- For Support Vector Machines:
- (A) A hard margin linear SVM yields a valid (constraint satisfying) solution for any data.
 - (B) If the data is linearly separable, linear SVM and linear perceptron will give the same solution.
- (C) maximization of $\mathbf{w}^T \mathbf{w}$ with the associated constraints is leading to the maximization of the margin.
- (D) [Ans] minimization of $\mathbf{w}^T \mathbf{w}$ with the associated constraints is leading to the maximization of the margin.
- (E) None of the above.

(A) Always hard margin	
(B) Always soft margin	
(a) • • • • • • • • • • • • • • • • • • •	_

Kernel SVMs are:

- (C) [Ans] Can be either hard margin or soft margin
- (D) If there is a hard margin feasible, soft-margin K-SVMs eventually finds this.
- (E) None of the above

- In the context of Softmargin Linear SVMs:
- (A) If there is a hard margin feasible, soft-margin linear SVMs always finds this.
- (B) [Ans] If there is a hard margin feasible, soft-margin linear SVMs can finds this with certain 'C'.
- (C) If the data is linearly separable, we should not use soft margin SVM.
- (D) [Ans] The larger the C, the formulation become closer and closer to hard margin SVM.
- (E) None of the above.

Number of Support Vectors: (A) is $2 \times d$

(A) 15 2 X

(B) [Ans] depends on the kernel we use.

(C) [Ans] can be as large as N

(D) can be as small as 1

(E) None of the above.

- In the context of K-SVM:
- (A) Formulation change with kernel.
- (B) [Ans] Performance of the solution change with kernel.
- (C) We can use different Kernels during training and testing.
- (D) **[Ans]** If the kernel $\kappa(x,y) = x^T y$, then K-SVM is equivalent to Linear SVM
- (E) All the above four are true.