyl, - O-C(=X)-R_7, -S-C(=X)-R_7, -NR_9C(=X)R_7, -NR_9NHC(=X)-R_7, -NR_9-OR_{10}, -SR_9, -S(=O)R_{11}, -S(=O)_2R_{11}, -CH_2-S(=O)_2R_{11}, \ aryl, \ aryloxy, \ benzyloxy, -NR_9-aryl, \ heterocyclyl, \ heterocyclyl, -CH_2-aryl, -CH_2-O-aryl, -CH_2-NR_9-aryl, -CH_2-NR_9-C_1-C_2 alkyl, -CH_2-heterocyclyl, -CH_2-O-heterocyclyl \ and -CH_2-NR_9-heterocyclyl; \ wherein the \ aryl, \ aryloxy, \ benzyloxy, -NR_9-aryl, \ heterocyclyl, \ heterocyclyloxy \ and -NR_9-heterocyclyl \ radicals \ are \ unsubstituted \ or, \ depending \ upon the \ possibilities \ of \ substitution \ at the \ ring, \ mono- \ to \ pentasubstituted \ by \ substituents \ selected \ from \ the \ group \ consisting \ of \ OH, =O, SH, =S, \ halogen, \ CN, \ NO_2, \ C_1-C_{12}alkyl, \ C_3-C_8cycloalkyl, \ C_1-C_{12}haloalkyl, \ C_1-C_{12}alkoxy, \ C_1-C_{12}haloalkoxy, \ C_1-C_{12}haloalkoxy, \ C_2-C_8alkenyl, \ C_2-C_8alkynyl, \ C_2-C_8alkynyl, \ C_2-C_8alkynyl, \ C_2-C_8alkynyl, \ C_2-C_12haloalkynyloxy, \ phenoxy, \ methylenedioxy, \ NH_2, \ NH(C_1-C_{12}alkyl), \ N(C_1-C_{12}alkyl)_2 \ and \ C_1-C_6alkylsulfinyl; \ or$

 R_5 and R_6 are, together with the carbon atom to which they are bound, a five- to seven-membered ring, which may be saturated or unsaturated, and which may contain one or two members selected from the group consisting of O, NR₈ and S; and which is optionally substituted with one to three substituents selected from C_1 - C_{12} -alkyl, CN, NO_2 , OH, halogen, halo- C_1 - C_2 alkyl, C_3 - C_8 cycloalkyl C_3 - C_8 halocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_3 - C_8 cycloalkylthio, C_1 - C_1 2haloalkylthio, C_2 - C_1 2haloalkylthio, C_2 - C_1 2haloalkylthio, C_2 - C_1 2haloalkynyl, C_2 - C_1 2haloalkynyl

or when p is 1, R₅ together with R₄ is a bond;

or, when p is 0, R_6 together with R_2 and R_4 is $\equiv N$;

 R_7 is H, OH, C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_2 - C_{12} haloalkynyl, C_3 - C_{12} haloalkynyloxy, C_1 - C_{12} alkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_2 - C_8 alkenyloxy, C_3 - C_8 alkinyloxy, -N(R_8) $_2$ wherein the two R_8 are independent of each other, aryl, aryloxy, benzyloxy, heterocyclyl, heterocyclyloxy or heterocyclylmethoxy; and wherein the aryl, aryloxy, benzyloxy, heterocyclyl and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of halogen, CN, NO $_2$, C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_{12} haloalkyl, C_1 - C_1 2alkylthio, C_1 - C_1 2haloalkoxy, C_1 - C_1 2alkylthio, C_1 - C_1 2haloalkylthio, C_2 - C_8 alkenyl,

 C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy, C_2 - C_8 alkynyl, C_2 - C_{12} haloalkynyl and C_3 - C_{12} haloalkynyloxy;

R₈ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, C₁-C₆alkoxy-C₁-C₆alkoxy, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂alkynyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, hydroxy and cyano, C₃-C₈-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylhio, C₂-C₁₂alkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy and C₁-C₁₂haloalkylthio;

 R_9 is H, C_1 - C_6 alkyl, C_1 - C_6 cycloalkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_2 - C_1 2alkenyl, C_2 - C_1 2alkynyl, benzyl, aryl or heteroaryl;

 R_{10} H, C_1 - C_6 alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, NO_2 , hydroxy and cyano, C_1 - C_{12} haloalkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} haloalkynyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} alkynyl, C_3 - C_8 -cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} alkylthio, C_1 - C_1 2haloalkylthio, C_2 - C_1 2haloalkenyl, C_2 - C_1 2haloalkenyl, C_2 - C_1 2haloalkenyloxy;

 R_{11} is H, C_1 - C_6 alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, hydroxy and cyano, -N(R_9)₂ wherein the two substituents R_9 are independent of each other, C_3 - C_8 cycloalkyl, C_3 - C_8 halocycloalkyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyl, C_2 - C_{12} haloalkenyloxy, C_2 - C_{12} alkynyl, C_3 - C_{12} haloalkynyloxy, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} alkylthio, C_2 - C_{12} haloalkylthio, C_2 - C_{12} haloalkynyl, C_2 - C_{12} haloalkynyl, C_2 - C_{12} haloalkynyl, C_3 - C_{12} haloalkynyl, and C_3 - C_{12} haloalkynyloxy;

 R_{12} is H, C_1 - C_6 alkyl, C_1 - C_6 cycloalkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_2 - C_1 -alkenyl, C_2 - C_1 -alkynyl, C_1 - C_1 -alkynyl, C_2 - C_1 -alkyl, C_2 - C_1 -alkyl, C_2 - C_1 -alkyl, aryl, heteroaryl;

X is O or S:

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form;

with the proviso, that the group R_6 -[C(R_3)(R_5)] $_p$ -C(R_2)(R_4)-[CH $_2$] $_n$ -, which is attached to the ϵ -position of the compound of the formula (I), is not NC-CH $_2$ - or HOOC-CH $_2$ - when m is 1 and the bond between atoms 22 and 23 is a single bond.

- 2. A pesticide which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- 3. A method for controlling pests wherein a composition as described in claim 2 is applied to the pests or their habitat.
- 4. A process for preparing a composition as described in claim 2 which contains at least one auxiliary, wherein the active compound is mixed intimately and/or ground with the auxiliary(s).
- 5. The use of a compound of the formula (I) as described in claim 1 for preparing a composition as described in claim 2.
 - 6. The use of a composition as described in claim 2 for controlling pests.
- 7. A method according to claim 3 for protecting plant propagation material, wherein the propagation material or the location where the propagation material is planted is treated.
- 8. Plant propagation material treated in accordance with the method described in claim 7.