Formal Methods in Software Engineering

Propositional Logic — Spring 2025

Konstantin Chukharev

§1 Propositional Logic

Motivation

- Boolean functions are at the core of logic-based reasoning.
- A Boolean function $F(X_1,...,X_n)$ describes the output of a system based on its inputs.
- Boolean gates (AND, OR, NOT) form the building blocks of digital circuits.
- Propositional logic formalizes reasoning about Boolean functions and circuits.
- Applications:
 - Digital circuit design.
 - Verification and synthesis of hardware and software.
 - Expressing logical constraints in AI and optimization problems.
 - Automated reasoning and theorem proving.

Boolean Circuits and Propositional Logic

Boolean circuit is a directed acyclic graph (DAG) of Boolean gates.

- Inputs: Propositional variables.
- Outputs: Logical expressions describing the circuit's behavior.

"Can the output of a circuit ever be true?"

• Propositional logic provides a formal framework to answer such questions.

Real-world examples:

- Error detection circuits.
- Arithmetic logic units (ALUs) in processors.
- Routing logic in network devices.

What is Logic?

A formal logic is defined by its **syntax** and **semantics**.

□ Syntax

- An **alphabet** Σ is a set of symbols.
- A finite sequence of symbols (from Σ) is called an **expression** or **string** (over Σ).
- A set of rules defines the **well-formed** expressions.

□ Semantics

• Gives meaning to (well-formed) expressions.

Syntax of Propositional Logic

□ Alphabet

- **1.** Logical connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow .
- 2. Propositional variables: $A_1, A_2, ..., A_n$.
- **3.** Parentheses for grouping: (,).

□ Well-Formed Formulas (WFFs)

Valid (well-formed) expressions are defined inductively:

- **1.** A single propositional symbol (e.g. *A*) is a WFF.
- **2.** If α and β are WFFs, so are: $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$.
- **3.** No other expressions are WFFs.

Syntax of Propositional Logic [2]

□ Conventions

- Large variety of propositional variables: A, B, C, ..., p, q, r, ...
- Outer parentheses can be omitted: $A \wedge B$ instead of $(A \wedge B)$.
- Operator precedence: $\neg > \land > \lor > \rightarrow > \leftrightarrow$.
- Left-to-right associativity for \wedge and \vee : $A \wedge B \wedge C = (A \wedge B) \wedge C$.
- Right-to-left associativity for \rightarrow : $A \rightarrow B \rightarrow C = A \rightarrow (B \rightarrow C)$.

Semantics of Propositional Logic

- Each propositional variable is assigned a truth value: *T* (true) or *F* (false).
- More formally, *interpretation* $\nu: V \to \{0,1\}$ assigns truth values to all variables (atoms).
- Truth values of complex formulas are computed (evaluated) recursively:
 - 1. $[p]_{\nu} \triangleq \nu(p)$, where $p \in V$ is a propositional variable
 - $2. \ \llbracket \neg \alpha \rrbracket_{\nu} \triangleq 1 \llbracket \alpha \rrbracket_{\nu}$
 - 3. $[\![\alpha \wedge \beta]\!]_{\nu} \triangleq \min([\![\alpha]\!]_{\nu}, [\![\beta]\!]_{\nu})$
 - 4. $[\![\alpha \vee \beta]\!]_{\nu} \triangleq \max([\![\alpha]\!]_{\nu}, [\![\beta]\!]_{\nu})$
 - 5. $[\![\alpha \to \beta]\!]_{\nu} \triangleq ([\![\alpha]\!]_{\nu} \leq [\![\beta]\!]_{\nu}) = \max(1 [\![\alpha]\!]_{\nu}, [\![\beta]\!]_{\nu})$
 - **6.** $[\![\alpha \leftrightarrow \beta]\!]_{\nu} \triangleq ([\![\alpha]\!]_{\nu} = [\![\beta]\!]_{\nu}) = 1 |[\![\alpha]\!]_{\nu} [\![\beta]\!]_{\nu}|$

§2 Foundations

Truth Tables

α	β	γ	$\alpha \wedge (\beta \vee \neg \gamma)$	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	1	

Normal Forms

- Conjunctive Normal Form (CNF):
 - ▶ A formula is in CNF if it is a conjunction of *clauses* (disjunctions of literals).

Example: $(A \lor B) \land (\neg A \lor C) \land (B \lor \neg C)$ — CNF with 3 clauses.

