Zusammenfassung - Fertigungstechnik (Basis: Folien SS 2015)

Kapitel 1 - Grundlagen der Fertigungstechnik

- Fertigungstechnik:
 - o Teil der industriellen Produktionstechnik
 - o Wirtschaftliche Herstellung geometrisch bestimmter Werkstücke und Produkte
- Produktionstechnik:
 - Hervorbringung von Produkten durch Einsatz von Arbeitskräfte, Betriebsmitteln,
 Werkstoffen und Zuhilfenahme von Disposition, Planung und Organisation
- Verfahrenstechnik:
 - o Herstellung formloser Stoffe
- Energietechnik:
 - Primärenergieerschließung und –gewinnung, sowie deren Umwandlung, Transport und Verteilung

Zusammenspiel von Werkstoff-, Fertigungs- & Konstruktionstechnik

Kapitel 2 - Einteilung der Fertigungsverfahren

Schaffen der Form: Urformen

Ändern der Form: Umformen, Trennen, Fügen, Beschichten Ändern der Stoffeigenschaften: Stoffeigenschaften ändern

Kapitel 3 - Grundlagen der Zerspanung

Trennen:

• Zerspanungsprozess → Werkzeug, Maschine, Werkstück, Randbedingungen, Störgrößen, Einstellgrößen (Schnitttiefe, Vorschub, Schnittgeschwindigkeit, etc.)

Schneidengeometrie:

Großer Spanwinkel	Kleiner Spanwinkel
Höhere Zerspankräfte	Geringe Zerspankräfte
Schlechte Oberflächen	Bessere Oberflächen
Stabiler Schneidkeil	Längere Späne
Kurze Späne	Schwächerer Schneidkeil
Spanwinkel γ < 0°	Spanwinkel γ > 0°
h _{D1}	h_{D1} h_{D2} y γ h_{D2} y γ h_{D2} x

Spanformen:

- Bandspäne, Wirrspäne, Flachwendelstücke, lange zyl. Wändelspäne -> ungünstig
- Wendelspanspäne, Spiralspäne -> gut
- Spiralspanstücke, Bröckelspäne -> brauchba

Spanbildung:

- Fließspanbildung → Möglichkeit von Aufbauschneiden
- Aufbauschneiden:
 - o Ablagerung von Werkstoffpartikeln auf der Spanfläche und Schneidkante
 - o Auftreten bei kohlenstoffarmen Stählen, nichtrostenden Stählen & Aluminium
 - Ursachen: geringes T, vc, fz, y<0, schlechte Oberflächengüte
 - Wirkung: Veränderung Schneidengeometrie, höhere Schnittkräfte, verstärkter Verschleiß, verminderte Oberflächenqualität
 - Maßnahmen: Erhöhung der Schnittgeschwindigkeit, Einsatz beschichteter Schneidstoffe, glatte/polierte Spanflächen, Einsatz von Kühlschmierstoffen
- Ein Großteil der Prozesswärme (ca.75%) wird über den Span abgeführt

Schnitt- & Spanungsgrößen beim Drehen:

Berechnung der Schnittkraft F_c und spez. Schnittkraft f_c:

 F_c ist direkt proportional zur Spanungsbreite b_D und somit zu Spanungsquerschnitt A

Kienzle-Gleichung:
$$F_c = k_{c1.1} \cdot b_D \cdot h_0 \cdot \left(\frac{h_D}{h_0}\right)^{1-m}$$
 mit ho=1mm

Schnittenergie = Zerspanungsarbeit (mech. Energie) $F_{c} = \frac{E_{mech} + E_{thern}}{Schnittweg}$ Schnittleistung = Zerspanungsarbeit pro Zeit $P = \frac{E_{mech} + E_{thern}}{t}$; $P_{ges} = P_{c} + P_{f}$

Gesamtleistung vereinfachte mit Schnittleistung gleichzusetzen $P_{aes} \cong P_c = v_c \cdot F_c$

Kapitel 4 - Schneid- und Kühlschmierstoffe

Kapitel 4.1 Schneidstoffe

- kontinuierliche Entwicklung in den letzten 30 Jahren
- Schneidstoffauswahl beeinflusst das Verschleißverhalten des Werkzeuges und damit die Werkzeugwechselzeiten, Fertigungszeiten und Werkzeug-, Maschinen- & Lohnkosten
- Einflussgrößen: Werkstückwerkstoff, Schneidengeometrie, Verfahren, Qualitätsanforderungen, Kosten
- Einflussfaktoren: mechanisch (Zug, Druck, Schub, Biegung, Wechsellast), thermisch, chemisch (Diffusion, Adhäsion, Verzunderung, Korrosion)

Schneidstoff	Beispiel
(Performance aufsteigend)	
Werkzeugstähle	Kaltarbeitsstähle, HSS
Hartmetalle	WC-Co, WC-(Ti, Ta, Nb), Cermets
Schneidkeramiken	Oxidkeramik, Mischkeramik, whiskerverstärkte
	Keramiken, Siliziumnitritkeramik
Hochharte Schneidstoffe	CBN, CBN+ Hartstoffe, Diamant (mono-, polykristallin)

- Schnittgeschwindigkeiten steigen, Zähig- & Biegefestigkeit sinkt mit zunehmender Performance
- Hartmetalle
 - Eng verbunden mit Hartstoff, also Stoffe mit einer Härte über 100 HV
 - Cermets (,Ceramic' und ,metal') -> Untergruppe der Hartmetalle
 - Dichte von Stahl = 7,8 g/cm³; Dichte von Hartmetallen = 6-15 g/cm³
 - Einteilung: HW (konventionelles, unbeschichtetes HM auf Basis vin WC/Co), HC (beschichtetes HM), HAT (Cermets, konventionelles unbe. HM auf TiC/TiN Basis)
 - Fertigungskosten bei Nutzung von Hartmetall liegen über denen der Keramik
- Beschichtungen
 - Materialen: Titancarbid (TiC), Titancarbonitrid (TiCN), Titan-Aluminium-Nitirid (TiAIN), Titan-Zirkonium-Nitrid (TiZrN), Titan-Hafnium-Nitrid (TiHfN), Aluminium-Oxid (Al₂O₃), Chromnitrid (CrN), Hafniumcarbid (HfC), polykristalliner Diamant
 - o Grundkörper: Zähigkeit und Stoßbelastung
 - o Beschichtung: Beständigkeit gegen Abrasivverschleiß und chem. Einflüsse
- Keramiken
 - Nutzung überwiegend bei Gusseisen
- hochharte Schneidstoffe
 - Polykristalliner Diamant: + hohe chem. Beständigkeit, +hohe Verschleißfestigkeit, + hohe Warmfestigket, - Sprödigkeit, - Thermoschockempfindlichkeit

