Análisis Funcional: Taller 2

4 de mayo de 2025

Universidad Nacional de Colombia

Oscar Guillermo Riaño Castañeda

Andrés David Cadena Simons acadenas@unal.edu.co

Problema 1:

Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Dado r > 0, considere $C = B(0, r) = \{y \in E : \|y\| < r\}$. Determine el funcional de Minkowski¹ de C.

Solución:

Note que C es abierto ya que C = B(0, r), veamos que es convexo. Sean $x, y \in C$, entonces el camino convexo entre ellos es (1 - t)x + ty, ahora veamos que para todo $t \in [0, 1]$ se cumple que $(1 - t)x + ty = z \in C$ ya que

$$||z|| = ||(1 - t)x + ty||,$$

 $\leq (1 - t)||x|| + t||y||,$
 $< (1 - t)r + tr,$
 $< r.$

Luego podemos afirmar que C es un conjunto abierto, convexo y además que $0 \in C$, por lo que definiremos

$$\rho: E \to \mathbb{R},$$

$$x \to \inf\{\alpha > 0: \alpha^{-1}x \in C\}.$$

Note que si $\alpha^{-1}x \in C$, entonces

$$\left\| \alpha^{-1} x \right\| = \frac{\|x\|}{\alpha} < r.$$

Lo que implica que $\alpha > \frac{\|x\|}{r}$, lo que nos permite razonar de la siguiente manera

$$\begin{split} : E \to \mathbb{R}, \\ x &\to \inf\{\alpha > 0 : \alpha^{-1}x \in C\} = \inf\left\{\alpha > 0 : \alpha > \frac{\|x\|}{r}\right\}. \\ &= \frac{\|x\|}{r}. \end{split}$$

Es decir

$$\rho(x) = \frac{\|x\|}{r}.$$

¹Recuerde que dado C abierto, convexo con $0 \in C$, el funcional de Minkowski se define como $\rho(x) = \inf\{\alpha > 0 : \alpha^{-1}x \in C\}, x \in E$.

Veamos que este es un funcional de Minkowski. Dado $x \in E$ y $\lambda > 0$ se satisface que

$$\rho(\lambda x) = \frac{\|\lambda x\|}{r},$$
$$= \lambda \frac{\|x\|}{r},$$
$$= \lambda \rho(x).$$

Además dados $x,y\in E$ se cumple que

$$\rho(x+y) = \frac{\|x+y\|}{r},$$

$$\leq \frac{\|x\| + \|y\|}{r},$$

$$\leq \frac{\|x\|}{r} + \frac{y}{r},$$

$$\leq \rho(x) + \rho(y).$$

Por lo que podremos afirmar que el funcional de Minkowski de ${\cal C}$ es

$$\rho(x) = \frac{\|x\|}{r}.$$

Lo que nos permite concluir el ejercicio.

Problema 2:

Sea E espacio vectorial normado.

- (I) Sea $W \subset E$ un subespacio propio de E y $x_0 \in E \setminus W$, tal que $d := d(x_0, W) > 0$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W, $f(x_0) = d$ y $||f||_{E^*} = 1$.
- (II) Sea $W \subset E$ un subespacio propio cerrado de E y $x_0 \in E \setminus W$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W y $f(x_0) \neq 0$.

Solución:

1. Suponga $V = W \times \{tx_0\}$ y definamos el siguiente funcional

$$g: V = W \times \{tx_0\} \to \mathbb{R},$$

 $(x, tx_0) \to td.$

Note que si tomamos $x + (0)x_0 \in V$ tal que t = 0 (es decir $x \in W$), entonces

$$g(x + (0)x_0) = (0)d = 0.$$

Por otro lado si tomamos $0 + (1)x_0 \in V$ (es decir $x_0 \in E \setminus W$), entonces

$$g(0+(1)x_0) = (1)d = d.$$

Se puede verificar que g es lineal ya que si suponemos $x,y\in V$ con sus t_1 y t_2 respectivos y λ escalar, entonces

$$g(x + \lambda y) = (t_1 + \lambda t_2)d,$$

= $t_1d + \lambda t_2d,$
= $g(x) + \lambda g(y).$

Ahora veamos que $||g||_{V^*} = 1$.

