Revista de Matemática: Teoría y Aplicaciones 2014 $\mathbf{21}(1)$: 107–126 cimpa – ucr issn: 1409-2433

COLONIA DE ABEJAS ARTIFICIALES Y OPTIMIZACIÓN POR ENJAMBRE DE PARTÍCULAS PARA LA ESTIMACIÓN DE PARÁMETROS DE REGRESIÓN NO LINEAL

ARTIFICIAL BEE COLONY AND PARTICLE SWARM OPTIMIZATION FOR THE ESTIMATION OF NONLINEAR REGRESSION PARAMETERS

SERGIO DE-LOS-COBOS-SILVA*

MIGUEL A. GUTIÉRREZ-ANDRADE[†]

ERIC A. RINCÓN-GARCÍA[‡] PEDRO LARA-VELÁZQUEZ[§]

MANUEL AGUILAR-CORNEJO[¶]

Received: 20/Sep/2012; Revised: 20/May/2013; Accepted: 10/Jul/2013

Resumen

Este trabajo presenta la comparación de los resultados de las técnicas heurísticas de ABC colonias de abejas artificiales (Artificial Bee Colony) y PSO enjambres de partículas (Particle Swarm Optimization) que son utilizadas para la estimación de parámetros de modelos de regresión no lineal. Los algoritmos fueron probados sobre 27 bases de datos de la colección NIST(2001), de las cuales 8 son consideradas con un alto grado de dificultad, 11 con un grado de dificultad medio y 8 con un grado de dificultad bajo. Se presentan los resultados experimentales.

Palabras clave: colonias de abejas artificiales, enjambres de partículas, regresión no lineal.

Abstract

This paper shows the comparison results of ABC (Artificial Bee Colony) and PSO (Particle Swarm Optimization) heuristic techniques that were used to estimate parameters for nonlinear regression models. The algorithms were tested on 27 data bases from the NIST collection (2001), 8 of these are considered to have high difficulty, 11 medium difficulty and 8 low difficulty. Experimental results are presented.

Keywords: artificial bee colony, particle swarm optimization, nonlinear regression.

Mathematics Subject Classification: 90C59, 62J02.

^{*}Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Ingeniería Eléctrica, Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, México D.F., C.P. 09340, México. E-Mail: cobos@xanum.uam.mx

 $^{^\}dagger {\rm Misma}$ dirección que/Same address as: S. de-los-Cobos-Silva. E-Mail: gamma@xanum.uam.mx

[‡]Universidad Autónoma Metropolitana-Azcapotzalco, Departamento de Sistemas, Av. San Pablo 180, Colonia Reynosa Tamaulipas, México D.F., C.P. 02200, México. E-Mail: rigaeral@correo.azc.uam.mx

[§]Misma dirección que/Same address as: E. Rincón-García. E-Mail: plara@xanum.uam.mx

Misma dirección que/Same address as: S. de-los-Cobos-Silva. E-Mail: mac@xanum.uam.mx

1 Introducción

Tanto el método heurístico denominado Colonia de Abejas Artificiales (ABC) como el método de Optimización por Enjambre de Partículas, se consideran dentro de los métodos de inteligencia de enjambre. Los métodos basados en inteligencia de enjambres han sido utilizados exitosamente para resolver diferentes problemas de optimización general. El objetivo de este trabajo es presentar las heurísticas ABC y PSO para resolver el problema de encontrar los valores de los parámetros en el problema de regresión no lineal utilizando el criterio de mínimos cuadrados.

En [3] se describe la regresión no lineal, de la misma forma que la abordamos en el presente trabajo. Denotamos $x=(x_1,x_2,\ldots,x_m)$ a las variables explicativas e y a la variable a explicar, todas observadas sobre n objetos, $y=f(x,\theta)+\epsilon$ es la relación funcional entre x e y, donde f es en general una función no lineal y $\theta=(\theta_1,\theta_2,\ldots,\theta_p)$ es el vector de parámetros. Se quiere minimizar

$$S(\theta) = \|y - f(x, \theta)\|^2 = \sum_{i} [y_i - f(x_i, \theta)]^2$$
 (1)

donde $\|\cdot\|$ es la norma euclideana usual. Se denota D el espacio de búsqueda definido como $D=\prod_i [\theta_{min_j},\theta_{max_j}],\theta_{min_j}<\theta_{max_j},$ $i=1,2\ldots,p,$ y $\theta^*=\mathrm{argmin}_{\theta\in D}S(\theta)$ el óptimo buscado. Es sabido que existen algoritmos iterativos deterministas para encontrar soluciones en el problema de regresión no linea, (Por ejemplo, Levenberg-Maquardt o Gauss-Newton) que pueden utilizarse en paquetes estadísticos, pero fallan para encontrar las soluciones óptimas del problema [4].

Por lo anterior, hemos abordado el problema usando metaheurísticas de optimización combinatoria. En [3] se presentó el método ABC para regresión no lineal. Detalles de la heurística se encuentran también en [5]. En el presente artículo abordamos el problema con la optimización por enjambres de partículas. En la Sección 2, se describe PSO y su implementación; en la Sección 3 se presentan los resultados obtenidos de aplicar las heurísticas propuestas a las bases de datos muy conocidas NIST(2001) [9]; finalmente, en la Sección 4 se proporcionan las conclusiones.

2 Optimización por enjambre de partículas

La Optimización por Enjambre de Partículas (PSO) es un método que también corresponde al tipo de inteligencia de enjambre, tiene sus raíces en la vida artificial, psicología social, ingeniería y ciencia de la computación. PSO difiere de la computación evolutiva (c.f. [6], [7]) en que los miembros de la población llamados partículas o agentes, están "volando" a través del hiperespacio del problema.

PSO es un método adaptativo que utiliza agentes o partículas que se mueven a través del espacio de búsqueda utilizando los principios de: Evaluación, Comparación e Imitación (c.f. [6], [7]):

- 1. Evaluación: La tendencia al estímulo de evaluar, es la principal característica de los organismos vivos. El aprendizaje no ocurre a menos que el organismo pueda evaluar, pueda distinguir características del medio ambiente que atraen o características que repelen. Desde este punto de vista, el aprendizaje puede definirse como un cambio que posibilita al organismo mejorar la evaluación promedio de su medio ambiente.
- 2. Comparación: Los estándares del comportamiento social se realizan mediante la comparación con otros.
- 3. Imitación: Lorenz asegura que sólo los seres humanos y algunas aves son capaces de imitar. La imitación es central para la adquisición y mantenimiento de las habilidades mentales.

