Assintotas

1.1 Horizontais

Para encontrar as assintotas horizontais de uma função f(x) devemos calcular:

$$\lim_{x \to +\infty} f(x)$$

$$\lim_{x \to -\infty} f(x)$$

Caso seja um qualquer número $n \in \mathbb{R}$, então n é assintota horizontal.

1.2 Verticais

Para encontrar as assintotas verticais de uma função racional f(x) devemos primeiro encontrar os zeros do denominador. De seguida devemos calcular o limite de f(x) quando x tende para esses zeros:

$$\lim_{x \to z} f(x)$$

Caso seja $+\infty$ ou $-\infty$ então z é assintota vertical de f(x).

1.3 Obliquas

Para encontrar as assintotas obliquas de uma função f(x) devemos primeiro encontrar o seu declive, calculando:

$$\lim_{x \to +\infty} \frac{f(x)}{x}$$

 ${\bf E}$ de seguida encontrar o seu valor de b, através de:

$$\lim_{x \to +\infty} (f(x) - mx)$$

Limites

2.1 Indeterminações

As indeterminações mais comuns são:

- $\frac{0}{0}$ Fatorizar numerador e denominador
- $\frac{\infty}{\infty}$ Dividir o numerador e denominador pelo x de maior grau.

 $0\times\infty$ Formas do tipo $0\times\infty$ podem ser transformadas em $\frac{0}{\frac{1}{0}}$ ou $\frac{\infty}{\frac{1}{0}}$

2.2 Regra de L'Hopital

Para resolver indeterminações do tipo $\frac{\infty}{\infty}$ ou $\frac{0}{0}$ é possível utilizar a regra de L'Hopital, que consiste em derivar o numerador e o denominador da fração individualmente e a partir das suas derivadas calcular o limite inicial.

Série

3.1 Convergência e divergência

A série $\sum a_n$ diz-se convergente se for limitada. Caso contrário é divergente.

3.2 Critério de Cauchy-Bolzano

Uma série $\sum a_n$ é convergente se, e só se dadas quaisquer subsucessões T_N-U_N da sucessão das somas parciais, a diferença T_N-U_N tende para zero. Logo:

- Se a série $\sum a_n$ é convergente, então $\lim a_n = 0$
- Se a série $\sum a_n$ é divergente nada se conclui.
- Se $\lim a_n \neq 0$ então a série $\sum a_n$ é divergente.
- Se $\lim a_n = 0$ nada se conclui.

Ou seja, toda a série convergente tem limite igual a 0 mas as séries divergentes podem ter qualquer limite.

3.3 Série geométrica

Uma série diz-se geométrica de razão r se é do tipo:

$$\sum ar^n$$

3.3.1 Somas parciais de uma série geométrica

Considere-se a série geométrica $\sum_{n=0}^{\infty}r^{n},$ com $r\neq1.$ Para cada $N\geq0,$ tem-se:

$$S_N = \sum_{n=0}^{N} r^n = 1 + r + r^2 + \dots + r^N = \frac{1 - r^{N+1}}{1 - r}$$

3.3.2 Convergência da série geométrica

Uma série geométrica de razão r é convergente se e só se -1 < r < 1. Sendo a_1 o primeiro termo, a soma da série geométrica convergente é:

$$a_1 \times \frac{1}{1-r}$$

3.4 Séries redutivas ou de Mengoli

Uma série diz-se redutiva ou série de Mengoli se é do tipo:

$$\sum_{n=1}^{\infty} (u_n - u_{n+k})$$

3.4.1 Convergência da série redutiva

A série $\sum_{n=1}^{\infty} (u_n - u_{n+k})$ é convergente se u_n for convergente. Se $\lim u_n = a \in \mathbb{R}$, a soma da série é:

$$\sum_{n=1}^{\infty} (u_n - u_{n+k}) = u_1 + \dots + u_k - ka$$

3.5 Séries de Dirichlet

Uma série diz-se de Dirichlet se for da forma $\sum \frac{1}{n^k}$, com $k \in \mathbb{R}$.

