TTK4150 Nonlinear Control Systems Department of Engineering Cybernetics Norwegian University of Science and Technology Fall 2016 - Solution to Assignment 6

1. The system is given by

$$M\ddot{\delta} = P - D\dot{\delta} - \eta_1 E_q \sin(\delta)$$

$$\tau \dot{E}_q = -\eta_2 E_q + \eta_3 \cos(\delta) + E_{FD}$$

which is rewritten in the form $\dot{x} = f(x) + g(x)u$ using

$$x_1 = \delta$$

$$x_2 = \dot{\delta}$$

$$x_3 = E_q$$

$$u = E_{FD}$$

This results in the system

$$\dot{x}_1 = x_2
\dot{x}_2 = \frac{1}{M} (P - Dx_2 - \eta_1 x_3 \sin(x_1))
\dot{x}_3 = \frac{1}{\tau} (-\eta_2 x_3 + \eta_3 \cos(x_1) + u)$$
(1)

where it can be seen that

$$f(x) = \begin{bmatrix} x_2 \\ \frac{1}{M} \left(P - Dx_2 - \eta_1 x_3 \sin(x_1) \right) \\ \frac{1}{\tau} \left(-\eta_2 x_3 + \eta_3 \cos(x_1) \right) \end{bmatrix}$$
$$g(x) = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\tau} \end{bmatrix}$$

(a) The output is given by $y = \delta = x_1 = h(x)$. The relative degree is found as

$$\dot{y} = \dot{x}_{1}
\dot{y} = \dot{x}_{1}
= x_{2}
\ddot{y} = \dot{x}_{2}
= \frac{1}{M} (P - Dx_{2} - \eta_{1}x_{3}\sin(x_{1}))
\ddot{y} = -\frac{D}{M}\dot{x}_{2} - \frac{\eta_{1}}{M}\dot{x}_{3}\sin(x_{1}) - \frac{\eta_{1}}{M}x_{3}\frac{\partial\sin(x_{1})}{\partial x_{1}}\dot{x}_{1}
= -\frac{D}{M}\frac{1}{M} (P - Dx_{2} - \eta_{1}x_{3}\sin(x_{1}))
- \frac{\eta_{1}}{\tau M}\sin(x_{1})(-\eta_{2}x_{3} + \eta_{3}\cos(x_{1}) + u)
- \frac{\eta_{1}}{M}x_{3}\cos(x_{1})x_{2}$$

And the relative degree of the system is $\rho = 3$. We have our system on the form

$$\dot{x} = f(x) + g(x)u \tag{2}$$

and would like to transform it to a system on the form

$$\dot{\eta} = f_0(\eta, \xi)$$

$$\dot{\xi} = A_c \xi + B_c \gamma(x) [u - \alpha(x)]$$

$$y = C_c \xi$$

where η is the internal dynamics and ζ the external dynamics. They are both given through the diffeomorphism

$$T(x) = \begin{bmatrix} \phi_1(x) \\ \vdots \\ \phi_{n-\rho}(x) \\ --- \\ h(x) \\ \vdots \\ L_f^{\rho-1}h(x) \end{bmatrix} \triangleq \begin{bmatrix} -\eta \\ -\xi \end{bmatrix}$$

$$(3)$$

where

$$\frac{\partial \phi_i}{\partial x} g(x) = 0$$
, for $1 \le i \le n - \rho$, $\forall x \in D_0$