PSO se basa en el uso de un conjunto de partículas o agentes que corresponden a estados de un problema de optimización, donde cada partícula se moverá en el espacio de soluciones en busca de una posición óptima o una buena solución. En PSO los agentes se comunican entre sí, y entonces el agente con una mejor posición (medida de acuerdo a una función objetivo) influye en los demás atrayéndolos hacia él.

La población se inicializa asignando a las variables una posicón y una velocidad de manera aleatoria. En cada iteración, la velocidad de cada partícula es aleatoriamente acelerada hacia su mejor posición (donde el valor de la función de aptitud u objetivo es mejor) y a través de las mejores posiciones de sus vecinos.

Para resolver los problemas, se propone utilizar PSO con un manejo dinámico de las partículas, lo que permite romper ciclos y diversificar la búsqueda. Para resolver este problema, se considerará que un enjambre de r partículas-solución al tiempo t está dado de la forma:

$$\theta_{i,t} = (\theta_{i1,t}, \theta_{i2,t}, \dots, \theta_{ip,t}),$$

con $\theta_{j,t} \in D, j = 1, 2, ..., r$, entonces definimos un movimiento del enjambre de la forma:

$$\theta_{i,t+1} = \theta_{i,t} + V_{i,t+1} \text{ para } j = 1, 2, \dots, r$$
 (2)

donde la velocidad $V_{j,t+1}$ está dada por:

$$V_{j,t+1} = \alpha V_{j,t} + \text{rand}(0, \varphi_1)[\theta'_{i,t} - \theta_{j,t}] + \text{rand}(0, \varphi_2)[\theta'_{a,t} - \theta_{j,t}]$$
 (3)

donde:

D: Espacio factible de soluciones.

 $V_{i,t}$: Velocidad en el tiempo t de la j-ésima partícula.

 $\theta_{j,t}$: Partícula j-ésima en el tiempo t.

 $\theta_{a,t}^{j}$: Partícula con el mejor valor de todas en el tiempo t.

 $\hat{y}_{i,t}$: Partícula j-ésima con el mejor valor hasta el tiempo t.

 $\operatorname{rand}(0,\varphi)$: Valor aleatorio de distribución uniforme en el intervalo $[0,\varphi]$.

 α : Parámetro de escala.

En la Figura 1 se proporciona el pseudocódigo de PSO.

- 1. Crear una población de partículas distribuidas en el espacio factible.
- 2. Evalúe cada posición de las partículas de acuerdo a una función objetivo (función de aptitud).
- 3. Si la posición actual de una partícula es mejor que las previas, actualícela.
- 4. Determine la mejor partícula (de acuerdo a las mejores posiciones previas).
- 5. Actualice las velocidades de las partículas $j=1,2,\ldots,r$, de acuerdo con la ecuación (3).
- 6. Mueva las partículas a sus nuevas posiciones de acuerdo con la ecuación (2).
- 7. Vaya al paso 2 hasta que el criterio de finalización se satisfaga.

Figura 1: Pseudocódigo de PSO.

 $Rev. Mate. \, Teor. Aplic. \, \, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 21(1) \colon \, 107-126, \, January \,\, 21$

3 Resultados

La bondad de los resultados de los algoritmos propuestos, se estimó mediante la cantidad del número de dígitos duplicados cuando se compararon con los resultados certificados proporcionados en NIST(2001) [9], los cuales se encontraron utilizando algoritmos deterministas iterativos (Levenberg-Maquardt o Gauss-Newton). El número de dígitos duplicados denotados por λ puede ser calculado vía el logaritmo del error relativo (McCullough and Wilson, 2005) calculado como:

$$\lambda = \begin{cases} 0 & \text{si } \frac{|w-c|}{|c|} \ge 1, \\ 1 & \text{si } \frac{|w-c|}{|c|} < 1 \times 10^{-11}, \\ -\log_{10}(\frac{|w-c|}{|c|}) & \text{de otra forma.} \end{cases}$$

donde c denota el valor certificado y w denota el valor estimado por el algoritmo propuesto. De acuerdo con NIST (2001) [9] y [12], a excepción del caso donde el valor certificado sea esencialmente cero, un buen procedimiento por mínimos cuadrados no lineal es el que permite duplicar 4 ó 5 dígitos de los valores certificados. En este trabajo se presentan los resultados considerando el valor de λ obtenido mediante:

$$\lambda = -\log_{10}(\frac{|w-c|}{|c|}).$$

La descripción de las Tablas 1-4 es la siguiente: En la primera y cuarta columnas se proporciona el nombre de la base de datos, debajo se proporciona el valor certificado de la suma de cuadrados del residual, debajo de éste, se proporciona el valor certificado de la desviación de la suma de cuadrados del residual, posteriormente se indica el grado de dificultad y finalmente se indica el número de parámetros (p) y el número (n) de datos de la base de datos. En la columna 2 y 5, se proporciona el mínimo, máximo, promedio y desviación estándar de la suma de cuadrados del residual obtenidos por PSO. En la tercera y sexta columnas se proporcionan los valores de λ máximo, mínimo, promedio y desviación estándar respecto del valor certificado de la suma de cuadrados del residual obtenidos por ABC.

