CSEN 1003: Compilers

Tutorial 6 - Bottom Up Parsing

Today's Plan

- 1 Bottom Up Parsing
- 2 Shift-Reduce Parsers

3 Recap

 A bottom up parser constructs a parse tree from the leaves up to the root.

 A bottom up parser constructs a parse tree from the leaves up to the root.

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

Input: aa+a*

 A bottom up parser constructs a parse tree from the leaves up to the root.

$$S \rightarrow SS+ \mid SS* \mid a$$
Input: $aa+a*$
 $aa+a* \longmapsto Sa+a*$

 A bottom up parser constructs a parse tree from the leaves up to the root.

$$S \rightarrow SS+ \mid SS* \mid a$$
Input: aa+a*

$$aa+a* \longmapsto Sa+a* \longmapsto SS+a*$$

 A bottom up parser constructs a parse tree from the leaves up to the root.

$$S \rightarrow SS+ \mid SS* \mid a$$
Input: $aa+a*$
 $aa+a* \longmapsto Sa+a* \longmapsto SS+a* \longmapsto Sa*$

 A bottom up parser constructs a parse tree from the leaves up to the root.

$$S \rightarrow SS+ \mid SS* \mid a$$
Input: $aa+a*$
 $aa+a* \longmapsto Sa+a* \longmapsto SS+a* \longmapsto Sa* \longmapsto SS*$

 A bottom up parser constructs a parse tree from the leaves up to the root.

$$S \rightarrow SS+ \mid SS* \mid a$$
Input: $aa+a*$
 $aa+a* \longmapsto Sa+a* \longmapsto SS+a* \longmapsto Sa* \longmapsto SS* \longmapsto SS*$

Reductions and Handles

Example

Input:
$$aa+a*$$
 $aa+a* \longmapsto Sa+a* \longmapsto SS+a* \longmapsto Sa* \longmapsto SS* \longmapsto S$

 Hence, basic bottom up parsing corresponds to searching for a reduction from the input to the start variable.

 $S \rightarrow SS + |SS*|a$

Reductions and Handles

Example

Input:
$$aa+a*$$
 $aa+a* \longmapsto Sa+a* \longmapsto SS+a* \longmapsto Sa* \longmapsto SS* \longmapsto S$

 Hence, basic bottom up parsing corresponds to searching for a reduction from the input to the start variable.

 $S \rightarrow SS + |SS*|$ a

• We are particularly interested in reductions that correspond to the reverse of a right-most derivation.

Reductions and Handles

Example

$$aa+a* \longmapsto Sa+a* \longmapsto SS+a* \longmapsto Sa* \longmapsto SS* \longmapsto S$$

 $S \rightarrow SS + |SS*|$ a

- Hence, basic bottom up parsing corresponds to searching for a reduction from the input to the start variable.
- We are particularly interested in reductions that correspond to the reverse of a right-most derivation.
- The sentential form that is replaced at each reduction step with a variable is called a handle.

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

Indicate the handle in each of the following.

S

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

$$S \Rightarrow SS+$$

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

$$S \Rightarrow SS+ \Rightarrow SSS*+$$

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

$$S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+$$

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

$$S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+ \Rightarrow SSS+a*+$$

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

$$S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+ \Rightarrow SSS+a*+$$

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

Indicate the handle in each of the following.

1 SSS+a*+

$$S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+ \Rightarrow SSS+a*+$$

2 SS+a*a+

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

Indicate the handle in each of the following.

1 SSS+a*+

$$S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+ \Rightarrow SSS+a*+$$

② SS+a*a+

S

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

Indicate the handle in each of the following.

1 SSS+a*+

$$S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+ \Rightarrow SSS+a*+$$

② SS+a*a+

$$S \Rightarrow SS+$$

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

Indicate the handle in each of the following.

1 SSS+a*+

$$S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+ \Rightarrow SSS+a*+$$

2 SS+a*a+

$$S \Rightarrow SS+ \Rightarrow Sa+$$

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

Indicate the handle in each of the following.

1 SSS+a*+ $S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+ \Rightarrow SSS+a*+$

2
$$SS$$
+a*a+
 $S \Rightarrow SS$ + $\Rightarrow Sa$ + $\Rightarrow SS$ *a+

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

Indicate the handle in each of the following.

1 SSS+a*+ $S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+ \Rightarrow SSS+a*+$

2
$$SS$$
+a*a+
 $S \Rightarrow SS$ + $\Rightarrow Sa$ + $\Rightarrow SS$ *a+ $\Rightarrow Sa$ *a+

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

Indicate the handle in each of the following.

