Tarea Numero 4

Jose Sarango

Tabla de Contenidos

Conjunto de ejercicios	2
1. Use el método de bisección para encontrar soluciones precisas dentro de 10^{-2} p	ara
$x^3 - 7x^2 + 14x - 6 = 0$	
en cada intervalo	2 3 5 7
Ejercicios Aplicados	11
1. Un abrevadero de longitud tiene una sección transversal en forma de semicírculo con radio . (Consulte la figura adjunta.) Cuando se llena con agua hasta una distancia a partir de la parte superior, el volumen de agua es:	11
2.Un objeto que cae verticalmente a través del aire está sujeto a una resistencia viscosa, así como a la fuerza de gravedad. Suponga que un objeto con masa cae desde una altura S_0 y que la altura del objeto después de segundos es:	12
Ejercicios Teoricos	13
1. Use el teorema 2.1 para encontrar una cota para el número de iteraciones necesarias para lograr una aproximación con precisión de 10^-4 para la solución de $x^3 - x - 1 = 0$ que se encuentra dentro del intervalo [1, 2].	
Encuentre una aproximación para la raíz con este grado de precisión $2.$ La función definida por () = sin tiene ceros en cada entero. Muestre cuando	13
-1 < < 0 y $2 < < 3$, el método de bisección converge a:	14

Conjunto de ejercicios

1. Use el método de bisección para encontrar soluciones precisas dentro de $10^{-2}\,\mathrm{para}$

$$x^3 - 7x^2 + 14x - 6 = 0$$

en cada intervalo.

```
a. [0;1]b. [1;3.2]c. [3.2;4]
```

```
import math
def f(x):
    return x**3 - 7*x**2 + 14*x - 6
def bisection(a, b, tol=1e-2, max_iter=100):
    Función que implementa el método de bisección para encontrar una raíz de f(x) = 0 en el
    dentro de la tolerancia 'tol' y con un máximo de 'max_iter' iteraciones.
    if f(a) * f(b) >= 0:
        print("La función no cambia de signo en el intervalo dado.")
        return None
    for i in range(max_iter):
        c = (a + b) / 2
        if abs(f(c)) < tol:
            print(f"Se encontró una aproximación de la raíz en {i+1} iteraciones.")
            return c
        elif f(a) * f(c) < 0:
            b = c
        else:
            a = c
    print(f"El método no converge después de {max_iter} iteraciones.")
    return None
# Definición de los intervalos y parámetros
intervalos = [(0, 1), (1, 3.2), (3.2, 4)]
tol = 1e-2
max_iter = 100
```

```
# Iteración sobre cada intervalo
for a, b in intervalos:
    root = bisection(a, b, tol, max_iter)
    if root is not None:
        print(f"Una aproximación de la raíz en el intervalo [{a}, {b}] con tolerancia {tol} print(f"El valor de la función en la raíz aproximada es: {f(root):.4f}")
    print() # Línea en blanco para separar resultados
```

Se encontró una aproximación de la raíz en 7 iteraciones. Una aproximación de la raíz en el intervalo [0, 1] con tolerancia 0.01 es: 0.5859 El valor de la función en la raíz aproximada es: 0.0010

Se encontró una aproximación de la raíz en 5 iteraciones. Una aproximación de la raíz en el intervalo [1, 3.2] con tolerancia 0.01 es: 2.9938 El valor de la función en la raíz aproximada es: 0.0063

Se encontró una aproximación de la raíz en 6 iteraciones. Una aproximación de la raíz en el intervalo [3.2, 4] con tolerancia 0.01 es: 3.4125 El valor de la función en la raíz aproximada es: -0.0020

2. a. Dibuje las gráficas para $= y = \sin x$.

```
import numpy as np
import matplotlib.pyplot as plt

# Función para graficar y = x y y = 2*sin(x)

def graficar_funciones():
    x = np.linspace(0, 2 * np.pi, 1000)
    y1 = x
    y2 = 2 * np.sin(x)

plt.figure(figsize=(8, 6))
    plt.plot(x, y1, label='y = x')
    plt.plot(x, y2, label='y = 2*sin(x)')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.title('Gráficas de y = x y y = 2*sin(x)')
    plt.legend()
    plt.grid(True)
```

```
plt.show()
graficar_funciones()
```

