BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

SECOND SEMESTER 2023 – 2024

COURSE: BITS F464 (Machine Learning)

COMPONENT: Practice Tutorial 3 **DATE:** 23rd October 2023

Q1: Consider a below dataset of 14 training examples of the target concept "Buys_computer", where each instance is described as attributes Age, Income, Student, Credit_rating.

Age	Income	Student	Credit_ratin	Buys_comput er
<=30	high	no	fair	no
<=30	high	no	excellent	no
31 to 40	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
31 to 40	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
31 to 40	medium	no	excellent	yes
31 to 40	high	yes	fair	yes
>40	medium	no	excellent	no

Apply Navie Bayes Classifier on given training data to classify the novel instance $X = (age <= 30, Income = medium, Student = yes, Credit_rating = fair) in a correct class. Show the steps by step procedure of calculating all posterior and prior probabilities to classify the instance in a correct class (Training and Testing Phase).$

Answer:

Training Phase:

P(Ci): $P(buys_computer = "yes") = 9/14 = 0.643$

P(buys_computer = "no") = 5/14= 0.357

Compute P(X|Ci) for each class

P(age = "<=30" | buys computer = "yes") = 2/9 = 0.222

P(age = "<= 30" | buys computer = "no") = 3/5 = 0.6

P(income = "medium" | buys computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys computer = "no") = 2/5 = 0.4

P(student = "yes" | buys computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys computer = "no") = 1/5 = 0.2

P(credit rating = "fair" | buys computer = "yes") = 6/9 = 0.667

P(credit rating = "fair" | buys computer = "no") = 2/5 = 0.4

Testing Phase:

X = (age <= 30, income = medium, student = yes, credit_rating = fair)

 $P(X|Ci) : P(X|buys_computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$

 $P(X|buys computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$

 $P(X|Ci)*P(Ci) : P(X|buys_computer = "yes") * P(buys_computer = "yes") = P(X|Ci)*P(Ci) : P(X|buys_computer = "yes") * P(buys_computer = "yes") * P(buys_com$

0.028

 $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$

Therefore, X belongs to class ("buys_computer = yes")

Q2: Consider the following set of training examples,

Instanc	Classification	Λ1	A2
e	Ciassification	AI	A2
1	+	T	T
2	+	T	T
3	-	T	F
4	+	F	F
5	-	F	T
6	-	F	T

What is the information gain of A2 relative to these training examples?

Answer:

Gain(S,A2) = 0

Q3: Given a following observed datapoints $(X: x_i)$ with two classes A and B,

Class A	Class B
10	14
11	11
8	9
10	13

The prior probabilities of class A and B are 0.4 and 0.6 respectively. What will be the class of following unlabelled data points (x1 and x2) using Gaussian for classification? (Show all steps of calculations)

i.
$$X1 = 5$$

ii.
$$X2 = 12$$

Answer:

- i. X1 belongs to class B
- ii. X2 belongs to class B

Q4: Consider a following dataset which shows willingness of certain customer to eat a chocolate of certain manufactures with specific flavor,

Manufacturer	Flavor	Willingness to eat
Lindt	Strawberry	Yes
Lindt	Milk	Yes
Cadbury	Strawberry	Yes
Cadbury	Milk	No
Milka	Strawberry	No
Milka	Milk	No

- i. In above dataset, which feature (Manufacturer or flavor) has the larger information gain with willingness to eat?
- ii. Also draw the decision tree for predicting willingness to eat which maximizes the information gain?

Answer:

- i. Manufacture have larger information gain than flavor.
- ii. Decision tree

