Interactive Effects of Smartphone Ownership, Education, and Life Satisfaction

Shen Chengrui (Alex)

2025-06-17

```
df_raw <- read_excel(</pre>
  "C:/Users/12545/Desktop/Captures/F00013183-WVS_Wave_7_China_Excel_v5.1.xlsx",
  sheet
  col_names = TRUE
df <- df_raw %>%
  transmute(
    life_sat = as.numeric(`Q49: Satisfaction with your life`),
             = as.numeric(`Q262: Age`),
    education = factor(
                    as.numeric(`Q275R: Highest educational level: Respondent (recoded into 3 gr
                   levels = 1:3,
                    labels = c("Primary", "Secondary", "Tertiary")
                 ),
    phone_use = if_else(as.numeric(`Q204: Information source: Mobile phone`) %in% 1:4, 1, 0),
              = if_else(as.numeric(`Q260: Sex`)==2, 1, 0),
    income_cat = factor(
                    as.numeric(`Q288R: Income level (Recoded)`),
                   levels = 1:3,
                   labels = c("Low", "Middle", "High")
  ) %>%
  filter(
    !is.na(life_sat),
    !is.na(age),
    !is.na(education),
    !is.na(phone_use),
    !is.na(income_cat)
  )
run_model <- function(subgroup) {</pre>
  df_sub <- filter(df, female == subgroup)</pre>
  lm(life_sat ~ education * phone_use + age + income_cat, data = df_sub)
}
models_by_gender <- map(c(0,1), run_model)</pre>
```

```
names(models_by_gender) <- c("Male", "Female")
modelsummary(models_by_gender, title = "Models by Gender", stars = TRUE)</pre>
```

skim(df)

Table 2: Data summary

df
2989
6
2
4
None

Variable type: factor

skim_variable	n_missing	$complete_rate$	ordered	n_unique	top_counts
education income_cat	0	_	FALSE FALSE		Pri: 1632, Sec: 685, Ter: 672 Mid: 1807, Low: 1102, Hig: 80

Variable type: numeric

$skim_variable$	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
life_sat	0	1	7.38	2.11	-2	6	8	9	10	
age	0	1	44.58	14.52	18	32	45	56	70	
$phone_use$	0	1	0.84	0.37	0	1	1	1	1	
female	0	1	0.55	0.50	0	0	1	1	1	

```
model <- lm(
  life_sat ~ education * phone_use + female + age + income_cat,
  data = df
)
modelsummary(model, stars = TRUE, statistic = "std.error")</pre>
```

```
robust_mod <- lm_robust(
  life_sat ~ education * phone_use + female + age + income_cat,
  data = df, se_type = "HC2"</pre>
```

Table 1: Models by Gender

	Male	Female
(Intercept)	6.158***	5.329***
	(0.302)	(0.294)
educationSecondary	-0.207	-0.809+
	(0.493)	(0.461)
educationTertiary	-0.103	0.501
	(0.738)	(0.801)
phone_use	-0.222	0.167
	(0.188)	(0.159)
age	0.019***	0.030***
	(0.004)	(0.004)
$income_catMiddle$	0.659***	0.887***
	(0.118)	(0.111)
$income_catHigh$	1.624***	1.184***
	(0.349)	(0.329)
education Secondary \times phone_use	0.361	0.892 +
	(0.513)	(0.481)
education Tertiary \times phone_use	0.214	-0.378
	(0.748)	(0.807)
Num.Obs.	1349	1640
R2	0.045	0.064
R2 Adj.	0.040	0.060
AIC	5745.4	7052.4
BIC	5797.4	7106.5
Log.Lik.	-2862.677	-3516.222
RMSE	2.02	2.06

⁺ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

	(1)
(Intercept)	5.685***
	(0.218)
educationSecondary	-0.501
	(0.337)
educationTertiary	0.183
	(0.543)
phone_use	-0.007
	(0.121)
female	0.099
	(0.076)
age	0.025***
	(0.003)
$income_catMiddle$	0.776***
	(0.081)
$income_catHigh$	1.391***
	(0.239)
education Secondary \times phone_use	0.607 +
	(0.350)
education Tertiary \times phone_use	-0.077
	(0.549)
Num.Obs.	2989
R2	0.053
R2 Adj.	0.050
AIC	12790.3
BIC	12856.4
Log.Lik.	-6384.161
RMSE	2.05