Gráficas de y = x y y = 2*sin(x)

b. Use el método de bisección para encontrar soluciones precisas dentro de $10^{-}(-5)$ para el primer valor positivo de con = $2 \sin x$.

```
import numpy as np
import math
```

```
def metodo_biseccion(funcion, a, b, tolerancia):
   if funcion(a) * funcion(b) >= 0:
      print("El método de bisección no puede aplicarse en este intervalo.")
      return None, 0 # Retornamos también el número de iteraciones como 0
```

```
iteraciones = 0 # Inicializamos el contador de iteraciones
    while abs(b - a) > tolerancia:
        iteraciones += 1 # Incrementamos el contador de iteraciones
        c = (a + b) / 2
        if funcion(c) == 0:
            return c, iteraciones
        elif funcion(a) * funcion(c) < 0:</pre>
           b = c
        else:
            a = c
    return (a + b) / 2, iteraciones # Retornamos la solución y el número de iteraciones
# Función para la ecuación x = 2 * sin(x)
def ecuacion(x):
    return x - 2 * np.sin(x)
# Encontrar la solución de x = 2 * sin(x) usando el método de bisección
a = 1 # Límite inferior del intervalo
b = 2  # Límite superior del intervalo (el primer cruce está en [0, 2])
tolerancia = 1e-5 # Tolerancia de 10^-5
solucion, iteraciones = metodo_biseccion(ecuacion, a, b, tolerancia)
if solucion is not None:
   print(f"La solución aproximada es: x = {solucion:.5f}")
    print(f"Número de iteraciones: {iteraciones}")
else:
   print("No se encontró una solución en el intervalo dado.")
```

La solución aproximada es: x = 1.89550Número de iteraciones: 17

3. a. Dibuje las gráficas para = y = tan.

```
import numpy as np
import matplotlib.pyplot as plt

# Función para graficar y = x y y = tan(x)
def graficar_funciones():
```

```
x = np.linspace(-2 * np.pi, 2 * np.pi, 1000)
y1 = x
y2 = np.tan(x)

plt.figure(figsize=(8, 6))
plt.plot(x, y1, label='y = x')
plt.plot(x, y2, label='y = tan(x)')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Gráficas de y = x y y = tan(x)')
plt.ylim(-10, 10)  # Establecer límites en y para una mejor visualización
plt.legend()
plt.grid(True)
plt.show()

graficar_funciones()
```


b. Use el método de bisección para encontrar una aproximación dentro de 10^-5 para el primer valor positivo de con = tan .

```
import math
def bisection_method(tol):
    a = 1
    b = 2
    iterations = 0
    while (b - a) > tol:
        iterations += 1
        c = (a + b) / 2
        fc = math.tan(c) - c
        if abs(fc) <= tol:</pre>
            return c, iterations
        elif math.tan(a) * fc < 0:</pre>
            b = c
        else:
            a = c
    return (a + b) / 2, iterations
tolerance = 1e-5
approximation, iterations = bisection_method(tolerance)
print("Aproximación dentro de 10^(-5) para x = tan(x):", approximation)
print("Número de iteraciones:", iterations)
```

Aproximación dentro de 10^{-5} para x = tan(x): 1.5707969665527344 Número de iteraciones: 17

4. a. Dibuje las gráficas \$ y = $x^2 - 1$ \$ y $y = e^{(1-x^2)}$.

```
import numpy as np
import matplotlib.pyplot as plt

def graficar_funciones():
    x = np.linspace(-2, 2, 1000)
```

```
y1 = x**2 - 1
y2 = np.exp(1 - x**2)

plt.figure(figsize=(8, 6))
plt.plot(x, y1, label='y = x^2 - 1')
plt.plot(x, y2, label='y = e^(1-x^2)')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Gráficas de y = x^2 - 1 y y = e^(1-x^2)')
plt.legend()
plt.grid(True)
plt.show()
graficar_funciones()
```


b. Use el método de bisección para encontrar una aproximación dentro de $10^{(}-5)$

para un valor en [-2, 0] con $x^2 - 1 = e^{(1-x^2)}$

```
import numpy as np
def f(x):
   return x**2 - 1 - np.exp(1 - x**2)
def bisection(f, a, b, tol):
    if f(a) * f(b) >= 0:
        print("La función no cambia de signo en el intervalo dado.")
        return None, 0 # Agregar un 0 para indicar ninguna iteración
    c = a
    iterations = 0 # Inicializar el contador de iteraciones
    while (b - a) >= tol:
        c = (a + b) / 2
        iterations += 1 # Incrementar el contador de iteraciones
        if f(c) == 0.0:
            break
        if f(c) * f(a) < 0:
            b = c
        else:
            a = c
    return c, iterations # Devolver la aproximación y el número de iteraciones
# Intervalo [-2, 0]
a = -2
b = 0
tol = 1e-5
root, iterations = bisection(f, a, b, tol)
if root is not None:
   print(f"Una aproximación para la raíz en el intervalo [{a}, {b}] con tolerancia {tol} es
   print(f"Número de iteraciones realizadas: {iterations}")
else:
   print("No se encontró una raíz en el intervalo dado.")
```