Kapitel 4.2 - Kühlschmierstoffe

- Alternativen: Minimalmengenschmierung (Sprühnebel), Feststoffschmierung (Schicht aus Graphit), Trockenbearbeitung (nichts)
- nichtwassermischbare (z.B. Mineralöle, Ester)
- wassermischbare
 - o Emulgierbare (z.B. Emulsionen)
 - Wasserlösliche (z.B. Lösungen)

Funktion / Typ	Nichtwassermischbar	Wassermischbar
Spänetransport	volumenstromabhängig	volumenstromabhängig
Schmierung	Sehr gut	Mittel
Kühlung	Mittel	Sehr gut
Alterungsbeständigkeit	Weitestgehend resistent	Empfindlich
Ausschleppung	Große Verluste, wegen hoher	Geringer Verluste, Wasserverlust
	Viskosität	durch Verdunstung

- Primäre Aufgaben: Kühlung von Werkstück und Werkzeug, Schmierung der Kontaktzone,
 Späneabtransport aus der Kontaktzone und Maschine
- Sekundäre Aufgaben: Qualitätsverbesserung der Werkstückoberfläche & Maßgenauigkeit, Korrosionsschutz für Werkstück & Maschine, Maschinentemperierung
- Kriterien zur Auswahl:
 - unternehmensspezifisch -> Philosophie, Personen-/Umweltschutz, betr.
 Voraussetzungen, Zeit-/Kostenfaktor
 - o fertigungsspez. -> Fertigungsprogramm (Einzel-, Serien-, Massenfertigung, Verfahren)
- Pflege: Überwachung (Feste Fremdstoffe, Wassergehalt, Fremdölanteil, Viskosität, etc.), mechanische-physikalische Pflege (Abtrennung fester Fremdstoffe, Fremdölabtrennung), chemische Pflege (Mischen, Konservieren, Wechseln, Belüften, Nachstellen)
- Magnetabscheider dient zur Abscheidung ferromagnetischer Partikel
 - 1. Kühlschmierstoff einleiten
 - o 2. Abscheiden an rotierender Magnetwalze
 - 3. Abstreifen am Abstreifblech
 - Vorteile: kaum Verschleiß, geringer Energieverbrauch, keine chem. Veränderung, Erhöhung der Standzeit des Kühlschmierstoffes
- Schleifschlammextraktionsanlage
 - Schleifschlamm wird in einem Korb gesammelt
 - Lösungsmittel löst Kühlschmierstoff aus dem Schlamm
 - o Gemisch aus Lösungsmittel und KS-Stoff in Destillationskammer
 - destillative Trennung
 - Lösungsmittel verdampft

Kapitel 5 – Trennen

Kapitel 5.1 – Spanen mit geometrisch bestimmter Schneide

definierte Schneidengeometrie, definierte Ausrichtung am Werkzeug, definierter Eingriff

Verschleiß:

"Verschleiß ist der fortschreitende Materialverlust aus der Oberfläche eines festen Körpers hervorgerufen durch mechanische Ursachen, d.h. Kontakt- & Relativbewegung eines festen, flüssigen oder gasförmigen Körpers."

Verschleißform: Risse -> therm. Belastung; Kantenverundung -> Abrieb

Ort	Verschleißformen	Verschleißursache/-mechanismus	Wirkstelle	Bemerkungen
Spanfläche	Kolkverschleiß	Mechanischer Abrieb, Diffusion, Oxidation (Verzunderung)		Schneidstoffabtrag bei Diffusion (HM 1000K) nach Abrieb durch chemischen Zerfall des Schneidstoffgefüges, vorwiegend bei HM Stoffabtrag bei Verzunderung durch Abrieb loser Oxidationsschichten
Spa	Kammrisse	thermische Wechselbelastung	- January	Thermische Wechselbelastung bei unterbrochenem Schnitt, tiefste Punkte der Risse im Innern der WSP
che	Freiflächen- verschleiß	mechanischer Abrieb, Abscheren von Pressschweißstellen,	∇	Abrasion – vorwiegend bei HSS, Schneidstoffabtrag durch gerade Riefen
Freifläche	Querrisse	mechanische Wechselbelastung		mechanische Wechselbelastung bei unterbrochenem Schnitt, tiefste Punkte der Risse im Inneren der WSP
kanten	plastische Deformation der Schneidkante	mechanischer und thermischer Überbeanspruchung	D	Schneide schmitzt und verformt sich aufgrund hoher Temperatur
Schneidkanten	Ausbrüche, Kerben,	mechanischer und thermischer Überbeanspruchung	9	

Zusammenhang Verschleiß und Standvermögen:

"Das Standvermögen ist die Fähigkeit eines Wirkpaares (Werkzeug und Werkstück) eine bestimmen Zerspanvorgang durchzustehen"

- Standzeit T_c: Zeit in Minuten, während der ein Werkzeug vom Anschnitt bis zum Unbrauchbarwerden aufgrund eines vergebenen Standzeitkriteriums unter gegebenen Zerspanbedingungen Zerspanarbeit leistet
- Verschleißstandzeiten-Drehversuch
 - Schnittgeschwindigkeit über Standzeit Diagramm
 - o Messen des Verschleißes auf der Frei- & Spanfläche nach versch. Schnittzeiten
 - o Aufstellung von Verschleißzeiten

Kapitel 5.1.1 - Drehen

Eingriffsverhältnis beim Längs-Runddrehen:

Bewegung und Schnittgrößen beim Drehen:

Verlauf von Schnittgeschwindigkeit und Drehzahl beim Plandrehen:

Kapitel 5.1.2 – Bohren

Einbohren (ins Volle), Aufbohren, Senken, Zentrierbohren, Kernbohren, Gewindebohren, Reiben

Kapitel 5.1.3 - Fräsen

Stirnplanfräsen, Umfangsplanfräsen, Umfangsstirnplanfräsen, Schraubfräsen, Walzfräsen, Profilfräsen, Formfräsen

Stirn- & Umfangsfräsen:

- f_Z Vorschub je Zahn
- a_n Schnitttiefe
- a_e Eingriffsgröße

Verbesserung der Werkstückqualität:

Mit <u>Spanabstreifer</u> 100%tige Beseitigung der Spanschläge Kein nennenswerter Anstieg der Schallbelastung

Walzfräsen:

Räumen:

Kapitel 5.2 – Spanen mit geometrisch unbestimmter Schneide

Regellos geformte Schneidenkörner, variierender Eingriff

bahngebunden -> Schleifen kraftgebunden -> Honen raumgebunden -> Läppen

Verfahrensvergleich:

- Feinfräsen / Hartfräsen
 Feindrehen / Hartdrehen
 □ Hochpräzisionshartdrehen
 □ Schleifen
 Läppen / Honen
 ® Schleifen auf Läppmaschinen
- Kurzhubhonen