1 SSS+a*+ $S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+ \Rightarrow SSS+a*+$

$$S \Rightarrow SS+ \Rightarrow Sa+ \Rightarrow SS*a+ \Rightarrow Sa*a+ \Rightarrow SS+a*a+$$

Example

$$S \rightarrow SS + |SS*|a$$

- 2 SS+a*a+

$$S \Rightarrow SS+ \Rightarrow Sa+ \Rightarrow SS*a+ \Rightarrow Sa*a+ \Rightarrow SS+a*a+$$

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

- 1 SSS+a*+ $S \Rightarrow SS+ \Rightarrow SSS*+ \Rightarrow SSa*+ \Rightarrow SSS+a*+$
- 2 SS+a*a+ $S \Rightarrow SS$ + $\Rightarrow Sa$ + $\Rightarrow SS$ *a+ $\Rightarrow Sa$ *a+ $\Rightarrow SS$ +a*a+
- 3 aaa*a++

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

- **1** *SSS*+a*+ *SSS*+⇒ *SSS**+ ⇒ *SSS*+a*+
- 2 SS+a*a+ $S \Rightarrow SS$ + $\Rightarrow Sa$ + $\Rightarrow SS$ *a+ $\Rightarrow Sa$ *a+ $\Rightarrow SS$ +a*a+
- 3 aaa*a++ $S \Rightarrow SS+ \Rightarrow SSS++ \Rightarrow SSa++ \Rightarrow SSS*a++ \Rightarrow SSa*a++ \Rightarrow$ $Saa*a++ \Rightarrow aaa*a++$

Example

$$S \rightarrow SS+ \mid SS* \mid a$$

- **1** *SSS*+a*+ *SSS*+⇒ *SSS**+ ⇒ *SSS*+a*+
- 2 SS+a*a+ $S \Rightarrow SS$ + $\Rightarrow Sa$ + $\Rightarrow SS$ *a+ $\Rightarrow Sa$ *a+ $\Rightarrow SS$ +a*a+
- 3 aaa*a++ $S \Rightarrow SS+ \Rightarrow SSS++ \Rightarrow SSa++ \Rightarrow SSS*a++ \Rightarrow SSa*a++ \Rightarrow$ $Saa*a++ \Rightarrow aaa*a++$

Example

$$S \rightarrow 0S1 \mid 0$$

Indicate the handle in each of the following.

1 001

Example

$$S \rightarrow 0S1 \mid 0$$

Indicate the handle in each of the following.

1 001

$$S \Rightarrow 0S1 \Rightarrow 001$$

Example

$$S \rightarrow 0S1 \mid 0$$

Indicate the handle in each of the following.

1 001

$$S \Rightarrow 0S1 \Rightarrow 001$$

Today's Plan

1 Bottom Up Parsing

2 Shift-Reduce Parsers

3 Recap

Shift Reduce Parsers

• A non-deterministic bottom up parser that constructs the reverse of a right most derivation.

Shift Reduce Parsers

- A non-deterministic bottom up parser that constructs the reverse of a right most derivation.
- Again, the parser is a PDA with three main states: q_s , q_{loop} , and q_a .

- A non-deterministic bottom up parser that constructs the reverse of a right most derivation.
- Again, the parser is a PDA with three main states: q_s , q_{loop} , and q_a .
- In q_s , push \$ to the stack and enter q_{loop} .

- A non-deterministic bottom up parser that constructs the reverse of a right most derivation.
- Again, the parser is a PDA with three main states: q_s , q_{loop} , and q_a .
- In q_s , push \$ to the stack and enter q_{loop} .
- In q_{loop} non-deterministically choose one of the following:

- A non-deterministic bottom up parser that constructs the reverse of a right most derivation.
- Again, the parser is a PDA with three main states: q_s, q_{loop}, and q_a.
- In q_s, push \$ to the stack and enter q_{loop}.
- In q_{loop} non-deterministically choose one of the following:
 - Shift: an input symbol by reading it and pushing it to the stack.
 - **2** Reduce: by popping zero or more stack symbols $s_1, ..., s_n$ (with s_n on the top of the stack) and $A \rightarrow s_1...s_n$ is a non-deterministically chosen rule, and pushing A.

- A non-deterministic bottom up parser that constructs the reverse of a right most derivation.
- Again, the parser is a PDA with three main states: q_s, q_{loop}, and q_a.
- In q_s, push \$ to the stack and enter q_{loop}.
- In q_{loop} non-deterministically choose one of the following:
 - Shift: an input symbol by reading it and pushing it to the stack.
 - **Q** Reduce: by popping zero or more stack symbols $s_1, ..., s_n$ (with s_n on the top of the stack) and $A \rightarrow s_1...s_n$ is a non-deterministically chosen rule, and pushing A.
 - 3 Pop the start variable and \$ and enter q_a .

Example

Consider the following grammar:

and the string: id - num * id.

Construct the shift/reduce PDA and trace it on the input string.