- Disjunctive Normal Form (DNF):
 - A formula is in DNF if it is a disjunction of *cubes* (conjunctions of literals).

Example: $(\neg A \land B) \lor (B \land C) \lor (\neg A \land B \land \neg C)$ – DNF with 3 cubes.

- Algebraic Normal Form (ANF):
 - ▶ A formula is in ANF if it is a sum of *products* of variables (or a constant 1).

Example: $B \oplus AB \oplus ABC$ — ANF with 3 terms.

Logical Laws and Tautologies

- **Associative** and **Commutative** laws for \land , \lor , \leftrightarrow :
 - $A \circ (B \circ C) \equiv (A \circ B) \circ C$
 - $A \circ B \equiv B \circ A$
- Distributive laws:
 - $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
 - $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- Negation:
 - $\neg \neg A \equiv A$
- De Morgan's laws:
 - $\neg (A \land B) \equiv \neg A \lor \neg B$
 - $\neg (A \lor B) \equiv \neg A \land \neg B$

Logical Laws and Tautologies [2]

- Implication:
 - $(A \to B) \equiv (\neg A \lor B)$
- Contraposition:
 - $(A \to B) \equiv (\neg B \to \neg A)$
- Law of Excluded Middle:
 - $(A \vee \neg A) \equiv \top$
- Contradiction:
 - $\bullet \ (A \land \neg A) \equiv \bot$
- Exportation:
 - $\bullet \ ((A \land B) \to C) \equiv (A \to (B \to C))$

Completeness of Connectives

- All Boolean functions can be expressed using $\{\neg, \land, \lor\}$ (so called "standard Boolean basis").
- Even smaller sets are sufficient:
 - $\{\neg, \land\}$ AIG (And-Inverter Graph), see also: <u>AIGER format</u>.
 - ${lack} \{\neg, \lor\}$
 - $\{\overline{\wedge}\}$ NAND
 - $\{\overline{\lor}\}$ NOR

Incompleteness of Connectives

To prove that a set of connectives is incomplete, we find a property that is true for all WFFs expressed using those connectives, but that is not true for some Boolean function.

Example: $\{\land, \rightarrow\}$ is not complete.

Proof: Let α be a WFF which uses only these connectives. Let ν be an interpretation such that $\nu(A_i)=1$ for all propositional variables A_i . Next, we prove by induction that $[\![\alpha]\!]_{\nu}=1$.

- Base case:
 - $[A_i]_{\nu} = \nu(A_i) = 1$
- Inductive step:
 - $\qquad \qquad \blacksquare \beta \wedge \gamma \rrbracket_{\nu} = \min(\llbracket \beta \rrbracket_{\nu}, \llbracket \gamma \rrbracket_{\nu}) = 1$
 - $\blacktriangleright \ [\![\beta \to \gamma]\!]_{\nu} = \max(1-[\![\beta]\!]_{\nu}, [\![\gamma]\!]_{\nu}) = 1$

Thus, $[\![\alpha]\!]_{\nu} = 1$ for all WFFs α built from $\{\land, \rightarrow\}$. However, $[\![\neg A_1]\!]_{\nu} = 0$, so there is no such formula α tautologically equivalent to $\neg A_1$.

§3 Semantical Aspects

Validity, Satisfiability, Entailment

□ Validity

- α is a **tautology** if α is true under all truth assignments. Formally, α is **valid**, denoted " $\models \alpha$ ", iff $[\![\alpha]\!]_{\nu} = 1$ for all interpretations $\nu \in \{0,1\}^V$.
- α is a **contradiction** if α is false under all truth assignments. Formally, α is **unsatisfiable** if $[\![\alpha]\!]_{\nu} = 0$ for all interpretations $\nu \in \{0,1\}^V$.

□ Satisfiability

- α is **satisfiable** (**consistent**) if there exists an interpretation $\nu \in \{0,1\}^V$ where $[\![\alpha]\!]_{\nu} = 1$. When α is satisfiable by ν , denoted $\nu \models \alpha$, this interpretation is called a **model** of α .
- α is **falsifiable** (**invalid**) if there exists an interpretation $\nu \in \{0,1\}^V$ where $\llbracket \alpha \rrbracket_{\nu} = 0$.

