Используя эту формулу и прилагаемый график зависимости U(x) можно рассчитать значения начальной скорости, при которой минимальное расстояние будет равно x_{min} с помощью выражения

$$v_0 = 2\sqrt{\frac{U(x_{min})}{m}}.$$

(4)

Результаты таких расчетов представлены в таблице и на графике

\mathcal{X}_{min} ,	U,	v_0 ,
(см)	(мДж)	(cM/c)
1	18	60
2	9	42
3	6	35
5	3,5	26
9	2	20
12	1,5	17
18	1	14

10 класс.

10.1 При неподвижной тележке дальность полета рассчитывается по известной формуле

$$S_0 = \frac{2v_0^2}{g} \sin\alpha \cos\alpha = \frac{v_0^2}{g},\tag{1}$$

где $v_{\scriptscriptstyle 0}$ - начальная скорость снаряда.

При выстреле с подвижной тележки будет сохраняться механическая энергия (причем она будет равна энергии снаряда при стрельбе с неподвижной тележки) и проекция импульса на горизонтальное направление. Кроме того, скорость снаряда относительно тележки (а не относительно земли)

будет направлена под углом $\alpha = 45^{\circ}$ к горизонту.

Разложим вектор скорости снаряда (относительно земли) на горизонтальную v_x и вертикальную v_y составляющие, скорость

тележки обозначим u. Тогда описанные условия примут вид

$$\frac{Mu^2}{2} + \frac{mv_x^2}{2} + \frac{mv_y^2}{2} = \frac{mv_0^2}{2},\tag{2}$$

$$Mu = mv_{x},$$
 (3)

$$v_{y} = u + v_{x}. \tag{4}$$

Время полета можно найти по формуле

$$t = \frac{2v_y}{g},\tag{5}$$

тогда расстояние между снарядом и тележкой следует рассчитать по формуле

$$S = \left(v_x + u\right)t = \frac{2v_y^2}{g},\tag{6}$$

при выводе учтены соотношения (3) и (5). Теперь из соотношений (2)- (4) необходимо выразить компоненту скорости v_y

$$v_y^2 = \frac{1+\eta}{2+\eta} v_0^2. {(7)}$$

Подставляя выражения (7) и (1) в формулу (6), получаем окончательное выражение

$$S = 2\frac{1+\eta}{2+\eta} S_0 \approx 3.6 \,\mathrm{M} \,. \tag{8}$$

10.3 Обозначим поверхностную плотность зарядов на обкладках конденсатора σ_0 , а на поверхности пластины σ' (обе эти величины зависят от времени). Так как внутреннее сопротивление источника пренебрежимо мало, то в любой момент времени разность потенциалов между обкладками конденсатора будет равна напряжению источника. Поэтому в любой момент времени справедливо соотношение

$$\frac{\sigma_0}{\varepsilon_0}h + \frac{\sigma_0 - \sigma'}{\varepsilon_0}h = U, \qquad (1)$$

где $\frac{\sigma_0}{\mathcal{E}_0}$, $\frac{\sigma_0-\sigma'}{\mathcal{E}_0}$ - напряженности электрических полей между платиной

и обкладками и внутри пластины, соответственно.

Сразу после подключения источника на пластине возникнут поляризационные заряды, такие, что поле внутри пластины будет в ε раз меньше поля вне ее, то есть