Теория вероятностей и математическая статистика, Коллоквиум III

Версия от 06.04.2021 18:00

Содержание

1.	пера	benerbo reobinieda ir sakon combinat incer b chacon popule Ani confut city familiat beni inii. Sen-				
	ленный закон больших чисел Колмогорова (б/д). Сходимости случайных величин: почти наверное и по					
	вероя	вероятности. Взаимосвязь сходимостей по вероятности и почти наверное.				
	1.1.	Неравенство Чебышева и закон больших чисел в слабой форме для общих случайных величин	4			
	1.2.	Усиленный закон больших чисел Колмогорова (б/д)	Ę			
	1.3.	Сходимости случайных величин: почти наверное и по вероятности	5			
	1.4.	Взаимосвязь сходимостей по вероятности и почти наверное	5			
2.	Сходимость случайных величин по распределению. Лемма о достаточном условии сходимости ожиданий					
	функ	функций из заданного семейства от последовательности случайных величин (лемма 2 из лекции 2).				
	Экви	Эквивалентное описание сходимости по распределению				
	2.1.	Сходимость случайных величин по распределению	6			
	2.2.	Лемма о достаточном условии сходимости ожиданий функций из заданного семейства от после-				
		довательности случайных величин (лемма 2 из лекции 2)	6			
	2.3.	Эквивалентное описание сходимости по распределению	7			
3.	Абсо	Абсолютная непрерывность математического ожидания. Теорема Лебега о мажорируемой сходимости.				
	Подс	Подстановка сходящейся по вероятности последовательности случайных величин в непрерывную функ-				
	цию.	Взаимосвязь сходимостей по вероятности и по распределению.	8			
	3.1.	Абсолютная непрерывность математического ожидания	8			
	3.2.	Теорема Лебега о мажорируемой сходимости	ç			
	3.3.	Подстановка сходящейся по вероятности последовательности случайных величин в непрерывную				
		функцию	G			
	3.4.	Взаимосвязь сходимостей по вероятности и по распределению.	10			
4.	Xapa	Характеристические функции: определение и свойства. Вычисление характеристической функции нор-				
	мальной случайной величины. Производные характеристических функций					
	4.1.	Характеристические функции: определение и свойства	10			
	4.2.	Вычисление характеристической функции нормальной случайной величины.	11			
	4.3.	Производные характеристических функций.	12			
5.	Пере	Переформулировка сходимости по распределению в терминах характеристических функций. Однознач-				
	ность задания распределения случайной величины ее характеристической функцией. Центральная пре-					
	делы	дельная теорема.				
	5.1.	Переформулировка сходимости по распределению в терминах характеристических функций	13			
	5.2.	Однозначность задания распределения случайной величины ее характеристической функцией	14			
	5.3.	Центральная предельная теорема.	14			

6.	Подст	Подстановка сходящейся по распределению последовательности случайных величин в непрерывную				
	функцию. Сходимость суммы и произведения сходящихся по распределению последовательностей слу-					
	чайных величин в случае, когда одна из предельных случайных величин постоянная. Примеры при-					
	менен	ия: выборочная дисперсия и взаимосвязь с ЦПТ. Теорема о сходимости последовательности вида				
	f(a +	$\frac{h_n X_n) - f(a)}{h_n}$ для сходящейся по распределению последовательности X_n . Взаимосвязь с ЦПТ	15			
	6.1.	Подстановка сходящейся по распределению последовательности случайных величин в непрерыв-	4 F			
			15			
	6.2.	Сходимость суммы и произведения сходящихся по распределению последовательностей случай-				
		1 11	16			
	6.3.		18			
	6.4.	Теорема о сходимости последовательности вида $\frac{f(a+h_nX_n)-f(a)}{h_n}$ для сходящейся по распре-				
		делению последовательности X_n .	19			
	6.5.	Взаимосвязь с ЦПТ.	19			
7.	Hepar	венство типа Хефдинга-Чернова. Пример применения.	19			
	7.1.	Неравенство типа Хедфинга-Чернова	19			
	7.2.	Пример применения	20			
8.	Мног	омерная характеристическая функция. Сходимость по распределению последовательности случай-				
	ных в	екторов. Эквивалентное описание сходимости по распределению через сходимость характеристиче-				
	ских	функций (без доказательства). Независимость случайных величин в терминах характеристической				
	функ	ции совместного распределения. Матрица ковариаций, смысл задаваемой ей билинейной формы,				
	ее изг	менение при линейных преобразованиях. Многомерная ЦПТ	21			
	8.1.		21			
	8.2.		21			
	8.3.	Эквивалентное описание сходимости по распределению через сходимость характеристических				
			21			
	8.4.	Независимость случайных величин в терминах характеристической функции совместного распре-				
	0.1.		21			
	8.5.	Матрица ковариаций, смысл задаваемой ей билинейной формы, ее изменение при линейных пре-	-1			
	0.0.		22			
	8.6.		23			
9.			20			
9.		Многомерное нормальное распределение. Свойства нормального вектора: линейный образ нормально-				
	го распределения нормален, характеризация через одномерные распределения, значение параметров					
	_	ального вектора, равносильность независимости и некоррелированности компонент. Представление				
		ального вектора, как линейный образ стандартного нормального вектора, ортогонализация. Плот-	വ			
			23			
	9.1.		23			
	9.2.	Свойства нормального вектора: линейный образ нормального распределения нормален, харак-				
		теризация через одномерные распределения, значение параметров нормального вектора, равно-				
		11 1	24			
	9.3.	Представление нормального вектора, как линейный образ стандартного нормального вектора,				
		ортогонализация	24			
	9.4.	Плотность нормального вектора	24			
10.	Условное математическое ожидание в дискретном случае относительно разбиения и относительно слу-					
	чайной величины. Основные свойства: линейность, монотонность, формула полной вероятности, услов-					
	ное ох	жидание величины, независимой с разбиением, вынесение случайной величины из под знака услов-				
	ного	ожидания. Эквивалентное определение условного математического ожидания и геометрическая				
	интер	претация	25			

	10.1.	Условное математическое ожидание в дискретном случае относительно разбиения и относительно	
		случайной величины	25
	10.2.	Основные свойства: линейность, монотонность, формула полной вероятности, условное ожидание	
		величины, независимой с разбиением, вынесение случайной величины из под знака условного	
		ожидания.	25
	10.3.	Эквивалентное определение условного математического ожидания и геометрическая интерпрета-	
		ция	26
11.	Услов	ное математическое ожидание в общем случае: определение и свойства. Формула для вычисления	
	услов	ного математического ожидания при известной плотности совместного распределения, условная	
	плотн	ость. Аналог фомрулы Байеса	26
	11.1.	Условное математическое ожидание в общем случае: определение и свойства	26
	11.2.	Формула для вычисления условного математического ожидания при известной плотности сов-	
		местного распределения, условная плотность.	27
	11.3	A Ha HOL COMPUTEL Faires	27

- 1. Неравенство Чебышева и закон больших чисел в слабой форме для общих случайных величин. Усиленный закон больших чисел Колмогорова (б/д). Сходимости случайных величин: почти наверное и по вероятности. Взаимосвязь сходимостей по вероятности и почти наверное.
- 1.1. Неравенство Чебышева и закон больших чисел в слабой форме для общих случайных величин.

Теорема (Неравенство Маркова). Пусть X это случайная величина и $X\geqslant 0$ почти наверное. Тогда для любого t>0 выполняется

$$P[X \geqslant t] \leqslant \frac{E[X]}{t}.$$

Доказательство. Заметим, что для любого t > 0 выполняется $t \cdot I[x \geqslant t] \leqslant X$ почти наверное (здесь I это индикатор), так как в левой части будут учтены $t \leqslant X$, с суммарным коэффициентом не больше 1.

Возьмем математическое ожидание от обеих сторон и получим то, что нас просили:

$$t \cdot \mathrm{I}[x \geqslant t] \leqslant X \iff t \cdot \mathrm{P}[x \geqslant t] \leqslant \mathrm{E}[X] \iff \mathrm{P}[x \geqslant t] \leqslant \frac{\mathrm{E}[X]}{t}.$$

Теорема (Неравенство Чебышева). Пусть у случайной величины X конечный второй момент, то есть $\mathrm{E}[X^2] \leqslant \infty.$ Тогда

$$P[|X - E[X]| \ge \varepsilon] \le \frac{D[X]}{\varepsilon^2}.$$

Доказательство. Для доказательства рассмотрим случайную величину $Y = |X - \mathrm{E}[X]|^2$ и применим неравенство Маркова.

Для любого ε выполняется

$$\mathrm{P}[Y \geqslant \varepsilon^2] \leqslant \frac{\mathrm{E}[Y]}{\varepsilon^2} \iff \mathrm{P}[|X - \mathrm{E}[X]|^2 \geqslant \varepsilon^2] \leqslant \frac{\mathrm{D}[X]}{\varepsilon^2} \iff \mathrm{P}[|X - \mathrm{E}[X]| \geqslant \varepsilon] \leqslant \frac{\mathrm{D}[X]}{\varepsilon^2}.$$

Теорема (Закон Больших Чисел в слабой форме). Рассмотрим последовательность $\{X_n\}_n$ случайных независимых величин, что $\mathrm{E}[X_n^2] < \infty$ для любого n.

Обозначим $\mathrm{E}[X_n]=a_n$ и $\mathrm{D}[X_n]=\sigma_n^2$. Если

$$\lim_{n \to \infty} \frac{\sigma_1^2 + \dots + \sigma_n^2}{n^2} = 0,$$

то для всякого $\varepsilon > 0$ выполняется

$$P\left[\left|\frac{X_1+\cdots+X_n}{n}-\frac{a_1+\cdots+a_n}{n}\right|\geqslant\varepsilon\right]\leqslant\frac{\sigma_1^2+\cdots+\sigma_n^2}{n^2\varepsilon^2}.$$

Доказательство. Рассмотрим случайную величину $X = \frac{X_1 + \dots + X_n}{n}$. По линейности математического ожидания получаем

$$E[X] = \frac{E[X_1] + \dots + E[X_n]}{n} = \frac{a_1 + \dots + a_n}{n}.$$

Теперь необходимо найди дисперсию случайной величины X:

• Константа из дисперсии выносится с возведением в квадрат, поэтому

$$D[X] = D\left[\frac{X_1 + \dots + X_n}{n}\right] = \frac{D[X_1 + \dots + X_n]}{n^2}.$$

• Так как $\{X_n\}_n$ это последовательность **независимых** случайных величин, дисперсия суммы может быть раскрыта как сумма дисперсий:

$$D[X] = \frac{D[X_1 + \dots + X_n]}{n^2} = \frac{D[X_1] + \dots + D[X_n]}{n^2} = \frac{\sigma_1^2 + \dots + \sigma_n^2}{n^2}.$$

Воспользуемся неравенством Чебышева для случайной величины X и подставим найденное математическое ожидания и дисперсию:

$$P[|X - E[X]| \geqslant \varepsilon] \leqslant \frac{D[X]}{\varepsilon^2} \iff P\left[\left|\frac{X_1 + \dots + X_n}{n} - \frac{a_1 + \dots + a_n}{n}\right| \geqslant \varepsilon\right] \leqslant \frac{\sigma_1^2 + \dots + \sigma_n^2}{n^2 \varepsilon^2}$$

Закон больших чисел удобно применять, когда X_n это независимые одинаково распределенные случайные величины (с конечным вторым моментом). В частности это означает, что у всех величин одно и то же математическое ожидание и одна и та же математическая дисперсия: $E[X_n] = a$ и $D[X_n] = \sigma^2$.

Тогда дисперсия среднего арифметического $\frac{\mathrm{D}[X_1] + \cdots + \mathrm{D}[X_n]}{n^2} = \frac{\sigma^2}{n}$ стремится к нулю и получаем

$$P\left[\left|\frac{X_1+\cdots+X_n}{n}-a\right|\geqslant \varepsilon\right]\to 0.$$

То есть в каком-то смысле среднее арифметическое приближается к математическому ожиданию.

1.2. Усиленный закон больших чисел Колмогорова (6/д).

Теорема (Усиленный закон больших чисел Колмогорова). Пусть $\{X_n\}_n$ — это последовательность независимых одинаково распределенных случайных величин, у которых есть математическое ожидание и пусть $\mathrm{E}[X_n]=a$. Тогда

$$P\left[\lim_{n\to\infty}\frac{X_1+\cdots+X_n}{n}=a\right]=1.$$

Заметьте, что мы не требуем наличия второго момента, в отличие ЗБЧ в слабой форме. Также, эта сходимость более сильная, так как предел находится внутри условия вероятности, это будет объяснено позже.

1.3. Сходимости случайных величин: почти наверное и по вероятности.

Определение. Последовательность случайных величин X_n сходится к случайной величине X по вероятности, если для любого $\varepsilon > 0$

$$\lim_{n \to \infty} P[|X_n - X| \geqslant \varepsilon] = 0.$$

Записывают в следующем виде: $X_n \xrightarrow{P} X$.

