Obliczenia

Wykonane pomiary kąta łamiącego

szerokość wiązki		0.1°		
podziałka stolika			0.1°	
Lp.	γ ₁ [°]	γ ₂ [°]	$\varphi = \frac{1}{2} (\gamma_2 - \gamma_1) [^{\circ}]$	
1.	62.3	182.5	60.10	N.C.
2.	59.4	180.3	60.45	6.13
3.	59.7	179.9	60.10	
4.	59.5	179.7	60.10	
5.	60.6	180.8	60.10	
6.	62.6	183.8	60.60	7,0,
7.	61.4	181.3	59.95	"SINOTOSII"
8.	62.2	182.3	60.05	
9.	59.8	179.7	59.95	
10.	57.4	178.8	60.70	1/0.
Sirednia $\overline{p} = \frac{1}{N} \sum_{i}^{N}$	wartość kąta $\sum_{i=1}^{N} \varphi_i$	a łamiącego		
$\bar{\varphi} = 60$			2//W/	

$$\bar{\varphi} = \frac{1}{N} \sum_{i=1}^{N} \varphi_i$$

$$\bar{\varphi} = 60.21^{\circ}$$

Odchylenie standardowe wartości średniej

$$\sigma = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (\varphi_i - \bar{\varphi})^2}$$

$$\sigma = 0.08557^{\circ}$$

Niepewność typu A

$$u_{\alpha}(\bar{\varphi}) = \sigma \cdot t_{\alpha,N}$$

$$t_{0.6826,10} = 1.059$$

$$u_a(\bar{\varphi}) = 0.09062^{\circ}$$

Niepewność typu B

$$u_b(\varphi) = \frac{\Delta \varphi}{\sqrt{3}}$$

$$\Delta \varphi = 0.2^{\circ}$$

$$u_b(\varphi) = 0.1155^{\circ}$$

$$\Delta\varphi=0.2^\circ$$
 $u_b(\varphi)=0.1155^\circ$ Niepewność całkowita
$$u(\varphi)=\sqrt{u_a^2(\varphi)+u_b^2(\varphi)}$$
 $u(\varphi)=0.15^\circ$ Średnia wartość kąta łamiącego wraz z niepewnością
$$\varphi=60.21(15)^\circ$$

$$u(\varphi) = 0.15^{\circ}$$

$$\bar{\varphi} = 60.21(15)^{\circ}$$

Wykonane pomiary kąta minimalnego odchylenia

szerokość wiązki		0.1°							
podziałka stolika		0.1°							
Lp.	γ ₁ [°]	γ ₂ [°]	$\delta = \frac{1}{2} (\mathcal{E}_2 - \mathcal{E}_1) [^{\circ}]$						
1.	82.0	159.0	38.50						
2.	81.8	158.9	38.55						
3.	81.9	159.9	39.00						
4.	82.1	159.0	38.45	17.0					
5.	82.0	158.9	38.45	" 1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Odchylenie standardowe wartości średniej									
$\sigma = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (\delta_i - \overline{\delta})^2}$ $\sigma = 0.1042^\circ$ Niepewność typu A									
Niepewność typu A									
$u_a(\bar{\delta}) = \sigma \cdot t_{\alpha,N}$									

$$\bar{\delta} = \frac{1}{N} \sum_{i=1}^{N} \delta_i$$

$$\bar{\delta} = 38.59^{\circ}$$

$$\sigma = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (\delta_i - \overline{\delta})^2}$$

$$\sigma = 0.1042^{\circ}$$

$$u_{\sigma}(\bar{\delta}) = \sigma \cdot t_{\sigma N}$$

$$t_{0.6926} = 1.141$$

$$u_a(\overline{\delta})=0.1189^\circ$$

Niepewność typu B

$$u_b(\delta) = \frac{\Delta \varphi}{\sqrt{3}}$$

$$\Delta \delta = 0.2^{\circ}$$

$$u_b(\delta) = 0.1155^{\circ}$$

Niepewność całkowita

$$u(\delta) = \sqrt{u_a^2(\delta) + u_b^2(\delta)}$$

$$u(\delta) = 0.17^{\circ}$$

$$\delta = 38.59(17)^{\circ}$$

ojthub.com/krtsthuitk/post-spranotolania-ithyka

Współczynnik załamania dla badanego pryzmatu

$$n = \frac{\sin\left(\frac{1}{2}(\varphi + \delta)\right)}{\sin\left(\frac{1}{2}\varphi\right)}$$

