

п 5 Поле рациональных дробей.

Опр Рациональной дробью над полем F называется класс эквивалентности выражения

вида
$$\frac{f(x)}{g(x)}$$
, где $f(x),g(x) \in F[x]$, $g(x) \neq 0$

Выражения
$$\frac{f(x)}{g(x)}$$
 и $\frac{f_1(x)}{g_1(x)}$ считаются эквивалентными, если

$$f(x)g_1(x) = f_1(x)g(x)$$

Можно показать, что это отношение является отношением эквивалентности

Обозначим через F(x) множество всех рациональных дробей от x над полем F На I(x) вводятся (естественным образом) операции сложения и умножения

Относительно этих операций F(x) представляет собой поле рациональных дробей с коэффициентами из поля F

Замечание

Поле рациональных дробей F(x) – частный случай конструкции поля отношений данного целостного кольца K

Имеем
$$F[x] \subset F(x)$$

 $\underline{\text{Опр}}$ Рациональная дробь $\frac{f(x)}{g(x)}$ называется правильной, если $\deg f(x) < \deg g(x)$

Любая рациональная дробь представляется (и притом единственным образом) в виде

$$q(x) + \frac{r(x)}{g(x)},$$

где $\frac{r(x)}{g(x)}$ — правильная рациональная дробь, q(x) — многочлен (достаточно разделить f(x)

на g(x) с остатком)

Опр Рациональная дробь вида $\frac{r(x)}{p(x)^k}$, где r(x), p(x) – многочлены, причем p(x)

неприводим, $\deg r(x) < \deg p(x)$, $k \in \mathbb{N}$, называется простейшей

Теорема 11

Всякая правильная рациональная дробь может быть представима (и притом единственным образом с точностью до порядка множителей) в виде суммы простейших дробей

Схема доказательства

Пусть дана правильная рациональная дробь $\frac{f(x)}{g(x)} \in F(x)$ Представим g(x) в

каноническом виде

$$g(x) = p_1(x)^{k_1} \quad p(x)^k ,$$

где $p_{i}(x)$ – неприводимые над F многочлены

1 Доказываем, что $\frac{f(x)}{g(x)}$ можно представить в виде

$$\frac{f(x)}{g(x)} = \frac{f_1(x)}{p_1(x)^{k_1}} + \frac{f_s(x)}{p_s(x)^{k_s}},$$

где
$$f_i \in F[x]$$
, $\deg f_i(x) < k_i \deg p_i(x)$, те дроби $\frac{f_i(x)}{p_i(x)^k}$ – правильные

Это представление единственно

2 Пусть имеется правильная дробь вида $\frac{\tilde{f}(x)}{p(x)^k}$, где p(x) – неприводимый

многочлен

Эту дробь можно представить, и притом единственным образом, в виде

$$\frac{\tilde{f}(x)}{p(x)^k} = \frac{r_1(x)}{p(x)} + \frac{r_k(x)}{p(x)^k}$$

где $\deg r_i(x) < \deg p(x)$

Здесь $r_k(x)$ находится как остаток от деления $\tilde{f}(x)$ на p(x), r_{k-1} — это остаток от деления $\frac{f(x)-r_k(x)}{p(x)}$ на p(x)

Замечание

На практике разложение правильной дроби в сумму простейших обычно находят методом неопределенных коэффициентов

239

<u>п. 6.</u> Многочлены над $\mathbb{C}, \mathbb{R}, \mathbb{Q}$

Пусть $F = \mathbb{C}$ Следующую теорему называют основной теоремой алгебры Гаусса <u>Теорема 12</u> (теорема Гаусса)

Всякий многочлен $f(x) \in \mathbb{C}[x]$, $\deg f(x) > 0$ имеет хотя бы один корень из \mathbb{C} Замечание

Свойство поля \mathbb{C} , о котором идет речь в теореме 11, называется алгебраической замкнутостью

Доказательство

См какой-либо курс ТФКП (теория функций комплексного переменного) или стандартное доказательство, основанное на лемме Даламбера

Следствие 1

Всякий неприводимый многочлен $p(x) \in \mathbb{C}[x]$ является линейным, т е имеет вид p(x) = ax + b, где $a,b \in \mathbb{C},\ a \neq 0$