Определение. Последовательность случайных величин X_n сходится к случайной величине X почти наверное, если

$$P[\lim_{n\to\infty} X_n = X] = 1.$$

Записывают в следующем виде: $X_n \xrightarrow{\text{п. н.}} X$.

То есть в законе больших чисел в слабой форме речь идет о сходимости по вероятности, а в усиленном законе больших чисел Колмогорова — о сходимости почти наверное.

Из сходимости почти наверное следует сходимость по вероятности, поэтому усиленный закон больших чисел называется усиленным.

1.4. Взаимосвязь сходимостей по вероятности и почти наверное.

Теорема. Если последовательность случайных величин X_n сходится к X почти наверное, то X_n сходится к X и по вероятности.

Доказательство. Хотим доказать. что $P[|X_n - X| > \varepsilon] \to 0$, что равносильно $P[|X_n - X| < \varepsilon] \to 1$, что мы и будем заказывать.

Переформулируем выражение «множество исходов, что для любого $\varepsilon > 0$ существует N, что для любого n > N выполняется $|X_n - X| < \varepsilon$ » с помощью множеств:

$$\bigcup_{N} \bigcap_{n=N+1}^{\infty} \{w : |X_n - X| < \varepsilon\}.$$

Но это множество включает в себя множество исходов, для которых $\lim X_n = X$:

$$\bigcup_{N} \bigcap_{n=N+1}^{\infty} \{w : |X_n - X| < \varepsilon\} \supseteq \{w : \lim X_n = X\}.$$

Но по условию $P[\lim X_n = X] = 1$, поэтому

$$P\left[\bigcup_{N}\bigcap_{n=N+1}^{\infty} \{w: |X_n - X| < \varepsilon\}\right] = 1.$$

Обозначим
$$B_N = \bigcap_{n=N+1}^{\infty} \{w: |X_n-X|<\varepsilon\}$$
. Тогда

$$B_{N+2} \supset B_{N+1} \supset B_N \supset \cdots \supset B_1$$

так как чем больше номер множества, тем из меньшего числа пересечения оно состоит.

Из второго модуля про вероятность вложенных событий мы знаем (теорема о непрерывности вероятностных мер), что

$$P\left[\bigcup_{N=1}^{\infty} B_N\right] = \lim_{N \to \infty} P[B_N].$$

Но мы уже доказали, что Р $\left[igcup_{N=1}^{\infty}B_{N}
ight]=1$, тогда

$$P\left[\bigcap_{n=N+1}^{\infty} \{w : |X_n - X| < \varepsilon\}\right] \xrightarrow[N \to \infty]{} 1,$$

Заметим, что вероятность одного множества событий не меньше вероятности пересечения, поэтому о лемме о двух миллиционерах:

$$P[\{w: |X_n - X| < \varepsilon\}] \to 1.$$

- 2. Сходимость случайных величин по распределению. Лемма о достаточном условии сходимости ожиданий функций из заданного семейства от последовательности случайных величин (лемма 2 из лекции 2). Эквивалентное описание сходимости по распределению.
- 2.1. Сходимость случайных величин по распределению

Определение. Последовательность случайных величин X_n сходится к случайной величине X по распределению, если $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ в каждой точке x, в которой непрерывна функция F_X .

В математических обозначениях:

$$X_n \xrightarrow{d} X \iff F_{X_n}(x) o F_X(x) \ \ orall x$$
 т.ч. F_X непр. в т. x

Точек разрыва у (монотонной!) функции распределения не более чем счетное число (как и попарно не пересекающихся интервалов на прямой).

2.2. Лемма о достаточном условии сходимости ожиданий функций из заданного семейства от последовательности случайных величин (лемма 2 из лекции 2)

Лемма. Пусть $\{X_n\}_{n=0}^{\infty}$ — последовательность случайных величин; $\mathcal{F} := \{f\}$ и $\mathcal{G} := \{g\}$ — системы функций на \mathbb{R} . Пусть также

1)
$$\forall f \in \mathcal{F} \ \mathbb{E} \ f(X_n) \to \mathbb{E} \ f(X_0)$$
;

2)
$$\forall g \in \mathcal{G} \ \forall \varepsilon > 0 \ \exists f_{\varepsilon} \in \mathcal{F} : \mathbb{E} |g(X_n) - f_{\varepsilon}(X_n)| \le \varepsilon \ \forall n \in \mathbb{N} \cup \{0\}$$

Тогда матожидание $\mathbb{E}\,g(X_n)$ любой функции из $\mathcal G$ от X_n сходится к матожиданию $\mathbb{E}\,g(X_0)$ этой функции от X_0 при $n \to \infty \quad (\forall g \in \mathcal{G} : \mathbb{E} g(X_n) \to \mathbb{E} g(X_0)).$

Доказательство. В силу условий

$$|\mathbb{E} g(X_n) - \mathbb{E} g(X_0)| = \mathbb{E}|(g(X_n) - f_{\varepsilon/3}(X_n)) + (f_{\varepsilon/3}(X_0) - g(X_0)) + (f_{\varepsilon/3}(X_n) - f_{\varepsilon/3}(X_0))| \le$$

$$\le \mathbb{E} |g(X_n) - f_{\varepsilon/3}(X_n)| + \mathbb{E} |f_{\varepsilon/3}(X_0) - g(X_0)| + \mathbb{E} |f_{\varepsilon/3}(X_n) - f_{\varepsilon/3}(X_0)| \le \varepsilon,$$

$$< \varepsilon/3$$

$$< \varepsilon/3$$

что и требовалось.

2.3. Эквивалентное описание сходимости по распределению

Теорема. Последовательность случайных величин X_n сходится по распределению к X тогда и только тогда, когда

$$orall g: \mathbb{R} o \mathbb{R}$$
 — непр. и огр. : $\lim_{n o \infty} \mathbb{E} \, g(X_n) = \mathbb{E} \, g(X) \quad \left(F_{X_n} \stackrel{d}{ o} F_X \iff \mathbb{E} \, g(X_n) o \mathbb{E} \, g(X)
ight)$

 \Leftarrow Пусть t — точка непрерывности F_X . Заметим, что $F_X(t) = P(X \le t) = \mathbb{E} I_{(-\infty:t]}(X)$.

Для всякого $\delta>0$ определим непрерывные и ограниченные функции

$$g_{\delta}(x) = \begin{cases} 1, & x < t - \delta, \\ \delta^{-1}(t - x), & t - \delta \le x \le t, \\ 0, & x > t. \end{cases} h_{\delta}(x) = \begin{cases} 1, & x < t, \\ \delta^{-1}(t + \delta - x), & t \le x \le t + \delta, \\ 0, & x > t + \delta. \end{cases}$$

При этом

$$I_{(-\infty;t-\delta]}(X) \le g_{\delta}(X) \le I_{(-\infty;t]}(X) \le h_{\delta}(X) \le I_{(-\infty;t+\delta]}(X),$$

следовательно,

$$\mathbb{E} g_{\delta}(X_n) \leq F_{X_n}(t) \leq \mathbb{E} h_{\delta}(X_n).$$

Устремляя $n \to \infty$, получаем

$$\mathbb{E} g_{\delta}(X) \leq \lim_{n \to \infty} F_{X_n}(t) \leq \overline{\lim_{n \to \infty}} F_{X_n}(t) \leq \mathbb{E} h_{\delta}(X).$$

$$F_X(t - \delta) = \mathbb{E} I_{(-\infty; t - \delta]}(X), \ I_{(-\infty; t - \delta]}(X) \leq g_{\delta}(X) \Rightarrow F_X(t - \delta) \leq \mathbb{E} g_{\delta}(X),$$

аналогично $\mathbb{E}h_{\delta}(X) \leq F_X(t+\delta).$

При $\delta \to 0$ приходим к равенству $\lim_{n \to \infty} F_{X_n}(t) = F_X(t)$.

 \Rightarrow Известно, что $F_{X_n} \to F_X$ в каждой точке непрерывности t, т.е. $\mathbb{E} I_{(-\infty;t]}(X_n) \to \mathbb{E} I_{(-\infty;t]}(X)$.

Заметим, что $I_{(-\infty;b]}(x) - I_{(-\infty;a]}(x) = I_{(a;b]}(x)$ и обозначим $f_t(x) = I_{(-\infty;t]}(x)$.

В силу линейности предела $\mathbb{E}(f_b(X_n) - f_a(X_n)) \to \mathbb{E}[f_b(X) - f_a(X)].$

Обозначим $f(x) = \sum_{j=1}^N c_j I_{(a_j,b_j]}(x)$, где a_j,b_j — точки непрерывности F_X . Т.к. $f(x) = \sum_{j=1}^N c_j (f_b(x) - f_a(x))$, по линейности предела имеем $\mathbb{E} f(X_n) \to \mathbb{E} f(X)$.

Обозначим \mathcal{F} систему функций f. Для применения леммы 2.2 достаточно показать, что $\mathbb{E} g(X_n) \to \mathbb{E} f(X_n) \, \forall n \in \mathbb{N} \cup \{0\}$, т.е.

$$\forall$$
 Help. orp. $g \forall \varepsilon > 0 \exists f \in \mathcal{F} : \mathbb{E}|g(X_n) - f_{\varepsilon}(X_n)| \leq \varepsilon \quad \forall n \in \mathbb{N} \cup \{0\} \ (X_0 = X).$

Пусть g — произвольная непр. огр. функция на $\mathbb R$ и пусть $\varepsilon>0$ фиксирован.

$$\begin{cases} \lim_{x \to -\infty} F_X(x) &= 0, \\ \lim_{x \to +\infty} F_X(x) &= 1 \end{cases} \Rightarrow \exists A : \begin{cases} F_X(-A) &< \varepsilon, \\ 1 - F_X(A) &< \varepsilon \end{cases}$$

Так как у монотонной функции счетное число точек разрыва, без ограничения общности будем считать, что A — точка непрерывности F_X . Тогда (в силу $F_{X_n} \to F_X$)

$$\exists n_0 : \forall n > n_0 \ F_{X_n}(-A) < 2\varepsilon, \ 1 - F_{X_n}(A) < 2\varepsilon$$

Увеличив A, можно считать, что последнее верно для всех n (перешли от $n_0(A)$ к A(n)). Таким образом

$$\mathbb{E}\left|I_{\{-A\leq X_n\leq A\}}g(X_n)-g(X_n)\right|=\mathbb{E}|\overline{I_{\{-A\leq X_n\leq A\}}}g(X_n)|\leq \sup_{\|g\|}|g|\cdot P(|X_n|>A)\leq \sup_{\|g\|\leq F_{X_n}(-A)+(1-F_{X_n}(A))}|g|\cdot 4\varepsilon$$

Tа же оценка верна и для предельной случайной величины X.

Непрерывная на отрезке [-A;A] функция g равномерно непрерывна на этом отрезке $(\forall \varepsilon > 0 \ \exists \delta : |g(x) - g(x + \delta)| < \varepsilon)$, следовательно, ее можно приблизить кусочно-постоянной (ступенчатой) функцией f_{ε} :

$$|g(x) - f_{\varepsilon}(x)| \le \varepsilon \ \forall x \in [-A; A].$$

Также, не ограничивая общности, можно считать, что точки разрыва f_{ε} — точки непрерывности F_X , т.е. $f_{\varepsilon} \in \mathcal{F}$ (т.к. подходящих точек на отрезке $[x_i; x_i + \delta]$ — континуум, а точек разрыва счетно).

Пусть $f_{\varepsilon}(x) = 0$ при $x \notin [-A; A]$. Тогда

$$\mathbb{E}\left|I_{\{-A < X_n < A\}}g(X_n) - f_{\varepsilon}(X_n)\right| = \mathbb{E}\left[\left|g(X_n) - f_{\varepsilon}(X_n)\right| I_{\{-A < X_n < A\}}\right] \le \varepsilon$$

Tа же оценка верна и для предельной случайной величины X. Таким образом

$$\mathbb{E} |q(X_n) - f_{\varepsilon}(X_n)| < \sup |q| \cdot 4\varepsilon + \varepsilon.$$

Теорема доказана.

- 3. Абсолютная непрерывность математического ожидания. Теорема Лебега о мажорируемой сходимости. Подстановка сходящейся по вероятности последовательности случайных величин в непрерывную функцию. Взаимосвязь сходимостей по вероятности и по распределению.
- 3.1. Абсолютная непрерывность математического ожидания.

Предложение. Имеем случайную величину $Y\geqslant 0$ п.н., матожидание конечно.

Хотим показать $\forall \varepsilon \exists \delta > 0 : P(A) \leqslant \delta \Rightarrow \mathbb{E}(YI_A) < \varepsilon$. Словами: если множество A маленькое, то матожидание случайной величины, которая много где ноль, тоже маленькое.