Verschleißarten: Kornausbruch, Bindungsbruch; Kornbruch

Kapitel 5.2.1 - Schleifen

Schruppen -> Schlichten -> Ausfunken

- Verzahnungsschleifen:
 - im Bereich der Mittel- & Großserienfertigung durch kürzeste Schleifzeiten wirtschaftlich Vorteile, höhere Oberflächengüte verringert Kraftverlust in Betrieb und die Lebensdauer des Bauteils
- Konditionieren:

- Schleifprozessoptimierung: Versuchsaufbau -> Parameterermittlung -> Wärmeübertragungskoeffizient -> FEM-Simulation
- Schleifmittel auf Unterlage: Außenrundbearbeitung, Schleifen, Feinstbearbeitung, Polieren

Kapitel 5.2.2 - Honen

Außenrundhonen, Innenrundhonen

Probleme: kaltstatische Verzüge, quasistatische Warmverzüge Abhilfe: Formhonen -> Einbringung einer Antiverzugsgeometrie

Kapitel 5.2.3 - Läppen

- Eingangsgrößen: Maschine, Werkstück, Werkzeug, Randbedingungen
- Prozess: Polierprozess -> Prozesskenngrößen
- Ausgangsgrößen: Werkstückqualität, Wirtschaftlichkeit

Planparallelläppen: Verbesserung von Ebenheit, Rauheit und Parallelität von Werkstückoberflächen

- 1.) Planläppen der ersten Oberfläche mit elastischer Zwischenlage
- 2.) Planläppen der zweiten Oberfläche ohne elastische Zwischenlage

Kapitel 5.2.4 - Feinschleifen (Fine Grinder)

Im Vergleich zum konventionellen Läppen:

Höhere Schnittgeschwindigkeiten, höhere Zerspanraten, geringere Bearbeitunszeiten.
 Geringere Umweltbelastung, bessere Automatisierbarkeit, höhere Ebenheits- &
 Parallelitätswerte, bessere Rauheitswerte, Abrichten (Planhalten) der Arbeitsscheibe problematischer

Kapitel 6 - Urformen

Kapitel 6.1 - Gießen

Flüssiger, breiiger oder pastenförmiger Zustand Immer das erste Verarbeitungsverfahren nach der Gewinnung eines metallischen Werkstoffs

• Vorteile:

- o Herstellung kompliziertester Geometrien möglich
- o Endkonturnahe Fertigung
- o Alle technisch bedeutenden Werkstoffe sind gießbar
- o Werkstoffvielfalt ermöglicht anwendungsoptimierte Eigenschften
- o 100% Recycling möglich

• Nach Art der Formverfahren:

Dauermodell und verlorene Form (z.B. Sandguss)

Verlorenes Modell und verlorene Form (Fein-, Vollformguss)

o Dauerform ohne Modelle (z.B. Druck-, Kokillen-, Schleuder-, Strangguss

Kaltkammerdruckgussmaschine

Warmkammerdruckgussmaschine

Niederdruckkokillenguss

Schleuderguss

Strangguss

Nach Art der Formfüllung:

- o Statisches Gießen (Schwerkraft- und Niederdruckgießen)
 - -> verlorene Form, Dauerform
 - -> Sandgießen, Kokillengießen, Feingießen
- Dynamisches Gießen
 - -> Dauerform
 - -> Bewegung der Form (Schleudergießen, Sturzgießen)
 - -> Bewegung des Gießmaterials (Druckgießen)

Kapitel 6.2 - Pulvermetallurgie

Fester, körniger oder pulverförmiger Zustand Pulver -> Mischen -> Pressen -> Sintern -> Kalibrieren

- Grünling/Grünkörper:
 - o Entstehung im Prozessschritt Pressen
 - Formgebung "near-to-the-shape"
 - o durch Grünfestigkeit bedarf es keiner äußeren Hülle für die Weiterverarbeitung

Bräunling/Weißling:

- o Einsatz von Pulverspritzguss anstatt Pressen (Bindemittel erforderlich)
- o Entbinderung des Grünteils nach der Formgebung
- Entbindertes Bauteil:
 Braunteil (metallisches Pulver) oder Weißling (keramisches Pulver)

Pulverherstellung:

 chemische, elektrochemische oder Zerkleinerungsverfahren (aus fest oder flüssigen Zustand)

Pulvercharakterisierung:

- metallisch -> Zusammensetzung, Gefüge, Mikrohärte)
- geometrisch -> Korngrößenverteilung, äußere Kornform, innerer Kornstruktur)
- mechanisch -> Fließzeit, Schüttdichte, Verpressbarkeit, Grünfestigkeit, Rückfederung

Mischen/Legieren:

o Fertiglegieren, Mischlegieren, Diffusionslegieren

Sintern:

Zone 1: Schmiermittel abbrennen Zone 2: Sintern Zone 3: Wiederaufkohlen Zone 4: Abkühlen

- Einflussfaktoren auf die Diffusion: Temperatur, Zeit, Legierungszusammensetzung
- o Diffusionsmechanismen: Volumen- V, Oberflächen- s, Korngrenzendiffusion b

• Kalibrieren:

- Abmessungen des Formteils reduziert oder vergrößert, indem das Teil in der Matrize hinein oder über einen Kernstift gezwungen wird
- Härte der zu kalibrierenden Teile nach dem Sinter bzw. Vorsintern <180 HV
- o Verschiedene Oberflächen der Formteile nacheinander kalibrieren
- o Äußere vor inneren Konturen kalibrieren, um Risse zu vermeiden

Kapitel 7 - Umformen

Ändern der Form eines festen Körpers unter Beibehaltung des Stoffzusammenhalts und der Massen bzw. des Volumens

- Einteilung der Verfahren:
 - Spannungszustand
 - > Druckumformen -> Schmieden
 - Zugumformen -> Tiefziehen
 - Zugdruckumformen -> Streckziehen
 - ➤ Biegeumformen -> gradlinige Werkzeugbewegung
 - Schubumformen -> Verschieben
 - Einsatztemperatur
 - ➤ Kaltumformung -> 20°C
 - ➤ Halbwarmumformung -> 720-950°C
 - ➤ Warmumformung -> 1200°C (Oberhalb Rekristallisationstemperatur T_R)
 - Halbzeug
 - Massivumformung
 - Blechumformung
 - Stationäre/instationäre Umformprozesse
- plastischer Bereich ist relevant für die Umformung

• Einflüsse auf die Fließspannung

• Gesenkschmieden: Werkstückform durch das Werkzeug (Negativform) vorgegeben

Schmieden ohne Grat:

- starker Kraftanstieg beim vollständigen Schließen des Werkzeugs
- vollständige Werkstoffausnutzung
- max. zulässige Volumenschwankungen 0,5 %
- · genaue Werkstückpositionierung erforderlich

Schmieden mit Grat:

- geringe Anforderungen an
 Werkstückvolumenschwankungen
- keine präzise Werkstückpositionierung erforderlich
- Entfernung des Grates erfordert zusätzlichen Prozessschritt

Walzen:

- Ringwalzen: partielles Umformen von Ringen. Ausgangsstück ist eine geschmiedete gelochte Scheibe
- Verzahnungswalzen: kurze Prozesszeiten, keine Späne, Kaltverfestigung führt zu Festigkeitssteigerung, spiegelblanke Oberfläche, konturangepasster Faserverlauf
- **Fließpressen:** Massivumformverfahren, bei dem das Umformen eines Rohteils in einer Pressbüchse durch drücken erfolgt

• Strangpressen: es entstehen reine Druckkräfte die in allen drei Belastungsrichtungen wirken

• Tiefziehen:

 Tiefziehfehler: Zipfelbildung (ebene Anisotropie), außermittige Rondenlage (Bedienerfehler), Bodenreißer (Überschreitung Zugfestigkeit), Lippenbildung (erhöhte Kaltverfestigung im Randbereich)

• **Streckziehen:** Rohling wird an zwei gegenüberliegenden Seiten fest eingeklemmt und durch einen Ziehstempel zum fertigen Bauteil ausgeformt. Es entstehen nur Zugspannungen

- Presshärten: Umformung und gleichzeitige Wärmebehandlung von Blechbauteilen
 - Festigkeitssteigerung, bauteilangepasste Eigenschaften, hohe Umformgrade bei hoher Festigkeit

- Kaltumformung: Blechzuschnitt -> Formzuschnitt -> mehrstufige Umformung -> Fertigteil
- Warmumformung: Formzuschnitt -> Durchlaufofen -> Formhärten -> Laserbeschnitt -> Fertig
- Biegen (nur gestreckte Zone) und Streckziehen (gestreckte sowie gestauchte Zone)
 - Rückfederung: Eigenspannungen im Bauteil, Eigenspannung ist werkstoffabhängig, Fließverhalten bei Belastungsumkehr abhängig von der Verformungsgeschic
 - o Versagensmöglichkeiten: Einschnüren mit Riss, Sprödbruch, Risse nähe Spannzangen
- Drücken: geringe Werkzeugkosten, Entstehung von Zug- und Druckspannungen

- o Fertigungsfehler: radiale Risse, Faltenbildung, tangentiale Risse
- Gesenkbiegen: Biegeverfahren, die mit einer gradlinigen Werkzeugbewegung verfahren

Kapitel 8 - Stoffeigenschaften ändern

Das Fertigen durch Eigenschaftenänderung z.B. mithilfe von Erzeugung und Bewegung von Versetzungen im Kristallgitter, Diffusion von Atomen oder chemischen Reaktionen mit Wirkmedien

- Wärmebehandeln: Glühen, Härten, Anlassen/Auslagern, Vergüten
- Thermochemisches behandeln: Austenitformhärten, heißisostatisches Nachverdichten
- Sonstige: Sintern, photochemische Verfahren

Kapitel 8.1 - Behandlung durch Wärme

- 1.) Erwärmen: Die Temperatur der Randschicht eilt vor. Nach Anwärmzeit t_{an} ist die Halttemperatur erreicht, der Kern braucht dazu noch die Durchwärmzeit t_{d} Bis dahin ist die Erwärmzeit t_{e} verstrichen
- 2.) Halten: Wärmezeit mit konstanter Temperatur. Spannungen und Gefügeunterschiede gleichen sich aus
- 3.) Abkühlen: Abkühlzeit tab je nach Verfahren kürzer (Härten) oder länger (Glühen)

Ziele der Wärmebehandlung:

- Verringerung oder Erhöhung der Festigkeit (z.B. Härten, Normalisieren, Weichgl.)
- o Beseitigung oder Verringerung von Seigerungen (z.B. Diffusionsglühen)
- o Erzeugen bestimmter Gefügezustände (z.B. Normalisieren, Härten, Weichglühen)
- o Ändern der Korngröße (z.B. Normalisieren, Rekristallisationsglühen, Grobkorngl.)
- o Beseitigen von Eigenspannungen (z.B. Spannungsarmglühen)
- o Beseitigen der Auswirkung der Kaltverformung (z.B. Rekristallisationsglühen, Norm.)
- Verbesserung der spangebenden Bearbeitbarkeit (z.B. Weichglühen, Grobkornglühen)

Verfahren	Ablauf	Ziel
Normalglühen	Austenitisieren und abschließendes Abkühlen an ruhender Luft	Herstellung eines feinkörnigen Gefüges
Grobkornglühen	Halten auf höherem Temperaturen im Austenitbereich	Erzeugung von Grobkorn mit Versprödung des Stahls, Verbesserung der Spanbarkeit
Weichglühen	Glühen dicht unter Ac ₁	Vermindern der Härte auf einen vorgegebene Wert
Spannungsarmglühen	Langsames Erwärmen auf 550°C bis 650°C, bis zu 4 h halten und langsames Abkühlen	Eigenspannungen verringern
Diffusionsglühen	Langzeitiges Glühen bei 1000° bis 1300°C, langsames Abkühlen	Ausgleich von Kenzentrations- unterschieden im Gefüge
Rekristallisationsglühen	Glühen dicht oberhalb der Rekristallisationstemperatur (Tabellenwert)	Durch Kaltumformung eingebrachte Kaltverfestigung wieder rückgängig machen

- Härten und Vergüten: Werkstoff erhält Eigenschaftenkombination Härte-Zähigkeit
- Oberflächenhärtung:
 - Verfestigung durch Umformen (Verfestigungswalzen, Verfestigungsstrahlen)
 - Wärmebehandlung:
 - Randschichthärten (Flamm-, Induktions-, Laser-, Umschmelzhärten
 - Einsatzhärten
 - Nitrieren
 - Borieren, Chromieren, Aluminieren

Kapitel 8.2 – Thermomechanische Verfahren

Verfahren der Umformung werden unmittelbar mit der Wärmebehandlung verknüpft

Verfahren	Ablauf	Ziel
Austenitformhärten	Sofortige Umformung unterhalb der Rekristallisationstemperatur	Äußerst feinkörniges Martensitgefüge, höhere Festigkeit und Zähigkeit
Formhärten(Presshärten)	Nach Austenitisierung unter Schutzgas bei >950°C wird im wassergekühlten Werkzeug umgeformt und auf 100°c bis 200°C abgekühlt	sehr hohe Festigkeit, besonders für dünnwandige Verstärkerteile für Karosserien

Kapitel 9 - Beschichten

Fertigen durch das Aufbringen einer festhaftenden Schicht aus formlosen Stoff auf ein Werkstück

Wirtschaftlichkeit -> Lebensdauer Dekoration -> Optik Funktion -> Gebrauchseigenschaften

