CS 583: PROBABILISTIC GRAPHICAL MODELS

BAYESIAN NETWORKS

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- We would like to represent a joint distribution P over $X = \{X_1, X_2, ..., X_n\}$
- Why is such a P useful?
- The naïve representation ⇒ Specify a value for each possible combination
- o If all X_i are binary, how many numbers are needed to represent P with 1000 variables?
- o How many atoms in the observable universe?

WHY IS 2N BAD?

Computational challenges

- Answering queries requires manipulating exponential number of entries
- Storing exponential number of entries is almost always impossible

• Cognitive challenges

- How can we wrap our minds around about a specific assignment and its corresponding, extremely small, probability?
- How can an expert provide those numbers or even verify they are correct?

• Statistical challenges

• We often would like to estimate probabilities from data; estimation requires repetition. How can we have a dataset where an exponential number of events are present and repeated multiple times?

WE WOULD LIKE TO HAVE A REPRESENTATION THAT IS

Compact

Easy to store, manipulate, understand, and estimate

Intuitive

• Easy to understand, verify, and construct

Modular

Easy to add and remove variables

Declarative

Separates representation and reasoning

COMPACTNESS

- A joint distribution P over $\mathcal{X} = \{X_1, X_2, ..., X_n\}$ requires exponential number of numbers
- Reduce the number of parameters through independence
 - 1. Marginal independence
 - 2. Conditional independence

MARGINAL INDEPENDENCE

- Represent a joint distribution P over $X = \{X_1, X_2, ..., X_n\}$, where all X_i are binary
- o How many independent parameters?
- Assume for $\forall i \neq j, X_i \perp X_j$
- o Now, how many independent parameters?

CONDITIONAL PROBABILITIES

- Two variables, Industrious (I) and SAT score (S)
- Industrious: false (i⁰), true (i¹)
- SAT score: low (s⁰), high (s¹)

I	S	P(I, S)
\mathbf{i}^0	\mathbf{s}^0	0.665
\mathbf{i}^0	\mathbf{s}^1	0.035
i^1	\mathbf{s}^0	0.06
i^1	s^1	0.24

What's the number of independent parameters needed?

CONDITIONAL PROBABILITIES

 \circ P(I, S) = P(I)P(S | I)

P(I)

\mathbf{i}^0	\mathbf{i}^1
0.7	0.3

P(S | I)

I	\mathbf{s}^{0}	s^1
$\dot{\mathrm{i}}^{0}$	0.95	0.05
\mathbf{i}^1	0.2	0.8

What's the number of independent parameters needed?

A NEW VARIABLE

- Let's add the variable grade (G), with three possible values, A (g^1), B (g^2), and C (g^3).
- \circ Can we assume that G is independent of I or S in real life?
- A more reasonable assumption is to assume that I determines S and G; that is, S and G are conditionally independent
 - This is not totally true either, but then, in the real-world, we cannot really assume anything is independent of anything
 - Butterfly effect?

CONDITIONAL INDEPENDENCE

- P(I, S, G) = P(S, G | I)P(I) = P(S | I)P(G | I)P(I)
- P(I, S, G) = P(I)P(S | I) P(G | S, I) = P(I)P(S | I) P(G | I)
- We already have P(I) and P(S | I). We need to specify P(G | I)

P(G | I)

I	\mathbf{g}^1	$ \mathbf{g}^2 $	\mathbf{g}^3
\mathbf{i}^0	0.2	0.34	0.46
i^1	0.74	0.17	0.09

What's the number of independent parameters needed for P(I, S, G) if we use the full joint table?

What if we use the factorization P(I, S, G) = P(I)P(S|I) P(G|I)?

