Лабораторная работа №1

Операционные системы

Куокконен Дарина Андреевна, НКАбд-03-23 19 февраля 2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задания

Создание виртуальной машины

В прошлом семестре я установила уже VirtualBox, и также создала виртуальную машину во время выполнения заданий, следовательно данный этап я пропускаю.

Установка операционной системы

По аналогичным причинам я пропускаю установку операционной системы.

- Вхожу в ОС под заданной мной при установке учетной записью
- Запускаю терминал
- Переключаюсь на роль супер-пользователя
- Обновляю все пакеты (рис. 1).

Устанавливаю программы для удобства работы в консоли: tmux для открытия нескольких вкладок в одном терминале (рис. 2).

```
\oplus
                                  root@fedora:~
[dakuokkonen@fedora ~]$ sudo -i
[sudo] пароль для dakuokkonen:
[root@fedora ~]# dnf install tmux
Fedora Modular 38 - x86 64 - Updates
                                                 11 kB/s | 21 kB
                                                                      00:01
google-chrome
                                                                      00:04
google-chrome
                                                588 B/s | 3.6 kB
                                                                      00:06
RPM Fusion for Fedora 38 - Nonfree - NVIDIA Dri 10 kB/s | 6.6 kB
                                                                      00:00
RPM Fusion for Fedora 38 - Nonfree - NVIDIA Dri 11 kB/s | 15 kB
                                                                      00:01
RPM Fusion for Fedora 38 - Nonfree - Steam
                                                4.8 kB/s | 6.4 kB
                                                                      00:01
                                                986 B/s | 2.2 kB
RPM Fusion for Fedora 38 - Nonfree - Steam
                                                                      00:02
Пакет tmux-3.3a-3.fc38.x86 64 vже установлен.
Зависимости разрешены.
Нет действий для выполнения.
Выполнено!
```

Рис. 2: Установка tmux

Теперь я перемещаюсь в директорию /etc/selinux, открываю mc, и ищу нужный файл, для его изменения (рис. 3).

Изменяю файл *config*: SELINUX=enforcing меняю на значение SELINUX=permissive (рис 4). Перезагружаю виртуальную машину *reboot*

Снова вхожу в ОС, снова запускаю терминал, запускаю терминальный мультиплексор (рис).

Рис. 4: Запуск терминального мультиплексора

Переключаюсь на роль супер-пользователя (рис. 8).

Рис. 5: Переключение на роль супер-пользователя

Устанавливаю пакет DevelopmentTools (рис. 9).

```
\oplus
                     dakuokkonen@fedora:~ — tmux
                                                    a =
Установка
         38 Пакетов
Обновление
        10 Пакетов
Объем загрузки: 157 М
Загрузка пакетов:
(1/48): diffstat-1.65-2.fc38.x86 64.rpm
                                      12 kB/s | 43 kB
                                                       00:03
^[[A^[[A^[[A^[[A^[[A^[[A(2-3/48): doxygen-1. 3% [-
                                                        1 896 kB/s
00:07
(3/48): doxygen-1.9.6-7.fc38.x86 64.rpm 546 kB/s | 4.8 MB
                                                       00:09
(4/48): dyninst-12.2.0-2.fc38.x86_64.rpm 995 kB/s | 3.7 MB
                                                       00:03
(5/48): ed-1.19-2.fc38.x86_64.rpm
                                    32 kB/s | 78 kB
                                                       00:02
(6/48): flex-2.6.4-12.fc38.x86 64.rpm
                                   85 kB/s | 313 kB
                                                       00:03
(7/48): gettext-0.21.1-2.fc38.x86_64.rpm
                                     344 kB/s | 1.0 MB
                                                       00:03
(8/48): patch-2.7.6-19.fc38.x86_64.rpm
                                     85 kB/s | 126 kB
                                                       00:01
(9/48): m4-1.4.19-5.fc38.x86 64.rpm
                                     119 kB/s | 303 kB
                                                       00:02
(10/48): patchutils-0.4.2-9.fc38.x86 64.rpm
                                      50 kB/s | 107 kB
                                                       00:02
(11/48): tbb-2020.3-16.fc38.x86 64.rpm
                                                       00:04
                                      42 kB/s | 169 kB
(12/48): utf8proc-2.7.0-4.fc38.x86_64.rpm
                                      28 kB/s I
                                               80 kB
                                                       00:02
(13/48): xz-devel-5.4.1-1.fc38.x86 64.rpm
                                               65 kB
                                                       00:02
                                      32 kB/s I
(14/48): llvm15-libs 16% [===
                                    1 1.1 MB/s I
                                               26 MB
                                                       01:57 ETA
                                            "fedora" 21:42 27-hep
```

Устанавливаю пакет dkms (рис. 10).

```
xz-devel-5.4.1-1.fc38.x86 64
  zlib-devel-1.2.13-3.fc38.x86 64
Выполнено!
[root@fedora ~]# dnf -y install dkms
   0:bash*
```

Рис. 7: Установка пакета dkms

- В меню виртуальной машины, я подключаю образ диска гостевой ОС
- Примонтирую диск с помощью утилиты *mount*
- Устанавливаю драйвера (рис. 11).

Установка программного обеспечения для создания документации

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя. Устанавливаю pandoc с помощью утилиты *dnf* (рис. 12).

Рис. 9: Переключение на роль супер-пользователя, установка pandoc

Установка программного обеспечения для создания документации

Устанавливаю дистрибутив texlive (рис. 13).

```
[root@fedora ~]# dnf -y install texlive-scheme-full
[0] 0:bash* "fe
```

Рис. 10: Установка texlive

Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

Я ввожу в терминале команду *dmesg*, чтобы проанализировать последовательность загрузки системы (рис. 14).

