

TFE4101

 ${\rm H} {\rm \emptyset st} \ 2015$

Løsningsforslag — Øving 2

Norges teknisk-naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon

1 Strøm- og spenningsdeling. (5 poeng)

- Sett opp formelen for strømdeling for i_{R1} i Figur 1.

Løsning:

$$i_{R1} = i_a \cdot \frac{R_2}{R_1 + R_2}$$

Figur 1: Krets 1

• Sett opp formelen for spenningsdeling for V_{R1} i Figur 2.

${\bf L} \emptyset {\bf sning:}$

$$V_{R1} = v_a \cdot \frac{R_1}{R_1 + R_2}$$

Figur 2: Krets 2

2 Nodespenning. (15 poeng)

Figur 3: Krets 3

I denne oppgaven brukes kretsen i Figur 3. Benytt følgende verdier: $i_a=2A,\,i_b=1A,\,R_1=10\Omega,\,R_2=5\Omega,\,R_3=20\Omega$

a) Finn spenningene v_1 og v_2 ved hjelp av nodespenningsmetoden.

Løsning:

Vi setter opp ligninger for nodene I (v_1) og II (v_2) . Bruker strøm ut av noden som positivt bidrag.

I:
$$-i_a + i_{R_1} + i_{R_2} = 0 \Rightarrow -i_a + \frac{v_1 - v_2}{R_1} + \frac{v_1}{R_2} = 0$$

II: $-i_b - i_{R_1} + i_{R_3} = 0 \Rightarrow -i_b + \frac{v_2 - v_1}{R_1} + \frac{v_2}{R_2} = 0$

Finner et uttrykk for v_2 fra ligning I og et uttrykk for v_1 fra ligning II. Setter så inn kjente verdier.

I:
$$v_2 = (\frac{V_1}{R_1} + \frac{V_1}{R_2} - i_a)R_1 = 3v_1 - 20V$$

II: $v_1 = (\frac{V_2}{R_1} + \frac{V_2}{R_3} - i_b)R_1 = \frac{3}{2}v_2 - 10V$
Setter I inn i II: $v_1 = \frac{3}{2}(3v_1 - 20V) - 10V = \frac{9}{2}v_1 - 30V - 10V$
 $\Rightarrow v_1 = \frac{2}{7} \cdot 40V = \frac{80}{7}V \approx \underbrace{\frac{11}{4}V}_{\text{Setter inn i uttrykket for } v_2$:

$$v_2 = 3 \cdot \frac{80}{7}V - 20V \approx \underbrace{14,3V}_{}$$

b) Finn strømmen gjennom R_1 , i_{R_1} . Finn også strømmen gjennom de andre to motstandene R_2 og R_3 .

Løsning:

$$i_{R_1} = \frac{v_1 - v_2}{R1} = \frac{\frac{80}{7}V - \frac{100}{7}V}{10\Omega} = \frac{-2}{7}A \approx \underline{-0,29A}$$

$$i_{R_2} = i_a - i_{R_1} = 2A - (\frac{-2}{7})A = \frac{16}{7}A \approx \underline{2,3A}$$

$$i_{R_3} = i_b + i_{R_1} = 1A + (\frac{-2}{7})A = \frac{5}{7}A \approx \underline{0,7A}$$

c) Finn bidraget til strømmen fra i_a i R_2 . Finn også bidraget fra i_a i R_1 og R_3 . Løsning:

Figur 4: Krets 3

Bruker superposisjon. Kobler ut strømkilden i_b , og får dermed bidraget fra i_a . Se Figur 4.