D	PSO		ABC	
Base	Suma de cuadrados	λ	Suma de cuadrados	λ
Misra1a	$1.245513889444 \times 10^{-1}$	10.45	$1.246193236423 \times 10^{-1}$	3.26
$1.2455138894 \times 10^{-1}$	$3.305963310000 \times 10^4$	-5.42	$1.666846200455 \times 10^{-1}$	0.47
$1.0187876330 \times 10^{-1}$	$6.613339187658 \times 10^3$	3.47	$1.337654178727 \times 10^{-1}$	1.51
Lower	$1.335739590000 \times 10^4$ 6.92		$1.040070510000 \times 10^{-2}$	0.72
p = 2, n = 14				
Lanczos3	$1.611773957958 \times 10^{-8}$	4.47	$1.612738445035 \times 10^{-8}$	3.2
$1.6117193594{\times}10^{-8}$	$9.212757949190 \times 10^{-8}$	-0.67	$2.921284365791 \times 10^{-8}$	0.09
$2.9923229172{\times}10^{-5}$	$3.272258321105 \times 10^{-8}$	0.82	$1.991691942054 \times 10^{-8}$	0.78
Lower	$2.392335601412 \times 10^{-8}$	1.35	$2.727544738188 \times 10^{-9}$	0.48
p = 6, n = 24				
Chwirut2	$5.130480294069{\times}10^2$	11.21	$5.130499139667 \times 10^{2}$	5.43
$5.1304802941{\times}10^2$	$5.130480294069 \times 10^2$	11.21	$5.135593488886 \times 10^{2}$	3
3.1717133040	$5.130480294069 \times 10^2$	11.21	$5.130997548199{\times}10^{2}$	4.28
Lower	$3.445231452198 \times 10^{-13}$	0	$7.873300718672 \times 10^{-2}$	0.5
p=3, n=54				
Chwirut1	$2.384477139309 \times 10^{3}$	11.41	$2.384482682801 \times 10^{3}$	5.63
$2.3844771393{\times}10^{3}$	$2.384477139309{\times}10^{3}$	11.41	$2.385633014588{\times}10^{3}$	3.31
3.3616721320	$2.384477139309{\times}10^{3}$	11.41	$2.384620386707{\times}10^{3}$	4.53
Lower	$9.187283872527 \times 10^{-13}$	0	$2.124043232830 \times 10^{-1}$	0.54
p=3, n=214				
Gauss1	$1.315822243216 \times 10^3$	10.92	$1.315822308956 \times 10^{3}$	7.3
$1.3158222432{\times}10^{3}$	$1.413783793264 \times 10^{3}$	1.13	$1.315836860934{\times}10^{3}$	4.95
2.3317980180	$1.321298037271\times10^{3}$	3.77	$1.315825157306 \times 10^{3}$	5.9
Lower	1.623244194298×10	1.87	$3.124346909022 \times 10^{-3}$	0.51
p=8, n=250				
Gauss2	$1.247528209231\!\times\!10^3$	10.6	$1.247559115682 \times 10^3$	4.61
$1.2475282092{\times}10^{3}$	$1.304325716466 \times 10^{3}$	1.34	$1.248227994806{\times}10^{3}$	3.25
2.2704790782	$1.253523922728 \times 10^{3}$	5.25	$1.247811929764 \times 10^{3}$	3.71
Lower	1.389996850182×10	2.86	$1.471730619843 \times 10^{-1}$	0.27
p=8, n=250				
DanWood	$4.317308408291 \times 10^{-3}$	11.68	$4.317365213766 \times 10^{-3}$	-3.21
$4.3173084083{\times}10^{-3}$	$4.317308408291 \times 10^{-3}$	11.68	$4.386038355564 \times 10^{-3}$	-4.96
$3.2853114039{\times}10^{-2}$	$4.317308408291 \times 10^{-3}$	11.68	$4.324373012067 \times 10^{-3}$	-4.28
Lower	$7.357721990853 \times 10^{-18}$	0	$1.343630209328 \times 10^{-5}$	0.45
p=2, n=6				

Tabla 1: Base de datos de dificultad baja, valor certificado del residual de la suma de cuadrados, residual de la suma de cuadrados obtenidos por PSO y por ABC.

	PSO		ABC	
Base Suma de cuadrados		λ	Suma de cuadrados	λ
Misra1b	$7.546468153331 \times 10^{-2}$	11.39	$7.559350183265 \times 10^{-2}$	2.77
$7.5464681533{\times}10^{-2}$	$1.073098623340 \times 10^{-1}$	0.37	$8.462175539905 \times 10^{-2}$	0.92
$7.9301471998{\times}10^{-2}$	$9.648302090675 \times 10^{-2}$	3.95	$7.799216086595 \times 10^{-2}$	1.69
Lower	$1.523776458159 \times 10^{-2}$	5.16	$2.330902998895 \times 10^{-3}$	0.48
p = 2, n = 14				
Kirby2	3.905073962391	11.63	3.946104765227	1.98
3.9050739624	6.079999212644	0.25	5.094707020359	0.52
$1.6354535131{\times}10^{-1}$	4.056078894742	3.09	4.350732767542	1.05
Average	$3.610734610357 \times 10^{-1}$	3.06	$2.737538808890 \times 10^{-1}$	0.34
p=5, n=151				
Hahn1	1.532526370732	4.24	1.541489040249	2.23
1.5324382854	5.901252234224	-0.45	1.734970608737	0.88
$8.1803852243{\times}10^{-2}$	2.027820284781	0.65	1.601320859281	1.44
Average	$5.959214822835 \times 10^{-1}$ 0.57		$4.514250275332 \times 10^{-2}$	0.29
p=7, n=236				
Nelson				
3.7976833176	3.797683317645	10.92	3.797683318961	9.45
$1.7430280130{\times}10^{-1}$	3.797792674675	4.54	3.797684527011	6.5
Average	3.797788300394	4.8	3.797683556328	7.57
p = 3, n = 128	$2.164707787993 \times 10^{-5}$	1.26	$2.850666608633 \times 10^{-7}$	0.68
MGH17	$5.464896513136 \times 10^{-5}$	6.48	$5.510126685313 \times 10^{-5}$	2.08
$5.4648946975{\times}10^{-5}$	$2.102562617070{\times}10^{-4}$	-0.45	$6.545627276916 \times 10^{-5}$	0.7
$1.3970497866{\times}10^{-3}$	$5.778282865737 \times 10^{-5}$	3.69	$5.772841370945 \times 10^{-5}$	1.37
Average	$2.200307021684 \times 10^{-5}$	0.98	$2.371895725404 \times 10^{-6}$	0.33
p = 5, n = 33				
Lanczos1	$1.295054936828 \times 10^{-21}$	-3.96	$1.382856701572 \times 10^{-6}$	-18.99
$1.4307867721\mathrm{E}\text{-}25$	$1.295046442839 \times 10^{-21}$	-3.96	$3.957682176644 \times 10^{-5}$	-20.44
$8.9156129349\mathrm{E-}14$	$1.295051259718 \times 10^{-21}$	-3.96	$1.006299516928 \times 10^{-5}$	-19.73
Average	$1.496783873707 \times 10^{-27}$	0	$7.458526538808 \times 10^{-6}$	0.33
p=6, n=24				
Lanczos1*	$1.295054936828 \times 10^{-21}$	0.17	$1.382856701572 \times 10^{-6}$	0.07
$3.9833194653{\times}10^{-21}$	$1.295046442839 \times 10^{-21}$	0.17	$3.957682176644 \times 10^{-5}$	-4.17
	$1.295051259718 \times 10^{-21}$	0.17	$1.006299516928 \times 10^{-5}$	-3.7
Average	$1.496783873707 \times 10^{-27}$	0	$7.458526538808 \times 10^{-6}$	0.9
p=6, n=2				