Since $\rho = n$, one only needs the external part of the system on normal form, ζ . External variables of the normal form is given by evaluating the Lie Derivative of h with respect to f

$$\xi_{1} = h(x)$$

$$= x_{1}$$

$$\xi_{2} = L_{f}h(x)$$

$$= x_{2}$$

$$\xi_{3} = L_{f}^{2}h(x)$$

$$= \frac{1}{M}(P - Dx_{2} - \eta_{1}x_{3}\sin(x_{1}))$$

The system (1) can therefore be written on normal form as

$$\dot{\xi} = A_c \xi + B_c \gamma(x) \left[u - \alpha(x) \right] \tag{4}$$

$$y = C_c \xi \tag{5}$$

where

$$\gamma(x) = L_g L_f^{\rho - 1} h(x)$$
 and $\alpha(x) = -\frac{L_f^{\rho} h(x)}{L_g L_f^{\rho - 1} h(x)} = -\frac{L_f^{\rho} h(x)}{\gamma(x)}$ (6)

This transformation is therefore only valid when $\gamma(x) \neq 0$, which means that

$$L_{g}L_{f}^{\rho-1}h(x) = L_{g}L_{f}^{2}h(x)$$

$$= -\frac{\eta_{1}}{\tau M}\sin(x_{1})$$

$$\neq 0 \ \forall \ x \in D_{0}$$

where $D_0 = \{x \in \mathbb{R}^3 | \sin(x_1) \neq 0\}$. Since the relative degree equals the dimension of the system, we have no internal dynamics and the system is minimum phase.

(b) The output is given by $y = \delta + \zeta \dot{\delta} = x_1 + \zeta x_2 = h(x)$ where $\zeta \neq 0$. The relative degree is obtained from

$$y = x_{1} + \zeta x_{2}$$

$$\dot{y} = \dot{x}_{1} + \zeta \dot{x}_{2}$$

$$= x_{2} + \zeta \frac{1}{M} \left(P - Dx_{2} - \eta_{1} x_{3} \sin(x_{1}) \right)$$

$$= \left(1 - \frac{\zeta D}{M} \right) x_{2} - \frac{\zeta \eta_{1}}{M} x_{3} \sin(x_{1}) + \zeta P \frac{1}{M}$$

$$\ddot{y} = \frac{\partial \dot{y}}{\partial x} \dot{x}$$

$$= \left[-\frac{\zeta \eta_{1}}{M} x_{3} \cos(x_{1}) \left(1 - \frac{\zeta D}{M} \right) - \frac{\zeta \eta_{1}}{M} \sin(x_{1}) \right] \dot{x}$$

$$= \frac{\zeta \eta_{1}}{M} x_{3} \cos(x_{1}) x_{2}$$

$$+ \left(1 - \frac{\zeta D}{M} \right) \frac{1}{M} \left(P - Dx_{2} - \eta_{1} x_{3} \sin(x_{1}) \right)$$

$$- \frac{\zeta \eta_{1}}{\tau M} \sin(x_{1}) \left(-\eta_{2} x_{3} + \eta_{3} \cos(x_{1}) + u \right)$$

And the system thus has relative degree $\rho = 2$.

The region D_0 where the transformation is valid is where $L_g L_f^{\rho-1} h\left(x\right) \neq 0$

$$L_g L_f^{\rho-1} h(x) = L_g L_f^1 h(x)$$

$$= -\frac{\gamma \eta_1}{\tau M} \sin(x_1)$$

$$\neq 0 \ \forall \ x \in D_0$$

where $D_0 = \{ x \in \mathbb{R}^3 | \sin(x_1) \neq 0 \}.$

Since $\rho < n$, both internal and external dynamics are needed. The external variables of the normal form is found by evaluating the Lie Derivative of h with

respect to f

$$\xi_{1} = h(x) = x_{1} + \zeta x_{2}$$

$$\xi_{2} = L_{f}h(x) = \frac{\partial h(x)}{\partial x}f(x) = \begin{bmatrix} 1 & \zeta & 0 \end{bmatrix}f(x)$$

$$= x_{2} + \frac{\zeta}{M}(P - Dx_{2} - \eta_{1}x_{3}\sin(x_{1}))$$

The internal dynamics $\eta = \phi(x)$ is chosen to satisfy $\frac{\partial \phi(x)}{\partial x}g(x) = 0$ and the existence of $T^{-1}(x)$ in D_0 . It can be verified that $\phi(x) = x_1$ meets these conditions. With $\phi(x) = x_1$ we have that

$$\dot{\eta} = \dot{\phi}(x) = \dot{x}_1 = x_2 = \frac{1}{\zeta}(\xi_1 - \eta) = f_0(\eta, \xi)$$

