

Vocabulary

Review

Do the ratios in each pair form a proportion? Explain.

1. $\frac{2}{5}$ and $\frac{10}{25}$

2. $\frac{1}{3}$ and $\frac{30}{100}$

Vocabulary Builder

similar (adjective) sım uh lur

Related Word: similarly (adverb)

Definition: Objects are **similar** if they are alike, but not necessarily identical.

Main Idea: In mathematics, **similar** figures have the same shape, but not necessarily

the same size.

Use Your Vocabulary

3. Explain how a lion and a giraffe are *similar*.

How is a lion like a giraffe?

How is a lion different from a giraffe?

 $\textbf{4.} \ \ \text{Consider each pair of figures. Circle the figures that are } \textit{similar}.$

similar figures

different size

same shape

The symbol \sim means "is similar to." In Problem 1 below, $\triangle ABC \sim \triangle DEF$.

In similar figures, the measures of corresponding angles are equal, and corresponding side lengths are in proportion. In Problem 1, the pairs of corresponding sides are \overline{AB} and \overline{DE} , \overline{AC} and \overline{DF} , and \overline{BC} and \overline{EF} .

Proble

Problem 1 Finding the Length of a Side

Got lt? In the diagram, $\triangle ABC \sim \triangle DEF$. What is AC?

- **5.** Underline the correct word or words to complete the sentence.

 Because the triangles are similar, the ratios of the corresponding sides are equal / not equal.
- **6.** Use the diagram above. Circle the ratio that forms a proportion with $\frac{BC}{EF}$

I	AC
1	ЭĒ

 $\frac{AC}{DF}$

7. Use the ratios from Exercise 6 to write a proportion. Solve your proportion for *AC*.

Problem 2 Applying Similarity

Got lt? A man who is 6 ft tall is standing next to a flagpole. The shadow of the man is 3.5 ft and the shadow of the flagpole is 17.5 ft. What is the height of the flagpole?

8. Label the diagram. Let h = the height of the flagpole.

Think	Write
First I write a proportion to find the height, <i>h</i> , of the flagpole.	$\frac{6}{} = \frac{h}{}$
Then I use the Cross Products Property.	$\cdot h = 6 \cdot$
Then I simplify.	3.5 <i>h</i> =
Now I divide each side by 3.5.	3.5h
And now I simplify.	h =
Finally I write a sentence to answer the question.	The height of the flagpole is ft.

Problem 3 Interpreting Scale Drawings

Got lt? On a map the scale is 1 in.: 110 mi. The distance from Jacksonville to Gainesville on the map is about 0.6 in. What is the actual distance from Jacksonville to Gainesville?

10. Let *x* =

11. Use the given information to write and solve a proportion.

12. The actual distance from Jacksonville to Gainesville is miles.

Got lt? A scale model of a building is 6 in. tall. The scale of the model is 1 in.: 50 ft. How tall is the actual building?

model height

Define

Let x = the actual height of the building.

Write

14. Now write and solve a proportion.

15. The actual building is

the measures of $\angle A$ and $\angle T$

ft tall.

Lesson Check • Do you UNDERSTAND?

Reasoning Suppose $\triangle ABC \sim \triangle TUV$. Determine whether each pair of measures is equal.

the ratios of the sides $\frac{BC}{UV}$ and $\frac{AC}{TV}$

the perimeters of the two triangles

Underline the correct word to complete each sentence.

16. In similar triangles, corresponding sides always have the same length / ratio.

17. In similar triangles, corresponding angles always have equal / unequal measures.

Use the triangles at the right. Write T for true or F for false.

20. The ratios $\frac{BC}{UV}$ and $\frac{AC}{TV}$ are equal.

Math Success

Check off the vocabulary words that you understand.

- similar figures scale
- scale drawing
- scale model

Rate how well you can use proportions to solve similar-figure problems.

