中山大学数据科学与计算机学院本科生实验报告

(2019 学年秋季学期)

课程名称: 计算机组成原理实验 任课教师: 郭雪梅 助教: 丁文、汪庭葳

年级&班级	2019 级 04 班	专业(方向)	计算机科学与技术 (超算方向)
学号	19335112	姓名	李钰
电话	19847352856	Email	1643589912@qq.com
开始日期	2020.10.16	完成日期	2020.10.17

一、实验题目

实验六 MIPS 汇编程序设计

二、实验目的

- 1. 熟悉 MIPS 汇编程序开发环境,学习使用 MARs 工具。知道如何查看内存空间分配。
- 2. 了解 C 语言语句与汇编指令之间的关系。
- 3. 掌握 MIPS 汇编程序设计,掌握 MARs 的调试技术。
- 4. 了解 MIPS 汇编语言与机器语言之间的对应关系。
- 5. 熟悉常见的 MIPS 汇编指令
- 6. 掌握程序的内存映像。

熟悉 MIPS 汇编程序开发环境,学习使用 MARs 工具。知道如何查看内存空间分配

三、实验内容

1. 编写 **swap** 函数实现两个数之间的交换 swap 函数

swap:

move \$fp, \$sp #FRAME POINTER NOW POINTS TO THE TOP OF STACK

addiu \$sp,\$sp,-16 #ALLOCATE 16 BYTES IN THE STACK

lw \$t0 0(\$a0) #a0 中存着 n1 的地址,将该地址处的数存到\$t0 中

sw \$t0 0(\$sp) #再将\$t0 中的数写入到栈里

lw \$t0 0(\$a1) #同理

```
sw $t0 0($a0) #将$t 里的数直接写到$a0 中
lw $t0 0($sp) #出栈
sw $t0 0($a1)
addiu $sp,$sp,16
jr $31
2. 用汇编程序实现以下伪代码, 要求使用移位指令实现乘除法运算
Int main ()
{
Int K,Y;
Int Z[50];
Y=56;
For(k=0;k<50;K++) Z[k]=Y-16*(k/4+210);
}
```

1.C 语言分析:

有两个变量是 int 型,一个数组型;还有一个循环执行过程。

2.汇编程序实现分析:

首先需要定义用户数据段,获得一个内存空间作为数组空间。再选定几个寄存器作为 K,Y 以及输出,其中输出输出和 Y 可以合用一个寄存器。3.设计思路:

分配完空间地址后,最重要的是完成循环控制。循环控制有两个思路: 可以是先判断后循环;或者是先循环后判断

即如图

4.程序实现及调试分析

(1)汇编程序代码实现:

<方法一>

.data

z: .space 50 #为数组 z 申请 50 个内存空间

.text

main:

la \$t0, z #将数组的地址写入\$t0

loop:

slti \$t1, \$s0, 50 #若 \$s0 < 50 则 \$t1 = 1,循环继续

bne \$t1, 1, end #若 \$t1!=1 则循环结束

srl \$t6, \$s0, 2 #k/4

addi \$t6, \$t6, 210 #k/4 + 210

mul \$t9, \$t9, 16

sll \$t6, \$t6, 4 #乘以 16 相当于左移 4 位 16 *(k/4 + 210)

sub \$t6, \$s1, \$t6 # 56 - 16 *(k/4 + 210)

地址

addi \$s0, \$s0, 1 #k++

j loop

end:

<方法二>

.data

z: .space 50 #为数组 z 申请 50 个内存空间

.text

main:

la \$t0, z #将数组的地址写入\$t0

loop:

srl \$t6, \$s0, 2 #k/4

addi \$t6, \$t6, 210 #k/4 + 210

sll \$t6, \$t6, 4 #乘以 16 相当于左移 4 位 16 *(k/4 + 210)

sub \$t6, \$s1, \$t6 # 56 - 16 *(k/4 + 210)

地址

addi \$s0, \$s0, 1 #k++

slti \$t1, \$s0, 50 #若 \$s0 < 50 则 \$t1 = 1,循环继续

beq \$t1, 1, loop

(2)调试过程

编写程序:详细见代码

装载程序

如果没有错误,便运行。

运行之后点击不同的窗口便可得到我们想要的结果。具体详细结果如下图内存占用情况映像

分析:数组地址

数据段内存映像

表格如下(数值都采用16进制)

内存地址	变量	值	内存地址	变量	值
					IE.
(16 进制)	名		(16 进制)	名 	
0x10010000	Z [0]	0xfffff318	0x10010064	Z[25]	0xfffff2b8
0x10010004	Z [1]	0xfffff318	0x10010068	Z [26]	0xfffff2b8
0x10010008	Z [2]	0xfffff318	0x1001006c	Z [27]	0xfffff2b8
0x1001000c	Z[3]	0xfffff318	0x10010070	Z[28]	0xfffff2a8
0x10010010	Z [4]	0xfffff308	0x10010074	Z[29]	0xfffff2a8
0x10010014	Z [5]	0xfffff308	0x10010078	Z[30]	0xfffff2a8
0x10010018	Z [6]	0xfffff308	0x1001007c	Z[31]	0xfffff2a8
0x1001001c	Z [7]	0xfffff308	0x10010080	Z[32]	0xfffff298
0x10010020	Z [8]	0xfffff2f8	0x10010084	Z[33]	0xfffff298
0x10010024	Z [9]	0xfffff2f8	0x10010088	Z[34]	0xfffff298
0x10010028	Z [10]	0xfffff2f8	0x1001008c	Z[35]	0xfffff298
0x1001002c	Z [11]	0xfffff2f8	0x10010090	Z [36]	0xfffff288
0x10010030	Z[12]	0xfffff2e8	0x10010094	Z[37]	0xfffff288
0x10010034	Z[13]	0xfffff2e8	0x10010098	Z[38]	0xfffff288

0x10010038	Z [14]	0xfffff2e8	0x1001009c	Z[39]	0xfffff288
0x1001003c	Z[15]	0xfffff2e8	0x100100a0	Z [40]	0xfffff278
0x10010040	Z [16]	0xfffff2d8	0x100100a4	Z [41]	0xfffff278
0x10010044	Z [17]	0xfffff2d8	0x100100a8	Z [42]	0xfffff278
0x10010048	Z[18]	0xfffff2d8	0x100100ac	Z[43]	0xfffff278
0x1001004c	Z[19]	0xfffff2d8	0x100100b0	Z [44]	0xfffff268
0x10010050	Z [20]	0xfffff2c8	0x100100b4	Z[45]	0xfffff268
0x10010054	Z[21]	0xfffff2c8	0x100100b8	Z [46]	0xfffff268
0x10010058	Z[22]	0xfffff2c8	0x100100bc	Z[47]	0xfffff268
0x1001005c	Z[23]	0xfffff2c8	0x100100c0	Z[48]	0xfffff258
0x10010060	Z [24]	0xfffff2b8	0x100100c4	Z[49]	0xfffff258

地址 机器码 汇编指令

[00400014] 0c100009 jal 0x00400024 [main]

[00400018] 00000000 **nop**

[0040001c] 3402000a ori \$2, \$0, 10

[00400020] 0000000c **syscall**

[00400024] 3c101001 lui \$16, 4097 [z]

五、实验感想

通过这次实验,学会了堆栈的使用以及为数组赋值的方法,理解了二者之间的不同之处,编写代码的过程中要格外注意取地址还是取值。