WO 2005/058830 PCT/EP2004/014113

Novel herbicides

The present invention relates to novel, herbicidally active picolinoylcyclohexanediones, to processes for their preparation, to compositions comprising those compounds, and to their use in controlling weeds, especially in crops of useful plants, or in inhibiting plant growth.

Certain herbicidally active derivatives of picolinic acids disubstituted in the 3,5-position are known, such as, for example from EP-A-0 316 491, the 3,5-substituted picolinoyl derivatives of 1,3-cyclohexanediones substituted in the 2-position.

It has now been found that picolinoylcyclohexanediones that are substituted in the 5,6-position of the pyridine and unsubstituted in the 3,4-position of the pyridine exhibit excellent herbicidal and growth-inhibiting properties.

The present invention accordingly relates to compounds of formula I

wherein

 R_1 is $-L_{10}$ - R_4 , $-L_{11}$ - X_1 - R_5 , $-NR_6R_7$, $-X_2$ - R_8 or $-X_3$ - L_1 - R_9 ;

 L_2 , L_4 , L_6 and L_8 are each independently of the others C_1 - C_4 alkylene which may be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy and to which C_1 - C_4 alkylene group there may additionally be spirocyclically bound a C_2 - C_5 alkylene group, and wherein that C_2 - C_5 alkylene group may in turn be interrupted once or twice by oxygen, sulfur, sulfinyl or by sulfonyl and/or substituted by C_1 - C_4 alkyl or by C_1 - C_4 alkoxy; L_3 , L_5 , L_7 and L_9 are each independently of the others C_1 - C_4 alkylene which may be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy; C_1 - C_4 alkylsulfinyl, C_1 - C_4 haloalkyl, cyano, C_1 - C_3 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl or C_1 - C_4 haloalkylsulfonyl; C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene group which may be substituted once, twice or three times by C_1 - C_6 alkyl, halogen, hydroxy, C_1 - C_6 alkoxy,

WO 2005/058830

 C_3 - C_6 cycloalkyloxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy or by C_1 - C_2 alkylsulfonyloxy;

R₄ is halogen, cyano, rhodano, C₁-C₆alkoxycarbonyl, C₃-C₆alkenyloxycarbonyl, C₃-C₆alkynyloxycarbonyl, benzyloxycarbonyl, $C(O)NR_{25a}R_{26a}$, formyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 haloalkylcarbonyl, C₁-C₄alkoxy-C₁-C₄alkylcarbonyl, C₁-C₄alkoxy-C₁-C₄alkoxy-C₁-C₄alkylcarbonyl, N-(C₁-C₄alkyl)-C₁-C₄alkylsulfonylamino-C₁-C₄alkylcarbonyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C2-C6alkynyl, C2-C6haloalkynyl, C3-C6cycloalkyl, C1-C6alkylsulfonyloxy or phenylsulfonyloxy, wherein the phenyl groups may be substituted by one or more C1-C6alkyl, C1-C6haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxy or nitro groups: or R4 is a three- to ten-membered, monocyclic or fused bicyclic ring system which may be aromatic, saturated or partially saturated and which may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, and wherein the ring system may contain not more than 2 oxygen atoms and not more than two sulfur atoms, and each ring system may itself be substituted once, twice or three times by C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₄alkoxy-C₁-C₂alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₁-C₆alkoxy, hydroxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₅acetylalkylthio, C₃-C₆alkoxycarbonylalkylthio, C₂-C₄cyanoalkylthio, C₁-C₆alkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro, phenyl or by benzylthio, and wherein phenyl and benzylthio may in turn be substituted on the phenyl ring by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, and wherein the substituent on the nitrogen in the heterocyclic ring are other than halogen;

or R_4 is hydrogen when L_{10} is a C_1 - C_6 alkylene group which may be substituted once, twice or three times by C_1 - C_6 alkyl or by halogen; or when L_{10} is a C_2 - C_6 alkenylene or C_2 - C_6 alkynylene group which may be substituted once, twice or three times by C_1 - C_6 alkyl, halogen, hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 cycloalkyloxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy or by C_1 - C_2 alkylsulfonyloxy;

 R_{25a} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R_{26a} is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{25a} together with R_{26a} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 L_{11} is a C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene group which may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 cycloalkyloxy, C_1 - C_6 -alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy or by C_1 - C_2 alkylsulfonyloxy; X_1 is oxygen, -OC(O)-, -C(O)-, -C(=NR_{14a})-, -C(O)O-, -C(O)NR_{14b}-, -OC(O)O-, -N(R₁₀)-O-, -O-NR₁₁-, thio, sulfinyl, sulfonyl, -SO₂NR₁₂-, -NR₁₃SO₂-, -N(SO₂R_{14c})-, -N(R_{14d})C(O)- or -NR₁₄-;

 R_{10} , R_{11} , R_{12} , R_{13} , R_{14b} , R_{14d} and R_{14} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, or benzyl or phenyl, wherein phenyl and benzyl may in turn be substituted once, twice or three times by C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, halogen, cyano, hydroxy or by nitro; R_{14a} is hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkyl); R_{14c} is C_1 - C_6 alkyl;

R₅ is hydrogen or a C₁-C₈alkyl, C₃-C₈alkenyl or C₃-C₈alkynyl or C₃-C₆cycloalkyl group which may be substituted once, twice or three times by chlorine, bromine, iodine, hydroxy, amino, formyl, nitro, cyano, mercapto, C1-C6alkoxy, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, halo-substituted C₃-C₆cycloalkyl, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆haloalkoxy, C₃-C₆haloalkenyloxy, cyano-C₁-C₆alkoxy, C₁-C₆alkoxy- C_1 - C_6 alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_1 - C_6 alk sulfinyl-C₁-C₆alkoxy, C₁-C₆alkylsulfonyl-C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, phenylcarbonyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylthio, C₁-C₆haloalkylsulfinyl, C₁-C₆haloalkylsulfonyl, benzyloxy, benzylthio, benzylsulfinyl, benzylsulfonyl, C₁-C₆alkylamino, di(C₁-C₆alkyl)amino, $R_{15a}C(X_{23})N(R_{18a})$ -, $R_{16a}N(R_{17a})C(X_{24})$ -, $R_{16b}N(R_{17b})C(X_{25})NR_{18b}$ -, $R_{15c}SO_2N(R_{18c})$ -, $R_{16c}N(R_{17c})C(X_{26})O$ -, $R_{15b}C(X_{27})O$ -, $R_{19}R_{20}C$ =NO-, $R_{15}S(O)_2O$ -, $R_{16}N(R_{17})SO_2$ -, rhodano, phenyl, phenoxy, phenylthio, phenylsulfinyl or by phenylsulfonyl or which may be substituted from one to seventeen times by fluorine; wherein the phenyl- or benzyl-containing groups may in turn be substituted by one or more C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxy or nitro groups;

- 4 -

R_{15a}, R_{15b} and R_{15c} are hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₃-C₆cycloalkyl, phenyl, benzyl, C₁-C₆alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy or benzyloxy, wherein the phenyl groups may be substituted once, twice or three times by C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxy or by nitro;

R_{16a}, R_{16b} and R_{16c} are hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl, C₃-C₆alkynyl, C₃-C₆cycloalkyl or phenyl, wherein phenyl may be substituted once, twice or three times by C₁-C₆alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro; R_{17a} , R_{17b} , R_{17c} , R_{18a} , R_{18b} and R_{18c} are hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl; X_{23} , X_{24} , X_{25} , X_{26} and X_{27} are oxygen or sulfur;

R₁₅, R₁₆, R₁₇, R₁₉ and R₂₀ are each independently of the others hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkoxy-C₁-C₆alkyl, or C₁-C₆alkoxy-C₁-C₆alkyl substituted by C₁-C₆alkoxy, or benzyl or phenyl, wherein phenyl and benzyl may in turn be substituted once, twice or three times by C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxy or by nitro;

or R₅ is a three- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic, saturated or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, and wherein the ring system is bound to the substituent X₁ directly or via a C₁-C₄alkylene, C₂-C₄alkenylene, C₂-C₄alkynylene, -N(R₁₈)-C₁-C₄alkylene, -O-C₁-C₄alkylene, -S-C₁-C₄alkylene, -S(O)-C₁-C₄alkylene or -SO₂-C₁-C₄alkylene chain, wherein the ring system may not be interrupted by -C(=O)-, -C(=S)-, -C(=NR_{5a})-, -N(=O)-, -S(=O)- or by -SO₂-, and each ring system may contain not more than 2 oxygen atoms and not more than two sulfur atoms, and the ring system itself may be substituted once, twice or three times by C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₁-C₆alkoxy, hydroxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₅acetylalkylthio, C₃-C₆alkoxycarbonylalkylthio, C₂-C₄cyanoalkylthio, C₁-C₆alkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may in turn be substituted on the phenyl ring by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen;

R_{5a} is C₁-C₆alkyl, hydroxy, C₁-C₆alkoxy, cyano or nitro;

 R_{18} is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, or benzyl or phenyl, wherein phenyl and benzyl may in turn be substituted once, twice or three times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro;

 R_6 is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, hydroxy, C_1 - C_6 alkoxy, $-C(O)R_{19a}$ or $-C(S)R_{20a}$;

 R_{19a} and R_{20a} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, benzyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or a group $NR_{21}R_{22}$;

 R_{21} and R_{22} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl or phenyl, and wherein phenyl, benzyl, benzyloxy and heteroaryl in R_{19a} , R_{20a} , R_{21} and R_{22} may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, C_1 - C_4 alkylcarbonylamino; or R_{21} together with R_{22} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; or R_6 is - L_2 - X_4 - R_{24} ; wherein

 X_4 is oxygen, -NR₂₃-, -S-, -S(O)- or -S(O)₂-;

R₂₃ is hydrogen, C₁-C₆alkoxy, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃-alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkoxy, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

R₂₄ is hydrogen or a C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C₁-C₆alkoxy, C₁-C₃alkoxy-C₁-C₃alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, cyano, C(X₅)NR₂₅R₂₆, C₃-C₆cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group either *via* a C atom or *via* a N atom, and

wherein the phenyl– and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; or R_{24} is C(O)- R_{74} or C(S)- R_{75} ;

X₅ is oxygen or sulfur;

 R_{25} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₂₆ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R₂₅ together with R₂₆ and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino; or R₆ is -L₃-R₂₇;

 R_{27} is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_6)NR_{28}R_{29}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl;

or R_{27} is C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

X₆ is oxygen or sulfur;

 R_{28} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₂₉ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

WO 2005/058830 PCT/EP2004/014113

-7-

or R_{28} together with R_{29} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_7 is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, phenyl, benzyl, heteroaryl, $C(X_7)R_{30}$ or $NR_{33}R_{34}$, wherein phenyl, benzyl and heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 -alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; C_1 - C_4 alkoxycarbonyl or sulfur;

 R_{30} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or a group $NR_{31}R_{32}$;

 R_{31} and R_{33} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfonyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{32} and R_{34} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R₃₁ together with R₃₂ or R₃₃ together with R₃₄, in each case with the respective N atom to which they are bonded, form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₃haloalkyl, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonyl-amino;

or R₇ is -L₄-X₈-R₃₅; wherein

 X_8 is oxygen, -NR₃₆-, -S-, -S(O)- or -S(O)₂-;

 R_{36} is hydrogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 -alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{35} is hydrogen or a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy-

 C_1 - C_3 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, cyano, $C(X_9)NR_{37}R_{38}$, C_3 - C_6 cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either via a C atom or via a N atom, and wherein the phenyl– and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxy-carbonyl or by C_1 - C_4 alkylcarbonylamino;

X₉ is oxygen or sulfur;

WO 2005/058830

 R_{37} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₃₈ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{37} together with R_{38} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; or R_7 is -L₅- R_{39} ;

 R_{39} is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_{10})NR_{40}R_{41}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl;

or R_{39} is C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

X₁₀ is oxygen or sulfur;

 R_{40} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 halo-

alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₄₁ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{40} together with R_{41} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 -haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R_6 and R_7 together with the nitrogen atom to which they are bonded form a carbocyclic 3-to 7-membered, saturated or partially saturated or unsaturated monocyclic or bicyclic ring system which may be interrupted once by oxygen, once by sulfur, from one to three times by nitrogen and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 -haloalkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl; wherein each ring system may not be interrupted by -C(=O)-, -C(=S)-, $-C(=NR_{5a})$ -, -N(=O)-, -S(=O)- or by $-SO_2$ -;

R_{5a} is C₁-C₆alkyl, hydroxy, C₁-C₆alkoxy, cyano or nitro;

 X_2 is oxygen, -NR₄₂-, sulfur, -S(O)- or -S(O)₂-;

 R_{42} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, $C(X_{11})R_{43}$ or $NR_{46}R_{47}$;

X₁₁ is oxygen or sulfur;

 R_{43} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or a group $NR_{44}R_{45}$;

 R_{44} and R_{46} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{45} and R_{47} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkynyl;

or R₄₄ together with R₄₅ or R₄₆ together with R₄₇, in each case with the respective N atom to which they are bonded, form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₃alkoxy, C₁-C₃alkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkyl-

sulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonyl-amino;

or R₄₂ is -L₆-X₁₂-R₄₈; wherein

WO 2005/058830

 X_{12} is oxygen, -NR₄₉-, -S-, -S(O)- or -S(O)₂-;

R₄₉ is hydrogen, C₁-C₆alkoxy, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃-alkylthio, C₁-C₃alkylthio, C₁-C₃alkylthio, C₁-C₃alkylthio, C₁-C₃alkylthio, C₁-C₃alkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

R₄₈ is a C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C₁-C₂alkoxy, C₁-C₃alkoxy-C₁-C₃alkoxy.

once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, C_3 - C_6 alkynyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, cyano, $C(X_{13})NR_{50}R_{51}$, C_3 - C_6 cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either via a C atom or via a N atom, and wherein the phenyl— and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxy-carbonyl or by C_1 - C_4 alkylcarbonylamino;

X₁₃ is oxygen or sulfur;

 R_{50} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₅₁ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R₅₀ together with R₅₁ and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

or R₄₂ is -L₇-R₅₂;

 R_{52} is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_{14})NR_{53}R_{54}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 halo-

alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl;

or R_{52} is C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

X₁₄ is oxygen or sulfur;

 R_{53} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₅₄ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{53} together with R_{54} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₈ is hydrogen or a C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C₁-C₆alkoxy, C₁-C₃alkoxy-C₁-C₆alkynyloxy, C₃-C₆alkynyloxy, C₁-C₆alkylsulfinyl, C₁-C₆-alkylsulfinyl, cyano, C(X₁₅)NR₅₅R₅₆, C₃-C₆cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, and wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group either *via* a C atom or *via* a N atom, and wherein the phenyl– and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

X₁₅ is oxygen or sulfur;

 R_{55} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

WO 2005/058830 PCT/EP2004/014113

R₅₆ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{55} together with R_{56} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R_8 is cyano, $C(O)-R_{76}$ or $C(S)-R_{77}$;

 X_3 is oxygen, -NR₅₇-, sulfur, -S(O)- or -S(O)₂-;

 R_{57} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, $C(X_{16})R_{58}$ or $NR_{61}R_{62}$;

X₁₆ is oxygen or sulfur;

 R_{58} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or a group $NR_{59}R_{60}$;

 R_{59} and R_{61} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{60} and R_{62} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R_{59} together with R_{60} or R_{61} together with R_{62} , in each case with the respective N atom to which they are bonded, form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R₅₇ is -L₈-X₁₇-R₆₃; wherein

 X_{17} is oxygen, -NR₆₄-, -S-, -S(O)- or -S(O)₂-;

 R_{64} is hydrogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 -alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkoxy, calkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{63} is a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy,

C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, cvano, C(X₁₈)NR₆₅R₆₆, C₃-C₆cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group either via a C atom or via a N atom, and wherein the phenyl- and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C1-C3alkylsulfinyl, C1-C3alkylsulfonyl, C1-C3haloalkylthio, cyano, nitro, C1-C4alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

X₁₈ is oxygen or sulfur;

R₆₅ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or phenyl which may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₆₆ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or Res together with Res and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

or R₅₇ is -L₉-R₆₇;

R₆₇ is formyl, C₁-C₆alkylcarbonyl, C₃-C₆cycloalkylcarbonyl, benzoyl, C₁-C₆alkoxycarbonyl, cyano, C(X₁₉)NR₆₈R₆₉, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C1-C4alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C1-C3haloalkylthio, cyano, nitro or by C1-C4alkoxycarbonyl; or R67 is C3-C6cycloalkyl or C5-C6cycloalkenyl each of which may in turn be substituted once, twice or three times by C₁-C₄alkyl, halogen or by C₁-C₄alkoxy;

X₁₉ is oxygen or sulfur;

R₆₈ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or phenyl which may be substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₆₉ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R₆₈ together with R₆₉ and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

 L_1 is C_1 - C_4 alkylene which may be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C₁-C₄alkoxy and to which C₁-C₄alkylene group there may be spirocyclically bound a further C2-C5alkylene group which may in turn be interrupted once or twice by oxygen, sulfur, sulfinyl or by sulfonyl and/or substituted by C₁-C₄alkyl or by C₁-C₄alkoxy; or L₁ is C₁-C₄alkylene which may be substituted once, twice or three times by C₁-C₄alkyl, halogen or by C1-C4alkoxy, and wherein a carbon atom of that C1-C4alkylene group together with R₉ or with R₇₀ forms, by means of a further C₂-C₆alkylene chain, a ring system which may additionally be interrupted once or twice by oxygen, sulfur, sulfinyl or by sulfonyl and/or substituted by C₁-C₄alkyl or by C₁-C₄alkoxy; R₉ is a group -X₂₀-R₇₀, wherein X_{20} is oxygen, -NR₇₁-, -S-, -S(O)- or -S(O)₂-;

R₇₁ is hydrogen or a C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C1-C6alkoxy, C1-C3alkoxy- C_1 - C_3 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, cyano, C(X₂₁)NR₇₂R₇₃, C₃-C₆cycloalkyl, phenyl, phenoxy or by 5- or 6membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group either via a C atom or via a N atom, and wherein the phenyl- and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

X₂₁ is oxygen or sulfur;

R₇₂ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or phenyl which may be substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

PCT/EP2004/014113

R₇₃ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{72} together with R_{73} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{70} is hydrogen or a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, cyano, $C(X_{15a})NR_{55a}R_{56a}$, C_3 - C_6 cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, and wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either via a C atom or via a C atom, and wherein the phenyl— and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 alkylsulfinyl, C_1 - C_4 alkylcarbonylamino;

X_{15a} is oxygen or sulfur;

WO 2005/058830

 R_{55a} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R_{56a} is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{55a} together with R_{56a} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R_{70} is C_1 - C_{10} alkylideneimino, (phenyl- C_1 - C_4 alkylidene)imino, or phenyl, wherein phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 -alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; or R_{70} is cyano, C(O)- R_{78} or C(S)- R_{79} ;

or R_a is formyl, C₁-C₆alkylcarbonyl, C₃-C₆cycloalkylcarbonyl, benzoyl, C₁-C₆alkoxycarbonyl, cyano, C(X35)NR125R126, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino; and wherein heteroaryl may be substituted once, twice or three times by halogen, C1-C4alkyl, $C_1-C_4 haloalkyl,\ C_1-C_3 alkoxy,\ C_1-C_3 haloalkoxy,\ C_1-C_3 alkylthio,\ C_1-C_3 alkylsulfinyl,\ C_1-C_3 alkyl-C_3 alkylsulfinyl,\ C_1-C_3 alkylsulfinyl,\ C_2-C_3 alkylsulfinyl,\ C_3-C_3 alky$ sulfonyl, C₁-C₃haloalkylthio, cyano, nitro or by C₁-C₄alkoxycarbonyl; or R₉ is C₃-C₆cycloalkyl or C₅-C₆cycloalkenyl each of which may in turn be substituted once, twice or three times by C₁-C₄alkyl, halogen or by C₁-C₄alkoxy;

X₃₅ is oxygen or sulfur;

R₁₂₅ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or phenyl which may be substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

R₁₂₆ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R₁₂₅ together with R₁₂₆ and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, $C_1-C_3 \\ haloalkoxy, C_1-C_3 \\ alkylthio, C_1-C_3 \\ alkylsulfinyl, C_1-C_3 \\ alkylsulfonyl, C_1-C_3 \\ haloalkylthio, \\ alkylsulfonyl, C_1-C_3 \\ haloalkylthio, \\ alkylsulfonyl, C_1-C_3 \\ haloalkylthio, \\ alkylsulfonyl, \\ alky$ cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

 R_{74} , R_{75} , R_{76} , R_{77} , R_{78} and R_{79} are each independently of the others hydrogen, C_1 - C_6 alkyl, C₃-C₆cycloalkyl, phenyl, benzyl, heteroaryl, C₁-C₆alkoxy, C₃-C₆alkenyloxy, benzyloxy, C₁-C₄alkylthio or NR₁₂₇R₁₂₈, wherein phenyl, benzyl or heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C1-C3alkylthio, C1-C3alkylsulfinyl, C1-C3alkylsulfonyl, C1-C3haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

R₁₂₇ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or phenyl which may be substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

R₁₂₈ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R₁₂₇ together with R₁₂₈ and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or WO 2005/058830 PCT/EP2004/014113

- 17 -

substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy. C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

R₃ is hydroxy, O M wherein M is a metal cation or an ammonium cation, or is halogen or $S(O)_{p}R_{80}$, wherein

p is 0, 1 or 2;

 R_{80} is C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} allenyl, C_3 - C_{12} cycloalkyl or C_5 - C_{12} cycloalkenyl;

or R₈₀ is R₁₂₁-C₁-C₁₂alkylene or R₁₂₂-C₂-C₁₂alkenylene, wherein the alkylene or alkenylene chain may be interrupted by -O-, -S-, -S(O)-, -SO₂- or by -C(O)- and/or substituted from one to five times by R_{123} ;

or R₈₀ is phenyl which may be substituted once, twice, three times, four times or five times by R₁₂₄;

 R_{121} and R_{122} are each independently of the other halogen, cyano, rhodano, hydroxy, C₁-C₆alkoxy, C₂-C₆alkenyloxy, C₂-C₆alkynyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C_2 - C_6 alkenylthio, C_2 - C_6 alkynylthio, C_1 - C_6 alkylsulfonyloxy, phenylsulfonyloxy, C_1 - C_6 alkylcarbonyloxy, benzoyloxy, C₁-C₄alkoxycarbonyloxy, C₁-C₅alkylcarbonyl, C₁-C₄alkoxycarbonyl, benzoyl, aminocarbonyl, C₁-C₄alkylaminocarbonyl, C₃-C₆cycloalkyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl-containing groups may in turn be substituted once, twice or three times by halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or by nitro;

R₁₂₃ is hydroxy, halogen, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, cyano, carbamoyl, carboxy, C₁-C₄alkoxycarbonyl or phenyl, wherein phenyl may be substituted once, twice or three times by hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₃-C₄alkenyl, C₃-C₄alkynyl or by C₁-C₄alkoxy;

R₁₂₄ is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro:

 A_1 is $-C(R_{112}R_{113})$ - or $-NR_{114}$ -;

is $-C(R_{115}R_{116})_{m}$, -C(=O)-, -O-, $-NR_{117}$ - or $-S(O)_{q}$ -; A٥

is $-C(R_{118}R_{119})$ - or $-NR_{120}$ -;

with the proviso that A_2 is other than -O- or -S(O)_q- when A_1 is -NR₁₁₄- and/or A_3 is -NR₁₂₀; R₁₁₂ and R₁₁₈ are each independently of the other hydrogen, C₁-C₄alkyl, C₂-C₄alkenyl, C₂-C₄alkynyl, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkoxycarbonyl,

hydroxy, C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, hydroxy- C_1 - C_4 alkyl, C_1 - C_4 alkyl, sulfonyloxy- C_1 - C_4 alkyl, halogen, cyano or nitro;

 R_{113} and R_{119} are each independently of the other hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkylsulfonyl;

or R_{113} together with R_{112} and/or R_{119} together with R_{118} form a C_2 - C_5 alkylene chain which may be interrupted by -O-, -C(O)O- or by -S(O)_r-;

 R_{114} and R_{120} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl or C_1 - C_4 alkoxy;

 R_{115} is hydrogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 hydroxyalkyl, C_1 - C_4 alkoxy- C_1 - C_3 alkyl, C_1 - C_4 alkylthio- C_1 - C_3 alkyl, C_1 - C_4 alkylcarbonyloxy- C_1 - C_3 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_3 alkyl, tosyloxy- C_1 - C_3 alkyl, di(C_1 - C_4 alkoxy) C_1 - C_3 alkyl, C_1 - C_4 alkoxycarbonyl, formyl, C_3 - C_5 oxacycloalkyl, C_3 - C_5 thiacycloalkyl, C_3 - C_4 dioxacycloalkyl, C_3 - C_4 dithiacycloalkyl, C_3 - C_4 -oxathiacycloalkyl, C_1 - C_4 alkoxyiminomethyl, cyano, carbamoyl, C_1 - C_4 alkylaminocarbonyl or di(C_1 - C_4 alkyl)aminocarbonyl;

or R_{115} together with R_{112} or R_{113} or R_{114} or R_{116} or R_{118} or R_{119} or R_{120} or, when m is 2, also with a second R_{115} form a C_1 - C_4 alkylene bridge;

R₁₁₆ is hydrogen, C₁-C₃alkyl or C₁-C₃haloalkyl;

 R_{117} is hydrogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkyl)aminocarbonyl;

m is 1 or 2; and

q and r are each independently of the other 0, 1 or 2;

and also to agronomically acceptable salts, tautomers, isomers and enantiomers of those compounds.

The alkyl groups in the substituent definitions may be straight-chained or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl and octyl and branched isomers thereof. Alkoxy, alkylthio, alkenyl and alkynyl radicals are derived from the mentioned alkyl radicals. The alkenyl and alkynyl groups may be mono- or poly-unsaturated, in which case an allenyl group and a mixed alkene-alkynyl group are also included.

Alkoxy groups are accordingly methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, secbutoxy, isobutoxy, tert-butoxy. WO 2005/058830 PCT/EP2004/014113

Alkylthio groups and oxidised forms thereof preferably have a chain length of from 1 to 3 carbon atoms; preference is given to, for example, methylthio, ethylthio, n-propylthio and isopropylthio; especially methyl- and ethyl-thio. Alkylsulfinyl is, for example, methylsulfinyl, ethylsulfinyl, n-propylsulfinyl or isopropylsulfinyl, and alkylsulfonyl is preferably methylsulfonyl, ethylsulfonyl, propylsulfonyl or isopropylsulfonyl; preferably methylsulfonyl or ethylsulfonyl.

Halogen is generally fluorine, chlorine, bromine or iodine; preferably fluorine, chlorine or bromine. Halo-substituted alkyl groups, that is to say haloalkyl groups, preferably have a chain length of from 1 to 6 carbon atoms. C₁-C₄Haloalkyl is, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,2-trichloroethyl, 1,1,2,2-tetrafluoroethyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl or 2,2,3,4,4,4-hexafluorobutyl; preferably fluoromethyl, difluoromethyl, difluorochloromethyl, dichlorofluoromethyl, trifluoromethyl, 2-chloroethyl, 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl or 2,2,3,3,3-pentafluoropropyl.

As haloalkenyl groups, alkenyl groups substituted once or more than once by halogen are suitable, halogen being especially fluorine or chlorine, for example 2,2-difluoro-1-methylvinyl, 3-fluoropropenyl, 3-chloropropenyl, 3-bromopropenyl, 2,3,3-trifluoropropenyl, 2,3,3-trichloropropenyl or 4,4,4-trifluoro-but-2-en-1-yl. As haloalkynyl, for example alkynyl groups substituted once or more than once by halogen are suitable, halogen being bromine or iodine or also fluorine or chlorine, for example 3-fluoropropynyl, 3-chloropropynyl, 3-bromopropynyl, 3,3,3-trifluoropropynyl or 4,4,4-trifluoro-but-2-yn-1-yl. The same is also correspondingly true for halogen in association with other definitions such as haloalkoxy, haloalkylthio, haloalkylsulfonyl or halophenyl.

The definition of R₄ or R₅ as a three- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic, saturated or partially saturated and which may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, and wherein the ring system may contain not more than 2 oxygen atoms and not more than two sulfur atoms, and the ring system may itself be substituted, is to be understood in the context of the present invention as meaning especially ring systems in which two oxygen atoms and/or one oxygen atom and one sulfur atom are not located next to one another, such as, for example, phenyl, naphthyl,

WO 2005/058830 PCT/EP2004/014113

indenyl, cyclopentenyl, cyclohexenyl or C₃-C₈cycloalkyl, C₃-C₆oxacycloalkyl, C₂-C₅dioxacycloalkyl or similar ring systems, such as especially aromatic five- or six-membered heteroaryl groups containing from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, and partially or fully saturated three- to six-membered ring systems which especially contain 1 or 2 oxygen atoms, such as, for example, oxiranyl, oxetan-3-yl, tetrahydrofuran-3-yl, tetrahydropyran-2-yl, 1,3-dioxacyclopent-2-yl, 1,3-dioxacyclopent-4-yl, 1,3-dioxacyclohex-2-yl, 1,3-dioxacyclohex-5-yl or cis- and/or trans-1,3-dioxa-4,5-dimethyl-cyclopent-2-yl, or fully saturated three- to six-membered ring systems that contain 1 or 2 sulfur atoms, such as, for example, 1,3-oxathio-cyclopent-2-yl, tetrahydrothien-2-yl, 1,3-oxathio-cyclopent-2-yl or 1,3-dithiacyclopent-2-yl.