Доказательство. Так как $Y\geqslant 0, \mathbb{E}Y=\mathbb{E}Y_{+}=\sup{\{\mathbb{E}U:U\leqslant Y_{+},\text{orp.}\}}.$

Фиксируем U так, чтобы $\mathbb{E}U\leqslant\mathbb{E}Y_+\leqslant\mathbb{E}U+\frac{\varepsilon}{2}$ — будем пользоваться тем, что U ограничена, то есть $\exists R\in\mathrm{const}:R\geqslant U.$

$$\mathbb{E}\left(YI_{A}\right) = \mathbb{E}\left(Y_{+}I_{A}\right) = \mathbb{E}\left(\left(Y_{+} - U\right)I_{A}\right) + \mathbb{E}\left(UI_{A}\right) \leqslant \mathbb{E}\left(Y_{+} - U\right) + RP(A) \leqslant \frac{\varepsilon}{2} + R\delta$$

Выбрав $\delta = \frac{\varepsilon}{2R}$ получаем то что требовали.

Абсолютная непрерывность потому что на самом деле можно было взять |Y| и работать с ним, но мы решили просто сказать что он неотрицателен удобства ради.

3.2. Теорема Лебега о мажорируемой сходимости.

Теорема. Если

- $X_n \xrightarrow{P} X$ (или $X_n \xrightarrow{\text{п. н.}} X$ потому что следует);
- ullet существует случайная величина Y такая что $|X_n|\leqslant Y$ п. н.; $|X|\leqslant Y$ п. н.,

To $\mathbb{E}X_n \to \mathbb{E}X$

Доказательство.

$$|\mathbb{E}X_n - \mathbb{E}X| \leqslant \mathbb{E}|X_n - X| = \mathbb{E}\left[|X_n - X|I_{\{|X_n - X| \leqslant \varepsilon\}}\right] + \mathbb{E}\left[|X_n - X|I_{\{|X_n - X| > \varepsilon\}}\right]$$

$$\mathbb{E}\left[|X_n - X|I_{\{|X_n - X| \leqslant \varepsilon\}}\right] \leqslant \varepsilon$$

$$\mathbb{E}\left[|X_n-X|I_{\{|X_n-X|>\varepsilon\}}\right]\leqslant \mathbb{E}\left[2YI_{\{|X_n-X|>\varepsilon\}}\right]. \text{ Так как } X_n\xrightarrow{P}X \implies P\left(|X_n-X|>\varepsilon\right)\to 0.$$

По Абсолютной непрерывности математического ожидания: $\forall \varepsilon \exists \delta : P(A) < \delta \implies \mathbb{E}[YI_A] < \varepsilon$. Здесь $P(|X_n - X| > \varepsilon) < \delta$, поэтому применимо.

Получается
$$|\mathbb{E}X_n - \mathbb{E}X| \leq \mathbb{E}|X_n - X| = \ldots \leq 3\varepsilon$$

3.3. Подстановка сходящейся по вероятности последовательности случайных величин в непрерывную функцию.

Это лекция 1, если что

Утверждение 0.1.
$$X_n \xrightarrow{P} X$$
, $g: \mathbb{R} \to \mathbb{R}$ — непрерывная $\Longrightarrow g(X_n) \xrightarrow{P} g(X)$

Доказательство. Для фиксированного R, g равномерно непрерывна на отрезке [-R, R], то есть

$$\forall \varepsilon > 0 \exists \delta > 0 : x, y \in [-R, R], |x - y| < \delta \implies |g(x) - g(y)| < \varepsilon$$

Рассмотрим множество

$$\{|g(X_n) - g(X)| \geqslant \varepsilon\} \subseteq$$

$$\subseteq \{|g(X_n) - g(X)| \geqslant \varepsilon, X_n, X \in [-R, R]\} \cup \{|g(X_n) - g(X)| \geqslant \varepsilon, X_n \notin [-R, R]\} \cup \{|g(X_n) - g(X)| \geqslant \varepsilon, X \notin [-R, R]\}$$

$$P(|g(X_n) - g(X)| \geqslant \varepsilon) \leqslant P(|g(X_n) - g(X)| \geqslant \varepsilon, X_n, X \in [-R, R]) + P(|X_n| > R) + P(|X| > R)$$

По условию равномерной непрерывности $P(|g(X_n) - g(X)| \ge \varepsilon, X_n, X \in [-R, R]) \le P(|X_n - X| \ge \delta)$ — иначе условие выполнялось бы, и разница между образами была бы меньше эпсилона.

Заметим, что
$$\{|X_n-X+X|>R\}\subseteq \left\{|X_n-X|>\frac{R}{2}\right\}\cup \left\{|X|>\frac{R}{2}\right\}$$
, тогда $P(|X_n|>R)\leqslant P\left(|X_n-X|>\frac{R}{2}\right)+P\left(|X|>\frac{R}{2}\right)$

Получается

$$P\left(\left|g(X_n) - g(X)\right| \geqslant \varepsilon\right) \leqslant P\left(\left|X_n - X\right| \geqslant \delta\right) + P\left(\left|X_n - X\right| > \frac{R}{2}\right) + P\left(\left|X\right| > \frac{R}{2}\right) + P(\left|X\right| > R)$$

Взяв большие R получаем $P\left(|X|>\frac{R}{2}\right)+P\left(|X|>R\right) o 0$ очев.

Взяв большие n из-за сходимости по вероятности получаем $P\left(|X_n-X|\geqslant \delta\right)+P\left(|X_n-X|>\frac{R}{2}\right)\to 0.$ Получается

$$0 \le \liminf P(|g(X_n) - g(X)| \ge \varepsilon) \le \limsup P(|g(X_n) - g(X)| \ge \varepsilon) \le 0$$

TO ECTS $g(X_n) \xrightarrow{P} g(X)$

3.4. Взаимосвязь сходимостей по вероятности и по распределению.

Следствие.
$$X_n \xrightarrow{P} X \implies X_n \xrightarrow{d} X$$

Доказательство. Нужно доказать, что для любой ограниченной непрерывной g верно $\mathbb{E} g(X_n) \to \mathbb{E} g(X)$

В силу ограниченности имеем $|g(t)| \leq M \forall t \implies g(X_n) \leq M, g(X) \leq M$

По предыдущему пункту $g(X_n) \xrightarrow{P} g(X)$

Введем случайную величину Y=M и применим Лебега (оба условия выполняются), тогда $\mathbb{E} X_n \to \mathbb{E} X$, то есть $X_n \overset{d}{\to} X$

- 4. Характеристические функции: определение и свойства. Вычисление характеристической функции нормальной случайной величины. Производные характеристических функций.
- 4.1. Характеристические функции: определение и свойства.

Определение. Пусть X это случайная величина. Тогда характеристическая функция случайной величины X это

$$\varphi_X(t) := \mathbb{E}[e^{itX}] = \mathbb{E}[\cos(t \cdot X)] + i \cdot \mathbb{E}[\sin(t \cdot X)].$$

Теорема (Свойства характеристических функций). У характеристической функции есть следующие свойства:

- 1. Для любой случайной величины X выполняется $\varphi_X(0)=1.$
- 2. Для любой случайной величины и любого $t \in \mathbb{R}$ выполняется $|\varphi_X(t)| \leqslant 1$.
- 3. Для чисел a и b выполняется

$$\varphi_{aX+b}(t) = e^{itb} \cdot \varphi_X(at).$$

4. Если X_n это последовательность **независимых** случайных величин, то

$$\varphi_{X_1+X_2+\cdots+X_n}(t) = \varphi_{X_1}(t) \cdot \varphi_{X_2}(t) \cdot \cdots \cdot \varphi_{X_n}(t).$$

Доказательство. Для доказательства будем пользоваться следующей формулой:

$$\varphi_X(t) = \mathbb{E}[\cos(t \cdot X)] + i \cdot \mathbb{E}[\sin(t \cdot X)],$$

которая следует из формулы Эйлера $e^{ix} = \cos x + i \cdot \sin x$.

Докажем свойства:

1. Для любой случайной величины X выполняется $\varphi_X(0)=1$.

Проверяется подстановкой:

$$\varphi_X(0) = \mathrm{E}[e^{i \cdot 0 \cdot X}] = \mathrm{E}[e^0] = \mathrm{E}[1] = 1.$$

2. Для любой случайной величины и любого $t \in \mathbb{R}$ выполняется $|\varphi_X(t)| \leqslant 1$.

Рассмотрим случайную величину Y. Знаем, что ее дисперсия неотрицательна, то есть $D[Y] = E[Y^2] - (E[Y])^2 \geqslant 0$, откуда следует, что для любой случайной величины Y справедливо $E[Y^2] \geqslant (E[Y])^2$.

Значение характеристической функции это комплексное число. Квадрат модуля комплексного числа это сумма квадратов его мнимой и действительной частей:

$$|\varphi_X(t)|^2 = (\mathrm{E}[\cos(t \cdot X)])^2 + (\mathrm{E}[\sin(t \cdot X)])^2.$$

С помощью знаний о ${\rm E}[Y^2]\geqslant ({\rm E}[Y])^2$ оценим квадрат модуля характеристической функции:

$$|\varphi_X(t)|^2 = (\mathrm{E}[\cos(t \cdot X)])^2 + (\mathrm{E}[\sin(t \cdot X)])^2 \leqslant \mathrm{E}[\cos^2(t \cdot X)] + \mathrm{E}[\sin^2(t \cdot X)] = \mathrm{E}[\cos^2(t \cdot X) + \sin^2(t \cdot X)] = \mathrm{E}[1] = 1.$$

3. Для чисел a и b выполняется

$$\varphi_{aX+b}(t) = e^{itb} \cdot \varphi_X(at).$$

Заметим, что если y это некоторое число, то $\mathrm{E}[y\cdot X]=y\cdot \mathrm{E}[X]$ по линейности математического ожидания.

Запишем по определению:

$$\varphi_{aX+b}(t) = \mathbf{E}[e^{it \cdot aX + it \cdot b}] = \mathbf{E}[e^{it \cdot aX} \cdot e^{it \cdot b}] = e^{it \cdot b} \cdot \mathbf{E}[e^{it \cdot aX}] = e^{it \cdot b} \cdot \varphi_{aX}(t).$$

4. Если X_n это последовательность **независимых** случайных величин, то

$$\varphi_{X_1+X_2+\cdots+X_n}(t) = \varphi_{X_1}(t) \cdot \varphi_{X_2}(t) \cdot \cdots \cdot \varphi_{X_n}(t).$$

Пусть $Y_n = e^{i \cdot t \cdot X_n}$. Тогда $Y_1, \dots Y_n$ это последовательность независимых случайных величин (в силу независимости X_n) и $\mathrm{E}[Y_1 \cdot \dots \cdot Y_n] = \mathrm{E}[Y_1] \cdot \dots \cdot \mathrm{E}[Y_n]$.

Запишем по определению:

$$\varphi_{X_1+X_2+\cdots+X_n}(t) = \mathbf{E}[e^{itX_1+\cdots+itX_n}] = \mathbf{E}[e^{itX_1}\cdot\cdots\cdot e^{itX_n}] = \mathbf{E}[Y_1\cdot\cdots\cdot Y_n] = \mathbf{E}[Y_1]\cdot\cdots\cdot \mathbf{E}[Y_n] = \varphi_{X_1}(t)\cdot\cdots\cdot\varphi_{X_n}(t).$$

4.2. Вычисление характеристической функции нормальной случайной величины.

Хотим вычислить $\varphi_{\xi}(t)$, где $\xi \sim \mathcal{N}(0,1)$.

Запишем по определению:

$$\varphi_{\xi}(t) = \mathbf{E}[e^{it\xi}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \exp\left[-x^2/2\right] dx + \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sin(tx) \exp\left[-x^2/2\right] dx.$$

Заметим, что второе слагаемое $\frac{i}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty}\sin(tx)\exp\left[-x^2/2\right]\mathrm{d}x$ равно нулю, так как это интеграл нечетной функции по симметричному промежутку. Тогда

$$\varphi_{\xi}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \exp\left[-x^2/2\right] dx.$$

Возьмем производную по t (считаем, что она берется):

$$\varphi'_{\xi}(t) = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x \cdot \sin(tx) \exp\left[-x^2/2\right] dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sin(tx) d\left(\exp\left[-x^2/2\right]\right)$$

$$= \frac{1}{\sqrt{2\pi}} \sin(tx) \exp\left[-x^2/2\right] \Big|_{-\infty}^{+\infty} - \frac{t}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \exp\left[-x^2/2\right] dx$$

$$= 0 - \frac{t}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \exp\left[-x^2/2\right] dx = -t \cdot \varphi_{\xi}(t).$$

Пришли к дифференциальному уравнению:

$$\varphi'_{\xi}(t) = -t \cdot \varphi_{\xi}(t) \implies \frac{\varphi'_{\xi}(t)}{\varphi_{\xi}(t)} = -t.$$

Интегрируем обе части:

$$\int \frac{\mathrm{d}(\varphi_{\xi}(t))}{\varphi_{\xi}(t)} = \ln|\varphi_{\xi}(t)| + C = \int -t \mathrm{d}t = -\frac{t^2}{2}.$$

Теперь берем экспоненту от обеих частей:

$$\varphi_{\xi}(t) = C' \cdot \exp\left[-t^2/2\right],$$

где C' это некоторая константа.

