PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:		C	1) International Publication Number:	WO 91/04745		
A61K 37/02, 39/00, C07K 7/08 C07K 7/10, 13/00, 15/00 C07K 15/28	A	1 6	3) International Publication Date:	18 April 1991 (18.04.91)		
(21) International Application Number:	PCT/US90/	05105	(74) Agents: BLECHER, Melvin et	al.; 611 West Sixth Street,		

(30) Priority data:

413,332 571,267

(22) International Filing Date:

27 September 1989 (27.09.89) US 23 August 1990 (23.08.90) US

13 September 1990 (13.09.90)

(71) Applicant: ATHENA NEUROSCIENCES, INC. [US/US]; 800F Gateway Boulevard, South San Francisco, CA 94080 (US).

(72) Inventors: RUBIN, Lee, L.; 122 Funston Avenue, San Francisco, CA 94118 (US). LIAW, Chen, W.; 80 Mariana Court, Redwood City, CA 94062 (US). TOMASELLI, Kevin, J.; 485 Vallejo Street, San Francisco, CA 94133 (US).

(74) Agents: BLECHER, Melvin et al.; 611 West Sixth Street, 34th Floor, Los Angeles, CA 90017 (US).

(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent)*, DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: COMPOSITIONS FOR CELL ADHESION INHIBITION AND METHODS OF USE

(57) Abstract

Compositions that disrupt microvascular endothelial and epithelial cell tight junctions, and methods of use, are disclosed. Such compositions comprise agents that inhibit the binding to such cells of cell adhesion molecules. Such inhibitor agents include cell adhesion molecules, fragments of cell adhesion molecules that encompass a cell-binding domain such as HAV, and antibodies directed against cell adhesion molecules and fragments thereof. Also disclosed are drug delivery compositions comprising a therapeutic drug conjugated to an agent that disrupts cell tight junctions.

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
ΑU	Australia	Fi	Finland	MG	Madagascar
₿₿	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
B.J	Benin	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CM	Cameroon -	LI	Liechtenstein	SU	Soviet Union
DE	Germany	LK	Sri Lanka	TD	Chad
DK	Denmark	LU	Luxembourg	TG	Togo
			U	US	United States of America

À

e-

10

25

30

COMPOSITIONS FOR CELL ADHESION INHIBITION AND METHODS OF USE

This is a continuation-in-part of United States Serial No. 07/413,332, filed September 27, 1989.

Background of the Invention

Field of the Invention

This invention relates to compositions that transiently and reversibly dissociate the blood-brain barrier. More particularly, the invention relates to compositions that dissociate tight junctions between brain capillary endothelial cells that constitute the physiological barrier between the general circulation and the brain.

Detailed Description of Related Art

The entry of drugs from the blood stream to the central nervous system (CNS), i.e., the brain and spinal cord, is restricted by the presence of high resistance tight junctions between brain capillary cells and by the apparently low rate of transport across these endothelial cells (Betz, A.L., et al., Ann. Rev. Physiol., 48:241 (1986); Pardridge, W.M., Ann. Rev. Pharmacol. Toxicol., 28:25 (1988)).

The tight junctions of the blood brain barrier (BBB) prevent diffusion of molecules and ions around the brain capillary endothelial cells. The only substances that can readily pass from the luminal core of the capillary to the abluminal tissues that surround the capillary are those molecules for which selective transport systems exist in the endothelial cells, as well as those compounds that are lipophilic (i.e., hydrophobic). In contrast, drugs, peptides and other

À

molecules that are neither lipophilic nor transported by specific carrier proteins are barred from entry into the brain, or their rates of entry are too low to be useful, thereby imposing a severe limitation upon the physician's ability to treat CNS disorders pharmacologically.

The carrier-mediated transcellular transport system mentioned above may have limited usefulness for therapeutic modalities under some circumstances. Transcytotic transport, in general, involves, first, 10 the binding of molecules to specific carrier proteins on the surface of endothelial cells, and, second, the delivery of such molecules across the endothelial Limitations on the usefulness of such a system 15 for treatment of CNS disorders are based on the following considerations: (1) physiological carrier proteins may not function efficiently, or at all, with non-physiological drugs; (2) even where function occurs, the rate of transport of therapeutic agents will be limited by the rate of transport of the 20 carrier; (3) the overall capacity of cerebral capillary endothelial cells to transport any therapeutic macromolecules may be simply too low to achieve therapeutic levels of certain drugs in the brain; and (4) once therapeutic macromolecules enter endothelial 25 cells, depending on their nature, they might be delivered to any number of organelles, including lysosomes that contain a wide variety of hydrolytic For these reasons, creating drug delivery systems that do not rely upon transcytosis will clearly 30 be advantageous.

As tight junctions between brain capillary endothelial cells constitute a major part of the BBB, the possibility of modifying these junctions has been considered. It has been found that tight junctions,

25

30

35

46:141 (1987)).

including those of the BBB, can be disrupted by hyperosmotic solutions administered intra-arterially. For example, Polley et al., WO89/04663, published June 1, 1989, disclose the osmotic disruption of the interendothelial structure of the BBB by the intra-arterial administration of hypertonic solutions of mannitol, arabinose or glycerol as a means of introducing into the brain genetic material. Similarly, hyperosmotic solutions of urea have also been used to alter the BBB (Bowman, P.D. et al., Ped. Res., 16:335A (1982)).

disrupt endothelial or epithelial cell tight junctions when administered intravenously, including:

7-fluorouracil (MacDonell, L.A., et al., Cancer. Res., 38:2930 (1978)), degradation by membrane enzymes (Vincent, P.A., et al., Exp. Mol. Path., 48:403 (1988); Diener, H.M., et al., J. Immunol., 135:537 (1985)), aluminum salts (Zigler, Z.Y., et al., IRCS Med. Sci., 12:1095 (1984)), histamine (Meyrick, B., et al., Exp. Lung Res., 6:11 (1984)), thrombin (Siflinger-Birnboin, A., et al., Microvasc. Res., 36:216 (1988)), phorbol esters (Shiba, K., et al., Exp. Cell Res., 178:233

(1988)), and neutralization of the luminal anionic

charge (Hart, M.M., J. Neuropathol. Exp. Neurol.,

Other chemical agents have been reported to

Although the above-listed modalities may disrupt tight junctions and thereby increase permeability of the BBB, problems attendant upon their use make them less than desireable. For example, intra-arterial perfusion with hyperosmotic solutions involves surgery, and this cannot be repeated on a regular basis. Further, concentrated sugar solutions may not be innocuous, and might be expected to have undesirable side effects. In addition, the aforementioned chemical

agents may not be useful for the treatment of chronic neurological disease, their effects on tight junctions are not always reversible, and, as they all are themselves powerful drugs, there is always the danger that their use will compromise the patient's health generally. For example, 7-fluorouracil is a powerful inhibitor of pyrimidine synthesis, and thus nucleic acid biosynthesis, in animals cells.

Thus, an important need still exists for means which transiently and reversibly disrupt tight junctions of the BBB in order that administered drugs can reach the brain from the general circulation, and which have no undesirable side effects of their own in the subject.

15 Attempts have been made to disrupt cell-cell adhesion by modifying the protein(s) responsible for such adhesion, collectively referred to as "cell adhesion molecules" (CAM). One class of CAM is termed "cadherin". "Cadherin" is the term applied to a family of glycoproteins found in most kinds of mammalian 20 tissues and thought to be responsible for Ca²⁺dependent cell-cell adhesion, (Takeichi, M., Development, 102:639 (1988)). Three subclasses of cadherin have been identified, namely, E-cadherin (from epithelial tissues), P-cadherin (from placental 25 tissues), and N-cadherin (from neural tissues) (Yoshida-Noro, C., et al. Dev. Biol., 101:19 (1984); Nose, A., et al., J. Cell Biol., 103:2649 (1986); Hatta, K., et al., Nature, 320:447 (1986)).

The different cadherins exhibit distinct tissue distribution patterns (Takeichi, U., (1988) above).

E-cadherin, which was found to be distributed exclusively in epithelial cells of various tissues (Hatta, K., et al., Proc. Nat'l. Acad. Sci. (USA),

82:2789 (1985); Takeichi, 1988, above), appears to be

identical to uvomorulin (Hyafil, F., et al., Cell, 21:927 (1986)), chicken liver-cell adhesion molecule (L-CAM, Gallin, W.J., et al., Proc. Nat. Acad. Sci. (USA), 80:1038 (1983)), and cell-CAM 120/80 (Damsky,

- 5 C.H., et al., Cell, 34:455 (1983)) in terms of biochemical properties (Cunningham, B.A., et al., Proc. Nat. Acad. Sci. (USA), 81:5787 (1984)) and tissue distributions (Thiery, J.-P., et al., Dev. Biol., 102:61 (1984)).
- N-cadherin, which is expressed in various neural tissues including astrocytes (Hatta, K., et al., Devel. Biol., 120:215 (1987); Matsunega, M., et al., Nature, 334:62 (1988); Tomaselli, K.J., Neuron, 1:33 (1988)), shows 92% amino acid sequence homology between
- mammalian and avian homologs, shows from 40 to 50% similarity to epithelial E-cadherin and to placental P-cadherin of the same species, but was immunologically not cross-reactive with other cadherins within the same animal (Miyatani, S., Science, 245:631 (1989)).
- Placental P-cadherin has also been cloned, and the deduced amino acid sequence of this glycoprotein was found to exhibit about 58% homology with epithelial E-cadherin (Nose, A., et al., EMBO J., 12:3655 (1987)).
- Subsequent to the September 27, 1989 filing of the parent application, Heimark, et al. (Heimark, R.L., et al., J. Cell Biol., 110:1745 (1990) reported on the identification of a Ca²⁺-dependent cell-cell adhesion molecule in aortic endothelial cells.

Although each of the aforelisted cadherins

displays unique immunological and tissue distribution specifications, all have features in common: (1) a requirement for Ca²⁺ for cell adhesion function; (2) protection by Ca²⁺ from proteolytic cleavage; (3) similar numbers of amino acids, i.e., from about 723 to about 822; (4) similar masses, i.e., about 124 kdal.

for the glycoprotein; (5) substantial interspecies (50%-60%) overall sequence homology with interspecies homologies increasing to about 56% to 99% in the cytoplasmic region of the protein, suggesting that they constitute a gene family (Nose, A., 1987; Miysysni, D., et al., 1989); and (6) a common mechanism of action, namely, homophilic binding of cadherins on one cell to similar cadherins on the adjoining cell.

CAMs independent of Ca2+ are also known, for example, the 125K glycoprotein of Urushihara et al. 10 (Urushihara, H., et al., Cell, 20:363 (1980)); N-CAM (Rutishauser, U., <u>Nature, Lond.</u>, 310:549 (1984)); Ng-CAM (Grunet, M. et al., Proc. Nat'l. Acad. Sci. 15

- <u>J.</u>, 3:1 (1984)); G4 (Rathjien, F.G. <u>et al.</u>, <u>J. Cell</u> Biol., 104:343 (1987)); and platelet glycoprotein PECAM-1 (CD 31) (Newman, P.J., <u>Science</u>, 247:1219 (1990)). Ca²⁺-independent CAMs are known to exhibit certain properties of the Ca2+-dependent CAMs. Thus,
- N-CAM and N-cadherin both promote retinal neurite 20 outgrowth on astrocytes (Neugebauer, K.M., et al., J. Cell Biol., 107:1177 (1985)), and on Schwann cells (Bixby, J.L. et al., <u>J. Cell Biol.</u>, 107:353 (1988)).
- Monoclonal antibodies raised against epithelial E-type cadherins such as uvomorulin are known to 25 disrupt the adhesion of several cell types, including embryo cells, cultured teratocarcinoma cells, hepatocytes, and MDCK kidney epithelial cells (Ogou, S.-I., et al., J. Cell Biol., 97:944 (1983); Yoshida-30
- Noro, et al., (1984), above; Shirayoshi, Y., et al., Cell Struct. Funct., 11:285 (1986); Gallin, et al., (1983), above; Vestweber, D., et al., EMBO J., 4:3393 (1985); Johnson, M.H., et al., J. Embrol. Exp. Morphol., 93:239 (1986); Gumbiner, B., et al., J. Cell Biol., 102:457 (1986)). 35

PCT/US90/05105

10

25

However, prior to the present discoveries disclosed in the parent applications cadherins had not been found in brain capillary or other endothelial cells (see, Takeichi, et al. (1988), above). Further, the CAMs of microvascular endothelial cells had not yet been identified, nor had such molecules been localized specifically to brain capillary endothelial cells. Thus, until the present invention no means were known for transiently and reversibly disrupting tight junctions between microvascular endothelial cells, including those of the BBB, based upon an attack upon the CAM's of such cells that are responsible for tight junction formation and maintenance.

It has been hypothesized that the cadherins

contain a common cell adhesion recognition (CAR)

sequence. The CAR sequences of several cell and

substratum adhesion molecules are known. Martin, G.R.,

et al., Ann. Rev. Cell Biol., 3:57 (1987); Ruoslahti,

E., et al., Science, 238:491 (1987). In general, CAR

sequences are composed of at least three amino acid

residues. The most rigorously investigated CAR

sequence is RGD which is found in laminin, fribronectin

and other basement membrane components that are

responsible for the binding of cells to the substratum.