Una aproximación para la raíz en el intervalo [-2, 0] con tolerancia 1e-05 es: -1.25185 Número de iteraciones realizadas: 18

5. Sea $f(x)=(x+3)(x+1)^2x(x-1)^3(x-3)$.¿En qué cero de converge el método de bisección cuando se aplica en los siguientes intervalos?

a. [-1.5;2.5]

```
b. [-0.5;2.4]
c. [-0.5;3]
d. [-3;-0.5]
def bisection_method(a, b, func, tol=1e-6, max_iter=100):
    if func(a) * func(b) > 0:
        print("El método de la bisección falló.")
        return None, None
    else:
        iter count = 0
        while ((b - a) / 2.0 > tol) and (iter_count < max_iter):
            c = (a + b) / 2.0
            if func(c) == 0:
                return iter_count, c
            elif func(a) * func(c) < 0:</pre>
                b = c
            else:
                a = c
            iter_count += 1
        return iter_count, (a + b) / 2.0
def f(x):
    return (x + 3) * (x + 1)**2 * x * (x - 1)**3 * (x - 3)
intervals = [(-1.5, 2.5), (-0.5, 2.4), (-0.5, 3), (-3, -0.5)]
for interval in intervals:
    iterations, root = bisection_method(interval[0], interval[1], f)
    if iterations is not None:
        print(f"Número de iteraciones en el intervalo {interval}: {iterations}")
        print(f"La raíz de f(x) en el intervalo {interval} es {root:.4f}.")
    else:
        print(f"No se encontró raíz en el intervalo {interval}.")
El método de la bisección falló.
No se encontró raíz en el intervalo (-1.5, 2.5).
El método de la bisección falló.
No se encontró raíz en el intervalo (-0.5, 2.4).
```

```
Número de iteraciones en el intervalo (-0.5, 3): 21
La raíz de f(x) en el intervalo (-0.5, 3) es 3.0000.
Número de iteraciones en el intervalo (-3, -0.5): 21
La raíz de f(x) en el intervalo (-3, -0.5) es -0.5000.
```

Ejercicios Aplicados

1. Un abrevadero de longitud tiene una sección transversal en forma de semicírculo con radio . (Consulte la figura adjunta.) Cuando se llena con agua hasta una distancia a partir de la parte superior, el volumen de agua es:

```
V = L[0.5\pi r^2 - r^2 arcsen(h/r) - h(r^2 - h^2)^(1/2)]
```


Suponga que L=10 cm, r=1cm y V=12.4 cm 3 . Encuentre la profundidad del agua en el abrevadero dentro de 0.01 cm.

```
import math

def ecuacion(h, L, r, V):
    return V - L * (0.5*math.pi*r**2 - math.asin(h) - h * math.sqrt(1 - h**2))

L = 10  # longitud del abrevadero en cm
r = 1  # radio del semicírculo en cm
V = 12.4  # volumen de agua en cm³

def biseccion(a, b, tol):
    iteraciones = 0
    while (b - a) / 2 > tol:
        iteraciones += 1
        c = (a + b) / 2
        if ecuacion(c, L, r, V) * ecuacion(a, L, r, V) < 0:
            b = c
        else:
        a = c</pre>
```

```
return (a + b) / 2, iteraciones

a = 0  # límite inferior
b = 1  # límite superior
tol = 0.01  # tolerancia

hSolucion, numIteraciones = biseccion(a, b, tol)
print("RESPUESTA:")
print("La profundidad del agua en el abrevadero es aproximadamente {:.5f} cm".format(hSolucion)
print("Número de iteraciones: {}".format(numIteraciones))
```

RESPUESTA:

La profundidad del agua en el abrevadero es aproximadamente 0.16406 cm Número de iteraciones: 6

