

Curry-Howard Isomorphism: Understanding the Connection Between Logic, Programming, and Polymorphism

This presentation explores the elegant correspondence between mathematical logic and computer programming known as the Curry-Howard isomorphism.

What is Curry-Howard Isomorphism?

1 A Profound Connection

3

The isomorphism reveals that logical proofs correspond to programs, while logical propositions correspond to types.

2 Mathematical Foundation

Discovered independently by Haskell Curry and William Howard in the mid-20th century.

Practical Applications

This relationship forms the theoretical basis for modern type systems and proof assistants.

Core Idea

Logic Programming

Mathematical logic and programming languages share a fundamental structure.

Propositions Types

A logical proposition is equivalent to a type specification in programming.

Proofs Programs

A logical proof corresponds to a program that satisfies a particular type.

HOW IMOOF TIIST AT A FUNCTIONS

TRYNCOFOR MACHINE

Logical Implication (→) and Functions

1

In Logic

P → Q means "If P is true, then Q is true"

2

In Programming

A function type P -> Q transforms values of type P into values of type Q

3

Example

Boolean negation function: not :: Bool -> Bool

Logical AND (\land) and Tuples

Logical Conjunction

 $P \wedge Q$ means "Both P and Q are true"

Programming Equivalent

A tuple (P, Q) contains values of both types P and Q

Implementation

pair :: P -> Q -> (P, Q) constructs a tuple from two values

Tuple Tugn

Logical OR (V) and Sum Types

Sum types represent choice in programming, just as logical disjunction represents alternatives in logic.

Logical Falsehood (丄) and the Empty Type

Q

Logical Falsehood

⊥ represents "False"- it can never beproven

Empty Type

The Void type has no values and cannot be instantiated

Implementation

In Haskell: data Void (a type with no constructors)

Logical Negation (¬P) and Functions to Void

Logical Negation

¬P means "P leads to a contradiction"

Programming Equivalent

P -> Void represents a function that can never return

Example Function

absurd :: Void -> a (cannot be called since Void has no values)

Polymorphism and Universal Quantification (∀)

Logical Universal

∀X. P(X) means "For all X, P(X) holds"

Type Variables

Represented by lowercase letters like 'a' in many languages

Polymorphic Functions

Functions that work with any type X

Programming Example

identity :: $\forall X. X \rightarrow X$ works for all types

```
✓ + - Plaskeranfintare
          - Plackeranfolifurte

    X - Piaskernido function

                                                                                      OX
Unitrappoires—Supastion_Souction 2 Firangeratiomy
Unarrosistionn, University fourmetion Opegoase quaintifitions)
Opelictinoni Sepanfrontion)
Elrok Barito pourses - Osgenito Coded eggret
             crodon_1mpll; *eralomions;
                  arokermenil gourres eyest@mfiion;
                  dapcermencol f = - ↔ = Expuacussirakrnghiip()te = roulommiowl;
                  dapkermened sesrisontsunnfin0)
                  dapkermencd guceninstatiovegnmtusfrisunnfiin);
Stypiel 8 - Crestrylic
odescrusots
laskees funtity ifunction dest_hus:
Haskelta Yongtion Induysts #teleheim Bawnidion Imt disuly nanden vorey Mevets/hionginguhidd on dgathor
Setreotraremtes #ts undn, Univerents can duler ade aimen)
Hddeles, ddund
ISperes, ed draoyjumn 6a f J#
```

24Psqpues

Example: Identity Function and Logical Universality

Logical Form	$\forall X. X \rightarrow X$
Meaning	For every type X, there exists a function from X to X
Haskell Type	id :: a -> a
Implementation	id x = x
Key Property	Works for any type, embodying universal quantification

Conclusion

Theoretical Foundation Programs as proofs, types as propositions **Practical Applications** Powers proof assistants like Coq, Lean, and Agda **Broader Implications** 3 Deepens our understanding of computation and logic

The Curry-Howard isomorphism bridges mathematical reasoning and computer programming, creating a foundation for verified software development.