Blaschuk, et al., in a paper to be published subsequent to the filing of the present application (Blaschuk, O., et al., J. Mol. Biol., in press, (1990)), disclose the presence of three potential cadherin CAR sequences in the first extracellular domains of liver CAM, E-, P-, and N-cadherin, namely, PPI, GAD and HAV. Blaschuk, et al. (Blaschuk, O., et al., Develop. Biol., 139:227 (1990)), also disclosed recently that synthetic peptides containing the HAV sequence inhibited two biological processes (compaction of 8-cell-stage mouse embryos and rate of neurite

outgrowth on astrocytes) that are known to be mediated by cadherins. Effective peptides in these assays were LRAHAVDVNG and AHAVSE; PPI-containing peptides were without effect. However, Blaschuk et al. provide no guidance for determining the regions flanking the HAV tripeptide that are critical for cell-cell adhesion. In the BBB disrupting peptides of the present invention detailed below, we have observed that the mere presence of the HAV sequence in a small cadherin-derived peptide is not the <u>sine qua</u> <u>non</u> for a composition effective to 10 prevent cell-cell adhesion. Indeed, it should be emphasized that neither Blaschuk et al. nor any other publication known to the present inventors suggest that cadherin sequences containing HAV or SHAVS sequences would be effective in opening tight junctions and 15 piercing blood brain barriers formed by E-cadherins in brain microvascular endothelial cells.

SUMMARY OF THE INVENTION

It has now been discovered that molecules
homologous to, and immunologically related to, cadherin
cell adhesion molecules are present on brain and nonbrain microvascular endothelial cells, such that

15

20

25

30

junctions between such endothelial cells can be reversibly opened so as to permit passage of therapeutic drugs by the use of polypeptide and antibody compositions that compete with such cell adhesion molecules for binding to such cells.

It is therefore an object of this invention to provide the identity of microvascular endothelial cell adhesion molecules.

Another object of this invention is to provide DNA sequences of genes, and plasmids containing same, coding for the expression of all or a cell-binding portion of microvascular endothelial cell adhesion molecules.

Yet another object of this invention is to provide means to identify those sequences of cell adhesion molecules responsible for the tight binding of adjoining endothelial cells.

A further object is to provide therapeutic compositions comprising polypeptides derived from cell adhesion molecules that reversibly disrupt cell-cell adhesion.

Still another object of this invention is to provide therapeutic compositions comprising polyclonal or monoclonal antibodies or fragments thereof directed against endothelial cell adhesion molecules, or against polypeptides representing cell binding regions thereof, that reversibly disrupt endothelial cell-cell adhesion.

Yet another object of this invention is to provide therapeutic formulations comprising therapeutic drugs conjugated with blood-brain barrier-disrupting compositions of this invention, that are capable of entering the central nervous system following disruption of the blood-brain barrier.

These and other objects of this invention will become clear by reference to the following description

15

25

of the invention and to the appended claims.

DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates the partial cDNA sequence for bovine endothelial cell adhesion molecule homologous to chicken N-cadherin.

Figure 2 illustrates the partial cDNA sequence for bovine endothelial cell adhesion molecule homologous to mouse P-cadherin.

Figure 3 illustrates the cDNA sequence for the 10 MDCK cell adhesion molecule homologous to mouse E-cadherin.

Figure 4 illustrates the restriction sites in the bovine endothelial cell N- (4-1 to 4-5) and P-cadherin (4-6 to 4-8) cDNA sequences and in the MDCK E-cadherin (4-9 to 4-14) cDNA sequence.

Figure 5 shows the staining of a mouse brain thin section by an antibody raised against a fusion protein derived from amino acids 9-96 of MDCK E-cadherin containing an HAV region.

Figure 6 is a repeat of the experiment of Fig. 5, except that the antibody was raised against the entire E-cadherin molecule.

Figure 7 illustrates the effects of an 18-mer HAV-containing polypeptide on the resistance of tight junction monolayers of MDCK epithelial cells.

Figure 8 illustrates the effects of 11-mer and 18-mer HAV-containing polypeptides on the resistance of tight junction monolayers MDCK epithelial cells.

Figure 9 illustrates the effects of 11-mer and 18-30 mer HAV-containing polypeptides on the resistance of tight-junction monolayers of brain microvascular endothelial cells.

PCT/US90/05105

10

15

20

25

30

11

DETAILED DESCRIPTION OF THE INVENTION

It has now been discovered that cell adhesion molecules with characteristics of cadherins are present on the surfaces of brain capillary endothelial cells and of microvascular endothelial cells of non-brain origins. The present invention is based on the discovery that a polypeptide composition comprising cell binding domains of endothelial cell adhesion molecules may compete against such molecules for binding to such cells, such that by this means the junctions between such cells could be reversibly opened, thereby permitting penetration by therapeutic agents. The present invention also discloses that polyclonal or monoclonal antibodies (or fragments thereof) raised against endothelial cell adhesion molecules or cell-binding domains thereof may also compete for endothelial cell surface binding sites, and, by this means, reversibly disrupt junctions between endothelial cells, thereby permitting entry into the central nervous system of therapeutic agents.

In order to obtain compositions useful for disrupting tight junctions between microvascular endothelial cells, the cell adhesion molecules responsible for such junctions were identified.

The endothelial cell cadherins disclosed herein exhibit one or more of several characteristics of E-, P- and N- cadherins, including: characteristics of a transmembrane integral protein, with cytoplasmic, hydrophobic plasma membrane, and extracellular regions; intraspecies DNA sequence homologies of greater than about 50% for the entire molecule; immunological cross-reactivity with antibodies raised against non-endothelial cell cadherins; and containing cell-binding domains. "Immunologically related to" means that these cadherin-like molecules cross-react with antibodies

raised against non-endothelial cell cadherins.

E-cadherin-like molecules were localized in brain by immunofluorescence. Cryostat sections of mouse brain were labeled with a rabbit antibody prepared

5 against E-cadherin, and then with fluorescein isothiocyanate-conjugated goat anti-rabbit immunoglobulin. There is clear labeling of a capillary in brain sections as shown by immunofluorescence microscopy. Endothelial cells in liver and kidney were not stained by this procedure.

cDNAs coding for the expression of bovine microvascular endothelial cell (BMEC) cadherins were cloned and sequenced as described below, and the partial sequence of N-cadherin and P-cadherin are disclosed herein in Figures 1 and 2, respectively. In addition, as MDCK dog kidney epithelial cells are known to employ E-cadherin to form high resistance tight junctions, and as the present invention discloses that brain capillary endothelial cell adhesion molecules include E-type cadherin, the DNA of this cadherin was also cloned; its complete DNA sequence is disclosed herein (Fig. 3).

N-, P- and E-cadherin-type clones described herein were deposited in the American Type Culture Collection on September 26, 1989, and were assigned the following accession numbers:

	Clone Designation	Accession No.
	N-cadherin-type clones pUC19-bNCad 10A pUC19-bNCad 39A	40667 40669
5	P-cadherin-type clones pUC18-bPCad 3B-10 pUC19-bPCad 9B	40668 40670
	E-cadherin-type clones pBluescript MDCKECad 45	5-30E 40671

The cloning of cadherins was accomplished by taking advantage of the fact that the cadherins characterized thus far are transmembrane glycoproteins, the cytoplasmic domains of which are highly conserved, that is, are highly homologous.

Two degenerate oligonucleotides flanking the
42-amino acid coding region in the cytoplasmic domain
were selected to serve as primers for polymerase chain
reaction (PCR) using either BMEC cDNA or MDCK cDNA as
templates. The PCR reactions were carried out
20 essentially according to Saiki, R. K. et al., Science,
239:487 (1988), which is incorporated herein by
reference.

The cloned PCR products from each cell type were sequenced essentially according to the method of Sanger, F. et al., Proc. Nat'l. Acad. Sci. (USA), 74:5463 (1977), which is incorporated herein by reference.

It was discovered that BMEC cadherins are of two types - one homologous to chicken N-cadherin (neuronal type, see, e.g., Hatta, K., et al., J. Cell Biol., 106:873 (1988)) and the other homologous to mouse P-cadherin (placental type, see e.g., Nose, A., et al., (1987) above). It has also been found that there are two species of cadherins in MDCK cells - one homologous

10

35

to mouse E-cadherin (see, e.g., Nagafuchi, A., et al., Nature, 329:341 (1987)) and the other homologous to mouse P-cadherin (Nose, et al. (1987), above).

The PCR products were then used as probes to isolate the BMEC and MDCK cadherin cDNA clones as follows. A cDNA library was constructed essentially according to Gubler et al. (Gubler, U. et al., Gene, 25:263 (1983), which is incorporated herein by reference), using poly (A) *RNA isolated from either BMEC or MDCK cells. The cDNA was ligated via EcoRI adaptors into gt10 arms (BMEC) or ZAP^R (from Stratagene, Inc., La Jolla, CA) vector arms (MDCK). cDNA libraries containing 5 x 10⁵ - 1.5 x 10⁶ independent cDNA clones were screened using

- radiolabeled PCR products (Benton, W.D. et al., Science, 196:180 (1987), which is incorporated herein by reference). Northern blot analysis (Maniatis, T. et al., "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.,
- 20 1982) may be used to determine whether each cDNA species cloned hybridizes to a single mRNA species, as well as the tissue distributions of each cDNA species.

cDNA clones for each cadherin were sequenced by the method of Sanger $\underline{\text{et}}$ al. (1977) above.

The partial restriction maps for each cDNA clone based on their sequences are shown in Fig. 4. Some of these restriction sites were confirmed by restriction enzyme digestions, including Hind III, Pst I, Kpn I, Bgl II for N-cadherin; Pvu II, Sac I and Pst I for P-cadherin; Pst I, Pvu II, BamH I, and Sac I for E-cadherin.

In order to test whether the cloned E-cadherin cDNA contains all the information necessary for cadherin function, full-length E-cadherin cDNA joined to a suitable promoter may be introduced into mouse

L-cells that have very little endogenous cadherin activity (Nagafuchi, et al. (1987), supra). To test for expression of E-cadherin in transfectants derived from the introduced cDNA, transfected L-cells may be tested for Ca²⁺-dependent aggregating activity. The extent of this aggregating activity should be closely correlated with the amount of E-cadherin expressed (Takeichi, M. (1988), supra). This same technique may be used for testing cDNAs encoding bovine endothelial N- and P-cadherins, according to the method of Hatta, et al. (Hatta, K., et al. (1988), supra).

In order to identify cell binding domains in, for example, MDCK E-type cadherin, L-cells may be first transfected as above with a cDNA of a size sufficient to cause Ca2+-mediated aggregation of transfectants. A 15 series of deletion mutants comprising truncated cDNA species missing different regions of the extracellular domain may be prepared by restriction enzyme digestion and proper end filling or exonuclease digestion to make 20 the deletions in the proper coding frames. deletion mutants can then be tested for their ability to express in L-cells a protein causing Ca2+-dependent aggregation. By correlating a loss of aggregation with deletion of particular fragments, the regions important 25 for cell binding may be determined. A variety of polypeptides corresponding to binding regions of cadherins, as deduced from the nucleotide sequences of deleted cDNA, may be synthesized chemically using an automated peptide synthesizer such as that of Applied Biosystems, Inc., Foster City, CA, or expressed by 30 recombinant DNA methods. Effective polypeptides may be of varying lengths, depending upon the natures of junctions being disrupted and the cell adhesion molecule present.

30

Nucleotide, and corresponding amino acid, sequences of cadherins may be analyzed to detect homologous regions. Applying this technique to bovine endothelial cell N- and P-cadherins and to epithelial cell E-cadherin, we have determined that, in the amino acid 80 region of each of these cadherins, there is conserved a triplet HAV (His-Ala-Val) region. We have deduced that this HAV region may be a common cell adhesions recognition (CAR) sequence.

We have chemically synthesized the following polypeptides, each of which containing the HAV sequence:

	6-mer(78-83)	NH2-SHAVSS-CONH2
15	11-mer(76-86)	NH2-LYSHAVSSNGN-CONH2
	17-mer(74-90)	NH2-YILYSHAVSSNGNAVED-CONH2
	18 mer(69-86)	NH2-EQIAKYILYSHAVSSNGN-CONH2
	20-mer(71-90)	NH2-IAKYILYSHAVSSNGNAVED-CONH2

and have tested each for efficacy in opening brain endothelial cell tight junctions in the BBB model

20 disclosed in copending United States application Serial No. 07/413,274, and also on kidney epithelial cell tight jucntions..

Polyclonal antibodies raised in rabbits and monoclonal antibodies derived from hybridomas may be generated against each of the chemically-synthesized polypeptides by standard methods. (Harlow, E., et al., "Antibodies: A Laboratory Manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1988; Goding, J.W., "Monoclonal Antibodies: Principles and Practice", Academic Press, N.Y. 1986). In addition, recombinant antibodies may be prepared. Fragments of antibodies, e.g., Fc, Fab, F(ab)', may be prepared by standard methods.

We have cloned and sequenced fusion proteins derived from amino acids 9-96 of MDCK E-cadherin

15

20

25

30

35

containing the HAV region. A polyclonal antibody prepared against this fusion protein stained rat (Fig.55) mouse brain sections as well as did an antibody raised against the entire E-cadherin (Fig. 6). A polyclonal antibody raised against a fusion protein derived from amino acids 9-37 failed to stain brain sections. These results indicate that the key cell-binding domain of E-cadherin lies in the region of amino acids 37-96.

The ability of CAM-derived polypeptides containing cell-binding domains, and the corresponding polyclonal and monoclonal antibodies, of the invention to disrupt tight junctions may be tested in <u>in vitro</u> and <u>in vivo</u> models of high resistance tight junctions and in animal models. Monolayers of MDCK dog kidney epithelial cells, that are known to contain high resistance tight junctions (Gumbiner, B., <u>J. Cell Biol.</u>, 102:457 (1986)), can be used to test for the ability of the polypeptides and corresponding antibodies of the present invention to disrupt such tight junctions.

Polyclonal antibodies prepared as described above may also be used in conjunction with Western blotting (Old, R.W., et al., Principles of Gene Manipulation, 3d ed., Blackwell, Oxford, 1985, p. 10) and a variety of tissue extracts in order to identify cell adhesion glycoproteins in such extracts.

