



## Theoretical Exercise 8

Date Published: June 21st 2023

# This is the sample solution.

### Exercise 1 Featuremap Sizes

Assume that the input image to a CNN has width and height dimensions of  $224 \times 224$ . Compute the feature map sizes (width and height) after the image passes through a first convolution layer (with kernel size 7, stride 1, padding 0), a second convolution layer (with kernel size 3, stride 2, padding 1), and finally a max pooling layer (with kernel size 2).

#### Solution

We can use the following formular to compute the feature map size after the convolution layers

$$\left\lfloor \frac{W - F + 2P}{S} \right\rfloor + 1$$

, where W is the size of the input, F the kernel size, P the padding, and S the stride. Here we assume that  $W \geq F$ . For max pooling we can use the same formular (where we typically assume F = S)

• first convolution layer:  $\left\lfloor \frac{224-7}{2} \right\rfloor + 1 = 218$ 

• second convolution layer:  $\left\lfloor \frac{218-3+2}{2} \right\rfloor + 1 = 109$ 

• max pooling layer:  $\left\lfloor \frac{109-2}{2} \right\rfloor + 1 = 54$ 





#### Exercise 2 Number of Parameters of a Neural Network

| ConvNet Configuration       |           |           |           |           |           |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|
| A                           | A-LRN     | В         | C         | D         | Е         |
| 11 weight                   | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight |
| layers                      | layers    | layers    | layers    | layers    | layers    |
| input (224 × 224 RGB image) |           |           |           |           |           |
| conv3-64                    | conv3-64  | conv3-64  | conv3-64  | conv3-64  | conv3-64  |
|                             | LRN       | conv3-64  | conv3-64  | conv3-64  | conv3-64  |
| maxpool                     |           |           |           |           |           |
| conv3-128                   | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 |
|                             |           | conv3-128 | conv3-128 | conv3-128 | conv3-128 |
| maxpool                     |           |           |           |           |           |
| conv3-256                   | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 |
| conv3-256                   | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 |
|                             |           |           | conv1-256 | conv3-256 | conv3-256 |
|                             |           |           |           |           | conv3-256 |
| maxpool                     |           |           |           |           |           |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
|                             |           |           | conv1-512 | conv3-512 | conv3-512 |
|                             |           |           |           |           | conv3-512 |
| maxpool                     |           |           |           |           |           |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
|                             |           |           | conv1-512 | conv3-512 | conv3-512 |
|                             |           |           |           |           | conv3-512 |
| maxpool                     |           |           |           |           |           |
| FC-4096                     |           |           |           |           |           |
| FC-4096                     |           |           |           |           |           |
| FC-1000                     |           |           |           |           |           |
| soft-max                    |           |           |           |           |           |

Compute the number of parameters in configuration A. Assume that the convolution layers use stride 1 and do not reduce the width and height of the input featuremaps.

#### Solution

- $3 \cdot 64 \cdot 3 \cdot 3 + 64 = 1792$
- $64 \cdot 128 \cdot 3 \cdot 3 + 128 = 73856$
- $128 \cdot 256 \cdot 3 \cdot 3 + 256 = 295168$
- $256 \cdot 256 \cdot 3 \cdot 3 + 256 = 590080$
- $256 \cdot 512 \cdot 3 \cdot 3 + 512 = 1180160$
- $\bullet \ 512 \cdot 512 \cdot 3 \cdot 3 + 512 = 2359808$
- $\bullet \ 512 \cdot 512 \cdot 3 \cdot 3 + 512 = 2359808$
- $512 \cdot 512 \cdot 3 \cdot 3 + 512 = 2359808$
- $512 \cdot 7 \cdot 4096 + 4096 = 14684160$
- $4096 \cdot 4096 + 4096 = 16781312$
- $4096 \cdot 1000 + 1000 = 4097000$
- total = 44782952





## Exercise 3 Backpropagation

Compute the gradient of the parameters of a 2-layer MLP f (with sigmoid activation functions) w.r.t. the loss function  $||f(x; W^{(1)}, W^{(2)}, b^{(1)}, b^{(2)}) - y||_2^2$ . Given the case that y = f(x) and z = g(y), you can make use of the multivariate chain rule  $\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$ .

#### Solution

$$O(1) = O(1) \times O(1) \times$$