Cognome		COMPITO "A"	
Matricola			
Aula	Laboratorio frequentato nell'anno accademico		

Parte A - Domande a risposta multipla

(indicare con X la risposta corretta nella tabella – non scrivere nella riga "Punteggio totale")

Quesito	1	2	3	4	5	6	7	8	9	10	
Risposta a											
Risposta b											
Risposta c											
Risposta d											
Punteggio totale											

Quesito A.1

In un flip-flop negative edge-triggered con reset (RST) asincrono attivo basso, se RST = 0:

- a) l'uscita va a 0 se l'ingresso D è a 0
- b) l'uscita va a 0 se CK passa da 1 a 0
- c) l'uscita va a 0 se CK passa da 0 a 1
- d) l'uscita rimane sempre a 0

Quesito A.2

Nell'oscillatore a trigger di Schmitt, l'ampiezza picco-picco della tensione sul condensatore

- a) è pari alla tensione di alimentazione
- b) è pari alla distanza tra le due tensioni di soglia della porta a trigger di Schmitt
- c) è pari alla soglia più grande della porta a trigger di Schmitt
- d) è pari alla soglia più piccola della porta a trigger di Schmitt

Quesito A.3

Se tutte le resistenze di un convertitore D/A realizzato con rete a scala R-2R sono più piccole del 5% rispetto al valore nominale, la caratteristica di conversione presenta

a) un errore di offset

b) un errore di guadagno

c) una nonlinearità differenziale

d) una nonlinearità integrale

Quesito A.4

Un driver con resistenza di uscita Ro=Z_∞ pilota a livello alto una linea con impedenza caratteristica Z_∞ con terminazione *aperta* e tempo di propagazione t_p. Il transitorio si esaurisce sull'intera linea:

a) dopo tp

b) a tempo infinito

c) dopo 2 tp

d) dopo 3 t_p

Quesito A.5

In un raddrizzatore a doppia semionda, rispetto a quello a singola semionda:

- a) la tensione di uscita di ripple raddoppia
- b) la tensione di uscita in continua si dimezza
- c) la tensione di uscita in continua raddoppia d) la tensione di uscita di ripple si dimezza

Quesito A.6

Il rendimento di un regolatore lineare è circa:

a) Vout/Vin

b) 1

c) Vin/Vout

d) (Vin/Vout)²

Quesito A.7

Una porta logica CMOS pilota un carico di capacità C. Raddoppiando la capacità (2C), il ritardo di propagazione cambia come:

a) 2

b) 1/2

c) 1/4

d) 4

Quesito A.8

Una cella di memoria SRAM comprende:

a) Un floating gate MOS

b) Un MOS e una capacità

c) 6 MOS

d) un NMOS, un PMOS e due capacità

Quesito A.9

Se i costi non ricorrenti NRE per fabbricare un circuito integrato raddoppiano, per mantenere il costo per prodotto costante occorre *in generale*:

a) dimezzare il salario degli ingegneri

b) raddoppiare il prezzo di vendita di ogni chip

c) raddoppiare il numero di chip venduti

d) dimezzare il costo unitario del chip

Quesito A.10

Una FPGA usa solo Look-up-Table (LUT) a 4 ingressi per realizzare funzioni logiche combinatorie. Per realizzare O = A B C (D + E + F) occorrono

a) 5 LUT

b) 3 LU

c) 2 LUT

d) non si possono realizzare funzioni con 6 input

Parte -B - Problema B.1 (6 punti)

Un sistema di acquisizione a 4 canali usa un convertitore A/D a 8 bit a inseguimento con frequenza di clock 100 MHz e un circuito Sample & Hold con tempo di acquisizione 1 μ s. Per ogni canale si vuole avere una frequenza di campionamento Fs pari a 3 volte la frequenza massima Fmax del segnale e un filtro anti-aliasing a 8 poli.

Inserite ogni risposta numerica nel rettangolo corrispondente.

a) Tracciare uno schema a blocchi del sistema di conversione.
Solito schema
b) Determinare la frequenza massima per canale Fmax:
Tconv=256*10ns=2,56us
Fconv=1/(2,56+1us)=280KHz
Fs=280KHz/4=70KHz
Fmax= 70/3KHz=23.3KHz
c) Calcolare i rapporti segnale rumore di quantizzazione SNRq per segnali sinusoidali,
quello di aliasing SNRa e quello totale SNRtot
SNRq=1.76+6*Nb ~= 50dB
(Fs-Fb)/Fb=(70-23)/23=2
SNRa=6*8*log2(2)=48dB
SNRtot=20log(1/(10^(-48/20)+10^(-50/20)))=20log(1/(10^-2.4+10^-2.5))~=43dB

Parte-B – Problema B.2 (4 punti)

Un driver è collegato a una linea di trasmissione in figura. La linea è lunga 10cm, ha Z∞=75Ω e la velocità di propagazione è 0.7c. La resistenza di terminazione R_T è adattata.

Parametri:

Driver: Voh=3.0V; Vol=0V; Vcc=3.0V (Roh e Rol trascurabili)

Ricevitore: Vih=2V; Vil=0.5V

a) Considerate la sola transizione LH e determinate il massimo valore della resistenza serie Rs che garantisce di lavorare in Incident Wave Switching con un margine di rumore NM=0.5V:

NM=0,5V:

Va=3*Zinf/(Rs+Zinf)>=Vih+NM 3*75/(Rs+75)>=2+0.5V 225>=2.5(Rs+75) (225-2.5*75)/2.5>= Rs Rs <= 15 Ohm

b) La linea viene usata in un bus in cui si impiega un protocollo di trasmissione *asincrono*. Determinare la durata di un ciclo se il tempo di setup è 2 ns e il tempo di hold è 1 ns.

tp=10/(0.7*30)ns=0.48ns twr=tk+tsu+th+4*tp=0+2+1+4*0.48=4.92ns

Parte B - Problema B.3 (4 punti)

Si consideri il circuito mostrato in figura, dove le porte logiche hanno i seguenti parametri:

XOR: Tp=0,25 ns per HL e Tp=0,35 ns LH MUX: Tp=0,1 ns per entrambe le transizioni FF: Tckq=0,1 ns, Tsu=0,2 ns, Th = 0,15 ns

a) Calcolare la massima frequenza di cloc		equenza di clock	e indicare se sono presenti violazioni d			
	hold (Sì/No)		ı			

Cammino piu' lungo: A -> XOR->XOR->Co

Cammino piu' breve: A->MUX->S

Tmin=Tckq+Tlcmax+Tsu=0.1+0.35+0.35+0.2ns=1ns

Fmax = 1/Tmin=1GHz

Non c'e' violazione: cammino piu' corto=Tckq+Tmux=0.2ns>Th=0.15ns

b) Disegnare lo schema a transistori del multiplexer della figura sopra utilizzando transistori "pass gate"

Parte-B - Problema B.4 (3 punti)

Considerate una SRAM con 16 wordline, ognuna che pilota 16 celle. Supponete che ogni transistor abbia una capacità di gate di 0,5 fF e che la Ron dei transistor del decoder sia di 100 Ω

a)	Calcolate il massimo ritardo di attivazione delle celle (solo il ritardo dell'ultimo stadio del
	decoder):

Supponendo che ci sia un inverter dopo la NAND del decoder:

b) Disegnate lo schema del decoder di riga

tp=0.69*Ron*16*2*Cg=0.69*100*32*0.5fF=1.1ps

Tipicamente c'e' un inverter in uscita, per pilotare la word line (ma abbiamo considerato corretto anche questo circuito).