□ Entailment

- Let Γ be a set of WFFs. Then Γ tautologically implies (semantically entails) α , denoted $\Gamma \vDash \alpha$, if every truth assignment that satisfies all formulas in Γ also satisfies α .
- Formally, $\Gamma \vDash \alpha$ iff for all interpretations $\nu \in \{0,1\}^V$ and formulas $\beta \in \Gamma$, if $\nu \vDash \beta$, then $\nu \vDash \alpha$.
- Note: $\alpha \vDash \beta$, where α and β are WFFs, is just a shorthand for $\{\alpha\} \vDash \beta$.

Implication vs Entailment

The **implication** operator (\rightarrow) is a syntactic construct, while **entailment** (\models) is a semantical relation.

They are related as follows: $\alpha \to \beta$ is valid iff $\alpha \vDash \beta$.

Example: $A \to (A \lor B)$ is valid (a tautology), and $A \vDash A \lor B$

\overline{A}	B	$A \lor B$	$A o (A \lor B)$	$A \vDash A \lor B$
0	0	0	1	_
0	1	1	1	_
1	0	1	1	OK
1	1	1	1	OK

Examples

- $A \vee B \wedge (\neg A \wedge \neg B)$ is satisfiable, but not valid.
- $A \vee B \wedge (\neg A \wedge \neg B) \wedge (A \leftrightarrow B)$ is unsatisfiable.
- $\{A \rightarrow B, A\} \models B$
- $\{A, \neg A\} \vDash A \land \neg A$
- $\neg (A \land B)$ is tautologically equivalent to $\neg A \lor \neg B$.

Duality of SAT vs VALID

• **SAT**: Given a formula α , determine if it is satisfiable.

$$\exists \nu. \llbracket \alpha \rrbracket_{\nu}$$

• **VALID**: Given a formula α , determine if it is valid.

$$\forall \nu. \llbracket \alpha \rrbracket_{\nu}$$

- **Duality**: α is valid iff $\neg \alpha$ is unsatisfiable.
- Note: SAT is NP, but VALID is co-NP.

Solving SAT using Truth Tables

Algorithm for satisfiability:

To check whether α is satisfiable, construct a truth table for α . If there is a row where α evaluates to true, then α is satisfiable. Otherwise, α is unsatisfiable.

Algorithm for semantical entailment (tautological implication):

The check whether $\{\alpha_1,...,\alpha_k\} \vDash \beta$, check the satisfiability of $(\alpha_1 \land ... \land \alpha_k) \land (\neg \beta)$. If it is unsatisfiable, then $\{\alpha_1,...,\alpha_k\} \vDash \beta$. Otherwise, $\{\alpha_1,...,\alpha_k\} \nvDash \beta$.

Compactness

Recall:

- A WFF α is **satisfiable** if there exists an interpretation ν such that $\nu \vDash \alpha$.
- Hereinafter, let Γ denote a *finite* set of WFFs, and Σ denote a *possibly infinite* set of WFFs.
- A set of WFFs Σ is **satisfiable** if there exists an interpretation ν that satisfies all formulas in Σ .
- A set of WFFs Σ is **finitely satisfiable** if every finite subset of Σ is satisfiable.

Theorem 1 (Compactness Theorem): A set of WFFs Σ is satisfiable iff it is finitely satisfiable.

Proof (\Rightarrow): Suppose Σ is satisfiable, i.e. there exists an interpretation ν that satisfies all formulas in Σ .

This direction is trivial: any subset of a satisfiable set is clearly satisfiable.

- For each finite subset $\Sigma' \subset \Sigma$, ν also satisfies all formulas in Σ' .
- Thus, every finite subset of Σ is satisfiable.

Compactness [2]

Proof (\Leftarrow): Suppose Σ is finitely satisfiable, i.e. every finite subset of Σ is satisfiable.

Construct a *maximal* finitely satisfiable set Δ as follows:

- Let $\alpha_1, ..., \alpha_n, ...$ be a fixed enumeration of all WFFs.
 - This is possible since the set of all sequences of a countable set is countable.
- Then, let:

$$\begin{split} &\Delta_0 = \Sigma, \\ &\Delta_{n+1} = \begin{cases} \Delta_n \cup \{\alpha_{n+1}\} \text{ if this is finitely satisfiable,} \\ &\Delta_n \cup \{\neg \alpha_{n+1}\} \text{ otherwise.} \end{cases} \end{split}$$

• Note that each Δ_n is finitely satisfiable by construction.

Compactness [3]

- Let $\Delta = \bigcup_{n \in \mathbb{N}} \Delta_n$. Note:
 - 1. $\Sigma \subseteq \Delta$
 - **2.** $\alpha \in \Delta$ or $\neg \alpha \in \Delta$ for any WFF α
 - **3.** Δ is finitely satisfiable by construction.

