

UNIVERSIDAD MAYOR DE SAN SIMÓN DIPLOMADO CIENCIA DE DATOS

Proyecto Final 2

Cadena de suministro

Integrante Anahi Gomez Nina

Docente Msc. Ariel Zeballos

PRIMERA PARTE

A. IBP

		BALANCED SCO	RECARD			
	E	mpresa de comida rápida: Pol	los Don Lucho			
VISION	_	la rápida en el mercado local, of lificado, utilizando tecnología a		d y atención eficiente a los clientes y		
MISION		limentación de los clientes y con cimiento con la continua innovac		mejor comida de calidad para disfrutar en		
PRIORIDAD ESTRATEGICA	Aumentar los clientes	Calidad del producto				
RESULTADOS DE LA ESTRATEGIA	Las utilidades serán mayores	Fidelidad de clientes				
PERPECTIVA	OBJETIVOS ESTRATEGICOS	INDICADORES	METAS	INICIATIVAS		
	Incrementar las ventas.	Margen de utilidad sobre ventas.	↑ 15% mensual	Definir políticas estándar de Precio.		
FIANANCIERO (Mide y obtiene un buen	Aumentar utilidades.	% de ventas mensuales	↑ 20% sobre las ventas trimestre	Análisis de estados financieros.		
conocimiento de la situación de la empresa)	Aumentar utmoades.	Margen de contribución mensual				
-	Garantizar sostenibilidad del	% cantidad de clientes nuevos	10 clientes nuevos/mes	Incremento en gastos de publicidad.		
	crecimiento	Índice de Prueba Acida				
	Conservar fidelidad de clientes actuales.	% clientes fieles	0 % deserción de clientes./trimestre	Acumular puntos por consumo.		
CLIENTE (Determina la situación	Conseguir popularidad en el mercado	% de participación en el mercado	70 % de clientes captados./trimestre	Programas de publicidad y Promociones.		
de la empresa en el mercado.)	Garantizar que todo cliente cumpla sus expectativas	% de clientes satisfechos	90% clientes satisfechos/ trimestre	Control de calidad del producto.		
,	Disminución de clientes insatisfechos	Índice de quejas y reclamos	8% de quejas y reclamos./mes	Buzón de quejas y reclamos		
	madistectios		rectanios./mes	Encuestas.		

	Optimizar procesos de producción.	% de verificación de optimización positiva	80% de la verificación/trimestre	Rediseño de procesos de producción.
PROCESOS INTERNOS	Mejorar atención al clientes	Índice de tiempo de preparación de un pedido	Minimo18 min. tiempo de espera	Actividades de distracción para clientes
(Modo de trabajo para conseguir los objetivo)	Mejorar el sistema de información.	% de clientes informados	60% de clientes informados/trimestre	Redes sociales, publicidad, reservas online
	Disminuir costo de	% de reducción del costo de	Reducir 10% costo de	Crear sistema de inventario
	producción.	producción	producción/trimestre	Control de pérdidas proceso de producción.
ORGANIZATIVO/	Estimular la motivación.	% personal motivado.	90% personal motivado	Incentivos y actividades de recreación para personal.
CAPACIDAD (modo de actuar para	Infraestructura adecuada para el personal	% personal satisfecho con la infraestructura	90% personal satisfecho./trimestre	Reestructuración estratégica del inmueble.
seguir la estrategia)	Capacitación del personal	% personal capacitado	100% personal capacitado/semestre	Cursos de: atención al cliente, Seguridad

B. LINEAR AND MIP(Librería pulp en Python)

Es una librería de optimización.