Про характеристическую функцию мы знаем, что $\varphi_{\xi}(0) = 1$. Тогда

$$\varphi_{\xi}(0) = 1 = C' \cdot \exp[0] = C',$$

откуда находим C'=1.

Тогда характеристическая функция стандартной нормальной величины имеет следующий вид:

$$\varphi_{\xi}(t) = \exp[-t^2/2].$$

Производные характеристических функций.

Теорема. Пусть X это случайная величина с конечным k-ым моментом ($\mathrm{E}[|X|^k] < \infty$). Тогда φ_X k раз дифференцируема и

$$\varphi_X^{(k)}(0) = i^k \cdot \mathbf{E}[X^k].$$

Доказательство. Докажем для k=1, для остальных порядков аналогично.

Мы хотим найти производную:

$$\lim_{h_n \to 0} \frac{\varphi_X(t+h_n) - \varphi_X(t)}{h_n} = \lim_{h_n \to 0} \frac{1}{h_n} \cdot \left(\mathbf{E}[e^{i(t+h_n)X}] - \mathbf{E}[e^{itX}] \right) = \lim_{h_n \to 0} E\left[\frac{e^{i(t+h_n)X} - e^{itX}}{h_n} \right] =: \lim_{h_n \to 0} E[g_n],$$

то есть обозначили $g_n = \frac{e^{i(t+h_n)X} - e^{itX}}{h_n}$. Поймем, что мы знаем про функцию g_n :

• У нее есть поточечный предел:

$$\lim_{n \to \infty} g_n(X) = \left(e^{itX}\right)_t' = iXe^{itX}.$$

• Надо как-то оценить $|g_n|$.

Знаем, что модуль комплексной экспоненты равен 1, то есть $|e^{itX}|=1$. Тогда

$$|g_n(X)| = \left| \frac{e^{itX} \cdot (e^{ih_nX} - 1)}{h_n} \right| = |e^{itX}| \cdot \left| \frac{e^{ih_nX} - 1}{h_n} \right| = \left| \frac{e^{ih_nX} - 1}{h_n} \right| = \left| \frac{e^{ih_nX} - e^{i\cdot 0\cdot X}}{h_n} \right| = \left(e^{itX} \right)_t'(\xi) = \left| iXe^{i\xi X} \right|$$

для некоторого $\xi \in (0; h_n)$.

Предпоследний переход выполнен по теореме Лагранжа, которая гласит следующее:

$$\exists \xi \in (a;b): \frac{f'(b) - f'(a)}{b - a} = f'(\xi).$$

Опять же воспользуемся тем, что модуль комплексной экспоненты равен 1:

$$|g_n(X)| = |iXe^{i\xi X}| = |i| \cdot |X| \cdot |e^{i\xi X}| = 1 \cdot |X| \cdot 1 = |X|.$$

Мы получили, что

- $|g_n(X)| \leq |X|$ и $E[|X|] < \infty$ (для этого и нужна конечность моментов);
- $q_n(X) \xrightarrow{\Pi \cdot H \cdot} i \cdot X \cdot e^{itX}$.

Тогда по теореме Лебега предел ожиданий есть ожидание предела:

$$\lim_{n \to \infty} E[g_n(X)] = E[i \cdot X \cdot e^{itX}].$$

Возвращаемся в самое начало:

$$\varphi_X(t)' = \lim_{n \to \infty} \mathrm{E}[g_n] = i \cdot \mathrm{E}[X \cdot e^{itX}].$$

- 5. Переформулировка сходимости по распределению в терминах характеристических функций. Однозначность задания распределения случайной величины ее характеристической функцией. Центральная предельная теорема.
- 5.1. Переформулировка сходимости по распределению в терминах характеристических функций.

Теорема. Последовательность X_n сходится по распределению к X $(X_n \xrightarrow{d} X) \Leftrightarrow \lim_{n \to \infty} \varphi_{X_n}(t) = \varphi_X(t) \ \forall t \in \mathbb{R}$. Доказательство.

 \Rightarrow

 $\varphi_{X_n}(t) = \mathbb{E}[\cos tX_n] + i\mathbb{E}[\sin tX_n]$, при этом функции $x \mapsto \cos tx$ и $x \mapsto \sin tx$ - непрерывные и ограниченные.

Мы знаем, что $X_n \xrightarrow{d} X \Leftrightarrow \forall g$ - непрерывной ограниченной $\mathbb{E}g(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}g(X)$ (см. билет 2).

Тогда возьмем в качестве g(x) функцию $x\mapsto \cos tx$: $\mathbb{E}[\cos tX_n]\xrightarrow[n\to\infty]{}\mathbb{E}[\cos tX]$.

Теперь возьмем в качестве g(x) функцию $x \mapsto \sin tx$: $\mathbb{E}[\sin tX_n] \xrightarrow[n \to \infty]{} \mathbb{E}[\sin tX]$.

Таким образом, получаем необходимое равенство:

$$\lim_{n \to \infty} \varphi_{X_n}(t) = \lim_{n \to \infty} (\mathbb{E}[\cos tX_n] + i\mathbb{E}[\sin tX_n]) = \lim_{n \to \infty} (\mathbb{E}[\cos tX_n]) + \lim_{n \to \infty} (i\mathbb{E}[\sin tX_n]) =$$

$$= \lim_{n \to \infty} (\mathbb{E}[\cos tX_n]) + i\lim_{n \to \infty} (\mathbb{E}[\sin tX_n]) = \mathbb{E}[\cos tX] + i\mathbb{E}[\sin tX] = \varphi_X(t)$$

(

Докажем в предположении ограниченности вторых моментов, то есть $\mathbb{E}|X_n|^2\leqslant C<\infty\ \forall n\in\mathbb{N}$, и, соответственно, $\mathbb{E}|X|^2\leqslant C<\infty$, где C=const. (Доказываемое равенство мы хотим применять в ЦПТ, где ограниченность вторых моментов выполняется, поэтому для наших нужд этого достаточно. Однако на самом деле и общий факт верен) Нам известно, что $\varphi_{X_n}(t)=\mathbb{E}[\cos tX_n]+i\mathbb{E}[\sin tX_n]\xrightarrow[n\to\infty]{} \varphi_X(t)=\mathbb{E}[\cos tX]+i\mathbb{E}[\sin tX]\ \forall t\in\mathbb{R}$. Понятно, что если комплексные числа сходятся, то вещественная часть сходится к вещественной и мнимая - к мнимой. $\mathbb{E}[\cos tX_n]\xrightarrow[n\to\infty]{} \mathbb{E}[\cos tX]$ и $\mathbb{E}[\sin tX_n]\xrightarrow[n\to\infty]{} \mathbb{E}[\sin tX]\ \forall t\in\mathbb{R}$.

По линейности будут также сходиться и всевозможные комбинации

$$\forall t_1 \dots t_N : \frac{a_0}{2} + \sum_{k=1}^N a_k \cos t_k x + b_k \sin t_k x = f(x) \Rightarrow \mathbb{E}f(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}f(X)$$

 $\underline{\text{Хотим}}$, чтобы такая сходимость была выполнена для каждой непрерывной ограниченной функции. То есть $\mathbb{E}g(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}g(X) \ \forall g$ - непр. огр., что эквивалентно сходимости по распределению.

Мы попадаем в ситуацию леммы (см. билет 2): $\mathcal{F}=\{f\},\,\mathcal{G}=\{g\}$

1.
$$\forall f \in \mathcal{F} \ \mathbb{E}f(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}f(X)$$

2.
$$\forall g \in \mathcal{G} \ \forall \varepsilon > 0 \ \exists f_{\varepsilon} : \mathbb{E}|g(X_n) - f_{\varepsilon}(X_n)| < \varepsilon \ \forall n$$
 и $\mathbb{E}|g(X) - f_{\varepsilon}(X)| < \varepsilon$

$$\Rightarrow \forall g \in \mathcal{G} \colon \mathbb{E}g(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}g(X).$$

В нашем случае $\mathcal{F} = \left\{ \frac{a_0}{2} + \sum_{k=1}^N a_k \cos t_k x + b_k \sin t_k x = f(x) \right\}, \, \mathcal{G}$ - класс непрерывных ограниченных функций.

Первый пункт леммы выполняется, осталось доказать выполнение второго.

Известно $\eta(\cdot)$ - непрерывная на \mathbb{R} и периодическая с периодом 2t, тогда

$$\forall \varepsilon > 0 \ \exists a_0, a_1 \dots a_N, b_1 \dots b_N \colon \sup_{x \in \mathbb{R}} \left| \eta(x) - \left(\frac{a_0}{2} + \sum_{k=1}^N a_k \cos \frac{\pi k}{T} x + b_k \sin \frac{\pi k}{T} x \right) \right| < \varepsilon$$
, по теореме Вейерштрасса

(знаем из матанализа, любая непрерывная периодическая функция равномерно приближается

тригонометрическим многочленом)

Запишем неравенство Чебышёва для X_n и X (можем это сделать в силу ограниченности второго момента, $\mathbb{E}|X_n|^2\leqslant C<\infty \ \forall n\in\mathbb{N}$ и $\mathbb{E}|X|^2\leqslant C<\infty$):

$$P(|X_n| \geqslant A) \leqslant \frac{C}{A^2}$$

$$P(|X| \geqslant A) \leqslant \frac{C}{A^2}$$

Для достаточно большого A будет выполнено:

$$P(|X_n| > A) < \varepsilon$$

$$P(|X| > A) < \varepsilon$$

Теперь введем непрерывную ограниченную периодическую функцию g_{ε} . Она совпадает с непрерывной ограниченной g на отрезке [-A,A], равна нулю на концах отрезка [-A-1,A+1], а вне отрезка [-A-1,A+1] продолжена как периодическая с периодом T=2A+2. Очевидно, что $|g_{\varepsilon}(x)| \leq \sup |g|$.

Проведем оценку:

$$\mathbb{E}|g(X_n) - g_\varepsilon(X_n)| = \Big[\text{так как } g_\varepsilon(x) = g(x) \text{ на } [-A,A] \Big] = \mathbb{E}\big[|g(X_n) - g_\varepsilon(X_n)| \cdot I_{|X_n| \geqslant A}\big] \leqslant 2\sup|g| \cdot \varepsilon \Big[|g(X_n) - g_\varepsilon(X_n)| \cdot I_{|X_n| \geqslant A}\big] = \mathbb{E}\big[|g(X_n) - g_\varepsilon(X_n)| \cdot I_{|X_n| \geqslant A}\big]$$

Получается, мы приблизили функцию g непрерывной периодической функцией g_{ε} , которую в свою очередь можно приблизить равномерным тригонометрическим многочленом. Для $g_{\varepsilon} \ \exists f \in \mathcal{F}$: $\sup_{x \in \mathbb{R}} |g_{\varepsilon}(x) - f_{\varepsilon}(x)| < \varepsilon \Rightarrow \mathbb{E}|g_{\varepsilon}(X_n) - f_{\varepsilon}(X_n)| < \varepsilon + 2\sup|g| \cdot \varepsilon$ - константа, умноженная на ε .

Доказали выполнение второго пункта леммы, поэтому $\forall g \in \mathcal{G} \colon \mathbb{E}g(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}g(X) \Leftrightarrow X_n \xrightarrow{d} X.$

Однозначность задания распределения случайной величины ее характеристической функцией.

Теорема. Если у двух случайных величин совпадают характеристические функции, то эти величины имеют одинаковые распределения ($\varphi_X(t) = \varphi_Y(t) \ \forall t \in \mathbb{R} \Rightarrow F_X = F_Y \ (\mu_X = \mu_Y)$).

Доказательство.

Пусть $\varphi_X(t) = \varphi_Y(t) \ \forall t \in \mathbb{R}$. Рассмотрим последовательность случайных величин равных X.

$$X_n:=X$$
, тогда $arphi_{X_n}(t)=arphi_X(t)=arphi_Y(t)\xrightarrow[n o\infty]{}arphi_Y(t)\ orall t\in\mathbb{R}.$

Значит $X_n \xrightarrow{d} Y$, согласно переформулировке сходимости по распределению в терминах характеристических функций (доказывали выше). При этом $X_n := X$, поэтому $X \xrightarrow{d} Y \Leftrightarrow F_X(x) = F_Y(x) \ \forall x$ - т. непрерывности F_Y (равносильность по определению сходимости по распределению).

Проверим, что происходит в точках разрыва. Заметим, что у монотонных функций (а функция распределения случайной величины монотонна) не более чем счетное число точек разрыва. Тогда к каждой точке разрыва функции F_Y сходится справа некоторая последовательность точек непрерывности этой функции (в которых F_Y и F_X совпадают). x_0 - точка разрыва $F_Y \exists x_n$ - последовательность т. непрерывности $F_Y \colon x_n \geqslant x_0$ и $x_n \xrightarrow[n \to \infty]{} x_0$.

