CHAPTER 19:

DESIGN AND ANALYSIS OF MACHINE LEARNING EXPERIMENTS

Introduction

- Questions:
 - Assessment of the expected error of a learning algorithm: Is the error rate of 1-NN less than 2%?
 - Comparing the expected errors of two algorithms: Is k-NN more accurate than MLP?
- Training/validation/test sets
- Resampling methods: K-fold cross-validation

Algorithm Preference

- Criteria (Application-dependent):
 - Misclassification error, or risk (loss functions)
 - Training time/space complexity
 - Testing time/space complexity
 - Interpretability
 - Easy programmability
- Cost-sensitive learning

Factors and Response

- Response function based on output to be maximized
- Depends on controllable factors
- Uncontrollable factors introduce randomness
- Find the configuration of controllable factors that maximizes response and minimally affected by uncontrollable factors

Strategies of Experimentation

How to search the factor space?

Response surface design for approximating and maximizing the response function in terms of the controllable factors

Guidelines for ML experiments

- A. Aim of the study
- B. Selection of the response variable
- Choice of factors and levels
- Choice of experimental design
- E. Performing the experiment
- Statistical Analysis of the Data
- G. Conclusions and Recommendations

Resampling and K-Fold Cross-Validation

- □ The need for multiple training/validation sets $\{X_i, V_i\}_i$: Training/validation sets of fold i
- \square *K*-fold cross-validation: Divide X into *k*, X_i , i=1,...,K

$$V_1 = X_1$$
 $T_1 = X_2 \cup X_3 \cup \cdots \cup X_K$
 $V_2 = X_2$ $T_2 = X_1 \cup X_3 \cup \cdots \cup X_K$
 \vdots
 $V_K = X_K$ $T_K = X_1 \cup X_2 \cup \cdots \cup X_{K-1}$

□ T_i share *K*-2 parts

5×2 Cross-Validation

5 times 2 fold cross-validation (Dietterich,

$$T_1 = X_1^{(1)}$$
 $V_1 = X_1^{(2)}$
 $T_2 = X_1^{(2)}$ $V_2 = X_1^{(1)}$

$$T_3 = X_2^{(1)}$$
 $V_3 = X_2^{(2)}$ $T_4 = X_2^{(2)}$ $V_4 = X_2^{(1)}$

$$\Gamma_4 = \mathbf{X}_2^{(2)} \quad \mathbf{V}_4 = \mathbf{X}_2^{(1)}$$

$$T_9 = X_5^{(1)}$$
 $V_9 = X_5^{(2)}$
 $T_{10} = X_5^{(2)}$ $V_{10} = X_5^{(1)}$

Bootstrapping

- Draw instances from a dataset with replacement
- Prob that we do not pick an instance after N draws $\left(1 \frac{1}{N}\right)^{N} \approx e^{-1} = 0.368$

that is, only 36.8% is new!

Performance Measures

	Predicted class		
True Class	Yes	No	
Yes	TP: True Positive	FN: False Negative	
No	FP: False Positive	TN: True Negative	

- Error rate = # of errors / # of instances = (FN+FP) / N
- Recall = # of found positives / # of positives= TP / (TP+FN) = sensitivity = hit rate
- Precision = # of found positives / # of found= TP / (TP+FP)
- Specificity = TN / (TN+FP)
- False alarm rate = FP / (FP+TN) = 1 Specificity

ROC Curve

Precision and Recall

Precision:
$$\frac{a}{a + b}$$

Recall:
$$\frac{a}{a + c}$$

(a) Precision and recall

(b) Precision
$$= 1$$

(c) Recall
$$= 1$$

Interval Estimation

- \square X = { x^t }, where $x^t \sim N (\mu, \sigma^2)$
- \square $m \sim N (\mu, \sigma^2/N)$

$$\sqrt{N} \frac{(m-\mu)}{\sigma} \sim Z$$

$$P\left\{-1.96 < \sqrt{N} \frac{(m-\mu)}{\sigma} < 1.96\right\} = 0.95$$

$$P\left\{m-1.96\frac{\sigma}{\sqrt{N}} < \mu < m+1.96\frac{\sigma}{\sqrt{N}}\right\} = 0.95$$