Products queso = 1.0

Fuente: https://whdeveloper.wordpress.com/2019/04/18/desarrollo-de-una-aplicacion-en-python-para-resolucion-de-problemas-de-programacion-lineal-caso-transportes-parte-2/

```
[1] #Importamos las librerias necesarias para realizar la optimizacion
    import pandas as pd
   import numpy as np
   !pip install pulp
   import pulp
   # https://es.switch-case.com/45729413
Collecting pulp
     Downloading https://files.pythonhosted.org/packages/fb/34/ff5915ff6bae91cfb7c4cc22c3c369a6aea0b2127045dd5f308a91c260ac/PuLP-2.0-py3-none-any.
        39.2MB 104kB/s
   \overline{\text{Requirement already }} \xrightarrow{\text{satisfied: pyparsing}} = 2.0.1 \text{ in /usr/local/lib/python3.6/dist-packages (from pulp) } (2.4.5)
   Installing collected packages: pulp
    Successfully installed pulp-2.0
from pulp import * # importamos la libreria pulp
     # Definimos estructura de los datos para nuestro problema
    # Definiendo los productos
    products = ['cola cola', 'mani', 'queso', 'cerveza']
     itemsets = ['x1','x2', 'x3']
     #Costos de los productos
     costs = {'cola cola' : 5, 'mani' : 3, 'queso' : 1, 'cerveza' : 4 }
     # Definimos agrupaciones más frecuentes (Combos)
    itemset_dict = {"x1" : (("cola cola", "mani"),10),
                     "x2" : (("mani","queso"),20),
                    "x3" : (("mani","cerveza"),30)}
    #Definimos el problema para maximizar
     my_lp_program = LpProblem('My_LP_Problem', LpMaximize)
     # Definimos variables de tipo binario
     products_var=LpVariable.dicts("Products", products, cat='Binary')
     itemsets_var=LpVariable.dicts("Itemsets", itemsets, cat='Binary')
     #Definimos los objetivos
     LpAffineExpression([(products_var[x], -costs[x]) for x in products_var])
     # Definimos restricciones
     my_lp_program += lpSum(products_var) <= 3, 'Constraint'</pre>
    counter = 1
     for a in itemset_dict.keys():
        item = itemsets_var[a]
         for b in itemset_dict[a][0]:
            product = products_var[b]
             counter +=1
             my_lp_program += product >= item, "{}Constraint".format(counter)
     my_lp_program.writeLP("CheckLpProgram.lp")
     my_lp_program.solve()
     print("Estado:", LpStatus[my_lp_program.status])
     print("Total Optimo=", value(my_lp_program.objective))
     for v in my_lp_program.variables():
         print(v.name, "=", v.varValue)
 Estado: Optimal
     Total Optimo= 42.0
     Itemsets_x1 = 0.0
     Itemsets x2 = 1.0
     Itemsets_x3 = 1.0
     Products_cerveza = 1.0
     Products_cola_cola = 0.0
     Products_mani = 1.0
```