При этом $F_X(x_n) = F_Y(x_n)$ и $F_X(x_n) \xrightarrow[n \to \infty]{} F_X(x_0)$, $F_Y(x_n) \xrightarrow[n \to \infty]{} F_Y(x_0)$ в силу непрерывности функции распределения справа $\Rightarrow F_X(x_0) = F_Y(x_0)$ - в точках разрыва функции распределения совпадают.

Получили, что действительно $\varphi_X(t) = \varphi_Y(t) \ \forall t \in \mathbb{R} \Rightarrow F_X(x) = F_Y(x) \ \forall x.$

5.3. Центральная предельная теорема.

Теорема. Пусть $\{X_n\}$ - последовательность независимых одинаково распределенных случайных величин, причем $\mathbb{E}X_1 = a$ и $\mathbb{D}X_1 = \sigma^2$. Тогда для всех t:

$$\lim_{n \to \infty} P\left(\frac{X_1 + \ldots + X_n - na}{\sqrt{n\sigma^2}} \leqslant t\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{x^2}{2}} dx$$

или, равносильно:

$$\frac{S_n - \mathbb{E}S_n}{\sqrt{\mathbb{D}S_n}} \xrightarrow{d} Z$$
, где $Z \sim \mathcal{N}(0,1)$ — стандартная нормальная случайная величина, а $S_n := X_1 + \ldots + X_n$.

Локазательство

Перейдем от случайных величин X_j к центрированным случайным величинам $X_j' = (X_j - a)$. Математическое ожидание полученных случайных величин равно 0, $\mathbb{E} X_j' = 0$. Дисперсия при сдвиге не изменится, $\mathbb{D} X_j' = \sigma^2$. Тогда

$$\frac{X_1 + \ldots + X_n - na}{\sqrt{n\sigma^2}} = \frac{X_1' + \ldots + X_n'}{\sqrt{n\sigma^2}}$$
 и
$$\frac{X_1 + \ldots + X_n - na}{\sqrt{n\sigma^2}} \xrightarrow{d} Z \sim \mathcal{N}(0, 1) \Leftrightarrow \frac{X_1' + \ldots + X_n'}{\sqrt{n\sigma^2}} \xrightarrow{d} Z \sim \mathcal{N}(0, 1)$$

Вычислим характеристическую функцию случайной величины $\frac{X_1' + \ldots + X_n'}{\sqrt{n\sigma^2}}$.

$$\varphi_{\frac{X_1'+\dots+X_n'}{\sqrt{n\sigma^2}}}(t) = \left[\text{так как } X_1,\dots,X_n \text{ независимыe}\right] = \varphi_{\frac{X_1'}{\sqrt{n\sigma^2}}}(t) \cdot \dots \cdot \varphi_{\frac{X_n'}{\sqrt{n\sigma^2}}}(t) =$$

$$= \varphi_{X_1'}(\frac{t}{\sqrt{n\sigma^2}}) \cdot \dots \cdot \varphi_{X_n'}(\frac{t}{\sqrt{n\sigma^2}}) = \left(\varphi_{X_1'}(\frac{t}{\sqrt{n\sigma^2}})\right)^n$$

Заметим, что

$$\varphi_{X_1'}(0) = 1, \ \varphi_{X_1'}'(0) = i\mathbb{E}X_1' = 0, \ \varphi_{X_1'}''(0) = -\mathbb{E}(X_1')^2 = -\mathbb{D}X_1' = -\sigma^2$$

По формуле Тейлора

$$\varphi_{X_{1}'}(\frac{t}{\sqrt{n\sigma^{2}}}) = \varphi_{X_{1}'}(0) + \frac{t}{\sqrt{n\sigma^{2}}}\varphi_{X_{1}'}'(0) + \frac{1}{2}\left(\frac{t}{\sqrt{n\sigma^{2}}}\right)^{2}\varphi_{X_{1}'}''(0) + o\left(\left(\frac{t}{\sqrt{n\sigma^{2}}}\right)^{2}\right) = 1 - \frac{\sigma^{2}}{2} \cdot \frac{t^{2}}{n\sigma^{2}} + o\left(\frac{1}{n}\right) = 1 - \frac{t^{2}}{2n} + o\left(\frac{1}{n}\right)$$

Тогда

$$\left(\varphi_{X_1'}(\frac{t}{\sqrt{n\sigma^2}})\right)^n = \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^n = e^{n\ln\left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)} = \left[\text{логарифм раскладываем по формуле Тейлора}\right] = e^{n\left(-\frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)} = e^{-\frac{t^2}{2} + o\left(1\right)} \xrightarrow[n \to \infty]{} e^{-\frac{t^2}{2}}$$

Остается заметить, что $e^{-\frac{t^2}{2}}$ - характеристическая функция стандартной нормальной случайной величины $Z \sim \mathcal{N}(0,1)$, $\varphi_{\frac{S_n - \mathbb{E}S_n}{\sqrt{\mathbb{D}S_n}}}(t) \xrightarrow[n \to \infty]{} e^{-\frac{t^2}{2}} = \varphi_Z(t) \Rightarrow \frac{S_n - \mathbb{E}S_n}{\sqrt{\mathbb{D}S_n}} \xrightarrow{d} Z \sim \mathcal{N}(0,1).$

- 6. Подстановка сходящейся по распределению последовательности случайных величин в непрерывную функцию. Сходимость суммы и произведения сходящихся по распределению последовательностей случайных величин в случае, когда одна из предельных случайных величин постоянная. Примеры применения: выборочная дисперсия и взаимосвязь с ЦПТ. Теорема о сходимости последовательности вида $\frac{f(a+h_nX_n)-f(a)}{h_n}$ для сходящейся по распределению последовательности X_n . Взаимосвязь с ЦПТ.
- 6.1. Подстановка сходящейся по распределению последовательности случайных величин в непрерывную функцию.

Теорема. Если последовательность случайных величин X_n сходится по распределению к X, то для всякой непрерывной функции f случайные величины $f(X_n)$ сходятся по распределению к f(X).

Доказательство.

Из лекции 2 мы знаем, что

$$X_n \xrightarrow{d} X \Leftrightarrow \forall g \ \mathbb{E} g(X_n) \xrightarrow[n \to \infty]{} \mathbb{E} g(X)$$
, где g – непрерывная, ограниченная функция

 $g \circ f := h$ — непрерыная функция (т.к. композиция непрерывных функция), ограниченная(т.к. g ограниченная)

$$\mathbb{E}g(f(X_n)) = \mathbb{E}h(X_n), \, \mathbb{E}g(f(X)) = \mathbb{E}h(X)$$

Значит из утверждения выше

$$X_n \xrightarrow{d} X \Rightarrow \mathbb{E}h(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}h(X)$$

Снова применяем утверждение

$$\mathbb{E}g(f(X_n)) \xrightarrow[n \to \infty]{} \mathbb{E}g(f(X)) \Rightarrow f(X_n) \xrightarrow{d} f(X)$$

6.2. Сходимость суммы и произведения сходящихся по распределению последовательностей случайных величин в случае, когда одна из предельных случайных величин постоянная.

Лемма. Пусть X, Y, Z случайные величины. Тогда $\forall t \in \mathbb{R} \ \forall \varepsilon > 0$ выполнено

$$P(X+Z\leqslant t-\varepsilon)-P(|Y-Z|\geqslant \varepsilon)\leqslant P(X+Y\leqslant t)\leqslant P(X+Z\leqslant t+\varepsilon)+P(|Y-Z|\geqslant \varepsilon)$$

Доказательство.

$$P(X+Y\leqslant t)\leqslant P(X+Y\leqslant t,|Y-Z|\leqslant \varepsilon)+P(X+Y\leqslant t,|Y-Z|\geqslant \varepsilon)\leqslant P(X+Y\leqslant t,|Y-Z|\leqslant \varepsilon)+P(|Y-Z|\geqslant \varepsilon)$$

Расскроем модуль

$$-\varepsilon \leqslant Y - Z \Rightarrow Z - \varepsilon \leqslant Y$$

Подставим вместо Y $Z - \varepsilon$

Событие $X+Y\leqslant t\cap |Y-Z|\geqslant \varepsilon$ вложено в событие $X+Z-\varepsilon\leqslant t$

$$\leq P(X + Z - \varepsilon \leq t) + P(|Y - Z| \geqslant \varepsilon)$$

Ищем другую оценку

Заменим в получившемся неравенстве Y на Z, Z на Y

$$P(X + Z \le t) \le P(X + Y - \varepsilon \le t) + P(|Z - Y| \ge \varepsilon) =$$

$$= P(X + Y \le t + \varepsilon) + P(|Y - Z| \ge \varepsilon)$$

Обозначим $t + \varepsilon := t$

$$P(X + Z \le t - \varepsilon) \le P(X + Y \le t) + P(|Y - Z| \ge \varepsilon)$$

$$P(X + Y \leqslant t) \geqslant P(X + Z \leqslant t - \varepsilon) - P(|Y - Z| \geqslant \varepsilon)$$

Теорема. Если $X_n \xrightarrow{d} X$ и $Y_n \xrightarrow{d} C = const$ то

$$X_n + Y_n \xrightarrow{d} X + C$$

$$X_n \cdot Y_n \xrightarrow{d} X \cdot C$$

Доказательство. Вспомним доказательство того что

$$Y_n \xrightarrow{d} C = const \Rightarrow Y_n \xrightarrow{p} C$$

$$\lim_{n \to \infty} P(|X_n - C| \ge \varepsilon) = \lim_{n \to \infty} P(X_n - C \ge \varepsilon \text{ or } -X_n + C \ge \varepsilon) \le$$

$$\lim_{n \to \infty} P(X_n - C \ge \varepsilon) + \lim_{n \to \infty} P(X_n \le C - \varepsilon) =$$

$$= 1 - F_{X_n}(\varepsilon + C) + F_{X_n}(C - \varepsilon) = 0$$

Используем лемму

$$P(X_n + C \leqslant t - \varepsilon) - P(|Y_n - C| \geqslant \varepsilon) \leqslant P(X_n + Y_n \leqslant t) \leqslant P(X_n + C \leqslant t + \varepsilon) + P(|Y_n - C| \geqslant \varepsilon)$$
$$F_{X_n}(t - \varepsilon - C) - P(|Y_n - C| \geqslant \varepsilon) \leqslant F_{X_n + Y_n}(t) \leqslant F_{X_n}(t + \varepsilon - C) + P(|Y_n - C| \geqslant \varepsilon)$$

1) $n \to \infty$

Заметим, что мы всегда можем выбрать точки $t - \varepsilon - C, t + \varepsilon - C$ в которых функция F_X непрерывна, т.к. точек разрыва счетное количество, а ε континуальная переменная.

T.K.
$$Y_n \xrightarrow{p} C \Leftrightarrow_{def} \lim_{n \to \infty} P(|Y_n - C| \geqslant \varepsilon) = 0$$

$$F_X(t-\varepsilon-C) \leqslant \underline{\lim}_{n\to\infty} F_{X_n+Y_n}(t) \leqslant \overline{\lim}_{n\to\infty} F_{X_n+Y_n}(t) \leqslant F_X(t+\varepsilon-C)$$

2) $\varepsilon \to 0$

Заметим, что t - C точка непрерывности функции F_X тогда и только тогда, когда t точка непрерывности функции F_{X+C} .

$$F_X(t-C) \leqslant \underline{\lim}_{n \to \infty} F_{X_n+Y_n}(t) \leqslant \overline{\lim}_{n \to \infty} F_{X_n+Y_n}(t) \leqslant F_X(t-C)$$

Так как слева и справа у нас одно и тоже значение $\Rightarrow \exists \lim_{n \to \infty} F_{X_n + Y_n}(t) = F_X(t - C) = F_{X + C}(t)$

1) C = 0

$$\{|X_n\cdot Y_n|\geqslant\varepsilon\}\subset\{|X_n|>R\}\cup\{|Y_n|\geqslant\frac{\varepsilon}{R}\}$$

$$P(|X_n\cdot Y_n|\geqslant\varepsilon)\leqslant P(|X_n|>R)+P(|Y_n|\geqslant\frac{\varepsilon}{R})$$

$$P(|X_n|\geqslant R)=P(|X_n|\geqslant R)+P|(X_n|\leqslant-R)\leqslant P(|X_n|>\frac{R}{2})+F_{X_n}(-R)=1-F_{X_n}(\frac{R}{2})+F_{X_n}(-R)$$

$$P(|X_n\cdot Y_n|\geqslant\varepsilon)\leqslant P(|X_n|>R)+P(|Y_n|\geqslant\frac{\varepsilon}{R})\leqslant 1-F_{X_n}(\frac{R}{2})+F_{X_n}(-R)+\underbrace{P(|Y_n-C(=0)|\geqslant\frac{\varepsilon}{R})}_{\xrightarrow{n\to\infty}\to 0\text{(t.K. CX-CTL IIO BEP.)}}$$

a) $n \to \infty$

$$\overline{\lim}_{n\to\infty} P(|X_n \cdot Y_n \geqslant \varepsilon) \leqslant 1 - F_X(\frac{R}{2}) + F_X(-R) + 0$$

b) $R \to \infty$

R – точка непрерывности F_X

$$0 \leqslant \underline{\lim}_{n \to \infty} P(|X_n \cdot Y_n| \geqslant \varepsilon) \leqslant \overline{\lim}_{n \to \infty} P(|X_n \cdot Y_n| \geqslant \varepsilon) \leqslant 1 - F_X(\frac{R}{2}) + F_X(-R) \leqslant 0$$

$$\Rightarrow X_n \cdot Y_n \xrightarrow{p} 0 \Rightarrow_{\text{Jeking 1}} X_n \cdot Y_n \xrightarrow{d} 0$$

2) Общий случай

$$X_n Y_n = X_n (Y_n - C) + X_n C$$
 $X_n (Y_n - C) \xrightarrow{d} 0 \text{ по } 1)$
 $CX_n \xrightarrow{d} CX$

 $CX+0 \xrightarrow{d} CX$ сумму разбирали выше

6.3. Примеры применения: выборочная дисперсия и взаимосвязь с ЦПТ.