Heteroaryl, such as, for example, in the definition of R₆, R₇, R₈ or R₉ or in the case of a fiveor six-membered, monocyclic or fused bicyclic, aromatic ring system R₄ or R₅, is understood to be especially an aromatic 5- or 6-membered heteroaryl group bonded via a carbon atom, which group may be interrupted once by oxygen, once by sulfur and/or once, twice or three times by nitrogen, for example 1-methyl-1H-pyrazol-3-yl, 1-ethyl-1H-pyrazol-3-yl, 1-propyl-1H-pyrazol-3-yl, 1H-pyrazol-3-yl, 1,5-dimethyl-1H-pyrazol-3-yl, 4-chloro-1-methyl-1H-pyrazol-3-yl, 3-isoxazolyl, 5-methyl-3-isoxazolyl, 3-methyl-5-isoxazolyl, 5-isoxazolyl, 1H-pyrrol-2-yl, 1methyl-1H-pyrrol-2-yl, 1-methyl-1H-pyrrol-3-yl, 2-furyl, 5-methyl-2-furyl, 3-furyl, 5-methyl-2thienyl, 2-thienyl, 3-thienyl, 1-methyl-1H-imidazol-2-yl, 1H-imidazol-2-yl, 1-methyl-1H-imidazol-4-yl, 1-methyl-1H-imidazol-5-yl, 4-methyl-2-oxazolyl, 5-methyl-2-oxazolyl, 2-oxazolyl, 2methyl-5-oxazolyl, 2-methyl-4-oxazolyl, 4-methyl-2-thiazolyl, 5-methyl-2-thiazolyl, 2-thiazolyl, 2-methyl-5-thiazolyl, 2-methyl-4-thiazolyl, 3-methyl-4-isothiazolyl, 3-methyl-5-isothiazolyl, 5methyl-3-isothiazolyl, 1-methyl-1H-1,2,3-triazol-4-yl, 2-methyl-2H-1,2,3-triazol-4-yl, 4-methyl-2H-1,2,3-triazol-2-yl, 1-methyl-1H-1,2,4-triazol-3-yl, 1,5-dimethyl-1H-1,2,4-triazol-3-yl, 4,5dimethyl-4H-1,2,4-triazol-3-yl, 4-methyl-4H-1,2,4-triazol-3-yl, 5-methyl-1,2,3-oxadiazol-4-yl, 1,2,3-oxadiazol-4-yl, 3-methyl-1,2,4-oxadiazol-5-yl, 5-methyl-1,2,4-oxadiazol-3-yl, 5-methyl-1,2,3-thiadiazol-4-yl, 1,2,3-thiadiazol-4-yl, 3-methyl-1,2,4-thiadiazol-5-yl, 5-methyl-1,2,4thiadiazol-3-yl, 4-methyl-1,2,5-thiadiazol-3-yl, 5-methyl-1,3,4-thiadiazol-2-yl, 2-pyridyl, 6methyl-2-pyridyl, 4-pyridyl, 3-pyridyl, 6-methyl-3-pyridazinyl, 5-methyl-3-pyridazinyl, 3-pyridazinyl, 4,6-dimethyl-2-pyrimidinyl, 4-methyl-2-pyrimidinyl, 2-pyrimidinyl, 2-methyl-4-pyrimidinyl, 2-chloro-4-pyrimidinyl, 2,6-dimethyl-4-pyrimidinyl, 4-pyrimidinyl, 2-methyl-5-pyrimidinyl, 6-methyl-2-pyrazinyl, 2-pyrazinyl, 4,6-dimethyl-1,3,5-triazin-2-yl, 4,6-dichloro-1,3,5-triazin-2yl, 1,3,5-triazin-2-yl, 4-methyl-1,3,5-triazin-2-yl, 3-methyl-1,2,4-triazin-5-yl or 3-methyl-1,2,4triazin-6-yl. A heteroaryl group bonded *via* the N atom is understood to be, for example, 1H-pyrrol-1-yl, 1H-pyrazol-1-yl, 3-methyl-1H-pyrazol-1-yl, 3,5-dimethyl-1H-pyrazol-1-yl, 3-tri-fluoromethyl-1H-pyrazol-1-yl, 3-methyl-1H-1,2,4-triazol-1-yl, 5-methyl-1H-1,2,4-triazol-1-yl or 4H-1,2,4-triazol-4-yl.

The definition of L₁ as C₁-C₄alkylene which may be substituted once, twice or three times by C₁-C₄alkyl, halogen or by C₁-C₄alkoxy, wherein a carbon atom of the L₁ chain forms together with R₉ a C₂-C₆alkylene chain which may be interrupted once or twice by oxygen, sulfur, sulfinyl or by sulfonyl and may be substituted by C₁-C₄alkyl or by C₁-C₄alkoxy, is to be understood in the context of the present invention as being, for example, the following cyclic C₂-C₆alkylene groups: C₃-C₆oxacycloalkyl, C₂-C₅dioxacycloalkyl, C₃-C₆oxacycloalkyl-C₁-C₂-alkyl, C₃-C₆dioxacycloalkyl-C₁-C₂alkyl or similar oxygen- or sulfur-containing groups, especially a C₃-C₆cycloalkyl group interrupted once or twice by oxygen, such as, for example, oxetan-3-yl, tetrahydrofuran-3-yl, tetrahydropyran-2-yl, 1,3-dioxacyclohex-4-yl, or

WO 2005/058830

wherein in each case the marked 'C atom is bonded to X_3 ; or oxiranyl-methyl, 3-oxetanyl-methyl, tetrahydrofuran-3-yl-methyl, tetrahydrofuran-2-yl-methyl, 1,3-dioxacyclopent-3-yl-methyl, 1,3-dioxacyclopent-3-yl-methyl,

or a C₃-C₆cycloalkyl group interrupted once or twice by sulfur, e.g. 1,3-oxathio-cyclopent-2-yl, tetrahydrothien-2-yl-methyl, 1,3-oxathio-cyclopent-2-yl-methyl, 1,3-dithiacyclopent-2-yl-

etc.. wherein in each case the

marked 'C atom is bonded to X₁.

The definition of NR_6R_7 wherein R_6 together with R_7 and the common N atom forms a carbocyclic 3- to 7-membered, saturated or partially saturated monocyclic or bicyclic ring system is to be understood as meaning, for example, morpholino (=morpholin-4-yl), cisand/or trans-2,6-dimethylmorpholin-4-yl, thiomorpholin-4-yl, N-methyl-piperidin-1-yl, 1H-pyrrol-1-yl, 1H-pyrrazol-1-yl, 3-methyl-1H-pyrrazol-1-yl, 3,5-dimethyl-1H-pyrrazol-1-yl, 3-

WO 2005/058830

trifluoromethyl-1H-pyrazol-1-yl, 3-methyl-1H-1,2,4-triazol-1-yl, 5-methyl-1H-1,2,4-triazol-1-yl, 4H-1,2,4-triazol-4-yl, or groups according to the formulae

etc., wherein in each case the marked 'N atom is bonded to the picolinyl group.

The definition of L_1 , L_2 , L_4 , L_6 and L_8 as C_1 - C_4 alkylene, to which C_1 - C_4 alkylene group there may be spirocyclically bound a C_2 - C_5 alkylene group, is to be understood as meaning, for example, a C_1 - C_3 alkylene chain that contains a cyclopropyl group or that is substituted by a 1,3-dioxolan-2-yl group, such as, for example,

, wherein in each case the

marked 'C atom represents the left-hand side valence of the definitions containing the respective substituent L. For example, in $-X_3$ -L₁-R₉ the marked 'C atom is linked to the substituent X_3 . In general, such alkylene chains, for example C_1 -C₄alkylene for L₁ and L₄, can also be substituted by one or more C_1 -C₃alkyl groups, especially by methyl groups. Such alkylene chains and the alkylene chains and groups interrupted by oxygen or by sulfur are preferably unsubstituted. Preferably, groups containing C_3 -C₆cycloalkyl, oxiranyl, oxetanyl, C_3 -C₅oxacycloalkyl, C_3 -C₅thiacycloalkyl, C_3 -C₄dioxacycloalkyl, C_3 -C₄dithiacycloalkyl or C_3 -C₄oxathiacycloalkyl and also the groups A₁, A₂ and A₃ are also unsubstituted.

In the case that a chemical group is substituted more than once by substituents listed in a list of substituents, such as for example L_2 in the meaning of C_1 - C_4 alkylene which is substituted twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy, said chemical group can be substituted by different substituents from said list of substituents. The same applies *mutatis mutandis* for ring systems that are substituted more than once, such as for example R_5 in the meaning of a three- to ten-membered ring system, which is substituted twice or three times by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkynyl, C_3 - C_6 alkoxy, hydroxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy,

WO 2005/058830

mercapto, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 -alkynylthio, C_2 - C_5 alkoxyalkylthio, C_3 - C_5 acetylalkylthio, C_3 - C_6 alkoxycarbonylalkylthio, C_2 - C_4 -cyanoalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, di(C_1 - C_2 alkyl)aminosulfonyl, di(C_1 - C_4 alkyl)-amino, halogen, cyano, nitro, phenyl or by benzylthio.

The compounds of formula I may occur in various tautomeric forms, as shown by way of example for compounds of formula I wherein R₃ is hydroxy by formulae I', I", I" and I", the forms I" und I" being preferred as isolated forms and formula I" also representing a rotameric form of I".

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{2}$$

$$A_{3}$$

$$A_{3}$$

$$A_{2}$$

$$A_{3}$$

$$A_{3}$$

$$A_{2}$$

$$A_{3}$$

$$A_{3}$$

$$A_{2}$$

$$A_{3}$$

$$A_{3}$$

$$A_{2}$$

$$A_{3}$$

$$A_{3}$$

$$A_{3}$$

$$A_{3}$$

$$A_{4}$$

$$A_{3}$$

$$A_{2}$$

$$A_{3}$$

$$A_{3}$$

$$A_{4}$$

$$A_{3}$$

$$A_{4}$$

$$A_{4}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{4}$$

$$A_{5}$$

$$A_{5$$

When there is a C=C or C=N double bond in compounds of formula I, such as, especially, in the groups R_1 , the compounds of formula I may, when asymmetry exists, be in the 'E' or in the 'Z' form. If a further asymmetric centre is present, for example an asymmetric carbon atom in the group R_1 , or as a result of the spatial arrangement of A_1 , A_2 , A_3 and the substituents R_{112} , R_{113} , R_{115} , R_{116} , R_{118} and R_{119} , chiral 'R' and 'S' forms and/or constitutional isomeric forms may also occur. The present invention accordingly includes also all those stereoisomeric and tautomeric forms of the compound of formula I.

The invention relates also to the salts which the compounds of formula I are able to form preferably with amines, alkali metal and alkaline earth metal cations or quaternary ammonium bases. Suitable salt formers are described, for example, in WO 98/41089.

Among the alkali metal and alkaline earth metal hydroxides as salt formers, special mention

may be made of the hydroxides of lithium, sodium, potassium, magnesium and calcium, but especially the hydroxides of sodium and potassium.

Examples of amines suitable for ammonium salt formation include ammonia as well as primary, secondary and tertiary C1-C18alkylamines, C1-C4hydroxyalkylamines and C2-C4alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four butylamine isomers, n-amylamine, isoamylamine, n-hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methyl-ethylamine, methyl-isopropylamine, methyl-hexylamine, methyl-nonylamine, methyl-pentadecylamine, methyl-octadecylamine, ethyl-butylamine, ethyl-heptylamine, ethyl-octylamine, hexyl-heptylamine, hexyl-octylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-n-amylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, ethanolamine, n-propanolamine, isopropanolamine, N,N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-butenyl-2-amine, n-pentenyl-2-amine, 2,3-dimethylbutenyl-2-amine, dibutenyl-2-amine, n-hexenyl-2-amine, propylenediamine, trimethylamine, triethylamine, tri-npropylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, tri-namylamine, methoxyethylamine and ethoxyethylamine; heterocyclic amines, for example pyridine, quinoline, isoquinoline, morpholine, piperidine, pyrrolidine, indoline, quinuclidine and azepine; primary arylamines, for example anilines, methoxyanilines, ethoxyanilines, o-, m- and p-toluidines, phenylenediamines, benzidines, naphthylamines and o-, m- and pchloroanilines; but especially triethylamine, isopropylamine and diisopropylamine.

Preferred quaternary ammonium bases suitable for salt formation correspond, for example, to the formula [${}^{\dagger}N(R_aR_bR_cR_d)$ ${}^{\dagger}OH$] wherein R_a , R_b , R_c and R_d are each independently of the others C_1 - C_4 alkyl. Other suitable tetraalkylammonium bases with other anions can be obtained, for example, by anion exchange reactions.

In preferred compounds of formula I:

a) A_1 is $-C(R_{112}R_{113})$ -, A_2 is $-C(R_{115}R_{116})$ -, A_3 is $-C(R_{118}R_{119})$ -, R_{112} is hydrogen, methyl, methoxy, methylthio, methylsulfinyl, methylsulfonyl, methoxycarbonyl or ethoxycarbonyl and R_{113} , R_{115} , R_{116} , R_{118} and R_{119} are each independently of the others hydrogen or methyl; especially preferably A_1 , A_2 and A_3 are unsubstituted methylene;

WO 2005/058830 PCT/EP2004/014113

- b) A_1 is $-C(R_{112}R_{113})$ -, R_{112} together with R_{113} ethylene is a spirocyclic 3-membered ring, A_2 is $-C(R_{115}R_{116})$ -, A_3 is $-C(R_{118}R_{119})$ and R_{115} , R_{116} , R_{118} and R_{119} are each independently of the others hydrogen or methyl; especially A_2 and A_3 are unsubstituted methylene;
- c) A_1 is $-C(R_{112}R_{113})$ -, A_3 is $-C(R_{118}R_{119})$ -, R_{112} , R_{113} , R_{118} and R_{119} are each methyl and A_2 is carbonyl or oxygen, especially carbonyl;
- d) R₃ is hydroxy, O⁻M⁺, C₁-C₈alkylthio, C₃-C₈alkenylthio, C₃-C₈alkynylthio, benzylthio or phenylthio, especially hydroxy or a salt of formula O⁻M⁺ wherein M⁺ is an agronomically acceptable metal cation or ammonium cation;
- e) R₂ is chlorine, bromine, cyano, trifluoromethyl, difluoromethyl, difluoromethyl, difluoromethoxy, trifluoromethoxy, trifluoromethyl, difluoromethylthio, trifluoromethylthio, trifluoromethylthio, methylthio, methylthio, methylsulfonyl or ethylsulfonyl, especially trifluoromethyl;
- or f) R_1 is a group -NR₆R₇ or a group -X₂-R₈ wherein X₂ is -O- or -NR₄₂-, or a group -X₃-L₁-R₉ wherein X₃ is -O- or -NR₅₇-.

Of those preferred compounds of formula I, special preference is given to the following compounds wherein

- g) R₁ is a group -X₃-L₁-R₉ wherein X₃ is oxygen;
- h) L_1 is a methylene or ethylene chain which may be substituted by methyl, ethyl, methoxy or by ethoxy, special emphasis being given to those compounds wherein R_1 as $-X_3-L_1-R_9$ is the side chain $-O-L_1-O-R_{70}$ wherein R_{70} is C_1-C_3 alkyl, allyl, propargyl, C_1-C_2 alkoxy- C_1-C_2 alkyl or $C(O)-R_{78}$ and R_{78} is $NR_{127}R_{128}$;
- i) R_1 as $-X_3-L_1-R_9$ is the group $-O-L_1-X_{20}-R_{70}$ wherein X_{20} is especially oxygen and a carbon atom of the chain L_1 together with R_{70} forms a C_2-C_6 alkylene chain which may be interrupted once by oxygen and may be substituted once or twice by methyl;
- j) R_1 is $-X_3-L_1-X_{20}-R_{70}$ wherein R_{70} is $C(O)NR_{127}R_{128}$;
- k) R_1 is the group $-O-L_1-N(R_{71})C(O)R_{78}$ wherein R_{71} is especially hydrogen and R_{78} is especially C_1-C_4 alkyl, cyclopropyl, phenyl, C_1-C_4 alkoxy, methylamino or dimethylamino.

In a further especially preferred group of compounds that are preferred under the provisions of a) to f):

I) R_1 is a group -NR₆R₇ or a group -X₃-L₁-R₉ wherein X₃ is -NR₅₇- and wherein L₁ is a methylene or ethylene chain which may be substituted by methyl, ethyl, methoxy or by ethoxy, and of that group of compounds of formula I special mention should be made of those wherein -NR₆R₇ is a heterocyclic group selected from morpholin-4-yl, thiomorpholinyl-

4-yl, pyrazol-1-yl and 1,2,4-triazol-1-yl, and wherein those groups may be substituted by methyl, trifluoromethyl, methoxy or by ethoxy;

m) R_1 is a group -NR₆R₇ wherein R_7 is $C(X_7)R_{30}$; and preferably R_6 is methyl or ethyl; X_7 is oxygen; and R_{30} is C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl or phenyl.

Also preferred are compounds of formula I wherein at least one of the linking members X_3 or X_{20} is oxygen; preferably both are oxygen.

 L_1 is preferably an unsubstituted C_1 - C_3 alkylene chain or a C_2 alkylene chain substituted once by methyl.

In an outstanding group of compounds that are preferred under the provisions of a) to e):

- o) R_1 is a group $-L_{11}-X_1-R_5$ wherein L_{11} is C_1-C_2 alkylene which may be substituted by methyl, ethyl, methoxy or by ethoxy, especially unsubstituted methylene;
- p) R_1 is a group $-L_{11}$ - X_1 - R_5 wherein X_1 is oxygen, -C(O)-, $-C(=NR_{14a})$ -, -C(O)O-, $-C(O)NR_{14b}$ -, thio, sulfonyl, $-NR_{13}SO_2$ -, $-N(SO_2R_{14c})$ or $-NR_{14}$ wherein R_{14} is C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylcarbonyl, X_1 being especially oxygen or $-N(SO_2R_{14c})$ -;
- q) R_1 is a group $-L_{11}$ - X_1 - R_5 wherein R_5 is C_1 - C_6 alkyl which may be substituted by halogen, cyano, C_1 - C_4 alkoxy, C_1 - C_4 alkoxycarbonyl, C_2 - C_4 alkenyl, C_2 - C_4 haloalkenyl, C_2 - C_4 alkynyl, C_3 - C_6 cycloalkyl, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, C_1 - C_4 haloalkoxy, C_3 - C_4 haloalkenyloxy, cyano- C_1 - C_3 alkoxy or by C_1 - C_3 alkoxy- C_1 - C_3 alkoxy; R_5 being especially C_1 - C_4 alkyl, C_3 - C_4 -alkenyl or C_3 - C_4 alkynyl, or C_1 - C_3 alkyl which is substituted from one to three times by fluorine, once or twice by chlorine, once or twice by methoxy or by ethoxy, once by cyano, allyloxy, propargyloxy, difluoromethoxy, trifluoromethoxy, methoxyethoxy or by C_3 - C_6 cycloalkyl;
- r) R₁ is a group -L₁₁-X₁-R₅ wherein R₅ is phenyl or a three- to six-membered monocyclic ring system which may be aromatic, saturated or partially saturated and contains from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, wherein phenyl or the ring system is bound to the substituent X₁ directly or *via* a C₁-C₂alkylene group, and each ring system contains not more than 2 oxygen atoms and not more than two sulfur atoms, and wherein the ring system itself may be substituted from one to four times by C₁-C₃alkyl or by halogen and/or once by C₁-C₃alkoxy, C₁-C₃haloalkoxy, allyloxy, propargyloxy, C₁-C₃alkylthio or by C₁-C₃alkylsulfonyl; R₅ being especially phenyl or a three- to six-membered monocyclic, saturated ring system which contains 1 or 2 oxygen atoms, and wherein phenyl or the ring system is bound to the substituent X₁ either directly or *via* a C₁-C₂alkylene group, and

wherein preferably the ring system itself is unsubstituted or may be substituted from one to four times by C₁-C₃alkyl and/or once by methoxy or by ethoxy.

In a very especially preferred group of compounds of formula I wherein R₁ is a group -L₁₁-X₁-R₅

s) the bidentate linking member -L₁₁-X₁- is preferably -CH₂O-, -CH₂CH₂O- or -CH₂N(SO₂CH₃)-. Compounds of formula I wherein -L₁₁-X₁-R₅ is CH₂OCH₂CH₂OCH₃, $CH_2OCH_2CH_2OCH_2CH_3$, $CH_2OCH_2CF_3$, $CH_2OCH_2CH=CH_2$, $CH_2OCH_2C\equiv CH$, CH2OCH2C=CCH3, CH2OCH2C=CH, CH2OCH2C=N, CH2OCH2C=N, CH2OCH2CH2CH3OCH3, CH2OCH2CH2OCH2CH3OCH3, CH2OCH2CH2OCF3, CH2OCH2CH2CH2OCF3, CH2CH2OCH2CH2OCH3, CH2N(SO2CH3)CH3, CH₂N(SO₂CH₃)CH₂CH₃, CH₂N(SO₂CH₃)CH₂CF₃ or CH₂N(SO₂CH₃)CH₂CH₂OCH₃ are of very special interest.

In a further outstanding group of compounds that are preferred under the provisions of a) to e):

- t) R₁ is a group -L₁₀-R₄ wherein L₁₀ is a direct bond or is a C₁-C₃alkylene or C₂-C₃alkenylene group which may be substituted from one to three times by halogen, methyl, ethyl, methoxy or by ethoxy, L₁₀ being especially a direct bond or an unsubstituted C₁-C₂alkylene group;
- u) R₁ is a group -L₁₀-R₄ wherein R₄ is hydrogen, halogen, cyano or trifluoromethyl or R₄ is a three- to six-membered monocyclic ring system which may be saturated, partially saturated or aromatic and may contain 1 or 2 hetero atoms selected from nitrogen, oxygen and sulfur and may itself be substituted by methyl or methoxy or by methoxymethyl. R₁ as a group -L₁₀-R₄ is especially fluorine, chlorine, bromine, cyano, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, trifluoromethyl, chloromethyl, bromomethyl, methoxymethyl, ethoxymethyl, dimethoxymethyl, diethoxymethyl, 1-(dimethoxy)ethyl, 1-(diethoxy)ethyl, 1-ethoxyethylene, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, 1,3-dioxolan-2-yl, 1,3-dioxolan-4-yl, (2-methyl-[1,3]dioxolan-2-yl), tetrahydropyran-2-yl, 4,5-dihydro-isoxazol-5-yl, 4,5-dihydro-isoxazol-5-yl, (3-methyl-4,5-dihydro-isoxazol-5-yl), phenyl, or phenyl substituted by halogen, methyl, trifluoromethyl, methoxy, trifluoromethoxy or by cyano.

Further groups of compounds of formula I that should be given special mention are those wherein X_1 , X_2 and X_3 are sulfur, sulfinyl or sulfonyl.

In addition, very special mention should be made of a group of compounds wherein R_1 is $-L_{11}-X_1-R_5$, $-NR_6R_7$, $-X_2-R_8$, $-X_3-L_1-R_9$, C_1-C_6 haloalkyl, C_2-C_6 haloalkenyl, C_2-C_6 haloalkynyl or halogen;

L₂, L₄, L₆ and L₈ are each independently of the others C_1 - C_4 alkylene which may be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy and to which C_1 - C_4 alkylene group there may additionally be spirocyclically bound a C_2 - C_5 alkylene group, and wherein that C_2 - C_5 alkylene group may in turn be interrupted once or twice by oxygen, sulfur, sulfinyl or by sulfonyl and/or substituted by C_1 - C_4 alkyl or by C_1 - C_4 alkoxy; L₃, L₅, L₇ and L₉ are each independently of the others C_1 - C_4 alkylene which may be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy; R₂ is halogen, C_1 - C_4 haloalkyl, cyano, C_1 - C_3 haloalkoxy, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl or C_1 - C_4 alloalkylsulfonyl; L₁₁ is a C_1 - C_6 alkylene, C_2 - C_6 alkenylene or C_2 - C_6 alkynylene group which may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 cycloalkyloxy, C_1 - C_6 -alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 a

 R_{10} , R_{11} , R_{12} , R_{13} , R_{14b} , R_{14d} and R_{14} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl substituted by C_1 - C_6 alkoxy, or benzyl or phenyl, wherein phenyl and benzyl may in turn be substituted once, twice or three times by C_1 - C_6 alkyl, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro; R_{14a} is hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy or benzyloxy; R_{14c} is C_1 - C_6 alkyl;

 R_5 is hydrogen or C_1 - C_8 alkyl, or is a C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl or C_3 - C_6 cycloalkyl group which may be substituted once, twice or three times by halogen, hydroxy, amino, formyl, nitro, cyano, mercapto, carbamoyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_3 - C_6 cycloalkyl, halo-substituted C_3 - C_6 cycloalkyl, C_3 - C_6 -alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 haloalkoxy, C_3 - C_6 haloalkenyloxy, cyano- C_1 - C_6 alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl- C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl- C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylsulfinyl- C_1 - C_6 alkylsulfinyl, C_1 - C_6 a

alkylsulfonyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, benzyloxy, benzylthio, benzylsulfinyl, benzylsulfonyl, C_1 - C_6 alkylamino, di(C_1 - C_6 alkyl)amino, $R_{19}R_{20}C$ =NO-, $R_{15}S(O)_2O$ -, $R_{16}N(R_{17})SO_2$ -, rhodano, phenyl, phenoxy, phenylthio, phenylsulfinyl or by phenylsulfonyl; wherein the phenyl- or benzyl-containing groups may in turn be substituted by one or more C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro groups;

R₁₅, R₁₆, R₁₇, R₁₉ and R₂₀ are each independently of the others hydrogen, C₁-C₆alkyl,

C₁-C₆haloalkyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkoxy-C₁-C₆alkyl, or C1-C6alkoxy-C1-C6alkyl substituted by C1-C6alkoxy, or benzyl or phenyl, wherein phenyl and benzyl may in turn be substituted once, twice or three times by C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, halogen, cyano, hydroxy or by nitro; or R₅ is a three- to ten-membered monocyclic or fused bicyclic ring system which may be aromatic, saturated or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, and wherein the ring system is bound to the substituent X1 directly or via a C₁-C₄alkylene, C₂-C₄alkenylene, C₂-C₄alkynylene, -N(R₁₈)-C₁-C₄alkylene, -S(O)-C₁-C₄alkylene or -SO₂-C₁-C₄alkylene chain, wherein each ring system may not be interrupted by -C(=O)-, -C(=S)-, -C(=NR_{5a})-, -N(=O)-, -S(=O)- or by -SO₂-, and each ring system may contain not more than 2 oxygen atoms and not more than two sulfur atoms, and the ring system itself may be substituted once, twice or three times by C1-C6alkyl, C1-C6haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, hydroxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₅acetylalkylthio, C₃-C₆alkoxycarbonylalkylthio, C₂-C₄cyanoalkylthio, C₁-C₆alkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, di(C1-C2alkyl)aminosulfonyl, di(C1-C4alkyl)amino, halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may in turn be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen:

R_{5a} is C₁-C₆alkyl, hydroxy, C₁-C₆alkoxy, cyano or nitro;

 R_{18} is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkyl, or C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, or benzyl or phenyl, wherein phenyl and benzyl may in turn be substituted once, twice or three times by

 C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or by nitro;

 R_6 is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, hydroxy, C_1 - C_6 alkoxy, -C(O) R_{19a} or -C(S) R_{20a} ;

R_{19a} and R_{20a} are each independently of the other hydrogen, C₁-C₆alkyl, C₃-C₆cycloalkyl, phenyl, heteroaryl, C₁-C₆alkoxy, C₃-C₆alkenyloxy, benzyloxy, C₁-C₄alkylthio or a group NR₂₁R₂₂;

 R_{21} and R_{22} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl or phenyl, and wherein phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R_{21} together with R_{22} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R₆ is -L₂-X₄-R₂₄; wherein

 X_4 is oxygen, -NR₂₃-, -S-, -S(O)- or -S(O)₂-;

R₂₃ is hydrogen, C₁-C₆alkoxy, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃-alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino; R₂₄ is hydrogen or a C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C₁-C₆alkoxy, C₁-C₃alkoxy-C₁-C₃alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, cyano, C(X₆)NR₂₅R₂₆, C₃-C₆cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group either *via* a C atom or *via* a N atom, and wherein the phenyl– and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkyl-thio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxy-carbonyl or by C₁-C₄alkylcarbonylamino;

