WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K

(11) International Publication Number: WO 99/42076

(43) International Publication Date: 26 August 1999 (26.08.99)

(21) International Application Number: PCT/US99/03268

(22) International Filing Date: 17 February 1999 (17.02.99)

(30) Priority Data:

09/025,197 18 February 1998 (18.02.98) US 09/072,967 5 May 1998 (05.05.98) US

(71) Applicant: CORIXA CORPORATION [US/US]; 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: REED, Steven, G.; 2843 – 122nd Place, N.E., Bellevue, WA 98005 (US). SKEIKY, Yasir, A., W.; 8327 25th Street, Seattle, WA 98107 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US). CAMPOS-NETO, Antonio; 9308 Midship Court, N.E., Bainbridge Island, WA 98110 (US). HOUGHTON, Raymond; 2636 – 242nd Place, S.E., Bothell, WA 98021 (US). VEDVICK, Thomas, S.; 124 South 300th Place, Federal Way, WA 98003 (US). TWARDZIK, Daniel, R.; 10195 South Beach Drive, Bainbridge Island, WA 98110 (US). LODES, Michael, J.; 9223 – 36th Avenue S.W., Seattle, WA 98126 (US). HENDRICKSON, Ronald, C.; 4114 S.W. Charlestown Street, Seattle, WA 98116 (US).

(74) Agents: CORUZZI, Laura, A. et al.; Pennie & Edmonds LLP, 1155 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS

(57) Abstract

Compounds and methods for inducing protective immunity against tuberculosis are disclosed. The compounds provided include polypeptides that contain at least one immunogenic portion of one or more *M. tuberculosis* proteins and DNA molecules encoding such polypeptides. Such compounds may be formulated into vaccines and/or pharmaceutical compositions for immunization against *M. tuberculosis* infection, or may be used for the diagnosis of tuberculosis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL.	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

15

20

25

COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS

5 CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Application No. 9/025,197, filed February 18, 1998; which is a continuation-in-part of U.S. Application No. 08/942,578, filed October 1, 1997; which is a continuation-in-part of U.S. Application No. 08/818,112, filed March 13, 1997; which is a continuation-in-part of U.S. Application No. 08/730.510, filed October 11, 1996; which claims priority from PCT Application No. PCT/US 96/14674, filed August 30, 1996; and is a continuation-in-part of U.S. Application No. 08/680,574, filed July 12, 1996; which is a continuation-in-part of U.S. Application No. 08/659,683, filed June 5, 1996; which is a continuation-in-part of U.S. Application No. 08/620,874, filed March 22, 1996, now abandoned; which is a continuation-in-part of U.S. Application No. 08/533.634, filed September 22, 1995, now abandoned; which is a continuation-in-part of U.S. Application No. 08/523,436, filed September 1, 1995, now abandoned.

TECHNICAL FIELD

The present invention relates generally to detecting, treating and preventing *Mycobacterium tuberculosis* infection. The invention is more particularly related to polypeptides comprising a *Mycobacterium tuberculosis* antigen, or a portion or other variant thereof, and the use of such polypeptides for diagnosing and vaccinating against *Mycobacterium tuberculosis* infection.

BACKGROUND OF THE INVENTION

Tuberculosis is a chronic, infectious disease, that is generally caused by infection with *Mycobacterium tuberculosis*. It is a major disease in developing countries, as well as an increasing problem in developed areas of the world, with about 8 million new cases and 3 million deaths each year. Although the infection may be asymptomatic for a considerable period of time, the disease is most commonly

2

manifested as an acute inflammation of the lungs, resulting in fever and a nonproductive cough. If left untreated, serious complications and death typically result.

Although tuberculosis can generally be controlled using extended antibiotic therapy, such treatment is not sufficient to prevent the spread of the disease. Infected individuals may be asymptomatic, but contagious, for some time. In addition, although compliance with the treatment regimen is critical, patient behavior is difficult to monitor. Some patients do not complete the course of treatment, which can lead to ineffective treatment and the development of drug resistance.

Inhibiting the spread of tuberculosis requires effective vaccination and accurate, early diagnosis of the disease. Currently, vaccination with live bacteria is the most efficient method for inducing protective immunity. The most common Mycobacterium employed for this purpose is *Bacillus* Calmette-Guerin (BCG), an avirulent strain of *Mycobacterium bovis*. However, the safety and efficacy of BCG is a source of controversy and some countries, such as the United States, do not vaccinate the general public. Diagnosis is commonly achieved using a skin test, which involves intradermal exposure to tuberculin PPD (protein-purified derivative). Antigen-specific T cell responses result in measurable induration at the injection site by 48-72 hours after injection, which indicates exposure to Mycobacterial antigens. Sensitivity and specificity have, however, been a problem with this test, and individuals vaccinated with BCG cannot be distinguished from infected individuals.

10

15

20

30

While macrophages have been shown to act as the principal effectors of *M tuberculosis* immunity. T cells are the predominant inducers of such immunity. The essential role of T cells in protection against *M. tuberculosis* infection is illustrated by the frequent occurrence of *M. tuberculosis* in AIDS patients, due to the depletion of CD4 T cells associated with human immunodeficiency virus (HIV) infection. Mycobacterium-reactive CD4 T cells have been shown to be potent producers of gamma-interferon (IFN-γ), which, in turn, has been shown to trigger the antimycobacterial effects of macrophages in mice. While the role of IFN-γ in humans is less clear, studies have shown that 1.25-dihydroxy-vitamin D3, either alone or in combination with IFN-γ or tumor necrosis factor-alpha, activates human macrophages

to inhibit *M. tuberculosis* infection. Furthermore, it is known that IFN- γ stimulates human macrophages to make 1,25-dihydroxy-vitamin D3. Similarly, IL-12 has been shown to play a role in stimulating resistance to *M. tuberculosis* infection. For a review of the immunology of *M. tuberculosis* infection see Chan and Kaufmann in *Tuberculosis: Pathogenesis, Protection and Control*, Bloom (ed.), ASM Press, Washington, DC, 1994.

Accordingly, there is a need in the art for improved vaccines and methods for preventing, treating and detecting tuberculosis. The present invention fulfills these needs and further provides other related advantages.

10

20

25

SUMMARY OF THE INVENTION

Briefly stated, this invention provides compounds and methods for preventing and diagnosing tuberculosis. In one aspect, polypeptides are provided comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In one embodiment of this aspect, the soluble antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu: (SEQ ID No. 120)
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser: (SEQ ID No. 121)
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 122)
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 123)
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val: (SEQ ID No. 124)
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 125)
- 30 (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser: (SEQ ID No. 126)

10

20

30

- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 127)
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn; (SEQ ID No. 128)
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 134)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 135) or
- (I) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136)

wherein Xaa may be any amino acid.

In a related aspect, polypeptides are provided comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, the antigen having one of the following N-terminal sequences:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val: (SEQ ID No. 137) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe: (SEQ ID No. 129)

wherein Xaa may be any amino acid.

In another embodiment, the soluble *M. tuberculosis* antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101 or a complement thereof under moderately stringent conditions.

In a related aspect, the polypeptides comprise an immunogenic portion of a *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, wherein the antigen comprises an

20

amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 26-51, 138, 139, 163-183, 201, 240, 242-247, 253-256, 295-298, 309, 316, 318-320, 322, 324, 328, 339, 333, 335, 337, 339 and 341, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 26-51, 138, 139, 163-183, 201, 240, 242-247, 253-256, 295-298, 309, 316, 318-320, 322, 324, 328, 329, 333, 335, 337, 339 and 341 or a complement thereof under moderately stringent conditions.

In related aspects, DNA sequences encoding the above polypeptides, expression vectors comprising these DNA sequences and host cells transformed or transfected with such expression vectors are also provided.

In another aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known *M. tuberculosis* antigen.

Within other aspects, the present invention provides pharmaceutical compositions that comprise one or more of the above polypeptides, or a DNA molecule encoding such polypeptides, and a physiologically acceptable carrier. The invention also provides vaccines comprising one or more of the polypeptides as described above and a non-specific immune response enhancer, together with vaccines comprising one or more DNA sequences encoding such polypeptides and a non-specific immune response enhancer.

In yet another aspect, methods are provided for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above polypeptides.

In further aspects of this invention, methods and diagnostic kits are provided for detecting tuberculosis in a patient. The methods comprise contacting dermal cells of a patient with one or more of the above polypeptides and detecting an immune response on the patient's skin. The diagnostic kits comprise one or more of the above polypeptides in combination with an apparatus sufficient to contact the polypeptide with the dermal cells of a patient.

20

In yet other aspects, methods are provided for detecting tuberculosis in a patient, such methods comprising contacting dermal cells of a patient with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200, 203, 215-225, 237, 239, 261-276, 292, 293, 303-308, 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342-347, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200, 203, 215-225, 237, 239, 261-276, 292, 293, 303-308, 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342-347; and detecting an immune response on the patient's skin. Diagnostic kits for use in such methods are also provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

Figure 1A and B illustrate the stimulation of proliferation and interferonproduction in T cells derived from a first and a second *M. tuberculosis*-immune donor, respectively, by the 14 Kd, 20 Kd and 26 Kd antigens described in Example 1.

Figure 2 illustrates the stimulation of proliferation and interferon- γ production in T cells derived from an *M. tuberculosis*-immune individual by the two representative polypeptides TbRa3 and TbRa9.

Figures 3A-D illustrate the reactivity of antisera raised against secretory

M. tuberculosis proteins, the known M. tuberculosis antigen 85b and the inventive antigens Tb38-1 and TbH-9, respectively, with M. tuberculosis lysate (lane 2), M. tuberculosis secretory proteins (lane 3), recombinant Tb38-1 (lane 4), recombinant TbH-9 (lane 5) and recombinant 85b (lane 5).

Figure 4A illustrates the stimulation of proliferation in a TbH-9-specific T cell clone by secretory *M. tuberculosis* proteins, recombinant TbH-9 and a control antigen. TbRall.

Figure 4B illustrates the stimulation of interferon- γ production in a TbH-9-specific T cell clone by secretory M. tuberculosis proteins, PPD and recombinant TbH-9.

Figures 5A and B illustrate the stimulation of proliferation and interferon-γ production in TbH9-specific T cells by the fusion protein TbH9-Tb38-1.

Figures 6A and B illustrate the stimulation of proliferation and interferon-γ production in Tb38-1-specific T cells by the fusion protein TbH9-Tb38-1.

Figures 7A and B illustrate the stimulation of proliferation and interferon-y production in T cells previously shown to respond to both TbH-9 and Tb38-1 by the fusion protein TbH9-Tb38-1.

Figures 8A and B illustrate the stimulation of proliferation and interferon-γ production in T cells derived from a first M. tuberculosis-immune individual by the representative polypeptides XP-1, RDIF6, RDIF8, RDIF10 and RDIF11.

Figures 9A and B illustrate the stimulation of proliferation and interferon-γ production in T cells derived from a second *M. tuberculosis*-immune individual by the representative polypeptides XP-1, RDIF6, RDIF8, RDIF10 and RDIF11.

SEQ. ID NO. 1 is the DNA sequence of TbRa1.

SEQ. ID NO. 2 is the DNA sequence of TbRa10.

SEQ. ID NO. 3 is the DNA sequence of TbRall.

SEQ. ID NO. 4 is the DNA sequence of TbRa12.

SEQ. ID NO. 5 is the DNA sequence of TbRa13.

SEQ. ID NO. 6 is the DNA sequence of TbRa16.

SEQ. ID NO. 7 is the DNA sequence of TbRa17.

SEQ. ID NO. 8 is the DNA sequence of TbRa18.

SEQ. ID NO. 9 is the DNA sequence of TbRa19.

SEQ. ID NO. 10 is the DNA sequence of TbRa24.

SEQ. ID NO. 11 is the DNA sequence of TbRa26.

SEQ. ID NO. 12 is the DNA sequence of TbRa28.

	SEQ. ID NO. 13 is the DNA sequence of TbRa29.
	SEQ. ID NO. 14 is the DNA sequence of TbRa2A.
	SEQ. ID NO. 15 is the DNA sequence of TbRa3.
	SEQ. ID NO. 16 is the DNA sequence of TbRa32.
5	SEQ. ID NO. 17 is the DNA sequence of TbRa35.
	SEQ. ID NO. 18 is the DNA sequence of TbRa36.
	SEQ. ID NO. 19 is the DNA sequence of TbRa4.
	SEQ. ID NO. 20 is the DNA sequence of TbRa9.
	SEQ. ID NO. 21 is the DNA sequence of TbRaB.
10	SEQ. ID NO. 22 is the DNA sequence of TbRaC.
	SEQ. ID NO. 23 is the DNA sequence of TbRaD.
	SEQ. ID NO. 24 is the DNA sequence of YYWCPG.
	SEQ. ID NO. 25 is the DNA sequence of AAMK.
	SEQ. ID NO. 26 is the DNA sequence of TbL-23.
15	SEQ. ID NO. 27 is the DNA sequence of TbL-24.
	SEQ. ID NO. 28 is the DNA sequence of TbL-25.
	SEQ. ID NO. 29 is the DNA sequence of TbL-28.
	SEQ. ID NO. 30 is the DNA sequence of TbL-29.
_	SEQ. ID NO. 31 is the DNA sequence of TbH-5.
20	SEQ. ID NO. 32 is the DNA sequence of TbH-8.
	SEQ. ID NO. 33 is the DNA sequence of TbH-9.
	SEQ. ID NO. 34 is the DNA sequence of TbM-1.
	SEQ. ID NO. 35 is the DNA sequence of TbM-3.
	SEQ. ID NO. 36 is the DNA sequence of TbM-6.
25	SEQ. ID NO. 37 is the DNA sequence of TbM-7.
	SEQ. ID NO. 38 is the DNA sequence of TbM-9.
	SEQ. ID NO. 39 is the DNA sequence of TbM-12.
	SEQ. ID NO. 40 is the DNA sequence of TbM-13.
30	SEQ. ID NO. 41 is the DNA sequence of TbM-14.
30	SEQ. ID NO. 42 is the DNA sequence of TbM-15.

25

SEQ. ID NO. 43 is the DNA sequence of TbH-4.

SEQ. ID NO. 44 is the DNA sequence of TbH-4-FWD.

SEQ. ID NO. 45 is the DNA sequence of TbH-12.

SEQ. ID NO. 46 is the DNA sequence of Tb38-1.

SEQ. ID NO. 47 is the DNA sequence of Tb38-4.

SEQ. ID NO. 48 is the DNA sequence of TbL-17.

SEQ. ID NO. 49 is the DNA sequence of TbL-20.

SEQ. ID NO. 50 is the DNA sequence of TbL-21.

SEQ. ID NO. 51 is the DNA sequence of TbH-16.

SEQ. ID NO. 52 is the DNA sequence of DPEP.

SEQ. ID NO. 53 is the deduced amino acid sequence of DPEP.

SEQ. ID NO. 54 is the protein sequence of DPV N-terminal Antigen.

SEQ. ID NO. 55 is the protein sequence of AVGS N-terminal Antigen.

SEQ. ID NO. 56 is the protein sequence of AAMK N-terminal Antigen.

SEQ. ID NO. 57 is the protein sequence of YYWC N-terminal Antigen.

SEQ. ID NO. 58 is the protein sequence of DIGS N-terminal Antigen.

SEQ. ID NO. 59 is the protein sequence of AEES N-terminal Antigen.

SEQ. ID NO. 60 is the protein sequence of DPEP N-terminal Antigen.

SEQ. ID NO. 61 is the protein sequence of APKT N-terminal Antigen.

SEQ. ID NO. 62 is the protein sequence of DPAS N-terminal Antigen.

SEQ. ID NO. 63 is the deduced amino acid sequence of TbRa1.

SEQ. ID NO. 64 is the deduced amino acid sequence of TbRa10.

SEQ. ID NO. 65 is the deduced amino acid sequence of TbRall.

SEQ. ID NO. 66 is the deduced amino acid sequence of TbRa12.

SEQ. ID NO. 67 is the deduced amino acid sequence of TbRa13.

SEQ. ID NO. 68 is the deduced amino acid sequence of TbRa16.

SEQ. ID NO. 69 is the deduced amino acid sequence of TbRa17.

SEQ. ID NO. 70 is the deduced amino acid sequence of TbRa18.

SEQ. ID NO. 71 is the deduced amino acid sequence of TbRa19.

SEQ. ID NO. 72 is the deduced amino acid sequence of TbRa24.

20

25

- SEQ. ID NO. 73 is the deduced amino acid sequence of TbRa26.
- SEQ. ID NO. 74 is the deduced amino acid sequence of TbRa28.
- SEQ. ID NO. 75 is the deduced amino acid sequence of TbRa29.
- SEQ. ID NO. 76 is the deduced amino acid sequence of TbRa2A.
- SEQ. ID NO. 77 is the deduced amino acid sequence of TbRa3.
 - SEQ. ID NO. 78 is the deduced amino acid sequence of TbRa32.
 - SEQ. ID NO. 79 is the deduced amino acid sequence of TbRa35.
 - SEQ. ID NO. 80 is the deduced amino acid sequence of TbRa36.
 - SEQ. ID NO. 81 is the deduced amino acid sequence of TbRa4.
 - SEQ. ID NO. 82 is the deduced amino acid sequence of TbRa9.
 - SEQ. ID NO. 83 is the deduced amino acid sequence of TbRaB.
 - SEQ. ID NO. 84 is the deduced amino acid sequence of TbRaC.
 - SEQ. ID NO. 85 is the deduced amino acid sequence of TbRaD.
 - SEQ. ID NO. 86 is the deduced amino acid sequence of YYWCPG.
- SEQ. ID NO. 87 is the deduced amino acid sequence of TbAAMK.
 - SEQ. ID NO. 88 is the deduced amino acid sequence of Tb38-1.
 - SEQ. ID NO. 89 is the deduced amino acid sequence of TbH-4.
 - SEQ. ID NO. 90 is the deduced amino acid sequence of TbH-8.
 - SEQ. ID NO. 91 is the deduced amino acid sequence of TbH-9.
 - SEQ. ID NO. 92 is the deduced amino acid sequence of TbH-12.
 - SEQ. ID NO. 93 is the amino acid sequence of Tb38-1 Peptide 1.
 - SEQ. ID NO. 94 is the amino acid sequence of Tb38-1 Peptide 2.
 - SEQ. ID NO. 95 is the amino acid sequence of Tb38-1 Peptide 3.
 - SEQ. ID NO. 96 is the amino acid sequence of Tb38-1 Peptide 4.
 - SEQ. ID NO. 97 is the amino acid sequence of Tb38-1 Peptide 5.
 - SEQ. ID NO. 98 is the amino acid sequence of Tb38-1 Peptide 6.
 - SEQ. ID NO. 99 is the DNA sequence of DPAS.
 - SEQ. ID NO. 100 is the deduced amino acid sequence of DPAS.
 - SEQ. ID NO. 101 is the DNA sequence of DPV.
- SEQ. ID NO. 102 is the deduced amino acid sequence of DPV.

- SEQ. ID NO. 103 is the DNA sequence of ESAT-6.
- SEQ. ID NO. 104 is the deduced amino acid sequence of ESAT-6.
- SEQ. ID NO. 105 is the DNA sequence of TbH-8-2.
- SEQ. ID NO. 106 is the DNA sequence of TbH-9FL.
- 5 SEQ. ID NO. 107 is the deduced amino acid sequence of TbH-9FL.
 - SEQ. ID NO. 108 is the DNA sequence of TbH-9-1.
 - SEQ. ID NO. 109 is the deduced amino acid sequence of TbH-9-1.
 - SEQ. ID NO. 110 is the DNA sequence of TbH-9-4.
 - SEQ. ID NO. 111 is the deduced amino acid sequence of TbH-9-4.
- SEQ. ID NO. 112 is the DNA sequence of Tb38-1F2 IN.
 - SEQ. ID NO. 113 is the DNA sequence of Tb38-2F2 RP.
 - SEQ. ID NO. 114 is the deduced amino acid sequence of Tb37-FL.
 - SEQ. ID NO. 115 is the deduced amino acid sequence of Tb38-IN.
 - SEQ. ID NO. 116 is the DNA sequence of Tb38-1F3.
- SEQ. ID NO. 117 is the deduced amino acid sequence of Tb38-1F3.
 - SEQ. ID NO. 118 is the DNA sequence of Tb38-1F5.
 - SEQ. ID NO. 119 is the DNA sequence of Tb38-1F6.
 - SEQ. ID NO. 120 is the deduced N-terminal amino acid sequence of DPV.
 - SEQ. ID NO. 121 is the deduced N-terminal amino acid sequence of AVGS.
- SEQ. ID NO. 122 is the deduced N-terminal amino acid sequence of AAMK.
 - SEQ. ID NO. 123 is the deduced N-terminal amino acid sequence of YYWC.
 - SEQ. ID NO. 124 is the deduced N-terminal amino acid sequence of DIGS.
 - SEQ. ID NO. 125 is the deduced N-terminal amino acid sequence of AEES.
 - SEQ. ID NO. 126 is the deduced N-terminal amino acid sequence of DPEP.
- SEQ. ID NO. 127 is the deduced N-terminal amino acid sequence of APKT.
 - SEQ. ID NO. 128 is the deduced amino acid sequence of DPAS.
 - SEQ. ID NO. 129 is the protein sequence of DPPD N-terminal Antigen.
 - SEQ ID NO. 130-133 are the protein sequences of four DPPD cyanogen bromide fragments.
- 30 SEQ ID NO. 134 is the N-terminal protein sequence of XDS antigen.

SEQ ID NO. 135 is the N-terminal protein sequence of AGD antigen.

SEQ ID NO. 136 is the N-terminal protein sequence of APE antigen.

SEQ ID NO. 137 is the N-terminal protein sequence of XYI antigen.

SEQ ID NO. 138 is the DNA sequence of TbH-29.

5 SEQ ID NO. 139 is the DNA sequence of TbH-30.

SEQ ID NO. 140 is the DNA sequence of TbH-32.

SEQ ID NO. 141 is the DNA sequence of TbH-33.

SEQ ID NO. 142 is the predicted amino acid sequence of TbH-29.

SEQ ID NO. 143 is the predicted amino acid sequence of TbH-30.

SEQ ID NO. 144 is the predicted amino acid sequence of TbH-32.

SEQ ID NO. 145 is the predicted amino acid sequence of TbH-33.

SEQ ID NO: 146-151 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD and Tb38-1.

SEQ ID NO: 152 is the DNA sequence of the fusion protein containing TbRa3,

15 38 kD and Tb38-1.

SEQ ID NO: 153 is the amino acid sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1.

SEQ ID NO: 154 is the DNA sequence of the M. tuberculosis antigen 38 kD.

SEQ ID NO: 155 is the amino acid sequence of the M. tuberculosis antigen 38

20 kD.

SEQ ID NO: 156 is the DNA sequence of XP14.

SEQ ID NO: 157 is the DNA sequence of XP24.

SEQ ID NO: 158 is the DNA sequence of XP31.

SEQ ID NO: 159 is the 5' DNA sequence of XP32.

SEQ ID NO: 160 is the 3' DNA sequence of XP32.

SEQ ID NO: 161 is the predicted amino acid sequence of XP14.

SEQ ID NO: 162 is the predicted amino acid sequence encoded by the reverse complement of XP14.

SEQ ID NO: 163 is the DNA sequence of XP27.

SEQ ID NO: 164 is the DNA sequence of XP36.

20

SEQ ID NO: 165 is the 5' DNA sequence of XP4.

SEQ ID NO: 166 is the 5' DNA sequence of XP5.

SEQ ID NO: 167 is the 5' DNA sequence of XP17.

SEQ ID NO: 168 is the 5' DNA sequence of XP30.

SEQ ID NO: 169 is the 5' DNA sequence of XP2.

SEQ ID NO: 170 is the 3' DNA sequence of XP2.

SEQ ID NO: 171 is the 5' DNA sequence of XP3.

SEQ ID NO: 172 is the 3' DNA sequence of XP3.

SEQ ID NO: 173 is the 5' DNA sequence of XP6.

SEQ ID NO: 174 is the 3' DNA sequence of XP6.

SEQ ID NO: 175 is the 5' DNA sequence of XP18.

SEQ ID NO: 176 is the 3' DNA sequence of XP18.

SEQ ID NO: 177 is the 5' DNA sequence of XP19.

SEQ ID NO: 178 is the 3' DNA sequence of XP19.

SEQ ID NO: 179 is the 5' DNA sequence of XP22.

SEQ ID NO: 180 is the 3' DNA sequence of XP22.

SEQ ID NO: 181 is the 5° DNA sequence of XP25.

SEQ ID NO: 182 is the 3' DNA sequence of XP25.

SEQ ID NO: 183 is the full-length DNA sequence of TbH4-XP1.

SEQ ID NO: 184 is the predicted amino acid sequence of TbH4-XP1.

SEQ ID NO: 185 is the predicted amino acid sequence encoded by the reverse complement of TbH4-XP1

SEQ ID NO: 186 is a first predicted amino acid sequence encoded by XP36.

SEQ ID NO: 187 is a second predicted amino acid sequence encoded by XP36.

SEQ ID NO: 188 is the predicted amino acid sequence encoded by XP36. complement of XP36.

SEQ ID NO: 189 is the DNA sequence of RDIF2.

SEQ ID NO: 190 is the DNA sequence of RDIF5.

SEQ ID NO: 191 is the DNA sequence of RDIF8.

SEQ ID NO: 192 is the DNA sequence of RDIF10.

SEQ ID NO: 193 is the DNA sequence of RDIF11.

SEQ ID NO: 194 is the predicted amino acid sequence of RDIF2.

SEQ ID NO: 195 is the predicted amino acid sequence of RDIF5.

SEQ ID NO: 196 is the predicted amino acid sequence of RDIF8.

SEQ ID NO: 197 is the predicted amino acid sequence of RDIF10.

SEQ ID NO: 198 is the predicted amino acid sequence of RDIF11.

SEQ ID NO: 199 is the 5' DNA sequence of RDIF12.

SEQ ID NO: 200 is the 3' DNA sequence of RDIF12.

SEQ ID NO: 201 is the DNA sequence of RDIF7.

SEQ ID NO: 202 is the predicted amino acid sequence of RDIF7.

SEQ ID NO: 203 is the DNA sequence of DIF2-1.

SEQ ID NO: 204 is the predicted amino acid sequence of DIF2-1.

SEQ ID NO: 205-212 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD, Tb38-1 and DPEP (hereinafter referred to as

15 TbF-2).

SEQ ID NO: 213 is the DNA sequence of the fusion protein TbF-2.

SEQ ID NO: 214 is the amino acid sequence of the fusion protein TbF-2.

SEQ ID NO: 215 is the 5' DNA sequence of MO-1.

SEQ ID NO: 216 is the 5' DNA sequence for MO-2

SEQ ID NO: 217 is the 5° DNA sequence for MO-4.

SEQ ID NO: 218 is the 5' DNA sequence for MO-8.

SEQ ID NO: 219 is the 5' DNA sequence for MO-9.

SEQ ID NO: 220 is the 5' DNA sequence for MO-26.

SEQ ID NO: 221 is the 5' DNA sequence for MO-28.

SEQ ID NO: 222 is the 5' DNA sequence for MO-29.

SEQ ID NO: 223 is the 5' DNA sequence for MO-30.

SEQ ID NO: 224 is the 5' DNA sequence for MO-34.

SEQ ID NO: 225 is the 5° DNA sequence for MO-35.

SEQ ID NO: 226 is the predicted amino acid sequence for MO-1.

SEQ ID NO: 227 is the predicted amino acid sequence for MO-2.

	SEQ ID NO: 228 is the predicted amino acid sequence for MO-4.
	SEQ 1D NO: 229 is the predicted amino acid sequence for MO-8
	SEQ ID NO: 230 is the predicted amino acid sequence for MO-0
	SEQ 1D NO: 231 is the predicted amino acid sequence for MO-26
5	SEQ ID NO: 232 is the predicted amino acid sequence for MO-28.
	SEQ ID NO: 233 is the predicted amino acid sequence for MO-29.
	SEQ ID NO: 234 is the predicted amino acid sequence for MO-30.
	SEQ ID NO: 235 is the predicted amino acid sequence for MO-34.
	SEQ ID NO: 236 is the predicted amino acid sequence for MO-35.
10	SEQ ID NO: 237 is the determined DNA sequence for MO-10.
	SEQ ID NO: 238 is the predicted amino acid sequence for MO-10.
	SEQ ID NO: 239 is the 3' DNA sequence for MO-27.
	SEQ ID NO: 240 is the full-length DNA sequence for DPPD.
	SEQ ID NO: 241 is the predicted full-length amino acid sequence for DPPD.
15	SEQ ID NO: 242 is the determined 5' cDNA sequence for LSER-10
	SEQ ID NO: 243 is the determined 5' cDNA sequence for LSER-11
	SEQ ID NO: 244 is the determined 5' cDNA sequence for LSER-12
	SEQ ID NO: 245 is the determined 5' cDNA sequence for LSER-13
	SEQ ID NO: 246 is the determined 5" cDNA sequence for LSER-16
20	SEQ ID NO: 247 is the determined 5° cDNA sequence for LSER-25
	SEQ ID NO: 248 is the predicted amino acid sequence for LSER-10
	SEQ ID NO: 249 is the predicted amino acid sequence for LSER-12
	SEQ ID NO: 250 is the predicted amino acid sequence for LSER-13
	SEQ ID NO: 251 is the predicted amino acid sequence for LSER-16
25	SEQ ID NO: 252 is the predicted amino acid sequence for LSER-25
	SEQ ID NO: 253 is the determined cDNA sequence for LSER-25
	SEQ ID NO: 254 is the determined cDNA sequence for LSER-23
	SEQ ID NO: 255 is the determined cDNA sequence for LSER-24
	SEQ ID NO: 256 is the determined cDNA sequence for LSER-24
30	SEQ ID NO: 257 is the predicted amino acid sequence for LSER-18
	predicted anniho acid sequence for LSER-18

SEQ ID NO: 258 is the predicted amino acid sequence for LSER-23 SEQ ID NO: 259 is the predicted amino acid sequence for LSER-24 SEQ ID NO: 260 is the predicted amino acid sequence for LSER-27 SEQ ID NO: 261 is the determined 5' cDNA sequence for LSER-1 5 SEQ ID NO: 262 is the determined 5' cDNA sequence for LSER-3 SEQ ID NO: 263 is the determined 5' cDNA sequence for LSER-4 SEQ ID NO: 264 is the determined 5' cDNA sequence for LSER-5 SEQ ID NO: 265 is the determined 5' cDNA sequence for LSER-6 SEQ ID NO: 266 is the determined 5' cDNA sequence for LSER-8 10 SEQ ID NO: 267 is the determined 5° cDNA sequence for LSER-14 SEQ ID NO: 268 is the determined 5° cDNA sequence for LSER-15 SEQ ID NO: 269 is the determined 5' cDNA sequence for LSER-17 SEQ ID NO: 270 is the determined 5' cDNA sequence for LSER-19 SEQ ID NO: 271 is the determined 5' cDNA sequence for LSER-20 SEQ ID NO: 272 is the determined 5' cDNA sequence for LSER-22 15 SEQ ID NO: 273 is the determined 5' cDNA sequence for LSER-26 SEQ ID NO: 274 is the determined 5' cDNA sequence for LSER-28 SEQ ID NO: 275 is the determined 5" cDNA sequence for LSER-29 SEQ ID NO: 276 is the determined 5° cDNA sequence for LSER-30 20 SEQ ID NO: 277 is the predicted amino acid sequence for LSER-1 SEQ ID NO: 278 is the predicted amino acid sequence for LSER-3 SEQ ID NO: 279 is the predicted amino acid sequence for LSER-5 SEQ ID NO: 280 is the predicted amino acid sequence for LSER-6 SEQ ID NO: 281 is the predicted amino acid sequence for LSER-8 25 SEQ ID NO: 282 is the predicted amino acid sequence for LSER-14 SEQ ID NO: 283 is the predicted amino acid sequence for LSER-15 SEQ ID NO: 284 is the predicted amino acid sequence for LSER-17 SEQ ID NO: 285 is the predicted amino acid sequence for LSER-19 SEQ ID NO: 286 is the predicted amino acid sequence for LSER-20 30 SEQ ID NO: 287 is the predicted amino acid sequence for LSER-22

	SEQ ID NO: 288 is the predicted amino acid sequence for LSER-26
	SEQ ID NO: 289 is the predicted amino acid sequence for LSER-28
	SEQ ID NO: 290 is the predicted amino acid sequence for LSER-29
	SEQ ID NO: 291 is the predicted amino acid sequence for LSER-30
5	SEQ ID NO: 292 is the determined cDNA sequence for LSER-9
	SEQ ID NO: 293 is the determined cDNA sequence for the reverse complement
	of LSER-6
	SEQ ID NO: 294 is the predicted amino acid sequence for the reverse
	complement of LSER-6
10	SEQ ID NO: 295 is the determined 5' cDNA sequence for MO-12
	SEQ ID NO: 296 is the determined 5' cDNA sequence for MO-13
	SEQ ID NO: 297 is the determined 5' cDNA sequence for MO-19
	SEQ ID NO: 298 is the determined 5' cDNA sequence for MO-39
	SEQ ID NO: 299 is the predicted amino acid sequence for MO-12
15	SEQ ID NO: 300 is the predicted amino acid sequence for MO-13
	SEQ ID NO: 301 is the predicted amino acid sequence for MO-19
	SEQ ID NO: 302 is the predicted amino acid sequence for MO-39
	SEQ ID NO: 303 is the determined 5' cDNA sequence for Erdsn-1
	SEQ ID NO: 304 is the determined 5' cDNA sequence for Erdsn-2
20	SEQ ID NO: 305 is the determined 5' cDNA sequence for Erdsn-4
	SEQ ID NO: 306 is the determined 5' cDNA sequence for Erdsn-5
	SEQ ID NO: 307 is the determined 5' cDNA sequence for Erdsn-6
	SEQ ID NO: 308 is the determined 5' cDNA sequence for Erdsn-7
	SEQ ID NO: 309 is the determined 5° cDNA sequence for Erdsn-8
25	SEQ ID NO: 310 is the determined 5' cDNA sequence for Erdsn-9
	SEQ ID NO: 311 is the determined 5' cDNA sequence for Erdsn-10
	SEQ ID NO: 312 is the determined 5' cDNA sequence for Erdsn-12
	SEQ ID NO: 313 is the determined 5' cDNA sequence for Erdsn-13
	SEQ ID NO: 314 is the determined 5' cDNA sequence for Erdsn-14
30	SEQ ID NO: 315 is the determined 5' cDNA sequence for Erden-15

SEQ ID NO: 316 is the determined 5' cDNA sequence for Erdsn-16 SEQ ID NO: 317 is the determined 5' cDNA sequence for Erdsn-17 SEQ ID NO: 318 is the determined 5' cDNA sequence for Erdsn-18 SEQ ID NO: 319 is the determined 5' cDNA sequence for Erdsn-21 SEQ ID NO: 320 is the determined 5' cDNA sequence for Erdsn-22 5 SEQ ID NO: 321 is the determined 5' cDNA sequence for Erdsn-23 SEQ ID NO: 322 is the determined 5' cDNA sequence for Erdsn-25 SEQ ID NO: 323 is the determined 3' cDNA sequence for Erdsn-1 SEQ ID NO: 324 is the determined 3' cDNA sequence for Erdsn-2 10 SEQ ID NO: 325 is the determined 3' cDNA sequence for Erdsn-4 SEQ ID NO: 326 is the determined 3' cDNA sequence for Erdsn-5 SEQ ID NO: 327 is the determined 3' cDNA sequence for Erdsn-7 SEQ ID NO: 328 is the determined 3' cDNA sequence for Erdsn-8 SEQ ID NO: 329 is the determined 3' cDNA sequence for Erdsn-9 SEQ ID NO: 330 is the determined 3' cDNA sequence for Erdsn-10 15 SEQ ID NO: 331 is the determined 3' cDNA sequence for Erdsn-12 SEQ ID NO: 332 is the determined 3' cDNA sequence for Erdsn-13 SEQ ID NO: 333 is the determined 3' cDNA sequence for Erdsn-14 SEQ ID NO: 334 is the determined 3' cDNA sequence for Erdsn-15 20 SEQ ID NO: 335 is the determined 3' cDNA sequence for Erdsn-16 SEQ ID NO: 336 is the determined 3' cDNA sequence for Erdsn-17 SEQ ID NO: 337 is the determined 3' cDNA sequence for Erdsn-18 SEQ ID NO: 338 is the determined 3' cDNA sequence for Erdsn-21 SEQ ID NO: 339 is the determined 3' cDNA sequence for Erdsn-22 SEQ ID NO: 340 is the determined 3' cDNA sequence for Erdsn-23 25 SEQ ID NO: 341 is the determined 3' cDNA sequence for Erdsn-25 SEQ ID NO: 342 is the determined cDNA sequence for Erdsn-24 SEQ ID NO: 343 is the determined amino acid sequence for a M. tuberculosis 85b precursor homolog SEQ ID NO: 344 is the determined amino acid sequence for spot 1 30

25

SEQ ID NO: 345 is a determined amino acid sequence for spot 2

SEQ ID NO: 346 is a determined amino acid sequence for spot 2

SEQ ID NO: 347 is the determined amino acid seq for spot 4

SEQ ID NO: 348 is the sequence of primer PDM-157

5 SEQ ID NO: 349 is the sequence of primer PDM-160

SEQ ID NO: 350 is the DNA sequence of the fusion protein TbF-6

SEQ ID NO: 351 is the amino acid sequence of fusion protein TbF-6

SEQ ID NO: 352 is the sequence of primer PDM-176

SEQ ID NO: 353 is the sequence of primer PDM-175

SEQ ID NO: 354 is the DNA sequence of the fusion protein TbF-8

SEQ ID NO: 355 is the amino acid sequence of the fusion protein TbF-8

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for preventing, treating and diagnosing tuberculosis. The compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a M. tuberculosis antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. Polypeptides within the scope of the present invention include, but are not limited to, immunogenic soluble M. tuberculosis antigens. A "soluble M tuberculosis antigen" is a protein of M. tuberculosis origin that is present in M. tuberculosis culture filtrate. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an immunogenic portion of one of the above antigens may consist entirely of the immunogenic portion, or may contain additional sequences. The additional sequences may be derived from the native M. tuberculosis antigen or may be heterologous, and such sequences may (but need not) be immunogenic.

"Immunogenic." as used herein, refers to the ability to elicit an immune response (e.g., cellular) in a patient, such as a human, and/or in a biological sample. In particular, antigens that are immunogenic (and immunogenic portions or other variants

20

of such antigens) are capable of stimulating cell proliferation, interleukin-12 production and/or interferon-y production in biological samples comprising one or more cells selected from the group of T cells, NK cells, B cells and macrophages, where the cells are derived from an *M. tuberculosis*-immune individual. Polypeptides comprising at least an immunogenic portion of one or more *M. tuberculosis* antigens may generally be used to detect tuberculosis or to induce protective immunity against tuberculosis in a patient.

The compositions and methods of the present invention also encompass variants of the above polypeptides and DNA molecules. A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the therapeutic, antigenic and/or immunogenic properties of the polypeptide are retained. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity to the identified polypeptides. For polypeptides with immunoreactive properties, variants may, alternatively, be identified by modifying the amino acid sequence of one of the above polypeptides, and evaluating the immunoreactivity of the modified polypeptide. For polypeptides useful for the generation of diagnostic binding agents, a variant may be identified by evaluating a modified polypeptide for the ability to generate antibodies that detect the presence or absence of tuberculosis. Such modified sequences may be prepared and tested using, for example, the representative procedures described herein.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

20

25

Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the

antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A nucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (DNA, 2:183, 1983). Nucleotide variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity to the recited sequence. Such variant nucleotide sequences will generally hybridize to the recite nucleotide sequence under stringent conditions. As used herein, "stringent conditions" refers to prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65 °C, 6X SSC, 0.2% SDS overnight: followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65 °C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65 °C.

10

30

In a related aspect, combination polypeptides are disclosed. A "combination polypeptide" is a polypeptide comprising at least one of the above immunogenic portions and one or more additional immunogenic *M. tuberculosis* sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be joined directly (*i.e.*, with no intervening amino acids) or may be joined by way of a linker sequence (*e.g.*, Gly-Cys-Gly) that does not significantly diminish the immunogenic properties of the component polypeptides.

In general, M. tuberculosis antigens, and DNA sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, soluble antigens may be isolated from M. tuberculosis culture filtrate by procedures known to

22

those of ordinary skill in the art, including anion-exchange and reverse phase chromatography. Purified antigens are then evaluated for their ability to elicit an appropriate immune response (e.g., cellular) using, for example, the representative methods described herein. Immunogenic antigens may then be partially sequenced using techniques such as traditional Edman chemistry. See Edman and Berg, Eur. J. Biochem. 80:116-132, 1967.

Immunogenic antigens may also be produced recombinantly using a DNA sequence that encodes the antigen, which has been inserted into an expression vector and expressed in an appropriate host. DNA molecules encoding soluble antigens may be isolated by screening an appropriate *M. tuberculosis* expression library with anti-sera (e.g., rabbit) raised specifically against soluble *M. tuberculosis* antigens. DNA sequences encoding antigens that may or may not be soluble may be identified by screening an appropriate *M. tuberculosis* genomic or cDNA expression library with sera obtained from patients infected with *M. tuberculosis*. Such screens may generally be performed using techniques well known to those of ordinary skill in the art, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories. Cold Spring Harbor, NY, 1989.

DNA sequences encoding soluble antigens may also be obtained by screening an appropriate *M. tuberculosis* cDNA or genomic DNA library for DNA sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated soluble antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor Laboratories. Cold Spring Harbor, NY, 1989 (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

20

25

30

Alternatively, genomic or cDNA libraries derived from M. tuberculosis may be screened directly using peripheral blood mononuclear cells (PBMCs) or T cell

23

lines or clones derived from one or more *M. tuberculosis*-immune individuals. In general, PBMCs and/or T cells for use in such screens may be prepared as described below. Direct library screens may generally be performed by assaying pools of expressed recombinant proteins for the ability to induce proliferation and/or interferon- γ production in T cells derived from an *M. tuberculosis*-immune individual. Alternatively, potential T cell antigens may be first selected based on antibody reactivity, as described above.

Regardless of the method of preparation, the antigens (and immunogenic portions thereof) described herein (which may or may not be soluble) have the ability to induce an immunogenic response. More specifically, the antigens have the ability to induce proliferation and/or cytokine production (i.e., interferon-y and/or interleukin-12 production) in T cells, NK cells, B cells and/or macrophages derived from an M. tuberculosis-immune individual. The selection of cell type for use in evaluating an immunogenic response to a antigen will, of course, depend on the desired response. For example, interleukin-12 production is most readily evaluated using preparations containing B cells and/or macrophages. An M. tuberculosis-immune individual is one who is considered to be resistant to the development of tuberculosis by virtue of having mounted an effective T cell response to M. tuberculosis (i.e., substantially free of disease symptoms). Such individuals may be identified based on a strongly positive (i.e., greater than about 10 mm diameter induration) intradermal skin test response to tuberculosis proteins (PPD) and an absence of any signs or symptoms of tuberculosis disease. T cells, NK cells, B cells and macrophages derived from M. tuberculosisimmune individuals may be prepared using methods known to those of ordinary skill in the art. For example, a preparation of PBMCs (i.e., peripheral blood mononuclear cells) may be employed without further separation of component cells. PBMCs may generally be prepared, for example, using density centrifugation through FicollTM (Winthrop Laboratories, NY). T cells for use in the assays described herein may also be purified directly from PBMCs. Alternatively, an enriched T cell line reactive against mycobacterial proteins, or T cell clones reactive to individual mycobacterial proteins. may be employed. Such T cell clones may be generated by, for example, culturing

20

30

24

PBMCs from *M. tuberculosis*-immune individuals with mycobacterial proteins for a period of 2-4 weeks. This allows expansion of only the mycobacterial protein-specific T cells, resulting in a line composed solely of such cells. These cells may then be cloned and tested with individual proteins, using methods known to those of ordinary skill in the art, to more accurately define individual T cell specificity. In general, antigens that test positive in assays for proliferation and/or cytokine production (*i.e.*, interferon-γ and/or interleukin-12 production) performed using T cells, NK cells. B cells and/or macrophages derived from an *M. tuberculosis*-immune individual are considered immunogenic. Such assays may be performed, for example, using the representative procedures described below. Immunogenic portions of such antigens may be identified using similar assays, and may be present within the polypeptides described herein.

5

20

25

The ability of a polypeptide (e.g., an immunogenic antigen, or a portion or other variant thereof) to induce cell proliferation is evaluated by contacting the cells (e.g., T cells and/or NK cells) with the polypeptide and measuring the proliferation of the cells. In general, the amount of polypeptide that is sufficient for evaluation of about 10⁵ cells ranges from about 10 ng/mL to about 100 µg/mL and preferably is about 10 µg/mL. The incubation of polypeptide with cells is typically performed at 37°C for about six days. Following incubation with polypeptide, the cells are assayed for a proliferative response, which may be evaluated by methods known to those of ordinary skill in the art, such as exposing cells to a pulse of radiolabeled thymidine and measuring the incorporation of label into cellular DNA. In general, a polypeptide that results in at least a three fold increase in proliferation above background (i.e., the proliferation observed for cells cultured without polypeptide) is considered to be able to induce proliferation.

The ability of a polypeptide to stimulate the production of interferon- γ and/or interleukin-12 in cells may be evaluated by contacting the cells with the polypeptide and measuring the level of interferon- γ or interleukin-12 produced by the cells. In general, the amount of polypeptide that is sufficient for the evaluation of about 10^5 cells ranges from about 10 ng/mL to about 100 μ g/mL and preferably is about 10 μ g/mL. The polypeptide may, but need not, be immobilized on a solid support, such as a

bead or a biodegradable microsphere, such as those described in U.S. Patent Nos. 4,897,268 and 5,075,109. The incubation of polypeptide with the cells is typically performed at 37°C for about six days. Following incubation with polypeptide, the cells are assayed for interferon-γ and/or interleukin-12 (or one or more subunits thereof), which may be evaluated by methods known to those of ordinary skill in the art, such as an enzyme-linked immunosorbent assay (ELISA) or, in the case of IL-12 P70 subunit, a bioassay such as an assay measuring proliferation of T cells. In general, a polypeptide that results in the production of at least 50 pg of interferon-γ per mL of cultured supernatant (containing 10⁴-10⁵ T cells per mL) is considered able to stimulate the production of interferon-γ. A polypeptide that stimulates the production of at least 10 pg/mL of IL-12 P70 subunit, and/or at least 100 pg/mL of IL-12 P40 subunit, per 10⁵ macrophages or B cells (or per 3 x 10⁵ PBMC) is considered able to stimulate the production of IL-12.

In general, immunogenic antigens are those antigens that stimulate proliferation and/or cytokine production (i.e., interferon-y and/or interleukin-12 production) in T cells, NK cells, B cells and/or macrophages derived from at least about 25% of M tuberculosis-immune individuals. Among these immunogenic antigens, polypeptides having superior therapeutic properties may be distinguished based on the magnitude of the responses in the above assays and based on the percentage of individuals for which a response is observed. In addition, antigens having superior therapeutic properties will not stimulate proliferation and/or cytokine production in vitro in cells derived from more than about 25% of individuals that are not M tuberculosis-immune, thereby eliminating responses that are not specifically due to M tuberculosis-responsive cells. Those antigens that induce a response in a high percentage of T cell, NK cell. B cell and/or macrophage preparations from M tuberculosis-immune individuals (with a low incidence of responses in cell preparations from other individuals) have superior therapeutic properties.

20

30

Antigens with superior therapeutic properties may also be identified based on their ability to diminish the severity of *M. tuberculosis* infection in experimental animals, when administered as a vaccine. Suitable vaccine preparations

for use on experimental animals are described in detail below. Efficacy may be determined based on the ability of the antigen to provide at least about a 50% reduction in bacterial numbers and/or at least about a 40% decrease in mortality following experimental infection. Suitable experimental animals include mice, guinea pigs and primates.

Antigens having superior diagnostic properties may generally be identified based on the ability to elicit a response in an intradermal skin test performed on an individual with active tuberculosis, but not in a test performed on an individual who is not infected with *M. tuberculosis*. Skin tests may generally be performed as described below, with a response of at least 5 mm induration considered positive.

Immunogenic portions of the antigens described herein may be prepared and identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for immunogenic properties. The representative proliferation and cytokine production assays described herein may generally be employed in these screens. An immunogenic portion of a polypeptide is a portion that, within such representative assays, generates an immune response (e.g., proliferation, interferon-γ production and/or interleukin-12 production) that is substantially similar to that generated by the full length antigen. In other words, an immunogenic portion of an antigen may generate at least about 20%, and preferably about 100%, of the proliferation induced by the full length antigen in the model proliferation assay described herein. An immunogenic portion may also, or alternatively, stimulate the production of at least about 20%, and preferably about 100%, of the interferon-γ and/or interleukin-12 induced by the full length antigen in the model assay described herein.

15

20

Portions and other variants of *M. tuberculosis* antigens may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase

27

techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc., Foster City, CA, and may be operated according to the manufacturer's instructions. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a DNA sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most

15

20

25

30

preferably at least about 99% pure. In certain preferred embodiments, described in detail below, the substantially pure polypeptides are incorporated into pharmaceutical compositions or vaccines for use in one or more of the methods disclosed herein.

In certain specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a soluble *M. tuberculosis* antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 120)
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 121)
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 122)
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 123)
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 124)
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 125)
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ser-Pro-Pro-Ser; (SEQ ID No. 126)
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 127)
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn; (SEQ ID No. 128)
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 134)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 135) or

25

30

(l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136)

wherein Xaa may be any amino acid. preferably a cysteine residue. A DNA sequence encoding the antigen identified as (g) above is provided in SEQ ID No. 52, and the polypeptide encoded by SEQ ID No. 52 is provided in SEQ ID No. 53. A DNA sequence encoding the antigen defined as (a) above is provided in SEQ ID No. 101; its deduced amino acid sequence is provided in SEQ ID No. 102. A DNA sequence corresponding to antigen (d) above is provided in SEQ ID No. 24 a DNA sequence corresponding to antigen (c) is provided in SEQ ID No. 25 and a DNA sequence corresponding to antigen (i) is provided in SEQ ID No. 99; its deduced amino acid sequence is provided in SEQ ID No. 99; its deduced amino acid

In a further specific embodiment, the subject invention discloses polypeptides comprising at least an immunogenic portion of an *M. tuberculosis* antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No 137) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 129)
- wherein Xaa may be any amino acid, preferably a cysteine residue.

In other specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a soluble *M. tuberculosis* antigen (or a variant of such an antigen) that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID Nos.: 1, 2, 4-10, 13-25 and 52; (b) the complements of such DNA sequences, or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In further specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a *M. tuberculosis* antigen (or a variant of such an antigen), which may or may not be soluble, that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID

10

Nos.: 26-51, 138, 139, 163-183, 189-193, 199, 200, 201, 203, 215-225, 239, 240, 242-247, 253-256, 261-276, 292, 293, 295-298 and 303-342, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In the specific embodiments discussed above, the *M. tuberculosis* antigens include variants that are encoded by DNA sequences which are substantially homologous to one or more of DNA sequences specifically recited herein. "Substantial homology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the case of cross-species homology at 45°C, 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS). Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known *M tuberculosis* antigen, such as the 38 kD antigen described in Andersen and Hansen. *Infect. Immun.* 57:2481-2488, 1989, (Genbank Accession No. M30046) or ESAT-6 (SEQ ID Nos. 103 and 104), together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5'-end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA

5

20

25

31

translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Patent No. 4,935.233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide sequences are not required when the first and second polypeptides have nonessential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons require to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

In another aspect, the present invention provides methods for using one or more of the above polypeptides or fusion proteins (or DNA molecules encoding such polypeptides) to induce protective immunity against tuberculosis in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient

32

may be afflicted with a disease, or may be free of detectable disease and/or infection. In other words, protective immunity may be induced to prevent or treat tuberculosis.

In this aspect, the polypeptide, fusion protein or DNA molecule is generally present within a pharmaceutical composition and/or a vaccine.

Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. Vaccines may comprise one or more of the above polypeptides and a non-specific immune response enhancer, such as an adjuvant or a liposome (into which the polypeptide is incorporated). Such pharmaceutical compositions and vaccines may also contain other *M. tuberculosis* antigens, either incorporated into a combination polypeptide or present within a separate polypeptide.

Alternatively, a vaccine may contain DNA encoding one or more polypeptides as described above, such that the polypeptide is generated in situ. In such vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked." as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

15

In a related aspect, a DNA vaccine as described above may be administered simultaneously with or sequentially to either a polypeptide of the present

5

10

20

33

invention or a known *M. tuberculosis* antigen, such as the 38 kD antigen described above. For example, administration of DNA encoding a polypeptide of the present invention, either "naked" or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.

Routes and frequency of administration, as well as dosage, will vary from individual to individual and may parallel those currently being used in immunization using BCG. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from M. tuberculosis infection for at least 1-2 years. In general, the amount of polypeptide present in a dose (or produced in situ by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 µg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Any of a variety of adjuvants may be employed in the vaccines of this invention to nonspecifically enhance the immune response. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a nonspecific stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Freund's Complete Adjuvant (Difco Laboratories) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ). Other suitable adjuvants include alum, biodegradable microspheres, monophosphoryl lipid A and quil A.

In another aspect, this invention provides methods for using one or more of the polypeptides described above to diagnose tuberculosis using a skin test. As used herein, a "skin test" is any assay performed directly on a patient in which a delayed-type hypersensitivity (DTH) reaction (such as swelling, reddening or dermatitis) is measured following intradermal injection of one or more polypeptides as described above. Such injection may be achieved using any suitable device sufficient to contact the polypeptide or polypeptides with dermal cells of the patient, such as a tuberculin syringe or 1 mL syringe. Preferably, the reaction is measured at least 48 hours after injection, more preferably 48-72 hours.

10

15

20

25

30

The DTH reaction is a cell-mediated immune response, which is greater in patients that have been exposed previously to the test antigen (i.e., the immunogenic portion of the polypeptide employed, or a variant thereof). The response may be measured visually, using a ruler. In general, a response that is greater than about 0.5 cm in diameter, preferably greater than about 1.0 cm in diameter, is a positive response, indicative of tuberculosis infection, which may or may not be manifested as an active disease.

The polypeptides of this invention are preferably formulated, for use in a skin test, as pharmaceutical compositions containing a polypeptide and a physiologically acceptable carrier, as described above. Such compositions typically contain one or more of the above polypeptides in an amount ranging from about 1 µg to about 100 µg, preferably from about 10 µg to about 50 µg in a volume of 0.1 mL.

Preferably, the carrier employed in such pharmaceutical compositions is a saline solution with appropriate preservatives, such as phenol and/or Tween 80TM.

In a preferred embodiment, a polypeptide employed in a skin test is of sufficient size such that it remains at the site of injection for the duration of the reaction period. In general, a polypeptide that is at least 9 amino acids in length is sufficient. The polypeptide is also preferably broken down by macrophages within hours of injection to allow presentation to T-cells. Such polypeptides may contain repeats of one or more of the above sequences and/or other immunogenic or nonimmunogenic sequences.

10

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

15

20

30

EXAMPLE 1

PURIFICATION AND CHARACTERIZATION OF POLYPEPTIDES FROM M. TUBERCULOSIS CULTURE FILTRATE

This example illustrates the preparation of *M. tuberculosis* soluble polypeptides from culture filtrate. Unless otherwise noted, all percentages in the following example are weight per volume.

M. tuberculosis (either H37Ra, ATCC No. 25177, or H37Rv, ATCC No. 25618) was cultured in sterile GAS media at 37°C for fourteen days. The media was then vacuum filtered (leaving the bulk of the cells) through a 0.45 μ filter into a sterile 2.5 L bottle. The media was next filtered through a 0.2 μ filter into a sterile 4 L bottle and NaN₃ was added to the culture filtrate to a concentration of 0.04%. The bottles were then placed in a 4°C cold foom.

The culture filtrate was concentrated by placing the filtrate in a 12 L reservoir that had been autoclaved and feeding the filtrate into a 400 ml Amicon stir cell

WO 99/42076 PCT/US99/03268

which had been rinsed with ethanol and contained a 10,000 kDa MWCO membrane. The pressure was maintained at 60 psi using nitrogen gas. This procedure reduced the 12 L volume to approximately 50 ml.

The culture filtrate was dialyzed into 0.1% ammonium bicarbonate using a 8,000 kDa MWCO cellulose ester membrane, with two changes of ammonium bicarbonate solution. Protein concentration was then determined by a commercially available BCA assay (Pierce, Rockford, IL).

The dialyzed culture filtrate was then lyophilized, and the polypeptides resuspended in distilled water. The polypeptides were dialyzed against 0.01 mM 1.3 bis[tris(hydroxymethyl)-methylamino]propane. pH 7.5 (Bis-Tris propane buffer), the initial conditions for anion exchange chromatography. Fractionation was performed using gel profusion chromatography on a POROS 146 II Q/M anion exchange column 4.6 mm x 100 mm (Perseptive BioSystems, Framingham, MA) equilibrated in 0.01 mM Bis-Tris propane buffer pH 7.5. Polypeptides were eluted with a linear 0-0.5 M NaCl gradient in the above buffer system. The column eluent was monitored at a wavelength of 220 nm.

10

15

25

The pools of polypeptides eluting from the ion exchange column were dialyzed against distilled water and lyophilized. The resulting material was dissolved in 0.1% trifluoroacetic acid (TFA) pH 1.9 in water, and the polypeptides were purified on a Delta-Pak C18 column (Waters, Milford, MA) 300 Angstrom pore size, 5 micron particle size (3.9 x 150 mm). The polypeptides were eluted from the column with a linear gradient from 0-60% dilution buffer (0.1% TFA in acetonitrile). The flow rate was 0.75 ml/minute and the HPLC eluent was monitored at 214 nm. Fractions containing the eluted polypeptides were collected to maximize the purity of the individual samples. Approximately 200 purified polypeptides were obtained.

The purified polypeptides were then screened for the ability to induce T-cell proliferation in PBMC preparations. The PBMCs from donors known to be PPD skin test positive and whose T-cells were shown to proliferate in response to PPD and crude soluble proteins from MTB were cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and $50 \,\mu\text{g/ml}$ gentamicin. Purified

polypeptides were added in duplicate at concentrations of 0.5 to $10 \,\mu g/mL$. After six days of culture in 96-well round-bottom plates in a volume of $200 \,\mu l$, $50 \,\mu l$ of medium was removed from each well for determination of IFN- γ levels, as described below. The plates were then pulsed with $1 \,\mu Ci/well$ of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that resulted in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone were considered positive.

IFN-y was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates were coated with a mouse monoclonal antibody directed to human IFN-y (PharMingen, San Diego, CA) in PBS for four hours at room temperature. Wells were then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates were then washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates were incubated overnight at room temperature. The plates were again washed and a polyclonal rabbit anti-human IFN-y serum diluted 1:3000 in PBS/10% normal goat serum was added to each well. The plates were then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical So., St. Louis. MO) was added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates were washed and TMB substrate added. The reaction was stopped after 20 min with 1 N sulfuric acid. Optical density was determined at 450 nm using 570 nm as a reference wavelength. Fractions that resulted in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, were considered positive.

10

15

For sequencing, the polypeptides were individually dried onto Biobrene

TM (Perkin Elmer/Applied BioSystems Division, Foster City, CA) treated glass fiber filters. The filters with polypeptide were loaded onto a Perkin Elmer/Applied BioSystems Division Procise 492 protein sequencer. The polypeptides were sequenced from the amino terminal and using traditional Edman chemistry. The amino acid sequence was determined for each polypeptide by comparing the retention time of the PTH amino acid derivative to the appropriate PTH derivative standards.

10

15

Using the procedure described above, antigens having the following N-terminal sequences were isolated:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Xaa-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 54)
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 55)
 - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 56)
 - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 57)
 - (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 58)
 - (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 59)
 - (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ala-Pro-Pro-Ala; (SEQ ID No. 60) and
 - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 61)

wherein Xaa may be any amino acid.

An additional antigen was isolated employing a microbore HPLC purification step in addition to the procedure described above. Specifically, 20 µl of a fraction comprising a mixture of antigens from the chromatographic purification step previously described, was purified on an Aquapore C18 column (Perkin Elmer/Applied Biosystems Division, Foster City, CA) with a 7 micron pore size, column size 1 mm x 100 mm, in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted from the column with a linear gradient of 1%/minute of acetonitrile (containing 0.05% TFA) in water (0.05% TFA) at a flow rate of 80 µl/minute. The eluent was monitored at 250 nm. The original fraction was separated into 4 major peaks plus other smaller components and a polypeptide was obtained which was shown to

10

15

20

25

30

have a molecular weight of 12.054 Kd (by mass spectrometry) and the following N-terminal sequence:

 (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Asn-Leu-Ala-Asp-Pro-Asp-Val-Ser-Phe-Ala-Asp (SEQ ID No. 62).

This polypeptide was shown to induce proliferation and IFN-y production in PBMC preparations using the assays described above.

Additional soluble antigens were isolated from *M. tuberculosis* culture filtrate as follows. *M. tuberculosis* culture filtrate was prepared as described above. Following dialysis against Bis-Tris propane buffer, at pH 5.5, fractionation was performed using anion exchange chromatography on a Poros QE column 4.6 x 100 mm (Perseptive Biosystems) equilibrated in Bis-Tris propane buffer pH 5.5. Polypeptides were eluted with a linear 0-1.5 M NaCl gradient in the above buffer system at a flow rate of 10 ml/min. The column eluent was monitored at a wavelength of 214 nm.

The fractions eluting from the ion exchange column were pooled and subjected to reverse phase chromatography using a Poros R2 column 4.6 x 100 mm (Perseptive Biosystems). Polypeptides were eluted from the column with a linear gradient from 0-100% acetonitrile (0.1% TFA) at a flow rate of 5 ml/min. The eluent was monitored at 214 nm.

Fractions containing the eluted polypeptides were lyophilized and resuspended in 80 µl of aqueous 0.1% TFA and further subjected to reverse phase chromatography on a Vydac C4 column 4.6 x 150 mm (Western Analytical, Temecula, CA) with a linear gradient of 0-100% acetonitrile (0.1% TFA) at a flow rate of 2 ml/min. Eluent was monitored at 214 nm.

The fraction with biological activity was separated into one major peak plus other smaller components. Western blot of this peak onto PVDF membrane revealed three major bands of molecular weights 14 Kd. 20 Kd and 26 Kd. These polypeptides were determined to have the following N-terminal sequences, respectively:

(j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 134)

- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 135) and
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136), wherein Xaa may be any amino acid.
- Using the assays described above, these polypeptides were shown to induce proliferation and IFN-γ production in PBMC preparations. Figs. 1A and B show the results of such assays using PBMC preparations from a first and a second donor, respectively.

DNA sequences that encode the antigens designated as (a), (c), (d) and (g) above were obtained by screening a genomic *M. tuberculosis* library using ³²P end labeled degenerate oligonucleotides corresponding to the N-terminal sequence and containing *M. tuberculosis* codon bias. The screen performed using a probe corresponding to antigen (a) above identified a clone having the sequence provided in SEQ ID No. 101. The polypeptide encoded by SEQ ID No. 101 is provided in SEQ ID No. 102. The screen performed using a probe corresponding to antigen (g) above identified a clone having the sequence provided in SEQ ID No. 52. The polypeptide encoded by SEQ ID No. 52 is provided in SEQ ID No. 53. The screen performed using a probe corresponding to antigen (d) above identified a clone having the sequence provided in SEQ ID No. 24. and the screen performed with a probe corresponding to antigen (c) identified a clone having the sequence provided in SEQ ID No: 25.

The above amino acid sequences were compared to known amino acid sequences in the gene bank using the DNA STAR system. The database searched contains some 173,000 proteins and is a combination of the Swiss, PIR databases along with translated protein sequences (Version 87). No significant homologies to the amino acid sequences for antigens (a)-(h) and (l) were detected.

The amino acid sequence for antigen (i) was found to be homologous to a sequence from *M. leprae*. The full length *M. leprae* sequence was amplified from genomic DNA using the sequence obtained from GENBANK. This sequence was then used to screen the *M. tuberculosis* library described below in Example 2 and a full length copy of the *M. tuberculosis* homologue was obtained (SEQ ID No. 99).

The amino acid sequence for antigen (j) was found to be homologous to a known *M. tuberculosis* protein translated from a DNA sequence. To the best of the inventors' knowledge, this protein has not been previously shown to possess T-cell stimulatory activity. The amino acid sequence for antigen (k) was found to be related to a sequence from *M. leprae*.

In the proliferation and IFN- γ assays described above, using three PPD positive donors, the results for representative antigens provided above are presented in Table 1:

TABLE 1

RESULTS OF PBMC PROLIFERATION AND IFN-y ASSAYS

Sequence	Proliferation	IFN-γ
(a)	+	
(c)	+++	-
(d)	++	+++
(g)	+++	++
(h)	+++	+++

In Table 1, responses that gave a stimulation index (SI) of between 2 and 4 (compared to cells cultured in medium alone) were scored as +, an SI of 4-8 or 2-4 at a concentration of 1 µg or less was scored as ++ and an SI of greater than 8 was scored as +++. The antigen of sequence (i) was found to have a high SI (+++) for one donor and lower SI (+++ and +) for the two other donors in both proliferation and IFN-y assays. These results indicate that these antigens are capable of inducing proliferation and/or interferon-y production.

EXAMPLE 2

USE OF PATIENT SERA TO ISOLATE M. TUBERCULOSIS ANTIGENS

This example illustrates the isolation of antigens from M. tuberculosis lysate by screening with serum from M. tuberculosis-infected individuals.

Dessicated *M. tuberculosis* H37Ra (Difco Laboratories) was added to a 2% NP40 solution, and alternately homogenized and sonicated three times. The resulting suspension was centrifuged at 13,000 rpm in microfuge tubes and the supernatant put through a 0.2 micron syringe filter. The filtrate was bound to Macro Prep DEAE beads (BioRad, Hercules, CA). The beads were extensively washed with 20 mM Tris pH 7.5 and bound proteins eluted with 1M NaCl. The 1M NaCl elute was dialyzed overnight against 10 mM Tris, pH 7.5. Dialyzed solution was treated with DNase and RNase at 0.05 mg/ml for 30 min. at room temperature and then with α-D-mannosidase, 0.5 U/mg at pH 4.5 for 3-4 hours at room temperature. After returning to pH 7.5, the material was fractionated via FPLC over a Bio Scale-Q-20 column (BioRad). Fractions were combined into nine pools, concentrated in a Centriprep 10 (Amicon, Beverley, MA) and then screened by Western blot for serological activity using a serum pool from *M. tuberculosis*-infected patients which was not immunoreactive with other antigens of the present invention.

- The most reactive fraction was run in SDS-PAGE and transferred to PVDF. A band at approximately 85 Kd was cut out yielding the sequence:
 - (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 137), wherein Xaa may be any amino acid.
- Comparison of this sequence with those in the gene bank as described above, revealed no significant homologies to known sequences.

A DNA sequence that encodes the antigen designated as (m) above was obtained by screening a genomic M. tuberculosis Erdman strain library using labeled degenerate oligonucleotides corresponding to the N-terminal sequence of SEQ ID NO:137. A clone was identified having the DNA sequence provided in SEQ ID NO:

203. This sequence was found to encode the amino acid sequence provided in SEQ ID NO: 204. Comparison of these sequences with those in the genebank revealed some similarity to sequences previously identified in *M. tuberculosis* and *M. bovis*.

5

01

EXAMPLE 3

PREPARATION OF DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

This example illustrates the preparation of DNA sequences encoding *M. tuberculosis* antigens by screening a *M. tuberculosis* expression library with sera obtained from patients infected with *M. tuberculosis*, or with anti-sera raised against soluble *M. tuberculosis* antigens.

A. PREPARATION OF M. TUBERCULOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-SERA RAISED AGAINST M. TUBERCULOSIS SUPERNATANT

15 Genomic DNA was isolated from the M. tuberculosis strain H37Ra. The DNA was randomly sheared and used to construct an expression library using the Lambda ZAP expression system (Stratagene, La Jolla, CA). Rabbit anti-sera was generated against secretory proteins of the M. tuberculosis strains H37Ra, H37Rv and Erdman by immunizing a rabbit with concentrated supernatant of the M. tuberculosis cultures. Specifically, the rabbit was first immunized subcutaneously with 200 μg of protein antigen in a total volume of 2 ml containing 10 µg muramyl dipeptide (Calbiochem, La Jolla, CA) and 1 ml of incomplete Freund's adjuvant. Four weeks later the rabbit was boosted subcutaneously with 100 µg antigen in incomplete Freund's adjuvant. Finally, the rabbit was immunized intravenously four weeks later with $50 \mu g$ protein antigen. The anti-sera were used to screen the expression library as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the M. tuberculosis clones deduced.

Thirty two clones were purified. Of these, 25 represent sequences that have not been previously identified in human *M. tuberculosis*. Recombinant antigens

15

were expressed and purified antigens used in the immunological analysis described in Example 1. Proteins were induced by IPTG and purified by gel elution, as described in Skeiky et al., *J. Exp. Med.* 181:1527-1537, 1995. Representative sequences of DNA molecules identified in this screen are provided in SEQ ID Nos.: 1-25. The corresponding predicted amino acid sequences are shown in SEQ ID Nos. 63-87.

On comparison of these sequences with known sequences in the gene bank using the databases described above, it was found that the clones referred to hereinafter as TbRA2A, TbRA16, TbRA18, and TbRA29 (SEQ ID Nos. 76, 68, 70, 75) show some homology to sequences previously identified in *Mycobacterium leprae* but not in *M. tuberculosis*. TbRA2A was found to be a lipoprotein, with a six residue lipidation sequence being located adjacent to a hydrophobic secretory sequence. TbRA11, TbRA26, TbRA28 and TbDPEP (SEQ ID Nos.: 65, 73, 74, 53) have been previously identified in *M. tuberculosis*. No significant homologies were found to TbRA1, TbRA3. TbRA4, TbRA9, TbRA10, TbRA13, TbRA17, TbRa19, TbRA29, TbRA32, TbRA36 and the overlapping clones TbRA35 and TbRA12 (SEQ ID Nos. 63, 77, 81, 82, 64, 67, 69, 71, 75, 78, 80, 79, 66). The clone TbRa24 is overlapping with clone TbRa29.

The results of PBMC proliferation and interferon-y assays performed on representative recombinant antigens, and using T-cell preparations from several different M. tuberculosis-immune patients, are presented in Tables 2 and 3, respectively.

<u>TABLE 2</u> Results of PBMC Proliferation To Representative Soluble Antigens

	Antigen														
	,							Patient							
			2	3	4	~	Ľ	1	•	,			-		
	TbRal			-	-	,		1	»	6	2	=	2	13	_
	ThBat		-	4			•	#	#		,	+	++	•	_
	CBNO		+-	+	•	#	,	'	‡	++	,				_
_	lbRa9		'	Ξ	Ħ	÷	‡	יי	ī	=	=	;			_
	TbRa10	,	,	++	++	+	+	Ē	+			<u> </u>	Ĕ		_
	TbRall	++	++	_	-	‡	4		,		+	**	#	•	
	TbRa12			+	-	+	- -	=	•	‡	+	‡	+	10	
	TbRa16	E	Ξ	=	ju	4		+	+4	+1	•	+	·	•	
	ThRa74	1	-					Ē	Ξ	Ĕ	Ξ	E	nt	n	
	200		=	=	Ξ	'		Ξ	12	mi	Ξ	=	E	ııt	
	DKa26	'	+	III	nf	•	,	ĭ	Ħ	Till I	=	Ē	1		
	15Ra29	Ħ	114	Ħ	1			1	=	-		111	ē	Ē	
	TbRa35	-+	Ξ	1	‡	±	‡	ā		= :	≡ :	Ju	ī	ī	
1	TbRaB	nt	Ħ	E	I	,	,	1	- -	<u> </u>	+	‡	+	Ξ	
	TbRaC	nt	Ξ	Ξ	=			1 2	= :	E	ĭ	Ξ	ī	n	
	TbRaD	н	E	Ξ	Ξ			1 2	= =	=	E	Ē	E	=	
	AAMK			++					=	=	E	E	Ē	ŭ	
	γγ		,					+	•		,	E	+1	Ξ	
1	OPED						•	ē	•		•	Ξ	+	nt	
_1			-		+		-	E	‡	+	+	+1	+	נו	
7	Conitrol	•				•	•	•	•	•					

nt = not tested

;	RES	ULTS OF	PBMC	TABLE 3 RESULTS OF PBMC INTERFERON-Y PRODUCTION TO REPRESENTATIVE SOLUBLE ANTIGENS	RON-y	TA RODUC	TABLE 3	REPRES	ENTATIV	E SOLUI	3LE ANT	ICENS	
Antigen							Patient						
	-	2	7	7	-	'	1	•	ļ		_		
TbRai	+	Ξ			, ,	<u> </u>	-	0	7		=	12	13
TbRa3		+1	-	-	- +		-	+1			+	++	
TbRa9	÷	+	=	=	4 3	•		+	#	1	,	•	
TbRa10	+	-	+	#	-	, .	=	=	E	E	n n	ä	ē
ThRall		+	• -	4	н	+	=	#		+	+1	+	-
ThRail		 	- -	-	‡	+	=	•	#	‡	‡	+	ij
1 DIVAIL		.	-	+	+1	+	+	#	#	,	+		
1bRa16	=	Ξ	E	nt	+	-	¥ —	100	1	ţ	i	1	
TbRa24	Ξ	E	=	Ħ	+		=	=	-	E 1		=	ĕ
TbRa26	‡	+	E	12	+	+	1			=	Ē	E	Ħ
TbRa29	Ξ	Ξ	Ξ	Ē	ب			ē	H	=	E	=	E
TbRa35	+	1	1		. :		=	=	Ξ	Ξ	Ξ	ם	ī
ThRaB	1				+++	‡	=	#	÷	+++	+++	+	2
	=		≝	=	++	+	Ξ	Ξ	II	Ξ	ī	ני) I
DKaC	=	=	E	Ξ	+	+	Ξ	Ξ	שנ	1	Įū	î	
rbRaD	ı	n I	111	Ti I	÷	+	ī	ī	ī	1	: :		=
AAMK	,	,	#1	,			-			=	=	Ē	=
λλ							=	,		,	Ξ	#	Ξ
DPFP	+	-					ĕ		•		Ξ	+	Ē
		-	-	L .	+	\cdot	n n	++	#1	÷	#	#	Ξ
Conno					•		•	•			,		

15

25

In Tables 2 and 3, responses that gave a stimulation index (SI) of between 1.2 and 2 (compared to cells cultured in medium alone) were scored as ±, a SI of 2-4 was scored as +, as SI of 4-8 or 2-4 at a concentration of 1 µg or less was scored as ++ and an SI of greater than 8 was scored as +++. In addition, the effect of concentration on proliferation and interferon-y production is shown for two of the above antigens in the attached Figure. For both proliferation and interferon-y production. TbRa3 was scored as +++ and TbRa9 as +.

These results indicate that these soluble antigens can induce proliferation and/or interferon-y production in T-cells derived from an *M. tuberculosis*-immune individual.

B. Use of Sera From Patients having Pulmonary or Pleural Tuberculosis to Identify DNA Sequences Encoding M. tuberculosis Antigens

The genomic DNA library described above, and an additional H37Rv library, were screened using pools of sera obtained from patients with active tuberculosis. To prepare the H37Rv library, *M. tuberculosis* strain H37Rv genomic DNA was isolated, subjected to partial *Sau*3A digestion and used to construct an expression library using the Lambda Zap expression system (Stratagene, La Jolla, Ca). Three different pools of sera, each containing sera obtained from three individuals with active pulmonary or pleural disease, were used in the expression screening. The pools were designated TbL, TbM and TbH, referring to relative reactivity with H37Ra lysate (*i.e.*, TbL = low reactivity. TbM = medium reactivity and TbH = high reactivity) in both ELISA and immunoblot format. A fourth pool of sera from seven patients with active pulmonary tuberculosis was also employed. All of the sera lacked increased reactivity with the recombinant 38 kD *M. tuberculosis* H37Ra phosphate-binding protein.

All pools were pre-adsorbed with *E. coli* lysate and used to screen the H37Ra and H37Rv expression libraries, as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

WO 99/42076 PCT/US99/03268

Thirty two clones were purified. Of these, 31 represented sequences that had not been previously identified in human *M. tuberculosis*. Representative sequences of the DNA molecules identified are provided in SEQ ID Nos.: 26-51 and 105. Of these, TbH-8-2 (SEQ. ID NO. 105) is a partial clone of TbH-8, and TbH-4 (SEQ. ID NO. 43) and TbH-4-FWD (SEQ. ID NO. 44) are non-contiguous sequences from the same clone. Amino acid sequences for the antigens hereinafter identified as Tb38-1, TbH-4, TbH-8, TbH-9, and TbH-12 are shown in SEQ ID Nos.: 88-92. Comparison of these sequences with known sequences in the gene bank using the databases identified above revealed no significant homologies to TbH-4, TbH-8, TbH-9 and TbM-3, although weak homologies were found to TbH-9. TbH-12 was found to be homologous to a 34 kD antigenic protein previously identified in *M. paratuberculosis* (Acc. No. S28515). Tb38-1 was found to be located 34 base pairs upstream of the open reading frame for the antigen ESAT-6 previously identified in *M. bovis* (Acc. No. U34848) and in *M. tuberculosis* (Sorensen et al., *Infec. Immun.* 63:1710-1717, 1995).

Probes derived from Tb38-1 and TbH-9, both isolated from an H37Ra library, were used to identify clones in an H37Rv library. Tb38-1 hybridized to Tb38-1F2. Tb38-1F3. Tb38-1F5 and Tb38-1F6 (SEQ. ID NOS. 112, 113, 116, 118, and 119). (SEQ ID NOS. 112 and 113 are non-contiguous sequences from clone Tb38-1F2.) Two open reading frames were deduced in Tb38-IF2; one corresponds to Tb37FL (SEQ. ID. NO. 114), the second, a partial sequence, may be the homologue of Tb38-1 and is called Tb38-IN (SEQ. ID NO. 115). The deduced amino acid sequence of Tb38-1F3 is presented in SEQ. ID. NO. 117. A TbH-9 probe identified three clones in the H37Rv library: TbH-9-FL (SEQ. ID NO. 106), which may be the homologue of TbH-9 (R37Ra), TbH-9-1 (SEQ. ID NO. 108), and TbH-9-4 (SEQ. ID NO. 110), all of which are highly related sequences to TbH-9. The deduced amino acid sequences for these three clones are presented in SEQ ID NOS. 107, 109 and 111.

15

30

Further screening of the *M. tuberculosis* genomic DNA library, as described above, resulted in the recovery of ten additional reactive clones, representing seven different genes. One of these genes was identified as the 38 Kd antigen discussed

WO 99/42076 PCT/US99/03268

above, one was determined to be identical to the 14Kd alpha crystallin heat shock protein previously shown to be present in *M. tuberculosis*, and a third was determined to be identical to the antigen TbH-8 described above. The determined DNA sequences for the remaining five clones (hereinafter referred to as TbH-29, TbH-30, TbH-32 and TbH-33) are provided in SEQ ID NO: 138-141, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 142-145, respectively. The DNA and amino acid sequences for these antigens were compared with those in the gene bank as described above. No homologies were found to the 5' end of TbH-29 (which contains the reactive open reading frame), although the 3' end of TbH-29 was found to be identical to the *M. tuberculosis* cosmid Y227. TbH-32 and TbH-33 were found to be identical to the previously identified *M. tuberculosis* insertion element IS6110 and to the *M. tuberculosis* cosmid Y50, respectively. No significant homologies to TbH-30 were found.

10

Positive phagemid from this additional screening were used to infect E. coli XL-1 Blue MRF', as described in Sambrook et al., supra. Induction of recombinant protein was accomplished by the addition of IPTG. Induced and uninduced lysates were run in duplicate on SDS-PAGE and transferred to nitrocellulose filters. Filters were reacted with human M. tuberculosis sera (1:200 dilution) reactive with TbH and a rabbit sera (1:200 or 1:250 dilution) reactive with the N-terminal 4 Kd portion of lacZ. Sera incubations were performed for 2 hours at room temperature. Bound antibody was detected by addition of ¹²⁵I-labeled Protein A and subsequent exposure to film for variable times ranging from 16 hours to 11 days. The results of the immunoblots are summarized in Table 4.

TABLE 4

5	Antigen	Human M. tb <u>Sera</u>	Anti-lacZ <u>Sera</u>
	Тън-29	45 Kd	45 Kd
	Тьн-30	No reactivity	29 Kd
	TbH-32	12 Kd	12 Kd
	Тън-33	16 Kd	16 Kd

25

Positive reaction of the recombinant human M. tuberculosis antigens with both the human M. tuberculosis sera and anti-lacZ sera indicate that reactivity of the human M. tuberculosis sera is directed towards the fusion protein. Antigens reactive with the anti-lacZ sera but not with the human M. tuberculosis sera may be the result of the human M. tuberculosis sera recognizing conformational epitopes, or the antigen-antibody binding kinetics may be such that the 2 hour sera exposure in the immunoblot is not sufficient.

The results of T-cell assays performed on Tb38-1, ESAT-6 and other representative recombinant antigens are presented in Tables 5A, B and 6, respectively, below:

TABLE 5A

RESULTS OF PBMC PROLIFERATION TO REPRESENTATIVE ANTIGENS

Antigen						Donor					 -
	1	2	3	4	5	6	7	8	0	10	
Tb38.1		-	-	-	-	+-	-	+		10	1
ESAT-6		+	-	+_	-	+	-	+	+	++	
Тън-9		++			±	±	++	-			

10

15

20

TABLE 5B
RESULTS OF PBMC INTERFERON-γ PRODUCTION TO REPRESENTATIVE ANTIGENS

Antigen	_					Donor					
	1	2	3	4	5	6	7	8	9	10	11
Tb38.1	+++	+	-	+	+	+++	-	++	-	+++	+++
ESAT-6	+++	+	+	+	+-	+	-	+	+	++-	
Тън-9	++	++	-	+++	±	±	+++	+++	++		++

TABLE 6
SUMMARY OF T-CELL RESPONSES TO REPRESENTATIVE ANTIGENS

	I	roliferatio	n		Interferon-	r	
Antigen	patient 4	patient 5	patient 6	patient 4	patient 5	patient 6	total
Тън9	++	++	++	+++	++	++	13
Тъм7	-	÷	-	+-	+	-	4
Тън5	-	+	+	++	++	++	8
TbL23	-	+	±	++	++	+	7.5
Тън4	-	++	±	+ +		±	7
- control	-	-	-	-	-	-	0

These results indicate that both the inventive *M. tuberculosis* antigens and ESAT-6 can induce proliferation and/or interferon-y production in T-cells derived from an *M. tuberculosis*-immune individual. To the best of the inventors' knowledge. ESAT-6 has not been previously shown to stimulate human immune responses

A set of six overlapping peptides covering the amino acid sequence of the antigen Tb38-1 was constructed using the method described in Example 6. The sequences of these peptides, hereinafter referred to as pep1-6, are provided in SEQ ID Nos. 93-98, respectively. The results of T-cell assays using these peptides are shown in Tables 7 and 8. These results confirm the existence, and help to localize T-cell epitopes within Tb38-1 capable of inducing proliferation and interferon-γ production in T-cells derived from an *M. tuberculosis* immune individual.

TABLE 7 RESULTS OF PBMC PROLIFERATION TO TB38-1 PEPTIDES

Peptide							Patient						
	_	2	3	4	S	9	7	∞	6	0	=	12	٤١
pep1			,		+		٠	•	•	H		•	+
pep2	+1	,		•	+1	•	,	•	+1	++		•	+
pep3		'					-	,	++	•		•	#
pep4	=						+		+	#	•	•	+
pep5	‡	++	,				+		#	•	•		+
9dad	,	‡		,		,	#	•	Ŧ	+	•	•	+
Control		,	,	,	,		,	•	,	ı	•	•	_

TABLE 8
RESULTS OF PBMC INTERFERON-Y PRODUCTION TO TB38-1 PEPTIDES

:														
Peptide							Patient							
-	_	2	~	7	5	9	7	∞	6	02	=	12	-	
pepi	-		<u> </u>	,	++					++		! .	2 +	
pep2		<u> </u>			#	,		<u> </u>	++	+			- +	
pep3	'		,	,				.	+				- -	
pep4	÷						÷		+ +	1	'	,	H	
pens	+	+							,	-	•		+	
Sdad		4		•		,	+	'	#1	,	•	ı	+	
9dad	<u>-</u>	+		•	,	1	+1		₩	+	,		+	
Control	ı	,				-								_

Studies were undertaken to determine whether the antigens TbH-9 and Tb38-1 represent cellular proteins or are secreted into *M. tuberculosis* culture media. In the first study, rabbit sera were raised against A) secretory proteins of *M. tuberculosis*, B) the known secretory recombinant *M. tuberculosis* antigen 85b, C) recombinant Tb38-1 and D) recombinant TbH-9, using protocols substantially the same as that as described in Example 3A. Total *M. tuberculosis* lysate, concentrated supernatant of *M. tuberculosis* cultures and the recombinant antigens 85b, TbH-9 and Tb38-1 were resolved on denaturing gels, immobilized on nitrocellulose membranes and duplicate blots were probed using the rabbit sera described above.

The results of this analysis using control sera (panel I) and antisera (panel II) against secretory proteins, recombinant 85b, recombinant Tb38-1 and recombinant TbH-9 are shown in Figures 3A-D, respectively, wherein the lane designations are as follows: 1) molecular weight protein standards; 2) 5 µg of *M. tuberculosis* lysate; 3) 5 µg secretory proteins: 4) 50 ng recombinant Tb38-1; 5) 50 ng recombinant TbH-9; and 6) 50 ng recombinant 85b. The recombinant antigens were engineered with six terminal histidine residues and would therefore be expected to migrate with a mobility approximately 1 kD larger that the native protein. In Figure 3D, recombinant TbH-9 is lacking approximately 10 kD of the full-length 42 kD antigen, hence the significant difference in the size of the immunoreactive native TbH-9 antigen in the lysate lane (indicated by an arrow). These results demonstrate that Tb38-1 and TbH-9 are intracellular antigens and are not actively secreted by *M. tuberculosis*.