Пример 1(Выборочная дисперсия)

Пусть задана последовательность независимых и одинаково распределенных случайных величин X_j , причем $\mathbb{E} X_j = a$ и $\mathbb{D} X_j = \sigma^2$. Тогда последовательность случайных величин

$$s_n^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \overline{X_n})^2$$
, где $\overline{X_n} = \frac{X_1 + \dots + X_n}{n}$

Проверим это

$$\overline{X_n} \xrightarrow{p} a(3\mathrm{BH})$$

$$s_n^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \overline{X_n})^2 = \frac{n}{n-1} \frac{1}{n} \sum_{j=1}^n X_j^2 + \frac{1}{n-1} \left(-2 \sum_{j=1}^n X_j \cdot \overline{X_n} + n \overline{X_n}^2 \right) = \frac{n}{n-1} \left(\frac{1}{n} \sum_{j=1}^n X_j^2 - \overline{X_n}^2 \right) (*)$$

$$\frac{1}{n} \sum_{j=1}^n X_j^2 \xrightarrow{p} \mathbb{E} X_1^2 (3\mathrm{BH})$$

$$\overline{X_n}^2 \xrightarrow{p} (\mathbb{E} X_1)^2$$

$$\frac{n}{n-1} \to 1$$

$$(*) \xrightarrow{p} \mathbb{D} X_1 = \sigma^2$$

$$\mathbb{E} s_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \cdot n \cdot \mathbb{E} X_1^2 - \mathbb{E}(\overline{X_n})^2 \right) =$$

$$\mathbb{E}(\overline{X_n})^2 = \mathbb{E}(\overline{X_n} - a + a)^2 = \mathbb{E}(\overline{X_n} - a)^2 + a^2 - 2a \underbrace{\mathbb{E}(\overline{X_n} - a)}_{0} = a^2 + \mathbb{D}\overline{X_n} = a^2 + \frac{1}{n^2} \mathbb{D}(X_1 + \dots + X_n) = a^2 + \frac{\sigma^2}{n}$$

$$= \frac{n}{n-1} (\sigma^2 + a^2 - a^2 - \frac{\sigma^2}{n}) = \sigma^2$$

Пример 2(Взаимосвязь с ЦПТ)

Обозначения сохранятется с прошлого примера

Хотип показать, что

$$\frac{\sqrt{n}(\overline{X_n}-a)}{\sqrt{s_n^2}}\to Z\sim\mathcal{N}(0,1)$$

$$\frac{\sqrt{n}(\overline{X_n}-a)}{\sqrt{s_n^2}}=\frac{\sqrt{n}(\overline{X_n}-a)}{\sigma}\cdot\sqrt{\frac{\sigma^2}{s_n^2}}$$

$$\frac{\sqrt{n}(\overline{X_n}-a)}{\sigma}\to Z\sim\mathcal{N}(0,1)$$
из лекции 4
$$\sqrt{\frac{\sigma^2}{s_n^2}}\xrightarrow{p}\sqrt{\frac{\sigma^2}{\sigma^2}}=1(\text{Обсуждали выше})$$

$$\frac{\sqrt{n}(\overline{X_n}-a)}{\sqrt{s_n^2}}\to Z\cdot 1\xrightarrow{d}Z\sim\mathcal{N}(0,1)$$

Значит

6.4. Теорема о сходимости последовательности вида $\frac{f(a+h_nX_n)-f(a)}{h_n}$ для сходящейся по распределению последовательности X_n .

Теорема. Пусть $a, h_n \in \mathbb{R}, h_n \to 0$ и f непрерывная на \mathbb{R} и дифференцируемая в точке а функция. Если последовательность случайных величин $X_n \stackrel{d}{\to} X$, то

$$\frac{f(a+h_nX_n)-f(a)}{h_n} \xrightarrow{d} f'(a)X$$

Доказательство. Введем функция

$$g(x) = \begin{cases} \frac{f(a+x) - f(a)}{x} & x \neq 0\\ f'(a) & x = 0 \end{cases}$$

g – непрерывная

$$h_n \xrightarrow{d} 0$$
$$X_n \xrightarrow{d} X$$

 $h_n X_n \xrightarrow{d} 0$ (теорема про произведения) \Rightarrow

$$g(h_n X_n) \xrightarrow{d} g(0)$$
(первая теорема в билете $6) = f^{'}(a)$

$$\frac{f(a+h_nX_n)-f(a)}{h_n}=X_n\cdot g(h_nX_n)=X_n\cdot \frac{f(a+h_nX_n)-f(a)}{h_nX_n}\stackrel{d}{\to} f^{'}(a)X \text{(теорема про произведения)}$$

6.5. Взаимосвязь с ЦПТ.

Пример

Обозначения сохранятется с прошлого примера

Пусть задана последовательность независимых и одинаково распределенных случайных величин X_j , причем $\mathbb{E} X_j = a$ и $\mathbb{D} X_j = \sigma^2 > 0$. Если f дифференцируемая функция, то

$$\sqrt{n}(f(\overline{X_n}) - f(a)) \xrightarrow{d} Y \sim \mathcal{N}(0, q^2), \ q = \sigma f'(a)$$

Докажем это

Введем

$$Z_n = \frac{\sqrt{n}(\overline{X_n} - a)}{\sigma} \xrightarrow{d} Z \sim \mathcal{N}(0,1)$$

Тогда

$$\frac{\sqrt{n}(f(\overline{X_n}) - f(a))}{\sigma} = \frac{f(a + \frac{\sigma}{\sqrt{n}}Z_n) - f(a)}{\frac{\sigma}{\sqrt{n}}} \xrightarrow{d} f'(a)Z$$

$$\sqrt{n}(f(\overline{X_n}) - f(a)) = \sigma \cdot \frac{\sqrt{n}(f(\overline{X_n}) - f(a))}{\sigma} \xrightarrow{d} \sigma f'(a)Z \sim \mathcal{N}(0, q^2)$$

7. Неравенство типа Хефдинга-Чернова. Пример применения.

7.1. Неравенство типа Хедфинга-Чернова

Теорема (Неравенство Хедфинга-чернова). Пусть случайные величины X_1, \dots, X_n независимы и $a_j \leqslant X_j \leqslant b_j$. Тогда для случайной величины $S_n := X_1 + \dots + X_n$ и для каждого t > 0 выполнено

$$P(S_n - \mathbb{E}S_n \geqslant t) \leqslant 2exp(-\frac{t^2}{4\sum_{i=1}^n (b_i - a_i)^2})$$

Доказательство. Пусть $Y_j = X_j - \mathbb{E} X_j$. Тогда $|Y_j| \leqslant b_j - a_j$, т.к. $X_j \in [a_j, b_j]$ и $\mathbb{E} \in [a_j, b_j]$. Заметим, что для каждого $\lambda > 0$

$$P(\sum_{j=1}^{n} Y_{j} \geqslant t) = P(e^{\lambda \sum_{j=1}^{n} Y_{j}} \geqslant e^{\lambda t}) \leqslant e^{-\lambda t} \mathbb{E}e^{\lambda \sum_{j=1}^{n} Y_{j}} = e^{-\lambda t} \prod_{j=1}^{n} \mathbb{E}e^{\lambda Y_{j}}$$

Оценим каждое ожидание из произведения:

$$\mathbb{E}e^{\lambda Y_j} = 1 + \lambda \mathbb{E}Y_j + \frac{1}{2}\lambda^2 \mathbb{E}Y_j^2 + \sum_{k=3}^{\infty} \frac{1}{k!} \lambda^k \mathbb{E}Y_j^k \leqslant 1 + \frac{1}{2}\lambda^2 (b_j - a_j)^2 + \sum_{k=3}^{\infty} \frac{1}{k!} \lambda^k (b_j - a_j)^k,$$

здесь мы использовали $\mathbb{E}Y_j=0$. Докажем, что при R>0 выполнена оценка

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k \leqslant e^{R^2}$$

Действительно, если R > 1, то

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k = 1 + \frac{1}{2}R^2 + \sum_{m=2}^{\infty} \frac{1}{m!}R^{2m}[\frac{m!}{(2m-1)!}R^{-1} + \frac{m!}{(2m)!}] \leqslant 1 + \frac{1}{2}R^2 + \sum_{m=2}^{\infty} \frac{1}{m!}R^{2m}[\frac{2}{m+1}] \leqslant 1 + R^2 + \sum_{m=2}^{\infty} \frac{1}{m!}R^{2m} = e^{R^2}.$$

если же $R \leqslant 1$, то

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k \leqslant 1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{2^{k-1}}R^2 = 1 + R^2 \leqslant e^{R^2}.$$

Таким образом,

$$P(\sum_{j=1}^{n} Y_j \geqslant t) \leqslant 2exp(-\lambda t + \lambda^2 \sum_{j=1}^{n} (b_j - a_j)^2).$$

Взяв $\lambda = \frac{t}{2\sum_{j=1}^{n}(b_{j}-a_{j})^{2}},$ получим оценку

$$P(S_n - \mathbb{E}S_n \geqslant t) \leqslant exp(-\frac{t^2}{4\sum_{i=1}^n (b_i - a_i)^2}).$$

Аналогично, рассматривая случайные величины $X_j^{'} \coloneq -X_j$ получаем оценку

$$P(-S_n + \mathbb{E}S_n \geqslant t) \leqslant exp(-\frac{t^2}{4\sum_{j=1}^n (b_j - a_j)^2}).$$

объединяя полученные неравенства получаем оценку из формулировки теоремы

Теорема (следствие). Пусть X_j Bern(p)-- набор независимых Бернуллевских случайных величин, $S_n=X_1+\cdots+X_n$, тогда

$$P(|\frac{S_n}{n} - p| \geqslant t) \leqslant 2e^{-\frac{nt^2}{4}}$$

7.2. Пример применения

Пример

Пусть в ящике какое-то кол-во черных и белых шаров. Каким должен быть размер выборки, чтобы оценить долю белых шаров с малой погрешностью? Пусть ξ_j — бернуллевская случайная величина, равная 1, если шар белого цвета и 0, если цвет черный. Мы хотим оценить вероятность успеха р. По нер-ву выше

$$P(|\frac{S_n}{n} - p| \geqslant t) \leqslant 2e^{-\frac{nt^2}{4}} < \varepsilon$$

Тогда при размере выборки $n = O(\frac{log \varepsilon^{-1}}{t^2})$ выборочное среднее приближает реальную долю белых шаров с точностью t с вероятностью более $1 - \varepsilon$.

- 8. Многомерная характеристическая функция. Сходимость по распределению последовательности случайных векторов. Эквивалентное описание сходимости по распределению через сходимость характеристических функций (без доказательства). Независимость случайных величин в терминах характеристической функции совместного распределения. Матрица ковариаций, смысл задаваемой ей билинейной формы, ее изменение при линейных преобразованиях. Многомерная ЦПТ.
- 8.1. Многомерная характеристическая функция.

Обозначение 1.
$$\langle x, y \rangle = x_1 y_1 + \dots + x_m y_m$$
, где $x = (x_1, \dots, x_m) \in \mathbb{R}^m$, $y = (y_1, \dots, y_m) \in \mathbb{R}^m$

Определение 1. Характеристическая функция случайного вектора $X = (X_1, \dots, X_m)$ определяется равенством

$$\varphi_X(t) = \mathbb{E}(e^{i\langle X, t\rangle})$$

8.2. Сходимость по распределению последовательности случайных векторов.

Определение 2. Последовательность случайных векторов $X^n = (X_1^n, \dots, X_m^n)$ сходится по распределению к случайному вектору $X = (X_1, \dots, X_m)$, если для каждой непрерывной, ограниченной функции $g : \mathbb{R}^m \to \mathbb{R}$ выполнено $\mathbb{E}g(X^n) \to \mathbb{E}g(X)$ (обозначение $X^n \xrightarrow{d} X$).

8.3. Эквивалентное описание сходимости по распределению через сходимость характеристических функций (без доказательства).