2.Un objeto que cae verticalmente a través del aire está sujeto a una resistencia viscosa, así como a la fuerza de gravedad. Suponga que un objeto con masa cae desde una altura S_0 y que la altura del objeto después de segundos es:

$$s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}\left(1 - e^{-\frac{kt}{m}}\right)$$

```
import math

# Constantes
s0 = 300  # m
m = 0.25  # kg
g = 9.81  # m/s^2
k = 0.1  # Ns/m

# Función para calcular s(t)
def s(t):
    return s0 - (m * g / k) * t + (m**2 * g / k**2) * (1 - math.exp(-k * t / m))

# Método de bisección para encontrar la raíz de s(t) = 0
def bisection_method(func, a, b, tol=1e-2):
    if func(a) * func(b) >= 0:
        print("No se puede aplicar el método de bisección.")
        return None

iter_count = 0  # Contador de iteraciones
```

```
while (b - a) / 2 > tol:
        iter_count += 1
        c = (a + b) / 2
        if func(c) == 0.0:
            break
        elif func(a) * func(c) < 0:</pre>
            b = c
        else:
            a = c
    print(f"Iteración {iter_count}: a = {a}, b = {b}, c = {c}, f(c) = {func(c)}")
    return c
# Intervalo inicial para el método de bisección
a = 0
b = 20 # Tiempo suficientemente grande para que el objeto caiga al suelo
# Encontrar la raíz usando el método de bisección
root = bisection_method(s, a, b)
# Imprimir el resultado
if root is not None:
    print(f"El tiempo que tarda en golpear el piso es aproximadamente {root:.2f} segundos.")
    print("No se encontró una raíz dentro de la tolerancia especificada.")
```

Iteración 10: a = 14.70703125, b = 14.7265625, c = 14.70703125, f(c) = 0.45168458118872223 El tiempo que tarda en golpear el piso es aproximadamente 14.71 segundos.

Ejercicios Teoricos

1. Use el teorema 2.1 para encontrar una cota para el número de iteraciones necesarias para lograr una aproximación con precisión de 10^-4 para la solución de $x^3-x-1=0$ que se encuentra dentro del intervalo [1, 2]. Encuentre una aproximación para la raíz con este grado de precisión.

```
def f(x):
    return x**3 - x - 1
def bisection_method(a, b, tol):
    n = 0
    while (b - a) / 2 > tol:
        midpoint = (a + b) / 2
        if f(midpoint) == 0:
            return midpoint, n
        elif f(a) * f(midpoint) < 0:</pre>
            b = midpoint
        else:
            a = midpoint
        n += 1
    return (a + b) / 2, n
# Parámetros iniciales
a = 1
b = 2
tolerance = 1e-4
# Ejecución del método de bisección
root, iterations = bisection_method(a, b, tolerance)
print(f"La raíz aproximada es: {root}")
print(f"El número de iteraciones necesarias fue: {iterations}")
La raíz aproximada es: 1.32476806640625
El número de iteraciones necesarias fue: 13
2.La función definida por ( ) = sin \, tiene ceros en cada entero. Muestre cuando -1 <
 < 0 y 2 < < 3, el método de bisección converge a:
a.0, si a+b<2
b.2, si a+b>2
c.1, si a+b=2
import math
def f(x):
 return math.sin(math.pi * x)
```

```
def bisection_method(a, b, tol=1e-6):
    n = 0
    while (b - a) / 2 > tol:
        midpoint = (a + b) / 2
        if f(midpoint) == 0:
            return midpoint, n
        elif f(a) * f(midpoint) < 0:
            b = midpoint
        else:
            a = midpoint
        n += 1
    return (a + b) / 2, n
def find_zero(a, b, tol=1e-6):
    midpoint = (a + b) / 2
    if midpoint < 1:</pre>
        return 0, a, b
    elif midpoint > 1:
        return 2, a, b
    else:
        return 1, a, b
# Parámetros iniciales
a_{values} = [-0.5, -0.5, -0.5]
b_{values} = [2.5, 2.5, 2.5]
sum_values = [1.5, 3.5, 2]
for a, b, sum_ab in zip(a_values, b_values, sum_values):
    if sum_ab < 2:
        expected_zero = 0
    elif sum_ab > 2:
        expected_zero = 2
    else:
        expected_zero = 1
   root, iterations = bisection_method(a, b)
   zero, _, _ = find_zero(a, b)
   print(f"Para a + b = {sum_ab}:")
   print(f" Cero esperado: {expected_zero}")
    print(f" Cero encontrado por bisección: {zero}")
    print(f" Raíz aproximada: {root} después de {iterations} iteraciones")
```

print()

```
Para a + b = 1.5:
    Cero esperado: 0
    Cero encontrado por bisección: 1
    Raíz aproximada: 2.384185791015625e-07 después de 21 iteraciones

Para a + b = 3.5:
    Cero esperado: 2
    Cero encontrado por bisección: 1
    Raíz aproximada: 2.384185791015625e-07 después de 21 iteraciones

Para a + b = 2:
    Cero esperado: 1
    Cero encontrado por bisección: 1
    Raíz aproximada: 2.384185791015625e-07 después de 21 iteraciones
```