Real Analysis 1

Kon Yi

September 2, 2025

Abstract The lecture note of 2025 Fall Introduction to Analysis I by professor 崔茂培.

Contents

	Basic Things		
	1.1	Natural Numbers	2
	1.2	Integers	2
	1.3	Field	2
	1.4	Order Relation	3
	1.5	Absolute Value and Triangle Inequality	4
	1.6	Supremum and Infimum	4

Chapter 1

Basic Things

Lecture 1: Real numbers system, Ordered Field, Completeness axiom, Archimedean property, Density of rational and irrational numbers

1.1 Natural Numbers

2 Sep. 09:10

The set of natural numbers is denoted by $\mathbb{N} = \{1, 2, \dots\}$. There exists an addition operation

$$1 + 1 = 2$$
 $1 + 1 + 1 = 3$ $\underbrace{1 + 1 + \dots + 1}_{n \text{ times}} = n.$

1.2 Integers

The set of integers is $\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$. There is a zero element 0 such that z + 0 = z for any $z \in \mathbb{Z}$. Also, for $n \in \mathbb{N}$, we have n + (-n) = 0 and n - m = n + (-m) for all $n, m \in \mathbb{N}$.

$$\mathbb{Z} \xrightarrow{\text{introduce division}} \mathbb{Q} \xrightarrow{\text{Completeness axiom}} \mathbb{R}$$

1.3 Field

Next, we introduce the concept of field.

Definition 1.3.1 (Fields). A field is a set F together with two binary operations, called addition(+) and multiplication(*), such that the following properties hold:

- (a) $a+b=b+a, a\cdot b=b\cdot a$ for $a,b\in F$.
- (b) $(a+b)+c=a+(b+c), (a\cdot b)\cdot c=a\cdot (b\cdot c)$ for $a,b,c\in F$.
- (c) $a \cdot (b+c) = a \cdot b + a \cdot c$.
- (d) There are distince element 0 and 1 such that a + 0 = a, $a \cdot 1 = a$ for $a \in F$.
- (e) For each $a \in F$, there exists $-a \in F$ such that a + (-a) = 0. If $a \neq 0$, there is an element $\frac{1}{a}$ or a^{-1} in F such that $a \cdot \frac{1}{a} = 1$, or $a \cdot a^{-1} = 1$.

Remark. If $a \in F$, then $a + a \in F$. We denote a + a by $2 \cdot a$. Similarly,

$$\underbrace{a + a + \dots + a}_{n \text{ times}} = n \cdot a,$$

and

$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$$

if $a \in F$ and $n \in \mathbb{N}$.

Remark. In a field, we have subtraction and division a-b=a+(-b) for $a,b\in F$. If $b\neq 0$, then $\frac{a}{b}=a\cdot b^{-1}$ for $a,b\in F$.

In a field F, we have

$$(a+b)^2 = (a+b) \cdot (a+b)$$

$$= (a+b) \cdot a + (a+b) \cdot b$$

$$= a \cdot a + b \cdot a + a \cdot b + b \cdot b$$

$$= a^2 + ab + ab + b^2$$

$$= a^2 + 2ab + b^2.$$

Example.

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

if $b \neq 0$ and $d \neq 0$.

Proof.

$$\begin{split} \frac{a}{b} + \frac{c}{d} &= a \cdot b^{-1} + c \cdot d^{-1} \\ &= ab^{-1}dd^{-1} + cd^{-1}bb^{-1} \\ &= adb^{-1}d^{-1} + cbd^{-1}b^{-1} \\ &= \frac{ad + bc}{bd}. \end{split}$$

Notice that this is true since we have commutativity in multiplication and

$$d^{-1}b^{-1} = (bd)^{-1} = \frac{1}{bd}.$$

Example. The set of rational numbers $\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$ is a field.

Example. The set of real numbers is also a field.

Example. $F_2 = \{0, 1\}$ is also a field since we can define addition and multiplication like 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0, and $0 \cdot 0 = 0, 1 \cdot 0 = 0, 1 \cdot 1 = 1$.

1.4 Order Relation

Next, we introduce the order relation. The real number system is ordered by the relation <, which has the following properties.

- (f) For each pair of real numbers a and b, exactly one of the following is true: a = b, a < b, b < a.
- (g) If a < b and b < c, then a < c.
- (h) If a < b, then a + c < b + c for any c for any c, and if 0 < c, then $a \cdot c < b \cdot c$.

Definition 1.4.1. A field with an order relation satisfy (f) to (h) is called an ordered field.

Example. The set of rational numbers is an ordered field.

Example. F_2 is not an ordered field.

Proof. If 0 < 1, then 1 = 0 + 1 < 1 + 1 = 0, which is a contradiction. If 1 < 0, then 0 = 1 + 1 < 0 + 1 = 1, which is also a contradiction.

Notation. In an ordered field, we use $a \leq b$ to denote either a < b or a = b.

1.5 Absolute Value and Triangle Inequality

Next, we define the absolute value of a real number

$$|a| = \begin{cases} a, & \text{if } a \ge 0; \\ -a, & \text{if } a \le 0; \end{cases}$$

Theorem 1.5.1 (Triangle Inequality).

$$|a+b| \le |a| + |b|$$

for all $a, b \in \mathbb{R}$.

Corollary 1.5.1.

$$||a| - |b|| \le |a - b|$$
 and $||a| - |b|| \le |a + b|$

Proof. We write

$$|a| = |a - b + b| < |a - b| + |b|.$$

Similarly we have

$$|b| < |b - a| + |a|$$
.

So

$$-|b-a| \le |a| - |b| \le |a-b|.$$

Thus,

$$||a| - |b|| \le |a - b|.$$

1.6 Supremum and Infimum

Next, we introduce the notion of supremum of a subset of real numbers.

