Homework 2

Naman Mishra (22223)

20 August, 2024

Problem 1.

(1) Let Ω be a set and $A \subseteq \Omega$. Define a function $\mathbf{1}_A \colon \Omega \to \mathbb{R}$ as follows.

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A. \end{cases}$$

What is the smallest σ -algebra on Ω with respect to which $\mathbf{1}_A$ becomes a random variable?

- (2) Assume that $A \in \mathcal{F}$. Give an explicit description of the push-forward measure $\mathbf{P} \circ (\mathbf{1}_A)^{-1}$ on \mathbb{R} .
- (3) Define $T: \Omega \to \mathbb{R}^n$ by $T(\omega) = (\mathbf{1}_{A_1}(\omega), \dots, \mathbf{1}_{A_n}(\omega))$ where A_1, \dots, A_n are given subsets of Ω . What is the smallest σ -algebra on Ω such that T becomes a random variable?
- (4) Assume $A_1, A_2, \ldots, A_k \in \mathcal{F}$. Describe the push-forward measure $\mathbf{P} \circ T^{-1}$ on \mathbb{R}^n .

Solution.

(1) We need $\mathbf{1}_A^{-1}(B) \in \mathcal{F}$ for $B \in \mathcal{B}(\mathbb{R})$.

$$(\mathbf{1}_{A})^{-1}(B) = \begin{cases} \varnothing & \text{if } 0, 1 \notin B, \\ A & \text{if } 1 \in B, 0 \notin B, \\ A^{c} & \text{if } 0 \in B, 1 \notin B, \\ \Omega & \text{if } 0, 1 \in B. \end{cases}$$

Thus \mathcal{F} must contain \emptyset , A, A^c , Ω . $\mathcal{F} = \{\emptyset, A, A^c, \Omega\}$ is itself a σ -algebra, hence the smallest one that works. This is in fact the σ -algebra generated by $\{A\}$.

(2) Let $B \in \mathcal{B}(\mathbb{R})$. Then

$$(\mathbf{P} \circ (\mathbf{1}_{A})^{-1})(B) = \begin{cases} 0 & \text{if } 0, 1 \notin B, \\ \mathbf{P}(A) & \text{if } 1 \in B, 0 \notin B, \\ \mathbf{P}(A^{c}) & \text{if } 0 \in B, 1 \notin B, \\ 1 & \text{if } 0, 1 \in B. \end{cases}$$

(3) Since A_i is the inverse image of

$$\underbrace{\mathbb{R} \times \cdots \times \mathbb{R} \times}_{i-1} \{1\} \underbrace{\times \mathbb{R} \times \cdots \times \mathbb{R}}_{k-i-1},$$

we have that \mathcal{F} contains all A_i . Since \mathcal{F} is a σ -algebra, it must contain all countable unions and intersections of the A_i . Let $\mathcal{F} = \sigma\{A_i\}$.

 $T(\omega) \in \{0,1\}^k$ for all ω . Let $A^{(1)} = A$ and $A^{(0)} = A^c$ for any event A. Then

$$T^{-1}(B) = \bigcup_{v \in B \cap 2^k} \bigcap_{i=1}^n A_i^{(v_i)} \in \mathcal{F}$$

Thus the preimage of any Borel set is in \mathcal{F}

(4) For any $B \subseteq \mathbb{R}^n$,

$$T^{-1}(B) = \bigcup_{\substack{v \in B \cap 2^k \ i=1}} \bigcap_{i=1}^k A^{(v_i)}.$$

This is a disjoint union of sets in \mathcal{F} , so

$$(\mathbf{P} \circ T^{-1})(B) = \sum_{v \in B \cap 2^k} \mathbf{P} \left(\bigcap_{i=1}^k A^{(v_i)} \right).$$

Problem 2. Recall the Lévy metric d defined in class. Show the following.

(1) Let a_n be a sequence of real numbers converging to a. For any $x \in \mathbb{R}$, δ_x is the measure defined as follows: for $A \subseteq \mathbb{R}$,

$$\delta_x(A) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

Using the definition of the metric show that

$$d(\delta_{a_n}, \delta_a) \to 0 \text{ as } n \to \infty.$$

(2) Consider the sequence of measures $\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{i/n}$ and μ is the uniform measure on [0,1]. Using the definition show that

$$d(\mu_n, \mu) \to 0 \text{ as } n \to \infty.$$

Solution.

(1) The CDF of δ_x is $F_x(\omega) = [\omega \ge x]$. If $|x - y| = \varepsilon$, then $F_x(\omega + \varepsilon) = [\omega + \varepsilon \ge x] = [\omega \ge x - \varepsilon] \ge [\omega \ge y] = F_y(\omega)$ since $\omega \ge y \implies \omega \ge x - |x - y|$. Thus $d(\delta_x, \delta_y) \le |x - y|$. As $a_n \to a$, $d(\delta_{a_n}, \delta_a) \to 0$.

(2) The CDF of μ is F(x) = x for $x \in [0, 1]$. The CDF of μ_n is

$$F_n(x) = \frac{\lfloor nx \rfloor}{n}$$
 for $x \in [0, 1]$.