The finding that TbH-9 is an intracellular antigen was confirmed by determining the reactivity of TbH-9-specific human T cell clones to recombinant TbH-9. secretory *M. tuberculosis* proteins and PPD. A TbH-9-specific T cell clone (designated 131TbH-9) was generated from PBMC of a healthy PPD-positive donor. The proliferative response of 131TbH-9 to secretory proteins, recombinant TbH-9 and a control *M. tuberculosis* antigen. TbRall, was determined by measuring uptake of tritiated thymidine. as described in Example 1. As shown in Figure 4A, the clone 131TbH-9 responds specifically to TbH-9, showing that TbH-9 is not a significant component of *M. tuberculosis* secretory proteins. Figure 4B shows the production of IFN-y by a second TbH-9-specific T cell clone

(designated PPD 800-10) prepared from PBMC from a healthy PPD-positive donor, following stimulation of the T cell clone with secretory proteins, PPD or recombinant TbH-9. These results further confirm that TbH-9 is not secreted by M. tuberculosis.

C. USE OF SERA FROM PATIENTS HAVING EXTRAPULMONARY TUBERCULOSIS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

Genomic DNA was isolated from M. tuberculosis Erdman strain, randomly sheared and used to construct an expression library employing the Lambda ZAP expression system (Stratagene. La Jolla, CA). The resulting library was screened using pools of sera obtained from individuals with extrapulmonary tuberculosis, as described above in Example 3B, with the secondary antibody being goat anti-human IgG + A + M (H+L) conjugated with alkaline phosphatase.

Eighteen clones were purified. Of these, 4 clones (hereinafter referred to as XP14, XP24, XP31 and XP32) were found to bear some similarity to known sequences. The determined DNA sequences for XP14, XP24 and XP31 are provided in SEQ ID Nos.: 156-158, respectively, with the 5° and 3° DNA sequences for XP32 being provided in SEQ ID Nos.: 159 and 160, respectively. The predicted amino acid sequence for XP14 is provided in SEQ ID No: 161. The reverse complement of XP14 was found to encode the amino acid sequence provided in SEQ ID No.: 162.

Comparison of the sequences for the remaining 14 clones (hereinafter referred to as XP1-XP6. XP17-XP19. XP22, XP25, XP27, XP30 and XP36) with those in the genebank as described above, revealed no homologies with the exception of the 3' ends of XP2 and XP6 which were found to bear some homology to known *M. tuberculosis* cosmids. The DNA sequences for XP27 and XP36 are shown in SEQ ID Nos.: 163 and 164, respectively, with the 5' sequences for XP4, XP5, XP17 and XP30 being shown in SEQ ID Nos: 165-168, respectively, and the 5' and 3' sequences for XP2. XP3, XP6, XP18, XP19, XP22 and XP25 being shown in SEQ ID Nos: 169 and 170; 171 and 172; 173 and 174: 175 and 176; 177 and 178; 179 and 180; and 181 and 182, respectively. XP1 was found to overlap with the DNA sequences for TbH4, disclosed above. The full-length DNA sequence for TbH4-XP1 is provided in SEQ ID No.: 183. This DNA sequence was found to contain an

open reading frame encoding the amino acid sequence shown in SEQ ID No: 184. The reverse complement of TbH4-XP1 was found to contain an open reading frame encoding the amino acid sequence shown in SEQ ID No.: 185. The DNA sequence for XP36 was found to contain two open reading frames encoding the amino acid sequence shown in SEQ ID Nos.: 186 and 187, with the reverse complement containing an open reading frame encoding the amino acid sequence shown in SEQ ID No.: 188.

Recombinant XP1 protein was prepared as described above in Example 3B, with a metal ion affinity chromatography column being employed for purification. As illustrated in Figures 8A-B and 9A-B, using the assays described herein, recombinant XP1 was found to stimulate cell proliferation and IFN- γ production in T cells isolated from an *M. tuberculosis*-immune donors.

D. USE OF A LYSATE POSITIVE SERUM POOL FROM PATIENTS HAVING TUBERCULOSIS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

Genomic DNA was isolated from M. tuberculosis Erdman strain, randomly sheared and used to construct an expression library employing the Lambda Screen expression system (Novagen, Madison, WI), as described below in Example 6. Pooled serum obtained from M. tuberculosis-infected patients and that was shown to react with M. tuberculosis lysate but not with the previously expressed proteins 38kD, Tb38-1, TbRa3, TbH4, DPEP and TbRa11, was used to screen the expression library as described above in Example 3B, with the secondary antibody being goat anti-human IgG + A + M (H+L) conjugated with alkaline phosphatase.

Twenty-seven clones were purified. Comparison of the determined cDNA sequences for these clones revealed no significant homologies to 10 of the clones (hereinafter referred to as LSER-10, LSER-11, LSER-12, LSER-13, LSER-16, LSER-18, LSER-23, LSER-24, LSER-25 and LSER-27). The determined 5' cDNA sequences for LSER-10, LSER-11, LSER-12, LSER-13, LSER-16 and LSER-25 are provided in SEQ ID NO: 242-247, respectively, with the corresponding predicted amino acid sequences for LSER-10, LSER-12, LSER-13, LSER-16 and LSER-25 being provided in SEQ ID NO: 248-252, respectively. The determined full-length cDNA sequences for LSER-18, LSER-23, LSER-24

and LSER-27 are shown in SEQ ID NO: 253-256, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 257-260. The remaining seventeen clones were found to show similarities to unknown sequences previously identified in *M. tuberculosis*. The determined 5' cDNA sequences for sixteen of these clones (hereinafter referred to as LSER-1, LSER-3, LSER-4, LSER-5, LSER-6, LSER-8, LSER-14, LSER-15, LSER-17, LSER-19, LSER-20, LSER-22, LSER-26, LSER-28, LSER-29 and LSER-30) are provided in SEQ ID NO: 261-276, respectively, with the corresponding predicted amino acid sequences for LSER-1, LSER-3, LSER-5, LSER-6, LSER-8, LSER-14, LSER-15, LSER-17, LSER-19, LSER-20, LSER-22, LSER-26, LSER-28, LSER-29 and LSER-30 being provided in SEQ ID NO: 277-291, respectively. The determined full-length cDNA sequence for the clone LSER-9 is provided in SEQ ID NO: 292. The reverse complement of LSER-6 (SEQ ID NO: 293) was found to encode the predicted amino acid sequence of SEQ ID NO: 294.

E. PREPARATION OF M. TUBERCULOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-SERA RAISED AGAINST M. TUBERCULOSIS FRACTIONATED PROTEINS

M. tuberculosis lysate was prepared as described above in Example 2. The resulting material was fractionated by HPLC and the fractions screened by Western blot for serological activity with a serum pool from M. tuberculosis-infected patients which showed little or no immunoreactivity with other antigens of the present invention. Rabbit anti-sera was generated against the most reactive fraction using the method described in Example 3A. The anti-sera was used to screen an M. tuberculosis Erdman strain genomic DNA expression library prepared as described above. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the M. tuberculosis clones determined.

Ten different clones were purified. Of these, one was found to be TbRa35, described above, and one was found to be the previously identified *M. tuberculosis* antigen. HSP60. Of the remaining eight clones, seven (hereinafter referred to as RDIF2, RDIF5, RDIF8, RDIF10, RDIF11 and RDIF 12) were found to bear some similarity to previously identified *M. tuberculosis* sequences. The determined DNA sequences for RDIF2, RDIF5, RDIF8, RDIF10 and RDIF11 are provided in SEQ ID Nos.: 189-193, respectively, with the

corresponding predicted amino acid sequences being provided in SEQ ID Nos: 194-198, respectively. The 5' and 3' DNA sequences for RDIF12 are provided in SEQ ID Nos.: 199 and 200, respectively. No significant homologies were found to the antigen RDIF-7. The determined DNA and predicted amino acid sequences for RDIF7 are provided in SEQ ID Nos.: 201 and 202, respectively. One additional clone, referred to as RDIF6 was isolated, however, this was found to be identical to RDIF5.

Recombinant RDIF6. RDIF8, RDIF10 and RDIF11 were prepared as described above. As shown in Figures 8A-B and 9A-B, these antigens were found to stimulate cell proliferation and IFN-y production in T cells isolated from *M. tuberculosis*-immune donors.

EXAMPLE 4

PURIFICATION AND CHARACTERIZATION OF A POLYPEPTIDE FROM TUBERCULIN PURIFIED PROTEIN DERIVATIVE

An M. tuberculosis polypeptide was isolated from tuberculin purified protein derivative (PPD) as follows.

PPD was prepared as published with some modification (Seibert, F. et al., Tuberculin purified protein derivative. Preparation and analyses of a large quantity for standard. The American Review of Tuberculosis 44:9-25, 1941).

M. tuberculosis Rv strain was grown for 6 weeks in synthetic medium in roller bottles at 37°C. Bottles containing the bacterial growth were then heated to 100° C in water vapor for 3 hours. Cultures were sterile filtered using a 0.22 μ filter and the liquid phase was concentrated 20 times using a 3 kD cut-off membrane. Proteins were precipitated once with 50% ammonium sulfate solution and eight times with 25% ammonium sulfate solution. The resulting proteins (PPD) were fractionated by reverse phase liquid chromatography (RP-HPLC) using a C18 column (7.8 x 300 mM: Waters. Milford. MA) in a Biocad HPLC system (Perseptive Biosystems. Framingham, MA). Fractions were eluted from the column with a linear gradient from 0-100% buffer (0.1% TFA in acetonitrile). The flow rate was 10 ml/minute and eluent was monitored at 214 nm and 280 nm.

Six fractions were collected, dried, suspended in PBS and tested individually in *M. tuberculosis*-infected guinea pigs for induction of delayed type hypersensitivity (DTH) reaction. One fraction was found to induce a strong DTH reaction and was subsequently fractionated further by RP-HPLC on a microbore Vydac C18 column (Cat. No. 218TP5115) in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted with a linear gradient from 5-100% buffer (0.05% TFA in acetonitrile) with a flow rate of 80 µl/minute. Eluent was monitored at 215 nm. Eight fractions were collected and tested for induction of DTH in *M. tuberculosis*-infected guinea pigs. One fraction was found to induce strong DTH of about 16 mm induration. The other fractions did not induce detectable DTH. The positive fraction was submitted to SDS-PAGE gel electrophoresis and found to contain a single protein band of approximately 12 kD molecular weight.

This polypeptide, herein after referred to as DPPD, was sequenced from the amino terminal using a Perkin Elmer/Applied Biosystems Division Procise 492 protein sequencer as described above and found to have the N-terminal sequence shown in SEQ ID No.: 129. Comparison of this sequence with known sequences in the gene bank as described above revealed no known homologies. Four cyanogen bromide fragments of DPPD were isolated and found to have the sequences shown in SEQ ID Nos.: 130-133. A subsequent search of the *M. tuberculosis* genome database released by the Institute for Genomic Research revealed a match of the DPPD partial amino acid sequence with a sequence present within the *M. tuberculosis* cosmid MTY21C12. An open reading frame of 336 bp was identified. The full-length DNA sequence for DPPD is provided in SEQ ID NO: 240. with the corresponding full-length amino acid sequence being provided in SEQ ID NO: 241.

The ability of the antigen DPPD to stimulate human PBMC to proliferate and to produce IFN-γ was assayed as described in Example 1. As shown in Table 9, DPPD was found to stimulate proliferation and elicit production of large quantities of IFN-γ; more than that elicited by commercial PPD.

TABLE 9

RESULTS OF PROLIFERATION AND INTERFERON-Y ASSAYS TO DPPD

PBMC Donor	Stimulator	Proliferation (CPM)	IFN-γ (OD ₁₅₀)
A	Medium	1,089	0.17
	PPD (commercial)	8,394	1.29
	DPPD	13,451	2.21
В	Medium	450	0.09
	PPD (commercial)	3,929	1.26
	DPPD	6,184	1.49
С	N. 1:		
	Medium	541	0.11
	PPD (commercial)	8.907	0.76
	DPPD	23,024	>2.70

EXAMPLE 5 Use of Sera From Tuberculosis-Infected Monkeys to Identify DNA Sequences Encoding M. Tuberculosis Antigens

Genomic DNA was isolated from *M. tuberculosis* Erdman strain, randomly sheared and used to construct an expression library employing the Lambda ZAP expression system (Stratagene, La Jolla, CA). Serum samples were obtained from a cynomolgous monkey 18, 33, 51 and 56 days following infection with *M. tuberculosis* Erdman strain. These samples were pooled and used to screen the *M. tuberculosis* genomic DNA expression library using the procedure described above in Example 3C.

Twenty clones were purified. The determined 5' DNA sequences for the clones referred to as MO-1, MO-2, MO-4, MO-8, MO-9, MO-26, MO-28, MO-29, MO-30, MO-34 and MO-35 are provided in SEQ ID NO: 215-225, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 226-236. The full-length DNA sequence of the clone MO-10 is provided in SEQ ID NO: 237, with the corresponding

predicted amino acid sequence being provided in SEQ ID NO: 238. The 3' DNA sequence for the clone MO-27 is provided in SEQ ID NO: 239.

Clones MO-1, MO-30 and MO-35 were found to show a high degree of relatedness and showed some homology to a previously identified unknown *M. tuberculosis* sequence and to cosmid MTCI237. MO-2 was found to show some homology to aspartokinase from *M. tuberculosis*. Clones MO-3, MO-7 and MO-27 were found to be identical and to show a high degree of relatedness to MO-5. All four of these clones showed some homology to *M. tuberculosis* heat shock protein 70. MO-27 was found to show some homology to *M. tuberculosis* cosmid MTCY339. MO-4 and MO-34 were found to show some homology to cosmid SCY21B4 and *M. smegmatis* integration host factor, and were both found to show some homology to a previously identified, unknown *M. tuberculosis* sequence. MO-6 was found to show some homology to *M. tuberculosis* heat shock protein 65. MO-8, MO-9, MO-10, MO-26 and MO-29 were found to be highly related to each other and to show some homology to *M. tuberculosis* dihydrolipamide succinyltransferase. MO-28, MO-31 and MO-32 were found to be identical and to show some homology to a previously identified *M. tuberculosis* protein. MO-33 was found to show some homology to a previously identified *M. tuberculosis* protein. MO-33 was found to show some homology to a previously identified *M. tuberculosis* protein. MO-33 was found to show some homology to a

Further studies using the above protocol resulted in the isolation of an additional four clones, hereinafter referred to as MO-12, MO-13, MO-19 and MO-39. The determined 5° cDNA sequences for these clones are provided in SEQ ID NO: 295-298, respectively, with the corresponding predicted protein sequences being provided in SEQ ID NO: 299-302, respectively. Comparison of these sequences with those in the gene bank as described above revealed no significant homologies to MO-39. MO-12, MO-13 and MO-19 were found to show some homologies to unknown sequences previously isolated from M. tuberculosis.

EXAMPLE 6

ISOLATION OF DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS
BY SCREENING OF A NOVEL EXPRESSION LIBRARY

This example illustrates isolation of DNA sequences encoding *M. tuberculosis* antigens by screening of a novel expression library with sera from *M. tuberculosis*-infected patients that were shown to be unreactive with a panel of the recombinant *M. tuberculosis* antigens TbRall, TbRa3, Tb38-1, TbH4, TbF and 38 kD.

Genomic DNA from *M. tuberculosis* Erdman strain was randomly sheared to an average size of 2 kb, and blunt ended with Klenow polymerase, followed by the addition of EcoRI adaptors. The insert was subsequently ligated into the Screen phage vector (Novagen, Madison, WI) and packaged *in vitro* using the PhageMaker extract (Novagen). The resulting library was screened with sera from several *M. tuberculosis* donors that had been shown to be negative on a panel of previously identified *M. tuberculosis* antigens as described above in Example 3B.

A total of 22 different clones were isolated. By comparison, screening of the λ Zap library described above using the same sera did not result in any positive hits. One of the clones was found to represent TbRa11, described above. The determined 5' cDNA sequences for 19 of the remaining 21 clones (hereinafter referred to as Erdsn1. Erdsn2. Erdsn4-Erdsn10, Erdsn12-18, Erdsn21-Erdsn23 and Erdsn25) are provided in SEQ ID NO: 303-322, respectively, with the determined 3' cDNA sequences for Erdsn1. Erdsn2. Erdsn4. Erdsn-5. Erdsn-7-Erdsn10. Erdsn12-18, Erdsn21-Erdsn23 and Erdsn25 being provided in SEQ ID NO: 323-341, respectively. The complete cDNA insert sequence for the clone Erdsn24 is provided in SEQ ID NO: 342. Comparison of the determined cDNA sequences with those in the gene bank revealed no significant homologies to the sequences provided in SEQ ID NO: 309, 316, 318-320, 322, 324, 328, 329, 333, 335, 337, 339 and 341. The sequences of SEQ ID NO: 303-308, 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342 were found to show some homology to unknown sequences previously identified in *M. tuberculosis*.

EXAMPLE 7 ISOLATION OF SOLUBLE M. TUBERCULOSIS ANTIGENS USING MASS SPECTROMETRY

This example illustrates the use of mass spectrometry to identify soluble M. tuberculosis antigens.

In a first approach, *M. tuberculosis* culture filtrate was screened by Western analysis using serum from a tuberculosis-infected individual. The reactive bands were excised from a silver stained gel and the amino acid sequences determined by mass spectrometry. The determined amino acid sequence for one of the isolated antigens is provided in SEQ ID NO: 343. Comparison of this sequence with those in the gene bank revealed homology to the 85b precursor antigen previously identified in *M. tuberculosis*.

In a second approach, the high molecular weight region of *M. tuberculosis* culture supernatant was studied. This area may contain immunodominant antigens which may be useful in the diagnosis of *M. tuberculosis* infection. Two known monoclonal antibodies, IT42 and IT57 (available from the Center for Disease Control, Atlanta, GA), show reactivity by Western analysis to antigens in this vicinity. although the identity of the antigens remains unknown. In addition, unknown high-molecular weight proteins have been described as containing a surrogate marker for *M. tuberculosis* infection in HIV-positive individuals (*Jnl. Infect. Dis.*, 176:133-143, 1997). To determine the identity of these antigens, two-dimensional gel electrophoresis and two-dimensional Western analysis were performed using the antibodies IT57 and IT42. Five protein spots in the high molecular weight region were identified, individually excised, enzymatically digested and subjected to mass spectrometric analysis.

The determined amino acid sequences for three of these spots (referred to as spots 1. 2 and 4) are provided in SEQ ID NO: 344, 345-346 and 347, respectively. Comparison of these sequences with those in the gene bank revealed that spot 1 is the previously identified PcK-1. a phosphoenolpyruvate kinase. The two sequences isolated from spot 2 were determined to be from two DNAks, previously identified in *M. tuberculosis* as heat shock proteins. Spot 4 was determined to be the previously identified *M. tuberculosis* protein Kat G. To the best of the inventors' knowledge, neither PcK-1 nor the two DNAks have previously been shown to have utility in the diagnosis of *M. tuberculosis* infection.

EXAMPLE 8

Use of Representative Antigens for Diagnosis OF Tuberculosis

This example illustrates the effectiveness of several representative polypeptides in skin tests for the diagnosis of *M. tuberculosis* infection.

Individuals were injected intradermally with 100 µl of either PBS or PBS plus Tween 20TM containing either 0.1 µg of protein (for TbH-9 and TbRa35) or 1.0 µg of protein (for TbRa38-1). Induration was measured between 5-7 days after injection, with a response of 5 mm or greater being considered positive. Of the 20 individuals tested. 2 were PPD negative and 18 were PPD positive. Of the PPD positive individuals, 3 had active tuberculosis. 3 had been previously infected with tuberculosis and 9 were healthy. In a second study, 13 PPD positive individuals were tested with 0.1 µg TbRa11 in either PBS or PBS plus Tween 20TM as described above. The results of both studies are shown in Table 10.

TABLE 10
RESULTS OF DTH TESTING WITH REPRESENTATIVE ANTIGENS

	TbH-9 Pos/Total	Tb38-1 Pos/Total	TbRa35 Pos/Total	Cumulative Pos/Total	TbRa11 Pos/Total
PPD negative	0/2	0/2	100		
	10/2	0/2	0/2	0/2	
PPD positive					
healthy	5/9	1/9	1/9	6/9	
prior TB	3/5	2/5	2/5		1/4
active	3/4	3/4		4/5	3/5
TOTAL			0/4	4/4	1/4
TOTAL	11/18	9/18	6/18	14/18	5/13

EXAMPLE 9 SYNTHESIS OF SYNTHETIC POLYPEPTIDES

Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N.N.N'.N'-tetramethyluronium

hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

EXAMPLE 10

PREPARATION AND CHARACTERIZATION OF M. TUBERCULOSIS FUSION PROTEINS

A fusion protein containing TbRa3, the 38 kD antigen and Tb38-1 was prepared as follows.

Each of the DNA constructs TbRa3. 38 kD and Tb38-1 were modified by PCR in order to facilitate their fusion and the subsequent expression of the fusion protein TbRa3-38 kD-Tb38-1. TbRa3, 38 kD and Tb38-1 DNA was used to perform PCR using the primers PDM-64 and PDM-65 (SEQ ID NO: 146 and 147), PDM-57 and PDM-58 (SEQ ID NO: 148 and 149), and PDM-69 and PDM-60 (SEQ ID NO: 150 and 151), respectively. In each case, the DNA amplification was performed using 10 μl 10X Pfu buffer, 2 μl 10 mM dNTPs, 2 μl each of the PCR primers at 10 μM concentration, 81.5 μl water, 1.5 μl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 μl DNA at either 70 ng/μl (for TbRa3) or 50 ng/μl (for 38 kD and Tb38-1). For TbRa3, denaturation at 94°C was performed for 2 min, followed by 40 cycles of 96°C for 15 sec and 72°C for 1 min, and lastly by 72°C for 4 min. For 38 kD, denaturation at 96°C was performed for 2 min, followed by 40 cycles of 96°C for 30 sec, 68°C for 15 sec and 72°C for 3 min, and finally by 72°C for 4 min. For Tb38-1 denaturation at 94°C for 2 min was followed by 10 cycles of 96°C for 15 sec and 72°C for

1.5 min, 30 cycles of 96°C for 15 sec, 64°C for 15 sec and 72°C for 1.5, and finally by 72°C for 4 min.

The TbRa3 PCR fragment was digested with NdeI and EcoRI and cloned directly into pT7^L2 IL 1 vector using NdeI and EcoRI sites. The 38 kD PCR fragment was digested with Sse8387I, treated with T4 DNA polymerase to make blunt ends and then digested with EcoRI for direct cloning into the pT7^L2Ra3-1 vector which was digested with StuI and EcoRI. The 38-1 PCR fragment was digested with Eco47III and EcoRI and directly subcloned into pT7^L2Ra3/38kD-17 digested with the same enzymes. The whole fusion was then transferred to pET28b – using NdeI and EcoRI sites. The fusion construct was confirmed by DNA sequencing.

The expression construct was transformed into BLR pLys S *E. coli* (Novagen. Madison, WI) and grown overnight in LB broth with kanamycin (30 µg/ml) and chloramphenicol (34 µg/ml). This culture (12 ml) was used to inoculate 500 ml 2XYT with the same antibiotics and the culture was induced with IPTG at an OD560 of 0.44 to a final concentration of 1.2 mM. Four hours post-induction, the bacteria were harvested and sonicated in 20 mM Tris (8.0), 100 mM NaCl, 0.1% DOC, 20 µg/ml Leupeptin, 20 mM PMSF followed by centrifugation at 26.000 X g. The resulting pellet was resuspended in 8 M urea, 20 mM Tris (8.0). 100 mM NaCl and bound to Pro-bond nickel resin (Invitrogen. Carlsbad, CA). The column was washed several times with the above buffer then eluted with an imidazole gradient (50 mM, 100 mM, 500 mM imidazole was added to 8 M urea, 20 mM Tris (8.0), 100 mM NaCl). The eluates containing the protein of interest were then dialyzed against 10 mM Tris (8.0).

The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbRa3-38 kD-Tb38-1) are provided in SEQ ID NO: 152 and 153, respectively.

A fusion protein containing the two antigens TbH-9 and Tb38-1 (hereinafter referred to as TbH9-Tb38-1) without a hinge sequence, was prepared using a similar procedure to that described above. The DNA sequence for the TbH9-Tb38-1 fusion protein is provided in SEQ ID NO: 156.

The ability of the fusion protein TbH9-Tb38-1 to induce T cell proliferation and IFN- γ production in PBMC preparations was examined using the protocol described above in Example 1. PBMC from three donors were employed: one who had been previously shown to respond to TbH9 but not Tb38-1 (donor 131); one who had been shown to respond to Tb38-1 but not TbH9 (donor 184); and one who had been shown to respond to both antigens (donor 201). The results of these studies (Figs. 5-7, respectively) demonstrate the functional activity of both the antigens in the fusion protein.

A fusion protein containing TbRa3, the antigen 38kD, Tb38-1 and DPEP was prepared as follows.

Each of the DNA constructs TbRa3. 38 kD and Tb38-1 were modified by PCR and cloned into vectors essentially as described above, with the primers PDM-69 (SEQ ID NO:150 and PDM-83 (SEQ ID NO: 205) being used for amplification of the Tb38-1A fragment. Tb38-1A differs from Tb38-1 by a DraI site at the 3' end of the coding region that keeps the final amino acid intact while creating a blunt restriction site that is in frame. The TbRa3/38kD/Tb38-1A fusion was then transferred to pET28b using NdeI and EcoR1 sites.

DPEP DNA was used to perform PCR using the primers PDM-84 and PDM-85 (SEQ ID NO: 206 and 207, respectively) and 1 µl DNA at 50 ng/µl. Denaturation at 94 °C was performed for 2 min. followed by 10 cycles of 96 °C for 15 sec. 68 °C for 15 sec and 72 °C for 1.5 min; 30 cycles of 96 °C for 15 sec. 64 °C for 15 sec and 72 °C for 1.5 min; and finally by 72 °C for 4 min. The DPEP PCR fragment was digested with EcoRI and Eco72I and clones directly into the pET28Ra3/38kD/38-1A construct which was digested with DraI and EcoRI. The fusion construct was confirmed to be correct by DNA sequencing. Recombinant protein was prepared as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-2) are provided in SEQ ID NO: 208 and 209, respectively.

The reactivity of the fusion protein TbF-2 with sera from *M. tuberculosis*-infected patients was examined by ELISA using the protocol described above. The results of these studies (Table 11) demonstrate that all four antigens function independently in the fusion protein.

 $\label{thm:combinant} Table~1~1$ Reactivity of TbF-2 Fusion Recombinant with TB and Normal Sera

Serum ID	Status	TbF OD450	Status	TbF-2 OD450	Status		ELISA	Reactivity	
				+	+	38 kD	1777		
B931-40	TB	0.57	+	0.321	+		TbRa3	Тъ38-1	DPEP
B931-41	TB	0.601	+	0.396	+		+ - -	•	+
B931-109	TB	0.494	+	0.404	 -	+	+	+	-
B931-132	TB	1.502	-	1.292	 -	+	+	±	-
5004	TB	1.806	+	1.666	+	+	+	+	<u> </u> ±
15004	TB	2.862	-	2.468	+	<u> </u>	=	+	-
39004	TB	2.443		1.722	+=	+	+	+	
68004	TB	2.871	_	2.575	-	-	<u> </u>	-	-
99004	TB	0.691		0.971	 -	<u> </u>	-	-	-
107004	TB	0.875	+	0.732	 -	<u> </u>	!=	! -	-
92004	TB	1.632		1.394		 -	<u> =</u>	-	-
97004	TB	1.491	+	1.979	ļ -	+	±	Ξ	-
118004	TB	3.182	<u> </u>	3.045		+	±	<u> </u>	-
173004	ТВ	3.644		3.043	+	+	±	-	-
175004	TB	3.332		2.916		-	-	+	
274004	TB	3.696			-	-	+	-	-
276004	TB	3.243		3.716	-	-	+	-	-
282004	TB	1.249	-	2.56	-	ļ ·		-	
289004	TB	1.373		1.234	-	-	<u> </u>	-	
308004	ТВ	3.708		1.17		· .	÷	•	-
314004	I TB		-	3.355			•	+	
317004	TB			1.399		-		-	-
312004	ТВ	1.709		0.92		-		-	-
80004	TB	0.238		1.453		-	-	-	-
151004	TB		-	0.461		1 -	=	-	
78004	TB	0.18			<u>. </u>	-	•	-	Ξ
10004	TB	0.00		0.469	-	•	-		=
11004	TB	0.004		2.392		±	-	-	
21004	TB	 		0.874		-	-	-	
28004	TB	0.045		1.456	-	-	-	-	
6-87	Normai	0.004			-	-	-		-
6-88	Normal	0.311			-	-	-	-	-
6-89	Normal	0.240			-	-	-	-	-
6-90	Normal	0.248 -			-	-	-	-	-
6-91	Normai				-		-	-	
6-92	Normal	0.135 -			-	-		-	
	Normal	0.064 -		0.097		•	-	-	
	Normal	0.072 -			•	-	-	-	
	Normal	0.072 -				-	- 1		
		0.125 -				-			-
	Normal	0.121 -	- 1	0.12					-
ut-off		0.204							
11-011		0.284	- T).266					

A fusion protein containing TbRa3, the antigen 38kD, Tb38-1 and TbH4 was prepared as follows.

Genomic *M. tuberculosis* DNA was used to PCR full-length TbH4 (FL TbH4) with the primers PDM-157 and PDM-160 (SEQ ID NO: 348 and 349, respectively) and 2 µl DNA at 100 ng/µl. Denaturation at 96 °C was performed for 2 min, followed by 40 cycles of 96 °C for 30 sec, 61 °C for 20 sec and 72 °C for 5 min; and finally by annealing at 72 °C for 10 min. The FL TbH4 PCR fragment was digested with EcoRI and Sca I (New England Biolabs.) and cloned directly into the pET28Ra3/38kD/38-1A construct described above which was digested with DraI and EcoRI. The fusion construct was confirmed to be correct by DNA sequencing. Recombinant protein was prepared as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-6) are provided in SEQ ID NO: 350 and 351, respectively.

A fusion protein containing the antigen 38kD and DPEP separated by a linker was prepared as follows.

38 kD DNA was used to perform PCR using the primers PDM-176 and PDM-175 (SEQ ID NO: 352 and 353, respectively), and 1 μ l PET28Ra3/38kD/38-1/Ra2A-12 DNA at 110 ng/μl. Denaturation at 96 °C was performed for 2 min, followed by 40 cycles of 96 °C for 30 sec, 71 °C for 15 sec and 72 °C for 5 min and 40 sec; and finally by annealing at 72 °C for 4 min. The two sets of primers PDM-171, PDM-172, and PDM-173, PDM-174 were annealed by heating to 95 °C for 2 min and then ramping down to 25 °C slowly at 0.1 °C/sec. DPEP DNA was used to perform PCR as described above. The 38 kD fragment was digested with Eco RI (New England Biolabs) and cloned into a modified pT7ΔL2 vector which was cut with Eco 72 I (Promega) and Eco RI. The modified pT7 \Darksquare L2 construct was designed to have a MGHHHHHH amino acid coding region in frame just 5' of the Eco 72 I site. The construct was digested with Kpn 2I (Gibco, BRL) and Pst I (New England Biolabs) and the annealed sets of phosphorylated primers (PDM-171, PDM-172 and PDM-173, PDM-174) were cloned in. The DPEP PCR fragment was digested with Eco RI and Eco 72 I and cloned into this second construct which was digested with Eco 47 III (New England Biolabs) and Eco RI. Ligations were done with a ligation kit from Panvera (Madison, WI). The resulting construct was digested with NdeI (New England Biolabs) and Eco RI, and transferred to a

modified pET28 vector. The fusion construct was confirmed to be correct by DNA sequencing.

Recombinant protein was prepared essentially as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-8) are provided in SEQ ID NO: 354 and 355, respectively.

One of skill in the art will appreciate that the order of the individual antigens within the fusion protein may be changed and that comparable activity would be expected provided each of the epitopes is still functionally available. In addition, truncated forms of the proteins containing active epitopes may be used in the construction of fusion proteins.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Reed, Steven G.
 Skeiky, Yasir A.W.
 Dillon, Davin C.
 Campos-Neto, Antonio
 Houghton, Raymond
 Vedvick, Thomas S.
 Twardzik, Daniel R.
 Lodes, Michael J.
 Hendrickson, Ronald
- (ii) TITLE OF INVENTION: COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS
- (iii) NUMBER OF SEQUENCES: 355
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: Washington
 - (E) COUNTRY: USA
 - (F) ZIP: 98104-7092
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 05-MAY-1998
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Maki, David J.
 - (B) REGISTRATION NUMBER: 31,392
 - (C) REFERENCE/DOCKET NUMBER: 210121.411C9
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (206) 622-4900
 - (B) TELEFAX: (206) 682-6031
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 766 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGAGGCACC	G GTAGTTTGAA	CCAAACGCAC	AATCGACGGG	CAAACGAACG	GAAGAACACA	60
ACCATGAAG.	A TGGTGAAATC	GATCGCCGCA	GGTCTGACCG	CCGCGGCTGC	AATCGGCGCC	120
GCTGCGGCC	G GTGTGACTTC	GATCATGGCT	GGCGGCCCGG	TCGTATACCA	GATGCAGCCG	180
GTCGTCTTC	G GCGCGCCACT	GCCGTTGGAC	CCGGCATCCG	CCCCTGACGT	CCCGACCGCC	240
GCCCAGTTG	A CCAGCCTGCT	CAACAGCCTC	GCCGATCCCA	ACGTGTCGTT	TGCGAACAAG	300
GGCAGTCTG	F TCGAGGGCGG	CATCGGGGGC	ACCGAGGCGC	GCATCGCCGA	CCACAAGCTG	360
AAGAAGGCC	G CCGAGCACGG	GGATCTGCCG	CTGTCGTTCA	GCGTGACGAA	CATCCAGCCG	420
GCGGCCGCC	GTTCGGCCAC	CGCCGACGTT	TCCGTCTCGG	GTCCGAAGCT	CTCGTCGCCG	480
GTCACGCAG	A ACGTCACGTT	CGTGAATCAA	GGCGGCTGGA	TGCTGTCACG	CGCATCGGCG	540
ATGGAGTTG	TGCAGGCCGC	AGGGNAACTG	ATTGGCGGGC	CGGNTTCAGC	CCCCTCTTCA	600
GCTACGCCG	CCGCCTGGTG	ACGCGTCCAT	GTCGAACACT	CGCGCGTGTA	GCACGGTGCG	660
GINIGCGCA	GGNCGCACGC	ACCGCCCGGT	GCAAGCCGTC	CTCGAGATAG	GTGGTGNCTC	720
GNCACCAGN	ANCACCCCCN	NNTCGNCNNT	TCTCGNTGNT	GNATGA		766

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 752 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

A TOCATOR CO	3 mc3 cc3 mc3					
AIGCAICACC	ATCACCATCA	CGATGAAGTC	ACGGTAGAGA	CGACCTCCGT	CTTCCGCGCA	60
GACTTCCTCA	GCGAGCTGGA	CGCTCCTGCG	CAAGCGGGTA	CGGAGAGCGC	COTOTOCCC	120
GTGGAAGGC	TCCCGCCGGG	CircleConnec	CTCCTT CTC	AACGAGGCCC	GGICICCGGG	
TCCCCCTTCC	TR CTCCC CC	CICGGCGIIG	CIGGIAGICA	AACGAGGCCC	CAACGCCGGG	180
100061100	TACTCGACCA	AGCCATCACG	TCGGCTGGTC	GGCATCCCGA	CAGCGACATA	240
TTTCTCGACG	ACGTGACCGT	GAGCCGTCGC	CATGCTGAAT	TCCGGTTGGA	3 7 7 7 7 7 7 7 7 7	200
TTCAATGTCG	TCGATGTCGG	Ch Chichica 2 C		TCCGGTTGGA	AAACAACGAA	300
TTCAATGTCG		GAGICICAAC	GGCACCTACG	TCAACCGCGA	GCCCGTGGAT	360
TCGGCGGTGC	TGGCGAACGG	CGACGAGGTC	CAGATCGGCA	AGCTCCGGTT	GGTGTTCTTG	420
ACCGGACCCA	AGCAAGGCGA	GGATGACGGG	ACTACCCCCC	CCCCCMCXCC	001000000	
cececee	CCCCCCC		MOTACCOGGG	GCCCGTGAGC	GCACCCGATA	480
GCCCGCGCT	GGCCGGGATG	TCGATCGGGG	CGGTCCTCCG	ACCTGCTACG	ACCGGATTTT	540
CCCTGATGTC	CACCATCTCC	AAGATTCGAT	TCTTGGGAGG	Complete Complete	MCCCMCAGO	
cccccccccc	CTTC N TTTC TOC	20000000000	TOTTOGGAGG	CIIGNOGGIC	NGGGIGACCC	600
CCCCGCGGGC	CICHIICNGG	GGTNTCGGCN	GGTTTCACCC	CNTACCNACT	GCCNCCCGGN	660
TTGCNAATTC	NTTCTTCNCT	GCCCNNAAAG	GGACCNTTAN	سسدوددوسس	CAAANCCTNIA	700
TCCNGGGCCC	NTCCTNCAAN	CCCCMMCCCC		CIIOCCGCIN	GAMMIGGINA	720
	TITCTINGPAN	CCCCMICCCC	CT			752

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 813 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CA TCACACTICT	AACCGCCCAG	CGCGTCGGGG	GCGTCGAGCA	60
GA TOGATOTOGT	A C C C C C C C C C C C C C C C C C C C		GCGICGAGCA	90
on redarcider	AGCTTGAGTC	TGGTCAGGCA	TCGTCGTCAG	120
TTT GTCGTCGACT	CAGATATCGC	GGCAATCCAA	TCTCCCGCCT	180
	CGA TCGATCTGCT	GA TCGATCTGCT AGCTTGAGTC	IGA TCGATCTGCT AGCTTGAGTC TGGTCAGGCA	TCACACTTCT AACCGCCCAG CGCGTCGGGG GCGTCGAGCA TCGATCTGCT AGCTTGAGTC TGGTCAGGCA TCGTCGTCAG TTT GTCGTCGACT CAGATATCGC GGCAATCCAA TCTCCCGCCT

GCGGCCGGCG GTGCTGClll CTlCTCGCG loss	
GCGGCCGGCG GTGCTGCAAA CTACTCCCGG AGGAATTTCG ACGTGCGCAT CAAGATCTTC ATGCTGGTCA CGGCTGTCGT TTTGCTCTGT TGTTCGGGTG TGGCCACGGC CGCGCCCAAG	240
ACCTACTGCG AGGAGTTGAA AGGCACCGAT ACCGGCCAGG CGTGCCAGAT TCAAATGTCC	300
GACCCGGCCT ACAACATCAA CATCAGCCTG CCCAGTTACT ACCCCGACCA GAAGTCGCTG	360
GAAAATTACA TCGCCCAGAC CATCAGCTG CCCAGTTACT ACCCCGACCA GAAGTCGCTG	420
CGCGAAGCCC CCTACGAATT GAATATCACC TCGGCCACAT ACCAGTCCGC GATACCGCCG	480
CGTGGTACGC AGGCCGTGGT GCTCAMGGTC TACCACAACG CCGGCGGCAC GCACCCAACG	540
ACCACGTACA AGGCCTTCGA TTGGGACCAG GCCTATCGCA AGCCAATCAC CTATGACACG	600
CTGTGGCAGG CTGACACCGA TCCGCTGCCA GCCTATCGCA AGCCAATCAC CTATGACACG	660
GAGCAACGCA GACCGGGACA ACWGGTATCG ATAGCCGCCN AATGCCGGCT TGGAACCCNG	720
TGAAATTATC ACAACTTCGC AGTCACNAAA NAA	780
	813
(2) INFORMATION FOR SEQ ID NO:4:	
//	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 447 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
DESCRIPTION: SEQ ID NO:4:	
CGGTATGAAC ACGGCCGCGT CCGATAACTT CCAGCTGTCC CAGGGTGGGC AGGGATTCGC	
THE TOTAL C GOGLAGUEGA TEGETTATOR CONTROL CONT	60
	120
TOTAL CONTROL OF THE PROPERTY	180
TEACGEGG TEGACIGN TOTAL	240
TOTAL GOOGLE CAIC CUGGTGACGT CATCTCCCTC AACTCCCAAA COATCCCAAA	300
REAGGRACE IGACATIGGC CGIGGGICCC CCCCCCTCAM MMCCMCCALL	360
ATACCACCCG CCGGCCGGCC AATTGGA	
(2)	447
(2) INFORMATION FOR SEQ ID NO:5:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 604 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
GTCCCACTGC GGTCGCCGAG TATGTCGCCC AGCAAATGTC TGGCAGCCGC CCAACGGAAT	60
TOTAL CONTROL	120
FIRE COURT CONTROL CON	180
TOTAL TOTAL CONTROL OF THE CONTROL O	240
THE CONTRACT	300
TOTAL OF THE PROPERTY OF THE P	360
ALCAGAIGI ICTICGNCGA AANCTCATCA CCACCARGA COMMINGE	420
THE THE GAME CONTRACT CONTRACTOR AND THE CANADIA CANAD	480
THE THE PROPERTY OF THE PROPER	540
NUNTITINIC ANNININITG NIGHIGHNEN NINCAANCHI NITHININGHAA NIGGITTITT	600
	604

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 633 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1362 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CGACGACGAC	GGCGCCGGAG	AGCGGGCGCG	AACGCCATC	CACCCCCC	750501	
CGGCACCACC	CAGGAGGGAG	TCGAATCATG	JANDOODSTC	3ACGCGGCCC	TGGCCAGAGT	60
CCCCGCCGAG	CCGGCGGCGC	GGTCGCCGAG	CHCHAITIGICA	ACCATATTGA	GCCCGTCGCG	120
CGGCTGCCCG		TO LOCCONG		AGGCCCGCCG		180
GCGACGTTGC				GACTGCTCAC		240
GCCGCCGCCG				GTGGCCGCAA	GGAAGCCGTC	300
	- accoccate			TCGACGCACA	CACCACCATG	360
CTGTACGCGG	and a comme			TGGCCGGCAC		420
GCCGGTGACC	30121000000	GTATGTGGCG		GAACCGGGAC		
CCGCCGGCAC	CGTTCGGCCC	GGATGTCGCC	GCCGAATACC	TGGGCACCGC	GGTGCAATTC	480
CACITCATCG	CACGCCTGGT	CCTGGTGCTG	CTGGACGAAA			540
CGCGCCCAAC	AGCTCATGCG					600
GAGCATCGGC	CGGGCCGCTC	CACCCGCCGC		TCGCCCGCAA		660
GCATGGGCAA	CACCGTCCGA	CCCCATAGO	CTCGAGCCGC			720
GACACCGCGC	CGCACCTGCC	CCCAIAGCA		CCGCGCTCAG	CCACCACCTG	780
TGGCACGGCG				TCAGGCGGGT	CGTGGGGTCG	840
	AGCCAATGCC	GATGAGCAGT	CGCTGGACGA	ACGAGCACAC	CGCCGAGCTG	900
	TGCACGCGCC		GCCCTGCTGA	CCGGCCTGGC	CCCGCATCAG	96 0
		CGCGGCCCGA	TCCCTGCTCG	ACACCGATGC		1020
GGCGCCCTGG	CCTGGGCCGC	CTTCACCGCC	GCGCGGCGCA	TOGGOACOTO	GATCGGCGCC	
GCCGCCGAGG	GCCAGGTGTC	GCGGCAAAAC	~~~~			1080
TAGGGTGTCA	TCGCTGGCCC	GAGGGATCTC	GCGGCGGCGA	ACCCA CCCCC	GCCCTGTCGG	1140
GGAAGCTGCG	CCCACTGGCT	TGCGCCCCAA			CGACACAGGT	1200
GGCCGATCAG				GGCGTTCGGT	TGGCCGCACT	1260
GGACCGGACG	GTCACCGGGG	CTC2CCT1GGCC	GAAGGTCCAG	CTCAACGTGC	CGTCACCGAA	1320
	31010000	GICACCCTGC	GCGCCCAAGG	AA		1362

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1458 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GCGACGACCC CGATATCCC	CCCRCCCC				
GCGACGACCC CGATATGCC	G GGCACCGTAC	G CGAAAGCCG1	CGCCGACGC	CTCGGGCGCG	60
TGGATGACGT GGCCCGTGT	- ALLCAGGACT	GCGTGGAGGC	CCGGCTGGG	GAAGCCCCCCC	120
CTAAGGCCTT GCTCGGCGT	- IMCHICAICI	ACCGGCAGCG	GCGCGCCGAG	CTGCGGACGG	180
	a CGGGACGAGT	TAAAGCTGAG	CTTGGCGGCC	GTGACCCTAC	
TGCGCGAGCG CTATCTGCTC		AGGCCGGCC	GGCCGAGTCG	ACCGGCGAGC	240
TGATGGACCG ATCGGCGCGC	- IGIGICGCGG	CGGCCGAGGA	CCAGTATGAG	CCGGGCTCGT	300
CGAGGCGGTG GGCCGAGCGG	TICGCCACGC	TATTACCCAA	CCTCCDAMMO	CDC	360
CGCCCACGTT GATGAACTCT	: GGCACCGACC	TGGGACTGCT	CCCCCCCCC		420
CGATTGAGGA TTCGCTGCAA	TCGATCTTTG	CGACGCTGCT	2GCCGGCTGT		480
GGGCTGGAGG CGGCACCGGA	TATGCGTTCA	CCCACCTCCC	ACAGGCCGCC	GAGCTGCAGC	540
CCTCCACGGG CGGCACGGCC	AGCGGACCGG	TOTOGOG	ACCCGCCGGG	GATCGGGTGG	600
CGGGTGTGGT CTCCATGGGC	GGTCGCCGGC	TGTCGTTTCT			660
CGCACCCGGA TATCTGTGAT	TTCCTCACCC	GIGGCGCCTG	TATGGCTGTG	CTTGATGTGT	720
ATTTCAACCT ATCGGTTGGT	CTCACCG	CCAAGGCCGA	ATCCCCCAGC	GAGCTCCCGC	780
ATTTCAACCT ATCGGTTGGT TACACCGGCT GGTCAATCCG	GIGACCGACG	CGTTCCTGCG	GGCCGTCGAA	CGCAACGGCC	840
	COMMICCOCCA	AGATCGTCCC	CCCCSTCCCC		900
					960
					1020
					1080
	GILCOME HART	ACCCCCCCC	GGAGGTCGCC	GGTGTGGCGC	
			CTTCCCCGAA	CTGGGTCAGG	1140
CGGCCCGCGC CACCCGCAAG	ATCGGGCTGG	GAGTCATGGG	TTTGGCGGAA		1200
CACIGGGTAT TCCGTACGAC	AGTGAAGAAG	CCCTCCCCC	3 0 0 0 0		1260
GCATACAGCA GGCGGCGCAC	ACGGCATCGC	CCACCCCCC			1320
	TTCGCGCGGT	CGGGCCCGAC	CCCCAAGCGG	GGCGCATTCC	1380
CCGTCGCTCC GACGGGCA		COOCCCOAG	GCGCAACGCA	CAGGTCACCT	1440
					1458

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 862 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATCAGCCGCC CGGAGTCTCC	GCCGCCGCCC	GGGCCGGTAC GGATAATTAT	TGCGCTCGCT	GCCGGTTCCG	GGGCCGGGCA TTCATCCTGA GCGCCTCCGC CGCCAGCTGT	660 720 780 840 862
--------------------------	------------	--------------------------	------------	------------	--	---------------------------------

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 622 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GTGCCGAAGO TTGGTTGCCC CCCTCGGGCC TCGCCGCGCA TGGTGGTTGG ACCACAGCGG TGGTGGCGGT GCGGGGTGGA	CCGGCAAGGC GCGCCAAGAT GCGTCGTTGT GCGTGCGCAC GTGTTCAAAG CCGGGCACTT GCCGCTTGTC GTCGGCCGAC CCTGGTGGTG CCGNGACATT	CACCAAGGTC CAAAGCGCCG AGTGCAAGTC CTCGGATATA GTCGTCGTCG ACCGAGCTGC GAGGTCGAGA TCGGTCGGCG	GTGGCCGGTG GACGACCGCC GGCGCCACGG ACCCTCGGCA CGGTGGCACC TTGACGATCG TCACCGAGGC	GTGCTGCCGC CGATCAACAG TGGCGCTAAC AGGCGGAGCA CATGGAACAG CACGGCGCAC CGGGTTTGTT	GAACGCTGGA CGCGGACGCG CTTTCAGGAT GTGATGAAGG CGTGCGGAGT GGCGATGAAG GTCGACGGCG	60 120 180 240 300 360 420 480 540 600 622
---	---	---	--	--	--	--

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1200 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

AAGGAGCTCC GCCTACGTGC GGGGTGACCG CCGACGGTGT CTTGACGGAC CAGATCCAAG CGCAGCGACA GGGGCGTGGG GGGAACAACG TGGTCGTTTG GATCCAGTGG	ACTCCAGCGG GATCGTGCCC AGTTTCTCAA GTCAACCTGA TCGGCCCGAT CCACTACCGC CCCTCAACTC AGTCCGGTAC GCAAAGGCGC GAACGTCGGC CGGTGGGTAA CGGTCACCAC ACGACCTCGC	CTCGACCGCA GGGCTACACG CAACGAAACC CCGGTCGGCG CGCGATCACC CAAGATTTTC CGGCACCGAC GTCGGACAACG CCTACTGCAG GCAGTTGAAC CGAGTTGAAC CGAGTTGAAC GCAGTCGGTC ATTGGACACG GACCTATGAG	ACGTCTGGGT CAAGAAAATG TTGGACTACA GATTTCGCCG GAGCGGTGCG TACAATATCA AACGGCACCA CTGCCGCCAA TTCCAGAAAT TTCAGCGGGG ACGACCGACG ACGACCGACG ATGGCCCAGA GGTAAGACAA TCGTCGTTCT	CGGTGCACTG CCATGGAGCA ACGCCAACGG GCTCGGATGT GTTCCCCGGC AGGGCGTGAG TCACCGTTAG ACCTCGACGG GCGTCGGCGT GGTCGATCAC TCATCACGT TCATCACGT TCATCACGT TCGCCGGGCA ACAGACCACA	CGGCGGCAAG GTTCGTCTAT GTCCGGTGCC CCCGTTGAAT ATGGGACCTG CACGCTGAAT GAATGATCCA CGTTATCTTC TGTATCCAAC CGGCGCCAGC CTACAACAGG GCGGGTCCG CAAGATCATG CCAGCCTGGC	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
--	--	---	--	---	--	---

GACCAATACG	GCTCCATTCC	GTTGCCCAAA	700000 a a a a			
AATGCTATTT	CTTGACCTAC	TOTAL	TUGTTCCAAG	CAAAATTGGC	GGCCGCGGTG	1080
OGGICGCAMI	LIGGGCCGTA	TCAGCTATTG	CGGCTGCTGG	GCCGACCCCC	TCCGCAGGTA GATGGGCGAG	1140
				accanage cae	GATGGGCGAG	1200

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1155 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

