

24th ACM International Systems and Software Product Line Conference

Thanks to our Sponsors!

Bronze Level

Supporters

Machine Learning and Configurable Systems: A Gentle Introduction (Tutorial at SPLC'20)

Juliana Alves Pereira, Hugo Martin, Paul Temple, Mathieu Acher

https://github.com/VaryVary/

Tutorial

- Part 1 (theoretical)
 - Motivation and a complete overview of the progress made in this field
 - Machine Learning Background
- Part 2 (practical)
 - Specialization: the case of VaryLaTeX
- Part 3 (practical)
 - Performance and bug prediction: the case of x264
- Part 4 (theoretical)
 - Conclusion

Link to the material (including slides, data, procedures): https://github.com/VaryVary/ML-configurable-SPLCTutoria

Learning Software Configuration Spaces (Tutorial at SPLC'20: Part 1)

Juliana Alves Pereira, Hugo Martin, Paul Temple, Mathieu Acher

https://github.com/VaryVary/

Software Variability

Features

How they can be measured and evaluated?

Configuration space

15,000+ features

Linux

Tri-state values and numerical options

Research Questions:

- RQ1. What are the **applications** addressed for learning techniques to explore configuration spaces?
- RQ2. Which **sampling** methods are used by these techniques?
- RQ3. How do the proposed techniques deal with **measurements** of non-functional properties?
- RQ4. Which **learning** techniques have been proposed in the literature?
- *RQ5*. How are these techniques **validated**?

RQ1: Applicability

Research Questions:

RQ1. What are the **applications** addressed for learning techniques to explore configuration spaces?

RQ2. Which **sampling** methods are used by these techniques?

What sampling technique to use? What is an ideal sample size?

RQ2: Sampling

■ Random

■ Feature-frequency

- Multi-objective problem
 - SAT constrained sampling
 - The "training sampling" should be representative
 - Not infinite resources (limited budget)

↓ invalid configurations,↓ cost and ↓ prediction error

Random sampling

Feature coverage

Feature frequency

[10, 12, 18, 19, 33, 34, 36, 45, 51, 52] [33, 41, 45, 46, 47, 48, 49, 57, 59] [33, 41, 45, 46, 47, 48, 59, 61, 63] [21, 47, 48, 63] [46, 53, 56] [46, 56, 58] [6, 32, 50]

[45, 57]

[22, 21]

Feature-frequency heuristic
Feature-coverage heuristic
Interaction-wise heuristic
Higher-order interactions
Hot-spot features
Arbitrarily chosen
Plackett-Burman design
All valid configurations

Research Questions:

- RQ1. What are the **applications** addressed for learning techniques to explore configuration spaces?
- RQ2. Which **sampling** methods are used by these techniques?
- RQ3. How do the proposed techniques deal with **measurements** of non-functional properties?

How to measure a sample?
Which properties are measured?

RQ3: Measuring

- Measuring properties of configurations
 - Quantitative and qualitative measurements
 - Execution vs. simulation vs. static analysis vs. user feedback vs. synthetic measurements
 - Consider hardware and external influences
 - Some properties are less costly

Non-Functional Property	Type	Non-Functional Property	Type	
area	QT	Peak Signal to Noise Ratio	QT	
compressed size	QT	response rate	QT	
CPU power consumption	QT	response time	QT	
CPU usage	QT	runtime	QT	
encoding time	QT	throughput	QT	
iterations	QT	video quality	QL	
latency	QT	workload	QT	
footprint	QT	code complexity	QT	
performance ¹²	QT	memory consumption	QT	

Research Questions:

- RQ1. What are the **applications** addressed for learning techniques to explore configuration spaces?
- RQ2. Which **sampling** methods are used by these techniques?
- RQ3. How do the proposed techniques deal with **measurements** of non-functional properties?

RQ4. Which **learning** techniques have been proposed in the literature?

What learning technique to use?

RQ4: Learning

Research Questions:

- RQ1. What are the **applications** addressed for learning techniques to explore configuration spaces?
- RQ2. Which **sampling** methods are used by these techniques?
- RQ3. How do the proposed techniques deal with **measurements** of non-functional properties?
- RQ4. Which **learning** techniques have been proposed in the literature?

RQ5. How are these techniques validated?