$$P\left\{m - z_{\alpha/2} \frac{\sigma}{\sqrt{N}} < \mu < m + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right\} = 1 - \alpha \qquad 100(1 - \alpha) \text{ percent confidence interval}$$

confidence interval

$$P\left\{\sqrt{N}\frac{(m-\mu)}{\sigma} < 1.64\right\} = 0.95$$

$$P\left\{m-1.64\frac{\sigma}{\sqrt{N}} < \mu\right\} = 0.95$$

$$P\left\{m - z_{\alpha} \frac{\sigma}{\sqrt{N}} < \mu\right\} = 1 - \alpha$$

100(1- α) percent onesided

confidence interval

When σ^2 is not known:

$$S^{2} = \sum_{t} (x^{t} - m)^{2} / (N - 1) \frac{\sqrt{N(m - \mu)}}{S} \sim t_{N-1}$$

$$P\left\{m - t_{\alpha/2, N-1} \frac{S}{\sqrt{N}} < \mu < m + t_{\alpha/2, N-1} \frac{S}{\sqrt{N}}\right\} = 1 - \alpha$$

Hypothesis Testing

 Reject a null hypothesis if not supported by the sample with enough confidence

$$X = \{x^t\}_t$$
 where $x^t \sim N(\mu, \sigma^2)$

$$H_0$$
: $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$

Accept H_0 with level of significance α if μ_0 is in the

100(1-
$$\alpha$$
) confidence interval

$$\frac{\sqrt{N}(m-\mu_0)}{\sigma} \in (-z_{\alpha/2}, z_{\alpha/2})$$

Two-sided test

	Decision		
Truth	Accept	Reject	
True	Correct	Type I error	
False	Type II error	Correct (Power)	

- □ One-sided test: H_0 : $\mu \le \mu_0$ vs. H_1 : $\mu > \mu_0$ Accept if $\frac{\sqrt{N}(m-\mu_0)}{\sigma} \in (-\infty, z_\alpha)$
- □ Variance unknown: Use t, instead of zAccept H_0 : $\mu = \mu_0$ if

$$\frac{\sqrt{N}(m-\mu_0)}{\varsigma} \in \left(-t_{\alpha/2,N-1},t_{\alpha/2,N-1}\right)$$

Assessing Error: $H_0: p \le p_0$ vs. $H_1: p$

$$> p_0$$

□ Single training/validation set: Binomial Test If error prob is p_0 , prob that there are e errors or less in N validation trials is

$$P\{X \le e\} = \sum_{j=1}^{e} {N \choose j} p_0^{j} \left(1 - p_0^{j}\right)^{N-j}$$

Accept if this prob is less than 1- α

Normal Approximation to the Binomial

□ Number of errors X is approx N with mean Np_0 and var $Np_0(1-p_0)$

$$\frac{X - Np_0}{\sqrt{Np_0(1 - p_0)}} \sim Z$$

Accept if this prob for X = e is less than $z_{1-\alpha}$

Paired t Test

- Multiple training/validation sets
- $x_i = 1$ if instance t misclassified on fold i
- Error rate of fold *i*: $p_i = \frac{\sum_{t=1}^{N} x_i^t}{N}$
- \square With m and s^2 average and var of p_i , we accept p_0 or less error if

$$\frac{\sqrt{K}(m-p_0)}{S} \sim t_{K-1}$$

is less than $t_{\alpha,K-1}$

Comparing Classifiers: H₀:µ₀=µ₁ vs. H₁:µ₀≠µ₁

Single training/validation set: McNemar's Test

e ₀₀ : Number of examples misclassified by both	e ₀₁ : Number of examples misclassified by 1 but not 2
e_{10} : Number of examples misclassified by 2 but not 1	e_{11} : Number of examples correctly classified by both