Kapitel 9.1 - PVD (Physical Vapour Deposition)

- Physikalisches Abscheiden von Atomen oder Molekülen aus der Gasphase
- Schichtdicke von <1nm bis >1nm
- Verfahren: Vakuumaufdampfen, Aufstäuben (Aufsputtern), Ionenplattieren
- Beschichtbare Werkstoffe: Glas, Metalle, Keramiken, Kunststoffe
- Werkstoffe zum Beschichten: Legierungen, Metalle, Carbide, Oxide, Nitride, Andere

• Vakuumaufdampfen:

- Metalle oder Verbindungen werden im Vakuum durch Erhitzen verdampft (bis 1400°C)
- Mittlere freie Weglänge der verdampften Moleküle ist so groß, dass diese direkt zum Werkstück (Substrat) gelangen
- o Verdampfte Moleküle kondensieren auf kaltem Werkstück zur Aufdampfschicht
- Charakteristik: hohe Abscheiderate, Haftfestigkeit gering, schlechte Streufähigkeit, Vakuum 10⁻³ bis 10⁻⁸ Pa (Hochvakuum)

• Aufstäuben (Aufsputtern)

- Anlegen einer Hochspannung zwischen Werkstück (Anode) und Beschichtungsmaterial/Target (Kathode)
- Elektrisches Feld erzeugt in Argon-Atmosphäre ein Plasma mit Ar⁺-Ionen und bescheunigt diese auf das Beschichtungsmaterial
- o Impuls stäubt atomar Beschichtungsmaterial ab
- Moleküle des Beschichtungsmaterial schlagen sich als Aufstäubeschicht auf das Werkstück nieder

• Ionenplattieren

- Kombination aus Abstäuben des Werkstücks zur Reinigung und Verdampfung von Beschichtungsmaterial zum Schichtabscheiden
- Anlegen einer Hochspannung zwischen Werkstück (Kathode) und Verdampfungsquelle (Anode)
- Elektrisches Feld erzeugt Argon-Atmosphäre Plasma mit Ar⁺ und beschleunigt sie auf das Werkstück
- Durch den Impuls werden Fremdschichten abgestäubt, die Werkstückoberfläche wird gereinigt und aktiviert
- o Gleichzeitig wird Beschichtungsmaterial durch Erhitzung verdampft
- o Verdampfte Moleküle kondensieren auf kaltem Werkstück zur Ionenplattierschicht
- Charakteristik: hohe Abscheideraten, sehr gute Haftfestigkeit, mittlere Streufähigkeit, Vakuum 0,1 bis 1Pa (Hochvakuum)

Kapitel 9.2 – CVD (Chemical Vapour Deposition)

- Abzuscheidender Stoff liegt in gasförmiger Form vor
- Schichtdicke 0,1 bis 20μm
- Verfahren: CVD (heißdraht- oder flammaktiviert), Plasma-CVD
- Beschichtbare Werkstoffe: Glas, Metalle, Keramiken, Nicht-Metalle, organische Fasern, Kohlefaser
- Schichten: Oxide, Bor/ Boride, Nitride, Metalle, Silizium und Silicide, Kohlenstoff und Carbide
- Diamantabscheidung mittels heißdrahtaktivierter CVD:

Kapitel 9.3 - Lackieren

- Abzuscheidender Stoff liegt in flüssiger Form vor
- Lack = Filmbildner, Farbmittel, Hilfsstoff, Lösemittel
- Einteilung der Lacksysteme nach Zusammensetzung oder Beschaffenheit oder Auftragsverfahren oder Filmbildung, Glanzgrad, Effekt, Anwendung, zu beschichtendem Objekt,...

Kapitel 9.4 – Kathodische Tauchlackierung (KTL)

• Gleichmäßige Schichtdicken von komplex geformten Objekten -> sehr guter Umgriff

Kapitel 9.5 – Thermisches Spritzen

- Unterteilung nach Art der Spritzzusatzwerkstoffes, der Fertigung oder des Energieträgers
- Erzeugung der Spritzschicht durch thermische und kinetische Energie
- Kriterien einer Spritzschicht: Dichte der Schicht, Haftzugfestigkeit in sich und zum Substrat

Spannung
Pulver & Trägergas

→ Trägergas: Ethen oder Propan
Spannung
Spannung
Spannung
Spannung
Schicht
Flasma Gas
Flasmaspritzen

Plasmaspritzen

Plasmaspritzen

Drahtführung
Spannung
Schicht
Druckluft
Druckluft
Druckluft
Drahtführung

Plasmaspritzen (APS, PTWA)
→ Trägergas: Argon oder Wasserstoff

Lichtbogendrahtspritzen (LDS)

→ Trägergas: Luft

Kapitel 9.6 - Vergleich von Beschichtungstechnologien

Kapitel 9.7 - Spray-Bore-Beschichten und Honen von Zylinderbohrungen

Feinbohren -> Wasserstrahl-Oberflächenbehandlung -> therm. Spritzen -> Schrupp- & Fertighonen

Kapitel 10 - Fügen

Kapitel 10.1 - Definition, Einteilung der Fügeverfahren

Fügen ist das auf Dauer ausgelegtes Verbinden oder sonstige Zusammenbringen von zwei oder mehr Werkstücken geometrisch bestimmter Form oder von eben solchen Werkstücken mit formlosen Stoff

Kapitel 10.2 - Fügeverfahren

Durchsetzfügen (Clinchen)

- 1) Stempel
- 2) Matrize
- 3) Niederhalter
- 4) Auswerfer

Stanznieten

- 1) Niederhalter
- 2) Stempel
- 3) Stanzniet
- 4) Bauteil
- 5) Matrize

Laserschweißen

Wärmeleitungsschweißen Tiefschweißen

- 1 Plasmawolke
- 2 Schmelze
- 3 Dampfkanal
- 4 Schweißtiefe

Vorteile:

- Kein Werkzeugverschleiß -> berührungslose Bearbeitung
- Unterschiedliche Materialien und Stärken schweißbar
- hohe Automatisierbarkeit
- Hohe Verfahrens- und Geometrieflexibilität
- geringe thermische Werkstoffbeeinflussung

MIG Schweißen (Metall-Inert-Gas)

- Metalldraht wird durch Schweißpistole geführt und in einem Lichtbogengeschmolzen
- Schweißdraht = stromführende Elektrode und einzubringendes Schweißgut
- Ein durch die Gasdüse fließendes Schutzgas schützt den Lichtbogen und das Schmelzgut

Löten

- Stoffschlüssiges Fügen und Beschichten von Werkstoffen mit Hilfe eines geschmolzenen Zusatzmetalls -> Lot
- Schmelztemperatur des Lotes liegt unterhalb der Schmelztemperatur der zu verbindenden Werkstoffe
- Das Lot benetzt den Grundwerkstoff, durch Diffusion erfolgt eine Legierungsbildung in der Werkstoffrandzone

