Tecniche di Natural Language Processing per il riconoscimento dei discorsi d'odio sui social network

Daniel Scalena 844608

Relatore: Correlatore:

Prof.ssa Elisabetta Fersini
Prof. Antonio Candelieri

Laurea triennale in Informatica Università degli studi di Milano-Bicocca Anno Accademico 2020 - 2021

- Definizione di discorsi d'odio
- Necessità del loro riconoscimento
- Strumenti utilizzati per il riconoscimento

- **Definizione** di Hate Speech
- Perché il riconoscimento automatico dei discorsi d'odio?
- Metodi usati in letteratura
 - Dizionari
 - Bag of words, N-grams
 - SVM, Naïve Bayes
 - Deep learning
- Stato dell'arte nel Natural Language Processing

- Definizione di Hate Speech
- Perché il riconoscimento automatico dei discorsi d'odio?
- Metodi usati in letteratura
 - Dizionari
 - Bag of words, N-grams
 - SVM, Naïve Bayes
 - Deep learning
- Stato dell'arte nel Natural Language Processing

- **Definizione** di Hate Speech
- Perché il riconoscimento automatico dei discorsi d'odio?
- Metodi usati in letteratura
 - Dizionari
 - Bag of words, N-grams
 - SVM, Naïve Bayes
 - Deep learning
- Stato dell'arte nel Natural Language Processing

- Definizione di Hate Speech
- Perché il riconoscimento automatico dei discorsi d'odio?
- Metodi usati in letteratura
 - Dizionari
 - Bag of words, N-grams
 - SVM, Naïve Bayes
 - Deep learning
- Stato dell'arte nel Natural Language Processing

- Raccolta di dati
- Analisi e classificazione

- Raccolta e pulizia dei dati
- Classificazione manuale e linee guida
- Classificazione con il lessico Hurtlex
- Fine tuning di BERT base
 - Selezione dei migliori parametri
- Ottimizzazioni su BERT base
 - Modello BERT fine tuned + Bi LSTM
 - Modello BERT fine tuned + Linear + Dropout

- Raccolta e pulizia dei dati
- Classificazione manuale e linee guida
- Classificazione con il lessico Hurtlex
- Fine tuning di BERT base
 - Selezione dei migliori parametri
- Ottimizzazioni su BERT base
 - Modello BERT fine tuned + Bi LSTM
 - Modello BERT fine tuned + Linear + Dropout

- Raccolta e pulizia dei dati
- Classificazione manuale e linee guida
- Classificazione con il lessico Hurtlex
- Fine tuning di **BERT base**
 - Selezione dei migliori parametri
- Ottimizzazioni su BERT base
 - Modello BERT fine tuned + Bi LSTM
 - Modello BERT fine tuned + Linear + Dropout

- Raccolta e pulizia dei dati
- Classificazione manuale e linee guida
- Classificazione con il lessico Hurtlex
- Fine tuning di **BERT base**
 - Selezione dei migliori parametri
- Ottimizzazioni su BERT base
 - Modello BERT fine tuned + Bi LSTM
 - Modello BERT fine tuned + Linear + Dropout

- Raccolta e pulizia dei dati
- Classificazione manuale e linee guida
- Classificazione con il lessico Hurtlex
- Fine tuning di BERT base
 - Selezione dei migliori parametri
- Ottimizzazioni su BERT base
 - Modello BERT fine tuned + Bi LSTM
 - Modello BERT fine tuned + Linear + Dropout

Come si comportano i metodi di classificazione introdotti?

- Lessico Hurtlex
- BERT base
- Ottimizzazioni di BERT

Commenti classificati come offensivi:

• Conservativi e inclusivi: **14**%

Solo conservativi: 3%

F1 score sul dataset etichettato:

Conservativi e inclusivi: .121

Solo conservativi: .154

Hurtlex

Commenti classificati come offensivi:

• Conservativi e inclusivi: **14**%

Solo conservativi: 3%

F1 score sul dataset etichettato:

• Conservativi e inclusivi: .121

Solo conservativi: .154

Hurtlex

Training BERT base

BERT base italian uncased

- Miglior batch size: 64
- Migliori epoche: <**7**

BERT base italian xxl cased

- Miglior batch size: 16
- Migliori epoche: <4

BERT base italian uncased

Miglior batch size: 64

Migliori epoche: < 7

BERT base italian xxl cased

Miglior batch size: 16

Migliori epoche: < 4

Training BERT base

BERT base italian uncased

Miglior batch size: 64

Migliori epoche: < 7

BERT base italian xxl cased

Miglior batch size: 16

Migliori epoche: < 4

Training BERT base

Validating BERT base

BERT base italian uncased

Miglior punteggio F1: .758

Precisione: .783

o Recupero: .734

BERT base italian xxl cased

Miglior punteggio F1: .760

Precisione: .80

o Recupero: .718

Validating BERT base

BERT base italian uncased

Miglior punteggio F1: .758

Precisione: .783

Recupero: .734

BERT base italian xxl cased

Miglior punteggio F1: .760

Precisione: .807

• Recupero: .718

BERT base + Bi LSTM

- Miglior punteggio F1: .724
- Numero epoca:

BERT base + Linear + Dropout

- Miglior punteggio F1: .854
- Numero epoca: 4

BERT Optimization

BERT base + Bi LSTM

- Miglior punteggio F1: .724
- Numero epoca:

BERT base + Linear + Dropout

- Miglior punteggio F1: .854
- Numero epoca:

BERT Optimization

Migliori prestazioni complessive:

Best model: BERT + Linear + Dropout

Best epoch: 4

• F1 score: **.85**

Conclusioni e sviluppi futuri

- Risultati raggiunti
- Cosa può essere ancora fatto?

Conclusioni e sviluppi futuri

Obiettivi raggiunti:

- Evidenziate le criticità di un'analisi esclusivamente lessicale
- Utilizzo di modelli SOTA per il riconoscimento dell'Hate Speech
- Ulteriori miglioramenti dei risultati aggiungendo layers in coda a BERT

Sviluppi futuri:

- Aumentare le dimensioni del dataset
- Nuove modifiche alla rete neurale proposta
- Considerare più features per la classificazione

Conclusioni e sviluppi futuri

Obiettivi raggiunti:

- Evidenziate le criticità di un'analisi esclusivamente lessicale
- Utilizzo di modelli SOTA per il riconoscimento dell'Hate Speech
- Ulteriori miglioramenti dei risultati aggiungendo layers in coda a BERT

Sviluppi futuri:

- Aumentare le dimensioni del dataset
- Nuove modifiche alla rete neurale proposta
- Considerare più features per la classificazione

Grazie per l'attenzione!