	GCAAGCAGCT	GCAGGTCGTG					
	AGACCGGCTA	-010016016		AACTGGGCAT	GCCGAAGACC	AAACGCACCA	
							60
	CGTTTCTGCA	ACATCTGCTC	GCCCACCGCG	100001		ACCGGGCATC	120
	GGTTGCTCCA	ACATCTGCTC AGCGGTGGCC	GCCGACCCCC	ACGICACCCG	GCTCAAGGTC	ACCGTCGACG	180
	CCGCGACCGG	AGCGGTGGCC	TOCARCAGE	GCATCCACAC	CACGITCAAC	CAGACGATCG	240
							300
					CGGTTACGCC	GAGTTGATGA	
		CHOCCHONIC	GAGATGCGGA	TCATGGGGCA	CCTGTCCGGG	GAGIIGAIGA	360
	TCATCGAGGC	O T T CHARCACC	GGGGAGGACC	TGTATTCGTT			420
	GTGTGCCCAT	CGACGAGGTC	ACCGGCGAGT				480
	GGCTGGTTTA				GGTCAAGGCG	ATGTCCTACG	540
	AAGCCAACGA	GCAGATCCAG	GCCTACGGCC	TGTCGCAGCA	GTTGAAAATC	TCCACCGAGG	600
	GCGCCGTAGT	acreat acre	GUGTATTTCG	CCCGATTCCCC	CCCCCCCC		
	ococcolAG!	CGAGCGGGCC	CGCAAGGACG	GCTACACCTC	Checemone		66 0
	GG TWCC TGC	CGAGCTGGAC	AGCAGCAACC				720
	CGCTGAACGC	GCCGATCCAG	GGCAGCGCGG				780
				CCGACATCAT	CAAGGTGGCC	ATGATCCAGG	840
	10000			CGTCGCGCAT	GCTGCTGCAG	GTCCACGACG	900
			CCCGGTGAAC	GCGAGCGGGT	aa	GTGCGCGACA	
	~~~~	CGCTTACCCG	CTCGACGTCC	CGCTGGAGGT	amaa		960
		GGCGCCAC	TGAGTGCCGA	GCGTGCZTCT	CCCCCCCC	TACGGCCGCA	1020
	rrrccgcccr (	GAGTTCACGC	TCGGCGCAAT	CCCCACCCAC	GGGGCGGAA	TTCGGCGATT	1080
(	CGAGTAGCCT (	CGTCA		COGGACCGAG	TTTGTCCAGC	GTGTACCCGT	1140
							1155

# (2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1771 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GACCATGACG CCCCCTCCTG GGATGGTTCG CCAACGCCCT CGTGCAGGCA TGTTGGCCAT CGGCGCGGTG ACGATAGCGG TGGTGTCCGC CGGCATCGGC GGCGCGCCG CATCCCTGGT CGGGTTCAAC CGGGCACCCG CCGGCCCCAG CGGCGCCCCA GTGGCTGCCA GCGCGCGCCC AAGCATCCCC GCAGCAAACA TCCCCCCCGC	720
AAGCATCCCC GCAGCAAACA TGCCGCCGGG GTCGGTCGAA CAGGTGGCG CCAAGGTGGT GCCCAGTGTC GTCATGTTGG AAACCGATCT GGGCCGCCAG TCGGAGGAGG GCTCCGGCAT GCCTCCCCTG GGCAGTCGC CGCCGAAAAC GACGGTAACC TTCTCTGACG GGCGGCCCAA ACCCTTCACG GTGGTGGGG CTGACCCCAC CAGTGATATC GCCGTCGTCC GTGTTCAGGG	900 960 1020
GGTGCTGGCG ATCGGGTCGC TCCCTCGGG TCCCTCAGGG TCGGTCAGCC CGCTCTCAAC CGTCCAGTGT CGACGACCGG CGAGGCCGGC AACCAGAACA CCGTGCTGGA CGCCATTCAG ACCGACGCCG CGATCAACCC CGCTAACTGC GGGCCTGGA	1080 1140 1200 1260 1320
TGCGCAGAGC GGCTCGATCG CTCGGCTTT TGCGATTCCA GTCGACCAGG CCAAGCGCAT CGCCGACGAG TTGATCAGCA CCGGCAAGGC GTCACATGCC TCCCTGGGTG TGCAGGTGAC CAATGACAAA GACACCCCGG GCGCCAAGAT CGTCGAAGTA GTGGCCGGTG GTGCTGCCGC GAACGCTGGA GTCGCCGAAGAT CGTCGAAGTA GTGGCCGGTG GTGCTGCCGC	1320 1380 1440 1500
CGCGGACGC TTGGTTGCCG CCGTGCGTTGT CACCAAGGTC GACGACCGCC CGATCAACAG CGCGGACGAC CCTTTCAGGAT CCCTCGGGCG GTAGCCGCAC AGTGCAAGTC ACCCTCGGCA AGGCGGAGCA GTGATGAAGG CCGCGCGCA GTGTTCAAAG C	1620 1680 1740 1771

## (2) INFORMATION FOR SEQ ID NO:14:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1058 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTCCACCGCG	GTGGCGGCCG	CTCTAGAACT	AGTGGATGGG	CCGGGCTGCA		
ACGAGGATCC	GACGTCGCAG	GTTCTCCAAC	AGIGGAICCC	CCGGGCTGCA	GGAATTCGGC	60
AGCCCGGCGA	CGGCGAGCGC	CCCAAEGGAAC	CCGCCGCCGC	GGAAGTATCG	GTCCATGCCT	120
CCGGCGACGG	CCACCCCCC	CGGAATGGCG	CGAGTGAGGA	GGCGGGCAAT	TTGGCGGGGC	180
ATCCAATCAA	-0.10000000	AATGGCGCGA	GTGAGGAGGC	GGGCAGTCAT	GCCCAGCGTG	240
	- CT CCALL CG	GCCTGCGGGC	CCATTTGACA	ATCGAGGTAG	TGAGCGCAAA	
TGAATGATGG	AAAACGGGCG	GTGACGTCCG	CTGTTCTCGT	GGTGCTAGGT		300
CGTTGTGGCT	ATCAGGATGT	TCTTCGCCGA	AACCTCAMCC	GG3 GG5 5	GCCTGCCTGG	360
TGAGCCCGAC	GGCGTCCGAC	CCCCCCCCCC	MACCIGATGC		GGTGTTCCCG	420
CAAAAGGGTT	GACCAGCGTG				CTTGATGCGA	480
			TCCGAACAAC	CGGGAAAGTC	GACAGCTTGC	540
CCACCERTAN	CAGTGCCGAT	GTCGACGTCC	GGGCCAATCC	GCTCGCGGCA	AAGGGCCTAT	
		GGIGICICI	July Color Color Car	10000	ATCTCGGTGA	600
AACTGTTCGA	CGAC GGAGC	AATCTCGGCT	CGATTTCTCA	ACTCTCAACT		660.
TCGATCCTGC	CGCTGGGGTG	ACGCAGCTGC	TCTCCCCTCT	CACGAACCTC	TCACGCGTGC	720
GTACCGAAGT	GATAGACGGA	ATTITICCA CCA	TGTCCGGTGT	CACGAACCTC	CAAGCGCAAG	780
CTGTCAAGAT	GCTTGATCCT	ATTICGACCA	CCAAAATCAC	CGGGACCATC	CCCGCGAGCT	840
AGGACGGCTC		GGCGCCAAGA	GTGCAAGGCC	GGCGACCGTG	TGGATTGCCC	900
		GTCCGAGCGA	GCATCGACCT	CGGATCCGGG	TCGATTCAGC	960
	GAAATGGAAC	GAACCCGTCA	ACCTCCACTA	GGCCGAAGTT		
GTTGNTCGAA	ACGCCCTTGT	GAACGGTGTC	AACCCMAC	CCCGMAGII	GCGTCGACGC	1020
			ANCOGNAC.			1058

### (2) INFORMATION FOR SEQ ID NO:15:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 542 base pairs
- (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCGGCA CGAGAGGTGA TCGACATCAT CGGGACCAGC GGCGGCGGAG GCGGTCCAGC GGGCGCGGA TAGCGTCGAT CATTGAGCAG GACATGGCCG TGGACAGCGC CGGCAAGATC AGGTGTCGTTC AAGATGAGGC CGGCGCAACC GCGCTAGCAC AAATCGCACG GTTTGCGGTT GATTCGTGCG ATTTTGTGTC GCGCGGCCCA GGTCCGCGTG CTGCCGTATC CAGGCGTGCA CCGGAGGTTAA TGCTTCGCGT CGACCCGAAC TGGGCGATCC CCGTGGCCAG CCCGTCGATG CCCGAGGTTGC CCGAGGAAAC AGCGTCCGTA GGCGCGGTG CTGACCGGCT CTGCCTGCGC GG	GACATCCGCG TCGCTCGGGT 120 ACCTACCGCA TCAAGCTCGA 180 GGGCCGGCGA GCAAGACGCA 240 TGCTCGCCGA GGCCTACCAG 300 TCGCGATTCC GGCGGCCACG 360 GCCGGNGAGC TGATCGATGA 420
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------

### (2) INFORMATION FOR SEQ ID NO:16:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 913 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGGTGCCGCC	CGCGCCTCCG	TTGCCCCCAT	TGCCGCCGTC	CCCCATCACC	TGCGCATCGC	
CACCATCACC	GCCTTTGCCG	CCGGCACCGC	CCCTCCCCCC	GCCGATCAGC	TGCGCATCGC	60
TTGACCCTGG			CGGIGGCGCC	GGGCCGCCG	ATGCCACCGC	120
GCCGTCGCCa	CCGTCGCCGC		ATACAGCACC	CCGCCGGGG	CACCGTTACC	180
CAAGCCCCCC	CCGTCGCCGC	CGCTGCCCTTT	TORGOOGG	C3 CCCCC		240
CAAGCCCGCC	GCCGGCACCG	TIGCCGCCTT	TTCCCCCCCC			
	·			M1100000		300
			CAMPOCCACC			360
GTTTGCCGCC	AATATTCGGC	GGGCACCGCC	3232222	CCGCCGTTAC	CGGCGCCGCC	420
CACCGAAACA	ACAGCCCNAC	CCTCCCCCC	AGACCCGCCG	GGGCCACCAT	TGCCGCCGGG	480
TCACCGCCAG	CACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GGTGCCGCCG	GCCCCGCCGT	TTGCCGCCAT	CACCGGCCAT	540
	arcenced1;	AAIGITTATG	AACCCGGTAC	CCCCACCCC	GCCCCTATTG	600
	27.001000		CCCCNNCCCC	733337777	GGGTTGCCAC	
2000000000	GGACCCACCG	GTCCCGCCGA	TCCCCCCCTT	CCCCCCCCC		660
TGGTGCTGCT	GAAGCCGTTA	GCGCCGGTTC			CCGCCGCCAT	720
CGGCCCCGCC	GTTGCCGTAC	AGCCACCCC			CCNTGGCCGC	780
TGCCGCCGTT	GCCGCCATTC	AGCCACCCCC	CGGTGGCGCC	GTTGCCGCCA	TTGCCGCCAT	840
CGCCGGCGGC	accecry11.6	CCGCCGTTCC	CGCCGCCACC	GCCGGNTTGG	CCGCCGGCGC	900
	CGC				30000	•
						913

## (2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1872 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GACTACGTTG	GTGTAGAAAA	ATCCTGCCC	CCC03 co			
TAGCTACCCC	GACACACCAC	CTTL	CCGGACCCTT	AAGGCTGGGA	CAATTTCTGA	60
	CACACAGGAG	GITACGGGAT	GAGCAATTCG	CGCCGCCGCT	CAATTTCTGA	120

GTCATGGTTG	CTGAGCGTG	TGGCTGCCG	CGGGCTCCC	CTGGCCACGG	22222	
		L CULMUNAL I	- (ביייייייייייייייייייייייייייייייייייי	·		180.
		· MMGTTGGGGGG	, PLACEMOCHIC			240
CTACAACAAC	GCCGTGGGC	CCGGGACCC	CATCOMON TO	GATCCCAACG	CCAAACTGGG	300
GACCAACAAC	CACGTGATCG	CGGGCGCCAC	CCACCATC	GATCCCAACG GCGTTCAGCG	GTGTCGTGCT	360
CCAAACCTAC	GGCGTCGATG	TGGTCGGGTA	TCACCATCAAT	GCGTTCAGCG CAGGATGTCG	TCGGCTCCGG	420
GCTGCGCGGT	GCCGGTGGCC	TGCCGTCGG	CCCCACC	CAGGATGTCG GGCGGCGTCG	CGGTGCTGCA	480
GCCCGTCGTC	GCGATGGGCA	ACAGCGGTGG	GGCGATCGGT	GGCGGCGTCG ACGCCCCGTG	CGGTTGGTGA	540
CAGGGTGGTC	GCGCTCGGCC	AAACCGTGG	GCAGGGCGGA	ACGCCCCGTG TCGCTGACCG	CGGTGCCTGG	600
GACATTGAAC	GGGTTGATCC	AGTTCGATCC	GGCGTCGGAT	TCGCTGACCG CCCGGTGATT	GTGCCGAAGA	660
CGTCGTCAAC	GGCCTAGGAC	AGCTCCTCCC	CGCAATCCAG	CCCGGTGATT	CGGGCGGCC	720
GCTGTCCCAG	GGTGGGCAGG	GATTCCCCAT	TATGAACACG	GCCGCGTCCG	ATAACTTCCA	780
CCAAATCCGA	TCGGGTGGG	GETCACCCAC	TCCGATCGGG	GCCGCGTCCG CAGGCGATGG	CGATCGCGGG	840
CTTGGGTGTT	GTCGACAACA	ACCCCAL	CGTTCATATC	CAGGCGATGG GGGCCTACCG	CCTTCCTCGG	900
TCCGGCGGCA	AGTCTCGGCA	TOTOCACOC	CGCACGAGTC	GGGCCTACCG CAACGCGTGG	TCGGAAGCGC	960
GATCAACTCG	GCCACCGCGA	TECCCCACCGG	CGACGTGATC	ACCGCGGTCG	ACGGCGCTCC	1020
CTCGGTGAAC	TGGCAAACCA	AGTCGCCCC	GCTTAACGGG	ACCGCGGTCG CATCATCCCG	GTGACGTCAT	1080
GGGACCCCCG	GCCTGATTTG	TCCCCCATA	CACGCGTACA	GGGAACGTGA	CATTGGCCGA	1140
CAGCCGTGAT	TGCCGCGTGA	GCCCCCCAC	CACCCGCCGG	GGGAACGTGA CCGGCCAATT	GGATTGGCGC	1200
GCAATGAACG	AGGCAGAACA	CACCCCCGAGI	TCCGTCTCCC	CCGGCCAATT	CATTGTGGAA	1260
GGCGGTGTGG	TCGAGCATCC	GGATCCCAAC	CACCCTCCCG	TGCAGGGCAG	TTACGTCGAA	1320
GATCCGACCT	GGTTTAAGCA	CCCCCTCTTC	GACTTCGGCA	GCGCCGCCGC	CCTGCCCGCC	1380
GCCAGCGCGG	ACGGTTCCGN	CGATCTTC	TACGAGGTGC	TGGTCCGGGC	GTTCTTCGAC	1440
GCCAGCGCGG TGGCTTGGCA	TCGACTGCAT	CONTRACTOR	GGACTCATCG	ATCGCCTCGA	CTACCTGCAG	1500
TGGCTTGGCA GGTTACGACA	TTCGCGAcmm	CTRCRRCCGC	CGTTCCTACG	ACTCACCGCT	GCGCGACGGC	1560
GGTTACGACA GTCGCCCTGG	TCGACACCCC	TCACAAGGTG	CTGCCCGAAT	TCGGCACCGT	CGACGATTTC	1620
AATCACACCT	CGGAGTCGC3	CCCCMCCCGCGA	GGTATCCGCA	TCATCACCGA	CCTGGTGATG	1680
	ATTACGTGTG	CACCCAGATT	CAGGAGTCCC	GCCGCGACCC	AGACGGACCG	1740
		GAGCGACACC	ACCCACCCC	101000100		1800
TTCGTCGACA (GCACCGATTC	CARLONGIC	GAACIGGTCA	TTCGATCCTG	TCCGCCGACA	GTTNCTACTG	1860
	<del></del>					1872

## (2) INFORMATION FOR SEQ ID NO:18:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1482 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

## (2) INFORMATION FOR SEQ ID NO:19:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 876 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GAATTCGGCA CGTGCTCGGG CGGTCACTCG CGCCTACGAA GGAGAACATC GGAGAACCTC GCAACGCACC ATTGGGGCGGG ATTACCTCACG TTGGTGGGTG	TTGCTGCTGG ATCGGCTACA ATCTCTTCTACA GATCCCGAGG AACAAGGNGC ATGCTGGCCG CTAAACCGCG GGCGTGCCCT HACTGGATGC TTGGGCACCG	ACGCGCACAC ACGCCACAA TCGNGGAAAG TCACCGTCTA GCGTGCTGGG AGATCCTGGC CCGAGTGGGA ACGGGGTGGT ACGTGACGAG GCGCGGTCCC ACGGGTTCGG	CCTGACCGGT CCCGGCGGTG CGGACTGGCC CAACGAGCCG GGGTATCTAC CTCCGGGGTA TGTCGCCGCC CATCGAGACC AGCGCTGGAG CGAGCAGATC TTTTTCCGAC	GAGGGCCTGC GTTGCCTACG AGGATGTGCAGC CGNTATCACG GCGATGCCCG GACGTGTGGT GAGAAGCTCC AATGCTCGGG CGACCGTGGG ACTCGGCCCG	AACACGCCGA ACCCGGCCTT GGGAGAACCC CGCCGGAGCC CGGCCACCGA CGGCCACCGA GCCACCCCGA GCCACCCCGA GCCACCCCGA TGCCGGGCAC CGGTGAC	60 120 180 240 300 360 420 480 540 600 660 720
TTACTTCAAC A TCGACGGGTG A ATTCGACGAA G	ATATCGACC	ACGGGTTCGG AATCCCAGGT CATTCGTGC	TTTTTCCGAC TGGTCGCGGT	ACTCGGCCCG	CCGGTCGTCG	

### (2) INFORMATION FOR SEQ ID NO:20:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1021 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

AGCGAAGACC CATGCAATGA GTAGACACGG CAGGAACGCA	TGCTCGTGCA TGCGAAACCA CAGTCACCGA	AGCGGCACAA GGCGAAGCAT ACACCTGCTC GTTCGACAGA CCAGGTGCGT	CAATATGTCG TTTTACAGCC GACCGCGACC CCCCGCGAGG	CGATCGCGGT AAGCGGTCGA TTCGTGTCGA CACTGGCGCT	TTATTTCGAC GGAACGAAAC AATTCCCGGC GGCGCTCGAT	60 120 180 240 300
	CAGTCACCGA GCGAGCAGTT					300 360 420

TTGATGGCAA CCCTGGTGCG GGTTGCCGAT CGGGCCGGGG CCAACCTGTT CGAGCTAGAG	
	480
	540
	600
	660
	720
	780
	840
	900
GAGCGCCAGC AGTTGTTTTT CCACCAGCGA AGCGTTTTCG GGTCATCGGN GGCNNTTAAG	960
T AGCGITITCG GGTCATCGGN GGCNNTTAAG	1020
	1021
(2) INFORMATION FOR SEQ ID NO:21:	
226 TD WO:51:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 321 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
and a management of the second	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
CGTGCCGACG AACGGAAGAA CACAACCATG AAGATGGTGA AATCGATCGC CGCAGGTCTG	
	60
	120
	180
	240
GGNGNGNATC GNCGANCACA A	300
	321
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 373 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
TCTTATCGGT TCCGGTTGGC GACGGGTTTT GGGNGCGGGT GGTTAACCCG CTCGGCCAGC	
CGATCGACGG GCGCGGAGAC GTCGACTCCG ATACTCGGCG CGCGCTGGAG CTCCAGGCGC CCTCGGTGGT GNACCGGCAA GGCGTGAACG AGGCGTGAACG	60
	120
	180
	240
	300
CTTACCATCG CCG	
	373
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SPOURNOR CHARLES	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 352 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GTGACGCCGT TGGTTACCCG TCTTGACGGC TGATCCATGC GCGTGGAGGT TTGACGACGA	CTGGTACGGG CGGTACCGGC TTTCGTCACC	TTGGCCGATT GGTGTGGGCA GCCAGCCGTG	TTGCTCAGGC TAGCCGAGAT TGGCGGCTGT	AGCCGCTGTG CAAGGCGGGC GCAGCTGGCT	CGCCAGTGGG	60 120 180 240 300 352
----------------------------------------------------------------------------------	----------------------------------------	----------------------------------	----------------------------------	----------------------------------------	------------	---------------------------------------

## (2) INFORMATION FOR SEQ ID NO:24:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 726 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

### (2) INFORMATION FOR SEQ ID NO:25:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 580 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

⁽²⁾ INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 160 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
AACGGAGGCG CCGGGGGTTT TGGCGGGGCC GGGGCGGTCG GCGGCAACGG CGGGGCCGGC	60
GGTACCGCCG GGTTGTTCGG TGTCGGCGGG GCCGGTGGGG CCCGACGCAA CCCGAMGGGG	120
GGTGTCACGG GTACGTCGGC CAGCACACCG GGTGGATCCG	160
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 272 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
GACACCGATA CGATGGTGAT GTACGCCAAC GTTGTCGACA CGCTCGAGGC GTTCACGATC	
CAGCGCACAC CCGACGGCGT GACCATCGGC GATGCGGCCC CGTTCGCGGA GCCCCCTCGC	60 120
AAGGCGAIGG GAAICGACAA GCTGCGGGTA ATTCATACCG GAATCGACCG CCTCCTCCTCCT	180
GAACGCGAAC AGTGGGACGA CGGCAACAAC ACGTTGGCGT TGGCGCCCGG TGTCGTTGTC GCCTACGAGC GCAACGTACA GACCAACGCC CG	240
GOUTHEGAGE GEARCHTACA GACCAACGCC CG	272
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 317 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GCAGCCGGTG GTTCTCGGAC TATCTGCGCA CGGTGACGCA GCGCGACGTG CGCGAGCTGA	60
AGCGGATCGA GCAGACGGAT CGCCTGCCGC GGTTCATGCG CTACCTGCCC CCTATGCACG	120
CGCAGGAGCI GAACGIGGCC GAAGCGGCGC GGGTCATCGG GGTCGACGCC GCCACGATTCG	180
GTTCGGATCT GGCGTGGTTC GAGACGGTCT ATCTGGTACA TCGCCTGCCC GCCTGGTCGC	240
GGAATCTGAC CGCGAAGATC AAGAAGCGGT CAAAGATCCA CGTCGTCGAC AGTGGCTTCG CGGCCTGGTT GCGCGGG	300
	317
(2) INFORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 182 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	

33	L80 L82
(2) INFORMATION FOR SEQ ID NO:30:	.02
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 308 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
GAGGTTGAC GAGGCGAGG CACGCCTGTC CGAGCTGCTG CGGCTCGTCT ACGGCGGGCA 12 GAGGTTGAGA TTGCCCGCCG CGGCGAGCCG GTAGCAAAGC TTGTGCCGCT GCATCCTCAT 18 GAGACTCGGC GGTTAGGCAT TGACCATGGC GTGTACCGCG TGCCCGACGA TTTGGACGCT 24 CCGTTGTCAG ACGACGTGCT CGAACGCTTT CACCGGTGAA GCGCTACCTC ATCGACACCC 30	60 20 80 40 00
(2) INFORMATION FOR SEQ ID NO:31:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 267 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
CCGACGACGA GCAACTCACG TGGATGATGG TCGGCAGCGG CATTGAGGAC GGAGAGAATC CGGCCGAAGC TGCCGCGGG CAAGTGCTCA TAGTGACCGG CCGTAGAGGG CTCCCCCGAT GGCACCGGAC TATTCTGGTG TGCCGCTGGC CGGTAAGAGC GGGTAAAAGA ATGTGAGGGG ACACGATGAC CAATCACACC TACCGAGTGA TCGAGATCGT CGGGACCTCG CCCGACGGCG TCGACGCGGC AATCCAGGGC GGTCTGG	9 O 4 O
(2) INFORMATION FOR SEQ ID NO:32:	• ′
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1539 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
CTCGTGCCGA AAGAATGTGA GGGGACACGA TGAGCAATCA CACCTACCGA GTGATCGAGA 6 TCGTCGGGAC CTCGCCCGAC GGCGTCGACG CGGCAATCCA GGGCGGTCTG GCCCGAGCTG CGCAGACCAT GCGCGCGCTG GACTGGTTCG AAGTACAGTC AATTCGAGGC CACCTGGTCG ACCGTTCAAG CGCGCCGAT AACTGAGGTG CATCATTAAG CGACTTTTCC AGAACATCCT CAGCCGACGG TGGCTCCGCC GAGGCGCTGC CTCCAAAAATC CCTGCGACAA TTCGTCGGCG GCGCCTACAA GGAAGTCGGT GCTGAATTCT CCTGCGACAA TTCGTCGGCG GCGCCTACAA GGAAGTCGGT GCTGAATTCG TCGCTTATCT	10

GGTCGACCTG		AGCCGGACGA	AGCGGTGCTC	GACGTCGGCT	GCGGCTCGGG	480
GCGGATGGCG	TTGCCGCTCA	CCGGCTATCT	GAACAGCGAG	GGACGCTACG	CCGGCTTCGA	
TATCTCGCAG	AAAGCCATCG			ACCTCGGCGC		540
CCAGTTCGAG	GTCTCCGACA	דרדאר א ארשר	CCCCCCACAIC	ACCICGGCGC	ACCCCAACTT	600
ACTAGACTTT			GCIGIACAAC		AATACCAGTC	660
	ATGTTTCCGC	ATCCGGATGC			TTACCTCGGT	720
			GCACTATCTG	GACGAGATCT	CCCGCGTGCT	780
GAAGCCCGGC	GGACGATGCC	TGTGCACGTA	CTTCTTGCTC	AATGACGAGT	CGTTAGCCCA	840
CATCGCGGAA	GGAAAGAGTG	CGCACAACTT	CCAGCATGAG	GGACCGGGTT	ATCGGACAAT	
CCACAAGAAG	CGGCCCGAAG	AAGCAATCGG	CTTGCCGGAG	y COMPCORCE	ATCGGACAAT	900
TGGCAAGTTC	GGCCTCGCCG	TGCACGAACC	ATTICCE COURG	ACCITCGICA	GGGATGTCTA	960
ACCACGCCTA			ATTGCACTAC	GGCTCATGGA	GTGGCCGGGA	1020
			CGCGACCAAA	ACCGCGAGCT	AGGTCGGCAT	1080
			GCGCCGCTGC	CGGCAGGCCG	ATTAGGCGGG	1140
		CCCGGCTCCG	AGTACGGCGC	CCCGAATGGC	GTCACCGGCT	1200
GGTAACCACG	CTTGCGCGCC			CAGGTGGTAG		
AGCCTGCGTG	ATCGGTCATC		• <del></del>			1260
CCACCCCGGT					AGCGCGAACG	1320
CCGGCATCAC					TGACCAAACC	1380
	<del>-</del>		GATAGCCAAG		AAGGGCACCA	1440
		ACTTGCCGTC	GGTTGCGGGT	CAGGCCCGTG	ACCAGCTCCC	1500
GCGACAAGAA	CCGTATGCCG	TCGATCTCGC	CTCGTGCCG			1539
						2009

### (2) INFORMATION FOR SEQ ID NO:33:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 851 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GGCGCCGGAG CTCCGACACC GGCCCAGCCC CTCGCCGCAT GACCAACTCG	GCGGCGGCCT CGTGCTGAAC GCGGTCAACG TACGCCGCGG ATGACCAGCG GCCGCGGCGA ACGCAGGGCA ACGCAGGGCA CGGTCGCCGA	ACGAGACGGC TGATGATTCT AGGCCGAATA CGACGGCGAC CGGGTGGGCT ACCAGTTGAT CCACGCCTTC TCAGCAACAT TGACCAACAC	GTATGGGCTG GATAGCGACC CGGCGAGATG GGCGACGGCG CCTCGAGCAG GAACAATGTG TTCCAAGCTG GGTGTCGATG	GCCAACAACC	CGCCGGTGAT GGCAAAACAC ACGCCGCCGC CGTTCGAGGA TCGAGGAGGC TGAAACAGTT GGAAGACGGT ACATGTCGAT	60 120 180 240 300 360 420 480
GGCCCAGCCC CTCGCCGCAT	ACGCAGGGCA CGGTCGCCGA	ACCAGTTGAT CCACGCCTTC TCAGCAACAT	GAACAATGTG TTCCAAGCTG GGTGTCGATG	CCCCAGGCGC GGTGGCCTGT	TGAAACAGTT	420 480
GACCAACTCG GGCGGCGGCC GCTGGGCAGC	GCCCAGGCCG	TGACCAACAC	CTTGAGCTCG GGCGCAAAAC	ATGTTGAAGG GGGGTCCGGG	GCTTTGCTCC CGATGAGCTC	540 600 660
GGCGGCCTCG GAACGGTGGT GAAACAGTTA	GTACGGTATG CCGGCGTAAG	GTCACCGGGA	TGGCGGAAAA		CTGGTCGGCG	720 780  840 851

### (2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 254 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GATCGATCGG GCGGAAATTT GGACCAGATT CGCCTCCGGC GATAACCCAA TCAATCGAAC	
THE ICCUICAGE GEOCEGAGTA ATCCCTCCCA CCACAACAACAACAACAACAACAACAACAACAACA	60
TOTAL	120
THE CONTROL OF CACTCCAGCT TOTAL COLOR COLOR COLOR	180
GCTTGGTCAA GATC	240
	254
(2) INFORMATION FOR SEQ ID NO:35:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1227 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(vi) CEOUTING	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
GATCCTGACC GAACCCCGGG component	
GATCTGACC GAAGCGGCCG CCGCCAAGGC GAAGTCGCTG TTGGACCAGG AGGGACGGGA	60
THE PROPERTY OF THE PROPERTY O	120
TTTCTTCGAC GACCGGACGC TGGATGGTGA CCAAACCGCG GAGTTCGGTG GTGTCAGGTT	180
GATCGTGGAC CGGATGAGCG CGCCGTATGT GGAAGGCGCG TCGATCGATT TCGTCGACAC	240
TATTGAGAAG CAAGGTTCAC CATCGACAAT CCCAACGCCA CCGGCTCCTG CGCGTGCGGG	300
GATTCGTTCA ACTGATAAAA CGCTAGTACG ACCCCGCGGT GCGCAACACG TACGAGCACA CCAAGACCTG ACCGCGCTGG AAAACCAACA	360
CCAAGACCTG ACCGCGCTGG AAAAGCAACT GAGCGATGCC TTGCACCTGA CCGCGTGGCG	420
GGCCGCCGGC GGCAGGTGTC ACCTGCATGG TGAACAGCAC CTGGGCCTGA TATTGCGACC	480
AGTACACGAT TTTGTCGATC GAGGTCACTT CGACCTGGGA GAACTGCTTG CGGAACGCGT CGCTGCTCAG CTTGGCCAAG GCCTTGATCGG AGCGCTTGTC GCGCACGCCG TCGTGGATAC	540
CGCACAGCGC ATTGCGAACG ATGGTGTCCA CATCGCGGTT CTCCAGCGCG TTGAGGTATC	600
CCTGAATCGC GGTTTTGGCC GGTCCCTCCG AGAATGTGCC TGCCGTGTTG GCTCCGTTGG	660
TGCGGACCCC GTATATGATC GCCGCCGTCA TAGCCGACAC CAGCGCGAGG GCTACCACAA	720
TGCCGATCAG CAGCCGCTTG TGCCGTCGCT TCGGGTAGGA CACCTGCGGC GGCACGCCGG	780
GATATGCGGC GGGCGCAGC GCCGCGTCGT CTGCCGGTCC CGGGGCGAAG GCCGGTTCGG	840
TOTAL GICGIOGG AGTCCAGGG CTTC CTCCCATTC	900
TOTAL COURT	960
TIGGIGGACG GGACCAGCTIG CTAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1020
The second case and the second course of the second	1080
The state of the s	1140
ACGAAGGACG GAGATTTTGT GACGATC	1200
	1227
(2) INFORMATION FOR SEQ ID NO:36:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 181 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(Xi) SEQUENCE DESCRIPTION	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	

GCGGTGTCGG CGGATCC GGACCGGCGC TAACGGT GCGGNGCCGG CACCAAT G	GGT GCCGGCGGCX	V CCC CALC CAMP	CEMCCCCCCC		
---------------------------------------------------------------------	----------------	-----------------	------------	--	--

(2) INFORMATION FOR SEQ ID NO:37:

<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 290 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGTGTCGGC GGCCGGGGCG GCGACGGCGT CTTTGCCGGT GCCGGCGGCC AGGGCGGCCT CGGTGGCCAG GGCGGCAATG GCGGCGGCTC CACCGGCGGC AACGGCGGTC TTGGCGGCGC GGGCGGTGGC GGAGGCAACG CCCCGGACGG CGGCTTCGGT GGCAACGGCG GTAAGGGTGG CCAGGCCGA ATTGGCGGCG GCACTCAGAG CGCGACCGGC CTCGGNGGTG ACGGCGGTGAC  (2) INFORMATION FOR FOR	60 120 180 240 290
(2) INFORMATION FOR SEQ ID NO:38:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 34 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GATCCAGTGG CATGGNGGGT GTCAGTGGAA GCAT	34
(2) INFORMATION FOR SEQ ID NO:39:	34
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 155 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GATCGCTGCT CGTCCCCCC TTGCCGCCGA CGCCACCGGT CCCACCGTTA CCGAACAAGC TGGCGTGGTC GCCAGCACCC CCGGCACCGC CGACGCCGGA GTCGAACAAT GGCACCGTCG TATCCCCACC ATTGCCGCCG GNCCCACCGG CACCG	60 120 155
(2) INFORMATION FOR SEQ ID NO:40:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 53 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
ATGGCGTTCA CGGGGCGCCG GGGACCGGGC AGCCCGGNGG GGCCGGGGG TGG	53
(2) INFORMATION FOR SEQ ID NO:41:	33

(i) SEQUENCE CHARACTERISTICS:

(C) STRANDEDNESS: single

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GATCCACCGC GGGTGCAGAC GGTGCCCGCG GCGCCACCCC GACCAGCGGC GGCAACGGCG	60
GCACCGGCGG CAACGGCGCG AACGCCACCG TCGTCGGNGG GGCCGGCGGG GCCGGCGGCA	120
AGGGCGGCAA CG	132
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 132 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
GATCGGCGGC CGGNACGGNC GGGGACGGCG GCAAGGGCGG NAACGGGGGC GCCGNAGCCA	60
GCANCGGCGG CA	120
	132
(2) INFORMATION FOR SEQ ID NO:43:	
(i) commen	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 702 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
CGGCACGAGG ATCGGTACCC CGCGGCATCG GCAGCTGCCG ATTCGCCGGG TTTCCCCACC	60
CGAGGAAAGC CGCTACCAGA TGGCGCTGCC GAAGTAGGGC GATCCGTTCG CGATGCCGCC 1	120
ATGAACGGC GGCATCAAAT TAGTGCAGGA ACCTTTCAGT TTAGCGACGA TAATGGCTAT	180
AGATTTTGAA CAGGGCAAC CACCTCCAGG GGGGATTGG	240
CCATCACAC GTGCGAACTC ACCCMCCMMA AAAAGGGGG	300
CCGACAACAT GCGGGAATAC CTCGGGGGG GTGGGAAAGA	360
THE THE CALL CONTROL OF CALCULATION OF THE CONTROL	420 480
ACAACGACGC CGAACGAACT CTCCAAGGAG TATTOTTOTTOTTOTTOTTOTTOTTOTTOTTOTTOTTOTT	540
CGGCCGAACT AACCGATACG CCGAGGGTGG CCACGGCCGG TGAACCCAAC TTCATGGATC 6	500
CAAAGAAGC GGCAAGGAAG CTCGAAACGG GCGACCAAGG CGCATCGCTC GCGCACTGNG	660
	702
(2) INFORMATION FOR SEQ ID NO:44:	
(i) SEQUENCE CHARACTERISTICS.	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 298 base pairs	

#### (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

CANCCCCCAC	CCCTCTCCCC					
GAAGCCGCAG	CGCIGICGG	CGACGTGGCG	GTCAAAGCGG	CATCGCTCGG	TGGCGGTGGA	60
GGCGGCGGGG	TECCETCECC	CCCCTTCCC	7000000 maa			•
	1000010000	GCCG11GGGA	TCCGCGATCG	GGGGCGCCGA	ATCGGTGCGG	120
CCCGCTGGCG	CTGGTGACAT	TGCCGGCTTA	CCCCACCCAA	~~~~~~~		
		IGCCGGCIIA	AADDDAJOD	GGGCCGGCGG	CGGCGCCGCG	180
CTGGGCGGCG	GTGGCATGGG	AATGCCGATG	CCTCCCCCC	ATCACCCACA	AGGGGGCGCC	
		. I . I OCCOALO	GGIGCCGCGC	ATCAGGGACA	AGGGGGCGCC	240
AAGTCCAAGG	GTTCTCAGCA	GGAAGACGAG	GCGCTCTACA	CCCACCATCC	MCCMCCCC	
			OCCCT CTMCM	CCGMGGMICC	11.121121.1.15	200

#### (2) INFORMATION FOR SEQ ID NO:45:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1058 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

1						
CGGCACGAGG	ATCGAATCGC	GTCGCCGGGA	GCACAGCGTC	GCACTGCACC	AGTGGAGGAG	60
CCATGACCTA	CTCGCCGGGT	AACCCCGGAT	ACCCGCAAGC	GCAGCCCGCA	GGCTCCTACG	120
GAGGCGTCAC	ACCCTCGTTC	GCCCACGCCG	ATGAGGGTGC	GAGCAAGCTA	CCGATGTACC	180
TGAACATCGC	GGTGGCAGTG	CTCGGTCTGG	CTGCGTACTT	CGCCAGCTTC	GGCCCAATGT	240
TCACCCTCAG	TACCGAACTC	GGGGGGGTG	ATGGCGCAGT	GTCCGGTGAC	ACTEGECTEC	300
CGGTCGGGGT	GGCTCTGCTG	GCTGCGCTGC	TTGCCGGGGT	GGTTCTGGTG	CCTAAGGCCA	360
AGAGCCATGT	GACGGTAGTT	GCGGTGCTCG	GGGTACTCGG	CGTATTTCTG	ATGGTCTCGG	420
CGACGTTTAA	CAAGCCCAGC	GCCTATTCGA	CCGGTTGGGC		GTGTTGGCTT	480
TCATCGTGTT				GGTGGAGACC		540
CCGCGCCGGC	GCCGCGGCCC	AAGTTCGACC	CGTATGGACA	GTACGGGCGG	TACGGGCAGT	600
ACGGGCAGTA	CGGGGTGCAG	CCGGGTGGGT	ACTACGGTCA	GCAGGGTGCT	CACCACCCCC	
CGGGACTGCA	GTCGCCCGGC	CCGCAGCAGT	CTCCGCAGCC	TCCCGGATAT	GGGTCGCAGT	660
ACGGCGGCTA	TTCGTCCAGT	CCGAGCCAAT	CGGGCAGTGG	ATACACTGCT	CACCCCCCCC	720
CCCAGCCGCC	GGCGCAGTCC	GGGTCGCAAC	AATCCCACCA	GGGCCCATCC	AGCCCA COM	780
CCGGCTTTCC	GAGCTTCAGC	CCACCACCAC	CCCTCACTCC	CCCCATCC		840
GTTCGGCTCC	AGTCAACTAT	TCAAACCCC	CCCCCCCCC	CGGGACGGG	TCGCAGGCTG	900
GGGGGCCGGT	CTAACCGGGC				TCCCCCGGG	960
GGGTGTCAGC				GTGTGCGCGA	AGAGTGAACA	1020
	ococodac	GWTCCTCGTC	CCGAATTC			1058

#### (2) INFORMATION FOR SEQ ID NO:46:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 327 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CGGCACGAGA	GACCGATGCC	GCTACCCTCG	CGCAGGAGGC	AGGTAATTTC	GAGCGGATCT	60
CCGGCGACCT	GAAAACCCAG	ATCGACCAGG	TGGAGTCGAC	GGCAGGTTCG	TTGCAGGGCC	120
AGTGGCGCGG	CGCGGCGGGG	ACGGCCGCCC	AGGCCGCGGT	GGTGCGCTTC	CAAGAAGCAG	180
CCAATAAGCA	GAAGCAGGAA	CTCGACGAGA	TCTCGACGAA	TATTCGTCAG	GCCGGCGTCC	240
AATACTCGAG	GGCCGACGAG	GAGCAGCAGC	AGGCGCTGTC	CTCGCAAATG	GGCTTCTGAC	300
CCGCTAATAC	GAAAAGAAAC	GGAGCAA				327

(2) INFORMATION FOR SEQ ID NO:47:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 170 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
CGGTCGCGAT GATGGCGTTG TCGAACGTGA CCGATTCTGT ACCGCCGTCG TTGAGATCAA CCAACAACGT GTTGGCGTCG GCAAATGTGC CGNACCCGTG GATCTCGGTG ATCTTGTTCT TCTTCATCAG GAAGTGCACA CCGGCCACCC TGCCCTCGGN TACCTTTCGG	60 120 170
(2) INFORMATION FOR SEQ ID NO:48:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 127 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
GATCCGGCGG CACGGGGGGT GCCGGCGGCA GCACCGCTGG CGCTGGCGGC AACGGCGGGG CCGGGGGTGG CGGCGGAACC GGTGGGTTGC TCTTCGGCAA CGGCGGTGCC GGCGGGCACG GGGCCGT	60 120 127
(2) INFORMATION FOR SEQ ID NO:49:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 81 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
CGGCGGCAAG GGCGGCACCG CCGGCAACGG GAGCGGCGCG GCCGGCGGCA ACGGCGGCAA	60 81
(2) INFORMATION FOR SEQ ID NO:50:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 149 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
GATCAGGGCT GGCCGGCTCC GGCCAGAAGG GCGGTAACGG AGGAGCTGCC GGATTGTTTG GCAACGGCGG GGCCGGNGGT GCCGGCGCGT CCAACCAAGC CGGTAACGGC GGNGCCGGCG GAAACGGTGG TGCCGGTGGG CTGATCTGG	60 120 149

### (2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 355 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

TCGAAGTACA CTATGAAAGT GGTGCATCAT	GTCAATTCGA CGGCTTCCGC TAAGCGACTT	GGCCACCTGG	TCGACGGAGC CCTGAACCTT	CATGCGCGCG GGTCGCGCAC CAAGCGCGGC	GACGGTGTCG CTGGACTGGT TTCCAGGTGA CGATAACTGA GGTTCAGCCG GGCGG	60 120 180 240 300 355
----------------------------------------	----------------------------------------	------------	--------------------------	----------------------------------------	-----------------------------------------------------------------------------	---------------------------------------

### (2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 999 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

## (2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 332 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Met His His His His His Met His Gln Val Asp Pro Asn Leu Thr Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile Ala Ala Met Ala Ser Ala Ser Leu Val Thr Val Ala Val Pro Ala Thr Ala Asn Ala Asp Pro 40 Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro Ser Thr Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro Val Ala Pro Pro Pro 75 Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro Gly Asp Pro Asn Ala Ala 90 Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro Pro Pro Val Ile Aia Pro 105 Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Gly Phe Ser 120 Phe Ala Leu Pro Ala Gly Trp Val Glu Ser Asp Ala Ala His Phe Asp 135 Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe Pro 150 Gly Gln Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Val Leu Gly Arg 155 170 Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu Ala Thr Asp Ser Lys Ala 185 Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro Tyr Pro 200 Gly Thr Arg Ile Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val 215 Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys 220 Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 235 250 Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 265 Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu 280 Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro 295 Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr 300 Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala 315

### (2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Asp Pro Val Asp Ala Val Ile Asn Thr Thr Xaa Asn Tyr Gly Gln Val

- (2) INFORMATION FOR SEQ ID NO:55:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:56:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 19 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys 1 5 10 10 15

- (2) INFORMATION FOR SEQ ID NO:57:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:58:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 14 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val

- (2) INFORMATION FOR SEQ ID NO:59:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro 5 10

- (2) INFORMATION FOR SEQ ID NO:60:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 17 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

- (2) INFORMATION FOR SEQ ID NO:61:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly

15

- (2) INFORMATION FOR SEQ ID NO:62:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 30 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Gln Thr Ser

Leu Leu Asn Asn Leu Ala Asp Pro Asp Val Ser Phe Ala Asp 20 25 30

#### (2) INFORMATION FOR SEQ ID NO:63:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 187 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Thr Gly Ser Leu Asn Gln Thr His Asn Arg Arg Ala Asn Glu Arg Lys

1 10 15

Asn Thr Thr Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala

Ala Ala Ala Ile Gly Ala Ala Ala Gly Val Thr Ser Ile Met Ala
35

Gly Gly Pro Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro

Leu Pro Leu Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln
65 70 75 80

Leu Thr Ser Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala 85 90 95

Asn Lys Gly Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg

Ile Ala Asp His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro
115 120 125

Leu Ser Phe Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala
130 135 140

Thr Ala Asp Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr 145 150 155 160 Gln Asn Val Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala

165 170 Ser Ala Met Glu Leu Leu Gln Ala Ala Gly Xaa

#### (2) INFORMATION FOR SEQ ID NO:64:

#### (i) SEQUENCE CHARACTERISTICS:

180

- (A) LENGTH: 148 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

Asp Glu Val Thr Val Glu Thr Thr Ser Val Phe Arg Ala Asp Phe Leu 1 5 10 15

Ser Glu Leu Asp Ala Pro Ala Gln Ala Gly Thr Glu Ser Ala Val Ser 20 25 30

Gly Val Glu Gly Leu Pro Pro Gly Ser Ala Leu Leu Val Val Lys Arg
35 40 45

Gly Pro Asn Ala Gly Ser Arg Phe Leu Leu Asp Gln Ala Ile Thr Ser

 Ala
 Gly
 Arg
 His
 Pro
 Asp
 Ser
 Asp
 Ile
 Phe
 Leu
 Asp
 Asp
 Val
 Thr
 Val

 Ser
 Arg
 His
 Ala
 Glu
 Phe
 Arg
 Leu
 Ala
 Ala
 Arg
 Leu
 Arg
 Arg
 Arg
 Arg
 His
 Ala
 Glu
 Phe
 Arg
 Leu
 Glu
 Arg
 A

#### (2) INFORMATION FOR SEQ ID NO:65:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 230 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

Thr Ser Asn Arg Pro Ala Arg Arg Gly Arg Arg Ala Pro Arg Asp Thr Gly Pro Asp Arg Ser Ala Ser Leu Ser Leu Val Arg His Arg Arg Gln 25 Gln Arg Asp Ala Leu Cys Leu Ser Ser Thr Gln Ile Ser Arg Gln Ser 40 Asn Leu Pro Pro Ala Ala Gly Gly Ala Ala Asn Tyr Ser Arg Arg Asn 55 Phe Asp Val Arg Ile Lys Ile Phe Met Leu Val Thr Ala Val Val Leu 70 75 Leu Cys Cys Ser Gly Val Ala Thr Ala Ala Pro Lys Thr Tyr Cys Glu 85 Glu Leu Lys Gly Thr Asp Thr Gly Gln Ala Cys Gln Ile Gln Met Ser 105 Asp Pro Ala Tyr Asn Ile Asn Ile Ser Leu Pro Ser Tyr Tyr Pro Asp 120 125 Gln Lys Ser Leu Glu Asn Tyr Ile Ala Gln Thr Arg Asp Lys Phe Leu 135 . 140 Ser Ala Ala Thr Ser Ser Thr Pro Arg Glu Ala Pro Tyr Glu Leu Asn 150 155 Ile Thr Ser Ala Thr Tyr Gln Ser Ala Ile Pro Pro Arg Gly Thr Gln 165 170 Ala Val Val Leu Xaa Val Tyr His Asn Ala Gly Gly Thr His Pro Thr 185 Thr Thr Tyr Lys Ala Phe Asp Trp Asp Gln Ala Tyr Arg Lys Pro Ile 200 Thr Tyr Asp Thr Leu Trp Gln Ala Asp Thr Asp Pro Leu Pro Val Val 215 Phe Pro Ile Val Ala Arg

#### (2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 132 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe

1 5 10 15

Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser

Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly
35
40
45

Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val
50 55 60

Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val 65 70 75 80

Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala 85 90 95

Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp
100 105 110

Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu
115 120 125

Gly Pro Pro Ala 130

#### (2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 100 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

Val Pro Leu Arg Ser Pro Ser Met Ser Pro Ser Lys Cys Leu Ala Ala 1 5 10

Ala Gln Arg Asn Pro Val Ile Arg Arg Arg Leu Ser Asn Pro Pro
20 25 30

Pro Arg Lys Tyr Arg Ser Met Pro Ser Pro Ala Thr Ala Ser Ala Gly
35 40 45

Met Ala Arg Val Arg Arg Arg Ala Ile Trp Arg Gly Pro Ala Thr Xaa 50 55 60

Ser Ala Gly Met Ala Arg Val Arg Arg Trp Xaa Val Met Pro Xaa Val 65 70 75 80

Ile Gln Ser Thr Xaa Ile Arg Xaa Xaa Gly Pro Phe Asp Asn Arg Gly
85 90 95

Ser Glu Arg Lys

(2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 163 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

Met Thr Asp Asp Ile Leu Leu Ile Asp Thr Asp Glu Arg Val Arg Thr Leu Thr Leu Asn Arg Pro Gln Ser Arg Asn Ala Leu Ser Ala Ala Leu 25 Arg Asp Arg Phe Phe Ala Xaa Leu Xaa Asp Ala Glu Xaa Asp Asp Asp Ile Asp Val Val Ile Leu Thr Gly Ala Asp Pro Val Phe Cys Ala Gly Leu Asp Leu Lys Val Ala Gly Arg Ala Asp Arg Ala Ala Gly His Leu 75 Thr Ala Val Gly Gly His Asp Gln Ala Gly Asp Arg Arg Asp Gln Arg 90 Arg Arg Gly His Arg Arg Ala Arg Thr Gly Ala Val Leu Arg His Pro 105 Asp Arg Leu Arg Ala Arg Pro Leu Arg Arg His Pro Arg Pro Gly Gly 120 Ala Ala Ala His Leu Gly Thr Gln Cys Val Leu Ala Ala Lys Gly Arg 135 His Arg Xaa Gly Pro Val Asp Glu Pro Asp Arg Arg Leu Pro Val Arg 145 155 Asp Arg Arg

- (2) INFORMATION FOR SEQ ID NO:69:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 344 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

 Met
 Lys
 Phe
 Val
 Ass
 His
 Ile
 Glu
 Pro
 Val
 Ala
 Pro
 Arg
 Arg
 Arg
 Ala
 Gly
 Arg
 Ala
 Gly
 Arg
 Ala
 Glu
 Pro
 Arg
 Ala
 Met
 Leu
 Ser
 Pro
 Arg
 Ala
 Arg
 Arg
 Arg
 Glu
 Glu
 Fro
 Arg
 Arg</th

Gly Asp Pro Asn Ala Pro Tyr Val Ala Trp Ala Ala Gly Thr Gly Thr 120 Pro Ala Gly Pro Pro Ala Pro Phe Gly Pro Asp Val Ala Ala Glu Tyr 135 Leu Gly Thr Ala Val Gln Phe His Phe Ile Ala Arg Leu Val Leu Val 140 150 Leu Leu Asp Glu Thr Phe Leu Pro Gly Gly Pro Arg Ala Gln Gln Leu 155 165 170 Met Arg Arg Ala Gly Gly Leu Val Phe Ala Arg Lys Val Arg Ala Glu 185 His Arg Pro Gly Arg Ser Thr Arg Arg Leu Glu Pro Arg Thr Leu Pro 200 Asp Asp Leu Ala Trp Ala Thr Pro Ser Glu Pro Ile Ala Thr Ala Phe 215 Ala Ala Leu Ser His His Leu Asp Thr Ala Pro His Leu Pro Pro 230 235 Thr Arg Gln Val Val Arg Arg Val Val Gly Ser Trp His Gly Glu Pro 245 250 Met Pro Met Ser Ser Arg Trp Thr Asn Glu His Thr Ala Glu Leu Pro Ala Asp Leu His Ala Pro Thr Arg Leu Ala Leu Leu Thr Gly Leu Ala Pro His Gln Val Thr Asp Asp Val Ala Ala Ala Arg Ser Leu Leu 295 Asp Thr Asp Ala Ala Leu Val Gly Ala Leu Ala Trp Ala Ala Phe Thr 315 Ala Ala Arg Arg Ile Gly Thr Trp Ile Gly Ala Ala Ala Glu Gly Gln 330 Val Ser Arg Gln Asn Pro Thr Gly 340

#### (2) INFORMATION FOR SEQ ID NO:70:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 485 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

Asp Gln Tyr Glu Pro Gly Ser Ser Arg Arg Trp Ala Glu Arg Phe Ala 120 Thr Leu Leu Arg Asn Leu Glu Phe Leu Pro Asn Ser Pro Thr Leu Met 135 Asn Ser Gly Thr Asp Leu Gly Leu Leu Ala Gly Cys Phe Val Leu Pro 150 155 Ile Glu Asp Ser Leu Gln Ser Ile Phe Ala Thr Leu Gly Gln Ala Ala 170 Glu Leu Gln Arg Ala Gly Gly Gly Thr Gly Tyr Ala Phe Ser His Leu 185 Arg Pro Ala Gly Asp Arg Val Ala Ser Thr Gly Gly Thr Ala Ser Gly 200 Pro Val Ser Phe Leu Arg Leu Tyr Asp Ser Ala Ala Gly Val Val Ser 215 Met Gly Gly Arg Arg Gly Ala Cys Met Ala Val Leu Asp Val Ser 230 His Pro Asp Ile Cys Asp Phe Val Thr Ala Lys Ala Glu Ser Pro Ser 235 250 Glu Leu Pro His Phe Asn Leu Ser Val Gly Val Thr Asp Ala Phe Leu 265 Arg Ala Val Glu Arg Asn Gly Leu His Arg Leu Val Asn Pro Arg Thr 280 Gly Lys Ile Val Ala Arg Met Pro Ala Ala Glu Leu Phe Asp Ala Ile 295 300 Cys Lys Ala Ala His Ala Gly Gly Asp Pro Gly Leu Val Phe Leu Asp 315 Thr Ile Asn Arg Ala Asn Pro Val Pro Gly Arg Gly Arg Ile Glu Ala 325 330 Thr Asn Pro Cys Gly Glu Val Pro Leu Leu Pro Tyr Glu Ser Cys Asn 345 Leu Gly Ser Ile Asn Leu Ala Arg Met Leu Ala Asp Gly Arg Val Asp 360 Trp Asp Arg Leu Glu Glu Val Ala Gly Val Ala Val Arg Phe Leu Asp 375 Asp Val Ile Asp Val Ser Arg Tyr Pro Phe Pro Glu Leu Gly Glu Ala 390 395 Ala Arg Ala Thr Arg Lys Ile Gly Leu Gly Val Met Gly Leu Ala Glu 405 410 Leu Leu Ala Ala Leu Gly Ile Pro Tyr Asp Ser Glu Glu Ala Val Arg 425 Leu Ala Thr Arg Leu Met Arg Arg Ile Gln Gln Ala Ala His Thr Ala 440 Ser Arg Arg Leu Ala Glu Glu Arg Gly Ala Phe Pro Ala Phe Thr Asp 455 Ser Arg Phe Ala Arg Ser Gly Pro Arg Arg Asn Ala Gln Val Thr Ser 460 475 Val Ala Pro Thr Gly 485

### (2) INFORMATION FOR SEQ ID NO:71:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 267 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single

#### (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

Gly Val Ile Val Leu Asp Leu Glu Pro Arg Gly Pro Leu Pro Thr Glu Ile Tyr Trp Arg Arg Gly Leu Ala Leu Gly Ile Ala Val Val Val Gly Ile Ala Val Ala Ile Val Ile Ala Phe Val Asp Ser Ser Ala Gly Ala Lys Pro Val Ser Ala Asp Lys Pro Ala Ser Ala Gln Ser His Pro Gly Ser Pro Ala Pro Gln Ala Pro Gln Pro Ala Gly Gln Thr Glu 70 Gly Asn Ala Ala Ala Pro Pro Gln Gly Gln Asn Pro Glu Thr Pro 90 Thr Pro Thr Ala Ala Val Gln Pro Pro Pro Val Leu Lys Glu Gly Asp 100 105 Asp Cys Pro Asp Ser Thr Leu Ala Val Lys Gly Leu Thr Asn Ala Pro 120 Gln Tyr Tyr Val Gly Asp Gln Pro Lys Phe Thr Met Val Val Thr Asn 135 Ile Gly Leu Val Ser Cys Lys Arg Asp Val Gly Ala Ala Val Leu Ala 155 Ala Tyr Val Tyr Ser Leu Asp Asn Lys Arg Leu Trp Ser Asn Leu Asp 170 Cys Ala Pro Ser Asn Glu Thr Leu Val Lys Thr Phe Ser Pro Gly Glu 180 185 Gln Val Thr Thr Ala Val Thr Trp Thr Gly Met Gly Ser Ala Pro Arg 200 Cys Pro Leu Pro Arg Pro Ala Ile Gly Pro Gly Thr Tyr Asn Leu Val 215 Val Gln Leu Gly Asn Leu Arg Ser Leu Pro Val Pro Phe Ile Leu Asn 230 Gln Pro Pro Pro Pro Pro Gly Pro Val Pro Ala Pro Gly Pro Ala Gln Ala Pro Pro Pro Glu Ser Pro Ala Gln Gly Gly 260

#### (2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 97 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

#### (2) INFORMATION FOR SEQ ID NO:73:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 364 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

Gly Ala Ala Val Ser Leu Leu Ala Ala Gly Thr Leu Val Leu Thr Ala 10 Cys Gly Gly Gly Thr Asn Ser Ser Ser Ser Gly Ala Gly Gly Thr Ser Gly Ser Val His Cys Gly Gly Lys Lys Glu Leu His Ser Ser Gly Ser 40 Thr Ala Gln Glu Asn Ala Met Glu Gln Phe Val Tyr Ala Tyr Val Arg 55 Ser Cys Pro Gly Tyr Thr Leu Asp Tyr Asn Ala Asn Gly Ser Gly Ala Gly Val Thr Gln Phe Leu Asn Asn Glu Thr Asp Phe Ala Gly Ser Asp 85 90 Val Pro Leu Asn Pro Ser Thr Gly Gln Pro Asp Arg Ser Ala Glu Arg 105 Cys Gly Ser Pro Ala Trp Asp Leu Pro Thr Val Phe Gly Pro Ile Ala 120 Ile Thr Tyr Asn Ile Lys Gly Val Ser Thr Leu Asn Leu Asp Gly Pro 135 140 Thr Thr Ala Lys Ile Phe Asn Gly Thr Ile Thr Val Trp Asn Asp Pro 150 155 Gln Ile Gln Ala Leu Asn Ser Gly Thr Asp Leu Pro Pro Thr Pro Ile 165 170 Ser Val Ile Phe Arg Ser Asp Lys Ser Gly Thr Ser Asp Asn Phe Gln 185 Lys Tyr Leu Asp Gly Val Ser Asn Gly Ala Trp Gly Lys Gly Ala Ser 200 Glu Thr Phe Ser Gly Gly Val Gly Val Gly Ala Ser Gly Asn Asn Gly 215 220 Thr Ser Ala Leu Leu Gln Thr Thr Asp Gly Ser Ile Thr Tyr Asn Glu 230 235 Trp Ser Phe Ala Val Gly Lys. Gln Leu Asn Met Ala Gln Ile Ile Thr 245 250 Ser Ala Gly Pro Asp Pro Val Ala Ile Thr Thr Glu Ser Val Gly Lys 265 Thr Ile Ala Gly Ala Lys Ile Met Gly Gln Gly Asn Asp Leu Val Leu 280 Asp Thr Ser Ser Phe Tyr Arg Pro Thr Gln Pro Gly Ser Tyr Pro Ile

#### (2) INFORMATION FOR SEQ ID NO:74:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 309 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

Gln Ala Ala Gly Arg Ala Val Arg Arg Thr Gly His Ala Glu Asp 10 Gln Thr His Gln Asp Arg Leu His His Gly Cys Arg Arg Ala Ala Val 25 Val Val Arg Gln Asp Arg Ala Ser Val Ser Ala Thr Ser Ala Arg Pro 40 Pro Arg Arg His Pro Ala Gln Gly His Arg Arg Arg Val Ala Pro Ser Gly Gly Arg Arg Pro His Pro His His Val Gln Pro Asp Asp Arg 70 75 Arg Asp Arg Pro Ala Leu Leu Asp Arg Thr Gln Pro Ala Glu His Pro 90 Asp Pro His Arg Arg Gly Pro Ala Asp Pro Gly Arg Val Arg Gly Arg 105 Gly Arg Leu Arg Arg Val Asp Asp Gly Arg Leu Gln Pro Asp Arg Asp 120 Ala Asp His Gly Ala Pro Val Arg Gly Arg Gly Pro His Arg Gly Val 140 Gln His Arg Gly Gly Pro Val Phe Val Arg Arg Val Pro Gly Val Arg 150 155 Cys Ala His Arg Arg Gly His Arg Arg Val Ala Ala Pro Gly Gln Gly 170 Asp Val Leu Arg Ala Gly Leu Arg Val Glu Arg Leu Arg Pro Val Ala 185 Ala Val Glu Asn Leu His Arg Gly Ser Gln Arg Ala Asp Gly Arg Val 200 Phe Arg Pro Ile Arg Arg Gly Ala Arg Leu Pro Ala Arg Arg Ser Arg 215 Ala Gly Pro Gln Gly Arg Leu His Leu Asp Gly Ala Gly Pro Ser Pro 230 Leu Pro Ala Arg Ala Gly Gln Gln Pro Ser Ser Ala Gly Gly Arg 250 Arg Ala Gly Gly Ala Glu Arg Ala Asp Pro Gly Gln Arg Gly Arg His His Gln Gly Gly His Asp Pro Gly Arg Gln Gly Ala Gln Arg Gly Thr

#### (2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 580 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

Ser Ala Val Trp Cys Leu Asn Gly Phe Thr Gly Arg His Arg His Gly Arg Cys Arg Val Arg Ala Ser Gly Trp Arg Ser Ser Asn Arg Trp Cys 25 Ser Thr Thr Ala Asp Cys Cys Ala Ser Lys Thr Pro Thr Gln Ala Ala Ser Pro Leu Glu Arg Arg Phe Thr Cys Cys Ser Pro Ala Val Gly Cys 55 Arg Phe Arg Ser Phe Pro Val Arg Arg Leu Ala Leu Gly Ala Arg Thr Ser Arg Thr Leu Gly Val Arg Arg Thr Leu Ser Gln Trp Asn Leu Ser 85 90 Pro Arg Ala Gln Pro Ser Cys Ala Val Thr Val Glu Ser His Thr His 105 Ala Ser Pro Arg Met Ala Lys Leu Ala Arg Val Val Gly Leu Val Gln 120 Glu Glu Gln Pro Ser Asp Met Thr Asn His Pro Arg Tyr Ser Pro Pro 135 140 Pro Gln Gln Pro Gly Thr Pro Gly Tyr Ala Gln Gly Gln Gln Gln Thr 150 155 Tyr Ser Gln Gln Phe Asp Trp Arg Tyr Pro Pro Ser Pro Pro Pro Gln 165 170 Pro Thr Gln Tyr Arg Gln Pro Tyr Glu Ala Leu Gly Gly Thr Arg Pro 180 185 Gly Leu Ile Pro Gly Val Ile Pro Thr Met Thr Pro Pro Pro Gly Met 200 Val Arg Gln Arg Pro Arg Ala Gly Met Leu Ala Ile Gly Ala Val Thr 215 220 Ile Ala Val Val Ser Ala Gly Ile Gly Gly Ala Ala Ala Ser Leu Val 230 235 Gly Phe Asn Arg Ala Pro Ala Gly Pro Ser Gly Gly Pro Val Ala Ala 245 250 Ser Ala Ala Pro Ser Ile Pro Ala Ala Asn Met Pro Pro Gly Ser Val 260 Glu Gln Val Ala Ala Lys Val Val Pro Ser Val Val Met Leu Glu Thr 280 Asp Leu Gly Arg Gln Ser Glu Glu Gly Ser Gly Ile Ile Leu Ser Ala 295 300 Glu Gly Leu Ile Leu Thr Asn Asn His Val Ile Ala Ala Ala Lys

30	5				310	)				221					
Pro	o Pro	o Le	u Gly	/ Ser	Pro	) Dro	Dec		. m.	315			_		320
				325	;	, ,,,	PIC	, ràs	330	Thi	· va.	Thi	Phe		
Gly	y Arc	Th	r Ala	Pro	Dhe	The	. 171	3 P.m. 3	330					335	
			340	)		- 1111	. val	. va. 345	. Gly	ALa	Asp	Pro			Asp
Ile	a Ala	a Va			7 77 = 1	C1-		345	,				350		
		35	l Val	. <b></b>	val	. GII	GIY	val	. Ser	Gly	Leu	Thr	Pro	Ile	Ser
Let	ı Glv				. 2	. 7	360					365			
	370	)	: Ser	361	ASD	) Leu	Arg	Val	Gly	Gln	Pro	Val	Leu	Ala	Ile
Glv			1 T.A.	C1		375					380				
385	;		Leu	. сту	ren	GIU	GLY	Thr	Val	Thr	Thr	Gly	Ile	Val	Ser
					270					205					
		· nai	Arg	405	vai	Ser	Thr	Thr	Gly	Glu	Ala	Gly	Asn	Gln	Asn
				* 400					410						
	, ,	. Dec	Asp 420	Ада	TTE	GIn	Thr	Asp	Ala	Ala	Ile	Asn	Pro	Gly	Asn
			120					475							
001	Gly	435	Ala	Leu	Val	Asn	Met	Asn	Ala	Gln	Leu	Val	Gly	Val	Asn
							440								
501	450	116	Ala	Inr	Leu	Gly	Ala	Asp	Ser	Ala	Asp	Ala	Gln	Ser	Gly
						* 2.2					400				
465	116	GIA	Leu	GLY	Phe	Ala	Ile	Pro	Val	Asp	Gln	Ala	Lys	Arg	Ile
					4 / U					475					
nia	ASP	GIU	Leu	Ile	Ser	Thr	Gly	Lys	Ala	Ser	His	Ala	Ser	Leu	Glv
				* U J					1 Q A						
val	Gin	val	Thr	Asn	Asp	Lys	Asp	Thr	Pro	Gly	Ala	Lys	Ile	Val	Glu
			300					505							
vaı	val	Ala	Gly	Gly	Ala	Ala	Ala	Asn	Ala	Gly	Val	Pro	Lys	Glv	Val
							520								
val	val	Thr	Lys	Val	qaA	Asp	Arg	Pro	Ile	Asn	Ser	Ala	Asp	Ala	Leu
						3.35					E 4 A				
val	ALA	Ala	Val	Arg	Ser	Lys	Ala	Pro	Gly	Ala	Thr	Val	Ala	Len	Thr
					220					E E E					
hue	GIn	Ąsp	Pro	Ser	Gly	Gly	Ser	Arg	Thr	Val	Gln	Val	Thr	Len	Glv
				565				_	570					575	OL y
rās	Ala	Glu												٠, ٠	
			580												

### (2) INFORMATION FOR SEQ ID NO:76:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 233 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

 Met
 Asn
 Asp
 Gly
 Lys
 Arg
 Ala
 Val
 Thr
 Ser
 Ala
 Val
 Leu
 Jeu
 Leu
 Jeu
 J

70 75 Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala Asn Pro Leu Ala 85 90 Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly Val Pro Phe Arg 105 Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp Asp Trp Ser Asn 120 Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val Leu Asp Pro Ala 135 Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn Leu Gln Ala Gln 150 155 Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys Ile Thr Gly Thr 165 170 Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly Ala Lys Ser Ala 180 185 Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser His His Leu Val 200 Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln Leu Thr Gln Ser 215 Lys Trp Asn Glu Pro Val Asn Val Asp 230

#### (2) INFORMATION FOR SEQ ID NO:77:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 66 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

 Val
 1le
 Asp
 Ile
 Gly
 Thr
 Ser
 Pro
 Thr
 Ser
 Trp
 Glu
 Gln
 Ala
 Ala

 1
 Ile
 Ile

#### (2) INFORMATION FOR SEQ ID NO:78:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 69 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Val Pro Pro Ala Pro Pro Leu Pro Pro Leu Pro Pro Ser Pro Ile Ser 1 5 10 15

Cys Ala Ser Pro Pro Ser Pro Pro Leu Pro Pro Ala Pro Pro Val Ala 20 25 30

Pro Gly Pro Pro Met Pro Pro Leu Asp Pro Trp Pro Pro Ala Pro Pro Pro 35 40 45

Leu Pro Tyr Ser Thr Pro Pro Gly Ala Pro Leu Pro Pro Ser Pro Pro 50 55 60

Ser Pro Pro Leu Pro

65

#### (2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 355 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Met Ser Asn Ser Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser 1 5 10

Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Gln Ala
20 25 30

Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu
35 40

Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val
50
50
60

Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr
65 70 75 80

Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val

Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly Gln
100 105 110

Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala

Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly
130 135 140

Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly
145

Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu
165 170 175

Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr
180 185 190

Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser

Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr

Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe Ala
225
230
236
240

Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly
245 250 255

Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu
260 265 270

Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val
275
280
285

Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile
290
Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp
305
Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln
325
Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly
360
Pro Pro Ala
355

#### (2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 205 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

Ser Pro Lys Pro Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr Ala Ser Asp Pro Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala Thr Lys Gly Leu Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys Val Asp Ser Leu Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala Asn Pro Leu Ala Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly 75 Val Pro Phe Arg Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp 90 Asp Trp Ser Asn Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val Leu Asp Pro Ala Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn 120 Leu Gln Ala Gln Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys 135 Ile Thr Gly Thr Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly 150 Ala Lys Ser Ala Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser 170 His His Leu Val Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln 185 Leu Thr Gln Ser Lys Trp Asn Glu Pro Val Asn Val Asp

### (2) INFORMATION FOR SEQ ID NO:81:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 286 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

Gly Asp Ser Phe Trp Ala Ala Ala Asp Gln Met Ala Arg Gly Phe Val Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln His Ala Asp Gly His Ser Leu Leu Leu Asp Ala Thr Asn Pro Ala Val 40 Val Ala Tyr Asp Pro Ala Phe Ala Tyr Glu Ile Gly Tyr Ile Xaa Glu 55 Ser Gly Leu Ala Arg Met Cys Gly Glu Asn Pro Glu Asn Ile Phe Phe 70 Tyr Ile Thr Val Tyr Asn Glu Pro Tyr Val Gln Pro Pro Glu Pro Glu Asn Phe Asp Pro Glu Gly Val Leu Gly Gly Ile Tyr Arg Tyr His Ala 105 Ala Thr Glu Gln Arg Thr Asn Lys Xaa Gln Ile Leu Ala Ser Gly Val 120 Ala Met Pro Ala Ala Leu Arg Ala Ala Gln Met Leu Ala Ala Glu Trp 135 Asp Val Ala Ala Asp Val Trp Ser Val Thr Ser Trp Gly Glu Leu Asn 150 155 Arg Asp Gly Val Val Ile Glu Thr Glu Lys Leu Arg His Pro Asp Arg 170 Pro Ala Gly Val Pro Tyr Val Thr Arg Ala Leu Glu Asn Ala Arg Gly 185 Pro Val Ile Ala Val Ser Asp Trp Met Arg Ala Val Pro Glu Gln Ile 200 Arg Pro Trp Val Pro Gly Thr Tyr Leu Thr Leu Gly Thr Asp Gly Phe 215 Gly Phe Ser Asp Thr Arg Pro Ala Gly Arg Arg Tyr Phe Asn Thr Asp 230 235 Ala Glu Ser Gln Val Gly Arg Gly Phe Gly Arg Gly Trp Pro Gly Arg 245 250 Arg Val Asn Ile Asp Pro Phe Gly Ala Gly Arg Gly Pro Pro Ala Gln Leu Pro Gly Phe Asp Glu Gly Gly Gly Leu Arg Pro Xaa Lys

### (2) INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 173 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

35 40 Asn His Ala Met Met Leu Val Gln His Leu Leu Asp Arg Asp Leu Arg Val Glu Ile Pro Gly Val Asp Thr Val Arg Asn Gln Phe Asp Arg Pro Arg Glu Ala Leu Ala Leu Asp Gln Glu Arg Thr Val Thr Asp 90 Gln Val Gly Arg Leu Thr Ala Val Ala Arg Asp Glu Gly Asp Phe Leu 105 Gly Glu Gln Phe Met Gln Trp Phe Leu Gln Glu Gln Ile Glu Glu Val 120 Ala Leu Met Ala Thr Leu Val Arg Val Ala Asp Arg Ala Gly Ala Asn 135 140 Leu Phe Glu Leu Glu Asn Phe Val Ala Arg Glu Val Asp Val Ala Pro 150 155 Ala Ala Ser Gly Ala Pro His Ala Ala Gly Gly Arg Leu

### (2) INFORMATION FOR SEQ ID NO:83:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 107 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

Arg Ala Asp Glu Arg Lys Asn Thr Thr Met Lys Met Val Lys Ser Ile 10 Ala Ala Gly Leu Thr Ala Ala Ala Ile Gly Ala Ala Ala Gly Val Thr Ser Ile Met Ala Gly Gly Pro Val Val Tyr Gln Met Gln Pro 40 Val Val Phe Gly Ala Pro Leu Pro Leu Asp Pro Xaa Ser Ala Pro Xaa Val Pro Thr Ala Ala Gln Trp Thr Xaa Leu Leu Asn Xaa Leu Xaa Asp 75 Pro Asn Val Ser Phe Kaa Asn Lys Gly Ser Leu Val Glu Gly Gly Ile 90 Gly Gly Xaa Glu Gly Xaa Xaa Arg Arg Xaa Gln

## (2) INFORMATION FOR SEQ ID NO:84:

(i) SEQUENCE CHARACTERISTICS:

100

- (A) LENGTH: 125 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

Val Leu Ser Val Pro Val Gly Asp Gly Phe Trp Xaa Arg Val Val Asn Pro Leu Gly Gln Pro Ile Asp Gly Arg Gly Asp Val Asp Ser Asp Thr

 Arg
 Arg
 Ala
 Leu
 Glu
 Leu
 Gln
 Ala
 Pro
 Ser
 Val
 Val
 Xaa
 Arg
 Gln
 Gly
 Gly
 Ala
 Arg
 Gln
 Gly
 Gly
 Arg
 Arg
 Gln
 Gly
 Arg
 Arg
 Arg
 Arg
 Arg
 Thr
 Arg
 Ile
 Lys
 Ala
 Ile
 Arg
 Arg
 Arg
 Thr
 Arg
 Ile
 Ile
 Ile
 Ile
 Arg
 Arg
 Ile
 I

### (2) INFORMATION FOR SEQ ID NO:85:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 117 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

 Cys
 Asp
 Ala
 Val
 Met
 Gly
 Phe
 Leu
 Gly
 Gly
 Ala
 Gly
 Pro
 Leu
 Ala
 Val

 Val
 Asp
 Gln
 Gln
 Leu
 Val
 Thr
 Arg
 Val
 Pro
 Gln
 Gly
 Trp
 Ser
 Phe
 Ala

 Gln
 Ala
 Ala
 Ala
 Val
 Pro
 Val
 Phe
 Leu
 Thr
 Ala
 Trp
 Tyr
 Gly
 Leu

 Ala
 Asp
 Leu
 Ala
 Glu
 The
 Lys
 Ala
 Glu
 Ser
 Val
 Leu
 Ile
 His
 Ala

 Ala
 Asp
 Leu
 Ala
 Glu
 Met
 Ala
 Ala
 Val
 Leu
 Ala
 Arg
 Glu
 Trp
 Arg
 Glu
 Trp
 Arg
 Glu
 Trp
 Arg
 Ala
 Fro
 Trp
 Arg
 Arg
 Fro
 Trp
 Arg
 Arg
 Fro
 Trp
 Arg
 Arg
 Fro
 Trp
 Arg
 Fro
 Trp
 Arg
 A

### (2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 103 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

Thr Ala Pro Val Pro Asp Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp 45

Pro Ala Trp Gly Pro Asn Trp Asp Pro Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro Asp Pro Tyr Thr Cys His Asp Asp Phe 50

His Arg Asp Ser Asp Gly Pro Asp His Ser Arg Asp Tyr Pro Gly Pro 65

For Tyr Thr Cys His Asp Pro Gly Pro Pro Gly Pro Ala Ala Gly Gly Gly Ala His Inc.

## (2) INFORMATION FOR SEQ ID NO:87:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 88 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

 Val
 Glu
 Try
 Leu
 Glu
 Ile
 Glu
 Try
 Arg
 Gly
 Met
 Leu
 Gly

 1
 5
 5
 10
 10
 15
 15

 Ala
 Asp
 Glu
 Arg
 Ala
 Gly
 Pro
 Ala
 Arg
 Ile
 Try
 Arg
 Glu
 His

 Ser
 Met
 Ala
 Met
 Lys
 Pro
 Arg
 Thr
 Gly
 Asp
 Gly
 Pro
 Leu
 Gly
 Ala
 Ala

 Thr
 Lys
 Glu
 Arg
 Gly
 Ile
 Val
 Met
 Ala
 Ala

## (2) INFORMATION FOR SEQ ID NO:88:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 95 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

WO 99/42076

114

85 90 95

### (2) INFORMATION FOR SEQ ID NO:89:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 166 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

Met Thr Gln Ser Gln Thr Val Thr Val Asp Gln Gln Glu Ile Leu Asn

Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val

Pro Ile Thr Pro Cys Glu Leu Thr Xaa Xaa Lys Asn Ala Ala Gln Gln
35 40 45

Xaa Val Leu Ser Ala Asp Asn Met Arg Glu Tyr Leu Ala Ala Gly Ala
50 55 60

Lys Glu Arg Gln Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Xaa 65 70 75 80

Tyr Gly Glu Val Asp Glu Glu Ala Ala Thr Ala Leu Asp Asn Asp Gly
85
90
95

Glu Gly Thr Val Gln Ala Glu Ser Ala Gly Ala Val Gly Gly Asp Ser

Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro

Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp

Gln Gly Ala Ser Leu Ala His Xaa Gly Asp Gly Trp Asn Thr Xaa Thr 145 150 155 160

Leu Thr Leu Gln Gly Asp

### (2) INFORMATION FOR SEQ ID NO:90:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

Arg Ala Glu Arg Met

### (2) INFORMATION FOR SEQ ID NO:91:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 263 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala 10 Gln Val Arg Val Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu Thr 25 Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile Leu 40 Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu Glu Gln Ala 105 Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn Gln Leu Met 120 Asn Asn Val Pro Gln Ala Leu Lys Gln Leu Ala Gln Pro Thr Gln Gly 135 Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser Pro 150 His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His Met 170 Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser Met 185 Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val Gln Thr Ala 195 200 Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly 215 220 Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu Gly Arg Ala Ala 230 235 Ser Val Arg Tyr Gly His Arg Asp Gly Gly Lys Tyr Ala Xaa Ser Gly 245 250 Arg Arg Asn Gly Gly Pro Ala 260

#### (2) INFORMATION FOR SEQ ID NO:92:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 303 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

55 Glu Leu Gly Gly Gly Asp Gly Ala Val Ser Gly Asp Thr Gly Leu Pro 70 75 Val Gly Val Ala Leu Leu Ala Ala Leu Leu Ala Gly Val Val Leu Val 85 90 Pro Lys Ala Lys Ser His Val Thr Val Val Ala Val Leu Gly Val Leu 100 105 Gly Val Phe Leu Met Val Ser Ala Thr Phe Asn Lys Pro Ser Ala Tyr 120 Ser Thr Gly Trp Ala Leu Trp Val Val Leu Ala Phe Ile Val Phe Gln 135 Ala Val Ala Ala Val Leu Ala Leu Leu Val Glu Thr Gly Ala Ile Thr 150 Ala Pro Ala Pro Arg Pro Lys Phe Asp Pro Tyr Gly Gln Tyr Gly Arg 170 Tyr Gly Gln Tyr Gly Gln Tyr Gly Val Gln Pro Gly Gly Tyr Tyr Gly 185 Gln Gln Gly Ala Gln Gln Ala Ala Gly Leu Gln Ser Pro Gly Pro Gln 200 Gln Ser Pro Gln Pro Pro Gly Tyr Gly Ser Gln Tyr Gly Gly Tyr Ser 215 Ser Ser Pro Ser Gln Ser Gly Ser Gly Tyr Thr Ala Gln Pro Pro Ala 230 235 Gln Pro Pro Ala Gln Ser Gly Ser Gln Gln Ser His Gln Gly Pro Ser 245 250 Thr Pro Pro Thr Gly Phe Pro Ser Phe Ser Pro Pro Pro Pro Val Ser 265 Ala Gly Thr Gly Ser Gln Ala Gly Ser Ala Pro Val Asn Tyr Ser Asn 280 Pro Ser Gly Gly Glu Gln Ser Ser Pro Gly Gly Ala Pro Val 295

#### (2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 28 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

Gly Cys Gly Glu Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn 1 5 5 1 10 10 15 Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile

### (2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 16 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly

1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:95:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 27 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