Lötverfahren und Arbeitstempertur		
Weichlöten	Hartlöten	Hochtemperaturlöten
Unter 450°C Mit Flussmittel	Über 450°C Mit Flussmittel, unter Schutzgas oder im ∀akuum	Über 900°C Unter Schutzgas oder im ∀akuum

Kleben

- Stoffschlüssiges Fügen mittels eines Klebstoffs (nicht-metallisch)
- Adhäsion und Kohäsion

Kapitel 11 – Generative Fertigung

Kapitel 11.1 - Grundlagen

Additive Verfahren	Subtraktive Verfahren
Schichtweiser Aufbau	Trennverfahren
Keine Späne	Späne in der Zerspanung
Keine Kühlschmierstoffe	Kühlschmierstoffe

Begrifflichkeiten

- Rapid Prototyping:
 - Herstellung von Konzept- oder Design-, Geometrie- und Funktionsmodellen, die insbesondere hinsichtlich des Materials und der Oberflächenqualität nicht einem Endprodukt entsprechen
- Rapid Tooling
 - o Herstellung von Vorrichtungen, Werkzeugen und Formen
- Rapid Manufacturing

- Herstellung von einzelnen kundenspezifischen Endprodukten in Einzel- oder Kleinstserien
- Additive Manufacturing
 - o Herstellung von Serienprodukten

Modellarten:

- Anschauungsmodelle
 - geometrische Überprüfung des Entwurfs
 - Überprüfung der Proportionen/Designs
 - Validierung des CAD-Modells
- Kommunikationsmodell
 - o Interne Kommunikation / Kundenkommunikation
 - Dokumentation
 - Marktstudien
- Funktionsmodelle
 - o funktionale Überprüfung
 - o Ergonomie
 - Verifikation des Wirkprinzips
- Prozessmodelle
 - o Referenzmodell zur Planung des Fertigungsprozesses
 - Urmodell für Abformtechniken

Kapitel 11.2 - Typische generative Fertigungsverfahren

Fused Deposition Modeling (FDM):

- Zuführung eines drahtförmigen Ausgangsmaterial (Thermoplast) zu einer beheizten Düse
- aufschmelzen, aufbringen des Materials auf Bauplattform
- Stoffschluss durch erkalten
- Stützstrukturen für Überhänge notwendig

Layer Laminate Manufacturing (LLM)

- mit Klebstoff beschichtetes Material wir Schicht für Schicht auf eine Bauplattform aufgeklebt
- Laser schneidet die Kontur einer Slice-Schicht

3D-Printen

- Granulat- oder Pulverteilchen werden durch einen externen Binder, der aus einem Druckkopf austritt, selektiv und schichtweise verfestigt/verklebt
- Binder austreiben
- Werkstück sintern oder tränken
- Pulver zB Gips, Keramik, Metall, Thermoplast, Stärke

Selektives Laser Sintern (SLS)

- Einsatz pulverförmiger Materialien, die mit Laser schmelzbar sind und nach dem Abkühlen erstarren
- z.B. Kunststoffe, Wachse, Formsande, metallische Werkstoffe, keramische Materialien
- örtliche Aufschmelzung der Pulverteilchen -> Vernetzung benachbarter Teilchen

Metallisches Laser Sintern

- zum Aufbau metallischer Bauteile
- indirektes Laser-Sintern:
 - o thermoplastisch umhülltes Stahlpulver
 - o Zusammenhalt durch Aufschmelzen des Thermoplasten
 - Ergebnis: Grünling -> nachbehandeln!
- direktes selektives Laser-Sintern:
 - spezielle metallische Legierungen ohne Zusatz von thermoplastischen Anteilen
 - Nachbearbeitung kleiner

Stereolithographie

- schichtweise Polymerisation durch Bestrahlung mit UV-Licht
- Aushärtung in speziellen Nachbenetzungsöfen -> Einstellung der Eigenschaften
- Einsetzbare Werkstoffe: Photopolymere

Verarbeitungsverfahren	Werkstoffe	Verfahrensweise
Stereolithographie (STL)	Photopolymere (Epoxid-, Vinylether-, Acrylharze)	Schichtweises Auftragen von flüssigen Photo-Polymeren, punktweises Härten des Polymers mit einem UV-Laser.
Solid Ground Curing (SGC)	Photopoymere	Schichtweises Auftragen von flüssigen Photopolymeren, Härten des Polymers mit UV-Licht durch eine für den jeweiligen Bauteilquerschnitt gefertigte Maske.
Selective Laser Sintering (SLS), Direktes Metall-Lasersintern (DMLS)	Kunststoffe, Wachse, Formsande Metallpulver Keramiken	Pulverförmige Werkstoffe werden schichtweise aufgetragen und mit einem CO ₂ -Laser punktweise geschmolzen
Fused Deposition Modeling (FDM)	Feingusswachse, Polyester, Polykarbonat ABS (Acrylnitril- Butadien-Styrol- Copolymerisat)	Thermoplaste in Drahtform werden schichtweise durch eine Extrudierdüse aufgetragen (plotterähnliches Verfahren).
Layer Laminate Manufacturing LLM	Papier, Kunststoffe	Jede Papier-, bzw. Kunststoffschicht wird mittels Klebstoff mit dem Model verbunden. Die Konturen werden mit einem CO ₂ -Laser geschnitten.
3D Printing	Keramik, Metall, Polyvinylalkohol, Stärke und Gips	es wird selektiv und schichtweise Pulver verfestigt, indem mit dem Druckkopf Bindemittels eingedruckt wird

	Vorteile	Nachteile
Stereolithographie	+genauste Verfahren -Einsatz nur photoresistiver Materialien (Nachteil: diese sind nur begrenzt haltbar) -schlechte mechanische Belastbarkeit -geringe thermische Stabilität -Stützstrukturen nötig -Nachbelichtung nötig	
3D-Printing	+vollfarbige Modelle möglich +Wiederverwertung des Restpulvers +schnell +keine Stützstrukturen nötig -raue Oberfläche -instabil, brüchig -> Infiltration nötig	
Selektives Lasersintern	+hohe Materialvielfalt +hohe mechanische Belastbarkeit +Wiederverwendung Restmaterial +fast der gesamte Bauraum kann genutzt werden +Material vergleichsweise günstig -raue Oberfläche -hoher Reinigungsufwand -giftige Gase im Prozess -hoher Anschaffungspreis der Maschinen	