WO 2005/058830

- 31 -

or R_{24} is $C(O)-R_{74}$ or $C(S)-R_{75}$;

 X_5 is oxygen or sulfur;

R₂₅ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or phenyl which may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

R₂₆ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R₂₅ together with R₂₆ and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

or R_6 is $-L_3-R_{27}$;

R₂₇ is formyl, C₁-C₆alkylcarbonyl, C₃-C₆cycloalkylcarbonyl, benzoyl, C₁-C₆alkoxycarbonyl, cyano, C(X₆)NR₂₈R₂₉, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C_1-C_4 haloalkyl, C_1-C_3 alkoxy, C_1-C_3 haloalkoxy, C_1-C_3 alkylthio, C_1-C_3 alkylsulfinyl, C_1-C_3 alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro or by C₁-C₄alkoxycarbonyl;

or R₂₇ is C₃-C₆cycloalkyl or C₅-C₆cycloalkenyl each of which may in turn be substituted once, twice or three times by C₁-C₄alkyl, halogen or by C₁-C₄alkoxy;

X₆ is oxygen or sulfur;

R₂₈ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or phenyl which may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

R₂₉ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R₂₈ together with R₂₉ and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

PCT/EP2004/014113

 R_7 is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, $C(X_7)R_{30}$ or $NR_{33}R_{34}$;

X₇ is oxygen or sulfur;

 R_{30} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or a group $NR_{31}R_{32}$;

 R_{31} and R_{33} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfonyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{32} and R_{34} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R₃₁ together with R₃₂ or R₃₃ together with R₃₄, in each case with the respective N atom to which they are bonded, form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonyl-amino;

or R₇ is -L₄-X₈-R₃₅; wherein

 X_8 is oxygen, -NR₃₆-, -S-, -S(O)- or -S(O)₂-;

R₃₆ is hydrogen, C₁-C₆alkoxy, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃-alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkoxy, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino; R₃₅ is hydrogen or a C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C₁-C₆alkoxy, C₁-C₃alkoxy-C₁-C₃alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfinyl, cyano, C(X₉)NR₃₇R₃₈, C₃-C₆cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group either *via* a C atom or *via* a N atom, and wherein the phenyl– and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkyl-

WO 2005/058830 PCT/EP2004/014113

thio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

X₉ is oxygen or sulfur;

 R_{37} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{38} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R_{37} together with R_{38} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; or R_7 is - L_5 - R_{39} ;

 R_{39} is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_{10})NR_{40}R_{41}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl;

or R_{39} is C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

X₁₀ is oxygen or sulfur;

 R_{40} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{41} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R_{40} together with R_{41} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 -

- 34 -

haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C₁-C₃haloalkylthio, cyano, nitro, C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

or R₆ and R₇ together with the nitrogen atom to which they are bonded form a carbocyclic 3to 7-membered, saturated or partially saturated or unsaturated monocyclic or bicyclic ring system which may be interrupted once by oxygen, once by sulfur, from one to three times by nitrogen and/or substituted once, twice or three times by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, $C_1-C_3 \\ alkoxy, \ C_1-C_3 \\ alkylsulfonyl, \$ haloalkylthio, cyano, nitro or by C1-C4alkoxycarbonyl; wherein each ring system may not be interrupted by -C(=O)-, -C(=S)-, $-C(=NR_{5a})$ -, -N(=O)-, -S(=O)- or by $-SO_2$ -;

R_{5a} is C₁-C₆alkyl, hydroxy, C₁-C₆alkoxy, cyano or nitro;

 X_2 is oxygen, -NR₄₂-, sulfur, -S(O)- or -S(O)₂-;

 $R_{42} \text{ is hydrogen, } C_1 - C_6 \text{alkyl, } C_3 - C_6 \text{alkenyl, } C_3 - C_6 \text{alkynyl, } C_1 - C_6 \text{haloalkyl, } C_3 - C_6 \text{cycloalkyl, } C_8 - C_8 \text{alkynyl, } C_8 - C_8 \text{alk$ phenyl, heteroaryl, $C(X_{11})R_{43}$ or $NR_{46}R_{47}$;

 X_{11} is oxygen or sulfur;

R₄₃ is hydrogen, C₁-C₆alkyl, C₃-C₆cycloalkyl, phenyl, heteroaryl, C₁-C₆alkoxy, C₃-C₆alkenyloxy, benzyloxy, C₁-C₄alkylthio or a group NR₄₄R₄₅;

 R_{44} and R_{46} are each independently of the other hydrogen, $C_1\text{-}C_6 alkyl,\, C_3\text{-}C_6 alkenyl or$ C₃-C₆alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₄₅ and R₄₇ are each independently of the other hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C3-C6alkynyl;

or R_{44} together with R_{45} or R_{46} together with R_{47} , in each case with the respective N atom to which they are bonded, form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C1-C4alkyl, C₁-C₄haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, C₁-C₃alkylthio, C₁-C₃alkylsulfinyl, C₁-C₃alkylsulfonyl, C1-C3haloalkylthio, cyano, nitro, C1-C4alkoxycarbonyl or by C1-C4alkylcarbonylamino;

or R₄₂ is -L₆-X₁₂-R₄₈; wherein

 X_{12} is oxygen, -NR₄₉-, -S-, -S(O)- or -S(O)₂-;

R₄₉ is hydrogen, C₁-C₆alkoxy, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C3alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; R_{48} is a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, cyano, $C(X_{13})NR_{50}R_{51}$, C_3 - C_6 cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either via a C atom or via a N atom, and wherein the phenyl— and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxy-carbonyl or by C_1 - C_4 alkylcarbonylamino;

X₁₃ is oxygen or sulfur;

 R_{50} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₅₁ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{50} together with R_{51} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R₄₂ is -L₇-R₅₂;

 R_{52} is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_{14})NR_{53}R_{54}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl; or R_{52} is C_3 - C_6 cycloalkyl

or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

X₁₄ is oxygen or sulfur;

 R_{53} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₅₄ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{53} together with R_{54} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 -haloalkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_8 is hydrogen or a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, cyano, $C(X_{15})NR_{55}R_{56}$, C_3 - C_6 cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, and wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either via a C atom or via a C atom, and wherein the phenyl— and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 alkylsulfinyl, C_1 - C_4 alkylcarbonylamino;

X₁₅ is oxygen or sulfur;

 R_{55} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{56} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R_{55} together with R_{56} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy,

 C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino; or R_8 is C(O)- R_{76} or C(S)- R_{77} ;

 X_3 is oxygen, -NR₅₇-, sulfur, -S(O)- or -S(O)₂-;

 R_{57} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, $C(X_{16})R_{58}$ or $NR_{61}R_{62}$;

X₁₆ is oxygen or sulfur;

WO 2005/058830

 R_{58} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, benzyloxy, C_1 - C_4 alkylthio or a group $NR_{59}R_{60}$;

 R_{59} and R_{61} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{60} and R_{62} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R_{59} together with R_{60} or R_{61} together with R_{62} , in each case with the respective N atom to which they are bonded, form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 alkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R₅₇ is -L₈-X₁₇-R₆₃; wherein

 X_{17} is oxygen, -NR₆₄-, -S-, -S(O)- or -S(O)₂-;

 R_{64} is hydrogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or is phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 -alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₆₃ is a C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C₁-C₆alkoxy, C₁-C₃alkoxy-C₁-C₃alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, cyano, C(X₁₈)NR₆₅R₆₆, C₃-C₆cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the

 C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either *via* a C atom or *via* a N atom, and wherein the phenyl— and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxy-carbonyl or by C_1 - C_4 alkylcarbonylamino;

X₁₈ is oxygen or sulfur;

 R_{65} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₆₆ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{65} together with R_{66} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R₅₇ is -L₉-R₆₇;

 R_{67} is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_{19})NR_{68}R_{69}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl;

or R_{67} is C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

X₁₉ is oxygen or sulfur;

 R_{68} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₆₉ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{68} together with R_{69} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 L_1 is C_1 - C_4 alkylene which may be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy and to which C_1 - C_4 alkylene group there may be spirocyclically bound a further C_2 - C_5 alkylene group which may in turn be interrupted once or twice by oxygen, sulfur, sulfinyl or by sulfonyl and may be substituted by C_1 - C_4 alkyl or by C_1 - C_4 alkoxy; or L_1 is C_1 - C_4 alkylene which may be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy, wherein a carbon atom of that C_1 - C_4 alkylene chain together with R_9 or with R_{70} forms a further C_2 - C_6 alkylene chain which may be interrupted once or twice by oxygen, sulfur, sulfinyl or by sulfonyl and may be substituted by C_1 - C_4 alkyl or by C_1 - C_4 alkoxy; R_9 is a group $-X_{20}$ - R_{70} , wherein

 X_{20} is oxygen, -NR₇₁-, -S-, -S(O)- or -S(O)₂-;

 R_{71} is a C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, which groups may be substituted once, twice or three times by halogen, hydroxy, C_1 - C_6 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, cyano, $C(X_{21})NR_{72}R_{73}$, C_3 - C_6 cycloalkyl, phenyl, phenoxy or by 5- or 6-membered heteroaryl or heteroaryloxy, wherein heteroaryl or heteroaryloxy may in turn be interrupted once by oxygen or by sulfur or once, twice or three times by nitrogen and may be bonded to the C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group either via a C atom or via a N atom, and wherein the phenyl— and heteroaryl-containing groups may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 alkylsulfonyl,

C₁-C₄alkoxycarbonyl or by C₁-C₄alkylcarbonylamino;

X₂₁ is oxygen or sulfur;

 R_{72} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{73} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl;

or R_{72} together with R_{73} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or

substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{70} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C(O)- R_{78} , C(S)- R_{79} or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 -alkylthio, C_1 - C_3 alkylthio, C_1 - C_3 alkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

or R_9 is formyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, benzoyl, C_1 - C_6 alkoxycarbonyl, cyano, $C(X_{35})NR_{125}R_{126}$, phenyl or heteroaryl, wherein benzoyl and phenyl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

and wherein heteroaryl may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylthio, cyano, nitro or by C_1 - C_4 alkoxycarbonyl;

or R_9 is C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl each of which may in turn be substituted once, twice or three times by C_1 - C_4 alkyl, halogen or by C_1 - C_4 alkoxy;

X₃₅ is oxygen or sulfur;

 R_{125} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₁₂₆ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{125} together with R_{126} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_{74} , R_{75} , R_{76} , R_{77} , R_{78} and R_{79} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, phenyl, heteroaryl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_1 - C_4 alkylthio or $NR_{127}R_{128}$;

 R_{127} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl or phenyl which may be substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 -

WO 2005/058830

haloalkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

R₁₂₈ is hydrogen, C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

or R_{127} together with R_{128} and the respective N atom to which they are bonded form a carbocyclic 3- to 6-membered ring which may be interrupted by oxygen or by sulfur and/or substituted once, twice or three times by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 -haloalkoxy, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 haloalkylthio, cyano, nitro, C_1 - C_4 alkoxycarbonyl or by C_1 - C_4 alkylcarbonylamino;

 R_3 is hydroxy, O^*M^+ wherein M^+ is a metal cation or an ammonium cation, or is halogen or $S(O)_pR_{80}$ wherein R_{80} is C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} allenyl, C_3 - C_{12} -cycloalkyl or C_5 - C_{12} cycloalkenyl; and p is 0, 1 or 2;

or R_{80} is R_{121} - C_1 - C_{12} alkylene or R_{122} - C_2 - C_{12} alkenylene, wherein the alkylene or alkenylene chain may be interrupted by $-O_-$, $-S_-$, $-S(O)_-$, $-SO_2$ - or by $-C(O)_-$ and/or substituted from one to five times by R_{123} ; or R_{80} is phenyl which may be substituted once, twice, three times, four times or five times by R_{124} ;

 R_{121} and R_{122} are each independently of the other halogen, cyano, rhodano, hydroxy, C_1 - C_6 alkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 alkynyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyloxy, phenylsulfonyloxy, C_1 - C_6 alkylcarbonyloxy, benzoyloxy, C_1 - C_4 alkoxycarbonyloxy, C_1 - C_6 alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, benzoyl, aminocarbonyl, C_1 - C_4 alkylaminocarbonyl, C_3 - C_6 cycloalkyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl-containing groups may in turn be substituted once, twice or three times by halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or by nitro;

 R_{123} is hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, cyano, carbamoyl, carboxy, C_1 - C_4 alkoxycarbonyl or phenyl, wherein phenyl may be substituted once, twice or three times by hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl or by C_1 - C_4 alkoxy;

 R_{124} is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro;

 A_1 is -C($R_{112}R_{113}$)- or -NR₁₁₄-;

 A_2 is -C(R₁₁₅R₁₁₆)_m-, -C(=O)-, -O-, -NR₁₁₇- or -S(O)_q-;

 A_3 is -C($R_{118}R_{119}$)- or -NR₁₂₀-;

with the proviso that A_2 is other than -O- or -S(O)_q- when A_1 is -NR₁₁₄- and/or A_3 is -NR₁₂₀;

 R_{112} and R_{118} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkoxycarbonyl, hydroxy, C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, hydroxy- C_1 - C_4 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_4 alkyl, halogen, cyano or nitro;

 R_{113} and R_{119} are each independently of the other hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl;

or R₁₁₃ together with R₁₁₂ and/or R₁₁₉ together with R₁₁₈ form a C₂-C₅alkylene chain which may be interrupted by -O-, -C(O)O- or by -S(O)_r-;

 R_{114} and R_{120} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkenyl, C_3 - C_4 alkoxy;

 R_{115} is hydrogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_3 hydroxyalkyl, C_1 - C_4 alkoxy- C_1 - C_3 alkyl, C_1 - C_4 alkylthio- C_1 - C_3 alkyl, C_1 - C_4 alkylcarbonyloxy- C_1 - C_3 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_3 alkyl, tosyloxy- C_1 - C_3 alkyl, di(C_1 - C_4 alkoxy) C_1 - C_3 alkyl, C_1 - C_4 alkoxycarbonyl, formyl, C_3 - C_5 oxacycloalkyl, C_3 - C_5 thiacycloalkyl, C_3 - C_4 dioxacycloalkyl, C_3 - C_4 dithiacycloalkyl, C_3 - C_4 -oxathiacycloalkyl, C_1 - C_4 alkoxyiminomethyl, carbamoyl, C_1 - C_4 alkylaminocarbonyl or di(C_1 - C_4 alkyl)aminocarbonyl;

or R_{115} together with R_{112} or R_{113} or R_{114} or R_{116} or R_{118} or R_{119} or R_{120} or, when m is 2, also with a second R_{115} form a C_1 - C_4 alkylene bridge;

R₁₁₆ is hydrogen, C₁-C₃alkyl or C₁-C₃haloalkyl;

 R_{117} is hydrogen, C_1 - C_3 alkyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylcarbonyl or di- $(C_1$ - C_4 alkyl)aminocarbonyl;

m is 1 or 2; and

q and r are each independently of the other 0, 1 or 2;

and also Examples 1.009, 1.010, 1.033 to 1.045, 1.092, 1.097 to 1.110, 1.153 to 1.156, 1.158 to 1.169, 1.189, 1.192, 1.195 to 1.201, 2.009, 2.010, 2.033 to 2.045, 2.091, 2.096 to 2.109, 2.152 to 2.155, 2.157 to 2.168, 2.188, 2.191, 2.194 to 2.200, 3.009, 3.010, 3.033 to 3.045, 3.091, 3.096 to 3.109, 3.152 to 3.155, 3.157 to 3.168, 3.188, 3.191, 3.194 to 3.200.

The compounds of formula I can be prepared by means of processes that are known *per se* and are described, for example, in WO 00/15615, EP-A-0 316 491, EP-A-1 352 901 and WO 02/16305.

Compounds of formula I can be prepared, for example, by a) converting a compound of formula IIa

HO
$$R_1$$
 (IIa),

wherein R_1 and R_2 are as defined hereinbefore, into a compound of formula IIb

wherein Y_1 is a leaving group, e.g. halogen, cyano, acyloxy or phenoxy which may be substituted by an electron-withdrawing group, e.g. halogen, trifluoromethyl, nitro, cyano, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl or C_1 - C_4 alkylsulfonyl, or the like, and then reacting that compound in the presence of a base, e.g. triethylamine, Hünig's base, sodium hydrogen carbonate or potassium carbonate, with a dione of formula III

$$A_{1}$$
 A_{2}
 A_{3}
 A_{2}
 A_{3}
 A_{3}

wherein A₁, A₂ and A₃ are as defined hereinbefore and R₃ is hydroxy or O˙M⁺ wherein M⁺ is as defined hereinbefore, and then treating the reaction mixture in the presence of the base used, e.g. triethylamine, with the aid of a cyanide-containing catalyst, e.g. acetone cyanohydrin, trimethylsilyl cyanide, copper cyanide, sodium cyanide or potassium cyanide, or by means of fluoride ions, e.g. potassium fluoride, or by means of dimethylaminopyridine; or

b) converting a compound of formula XIIIa

wherein R₁ and R₂ are as defined hereinbefore and Y₄ is halogen or trifluoromethane-sulfonyloxy, under carbonylation conditions at elevated pressure and elevated temperature in the presence of a palladium catalyst having suitable ligands, e.g. PdCl₂(PPh₃)₂, Pd(PPh₃)₄, Pd₂(dba)₃, Pd(CH₃CN)₂(PPh₃)₂, Pd(OAc)₂ or (racBINAP)PdCl₂, and optionally in the presence of an auxiliary catalyst, e.g. triphenylphosphine, tri(tert-butyl)phosphine,

(Ph₃)₂PCH₂CH₂P(Ph₃)₂ or (Ph₃)₂PCH₂CH₂CH₂P(Ph₃)₂, and in the presence of a base, e.g. triethylamine, and optionally further adjuvants, e.g. LiCl or Li₂CO₃, using carbon monoxide and a dione of formula III or using the tautomeric form of a dione of formula IIIa

wherein A_1 , A_2 and A_3 are as defined hereinbefore and R_3 is hydroxy, into a compound of formula XIa

$$R_1$$
 (XIa), R_2

and/or its isomeric form XIb

wherein A₁, A₂, A₃, R₁ and R₂ are as defined hereinbefore, and then treating that compound with the aid of a cyanide-containing catalyst, e.g. acetone cyanohydrin, trimethylsilyl cyanide, copper cyanide, sodium cyanide or potassium cyanide, in the presence of a trialkylamine base, e.g. triethylamine, to obtain a compound of formula I; or

c) when X2 or X3 is oxygen or sulfur, reacting a compound of formula la

wherein A_1 , A_2 , A_3 , A_2 and A_3 are as defined hereinbefore and A_2 is oxygen or sulfur, in the presence of a suitable base, e.g. potassium carbonate, anhydrous sodium hydroxide or sodium hydride, with an alkylating agent of formula IVa or IVb

$$Y_2-R_8$$
 (IVa) or $Y_2-L_1-R_9$ (IVb),

wherein R_8 is an unsubstituted or substituted C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, and R_9 and L_1 are as defined hereinbefore, and Y_2 is a leaving group such as chlorine, bromine, iodine, mesyloxy or tosyloxy; or

d) when X2 or X3 is oxygen, reacting a compound of formula la

wherein A_1 , A_2 , A_3 , R_2 and R_3 are as defined hereinbefore and X_2 is oxygen, in the presence of a bis-diaza-alkoxycarboxylate of formula ROC(O)-N=C=N-COOR or a bis-diazaalkyl-carbamoyl of formula RNHC(O)-N=C=N-C(O)NHR, wherein R is a C_1 - C_6 alkyl or C_5 - C_6 -cycloalkyl group, and a phosphine, e.g. triphenylphosphine or tri(tert-butyl)phosphine, with an alcohol of formula Va or Vb

$$HO-R_8$$
 (Va) or $HO-L_1-R_9$ (Vb),

wherein R_8 is an unsubstituted or substituted C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, and R_9 and L_1 are as defined hereinbefore; or

e) reacting a compound of formula lb

wherein A_1 , A_2 , A_3 , R_2 and R_3 are as defined hereinbefore and K_1 is a leaving group, e.g. halogen or alkylsulfonyl, in the presence of a base, e.g. potassium tert-butanolate, sodium amylate, sodium hydride, dry sodium or potassium hydroxide, or an amine, e.g. triethyl-

amine, Hünig's base or dimethylaminopyridine, with an alcohol or a mercaptan of formula Vc or Vd

$$HX_2-R_8$$
 (Vc) or $HX_3-L_1-R_9$ (Vd),

wherein R_8 is an unsubstituted or substituted C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, and L_1 and R_9 are as defined hereinbefore, and X_2 or X_3 is oxygen or sulfur, or with an amine of formula Ve or VI

$$HNR_{57}-L_1-R_9$$
 (Ve) or HNR_6R_7 (VI),

wherein L₁, R₆, R₇, R₉ and R₅₇ are as defined hereinbefore; or

f) reacting a compound of formula lc

wherein A_1 , A_2 , A_3 , R_2 and R_3 are as defined hereinbefore and K_2 is a group capable of appropriate functionalisation $-L_{10}$ - K_{20} , $-L_{11}$ - X_1 - K_{21} , $-X_2$ - K_{22} , $-X_3$ - L_1 - K_{23} wherein L_{10} , L_{11} , L_1 , X_1 , X_2 and X_3 are as defined hereinbefore and K_{20} , K_{21} , K_{22} and K_{23} are a functionalisation group, e.g. hydroxy, chlorine, bromine, iodine, mesyloxy, tosyloxy, formyl or carbonyl, either with an appropriate alkylating agent of formula VII or VIIa

$$Y_3-R_9$$
 (VII) or $Y_3-X_{20}-R_{70}$ (VIIa),

or with a ketalisation agent or a nucleophilic reagent of formula VIII

or its salt of formula VIIIa

$$M^{+} X_{20} - R_{70}$$
 (VIIIa),

wherein R_9 , R_{70} and X_{20} are as defined hereinbefore and Y_3 is a leaving group such as bromine, iodine, tosyloxy or C_1 - C_4 alkylsulfonyloxy, and M^+ is a metal cation of an alkali metal base, such as lithium, sodium or potassium, optionally in the presence of an additional base, or, in the case of ketalisation of a carbonyl function, in the presence of an additional acid, e.g. p-toluenesulfonic acid, trifluoroacetic acid or sulfuric acid; or

g) when R₁ is -L₁₀-R₄ or -L₁₁-X₁-R₅ wherein L₁₀ or L₁₁ is especially an unsubstituted or substituted C₂-C₆alkenylene or a C₂-C₆alkynylene group and R₄, when L₁₀ is a direct bond, is especially a five- to ten-membered, monocyclic or fused bicyclic ring system which may be aromatic or partially saturated and which may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, reacting a compound of formula Id

wherein A₁, A₂, A₃, R₂ and R₃ are as defined hereinbefore and K₃ is a group capable of functionalisation, such as chlorine, bromine, iodine or trifluoromethylsulfonyloxy, by means of a –C-C- linking Suzuki, Stille, Sonogashira or Heck reaction, in the presence of a noble metal catalyst having suitable ligands, e.g. PdCl₂(PPh₃)₂, Pd(PPh₃)₄, Pd₂(dba)₃, Pd(CH₃CN)₂(PPh₃)₂, Pd(OAc)₂, Rh, Cu, CuCl or Cul, and in the presence of a base, e.g. triethylamine, Hünig's base, sodium tert-butanolate, potassium tert-butanolate, sodium carbonate, potassium carbonate, caesium carbonate, potassium fluoride or caesium fluoride, and optionally further adjuvants, e.g. LiCl or Li₂CO₃, or an additional auxiliary catalyst, e.g. triphenylphosphine, tri(tert-butyl)phosphine, (Ph₃)₂PCH₂CH₂P(Ph₃)₂ or (Ph₃)₂PCH₂CH₂P(Ph₃)₂, with a boronic acid, e.g. of formula Xa or Xb

$$(HO)_2B-L_{10}-R_4$$
 (Xa) or $(HO)_2B-L_{11}-X_1-R_5$ (Xb),

or with a tin compound of formula Xc or Xd

$$R_e R_f R_q Sn - L_{10} - R_4$$
 (Xc) or $R_e R_f R_g Sn - L_{11} - X_1 - R_5$ (Xd),

or with an ethynyl compound of formula Xe or Xf having a functionality in accordance with R1

H-C=C-
$$L_{10b}$$
-R₄ (Xe) or H-C=C- L_{11b} -X₁-R₅ (Xf),

or with a vinyl compound of formula Xg or Xh having a functionality in accordance with R1

H-CH=CH-
$$L_{10a}$$
- R_4 (Xg) or H-CH=CH- L_{11a} - X_1 - R_5 (Xh),

wherein L_{10} , L_{11} , R_4 , R_5 and X_1 are as defined hereinbefore, R_e , R_f and R_g are each independently of the others C_1 - C_8 alkyl and L_{10a} , L_{10b} , L_{11a} and L_{11b} are appropriate subgroups of the groups L_{10} and L_{11} , such as especially a direct bond or a C_1 - C_4 alkylene group which may be substituted once, twice or three times by C_1 - C_6 alkyl, halogen, hydroxy, C_1 - C_6 alkoxy or by C_1 - C_3 alkoxy- C_1 - C_3 alkoxy; or

h) for the preparation of compounds of formula I wherein the substituent definitions include sulfinyl or sulfonyl groups, treating a compound of formula I wherein the corresponding substituent definitions include thio groups with an oxidising agent, e.g. peracetic acid, trifluoroperacetic acid, m-chloro-perbenzoic acid, hydrogen peroxide, sodium perbromate, sodium iodate, sodium hypochloride, chlorine or bromine.

In addition, compounds of formula I wherein R₃ is other than hydroxy or halogen can be prepared, in accordance with conversion methods generally known from the literature, by nucleophilic substitution reactions of chlorides of formula I wherein R₃ is chlorine, which can be obtained from compounds of formula I wherein R₃ is hydroxy, likewise in accordance with known methods, by reaction with a chlorinating agent, such as phosgene, thionyl chloride or oxalyl chloride. In that process, for example, mercaptans, thiophenols or heterocyclic thiols are reacted in the presence of a base, for example 5-ethyl-2-methylpyridine, diisopropylethylamine, triethylamine, sodium hydrogen carbonate, sodium acetate or potassium carbonate. Furthermore, compounds of formula I wherein the substituent R₃ is a mercapto group can be oxidised in analogy to known standard methods, for example using peracids, e.g. metachloroperbenzoic acid (m-CPBA) or peracetic acid, to form the corresponding sulfoxides and/or sulfones of formula I. In the process, the degree of oxidation at the sulfur atom (-S(O)- or -SO₂-) can be controlled by the amount of oxidising agent.

In the case of process a), as a result of reaction of a dione of formula III with an acid of formula IIa in the presence of a suitable coupling reagent, e.g. dicyclohexylcarbodiimide, Nethyl-N'-(3-dimethylamino-propyl)-carbodiimide (EDC), 2-chloro-1-methyl-pyridinium iodide or

- 49 -

N,N-dimethyl-(1-chloro-2-methyl-propen)amine, or as a result of reaction of a dione of formula III with an activated form of the acid, e.g. an acid chloride, of formula IIb, wherein Y1 is chlorine, in the presence of a base, e.g. triethylamine, Hünig's base or potassium carbonate, there is obtained a corresponding enol ester compound of formula XIa and/or Xib

wherein A₁, A₂, A₃, R₁ and R₂ are as defined hereinbefore, which may then either be rearranged directly in situ by adding catalytic amounts of cyanide ions, e.g. from about 1 % to about 15 % acetone cyanohydrin, to form the compound of formula I, or may first be isolated and purified and then, in a second step, rearranged in the presence of catalytic amounts of from about 0.1 % to about 5 % potassium cyanide ions or from about 0.5 % to about 10 % acetone cyanohydrin, and a fresh amount of a trialkylamine base, e.g. from about 0.1 to about 3 equivalents of triethylamine, preferably from 1 to about 1.4 equivalents, to form the compound of formula I, as shown above using the exemplified formulae XIa and XIb to form compounds of formula I. This process may be shown in general terms in Scheme 1 using the example of the preparation of compounds of formula I.

Scheme 1:

$$\begin{array}{c} \text{activating agent:} \\ \text{HO} \\ \\ \text{R}_{2} \\ \\ \text{R}_{2} \\ \\ \text{e.g. (COCl)}_{2} \\ \\ \text{e.g. (COCl)}_{2} \\ \\ \text{R}_{2} \\ \\ \text{e.g. (REt}_{3} \\ \\ \text{e.g. NEt}_{3} \\ \\ \text{(Illa)} \\ \\ \text{(I$$

WO 2005/058830

In a preferred process for the preparation of compounds of formula la

- 50 -

in which A_1 , A_2 , A_3 , R_2 and R_3 are as defined hereinbefore and X_2 is oxygen or sulfur and which are used as starting materials in process variants c) and d), for example, either a compound of formula le

wherein A_1 , A_2 , A_3 , R_2 and R_3 are as defined hereinbefore and K_4 is a cleavable group, such as methoxy when X_2 is oxygen, or is a disulfide bridge of a dimeric compound le, is reacted in the presence of an ether-cleaving reagent, e.g. boron trichloride, boron tribromide, aluminium chloride, sodium methylmercaptide, sodium ethylmercaptide or trimethylsilyl iodide, or a compound of formula le wherein K_4 is benzyloxy or dimeric disulfide is reduced catalytically in the presence of hydrogen.