- (2) INFORMATION FOR SEQ ID NO:96:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 27 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

Gly Cys Gly Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu

1 5 5 1 10 15

Ala Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu

20 25

- (2) INFORMATION FOR SEQ ID NO:97:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 27 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

Gly Cys Gly Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu Ile Ser Thr 1 5 10 15 15

Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg 25

- (2) INFORMATION FOR SEQ ID NO:98:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 28 amino acids

- (B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
- _____

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

Gly Cys Gly Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu 1 5 15 Glu Gln Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 20 25

#### (2) INFORMATION FOR SEQ ID NO:99:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 507 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

ATGAAGATGG GCGGCCGGTG GTCTTCGGCG CAGTTGACCA AGTCTGGTCG AAGGCCGCCG GCCGCCGGTT ACGCAGAACG	TGACTTCGAT CGCCACTGCC GCCTGCTCAA AGGGCGGCAT AGCACGGGGA CGGCCACCGC TCACGTTCGT	CATGGCTGGC GTTGGACCCG CAGCCTCGCC CGGGGGCACC TCTGCCGCTG CGACGTTTCC GAATCAAGGC	GGCCCGGTCG GCATCCGCCC GATCCCAACG GAGGCGCGCA TCGTTCAGCG GTCTCGGGTC	TATACCAGAT CTGACGTCCC TGTCGTTTGC TCGCCGACCA TGACGAACAT CGAAGCTCTC	GCAGCCGGTC GACCGCCGCC GAACAAGGGC CAAGCTGAAG CCAGCCGGCG	60 120 180 240 300 360 420 480
GAGTTGCTGC	AGGCCGCAGG	GAACTGA	GGCTGGATGC	TGTCACGCGC	ATCGGCGATG	480 507

#### (2) INFORMATION FOR SEQ ID NO:100:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 168 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

 Met
 Lys
 Val
 Lys
 See
 Ile
 Ala
 Ala
 Gly
 Leu
 Thr
 Ala
 Ala
 Ala
 Ala

 Ile
 Gly
 Ala
 A

Ser	Val	Thr	100 Asn	Ile	Gln	Pro	Ala	105 Ala	Ala	Glv	Ser	Δla	110 Thr	Δla	) en
		T 7 2					120					1.25			_
	130		Ser			135					140				
Thr 145	Phe	Val	Asn	Gln	Gly 150	Gly	Trp	Met	Leu	Ser	Arg	Ala	Ser	Ala	Met 160
Glu	Leu	Leu	Gln	Ala 165	Ala	Gly	Asn			-32					190

#### (2) INFORMATION FOR SEQ ID NO:101:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 500 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

GGCTGCCGCA CGCACCGCCA ACAGTACATC GGGCCCCATC ACGGGCCCGCA	TCGTTGACCG ACCTGCAATT CAGTTCAACG CCTCAGCGCG GGCCTTGTCG CCGCGACCCG TCCCGCGACC CATCTCGTGC	ACGGGCAGGT CCTCACCGGT CTGCCATGGC AGTCGGTTGC GCATCGTCGC CGGCATCGTC	AGTAGCTGCG GGCGCAGTCC CGCGCAATTG CGGCTCCTGC CGGGGCTAGG GCCGGGGCTA	CTCAACGCGA TATTTGCGCA CAAGCTGTGC AACAACTATT CCAGATTGCC GGCCAGATTG	CGGATCCGGG ATTTCCTCGC CGGGGGCGGC AAGCCCATGC CCGCTCCTCA	60 120 180 240 300 360 420
CAACGGCCGCA GCCGCCACCG	CATCTCGTGC	CGGCATCGTC	GCCGGGGCTA CAGCCCGGGG	GGCCAGATTG GATCCACTAG	CCCCGCTCCT TTCTAGAGCG	420 480 500

#### (2) INFORMATION FOR SEQ ID NO:102:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 96 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

 Val
 Ala
 Met
 Ser
 Leu
 Thr
 Val
 Gly
 Ala
 Gly
 Val
 Ala
 Ser
 Ala
 Asp
 Pro

 Val
 Asp
 Ala
 The
 Asp
 Thr
 Thr
 Cys
 Asp
 Tyr
 Gly
 G

(2) INFORMATION FOR SEQ ID NO:103:

(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 154 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
ATGACAGAGC AGCAGTGGAA TTTCGCGGGT ATCGAGGCCG CGGCAAGCGC AATCCAGGGA AATGTCACGT CCATTCATTC CCTCCTTGAC GAGGGGAAGC AGTCCCTGAC CAAGCTCGCA GCGGCCTGGG GCGGTAGCGG TTCGGAAGCG TACC	60 120 154
(2) INFORMATION FOR SEQ ID NO:104:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 51 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:	
Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu Ala Ala Ala Ser         1       5       10       15         Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu Leu Asp Glu Gly       20       25       30         Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly Gly Ser Gly Ser       35       40       45         Glu Ala Tyr       50       50       50       50	
(2) INFORMATION FOR SEQ ID NO:105:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 282 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	
CGGTCGCGCA CTTCCAGGTG ACTATGAAAG TCGGCTTCCG NCTGGAGGAT TCCTGAACCT TCAAGCGCGG CCGATAACTG AGGTGCATCA TTAAGCGACT TTTCCAGAAC ATCCTGACGC GCTCGAAACG CGGCACAGCC GACGGTGGCT CCGNCGAGGC GCTGNCTCCA AAATCCCTGA GACAATTCGN CGGGGCGCC TACAAGGAAG TCGGTGCTGA ATTCGNCGNG TATCTGGTCG ACCTGTGTGG TCTGNAGCCG GACGAAGCGG TGCTCGACGT CG	60 120 180 240 282
•	
<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 3058 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li></ul>	

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

GATCGTACCO	GTGCGAGTGC	TCGGGCCGTT	TGAGGATGGA	GTGCACGTGT	CTTTCGTGAT	60
GGCATACCCA	GAGATGTTGG	CGGCGGCGGC	TGACACCCTG	CAGAGCATCG	GTGCTACCAC	120
TGTGGCTAGC	AATGCCGCTG	CGGCGGCCCC	GACGACTGGG	GTGGTGCCCC	CCGCTGCCGA	180
TGAGGTGTCG	GCGCTGACTG	CGGCGCACTT	CGCCGCACAT	GCGGCGATGT	ATCAGTCCGT	240
GAGCGCTCGG	GCTGCTGCGA	TTCATGACCA	GTTCGTGGCC	ACCCTTGCCA	GCAGCGCCAG	300
CTCGTATGCG	GCCACTGAAG	TCGCCAATGC	GGCGGCGGCC	AGCTAAGCCA	GGAACAGTCG	360
GCACGAGAAA	CCACGAGAAA	TAGGGACACG	TAATGGTGGA	TTTCGGGGCG	TTACCACCGG	420
AGATCAACTC	CGCGAGGATG	TACGCCGGCC	CGGGTTCGGC	CTCGCTGGTG	GCCGCGGCTC	480
AGATGTGGGA	CAGCGTGGCG	AGTGACCTGT	TTTCGGCCGC	GTCGGCGTTT	CAGTCGGTGG	540
TCTGGGGTCT	GACGGTGGGG	TCGTGGATAG	GTTCGTCGGC	GGGTCTGATG	GTGGCGGCGG	600
CCTCGCCGTA	TGTGGCGTGG	ATGAGCGTCA	CCGCGGGGCA	GGCCGAGCTG	ACCGCCGCCC	660
AGGTCCGGGT	TGCTGCGGCG	GCCTACGAGA	CGGCGTATGG	GCTGACGGTG	CCCCCGCCGG	720
TGATCGCCGA	GAACCGTGCT	GAACTGATGA	TTCTGATAGC	GACCAACCTC	TTGGGGCAAA	780
ACACCCCGGC	GATCGCGGTC	AACGAGGCCG	AATACGGCGA	GATGTGGGCC	CAAGACGCCG	840
CCGCGATGTT	TGGCTACGCC	GCGGCGACGG	CGACGGCGAC	GGCGACGTTG	CTGCCGTTCG	900
AGGAGGCGCC	GGAGATGACC	AGCGCGGGTG	GGCTCCTCGA	GCAGGCCGCC	GCGGTCGAGG	960
AGGCCTCCGA	CACCGCCGCG	GCGAACCAGT	TGATGAACAA	TGTGCCCCAG	GCGCTGCAAC	1020
AGCTGGCCCA	GCCCACGCAG	GGCACCACGC	CTTCTTCCAA	GCTGGGTGGC	CTGTGGAAGA	1080
CGGTCTCGCC	GCATCGGTCG	CCGATCAGCA	ACATGGTGTC	GATGGCCAAC	AACCACATGT	1140
CGATGACCAA	CTCGGGTGTG	TCGATGACCA	ACACCTTGAG	CTCGATGTTG	AAGGGCTTTG	1200
CTCCGGCGGC	GGCCGCCCAG	GCCGTGCAAA	CCGCGGCGCA	AAACGGGGTC	CGGGCGATGA	1260
GCTCGCTGGG	CAGCTCGCTG	GGTTCTTCGG	GTCTGGGCGG	TGGGGTGGCC	GCCAACTTGG	1320
GTCGGGCGGC	CTCGGTCGGT	TCGTTGTCGG	TGCCGCAGGC	CTGGGCCGCG	GCCAACCAGG	1380
CAGTCACCCC	GGCGGCGCGG	GCGCTGCCGC	TGACCAGCCT	GACCAGCGCC	GCGGAAAGAG	1440
GGCCCGGGCA	GATGCTGGGC	GGGCTGCCGG	TGGGGCAGAT	GGGCGCCAGG	GCCGGTGGTG	1500
GGCTCAGTGG	TGTGCTGCGT	GTTCCGCCGC	GACCCTATGT	GATGCCGCAT	TCTCCGGCGG	1560
CCGGCTAGGA	GAGGGGGCGC .	AGACTGTCGT	TATTTGACCA	GTGATCGGCG	GTCTCGGTGT	1620

TTCCGCGGCC GGCTATGACA ACAGTCAATG TGCATGACAA GTTACAGGTA TTAGGTCCAG	1680
GTTCAACAAG GAGACAGGCA ACATGGCCTC ACGTTTTATG ACGGATCCGC ACGCGATGCG	1740
GGACATGGCG GGCCGTTTTG AGGTGCACGC CCAGACGGTG GAGGACGAGG CTCGCCGGAT	1800
GTGGGCGTCC GCGCAAAACA TTTCCGGTGC GGGCTGGAGT GGCATGGCCG AGGCGACCTC	1860
GCTAGACACC ATGGCCCAGA TGAATCAGGC GTTTCGCAAC ATCGTGAACA TGCTGCACGG	1920
GGTGCGTGAC GGGCTGGTTC GCGACGCCAA CAACTACGAG CAGCAAGAGC AGGCCTCCCA	1980
GCAGATCCTC AGCAGCTAAC GTCAGCCGCT GCAGCACAAT ACTTTTACAA GCGAAGGAGA	2040
ACAGGITCGA TGACCATCAA CTATCAATTC GGGGATGTCG ACGCTCACGG CGCCATGATC	2100
CGCGCTCAGG CCGGGTTGCT GGAGGCCGAG CATCAGGCCA TCATTCGTGA TGTGTTGACC	2160
GCGAGTGACT TTTGGGGCGG CGCCGGTTCG GCGGCCTGCC AGGGGTTCAT TACCCAGTTG	2220
GGCCGTAACT TCCAGGTGAT CTACGAGCAG GCCAACGCCC ACGGGCAGAA GGTGCAGGCT	2280
GCCGGCAACA ACATGGCGCA AACCGACAGC GCCGTCGGCT CCAGCTGGGC CTGACACCAG	2340
GCCAAGGCCA GGGACGTGGT GTACGAGTGA AGTTCCTCGC GTGATCCTTC GGGTGGCAGT	2400
CTAAGTGGTC AGTGCTGGGG TGTTGGTGGT TTGCTGCTTG GCGGGTTCTT CGGTGCTGGT	2460
CAGTGCTGCT CGGGCTCGGG TGAGGACCTC GAGGCCCAGG TAGCGCCGTC CTTCGATCCA	2520
TTCGTCGTGT TGTTCGGCGA GGACGGCTCC GACGAGGCGG ATGATCGAGG CGCGGTCGGG	2580
GAAGATGCCC ACGACGTCGG TTCGGCGTCG TACCTCTCGG TTGAGGCGTT CCTGGGGGTT	2640
GTTGGACCAG ATTTGGCGCC AGATCTGCTT GGGGAAGGCG GTGAACGCCA GCAGGTCGGT	2700
GCGGGCGGTG TCGAGGTGCT CGGCCACCGC GGGGAGTTTG TCGGTCAGAG CGTCGAGTAC	2760
CCGATCATAT TGGGCAACAA CTGATTCGGC GTCGGGCTGG TCGTAGATGG AGTGCAGCAG	2820
GGTGCGCACC CACGGCCAGG AGGGCTTCGG GGTGGCTGCC ATCAGATTGG CTGCGTAGTG	2880
GGTTCTGCAG CGCTGCCAGG CCGCTGCGGG CAGGGTGGCG CCGATCGCGG CCACCAGGCC	2940
GGCGTGGGCG TCGCTGGTGA CCAGCGCGAC CCCGGACAGG CCGCGGGCGA CCAGGTCGCG	3000
GAAGAACGCC AGCCAGCCGG CCCCGTCCTC GGCGGAGGTG ACCTGGATGC CCAGGATC	3058

## (2) INFORMATION FOR SEQ ID NO:107:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 391 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single

#### (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:
- Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met

  1 5 10 15
- Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gln Met Trp
  20 25 30
- Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45
- Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60
- Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 70 75 80
- Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85 90 95
- Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala
- Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly
- Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met 130 135 140
- Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala 145 150 155
- Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr 165 170 175
- Ser Ala Gly Gly Leu Leu Glu Gln Ala Ala Ala Val Glu Glu Ala Ser 180 185 190
- Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu
  195 200 205
- Gln Gln Leu Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu 210 215 220
- Gly Gly Leu Trp Lys Thr Val Ser Pro His Arg Ser Pro Ile Ser Asn 225 230 235 240
- Met Val Ser Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val
- Ser Met Thr Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala 260 265 270

Ala	a Ala	275	a Glr	ı Ala	val	. Gln	Thr 280	Ala	Ala	Gln	Asn	Gly 285	Val	Arg	Ala
Met	Ser 290	Ser	Leu	Gly	'Ser	Ser 295	Leu	Gly	Ser	Ser	Gly 300	Leu	Gly	Gly	Gly
Val 305	. Ala	Ala	. Asn	Leu	Gly 310	Arg	Ala	Ala	Ser	Val 315	Gly	Ser	Leu	Ser	Val 320
Pro	Gln	Ala	Trp	Ala 325	Ala	Ala	Asn	Gln	Ala 330	Val	Thr	Pro	Ala	Ala 335	Arg
Ala	Leu	Pro	Leu 340	Thr	Ser	Leu	Thr	Ser 345	Ala	Ala	Glu	Arg	Gly 350	Pro	Gly
Gln	Met	Leu 355	Gly	Gly	Leu	Pro	<b>Val</b> 360	Gly	Gln	Met	Gly	Ala 365	Arg	Ala	Gly
Gly	Gly 370	Leu	Ser	Gly	Val	Leu 375	Arg	Val	Pro	Pro	Arg 380	Pro	Tyr	Val	Met
Pro 385	His	Ser	Pro		Ala 390	Gly									

## (2) INFORMATION FOR SEQ ID NO:108:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1725 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

GACGTCACCA	0000000					
					GGTCAAGGTG	60
ACGTCCCTCG	GCGTGTCGCC	GGCGTGGATG	CAGACTCGAT	GCCGCTCTTT	AGTGCAACTA	120
			CTTCACGATT			
						180
CGTGTTGGGG	TCGATTTGGC	CGGACCAGTC	GTCACCAACG	CTTGGCGTGC	GCGCCAGGCG	240
GGCGATCAGA	TCGCTTGACT	ACCAATCAAT	CTTGAGCTCC	CCCCCCATC	CTCCCCCC	
						300
ATGAGGAGGA	GCACGCGTGT	CTTTCACTGC	GCAACCGGAG	ATGTTGGCGG	CCGCGGCTGG	360
CGAACTTCGT	TUULIGGGG	CAACGCTGAA	GGCTAGCAAT	GCCGCCGCAG	CCGTGCCGAC	420
GACTGGGGTG	GTGCCCCCGG	CTGCCCA cca *	COMPANDA			
		CIGCEGACGA	GGTGTCGCTG	CIGCTIGCCA	CACAATTCCG	480
TACGCATGCG	GCGACGTATC	AGACGCCCAC	000000			
		OACGGCCAG	CGCCAAGGCC	GCGGTGATCC	ATGAGCAGTT	540
TGTGACCACG	CTGGCCACCA	GCGCT & CTTTC	\T\TCC===			
					CCAACGCTGT	600
GGTCACCGGC '	TAGCTGACCT	GACGGTATTC	CACCCCAACC			
			GAGCGGAAGG .	ATTATCGAAG	TGGTGGATTT	660

GCTGGTGGC	A CCACCGGAGA  C GCCGCGAAGA  TCGGTGGTCT  GCCGCGGCCCT	TGTGGGACAC	G CGTGGCGAG	GACCTGTTTT	CGGCCGCGTC	720 780
	G TCGGTGGTCT	GGGGTCTGAC				780
GGCGTTTCA			GGTGGGGTCC	TGGATACCTT		
	GCGGCGGCCT	CCCCCCTTTTT				840
						900
	GCCGCCCAGG					960
	CCGCCGGTGA					1020
	GGGCAAAACA					1080
	GACGCGGAGG					1140
	CCGTTCGAGG					1200
	GTCGAGGAGG					1260
	CTGCAACAGC					1320
GGGTGGGCTG	TGGACGGCGG	TCTCGCCGCA	TCTGTCGCCG	CTCAGCAACG	TCAGTTCGAT	1380
AGCCAACAAC	CACATGTCGA	TGATGGGCAC	GGGTGTGTCG	ATGACCAACA	CCTTGCACTC	1440
GATGTTGAAG	GGCTTAGCTC	CGGCGGCGGC	TCAGGCCGTG	GAAACCGCGG (	CGGAAAACGG	1500
	ATGAGCTCGC					1560
	GTGGCCGCCA					1620
	GCCGCGGCCA :					1680
CAGCCTGACC	AGCGCCGCCC ;	AAACCGCCCC (	CGGACACATG	CTGGG		1725

## (2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 359 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met

1 10 15

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser

							33						60					
Le 65	u M	et i	Ala	Ala	a Al	a Al 70	a Se	r Pr	:o '	Tyr	Va.	1 Al 75	a Tr	p Me	t S∈	er Va	al	Thr 80
Al	a G	ly (	Gln	Ala	85	n Le	u Th	r Al	.a .i	Ala	Gli 90	ı Va	l Ar	g Va	l Al	a Al		Ala
Al.	a Ty	m G	Slu	Thr 100	Ala	а Ту:	r Ar	g Le	u 1	Thr 105	Val	Pr	o Pr	o Pr	o Va		.е .	Ala
Glı	u As	n A	rg 15	Thr	Glı	ı Lei	ı Me	120	r I	Leu	Thr	Ala	a Thi	r As:		u Le	u (	Gly
Glr	n As 13	n T O	hr	Pro	Ala	Ile	Glu 135	ı Ala	аА	sn	Gln	Ala	A Ala	a Ту:	r Se	r Gl	n i	Me c
T:: 145	Gl 5	уG	ln	Asp	Ala	Glu 150	ı Ala	Met	T	уr	Gly	Тут	Ala	ı Ala	a Th	r Al		Ala 160
Thr	: Al	a T	hr	Glu	Ala 165	Leu	Leu	Pro	P	he	Glu 170	Asp	Ala	Pro	Lei	1 Il		hr
Asn	Pr	o G3	Ly	Gly 180	Leu	Leu	Glu	Gln	1 A	la 85	Val	Ala	Val	Glu	Glu 190		a I	le
Asp	Thi	19	.a :	Ala	Ala	Asn	Gln	Leu 200	. Me	et.	Asn	Asn	Val	Pro 205	Glr	l Alá	a L	eu
Gln	Glr 210	Le	u i	Ala	Gln	Pro	Ala 215	Gln	. GJ	ly '	Val	Val	Pro 220	Ser	Ser	Lys	3 L	eu
Gly 225	Gly	Le	u I	(LĎ	Thr	Ala 230	Val	Ser	Pı	ro 1	His	Leu 235	Ser	Pro	Leu	Ser		sn 40
Val	Ser	Se	r I	le	Ala 245	Asn	Asn	His	Me	et 9	Ser 250	Met	Met	Gly	Thr	Gly 255		al
				-				Ser	46	5					270			
Ala	Ala	Gl: 279	1 A	la '	Val	Glu	Thr	Ala 280	Al	a G	Slu	Asn	Gly	Val 285	Trp	Ala	Me	et
Ser	Ser 290	Leu	ı G	ly s	Ser	Gln	Leu 295	Gly	Se	r S	er	Leu	Gly 300	Ser	Ser	Gly	Le	eu
Gly 305												315					32	20
Leu	Ser	Val	. Pi	ro P	Pro 1	Ala	Trp	Ala	Ala	a A 3	la 2 30	Asn	Gln	Ala	Val	Thr	Pr	0

Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Gln Thr 340 345 350

Ala Pro Gly His Met Leu Gly 355

### (2) INFORMATION FOR SEQ ID NO:110:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3027 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

AGTTCAGTCG AGAATGATAC TGACGGGCTG TATCCACGAT GGCTGAGACA ACCGAACCAC 60 CGTCGGACGC GGGGACATCG CAAGCCGACG CGATGGCGTT GGCCGCCGAA GCCGAAGCCG 120 CCGAAGCCGA AGCGCTGGCC GCCGCGGCGC GGGCCCGTGC CCGTGCCGCC CGGTTGAAGC 180 GTGAGGCGCT GGCGATGGCC CCAGCCGAGG ACGAGAACGT CCCCGAGGAT ATGCAGACTG GGAAGACGCC GAAGACTATG ACGACTATGA CGACTATGAG GCCGCAGACC AGGAGGCCGC 300 ACGGTCGGCA TCCTGGCGAC GGCGGTTGCG GGTGCGGTTA CCAAGACTGT CCACGATTGC 360 CATGGCGGCC GCAGTCGTCA TCATCTGCGG CTTCACCGGG CTCAGCGGAT ACATTGTGTG 420 GCAACACCAT GAGGCCACCG AACGCCAGCA GCGCGCCGCG GCGTTCGCCG CCGGAGCCAA 480 GCAAGGTGTC ATCAACATGA CCTCGCTGGA CTTCAACAAG GCCAAAGAAG ACGTCGCGCG 540 TGTGATCGAC AGCTCCACCG GCGAATTCAG GGATGACTTC CAGCAGCGGG CAGCCGATTT 600 CACCAAGGTT GTCGAACAGT CCAAAGTGGT CACCGAAGGC ACGGTGAACG CGACAGCCGT 660 CGAATCCATG AACGAGCATT CCGCCGTGGT GCTCGTCGCG GCGACTTCAC GGGTCACCAA 720 TTCCGCTGGG GCGAAAGACG AACCACGTGC GTGGCGGCTC AAAGTGACCG TGACCGAAGA 780 GGGGGGACAG TACAAGATGT CGAAAGTTGA GTTCGTACCG TGACCGATGA CGTACGCGAC 840 GTCAACACCG AAACCACTGA CGCCACCGAA GTCGCTGAGA TCGACTCAGC CGCAGGCGAA 900 GCCGGTGATT CGGCGACCGA GGCATTTGAC ACCGACTCTG CAACGGAATC TACCGCGCAG 960 AAGGGTCAGC GGCACCGTGA CCTGTGGCGA ATGCAGGTTA CCTTGAAACC CGTTCCGGTG 1020 ATTCTCATCC TGCTCATGTT GATCTCTGGG GGCGCGACGG GATGGCTATA CCTTGAGCAA 1080 TACGACCCGA TCAGCAGACG GACTCCGGCG CCGCCCGTGC TGCCGTCGCC GCGGCGTCTG 1140 ACGGGACAAT CGCGCTGTTG TGTATTCACC CGACACGTCG ACCAAGACTT CGCTACCGCC 1200

AGGTCGCACC TCGCCGGCGA TTTCCTGTCC TATACGACCA GTTCACGCAG CAGATCGTGG	1260
CTCCGGCGGC CAAACAGAAG TCACTGAAAA CCACCGCCAA GGTGGTGCGC GCGGCCGTGT	1320
CGGAGCTACA TCCGGATTCG GCCGTCGTTC TGGTTTTTGT CGACCAGAGC ACTACCAGTA	1380
AGGACAGCCC CAATCCGTCG ATGGCGGCCA GCAGCGTGAT GGTGACCCTA GCCAAGGTCG	1440
ACGGCAATTG GCTGATCACC AAGTTCACCC CGGTTTAGGT TGCCGTAGGC GGTCGCCAAG	1500
TCTGACGGGG GCGCGGGTGG CTGCTCGTGC GAGATACCGG CCGTTCTCCG GACAATCACG	1560
GCCCGACCTC AAACAGATCT CGGCCGCTGT CTAATCGGCC GGGTTATTTA AGATTAGTTG	1620
CCACTGTATT TACCTGATGT TCAGATTGTT CAGCTGGATT TAGCTTCGCG GCAGGGCGGC	1680
TGGTGCACTT TGCATCTGGG GTTGTGACTA CTTGAGAGAA TTTGACCTGT TGCCGACGTT	1740
GTTTGCTGTC CATCATTGGT GCTAGTTATG GCCGAGCGGA AGGATTATCG AAGTGGTGGA	1800
CTTCGGGGCG TTACCACCGG AGATCAACTC CGCGAGGATG TACGCCGGCC CGGGTTCGGC	1860
CTCGCTGGTG GCCGCCGCGA AGATGTGGGA CAGCGTGGCG AGTGACCTGT TTTCGGCCGC	1920
GTCGGCGTTT CAGTCGGTGG TCTGGGGTCT GACGACGGGA TCGTGGATAG GTTCGTCGGC	1980
GGGTCTGATG CTGGCGGGG CCTCGCCGTA TGTGGCGTGG ATGAGCGTCA CCGCGGGGCA	2040
GGCCGAGCTG ACCGCCGCCC AGGTCCGGGT TGCTGCGGCG GCCTACGAGA CGGCGTATGG	2100
GCTGACGGTG CCCCCGCCGG TGATCGCCGA GAACCGTGCT GAACTGATGA TTCTGATAGC	2160
GACCAACCTC TTGGGGCAAA ACACCCCGGC GATCGCGGTC AACGAGGCCG AATACGGGGA	2220
GATGTGGGCC CAAGACGCCG CCGCGATGTT TGGCTACGCC GCCACGGCGG CGACGGCGAC	2280
CGAGGCGTTG CTGCCGTTCG AGGACGCCCC ACTGATCACC AACCCCGGCG GGCTCCTTGA	2340
GCAGGCCGTC GCGGTCGAGG AGGCCATCGA CACCGCCGCG GCGAACCAGT TGATGAACAA	2400
TGTGCCCCAA GCGCTGCAAC AACTGGCCCA GCCCACGAAA AGCATCTGGC CGTTCGACCA	2460
ACTGAGTGAA CTCTGGAAAG CCATCTCGCC GCATCTGTCG CCGCTCAGCA ACATCGTGTC	2520
GATGCTCAAC AACCACGTGT CGATGACCAA CTCGGGTGTG TCGATGGCCA GCACCTTGCA	2580
CTCAATGTTG AAGGGCTTTG CTCCGGCGGC GGCTCAGGCC GTGGAAACCG CGGCGCAAAA	2640
CGGGGTCCAG GCGATGAGCT CGCTGGGCAG CCAGCTGGGT TCGTCGCTGG GTTCTTCGGG	2700
TCTGGGCGCT GGGGTGGCCG CCAACTTGGG TCGGGCGGCC TCGGTCGGTT CGTTGTCGGT	2760
GCCGCAGGCC TGGGCCGCGG CCAACCAGGC GGTCACCCCG GCGGCGGGG CGCTGCCGCT	2820

WO 99/42076 PCT/US99/03268

GACCAG	CCTG	ACC	AGCG	CCG	CCCA	AACC	GC C	CCCG	GACA	C ATC	CTG	GCG	GGCT	ACCG	CT
GGGGCA															
GCCGCG															
TGCGGG															
(2) IN	FORM	ATION	v FOR	SEC	] ID	NO:1	.11:								
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 396 amino acids  (B) TYPE: amino acid  (C) STRANDEDNESS:  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:															
				_					10					15	Met
								45					30		Trp
							-10					45			Ser
Va.	l Val 50	l Trp	Gl _y	/ Let	ı Thi	Thr 55	Gly	'Ser	Trp	Ile	Gly 60	Ser	Ser	Ala	Gly
					70					75			Ser		80
									90				Ala	95	
								105					Val		
							120					125	Leu		
						+33					140		Gly		
										155			Thr		160
									1/0					175	
								102					Glu 190		
Asp	Thr	Ala	Ala	Ala	Asn	Gln	Leu	Met	Asn	Asn	Val :	Pro	Gln .	Ala 1	Leu

			19	5				20	0				205	;			
	Gli	n Gl: 210	ı Lei	u Ala	Glr	Pro	Th:	Lys	s Ser	Ile	: Trp	Pro 220	Phe	Asp	Gln	Leu	
	Ser 225	Glu	ı Leı	ı Trp	Lys	Ala 230	Ile	e Ser	Pro	His	Leu 235	Ser	Pro	Leu	Ser	Asn 240	
	Ile	. Val	. Ser	: Met	Leu 245	Asn	Asn	His	Val	Ser 250	Met	Thr	Asn	Ser	Gly 255	Val	
	Ser	Met	Ala	Ser 260	Thr	Leu	His	Ser	<b>Me</b> t 265	Leu	Lys	Gly	Phe	Ala 270	Pro	Ala	
	Ala	Ala	Gln 275	Ala	Val	Glu	Thr	Ala 280	Ala	Gln	Asn	Gly	Val 285	Gln	Ala	Met	
	Ser	Ser 290	Leu	Gly	Ser	Gln	Leu 295	Gly	Ser	Ser	Leu	Gly 300	Ser	Ser	Gly	Leu	
	Gly <b>30</b> 5	Ala	Gly	Val	Ala	Ala 310	Asn	Leu	Gly	Arg	Ala 315	Ala	Ser	Val	Gly	Ser 320	
	Leu	Ser	Val	Pro	Gln 325	Ala	Trp	Ala	Ala	Ala 330	Asn	Gln	Ala	Val	Thr 335	Pro	
	Ala	Ala	Arg	Ala 340	Leu	Pro	Leu	Thr	Ser 345	Leu	Thr	Ser		Ala 350	Gln	Thr	
	Ala	Pro	Gly 355	His	Met	Leu	Gly	Gly 360	Leu	Pro	Leu		Gln 365	Leu	Thr	Asn	
	Ser	Gly 370	Gly	Gly	Phe	Gly	Gly 375	Val	Ser .	Asn	Ala	Leu . 380	Arg	Met	Pro	Pro	
<b>.</b>	Arg . 385	Ala '	Tyr	Val 1	Met :	Pro 1	Arg	Val	Pro i		Ala (	Gly					
(2) II	VFOR	MATIC	ON F	OR SI	EQ II	010	:112	:									
,	(i) s	(A) (B) (C)	TYPE STRA	STH: S: nu ANDEI	1616 clei NESS	ERIST bas ic ac S: si near	se pa cid ingle	airs									
(x	:i) S	EQUE	NCE	DESC	RIPI	'ION :	SEC	Q ID	NO:1	.12:							
CATCGG											CGGA	GTAA	. ልሞክ	יררפים	ישמי		<i>-</i> -
GCTGAT																	60
TTCGGC																	120
AGCCTG																	240

GCTACAAACC GCGTCAACAC AGGCCAAGAC CCGTGCGATG CAGGCGACGG CGCAAGCCGC	
GGCATACACC CAGGCCATGG CCAGGAGGGG	300
GGCATACACC CAGGCCATGG CCACGACGCC GTCGCTGCCG GAGATCGCCG CCAACCACAT	360
CACCCAGGCC GTCCTTACGG CCACCAACTT CTTCGGTATC AACACGATCC CGATCGCGTT	420
GACCGAGATG GATTATTTCA TCCGTATGTG GAACCAGGCA GCCCTGGCAA TGGAGGTCTA	480
CCAGGCCGAG ACCGCGGTTA ACACGCTTTT CGAGAAGCTC GAGCCGATGG CGTCGATCCT	540
TGATCCCGGC GCGAGCCAGA GCACGACGAA CCCGATCTTC GGAATGCCCT CCCCTGGCAG	600
CTCAACACCG GTTGGCCAGT TGCCGCCGGC GGCTACCCAG ACCCTCGGCC AACTGGGTGA	660
GATGAGCGGC CCGATGCAGC AGCTGACCCA GCCGCTGCAG CAGGTGACGT CGTTGTTCAG	720
CCAGGTGGGC GGCACCGGCG GCGGCAACCC AGCCGACGAG GAAGCCGCGC AGATGGGCCT	780
GCTCGGCACC AGTCCGCTGT CGAACCATCC GCTGGCTGGT GGATCAGGCC CCAGCGCGGG	840
CGCGGGCCTG CTGCGCGCGG AGTCGCTACC TGGCGCAGGT GGGTCGTTGA CCCGCACGCC	900
GCTGATGTCT CAGCTGATCG AAAAGCCGGT TGCCCCCTCG GTGATGCCGG CGGCTGCTGC	960
CGGATCGTCG GCGACGGGTG GCGCCGCTCC GGTGGGTGCG GGAGCGATGG GCCAGGGTGC	1020
GCAATCCGGC GGCTCCACCA GGCCGGGTCT GGTCGCGCCG GCACCGCTCG CGCAGGAGCG	
TGAAGAAGAC GACGAGGACG ACTGGGACGA AGAGGACGAC TGGTGAGCTC CCGTAATGAC	1080
AACAGACTTC CCGGCCACCC GGGCCGGAAG ACTTGCCAAC ATTTTGGCGA GGAAGGTAAA	1140
GAGAGAAAGT AGTCCAGCAT GGCAGAGATG AAGACCGATG CCGCTACCCT CGCGCAGGAG	1200
GCAGGTAATT TCGAGCGGAT CTCCCCCCAG	1260
GCAGGTAATT TCGAGCGGAT CTCCGGCGAC CTGAAAACCC AGATCGACCA GGTGGAGTCG	1320
ACGGCAGGTT CGTTGCAGGG CCAGTGGCGC GGCGCGGGGGGGGGG	1380
GTGGTGCGCT TCCAAGAAGC AGCCAATAAG CAGAAGCAGG AACTCGACGA GATCTCGACG	1440
AATATTCGTC AGGCCGGCGT CCAATACTCG AGGGCCGACG AGGAGCAGCA GCAGGCGCTG	1500
TCCTCGCAAA TGGGCTTCTG ACCCGCTAAT ACGAAAAGAA ACGGAGCAAA AACATGACAG	1560
AGCAGCAGTG GAATTTCGCG GGTATCGAGG CCGCGGCAAG CGCAATCCAG GGAAAT	1516

# (2) INFORMATION FOR SEQ ID NO:113:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 432 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

	i) s	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO:1	13 :					
CTAGTG											TTCT	GTGT	TGA	CATT	<b>r</b> tg
GCACGC	CGGC	GGA	AACG	AAG	CACT	GGGG'	TC G	AAGA	ACGG	C TG	CGCT	GCCA	TAT	CGTC	:GG
AGCTTC	CATA	CCT	TCGT	GCG (	GCCG	GAAG	AG C	TTGT	CGTA	J TC	GCC	GCCA	TGA	CAACO	CTC
TCAGAG	rgcg	CTC	AAAC	GTA :	(AAA)	CACG	AG A	AAGGG	GCGA	AC	CGAC	<b>GGA</b> A	GGT	CGAAC	TC
GCCCGA:	rccc	GTG:	TTC	CT 1	\TTC1	TACGO	CG AZ	CTC	GCG1	TG	CCT	<b>ATGC</b>	GAA	ZATCO	CA
GTGACGT	TGC	CTT	GGT	GA A	LGCCA	TTGC	CC TO	ACCG	GCTT	CGC	TGAT	CGT	CCGC	GCCA	.GG
TCTGC			GTTC	'AG C	TCGG	TAGO	C GI	'GGCG	TCCC	ATI	TTTG	CTG	GACA	CCCT	GG
TACGCCI	CCG	AA													
(2) INF	ORMA	TION	FOR	SEQ	ID :	NO:1	14:								
(i	() ()	QUEN A) L B) T C) S'	ENGT: YPE : TRANI	H: 3 amii DEDNI	68 an no ao ESS:	mino cid sine	aci	ds							
(xi)	SE	QUEN	CE DI	ESCRI	PTIC	ON: 5	SEQ :	D NC	0:114	<b>l</b> :					
Met															
									TO					15	Met
Ala	Gly	' Ala	Gly 20	Pro	Ala	Pro	Met	Leu 25	Ala	Ala	Ala	Ala	Gly 30	15 Trp	Gln
Ala	. Gly Leu	Ala Ser 35	Gly 20 Ala	Pro	Ala Leu	Pro	Met Ala 40	Leu 25 Gln	Ala	Ala Val	Ala Glu	Ala Leu 45	Gly 30 Thr	15 Trp	Gln Arg
Ala Thr Leu	Leu Asn 50	Ser 35	Gly 20 Ala Leu	Pro Ala Gly	Ala Leu Glu	Asp Ala	Ala 40	Leu 25 Gln Thr	Ala Ala Gly	Val	Glu Gly 60	Leu 45	Gly 30 Thr	15 Trp Ala	Gln Arg Ala
Ala Thr Leu Leu 65	Leu Asn 50	Ser 35 Ser	Gly 20 Ala Leu Ala	Ala Gly Thr	Ala Leu Glu Pro	Asp Ala 55 Met	Ala 40 Trp	Leu 25 Gln Thr	Ala Ala Gly	Val Gly Leu 75	Glu Gly 60	Leu 45 Ser	Gly 30 Thr Asp	Trp Ala Lys	Gln Arg Ala Thr
Ala Thr Leu Leu 65	Leu Asn 50 Ala	Ser 35 Ser Ala	Gly 20 Ala Leu Ala Thr	Ala Gly Thr Arg	Ala Leu Glu Pro 70 Ala	Asp Ala 55 Met	Meto Meto Ala 40 Trp Val	Leu 25 Gln Thr Val	Ala Ala Gly Trp Thr	Val Gly Leu 75	Glu Gly 60 Gln	Leu 45 Ser Thr	Gly 30 Thr Asp Ala	Trp Ala Lys Ser Ala 95	Arg Ala Thr 80
Ala Thr Leu 65 Gln	Leu Asn 50 Ala Ala	Ser 35 Ser Ala Lys	Ala Leu Ala Thr	Ala Gly Thr Arg 85 Ala	Ala Leu Glu Pro 70 Ala	Asp Ala 55 Met Met	Met Ala 40 Trp Val Gln	Leu 25 Gln Thr Val Ala Ser 105	Ala Ala Gly Trp Thr 90 Leu	Ala Val	Gly 60 Gln Gln	Ala Leu 45 Ser Thr	Gly 30 Thr Asp Ala Ala	Trp Ala Lys Ser Ala 95 Ala	Arg Ala Thr 80 Tyr Asn
Ala Thr Leu 65 Gln Thr	Leu Asn 50 Ala Ala Gln	Ala  Lys  Ala  Thr	Ala Leu Ala Thr Met 100 Gln	Pro Ala Gly Thr Arg 85 Ala	Ala  Leu  Glu  Pro 70  Ala  Thr	Asp Ala 55 Met Met	Meto Meto Ala 40 Trp Val Gln Pro	Leu 25 Gln Thr Val Ala Ser 105 Ala	Ala Ala Gly Trp Thr 90 Leu	Ala Val Gly Leu 75 Ala Pro	Glu Gly 60 Gln Gln Glu	Leu 45 Ser Thr Ala Ile	Asp Ala Ala Ala Gly	Trp Ala Lys Ser Ala 95	Arg Ala Thr 80 Tyr Asn

WO 99/42076 PCT/US99/03268

133

Asn	Gln	Ala	Ala	Leu	Ala	Met	C1.,	Val	m			_			
145					150		GIU	val	Tyr	GIN	Ala	Glu	Thr	Ala	Val
					150					155					160

- Asn Thr Leu Phe Glu Lys Leu Glu Pro Met Ala Ser Ile Leu Asp Pro
- Gly Ala Ser Gln Ser Thr Thr Asn Pro Ile Phe Gly Met Pro Ser Pro
- Gly Ser Ser Thr Pro Val Gly Gln Leu Pro Pro Ala Ala Thr Gln Thr
- Leu Gly Gln Leu Gly Glu Met Ser Gly Pro Met Gln Gln Leu Thr Gln
  210 215 220
- Pro Leu Gln Gln Val Thr Ser Leu Phe Ser Gln Val Gly Gly Thr Gly 235 230 240
- Gly Gly Asn Pro Ala Asp Glu Glu Ala Ala Gln Met Gly Leu Leu Gly 245 250 255
- Thr Ser Pro Leu Ser Asn His Pro Leu Ala Gly Gly Ser Gly Pro Ser 260 265
- Ala Gly Ala Gly Leu Leu Arg Ala Glu Ser Leu Pro Gly Ala Gly Gly
  275
  280
  285
- Ser Leu Thr Arg Thr Pro Leu Met Ser Gln Leu Ile Glu Lys Pro Val 290 295 300
- Ala Pro Ser Val Met Pro Ala Ala Ala Gly Ser Ser Ala Thr Gly 305 310 315
- Gly Ala Ala Pro Val Gly Ala Gly Ala Met Gly Gln Gly Ala Gln Ser 325 330 335
- Gly Gly Ser Thr Arg Pro Gly Leu Val Ala Pro Ala Pro Leu Ala Gln
  340 345 350
- Glu Arg Glu Glu Asp Asp Glu Asp Asp Trp Asp Glu Glu Asp Asp Trp
  355 360 365

## (2) INFORMATION FOR SEQ ID NO:115:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 100 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:
- Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly

  10 15

WO 99/42076

	Asn	Phe	Glu	Arg 20	Ile	Ser	Gly	Asp	Leu 25	Lys	Thr	Gln	Ile	Asp 30	Gln	Val	
	Glu	Ser	Thr 35	Ala	Gly	Ser	Leu	Gln 40	Gly	Gln	Trp	Arg	Gly 45	Ala	Ala	Gly	
	Thr	Ala 50	Ala	Gln	Ala	Ala	Val 55	Val	Arg	Phe	Gln	Glu 60	Ala	Ala	Asn	Lys	
	Gln 65	Lys	Gln	Glu	Leu	Asp 70	Glu	Ile	Ser	Thr	Asn 75	Ile	Arg	Gln	Ala	Gly 80	
,	Val	Gln	Tyr	Ser	Arg 85	Ala	Asp	Glu	Glu	Gln 90	Gln	Gln	Ala	Leu	Ser 95	Ser	
C	Gln	Met		Phe 100													
(2) ]	INFO	RMAT	ION	FOR	SEQ	ID N	0:11	6 :									
(	(i)	(B)	LENO TYP	STH: E: ni ANDEI	396 ucle: ONES:	base ic ac S: s:	e pa: cid ingle	irs									
(x	i) s	SEQUE	INCE	DESC	RIPT	rion:	: SEC	מד (	NO - 1	116.							
GATCTC																	
GGGCCA	GTGG	GGC	:GGCG	ccc	caaa	·C 3 C C			7 1 G(3)	KG TC	GACC	GCAG	GIT	CGT	rgca		60
GGGCCA(	CAAT	, yyc		300	2000		iGC C	GCCC	AGGC	C GC	GGTC	GTGC	GCI	TCC	LAGA		120
AGCAGC	ስምክ ሶ	700	LAGA	AGC	AGGA	ACTO	GA C	GAGA	TCTC	G AC	GAAT	'ATTC	GTC	AGGC	CGG		180
CGTCCA																	240
CTGACCC																	300
GCGGGTA										G TC	ACGT	CCAT	TCA	TTCC	CTC		360
CTTGACG	AGG	GGA	AGCA	STC (	CCTG	ACCA	AG C	rcgc.	A.								396
(2) INF	ORM	ATION	1 FOR	SE	OI C	NO : :	117:										
	(	EQUEN (A) I (B) T (C) S (D) T	ENGT TYPE : TRAN OPOL	H: 8 ami DEDN OGY:	no a ESS:	mino acid sir mear	acio ngle			_							

Ile Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala
1 10 15

WO 99/42076

Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gli 20 25 30												
Ala Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu 35 40 45	1											
Leu Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser 50 55 60	•											
Arg Ala Asp Glu Glu Gln Gln Gln Ala Leu Ser Ser Gln Met Gly Phe  70 75 80												
(2) INFORMATION FOR SEQ ID NO:118:												
(i) SEQUENCE CHARACTERISTICS:												
(A) LENGTH: 387 base pairs (B) TYPE: nucleic acid												
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear												
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:												
GTGGATCCCG ATCCCGTGTT TCGCTATTCT ACGCGAACTC GGCGTTGCCC TATGCGAACA	60											
TCCCAGTGAC GTTGCCTTCG GTCGAAGCCA TTGCCTGACC GGCTTCGCTG ATCGTCCGCG	60											
	120											
CCAGGTTCTG CAGCGCGTTG TTCAGCTCGG TAGCCGTGGC GTCCCATTTT TGCTGGACAC	180											
CCTGGTACGC CTCCGAACCG CTACCGCCCC AGGCCGCTGC GAGCTTGGTC AGGGACTGCT	240											
TCCCCTCGTC AAGGAGGGAA TGAATGGACG TGACATTTCC CTGGATTGCG CTTGCCGCGG	300											
CCTCGATACC CGCGAAATTC CACTGCTGCT CTGTCATGTT TTTGCTCCGT TTCTTTTCGT												
ATTAGCGGGT CAGAAGCCCA TITGCGA	360											
	387											
(2) INFORMATION FOR SEQ ID NO:119:												
(i) SEQUENCE CHARACTERISTICS:												
(A) LENGTH: 272 base pairs (B) TYPE: nucleic acid												
(C) STRANDEDNESS: single												
(D) TOPOLOGY: linear												
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:												
CGGCACGAGG ATCTCGGTTG GCCCAACGGG GCTGGCGAGG GCTCCGTTCC GGGGGCGAGC												
TGCGCGCCGG ATGCTTCCTC TGCCCGGTGC TGCCCGTTCC TGCCCTTCC TGCCCTTCC TGCCCTTCC TGCCTTCC TGCCCTTCC TGCCCTTCC TGCCTTCC TGCCTTCC TGCCTTCC TGCCTTCC TGCCCTTCC TGCCTTCC TGCCTTC TGCCTTCC TGCCTTC TG	60											
TECCGACCE TECCTECTC TGCCCGCAGC CGCGCCTGGA TGGATGGACC AGTTGCTACC	120											
TTCCCGACGT TTCGTTCGGT GTCTGTGCGA TAGCGGTGAC CCCGGCGCGC ACGTCGGGAG	180											
TGTTGGGGGG CAGGCCGGGT CGGTGGTTCG GCCGGGGACG CAGACGGTCT GGACGGAACG	240											

## GGCGGGGGTT CGCCGATTGG CATCTTTGCC CA

272

- (2) INFORMATION FOR SEQ ID NO:120:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 20 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

Asp Pro Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val

Val Ala Ala Leu 20

- (2) INFORMATION FOR SEQ ID NO:121:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser

- (2) INFORMATION FOR SEQ ID NO:122:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 19 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys

10

Glu Gly Arg

- (2) INFORMATION FOR SEQ ID NO:123:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro 1

- (2) INFORMATION FOR SEQ ID NO:124:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 14 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val

- (2) INFORMATION FOR SEQ ID NO:125:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 13 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro

- (2) INFORMATION FOR SEQ ID NO:126:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 17 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro 1 5 10 10

Ser

- (2) INFORMATION FOR SEQ ID NO:127:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:128:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 30 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser

1 5 10 15

Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn 20 25 30

- (2) INFORMATION FOR SEQ ID NO:129:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 22 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (x1) SEQUENCE DESCRIPTION: SEQ ID NO:129:

Asp Pro Pro Asp Pro His Gln Xaa Asp Met Thr Lys Gly Tyr Tyr Pro 1 5 10 15

Gly Gly Arg Arg Xaa Phe

- (2) INFORMATION FOR SEQ ID NO:130:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 7 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

Asp Pro Gly Tyr Thr Pro Gly

- (2) INFORMATION FOR SEQ ID NO:131:
  - (i) SEQUENCE CHARACTERISTICS:
    (A) LENGTH: 10 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- (ix) FEATURE:
- (D) OTHER INFORMATION: /note= "The Second Residue Can Be Either a
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

Xaa Xaa Gly Phe Thr Gly Pro Gln Phe Tyr
1 5 10

- (2) INFORMATION FOR SEQ ID NO:132:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 9 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (ix) FEATURE:
- (D) OTHER INFORMATION: /note= "The Third Residue Can Be Either a
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

Xaa Pro Xaa Val Thr Ala Tyr Ala Gly

- (2) INFORMATION FOR SEQ ID NO:133:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 9 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

Xaa Xaa Xaa Glu Lys Pro Phe Leu Arg

- (2) INFORMATION FOR SEQ ID NO:134:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

Xaa Asp Ser Glu Lys Ser Ala Thr Ile Lys Val Thr Asp Ala Ser

- (2) INFORMATION FOR SEQ ID NO:135:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

Ala Gly Asp Thr Xaa Ile Tyr Ile Val Gly Asn Leu Thr Ala Asp
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:136:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

Ala Pro Glu Ser Gly Ala Gly Leu Gly Gly Thr Val Gln Ala Gly

15

- (2) INFORMATION FOR SEQ ID NO:137:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 21 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

Xaa Tyr Ile Ala Tyr Xaa Thr Thr Ala Gly Ile Val Pro Gly Lys Ile

1 15

Asn Val His Leu Val

- (2) INFORMATION FOR SEQ ID NO:138:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 882 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

GCAACGCTGT	CGTGGCCTTT	GCGGTGATCG	GTTTCGCCTC	GCTGGCGGTG	GCGGTGGCGG	60
TCACCATCCG	ACCGACCGCG	GCCTCAAAAC	CGGTAGAGGG	ACACCAAAAC	GCCCAGCCAG	120
GGAAGTTCAT	GCCGTTGTTG	CCGACGCAAC	AGCAGGCGCC	GGTCCCGCCG	CCTCCGCCCG	180
ATGATCCCAC	CGCTGGATTC	CAGGGCGGCA	CCATTCCGGC	TGTACAGAAC	GTGGTGCCGC	240
GGCCGGGTAC	CTCACCCGGG	GTGGGTGGGA	CGCCGGCTTC	GCCTGCGCCG	GAAGCGCCGG	300
CCGTGCCCGG	TGTTGTGCCT	GCCCCGGTGC	CAATCCCGGT	CCCGATCATC	ATTCCCCCGT	360
TCCCGGGTTG	GCAGCCTGGA	ATGCCGACCA	TCCCCACCGC	ACCGCCGACG	ACGCCGGTGA	420
CCACGTCGGC	GACGACGCCG	CCGACCACGC	CGCCGACCAC	GCCGGTGACC	ACGCCGCCAA	480
CGACGCCGCC	GACCACGCCG	GTGACCACGC	CGCCAACGAC	GCCGCCGACC	ACGCCGGTGA	540
CCACGCCACC	AACGACCGTC	GCCCCGACGA	CCGTCGCCCC	GACGACGGTC	GCTCCGACCA	600
CCGTCGCCCC	GACCACGGTC	GCTCCAGCCA	CCGCCACGCC	GACGACCGTC	GCTCCGCAGC	660
CGACGCAGCA	GCCCACGCAA	CAACCAACCC	AACAGATGCC	AACCCAGCAG	CAGACCGTGG	720
CCCCGCAGAC	GGTGGCGCCG	GCTCCGCAGC	CGCCGTCCGG	TGGCCGCAAC	GGCAGCGGCG	780
GGGGCGACTT	ATTCGGCGGG	TTCTGATCAC	GGTCGCGGCT	TCACTACGGT	CGGAGGACAT	840
GGCCGGTGAT	GCGGTGACGG	TGGTGCTGCC	CTGTCTCAAC	GA		882

#### (2) INFORMATION FOR SEQ ID NO:139:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 815 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

CCATCAACCA	ACCGCTCGCG	CCGCCCGCGC	CGCCGGATCC	GCCGTCGCCG	CCACGCCCGC	60
CGGTGCCTCC	GGTGCCCCCG	TTGCCGCCGT	CGCCGCCGTC	GCCGCCGACC	GGCTGGGTGC	120
CTAGGGCGCT	GTTACCGCCC	TGGTTGGCGG	GGACGCCGCC	GGCACCACCG	GTACCGCCGA	180
TGGCGCCGTT	GCCGCCGGCG	GCACCGTTGC	CACCGTTGCC	ACCGTTGCCA	CCGTTGCCGA	240
CCAGCCACCC	GCCGCGACCA	CCGGCACCGC	CGGCGCCGCC	CGCACCGCCG	GCGTGCCCGT	300
TCGTGCCCGT	ACCGCCGGCA	CCGCCGTTGC	CGCCGTCACC	GCCGACGGAA	CTACCGGCGG	360
ACGCGGCCTG	CCCGCCGGCG	CCGCCCGCAC	CGCCATTGGC	ACCGCCGTCA	CCGCCGGCTG	420

GGAGTGCCGC	GATTAGGGCA	CTGACCGGCG	CAACCAGCGC	AAGTACTCTC	GGTCACCGAG	480
CACTTCCAGA	CGACACCACA	GCACGGGGTT	GTCGGCGGAC	TGGGTGAAAT	GGCAGCCGAT	540
AGCGGCTAGC	TGTCGGCTGC	GGTCAACCTC	GATCATGATG	TCGAGGTGAC	CGTGACCGCG	600
CCCCCGAAG	GAGGCGCTGA	ACTCGGCGTT	GAGCCGATCG	GCGATCGGTT	GGGGCAGTGC	660
CCAGGCCAAT	ACGGGGATAC	CGGGTGTCNA	AGCCGCCGCG	AGCGCAGCTT	CGGTTGCGCG	720
ACNGTGGTCG	GGGTGGCCTG	TTACGCCGTT	GTCNTCGAAC	ACGAGTAGCA	GGTCTGCTCC	780
GGCGAGGGCA	TCCACCACGC	GTTGCGTCAG	CTCGT			815

#### (2) INFORMATION FOR SEQ ID NO:140:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1152 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

ACCAGCCGCC GGCTGAGGTC TCAGATCAGA GAGTCTCCGG ACTCACCGGG GCGGTTCAGC 60 CTTCTCCCAG AACAACTGCT GAAGATCCTC GCCCGCGAAA CAGGCGCTGA TTTGACGCTC 120 TATGACCGGT TGAACGACGA GATCATCCGG CAGATTGATA TGGCACCGCT GGGCTAACAG 180 GTGCGCAAGA TGGTGCAGCT GTATGTCTCG GACTCCGTGT CGCGGATCAG CTTTGCCGAC 240 GGCCGGGTGA TCGTGTGGAG CGAGGAGCTC GGCGAGAGCC AGTATCCGAT CGAGACGCTG 300 GACGCCATCA CGCTGTTTGG GCGGCCGACG ATGACAACGC CCTTCATCGT TGAGATGCTC 360 AAGCGTGAGC GCGACATCCA GCTCTTCACG ACCGACGGCC ACTACCAGGG CCGGATCTCA 420 ACACCCGACG TGTCATACGC GCCGCGGCTC CGTCAGCAAG TTCACCGCAC CGACGATCCT 480 GCGTTCTGCC TGTCGTTAAG CAAGCGGATC GTGTCGAGGA AGATCCTGAA TCAGCAGGCC 540 TTGATTCGGG CACACACGTC GGGGCAAGAC GTTGCTGAGA GCATCCGCAC GATGAAGCAC 600 TCGCTGGCCT GGGTCGATCG ATCGGGCTCC CTGGCGGAGT TGAACGGGTT CGAGGGAAAT 660 GCCGCAAAGG CATACTTCAC CGCGCTGGGG CATCTCGTCC CGCAGGAGTT CGCATTCCAG 720 GGCCGCTCGA CTCGGCCGCC GTTGGACGCC TTCAACTCGA TGGTCAGCCT CGGCTATTCG 780 CTGCTGTACA AGAACATCAT AGGGGCGATC GAGCGTCACA GCCTGAACGC GTATATCGGT 840

TTCCTACACC	AGGATTCACG	AGGGCACGCA	ACGTCTCGTG	CCGAATTCGG	CACGAGCTCC	900
GCTGAAACCG	CTGGCCGGCT	GCTCAGTGCC	CGTACGTAAT	CCGCTGCGCC	CAGGCCGGCC	960
CGCCGGCCGA	ATACCAGCAG	ATCGGACAGC	GAATTGCCGC	CCAGCCGGTT	GGAGCCGTGC	1020
ATACCGCCGG	CACACTCACC	GGCAGCGAAC	AGGCCTGGCA	CCGTGGCGGC	GCCGGTGTCC	1080
GCGTCTACTT	CGACACCGCC	CATCACGTAG	TGACACGTCG	GCCCGACTTC	CATTGCCTGC	1140
GTTCGGCACG	AG					1152

## (2) INFORMATION FOR SEQ ID NO:141:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 655 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

CTCGTGCCGA	TTCGGCAGGG	TGTACTTGCC	GGTGGTGTAN	GCCGCATGAG	TGCCGACGAC	60
CAGCAATGCG	GCAACAGCAC	GGATCCCGGT	CAACGACGCC	ACCCGGTCCA	CGTGGGCGAT	120
CCGCTCGAGT	CCGCCCTGGG	CGGCTCTTTC	CTTGGGCAGG	GTCATCCGAC	GTGTTTCCGC	180
CGTGGTTTGC	CGCCATTATG	CCGGCGCGCC	GCGTCGGGCG	GCCGGTATGG	CCGAANGTCG	240
ATCAGCACAC	CCGAGATACG	GGTCTGTGCA	AGCTTTTTGA	GCGTCGCGCG	GGGCAGCTTC	300
GCCGGCAATT	CTACTAGCGA	GAAGTCTGGC	CCGATACGGA	TCTGACCGAA	GTCGCTGCGG	360
TGCAGCCCAC	CCTCATTGGC	GATGGCGCCG	ACGATGGCGC	CTGGACCGAT	CTTGTGCCGC	420
TTGCCGACGG	CGACGCGGTA	GGTGGTCAAG	TCCGGTCTAC	GCTTGGGCCT	TTGCGGACGG	480
TCCCGACGCT	GGTCGCGGTT	GCGCCGCGAA	AGCGGCGGGT	CGGGTGCCAT	CAGGAATGCC	540
TCACCGCCGC	GGCACTGCAC	GGCCAGTGCC	GCGGCGATGT	CAGCCATCGG	GACATCATGC	600
TCGCGTTCAT	ACTCCTCGAC	CAGTCGGCGG	AACAGCTCGA	TTCCCGGACC	GCCCA	655

## (2) INFORMATION FOR SEQ ID NO:142:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 267 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:
- Asn Ala Val Val Ala Phe Ala Val Ile Gly Phe Ala Ser Leu Ala Val 1 5 10 15
- Ala Val Ala Val Thr Ile Arg Pro Thr Ala Ala Ser Lys Pro Val Glu 20 25 30
- Gly His Gln Asn Ala Gln Pro Gly Lys Phe Met Pro Leu Leu Pro Thr 35 40 45
- Gln Gln Gln Ala Pro Val Pro Pro Pro Pro Pro Asp Asp Pro Thr Ala
  50 55 60
- Gly Phe Gln Gly Gly Thr Ile Pro Ala Val Gln Asn Val Val Pro Arg 65 70 75 80
- Pro Gly Thr Ser Pro Gly Val Gly Gly Thr Pro Ala Ser Pro Ala Pro 85 90 95
- Glu Ala Pro Ala Val Pro Gly Val Val Pro Ala Pro Val Pro Ile Pro 100 105 110
- Val Pro Ile Ile Ile Pro Pro Phe Pro Gly Trp Gln Pro Gly Met Pro 115 120 125
- Thr Ile Pro Thr Ala Pro Pro Thr Thr Pro Val Thr Thr Ser Ala Thr 130 135 140
- Thr Pro Pro Thr Thr Pro Pro Thr Thr Pro Val Thr Thr Pro Pro Thr 145
- Thr Pro Pro Thr Thr Pro Val Thr Thr Pro Pro Thr Thr Pro Pro Thr 165 170 175
- Thr Pro Val Thr Thr Pro Pro Thr Thr Val Ala Pro Thr Thr Val Ala 180 185 190
- Pro Thr Thr Val Ala Pro Thr Thr Val Ala Pro Thr Thr Val Ala Pro 195 205
- Ala Thr Ala Thr Pro Thr Thr Val Ala Pro Gln Pro Thr Gln Gln Pro 210 220
- Thr Gln Gln Pro Thr Gln Gln Met Pro Thr Gln Gln Gln Thr Val Ala
  225 230 235 240
- Pro Gln Thr Val Ala Pro Ala Pro Gln Pro Pro Ser Gly Gly Arg Asn
  245 250 255
- Gly Ser Gly Gly Gly Asp Leu Phe Gly Gly Phe
- (2) INFORMATION FOR SEQ ID NO:143:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 174 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:
- Ile Asn Gln Pro Leu Ala Pro Pro Ala Pro Pro Asp Pro Pro Ser Pro 1 5 10 15
- Pro Arg Pro Pro Val Pro Pro Val Pro Pro Leu Pro Pro Ser Pro Pro 20 25 30
- Ser Pro Pro Thr Gly Trp Val Pro Arg Ala Leu Leu Pro Pro Trp Leu 35 40
- Ala Gly Thr Pro Pro Ala Pro Pro Val Pro Pro Met Ala Pro Leu Pro 50 55 60
- Pro Ala Ala Pro Leu Pro Pro Leu Pro Pro Leu Pro Pro Leu Pro Thr 65 70 75 80
- Ser His Pro Pro Arg Pro Pro Ala Pro Pro Ala Pro Pro Ala Pro Pro 85 90 95
- Ala Cys Pro Phe Val Pro Val Pro Pro Ala Pro Pro Leu Pro Pro Ser 100 105 110
- Pro Pro Thr Glu Leu Pro Ala Asp Ala Ala Cys Pro Pro Ala Pro Pro 115 120 125
- Ala Pro Pro Leu Ala Pro Pro Ser Pro Pro Ala Gly Ser Ala Ala Ile 130 135 140
- Leu Pro Asp Asp Thr Thr Ala Arg Gly Cys Arg Arg Thr Gly 165 170
- (2) INFORMATION FOR SEQ ID NO:144:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 35 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

Gln Pro Pro Ala Glu Val Ser Asp Gln Arg Val Ser Gly Leu Thr Gly

1 10 15

Ala Val Gln Pro Ser Pro Arg Thr Thr Ala Glu Asp Pro Arg Pro Arg 20 25 30

Asn Arg Arg

- (2) INFORMATION FOR SEQ ID NO:145:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 104 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO:145:

Arg Ala Asp Ser Ala Gly Cys Thr Cys Arg Trp Cys Xaa Pro His Glu

1 10 15

Cys Arg Arg Pro Ala Met Arg Gln Gln His Gly Ser Arg Ser Thr Thr 20 25 30

Pro Pro Gly Pro Arg Gly Arg Ser Ala Arg Val Arg Pro Gly Arg Leu 35 40 45

Phe Pro Trp Ala Gly Ser Ser Asp Val Phe Pro Pro Trp Phe Ala Ala 50 55 60

Ile Met Pro Ala Arg Arg Val Gly Arg Pro Val Trp Pro Xaa Val Asp 65 70 75 80

Gln His Thr Arg Asp Thr Gly Leu Cys Lys Leu Phe Glu Arg Arg Ala 85 90 95

Gly Gln Leu Arg Arg Gln Phe Tyr 100

- (2) INFORMATION FOR SEQ ID NO:146:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 53 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: other nucleic acid
     (A) DESCRIPTION: /desc = "PCR primer"
  - (vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
GGATCCATAT GGGCCATCAT CATCATCATC ACGTGATCGA CATCATCGGG ACC 5	3
(2) INFORMATION FOR SEQ ID NO:147:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 42 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	
<pre>(vi) ORIGINAL SOURCE:      (A) ORGANISM: Mycobacterium tuberculosis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:	
CCTGAATTCA GGCCTCGGTT GCGCCGGCCT CATCTTGAAC GA	2
(2) INFORMATION FOR SEQ ID NO:148:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 31 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
<pre>(ii) MOLECULE TYPE: other nucleic acid      (A) DESCRIPTION: /desc = "PCR Primer"</pre>	
<pre>(vi) ORIGINAL SOURCE:      (A) ORGANISM: Mycobacterium tuberculosis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:	
GGATCCTGCA GGCTCGAAAC CACCGAGCGG T	31
(2) INFORMATION FOR SEQ ID NO:149:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 31 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
<pre>(ii) MOLECULE TYPE: other nucleic acid     (A) DESCRIPTION: /desc = "PCR primer"</pre>	

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Mycobacterium tuberculosis

(ix) FEATURE:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:	
CTCTGAATTC AGCGCTGGAA ATCGTCGCGA T	31
(2) INFORMATION FOR SEQ ID NO:150:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 33 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
<pre>(ii) MOLECULE TYPE: other nucleic acid     (A) DESCRIPTION: /desc = "PCR primer"</pre>	
<ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Mycobacterium tuberculosis</li></ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:	
GGATCCAGCG CTGAGATGAA GACCGATGCC GCT	33
(2) INFORMATION FOR SEQ ID NO:151:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 33 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
<pre>(ii) MOLECULE TYPE: other nucleic acid      (A) DESCRIPTION: /desc = "PCR primer"</pre>	
<pre>(vi) ORIGINAL SOURCE:      (A) ORGANISM: Mycobacterium tuberculosis</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:	
GAGAGAATTC TCAGAAGCCC ATTTGCGAGG ACA	33
(2) INFORMATION FOR SEQ ID NO:152:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1993 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Mycobacterium tuberculosis</pre>	

(A) NAME/KEY: CDS

(B) LOCATION: 152..1273

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

TGTT	CTT	CGA (	CGGC2	AGGCT	rg gi	rggao	GAAC	G GG	CCCA	CCGA	ACA	GCTG	TTC '	rccro	CGCCGA	60
AGC#	ATGC	GA A	AACCO	JCCC(	SA TA	ACGTO	GCCC	G GA	CTGT	CGGG	GGA	CGTC.	AAG (	GACG	CCAAGC	120
GCGC	GAAA?	rtg 2	AAGAG	GCAC	AG AA	\AGG?	ratgo		_	AAA 1 Lys :						172
										CTG Leu						220
										GAA Glu						268
										CCG Pro 50						316
										AAC Asn						364
										ACC Thr						412
										GGG Gly						460
										ATG Met						508
										CAG Gln 130						556
CTG Leu	CCC Pro	GGA Gly	GTG Val	AGC Ser 140	GAG Glu	CAC His	CTC Leu	AAG Lys	CTG Leu 145	AAC Asn	GGA Gly	AAA Lys	GTC Val	CTG Leu 150	GCG Ala	604
										GAC Asp						652
										ACC Thr						700

		170					175					180				
				GGG Gly												748
				CCC Pro												796
				CCG Pro 220												844
				ACC Thr												892
				TTC Phe												940
				AAT Asn												988
				GCG Ala												1036
				ATG Met 300												1084
				TAC Tyr												1132
				TTG Leu												1180
				TTC Phe												1228
				TTG Leu												1273
TAG	CCTC	GTT (	GACC.	ACCA(	CG C	GACA	GCAA	C CT	CCGT	CGGG	CCA	TCGG	GCT	GCTT	TGCGG	A 1333
GCA	TGCT	GGC ·	CCGT	GCCG	GT G	AAGT	CGGC	C GC	GCTG	GCCC	GGC	CATC	CGG	TGGT	TGGGT	G 1393
GGA	TAGG	TGC	GGTG.	ATCC	CG C'	TGCT	TGCG	C TG	GTCT	TGGT	GCT	GGTG	GTG	CTGG	тсатс	G 1453

	GAT(	GG 7	rgcga	ATCAC	GG CT	гсаас	CGGG:	r TG	CATT	rctt	CAC	CGCC	ACC	GAAT	GAATC	1513
CAGG	CAA	CAC (	TAC	GCG	AA AG	CCGTT	rgtc <i>i</i>	A CC	GACGO	CGTC	GCC	CATC	CGG '	TCGG	CGCCTA	1573
CTAC	GGGC	GCG 7	TGC	CGCT	EA TO	CGTCC	GGA	GC:	rggco	GACC	TCG	GCAA:	rcg	CCCT	SATCAT	1633
CGCG	GTG	CCG (	STCTO	CTGT	AG G	AGCGC	GCGC.	r gg:	rgat(	CGTG	GAA	GGC	rgc	CGAA	ACGGTT	1693
GGCC	GAGO	CT (	STGG	SAAT	AG TO	CTGC	BAAT"	r GC	rcgco	CGGA	ATC	CCCAC	GCG '	TGGT	CGTCGG	1753
TTTG	TGG	GG (	CAA	rgaco	T TO	CGGGG	CCGT	CA:	rcgci	TCAT	CAC	ATCG(	CTC	CGGT	GATCGC	1813
TCAC	AACO	CT (	CCCGI	ATGTO	GC CC	GTGC	CTGA	A CTA	ACTTO	GCGC	GGC	FACC	CGG	GCAA	EGGGGA	1873
GGGC	ATG	TG (	GTGT	ccggi	C TO	GTGT	TGGG	GG:	rgato	GTC	GTT	CCA	TA '	TCGC	CACCAC	1933
CACT	CAT	AC (	CTGT	rccgo	GC AC	GTG	CCGGT	r GT	rgcco	CCGG	GAG	GCG	CGA '	TCGG	SAATTO	1993
(2)	INFO	RMAT	иог	FOR	SEQ	ID 1	10:15	53 :								
	•	(i) S	SEQUE													
			(B)	TY	PE: a	: 374 amino	aci	id	acids	3						
			(D)	TOF	POLOG	3Y: ]	linea	ar								
	i)	i) N	OLE	TULE	TYPE	E: pr	rotei	in								
	()	(i) S	EQUE	ENCE	DES	CRIPT	CION	SEC	O ID	NO ·	153.					
									•							
Val 1	Lys	Ile	Arg	Leu 5	His	Thr	Leu					Thr	Ala	Ala 15	Pro	
1				5				Leu	Ala 10	Val	Leu			15 Gly		
1 Leu	Leu	Leu	Ala 20	5 Ala	Ala	Gly	Cys	Leu Gly 25	Ala 10 Ser	Val Lys	Leu Pro	Pro	Ser 30	15 Gly	Ser	
l Leu Pro	Leu Glu	Leu Thr 35	Ala 20 Gly	5 Ala Ala	Ala Gly	Gly Ala	Cys Gly 40	Leu Gly 25 Thr	Ala 10 Ser Val	Val Lys Ala	Leu Pro Thr	Pro Thr 45	Ser 30 Pro	15 Gly	Ser Ser	
Leu Pro Ser	Leu Glu Pro 50	Leu Thr 35 Val	Ala 20 Gly Thr	5 Ala Ala Leu	Ala Gly Ala	Gly Ala Glu 55	Cys Gly 40 Thr	Leu Gly 25 Thr	Ala 10 Ser Val	Val Lys Ala Thr	Leu Pro Thr Leu 60	Pro Thr 45	Ser 30 Pro	15 Gly Ala	Ser Ser Leu	
1 Leu Pro Ser Phe 65	Leu Glu Pro 50 Asn	Leu Thr 35 Val Leu	Ala 20 Gly Thr	5 Ala Ala Leu Gly	Ala Gly Ala Pro	Gly Ala Glu 55	Cys Gly 40 Thr	Leu Gly 25 Thr Gly	Ala 10 Ser Val Ser	Val Lys Ala Thr	Leu Pro Thr Leu 60	Pro Thr 45 Leu Pro	Ser 30 Pro Tyr Asn	15 Gly Ala Pro	Ser  Ser  Leu  Thr  80	
l Leu Pro Ser Phe 65	Leu Glu Pro 50 Asn	Leu Thr 35 Val Leu Ala	Ala 20 Gly Thr Trp	Ala Ala Leu Gly Gly 85	Ala Gly Ala Pro 70 Thr	Gly Ala Glu 55 Ala Gly	Cys Gly 40 Thr Phe	Leu Gly 25 Thr Gly His	Ala 10 Ser Val Ser Glu Ala 90	Val Lys Ala Thr Arg 75	Leu Pro Thr Leu 60 Tyr	Pro Thr 45 Leu Pro	Ser 30 Pro Tyr Asn	15 Gly Ala Pro Val Ala 95 Glu	Ser  Leu  Thr 80 Ala	
l Leu Pro Ser Phe 65 Ile	Leu Glu Pro 50 Asn Thr	Leu Thr 35 Val Leu Ala	Ala 20 Gly Thr Trp Gln Val	Ala Ala Leu Gly Gly 85 Asn	Ala Gly Ala Pro 70 Thr	Gly Ala Glu 55 Ala Gly Gly	Cys Gly 40 Thr Phe Ser	Leu Gly 25 Thr Gly His Gly Ser 105	Ala 10 Ser Val Ser Glu Ala 90 Asp	Val Lys Ala Thr Arg 75 Gly Ala	Leu Pro Thr Leu 60 Tyr Ile	Pro Thr 45 Leu Pro Ala	Ser 30 Pro Tyr Asn Gln Ser 110	15 Gly Ala Pro Val Ala 95 Glu	Ser  Leu  Thr 80 Ala Gly	

	130					135					140				
Leu 145	Asn	Gly	Lys	Val	Leu 150	Ala	Ala	Met	Tyr	Gln 155	Gly	Thr	Ile	Lys	Thr 160
Trp	Asp	Asp	Pro	Gln 165	Ile	Ala	Ala	Leu	Asn 170	Pro	Gly	Val	Asn	Leu 175	Pro
Gly	Thr	Ala	Val 180	Val	Pro	Leu	His	Arg 185	Ser	Asp	Gly	Ser	Gly 190	Asp	Thr
Phe	Leu	Phe 195	Thr	Gln	Tyr	Leu	Ser 200	Lys	Gln	Asp	Pro	Glu 205	Gly	Trp	Gly
Lys	Ser 210	Pro	Gly	Phe	Gly	Thr 215	Thr	Val	Asp	Phe	Pro 220	Ala	Val	Pro	Gly
Ala 225	Leu	Gly	Glu	Asn	Gly 230	Asn	Gly	Gly	Met	Val 235	Thr	Gly	Cys	Ala	Glu 240
Thr	Pro	Gly	Cys	Val 245	Ala	Tyr	Ile	Gly	Ile 250	Ser	Phe	Leu	Asp	Gln 255	Ala
Ser	Gln	Arg	Gly 260	Leu	Gly	Glu	Ala	Gln 265	Leu	Gly	Asn	Ser	Ser 270	Gly	Asr
Phe	Leu	Leu 275	Pro	Asp	Ala	Gln	Ser 280	Ile	Gln	Ala	Ala	Ala 285	Ala	Gly	Phe
Ala	Ser 290	Lys	Thr	Pro	Ala	Asn 295	Gln	Ala	Ile	Ser	Met 300	Ile	Asp	Gly	Pro
Ala 305	Pro	Asp	Gly	Tyr	Pro 310	Ile	Ile	Asn	Tyr	Glu 315	Tyr	Ala	Ile	Val	Ası 320
Asn	Arg	Gln	Lys	Asp 325	Ala	Ala	Thr	Ala	Gln 330	Thr	Leu	Gln	Ala	Phe 335	Le
His	Trp	Ala	Ile 340	Thr	Asp	Gly	Asn	Lys 345	Ala	Ser	Phe	Leu	Asp 350	Gln	Va:
His	Phe	Gln 355	Pro	Leu	Pro	Pro	Ala 360	Val	Val	Lys	Leu	Ser 365	Asp	Ala	Le
Ile	Ala	Thr	Ile	Ser	Ser										

- (2) INFORMATION FOR SEQ ID NO:154:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1993 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

60	TCCTCGCCGA	ACAGCTGTTC	GGCCCACCGA	GTGGAGGAAG	CGGCAGGCTG	TGTTCTTCGA
120	GACGCCAAGC	GGACGTCAAG	GACTGTCGGG	TACGTCGCCG	AACCGCCCGA	AGCATGCGGA
180	CGCTGTTGGC	CGTTTGCATA	CGTGAAAATT	AAAGGTATGG	AAGAGCACAG	GCGGAAATTG
240	AACCACCGAG	TGTGGCTCGA	AGCGGCGGGC	TGCTGCTAGC	GCTGCGCCGC	CGTGTTGACC
300	CGTCGTCGCC	ACTACCCCCG	TACTGTCGCG	CCGGCGCCGG	GAAACGGGCG	CGGTTCGCCT
360	TGTGGGGTCC	CTGTTCAACC	GCTCTACCCG	GTAGCACGCT	GCGGAGACCG	GGTGACGTTG
420	GTTCTGGTGC	CAGGGCACCG	GATCACCGCT	CGAACGTCAC	GAGAGGTATC	GGCCTTTCAC
480	CCTATCTGTC	GCCTCCGACG	CAACATTGGG	CCGGGACGGT	CAGGCCGCCG	CGGGATCGCG
540	TCTCCGCTCA	GCGCTAGCCA	GATGAACATC	ACAAGGGGCT	ATGGCCGCGC	GGAAGGTGAT
600	GAAAAGTCCT	AAGCTGAACG	CGAGCACCTC	CCGGAGTGAG	TACAACCTGC	GCAGGTCAAC
660	CTGCGCTCAA	CCGCAGATCG	CTGGGACGAC	CCATCAAAAC	TACCAGGGCA	GGCGGCCATG
720	ACGGGTCCGG	CACCGCTCCG	AGTTCCGCTG	GCACCGCGGT	AACCTGCCCG	CCCCGGCGTG
780	GGGGCAAGTC	CCCGAGGGCT	CAAGCAAGAT	AGTACCTGTC	TTGTTCACCC	TGACACCTTC
840	GTGAGAACGG	GGTGCGCTGG	GGCGGTGCCG	TCGACTTCCC	GGCACCACCG	GCCCGGCTTC
900	ATATCGGCAT	TGCGTGGCCT	GACACCGGGC	GTTGCGCCGA	ATGGTGACCG	CAACGGCGGC
960	GCAATAGCTC	GCCCAACTAG	ACTCGGCGAG	GTCAACGGGG	GACCAGGCCA	CAGCTTCCTC
1020	GCTTCGCATC	GCGGCGGCTG	CATTCAGGCC	ACGCGCAAAG	TTGTTGCCCG	TGGCAATTTC
1080	ACGGCTACCC	CCCGCCCCGG	GATCGACGGG	CGATTTCGAT	GCGAACCAGG	GAAAACCCCG
1140	CCACCGCGCA	AAGGACGCCG	CAACCGGCAA	CCATCGTCAA	TACGAGTACG	GATCATCAAC
1200	CGTTCCTCGA	AACAAGGCCT	CACCGACGGC	ACTGGGCGAT	GCATTTCTGC	GACCTTGCAG
1260	CGTTGATCGC	TTGTCTGACG	GGTGGTGAAG	TGCCGCCCGC	TTCCAGCCGC	CCAGGTTCAT
1320	GGGCCATCGG	AACCTCCGTC	ACGCGACAGC	GTTGACCACC	AGCTAGCCTC	GACGATTTCC
1380	CCCGGCCATC	GCCGCGCTGG	GGTGAAGTCG	GGCCCGTGCC	GGAGCATGCT	GCTGCTTTGC
1440	GGTGCTGGTG	CGCTGGTCTT	CCGCTGCTTG	TGCGGTGATC	GTGGGATAGG	CGGTGGTTGG
1500	CTTCACCGCC	GGTTGCATTT	AGGCTCAACG	GGGTGCGATC	TCGAGGCGAT	GTGCTGGTCA
1560	GTCGCCCATC	TCACCGACGC	GAAACCGTTG	CACCTACGGC	ATCCAGGCAA	ACCGAATGGA
1620	ACCTCGGCAA	GACGCTGGCG	TGATCGTCGG	GCGTTGCCGC	CTACTACGGG	CGGTCGGCGC

TCGCCCTG	AT C	ATCG	CGGT	G CC	GTC:	CTG	TAGO	SAGCO	GC (	GCTGC	TGAT	rc gi	rgga/	ACGGC	?	1680
TGCCGAAA	.CG G	TTGG	CCGA	G GC	rgtgo	GAA	TAG	CCT	GA A	ATTGO	CTCGC	CC GC	SAATO	CCC	Ą	1740
GCGTGGTC	GT C	GGTT	rgtgo	G GGG	GGCA/	ATGA	CGTT	rcggo	GCC (	STTCA	ATCGC	et ca	ATCAC	CATCO	3	1800
CTCCGGTG	AT C	GCTC	ACAAC	G GC	rccc	SATG	TGC	CGGT	CT (	SAACT	TACTT	rg co	GCGG	GAC	2	1860
CGGGCAAC	GG G	GAGG	GCAT(	G TTO	GGTG:	rccg	GTCT	rggTo	TT (	GCGC	STGAT	rg Gi	rcgT1	rccci	A	1920
TTATCGCC	AC C	ACCA	CTCAT	C GAG	CCTG:	TCC	GGC	AGGT	GCC (	GTGT	TGCC	cc co	GGA	GGCC	;	1980
CGATCGGG	AA T	TC														1993
(2) INFO	RMAT	ION 1	FOR S	SEQ :	ID NO	0:155	5 :									
(i)	(A (B (C	UENCI ) LEI ) TYI ) STI ) TOI	NGTH: PE: & RANDE	: 374 amino EDNES	4 am: o ac: SS:	ino a id		3								
(xi)	SEQ	UENCI	E DES	SCRI	PTIO	N: SE	EQ II	ON C	155	:						
Met 1	Lys	Ile	Arg	Leu 5	His	Thr	Leu	Leu	Ala 10	Val	Leu	Thr	Ala	Ala 15	Pro	
Leu	Leu	Leu	Ala 20	Ala	Ala	Gly	Cys	Gly 25	Ser	Lys	Pro	Pro	Ser 30	Gly	Ser	
Pro	Glu	Thr 35	Gly	Ala	Gly	Ala	Gly 40	Thr	Val	Ala	Thr	Thr 45	Pro	Ala	Ser	
Ser	Pro 50	Val	Thr	Leu	Ala	Glu 55	Thr	Gly	Ser	Thr	Leu 60	Leu	Tyr	Pro	Leu	
Phe 65	Asn	Leu	Trp	Gly	Pro 70	Ala	Phe	His	Glu	Arg 75	Tyr	Pro	Asn	Val	Thr 80	
Ile	Thr	Ala	Gln	Gly 85	Thr	Gly	Ser	Gly	Ala 90	Gly	Ile	Ala	Gln	Ala 95	Ala	
Ala	Gly	Thr	Val 100	Asn	Ile	Gly	Ala	Ser 105	Asp	Ala	Tyr	Leu	Ser 110	Glu	Gly	
Asp	Met	Ala 115	Ala	His	Lys	Gly	Leu 120	Met	Asn	Ile	Ala	Leu 125	Ala	Ile	Ser	
Ala	Gln 130	Gln	Val	Asn	Tyr	Asn 135	Leu	Pro	Gly	Val	Ser 140	Glu	His	Leu	Lys	
Leu 145		Gly	Lys	Val	Leu 150	Ala	Ala	Met	Tyr	Gln 155	Gly	Thr	Ile	Lys	Thr 160	

WO 99/42076 PCT/US99/03268

155

Trp	Asp	Asp	Pro	Gln 165	Ile	Ala	Ala	Leu	Asn 170	Pro	Gly	Val	Asn	Leu 175	Pro
Gly	Thr	Ala	Val 180	Val	Pro	Leu	His	Arg 185	Ser	Asp	Gly	Ser	Gly 190	Asp	Thr
Phe	Leu	Phe 195	Thr	Gln	Tyr	Leu	Ser 200	Lys	Gln	Asp	Pro	Glu 205	Gly	Trp	Gly
Lys	Ser 210	Pro	Gly	Phe	Gly	Thr 215	Thr	Val	Asp	Phe	Pro 220	Ala	Val	Pro	Gly
Ala 225	Leu	Gly	Glu	Asn	Gly 230	Asn	Gly	Gly	Met	Val 235	Thr	Gly	Cys	Ala	Gl: 240
Thr	Pro	Gly	Суѕ	Val 245	Ala	Tyr	Ile	Gly	Ile 250	Ser	Phe	Leu	Asp	Gln 255	Alá
Ser	Gln	Arg	Gly 260	Leu	Gly	Glu	Ala	Gln 265	Leu	Gly	Asn	Ser	Ser 270	Gly	Asr
Phe	Leu	Leu 275	Pro	Asp	Ala	Gln	Ser 280	Ile	Gln	Ala	Ala	Ala 285	Ala	Gly	Phe
Ala	Ser 290	Lys	Thr	Pro	Ala	Asn 295	Gln	Ala	Ile	Ser	Met 300	Ile	Asp	Gly	Pro
Ala 305	Pro	Asp	Gly	Tyr	Pro 310	Ile	Ile	Asn	Tyr	Glu 315	Tyr	Ala	Ile	Val	As:
Asn	Arg	Gln	Lys	Asp 325	Ala	Ala	Thr	Ala	Gln 330	Thr	Leu	Gln	Ala	Phe 335	Let
His	Trp	Ala	Ile 340	Thr	Asp	Gly	Asn	Lys 345	Ala	Ser	Phe	Leu	Asp 350	Gln	Va:
His	Phe	Gln 355	Pro	Leu	Pro	Pro	Ala 360	Val	Val	Lys	Leu	Ser 365	Asp	Ala	Le

Ile Ala Thr Ile Ser Ser 370

#### (2) INFORMATION FOR SEQ ID NO:156:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1777 base pairs

360

365

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear *
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

GGTCTTGACC ACCACCTGGG TGTCGAAGTC GGTGCCCGGA TTGAAGTCCA GGTACTCGTG 60 GGTGGGGCGG GCGAAACAAT AGCGACAAGC ATGCGAGCAG CCGCGGTAGC CGTTGACGGT 120

GTAGCGAAAC	GGCAACGCGG	CCGCGTTGGG	CACCTTGTTC	AGCGCTGATT	TGCACAACAC	180
CTCGTGGAAG	GTGATGCCGT	CGAATTGTGG	CGCGCGAACG	CTGCGGACCA	GGCCGATCCG	240
CTGCAACCCG	GCAGCGCCCG	TCGTCAACGG	GCATCCCGTT	CACCGCGACG	GCTTGCCGGG	300
CCCAACGCAT	ACCATTATTC	GAACAACCGT	TCTATACTTT	GTCAACGCTG	GCCGCTACCG	360
AGCGCCGCAC	AGGATGTGAT	ATGCCATCTC	TGCCCGCACA	GACAGGAGCC	AGGCCTTATG	420
ACAGCATTCG	GCGTCGAGCC	CTACGGGCAG	CCGAAGTACC	TAGAAATCGC	CGGGAAGCGC	480
ATGGCGTATA	TCGACGAAGG	CAAGGGTGAC	GCCATCGTCT	TTCAGCACGG	CAACCCCACG	540
TCGTCTTACT	TGTGGCGCAA	CATCATGCCG	CACTTGGAAG	GGCTGGGCCG	GCTGGTGGCC	600
TGCGATCTGA	TCGGGATGGG	CGCGTCGGAC	AAGCTCAGCC	CATCGGGACC	CGACCGCTAT	660
AGCTATGGCG	AGCAACGAGA	CTTTTTGTTC	GCGCTCTGGG	ATGCGCTCGA	CCTCGGCGAC	720
CACGTGGTAC	TGGTGCTGCA	CGACTGGGGC	TCGGCGCTCG	GCTTCGACTG	GGCTAACCAG	780
CATCGCGACC	GAGTGCAGGG	GATCGCGTTC	ATGGAAGCGA	TCGTCACCCC	GATGACGTGG	840
GCGGACTGGC	CGCCGGCCGT	GCGGGGTGTG	TTCCAGGGTT	TCCGATCGCC	TCAAGGCGAG	900
CCAATGGCGT	TGGAGCACAA	CATCTTTGTC	GAACGGGTGC	TGCCCGGGGC	GATCCTGCGA	960
CAGCTCAGCG	ACGAGGAAAT	GAACCACTAT	CGGCGGCCAT	TCGTGAACGG	CGGCGAGGAC	1020
CGTCGCCCCA	CGTTGTCGTG	GCCACGAAAC	CTTCCAATCG	ACGGTGAGCC	CGCCGAGGTC	1080
GTCGCGTTGG	TCAACGAGTA	CCGGAGCTGG	CTCGAGGAAA	CCGACATGCC	GAAACTGTTC	1140
ATCAACGCCG	AGCCCGGCGC	GATCATCACC	GGCCGCATCC	GTGACTATGT	CAGGAGCTGG	1200
CCCAACCAGA	CCGAAATCAC	AGTGCCCGGC	GTGCATTTCG	TTCAGGAGGA	CAGCGATGGC	1260
GTCGTATCGT	GGGCGGGCGC	TCGGCAGCAT	CGGCGACCTG	GGAGCGCTCT	CATTTCACGA	1320
GACCAAGAAT	GTGATTTCCG	GCGAAGGCGG	CGCCCTGCTT	GTCAACTCAT	AAGACTTCCT	1380
GCTCCGGGCA	GAGATTCTCA	GGGAAAAGGG	CACCAATCGC	AGCCGCTTCC	TTCGCAACGA	1440
GGTCGACAAA	TATACGTGGC	AGGACAAAGG	TCTTCCTATT	TGCCCAGCGA	ATTAGTCGCT	1500
GCCTTTCTAT	GGGCTCAGTT	CGAGGAAGCC	GAGCGGATCA	CGCGTATCCG	ATTGGACCTA	1560
TGGAACCGGT	ATCATGAAAG	CTTCGAATCA	TTGGAACAGC	GGGGGCTCCT	GCGCCGTCCG	1620
ATCATCCCAC	AGGGCTGCTC	TCACAACGCC	CACATGTACT	ACGTGTTACT	AGCGCCCAGC	1680
GCCGATCGGG	AGGAGGTGCT	GGCGCGTCTG	ACGAGCGAAG	GTATAGGCGC	GGTCTTTCAT	1740

WO 99/42076

660

TACGTGCCGC TTCACGATTC GCCGGCCGGG CGTCGCT	1777
(2) INFORMATION FOR SEQ ID NO:157:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 324 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:	
GAGATTGAAT CGTACCGGTC TCCTTAGCGG CTCCGTCCCG TGAATGCCCA TATCACGCAC	60
GGCCATGTTC TGGCTGTCGA CCTTCGCCCC ATGCCCGGAC GTTGGTAAAC CCAGGGTTTG	120
ATCAGTAATT CCGGGGGACG GTTGCGGGAA GGCGGCCAGG ATGTGCGTGA GCCGCGGCGC	180
CGCCGTCGCC CAGGCGACCG CTGGATGCTC AGCCCCGGTG CGGCGACGTA GCCAGCGTTT	240
GGCGCGTGTC GTCCACAGTG GTACTCCGGT GACGACGCGG CGCGGTGCCT GGGTGAAGAC	300
CGTGACCGAC GCCGCCGATT CAGA	324
(2) INFORMATION FOR SEQ ID NO:158:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1338 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:	
GCGGTACCGC CGCGTTGCGC TGGCACGGGA CCTGTACGAC CTGAACCACT TCGCCTCGCG	60
AACGATTGAC GAACCGCTCG TGCGGCGGCT GTGGGTGCTC AAGGTGTGGG GTGATGTCGT	120
CGATGACCGG CGCGGCACCC GGCCACTACG CGTCGAAGAC GTCCTCGCCG CCCGCAGCGA	180
GCACGACTTC CAGCCCGACT CGATCGGCGT GCTGACCCGT CCTGTCGCTA TGGCTGCCTG	240
GGAAGCTCGC GTTCGGAAGC GATTTGCGTT CCTCACTGAC CTCGACGCCG ACGAGCAGCG	300
GTGGGCCGCC TGCGACGAAC GGCACCGCCG CGAAGTGGAG AACGCGCTGG CGGTGCTGCG	360
GTCCTGATCA ACCTGCCGGC GATCGTGCCG TTCCGCTGGC ACGGTTGCGG CTGGACGCGG	420
CTGAATCGAC TAGATGAGAG CAGTTGGGCA &GAATCCGGC TGTGGTGGTG AGCAAGACAC	480
GAGTACTGTC ATCACTATTG GATGCACTGG ATGACCGGCC TGATTCAGCA GGACCAATGG	540
AACTGCCCGG GGCAAAACGT CTCGGAGATG ATCGGCGTCC CCTCGGAACC CTGCGGTGCT	600
GGCGTCATTC GGACATCGGT CCGGCTCGCG GGATCGTGGT GACGCCAGCG CTGAAGGAGT	660

GGAGCGCGGC	GGTGCACGCG	CTGCTGGACG	GCCGGCAGAC	GGTGCTGCTG	CGTAAGGGCG	720
GGATCGGCGA	GAAGCGCTTC	GAGGTGGCGG	CCCACGAGTT	CTTGTTGTTC	CCGACGGTCG	780
CGCACAGCCA	CGCCGAGCGG	GTTCGCCCCG	AGCACCGCGA	CCTGCTGGGC	CCGGCGGCCG	840
CCGACAGCAC	CGACGAGTGT	GTGCTACTGC	GGGCCGCAGC	GAAAGTTGTT	GCCGCACTGC	900
CGGTTAACCG	GCCAGAGGGT	CTGGACGCCA	TCGAGGATCT	GCACATCTGG	ACCGCCGAGT	960
CGGTGCGCGC	CGACCGGCTC	GACTTTCGGC	CCAAGCACAA	ACTGGCCGTC	TTGGTGGTCT	1020
CGGCGATCCC	GCTGGCCGAG	CCGGTCCGGC	TGGCGCGTAG	GCCCGAGTAC	GGCGGTTGCA	1080
CCAGCTGGGT	GCAGCTGCCG	GTGACGCCGA	CGTTGGCGGC	GCCGGTGCAC	GACGAGGCCG	1140
CGCTGGCCGA	GGTCGCCGCC	CGGGTCCGCG	AGGCCGTGGG	TTGACTGGGC	GGCATCGCTT	1200
GGGTCTGAGC	TGTACGCCCA	GTCGGCGCTG	CGAGTGATCT	GCTGTCGGTT	CGGTCCCTGC	1260
TGGCGTCAAT	TGACGGCGCG	GGCAACAGCA	GCATTGGCGG	CGCCATCCTC	CGCGCGGCCG	1320
GCGCCCACCG	CTACAACC					1338

#### (2) INFORMATION FOR SEQ ID NO:159:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 321 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

CCGGCGGCAC C	CGGCGGCACC	GGCGGTACCG	GCGGCAACGG	CGCTGACGCC	GCTGCTGTGG	60
TGGGCTTCGG C	CGCGAACGGC	GACCCTGGCT	TCGCTGGCGG	CAAAGGCGGT	AACGGCGGAA	120