Primero tome $a = x + tx_0 \in V$ arbitrario, entonces

$$\begin{aligned} |g(a)| &= |td|, \\ &= \left| t \inf_{y \in W} \|x_0 - y\| \right|, \\ &\leq \left| t \left\| x_0 - \left(-\frac{x}{t} \right) \right\| \right|, \\ &\leq \left\| tx_0 + x \right\|, \\ &\leq \left\| a \right\|. \end{aligned}$$

Por lo que podemos asegurar que $\|g\|_{V^*} \leq 1$. Pero note que como $d = \inf_{y \in W} \|x_0 - y\|$, entonces podemos escoger una sucesión $\{y_n\} \subset W$ tal que $\|x_0 - y_n\| \to d$ por encima

cuando $n\to\infty.$ Suponga $\{v_n\}=\left\{\frac{x_0-y_n}{\|x_0-y_n\|}\right\}$ y note que

$$\begin{split} \|g\|_{V^*} &= \sup_{\substack{x \in V, \\ \|x\| = 1}} |g(x)|, \\ &\geq \lim_{v_n \to \infty} |g(v_n)|, \\ &\geq \lim_{v_n \to \infty} \frac{|g(x_0) - g(y_n)|}{\|x_0 - y_n\|}, \\ &\geq \lim_{n \to \infty} \frac{d}{\|x_0 - y_n\|}, \\ &\geq 1. \end{split}$$

Luego podemos asegurar que $\|g\|_{V^*} = 1$. Ahora, definamos

$$\rho(x) = ||x|| \quad , x \in E.$$

Veamos que ρ domina a g, es decir, $g(x) \leq \rho(x)$ para todo $x \in V$. Suponga $a = x + tx_0 \in V$, entonces

$$g(a) = td,$$

$$\leq ||tx_0||,$$

$$\leq ||x + tx_0||,$$

$$\leq ||a|| = \rho(a).$$

lo que nos permite concluir que ρ domina a g. Ahora tenemos que

- $g \in V^*$.
- $\|g\|_{V^*} = 1.$
- $g|_{w} = 0 \text{ y } g(x_{0}) = d.$
- ullet ρ es un funcional de Minkowski que domina a g.

Luego, usando el teorema de Helly, Hahn-Banach en su forma analítica podemos asegurar que existe $f \in E^*$ tal que f = 0 restricto a W, $f(x_0) = d$ y $||f||_{E^*} = 1$.

Problema 3:

Sea $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios de Banach.

- (I) Sea $K \subset E$ un subespacio cerrado de E. Definimos la relación sobre E dada por $x \sim_K y$ si y solo si $x y \in K$.
 - (a) Muestre que \sim_K es una relación de equivalencia sobre E.
 - (b) Muestre que el espacio cociente E/K es un espacio de Banach con la norma

$$||x + K||_{E/K} = \inf_{k \in K} ||x - k||, \quad x \in E.$$

Es decir, debe verificar que el espacio cociente es un espacio vectorial normado, cuya norma lo hace completo.

(II) Sea $T \in L(E, W)$ tal que existe c > 0 para el cual

$$||Tx||_F \ge c ||x||_E,$$

para todo $x \in E$. Si K denota el espacio nulo de T y R(T) el rango de T, muestre que $\overline{T}: E/K \to R(T)$ dada por $\widetilde{T}(x+K) = T(x), x \in E$, está bien definida y es un isomorfismo. Esto es $\widetilde{T} \in L(E/K, R(T))$ y $\widetilde{T}^{-1} \in L(R(T), E/K)$.

Solución:

(1)

- (a) Veamos que \sim_K es una relación de equivalencia sobre E.
 - Reflexiva.

Note que $x \sim_K x$, ya que $x - x = 0 \in K$ por ser K subespacio de E para todo $x \in E$, lo que nos permite concluir la reflexividad.

Simétrica.

Note que si asumimos que $x \sim_K y$, entonces $x - y \in K$, pero como K es subespacio, entonces $-(x - y) = y - x \in K$, por lo que podemos asegurar que $y \sim_K x$, lo que nos permite concluir la simetría en la relación.

Transitiva

Note que si asumimos que $x \sim_K y$ y $y \sim_K z$, entonces $x-y \in K$ y $y-z \in K$, pero como K es un subespacio cerrado, entonces $(x-y)+(y-z)=x-z \in K$ y por ende $x \sim_K z$, lo que nos permite concluir la transitividad.

Problema 4:

Considere los espacios C([0,1]) y $C^1([0,1])$ ambos equipados con la norma del supremo $\|f\|_{L^\infty} = \sup_{x \in [0,1]} |f(x)|$. Definimos el operador derivada $D: C^1([0,1]) \to C([0,1])$ dado por $f \to f'$. Muestre que D es un operador no acotado, pero su gráfico G(D) es cerrado.

Solución:

Solución.