$$n = 1.514$$

Niepewność z prawa propagacji niepewności

$$u(y) = \sqrt{\sum_{i=1}^{k} \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$u(n) = \sqrt{\left(\frac{\partial n}{\partial \varphi}u(\varphi)\right)^2 + \left(\frac{\partial n}{\partial \delta}u(\delta)\right)^2}$$

$$=\sqrt{\frac{\frac{1}{2}\cos\left(\frac{1}{2}(\varphi+\delta)\right)\cdot\sin\left(\frac{1}{2}\varphi\right)-\sin\left(\frac{1}{2}(\varphi+\delta)\right)\cdot\frac{1}{2}\cos\left(\frac{1}{2}\varphi\right)}{\sin^2\left(\frac{1}{2}\varphi\right)}}u(\varphi)}\right)^2+\left(\frac{\frac{1}{2}\cos\left(\frac{1}{2}(\varphi+\delta)\right)}{\sin\left(\frac{1}{2}\varphi\right)}u(\delta)\right)^2}$$

5103/118/11/1K

$$u(n) = 0.14$$

Współczynnik załamania dla badanego pryzmatu wraz z niepewnością

$$n = 1.51(14)$$

Zestawienie wyników końcowych

Kąt łamiący	$\varphi = 60.21(15)^{\circ}$	
Kąt minimalnego odchylenia	$\delta = 38.59(17)^{\circ}$	
Współczynnik załamania światła	n = 1.51(14)	

Porównanie otrzymanych wyników z danymi tablicowymi

Warunek zgodności pomiaru z wartością dokładną

$$|y - y_0| < U(y)$$

Niepewności rozszerzone

$$U(y) = k \cdot u(y)$$

$$k = 2$$

$$U(\varphi) = 0.30^{\circ}$$

$$U(\delta) = 0.34^{\circ}$$

$$U(n) = 0.28$$

ąt minimumego odeny tema									
półczynnik załamania światła	n = 1.51(14)								
ymanych wyników z danymi tablicowymi ci pomiaru z wartością dokładną zerzone									
otrzymany wynik	wartość tablicowa								
$\varphi = 60.21 \pm 0.30^{\circ}$	60.00 ± 0.50°								
$\delta = 38.59 \pm 0.34^{\circ}$	-								
$n = 1.51 \pm 0.28$	n = 1.52								

Otrzymana wartość współczynnika załamania światła dla badanego pryzmatu jest zgodna z tablicową wartością współczynnika załamania kronu. Pomiar kąta łamiącego również jest zgodny z wartością kąta łamiącego dla pryzmatu z kronu w tablicach. Użyty podczas laboratorium pryzmat był zbudowany z kronu, co wskazuje na to, że eksperyment został przeprowadzony poprawnie.

Wartość współczynnika załamania nie jest powszechnie dostępna w tablicach, jednak prawdopodobnie również została wyznaczona poprawnie, czym świadczy że obliczony za jej pomocą współczynnik załamania jest zgodny z danymi tablicowymi.

Wnioski

Za pomocą pryzmatu można dokładnie wyznaczyć współczynnik załamania światła dla materiału, z którego zbudowany jest pryzmat. Przeprowadzony eksperyment daje pewność co do właściwości optycznych badanego pryzmatu i skuteczności zastosowanych metod pomiarowych. Niepewność zmierzonego kąta łamiącego była mniejsza niż niepewność kąta minimalnego odchylenia, ponieważ wykonano więcej pomiarów. Można było osiągnąć mniejszą niepewność wyniku, powtarzając pomiar

, pon , rzając po , rzając po