TAGGTGGGGC C	CGCGGTGACA	GGCGGGGTCG	CCGGCGACGG	CGGCACCGGC	GGCAAAGGTG	180
GCACCGGCGG T	rgccggcggc	GCCGGCAACG	ACGCCGGCAG	CACCGGCAAT	CCCGGCGGTA	240
AGGGCGGCGA C	CGGCGGGATC	GGCGGTGCCG	GCGGGGCCGG	CGGCGCGGCC	GGCACCGGCA	300
ACGGCGGCCA T	rgccggcaac	С				321

### (2) INFORMATION FOR SEQ ID NO:160:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 492 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

	(xi)	SEQ	JENCI	E DES	SCRI	PTION	N: SI	EQ II	ON C	:160	:					
GAAG	ACCCC	GG C	CCCG	CATA	A TC	GATCO	GCT	CGC	CGACT	rac '	TTTC	GCCG/	AA C	GTGC	ACGC	G
GCGG	CGTCC	eg go	CTGA	CAT	CAC	CGGT	GCT	ACG	CGCCC	CAA	CCGC	ACCG(	GA TO	GCT	SCTGO	2
CGTT	CGCCI	rc co	SAAC:	CGT	C AC	rtcg	GCGC	AAGO	CCCG	ACG (	GCAC	GCC	GA A	rcac(	CAGGO	3
CGGT	CCACC	SA T	rcgg	GTGC!	A AA	SATCO	CTGC	TGC	TAA	CCT (	GCAC	GCCG	GA C	GCTAG	CGCCT	r
ACCA	CCCAC	CT TO	GCGG"	CAG	C GC	CTCG	CCGA	TCA	AGGCC	GCC (	GATC	ACCC	CG T	rtcg	rccgo	2
GAGC	ACTAI	rc G(	CTCC	GCGG	G GT	CGAA	GCGA	CCAT	rcgco	GA '	TTTC	GCCC	GC TO	GCGC	GCAGT	r
TGGC	CCGCC	A TO	GCCGC	GCTA	C GAG	CGGCC	STCG	AAA	CATO	GG (	CAGCO	GAAG	GG TA	ATCT	GCTC	A
ATCA	GTTC	CT GO	GCGC	CGCG	C ACC	CAACA	AAGC	GCAC	CCGAC	CTC (	GTGG	GCG	GC A	CACC	GCCA	Ą
ACCG!	rcgco	CG GT	r													
(2)	INFOR	RMAT:	I NO	FOR S	SEQ :	ID NO	0:161	L:								
	(i)	(A) (B) (C)	JENCE LEN TYI STI TOI	NGTH: PE: & RANDI	: 536 amino EDNES	ami aci	ino a		5							
	(xi)	SEQ	JENCI	E DES	SCRI	PTICE	1: SI	EQ II	NO:	:161	:					
	Phe 1	Ala	Gln	His	Leu 5	Val	Glu	Gly	Asp	Ala 10	Val	Glu	Leu	Trp	Arg 15	Ala
	Asn	Ala	Ala	Asp 20	Gln	Ala	Asp	Pro	Leu 25	Gln	Pro	Gly	Ser	Ala 30	Arg	Arg
	Gln	Arg	Ala 35	Ser	Arg	Ser	Pro	Arg 40	Arg	Leu	Ala	Gly	Pro 45	Asn	Ala	Tyr
	His	Tyr 50	Ser	Asn	Asn	Arg	Ser 55	Ile	Leu	Cys	Gln	Arg 60	Trp	Pro	Leu	Pro
	Ser 65	Ala	Ala	Gln	Asp	Val 70	Ile	Cys	His	Leu	Cys 75	Pro	His	Arg	Gln	Glu 80
	Pro	Gly	Leu	Met	Thr 85	Ala	Phe	Gly	Val	Glu 90	Pro	Tyr	Gly	Gln	Pro 95	Lys
	Tyr	Leu	Glu	Ile 100	Ala	Gly	Lys	<b>A</b> rg	Met 105	Ala	Tyr	Ile	Asp	Glu 110	Gly	Lys
	Gly	Asp	Ala	Ile	Val	Phe	Gln	His	Gly	Asn	Pro	Thr	Ser	Sar	Τ	ī.eu
			115					120	•				125	361	TYL	Dea

	130	)				135	5				140				
Cys 145	Asp	Leu	ı Ile	: Gly	Met 150	Gly	' Ala	Ser	Asp	Lys 155		Ser	Pro	Ser	Gly 160
Pro	Asp	Arg	Tyr	Ser 165	Tyr	Gly	Glu	Gln	Arg 170	Asp	Phe	Leu	Phe	Ala 175	Leu
Trp	Asp	Ala	Leu 180	Asp	Leu	Gly	<b>As</b> p	His 185		Val	Leu	Val	Leu 190	His	Asp
Trp	Gly	Ser 195	Ala	Leu	Gly	Phe	Asp 200	Trp	Ala	Asn	Gln	His 205	Arg	Asp	Arg
Val	Gln 210	Gly	Ile	Ala	Phe	<b>Met</b> 215	Glu	Ala	Ile	Val	Thr 220	Pro	Met	Thr	Tro
Ala 225	Asp	Trp	Pro	Pro	Ala 230	Val	Arg	Gly	Val	Phe 235	Gln	Gly	Phe	Arg	Ser 240
Pro	Gln	Gly	Glu	Pro 245	Met	Ala	Leu	Glu	His 250	Asn	Ile	Phe	Val	Glu 255	Arg
Val	Leu	Pro	Gly 260	Ala	Ile	Leu	Arg	Gln 265	Leu	Ser	Asp	Glu	Glu 270	Met	Asn
His	Tyr	Arg 275	Arg	Pro	Phe	Val	Asn 280	Gly	Gly	Glu	Asp	Arg 285	Arg	Pro	Thr
Leu	Ser 290	Trp	Pro	Arg	Asn	Leu 295	Pro	Ile	Asp	Gly	Glu 300	Pro	Ala	Glu	Val
Val 305	Ala	Leu	Val	Asn	Glu 310	Tyr	Arg	Ser	Trp	Leu 315	Glu	Glu	Thr	qaA	<b>Met</b> 320
Pro	Lys	Leu	Phe	Ile 325	Asn	Ala	Glu	Pro	Gly 330	Ala	Ile	Ile	Thr	Gly 335	Arg
			340					345		Gln			350		
Pro	Gly	Val 355	His	Phe	Val	Gln	Glu 360	Asp	Ser	Asp	Gly	Val 365	Val	Ser	Trp
Ala	Gly 370	Ala	Arg	Gln	His	Arg 375	Arg	Pro	Gly	Ser	Ala 380	Leu	Ile	Ser	Arg
Asp 385	Gln	Glu	Cys	Asp	Phe 390	Arg	Arg	Arg	Arg	Arg 395	Pro	Ala	Cys	Gln	Leu 400
Ile	Arg	Leu	Pro	Ala 405	Pro	Gly	Arg	Asp	Ser 410	Gln	Gly	Lys	Gly	His 415	Gln
Ser	Gln	Pro	Leu 420	Pro	Ser	Gln	Arg	Gly 425	Arg	Gln	Ile	Tyr	Val 430	Ala	Gly

- Gln Arg Ser Ser Tyr Leu Pro Ser Glu Leu Val Ala Ala Phe Leu Trp
  435
  440
  445
- Ala Gln Phe Glu Glu Ala Glu Arg Ile Thr Arg Ile Arg Leu Asp Leu
  450
  450
  460
- Trp Asn Arg Tyr His Glu Ser Phe Glu Ser Leu Glu Gln Arg Gly Leu 465 470 475 480
- Leu Arg Arg Pro Ile Ile Pro Gln Gly Cys Ser His Asn Ala His Met
- Tyr Tyr Val Leu Leu Ala Pro Ser Ala Asp Arg Glu Glu Val Leu Ala 500 505 510
- Arg Leu Thr Ser Glu Gly Ile Gly Ala Val Phe His Tyr Val Pro Leu 515 520 525
- His Asp Ser Pro Ala Gly Arg Arg 530 535

## (2) INFORMATION FOR SEQ ID NO:162:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 284 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:
- Asn Glu Ser Ala Pro Arg Ser Pro Met Leu Pro Ser Ala Arg Pro Arg
- Tyr Asp Ala Ile Ala Val Leu Leu Asn Glu Met His Ala Gly His Cys
  20 25 30
- Asp Phe Gly Leu Val Gly Pro Ala Pro Asp Ile Val Thr Asp Ala Ala 35 40 45
- Gly Asp Asp Arg Ala Gly Leu Gly Val Asp Glu Gln Phe Arg His Val 50 55 60
- Gly Phe Leu Glu Pro Ala Pro Val Leu Val Asp Gln Arg Asp Asp Leu 65 70 75
- Gly Gly Leu Thr Val Asp Trp Lys Val Ser Trp Pro Arg Gln Arg Gly 85 90 95
- Ala Thr Val Leu Ala Ala Val His Glu Trp Pro Pro Ile Val Val His
- Phe Leu Val Ala Glu Leu Ser Gln Asp Arg Pro Gly Gln His Pro Phe

	Asp	Lys 130	Asp	Val	Val	Leu	Gln 135	Arg	His	Trp	Leu	Ala 140	Leu	Arg	Arg	Ser	
	Glu 145	Thr	Leu	Glu	His	Thr 150	Pro	His	Gly	Arg	Arg 155	Pro	Val	Arg	Pro	Arg 160	
	His	Arg	Gly	Asp	Asp 165	Arg	Phe	His	Glu	Arg 170	Asp	Pro	Leu	His	Ser 175	Val	
	Ala	Met	Leu	Val 180	Ser	Pro	Val	Glu	Ala 185	Glu	Arg	Arg	Ala	Pro 190	Val	Val	
	Gln	His	Gln 195	Tyr	His	Val	Val	Ala 200	Glu	Val	Glu	Arg	Ile 205	Pro	Glu	Arg	
	Glu	Gln 210	Lys	Val	Ser	Leu	Leu 215	Ala	Ile	Ala	Ile	Ala 220	Val	Gly	Ser	Arg	
	Trp 225	Ala	Glu	Leu	Val	Arg 230	Arg	Ala	His	Pro	<b>As</b> p 235	Gln	Ile	Ala	Gly	His 240	
	Gln	Pro	Ala	Gln	Pro 245	Phe	Gln	Val	Arg	His 250	Asp	Val	Ala	Pro	Gln 255	Val	
	Arg	Arg	Arg	Gly 260	Val	Ala	Val	Leu	Lys 265	Asp	Asp	Gly	Val	Thr 270	Leu	Ala	
	Phe	Val	<b>Asp</b> 275	Ile	Arg	His	Ala	Leu 280	Pro	Gly	Asp	Phe					
(2)	INFOR	MATI	ON F	OR S	EQ I	D NO	:163	l :									
		SEQU (A) (B) (C)	ENCE LEN TYP STR TOP	CHA GTH: E: n	RACT 264 ucle DNES	ERIS bas ic a S: s	TICS e pa cid ingl	: irs									
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	163:							
ATGA	ACATG'	r cg	TCGG	TGGT	' GGG	TCGC	AAG	GCCT	TTGC	CC G	ATTC	GCCG	G CT	ACTO	CTCC	•	60
GCCA'	TGCAC	G CG	ATCG	CCGG	TTT	CTCC	GAT	GCGT	TGCG	CC A	AGAG	CTGC	G GG	GTAG	CGGA	;	120
ATCG	CCGTC	r cg	GTGA	TCCA	ccc	GGCG	CTG	ACCC	AGAC	AC C	GCTG	TTGG	C CA	ACGT	'CGAC		180
CCCG	CCGAC	A TG	CCGC	CGCC	GTT	TCGC	AGÇ	CTCA	CGCC	CA T	TCCC	GTTC	A CT	GGGT	.CGCG		240
GCAG	CGGTG	TT	GACG	GTGT	GGC	G											264
(2)	INFORM	ATI	ON F	OR S	EO I	D NO	:164										

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1171 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:

TAGTCGGCG	A CGATGACGT	GCGGTCCAGG	CCGACCGCT	CAAGCACCAC	GCGACCACG	60
AAGCCGGTG	GATCCTTAC	CGCGAAGCAG	TGGGTGAGC	CCGGGCGTCC	GGCGGCAAGC	120
AGTGTGACG	A CACGATGTAC	G CGCGCGCTGT	GCTCCATTGC	GCGTTGGGA	TTGGCGATAC	180
TCGTCGGTC	TGTAGCGGGT	GGCCGCGTCA	TTTATCGACT	GGCTGGATTC	GCCGGACTCG	240
CCGTTGGACC	CGTCATTGGT	TAGCAGCCTC	TTGAATGCGG	TTTCGTGCGG	CGCTGAGTCG	300
TCGGCGTCAT	CATCGGCGAG	GTCGGGGAAC	GGCAGCAGGT	' GGACGTCGAT	GCCGTCCGGA	360
ACCCGTCCTG	GACCGCGGCG	GGCAACCTCC	CGGGACGACC	GCAGGTCGGC	AACGTCGGTG	420
ATCCCCAGCC	GGCGCAGCGT	TGCCCCTCGT	GCCGAATTCG	GCACGAGGCT	GGCGAGCCAC	480
CGGGCATCAC	CAAGCAACGC	TTGCCCAGTA	CGGATCGTCA	CTTCCGCATC	CGGCAGACCA	540
ATCTCCTCGC	CGCCCATCGT	CAGATCCCGC	TCGTGCGTTG	ACAAGAACGG	CCGCAGATGT	600
GCCAGCGGGT	ATCGGAGATT	GAACCGCGCA	CGCAGTTCTT	CAATCGCTGC	GCGCTGCCGC	660
ACTATTGGCA	CTTTCCGGCG	GTCGCGGTAT	TCAGCAAGCA	TGCGAGTCTC	GACGAACTCG	720
CCCCACGTAA	CCCACGGCGT	AGCTCCCGGC	GTGACGCGGA	GGATCGGCGG	GTGATCTTTG	780
CCGCCACGCT	CGTAGCCGTT	GATCCACCGC	TTCGCGGTGC	CGGCGGGGAG	GCCGATCAGC	840
TTATCGACCT	CGGCGTATGC	CGACGGCAAG	CTGGGCGCGT	TCGTCGAGGT	CAAGAACTCC	900
ACCATCGGCA	CCGGCACCAA	GGTGCCGCAC	CTGACCTACG	TCGGCGACGC	CGACATCGGC	960
GAGTACAGCA	ACATCGGCGC	CTCCAGCGTG	TTCGTCAACT	ACGACGGTAC	GTCCAAACGG	1020
CGCACCACCG	TCGGTTCGCA	CGTACGGACC	GGGTCCGACA	CCATGTTCGT	GGCCCCAGTA	1080
ACCATCGGCG	ACGGCGCGTA	TACCGGGGCC	GGCACAGTGG	TGCGGGAGGA	TGTCCCGCCG	1140
GGGGCGCTGG	CAGTGTCGGC	GGGTCCGCAA	С			1171

# (2) INFORMATION FOR SEQ ID NO:165:

- (i) SEQUENCE CHARACTERISTIGS:
  - (A) LENGTH: 227 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

GCAAAGGCGG CACCGGCGGG GCCGGCATGA ACAGCCTCGA CCCGCTGCTA GCCGCCCAAG	60
ACGGCGGCCA AGGCGGCACC GGCGGCACCG GCGGCAACGC CGGCGCCGGC GGCACCAGCT	120
TCACCCAAGG CGCCGACGGC AACGCCGGCA ACGGCGGTGA CGGCGGGGTC GGCGGCAACG	180
GCGGAAACGG CGGAAACGGC GCAGACAACA CCACCACCGC CGCCGCC	227
(2) INFORMATION FOR SEQ ID NO:166:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 304 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:	
CCTCGCCACC ATGGGCGGGC AGGGCGGTAG CGGTGGCGCC GGCTCTACCC CAGGCGCCAA	60
GGGCGCCCAC GGCTTCACTC CAACCAGCGG CGGCGACGGC GGCGACGGCG GCAACGGCGG	120
CAACTCCCAA GTGGTCGGCG GCAACGGCGG CGACGGCGGC AATGGCGGCA ACGGCGGCAG	180
CGCCGGCACG GGCGGCAACG GCGGCCGCGG CGGCGACGGC GCGTTTGGTG GCATGAGTGC	240
CAACGCCACC AACCCTGGTG AAAACGGGCC AAACGGTAAC CCCGGCGGCA ACGGTGGCGC	300
CGGC	304
(2) INFORMATION FOR SEQ ID NO:167:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1439 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:	
GTGGGACGCT GCCGAGGCTG TATAACAAGG ACAACATCGA CCAGCGCCGG CTCGGTGAGC	60
TGATCGACCT ATTTAACAGT GCGCGCTTCA GCCGGCAGGG CGAGCACCGC GCCCGGGATC	120
TGATGGGTGA GGTCTACGAA TACTTCCTCG GCAATTTCGC TCGCGCGGAA GGGAAGCGGG	180
GTGGCGAGTT CTTTACCCCG CCCAGCGTGG TCAAGGTGAT CGTGGAGGTG CTGGAGCCGT	240
CGAGTGGGCG GGTGTATGAC CCGTGCTGCG GTTCCGGAGG CATGTTTGTG CAGACCGAGA	300
AGTTCATCTA CGAACACGAC GGCGATCCGA AGGATGTCTC GATCTATGGC CAGGAAAGCA	360
TTGAGGAGAC CTGGCGGATG GCGAAGATGA ACCTCGCCAT CCACGGCATC GACAACAAGG	420

GGCTCGGCG	CCGATCGACT					
					GTGCAGATGG	480
ACTACGTGAT	GGCCAATCCG	CCGTTCAACA	TCAAAGACTG	GGCCCGCAAC	GAGGAAGACC	540
CACGCTGGCG	CTTCGGTGTT	CCGCCCGCCA	ATAACGCCAA	CTACGCATGG	ATTCAGCACA	600
TCCTGTACAA	CTTGGCGCCG	GGAGGTCGGG	CGGGCGTGGT	GATGGCCAAC	GGGTCGATGT	660
CGTCGAACTC	CAACGGCAAG	GGGGATATTC	GCGCGCAAAT	CGTGGAGGCG	GATTTGGTTT	720
CCTGCATGGT	CGCGTTACCC	ACCCAGCTGT	TCCGCAGCAC	CGGAATCCCG	GTGTGCCTGT	780
GGTTTTTCGC	CAAAAACAAG	GCGGCAGGTA	AGCAAGGGTC	TATCAACCGG	TGCGGGCAGG	840
TGCTGTTCAT	CGACGCTCGT	GAACTGGGCG	ACCTAGTGGA	CCGGGCCGAG	CGGGCGCTGA	900
CCAACGAGGA	GATCGTCCGC	ATCGGGGATA	CCTTCCACGC	GAGCACGACC	ACCGGCAACG	960
CCGGCTCCGG	TGGTGCCGGC	GGTAATGGGG	GCACTGGCCT	CAACGGCGCG	GGCGGTGCTG	1020
GCGGGGCCGG	CGGCAACGCG	GGTGTCGCCG	GCGTGTCCTT	CGGCAACGCT	GTGGGCGCG	1080
ACGGCGGCAA	CGGCGGCAAC	GGCGGCCACG	GCGGCGACGG	CACGACGGGC	GGCGCCGGCG	1140
GCAAGGGCGG	CAACGGCAGC	AGCGGTGCCG	CCAGCGGCTC	AGGCGTCGTC	AACGTCACCG	1200
CCGGCCACGG	CGGCAACGGC	GGCAATGGCG	GCAACGGCGG	CAACGGCTCC	GCGGGCGCCG	1260
GCGGCCAGGG	CGGTGCCGGC	GGCAGCGCCG	GCAACGGCGG	CCACGGCGGC	GGTGCCACCG	1320
GCGGCGCCAG	CGGCAAGGGC	GGCAACGGCA	CCAGCGGTGC	CGCCAGCGGC	TCAGGCGTCA	1380
TCAACGTCAC	CGCCGGCCAC	GGCGGCAACG	GCGGCAATGG	CCGCAACGGC	GGCAACGGC	1439
(3) 73750545						

## (2) INFORMATION FOR SEQ ID NO:168:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 329 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

GGGCCGGCGG	GGCCGGATTT	TCTCGTGCCT	TGATTGTCGC	TGGGGATAAC	GGCGGTGATG	60
GTGGTAACGG	CGGGATGGGC	GGGGCTGGCG	GGGCTGGCGG	CCCCGGCGGG	GCCGGCGGCC	120
TGATCAGCCT	GCTGGGCGGC	CAAGGCGCCG	-GCGGGGCCGG	CGGGACCGGC	GGGGCCGGCG	180
GTGTTGGCGG	TGACGGCGGG	GCCGGCGGCC	CCGGCAACCA	GGCCTTCAAC	GCAGGTGCCG	240
GCGGGGCCGG	CGGCCTGATC	AGCCTGCTGG	GCGGCCAAGG	CGCCGGCGGG	GCCGGCGGGA	300
CCGGCGGGGC	CGGCGGTGTT	GGCGGTGAC				329

(2) INFORMATION FOR SEQ ID NO:169:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 80 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:	
GCAACGGTGG CAACGGCGGC ACCAGCACGA CCGTGGGGAT GGCCGGAGGT AACTGTGGTG	60
CCGCCGGGCT GATCGGCAAC	80
(2) INFORMATION FOR SEQ ID NO:170:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 392 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:	
GGGCTGTGTC GCACTCACAC CGCCGCATTC GGCGACGTTG GCCGCCCAAT ATCCAGCTCA	60
AGGCCTACTA CTTACCGTCG GAGGACCGCC GCATCAAGGT GCGGGTCAGC GCCCAAGGAA	120
TCAAGGTCAT CGACCGCGAC GGGCATCGAG GCCGTCGTCG CGCGGCTCGG GCAGGATCCG	180
CCCCGGCGCA CTTCGCGCGC CAAGCGGGGCT CATCGCTCCG AACGGCGGCG ATCCTGTGAG	240
CACAACTGAT GGCGCGCAAC GAGATTCGTC CAATTGTCAA GCCGTGTTCG ACCGCAGGGA	300
CCGGTTATAC GTATGTCAAC CTATGTCACT CGCAAGAACC GGCATAACGA TCCCGTGATC	360
CGCCGACAGC CCACGAGTGC AAGACCGTTA CA	392
(2) INFORMATION FOR SEQ ID NO:171:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 535 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:	
ACCGGCGCCA CCGGCGCAC CGGGTTCGCC GGTGGCGCCG GCGGGGCCGG CGGGCAGGGC	60
GGTATCAGCG GTGCCGGCGG CACCAACGGC TCTGGTGGCG CTGGCGGCAC CGGCGGACAA	120
GGCGGC3CCG GGGGCGCTGG CGGGGCCGGC GCCGATAACC CCACCGGCAT CGGCGGCGCC	180

GGCGGCACCG	GCGGCACCGG	CGGAGCGGCC	GGAGCCGGCG	GGGCCGGTGG	CGCCATCGGT	240
ACCGGCGGCA	CCGGCGGCGC	GGTGGGCAGC	GTCGGTAACG	CCGGGATCGG	CGGTACCGGC	300
GGTACGGGTG	GTGTCGGTGG	TGCTGGTGGT	GCAGGTGCGG	CTGCGGCCGC	TGGCAGCAGC	360
GCTACCGGTG	GCGCCGGGTT	CGCCGGCGGC	GCCGGCGGAG	AAGGCGGACC	GGGCGGCAAC	420
AGCGGTGTGG	GCGGCACCAA	CGGCTCCGGC	GGCGCCGGCG	GTGCAGGCGG	CAAGGGCGGC	480
ACCGGAGGTG	CCGGCGGGTC	CGGCGCGGAC	AACCCCACCG	GTGCTGGTTT	CGCCG	535
(2) INFORMA	TION FOR SE	Q ID NO:172	2:			
() ()	QUENCE CHAR A) LENGTH: B) TYPE: nu C) STRANDED D) TOPOLOGY	690 base pa cleic acid NESS: singl	iirs			
(xi) SE(	QUENCE DESC	RIPTION: SE	Q ID NO:172	!:		

CCGACGTCGC CGGGGCGATA CGGGGGTCAC CGACTACTAC ATCATCCGCA CCGAGAATCG 60 GCCGCTGCTG CAACCGCTGC GGGCGGTGCC GGTCATCGGA GATCCGCTGG CCGACCTGAT 120 CCAGCCGAAC CTGAAGGTGA TCGTCAACCT GGGCTACGGC GACCCGAACT ACGGCTACTC 180 GACGAGCTAC GCCGATGTGC GAACGCCGTT CGGGCTGTGG CCGAACGTGC CGCCTCAGGT 240 CATCGCCGAT GCCCTGGCCG CCGGAACACA AGAAGGCATC CTTGACTTCA CGGCCGACCT 300 GCAGGCGCTG TCCGCGCAAC CGCTCACGCT CCCGCAGATC CAGCTGCCGC AACCCGCCGA 360 TCTGGTGGCC GCGGTGGCCG CCGCACCGAC GCCGGCCGAG GTGGTGAACA CGCTCGCCAG 420 GATCATCTCA ACCAACTACG CCGTCCTGCT GCCCACCGTG GACATCGCCC TCGCCTGGTC 480 ACCACCCTGC CGCTGTACAC CACCCAACTG TTCGTCAGGC AACTCGCTGC GGGCAATCTG ATCAACGCGA TCGGCTATCC CCTGGCGGCC ACCGTAGGTT TAGGCACGAT CGATAGCGGG 600 CGGCGTGGAA TTGCTCACCC TCCTCGCGGC GGCCTCGGAC ACCGTTCGAA ACATCGAGGG 660 CCTCGTCACC TAACGGATTC CCGACGGCAT 690

## (2) INFORMATION FOR SEQ ID NO:173:

- (i) SEQUENCE CHARACTERISTIGS:
  - (A) LENGTH: 407 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

ACGGTGACGG CGGTACTGGC GGCGGCCACG GCGGCAACGG CGGGAATCCC GGGTGGCT	rct 60
TGGGCACAGC CGGGGTGGC GGCAACGGTG GCGCCGGCAG CACCGGTACT GCAGGTGC	GCG 120
GCTCTGGGGG CACCGGCGGC GACGGCGGGA CCGGCGGGCG TGGCGGCCTG TTAATGGC	GCG 180
CCGGCGCCGG CGGCACGGT GGCACTGGCG GCGCGGGCGG TGCCGGTGTC GACGGTGC	GCG 240
GCGCCGGCGG GGCCGGCGGC GCCGGCGGCA ACGGCGGCGC CGGGGGTCAA GCCGCCC	IGC 300
TGTTCGGGCG CGGCGGCACC GGCGGAGCCG GCGGCTACGG CGGCGATGGC GGTGGCGC	360 360
GTGACGGCTT CGACGGCACG ATGGCCGGCC TGGGTGGTAC CGGTGGC	407
(2) INFORMATION FOR SEQ ID NO:174:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 468 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:	
GATCGGTCAG CGCATCGCCC TCGGCGGCAA GCGATTCCGC GGTCTCACCG AAGAACA	TCG 60
TGCACGCGGC GGCGCGGACC AGCCCGCTGC GCTGCGGCGC GTCGAACGCC TCCAGCA	GGC 120
ACAGCCAGTC CTTGGCGGCC TGCGAGGCGA ACACGTCGGT GTCACCGGTG TAGATCG	CCG 180
GGATGCCCGC CTCCGCCAAC GCATTCCGGC ACGCCCGCGC GTCTTTGTGA TGCTCGA	CGA 240
TCACCGCGAT GTCTGCGGCC ACCACGGGCC GCCCGGCGAA GGTGGCCCCG CTGGCCA	GTA 300
GCGCCGCGAC GTCGGCGGCC AGGTCGTCGG GGATGTGCCG GCGCAGCGCT CCGGCGC	GAC 360
GCCCGAAAAA CGACCCCTCA CCCAGCTGGG TCCCGCTGGC ATATCCCTTG CCGTCCT	GGG 420
CGATATTGGA CGCGCATGCC CCGACCGCGT ACAGGCCGGC CACCACCG	468
(2) INFORMATION FOR SEQ ID NO:175:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 219 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:	
GGTGGTAACG GCGGCCAGGG TGGCATCGGC GGCGCCGGCG AGAGAGGCGC CGACGGC	GCC 60

GGCCCCAATG CTAACGGCGC AAACGGCGAG AACGGCGGTA GCGGTGGTAA CGGTGGCGAC 120

GGCGGCGCG	GCGGCAATGG	CGGCGCGGGC	GGCAACGCGC	AGGCGGCCGG	GTACACCGAC	180
GGCGCCACGG	GCACCGGCGG	CGACGGCGGC	AACGGCGGC			219
(2) INFORM	ATION FOR SE	Q ID NO:176	5:			
	EQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDEI (D) TOPOLOGY	494 base pactleic acid	airs			
(xi) Si	EQUENCE DESC	RIPTION: SI	EQ ID NO:176	<b>5</b> :		
TAGCTCCGGC	GAGGGCGGCA	AGGCGGCGA	CGGTGGCCAC	GGCGGTGACG	GCGTCGGCGG	60
CAACAGTTCC	GTCACCCAAG	GCGGCAGCGG	CGGTGGCGGC	GGCGCCGGCG	GCGCCGGCGG	120
CAGCGGCTTT	TTCGGCGGCA	AGGGCGGCTT	CGGCGGCGAC	GGCGGTCAGG	GCGGCCCCAA	180
CGGCGGCGGT	ACCGTCGGCA	CCGTGGCCGG	TGGCGGCGGC	AACGGCGGTG	TCGGCGGCCG	240
GGGCGGCGAC	GGCGTCTTTG	CCGGTGCCGG	CGGCCAGGGC	GGCCTCGGTG	GGCAGGGCGG	300
CAATGGCGGC	GGCTCCACCG	GCGGCAACGG	CGGCCTTGGC	GGCGCGGGCG	GTGGCGGAGG	360
CAACGCCCCG	GCTCGTGCCG	AATCCGGGCT	GACCATGGAC	AGCGCGGCCA	AGTTCGCTGC	420
CATCGCATCA	GGCGCGTACT	GCCCCGAACA	CCTGGAACAT	CACCCGAGTT	AGCGGGGCGC	480
ATTTCCTGAT	CACC					494
(2) INFORM	ATION FOR SE	Q ID NO:17	7:			
	EQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDEI (D) TOPOLOGY	220 base pa cleic acid NESS: sing	airs			
(xi) SI	EQUENCE DESC	RIPTION: SI	EQ ID NO:17	7:		
GGGCCGGTGG	TGCCGCGGGC	CAGCTCTTCA	GCGCCGGAGG	CGCGGCGGGT	GCCGTTGGGG	60
TTGGCGGCAC	CGGCGGCCAG	GGTGGGGCTG	GCGGTGCCGG	AGCGGCCGGC	GCCGACGCCC	120
CCGCCAGCAC	AGGTCTAACC	GGTGGTACCG	GGTTCGCTGG	CGGGGCCGGC	GCCTCGCC	180
GCCAGAGCGG	CAACGCCATT	GCCGGCGGCA	TCAACGGCTC			220
(2) INFORM	ATION FOR SE	Q ID NO:17	B :			
	EQUENCE CHAP (A) LENGTH:					

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:	
ATGGCGGCAA CGGGGCCCC GGCGGTGCTG GCGGGGCCGG CGACTACAAT TTCCAACGGC	60
GGGCAGGGTG GTGCCGGCGG CCAAGGCGGC CAAGGCGGCC TGGGCGGGGC AAGCACCACC	120
TGATCGGCCT AGCCGCACCC GGGAAAGCCG ATCCAACAGG CGACGATGCC GCCTTCCTTG	180
CCGCGTTGGA CCAGGCCGGC ATCACCTACG CTGACCCAGG CCACGCCATA ACGGCCGCCA	240
AGGCGATGTG TGGGCTGTGT GCTAACGGCG TAACAGGTCT ACAGCTGGTC GCGGACCTGC	300
GGGACTACAA TCCCGGGCTG ACCATGGACA GCGCGGCCAA GTTCGCTGCC ATCGCATCAG	360
GCGCGTACTG CCCCGAACAC CTGGAACA	388
(2) INFORMATION FOR SEQ ID NO:179:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 400 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:	
GCAAAGGCGG CACCGGCGGG GCCGGCATGA ACAGCCTCGA CCCGCTGCTA GCCGCCCAAG	60
ACGGCGGCCA AGGCGGCACC GGCGGCACCG GCGCCAACGC CGGCGCCGGC GGCACCAGCT	120
TCACCCAAGG CGCCGACGGC AACGCCGGCA ACGGCGGTGA CGGCGGGGTC GGCGGCAACG	180
GCGGAAACGG CGGAAACGGC GCAGACAACA CCACCACCGC CGCCGCCGGC ACCACAGGCG	240
GCGACGGCGG GGCCGGCGGG GCCGGCGGAA CCGGCGGAAC CGGCGGAGCC GCCGGCACCG	300
GCACCGGCGG CCAACAAGGC AACGGCGGCA ACGGCGGCAC CGGCGGCAAA GGCGGCACCG	360
GCGGCGACGG TGCACTCTCA GGCAGCACCG GTGGTGCCGG	400
(2) INFORMATION FOR SEQ ID NO:180:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 538 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:	
GGCAACGGCG GCAACGGCGG CATCGCCGGC ATTGGGCGGC AACGGCGTTC CCGCACGGG	

WO 99/42076

PCT/US99/03268

AGCGGCAACG GCGGCCAACG GCGGCAGCGG CGGCAACGGC GGCAACGCCG GCATGGGCGG	120
CAACAGCGGC ACCGGCAGCG GCGACGGCGG TGCCGGCGGG AACGGCGGCG CGGCGGGCAC	180
GGGCGGCACC GGCGGCGACG GCGGCCTCAC CGGTACTGGC GGCACCGGCG GCAGCGGTGG	240
CACCGGCGGT GACGGCGGTA ACGGCGGCAA CGGAGCAGAT AACACCGCAA ACATGACTGC	300
GCAGGCGGGC GGTGACGGTG GCAACGGCGG CGACGGTGGC TTCGGCGGCG GGGCCGGGGC	360
CGGCGGCGGT GGCTTGACCG CTGGCGCCAA CGGCACCGGC GGGCAAGGCG GCGCCGGCGG	420
CGATGGCGGC AACGGGGCCA TCGGCGGCCA CGGCCCACTC ACTGACGACC CCGGCGGCAA	480
CGGGGGCACC GGCGGCAACG GCGGCACCGG CGGCACCGGC GGCGCGGGCA TCGGCAGC	538
(2) INFORMATION FOR SEQ ID NO:181:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 239 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:	
GGGCCGGTGG TGCCGCGGGC CAGCTCTTCA GCGCCGGAGG CGCGGCGGGT GCCGTTGGGG	60
TTGGCGGCAC CGGCGGCCAG GGTGGGGCTG GCGGTGCCGG AGCGGCCGGC GCCGACGCCC	120
CCGCCAGCAC AGGTCTAACC GGTGGTACCG GGTTCGCTGG CGGGGCCGGC GGCGTCGGCG	180
GCCACGGCGG CAACGCCATT GCCGGCGGCA TCAACGGCTC CGGTGGTGCC GGCGGCACC	239
(2) INFORMATION FOR SEQ ID NO:182:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 985 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:	
AGCAGCGCTA CCGGTGGCGC CGGGTTCGCC GGCGGCGCCG GCGGAGAAGG CGGAGCGGGC	60
GGCAACAGCG GTGTGGGCGG CACCAACGGC TCCGGCGGCG CCGGCGGTGC AGGCGGCAAG	120
GGCGGCACCG GAGGTGCCGG CGGGTCCGGC GCGGACAACC CCACCGGTGC TGGTTTCGCC	180
GGTGGCGCCG GCGGCACAGG TGGCGCGGCC GGCGCCGGCG GGCGACCGGT	240
ACCGGCGGCA CCGGCGGCGT TGTCGGCGCC ACCGGTAGTG CAGGCATCGG CGGGGCCGGC	300
GGCCGCGGCG GTGACGCGG CGATGGGGCC AGCGGTCTCG GCCTGGGCCT CTCCGGCTTT	350

GACGGCGGC	AAGGCGGCCA	AGGCGGGGCC	GGCGGCAGCG	CCGGCGCCGG	CGGCATCAAC	420
GGGGCCGGCG	GGGCCGGCGG	CAACGGCGGC	GACGGCGGGG	ACGGCGCAAC	CGGTGCCGCA	480
GGTCTCGGCG	ACAACGGCGG	GGTCGGCGGT	GACGGTGGGG	CCGGTGGCGC	CGCCGGCAAC	540
GGCGGCAACG	CGGGCGTCGG	CCTGACAGCC	AAGGCCGGCG	ACGGCGGCGC	CGCGGGCAAT	600
		CGGTGCTGGC				660
					CACCACCTGA	720
		AAAGCCGATC				780
		ACCTACGCTG				840
		AACGGCGTAA				900
		ATGGACAGCG				960
	CGAACACCTG					
(2)						985

## (2) INFORMATION FOR SEQ ID NO:183:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2138 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

CGGCACGAGG ATCGGTACCC CGCGGCATCG GCAGCTGCCG ATTCGCCGGG TTTCCCCACC 60 CGAGGAAAGC CGCTACCAGA TGGCGCTGCC GAAGTAGGGC GATCCGTTCG CGATGCCGGC 120 ATGAACGGGC GGCATCAAAT TAGTGCAGGA ACCTTTCAGT TTAGCGACGA TAATGGCTAT 180 AGCACTAAGG AGGATGATCC GATATGACGC AGTCGCAGAC CGTGACGGTG GATCAGCAAG 240 AGATTTTGAA CAGGGCCAAC GAGGTGGAGG CCCCGATGGC GGACCCACCG ACTGATGTCC 300 CCATCACACC GTGCGAACTC ACGGCGGCTA AAAACGCCGC CCAACAGCTG GTATTGTCCG 360 CCGACAACAT GCGGGAATAC CTGGCGGCCG GTGCCAAAGA GCGGCAGCGT CTGGCGACCT 420 CGCTGCGCAA CGCGGCCAAG GCGTATGGCG AGGTTGATGA GGAGGCTGCG ACCGCGCTGG 480 ACAACGACGG CGAAGGAACT GTGCAGGCAG AATCGGCCGG GGCCGTCGGA GGGGACAGTT 540 CGGCCGAACT AACCGATACG CCGAGGGTGG CCACGGCCGG TGAACCCAAC TTCATGGATC 600 TCAAAGAAGC GGCAAGGAAG CTCGAAACGG GCGACCAAGG CGCATCGCTC GCGCACTTTG

CGGATGGGTG GAACACTTTC AACCTGACGC				720
TTGACAACTG GGAAGGCGAT GCGGCTACCG	CTTGCGAGGC	TTCGCTCGAT	CAACAACGGC	780
AATGGATACT CCACATGGCC AAATTGAGCG	CTGCGATGGC	CAAGCAGGCT	CAATATGTCG	840
CGCAGCTGCA CGTGTGGGCT AGGCGGGAAC	ATCCGACTTA	TGAAGACATA	GTCGGGCTCG	900
AACGGCTTTA CGCGGAAAAC CCTTCGGCCC	GCGACCAAAT	TCTCCCGGTG	TACGCGGAGT	960
ATCAGCAGAG GTCGGAGAAG GTGCTGACCG	AATACAACAA	CAAGGCAGCC	CTGGAACCGG	1020
TAAACCCGCC GAAGCCTCCC CCCGCCATCA	AGATCGACCC	GCCCCGCCT	CCGCAAGAGC	1080
AGGGATTGAT CCCTGGCTTC CTGATGCCGC	CGTCTGACGG	CTCCGGTGTG	ACTCCCGGTA	1140
CCGGGATGCC AGCCGCACCG ATGGTTCCGC	CTACCGGATC	GCCGGGTGGT	GGCCTCCCGG	1200
CTGACACGGC GGCGCAGCTG ACGTCGGCTG	GGCGGGAAGC	CGCAGCGCTG	TCGGGCGACG	1260
TGGCGGTCAA AGCGGCATCG CTCGGTGGCG	GTGGAGGCGG	CGGGGTGCCG	TCGGCGCCGT	1320
TGGGATCCGC GATCGGGGGC GCCGAATCGG	TGCGGCCCGC	TGGCGCTGGT	GACATTGCCG	1380
GCTTAGGCCA GGGAAGGGCC GGCGGCGGCG	CCGCGCTGGG	CGGCGGTGGC	ATGGGAATGC	1440
CGATGGGTGC CGCGCATCAG GGACAAGGGG	GCGCCAAGTC	CAAGGGTTCT	CAGCAGGAAG	1500
ACGAGGCGCT CTACACCGAG GATCGGGCAT O	GGACCGAGGC	CGTCATTGGT	AACCGTCGGC	1560
GCCAGGACAG TAAGGAGTCG AAGTGAGCAT G				1620
GTTGACGCTG GCGGCGCGGT TTCAGTCGGC C	CTAGACGGG	ACGCTCAATC	AGATGAACAA	1680
CGGATCCTTC CGCGCCACCG ACGAAGCCGA G	GACCGTCGAA (	STGACGATCA .	ATGGGCACCA	1740
GTGGCTCACC GGCCTGCGCA TCGAAGATGG T	TTGCTGAAG	AGCTGGGTG	CCGAGGCGGT	1800
GGCTCAGCGG GTCAACGAGG CGCTGCACAA T				1860
CGCGGCGGGC GAGCAGCTGA CCGCTGCGTT A	TCGGCCATG T	CCCGCGCGA 1	TGAACGAAGG	1920
AATGGCCTAA GCCCATTGTT GCGGTGGTAG C				1980
GGTCATTCAG CGCGCCCGAC ACGGCGTGAG T				2040
GCCGGGTTCG GAGGGCGCCA TAGTCCTGGT C	GCCAATATT G	CCGCAGCTA (	GCTGGTCTTA	2100
GGTTCGGTTA CGCTGGTTAA TTATGACGTC CO	GTTACCA			2120

# (2) INFORMATION FOR SEQ ID NO:184:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 460 amino acids

⁽B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:
- Met Thr Gln Ser Gln Thr Val Thr Val Asp Gln Gln Glu Ile Leu Asn 1 5 10 10
- Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val
- Pro Ile Thr Pro Cys Glu Leu Thr Ala Ala Lys Asn Ala Ala Gln Gln 35 40 45
- Leu Val Leu Ser Ala Asp Asn Met Arg Glu Tyr Leu Ala Ala Gly Ala 50 55 60
- Lys Glu Arg Gln Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Ala 65 70 75 80
- Tyr Gly Glu Val Asp Glu Glu Ala Ala Thr Ala Leu Asp Asn Asp Gly 85 90 95
- Glu Gly Thr Val Gln Ala Glu Ser Ala Gly Ala Val Gly Gly Asp Ser
- Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro
- Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp
- Gln Gly Ala Ser Leu Ala His Phe Ala Asp Gly Trp Asn Thr Phe Asn 145 150 155 160
- Leu Thr Leu Gln Gly Asp Val Lys Arg Phe Arg Gly Phe Asp Asn Trp 165 170 175
- Glu Gly Asp Ala Ala Thr Ala Cys Glu Ala Ser Leu Asp Gln Gln Arg 180 185 190
- Gln Trp Ile Leu His Met Ala Lys Leu Ser Ala Ala Met Ala Lys Gln
  195 200 205
- Ala Gln Tyr Val Ala Gln Leu His Val Trp Ala Arg Arg Glu His Pro 210 215 220
- Thr Tyr Glu Asp Ile Val Gly Leu Glu Arg Leu Tyr Ala Glu Asn Pro 225 230 235 240
- Ser Ala Arg Asp Gln Ile Leu Pro Val Tyr Ala Glu Tyr Gln Gln Arg 245 250 255
- Ser Glu Lys Val Leu Thr Glu Tyr Asn Asn Lys Ala Ala Leu Glu Pro

- Val Asn Pro Pro Lys Pro Pro Pro Ala Ile Lys Ile Asp Pro Pro Pro 275 280 285
- Pro Pro Gln Glu Gln Gly Leu Ile Pro Gly Phe Leu Met Pro Pro Ser
- Asp Gly Ser Gly Val Thr Pro Gly Thr Gly Met Pro Ala Ala Pro Met 305 310 315
- Val Pro Pro Thr Gly Ser Pro Gly Gly Gly Leu Pro Ala Asp Thr Ala 325 330 335
- Ala Gln Leu Thr Ser Ala Gly Arg Glu Ala Ala Ala Leu Ser Gly Asp 340 345 350
- Val Ala Val Lys Ala Ala Ser Leu Gly Gly Gly Gly Gly Gly Val
  355 360 365
- Pro Ser Ala Pro Leu Gly Ser Ala Ile Gly Gly Ala Glu Ser Val Arg
- Pro Ala Gly Ala Gly Asp Ile Ala Gly Leu Gly Gln Gly Arg Ala Gly 385 390 395 400
- Gly Gly Ala Ala Leu Gly Gly Gly Gly Met Gly Met Pro Met Gly Ala
  405
  415
- Ala His Gln Gly Gln Gly Gly Ala Lys Ser Lys Gly Ser Gln Gln Glu 420 425 430
- Asp Glu Ala Leu Tyr Thr Glu Asp Arg Ala Trp Thr Glu Ala Val Ile
  435 440 445
- Gly Asn Arg Arg Arg Gln Asp Ser Lys Glu Ser Lys 450 455

# (2) INFORMATION FOR SEQ ID NO:185:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 277 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:
- Ala Gly Asn Val Thr Ser Ala Ser Gly Pro His Arg Phe Gly Ala Pro

  1 10 15
- Asp Arg Gly Ser Gln Arg Arg Arg His Pro Ala Ala Ser Thr Ala 20 25 30
- Thr Glu Arg Cys Arg Phe Asp Arg His Val Ala Arg Gln Arg Cys Gly 35 40 45

- Phe Pro Pro Ser Arg Arg Gln Leu Arg Arg Arg Val Ser Arg Glu Ala 50 55 60
- Thr Thr Arg Arg Ser Gly Arg Arg Asn His Arg Cys Gly Trp His Pro
- Gly Thr Gly Ser His Thr Gly Ala Val Arg Arg Arg His Gln Glu Ala
- Arg Asp Gln Ser Leu Leu Leu Arg Arg Gly Arg Val Asp Leu Asp 100 105 110
- Gly Gly Gly Arg Leu Arg Arg Val Tyr Arg Phe Gln Gly Cys Leu Val
- Val Val Phe Gly Gln His Leu Leu Arg Pro Leu Leu Ile Leu Arg Val
- His Arg Glu Asn Leu Val Ala Gly Arg Arg Val Phe Arg Val Lys Pro 150 155 160
- Phe Glu Pro Asp Tyr Val Phe Ile Ser Arg Met Phe Pro Pro Ser Pro 165 170 175
- His Val Gln Leu Arg Asp Ile Leu Ser Leu Leu Gly His Arg Ser Ala 180 185 190
- Gln Phe Gly His Val Glu Tyr Pro Leu Pro Leu Leu Ile Glu Arg Ser
- Leu Ala Ser Gly Ser Arg Ile Ala Phe Pro Val Val Lys Pro Pro Glu 210 215 220
- Pro Leu Asp Val Ala Leu Gln Arg Gln Val Glu Ser Val Pro Pro Ile 225 230 235 240
- Arg Lys Val Arg Glu Arg Cys Ala Leu Val Ala Arg Phe Glu Leu Pro
- Cys Arg Phe Phe Glu Ile His Glu Val Gly Phe Thr Gly Arg Gly His

Pro Arg Arg Ile Gly 275

- (2) INFORMATION FOR SEQ ID NO:186:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 192 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

- Arg Val Ala Ala Ser Phe Ile Asp Trp Leu Asp Ser Pro Asp Ser Pro 1 5 10 10 15
- Leu Asp Pro Ser Leu Val Ser Ser Leu Leu Asn Ala Val Ser Cys Gly
  20 25 30
- Ala Glu Ser Ser Ala Ser Ser Ser Ala Arg Ser Gly Asn Gly Ser Arg
  35 40 45
- Trp Thr Ser Met Pro Ser Gly Thr Arg Pro Gly Pro Arg Arg Ala Thr 50 55 60
- Ser Arg Asp Asp Arg Arg Ser Ala Thr Ser Val Ile Pro Ser Arg Arg 65 70 75
- Ser Val Ala Pro Arg Ala Glu Phe Gly Thr Arg Leu Ala Ser His Arg
- Ala Ser Pro Ser Asn Ala Cys Pro Val Arg Ile Val Thr Ser Ala Ser
- Gly Arg Pro Ile Ser Ser Pro Pro Ile Val Arg Ser Arg Ser Cys Val
- Asp Lys Asn Gly Arg Arg Cys Ala Ser Gly Tyr Arg Arg Leu Asn Arg
- Ala Arg Ser Ser Ser Ile Ala Ala Arg Cys Arg Thr Ile Gly Thr Phe
- Arg Arg Ser Arg Tyr Ser Ala Ser Met Arg Val Ser Thr Asn Ser Pro
- His Val Thr His Gly Val Ala Pro Gly Val Thr Arg Arg Ile Gly Gly 180 185 190

## (2) INFORMATION FOR SEQ ID NO:187:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 196 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:
- Gln Glu Arg Pro Gln Met Cys Gln Arg Val Ser Glu Ile Glu Pro Arg 1 5 10 15
- Thr Gln Phe Phe Asn Arg Cys Ala Leu Pro His Tyr Trp His Phe Pro
- Ala Val Ala Val Phe Ser Lys His Ala Ser Leu Asp Glu Leu Ala Pro

WO 99/42076

178

35 **4**0 **4**5

- Arg Asn Pro Arg Arg Ser Ser Arg Arg Asp Ala Glu Asp Arg Arg Val
- Ile Phe Ala Ala Thr Leu Val Ala Val Asp Pro Pro Leu Arg Gly Ala 70 75 80
- Gly Glu Ala Asp Gln Leu Ile Asp Leu Gly Val Cys Arg Arg Gln 85 90 95
- Ala Gly Arg Val Arg Arg Gly Gln Glu Leu His His Arg His Arg His 100 105 110
- Gln Gly Ala Ala Pro Asp Leu Arg Arg Arg Arg Arg His Arg Arg Val
- Gln Gln His Arg Arg Leu Gln Arg Val Arg Gln Leu Arg Arg Tyr Val 130 135 140
- Gln Thr Ala His His Arg Arg Phe Ala Arg Thr Asp Arg Val Arg His
- His Val Arg Gly Pro Ser Asn His Arg Arg Arg Arg Val Tyr Arg Gly
- Arg His Ser Gly Ala Gly Gly Cys Pro Ala Gly Gly Ala Gly Ser Val

Gly Gly Ser Ala 195

# (2) INFORMATION FOR SEQ ID NO:188:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 311 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

- Val Arg Cys Gly Thr Leu Val Pro Val Pro Met Val Glu Phe Leu Thr 1 5 10 10
- Ser Thr Asn Ala Pro Ser Leu Pro Ser Ala Tyr Ala Glu Val Asp Lys
  20 25 30
- Leu Ile Gly Leu Pro Ala Gly Thr Ala Lys Arg Trp Ile Asn Gly Tyr 35 40 45
- Glu Arg Gly Gly Lys Asp His Pro Pro Ile Leu Arg Val Thr Pro Gly 50 55 60
- Ala Thr Pro Trp Val Thr Trp Gly Glu Phe Val Glu Thr Arg Met Leu

WO 99/42076 PCT/US99/03268

179

65					70					75					80
Al	a Gl	u Ty	T Ar	g As 85	p Ar	g Ar	g Ly:	s Va	1 Pr 90	o Il	e Va	l Ar	g Glr	1 Arg	J Ala
Ala	a Il	e Gl	u Gl:	u Lei O	u Arg	, Al	a Arg	9 Pho 10	e Ası	î Lei	ı Ar	g Tyr	Pro		ı Ala
							120	,				125	5		Gly
						133	,				140	)			Gly
					100					155					Asn 160
									170					175	
					Arg			182					190		
					Val		200					205			
Asp	Asp 210	Ala	Asp	Asp	Ser	Ala 215	Pro	His	Glu	Thr	Ala 220	Phe	Lys	Arg	Leu
Leu 225	Thr	Asn	Asp	Gly	Ser 230	Asn	Gly	Glu	Ser	Gly 235	Glu	Ser	Ser	Gln	Ser 240
					Thr				250					255	
Pro	Thr	Arg	Asn 260	Gly	Ala	Gln	Arg	Ala 265	Leu	His	Arg	Val	Val 270	Thr	Leu
Leu	Ala	Ala 275	Gly	Arg	Pro	Val	Leu 280	Thr	His	Cys	Phe	Ala 285	Gly	Lys	Asp
Arg	Thr 290	Gly	Phe	Val	Val ;	Ala 295	Leu	Val	Leu	Glu	Ala 300	Val	Gly :	Leu	Asp
Arg . 305	Asp	Val	Ile		Ala 2 310	Asp									

## (2) INFORMATION FOR SEQ ID NO:189:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2072 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

CTCGTGCCGA TTCGGCACGA GCTGAGCAGC CCAAGGGGCC GTTCGGCGAA GTCATCGAGG	60
CATTCGCCGA CGGGCTGGCC GGCAAGGGTA AGCAAATCAA CACCACGCTG AACAGCCTGT	120
CGCAGGCGTT GAACGCCTTG AATGAGGGCC GCGGCGACTT CTTCGCGGTG GTACGCAGCC	180
TGGCGCTATT CGTCAACGCG CTACATCAGG ACGACCAACA GTTCGTCGCG TTGAACAAGA	240
ACCTTGCGGA GTTCACCGAC AGGTTGACCC ACTCCGATGC GGACCTGTCG AACGCCATCC	300
AGCAATTCGA CAGCTTGCTC GCCGTCGCGC GCCCGTTCTT CGCCAAGAAC CGCGAGGTGC	360
TGACGCATGA CGTCAATAAT CTCGCGACCG TGACCACCAC GTTGCTGCAG CCCGATCCGT	420
TGGATGGGTT GGAGACCGTC CTGCACATCT TCCCGACGCT GGCGGCGAAC ATTAACCAGC	480
TTTACCATCC GACACACGGT GGCGTGGTGT CGCTTTCCGC GTTCACGAAT TTCGCCAACC	540
CGATGGAGTT CATCTGCAGC TCGATTCAGG CGGGTAGCCG GCTCGGTTAT CAAGAGTCGG	600
CCGAACTCTG TGCGCAGTAT CTGGCGCCAG TCCTCGATGC GATCAAGTTC AACTACTTTC	660
CGTTCGGCCT GAACGTGGCC AGCACCGCCT CGACACTGCC TAAAGAGATC GCGTACTCCG	720
AGCCCCGCTT GCAGCCGCCC AACGGGTACA AGGACACCAC GGTGCCCGGC ATCTGGGTGC	780
CGGATACGCC GTTGTCACAC CGCAACACGC AGCCCGGTTG GGTGGTGGCA CCCGGGATGC	840
AAGGGGTTCA GGTGGGACCG ATCACGCAGG GTTTGCTGAC GCCGGAGTCC CTGGCCGAAC	900
TCATGGGTGG TCCCGATATC GCCCCTCCGT CGTCAGGGCT GCAAACCCCG CCCGGACCCC	960
CGAATGCGTA CGACGAGTAC CCCGTGCTGC CGCCGATCGG TTTACAGGCC CCACAGGTGC	1020
CGATACCACC GCCGCCTCCT GGGCCCGACG TAATCCCGGG TCCGGTGCCA CCGGTCTTGG	1080
CGGCGATCGT GTTCCCAAGA GATCGCCCGG CAGCGTCGGA AAACTTCGAC TACATGGGCC	1140
TCTTGTTGCT GTCGCCGGGC CTGGCGACCT TCCTGTTCGG GGTGTCATCT AGCCCCGCCC	1200
GTGGAACGAT GGCCGATCGG CACGTGTTGA TACCGGCGAT CACCGGCCTG GCGTTGATCG	1260
CGGCATTCGT CGCACATTCG TGGTACCGCA CAGAACATCC GCTCATAGAC ATGCGCTTGT	1320
TCCAGAACCG AGCGGTCGCG CAGGCCAACA TGACGATGAC GGTGCTCTCC CTCGGGCTGT	1380
TTGGCTCCTT CTTGCTGCTC CCGAGCTACC TCCAGCAAGT GTTGCACCAA TCACCGATGC	1440
AATCGGGGGT GCATATCATC CCACAGGGCC TCGGTGCCAT GCTGGCGATG CCGATCGCCG	1500
GAGCGATGAT GGACCGACGG GGACCGGCCA AGATCGTGCT GGTTGGGATC ATGCTGATCG	1560
CTGCGGGGTT GGGCACCTTC GCCTTTGGTG TCGCGCGGCA AGCGGACTAC TTACCCATTC	1620

TGCCGACCGG	GCTGGCAATC	ATGGGCATGG	GCATGGGCTG	CTCCATGATG	CCACTGTCCG	1680
GGGCGGCAGT	GCAGACCCTG	GCCCCACATC	AGATCGCTCG	CGGTTCGACG	CTGATCAGCG	1740
TCAACCAGCA	GGTGGGCGGT	TCGATAGGGA	CCGCACTGAT	GTCGGTGCTG	CTCACCTACC	1800
AGTTCAATCA	CAGCGAAATC	ATCGCTACTG	CAAAGAAAGT	CGCACTGACC	CCAGAGAGTG	1860
GCGCCGGGCG	GGGGGCGCG	GTTGACCCTT	CCTCGCTACC	GCGCCAAACC	AACTTCGCGG	1920
CCCAACTGCT	GCATGACCTT	TCGCACGCCT	ACGCGGTGGT	ATTCGTGATA	GCGACCGCGC	1980
TAGTGGTCTC	GACGCTGATC	CCCGCGGCAT	TCCTGCCGAA	ACAGCAGGCT	AGTCATCGAA	2040
	GCTATCCGCA					
						2072

#### (2) INFORMATION FOR SEQ ID NO:190:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1923 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

TCACCCCGGA GAAGTCGTTC GTCGACGACC TGGACATCGA CTCGCTGTCG ATGGTCGAGA 60 TCGCCGTGCA GACCGAGGAC AAGTACGGCG TCAAGATCCC CGACGAGGAC CTCGCCGGTC 120 TGCGTACCGT CGGTGACGTT GTCGCCTACA TCCAGAAGCT CGAGGAAGAA AACCCGGAGG 180 CGGCTCAGGC GTTGCGCGCG AAGATTGAGT CGGAGAACCC CGATGCGGCA CGAGCAGATC 240 GGTGCGTTTC ACCCACATCG CAAGCTCGAG ACGCCCGTCG TCCTCTTGCA CGCTCAGCCA 300 GGTTGGCGTG TCGCCGCCTT CCAGCAAGTG TTCCCACCAC ACGAAGGGAC CCTCGCGAAA 360 GGTGACTGAT CCGCGGACCA CATAGTCGAT GCCACCGTGG CTGACAATTG CGCCGGGTCC 420 GAGTTGGCGG GGGCCGAATT GCGGCATTGC GTCGAAGGCC AGCGGATCCC GGCGCCCGCC 480 CGGCGTGGCT GGTGTTTTGG GCCGCCGGAT GGCCACGACG AGAACGACGA TGGCGGCGAT 540 GAACAGCGCC ACGGCAATCA CGACCAGCAG ATTTCCCACG CATACCCTCT CGTACCGCTG 600 CGCCGCGGTT GGTCGATCGG TCGCATATCG ATGGCGCCGT TTAACGTAAC AGCTTTCGCG 660 GGACCGGGGG TCACAACGGG CGAGTTGTCC GGCCGGGAAC CCGGCAGGTC TCGGCCGCGG 720 TCACCCCAGC TCACTGGTGC ACCATCCGGG TGTCGGTGAG CGTGCAACTC AAACACACTC 780 AACGGCAACG GTTTCTCAGG TCACCAGCTC AACCTCGACC CGCAATCGCT CGTACGTTTC 840

					TGAAGCCGAC	900
CAGGGCATC	G TAGGTTGCG	C CACCGGTGA	C ATCGTGCTC	G GCGAGGTGGT	CGGTCAAGCC	960
GCGATATGA	G CAGGCATCC	A GTGCCAGGT	A GTTGCTGGAC	GTGATGTCC	CCAAGTAGGC	1020
GTGGACGGC	A ACAGGGGCAI	A TACGATGCGC	CGGTGGTAGC	CGGGTCAAGA	CCGAATAGGT	1080
TTCCACAGC	C GCGTGCGCG	TCAGATGGAC	GCCACGGTTG	AGCGCGCGCA	CGGCGGCCTC	1140
GTGCCCTTC	TGCCAGGTC	G CGAATCCGGC	AACCAGCACG	CTGGTGTCTG	GTGCGATCAC	1200
CGCCGTGTGC	GATCGAGCGT	TTCCCGAACG	ATTTCGTCGG	TCAACGGGGG	CAGGGGACGT	1260
TCTGGCCGTG	CGACGAGAAC	CGAGCCTTCC	CGAACGAGTT	CGACACCGGT	CGGGGCCGGC	1320
TCAATCTCGA	TGCGCCCATC	GCGCTCGGTG	ATCTCCACCT	GGTCGTTCCC	GCGCAAGCCA	1380
AGGCGCTCGC	GAATCCGCTT	GGGAATCACC	AGACGTCCTG	CGACATCGAT	GGTTGTTCGC	1440
ATGGTAGGAA	ATTTACCATC	GCACGTTCCA	TAGGCGTGTC	CTGCGCGGGA	TGTCGGGACG	1500
ATCCGCTAGC	GTATCGAACG	ATTGTTTCGG	AAATGGCTGA	GGGAGCGTGC	GGTGCGGGTG	1560
	ATCCCGGGTT					1620
	CCGCGCTGGA					1680
	TGGCCATCAG					1740
	TCGAACGGGT					1800
	GCGTGATCGC					1860
	AGGTCAAGGC					1920
rcc						
						1923

## (2) INFORMATION FOR SEQ ID NO:191:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1055 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

CTGGCGTGCC	AGTGTCACCG	GCGATATGAC	GTCGGCATTC	AATTTCGCGG	CCCCGCCGGA	60
CCCGTCGCCA	CCCAATCTGG	ACCACCCGGT	CCGTCAATTG	CCGAAGGTCG	CCAAGTGCGT	120
GCCCAATGTG	GTGCTGGGTT	TCTTGAACGA	AGGCCTGCCG	TATCGGGTGC	CCTACCCCCA	180
AACAACGCCA	GTCCAGGAAT	CCGGTCCCGC	GCGGCCGATT	CCCAGCGGCA	TCTGCTAGCC	240

GGGG3	_					
			GTCGAAACCC			300
GCTCATGGCA	GCGAAATTAG	AAAACCCGGC	ATATTGTCCG	CGGATTGTCA	TACGATGCTG	360
AGTGCTTGGT	GGTTCGTGTT	TAGCCATTGA	GTGTGGATGT	GTTGAGACCC	TGGCCTGGAA	420
			CCTTTGCCGC			480
			TCGGTTCCGC			540
			GCGCCGGAGG			600
			GCGGCCATGG			660
			GAACCCCGCT			720
			GGCTAGGAGA			780
			CCGCGGCCGG			840
			TCAACAAGGA			
			ACATGGCGGG (			900
			GGGCGTCCGC			<b>96</b> 0
GCTGGAGTGG				GCAAAACATC 1	rcgggngcgg	1020
10100		GCGACCTCGC	TAGAC			1055

#### (2) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 359 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

CCGCCTCGTC GTTGGCATAC TCCGCCGCGG CCGCCTCGAC CGCCACTGGCC GTGGCGTGTG 60
TCCGGGGCTGA CCACCGGGAT CGCCGAACCA TCCGAGATCA CCTCGCAATG ATCCACCTCG 120
CGCAGCTGGT CACCCAGCCA CCGGGCGGTG TGCGACAGCG CCTGCATCAC CTTGGTATAG 180
CCGTCGCGCC CCAGCCGCAG GAAGTTGTAG TACTGGCCCA CCACCTGGTT ACCGGGACGG 240
GAGAAGTTCA GGGTGAAGGT CGGCATGTCG CCGCCGAGGT AGTTGACCCG GAAAACCAGA 300
TCCTCCGGCA GGTGCTCGGG CCCGCGCCAC ACGACAAACC CGACGCCGGG ATAGGTCAG 359

- (2) INFORMATION FOR SEQ ID NO:193:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 350 base pairs

(B) TYPE: nucleic acid

		(C)	STRA TOPO	NDED	NESS	: si near									
(x	i) s	EQUE	NCE 1	DESCI	RIPT	ION:	SEQ	ID N	<b>1</b> 0:19	93 :					
AACGGG											GCAI	GAA	GTGC	TGGA	AG
GATGCA															
CGCAAA	GTTC	CTC	GAAT?	VAC I	CCGI	ACCC	G GA	GCGC	CAAA	ccc	GGTC	TCC	TTCG	CTAA	GC
TGCGCG															
TGATCG													AACC	CAGT	GG
GTGGCC								CCGA	TCGA	GGA	CTTC	TCC			
(2) INI															
<b>(</b> )	(	A) L B) T C) S	CE C ENGT: YPE: TRANI	H: 6 ami: DEDNI	79 a: 10 a: ESS:	mino cid	CS: acid	ds							
(xi	) SE	QUEN	CE DI	ESCRI	PTIC	ON: S	SEQ 1	D NC	0:194	<b>i</b> :					
Gl 1	u Gli	n Pro	) Lys	Gly 5	/ Pro	Phe	: Gly	/ Glu	Val	. Ile	: Glu	ı Ala	Phe	Ala	Asp
Gl	y Lei	ı Ala	Gly 20	, ŗÀs	Gly	' Lys	Gln	Ile 25	: Asn	Thr	Thr	Leu	Asn 30	Ser	Leu
Se:	r Glm	Ala 35	Leu	Asn	Ala	Leu	Asn 40	Glu	Gly	Arg	Gly	Asp 45	Phe	Phe	Ala
Val	l Val 50	Arg	Ser	Leu	Ala	Leu 55	Phe	Val	Asn	Ala	Leu 60	His	Gln	Asp	Asp
Glr 65	Gln	Phe	Val	Ala	Leu 70	Asn	Lys	Asn	Leu	Ala 75	Glu	Phe	Thr	Asp	Arg 80
Lev	Thr	His	Ser	<b>As</b> p 85	Ala	Asp	Leu	Ser	Asn 90	Ala	Ile	Gln	Gln	Phe 95	Asp
Ser	Leu	Leu	Ala 100	Val	Ala	Arg	Pro	Phe 105	Phe	Ala	Lys	Asn	Arg 110	Glu	Val
	Thr						120					125			
Gln	Pro 130	Asp	Pro	Leu	qaA	Gly 135	Leu	Glu	Thr	Val	Leu 140	His	Ile	Phe	Pro

Th	r Le	eu.	Ala	L Al	a As	n Il	e As	n Gl	n Le	u Ty	r Hi	s Pro	o Thi	r His	s Gly	y Gly
						15					15					160
Va	l Va	11	Ser	Le	1 Se:	r Ala	a Ph	e Thi	r Ası	n Phe 170	e Ala	a Asr	Pro	Met	: Gl: 175	Phe
Il	е Су	s	Ser	Se:	r Ile	e Gli	a Al	a Gly	/ Ser 189	r Arg	J Lev	ı Gly	Туг	Gln 190		Ser
Al	a Gl	<b>u</b> :	Leu 195	Суз	a Ala	Glr	ту:	r Leu 200	ı Ala	a Pro	Val	. Leu	Asp 205		Ile	Lys
Phe	21	n 1	Гуг	Phe	Pro	Phe	Gly 215	y Leu 5	Asr	ı Val	. Ala	Ser 220		Ala	Ser	Thr
Le: 225	ı Pr	o 1	Lys	Glu	Ile	Ala 230	Туз	Ser	Glu	Pro	Arg 235	Leu	Gln	Pro	Pro	Asn 240
Gly	/ Ty:	r I	jys	Asp	Thr 245	Thr	Val	Pro	Gly	7 Ile 250	Trp	Val	Pro	Asp	Thr 255	Pro
Lev	Se:	r E	lis	Arg 260	Asn	Thr	Gln	Pro	Gly 265	Trp	Val	Val	Ala	Pro 270	Gly	Met
Gln	Gly	/ V 2	7al 175	Gln	Val	Gly	Pro	Ile 280	Thr	Gln	Gly	Leu	Leu 285	Thr	Pro	Glu
Ser	Leu 290	1 A	la	Glu	Leu	Met	Gly 295	Gly	Pro	Asp	Ile	Ala 300	Pro	Pro	Ser	Ser
Gly 305	Leu	G	ln	Thr	Pro	Pro 310	Gly	Pro	Pro	Asn	Ala 315	Tyr	Asp	Glu	Tyr	Pro 320
Val	Leu	P	ro	Pro	Ile 325	Gly	Leu	Gln	Ala	Pro 330	Gln	Val	Pro	Ile	Pro	Pro
Pro	Pro	P	ro ·	Gly 340	Pro	Asp	Val	Ile	Pro 345	Gly	Pro	Val	Pro	Pro 350	Val	Leu
Ala	Ala	I. 35	le ' 55	Val	₽he	Pro	Arg	Asp 360	Arg	Pro	Ala		Ser 365	Glu	Asn	Phe
qzA	Tyr 370	Me	et (	Gly	Leu	Leu	Leu 375	Leu	Ser	Pro	Gly	Leu 380	Ala	Thr	Phe	Leu
Phe 385	Gly	Va	al S	Ser	Ser	Ser 390	Pro	Ala	Arg	Gly	Thr	Met .	Ala .	Asp	Arg	His 400
Val	Leu	Il	.e I	Pro .	Ala 405	Ile	Thr	Gly	Leu	Ala 410	Leu	Ile .	Ala.		Phe 415	Val
Ala	His	Se	r 1	rp '	Tyr .	Arg	Thr	Glu	His 425	Pro	Leu	Ile	Asp	Met .	Arg	Leu

Phe Gln Asn Arg Ala Val Ala Gln Ala Asn Met Thr Met Thr Val Leu

		43	5				440	)				445	5		
Se	450	u Gly	y Lei	ı Phe	≘ Gly	Ser 455	Phe	Leu	ı Lev	. Leu	Pro 460		Туг	Leu	Gln
Glr 465	ı Val	l Le	ı His	Glr	Ser 470	Pro	Met	Gln	Ser	Gly 475	Val	His	Ile	: Ile	Pro 480
Glr	Gl ₃	/ Leu	ı Gly	Ala 485	Met	Leu	Ala	Met	Pro 490	Ile	Ala	Gly	Ala	Met 495	Met
Asp	Arg	Arg	500	Pro	Ala	Lys	Ile	Val 505	Leu	Val	Gly	Ile	<b>Me</b> t		Ile
Ala	Ala	Gly 515	Leu	Gly	Thr	Phe	Ala 520	Phe	Gly	Val	Ala	Arg 525	Gln	Ala	Asp
Tyr	Leu 530	Pro	Ile	Leu	Pro	Thr 535	Gly	Leu	Ala	Ile	Met 540	Glγ	Met	Gly	Met
Gly <b>54</b> 5	Cys	Ser	Met	Met	Pro 550	Leu	Ser	Gly	Ala	Ala 555	Val	Gln	Thr	Leu	Ala 560
Pro	His	Gln	Ile	Ala 565	Arg	Gly	Ser	Thr	Leu 570	Ile	Ser	Val	Asn	Gln 575	Gln
Val	Gly	Gly	Ser 580	Ile	Gly	Thr	Ala	Leu 585	Met	Ser	Val	Leu	Leu 590	Thr	Tyr
Gln	Phe	Asn 595	His	Ser	Glu	Ile	Ile 600	Ala	Thr	Ala	Lys	Lys 605	Val	Ala	Leu
Thr	Pro 610	Glu	Ser	Gly	Ala	Gly 615	Arg	Gly	Ala	Ala	Val 620	Asp	Pro	Ser	Ser
Leu 625	Pro	Arg	Gln	Thr	Asn 630	Phe	Ala	Ala	Gln	Leu 635	Leu	His	qaA	Leu	Ser 640
His	Ala	Tyr	Ala	Val 645	Val	Phe	Val	Ile	Ala 650	Thr	Ala	Leu	Val	Val	Ser

Thr Leu Ile Pro Ala Ala Phe Leu Pro Lys Gln Gln Ala Ser His Arg

665

Arg Ala Pro Leu Leu Ser Ala 675

660

#### (2) INFORMATION FOR SEQ ID NO:195:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 120 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:
- Thr Pro Glu Lys Ser Phe Val Asp Asp Leu Asp Ile Asp Ser Leu Ser

  1 5 10 15
- Met Val Glu Ile Ala Val Gln Thr Glu Asp Lys Tyr Gly Val Lys Ile
  20 25 30
- Pro Asp Glu Asp Leu Ala Gly Leu Arg Thr Val Gly Asp Val Val Ala
  35 40 45
- Tyr Ile Gln Lys Leu Glu Glu Glu Asn Pro Glu Ala Ala Gln Ala Leu 50 55 60
- Arg Ala Lys Ile Glu Ser Glu Asn Pro Asp Ala Ala Arg Ala Asp Arg 65 70 75 80
- Cys Val Ser Pro Thr Ser Gln Ala Arg Asp Ala Arg Arg Pro Leu Ala 85 90 95
- Arg Ser Ala Arg Leu Ala Cys Arg Arg Leu Pro Ala Ser Val Pro Thr
- Thr Arg Arg Asp Pro Arg Glu Arg
- (2) INFORMATION FOR SEQ ID NO:196:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 89 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:
  - Leu Ala Cys Gln Cys His Arg Arg Tyr Asp Val Gly Ile Gln Phe Arg

    1 10 15
  - Gly Pro Ala Gly Pro Val Ala Thr Gln Ser Gly Pro Pro Gly Pro Ser 20 25 30
  - Ile Ala Glu Gly Arg Gln Val Arg Ala Gln Cys Gly Ala Gly Phe Leu
    35 40 45
  - Glu Arg Arg Pro Ala Val Ser Gly Ala Leu Pro Pro Asn Asn Ala Ser 50 55 60
  - 9ro Gly Ile Arg Ser Arg Ala Ala Asp Ser Gln Arg His Leu Leu Ala 65 70 75 80
  - Gly Asp Gly Ser Asp Val Thr Val Gly
- (2) INFORMATION FOR SEQ ID NO:197:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 119 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:
- Ala Ser Leu Leu Ala Tyr Ser Ala Ala Ala Ala Ser Thr Ala Leu Ala 1 5 10 15
- Val Ala Cys Val Arg Ala Asp His Arg Asp Arg Arg Thr Ile Arg Asp 20 25 30
- His Leu Ala Met Ile His Leu Ala Gln Leu Val Thr Gln Pro Pro Gly
  35 40 45
- Gly Val Arg Gln Arg Leu His His Leu Gly Ile Ala Val Ala Pro Gln 50 55 60
- Pro Gln Glu Val Val Leu Ala His His Leu Val Thr Gly Thr Gly 65 70 75 80
- Glu Val Gln Gly Glu Gly Arg His Val Ala Ala Glu Val Val Asp Pro
- Glu Asn Gln Ile Leu Arg Gln Val Leu Gly Pro Ala Pro His Asp Lys
- Pro Asp Ala Gly Ile Gly Gln 115
- (2) INFORMATION FOR SEQ ID NO:198:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 116 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:
  - Arg Ala Arg Gly His Arg Ser Ser Lys Gly Ser Arg Trp Ser His Glu

    10 15
  - Val Leu Glu Gly Cys Ile Leu Ala Asp Ser Arg Gln Ser Lys Thr Ala
  - Ala Ser Pro Ser Pro Ser Arg Pro Gln Ser Ser Ser Asn Asn Ser Val
  - Pro Gly Ala Pro Asn Arg Val Ser Phe Ala Lys Leu Arg Glu Pro Leu 50 55 60

Glu	Val	Pro	Gly	Leu	Leu	Asp	Wa 1	Gln	The	n	0	_,			
65			-		70		val	GIII	1111	Asp	ser	Phe	Glu	Trp	Leu
					, 0					75					80

Ile Gly Ser Pro Arg Trp Arg Glu Ser Ala Ala Glu Arg Gly Asp Val

Asn Pro Val Gly Gly Leu Glu Glu Val Leu Tyr Glu Leu Ser Pro Ile 100 105 110

Glu Asp Phe Ser 115

## (2) INFORMATION FOR SEQ ID NO:199:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 811 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

TGCTACGCAG	CAATCGCTTT	GGTGACAGAT	GTGGATGCCG	CCCMCCCCC		
						60
			GGGGAGAACA			120
GTGCGGGCCG	CCATCGATCG	GGTCGCCGAC	GAGCGCACGT	GCACGCACTG	TCAACACCAC	180
GCCGGTGTTC	CGTTGCCGTT	CGAGCTGCCA	TGAGGGTGCT	GCTGACCGGC	GCGGCCGGCT	240
TCATCGGGTC	GCGCGTGGAT	GCGGCGTTAC	GGGCTGCGGG	TCACGACGTG	GTGGGCGTCG	300
ACGCGCTGCT	GCCCGCCGCG	CACGGGCCAA	ACCCGGTGCT	GCCACCGGGC	TGCCAGCGGG	360
TCGACGTGCG	CGACGCCAGC	GCGCTGGCCC	CGTTGTTGGC	CGGTGTCGAT	CTGGTGTGTC	420
ACCAGGCCGC	CATGGTGGGT	GCCGGCGTCA	ACGCCGCCGA	CGCACCCGCC	TATGGCGGCC	480
			CGCAGATGTT			540
			GGCAGGGGCG			600
			CCGACCTGGA			660
			GGCAATTGGT			720
			CGCGCAGGAG			780
GGAAACGAAT					1000010010	811
						$\circ$

# (2) INFORMATION FOR SEQ ID NO:200:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 966 base pairs
  - (B) TYPE: nucleic acid

(C)	STRANDEDNESS:	single
-----	---------------	--------

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

GTCCCCCCA	T 00000000					
					GAAGATATCG	60
GACTTTGTG	G TCCCGGTGG	C GGGATAGAG	ACCTGTCGGC	GTTGGTCAG	GTCACCCGTT	120
GCTCGGACG	C CGAACCCATO	CTTTCAACGT	AGCCTGTCGG	TCACACAAGT	CGCGAGCGTA	180
ACGTCACGG	T CAAATATCGO	GTGGAATTTC	GCCGTGACGT	TCCGCTCGCG	GACAATCAAG	240
	C TTACATGCGA					300
	A GGTGTACAGO					360
	CGGACGCATC					420
	TCTTGCCCGG					480
	' CGCCAGCTTG					540
TCCCCGCCGC	CGACGTGGAC	CCGATGATGT	TCGACCGCAG	CTACTTTTTG	GAGCCTGATT	600
	GAAATCGTAT					660
CGATCGTGGA	TCGCCCCACC	GGCCGTGAAT	GCAGGAAAAA	TAAGAGCCGC	TATCCACAAT	720
	GCTCGGCTAC					780
GCGGCGCTAT	AGAAGCCGCT	CTGCGCGATT	ATCAAACGCA	AAATACGCTT	ACTCATGCCA	840
TCGGCGCTGC	TCACCCGATG	CGACGTTTTT	GCCACGCTCC	ACCGCCTGCC	GCGCGACCTC	900
AAGTGGGCAT	GCATCCCACC	CGTTCCCGGA	AACCGGTTCC	GGCGGGTCGG	CTCATCGCTT	960
CATCCT						966
						700

### (2) INFORMATION FOR SEQ ID NO:201:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2367 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

CCGCACCGCC	GGCAATACCG	CCAGCGCCAC	CGTTACCGCC	GTTTGCGCCG	TTGCCCCCGT	60
TGCCGCCCGT	CCCGCCGGCC	CCGCCGATGG	AGTTCTCATC	GCCAAAAGTA	CTGGCGTTGC	120
CACCGGAGCC	GCCGTTGCCG	CCGTCACCGC	CAGCCCCGCC	GACTCCACCG	GCCCCACCGA	180

CTCCGCCGCT GCCACCGTTG CCGCCGTTGC CGA	TCAACAT GCCGCTGGCG CCACCCTTGC 2	40
CACCCACGCC ACCGGCTCCG CCCACCCCGC CGA	CACCAAG CGAGCTGCCG CCGGAGCCAC 3	00
CATCACCACC TACGCCACCG ACCGCCCAGA CAC	CAGCGAC CGGGTCTTCG TGAAACGTCG 3	60
CGGTGCCACC ACCGCCGCCG TTACCGCCAA CCC	CACCGGC AACGCCGGCG CCGCCATCCC 4	20
CGCCGGCCCC GGCGTTGCCG CCGTTGCCGC CGT	TGCCGAA CAACAACCCG CCGGCGCCGC 4	80
CGTTGCCGCC CGCGCCGCCG GTCCCGCCGG CGCC	CGCCGAC GCCAAGGCCG CTGCCGCCCT 5.	40
TGCCGCCATC ACCACCCTTG CCGCCGACCA CATO	GGGTTC TGCCTCGGGG TCTGGGCTGT 6	00
CAAACCTCGC GATGCCAGCG TTGCCGCCGC TTCC	CCCCGGG CCCCCCGTG GCGCCGTCAC 60	60
CACCGATACC ACCCGCGCCA CCGGCGCCAC CGTT	GCCGCC ATCACCGAAT AGCAACCCGC 72	20
CGGCGCCACC ATTGCCGCCA GCTCCCCCTG CGCC	TACCETC GECECCEGAE GCGCCACTEG 78	80
CAGCCCCGTT ACCACCGAAA CCGCCGCTAC CACC	GGTAGA GGTGGCAGTG GCGATGTGTA 84	40
CGAAAGCGCC GCCTCCGGCG CCGCCGCTAC CACC		00
ACCCGTTGCC ACCATCACCG CCAAAGGCGC TCGC		50
CGCCGCCGTT GCCGCCGCCG CCACCGGCAG CGGC		20
CGGTGGCCTT GCCCGAGCCT GCCGTCGCGG TGGC	ACCGTC GCCGCCGGTG CCACCGGTCG 108	30
GCGTGCCGGC AGTGCCATGG CCGCCCGTGC CGCC	GTCGCC GCCGGTTTGA TCACCGATGC 114	<b>.</b> 0
CGGACACATC TGCCGGGCTG TCCCCGGTGC TGGC		0
CGTTTGCCCC GGCGAGGCCG GCGCCGCCGG TACC		0
CGGCGTTGCC GCCGTTACCG CCCGCACCCC CGATC		20
CACCGCCGTT GCCGCCGTTG CCCCACAACC ACCCC	CCCGTT CCCACCGGCA CCGCCGGCCG 138	10
CGCCGGTACC ACCGGCCCCG CCGTTGCCGC CGTTC		.0
TGCCGCCGGT TTGACCGAAC CCGCCAGCCG CGCCC		0
CGCCGGCCGC GCCAGGCTGC CCGGGTGCCG TCCCG		0
GCCCCAAAAG CGCCTCGGTG GGCGCATTCA CCGCA		0
CTTCAGTGCT GGCATACCGA CCCGCGGCCG CAGTC		0
ACGCTGCCAC CTGTACGCTG AGCGCCTGAT ACTGC		0
CAATCGCCGC CGACACTTCA TCGGCAGCCG CAGCC		
CGGCCGCATT AGCCGCGCTC ACCTGCGAAC CAATA		0

CCAGCAGCTG CGGCGTCGCG ATCACCAAGG ACACCTCGCA CCTCCGGATA CCCCATATCG	1920
CCGCACCGTG TCCCCAGCGG CCACGTGACC TTTGGTCGCT GGCTGGCGGC CCTGACTATG	1980
GCCGCGACGG CCCTCGTTCT GATTCGCCCC GGCGCGCAGC TTGTTGCGCG AGTTGAAGAC	2040
GGGAGGACAG GCCGAGCTTG GTGTAGACGT GGGTCAAGTG GGAATGCACG GTCCGCGGCG	2100
AGATGAATAG GCGGACGCCG ATCTCCTTGT TGCTGAGTCC CTCACCGACC AGTAGAGCCA	2160
CCTCAAGCTC TGTCGGTGTC AACGCGCCCC AGCCACTTGT CGGGCGTTTC CGTGCACCGC	2220
GGCCTCGTTG CGCGTACGCG ATCGCCTCAT CGATCGATAA CGCAGTTCCT TCGGCCCAGG	2280
CATCGTCGAA CTCGCTGTCA CCCATGGATT TTCGAAGGGT GGCTAGCGAC GAGTTACAGC	2340
CCGCCTGGTA GATCCCGAAG CGGACCG	2367
(2) INFORMATION FOR SEQ ID NO:202:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 376 amino acids	

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:

- Gln Pro Ala Gly Ala Thr Ile Ala Ala Ser Ser Pro Cys Ala Thr Val
- Gly Ala Gly Gly Gly Thr Gly Ser Pro Val Thr Thr Glu Thr Ala Ala
  20 25 30
- Thr Thr Gly Arg Gly Gly Ser Gly Asp Val Tyr Glu Ser Ala Ala Ser 35 40 45
- Gly Ala Ala Ala Thr Thr Pro Thr Ala Gly Gly Tyr Thr Val Gly Pro
  50 55 60
- Val Ala Thr Ile Thr Ala Lys Gly Ala Arg Asn Val Ala Leu Arg Asp 65 70 75 80
- Ser Ala Val Ala Ala Val Ala Ala Ala Thr Gly Ser Gly Gly Thr
- Ala Val Thr Thr Gly Thr Ala Gly Gly Leu Ala Arg Ala Cys Arg Arg 100 105 110
- Gly Gly Thr Val Ala Ala Gly Ala Thr Gly Arg Arg Ala Gly Ser Ala
  115 120 125
- Met Ala Ala Arg Ala Ala Val Ala Ala Gly Leu Ile Thr Asp Ala Gly
  130 135 140

- His Ile Cys Arg Ala Val Pro Gly Ala Gly Arg Gly Ala Gly Arg Gly 145 150 155 160
- Ile Asp Pro Val Cys Pro Gly Glu Ala Gly Ala Ala Gly Thr Thr Gly 165 170 175
- Ala Ala Met Ala Glu Gln Pro Gly Val Ala Ala Val Thr Ala Arg Thr 180 185 190
- Pro Asp Ala Cys Gly His Ala Gly Ala Ala Asp Thr Ala Val Ala Ala 195 200 205
- Val Ala Pro Gln Pro Pro Pro Val Pro Thr Gly Thr Ala Gly Arg Ala
  210 215 220
- Gly Thr Thr Gly Pro Ala Val Ala Ala Val Ala Asp Gln Pro Gly Arg
  225 230 235 240
- Ala Ser Ala Ala Gly Leu Thr Glu Pro Ala Ser Arg Ala Val Ala 245 250 255
- Thr Val Ala Lys Gln Gln Pro Ala Gly Arg Ala Arg Leu Pro Gly Cys 260 265 270
- Arg Pro Val Gly Ala Val Ser Asp Gln Arg Ala Pro Gln Lys Arg Leu 275 280 285
- Gly Gly Arg Ile His Arg Thr Gln Gln Thr Pro Leu Asn Ser Gly Phe
  290 295 300
- Ser Ala Gly Ile Pro Thr Arg Gly Arg Ser Gln Arg Leu His Lys Leu 305 310 315 320
- Leu Val Lys Arg Cys His Leu Tyr Ala Glu Arg Leu Ile Leu Pro Ser 325 330 335
- Met Gly Pro Glu Gln Pro Arg Asn Arg Arg Arg His Phe Ile Gly Ser 340 345 350
- Arg Ser His His Phe Arg Arg Arg Asp Arg Arg Gly Arg Ile Ser Arg
- Ala His Leu Arg Thr Asn Ser Arg 370 375
- (2) INFORMATION FOR SEQ ID NO:203:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2852 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

GGCCAAAACG CCCCGGCGAT CGCGGCCACC GAGGCCGCCT ACGACCAGAT GTGGGCCCAG	60
GACGTGGCGG CGATGTTTGG CTACCATGCC GGGGCTTCGG CGGCCGTCTC GGCGTTGACA	120
CCGTTCGGCC AGGCGCTGCC GACCGTGGCG GGCGGCGGTG CGCTGGTCAG CGCGGCCGCG	180
GCTCAGGTGA CCACGCGGGT CTTCCGCAAC CTGGGCTTGG CGAACGTCCG CGAGGGCAAC	240
GTCCGCAACG GTAATGTCCG GAACTTCAAT CTCGGCTCGG	300
ATCGGCAGCG GCAACATCGG CAGCTCCAAC ATCGGGTTTG GCAACGTGGG TCCTGGGTTG	360
ACCGCAGCGC TGAACAACAT CGGTTTCGGC AACACCGGCA GCAACAACAT CGGGTTTGGC	420
AACACCGGCA GCAACAACAT CGGGTTCGGC AATACCGGAG ACGGCAACCG AGGTATCGGG	480
CTCACGGGTA GCGGTTTGTT GGGGTTCGGC GGCCTGAACT CGGGCACCGG CAACATCGGT	540
CTGTTCAACT CGGGCACCGG AAACGTCGGC ATCGGCAACT CGGGTACCGG GAACTGGGGC	600
ATTGGCAACT CGGGCAACAG CTACAACACC GGTTTTGGCA ACTCCGGCGA CGCCAACACG	660
GGCTTCTTCA ACTCCGGAAT AGCCAACACC GGCGTCGGCA ACGCCGGCAA CTACAACACC	720
GGTAGCTACA ACCCGGGCAA CAGCAATACC GGCGGCTTCA ACATGGGCCA GTACAACACG	780
GGCTACCTGA ACAGCGGCAA CTACAACACC GGCTTGGCAA ACTCCGGCAA TGTCAACACC	840
GGCGCCTTCA TTACTGGCAA CTTCAACAAC GGCTTCTTGT GGCGCGGCGA CCACCAAGGC	900
CTGATTTTCG GGAGCCCCGG CTTCTTCAAC TCGACCAGTG CGCCGTCGTC GGGATTCTTC	960
AACAGCGGTG CCGGTAGCGC GTCCGGCTTC CTGAACTCCG GTGCCAACAA TTCTGGCTTC	1020
TTCAACTCTT CGTCGGGGGC CATCGGTAAC TCCGGCCTGG CAAACGCGGG CGTGCTGGTA	1080
TCGGGCGTGA TCAACTCGGG CAACACCGTA TCGGGTTTGT TCAACATGAG CCTGGTGGCC	1140
ATCACAACGC CGGCCTTGAT CTCGGGCTTC TTCAACACCG GAAGCAACAT GTCGGGATTT	1200
TTCGGTGGCC CACCGGTCTT CAATCTCGGC CTGGCAAACC GGGGCGTCGT GAACATTCTC	1260
GGCAACGCCA ACATCGGCAA TTACAACATT CTCGGCAGCG GAAACGTCGG TGACTTCAAC	1320
ATCCTTGGCA GCGGCAACCT CGGCAGCCAA AACATCTTGG GCAGCGGCAA CGTCGGCAGC	1380
TTCAATATCG GCAGTGGAAA CATCGGAGTA TTCAATGTCG GTTCCGGAAG CCTGGGAAAC	1440
TACAACATCG GATCCGGAAA CCTCGGGATC TACAACATCG GTTTTGGAAA CGTCGGCGAC	1500
TACAACGTCG GCTTCGGGAA CGCGGGCGAC TTCAACCAAG GCTTTGCCAA CACCGGCAAC	1560
AACAACATCG GGTTCGCCAA CACCGGCAAC AACAACATCG GCATCGGGCT GTCCGGCGAC	1620

AACCAGCAG	GCTTCAATAT	TGCTAGCGGC	TGGAACTCGG	GCACCGGCAA	CAGCGGCCTG	1680
TTCAATTCGC	GCACCAATAA	CGTTGGCATC	TTCAACGCGG	GCACCGGAAA	CGTCGGCATC	1740
GCAAACTCGG	GCACCGGGAA	CTGGGGTATC	GGGAACCCGG	GTACCGACAA	TACCGGCATC	1800
CTCAATGCTG	GCAGCTACAA	CACGGGCATC	CTCAACGCCG	GCGACTTCAA	CACGGGCTTC	1860
TACAACACGG	GCAGCTACAA	CACCGGCGGC	TTCAACGTCG	GTAACACCAA	CACCGGCAAC	1920
TTCAACGTGG	GTGACACCAA	TACCGGCAGC	TATAACCCGG	GTGACACCAA	CACCGGCTTC	1980
TTCAATCCCG	GCAACGTCAA	TACCGGCGCT	TTCGACACGG	GCGACTTCAA	CAATGGCTTC	2040
TTGGTGGCGG	GCGATAACCA	GGGCCAGATT	GCCATCGATC	TCTCGGTCAC	CACTCCATTC	2100
ATCCCCATAA	ACGAGCAGAT	GGTCATTGAC	GTACACAACG	TAATGACCTT	CGGCGGCAAC	2160
ATGATCACGG	TCACCGAGGC	CTCGACCGTT	TTCCCCCAAA	CCTTCTATCT	GAGCGGTTTG	2220
TTCTTCTTCG	GCCCGGTCAA	TCTCAGCGCA	TCCACGCTGA	CCGTTCCGAC	GATCACCCTC	2280
ACCATCGGCG	GACCGACGGT	GACCGTCCCC	ATCAGCATTG	TCGGTGCTCT	GGAGAGCCGC	2340
ACGATTACCT	TCCTCAAGAT	CGATCCGGCG	CCGGGCATCG	GAAATTCGAC	CACCAACCCC	2400
TCGTCCGGCT	TCTTCAACTC	GGGCACCGGT	GGCACATCTG	GCTTCCAAAA	CGTCGGCGGC	2460
GGCAGTTCAG	GCGTCTGGAA	CAGTGGTTTG	AGCAGCGCGA	TAGGGAATTC	GGGTTTCCAG	2520
AACCTCGGCT	CGCTGCAGTC	AGGCTGGGCG	AACCTGGGCA	ACTCCGTATC	GGGCTTTTTC	2580
AACACCAGTA	CGGTGAACCT	CTCCACGCCG	GCCAATGTCT	CGGGCCTGAA	CAACATCGGC	2640
ACCAACCTGT	CCGGCGTGTT	CCGCGGTCCG	ACCGGGACGA	TTTTCAACGC	GGGCCTTGCC	2700
ACCTGGGCC	AGTTGAACAT	CGGCAGCGCC	TCGTGCCGAA	TTCGGCACGA	GTTAGATACG	2760
TTTCAACAA	TCATATCCGC	GTTTTGCGGC	AGTGCATCAG	ACGAATCGAA	CCCGGGAAGC	2820
TAAGCGAAT	AAACCGAATG	GCGGCCTGTC	AT			2852

#### (2) INFORMATION FOR SEQ ID NO:204:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 943 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:
- Gly Gln Asn Ala Pro Ala Ile Ala Ala Thr Glu Ala Ala Tyr Asp Gln 1 5 10 15

- Met Trp Ala Gln Asp Val Ala Ala Met Phe Gly Tyr His Ala Gly Ala 20 25 30
- Ser Ala Ala Val Ser Ala Leu Thr Pro Phe Gly Gln Ala Leu Pro Thr 35 40 45
- Val Ala Gly Gly Ala Leu Val Ser Ala Ala Ala Ala Gln Val Thr
  50 55 60
- Thr Arg Val Phe Arg Asn Leu Gly Leu Ala Asn Val Arg Glu Gly Asn 65 70 75
- Val Arg Asn Gly Asn Val Arg Asn Phe Asn Leu Gly Ser Ala Asn Ile 85 90 95
- Gly Asn Gly Asn Ile Gly Ser Gly Asn Ile Gly Ser Ser Asn Ile Gly 100 105 110
- Phe Gly Asn Val Gly Pro Gly Leu Thr Ala Ala Leu Asn Asn Ile Gly
- Phe Gly Asn Thr Gly Ser Asn Asn Ile Gly Phe Gly Asn Thr Gly Ser 130 135 140
- Asn Asn Ile Gly Phe Gly Asn Thr Gly Asp Gly Asn Arg Gly Ile Gly 145 150 155 160
- Leu Thr Gly Ser Gly Leu Leu Gly Phe Gly Gly Leu Asn Ser Gly Thr 165 170 175
- Gly Asn Ile Gly Leu Phe Asn Ser Gly Thr Gly Asn Val Gly Ile Gly 180 185 190
- Asn Ser Gly Thr Gly Asn Trp Gly Ile Gly Asn Ser Gly Asn Ser Tyr
  195 200 205
- Asn Thr Gly Phe Gly Asn Ser Gly Asp Ala Asn Thr Gly Phe Phe Asn 210 215 220
- Ser Gly Ile Ala Asn Thr Gly Val Gly Asn Ala Gly Asn Tyr Asn Thr 225 230 235
- Gly Ser Tyr Asn Pro Gly Asn Ser Asn Thr Gly Gly Phe Asn Met Gly 245 250 255
- Gln Tyr Asn Thr Gly Tyr Leu Asn Ser Gly Asn Tyr Asn Thr Gly Leu 260 265 270
- Ala Asn Ser Gly Asn Val Asn Thr Gly Ala Phe Ile Thr Gly Asn Phe
  275
  280
  285
- Asn Asn Gly Phe Leu Trp Arg Gly Asp His Gln Gly Leu Ile Phe Gly 290 295 300
- Ser Pro Gly Phe Phe Asn Ser Thr Ser Ala Pro Ser Ser Gly Phe Phe

3	05						31	0					31	.5				320
A	sn :	Ser	G]	у А.	la o	1 125	Se	r Al	a Se	r Gl	ly	Phe	Le	u As	n Se	r Gl	y Al 33	a Asn
										34	15					35	0	r Gly
									20	U					36	5		y <b>As</b> n
								J /:	•					380	כ			r Pro
							390						395	5				y Phe 400
					•	, ,					4	110					415	
					•					425	5					430	)	ı Gly
									440						445	i		Gly
								433						460				Gly
							<b>2</b> / U						475					Asn 480
					10						4	90					495	Gly
				-						505						Asp 510		
		_							520						525	Ala		
								333						540		Gln		
						٠	30					5	555			Ser		560
											57	0				Gly	575	
Asn										585						590		
Pro	Gly	T)	hr . 95	qzA	Asn	T	hr G	Sly	Ile 600	Leu	As	n A	la (	Gly	Ser 605	Tyr	Asn	Thr

Gly Ile Leu Asn Ala Gly Asp Phe Asn Thr Gly Phe Tyr Asn Thr Gly Ser Tyr Asn Thr Gly Gly Phe Asn Val Gly Asn Thr Asn Thr Gly Asn 635 Phe Asn Val Gly Asp Thr Asn Thr Gly Ser Tyr Asn Pro Gly Asp Thr 650 Asn Thr Gly Phe Phe Asn Pro Gly Asn Val Asn Thr Gly Ala Phe Asp 665 Thr Gly Asp Phe Asn Asn Gly Phe Leu Val Ala Gly Asp Asn Gln Gly Gln Ile Ala Ile Asp Leu Ser Val Thr Thr Pro Phe Ile Pro Ile Asn 695 Glu Gln Met Val Ile Asp Val His Asn Val Met Thr Phe Gly Gly Asn 710 Met Ile Thr Val Thr Glu Ala Ser Thr Val Phe Pro Gln Thr Phe Tyr 725 Leu Ser Gly Leu Phe Phe Phe Gly Pro Val Asn Leu Ser Ala Ser Thr Leu Thr Val Pro Thr Ile Thr Leu Thr Ile Gly Gly Pro Thr Val Thr 760 Val Pro Ile Ser Ile Val Gly Ala Leu Glu Ser Arg Thr Ile Thr Phe Leu Lys Ile Asp Pro Ala Pro Gly Ile Gly Asn Ser Thr Thr Asn Pro 790 Ser Ser Gly Phe Phe Asn Ser Gly Thr Gly Gly Thr Ser Gly Phe Gln Asn Val Gly Gly Ser Ser Gly Val Trp Asn Ser Gly Leu Ser Ser Ala Ile Gly Asn Ser Gly Phe Gln Asn Leu Gly Ser Leu Gln Ser Gly 840 Trp Ala Asn Leu Gly Asn Ser Val Ser Gly Phe Phe Asn Thr Ser Thr 855 Val Asn Leu Ser Thr Pro Ala Asn Val Ser Gly Leu Asn Asn Ile Gly 870 875

Thr Asn Leu Ser Gly Val Phe Arg Gly Pro Thr Gly Thr Ile Phe Asn

890

WO 99/42076

	ALG	GIY	Leu	900	Asn	Leu	Gly	Gln	Leu 905	Asn	Ile	Gly	Ser	Ala 910	Ser	Cys	
	Arg	Ile	Arg 915	His	Glu	Leu	Asp	Thr 920	Val	Ser	Thr	Ile	Ile 925	Ser	Ala	Phe	
	Cys	Gly 930	Ser	Ala	Ser	Asp	Glu 935	Ser	Asn	Pro	Gly	Ser 940	Val	Ser	Glu		
(2)	INFO	RMATI	ON F	OR S	EQ I	D NO	:205	; :									
	(i)	(A) (B) (C)	LENCE TYP STR TOP	GTH: E: n ANDE	53 ucle DNES	base ic a S: s	pai cid ingl	rs									
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	205:							
GGAT	CCATA	T GG	GCCA'	TCAT	CAT	CATC	ATC .	ACGT	GATC	GA C	ATCA	TCGG	G AC	С			53
(2)	INFOR	MATI	ON F	OR S	EQ I	D NO	:206	:									
	·(i)	(A) (B) (C)	ENCE LENC TYPE STRA TOPO	STH: S: ni ANDEI	42 l icle: ONES	base ic ad S: s:	pai: cid ingle	rs									
	(xi)	SEQUI	ENCE	DES	CRIPT	CION:	: SE(	Q ID	NO : 2	206 :							
CCTG	AATTC	A GGC	CTCG	GTT	GCGC	CGGC	CT (	CATC	TGA	AC GA							42
(2)	INFOR	ATIC	N FC	R SE	Q II	NO:	207:										
	(i) s	(A) (B) (C)	NCE LENG TYPE STRA TOPO	TH: : nu NDED	31 b clei NESS	ase c ac	pair id ngle	S									
	(xi) S	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NO : 2	07:							
GGAT	CTGCA	GGC	TCGA	AAC	CACC	GAGC	GG T										31