Example

Input	Action
id - num * id \$	

Example

	Stack	Input	Action
1	\$	id - num * id \$	Shift

Example

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	

Example

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$

Example

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$
3	\$ <i>F</i>	- num * id \$	

Example

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$
3	\$ <i>F</i>	- num * id \$	Reduce $T \rightarrow F$

Example

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$
3	\$ <i>F</i>	- num * id \$	Reduce $T \rightarrow F$
4	\$ <i>T</i>	- num * id \$	

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$
3	\$ <i>F</i>	- num * id \$	Reduce $T \rightarrow F$
4	\$ <i>T</i>	- num * id \$	Reduce $E \rightarrow T$
5	\$ <i>E</i>	- num * id \$	

RMD:
$$E \Rightarrow E - T \Rightarrow E - T * F \Rightarrow E - T * id \Rightarrow E - F * id \Rightarrow E - num * id \Rightarrow T - num * id \Rightarrow F - num * id \Rightarrow id - num * id$$

Example

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$
3	\$ <i>F</i>	- num * id \$	Reduce $T \rightarrow F$
4	\$ <i>T</i>	- num * id \$	Reduce $E \rightarrow T$
5	\$ <i>E</i>	- num * id \$	Shift

Example

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$
3	\$ <i>F</i>	- num * id \$	Reduce $T \rightarrow F$
4	\$ <i>T</i>	- num * id \$	Reduce $E \rightarrow T$
5	\$ <i>E</i>	- num * id \$	Shift
6	\$ <i>E</i> -	num * id \$	

Example

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$
3	\$ <i>F</i>	- num * id \$	Reduce $T \rightarrow F$
4	\$ <i>T</i>	- num * id \$	Reduce $E \rightarrow T$
5	\$ <i>E</i>	- num * id \$	Shift
6	\$ <i>E</i> -	num * id \$	Shift

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$
3	\$ <i>F</i>	- num * id \$	Reduce $T \rightarrow F$
4	\$ <i>T</i>	- num * id \$	Reduce $E \rightarrow T$
5	\$ <i>E</i>	- num * id \$	Shift
6	\$ <i>E</i> -	num * id \$	Shift
7	\$ <i>E</i> -num	* id \$	

RMD:
$$E \Rightarrow E - T \Rightarrow E - T * F \Rightarrow E - T * id \Rightarrow E - F * id \Rightarrow E - num * id \Rightarrow T - num * id \Rightarrow F - num * id \Rightarrow id - num * id$$

Example

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$
3	\$ <i>F</i>	- num * id \$	Reduce $T \rightarrow F$
4	\$ <i>T</i>	- num * id \$	Reduce $E \rightarrow T$
5	\$ <i>E</i>	- num * id \$	Shift
6	\$ <i>E</i> -	num * id \$	Shift
7	\$ <i>E</i> -num	* id \$	Reduce $F \rightarrow \mathbf{num}$

	Stack	Input	Action
8	\$ <i>E-F</i>	* id \$	Reduce $T \rightarrow F$
9	\$ <i>E-T</i>	* id \$	Shift
10	\$ <i>E-T</i> *	id \$	Shift
11	\$ <i>E</i> − <i>T</i> ∗id	\$	Reduce $F \rightarrow id$
12	\$ <i>E-T</i> * <i>F</i>	\$	Reduce $T \to T * F$
13	\$ <i>E-T</i>	\$	Reduce $E \rightarrow E - T$
14	\$ <i>E</i>	\$	Accept

RMD:
$$E \Rightarrow E - T \Rightarrow E - T * F \Rightarrow E - T * id \Rightarrow E - F * id \Rightarrow E - num * id \Rightarrow T - num * id \Rightarrow F - num * id \Rightarrow id - num * id$$

Example

	Stack	Input	Action
8	\$ <i>E-F</i>	* id \$	Reduce $T \to F$
9	\$ <i>E-T</i>	* id \$	Shift
10	\$ <i>E-T</i> *	id \$	Shift
11	\$ <i>E</i> − <i>T</i> ∗id	\$	Reduce $F \rightarrow id$
12	\$ <i>E-T</i> * <i>F</i>	\$	Reduce $T \to T*F$
13	\$ <i>E-T</i>	\$	Reduce $E \rightarrow E - T$
14	\$ <i>E</i>	\$	Accept

RMD:
$$E \Rightarrow E - T \Rightarrow E - T * F \Rightarrow E - T * id \Rightarrow E - F * id \Rightarrow E - num * id \Rightarrow T - num * id \Rightarrow F - num * id \Rightarrow id - num * id$$

Can the very first step be a reduce?

Conflicts

- Shift-Reduce Conflicts: when both shifting and reducing are possible.
- Reduce-Reduce Conflicts: when two ways of reduction are possible.

Exercise 6-4: Failing Branch

Stack	Input	Action
\$id-num*id	\$	Reduce $F \rightarrow id$
\$id-num*F	\$	Reduce $T \rightarrow F$
\$id-num*T	\$	Reduce $E \rightarrow T$
\$id-num*E	\$	

Today's Plan

- 1 Bottom Up Parsing
- 2 Shift-Reduce Parsers

Recap

Covered Topics

- 1 Bottom Up Parsing.
- 2 Shift-Reduce Parsers.

Next Tutorial: SLR Parsing!