Weekly Homework 42

Math Gecs

December 24, 2024

Exercise 1

Let b be a real number randomly selected from the interval [-17, 17]. Then, m and n are two relatively prime positive integers such that m/n is the probability that the equation $x^4 + 25b^2 = (4b^2 - 10b)x^2$ has at least two distinct real solutions. Find the value of m+n.

Source: 2007 iTest Problem 36

Solution. The equation has quadratic form, so complete the square to solve for x.

$$x^{4} - (4b^{2} - 10b)x^{2} + 25b^{2} = 0$$
$$x^{4} - (4b^{2} - 10b)x^{2} + (2b^{2} - 5b)^{2} - 4b^{4} + 20b^{3} = 0$$
$$(x^{2} - (2b^{2} - 5b))^{2} = 4b^{4} - 20b^{3}$$

In order for the equation to have real solutions,

$$16b^4 - 80b^3 \ge 0$$

 $b^3(b-5) \ge 0$
 $b < 0 \text{ or } b > 5$

Note that $2b^2 - 5b = b(2b - 5)$ is greater than or equal to 0 when $b \le 0$ or $b \ge 5$. Also, if b = 0, then expression leads to $x^4 = 0$ and only has one unique solution, so discard b = 0 as a solution. The rest of the values leads to b^2 equalling some positive value, so these values will lead to two distinct real solutions.

Therefore, in interval notation, $b \in [-17,0) \cup [5,17]$, so the probability that the equation has at least two distinct real solutions when b is randomly picked from interval [-17,17] is $\frac{29}{34}$. This means that m+n=[63].