(2) ]	NFORM	OITA	N FO	R SE	Q ID	NO:	208:										
	(i) S	(A) (B) (C)	nce ( Leng: Type Strai Topoi	TH: : nu NDED:	31 b clei NESS	ase c ac : si	pair id										
(	xi) S	EQUEI	MCE I	DESC	RIPT	ION:	SEQ	ID :	NO : 2	08:							

CTCTGAATTC AGCGCTGGAA ATCGTCGCGA T	31
(2) INFORMATION FOR SEQ ID NO:209:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 33 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:	
GGATCCAGCG CTGAGATGAA GACCGATGCC GCT	33
(2) INFORMATION FOR SEQ ID NO:210:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 38 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:	
GGATATCTGC AGAATTCAGG TTTAAAGCCC ATTTGCGA	38
(2) INFORMATION FOR SEQ ID NO:211:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 30 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:	
CCGCATGCGA GCCACGTGCC CACAACGGCC	30
(2) INFORMATION FOR SEQ ID NO:212:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 37 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:	
CTTCATGGAA TTCTCAGGCC GGTAAGGTCC_GCTGCGG	37
(2) INFORMATION FOR SEQ ID NO:213:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 7676 base pairs	
(B) TYPE: nucleic acid	

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:

TGGCGAATGG GACGCGCCCT GTAGCGGCGC ATTAAGCGCG GCGGGTGTGG TGGTTACGCG 60 CAGCGTGACC GCTACACTTG CCAGCGCCCT AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC 120 CTTTCTCGCC ACGTTCGCCG GCTTTCCCCG TCAAGCTCTA AATCGGGGGC TCCCTTTAGG 180 GTTCCGATTT AGTGCTTTAC GGCACCTCGA CCCCAAAAAA CTTGATTAGG GTGATGGTTC 240 ACGTAGTGGG CCATCGCCCT GATAGACGGT TTTTCGCCCT TTGACGTTGG AGTCCACGTT 300 CTTTAATAGT GGACTCTTGT TCCAAACTGG AACAACACTC AACCCTATCT CGGTCTATTC 360 TTTTGATTTA TAAGGGATTT TGCCGATTTC GGCCTATTGG TTAAAAAATG AGCTGATTTA 420 ACAAAAATTT AACGCGAATT TTAACAAAAT ATTAACGTTT ACAATTTCAG GTGGCACTTT 480 TCGGGGAAAT GTGCGCGGAA CCCCTATTTG TTTATTTTTC TAAATACATT CAAATATGTA 540 TCCGCTCATG AATTAATTCT TAGAAAAACT CATCGAGCAT CAAATGAAAC TGCAATTTAT 600 TCATATCAGG ATTATCAATA CCATATTTTT GAAAAAGCCG TTTCTGTAAT GAAGGAGAAA 660 ACTCACCGAG GCAGTTCCAT AGGATGGCAA GATCCTGGTA TCGGTCTGCG ATTCCGACTC 720 GTCCAACATC AATACAACCT ATTAATTTCC CCTCGTCAAA AATAAGGTTA TCAAGTGAGA 780 AATCACCATG AGTGACGACT GAATCCGGTG AGAATGGCAA AAGTTTATGC ATTTCTTTCC 840 AGACTTGTTC AACAGGCCAG CCATTACGCT CGTCATCAAA ATCACTCGCA TCAACCAAAC 900 CGTTATTCAT TCGTGATTGC GCCTGAGCGA GACGAAATAC GCGATCGCTG TTAAAAGGAC 960 AATTACAAAC AGGAATCGAA TGCAACCGGC GCAGGAACAC TGCCAGCGCA TCAACAATAT 1020 TTTCACCTGA ATCAGGATAT TCTTCTAATA CCTGGAATGC TGTTTTCCCG GGGATCGCAG 1080 TGGTGAGTAA CCATGCATCA TCAGGAGTAC GGATAAAATG CTTGATGGTC GGAAGAGGCA 1140 TAAATTCCGT CAGCCAGTTT AGTCTGACCA TCTCATCTGT AACATCATTG GCAACGCTAC 1200 CTTTGCCATG TTTCAGAAAC AACTCTGGCG CATCGGGCTT CCCATACAAT CGATAGATTG 1260 TCGCACCTGA TTGCCCGACA TTATCGCGAG CCCATTTATA CCCATATAAA TCAGCATCCA 1320 TGTTGGAATT TAATCGCGGC CTAGAGCAAG ACGTTTCCCG TTGAATATGG CTCATAACAC 1380 CCCTTGTATT ACTGTTTATG TAAGCAGACA GTTTTATTGT TCATGACCAA AATCCCTTAA 1440 CGTGAGTTTT CGTTCCACTG AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA 1500

GATCCTTTT TTCTGCGCGT AATCTCCTCG	
GATCCTTTTT TTCTGCGCGT AATCTGCTGC TTGCAAACAA AAAAACCACC GCTACCAGC	1560
GTGGTTTGTT TGCCGGATCA AGAGCTACCA ACTCTTTTTC CGAAGGTAAC TGGCTTCAGC	1620
AGAGCGCAGA TACCAAATAC TGTCCTTCTA GTGTAGCCGT AGTTAGGCCA CCACTTCAAG	1680
AACICIGIAG CACCGCCTAC ATACCTCGCT CTGCTAATCC TGTTACCAGT GGCTGCTGCG	• • • •
AGIGGEGATA AGTEGTETET TACEGGGTTG GACTEAAGAE GATAGTTACE GGATAAGGE	
CAGCGGTCGG GCTGAACGGG GGGTTCGTGC ACACAGCCCA GCTTGGAGCG AACGACCTAC	10
ACCGARCIGA GATACCTACA GCGTGAGCTA TGAGAAAGCG CCACGCTTCC CGAACCGACA	
AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG GAGAGCGCAC GAGGGAGCTT	1920
CCAGGGGGAA ACGCCTGGTA TCTTTATAGT CCTGTCGGGT TTCGCCACCT CTGACTTGAG	1980
CGTCGATTTT TGTGATGCTC GTCAGGGGGG CGGAGCCTAT GGAAAAACGC CAGCAACGCG	2040
GCCTTTTTAC GGTTCCTGGC CTTTTGCTGG CCTTTTGCTC ACATGTTCTT TCCTGCGTTA	2100
TCCCCTGATT CTGTGGATAA CCGTATTACC GCCTTTGAGT GAGCTGATAC CGCTCGCCGC	2160
AGCCGAACGA CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG CGGAAGAGCG CCTGATGCGG	2220
TATTTTCTCC TTACGCATCT GTGCGGTATT TCACACCGCA TATATGGTGC ACTCTCAGTA	2280
CAATCTGCTC TGATGCCGCA TAGTTAAGGC ACTCTCAGTA	2340
CAATCTGCTC TGATGCCGCA TAGTTAAGCC AGTATACACT CCGCTATCGC TACGTGACTG GGTCATGGCT GCGCCCCGAC ACCCCCGAAC	2400
GGTCATGGCT GCGCCCGAC ACCCGCCAAC ACCCGCTGAC GCGCCCTGAC GGGCTTGTCT GCTCCCGGCA TCCGCTTACA GAGAACGTG	2460
GCTCCCGGCA TCCGCTTACA GACAAGCTGT GACCGTCTCC GGGAGCTGCA TGTGTCAGAG	2520
GTTTTCACCG TCATCACCGA AACGCGCGAG GCAGCTGCGG TAAAGCTCAT CAGCGTGGTC	2580
GTGAAGCGAT TCACAGATGT CTGCCTGTTC ATCCGCGTCC AGCTCGTTGA GTTTCTCCAG	2640
AAGCGTTAAT GTCTGGCTTC TGATAAAGCG GGCCATGTTA AGGGCGGTTT TTTCCTGTTT	2700
GGTCACTGAT GCCTCCGTGT AAGGGGGATT TCTGTTCATG GGGGTAATGA TACCGATGAA	2760
ACGAGAGAGG ATGCTCACGA TACGGGTTAC TGATGATGAA CATGCCCGGT TACTGGAACG	2820
TTGTGAGGGT AAACAACTGG CGGTATGGAT GCGGCGGGAC CAGAGAAAAA TCACTCAGGG	2880
CAATGCCAG CGCTTCGTTA ATACAGATGT AGGTGTTCCA CAGGGTAGCC AGCAGCATGC	2940
IGCGAIGCAG ATCCGGAACA TAATGGTGCA GGGCGCTGAC TTCCGCGTTT CCAGACTTTA	3000
COAAACACGG AAACCGAAGA CCATTCATGT TGTTGCTCAG GTCGCAGACG TTTTGCAGCA	3060
GEAGICGETT CACGTTCGCT CGCGTATCGG TGATTCATTC TGCTAACCAG TAACGGAAGG	3120
CEGECAGEET AGCEGGGTCC TCAACGACAG GAGCACGATC ATGEGGAGGAGG	3180

CAIGCEGGEG ATAATGGCCT GCTTCTCGCC GAAACGTTTG GTGGCGGGAC CAGTGACGAA	3240
GGCTTGAGCG AGGGCGTGCA AGATTCCGAA TACCGCAAGC GACAGGCCGA TCATCGTCGC	3300
GCTCCAGCGA AAGCGGTCCT CGCCGAAAAT GACCCAGAGC GCTGCCGGCA CCTGTCCTAC	3360
GAGTTGCATG ATAAAGAAGA CAGTCATAAG TGCGGCGACG ATAGTCATGC CCCGCGCCCA	3420
CCGGAAGGAG CTGACTGGGT TGAAGGCTCT CAAGGGCATC GGTCGAGATC CCGGTGCCTA	3480
ATGAGTGAGC TAACTTACAT TAATTGCGTT GCGCTCACTG CCCGCTTTCC AGTCGGGAAA	3540
CCTGTCGTGC CAGCTGCATT AATGAATCGG CCAACGCGCG GGGAGAGGCG GTTTGCGTAT	3600
TGGGCGCCAG GGTGGTTTT CTTTTCACCA GTGAGACGGG CAACAGCTGA TTGCCCTTCA	3660
CCGCCTGGCC CTGAGAGAGT TGCAGCAAGC GGTCCACGCT GGTTTGCCCC AGCAGGCGAA	3720
AATCCTGTTT GATGGTGGTT AACGGCGGGA TATAACATGA GCTGTCTTCG GTATCGTCGT	3780
ATCCCACTAC CGAGATATCC GCACCAACGC GCAGCCCGGA CTCGGTAATG GCGCGCATTG	
CGCCCAGCGC CATCTGATCG TTGGCAACCA GCATCGCAGT GGGAACGATG CCCTCATTCA	3840
GCATTTGCAT GGTTTGTTGA AAACCGGACA TGGCACTCCA GTCGCCTTCC CGTTCCGCTA	3900
TCGGCTGAAT TTGATTGCGA GTGAGATATT TATGCCAGCC AGCCAGACGC AGACGCGCCG	3960
AGACAGAACT TAATGGGCCC GCTAACAGCG CGATTTGCTG GTGACCCAAT GCGACCAGAT	4020
GCTCCACGCC CAGTCGCGTA CCGTCTTCAT GGGAGAAAAT AATACTGTTG ATGGGTGTCT	4080
GGTCAGAGAC ATCAAGAAAT AACGCCGGAA CATTAGTGCA GGCAGCTTCC ACAGCAATGG	4140
CATCCTGGTC ATCCAGCGGA TAGTTAATGA TCAGCCCACT GACGCGTTGC GCGAGAAGAT	4200
TGTGCACCGC CGCTTTACAG GCTTCGACGC CGCTTCGTTC TACCATCGAC ACCACCACGC	1260
TGGCACCCAG TTGATCGGCG CGAGATITAA TCGCCGCGAC AATTTGCGAC GGCGCGTGCA	4320
GGGCCAGACT GGAGGTGGCA ACGCCAATCA GCAACGACTG TTTGCCCGCC AGTTGTTGTG	4380
CCACGCGGTT GGGAATGTAA TTCAGCTCCG CCATCGCCGC TTCCACTTTT TCCCGCGTTT	4440
TCGCAGAAAC GTGGCTGGCC TGGTTCACCA CGCGGGAAAC GGTCTGATAA GAGACACCGG	4500
CATACTCTGC GACATCGTAT AACGTTACTG GTTTCACATT CACCACCCTG AATTGACTCT	4560
CTTCCGGGCG CTATCATGCC ATACCGCGAA AGGTTTTGCG CCATTCGATG GTGTCCGGGA	4620
TCTCGACGCT CTCCCTTATG CGACTCCTGC ATTAGGAAGC AGCCCAGTAG TAGGTTGAGG	4680
CCGTTGAGCA CCGCCGCCGC AAGGAATGGT GCATGCAAGG AGATGGCGCC CAACAGTCCC	4740
GLATGUAAGG AGATGGCGCC CAACAGTCCC	4000

CCGGCCACGG GGCCTGCCAC CATACCCACG CCGAAACAAG CGCTCATGAG CCCGAAGTGG	
CGAGCCCGAT CTTCCCCATC CCTCATCATC	4860
CGAGCCCGAT CTTCCCCATC GGTGATGTCG GCGATATAGG CGCCAGCAAC CGCACCTGTG	4920
GCGCCGGTGA TGCCGGCCAC GATGCGTCCG GCGTAGAGGA TCGAGATCTC GATCCCGCGA	4980
AATTAATACG ACTCACTATA GGGGAATTGT GAGCGGATAA CAATTCCCCT CTAGAAATAA	5040
TTTTGTTTAA CTTTAAGAAG GAGATATACA TATGGGCCAT CATCATCATC ATCACGTGAT	5100
CGACATCATC GGGACCAGCC CCACATCCTG GGAACAGGCG GCGGCGGAGG CGGTCCAGCG	5160
GGCGCGGGAT AGCGTCGATG ACATCCGCGT CGCTCGGGTC ATTGAGCAGG ACATGCCCT	5220
GGACAGCGCC GGCAAGATCA CCTACCGCAT CAAGCTCGAA GTGTCGTTCA AGATGAGCCC	5280
GGCGCAACCG AGGGGCTCGA AACCACCGAG CGGTTCGCCT GAAACGGGCG CCGGCGCCCC	5340
TACTGTCGCG ACTACCCCCG CGTCGTCGCC GGTGACGTTG GCGGAGACCG GTAGCACCCT	
GCICIACCCG CTGTTCAACC TGTGGGGTCC GGCCTTTCAC GAGAGGTATC CGAACGTGAC	5400
GATCACCGCT CAGGGCACCG GTTCTGGTGC CGGGATCGCG CAGGCCGCCG CCGGGACGGT	5460
CAACATTGGG GCCTCCGACG CCTATCTGTC GGAAGGTGAT ATGGCCGCGC ACAAGGGGCT	5520
GATGAACATC GCGCTAGCCA TCTCCGCTCA GCAGGTCAAC TACAACCTGC CCGGAGTGAG	5580
CGAGCACCTC AAGCTGAACG GAAAAGTCCT GGCGGCCATG TACCAGGGCA CCATCAAAAC	5640
CTGGGACGAC CCGCAGATCG CTGCGCTCAA CCCCGGCGTG AACCTGCCCG GCACCGCGGT	5700
AGTTCCGCTG CACCGCTCCG ACGGGTCCGG TGACACCTTC TTGTTCACCC AGTACCTGTC	5760
CAAGCAAGAT CCCGAGGGCT GGGGCAAGTC GCCCGGCTTC GGCACCACCG TCGACTTCCC	5820
GGCGGTGCCG GGTGCGCTGG GTGAGAACGG CAACGGCGGC ATGGTGACCG GTTGCGCCGA	5880
GACACCGGGC TGCGTGGCCT ATATCGGCAT CAGCTTCCTC GACCAGGCCA GTCAACGGGG	5940
ACTCGGCGAG GCCCAACTAG GCAATAGCTG TGGGAGGCGA GTCAACGGGG	6000
ACTCGGCGAG GCCCAACTAG GCAATAGCTC TGGCAATTTC TTGTTGCCCG ACGCGCAAAG CATTCAGGCC GCGGCGGCTG GCTTCGGATG	6060
CATTCAGGCC GCGGCGGCTG GCTTCGCATC GAAAACCCCG GCGAACCAGG CGATTTCGAT	6120
GATCGACGGG CCCGCCCCGG ACGGCTACCC GATCATCAAC TACGAGTACG CCATCGTCAA	6180
CAACCGGCAA AAGGACGCCG CCACCGCGCA GACCTTGCAG GCATTTCTGC ACTGGGCGAT	6240
CACCGACGGC AACAAGGCCT CGTTCCTCGA_CCAGGTTCAT TTCCAGCCGC TGCCGCCCGC	6300
GGTGGTGAAG TTGTCTGACG CGTTGATCGC GACGATTTCC AGCGCTGAGA TGAAGACCGA	6360
TGCCGCTACC CTCGCGCAGG AGGCAGGTAA TTTCGAGCGG ATCTCCGGCG ACCTGAAAAC	6420
CCAGATCGAC CAGGTGGAGT CGACGGCAGG TTCGTTGCAG GGCCAGTGGC GCGGCGCGC	6480

GGGGACGGCC GCCCAGGCCG CGGTGGTGCG CTTCCAAGAA GCAGCCAATA AGCAGAAGCA	
GGAACTCGAC CACATOTTE	6540
GGAACTCGAC GAGATCTCGA CGAATATTCG TCAGGCCGGC GTCCAATACT CGAGGGCCGA	6600
CGAGGAGCAG CAGCAGGCGC TGTCCTCGCA AATGGGCTTT GTGCCCACAA CGGCCGCCTC	
GCCGCCGTCG ACCGCTGCAG CGCCACCCGC ACCGGCGACA CCTGTTGCCC CCCCACCACC	6660
GGCCGCCGCC AACACCCCCA ATTOCCCA ATTOCCA ATTOCCCA ATTOCCA ATTOCCCA ATTOCCA ATTO	6720
GGCCGCCGCC AACACGCCGA ATGCCCAGCC GGGCGATCCC AACGCAGCAC CTCCGCCGGC	6780
CGACCCGAAC GCACCGCCGC CACCTGTCAT TGCCCCAAAC GCACCCCAAC CTGTCCGGAT	6840
CGACAACCCG GTTGGAGGAT TCAGCTTCGC GCTGCCTGCT GGCTGGGTGG AGTCTGACGC	6900
CGCCCACTTC GACTACGGTT CAGCACTCCT CAGCAAAACC ACCGGGGACC CGCCATTTCC	0,000
CGGACAGCCG CCGCCGGTGG CCAATGACAC CCGTATCGTG CTCGGCCGGC TAGACCAAAA	6960
GCTTTACGCC AGCGCGCAAC TAGACCAAAA	7020
GCTTTACGCC AGCGCCGAAG CCACCGACTC CAAGGCCGCG GCCCGGTTGG GCTCGGACAT	7080
GGGTGAGTTC TATATGCCCT ACCCGGGCAC CCGGATCAAC CAGGAAACCG TCTCGCTTGA	7140
CGCCAACGGG GTGTCTGGAA GCGCGTCGTA TTACGAAGTC AAGTTCAGCG ATCCGAGTAA	_
GCCGAACGGC CAGATCTGGA CGGGCGTAAT CGGCTCGCCC GCGGCGAACG CACCGGACGC	7200
CGGGCCCCCT CAGCGCTGGT TTGTCCTATC	7260
CGGGCCCCCT CAGCGCTGGT TTGTGGTATG GCTCGGGACC GCCAACAACC CGGTGGACAA	7320
GGGCGCGGCC AAGGCGCTGG CCGAATCGAT CCGGCCTTTG GTCGCCCCGC CGCCGGCGCC	7380
GGCACCGGCT CCTGCAGAGC CCGCTCCGGC GCCGGCGCGCG GCCGGGGAAG TCGCTCCTAC	
CCCGACGACA CCGACACCGC AGCGGACCTT ACCGGCCTGA GAATTCTGCA GATATCCATC	7440
ACACTGGCGG CCGCTTCAGC ACGACTAGA	7500
ACACTGGCGG CCGCTCGAGC ACCACCACCA CCACCACTGA GATCCGGCTG CTAACAAAGC	7560
CCGAAAGGAA GCTGAGTTGG CTGCTGCCAC CGCTGAGCAA TAACTAGCAT AACCCCTTGG	7620
GGCCTCTAAA CGGGTCTTGA GGGGTTTTTT GCTGAAAGGA GGAACTATAT CCGGAT	7675

# (2) INFORMATION FOR SEQ ID NO:214:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 802 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

Met Gly His His His His His Val Ile Asp Ile Ile Gly Thr Ser

Pro Thr Ser Trp Glu Gln Ala Ala Glu Ala Val Gln Arg Ala Arg

. ∠∪		25	30
Asp Ser Val As 35	p Asp Ile Arg	Val Ala Arg Val	Ile Glu Gln Asp Met
Ala Val Asp Se 50	r Ala Gly Lys 55	Ile Thr Tyr Arg	Ile Lys Leu Glu Val
Ser Phe Lys Met 65	Arg Pro Ala 70	Gln Pro Arg Gly 75	Ser Lys Pro Pro Ser
Gly Ser Pro Glu	Thr Gly Ala 85	Gly Ala Gly Thr 90	Val Ala Thr Thr Pro
Ala Ser Ser Pro 100	Val Thr Leu	Ala Glu Thr Gly . 105	Ser Thr Leu Leu Tyr 110
	·		Glu Arg Tyr Pro Asn 125
			Na Gly Ile Ala Gln .40
Ala Ala Ala Gly 145	Thr Val Asn I	le Gly Ala Ser A 155	sp Ala Tyr Leu Ser 160
		170	sn Ile Ala Leu Ala 175
Ile Ser Ala Gln 180	Gln Val Asn T	yr Asn Leu Pro G 185	ly Val Ser Glu His 190
Leu Lys Leu Asn ( 195	Gly Lys Val Le	eu Ala Ala Met Ty	r Gln Gly Thr Ile 205
Lys Thr Trp Asp ; 210	Asp Pro Gln II 215	e Ala Ala Leu As 22	n Pro Gly Val Asn
		435	r Asp Gly Ser Gly 240
		230	n Asp Pro Glu Gly 255
Trp Gly Lys Ser P 260	ro Gly Phe Gl	y Thr Thr Val Asp 265	p Phe Pro Ala Val 270
Pro Gly Ala Leu G. 275	ly Glu Asn Gly _280	/ Asn Gly Gly Met	Val Thr Gly Cys 285
Ala Glu Thr Pro Gl 290		300	
Gln Ala Ser Gln Ar 305	g Gly Leu Gly 310	Glu Ala Gln Leu 315	Gly Asn Ser Ser

- Gly Asn Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Ala 325 330 335
- Gly Phe Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp 340 345 350
- Gly Pro Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile 355 360 365
- Val Asn Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala 370 375 380
- Phe Leu His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp 390 395 400
- Gln Val His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp 405 410 415
- Ala Leu Ile Ala Thr Ile Ser Ser Ala Glu Met Lys Thr Asp Ala Ala
  420
  425
  430
- Thr Leu Ala Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu
  435
  440
  445
- Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly
  450
  455
  460
- Gin Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg
  470
  475
  480
- Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu Ile Ser 485 490 495
- Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Glu 500 505 510
- Gln Gln Gln Ala Leu Ser Ser Gln Met Gly Phe Val Pro Thr Thr Ala 515 520 525
- Ala Ser Pro Pro Ser Thr Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro
  530 535 540
- Val Ala Pro Pro Pro Pro Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro 545 550 555 560
- Gly Asp Pro Asn Ala Ala Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro
  565 570 575
- Pro Pro Val Ile Ala Pro Asn Ala Pro Gln Pro Val Arg Ile Asp Asn 580 585 590
- Pro Val Gly Gly Phe Ser Phe Ala Leu Pro Ala Gly Trp Val Glu Ser

200
Asp Ala Ala His Phe Asp Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr 610 615 620
Gly Asp Pro Pro Phe Pro Gly Gln Pro Pro Pro Val Ala Asn Asp Thr 625 630 635 640
Arg Ile Val Leu Gly Arg Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu 645 650 655
Ala Thr Asp Ser Lys Ala Ala Ala Arg Leu Gly Ser Asp Met Gly Glu 660 665 670
Phe Tyr Met Pro Tyr Pro Gly Thr Arg Ile Asn Gln Glu Thr Val Ser 675 680 685
Leu Asp Ala Asn Gly Val Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys 690 695 700
Phe Ser Asp Pro Ser Lys Pro Asn Gly Gln Ile Trp Thr Gly Val Ile 705 710 715 720
Gly Ser Pro Ala Ala Asn Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp 725 730 735
Phe Val Val Trp Leu Gly Thr Ala Asn Asn Pro Val Asp Lys Gly Ala 740 745 750
Ala Lys Ala Leu Ala Glu Ser Ile Arg Pro Leu Val Ala Pro Pro Pro 755 760 765
Ala Pro Ala Pro Ala Pro Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Pro Ala 770 780
Gly Glu Val Ala Pro Thr Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu 785 790 795 800
Pro Ala
NFORMATION FOR SEQ ID NO:215:
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 454 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single

- (2) INF
  - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: Genomic DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

GCGGTCCGCG	CGGTGACGAA	GCTGACCCCG	TCGCAGATCA	TCAGGAAGCC	CTGATCGCGG GTCCAGCAGC GGCGATGGCG CACCAGGACC GATGGCCTCC	120
------------	------------	------------	------------	------------	--------------------------------------------------------------------	-----

CCGATCGCGA TCAGCTGCTT ACCGACCGGC GGGTGAACCA CCAGGCCGTA CCCGGGGTTG TCTTCCACCC CATGGTTGTT CAGCACCTGC CAGGCCTGGC GGTGCGTAAT GCTTCTCGTC  GAAGATGGGG GTGCCGGCAT CCGTCACCGA GCCC  (2) INFORMATION FOR SEQ ID NO:216:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 470 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	360 420 454
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:	
TGCAGAAGTA CGGCGGATCC TCGGTGGCCG ACGCCGAACG GATTCGCCGC GTCGCCGAAC GCATCGTCGC CACCAAGAAG CAAGGCAATG ACGTCGTCGT CGTCGTCTT GCCATGGGGG ACGCTGGACT GCCGGTGAAC ACGAGGTGTG CCCGGCGCCC CCGCCTCGGG ACCTGGACT GCCGGTGAAC GCCGGTCGAAC GCCGGTCGAAC GCCGGTCGAAC GCCGGTCGAAC GCCGGTCGAAC GCCGGTCGAAC GCCGGCAACGCC AAGATCATCG ACGTCACGCC GGGGCGCGC GTGATCACCA ACGTCACGCC GGGGCGGCTG CAAACCGCCC AAGATCAACG GCTCACGAC GCGGGTCGT TTGGTGGCCG GATTCCAAGG GGTCAGCCAACGCCC AAGATCACCAC GCGCGCCCATG CAAACCGCCC AAGATCACCAC GCGCGCCCATG ACACCACCGC CGTCGCCATG	60 120 180 240 300 360 420 470
TGCTTGAGGC CTTGCCAAAG GTGGGCAAGG TCCAGGCGC TGCTTGAGGC CTTGCCAAAG GTGGGCAAGG TCCAGGCGC	60 120 180 240 279
(2) INFORMATION FOR SEQ ID NO:218:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 219 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: Genomic DNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:	

ACACGGTCGA	ACTCGACGAG	CCCCTCGTGG	AGGTGTCGAC	CGACAAGGTC	GACACCGAAA	60
TCCCTCGCCG	GCCGCGGGTG	TGCTGACCAA	GATCATCGCC	CAAGAAGATG	ACACGGTCGA	120
GGTCGGCGGC	GAGCTCTCTG	TCATTGGCGA	CGCCCATGAT	GCCGGCGAGG	CCGCGGTCCC	180
GGCACCCCAG	AAAGTCTCTG	CCGGCCCAAC	CCGAATCCA			219
(	2) INFORMAT	ION FOR SEQ	ID NO:219:			
(i)	SEQUENCE CH	ARACTERISTIC	CS :			
(A	) LENGTH: 3	42 base pai:	rs			
	) TYPE: nuc					
	) STRANDEDNI					
(D	) TOPOLOGY:	linear				
(ii)	MOLECULE T	VDE . Camami				
(11)	MODECULE 1	IPE: Genomic	UNA			
(xi)	SEQUENCE DE	SCRIPTION.	SEC ID NO.	210.		
, , ,		200.011 110.00	SEQ ID NO:	219:		
TCGCTGCCGA	CATCGGCGCC	GCGCCCGCCC	CCAAGCCCGC	ACCCAAGCCC	GTCCCCGAGC	60
CAGCGCCGAC	GCCGAAGGCC	GAACCCGCAC	CATCGCCGCC	GGCGGCCCAG	CCAGCCGGTG	120
CGGCCGAGGG	CGCACCGTAC	GTGACGCCGC	TGGTGCGAAA	GCTGGCGTCG	GAAAACAACA	180
TCGACCTCGC	CGGGGTGACC	GGCACCGGAG	TGGGTGGTCG	CATCCGCAAA	CAGGATGTGC	240
TGGCCGCGGC	TGAACAAAAG	AAGCGGGCGA	AAGCACCGGC	GCCGGCCGCC	CAGGCCGCCG	300
CCGCGCCGGC	CCCGAAAGCG	CCGCCTGAAG	ATCCGATGCC	GC		342
(:	2) INFORMATI	ION FOR SEQ	ID NO:220:			
151	CECHENCE on					
	SEQUENCE CHA ) LENGTH: 51					
	TYPE: nucl		.5			
	STRANDEDNE					
	TOPOLOGY:					
(ii)	MOLECULE TY	PE: Genomic	DNA			
(xi)	SEQUENCE DE	ESCRIPTION:	SEQ ID NO:2	220:		
GGGTCTTGGT	CAGTATCAGC	GCCGACGAGG	ACGCCACGGT	GCCCGTCGGC	GGCGAGTTGG	60
CCCGGATCGG	TGTCGCTGCC	GACATCGGCG	CCGCGCCCGC	CCCCAAGCCC	GCACCCAAGC	120
CCGTCCCCGA	GCCAGCGCCG	ACGCCGAAGG	CCGAACCCGC	ACCATCGCCG	CCGGCGGCCC	180
CCCDAAACAA	TGCGGCCGAG	GGCGCACCGT	ACGTGACGCC	GCTGGTGCGA	AAGCTGGCGT	240
ACAGGATGT	CATCGACCTC GCTGGCCGCG	CCTCAACAA	CCGGCACCGG	AGTGGGTGGT	CGCATCCGCA	300
CGCTTCATCA	CCCGGTTAAC	CACCTTCCCC	AGAAGCGGGC	GAAAGCACCG	GCGCCCTGAG	360
TTGGTCCGCT	GCAGGCGGTC	GGCGAGCCAG	TTCACCTTAC	CCCCCCCAAA	TTCGCGGGTC	420
CGCCAGGAAG	GGCACCCGGA	ACAGGGTCCG	CACCC	GCGGCCGAAA	TCTTCCAGTT	480
			CACCC			515
(2	) INFORMATI	ON FOR SEO	ID NO:221:			
(i) s	EQUENCE CHA	RACTERISTIC	:S:			
(A)	LENGTH: 55	7 base pāir	:s			
(5)						
	TYPE: nucl					

(ii) MOLECULE TYPE: Genomic DNA

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:

GACAGCTGGC ACCAGGCCAC CGTTCGCAGC ACCAGGCGCT TGCAGCAGAA	GGTGCAGATT GGCGGCGCAA GGACATCGAA CGCCGCCGGA CCAGCTGGTG TAGCGCCGCA GATCGCCGAG	AAGCTTCAGG GACGCTGCCA ACCGCCGAGC GCTCAGGCCA CGAACCAAGC	ACCAGCGTCA TCAATGTGCG AGGCCACCGA AGAGCGTCGA AGAAGGCCGT TGCTCAGCCA	ATTGGAGATG CCAAGCCCTG ATACAACAAC AGACCTCAAG CGAACGAAAT	CGACTCAACC ACGCTGGCCG GCCGCCGAGG ACGCTGCATG GCGATGGTGC	60 120 180 240 300 360
· · · · · · · · · · · · · · · · · · ·	CGCCGCGGA	GACGCTGCCA	AGGCCACCGA	カヤカぐカカぐカカぐ	CCCCCCCC	
COLICACAGE	CCMGCIGGIG	ACCGCCGAGC	AGAGCGTCGA	ACACCTCAAC	1000000	
	INGCGCCGCA	GCTCAGGCCA	AGAAGGCCGT	CGAACCAAAT	CCCImccma	
TGCAGCAGAA	GATCGCCGAG	CGAACCAAGC	TECTCAGCCA	CCTCCACA	GCGATGGTGC	
AGGAGCAGGT	CAGCGCATCG	TTGCGGTCGA	TCACTCACCA	GCICGAGCAG	GCGAAGATGC	420
CGAGCCTCGA	CGAGGTGCGC	CACAACATCC	1GAGTGAGCT	CGCCGCGCCA	GGCAACACGC	480
CTGAACTTGC	CGAGGTGCGC	GACAAGAICG	AGCGTCGCTA	CGCCAACGCG	ATCGGTTCGG	540
	control					557

### (2) INFORMATION FOR SEQ ID NO:222:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 223 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:

CAGGATAGGT	TTCGACATCC	ACCTGGGTTC	CGCACCCGGT	CCCCCACCCM	GTGATAGGCC	
AGAGGTGGAC	CECCCCCCC	CCACCAMOO		GCGCGMCCGI	GIGATAGGCC	60
TOOL OLD	CIGCOCCOAC	CGACGATCGA	TCGAGGAGTC	AACAGAAATG	GCCTTCTCCG	120
TCCAGATGCC	GGCACTCGGT	GAGAGCGTCA	CCGACCCGAC	COMM's COCCO	TGGCTCAAAC	120
AGGAAGGCGA	CACCCCCCAA	CTCCCCCCCC	CCONGGGGAC	GGTTACCCGC	TGGCTCAAAC	180
MODELLING	CACGGTCGAA	CICGACGAGC	CCCTCGTGGA	GGT		223
						443

- (2) INFORMATION FOR SEQ ID NO:223:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 578 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

(2) INFORMATION FOR SEQ ID NO:224:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 484 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:224:

TCAAGGATCG GCGATGAAGT GCAAGGTCAA	GCTCAAGCGT CTTGGGCAAA GGCGCAGGAG GGTGACCGTC ACGATGCGGG	GGCGCACCA ATGAAGGTGT ATCATGACCG AGCGCAAGGC	ACCTCACCCA CTGCGCTGCT AGCTGGAAAT CCTGCTGGAA	ACGTCGAGCG GGTCCTCAAG TGAGGCCTTG TGCGCCCCAC AAGTTCGGCT	CCCGCCGCCT	60 120 180 240 300 360 420 480 484
----------------------------------------	--------------------------------------------------------------------	-----------------------------------------------------	------------------------------------------------------	--------------------------------------------------------------------	------------	------------------------------------------------------------

- (2) INFORMATION FOR SEQ ID NO:225:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 537 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:225:

GARGUARIC CCAAGUAGCA CCCCGGC 537	TOURSE CONTROL CONTROL CONTROL CONTROL CONTROL	ACGAAGTACA CGCCGGACG CHACGTCG AACGCCAGCG CCATCGCGCC GAAGAACAGC	ACTTGGTACT GACGTCGCGC CGGCCAGGCA CGGTCTTTGC 420	AACGACATGG GTCAGGCCCG TCGGGCAGCG GCGGTCTCGG CCCAGCGCAT ACTTGGTACT	GCCAGGTCCA CGTGGAAGTG GAACAACCGA ACGCGAACCA ACCCGCTGGG GACGTCGCGC	CGGTTTGGAT GAACGCTTTG GTTGCGACCG CGGAGCGTAG AAGCACGTCA	TCCCAAGGGT GCGGTGTAGT ACCGCTTGAC GTGGCCAGAT CGCCGCACTG	TGGCGTACAG GGTAGTTGCC GCCAGAGCGA CGACCGCATG AGACCGCGAA TCCCCAGCCA	CACCGGCCGC TGCGGAATTC GCGCACGGCG CCGATCGATC CGGGATCAAC CGGTCTTTGC	120 180 240 300 360 420 480
ACTTGGTACT GACGTCGCGC CGCCACGTCG AACGCCAGCG CCATCGCGCC GAAGAACAGC 480 ACGAAGTACA CGCCGGACCA CTTGGTGGCG CAAGCCAATC CCAAGCAGCA CCCCGGC 537	ACTTGGTACT GACGTCGCGC CGCCACGTCG AACGCCAGCG CCATCGCGCC GAAGAACAGC 420 ACGAAGTACA CGCCGCACGA CTTGCCGCGC GAAGAACAGC 420	ACTTGGTACT GACGTCGCGC CCCCCCCCCCCCCCCCCC		CCCAGCGCAT	ACCCGCTGGG	AAGCACGTCA	CECCECACTO	TOGGGGGGGG	COOGNICANC	360
ACTTGGTACT GACGTCGCGC CGCCACGCCA CGCCCAGCCA CGGTCTTTGC 420	ACTTGGTACT GACGTCGCGC CGCCACGCACTG TCCCCAGCCA CGGTCTTTGC 420	ACTIGGTACT GACGTCGCGC CGCCAGGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC 420	COCAGCIGAT ACCCGCTGGG AAGCACGTCA CGCCGCACTC TGGGGGACCACC 360	CCC3CCCC3m		CGGAGCGTAG	GTGGCCAGAT	AGACCGCGAA	CCCCBMOSS	
CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC 420	CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC 420	CCCAGCGCAT ACCCGCTGGG AAGCACCTCA GTGGCCAGAT AGACCGCGAA CGGGATCAAC 360	CCCAGCGCAT ACCCGCTGGG AAGCACCTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC 360	GCGGTCTCGG	ACGCGAACCA	CCC3 CCC	ACCGCTTGAC	CGACCGCATG	CCGATCGATC	300
CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC 420	CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC 420	CCCAGCGCAT ACCCGCTGGG AAGCACCTCA GTGGCCAGAT AGACCGCGAA CGGGATCAAC 360	CCCAGCGCAT ACCCGCTGGG AAGCACCTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC 360	TUGGGCAGCG	GAACAACCGA	GTTGCGACCG	70000000	GCCAGAGCGA	GCGCACGGCG	240
GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCATG CCGATCGATC  CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC  ACTTGGTACT GACGTCGCGC CGCCACCTGC TCCCCAGCCA CGGTCTTTGC  420	GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAT CCGATCGATC  CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC  ACTTGGTACT GACGTCGCGC CGCCACGTCA CGCCCACCTG TCCCCAGCCA CGGTCTTTGC  420	GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC  CCCAGCGCAT ACCCGCTGGG AAGCACCAGA GTGGCCAGAT AGACCGCGAA CGGGATCAAC  360	GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC  CCCAGCGCAT ACCCGCTGGG AAGCACCTCA GTGGCCAGAT AGACCGCGAA CGGGATCAAC  360	TOTAL	CGTGGAAGTG	GAACGCTTTG	GCGGTGTAGT	CCCACACCC	TOCOGNATIC	180
TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGATCAAC CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC ACTTGGTACT GACGTCGCGC CGCCACCTGCA CGCCCACCTG TCCCCAGCCA CGGTCTTTGC 420	TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGATCAAC CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC ACTTGGTACT GACGTCGCG CGCCACGTGG AAGCACGTCA CGCCGACTG TCCCCAGCCA CGGTCTTTGC 420	TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC CCCAGCGCAT ACCCGCTGG AAGCACCTCA CGGACCAGAT AGACCGCGAA CGGGATCAAC 360	TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC CCCAGCGCAT ACCCGCTGGG AAGCACCTCA CGGAGCGAA AGACCGCGAA CGGGATCAAC 360	GTCAGGCCCC	COMMONTOCA	CGGTTTGGAT	TCCCAAGGGT	GGTAGTTGCC	TECECA A TOTAL	
GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTGTAGT GCCGAGGCG CGCGACGGCG CGCGAGGCCG ACCGCTTGAC CGACCGCATC CCGATCGATC CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCGCGAGTCAAC ACCGCTTGAC CGCCGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCCA CGGTCTTTGC 420	GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGAGTGTTGCC TGCGGAATTC 180 TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC GCGGTCTCGG ACGCGAACCA CGGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC ACTTGGTACT GACGTCGCG CGCCACCTGG TCCCCAGCGA CGGTCTTTGC 420	GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTTTTGCC TGCGGAATTC  TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC  GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC  CCCCAGCGCAT ACCCGCTGGG AAGCACCTCA CGGACCAGAT AGACCGCGAA CGGGATCAAC  360	GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTGTTGCC TGCGGAATTC 180 TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC 300 CCCAGCGCAT ACCCGCTGGG AAGCACCAC GTGGCCAGAT AGACCGCGAA CGGGATCAAC 360	AACGACATGG	GCCAGGTCCA	CCCMmm	IGCIGGICGA	TGGCGTACAG	CACCGGCCGC	120
GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGTGAGGGT GCGAAGTGC TGCGGAATTC 180 TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC 300 CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTGC ACTTGGTACT GACGTCGCGC CGCCACCGCG CGCCACCGCA CGGTCTTTGC 420	GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTGTAGT GCCGAGGCG GCGCACGGCG 240 TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC 300 CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACG CGGATCAAC 360 ACTTGGTACT GACGTCGCG CGCCACGTCG CGCCACGCCA	GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTTTTGCC TGCGGAATTC  TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC  GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC  CCCCAGCGCAT ACCCGCTGGG AAGCACCTCA CGGACCAGAT AGACCGCGAA CGGGATCAAC  360	GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTGTTGCC TGCGGAATTC 180 TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC 300 CCCAGCGCAT ACCCGCTGGG AAGCACCAC GTGGCCAGAT AGACCGCGAA CGGGATCAAC 360	CACGACTGTG	CGCCGCAGCC	TGCAACGTCT	TCCTCCTCC	CCAGCATCTC	GGCCTTGACG	60
AACGACATGG GCCAGGTCCA CGGTTTGGAT TCCCAAGGGT GGTAGTTGCC TGCGGAATTC 180 GTCAGGCCGG CGTGGAAGTG GAACGCTTTG GCGGTTAGT GCCAGAGCGA GCGCACGGCG 240 TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC 300 CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCCA CGGTTTTGC 420 ACTTGGTACT GACGTCGCGC CGCCACCTGCG TCCCCAGCCA CGGTCTTTGC 420	AACGACATGG GCCAGGTCCA CGGTTTGGAT TCCCAAGGGT GGTAGTTGCC TGCGGAATTC 180 GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTGTAGT GCCAGAGCGA GCGCACGGCG 240 TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC 300 CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCCA CGGTTTTGC 420 ACTTGGTACT GACGTCGCG CGCCACCTGC TCCCCAGCCA CGGTCTTTGC 420	AACGACATGG GCCAGGTCCA CGGTTTGGAT TCCCAAGGGT GGTAGTGC TGCGGAATTC GTCAGGCCCG CGTGGAAGT GAACGCTTTG GCGGTTTAGT GCCAGAGCGA GCGCACGGCG TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC CCCCAGCGCAT ACCCGCTGGG AAGCACCTCA	AACGACATGG GCCAGGTCCA CGGTTTGGAT TCCCAAGGGT GGTAGTTGCC TGCGGAATTC 180 GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTGTAGT GCCAGAGCGA GCGCACGGCG 240 GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC 360 CCCAGCGCAT ACCCGCTGGG AAGCACCTCA GTGGCCAGAT AGACCGCGAA CGGGATCAAC 360	AGGACTGGCA	CCGCCAGCCA	CCACATCGCG	GGCGTGCCGX	CCICCIE		
AACGACATGG GCCAGGTCCA CGGTTTGGAT TCCCAAGGGT GGTAGTGCC TGCGGCCGC 120 GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTTTAGT GCCAGAGCGA GCGCACGGCG 240 GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT CCGACCGCAT CCGATCGATC CCCAGCGCAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC 420 ACTTGGTACT GACGTCGCGC CGCCACGTGA CGCCGCACTG TCCCCAGCCA CGGTCTTTTGC 420	AACGACATGG GCCAGGTCCA CGGTTTGGAT TCCCAAGGGT GGTAGTGCC TGCGGAATTC 180 GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTTTAGT GCCAGAGCGA GCGCACGGCG 240 GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT ACCCGCTGGG AAGCACGTCA CGGAGCGAAT ACCCGCTGGG AAGCACGTCA CGGCCACGAT ACCCGCTGGG AAGCACGTCA CGCCGCACTG TCCCCAGCCA CGGTCTTTGC 420	AACGACATGG GCCAGGTCCA CGGTTTGGAT TCCCAAGGGT GGTAGTGC TGCGGAATTC GTCAGGCCCG CGTGGAAGT GAACGCTTTG GCGGTTTAGT GCCAGAGCGA GCGCACGGCG TCGGGCAGCG GAACAACCGA GTTGCGACCG ACCGCTTGAC CGACCGCATG CCGATCGATC GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT AGACCGCGAA CGGGATCAAC CCCCAGCGCAT ACCCGCTGGG AAGCACCTCA	AACGACATGG GCCAGGTCCA CGGTTTGGAT TCCCAAGGGT GGTAGTTGCC TGCGGAATTC 180 GTCAGGCCCG CGTGGAAGTG GAACGCTTTG GCGGTTTAGT GCCAGAGCGA GCGCACGGCG 240 GCGGTCTCGG ACGCGAACCA CGGAGCGTAG GTGGCCAGAT ACCCGCTTGAC CGACCGCAT CCGATCGATC 300 CCCCAGCGCAT ACCCGCTGGG AAGCACCTCA GTGGCCAGAT AGACCGCGAA CGGGATCAAC 360	AGGACTGGCA	CCCCCACCC					

- (2) INFORMATION FOR SEQ ID NO:226:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 135 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single_
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

#### (2) INFORMATION FOR SEQ ID NO:227:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 156 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:

Gln Lys Tyr Gly Gly Ser Ser Val Ala Asp Ala Glu Arg Ile Arg Arg Val Ala Glu Arg Ile Val Ala Thr Lys Lys Gln Gly Asn Asp Val Val 25 Val Val Val Ser Ala Met Gly Asp Thr Thr Asp Asp Leu Leu Asp Leu 40 Ala Gln Gln Val Cys Pro Ala Pro Pro Pro Arg Glu Leu Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu Val Ala Met Ala Ile Glu Ser Leu Gly Ala His Ala Arg Ser Phe Thr Gly Ser Gln Ala Gly 90 Val Ile Thr Thr Gly Thr His Gly Asn Ala Lys Ile Ile Asp Val Thr 105 Pro Gly Arg Leu Gln Thr Ala Leu Glu Glu Gly Arg Val Val Leu Val 120 Ala Gly Phe Gln Gly Val Ser Gln Asp Thr Lys Asp Val Thr Thr Leu 125 135 Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala Met 145 150

- (2) INFORMATION FOR SEQ ID NO:228:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 92 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:228:

 Pro
 Ala
 Gly
 Thr
 Asn
 Asn
 Asp
 Arg
 Leu
 Ile
 Ser
 Met
 Arg

 Asp
 Gly
 Gly
 Gly
 Ile
 Val
 Ala
 Leu
 Pro
 Gln
 Leu
 Thr
 Asp
 Glu
 Gln
 Arg
 Ala

 Ala
 Ala
 Leu
 Pro
 Ala
 A

- (2) INFORMATION FOR SEQ ID NO:229:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 72 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:229:

- (2) INFORMATION FOR SEQ ID NO:230:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 113 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:230:

# (2) INFORMATION FOR SEQ ID NO:231:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 118 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:231:

 Val
 Leu
 Val
 Ser
 Ile
 Ser
 Ala
 Asp
 Glu
 Asp
 Ala
 Thr
 Val
 Pro
 Val
 Gly

 Gly
 Glu
 Leu
 Ala
 Arg
 Ile
 Gly
 Val
 Ala
 Ala
 Asp
 Ile
 Gly
 Ala
 Ala
 Pro

 Ala
 Pro
 Lys
 Pro
 Ala
 Pro
 Val
 Pro
 Glu
 Pro
 Ala
 Pro
 Thr
 Pro

 Lys
 Ala
 Glu
 Pro
 Ala
 Pro
 Pro
 Pro
 Ala
 Ala
 Pro
 Ala
 Ala
 Pro
 Ala
 A

# (2) INFORMATION FOR SEQ ID NO:232:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 185 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:232:

Asp Pro Lys Val Gln Ile Gln Gln Ala Ile Glu Glu Ala Gln Arg Thr 10 His Gln Ala Leu Thr Gln Gln Ala Ala Gln Val Ile Gly Asn Gln Arg 25 Gln Leu Glu Met Arg Leu Asn Arg Gln Leu Ala Asp Ile Glu Lys Leu 40 Gln Val Asn Val Arg Gln Ala Leu Thr Leu Ala Asp Gln Ala Thr Ala 55 Ala Gly Asp Ala Ala Lys Ala Thr Glu Tyr Asn Asn Ala Ala Glu Ala Phe Ala Ala Gln Leu Val Thr Ala Glu Gln Ser Val Glu Asp Leu Lys 85 Thr Leu His Asp Gln Ala Leu Ser Ala Ala Ala Gln Ala Lys Lys Ala 105 Val Glu Arg Asn Ala Met Val Leu Gln Gln Lys Ile Ala Glu Arg Thr 120 Lys Leu Leu Ser Gln Leu Glu Gln Ala Lys Met Gln Glu Gln Val Ser 135 Ala Ser Leu Arg Ser Met Ser Glu Leu Ala Ala Pro Gly Asn Thr Pro 150 155 Ser Leu Asp Glu Val Arg Asp Lys Ile Glu Arg Arg Tyr Ala Asn Ala 165 Ile Gly Ser Ala Glu Leu Ala Glu Ser 180

- (2) INFORMATION FOR SEQ ID NO:233:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 71 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:

 Val
 Ser
 Thr
 Ser
 Trp
 Val
 Pro
 His
 Pro
 Val
 Arg
 Asp
 Arg
 Val
 1le

 Gly
 Gln
 Arg
 Trp
 Thr
 Cys
 Ala
 Asp
 Arg
 Arg
 Ser
 Ile
 Glu
 Glu
 Ser
 Thr

 Glu
 Met
 Arg
 Trp
 Ser
 Val
 Glu
 Pro
 Ala
 Leu
 Glu
 Glu
 Ser
 Val
 Thr

 Glu
 Gly
 Thr
 Val
 Trp
 Leu
 Lys
 Glu
 Gly
 Asp
 Thr
 Val
 Glu

 Foll
 Arg
 Thr
 Arg
 Trp
 Leu
 Lys
 Glu
 Gly
 Arg
 Thr
 Val
 Glu

 Foll
 Arg
 Thr
 Arg
 Trp
 Leu
 Lys
 Glu
 Glu
 Arg
 Thr
 Val
 Glu

 Foll
 Arg
 Thr
 Arg
 Trp
 Leu
 Lys
 Glu
 Glu
 Glu
 Arg
 Thr
 Val
 Glu

 <t

(2) INFORMATION FOR SEQ ID NO:234:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 182 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:

Glu Val His Leu Pro Val Asp Val Gly Glu Pro Arg Gln Pro Thr Gly 10 Ala Val Ala Asp Gln Asp His Arg Ile Thr Pro Val Pro Ala His Lys 25 His Thr Pro Pro Arg Val Cys Gln Asp Trp His Arg Gln Pro Pro His 40 Arg Gly Arg Ala Asp Gln His Leu Gly Leu Asp Ala Arg Leu Cys Ala Ala Ala Cys Asn Val Leu Leu Val Asp Gly Val Gln His Arg Pro Gln 70 75 Arg His Gly Pro Gly Pro Arg Phe Gly Phe Pro Arg Val Val Ala 90 Cys Gly Ile Arg Gln Ala Arg Val Glu Val Glu Arg Phe Gly Gly Val 105 Leu Pro Glu Arg Ala His Gly Val Gly Gln Arg Asn Asn Arg Val Ala 120 Thr Asp Arg Leu Thr Asp Arg Met Pro Ile Asp Arg Gly Leu Gly Arg 135 Glu Pro Arg Ser Val Gly Gly Gln Ile Asp Arg Glu Arg Asp Gln Pro 150 155 Gln Arg Ile Pro Ala Gly Lys His Val Thr Pro His Cys Ser Gln Pro 165 170 Arg Ser Leu His Leu Val 180

- (2) INFORMATION FOR SEQ ID NO:235:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 160 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:235:

## (2) INFORMATION FOR SEQ ID NO:236:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 178 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:236:

Asp Trp His Arg Gln Pro Pro His Arg Gly Arg Ala Asp Gln His Leu Gly Leu Asp Ala Arg Leu Cys Ala Ala Cys Asn Val Leu Leu Val 25 Asp Gly Val Gln His Arg Pro Gln Arg His Gly Pro Gly Pro Arg Phe 40 Gly Phe Pro Arg Val Val Val Ala Cys Gly Ile Arg Gln Ala Arg Val 55 Glu Val Glu Arg Phe Gly Gly Val Val Pro Glu Arg Ala His Gly Val 70 Gly Gln Arg Asn Asn Arg Val Ala Thr Asp Arg Leu Thr Asp Arg Met Pro Ile Asp Arg Gly Leu Gly Arg Glu Pro Arg Ser Val Gly Gln 100 Ile Asp Arg Glu Arg Asp Gln Pro Gln Arg Ile Pro Ala Gly Lys His 120 Val Thr Pro His Cys Pro Gln Pro Arg Ser Leu His Leu Val Leu Thr 135 Ser Arg Arg His Val Glu Arg Gln Arg His Arg Ala Glu Gln His 150 Glu Val His Ala Gly Pro Leu Gly Gly Ala Ser Gln Ser Gln Ala Ala 155 165 170 Pro Arg

### (2) INFORMATION FOR SEQ ID NO:237:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 271 base pairs
  - (B) TYPE: nucleic acid

(C)	STRANDEDNESS:	single
1-		· J

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:

CCGACAAGGT	GAAGATCGGG GGACACCGAG CGCCACGGTG	GATTCGGTTC ATCCCGTCCC CCCGTCGGCG	AGGTTGACGA CGGTGGCTGG GCGAGTTGGC	GCCACTCGTG	ACCGTCATTC GAGGTGTCCA AGTATCAGCG GTCGCTGCCG	60 120 180 240
AGATCGGCGC	CGCGCCCCCC	CCCAAGCCCC	C			271

- (2) INFORMATION FOR SEQ ID NO:238:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 89 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:

- (2) INFORMATION FOR SEQ ID NO:239:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 107 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:239:

GAGGTAGCGG ATGGCCGGAG GAGCACCCCA GGACCGCGC CGAACCGCGG GTGCCGGTCA
TCGATATGTG GGCACCGTTC GTTCCGTCCG CCGAGGTCAT TGACGAT 107

(2) INFORMATION FOR SEQ ID NO:240:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 339 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:

ATGAAGTTGA AGTTTC TTTCCTGCCT CGGTTC GGCTATTGCC CGGGTC TACCCCGACG GCTCGT TACTTCGATT GTGTCF GGTGGGGGCAA TTCCGT	GCCG ATGGGGTTTT FTTTG GCACCAGTGG	GGCGACTTGG ATGCAAACGT	ATCAGCCGGA CCGTGTGCGA	CATGACGAAA CGGCGAGAAG	60 120 180 240 300
--------------------------------------------------------------------------------------------------------------	----------------------------------	--------------------------	--------------------------	--------------------------	--------------------------------

- (2) INFORMATION FOR SEQ ID NO:241:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 112 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:

 Met
 Lys
 Leu
 Phe
 Ala
 Arg
 Leu
 Ser
 Thr
 Ala
 Ile
 Leu
 Gly
 Cys
 Ala

 1
 1
 1
 1
 1
 1
 1
 1
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15

- (2) INFORMATION FOR SEQ ID NO:242:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 371 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:

GTGACCACGG TGGGCCTGCC ACCAACCCGG GCAGCGGCAG CCGCGGCGGC GCCGGCGGCT CCGGCGGCAA CGGTGGCGCC GGGGGTAACG CCACCGGCTC AGGCGGCAAG GGCGGCGCCG GTGGCAATGG CGGTGATGGG AGCTTCGCCC CTACGACAG GGCGGCAAG GGCGGCGCCG	60
GTGGCAATGG CGGTGATGGG AGCTTGGGG CTACCGGCTC AGGCGGCAAG GGCGGCGCCG	120
CGGGCGCCCC CGGCGGCAAC GCGCGCAACG CTACCAGCGG CCCCGCCTCC ATCGGGGTCA	180
CAGGTGGCGA CGGCGGCAAA GGCGCGCAAG GCGGCGGG TGGCAGCAAC CCCAACGGCT	240
GCGCCAACAG CGGCATCGTC GGCGCTTCCC GTGGTGCCGG CGGCAACGGG GGCTCGATCG	300
GCGCCAACAG CGGCATCGTC GGCGGTTCCG GTGGGGCCGG CGGCAACGGG GGCTCGATCG GAAACGGCAG C	360
	371
(2) INFORMATION FOR SEQ ID NO:243:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 424 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:243:	
GTCCGGGTCC CACCACCGCG CCGGCGCGCC CCTAGCGGCC GGGCGCACCA GCCCCTTTTC	
TTGACTCGTT CAAGAAAAGG GCCTTCTGTT TGGTCGGCCA TGTTGGCATG ATCGTGACCC ATGGGCAACA TCGACGTCGA CATCTCGGCC AAGGTCTAGG TGGTGGCATG ATCGTGACCC	<b>6</b> 0
ATGGGCAACA TCGACGTCGA CATCTTCGGGCA TGTTGGCATG ATCGTGACCC	120
GGTGGTGAGC ATCGGTCTAG CCCTCATAGC ACCATGCGAA TCGCCGCCGC	180
CCCGTCGGAG CCCGGGGTTG TETCCTACCC AGGGTTCGCG GTACCTGTTG CCGACGCACA	240
CGTCGGCGCC CCAATGGGGT GGGAGGCCCCC GGTGCTCGGA AAGGGGTCGG TCGGCAACAT	300
CGAACTACCG GCGTGCAACA ACTGGTTGCA CAMGCCCAAG CCGTTCCAGG CGTTTTGGGT	360
CGAACTACCG GCGTGCAACA ACTGGGTGGA CATCGGGCTG CCCGAGGTGT ACGACGATCC	420
	424
(2) INFORMATION FOR SEQ ID NO:244:	
(i) SECTIFNCE CHARACTER	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 317 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
Tolobodi: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:244:	
GCGATGGCGG CCGCGGGTAC CACCGCCAAT GTGGAACGGT TTCCCAACCC CAACGATCCT	
TTGCATCTGG CGTCAATTGA CTTCAGCCCG GCCGATTTCG TCACCGAGGG CCACCGTCTA AGGGCGGATG CGATCCTACT GCGCCGTAGG CCACCGTCTA	60
AGGGCGGATG CGATCCTACT GCGCCGTTAGG GCCGATTTCG TCACCGAGGG CCACCGTCTA	120
TGGGACTTGG TGGAGTCGCA GTTGGGGAGC CTTTCGCCGA GCCGCCGGAT	180
	240
CGGCTCTACG ATTCGTC CGAATCGCTG	300
-	317

- (2) INFORMATION FOR SEQ ID NO:245:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 422 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:245:

TGGCGTATGC	GCTTCGCAGC	CGGTGCCGCG	TCAACGCGCC	GGAGGCAATC	GCTTCGCTGC	60
CGAGGAATGG	TTCGATCACG	ATCGCAGTGT	GCCGTCGTGC	ACCGACACCG	CCGTCCAACG	120
TGAACTGAGG	GCGGAAAATC	GGCCGAAATC	TCGCCCTCAG	TTCACGCTCG	GCGCCTAACG	180
GTTCTGGAAG	TTGGGTGCGC	GCTTCTCGGC	GAACGCGCGC	GGCCCTTCCT	TEGECTTETE	240
GGACAGGAAG	ACCTTGATGC	CGATCTGGGT	GTCGATCTTG	AACCCCTCCT	TETTCCCCCA	
GCACTCGGTC	TCGCGGATGG	ACCGCAAGAT	GGCCTGCACG	CCCACCCCCC	COMMISSION	300
GATGGCGTCG	GCAAGTTCTA	CAACCOCTACA	CAACGCCTGG	GCCAGGGGTC	CGTTAGCCGA	360
AT		GARCCIIGGI	CAACGCCTGG	CCGTCGGGCA	CACGIGGCCG	420
						422

#### (2) INFORMATION FOR SEQ ID NO:246:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 426 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:246:

GCGTGCCGCT	GAACACCAGC	CCGCGGCTGC	CAGATCTCCC	GGACTCGGTA	GTGCCGCCGG	60
TGGCGTCGTT	GCTCTCCTGA	CGGGGCGCGG	CGACCATAAG	GTCGCTAATG	CCCAGGTAGC	120
GGCCCAGGTG	CATGGAGTCG	ATGATGATGC	GACTCTCCAG	CTCGCCGACC	GGGAGCTTGG	180
CATCGGGCCT	GATCAGCCAG	GACGCGTAGG	ACAAGTCGAT	CGAATGCATA	GTGGCCTCCA	240
GAGTGGCCGT	GCCACTTCCG	GCGTGCTCCA	CGGCAAATGC	CITGATTTCT	AGCTCCGCGT	300
AGTGTTCCCG	CATCGCCTGC	GGGATGAATG	GGAACCGCAG	GATGGCGACA	AACGGGTCTG	360
ACCTCAGGTT	TGCCGCTTTG	CGCACAGTGG	TCGACAGCCG	GTACTCGGCA	TAAATGCTGG	420
CCCCGA						426

- (2) INFORMATION FOR SEQ ID NO:247:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 327 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:247:

AGACCGGCGA	GGGTGTGGTC	GCTGCCCGCG	GCATTGTCGA	TAATCTGCGC	TGGGTCGACG	60
CGCCGATCAA	CTAGTGAGGC	GCAACGCTAG	GCTTTGGGAT	ACCCACAGCT	AAAAAGTTTA	120
TCAAAGAAAC (	GAAGAAGGTT	GCCATGAGCA	CTGTTGCCGC	CTACCCCCC	ATCTCCCCCA	180
CCGAACCCCT	GACCAAGACC	ACGATCACCC	GTCGCGACCC	CCCCCCCC	CACAMOGGGA	
TCGACATCAA	ATTCGCCGGA	ATCTCTCCCT	CCCACAMOOR	TRACCECCAC	GACATGGCGA	240
GGCAACCGAA	TTT3 CCTCTC	CTCCCCC	CGGACATCCA	TACCGTCCAA	ACCGAATGGG	300
GGCAACCGAA .	IIIACC LGIG	GICCCIG				327

### (2) INFORMATION FOR SEQ ID NO:248:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 123 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:248:

- (2) INFORMATION FOR SEQ ID NO:249:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 104 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:249:

 Met
 Ala
 Ala
 Gly
 Thr
 Thr
 Ala
 Asn
 Val
 Glu
 Arg
 Phe
 Asn
 Pro
 Asn
 Pro
 Asn
 Pro
 Asn
 Asp
 Fro
 Ala
 Asp
 Phe
 Asp
 A

- (2) INFORMATION FOR SEQ ID NO:250:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 41 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:250:

- (2) INFORMATION FOR SEQ ID NO:251:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 25 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:251:

 Val
 Pro
 Leu
 Asn
 Thr
 Ser
 Pro
 Arg
 Leu
 Pro
 Asp
 Leu
 Pro
 Val

 Val
 Pro
 Val
 Ala
 Ser
 Leu
 Leu
 Ser

 20
 25
 25

- (2) INFORMATION FOR SEQ ID NO:252:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 61 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:252:

Gln Thr Glu Trp Gly Gln Pro Asn Leu Pro Val Val Pro 50 55 60  (2) INFORMATION FOR SEQ ID NO:253:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 213 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:253:	
GCTTGGAGCC CTGGAGCGAC GGTGTGGGTC TGGGGGTCGA TTCGTTCTCG GCGAAAGTCA ACTAAAGACC ACGTTGACAC CCAACCGGCG GCCCGGCATG GGCCGTCGCG GCGTAGAAGC TTTGACCGCG GCGCGAAACG TTCGCTGCTG CGGCCCATGC AGATCGCACA CGCTTGCTTG AACATCGGGT GGAGCCGGTG GTAACGCCAG GCT	60 120 180 213
(2) INFORMATION FOR SEQ ID NO:254:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 367 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:254:	
CCGAGCTGCT GTTCGGCGCC GGCGGTGCGG GCGGCGCGGG TGGGGCGGGC	120 180 240
(2) INFORMATION FOR SEQ ID NO:255:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 420 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:255:	
AAGGCGTGAT TGGCAAGGCG ACCGCGCAGC GGCCCGTAGC CGCGGGACGG CCCAGGCCCC	60

GACCGCAGCG GCCGGTGTCT GACCGGGTCA GCGACCAGCG GCGCTGACCG TGCCGCTCGT 120
CTACTTCGAC GCCAGCGCCT TCGTCAAACT TCTCACCACC GAGACAGGGA GCTCGCTGGC 180

GTCCGCTCTA	TGGGACGGCT	GCGACGCCGC	ATTETCCAAC	CCCCTCCCCT	ACCCCGAAGT	_
CCGCGCCCCX	CTCCCTCC.		····	COCCIOGCCI	ACCCCGAAGT	240
CCGCGCA	CICGCIGCAA	CGGGCCGCAA	TCACGACCTA	ACCGAATCCG	AGCTCGCCGA	300
CGCCGAGCGT	GACTGGGAGG	ACTITICATOR	CCCNCCCCC	C1 CBCC1 1 CT	CACCGCGACG	300
	10000000		COCMCCCGCC	CAGTCGAACT	CACCGCGACG	360
GIIGAACAGC	ACGCCGGGCA	CCTCGCCCGA	ACACATGCCT	TACGCGGAGC	CGACACCGTT	420
					concuccati	420

- (2) INFORMATION FOR SEQ ID NO:256:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 299 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:256:

- (2) INFORMATION FOR SEQ ID NO:257:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:257:

Leu Glu Pro Trp Ser Asp Gly Val Gly Leu Gly Val Asp Ser Phe Ser 1 5 10 15
Ala Lys Val Asn 20

- (2) INFORMATION FOR SEQ ID NO:258:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 121 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:258:

Glu Leu Leu Phe Gly Ala Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly 1 5 15

Thr Asp Gly Gly Pro Gly Ala Thr Gly Gly Thr Gly Gly His Gly Gly

- (2) INFORMATION FOR SEQ ID NO:259:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 34 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:259:

- (2) INFORMATION FOR SEQ ID NO:260:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 99 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:260:

Gly Gly Ala Gly Gly Phe Gly Asp His Gly Thr Leu Gly Thr Gly Gly 85 90 95 Ala Gly Gly

- (2) INFORMATION FOR SEQ ID NO:261:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 282 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:261:

TCCTGTTCGG	CGCCGGCGGG	GTGGGCGGTG	TTGGCGGTGA	CCCTCTCCC	TTCCTGGGCA	_
CCGCCCCCCG	CCCCCCCCC	CCMCCCCC	TTOGCGGTGA	CGGIGIGGCW	TTCCTGGGCA	60
2222222		GGTGCCGGCG	GGGCCGGTGG	GCTGTTCAGC	GTCGGTGGGG	120
CCGGCGCGC	CGGCGGAATC	GGATTGGTCG	GGAACAGCGG	TOCCOGGGGG	TOCCCCCCC	
CCGCCCTGCT	CTGGGGGGAC	GGCGGTGCCC	CCCCCCCCC	70000000	TCCACTACCG	180
CCCCTCCCC	5555555555		90909090	TGGGGTCGGG	TCCACTACCG	240
GCGGTGCCGG	CGGGGC	GGCAACGCCA	GCCTGCTGGT	AA		282
						202

- (2) INFORMATION FOR SEQ ID NO:262:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 415 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:262:

CGGCACGAGC	CGTGCTACTG	GTCAACTGAT	GCCCTGATTG	TCACCTTCCC	GGCGCCGGAT	
CAGTGCTTCT	CAGGACCGAC	GTA ATRITUCC	AAAACCAATC	TORCCTTCCC	GGCGCCGGAT	60
AATGCCACAC	CCCCCCCAT	CACCCACACACACACACACACACACACACACACACACACA	AAAACCAATC	CGGCCGCCGA	GGCGAGGATG	120
Checonomic	COGCOGCGAI	CAGCCACGGG	AGCCACAACG	CGATGCCGAC	CGCTGCCACC	180
GAGCCGGACA	ACGCGACCAT	GATCGGCCAC	CAGCTATGCG	GACTGAAGAA	TCCAAGTTCT	240
CCIGCGCCGT	CGCTGATTTC	AGCGCCTTCG	TAGTCCTCGG	GCCGGGAATC	TAACCGCCCC	
GCCACAAACC	GGAAGAAGGT	GGCGACGATC	AACGCCATGC	CCCCCCCCCC	TARCCOGCGG	300
ATGGTGCCAG	ררב בשרפא כ	) CC) CCCCTC	ARCGCCAIGC	CGCCGGTGAG	CGCCAACGCA	360
		ACCACCGGTG	GCGAACATCG	AGGTCAACAC	GCCGT	415

- (2) INFORMATION FOR SEQ ID NO:263:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 373 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:263:

TATTGAGTTC CGGTTGTCAA CGGATCCCTT	TGGCGTTGGA TACCAGTCTT TTCGAACGTT CGCGGCCTCG	ATCATCGGCT CGGTCCGTGG TGGGGGATAT GCGCAAGCGC	AGGCTCACGG CGTGGTGGGA GGCCTATTTG	TTTCGCCTGG AGTCTGACGC GTGTCGTCGG	GATCAAGTCC GACGAGACGG GGCATCAGAA GCCGCTCCAC ACTGCGCGCT ATGGGTGAGT	60 120 180 240 300 360 373
----------------------------------------	---------------------------------------------	------------------------------------------------------	----------------------------------------	----------------------------------------	----------------------------------------------------------------------------------	----------------------------------------------

## (2) INFORMATION FOR SEQ ID NO:264:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 423 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:264:

CCAAACCGGA GCCAACCGGT GGCCGAGTAC CCACTCGTGC ATGATTGAGT TCTTGAGGGG AGAGGCCCGC	CCGCGGGCCG CGAATTCGAG TTAAACCGCT TTTTTTGCTG	AACCGCAGCG CTCCGTCGAC TAGCAATAAC	ATCCGTGGAT ACCAAAGCAA AAGCTTGCGG TAGCATAACC	CGCGCGTTCG CGCGATCGAT CCGCACTCGA CCTTGGGGCC	ACGGGGATCG ACCCGGGTGA TCTAAACGGG	60 120 180 240 300 360 420
CCC						423

## (2) INFORMATION FOR SEQ ID NO:265:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 404 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:265:

	**CCONGICAG	GCIGTGCCGC	7 CCCX manner	~~~~	CATCCGCCCA TATGCACCGC	60
	O + CO I CACAI	CLEGGCAGGC	CCCTCCCCCC	~~~		120° 180
	WALL TO COCK	GCGGCCGATC		300330000	CGCCGTCCAG GTAACACAGC CGAGCACCTC	240
	O T GWGC T CMC	CGGTGCTGCG	CTCCCCCC	1 CCCMC1 co-	CGAGCACCTC GAAAGTGCGA	300
CAAACTCTCT	AGCGCCACCG	GACGGAACGT	CACCCCGTTT	GCGA	CANAGIGCGA	360 404

## (2) INFORMATION FOR SEQ ID NO: 266:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 421 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:266:

GTCCTGGTCG	CAGGCTGTTC	TTCGAACCCG	CTGGCTAACT	TOGOROGO	CTRACCCCCC	
ACCATCGAAC	CCGCCCAACC	CCCCCCCCCC	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		GIMICCGCCC	60
ACCATCGAAC		GGCGGTGTCA	CCGCCTACTT	CGCAAGACCC	GGCCGGTGCA	120
GTGCGACCAC	TGAGCGGCCA	CCCCCGGGCG	GCACTATTCG	ACAACGGCAC	CCGCCAATTG	180
GTGGCTCTGC	GCCCGGGCGC	CGATTCCCCC	GCACCCCCCA	COMMONMOCOM	***************************************	
א שריכיא כיישישים	CLCCCCCCC		GCACCCGCCA	GCAICAIGGI	CITCGATGAC	240
ATGCACGTTG	CACCGCGCGT	CATTITICIG	CCGGGCCCGG	CAGCCGCGTT	GACCAGCGAC	300
GACCACGGCA	CGGCCTTCCT	TGCCGCCCGC	GGCGGCTACT	TEGTGGCCGA	الماسان المتراسات	360
GGTCACACCG	CACCACTGAA	TOTOCOMON O	20122222	TOTOTOGGA	CCIGICCICC	360
GGTCACACCG	CICCUST GAM	TOTCGCTGAC	GCAGCGCACA	CCGATTTCAC	CGCGATCGCC	420
С						421

### (2) INFORMATION FOR SEQ ID NO:267:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 426 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:267:

ATGCATATCA CGC	CTCAACGC CATCCTGCG	T GCGATCTTCG	GGGCCGGCGG	CAGTGAACTA	60
GACGAGCIGC GCC	EGCCTCAT TCCGCCGTG	G GTCACGCTGG	GCTCGCGCCT	GGCGGCGCTTA	120
CCGAAACCCA AAC	IGCGACTA TGGCCGCCT	T AGCCCGTGGG	GCCGGCTGGC	CGAGTGGCGG	180
CGCCAGTACG AC	ACTGTCAT CGACGAGCT	C ATCGAAGCCG	AGCGGGCCGA	CCCGAACTTC	240
GUCGATUGGA CUC	ACGTTTT GGCGTTGAT	G CTGCGCAGCA	CTTACGACGA	CGGTTCCATC	300
ATGTCGCGCA AGG	SACATTGG CGACGAACT	G CTCACGCTGC	TTGCCGCCGG	GCACGAAACC	360
AUGGUGGEGA CAT	rgggctgg gcgttcgaa	C GGCTCAACCG	GCACCCCGAC	GTGCTCGCGG	420
CTCTGG					426

- (2) INFORMATION FOR SEQ ID NO:268:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 522 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:268:

G	TCCTGGTCG	CAGGCTGTTC	TTCGAACCCG	CTGGCTAACT	MCCC3 00000	~~~~~	
7	CCATCCAAC	2222222		CIGGCIAACI	TUGUACUUGG	GTATCCGCCC	60
4	CCATCGAAC	CCGCCCAACC	GGCGGTGTCA	CCGCCTACTT	CGCAAGACCC	GGCCGGTGCA	120
G	TGCGACCAC	TGAGCGGCCA	CCCCCGGGCG	GCACTATTCG	ACAACGGCAC	CCCCCAATTC	180
G	TGGCTCTGC	GCCCGGGGGG	CCATTCCCC	201-0-0-0	namicoousc.	CCGCCMMIIG	190
_		000000000	CGMITCGGCG	GCACCCGCCA	GCATCATGGT	CTTCGATGAC	240
G	TGCACGTTG	CACCGCGCGT	CATTTTTCTG	CCGGGCCCGG	CAGCCGCGTT	GACCAGCGAC	300
G	ACCACGGCA	CGGCCTTCCT	TGCCGCCCC	GGCGGCTACT	TCCTCCCCC	22222	
_		Caccacaca		GGCGGCTACT	TCGTGGCCGA	CCTGTCCTCC	360
Ģ	GICALACCG	CACGAGTGAA	TGTCGCTGAC	GCAGCGCACA	CCGATTTCAC	CGCGATCGCC	420

GECGGCTCCG ACGGCAAGCT GGTGCGGCCC GCCACCGTAG CC  (2) INFORMATION FOR SEQ ID NO:269:  (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 739 base pairs (B) TYPE: nucleic acid (C) STRANDENESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: CDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:  GCTGGGGCG ACCGCGCGCC GGCCGCCCC GCCCTGGGC CCAGACCCCG CGCAAAACCA ACCGCTGGC CTTAGTGGCC GGCGCCCCA GCCCTGGGC CCAGACCCCG CGCAAAACCA ACCGCTGGC CTTAGTGGCC GGCGCCCCA GCCCTGGGC CCGCTCAGCC GTCCTCGTG TTGGGCGCCAACCCCG CGGTACACCC GGGCACACC CGGCACACC CGGCACACC CGGCCAACC CGGTACAGCC GCCCTGGGC CTTAGTGGCC GGCCACACC CGGTACACCC GGCCACACC CGGCACACC CGGCACACC CGGCACACC CGGCACACC CGGCACACC GGCCACACC GGCCACACC GGCCACACC GCGCTAGACC GCCGTGAGC GTCCTCTGTG TTGGGCGCCA ACCGCATCAA CGGCCTTAGT TCATCCAGCC AGGACTCCAC TGAGACCTT GGCCGTGAAC GGCCTGAGC GTCCGGACACCCACCCCCCCACCACCACCACCACCACCACCA	CGCCGCTCCG ACGGCAAGCT CCTCCTTCCCC	
(2) INFORMATION FOR SQ ID NO:269:  (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 739 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: CDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:  GCTGGGGCGC  GCTGGGCC CTTAGTGGCC GGCGGCCCCAG GCCCTGGGC CAGACCCCG CGCAAAACCA ACCCGTGGCC CTTAGTGGCC GGCGCCCCAG CCGTTCGTGCT GTTGGGGCAG 120 ACCCGTTGGC CTTAGTGGCC GGCCCAAGC CGGTCAAGCC GCCTCAGCC GTTCGGGAGG 120 ACCCGTTGG GACCGCCTC CGGCCAAGC CGGTCAAGCC GCCTCAGCC GTTGCGGAGG 120 ACCCGTTAG GGCCCTACTC CTGAACTCCT AGAAGTCAA CGCGTTAGT GGCTCGTGT 240 CCGGACTTG GATCGCCTAC CGGCCAAGC AGAACCGAG GGTTCCCTGC 300 CCGGACTGCAA GGGCCCAACC ATCAACTCCA TGGAGTCATC GCCGTTAGC GGCTCAGCC GTTGCGGAGG 120 CCGGACTGCAA GGGCTCATT TCAATCGAGC AGGAGCCAGT GTATGCCGGC ACCGGCTACA AGGCCCTCAT TCAATCGAGC AGGCGGACAA AGACCCGCGCACAA AGACCCGCGCACAA CGGCTTACAA CGGCTTACAA CGGCTTACAA CGGCTTACAA CGGCTGAACACACG GTACCGCTCAC AAGACCGTCAA GGCTCTACAT TCAACCAGACC GTACCGCTCAC AAGACCGTC CAGGGCACAAA TGGGGTAAAACGA GAATGAGCAA GAACTACCAA AGACCCCACGACAA TGCGGCAACAAT GTGGTTACCCGCC GGGGGACAAA TGCGGCTAC CAGGTCACAAACAGG TCACGGTACAA GAACCCCAAGACACG CCCCGACAACAAT GTGGTTTCTG 660 AAGAGCGCTGA ATCCAACACG CACCAACAACG GCCAACAAT GTGGTTTCTG 660 AAGAGCGTCAA GACGCGAAA CAGATCACCAA ATCAAGCAG GCCAACAAT GTGGTTTTCG 660 AAGAGCACTAC CAGATCACCA ATCAAGCAG CCAGATCGCC GCCAACAAT GTGGTTTTCG 660 AAGAGCACTAC CAGATCACCA ATCAAGCAG CCAGATCGCC GCCAACAAT GTGGTTTTCG 660 AAGAGCCTCAG ATCAACAGC CCCCGACACAAT GTGGTTTTCG 660 AAGAGCTCAG TCACGTACAC CAGATCACCA ATCAAGCAG CCAGATCGCC GCCAACAAT GTGGTTTTCG 660 AAGAGCTCAG ATCAACAGC CCCCGCCCACCACAAT GTGGTTTTCG 660 AAGAGCCTCAG ATCAACACC ATCAACCGG CCACAACAAT GTGGTTTTCG 660 AAGAGCTCAG ATCAACACC ATCAACCGG CCCCACACAAT GTGGTTTTCG 660 AAGAGCTCAG ATCAACTCA ATCAACCGG CCCCCACACAAT GTGGCTTACACCAACACCAACAAT GTGGTTTTCG 660 AAGAGCTCAG ATCAACACC GCCCCACCACAACAAT GTGGTTTTCG 660 AAGAGCTCAG ATCAACACC GCCCCCCCCACAACAAT GTGGCTTACACCACACACACACACACACACACACACACAC	AAGAACCCGC AGTTGACCGG CGTCGCCGCC GGGAGATG GCGCCGTCTA CACGCTTGCC	480
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 739 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:  GCTGGGGGGG ACCGCCGTCC GGGGGCCCCA GCCCCTGGGGC CCAGACCCCG CGCAAAACCA ACCCGTGGGC CTTAGTGGC GGGGCCCCA GCCCCTGGGGC CCAGACCCGC GGTAGAGGC ACCCGTGGGC CTTAGTGGC GGGGCCCCAGC CGGTACAGGC GCTTCAGGCG GTTCGGGAGG ACCCGTTAGTGGC GGGCAACCCG GCGTACAGGC GCTTCAGGCG GTTCGGGAGG ACCCGTTAGTGGC GGGCAAACCG ACCCGTTAGTGGC GGGCAACCG CGGTACAGGC GCGTACAGGC GGGCAACCG GCCATCAGGC GGGCAACCG ACCCCTAGTG GGCCCTTCCT GCGCATCAGC CGGCCAACA CGGCCTAGA GGCCCTAGTG GGCCCTCCT GCGACTAGCGC AGGCACACGGGGAAACCG ACCACACACG AGGACCCGTGT GTATCCCGGC GGGGGACAA CTACACACAC AGGCCCCTACA GGGCTACAC AGCCCCTACA GGCCTTCCG ACCGCCAACAA AGCCCCTAGC GGACACACTACAC ACCGACACAT GAACCCACACA GAACCCACACA GAACCCCAACAC GGAACACCCAAGAC CAGACCCAACAC GAACACCCACAC GGAACACCCAAGACG CGGCGGACA CTACACACACA GAACCCACACACACACACACACACACACAC	COICGGCGCC GCCACCGTAG CC	
(A) LENGTH: 739 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:  GCTGGGGGGC ACCGCCGTCC GGCGGCCCCA GCCCCTGGGC CCAGACCCCG GGCAAAACCA ACCCGTGGC CTTAGTGGCC GGCGCCCCAGC CCGTCGTGGT CTGCCTGGT TTGGGCGCA 120 ACCCGTTAG GATGGCCATC CGGCCCAAGC CGGTACAGCC GCCTCAGCG GTTGCGGAGG ACCGCCTTAG GGCCCTACG CTGAACTCCT CAGAAGTCAA GGCCGTTAGT GGCTCGTGCT 240 ACCGCCTTAG GGCCCTACG CTGAACTCCT CAGAAGTCAA GGCCGTTAGT GGCTCCTGC 300 CGGAATCAG GGCCGTTGG TTAACCAGCA AGGATCCAGT GTTACCAGCG ACCGGTACAA GGCCCTTAG GGCCCTTACA CGGACTGCA GGCCCTTACA TGGAACTCAG AGGACCCAGG ATACACTCAGA AGGACCCAGG CAGACCAAA CGGCCTTGAT TCATCCGGC CAGGACCA ATACCAGACAT TGGGTGAACC AAGACCGTCAC CGCCTTTCCG ACCGCCGGACA AAGCCCAGC GAATAAGCCA GACAAATAGA AGAACTCAGAA GAACACCAAG GAAAAACGA AGAACCTACAGAAAAATAGA AGAACTCAGAG TACCAGAGT TGCCAGCAG AAGACCCAAG GAAGACCGAAG CAGCGAGAACAAAT GACAACCAAG GAAGACCCAAG AAGACCTAAC ATACCAAATAGA GACACCCAAG AAGCCTACAC ATCCAGGTAC CAGAACACAC CACCGACGAT ACCACGGTAC CAGCACACACA ATCCAGGTAC CAGAACACACA ATCCAGATAC CAGAACCCAAG GACCTCAAG CATCCAGGTAC CAGAACACAC ATCCAGGTAC CAGAACACCAAG GACCTCAAG GACCTAAAG TCAAGATCA CAGAACACAA ATCAAGATCA CAGAACACAA GCCCACACG CCCCAAGAAT GACACCCAAG GTTGACCCAAG ATCCAGGTAC CAGAACACCA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACC AACCCAAGACTAC CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACCACAA CACCAAGACTAC CAGAACACACA ATCAAGACCACA ATCAAGACCC CCCCAAGATCCT GACCCAAGACCTAT CAGAACACCACA ATCAAGACCACA ATCAAGACCACA ATCAAGACCACA ATCAAGACCACA ATCAAGACCACA ATCAAGACCACAACACACACACACACACACACACACACAC	(2) INFORMATION FOR SEQ ID NO: 269:	
(A) LENGTH: 739 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:  GCTGGGGGGC ACCGCCGTCC GGCGGCCCCA GCCCCTGGGC CCAGACCCCG GGCAAAACCA ACCCGTGGC CTTAGTGGCC GGCGCCCCAGC CCGTCGTGGT CTGCCTGGT TTGGGCGCA 120 ACCCGTTAG GATGGCCATC CGGCCCAAGC CGGTACAGCC GCCTCAGCG GTTGCGGAGG ACCGCCTTAG GGCCCTACG CTGAACTCCT CAGAAGTCAA GGCCGTTAGT GGCTCGTGCT 240 ACCGCCTTAG GGCCCTACG CTGAACTCCT CAGAAGTCAA GGCCGTTAGT GGCTCCTGC 300 CGGAATCAG GGCCGTTGG TTAACCAGCA AGGATCCAGT GTTACCAGCG ACCGGTACAA GGCCCTTAG GGCCCTTACA CGGACTGCA GGCCCTTACA TGGAACTCAG AGGACCCAGG ATACACTCAGA AGGACCCAGG CAGACCAAA CGGCCTTGAT TCATCCGGC CAGGACCA ATACCAGACAT TGGGTGAACC AAGACCGTCAC CGCCTTTCCG ACCGCCGGACA AAGCCCAGC GAATAAGCCA GACAAATAGA AGAACTCAGAA GAACACCAAG GAAAAACGA AGAACCTACAGAAAAATAGA AGAACTCAGAG TACCAGAGT TGCCAGCAG AAGACCCAAG GAAGACCGAAG CAGCGAGAACAAAT GACAACCAAG GAAGACCCAAG AAGACCTAAC ATACCAAATAGA GACACCCAAG AAGCCTACAC ATCCAGGTAC CAGAACACAC CACCGACGAT ACCACGGTAC CAGCACACACA ATCCAGGTAC CAGAACACACA ATCCAGATAC CAGAACCCAAG GACCTCAAG CATCCAGGTAC CAGAACACAC ATCCAGGTAC CAGAACACCAAG GACCTCAAG GACCTAAAG TCAAGATCA CAGAACACAA ATCAAGATCA CAGAACACAA GCCCACACG CCCCAAGAAT GACACCCAAG GTTGACCCAAG ATCCAGGTAC CAGAACACCA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACC AACCCAAGACTAC CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACTA CAGAACACACA ATCAAGACCACAA CACCAAGACTAC CAGAACACACA ATCAAGACCACA ATCAAGACCC CCCCAAGATCCT GACCCAAGACCTAT CAGAACACCACA ATCAAGACCACA ATCAAGACCACA ATCAAGACCACA ATCAAGACCACA ATCAAGACCACA ATCAAGACCACAACACACACACACACACACACACACACAC	(i) SECTIFNCE CHARACTERS	
