Rule M: Effectively dead places and transitions

The Rule M finds and removes effectively dead places and transitions. We define an effectively dead place to be a place that will never gain nor lose tokens. Effectively dead transitions are transitions that are initially disabled (and/or inhibited) by a place that cannot gain (and/or lose) tokens. These places and transitions are found using fixed-point iteration as defined in Algorithm 1.

Algorithm 1: Rule M: Effectively dead places and transitions

```
Input: A net N = \langle P, T, \boxminus, \boxminus, I \rangle, initial marking M_0 and CTL*
             formula \varphi
    Output: A reduced net N' and its initial marking M'_0
                                  /* Places that cannot gain tokens */
 1 S_{<} := P
 {\bf 2} \  \, {\cal S}_{>}^{-} := P
                                  /* Places that cannot lose tokens */
 \mathbf{s} \ F := T
                                     /* Transitions that cannot fire */
 4 do
               /* Find transitions that may fire and update sets
         accordingly */
        foreach t \in F where
 5
         \forall p \in P.(\exists (p,t) \leq M_0(p) \lor p \notin S_{<}) \land (I(p,t) > M_0(p) \lor p \notin S_{>})
      9 until S \leq, S \geq, and F do not change
10 P' := P \setminus (S < \cap S > \setminus places(\varphi))
11 T' := T \setminus F
12 return N' = \langle P', T', \boxminus, \boxminus, I \rangle and M_0
```

Theorem 1 Rule M in Algorithm 1 is correct for CTL*.