□ Under H_0 , we expect $e_{01} = e_{10} = (e_{01} + e_{10})/2$

$$\frac{\left(\left|e_{01}-e_{10}\right|-1\right)^{2}}{e_{01}+e_{10}} \sim X_{1}^{2}$$

Accept if
$$< X^2_{\alpha,1}$$

K-Fold CV Paired t Test

- Use K-fold cv to get K training/validation folds
- □ p_i^1 , p_i^2 : Errors of classifiers 1 and 2 on fold i $p_i = p_i^1 p_i^2$: Paired difference on fold i
- □ The null hypothesis is whether p_i has mean 0 $H_0: \mu = 0$ vs. $H_0: \mu \neq 0$

$$m = \frac{\sum_{i=1}^{K} p_i}{K} \qquad s^2 = \frac{\sum_{i=1}^{K} (p_i - m)^2}{K - 1}$$

$$\frac{\sqrt{K}(m - 0)}{S} = \frac{\sqrt{K} \cdot m}{S} \sim t_{K-1} \text{ Accept if in } \left(-t_{\alpha/2, K-1}, t_{\alpha/2, K-1}\right)$$

5×2 cv Paired t Test

- Use 5×2 cv to get 2 folds of 5 tra/val replications (Dietterich, 1998)
- p_i^(j): difference btw errors of 1 and 2 on fold
 j=1, 2 of replication i=1,...,5

$$\overline{p}_{i} = (p_{i}^{(1)} + p_{i}^{(2)})/2 \qquad s_{i}^{2} = (p_{i}^{(1)} - \overline{p}_{i})^{2} + (p_{i}^{(2)} - \overline{p}_{i})^{2}$$

$$\frac{p_{1}^{(1)}}{\sqrt{\sum_{i=1}^{5} s_{i}^{2}/5}} \sim t_{5}$$

Two-sided test: Accept H_0 : $\mu_0 = \mu_1$ if in $(-t_{\alpha/2,5}, t_{\alpha/2,5})$

One-sided test: Accept H_0 : $\mu_0 \le \mu_1$ if $< t_{\alpha,5}$

5×2 cv Paired F Test

$$\frac{\sum_{i=1}^{5} \sum_{j=1}^{2} (p_{i}^{(j)})^{2}}{2\sum_{i=1}^{5} s_{i}^{2}} \sim F_{10,5}$$

Two-sided test: Accept H_0 : $\mu_0 = \mu_1$ if $< F_{\alpha,10,5}$

Comparing *L*>2 Algorithms: Analysis of Variance (Anova)

$$H_0: \mu_1 = \mu_2 = \dots = \mu_L$$

□ Errors of L algorithms on K folds $X_{ij} \sim N(\mu_j, \sigma^2), j = 1,...,L, i = 1,...,K$

 \square We construct two estimators to σ^2 .

One is valid if H_0 is true, the other is always valid.

We reject H_0 if the two estimators disagree.

If H_0 is true:

$$m_{j} = \sum_{i=1}^{K} \frac{X_{ij}}{K} \sim N \left(\mu, \sigma^{2} / K \right)$$

$$m = \frac{\sum_{j=1}^{L} m_{j}}{L} \qquad S^{2} = \frac{\sum_{j} (m_{j} - m)^{2}}{L - 1}$$

Thus an estimator of σ^2 is $K \cdot S^2$, namely,

$$\hat{\sigma}^2 = K \sum_{j=1}^{L} \frac{\left(m_j - m\right)^2}{L - 1}$$

$$\sum_{j} \frac{(m_{j} - m)^{2}}{\sigma^{2} / K} \sim X_{L-1}^{2} \quad SSb \equiv K \sum_{j} (m_{j} - m)^{2}$$

