

TrenchT2™ **Power MOSFET**

IXTA120N04T2 IXTP120N04T2

N-Channel Enhancement Mode Avalanche Rated

$V_{\rm DSS}$	=	40V
I _{D25}	=	120A
R _{DS(on)}	≤	$6.1 \mathrm{m}\Omega$

Symbol	Test Conditions	Maximum R	atings
V _{DSS}	T _J = 25°C to 175°C	40	V
V _{DGR}	$T_J = 25^{\circ}C$ to 175°C, $R_{GS} = 1M\Omega$	40	V
V _{GSM}	Transient	±20	V
I _{D25}	$T_{\rm C} = 25^{\circ}\text{C}$ $T_{\rm C} = 25^{\circ}\text{C}$, Pulse Width Limited by $T_{\rm JM}$	120 360	A A
I _A	T _c = 25°C	50	A
E _{as}	$T_c = 25^{\circ}C$	400	mJ
P _D	T _C = 25°C	200	W
T _J		-55 +175	°C
T_{JM}		175	°C
T _{stg}		-55 +175	°C
T _L	Maximum Lead Temperature for Solderin	g 300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
F _c	Mounting Force (TO-263) Mounting Torque (TO-220)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in
Weight	TO-263 TO-220	2.5 3.0	g g

TO-220	(IXT	P)
--------	------	----

G = Gate = Drain S = Source Tab = Drain

Features

- International Standard Packages
- Avalanche Rated
- Low Package Inductance
- Fast Intrinsic Rectifier 175°C Operating Temperature
- High Current Handling Capability
- ROHS Compliant
- High Performance Trench Technology for extremely low $R_{DS(on)}$

			Characteristic Value Min. Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	40			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250\mu A$	2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			2	μΑ
	$T_J = 150$	0°C		50	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 25A, Notes 1 & 2$			6.1	$m\Omega$

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Automotive Engine Control
- Synchronous Buck Converter (for Notebook SystemPower & General Purpose Point & Load)
- DC/DC Converters
- High Current Switching Applications
- Power Train Management
- Distributed Power Architecture

•		Char Min.	racteristic Values Typ. Max.		
g _{fs}		V _{DS} = 10V, I _D = 60A, Note 1	28	47	S
C _{iss})			3240	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		557	pF
\mathbf{C}_{rss}	J			140	pF
t _{d(on)}	t l	Resistive Switching Times		14	ns
t _r				8	ns
$\mathbf{t}_{d(off)}$	1	$V_{GS} = 10V$, $V_{DS} = 20V$, $I_{D} = 60A$		16	ns
t _f	J	$R_{g} = 5\Omega$ (External)		11	ns
$\mathbf{Q}_{g(on)}$)			58	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{DSS}$		17	nC
\mathbf{Q}_{gd}	J			10	nC
R _{thJC}					0.75 °C/W
R _{thCS}		TO-220		0.50	°C/W

Source-Drain Diode

		Chara	acteristic Values		
$(T_J = 25^{\circ}C U)$	nless Otherwise Specified)	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			120	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			480	Α
V _{SD}	$I_F = 60A$, $V_{GS} = 0V$, Note 1			1.2	V
t _{rr}	1 604 V 0V		35		ns
I _{RM}	$I_{F} = 60A, V_{GS} = 0V,$ $-di/dt = 100A/\mu s, V_{B} = 20V$		1.6		Α
Q_{RM}	$-dI/dt = 100A/\mu s, V_R = 20V$		28		nC

Notes: 1. Pulse test, $t \le 300 \mu s$; duty cycle, $d \le 2\%$.

2. On through-hole packages, R_{DS(on)} Kelvin test contact location must be 5mm or less from the package body.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 60A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 60A Value vs.

Drain Current

Fig. 6. Drain Current vs. Case Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature $R_G = 5\Omega$, $V_{GS} = 10V$ V_{DS} = 20V tr-Nanoseconds $I_{D} = 60A$ T_J - Degrees Centigrade

Rise Time vs. Drain Current $R_G = 5\Omega$, $V_{GS} = 10V$ $V_{DS} = 20V$ $T_J = 25^{\circ}C$ tr-Nanoseconds T_J = 125°C I_D - Amperes

Fig. 14. Resistive Turn-on

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance $t_{d(on)}$ $T_J = 125^{\circ}C, V_{GS} = 10V$ $V_{DS} = 20V$ L_{d(on)} - Nanoseconds tr-Nanoseconds I_D = 60A, 120A 0 -R_G - Ohms

Fig. 19. Maximum Transient Thermal Impedance