Vi har nå strømdeling mellom R_2 og seriekoblingen R_1 og R_3 .

$$v_{1} = i_{a}(R_{2} || (R_{1} + R_{3})) = i_{a} \frac{R_{2}(R_{1} + R_{2})}{R_{2} + R_{1} + R_{3}}$$

$$i_{R_{2}} = \frac{v_{1}}{R_{2}} = i_{a} \frac{R_{1} + R_{2}}{R_{1} + R_{2} + R_{3}}$$

$$\Rightarrow i_{R_{2}} = \frac{R_{1} + R_{3}}{R_{1} + R_{2} + R_{3}} i_{a} = \frac{10 + 20}{10 + 5 + 20} \cdot 2A = \frac{12}{7}A \approx \underbrace{1,7A}_{R_{1}}$$

$$i_{R_{1}} = i_{R_{3}} = i_{a} - i_{R_{2}} = (2 - \frac{12}{7})A = \frac{2}{7}A \approx \underbrace{0,3A}_{\underline{}}$$

3 Teorispørsmål. (20 poeng)

- a) Beskriv følgende med egne ord:
 - Metoden for å finne Thévenin ekvivalenten til en krets.

Løsning:

- 1. Bestem åpen-krets-spenningen v_t ved å måle spenningen uten last på terminalene.
- 2. Kortslutt utgangen for å finne maks strøm, og dermed den indre motstanden, Théveninmotstanden R_t , til kilden.
- 3. Théveninekvivalenten vil nå være en spenningskilde med spenningen v_t , med en seriemotstand R_t .
- Maks effektoverføring og hvordan det oppnås.

Løsning:

Prinsippet med maks effektoverføring innebører å få overført maksimal effekt av det kilden gir ut til lastmotstanden. Dette oppnås ved at lastmotstanden er lik kildens indre motstand. Vi har da impedansmatching.

• Superposisjonsprinsippet.

Løsning:

Superposisjonsprinsippet sier at enhver respons fra en lineær krets er lik summen av responser fra hver enkelt uavhengige kilde hvor de andre kildene er nøytralisert. Nøytralisering av en kilde innebærer åpen krets for strømkilder og kortsluttning for spenningskilder.

b) Gitt et praktisk tilfelle med en svart boks"med to terminaler. La oss si at boksen inneholder et litium-ion batteri, og dermed ikke tåler kortsluttning. Hvordan kan du da gå frem for å finne théveninmotstanden til den svarte boksen?

Løsning:

Vi må her være påpasselige med å ikke trekke mer strøm enn hva boksen tåler. For å finne Thévenin trenger vi å finne to ukjente, v_t og R_t . v_t finner vi enkelt ved å måle spenningen på boksen uten last. Ettersom vi ikke trekker noen strøm ut av boksen, vil R_t ikke ha spenningsfall og vi måler v_t direkte.

Deretter må vi koble på en last som er innenfor det boksen"vår tåler. Siden vi nå har belastet boksen, kan vi måle en strøm i_L og en spenning v_L , ved last. Avviket mellom v_t som vi målte først og v_L , målt med last, vil være den spenningen som ligger over Théveninmotstanden R_t . Vi har nå og strømmen, i_L , og kan da via Ohms lov beregne R_t .

4 Superposisjon. (10 poeng)

Figur 5: Krets 4

a) Bruk superposisjonsprinsippet til å beregne spenningen v_2 i Figur 5. Benytt følgende verdier: $v_a=20V,\,R_1=15\Omega,\,R_2=5\Omega,\,i_b=\frac{4}{3}A$

løsning:

Nuller først ut spenningskilden. Se Figur 6.

$$i_b = i_{R_1} + i_{R_2}, i_{R_1}R_1 = i_{R_2}R_2 \Rightarrow i_{R_1} = \frac{R_2}{R_1}i_{R_2}$$

 $\Rightarrow i_b = i_{R_2}(\frac{R_2}{R_1} + 1) = i_{R_2}\frac{R_1 + R_2}{R_1}$

Figur 6: Krets 4

 $\Rightarrow i_{R_2} = \frac{R_1}{R_1 + R_2} i_b = \frac{15}{15 + 5} \cdot \frac{4}{3} A = 1A, \text{ Dette er bidraget fra strømkilden } i_b.$

Figur 7: Krets 4

Nuller så ut strømkilden. Se Figur 7.