C. EVENTOS DE SIMULACIÓN DISCRETA (Librería simpy en Python)

Simulación de cola de espera en el Banco

Fuente: https://simpy.readthedocs.io/en/latest/examples/bank_renege.html
https://simpy.readthedocs.io/en/latest/examples/bank_renege.html
https://simpy.readthedocs.io/en/latest/examples/bank_renege.html
https://pythonhosted.org/SimPy/Tutorials/TheBank.html

```
[1] import math
    !pip install simpy
    import simpy
Collecting simpy
     Downloading https://files.pythonhosted.org/packages/5a/64/8f0fc71400d41b6c2c6443d333a1cade458d23d4945ccda700c810f
    Installing collected packages: simpy
    Successfully installed simpy-3.0.11
[2] # Atención en el Banco
    SEMILLA = 20
    NUM CAJEROS = 3
    TIEMPO_ATENCION_MIN = 15
    TIEMPO ATENCION MAX = 35
    T LLEGADAS = 10
    TIEMPO_SIMULACION = 90
    TOT_CLIENTES = 5
    te = 0.0 # tiempo de espera total
    dt = 0.0 # duracion de servicio total
    fin = 0.0 # minuto en el que finaliza
   # Funcion de atencion al clients
    def Atencion(cliente):
        global dt #Accedemos a la variable dt declarada anteriormente
        # numero aleatorio y lo guarda en R
        R = random.random()
        tiempo = TIEMPO_ATENCION_MAX - TIEMPO_ATENCION_MIN
        # Distribucion uniforme
        tiempo_aten = TIEMPO_ATENCION_MIN + (tiempo*R)
        # deja correr el tiempo n minutos
        yield env.timeout(tiempo_aten)
        print("3er paso: Atencion listo a %s en %.2f minutos" % (cliente,tiempo_aten))
        # Acumula los tiempos de uso de la i
        dt = dt + tiempo aten
    def cliente (env, nombre, personal ):
        global te
        global fin
        # Guarda el minuto de llegada del cliente
        print ("1ro paso: %s llego al Banco en el minuto %.2f" % (nombre, llega))
        with personal.request() as request:
            # Obtiene turno
```

```
# Guarda el minuto cuando comienza a ser atendido
       # Calcula el tiempo que espero
       espera = pasa - llega
       # Acumula los tiempos de espera
       te = te + espera
       print ("2do paso: %s pasa con el cajero en el minuto %.2f habiendo esperado %.2f" % (nombre, pasa, espera))
       # Invoca al proceso Atencion
       yield env.process(Atencion(nombre))
       #Guarda el minuto en que termina el proceso Atencion
       deja = env.now
       print ("4to paso: %s deja el Banco en el minuto %.2f" % (nombre, deja))
       # Conserva globalmente el ultimo minuto de la simulacion
       fin = deja
def principal (env, personal):
   llegada = 0
   i = 0
   # Para 10 clientes
   for i in range(TOT_CLIENTES):
       R = random.random()
       # Distribucion exponencial
       legada = -T_LLEGADAS * math.log(R)
        # Deja transcurrir un tiempo entre uno y otro
        yield env.timeout(llegada)
       i += 1
        env.process(cliente(env, 'Cliente %d' % i, personal))
print ("======= SIMULACION COLA EN EL BANCO======"")
# Cualquier valor
random.seed (SEMILLA)
# Crea el objeto entorno de simulacion
env = simpy.Environment()
#Crea los recursos
personal = simpy.Resource(env, NUM_CAJEROS)
#Invoca el proceso princial
env.process(principal(env, personal))
#Inicia la simulacion
env.run()
```

```
The paso: Cliente 1 llego al Banco en el minuto 0.99
2do paso: Cliente 1 pasa con el cajero en el minuto 0.99 habiendo esperado 0.00
1ro paso: Cliente 2 llego al Banco en el minuto 4.76
2do paso: Cliente 2 pasa con el cajero en el minuto 4.76 habiendo esperado 0.00
1ro paso: Cliente 3 llego al Banco en el minuto 5.76
```

```
1ro paso: Cliente 4 llego al Banco en el minuto 10.29
    1ro paso: Cliente 5 llego al Banco en el minuto 11.66
    3er paso: Atencion listo a Cliente 2 en 20.20 minutos
    4to paso: Cliente 2 deja el Banco en el minuto 24.95
    2do paso: Cliente 4 pasa con el cajero en el minuto 24.95 habiendo esperado 14.66
    3er paso: Atencion listo a Cliente 1 en 30.33 minutos
    4to paso: Cliente 1 deja el Banco en el minuto 31.32
    2do paso: Cliente 5 pasa con el cajero en el minuto 31.32 habiendo esperado 19.66
    3er paso: Atencion listo a Cliente 3 en 33.10 minutos
    4to paso: Cliente 3 deja el Banco en el minuto 38.86
    3er paso: Atencion listo a Cliente 5 en 18.39 minutos
    4to paso: Cliente 5 deja el Banco en el minuto 49.71
    3er paso: Atencion listo a Cliente 4 en 26.46 minutos
   4to paso: Cliente 4 deja el Banco en el minuto 51.41
[4] print ("\n-----")
    print ("\nINDICADORES: ")
    lpc = te / fin
    print ("\nLongitud promedio de la cola: %.2f" % lpc)
    tep = te / TOT_CLIENTES
    print ("Tiempo de espera promedio = %.2f" % tep)
    upi = (dt / fin) / NUM_CAJEROS
    print ("Uso promedio de la instalación = %.2f" % upi)
₽
    INDICADORES:
    Longitud promedio de la cola: 0.67
    Tiempo de espera promedio = 6.87
```

Uso promedio de la instalacion = 0.83

D. CONTROL DE PROCESOS (Librería pyspc en Python)

Producción de dulces en los Estados Unidos por fecha gestión y mes.