Fused Deposition Modelling	+ geringer Anschaffungspreis der Maschine + "Bürotauglich", da klein und unkompliziert +Nachbearbeitung starkreduziert	-ungeeignet für kleine, komplexe Strukturen -schlechte Oberflächenqualität -Nachbehandlung der Oberfläche hoch -hohe Materialkosten -Lösen der Schichten in Baurichtung möglich, deutlich instabiler als entgegen der Baurichtung
Layer Laminated Manufacturing	+Baugeschwindigkeit größenunabhängig +wenig innere Spannung	-mechanische Belastbarkeit variiert stark -dünne Wandstärken in Z- Richtung nur bedingt möglich -Restmaterial nicht wiederverwertbar
Poly-Jet Modeling	+sehr genau +Nachbelichtung nicht nötig	-siehe Stereolithographie, da ähnlich Ausgangsmaterialien -hohe Materialkosten

Kapitel 13 – Abtragen

Kapitel 13.1 - Definition und Einteilung

Fertigen durch Abtrennen von Stoffteilchen von einem festen Körper auf nicht mechanischem Weg Gehört zu den Trennverfahren

Wird aufgeteilt in thermisches, chemisches und Elektrochemisches Abtragen

Kapitel 13.2 - Verfahren des Abtragens

EDM (Electrical Discharge Machining)

- Thermisches Abtragverfahren, bei dem die an der Wirkstelle erforderliche Wärme durch eine elektrische Funkenentladung auf das Werkstück übertragen wird
- Eigenschaften der EDM
 - o unabhängig der mechanisches Eigenschaften des Werkstoffmaterials
 - zu bearbeitender Werkstoff muss elektrisch leitfähig sein
- Verfahrenseigenschaften
 - Abbildendes Verfahren
 - o Abtrag durch elektrische Entladung
 - o Abtragsprozess in dielektrischer Flüssigkeit
 - o Funkenentladung nach Überschreiten der Durchschlagsfestigkeit des Dielektrikums
 - o lokales erwärmen

Senkerosion

- Werkzeugelektrode erzeigt Negativform in Werkstück
- 3D Formen, Kavitäten, Freiformen
- z.B. Spritzgießformen für Zylinderdeckel, Kunststoffflaschen, ...
- Spritzdüsen für Tintenstrahldrucker, Formeinsätze für Mikrogetriebe,

Drahterosion

- Form wird erzeugt durch konturgleiche Bahnbewegung
- 2D Formen, Innen- und Außenkontur, konisch Konturen
- z.B. Feinschneidmatrizen, Scherköpfe für Rasierapparate, ...

Funkenerosives Abtragen

Vorteile	Nachteile
+ härte- und festigkeitunabhängig	-nicht für Massenproduktion
+ hohe geometrische Komplexität	-thermische Beeinflussung
+ geringe Fertigungstoleranz	-Sondermüll
+ hoher Automatisierungsgrad	
+ Oberflächenrauheit	

Laser (Light Amplification by Stimulated Emission of Radiation)

- Abtragen, bei dem die an der Wirkstelle erforderliche Wärme durch Energieumsetzung energiereicher Strahlen am oder im Werkstoff entsteht. Als unmittelbarer Energieträger wird hierbei der Laserstrahl verwendet.
- Eigenschaften des Laserstrahls:
 - monochromatisch
 - o kohärent
 - o hohe Intensität
 - geringe Divergenz

- Verfahrensvarianten: Beschriften, Ritzen, Perforieren, Formabtrag, Furchen, Schneiden
- Laser-Brennschneiden:
 - Werkstoff wird bis zur Zündtemperatur erhitzt und durch Zufuhr von Sauerstoff verbrannt
 - o Anwendung: Trennen von Metallen
- <u>Laser-Schmelzschneiden:</u>
 - Werkstoff wird durch den Laserstrahl aufgeschmolzen und mit Hilfe eines reaktionsträgen Gases aus der Schnittfuge geblasen
 - Anwendung: Hochlegierte Stähle, Nichteisenmetalle
- Laser-Sublimierschneiden:
 - Werkstoff wird auf Sublimationstemperatur erhitzt und mit Hilfe eines reaktionsträgen Gases aus der Schnittfuge geblasen
 - o Anwendung: Holz, Papier, Keramik, Kunststoffe

Laserbohren

- Einpulsbohren -> kleine Bohrungen
- Mehrfachpulsbohren -> mittlere Bohrungen
- Trepanierbohren -> große Bohrungen

Laserstrahlverfahren allgemein:

Vorteile	Nachteile
+ härte- und festigkeitsunabhängig	- geringer energetischer Wirkungsgrad
+ kein Verschleiß	- hohe Investitionskosten
+ keine Vorrichtungen	- thermisch induzierte Spannung
+ geometrieunabhängig	- giftige und krebserregende Verbrennungs- und Pyrolyseprodukte
+ sehr genau	
+ hohe Geschwindigkeiten	
+ gratfrei und geringe Rauheiten	

Laserunterstützte Zerspanung

Einsatzgebiete:

- Zerspanung hochfester Werkstoffe (Inconel, Titan, Keramik)
- Gleichzeitige Oberflächenbehandlung

Vorteile:

- höhere Werkzeugstandzeiten
- geringere Schnittkräfte
- geringere Rauheit

WF 214-02-00

Einflussgrößen:

Laserstrahlquelle, Werkstoffeigenschaften, Prozessparameter, Maschinensystem -> Beeinflusst das Abtragungsergebnis

Chemisches Abtragen

 beruht auf einer chemischen Reaktion des Werkstückwerkstoffs mit einem Wirkmedium zu einer Verbindung, die flüchtig oder leicht entfernbar ist. Die Stoffumsetzung findet durch direkte chemische Reaktion statt. Dabei ist mindestens ein Reaktionspartner, entweder das Wirkmedium oder der Werkstückwerkstoff (oder beide), elektrisch nichtleitend

Elektrochemisches Abtragen

- kurz ECM (Electro Chemical Machining)
- beruht auf der Elektrolyse als Wirkprinzip. Unter Elektrolyse werden dabei alle chemischen Vorgänge und chemischen Veränderungen eines Stoffes, die bei einem Stromdurchgang durch einen Elektrolyten auftreten, verstanden
- Grundlage Elektrolyse
- es gibt Formabtragen, Honen

Lithographie

Strukturierung mittels fokussierter Strahlung (Licht-, Röntgen-, Elektronen/Ionenstrahlung):

- · ein Substrat (z.B. Siliziumwafer) wird mit einem Resist beschichtet
- Teile der Kunststoff-/Resistschicht werden nach Vorgabe durch einen CAD-Entwurf hochgenau belichtet bzw. bestrahlt
- durch die Bestrahlung ändert der Resist seine chemischen Eigenschaften
- bestrahlte und unbestrahlte Bereichen besitzen eine unterschiedliche Beständigkeit gegenüber Lösungsmitteln (Entwickler)
 - Positiv-Resist: bestrahlter Bereich wird herausgelöst
 - Negativ-Resist: unbestrahlter Bereich wird herausgelöst
- Resist ist unempfindlich (resistent) gegen spätere Galvanik- oder Ätzprozesse

