Redfield equation with multi-axis noise

Huo Chen

August 8, 2020

0.1 Redfield equation with multi-axis couplings

In this example, we show how to solve Redfield equation with the following Hamiltonian

$$H(s) = -\sigma_z + \sigma_x \otimes B_1 + \sigma_z \otimes B_2 + H_B$$

where B_1 and B_2 are independent Ohmic bath with different cutoff frequencies.

0.1.1 Define annealing

First, we need to combine AbstractCouplings with AbstractBath into an Interaction object. Then we can combine different interactions into an InteractionSet.

```
using OrdinaryDiffEq, QuantumAnnealingTools, Plots
coupling_1 = ConstantCouplings(["X"])
bath 1 = Ohmic(1e-4, 4, 16)
interaction_1 = Interaction(coupling_1, bath_1)
coupling_2 = ConstantCouplings(["Z"])
bath_2 = Ohmic(1e-4, 0.1, 16)
interaction_2 = Interaction(coupling_2, bath_2)
interaction_set = InteractionSet(interaction_1, interaction_2);
InteractionSet with 2 interactions.
Then, we can create Annealing object with InteractionSet instead of coupling and bath.
H = Dense Hamiltonian([(s) \rightarrow 1.0], -[\sigma z], unit = :\hbar)
u0 = PauliVec[1][1]
annealing_1 = Annealing(H, u0, coupling=coupling_1, bath = bath_1)
annealing_2 = Annealing(H, u0, coupling=coupling_2, bath = bath_2)
annealing = Annealing(H, u0, interactions=interaction_set)
Annealing with hType QTBase.DenseHamiltonian(Complex(Float64)) and uType Ar
ray{Complex{Float64},1}
u0 with size: (2,)
```

0.1.2 Solve Redfield equation

We solve the Redfield equation with X, Z and X plus Z couplings.

```
tf = 10
# Generate the unitary first
U = solve_unitary(annealing, tf, alg=Tsit5(), reltol=1e-6)
# tag the unitary so the solver know it has inplace update method
# this will speed up the calculation of integral
U = InplaceUnitary(U)
# Solve the Redfield equation
sol_1 = solve_redfield(annealing_1, tf, U, alg = Tsit5(), abstol = 1e-6, reltol = 1e-6)
sol_2 = solve_redfield(annealing_2, tf, U, alg = Tsit5(), abstol = 1e-6, reltol = 1e-6)
sol = solve_redfield(annealing, tf, U, alg = Tsit5(), abstol = 1e-6, reltol = 1e-6)
```

Then we plot \langle X \rangle for the different cases.

```
t_list = range(0,tf,length=200)
x1 = []
x2 = []
x = []
for s in t_list
    push!(x1, real(tr(\sigma x*sol_1(s))))
    push!(x2, real(tr(\sigma x*sol_2(s))))
    push!(x, real(tr(\sigma x*sol(s))))
end
x_nopulse = x1
plot(t_list, x1, linewidth=2, label="X coupling")
plot!(t_list, x2, linewidth=2, label="Z coupling")
plot!(t_list, x, linewidth=2, label="X+Z coupling")
xlabel!("s")
ylabel!("<X>")
```


0.1.3 Instantaneous pulse

Finally, we run the same simulation with a single X pulse in the middle of the evolution (spin echo). The can be done by creating a Callback object and feed it to the solver. For ideal pulse, we can use the built-in function InstPulseCallback. This has similar effects as the dynamical decoupling (except the pulse does not commute with the system Hamiltonian).

```
# in this example, we apply an Z pulse in the middle of the annealing
# for the InstPulseCallback constructor
# the first argument is a list of times where the pulses are applied
# the second argument is a function to update the state update!(c, pulse_index
# the function will update the state c with give pulse_index
cbu = InstPulseCallback([0.5 * tf], (c, x) \rightarrow c .= \sigmax * c)
cb = InstPulseCallback([0.5 * tf], (c, x) \rightarrow c .= \sigmax * c * \sigmax)
annealing_1 = Annealing(H, u0, coupling = coupling_1, bath = bath_1)
annealing_2 = Annealing(H, u0, coupling=coupling_2, bath = bath_2)
annealing = Annealing(H, u0, interactions=interaction_set)
t.f = 10
U = solve_unitary(annealing, tf, alg=Tsit5(), reltol=1e-6, callback = cbu);
U = InplaceUnitary(U)
sol_1 = solve_redfield(annealing_1, tf, U, alg = Tsit5(), reltol = 1e-6, callback=cb)
sol_2 = solve_redfield(annealing_2, tf, U, alg = Tsit5(), reltol = 1e-6, callback=cb)
sol = solve_redfield(annealing, tf, U, alg = Tsit5(), reltol = 1e-6, callback=cb);
t_list = range(0,tf,length=200)
x1 = []
x2 = []
x = []
for s in t_list
    push!(x1, real(tr(\sigmax*sol_1(s))))
    push!(x2, real(tr(\sigmax*sol_2(s))))
    push!(x, real(tr(\sigmax*sol(s))))
end
plot(t_list, x1, linewidth=2, label="X coupling", legend=:topleft)
plot!(t_list, x2, linewidth=2, label="Z coupling")
plot!(t_list, x, linewidth=2, label="X+Z coupling")
plot!(t_list, x_nopulse, linewidth=2, linestyle=:dash, label="X coupling with no pulse")
xlabel!("s")
ylabel!("<X>")
```


We can see that the dephasing is weaker if Z coupling is present.