Definition 1.6.1. Let S be a subset of \mathbb{R} ,

- (1) we say b is an upper bound of S if $x \leq b$ for all $x \in S$.
- (2) If B is an upper bound of S, and no number smaller than B is an upper bound of S, then B is called the supremum or the least upper bound of S. We write $B = \sup S$.

Corollary 1.6.1. If $B = \sup S$, then

(1) $x \in S$ implies $x \leq B$

(2) If b < B, then b is not an upper bound of S, i.e. there exists $x_1 \in S$ such that $b < x_1$.

Definition 1.6.2. Let S be a subset of \mathbb{R} ,

- (1) we say b is an lower bound of S if $x \ge b$ for all $x \in S$.
- (2) If α is an lower bound of S, and no number bigger than α is an lower bound of S, then α is called the infimum or the greatest lower bound of S. We write $\alpha = \inf S$.

Corollary 1.6.2. If $\alpha = \inf S$, then

- (1) $x \in S$ implies $x \ge \alpha$
- (2) If $\alpha < a$, then a is not an lower bound of S, i.e. there exists $x_1 \in S$ such that $x_1 < a$.

Notation (Interval Notation).

$$(a,b) = \{x \mid a < x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

Example. $S = \{x \mid x < 0\} = (-\infty, 0)$, then $\sup S = 0$ but $\inf S$ does not exists.

Example. $S_1 = \{-1, -2, -3, -4, \dots\} = \{-n \mid n \in \mathbb{N}\}, \text{ then sup } S = -1, \text{ but inf } S \text{ does not exist.}$

Definition 1.6.3. A nonempty set if that a set has at least one element. The empty set, written as \emptyset , is the set has no elements at all.

Example. $S = \{x \mid x \in \mathbb{Q}, x < \sqrt{2}\}$

In \mathbb{Q} , sup S does not exist. In \mathbb{R} , sup $S = \sqrt{2}$.

Theorem 1.6.1 (Completeness axiom). If a nonempty set of real numbers (an ordered field) is bounded above, then it has a least upper bound or $\sup S$ exists.

Remark. This is an extra axiom that can't be derived from the properties of ordered field.

Remark. Up to "isomorphism", there is exactly one complete ordered field: the field of real numbers.

Remark. From now, we assume \mathbb{R} satisfies the completeness axiom. Thus, any nonempty subset $S \subseteq \mathbb{R}$, that is bounded above, then $\sup S$ exists.

We can prove the following property of $\sup S$.

Theorem 1.6.2. If $S \subseteq \mathbb{R}$ is bounded above, then $\sup S$ is the unique real number B such that

- (i) $x \leq B$ for all $x \in S$
- (ii) for every $\varepsilon > 0$, there exist an $x_0 \in S$ such that $B\varepsilon < x_0$.

Proof. (i), (ii) follows from the definition. We prove the uniqueness. Suppose $B_1 = \sup S = B_2$. We want to show $B_1 = B_2$. Suppose $B_1 \neq B_2$. Then either $B_1 < B_2$ or $B_2 < B_1$. However, if either one is true, then the other one cannot be $\sup S$.

Theorem 1.6.3 (Archimedean Property). If p > 0 and $\varepsilon > 0$, then there exists an $n \in \mathbb{N}$ such that $p < n\varepsilon$.

Proof. We prove this contradiction. Suppose it is not true. This implies $n\varepsilon \leq p$ for all $n \in \mathbb{N}$. Consider $S = \{n\varepsilon \mid n \in \mathbb{N}\}$, then p is an upper bound of S, so S is bounded above by p, so we know $B = \sup S$ exists. Hence, $n\varepsilon \leq B$ for all $n \in \mathbb{N}$, so we have $(n+1)\varepsilon \leq B$, which means

$$n\varepsilon \leq B - \varepsilon$$

for all $n \in \mathbb{N}$. This implies $B - \varepsilon$ is also an upper bound of S, which is a contradiction.

Theorem 1.6.4. Every nonempty subset of the integers that is bounded below has a least element.

Proof. We first introduce an axiom:

Theorem 1.6.5 (Well-Ordering principle). Every non-empty subset of the natural numbers has a least element.

Note. Here, \mathbb{N} can be $\{0,1,2,\ldots\}$ or $\{1,2,3,\ldots\}$, which is not that important.

Now we call this subset of integers as S, and suppose we have m as a lower bound of S, then define $S' = \{s - m \mid s \in S\}$, then we know S' is a nonempty subset of \mathbb{N} , then by well-ordering principle we know there is a least element in S' and thus there is also a least element in S.

Corollary 1.6.3. Every nonempty subset of the integers that is bounded above has a greatest element.

Proof. Suppose M is an upper bound, then define a set $S' = \{M - s \mid s \in S\}$, then by well-ordering principle we know M - a is the least element of S' for some $a \in S$, so we have $M - x \ge M - a$ for all $x \in S$, which means $a \ge x$ for all $x \in S$ and since $a \in S$, so a is the greatest element of S.

Theorem 1.6.6. The set of rational numbers is dense in the real number. That is, if a and b are real numbers with a < b, then there exists a rational number $\frac{p}{a}$ such that $a < \frac{p}{a} < b$.

Proof. Let $a, b \in \mathbb{R}$, a < b. By Archimedean Property, $\exists q \in \mathbb{N}$ such that q(b-a) > 1. Let $S = \{m \mid m \text{ is an integer with } m > qa\}$, since we know $S \neq \emptyset$ and S is bounded below. Hence, $p = \inf S$ exists and is an integer by the last theorem. So qa < p and $p-1 \leq qa$, which means $qa , so we have <math>a < \frac{p}{a} < b$.

Lecture 2: Second Lecture in 1st Week

4 Sep. 10:20

Appendix