Development of Machine Learning models to predict whether the first stage of Falcon 9 will land successfully.

By Mahamadou DEMBELE Paris, 20/06/2024

Summary

- According to SPACEX, the Falcon 9 rocket launches cost \$62 million;
- other providers cost more than \$165 million each, with much of the savings due to SpaceX being able to reuse the first stage.
- Therefore, if we can determine whether the first stage will land, we can determine the cost of a launch.
- This information can be used if another company wants to bid against SpaceX for a rocket launch.
- In this work, I developed different prediction algorithms that can be used to predict whether the Falcon 9 first stage will land successfully.

Introduction

- In this work, I developed **models of machine learning** to **predic**t whether the Falcon 9 first stage **will land successfully**:
- Logistic regression: A statistical model for studying the relationships between a set of qualitative variables Xi and a qualitative variable Y. It is a generalized linear model using a logistic function as a link function.
- SVM (Support Vector Machine): SVMs are a family of machine learning algorithms that solve classification, regression or anomaly detection problems.
- Decision Tree: A non-parametric supervised learning algorithm, which is used for both classification and regression tasks
- Algorithm of K closest neighbours: also known as KNN or k-NN, is a nonparametric supervised learning discriminant, which uses proximity to perform classifications or predictions on the clustering of an individual data point

Material and Methods

Step 1

- Collecting the data
- Data Wrangling

Step 2

- Analysis with SQL, pandas and Matplolib
- Visual analytics

Step 3

 Machine learning models development

STEP1: Collecting and Wrangling data

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude
0	1	2006-03-24	Falcon 1	20.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin1A	167.743129	9.047721
1	2	2007-03-21	Falcon 1	NaN	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin2A	167.743129	9.047721
2	4	2008-09-28	Falcon 1	165.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin2C	167.743129	9.047721
3	5	2009-07-13	Falcon 1	200.0	LEO	Kwajalein Atoll	None None	1	False	False	False	None	NaN	0	Merlin3C	167.743129	9.047721
4	6	2010-06-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0003	-80.577366	28.561857
		ш	ш			ш	ш					ш		···		ш	111
89	102	2020-09-03	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	2	True	True	True	5e9e3032383ecb6bb234e7ca	5.0	12	B1060	-80.603956	28.608058
90	103	2020-10-06	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	3	True	True	True	5e9e3032383ecb6bb234e7ca	5.0	13	B1058	-80.603956	28.608058
91	104	2020-10-18	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	6	True	True	True	5e9e3032383ecb6bb234e7ca	5.0	12	B1051	-80.603956	28.608058
^1	105	2020 40 24	r-I ^	450000	1/150	00000 010 40	T ACDC	1	Т	т	т		۲۸	41	04000	00 577066	20 564057

STEP2: Analysis with SQL, pandas and Matplolib a

%sql select * from SPACEXTBL									0 ↑ ↓ 盐 ♀			
* sqlite:///my_data1.db Done.												
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome			
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)			
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)			
2012-05-22	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attemp			
2012-10-08	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attemp			
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt			
2013-09-29	16:00:00	F9 v1.1 B1003	VAFB SLC-4E	CASSIOPE	500	Polar LEO	MDA	Success	Uncontrolled (ocean			

STEP2: Visual analytics folium

STEP3: Logistic regression model development

STEP3: SVM (Support Vector Machine) model development

Créez un objet machine à vecteurs de support puis créez un GridSearchCV objet svm_cv avec cv = 10. Ajustez l'objet pour trouver les m

```
svm_cv = GridSearchCV(svm, parameters, cv=10).fit(X_train, Y_train)
```

```
print("tuned hpyerparameters :(best parameters) ",svm_cv.best_params_)
print("accuracy :",svm_cv.best_score_)
```

paramètres hpyer réglés : (meilleurs paramètres) {'C' : 1,0, 'gamma' : 0,031622776660168379, 'noyau' : 'sigmoïde'} précision : 0.8482142857142856

STEP3: Decision Tree model development

```
Create a decision tree classifier object then create a GridSearchCV object tree_cv with cv = 10. Fit the object to find the
```

```
import warnings
warnings.filterwarnings("ignore")
from sklearn.exceptions import FitFailedWarning
parameters = {'criterion': ['entropy'],
     'splitter': ['best'],
     'max_depth': [2*n for n in range(1,10)],
     'max_features': ['sqrt'],
     'min_samples_leaf': [1],
     'min_samples_split': [10]}
tree = DecisionTreeClassifier()
grid_search = GridSearchCV(tree, parameters, cv=10)
tree_cv= grid_search.fit(X_train, Y_train)
print("tuned hpyerparameters :(best parameters) ",tree_cv.best_params_)
print("accuracy :",tree_cv.best_score_)
tuned hpyerparameters :(best parameters) {'criterion': 'entropy', 'max_depth': 2, 'max_features': 'sqrt',
accuracy: 0.8339285714285714
```

```
BestRR3=tree_cv.best_estimator_
print(BestRR3.score(X_test, Y_test))
0.777777777777778
We can plot the confusion matrix
yhat = tree_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
                          Confusion Matrix
                                                                          - 10
   did not land
True labels
                                                   11
               did not land
                                                  land
                            Predicted labels
```

STEP3: Algorithm of K closest neighbours model development

Create a k nearest neighbors object then create a GridSearchCV object knn_cv with cv = 10. Fit the object to find

```
grid_search = GridSearchCV(KNN, parameters, cv=10)
knn_cv= grid_search.fit(X_train, Y_train)
```

```
print("tuned hpyerparameters :(best parameters) ",knn_cv.best_params_)
print("accuracy :",knn_cv.best_score_)
```

```
tuned hpyerparameters :(best parameters) {'algorithm': 'auto', 'n_neighbors': 10, 'p': 1}
accuracy : 0.8482142857142858
```


Discussion

- In this work we collected data on the spaceX site
- We analyzed them to observe the tandaces for concerning the successful landing of the first stage of falcon9.
- We have also developed four machine models to predict whether the first stage of falcon 9 will land successfully
- All these models showed a prediction score of over 75%.

Conclusion

- All agorithms appear to be good models for predicting the outcome of the falcon 9 landing.
- However, the SVM has a relatively higher prediction score than the others.
- These models still need to be trained on a large data set to improve their performance.

Appendices

Sources:

SPACEX: https://www.spacex.com/vehicles/falcon-9/