Dušan Djukić Vladimir Janković Ivan Matić Nikola Petrović

IMO Shortlist 2004

From the book The IMO Compendium, www.imo.org.yu

Springer

Berlin Heidelberg New York Hong Kong London Milan Paris Tokyo

© Copyright 2005 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholary analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

a certain move, his adversary is allowed to write n+1 or 2n (provided the number he writes does not exceed N). The player who writes N wins. We say that N is of type A or of type B according as A or B has a winning strategy.

- (a) Determine whether N = 2004 is of type A or of type B.
- (b) Find the least N > 2004 whose type is different from that of 2004.
- 13. **C6** (**IRN**) For an $n \times n$ matrix A, let X_i be the set of entries in row i, and Y_j the set of entries in column j, $1 \le i, j \le n$. We say that A is golden if $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ are distinct sets. Find the least integer n such that there exists a 2004×2004 golden matrix with entries in the set $\{1, 2, \ldots, n\}$.
- 14. **C7** (**EST**)^{IMO3} Determine all $m \times n$ rectangles that can be covered with *hooks* made up of 6 unit squares, as in the figure:

Rotations and reflections of hooks are allowed. The rectangle must be covered without gaps and overlaps. No part of a hook may cover area outside the rectangle.

15. **C8 (POL)** For a finite graph G, let f(G) be the number of triangles and g(G) the number of tetrahedra formed by edges of G. Find the least constant c such that

$$g(G)^3 \le c \cdot f(G)^4$$
 for every graph G .

- 16. **G1** (**ROM**)^{IMO1} Let ABC be an acute-angled triangle with $AB \neq AC$. The circle with diameter BC intersects the sides AB and AC at M and N, respectively. Denote by O the midpoint of BC. The bisectors of the angles BAC and MON intersect at R. Prove that the circumcircles of the triangles BMR and CNR have a common point lying on the line segment BC.
- 17. **G2** (**KAZ**) The circle Γ and the line ℓ do not intersect. Let AB be the diameter of Γ perpendicular to ℓ , with B closer to ℓ than A. An arbitrary point $C \neq A, B$ is chosen on Γ . The line AC intersects ℓ at D. The line DE is tangent to Γ at E, with E and E on the same side of E. Let E intersect E at E, and let E intersect E at E are E intersect E at E intersect E and E intersect E at E intersect E and E intersect E at E intersect E and E intersect E at E intersect E at E intersect E at E intersect E at E intersect E and E intersect E at E intersect E at E intersect E inte
- 18. **G3 (KOR)** Let O be the circumcenter of an acute-angled triangle ABC with $\angle B < \angle C$. The line AO meets the side BC at D. The circumcenters of the triangles ABD and ACD are E and F, respectively. Extend the sides BA and CA beyond A, and choose on the respective extension points G and H such that AG = AC and AH = AB. Prove that the quadrilateral EFGH is a rectangle if and only if $\angle ACB \angle ABC = 60^{\circ}$.

13. Since $X_i, Y_i, i = 1, ..., 2004$, are 4008 distinct subsets of the set $S_n = \{1, 2, ..., n\}$, it follows that $2^n \geq 4008$, i.e. $n \geq 12$. Suppose n = 12. Let $\mathcal{X} = \{X_1, ..., X_{2004}\}$, $\mathcal{Y} = \{Y_1, ..., Y_{2004}\}$, $\mathcal{A} = \mathcal{X} \cup \mathcal{Y}$. Exactly $2^{12} - 4008 = 88$ subsets of S_n do not occur in \mathcal{A} . Since each row intersects each column, we have $X_i \cap Y_j \neq \emptyset$ for all i, j. Suppose $|X_i|, |Y_j| \leq 3$ for some indices i, j. Since then $|X_i \cup Y_j| \leq 5$, any of at least $2^7 > 88$ subsets of $S_n \setminus (X_i \cap Y_j)$ can occur in neither \mathcal{X} nor \mathcal{Y} , which is impossible. Hence either in \mathcal{X} or in \mathcal{Y} all subsets are of size at least 4. Suppose w.l.o.g. that $k = |X_l| = \min_i |X_i| \geq 4$. There are

$$n_k = {12 - k \choose 0} + {12 - k \choose 1} + \dots + {12 - k \choose k - 1}$$

subsets of $S \setminus X_l$ with fewer than k elements, and none of them can be either in \mathcal{X} (because $|X_l|$ is minimal in \mathcal{X}) or in \mathcal{Y} . Hence we must have $n_k \leq 88$. Since $n_4 = 93$ and $n_5 = 99$, it follows that $k \geq 6$. But then none of the $\binom{12}{0} + \cdots + \binom{12}{5} = 1586$ subsets of S_n is in \mathcal{X} , hence at least 1586 - 88 = 1498 of them are in \mathcal{Y} . The 1498 complements of these subsets also do not occur in \mathcal{X} , which adds to 3084 subsets of S_n not occurring in \mathcal{X} . This is clearly a contradiction.

