Métodos de Penalidade Método de Penalidade Quadrática

M. Fernanda P. Costa

Departamento de Matemática Universidade do Minho

Outline

- Métodos de Penalidade
 - Método de Penalidade Quadrática

Métodos de Penalidade

Considere a seguinte formulação geral do problema do otimização com restrições:

minimizar
$$F(w)$$

sujeito a $c_n(w) = 0, \quad n \in \mathcal{E}$
 $c_n(w) \ge 0, \quad n \in \mathcal{I}$ (1)

- $w = (w_1, w_2, \dots, w_I)^T$ é o vetor das variáveis de decisão
- $F: \mathbb{R}^{\mathrm{I}} \to \mathbb{R}$ é a função objetivo (medida de desempenho) (loss or cost function in ML)
- $c_n : \mathbb{R}^I \to \mathbb{R}$ com $n \in \mathcal{E}$, são as funções de restrição de igualdade
- $c_n : \mathbb{R}^I \to \mathbb{R}$ com $n \in \mathcal{I}$, são as funções de restrição de desigualdade

- Um classe importante de métodos para resolver problemas de otimização com restrições é os Métodos de Penalidade.
- Estes métodos substituem o problema original por uma sucessão de subproblemas sem restrições, adicionado um termo de penalidade, por restrição, à função objetivo. O termo penaliza, ou seja aumenta o valor da função objetivo, sempre que a restrição é violada.
- Vamos aqui apresentar três abordagens:
 - Método de Penalidade Quadrática
 - Métodos de Penalidade Exata Não Suaves
 - Método da Lagrangeana Aumentada (ou Método dos Multiplicadores)

Método de Penalidade Quadrática

Motivação

- O problema de otimização com restrições (1) é substituído por uma função de penalidade, definida pela:
 - função objetivo do problema original *mais*
 - um termo de penalidade, por restrição, que é positivo quando o ponto w viola a restrição e zero caso contrário.
- A maioria das abordagens define uma sucessão de funções de penalidade, em que os termos de penalidade são multiplicados por um coeficiente positivo μ , chamado parâmetro de penalidade.
- A função de penalidade mais simples deste tipo é a função de penalidade quadrática.

Método de Penalidade Quadrática

- Considere o problema com restrições (1).
- Define a seguinte função de penalidade quadrática $Q(w; \mu)$, com $\mu > 0$:

$$Q(w; \mu) = \underbrace{F(w)}_{\text{função objetivo}} + \underbrace{\frac{\mu}{2} \sum_{n \in \mathcal{E}} (c_n(w))^2 + \frac{\mu}{2} \sum_{n \in \mathcal{I}} (\max(0, -c_n(w))^2)}_{\text{ne}}$$

um termo de penalidade por restrição, definido pelo quadrado da violação da restrição

 Define uma sucessão de subproblemas de minimização sem restrições da forma:

$$\underset{w \in \mathbb{R}^{\mathrm{I}}}{\mathsf{minimizar}} \quad Q(w, \mu_k)$$

para uma sucessão crescente dos parâmetros de penalidade μ , com $\mu_k \uparrow \infty$ quando $k \to \infty$.

• Ao fazer o valor de $\mu_k \uparrow \infty$, penaliza as violações das restrições de forma mais severa, forçando o minimizante de Q a ficar mais próximo da região admissível do problema original (1).

Algoritmo1: Método de Penalidade Quadrática

- ① Dar: μ_0 , um ponto inicial $w_s^{(0)}$, uma sequência não negativa $\{\tau_k\}$ com $\tau_k \to 0$
- ② Para k = 0, 1, ...
- Encontrar um minimizante (aproximado) $w^{(k)}$ de $Q(w; \mu_k)$, iniciando em $w_s^{(k)}$ e parar quando $\|\nabla_w Q(w; \mu_k)\| \le \tau_k$
- Se w^(k) satisfaz o critério de paragem final Parar com a solução (aproximada) w^(k) fim se
- **Solution** Escolher novo parâmetro de penalidade $\mu_{k+1} > \mu_k$
- **6** Escolher novo ponto inicial $w_s^{(k+1)}$
- Secolher nova tolerância $\tau_{k+1} < \tau_k \pmod{\tau_{k+1} > 0}$