⁺ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

```
modelsummary(
  list(OLS = model, RobustSE = robust_mod),
 stars = TRUE, statistic = "std.error",
 title = "OLS vs. Robust SE Comparison"
)
boot_fn <- function(data, idx) {</pre>
  d <- data[idx, ]</pre>
  coef(lm(life_sat ~ education * phone_use + female + age + income_cat, data = d))
}
set.seed(2025)
boot_res <- boot(df, boot_fn, R = 1000)</pre>
boot.ci(boot_res, index = 5, type = c("perc", "bca"))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot_res, type = c("perc", "bca"), index = 5)
## Intervals :
## Level
            Percentile
                                    BCa
       (-0.0525, 0.2417) (-0.0577, 0.2363)
## 95%
## Calculations and Intervals on Original Scale
pred <- ggpredict(model, terms = c("education", "phone_use"))</pre>
plot(pred) +
  labs(
        = "Education Level",
        = "Predicted Life Satisfaction",
   color = "Smartphone Use"
  ) +
  theme minimal()
```

Table 5: OLS vs. Robust SE Comparison

	OLS	RobustSE
(Intercept)	5.685***	5.685***
	(0.218)	(0.232)
educationSecondary	-0.501	-0.501
	(0.337)	(0.442)
educationTertiary	0.183	0.183
	(0.543)	(0.513)
phone_use	-0.007	-0.007
	(0.121)	(0.136)
female	0.099	0.099
	(0.076)	(0.076)
age	0.025***	0.025***
	(0.003)	(0.003)
$income_catMiddle$	0.776***	0.776***
	(0.081)	(0.085)
$income_catHigh$	1.391***	1.391***
	(0.239)	(0.184)
education Secondary \times phone_use	0.607 +	0.607
	(0.350)	(0.452)
education Tertiary \times phone_use	-0.077	-0.077
	(0.549)	(0.517)
Num.Obs.	2989	2989
R2	0.053	0.053
R2 Adj.	0.050	0.050
AIC	12790.3	12790.3
BIC	12856.4	12856.4
Log.Lik.	-6384.161	
RMSE	2.05	2.05

⁺ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Predicted values of life_sat


```
tbl <- modelsummary(model, output = "data.frame")
kable(tbl, caption = "OLS Regression Results", booktabs = TRUE) %>%
  kable_styling(full_width = FALSE, position = "left") %>%
  row_spec(0, bold = TRUE)
```

Table 6: OLS Regression Results

part	term	statistic	(1)
estimates	(Intercept)	estimate	5.685
estimates	(Intercept)	std.error	(0.218)
estimates	educationSecondary	estimate	-0.501
estimates	educationSecondary	std.error	(0.337)
estimates	educationTertiary	estimate	0.183
estimates	educationTertiary	std.error	(0.543)
estimates	phone_use	estimate	-0.007
estimates	phone_use	std.error	(0.121)
estimates	female	estimate	0.099
estimates	female	$\operatorname{std.error}$	(0.076)
estimates	age	estimate	0.025
estimates	age	std.error	(0.003)
estimates	income_catMiddle	estimate	0.776
estimates	$income_catMiddle$	std.error	(0.081)
estimates	$income_catHigh$	estimate	1.391

```
estimates
           income catHigh
                                                 std.error
                                                             (0.239)
estimates
           educationSecondary \times phone_use
                                                            |0.607|
                                                 estimate
estimates
           educationSecondary \times phone use
                                                 std.error
                                                             |(0.350)|
estimates
           educationTertiary \times phone_use
                                                 estimate
                                                             -0.077
           educationTertiary \times phone use
estimates
                                                 std.error
                                                             (0.549)
           Num.Obs.
gof
                                                             2989
gof
            R2
                                                             0.053
gof
            R2 Adj.
                                                             0.050
            AIC
gof
                                                             12790.3
            BIC
                                                             12856.4
gof
gof
           Log.Lik.
                                                             -6384.161
            RMSE
                                                             2.05
gof
```

