Def: $(\mathcal{F}, \mathcal{P})$ is a signature, where \mathcal{F} – set of function symbols, \mathcal{P} – set of predicate symbols. Each $f \in \mathcal{F}$ and $P \in \mathcal{P}$ has an associated arity Ar(f) or Ar(P).

Syntax: A term t represents an element of a model. Any variable x is a term or for any $f \in \mathcal{F}$, Ar(f) = $n: f(t_1,\ldots,t_n)$ is a term.

Def: A model (or structure) is $\mathcal{M} = (M, \{P^{\mathcal{M}}\}_{P \in \mathcal{P}}, \{f^{\mathcal{M}}\}_{f \in \mathcal{F}})$, where \mathcal{M} is the underlying set, for each $P \in \mathcal{P}, \operatorname{Ar}(P) = n : P^{\mathcal{M}} : M^n \to \{\text{true}, \text{false}\}, \text{ for each } f \in \mathcal{F}, \operatorname{Ar}(f) = n : f^{\mathcal{M}} : M^n \to M.$

A term t is interpreted in \mathcal{M} as $t^{\rho} \in M$, where $\rho : \text{Vars} \to M$ is an environment. $x^{\rho} = \rho(x)(f(t_1, \ldots, t_n))^{\rho} =$ $f^{\mathcal{M}}(t_1^{\rho},\ldots,t_n^{\rho})$. A formula φ is either true or false in \mathcal{M} under environment ρ .

 \mathcal{M} is a model of S ($\mathcal{M} \models S$) if $A \in S \implies \mathcal{M} \models A$. Mod(S) = set of all models of S.

T is a theory if $T \models A \implies A \in T$. Th(S) = mn. stavkov izpeljivih iz S. Th(M) = mn. stavkov, ki so izpeljivi iz vseh modelov v M. Mimogrede: Th(S) = Th(Mod(S)). Teorija je konsistentna, če se iz nje ne da izpeljati protislovja iff če ima model.

Interpretation: $\mathcal{M} \vDash P(t_1, \dots, t_n)^{\rho} \iff P^{\mathcal{M}}(t_1^{\rho}, \dots, t_n^{\rho}) = \text{true}; \ \mathcal{M} \vDash (t_1 = t_2)^{\rho} \iff t_1^{\rho} = t_2^{\rho}; \ \mathcal{M} \vDash t_1^{\rho} = t_2^{\rho}; \ \mathcal{M} \vDash t_1^{\rho} = t_2^{\rho}; \ \mathcal{M} \vDash t_2^{\rho} = t_2^{\rho}; \ \mathcal{M} \vDash t_2^{\rho}; \ \mathcal{M} \vDash t_2^{\rho} = t_2^{\rho}; \ \mathcal{M} \vDash t_2^{\rho}; \ \mathcal{M} \vDash t_2^{\rho} = t_2^{\rho}; \ \mathcal{M} \vDash t_2^{\rho}; \ \mathcal{M} \vDash t_2^{\rho}$ $(\varphi_1 \wedge \varphi_2)^{\rho} \iff \mathcal{M} \vDash \varphi_1^{\rho} \text{ and } \mathcal{M} \vDash \varphi_2^{\rho}; \ \mathcal{M} \vDash (\neg \varphi)^{\rho} \iff \text{it is not the case that } \mathcal{M} \vDash \varphi^{\rho}; \ \mathcal{M} \vDash \varphi^{\rho}$ $(\exists x.\varphi)^{\rho} \iff \text{exists } a \in M : \mathcal{M} \vDash \varphi^{\rho[x\mapsto a]}; \ \mathcal{M} \vDash (\forall x.\varphi)^{\rho} \iff \text{for all } a \in M : \mathcal{M} \vDash \varphi^{\rho[x\mapsto a]}$ $\text{Substitution: } u[t/x]^{\rho}_{\mathcal{M}} = u^{\rho[t^{\rho}_{\mathcal{M}}/x]}_{\mathcal{M}}, \text{ and } M \vDash (A[t/x])^{\rho} \text{ iff } M \vDash A^{\rho[x\mapsto t^{\rho}_{\mathcal{M}}]}.$

Sufficient set of connectives: \neg and at least one of \land , \lor , \rightarrow and at least one of \forall , \exists

We can distribuate \exists over \lor and \forall over \land , others NOT!!