(nota: $\nabla_w Q(w; \mu_k) = \nabla_w F(w) + \mu_k \sum_{n \in \mathcal{E}} c_n(w) \nabla_w c_n(w) - \mu_k \sum_{n \in \mathcal{I}} \max(0, -c_n(w)) \nabla_w c_n(w)$

(nota: se $\mathcal{I} \neq \{\}$, o vetor gradiente não está definido nos pontos w para os quais $c_n(w) = 0$ com $n \in \mathcal{I}$)

Suavidade dos termos de penalidade:

- Restrições de igualdade: os termos c_n^2 são suaves.
 - \Rightarrow quando apenas existem restrições de igualdade, podemos usar técnicas baseados em derivadas para otimização sem restrições para encontrar a solução $w^{(k)}$ de $Q(w; \mu_k)$;
- Restrições de desigualdade: os termos $(\max(0, -c_n))^2$ podem ser menos suaves do que c_n .
 - **ex:** se uma restrição é $w_1 \ge 0$, então a função $(\max(0, -c_n))^2$ tem uma $2^{\underline{a}}$ derivada descontínua, e portanto Q não é mais duas vezes continuamente diferenciável.
- A minimização de $Q(w; \mu_k)$ torna-se mais difícil de realizar à medida que μ_k aumenta.

Escolha do ponto inicial w_s^k para minimizar $Q(w; \mu_k)$:

- usar um dos minimizantes anteriores de $Q(w; \mu)$: $w^{(k-1)}, w^{(k-2)}, \dots$ ("warm start": $w_s^k = w^{(k-1)}$)
- ...

Escolha da sequência $\{\mu_k\}$: adaptativa, por exemplo, se a minimização $Q(w; \mu_k)$ foi de custo computacional:

- elevado: fazer um aumento modesto, por ex., $\mu_{k+1} = 1.5\mu_k$
- baixo: fazer um aumento maior, por ex., $\mu_{k+1} = 10\mu_k$

Escolha da sequência $\{\tau_k\}$: $\tau_k\longrightarrow 0$ (a minimização é realizada progressivamente com mais precisão)

Critério de paragem $\|\nabla_w Q(w; \mu_k)\| \leq \tau_k$:

- \Rightarrow não há garantias que seja satisfeito, os iterandos podem afastar-se da região admissível quando o μ_k não é grande o suficiente;
- ⇒ uma implementação prática, deve incluir salvaguardas que incremente o parâmetro de penalidade (e possivelmente restaure o ponto inicial) quando a violação das restrições não está a decrescer rapidamente o suficiente , ou quando os iterandos parecem ser divergentes.

nota: Para escolhas adequadas de μ_k e do ponto inicial w_s^k , a minimização de $Q(w; \mu_k)$ é efetuada em poucos passos/iterações.

Exercício1: Considere o problema

minimizar
$$F(w)=w_1+w_2$$
 sujeito a $w_1^2+w_2^2-2=0$

cuja solução é $(-1,-1)^T$. Minimize a função de penalidade quadrática $Q(w;\mu)$ do problema, com $\mu=1$ e $\mu=10$, usando um algoritmo de otimização sem restrições. Faça os gráficos dos contornos de Q.

(nota: use a função fminunc do MatLab para calcular os minimizantes/maximizantes de Q)

Solução:
$$Q(w; \mu) = w_1 + w_2 + \frac{\mu}{2}(w_1^2 + w_2^2 - 2)^2$$

• Para $\mu = 1$, a função Q tem um minimizante no ponto $(-1.1072, -1.1072)^T$ e um maximizante no ponto $(0.2696, 0.2696)^T$.

• Para $\mu=10$, os pontos que não satisfazem a restrição sofrem uma maior penalização - o "vale" de valores baixos de Q é evidente. A função Q tem um minimizante no ponto $(-1.0123, -1.0123)^T$, que está mais perto da solução $(-1, -1)^T$.