$$i_{R_2} = \frac{V_a}{R_1 + R_2} = \frac{20V}{20\Omega} = 1A, \text{ Dette er bidraget fra spenningskilden } V_a.$$
 Totalt før vi da: $i_{R_2} = 1A + 1A = 2A$
$$v_2 = i_{R_2}R_2 = 2A \cdot 5\Omega = \underline{10V}$$

b) Hvor mye effekt bidrar hver av de to kildene i kretsen i Figur 5 med? løsning:

Strømmen gjennom
$$V_a$$
 er lik den som går gjennom motstanden R_1 .
$$i_{V_a} = \frac{V_a - V_2}{R_1} = \frac{20V - 10V}{15\Omega} = \frac{2}{3}A$$

$$P_{V_a} = V_a i_{V_a} = 20V \cdot \frac{2}{3}A = \frac{40}{3}W \approx \underline{13,3W}$$

$$P_{i_b} = V_2 i_b = 10V \cdot \frac{4}{3}A = \frac{40}{3}W \approx 13,3W$$

5 Thévenin. (20 poeng)

a) Beregn Thévenin-ekvivalenten sett fra terminalene a-b i Figur 8.

løsning:

Vi finner først R_{Th} ved å nullstille spenningskilden, det vil si at spenningen settes til null, som blir det samme som en kortslutning. Uttrykket for R_{Th} blir da:

$$R_{Th} = R_1 \parallel R_2 \parallel R_3 = (\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3})^{-1} = (\frac{1}{20\Omega} + \frac{1}{20\Omega} + \frac{1}{30\Omega})^{-1} = 7,5\Omega$$

Thévenin-spenningen, V_{Th} kan finnes vha. spenningsdeling mellom motstand R_1 og motstand $R_2 \parallel R_3$:

og motstand
$$R_2 \parallel R_3$$
:
$$R_2 \parallel R_3 = \frac{R_2 R_3}{R_2 + R_3} = \frac{20\Omega \cdot 30\Omega}{20\Omega + 30\Omega} = 12\Omega$$

$$V_{Th} = \frac{12\Omega}{20\Omega + 12\Omega} \cdot 120V = 45V$$

$$V_{Th} = 45V, R_{Th} = 7, 5\Omega$$

alternativ løsning:

Kortslutter klemmene a og b, og beregner kortslutningstrømmen I_{SC} , V_{Th} blir beregnet som ovenfor.

$$I_{SC} = \frac{V_S}{R_1} = \frac{120V}{20\Omega} = 6A$$

$$V_{Th} = 45V$$

$$R_{Th} = \frac{V_{Th}}{I_{SC}} = \frac{45V}{6A} = 7,5\Omega$$

Figur 8: Théveninkrets

b) Beregn Thévenin-ekvivalenten sett fra terminalene til kretsen i Figur 9. (Hint: bruk nodespenningsmetoden for å beregne spenningen.) Benytt følgende verdier: $v_a=15V,\,R_1=6\Omega,\,R_2=20\Omega,\,R_3=5\Omega,\,R_4=30\Omega,\,R_5=20\Omega$

løsning

Vi finner først R_{Th} ved å nullstille alle kilder i kretsen. Vi får da utrykket:

Figur 9: Krets 5

$$R_{Th} = R_2 \parallel (R_1 \parallel R_4 + R_3) \parallel R_5 = \frac{1}{\frac{1}{R_2} + \frac{1}{\frac{R_1 R_4}{R_1 + R_4} + R_3} + \frac{1}{R_5}} = \frac{1}{\frac{1}{20\Omega} + \frac{1}{\frac{6\Omega 30\Omega}{6\Omega + 30\Omega} + 5\Omega}} + \frac{1}{20\Omega}$$

Benytter så nodespenningsmetoden for å finne $v_{\scriptscriptstyle Th}$ Se Figur 9.

$$i_1 + i_2 + i_3 = 0 \Rightarrow \frac{v_1 - v_a}{R_1} + \frac{v_1}{R_4} + \frac{v_1 - v_2}{R_3} = 0$$