The system on normal form is thus

$$\dot{\eta} = f_0(\eta, \xi)$$

$$\dot{\xi} = A_c \xi + B_c \gamma(x) [u - \alpha(x)]$$

$$y = C_c \xi$$

The system is said to be minimum phase if the zero dynamics, $\dot{\eta} = f_0(\eta, 0)$, has an asymptotically stable equilibrium point in the domain of interest. From $\dot{\eta} = f_0(\eta, 0) = -\frac{1}{\gamma}\eta$ it can be recognized that the origin of η is asymptotically stable.

2. The system is given by

$$\dot{x}_1 = -x_1 + x_2 - x_3
 \dot{x}_2 = -x_1 x_3 - x_2 + u
 \dot{x}_3 = -x_1 + u
 y = x_3$$

Rewriting this model on the form $\dot{x} = f(x) + g(x)u$ results in

$$f(x) = \begin{bmatrix} -x_1 + x_2 - x_3 \\ -x_1 x_3 - x_2 \\ -x_1 \end{bmatrix}$$
$$g(x) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

(a) The relative degree is obtained from

$$y = x_3$$

$$\dot{y} = \dot{x}_3$$

$$= -x_1 + u$$

which shows that the system has relative degree 1 in \mathbb{R}^3 . Hence, the system is input-output linearizable.

(b) The external part of the normal form is given by

$$\xi_1 = h(x) = x_3$$

To find the internal dynamics we start by setting up the requirements on $\frac{\partial \phi_i}{\partial x}$

$$\frac{\partial \phi_1}{\partial x} g(x) = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \end{bmatrix} g(x)$$

$$= \frac{\partial \phi_1}{\partial x_2} + \frac{\partial \phi_1}{\partial x_3}$$

$$= 0$$

$$\frac{\partial \phi_2}{\partial x} g(x) = \begin{bmatrix} \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \end{bmatrix} g(x)$$

$$= \frac{\partial \phi_2}{\partial x_2} + \frac{\partial \phi_2}{\partial x_3}$$

$$= 0$$

By choosing

$$\phi_1(x) = x_1$$

$$\phi_2(x) = x_2 - x_3$$

we obtain a global diffeomorphism

$$T(x) = \begin{bmatrix} x_1 \\ x_2 - x_3 \\ x_3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} x$$

which is invertable. The system on normal form is

$$\dot{\eta}_1 = \dot{x}_1
= -\eta_1 + \eta_2
\dot{\eta}_2 = \dot{x}_2 - \dot{x}_3
= -x_1 x_3 - x_2 + u + x_1 - u
= -\eta_1 \xi_1 - (\eta_2 + x_3) + \eta_1
= \eta_1 - \eta_2 - \xi_1 - \eta_1 \xi_1
\dot{\xi}_1 = -\eta_1 + u$$

Since $L_g L_f^0 h(x) = L_g h(x) = 1$, the transformation is valid in \mathcal{R}^3 .

(c) To investigate if the system is minimum phase, we analyze the zero dynamics

$$\dot{\eta} = f_0 (\eta, \xi)|_{\xi=0}$$

$$= \begin{bmatrix} -\eta_1 + \eta_2 \\ \eta_1 - \eta_2 - \xi_1 - \eta_1 \xi_1 \end{bmatrix}|_{\xi=0}$$

$$= \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \eta = A\eta$$

where it can be seen that $eig(A) = \begin{bmatrix} -2 & 0 \end{bmatrix}^T$. Hence, the origin is not asymptotically stable, and the system is therefore not minimum phase.