Prenex normal form: all quantifiers at the beginning.

Negation normal form: brez kvantifikatorjev, le iz konjunkcij in disjunkcij literalov.

Conjunctive normal form: konjunkcija D_i , kjer so D_i disjunkcije literalov

Disjunctive normal form: disjunkcija C_i , kjer so C_i konjunkcije literalov

Quantifier elimination: brez vseh kvantifikatorjev. Prop: T has q.e. iff quantifiers are elimenable from every formula of the form $\exists x.(L_1 \land ... \land L_k)$ where $x \in FV(L_i)$ and L_i from literal base. **Ex:** Theory of finite cardinal bounds and $Th(\mathbb{R}, 0, 1, +, <)$ enjoy q.e.

Kako? PNF, $\forall \leftrightarrow \neg \exists \neg$, DNF na notranji formuli, potem pa korakoma odpravljaš kvantifikatorje na majhnih formulah $\exists x.A$

Proof calculi

Hilbert's system: (A1) $A \rightarrow (B \rightarrow A)$, (A2) $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$, (A3) $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B), (A4) \forall x.A \rightarrow A[t/x], (A5) \forall x.(A \rightarrow B) \rightarrow (A \rightarrow \forall x.B) (x \notin FV(A))), (A6)$ $\forall x.x = x$, (A7) $x = y \rightarrow (A \rightarrow A[y/x])$ (y ni v A)

(MP) če velja $A \to B$ in če velja A, potem velja B. (IMP) Če $\Gamma \vdash A \to B$ in $\Gamma \vdash A$, potem $\Gamma \vdash B$.

(Gen) Če $\Gamma \vdash A$, potem $\Gamma \vdash \forall x.A$, kjer x ne nastopa v Γ . (ID) $\Gamma, A \vdash B \iff \Gamma \vdash A \to B$ (kulsko!)

(IPR) če $\Gamma \vdash A_1, \ldots, \Gamma \vdash A_n$ in $\Gamma, A_1, \ldots, A_n \vdash B$, potem $\Gamma \vdash B$, (DN) $\vdash \neg \neg A \rightarrow A$ in $\vdash A \rightarrow \neg \neg A$

Sequent calculus: Pomemben trik: pri ∃R, moraš pogosto podvojiti sekvent.

 $\Gamma \vdash \Delta \iff \exists$ finite $\Gamma' \subseteq \Gamma, \Delta \subseteq \Delta$ such that $\Gamma' \implies \Delta'$ is derivable.

 $\Gamma \vDash \Delta \iff \forall \mathcal{M}, \forall \rho : \text{if } \forall A \in \Gamma.\mathcal{M} \vDash A^{\rho} \text{ then } \exists B \in \Delta.\mathcal{M} \vDash B^{\rho}.$

Soundness and completeness: $\Gamma \vdash \Delta \iff \Gamma \vDash \Delta$ (desno je soundness, levo je completeness)

Prop: If $\Gamma \nvDash \Delta$ then $\exists \mathcal{M}, \exists \rho \text{ s.t. } \forall A \in \Gamma.\mathcal{M} \vDash A^{\rho} \text{ and } \forall B \in \Delta.\mathcal{M} \nvDash B^{\rho}$.

Decidability

Decidability for theory T there is an algorithm for: given input Φ , returning true if $T \models \Phi$ and false if $T \nvDash \Phi$.