(B) TYPE: nucleic acid (C) SIRANDENESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:  GCTGGGGGGG ACCGCCGTCC GGGGGCCCCG GCCCTGTGGC CGCAAAACCA ACCGTGGCC CTTAGTGGC GGGGGCCCCGG CCCTGTGGT CGTCCTGTGT TTGGGCGCA ACCGCTGGC CTTAGTGGC GGGGCCCCAG CCGTGTGGT CGTCCTGCTG TTGGGGCCA ACCGCTTAG CGCCCTACG CGGCCCCAGC CGGTACAGCC GCTCTAGCGG GTTGCGGAG ACCGCTTAG CGCCCTACG CTGAACTCCT CAGAAGTCAA CGCCGTGAGG GTTGCCGGAG ACCGCTACA CGGCCGCAAC CAGAACCGA CGAACCCGG GCTCTCTCT 240 CCGACTACAA CGGCTGAAC ATACATCGA TGGATCCTG GCCGGTCACG GGTCCCCCC GGGCCACAA CTACGAACA CGGCGCAACA ACCCCGCCAACA AAGCCCGCC GGCTCTACT TCATCCGAGC CGGGCGACAA CTACGAACAT TGGGTGAACC ACAAATGGAA GAACTGCGA GGCAAGAGGG TCACCGTCAC GATTAGCCGG AAGACCTACC AAGAATGGAA GAACTGCGA GGCAAAAGCG CCCCCCCCACAA TCGGATCAT TGGGTGAACC AAGAATGGAA GAACTGCGA GGCAAAAGCG CCCCCCACGAT CACGATAAGGCC AAGACCTACC AAGGCCGTCA GGGCTGGAA TACAACCGG CGATGAGCGT CACGATAAGGCA AAGACCTACC AAGGCCGTCAA GGGCTGGAA TACAACCGA CTACGAACAT GTGGTTGTCG ACGTCAACAC ATCCGGGTAC CAGATCACCA ATCAAGCAGG CCCAACAAT GTGGTTGTCG ACGTCAACAC ATCCGGGTAC CAGATCACCA ATCAAGCAGG CCCAACAAT GTGGTTGTCG GCCTTAGACCA ATCACCAA ATCAAGCAGG CCAAGATCGC GCCAAGATCT  (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDENESS: Single (D) TOPOLOGY: linear  (11) MOLECULE TYPE: CDNA  (x1) SEQUENCE DESCRIPTION: SEQ ID NO:270:  (13) SEQUENCE DESCRIPTION: SEQ ID NO:271:  (14) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDENESS: single (D) TOPOLOGY: linear (C) STRANDENESS: single (D) TOPOLOGY: linear (C) STRANDENESS: single (D) TOPOLOGY: linear	(A) LENGTH 720 by	
(C) STRANDENDESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:  GCTGGGGGCG ACCGCCGTCC GGCGGCCCCA GCCCTCGGGC CCAGACCCCG CGCAAAACCA ACCCCTGGGC CTTAGTGGCC GGCGCCCAGGC CGCTCGTGCT CGTCCTCGTG TTGGGCGCCA ACCCCTTGGCC GTTAGTGGCC GGCGCCCAGGC CGCTCGTGCT CGTCCTCGTG TTGGGCGCCA ACCCGCTTAG CGCCCTACTG CTGAACTCCT CAGAGGTCAA CGCCGTGATG GGCTGTGGGG 120 AGCGCCTTAG CGCCCTACTG CTGAACTCCT CAGAGGCCA GGCCGTGATG GGCTGTGCTG 240 AGCGCCTTAG CGCCCTACTG CTGAACTCCT CAGAGGCCA GCCGGTGATG GGCTTCCCTGC CGGACTGCCA GGGCCACAC ATCACATCGA TGGACTCTTC GCCGTGTAGG GGTTCCCTGC 240 CCGGACTGCA CGCCTTCCC ATCACCACCA AGGACCCGGT GTATGCCGCA ACCGGCTACA CGCCTTCCA ACCGCCGACA AAGCCCGCG GTTCGTGCAG ACTGCGACAC AAGACCTTCC ACCGCCGACA AAGCCCTCCA CACGGCCAA AAGCCCTCCA GAGTAAGGCC AAGACCTTACCAACGC CGCCGACGAT CACGGTCACA AAGCCCACG GTTCGTGCAG ACTTCGGACCAC AAGACGTCTACC AGAGACGC CGCCGACGAT CACGGTCACA AGACCTCACCA GGGTGACAA TCCCAACGCC GCCCGACGAT CACGGTCACA AGACCCTACA GGGTGAACAC ATCCAACGCC GCCCGACGAT CACGGTCACA AGACCCTACA GGGTGACAC ATCCAACGC CGCCGACGAT CACGGTCACA AGACCCTACA GGGTGACAC ATCCAACGC GCCCAACACT GTGGTTGTCG 660 ACGTCAACGC ATGCGGGTAC CAGATCACCA ATCAAGCAG CCAGATCGCC GCCAAGATCT 720  (1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 69 base pairs  (B) TYPE: nucleic acid  (C) STRANDENDESS: Single  (D) TOPOLOGY: linear  (2) INFORMATION FOR SEQ ID NO:270:  (1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 523 base pairs  (B) TYPE: nucleic acid  (C) STRANDENDESS: Single  (D) TOPOLOGY: linear  (E) TYPE: nucleic acid  (C) STRANDENDESS: Single  (D) TOPOLOGY: linear	(R) TYPE1	
(ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:  GCTGGGGCGC ACCGCCGTCC GGGCGCCCCA GCCCCTGGGC CCAGACCCCG CGCAAAACCA ACCCGTGGCC CTTAGTGGCC GGGCGCCGCC CCGTCTGTGCT CTTCCTCTGT TTGGGCGCCA ACCCGTTGGCC CTTAGTGGCC GGGCCCAAGC CCGGTACAGCC GCTCTAGCGC GTTGCGGAGG 180 ACCCGTTAG GGCCCTACTG CGGCCCAAGC CCGGTACAGCC GCTCTAGCGC GTTGCGGAGG 180 ACGCGCTTAG GGCCCTACTG CTGAAACTCCT CAGAAGTCAA CGCCGTGATG GGCTCGTCG 240 CCATGCAGCC GGGCAAACCG ATTACCATGA TGACCTCTG GCCGTGATG GGCTCGTCG 360 ACGGCTACA CGGCTTAGT TCATCCGAGC CGGCGACAA CTACGACAT TGGGTGAACC AAGCCGTCAA CGGCTTACT TCATCCGAGC CGGCGACAA CTACGACAT TGGGTGAACC AAGCCGTCT CACCGCCTACAA CGGCTTACT TCATCCGAGC CGGCGACAA CTACGACAT TGGGTGAACC AAGCCGTCT TCCCCGACCA CACCGGCGACA ACTTCGGCCG ACACCGCCCACAA ACCCGACGAC ACCGGCTACA AAGCCGCCAC AAGCCCTCAC AAAGCCACAC ACCGCACAAC ACCGCACAAC ACCACACAC AAGCCCCCAC AAAGCCCCAC AAAGCCCCAC AAAGCCCCAC AAAGCCCCAC AAAGCCCCAC AAGCCCCAAC ACCGCACAAA TCACAACAGC CGCCAACAAT TGTGTTTGTCG 600 ACGTCAACAC ATCCAACAGC CGCCAACAAT TCACGATCAC GCCCAACAAT TCACGACCAAC ACCGAACAAAC TCACGATCGCC GCCAAGAATCT CCGCTCAACACAC CACGTCAACACAC CACGATCACC ATCCAACACAC CGCCAACAAT TCACGACCAAC ACCACACACAC CACGATCACC ATCCACACAC CGCCAACAAT TCACGACCAACAAC CACGATCACCA ATCAACACAG CCAACAAT TCACGACCAACAAC TCACGATCGCC GCCAAGATCT CCGCCTACACACACACACACACACACACACACACACACAC	(C) STRANDONNO	
(ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:  GCTGGGGCGC ACCGCCGTCC GGCGGCCCCA GCCCCTGGGC CCAAAACCA ACCCCTGGCC CTTAGTGGCC GGCGCCGCG CCGTCGTGCT CGTCCTCGTG TTGGGCGCCA 120 TCGGCATCTG GATGGCATC CGGCCCAAGC CGGTCACAGCC GCTCCAGCG GTTGCGGAGG 180 ACCCCTTAGGCCATC CGGCCCAAGC CGGTACAGCC GCCTCAGCG GTTGCGGAGG 180 ACCGCCTTAG GCGCCTTAGT GCGCCTACTG CTGAACTCCT CAAAAGTCAA CGCCGTGATG GGTTCCCTGC 340 CCGGCATCACA CGGCTTAGA ACCCCATCA TGGACTCTT GCCGGTGACG GGTTCCCTGC 340 CCGGCATCAA CGGCTTGAT TCATCCAGCC AGGATCCGG TATACCAGCA ACGCCGTGA ACCGCTACA ACGCCGTGAC ACGGCTACA ACGCCGTTCCA ACCGCCGACA AAGCCCCGCG GTTCCGTGCG 480 ACAAATGGAA GAACTGCGAC ACCGCCGACA AAGCCCCACC GTTCTGTCCA ACTCGACCG 480 ACAAATGGAA GAACTGGACG ACCGCGACAA AAGCCCACC GTTCTGCAA ACTCGACGG 480 AAGAACTGAA GAACTGCAGAA ACAACACAA ACAAAACGA ACTCGACGA AAGCCCACAA CTACGAACAT TGGGTTGACC 4AAGCCCTACA AAGCCCAACAA TCACGATCAA GACACCCAACAA ACGCCAACAA TCACGATCAA GACACCCAACAA ACGCCAACCA ATCAAAGCC AAGCACCAACAA ATCAAAGCAG CCAACAAT GTGGTTGCG 660 AAGGCCACAACA TCACAGGG CCAACAAT GTGGTTGCG 660 AAGGCCACAACA TCACAGGG CCAGATCGC GCCAACAAT GTGGTTGCG 660 ACGCCAACAAT GTGGTTGCG 660 AAGGCCACACA ATCAAAGC CCAGATCGC GCCAAGATCT 720 TTGACAAAG TCAACCAAGG CCAGATCACC ATCAAGCAG CCAGATCGC GCCAAGATCT 720 TTGACACAG TCAACAGG CCAGATCACC ATCAAGCAG CCAGATCGC GCCAAGATCT 720 TTGACACAG TCAACAGG CCAGATCGC GCCAACAAT GTGGTTGCG 660 AAGGCCGTC AAGACCCTAACAA TCAAGCCGAC TCAACAGG CCAGATCGC GCCAACAAT TTGGTTGCG 660 AAGGCCGTC AACCGCACAA TCAACAGG CCAGATCGC GCCAAGATCT 720 TTGACACAG TCAACAGG CCAGATCGC GCCAACAAT TTGGTTGCG 660 AAGGCCGAC TCAACATCT TTGATCAACACCAA ATCAAGCAGC CCAGATCGC GCCAAGATCTC 720 TTGACCAGAG CCAGATCGC GCCAACAAT TTGATCAACCCAAACA TTCAACACCAAACAA TCAACACAAA TCAACACAAACAA	(D) TOPOLOGIC : Single	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:  GCTGGGGGCC ACGCCGTCC GGCGGCCCCA GCCCCTGGGC CCAGACCCCG CGCAAAACCA ACCCGTGGGC CTTAGTGGCC GGCGCCCAGCC CCGTCCTGGT TTGGGCGCCA 120 CGGCCATAG CGCCTTAG CGGCCTAGCG GGCCCCAAGC CGGTCAGCCG GCCTCAGCCG GTTGCGGAGG 180 ACCCGTGAGC GACCCATGCAGCG GGCCTACACCG ACCCATGCAGC GGCCTACAGC GGCCTAGCG GCCTCAGCCG GTTGCGGAGG 180 ACCCGTAGCAG GGCCGTCATG GGCCGTAGCG GGCCTAGCG ACCCATGCAGCG GGCCAACCG ATCACATCGA TGGACTCTT CGCCGGTAGTG GGCTGTGT 140 ACCCCGGACTGCA GGCCGGTTGATT TCATCCGAGC CGGCCATCAA CGGCTTGCG ACCGCCGACA ACCGCCGACA ACCGCCTAGA ACCGCCGACA ACCGCCGACA ACCCCCGACA ACCCCCGACACACAT GCCGACACAT GCCCCCAACACACCC ACCGCTCAC GAATCACCC ATCCAGTCAC GCCCCGACACAT GCCCAACACCC ACCGCTCAC ACCGCTGACACACCC ACCGCTCAC ACCGCTGACACACCC ACCGCTCAC ACCGCTGATA GCCCCCCACACACACCC ACCGCTCACACACACCC ACCGCTCACACACACCC ACCGCTCACACACACCC ACCGCTCACACACACCC ACCGCTCACACACACCC ACCGCTCACACACACCC ACCGCTCACACACACCC ACCGCTCACACACACCC ACCGCTCACACACACACCC ACCGCTCACACACACACCC ACCGCTCACACACACACCC ACCGCTCACACACACACCC ACCGCTCACACACACACCC ACCCCCCACACACACACCC ACCCCCC	(b) Topotogy: linear	
GCTGGGGCGC ACCGCGTCC GGCGGCCCCA GCCCCTGGGC CCAGACCCCG GCTAAAACCA ACCCGTGGCC CTTAGTGGCC GGCGCCAAGC CCGTCGTGCT CGGCCCTAGC CGGCCCAAGC CGGCCCTAGC GCCTCAGCCG GTTGCGGAGG 180 ACCGCCTTAG GGCCCTATG CGGCCCTAGC CGGCCCTAGC GGCCCTAGC GGCCCTAGCAGC ACCGCCTAGCAGC ATCACATCGA TGGACTCTC GGCCGTGATG GGCCTGTGT 240 CGCGGCACACCA GGCGCCTGACT GGCCGCTGATG GGCCGCTGACT GGCCGCACACA ACCACACCAC	(ii) MOLECULE TYPE: cDNA	
TCGGCATCTG GATCGCCATC CGGCCCAAGC CGGTACAGCC GTCCTCGTG TTGGGCGCCA AGCGCCTTAG CGCCTACTG CTGAACTCCT CAGAAGTCAA GCCCTTAGC GCCCTAGCCG GGTACAGCC GGCTCAGCCG GGCTACTG CTGAACTCCT CAGAAGTCAA CGCCTTAGC GGCCTACTG TATACCAGCC ATCACATCGA TGGACTCTTC GCCGGTACAG GGTCCTCGC ATCACATCGA AGGATCCGT GTTGCGGCACAGCCG CGCCATCAA CGGCTTGAT TCATCCGAGC AGGATCCGGT GTTCGTGCA ACCGCTTACA AGGCCTTCCG ACCGCCGCACA AAGCCTGCCT CGCCTTTCCG ACCGCCGCACA AAGCCTGCCG GTTCGTGCAG ACAAATGGAA GAACTGCGCA AAGCCGCGCACA AAGCCTGCC GGCTACAGCAAAATGGAA GAACTGCGCA GACAAACGCA ACGGCTCAC GAATAAGGAA ACTCCGACG GGTTGACGAA TGCGAACACT TGGGTGACC AAGCCTACC GAATAAGGAA AGCCCAAC AAGCCTACC AAGCCGCACA AAGCCCACAC ACGGTAAAA AGCCCAACAG AAGCCTACC AAGCGCCGAA TGCCAACACG GAATAAGGCA AAGACCTACC AAGCCGCACA ATCAACGAA ATCAACACG CGCCAACAAT GTGGTTGTCG 660 ACGTCAACACG ATCAACACG ATCAACACG CCAGAACAAT GTGGTTGTCG 660 ACGTCAACACA ATCAACACG CCAGAACAAT GTGGTTGTCG 660 ATCAACAACG ATCAACACG CCAGATCACC GCCAACAAT GTGGTTGTCG 660 ACGTCAACACG CCAGATCACC ATCAACACG CCAGATCACC GCCAACAAT GTGGTTGTCG 660 ACGTCAACACG CCAGATCACC GCCAACAAT GTGGTTGTCG 660 ATCAACACGG CATCACCCAACACA ATCAACACG CCAGATCGC GCCAACAAT GTGGTTGTCG 660 ATCAACACGG CAACAAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACACACACACACACACACACACACACA	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:	
TCGGCATCTG GATCGCCATC CGGCCCAAGC CGGTACAGCC GTCCTCGTG TTGGGCGCCA AGCGCCTTAG CGCCTACTG CTGAACTCCT CAGAAGTCAA GCCCTTAGC GCCCTAGCCG GGTACAGCC GGCTCAGCCG GGCTACTG CTGAACTCCT CAGAAGTCAA CGCCTTAGC GGCCTACTG TATACCAGCC ATCACATCGA TGGACTCTTC GCCGGTACAG GGTCCTCGC ATCACATCGA AGGATCCGT GTTGCGGCACAGCCG CGCCATCAA CGGCTTGAT TCATCCGAGC AGGATCCGGT GTTCGTGCA ACCGCTTACA AGGCCTTCCG ACCGCCGCACA AAGCCTGCCT CGCCTTTCCG ACCGCCGCACA AAGCCTGCCG GTTCGTGCAG ACAAATGGAA GAACTGCGCA AAGCCGCGCACA AAGCCTGCC GGCTACAGCAAAATGGAA GAACTGCGCA GACAAACGCA ACGGCTCAC GAATAAGGAA ACTCCGACG GGTTGACGAA TGCGAACACT TGGGTGACC AAGCCTACC GAATAAGGAA AGCCCAAC AAGCCTACC AAGCCGCACA AAGCCCACAC ACGGTAAAA AGCCCAACAG AAGCCTACC AAGCGCCGAA TGCCAACACG GAATAAGGCA AAGACCTACC AAGCCGCACA ATCAACGAA ATCAACACG CGCCAACAAT GTGGTTGTCG 660 ACGTCAACACG ATCAACACG ATCAACACG CCAGAACAAT GTGGTTGTCG 660 ACGTCAACACA ATCAACACG CCAGAACAAT GTGGTTGTCG 660 ATCAACAACG ATCAACACG CCAGATCACC GCCAACAAT GTGGTTGTCG 660 ACGTCAACACG CCAGATCACC ATCAACACG CCAGATCACC GCCAACAAT GTGGTTGTCG 660 ACGTCAACACG CCAGATCACC GCCAACAAT GTGGTTGTCG 660 ATCAACACGG CATCACCCAACACA ATCAACACG CCAGATCGC GCCAACAAT GTGGTTGTCG 660 ATCAACACGG CAACAAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACACACACACACACACACACACACACA	GCTGGGGCGC ACCGCCGTCC GGCCCCCGA GGGGGGGG	
TCGGCATCTG GATCGCCATC CGGCCCAAGC CGGTACAGCC GTCCTCGTG TTGGGCGCCA AGCGCCTTAG CGCCTACTG CTGAACTCCT CAGAAGTCAA GCCCTTAGC GCCCTAGCCG GGTACAGCC GGCTCAGCCG GGCTACTG CTGAACTCCT CAGAAGTCAA CGCCTTAGC GGCCTACTG TATACCAGCC ATCACATCGA TGGACTCTTC GCCGGTACAG GGTCCTCGC ATCACATCGA AGGATCCGT GTTGCGGCACAGCCG CGCCATCAA CGGCTTGAT TCATCCGAGC AGGATCCGGT GTTCGTGCA ACCGCTTACA AGGCCTTCCG ACCGCCGCACA AAGCCTGCCT CGCCTTTCCG ACCGCCGCACA AAGCCTGCCG GTTCGTGCAG ACAAATGGAA GAACTGCGCA AAGCCGCGCACA AAGCCTGCC GGCTACAGCAAAATGGAA GAACTGCGCA GACAAACGCA ACGGCTCAC GAATAAGGAA ACTCCGACG GGTTGACGAA TGCGAACACT TGGGTGACC AAGCCTACC GAATAAGGAA AGCCCAAC AAGCCTACC AAGCCGCACA AAGCCCACAC ACGGTAAAA AGCCCAACAG AAGCCTACC AAGCGCCGAA TGCCAACACG GAATAAGGCA AAGACCTACC AAGCCGCACA ATCAACGAA ATCAACACG CGCCAACAAT GTGGTTGTCG 660 ACGTCAACACG ATCAACACG ATCAACACG CCAGAACAAT GTGGTTGTCG 660 ACGTCAACACA ATCAACACG CCAGAACAAT GTGGTTGTCG 660 ATCAACAACG ATCAACACG CCAGATCACC GCCAACAAT GTGGTTGTCG 660 ACGTCAACACG CCAGATCACC ATCAACACG CCAGATCACC GCCAACAAT GTGGTTGTCG 660 ACGTCAACACG CCAGATCACC GCCAACAAT GTGGTTGTCG 660 ATCAACACGG CATCACCCAACACA ATCAACACG CCAGATCGC GCCAACAAT GTGGTTGTCG 660 ATCAACACGG CAACAAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACAT GTGGTTGTCG 660 ATCAACACGG CAACACACACACACACACACACACACACACA	ACCCGTGGCC CTTAGTGGCC GGCGCGCGCC GCCAAAACCA	60
AGGCCTTAG CGCCCTACTG CTGAACTCCT CAGAAGTCAA CGCCGTGATG GGCTCAGCGG CCGCATGCAGCG CAGAACCCG ATCACATCGA TGGACTCTT GCCGCATGAGG GGCCAACCG ATCACATCGA TGGACTCTT GCCGCATGAGG GGCTCAGCT 100 CGGACTGCAC GGGCCGCAT TATACCAGCC CAGAGTCGGT GTATGCCGGC ACGGCTACA CGCCTTGAT TCATCCGAGC CGGGCGACA CTACGAACAT TGGGTGAACC 420 AGACCGTCGT TGCCGACTTCCG ACCGCCGACA AAGCCCGCGC GTTCGTGCAG ACTTCGGCG GAAATGGAA GAACTTCCG ACCGCGACA AAGCCCGCG GTTCATGCAGC CGGCGACAA TGCGGACAT TGGGTGAACC ACACAATGGAA GAACTGCGC GGCAAGACGC CACGGTACA TGCGGACAT TGGGTGAACC AAGACCTACC AAGGCCGCC AAAGGCCGCC CGCGACGAT CACGGTCAA GACACCAAG AAGACCTACC AAGGCCGCC AAGGCCGTGA GGCCAACAAT GTGGTTGTCG 660 ACGTCAACGC ATGCGGGTAC CAGATCACC ACGGTGATA GACACCAAG CACGTCAACAC ATGCGGGTAC CAGATCACC ATCAACACG CAGATCACC ACGGTGATA GACACCAAG CCCACACAAG TCACACAAG CCCACACAAG TCACACAAG CCCACACAAG TCACACACAC ATCACACACG CAGATCACC GCCAACAAT TGGGTGAACC AAGGCCACAC AAGGCCACC CACGGTGATA GACACCCAAG CACGGTCAACA TGTGGTTGTCG 660 ACGGTCAACAC TGACACAAG TCACACACAC TGGCCCAACAAT TGGGTGAACC AAGGCCGTC AACACCCAAGA TCACACACAC ATCACACACAC ATCACACACAC CACGGTATA GACACCCAAG CCCACACAAT TGGGTCAACC AACGCCAACAAT TGGGTCAACC AACGCCGACA TCACACACACA TCACACACACA TGGCCAACAAT TGGCCCAAGAT TGGCCAACACA TGGCCAACAAT TGGCCAACAT TACACACATACAT TGGCCAACAT TACACACATACATACATACATACATACATACA	TCGGCATCTG GATCGCCATC CCCCCCCCC CCGTCGTGCT CGTCCTCGTG TTGGGCGCCA	
CCATGERAGCC GGGCAAACCG ATCACATCGA TGGACTCTTC GCGCGTGACG GGGCGGCTG TATACCAGCC AGGACTGCTA GGGCGGCGCTG TATACCAGCC AGGACTCCTCA GGGCGGCGCTT TCATCCGACC CGGCTACA CCGCCTACA CGCCTTTCCG ACCGCCACAAACCCTCGAC AAGCCCGCCG GTTCCTGACC ACAAATGGAA GAACTGCGCA AAGCCCGCGC GTTCGGACGC AAGACTGCTAC ACAAATGGAA GAACTGCGCA AAGCCCGCGC GTTCGTGACACC ACAAATGGAA GAACTGCGCA AAGCCCGCGC GTTCGTGACACC AAGACTCACC AAAGCCCGCGC GTTCGTGACA ACCGCGGCTACA AAGCCCGCGC GTTCGTGCAG ACTTCGGCCG GGTGAGGACT TGCCGACGTC AAAGCCCAAC AAGCCCCAAC AAGCCCCAAC AGACCCCAAC AGGCCGCTAC AGAGCCCTACC GAATAAGGCC AAGACTCCAAC ACGATCAACCA ATCACAGCG CGATCACGC GCCGACGAT GCCCAACAAT GTGGTTGTCG 660 ACGTCAACGC ATGCCGACGT CAGATCACCA ATCAAAGGC CCAGATCACC GCCGACGAT GCCCAACAAT GTGGTTGTCG 660 ATCAACACCA ATCAACAGC CCAGATCACCA ATCAACAGC CCAGATCACCA ATCAACACCA GCCGACACAT GTGGCTTCC GCCGACACAT GTGGCTTCC GCCGACACAAT GTGGTTTCCG 660 ATCAACACACCA ATCAACACCACA ATCAACACACA CTACACACAC	AGCGCCTTAG CGCCCTACTG CTGALOTTAGCC GCCTCAGCCG GTTGCGGAGG	
CGGACTGCCA GGGCGCGCT TATACCAGCC AGGATCCGGT GCGGTGAGG GTGTCCCTGC CCGCCATCAA CGGCTTGAT TCATCCGAGC CGGGCGACA AGGCCGCGCG ACAGCCGCTCAC CGCCTTCCCG ACCGCCGACA AGGCCGCGCG CGACAAATGGAA GAACTGCGCA AAGCCGGCGA AAGCCCGCGCG GATAAAGGCCACA GGATAAGGCC AAGACCTACC AAAGCCAGGT TGCCGACGT TGCCGACGT TGCCGACGT CCACGGGGACA TGCCCACGCG CGATAAAGGCCACA AGACCTACC AAAGCCAGCC AAGGCCGGCGACAA TGCCAACGCG CGCGACGAT CACGGGTGATA GACACCAAGG CGATGAACGC AAGACCTACC AAGGCCACGCGACAGT CACGGGTAATA GACACCAAGG CGATGAACGC AAGACCTACC AAGACCTACC AAGACCTACC AAGACCTACC AAGACCTACC AAGACCAAGG CCACACAGG CCACACACG CGCCACACAT GACACCAAGG CCACACACG CGATGACCG CCACACACG CCACACACT CCACACACG CCACACACG CCACACACAC CCACACACC CCACACCC CCACACACC CCACACACCC CCACACACCCC CCACACACCC CCACACACCCC CCACACACCCC CCACACACCCC CCACACACCCCCC	CCATGCAGCC GGGCLLACCC AMGACTCCT CAGAAGTCAA CGCCGTGATG GGCTCGTCGT	
CCGCCATCAA CGGCTTGATT TCATCCGACC CGGCGACAA CTACGAACAT TGGGTGAACC AAGCCGTCGT CGCCTTTCCG ACCGCCGACA AAGCCCGCGC GTTCGTGCACC 420 ACCAAATGGAA GAACTGCGCA GGCAAGACGG TCACCGTCAC GATCGGACCA ACCACAATGGAAG GAACTGCGCA GGCAAGACGC CGCCGACGAT CACGGTGAT TGCCGACGCG CGCCGACGAT CACGGTGAT GACACCCAAG GAATGAGCCT CACGGTGAC CGCCGACGAT CACGGTGATA GACACCCAAG 600 AGGCCTGA GGGCTGGAA TGCCAACGGG CGCGAACGAT CACGGTGATA GACACCCAAG 600 AGGCCTCAACGC ATGCGGGTAC CAGATCACCA ATCAAGCAGG CCCAACAAT GTGGTTGTCG 660 ACGTCAACGC ATGCGGGTAC CAGATCACCA ATCAAGCAGG CCCAACAAT GTGGTTGTCG 660 ACGTCAACAG TCAACAAGG CAGATCACCA ATCAAGCAGG CCCAACAAT GTGGTTGTCG 660 ACGTCAACAA TCAACAAGG CCCAAGATCT 720  (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: CDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCGGCAC TGAACGCGTT 60 GGCGTATGC  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: CDNA	CGGACTGCCA GGGCCCCCCC TATALOGA TGGACTCTTC GCCGGTGACG GTGTCCCTGC	300
AAGCCGTCGT CGCCTTTCCG ACCGCGGACA AAGCCCGCGC GTTCGTGCAA CTACGAACAT TGGGTGAACC 420 ACAAATGGAA GAACTGCGCA GGCAAGACGG TCACCGTCAC GGTTCGTGCAA AACTTCGGCCG AGAATAAGGCC AAGAACCTACC 540 AAAGGCGTT TGCCGACGTC AAAAGGCAGCC CGCCGACGAT CACGGTGATA GACACCCAAG 600 AAGGCGTCAACGC ATGCCGGACA TGCCAACGCG CGATCAGCGT GGCCAACAAT GTGGTTGTCG 660 ACGTCAACGC ATGCGGGTAC CAGATCACCA ATCAAGCAG CCCAGATCGCC GCCAAGATCT 720 GTTGACAAAG TCAACAAGG CCAGATCACCA ATCAAGCAG CCAGATCGCC GCCAAGATCT 720  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCGGCAC TGAACGCGTT 60  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (iii) MOLECULE TYPE: cDNA  (iii) MOLECULE TYPE: cDNA  (iii) MOLECULE TYPE: cDNA	CCGCCATCAA CGGCTTCATT TOTAL	360
ACAAATGGAA GAACTGCGCA GGCAAGACGG TCACCGTCAC GAATAAGGCA AAGACCTACC 540 GGTGGACGTT TGCCCACGTC AAAGGCAGC CGCCGACGAT CACGGTCATA GACACCCAAG 600 AAGGCCGTA GGGCTGGGAA TGCCAACGGC CGCCGACGAT CACGGTCATA GACACCCAAG 600 ACGTCAACGC ATGCGGGTAC CAGATCACCA ATCAAGCAGG CCAGATCGCC GCCAAGATCT 720 GTTGACAAAG TCAACAAGG	AAGCCGTCGT CGCCTTTCGC AGGCGAGC CGGGCGACAA CTACGAACAT TGGGTGAACC	420
GGTGGACGTT TGCCGACGTC AAAGGCAGC CGCCGACGAT CACCGTCAC AAGGCCTACC AAGGCCTACC AAGGCCTGA GGGCTGGAAA TGCCAACGCG CGATCAGCGT CACCGACGAT GACCGACGAA TGCCAACGC CGATCAGCGT GGCCAACAAT GTGGTTGTCG 660 ACGTCAACGC ATGCGGGTAC CAGATCACCA ATCAAGCAGG CCAGATCGCC GCCAAGATCT 720 739  (2) INFORMATION FOR SEQ ID NO:270:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCGGCAC TGAACGCGTT  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	ACAAATGGAA GAACTGCGGA GGGACA AAGCCCGCGC GTTCGTGCAG ACTTCGGCCG	
AAGGCGCTGA GGGCTGGGAA TGCCAACGCC CGCCGACGAT CACCGTGATA GACACCCAAG ACGCTCAACGC ATGCGGGTAC CAGATCACCA ATCAAGGCG GGCCAACAAT GTGGTTGTCG 660 720 739  (2) INFORMATION FOR SEQ ID NO:270:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: CDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCCGGCAC TGAACGCGTT 60 69  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	GGTGGACGTT TGCCGACGTG ALACAGACGG TCACCGTCAC GAATAAGGCC AAGACCTACC	
ACGTCAACGC ATGCGGGTAC CAGATCACCA ATCAAGCAG GGCCAACAAT GTGGTTGTCG GTTGACAAAG TCAACAAGG  (2) INFORMATION FOR SEQ ID NO:270:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: CDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCCGGCAC TGAACGCGTT  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: CDNA		600
GTTGACAAAG TCAACAAGG  (2) INFORMATION FOR SEQ ID NO:270:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCCGGCAC TGAACGCGTT  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	ACGTCAACGC ATGCCCCTAC CACAACGCG CGATGAGCGT GGCCAACAAT GTGGTTGTCG	660
(2) INFORMATION FOR SEQ ID NO:270:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCCGGCAC TGAACGCGTT  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	GTTGACAAAG TCAACAACC	720
(2) INFORMATION FOR SEQ ID NO:270:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCGGCAC TGAACGCGTT  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	- Chilliango	
(A) LENGTH: 69 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCCGGCAC TGAACGCGTT  GGCGTATGC  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 523 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	(2) INFORMATION FOR SEQ ID NO:270:	. 23
(A) LENGTH: 69 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCCGGCAC TGAACGCGTT  GGCGTATGC  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 523 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	(i) SECTEMENT CONTRACT	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCGGCAC TGAACGCGTT  GGCGTATGC  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	(A) I ENGREE CHARACTERISTICS:	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCCGGCAC TGAACGCGTT  GGCGTATGC  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	(R) TYPE	
(ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCGGCAC TGAACGCGTT  GGCGTATGC  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 523 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	(C) CTRANSPORT	
(ii) MOLECULE TYPE: cDNA  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCCGGCAC TGAACGCGTT  GGCGTATGC  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 523 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	(D) TOPOLOGY :	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:  AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCGGCAC TGAACGCGTT  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	(b) TOPOLOGY: Timear	
AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGCCGTT AACCCGGCAC TGAACGCGTT  (2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	(ii) MOLECULE TYPE: cDNA	
(2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:	
(2) INFORMATION FOR SEQ ID NO:271:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	AGACGTCGTC GAGGCCGCCA TCGCCCGCGC CGAAGGGCG	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 523 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	GGCGTATGC CGAAGCCGTT AACCCGGCAC TGAACGCGTT	60
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 523 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA		69
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 523 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	(2) INFORMATION FOR SEC ID NO. 271	
(A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA		
(A) LENGTH: 523 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	(i) SEQUENCE CHARACTERISTICS:	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	(A) LENGTH: 523 base pairs	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	(B) TYPE: nucleic acid	
(ii) MOLECULE TYPE: cDNA	(C) STRANDEDNESS: single	
(ii) MOLECULE TYPE: cDNA	(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:271:		
	(X1) SEQUENCE DESCRIPTION: SEQ ID NO:271:	

GGGAGAGTTC CGAAGCGCTG CGCGGCCGGT GGAGAGAAGA TGTGGCCGCC CGAGCAACCG	GCAGGCGCA GTGCCTTCCC GACGACCGTA CCGGGTCCGC CGGGCGATGG GCCATCGCGG GCCCAACTGC CAGGTCACTG GTCGCGAAGG	TCGACGAGCG TGACCCCGAT GTCGGGTACT TGTTCGGTCA CGGGGTGGGA AGCTGCTTCC	CTTGGGCAGC GTTCCCGGTC GACGCTGGAT GGCGCTTGGC CCGCCCGTAT CGCGCAGGCC	GCGGCTCCAG TTCAGCTCGG GTCCAGTTGA GGTGTCGTTG ATCGGAGTGT GTAACCCGGC	AAGGGTTGGA CCAGTCTCGC GTGGACTGCG CCGATGAGTG CGGCCAATAT	60 120 180 240 300 360 420 480 523
----------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------	-------------------------------------------------------------------	----------------------------------------------------------------------------------	--------------------------------------------------------------------	------------------------------------------------------------

## (2) INFORMATION FOR SEQ ID NO:272:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 224 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:272:

GTGTCGGTGT	CGTCGGGGTA	GGAGCGACTT	CCCCGGCCCC	CCCCCCCC	GGAGCGGGCT	
CTGCAGGAAC	CGGTGCCGC	CCCCCCCCC		CGCCGGCGCC	GGAGCGGGCT GATTCGGCCA	60
GCGCCTTCCC	222222	GCCGGCGCG	GGGCGACCAA	AGGCCGGATC	GATTCGGCCA	120
		TUCALCIGIG	TRITTECCCC	CCCCAACCA	GATTCGGCCA ACCACAAACC	120
AACGCTGAAG	GGGCCCGGCG	TCCGGTGCGT	TCCCCCCC	occumbeent	ACCACAAACC	180
				CGAC		224

## (2) INFORMATION FOR SEQ ID NO:273:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 521 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:273:

CGTAGTGGCG TGTCCAACGC CGGGCAATAG TGTCCGTCAG	TTCGTTGAGC CAGATGCGCG GTCGTGTTCC GCCGACATCG	CGCCAGCTAC GTGGTGATCG GCGATCAGCT ACCCAGCCGG	GCGGCGTGTC TCTCGGCCTT GCCGCACGGG CGCGCCGCAG CGCCGCTTCG TGAACAGGTT	GTCCAAACCC AATCCAGAGC CAACGAGGTG AACCGCCTCT	TGCAGCGCGC CGATCGGCGC TAGAGCACGT GCCTGGCCCT	60 120 180 240 300
	CCCGMCMICG	AUCUAGETE	TCDDCDCCTT	C3 CCCC		300 360
CGCCGTGGCG CTCCCGCACT	CHOCH CACC	AGGCTGCCAG	ىدىدىتانلىلىلىكىل	100000110		420
CGTTCATACC	GCCGAGGTGG	TCGGCACCGT	AACGGCCGGT	T	CTGCGCAGCG	480 521

## (2) INFORMATION FOR SEQ ID NO:274:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 426 base pairs
  - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
  (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:274:

CTCCAGGCTC ATTCGCTCGA ACAAAGCCAC CCGGCCGTAC AGCGGACGCC CCCATTCGTT 60 GTCGTGATAG TCGCGGTACA GCTGGGCATC GGGCCCTGGA CGAACCTCCG CCCAGGGGCA 120 GCGAACCAGC CCGTCGCCGC TCACGCGGGG TCAGAACGGT AGTGCACGAC AGTCTCGCCG 180 CGCGAGGGGT TTGACGCGTC AGACTCGGCC TCGGCGTCTT CCGACGAGGC GTGGATCGCC 240 CCGAGCTGAG AGCGTAGCGC CTCGAGCTCA CCGCCGAGCC GTTCCAGCAC CCAGTCCACC 300 CTGGCTGGTCT TGTTCCCGCG CAGCACCTGC GTGAACTTGA CCGCGTCGAC ATCGGCGCGG 360 GTGACCCCGA ACGCCGGCAG CGTCGTCGCC GTCGTCGCC GCGCAACTGC 420 TCGCCA	CGAACCAGC GCGAAGGGT CGAGCTGAG CGCTGGTCT	GCG CGC CCG TCG
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------	--------------------------

- (2) INFORMATION FOR SEQ ID NO:275:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 219 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:275:

GCGGACACGG AGGGCGGCGC GGCGGTGGTA GCCGGTGGGC	CCGGGGGCCC	ACCGCTGCCC	CTGGCGGCGC	CGGCGGACAC		
------------------------------------------------------	------------	------------	------------	------------	--	--

- (2) INFORMATION FOR SEQ ID NO:276:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 571 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:276:

ATCCTTTTCG TGGGTGCCGG CTTGCGCGCC GTTGCGAGTG GGCGGGTTCG	ACCTTGGCCC TAACCCCATA AATGCGACCA ACCTTGTGCG TCGTCGTTGC TTCATGATGT TTTGCGGTGA	GCAGACGCTG GCAGACGCTG ACAGGTCGAA CCGGTACGTC GGCGCAGCCG AGTCGTCGGC GCATCACGAT	TGCGCTCTGC AACGGTCAGC GACATGCACG CAGCACATCA TTCCAGCGGT GATTTCTACG CGCCCGCACC GCCCGCACTCC CGGAACACCG	ACCACAGTCG TTCACCAGCC CGAGTAAACA GTCAACGAGA TCGGCGATGG CGCGCAACCA	GGTTCTCGGG TGGTATCGGC CCTGGCGCGGG TCTGCTCACC ACAGCATCTC GCTCCTTGGG	60 120 180 240 300 360 420 480 540
		TACCGGGGCA	A			571

- (2) INFORMATION FOR SEQ ID NO:277:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 93 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:277:

- (2) INFORMATION FOR SEQ ID NO:278:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 26 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:278:

 Met
 Pro
 Pro
 Val
 Ser
 Ala
 Asn
 Ala
 Met
 Val
 Pro
 Ala
 His
 Ser
 Thr
 Pro

 1
 5
 10
 15

 Pro
 Val
 Asn
 Ile
 Glu
 Val
 Asn
 Thr
 Pro

 20
 25

- (2) INFORMATION FOR SEQ ID NO:279:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 26 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:279:

- (2) INFORMATION FOR SEQ ID NO:280:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:280:

Trp Pro Ala Gly Arg Pro Met His Pro Ala Pro Gly Thr Ser Ala Asp 1 5 10 15 His Pro Pro Asn 20

- (2) INFORMATION FOR SEQ ID NO:281:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 140 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:281:

Val Leu Val Ala Gly Cys Ser Ser Asn Pro Leu Ala Asn Phe Ala Pro

1 5 10 15

Cly The Pro Pro The The Charter and The The Charter and The Charte

Gly Tyr Pro Pro Thr Ile Glu Pro Ala Gln Pro Ala Val Ser Pro Pro 20 25 30

Thr Ser Gln Asp Pro Ala Gly Ala Val Arg Pro Leu Ser Gly His Pro 35 40 45

Arg Ala Ala Leu Phe Asp Asn Gly Thr Arg Gln Leu Val Ala Leu Arg 50 55 60

Pro Gly Ala Asp Ser Ala Ala Pro Ala Ser Ile Met Val Phe Asp Asp 65 70 75 80

Met His Val Ala Pro Arg Val Ile Phe Leu Pro Gly Pro Ala Ala Ala 85 90 95

Leu Thr Ser Asp Asp His Gly Thr Ala Phe Leu Ala Ala Arg Gly Gly
100 105 110

Tyr Phe Val Ala Asp Leu Ser Ser Gly His Thr Ala Arg Val Asn Val

Ala Asp Ala Ala His Thr Asp Phe Thr Ala Ile Ala 130 135 140

(2) INFORMATION FOR SEQ ID NO:282:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 142 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:282:

Met His Ile Thr Leu Asn Ala Ile Leu Arg Ala Ile Phe Gly Ala Gly Gly Ser Glu Leu Asp Glu Leu Arg Arg Leu Ile Pro Pro Trp Val Thr 25 Leu Gly Ser Arg Leu Ala Ala Leu Pro Lys Pro Lys Arg Asp Tyr Gly 40 Arg Leu Ser Pro Trp Gly Arg Leu Ala Glu Trp Arg Arg Gln Tyr Asp 55 Thr Val Ile Asp Glu Leu Ile Glu Ala Glu Arg Ala Asp Pro Asn Phe 70 Ala Asp Arg Thr Asp Val Leu Ala Leu Met Leu Arg Ser Thr Tyr Asp 90 Asp Gly Ser Ile Met Ser Arg Lys Asp Ile Gly Asp Glu Leu Leu Thr 105 Leu Leu Ala Ala Gly His Glu Thr Thr Ala Ala Thr Trp Ala Gly Arg 120 Ser Asn Gly Ser Thr Gly Thr Pro Thr Cys Ser Arg Leu Trp 135

- (2) INFORMATION FOR SEQ ID NO:283:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 163 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:283:

### (2) INFORMATION FOR SEQ ID NO:284:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 240 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:284:

Trp Gly Ala Pro Pro Ser Gly Gly Pro Ser Pro Trp Ala Gln Thr Pro Arg Lys Thr Asn Pro Trp Pro Leu Val Ala Gly Ala Ala Ala Val Val 25 Leu Val Leu Val Leu Gly Ala Ile Gly Ile Trp Ile Ala Ile Arg Pro 40 Lys Pro Val Gln Pro Pro Gln Pro Val Ala Glu Glu Arg Leu Ser Ala 55 Leu Leu Leu Asn Ser Ser Glu Val Asn Ala Val Met Gly Ser Ser Ser 70 Met Gln Pro Gly Lys Pro Ile Thr Ser Met Asp Ser Ser Pro Val Thr 90 Val Ser Leu Pro Asp Cys Gln Gly Ala Leu Tyr Thr Ser Gln Asp Pro 105 Val Tyr Ala Gly Thr Gly Tyr Thr Ala Ile Asn Gly Leu Ile Ser Ser 120 Glu Pro Gly Asp Asn Tyr Glu His Trp Val Asn Gln Ala Val Val Ala 135 Phe Pro Thr Ala Asp Lys Ala Arg Ala Phe Val Gln Thr Ser Ala Asp 150 155 Lys Trp Lys Asn Cys Ala Gly Lys Thr Val Thr Val Thr Asn Lys Ala 165 170 Lys Thr Tyr Arg Trp Thr Phe Ala Asp Val Lys Gly Ser Pro Pro Thr 185 Ile Thr Val Ile Asp Thr Gln Glu Gly Ala Glu Gly Trp Glu Cys Gln 195 200 Arg Ala Met Ser Val Ala Asn Asn Val Val Val Asp Val Asn Ala Cys 215 Gly Tyr Gln Ile Thr Asn Gln Ala Gly Gln Ile Ala Ala Lys Ile Cys 230

- (2) INFORMATION FOR SEQ ID NO:285:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:285:

Asp Val Val Glu Ala Ala Ile Ala Arg Ala Glu Ala Val Asn Pro Ala 1 5 10 15 Leu Asn Ala Leu Ala Tyr 20

- (2) INFORMATION FOR SEQ ID NO:286:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 174 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:286:

Leu His Pro Ala Gly Ala Thr Asn Gly Ser Gly Gln Leu Ala Leu Pro Val Glu Ala Pro Pro Arg Ser Val Pro Ser His Gly Glu Pro Leu Gly Ser Ala Ala Pro Glu Gly Leu Glu Gly Glu Phe Asp Asp Arg Ile Asp Glu Arg Phe Pro Val Phe Ser Ser Ala Ser Leu Ala Glu Ala Leu Pro Gly Pro Leu Thr Pro Met Thr Leu Asp Val Gln Leu Ser Gly Leu Arg Ala Ala Gly Arg Ala Met Gly Arg Val Leu Ala Leu Gly Gly Val Val Ala Asp Glu Trp Glu Arg Arg Ala Ile Ala Val Phe Gly His Arg Pro 105 Tyr Ile Gly Val Ser Ala Asn Ile Val Ala Ala Ala Gln Leu Pro Gly 120 Trp Asp Ala Gln Ala Val Thr Arg Arg Ala Leu Gly Glu Gln Pro Gln 135 140 Val Thr Glu Leu Pro Phe Gly Arg Pro Gln Leu Ala Gly Gly Pro 150 155 Leu Gly Ser Val Ala Lys Val Val Val Thr Ala Arg Ser Leu

- (2) INFORMATION FOR SEQ ID NO:287:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 61 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:287:

Val Gly Val Val Gly Val Gly Ala Thr Ser Pro Ala Gly Ala Gly Ala 15
Gly Ala Gly Ser Ala Gly Thr Gly Ala Gly Ala Gly Gly Gly Ala Thr
20
Lys Gly Arg Ile Asp Ser Ala Ser Ala Leu Ala Ala Pro Leu Ser Thr
35
Gly Leu Leu Ala Val Pro Ser His Thr Asn Gln Arg
50

- (2) INFORMATION FOR SEQ ID NO:288:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 133 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:288:

 Met
 Ala
 Asn
 Thr
 Gly
 Ser
 Leu
 Val
 Leu
 Leu
 Arg
 His
 Gly
 Glu
 Ser
 Asp

 Trp
 Asn
 Ala
 Leu
 Asn
 Leu
 Phe
 Thr
 Gly
 Trp
 Val
 Asp
 Val
 Gly
 Leu
 Thr

 Asp
 Lys
 Gly
 Gln
 Ala
 Glu
 Ala
 Val
 Arg
 Ser
 Gly
 Glu
 Leu
 Ile
 Ala
 Glu

 Asp
 Leu
 Leu
 Pro
 Asp
 Val
 Leu
 Tyr
 Thr
 Ser
 Leu
 Leu
 Arg
 A

- (2) INFORMATION FOR SEQ ID NO:289:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 63 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:289:

#### (2) INFORMATION FOR SEQ ID NO:290:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 72 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:290:

#### (2) INFORMATION FOR SEQ ID NO:291:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 74 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:291:

Pro Ile Pro Val Arg Ala Ala His His Glu 65 70

- (2) INFORMATION FOR SEQ ID NO:292:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 174 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:292:

CCGCACGTAA CACCGTGAAT TGAAGGGAGC CGCTGGTCAT GGGCCGATTC TATCCGTGGG 6	CCGCAC	CACGTAA	CACCGTGAAT	TGAAGGGAGC	CCCTCCTCAT	CCCCCCAmma	<b></b>	
	CGAACG	ACGGTTA	TTGACGGCCC	CCACCCCACO	COCTOGICAL	GGGCCGATIC	TATCCGTGGG	60
CGAACGGTTA TTGACGGCCC GGAGGCCACT CCGCTGCCAC CAAGTGGTGA CTCAGCGCGT 12	TOTO	CACCCCA	3.003.3.00	GONGGCCACT.	CCGCTGCCAC	CAAGTGGTGA	CTCAGCGCGT	120
TICACGGCA ACGAACGCG GACACACCAC TTGACATTCG ACAGCACGC CCCC		CACGGCA	AUGAACGGCG	GACACACCAC	TTGACATTCG	ACAGCACGGC	CGCG	174

- (2) INFORMATION FOR SEQ ID NO:293:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 404 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:293:

TCGCAAACGG	GGTGACCTTC	CCTCCCCCCC				
COCTOCOCO	CCICACGIIC	CarceGales	CGCTAGAGAG	TTTGTCGCAC	TTTCCGGTGA	60
	GCWCCCCAGC	ACCGGTGAGC	سات المال المال	A CTCCC A CCCC		
CGCTGGGCAC	GATGGCGCCC	GAAAGCCTCC	CClCcccc	ACTOCAGGIG	CICGMCGGIG	120
TGGTCAGCCG	GTCCC3 TCCC	COMPANDE C. C.G.	GCMGGCGGGT.	GCTGGCTGTG	CTCGACGGTG	180
100100000	GIGGGAICGG	CCGCTGCGCG	ACGTCGACAT	TCTGCTGGAC	TTACAGCGCT GGCGAGCACG	240
··· concede	ACCCOCC 16	CCGGATGTGA	CGACGTCCCC	* CCCCCCCC		
TCGCCGAAAT	CGCTGCGGC3	Caccerone	concorcac	ACCCGCGG1G	CATACCCGGT	300
TC3 CCT3 CCC	COLOUGER	CAGCCIGACT	CGGTGGCGGT	CAGTTGGGCG	CATACCCGGT GATGGTCAGC	360
-GACGIACCG	GGAGCTGGAT	GCATTGGCCG	ACCGGCTGGC	CACT	•	
						104

- (2) INFORMATION FOR SEQ ID NO:294:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 134 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:294:

- (2) INFORMATION FOR SEQ ID NO:295:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 526 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:295:

GCTTCGACGG	CTACGAGTAC	CTCTTCTCCC	***************************************			
CCAAGAAGAC	CACCAACCCC	C1011C1GGG	TGGGTTGTGC	GGGCGCCTAC	GACGACAAGG	60
						120
TCTTCCAGCA AGACCGTCGA	GCTGGCACAA	CACCCCCCCC	701000000	CCGCTCCGGC	AACGAGTTCC	180
AGACCGTCGA	CCCCCCCCCCC	-MGGCCGTCG	AGACCCTGGA	CGGTTTGTTC	GAGGGTGTGG	240
						300
AATATCGGCA TGGTGCGCGA ACCCGTGCTA	CAAGAGGGTTG	CTCCCCCC	ACCACCACCA	CACCCAGCTG	CTCAATCGGT	360
						420
					CECTICATO	
CCGCGGGGC	CACCTGAGCC	GAGATGCCCC	CCCImage	ACCACGGGAG	CTGATCGGTG	480
		arion110ccGC	GCCATGCCGA	CCGCAG		526

- (2) INFORMATION FOR SEQ ID NO:296:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 487 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:296:

CTCGCCGCCG	TGATCTGGCC	GGCGA A CTITE	a======			
ATCAGGCCGA	TGCCCATGAT	CACCGAACIIC	GTCAGTGCAT	CCAGACCCCA	ACGATCATCG	60
						180
						240
TAGGTGATGA	TCGCCGCGGT	CAGCCCGACC	AGCGCAAGCT	CACCCACCC	GGTCGCAAAA GACACCGGCG	300
				CACOCAGCOG	GACACCGGCC	360

CCGCGATAGG A AGACCGTACT G AATTGGG	CAGGGCGAG CACCAACCT	CAAGCCACCG GAAGAGCTGA	GCAACGCCGG ACACTCGCCG	CCACATCGCT AACGTGCAAC	GGACACCTCG AGCTGCGAAC	420 480
(2)	*****					487
(2)	INFORMATI	ON FOR SEQ	ID NO:297:			

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 528 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:297:

- (2) INFORMATION FOR SEQ ID NO:298:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 610 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:298:

- (2) INFORMATION FOR SEQ ID NO:299:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 164 amino acids
  - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:299:

Phe Asp Gly Tyr Glu Tyr Leu Phe Trp Val Gly Cys Ala Gly Ala Tyr Asp Asp Lys Ala Lys Lys Thr Thr Lys Ala Val Ala Glu Leu Phe Ala Val Ala Gly Val Lys Tyr Leu Val Leu Gly Ala Gly Glu Thr Cys Asn Gly Asp Ser Ala Arg Arg Ser Gly Asn Glu Phe Leu Phe Gln Gln Leu Ala Gln Gln Ala Val Glu Thr Leu Asp Gly Leu Phe Glu Gly Val Glu 70 Thr Val Asp Arg Lys Ile Val Val Thr Cys Pro His Cys Phe Asn Thr 85 Ile Gly Lys Glu Tyr Arg Gln Leu Gly Ala Asn Tyr Thr Val Leu His 105 His Thr Gln Leu Leu Asn Arg Leu Val Arg Asp Lys Arg Leu Val Pro 120 Val Thr Pro Val Ser Gln Asp Ile Thr Tyr His Asp Pro Cys Tyr Leu 140 Gly Arg His Asn Lys Val Tyr Glu Ala Pro Arg Glu Leu Ile Gly Ala Ala Gly Ala Thr

### (2) INFORMATION FOR SEQ ID NO:300:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 161 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:300:

Leu Thr Gln Arg Asp Thr Gly Ala Ala Ile Gly Gln Gly Glu Gln Ala
Thr Gly Asn Ala Gly His Ile Ala Gly His Leu Glu Thr Val Leu His
130 - - - 155 - - - 140

Gln Pro Glu Glu Leu Asn Thr Arg Arg Thr Cys Asn Ser Cys Glu Gln
145 - - - 150 - - - - 155 - - - 160

## (2) INFORMATION FOR SEQ ID NO:301:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 175 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:301:

Glu Ala Arg Glu Tyr Glu Pro Gly Gln Pro Gly Met Tyr Glu Leu Glu Phe Pro Ala Pro Gln Leu Ser Ser Asp Gly Arg Gly Pro Val Leu 25 Val His Ala Leu Glu Gly Phe Ser Asp Ala Gly His Ala Ile Arg Leu 40 Ala Ala Ala His Leu Lys Ala Ala Leu Asp Thr Glu Leu Val Ala Ser Phe Ala Ile Asp Glu Leu Leu Asp Tyr Arg Ser Arg Arg Pro Leu Met Thr Phe Lys Thr Asp His Phe Thr His Ser Asp Asp Pro Glu Leu Ser 90 Leu Tyr Ala Leu Arg Asp Ser Ile Gly Thr Pro Phe Leu Leu Leu Ala 105 Gly Leu Glu Pro Asp Leu Lys Trp Glu Arg Phe Ile Thr Ala Val Arg 120 Leu Leu Ala Glu Arg Leu Gly Val Arg Gln Asn His Arg Pro Gly His 135 Arg Pro Asp Gly Arg Ser Ala His Thr Thr Asp His Asp Asp Arg Ser 150 155 Phe Gln Gln Pro Gly Ala Ile Ser Asp Phe Gln Pro Phe Asp Leu 165 170

### (2) INFORMATION FOR SEQ ID NO:302:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 178 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:302:

Lys Pro Val Lys Glu Pro Val Pro Ala Leu Pro Pro Val Pro Pro Thr 1 Pro Ala Leu Pro Pro Leu Pro Pro Leu Pro Pro Val Pro Gly Phe Pro 20 25 Thr Val Pro Pro Pro Gly Ser Met Ala Pro Leu Phe Arg Pro Phe Ser 40 Pro Ala Pro Pro Ser Pro Ala Leu Pro Pro Ser Pro Pro Leu Pro Pro 55 Leu Val Gly Val Ala Ala Trp Leu Thr Tyr Cys Ser Thr Gly Pro Ala 70 Leu Asp Pro Leu Ala Val Ser Ile Ala Ala Ser Met Asp Pro Pro Thr 90 Thr Thr Cys Glu Ala Ser Pro Ala Ala Ala Ala Gln Leu Cys Arg 100 105 Gly Ser Cys Asp Leu Ala Pro Ala Asp Glu Met Met Gly Thr Thr Gly 115 120 Ala Cys Gly Arg Leu Gly Glu Ala Ser Ala Gly Ser Arg Ser Arg His 135 Thr Arg Arg Cys Ala Ala Ser Glu Ile Cys Arg Leu Arg Cys Thr 155 160 150 Arg Ser Ser Ser Gly Val Pro Arg Asp Trp Val Ser Pro Leu Ala Pro 165 170 Pro Leu

#### (2) INFORMATION FOR SEQ ID NO:303:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 921 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:303:

AATTCGGCAC	GARCAGCACC	AACACCGGCT	TCTTCAACTC	CGGCGACGTC	AATACCGGTA	60
TCGGCAACAC	CGGCAGCTTC	AACACCGGCA	GCTTCAATCC	GGGCGATTCC	AACACCGGGG	120
ATTTCAACCC	ANGCAGCTAC	CACACGGGGA	CTCGGAAACA	CCGGCGATTT	TACACCGGCS	180
CCTTCATCTC	CGGCAGCTAC	AGCAACGGGT	CTTGTGGAGT	GGAAATTATC	AGGGCTCATT	240
GGNTGCACCC	GGSCTTRCGA	ATCCCTCGKG	CCAATTCAAC	TCCTCNACAA	GCTTGCGGCC	300
GCACTCSAGC	CCGGGTGAAT	GATTGAGTTT	AACCGCTNAN	CAATAACTAG	CATAACCCCT	360
TKGGGCCTCT	AAACGGGTCT	TGAAGGGTTT	TTTGCTGAAA	GGANGAACTA	TATCCGGATA	420
ACTGGCGTAN	TACGAAAAGC	CGCACCGATC	GCCTTCCCAA	CAGTTGCGCA	CCKGAATGGC	480
AATGGACCNC	CCTKTTACCG	GSCATTAACN	CGGGGGTGTN	GGKGTTACCC	CCACGTNACC	540
GCTACCTTGC	CANNSSCCTN	RSGCCGTCTT	TCSTTTCTTC	CTTCCTTCTC	CCMCTTCGCC	600
GGTTCCCNTC	AGCTCTAAAT	CGGGGNNCCC	TTTMGGGTTC	CAATTATTGC	TTACNGSCCC	660
CCACCCCAAA	AAYTNATTNG	GGTTAATGTC	CCTTMTTGGG	CNTCCCCCTA	WTNANNGTTT	720
TCCCCCTTNA	CTTTGRSTCC	CTTCYTTATW	NTGAMNCTNT	TTCCACYGGA	AAAMNCTCCA	780
CCNTTYSSGS	TTTCCTTTGA	WTTATMRGGR	AATTSCAATY	CCGCYTTKGG	TTMAANTTAA	840
CYTATTTCNA	ATTTTCCCGM	TTTTMMNATR	TTNSNCKCGM	KNCTCCNRKA	SSGNTTTCCT	900
CCCCCYTTSS	GKTYCCCCRN	G				921

### (2) INFORMATION FOR SEQ ID NO:304:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1082 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:304:

AATTCGGCAC	GAGATANGGG	CGCACCGGGG	TCCGCACCCC	GCGGGACCGT	00000000	
ACCGGGGTCA	ACAGCACCAC					60
ACGGCRAACA			ANGCAGAGCG	CCGCGGTGAT	GGCGGCCGAG	120
			GACTCCGCGC	TCGCTCGANC	CATGGCCGCG	180
CCGGCTGCCT	CGAACANGCC	TTCGTCGTCC	ACAGCTTAGC	CAGCANCCAA	ACCGCACCCA	240
GAAACCCACA	CGCCCGCCGC	CCCGGANACC	TGCGCCATCG	KCTGCTGGGG	CGANATCCCC	300
CGATCGCTNA	CANGATGACC	GCTGCCGGAA	CGCCGCCGCT	GCCTCCGGGC	AGCCGCGTGG	
GCSGGGCAAC	CGCGAACCCA	NGAACACGGC		ANCCCA ACAG		360
GGGCTAAACG	CTTCACATCC	AGGGATGTCC	CCCCCCCCC	ANCGCAACAG	CAATTGTCAA	420
CCCCNTCCTN	CCCCCCNCAC	AGGGATCTCG			TGCAGSGCGA	480
	GGGCGGNCAC		TGCNGATCNA	CAGKCTAGGT	CTTCGGCCGA	540
TATGSAAGGN	000011	TTAAAGCGGC	SAAAAAASTC	TCCCANTGGA	TAAAATCAGC	600
CGGGGANCCC	CCCGTGSCMM	NGTCYCGGKC		MGGTTTNACG	GCGGKTGCNG	660
GCCAACTKGC	CAAAMTTAAG	KTNGGGGNTY		ACCGGCNNTK		
AAAACCGGNC	YTTTCTKGAT	TAMMACCGGN	CCCCCAWTGG			720
AMCCYCCCSS	MNGGGKTGGS	SAACCCTTCC		CGGKTGKTCC	CANGNTYAAC	780
AAACCSGKYG			CGNGGGGTTC	NTKGTTSCYT	AWMCCCCCGG	840
	GGKTGGCRTN	WASSAMNCCC	CMNGYYTCTT	TAAAGGCCAN	KNRAAWGKYT	900
CCTTGGGAAW	CCINCAATYC	GAAAAYYCTC	CTYMMGSSCN	CTTKCWRTYN	NRNGGGAACS	960
AMWINYCCNC	GWTTCAWTCG	GGTCCGASMN	AAACKCTTTY	TTTTYCGSSC	STCCMGGSNC	1020
<b>SGGTKNANAN</b>	AAASATTTMC			CYKMGRENER		
GS				CITCHERNIKK	GMGAACCCGR	1080
						1082

- (2) INFORMATION FOR SEQ ID NO:305:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 990 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:305:

AATTGGCACG	AGTGATCGCG	CTGAAGCCGG	TAGCGCGGGT	GGCTCGGGTG	GTTTGCGAAC	60
RAAATCCGCT	CGANGTGGTC	TCGGTAGGCG	GTGTCCANAA	CGGTGGCGCC	CTCCCCCCCC	
ATCTGATCGG	CGCGGCCGTA	GTGCACGTCG	GCGGGCGTCT	CCACTCCCAT	GIGCCGGCGG	120
TTGTGTTCGT	GGTTGTACCA	GCCGAAGAAG	CCCTCCCACT	GCAGICCGAI	GCCGGAATGC	180
GACTCGAACC	GTTTCGGGAA	ATCCCCCCCCC	CGGICGCAGT	GCACCCGGGC	CGCCTCGATC	240
AACGGGTTGT	CTTGCTCCTC	TCCCCCCCCC	TACTTGAAGG	TCTYGAACTG	GGCCTCAGAC	300
NCANCAATCO	CTTGCTGGTG	IGCGGGCGTG	AGTGCGACTT	GGTGACACCG	AAGTCGGCCA	360
MCCCCCCCTA	CACCGGTTTG	GAACTCATCC	ACAACCCCCG	TCCGCGTCMA	GGTCACTTGT	420
NCGGCGCTAA	TTTNYTGGGC	GGCAAGGGTT	TGCCGAYCAN	KCCGCTCGGC	CAAAACTTCG	480
ANTONOSCOA	AGGCCNCCAT	CCNCCCAAAC	AMGTTACGGG	ANAAAANATY	CAAAGAYCAC	540
CYTCCGGKTN	TTATANCTYC	CCYTTTGSTY	GGGCCCCCCN	CYYTGKKNAT	ACCCCTNCCA	600

ANTICOGRAMIC CEGETTACC AAAAASCCCK CCNWTCCCTC CRASATTGSC NCCSAAWKSA 78 AKGCCCCCNY TCSGCNWNNC CSGCGGKKKT KKGTTNCCCT WMRCWMWYTS GGCCNASCCN 84 CKYYSSMYCC CCCTCCCCM CTCCGNKTCC CCAMCCYANC MGGCCCCYTM GKKCCCWKNT 90 YKGCCCCCCC AMMNNNGGGG WGACCCTNGG CCCCMKRRGM TCCCNANTGA MCCTCWGNRA 96 MKCYCCNRAR ANMCCSCNCC NGCNCRCKNN	ANTCGGAAMC AKGCCCCCNY CKYYSSMYCC YKGCCCCCC	ACTWMMNACC CGGNTSTACC TCSGCNWNNC CCCCTCCCCM AMMNNNGGGG	CNNGGGSCCY AAAAASCCCK CSGCGGKKKT CTCCGNKTCC WGACCCTNGG	AAMCGTYYNR CCNWTCCCTC KKGTTNCCCT CCAMCCYANC CCCCMKRRGM	AGGTTTTSCT CRASATTGSC WMRCWMWYTS	GGCCNASCCN	660 720 780 840 900 960
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------	--------------------------------------------------------	--------------------------------------------------------	--------------------------------------------------------------------	----------------------------------------	------------	----------------------------------------

### (2) INFORMATION FOR SEQ ID NO:306:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 223 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:306:

AATTCGGGTG	GCAACGCGGG	CCTGTTCGGC	********		CGGTGGGGCT	
GGTGGTGGCG	CCCCCCCCC	22222	AMCGGCGGCG	CCGGTGGTGC	CGGTGGGGCT	60
991991996	CCGGCGGCGC	GGGCGGTAAC	GCGGGGTGGT	TTGGTCATGG	GGGCGCTGGC	120
GGCGTGGGTG	GTGTANGTGC	GGCCGGGGCC	AACCCTCCTA	22222222	GGATGGGGCG	120
CCTCCTCTTC	CCCCCMCCC	2222222	MIDDIDDIA	CGCCCGGTCA	GGATGGGGCG	180
2010010110	CCGGGICGGA	CRACRCTCGT	GCCGCTCGTG	CCG		223

### (2) INFORMATION FOR SEQ ID NO:307:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 418 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:307:

AATTCGGCAC	GANGCGGCAA	CGGTGGCAGC	GGCGGCACGT	CNICTOR COCK O	CGGGGGGCC	
GGGAACGGCG	GTGCCGGCGG	22222222	CCCCCACGI	CNGTIGCEAC	CGGGGGGCC	60
CCCCCCA	323555	COCCOCCOCC	GGGGCCGGGC	TGATCGGCAA	CGGCSGCAAC	120
GGCGGCAGIG	GCGGAATGGG	CGATGCCCCG	GGCGGCACCG	GCGTCNGCGG	CATCHORGO	180
CTGTTGTTGG	GTTTGGACRG	CGCCAACGCC	CCGCCCAGCA	CCAACCCCC	GCACACCGCG	
CAGCACAGGC	GAMEGEEEE	CTCAACGGG	CCGGCCAGCA	CCAACCCGCT	GCACACCGCG	240
CCCCAAGGG	GIIGGCCGCA	GICAACGCGC	CCATCCAGGC	CGTGACCGGG	CGCCCTGAT	300
COGCAMCGCG	CCAACGGCGC	CCCGGGCAAC	GGGGCCCCCC	CCDCCCACCC	CCCCMCCM	360
TTCGGCGGCG	GAAGGAACGG	CGGGTCCGC	GTCANCECCC	CCCCCCCCC	coodiagila	360
			GICHMCKGCG	GGGCGGCGG	AAATGCCG	419

### (2) INFORMATION FOR SEQ ID NO:308:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1049 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:308:

AATTCGGCAC	GAGGGGCACG	ATCGCATACA	CCCCTCCCC	G1 G1 GGG		
GCTCGGCACA	CGCGAGCGCA	Chamacaca	GCGCTCGCGG	CAGACCCGCC	CGATACAGCA	60
TACCGCCCAC	CACCCACCCA	CAATACGGCG	TCTGGCTGTC	CGGCTTGARC	ACCACCGCGT	120
ccooccat		ACCGAGTCCG	ACACCGTAAG	CGTCATGGGG	TAGTTCCACG	180
	CCCCACCACG		GATAGCACAC	CCTCCTCCTC		
GCAGCAGCGG	CTGTGCCTTA	CGGGGCTTCA	GCAGGTCCAC	ACACACTCCT	CCIMICCCGG	240
TNCGCSTTCC	GCGATCAGAT	CGACAATTTC	CTCTTCCCCC	ACAGACICGI	GCSTTATAAT	300
			CICIIGCGCC	GCCCATCGGG	CCTTGCCCGC	360
GCSGATGACT	AGGAAGTCCA	TGAAGAACTC	GCGGTTCTCG	ATNAACAGGT	CGCGATAGCG	420
CTTTCCCCCC	GCAGCTCGCT	CGATNACGGG	ACCTTCGCCA	GTCGGTCTGC	GCCGCGCGAN	480
arrecerement	TOCCOCTICG	ACTICCGCGG	MCGTGCCDAC	CCAATCATTA	<b>63.00.00</b>	540
COCTIMENT	TCCTCAATST	NCYGGTCGAA	ATTCGGCAAC	THETTERMENT	CCCACCATICC	
AACSANNCAA	ACCTCGGCAA	GGTTAGGMTT	TCCCCCNCTT	YCZZZZZZ	GGCAGGTRCC	600
CMAATTTCGC	CKCNATGKTG		CKSSSSSSSS	YCAAAAATNC	GGKTTTTGGN	660
CCAAAMGGKT			CKAANAAKCS	GGGTCYTCTN	NTCNGKGGAK	720
		GRAMMACCAAN	CCTWACCCTG	KTKAANGGNW	TTCCCCCCGG	780
COUNTRICE	ATYCYCCSNA	NCCCRGGGGG	GNMCARATTC	TYCCGGMCTC	CTCKGGAWTC	840
	CAAAAAACSC	CCCAAATTMM	TTTTTCCRCN	TRTTGANACW	CITITKARCA	
MMCSSAARNS	ANMCNCTCYC	CKCTKTGKTK		CCCCMAAATT		900
CCSCGCGGGN	CCCNCTNTTT				TYTAWTTSSC	960
CRCCSNCCCM	AAWYNTKGYN	EMPROPAGE CO.	MMITINCRMCC	MMMSNCKSNG	KKGGNRCCNN	1020
		AMIAIMAGC				1049

## (2) INFORMATION FOR SEQ ID NO:309:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1036 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:309:

AATTCGGCAC	GAGGGAATCG	AGAATCCCGG	AATGGTGAAG	CCTCGGTGCC	TGCCGTTACG	
CCAAGAKTCA	GGGTGAGCGG	CCCCCCGGTG		SGCCAACCGG		50
AGGGCTGGGG	TGGAATAACT				GAAAAGGGTG	120
GGGCCGATCA		GILIGITAC.		ACCCGGTATT	GATATGTATT	180
TTGTYRTGGA				GACCTGTTGG	ATTTGGGGAA	240
		CAGCCMGCGT	GATGGTTTGG	TTSAANTTTT	GTGCCGSCCA	300
CANGGTGATG		TGATGGGGCC	SATCGAAATA	TTGGGTATGC	CNACGCCSAA	
CGAGATYGCC	GGGACGTTCA		AACCMASGGT			360
ATNTTGATCG	GGATTCCGGA					420
YTTATTTCMS		ATBAMRGGAA			NACNCCWCCG	480
CCTGGTNSYC				CCCMGGAAAA	ACCAACMSGC	540
			KCTGTRSTMC	CCSMAAATNA	CSCCCSCTTS	600
	AANTNSCCCC	CCCSCKNNTT	ATSTYCCCGK	GTTCCCCCMC	CCCTTNAAMC	660
TCCCCGGTTA	ACCCCCWINT	SNCNCCCCCS	YTAAKMNCRG	GCTTSTTNCT		
CNCCCCCTCK	SAMCWNCCNC	CTCKAACNAC			CCCCCYTRMK	720
KTTNTMCTKC	CCAAYTNCRC			TNCCCAATNT	WCMWCKCCNS	780
	MGACWCTCNY	CCNCRCTCCC		WTATAAAACC	WCWYAWYNNK	840
		NCCCGNCNCK		CKMCCCKCSW	TWCYCKCSCC	900
CCMTCTMNAC	YCCCCCKKTY	NKWMCCCTIC	CCCCCCTCCC	MCNMBMKTCT	YCSGKTWCWC	960
NCYNTIMICN	CYNANMCKCK	KTCTCTTCCN	CRNTCTCCC	CCMCCCCCCA		
CNCNCTCCSC	MMKGSC				KKCTCTSKCC	1020
						1036

- (2) INFORMATION FOR SEQ ID NO:310:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1036 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:310:

AATTCGGCAC	GAGATCATGA	ATAGCGGGCT	GGTCAGCACC	GAAGTGGTCG	GCGATCTCGC	60
GAGCAAGTCT	CGTCTGCTCG				CCTGCGATGT	120
CTTGGATGGT	GTTCAGTTGC	AGGTAAGGCC	GACGCCGCAG	CTTTGCTAGC	AGGGTGTCTT	180
GGCTCTTCGC	ACGTGAGGTA	ACCAATAACT	CCGACGCAGA	CCAACTCCGG	CCCTCGATCC	240
GGGTACCAGG	CTCCGCCGGA	GCCAGCCGTT	GTGCCCCCTG	GGCCGAAGGT	CAGCTGCTGT	300
GCGATCGAAG	TAAGAAACCG	CGCCATGCCC				360
ACGATCGTCG	TCCTTTCCGT			ACCGCACGAG		420
TTGGGATTCG	GCCACTGACC	GACCAACCGC	CTGTGCGACA	CCCCAGCGGA	ATTGGTGGTC	480
TTCCGCGGGG		AATCANCGSG	ACGCGCTCGC	CGAASCANCC	GCATANCONT	540
ACATANCAAC		CCCACATTTC	GGGSTTMTGC	CCCTCNGCAA	CSSNAAYNCC	600
CCCAATTCYG	AACNAAAAA	TTGGYCCATY	ARNGTYCTCM	CCAAAAACCN	AWTCCCCKTA	660
TCCCCCGGGG	GGGRCCCCYY	<b>NMNAAAACGG</b>	CCCWWAANCC	CCSGGGCSCC	CGGGTTRWTN	720
CCCCTTGTCG	GCCCNCCSGG	TTTGGTCMCM	GGSCMMTNWN	GGGNTGCSCC	CCCNCNAAAA	780
AAAAAYCKNG	NCAAATYAAA	CCCKYCMAAA	ASKTGGGSSC	CCCMARCCGG	GGKAAKKWWA	840
ANTTAANCCN	KAAAAAAAww	NCANNMCCCC	NGGGNCCTAA	GGKYTTAGGG	GTTSTTNANG	900
ARAAAATMTC	CANATMINSSK	TTNNAAAAAA				960
SRCCTTCGGG	TNWNSGGGGG	KKKKKTNCMS	KMNMMTTWGR	CCCNCCGCCN	NNTWKCCTTN	1020
TCCNYGGNGC	RNCAGN					1036

### (2) INFORMATION FOR SEQ ID NO:311:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1060 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:311:

AATTCGGCAC	GAGTCGATTC	GATCGAACAC	GCCCGCACCT	GGCCAGGCCA	CATGGGCGCG	60
GCCATGGCCA	ACGCCTACTC	GGCCAACCCG	AATCCATTCG	GCGTCTCACC	GCAACCCCCG	120
AAACCGGCGA	CCGCGGCATG	GATCAACCCG	CCCACCCCAG	ATCCGAAATA	GCGTCCACAT	180
AATGAGACAC	TGGCGCAAAG	AGCTTGACAG	GCGCCGCACC	ACGCAAGCTG	TTAGACGTGT	240
CGGTCTTGCA	AGAAGCGGGT	TGGCCACCCA	AGATCACGCC	GCCCAAGGGC	ATCGAGTCAA	300
CGTTGCGGTG	GTATCGCGCT	AACGTCGGCG	CCGCCAAGAA	ATGACGGTGC	GCATTACCAT	360
GGCCCTGCTG	ATCACCITTG	GCCACCTGCG	CACCANAACT	ATGANCAGCC	TTATGCCGAG	420
TCTCGTGGAC	ATCGGCAGCC	GCTTCAAAAA	CTCCTTGTCG	ACAATSGTAT	TECTGANCCG	480
CCGAATTCTT	NTRCTTGCAA	SAACACTNCA	TGTTNCSGGT	NAACAACCYT	COTTMONA	540
ACANCCAATA	TTGAANTCCC	ANTCGGGCAM	GAACCNGTTM	CGGAAGETGE	TCCCAACCAA	500
TGKTGCCCAA	AAATCCCGGG	NGGTRAAAWW	CCCNSNATCG	MEARTHTEC	CTNCAACAAA	660
AAAAGGTCCA	AGKYCAAAGG	NGCCCCCCC	SCHANATOC	TCDACCCAVA	CINGAACAAM	
WWWTNCAAAT	MTTNGGGTCC	KNNTCCCCWT	AAANCCCCC	CCCMCCCC		720
NWNMGGGMGN		AAAAAAAMMM			GMGTYTCCCC	780
	CCGGKGGGTM	CAAAAAANAN	ACCCCCCC			840
		CULTURAL	ACCCCCAMS	NGGGGGGAAA	ATTIGNAAWT	900

AAGGKKKTKC	SCMACCCCAA	AAANMMNNCN	AWNCCCGMGK	SARGGGGRNV	TIMKAGGGMG	250
GNYCCCCCCW	YCGGGGGGNN	ATRAVAAAA	17001101	0.2400001441	בווניטטטטויונ	960
The management	SCHOOLOGIAN	MAMIAMAKK	NGSNGRGAAT	NITNITITGK	RSSSRNKTTT	1020
TYNTCCTYCN	CCNMGNRWWG	SRAMNTGKTS	NSSGGSGGC			7.060
						1060

- (2) INFORMATION FOR SEQ ID NO:312:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1040 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:312:

AATTCGGCAC	GAGCTTCACC	AAAGAGCTCA	CATCCCCCC	<b>73 m</b> 0 <b>6 0 0 0 0</b>		
GCAATACGGG	CATGGATGAN	CCCTANGGEN				60
CCAAGGTGAA				GCTCAACTGG	ATTACGGTTC	120
·		GCGAAAGATG	CGACGCTTAA	CTTGCGCTTC	CACCGTGCAA	180
TGTTNGTATG	GATGCTGGAA	CCGCGCTGAC	NGATAANGAA	TTCGCTGGTC		240
ATGGATGGTC	CKSTTTTCNC	TCCGCSGTTA				
TTCCCGCTAC	RCTGCAGCCC	ATCATGGATG			GCAGGCTATG	300
CAAGCGAMTC				GAANAAGTTA		360
CGAATGCGGC		GCGGCAMTTT	CGCAACCTGC	TGTGTNTGAA	GCGTMTCAAC	420
		NGGCTTGCGT	TGATTMMAAC	CNAACCCNTN	CNATYCTTTG	480
CCGNGNMNTG	CGTTCTCTCC	AACTCCGKKG	SYTGCCNCCG	TGAAACCCMA	CTNCCCCCCC	540
GTTGGACTTA	MRTNTTCAAA	AAMCGGMTNA	ACCSGAATNN	SAACCINCCR		
SAANTCGGGC	TTYGGGNRCC	CCCCNGAAYW	TTCKNCNGGG			600
SAAACNTTTG	CCRTNCYMNN		<del>-</del>	GMNNTYCTCN	GGTTYNGGCG	660
TNTTTNCAAW			NCMTNMTTGM	GGGSCSNNAS	GWCCCGGGKK	720
	TCNCNSKTTT	TTKGGGGGGG	GGCYGRTRMC	NCGGGCCCCC	GGCCCKKMAA	780
AAAAAMCMSA	RRCCNCYGGG	KKCCCCCCCM	NNATNGGGCG	YKCRAAACAA	ACCCCAANRA	840
TNGNGMGGGC	SMACCSGNGN	GYNAAAKGGT	TSNSCTMANM	MKGMANNNCT		
NCTGMGGGKT	TTKGNNGARN				SGMSCCMNSN	900
NGASNGWMCN	CRNNGANRCC		RCGGNCGCNN		GSCKSCNNGN	960
		NCNGYGNMRN	NNGNNNGNNN	GGGRKNNACN	NMKMCAWSMC	1020
NSNMMGNNNS	CGYMTNKCGC					1040

- (2) INFORMATION FOR SEQ ID NO:313:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 348 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:313:

AALICGGCAC	GAGACAANGG	CGTGAAATGG	GATCCGGCCG	AGCTGGGGCC	CGTCGTCAGC	60
GACCTGTTGG	CCAAGTCGCG	GCCGCCGGTT	CCCCTCTATC	CCCCCC	ATCTGCGCCG	
AGCGTGAACT	CACCCCCACA	77777000000	CCGGICIAIG	GGGCCTAGTT	ATCTGCGCCG	120
THE COLUMN TO	CAGGGGGAGA	TTTCGGCCGT	TTTCTCGCCC	TGGCTTCACG	TTCGGCGAAG	180
TRUGGAACGG	TCAGGGTTCG	CAAACCACGA	TCGGGATCGT	GCGGTCGGTC	CAGGACTGGT	240
ANTICTGATA	CTTKGGTACA	TCGTGACCAA	CTCTCCNtCNA	Thomasassas	GCTCCTCGTC	
Memoranemen	CCCCCCCTAA	COMMONWER	CIGIGGNCAA	TATTCGGCGC	GCTCCTCGTC	300
	CGCGCGGTAA	GGTCCANCAC	TICCITITIC	TCGTGCCG		348

(2) INFORMATION FOR SEQ ID NO:314:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 332 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:314:

AATTCGGCAC	GAGAGACCGG	GTCGTTGACC	AACGGACGCT	TGGGCGCGGG	CCCCTTGCGT	60
GGCATCAGCC	CITCTCCTTC	TTAGCGCCGT	AACGGCTGCG	TGCCTGTTTG	CGGTTCTTGA	120
CACCCTGCGT	ATCCAGCGAA	CCGCGGATGA	TCTTGTAGCG	CACACCAGGC	AGGTCCTTCA	180
CCCGGCCGCC	GCGCACCAGC	ACCATCGAGT	GCTCCTGCAG	GTTGTGGCCC	TCGCCGGGAA	240
TGTACGCCGT	GACCTCGAAC	TGACTCGTCA	CTTCACGCGG	GCAACCTTCC	GAAGCGCCGA	300
GTTCGGCTTC	TTCGGAGTGG	TGGCTCGTGC	CG			332

- (2) INFORMATION FOR SEQ ID NO:315:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 962 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:

AATTCGGCAC	RAGTCGGTCT	AGACGGATTC	AATGCTCCCG	CGAGCACCTC	GCCACTGCAC	60
ACCCTGCAGC	AAAATGTGCT	CAATGTGGTG	AACGAGCCCT	TCCAGACGCT	CACCGGCCGC	120
CCGCTGATCG	GCAACGGCGC	CAACGGGACT	CCTGGAACCG	GGGCTGACGC	GGGGCCGGCG	180
GGTGGCTGTT	CGGCAACGGC	GGCAACGGCG	GGTCCGGGGC	GAACGGAACC	AACGGCGGGG	240
ACGTGGGGAC	GCGCCCGGCG	GGATTTCTTC	GCACCGGSGC	ACCGGCGGG	CCGGCGGCGT	300
CGCACAACGG	CACCGGCGGG	GACGCNGCGC	CCGTNGGGCG	GCTTCTKGAT	GGGCTCCGGC	360
GGTNACGCGG	CACGGCGGCG	CCCGGCTCAC	CGCCNGTTGG	GACGCGGGGA	CGCGTNACCC	420
CGATCTTCTT	CCGCNCCCCG	GAAACCGCGG	GGCCGGCCCC	ACATTAKACC	CGGCGGNACC	480
GCGGMCCCGG	CGGAACGGNG	GGYNTTTTCC	AACGGCGGGG	CCGCGGAACC	GNMGGSTGTT	540
CCTTNGGSGA	AGGNCCAAKT	CCCGKCTANC	YYAATCCCCG	ANGGKTGAMC	CTSATGSNCA	600
MYTTMAGGAA	CYTNCCCANT	KTTSGRACCW	CRCCNGGAAA	ASRAWNKNGT	KGGCAAACNA	660
NNTNCYTTKN	NATTKGGNNA	AAAANCCCTY	CCWCSGRACT	NCCCCCCNGM	GRGMCNNTNN	720
NTTTYGNCNN	CCCGGSNAAM	RNTTKATTTC	NGGGGGNTCN	GGGTKMNNNA	AACCCCAAAM	780
MNRNNKCSCA	ANGGGKSNGC	NKNNMMNSGT	TTTYCKNMRA	MRNWTYKNKN	NTCNGARSRN	840
NAAMCNNSNK	NGKKIONNKAA	ARNNTTWKTN	KNSCNNNCNN	GRRNGVRGGC	CKMKGSNMNG	900
MCWHNAWRNG	NNGSNCNCKC	NNKMNAAAAA	AASGGVNCKS	NSMKNKKKK	NRGGGGGGG	960
GG						962

- (2) INFORMATION FOR SEQ ID NO:316:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 323 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:316:

AATTCGGCAC	RAGAAGACGC	CCGAANGTTT	GCGCTGGCTC	TACAACTTCA	TCAARGCGCA	60
GGGGGAACGC	AACTTCGGCA	AGATCTACGT	TCGCTTCCCC	GAAGCGGTCT	CGATGCGCCA	120
GTACCTCGGC	GCACCGCACG	GCGAGCTGAC	CCAGGATCCG	GCCGCGAAAC	GGCTTGCGTT	180
	TCGTTCGAGG					240
	TCCGCACTGC					300
	GCCGCTCGTG					323

- (2) INFORMATION FOR SEQ ID NO:317:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1034 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:317:

AATTCGCAGT	GTGTGTGGCG	GCGTCCAGAA	GAAGATGATC	GCGAACATCG	CCAGCGCCGG	60
CCAGGCTATG	GTGCCGGTGA	TGGCCGACCA	GCCGATCATC	ACCGGCATAC	AGCCGGCCGC	120
CCCACCCCAC	ACCACGTTCT	GTGACGTGCG	TCGCTTGAGC	CAAAGCGTGT	AGACRAACAC	180
ATAAAACGCG	ACGGTGACCA	GGGCCAGCAC	CCCCGCCAGC	AGGTTCGTGG	CGCACCATAG	240
CCAGAAGAAC	GAGATCACCG	TCNACGTCAC	CCGAGTGCCA	ACGCGTTTCG	GGTCGGCACC	300
GCTTCCCGCG	CCAAGGGCCG	GCGCGCGGTT	CGCTTCATCA	CCTTGTCGAT	ATCGGCGTCG	360
GCNACCAGTT	GAGCGTGTTG	GCGCCGGCGG	CSGCCATCAT	CCCGCCGACN	ANCGTGTTGA	420
GCATGANCAG	CGGATGAATG	GCGCCGCGGC	TCGTGCCGCT	CGTGCCGAAT	TCAACTCCGT	480
CNACAACTTG	CGGNCGCACT	CGAACCCGGG	TGAATGAWTG	AATTTAAACC	GSTSAACANT	540
AACTACATAA	CCCTTGGGGG	CTCTTAACCG	GTYYTGAANG	GGTTTTTTGC	TTAAAGGAAG	500
AACYATTTCC	GGATANCTGG	CSTTNWTARC	GAAAAGGCCC	CRCCCATNGC	CCTCCACAGT	660
TTSCCCCTGA	ATGGSAATGG	MNCNCCYKNR	CNGGGNCTTT	AACRCSGGCG	GGNTTTTGKT	720
MCCCNNCTKA	CNTTMMMTGC	ARNNCNGGCC	SKCCCTTCCK	TNTYCCCTCC	NTCCCCCNST	780
TNCNGKTCCC	CNNAMNYTNW	ACGGGGGGCC	YTNGGGKCRM	TWTKKTTTGG	GCCCCMCCCC	840
MAAANASAAN	GGGGKRNGTY	CSTTTGGCNC	CCCAMAARGG	NYCCCCCCAM	YTNRRKMCSY	900
CNNTNKGGNN	CTGTNCKNCG	GAARAMAMCC	KCCCCGNSTS	STTNGTYWAG	GNRWKGNSRG	960
CCSCCCCGGY	MNNNAAYAWN	WMNATNCNNS	STNANMAKKN	NNNNNNSCN	WNGNGNNTCN	1020
SCNSNGGKBC	CSCC					1034
						T034

- (2) INFORMATION FOR SEQ ID NO:318:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 331 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:318:

AATTCGGCAC	GAGCCCACAT	CCGGGGCCGC	TCGTTGCATG	ACTCGTTCGT	CATCGTCGAC	60
RAGGCACAGT	CGCTGGAGCG	CAATGTGTTG	CTGACCGTGC	TGTCCCGGTT	GGGGACCGGT	120
TCCCGGGTGG	TGTTGACCCA	CGACATCGCC	CAGCGCGACA	ACCTGCGGGT	CGGCCGCCAC	180
GACGGGTCGC	CGCGGTGATC	GAGAAGCTCA	AAGGTCATCC	GTTGTTCGCC	CACATCACCT	240
TGCTGCGCAG	TGAGCGCTCG	CCGATCGCCG	CGCTGGTCAC	GAGATGCTCG	ANGAGATCAC	300
CGGGCCGCGC	TGAGTGCGCC	TCCCGCGAGC	A			331

## (2) INFORMATION FOR SEQ ID NO:319:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1026 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:319:

AATTCGGCA	C GAGATCGTCA	CCCTGGCGAC	CAGTGCACCC	AGGCCACGCC	ACCAGTTACG	60
GCTGATGGG	C CAGAAGATGG	ACCAGGTGCT			TGCAGCTGAG	120
CACCGGGAT	C GCGGTCCTCA	GCTACGGCGA	TRAGCTGGTG		CCGCTGACTA	180
TGACGCCGC	G TCCGAAATGC	AGCAGCTGGT		GAACTGGGTG	TGGCGCGTCT	240
GGTGGCGCT	C ANCGACAATT	CCGTGCTGCT	GTTTACAAGG	ATCGGCSTAA		
CGCGCACTC	CCANCGCCGC	GCGGCSGGG		TGCCGACCGC		300
CACTGACGC	CATCTCCGTCG				CCGMGCGCGT	360
			CGTGAGAAGG	TGGGTCGTGC	GCAAGTTGGG	420
CCCGGTCAC		GCCGCCATGA	CGCNGTGCTG	TTCCACACCA	CNTSNGACNC	480
CCCCCAGGA	A CTGGTCCGGC	AMTNCAGGAA	NTYCGTGTGG	GCACCNGCTT	CTTCCGKTRT	540
GGCYTAAAC	T TCCNATSTIN				NTCTTNCCAA	600
ATCGGSMMA	A ATCCCCANMC	AAACCCCCCG				
			GGTCTTGSGG	GCSGGGNGGC	GGCCNAWNCC	660
AAACCCCCC		TTGKTNCCNN	CNCSGGCNCC	NCNAANSCAN	CCCTTTKGGC	720
NCTTCCCCC		CCGAKCGSCN	AAYCCCAAGY	TMMGKCCYCY	KNAAAAAAA	780
AATTTGSCS(	CCCCAANTAA	ATTCCCNGGC	CCYTTGGGGG	CGRANCNYNT	TTTMCCSNSS	840
TKGNNNAAM	NGGANCESGG	KAAVTMMTKC	NAAYCGCCSN	3 2 140 140 140 140 140 140 140 140 140 140		
YNCCCSGAA	· · · <del>-</del>			AAMBNTTTTC	TAANNCCCCN	900
INCCCSGMM	MAAMANNTTA	CMNNKTGSNG	GGGGKTTSNC	SGKKGRAGGM	AAAAAANRSN	960
SKTTNMCNN	SANMNCNSNN	SGGNSNNNNN	NNNCNCGYKC	CSNAANMCCC	CGCGGGGGG	1020
CCMMCC						
						1026

- (2) INFORMATION FOR SEQ ID NO:320:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 324 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:320:

AATTCGGCAC	GAGAAGACGC	CCGARNGTST	GCGCTGGCTC	TACAACTTCA	TCAARGCGCA	60
NGGGGAACGC	AACTTCGGCA	AGATCTACGT	TCGCTTCCCC	GAAGCGGTCT	CGATGCGCCA	
GTACCTCGGC	GCACCGCACG	GCGAGCTGAC	CCAGGATCCG	GCCGCGAAAC	GGCTTGCGTT	120
GCAGAAGATG	TCGTTCGAGG	TGGCCTGGAN	CARDUALCE	CCCACCCCC	TNACCGCGAC	180
GGGTTTKGTG	TCCGCACTGC	TGCTCTCTC	CATTIGCAN	GCGACGCCNG	TNACCGCGAC	240
		TOC TOMOCHO	CCGCSGCACC	GCGTTGACGC	TCGACCAGCT	300

#### GCACCACTCG TGCCGCTCGT GCCG

324

- (2) INFORMATION FOR SEQ ID NO:321:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1010 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:321:

AATTCGGCAC	GANGCGTGCC	GCTNAACACC	AGCCCGCGGC	TGCCAGATAT	CCCGGACTCG	60
GTAGTGCCGC	CGGTGGCGTC			CGGCGACCAT		120
ATGCCCAGGT	AGCGGCCCAG	GTGCATGGAG				180
ACCGGGAGCT	TGGCATCGGG	CCTGATCAGC	CAGGACGCGT	AGGACAAGTC		240
ATAGTGGCCT	CCAGAGTGGC	CGTGCAMTTC				300
CTACTCCGCG	TANTGTTCCC	GCATCGCCTG		GGGAACCGCA		360
GAACGGGTCT	GANCTCAGGT	TTGCCGCTTT		GTCNACANCC		420
ATANATCTGG	CCCNAAATCG	GCGCCGACGG		AANAACGGGC		480
CCGCCCCGGT	CACCCNAACA	ACANCTTGSC			CTCAANCCGT	540
CCCGAACGCC	TCNTCCGGCG			CCGCTTCCGK		600
				NATTTTTACT	GSTAACCCCG	660
AATTNTTCCG	GANTCGGTCN	KCCGGGSTTT				720
AGSTTTTCTT	SYTGAAGGGG	GAAACCCAAC				
MNAASCCNKT				AACCSCMNAA		780
		CAMGGSGGTN			GGGSKNNKTG	840
NCCCCYMANG	GGGGGRAAAA	TSTKTCNNCG	GGGCCKAAAW	ACCMMMYGN	GTGKKKNKSS	900
GCSAAATTTT	NMMRAACTKN	GGGGCCSSGA	NNTTINAAAG	MSCCCCCSNN	GSTGKCCCNN	960
NTTTCCNNAA	WMKKGKNWNM	SMMNSCSNGG	GKYNSGGSNN	NNAAGMGGGG		1010