Fuente: https://www.kaggle.com/search?q=candy_production


```
data.to_records().dtype
     data.index = data.index.astype('i8')
     cols = ['production1','production2','production3'] # Columnas que queremos cargar
     data1[cols].head()
             production1 production2 production3
                                          1591.7596
               1265.9570
                            1283.7596
      1990
      1991
               1316.8270
                             1499.4401
                                           1309.4401
      1992
               1231.8878
                            1267.2503
                                          1399.2503
      1993
               1255.2003
                             1364.3083
                                          1360.3083
      1994
               1255.1259
                           1425.5262
                                          1431.5262
[8] #Datos desde 01-1990 hasta 08-2017
     data2 = data1[cols].values
     data2
     #Datos desde 01-1990 hasta 08-2017
[8] data2 = data1[cols].values
     data2
array([[1265.957 , 1283.7596, 1591.7596],
             [1316.827 , 1499.4401, 1309.4401],
[1231.8878, 1267.2503, 1399.2503],
             [1255.2003, 1364.3083, 1360.3083],
             [1255.1259, 1425.5262, 1431.5262],
             [1270.1582, 1327.294, 1435.294],
             [1322.318 , 1258.5922, 1328.5922],
             [1347.9634, 1289.318 , 1313.318 ],
             [1425.1335, 1404.9037, 1432.9037],
             [1396.5543, 1383.479 , 1345.479 ],
[1462.279 , 1378.3539, 1286.3539],
             [1446.6292, 1293.7826, 1326.7826],
             [1385.3818, 1313.5118, 1303.5118],
             [1379.4629, 1283.2887, 1281.2887],
             [1394.5927, 1354.3612, 1247.3612],
             [1439.4358, 1205.456 , 1451.456 ],
[1380.4629, 1368.0427, 1410.0427],
[1300.7343, 1379.8707, 1295.8707],
             [1186.188 , 1173.3889, 1374.3889],
             [1133.7732, 1306.6877, 1272.6877],
```


[9] a = spc(pistonrings) + ewma()

print(a)

```
[10] #data= data.values
    a = spc(data2) + xbar_rbar() +rbar() + rules()
    print(a)
```


[11] # Diagrama de dispersión produccion por año
 var = 'production1'
 data = pd.concat([data['year'], data[var]], axis=1)
 data.plot.scatter(x=var, y='year', alpha = 0.5);

SEGUNDA PARTE

Aplicación de ciencia de datos (algoritmo de AI) a CADENA de SUMINISTROS.

Aplicación de sistema inteligente para implementar el modelo de gestión triple "A" en la cadena de suministro de centros de acopio de leche cruda

A. Descripción del problema:

Los procesos (**Recolección y acopio de leche, Pago a proveedores, Distribución y ventas**) que intervienen en la gestión de cadena de suministro en el centro de acopio de leche se detectan los problemas de tiempo y dinero.

Recolección y acopio de leche es el proceso donde los centros de acopio recolectan la leche en camiones, en la mayoría de los casos pertenecen a cada centro de acopio, los choferes tienen sueldos superiores a los 1.000 \$us. **no existe una ruta establecida** para realizar la recolección incurriendo en gastos innecesarios de tiempo, dinero y recursos.

Fig.1 Recolección de leche Fuente: Autores Tesis

Fig.2 Almacenamiento y distribución Fuente: Autores Tesis

B. Project Charter:

Project No.: 1	Date Charte	ed: 10/12/2019	Rev. No.:		Rev. Date:						
APLICAC			GENTE PARA	IMPLEMI	ENTAR EL						
			EN LA CADEN								
	CENTRO	S DE ACOPIO	DE LECHE (CRUDA							
Problema:			Objetivo del Pro	oyecto							
Los procesos (Re	colección y acopi	io de leche,									
	es, Distribución y										
intervienen en la	•										
en el centro de ac		detectan los	En el caso del proceso de Recolección y acopi								
problemas de tier	1 .		de leche el objetivo es la aplicación de sistemas								
	copio de leche, re		inteligentes (Alg								
	s, en la mayoría d		optimización de	rutas de aco	pio de leche.						
	a centro de acopio										
ruta establecido,											
innecesarios de ti		ecursos.									
Líder del proyec	eto		Enfoque del pro	yecto							
Lic. Juan López			ERP								
Grupo del proye			Personal de apoyo								
Name	Role		Name	Role							
Juna López	Contador		Carlos céspedes	Patroci	nador						
Mario Camacho			Mario Camacho	Gerent							
Noelia Ruiz	Responsable Ver		Lucy Vera	Asister	nte contable						
Pablo Ortiz	Control de calida	ad	Fernando Arce		s control calidad						
Ana Lujan	Logística		Lucas López y o	tros Transp	ortista						
Ana Méndez	Promoción Venta	as									
Clientes y necesi			Defectos								
Procesadoras de j											
	Toni, Indulac, N	utrileche, Rey									
Leche, Otros.											
Métricas claves			Estimación de b								
Toma de muestra			Reducción de tie								
Índices de calidad	d (análisis bromat	ológico)	Disminuir costo								
tiempo de transpo	orte a centro de ac	copio	Reducir costos d de vehículos	e mantenimi	ento y reparación						
Costo de transpor	rte de la leche										
Alcance del pro	yecto		Otra informació	ón del proye	cto						
La aplicación se	realizara a los pro	cesos:									
Recolección y ac	<mark>copio de leche</mark> (ca	iso de estudi o)									
Pago a proveedor											
Distribución y ve	entas										
Fecha Inicio			Fecha Fin estim	ada							
	23/12/2019			25/05/2020							
Hitos:	1	2	3	4	5						
Descripción:	Inicio del proyecto	Análisis	Implementación	Evaluación	Fin del proyecto						

