

PROJET DE CLASSIFICATION DE SONDES MOLÉCULAIRES POUR LA DÉTECTION DE L'ARN IN SITU

Présenté par Matéo Meynier

Mai - Juillet 2020

Sous la tutelle de Charles Lecellier

Encadré par **Thérèse Commes**

OI INTRODUCTION

O2 ETAT DE L'ART

O3 CONCEPTION

04
RESULTATS

INTRODUCTION

INTRODUCTION

I. CONTEXTE

EQUIPE
IGMM/LIRMM/IMAG
Regulations Génomiques
Computationnelles

=> fournit les données biologiques (les sondes ADN dans mon cas) => m'encadre pour concevoir le modèle de classification

Single molecule fluorescence in-situ hybridization smFISH

Technique de biologie moléculaire et d'imagerie basée sur l'hybridation et la complémentarité des bases nucléiques.

Utilisation de multiples sondes (séquences d'ADN) marquées avec un fluorophore => lien avec leurs séquences complémentaires

Objectif : quantifier et localiser des molécules d'ARN cibles

INTRODUCTION

I. CONTEXTE

Alternative: smiFISH pour single molecule inexpensive FISH

- sondes primaires **non marquées**
- sondes secondaires marquées

Hybridation via la séquence FLAP

Source:

Tsanov N, Samacoits A, Chouaib R, et al. smiFISH and FISH-quant - a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Res. 2016;44(22):e165.

PROBLEMATIQUE

Variation de la qualité du signal émis par les sondes ADN

Classifier les sondes

Bruit de	Pas de	Signal
fond	signal	correct
0	1	2

Bruit de	Signal
fond	correct
0	1

INTRODUCTION

II. PROBLEMATIQUE & OBJECTIFS

OBJECTIFS

développer un **modèle d'apprentissage automatique** pour le problème de classification des sondes de smiFISH

Modèle : Réseau de neurones à convolution (CNN)

- extraire les caractéristiques que le modèle a découvert dans les séguences
- comparaison des caractéristiques extraites du CNN et celles de DExTER, modèle de régression logistique

I. RESEAU DE NEURONES

RESEAU DE NEURONES

NEURONE ARTIFICIEL OU PERCEPTRON

II. ENTRAINEMENT

Données d'entraînement

	gene	sig	
0	NFKBIA_0	1	TCCCATGGGCAGTATCGCTTTGA
1	NFKBIA_1	1	TCCCATGGGCAGTATCGCTTTG
2	NFKBIA_2	1	TCCCATGGGCAGTATCGCTTTG
3	NFKBIA_3	1	TCCCATGGGCAGTATCGCTTTG#
4	NFKBIA_4	1	TCCCATGGGCAGTATCGCTTTGA

96300	ZNF213-AS1_56	0	GTGCAGGGCACTTCCGCTGTAC
96301	ZNF213-AS1_57	0	${\tt GTGCAGGGCACTTCCGCTGTAC}^.$
96302	ZNF213-AS1_58	0	GTGCAGGGCACTTCCGCTGTAC
96303	ZNF213-AS1_59	0	GTGCAGGGCACTTCCGCTGTAC
96304	ZNF213-AS1_60	0	GTGCAGGGCACTTCCGCTGTAC

III. RESEAU DE NEURONES A CONVOLUTION

Opération de convolution

application d'un filtre pour détecter des caractéristiques

Opération de pooling

Réduire l'image tout en conservant les caractéristiques détectées

CONCEPTION

CONCEPTION

I. ARCHITECTURE DU CNN

CONCEPTION

II. DIVISION DES DONNÉES

RÉSULTATS

Données fournies au CNN

96 305 exemples

{nom du gène, signal, séquence}

Set d'entrainement :

76 062 seqs (~80%)

Set de test :

20 243 seqs (~20%)

RÉSULTATS

I. PREMIERS RÉSULTATS

RÉSULTATS I. PREMIERS RÉSULTATS

F1-score : moyenne de la spécificité d'un modèle et de sa sensibilité

Sensibilité : probabilité de bien détecter un exemple positif

Spécificité : probabilité de ne pas détecter un exemple négatif comme positif

Courbe ROC : mesure de la performance d'un classificateur binaire

True positive rate : fraction des positifs qui sont effectivement détectés False positive rate : fraction des négatifs qui sont incorrectement détectés Accuracy (classification_report): 0.9631898655313846

Signal0 f1-score (classification_report): 0.8810203054203726 Signal1 f1-score (classification_report): 0.9782268218530233

Méthode DEXTER

Domain Exploration To Explain gene Regulation

- Identifie des paires [k-mers,regions] où il existe une corrélation entre la classe du signal qualité et la fréquence du k-mer dans la région définie de chaque sonde
 - Ensemble des paires identifiées => permet la prédiction du signal
 - Basée sur une méthode de régression logistique

Conclusion:

Variables discriminantes au niveau des **barcodes** principalement et des **FLAPs**

RÉSULTATS

II. RÉSULTATS D'ÉLODIE SIMPHOR

Variables (séquences)	AA	AG	CTAC	GCT	GGC	GTAT	ТА	TAT	TGAG	TGAG
Position dans la séquence	1-10	0	10	0-20	10	12-100	0-12	91-100	71-110	91-110
Valeur du coefficient	-1,28	-0.56	-4.45	-0.90	-1.56	-34.12	-0.64	-1.64	-8.86	-11.23

Variables (séquences)	GA	GCTG	GGC	GTAT	TCC	тсс	TCCCT	TCT	TCTAG	TGT
Position dans la séquence	73-131	12	12-131	12-108	12	109- 131	12-120	0-12	97-131	1-12
Valeur du coefficient	-14.70	-2.73	-5.89	-58.43	-3.39	0.35	-25.73	1.48	-40.28	-4.25

Pour contrer le sur-apprentissage , découpage des données de sorte que le CNN soit testé sur des barcodes sur lequel il ne s'est pas entraîné

Or une paire de barcode (barcodes 1 et 2) est **spécifique** à un gène

=> **découpage** en fonction des **gènes** 80% des gènes pour le set d'entraînement 20% des gènes pour le set de test

RÉSULTATS

III. NOUVEAUX RÉSULTATS

Accuracy (classification_report): 0.7512539899680802

Signal0 f1-score (classification_report): 0.05541125541125541 Signal1 f1-score (classification_report): 0.856767756334515

Pour rééquilibrer les classes des signaux :

- enlever des données de classe 1 manuellement
- appliquer des poids aux classes via la fonction de coût
- utiliser l'échantillonneur
 WeightedRandomSampler pour
 augmenter virtuellement les
 données de classe 0

RÉSULTATS

IV. RÉÉQUILIBRAGE DES CLASSES

--- Résultats du set de test ---

Accuracy (classification_report): 0.5015178143473399

Signal0 f1-score (classification_report): 0.3807066296149266 Signal1 f1-score (classification_report): 0.5828877005347594

CONCLUSION

⇒ raison de l'échec du CNN : le **manque** de données et plus précisément de **barcodes**

Pour 90 000 séquences ⇒ **87 paires de barcodes différentes = pas assez d'exemples**

Or un réseau de neurones nécessite beaucoup de données pour s'entraîner et prédire correctement

Pour ma problématique, un modèle de régression logistique surpasse un modèle de réseau de neurones à convolution