Thm: The theory of $(0,1,+,\times)$ over \mathbb{R} is decidable, but over \mathbb{N} it is not.

Thm: Theory of groups is undecidable, but theroy of abelian groups is decidable.

Thm: Theory of finite cardinal bounds (and hence also L_{\emptyset}) is decidable.

Thm: Theory $\operatorname{Th}(\mathbb{R}, 0, 1, +, q_{\cdot}, <)$ (and hence also $\operatorname{Th}(\mathbb{R}, 0, 1, +, \times, <)$ is decidable.

 $S \subseteq \mathbb{N}$ is **decidable/computable/recursive** if there exists as algorithm that given any $n \in \mathbb{N}$ as input, eventually halts and returns true if $n \in S$ and false if $n \notin S$. This alg. is called a decision procedure.

 $S \subseteq \mathbb{N}$ is semidecidable/computably enumerable/recursively enumerable if there exists as algorithm that given any $n \in \mathbb{N}$ as input either eventually halts with true id $n \in S$ or runs forever if $n \notin S$. This alg. is called a semi-decision procedure.

Prop:

1. Every finite subset of \mathbb{N} is decidable.

- 2. There also exist infinite decidable sets. (eg. $\mathbb{N}, 2\mathbb{N}, \ldots$)
- 3. Every decidable set is semidecidable.
- 4. There exists semidecidable sets that are not decidable.
- 5. There also exists sets that are not semidecidable (cardinality uncount. sets, count. alg.)
- 6. If S is decidable, then so is $\overline{S} = S^C$.
- 7. If S and \overline{S} are semidecidable, then S is decidable (en korak enega, en korak drugega alg.).

Partial enumeration algorithm for S is an alg. that takes $i \in \mathbb{N}$ as input and either: runs forever or returns some number l_i as output, where $S = \{l_i : \text{the alg. returns a value on input } i\}$.

Total 1-1 enumeration algorithm is a partial enumeration algorithm that moreover produces a value l_i for every $i \in \mathbb{N}$ and also $l_i \neq l_j$ for $i \neq j$. (only possible for infinite S)

Total ordered enumeration algorithm is a total 1-1 enum. alg. which also has $l_i < l_j$ for i < j.

Prop: S is semidecidable iff it has partial enumeration algorithm.

Prop: For an infinite S: S is computably enumerable iff it has a total 1-1 enumeration alg.;

S is computable iff it has a total ordered enumeration alg.

Decidable theory: encode sentences as \mathbb{N} , and see if the set is decidable.

A theory T is **computably axiomatisable** if there exists a computable set S s.t. for all sentences A, $A \in T(T \vdash A) \iff S \vdash A$.

Prop: T is computably axiomatisable iff it is computably enumerable. (For (\Leftarrow) we need Craig's trick: define $S = \{(A \lor \bot) \land \top_1 \land \ldots \land \top_N ; A \in T \text{ and } N \text{ number of computation steps taken by semidecision procedure for <math>T$ on input A to return true $\}$)

A consistent theory T is **complete** if for every sentence A either $A \in T$ or $\neg A \in T$. Eg. Th(\mathcal{M}) is always complete.

Theorem (Janicak): If a theory T is complete then T is decidable iff computably axiomatisable. $((\Rightarrow) S = T, (\Leftarrow)$ semidecision procedure form T and the complement of T, then use upper prop.)

A theory T is ω -categorical if any two countably-infinite models of T are isomorphic.

Thm: If T has no finite models and is ω -categorical, then T is complete. (we see that uncountable model is elem.equivalent to countable model by downwards L-S. Any two countable are iso., so elem.equiv. As then all models are elem.equiv., $T = \text{Th}(\mathcal{M})$ for any model.)

Ex (Cantor): Any two countable models of dense < linear order are isomorfic. Hence it is complete.

T satisfies the **finite model property** if every sentence A that is satisfied by some model of T is satisfied by some finite model.

