A Comparison of Scales in Pure SU(2) LGT

David A. Clarke

Florida State University

HEP Seminar, February 24, 2017

Outline

- 1. Motivation
- 2. Introduction
- 3. Meet the Scales
- 4. Scaling Analysis
- 5. Conclusion

- 1. Motivation
- 2. Introduction
- 3. Meet the Scales
- 4. Scaling Analysis
- 5. Conclusion

Lots of cool experiments

- ► Hadronic structure
- ► Hadron spectroscopy
- Studying confinement
- New physics searches
- ...and more

Lattice calculations are useful

- Lattice spacing provides a regularization of QFT
- Allows one to calculate non-perturbative quantities
- In principle arbitrary precision can be achieved provided enough computing power is available
- ► That can help guide experimental searches
- ► Can help confirm Standard Model with high precision, or otherwise hint at new physics

- 1. Motivation
- 2. Introduction
- 3. Meet the Scales
- 4. Scaling Analysis
- 5. Conclusion

Scale setting

- ► To reach the continuum limit, send the lattice spacing to zero (compared to a physical length)
- ▶ In the continuum limit, one can predict dimensionless mass ratios $c_k = m_k/m_0 \ (m_0^{-1} \ \text{can serve as a length scale})$
- \triangleright Choosing the reference m_0 is called scale setting
- Many challenging calculations rely on scales of previous work; in some cases inaccuracy of reference scale greatly influenced result
 - \blacktriangleright 2008 and subsequent 2010 HPQCD calculation of f_{Ds} [1, 2]
- ► Ideally, reference scale can be calculated with high precision using modest computational resources

Gauge symmetries and SU(2): A quick review

- ► Noether's Theorem: each continuous symmetry of the Lagrangian implies a conserved current
- ightharpoonup SU(N) group of $N \times N$ unitary matrices with determinant 1
 - ▶ $N^2 1$ generators
 - lacktriangle Corresponding to each generator \mathcal{T}^a is a gauge field A_μ^a
 - ► Particles associated with these fields are gauge bosons, but in SU(N) LGT we just call them "gluons"
- ▶ SU(2) has $2^2 1 = 3$ generators, the Pauli matrices σ^a
- The kinetic term

$$\mathcal{L}_G = -rac{1}{2g^2}\operatorname{Tr} F_{\mu
u}F^{\mu
u}$$

is invariant under local SU(2) transformations

Why pure SU(2)?

- ▶ When the Lagrangian has the SU(N) kinetic term and nothing else, we call the theory pure SU(N)
- ▶ SU(2) is a gauge group of the Standard Model
- Computationally simple compared to complex systems like QCD
 - Accessible to our resources
 - ▶ No fermions, which are challenging to put on the lattice
 - Comparatively short simulations provide large statistics
 - Allows one to study a wider range of lattice size and bare coupling combinations
- ► General insight discovered in pure SU(2) can perhaps be applied valuable for complex theories such as QCD

Pure SU(2) LGT

- Non-perturbative approach to QFT
- ▶ 4D space-time with Euclidean metric and periodic BCs
- ▶ Sites $x = (n_1, n_2, n_3, n_4)$ with n_4 in time direction
- ► Regularization through lattice spacing a
 - Finite volume $a^4 N_{\tau} N_s^3$
 - Ultraviolet cutoff $\sim a^{-1}$
 - ▶ Infrared cutoff $\sim (aN)^{-1}$
- ► Continuum limit $a \rightarrow 0$

Pure SU(2) LGT

- ▶ Link variables or "gluons" $U_{\mu} = e^{-aA_{\mu}(x)} \in SU(2)$ on links
- ▶ For a closed path C, the corresponding Wilson loop is Tr U(C)
 - ► Gauge invariant
 - ► Used to construct observables
 - ▶ Plaquette □ is the smallest Wilson loop

Pure SU(2) LGT

▶ Wilson action:

$$S_W = eta \sum_{\square} \left(1 - rac{1}{2} \operatorname{Re} \operatorname{Tr} U_{\square}
ight) pprox - rac{eta}{8} \sum_{x} \mathsf{a}^4 \operatorname{Tr} F_{\mu
u}(x) F_{\mu
u}(x)$$

- $\beta \equiv 4/g^2$
- ▶ In limit $a \rightarrow 0$ agrees with

$$S_G = -rac{1}{2g^2}\int d^4x \; {
m Tr}\, F_{\mu
u}F_{\mu
u}$$

- ► Equivalence with 4D statistical mechanics
 - $\star \beta \leftrightarrow$ "inverse temperature"
 - **\star** Physical temperature defined by $T \equiv 1/aN_{\tau}$
- ▶ As we will see, there are other possible energy definitions