Another embodiment of the present invention is in drug delivery systems. Conjugates between therapeutic drugs and agents that affect cell adhesion molecule function in brain capillary endothelial cells may be used to deliver therapeutic drugs to the CNS. For example, a polypeptide derived from a cell adhesion molecule that contains within its amino acid sequence a cell-binding domain, or antibodies thereto, may be conjugated in biologically-active form to a therapeutic

WO 91/04745 PCT/US90/05105

18

modality. Such conjugates may have the dual effect of opening the BBB and delivering the therapeutic agent to the brain side of the BBB. Delivery of therapeutic drugs to the CNS, either alone or conjugated to agents that disrupt cell-cell adhesion, may be accomplished by administering such drugs to a subject either simultaneously with or subsequent to the administration of the agents of this invention that disrupt the tight junctions of the BBB. Examples of therapeutic 10 modalities that may be delivered to the brain by the cell adhesion disruption compositions of this invention include Nerve Growth Factor, anti-Parkinsonian drugs, and brain enzymes known to be missing in sphingolipidoses, e.g., Tay-Sachs disease. Means of chemically conjugating protein or polypeptide carriers 15 to therapeutic agents such that the biological integrity of the therapeutic agent is not compromised and such that the therapeutic agent is readily cleaved from the carrier by enzymes present on or within 20 endothelial cells (e.g., amidases, esterases, disulfide-cleaving enzymes), are well known in the art. It is also apparent that these therapeutic conjugates may be delivered to endothelial cells in encapsulated form (e.g., in liposomes) or as microsuspensions 25 stabilized by pharmacological excipients.

It is known (Jain, R.K., <u>J. Natn'l Cancer Inst.</u>, 81:570 (1989)) that many solid tumors develop internal barriers, including high pressure zones and collapsed blood vessels, that make it difficult for blood-borne chemotherapeutic agents to reach the tumor's inner core. The barrier problem is particularly troublesome with therapeutic products drawn from the human immune system, such as monoclonal antibodies conjugated with chemotherapeutic agents, interleukin-2, interferon and activated killer T-lymphocytes, because of their large

30

35

15

30

size. Thus, in another embodiment of this invention, compositions that disrupt the junctions between endothelial cells, particularly the relatively small peptides that contain one or more cell-binding regions of cell adhesion macromolecules, may be used to enhance drug delivery to tumors with depressed blood flow.

It has been theorized that cancer cells metastasize by secreting soluble cadherins variously to open tight junctions in cells that block their movement and to prevent their being bound to such cells. We consider it likely that antibodies raised against these cadherins, which are derived from extracellular domains of the cadherins disclosed in this invention, may provide a therapeutic modality that inhibits or prevents cancer cell metastases.

In another embodiment, the compositions of this invention may also be used to provide penetration for chemotherapeutic agents of other well-known bloodtissue barriers, such as blood-testis barriers and blood-retina barriers. The latter barrier is known to prevent the efficient transport of, for example, administered antibiotics to the retina from the general circulation. The cell adhesion disrupting compositions of this invention may, thus, be used in conjunction with the administration of antibiotics to treat retinal infections.

The following examples are illustrative of several embodiments of this invention, and should not be construed in any way as limiting the invention as recited in the claims.

EXAMPLE 1

ON TIGHT JUNCTIONS OF MDCK EPITHELIAL

AND BOVINE ENDOTHELIAL CELLS

WO 91/04745 PCT/US90/05105

20

The BBB model of copending U.S. Serial No. 07/413,332 was used to examine the effects of polypeptides containing the HAV region on the tight junctions of monolayers of MDCK epithelial cells and bovine capillary endothelial cells as determined by resistance measurements across the monolayers.

The polypeptide was added to the cells either from the apical side (top) or basolateral side (bottom), as shown in the following sketch.

10

30

APICAL

EPITHELIAL CELLS
Gut Side

ENDOTHELIAL CELLS
Blood Side

Blood Side

Brain Side

BASOLATERAL

Figure 7 illustrates the effects of various concentrations of the aforementioned 18-mer polypeptide on resistance of MDCK epithelial cells. At the lowest concentration tested, 0.5 mg/ml, resistance was markedly decreased. The polypeptide was more effective when added from the basolateral side, but at high concentrations was quite effective even when added from the apical side. These data indicate that the 18-mer is effective in making tight junctions permeable. The 20-mer was similarly effective, and a 17-mer less effective.

Figure 8 illustrates the effects of the aforementioned 11-mer and 18-mer on MDCK cell resistance when added from either the apical or basolateral side of the monolayers. The concentration of polypeptide was about 1 mg/ml. The 11-mer (as well

15

20

25

30

as the 6-mer data not shown) was virtually without effect. With the 18-mer, resistance was almost totally abolished by about 6 hours, indicating disruption of tight junctions. That the effect of the 18-mer is 5 reversible is indicated by the "wash-out" experiment. When the 18-mer was washed out of the MDCK cells at 6 hours, resistance recovered to a substantial extent over the next 21 hours. This recovery was particularly pronounced when the 18-mer had originally been added from the basolateral side of the monolayers. 20-mer produced results similar to those of the 18-mer, and the 17-mer was effective, but somewhat less so.

Figure 9 illustrates the effect of 1 mg/ml of the 11-mer and 18-mer on high resistance monolayer cultures of brain endothelial cells (see copending United States Serial No. 07/413,332 for method of preparation). with MDCK cells, the 11-mer (and the 6-mer) failed to reduce resistance values over a 48-hour period of observation. In contrast, the 18-mer (as well as the 20-mer) decreased resistance values markedly when added from either the basolateral or apical side, but the effect of the polypeptide was more rapid and more pronounced when it was added from the basolateral side; the 17-mer was less effective.

The conclusion of these experiments is that a particular set of peptides (but not all peptides) centered around the HAV region of E-cadherin are effective in opening tight junctions of brain endothelial cell blood-brain barriers, and also of epithelial cells that form such junctions ("gut barrier"). Both the length and compositon of the amino acid region flanking the HAV triplet thus appear to play a role in the efficacy of such compositions.

While the aforementioned embodiments represent the preferred embodiments of the invention, those skilled

WO 91/04745 PCT/US90/05105

22

in the art may, without undue experimentation, devise other executions of the compositions and methods of use of this invention without departing from the concept and spirit inherent therein.

What is claimed is:

- 1. A composition for opening tight junctions between microvascular endothelial cells of a subject, whereby means are provided for a drug to cross the permeability barrier imposed by such junctions, comprising an agent capable of reacting with at least one type of cell-bound cell adhesion molecule that would otherwise mediate tight junction formation between microvascular endothelial cells, so that cell-cell adhesion is disrupted.
 - 2. A composition of claim 1, wherein said cell adhesion molecule exhibits at least about 50% sequence homology with a cadherin selected from the group consisting of E-cadherin, N-cadherin and P-cadherin.
 - 3. A composition of claim 1, wherein said cell adhesion molecule is immunologically related to at least one of the group consisting of E-cadherin, N-cadherin and P-cadherin.
 - 4. A composition of claim 1, wherein the microvascular endothelial cells are brain capillary endothelial cells.
 - 5. A composition of claim 2, wherein said agent comprises an inhibitor of the binding to cells of said cell adhesion molecule.
 - 6. A composition of claim 3, wherein said agent comprises an inhibitor of the binding to cells of said cell adhesion molecule.
 - 7. A composition of claim 5, wherein said inhibitor agent comprises a fragment of said cell adhesion molecule.
 - 8. A composition of claim 7, wherein said cell adhesion molecule fragment includes within its amino acid sequence a cell-binding domain.

- 9. A composition of claim 8, wherein said cell-binding domain contains an HAV amino acid sequence.
- 10. A composition of claim 9, wherein said amino acid sequence is

NH2-YILYSHAVSSNGNAVED-CONH,

11. A composition of claim 9, wherein said amino acid sequence is

NH2-EQIAKYILYSHAVSSNGN-COHN,

12. A composition of claim 9, wherein said amino acid sequence is

NH2-IAKYILYSHAVSSNGNAVED-CONH2 .

- 13. A composition of claim 9, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.
- 14. A composition of claim 5, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against said cell adhesion molecule.
- 15. A composition of claim 5, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against a fragment of said cell adhesion molecule.
- 16. A composition of claim 15, wherein said cell adhesion molecule fragment includes within its amino acid sequence a cell-binding domain.
- 17. A composition of claim 16, wherein said cell-binding domain contains an HAV amino acid sequence.

PCT/US90/05105

18. A composition of claim 17, wherein said amino acid sequence is

NH2-YILYSHAVSSNGNAVED-CONH2

19. A composition of claim 17, wherein said amino acid sequence is

NH2-EQIAKYILYSHAVSSNGN-COHN,

20. A composition of claim 17, wherein said amino acid sequence is

NH2-IAKYILYSHAVSSNGNAVED-CONH2

- 21. A composition of claim 17, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.
- 22. A composition of claim 5 or 6 in a pharmaceutically-acceptable vehicle.
- 23. A method for opening tight junctions between microvascular endothelial cells of a subject, comprising the step of administering to the subject an agent, in an effective amount and in a
- pharmaceutically-acceptable vehicle, capable of reacting with at least one type of cell-bound cell adhesion molecule that would otherwise mediate tight junction formation between microvascular endothelial cells, so that cell-cell adhesion is disrupted and whereby means are provided for a drug to cross permeability barriers imposed by such tight junctions.
 - 24. A method of claim 23, wherein said cell adhesion molecule exhibits at least about 50% homology with a cadherin selected from the group consisting of E-cadherin, N-cadherin and P-cadherin.

- 25. A method of claim 23, wherein said cell adhesion molecule is immunologically related to at least one of the group consisting of E-cadherin, N-cadherin and P-cadherin.
- 26. A method of claim 23, wherein the microvascular endothelial cells are brain capillary endothelial cells.
- 27. A method of anyone of claims 23-25, inclusive, wherein said agent comprises an inhibitor of the binding to cells of said cell adhesion molecule.
- 28. A method of claim 27, wherein said inhibitor agent comprises a fragment of said cell adhesion molecule.
- 29. A method of claim 28, wherein said cell adhesion molecule fragment includes within its amino acid sequence a cell-binding domain.
- 30. A method of claim 29, wherein said cellbinding domain contains an HAV amino acid sequence.
- 31. A method of claim 30 wherein said amino acid sequence is

NH2-YILYSHAVSSNGNAVED-CONH2

32. A method of claim 30, wherein said amino acid sequence is

NH2-EQIAKYILYSHAVSSNGN-COHN,

33. A method of claim 30, wherein said amino acid sequence is

NH2-IAKYILYSHAVSSNGNAVED-CONH2 .

34. A method of claim 30, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.

- 35. A method of claim 27, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against said cell adhesion molecule.
- 36. A method of claim 28, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against said fragment of said cell adhesion molecule.
- 37. A method of claim 36, wherein said cell adhesion fragment includes within its amino acid sequence a cell-binding domain.
- 38. A method of claim 37 wherein said cell-binding domain contains an HAV amino acid sequence.
- 39. A method of claim 38, wherein said amino acid sequence is

NH,-YILYSHAVSSNGNAVED-CONH,

40. A method of claim 38, wherein said amino acid sequence is

NH2-EQIAKYILYSHAVSSNGN-COHN2

41. A method of claim 38, wherein said amino acid sequence is

NH2-IAKYILYSHAVSSNGNAVED-CONH2 .

- 42. A method of claim 38, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.
- 43. A drug delivery composition comprising a conjugate between a therapeutic drug and an agent capable of reacting with at least one type of a cell-bound cell adhesion molecule that would otherwise mediate tight junction formation between microvascular endothelial cells, so that cell-cell adhesion is

disrupted by said agent, whereby means are provided for said drug to cross permeability barriers imposed by such tight junctions, in a pharmaceutically-acceptable vehicle.

- 44. A drug delivery composition of claim 43, wherein said cell adhesion molecule exhibits at least about 50% homology with a cadherin selected from the group consisting of E-cadherin, N-cadherin and P-cadherin.
- 45. A drug delivery composition of claim 43, wherein said cell adhesion molecule is immunologically related to at least one of the group consisting of E-cadherin, N-cadherin and P-cadherin.
- 46. A drug delivery composition of claim 43, wherein the microvascular endothelial cells are brain capillary endothelial cells.
- 47. A drug delivery composition of any one of claims 43-45, inclusive, wherein said agent comprises an inhibitor of the binding to cells of said cell adhesion molecule.
- 48. A drug delivery composition of claim 47, wherein said agent comprises a fragment of said cell adhesion molecule.
- 49. A drug delivery composition of claim 48, wherein said cell adhesion molecule fragment includes within its amino acid sequence a cell-binding domain.
- 50. A drug delivery composition of claim 49, wherein said cell-binding domain contains an HAV amino acid sequence.
- 51. A drug delivery composition of claim 50, wherein said amino acid sequence is

NH2-YILYSHAVSSNGNAVED-CONH2

52. A drug delivery composition of claim 50, wherein said amino acid sequence is

NH2-EQIAKYILYSHAVSSNGN-COHN,

53. A drug delivery composition of claim 50, wherein said amino acid sequence is

NH2-IAKYILYSHAVSSNGNAVED-CONH2

- 54. A drug delivery composition of claim 50, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.
- 55. A drug delivery composition of claim 43, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against said cell adhesion molecule.
- 56. A drug delivery composition of claim 43, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against a fragment of said cell adhesion molecule.
- 57. A drug delivery composition of claim 56, wherein said cell adhesion molecule fragment contains within its amino acid sequence a cell-binding domain.
- 58. A drug delivery composition of claim 56, wherein said cell-binding domain encompasses an HAV amino acid sequence.
- 59. A drug delivery composition of claim 58, wherein said amino acid sequence is

NH2-YILYSHAVSSNGNAVED-CONH2

60. A drug delivery composition of claim 58, wherein said amino acid sequence is

NH2-EQIAKYILYSHAVSSNGN-COHN,

61. A drug delivery composition of claim 58, wherein said amino acid sequence is

NH2-IAKYILYSHAVSSNGNAVED-CONH2 .