Tabla 2: Base de datos de dificultad baja y media, valor certificado del residual de la suma de cuadrados, residual de la suma de cuadrados obtenidos por PSO y por ABC.

	PSO		ABC	
Base	Suma de cuadrados	λ	Suma de cuadrados	λ
Misra1c	$4.096683697064 \times 10^{-2}$	11.08	$4.096694245072 \times 10^{-2}$	5.59
$4.0966836971 \times 10^{-2}$	$4.096683697066 \times 10^{-2}$	11.06	$4.213637584388 \times 10^{-2}$	1.54
$5.8428615257{\times}10^{-2}$	$4.096683697065 \times 10^{-2}$	11.07	$4.103987118660 \times 10^{-2}$	3.23
Average	$3.236850685403 \times 10^{-15}$	0	$1.690854310003 \times 10^{-4}$	0.72
p = 2, n = 14				
Misra1d	$5.641929528264 \times 10^{-2}$	11.19	$5.642158275559 \times 10^{-2}$	4.39
$5.6419295283{\times}10^{-2}$	$5.641929528264 \times 10^{-2}$	11.19	$5.876621833359 \times 10^{-2}$	1.38
$6.8568272111{\times}10^{-2}$	$5.641929528264 \times 10^{-2}$	11.19	$5.678202866268 \times 10^{-2}$	2.49
Average	$6.792564659459 \times 10^{-16}$	0	$4.378418547269 \times 10^{-4}$	0.59
p=2, n=14				
Rozman1	$4.948484739688 \times 10^{-4}$	8.88	$4.948485731697 \times 10^{-4}$	6.7
$4.9484847331{\times}10^{-4}$	$5.508979029679 \times 10^{-4}$	0.95	$4.948633782808 \times 10^{-4}$	4.52
$4.8542984060{\times}10^{-3}$	$4.959798941069 \times 10^{-4}$	5.85	$4.948528623624 \times 10^{-4}$	5.22
Average	$7.925160697281 \times 10^{-6}$ 1.31		$3.357659169081 \times 10^{-9}$	0.44
p = 4, n = 25				
Gauss3	$1.244484649469 \times 10^3$	7.97	$1.244523375708 \times 10^3$	4.51
$1.2444846360{\times}10^3$	$1.646188312266 \times 10^{3}$	0.49	$1.246948560451 \times 10^{3}$	2.7
2.2677077625	$1.270849637283{\times}10^{3}$	2.85	$1.245603605513 \times 10^{3}$	3.14
Average	7.525504880000×10	1.44	$6.196283900000 \times 10^{-1}$	0.33
p = 8, n = 250				
ENZO	$7.885398504963 \times 10^{2}$	7.09	$7.885398513025 \times 10^{2}$	7.09
$7.8853978668{\times}10^{2}$	$7.946959485027 \times 10^{2}$	2.11	$7.885666828890 \times 10^{2}$	4.47
2.2269642403	$7.897752983122 \times 10^2$	3.24	$7.885473874251 \times 10^{2}$	5.17
Average	1.521143160000	0.92	$5.961890590000 \times 10^{-3}$	0.44
p = 9, n = 168				
Bennett5	$5.240477684400 \times 10^{-4}$	6.2	$5.503170754280 \times 10^{-4}$	1.3
$5.2404744073{\times}10^{-4}$	$5.628949120770 \times 10^{-4}$	1.13	$5.959532957649 \times 10^{-3}$	-1.02
$1.8629312528{\times}10^{-3}$	$5.543647602380 \times 10^{-4}$	1.45	$1.438058438700 \times 10^{-3}$	0.08
Higher	$1.452934420000 \times 10^{-5}$	0.82	$1.213937290000 \times 10^{-3}$	0.55
p = 3, n = 154				
	$5.240474407260 \times 10^{-4}$	11.11	$5.251584731240 \times 10^{-4}$	2.67
NP= 500 , Iter= 750	$5.309083342040 \times 10^{-4}$	1.88	$6.017143944460 \times 10^{-4}$	0.83
	$5.256699998900 \times 10^{-4}$	3.66	$5.414732827060 \times 10^{-4}$	1.66
	$1.803804900000 \times 10^{-6}$	2.26	$1.836577370000 \times 10^{-5}$	0.4

Tabla 3: Base de datos de dificultad media y alta, valor certificado del residual de la suma de cuadrados, residual de la suma de cuadrados obtenidos por PSO y por ABC.

