

Single Stub Matching

- It consist of 2 sections of trans. lines:
 - One of length d connecting the load to the feedline at AA'
 - One of length *l* connected in parallel
- This stub is shorted (could be open circuit)
- Since stub is added in parallel it is easier to work with admittances y
- Matching procedure consists of 2 steps:
 - 1. Transform $Y_L = 1/Z_L$ into $Y_d = Y_0 + jB$
 - 2. Select length l such that $Ys = -jB \rightarrow Yin=Yd + Ys = Yo$ match

Example: A 50 Ω transmission line is connected to a cellular phone antenna with load impedance ZL =25-j50 Ω . Find the position and the length of a shunt short-circuit stub required to match the 50 Ω line.

Use Smith chart

Normalize load: $Z_L = Z_L/Z_0 = (25-j50)/50 = 0.5 - j \rightarrow Point A$

Draw constant SWR circle through point A

Obtain \mathcal{Y}_L = 0.4 +j 0.8 (**point B**) at 0.115 λ

In admittance domain γ_L circles $ightarrow \mathcal{G}_{\scriptscriptstyle L}$ circles & $\mathcal{X}_{\scriptscriptstyle L}$ circles $ightarrow b_{\scriptscriptstyle L}$ circles

For matching need to move towards generator a distance $\it d$ such that $\mathcal{Y}_{\it d}$ has a real part equal to 1.

This condition is satisfied by two **points C & D** on Smith Chart, corresponding to the intersections of the SWR circle with the g_{I} = 1 circle.

Solution for point C:

 y_d = 1 + j 1.6 point C located at 0.178 λ

$$d_{(B,C)}$$
=(0.178 - 0.115) λ = 0.063 λ

In order to match: $y_{in} = 1$

But
$$y_{in} = y_d + y_s = 1 + j1.6 + y_s = 1$$

=> $y_s = -j1.6$

So we need a stub with admittance –j1.6.

The normalized admittance of a short is $-j\infty$ located at **point E**

Starting from **E**, we move twd's generator until $\hat{y} = -j1.6 \Rightarrow point F (0.34\lambda)$.

Distance E-F gives stub length:

$$\ell = 0.34\lambda - 0.25 \lambda = 0.09 \lambda$$

Solution for point D:

 y_d = 1 - j 1.6 point D located at 0.321 λ $d_{(B,D)}$ = (0.321 - 0.115) λ = 0.206 λ

In order to match: $y_{in} = 1$

The needed normalized input admittance

of the stub is $y_s = + j 1.6$,

located at **point G** (0.16λ on WTG scale)

The normalized admittance of a short is $-j\infty$

located at point E

Starting from **E**, we move twd's generator

until $_{V}$ = +j1.6 \rightarrow **point G** (0.25+0.16 = 0.41 λ)

Distance E-G gives stub length:

$$\ell = 0.25\lambda + 0.16 \lambda = 0.41\lambda$$