The compounds of formula If used in process variants c), d), e), f) and g)

wherein A_1 , A_2 , A_3 , R_2 and R_3 are as defined hereinbefore and K_0 is a sub-group of R_1 capable of functionalisation, as defined especially in accordance with the meanings of K_1 , K_2 , K_3 and/or K_4 above, such as especially fluorine, chlorine, bromine, iodine, hydroxy, methylthio, methylsulfonyl, bromomethyl, hydroxymethyl, formyl, methylcarbonyl, 2-hydroxy-

WO 2005/058830

ethoxy, 2-bromoethoxy, benzyloxy or dimeric disulfide, can likewise be prepared in accordance with process variant a) or in accordance with process variant b) from the corresponding compounds of formula XII or XIII

wherein K_0 , R_2 and Y_4 are as defined hereinbefore; Y is C_1 - C_4 alkoxy, benzyloxy, hydroxy, fluorine, chlorine, cyano or phenoxy which may be substituted by an electron-withdrawing group, e.g. halogen, trifluoromethyl, nitro, cyano, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl or C_1 - C_4 alkylsulfonyl, Y being especially C_1 - C_4 alkoxy, benzyloxy, hydroxy, chlorine or cyano; and K_0 being especially hydroxy (corresponding to formula la wherein X_2 is oxygen), K_1 wherein K_1 is, for example, halogen or methylsulfonyl (corresponding to formula lb), K_3 wherein K_3 is, for example, chlorine, bromine or iodine (corresponding to formula ld), K_4 wherein K_4 is, for example, methylthio, benzyloxy or methoxy (corresponding to formula le), or a disulfide bridge of a dimeric compound XII or XIII (corresponding to formula le wherein X_2 is sulfur),

aa) by reacting the compound in question with a dione of formula III

wherein R₃ is hydroxy or O⁻M⁺ and A₁, A₂, A₃ and M⁺ are as defined hereinbefore, or bb) by reacting a hydroxy or mercapto compound of formula la

wherein A_1 , A_2 , A_3 , A_2 and A_3 are as defined hereinbefore and X_2 is oxygen or sulfur, in accordance with process variant c) with an appropriate alkylating agent of formula IVc

$$Y_2-L_1-K_{23}$$
 (IVc),

WO 2005/058830 PCT/EP2004/014113

- 52 -

or

cc) in accordance with process variant d) with the appropriate alcohol of formula Vf

$$HO-L_1-K_{23}$$
 (Vf),

or

dd) in accordance with process variant e) by treating a compound of formula lb

wherein A_1 , A_2 , A_3 , R_2 and R_3 are as defined hereinbefore and K_1 is halogen or alkylsulfonyl, with an alcohol or mercaptan of formula Vg or Vh

$$HK_1$$
 (Vg) or $HX_3-L_1-K_{23}$ (Vh),

or with an amine of formula VIc

wherein K_1 is methoxy or methylthio and X_3 is oxygen or sulfur, and K_{23} , L_1 , R_6 and Y_2 are as defined hereinbefore.

The starting materials of formula Ila

HO
$$R_1$$
 (IIa),

and of formula IIb

$$P_1$$
 P_2
 P_1
 P_2
 P_3
 P_4
 P_4
 P_4

wherein R₁, R₂ and Y₁ are as defined hereinbefore, and also compounds of formula IId

$$P_0$$
 P_1
 P_2
(IId),

wherein Y_0 is C_1 - C_4 alkoxy, benzyloxy or phenoxy which may be unsubstituted or substituted by an electron-withdrawing group such as halogen, trifluoromethyl, nitro, cyano, C_1 - C_4 alkyl-carbonyl, C_1 - C_4 alkoxycarbonyl or C_1 - C_4 alkylsulfonyl, which are used as starting materials in the preparation of compounds of formula IIa, can be prepared analogously to known methods, as described e.g. in EP-A-0 353 187, by converting a compound of formula XIII

$$Y_4$$
 N
 K_0
 R_2
(XIII),

wherein R₂ is as defined hereinbefore, K₀ is hydrogen, methoxy, methylthio, methylsulfonyl, halogen or another group R₁ that is stable in this process, and Y₄ is chlorine, bromine or trifluoromethylsulfonyloxy, under carbonylation conditions at elevated pressure and elevated temperatures in the presence of a palladium catalyst having suitable ligands, e.g. PdCl₂(PPh₃)₂, Pd(PPh₃)₄, Pd(CH₃CN)₂(PPh₃)₂, Pd₂(dba)₃, Pd(OAc)₂ or (racBINAP)PdCl₂, and optionally in the presence of an auxiliary catalyst, e.g. triphenylphosphine, tri(tert-butyl)-phosphine, (Ph₃)₂PCH₂CH₂P(Ph₃)₂ or (Ph₃)₂PCH₂CH₂P(Ph₃)₂, and in the presence of a base, e.g. triethylamine, using carbon monoxide and an alcohol of formula IX

$$R_0$$
-OH (IX)

wherein R_0 is C_1 - C_4 alkyl, benzyl or phenyl which may be unsubstituted or substituted by an electron-withdrawing group such as halogen, trifluoromethyl, nitro, cyano, C_1 - C_4 alkyl-carbonyl, C_1 - C_4 alkoxycarbonyl or C_1 - C_4 alkylsulfonyl, into a compound of formula XIIa

$$Y_0$$
 K_0
 K_0
 K_0
 K_2

wherein K_0 , R_2 and Y_0 are as defined hereinbefore, and then converting that compound in known conversion reactions, e.g. hydrolysis, addition and/or substitution reactions and subsequent hydrolysis, into the compound of formula XII

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

or of formula II

$$\begin{array}{ccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

wherein K_0 , R_1 and R_2 are as defined hereinbefore and Y is C_1 - C_4 alkoxy, benzyloxy, hydroxy, fluorine, chlorine, bromine, cyano or phenoxy which may be unsubstituted or substituted by an electron-withdrawing group, e.g. halogen, trifluoromethyl, nitro, cyano, C_1 - C_4 alkyl-carbonyl, C_1 - C_4 alkoxycarbonyl or C_1 - C_4 alkylsulfonyl.

For example, a compound of formula XIIIb

$$Y_4$$
 N
 H
 R_2
(XIIIb),

wherein R₂ and Y₄ are as defined hereinbefore, can be converted by carbonylation or by means of a *Grignard* reaction and CO₂ into a compound of formula XIIb

$$Y_0$$
 N
 H
 R_2
(XIIb),

wherein R_2 and Y_0 are as defined hereinbefore, which is then converted in the presence of an oxidising agent, e.g. hydrogen peroxide or the hydrogen peroxide/urea adduct in the presence of trifluoroacetic anhydride, into an N-oxido compound of formula XV

wherein R_2 and Y_0 are as defined hereinbefore, which is then either a) reacted in the presence of phosphorus oxychloride or trifluoroacetic anhydride to form a hydroxy compound of formula XIIc

or

b) when a suitable nucleophile of formula Vi is used

or when a nucleophile of formula VIb is used

$$HNR_6C(O)R_{30}$$
 (VIb),

wherein R₁, R₆, R₃₀ are as defined hereinbefore, converted in the presence of an activating reagent, e.g. oxalyl chloride or trifluoroacetic anhydride, and optionally in the presence of an acid-binding agent, e.g. triethylamine or Hünig's base, directly into the compounds of formula IId

$$Y_0$$
 R_1
 R_2
(IId),

wherein R_1 , R_2 and Y_0 are as defined hereinbefore and R_1 is especially a group $-NR_4C(O)R_{30}$, which can then be converted in accordance with a) for the isolation of an intermediate of formula XIIc by known and general conversion methods such as

- 56 -

halogenation, e.g. by means of dichlorophenyl phosphate, further nucleophilic reactions with alcohols, mercaptans or amines of formula

$$HX_3-L_1-R_9$$
 (V) or HNR_6R_7 (VI),

wherein X_3 , L_1 , R_6 , R_7 , R_9 are as defined hereinbefore, as described above under process conditions c) to h) into compounds of formula XII

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

or of formula II

$$\begin{array}{c} O \\ Y \\ \hline \\ N \\ \hline \\ R_2 \end{array} \qquad \text{(II),}$$

wherein K₀, R₁, R₂ and Y are as defined hereinbefore.

The starting materials of formula IId

wherein R_1 is a group $-X_2$ - R_8 or $-X_3$ - L_1 - R_9 , X_2 and X_3 are oxygen, and L_1 , R_2 , R_9 and Y_0 are as defined hereinbefore, and R₈ is an unsubstituted or substituted C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl group, can also be prepared either by treating a compound of formula XIId

$$Y_0$$
 X_2H
 R_2
(XIId),

wherein R2 and Y0 are as defined hereinbefore, and X2 is oxygen or sulfur, in accordance with process variant c) in the presence of a suitable base with an alkylating agent of formula

$$Y_2$$
- R_8 (IVa) or Y_2 - L_1 - R_9 (IVb),

wherein L_1 , R_9 and Y_2 are as defined hereinbefore and R_8 is an unsubstituted or substituted C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group; or by reacting a compound of formula XIId

wherein R_2 and Y_0 are as defined hereinbefore and X_2 is oxygen, in accordance with process variant d) simultaneously in the presence of a bis-diaza-alkoxycarboxylate of formula ROC(O)-N=C=N-COOR or a bis-diaza-alkylcarbamoyl of formula RNHC(O)-N=C=N-C(O)NHR, wherein R is a C_1-C_6 alkyl or C_5-C_6 cycloalkyl group, and in the presence of a phosphine, e.g. triphenylphosphine or tri(tert-butyl)phosphine, with an alcohol of formula

$$HO-R_8$$
 (Va) or $HO-L_1-R_9$ (Vb),

wherein R_8 is an unsubstituted or substituted C_1 - C_6 alkyl, C_3 - C_6 alkenyl or C_3 - C_6 alkynyl group, and R_9 and L_1 are as defined hereinbefore, respectively.

The reaction described in accordance with process variant d) is generally known as a Mitsunobu reaction and is especially suitable for the preparation of those compounds of formulae I and IId wherein R₁ is a group -X₂-R₈, -X₃-L₁-R₉ or -X₁-L₁-X₂₀-R₇₀ and X₂ and X₃ are oxygen and R₈ and L₁ are a C₁-C₄alkylene group branched in the alpha-position or substituted in that position by halogen or by alkoxy, or together with R₉ or with R₇₀ forms, by means of a further C₂-C₆alkylene chain, a 3- to 6-membered ring system.

Furthermore, the starting materials of formula IId

WO 2005/058830

$$P_0$$
 P_1
 P_2
(IId),

wherein R_1 is a group $-L_{10}$ - R_4 or $-L_{11}$ - X_1 - R_5 and wherein L_{10} and L_{11} are especially an unsubstituted or substituted C_2 - C_6 alkenylene or a C_2 - C_6 alkynylene group and R_4 , when L_{10} is

a direct bond, is especially a three- to ten-membered, monocyclic or fused bicyclic ring system which may be aromatic or partially saturated, and which may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, and R₂, R₅, X₁ and Y₀ are as defined hereinbefore, can advantageously be prepared by reacting a compound of formula XIIe

$$Y_0$$
 N
 K_3
 R_2
(XIIe)

wherein R₂ and Y₀ are as defined hereinbefore, and K₃ is group capable of further functionalisation, such as chlorine, bromine, iodine or trifluoromethylsulfonyloxy, in accordance with process variant g) by means of a -C-C- linking *Suzuki*, *Stille*, *Sonogashira* or *Heck* reaction, in the presence of a noble metal catalyst having suitable ligands, e.g. PdCl₂(PPh₃)₂, Pd(PPh₃)₄, Pd₂(dba)₃, Pd(CH₃CN)₂(PPh₃)₂, Pd(OAc)₂, Rh, Cu, CuCl or Cul, and in the presence of a base, e.g. triethylamine, Hünig's base, sodium tert-butanolate, potassium tert-butanolate, sodium carbonate, potassium carbonate, caesium carbonate, potassium fluoride or caesium fluoride, and optionally further adjuvants, e.g. LiCl or Li₂CO₃, or an additional auxiliary catalyst, e.g. triphenylphosphine, tri(tert-butyl)phosphine, (Ph₃)₂PCH₂CH₂P(Ph₃)₂ or (Ph₃)₂PCH₂CH₂CH₂P(Ph₃)₂, with a boronic acid, e.g. of formula Xa or Xb

$$(HO)_2B-L_{10}-R_4$$
 (Xa) or $(HO)_2B-L_{11}-X_1-R_5$ (Xb),

or with a tin compound of formula Xc or Xd

$$R_a R_b R_c Sn - L_{10} - R_4$$
 (Xc) or $R_a R_b R_c Sn - L_{11} - X_1 - R_5$ (Xd),

or with an ethynyl compound of formula Xe or Xf having a functionality in accordance with R₁

$$H-C=C-L_{10b}-R_4$$
 (Xe) or $H-C=C-L_{11b}-X_1-R_5$ (Xf),

or with a vinyl compound of formula Xg or Xh having a functionality in accordance with R1

H-CH=CH-
$$L_{10a}$$
-R₄ (Xg) or H-CH=CH- L_{11a} -X₁-R₅ (Xh),

wherein L_{10} , L_{11} , R_4 , R_5 and X_1 are as defined hereinbefore, R_a , R_b and R_c are each independently of the others C₁-C₈alkyl and L_{10a}, L_{10b}, L_{11a} and L_{11b} are appropriate subgroups of the groups L₁₀ and L₁₁, such as especially a direct bond or a C₁-C₄alkylene group which may be substituted once, twice or three times by C₁-C₆alkyl, halogen, hydroxy, C₁-C₆alkoxy or by C₁-C₃alkoxy-C₁-C₃alkoxy, and wherein the reagents Xg and Xh can each result in one or more regio-isomeric products, for example

Those process sequences are described in greater detail in Reaction schemes 2 to 5 below.

Reaction scheme 2:

$$\begin{array}{c} & \frac{\text{carbonylation:}}{\text{CO/R'OH}} \\ & \frac{\text{c.g. PdCl}_2(\text{PPh}_3)_2}{\text{e.g. PdCl}_2(\text{PPh}_3)_2} \\ & \text{triphenylphosphine} \\ & \text{triethylamine} \\ & \text{or} \\ & \frac{\text{Grignard reaction:}}{\text{1) iso-PrMgCl}} \\ & 2) \text{ CO}_2 \\ & 3) \text{ (R'O)}_2\text{SO}_2 \\ \end{array} \begin{array}{c} \frac{\text{conversion}}{\text{reactions:}} \\ & \frac{\text{conversion}}{\text{reactions:}} \\ & \frac{\text{e.g.}}{\text{R}_0 - \text{R}_1} \\ & \text{substitution:} \\ & \text{Y}_0 - \text{Y}_1 \\ & \text{hydrolysis:} \\ & \text{e.g. KOH;} \\ & \text{and chlorination:} \\ & \text{e.g. (COCl)}_2 \\ \end{array}$$

PCT/EP2004/014113 WO 2005/058830

- 60 -

Reaction scheme 3:

Reaction scheme 4:

$$\begin{array}{c} \text{OH} \\ \text{PhOP(O)Cl}_2 \\ \text{170 °C} \\ \end{array} \begin{array}{c} \text{Chlorination:} \\ \text{e.g.} \\ \text{PhOP(O)Cl}_2 \\ \text{170 °C} \\ \end{array} \begin{array}{c} \text{Substitution:} \\ \text{e.g.} \\ \text{HX}_3\text{-L}_1\text{-R}_9 \text{ (V)} \\ \text{base: e.g. NaH} \\ \text{or} \\ \text{HNR}_6\text{R}_7 \text{ (VI)} \\ \text{or -C-C- linkage} \\ \text{by means of Suzuki, Stille, Heck} \\ \text{or Sonogashira reaction} \\ \end{array} \begin{array}{c} \text{Substitution:} \\ \text{e.g.} \\ \text{HX}_3\text{-L}_1\text{-R}_9 \text{ (V)} \\ \text{base: e.g. NaH} \\ \text{or} \\ \text{or Sonogashira reaction} \\ \end{array}$$

Reaction scheme 5:

WO 2005/058830 PCT/EP2004/014113

- 61 -

The compounds of formula XII

$$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

and XIIf

$$N$$
 K_2
 R_2
 $(XIIIf)$

wherein K₀, K₂ and R₂ are as defined hereinbefore and Y is accordingly Y₀, hydroxy or Y₁, which are used as starting materials in the preparation of compounds of general formulae If and especially Ic, can likewise be prepared in accordance with the generally known methods or in accordance with the preparation processes c) to h) given above for formulae I and IIc.

The compounds of formula II used as starting materials

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

wherein R₁ and R₂ are as defined hereinbefore and Y is C₁-C₄alkoxy, benzyloxy, hydroxy, fluorine, chlorine, bromine, cyano or phenoxy which may be unsubstituted or substituted by an electron-withdrawing group, e.g. halogen, trifluoromethyl, nitro, cyano, C1-C4alkylcarbonyl, C₁-C₄alkoxycarbonyl or C₁-C₄alkylsulfonyl, are novel and the present Application relates also to the use thereof in the preparation of compounds of formula I. In compounds of formula II, Y is preferably C₁-C₄alkoxy, benzyloxy, hydroxy, chlorine or cyano.

The compounds of formula III used as starting materials are generally known. For example, diones of formula III

$$A_{1}$$
 A_{2}
 A_{2}
 A_{3}
 A_{2}
 A_{3}
 A_{3}
 A_{3}
 A_{3}
 A_{3}
 A_{3}
 A_{3}
 A_{3}

and of formula IIIa

wherein A_1 , A_2 and A_3 are as defined hereinbefore and R_3 is hydroxy or O^*M^* wherein M^* is as defined hereinbefore, are known, for example, from DE-A-3902818, WO 00/39094, or they can be prepared in accordance with the methods described therein.

The starting materials of formulae IVa, IVb, IVc, V, Va, Vb, Vc, Vd, Ve, Vf, Vg, Vh, Vi, VIa, VIb, VIc, VII, VIIa, VIII, VIIIa, IX, Xa, Xb, Xc, Xd, Xe, Xf, Xg, Xh, XIIIa, XIIIb are likewise generally known or they can be prepared analogously to known methods.

All the reactions according to the preparation processes a) to h) for forming compounds of formula I and also intermediates of formula II are advantageously carried out in aprotic and inert organic solvents. Such solvents are hydrocarbons, e.g. benzene, toluene, xylene or cyclohexane, chlorinated hydrocarbons, e.g. dichloromethane, chloroform, tetrachloromethane or chlorobenzene, ethers, e.g. diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran or dioxane, nitriles, e.g. acetonitrile or propionitrile, and amides, e.g. N,N-dimethylformamide, diethylformamide or N-methylpyrrolidinone. The temperatures in those reactions are preferably from -20°C to +120°C. When the reactions are exothermic, they can usually be carried out at room temperature. In order to shorten the reaction time or also in order to initiate the reaction, the reaction mixture may, where appropriate, be heated briefly up to its boiling point. Relatively new application techniques such as ultrasound and the use of microwaves are also highly suitable. It is often possible, especially when using microwaves, for the reaction times to be substantially reduced at relatively mild temperatures of from about 100°C to about 150°C. The reaction times can likewise be shortened by adding a suitable base as reaction catalyst. Suitable bases are, especially, tertiary amines such as trimethylamine, triethylamine, quinuclidine, 1,4-diazabicyclo[2.2.2]octane, 1,5-diazabicyclo[4.3.0]non-5-ene and 1,5-diazabicyclo[5.4.0]undec-7-ene. However, it is also possible to use inorganic bases, such as hydrides, e.g. sodium or calcium hydride, hydroxides, e.g. dry sodium or potassium hydroxide, carbonates, e.g. sodium or potassium carbonate, or hydrogen carbonates, e.g. sodium or potassium hydrogen carbonate.

In accordance with process a), preparation of the compounds of formulae I, If, and II, Ilb and XII, wherein Y₁ and Y are chlorine, is carried out using a chlorinating agent, e.g. oxalyl

chloride, thionyl chloride, phosgene, (1-chloro-2-methyl-propenyl)-dimethyl-amine, phosphorus pentachloride, phosphorus oxychloride or dichlorophosphate, preferably using oxalyl chloride. The reaction is preferably carried out in an inert, organic solvent, for example in an aliphatic, halogenated aliphatic, aromatic or halogenated aromatic hydrocarbon, e.g. n-hexane, benzene, toluene, xylenes, dichloromethane, 1,2-dichloroethane or chlorobenzene, at reaction temperatures in the range from -20°C up to the reflux temperature of the reaction mixture, preferably at about 40-100°C, and in the presence of a catalytic amount of N,N-dimethylformamide. It can also, where appropriate, be carried out directly in the chlorinating agent used, without additional solvent.

The end products of formula I can be isolated in conventional manner by concentrating or evaporating off the solvent and can be separated and purified by recrystallising or by triturating the solid residue in solvents in which they are not readily soluble, such as ethers, aromatic hydrocarbons or chlorinated hydrocarbons, or by distillation or by means of column chromatography or by means of HPLC techniques using a suitable eluant.

The person skilled in the art will also be familiar with the order in which the reactions should be performed in order to avoid subsidiary reactions as far as possible. Unless synthesis is specifically aimed at the isolation of pure isomers, the product may be obtained in the form of a mixture of two or more isomers, e.g. chiral centres in the case of alkyl groups or cis/trans isomerism in the case of alkenyl groups or 'E' or 'Z' forms. All those isomers can be separated using methods known *per se*, e.g. chromatography or fractional crystallisation, or, by specifically controlling the reactions, a desired form can be produced in a relatively high concentration or in pure form.

The compounds of formula I according to the invention can be used as herbicides in unmodified form, that is to say as obtained in the synthesis, but they are generally formulated in various ways, using formulation adjuvants such as carriers, solvents and surface-active substances, to form herbicidal compositions. The formulations can be in various physical forms, e.g. in the form of dusting powders, gels, wettable powders, water-dispersible granules, water-dispersible tablets, effervescent tablet compacts, emulsifiable concentrates, micro-emulsifiable concentrates, oil-in-water emulsions, aqueous dispersions, dispersions in oil, suspoemulsions, water-soluble concentrates (having water or a water-miscible organic solvent as carrier), impregnated polymer films, or in other forms that are known, for example from the Manual on Development and Use of FAO Specifications for Plant Protection Products, 5th Edition, 1999. Those formulations either can be used directly

WO 2005/058830 PCT/EP2004/014113

- 64 -

or are diluted before use. The dilutions can be produced using, for example, water, liquid fertilisers, micro-nutrients, biological organisms, oil or solvents.

The formulations can be produced, for example, by mixing the active ingredient with the formulation adjuvants to obtain compositions in the form of finely divided solids, granules, spherules, solutions, dispersions or emulsions. The active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, organic solvents, water, surface-active substances or combinations thereof. The active ingredients can also be contained in very fine microcapsules consisting of a polymer. Microcapsules contain the active ingredients in a porous carrier. This enables active ingredients to be released into the surroundings in controlled amounts. Microcapsules usually have a diameter of from 0.1 to 500 microns. They contain active ingredient in an amount of about from 25 to 95 % by weight of the capsule weight. The active ingredients can be present in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution. The encapsulating membranes comprise, for example, natural and synthetic gums, cellulose, styrene-butadiene copolymers, polyacrylonitrile, polyacrylate, polyester, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers known in this context to the person skilled in the art. Alternatively, it is possible for very fine microcapsules to be formed wherein the active ingredient is present in the form of finely divided particles in a solid matrix of a base substance, but in that case the microcapsules are not encapsulated.

The formulation adjuvants that are suitable for producing the compositions according to the invention are known *per se*. As liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, dipropylene glycol, dipropylene glycol methyl ether, dipropylene glycol dibenzoate, diproxitol, alkylpyrrolidinone, ethyl acetate, 2-ethylhexanol, ethylene carbonate, 1,1,1-trichloroethane, 2-heptanone, alphapinene, d-limonene, ethylene glycol, ethylene glycol butyl ether, ethylene glycol methyl ether, gamma-butyrolactone, glycerol, glycerol acetate, glycerol diacetate, glycerol triacetate,

WO 2005/058830 PCT/EP2004/014113

- 65 -

hexadecane, hexylene glycol, isoamyl acetate, isobornyl acetate, isooctane, isophorone. isopropylbenzene, isopropyl myristate, lactic acid, laurylamine, mesityl oxide, methoxypropanol, methyl isoamyl ketone, methyl isobutyl ketone, methyl laurate, methyl octanoate, methyl oleate, methylene chloride, m-xylene, n-hexane, n-octylamine, octadecanoic acid, octylamine acetate, oleic acid, oleylamine, o-xylene, phenol, polyethylene glycol (PEG400), propionic acid, propylene glycol, propylene glycol methyl ether, p-xylene, toluene, triethyl phosphate, triethylene glycol, xylenesulfonic acid, paraffin, mineral oil, trichloroethylene, perchloroethylene, ethyl acetate, amyl acetate, butyl acetate, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, methanol, ethanol, isopropanol, and alcohols of higher molecular weight such as amyl alcohol, tetrahydrofurfuryl alcohol, hexanol, octanol, etc., ethylene glycol, propylene glycol, glycerol, N-methyl-2-pyrrolidinone (NMP), and the like. Water is generally the carrier of choice for dilution of the concentrates. Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, chalk, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances such as are described, for example, in CFR 180.1001. (c) & (d).

A large number of surface-active substances can advantageously be used both in solid and in liquid formulations, especially in those which can be diluted with a carrier before application. Surface-active substances can be anionic, cationic, non-ionic or polymeric, and they can be used as emulsifying agents, wetting agents or suspension agents or for other purposes. Typical surface-active substances include, for example, salts of alkyl sulfates, e.g. diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, e.g. calcium dodecylbenzenesulfonate; addition products of alkylphenols and alkylene oxides, e.g. nonylphenol ethoxylates; addition products of alcohols and alkylene oxides, e.g. tridecylalcohol ethoxylates; soaps, e.g. sodium stearate; salts of alkylnaphthalenesulfonates, e.g. sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, e.g. sodium di(2-ethylhexyl)sulfosuccinate; sorbitol esters, e.g. sorbitol oleate; quaternary amines, e.g. lauryl trimethylammonium chloride, polyethylene glycol esters of fatty acids, e.g. polyethylene glycol stearate; block copolymers of ethylene oxide and propylene oxide; and salts of mono- and di-alkyl phosphate esters; and also further substances described, for example, in "McCutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981.

Further adjuvants which can usually be used in herbicidal formulations include crystallisation inhibitors, viscosity-modifying substances, suspension agents, dyes, antioxidants, foaming agents, light-absorbing agents, mixing adjuvants, anti-foams, complex-formers, neutralising or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micro-nutrients, plasticisers, glidants, lubricants, dispersants, thickening agents, antifreeze agents, microbicidal agents, and also liquid and solid fertilisers.

The formulations may also comprise additional active substances, e.g. further herbicides, herbicide safeners, plant growth regulators, fungicides and/or insecticides.

The compositions according to the invention may additionally include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters thereof or mixtures of such oils and oil derivatives. The amounts of oil additive used in the composition according to the invention are generally from 0.01 to 10 %, based on the spray mixture. For example, the oil additive can be added to the spray tank in the desired concentration after the spray mixture has been prepared. Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, such as AMIGO® (Rhône-Poulenc Canada Inc.), alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow. A preferred additive e.g. NOV233 contains as active components essentially 80 % by weight alkyl esters of fish oils and 15 % by weight methylated rapeseed oil, and also 5 % by weight of customary emulsifiers and pH modifiers.

Especially preferred oil additives comprise alkyl esters of C_{8} - C_{22} fatty acids, the methyl derivatives of C_{12} - C_{18} fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid, being especially important. Those esters are known as methyl laurate (CAS-111-82-0), methyl palmitate (CAS-112-39-0) and methyl oleate (CAS-112-62-9). A preferred fatty acid methyl ester derivative is Emery® 2230 and 2231 (Cognis GmbH). These and other oil derivatives are also known from the Compendium of Herbicide Adjuvants, 5th Edition, Southern Illinois University, 2000.

The application and action of the oil additives can be further improved by combining them with surface-active substances, such as non-ionic, anionic or cationic surfactants. Examples of suitable anionic, non-ionic and cationic surfactants are listed on pages 7 and 8 of

WO 2005/058830 PCT/EP2004/014113

- 67 -

WO 97/34485. Preferred surface-active substances are anionic surfactants of the dodecylbenzylsulfonate type, especially the calcium salts thereof, and also non-ionic surfactants of the fatty alcohol ethoxylate type. Special preference is given to ethoxylated C₁₂-C₂₂ fatty alcohols having a degree of ethoxylation of from 5 to 40. Examples of commercially available surfactants are the Genapol types (Clariant AG). Also preferred are silicone surfactants, especially polyalkyl-oxide-modified heptamethyltrisiloxanes, which are commercially available, for example, as Silwet L-77®, and also perfluorinated surfactants. The concentration of surface-active substances in relation to the total additive is generally from 1 to 30 % by weight. Examples of oil additives that consist of mixtures of oils or mineral oils or derivatives thereof with surfactants are Edenor ME SU®, Turbocharge® (Zeneca Agro, CA) and Actipron® (BP Oil UK Limited, GB).