3. The system is rewritten as

$$\dot{x} = f(x) + g(x) u$$
$$y = h(x)$$

where

$$f(x) = \begin{bmatrix} -x_1 \\ x_1 x_2 \\ x_2 \end{bmatrix}$$
$$g(x) = \begin{bmatrix} e^{x_2} \\ 1 \\ 0 \end{bmatrix}$$
$$h(x) = x_3$$

(a) The relative degree is found by derivative y with respect to time

$$y = x_3$$

$$\dot{y} = \dot{x}_3 = x_2$$

$$\ddot{y} = \dot{x}_2 = x_1 x_2 + u$$

where it can be seen that the system has a relative degree $\rho=2$ in $x\in R^2$. The relative degree holds as long as $L_gL_f^{\rho-1}h\left(x\right)\neq 0$.

$$L_g L_f^{\rho-1} h(x) = L_g L_f h(x) = 1 \neq 0 \ \forall \ x \in \mathbb{R}^2$$

The relative degree thus holds over the entire \mathbb{R}^3 space.

(b) The system has a well defined relative degree ρ in the entire \mathbb{R}^3 , and is therefore input-output linearizable in \mathbb{R}^3 .

(c) The variables for the external dynamics are found according to

$$\xi_1 = h(x) = x_3$$

$$\xi_2 = L_f h(x) = \frac{\partial h(x)}{\partial x} f = x_2$$

The coordinates for the internal dynamics is chosen such that T(x) is diffeomorphism on \mathcal{R}^3 and $\frac{\partial \phi(x)}{\partial x}g(x)=0$ on \mathcal{R}^3 , where $\left[\eta,\xi^T\right]^T=\left[\phi(x),\psi(x)\right]=T(x)$. In addition to this we require $\phi(0)=0$ in order to have the origin as equilibrium. We start by calculating

$$\frac{\partial \phi(x)}{\partial x}g(x) = \begin{bmatrix} \frac{\partial \phi(x)}{\partial x_1} & \frac{\partial \phi(x)}{\partial x_2} & \frac{\partial \phi(x)}{\partial x_3} \end{bmatrix} \begin{bmatrix} e^{x_2} \\ 1 \\ 0 \end{bmatrix}$$
$$= \frac{\partial \phi(x)}{\partial x_1}e^{x_2} + \frac{\partial \phi(x)}{\partial x_2}$$
$$= 0$$

and based on these calculations we try

$$\frac{\partial \phi(x)}{\partial x_1} = 1$$
$$\frac{\partial \phi(x)}{\partial x_2} = -e^{x_2}$$

which implies that

$$\phi\left(x\right) = x_1 - e^{x_2} + c$$

where c is some constant. This constant is chosen to satisfy our requirement $\phi(0) = 0$

$$\phi(0) = -e^0 + c$$
$$= -1 + c$$
$$\Rightarrow c = 1$$

Our resulting coordinate transformation is now given by

$$\begin{bmatrix} \eta \\ \xi_1 \\ \xi_2 \end{bmatrix} = \begin{bmatrix} x_1 - e^{x_2} + 1 \\ x_3 \\ x_2 \end{bmatrix}$$

and

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \eta + e^{\xi_2} - 1 \\ \xi_2 \\ \xi_1 \end{bmatrix}$$

Consequently the inverse transformation exists. It follows that T(x) and $T^{-1}(x)$ are continuously differentiable. Hence, T(x) is a diffeomorphism on \mathbb{R}^3 and $T(0) = T^{-1}(0) = 0$.