Now we need to show that Δ is satisfiable (and thus $\Sigma \subseteq \Delta$ is also satisfiable).

Define an interpretation ν as follows: for each propositional variable p, let $\nu(p)=1$ iff $p\in\Delta$.

We claim that $\nu \models \alpha$ iff $\alpha \in \Delta$. The proof is by induction on well-formed formulas.

- Base case:
 - Suppose $\alpha \equiv p$ for some propositional variable p.
 - By definition, $[\![p]\!]_{\nu} = \nu(p) = 1$.
- Inductive step:
 - (Note: we consider only two cases: \neg and \land , since they form a complete set of connectives.)
 - Suppose $\alpha \equiv \neg \beta$.
 - $-\ [\![\alpha]\!]_{\nu}=1\ \mathrm{iff}\ [\![\beta]\!]_{\nu}=0\ \mathrm{iff}\ \beta\notin\Delta\ \mathrm{iff}\ \neg\beta\in\Delta\ \mathrm{iff}\ \alpha\in\Delta.$

Compactness [4]

- Suppose $\alpha \equiv \beta \wedge \gamma$.
 - $-\ [\![\alpha]\!]_{\nu}=1 \text{ iff both } [\![\beta]\!]_{\nu}=1 \text{ and } [\![\gamma]\!]_{\nu}=1 \text{ iff both } \beta\in\Delta \text{ and } \gamma\in\Delta.$
 - If both β and γ are in Δ , then $\beta \wedge \gamma$ is in Δ , thus $\alpha \in \Delta$.
 - Why? Because if $\beta \land \gamma \notin \Delta$, then $\neg(\beta \land \gamma) \in \Delta$. But then $\{\beta, \gamma, \neg(\beta \land \gamma)\}$ is a finite subset of Δ that is not satisfiable, which is a contradiction of Δ being finitely satisfiable.
 - Similarly, if either $\beta \notin \Delta$ or $\gamma \notin \Delta$, then $\beta \land \gamma \notin \Delta$, thus $\alpha \notin \Delta$.
 - Why? Again, suppose $\beta \land \gamma \in \Delta$. Since $\beta \notin \Delta$ or $\gamma \notin \Delta$, at least one of $\neg \beta$ or $\neg \gamma$ is in Δ . Wlog, assume $\neg \beta \in \Delta$. Then, $\{\neg \beta, \beta \land \gamma\}$ is a finite subset of Δ that is not satisfiable, which is a contradiction of Δ being finitely satisfiable.
 - Thus, $[\![\alpha]\!]_{\nu}=1$ iff $\alpha\in\Delta$.

This shows that $[\![\alpha]\!]_{\nu} = 1$ iff $\alpha \in \Delta$, thus Δ is satisfiable by ν .

Compactness [5]

Corollary 1.1: If $\Sigma \vDash \alpha$, then there is a finite $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \vDash \alpha$.

Proof: Suppose that $\Sigma_0 \nvDash \alpha$ for every finite $\Sigma_0 \subseteq \Sigma$.

Then, $\Sigma_0 \cup \{\neg \alpha\}$ is satisfiable for every finite $\Sigma_0 \subseteq \Sigma$, that is, $\Sigma \cup \{\neg \alpha\}$ is finitely satisfiable.

Then, by the compactness theorem, $\Sigma \cup \{\neg \alpha\}$ is satisfiable, thus $\Sigma \nvDash \alpha$, which contradicts the theorem assumption that $\Sigma \vDash \alpha$.

§4 Proof Systems

Natural Deduction

- Natural deduction is a proof system for propositional logic.
- Axioms:
 - No axioms.
- Rules:
 - **Introduction**: ∧-introduction, ∨-introduction, →-introduction, ¬-introduction.
 - ▶ **Elimination**: \land -elimination, \lor -elimination, \rightarrow -elimination.
 - Reduction ad Absurdum
 - ▶ Law of Excluded Middle (note: forbidden in *intuitionistic* logic)
- **Proofs** are constructed by applying rules to assumptions and previously derived formulas.

$$\underbrace{\frac{A_1,...,A_n\vdash A}{\text{sequent}}} \qquad \qquad \underbrace{\frac{\Gamma_1\vdash (\textit{premise 1})\quad \Gamma_2\vdash (\textit{premise 2})\quad ...}{\Gamma\vdash (\textit{conclusion})}}_{\text{rule name}} \text{ rule name}$$