Следствие 2

Всякий многочлен $f(x) \in \mathbb{C}[x]$, $\deg f(x) > 0$ представляется в виде

$$a(x-x_1)^{k_1} \quad (x-x_s)^k ,$$

где $x_1, \quad , x_s \in \mathbb{C}$ – попарно различные корни f(x) кратности $k_1 \quad k_s$ соответственно

Пусть $F = \mathbb{R}$

Лемма

Пусть
$$f(x) \in \mathbb{R}[x]$$

Если $x_0 \in \mathbb{C}$ – комплексный корень f(x), то \overline{x}_0 – также корень f(x)

Доказательство

Пусть
$$f(x) = a_n x^n + + a_1 x + a_0$$
 Имеем
$$0 = f(x_0) = a_n x_0^n + + + a_1 x + a_0$$

Тогда

$$\overline{0} = \overline{a}_n \overline{x}_0^n + + \overline{a}_1 \overline{x}_0 + \overline{a}_0$$

Тк $a_k \in \mathbb{R}$, то $\overline{a}_k = a_k$ (k = 0, , n) и получаем

$$0 = a_n \overline{x}_0^n + + a_1 \overline{x}_0 + a_0,$$

те
$$\overline{x}_0$$
 – корень $f(x)$

Следствие

Всякий неприводимый многочлен $p(x) \in \mathbb{R}[x]$ либо линеен, либо квадратичен, те имеет вид

$$p(x) = ax^2 + bx + c,$$

причем
$$b^2 - 4ac < 0$$

Доказательство

Пусть p(x) — неприводим над \mathbb{R} и $\deg p(x) > 2$ По теореме Гаусса существует $x_0 \in \mathbb{C}$ — корень p(x) По лемме \overline{x}_0 — также корень p(x) Имеем

$$p(x) = (x - x_0)(x - \overline{x}_0)q(x),$$

где $\deg q(x) > 0$

Ясно, что
$$q(x) \in \mathbb{R}[x]$$
, тк $p(x) \in \mathbb{R}[x]$ и $(x - x_0)(x - \overline{x_0}) = = x^2 - (x_0 + \overline{x_0})\lambda + |x_0|^2 \in \mathbb{R}[x]$

Но равенство

$$p(x) = (x^2 - -(x_0 + \overline{x}_0)x + |x_0|^2)q(x)$$

противоречит неприводимости многочлена p(x)

Осталось заметить, что многочлены $ax^2 + bx + c$, $a \ne 0$, $b^2 - 4ac \ge 0$ не могут быть неприводимыми, т к имеют хотя бы один вещественный корень

Замечание

Если $f(x) \in F[x]$, $\deg f(x) = 2$ или 3, то вопрос о неприводимости f(x) эквивалентен вопросу об отсутствии корней f(x) в поле F В общем случае это утверждение неверно

Пример

$$F = \mathbb{R}, \ f(x) = x^4 + 4 = = (x^4 + 4x^2 + 4) - 4x^2 = = (x^2 + 2)^2 - 4x^2 = = (x^2 - 2x + 2)$$
$$(x^2 + 2x + 2)$$

Следствие 4

Всякий многочлен $f(x) \in \mathbb{R}[x]$, $\deg f(x) > 0$ представим в виде

$$f(x) = a(x-x_1)^{k_1}$$
 $(x-x_s)^k p_1(x)^{l_1}$ $p_t(x)^l$

Где x_1 , $x_s \in \mathbb{R}$ — попарно различные вещественные корни f(x) кратности k_1 , k_s соответственно, $p_i(x) = x^2 + c_i x + \cdots + d_i \in \mathbb{R}[x]$ — попарно различные многоч іены $c_i^2 - 4d_i < 0$ $(i = 1, \ldots, t)$

Пусть $F=\mathbb{Q}$ Можно доказать, что неприводимыми над \mathbb{Q} могут быть многочлены любой степени Например, многочлен $p(x)=x^n-2$, неприводим при любом $n\geq 1$ Для доказательства этого утверждения и других подобных обычно применяют признаки (достаточные условия) неприводимости Наиболее известным из них является так называемый признак Эйзенштейна

Теорема 13 (критерий Эйзенштейна)

Пусть
$$f(x) \in \mathbb{Z}[x]$$
, $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$

Предположим, что существует гакое простое число p что

- 1 a_n не делится на p
- $2 \quad a_{n-1}, \quad , a_1, a_0$ делятся на p
- a_0 не делится на p^2

Тогдаf(x) неприводим над $\mathbb Q$