Where appropriate, the mentioned surface-active substances can also be used alone, that is to say without oil additives, in the formulations.

The addition of an organic solvent to the oil additive/surfactant mixture can also bring about a further enhancement of action. Suitable solvents are, for example, Solvesso® (ESSO) and Aromatic Solvent® (Exxon Corporation). The concentration of such solvents can be from 10 to 80 % by weight of the total weight. Such oil additives, which are present in admixture with solvents, are described, for example, in US-A-4,834,908. A commercially available oil additive known therefrom is known by the name MERGE® (BASF Corporation). A further oil additive that is preferred according to the invention is SCORE® (Syngenta Crop Protection Canada).

In addition to the oil additives listed above, it is also possible, for the purpose of enhancing the action of the compositions according to the invention, to add formulations of alkyl pyrrolidones (e.g. Agrimax®) to the spray mixture. Formulations of synthetic latices, such as, for example, polyacrylamide, polyvinyl compounds or poly-1-p-menthene (e.g. Bond®, Courier® or Emerald®), can also be used for the purpose. Solutions comprising propionic acid, for example Eurogkem Pen-e-trate®, can also be admixed as action-enhancing agents with the spray mixture.

The herbicidal formulations generally contain from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of compound of formula I and from 1 to 99.9 % by weight of a formulation adjuvant which preferably contains from 0 to 25 % by weight of a surface-active substance. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.

The rates of application of compounds of formula I may vary within wide limits and depend on the nature of the soil, the method of application (pre- or post-emergence; seed dressing; application to the seed furrow; no tillage application etc.), the crop plant, the weed or grass to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop. The compounds of formula I according to the invention are generally applied at a rate of from 1 to 2000 g/ha.

The invention relates also to a method of selectively controlling grasses and weeds in crops of useful plants, which comprises treating the useful plants or the area of cultivation or locus thereof with the compounds of formula I.

The weeds to be controlled may be either monocotyledonous or dicotyledonous weeds, such as, for example, Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica.

As crops of useful plants in which the composition according to the invention can be used there come into consideration especially cereals, cotton, soybeans, sugar beet, sugar cane, plantation crops, rape, maize and rice. Crops are to be understood as including those which have been made tolerant to herbicides or classes of herbicides (e.g. ALS-, GS-, EPSPS- and HPPD-inhibitors) by means of conventional breeding or genetic engineering methods. An example of a crop that has been made tolerant by conventional breeding methods to, for example, imidazolinones such as imazamox is Clearfield® summer rape (canola). Examples of crops made tolerant to herbicides by genetic engineering methods are maize varieties resistant to, for example, glyphosate or glufosinate, which are commercially available under the trade names RoundupReady® and LibertyLink®.

Useful plants are to be understood as expressly including pest-resistant and/or fungus-resistant transgenic useful plants.

In the context of the present invention, pest-resistant transgenic crop plants are to be understood as being those which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.

Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popliae; or insecticidal proteins from Bacillus thuringiensis, such as δ -endotoxins, e.g. CrylA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c, or vegetative insecticidal proteins (VIP), e.g. VIP1, VIP2, VIP3 or VIP3A; or insecticidal proteins of bacteria-colonising nematodes, for example Photorhabdus spp. or Xenorhabdus spp., such as Photorhabdus luminescens, Xenorhabdus nematophilus; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins; plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsine inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.

In the context of the present invention there are to be understood by δ-endotoxins, for example CrylA(b), CrylA(c), CrylF, CrylF(a2), CrylIA(b), CrylIIA, CrylIIB(b1) or Cry9c, or vegetative insecticidal proteins (VIP), for example VIP1, VIP2, VIP3 or VIP3A, expressly also hybrid toxins, truncated toxins and modified toxins. Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701). An example of a truncated toxin is a truncated CrylA(b), which is expressed in Bt11 maize of Syngenta Seeds SAS, as described hereinbelow. In the case of modified toxins, one or more amino acids of the naturally occurring toxin is/are replaced. In such

amino acid replacements, preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of CrylllA055, a cathepsin-D-recognition sequence is inserted into a CrylllA toxin (see WO 03/018810).

Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.

The processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.

The toxin contained in the transgenic plants provides the plants with tolerance to harmful insects. Such insects can occur in any taxonomic group of insects, but are especially commonly found in beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).

The following harmful insects from different taxonomic groups are especially common in maize crops:

Ostrinia nubilalis, European corn borer

Agrotis ipsilon, black cutworm

Helicoverpa zea, corn earworm

Spodoptera frugiperda, fall armyworm

Diatraea grandiosella, southwestern corn borer

Elasmopalpus lignosellus, lesser cornstalk borer

Diatraea saccharalis, sugarcane borer

Diabrotica virgifera virgifera, western com rootworm

Diabrotica longicornis barberi, northern corn rootworm

Diabrotica undecimpunctata howardi, southern corn rootworm

Melanotus spp., wireworms

Cyclocephala borealis, northern masked chafer (white grub)

Cyclocephala immaculata, southern masked chafer (white grub)

Popillia japonica, Japanese beetle

Chaetocnema pulicaria, corn flea beetle

Sphenophorus maidis, maize billbug

Rhopalosiphum maidis, corn leaf aphid
Anuraphis maidiradicis, corn root aphid
Blissus leucopterus leucopterus, chinch bug
Melanoplus femurrubrum, red-legged grasshopper
Melanoplus sanguinipes, migratory grasshopper
Hylemya platura, seedcorn maggot
Agromyza parvicornis, corn blotch leafminer
Anaphothrips obscurus, grass thrips
Solenopsis milesta, thief ant
Tetranychus urticae, two-spotted spider mite

Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylA(b) toxin); YieldGard Rootworm® (maize variety that expresses a CrylIIB(b1) toxin); YieldGard Plus® (maize variety that expresses a CrylA(b) and a CrylIIB(b1) toxin); Starlink® (maize variety that expresses a CrylF(a2) toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylA(c) toxin); Bollgard I® (cotton variety that expresses a CrylA(c) toxin); Bollgard II® (cotton variety that expresses a CrylA(c) toxin); VIPCOT® (cotton variety that expresses a VIP toxin); NewLeaf® (potato variety that expresses a CrylIA toxin); NatureGard® and Protecta®.

Further examples of such transgenic crops are:

1. **Bt11 Maize** from Syngenta Seeds SAS, Chemin de l'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified *Zea mays* which has been rendered resistant to attack by the European corn borer (*Ostrinia nubilalis* and *Sesamia nonagrioides*) by transgenic expression of a truncated CrylA(b) toxin. Bt11 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.

- 72 -
- 2. Bt176 Maize from Syngenta Seeds SAS, Chemin de l'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a CrylA(b) toxin. Bt176 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
- 3. MIR604 Maize from Syngenta Seeds SAS, Chemin de l'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified CryIIIA toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-D-protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
- 4. MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a CrylllB(b1) toxin and has resistance to certain Coleoptera insects.
- 5. IPC 531 Cotton from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/ES/96/02.
- 6. 1507 Maize from Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1160 Brussels, Belgium, registration number C/NL/00/10. Genetically modified maize for the expression of the protein Cry1F for achieving resistance to certain Lepidoptera insects and of the PAT protein for achieving tolerance to the herbicide glufosinate ammonium.
- 7. NK603 × MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810. NK603 x MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a CryIA(b) toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, including the European corn borer.

Transgenic crops of insect-resistant plants are also described in BATS (Zentrum für Biosicherheit und Nachhaltigkeit, Zentrum BATS, Clarastrasse 13, 4058 Basel, Switzerland) Report 2003, (http://bats.ch).

In the context of the present invention, fungus-resistant transgenic crop plants are to be understood as being those which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-0 392 225). Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 95/33818 and EP-A-0 353 191. The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.

Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1, KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called "pathogenesis-related proteins" (PRPs; see e.g. EP-A-0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defence (so-called "plant disease resistance genes", as described in WO 03/000906).

In the context of the present invention, pest-resistant and/or fungus-resistant transgenic useful plants include expressly those useful plants which, in addition to pest-resistance and/or fungus-resistance, also possess herbicide tolerance. Of the group of herbicide-tolerant useful plants, preference is given according to the invention to those having tolerance to glyphosate, glufosinate ammonium, ALS (acetolactate synthase) inhibitors, e.g. sulfonylureas, for example primisulfuron, prosulfuron and trifloxysulfuron, or bromoxynil, such as Bt11 maize or Herculex I® maize.

Areas of cultivation are areas of land on which the crop plants are already growing and also areas of land on which it is intended to grow those crop plants.

The following Examples further illustrate, but do not limit, the invention.

Preparation Examples:

Example P1: Preparation of 1-oxy-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester: 197 g (2.1 mol) of hydrogen peroxide in the form of the urea adduct are stirred into a solution of 132 g (0.6 mol) of 5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester in 1000 ml of 1,2-dichloroethane. 346 g (1.65 mol) of trifluoroacetic anhydride are slowly added over 2.5 hours at a temperature of –10°C, with cooling (CO₂/acetone bath). The reaction mixture is then stirred for 2 hours at a temperature of 0°C and then for 12 hours at ambient temperature. The reaction mixture is then poured into ice-water and adjusted to pH 6-7 with 30 % sodium hydroxide solution. The mixture is extracted several times with 1,2-dichloroethane, dried over sodium sulfate and concentrated to dryness by evaporation. Chromatography on silica gel (eluant: ethyl acetate / hexane 1:4) is carried out in order to separate off subsidiary products. After removal of the eluant, 98.4 g of 1-oxy-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester (m.p. 64.5 to 65°C) are obtained.

Example P2: Preparation of 6-hydroxy-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester:

450 ml of trifluoroacetic anhydride are added dropwise to a mixture of 77.6 g (0.33 mol) of 1-oxy-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester in 900 ml of dimethylformamide at a temperature of 0°C over 3.5 hours. The mixture is then heated to a temperature of from 45 to 50°C and is stirred for 2.5 hours. The reaction mixture is then concentrated under reduced pressure (2.5 kPa). The oily residue is poured into ice-water and adjusted to pH 5.5 with 30 % sodium hydroxide solution. A crystallised product is obtained which is filtered off, washed with water and dried *in vacuo* at a temperature of 80°C. 61.6 g (79.4 %) of 6-hydroxy-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester (m.p. 141-141.5°C) are obtained.

Example P3: Preparation of 6-chloro-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester: 16.5 g (70 mmol) of 6-hydroxy-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester in 20 ml of phenyl dichlorophosphate are heated in a pressure reactor for 30 minutes at a temperature of 170°C. The cooled reaction mixture is taken up in ethyl acetate, washed once with cold sodium chloride solution, dried over sodium sulfate and then concentrated. To remove phosphate-containing constituents, the residue that remains behind is chromatographed on silica gel (eluant: ethyl acetate / hexane 1:4) and is then concentrated to dryness

by evaporation. 16.2 g (91.3 %) of 6-chloro-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester are obtained in the form of an oil; 1 H NMR (CDCl₃): 8.17, m, 2H; 4.52, q, 2H; 1.44, t, 3H.

Example P4: Preparation of 6-(morpholin-4-yl)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester:

6.45 g (25 mmol) of 6-chloro-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester are heated at a temperature of 110°C for 1 hour in the presence of 5.5 g (63 mmol) of morpholine and a catalytic amount of 4-N,N-dimethylaminopyridine in 50 ml of N-methylpyrrolidone. The reaction mixture is adjusted to pH 4 with dilute hydrochloric acid, extracted with ethyl acetate, dried over magnesium sulfate and then concentrated. In order to remove polar subsidiary products, the residue is chromatographed on silica gel and then concentrated to dryness by evaporation, yielding 7.08 g of 6-(morpholin-4-yl)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester in the form of an oil; ¹H NMR (CDCl₃): 7.97, d, 1H; 7.68, d, 1H; 4.42, q, 2H; 3.83, m, 4H; 3.40, m, 4H; 1.42, t, 3H.

Example P5: Preparation of 6-(morpholin-4-yl)-5-trifluoromethyl-pyridine-2-carboxylic acid: 7 g (23 mmol) of 6-(morpholin-4-yl)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester are added to a mixture of 30 ml of dioxane and 25 ml of water in the presence of 1.55 g of potassium hydroxide and the reaction mixture is stirred at ambient temperature for 30 minutes. The reaction mixture is then adjusted to pH 3 and extracted with ethyl acetate, dried over sodium sulfate and concentrated. Addition of hexane causes 6-(morpholin-4-yl)-5-trifluoromethyl-pyridine-2-carboxylic acid (yield 93.2%) to precipitate out (m.p.: 116-117°C).

Example P6: Preparation of 6-(morpholin-4-yl)-5-trifluoromethyl-pyridine-2-carboxylic acid chloride:

0.83 g (3 mmol) of 6-(morpholin-4-yl)-5-trifluoromethyl-pyridine-2-carboxylic acid and 0.46 g (3.6 mmol) of oxalyl chloride in 10 ml of dichloromethane are heated at boiling temperature for 15 minutes in the presence of a drop of dimethylformamide. The solution is then concentrated by evaporation, yielding 6-(morpholin-4-yl)-5-trifluoromethyl-pyridine-2-carboxylic acid chloride in the form of a crystalline product (m.p.: 72-73°C).

Example P7: Preparation of 6-(acetyl-methyl-amino)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester:

At a temperature of 0°C, with cooling, a solution of 1.46 g (11.5 mmol) of oxalyl chloride in 5 ml of dichloromethane is added dropwise to a solution of 0.84 g (11.5 mmol) of N-methylacetamide and 2.45 g (22.9 mmol) of lutidine in 40 ml of dichloromethane. After 20 minutes, 2.45 g (10.4 mmol) of 1-oxy-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester dissolved in 5 ml of dichloromethane are added. The reaction mixture is heated to ambient temperature and then heated at boiling temperature for 1 hour. The reaction mixture is then extracted with water against dichloromethane, dried over MgSO₄ and concentrated to dryness by evaporation. The resulting residue is chromatographed on silica gel (eluant: ethyl acetate / hexane 3:7), 6-(acetyl-methyl-amino)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester being isolated as main component (m.p.: 145-145.5°C).

Example P8: Preparation of 6-([1,3]dioxolan-2-ylmethoxy)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester:

1.88 g (8 mmol) of 6-hydroxy-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester and 1.47 g (8 mmol) of 2-bromomethyl-1,3-dioxolane in 30 ml of acetonitrile are heated at reflux temperature in the presence of 1.22 g (8.8 mmol) of potassium carbonate and catalytic amounts of potassium iodide and 18-crown-6 for 6 hours. The reaction mixture is then extracted with ethyl acetate against water and dilute acid at pH 3, dried over sodium sulfate and concentrated by evaporation. The residue is chromatographed on silica gel (eluant: ethyl acetate / hexane 15:85), yielding 6-([1,3]dioxolan-2-ylmethoxy)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester in the form of an oil; ¹H NMR (CDCl₃): 8.00, d, 1H; 7.76, d, 1H; 5.40, t, 1H; 4.61, d, 2H; 4.42, q, 2H; 4.09, m, 2H; 3.93, m, 2H; 1.42, t, 3H.

Example P9: Preparation of 6-(tetrahydro-furan-3-yloxy)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester:

2.53 g (14.5 mmol) of azodicarboxylic acid diethyl ester (DEAD) are added dropwise to a solution of 2.35 g (10 mmol) of 6-hydroxy-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester and 3.93 g (15 mmol) of triphenylphosphine in 30 ml of dimethoxyethane, the temperature being maintained at a maximum of 35°C. After 1 hour at ambient temperature, the reaction mixture is concentrated to dryness by evaporation. The residue is chromatographed on silica gel (eluant: ethyl acetate / hexane 1:4). 2.85 g (93.4 %) of 6-(tetrahydrofuran-3-yl-oxy)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester are obtained (m.p.: 45-45.5°C).

Example P10: 6-Methyl-5-trifluoromethyl-pyridinecarboxylic acid ethyl ester:

6.9 g (6 mmol) of tetrakis(triphenylphosphine)palladium and 8.3 g (66 mmol) of 2,4,6-trimethyl-cyclotriboroxane are added to a solution of 15.2 g (60 mmol) of 6-chloro-5-trifluoromethyl-pyridinecarboxylic acid ethyl ester and 33.1 g (0.24 mol) of potassium carbonate in 150 ml of dioxane and the mixture is then heated for 2.5 hours at reflux temperature. The end point of the reaction is determined by thin-layer chromatography. The reaction mixture is cooled, poured into ice-water and is then adjusted to pH 5 with concentrated hydrochloric acid. To separate off solid constituents, a filtration aid (Hyflo®) is added and filtered off. The filtrate is extracted with ethyl acetate. The filtrate, dried over sodium sulfate, is concentrated to dryness by evaporation and chromatographed on silica gel (eluant: ethyl acetate / hexane 7.5:92.5). 11.28 g (87.8 %) of 6-methyl-5-trifluoromethyl-pyridinecarboxylic acid ethyl ester are obtained in the form of an oil; ¹H NMR (CDCl₃): 8.05, "s", 2H; 4.48, q, 2H; 2.31, 2, 3H; 1.42, t, 3H.

Example P11: 6-Bromomethyl-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester:

A catalytic amount of aza,aza-diisobutyronitrile is added to 1 g (4.3 mmol) of 6-methyl-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester and 0.92 g of N-bromo-succinimide in 20 ml of carbon tetrachloride. The mixture is heated at reflux temperature using a light source (200 W lamp). Cooling is then carried out and the reaction product is filtered off and purified using an HPLC technique (eluant: ethyl acetate/hexane 1:4). 6-Bromomethyl-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester is obtained; ¹H NMR (CDCl₃): 6.14, "s", 2H; 4.78, s, 2H; 4.49, q, 2H; 1.45, t, 3H.

Example P12: 6-(2-Methoxy-ethoxymethyl)-5-trifluoromethyl-pyridine-2-carboxylic acid: 0.6 g (2 mmol) of 6-bromomethyl-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester, dissolved in 3 ml of tetrahydrofuran, is introduced into 0.25 g (5.8 mmol) of sodium hydride (as a 55 % dispersion in oil) in 10 ml of dry tetrahydrofuran and stirring is carried out for 2 hours at room temperature. The end point of the reaction is determined by means of thin-layer chromatography. Water is then added. After hydrolysis of the ester group is complete (again demonstrated by means of thin-layer chromatography), extraction with diethyl ether is carried out. The aqueous phase, which contains the reaction product, is then adjusted to pH 2 with hydrochloric acid. Extraction with ethyl acetate is then carried out, followed by drying over sodium sulfate and concentration to dryness by evaporation. 6-(2-Methoxy-ethoxymethyl)-5-trifluoromethyl-pyridine-2-carboxylic acid is obtained; ¹H NMR (CDCl₃): 8.26, d, 1H; 8.17, d, 1H; 7.3, b, OH; 4.96, s, 2H; 3.91, m, 2H; 3.71, m, 2H; 3.48, s, 3H.

WO 2005/058830

Example P13: 2-(6-Thiomorpholin-4-yl-5-trifluoromethyl-pyridine-2-carbonyl)-cyclohexane-1,3-dione:

0.31 g (1 mmol) of 6-thiomorpholin-4-yl-5-trifluoromethyl-pyridine-2-carboxylic acid chloride, prepared with oxalyl chloride, is added to 0.11 g (1 mmol) of cyclohexane-1,3-dione and 0.25 g (2.5 mmol) of triethylamine in 15 ml of acetonitrile and the reaction mixture is stirred at room temperature for 2 hours. 2 drops of acetone cyanohydrin are then added and the mixture is stirred for 12 hours. The reaction mixture is taken up in ethyl acetate and extracted with dilute hydrochloric acid at pH 3. After concentration of the organic phase by evaporation, the residue that remains behind is chromatographed on silica gel (eluant: ethyl acetate/methanol/triethylamine 85:10:5). After concentration by evaporation, the triethyl-ammonium salt of 2-(6-thiomorpholin-4-yl-5-trifluoromethyl-pyridine-2-carbonyl)-cyclohexane-1,3-dione is obtained in the form of a resinous product. In order to free the desired end product, the resinous product is taken up in ethyl acetate, extracted again with dilute hydrochloric acid, dried over sodium sulfate and again concentrated to dryness by evaporation. After recrystallisation with ethyl acetate and hexane, 2-(6-thiomorpholin-4-yl-5-trifluoromethyl-pyridine-2-carbonyl)-cyclohexane-1,3-dione is obtained in crystalline form (m.p.: 106-106.5°C).

Example P14: 2-(6-Pyrazol-1-yl-5-trifluoromethyl-pyridine-2-carbonyl)-cyclohexane-1,3-dione:

0.32 g (1 mmol) of 2-(6-chloro-5-trifluoromethyl-pyridine-2-carbonyl)-cyclohexane-1,3-dione and 82 mg (1.2 mmol) of pyrazole are added in succession at room temperature to 0.11 g of a 55% sodium hydride dispersion (2.5 mmol) in 8 ml of N-methylpyrrolidone. The reaction mixture is stirred for 1.5 hours at a temperature of 120°C. When the reaction mixture is cool, water is added and the mixture is adjusted to pH 2 and extracted with ethyl acetate. The reaction mixture is then concentrated to dryness by evaporation. The residue is chromatographed on silica gel (eluant: ethyl acetate / hexane / formic acid 49.5:49.5:1). 2-(6-Pyrazol-1-yl-5-trifluoromethyl-pyridine-2-carbonyl)-cyclohexane-1,3-dione is obtained in the form of a resinous product; ¹H NMR (CDCl₃): 15.78, b, OH, 8.30, d, 1H; 8.07, d, 1H; 7.69, d, 1H; 7.54, d, 1H; 6.44, m, 1H; 2.80, m, 2H; 2.48, m, 2H; 2.10, m, 2H.

Example P15: 2-[6-(4-Methoxy-phenyl)-5-trifluoromethyl-pyridine-2-carbonyl]-cyclohexane-1,3-dione:

16 mg (0.05 mmol) of 2-(6-chloro-5-trifluoromethyl-pyridine-2-carbonyl)-cyclohexane-1,3-dione and 9 mg (0.05 mmol) of p-methoxyphenyl-boronic acid are dissolved in 0.98 ml of

dimethoxyethane / water / ethanol (7:3:2) and, in a microwave oven, heated at 140°C for 400 seconds in the presence of a catalytic amount of bis(triphenyl)phosphine palladium dichloride and 49 mg (0.15 mmol) of caesium carbonate. When the reaction solution is cool, it is transferred to a deep-well plate. By supplying a stream of nitrogen, the volatile constituents of the reaction solution are removed by evaporation. 0.1 ml of trifluoroacetic acid and 0.4 ml of dimethylformamide are added to the residue and stirring is carried out for 10 minutes. The soluble component is purified by means of HPLC under reversed-phase conditions (eluant: gradient of water and acetonitrile). 2-[6-(4-Methoxy-phenyl)-5-trifluoro-methyl-pyridine-2-carbonyl]-cyclohexane-1,3-dione is obtained in the form of a resin.

Example P16: 5-Trifluoromethyl-6-vinyl-pyridine-2-carboxylic acid ethyl ester: 3 g (11.8 mmol) of chloro-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester are dissolved in degassed dioxane, and 4.13 g (13.02 mmol) of tributylvinyltin are added. After the addition of 273 mg (0.236 mmol) of Pd(Ph₃P)₄, the reaction mixture is stirred for 20 hours at 95°C. The reaction mixture is concentrated and is chromatographed on silica gel (eluant: ethyl acetate / isohexane 1:5). 2 g of 5-trifluoromethyl-6-vinyl-pyridine-2-carboxylic acid ethyl ester are obtained. ¹H NMR (CDCl₃): 8.07(d), J=8.3Hz,1H; 8.034(d), J=8.3Hz, 1H; 7.06-7.18(m), Jab=16.6Hz, Jac=10.5Hz, 1Ha; 6.77(dd), Jba=16.6 Hz, Jbc=2Hz, 1Hb; 5.74(dd), Jca=10.5 Hz, Jcb= 2Hz, 1Hc; 4.487(q), 2H; 1.455(t), 3H.

Example P17: 6-(1-Ethoxy-vinyl)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester: 1.6 g (6.31 mmol) of chloro-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester are dissolved in 32 ml of degassed dioxane, and 2.5 g (6.92 mmol) of 1-ethoxy-1-tributylvinyltin are added. After the addition of 146 mg (0.126 mmol) of Pd(Ph₃P)₄, the reaction mixture is stirred for 20 hours at 95°C. The reaction mixture is concentrated and is chromatographed on silica gel (eluant: ethyl acetate / isohexane 1:5). 0.9 g of 6-(1-ethoxy-vinyl)-5-trifluoromethyl-pyridine-2-carboxylic acid ethyl ester are obtained. ¹H NMR (CDCl₃): 8.148 (s), 2H, 4.732(d), Jab=3Hz, 1Ha; 4.509(d), Jba= 3Hz, 1Hb; 4.497(q), CH₂O (ester); 2H, 3.952(q), CH₂O (ether); 2H 1.436(t), CH₃ (ester), 3H; 1.376(t), CH₃ (ether).

By that means it is possible, for example, also for the compounds of formula I listed in the following Table to be prepared, those compounds that are defined as an oil, resin, wax or amorphous solid at least having been characterised in pure form by means of ¹H NMR (nuclear resonance spectroscopy) and/or MS (mass spectrometry).

In general, substituents R_1 are bonded to the pyridyl ring by way of the free valence at the atom on the left-hand side of the substituent R_1 , as in the case, for example, of compound 1.001. In that compound, the substituent $R_1 = \text{OCH}_2\text{OCH}_3$ is bonded to the pyridyl ring by way of the free valence of the oxygen atom on the left-hand side of the substituent. In individual cases, the linking atom is, in addition, marked by means of an apostrophe, as in the case, for example, of compound no. 1.137.

In the case of cyclic substituents R_1 that are bonded directly to the pyridyl ring, the ring atom of the cyclic substituent R_1 linked to the pyridyl is given special emphasis by means of an

apostrophe, as, for example, in , where the linkage site is located at the nitrogen atom denoted by 'N.