Inference Rules

$$\frac{}{\Gamma \vdash \varphi \lor \neg \varphi}$$
 law of excluded middle

$$\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \neg \alpha}{\Gamma \vdash \beta} \text{ reduction ad absurdum}$$

$$\frac{\Gamma \vdash \alpha \land \beta}{\Gamma \vdash \alpha} \land \text{-elimination}$$

$$\left[\frac{\Gamma \vdash \alpha \land \beta}{\Gamma \vdash \beta} \land \text{-elimination} \right]$$

$$\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \beta}{\Gamma \vdash \alpha \land \beta} \land \text{-introduction}$$

$$\frac{\Gamma \vdash \alpha_1 \lor \alpha_2 \qquad \Gamma, \alpha_1 \vdash \beta \qquad \Gamma, \alpha_2 \vdash \beta}{\Gamma \vdash \beta} \lor \text{-elim}$$

$$\left| \begin{array}{c} \Gamma \vdash \alpha \\ \overline{\Gamma \vdash \alpha \lor \beta} \end{array} \lor \text{-intro} \right| \left| \begin{array}{c} \Gamma \vdash \beta \\ \overline{\Gamma \vdash \alpha \lor \beta} \end{array} \lor \text{-intro} \right|$$

$$\frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta} \lor \text{-intro}$$

$$\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \alpha \to \beta}{\Gamma \vdash \beta} \to \text{-elimination}$$

$$\frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \to \text{-introduction}$$

Example Derivation

Example:
$$p \land q, r \vdash q \land r$$
premises conclusion

Proof tree:

Linear proof (Fitch notation):

- **4.** $q \wedge r \wedge \mathbf{i} \ \mathbf{2,3}$

Exercises

1.
$$\vdash (b \rightarrow c) \rightarrow ((\neg b \rightarrow \neg a) \rightarrow (a \rightarrow c))$$

2.
$$a \lor b \vdash b \lor a$$

3.
$$a \rightarrow c, b \rightarrow c, a \lor b \vdash c$$

4.
$$\neg a \lor b \vdash a \to b$$

5.
$$a \rightarrow b \vdash \neg a \lor b$$

6.
$$a \rightarrow b, a \rightarrow \neg b \vdash \neg a$$

7.
$$\neg p \rightarrow \bot \vdash p$$
 (with allowed $\neg \neg E$)

8.
$$\vdash p \lor \neg p$$

9.
$$a \lor b, b \lor c, \neg b \vdash a \land c$$

10.
$$a \lor (b \to a) \vdash \neg a \to \neg b$$

11.
$$p \rightarrow \neg p \vdash \neg p$$

12.
$$a \rightarrow b, \neg b \vdash \neg a$$

13.
$$((a \rightarrow b) \rightarrow a) \rightarrow a$$

14.
$$\neg a \rightarrow \neg b \vdash b \rightarrow a$$

15.
$$\vdash (a \rightarrow b) \lor (b \rightarrow a)$$

Soundness and Completeness

- A formal system is **sound** if every provable formula is true in all models.
 - Weak soundness: "every provable formula is a tautology".

If
$$\vdash \alpha$$
, then $\models \alpha$.

• **Strong soundness**: "every derivable (from Γ) formula is a logical consequence (of Γ)".

If
$$\Gamma \vdash \alpha$$
, then $\Gamma \vDash \alpha$.

- A formal system is **complete** if every formula true in all models is provable.
 - Weak completeness: "every tautology is provable".

If
$$\vDash \alpha$$
, then $\vdash \alpha$.

▶ **Strong completeness**: "every logical consequence (of Γ) is derivable (from Γ)".

If
$$\Gamma \vDash \alpha$$
, then $\Gamma \vdash \alpha$.

Some Random Links

- https://plato.stanford.edu/entries/proof-theoretic-semantics/
- https://math.stackexchange.com/a/3318545

TODO

- Normal forms
- ☐ Canonical normal forms
- ☐ BDDs
- ✓ Natural deduction
- ☐ Sequent calculus
- ☐ Fitch notation
- ☐ Proof checkers
- ☐ Proof assistants
- ☐ Automatic theorem provers
- ☐ Abstract proof systems
- ☐ Intuitionistic logic
- Soundnsess and completeness
- ☐ Proof of soundness
- ☐ Proof of completeness