CONDITIONAL INDEPENDENCIES

- Compactness
 - Fewer parameters to specify
- Intuition
 - Easier to specify
- Modularity
 - Adding a new variable does not cause us to change all the entries in the joint table

BAYESIAN NETWORK REPRESENTATION

12

Naïve Bayes

13

Naïve Bayes

- o How do we write the joint $P(C, X_1, X_2, ..., X_n)$?
- How many independent parameters are needed if C and X_i are all binary?
- Naïve Bayes is used for **classification**: given attributes of an object (X_i) , classify it into one of pre-given categories (C) (i.e., $P(C \mid X_1, ..., X_n)$).
- Read Box 3.A in the textbook for more details

BAYESIAN NETWORKS

- A Bayesian Network is a directed acyclic graph whose nodes are random variables and edges represent, intuitively, the direct influence of one node on another
- Naïve Bayes is a special Bayesian network
- Bayesian networks is
 - A data structure that provides the skeleton for representing a joint distribution compactly in a factorized way
 - A compact representation for a set of conditional independence assumptions about a distribution

THE STUDENT EXAMPLE

- So far we have I, S, G
- We add two more random variables
 - Student's grade also depends on the difficulty (D) of the class: $Val(D) = \{easy(d^0), hard(d^1)\}$
 - Student's professor writes a recommendation letter (L), where Val(L)={weak (l⁰), strong(l¹)}
 - Professor writes the letter based only the grade and it is a stochastic function of the grade

THE STUDENT NETWORK

17

THE JOINT?

- What is the meaning of P(i¹, d⁰, g², s¹, l⁰)?
- Probability that
 - The student is industrious
 - The class is easy
 - The smart student gets a B in an easy class
 - The smart students get a high score in SAT
 - The student who got a B in the class gets a weak letter
 - = $P(i^1) P(d^0) P(g^2 | i^1, d^0) P(s^1 | i^1) P(l^0 | g^2)$

REASONING PATTERNS

- Causal reasoning
 - Causes to effects
- Evidential reasoning
 - Effects to causes
- Intercausal reasoning
 - Explaining away

CAUSAL REASONING

- Causes to effects
- o Don't know anything. Probability of a strong letter
 - $P(l^1) = 0.502$
- Learn that the student is not industrious
 - $P(l^1 | i^0) = 0.389$
- Additionally, learn the class is easy
 - $P(l^1 | i^0, d^0) = 0.513$

EVIDENTIAL REASONING

- Effects to causes
- Don't know anything. Probability of a student being industrious
 - $P(i^1) = 0.3$
- Learn that the student got a C in a class
 - $P(i^1 | g^3) = 0.079$
- o Or, learn that the student received a weak letter
 - $P(i^1 | 1^0) = 0.14$
- Learn both
 - $P(i^1 | g^3, l^0) = 0.079$

INTERCAUSAL REASONING

- Different causes of the same effect interact
- Don't know anything. Probability of a student being industrious
 - $P(i^1) = 0.3$
- Learn that the student got a B in a class
 - $P(i^1 | g^2) = 0.175$
- Learn that the class was difficult
 - $P(i^1 | g^2, d^1) = 0.34$
- Student's B is *explained away* with the other cause

HUGIN LITE

- Download Hugin Lite
 - https://www.hugin.com/index.php/hugin-lite/
- Get the student example from GitHub
- Try a few causal, evidential, and intercausal queries
- Extra fun
 - Get more .net files from https://www.bnlearn.com/bnrepository/ and load them to Hugin and play with them
- Double-extra fun
 - Install pgmpy Python package https://github.com/pgmpy/pgmpy
 - Check out the examples at http://pgmpy.org/

BAYESIAN NETWORK STRUCTURE

- A Bayesian network structure G is a directed acyclic graph whose nodes represent random variables $X_1, ..., X_n$. Let $Pa(X_i)$ denote the parents of X_i , and $ND(X_i)$ denote the variables that are not descendants of X_i . Then G encodes the following set of conditional independence assumptions:
 - $X_i \perp ND(X_i) \mid Pa(X_i)$
- These independencies are called the *local independencies*
- Clarification. A node itself and its parents are part of nondescendants according the definition of ND. A clearer statement would be, in my opinion:
 - $X_i \perp ND(X_i) \setminus \{X_i \cup Pa(X_i)\} \mid Pa(X_i)$

LOCAL INDEPENDENCIES EXAMPLE

BAYESIAN NETWORK FACTORIZATION

$$P(X_1,...,X_n) = \prod_i P(X_i | Pa(X_i))$$

Why is this factorization useful?