So when H_0 is true, we have

$$\frac{SSb}{\sigma^2} \sim X_{L-1}^2$$

Regardless of H_0 our second estimator to σ^2 is the average of group variances S_i^2 :

$$S_{j}^{2} = \frac{\sum_{i=1}^{K} (X_{ij} - m_{j})^{2}}{K - 1} \quad \hat{\sigma}^{2} = \sum_{j=1}^{L} \frac{S_{j}^{2}}{L} = \sum_{j} \sum_{i} \frac{(X_{ij} - m_{j})^{2}}{L(K - 1)}$$

$$SSW = \sum_{j} \sum_{i} (X_{ij} - m_{j})^{2}$$

$$(K - 1) \frac{S_{j}^{2}}{\sigma^{2}} \sim X_{K - 1}^{2} \quad \frac{SSW}{\sigma^{2}} \sim X_{L(K - 1)}^{2}$$

$$\left(\frac{SSb/\sigma^{2}}{L - 1}\right) / \left(\frac{SSW/\sigma^{2}}{L(K - 1)}\right) = \frac{SSb/(L - 1)}{SSW/(L(K - 1))} \sim F_{L - 1, L(K - 1)}$$

$$H_{0}: \mu_{1} = \mu_{2} = \dots = \mu_{L} \text{ if } < F_{\alpha, L - 1, L(K - 1)}$$

ANOVA table

Source of	Sum of	Degrees of	Mean	
variation	squares	freedom	square	F_0
Between	$SS_b \equiv$			
groups	$K\sum_{j}(m_{j}-m)^{2}$	L-1	$MS_b = \frac{SS_b}{L-1}$	$\frac{MS_b}{MS_w}$
Within	$SS_w \equiv$			
groups	$\sum_{j} \sum_{i} (X_{ij} - m_j)^2$	L(K-1)	$MS_W = \frac{SS_W}{L(K-1)}$	
Total	$SS_T \equiv$			
	$\sum_{j}\sum_{i}(X_{ij}-m)^{2}$	$L \cdot K - 1$		

If ANOVA rejects, we do pairwise posthoc tests

$$H_0: \mu_i = \mu_j \text{ VS } H_1: \mu_i \neq \mu_j$$

$$t = \frac{m_i - m_j}{\sqrt{2}\sigma_w} \sim t_{L(K-1)}$$

Comparison over Multiple Datasets

- Comparing two algorithms:
 - Sign test: Count how many times *A* beats *B* over *N* datasets, and check if this could have been by chance if A and B did have the same error rate
- Comparing multiple algorithms
 - Kruskal-Wallis test: Calculate the average rank of all algorithms on N datasets, and check if these could have been by chance if they all had equal error If KW rejects, we do pairwise posthoc tests to find which ones have significant rank difference

Multivariate Tests

- Instead of testing using a single performance measure, e.g., error, use multiple measures for better discrimination, e.g., [fp-rate,fn-rate]
- Compare p-dimensional distributions
- Parametric case: Assume p-variate Gaussians

$$H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 \text{ vs. } H_1: \boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2$$

Multivariate Pairwise Comparison

Paired differences $d_i = x_{1i} - x_{2i}$

$$H_0: \mu_d = \mathbf{0} \text{ vs. } H_1: \mu_d \neq \mathbf{0}$$

□ Hotelling's multivariate *T*² test

$$T'^2 = K \mathbf{m}^T \mathbf{S}^{-1} \mathbf{m}$$

□ For p=1, reduces to paired *t* test

Multivariate ANOVA

Comparsion of L>2 algorithms

$$H_0$$
: $\mu_1 = \mu_2 = \cdots = \mu_L \text{ vs.}$
 H_1 : $\mu_r \neq \mu_s \text{ for at least one pair } r, s$
 $\mathbf{H} = K \sum_{j=1}^{L} (\mathbf{m}_j - \mathbf{m}) (\mathbf{m}_j - \mathbf{m})^T$
 $\mathbf{E} = \sum_{j=1}^{L} \sum_{i=1}^{K} (\mathbf{x}_{ij} - \mathbf{m}_j) (\mathbf{x}_{ij} - \mathbf{m}_j)^T$

$$\Lambda' = \frac{|\mathbf{E}|}{|\mathbf{E} + \mathbf{H}|}$$

is Wilks's Λ distributed with p, L(K-1), L-1 degrees of freedom