Q tem um maximizante no ponto $(0.025, 0.025)^T$, e Q vai rapidamente para ∞ para pontos fora da circunferência $w_1^2 + w_2^2 = 2$.

A situação nem sempre é tão *favorável* como a reportada no Exercício1. Para um dado valor do parâmetro de penalidade μ , a função de penalidade pode ser ilimitada inferiormente ainda que o problema com restrições original tenha uma única solução. Esta deficiência é, infelizmente, comum a todas as funções de penalidade aqui apresentadas.

Exercício2: Considere o problema

minimizar
$$F(w) = -5w_1^2 + w_2^2$$
 sujeito a $w_1 = 1$

cuja solução é $(1,0)^T$. Minimize a função de penalidade quadrática $Q(w;\mu)$ do problema, com $\mu=1$ e $\mu=100$, usando um algoritmo de otimização sem restrições. Faça os gráficos dos contornos de Q.

Solução: a função de penalidade $Q(w; \mu) = -5w_1^2 + w_2^2 + \frac{\mu}{2}(w_1 - 1)^2$ é ilimitada para qualquer $\mu < 10$.

• Para $\mu=1<10$, a função Q(w;1) é ilimitada inferiormente. Usando o fminunc, o algoritmo pára ao fim de $1^{\underline{a}}$ iteração com exitflag=-3 'objective function at current iteration went below ObjectiveLimit'.

• Para $\mu=100$ e usando o fminunc, o algoritmo pára ao fim de $2^{\underline{a}}$ iteração com exitflag=1 'magnitude of gradient is smaller than the OptimalityTolerance tolerance', e Q(w;10) tem um minimizante no ponto $(1.1111,0)^T$, que está perto da solução $(1,0)^T$.

Exercício3: Considere novamente o problema

- a) Minimize a função de penalidade quadrática Q do problema, para $\mu_k=1,10,100,1000$ usando um algoritmo de otimização sem restrições.
- b) Implemente o Método de Penalidade Quadrática (Algoritmo1) para resolver o problema, com $w^{(0)}=(0,0)^T$ e $\mu_0=1$. Faça $\mu_{k+1}=10\mu_k$, $\tau_k=1/\mu_k$ e escolha para ponto inicial $w_s^{(k+1)}$ a solução de $Q(w;\mu_k)$. Para critério de paragem final use as condições:

$$\|c_{\mathcal{E}}(w^{(k)})\|_{\infty} \leq arepsilon_1$$
 (medida da violação)

$$\frac{|F(w^{(k)}) - F(w^{(k-1)})|}{|Fw^{(k)}|} \le \varepsilon_2, \quad \frac{\|w^{(k)} - w^{(k-1)}\|_{\infty}}{\|w^{(k)}\|_{\infty}} \le \varepsilon_3$$

$$com \ \varepsilon_1 = 10^{-6}, \varepsilon_2 = \varepsilon_3 = 10^{-4}.$$

Indique a solução (aproximada) de cada função de penalidade $Q(w; \mu_k)$.

c) Compare a solução ótima obtida em b) com a solução obtida usando a função fmincon do MatLab.

◆ロト ◆個ト ◆重ト ◆重ト 重 めので

Exercício4: Considere agora o problema

a) Utilize o Método de Penalidade Quadrática para resolver o problema, com $w^{(0)}=(0,0)^T$ e $\mu_0=1.5$. Faça $\mu_{k+1}=2\mu_k$, $\tau_k=1/\mu_k$ e escolha para ponto inicial $w_s^{(k+1)}$ a solução de $Q(w;\mu_k)$. Para critério de paragem final use as condições:

$$\begin{split} \|\max(0,-c_{\mathcal{I}}(w^{(k)}))\|_{\infty} &\leq \varepsilon_1 \ \ (\text{medida da violação}) \\ &\frac{|F(w^{(k)})-F(w^{(k-1)})|}{|Fw^{(k)}|} \leq \varepsilon_2, \quad \frac{\|w^{(k)}-w^{(k-1)}\|_{\infty}}{\|w^{(k)}\|_{\infty}} \leq \varepsilon_3 \\ &\text{com } \varepsilon_1 = 10^{-6}, \varepsilon_2 = \varepsilon_3 = 10^{-6}. \end{split}$$

b) Compare a solução ótima obtida em a) com a solução obtida usando a função fmincon do MatLab.