	PSO		ABC	
Base	Suma de cuadrados	λ	Suma de cuadrados	λ
BoxBod	$1.168008876556 \times 10^3$	10.42	$1.168008876556 \times 10^3$	10.42
$1.1680088766{\times}10^{3}$	$1.168008876556 \times 10^3$	10.42	$1.168008876556 \times 10^3$	10.42
1.7088072423×10	$1.168008876556 \times 10^3$	10.42	$1.168008876556 \times 10^3$	10.42
Higher	$9.187283870000 \times 10^{-13}$	0	$9.187283870000 \times 10^{-13}$	0
p = 2, n = 6				
Thurber	$5.647605715464 \times 10^3$	3.06	$6.051893227345 \times 10^{3}$	1.14
$5.6427082397{\times}10^3$	$3.690012164221 \times 10^4$	-0.74	$7.150110727061 \times 10^{3}$	0.57
1.3714600784×10	$8.863654651089 \times 10^3$	1.58	$6.523986073918 \times 10^3$	0.83
Higher	$5.749022780000 \times 10^3$	1.35	$2.934594360000 \times 10^{2}$	0.15
p=7, n=37				
Rat42	8.056522933811	11.86	8.056663541871	4.76
8.0565229338	8.056522933811	11.86	8.100043985016	2.27
1.1587725499	8.056522933811	11.86	8.064312308303	3.29
Higher	$1.334139340000 \times 10^{-14}$ 0		$8.825566860000 \times 10^{-3}$	0.56
p = 3, n = 9				
MGH09	$3.075056038490 \times 10^{-4}$	11.6	$3.075166957500 \times 10^{-4}$	4.44
$3.0750560000{\times}10^{-4}$	$3.449098388960 \times 10^{-4}$	0.91	$3.086604947380 \times 10^{-4}$	2.43
$6.6279236551{\times}10^{-3}$	$3.123262566720 \times 10^{-4}$	9.76	$3.079383257800 \times 10^{-4}$	2.99
Higher	$1.229192690000 \times 10^{-5}$	4	$2.968207010000 \times 10^{-7}$	0.41
p = 4, n = 11				
Rat43	$8.786404907963 \times 10^3$	11.38	$8.787393792495 \times 10^3$	3.95
$8.7864049080{\times}10^{3}$	$8.857368521410 \times 10^3$	2.09	$8.809649791088 \times 10^3$	2.58
$2.8262414662{\times}10$	$8.820840093154 \times 10^3$	5.66	$8.793611076676 \times 10^3$	3.2
Higher	3.487044280000×10	4.36	5.184666650000	0.33
p = 4, n = 15				
Eckerle4	$1.463588748727 \times 10^{-3}$	10.73	$1.463588748727 \times 10^{-3}$	10.73
$1.4635887500{\times}10^{-3}$	$3.568629688994 \times 10^{-2}$	-1.37	$1.463588748728 \times 10^{-3}$	10.73
$6.7629245447{\times}10^{-3}$	$2.832497074376 \times 10^{-3}$	10.24	$1.463588748727 \times 10^{-3}$	10.73
Higher	$6.774339350000 \times 10^{-3}$	2.39	$9.508135030000 \times 10^{-18}$	0
p = 3, n = 35				
MGH10	8.794585517014×10	11.11	$1.015920991194 \times 10^{2}$	0.81
$8.7945855171{\times}10$	$5.157096311917{\times}10^2$	-0.69	$3.918718617223 \times 10^4$	-2.65
2.6009740065	$1.825245656858 \times 10^2$	3.43	$7.234996202446 \times 10^3$	-1.63
Higher	$1.404364290000 \!\times\! 10^2$	4.91	$7.841302900000 \times 10^3$	0.59

Tabla 4: Base de datos de dificultad alta, valor certificado del residual de la suma de cuadrados, residual de la suma de cuadrados obtenidos por PSO y por ABC.

La descripción de las Tablas 5-10 es la siguiente: En la primera columna se proporciona el nombre de la base de datos, la dimensión (D), el número de datos (n), en la segunda columna se proporciona el valor certificado de cada uno de los parámetros, en la tercera columna se proporciona a cada lado del valor certificado el correspondiente valor del parámetro que se obtuvo con respecto al mejor valor del de la suma de cuadrados del residual utilizando PSO, al final de éstos se proporciona el mejor valor de la suma de cuadrados del residual. En la cuarta columna se proporciona el valor de λ de cada parámetro. En la quinta columna se proporciona a cada lado del valor certificado el correspondiente valor del parámetro que se obtuvo con respecto al mejor valor del de la suma de cuadrados del residual utilizando ABC, al final de éstos se proporciona el mejor valor de la suma de cuadrados del residual. En la sexta columna se proporciona el valor de λ obtenido para cada parámetro.

Dage	Valor	PSO		ABC	
Base	Certificado		λ		λ
Lanczos3	0.086816415	0.086531397	2.48	0.086519926	2.47
D=6, n=24	0.954981015	0.953313789	2.76	0.953302055	2.75
	0.844007775	0.843503074	3.22	0.843596947	3.31
	2.951595183	2.95	3.27	2.95	3.27
	1.58256859	1.583358371	3.3	1.58327642	3.35
	4.986356508	4.985922425	4.06	4.986030716	4.18
		1.61177×10^{-8}	4.47	1.61274×10^{-8}	3.2
Chwirut2	0.166576665	0.166576666	8.5	0.166523485	3.5
D=3, n=54	0.005165329	0.005165329	10.04	0.005159999	2.99
	0.012150007	0.012150007	8.8	0.012157163	3.23
		513.0480294	11.21	513.049914	5.43
Chwirut1	0.190278184	0.190278184	9.46	0.19030792	3.81
D=3, n=214	0.0061314	0.0061314	9.56	0.006127739	3.22
	0.010530908	0.010530908	9.97	0.010535109	3.4
		2384.477139	11.41	2384.482683	5.63

Tabla 5: Valores de los parámetros: certificados y para el mejor resultado encontrado por PSO y ABC.