Fecha:				
Signatures - The signatures of the p	eople below	document approva	l of the form	al Project Charter
		Firma		Fecha
Líder del proyecto: Lic. Jua	ın López			18/12/2019
Patrocinador: Carlos O	Céspedes			18/12/2019
Dueño del	Proceso:	·	•	18/12/2019
Asesor Financiero: Jua	ın López			18/12/2019

APLICACIÓN DE SISTEMA INTELIGENTE PARA IMPLEMENTAR EL MODELO DE GESTION TRIPLE "A" EN LA CADENA DE SUMINISTRO DE CENTROS DE ACOPIO DE LECHE CRUDA

	Departmen			Cómo son	Poder(Nivel	Interés (Nivel	Importancia		Paso
Apoyo	to	Rol	Expectativa	afectados	autoridad)	participación)	del Proyecto	Estrategia	siguiente
Juna López	Finanzas	Contador	Reducir costos	aumenta la utilidad	8	4	8	Contacto semanal	Reunión de avances
Mario Camacho	RR.HH.	Responsab le RR.HH.	Ajuste de personal	disminución de personal	7	5	7	Contacto mensual	Reunión de avances
Noelia Ruiz	Comercial	Responsab le Ventas	ampliar demanda del mercado	mas ventas	7	7	6	Contacto semanal	Reunión de avances
Pablo Ortiz	Laboratorio	Control de calidad	mejorar control de calidad	menos desperdicio de leche	5	4	9	Contacto mensual	Reunión de avances
Ana Lujan	Logística	Logística	cumplir con las tareas asignadas	disminución de tiempo perdido	3	6	8	permanente contacto	Reunión de avances
Ana Méndez	Marketing	Promoción Ventas	Recuperar niveles de ventas	ganancias	5	3	6	Revisión de promociones	Reunión de avances
	Departmen			Cómo son	Pder(Nivel	Interés (Nivel	Importancia		Paso
En contra	to	Rol	Expectativa	afectados	autoridad)	participación	del Proyecto	Estrategia	siguiente
Lucas López	Logística	Transportis ta	quitaran rutas innecesarias	reducción de horas de trabajo	3	3	5		programar citas con Gerencia
Neutral	Departame nto	Rol	Expectativa	Cómo son afectados	Poder (Nivel autoridad)	Interés (Nivel participación)	Importancia el proyecto	Estrategia	Paso siguiente
Carlos	1100	Patrocinad	Reducción de	urocuu a o o	8	8	9	2502 WOOg.W	Reunión
céspedes		or	costos						constante
Mario Camacho		Gerente	Mejorar ingresos	aumento de ingresos	10	5	10		Reunión de información
Lucy Vera	Finanzas	Asistente contable	Mejorar ingresos	aumento de ingresos	4	4	6		
Fernando Arce	Laboratorio	técnicos C.A.	Mejorar ingresos	aumento de ingresos	4	4	6		
Clientes			mejorar calidad	Aumento de acopio	2		4		Reunión

D. Gantt Chart:

Select a period to highlight at right. A leg	end describin	g the charting	follows.		Period Highlight:	10		Plan	Dur	ratio	n			Actu	ial St	tart			% Co	omp	lete			Actu	ıal (b	eyor	nd pl	lan)
ACTIVIDAD	PLAN START	PLAN DURATION	ACTUAL START	ACTUAL DURATION	PERCENT COMPLETE	PEI	OS: SI	EMAN	IAS 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Recolección de Datos e Información	1	1	1	1	0 %																							
Construcción de Matriz FODA	2	2	2	2	0 %																							
Análisis de Pareto	3	1	3	1	0 %														_									
Definir estrategias	4	3	4	3	0 %																							
Puntualizar objetivos	6	5	6	5	0 %																							
Planes de acción para estrategias	10	3	10	3	0 %																							
Aplicación de RNs para el pronóstico de ventas	13	2	13	2	0 %																							
Aplicación de AG para optimizar rutas de acopio de leche	15	2	15	2	0 %																							
Definir indicadores de gestión de la C.S.	17	3	17	3	0 %																							
Definición de los procesos y subprocesos	19	3	19	3	0 %																							
Evaluación de impacto económico	21	2	21	2	0 %																							
																	_		_						_		_	