Exercício5: (HS6) Considere o problema

$$\mathop{\mathsf{minimizar}}_{w \in \mathbb{R}^2} F(w) = (1-w_1)^2 \ \, \mathsf{sujeito a} \ \, 10(w_2-w_1^2) = 0$$

a) Utilize o Método de Penalidade Quadrática para resolver o problema, com $w^{(0)}=(-1.2,1)^T$ e $\mu_0=1$. Faça $\mu_{k+1}=2\mu_k$, $\tau_k=1/\mu_k$ e escolha para ponto inicial $w_s^{(k+1)}$ a solução de $Q(w;\mu_k)$. Para critério de paragem final use as condições:

$$\|c_{\mathcal{E}}(w^{(k)})\|_{\infty} \leq arepsilon_1$$
 (medida da violação)

$$\frac{|F(w^{(k)}) - F(w^{(k-1)})|}{|Fw^{(k)}|} \le \varepsilon_2, \quad \frac{\|w^{(k)} - w^{(k-1)}\|_{\infty}}{\|w^{(k)}\|_{\infty}} \le \varepsilon_3$$

com
$$\varepsilon_1=10^{-6}, \varepsilon_2=\varepsilon_3=10^{-6}.$$

b) Compare a solução ótima obtida em a) com a solução obtida usando a função fmincon do MatLab.

Exercício6: (HS32) Considere o problema

a) Utilize o Método de Penalidade Quadrática para resolver o problema, com $w^{(0)} = (0.1, 0.7, 0.2)^T$ e $\mu_0 = 1.5$. Faça $\mu_{k+1} = 2\mu_k$, $\tau_k = 1/\mu_k$ e escolha para ponto inicial $w_s^{(k+1)}$ a solução de $Q(w; \mu_k)$. Para critério de paragem final use as condições:

$$\begin{split} &\|c_{\mathcal{E}}(w^{(k)}), \max(0, -c_{\mathcal{I}}(w^{(k)}))\|_{\infty} \leq \varepsilon_1 \pmod{\text{da da violação}} \\ &\frac{|F(w^{(k)}) - F(w^{(k-1)})|}{|Fw^{(k)}|} \leq \varepsilon_2, \quad \frac{\|w^{(k)} - w^{(k-1)}\|_{\infty}}{\|w^{(k)}\|_{\infty}} \leq \varepsilon_3 \end{split}$$

com
$$\varepsilon_1 = 10^{-6}, \varepsilon_2 = \varepsilon_3 = 10^{-6}$$
.

b) Compare a solução ótima obtida em a) com a solução obtida usando a função fmincon do MatLab.

Convergência do método de penalidade quadrática

São descritas algumas das propriedades do método em dois teoremas. Será apenas considerado o problema com restrições de igualdade

minimizar
$$F(w)$$
 $w \in \mathbb{R}^{I}$
sujeito a $c_{n}(w) = 0, \quad n \in \mathcal{E}$
(2)

para o qual a função de penalização quadrática é definida por

$$Q(w;\mu) = F(w) + \frac{\mu}{2} \sum_{n \in \mathcal{E}} (c_n(w))^2$$
(3)

e assume-se que $\mu_k \uparrow \infty$ (i.e., $\mu_{k+1} > \mu_k$ para todo k e $\lim_{k \to +\infty} \mu_k = +\infty$).

Para o primeiro resultado, assume-se que a função de penalidade $Q(w; \mu_k)$ tem um minimizante global para cada valor de μ_k .

Teorema 1

Suponha que cada $w^{(k)}$ é o minimizante global exato de $Q(w; \mu_k)$ em (3) no Algoritmo1, e que $\mu_k \uparrow \infty$. Então todo o ponto limite w^* da sucessão de soluções $\{w^{(k)}\}$, dos respetivos problemas sem restrições $Q(w; \mu_k)$, é uma solução global do problema com restrições (2).

