TYDZIEŃ 3 - SPRAWOZDANIE

1. Dokładny opis projektu:

<u>Potencjał biznesowy:</u> realizowany przez nas projekt (zastosowanie metod ML w predykcji akcji Amazon.com) miałby ogromny potencjał biznesowy, ponieważ Amazon jest jednym z największych i najbardziej dynamicznych graczy na rynku e-commerce. Oto kilka aspektów tego projektu i jego potencjalnych korzyści:

- **Zarządzanie portfelem:** Prognozy mogą posłużyć do podejmowania decyzji dotyczących kupna, sprzedaży lub trzymania akcji Amazon.
- **Optymalizacja strategii inwestycyjnych:** Poprzez ciągłe doskonalenie strategii na podstawie wyników modelu ML, można osiągnąć lepsze wyniki inwestycyjne.
- Personalizacja doradztwa finansowego: Projekt może posłużyć do stworzenia systemu personalizowanego doradztwa finansowego opartego na predykcjach cen akcji Amazon. To może obejmować dostarczanie zindywidualizowanych rekomendacji inwestycyjnych i analizy portfela, które są dostosowane do preferencji, celów i poziomu tolerancji ryzyka każdego użytkownika.
- Kształcenie inwestorów: Poprzez udostępnianie wyników i wniosków modelu ML, projekt może także pomóc w kształceniu inwestorów na temat analizy rynku kapitałowego, funkcjonowania rynków finansowych i roli danych w podejmowaniu decyzji inwestycyjnych.

Potencjał naukowy:

- Rozwój algorytmów ML: Projekt taki stanowiłby pole do rozwoju zaawansowanych
 algorytmów uczenia maszynowego, które mogą efektywnie analizować i przetwarzać
 ogromne zbiory danych finansowych. Badania nad różnymi architekturami modeli
 ML, technikami uczenia się, funkcjami straty oraz metodami optymalizacji mogą
 przyczynić się do ulepszenia skuteczności predykcji cen akcji.
- Integracja danych wielorodnych: Aby skutecznie przewidywać ceny akcji
 Amazon.com, projekt ten wymagałby integracji danych z różnych źródeł, takich jak
 dane finansowe, dane społecznościowe, dane makroekonomiczne itp. Badania nad
 metodami integracji i wykorzystania wielorodnych danych mogą przynieść
 innowacyjne podejścia do analizy rynku.
- Badania nad przyczynowością w analizie finansowej: Analiza finansowa często
 koncentruje się na identyfikowaniu korelacji między różnymi zmiennymi. Jednak
 badania nad przyczynowością mogą pomóc w zrozumieniu, które czynniki
 rzeczywiście wpływają na zmienność cen akcji Amazon.com. Wykorzystanie metod
 uczenia maszynowego do badania przyczynowości w danych finansowych może
 przynieść nowe spojrzenie na rynki finansowe.

Badania nad strategiami inwestycyjnymi: Projekt taki mógłby służyć jako
platforma do badania różnych strategii inwestycyjnych i ich skuteczności w
kontekście rynku Amazon.com. Analiza wyników strategii inwestycyjnych może
dostarczyć cennych wskazówek dotyczących tego, jakie czynniki lub strategie są
najbardziej obiecujące w kontekście inwestowania w akcje Amazon i rynki finansowe
ogólnie.

Potencjalni partnerzy: firmy maklerskie, deweloperzy aplikacji giełdowych

<u>Potencjalni odbiorcy:</u> inwestorzy indywidualni, firmy inwestycyjne, instytucje finansowe, analitycy rynkowi

Metodologia działania:

