

- ★ Super Low Gate Charge
- ★ Green Device Available
- ★ Excellent Cdv/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary

BVDSS	RDSON	ID		
100V	65mΩ	20A		

Description

The XR20N10 is the highest performance trench N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR20N10 meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

TO252-3L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V _G s	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	20	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	12	А
I _{DM}	Pulsed Drain Current ²	80	Α
EAS	Single Pulse Avalanche Energy ³	4.1	mJ
IAS	Avalanche Current	10	Α
P _D @T _C =25°C	Total Power Dissipation ³	41.7	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
T _J	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-ambient ¹		50	°C/W
R _{θJC}	Thermal Resistance Junction-Case ¹		3.0	°C/W

Electrical Characteristics (T_J = 25°C, unless otherwise noted)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static Characteristics			1					
Drain-Source Breakdown Vo	oltage	V _{(BR)DSS}	$V_{(BR)DSS}$ $V_{GS} = 0V$, $I_D = 250\mu A$		-	-	V	
Gate-body Leakage current		Igss	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA	
Zero Gate Voltage Drain	T _J =25°C	_	1001/11/01/	-	-	1	μA	
Current	T _J =100°C	IDSS	V _{DS} =100V, V _{GS} = 0V	-	-	100		
Gate-Threshold Voltage	1	V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250μA	1.2	-	2.5	V	
		_	V _{GS} = 10V, I _D = 5A	-	65	90		
Drain-Source on-Resistance	9 ⁴	R _{DS(on)}	V _{GS} = 4.5V, I _D = 3A	-	75	105	mΩ	
Forward Transconductance	4	G fs	V _{DS} =5V , I _D =5A	-	12	-	S	
Dynamic Characteristic	s ⁵	1						
Input Capacitance		C _{iss}		-	1220	-	pF	
Output Capacitance		Coss	V _{DS} = 15V, V _{GS} =0V, f =1MHz	-	53	-		
Reverse Transfer Capacitance		C _{rss}	_ · ······-	-	42	-		
Gate Resistance		Rg	f=1MHz	-	1.3	-	Ω	
Switching Characteristi	CS ⁵	1						
Total Gate Charge		Qg		-	20.6	-		
Gate-Source Charge		Q _{gs}	$V_{GS} = 10V, V_{DS} = 50V,$ $I_{D}=5A$	-	4	-	nC	
Gate-Drain Charge		\mathbf{Q}_{gd}		-	3.7	-		
Turn-On Delay Time		t _{d(on)}		-	4.7	-		
Rise Time		tr	V _{GS} =10V, V _{DD} =50V,	_	21	_	ns	
Turn-Off Delay Time		t _{d(off)}	$R_G = 3\Omega$, $I_D = 5A$	_	20	_		
Fall Time		t _f		_	16	_		
Drain-Source Body Dio	de Characte	ristics	1				<u> </u>	
Diode Forward Voltage ⁴		V _{SD}	I _S = 1A, V _{GS} = 0V		_	1.2	V	
Continuous Source Current Tc=25°C		Is	-	_	_	20	Α	

Notes:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH,I_{AS}=8A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Package Mechanical Data-TO252-3L

	Dimensions							
Ref.		Millimete	rs	Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	2.10		2.50	0.083		0.098		
A2	0		0.10	0		0.004		
В	0.66		0.86	0.026		0.034		
B2	5.18		5.48	0.202		0.216		
С	0.40		0.60	0.016		0.024		
C2	0.44		0.58	0.017		0.023		
D	5.90		6.30	0.232		0.248		
D1	5.30REF			0.209REF				
Е	6.40		6.80	0.252		0.268		
E1	4.63			0.182				
G	4.47		4.67	0.176		0.184		
Н	9.50		10.70	0.374		0.421		
L	1.09		1.21	0.043		0.048		
L2	1.35		1.65	0.053		0.065		
V1		7°			7°			
V2	0°		6°	0°		6°		

Reel Spectification-TO252-3L

	Dimensions							
Ref.		Millimete	rs	Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
W	15.90	16.00	16.10	0.626	0.630	0.634		
E	1.65	1.75	1.85	0.065	0.069	0.073		
F	7.40	7.50	7.60	0.291	0.295	0.299		
D0	1.40	1.50	1.60	0.055	0.059	0.063		
D1	1.40	1.50	1.60	0.055	0.059	0.063		
P0	3.90	4.00	4.10	0.154	0.157	0.161		
P1	7.90	8.00	8.10	0.311	0.315	0.319		
P2	1.90	2.00	2.10	0.075	0.079	0.083		
A0	6.85	6.90	7.00	0.270	0.271	0.276		
В0	10.45	10.50	10.60	0.411	0.413	0.417		
K0	2.68	2.78	2.88	0.105	0.109	0.113		
Т	0.24		0.27	0.009		0.011		
t1	0.10			0.004				
10P0	39.80	40.00	40.20	1.567	1.575	1.583		