- 62. A drug delivery composition of claim 58, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.
- 63. A drug delivery composition of claim 43, wherein said conjugate comprises a physiologically-cleavable covalent bond.
- 64. A drug delivery composition of claim 43, wherein said conjugate is encapsulated within a physiologically-compatible particle.
- 65. A drug delivery composition of claim 64, wherein said particle comprises a liposome.

1/42

F1G. 1a.

720 840 360 420 480 540 900 099 780 9 120 180 240 300 sequence for the bovine endothelial N-cadherin CCAGCCTCCA ACTGGTATCT TCATTATCAA CCCCATCTCA GGTCAGCTGT CAGTAACCAA CAGACCTGAG TTCTTACACC AGGTTTGGAA TGGGACAGTT CCTGAGGGAT CAAAGCCGGG AACATATGTG ATGACGGTCA CTGCGATTGA TGCTGACGAT CCAAATGCCC TCAATGGGAT GGAATCACGA GAAATAGAAG AAATAGTGTT CCTGCAGAGG CAGAAGAGAG ACTGGGTTAT TCGTCAGGAT CAGATCCGAT AGAGATAAAA ACCTTTCTCT GCGGTACAGC GTAACTGGGC CAGGAGCTGA TGGATATTAA GTTATTGACA TGAATGATAA TTAGCAACTG TGTACAGTGC CAATGGGAAA AGAAAAGTAC AGTATGAGAG CAGCGAGCCA GCAGATTTTA AGGTGGATGA CGAAGTTCCT CAAGACAAAG AGACTCAGGA AAAGTGGCAA GTAGCAGTAA AACTGAGCCT CGTGAGCTGA TAGCCCGGTT TCATTTGAGG GCACATGCAG CCTGAAGATG CCTCCCATC AACTTGCCAG AAAACTCCAG AGGGCCTTTT CCTCAAGAGC CCCCCTCTCA TCTGAACACT GCCCCTTCTC AATGTGAAGT TGTCATCAAC CATTATGCAA GACTGGATTT TGGAAACCAA GTGGAGAACC CCATCGACAT TGGAAGGACA GTGTATGCCG TGAGAAGCTT CAAACCAGCC CTACCTGAGG ATTCAGTGAA GTGACTAAGC ACAATGGCTA CDNA GAATICGAAC CCCTICGITI AGTCTTGTCC CGGGATGTGC Partial GCCTCTGGAT **ICCAAGACAA** AGATGGCATG GATATACGCT

7 2	<u>.</u>													2/42
900	096	1020	1080	1140	1200	1260	1320	1380	1440	1500	1560	1620	1680	1740
GTTGAGGTAC AGAATCCTGT CCCAGGCGCC AAGCACCCCT TCGCCCAACA TGTTTACAAT	GT GGCAGCTGGA CTTGACAGAG AAAAAGTACA	ACAGTATACG TTAATAATTC AAGCTACAGA CATGGAAGGC AATCCCACAT ATGGCCTTTC	AC AGATGTCAAC GACAATCCTC CGGAGTTTAC	TGCCATGACG TTCTATGGTG AAGTCCCTGA AAACAGGGTA GATGTCATCG TCGCTAATCT	AC ACCGGCCTGG AACGCCATCT ACAGAATCAG	CGGTGGAGAC CCCGCCGGCC GCTTTGCCAT TCAAACTGAC CCCAACAGCA ACGACGGTTT	GA AACAAATAGG ATGTATGTCC TTACTGTCGC	TGCAGAAAAT CAAGTGCCAT TAGCCAAGGG TATTCAGCAT CCACCTCAGT CAACTGCGAC	GA AAATCCTTAT TTTGCCCCAA ATCCAAAGAT	CATTCGCCAA GAAGAAGGCC TTCACGCCGG TACCGTGTTA ACAACGTTTA CTGCTCAGGA	AG ATACACCAAA TTATCCGATC CTGCAAACTG	ATGGGCAGAT AACTACCATT GCTGTTTTGG ACAGAGAATC	GC TACTTTCCTT GCTTCTGACA ATGGAATCCC	TCCTATGAGT GGAACGGGAA CACTGCAGAT CTATTTACTT GATATTAATG ACAATGCCCC
cccAGGCG	TTATCACGGT	AAGCTACA	TCACGGTG	AAGTCCCT	AGCCCCACAC	GCTTTGCC	TCGACTTTGA	TAGCCAAG	ATGTGAATGA	TTCACGCC	AAAATATC	ATGGGCAG	TATACAATGC	CACTGCAG
AGAATCCTGT	CAACAATGAG ACTGGGGACA	TTAATAATTC	CAACACAGCC ACGGCTGTCA TCACGGTGAC	TTCTATGGTG	AACAGTGACA GATAAGGATC	ວວອອວວອວວວ	AGTCACCGTA GTAAAACCAA	CAAGTGCCAT	TGTGTCTGTC ACAGTTATCG	GAAGAAGGCC	CCCAGATCGA TATATGCAGC AAAATATCAG	GCTAAAAATA GACTCTGTGA	ACCGAATGTG AAAGCCAATA	GGAACGGGAA
GTTGAGGTAC	CAACAATGAG	ACAGTATACG	CAACACAGCC	TGCCATGACG	AACAGTGACA						CCCAGATCGA	GCTAAAAATA	ACCGAATGTG	TCCTATGAGT
	SUBSTITUTE SHEET													

<u>ر</u> ت ت	<u>.</u>											-		3/42
1800	1860	1920	1980	2040	2100	2160	2220	2280	2340	2400	2460	2520	2580	2640
CAATTAACAT	ATCTTCCTTT	ATTTTGCTCA	TCATAATCAC	TTTGCCAGTG	TGGGCACCGG	TGATGTTCGT	TTGATCCAGA	AAGAAGACCA	CCATCAAGCC	AGTTGGAATC CGACGGTTGG ATGAGAGGCC CATCCATGCG GAGCCCCAGT ACCCGGTTCG	TTAAAGCTGC	TGACAACGAT CCCACCGCTC CGCCCTACGA CTCCTTTA GTCTTTGACT ATGAAGGCAG	GTGAGCAGGA	CTATGACTAT CTGAACGACT GGGGGCCCCG CTTCAAGAAA CTCGCTGACA TGTACGGTGG
TCAAGTGTTA CCTCAAGAGG CAGAGATTTG TGAAACTCCG GACCCCAATT CAATTAACAT	TTTGCTTTTG	CTTAATGGTG	CGGGATCTAC GAAGTTCCAA	CTCCATCCTT CGGGTGAAGG	TCGAATTGTG GGAGCAGGGC	CGCCATCATC GCCATCCTGC TTTGCATCAT CATCCTGCTC ATTCTCGTTC TGATGTTCGT	CCAGGCCAAA CAACTTTTAA	AGATGATGTA AGAGATAATA TTTTAAAATA TGATGAAGAA GGTGGAGGAG AAGAAGACCA	TGATACGGTA GAGCCAGATG	GAGCCCCAGT	GGACTTCATT AATGAGGCC	GTCTTTGACT	AGTAGTGGAG	CTCGCTGACA
TGAAACTCCG	TGCTGGACCA	CATCACTCGG	CGGGATCTAC	CTCCATCCTT		CATCCTGCTC		TGATGAAGAA		CATCCATGCG	GGACTTCATT	CTCCCTCTTA	TAATTCCTCC	CTTCAAGAAA
CAGAGATTTG	ТТСАТССААА		TTCTTGAGGC	AATCGAATAT	CAGATGTGGA	TTTGCATCAT	ATAAAGAACG	TTTTAAAATA	TCCAGCAGCC	ATGAGAGGCC	GGGACATCGG	CGCCCTACGA	TGAGCTCCCT	ອວວວວອອອອອ
CCTCAAGAGG	CACAGCACTT GATTATGACA TTGATCCAAA TGCTGGACCA	ACTATTAAGA GAAATTGGAC	GCTTAACTTA AAGATAAAAT	AGATTCGGGT AATCCTCCCA AATCGAATAT	TGATTCCAAC GGGGACTGCA CAGATGTGGA	GCCATCCTGC	GGTATGGATG AAACGCCGGG	AGAGATAATA	GGACTACGAT TTGAGCCAGC	CGACGGTTGG	ATCTGCAGCC CCACACCCAG GGGACATCGG	CCCACCGCTC	TGGCTCCACG GCCGGGTCCT	CTGAACGACT
TCAAGTGTTA	CACAGCACTT	GTCTCCAGTG	GCTTAACTTA	AGATTCGGGT	TGATTCCAAC	CGCCATCATC	GGTATGGATG	AGATGATGTA	GGACTACGAT	AGTTGGAATC	ATCTGCAGCC	TGACAACGAT	TGGCTCCACG	CTATGACTAT
	SUBSTITUTE SHEET													

	ه ۳۱۵. ام.	0	0	0	0	0	0	0	0	0	0	0	0	4/42 0	
2700	2760	2820	2880	2940	3000	3060	3120	3180	3240	3300	3360	3420	3480	3540	3600
AATTGCAACT	AGCACAGTGC	TATCGGTGAT	ACAGAAGCAC	TGTTTAAGGC	GGTGGGAGCA	CTTTTATTAA	CCTTGGGGGC	TTTCTTGTTT	AAAGGGAGTT	TTAGACACAT	CACTGTAAAA	AAACTTCAGA	TATCTTTCGT	CTGTAGTTAG	TTTTCTCTTT TTGTTTGGGG
GGTGAACTTG GTTTTTGGAC AAGTACAAAC AATTGCAACT	GATATICCCA AAAAGCATIC AGAAGCTAGG CTITAACTIT GTAGICTACI AGCACAGIGC	TCAGAGGGAA	CTGAGCTCAG TTACACTTGA ATTTTACAGT ACAGAAGCAC	TCAGATTGGA ATTAGTTTTA	TAAAAGACAA AATATTTTGT GGTGGGAGCA	GTAAGTTAAA CCATGATATG CTTCGACACG CTTTTGTTAC ATCGCATTTG CTTTTATTAA	AATTTTATTA	TAGACTTTAG	GGTTGCAAAT	TTTTTTCATA AACTAGAATG	TTTGGTCTTA ATCCATGTAC ACTTTTTAT TTACTGTATT TTTTCCACTT CACTGTAAAA	AGAAGTGCAG	TGCATGTTTA	TATGGATAAA GTATTTACAA AACAAAGTGA CATTTGATTC AATTGTTGAG CTGTAGTTAG	
GTTTTTGGAC	CTTTAACTTT	CAATTTGGGC	TTACACTTGA			CTTTTGTTAC	CTCATGGAGC	TTTCTAGTTT	TTACGCAGCT		TTACTGTATT	TAGTCTATGG	TCAGGTTTTT	CATTTGATTC	TTATTTTTA
GGTGAACTTG	AGAAGCTAGG	GGCTGCAAAC	CTGAGCTCAG	TGTACCTTTT	AAATGATAAG	CTTCGACACG	AAACCAACCA	ATGTACATTA	ATCTTAAAAC	CAAAATTGAA	ACTTTTTAT	TTTATTGGCA	GACTATGGAT	AACAAAGTGA	TTAATTTTTT
AGGTGATGAC TGAACTTCAG	AAAAGCATTC	CTTTGGCAGA	TTGGAAAACA	TGTGCCTTTT	CTGATTTCTG	CCATGATATG	AAATATGGAA TTAAACAGAC AAAC	AGATTGGAAA ATGTACATTA	TGTTTTTTT TTCCACTAAA ATCTTAAAAC TTACGCAGCT	CAATTTGTAG CAAAATTGAA	ATCCATGTAC	ATGGTATGTG TACATAATGT	GTATTATTTG	GTATTTACAA	AATACTCAAT TTTTAATTTT TTAATTTTT
AGGTGATGAC	GATATTCCCA	TTGCTGGAGG	CCAATACTGT	TGGGATTTTA	TTTAATGGTA	GTAAGTTAAA	AAATATGGAA	TGAGACCATG	TGTTTTTT	TTCATATCAC	TTTGGTCTTA	ATGGTATGTG	ACATGTGTAT	TATGGATAAA	AATACTCAAT
						SIIR	STIT	UTE	SHEE	Ţ					

3875			AAAAA	AAAA AAAAAAAAA AAAAA	TTTTGGAAAA	AAAATGCTAA TTTTGG	
3840	CGTTCTGAAT	CTGACCCCAG	TACC AGAATATAAA TGATACACCT CTGACCCCAG CGTTCTGAAT	AGAATATAAA	ATTGTGTACC	TTGCCTCTGT ATTGTG	
3780	GACAACAGCT	AGAGACTTCT	TTTAAACTGG	AAAAAAAGCT	TTTTTAAAAA AAAATGAAAA AAAAAAGCT TTTAAACTGG AGAGACTTCT GACAACAGCT	TTTTAAAAA	
3720	GCAGTGTGTG	TGGTACTACT	ATGA AAGGGGTGAC CTGACACTGG TGGTACTACT GCAGTGTGTG	AAGGGGTGAC	CAAGAAATGA	AAAGGAAAGA CAAGAA	
3660	NGGGAGAAAA GTTCTTAGCA CAAATGTTTT ACATAATTTG TACCAAAAAA AAACAAAAA	TACCAAAAAA	ACATAATTTG	CAAATGTTTT	GTTCTTAGCA	AGGGAGAAAA	

-<u>|</u>G.le

FIG. 2a.