Теорема 0.2. Без доказательства

Последовательность случайных векторов X^n сходится по распределению к случайному вектору X тогда и только тогда, когда $\varphi_{X^n}(y) \to \varphi_X(y)$ для каждого $y \in \mathbb{R}^m$.

Следствие. Без доказательства

Если $\varphi_X = \varphi_Y$, то векторы X и Y имеют одинаковые распределения.

8.4. Независимость случайных величин в терминах характеристической функции совместного распределения.

Теорема 0.3. Случайные величины X_1, \ldots, X_m независимы тогда и только тогда, когда

$$\varphi_X(y_1,\ldots,y_m) = \varphi_{X_1}(y_1)\cdot\ldots\cdot\varphi_{X_m}(y_m) \ \forall y\in\mathbb{R}^m$$

$$e\partial e \ X = (X_1, \dots, X_m)$$

Доказательство.

 \Rightarrow

$$\varphi_X(y_1,\ldots,y_m) = \mathbb{E}e^{i(X_1y_1+\ldots+X_my_m)} = \mathbb{E}\prod_{i=1}^m e^{iX_iy_i} \underbrace{=}_{\text{Hesab.}} \prod_{i=1}^m \mathbb{E}e^{iX_iy_i} = \prod_{i=1}^m \varphi_{X_i}(y_i)$$

Зададим случаный вектор Ү

- ullet $Y=(Y_1,\ldots,Y_m)$ независимые компоненты
- ullet $F_Y(x_1,\ldots,x_m):=F_{X_1}(x_1)\cdot\ldots\cdot F_{X_m}(x_m)$, т.е. Y_j имеет такое же распределение как и X_j

Почему мы можем задать такой вектор?

- Произведение функций распределения функция распределения
- По любой функции распределения можно построить случайный вектор

• У этого вектора компоненты независимы, т.к. функция совместного распределения распалась в произведение.

$$\varphi_Y(y) = \varphi_{Y_1}(y_1) \cdot \ldots \cdot \varphi_{Y_m}(y_m) =$$

Т.к. независимость компоненты; но если непонятно, то можно посмотреть выше как это расписывается

$$=\varphi_{X_1}(y_1)\cdot\ldots\cdot\varphi_{X_m}(y_m)=$$

Т.к. Y_j сходится по распределению к X_j , то хар.функии тоже сходятся(Лекция 3, теорема 5)

$$= \varphi_X(y)$$
 (см.условие)

Получили

$$\varphi_X(y)=\varphi_Y(y)\; \forall y\Rightarrow F_x=F_y({
m cm.}$$
 следствие выше)

Если совпадают функции распределения, то и свойства независимости совпадают. Значит компоненты X тоже независимы.

8.5. Матрица ковариаций, смысл задаваемой ей билинейной формы, ее изменение при линейных преобразованиях.

Определение 3. Пусть $X = (X_1, \ldots, X_m)$ случайный вектор. Матрица R_X с компонентами $r_{kj} := cov(X_k, X_j)$ называется ковариационной матрицей вектора X.

Теорема 0.4. Симметричная неотрицательно определенная матрица R является ковариационной матрицей случайного вектора X тогда и только тогда, когда

$$\langle Rx, y \rangle = cov(\langle x, X \rangle, \langle y, X \rangle) = \mathbb{E}(\langle x, X - a \rangle, \langle y, X - a \rangle)$$

, где $a=(a_1,\ldots,a_m)$ вектор средних, т.е. $a=\mathbb{E}X_j$

Доказательство.

$$e_{k} = (0, \dots 0, \underbrace{1}_{k}, \dots 0)$$

$$e_{j} = (0, \dots 0, \underbrace{1}_{j}, \dots 0)$$

$$x = \sum_{k} x_{k} e_{k}; \ y = \sum_{j} j_{j} e_{j}$$

$$\langle \sum_{k} x_{k} R_{x} e_{k}, \sum_{j} y_{j} e_{j} \rangle = \sum_{k} \sum_{j} \underbrace{\langle R_{x} e_{k}, e_{j} \rangle}_{(def)cov(x_{k}, x_{j})} x_{k} y_{j}(*)$$

$$cov(x_{k}, x_{j}) = cov(\langle x, e_{k} \rangle, \langle x, e_{j} \rangle)$$

$$(*) = \sum_{k} \sum_{j} (cov(\langle x, e_{k} \rangle, \langle y, e_{j} \rangle)) x_{k} y_{j} = \sum_{k} \sum_{j} (cov(\langle x, x_{k} e_{k} \rangle, \langle x, y_{j} e_{j} \rangle)) =$$

$$= \sum_{k} (cov(\langle x, x_{k} e_{k} \rangle, \sum_{j} \langle x, y_{j} e_{j} \rangle)) = cov(\langle x, x \rangle, \langle x, y \rangle)$$

Теорема 0.5. Пусть X – случайный вектор c ковариационной матрицей, тогда случайный вектор AX + b имеет ковариационную матрицу ARA^*

Доказательство.

$$Y = AX + b$$

$$\langle R_u u, v \rangle = cov(\langle AX, u \rangle + \langle b, u \rangle, \langle AX, v \rangle + \langle b, v \rangle) =_* cov(\langle AX, u \rangle, \langle AX, v \rangle) = cov(\langle X, A^*u \rangle, \langle X, A^*v \rangle) =_{**}$$

* – сдвиг на константу на ковариацию не влиятет

** - см. теорему выше

$$= \langle R_x A^* u, A^* v \rangle = \langle A R_x A^* u, v \rangle$$
$$R_y = A R_x A^*$$

8.6. Многомерная ЦПТ.

Теорема 0.6. Пусть случайные вектора $X^n = (X_1^n, \dots, X_m^n)$ независимы, одинаково распределены и имеют конечные $a_j = \mathbb{E} X_j^n, r_{k,j} = cov(X_k^1, X_j^1)$

Tогда последовательность случайных векторов $Y^n = (Y_1^n, \dots, Y_m^n)$ с компонентами

$$Y_j^n = \frac{X_j^1 + \ldots + X_j^n - na_j}{\sqrt{n}}$$

cxodumcs по распределению κ вектору Z, характеристическая функция, которого имеет вид

$$\varphi_Z(y) = e^{-\frac{1}{2}\langle R_y, y \rangle}, R = r_{k,i}$$

Доказательство.

Фиксируем $y \in \mathbb{R}^m$

Рассмотри последовательность случайных величин

$$\xi_n := \frac{\langle X^1, y \rangle + \ldots + \langle X^n, y \rangle - n \langle a, y \rangle}{\sqrt{n}} = \langle Y^n, y \rangle$$

- $\{X^i,y\}$ независимы, одинаковы распределенные
- $\mathbb{E}(\langle X^1, y \rangle) = \langle a^1, y \rangle$

Значит по одномерной цпт

$$\xi_n \xrightarrow{d} Z_y \sim \mathcal{N}(0, \mathbb{D}\langle X^1, y \rangle)$$
$$\varphi_{\xi_n}(t) \to \varphi_{Z_y} = e^{-\frac{1}{2}t^2 \mathbb{D}\langle X^1, y \rangle}$$

Заметим что

$$\varphi_{Y^n}(y) = \mathbb{E}e^{i\langle Y^n, y \rangle}$$

$$\varphi_{\langle Y^n, y \rangle}(1) = \mathbb{E}e^{i \cdot 1 \cdot \langle Y^n, y \rangle}$$

$$\Rightarrow \varphi_{Y^n}(y) = \varphi_{\langle Y^n, y \rangle}(1) = \varphi_{\xi_n}(1) \to_* \varphi_{Z_y}(1) = e^{-\frac{1}{2}\mathbb{D}\langle X^1, y \rangle}$$

$$\mathbb{D}\langle X^1, y \rangle = cov(\langle X^1, y \rangle, \langle X^1, y \rangle) = \langle R_Y, y \rangle$$

Получили

* - T.K. $\xi_n \xrightarrow{d} Z_n$

$$\varphi_{Y^n} \to e^{-\frac{1}{2}\langle R_Y, y \rangle} \Rightarrow Y^n \xrightarrow{d} Z$$

- 9. Многомерное нормальное распределение. Свойства нормального вектора: линейный образ нормального распределения нормален, характеризация через одномерные распределения, значение параметров нормального вектора, равносильность независимости и некоррелированности компонент. Представление нормального вектора, как линейный образ стандартного нормального вектора, ортогонализация. Плотность нормального вектора.
- 9.1. Многомерное нормальное распределение.

Определение Случайный вектор X имеет нормальное распределение или явялется гауссовским, если $\varphi_x(y) = E[exp(i < X, y >)] = e^{-\frac{1}{2} < Ry, y > + i < a, y >}$.

Где $a = (a_1, ..., a_m) \in \mathbb{R}^m, \mathbb{R}$ — симметричная неотрицательно определенная $m \times m$ матрица. Далее пишем $X \sim N(a, \mathbb{R})$.

9.2. Свойства нормального вектора: линейный образ нормального распределения нормален, характеризация через одномерные распределения, значение параметров нормального вектора, равносильность независимости и некоррелированности компонент.

Предложение 1. $X \sim N(a, R)$, то вектор $AX + b \sim N(Aa + b, ARA^*)$

Доказательство. Доказывается простой подстановкой по определению:

$$\varphi_{AX+b}(y) = E[exp(i < AX+b, y >)] = e^{i < b, y >} E[exp(i < X, A^*y >)] = e^{i < b, y > +i < a, A^*y > -\frac{1}{2}(RA^*y, A^*y)}$$

Остается заметить, что $< RA^*y, A^*y > = < ARA^*y, y >$, а также $i < b, y > +i < a, A^*y > = i < Aa + b, y >$.

Теорема 1. Вектор X имеет нормальное распределение тогда и только тогда, когда для каждого вектора у случайная величина < y, X > имеет нормальное распределение.

Доказательство. Так как по условию $X \sim N(a, R)$, то:

$$\varphi_{< X,y>}(t) = E[exp(it < X,y>)] = e^{-\frac{1}{2}t^2 < Ry,y> + it < a,y>}$$

Иными словами, $< X, y > \sim N(< a, y >, < Ry, y >,$ поскольку < a, y > = E[< X, y >], < Ry, y > = D[< X, y >]. Докажем обратно:

$$\varphi_X(y) = Ee^{i < X,y>} = \varphi_{< X,y>}(1) = e^{-\frac{1}{2}D[< X,y>] + e[< X,y>]} = e^{-\frac{1}{2}t^2 < Ry,y> + it < a,y>}$$

Не забываем, что R - ковариационная матрица X, а - вектор средних.

Следствие 1. Если $X \sim N(a, R)$, то R - ковариационная матрица X, а - вектор средних.

Следствие 2. Если вектор (X_1, X_2) имеет нормальное распределение и $cov(X_1, X_2) = 0$, то величины X_1 и X_2 независимы.

Доказательство Если ковариация равна 0, то у нас независимость дисперсий:

$$\varphi_{(X_1,X_2)}(y_1,y_2) = e^{-\frac{1}{2}(y_1^2DX_1 + y_2^2DX_2 + i(y_1EX_1 + y_2EX_2))} = \varphi_{X_1}(y_1)\varphi_{X_2}(y_2)$$

9.3. Представление нормального вектора, как линейный образ стандартного нормального вектора, ортогонализация.

Следствие 3. Если $X \sim N$ (a, R), то найдется такая матрица A, что X = AZ + a, где $Z = (Z_1, ..., Z_k)$ и случайные величины Zj независимы и имеют стандартное нормальное распределение, $AA^* = R$.

Доказательство. Перейдем к случайным векторам $X'_j = X_j - a_j$. Нам надо найти ортонормированный базис в линейном пространстве $span(X'_1,...,X'_m)$ со скалярным произведением (X,Y) = E[XY]. Для этого будем использовать метод Грамма-Шмидта. После него мы получаем случайные величины $(Z_1,...,Z_k) = Z$, что линейно выражаются через $X'_1,...X'_m$. Т.е. в частности вектор Z - нормальный и $E[Z_j] = 0$, кроме того система является ортонормированным базисом в $span(X'_1,...,X'_m)$. То, что это базис означает X = AZ. Ортономированность означает $cov(Z_k,Z_j) = E[Z_k,Z_j) = 0$, $D[Z_j] = E[Z_j^2] = 1$. Поэтому случайные величины $Z_j \sim N(0,1)$ и независимы. Равенство $AA^* = R$ следует из того, как меняется матрица при линейных отображениях.

9.4. Плотность нормального вектора.

Теорема 2. Если $X \sim N(a, R)$ и $det R \neq 0$, то случайны вектор X имеет плотность:

$$\rho(x) = \frac{1}{(2\pi)^{\frac{m}{2}} \sqrt{\det R}} e^{-\frac{1}{2} \langle R^{-1}(x-a), x-a \rangle}$$

Доказательство. Поскольку можем представить X как AZ + a, где A матрица квадртная и невырожденная (иначе R $= AA^*$ вырождена), то:

$$P(X \in B) = P(AZ + a \in B) = \frac{1}{(\pi)^{\frac{m}{2}}} \int\limits_{Ax + a \in B} e^{-\frac{1}{2}|x|^2} dx = \frac{1}{(\pi)^{\frac{m}{2}} \det A} \int\limits_{B} e^{-\frac{1}{2}|A^{-1}(y-a)|^2} dy$$
 Осталось заметить, что $|A^{-1}(y-a)|^2 = \langle A^{-1}(y-a), A^{-1}(y-a) \rangle = \langle (AA)^{-1}(y-a), (y-a) \rangle$ и $(\det A)^2 = \det R$.