 $\lfloor nx \rfloor$ counts the number of points $i/n \leq x$, and each of those has weight 1/n.) We claim that $d(\mu_n, \mu) \leq 1/n$.

Let $x \in [0, 1]$. Then

$$F\left(x+\frac{1}{n}\right) + \frac{1}{n} = x + \frac{2}{n}$$

$$= \frac{nx+2}{n}$$

$$> \frac{\lfloor nx \rfloor}{n} = F_n(x).$$

and

$$F_n\left(x+\frac{1}{n}\right) + \frac{1}{n} = \frac{\lfloor n(x+1/n)\rfloor + 1}{n}$$

$$= \frac{\lfloor nx\rfloor + 2}{n}$$

$$> \frac{nx}{n}$$

$$= x = F(x).$$

Thus

$$\frac{1}{n} \in \{ \varepsilon > 0 : F_n(x + \varepsilon) + \varepsilon \ge F(x) \text{ and}$$
$$F(x + \varepsilon) + \varepsilon \ge F_n(x) \text{ for all } x \in [0, 1] \}$$

and so $d(\mu_n, \mu)$, which is the infimum of all such ε , is at most 1/n. It follows that $\lim_{n\to\infty} d(\mu_n, \mu) = 0$ by the squeeze theorem.

Problem 3. For $k \geq 0$, define the functions $r_k \colon [0,1) \to \mathbb{R}$ by writing $[0,1) = \bigsqcup_{0 \leq j < 2^k} I_j^{(k)}$ where $I_j^{(k)}$ is the dyadic interval $[j2^{-k}, (j+1)2^{-k})$ and setting

$$r_k(x) = \begin{cases} -1 & \text{if } x \in I_j^{(k)} \text{ for odd } j, \\ 1 & \text{if } x \in I_j^{(k)} \text{ for even } j. \end{cases}$$

Fix $n \ge 1$ and define $T_n: [0,1) \to \{-1,1\}^n$ by $T_n(x) = (r_0(x), \dots, r_{n-1}(x))$. Find the push-forward of the Lebesgue measure on [0,1) under T_n .

Solution.

Problem 4. If $T: \mathbb{R} \to \mathbb{R}$, show that T is Borel measurable if it is (1) continuous or (2) increasing.

Solution.

- (1) The preimage of any open set is open.
- (2) For any $x \in \mathbb{R}$, $T^{-1}(-\infty, x]$ is the set of all $y \in \mathbb{R}$ such that $T(y) \leq x$. Since T is increasing, $T(y) \leq x \implies T(y') \leq x$ for all $y' \leq y$. Thus $T^{-1}(-\infty,x]=(-\infty,y_0]$ or $(-\infty,y_0)$ for some $y_0\in\mathbb{R}$.

Problem 5 (Change of variable for densities). Let μ be a probability measure on \mathbb{R} with density f, by which we mean that its CDF $F_{\mu}(x) =$ $\int_{-\infty}^{x} f(t) dt$ (you may assume that f is continuous, non-negative and the Riemann integral $\int_{\mathbb{R}} f = 1$). Then, find the (density of the) push-forward measure of μ under

- (1) T(x) = x + a, (2) T(x) = bx,
- (3) T is any increasing and differentiable function.

Solution.

(1) The CDF of the push-forward measure is

$$F_{\mu T^{-1}}(x) = \mu(T^{-1}(-\infty, x])$$

$$= \mu(-\infty, x - a]$$

$$= F_{\mu}(x - a)$$

$$= \int_{-\infty}^{x - a} f(t) dt$$

$$= \int_{-\infty}^{x} f(t - a) dt.$$

Thus the density of the push-forward measure is $x \mapsto f(x-a)$.

(2)

$$F_{\mu T^{-1}}(x) = \mu(T^{-1}(-\infty, x])$$

$$= \mu(-\infty, x/b]$$

$$= F_{\mu}(x/b)$$

$$= \int_{-\infty}^{x/b} f(t) dt$$

$$= \int_{-\infty}^{x} \frac{1}{b} f(t/b) dt.$$

The density is $x \mapsto \frac{1}{b} f(x/b)$.

(3) Let $U(y) = \sup\{x \mid T(x) \leq y\}$. Since T is continuous and increasing, we have that if U(y) is finite, then T(U(y)) = x. We note that

$$T(x) \le y \iff x \le U(y),$$

so that

$$\mu T^{-1}(-\infty, y] = \mu(-\infty, U(y)].$$

If T is strictly increasing, then U(y) is continuous and the true inverse of T. If further T' > 0, then U is differentiable, and

$$\mu T^{-1}(-\infty, y] = \mu(-\infty, U(y))$$

$$= F_{\mu}(U(y))$$

$$= \int_{-\infty}^{U(y)} f(t) dt$$

$$= \int_{-\infty}^{y} f(U(y))U'(y) dy.$$

The density of the push-forward measure is $f \circ T^{-1} \cdot (T^{-1})'$.

$$f_{\mu T^{-1}}(y) = f(T^{-1}(y)) \cdot \frac{1}{T'(T^{-1}(y))}$$