Taking the continuum limit

- ► How does a approach 0?
 - Renormalization group equation

$$B(g) = a \frac{dg}{da} = -b_0 g^3 - b_1 g^5 + \mathcal{O}(g^7)$$

Solve the differential equation:

$$\begin{split} a\Lambda_L &= \exp\left(\int^g \frac{dg'}{B(g')}\right) \\ &= \exp\left(-\frac{1}{2b_0g^2}\right)(b_0g^2)^{-b_1/2b_0^2}\Big(1+\mathcal{O}(g^2)\Big) \\ &\equiv f_{as}(g^2)\Big(1+\mathcal{O}(g^2)\Big) \end{split}$$

- $ightharpoonup \Lambda_L$ integration constant, so this shows how $g \to 0$ drives $a \to 0$
- ▶ Hence $\beta \to \infty$ brings the system to its continuum limit

Scaling in LGT

► Lattice Λ-parameter

$$\Lambda_L = \lim_{g \to 0} \frac{1}{a} f_{as}(g^2)$$

- $ightharpoonup m_k = c_k \Lambda_L$ in continuum limit
- Ratios of masses scale as

$$rac{m_j}{m_i} = rac{c_j}{c_i} \Big[1 + \mathcal{O} ig(a^2 \Lambda_L^2 ig) \Big]; \quad ext{equivalently} \quad rac{L_i}{L_j} pprox r_{ij} + k_{ij} a^2 \Lambda_L^2$$

- $ightharpoonup \mathcal{O}(a^2\Lambda_L^2)$ deviations from constant ratios are scaling violations
- ▶ Want reference scale to depend at most weakly on a

SU(2) LGT simulations

- Calculate expected value of operator O
 - ▶ In QFT expectation values given by

$$\langle {\it O}
angle = rac{1}{{\cal Z}} \int {\cal D} \phi {\it O}[\phi] e^{-{\it S}[\phi]}, ~~ {\it Z} \equiv \int {\cal D} \phi e^{-{\it S}[\phi]}$$

• An estimator for $\langle O \rangle$ on the lattice is

$$\bar{O} = \frac{1}{N} \sum_{n=1}^{N} O_n$$

- ► Markov Chain Monte Carlo basic idea:
 - ► Create a time series of measurements of *O*, each of which is calculated using the configuration
 - ightharpoonup Configuration n+1 generated based on configuration n; usually sample from some distribution
 - Accept or reject new configuration with probability $e^{-\Delta S}$

SU(2) LGT simulations

- ▶ In practice, configurations n and n + 1 are highly correlated
- Solution:
 - ▶ Update the lattice multiple times between measurements, e.g. measurements on configurations n and n+5
 - ▶ Divide measurements into *N* blocks, called repetitions, and compute average over data in the block
 - ► These averages are effectively statistically independent
- Updating every link on the lattice is called a sweep
- ► Length scale A is more efficient than length scale B if A requires fewer *total* sweeps to achieve the same fractional error bar

QUESTION: Which reference scale is most efficient?

- 1. Motivation
- 2. Introduction
- 3. Meet the Scales
- 4. Scaling Analysis
- 5. Conclusion

Deconfining phase transition temperature

- Remember physical temperature is $T=1/aN_{\tau}$
- ▶ Deconfining phase transition at T_c in $N_s \to \infty$ limit
 - ▶ Polyakov loop susceptibility diverges at β_c
 - "glueballs" for $T < T_c$
 - "gluon plasma" for $T > T_c$
- ▶ On finite lattices, Polyakov loop susceptibility has maximum at the pseudocritical coupling $\beta_c(N_\tau, N_s)$
- ▶ Determine critical coupling constant $\beta_c(N_\tau)$ from $\beta_c(N_s, N_\tau)$ using three parameter fit

$$\beta_c(N_s, N_\tau) = \beta_c(N_\tau) + A N_s^{-B}$$

- ▶ Inverting the results defines the deconfining length scale $N_{\tau}(\beta)$
- ► Clear physical meaning, but computationally expensive

Table: Pseudocritical β values N_s : β_c . Error bars of β_c are in parentheses.