D	Valor	PSO		ABC	
Base	Certificado		λ		λ
Gauss1	98.77821087	98.77820003	6.96	98.77836795	5.8
D=8, n=250	0.010497277	0.010497277	9.66	0.010497217	5.25
	100.4899063	100.4899207	6.84	100.4893332	5.24
	67.48111128	67.48111044	7.91	67.48121455	5.82
	23.12977336	23.12977392	7.61	23.12981151	5.78
	71.994503	71.99449037	6.76	71.99374842	4.98
	178.9980502	178.9980468	7.72	178.9980779	6.81
	18.38938903	18.3893937	6.59	18.38901217	4.69
		1315.822243	10.92	1315.822309	7.3
Gauss2	99.01832841	99.01832836	9.33	98.99328621	3.6
D=8, n=250	0.010994945	0.010994945	9.31	0.010985529	3.07
	101.8802253	101.8802257	8.37	101.8597044	3.7
	107.0309552	107.0309551	8.95	107.035375	4.38
	23.57858403	23.5785838	8.01	23.57901082	4.74
	72.04558947	72.04558937	8.86	72.02488829	3.54
	153.2701019	153.2701018	9	153.2737172	4.63
	19.52597264	19.52597287	7.92	19.51685868	3.33
		1247.528209	10.6	1247.559116	4.61
DanWood	0.768862262	0.768862262	10.58	0.769769345	-0.6
D=2, n=6	3.860405587	3.860405587	10.46	3.857887128	0
		0.004317308	11.68	0.004319995	-3.21
Misra1b	337.9974616	337.9974643	8.1	338.4279637	2.89
D=2, n=14	0.000390391	0.000390391	8.04	0.000389823	2.84
		0.075464682	11.39	0.075593502	2.77
Kirby2	1.674506306	1.674506309	8.81	1.720270153	1.56
D=5, n=151	-0.139273979	-0.139273978	8.64	-0.142978764	1.58
	0.002596118	0.002596118	9.37	0.002635191	1.82
	-0.001724181	-0.001724181	8.68	-0.001680215	1.59
	2.16648×10^{-5}	2.16648×10^{-5}	9.28	2.18656×10^{-5}	2.03
		3.905073962	11.63	3.946104765	1.98

Tabla 6: Valores de los parámetros: certificados y para el mejor resultado encontrado por PSO y ABC.

D.	Valor	PSO		ABC	
Base	Certificado		λ		λ
Hahn1	1.077635173	1.097216052	1.74	1.088580551	1.99
D = 7, n = 236	-0.122692969	-0.12406827	1.95	-0.123984089	1.98
	0.004086375	0.004111244	2.22	0.004126634	2.01
	-1.42627×10^{-6}	-1.45164×10^{-6}	1.75	-1.44807×10^{-6}	1.82
	-0.005760994	-0.005764115	3.27	-0.005628725	1.64
	0.000240537	0.000241698	2.32	0.000242009	2.21
	-1.23145×10^{-7}	-1.24413×10^{-7}	1.99	-1.23821×10^{-7}	2.26
		1.532526371	4.24	1.54148904	2.23
Nelson	2.590683602	2.590683602	9.82	2.590679636	-8.66
D=3, n=128	5.6178×10^{-9}	5.6178×10^{-9}	7.6	5.6173×10^{-9}	0
	-0.057701013	-0.057701013	8.8	-0.057701324	5.27
		3.797683318	10.92	3.797683319	9.45
MGH17	0.375410052	0.375415839	4.81	0.375238258	3.34
D=5, n=33	1.935846913	1.936528487	3.45	1.903585397	1.78
	-1.464687137	-1.465373058	3.33	-1.432629598	1.66
	0.012867535	0.012868914	3.97	0.012803233	2.3
	0.0221227	0.022119939	3.9	0.022256428	2.22
		5.4649×10^{-5}	6.48	5.51013×10^{-5}	2.08
Lanczos1	0.0951	0.0951	8.61	0.081197079	0.84
D=6, n=24	1	1.000000002	8.72	0.924148954	1.12
	0.8607	0.860700002	8.72	0.509123319	0.39
	3	3.000000002	9.22	2.550695628	0.82
	1.5576	1.557599998	8.94	1.923877293	0.63
	5	5.000000002	9.42	4.706937548	1.23
		0	-3.96	2.6342×10^{-5}	-18.99
Lanczos2	0.09625103	0.096968788	2.13	0.096919613	2.16
D=6, n=24	1.005733285	1.01	2.37	1.01	2.37
	0.864246891	0.863873272	3.36	0.862519564	2.7
	3.007828392	3.01	3.14	3.008610147	3.59
	1.552901688	1.552555998	3.65	1.553954167	3.17
	5.00287981	5.00272084	4.5	5.001535823	3.57
		6.6×10^{-11}	-0.29	6.453×10^{-10}	-1.45

 $\bf Tabla \ 7: \ Valores de los parámetros: certificados y para el mejor resultado encontrado por PSO y ABC.$

	Valor	PSO		ABC	
Base	Certificado		λ		λ
Gauss3	98.94036897	98.94077526	5.39	98.93826025	4.67
D=8, n=250	0.010945879	0.010945993	4.98	0.010942683	3.53
	100.6955308	100.6954305	6	100.6666992	3.54
	111.6361946	111.6362759	6.14	111.610295	3.63
	23.30050003	23.30062831	5.26	23.27269532	2.92
	73.70503142	73.70516528	5.74	73.7968307	2.9
	147.7616425	147.7617541	6.12	147.7245149	3.6
	19.66822123	19.66833128	5.25	19.68145326	3.17
		1244.484649	7.97	1244.553311	4.26
Misra1c	636.4272581	636.4272579	9.46	636.4437159	4.59
D=2, n=14	0.000208136	0.000208136	9.21	0.00020813	4.5
		0.040966837	11.07	0.040966942	5.59
Misra1d	437.3697075	437.3697075	10.22	437.3195488	3.94
D=2, n=14	0.000302273	0.000302273	10.16	0.000302316	3.85
		0.056419295	11.19	0.056421583	4.39
Rozman1	0.201968664	0.201971734	4.82	0.201944023	3.91
D=4, n=25	-6.19535×10^{-6}	-6.19587×10^{-6}	4.07	-6.19188×10^{-6}	3.25
	1204.455671	1204.44598	5.09	1204.536503	4.17
	-181.3426954	-181.334342	4.34	-181.4098498	3.43
		0.000494848	8.88	0.000494849	6.7
Bennett5	-523.5058043	-2526.39777	2.94	-1876.307545	0.59
D=3, n=154	46.73656464	46.74867212	3.59	43.58993038	1.17
NP = 250	0.932184832	0.931987694	3.67	0.986491249	1.23
Iter = 400		0.000524048	6.2	0.000550317	1.3
Bennett5	-523.5058043	-2523.505008	6.5	-2554.214574	1.91
D=3, n=15	46.73656464	46.73656134	7.15	46.86795044	2.55
NP = 500	0.932184832	0.932184886	7.23	0.930121997	2.66
Iter = 750		0.000524047	11.1	0.000525158	2.67
Misra1a	238.9421292	238.9421283	8.45	238.8110895	3.26
D=2, n=14	0.000550156	0.000550156	8.37	0.000550485	3.22
		0.124551389	10.45	0.124619324	3.26

Tabla 8: Valores de los parámetros: certificados y para el mejor resultado encontrado por PSO y ABC.