pď	partial cDNA	sequence fo	r the bovin	e endotheli	sequence for the bovine endothelial P-cadherin	ц
 GAATTCGAAC	GAATTCGAAC CCCTTCGCTG AGAACACAGT GAGCCACGAG GTGCAGAGGC TGACAGTGAC	AGAACACAGT	GAGCCACGAG	GTGCAGAGGC	TGACAGTGAC	9
 TGATCTGGAC	TGATCTGGAC GCCCCTAACT CACCAGCATG GCGTGCCACC TACCGCATCG TGGGAGGTGA	CACCAGCATG	GCGTGCCACC	TACCGCATCG	TGGGAGGTGA	120
CAACGGGGAC	CAACGGGGAC CATTTTACCA TCACTACTGA CCCCGAGAGC AACCAGGGTA TCCTGACCAC	TCACTACTGA	CCCCGAGAGC	AACCAGGGTA	TCCTGACCAC	18(
CCAGAAGGGC	CCAGAAGGGC TTGGATTTTG AGGCCAAAAC CCAGCACACC CTGTACGTCG AAGTGATCAA	AGGCCAAAAC	CCAGCACACC	CTGTACGTCG	AAGTGATCAA	24(
CGAGGTTCCC	CGAGGTTCCC TTTGTGGTGA AACTCCCGAC CTCCACAGCC ACCGTAGTGG TCCTCGTGGA	AACTCCCGAC	CTCCACAGCC	ACCGTAGTGG	TCCTCGTGGA	30(
GGATGTGAAT	GGATGTGAAT GAGCCACCEG TGTTTGTCCC CCCGTCCAAA GTCATCGAAA TCCAGGAGGG	TGTTTGTCCC	CCCGTCCAAA	GTCATCGAAA	TCCAGGAGGG	36(
CATCHCCACT	CATCTCCACT GGGGAGCCTA TTTGTGCCTA CACTGCACGG GACCCAGACA AGGGGAGTCA	TTTGTGCCTA	CACTGCACGG	GACCCAGACA	AGGGAGTCA	42(

GAAGATCAGT TACCACATCC TGAGAGACCC AGCAGGGTGG CTAGCGATGG ACCCAGACAG	TTTG TGAGAAACAA	TGATGGGAGC CCTCCCACCA CTGGCACAGG	CCGGTCCCCG AGCCCCGTCA	GATCACCATC TGCAACCAAA GCCCTGTGCC CCAGGTGCTA AACATCACAG ACAAGGACTT	GACG TCTATTGGAC	AGCAGAAGTC AACGAGAAAG GAGACGCAGT AGCCTTGTCC CTGAAGAAGT TCCTAAAGCA	CGACCACGGC AACAAGGAAC AGCTGACAGT	ACTGCCACGG CAACATGGTG ACCTGCCGGG ACCCCTGGAC	CTGCTGCTCC TTCTGCTGGT	GCTCCTATTC TTGGTGAGAA AGAAACGGAA GATCAAGGAA CCCCTTCTCC TCCCAGAAGA	GGTGGCGAGG AGGACCAGGA	GGAGGCCCGG CCTGAGGTGG TTCTCCGCAA	CCTCGGCCAG CCAACCCAGA	TGAAATCGGC AACTTCATCA TTGAGAACCT GAAGGCAGCC AACACAGACC CCACGGCCCC
AGGGTGG CTAGCG	TGAGGAT GAGCAG	recease cerece	TGACCACGGT CCGGTC	GGTGCTA AACATC	ACTCACACAT GACTCGGACG	CTTGTCC CTGAAG	CCACGGC AACAAG	CATGGTG ACCTGC	recerrect creere	CAAGGAA CCCCTI	CGAAGAGGGG GGTGGC	secces cersas	CATGTACCGT CCTCGG	GGCAGCC AACACA
TGAGAGACCC AGC	TGGACAAGTC ACTGCCGCAG GGGTCTTGGA CCGTGAGGAT GAGCAGTTTG	TGGCCACAGA TGA	TGGACATCAA TGA	GCCCTGTGCC CCA	TCCAGGCCCA ACT	GAGACGCAGT AGC		ACTGCCACGG CAA		AGAAACGGAA GAT		ACCGGGGTCT GGA		TTGAGAACCT GAA
TACCACATCC	ACTGCCGCAG	CATCTACGAA GTCATGGTCT	GACCCTCCTG CTAACACTGA	TGCAACCAAA	GTCCCCCCAC ACTGCCCCTT	AACGAGAAAG	AGGCGAATAC GATGTGCACC TTTCCCTGTC	GATCAGAGCC ACCGTGTGTG	GTGGGGTTTC CTCCTCCCCA TCCTGGGTGC	TTGGTGAGAA	TGATACCCGT GACAACGTCT TCTACTACGG	CTATGACATC ACCCAGCTCC ACCGGGGTCT	CGATGTGGCA CCATCCTTCA TCCCCACACC	AACTTCATCA
GAAGATCAGT	TGGACAAGTC	CATCTACGAA	GACCCTCCTG	GATCACCATC	GTCCCCCCAC	AGCAGAAGTC	AGGCGAATAC	GATCAGAGCC	GTGGGGTTTC	GCTCCTATTC	TGATACCCGT	CTATGACATC	CGATGTGGCA	TGAAATCGGC

	GCCCTACGAC	GCCCTACGAC TCCCTGTTGG TGTTCGACTA TGAGGGCAGT GGCTCCGATG CCGCCTCTCT	TGTTCGACTA	TGAGGGCAGT	GGCTCCGATG	CCGCCTCTCT	1380
	GAGCTCGCTC ACCTCCTCAA		CCTCTGACCA	GGACCAAGAC	TACAACTATC	TGAATGAGTG	1440
	GGGCAGCCGC	GGGCAGCCGC TTCAAGAAGC	TGGCGGACAT GTACGGCGGG	GTACGGCGGG	GGCCAGGACG	ACTAGGACTC	1500
	CCTAAACGCC	CCTAAACGCC GGGCTGCAGC AGCGTCTCCA AGGGGTCACT	AGCGTCTCCA		ATCCCCACGT	TGGCCAAGGA	1560
	CTTTGCAGCT	CTTTGCAGCT TGTTGAGAAT	TGGCCTTAGC	AACTTGGAGG	GAAGAGGCCT	CGAAACTGAC	1620
2	CTCAAAGGGG	CTCAAAGGGG CAGGTCTCTA	TGCCTTTCAG	AACGGAGGAA CGTGGGCAGT	CGTGGGCAGT	TTGATTTCAA	1680
IIPST	CAGTGAGCAC	CAGTGAGCAC CTCTTAGCCT	AAGCCAGGGC	TGCTCAATTT	CTGGGAGTCT	CCTCGCTACC	1740
ITUT	ATAAAATGCT	ATAAAATGCT CAGCGCTGGG	TCCTGGGTTT	TGACTGACTC	TGACTTTCCC ATGATGGCTT	ATGATGGCTT	1800
E SH	TTGCTCTGGA	TTGCTCTGGA ATGGACCCTT	CTCCTTAGTA	ACAGGCCTCT	TACCACAATC	TTCGTTTTTT	1860
EET	TTTTTTAAT GCTGTTTT	GCTGTTTTCA	AAAAGTGAGA	GGCAGGTCCT	CAACCACCCC	CTGGAGCGCT	1920
	CCAGAAGCCC	CCAGAAGCCC AGGCGTGCCC TCATGCATTT	TCATGCATTT	CTCTGTGGTC TCTTGGCCCC		CAGACCTCCT	1980
	GTTTGATTGG	GTTTGATTGG ATAACTGCAT	TTTTATACTG	AGCACGTCTA AGTGGTCCTT	AGTGGTCCTT	TATTTTTAT	2040
	TTTCCCTATC	TTTCCCTATC GAGTGCTGTA	GATGAAGAGT	GATGACAATC	CTGTAAATGT	ACTAGAACTT	2100
	TTTTATTAAA	TTTTATTAAA GGAACTTTTT		AAAAAAAAA	CCCAAAAAA AAAAAAAA AAAAAAAAA AAAAAC	AAAAAC	2156

FIG. 20

F1G. 3a.	9	120	180	240	300	360	420	480	540	900	099	720	780	840
<u>L</u>	CGGCTCTCGA	SCCGCTGCTG	CCCTGGCTTT	CCGTGTCCTG	TTCTGATGAC	ACAACTTCAT	GCTCTCCACC	TCCCTCTAAA	ACAGAAGAGA	TCCTAAAAAC	CATCACTGGC	AGGATGGCTG	CTCTCATGCC	GGTGACAGAT
	AAGTCCTGCC GCCTCGCGCC CGGCTCTCGA	CGCTCCTGCT	CAAGAGCCGG AGCCCTGCCG	TGGAGAGAGG	CTACCTAGGA CAGCCTATGT	AGCGGCCTCT	TGGGACTCCA GCCGCAGGAA GCTCTCCACC	ATCATGATGC	GACTCAGAAG ACAGAAGAGA	AAGGCCCATT	TTTTCTACAG	TTTATTATTG AAAGAGAAAC	ATTGCTAAGT ACATTCTCTA CTCTCATGCC	TCGTGATCAC
E-cadherin	CCTCGCGCC	CCC TCGGTACGGC GGCGCCCCG	CAAGAGCCGG	CACCGTGCCC CGGCGACACT		ATTACAGTCA	TGGGACTCCA	CACCACCACC	TCCCAGCATG	TCCCTCCTAT CAGCTGCCCG GAAAACGAGA	GAAATCAAGG	TTTATTAG	ATTGCTAAGT	CCAATGGAGA
ence for MDCK E-cadherin	AAGTCCTGCC	TCGGTACGGC	GGGGCTCTGC		ATGCACCGGT	AGATGGTGTG	TGTCCATGCC	GACGCACCAC	ATTTCCCAGT	CAGCTGCCCG	CAGGGACAAA GAAATCAAGG	TGTTGGTGTG	TAGAGAACAA	GGTTGAAGAC
cDNA sequenc	TGATTCGCGG	CCATGGGCCC	AGGTCTCATC	GGCGCTGACA GCTACACGTT	GGCAGGGTGA GTTTTGAAGG	ACCCGATTCA AAGTGGGCAC	AAACCAGAGA TAAGTTTTCT	AGAGTTAGGC TGAAGGCAGC GACGCACCAC CACCACCACC ATCATGATGC	AGGTGCTCAC	TCCCTCCTAT	CTGGTTCAGA TCAAGTCTAA	CAAGGAGCTG ACGCACCTCC	AGCCTCTGGA	ATGGGAATGC
ับ	CGGGCACCTG TGATTCG	CCCCCGCCCG CCATGGG	CTGCTGCTGC AGGTCTC	GGCGCTGACA	GGCAGGGTGA	ACCCGATTCA	AAACCAGAGA	AGAGTTAGGC	ACCCAGACAG AGGTGCT	GACTGGGTTA	CTGGTTCAGA	CAAGGAGCTG	AAGGTGACTG AGCCTCTGGA	GIATCTTCTA ATGGGAATGC GGTTGAAGAC CCAATGGAGA TCGTGATCAC
					SU	BSTI	TUTE	SHE	ET		•			. 80

FIG 2h														9/42
006	096	1020	1080	1140	1200	1260	1320	1380	1440	1500	1560	1620	1680	1740
CACGGAAGGT	TGATGTGAAT	GCCTAGCAGC	TGGGCTGGAC	AGGCGAAGGC	CCCCCCCATC	CGAAATCGCT	TGTGTACACC	TAACGACGGC	CTTGTACGTG	CACTGTCACT	GGTAGTGTCA	GGATCCAGAT	TTGGCTGGAG	GGATTTTGAG
CAGAATGACA ACAAGCCCGA GTTCACCCAG GCAGTCTTCC AAGGATCTGT CACGGAAGGT	ATGCGGATGA	ACCTACAACG CTGCCATCGC TTACAGCATC CTCACACAAG ACCCCCTCCT GCCTAGCAGC	TGCTCACCAC	CGAGAGGGTG TCCCCATGTA CACCTTGGTG GTTCAGGCTG CTGACCTGCA AGGCGAAGGC	GTCACTGACA TCAATGATAA CCCCCCCATC	TTCAACCCAA CCACGTACCA GGGACGGGTG CCTGAGAACA AGGCTAACGT CGAAATCGCT	GATACCCCGG CCTGGAGGGC TGTGTACACC	ATATTGAACA ATAACAATGA TCAATTTGTT GTCACCACAG ACCCAGTAAC TAACGACGGC	AGCAGTATGT	ACTGTGGTGA ACGTGACCCC GTTTGAGGTC ATCCTCTCCA CCTCCACAGC CACTGTCACT	ATCTTCATCC CTTGCCCAAA GGTAGTGTCA	ATCCCTGAAG ACTTTGGTGT GGGCCAGGAA ATCACATCCT ACACCGCCGA GGATCCAGAT	ATGCTGCCGG	GTTAATCCAG AATCTGGTGC CATTTTCACT CGGGCTGAGC TGGACAGAGA GGATTTTGAG
GCAGTCTTCC	ACAGCCACAG	CTCACACAAG	GTCATCAGCG	GTTCAGGCTG		CCTGAGAACA		GTCACCACAG	GAGGACAAGC	ATCCTCTCCA	ATCTTCATCC	ATCACATCCT	ATTTGGAGGG	ceeecreaec
GTTCACCCAG	GATGCAGGTG	TTACAGCATC	GGACACAGGA	CACCTTGGTG	TGTGATCACA	GGGACGGGTG	TGATGTCCCC	TCAATTTGTT	CTTGGATTTT	GTTTGAGGTC	TGAAGCCCCC	GGGCCAGGAA	AACGTATCGG	CATTTTCACT
ACAAGCCCGA	GCCCTTCCAG GCACCTCTGT GATGCAGGTG	CTGCCATCGC	ATGATGTTCA CTATCAACAA GGACACAGGA	TCCCCATGTA	TTAACTACAA CTGCAACAGC	CCACGTACCA	GTACTCAAAG TGACGGATGC TGATGTCCCC	ATAACAATGA	ATTTTGAAAA CAACTAAGGG CTTGGATTTT	ACGTGACCCC	GTGGACGTGG AAGATGTGAA TGAAGCCCCC	ACTTTGGTGT	ACATATATGG AACAGAGGAT AACGTATCGG	AATCTGGTGC
CAGAATGACA	GCCCTTCCAG	ACCTACAACG	ATGATGTTCA	CGAGAGGGTG	TTAACTACAA	TTCAACCCAA	GTACTCAAAG	•		-	GTGGACGTGG	ATCCCTGAAG	ACATATATGG	GTTAATCCAG
						SUB	STITE	JTE S	SHEE	1				