Does it work in practice? How to evaluate? What are the challenging configurable systems?

RQ5: Validation

RQ5: Validation

			-			
Reference	Evaluation Metric	Applicability	Reference	Evaluation Metric	Applicability	
[67]	Closeness Range, Winner Probability	A1	[43, 59]	Rank Correlation	A2, A4	
[76, [77]]	Coverage	A1	[41, <mark>35</mark>]	Domain Experts Feedback	A3	
[70]	Jaccard Similarity	A1	[97]	Error Probability	A3	
[76]	Performance-Relevant Feature Interactions	A1	[83]	Global Confidence, Neighbors Density Con-	A3	
	Detection Accuracy			fidence, Neighbors Similarity Confidence		
[69]	t-masked metric	A1	[32]	LT15, LT30	A3	
[75]	True Positive (TP) Rate, False Positive	A1	[54, 31]	Mean Rank Difference	A3	
	(FP) Rate, Receiver Operating Characteris-		[81]	Median Magnitude of the Relative Error A3		
	tic (ROC)			(MdMRE)		
[65], [46], [29], [47], [36], [37], [38], [39],	Mean Relative Error (MRE)	A1, A2, A3, A4	[33]	Pareto Prediction Error	A3	
67, 45, 32, 68, 84, 71, 72, 59,			[90, 91, 89]	Rank Accuracy (RA)	A3	
44, 35, 94, 79]			[41, 93, 95, 97]	Tuning Time	A3	
[86, 66, 56, 31, 84, 35, 79, 77]	Sampling Cost	A1, A2, A3, A4	[81, 92, 57]	Mean Square Error (MSE)	A3, A4	
[32, 68]	Highest Error (HE)	A1, A3	[57]	p-value, R2, Residual Standard Error (RSE)	A4	
[42, 30, 81, 83, 44, 85, 74, 88,	Mean Absolute Error (MAE)	A1, A3, A4	[99]	Reward	A4	
[73, [92, [90]]			[58]	Statistical Significance	A4	
[72, 101, 96]	Mann-Whitney U-test	A1, A3, A5	[61, [58]	Qualitative Analysis	A4, A5	
[57, [72]	F-test	A1, A4	[55]	Ranking Constraints	A4, A5	
[60, 9, 100, 70, 64]	Precision, Recall	A1, A4, A5	[101]	Delaney's Statistics	A 5	
[62, 69, 64, 101, 75]	Precision, Recall, F-measure	A1, A5	[101]	Distance Function, Hyper-volume (HV)	A 5	
[80]	GAP	A2	[63]	Equivalence among Combinatorial Models	A5	
[43]	Kullback-Leibler (KL), Pearson Linear Cor-	A2	[63]	Failure Index Delta (FID), Totally Repaired	A 5	
	relation, Spearman Correlation Coefficient			Models (TRM)		
[45, [47]]	Structure of Prediction Models	A2				

Pure prediction: Siegmund et al. Predicting Performancevia Automated Feature-Interaction Detection. ICSE, 2012.

Interpretability: Jamshidi et al. Transfer Learning for PerformanceModeling of Configurable Systems: An Exploratory Analysis. ASE, 2017.

- Sampling: Random
- Measuring: time
- Learning: Linear
 Regression, CART, and
 Multinomial Logistic
 Regression
- Validation: Kullback-Leibler, Pearson Linear Correlation, Spearman Correlation Coefficient, Rank correlation,

Fig. 2: Performance distributions of environments, depending on the severity of change, may be dissimilar, $D_{KL}^{ec_1} = 25.02$ (a,b), or very similar, $D_{KL}^{ec_{13}} = 0.32$ (c,d).

System	Domain	d	C	H	W	V
SPEAR	SAT solver	14	16384	3	4	2
x264	Video encoder	16	4000	2	3	3
SQLite	Database	14	1000	2	14	2
SaC	Compiler	50	71 267	1	10	1

d: configuration options; C: configurations; H: hardware environments; W: analyzed workload; V: analyzed versions.

Mining Constraints: Temple et al. Using Machine Learningto Infer Constraints for Product Lines. SPLC, 2016.

 ± 60.440

- Sampling: Random
- Measuring: video quality
- Learning: CART
- Validation: Precision and Recall

valid)

 ± 25.804