(d) The system may be rewritten as

$$\dot{\eta} = \dot{x}_1 - \frac{\partial e^{x_2}}{\partial x_2} \dot{x}_2
= -x_1 + e^{x_2} u - e^{x_2} (x_1 x_2 + u)
= -x_1 - e^{x_2} x_1 x_2
= -(\eta + e^{x_2} - 1) - e^{x_2} (\eta + e^{x_2} - 1) x_2
= (1 - \eta - e^{\xi_2}) + (1 - \eta - e^{\xi_2}) e^{\xi_2} \xi_2
= (1 - \eta - e^{\xi_2}) (1 + e^{\xi_2} \xi_2)$$

and

$$\dot{\xi} = A_c \xi + B_c \gamma (x) (u - \alpha (x))$$

$$y = C_c \xi$$

where

$$A_{c} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$B_{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C_{c} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\gamma(x) = L_{g}L_{f}h(x)$$

$$= 1$$

$$\alpha(x) = -\frac{L_{f}^{2}h(x)}{L_{g}L_{f}h(x)}$$

$$= -\frac{x_{1}x_{2}}{1}$$

$$= -x_{1}x_{2}$$

(e) The zero dynamics is given by

$$\dot{\eta} = f_0(\eta, \xi)|_{\xi=0}
= (1 - \eta - e^{\xi_2}) (1 + e^{\xi_2} \xi_2)|_{\xi=0}
= (1 - \eta - 1) (1 + 0)
= -\eta$$

which has a globally asymptotically stable equilibrium at the origin.

(f) The external dynamics are given by

$$\dot{\xi} = A_c \xi + B_c \gamma (x) (u - \alpha (x))$$

By choosing

$$u = \gamma^{-1}(x) v + \alpha(x)$$

the external dynamics are given by

$$\dot{\xi} = A_c \xi + B_c v$$

Since the system is controllable, rank([B, AB]) = 2, it can be stabilized (asymptotically stable) by a control input $v = -K\xi$ where K is chosen such that $(A_c - B_c K)$ is Hurwitz. u is now given by

$$u = -\gamma^{-1}(x) K\xi + \alpha(x)$$

Since $\dot{\eta} = f_0(\eta, \xi)|_{\xi=0}$ is asymptotically stable, the origin of the entire system is asymptotically stable.

(g) Let

$$\mathcal{R} = \begin{bmatrix} r \\ \dot{r} \end{bmatrix}$$

$$e = \xi - \mathcal{R}$$

Then we can calculate

$$\dot{e} = \dot{\xi} - \dot{\mathcal{R}}$$

$$= (A_c \xi + B_c v) - (A_c \mathcal{R} + B_c \ddot{r})$$

$$= A_c (\xi - \mathcal{R}) + B_c (v - \ddot{r})$$

$$= A_c e + B_c (v - \ddot{r})$$

$$= A_c e + B_c (\gamma(x) [u - \alpha(x)] - \ddot{r})$$

where the simplified structure $\dot{\mathcal{R}} = A_c \mathcal{R} + B_c \ddot{r}$ is found using the known values of A_c and B_c (see part d).

We can choose the state feedback control

$$u = \gamma^{-1}(x)(v + \ddot{r}) + \alpha(x)$$

The resulting system is

$$\dot{\eta} = f_0 (\eta, e + \mathcal{R})$$

$$\dot{e} = A_c e + B_c v$$

and since (A_c, B_c) is controllable, the loop is closed with v = -Ke where K is chosen such that $(A_c - B_c K)$ is Hurwitz. This makes the external dynamics for e exponentially stable.

Since $\dot{\eta} = f_0(\eta, \xi)|_{\xi=0}$ is asymptotically stable, the origin of the overall closed-loop system is such that for sufficiently small initial conditions $e(0), \eta(0)$ and for $\mathcal{R}(t)$ with sufficiently small $\sup_{t\geq 0} \|\mathcal{R}(t)\|$, all solutions $(\eta(t), e(t))$ of the closed-loop system are bounded and $e(t) \to 0$ as $t \to \infty$.