sessionInfo()

```
## R version 4.5.0 (2025-04-11 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows 11 x64 (build 26100)
##
## Matrix products: default
##
    LAPACK version 3.12.1
##
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.utf8
## [2] LC_CTYPE=C
## [3] LC_MONETARY=Chinese (Simplified)_China.utf8
## [4] LC NUMERIC=C
## [5] LC_TIME=Chinese (Simplified)_China.utf8
##
## time zone: Asia/Shanghai
## tzcode source: internal
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                                datasets methods
## [7] base
##
## other attached packages:
## [1] kableExtra_1.4.0
                           boot_1.3-31
                                               estimatr_1.0.6
## [4] lme4_1.1-37
                           Matrix_1.7-3
                                               skimr_2.1.5
## [7] ggeffects_2.3.0
                           modelsummary_2.4.0 lubridate_1.9.4
## [10] forcats_1.0.0
                           stringr_1.5.1
                                               dplyr_1.1.4
## [13] purrr_1.0.4
                           readr_2.1.5
                                               tidyr_1.3.1
## [16] tibble_3.2.1
                           ggplot2_3.5.2
                                               tidyverse_2.0.0
## [19] readxl_1.4.5
##
## loaded via a namespace (and not attached):
```

```
[1] tidyselect_1.2.1
                            viridisLite_0.4.2
                                               farver_2.1.2
##
    [4] fastmap_1.2.0
                            bayestestR_0.16.0
                                               digest_0.6.37
##
    [7] timechange_0.3.0
                            lifecycle_1.0.4
                                               magrittr_2.0.3
##
## [10] compiler_4.5.0
                            sass_0.4.10
                                               rlang_1.1.6
## [13] tools 4.5.0
                                               yaml 2.3.10
                            utf8_1.2.4
## [16] data.table_1.17.0
                           knitr_1.50
                                               labeling_0.4.3
## [19] xml2_1.3.8
                            repr_1.1.7
                                               rsconnect 1.3.4
## [22] tinytable_0.9.0
                            withr_3.0.2
                                               grid_4.5.0
## [25] datawizard 1.1.0
                                               colorspace_2.1-1
                            fansi_1.0.6
## [28] scales_1.3.0
                           MASS_7.3-65
                                               tinytex_0.57
## [31] insight_1.3.0
                            cli_3.6.4
                                               rmarkdown_2.29
## [34] reformulas_0.4.1
                                               rstudioapi_0.17.1
                            generics_0.1.3
## [37] performance_0.14.0
                           tzdb_0.5.0
                                               parameters_0.26.0
## [40] cachem_1.1.0
                                               splines_4.5.0
                            minga_1.2.8
## [43] cellranger_1.1.0
                            base64enc_0.1-3
                                               vctrs_0.6.5
## [46] jsonlite_2.0.0
                            hms_1.1.3
                                               Formula_1.2-5
## [49] systemfonts_1.2.3
                            jquerylib_0.1.4
                                               glue_1.8.0
## [52] nloptr_2.2.1
                            stringi_1.8.7
                                               gtable_0.3.6
## [55] tables_0.9.31
                            munsell_0.5.1
                                               pillar_1.10.2
## [58] htmltools 0.5.8.1
                           R6 2.6.1
                                               textshaping_1.0.1
## [61] Rdpack_2.6.4
                            evaluate_1.0.3
                                               lattice_0.22-6
## [64] haven 2.5.4
                                               backports_1.5.0
                            rbibutils_2.3
## [67] bslib_0.9.0
                           Rcpp_1.0.14
                                               svglite_2.2.1
## [70] nlme_3.1-168
                            checkmate_2.3.2
                                               mgcv_1.9-1
## [73] xfun_0.52
                           pkgconfig_2.0.3
```

4. Knit

- 1. Ctrl + S
- 2. RStudio $Knit \rightarrow Knit to PDF$

RStudio YAML xelatex pdfcrop PDF R skim(df)