10/42 2520 2580 2640 2700 2400 2220 2280 1980 2040 2160 2460 1860 1920 2340 1800 2100 GACCAAGACC AGGACTATGA CTACCTGAAT GAATGGGGCA ATCGCTTCAA GAAGCTGGCG GACTATGAAG GAAGCGGTTC TGAAGCTGCT AGTCTGAGCT CCTTGAACTC CTCAGAGTCA CICGGAGGAA ICCICGCICI ACIAAICCIG AIICIGCIGC IICIGCIAII IGIICGGAGG TCAAAGAGCC CITACTTCCC CCAGAAGATG ACACCCGGGA CAATGTTTAT CCAGTTGCAC AGGGGCCTGG ATGCTCGGCC TGAAGTGACT CGCAATGATG TGGCCCCAAC CCTCCTGAGT TATTGATGAA CAGCGGACAC TGACCCTACT GCTCCTCTT ATGACTCTCT GCTCGTGTTT TAGAGTTGGG TGACTACAAA ATAAATCTCA AGCTCACAGA TAACCAGAAC AAGGACCAGG TGACCACCCT ATATGTGTTT GTGTGCGACT GCGAAGGTGT CGTCAACAGC IGCAAGAGGA CGCCCCTTA CGCCGAAGCA GGCTTGCAGG TTCCTGCCAT CTTGGGCATT CACGIGAAGA AIAGCACGIA IGAAGCCCIC AITAIAGCCA IIGACIICGG IICICCAGII CTTCTGCCAG AAAAACCCAC AGCCTCATGT CATCAACATC ATTGATCCAG ATCTTCCCCC CAACACATCT CCCTTCACAG CAGAACTAAC ACACGGCGCA AGTGTCAACT GGACCATCGA GTACAATGAC CCAGCTCGTG AATCTCTAAT TTTGAAGCCA TCTACTGGTC CTCTCTGATG TGAATGACAA TGGCCCCATT TTGACTTGAG GIGCCCCAGT ATCGGCCCCG CCCTGCCAAT CCTGATGAAA TTGGAAACTT TACTATGATG AAGAAGGAGG TGGAGAGGAG GATCAGGACT GCTACTGGAA CGGGAACTCT GAAATATGGA AACCTGAAGG AGAAGGGTGG CCAGAACCTC AAGAAAACTT SUBSTITUTE SHEET

	GACATGTATG	GACATGTATG GAGGTGGCGA GGACGACTAG GGGACTTGAG ACAAATGAAG ATGAGTCCTT	GGACGACTAG	GGGACTTGAG	ACAAATGAAG	ATGAGTCCTT	²⁷⁶⁰ FIG. 3d.
	ATACCATGTG	GTAGAAAATG	CGGAGGTGAC	TGTTTTCAGC TCCCTTCATC		TGAGAGGAAT	2820
	TTCTGGAGAA	TTCTGGAGAA GAGAAAATGC	ACAGTGATAT	ATAGTTAGGA TAGTTAGGAT		TTCTACTTTA	2880
	TAGATCTAAT	CTGTGTGTTT	GTTAGAACGA	TTTTGACCTA	TTCTTTGAAG	CTTTTTTTC	2940
	TTTCTTTCAT	CATTCTTTAA		ATGGTGATGC TGTCCAAAAG ACCCCCCACA TGTTTATATT	ACCCCCCACA	TGTTTATATT	3000
	TCAAAAGAAT	TCAAAAGAAT AGCTAAAGCC TCCAGAAGGT TCTGCTAGCA ATTTCGAGAT	TCCAGAAGGT	TCTGCTAGCA	ATTTCGAGAT	TGCCTTATTG	3060
OH	ACTTGTCTCA	TTTTTTAAA	GGAAGGTAGG	GGAAGGTAGG GCTAAACTAC CCTATTGTGT	CCTATTGTGT	TTGTGTGTGT	3120
notit	GTGTGTGTAT	GTGTAATTAT	TTTTAATTTG	TTTTAATTTG TGTTCTTTTT	TCTCCTATCA CTGCACTGGT	CTGCACTGGT	3180
	GTCCCGTGTT	CTAATAACCA	CTCTTAACTC	CTTCTGAACT	TACATTGCCT	CAGACAGGAG	3240
CHE	TTCTCTGCTG	TTCTCTGCTG CAGAAATTAT TGGGCCCTTT	TGGGCCCTTT	CAGGATAAGA GACTTGGTCT TAGTTTGATG	GACTTGGTCT	TAGTTTGATG	3300
-T	GTAGTGTGAC	TGGGTATTAT	GGACTCGTAA	GGACTTTAGT	GGTTCTCCTT	TTTTATTTCC	3360
	TAAGTACATA	AATTGAAATT	CATATCCATC	CACTGACTTG	TTCTGCATTA AGTGTGTTTG	AGTGTGTTTG	3420
	TCATGTGGAC	TCATGTGGAC GTCATTATTG	GGCTACTTTG	GTTCTGAACA	AGGAGCATTG	ACCAGAAAAG	3480
	GTGGTGAATT		TTCAGGTGCC ACTCAACTTC TAATGTTCAC TTATCACTCA AACAGAAGAG	TAATGTTCAC	TTATCACTCA	AACAGAAGAG	3540
	TGATCTATTC	TGACGTTTAG	CGTA	GTGCCT GCAGTGCTGC	AGCCAAAGAT	TGAAGGCGGA	3600

433		·			AAA	AAAAAAAAA AAA	
432	TTTTGTTAAA	TATTAAAGAA	TTATAAATTT	ATATTCATTT	TAAGCTGCGA AAATTCTTAA	TAAGCTGCGA	
426	GAAAACAATT	TCTGGAAAAG	TTTCTTTAGG	AATTTTGTAT	ATATGTGTGT GGGTACGGAT	ATATGTGTGT	
420	TTTTGAGTGT	GTTAATGTAG	TATAGAGAAT	TTTAGTCCTG	TTCAGCAATT TAAACTCTAA	TTCAGCAATT	ET
414	GTCTTGATTT	TCTTGGAATT	TGCAATCACT	AAATCATCCC	CTGTTTTCA AAGAAAAAA	CTGTTTTTCA	SHI
408	TGTCTGTCAG	ATTGCTTTAC TGTCTGTCAG	TTTATCTTAA	GGGAAATAAT	AAGGAACTTT TGACAACCAT	AAGGAACTTT	TUTE
402	TGTGAACTTC	TAAATTGAAA	GGATTTTTT	GCTTTGACTT	GCAAAGGGAA GGTGGGGAGA	GCAAAGGGAA	JBST
396	AAGGGTTTTG	TATGACCCTA	AGGAAGAAAA	CCTTAGGAGC	CITITICCCC	TTAGGAAATT CTTTT	S
390	ACTGACAATA	TGCATAGAAA ACTGACAATA	ATTCTAAGTG	AGGTGCCCCA	ATGCAGCCTG ATCTGGACTC	ATGCAGCCTG	
384	TCTACCGAAA	TTTGTTAATG	GGTGCCTGCT	AGAATCCCCA	ACAGTTTGTA CCTGAGGCCA	ACAGTTTGTA	
378	TCCTTAGGTC	CCTATCGCGA TCCTTAGGTC	ACAAGTGTGT	AAGAATCCCG	CTGAAAATTC TGAAGAATGG	CTGAAAATTC	
372	ACCTCTAGTC	AGGTGGCTCT	AGGATAACTG	ACTGATGCTG	GTTTTAGCAA	TGAGCCTGGC GTTTTA	
366	GATGGGTCAT	TGGCAGGCGG	GACTTGGAGG	ATGAAAAATG	TTGTCAAAGC CAAGGGCAAC	TTGTCAAAGC	

FIG. 36

TGC 60		ACTG 120	ATGA 180		TCCT 240	GCCT 300		7GTT 360
BStBI ASUII ECORI XmnI GAATTCGAACCCCTTCGTTTCATTATGCAAGACTGGATTGTGTGTG	Smal Xmal Aval	 AGTCTTGTCCCGGGATGTGCTGGAAGGACAGCCCCTTCTCAATGTGAAGTTTAGCAACTG	CAATGGGAAAAAAAAAGTACAGTATGAGAGCAGCGAGCCAGCAGATTTTAAGGTGGATGA	HindIII	AGATGGCATGGTGTATGCCGTGAGAGCTTCCCCCTCTCATCTGAACACTCGAAGTTCCT	GATATACGCTCAAGACAAAGAGACTCAGGAAAAGTGGCAAGTAGCAGTAAAACTGAGCCT	SauI Eco81I Bsu36I EcoNI	
	CIID	TITS	IITF :	SHEE	l l			

FIG.4b.

				14	1/42			
	420		480		540		009	
BspMI I I	CAGAAGAGACTGGGTTAT	SstI SacI HgiAI Bsp1286	 CCAGAGGGCCTTTTCCTCAAGAGCTCGTCAGGAT	Alwni	CTCTGCGGTACAGCGTAACTGGGCCAGGAGCTGA	PvuII 	TCAACCCCATCTCAGGTCAGCTGTCAGTAACCAA	NspHI Bsp1286 AseI
B PstI	TCCAAGACAAGTGACTAAGCACAATGGCTACCTGCAGAGGCAGAAGAGAGACTGGGTTAT	Eco0109 EaeI DraII	 CCCTCCCATCAACTTGCCAGAAAACTCCAGAGGGCCTTTT	XhoII	 cagatccgatagagataaaaacctttctctgcggtacagc		CCAGCCTCCAACTGGTATCTTCATTATCAACCCCATCTC	BstXI

FIG.4c. 096 900 840 099 CAACAATGAGACTGGGGACATTATCACGGTGGCAGCTGGACTTGACAGAGAAAAGTACA CAGACCTGAGTTCTTACACCAGGTTTGGAATGGGACAGTTCCTGAGGGATCAAAGCCGGG

Ndel

Ndel

AACATATGTGATGACGGTCACTGCGATTGATGCTGACGATCCAAATGGCGTT

AACATATGTGATGACGGTCACTGCGATTGATGCTGACGATCCAAATGCCTCAATGGGAT

TO THE CONTRACT CONTR GTTGAGGTACAGAATCCTGTCCCAGGCGCCAAGCACCCCTTCGCCCAACATGTTTACAAT GCCTCTGGATCGTGAGCTGATAGCCCGGTTTTCATTTGAGGGCACATGCAGTGGATATTAA NspHI Aflili Eco81I Bsu36I SauI PvuII Tth1111 HaeII BbeI ECONI Ahali NarI BanI

FIG. 4d. NdeI

AccI

1020 ACAGTATACGTTAATAATTCAAGCTACAGACATGGAAGGCAATCCCACATATGGCCTTTC BspMII AccIII HincII

1080 CAACACAGGCCACGGCTGTCATCACGGTGACAGATGTCAACGACAATCCTCCGGAGTTTAC

1140 TGCCATGACGTTCTATGGTGAAGTCCCTGAAAACAGGGTAGATGTCATCGTCGCTAATCT

Cfr10I

AACAGTGACAGATAAGGATCAGCCCCACACACGGCCTGGAACGCCATCTACAGAATCAG

Eco52I EagI Cfr10I NaeI

CGGTGGAGACCCCGCCGCCGCTTTGCCATTCAAACTGACCCCAACAGCAACGACGGTTT

1320

1380 TGCAGAAAATCAAGTGCCATTAGCCAAGGGTATTCAGCATCCACCTCAGTCAACTGCGAC

17/42 FIG. 4e. 1800 1620 1560 1680 1500 1440 Eco0109 DraII **TCCTATGAGTGGAACGGGAACACTGCAGATCTATTTACTTGATATTAATGACAATGCCCC** TCAAGTGTTACCTCAAGAGGCAGAGATTTGTGAAACTCCGGACCCCAATTCAATTAACAT CATTCGCCAAGAAGACCTTCACGCCGGTACCGTGTTAACAACGTTTACTGCTCAGGA **ACCGAATGTGAAAGCCAATATATATACAATGCTACTTTCCTTGCTTCTGACAATGGAATCCC** GCTAAAAATAGACTCTGTGAATGGGCAGATAACTACCATTGCTGTTTTGGACAGAAATC CCCAGATÓGATATATGCAGCAAAATATCAGATACACCAAATTATCCGATCCTGCAAACTG TGTGTCTGTCACAGTTATCGATGTGAAATGAAAATCCTTATTTTGCCCCCAAATCCAAAGAT AseI HincII BspMII AccIII HpaI Asp718 Cfr10I KpnI BglII BanI XhoII PstI StuI XmnI claI EaeI claI Tth1111

FIG. 4f.