- 1. **Zrozumienie problemu:** Pierwszym krokiem jest dokładne zrozumienie problemu i celów projektu. Należy zdefiniować, jakie dokładnie pytania chcemy zadać modelowi ML, jakie dane są potrzebne do tego celu oraz jakie metryki sukcesu zostaną użyte do oceny skuteczności modelu.
- 2. **Zbieranie danych:** Następnie należy zbadać dostępne źródła danych i zebrać odpowiednie dane finansowe, techniczne i inne, które mogą być istotne dla predykcji cen akcji Amazon.com. Ważne jest również zapewnienie jakości danych poprzez eliminację brakujących wartości, usuwanie błędnych danych i normalizację danych.
- 3. **Przygotowanie danych:** Dane muszą być odpowiednio przetworzone i przygotowane do analizy przez modele ML. Proces ten obejmuje skalowanie danych, normalizację i standaryzację danych oraz podział danych na zestawy treningowe, walidacyjne i testowe.
- 4. **Trening modeli:** Następnie należy przeprowadzić trening modeli na danych treningowych.
- 5. **Ocena modelu:** Po zakończeniu treningu modelu, należy ocenić jego skuteczność na danych walidacyjnych i testowych, używając odpowiednich metryk oceny.
- 6. **Optymalizacja i strojenie modeli:** Proces ten polega na optymalizacji parametrów modelu oraz jego hiperparametrów w celu uzyskania najlepszych wyników predykcji.
- 7. **Monitorowanie w czasie rzeczywistym:** Po otrzymaniu właściwie dostosowanych modeli konieczne jest monitorowanie ich skuteczności w odniesieniu do danych rzeczywistych.

<u>Technologie</u>, które zamierzamy wykorzystać w projekcie oraz do komunikacji:

- **Python**, w tym biblioteki Pandas, NumPy, Matplotlib, Seaborn, Scikit-Learn, TensorFlow, PyTorch, Keras; wybrane środowisko: **Jupyter Notebook**
- **ClickUp:** strona do organizacji pracy, podziału na zadania, określenia deadlinów, podziału pracy oraz kontroli nad wykonywaniem działań
- **GitHub:** w celu kontroli wersji, kolaboracji, prowadzenia dokumentacji oraz organizacji plików
- Google Docs: w celu kolaboracji przy sporządzaniu sprawozdań
- Messenger: w celu komunikacji w czasie rzeczywistym
- 2. Koordynatorem projektu została Natalia Szczepkowska.
- 3. PLAN MIN&MAX:

Minimalny	efekt, który będzie dla nas zadowalający, to:
☐ sko	ompletowanie wszystkich zadań zgodnie z poniższym planem
•	○ TO DO 15 ··· + Add Task
	Name
	1.1 Określenie metodologii oraz rozplanowanie zadań
	1.2 Zebranie oraz uzupełnienie danych
	1.3 Data preprocessing, analiza zbioru danych
	2.1 Zbudowanie modelu regresji liniowej
	2.2 Zbudowanie modelu SVM
	2.3 Zbudowanie modelu Random Forest Regression
	2.4 Zbudowanie modelu Gradient Boosting Regressor
	2.5 Zbudowanie modelu LSTM
	○ 2.6 Zbudowanie modelu GRU
	2.7 Zbudowanie modelu CNN
	2.8 Zbudowanie modelu ARIMA
	3.1 Ocena modeli i wybór najlepszego z nich
	3.2 Analiza skuteczności przewidywań w czasie rzeczywistym
	 4.1 Stworzenie prezentacji z opisem uzyskanych wyników, wniosków oraz oceną pracy zespołowej
	O 4.2 Prezentacja
	+ Add Task

wyciągnięcie wniosków ze współczynników modelu

wybranie najlepszego modelu

Maksyma	alny efekt to nie tylko realizacja tych zadań, ale także
□ os	siągnięcie wyjątkowej jakości pracy
☐ pr	zekroczenie naszych oczekiwań
W kontekście cza	asowym:
Minimaln	e oczekiwania to:
☐ pr	zestrzeganie ustalonych terminów
□ sp	późnienia nie większe niż 2 tygodnie
Maksyma	alne oczekiwania to:
□ d	okończenie pracy przed wyznaczonym terminem końcowym
	MDLMA EESTI

WPŁYW EFEKTU:

MINIMALNEGO	NA MAKSYMALNY
Osiągnięcie tylko minimalnych wyników w jednym etapie	Ograniczenie zdolności w osiągnięciu maksymalnego
Spóźnienia	Doprowadzenie do wydłużenia czasu końcowego
Zmniejszenie motywacji zespołu	Wpływ na morale i osiąganie gorszych wyników w dalszej pracy
Niewystarczająco poświęcona uwaga szczegółom	Zwiększenie ryzyka błędu
Znikome twórcze myślenie	Ograniczenie innowacji, poprawy projektu