Theorem (Harrop): IF T is finitely axiomatised and has finite model property, then T is decidable. (fin.axiom. implies comp.axiom. implies semidecidable. Then also show \overline{T} semidecidable (go through all finite models until $\mathcal{M} \models S, \neg A$))

Ex: Theory of valid sentences over L_{MOD} is decidable. (no function simbols, unary relation simbols P_1, P_2, \ldots).

Elementary model theory

Theorem: (Compactness) A set of sentences S is satisfiable iff every finite subset of S is satisfiable. (If an infinite set of sentences is not satisfiable, then there is a finite subset that is not satisfiable) **Corr:** If S has arbitrarily large finite models, it has an infinite model.

Theorem: (Löwenheim-Skolem) Let S be a set of sentences over a countable signature. If S has a model, it has a countable model. If S has an infinite model, then it has a countably infinite model.

Def: A homomorphism ϑ from an L-structure \mathcal{M} to an L-structure \mathcal{M}' is a function $\vartheta \colon \mathcal{M} \to \mathcal{M}'$, such that $P_{\mathcal{M}}(d_1,\ldots,d_n) \implies P_{\mathcal{M}'}(\vartheta(d_1),\ldots,\vartheta(d_n))$, and $\vartheta(f_{\mathcal{M}}(d_1,\ldots,d_n)) = f_{\mathcal{M}'}(\vartheta(d_1),\ldots,\vartheta(d_n))$. **Prop:** Equivalently, ϑ is a homomorphism iff for every atomic formula A and \mathcal{M} -env $\rho \colon M \models A^{\rho} \implies \mathcal{M}' \models A^{\vartheta \circ \rho}$.

Def: A homomorphism $\vartheta \colon \mathcal{M} \to \mathcal{M}'$ is an embedding from M to \mathcal{M}' if it is injective, this impiles $P_{\mathcal{M}'}(\vartheta(d_1), \ldots, \vartheta(d_n)) \implies P_{\mathcal{M}}(d_1, \ldots, d_n)$.

Prop: Equivalently, ϑ is an embedding iff for every quantifier free formula A and \mathcal{M} -env ρ : $M \models A^{\rho} \Longrightarrow \mathcal{M}' \models A^{\vartheta \circ \rho}$.

Def:An embedding $\vartheta \colon \mathcal{M} \to \mathcal{M}'$ is an elementary embedding from M to \mathcal{M}' if for every formula A and every \mathcal{M} env $\rho \colon \mathcal{M} \models_{\rho} A \Longrightarrow \mathcal{M}' \models_{\rho} A^{\vartheta \circ \rho}$.

Def: A fin θ is an isomorphism if it is a bijection and θ^{-1} is an isomorphism. Every isomorphism is an

elementary embedding.

Def: Two structures \mathcal{M} and \mathcal{M}' are elementary equivalent iff $Th(\mathcal{M}) = Th(\mathcal{M}')$, or equivalently, there exists an elementary embedding $\vartheta \colon \mathcal{M} \to \mathcal{M}'$.

Def: \mathcal{M} is a substructure of \mathcal{M}' if inclusion from M to M' is an embedding. Also, M' is an extension of M. The substructure / extension is elementary if ϑ is an elementary embedding.

Thm: (Proper elementary extension) Every infinite structure \mathcal{M} has a proper elementaryy extension $\mathcal{M}' \succeq \mathcal{M}$. Also, if \mathcal{M} and L are countable, \mathcal{M}' is also countable.

Thm: (Countable elementary substructure) \mathcal{M} is an infinite structure over countable L. Then, for any countable subset $X \subseteq M$, there exists a countably infinite elementary substructure $\mathcal{M}' \preceq \mathcal{M}$ with $X \subseteq M'$.

Language of arithmetic and computability

 Δ_0 formulas: $t = u, t < u, t \le u$, closed under logical connectives and bounded quantifiers.