$N_{ au}=4$	$N_{ au}=6$	$N_{ au}=8$
08: 2.30859(53)	12: 2.43900(33)	16: 2.52960(90)
12: 2.30334(33)	18: 2.43096(43)	24: 2.51678(43)
16: 2.30161(30)	20: 2.42973(11)	32: 2.51296(20)
20: 2.30085(17)	24: 2.42873(35)	40: 2.51192(12)
24: 2.30060(16)	28: 2.427939(74)	44: 2.51150(11)
28: 2.30025(19)	30: 2.427690(87)	48: 2.51119(11)
32: 2.299754(99)	36: 2.427274(67)	52: 2.51130(11)
40: 2.299593(74)	44: 2.426827(67)	56: 2.511096(85)
48: 2.299452(83)	48: 2.426756(64)	64: 2.510635(83)
56: 2.299435(29)	56: 2.426605(62)	72: 2.510716(72)
	60: 2.426596(55)	80: 2.510517(79)
∞: 2.299188(61)	∞: 2.42636(52)	∞: 2.510363(71)
q = 0.56	q = 0.73	q = 0.14
$N_{\tau} = 4 \pm 0.00063$	$N_{ au}=6\pm0.0011$	$N_{ au}=8\pm0.0019$

Lots of simulations needed for each point!

Energy operators

► Time dependent plaquettes with parameterization

$$\langle \mathit{U}_{\square}(t) \rangle = \mathit{a}_{0}(t)\mathbf{1} + i\sum_{i=1}^{3} \mathit{a}_{i}(t)\sigma_{i}$$

- Multiple possible energy discretizations, must agree when $a \rightarrow 0$
- Examined three discretizations for this project:

 - ► $E_0(t) \equiv 2[1 a_0(t)]$ ► $E_1(t) \equiv \sum_{i=1}^{3} a_i(t)^2$
 - $ightharpoonup E_4(t) \equiv rac{1}{4} \sum_{i=1}^3 \left(a_i^{(1)} + a_i^{(2)} + a_i^{(3)} + a_i^{(4)}
 ight)^2$
 - ► E₄ suggested by Lüscher [3]

QUESTION: Is there any scaling advantage to using E_4 ?

Gradient flow

Lüscher's gradient flow equation [3]

$$\dot{V}_{\mu}(x,t) = -g^2 V_{\mu}(x,t) \partial_{x,\mu} S[V(t)]$$

- ▶ Flow time t and initial condition $V_{\mu}(x,t)|_{t=0} = U_{\mu}(x)$
- Gradient flow equation drives action down
- ▶ Given target value y, length scale $s(\beta) = \sqrt{t_v(\beta)}$ defined implicitly via equation

$$t^{2}\left\langle E_{t}\right
angle \left|_{t=t_{v}}=y\right|$$

- Requires no fits or extrapolations
- ▶ And at least 100 times more efficient than $N_{\tau}(\beta)$
- But no obvious physical meaning
- ▶ And some ambiguity in choosing y: $2 \times 3 = 6$ targets per scale

QUESTION: Does choosing one target over another result in seriously distinct scaling behavior?

Determination of gradient scale

Determination of target value

Table: Gradient length scales using energy operators E_0 , E_1 , E_4 and target values $y_0 = 0.0376$, $y_1 = 0.0370$, $y_4 = 0.0300$, respectively

β	Lattice	$L_1 = s_0$	$L_2 = s_1$	$L_3 = s_4$
2.3	16 ⁴	1.3593(28)	1.3589(27)	1.2756(75)
2.43	28 ⁴	2.1023(30)	2.0911(30)	1.9666(98)
2.51	28 ⁴	2.7590(73)	2.7428(73)	2.570(14)
2.574	40 ⁴	3.4103(72)	3.3896(71)	3.149(16)
2.62	40 ⁴	3.954(10)	3.9293(99)	3.672(19)
2.67	40 ⁴	4.622(17)	4.593(17)	4.297(24)
2.71	40 ⁴	5.199(22)	5.167(22)	4.817(27)
2.751	40 ⁴	5.909(34)	5.872(34)	5.457(41)
2.816	44 ⁴	7.092(48)	7.049(47)	6.530(54)
2.875	52 ⁴	8.510(64)	8.456(65)	7.883(68)

Each scale needs only one lattice, access large $\beta!$

Cooling flow

- ▶ Introduced by Berg [4] for *O*(3) topological charge and used by Bonati and D'Elia [5] for topological observables in SU(3)
- ► Iterative process
 - Instead of a differential equation, just replace link variable with one that locally minimizes action

$$V_{\mu}(x, n_c) = \frac{V_{\mu}^{\sqcup}(x, n_c - 1)}{|V_{\mu}^{\sqcup}(x, n_c - 1)|}$$

 $ightharpoonup n_c$ cooling sweeps corresponds to a gradient flow time [5]

$$t_c = n_c/3$$

▶ Length scale $x(\beta) = \sqrt{t_y(\beta)}$ defined implicitly like with the gradient flow

$$t^2 \langle E_t \rangle |_{t=t_v} = y$$

- ► Same advantages and disadvantages as the gradient flow
- ► And at least 34 times faster

QUESTION: Does the cooling flow experience significantly larger scaling violations than the gradient flow?