	Valor	PSO		ABC	
Base	Certificado		λ		λ
ENZO	10.51074919	10.5106102	4.88	10.51066809	5.11
D=9, n=168	3.076212809	3.075840183	3.92	3.076220033	5.63
	0.532801382	0.532461252	3.19	0.532809943	4.79
	44.3110887	44.3116633	4.89	44.31033411	4.77
	-1.623142859	-1.622957749	3.94	-1.623201567	4.44
	0.525544938	0.525912887	3.15	0.525539769	5.01
	26.88761444	26.88823766	4.63	26.88824378	4.63
	0.212322885	0.213331196	2.32	0.212621165	2.85
	1.496687042	1.496088609	3.4	1.496550104	4.04
		788.5398505	7.09	788.5398513	7.09
BoxBod	213.8094089	213.8094089	11.38	213.8094089	10.66
D=2, n=6	0.547237485	0.547237485	9.6	0.547237485	8.78
		1168.008877	10.42	1168.008877	10.42
Thurber	1288.13968	1288.084808	4.37	1290.61586	2.72
D=7, n=37	1491.079254	1495.513925	2.53	1457.434288	1.65
	583.2383688	586.6264085	2.24	558.6255239	1.37
	75.41664429	76.06167392	2.07	70.43208475	1.18
	0.966295029	0.970396068	2.37	0.944114594	1.64
	0.397972858	0.4	2.29	0.388655715	1.63
	0.049727297	0.05	2.26	0.042156746	0.82
		5647.605715	3.06	6051.893227	1.14
Rat42	72.46223758	72.4622376	9.5	72.46585726	4.3
D=3, n=9	2.61807684	2.61807684	9.95	2.618764127	3.58
	0.0673592	0.0673592	10.31	0.067371647	3.73
		8.056522934	11.86	8.056663542	4.76
MGH09	0.192806935	0.192806935	10.23	0.19292362	3.22
D=4, n=11	0.191282329	0.19128233	8.32	0.19111961	3.07
	0.123056507	0.123056508	8.22	0.12404401	2.1
	0.136062331	0.136062331	8.68	0.135840243	2.79
		0.000307506	11.6	0.000307517	4.44

 $\bf Tabla \ 9: \ Valores de los parámetros: certificados y para el mejor resultado encontrado por PSO y ABC.$

 $Rev. Mate. \, Teor. Aplic. \, \, ({\rm ISSN} \,\, 1409\text{-}2433) \,\, {\rm Vol.} \,\, 21(1) \colon \, 107\text{--}126, \, {\rm January} \,\, 2014$

Base	Valor	PSO		ABC	
Dase	Certificado		λ		λ
Rat43	699.6415127	699.6415127	10.33	699.940423	3.37
D=4, n=15	5.277125303	5.277125273	8.26	5.251649851	2.32
	0.759629383	0.75962938	8.42	0.756347439	2.36
	1.279248386	1.279248378	8.2	1.274506418	2.43
		8786.404908	11.38	8787.393792	3.95
Eckerle4	1.554382718	1.554382718	10.05	1.554382716	8.88
D=3, n=35	4.088832175	4.088832176	9.81	4.088832175	10.58
	451.5412184	451.5412184	11.26	451.5412184	11.56
		0.001463589	10.73	0.001463589	10.73
MGH10	0.005609636	0.005609637	7.18	0.005834986	1.4
D=3, n=16	6181.346346	6181.346292	8.06	6148.635513	2.28
	345.2236346	345.2236328	8.29	344.1237721	2.5
		87.94585517	11.11	101.5920991	0.81

Tabla 10: Valores de los parámetros: certificados y para el mejor resultado encontrado por PSO y ABC.

Se realizaron 50 corridas considerando una población de 250 partículas y 400 iteraciones por corrida para ABC y PSO utilizando los intervalos de búsqueda, que se presentan en la Tabla 11, los cuales por lo general contenían los valores de inicio (starting values) reportados en la literatura e incluyeron al mejor valor reportado.

En la Tabla 12 se presentan los valores de λ promedio y de la desviación estándar de λ calculados sobre las λ promedio dados en las Tablas 1–4, no se consideraron los valores obtenidos para Lanczos1.

Base	Cota inferior	Cota superior
Chwirut1	[0, 0, 0]	[0.2, 0.015, 0.025]
MGH09	[0,0,0,0]	[0.25, 0.39, 0.415, 0.39]
Gauss3	[94, 0, 80, 110, 20, 72, 140,	[100, 0.1, 105, 113, 25, 75,
	15]	150, 25]
RAT43	[500,5,0.75,1]	[800,10,1,1.5]
ENZO	[10,3, 0 .5,40,-2,-1.3,25,-	[11,4,0.6,45,-0.7,1,30,.5,1.5]
	[.1,1.4]	
Eckerle	[1,0 400]	[2,10,500]
MGH17	[0.3, 1.9, -1.5, 0.01, 0.02]	[0.4, 2, -1.4, 0.02, 0.03]
MGH10	[0,6000,300]	[0.05,6300,400]
Thurber	[1200, 1000, 500, 40, 0.7, 0.3,	[1300, 1500, 600, 80, 1, 0.4,
	0.03]	0.05]
BoxBOD	[100,0]	[300,1]
Roszman1	$[0.015, -7 \times 10^{-6}, 1200,$	$[0.22, -5 \times 10^{-6}, 1210, -181]$
	[-182]	_
Nelson	$[2.5, 5 \times 10^{-9},06]$	$[2.7, 6 \times 10^{-9},05]$
Lanczos3	[-1, -1, 0, 1, 0, 3]	[1.5, 1.5, 5.6, 5.5, 6.5, 7.6]
Rat42	[70,1,0.04]	[100,3,0.1]
Chwirut2	[0, 0, 0]	[0.2, 0.015, 0.015]
Gauss1	I =	
3.51 41	_	-
	, ,	
Gauss2		· ·
3.61 4	1	, ,
		2
Kirby2		2
Miana 1 d	1	•
	, ,	. ,
	, ,	
11411111		
Bennett5		
201102001	[[0.00, 1, 0.0, 0, 1.0, 0]	3.0000000002, 1.6, 5.0000000002
DanWood Gauss1 Misra1b Gauss2 Misra1c Kirby2 Misra1d Lanczos2 Misra1a Hahn1 Bennett5 Lanczos1	$ \begin{bmatrix} 0.7,3 \\ [94,0,98,62,20,70,178,16.5] \\ [300,.0001] \\ [90,0,100,104,17,70,148,18] \\ [500,0.0001] \\ [1.5,-0.15,0.0025,-0.002,0.00001] \\ [400,0.0001] \\ [400,0.0001] \\ [0.09,0.9,0.8,3,1.5,5] \\ [200,0] \\ [1,-0.2,0.0035,-0.000001,-0.006,0.0002,-0.0000002] \\ [-3000,45,0.8] \\ [0.09,1,0.8,3,1.5,5] $	[1, 5] [99, 0.02, 101, 70, 25, 72, 180, 20] [500, .0004] [100, 0.015, 104, 108, 25, 74, 155, 21] [650, .00025] [2, -0.1, 0.003, -0.001, 0.00003] [500, 0.00035] [0.1,1.01,0.9,3.01,1.6,5.01] [500,0.5] [1.1, -0.1, 0.005, -0.0000002, -0.005, 0.0003, -0.00000001] [-2000,50,1] [0.1,1.0000000002,0.9, 3.00000002]