E. Arquitectura de los Datos y detalle de los datos:

Chofer: en el mayor de los casos es personal del centro de acopio, esta información está registrada en files físicos del departamento de recursos humanos.

Vehículo: es activo fijo del centro de acopio, lo tiene registrados en la parte de finanzas.

Acopio de leche: Son registros manuales de la recolección de leche, el chofer es el encargado de recolectar esta información.

Productor de Leche: En laboratorio se tiene registrados a los productores de leche.

Ventas: Este datos se tiene en el departamento de contabilidad.

Cliente: Son las procesadoras de producto lácteo. Que se tiene en registros de contabilidad

Distancia de recorrido: Este dato se obtiene a través de google maps.

Medición de distancia del recorrido se obtiene a través de la página maps.google.com

Distancia entre dos puntos medida por carretera (google maps)

F. Detalle del algoritmo

Un **Algoritmo Genético** es una técnica metaheurística que es aplicada en problemas de búsqueda y **optimización**. Está basada en el proceso de Evolución y Selección Natural de las especies.

Para los cinco puntos del ejemplo, las distancias son en kilómetros según se indica el siguiente cuadro. El punto A corresponde al centro de acopio

Km.	A	В	С	D	Е
A		9.4	15.2	10.4	14.3
В	9.4		20	11.4	7.2
С	15.2	20		7.8	10.7
D	10.4	11.4	7.8		6.5
Е	14.3	7.2	10.7	6.5	

Distancia en kilómetros entre el centro de acopio y los puntos de recolección

Los pasos que cumple son:

1. Codificar en genes y cromosomas la información del problema

Para el caso de estudio se considera 5 puntos que tienen que ser recorridos, al ser cada tramo un origen y un destino, se necesitan cinco combinaciones tomadas de dos en dos, da como resultado diez bits para definir una trayectoria completa como se ve a continuación.(Recorrido del sistema de acopio por tramos)

AB	BC	CD	DE	EA	AC	BD	AD	BE	CE
Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1

Codificación del recorrido, sistema de acopio por tramos

2. Definir la función de adaptación

-Función evaluación es la combinación de la función g(w) y h(w)

$$f(W) = g(W) - 0.1 * h(w)$$

g(**w**) =Asegura que todos los N puntos del recorrido sean considerados.

h(w) =Utilizada para minimizar el costo (distancia) del recorrido o costo promedio.

Ec. 2
$$g(W) = 1 - \frac{\left|R - \sum_{i=0}^{i=L-1} b_i\right|}{R}$$

Ec. 3
$$h(W) = \frac{\sum_{i=0}^{i=L-1} b_i \cdot D_i}{\sum_{i=0}^{i=L-1} D_i}$$

Donde:

R: es el número de puntos de recorrido

L: cantidad de bit utilizados, para el ejemplo L=10

b_i: i-esímo bit del byte "W"

D_i: Coste/ distancia del tramao i

 Función de aptitud A(W) Es la función normalizada de la función de evaluación, sobre el total de la sumatoria de las funciones de evaluación de todos los N elementos de la población.

Ec. 4
$$A(W_k) = \frac{f(W_k)}{\sum_{i=0}^{i=N} f(W_i)}$$

3. Generar una población base

En este proceso, se define aleatoriamente una población que represente a la mayor cantidad de zonas. Para el caso de estudio se generará una población inicial de diez individuos.