 Σ_1 formulas: $\exists x_1 \dots \exists x_k A, A \text{ in } \Delta_0$

 Π_1 formulas: $\forall x_1 \dots \forall x_k . A, A$ in Δ_0

Relation R is represented by a formula A if $\forall n_1, \ldots, n_k \in \mathbb{N}. R(n_1, \ldots, n_k) \iff \mathbb{N} \models A(n_1, \ldots, n_k)$

Thm: R relation. R is Σ_1 -representable \iff R is computably enumerable.

Graph of partial function f on domain D is relation $graph(f)(n_1, \ldots, n_k, m) \iff (n_1, \ldots, n_k) \in D, f(n_1, \ldots, n_k) = m$ (ekviv: za vsako k terico imamo največ en m s to lastnostjo)

Thm: f partial function. gr(f) is Σ_1 -representable \iff f is computable partial function.

Set of computable partial functions: naprej na listu.

Primitive recursive function: 1-3 from above.

Relation R is \star if there exists a \star function s.t. $R(...) \iff f(...) = 0$; \star is prim.recursive / computable / comp. enumerable.

Prop: If a k-ary relation R is Δ_0 -representable, then R is primitive recursive.

 β -function lemma: There exists Δ_0 -representable binary function β s.t. for every $k \geq 0$ and $n_0, \ldots, n_{k-1} \in \mathbb{N}$ there exists $s \in \mathbb{N}$ s.t. $\beta(s, i) = n_i$.

Theories of arithmetic

(A1)
$$\forall x \forall y.x + 1 = y + 1 \to x = y$$
 (A2) $\forall x.x + 1 \neq 0$

(A3)
$$\forall x.x + 0 = x$$
 (A4) $\forall x \forall y.x + (y+1) = (x+y) + 1$

$$(A5) \ \forall x.x \cdot 0 = 0 \qquad (A6) \ \forall x \forall y.x \cdot (y+1) = x \cdot y + x$$

$$(A7) \ \forall x.x = 0 \lor \exists y.(x = y + 1))$$

$$(A-Ind) \ \forall \vec{y}.(A(0, \vec{y}) \land (\forall x.A(x, \vec{y}) \to A(x + 1, \vec{y})) \to \forall x.A(x, \vec{y}))$$

$$PA = (A1)-(A6) + (A-Ind) \forall \text{ frmls } A$$
 $I\Sigma_1 = (A1)-(A6) + (A-Ind) \text{ for all } \Sigma_1 \text{ frmls } A$ $Q = (A1)-(A7)$ $I\Delta_0 = (A1)-(A6) + (A-Ind) \text{ for all } \Delta_0 \text{ frmls } A$

 $Q \subsetneq I\Delta_0 \subsetneq I\Sigma_1 \subsetneq PA \subsetneq \operatorname{Th}(\mathbb{N})$

Lemma: For all $n \in \mathbb{N}$: $Q \vdash \forall x. (x \leq \overline{n}) \leftrightarrow (x = \overline{0} \lor x = \overline{1} \lor ... \lor x = \overline{n})$. Proof by induction.

Thm: For every Σ_1 sentence $A: \mathbb{N} \models A \implies Q \vdash A$. Same for any $Q \subseteq T$.

T is 1-consistent if for every Σ_1 sentence A: $T \vdash A \implies \mathbb{N} \vDash A$. 1-consistent implies consistent.

Thm: If T is 1-consistent extension of Q (eg. Q, PA, Th(\mathbb{N}), then T is undecidable.

Corr: Validity in first-order logic is undecidable. (If we could decide any sentence, we could decide \vdash (conjunction of Q) \rightarrow B, so $Q \vdash B$, contradiction)

Corr: Any computably axiomatised (1-)consistent extension T of Q is incomplete (ie. exists sentence A, s.t. $T \nvdash A$ and $T \nvdash \neg A$) (Janicak: any complete computably axiomatisable theory is decidable)

For $Th(\mathbb{N})$ there is no computable axiomatisation!! (as 1-consistent, undecidable, complete)

Gödel's incompletness theorems

Gödel's diagonal lemma: For any formula A(x) there exists a sentence B s.t. $Q \vdash B \leftrightarrow A(\overline{\ }B^{\neg})$. (B says: I enjoy property A.)