PflMI

1860 CACAGCACTTGATTATGATCCTAAATGCTGGACCATTTGCTTTTGATCTTCCTTT

CellI

1920 GTCTCCAGTGACTATTAAGAGAAATTGGACCATCACTCGGCTTAATGGTGATTTTGCTCA

1980

2040

Cfr10I

Bsp1286 of BanI BanI

2100 TGATTCCAACGGGGACTGCACAGATGTGGATCGAATTGTGGGGAGCAGGGCTGGGCACCGG

HaeII BbeI

AhaII Nari

FIG. 4g. 2460 2520 2340 2220 2160 Eael
Banil
| AGTTGGAATCCGACGGTTGGATGAGGCCCATCCATGCGGAGCCCCAGTACCCGGTTCG
| Ecool09
| Eael
| Pstl
| Pstl TGGCTCCACGGCCGGGTCCTTGAGCTCCCTTAATTCCTCCAGTAGTGGAGGTGAGCAGGA **ATCTGCAGCCCCACACCCAGGGGACATCGGGGACTTCATTAATGAGGGCCTTAAAGCTGC** TGACAACGATCCCACCGCTCCCTACGACTCCCTCTTAGTCTTTGACTATGAAGGCAG GGACTACGATTTGAGCCAGCTCCAGCAGCCTGATACGGTAGAGCCAGATGCCATCAAGCC GGTATGGATGAAACGCCGGGATAAAGAACGCCAGGCCAAACAACTTTTAATTGATCCAGA CGCCATCATCGCCATCCTGCTTTGCATCATCATCCTGCTCATTCTGGTTCTGATGTTCGT Bsp1286 BanII HgiAI SacI SstI SspI AhaIII DraI Eco0109 DraII Eco52I EagI

FIG. 4h.

F16.4i. 3360 3420 3240 3180 3120 3060 2940 2880 3000 TTCATATCACCAATTTGTAGCAAAATTGAATTTTTTTCATAAACTAGAATGTTAGACACAT **ATGGTATGTGTACATAATGTTTTATTGGCATAGTCTATGGAGAGGTGCAGAAACTTCAGA** TTTGGTCTTAATCCATGTACACTTTTTTTTTTTTCTGTATTTTCCACTTCACTGTAAAA TGAGACCATGAGATTGGAAAATGTACATTATTTCTAGTTTTAGACTTTAGTTTCTTGTTT **AAATATGGAATTAAACAGACAAACCAACCACTCATGGAGCAATTTTATTACĊTTGGGGGC TGTTTTTTTTTCCACTAAAATCTTAAAACTTACGCAGCTGGTTGCAAATAAAGGGAGTT** TGGGATTTTATGTGCCTTTTTGTACCTTTTTCAGATTGGAATTAGTTTTATGTTTAAGGC TTTAATGGTACTGATTTCTGAAATGATAAGTAAAAGACAAAATATTTTGTGGTGGGAGCA GTAAGTTAAACCATGATATGCTTCGACACGCTTTTGTTACATCGCATTTGCTTTATTAA CCAATACTGTTTGGAAAACACTGAGCTCAGTTACACTTGAATTTTTACAGTACAGAAGCAC SspI PvuII XmnI BanII BstXI SUBSTITUTE SHEET

FIG.4

TTTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTTGAGAGAGA	DraI AhaIII HindIII 	3480 3540 3660 3720 3780	
		3840	TTGCCTCTGTATTGTACCAGAATATAAATGATACACCTCTGACCCCAGCGTTCTGAAT AAAATGCTAATTTTGGAAAAAAAAAA
DraI AhaIII HindIII		3720	 \AAAGGAAAGACAAGAAATGAAAGGGGTGACCTGACACTGGTGGTACTACTGCAGTGTGTG
AAAGGAAAGAAATGAAAGGGGTGACCTGACACTGGTGGTACTACTGCAGTGTGTG DraI Ahaiii Ahaiii Hindiii	AAAGGAAAAGAAAATGAAAGGGGTGACCTGACACTGGTGGTACTACTGCAGTGTGTG		
BSTEII AAAGGAAAGAAATGAAAGGGGTGACCTGACACTGGTGTTGTG DraI Ahaiii Ahaiii Hindiii	BSTEII	3660	AGGGAGAAAAGTTCTTAGCACAAATGTTTTACATAATTTTGTACCAAAAAAAA
	AGGGAGAAAAGTTCTTAGCACAAATGTTTTACATAATTTGTACCAAAAAAAA	3600	
AATACTCAATTTTTTAATTTTTTTTTTTTTTTTTTTTT	AATACTCAATTTTTAATTTTTTTTTTTTTTTTTTTTTT	3540	TACAAAACAAAGTGACATTTGATTCAATTGTTGAGCTGTAGTTAG
TATGGATAAAGTATTTACAAAACAAAGTGACATTTGATTCAATTGTTGAGCTGTAGTTAG AATACTCAATTTTTTAATTTTTTTTTT	TATGGATAAAGTATTTACAAAACAAAGTGACATTTGATTCAATTGTTGAGCTGTAGTTAG AATACTCAATTTTTTTTTT	3480	 ATTTGGACTATGGATTCAGGTTTTTTGCATGTTTATATCTTTCGT
ACATGHGTATTATTTGGACTATGGATTCAGGTTTTTTTTTT	ACATGHGTATGTATTTTGGACTATGGATTCAGGTTTTTTTGCATGTTTATATCTTTCGT TATGGATAAAGTATTTTACAAAGTGACATTTGATTCAATTGTTGAGCTGTAGTTAG AATACTCAATTTTTTAATTTTTTTTTT		DHI

P-cadherin restriction map

DraIII XmnI BstBI Asuli ECORI

9 Alwni GAATTCGAACCCCTTCGCTGAGAACACAGTGAGCCACGAGGTGCAGAGGCTGACAGTGAC Alwni AhaII

120 TGATCTGGACGCCCCTAACTCACCAGCATGGCGTGCCACCTACCGCATCGTGGGAGGTGA

180 CAACGGGGACCATTTTACCATCACTACTGACCCCGAGAGCAACCAGGGTATCCTGACCAC BclI AvaI

240 CCAGAAGGGCTTGGATTTTGAGGCCAAAACCCAGCACACCCTGTACGTCGAAGTGATCAA

300 ECONI CGAGGTTCCCTTTGTGGTGAAACTCCCGACCTCCACAGCCACCGTAGTGGTCCTCGTGGA BstXI

360 GGATGTGAATGAGCCACCCGTGTTTGTCCCCCCGTCCAAAGTCAAAATCCAGGAGGG

420 CATCTCCACTGGGGAGCCTATTTGTGCCTACACTGCACGGGACCCAGACAAGGGGGAGTCA Eco0109 DraII

SHEET SUBSTITUTE

FIG 41. 480 540 PflMI TGGACAAGTCACTGCCGCAGGGGTCTTGGACCGTGAGGATGAGCAGTTTGTGAGAAACAA GAAGATCAGTTACCACATCCTGAGAGACCCAGCAGGGTGGCTAGCGATGGACCCAGACAĠ NheI BstXI

600 CATCTACGAAGTCATGGTCTTGGCCACAGATGATGGGAGCCCTCCCACCACTGGCACAGG Bsp1286 BanII BalI

099 Bsp1286 BanII

720 GATCACCATCTGCAACCAAAGCCCTGTGCCCCAGGTGCTAAACATCACAGACAAGGACTT SHEET

Bsp1286

780 GTCCCCCCACACTGCCCCTTTCCAGGCCCAACTCACACATGACTCGGACGTCTATTGGAC Aatii Ahaii EaeI

840 XmnI HincII

AGCAGAAGTCAACGAGAAAGGAGACGCAGTAGCCTTGTCCCTGAAGAAGTTCCTAAAGCA

F16.4m. 1080 1020 096 006 GCTCCTATTCTTGGTGAGAAAGAAACGGAAGATCAAGGAACCCCTTCTCCTCCCAGAAGA GATCAGAGCCACCGTGTGACTGCCACGGCAACATGGTGACCTGCCGGGACCCCTGGAC GIGGGGTTICCICCICCCAICCIGGGIGCIGCCCCIGGCICTGCIGCTCCTICTGCTGGT AGGCGAATACGATGTGCACCTTTCCCTGTCCGACCACGGCAACAAGGAACAGCTGACAGT Pvull Ecc0109 BSPMI DraII XmnI BSTEII HgiAI Bsp1286 TthillI DraIII ApaL1 HgiAI Bsp1286 BclI

CTATGACATCACCCAGCTCCACCGGGGTCTGGAGGCCCGGCCTGAGGTGGTTCTCCGCAA Eco81I Bsu36I SauI EaeI

26	14	•

FIG.4n. 1380 1320 1500 Banii
| GAGCTCGCTCCTCTCTGACCAGGACCAAGACTACAACTATCTGAATGAGTG GGGCAGCCGCTTCAAGAAGCTGGCGGACATGTACGGCGGGGGCCCAGGACGACTAGGACTC TGAAATCGGCAACTTCATTGAGAACCTGAAGGCAGCCAACACAGACCCCACGGCCCC GCCCTACGACTCCCTGTTGGTGTTCGACTATGAGGGCAGTGGCTCCGATGCCGCCTCTCT Afliii Bsp1286 BanI HgiAI BanII SstI SacI SHEET

1560 1620 CTTTGCAGCTTGTTGAGAATTGGCCTTAGCAACTTGGAGGGGAAGAGCCTCGAAACTGAC CCTAAACGCCGGGCTGCAGCAGCGTCTCCAAGGGGTCACTATCCCCACGTTGGCCAAGGA StuI EaeI

Styl

PstI

FIG.40.

1680 CTCAAAGGGGCAGGTCTCTATGCCTTTCAGAACGGAGGAACGTGGGCAGTTTGATTTCAA

BSpMI

Bsp1286 HgiAI

ECONI

1740 CAGTGAGCACCTCTTAGCCTAAGCCAGGGCTGCTCAATTTCTGGGAGTCTCCTCGCTACC

Eco0109

DraII

Eco47III

HaeII

1800 ATAAAATGCTCAGCGCTGGGTCCTGGGTTTTGACTGACTCTGACTTTCCCATGATGGCTT

StuI EaeI

TTGCTCTGGAATGGACCCTTCTCCTTAGTAACAGGCCTCTTACCACAATCTTCGTTTTTT

1860

Ecc0109 DraII

BspMI

1920 ECO47III Pf1MI

TTTTTTAATGCTGTTTTCAAAAAGTGAGAGGCAGGTCCTCAACCACCCCCTGGAGCGCT Bsp1286 NsiI 1980 CCAGAAGCCCAGGCGTGCCCTCATGCATTTCTCTGTGGTCTCTTGGCCCCCCAGACCTCCT

HgiAI Bsp1286	FIG. 4p.
 GTTTGATTGGATAACTGCATTTTTATACTGAGCACGTCTAAGTGGTCCTTTATTTTTTAT 2	2040
TTTCCCTATCGAGTGCTGTAGATGAGAGTGATGACAATCCTGTAAATGTACTAGAACTT 2	2100
xmnI TTTTATTAAAGGAACTTTTCCCAAAAAAAAAAAAAAAAA	2156
E-cadherin restriction map	
BanI	28/4
 cgggcacctgtgattcgcggaagtcctgccgcctcgcgcctcgcgcctcgcgcttcga	09
BanII HaeII ApaI BbeI EaeI NarI Styl Eco0109 AhaII Ncol Drail BanI	
	120
BSPMI PStI BanII BALII BGII 	180

	HaeII A	Aflii	<u>7</u>
	GGCGCTGACAGCTAC	GGCGCTGACAGCTACACGTTCACCGTGCCCCGGCGACACTTGGAGAGAGGCCGTGTCCTG 240	
		Styl Acci Cfr101 AvrII	
	GGCAGGGTGAGTTTTGAAGGA		
	ACCCGATTCAAAGTG	ACCCGATTCAAAGTGGGCACAGATGGTGTTACAGTCAAGCGGCCTCTACAACTTCAT 360	
CHE	AAACCAGAGATAAGT	AAACCAGAGATAAGTTTTCTTGTCCATGCCTGGGACTCCAGCCGCAGGAAGCTCTCCACC 420	
S ATILITY	AGAGTTAGGCTGAAG	BSPHI AGAGTTAGGCTGAAGGCACGCACCACCACCACCATCATGATGCTCCCTCTAAAA 480	

009 BalI GACTGGGTTATCCCTCCTATCAGCTGCCCGGAAAACGAGAAAGGCCCATTTCCTAAAAAC EaeI PvuII

ACCCAGACAGAGGTGCTCACATTTCCCAGTTCCCAGCATGGACTCAGAAGAGAGA

HgiAI

099 CTGGTTCAGATCAAGTCTAACAGGGACAAAGAAATCAAGGTTTTCTACAGCATCACTGGC

Styi caaggagctgacgcacctcctgttggtgtgtttattattgaaagaaa	720	FIG. 4r.
AAGGTGACTGAGCTCTGGATAGAGAACAAATTGCTAAGTACATTCTCTACTCTCATGCC	780	
BSMI BCLI	840	
Aval Styl BanI		
CAGAATGACAACAAGCCCGAGTTCACCCAGGCAGTCTTCCAAGGATCTGTCACGGAAGGT	006	30/42
Bani BspMi 	096	
ACCTACAACGCTGCCATCGCTTACAGCATCCTCACACACA	1020	
Hgiai Bstxi ATGATGTTCACTATCAAGGACACAGGAGTCATCAGCGTGCTCACCACTGGGCTGGAC	1080	
Styl BspMI BspMI CGAGAGGGTGTCCCCCATGTACACCTTGGTGGTTCAGGCTGCTGACCTGCAAGGCC	1140	