3.5.1 Convergência da série de Dirichlet

Uma série de Dirichlet $\sum \frac{1}{n^k}$ converge se, e só se k > 1.

3.6 Séries de termos positivos

Uma série $\sum a_n$ diz-se de termos positivos se $a_n>0$ para todo $n\in\mathbb{N}$. A sucessão de todas as somas parciais de $\sum a_n$ é estritamente crescente.

3.7 Resumo

\sum	Forma	Convergencia
Geométrica	$\sum ar^n$	-1 < r < 1
Mengoli	$\sum (u_n - u_{n+k})$	u_n converge
Dirichlet	$\sum \frac{1}{n^k}$	k > 1
Termos positivos	$a_n > 0, \forall n \in \mathbb{N}$	

Geométrica:

soma total: $a_1 \times \frac{1}{1-r}$ sendo a_1 o primeiro termo.

soma parcial:

$$S_N = \sum_{n=0}^{N} r^n = 1 + r + r^2 + \dots + r^N = \frac{1 - r^{N+1}}{1 - r}$$

Mengoli:

soma total:

$$\sum_{n=1}^{\infty} (u_n - u_{n+k}) = u_1 + \dots + u_k - ka$$

sendo $a = \lim u_n$.

3.8 Critérios

3.8.1 Critério da Razão ou de D'Alembert

Seja $\sum a_n$ uma série de termos positivos e $a = \lim \frac{a_{n+1}}{a_n}$, então:

- Se a < 1 a série é convergente
- Se a > 1 a série é divergente
- Se a = 1 nada se conclui

3.8.2 Critério da raiz ou de Cauchy

Seja $\sum a_n$ uma série de termos positivos e $a=\lim \sqrt[n]{a_n}$, então:

- Se a < 1 a série é convergente
- Se a > 1 a série é divergente
- Se a=1 nada se conclui

3.9 Critérios de comparação

3.9.1 Primeiro critério de comparação

Sejam $\sum a_n$ e $\sum b_n$ séries de termos positivos, com $a_n \leq b_n$, pelo menos a partir de certa ordem, então:

- Se $\sum a_n$ é divergente então $\sum b_n$ é divergente
- Se $\sum b_n$ é convergente, então $\sum a_n$ é convergente

3.9.2 Segundo critério de comparação

Sejam $\sum a_n$ e $\sum b_n$ séries de termos positivos e $L = \lim \frac{a_n}{b_n}$, então:

- Se L=0 ou $L=+\infty,$ aplica-se o primeiro critério de comparação.
- Se $0 < L < +\infty$, então as duas séries são da mesma natureza, i.e. ambas convergentes ou ambas divergentes.

Taylor

4.1 Fórmula de Taylor

Se $f:A\to\mathbb{R}$ é uma função n vezes diferenciável em $a\in A$, então existe um único polinómio $T_n(x)$, de grau não superior a n, tal que:

$$f(x) = T_n(x) + o((x-a)^n)$$

Sendo que $T_n(x)$ é o polinómio de f, de ordem n, em a:

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(a)}(a)}{n!}(x-a)^n$$

4.2 Fórmula de MacLaurin

No caso de a=0 dá-se o nome de fórmula de MacLaurin:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(a)}(0)}{n!}x^n + o(x^n)$$

Primitiva

5.1 Primitivas Imediatas

- $\bullet \quad \int ku^{k-1} \cdot u' = u^k + C$
- $\int \frac{1}{u} \cdot u' = u^k + C$
- $\int \cos(u) \cdot u' = \sin(u) + C$
- $\int -\sin(u) \cdot u' = \cos(u) + C$
- $\int \frac{1}{1+u^2} \cdot u' = \arctan(u) + C$

5.2 Operações elementares

- $\int (f+g) = \int f + \int g$
- $\int (kf) = k \int f$

5.3 Técnicas de primitivação

5.3.1 Primitivação por partes

$$\int f'g = fg - \int fg'$$

5.3.2 Primitivação por substituição

$$\int f(x)dx = \int f(x(t)) \cdot x'(t)dt|_{t=t(x)}$$

5.4 Funções racionais

Uma $função\ racional$ é uma função que é expressa como quociente de duas funções:

$$f(x) = \frac{P(x)}{Q(x)}$$

A função diz-se própria se o grau de P é menor que o grau de Q.

