ITCS 531: LA2 homework solutions

Rob Egrot

LA2 Q3 (1)

Let U and W be subspaces of V and suppose that $V = U \oplus W$. Let (u_1, \ldots, u_k) be a basis for U, and let (w_1, \ldots, w_m) be a basis for W. Prove that $(u_1, \ldots, u_k, w_1, \ldots, w_m)$ is a basis for V.

- We will first show that $(u_1, \ldots, u_k, w_1, \ldots, w_m)$ is linearly independent.
- Suppose $0 = a_1u_1 + \ldots + a_ku_k + b_1w_1 + \ldots + b_mw_m$.
- Since $U \oplus W$ is a direct sum, by definition there is a unique $u \in U$ and $w \in W$ with u + w = 0, and this must be u = 0 and w = 0.
- So $b_1w_1 + \ldots + b_mw_m = 0$ and $a_1u_1 + \ldots + a_ku_k = 0$.
- But (u_1, \ldots, u_k) is a basis for U and (w_1, \ldots, w_m) is a basis for W, so $a_1 = \ldots = a_k = b_1 = \ldots = b_m = 0$.
- ▶ But this means $(u_1, ..., u_k, w_1, ..., w_m)$ is linearly independent as claimed.

LA2 Q3 (2)

Let U and W be subspaces of V and suppose that $V = U \oplus W$. Let (u_1, \ldots, u_k) be a basis for U, and let (w_1, \ldots, w_m) be a basis for W. Prove that $(u_1, \ldots, u_k, w_1, \ldots, w_m)$ is a basis for V.

- Now we show the list spans V.
- ightharpoonup Let $v \in V$.
- ▶ Then there is $u \in U$ and $w \in W$ with v = u + w.
- So, as (u_1, \ldots, u_k) and (w_1, \ldots, w_m) span U and W respectively, we have $b_1w_1 + \ldots + b_mw_m = w$ and $a_1u_1 + \ldots + a_ku_k = u$, for some choice of coefficients.
- But this means $v = a_1u_1 + ... + a_ku_k + b_1w_1 + ... + b_mw_m$, so the list does span v.

LA2 Q4

Let U and W be subspaces of \mathbb{R}^8 , and suppose $\dim(U) = 5$, $\dim(W) = 3$, and $U \cap W = \{0\}$. Prove that $\mathbb{R}^8 = U \oplus W$.

- Let (u_1, \ldots, u_5) be a basis for U, and let (w_1, w_2, w_3) be a basis for W.
- ▶ By lemma 1.14, U + W is a direct sum, so $(u_1, \ldots, u_5, w_1, w_2, w_3)$ is linearly independent.
- ▶ It also has 8 elements, which is the dimension of \mathbb{R}^8 .
- ▶ So, by theorem 2.11, $(u_1, \ldots, u_5, w_1, w_2, w_3)$ is a basis for \mathbb{R}^8 , and so $U \oplus W = \mathbb{R}^8$.

LA2 Q5

Let V be a finite dimensional vector space and $\dim(V) = n > 0$. Show that $V = U_1 \oplus \ldots \oplus U_n$, for some set $\{U_1, \ldots, U_n\}$ of one-dimensional subspaces.

- ▶ Let $(v_1, ..., v_n)$ be a basis for V.
- ▶ For each $i \in \{1..., n\}$, let $U_i = \text{span}(v_i)$.
- ▶ Then $V = U_1 + ... + U_n$, as a basis spans V, by definition.
- Also, if $0 = a_1v_n + \ldots + a_nv_n$ then $a_1 = \ldots = a_n = 0$, by linear independence, so the sum is direct, by lemma 1.13.

L4 Q2 (1)

Let $\mathscr{L}=\{0,1,+,\times\}$ be the language of basic arithmetic. Let $\phi=\forall x(\neg(x\approx 0)\to \exists y(x\times y\approx 1))$. Let $\mathbb N$ and $\mathbb R$ have their usual meanings, and interpret $\mathscr L$ into these languages by giving the non-logical symbols of $\mathscr L$ their usual meanings.

- a) Does $\mathbb{N} \models \phi$?
- b) Does $\mathbb{R} \models \phi$?
- lackbox ϕ is the statement that every non-zero element has an inverse.
- ▶ This is not true in \mathbb{N} , but it is true in \mathbb{R} .

L4 Q2 (2)

- c) Let $n \in \mathbb{N}$ with $n \geq 2$, and let \mathbb{Z}_n be the integers mod n. For what values of n does $\mathbb{Z}_n \models \phi$?
- d) Let $A = (\{a, b\}, I)$, where I interprets 0 and 1 as a and b respectively, $b \times b = b$, and $a \times b = a \times a = a$. Does $A \models \phi$?
- ▶ Remember in \mathbb{Z}_n , an element has an inverse iff it is coprime with n.
- So $\mathbb{Z} \models \phi$ iff every non-zero element is coprime with n. I.e. iff n is prime.
- ▶ In the structure *A*, the only non-zero element is *b*.
- ▶ Does b have an inverse? Yes, because $b \times b = b = 1$.
- ightharpoonup So $A \models \phi$.