Cfr10I

31/42

FIG.4s. 1380 1500 1560 1260 1440 1200 ATCCCTGAAGACTTTGGTGTGGGCCAGGAAATCACATCTACACCGCCGAGGATCCAGAT ACTGTGGTGAACGTGACCCCGTTTGAGGTCATCCTCTCCACCTCCACAGCCACTGTCACT GTGGACGTGGAAGATGTGAATGAAGCCCCCATCTTCATCCCTTGCCCAAAGGTAGTGTCA GTACTCAAAGTGACGGATGCTGATGTCCCCGGATACCCCGGCCTGGAGGGCTGTGTACACC ATTTTGAAAACAACTAAGGGCTTGGATTTTGAGGACAAGCAGCAGTATGTCTTGTACGTG TTAACTACAACTGCAACAGCTGTGATCACAGTCACTGACATCAATGATAACCCCCCCATC TTCAACCCAACCACGTACCAGGGACGGGTGCCTGAGAACAAGGCTAACGTCGAAATCGCT XhoII BamHI Alwni BanI BclI PvuII BclI

FIG 4t	<u>.</u>			32	2/42			
1680	1740	1800	1860	1920	1980	. (2040	PvuII I 2160
ACATATATGGAACAGATAACGTATCGGATTTGGAGGGATGCTGCCGGTTGGCTGGAG	BanI PflMI AlwNI Aval CellI GTTAATCCAGAATCTGGTGCCATTTTCACTCGGGCTGAGCAGAGGATTTTGAG	Hgiai Cacgtgaagaatagcacgtatgaagccctcattatagccattgacttcggttctccagtt	GCTACTGGAACGGGAACTCTTCTACTGGTCCTCTCTGATGAGAATGACAATGGCCCCATT	CCAGAACCTCGAAATATGGACTTCTGCCAGAAAACCCCACAGGCCTCATGTCATCAACATC	XhoII BglII ATTGATCTTCCCAACACATCTTCCAAGAACTAACACACGGCGCA	HincII	AGTGTCAACTGGACCATCGAGTACAATGACCCAGCTCGTGAATCTCTCAATTTTTGAAGCCA AAGAAAACTTTAGAGTTGGGTGACTACAAATAAATCTCAAGGTCACAGATAACCAGAAC	PVI BSTEII

2520

33/42

FIG.4u. 2220 2280 TGCAAGAGGACGCCCTTACGCCGAAGCAGGCTTGCAGGTTCCTGCCATCTTGGGCATT CTCGGAGGAATCCTCGCTCTACTAATCCTGATTCTGCTGCTTCTGCTATTTGTTCGGAGG BsmI BspMI HaeII BbeI AhaII NarI BanI

2400 AGAAGGGTGGTCAAAGAGCCCTTACTTCCCCCAGAAGATGACACCCGGGACAATGTTTAT TACTATGATGAAGAAGGAGGTGGAGGAGGATCAGGACTTTGACTTGAGCCAGTTGCAC XmaI AvaI BanII Ecc0109 EaeI

SmaI

2460 . AGGGGCCTGGATGCTCGGCCTGAAGTGACTCGCAATGATGTGGCCCCCAACCCTCGAGT DraII

2580 **AACCTGAAGGCAGCGACACTGACCCTACTGCTCCTTCTTATGACTCTGCTCGTGTTT**

GTGCCCCAGTATCGGCCCCCGCCCTGCCAATCCTGATGAAATTGGAAACTTTATTGATGAA

				SU	BSTI	TUTE	SHEET
IumX	GACTATGAAGGAAGCGGTTCTGAAGCTG	GACCAAGACCAGGACTATGACTACCTGA	Aflili Aflili	GACATGTATGGAGGTGGCGAGGACG	ATACCATGTGGTAGAAAATGCGGAGGTGACTGTTTTCAGCTCCCTTCATCTGAGAAAT	TTCTGGAGAAGAGAAAATGCACAGT	XhoII BglII
ωω Η α –	; ctagtctgagctc	ATGAATGGGGCAA		PAGGGACTTGAGA	ACTGTTTTCAGCT	PATAGTTAGGAT	·
Ssti Saci HgiAI Banii	CTGCTAGTCTGAGCTCCTTCAGAGTCA	TGAATGAATGGGGCAATCGCTTCAAGAAGCTGGCG		ACTAGGGGACTTGAGACAAATGAAGATGAGTCCTT	rccttcatctgagagaat	GATATATAGTTAGGATAGTTAGGATTTCTACTTTA	HindIII
	2640	2700		2760	2820	2880	
FIG. 4v.					34/	'42	

3060 2940 TCAAAAGAATAGCTAAAGCCTCCAGAAGGTTCTGCTAGCAATTTCGAGATTGCCTTATTG TITCITICATCATTTTAAATGGTGATGCTGTCCAAAAGACCCCCCACATGTTTATATT NspHI ECONI AhaIII DraI

3480

3540

GTGGTGAAFTTTCAGGTGCCACTCAACTTCTAATGTTCACTTATCACTCAAACAGAG

TCATGTGGACGTCATTATTGGGCTACTTTGGTTCTGAACAAGGAGCATTGACCAGAAAAG

BanI

FIG.4w.

35/42

3120 3300 3360 3180 3240 3420 GTAGTGTGACTGGGACTCGTAAGGACTTTAGTGGTTCTCCTTTTTATTTCC TAAGTACATAAATTGAAATTCATATCCATCCACTGACTTGTTCTGCATTAAGTGTGTTTG **ACTIGICTCATITITITAAAGGAAGGIAGGCTAAACTACCCTATIGIGITGIGIGI** GTCCCGTGTTCTAATAACCACTCTTAACTCCTTCTGAACTTACATTGCCTCAGACAGGAG TTCTCTGCTGCAGAAATTATTGGGCCCTTTCAGGATAAGAGACTTGGTCTTAGTTTGATG GTGTGTGTATGTGTATTTTTTAATTTGTGTTCTTTTTTTCTCCTATCACTGCACTGGT ECONI Tth111I BanII ApaI Ecc0109 DraII EaeI DraI AhaIII AatII PstI

3900

ATGCAGCCTGATCTGGACTCAGGTGCCCCAATTCTAAGTGTGTGCATAGAAAACTGACAATA

BanI

36/42

FIG.4x. 3600 3660 3720 3780 CTGAAAATTCTGAAGAATGGAAGAATCCCGACAAGTGTGTCCTATCGCGATCCTTAGGTC ACAGITIGIACCIGAGGCCAAGAATCCCCAGGIGCCIGCTITIGITAAIGICIACCGAAA TTGTCAAAGCCAAGGCAACATGAAAATGGACTTGGAGGTGGCAGGCGGGATGGGTCAT TGAGCCTGGCGTTTTAGCAAACTGATGCTGAGGATAACTGAGGTGGCTCTACCTCTAGTC TGATCTATTCTGACGTTTAGCGTAGTGCCTGCAGTGCTGCAGCCAAAGATTGAAGGCGGA Bsu36I Eco81I SauI Acci NruI PstI PstI BanI Eco81I Bsu36I SauI Styl

3960 TTAGGAAATTCTTTTTCCCCCCTTAGGAGCAGGAAGAAATATGACCCTAAAGGGTTTTG Bsu36I

Eco81I

SauI

4320 4260 4333 4080 **TTCAGCAATTTÄAAACTCTAATTTAGTCCTGTATAGAGAATGTTAATGTTTTTGAGTGT ATATGTGTGGGTACGGATAATTTTTGTATTTTTTTAGGTCTGGAAAAGGAAAACAATT** TAAGCTGCGAAAATTCTTAAATATTCATTTTTAAAATTTTTAAAAGAATTTTGTTAAA **CTGTTTTTCAAAAAAAAAAAATCATCCCTGCAATCACTTCTTGGAATTGTCTTGATTT** DraI AhaIII SspI StyI NcoI DraI AhaIII AAAAAAAAAAA PvuII

FIG. 5.

FIG. 6.

FIG. 7.

FIG. 8.

Effect of 11-mer and 18-mer on brain endothelial cells

FIG. 9.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US90/05105

I CLASS	SIEICA ZION OF CUR IFOT MATTER	international Application No PCT	/US90/05105
A constant	SIFICATION OF SUBJECT MATTER (if several cla	ssification symbols apply, indicate all) =	
According	to International Patent Classification (IPC) or to both	National Classification and IPC	
IPC(5):	: A61K 37/02, 39/00; CO7K 7/08 7/10,	13/00, 15/00, 15/28	
U.S.Cl.	<u>: 530/324, 326, 350, 389, 390, 391, 4</u>	402, 409, 345, 387; 514/12, 1	3: 424/85.8. 85 01
II. FIELDS	S SEARCHED		5, 12,,62.6, 63.71
	Minimum Docur	nentation Searched +	
Classification	on System 1	····	· -
		Classification Symbols	
	530/324, 326, 350, 389,	390, 391, 402, 409, 34	5. 387
	514/12, 13		,
** •	C1 424/85.8, 85.91		
U.S.	C1. 424, 63.31		
	Documentation Searched other	er than Minimum Documentation	
	to the Extent that such Documer	nts are Included in the Fields Searched 6	
Data b	ases: Dialog (Files; Medline,	Biosis Chemical Abeta	onto Warld
Patan	to Tadon) Automoted D	DIOSIS, CHEMICAL AUSCI	acts, world
raten	ts Index) Automated Patent	Searching (1975-19	990)
III. DOCU	MENTS CONSIDERED TO BE RELEVANT !		
Category • j	Citation of Document, 14 with indication, where as	propriate, of the relevant passages LT	Relevant to Claim No. 17
7	The EMBO Journal, Volu		
$\frac{Z}{X}$			
τ	issued December 1985,		1-6,14-21,23-27 &
1	al., "Identification o		35-42
j	Adhesion Domain of Uvo	morulin," pp. 3393-	1.65
Ì	3398. See the Abstract	and Discussion.	1-65
ļ			
Y	Dovolonment Volume 10	O issued levil	
1	Development, Volume 10		1-65
	1988, M. Takeichi, "Th	e Cadherins:	;
1	Cell-cell Adhesion Mol	ecules controlling	
!	Animal Morphogenesis,"		į I
	the Summary and pages		!
{	the bummary and pages	945, 845 and 851.	1
	m		!
$\frac{\lambda}{Z}$	The Journal of Cell Bi		1-6,14-21,23-27,
Y	issued October 1988, B		35-42
<u> </u>	"The Role of the Cell .	Adhesion Molecule	
1	Uvomorulin in the Form		1-6,14-27,35-47,
	Maintenance of the Epi		55 -6 5
;	Complete " nm 1575 150	7 the liberture	i
- 1	Complex," pp. 1575-158	see the Abstract.	
İ			!
i			1
i			1
!			
1			
ļ			
			·
* Special c	ategories of cited documents: 13	"T" later document published after t	he international filing date
"A" docum	ent defining the general state of the art which is not	or priority date and not in confli	ct with the application but
	ered to be of particular relevance	cited to understand the principle invention	e or theory underlying the
"E" earlier filing o	document but published on or after the international	"X" document of particular relevant	e; the claimed invention
_	ent which may throw doubts on priority claim(s) or	cannot be considered novel or involve an inventive step	cannot be considered to
which	is cited to establish the publication date of another	"Y" document of particular relevant	e the claimed invention
	or other special reason (as specified)	cannot be considered to involve:	an inventive step when the
other r	ent referring to an oral disclosure, use, exhibition or neans	document is combined with one ments, such combination being of	or more other such docu-
"P" docum	ent published prior to the international filing date but	in the art.	United to a person sking
later th	an the priority date claimed	"&" document member of the same p	atent family
V. CERTIFI	CATION		·
	ctual Completion of the International Search *	Date of Mailing of this Internation in	heat Paner :
A		Date of Mailing of this Internation Ind	-ren -αeport ±
		04FEB_ 199	
	1 November 1990		
ternational S	Searching Authority I	Signature of Authorized Officer 20	
	:	K. Kent 12-hu	1
	TSA/IIS	R. Keith Baker, Ph.D.	·

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)							
ategory * ¡	Citation of Document, 15 with indication, where appropriate, of the relevant passages 17	Relevant to Claim No 1					
Y	The EMBO Journal, Volume 6, No. 12, issued 1987, M. Ringwald et al., "The Structure of Cell Adhesion Molecule Uvomorulin Insights into the Molecular Mechanism of Cartadependent Cell Adhesion," pp3347-3353, see pages 3647-3648.	1-13,22-34,43-54 and 63-65					
Υ	US, A, $4.671,958$ (Rodwell et al.) 09 June 1987, see the Abstract and Column 7.	43-47 and 55-65					
Y,P	Development Biology, Volume 139, No. 1, issued May 1990, O.W. Blaschuk et al., "Identification of a Cadherin Cell Adhesion Recognition Sequence," pp227-229, see the entire Document.	1-65					
	•	٠					
-							
		•					
,							
•		:					

The additional search fees were accompanied by applicant's protest.

No protest accompanied the payment of additional search fees.

Remark on Protest

3

Attachment To PCT/ISA/210 Observations Where Unity Of Invention Is Lacking

Group I, claims 1-13 and 22-34, drawn to a composition for opening tight junctions and a method of use, classified in classes 530 and 514, subclasses 324, 326, 350 and 12 and 13, respectively.

Group II, claims 14-21 + 35-42, drawn to antibodies for opening tight junctions and methods of use, classified in classes 530 and 424, subclasses 387 and 85.8, respectively.

Group III, claims 43-54 and 63-65, drawn to a conjugates of a drug and a cell adhesion inhibitor, classified in class 530, subclasses 402, 409, and 345.

Group IV, claims 55-62, drawn to a conjugate of a drug and an antibody, classified in classes 530 and 424, subclasses 389, 390, 391 and 85.91, respectively.

Attachment To PCT/ISA/210 Detailed Reasons For Holding Lack Of Unity Of Invention:

PCT Rule 13.2 permits claims to "a" (one) product, "a" (one) method of making and "a" (one) method of using said product. The invention as set forth in Group I constitutes a combination of a product and a method of use. Groups II, III and IV one drawn to products that are distinct from that of Group I. Each of the products have a different structure and are distinct compositions as evidenced by their separate classification.

THIS PAGE BLANK (USPTO)