(**nota:** em geral, impraticável pois exige a minimização global de cada subproblema $Q(w; \mu_k)$ (ou um problema convexo))

Demonstração

Seja \overline{w} a solução global de (2), isto é,

$$F(\overline{w}) \leq F(w)$$
 para todo $w \operatorname{com} c_n(w) = 0, n \in \mathcal{E}$

Como $w^{(k)}$ minimiza $Q(w; \mu_k)$ para cada k, tem-se que $Q(w^{(k)}; \mu_k) \leq Q(\overline{w}; \mu_k)$, donde segue a desigualdade

$$F(w^{(k)}) + \frac{\mu_k}{2} \sum_{n \in \mathcal{E}} (c_n(w^{(k)}))^2 \le F(\overline{w}) + \frac{\mu_k}{2} \sum_{n \in \mathcal{E}} (c_n(\overline{w}))^2 = F(\overline{w})$$
(4)

Reorganizando esta expressão, obtém-se

$$\sum_{n\in\mathcal{E}} (c_n((w^{(k)}))^2 \le \frac{2}{\mu_k} [F(\overline{w}) - F(w^{(k)})]. \tag{5}$$

Suponha que w^* é o limite da sucessão $\{w^{(k)}\}$, então existe uma subsucessão infinita \mathcal{K} tal com

$$\lim_{k \in \mathcal{K}} w^{(k)} = w^*$$

Fazendo o limite com $k \to \infty$ para $k \in \mathcal{K}$, em ambos os lados de (5), obtém-se

$$\sum_{n\in\mathcal{E}}(c_n(w^*))^2 = \lim_{k\in\mathcal{K}}\sum_{n\in\mathcal{E}}(c_n((w^{(k)}))^2 \leq \lim_{k\in\mathcal{K}}\frac{2}{\mu_k}[F(\overline{w}) - F(w^{(k)})] = 0$$

onde a última igualdade vem de $\mu_k \uparrow \infty$. Portanto, tem-se que $c_n(w^*) = 0$ para todo $n \in \mathcal{E}$, pelo que w^* é ponto admissível. Além disso, fazendo o limite com $k \to \infty$ para $k \in \mathcal{K}$ em (4), tem-se pela não negatividade de μ_k e de cada $(c_n((w^{(k)}))^2$ que

$$F(w^*) \leq F(w^*) + \lim_{k \in \mathcal{K}} \frac{\mu_k}{2} \sum_{n \in \mathcal{E}} (c_n(w^{(k)}))^2 \leq F(\overline{w})$$

Como w^* é um ponto admissível cujo valor da função objetivo não é maior do que na solução global \overline{w} , conclui-se que w^* , também, é uma solução global do problema (2).

- O segundo resultado diz respeito às propriedades de convergência da sucessão $\{w^{(k)}\}$ quando são efetuadas minimizações não exatas (mas cada vez mais exatas/precisas) de $Q(w; \mu_k)$.
- Em contraste com o Teorema 1, mostra que a sucessão pode convergir:
 - > para pontos não-admissíveis, ou
 - \triangleright para um ponto KKT (um ponto que satisfaz as condições necessárias de 1ª ordem), em vez de um minimizante. Também mostra que as quantidades $\mu_k \, c_n(w^{(k)})$ podem ser usadas como estimativas dos multiplicadores de Lagrange λ_n^* .

Para estabelecer os resultados do Teorema 2, assume-se que o critério de paragem $\|\nabla_w Q(w; \mu_k)\| \le \tau_k$ é satisfeito para todo k.

Teorema 2

Suponha que as tolerâncias e os parâmetros de penalidade no Algoritmo1 satisfazem $\tau_k \to 0$ e $\mu_k \uparrow \infty$. Se um ponto limite w^* da sucessão é não-admissível, então w^* é um ponto estacionário da função $\|c(w)\|^2$. Por outro lado, se um ponto limite w^* da sucessão é um ponto admissível e os gradientes $\nabla c_n(w^*)$ são linearmente independentes, então w^* é um ponto KKT do problema com restrições (2). Para tais pontos, para qualquer subsucessão infinita tal que $\lim_{k \in \mathcal{K}} w^{(k)} = w^*$, tem-se que

$$\lim_{k \in \mathcal{K}} -\mu_k c_n(w^{(k)}) = \lambda_n^*, \quad \textit{para todo } n \in \mathcal{E}$$
 (6)

onde λ^* é o vector dos multiplicadores de Lagrange que satisfazem as condições KKT para o problema com restrições de igualdade (2).