Table: Cooling length scales using energy operators E_0 , E_1 , E_4 and target values $y_0 = 0.044$, $y_1 = 0.043$, $y_4 = 0.035$, respectively

β	Lattice	$L_7 = x_0$	$L_8 = x_1$	$L_9 = x_4$
2.3	16 ⁴	1.3433(24)	1.3385(23)	1.2575(74)
2.43	28 ⁴	2.0892(28)	2.0707(28)	1.9446(95)
2.51	28 ⁴	2.7522(68)	2.7267(66)	2.548(15)
2.574	40 ⁴	3.4048(69)	3.3730(67)	3.137(17)
2.62	40 ⁴	3.9509(95)	3.9137(93)	3.645(22)
2.67	40 ⁴	4.618(17)	4.574(16)	4.298(26)
2.71	40 ⁴	5.203(21)	5.154(21)	4.794(28)
2.751	40 ⁴	5.913(32)	5.857(32)	5.434(40)
2.816	44 ⁴	7.105(45)	7.039(45)	6.511(55)
2.875	52 ⁴	8.514(60)	8.433(59)	7.825(68)

Must check its scaling behavior

- 1. Motivation
- 2. Introduction
- 3. Meet the Scales
- 4. Scaling Analysis
- 5. Conclusion

Scaling analysis

► Recall scaling behavior given by

$$R_{ij} \equiv \frac{L_i}{L_j} \approx r_{ij} + k_{ij}a^2\Lambda_L^2 = r_{ij} + c_{ij}\left(\frac{1}{L_j}\right)^2$$

- Collect all length scales from the project
 - $L_1 L_3$: gradient with first set of target values
 - $ightharpoonup L_4 L_6$: gradient with second set of target values
 - ▶ $L_7 L_9$: cooling with first set of target values
 - ▶ $L_{10} L_{12}$: cooling with second set of target values
- ▶ In the following we fix $L_i = L_{10}$ and plot

$$\frac{R_{i,10}}{r_{i,10}} = 1 + c'_{i,10} \left(\frac{1}{L_{10}}\right)^2$$

Closer look at lengths using E_0 and E_1

Closer look at lengths using E_4

- 1. Motivation
- 2. Introduction
- 3. Meet the Scales
- 4. Scaling Analysis
- 5. Conclusion

Conclusions

- Does choosing different target values for the gradient and cooling flows lead to seriously distinct scaling behavior?
 - ▶ Not if using physical input to guide initial scaling values
 - ► Can use the deconfinement scale
- ▶ Is there any scaling advantage to using E_4 ?
 - ► None were observed
 - Estimates from the same statistics have smaller error bars using E_0 or E_1 than with E_4
- ▶ Does the cooling length experience significant scaling violations compared to the deconfining and gradient scales?
 - ▶ No noticeable loss of accuracy using cooling flow
- ▶ Which scale is most efficient?
 - ► Gradient scale at least 100 times more efficient than deconfining
 - ► Cooling at least 34 times more efficient than gradient

Thank you!

References

- E. Follana *et al.*, "High-Precision Determination of the , K, D, and D s Decay Constants from Lattice QCD", Physical review letters, **100** 062002 (2008).
- C. T. H. Davies *et al.*, "Update: Precision D s decay constant from full lattice QCD using very fine lattices", Physical Review D, **82** (2010).
- M. Lscher, "Properties and uses of the Wilson flow in lattice QCD", Journal of High Energy Physics, **2010** 1 (2010).
- B. Berg, "Dislocations and topological background in the lattice O(3) sigma model", Physics Letters, **104B** 475 (1981).
- C. Bonati and M. D'Elia, "Comparison of the gradient flow with cooling in SU(3) pure gauge theory", Physical Review D, **89** 105005 (2014).

Backup slides

► Deconfining scale error bars

$$\Delta N_{\tau} = \frac{N_{\tau}}{L_{10}^{1,3}(\beta_c)} \left[L_{10}^{1,3}(\beta_c) + L_{10}^{1,3}(\beta_c - \Delta \beta_c) \right]$$

- ▶ Polyakov loop definition $P(\vec{x}) = \prod U_{\tau}(\vec{x})$
- ► Polyakov loop susceptibility

$$\chi(\beta) = \langle P^2 \rangle - \langle |P| \rangle^2$$
, where $P = \frac{1}{N_s^3} \sum_{\vec{x}} P(\vec{x})$

