北京理工大学《数值分析》

2007-2008 学年第二学期期末试卷 (B) 卷 (2006 级计算机系)

班纟	级学号	姓	名	_成绩		
注意	(1) 答题方式为闭卷。② 可以使用计算器。③ 请将填空题直接均	真在试卷上,大题答在	答题纸上。			
<u> </u>	填空题(每空2分,	共40分)				
	在数值计算中, 计时,上述			与舍入误差 ∈ 构成,当		
2.	己知 a=3.201, b=0.5	7 是经过四舍五入	后得到的近似值,	则 a×b 的结果的计算误差		
	大约为,	a+b 的结果的计算	工误差大约为	o		
3.	用 双 点 弦 截 法 求 解 方 程 $x^4-2x-4=0$ 在 [1,2] 之 间 的 根 的 迭 代 公 式					
	是		0			
4.	用牛顿下山法求解方		的迭代公式是	,牛		
	顿下山法的下山条件	是	· · · · · · · · · · · · · · · · · · ·			
5.	设 $f(x)=x^3+x-1$,则差	商 f[0,1,2,3]=	, f[0,1,2	,3,4]=。		
6.	辛普生求积公式的代	数精度为	o			
7.	当 a	(满足怎	(样的条件) 时,周	用高斯一赛德尔迭代法解线		
	性方程组 $\begin{cases} 8x_1 - x_2 + \\ 2x_1 + 10x_2 \\ 6x_1 + x_2 - \end{cases}$	•	o			
8.	向量 X=(1,-2,3), Y=	(3,4,0),则向量 X	的 1-范数 X ₁ =	,向量 Y 的 2-		
	范数 Y ₂ =	o				
9.	已知 n=4 时的牛顿	-科特斯系数则 C_0	$C_3^{(4)} = \frac{7}{90}, C_3^{(4)} = \frac{16}{45}$	$, C_{.1}^{(4)} = $,		
	$C_2^{(4)} = \underline{\hspace{1cm}}_{\circ}$			BE INC.		
10.	用复化辛卜生公式求 函数值,才能保证所			少需个节点处的		
11.	当 x=1,-1,2 时,	$f(x)=0,-3,4$, \square	f(x) 的 拉 格	朗日插值多项式		
	是			o		

- 12. 已知 f [4,3,2,1]=2,则 x=1 点的 3 阶差分值为____。
- 13. 消元法由两个过程组成,分别是_____和___和____
- 14. 设 $f(x)=a_nx^n+1$ $(a_n\neq 0)$,则 $f[x_0,x_1,...,x_n]=$ _____。
- 二、计算题(共60分)
- 1. 曲线 $y = x^3$ 与 y = 1 x 在点(0.7, 0.3)附近有一交点(x^* , y^*),试用牛顿迭代法求 x^* 的近似值 x_n ,要求计算结果保留小数点后 3 位。
- 2. 用列主元素法解线性方程组,要求计算结果保留小数点后3位。

$$\begin{bmatrix} 1 & 1 & 1 \\ 12 & -3 & 3 \\ -18 & 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \\ -15 \end{bmatrix}$$

3. 设方程组 $\begin{cases} x_1 + 0.4x_2 + 0.4x_3 = 1 \\ 0.4x_1 + x_2 + 0.8x_3 = 2 \\ 0.4x_1 + 0.8x_2 + x_3 = 3 \end{cases}$ 试判断此方程组的雅可比迭代法及高斯一赛德

尔迭代法的收敛性,并用能够收敛的方法进行计算,初值 x_0 ⁽⁰⁾=0, x_1 ⁽⁰⁾=0, x_2 ⁽⁰⁾=0, 要求计算结果保留小数点后 3 位。

4. y=f(x)的数值表如下所示,求满足上述插值条件的三次插值多项式 $P_3(x)$,并推导其余式 $R_3(x)$ 。

x_i	1	2	3
y_i	2	4	12
y'_{i}		3	

- 5. 用三点高斯公式求定积分 $I = \int_0^2 \sqrt{x+1.5} \, dx$ 的近似值,其中 $t_1 = -0.77460$, $t_2 = 0$, $t_3 = 0.77460$; $\omega_1 = 0.55556$, $\omega_2 = 0.88889$, $\omega_3 = 0.55556$,要求计算结果保留小数点后 3 位。
- 6. 用 Euler 法、隐式欧拉法、梯形法求解初值问题, 取 h=0.1,计算到 x=0.5,要求计算 结果保留小数点后 5 位。

$$\begin{cases} y' = y^2 \\ y(0) = 1 \end{cases} \quad 0 \le x \le 0.5$$