5.4.1 Funções racionais impróprias

No caso de termos uma função racional imprópria, o primeiro passo consiste em efetuar a divisão de polinómios, para ficarmos com uma função racional própria.

5.4.2 Funções racionais próprias

No caso de termos uma função racional própria $f(x) = \frac{P(x)}{Q(x)}$:

- Decompomos o denominador em fatores
- Escrevemos a fração racional como soma de frações racionais mais simples
- Primitivamos

Integral

6.1 Média integral

A média integral de f em [a, b] é:

$$\frac{1}{b-a} \int_{a}^{b} f(t)dt$$

6.2 Função integral indefinido

Dado $a \in I$, chamamos $integral\ indefinido$ com origem em a á função $F:I \to \mathbb{R}$ definida por:

$$F(x) = \int_{a}^{x} f(t)dt$$

6.2.1 Derivada da função integral indefinido

Seja a uma constante, u(x) uma expressão de x e t uma variável. Temos

$$G(x) = \int_{a}^{u(x)} f(t)dt \tag{6.1}$$

$$G'(x) = f(u(x)) \cdot u'(x) \tag{6.2}$$

Caso o integral tenha limites não constantes temos:

$$\left(\int_{\phi(x)}^{\psi(x)} f(t)dt\right)' = f(\psi(x)) \cdot \psi'(x) - f(\phi(x)) \cdot \phi'(x)$$

6.3 Fórmula de Barrow

Se f é contínua em $I,a,b\in I$ e G é uma qualquer primitiva de f, então:

$$\int_{a}^{b} f(t)dt = G(b) - G(a) = [G(x)]_{a}^{b}$$

6.4 Métodos de Integração

6.4.1 Integração por partes

$$\int_{a}^{b} f'(t)g(t)dt = [f(t)g(t)]_{a}^{b} - \int_{a}^{b} f(t)g'(t)dt$$

6.4.2 Integração por substituição

Sendo $x = x(t); dx = \frac{dx}{dt}dt; x(\alpha) = a; x(\beta) = b$

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(x(t)) \frac{dx}{dt} dt$$

6.5 Sólidos

É possível calcular o volume de sólidos através de integração tendo em conta a sua construção, i.e. o facto de que são compostos por infinitas secções de área definida.

6.5.1 Sólidos de revolução

Um sólido de revolução tem secções paralelas todas circulares e pode ser gerado pela rotação de uma figura plana em torno de um eixo.

Para calcular o volume destes sólidos basta saber como calcular a área de cada secção circular e integrar essa função do inicio ao fim do objeto em x. Por exemplo:

Revolução em torno de Ox

O sólido de revolução gerado pela rotação da área vermelha em torno de Ox:

• Tem secções circulares, de raio y = f(x) e área $A(x) = \pi y^2 = \pi (f(x))^2$

10

• Tem volume

$$V = \int_a^b \pi y^2 dx = \int_a^b \pi(f(x))^2 dx$$

O mesmo pode acontecer em torno de y:

Revolução em torno de ${\cal O}y$

O sólido de revolução gerado pela rotação da área vermelha em torno de Oy:

- Tem secções circulares, de raio x=f(y)e área $A(y)=\pi x^2=\pi(f(y))^2$
- Tem volume

$$V = \int_{a}^{b} \pi x^{2} dy = \int_{a}^{b} \pi (f(y))^{2} dy$$