- 10. Условное математическое ожидание в дискретном случае относительно разбиения и относительно случайной величины. Основные свойства: линейность, монотонность, формула полной вероятности, условное ожидание величины, независимой с разбиением, вынесение случайной величины из под знака условного ожидания. Эквивалентное определение условного математического ожидания и геометрическая интерпретация.
- 10.1. Условное математическое ожидание в дискретном случае относительно разбиения и относительно случайной величины.

Определение 4. Величину Λ называют условным математическим ожиданием X относительно разбиения β и обозначают через $\mathbb{E}(X|\beta)$.

Определение 5. Рассмотрим случай, когда разбиение β появляется посредством некоторой случайной величины $Y = \sum_{k=1}^n y_k I_{B_k}$, где y_k - различные числа и $P(B_k) > 0$. В этом случае $B_k = \{\omega : Y(\omega) = y_k\}$ и условное математическое ожидание $\mathbb{E}(X|\beta)$ обозначают символом $\mathbb{E}(X|Y)$ и называют условным математическим ожиданием случайной величины X относительно случайной величины Y.

10.2. Основные свойства: линейность, монотонность, формула полной вероятности, условное ожидание величины, независимой с разбиением, вынесение случайной величины из под знака условного ожидания.

Теорема 0.7. Имеют место следующие свойства условного математического ожидания:

- (i) (линейность) $\mathbb{E}(\alpha X + \beta Y | \beta) = \alpha \mathbb{E}(X | \beta) + \beta \mathbb{E}(Y | \beta)$,
- (ii) (монотонность) $X \leqslant Y$ п.н. $\Longrightarrow \mathbb{E}(X|\beta) \leqslant \mathbb{E}(Y|\beta)$,
- (iii) (аналог формулы полной вероятности) $\mathbb{E}(\mathbb{E}(X|\beta)) = \mathbb{E}X$,
- (iv) (независимость) если случайная величина X не зависит от разбиения β , т.е. случайные величины X и I_{B_k} независимы для каждого k, то $\mathbb{E}(X|\beta) = \mathbb{E}X$.
- (v) для всякой случайной величины $Z=\sum_{k=1}^n c_k I_{B_k}$ выполнено $\mathbb{E}(ZX|oldsymbol{eta})=Z\mathbb{E}(X|oldsymbol{eta}).$

Доказательство. Доказательство. Свойства (i) и (ii) следуют из того, что они верны для $\mathbb{E}(X|B_k)$ для каждого k (т.к. они верны для математического ожидания относительно произвольной вероятностной меры).

Свойство (iii) проверяется непосредственной подстановкой в определение: $\mathbb{E}(\mathbb{E}(X|\mathcal{B})) = \mathbb{E}\left(\sum_{k=1}^n I_{B_k} \frac{\mathbb{E}(XI_{B_k})}{P(B_k)}\right) = \sum_{k=1}^n \mathbb{E}(XI_{B_k}) = \mathbb{E}X.$

Обоснуем пункт (iv). Так как X и I_{B_k} независимы, то $\mathbb{E}(X|B_k) = \frac{\mathbb{E}(XI_{B_k})}{P(B_k)} = \frac{\mathbb{E}X\mathbb{E}I_{B_k}}{P(B_k)} = \mathbb{E}X$.

Следовательно, $\mathbb{E}(X|\boldsymbol{\beta}) = \sum_{k=1}^n I_{B_k} \mathbb{E}(X|B_k) = \sum_{k=1}^n I_{B_k} \mathbb{E}X = \mathbb{E}X.$

Для обоснования (v) достаточно заметить, что $\mathbb{E}(XZ|B_k) = \frac{\mathbb{E}(XZI_{B_k})}{P(B_k)} = c_k \frac{\mathbb{E}(XI_{B_k})}{P(B_k)} = c_k \mathbb{E}(X|B_k).$ ч.т.д.

Теорема 0.8. В случае, когда мы рассматриваем условное ожидание относительно случайной величины, свойства следует формулировать так:

- (i) (линейность) $\mathbb{E}(\alpha X + \beta Y|Z) = \alpha \mathbb{E}(X|Z) + \beta \mathbb{E}(Y|Z)$,
- (ii) (монотонность) $X \leqslant Y$ п.н. $\Longrightarrow \mathbb{E}(X|Z) \leqslant \mathbb{E}(Y|Z)$,
- (iii) (аналог формулы полной вероятности) $\mathbb{E}(\mathbb{E}(X|Y)) = \mathbb{E}X$,

- (iv) (независимость) если случайные величины X и Y независимы, то $\mathbb{E}(X|Y)=\mathbb{E}X.$
- (v) для всякой случайной величины Z=g(Y) выполнено $\mathbb{E}(ZX|Y)=Z\mathbb{E}(X|Y).$

10.3. Эквивалентное определение условного математического ожидания и геометрическая интерпретация.

Для условного математического ожидания выполнено $\mathbb{E}(g(Y)X) = \mathbb{E}(g(Y)\mathbb{E}(X|Y))$ для произвольной функции g. Кроме того, если для какой-то случайной величины вида Z = f(Y) выполнено $\mathbb{E}(g(Y)X) = \mathbb{E}(g(Y)Z)$ для произвольной функции g, то $Z = \mathbb{E}(X|Y)$ п.н.

Доказательство. По уже доказанному $\mathbb{E}(g(Y)\mathbb{E}(X|Y)) = \mathbb{E}(\mathbb{E}(g(Y)X|Y)) = \mathbb{E}(g(Y)X)$. Наоборот, если Z = f(Y) и обладает указанным свойством, то $\mathbb{E}(g(Y)\mathbb{E}(X|Y)) = \mathbb{E}(g(Y)Z)$ для произвольной g. Т.к. $\mathbb{E}(X|Y)$ также имеет вид h(Y), то, взяв g = f - h, получаем $\mathbb{E}|\mathbb{E}(X|Y) - Z|^2 = 0$, что даёт равенство $Z = \mathbb{E}(X|Y)$ почти наверное.

Предложение. Условное математическое ожидание $\mathbb{E}(X|Y)$ среди всех случайных величин вида g(Y) является луч-шим среднеквадратическим приближением для X, т.е. $\min_{Z:Z=g(Y)} \mathbb{E}|X-Z|^2 = \mathbb{E}|X-\mathbb{E}(X|Y)|^2$.

Доказательство. Пусть Z = g(Y). Так как по предыдущей лемме $\mathbb{E}[(X - \mathbb{E}(X|Y))(\mathbb{E}(X|Y) - Z) = 0]$, то $\mathbb{E}|X - Z|^2 = \mathbb{E}|(Z - \mathbb{E}(X|Y)) + (\mathbb{E}(X|Y) - Z)|^2 = \mathbb{E}|X - \mathbb{E}(X|Y)|^2 + \mathbb{E}|\mathbb{E}(X|Y) - Z|^2 \geqslant \mathbb{E}|X - \mathbb{E}(X|Y)|^2$.

Таким образом, с геометрической точки зрения условное математическое ожидание является проекцией X на пространство случайных величин вида g(Y) и полностью характеризуется тем свойством, что вектор $X - \mathbb{E}(X|Y)$ ортогонален указанному пространству, что записывается с помощью равенства $\mathbb{E}(Xg(Y)) = \mathbb{E}(\mathbb{E}(X|Y)g(Y))$ для произвольной случайной величины g(Y).

- 11. Условное математическое ожидание в общем случае: определение и свойства. Формула для вычисления условного математического ожидания при известной плотности совместного распределения, условная плотность. Аналог фомрулы Байеса.
- 11.1. Условное математическое ожидание в общем случае: определение и свойства.

Случайная величина вида f(Y) называется **условным математическим ожиданием** случайной величины X (обладающей математическим ожиданием) относительно случайной велечины Y и обозначается как E[X|Y], если:

$$E(Xg(Y)) = E(E(X|Y)g(Y))$$

для всех ограниченных случайных величин g(Y). Любые две случайные величины, удолетворяющие этому определению почти наверное совпадают.

Функцию f(y) обозначают как E(X|Y=y) и трактуют как условное математическое ожидание X при условии Y=y. Надо иметь в виду, что именно f(Y) определено однозначно, но не f. Однако различные функции f совпадают почти наверное относительно распределения m_y . Если Y имеет положительную непрерывную плотность, то различные функции f совпадают почти всюду. В дальнейшем, если мы пишем E(X|Y=y), то мы имеем в виду E(X|Y)=f(Y).

Предложение 1. Сформулированные ранее свойства (i) - (v) условных математических ожиданий для дискретных величин остаются верными и в общем случае.

Доказательство. Линейность ясна из определения линейности и линейности математического ожидания.

Для доказательства монотонности достаточно в силу линейности показать, что изи $X \geqslant 0$ следует $E(X|Y) \geqslant 0$ почти наверное. Для этого в определении положим $g(Y) = 1 - sign(E(X|Y)) \geqslant 0$. Тогда $E(X|Y) - |E(X|Y)| \leqslant 0$, но:

$$E[E(X|Y) - |E(X|Y)|] = E[X(1 - sign(E(X|Y)))] \geqslant 0$$

Значит E(X|Y) - |E(X|Y)| = 0.

Равенство E(E(X|Y)) = EX является частным случаем определения(q(Y) = 1).

Если X и Y независимы, то $E(Xg(Y)) = [EX] \cdot [Eg(Y)] = E([EX] \cdot [Eg(Y)]).$

Если Z = h(y) (с ограниченной h), то подстановкой в определение проверяется, что ZE(X|Y) является условным математическим ожиданием ZX относительно Y. Случай для общей функции h получается с помощью предельного перехода.

11.2. Формула для вычисления условного математического ожидания при известной плотности совместного распределения, условная плотность.

Предложение 2. Предположим, что распределение (X,Y) задано совместной плотностью $\rho(x,y)_{X,Y}$. Тогда

$$E[(X,Y)|Y=y] = \int_{-\infty}^{\infty} (x,y) \frac{\rho(x,y)_{X,Y}}{\rho(y)_Y} dx$$

Доказательство. Имеет место цепочка неравенств

$$E[(X,Y)g(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x,y)g(y)\rho(x,y)_{X,Y}dxdy =$$

$$= \int_{-\infty}^{\infty} g(y)(\int_{-\infty}^{\infty} (x,y)\frac{\rho(x,y)_{X,Y}}{\rho_Y(y)}dx)\rho_Y(y)dy$$

Функцию $\rho_{X|Y}(x|y) = \frac{\rho_{X,Y}(x,y)}{\rho_Y(y)}$ называют условной плотностью X относительно Y(условимся, что она равно 0 в точках у, в которых плотность $\rho_y(y)=0$). Таким образом верны равенства:

$$E(X|Y=y) = \int_{-\infty}^{\infty} x \rho_{X|Y}(x|y) dx, \rho_{X,Y}(x,y) = \rho_{X|Y}(x|y) \rho_{Y}(y)$$

Последнее из которых является знакомым нам аналогом $P(A \cap B) = P(A|B)P(B)$.

11.3. Аналог фомрулы Байеса.

Пусть X и Y - такие случайные величины, что существует измеримая функция $\rho(x|y)$, для которой выполнено:

$$P(X \in B|Y = y) = \int_{B} \rho(x|y)dx$$

В этом случае

$$E(h(X)|Y=y) = \int\limits_{R} h(x)\rho(x|y)dx$$

Заметим, что для произвольной ораниченной функции h

$$Eh(X) = E(E(h(X)|Y)) = \int_{B} h(x)E\rho(x|Y)dx$$

Тем самым $\rho_X(x) = E\rho(x|Y)$. Для произвольных ограниченных функция f,g выполнено:

$$E[f(X)E(g(Y)|X))] = E[f(X)g(Y)] = Eg(Y)E(f(X)|Y)$$

Левая часть тождества равна

$$\int\limits_{R} f(x)E[g(y)|X=x)\rho_{X}(x)dx$$

А правая

$$\int\limits_R f(x)E[g(y)|\rho_X(x))dx$$

В силу произвольности f получаем следующую формулу Байеса:

$$E(g(Y)|X=x) = \frac{E[g(Y)\rho(x|Y)}{E\rho(x|Y)}dx$$

Теперь пусть Y принимает значения 0 и 1 с вероятность p и q соотвественно. Тогда:
$$P(Y=0|X=x)=\frac{p\rho(x|0)}{p\rho(x|0)+q\rho(x|1)}, P(Y=1|X=x)=\frac{q\rho(x|1)}{p\rho(x|0)+q\rho(x|1)}$$