Mögliche Nachfolgeschritte

- Abtragen (Nassätzen/Trockenätzen)
- · Aufbau neuer Materialien (Galvanische Abscheidung)
- · Verändern der Oberfläche (Oxidieren, Dotieren mit Fremdatomen)

Kapitel 14 - Fertigungstechnik für den hybriden Leichtbau

Kapitel 14. 1 - Definition und Grundlagen

Leichtbau

- Konstruktionstechnik, die unter integrativer Nutzung aller konstruktiven, werkstoff- und fertigungstechnischen Mittel bei einer Gesamtstruktur und bei deren Elementen die Masse reduziert und die Gebrauchsgüte erhöht
- Leichtbauprinzipe
 - Konzeptleichtbau:
 - Betrachtung des Gesamt- bzw. Teilsystems
 - Einbindung neuer Lastpfade
 - ➤ Entwicklung von Strukturen mit Funktionsintegration

- o Formleichtbau:
 - Anpassung der Struktur an die gegebenen Anforderungen
 - > Lasteinleitungs-, Belastungsgerecht
 - eng verknüpft mit Konzept- und Stoffleichtbau
- o Fertigungsleichtbau:
 - Potentiale durch Herstellung, Montage, und Fertigung
 - > Herstellung von Blechstrukturen mit unterschiedlichen Wandstärken
 - eng verknüpft mit Stoff- und Formleichtbau
- Bedingungsleichtbau:
 - Anforderungen aus Politik, Gesellschaft und Gesetzgebung
 - Crashanforderungen
 - Verwertung etc.
- Stoffleichtbau:
 - leichtesten Werkstoff für gegebene Anforderungen einsetzen
 - ➤ Umstellung des Werkstoffs -> große Innovations- und Technologiesprünge
 - Einsatzverschiedener Werkstoffe: metallische (Stahl, Alu, etc) nicht-metallische (Kunststoffe, Techn. Keramik) Verbundwerkstoffe (FKV) Aktive Werkstoffe (Piezowerkstoffe)

Kompromiss zwischen: Werkstofftechnik <-> Fertigungstechnik <-> Konstruktionstechnik

Hybrid

- <u>Hybride Strukturen</u> beinhalten unterschiedliche Werkstoffgruppen innerhalb des selben Bauteils oder innerhalb der selben Baugruppe
- <u>Verbundwerkstoffe</u> sind Kombinationen unterschiedlicher Werkstoffe (maßgeschneiderte Eigenschaften), sind meist makroskopisch *homogen*, eine Homogenisierung ist meist *möglich*
- <u>Werkstoffverbunde</u> sind auch Kombinationen aus mehreren unterschiedlichen Werkstoffen, diese sind allerdings *inhomogen*, eine Homogenisierung ist meist *nicht möglich*

Beispiele für die letzten beiden:

Teilchenverbundwerkstoff

- Syntaktischer Schaum
- Beton

Faserverbundwerkstoff

- Faser-Kunststoff-Verbund
- Metal Matrix Composite (MMC)

Schichtverbundwerkstoff

- Sperrholz
- Hartpapier

- Faserverstärkte Kunststoffe (FVK) als Fügepartner für hybride Werkstoffsysteme
 - o Fasern können gerichtet oder regellos vorliegen
 - Unidirektionale Schichten (UD) k\u00f6nnen zur Mehrschichtverbundsystemen (MSV) kombiniert werden
 - Anpassung an Belastungsfall
 - FVK Eigenschaften:

Vorteile	Nachteile
Sehr hohe Festigkeit in Faserrichtung (ca. 1350 N/mm²)	Geringe Festigkeit ⊥ Faserrichtung (ca. 30 N/mm²)
Geringe Dichte $(\rho \approx 1.5 \text{ g/cm}^3)$	Geringer E-Modul <u>↓</u> Faserrichtung (ca. 12 GPa)
Hoher E-Modul in Faserrichtung (ca. 140 GPa)	Geringe Bruchdehnung
Korrosionsbeständig	Hohe thermische Empfindlichkeit der Matrix
	Alterung, Schwingungen (hoher E- Modul, geringe Dichte)
_	Instandsetzung/Reparatur nach Schadensfall

■■● Je anisotroper eine Belastung, desto höher die Eignung von FVK

Kapitel 14.2 - Fertigungsverfahren für den hybriden Leichtbau

Leichtbau durch Hybridisierung

- durch Fügen (separate Herstellung und anschließendes Fügen)
 - o Mischbauweise -> aus verschiedenen Werkstoffgruppen
- "integrierte" Hybride Struktur (Herstellung in <u>einem</u> Fertigungsprozess)
 - Funktionsintegrierte Verbundstrukturen -> verschiedene Werkstoffe innerhalb einer Hybridstruktur
- Anwendungsfelder:

Fertigungstechnologien für flächige FVK-Bauteile:

- Prepreg/Autoklav:
 - Einsatz bei "Prepregs", d.h. vorimprägnierte Gewebematten mit einer bereits vorhandenen Mindesthärte
 - Ablegen des Prepregs und Abdecken mit Vakuumfolie
 - Anlegen Vakuum und Aushärten unter Druck und hohen Temperaturen
- Resin Transfer Moulding (RTM):
 - Fasermatten werden pressend geschnitten und zusammengeheftet -> Halbzeug/Preform
 - Verformen des trockenen Halbzeugs zum so genannten "Preform"
 - Tränken Faser im Werkzeug mit Harzmatrix -> Aushärtung

- Sheet Moulding Compound (SMC):
 - Erzeugen Harzmatte aus Harz, Härtern, Füllstoffen, ...
 - o lagern erst dann im beheizten Presswerkzeug weiterverarbeiten
 - platzieren der definiert zugeschnittenen Matte im Gesamtwerkzeug
 - o pressen
 - o aushärten bei circa 150°C

Fertigungstechnologien für profilförmige Bauteile:

- Pultrision (Strangziehen):
 - Glasfasern durch Harz-Bad ziehen -> Imprägnierung
 - o beheiztes Werkzeug bestimmt Profilform
 - Profil wird durch Werkzeug gezigen und auf Maß geschnitten
 - Standardprofile -> keinen veränderlichen Querschnitt -> Rundstäbe, Kanäle, U-Profile, T-Profile, Rohe, ...

• Strangpressen:

- o Druckumformen zur Herstellungen von Strangen, Rohren und Profilen
- metallische Werkstoffe
- Hohl- und Vollprofile herstellbar

• Rollprofilieren:

- o "Biege-Umformen mit drehender Werkzeugbewegung
- o Blechband wird durch verschiedene Umformstationen transportiert
- o Profilform entsteht schrittweise
- hohe Prozesssicherheit

