

Prof. Dr.-Ing. **Sikora**

Elvira Fleig, Rolf Jongebloed

Rechenübung Signale & Systeme (WiSe 2023/2024)

Zeitdiskrete Filter, PN-Diagramme zeitdiskreter Systeme (13. Termin)

12.02 - 18.02.2024

Hinweise

- Die Aufgabenblätter zur Rechenübung stehen jeweils vor dem jeweiligen Termin auf dem ISIS-Portal zum Download bereit.
- Aufgaben, die mit [HA] bzw. [AK] beginnen, sind Hausaufgaben bzw. alte Klausuraufgaben, die als Hausaufgabe bearbeitet werden sollen. Diese werden zusätzlich in den freiwilligen Tutorien vorgerechnet bzw. besprochen.

1 Zeitdiskrete Filter

1.1 Gegeben sei das folgende FIR-Filter

- a) Gib die Differenzengleichung des Filters an.
- b) Gib die Systemfunktion des Filters an.
- c) Bestimme die Lage der Pol- und Nullstellen des Filters und skizziere das resultierende PN-Diagramm.
- d) Skizziere Amplituden- und Phasengang des Filters.

1.2 Gegeben sei das folgende IIR-Filter

- a) Gib die Differenzengleichung des Filters an.
- b) Gib die Systemfunktion des Filters an.

3 Seite(n) output.tex

1 Zeitdiskrete Filter

1.1 Gegeben sei das folgende FIR-Filter

- a) Gib die Differenzengleichung des Filters an
- b) Gib die Systemfunktion des Filters an.
- c) Bestimme die Lage der Pol- und Nullstellen des Filters und skizziere das resultierende PN-Diagramm.
- d) Skizziere Amplituden- und Phasengang des Filters.

$$\alpha | Y(n) = \chi(n) + \frac{1}{2} \chi(n-1) + \chi(n-2)$$

$$H(5) = \frac{k(5)}{\lambda(5)} = 1 + \frac{5}{4}5 - 1 + \frac{5}{5} - 1 + \frac{5}{5} + \frac{5}{4}5 + 1$$

d) Amplitudengang
$$A(\Omega) = |b_0| \frac{\pi}{R} |e^{j\Omega} - 2 \cdot e_0| = |b_0| \frac{\pi}{R} |e^{j\Omega} - 2 \cdot e_0|$$

$$\varphi(x) = \frac{(R-\alpha) \cdot x}{1 + \sum_{q=0}^{\infty} \psi_{qq} + \sum_{r=0}^{\infty} \psi_{xr}}$$

Ursprungs function reall:

$$A(\Omega) = A(-\Omega)$$

 $\varphi(\Omega) = -\varphi(-\Omega)$

1 A(2)

1.2 Gegeben sei das folgende IIR-Filter

- a) Gib die Differenzengleichung des Filters an.
- b) Gib die Systemfunktion des Filters an.

a)
$$y(x) = x(x) + \frac{1}{2}x(x) + \frac{1}{2}x(x)$$

Eigenschaften in 2-Ebene	
Minimales Phasen gang (kleinst mögt. Phasengeng)	Ped & Not night auterhalb des Einheils Kreiser (auf i 84 ok)
All pass eigenschaft (konst. Amplitudeysang)	PSI-NST liegen spiegelbildlich Jun Einheitskreis (reziprok: rpsi = 1 (PSI & NSA im EK crawka, mil d= 1)
linear phasig heit (lin. Phaseng ang)	Not spregglbildlich zum EK (Nost om f Ek erlaubt sind, aber do ppett, vier fach, etc pot im Urspring)
Monselitar	mehr Pol-als Nullskilen oder gleiche Auzahl
Stabilität (bediugte)	Polsklen im Ek Polsk llen ouf Ek
reellwertigs reals Filts	P& & HSt rein reell odus komp lex konjugiert

RUe Signale & Systeme | WiSe 2023/2024 | Termin 13 Seite 2 von 3

c) Bestimme die Lage der Pol- und Nullstellen des Filters und skizziere das resultierende PN-Diagramm.

d) Skizziere Amplituden- und Phasengang des Filters.

2 Eigenschaften zeitdiskreter Filter

2.1 Untersuche die folgenden Systeme auf Minimalphasigkeit, Allpasseigenschaft, Linearphasigkeit, Kausalität und Stabilität. Gib weiterhin jeweils an, ob es sich um ein reales reellwertiges System handelt.

RUe Signale & Systeme | WiSe 2023/2024 | Termin 13 Seite 3 von 3

2.2 Zerlege die folgenden Systeme in eine Reihenschaltung aus Allpass und minimalphasigem System.