Strong Q **representability:** Suppose $R(x_1, \ldots, x_k, y)$ is a computable relation s.t. for any n_1, \ldots, n_k there is at most one m s.t. $R(n_1, \ldots, n_k, m)$. Then there exists Σ_1 -formila $A_R(x_1, \ldots, x_k, y)$ s.t. $Q \vdash A_R(\overline{n_1}, \ldots, \overline{n_k}, \overline{m}) \implies R(n_1, \ldots, n_k, m)$ and $R(n_1, \ldots, n_k, m) \implies Q \vdash \forall y. (A_R(\overline{n_1}, \ldots, \overline{n_k}, y) \leftrightarrow y = \overline{m})$.

Tarski Thm: If $T \supseteq Q$ is consistent, then there is no formula Tr(x) s.t. for all sentences B $T \vdash Tr(\ulcorner B \urcorner) \leftrightarrow B$.

Corr: There is no formula Tr(x) s.t. for all sentences $B \mathbb{N} \models Tr(\lceil B \rceil) \iff \mathbb{N} \models B$.

 $\mathsf{Prf}_T(m,n) \iff \exists \text{ formula } A, \exists \text{ proof } p \text{ of } A, \text{ s.t. } n = \lceil A \rceil, m = \lceil p \rceil \text{ (aka. "} m \text{ is proof of } n \text{"})$

 $\mathsf{Prov}_T(x) \iff \exists y. \mathsf{Prf}_T(x,y) \text{ (aka. "} x \text{ is provable")}$ $\mathsf{Con}_T \iff \neg \mathsf{Prov}_T(\ulcorner \bot \urcorner) \text{ (aka. "} T \text{ is consistent")}$

Gödel sentence: By diagonal lemma find G_T s.t. $Q \vdash G_T \leftrightarrow \neg Prov_T(\lceil G_T \rceil)$

First incompleteness Thm: Let T be a computably axiomatised consistent extension of Q. Then: 1. $T \not\vdash G_T$, 2. If T is 1-consistent, then $T \not\vdash \neg G_T$ and 3. $\mathbb{N} \models G_T$.

Second incompleteness Thm: Let T be a computably axiomatised consistent extension of $I\Sigma_1$. Then: 1. $T \nvdash \mathsf{Con}_T$, 2. If T is 1-consistent, then $T \nvdash \neg \mathsf{Con}_T$, and 3. $\mathbb{N} \models \mathsf{Con}_T$

Löb's derivability conditions: A, B sentences, T comp. axiom. extension of $I\Sigma_1$.

- (D1) $T \vdash A \implies T \vdash \mathsf{Prov}_T(\ulcorner A \urcorner)$
- (D2) $T \vdash (\mathsf{Prov}_T(\lceil A \to B \rceil) \land \mathsf{Prov}_T(\lceil A \rceil) \to \mathsf{Prov}_T(\lceil B \rceil))$ or $T \vdash \mathsf{Prov}_T(\lceil A \to B \rceil) \to (\mathsf{Prov}_T(\lceil A \rceil) \to \mathsf{Prov}_T(\lceil B \rceil))$
- (D3) $T \vdash \mathsf{Prov}_T(\lceil A \rceil) \to \mathsf{Prov}_T(\lceil \mathsf{Prov}_T(\lceil A \rceil) \rceil)$

Also holds: $I\Sigma_1 \vdash \mathsf{Prov}_{T+B}(\lceil C \rceil) \to \mathsf{Prov}_T(\lceil B \to C \rceil)$ for every sentence B, C

