Area formula for simple polygons

Tony Ma

2020-10-14

1 Preface

In this paper, we shall try to understand and prove the area formula for general (simply) polygons.

However, subtleties in proofs should be **justified** with more rigors, including but limited to the notion of area, and how the area of a curve / straight line is 0.

This paper is being updated on my webpage.

2 Definitions

A polygon P is the closed region of the plane bounded by a finite collection of line segments forming a closed curve that does not intersect itself. [1] (Page 1)

Though, I would modify to have my own definition for polygon.

Definition 2.1. A polygon is the closed region of the infinite plane bounded by its boundary, which, with **distinct** points P_0, \dots, P_{n-1} $(n \in \mathbb{N})$ as vertices (and with $P_n = P_0$ by convention), is a closed curve formed by line segments $P_i P_{i+1}$, $i = 0, \dots, n-1$, and the line segments are all disjoint when all the vertices are ignored.

Remark 2.2. Notice that in Definition 2.1 we allow a polygon with line segments 'touching itself', as well as an 'interior angle of π ', as long as the vertices are all distinct and satisfying the above definition.

3 The formula

Theorem 3.1. For any simple polygon with $n \in \mathbb{N}$ vertices $(x_n, y_n) = (x_0, y_0), \dots, (x_{n-1}, y_{n-1}),$ we have: [1]

$$Area = \frac{\left| \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i) \right|}{2} = \frac{1}{2} \left| \sum_{i=0}^{n-1} \begin{vmatrix} x_i & x_{i+1} \\ y_i & y_{i+1} \end{vmatrix} \right|$$
(1)

References

 Satyan L.Devadoss and Joseph O'Rourke. Discrete and Computational Geometry. Princeton University Press, 2011. ISBN: 978-0-691-14553-2.