CMPT440 - Formal Languages and Computability Assignment 7 - Context Free Grammars

1. Webber Chap. 12 Exercise 1

Give CFGs for the following languages:

- (a) $S \to aS \mid B$ $B \to bB \mid \epsilon$
- (b) S \rightarrow S0S0S0S | X | ϵ X \rightarrow 1 | ϵ
- (c) S \rightarrow XXXS | ϵ X \rightarrow 0 | 1
- (d) S \rightarrow 0A0 | 1A1 | ϵ A \rightarrow 0A | 1A | 0B | 1B | ϵ B \rightarrow 0B0 | 1B1 | S
- (e) $S \rightarrow A \mid B \mid \epsilon$ $A \rightarrow aAb \mid aBb$ $B \rightarrow aB \mid bB \mid \epsilon$
- (f) $S \to aSbb \mid B$ $B \to bB \mid \epsilon$
- (g) S \rightarrow aaSbb | ϵ
- (h) S \rightarrow abSde | c
- (i) $S \rightarrow ab \mid aaSbb$
- (j) $S \to XSY \mid \epsilon$ $X \to aXb \mid \epsilon$ $Y \to Yz \mid \epsilon$

2. Webber Chap. 12 Exercise 2

Give a BNF grammar for each of the languages below:

- (a) $\langle \exp \rangle ::= a \langle \exp \rangle \mid \epsilon$
- (b) <exp> ::= <upper> <char> <upper> ::= any uppercase letter <char> ::= any uppercase letter any digit (0-9)
- (c) $\langle \exp \rangle ::= a \langle \exp \rangle \mid a$
- (d) $\langle \text{digit} \rangle ::= \langle \text{digit} \rangle \langle \text{digit} \rangle |$ any digit (0-9)
- (e) $\langle \exp \rangle ::= a; \langle \exp \rangle \mid \epsilon$
- (g) $\langle \exp \rangle ::= a; \langle \exp \rangle | a;$

3. Webber Chap. 12 Exercise 4

Show that each of the following BNF grammars is ambiguous. (To show that a grammar is ambiguous, you must demonstrate that it can generate two parse trees for the same string.)

(a) a+b*c

(b) <empty>

(c) ()()()

(d) ()[]

4. Webber Chap. 13 Exercise 1

	read	pop	push
1.	а	S	<i>S</i> 1
2.	3	S	3
3.	Ь	1	3

How would you change the stack machine of section 13.2 so that the language it accepts is $\{a^nb^n\mid n>0\}$?

	read	рор	push	
1.	a	S	S1	
2.	Е	S1	1	
3.	b	1	Е	

5. Webber Chap. 13 Exercise 2

Show the table of moves for a stack machine for the language $\{a^ncb^n\}$

	read	рор	push	
1.	а	S	S1	
2.	С	S	Е	
3.	b	1	E	