4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ 夕 Q ○

Demonstração

Derivando $Q(w; \mu_k)$ em (3), obtém-se:

$$\nabla_{w} Q(w^{(k)}; \mu_{k}) = \nabla F(w^{(k)}) + \sum_{n \in \mathcal{E}} \mu_{k} c_{n}(w^{(k)}) \nabla c_{n}(w^{(k)}). \tag{7}$$

Pelo critério de paragem do Algoritmo1, tem-se que

$$\|\nabla F(w^{(k)}) + \mu_k \sum_{n \in \mathcal{E}} c_n(w^{(k)}) \nabla c_n(w^{(k)}) \| \le \tau_k.$$
 (8)

Usando a desigualdade $||a|| - ||b|| \le ||a + b||$, obtém-se

$$\mu_k \| \sum_{n \in \mathcal{E}} c_n(w^{(k)}) \nabla c_n(w^{(k)}) \| - \| \nabla F(w^{(k)}) \| \le \tau_k \Leftrightarrow$$

$$\|\sum_{n\in\mathcal{E}}c_n(w^{(k)})\nabla c_n(w^{(k)})\| \leq \frac{1}{\mu_k}[\tau_k + \|\nabla F(w^{(k)})\|].$$
 (9)

Seja w^* um ponto limite da sucessão $\{w^{(k)}\}$.

Então existe uma subsucessão \mathcal{K} tal que $\lim_{k \in \mathcal{K}} w^{(k)} = w^*$.

Fazendo o limite com $k \to \infty$ para $k \in \mathcal{K}$, em ambos os lados de (9), o termo dentro do parêntesis do lado direito aproxima-se de $\|\nabla F(w^*)\|$. Como $\mu_k \uparrow \infty$, o lado direito aproxima-se de zero. Considerando o limite no lado esquerdo, obtém-se:

$$\sum_{n\in\mathcal{E}}c_n(w^*)\nabla c_n(w^*)=0. \tag{10}$$

Podemos ter $c_n(w^*) \neq 0$ se os gradientes das restrições $\nabla c_n(w^*)$ são linearmente dependentes em w^* . Neste caso (10) implica que w^* é um ponto estacionário da função $||c(w)||^2$.

Se, por outro lado, os gradientes das restrições $\nabla c_n(w^*)$ são linearmente independentes, tem-se de (10) que $c_n(w^*)=0$ para todo $n\in\mathcal{E}$, portanto w^* é um ponto admissível. Logo, a $2^{\underline{a}}$ condição das condições KKT (condição de admissibilidade) é satisfeita. É necessário verificar também a $1^{\underline{a}}$ condição KKT e mostrar que o limite (6) é válido.

Denotando por A(w) a matriz dos gradientes das restrições

$$A(w)^T = [\nabla c_n]_{n \in \mathcal{E}},$$

e denotando por $\lambda^{(k)}$ o vetor $-\mu_k c(w^{(k)})$, tem-se por (7) e (8) que

$$A(w^{(k)})^T \lambda^{(k)} = \nabla F(w^{(k)}) - \nabla_w Q(w^{(k)}; \mu_k), \ \|\nabla_w Q(w^{(k)}; \mu_k)\| \le \tau_k.$$
 (11)

Para todo $k \in \mathcal{K}$ suficientemente grande, a matriz $A(w^{(k)})$ tem característica completa por linhas, assim $A(w^{(k)})A(w^{(k)})^T$ é não singular. Multiplicando (11) por $A(w^{(k)})$ e reorganizando obtém-se:

$$\lambda^{(k)} = \left[A(w^{(k)}) A(w^{(k)})^T \right]^{-1} A(w^{(k)}) \left[\nabla F(w^{(k)}) - \nabla_w Q(w^{(k)}; \mu_k) \right]$$