How can you prove this factorization holds?

FACTORIZATION EXAMPLE

WE'LL PROVE

- Local conditional independence assertions ⇒
 Bayesian network factorization
- 2. Bayesian network factorization ⇒ Local conditional independence assertions

I-MAP

- Let P be a distribution over X. We define I(P) to be the set of independencies of the form $X \perp Y \mid Z$ that hold in P.
- "P satisfies independencies of the structure $\mathcal{K}' \equiv I(\mathcal{K}) \subseteq I(P)$
- If $I(\mathcal{K}) \subseteq I(P) \Rightarrow \mathcal{K}$ is an I-Map for P
- For \mathcal{K} to be an I-Map of P, any independence assertion made by \mathcal{K} has to be true in P. However, it is possible that P can contain additional independencies
 - That is, whatever \mathcal{K} says independent is independent in P, but \mathcal{K} may not know all the independencies in P

P-MAP

• **Definition:** Perfect Map: A graph structure \mathcal{G} is a perfect map (P-Map) for a distribution P, if $I(\mathcal{G}) = I(P)$

Two Graphs

What are the local independence assertions made by G_1 ? G_2 ?

WE'LL PROVE

- Local conditional independence assertions ⇒ Bayesian network factorization
 - I-Map to Factorization
- Bayesian network factorization ⇒
 Local conditional independence assertions
 - Factorization to I-Map

I-MAP TO FACTORIZATION

- Theorem: Let G be a BN structure over X, and let P be joint distribution over the same space. If G is an I-Map for P, then P factorizes according to G.
- o Proof?

FACTORIZATION TO I-MAP

- Theorem: Let G be a BN structure over X and let P be a joint distribution over the same space. If P factorizes over G, then G is an I-Map for P.
- o Proof?

INDEPENDENCIES IN GRAPHS

- We have already seen the local independence assertions
- Are there additional independence statements we can make <u>simply based on</u> the graph structure?
 - Yes.
- Will these additional independencies help us reduce the number parameters further?
 - No.
- Why are they useful then?

Dependence = Information flow

- *X* and *Y* <u>are</u> independent if the information <u>cannot</u> flow from one to the other
- 1. No trail between *X* and *Y*
 - Information cannot flow; X and Y are independent
- 2. X and Y are connected by an edge
 - Information $\underline{\operatorname{can}}$ flow; X and Y $\underline{\operatorname{are not}}$ independent
- 3. X and Y are not connected by an edge, but there is a trail between them
 - Depends...

TRAILS 1-2

- Causal trail
 - $X \rightarrow Z \rightarrow Y$
 - Information can flow between X and Y if Z is not observed; if Z is observed, it blocks the information flow. $X \perp Y \mid Z$
 - E.g, $I \rightarrow G \rightarrow L$
 - If we don't know the student's grade, then knowing her intelligence tells us something about the strength of the letter. But, once we know her grade, I and L are independent
- Evidential trail
 - $X \leftarrow Z \leftarrow Y$
 - Information can flow between X and Y if Z is not observed; if Z is observed, it blocks the information flow. $X \perp Y \mid Z$

TRAILS 3

- Common cause
 - $X \leftarrow Z \rightarrow Y$
 - Information can flow between X and Y if Z is not observed; if Z is observed, it blocks the information flow. $X \perp Y \mid Z$
 - E.g, $G \leftarrow I \rightarrow S$
 - If we don't know the student's intelligence, then knowing his SAT score tells us something about his grade. If we know his intelligence, then his grade and SAT score are independent

TRAILS 4

- Common effect
 - $X \rightarrow Z \leftarrow Y$ (v-structure)
 - Information can flow between X and Y only if Z or at least one of Z's descendants is observed
 - E.g. $D \rightarrow G \leftarrow I$
 - If we do not know the grade or the letter quality, then D and I are independent. If we know, however, the grade or the letter quality, then D and I interact