Table 1: Compounds of formula IA

WO 2005/058830

Ex. No.	R ₁	R ₂	Physical properties
1.001	OCH₂OCH₃	CF ₃	
1.002	OCH₂OCH₂CH₃	CF₃	
1.003	OCH₂CH₂OCH₃	CF ₃	resin
1.004	OCH ₂ CH ₂ OCH ₂ CH ₃	CF₃	
1.005	OCH ₂ CH ₂ CH ₂ OCH ₃	CF₃	
1.006	OCH(CH₃)CH₂OCH₃	CF₃	
1.007	OCH ₂ CH ₂ OCH ₂ CH=CH ₂	CF₃	
1.008	OCH ₂ CH ₂ OCH ₂ C≡CH	CF₃	
1.009	OCH ₂ CH ₂ O-benzyl	CF₃	
1.010	OCH ₂ CH ₂ ON=C(CH ₃) ₂	CF₃	
1.011	OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	CF ₃	
1.012	OCH ₂ CH(OCH ₃) ₂	CF ₃	resin
1.013	OCH ₂ CH(OCH ₂ CH ₃) ₂	CF ₃	

Ex. No.	R ₁	R ₂	Physical properties
1.014	\oldsymbol{\gamma}	CF₃	
1.015	O~ CH ₃	CF₃	
	\prec 1		
	O O CH ₃		
1.016	O CH ₃	CF₃	
	O O CH ₃		
1.017		CF ₃	
1.018	, 0	CF ₃	
	0		
1.019	O _{>} CH ₃	CF₃	
	/—< Ţ		
	O CH₃		
1.020	O CH ₃	CF₃	
1.021	~	CF₃	resin
1.021	$\circ \longrightarrow$	0.3	100
1.022	O-benzyl	CF₃	resin
1.023	OCH₂CH₂SCH₃	CF ₃	
1.024	OCH ₂ CH ₂ SCH ₂ CH ₃	CF ₃	
1.025	OCH ₂ CH ₂ S(O) ₂ CH ₃	CF ₃	
1.026	OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF ₃	
1.027	SCH ₂ CH ₂ OCH ₃	CF ₃	
1.028	SCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
1.029	OCH₂CH₂OC(O)CH₃	CF ₃	
1.030	OCH ₂ CH ₂ OC(O)-phenyl	CF₃	
1.031	OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	CF ₃	
1.032	OCH ₂ CH ₂ OC(O)NHCH ₂ CH ₃	CF ₃	
1.028 1.029 1.030 1.031	$SCH_2CH_2OCH_2CH_3$ $OCH_2CH_2OC(O)CH_3$ $OCH_2CH_2OC(O)$ -phenyl $OCH_2CH_2OC(O)OCH_2CH_3$	CF ₃ CF ₃ CF ₃	

Ex. No.	R ₁	R ₂	Physical properties
1.033	OCH ₂ CH ₂ NH ₂	CF ₃	
1.034	OCH₂CH₂NHC(O)CH₃	CF ₃	
1.035	OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃	CF ₃	
1.036	OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	CF ₃	
1.037	OCH₂CH₂NHC(O)-cyclopropyl	CF ₃	
1.038	OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	CF ₃	
1.039	OCH₂CH₂NHC(O)-phenyl	CF ₃	
1.040	OCH₂CH₂NHC(O)OCH₃	CF ₃	
1.041	OCH ₂ CH ₂ NHC(O)OCH ₂ CH ₃	CF ₃	resin
1.042	OCH₂CH₂NHC(O)NHCH₃	CF ₃	
1.043	OCH₂CH₂NHC(O)NHCH₂CH₃	CF ₃	
1.044	OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	CF₃	
1.045	OCH ₂ CH ₂ NHC(O)N(CH ₂ CH ₃) ₂	CF ₃	
1.046	NHCH₃	CF₃	
1.047	NHCH₂CH₃	CF ₃	
1.048	NHCH₂CH₂CH₃	CF₃	
1.049	NHCH ₂ CH ₂ CH ₂ CH ₃	CF₃	
1.050	NHCH(CH₃)₂	CF ₃	
1.051	NHC(CH₃)₃	CF ₃	
1.052	NHCH₂-cyclopropyl	CF ₃	
1.053	NH-phenyl	CF ₃	
1.054	NH-benzyl	CF ₃	
1.055	NHCH ₂ CH=CH ₂	CF₃	
1.056	NHCH₂C≡CH	CF ₃	
1.057	N(CH ₂ CH=CH ₂) ₂	CF ₃	
1.058	$N(CH_2C=CH)_2$	CF ₃	
1.059	N(CH₃)₂	CF ₃	viscous oil
1.060	N(CH₂CH₃)₂	CF ₃	viscous oil
1.061	N(CH ₂ CH ₂ CH ₃) ₂	CF ₃	
1.062	N(CH ₂ CH ₂ CH ₂ CH ₃) ₂	CF ₃	
1.063	NHCH₂CH₂OH	CF ₃	
1.064	NHCH₂CH₂OCH₃	CF ₃	resin
1.065	NHCH(CH₃)CH₃OCH₃	CF ₃	
1.066	NHCH₂CH(OCH₃)₂	CF ₃	
1.067	NHCH ₂ CH(OCH ₂ CH ₃) ₂	CF₃	

Ex. No.	R ₁	R ₂	Physical properties
1.068		CF ₃	
	NH O		
1.069	NHCH₂C(O)OCH₃	CF ₃	
1.070	NHCH(CH₃)C(O)OCH₃	CF ₃	
1.071	NHCH₂C(O)OCH₂CH₃	CF ₃	
1.072	NHCH(CH₃)C(O)OCH₂CH₃	CF ₃	
1.073	'N	CF₃	resin
1.074	'N O	CF₃	
1.075	CH ₃	CF₃	m.p.:82-83°C
1.076	CH ₃ CH ₃	CF₃	
1.077	CH ₃ FF F	CF₃	
1.078	'NO	CHF₂	
1.079	'N S	CF ₃	m.p.: 106-106.5°C, [P13]
1.080	'N	CF ₃	resin, [P14]

Tu No	R ₁	R ₂	Physical properties
Ex. No.	N __ CF ₃	CF₃	m.p. 137-138°C
1.081	'N	0. 3	
	N	~	:-
1.082	, N	CF₃	resin
1.083	CH ₃	CF₃	
	'N N		
1.084	O-CH ₃	CF ₃	
.,,,,,	'NO		
1.085	O-CH ₃	CHF ₂	
	'N O		
1.086		CHF₂	
	'N S		
1.087	,N	CHF₃	
	14		
1.088	N(CH₃)C(O)H	CF ₃	
1.089	N(CH₃)C(O)CH₃	CF ₃	m.p. 130-131°C
1.090	N(CH ₃)C(O)CH ₂ CH ₃	CF ₃	m.p. 120-121°C
1.091	N(CH₃)C(O)-phenyl	CF₃	m.p. 141-142°C
1.092	N(CH₃)C(O)-benzyl	CF ₃	resin
1.093	N(CH ₂ CH ₃)C(O)CH ₃	CF ₃	
1.094		OCH₂CF₃	resin
	'N O		
1.095	CI	CF ₃	amorphous crystals
1.096	OCH₃	CF₃	m.p. 80-81°C
1.097	CH₂OH	CF₃	
1.098	CH₂Cl	CF ₃	
1.099	CH₂Br	CF₃	
1.100	CH₂OSO₂CH₃	CF₃	

Ex. No.	R ₁	R ₂	Physical properties
1.101	CH₂OC(O)CH₃	CF₃	
1.102	CH ₂ OC(O)C(CH ₃) ₃	CF ₃	
1.103	CH₂OC(O)phenyl	CF₃	
1.104	CH₂OC(O)OCH₂CH₃	CF ₃	
1.105	CH₂OCH₃	CF₃	
1.106	CH₂OCH₂CH₃	CF₃	
1.107	CH₂CH₂OCH₃	CF₃	
1.108	CH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
1.109	CH ₂ CH ₂ CH ₂ OCH ₃	CF ₃	
1.110	CH(CH₃)CH₂OCH₃	CF ₃	
1.111	CH ₂ OCH ₂ CH=CH ₂	CF ₃	
1.112	CH ₂ OCH ₂ C≡CH	CF ₃	
1.113	CH ₂ OCH ₂ C≡CCH ₃	CF ₃	
1.114	CH₂OCH₂CH₂C≡CH	CF ₃	
1.115	CH ₂ OCH ₂ CH ₂ C≡CCH ₃	CF ₃	
1.116	CH₂O-benzyl	CF ₃	
1.117	CH ₂ OCH ₂ CF ₃	CF ₃	
1.118	CH₂OCH₂CH₂F	CF ₃	
1.119	CH₂OCH₂CH₂CI	CF ₃	
1.120	CH₂OCH₂CH₂Br	CF₃	
1.121	$CH_2OCH_2CH_2C\equiv N$	CF ₃	
1.122	CH ₂ OCH ₂ C≡N	CF ₃	
1.123	CH₂OCH₂OCH₃	CF ₃	
1.124	CH₂OCH₂OCH₂CH₃	CF ₃	
1.125	CH₂OCH₂CH₂OH	CF ₃	
1.126	CH₂OCH₂CH₂OCH₃	CF₃	resin, [P12]
1.127	CH₂OCH₂CH₂OCH₂CH₃	CF ₃	
1.128	CH ₂ OCH ₂ CH ₂ CH ₂ OCH ₃	CF₃	
1.129	CH ₂ OCH(CH ₃)CH ₂ OCH ₃	CF ₃	
1.130	CH ₂ OCH ₂ CH ₂ OCH ₂ CH=CH ₂	CF ₃	
1.131	CH ₂ OCH ₂ CH ₂ OCH ₂ C≡CH	CF ₃	
1.132	CH₂OCH₂CH₂O-benzyl	CF ₃	
1.133	CH ₂ OCH ₂ CH ₂ ON=C(CH ₃) ₂	CF ₃	
1.134	CH2OCH2CH2OCH2CH2OCH3	CF ₃	
1.135	CH₂OCH₂CH(OCH₃)₂	CF ₃	

Ex. No.	R ₁	R ₂	Physical properties
1.136	CH ₂ OCH ₂ CH(OCH ₂ CH ₃) ₂	CF₃	
1.137	/ 0	CF ₃	
	,CH-0		
	'CH ₂ —O O CH ₃		
1.138		CF ₃	
	,CH _ O		
	CH_2 CH_3		
1.139	,O ✓ CH₃	CF₃	
	'CH ₂ —O O CH ₃		
1.140	, 0	CF ₃	
	2011		
	'CH ₂ —O		
1.141	$\overline{}$	CF ₃	
	'CH ₂ —0		
1.142	O _{>} CH ₃	CF₃	
	'CH ₂ —O'		
1.143	CH ₃	CF₃	
	O CH ₃		
	'CH ₂ —O		
1.144	<u></u>	CF₃	
1.1-1-1		3	
	2011 - 0		
	'CH ₂ —O		
1.145		CF ₃	
	'CH ₂ —O		
1.146	CH OCH	CF ₃	
	CH ₂ OCH ₂	0=	
1.147	CH₂OCH₂CH₂SCH₃	CF₃	
1.148	CH₂OCH₂CH₂SCH₂CH₃	CF₃	

Ex. No.	R ₁	R ₂	Physical properties
1.149	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₃	CF ₃	
1.150	CH2OCH2CH2S(O)2CH2CH3	CF₃	
1.151	CH ₂ SCH ₂ CH ₂ OCH ₃	CF₃	
1.152	CH₂SCH₂CH₂OCH₂CH₃	CF ₃	
1.153	CH ₂ OCH ₂ CH ₂ OC(O)CH ₃	CF ₃	
1.154	CH ₂ OCH ₂ CH ₂ OC(O)-phenyl	CF ₃	
1.155	CH ₂ OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	CF ₃	
1.156	CH2OCH2CH2OC(O)NHCH2CH3	CF ₃	
1.157	CH ₂ OCH ₂ CH ₂ NH ₂	CF ₃	
1.158	CH ₂ OCH ₂ CH ₂ NHC(O)CH ₃	CF ₃	
1.159	CH ₂ OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃	CF₃	
1.160	CH ₂ OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	CF₃	
1.161	CH ₂ OCH ₂ CH ₂ NHC(O)-cyclopropyl	CF ₃	
1.162	CH ₂ OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	CF ₃	
1.163	CH₂OCH₂CH₂NHC(O)-phenyl	CF ₃	
1.164	CH ₂ OCH ₂ CH ₂ NHC(O)OCH ₃	CF ₃	
1.165	CH ₂ OCH ₂ CH ₂ NHC(O)OCH ₂ CH ₃	CF ₃	
1.166	CH ₂ OCH ₂ CH ₂ NHC(O)NHCH ₃	CF ₃	
1.167	CH2OCH2CH2NHC(O)NHCH2CH3	CF ₃	
1.168	CH2OCH2CH2NHC(O)N(CH3)2	CF ₃	
1.169	CH2OCH2CH2NHC(O)N(CH2CH3)2	CF₃	
1.170	CH₂N(SO₂CH₃)CH₃	CF ₃	
1.171	CH ₂ N(SO ₂ CH ₃)CH ₂ CH ₃	CF ₃	
1.172	CH ₂ N(SO ₂ CH ₂ CH ₃)CH ₂ CH ₃	CF ₃	
1.173	CH ₂ N(SO ₂ CH ₃)CH ₂ CF ₃	CF ₃	
1.174	CH ₂ N(SO ₂ CH ₃)CH ₂ CHOCH ₃	CF₃	
1.175	CH ₂ N(SO ₂ CH ₃)CH ₂ -cyclopropyl	CF ₃	
1.176	CH₂N(SO₂CH₃)-phenyl	CF ₃	
1.177	CH₂N(SO₂CH₃)-benzyl	CF ₃	
1.178	CH ₂ N(SO ₂ CH ₃)CH ₂ CH=CH ₂	CF ₃	
1.179	CH ₂ N(SO ₂ CH ₃)CH ₂ C≡CH	CF ₃	
1.180	CH₂N(CH₃)C(O)H	CF ₃	
1.181	CH₂N(CH₃)C(O)CH₃	CF ₃	
1.182	CH ₂ N(CH ₃)C(O)CH ₂ CH ₃	CF ₃	
1.183	CH₂N(CH₃)C(O)-phenyl	CF ₃	

Ex. No.	R ₁	R ₂	Physical properties
1.184	CH₂N(CH₃)C(O)-benzyl	CF ₃	
1.185	CH₂N(CH₂CH₃)C(O)CH₃	CF ₃	
1.186	,O	CF ₃	
	,ch		
	'CH ₂ '		
1.187		CF ₃	
	'CH ₂		
1.188	<i>p</i> —	CF₃	
	'CH ₂ '		440.4400
1.189	$C(OCH_2CH_3)=CH_2$	CF₃	m.p. 142-143°C
1.190	CH₂C(O)CH₃	CF₃	
1.191	C(OCH ₃) ₂	CF₃	
1.192		CF ₃	waxy
	'Ç~о' СН ₃		
1 100	CH ₂ C(O)CH ₂ OCH ₃	CF₃	
1.193 1.194	CH ₂ C(O)CH ₂ OCH ₂ CH ₂ OCH ₃	CF₃	
1.194	CH ₂ C(O)CH ₂ N(SO ₂ CH ₃)CH ₃	CF₃	
1.195	C(CH ₂ OCH ₃)=CH ₂	CF₃	
1.196	0	CF₃	
1.197	'C	- · · ·	
1.198	,0~	CF₃	
,,,,,	'CH		
1.199	>	CF ₃	crystalline solid
	°C		
1.200	<i>></i> —	CF ₃	
	,CH		
1.201	'CH	CF₃	cis and/or trans
	CH CH3		
	└ -ó		

Ex. No.	R ₁	R ₂	Physical properties
1.202) C	CF₃	
1.203	CH3	CF₃	amorphous solid
1.204	CH ₃	CF₃	amorphous solid
1.205	C(O)CH₃	CF₃	
1.206	C(O)CH₂OCH₃	CF ₃	
1.207	C(O)CH₂OCH₂CH₂OCH₃	CF ₃	
1.208	C(O)CH₂N(SO₂CH₃)CH₃	CF ₃	
1.209	4-CF ₃ -phenyl	CF ₃	resin
1.210	4-MeO-phenyl	CF ₃	resin, [P15]
1.211	CH₃	CF ₃	resin
1.212	C≡N	CF ₃	resin
1.213	C, N	CF₃	
1.214	CNO	CF ₃	
1.215	CH ₃	CF₃	
1.216	CI CI	CF ₃	
1.217	CH ₃	CF₃	
1.218	C(OCH ₂ CH ₂ CH ₂ CH ₃)=CH ₂	CF ₃	
1.219	CH₂CH₂OCH₂CH₂CH₂CH₃	CF ₃	
1.220	CH₂O-phenyl	CF ₃	
1.221	CH₂NHSO₂-phenyl	CF ₃	
1.222	CH ₂ N(SO ₂ CH ₃)-cyclopropyl	CF ₃	

Ex. No.	R ₁	R ₂	Physical properties
1.223	CH₂N(SO₂CH₂CH₃)-phenyl	CF ₃	
1.224	CH₂NHC(O)-cyclopropyl	CF₃	
1.225	∕CH₃	CF ₃	
	Ó, F		
	<u>`</u> `Ç—		
	% /	•	
	<u></u>		

Table 2: Compounds of formula IB

$$H_3C$$
 OH O R_1 (IB) H_3C CH_3 R_2

Ex. No.	R ₁	R ₂	Physical properties
2.001	OCH₂OCH₃	CF ₃	•
2.002	OCH₂OCH₂CH₃	CF ₃	
2.003	OCH ₂ CH ₂ OCH ₃	CF₃	resin
2.004	OCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
2.005	OCH ₂ CH ₂ CH ₂ OCH ₃	CF ₃	
2.006	OCH(CH₃)CH₂OCH₃	CF ₃	
2.007	OCH ₂ CH ₂ OCH ₂ CH=CH ₂	CF ₃	
2.008	OCH ₂ CH ₂ OCH ₂ C≡CH	CF₃	
2.009	OCH ₂ CH ₂ O-benzyl	CF₃	
2.010	OCH ₂ CH ₂ ON=C(CH ₃) ₂	CF₃	resin
2.011	OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	CF₃	
2.012	OCH ₂ CH(OCH ₃) ₂	CF₃	
2.013	OCH ₂ CH(OCH ₂ CH ₃) ₂	CF ₃	
2.014	/	CF₃	
2.015	O CH ₃	CF ₃	
	O CH ₃		
	J		

Ex. No.	R ₁	R ₂	Physical properties
2.016	O CH ₃	CF₃	
	<u> </u>		
	O O CH ₃		
2.017	,0~	CF₃	
	$\overline{}$		•
	0		
2.018		CF ₃	
	0		
2.019	O CH ₃	CF₃	
	$\overline{}$		
	6 \		
2.020	ÇH₃	CF₃	
	CH ₃		
	Ó		
2.021	\sim 0	CF₃	resin
	$\circ \leftarrow \downarrow$	0. 3	
2.022	O-benzyl	CF₃	resin
2.023	OCH ₂ CH ₂ SCH ₃	CF₃	,
2.024	OCH ₂ CH ₂ SCH ₂ CH ₃	CF₃	
2.025	OCH ₂ CH ₂ S(O) ₂ CH ₃	CF₃	
2.026	OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF₃	
2.027	SCH₂CH₂OCH₃	CF₃	
2.028	SCH₂CH₂OCH₂CH₃	CF₃	
2.029	OCH ₂ CH ₂ OC(O)CH ₃	CF ₃	
2.030	OCH ₂ CH ₂ OC(O)-phenyl	CF ₃	
2.031	OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	CF ₃	
2.032	OCH ₂ CH ₂ OC(O)NHCH ₂ CH ₃	CF ₃	
2.033	OCH ₂ CH ₂ NH ₂	CF ₃	
2.034	OCH₂CH₂NHC(O)CH₃	CF ₃	
2.035	OCH₂CH₂NHC(O)CH₂CH₃	CF ₃	
2.036	OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	CF ₃	
2.037	OCH₂CH₂NHC(O)-cyclopropyl	CF ₃	
2.038	OCH₂CH₂NHC(O)C(CH₃)₃	CF ₃	

Ex. No.	R ₁	R ₂	Physical properties
2.039	OCH₂CH₂NHC(O)-phenyl	CF ₃	
2.040	OCH ₂ CH ₂ NHC(O)OCH ₃	CF ₃	
2.041	OCH ₂ CH ₂ NHC(O)OCH ₂ CH ₃	CF ₃	
2.042	OCH ₂ CH ₂ NHC(O)NHCH ₃	CF ₃	
2.043	OCH ₂ CH ₂ NHC(O)NHCH ₂ CH ₃	CF ₃	
2.044	OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	CF ₃	
2.045	OCH ₂ CH ₂ NHC(O)N(CH ₂ CH ₃) ₂	CF ₃	
2.046	NHCH₃	CF ₃	
2.047	NHCH₂CH₃	CF ₃	
2.048	NHCH₂CH₂CH₃	CF ₃	
2.049	NHCH ₂ CH ₂ CH ₃	CF ₃	
2.050	NHCH(CH ₃) ₂	CF ₃	
2.051	NHC(CH ₃) ₃	CF ₃	
2.052	NHCH ₂ -cyclopropyl	CF₃	•
2.053	NH-phenyl	CF ₃	
2.054	NH-benzyl	CF ₃	
2.055	NH-CH ₂ CH=CH ₂	CF ₃	
2.056	NHCH₂C≡CH	CF ₃	
2.057	N(CH ₂ CH=CH ₂) ₂	CF₃	
2.058	N(CH ₂ C≡CH) ₂	CF ₃	
2.059	N(CH ₃) ₂	CF ₃	m.p.: 95-96°C
2.060	N(CH ₂ CH ₃) ₂	CF ₃	m.p.: 85-86°C
2.061	N(CH ₂ CH ₂ CH ₃) ₂	CF ₃	
2.062	N(CH ₂ CH ₂ CH ₂ CH ₃) ₂	CF₃	
2.063	NHCH₂CH₂OH	CF₃	
2.064	NHCH₂CH₂OCH₃	CF₃	resin
2.065	NHCH(CH₃)CH₃OCH₃	CF₃	
2.066	NHCH₂CH(OCH₃)₂	CF ₃	
2.067	NHCH2CH(OCH2CH3)2	CF ₃	
2.068	\ ⁰ _	CF ₃	
	NH O		
2.069	NHCH₂C(O)OCH₃	CF ₃	
2.070	NHCH(CH₃)C(O)OCH₃	CF ₃	
2.071	NHCH₂C(O)OCH₂CH₃	CF₃	

			Dhysical proportion
Ex. No.	R ₁	R ₂	Physical properties
2.072	NHCH(CH₃)C(O)OCH₂CH₃	CF₃	400 40400
2.073	'N O	CF₃	m.p.: 123-124°C
2.074	, VOO	CF₃	
2.075	°N CH ₃	CF₃	m.p.: 134-135°C
2.076	F F F	CF₃	
2.077	O-CH ₃	CF ₃	
2.078	'N S	CF₃	m.p.: 120-121°C
2.079	N,	CF ₃	
2.080	'N CF ₃	CF ₃	m.p.: 99-100°C
2.081	'N N	CF₃	
2.082	N CH ₃	CF₃	

Ex. No.	R ₁	R ₂	Physical properties
2.083	'N O	CHF ₂	
2.084	'N S	CHF ₂	
2.085	°N CH ₃	CHF₂	
2.086	'NČ	CHF₂	
2.087	N(CH ₃)C(O)H	CF ₃	
2.088	N(CH₃)C(O)CH₃	CF ₃	m.p.: 150-151°C
2.089	N(CH ₃)C(O)CH ₂ CH ₃	CF ₃	m.p.: 117-118°C
2.090	N(CH₃)C(O)-phenyl	CF₃	resin
2.091	N(CH₃)C(O)-benzyl	CF ₃	m.p.: 107-108°C
2.092	N(CH ₂ CH ₃)C(O)CH ₃	CF ₃	
2.093	ОН	CF ₃	m.p.: 203-204°C
2.094	OCH₃	CF ₃	m.p.: 120-121°C
2.095	OCH₂CH₃	CF ₃	m.p.: 117-118°C
2.096	CH₂OH	CF ₃	
2.097	CH₂CI	CF₃	
2.098	CH₂Br	CF ₃	
2.099	CH₂OSO₂CH₃	CF ₃	
2.100	CH₂OC(O)CH₃	CF ₃	
2.101	CH ₂ OC(O)C(CH ₃) ₃	CF ₃	
2.102	CH₂OC(O)phenyl	CF₃	
2.103	CH ₂ OC(O)OCH ₂ CH ₃	CF₃	
2.104	CH₂OCH₃	CF ₃	
2.105	CH₂OCH₂CH₃	CF₃	
2.106	CH₂CH₂OCH₃	CF₃	
2.107	CH₂CH₂OCH₂CH₃	CF ₃	
2.108	CH₂CH₂CH₂OCH₃	CF₃	
2.109	· CH(CH₃)CH₂OCH₃	CF ₃	
2.110	CH ₂ OCH ₂ CH=CH ₂	CF₃	

Ex. No.	R ₁	R ₂	Physical properties
2.111	CH₂OCH₂C≡CH	CF ₃	
2.112	CH₂OCH₂C≡CCH₃	CF ₃	
2.113	CH ₂ OCH ₂ CH ₂ C≡CH	CF ₃	
2.114	CH ₂ OCH ₂ CH ₂ C≡CCH ₃	CF ₃	
2.115	CH ₂ O-benzyl	CF ₃	
2.116	CH₂OCH₂CF₃	CF ₃	
2.117	CH₂OCH₂CH₂F	CF ₃	
2.118	CH ₂ OCH ₂ CH ₂ CI	CF₃	
2.119	CH ₂ OCH ₂ CH ₂ Br	CF ₃	
2.120	CH ₂ OCH ₂ CH ₂ C≡N	CF ₃	
2.121	CH ₂ OCH ₂ C≡N	CF ₃	
2.122	CH₂OCH₂OCH₃	CF ₃	
2.123	CH ₂ OCH ₂ OCH ₂ CH ₃	CF ₃	
2.124	CH₂OCH₂CH₂OH	CF₃	
2.125	CH ₂ OCH ₂ CH ₂ OCH ₃	CF ₃	
2.126	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
2.127	CH₂OCH₂CH₂CH₂OCH₃	CF ₃	
2.128	CH₂OCH(CH₃)CH₂OCH₃	CF₃ ·	
2.129	CH ₂ OCH ₂ CH ₂ OCH ₂ CH=CH ₂	CF₃	
2.130	CH ₂ OCH ₂ CH ₂ OCH ₂ C≡CH	CF₃	
2.131	CH ₂ OCH ₂ CH ₂ O-benzyl	CF₃	
2.132	CH ₂ OCH ₂ CH ₂ ON=C(CH ₃) ₂	CF₃	
2.133	CH2OCH2CH2OCH2CH2OCH3	CF₃	
2.134	CH₂OCH₂CH(OCH₃)₂	CF ₃	
2.135	CH ₂ OCH ₂ CH(OCH ₂ CH ₃) ₂	CF₃	
2.136		CF₃	
	'CH2-0		
	CH ₃		
2.137	0 0 3	CF₃	
	'CH ₂ —O O CH ₃		
2.138	O√CH ₃	CF ₃	
	<u> </u>		
	'CH ₂ —O´ O´´´′CH ₃		

Ex. No.	R ₁	R ₂	Physical properties
2.139		CF ₃	
	'CH2—O		•
	0		
2.140		CF ₃	
	'CH ₂ —0		
2.141	CH₃	CF₃	
2.171		O1 3	
	'CH ₂ —O		
2.142	° CH₃	CF₃	
2.142	O CH ₃	СГз	
	'CH ₂ —O		
2.143	Ç	CF ₃	
	\		
	'CH ₂ —O		
2.144	_0	CF₃	
2.177		Ol 3	
	'CH ₂ —O		
0.445	0	05	
2.145	CH,OCH,	CF₃	
2.146	CH ₂ OCH ₂ CH ₂ SCH ₃	CF₃	
2.147	CH ₂ OCH ₂ CH ₂ SCH ₂ CH ₃	CF₃	
2.148	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₃	CF₃	
2.149	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF₃	
2.150	CH ₂ SCH ₂ CH ₂ OCH ₃	CF ₃	
2.151	CH ₂ SCH ₂ CH ₂ OCH ₂ CH ₃	CF₃	
2.152	CH ₂ OCH ₂ CH ₂ OC(O)CH ₃	CF₃	
2.153	CH ₂ OCH ₂ CH ₂ OC(O)-phenyl	CF₃	
2.154	$CH_2OCH_2CH_2OC(O)OCH_2CH_3$	CF₃	
2.155	CH2OCH2CH2OC(O)NHCH2CH3	CF ₃	
2.156	CH ₂ OCH ₂ CH ₂ NH ₂	CF ₃	
2.157	CH₂OCH₂CH₂NHC(O)CH₃	CF ₃	
2.158	CH2OCH2CH2NHC(O)CH2CH3	CF₃	

Ex. No.	R ₁	R ₂	Physical properties
2.159	CH ₂ OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	CF₃	
2.160	CH ₂ OCH ₂ CH ₂ NHC(O)-cyclopropyl	CF₃	
2.161	CH ₂ OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	CF₃	
2.162	CH ₂ OCH ₂ CH ₂ NHC(O)-phenyl	CF₃	
2.163	CH ₂ OCH ₂ CH ₂ NHC(O)OCH ₃	CF₃	
2.164	CH ₂ OCH ₂ CH ₂ NHC(O)OCH ₂ CH ₃	CF₃	
2.165	CH ₂ OCH ₂ CH ₂ NHC(O)NHCH ₃	CF ₃	
2.166	CH ₂ OCH ₂ CH ₂ NHC(O)NHCH ₂ CH ₃	CF₃	
2.167	CH ₂ OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	CF ₃	
2.168	CH ₂ OCH ₂ CH ₂ NHC(O)N(CH ₂ CH ₃) ₂	CF₃	
2.169	CH₂N(SO₂CH₃)CH₃	CF₃	
2.170	CH ₂ N(SO ₂ CH ₃)CH ₂ CH ₃	CF₃	
2.171	CH ₂ N(SO ₂ CH ₂ CH ₃)CH ₂ CH ₃	CF₃	
2.172	CH ₂ N(SO ₂ CH ₃)CH ₂ CF ₃	CF₃	
2.173	CH ₂ N(SO ₂ CH ₃)CH ₂ CHOCH ₃	CF ₃	
2.174	CH ₂ N(SO ₂ CH ₃)CH ₂ -cyclopropyl	CF ₃	
2.175	CH₂N(SO₂CH₃)-phenyl	CF ₃	
2.176	CH ₂ N(SO ₂ CH ₃)-benzyl	CF ₃	
2.177	CH ₂ N(SO ₂ CH ₃)CH ₂ CH=CH ₂	CF ₃	
2.178	CH ₂ N(SO ₂ CH ₃)CH ₂ C≡CH	CF ₃	
2.179	CH₂N(CH₃)C(O)H	CF ₃	
2.180	CH ₂ N(CH ₃)C(O)CH ₃	CF ₃	
2.181	CH₂N(CH₃)C(O)CH₂CH₃	CF ₃	
2.182	CH₂N(CH₃)C(O)-phenyl	CF ₃	
2.183	CH₂N(CH₃)C(O)-benzyl	CF ₃	
2.184	CH ₂ N(CH ₂ CH ₃)C(O)CH ₃	CF₃	
2.185	/ 0	CF ₃	
	'CH ₂		
2.186	CH ₂ O	CF ₃	
2.187	,CH O	CF ₃	
	'CH ₂		