Portanto, fazendo o limite $k \to \infty$ para $k \in \mathcal{K}$, obtém-se

$$\lim_{k \in \mathcal{K}} \lambda^{(k)} = \lambda^* = \left[A(w^*) A(w^*)^T \right]^{-1} A(w^*) \nabla F(w^*).$$

◆ロト ◆卸ト ◆恵ト ◆恵ト ・恵 ・ 釣۹で

Fazendo o limite em (8), conclui-se que

$$\nabla F(w^*) - A(w^*)^T \lambda^* = 0,$$

assim λ^* satisfaz a 1^2 condição KKT para o problema (2). Portanto, w^* é um ponto KKT para o problema (2), com único vetor de multiplicadores de Lagrange λ^* .

Comportamento da matriz Hessiana do método de penalidade quadrática

- Vamos agora analisar a natureza do mau-condicionamento na matriz Hessiana $\nabla^2_{ww}Q(w;\mu_k)$.
- A compreensão das propriedades desta matriz, e das Hessianas semelhantes que surgem noutros noutros métodos de penalização e de barreira, é importante para escolher algoritmos eficazes para o problema de minimização e para os cálculos de álgebra linear em cada iteração.

Considere apenas o problema com restrições de igualdade (2). A matriz Hessiana da função de penalidade quadrática é dada por:

$$\nabla^2_{ww}Q(w;\mu_k) = \nabla^2 F(w^*) + \sum_{n \in \mathcal{E}} \mu_k c_n(w) \nabla^2 c_n(w) + \mu_k A(w)^T A(w)$$

nota:

• $A(w)^T = [\nabla c_n(w)]_{I \times |\mathcal{E}|}$ é a matriz dos gradientes das restrições (conhecida por matriz do Jacobiano; geralmente $rank(A) = |\mathcal{E}| < I$);

□ ト 4 個 ト 4 直 ト 4 直 ト 重 め 9 0 0 0

Quando w está próximo de um minimizante de $Q(; \mu_k)$, e as condições do Teorema 2 são satisfeitas, tem-se que $\mu_k c_n(w) \approx -\lambda_n^*$ e portanto

$$\nabla^2_{ww} Q(w; \mu_k) \approx \nabla^2 F(w^*) - \sum_{n \in \mathcal{E}} \lambda_n^* \nabla^2 c_n(w) + \mu_k A(w)^T A(w)$$

$$\approx \underbrace{\nabla^2_{ww} L(w, \lambda^*)}_{\text{independente de } \mu_k} + \underbrace{\mu_k A(w)^T A(w)}_{\text{rank } |\mathcal{E}| \text{ com } \textit{eignvalues} \text{ n\~ao nulos da ordem } \mu_k}$$

- Em geral como o número de restrições $|\mathcal{E}| < I$, $A(w)^T A(w)$ é singular.
- A matriz $\nabla^2_{ww} Q(w; \mu_k)$ tem alguns dos seus *eigenvalues* que se aproximam de uma constante, enquanto outros são da ordem μ_k .
- Como $\mu_k \uparrow \infty$, o crescente mau-condicionamento da matriz $\nabla^2_{ww} Q(w; \mu_k)$ é evidente.
- Os métodos de otimização sem restrições (de 1^a e 2^a ordem) tem problemas com o mau-condicionamento, a menos que sejam acompanhados por uma estratégia de pré-condicionamento que elimine o mau-condicionamento sistemático.
- nota: $L(w, \lambda) = F(w) \sum_{n \in \mathcal{E}} \lambda_n c_n(w)$ é a função Lagrangeana.

Uma consequência do mau-condicionamento é os possíveis erros ao aplicar o método de Newton para calcular a direção de procura s para minimizar Q(w;k), que se obtém resolvendo o seguinte sistema:

$$\nabla^2_{ww}Q(w;\mu_k)s = -\nabla_wQ(w;\mu_k)$$

Em geral, o mau-condicionamento da matriz Hessiana conduz a erros significativos no cálculo do valor de s, independentemente da técnica computacional utilizada para encontrar a solução deste sistema.