4. (Khalil 13.25) The system is given by

$$\dot{x}_1 = x_2 + 2x_1^2$$

$$\dot{x}_2 = x_3 + u$$

$$\dot{x}_3 = x_1 - x_3$$

$$y = x_1$$

Since

$$y = x_1 \Rightarrow \dot{y} = x_2 + 2x_1^2 \Rightarrow \ddot{y} = x_3 + u + 2x_1(x_2 + x_1^2)$$

Therefore, the system has a relative degree 2 in \mathbb{R}^3 . Let us check the minimum-phase property.

$$y(t) \equiv 0 \Rightarrow \dot{x}_3 = -x_3.$$

Hence, the system is minimum.-phase. Let e = y - r.

$$\ddot{e} = \ddot{y} - \ddot{r} = x_3 + u + 2x_1(x_2 + x_1^2) - \ddot{r}$$

Choosing

$$u = -x_3 - 2x_1(x_2 + x_1^2) + \ddot{r} - k_1 e - k_2 \dot{e}$$

= $-x_3 - 2x_1(x_2 + x_1^2) + \ddot{r} - k_1(y - r) - k_2(x_2 + 2x_1^2 - \dot{r}),$

where k_1 and k_2 are positive constants. the tracking error esatisfies the equation $\ddot{e} + k_2 \dot{e} + k_1 e = 0$, which shows that $e(t) \to 0$ as $t \to \infty$.

5. (Khalil 14.31) The system is given by

$$\dot{x}_1 = x_2 + a + (x_1 - a^{1/3})^3$$

 $\dot{x}_2 = x_1 + u$

where the first system equation has the virtual input x_2 . Choose

$$x_2 = -a - x_1 - (x_1 - a^{1/3})^3$$

such that $\dot{x}_1 = -x_1$. Then the Lyapunov function candidate $V_1 = \frac{1}{2}x_1^2$ (which is positive definite and radially unbounded) will have $\dot{V}_1 = x_1\dot{x}_1 = -x_1^2$ which is negative definite.

Augment the virtual input with z, such that

$$x_2 = -a - x_1 - (x_1 - a^{1/3})^3 + z$$

then

$$z = x_1 + x_2 + a + (x_1 - a^{1/3})^3$$

and

$$\dot{z} = \dot{x}_1 + \dot{x}_2 + 3\left(x_1 - a^{1/3}\right)^2 \dot{x}_1
= \left(x_2 + a + \left(x_1 - a^{1/3}\right)^3\right) + \left(x_1 + u\right) + 3\left(x_1 - a^{1/3}\right)^2 \left(x_2 + a + \left(x_1 - a^{1/3}\right)^3\right)
= x_1 + u + \left(1 + 3\left(x_1 - a^{1/3}\right)^2\right) \left(x_2 + a + \left(x_1 - a^{1/3}\right)^3\right)$$

Calculate

$$\dot{V}_1 = x_1 \dot{x}_1 = x_1 (-x_1 + z) = -x_1^2 + x_1 z$$

We may choose a Lyapunov function candidate for the overall system as $V_c = V_1 + \frac{1}{2}z^2$, then

$$\dot{V}_c = \dot{V}_1 + z\dot{z}
= -x_1^2 + x_1 z + z \left\{ x_1 + u + \left(1 + 3 \left(x_1 - a^{1/3} \right)^2 \right) \left(x_2 + a + \left(x_1 - a^{1/3} \right)^3 \right) \right\}
= -x_1^2 + z \left\{ 2x_1 + u + \left(1 + 3 \left(x_1 - a^{1/3} \right)^2 \right) \left(x_2 + a + \left(x_1 - a^{1/3} \right)^3 \right) \right\}
= -x_1^2 - z^2$$

$$= -x_1^2 - z^2$$

where we have chosen

$$-z = 2x_1 + u + \left(1 + 3\left(x_1 - a^{1/3}\right)^2\right)\left(x_2 + a + \left(x_1 - a^{1/3}\right)^3\right)$$

i.e.

