Definition 5.1 An algorithm that reduces A to RREF(A) is called **Gauss-Jordan elimination**. For example:

- 1. Circle the top-left-most cell that (a) is below any existing pivot positions and (b) has a nonzero term either in that position or below it.
- 2. Turn the pivot into a 1 using only that row and rows below it.
- 3. Add or subtract multiples of the row with the pivot to zero out above and below the pivot.
- 4. Goto 1

Definition 5.3 The columns of RREF(A) without a leading term represent **free variables** of the linear system modeled by A that may be set equal to arbitrary parameters. The other **bounded variables** can then be expressed in terms of those parameters to describe the solution set to the linear system modeled by A.

Definition 5.8 A homogeneous system is a linear system satisfying $b_i = 0$, that is, it is a linear system of the form

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = 0$$

Definition 5.10 A minimal set of Euclidean vectors generating the solution set to a homogeneous system is called a **basis** for the solution set of the homogeneous system. For example:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = a \begin{bmatrix} 3 \\ 1 \\ -1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$Basis = \left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$