Reasoning with FDs

Designing Schemas

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Kevin C.C. Chang, Professor Computer Science @ Illinois

Learning Objectives

By the end of this video, you will be able to:

- Describe why reasoning with FDs is useful.
- State Armstrong's Axioms and their derived rules.
- Determine if an FD holds based on a given set of FDs.

Why Do I Need to Reason?

- Recall the Favorites relation:
- How to know {drinker, bar} is a key?
- We are given
 - drinker, bar, beer → season
 - drinker, bar \rightarrow beer

Can we reason that

drinker, bar → drinker, beer, bar, season?

And {drinker} or {bar} does not.

If so, then we know {drinker, bar} is key!

Favorites(<u>drinker</u>, <u>bar</u>, beer, season)

Translating the Favorites relationship to a relation

Basic Rules: Armstrong's Axioms

- Reflexivity rule
 - If $B \subseteq A$, then $A \longrightarrow B$.

- Augmentation rule
 - If $A \longrightarrow B$, then $AC \longrightarrow BC$.

- Transitivity rule
 - If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$.

Deriving More Rules

- Splitting rule
 - If $A \longrightarrow BC$, then $A \longrightarrow B$, and $A \longrightarrow C$.
 - Derivation
 - $:: A \longrightarrow BC$ and $BC \longrightarrow B$ (by reflexivity)
 - $\therefore A \longrightarrow B$ (by transitivity)
 - Similarly for $A \rightarrow C$
- Combining rule
 - If $A \longrightarrow B$, and $A \longrightarrow C$, then $A \longrightarrow BC$.
 - Derivation
 - $:A \longrightarrow AB$ (by augmentation) and $AB \longrightarrow BC$ (by augmentation)
 - $: A \longrightarrow BC$ (by transitivity)

Reasoning: Is {drinker, bar} a Superkey?

- Suppose Favorites(drinker, bar, beer, season, price)
- Given:
 - drinker, bar, beer → season
 - drinker, bar \rightarrow beer
 - bar, beer → price
- Decide: Is {drinker, bar} a superkey?

- To determine, can we reason:
- Is drinker, bar → drinker, bar, beer, season, price an FD?
- If it is an FD, then YES.

Reasoning: *Is* drinker, bar → all an FD?

- 1. drinker, bar → drinker, bar (reflexivity)
- 2. drinker, bar \rightarrow beer (given)
- 3. drinker, bar \rightarrow season
 - drinker, bar → drinker, bar, beer (augmenting 2)
 - drinker, bar, beer → season (given)
 - drinker, bar → season (transitivity)
- 4. drinker, bar \rightarrow price
 - How to derive?

- Given:
 - drinker, bar, beer → season
 - drinker, bar → beer
 - bar, beer → price
- Decide: Is {drinker, bar} a Superkey?

• 5. drinker, bar → drinker, bar, beer, season, price (combining all above)