Ex. No.	R ₁	R ₂	Physical properties
2.188	C(OCH ₂ CH ₃)=CH ₂	CF ₃	waxy
2.189	CH₂C(O)CH₃	CF ₃	
2.190	C(OCH ₃) ₂	CF ₃	
2.191	CH ₃	CF₃	m.p.: 108-110°C
2.192	CH ₂ C(O)CH ₂ OCH ₃	CF ₃	
2.193	CH ₂ C(O)CH ₂ OCH ₂ CH ₂ OCH ₃	CF ₃	
2.194	CH ₂ C(O)CH ₂ N(SO ₂ CH ₃)CH ₃	CF ₃	
2.195	C(CH ₂ OCH ₃)=CH ₂	CF ₃	
2.196	,c	CF₃	
2.197	'CHO	CF₃	
2.198	,c	CF ₃	crystalline solid
2.199	'CHOHO'	CF ₃	
2.200	'CHCCH3	CF₃	
2.201	'CH CH₃	CF ₃	amorphous solid
2.202	CH ₃	CF ₃	amorphous solid
2.203	. CH₃	CF₃	
2.204	C(O)CH ₃	CF ₃	
2.205	C(O)CH ₂ OCH ₃	CF ₃	
2.206	C(O)CH ₂ OCH ₂ CH ₂ OCH ₃	CF₃	
2.207	C(O)CH ₂ N(SO ₂ CH ₃)CH ₃	CF₃	
2.208	C≣N	CF ₃	resin
2.209	CH₃	C≣N	resin

Ex. No.	R ₁	R ₂	Physical properties
2.210	°C,	CF₃	
2.211	C. N	CF₃	
2.212	CH ₃	CF₃	
2.213	CI CI	CF ₃	
2.214	CH ₃	CF ₃	
2.215	C(OCH ₂ CH ₂ CH ₂ CH ₃)=CH ₂	CF ₃	
2.216	CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	CF ₃	
2.217	CH₂O-phenyl	CF ₃	
2.218	CH ₂ NHSO ₂ -phenyl	CF ₃	•
2.219	CH₂N(SO₂CH₃)-cyclopropyl	CF₃	
2.220	CH₂N(SO₂CH₂CH₃)-phenyl	CF₃	
2.221	CH₂NHC(O)-cyclopropyl	CF ₃	
2.222	OCH ₃ CC—	CF₃	isomer A (cis or trans), crystalline solid
2.223	OCH ₃ F	CF₃	isomer B (cis or trans), crystalline solid

Table 3: Compounds of formula IC

				<u> </u>	Dhysical
Ex.	A ₁	A_2	A ₃	R ₁	Physical
No					properties
3.001	CH ₂	CH ₂	CH(CH₃)	OCH₂OCH₃	
3.002	CH₂	CH ₂	CH(CH₃)	OCH₂OCH₂CH₃	
3.003	CH ₂	CH ₂	CH(CH₃)	OCH₂CH₂OCH₃	
3.004	CH ₂	CH₂	CH(CH₃)	OCH₂CH₂OCH₂CH₃	
3.005	CH ₂	CH ₂	CH(CH₃)	OCH₂CH₂CH₂OCH₃	
3.006	CH ₂	CH ₂	CH(CH₃)	OCH(CH₃)CH₂OCH₃	
3.007	CH₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ OCH ₂ CH=CH ₂	
3.008	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ OCH ₂ C≡CH	
3.009	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ O-benzyl	
3.010	CH ₂	CH ₂	CH(CH₃)	$OCH_2CH_2ON=C(CH_3)_2$	
3.011	CH ₂	CH₂	CH(CH₃)	OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	
3.012	CH ₂	CH₂	CH(CH₃)	OCH ₂ CH(OCH ₃) ₂	
3.013	CH ₂	CH ₂	CH(CH ₃)	OCH ₂ CH(OCH ₂ CH ₃) ₂	
3.014	CH ₂	CH ₂	CH(CH₃)		
				CH ₃	
3.015	CH₂	CH ₂	CH(CH₃)	0 0 13	
•				O O CH3	
3.016	CH₂	CH₂	CH(CH₃)	O✓CH ₃	
0.010	02	- · · · <u>·</u>	- (5,	$\overline{}$	
				O O CH ₃	
				0~	
3.017	CH₂	CH ₂	CH(CH₃)	<u> </u>	
				6	

		Λ	Λ.	R ₁	Physical
Ex.	A ₁	A ₂	Аз	117	properties
No.	CH	CH ₂	CH(CH ₃)	.0\	риграми
3.018	CH ₂	СП2	CH(CH ₃)		
				ó	
3.019	CH ₂	CH₂	CH(CH₃)	,O√CH₃	
				/<	
				o Ve	
3.020	CH ₂	CH ₂	CH(CH₃)	CH₃	
				CH₃	
				0	
3.021	CH ₂	CH₂	CH(CH₃)	^ 0	
0.021	0.12	O	(-:)	\sim	
	011	011	· CLVCH)	O-benzyl	
3.022	CH ₂	CH ₂	CH(CH₃) CH₂	OCH ₂ CH ₂ SCH ₃	
3.023	CH(CH₃)	CH ₂	_	OCH ₂ CH ₂ SCH ₂ CH ₃	
3.024	CH₂	CH₂	CH(CH ₃)	OCH ₂ CH ₂ S(O) ₂ CH ₃	
3.025	CH₂	CH ₂	CH(CH ₃)	OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	
3.026	CH₂	CH₂	CH(CH ₃)		
3.027	CH ₂	CH₂	CH(CH₃)	SCH ₂ CH ₂ OCH ₂ CH ₃	
3.028	CH ₂	CH₂	CH(CH₃) CH(CH₃)	OCH ₂ CH ₂ OC(O)CH ₃	
3.029	CH₂	CH₂	•	OCH ₂ CH ₂ OC(O)-phenyl	
3.030	CH₂	CH₂	CH(CH₃) CH(CH₃)	OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	
3.031	CH₂	CH₂ CH₂	CH(CH ₃)	OCH ₂ CH ₂ OC(O)NHCH ₂ CH ₃	
3.032 3.033	CH₂ CH₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NH ₂	
3.034	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)CH ₃	
3.034	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃	
3.036	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	
3.037	CH ₂	CH₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)-cyclopropyl	
3.038	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	
3.039	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)-phenyl	
3.040	CH ₂	CH ₂	CH(CH ₃)	OCH ₂ CH ₂ NHC(O)OCH ₃	
3.041	CH ₂	CH ₂	CH(CH ₃)	OCH ₂ CH ₂ NHC(O)OCH ₂ CH ₃	
3.041	CH ₂	CH₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)NHCH ₃	
3.042	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)NHCH ₂ CH ₃	
5.043	O1 12	J1 12	S(S3)	- × 1 2 - 1 2 (-) 1 1 - 1 2 - 1 10	

Ex.	A ₁	A ₂	A ₃	R ₁	Physical properties
No.	CH ₂	CH ₂	CH(CH ₃)	OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	
3.044		CH ₂	CH(CH ₃)	OCH ₂ CH ₂ NHC(O)N(CH ₂ CH ₃) ₂	
3.045	CH ₂		CH(CH ₃)		
3.046	CH ₂	CH ₂	CH(CH ₃)	NHCH ₂ CH ₃	
3.047	CH ₂	CH₂	CH(CH ₃)	NHCH ₂ CH ₂ CH ₃	
3.048	CH₂	CH₂	•	NHCH ₂ CH ₂ CH ₂ CH ₃	
3.049	CH₂	CH ₂	CH(CH ₃)	NHCH(CH ₃) ₂	
3.050	CH₂	CH ₂	CH(CH ₃)	NHC(CH ₃) ₃	
3.051	CH₂	CH₂	CH(CH ₃)	NHCH ₂ -cyclopropyl	
3.052	CH ₂	CH₂	CH(CH ₃)	NH-phenyl	
3.053	CH ₂	CH₂	CH(CH₃)	NH-benzyl	
3.054	CH₂	CH ₂	CH(CH ₃)	N(CH ₂ CH ₃) ₂	
3.055	CH ₂	CH ₂	CH(CH₃)	N(CH ₂ CH ₂ CH ₃) ₂	
3.056	CH ₂	CH ₂	CH(CH ₃)	N(CH ₂ CH ₂ CH ₂ CH ₃) ₂	
3.057	CH₂	CH ₂	CH(CH ₃)	NHCH ₂ CH ₂ CH ₃ OH	
3.058	CH₂	CH₂	CH(CH ₃)		
3.059	CH ₂	CH ₂	CH(CH ₃)	NHCH2CH2OCH3	
3.060	CH₂	CH ₂	CH(CH ₃)	NHCH (CH ₃)CH ₃ OCH ₃	
3.061	CH ₂	CH₂	CH(CH ₃)	NHCH₂CH(OCH₃)₂	
3.062	CH₂	CH₂	CH(CH ₃)	NHCH₂CH(OCH₂CH₃)₂ O∕	
3.063	CH₂	CH ₂	CH(CH₃)		
				NH O	
3.064	CH ₂	CH₂	CH(CH₃)	NHCH₂C(O)OCH₃	
3.065	CH ₂	CH ₂	CH(CH₃)	NHCH(CH₃)C(O)OCH₃	
3.066	CH ₂	CH ₂	CH(CH ₃)	NHCH₂C(O)OCH₂CH₃	
3.067	CH ₂	CH ₂	CH(CH ₃)	NHCH(CH₃)C(O)OCH₂CH₃	
3.068	CH ₂	CH ₂	,		resin
	_	_	υ	'N O	
3.069	CH ₂	CH(CH₃)	CH ₂	'N O	m.p.: 80-81°C
				,,	

Ex. No.	A ₁	A ₂	A ₃	R ₁	Physical properties
3.070	CH ₃ 'C O O H ₃ C	CH₂	CH₂	'N O	resin
3.071	CH(CH ₃)	CH ₂	CH ₂	'NO	resin
3.072	C(CH ₃) ₂	CH ₂	CH ₂	, NO	resin
3.073	C(CH ₃) ₂	CH(CH ₃)	CH₂	'N	resin
3.074	C(CH ₃) ₂	CH₂	CH(CH₃)	'N	resin
3.075	C(CH ₃) ₂	CH ₂	C(CH ₃) ₂	'N	resin
3.076	C(CH ₃) ₂	0	C(CH ₃) ₂	'NO	resin
3.077	CH ₂	C(CH ₃) ₂	CH₂	'NO	m.p.: 121-122°C
3.078	CH(CH₃)	CH₂	CH₂	°N O	
3.079	CH(CH₃)	CH₂	CH₂	'N O	
				CH ₃	

Ex.	A ₁	A ₂	A ₃	R ₁	Physical properties
No. 3.080	CH(CH₃)	CH₂	CH₂	, V CH3	properties
3.081	CH(CH₃)	CH₂	CH₂	CH ₃ F F N O	
3.082	CH(CH₃)	CH₂	CH₂	F F H	
3.083	CH(CH₃)	CH₂	CH₂	'N s	
3.084	CH(CH₃)	CH ₂	CH₂	, N	
3.085	CH(CH₃)	CH₂	CH ₂	°N CF ₃	
3.086	CH(CH₃)	CH₂	CH₂	, N N	
3.087	CH(CH₃)	CH₂	CH ₂	CH ₃	
3.088	CH(CH₃)	CH₂	CH₂	CH ₃	
3.089	CH(CH₃)	CH₂	CH₂	'N	
3.090	CH(CH ₃)	CH₂	CH₂	N(CH₃)C(O)H	

Ex.	A ₁	A ₂	A ₃	R ₁	Physical
No.	731	7.2	3		properties
3.091	CH(CH ₃)	CH₂	CH ₂	N(CH ₃)C(O)CH ₃	
3.092	CH(CH ₃)	CH ₂	CH ₂	N(CH ₃)C(O)CH ₂ CH ₃	
3.093	CH(CH ₃)	CH ₂	CH₂	N(CH ₃)C(O)-phenyl	
3.094	CH(CH ₃)	CH ₂	CH₂	N(CH₃)C(O)-benzyl	
3.095	CH(CH ₃)	CH ₂	CH₂	N(CH₂CH₃)C(O)CH₃	
3.096	CH ₂	CH(CH₃)	CH ₂	CH ₂ OH	
3.097	CH₂	CH(CH₃)	CH ₂	· CH ₂ CI	
3.098	CH ₂	CH(CH₃)	CH₂	CH₂Br	
3.099	CH ₂	CH(CH ₃)	CH₂	CH₂OSO₂CH₃	
3.100	CH ₂	CH(CH₃)	CH ₂	CH₂OC(O)CH₃	
3.101	CH ₂	CH(CH₃)	CH ₂	CH ₂ OC(O)C(CH ₃) ₃	
3.102	CH ₂	CH(CH₃)	CH ₂	CH ₂ OC(O)phenyl	
3.103	CH ₂	CH(CH ₃)	CH₂	CH₂OC(O)OCH₂CH₃	
3.104	CH ₂	CH(CH ₃)	CH₂	CH₂OCH₃	
3.105	CH₂	CH(CH ₃)	CH ₂	CH₂OCH₂CH₃	
3.106	CH ₂	CH(CH₃)	CH ₂	CH₂CH₂OCH₃	
3.107	CH ₂	CH(CH₃)	CH ₂	CH₂CH₂OCH₂CH₃	
3.108	CH ₂	CH(CH₃)	CH ₂	CH₂CH₂CH₂OCH₃	
3.109	CH ₂	CH(CH ₃)	CH ₂	CH(CH₃)CH₂OCH₃	
3.110	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH=CH ₂	
3.111	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂C≡CH	
3.112	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂C≡CCH₃	
3.113	CH₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂C≡CH	
3.114	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂C≡CCH₃	
3.115	CH ₂	CH(CH₃)	CH ₂	CH₂O-benzyl	
3.116	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CF₃	
3.117	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂F	
3.118	CH ₂	CH(CH ₃)	CH ₂	CH ₂ OCH ₂ CH ₂ CI	
3.119	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂Br	
3.120	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ C≡N	
3.121	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ C≡N	
3.122	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂OCH₃	
3.123	CH ₂	CH(CH ₃)	CH ₂	CH₂OCH₂OCH₂CH₃	
3.124	CH₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂OH	

Ex.	A ₁	A ₂	A ₃	R ₁	Physical
No.	•	_			properties
3.125	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂OCH₃	
3.126	CH₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂OCH₂CH₃	
3.127	CH₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ CH ₂ OCH ₃	
3.128	CH ₂	CH(CH₃)	CH₂	CH ₂ OCH(CH ₃)CH ₂ OCH ₃	
3.129	CH ₂	CH(CH₃)	CH ₂	CH2OCH2CH2OCH2CH=CH2	
3.130	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ OCH ₂ C≡CH	
3.131	CH₂	CH(CH ₃)	CH ₂	CH ₂ OCH ₂ CH ₂ O-benzyl	
3.132	CH ₂	CH(CH ₃)	CH ₂	$CH_2OCH_2CH_2ON=C(CH_3)_2$	
3.133	CH ₂	CH(CH₃)	CH ₂	CH2OCH2CH2OCH2CH2OCH3	
3.134	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH(OCH ₃) ₂	
3.135	CH ₂	CH(CH ₃)	CH ₂	CH ₂ OCH ₂ CH(OCH ₂ CH ₃) ₂	
3.136	CH ₂	CH(CH₃)	CH ₂		
				'CH ₂ —O O CH ₃	
3.137	CH₂	CH(CH₃)	CH ₂		
3.138	CH₂	CH(CH₃)	CH₂	CH ₂ -O O CH ₃	
3.139	CH ₂	CH(CH₃)	CH ₂	'CH ₂ —O O CH ₃	
3.140	CH ₂	CH(CH₃)	CH₂	'CH ₂ —0	
3.141	CH₂	CH(CH₃)	CH₂	'CH ₂ —O CH ₃	
3.142	CH₂	CH(CH₃)	CH₂	CH ₂ CH ₃	

	A ₁	A ₂	A ₃	R ₁	Physical
No					properties
3.143	CH ₂	CH(CH₃)	CH ₂	Ç	
				\	
				'СН ₂ —О	
3.144	CH ₂	CH(CH₃)	CH ₂	-9	
				'СН ₂ —О́	
3.145	CH₂	CH(CH₃)	CH ₂	/9	
	- -	,		CH ₂ OCH ₂	
3.146	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂SCH₃	
3.147	CH ₂	CH(CH ₃)	CH ₂	CH₂OCH₂CH₂SCH₂CH₃	
3.148	CH₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₃	
3.149	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	
3.150	CH₂	CH(CH₃)	CH ₂	CH₂SCH₂CH₂OCH₃	
3.151	CH ₂	CH(CH₃)	CH ₂	CH ₂ SCH ₂ CH ₂ OCH ₂ CH ₃	
3.152	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂OC(O)CH₃	
3.153	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ OC(O)-phenyl	
3.154	CH ₂	CH(CH ₃)	CH_2	CH ₂ OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	
3.155	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂OC(O)NHCH₂CH₃	
3.156	CH ₂	CH(CH ₃)	CH ₂	CH ₂ OCH ₂ CH ₂ NH ₂	
3.157	CH ₂	CH(CH ₃)	CH ₂	CH ₂ OCH ₂ CH ₂ NHC(O)CH ₃	
3.158	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃	
3.159	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	
3.160	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂NHC(O)-cyclopropyl	
3.161	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	
3.162	CH ₂	CH(CH₃)	CH₂	CH ₂ OCH ₂ CH ₂ NHC(O)-phenyl	
3.163	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ NHC(O)OCH ₃	
3.164	CH ₂	CH(CH ₃)	CH₂	CH2OCH2CH2NHC(O)OCH2CH3	
3.165	CH ₂	CH(CH ₃)	CH ₂	CH₂OCH₂CH₂NHC(O)NHCH₃	
3.166	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ NHC(O)NHCH ₂ CH ₃	
3.167	CH ₂	CH(CH₃)	CH ₂	CH2OCH2CH2NHC(O)N(CH3)2	
3.168	CH ₂	CH(CH₃)	CH ₂	CH2OCH2CH2NHC(O)N(CH2CH3)2	
3.169	CH ₂	CH(CH₃)	CH ₂	CH₂N(SO₂CH₃)CH₃	
3.170	CH₂	CH(CH ₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)CH ₂ CH ₃	

Ex.	A ₁	A ₂	A ₃	R ₁	Physical
No					properties
3.171	CH ₂	CH(CH₃)	CH ₂	CH ₂ N(SO ₂ CH ₂ CH ₃)CH ₂ CH ₃	
3.172	CH ₂	CH(CH₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)CH ₂ CF ₃	
3.173	CH ₂	CH(CH₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)CH ₂ CHOCH ₃	
3.174	CH ₂	CH(CH₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)CH ₂ -cyclopropyl	
3.175	CH ₂	CH(CH₃)	CH ₂	CH₂N(SO₂CH₃)-phenyl	
3.176	CH ₂	CH(CH₃)	CH ₂	CH₂N(SO₂CH₃)-benzyl	
3.177	CH ₂	CH(CH₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)CH ₂ CH=CH ₂	
3.178	CH ₂	CH(CH₃)	CH ₂	CH₂N(SO₂CH₃)CH₂C≡CH	
3.179	CH ₂	CH(CH₃)	CH ₂	CH₂N(CH₃)C(O)H	
3.180	CH ₂	CH(CH ₃)	CH ₂	CH₂N(CH₃)C(O)CH₃	
3.181	CH ₂	CH(CH ₃)	CH ₂	CH₂N(CH₃)C(O)CH₂CH₃	
3.182	CH ₂	CH(CH₃)	CH ₂	CH₂N(CH₃)C(O)-phenyi	
3.183	CH ₂	CH(CH₃)	CH ₂	CH₂N(CH₃)C(O)-benzyl	
3.184	CH ₂	CH(CH₃)	CH ₂	CH₂N(CH₂CH₃)C(O)CH₃	
3.185	CH₂	CH(CH₃)	CH ₂		
3.186	CH₂	CH(CH ₃)	CH₂	'CH ₂ '	
3.187	CH₂	CH(CH₃)	CH₂	'CH ₂	
3.188	CH ₂	CH(CH₃)	CH ₂	$C(OCH_2CH_3)=CH_2$	
3.189	CH ₂	CH(CH ₃)	CH₂	CH ₂ C(O)CH ₃	
3.190	CH ₂	CH(CH₃)	CH ₂	C(OCH ₃) ₂	
3.191	CH ₂	CH(CH₃)	CH₂	9	
	-	, ,		,c CH³	
3.192	CH₂	CH(CH₃)	CH₂	CH₂C(O)CH₂OCH₃	
3.193	CH₂	CH(CH₃)	CH ₂	CH₂C(O)CH₂OCH₂CH₂OCH₃	
3.194	CH₂	CH(CH₃)	CH ₂	CH ₂ C(O)CH ₂ N(SO ₂ CH ₃)CH ₃	
3.195	CH ₂	CH(CH ₃)	CH ₂	C(CH ₂ OCH ₃)=CH ₂	

					Dhusiasl
Ex.	A ₁	A ₂	A ₃	R ₁	Physical
No.				0_	properties
3.196	CH₂	CH(CH ₃)	CH₂	·c,	
		011(0)1)		0	
3.197	CH ₂	CH(CH₃)	CH ₂	'CH(
3.198	CH ₂	CH(CH ₃)	CH₂	,0—	
0.100	0112	011(0113)	0,12	, 'c' \	
3.199	CH ₂	CH(CH ₃)	CH ₂	, ,	
000	0112	011(0113)	0,12	'CH(
3.200	CH ₂	CH(CH ₃)	CH ₂		
0.200		Oi 1(Oi 13)	0.12	,CH< CH³	
				. └ -o	
3.201	CH₂	CH(CH ₃)	CH ₂	CI	resin
3.202	CH ₂	CH(CH ₃)	CH ₂	CH₃	resin
3.203	CH ₂	CH(CH ₃)	CH ₂	OCH ₂ CH ₃	resin
3.204	CH ₂	CH ₂	$C(CH_3)_2$	CH₃	resin
3.205	CH ₂	CH ₂	$C(CH_3)_2$	OCH₂CH₃	resin
3.206	CH ₂	CH(CH ₃)	$C(CH_3)_2$	CH₃	resin
3.207	CH ₂	CH(CH ₃)	$C(CH_3)_2$	OCH₂CH₃	resin
3.208	CH(CH ₃)	CH ₂	$C(CH_3)_2$	CH₃	resin
3.209	CH(CH ₃)	CH ₂	$C(CH_3)_2$	OCH₂CH₃	resin
3.210	CH₂	CH ₂	'C	CH₃	resin
3.211	CH₂	CH₂	'CC	OCH₂CH₃	resin
0.040	0 11	OLI/O-NI)	011		
3.212	CH₂	CH(C≡N)	CH ₂	'N O	resin
3.213	CH₂	CH(CH₃)	CH₂	<u> </u>	resin
0.210	OI 12		O1 12	○	103111
3.214	C(CH ₃) ₂	CH ₂	CH ₂	0—0	resin

WO 2005/058830 PCT/EP2004/014113

Ex.	A ₁	A ₂	A ₃	R ₁	Physical properties
3.215	,c	CH ₂	CH ₂	0—0	resin
3.216	CH₂	CH(CH₃)	CH₂	CH ₃	
3.217	CH ₂	CH(CH₃)	CH ₂	CH ₃	
3.218	CH₂	CH(CH₃)	CH₂	, C	
3.219	CH₂	CH(CH₃)	CH ₂	,C,NO	
3.220 3.221	CH₂ CH₂	CH(CH ₃) CH(CH ₃)	CH₂ CH₂	C(OCH ₂ CH ₂ CH ₂ CH ₃)=CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	

Table Z1: Intermediates of formula II

Ex. No.	Y	R ₁	R ₂	Physical properties
Z1.001	ОН	OCH₂OCH₃	CF₃	
Z1.002	ОН	OCH ₂ OCH ₂ CH ₃	CF₃	
Z1.003	ОН	OCH₂CH₂OCH₃	CF₃	m.p.: 66-67°C
Z1.004	ОН	OCH ₂ CH ₂ OCH ₂ CH ₃	CF₃	·
Z1.005	ОН	OCH₂CH₂CH₂OCH₃	CF ₃	
Z1.006	ОН	OCH(CH₃)CH₂OCH₃	CF₃	
Z1.007	ОН	OCH ₂ CH ₂ OCH ₂ CH=CH ₂	CF₃	
Z1.008	ОН	OCH ₂ CH ₂ OCH ₂ C≡CH	CF ₃	
Z1.009	ОН	OCH ₂ CH ₂ O-benzyl	CF ₃	
Z1.010	ОН	OCH ₂ CH ₂ ON=C(CH ₃) ₂	CF ₃	m.p.: 106-107°C
				•

Ex. No.	Υ	R ₁	R ₂	Physical properties
Z1.011	ОН	OCH₂CH₂OCH₂CH₂OCH₃	CF₃	
Z1.012	ОН	OCH ₂ CH(OCH ₃) ₂	CF₃	m.p.: 53-54°C
Z1.013	ОН	OCH₂CH(OCH₂CH₃)₂	CF ₃	
Z1.014	ОН	/	CF ₃	amorphous
Z1.015	ОН	O CH ₃	CF ₃	
Z1.016	ОН	OCH ₃	CF₃	
21.010	U	O CH ₃		
Z1.017	ОН		CF₃	
Z1.018	ОН		CF₃	
Z1.019	ОН	O CH ₃	CF ₃	
Z1.020	ОН	CH ₃ CH ₃	CF₃	
Z1.021	ОН	· C	CF₃	m.p.: 124-125°C
Z1.022	ОН	00	CF₃	waxy
Z1.023	ОН	O-benzyl	CF₃	m.p.: 96-97°C
Z1.024		OCH ₂ CH ₂ SCH ₃	CF ₃	
Z1.025	ОН	OCH2CH2SCH2CH3	CF ₃	
Z1.026	ОН	OCH ₂ CH ₂ S(O) ₂ CH ₃	CF₃	
Z1.027	ОН	OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF₃	
Z1.028	ОН	SCH₂CH₂OCH₃	CF ₃	

Ex. No.	Υ	R ₁	R ₂	Physical properties
Z1.029	ОН	SCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
Z1.030	ОН	OCH₂CH₂OC(O)CH₃	CF ₃	
Z1.031	ОН	OCH ₂ CH ₂ OC(O)-phenyl	CF ₃	
Z1.032	ОН	OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	CF ₃	
Z1.033	ОН	OCH ₂ CH ₂ OC(O)NHCH ₂ CH ₃	CF ₃	
Z1.034	ОН	OCH ₂ CH ₂ NH ₂	CF ₃	
Z1.035	ОН	OCH ₂ CH ₂ NHC(O)CH ₃	CF₃	
Z1.036	ОН	OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃	CF ₃	
Z1.037	ОН	OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	CF ₃	
Z1.038	ОН	OCH₂CH₂NHC(O)-cyclopropyl	CF ₃	
Z1.039	ОН	$OCH_2CH_2NHC(O)C(CH_3)_3$	CF ₃	
Z1.040	ОН	OCH ₂ CH ₂ NHC(O)-phenyl	CF ₃	
Z1.041	ОН	OCH ₂ CH ₂ NHC(O)OCH ₃	CF ₃	
Z1.042	ОН	OCH ₂ CH ₂ NHC(O)OCH ₂ CH ₃	CF ₃	m.p.: 118-119°C
Z1.043	ОН	OCH ₂ CH ₂ NHC(O)NHCH ₃	CF ₃	
Z1.044	ОН	OCH ₂ CH ₂ NHC(O)NHCH ₂ CH ₃	CF ₃	
Z1.045	ОН	OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	CF ₃	
Z1.046	ОН	OCH ₂ CH ₂ NHC(O)N(CH ₂ CH ₃) ₂	CF ₃	
Z1.047	OH	NHCH₃	CF₃	
Z1.048	ОН	NHCH₂CH₃	CF ₃	
Z1.049	ОН	NHCH₂CH₂CH₃	CF ₃	
Z1.050	ОН	NHCH ₂ CH ₂ CH ₂ CH ₃	CF ₃	
Z1.051	ОН	NHCH(CH ₃) ₂	CF₃	
Z1.052	ОН	NHC(CH₃)₃	CF ₃	
Z1.053	ОН	NHCH ₂ -cyclopropyl	CF ₃	
Z1.054	ОН	NH-phenyl	CF₃	
Z1.055	ОН	NH-benzyl	CF₃	
Z1.056	ОН	NH-CH ₂ CH=CH ₂	CF₃	
Z1.057	. OH	NHCH ₂ C≡CH	CF₃	
Z1.058	ОН	N(CH ₂ CH=CH ₂) ₂	CF ₃	
Z1.059	ОН	N(CH ₂ C≡CH) ₂	CF₃	
Z1.060	ОН	N(CH ₃) ₂	CF ₃	m.p.: 53-54°C
Z1.061	ОН	N(CH ₂ CH ₃) ₂	CF ₃	viscous oil
Z1.062	ОН	N(CH ₂ CH ₂ CH ₃) ₂	CF ₃	
Z1.063	ОН	N(CH ₂ CH ₂ CH ₂ CH ₃) ₂	CF ₃	