Löb's Thm: T consistent computably axiomatised extension of $I\Sigma_1$. Za poljuben stavek $A: T \vdash A \iff T \vdash \mathsf{Prov}_T(\ulcorner A \urcorner) \to A$

Rules of sequent calculus:

$$\frac{\Gamma, A \Rightarrow A, \Delta}{\Gamma, A \Rightarrow A, \Delta} (Ax)$$

$$\frac{\Gamma, A \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} (\neg L) \qquad \frac{\Gamma, A \Rightarrow \Delta}{\Gamma, \neg A, \Delta} (\neg R)$$

$$\frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} (\land L) \qquad \frac{\Gamma, A \Rightarrow \Delta}{\Gamma, A \land B, \Delta} (\land R)$$

$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} (\land L) \qquad \frac{\Gamma, A \Rightarrow A, \Delta}{\Gamma, A \land B, \Delta} (\land R)$$

$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma, A \lor B \Rightarrow \Delta} (\lor L) \qquad \frac{\Gamma, A \Rightarrow A, \Delta}{\Gamma, A \lor B, \Delta} (\lor R)$$

$$\frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B, \Delta} (\lor L) \qquad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma, A \Rightarrow B, \Delta} (\to R)$$

$$\frac{\Gamma, A[t/x] \Rightarrow \Delta}{\Gamma, \forall x A \Rightarrow \Delta} (\forall L) \qquad \frac{\Gamma, A[y/x], \Delta}{\Gamma, \forall x A, \Delta} (\forall R)^*$$

$$\frac{\Gamma, A[y/x] \Rightarrow \Delta}{\Gamma, \exists x A \Rightarrow \Delta} (\exists L)^* \qquad \frac{\Gamma, A[t/x], \Delta}{\Gamma, \exists x A, \Delta} (\exists R)$$

$$\frac{\Gamma[t, u] \Rightarrow \Delta[t, u]}{\Gamma[u, t], t = u \Rightarrow \Delta[u, t]} (=L) \qquad \frac{\Gamma, A \Rightarrow \Delta}{\Gamma, \Gamma' \Rightarrow \Delta', \Delta} (\text{Weak})$$

$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} (\text{Cut})$$

Computable partial functions:

The set of computable partial functions X is the smallest set, such that

1. X contains Z, s and u_i^k , defined by Z(n) = 0, s(n) = n + 1, $u_i^k(n_1, \ldots, n_k) = n_i$

2. If f of arity k and g_1, \ldots, g_k or arity ℓ are in X, then so is the $f \circ (g_1, \ldots, g_k)$, defined by $f \circ (g_1, \ldots, g_k)(n_1, \ldots, n_\ell) = f(g_1(n_1, \ldots, n_\ell), \ldots, g_k(n_1, \ldots, n_\ell))$.

3. If f of arity k and g of arity k+2 are in X, then so is R_{fg} of arity k+1, defined recursively by $R_{fg}(n_1,\ldots,n_k,0) = f(n_1,\ldots,n_k)$ and $R_{fg}(n_1,\ldots,n_k,n+1) = g(n_1,\ldots,n_k,n,R_{fg}(n_1,\ldots,n_k))$.

4. If f of arity k+1 is in X then so is μf of arity k, defined by $\mu f(n_1, \ldots, n_k) =$ the least such n that $f(n_1, \ldots, n_k, n) = 0$ and all $f(n_1, \ldots, n_k, i)$ are defined for i < n, if such n exists. Otherwise undefined.

Bullets 1 – 3 are the definition of a computable function (not partial). From exercises we know that: +, konst, $\dot{-}$, max, min, == 0,! = 0, \leq , == , $\sum_{n\leq n_0}$, $\prod_{n\leq n_0}$, partitional cases, are all computable.

Avtorji: Vesna Iršič, Jure Slak, Anja Petković, Žiga Lukšič