D-SEPARATION

- To answer whether X_i and X_j are independent given **E**
 - Find all trails between X_i and X_i
 - If information can flow through at least one trail, then X_i and X_j are dependent given \mathbf{E} ; otherwise they are independent given \mathbf{E}

More Formally

- Let G be a BN structure and $X_1 \leftrightarrow ... \leftrightarrow X_n$ a trail in G. Let E be the observed set of variables. The information can flow along the trail $X_1 \leftrightarrow ... \leftrightarrow X_n$ if
 - Whenever we have a v-structure $X_{i-1} \to X_i \leftarrow X_{i+1}$, then X_i or one of its descendants is in **E**; and
 - No other node along the trail is in E

D-SEPARATION EXAMPLE

Are the following statements true?

- 1. D ⊥ *G* ?
- 2. D \(\t \t \)?
- 3. D \(\text{I ?}
- 4. D \(\text{I} \) | G?
- 5. D \(\text{I | L ?}
- 6. D \(\(\mathbf{S} \) | L?

I-EQUIVALENCE

- If two BN structures G_i and G_j encode exactly the same independencies, i.e., if $I(G_i) = I(G_j)$, then G_i and G_i are I-equivalent
- Why is this an important concept?
- A given distribution can be represented with one of I-equivalent structures and it might be impossible to identify a unique structure
 - E.g., $X \to Y$ and $X \leftarrow Y$ are I-equivalent. Then, we cannot readily argue whether X causes Y or Y causes X.

I-EQUIVALENCE

• Definitions:

- Skeleton of Bayesian network G is the undirected version of G
 - That is, G and its skeleton have the same node and edge set, except edges in G are directed, whereas in its skeleton, the edges are undirected
- A v-structure $X \to Z \leftarrow Y$ is an *immorality* if there is no direct edge between X and Y (informally, it is an immorality if the parents are not married)
- *Theorem*: Two Bayesian networks are I-Equivalent if and only if they have the same skeleton and the same set of immoralities

FROM DISTRIBUTIONS TO GRAPHS

- For a given P, we would like to find a structure that represents P
- One approach is to take any graph that is an I-Map for P
 - This is not a good idea. Why?
- **Definition:** *Minimal I-Map*: A graph \mathcal{G} is a minimal I-Map for a P, if it is an I-Map for P, and removal of a single edge from \mathcal{G} renders it to be not an I-Map

FINDING MINIMAL I-MAPS

- Given a distribution P over X, how can we find a structure G that is a minimal I-Map for P?
- The procedure is given on page 79
 - Pick an ordering of the variables, $X_1, X_2, ..., X_n$
 - For each X_i , find minimal subset ${\bf U}$ of $\{X_1,X_2,...,X_{i-1}\}$ such that $X_i\perp\{X_1,X_2,...,X_{i-1}\}\setminus {\bf U}\mid {\bf U}$
 - Set **U** to be the parents of X_i
- o Assume $I(P^{student}) = I(G^{student})$. Construct a minimal network using the order
 - D, I, S, G, L
 - L, S, G, I, D
 - L, D, S, I, G

FINDING I-EQUIVALENT STRUCTURES

- Start with a fully connected undirected graph
- Assume a max indegree of *d*
- For all pairs *X-Y*
 - Search for a set U where $X \perp Y \mid U$ and $|U| \leq d$ (U has to be a subset of neighbors of X or neighbors of Y)
 - If such a *U* cannot be found, then *X* and *Y* are connected, otherwise,
 - Remove the edge X-Y and record U as the witness set for X and Y
- Find all immoralities; For all *X-Z-Y* where *X* and *Y* are not directly connected
 - If $Z \in U$, then X Z Y is not an immorality, otherwise
 - It is an immorality, orient the edges as $X \rightarrow Z \leftarrow Y$
- Orient any other edges if necessary by applying three rules

Rules for orienting the edges

49

NEXT

Markov networks