上海大学 计算机学院 《数字逻辑实验》报告二

姓名 <u>冯新元</u> 学号 <u>18120232</u>

时间 _2019/10/10 机位 ____ 指导教师 _ 何冰_

实验名称:_____组合电路1_____

一、实验目的

异或门逻辑功能测试

使用分立元件的异或门和与非门分别构成半加器和全加器,并进行测试 使用 Quartus II 设计二位全加器

二、实验原理

半加器是对两个一位二进制数进行相加,产生"和"与"进位"。根据半加器的逻辑表达式可知,半加器的"和"Y是 $A \times B$ 的异或,而"进位"Z是 $A \times B$ 相与。故半加器可用一个集成异或门和二个与非门组成。

全加器将两个一位二进制数及来自低位的进位 Ci-1 进行相加,产生"和"与"进位 Ci"。构成全加器的方法有多种:可用异或门和与非门等门电路组成,也可用若干与门组成也可用半加器和或门组成。

三、实验内容

1. 实验任务一: 异或门逻辑功能测试

(1) 实验步骤

将 74LS86 的引脚 7 连接"接地插孔"; 引脚 14 连接+5V 电源插孔。其余输入输出引脚按照下图方式连接。拨动开关,观察二极管变化,并记录表格。

(2) 实验现象

见下表

(3) 数据记录、分析与处理

将三个个输出端分别记为 A、B、Y,根据二极管指示灯,高电平记 H,低电平记为 L,记录表格。

输入		输出				
		A	В	Y		
L L	L L	L	L	L		
H L	L L	Н	L	Н		
Н Н	L L	L	L	L		
Н Н	H L	L	Н	Н		
н н	н н	L	L	L		
L H	L H	Н	Н	L		

(4) 实验结论

异或门的输入输出满足逻辑表达式: $Y = A \oplus B$.

2. 实验任务二: 用 74LS00 和 74LS86 芯片分别构成半加器和全加器

(1) 实验步骤

先用 74LS00 和 74LS86 芯片搭建成半加器,并测试其功能,记录结果。 如上构建两个半加器然后配合其他门电路构成全加器,并测试其功能, 记录结果。

(2) 实验现象

在实验箱上用异或门(74LS86)和与非门(74LS00)接成下图的电路。A、B接电平开关 K; Y、Z接电平显示发光二极管。

(3) 数据记录、分析与处理

输入	A	0	1	0	1
端	В	0	0	1	1
输出	Y	0	1	1	0
端	Z	0	0	0	1

输入	A	0	0	0	0	1	1	1	1
	i								
	В	0	0	1	1	0	0	1	1
	i								
	C	0	1	0	1	0	1	0	1
	i-1								
输出 (电平/逻 辑值)	S	0	1	1	0	1	0	0	1
	i								
	C	0	0	0	1	0	1	1	1
	i								

(4) 实验结论

半加器输入输出满足逻辑表达式:

$$Y = A \oplus B$$

$$Z = AB = \overline{\overline{AB}}$$

半加器正确。

全加器满足逻辑电路图,全加器正确。

3. 实验任务 3: 用 Quartus II 设计二位全加器,并下载到 FPGA 中测试。

(1) 实验步骤

用 Quartus II 设计电路图, a, b, c0 为 2 输入端, 其中 a, b 为本位输入, c0 为较低位进位; s 为本位输出, c1 位向高位进位输出。然后另存

为,编译仿真电路。

编译通过后模拟输入输出,检查输出满足全加器的逻辑运算。

找到与 ACEX 器件型号对应的芯片,将输入端 a,b,c0 对应 EP1K30TC144-3 针脚 37,38,39;输出端 c1,s 对应针脚 43,44。

将逻辑电路烧写进可编程逻辑器件

(2) 实验现象

开关 K1, K2, K3 分别对应输入到引脚 37, 38, 39, 即逻辑电路中的 a, b, c0 端。

上端 LED 电子管,左侧为逻辑电路中输出 s 端,右侧电子管为逻辑电路中输出 c1 端。

经测试,输入输出与仿真结果和逻辑表达式一致。可编程逻辑器下载成功。

四、建议和体会

利用逻辑电路实验箱可以验证设计电路是否满足功能。预先进行仿真电路设计可以简化在实验箱接线的难度。

附录、预习报告