Byte	B10	В9	В8	В7	В6	В5	В4	В3	B2	B1
W1	0	0	1	1	0	1	1	1	0	1
W2	0	1	0	1	0	0	0	1	0	0
W3	0	0	0	1	0	0	1	1	1	1
W4	0	1	1	1	1	0	1	1	0	0
W5	1	0	1	1	1	0	0	0	1	0
W6	0	1	0	0	0	0	0	1	1	0
W7	0	0	0	0	0	0	1	0	1	1
W8	1	1	1	0	1	0	0	0	1	1
W9	0	0	0	1	0	0	0	0	0	1
W10	0	0	1	1	0	1	1	1	0	0

4. Evaluación y Selección

Para la evaluación sintetizamos la información, con la finalidad de facilitar el cálculo de la función de aptitud A(W)

Tramo	AB	BC	CD	DE	EA	AC	BD	AD	BE	CE
Byte W	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1
Distancia	9.4	20	7.8	6.5	14.3	15.2	11.4	10.4	7.2	10.7

Relación de Costo/Distancia por Bit y tramo

Con la población inicial y las ecuaciones 1,2,3 y 4 se puede calcular la función de aptitud de cada elemento de la población.

Byte	g(W)	h(W)	f(W)	A(W)	A(W) acumulada
W1 •	0.8	0.55	0.75	0.10	0.10
W2	0.6	0.33	0.57	0.08	0.18
W3 •	1	0.41	0.96	0.13	0.32
W4	0.8	0.62	0.74	0.10	0.42
W5 •	1	0.40	0.96	0.13	0.55
W6	0.6	0.33	0.57	0.08	0.63
W7	0.6	0.26	0.57	0.08	0.71
W8	0.8	0.61	0.74	0.10	0.81
W9	0.4	0.15	0.38	0.05	0.87
W10 •	1	0.45	0.95	0.13	1.00
		Total	7.19	1.00	

Evaluación de la población inicial

5. Reproducción

Para la reproducción se utilizará el **cruce por punto fijo** en el bit 6, por ejemplo seleccionamos ols bytes W5 y W3 como padres se tendrían dos posibles descendencias.

Byte	B10	В9	В8	В7	В6	B5	B4	В3	B2	B1
W5	1	0	1	1	1	0	0	0	1	0
W3	0	0	0	1	0	0	1	1	1	1
W5- W3	1	0	1	1	1	0	1	1	1	1
W3 -W5	0	0	0	1	0	0	0	0	1	0

Cruce por punto fijo

Para el análisis se utilizaran como padres los mejores cuatro adaptados (W5, W3 W10 y W1)

Byte	B10	В9	B8	В7	В6	B5	B4	В3	B2	B1
W5-W3	1	0	1	1	1	0	1	1	1	1
W3-W5	0	0	0	1	0	0	0	0	1	0
W5-W10	1	0	1	1	1	1	1	1	0	0
W5-W1	1	0	1	1	1	1	1	1	0	1
W3-W10	0	0	0	1	0	1	1	1	0	0
W3-W1	0	0	0	1	0	1	1	1	0	1
W10-W5	0	0	1	1	0	0	0	0	1	0
W1-W5	0	0	1	1	0	0	0	0	1	0
W10-W3	0	0	1	1	0	0	1	1	1	1
W1-W3	0	0	1	1	0	0	1	1	1	1

Segunda Generación de individuos

Ahora que se tiene la generación de padres e hijos se aplica la evaluación y selección de los diez mejores, con el mayor valor de la función de adaptación

Byte	g(W)	h(W)	f(W)	A(W)	A(W) acumulada
W5	1	0.40	0.96	0.12	3.60
W3	1	0.41	0.96	0.12	3.72
W10	1	0.45	0.95	0.11	3.83
W3-W1	1	0.48	0.95	0.11	3.95
W3-W10	0.8	0.39	0.76	0.09	4.04
W10-W3	0.8	0.48	0.75	0.09	4.13
W1-W3	0.8	0.48	0.75	0.09	4.22
W1	0.8	0.55	0.75	0.09	4.31
W8	0.8	0.61	0.74	0.09	4.40
W4	0.8	0.62	0.74	0.09	4.49
		Total	8.31	1.00	

Individuos que pasan a la siguiente generación

Se tiene como valor total de adaptación de 8.31 es superior al valor total de adaptación de la población inicial (7.19) Lo que indica que esta generación es más apta que la inicial.

6. Mutación

Puede ser combinada con la reproducción, ejecutada aleatoriamente o aplicada luego de que en varias generaciones no se produzca un crecimiento en la función de aptitud.

7. Condición de la terminación

Se define por la cantidad de ciclos o cuando la función de aptitud alcance un valor meta, en nuestro ejemplo se realizó en dos ciclos con el fin de modelar un caso práctico de optimización de rutas mediante algoritmos genéticos.