L1-MIASH - ALGÈBRE LINÉAIRE I

FEUILLE DE TRAVAUX DIRIGÉS N° 5

eneray environment solut

A.U.: 2013-2014

Matrices - Déterminants - Changement de base

Enseignant: H. El-Otmany

Exercice n°1

- 1. Ecrire la formule du déterminant pour une matrice 4x4. Combien y a-t-il de termes dans cette formule?
- 2. Soient σ_1 , σ_2 les permutations sur 4 éléments suivantes

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix},$$

$$\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}.$$

3. On considère la matrice suivante :

$$A = \begin{bmatrix} -4 & 1 & 1 & 2 \\ 1 & 3 & 1 & 5 \\ 1 & 0 & -4 & 6 \\ 1 & 1 & 1 & 2 \end{bmatrix}.$$

Entourer en bleu les termes de la matrice correspondant à la permutation σ_1 et en rouge ceux correspondant à la permutation σ_2 . Les calculer. Avec quel signe ces termes apparaissent-ils?

Exercice n°2 Calculer les déterminants suivants :

$$\begin{vmatrix} 2 & 3 \\ -1 & 4 \end{vmatrix}; \quad \begin{vmatrix} 1 & 0 & 2 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{vmatrix}; \quad \begin{vmatrix} 1 & 0 & 6 \\ 3 & 4 & 15 \\ 5 & 6 & 21 \end{vmatrix}; \quad \begin{vmatrix} 1 & 0 & 0 \\ 2 & 3 & 5 \\ 4 & 1 & 3 \end{vmatrix}; \quad \begin{vmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ \cos x & \cos y & \cos z \\ \cos 2x & \cos 2y & \cos 2z \end{vmatrix}; \begin{vmatrix} 1 & 1 & 1 & 1 \\ \cos x & \cos y & \cos z & \cos t \\ \cos 2x & \cos 2y & \cos 2z & \cos 2t \\ \cos 3x & \cos 3y & \cos 3z & \cos 3t \end{vmatrix}; \begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ -1 & 0 & 3 & & n \\ -1 & -2 & 0 & & n \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & -2 & -3 & \cdots & 0 \end{vmatrix}$$

Exercice $n^{\circ}3$ Déterminer pour quelles valeurs de t, la matrice suivante est inversible et calculer son inverse.

$$B = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & -4 & 2 & 1 \\ 0 & t & 1 & 0 \\ 0 & 0 & 2 & -4 \end{bmatrix}$$

Exercice n°4 Les nombres 119, 153 et 289 sont tous divisibles par 17. Montrer, sans le développer que

le déterminant
$$\begin{vmatrix} 1 & 1 & 9 \\ 1 & 5 & 3 \\ 2 & 8 & 9 \end{vmatrix}$$
 est divisible par 17.

Exercice n°5 Mettre sous forme bien échelonnée la matrice suivante.

$$A = \begin{bmatrix} -3 & 1 & 1 & 2 \\ 1 & -4 & 2 & -1 \\ 0 & -1 & -2 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Exercice n°6 On considère la matrice suivante à coefficients dans Q et

$$M(t) = \begin{bmatrix} 1 & t & 2t^2 & 4 \\ 2 & -2t & 0 & 3 \\ 3 & 3t & 4t + 2 & 2 \\ 4 & 1 & 3t + 2 & 1 \end{bmatrix}.$$

Montrer que M(1) n'est pas inversible. Déterminer pour quelles valeurs de t la matrice M(t) est inversible.

Exercice n°7 Calculer l'inverse des matrices suivantes

$$A_4 = \begin{pmatrix} 0 & -1 & -2 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix}, \quad A_5 = \begin{pmatrix} 1 & -2 & 0 & -1 \\ -1 & 0 & 2 & 0 \\ 0 & 1 & 3 & -2 \\ 0 & -1 & 1 & 2 \end{pmatrix}, \quad A_6 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix},$$

en utilisant

- 1. la méthode de Gauss
- 2. la matrice échelonnée
- 3. la matrice des cofacteurs (comatrice).

Exercice n°8 Déterminer par la méthode de Gauss le rang de la matrice A définie par

$$A_{1} = \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 1 & 1 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 4 & 6 & 8 & 0 \\ 1 & 2 & 3 & 0 \\ 3 & 4 & 5 & 1 \end{pmatrix}, \quad A_{3} = \begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ 2 & -1 & 3 & -1 & 0 \\ 3 & 0 & 1 & -2 & 0 \\ 7 & 1 & -1 & 1 & 1 \end{pmatrix}$$

