ARITHMETIC Chapter 6

Istsecondary **Sesión** II

Relaciones Binarias

MOTIVATING STRATEGY

Recordemos...

2. Relación simétrica

o1

RELACIONES BINARIAS

CLASES DE RELACIONES

1. Relación reflexiva

$$\forall a \in A, \exists (a, a) \in R$$

<u>Ejemplo</u>

Sea: $A = \{1; 2; 3\}$

Además R ⊂ A×A

Donde: $R = \{(1; 1), (2; 2), (3; 3)\}$ $\rightarrow R$ es reflexiva

<u>Ejemplo</u>

Sea: $A = \{1; 2; 3\}$

Además R ⊂ A×A

Donde: $R = \{(1; 2), (2; 1), (3; 3)\}$ \rightarrow R es simétrica

 $(a, b) \in \mathbb{R} \to (b, a) \in \mathbb{R}$

3. Relación transitiva

$$(a, b) \in \mathbb{R} \land (b, c) \in \mathbb{R} \rightarrow (a, c) \in \mathbb{R}$$

<u>Ejemplo</u>

Sea: $A = \{1; 2; 3\}$

Además R ⊂ A×A

Donde: $R = \{(1; 2), (2; 3), (1; 3)\}$

→ R es transitiva

Sea R la relación definida en M, donde:

$$M = \{1; 3; 5; 7\}$$

 $R = \{(a, 1); (3, b); (c, 5); (7, d)\}$ es una relación reflexiva.

Calcule a.b + c.d

Resolución

$$\forall a \in M, \exists (a, a) \in R$$

* Luego:

$$R=\{(a, 1); (3, b); (c, 5); (7, d)\} = \{(1, 1); (3, 3); (5, 5); (7, 7)\}$$

$$(a;1) = (1;1)$$
 \implies $a = 1$ $(c;5) = (5;5)$ \implies $c = 5$

$$(3;b) = (3;3)$$
 \implies $b = 3$ $(7;d) = (7;7)$ \implies $d = 7$

$$a.b + c.d = 1.3 + 5.7 = 38$$

Sea la relación R definida en A, donde: $A = \{2; 4; 5\}$ R = $\{(2; a), (2a + 1; b), (b - 1; c)\}$ es una relación reflexiva. Indique $(a \times b \times c)$.

Resolución

* R reflexiva

$$\forall a \in M, \exists (a, a) \in R$$

$$R = \{(2; a), (2a + 1; b), (b - 1; c)\}$$
 = \{(2; 2), (4; 4), (5; 5)\}

$$* 2 = a$$

$$* 2(2) + 1 = b$$

$$b = 5$$

$$* b - 1 = c$$

$$5 - 1 = c$$

$$c = 4$$

$$\therefore$$
 a × b × c = 2 × 5 × 4 = 40

Si: $R = \{(5; 3), (7; 2b), (6; c), (3; a)\}$ es una relación simétrica, calcule (a + b + c).

Resolución

"R" Simétrica \rightarrow (a, b) \in R \rightarrow (b, a) \in R

$$*$$
 a = 5

$$a + b + c = 5 + 3 + 7 = 15$$

Halle el valor de m y n para que la relación:

 $R = \{(2; a), (m; 3b), (n; 6), (a; b + 1)\}$ sea una relación simétrica e indique (m + n)

Resolución

"R" Simétrica

$$(a, b) \in R \rightarrow (b, a) \in R$$

*
$$b + 1 = 2$$

m + n = 6 + 3 = 9

$$3(1) = n$$

* 3b = n

$$n = 3$$

$$* m = 6$$

La relación R = $\{(8; b), (5 - a; 4), (8 - b; 8), (4; 3)\}$ es simétrica, calcule a × b.

Resolución

"R" Simétrica

$$(a, b) \in R \rightarrow (b, a) \in R$$

$$(5-a; 4) \in R \to (4; 3)$$

*
$$5-a = 3$$

2 = a

$$\therefore$$
 a x b = 2 x 4 = 8

Dado el conjunto: A = {1; 2; 3; 4}

¿Cuáles de las siguientes relaciones son reflexivas?

$$R_1 = \{(1; 1), (2; 2), (4; 4)\}$$

$$R_2 = \{(1; 1), (3; 3), (4; 4)\}$$

$$R_3 = \{(1; 1), (2; 2), (3; 3), (4; 4)\}$$

Resolución

* R reflexiva

 $\forall a \in A, \exists (a, a) \in R$

Entonces: $A = \{1; 2; 3; 4\}$

$$R_3 = \{(1;1),(2;2),(3;3),(4;4)\}$$

Sea la relación R definida en:

$$A=\{1; 2; 3\}$$
 $R=\{(1; 1), (2; 2), (1; 2), (2; 1), (3; 3), (3; 1), (1; 3)\}$

Afirmamos

- I. R es reflexiva.
- II. R es simétrica.
- III. R es transitiva.

Resolución

Se conoce: $A = \{1; 2; 3\}$

I. R es reflexiva. (V)

$$R = \{(1; 1), (2; 2), (1; 2), (2; 1), (3; 3), (3; 1), (1; 3)\}$$

```
II. R es simétrica. (V)
R = \{(1;1),(2;2),(1;2),(2;1),(3;3),(3;1),(1;3)\}
III. R es transitiva. (F)
           (a, b) \in \mathbb{R} \land (b, c) \in \mathbb{R} \rightarrow (a, c) \in \mathbb{R}
            (1;1) \land (1;2) \rightarrow (1;2)
                       \wedge (1;3) \rightarrow (1;3)
            (2;2) \land (2;1) \rightarrow (2;1)
            (1;2) \land (2;1) \rightarrow (1;1)
                       \wedge (2;2) \rightarrow (1;2)
            (2;1) \land (1;1) \rightarrow (2;1)
                        \Lambda (1;3) \rightarrow (2;3) \in R
```


En W = $\{2; 4; 6; 8\}$ y la relación R = $\{(x, y) \in W \times W / x \text{ divide a y}\}$ ¿Cuántas de las siguientes proposiciones son verdaderas?

- R es reflexiva.
- R es simétrica.
- R es transitiva.
- > R es de equivalencia.

Resolución

Se conoce : $W = \{2; 4; 6; 8\}$

$$R = \{(2; 2), (2; 4), (2; 6), (2; 8), (4; 4), (4; 8), (6; 6), (8; 8)\}$$

I. R es reflexiva (V)

R={(2;2),(2;4),(2;6),(2;8),(4;4),(4;8),(6;6),(8;8)}

II. R es simétrica (F)

R={(2; 2), (2; 4), (2; 6), (2; 8), (4; 4), (4; 8), (6; 6),(8; 8)}

III. R es transitiva (V)

$(a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$

 $(2; 2) \land (2; 4) \rightarrow (2; 4)$ $\land (2; 6) \rightarrow (2; 6)$ $\land (2; 8) \rightarrow (2; 8)$ $(2; 4) \land (4; 4) \rightarrow (2; 4)$ $\land (4; 8) \rightarrow (2; 8)$ $(2; 6) \land (6; 6) \rightarrow (2; 6)$ $(2; 8) \land (8; 8) \rightarrow (2; 8)$ $(4; 4) \land (4; 8) \rightarrow (4; 8)$ $(4; 8) \land (8; 8) \rightarrow (4; 8)$

