REDES NEURONAIS ARTIFICIAIS

Luís Morgado
ISEL-DEETC

REDES NEURONAIS ARTIFICIAIS

CONTEXTO HISTÓRICO

- Surgimento na década de 40 tecnologia com cerca de 80 anos
- 1943: Modelo de neurónio proposto por McCulloch e Pitts, com a capacidade de distinguir entre duas categorias distintas de valores de entrada
 - No início modelos simples, com capacidade de associar um valor de saída a um conjunto de valores de entrada através de uma função linear
- 1958: Frank Rosenblatt propõe um modelo linear designado *Perceptrão*, o primeiro neurónio artificial com capacidade de aprendizagem
- 1969: Minsky e Papert apresentam as limitações associadas ao *Perceptrão*, estas limitações levam a uma diminuição do entusiasmo no estudo e desenvolvimento de redes neuronais artificiais
- 1986: Rumelhart apresenta um método de treino de redes multicamada, baseado no conceito de retropropagação e propõe o conceito de conexionismo – ênfase na capacidade de processamento massivamente distribuído das redes neuronais
- Década de 90: Retomar do interesse no estudo e desenvolvimento de redes neuronais artificiais
- Após 2000: Avanços determinantes nas tecnologias de redes neuronais artificiais,
 com o surgimento do conceito de aprendizagem profunda (*Deep Learning*)

MODELO DE NEURÓNIO

Modelo simplificado de neurónio biológico

@ 2000 John Wiley & Sons, Inc.

Dendrites - Responsáveis por receber informação de outros neurónios

Soma - Corpo do neurónio, responsável por processar a informação recebida a partir das dendrites e produzir um resultado na forma de impulsos eléctricos

Axónio - Responsável por transmitir o resultado produzido

Sinapse - Ponto de ligação do neurónio às dendrites de outros neurónios

MODELO DE NEURÓNIO

Modelo simplificado de neurónio biológico

As sinapses controlam a influência que a saída de um neurónio tem sobre outro neurónio, através da permeabilidade à passagem do impulso eléctrico

A variabilidade da permeabilidade de cada sinapse é determinante para a aprendizagem

De forma simplificada, um neurónio pode ser representado por um conjunto de entradas x_i , em que cada entrada possui um peso associado w_i , representando a permeabilidade da sinapse, sendo a soma ponderada das entradas pelos pesos aplicada a uma função de activação φ , a qual determina se é produzida resposta

Perceptrão (Rosenblatt, 1957)

 X_i : Entrada i w_j : Peso j

- Valores de entrada binários (podem ser resultantes de uma combinação de entradas através de uma função lógica)
- Valor de saída binário

Interpretação geométrica

Recta

$$ax + by + c = 0$$

Plano

$$ax + by + cz + d = 0$$

Hiperplano

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n + b = 0$$

DEFINIÇÃO DE FUNÇÕES BOOLEANAS

Disjunção (OR)

True

False

Exemplo:

$$w_1 = 1$$
, $w_2 = 1$, $b = 1$

Conjunção (AND)

Exemplo:

$$w_1 = 1, w_2 = 1, b = -1$$

CAPACIDADE COMPUTACIONAL

SEPARABILIDADE LINEAR

- Um **problema é linearmente separável** se existirem pesos \mathbf{w}_i e pendor \mathbf{b} que definam uma fronteira linear entre a região da resposta excitadora e a região da resposta inibitória.
- O perceptrão permite resolver problemas linearmente separáveis

SEPARABILIDADE LINEAR

DEFINIÇÃO DE FUNÇÕES BOOLEANAS

Disjunção exclusiva (XOR)

SEPARABILIDADE NÃO-LINEAR

Dados de entrada Respostas de diferentes tipos de algoritmos de aprendizagem

REDES NEURONAIS MULTI-CAMADA

Separabilidade de regiões

Transformação do espaço de entrada em espaços de dimensões superiores onde é possível a separação linear de regiões

Essa transformação pode ser realizada através de redes neuronais multi-camada

DEFINIÇÃO DE REGIÕES NÃO CONVEXAS

Rede de uma camada

DEFINIÇÃO DE REGIÕES NÃO CONVEXAS

Rede de duas camadas

DEFINIÇÃO DE REGIÕES GERAIS

Rede de três camadas

Forma normal disjuntiva

Permite representar qualquer função booleana

REDES NEURONAIS MULTI-CAMADA

Teorema da aproximação universal

Uma rede *feed-forward* com uma única camada escondida e com um número finito de neurónios (**perceptrão multicamada**), pode aproximar funções contínuas em subconjuntos compactos de \Re^n

Na camada escondida a rede forma uma representação distribuída das principais características dos dados → abstracção → generalização

Modelo geral de neurónio artificial

Limiar de activação (*Treshold*) vs. Pendor (*Bias*)

APRENDIZAGEM EM REDES NEURONAIS

TIPOS DE FUNÇÕES DE ACTIVAÇÃO

BIBLIOGRAFIA

[Aggarwal, 2018]

C. Aggarwal, Neural Networks and Deep Learning Springer, 2018

[Munakata, 1998]

T. Munakata, Fundamentals of the New Artificial Intelligence, Springer, 1998

[Winston, 1992]

P. Winston, Artificial Intelligence, 3rd Edition, Addison-Wesley, 1992

[Raizer et al., 2009]

K. Raizer, H. Idagawa, E. Nobrega, L. Ferreira, *Training and Applying a Feedforward Multilayer Neural Network in GPU*, CILAMCE, 2009

[R. Gutierrez-Osuna, 2005]

R. Gutierrez-Osuna, Introduction to Pattern Analysis, Texas A&M University, 2005