Ex. No.	Υ	R ₁	R ₂	Physical properties
Z1.064	ОН	NHCH₂CH₂OH	CF ₃	•
Z1.065	OEt	NHCH₂CH₂OCH₃	CF ₃	oil
Z1.066	ОН	NHCH(CH₃)CH₃OCH₃	CF₃	
Z1.067	OH	NHCH₂CH(OCH₃)₂	CF ₃	
Z1.068	ОН	NHCH ₂ CH(OCH ₂ CH ₃) ₂	CF₃	
Z1.069	ОН	/ 0 ¬	CF ₃	
		NH O		
Z1.070	ОН	NHCH₂C(O)OCH₃	CF ₃	
Z1.071	ОН	NHCH(CH₃)C(O)OCH₃	CF ₃	
Z1.072	ОН	NHCH₂C(O)OCH₂CH₃	CF₃	
Z1.073	OH	NHCH(CH₃)C(O)OCH₂CH₃	CF₃	•
Z1.074	OH	'N	CF ₃	m.p.: 115-116°C, [P5]
		14		
Z1.075	ОН	,СН ₃	CF₃	
21.073	011			
		'n, Ò		
		CH ₃	0=	407 400 ⁰ C
Z1.076	OH		CF ₃	m.p.: 127-128°C
		'N O		
		CH ₃		
74 077	OH	СН [°]	CF₃	
Z1.077	ОН		0. 3	
		'N D		
		CH₃		
Z1.078	ОН	F _{,F}	CF₃	
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		/ _F		
		$\overline{}$		
		'N O		
			O. 15	
Z1.079	ОН	'N O	CHF ₂	
			٠	

Ex. No.	Υ	R ₁	R ₂	Physical properties
Z1.080	ОН	'N S	CF ₃	m.p.: 103-104°C
Z1.081	ОН	'N	CF ₃	
Z1.082	ОН	'N CF ₃	CF ₃	amorphous
Z1.083	ОН	, N N	CF₃	
Z1.084	ОН	N CH ₃	CF₃	
Z1.085	ОН	'N	CF₃	
Z1.086	ОН	N(CH₃)C(O)H	CF₃	
Z1.087	ОН	N(CH₃)C(O)CH₃	CF ₃	m.p.: 164-165°C
Z1.088	ОН	N(CH ₃)C(O)CH ₂ CH ₃	CF ₃	m.p.: 76-77°C
Z1.089	ОН	N(CH₃)C(O)-phenyl	CF₃	m.p.: 137-138°C
Z1.090	ОН	N(CH₃)C(O)-benzyl	ĊF₃	m.p.: 154-156°C
Z1.091	ОН	N(CH ₂ CH ₃)C(O)CH ₃	CF₃	
Z1.092	ОН	ОН	CF₃	m.p.: 220°C
Z1.093	ОН	Cl	CF₃	m.p.: 166-167°C
Z1.094	ОН	OCH₃	CF ₃	m.p.: 139-140°C
Z1.095	ОН	OCH₂CH₃	CF ₃	m.p.: 112-114°C
Z1.096	ОН	, NO	OCH₂CF₃	m.p.: 133-134°C
Z1.097	OEt	ОН	CF ₃	m.p.: 141-141.5°C, [P2]
Z1.098	OEt	SCH₃	CF ₃	oil
Z1.099	OEt	OCH₃	CF ₃	m.p.: 71-73°C
Z1.100	OEt	OCH ₂ CF ₃	CF ₃	oil
Z1.101	OEt	CI	CF ₃	oil, [P3]
Z1.102	OEt	CH₃	CF₃	oil, [P10]
Z1.103	OEt	CH₂Br	CF₃	oil, [P11]

Ex. No.	Υ	R ₁	R ₂	Physical properties
Z1.104	OEt	CHBr ₂	CF₃	
Z1.105	OEt	C(=O)H	CF ₃	
Z1.106	ОН	CH₂OH	CF ₃	
Z1.107	OEt	CH₂CI	CF ₃	
Z1.108	OEt	CH₂OSO₂CH₃	CF₃	
Z1.109	ОН	CH₂OC(O)CH₃	CF₃	
Z1.110	ОН	CH ₂ OC(O)C(CH ₃) ₃	CF₃	
Z1.111	ОН	CH₂OC(O)phenyl	CF ₃	
Z1.112	ОН	CH ₂ OC(O)OCH ₂ CH ₃	CF ₃	
Z1.113	ОН	CH₂OCH₃	CF ₃	
Z1.114	ОН	CH₂OCH₂CH₃	CF ₃	
Z1.115	ОН	CH₂CH₂OCH₃	CF ₃	
Z1.116	ОН	CH₂CH₂OCH₂CH₃	CF ₃	
Z1.117	ОН	CH₂CH₂CH₂OCH₃	CF ₃	
Z1.118	ОН	CH(CH₃)CH₂OCH₃	CF ₃	
Z1.119	ОН	CH ₂ OCH ₂ CH=CH ₂	CF₃	
Z1.120	ОН	CH ₂ OCH ₂ C≡CH	CF ₃	
Z1.121	ОН	CH₂OCH₂C≡CCH₃	CF ₃	
Z1.122	ОН	CH₂OCH₂CH₂C≡CH	CF ₃	
Z1.123	ОН	CH ₂ OCH ₂ CH ₂ C≡CCH ₃	CF ₃	
Z1.124	ОН	CH₂O-benzyl	CF ₃	
Z1.125	ОН	CH₂OCH₂CF₃	CF ₃	
Z1.126	ОН	CH ₂ OCH ₂ CH ₂ F	CF ₃	
Z1.127	ОН	CH₂OCH₂CH₂CI	CF ₃	
Z1.128	ОН	CH₂OCH₂CH₂Br	CF ₃	
Z1.129	ОН	CH ₂ OCH ₂ CH ₂ C≡N	CF₃	
Z1.130	ОН	CH ₂ OCH ₂ C≡N	CF₃	
Z1.131	ОН	CH₂OCH₂OCH₃	CF₃	
Z1.132	ОН	CH₂OCH₂OCH₂CH₃	CF ₃	
Z1.133	ОН	CH₂OCH₂CH₂OH	CF ₃	
Z1.134	ОН	CH₂OCH₂CH₂OCH₃	CF₃	waxy crystals
Z1.135	ОН	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
Z1.136	ОН	CH₂OCH₂CH₂CH₂OCH₃	CF ₃	
Z1.137	ОН	CH ₂ OCH(CH ₃)CH ₂ OCH ₃	CF ₃	
Z1.138	ОН	CH2OCH2CH2OCH2CH=CH2	CF ₃	

Ex. No.	Υ	R ₁	R ₂	Physical properties
Z1.139	ОН	CH₂OCH₂CH₂OCH₂C≡CH	CF ₃	
Z1.140	ОН	CH₂OCH₂CH₂O-benzyl	CF ₃	
Z1.141	ОН	CH ₂ OCH ₂ CH ₂ ON=C(CH ₃) ₂	CF ₃	
Z1.142	ОН	$CH_2OCH_2CH_2OCH_2CH_2OCH_3$	CF ₃	
Z1.143	ОН	CH ₂ OCH ₂ CH(OCH ₃) ₂	CF ₃	
Z1.144	ОН	CH2OCH2CH(OCH2CH3)2	CF₃	
Z1.145	ОН		CF₃	
		'CH ₂ -0		
Z1.146	ОН	O CH ₃	CF ₃	
		'CH ₂ —O O CH ₃		
Z1.147	ОН	, O CH ₃	CF ₃	
		'CH ₂ —O O O CH ₃		
Z1.148	ОН		CF ₃	
		'CH ₂ —0		
74.440	OH	.0	CF₃	
Z1.149	ОН		0,3	
		'CH ₂ —O		
Z1.150	ОН	,o√ ^{CH₃}	CF ₃	
		'CH ₂ —0		
Z1.151	ОН	CH_3 CH_3	CF ₃	
		- O O I I 3		
		'CH ₂ —O		
Z1.152	ОН	Λ̈́ρ	CF ₃	
		}		
		'CH ₂ —O		

Ex. No.	Υ	R ₁	R ₂	Physical properties
Z1.153	ОН	79	CF ₃	
		'CH₂—Ó		
Z1.154	ОН	/9	CF ₃	
		CH ₂ OCH ₂		
Z1.155	ОН	CH₂OCH₂CH₂SCH₃	CF ₃	
Z1.156	ОН	CH₂OCH₂CH₂SCH₂CH₃	CF ₃	
Z1.157	ОН	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₃	CF ₃	
Z1.158	ОН	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF ₃	
Z1.159	ОН	CH₂SCH₂CH₂OCH₃	CF ₃	
Z1.160	ОН	CH ₂ SCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
Z1.161	OH	CH ₂ OCH ₂ CH ₂ OC(O)CH ₃	CF ₃	
Z1.162	ОН	CH ₂ OCH ₂ CH ₂ OC(O)-phenyl	. CF ₃	
Z1.163	ОН	CH ₂ OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	CF ₃	
Z1.164	OH	CH ₂ OCH ₂ CH ₂ OC(O)NHCH ₂ CH ₃	CF ₃	
Z1.165	ОН	CH ₂ OCH ₂ CH ₂ NH ₂	CF ₃	
Z1.166	ОН	· CH ₂ OCH ₂ CH ₂ NHC(O)CH ₃	CF ₃	
Z1.167	OH	CH ₂ OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃	CF ₃	
Z1.168	ОН	$CH_2OCH_2CH_2NHC(O)CH(CH_3)_2$	CF ₃	
Z1.169	OH	CH ₂ OCH ₂ CH ₂ NHC(O)-cyclopropyl	CF ₃	
Z1.170	OH	CH ₂ OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	CF ₃	
Z1.171	ОН	CH₂OCH₂CH₂NHC(O)-phenyl	CF ₃	
Z1.172	ОН	CH ₂ OCH ₂ CH ₂ NHC(O)OCH ₃	CF ₃	
Z1.173	ОН	CH2OCH2CH2NHC(O)OCH2CH3	CF₃	
Z1.174	ОН	CH ₂ OCH ₂ CH ₂ NHC(O)NHCH ₃	CF ₃	
Z1.175	ОН	CH ₂ OCH ₂ CH ₂ NHC(O)NHCH ₂ CH ₃	. CF₃	
Z1.176	ОН	CH ₂ OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	CF ₃	
Z1.177	ОН	CH2OCH2CH2NHC(O)N(CH2CH3)2	CF ₃	
Z1.178	ОН	CH ₂ N(SO ₂ CH ₃)CH ₃	CF₃	
Z1.179	ОН	CH₂N(SO₂CH₃)CH₂CH₃	CF ₃	
Z1.180	ОН	CH ₂ N(SO ₂ CH ₂ CH ₃)CH ₂ CH ₃	CF ₃	
Z1.181	ОН	CH ₂ N(SO ₂ CH ₃)CH ₂ CF ₃	CF ₃	
Z1.182	ОН	CH ₂ N(SO ₂ CH ₃)CH ₂ CHOCH ₃	CF ₃	
Z1.183	ОН	CH ₂ N(SO ₂ CH ₃)CH ₂ -cyclopropyl	CF ₃	
Z1.184	ОН	CH ₂ N(SO ₂ CH ₃)-phenyl	CF ₃	

Ex. No.	Υ	R ₁	R ₂	Physical properties
Z1.185	ОН	CH₂N(SO₂CH₃)-benzyl	CF ₃	
Z1.186	ОН	CH ₂ N(SO ₂ CH ₃)CH ₂ CH=CH ₂	CF ₃	
Z1.187	ОН	CH ₂ N(SO ₂ CH ₃)CH ₂ C≡CH	CF ₃	
Z1.188	OH	CH₂N(CH₃)C(O)H	CF ₃	
Z1.189	ОН	CH₂N(CH₃)C(O)CH₃	CF₃	
Z1.190	OH	CH₂N(CH₃)C(O)CH₂CH₃	CF ₃	
Z1.191	ОН	CH₂N(CH₃)C(O)-phenyl	CF ₃	
Z1.192	ОН	CH₂N(CH₃)C(O)-benzyl	CF ₃	
Z1.193	ОН	CH ₂ N(CH ₂ CH ₃)C(O)CH ₃	CF ₃	
Z1.194	ОН	\ ⁰ _	CF ₃	
		'CH ₂		
Z1.195	ОН	,0~	CF ₃	
٠,		'CH ₂ O		·
Z1.196	ОН		CF ₃	
		'CH ₂		
Z1.197	ОН	$C(OCH_2CH_3)=CH_2$	CF ₃	amorphous solid
Z1.198	ОН	CH₂C(O)CH₃	CF ₃	
Z1.199	ОН	C(OCH ₃) ₂	CF ₃	
Z1.200	ОН	٩	CF ₃	amorphous solid
		°Ç O CH₃		
Z1.201	ОН	CH₂C(O)CH₂OCH₃	CF ₃	
Z1.202	ОН	CH ₂ C(O)CH ₂ OCH ₂ CH ₂ OCH ₃	CF ₃	·
Z1.203	ОН	CH ₂ C(O)CH ₂ N(SO ₂ CH ₃)CH ₃	CF ₃	
Z1.204	ОН	C(CH ₂ OCH ₃)=CH ₂	CF ₃	
Z1.205	ОН	,0	CF ₃	
Z1.206	ОН	'CH,	CF ₃	
		<u>~</u> .		
Z1.207	ОН	'c'	CF₃	amorphous solid

Ex. No.	Y	R ₁	R ₂	Physical properties
Z1.208	OH	, o—\	CF₃	
21.200	OII	'CH(• •	
74.000	011		CF₃	
Z1.209	ОН	,CH²	GF3	
Z1.210	ОН	C(O)CH₃	CF₃	
Z1.210 Z1.211	ОН	C(O)CH₂OCH₃	CF₃	
Z1.211 Z1.212	ОН		CF₃	
Z1.212 Z1.213	ОН	C(O)CH ₂ N(SO ₂ CH ₃)CH ₃	CF₃	
Z1.213 Z1.214	OH	COOCH ₃	CF ₃	
Z1.214 Z1.215	ОН	COOCH ₂ CH ₃	CF ₃	
Z.1.216	ОН	CH₃	CF ₃	m.p.: 82-83°C
Z1.217	ОН	benzylthio	OCHF ₂	m.p.: 132-133°C
Z1.218	ОН	CI	OCH ₂ CF ₃	m.p.: 131-133°C
Z1.219	ОН	C≣N	CF₃	m.p.: 122-123°C
Z1.220	ОН	CH₃	C≡N	m.p.: 157-158°C
Z1.221	ОН	CF ₃	CI	m.p.: 127-129°C
Z1.222	OEt	0	C F ₃	waxy
		CH ₃		
Z1.223	OEt	'N	CF₃	oil, [P4]
Z1.224	CI	'N	CF₃	m.p.: 72-73°C, [P6]
Z1.225	OEt	N(CH₃)C(O)CH₃	CF ₃	m.p.: 145-145.5°C, [P7]
Z1.226	OEt		. CF₃	oil, [P8]
Z1.227	OEt	·o-	CF₃	m.p.: 45-45.5°C, [P9]
Z1.228	OEt	CHO_N	CF₃	oil

Ex. No.	Y	R ₁	R ₂	Physical properties
Z1.229	<u>'</u> ОН	CH ₃	CF₃	amorphous solid
2.1.220	.	'CH N		·
		O	05	ail .
Z1.230	OEt		CF₃	oil
		'CH		
7.004	051	Br.	C.F.	oil
Z1.231	OEt	CH ₃	CF₃	Oii
		'CH(O_N		
Z1.232	ОН		CF₃	solid
21.202	0.,	,C, II	2,3	
Z1.233	ОН	~ CH₃	CF₃	amorphous solid
21.200	On	,c//	0. 3	
		,0~IN		
Z1.234	OEt	'Ç	CF₃	oil
		Ó		
Z1.235	OEt	CH ₃	CF ₃	oil, isomer l
		O F		
		0		
Z1.236	OEt	CH ₃	CF ₃	oil, isomer II
		O F		
		o()		
Z1.237	OEt	CH=CH ₂	CF₃	oil, [P16]
Z1.238	OEt	C(OCH ₂ CH ₃)=CH ₂	CF₃	oil, [P17]
Z1.239	OEt	C(OCH ₂ CH ₂ CH ₂ CH ₃)=CH ₂	CF₃	
Z1.240	OEt	CH=CHOCH₂CH₃	CF₃	
Z1.241	OEt	CH=CHOCH ₂ CH ₂ CH ₂ CH ₃	CF₃	_:1
Z1.242	OEt	C(O)CH₂Br	CF₃	oil
Z1.243	OEt	C(O)CH₂OH	CF₃	oil
Z1.244	OEt	CH ₂ CH ₂ OCH ₂ CH ₃	CF₃	
Z1.245	ОН	CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	CF₃	

_	1	2	1 -

Ex. No.	Υ	R ₁	R ₂	Physical properties
Z1.246	ОН	CH₂O-phenyl	CF ₃	
Z1.247	ОН	CH₂NHSO₂-phenyl	CF ₃	
Z1.248	ОН	CH₂N(SO₂CH₃)-cyclopropyl	CF ₃	
Z1.249	ОН	CH₂N(SO₂CH₂CH₃)-phenyl	CF ₃	
Z1.250	ОН	CH₂NHC(O)-cyclopropyl	CF ₃	
Z1.251	ОН	CH₂NHC(O)-phenyl	CF₃	

Biological Examples

Example B1: Herbicidal action prior to emergence of the plants (pre-emergence action) Monocotyledonous and dicotyledonous test plants are sown in standard soil in pots or seed trays. Immediately after sowing, the test compounds, in the form of an aqueous suspension (prepared from a wettable powder (Example F3, b) according to WO 97/34485) or in the form of an emulsion (prepared from an emulsifiable concentrate (Example F1, c) according to WO 97/34485), are applied by spraying in a concentration of 250 g/ha. The test plants are then grown in a greenhouse under optimum conditions. After a test duration of 4 weeks, the test is evaluated in accordance with a scale of eleven ratings (10 = total damage, 0 = no action). Ratings of from 10 to 7 (especially from 10 to 8) indicate very good to good herbicidal action.

Table B1: Pre-emergence action:

Ex. No. g/ha Panicum Digitaria Echinochloa Scirpus Abutilon Amaranthus Chenopodia 1.012 250 10 9 5 7 10 5 0 1.073 250 10 10 10 nt 10 6 10 1.075 250 10 10 10 7 9 10 9 1.079 250 10 10 10 4 10 10 9 1.126 250 9 6 2 8 10 10 10 2.021 250 9 3 0 7 9 7 9 2.059 250 7 7 8 nt 10 7 9 2.073 250 10 7 9 4 9 9 9 2.078 250 10 10 10 0 10 8 10		n	Daniaum	Dicitorio	Echinochlos	Scirnus	Abutilon	Amaranthus	Chenopodium
1.073 250 10 10 10 nt 10 6 10 1.075 250 10 10 10 7 9 10 9 1.079 250 10 10 10 4 10 10 9 1.126 250 9 6 2 8 10 10 10 2.021 250 9 3 0 7 9 7 9 2.059 250 7 7 8 nt 10 7 9 2.073 250 10 7 9 4 9 9 9	Ex. No.	g/na	Panicum	Digitaria	ECHIHOCHIOA	Sciipus	Abathon	, imaramina	C,,C,,O,
1.073 250 10 10 10 10 10 10 9 1.075 250 10 10 10 4 10 10 9 1.079 250 10 10 10 4 10 10 9 1.126 250 9 6 2 8 10 10 10 2.021 250 9 3 0 7 9 7 9 2.059 250 7 7 8 nt 10 7 9 2.073 250 10 7 9 4 9 9 9	1.012	250	10	9	5	7	10	5	0
1.079 250 10 10 10 10 7 9 1.079 250 10 10 10 4 10 10 9 1.126 250 9 6 2 8 10 10 10 2.021 250 9 3 0 7 9 7 9 2.059 250 7 7 8 nt 10 7 9 2.073 250 10 7 9 4 9 9 9	1.073	250	10	10	10	nt	10	6	10
1.079 250 10 10 10 10 10 1.126 250 9 6 2 8 10 10 10 2.021 250 9 3 0 7 9 7 9 2.059 250 7 7 8 nt 10 7 9 2.073 250 10 7 9 4 9 9 9	1.075	250	10	10	10	7	9	10	9
2.021 250 9 3 0 7 9 7 9 2.059 250 7 7 8 nt 10 7 9 2.073 250 10 7 9 4 9 9 9 9 9 9 9	1.079	250	10	10	10	4	10	10	9
2.059 250 7 7 8 nt 10 7 9 2.073 250 10 7 9 4 9 9 9	1.126	250	9	6	2	8	10	10	10
2.059 250 7 7 8 III 10 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2.021	250	9	3	0	7	9	7	9
2.073 250 10 7 3 4 0 10	2.059	250	7	7	8	nt	10	7	9
2.078 250 10 10 10 0 10 8 10	2.073	250	10	7	9	4	9	9	9
	2.078	250	10	. 10	10	0	10	8	10

Ex. No.	g/ha	Panicum	Digitaria	Echinochloa	Scirpus	Abutilon	Amaranthus	Chenopodium
2.088	250	9	9	7	0	9	nt	7
2.089	250	9	8	8	nt	9	8	0
2.191	250	10	7	10	3	10	7	9
2.203	250	6	5	9	8	10	9	nt
2.209	250	10	8	10	2	10	9	9
3.069	250	10	10	10	5	10	10	6
3.071	250	10	10	10	8	9	8	6
3.072	250	9	10	10	7	9	3	8
3.073	250	10	9	7	7	5	0	7

Example B2: Post-emergence herbicidal action

Monocotyledonous and dicotyledonous test plants are cultivated in a greenhouse in standard soil in plastic pots and, at the 4- to 6-leaf stage, are sprayed with an aqueous suspension of the test compounds of formula I prepared from a 25 % wettable powder (Example F3, b) according to WO 97/34485) or with an emulsion of the test compounds of formula I prepared from a 25 % emulsifiable concentrate (Example F1, c) according to WO 97/34485), corresponding to concentrations of 125 and 250 g of active ingredient per hectare (500 litres of water per ha). The test plants are then grown on in the greenhouse under optimum conditions. After a test duration of about 18 days, the test is evaluated in accordance with a scale of eleven ratings (10 = total damage, 0 = no action). Ratings of from 10 to 7 (especially from 10 to 8) indicate very good to good herbicidal action. The compounds of formula I generally exhibit a strong herbicidal action in this test.

Table B2: Post-emergence action

Ex. No.	g/ha	Panicum	Echino- chloa	Euphorbia	Xanthium	Ama- ranthus	Cheno- podium	Stellaria
1.003	250	8	8	6	9	9	10	10
1.012	250	7	8	9	8	9	8	7
1.021	250	6	6	7	9	9	8	7
1.073	250	10	9	9	9	10	8	9

WO 2005/058830

Ex. No.	g/ha	Panicum	Echino- chloa	Euphorbia	Xanthium	Ama- ranthus	Cheno- podium	Stellaria
1.075	250	10	8	8	7	10	10	8
1.079	250	3	7	8	7	8	10	10
1.081	250	10	9	9	9	10	9	6
1.090	250	8	7	nt	8	8	9	6
1.126	250	7	7	8	8	8	8	8
1.203	250	9	8	7	8	8	9	7
2.003	250	9	9	9	8	8	8	9
2.021	250	9	9	9	8	9	8	7
2.059	250	5	8	6	7	7	10	8
2.073	250	9	9	9	9	9	8	7
2.078	250	5	8	7	7	7	10	10
2.080	-250	9	9	9	9	9	6	7
2.089	250	8	7	8	7	0	9	8
2.094	250	8	8	8	7	3	9	9
2.095	250	9	9	9	9	9	8	5
2.188	250	9	7	7	8	5	6	10
2.191	250	9	8	8	8	3	7	10
2.203	250	9	9	9	9	6	6	9
2.208	250	9	9	8	8	8	6	5
2.209	250	9	8	8	9	8	6	10
2.201	250	9	8	6	8	9	8	6
3.068	250	10	9	9	9	10	9	9
3.069	250	8	7	5	8	8	10	7
3.070	250	7	8	7	5	7	9	5
3.071	250	9	8	7	8	8	10	8
3.072	2 250	8 0	7	7	8	7	9	8
3.073	3 250	7	8	7	7	4	9	7

Ex. No.	g/ha	Panicum	Echino- chloa	Euphorbia	Xanthium	Ama- ranthus	Cheno- podium	Stellaria
3.074	250	7	7	7	8	2	9	8
3.075	250	5	7	7	8	2	9	8
3.076	250	7	7	6	8	7	9	7
3.212	250	0	5	7	8	8	7	7

Example B3: Microscreen, post-emergence herbicidal action

Monocotyledonous and dicotyledonous test plants are sown in sterilised standard soil in seed trays each having 96 cells. After 8 to 9 days' cultivation under controlled conditions in a climatic chamber (cultivation at 17/23°C; 13 hours' light; 50-60 % humidity; after application at 19/24°C), the plants are treated with an aqueous spray solution of 1000 mg/l of the active ingredient used (rate of application: 500 g/l; incl. 10 % DMSO as solvent). The plants are grown on in the climatic chamber until the test is evaluated after 9 or 13 days. The test is evaluated in accordance with a scale of eleven ratings (10 = total damage, 0 = no action). Ratings of from 10 to 7 (especially from 10 to 8) indicate very good to good herbicidal action. The compounds of formula I generally exhibit a strong herbicidal action in this test.

Table B3:

Ex. No.	g/ha	Digitaria	Amaranthus	Solanum	Nasturtium	Stellaria
1.059	250	7	7	9	9	9
1.060	250	4	8	8	9	7
1.080	250	5	7	9	10	9
1.082	250	3	6	9	10	10
1.091	250	2	8	9	9	6
1.094	250	8	9	10	8	7
1.095	250	3	7	7	9	7
1.096	250	8	9	9	10	9
1.189	250	7	nt	9	9	8
1.192	250	7	8	9	10	9

Ex. No.	g/ha	Digitaria	Amaranthus	Solanum	Nasturtium	Stellaria
1.204	250	8	10	10	10	10
1.209	250	8	9	9	9	9
1.211	250	5	8	8	10	8
1.212	250	3	7	8	8	7
2.010	250	3	8	9	9	8
2.060	250	9	9	10	10	10
2.064	250	9	8	10	10	10
2.075	250	7	6	10	10	9
2.090	250	2	6	10	10	8
2.202	250	6	6	10	10	10

Example B4: Comparison test with a compound from the prior art: Post-emergence herbicidal action:

The post-emergence herbicidal action of compound no. 1.095 according to the invention was compared with compound A, which is described as compound no. 1.005 on page 15, Table 1, of EP-A-0 353 187:

OH ON CI (compound 1.095 according to the present invention)
$$CF_3$$

Table B4:

Comp. No.	g/ha	Wheat	Maize	Sida	Ipomea	Amaranthus	Sinapis	Stellaria	Galium
1.095	125	0	0	5	7	7	7	8	6
Α	125	0	0	2	2	2	6	9	1

The results in Table B4 show that, at an application rate of 125 g/ha, compound no. 1.095 according to the invention exerts a generally substantially better herbicidal action on the tested weeds than compound A from the prior art. The improved action can be seen especially clearly in the case of the weeds Ipomea, Amaranthus and Galium, where the action of compound A from the prior art is completely inadequate at the tested rates of application. Only in the case of Stellaria does compound A from the prior art exhibit slightly better action. In view of the structural similarity between the compounds, the enhanced action of the compounds according to the invention was not to be expected.

Example B5: Comparison test with a compound from the prior art: Post-emergence herbicidal action:

The post-emergence herbicidal action of compound no. 1.096 according to the invention was compared with compound B, which is described as compound no. 2.088 on page 83, Table 2, of WO-A-0015615:

WO 2005/058830 PCT/EP2004/014113

- 127 -

Table B5:

Comp.	g/ha	Wheat	Maize	Bromus	Sida	Ipomea	Polygonum	Stellaria	Galium
No.									
1.096	125	0	0	5	7	7	8	8	8
В	125	2	2	0	0	6	. 4	6	4

The results in Table B4 show that, at an application rate of 125 g/ha, compound no. 1.096 according to the invention exerts a substantially better herbicidal action on the tested weeds than compound B from the prior art. The improved action can be seen especially clearly in the case of the weeds Bromus and Sida, where compound B from the prior art has no action at all at the tested rates of application. In addition, the compound according to the invention not only exhibits better herbicidal action but also exhibits no phytotoxicity whatsoever with respect to the useful plants (in this case, wheat and maize). At an application rate of 125 g/ha, compound B from the prior art already shows significant damage (20 % phytotoxicity) to wheat and maize, which is unacceptable from an agronomic standpoint. In view of the structural similarity between the compounds, the enhanced action and improvement in selectivity of the compounds according to the invention were not to be expected.