An Open-Source Streaming Machine Learning and Real-Time Analytics Architecture

Using an IoT example

Traditional Data Analytics - Limitations

No real-time information ETL based Data-source specific

Hard to change Labor intensive Inefficient

Stream-based, Real-Time Closed-Loop Analytics

Multiple Data
Sources
Real-Time Processing
Store Everything

Continuous Learning
Continuous
Improvement
Continuous Adapting

Machine Learning and Smart Systems

Bayesian Methods

Classifiers

Neural Networks

Genetic Algorithms

A Streaming Machine Learning for IoT Example

Predictive Maintenance Scenario

Evaluates LIVE DATA

"According to historical trends, there's an 80% chance this equipment would fail in the next 12 hours"

Smart System

Learns with HISTORICAL TRENDS

"How were the temperature and vibration sensors reading when the latest failures happened?"

Analysis

Machine Learning

Look at past trends (for similar input)

Evaluate current input

Score / Predict

Supervised Learning Example

A Streaming Machine Learning Reference Architecture

Indoors Localization - Applied Example

Trilateration and its limitations

Noisy Data

Physical Barriers

Large Overlap Areas

Moving Targets

Innacuracy

Large Overlap Areas

Particle Filters - Calculating the optimum solution

Particle Filters - Calculating the optimum solution

User localization based on the localization of robots and beacons

Prototype System Repeater Beacon 3 Beacon 4 Main UI Wireless LAN Human 2 Human 1 Robot Monitoring PC

Autonomous Navigation

^{*} Extended Kalman Filter Simultaneous Localization And Mapping

The Solution

- 1. Capture signal strength
- 2. Calculate distance from antenna
- 3. Trilaterate different sensors to predict location in real-time
- 4. Show on a map with live updates

Architecture Overview

Application Platform CLOUD FOUNDRY

Geode Basic Concepts

- Cache
 - Configurable through XML, spring ,Java
- Region
 - Distributed j.u.Map on steroids
 - Highly available, redundant
- Member
 - Locator, Server, Client
- Callbacks
 - Listener, Writer, AsyncEventListener, Parallel/Serial

Introduction to SpringXD

Runs as a distributed application or as a single node

Spring XD

A stream is composed from *modules*. Each module is deployed to a *container* and its channels are bound to the *transport*.

Demo

Why have we selected those projects

- Iterative & Exploratory model
- Web based REPL
- Multiple Interpreters
 - Apache Geode
 - Apache Spark
 - Markdown
 - Flink
 - Python...

- Productivity
- Built-in connectors
- Cloud Agnostic
- Highly Scalable
- Easy to setup
- Streams without coding

- In-memory & Persistent
- Highly Consistent
- Extreme transaction processing
- Thousands of concurrent clients
- Reliable event model

Source code and detailed instructions available at:

https://github.com/Pivotal-Open-Source-Hub/WifiAnalyticsIoT

Tomorrow:

Implementing a Highly Scalable In-Memory Stock Prediction System with Apache Geode (incubating),

Spark MLib and Spring XD

Room: Tohotom - 14:30, Sep 30 Fred Melo, Pivotal, William Markito, Pivotal