Now we construct a golden matrix for n = 13. Let

$$A_1 = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \quad \text{and} \quad A_m = \begin{bmatrix} A_{m-1} & A_{m-1} \\ A_{m-1} & B_{m-1} \end{bmatrix} \text{ for } m = 2, 3, \dots,$$

where B_{m-1} is the $2^{m-1} \times 2^{m-1}$ matrix with all entries equal to m+2. It can be easily proved by induction that each of the matrices A_m is golden. Moreover, every upper-left square submatrix of A_m of size greater than 2^{m-1} is also golden. Since $2^{10} < 2004 < 2^{11}$, we thus obtain a golden matrix of size 2004 with entries in S_{13} .

14. Suppose that an $m \times n$ rectangle can be covered by "hooks". For any hook H there is a unique hook K that covers its "inside" square. Then also H covers the inside square of K, so the set of hooks can be partitioned into pairs of type $\{H,K\}$, each of which forms one of the following two figures consisting of 12 squares:

Thus the $m \times n$ rectangle is covered by these tiles. It immediately follows that $12 \mid mn$.

Suppose one of m, n is divisible by 4. Let w.l.o.g. $4 \mid m$. If $3 \mid n$, one can easily cover the rectangle by 3×4 rectangles and therefore by hooks. Also,

if $12 \mid m$ and $n \notin \{1, 2, 5\}$, then there exist $k, l \in \mathbb{N}_0$ such that n = 3k + 4l, and thus the rectangle $m \times n$ can be partitioned into 3×12 and 4×12 rectangles all of which can be covered by hooks. If $12 \mid m$ and n = 1, 2, or 5, then it is easy to see that covering by hooks is not possible.

Now suppose that $4 \nmid m$ and $4 \nmid n$. Then m, n are even and the number of tiles is odd. Assume that the total number of tiles of types A_1 and B_1 is odd (otherwise the total number of tiles of types A_2 and B_2 is odd, which is analogous). If we color in black all columns whose indices are divisible by 4, we see that each tile of type A_1 or B_1 covers three black squares, which yields an odd number in total. Hence the total number of black squares covered by the tiles of types A_2 and B_2 must be odd. This is impossible, since each such tile covers two or four black squares.

15. Denote by V_1, \ldots, V_n the vertices of a graph G and by E the set of its edges. For each $i = 1, \ldots, n$, let A_i be the set of vertices connected to V_i by an edge, G_i the subgraph of G whose set of vertices is A_i , and E_i the set of edges of G_i . Also, let v_i, e_i , and $t_i = f(G_i)$ be the numbers of vertices, edges, and triangles in G_i respectively.

The numbers of tetrahedra and triangles one of whose vertices is V_i are respectively equal to t_i and e_i . Hence

$$\sum_{i=1}^{n} v_i = 2|E|, \quad \sum_{i=1}^{n} e_i = 3f(G) \quad \text{and} \quad \sum_{i=1}^{n} t_i = 4g(G).$$

Since $e_i \leq v_i(v_i-1)/2 \leq v_i^2/2$ and $e_i \leq |E|$, we obtain $e_i^2 \leq v_i^2|E|/2$, i.e., $e_i \leq v_i \sqrt{|E|/2}$. Summing over all i yields $3f(G) \leq 2|E|\sqrt{|E|/2}$, or equivalently $f(G)^2 \leq 2|E|^3/9$. Since this relation holds for each graph G_i , it follows that

$$t_i = f(G_i) = f(G_i)^{1/3} f(G_i)^{2/3} \le \left(\frac{2}{9}\right)^{1/3} f(G)^{1/3} e_i.$$

Summing the last inequality for i = 1, ..., n gives us

$$4g(G) \le 3\left(\frac{2}{9}\right)^{1/3} f(G)^{1/3} \cdot f(G), \quad \text{i.e.} \quad g(G)^3 \le \frac{3}{32} f(G)^4.$$

The constant c=3/32 is the best possible. Indeed, in a complete graph C_n it holds that $g(K_n)^3/f(K_n)^4=\binom{n}{4}^3\binom{n}{3}^{-4}\to \frac{3}{32}$ as $n\to\infty$.

Remark. Let N_k be the number of complete k-subgraphs in a finite graph G. Continuing inductively, one can prove that $N_{k+1}^k \leq \frac{k!}{(k+1)^k} N_k^{k+1}$.

16. Note that $\triangle ANM \sim \triangle ABC$ and consequently $AM \neq AN$. Since OM = ON, it follows that OR is a perpendicular bisector of MN. Thus, R is the common point of the median of MN and the bisector of $\angle MAN$. Then it follows from a well-known fact that R lies on the circumcircle of $\triangle AMN$.