Topology Qualifying Exam August 2000

(Muenzenberger and Strecker)

Instructions: Choose and work any 6 of the following 14 problems. Start each problem on a new sheet of paper. Do not turn in more that six problems. In the problems below, a space means a topological space.

- 1. Prove or disprove that the continuous image of a compact space is compact.
- 2.(a) True False.
 - (i) An open and closed one-to-one function between topological spaces must be an embedding.
 - (ii) Each space that is locally-Hausdorff (in the sense that each point has a neighborhood base of Hausdorff subspaces) must be Hausdorff.
 - (iii) Each quotient of a locally connected space must be locally connected.
 - (iv) Each locally compact Hausdorff space is completely regular.
 - (v) The product of metrizable spaces is metrizable.
 - (vi) The product of continua is a continuum. (A continuum is a compact, connected, Hausdorff space.)
 - (vii) Every metrizable space is normal.
 - (viii) Every subspace of a separable space is separable.
 - (b) For each false entry, give a counterexample or other explanation (no proofs).
- 3. Let $(X_i, \tau_i)_{i \in I}$ be a family of topological spaces and let τ be the product topology on ΠX_i . Let $Y_i \subseteq X_i$ for each $i \in I$. There is a "natural" subspace topology σ on ΠY_i that is induced from τ and the fact that ΠY_i is a subset of ΠX_i . There is also a "natural" product topology ρ on ΠY_i that comes from the subspace topologies $(Y_i, \rho_i), i \in I$ induced by the topologies $(\tau_i, i \in I)$. Prove or disprove that $\sigma = \rho$.
- **4.** Let $f: X \to Y$ be a continuous surjective map from a compact space X to a Hausdorff space Y. Prove that f is a quotient map.
- **5.** Use Zorn's lemma to prove that for every set X and relation R on X there is a maximal $A \subseteq X$ such that $A \times A \subseteq R$.
- **6.** Prove that the interval [0, 1] with the usual topology is connected.

- 7. A continuous map $f:(X,\tau)\to (Y,\sigma)$ is said to be final provided that for each topological space (Z,μ) each set-function $g:Y\to Z$ is continuous whenever $g\circ f:(X,\tau)\to (Z,\mu)$ is continuous. Prove any two of the following:
 - (a) The composition of final (continuous) maps is final.
 - (b) The "second factor" of a final map is final; i.e., if $(X, \tau) \xrightarrow{f} (Y, \sigma) \xrightarrow{h} (W, \rho)$ are continuous maps and $h \circ f$ is final, then h is final.
 - (c) Every quotient map is final.
- 8. Prove or disprove each of the following:
 - a) Every subspace of a compact Hausdorff space is locally compact.
 - b) Every subspace of a connected Hausdorff space is locally connected.
- **9.** Describe the fundamental groups of the following spaces, where each has the usual topology.
 - (a) The circle, S^1 ;
 - (b) The Mobius Strip, M;
 - (c) The figure eight, ∞ ;
 - (d) The torus, $S^1 \times S^1$;
 - (e) The projective plane, \mathbb{P} .
- **10.** Prove that if a filter F is contained in a unique ultrafilter G, then F = G.
- **11.** Prove that every continuous bijection $f : \mathbb{R} \to \mathbb{R}$ is a homeomorphism, where \mathbb{R} has the usual topology.
- **12.** Prove that if A and B are compact subsets of a Hausdorff space X, then there are open disjoint sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- **13.** Prove that if X and Y are spaces where Y is compact and $\{x\} \times Y \subseteq W$, an open set in $X \times Y$, then there is U open in X and Y open in Y such that $\{x\} \times Y \subseteq U \times V \subseteq W$.
- **14.** Prove that if a normal space X contains a closed homemorphic image of \mathbb{R} (with the usual topology), then there is a continuous function $f: X \to X$ such that $f(x) \neq x$ for all $x \in X$.