代数学2,第6回の内容の理解度チェック

2025/5/26 担当:那須

学 上訂 采 旦					丘夕	占米	
子生証留写					八石	黒数	

 $\boxed{1}$ R,S を環とし, $f:R\to S$ を環の準同型写像とする. 0_S を S の零元とし, f の核 $\ker f$ と像 $\operatorname{im} f$ は

$$\ker f = \{ a \in R \mid f(a) = 0_S \}$$
$$\operatorname{im} f = \{ f(a) \mid a \in R \}$$

により定義される.

- (1) $\ker f$ が R のイデアルになることを示せ.
- (2) $\operatorname{im} f$ は S の部分環になることを示せ.

2 k を体とし, $a \in k$ とする. k 上の1変数多項式環 k[x] から k への写像 φ を

$$\varphi: k[x] \longrightarrow k, \qquad f(x) \longmapsto f(0)$$

により定める.

- (1) φ が環の準同型写像であることを証明せよ.
- (2) ker φ を求めよ.
- (3) 準同型定理を用いて,

$$k[x]/(x-a) \simeq k$$

を証明せよ.

2	環の準同型定理を証明せ	1
0	一塚ソン学門学に生て前りで	\rightarrow

——— 準同型定理 -

環の準同型写像 $f: R \to S$ に対し、

$$\bar{f}: R/\ker f \xrightarrow{\sim} \operatorname{im} f, \qquad a + \ker f \longmapsto f(a)$$

は同型写像である.

⁰※この講義に関する情報はホームページを参照. https://fuji.ss.u-tokai.ac.jp/nasu/2025/alg2.html