

加减运算

用加法代替减法

模

相当于 求余数

模运算的性质

带余除法——设
$$x,m\in \mathbb{Z}, m>0$$
则存在唯一决定的整数 q 和 r ,使得: $x=qm+r$, $0\leq r< m$

数论中余数的定义

4.为 补数 -3 = (-1)*12 + <mark>9</mark>

二者绝对值 之和=模

$$9 = 0*12 + 9$$

$$21 = 1*12 + 9$$

$$33 = 2*12 + 9$$

$$-15 = (-2)*12 + 9$$

.....

(mod 12) 把所有整数分为 12 类 (余数为 0~11)

mod 12 余数相同的数,都是同一类,都是等价的

即 10+(-3)、10+9、10+21 在 (mod 12)的条件下效果相同

在 (mod m) 的条件下,若能找到负数的补数,就可以用正数的加法来等价替代减法

模 - a的绝对值 = a 的补数

加减运算

加减运算

补码的作用:

使用补码可将减法操作转变为等价的加法,ALU 中无需集成减法器。 执行加法操作时,符号位一起参与运算

留个坑:溢出的判断?

移码

真值(十进制)	补码	移码
-128	1000 0000	0000 0000
-127	1000 0001	0000 0001
-126	1000 0010	0000 0010
° -3	1111 1101	0111 1101
-2	1111 1110	0111 1110
-1	1111 1111	0111 1111
0 0	0000 0000	1000 0000
1	0000 0001	1000 0001
် 2	0000 0010	1000 0010
3	0000 0011	1000 0011
··· 🎢	8	🔏
124	0111 1100	1111 1100
125	0111 1101	1111 1101
° 126	0111 1110	1111 1110
127	<mark>0</mark> 111 1111	1111 1111

真值增大

移码表示的整数 很方便对比大小