- (2) INFORMATION FOR SEQ ID NO:322:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1010 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:322:

AATTCGGCAC	GANGCGTGCC	GCTNAACACC	AGCCCGCGGC	TGCCAGATAT	CCCGGACTCG	60
GTAGTGCCGC	CGGTGGCGTC	GTTGCTCTCC	TGACGGGGCG	CGGCGACCAT	AAGGTCGCTM	120
ATGCCCAGGT	AGCGGCCCAG	GTGCATGGAG	TCGATGATGA	TGCGACTCTC	CAGCTCGCCG	180
ACCGGGAGCT	TGGCATCGGG	CCTGATCAGC	CAGGACGCGT	AGGACAAGTC	GATCGAATGC	240
ATAGTGGCCT	CCAGAGTGGC	CGTGCAMTTC	CNGCGTGCTC	CACGGCAAAT	GCCTTGATTT	300
CTACTCCGCG	TANTGTTCCC	GCATCGCCTG	CGGGATGAAT	GGGAACCGCA	SGATGGCGAC	360
		TIGCCGCTTT		GTCNACANCC	GGTACTCGGC	420
			CGCCCACNAT	AANAACGGGC	ACNACAATCG	480
		ACANCTTGSC	ATCGGATTTT	GTCCCCANCG	CTCAANCCGT	540
CCCGAACGCC	TCNTCCGGCG	NACTITITIT	NNAWTAACTG	CCGCTTCCGK	CCCTGGNGCA	600
WTAAATGGGA	AACCCTTNCC	CCACCTTGAA	GGGGTTGTTG	NATTTTTACT	GSTAACCCCG	660

AATTNTTCCG G	ANTCGGTCN	KCCGGGSTTT	YSTNTTCCCC	ACCTINGNAN	GGGCCGGCCA	720
AGSTTTTCTT SY	TGAAGGGG	GAAACCCAAC	TTTNTYTYYN	AACCSCMNAA	MYMTTTYCSG	780
MNAASCONKT CO	CCTTTAAC	CAMGGSGGTN	AACCGKTMNG	NGGKTAAAAA	GGGSKNNKTG	840
NCCCCYMANG GO	GGGRAAAA	TSTKTCNNCG	GGGCCKAAAW	ACCMMMYGN	GTGKKKNKSS	900
GCSAAATTTT N	MRAACTKN	GGGGCCSSGA	NNTTTNAAAG	MSCCCCCSNN	GSTGKCCCNN	960
NTTTCCNNAA WN	IKKGKNWNM	SNMNSCSNGG	GKYNSGGSNN	NNAAGMGGGG		1010

- (2) INFORMATION FOR SEQ ID NO:323:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1092 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:323:

NGNGGGGWNS	NTCAYCAYCA	YCACSGGGYW	CWATTGCGGC	CGCAWCTTGT	MAASAGATCT	60
CGAAYTCGGC		CKCTMGCNCC	GCTGTGCAAN	CCAATRAGGC	CTRATAATTY	120
CCACTCCACA	AAAAACCGTT	GTGTGTAYYT	SCCGRAAATR	AAGGCGCCGG	TNTCAACWYC	180
GCCGGTKTTY	CCRATYCCCG	TKTTGTAMCT	GCCKGGGTSR	AAAYCCCCGG	TGTTGGAYCC	240
CCGGATTGAA	ACTGCCGGKT	TGAAACTGCC	GKTTTSGCSA	TCCGGKWATT	GAMSTCRCGG	300
ATTAAAAAAC	CGGKKTTGGN	GCTGSNCGTG	CCAAATNCGR	AYCCRATAYC	CCATGGCCTG	360
KYCTYCTCCK	YCGGTACCCA	AAYCTGGGTA	TCCTATACTG	GYCCCTAAAK	GCAAWYCKGG	420
GCTGYCMMTK	TTGCKGGSGT	CCNAATTTAS	CACCASCGGT	TCCTTCCATA	CCNAAACNCG	480
CKTGGGCWCC	AGMCCGRAAA	AAAKAATAAT	RAKAAKGGTG	CATNYCCAAA	ACCNCCGCCN	540
CCCNANTNCN	ATCCGNTNCC	MSCNCCCCCA	GCGGTNAAGK	TKSGGAAYTT	CTMMAACCCC	600
CAAANCCCCA	TAACNINCGR	GAASAAACCC	CTYCNCGGGG	GYCNWNCAAA	ACASCNTTAT	660
TTGCTKSTTT	CGGGMWCCGT	GCCGCCNAAA			CCNAGAKAAA	720
ACCNCGGGCN	CCMCCCSNAA	NWTATYTCTT	KGGCAANCCC	CSAAACCTTR	TCMNACCNCK	780
ATRMTCCCTT	CCCCVSCAAT	TGGYCGGRAT	NCGSNCCYTY	TCAAAKKKSC	CAKWWNNGNG	840
GRRNNACCMA	ACCCCAAGTY	CCMNAAAATN	GKCCCCGCTC	CNAACACGNK	TYYTCCSAAA	900
ASCCCWCCCC	CCCCCCRAA	AACCCCCCNA	RKANTNCCCA	AAAACNYNGK	GGCCCCCCC	960
САААСМАААА	AMCCCCCSGM	RMACSGGGGN	NMCCCCGKKK	KKTTTTCTTT	TKCCMRSCCC	
AAMGCAMWSY	KSKTNMAAAA	GGAAGRANCN	TYCCSANANM	TCCCNYWRSW	CCGSWGMGNA	1020
GAASMCCCCC	CS		LICCDAIMIN	ICCCNINKSW	CCGSWGMGNA	1080
						1092

- (2) INFORMATION FOR SEQ ID NO:324:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1251 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:324:

GGGGGGGNNN NA	TACATCWT	CYGTGYACCG	GGGMTCTAKT	GGCGGGCCGC	AATCTNGTCA	60
ASAGATCTCT NAM	MTTCGGGC	ACAAAAACTW	GACAAASYMT	CGNGCNMTCC	GTGTCCTNKA	120
TCGCAAAACG NG	TRACASAC	ASACACRTAT	GTGTGCCCAC	CASCAAYTCK	TTGGGACCTC	180
GCTRACCGGY TG	CCRNACG	CCACGYTGCS	CWTCTATCCC	RACGCCGGCC	ACGGGYGGGG	240

ATATTCCAGG	CACCACGCCC	AGTTTGGTGG	ACAATGCCCT	GGCAKTTTCC	TCRAANTTCG	300
TGAAACCGAA	TTCNSMTTGA	ACCNCCAARG	CCCCSNCCNR	AACARTTGGG	WTCCGCGGTT	360
CTCCCCACCG	KTTTCCGGGG		AANCGCACCC			420
GGGCGGACAA	NTCGGGTTGC	AATTTTGCRA	AYCGGGGCCG		AACGGGTGCC	480
GAAACTGTTY			TTTCCGGGCR		YCNCACCACT	540
GCTTRTACTT	CCCCGACCGT	AACMANTITC	ATCGTCNTNN		TGGGGCAGGG	600
CKAAAYACCG	CMITKGGTTT	CGCAACCTGC		CCNAMCCRCA		660
GGNTCGAATT	SCCCCCGGT	RANAACCSCC	·			720
KGGCNSCCCC	AGTAANACCC		CAWTCTTTGC			780
GGNTTCCGGK	ATTTYYTTGS		TATNGGSNTN			840
NASSKAYCCS				NSSGCCCCCC	AWAYGNKSTG	900
GCCCCCNNGG			GGGAAWTTTT	NTSTGGAMCS	SGGACYCCCR	
GGGGGKTTTT	TCCCCCNCSA			NTGNSGNGGG	KWNTTTATTT	960
YTYYCYCCTM	TKACMSGGGG				RAKGGYKNTT	1020
TSKNCACNCT	GKWNWNWANR		CKCKCCNCSG	SNTTTCTTTT		1080
GNNGNNNAAA		KCSYTYCCCG		NCNGGGGYGS	MGNSGSYGGG	1140
GNNKGRKWTA			GCKNKNTGTC	TMTCNMYGSG	NGSCGNSTYN	1200
			ocidital GIC	IMICIMIGSG	_	1251

## (2) INFORMATION FOR SEQ ID NO:325:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1099 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:325:

AAYTCGGCAC	MGAGTATCAC	CAAKCTGYGT	GGCCCAGCAA	AGTGGAGCTA	TTACTACCTG	60
TATGTGATCC	TCRACATCTY	CTCCCGCTAC				120
TCRAAGGTCT	TGGCCRAACG	GCTGATCGCG			ATCAKCGCCG	180
AACAGCTGAC	CTGCMCGCCG	ACCGGGGGYC	GNCAATAACT	CCAAACCGGT	GGCMCTGCTG	240
CTGGCCNACY	CCGTGTCCCA	ANTCGAACTC	ASCCSGCNMA	CCAKMAACKA	NAACCGTTGT	300
CTGAAGCCCA	GTTCAAAAAC	CTCAAGTWCC	GGCCCRACTT	CCCGAAACGG	TNCGAGTCKA	360
TCRSAGGSGG	CCGGGTGCMC	TGCAACCGGT	TCTTCGGNTG	GTRCAMCCCN	AAAMCAAGCA	420
TTCCGGGMTC	CGMMTGCCCA	CGCCGCCAAS	TTTMCTACGG		CAAATTCGCC	
GGGAACSGSN	CCMCCKTCNK	GGAMACGCCC		CYCGAACGGK		480
NAACNCCCGA	RCNCCCKSKT	TCCGGGCTTC	NMSGCGAATA			540
TTCCCMKYGG	CTTTTYYYCC	<del>-</del>	AAAYNGGGYC		CCGAATCCAA	600
CCNWATCTGG	NGGTCCCNAN	KYYGGCGTTC	<del>-</del>	CCTASSNMKC	KNCCAMNANT	660
AACCGKNNKG	KCCCCMKCTK		NMAATSAMNA	NMNRGGGTYT	TSCYACCMMN	720
CNCYNCWYTC		MANAAAKATT	RATCAMKWNG	GGNKCKCNCN	NAAMACCSCN	780
	TMYCSSKWGC	GCSMYNANCA	SNGGGGAGGW	GGSGRMKMCT	CIMICICNCI	840
MGCGCCKNTN	TYCKSGAKAT	ACASMNKTCC	GCGCNGCGCN	MAAMANRAKA	CTAKCCGYGN	900
CCSNSTMTYN	CTSNNMKMNN	TCCWMWNATC	NTYYGKKCNN	KCTMKATNWC	CSCTSKCNCK	960
MRAMTCKTYG	SNMTCCTCCA	TCNCTCKKSC	SNMSKNTCKC	KSCNCCNCWN	CNKCNMKCWN	1020
GGNSTCRCCY	TCTMNNNTCS	AGCKCGSKNC	WACNCACACK	NGWCTYTTCC	WKNNMKCNKM	1080
TCKCKCACRG	MTMTCWCCS					1099
						2000

## (2) INFORMATION FOR SEQ ID NO:326:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 296 base pairs
  - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
  (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:326:

GNGNTATACA TCWCTGT					60
AAAYTCTGCA MGAGCGG	CAC AKAKYSTCGT	CCMRACCCGG	CAYACWCCWG	CNCGCCCCWT	120
CTTRGACCGG GGCKATA	SMC ACCGTTGGCC	CCGGCNCGCA	CCTACACCAC	CCACGCCGCC	180
AGCGCCCCW TRAMCAA					240
CCCCACCGGC ACCACCG					296

- (2) INFORMATION FOR SEQ ID NO:327:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1073 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:327:

NGNGSGNKMY	ATCATCWTTC	TGCACCSNGG	MTCWATTGCG	GCCGCAATCT	TSTMNASAGA	60
		TCTGCGCGGN		AWGTCWKTAA		120
TTTGCCGYCA	ACCACKCTRT	SCAKATGCGG	GCCAMWTYCA	AACCRATTAT	TTGGGYCGAG	180
AAAATTTMCG	CKTGTRASCA	ACCTGCAGCG	GGTCAASCAA	CAGCCTCTRA	ACCGTAAATY	240
CKTAGGTNKT	YCCGGCAACA	ASCYCRATAA	TSCGGCCCGC	AMCCACAAAA	CCTGANTNGT	300
TNTTCNCRAA	NCCGGTYCCC	GRAGGGGTSA	ACTGCSGTAR	GCTTNTCWYC	NCCTTRACAT	360
TAAACCCCCC	CGGNTCWTCG	CCGCGCCCAA	ATYCYTGCCC	WTKGCNACCA	YCCCANCCTG	420
CSGTATGGTS	RAANCASTSG	GCRAACGGTM	MCCSTACCKC	TGGCTGATYC	KTCGGNTCCS	480
SNAATTCGGG	GATTTACGGS	CAMGGTTAAY	CCAGGYCCCC	TNTGCYTCKY	CNACAACCSG	540
ATCMWCNCCG	TACCTKTTAA	AATTCTTTGT	GGTGGAACCC	AWYCKAAAAA	NMINIYCCCN	600
TCCAMMGGGG	CYCGGAAKKT	CNACNTGGKT	NACCCCTNCC	YTTGAASTTT	TCYTGNCCCC	660
GGCCCKAAAS	ANACCSGAKC	CCCGGAAYCS	WTAGGCYTCN	TGCCCCSTTA	AATTKGNCYC	720
AATCCKCCAA	CGCTCCCCGG	GGTCSSCCMT	TAAAMTTCCC	CCCKSCASNG	GAATYCYKSG	780
GCWGTMATTW	CCNCCCNTTT	CYYGKNAAAC	SCCCCCWKGN	GSCTYCCCCN	SNTTSSGCCS	840
GGTTSGAMYC	AAAAWTNGGG	MMCNRAGNCG	SGNAMCCSCN	GKKGGGSATW	TKAAYYCYGG	900
GGGGGTCNYC	CCCCRCSNAA	AAGYGTKGGC	KCCSSSCCYC	CCMARTTTYT	CNGGMRCMAM	960
ACCANGGGNG	CTCCCGTNCW	WGGCTCCCSN	SNSMAMAAAN	NKCKCCKGGS	CKGARRNMNA	1020
MCTCSNGNGG	WICCCKNKIC	NSCNSGNCGS	YGGNSASWCC	YNYCNCCACA	ANC	1073

- (2) INFORMATION FOR SEQ ID NO:328:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1166 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:328:

CGCCCCGTTC	TTMMMTTCAY	TCATTCACCG	GGMTCTAGTG	CGGCCGCAAK	CTTGTCKACA	60
GATCTCGAAY	TCGGCAMGAS	ACAATSTCGG	GTKGGGCAAT	GTCNGGTGGG	GCAACTTTGG	120
GCTCGGRAAT	YCGGGGTTAA	CGCCGGGTCT	RATGGGTSTG	GGTAATATCG	GGTTTGGTAA	180
TGCCGGCAGC	TACAATTTCG	GTTTGGCAAA	ATATGGGTGT	GGGCAATATN	GGGTYCGCTA	240
ACACCGSCAS	TGGRAATTYC	GGTATTSGGT	NACCGGTRAY	AAYCTGACCG	GGTNCGGTGG	300
TTYCAATACC	GGTAACGGGA	ATGTSGGTTS	YYYACYCCGS	<b>GSAACGGNWW</b>	YTTNGKTCCT	360
TMMCNCTSSM	CCKSAAMTSM	KMGGTSTYCT	MTYCNNGGAS	TAMTYNMCCC	CCGWAYCKSC	420
WAYCCCTCGT	CATYCCMCMC	SGSGYCCTCA	MNCCACCYTG	NGYYCCCTCC	MKMTCYCAYT	480
CMNTCCGGTW	CCTNTMMNCC	CSCNCRYCTC	AMCNCTKSGK	CACCNATMYC	CSACKCHTCT	540
MCYMCSCAKN	MITCCCCTCN	CCTYTNNCCA	MCMCSCTCTM	TCMAACTCKC	CCGGYCKCNC	600
MYCTCTCKCC	AYNMAACCKK	TYCYWCNWYC	YMYCKCKCAG	WYKNMCTCCW	ACTCTMYNTT	660
TCTCTCNKCC	CMKACCKNTT	CTCWCSCCCC	CCACAKAYMC	YAWCMTMTCC	MCTCKACSCC	720
CYYCNNYCCM	NMCWCMTCWC	TWNAKCANCN	TTCTTCTCTC	MMYMTMACKC	WCNNTCNCCK	780
SGACCYTCTC	ACTKMKCCKM	TCTCCTTMCK	CCYMWCNTCC	MKYNCCCTCC	NMTCMTCKYT	840
CCTCNCNMRY	CYYYAKCAKC	NMCTCCCCAN	KMCAKCTKCT	CCCCCAKMKS	ACNCKCCCWC	900
CCTCCTATCC	WCTCTCWCTY	ATCTCKCTCW	CNYCMYMKMC	ACNCKCYAYT	CNACTMNMWN	960
CCANCICTCT	CINYCICWCK	ACGTYCKCCK	CTMCKCNYMC	NRWCTYRCCT	CKKCCNCCRN	1020
CKINMCMKCIM	CTCTCCWMKM	TCCCWCCCAT	CTMMKSTCTC	WCNCMTCCCT	CNKCCYNYNT	1080
KCYTYCCMYG	CTTCKNTCMT	MCCWCCYATC	TCTMKCCTCT	CWCACYMCAC	WMTTACWNCC	1140
ACTCTCTRCW	CKCCKCMCCR	MTCTCB				1166

#### (2) INFORMATION FOR SEQ ID NO:329:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1230 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:329:

NGNGGNNNNT	CWTACATCWN	TCTNCACCSG	NGMTCWATTG	CGCGCCGCAW	NCTTGTMNAS	60
AGAATCTCNN	AAYTCGGCAC	ANATGTCTTT	TSTMTAKTGT	GGCGGGGNGC	CACGCCKTAT	120
GTGYGCCTGG	GYTRACCCAA	CCCCGCGGCS	CGGGCCRACC	AGGCGGGGRA	TSCAGGCCGC	180
GGCGGCCGCG	GCGGYTATAT	RAAGCGCCGY	TTTTKTRATA	ACGGTSCCGC	CGCCGGGTRA	240
TTACGGGCAA	AAYCGGKKTT	TTGGGTRTAT	AACGCTAATT	GCAACCAWTT	TTTYCGGGTC	300
AAAAACYCGG	CGWGCANATC	NCGGGYCNCT	RAGGCGCATT	YMCGCCAAAA	WTNTGGGCGC	360
AAAACCCCKT	TSYTATTTIN	TGGGCTATSC	GGYTGCTTCG	GCAAACGCTY	CCCGGGTTAA	420
TCCCKTCCGC	GGCGCCGCCN	AAAAACCACC	AATYCCGYTG	GGGGTGKYCC	CMCAGGCSGT	480
TGCTYCGNGY	CACCTGGCCA	AAYYCCCAWT	AKATTGGGTG	SCYCKTSCGG	TTSYTGGGCY	540
CAATTACCCC	CNCGGGNAAA	GRRAAAANAA	ATCNTCCNTT	TGCTCGGYCA	YCTTTMTTGG	600
SAAAAGGGGC	ATGGCSCGGT	TYYTTTACCT	CAAYCCCCNA	NCANTWACCT	YTCCSCCCGG	660
GGGGNCANAA	CGSTINGCIC	CGSGGNAKCC	TKGTMCCCGN	ATCNAAAGGC	CNGAATTTGG	720
TYYSSTYCNA	ATTWTWKKKY	CCCCWCNTTG	YAAAAAKCCA	AAASAKCCCK	YCNCAMMYKT	780
NGGGGTYSSG	GCCKNYCTTK	SNMTTAAACC	CYCCCCAAAA	YYNSGGGKKT	TCCGCYNSAT	840
KCCACCNCCK	GNGGGGGGNA	SAAAAAAAAY	TTTYCCSAAA	ATCCCACCYY	TCYKTKSTRY	900
AMACCCCCTT	TYYMKKAYTC	CKYSCNATTC	SGMTTCWAAA	TYCCGYGGCT	TNTTCCCCCK	960
CSGGNGCCCC	AAWTTTGKTT	YNCNANTTYC	CCCNAAMNCM	AWTMGGGGKS	KCCATTCTGG	1020
SCYTMAANTA	AAANAANGGG	NKTTTYYCTY	MANAAACACN	GTGKCNCNCN	CNAAMAAASN	1080
AKMAAAKAGN	KKKMTKNNSA	AANCCNCCCC	CTSTYTNYTT	NKTNMNCKCC	CYGGKKNKGM	1140
SWSWYNTTCT	NCCCRCCCCC	YNYNKTGANA	AAMMNCYCCS	GGSTMCRNAN	ASNMNTTTCK	1200
STSTNGMGCC	KMBASNANAN	MCAMWKWYCC				1230

## (2) INFORMATION FOR SEQ ID NO:330:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1022 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:330:

NGNGGGKNNA	TMAVONTORO	3.000000000				
				CTMGTMAASA	GATCTCNAAY	60
TCGGCAMNAN	GCATMICMMC	CATATATAAC	CATTGCGTCS	GYWTGCAWCT	CRAAWCTGTC	120
CTTCSKGCCG	TTKTACRAAG	GTGGMWTGYT	CWTYCCTRAA	SCCCTCRATC	TCKTKTATYC	180
CTKGGGCTYC	ACTTTAACSG	RATKSCTGCC	TTKTAYCATT	RATGCAAWTA	WTGGYCRAWT	240
KTTGCAGGCC	RACGGCWYCT	TTTYCCGCRA	GRACAATNGA	TTGGAWYCGC	TYCGCRAGGC	300
CCGGCACCAR	ACCGGGCNCC	AAAGGYCCGC	GCAAWTSCCT	GGKTCAAAAA	TGGTGCAAAC	360
AAAMCNATCC	CCGGYTTRAC	CGCAGYTAMC	ACAAKAAAAT	TCCCWTGGCC	GCACCAWNNT	420
TTYCRATCWY	CWYCCCCACC	TTRAACTTGK	YTGCSGTATT	GCCTKCCTGC	CTCRACAGCM	480
YCNCCCKTCA	AACCTGCGGT	GACTCCAACT	GGTCTGGYCG	AASGGGGGYT	CAMCGGACAA	540
AACCCCRANN	TCGCCAAATT	TTCNCCCCCC	CYCGGGAAAN	GKTGATMTTC	TCSNAACCSA	600
CMGGGNNYTW	NAACCCTGAA			ANTTTTCCCT	TYNGGGCGRN	660
AAANCCTTTT	AAGGTACCCC			AAAACAACCC	CKATTGGKTT	720
TGGAAATNTT	TKCNCCCCCA			CCMMCTTTTN	TCMSCNMTYY	780
YCYYGGGAAT	TNYTCGCCSG	GAAYYCGGSM		NCCCCMNWGG	GKYSTGSNAR	840
GGRATMAWWT	TYSTTTYYMC	CCGGCNNCCC		KGNTGAACMA		900
GSCNMYMWYY	YCNNNGNRTT	TNRGGSSNMT		GGGGKYWTYY		960
GKTYSGGGST	TTTCCNTTTS	GGGSSATYKG		AYCCGGGGGT		
SC		CCCDDALING	PACCECKIMI	HICCGGGGT	NTKTKYCCCC	1020
-						1022

## (2) INFORMATION FOR SEQ ID NO:331:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1083 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:331:

NNCGNNKATTA	TAMAVOTOVOT	VC2 CCCCCC				
	IMMICHICI	NCACCSGGGA	TCWATTGCGG	CCGCAATCTT	STMAASAGAT	60
CTCKAAYTCG	GCAMGANCCG	CAWCTATTTG	KGTGRASCGC	ACCAGCGRGA	CCTCGCSGKT	120
CKTTYCTTGC	AGRGAGGCCK	TGGGTGGCRC	CGGTGGCAAT	GCCAACCGCC	CCCCAAAACN	180
CCGCAAATMY	CRAAAAACAA	CCCSGGGGTA	GKTCCSGGCC	GCCAAATMAA	TAACCGTKTT	240
AACKCAGGCN	ACGGCCAACC	GGYCCCGCCC	AACCAAGCNA	CCTCCCCSCC	NATAGGYCCG	300
GTGGGGGCTG	CCKTATYKCC	AASTCGTCAY	CTCNACGGGM	CGGYCCMCWT	TCCGCCTCAT	360
CCGTCTCTCC	TTMMATTTTC	CRTCCACYKG	GCGGGGAACY	TTTTTNYCNC	CCTTGSCMAN	420
CACCNAAGGY	CNAAAATTNC	CCMTGCCKYG	SNNCAAAYGR	GATTGGGGTY	CGKKTTTTNT	480
TCNMCCMAAC	CCCCNTTTNA	CGCCCCMATC	CCYTWATACC	CCCWWMCMNS	ANGKTTGNSA	540
AAKTNNCCCC	AAATRCCAAA	MITCTICGCC	NTTIMIWMCY	YYCCTTTCCC	CMCCCWNAAA	600
GGSCCRCCYY	TCGGGAANTY	TCCCCNCAAA	AWTCAMWCCM	TTTCCCNCCA	AGAAWTTCSG	660

			YCKTNGGGSK			720
RGGGKAAMCC	AGKNTNNTCC	YYYYCCCCAA	NNTYCCYKGG	RMCYNNYYCY	TTAAANRASR	780
SAACCCKSGG	GKCYNCNCSS	TARCCCCCAM	KAAAATTTCC	CCCSSKTTTC	TYYNNKKMRW	840
GCCCCSAAM	ACTMTWAYTT	TCCCKCGNNN	TTTSYCCKCS	KCAMWMWMTG	KKNCTTTTT	900
YCSCMATAMA	CTINGGKCCI	NTCNYGSGCG	CMAAANAAGG	CGCGSTTCTN	TTCWMAMACA	960
YNTSGNMMMA	SAAKAKWATA	AWNNTRKKYK	TKNNCCCNCC	CKCKCTTSNN	TNKCCMCSKS	1020
GGGKNWNKKR	GWCTCCWCNC	CKCCCNCKNK	CCKWATMCCC	CCCCSKCCGM	NCMMNTTTKT	1080
CCC						1083

#### (2) INFORMATION FOR SEQ ID NO:332:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1069 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:332:

GGGGNNKYAT	MCAYCWTCTS	YACSGGGMNC	TATTGCGGCC	GCAWYTNGTM	GASAGATCTC	60
GAAYTCGGCA	MGAAAAAAGW	GATGTGCTGG	ACCTTMCCGC	GCGGGACGCR	ACCRACAAAG	120
RAASCGCGCC	ANAATATTGG	CCACAKTTGG	TCACATATTT	ACCCAATTMT	AYCAGGGAYT	180
MCCATTCCKG	GGACCRACCG	CACAATCCCR	ATSKTGGTTT	GCRAACCCTR	ACCGTCCCCA	240
MYTYCGCCRA	STTGAACCAG	GGCRAAAAA	CGGCCRAAWY	CTCGCCCTGA	NTCCCGCTCS	300
GCGCNAATAA	CTAGGCCCAT	TKAACGGAAC	CGGNGGCCSC	NANTTGGCCA	ACAGGTCCTR	360
ACAAAGGGGC	CCCASYYCGG	CCGGWTCCCW	TTYCACNCCC	TNKTCTCKTG	CCGAATYCGG	420
WTCCRATNYC	CCWTGGGCCT	TKTCKYCKYC	KYCGGTNCCA	AWTCTNGGTA	TNCTATRGKG	480
TCCCCTAAAT	SCANATCTGG	GCKYCCATIT	NCTGGSNTTC	NATTTAMMAN	SRRCGGTTCT	540
TTCWTTCCRA	AACCGSNTGG	GCCCNNMCCA	AAAAATGATN	ATAATAATGK	YGSCTTTCAA	600
ACCCCGCCCC	CCCATTCRWT	CSGTTCCANC	CCCCNGNGGT	TAAGKTGGGA	ATTTYTNAMC	660
YCNARGCCCT	NATTTSGGNA	AAAACCYCYC	GGGYCTCAAA	CMNYTTTTTT	GSKSSNTCGG	720
GCTCRTTCSC	CAAAACCCAA	ATTNTYNYGG	GGYCCKTNAA	ACMCGGYCRC	RCCGGAAATT	780
TTTYTGGTTC	AACCCCAACC	TTTTCAASCC	NTTTTYTYYT	TRCCSSCSMN	TNGSSGGGNT	840
KSSCCNTTCY	RARKKCCNMN	GGGGGWYCYN	CCCCRMNTTT	CTITTTTTT	CCGTNNMAAM	900
NGKTTCTTCA	AASMCCCCCC	SCCCCCNSAA	ACCCCCTNAR	GTTTTYCMMA	AANNWYNNGN	960
KNCCCCCCCC	MMNAAAAAAY	YCSCCCGNRN	ACSMSNGGGA	MCCCCCGGSN	NTTRKTTTTT	1020
TNCMSGYCCC	CSRMASYYTT	TKAMAMANRR	GAMNSMTTTY	TNNRGNWNK		1069

## (2) INFORMATION FOR SEQ ID NO:333:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1210 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:333:

NGNGGGGKWK	MATACATCWT	TCTTCACGSG	GGATCWATTG	CGGGCCGCAW	TCTNGTMCAA	60
SAGATCTCGA	TYTCGGGCAM	NACCCACCWC	TCCRAAAAA	ACCCRAAWCT	CGGGSKCTYC	120
GARAAGTGTT	GCCCGCKTTR	AATTTAACAA	ATTCAGTGTC	ANAGTGTCAC	GGCKTTACWT	180

YCCCGGCAAA	GGGGCCACAA	CCTGCAGRGA	SCACYCRATG	GKTGYTGKTS	CNCGGGCGG	240.
CCGGKTNAAG			TMCAAANATC		YCGCTGGRAT	300
MCNCAGGGGT	GTCAAAAAAC	CGCAAACAGG	CACSCCANCC	NTTTACGGGS	CTTAAAANGA	360
AAAAGGGCTG	ATGCCCCCAA	GGGGCCCGC	NCCCAACCTT	CCGTTGGTCA	ACAACCCGGT	420
CTCTCKTGCC	RAATCCGRWT	CCRATNYCNC	CWTGGCCTTK	TCKYCTYCTY	CGGTACCCAA	480
ATCTGGGTAT	CCTATASTGT	CCCCTAAWTT			TSCTTGGCNT	540
TCCAAATTTA	CCANCAACGG	TITCTINCAT	NCCAAAAACC		NRACCCRAAA	600
AAATGAATAA	TAATAANNGG		ACCNCCCCC			660
NMNCCCCCAG	NGGKTAGGTK	GGGAAANYYC	TCMACCYYCA		TTTTNGRAAT	720
KAAACCCTYC	YCNGGGTCWW				MWNCKRKNST	780
SCCAAAATCC	MAAATANTTT				GGAAAAWTTTT	840
TINTGKTTSA	ACCCCAAAAC		NCSSKTTTTY		AMNWTGGGYS	900
GGGNATKGYG	SCYTNTCTTA	TKTKYTYMTW		MKMTCMMCCC	CCMTTTYYCY	960
NYWRTTTTTN	KCCCCKTNMR	NNRAANNGGN			SCCKNCCCNA	1020
AAAAWCCCCN	NNNARAKTNT	TTMKANNRMN			YNMNNAAAAA	1020
AATMYCCNCC	RASANMCASM	NMGGRGNRSC		NNNNTMTTNT	TTTTTTCSRA	1140
GAGCKCCSCG	MNNANMKNCK			GGNGMNCKCC	CCNAGAAMWK	1200
CTKSTCCCKS				GGITGI-MCICC	CONTRACTOR	1210
						1210

## (2) INFORMATION FOR SEQ ID NO:334:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1105 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:334:

NGSSSNGNNA	TMCATCWYCT	GYACSGGGMT	CWATTGCGGC	CGCAACTNGT	MAASAGATCT	60
CGAAYTCGGC	AAKANACACC	ACCGCCGTGT	MTATACACCG	CAAATGTTCT	GTKTGCCAAA	120
ACCGAGACGC	GCCGGCCGCG	GGGYTCCAAC	GCKTTACYTR	ACCCGCCAGY	TCAGTGTTRA	180
AACCGGTGYT	RAGGGCCGCA	CCCAACWTAA	ACGCTTTAKC	CAAGRAWYTG	GKTGGCCCGC	240
AGCCACCTGY	TGTGGYTGCC	CTCWYCGGTG	GTAGCGCCGG	TTANCGCCGG	TTGCGCGYTC	300
AMCASCSCGC	CGGTRATCCC	AKCNWTCCCC	CGGCCMRACC	CACCGGGCAC	TTTGRACGGT	360
GCCGCCAATT	CAAAYCKYCT	GRWTCCTTCM	AAACACCACR	AAGGCCACCM	CCMSCACCNA	420
ATMGGGRACT		GGCAAAACCT	NTRAKCNCCT	CCCGGGCRAA	GGTCCSGCAA	480
SCRATCCMAA		TTCCCCCAGC	AKCAACCCAA	MMCGSTTTGC	TGCTTCCGGA	540
TTCGAAMCCA		NCNWGGGAAA	AACASCNNCC	NWTAKCCMGG	CCCMCGGGCA	600
ATTTCSGRAA	SAACCCCTNY	CCCGGGTTTT	YCCTGCTCMG	GCCCAANACC	CCCGGGAATC	660
	GGNCAAANGG	GCMAAACCCS	SACCCMACTT	WTTCCRCTTN	GGGGGGSCWN	720
	AWKSCCTCYY	CTSCCCAAAY	TCGGKCMAAA	NNGRKTTGGK	TTNGGCNACC	780
NTTTCCGGKC	CCGGGKGKGK	WGKYCTMNMA	CSTTTNTTTT	SCCCCYKAAA	NYSCCCCCCC	840
CGGSSCCCCG	CCCGGGGGGA	NNTTTTTAMA	GKKTYCCCCT	CCCCAMAAAA	ANACCCCNYC	900
CCSGGSCCCT	TTKRWAAAMN	KCTSCCCCNG	GNNGGGGKCM	GGKTTATTMT	NNNCCSCCCC	960
TCCGCGSAAA	AAATAKMTTT	SYCCCCCCINC	CTCCKNCKNR	GKAMSMSCGC	TCCCYCTCNC	1020
	ARSNCCKKNN	CCNCYKCCGS	NSNGKCNWCD	NCCSTSSNCT	NKGCNCKNCN	1080
KAAANAAYNC	NGSMSTSSMN	CNKCC				1105

- (2) INFORMATION FOR SEQ ID NO:335:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 936 base pairs

- (B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:335:

ngsnsnknnn	TAMAYCWYYC	TSCACSNGGA	ACWANTGCGG	CCRMAWCTNS	TMKASAGATC	60
TMGAAYTCGG	CAAGAGCGGC	AAGAGTGTGT	GCATCTGGTC	ANAGTSTMMA	CREGGTGEEG	120
CSGGTGKGTR	GASCACMCAT	NTGCGRACAC	CAAACCCKTC	GCGGGYCACC	GGCKTCGCCT	180
GCAAAWYCCT	CCAGGCCACC	TCRAACAAYW	YCTYCTGCAA	CGCARGCCGT	TYCGCGGCCG	240
RATCCTGGKT	CASYYCGCCK	TGCGGTGCCC	AAGKTACTGG	CSCAYCAAAA	CCGCTCCGG	300
RAACRAACKT	AAWTYTGCCG	AATTTCNTTC	CCCTGCGCCT	TGATAAATTT	NTNAAGCCAC	360
CGCAAMCCTY	CGGGCKTCTC	CTCKTGCCRA	ATYCGRWTCC	PATAVCCCCA	TCCCCTTTTTC	420
KYCTYCKYCS	GTACCCAAAT	CTTGGGTATC	CTATANTKYC	CCMAAANDCA	AMTETECCCE	480
KTCCATKTSC	TGGSKTCCRA	ATTTAMMACA	NCGGTTTCTT	TOWTACCAAA	AACCEMMCCC	
CCCCRACCRA	AAAAKGATAA	TAATAAKGTG	CMMMCAAAAC	CCCCCCCCCC	AMCCONTAGG	540
GTCCARCACC	CCANGNGGTN	AGGTNGGAAT	TYTMAACCCC	CACCCCATAA	CAMMICG	600
AAACCCCCCN	GGGYMYCAAA	AMMCTTTTTG	GGGMTTTCGGG	CCATKGYKCC		660
TMTTTCYGGT		GGCCCNCCCG				720
CCNNNTTCYY		TNGGSGGNKN				780
SNCCCCNAAN	YYCCNAANKG	NKCCCGSNMA	VG22CMIIII	TWTTTYYNNA	GGGGGRRWC	840
NAAAYACCCC	MAAAKWTTCM	AAASMSCANIC	VCCCCC	ICMKAAAAAC	CCCCNCNCCC	900
		. arming CMMG	reacte			936

- (2) INFORMATION FOR SEQ ID NO:336:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1042 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:336:

NNNGNKNNNY		YCTSCACCSG	GGNNWCWATT	GCGGCCRMAW	KCTTGTMAAS	60
AGATCTMNAA	YTCGGCACAG	ASSSGCACAG	ASCCGCGGCG	CTATYCMYCC	GYTGCTCATG	120
CTCAACACGC	TCKTCGGCGW		NCGCCGCCGG		YTCAAYTGCT	180
TCGCCAACGC	CATATNTCAA		AAASCAAAAC		GCCCTTGGGC	240
SCGGRAASCG	GTGCCAACCC					300
TCKTCCTCCT	GGGCTATGGT		CCTSYTGGCG		CCTGGGYCAC	360
CGYCRCNTTT	TATNINICCK	YCTACACNCT			CACMAAATTG	420
TTTTGGGKTG	GGGSSGCCGG		TAATAATCSG			480
CCATANCCTG	GCCGGCSCTG	GCAAATTTCC				540
CTNSAAATCC		CCCNKGGCTT				600
RKTNCCCYAA	TSCAATTGGS		YGSTTCCAAN		GGTTTYTCMT	660
ACCAAAACCC	NTGGSCCNNA					720
TCAWYCGGTN		NGKAAGGKGN				720
AAACCCYYCG	GGGTSMCAAA		CTTCGGMCTT	YCCAAATMSA		
KRMNAAAAMC	YGNCCCCSAA				WITTTCCYCC	840
CCMCNNSNSG	GNTNCCCTTY	TYATTTCYMM			TWITCKCWCN	900
MMARGSNNYT		CCNCCCCNAK				960
CCCMWMNKNC	CCCCMNCMTT	TM	concaran	MITIMAACM	MAKICKCCCC	1020
						1042

#### (2) INFORMATION FOR SEQ ID NO:337:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1073 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:337:

NNSGSGMKKK	ATAMATCWCT	CTSYACCSNG	GMTCWATTGC	GGCCGMAWTC	TNGTMAASAG	60
ATCTCGAAYT	CGGCAAANAK	ACGCMAYGTC	AAGTGTRAYY	CGGTCACATA	TCMTCGCGNG	120
TCAACMCCAA	AGCCGNGTCA	CCGYCTCCCT	GGGGCGCCAC	CCCCATCGGT	RATGCAACYT	180
CGCGCGCCAC	CGYCAAAAGG	KTCWTTRAGG	CGCTAAAGGT	CAMCAATTCC	TRAGGTYMCN	240
CACCGTTNTT	TGGCCCGCCC	RAWTYCTRAC	CCGCAATWTC	GGTAATCGGR	AATTTGGGCW	300
YCGGCTTGGG	CAATAAGKTN	TTGGGCAACG	GCGGRWTCYC	NCTGGCCGRA	ATTCCCNCAT	360
TCCKTTAACG	GKTGRACCGT	TTYCCCGGYT	GCCGTAAYTG	YTYCNTGGGC		420
CRNAGCASYY	CRCTAACGGY	CMCCAGGCAA	TACCKTTGGC	TTTRAACCAC		480
TGKTACCCAC	YTCAASSGTS	CTGRANTTRK	TNTCNTGRAA	AANMCCACCN		540
RATCTGCTTC	MTCANCWTTT	SCCGGGTTCT		AAYCTTNATC	CMTYCAAAAG	600
GTTTAMTTTC	CCAANRAATT	CGGYTTGCCA				660
AMATCCNCCS	GCGGGSAAAN	AMTTSGGNTT	SGSCCGGTCC	CCCGNAATAT	YCNTGGNCCT	720
GNAAATTGSS	GGGATCCCCN	GSGNAYCCGG	CCWTKGGGGK		GWACAATTYC	780
WKCCGTTCCA	AACCCGGGNC	CGGGGGGTGG	GSCCCNTTTT	CCTMYNNAAA		840
NYYTTTTCCG	CNRAANTTCA	CCSKCNKTNT	GGNCCNAACY		CANACCTTTA	900
AASAAANCYK	YGKTYYCCCC	TTTTMCCSGS				960
TYNGCCTTAN	CNSNKTKTTT	TNKTYCCCCC			NGNSNMNCCT	
MKYSKCNNNN	SNNNNNKCGN	GSNCSGMKYM			MSC	1020
			CHAMCAGIAIX	MONVONNECC	PISC	1073

#### (2) INFORMATION FOR SEQ ID NO:338:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1061 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:338:

GNSNGNKNTN	TMCAYCWYCT	SCACSGGGTC	TATTGCGGCC	GCAATYTNGT	CKASAGATCT	60
CGATYTCGGC	AMNANAARTG	TCGTCGTCAA	TTTCAGKKTG	GTCKTCAAAY	GGGCCAGGCC	120
GNGACCRACA	CCCTGNGTCA	CCCAAAANAC	CAACAGCWTC	AAATWTCAAG	GCCRAGGCSC	180
TRTCAATYCC	CRASCAKTTA	ACCGTKTCCW	TCRAAGGTGC	CRAACCAGGC	ACCCAGYTCA	240
CCGCCSGGCA	AWTCGCGCTG	CCGGCCGGTN	TCAGCCTGAT	TYCTGACCCT	PWTCTGTGG	300
TGGYCAMCNT	GGTGAAGGCC	CWWCCGCCNA	AGAACTGGAG	GGCRAATTCC	CAGGANCONA	360
GRAACCCNAG	GAACCCGCGG	TAKAANCCGG	CRAAACCRAG	GCCGVTGGCV	ATTCCMATTA	420
NAMSGGTTTG	CRACNTGGCC	RAACCGTTTY	CTTCGTCGG	CTCCCCAACC	CTCCACCAM	
TACCCCKTNC	CCGGNMCMAC	CYCGGGTNCT	TCKYCCCA	CICGGCAACC	CIGGACCANI	480
		CICGGGINC;	IGRICCCAAT	NIGCYCCCGC	GNRANTNGGC	540
CNAATTCCAG	GGCNCCANCT	TTCCGGCCCX	AATTCCCYTG	GTTAATCACC	GGGCNCNCCT	600
GGTTTTGGGC	AACCCCNCYS	$\mathtt{CTTMTTTAAA}$	CATTCCGSCC	CAAATGGGNC	STTGGSAAAT	660

TCTNTYCGGT	GGGGCSGGCR	ANMYTTCTCT	YCCCNAASAN	CTTAMYCCAN	TTCGSSNTCC	720
CGGKCAAAWS	NGGGGGGGNA	AAGGCCCCC	CGGNTSCKCC	GGGGKKGCCC	CYGGKTTCAA	780
AANTTTCSGG	GKTSTMSCGG	NVTCSCCCCC	CSGCCAAGRA	CCGNGGTTTT	TTTTTGAACC	840
KCMANTCSSA	AMCCGCCSSC	CCCMAAAGGS	GCCTNAAWGR	RAYTTNKSCC	CNNAAACSGG	900
CCCCCAKYTY	SGGKTTCNNC	CNCCSGKKGT	CCMTSTTTMM	MRCCCTTTGN	GNKTTTTTAN	960
MGSCCTTNNC	CACCCCCYCK	GGGKCSMNNA	GAAKTMYWKC	CNGGGGNNAN	RSCCCCCCNN	1020
GSGKGGGGKG	MGAGYSCCKT	CTKGCGNCNN	YKNTTTCCCC	C		1061

## (2) INFORMATION FOR SEQ ID NO:339:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 986 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:339:

GNNGNNNKWN	ATMCAYCWYY	CTSCACCSGG	GMTCWATTGC	GGCCGCAWKY	TNGTMAASAG	60
ATCTMGAAYT	CGGCACANAG	CGGCACAGAG	TGTGTGCATC	TGTGTCANAG	CTGTCAACGC	120
GGTGCCGCSG	GTGGTRASCA	CMCATTGCGR	AACACCAAAC	CCGTCCGCGG	GYCACCGGCK	180
TCGCCTGCAA	AAYCCTCCAG	GCCACCYCRA	AACAAYWYCT	CCTGCAACSC	ARSCCGTTYC	240
GCGGCCGRAT	CCTGGKYCAS	YTCGCCKTGC	GGTGCGCCAA	GGTACTGGCS	CWYCRANACC	300
GCTYCGGGRA	ACCNAACGTA	AATCTTGCCN	AATTTGCNTT	CCCCCTSCCC	TTRATNAATT	360
TGTTAAACCA	CGCAAACCTY	CGGGCKTCTC	CTCKTGCCRA	WTCCGRWTCC	RATNYCGCCA	420
TGGCCTNKTC	KYCTYCKYCS	GTMCCCAAAT	CTTGGTATCC	TATATTGTCC	CTAAATGCAA	480
ATCTKGGCTG	TCCATNTGCT	GGCGTTCAAA	TTWAMANCAG	NGGTTTCTTY	CTTCCNAAAC	540
CCSTTGGCCC	CAAACCNAAA	AATGATNATA	ATAATGGTGC	TNTCAAACCC	CGCNCCCATY	600
CNATCSGKCC	AMMCCCCRGN	GGKTANKKGG	GNAATTCTMM	AACCCCAAGC	CATAASNTTG	660
SGANAAACCY	${\tt NCNCMGGYCA}$	CCAAAACANY	NTINITGGNY	SSNTTCGGMN	YCATGGCTNN	720
CMAAAACCCA	AATACTNYYG	GGYCCAATAA	AAMMSGGYC	SAMCCGGAAA	WITTIYTIGN	780
KYNAAACCNA	AAKCCTTTTT	CNAACCCDAN	WNTYCCTNCC	RCRCMANTGG	CNSGGARTKT	840
SSSCTTNCCA	ATGKYCCMAA	AGNGGGRANA	CCARCCCCAA	TTCCTNNNTN	KNKNCCCNST	900
TRNAAAAGGG	GKNTYNCMAA	AASCNCCNCC	NCNCTCCCAA	AAKAMCCCCN	AAAGAKNTCN	960
naanaskysn	NNNSCCCCCC	CCMMMN				986

- (2) INFORMATION FOR SEQ ID NO:340:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1074 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:340:

NGNGGGNKRN	ATMMAYCWCT	SATYYACCSN	GGMNMWATTG	CGGCCRMAWT	CTNGTMKASA	60
GATCTMGAAA	YTCGGCAAAG	AGYATKCTCG	GGGGCCAGAT	TTNTGGCCCG	CAACCGCCGC	120
ACTTTGCAYW	TCAACAKTCC	SGGTGCCCCA	AAAAAWTCWT	ACCCCCATMC	TYCKTGCASM	180
ASYTGCGCCC	RATTRAACAC	CCGGCCGGCW	TGCTGCGCCA	GGTATTYCAS	CAGYTCAAAY	240
YCTTTKTAGK	TAAAATCCAG	CSGGCGGCCA	CNCAGCCGGG	CGGTKTAGGT	GCCTYCRTCA	300

ATMACCAGCY	2266777	CACCTTGCCC	AAAAYCTCCT	GGGTCAGCCA	AATTYCCGCS	360
CCGGCCAACM	ACCANCCGCA	TYCTGGCNTC	AATCYCACCG	GGCCCGGTGY	TAAAMMANMA	420
GRATCTCKTC	MANCCCCCAN	TCAGCSYTNA	CNGCMACAGC	CCGCCTTCTT	CAMACCGCCA	
RTACCGGGWT	CAACCGGCCS	GTCAAACTCA	ACAGGCGGNC	AGGCCTCCCC	CCCANCAAC	480
GTCTTACSCC	NNYAANAAAA	MAAGNTCTGT	TTTCCCCCTC	CASAASNAAA	AANCCCCCCC	540 600
CGGGCCTTCN	NMMGGGTTTG	GGGMANANAA	AARCNCCGGN	GGAACGNATC	CGAAAMCTCC	
CAAGTCNCMT	TWAWAACYCN	NNAACCCCCC	ANTITTGGGA	AAGGNTCCCC	MILITARY CCCC	660 720
TTTTASGKTS	GGGMMYYCTY					720
GGNAAATTTC	CAAMCCNWGK	TINTTYNGGT		AATTYCNCTC		840
CSSGSNNNAT	TAYGGMSNMT	TTTNNAAWTM		YNNKCCMNNN		900
TNAMCKCCCN	CCTCNGNGKY	CSCYNCCCSG		MKCCNANMAA		960
CGGAAMMCNN	AATKGNNNSC					1020
CCCNSNSGMN	RRGAARMINY					1020
						10/4

## (2) INFORMATION FOR SEQ ID NO:341:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1195 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:341:

NGNGNCNKNT	MTACATCWTT	CTGCACCSGG	GNTCWANTGC	GGCCGCAWKY	TTGTCGASAG	60
ATCTCGAAYT	CGGCAMGAGG			NACTCTGGCG		120
ATTGNGCGCK	TCACGCGCCC	AYTGANCCAK	TNCACTGGGG	TGCCGTYCGC		180
GGCCTCACGG	CKCTSCWTCT	RAAGGCWTGG	CGCACCGCAT	TCGGTTTTCT	RAACGCTGGG	240
AAAWTGGCCA	GCCGTCTGGC	TCATGGGNTC	TACGCAACGC	CNGCCCCCAA		300
AATCCGGYCC	NTCCTGANCS	CTTTGAAYCC			CHULLICIA	360
TCGAACTTRK	TCNAAATCCC	GCANAKTGTT	TCNTAMGYCC	CNCCGGAAGG		
TTCNGGWANG	TCGGCNKCCG	GCGCTTATCA		ACGGGGAACT		420
KGGGAAAAAG	RRCCTCAATG	MTYGGTCCKC	GCTGCGKANC	CGCSCCCTGK		480
GAAGGCSMAG	GGTTAANGCC	MTTYCNYCCR		SGKWTTYCGG		540
NNKMAMWITK	TCRGNGGCCW	ATSTSCCGGG		ANACTYCCKW	MGGANKAMNN	600
SAAAGNTKCS	GCGMGTTTTS	SCCKMGANGN	YCTGATTTSA			660
CGAAWKWRKY	CCYAGGGGGM	GNYCSAGCSC	CGMNNATNAG		CCCGGGGTYC	720
TYTNKGGACC	WSCNNCWSAK	ANAACNNKKT		AGNAAGGKTT	RYGSTSKNCC	780
TAAGAGGAGC	TATKMKCGCC	CKTGGANGMM	TGCSCCNTMS	AGNKTNKGRT	YCCNKTSTTC	840
TATKSAGMGG	TKCCGMAGMK	CCSCGTTTKT	GAGWGMGCGC	KYCCCSNKRT	TCNTNGWAAA	900
GGGNTTTGTA	GAGTAKTCGS		TKTGANAAMN	MSMRKNKKTG	CGMGYTCTSC	960
MNNSKTMKMT			WCSGMCMGNG	AGKNKTNNTS	YANTGARCGY	1020
GGCCNCGMNN	MGMGGANMGA	GGAGNGCCCC	CSANGMSTGY	NKGGNMSSNG	ARAKGATGGS	1080
GKTCNGSCGC			GGGGGKTGKC	TCKCSCCGNS	CSANGRAGAA	1140
	CGMGGKIGKT	KTKTKNKTGG	YSTCMSSMMM	NAGAAAAGAG	AGGC	1195

## (2) INFORMATION FOR SEQ ID NO:342:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3572 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:342:

CCATCTGATC	GTTGGCAACC	AGCATCGCAG	TGGGAACGAT	GCCCTCATTC	AGCATTTGCA	60
TGGTTTGTTG	AAAACCGGAC	ATGGCACTCC	AGTCGCCTTC	CCGTTCCGCT	ATCGGCTGAA	120
TTTGATTGCG	AGTGAGATAT	TTATGCCAGC	CAGCCAGACG	CAGACGCGCC	GAGACAGAAC	180
TTAATGGGCC	CGCTAACAGC	GCGATTTGCT	GGTGACCCAA	TGCGACCAGA	TGCTCCACGC	240
CCAGTCGCGT	ACCGTCTTCA	TGGGAGAAA	TAATACTGTT	GATGGGTGTC	TEGTCAGAGA	300
CATCAAGAAA	TAACGCCGGA	ACATTAGTGC	AGGCAGCTTC	CACAGCAATG	GCATCCTCCT	360
CATCCAGCGG	ATAGTTAATG	ATCAGCCCAC	TGACGCGTTG	CGCGAGAAGA	TTGTGC3CCG	420
CCGCTTTACA	GGCTTCGACG	CCGCTTCGTT	CTACCATCGA	CACCACCACG	CTGGCACCCA	480
GTTGATCGGC	GCGAGATTTA	ATCGCCGCGA	CAATTTGCGA	CGGCGCGTGC	AGGGCCAGAC	540
TGGAGGTGGC	AACGCCAATC	AGCAACGACT	GTTTGCCCGC	CAGTTGTTGT	GCCACGCGGT	600
TGGGAATGTA	ATTCAGCTCC	GCCATCGCCG	CTTCCACTTT	TTCCCGCGTT	TTCGCAGAAA	660
CGTGGCTGGC	CTGGTTCACC	ACGCGGGAAA	CGGTCTGATA	AGAGACACCG	GCZTZCCC	720
CGACATCGTA	TAACGTTACT	GGTTTCACAT	TCACCACCCT	GAATTGACTC	TCTTCCGGG	780
GCLATUATGC	CATACCGCGA	AAGGTTTTGC	GCCATTCGAT	GGTGTCCGGG	ATCTCSACGC	840
TCTCCCTTAT	GCGACTCCTG	CATTAGGAAG	CAGCCCAGTA	GTAGGTTGAG	GCCGTTGAGG	
ACCGCCGCCG	CAAGGAATGG	TGCATGCAAG	GAGATGGCGC	CCAACAGTCC	CCCGCCCACC	900
GGGCCTGCCA	CCATACCCAC	GCCGAAACAA	GCGCTCATGA	GCCCGAAGTG	GCGAGCCCCA	960
TCTTCCCCAT	CGGTGATGTC	GGCGATATAG	GCGCCAGCAA	CCGCACCTGT	GCCAGCCCGA	1020
ATGCCGGCCA	CGATGCGTCC	GGCGTAGAGG	ATCGAGATCT	CGATCCCGCG	AAATTTTTTC	1080
GACTCACTAT	AGGGGAATTG	TGAGCGGATA	ACAATTCCCC	TCTAGAAATA	AMATIMATAC	1140
ACTTTAAGAA	GGAGATATAC	ATATGGGCCA	TCATCATCAT	CATCACCTCA	TCCACATCAT	1200
CGGGACCAGC	CCCACATCCT	GGGAACAGGC	GGCGGCGGAG	GCGGTCCAGC	CCCCCCCC	1260
TAGCGTCGAT	GACATCCGCG	TCGCTCGGGT	CATTGAGCAG	GACATGGGGG	TCCACACCC	1320
CGGCAAGATC	ACCTACCGCA	TCAAGCTCGA	AGTGTCGTTC	AAGATGAGGG	CCCCCCAACC	1380
GAGGGGCTCG	AAACCACCGA	GCGGTTCGCC	TGAAACGGGC	GCCGGCGCCG	CTACTCTCC	1440
GACTACCCC	GCGTCGTCGC	CGGTGACGTT	GGCGGAGACC	GCTAGCACCC	TCCTCTACCC	1500
GCTGTTCAAC	CTGTGGGGTC	CGGCCTTTCA	CGAGAGGTAT	CCGAACCTCA	COMMONGE	1560
TCAGGGCACC	GGTTCTGGTG	CCGGGATCGC	GCAGGCCGCC	GCCGGGACCC	TCARCACCGC	1620
GGCCTCCGAC	GCCTATCTGT	CGGAAGGTGA	TATEGCCGCG	CACAACCCC	TCAMCATIGG	1680
CGCGCTAGCC	ATCTCCGCTC	AGCAGGTCAA	CTACAACCTC	CCCCCACTCA	CCCACCACCT	1740
CAAGCTGAAC	GGAAAAGTCC	TGGCGGCCAT	GTACCAGGG	ACCETCANA A	GCGAGCACCT	1800
CCCGCAGATC	GCTGCGCTCA	ACCCCGGCGT	GAACCTCCCC	CCCACCACAA	TA COMPOSITION	1860
GCACCGCTCC	GACGGGTCCG	GTGACACCTT	CTTCTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	CACTACCGCGG	COLLEGE	1920
TCCCGAGGGC	TGGGGCAAGT	CGCCCGGC	CGGCACCACC	CAGIACCIGI	CCAAGCAAGA	1980
GGGTGCGCTG	GGTGAGAACG	GCAACGGCGG	CATGGTCAGG	CCTTCCCCC	CGGCGGTGCC	2040
CTGCGTGGCC	TATATCGGCA	TCAGCTTTCT	CGACCACCC	ACTCA ACCCC	AGACACCGGG	2100
GGCCCAACTA	GGCAATAGCT	CTGGCAATTT	CONCENGRE	CACCCCCAACGGG	GACTCGGCGA	2160
CGCGGCGGCT	GGCTTCGCAT	CGAAAACCCC	GCGAACCAC	CCCATTTCCA	GCATTCAGGC	2220
GCCCGCCCCG	GACGGCTACC	CGATCATCAA	CTACCACCAG	GCGATTTCGA	TGATCGACGG	2280
AAAGGACGCC	GCCACCGCGC	AGACCTTGC	CIACGAGIAC	GCCATCGTCA	ACAACCGGCA	2340
CAACAAGGCC	TCGTTCCTCG	ACCAGGTTCA	TTTCCACCCC	CAC.GGGGGA	TCACCGACGG	2400
GTTGTCTGAC	GCGTTGATCG	CGACGATTTC	CACCCCTTCAC	2 TGCCGCCCG	CGGTGGTGAA	2460
CCTCGCGCAG	GAGGCAGGTA	ATTTCGACCC	CAUCUCTUAG	ATGAAGACCG	ATGCCGCTAC	2520
CCAGGTGGAG	TCGACGGCAG	GTTCGTTCCA	CCCCCCCCCC	GACCIGAAAA	CCCAGATCGA	2580
CGCCCAGGCC	GCGGTGGTGC	CCTTCCTACA	ACCACCAGIGG	CGCGGCGCGG	CGGGGACGGC	2640
CGAGATCTCG	GCGGTGGTGC ACGAATATTC	GTCAGGCCCC	CCTCCNAMA	AAGCAGAAGC	AGGAACTCGA	2700
GCAGCAGGCG	CTGTCCTCGC	AATCCCCGG	TOCATTO	TCGAGGGCCG	ACGAGGAGCA	2760
GGTGGAGTCT	GACGCCGCCC	VCLLCG7CL1	CCCTTCAGC	FTCGCGCTGC	CIGCTGGCTG	2820
GGACCCGCCA	TTTCCCGGAC	AGCCGCCGCC	CGGIICAGCA	CICCICAGCA	AAACCACCGG	2880
CCGGCTAGAC	CAAAAGCTTT	2000000000	CCARCORAT	GACACCCGTA	TUGTGCTCGG	2940
GTTGGGCTCG	GACATGGGTG	ACTTCTTTTT	GCCCTT CCCC	GACTUCAAGG	CCGCGGCCCG	3000
		MILLIALAI	GCCCIACCCG	GGCACCCGGA	TUAACCAGGA	3060

268

- (2) INFORMATION FOR SEQ ID NO:343:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:343:

Val Gln Phe Gln Ser Gly Gly Asp Asn Ser Pro Ala Val Tyr Xaa Xaa 1 5 10 15 Asp Gly Xaa Arg

- (2) INFORMATION FOR SEQ ID NO:344:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 10 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:344:

Thr Thr Val Pro Xaa Val Thr Glu Ala Arg

- (2) INFORMATION FOR SEQ ID NO:345:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 10 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:345:

Thr Thr Pro Ser Xaa Val Ala Phe Ala Arg

27

269

1 5 10

- (2) INFORMATION FOR SEQ ID NO:346:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 12 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:346:

Asp Ala Gly Lys Xaa Ala Gly Xaa Asp Val Xaa Arg

- (2) INFORMATION FOR SEQ ID NO:347:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 18 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:347:

Thr Xaa Glu Glu Xaa Gln Glu Ser Phe Asn Ser Ala Ala Pro Gly Asn 1 5 10 15 Xaa Lys

- (2) INFORMATION FOR SEQ ID NO:348:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 27 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:348:

CTAGTTAGTA CTCAGTCGCA GACCGTG

(2) INFORMATION FOR SEQ ID NO:349:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 25 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:349:

#### GCAGTGACGA ATTCACTTCG ACTCC

25

- (2) INFORMATION FOR SEQ ID NO:350:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2412 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:350:

CATATGGGCC	ATCATCATCA	TCATCACGTG	ATCGACATCA	TCGGGACCAG	CCCCACATCC	60
		GGCGGTCCAG				120
GTCGCTCGGG	TCATTGAGCA	GGACATGGCC	GTGGACAGCG	CCGGCAAGAT	CACCTACCGC	180
ATCAAGCTCG	AAGTGTCGTT	CAAGATGAGG	CCGGCGCAAC	CGAGGGGCTC	GAAACCACCG	240
AGCGGTTCGC	CTGAAACGGG	CGCCGGCGCC	GGTACTGTCG	CGACTACCCC	CGCGTCGTCG	300
CCGGTGACGT	TGGCGGAGAC	CGGTAGCACG	CTGCTCTACC	CGCTGTTCAA	CCTGTGGGGT	360
CCGGCCTTTC	ACGAGAGGTA	TCCGAACGTC	ACGATCACCG	CTCAGGGCAC	CGGTTCTGGT	420
GCCGGGATCG	CGCAGGCCGC	CGCCGGGACG	GTCAACATTG	GGGCCTCCGA	CGCCTATCTG	480
TCGGAAGGTG	ATATGGCCGC	GCACAAGGGG	CTGATGAACA	TCGCGCTAGC	CATCTCCGCT	540
CAGCAGGTCA	ACTACAACCT	GCCCGGAGTG	AGCGAGCACC	TCAAGCTGAA	CGGAAAAGTC	600
CTGGCGGCCA	TGTACCAGGG	CACCATCAAA	ACCTGGGACG	ACCCGCAGAT	CGCTGCGCTC	660
AACCCCGGCG	TGAACCTGCC	CGGCACCGCG	GTAGTTCCGC	TGCACCGCTC	CGACGGGTCC	720
GGTGACACCT	TCTTGTTCAC	CCAGTACCTG	TCCAAGCAAG	ATCCCGAGGG	CTGGGGCAAG	780
TCGCCCGGCT	TCGGCACCAC	CGTCGACTTC	CCGGCGGTGC	CGGGTGCGCT	GGGTGAGAAC	840
GGCAACGGCG	GCATGGTGAC	CGGTTGCGCC	GAGACACCGG	GCTGCGTGGC	CTATATCGGC	900
ATCAGCTTCC	TCGACCAGGC	CAGTCAACGG	GGACTCGGCG	AGGCCCAACT	AGGCAATAGC	960
TCTGGCAATT	TCTTGTTGCC	CGACGCGCAA	AGCATTCAGG	CCGCGGCGGC	TGGCTTCGCA	1020
TCGAAAACCC	CGGCGAACCA	GGCGATTTCG	ATGATCGACG	GGCCCGCCC	GGACGGCTAC	1080
CCGATCATCA	ACTACGAGTA	CGCCATCGTC	AACAACCGGC	AAAAGGACGC	CGCCACCGCG	1140
CAGACCTTGC	AGGCATTTCT	GCACTGGGCG	ATCACCGACG	GCAACAAGGC	CTCGTTCCTC	1200
		GCTGCCGCCC				1260
GCGACGATTT	CCAGCGCTGA	GATGAAGACC	GATGCCGCTA	CCCTCGCGCA	GGAGGCAGGT	1320
	GGATCTCCGG		ACCCAGATCG			1380
		GCGCGGCGCG				1440
CGCTTCCAAG	AAGCAGCCAA	TAAGCAGAAG	CAGGAACTCG	ACGAGATCTC	GACGAATATT	1500
CGTCAGGCCG	GCGTCCAATA	CTCGAGGGCC	GACGAGGAGC	AGCAGCAGGC	GCTGTCCTCG	1560
CAAATGGGCT	TTGTGCCCAC	AACGGCCGCC	TCGCCGCCGT	CGACCGCTGC	AGCGCCACCC	1620
GCACCGGCGA	CACCTGTTGC	CCCCCCACCA	CCGGCCGCCG	CCAACACGCC	GAATGCCCAG	1680
		ACCTCCGCCG		ACGCACCGCC	GCCACCTGTC	1740
ATTGCCCCAA	ACGCACCCCA	ACCTGTCCGG	ATCGACAACC	CGGTTGGAGG	ATTCAGCTTC	1800
		GGAGTCTGAC		TCGACTACGG	TTCAGCACTC	1860
		CCCGCCATTT			GGCCAATGAC	1920
		GCTAGACCAA		CCAGCGCCGA	AGCCACCGAC	1980
		GGGCTCGGAC			CTACCCGGGC	2040
		CGTCTCGCTC			AAGCGCGTCG	2100
TATTACGAAG	TCAAGTTCAG	CGATCCGAGT	AAGCCGAACG	GCCAGATCTG	GACGGGCGTA	2160

ATCGGCTCGC	CCGCGGCGAA	CGCACCGGAC	GCCGGGCCCC	CTCAGCGCTG	GTTTGTGGTA	2220
TGGCTCGGGA	CCGCCAACAA	CCCGGTGGAC	AAGGGCGCGG	CCAAGGCGCT	GGCCGAATCG	2280
ATCCGGCCTT	TGGTCGCCCC	GCCGCCGGCG	CCGGCACCGG	CTCCTGCAGA	GCCCGCTCCG	2340
GCGCCGGCGC	CGGCCGGGGA	AGTCGCTCCT	ACCCCGACGA	CACCGACACC	GCAGCGGACC	2400
TTACCGGCCT	GA.					2412

#### (2) INFORMATION FOR SEQ ID NO:351:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 802 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:351:

Met	Gly	His	His	His	His	His	His	Val		Asp	Ile	Ile	Gly		Ser
1				5					10					15	
Pro	Thr	Ser	Trp 20	Glu	Gln	Ala	Ala	Ala 25	Glu	Ala	Val	Gln	Arg 30	Ala	Arg
Asp	Ser	Val 35	Asp	Asp	Ile	Arg	Val	Ala	Arg	Val	Ile	Glu 45	Gln	Asp	Met
- 1	1				~1	•		(Tile an	<b>T</b>	3	T1.		T 011	~1	Wa 1
	Val 50					55					60				
Ser	Phe	Lys	Met	Arg	Pro	Ala	Gln	Pro	Arg	Gly	Ser	Lys	Pro	Pro	Ser
65					70					75					80
Gly	Ser	Pro	Glu	Thr 85	Gly	Ala	Gly	Ala	Gly 90	Thr	Val	Ala	Thr	Thr 95	Pro
Ala	Ser	Ser	270	Val	Thr	Leu	21a	Glu	Thr	Glv	Ser	Thr	Leu	Leu	Tvr
			100					105					110		
Pro	Leu	Phe	Asn	Leu	āzī	Gly	Pro	Ala	Phe	His	Glu	Arg	Tyr	Pro	Asn
		115					120					125			
Val	Thr	Ile	Thr	Ala	Gln	Gly	Thr	Gly	Ser	Gly	Ala	Gly	Ile	Ala	Gln
	130					135		-		_	140				
Ala		Ala	Glv	Thr	Val	Asn	Ile	Glv	Ala	Ser	Asp	Ala	Tyr	Leu	Ser
145			,		150			1		155	•		-		160
	Gly	Asp	Met	Ala	_	His	Lvs	Glv	Leu		Asn	Ile	Ala	Leu	Ala
	1			165			-2-	:	170					175	
T10	Car	Δla	Gla		7/2 ]	3 en	موبر پس	λen			Glv	Val	Ser		His
1.0	261	714	180	01	να <u>ι</u>		- y L	185		110	G ₁	• • • •	190		
<b>.</b>	•	٠ ـ				77.4.1				Mot	T	C1-		Thr	Tla
Leu	ΓĀR			GTĀ	~\^2	val			Ala	Mec	TYL			1114	Ile
		195		_	_		200			_	_	205		**- 1	
Lys			Asp	Asp	Pro			Ala	Ala	Leu			GLY	Val	Asn
	210					215					220				
Leu	Pro	Gly	Thr	Ala	Val	Val	Pro	Leu	His	Arg	Ser	Asp	Gly	Ser	Gly
225					230					235					240
Asp	Thr	Phe	Leu	Phe	Thr	Gln	Tyr	Leu	Ser	Lys	Gln	Asp	Pro	Glu	Gly
				245					250					255	
Trp	Gly	Lys	Ser	Pro	Gly	Phe	Gly	Thr	Thr	· Val	Asp	Phe	Pro	Ala	Val
•	•	•	260		•		•	265			_		270		
Pro	Glv	Ala			Glu	Asr	Glv			r Glv	Met	Val	Thr	Glv	Cys
	1	275					280		1	1		285		•	•
Ala	Glu			Glv	, C.v.	Va!			T1=	e Gla	, Ile			Leu	Asp
- CT - CT				:	-:-			<i></i> -							E-

	290					295					300				
Gln	Ala	Ser	Gln	Arg	Gly		Gly	Glu	Ala	Gln		Glv	Asn	Ser	Ser
305					310					315					320
Gly	Asn	Phe	Leu	Leu	Pro	Asp	Ala	Gln	Ser	Ile	Gln	Ala	Ala	Ala	Ala
				325					330					335	
GIY	Phe	Ala	Ser 340	Lys	Thr	Pro	Ala	Asn 345	Gln	Ala	Ile	Ser	Met 350	Ile	Asp
Gly	Pro	Ala 355	Pro	Asp	Gly	Tyr	Pro 360	Ile	Ile	Asn	Tyr	Glu 365	Tyr	Ala	Ile
Val	Asn 370		Arg	Gln	Lys	<b>Asp</b> 375		Ala	Thr	Ala			Leu	Gln	Ala
Phe		His	Trp	Ala	Ile		Asp	Gly	Asn		380 Ala	Ser	Phe	Leu	Asp
385	Va 1	ui e	Bho	C1-	390	T	D			395		_	_		400
			Phe	405					410					415	_
Ala	Leu	Ile	Ala 420	Thr	Ile	Ser	Ser	Ala 425	Glu	Met	Lys	Thr	Asp 430	Ala	Ala
Thr	Leu	Ala 435	Gln	Glu	Ala	Gly	Asn 440	Phe	Glu	Arg	Ile	Ser	Gly	qzA	Leu
Lys	Thr 450	Gln	Ile	Asp	Gln	Val 455		Ser	Thr	Ala	Gly 460	Ser	Leu	Gln	Gly
Gln		Arg	Gly	Ala	Ala		Thr	Ala	Δla	Gln		Δla	V=1	Val	h ~~
465	-	-	•		470	1				475	71_11	n.a	VAI	Val	480
Phe	Gln	Glu	Ala	Ala 485	Asn	Lys	Gln	Lys	Gln 490	Glu	Leu	Asp	Glu	Ile 495	Ser
Thr	Asn	Ile	Arg 500	-	Ala	Gly	Val			Ser	Arg	Ala		Glu	Glu
Gln	Gln	Gln	Ala	Leu	Ser	Ser		505 <b>Me</b> t	Gly	Phe	Val		510 Thr	Thr	Ala
712	Ca-	515	240	C	m \	.1.	520		_	_	_ •	525			
ALG	530	FIO	Pro	ser	IIII	535	ALA	Ala	Pro	Pro	A1a 540	Pro	Ala	Thr	Pro
Val	Ala	Pro	Pro	Pro	Pro	Ala	Ala	Ala	Asn	Thr	Pro	Asn	Ala	Gln	Pro
545					550					555					560
			Asn	565					570					575	
Pro	Pro	Val	Ile 580	Ala	Pro	Asn	Ala	Pro 585	Gln	Pro	Val	Arg	Ile 590	Asp	Asn
Pro	Val	Gly 595	Gly	Phe	Ser	Phe	Ala 600		Pro	Ala	Gly	Trp 605		Glu	Ser
Asp	Ala 610		His	Phe	Asp			Ser	Ala	Leu		Ser	Lys	Thr	Thr
Gly		Pro	Pro	Phe	Pro	615 Glv	Gln	Dro	Bro	Dro	620	21-	3	۸	<b>m</b> b
625					630					635					640
Arg	Ile	Val	Leu	Gly 645	Arg	Leu	Asp	Gln	Lys 650	Leu	Tyr	Ala	Ser	Ala 655	Glu
Ala	Thr	Asp	Ser 660	Lys	Ala	Ala	Ala	Arg 665		Gly	Ser	Asp	Met 670	Gly	Glu
Phe	Tyr	Met 675		Tyr	Pro	Gly			Ile	Asn	Gln			Val	Ser
Leu	Asp		Asn	Gly	Val		68Q Gly	Ser	Ala	Ser		685 Tyr	Glu	Val	Lys
Phe	690 Ser	Asp	Pro	Ser	Lys	695 Pro	Asn	Glv	Gln	Ile	700 Trp	Thr	Glv	Val	ءات
705					710					715					720
Gly	Ser	Pro	Ala	Ala 725	Asn	Ala	Pro	Asp	Ala 730	Gly	Pro	Pro	Gln	Arg 735	Trp

Phe Val Val Trp Leu Gly Thr Ala Asn Asn Pro Val Asp Lys Gly Ala 740 745 750	
Ala Lys Ala Leu Ala Glu Ser Ile Arg Pro Leu Val Ala Pro Pro Pro 755 760 765	
Ala Pro Ala Pro Ala Pro Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala 770 780	
Gly Glu Val Ala Pro Thr Pro Thr Pro Thr Pro Gln Arg Thr Leu	
785 790 795 800 Pro Ala	
(2) INFORMATION FOR SEQ ID NO:352:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 34 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:352:	
GGATCCAAAC CACCGAGCGG TTCGCCTGAA ACGG	34
(2) INFORMATION FOR SEQ ID NO:353:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 37 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:353:	
CGCTGCGAAT TCACCTCCGG AGGAAATCGT CGCGATC	37
(2) INFORMATION FOR SEQ ID NO:354:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1962 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:354:	
CATATGGGCC ATCATCATCA TCATCACGGA TCCAAACCAC CGAGCGGTTC GCCTGAAACG	60
GGCGCCGGCG CCGGTACTGT CGCGACTACC CCCGCGTCGT CGCCGGTGAC GTTGGCGGAG	L20
TIMOGGII GO MOI GGI MOI G TOTAL TOTA	180 240

GCCGCCGGGA	CGGTCAACAT	TGGGGCCTCC	GACGCCTATC	TGTCGGAAGG	TGATATGGCC	300
GCGCACAAGG	GGCTGATGAA	CATCGCGCTA	GCCATCTCCG	CTCAGCAGGT	CAACTACAAC	360
CTGCCCGGAG	TGAGCGAGCA	CCTCAAGCTG	AACGGAAAAG	TCCTGGCGGC	CATGTACCAG	420
GGCACCATCA	AAACCTGGGA	CGACCCGCAG	ATCGCTGCGC	TCAACCCCGG	CGTGAACCTG	480
CCCGGCACCG	CGGTAGTTCC	GCTGCACCGC	TCCGACGGGT	CCGGTGACAC		540
ACCCAGTACC		AGATCCCGAG				600
ACCGTCGACT	TCCCGGCGGT	GCCGGGTGCG	CTGGGTGAGA	ACGGCAACGG	CGGCATGGTG	660
ACCGGTTGCG	CCGAGACACC	GGGCTGCGTG	GCCTATATCG	GCATCAGCTT	CCTCGACCAG	720
GCCAGTCAAC	GGGGACTCGG	CGAGGCCCAA	CTAGGCAATA	GCTCTGGCAA	TTTCTTGTTG	780
CCCGACGCGC	AAAGCATTCA	GGCCGCGGCG	GCTGGCTTCG	CATCGAAAAC	CCCGGCGAAC	840
CAGGCGATTT	CGATGATCGA	CGGGCCCGCC	CCGGACGGCT	ACCCGATCAT	CAACTACGAG	900
TACGCCATCG	TCAACAACCG	GCAAAAGGAC	GCCGCCACCG	CGCAGACCTT	GCAGGCATTT	960
CTGCACTGGG	CGATCACCGA	CGGCAACAAG	GCCTCGTTCC	TCGACCAGGT	TCATTTCCAG	1020
CCGCTGCCGC	CCGCGGTGGT	GAAGTTGTCT	GACGCGTTGA	TCGCGACGAT	TTCCTCCGGA	1080
GGTGGCAGTG	GGGGAGGCTC	AGGTGGAGGT	TCTGGCGGGA	GCGTGCCCAC	AACGGCCGCC	1140
TCGCCGCCGT	CGACCGCTGC	AGCGCCACCC	GCACCGGCGA	CACCTGTTGC	CCCCCCACCA	1200
CCGGCCGCCG	CCAACACGCC	GAATGCCCAG	CCGGGCGATC	CCAACGCAGC	ACCTCCGCCG	1260
GCCGACCCGA	ACGCACCGCC	GCCACCTGTC	ATTGCCCCAA	ACGCACCCCA	ACCTGTCCGG	1320
ATCGACAACC	CGGTTGGAGG	ATTCAGCTTC	GCGCTGCCTG	CTGGCTGGGT	GGAGTCTGAC	1380
GCCGCCCACT	TCGACTACGG	TTCAGCACTC	CTCAGCAAAA	CCACCGGGGA	CCCGCCATTT	1440
CCCGGACAGC	CGCCGCCGGT	GGCCAATGAC	ACCCGTATCG	TGCTCGGCCG		1500
AAGCTTTACG	CCAGCGCCGA	AGCCACCGAC	TCCAAGGCCG	CGGCCCGGTT	GGGCTCGGAC	1560
ATGGGTGAGT	TCTATATGCC	CTACCCGGGC	ACCCGGATCA	ACCAGGAAAC	CGTCTCGCTC	1620
	GGGTGTCTGG	AAGCGCGTCG	TATTACGAAG	TCAAGTTCAG	CGATCCGAGT	1680
	GCCAGATCTG	GACGGGCGTA	ATCGGCTCGC	CCGCGGCGAA	CGCACCGGAC	1740
GCCGGGCCCC	CTCAGCGCTG	GTTTGTGGTA	TGGCTCGGGA	CCGCCAACAA	CCCGGTGGAC	1800
AAGGGCGCGG		GGCCGAATCG	ATCCGGCCTT	TGGTCGCCCC	GCCGCCGGCG	1860
CCGGCACCGG	CTCCTGCAGA	GCCCGCTCCG	GCGCCGGCGC	CGGCCGGGGA	AGTCGCTCCT	1920
ACCCCGACGA	CACCGACACC	GCAGCGGACC	TTACCGGCCT	GA		1962

## (2) INFORMATION FOR SEQ ID NO:355:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 652 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:355:

1				His 5					10					15	
			20	Ala				25					3.0		
Ser	Pro	Val 35	Thr	Leu	Ala	Glu	Thr 40	Gly	Ser	Thr	Leu	Leu 45	Tyr	Pro	Leu
	50			Gly		55					60				
Ile 65					70					75					80
				Asn 85					90					95	Gly
ązA	Met	Ala	Ala	His	Lys	Gly	Leu	Met	Asn	Ile	Ala	Leu	Ala	Ile	Ser

			• • •												
7.7			100		_	_		105	5				110	)	
		111					120	)				125	:		
Let	1 <b>As</b> r 130	ı Gly	/ Lys	val	. Leu	Ala 135	a Ala	Met	Tyr	Glm	Gly	Thr	Ile	Lys	Thr
Tr:	Asp	Asp	Pro	Gln	11e 150	Ala		Leu	. Asn	Pro	Gly	Val	Asn	Leu	
Gly	Thr	Ala	val	. Val	Pro		His	Arg	Ser	155 Asp	Gly	Ser	Gly	Asp	160 Thr
Phe	Leu	Phe	Thr	Gln		Leu	Ser	Lys	170 Gln	. Asp	Pro	Glu	Gly	175 <b>Tr</b> p	Gly
Lys	Ser	Pro	Gly		Gly	Thr	Thr	185 Val	Asp	Phe	Pro	Ala	190 Val	Pro	Gly
		ナスコ					200					205			
	210		Glu			215					220				
22,			Cys		230					235					240
Ser	Gln	Arg	Gly	Leu 245	Gly	Glu	Ala	Gln	Leu 250	Gly	Asn	Ser	Ser		Asn
Phe	Leu	Leu	Pro 260	Asp	Ala	Gln	Ser	Ile 265	Gln	Ala	Ala	Ala		255 Gly	Phe
Ala	Ser	Lys 275	Thr	Pro	Ala	Asn	Gln 280	Ala	Ile	Ser	Met		270 Asp	Gly	Pro
Ala	Pro 290	Asp	Gly	Tyr	Pro	Ile 295	Ile	Asn	Tyr	Glu		285 Ala	Ile	Val	Asn
Asn 305	Arg	Gln	Lys	qaA	Ala	Ala	Thr	Ala	Gln		300 Leu	Gln	Ala	Phe	Leu
		Ala	Ile	Thr	310 Asp	Gly	Asn	Lvs	Ala	315 Ser	Phe	T.e.u	λεη	Gl n	320
				345					330					115	
			Pro 340					345					250		
		222	Ile				360					365	Ser		
Gly	Ser 370	Gly	Gly	Ser	7al	Pro 375	Thr	Thr	Ala	Ala	Ser 380	Pro	Pro	Ser	Thr
Ala	Ala	Ala	Pro	Pro	Ala		Ala	Thr	Pro	Val	Ala	Pro	Pro	Pro	Pro
202					390					395					400
			Asn	402					410					415	
			Ala 420					425					430		
Asn	Ala	Pro 435	Gln	Pro	Val	Arg	Ile 440	Asp	Asn	Pro	Val		Gly	Phe	Ser
Phe	Ala 450	Leu	Pro	Ala	Gly	Trp		Glu	Ser	Asp		445 Ala	His	Phe	Asp
Tyr		Ser	Ala	Leu	Leu		Tive	Thr	Th-	<u>ما</u>	460	_	_		_
*03					470					475					480
			Pro	485					490					495	
Leu	Asp	Gln	Lys 500	Leu	Tyr	Ala	Ser	Ala 505	Glu	Ala	Thr	Asp		Lys	Ala
Ala	Ala	Arg 515	Leu	Gly	Ser	Asp	Met 520	Gly	Glu	Phe	Tyr		510 Pro	Tyr	Pro
Gl7	Thr 530		Ile	Asn	Gln	Glu 535		Val	Ser	Leu		525 Ala	Asn	Gly	Val
	-										540				

Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys 550 Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 565 570 Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 580 585 Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu 600 Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro 615 620 Ala Glu Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr 630 635 Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala 645 650

#### **CLAIMS**

- 1. A polypeptide comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
  - (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 120)
  - (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser: (SEQ ID No. 121)
  - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 122)
  - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 123)
  - (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 124)
  - (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro: (SEQ ID No. 125)
  - (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser; (SEQ ID No. 126)
  - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 127)
  - (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn: (SEQ ID No. 128) and
  - (j) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136)

wherein Xaa may be any amino acid.

2. A polypeptide comprising an immunogenic portion of an M. tuberculosis antigen, or a variant of said antigen that differs only in conservative

substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:

- (a) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 129) and
- (b) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 137), wherein Xaa may be any amino acid.
- 3. A polypeptide comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101 or a complement thereof under moderately stringent conditions.
- 4. A polypeptide comprising an immunogenic portion of a *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 26-51, 138, 139, 163-183, 201, 240, 242-247, 253-256, 295-298, 309, 316, 318-320, 322, 324, 328, 329, 333, 335, 337, 339 and 341, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 26-51, 138, 139, 163-183, 201, 240, 242-247, 253-256, 295-298, 309, 316, 318-320, 322, 324, 328, 329, 333, 335, 337, 339 and 341 or a complement thereof under moderately stringent conditions.
- 5. A DNA molecule comprising a nucleotide sequence encoding a polypeptide according to any one of claims 1-4.
- 6. An expression vector comprising a DNA molecule according to claim 5.

- 7. A host cell transformed with an expression vector according to claim 6.
- 8. The host cell of claim 7 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cells.
- 9. A pharmaceutical composition comprising one or more polypeptides according to any one of claims 1-4 and a physiologically acceptable carrier.
- 10. A pharmaceutical composition comprising one or more DNA molecules according to claim 5 and a physiologically acceptable carrier.
- 11. A pharmaceutical composition comprising one or more DNA sequences recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200, 203, 215-225, 237, 239, 261-276, 292, 293, 303-308, 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342-347; and a physiologically acceptable carrier.
- 12. A vaccine comprising one or more polypeptides according to any one of claims 1-4 and a non-specific immune response enhancer.
  - 13. A vaccine comprising:
- a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and
  - a non-specific immune response enhancer.

## 14. A vaccine comprising:

one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3. 11, 12, 140, 141, 156-160, 189-193, 199, 200, 203, 215-225, 237, 239, 261-276, 292, 293, 303-308, 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342-347, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200, 203, 215-225, 237, 239, 261-276, 292, 293, 303-308, 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342-347; and

a non-specific immune response enhancer.

- 15. The vaccine of claims 12-14 wherein the non-specific immune response enhancer is an adjuvant.
- 16. A vaccine comprising one or more DNA molecules according to claim 5 and a non-specific immune response enhancer.
- 17. A vaccine comprising one or more DNA sequences recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200, 203, 215-225, 237, 239, 261-276, 292, 293, 303-308, 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342-347; and a non-specific immune response enhancer.
- 18. The vaccine of claims 16 or 17 wherein the non-specific immune response enhancer is an adjuvant.
- 19. A method for inducing protective immunity in a patient, comprising administering to a patient a pharmaceutical composition according to any one of claims 9-11.
- 20. A method for inducing protective immunity in a patient, comprising administering to a patient a vaccine according to any one of claims 12-18.
- 21. A fusion protein comprising two or more polypeptides according to any one of claims 1-4.
- 22. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and ESAT-6.
- 23. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and the *M. tuberculosis* antigen 38 kD (SEQ ID NO:155).

- 24. A pharmaceutical composition comprising a fusion protein according to any one of claims 21-23 and a physiologically acceptable carrier.
- 25. A vaccine comprising a fusion protein according to any one of claims 21-23 and a non-specific immune response enhancer.
- 26. The vaccine of claim 25 wherein the non-specific immune response enhancer is an adjuvant.
- 27. A method for inducing protective immunity in a patient, comprising administering to a patient a pharmaceutical composition according to claim 24.
- 28. A method for inducing protective immunity in a patient, comprising administering to a patient a vaccine according to claims 25 or 26.
  - 29. A method for detecting tuberculosis in a patient, comprising:
- (a) contacting dermal cells of a patient with one or more polypeptides according to any one of claims 1-4; and
- (b) detecting an immune response on the patient's skin and therefrom detecting tuberculosis in the patient.
  - 30. A method for detecting tuberculosis in a patient, comprising:
- (a) contacting dermal cells of a patient with a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and
- (b) detecting an immune response on the patient's skin and therefrom detecting tuberculosis in the patient.
  - 31. A method for detecting tuberculosis in a patient, comprising:
- (a) contacting dermal cells of a patient with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200, 203, 215-225, 237, 239, 261-276, 292, 293, 303-308,

- 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342-347, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200, 203, 215-225, 237, 239, 261-276, 292, 293, 303-308, 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342-347; and
- (b) detecting an immune response on the patient's skin and therefrom detecting tuberculosis in the patient.
- 32. The method of any one of claims 29-31 wherein the immune response is induration.
  - 33. A diagnostic kit comprising:
  - (a) a polypeptide according to any one of claims 1-4; and
- (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
  - 34. A diagnostic kit comprising:
- (a) a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and
- (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
  - 35. A diagnostic kit comprising:
- (a) a polypeptide encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200, 203, 215-225, 237, 239, 261-276, 292, 293, 303-308, 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342-347, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200, 203, 215-225, 237, 239, 261-276, 292, 293, 303-308, 310-315, 317, 321, 323, 325-327, 330-332, 334, 336, 338, 340 and 342-347; and
- (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.

- 36. A diagnostic kit comprising:
- (a) a fusion protein according to any one of claims 21-23; and
- (b) apparatus sufficient to contact said fusion protein with the dermal cells of a patient.
- 37. A fusion protein according to claim 23 comprising an amino acid sequence selected from the group consisting of sequences recited in SEQ ID NO: 153, 209, 351 and 355.

## D7 T Cell Proliferation





FIG. : =

# D160 T Cell Proliferation



# D160 IFNg



FIG. 1B





FIG. 2



FIGS. 3 A-D

# Teell clone 131TbH9 responds poorly to CSF



F16. 4

T Cell Clone PPD 800-10 IFNg Production



FIG. 4B

### D131 T Cell Proliferation



D131 IFNg



FIGS. 5.4-B

## D184 T Cell Proliferation



D184 IFNg



FIGS. 6.4-B

# D201 T Cell Proliferation



D201 IFNg



FIGS. 7.4-B





FIGS. 8A-B



FIGS. 9A-B

# Tuberculosis: Protection of Cynomolgus Monkeys with Recombinant Antigens of Mtb





FIGS. 11 A-B

# DNA Immunized mice challenged with aerosol TB (lung CFU)



### **PCT**

### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 99/42076
A61K 39/04, 49/00, G01N 33/53, C07K 1/00, C12N 15/00	A3	(43) International Publication Date:	26 August 1999 (26.08.99)

(21) International Application Number: PCT/US99/03268 (74) Agents

(22) International Filing Date: 17 February 1999 (17.02.99)

(30) Priority Data:

 09/025,197
 18 February 1998 (18.02.98)
 US

 09/072,967
 5 May 1998 (05.05.98)
 US

(71) Applicant: CORIXA CORPORATION [US/US]; 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: REED, Steven, G.; 2843 - 122nd Place, N.E., Bellevue, WA 98005 (US). SKEIKY, Yasir, A., W.; 8327 25th Street, Seattle, WA 98107 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US). CAMPOS-NETO, Antonio; 9308 Midship Court, N.E., Bainbridge Island, WA 98110 (US). HOUGHTON, Raymond; 2636 - 242nd Place, S.E., Bothell, WA 98021 (US). VEDVICK, Thomas, S.; 124 South 300th Place, Federal Way, WA 98003 (US). TWARDZIK, Daniel, R.; 10195 South Beach Drive, Bainbridge Island, WA 98110 (US). LODES, Michael, J.; 9223 - 36th Avenue S.W., Seattle, WA 98126 (US). HENDRICKSON, Ronald, C.; 4114 S.W. Charlestown Street, Seattle, WA 98116 (US).

(74) Agents: CORUZZI, Laura, A. et al.; Pennie & Edmonds LLP, 1155 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

### Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 14 October 1999 (14.10.99)

(54) Title: COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS

### (57) Abstract

Compounds and methods for inducing protective immunity against tuberculosis are disclosed. The compounds provided include polypeptides that contain at least one immunogenic portion of one or more *M. tuberculosis* proteins and DNA molecules encoding such polypeptides. Such compounds may be formulated into vaccines and/or pharmaceutical compositions for immunization against *M. tuberculosis* infection, or may be used for the diagnosis of tuberculosis.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

### INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/03268

A. CLASSIFICATION OF SUBJECT MATTER  1PC(6) : A61K 39/04, 49/00; G01N 33/53; C07K 1/00; C12N 15/00  US CL : 424/9.2, 248.1; 435/7, 172.3, 320, 320.7; 530/350  According to International Patent Classification (IPC) or to both national classification and IPC				
	DS SEARCHED			
	ocumentation searched (classification system followed	d by classification symbols)		
<b>U.S.</b> :	424/9.2, 248.1; 435/7, 172.3, 320, 320.7; 530/350			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
	ata base consulted during the international search (na e Extra Sheet.	ame of data base and, where practicable,	search terms used)	
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
X 	OETTINGER, T. et al. Cloning and B-cell-epitope mapping of 1, 5-8, 10, 11, MPT64 from Mycobacterium tuberculosis H37Rv. Infection and 13, 14, 33			
Y	Immunity. May 1994, Vol. 62, No. 5, pages 2058-2064, especially Figure 1.			
Y	US 5,108,745 A (HORWITZ) 28 April 1992, column 1, line 25 to column 13, line 54.			
X Furth	er documents are listed in the continuation of Box C	. See patent family annex.		
*A* doe	ecial categories of cited documents: cument defining the general state of the art which is not considered be of particular relevance	*T* later document published after the inte date and not in conflict with the appl the principle or theory underlying the	ication but cited to understand	
	lier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consider		
cita	noument which may throw doubts on priority claim(s) or which is not to establish the publication date of another citation or other iscal reason (as specified)	when the document is taken alone  "Y" document of particular relevance; the	s claumed invention cannot be	
*O* do	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such being obvious to a person skilled in t	documents, such combination	
	cument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent	fam ily	
Date of the	actual completion of the international search	Dute of mailing of the international sea 18 AUG 1999	rch report	
Commissio Box PCT	nailing address of the ISA/US ner of Patents and Trademarks n. D.C. 20231	Authorized officer  RODNEY P. SWARTZ, PH.D.	(cD)	
	0. (703) 305-3230	Telephone No. (703) 308-0196		

### INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/03268

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
x	PAL, P.G. et al. Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune	1-4, 9, 12-15, 19- 20
Y	responses and substantial protective immunity in a guinea pig model of pulmonary tuberculosis. Infection and Immunity. November 1992, Vol. 60, No. 11, pages 4781-4792, especially 4782.	21-28
Y	US 4,689,397 A (SHINNICK et al) 25 August 1987, column 1, line 15 to column 22, line 6.	6-8, 21-37
X	US 5,714,593 A (LAQUEYRERIE et al) 03 February 1998, entire	1-26
 Y	document.	27-37

### INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/03268

-				
	B. FIELDS SEARCHED  Electronic data bases consulted (Name of data base and where practicable terms used):			
	APS, BIOSIS, CABA, CAPLUS, EMBASE, LIFESCI, MEDLINE, SCISEARCH, MASPAR search terms: tuberculosis, antigen, extracellular, soluble, protein, polypeptide, vaccine, polynucleotide, nucleic acid, amino acid, specific sequence identification numbers.			