$$u = -z - 2x_1 - \left(1 + 3\left(x_1 - a^{1/3}\right)^2\right) \left(x_2 + a + \left(x_1 - a^{1/3}\right)^3\right)$$

$$= -\left(x_1 + x_2 + a + \left(x_1 - a^{1/3}\right)^3\right) - 2x_1 - \left(1 + 3\left(x_1 - a^{1/3}\right)^2\right) \left(x_2 + a + \left(x_1 - a^{1/3}\right)^3\right)$$

$$= -3x_1 - \left(2 + 3\left(x_1 - a^{1/3}\right)^2\right) \left(x_2 + a + \left(x_1 - a^{1/3}\right)^3\right)$$

such that V_c is negative definite. We already know that V_c is positive definite and radially unbounded. Hence, the overall system is globally asymptotically stable (GAS).

Alternative solution:

The system is in the form of (14.53)-(14.54) in Khalil with

$$f = a + (x_1 - a^{1/3})^3$$

$$g = 1$$

$$f_a = x_1$$

$$g_a = 1$$

Take

$$\phi(x_1) = -a - (x_1 - a^{1/3})^3 - x_1$$

$$V = \frac{1}{2}x_1^2$$

and use (14.56) in Khalil.

6. Consider $\dot{x}_1 = x_1x_2 + x_1^2$ with x_2 as a virtual input. Choose a Lyapunov function candidate $V_1(x) = \frac{1}{2}x_1^2$ and calculate

$$\dot{V}_1 = x_1 \dot{x}_1 = x_1 (x_1 x_2 + x_1^2)$$

We can enforce $\dot{V}_1 = -x_1^4$ which is negative definite, by choosing the input $x_2 = -x_1 - x_1^2$ (actually, any choice $x_2 = -x_1^{2k} - x_1^2$, $k = 1, 2, 3, \ldots$ will be possible, to get a negative definite \dot{V}_1 , but for simplification we choose k=1).

Augment the input with z, such that we have $x_2 = -x_1 - x_1^2 + z$ (i.e. $z = x_2 + x_1 + x_1^2$), then

$$\dot{V}_1 = x_1 (x_1 x_2 + x_1^2) = x_1 (x_1 (-x_1 - x_1^2 + z) + x_1^2) = -x_1^4 + x_1^2 z$$

Now choose a Lyapunov function candidate for the complete system $V_c = V_1 + \frac{1}{2}z^2$, which is positive definite and radially unbounded. Then

$$\dot{V}_c = \dot{V}_1 + z\dot{z}
= -x_1^4 + x_1 z + z \left(u + (2x_1 + 1) \left(x_1 x_2 + x_1^2 \right) \right)
= -x_1^4 + z \underbrace{\left(x_1 + u + (2x_1 + 1) \left(x_1 x_2 + x_1^2 \right) \right)}_{\text{choose}}$$

We can enforce $\dot{V}_c = -x_1^2 - z^2$ (then \dot{V}_c is negative definite), by choosing

$$-z = x_1 + u + (2x_1 + 1) (x_1x_2 + x_1^2)$$

$$u = -x_1 - (2x_1 + 1) (x_1x_2 + x_1^2) - z$$

By inserting z, we get the expression for the stabilizing input

$$u = -x_1 - (2x_1 + 1) (x_1x_2 + x_1^2) - x_2 + x_1 + x_1^2$$

= -(2x₁ + 1) (x₁x₂ + x₁²) - x₂ + x₁²

Since $V_c(x_1, z)$ is continuously differentiable and positive definite, and $\dot{V}_c(x_1, z)$ is negative definite, u asymptotically stabilizes x_1 and z at the origin. Since $z = 0 \rightarrow x_2 = -x_1 - x_1^2$ and $x_1 = 0 \rightarrow -x_1 - x_1^2 = 0$, this means that also x_2 is asymptotically stabilized at the origin. In addition, since $V_c(x_1, z)$ is radially unbounded and there are no singularities in u, the equilibrium point x = (0, 0) is globally asymptotically stable.