

One-Handed PLL Algorithms

Developed by Feliks Zemdegs and Andy Klise

Algorithm Presentation Format

Round brackets are used to segment algorithms to assist memorisation and group move triggers.

Moves in square brackets at the end of algorithms denote a U face adjustment necessary to complete the cube from the states specified.

It is recommended to learn the algorithms in the order presented.

Permutations of Edges Only

z (U' R U' R') (U' R' U' R) U R U2' y2 z U2' R U (R U' R' U') (R' U' R U')

Ub - Probability = 1/18

(R U' R U) R U (R U' R' U') R2 y2 (R2 U' R' U') R U R U (R U' R)

Ua - Probability = 1/18

y (R' U' R U') (R U R U') (R' U R U) R2 U' R' [U2] R2 U2' R U2' R2 U2' R2 U2' R U2' R2

Z - Probability = 1/36

H - Probability = 1/72

Permutations of Corners Only

x (R' U R') D2 (R U' R') D2 R2 x' x' U2' R2 (U' L' U) R2 (U' L U') x

Aa - Probability = 1/18

x R2' D2 (R U R') D2 (R U' R) x' x' z (R U' R) z' R2 (U' L U) R2 U2' x

Ab - Probability = 1/18

y R2 U R' U' y (R U R' U') (R U R' U') (R U R') y' R U' R2 x' (R U' R' D) (R U R' D') (R U R' D) (R U' R' D') x

E - Probability = 1/36

Swap One Set of Adjacent Corners

(R U' R' U') (R U R D) (R' U' R D') (R' U2' R') [U'] (R U R' F') (R U2' R' U2') (R' F R U) (R U2' R') [U']

Ra - Probability = 1/18

(R' U2' R' D') (R U' R' D) (R U R U') (R' U' R) [U'] (R' U2' R U2') R' F (R U R' U') R' F' R2 [U']

Rb - Probability = 1/18

(R' U L' U2) (R U' R' U2' R) L [U'] y' z (U' R2 U R U' R2) z' (R U' L U R')

Ja - Probability = 1/18

R U2' R'U' R U2' L' U R'U' L

Jb - Probability = 1/18

(R U R' U') (R' F R2 U') R' U' (R U R' F')

T - Probability = 1/18

y' (R U R' U') (R' U R U2') L' (R' U R U') L (U' R U' R') (R' U' F') (R U R' U') (R' F R2 U') (R' U' R U) (R' U R)

F - Probability = 1/18

Swap One Set of Diagonal Corners

 $\begin{array}{l} (R'\ U\ R\ U')\ x'\ (U\ R\ U2'\ R')\ (U'\ R\ U'\ R')\ U2'\ (R\ U\ R'\ U') \\ (R'\ U2'\ R\ U2')\ L\ U'\ R'\ z\ R\ U'\ R\ U\ R'\ D\ R\ U' \end{array}$

V - Probability= 1/18

F (R U' R' U') (R U R' F') (R U R' U') (R' F R F')
y (R U R2 U) L' U2 R U' R' U2' L (R U' R U' R')

Y - Probability = 1/18

(L U' R U2' L' U R') (L U' R U2' L' U R') [U'] (R U' L U2' R' U L') (R U' L U2' R' U L') [U']

Na - Probability = 1/72

(R' U L' U2 R U' L) (R' U L' U2 R U' L) [U] (L' U R' U2 L U' R) (L' U R' U2 L U' R) [U]

Nb - Probability = 1/72

G Permutations (Double cycles)

R2 U (R' U R' U') (R U' R2) D U' (R' U R D') [U] R2 u (R' U R' U') R u' R2 z (U' R U)

Ga - Probability = 1/18

y' (R' U' R U) D' (R2 U R' U) (R U' R U') R2 D [U'] y' (R' U' R) y (R2 u R' U) (R U' R u') R2

Gb - Probability = 1/18

R2 U' (R U' R U) (R' U R2 D') (U R U' R') D [U']

Gc - Probability = 1/18

D' (R U R' U') D (R2 U' R U') (R' U R' U) R2 [U] (R U R') y (R2 u' R U') (R' U R' u) R2

Gd - Probability = 1/18