Exercice n°9 Calculer par déterminants le rang des matrices suivantes :

$$A_{1} = \begin{pmatrix} -1 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 1 & -2 & -3 & -4 & -5 \\ -1 & 3 & 2 & 6 & 3 \\ 0 & 3 & 3 & -2 & 1 \end{pmatrix}, \quad A_{3} = \begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ 2 & -1 & 3 & -1 & 0 \\ 3 & 0 & 1 & -2 & 0 \\ 7 & 1 & -1 & 1 & 1 \end{pmatrix}$$

$$A_4 = \begin{pmatrix} 0 & -1 & -2 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix}, \quad A_5 = \begin{pmatrix} 1 & -2 & 0 & -1 \\ -1 & 0 & 2 & 0 \\ 0 & 1 & 3 & -2 \\ 0 & -1 & 1 & 2 \end{pmatrix}, \quad A_6 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

Exercice n°10 Calculer le rang de la matrice A suivant le paramètre $m \in \mathbb{R}$

$$A = \begin{pmatrix} 1 & 0 & m & 0 \\ 0 & -1 & 3 & -m \\ 0 & 0 & m & m-2 \\ 0 & 1 & -1 & 1-m \end{pmatrix}$$

Exercice n°11 Calculer les inverses des matrices suivantes, quand elles sont inversibles :

$$A_1 = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}; \quad A_2 = \begin{pmatrix} 3 & -3 \\ -2 & 2 \end{pmatrix}; \quad A_3 = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 2 \\ 2 & -1 & -1 \end{pmatrix}$$

$$A_4 = \begin{pmatrix} 1 & -1 & \alpha \\ -1 & \beta & 0 \\ 0 & \alpha & -1 \end{pmatrix}, (\alpha, \beta) \in \mathbb{R}^2; \quad A_4 = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & m & -1 \end{pmatrix}, m \in \mathbb{R}$$

Exercice n°12 Pour m dans \mathbb{C} , on pose :

$$A = \left(\begin{array}{cccc} 0 & m & 0 & 0 \\ 0 & 0 & m & 0 \\ 0 & 0 & 0 & m \\ 0 & 0 & 0 & 0 \end{array}\right).$$

- 1. Calculer A_2 , A_3 , A_4 .
- 2. En déduire $(I_4 A)^n$.
- 3. Calculer $(I_4 A)^{-1}$ et $(I_4 A)^{-n}$.

Exercice n°13 Soit f l'endomorphisme de \mathbb{R}^3 qui admet dans la base canonique la matrice :

$$A = \left(\begin{array}{rrr} 1 & -1 & -2 \\ -3 & -3 & -3 \\ 2 & 2 & 2 \end{array}\right)$$

- 1. Déterminer une base de noyau de f.
- 2. Déterminer une base de l'image de f. Quel est le rang de A.
- 3. Trouver une base où la matrice de f soit :

$$B = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

Exercice $n^{\circ}14$ Soient E l'espace vectoriel des polynômes de degré au plus 3 et f l'endomorphisme de E qui à un polynôme associe son polynôme dérivé.

- 1. Écrire la matrice C de f dans la base canonique C de E.
- 2. Écrire la matrice B de f dans la base $\mathcal{B} = (1, 1 + X, 1 + X^2, 1 + X^3)$.
- 3. Écrire la matrice de passage de la base \mathcal{C} à la base \mathcal{B} et vérifier $P_{\mathcal{BC}}P_{\mathcal{C}^{\mathcal{B}}}=I_{E}$.

Exercice n°15 Soit f l'endomorphisme de \mathbb{R}^2 de matrice $M_{\mathcal{C}}(f)$ dans la base canonique :

$$M_{\mathcal{C}}(f) = \begin{pmatrix} 5 & 1 \\ -4 & 0 \end{pmatrix}.$$

- 1. Écrire la matrice $M_{\mathcal{B}}(f)$ de f dans la base $\mathcal{B}=(v_1,v_2)$ avec $v_1=(1,-4)$ et $v_2=(1,-1)$.
- 2. Calculer la matrice de passage $P_{\mathcal{BC}}$ de la base \mathcal{C} à la base \mathcal{B} ? Calculer $P^{-1} = P_{\mathcal{CB}}$.
- 3. En déduire la matrice $M_{\mathcal{C}}^n(f)$ et les composantes a_n et b_n dans la base canonique du vecteur transformé de (1;0) par f^n .

Exercice n°16 Soit E un \mathbb{R} -espace vectoriel de dimension 3 et $\mathcal{B} = \{u_1, u_2, u_3\}$ une base de E. Soit f l'endomorphisme de E dont la matrice relativement à la base B est

$$M_{\mathcal{B}}(f) = \begin{pmatrix} 3 & 1 & -3 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

On définit $\mathcal{B}'=\{v_1,v_2,v_3\}$ où $v1=u_1+u_2+u_3, v_2=u_1-u_2, v_3=u_1+u_3.$

- 1. Montrer que \mathcal{B}' est une base de E.
- 2. Donner la matrice de passage de \mathcal{B} à \mathcal{B}' et écrire la matrice de f dans la base \mathcal{B}' .
- 3. Déterminer une base de $\operatorname{Ker} f$ et de $\operatorname{Im} f$.