Tabla 11: Intervalos de búsqueda para los parámetros.

	PSO	ABC
Promedio	6.18	3.21
Desv. Estrd.	3.89	3.27

Tabla 12: Desempeño de PSO y ABC.

4 Conclusiones

Se utilizaron las heurísticas de enjambres para optimización conocidas como Optimización por Enjambres de Partículas y Colonia de Abejas Artificiales para encontrar los valores de los parámetros en problemas de regresión no lineal bien conocidos.

En general, para encontrar los valores de los parámetros en problemas de regresión no lineal, la utilización de ABC no proporciona tan buenos resultados como PSO debido a que PSO tiene la ventaja de poder salir con mayor facilidad de regiones suboptimales, sin embargo, ABC proporciona intervalos más compactos.

De acuerdo con NIST(2001) [9] y [12], a excepción del caso donde el valor certificado sea esencialmente cero, un buen procedimiento por mínimos cuadrados no lineal es el que permite duplicar 4 ó 5 dígitos de los valores certificados; lo cual es conseguido por las aproximaciones obtenidas mediante ABC en alrededor del 30% de los casos, sin importar su grado de dificultad (8 de las 27 bases de datos), como se puede apreciar en las Tablas 3-6. Por otro lado, los resultados utilizando PSO son mejores.

En la Tabla 15 se presentan los valores promedio y desviación estándar de las λ obtenidas por PSO y ABC en todos los casos, excepto para Lanczos1. Se observa que PSO casi duplica el valor promedio obtenido por ABC, lo cual implica que fue capaz de encontrar soluciones de mejor calidad. Mientras que la desviación estándar de ambos algoritmos es semejante, lo cual indica una robustez similar.

Cabe mencionar que la gran ventaja tanto de ABC como de PSO, es su fácil implementación y sus cortos tiempos de ejecución, un trabajo posterior será la implementación en paralelo, lo cual ayudará a mejorar los tiempos y a la vez poder modificar la cantidad de abejas o de partículas para mejorar la calidad de las soluciones generadas.

Referencias

- [1] Abbass, H.A. (2001) "Marriage in honey-bee optimization (MBO): a haplometrosis polygynous swarming approach", en: *Proceedings The Congress on Evolutionary Computation (CEC2001)*, Seoul, Korea: 207–214.
- [2] Afshar, A.; Bozog Haddad, O; Marino, M.A.; Adams, B.J. (2007) "Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation", *Journal of the Franklin Institute* **344**: 452–462.
- [3] de los Cobos, S.; Gutiérrez, M.A.; Rincón, E.; Lara, P.; Aguilar, M. (2012) "Estimación de parámetros de regresión no lineal mediante colonia de abejas artificiales" Revista de Matemática: Teoría y Aplicaciones 20(1): 49–60.
- [4] Draper, N.R.; Smith, H. (1998) Applied Regression Analysis. Wiley, New York.
- [5] Karaboga D.; Akay, B. (2007) "Artificial bee colony (ABC) algorithm on training artificial neural networks", en: *Proceedings of 15th IEEE Signal Processing and Communications Applications*: 1–4.
- [6] Kennedy, J.; Eberhart, R.C. (2000), *Intelligent Swarm Systems*. Academic Press, New York, USA.
- [7] Kennedy, J.; Eberhart, R.C.; Shi Y. (2001) Swarm Intelligence. Morgan Kaufmann, San Francisco, USA.
- [8] McCullough, B.D.; Wilson, B. (2005) "On the accuracy of stastistical procedures in Microsoft Excel 2003", Comput. Stast. and Data Anal. 49: 1244–1252.
- [9] NIST (2001), en: http://www.itl.nist.gov/div898/strd/general/dataarchive.html, consultada 20-Feb-2012, 11:35 a.m.
- [10] Ozturk, C.; Karaboga, D. (2008) "Classifications by neural networks and clustering with artificial bee colony (ABC) algorithm", en: Proceedings of the 6th International Symposium on Intelligent and Manufacturing Systems, Features, Strategies and Innovation, Sakarya, Turkey.

 $Rev. Mate. \, Teor. Aplic. \, \, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 2014 \,\, (ISSN \,\, 1409-2433) \,\, Vol. \,\, 21(1) \colon \, 107-126, \, January \,\, 21(1) \colon \, 107-126, \, January \,\, 21$

- [11] Pham, D.T.; Koc, E.; Lee, J.Y.; Phrueksanant, J. (2007) "Using the bees algorithm to schedule jobs for a machine", en: *Proceedings Eighth International Conference on Laser Metrology, CMM and Machine Tool Performance*, LAMDAMAP, Euspen, UK, Cardiff: 430–439.
- [12] Tvrdík, J. (2009) "Adaptation in differential evolution: a numerical comparison", Applied Soft Computing 9: 1149–1155.