Рис. 11: Анализ последовательности загрузки системы

С помощью поиска, осуществляемого командой 'dmesg | grep -i ', ищу версию ядра Linux (рис. 15).

Рис. 12: Поиск версии ядра

Если вводить "Detected Mhz processor", то мне ничего не выведется. Это происходит потому, что запрос не предусматривает дополнительные символы внутри него. В таком случае оставляем одно из ключевых слов и получаем результат (рис. 16).

```
[root@fedora ~]# dmesg | grep -i "processor"
[ 0.000013] tsc: Detected 2595.044 MHz processor
[ 1.337306] smpboot: Total of 1 processors activated (5190.08 BogoMIPS)
[ 1.395413] ACPI: Added _OSI(Processor Device)
[ 1.395417] ACPI: Added _OSI(Processor Aggregator Device)
[root@fedora ~]#
```

Рис. 13: Поиск частоты процессора

Аналогично ищу модель процессора (рис. 17).

```
[root@fedora ~]# dmesg | grep -i "CPUO"

[ 1.209880] CPUO: Hyper-Threading is disabled

[ 1.328663] smpboot: CPUO: AMD Ryzen 3 3200U with Radeon Vega Mobile Gfx (family: 0x17, model: 0x18, stepping: 0x1)

[root@fedora ~]#

[0] 0:bash* "fedora" 20:06 28-фea-24
```

Рис. 14: Поиск модели процессора

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и там (рис. 18).

```
\oplus
                           dakuokkonen@fedora:~ — tmux
    0.580438] PM: hibernation: Registered nosave memory: [mem 0xfee00000-0xfee0
    0.580439] PM: hibernation: Registered nosave memory: [mem 0xfee01000-0xfffb
    0.580440] PM: hibernation: Registered nosave memory: [mem 0xfffc0000-0xffff
    1.0588161 Memory: 3866164K/4095544K available (20480K kernel code. 3276K rw
data, 14748K rodata, 4588K init, 4892K bss, 229120K reserved, 0K cma-reserved)
    1.215080] Freeing SMP alternatives memory: 48K
    1.339125] x86/mm: Memory block size: 128MB
    3.520103] Freeing initrd memory: 32304K
    3.564613] Non-volatile memory driver v1.3
    4.371425] Freeing unused decrypted memory: 2028K
    4.372669] Freeing unused kernel image (initmem) memory: 4588K
    4.375877] Freeing unused kernel image (rodata/data gap) memory: 1636K
    8.173463] vmwgfx 0000:00:02.0: [drm] Legacy memory limits: VRAM = 16384 kB,
FIF0 = 2048 kB, surface = 507904 kB
    8.173477] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 16384 k
   14.271257] systemd[1]: Listening on systemd-oomd.socket - Userspace Out-Of-
```

Далее, я нахожу тип обнаруженного гипервизора (рис. 19).

```
[root@fedora ~]# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[root@fedora ~]#
[0] 0:bash* "fedora" 20:08 28-фев-24
```

Рис. 16: Поиск типа обнаруженного гипервизора

Тип файловой системы корневого раздела можно посомтреть с помощью утилиты *fdisk* (рис. 20).

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату *dmesg* слово *mount* (рис. 21).

```
\oplus
                           dakuokkonen@fedora:~ — tmux
-40d2-9dcc-4eb503f371e3
   14.246494] systemd[1]: Set up automount proc-sys-fs-binfmt misc.automount -
Arbitrary Executable File Formats File System Automount Point.
   14.289361] systemd[1]: Mounting dev-hugepages.mount - Huge Pages File System
   14.308290] systemd[1]: Mounting dev-mqueue.mount - POSIX Message Queue File
System...
   14.324189] systemd[1]: Mounting sys-kernel-debug.mount - Kernel Debug File S
vstem...
   14.338331] systemd[1]: Mounting sys-kernel-tracing.mount - Kernel Trace File
System...
   14.741588] systemd[1]: Starting systemd-remount-fs.service - Remount Root an
d Kernel File Systems...
   14.823512] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
   14.860092] systemd[1]: Mounted dev-mqueue.mount - POSIX Message Queue File S
vstem.
   14.860493] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File Sy
stem.
   14.860870] systemd[1]: Mounted sys-kernel-tracing.mount - Kernel Trace File
System.
   19.924612] EXT4-fs (sda2): mounted filesystem 4630b864-2f3e-4611-9073-771ee9
```

Список литературы

- 1. Dash P. Getting started with oracle vm virtualbox. Packt Publishing Ltd, 2013. 86 p.
- 2. Colvin H. Virtualbox: An ultimate guide book on virtualization with virtualbox. CreateSpace Independent Publishing Platform, 2015. 70 p.
- 3. van Vugt S. Red hat rhcsa/rhce 7 cert guide : Red hat enterprise linux 7 (ex200 and ex300). Pearson IT Certification, 2016. 1008 p.
- 4. Робачевский А., Немнюгин С., Стесик О. Операционная система unix. 2-е изд. Санкт-Петербург: БХВ-Петербург, 2010. 656 р.
- 5. Немет Э. et al. Unix и Linux: руководство системного администратора. 4-е изд. Вильямс, 2014. 1312 р.
- 6. Колисниченко Д.Н. Самоучитель системного администратора Linux. СПб.: БХВ-Петербург, 2011. 544 р.
- 7. Robbins A. Bash pocket reference. O'Reilly Media, 2016. 156 p.