L4 Q2 (3)

- e) Let $\psi = \exists x \forall y (\neg (y \approx 0) \rightarrow (x \times y \approx 1))$. Which of the structures in parts a)-d) is a model for ψ ?
- $m{\psi}$ is the statement that there's an element which is an inverse to all non-zero elements.
- ▶ This is clearly not true in \mathbb{N} , \mathbb{R} or \mathbb{Z}_n for n > 2.
- $ightharpoonup \mathbb{Z}_2 \models \psi$ as 1 is the only non-zero element of \mathbb{Z}_2 .
- ψ is true in A, as b is the only non-zero element of A, and $b \times b = b = 1$.

L4 Q3 (1)

Let R and S be unary predicates. Let $\phi = \forall x R(x) \lor \forall x S(x)$, and let $\psi = \forall x \forall y (R(x) \lor S(y))$. Prove that $\phi \models \exists \psi$.

- Let A be a structure of the appropriate kind.
- ▶ Suppose first that $A \models \phi$.
- ► Then either every element of A satisfies R, or every element of A satisfies S.
- ▶ In the former case, for every pair of elements $a, b \in A$ we must have $R(a) \vee S(b)$, because R(a) must be true.
- ▶ So $A \models \forall x \forall y (R(x) \lor S(y))$. This shows $\phi \models \psi$.

L4 Q3 (2)

Let R and S be unary predicates. Let $\phi = \forall x R(x) \lor \forall x S(x)$, and let $\psi = \forall x \forall y (R(x) \lor S(y))$. Prove that $\phi \models = |\psi$.

- ▶ Conversely, suppose $A \models \psi$.
- ▶ Suppose wlog that A does not satisfy $\forall x R(x)$.
- ▶ Then there is $a \in A$ with $A \not\models R(a)$. I.e. R(a) is not true.
- ▶ As $A \models \forall x \forall y (R(x) \lor S(y))$, $A \models \forall y (R(a) \lor S(y))$.
- ▶ As R(a) is not true in A, it follows that $A \models \forall y S(y)$.
- ▶ By changing the variable name we have $A \models \forall x S(x)$, and so $A \models \forall x R(x) \lor \forall x S(x)$.
- ▶ This shows $\psi \models \phi$, and we are done.

L4 Q4 (1)

Let ϕ be an \mathscr{L} -formula, let A be an \mathscr{L} -structure, and let v be an assignment for \mathscr{L} to A with $A, v \models \phi$. Prove that $A, u \models \phi$ for all assignments u such that u(x) = v(x) for all variables x occurring free in ϕ .

- We induct on formula construction.
- ▶ It's obviously true for atomic formulas, because these have no bound variables.
- **Suppose** now that it's true for formulas ϕ and ψ .

L4 Q4 (2)

- $\neg \phi$: Suppose $A, v \models \neg \phi$.
 - ▶ Then $A, v \not\models \phi$.
 - \triangleright Suppose that u agrees with v about the free variables of ϕ .
 - If $A, u \models \phi$, by the inductive hypothesis we would have $A, v \models \phi$, which would be a contradiction.
 - ▶ So we must have $A, u \models \neg \phi$ as required.
- $\phi \lor \psi$ Suppose $A, v \models \phi \lor \psi$.
 - ▶ Then, wlog we can assume that $A, v \models \phi$.
 - Let u be an assignment agreeing with v about the free variables of $\phi \vee \psi$.
 - ightharpoonup Then u agrees with v about the free variables of ϕ .
 - So $A, u \models \phi$, and thus $A, u \models \phi \lor \psi$ as required.

L4 Q4 (3)

- $\forall x \phi$: Suppose A, $v \models \forall x \phi$, and let u be an assignment agreeing with v about the free variables of $\forall x \phi$.
 - ▶ We must show that $A, u \models \forall x \phi$.
 - ▶ I.e. that $A, u' \models \phi$ for all u' agreeing with u except possibly at Χ.
 - Let u' be such an assignment, and let v' be an assignment agreeing with v except possibly at x, where we define v'(x) = u'(x).
 - \triangleright Then, if F is the set of variables occurring free in ϕ , we have
 - \triangleright v' agrees with v on $F \setminus \{x\}$.
 - ightharpoonup u agrees with v on $F \setminus \{x\}$.
 - ightharpoonup u' agrees with u on $F \setminus \{x\}$.
 - \triangleright u' agrees with v' on F.
 - ► So.

$$A, v \models \forall x \phi \implies A, v' \models \phi$$
 (by definition of \models)
 $\implies A, u' \models \phi$ (by the inductive hypothesis),

 \blacktriangleright And so $A, u \models \forall x \phi$ as required.