Setter inn kjente verdier og løser med hensyn på v_1 :

$$\frac{1}{6\Omega}v_1 - \frac{1}{6\Omega}v_a + \frac{1}{30\Omega}v_1 + \frac{1}{5\Omega}v_1 - \frac{1}{5\Omega}v_2 = 0$$
$$v_1 = \frac{5}{12}v_a + \frac{1}{2}v_2$$

$$i_4 + i_5 + i_6 = 0 \Rightarrow \frac{v_2 - v_1}{R_3} + \frac{v_2}{R_5} + \frac{v_2 - v_a}{R_2} = 0$$

Setter inn kjente verdier og løser med hensyn på
$$v_2$$
:
$$\frac{1}{5\Omega}v_2 - \frac{1}{5\Omega}v_1 + \frac{1}{20\Omega}v_2 + \frac{1}{20\Omega}v_2 - \frac{1}{20\Omega}v_a = 0$$
$$v_2 = \frac{2}{3}v_1 + \frac{1}{6}v_a$$

Setter uttrykket for v_1 inn i utrykket for v_2 :

Setter uttrykket for
$$v_1$$
 inn i utrykket for v_2 :
$$v_2 = \frac{2}{3}(\frac{5}{12}v_a + \frac{1}{2}v_2) + \frac{1}{6}v_a \Rightarrow v_2 = \frac{2}{3}v_a = 10V$$

$$\underline{v_{Th} = v_2 = 10V}$$

6 Nodespenning og Avhengige kilder. (30 poeng)

a) Finn nodespenningene v_1 og v_2 til kretsen i Figur 10. Benytt følgende verdier: $v_c = 4V$, $i_a = 2A$, $i_b = -9A$, $R_1 = 15\Omega$, $R_2 = 2\Omega$, $R_3 = 4\Omega$. løsning:

Figur 10: Krets med supernode

Figur 11: Krets med supernode

Nodene v_1 og v_2 utgjør en supernode. Se Figur 11. Vi setter opp ligningen for supernoden:

$$-i_a + \frac{v_1}{R_2} + \frac{v_2}{R_3} - i_b = 0$$

Setter inn de oppgitte verdiene og får følgende formel:

$$v_2 = -28V - 2v_1$$

Figur 12: Krets med supernode

Vi trenger en ligning til og benytter KVL rundt den indre sløyfen. Se Figur 12. Dette gir oss følgende formel: $-v_1-v_c+v_2=0 \Rightarrow v_2=v_1+4V$ Vi har nå to ligninger med to ukjente. Finner så $v_1=\frac{-32}{3}V\approx -10,67V$ og

$$v_2 = \frac{-20}{3}V \approx -6,67V$$

b) Hvordan endres nodespenningene hvis R_1 byttes med 30Ω ?

løsning:

Ettersom R_1 står over en spenningskilde, vil spenningen over motstanden være bestemt av spenningskilden, og den vil således ikke påvirkes av endring i motstandsverdien. Nodespenningene v_1 og v_2 vil derfor forbli uforandret.

c) I kretsen i Figur 13 er spenningen v_2 en avhengig spenningskilde som avhenger av V_{R_2} . V_2 er 5 ganger så stor som V_{R_2} . Sett opp et uttrykk for V_{R_2} som funksjon av v_1 .

løsning:

Vi bruker KVL og får følgende uttrykk for kretsen.

$$-v_1 + (R_1 \cdot i) + (5 \cdot V_{R_2}) + (R_2 \cdot i) = 0$$

Utrykket for V_{R_2} finner vi med ohms lov: $V_{R_2} = i \cdot R_2$. Setter dette inn for V_{R_2} og finner et uttrykk for strømmen i.

$$-v_1 + (R_1 \cdot i) + 5 \cdot (R_2 \cdot i) + (R_2 \cdot i) = 0$$

$$(R_1 + 6R_2)i = v_1$$

$$i = \frac{c_1}{R_1 + 6R_2}$$

Setter tilsutt dette inn i uttrykket for V_{R_2} :

Figur 13: Krets med avhengig kilde

$$V_{R_2} = \frac{R_2}{R_1 + 6R_2} v_1$$