Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Feature Spaces + Wide and Deep Networks

Lecture Agenda

- Logistics:
 - Grading Update
- · Agenda:
 - Finish Keras Demo
 - Wide and Deep Networks
 - Wide and Deep Town Hall (if time)

Class Overview, by topic

Last Time: Tensorflow and Keras

Keras Sequential API

great for simple, feed forward models

Keras Functional API

- build models through series of nested functions
- each "function" represents an operation in the NN

All (primary + auxiliary) ML software tools used by top-5 Kaggle teams in each competition (n=120)

Using Keras and Tensorflow

Keras FeatureSpaces

Demo

Setting up Feature Spaces

10a. Keras Wide and Deep as TFData.ipynb

Categorical Feature Embeddings Review

 One hot encoded data can be "embedded" through a matrix multiplication (column select)

Computationally: there is no need to one hot encode eye color, we can just use the integer to index into column of embedding matrix

Using Embeddings in Keras Review

Demo

Adding Embedding Branches

10a. Keras Wide and Deep as TFData.ipynb

Wide and Deep Networks

When p < 0.05

Wide and Deep

Wide & Deep Learning for Recommender Systems

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, Hemal Shah Google Inc.*

ABSTRACT

Generalized linear models with nonlinear feature transfor-

have never or rarely occurred in the past. Recommendations based on memorization are usually more topical and

Figure 1: The spectrum of Wide & Deep models.

linear model with feature transformations for generic recommender systems with sparse inputs.

 The implementation and evaluation of the Wide & Deep recommender system productionized on Google

Why wide and deep?

But why memorize?

Obvious!

- Categorical values have combinations that repeat!
 - so memorizing these values is not necessarily a bad strategy
 - let's make memorizing easy on one network

Wide networks (Memorize?)

- Wide refers to the expansion of features set
- Crossed feature columns of categorical features
 - Movie Rating

 - · PG
 - PG-13
 - R
 - Else

- Movie Genre
 - Action
 - Drama
 - Comedy
 - Horror
 - Else

Crossed feature values

- Crossed feature "Rating-Genre"
 - G-Action, G-Drama, G-Comedy, G-Horror, G-else
 - PG-Action, PG-Drama, PG-Comedy, PG-Horror, G-else
 - and so on ... one hot encoded

Deep Features: What we have already done!

- Deep refers to increasingly narrow hidden layers
- Essentially the same as what we already did!

- Movie Actors
 - Armand Assante
 - Meryl Streep
 - Danny Trejo
 - Kevin Bacon
 - Audrey Hepburn
 - •

•

Combining Memorization and Generalization

Wide and Deep

Adding Wide Branches

10a. Keras Wide and Deep as TFData.ipynb

Town Hall, Wide and Deep Networks

UHEN VISITING A NEW HOUSE, IT'S GOOD TO CHECK WHETHER THEY HAVE AN ALWAYS-ON DEVICE TRANSMITTING YOUR CONVERSATIONS SOMEWHERE.