Sommaire			2. Intégrales triples	6
1.1 1.2 1.3 1.4 1.5 1.6	égrales doubles Descrition hiérarchisée de Δ	1 1 2 3 3 4 4	 Intégrales triples Description hiérarchisée de Δ Changement de variables Coordonnées cylindriques Coordonnées sphériques Calculs divers Aire ou volume de Δ Masse Centre d'inertie Moments d'inertie Colbert, lycée numérique 	 66 66 68 88 99 10 10
	·	'	, ,	

	Figures		5 6	Intégrale triple	
1	Intégrale double	2	7	Intégrale triple en cylindriques	9
2	Théorème de Fubini	3	8	Coordonnées Sphériques	10
3	Coordonnées Polaires	5	9	Intégrale triple en sphériques	11
4	Intégrale double en polaires	5	10	Coordonnées Sphériques des physiciens	12

Ce chapitre est un chapitre **pratique** destiné à permettre de calculer l'intégrale

- d'une fonction continue de 2 variables sur une partie fermée bornée du plan, ou
- d'une fonction continue de 3 variables sur une partie fermée bornée de l'espace.

On ne se posera aucun problème de nature théorique et tous les théorèmes seront admis.

1. Intégrales doubles

1.1. Description hiérarchisée d'une partie fermée bornée de \mathbb{R}^2

Définition: On appelle description hiérarchisée du domaine Δ une partie fermée bornée de \mathbb{R}^2 : l'existence de 2 réels a et b et de 2 applications continues sur [a,b], notées u et v tels que a < b et $\forall x \in [a,b], u(x) \leq v(x)$, avec

$$(x,y) \in \Delta \Leftrightarrow \begin{cases} x \in [a,b] \\ y \in [u(x),v(x)] \end{cases}$$

Ce qui peut s'illustrer par la figure 1, page suivante.

On fera attention à ne pas commettre l'erreur du débutant qui cherche les bornes extrèmes pour les 2 variables indépendamment les unes des autres, et transforme tous les domaines en rectangle...

Exemple: On va prendre le domaine du plan défini par : $y \ge 0$, $x \ge y$, $x \le 1$. Il est élémentaire de faire une figure de ce domaine, qui est un triangle.

En travaillant sur cette figure, on obtient facilement une description hiérarchisée : $\begin{cases} x \in [0,1] \\ y \in [0,x] \end{cases}$

1.2. Intégrale double de f continue sur Δ , un fermé borné de \mathbb{R}^2

Définition: f continue sur Δ , un fermé borné de \mathbb{R}^2 , si on dispose d'une description hiérarchisée de Δ , on appelle intégrale double de f sur Δ :

$$I = \iint_{\Delta} f(x, y) dx dy = \int_{a}^{b} \left(\int_{u(x)}^{v(x)} f(x, y) dy \right) dx$$

En un mot, on transforme cette intégrale double en 2 intégrales simples emboîtées

Exemple : On va intégrer la fonction $(x,y) \to f(x,y) = xy$ sur D : $\begin{cases} x \geqslant 0 \\ y \geqslant 0 \\ x+y \leqslant 1 \end{cases}$ On cherche d'abord une description hiérarchisée du domaine : $\begin{cases} x \in [0,1] \\ y \in [0,1-x] \end{cases}$, ce qui donne :

$$I = \iint_{D} xy \, dx \, dy = \int_{0}^{1} \int_{0}^{1-x} xy \, dy \, dx$$

$$I = \int_{0}^{1} \frac{x(1-x)^{2}}{2} \, dx = \left[\frac{-x(1-x)^{3}}{6} \right]_{0}^{1} + \int_{0}^{1} \frac{(1-x)^{3}}{6} \, dx = \left[-\frac{(1-x)^{4}}{24} \right]_{0}^{1} = \frac{1}{24}$$

1.3. Théorème de Fubini : inversion des bornes

Théorème:

Si on a par ailleurs : $(x,y) \in \Delta \Leftrightarrow \begin{cases} y \in [c,d] \\ x \in [\alpha(y),\beta(y)] \end{cases}$ avec c < d et $\forall y \in [c,d], \alpha(y) \leqslant \beta(y)$, alors :

$$I = \iint_{\Delta} f(x, y) dx dy = \int_{a}^{b} \left(\int_{u(x)}^{v(x)} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{\alpha(y)}^{\beta(y)} f(x, y) dx \right) dy$$

Ceci est illustré sur la figure 2, ci-dessous.

On peut ainsi changer l'ordre d'intégration, le calcul est différent, mais le résultat est le même.

1.4. Un cas particulier

On va se placer dans un cas très particulier puisque : $(x,y) \in \Delta \Leftrightarrow \begin{cases} x \in [a,b] \\ y \in [c,d] \end{cases}$

Le domaine est un rectangle. Et d'autre part : $\forall (x,y) \in \Delta$, $f(x,y) = \varphi(x)\psi(y)$ Alors, par linéarité des intégrales simples sur un intervalle :

$$I = \iint_{\Delta} f(x, y) \, dx \, dy = \int_{a}^{b} \left(\int_{u(x)}^{v(x)} f(x, y) \, dy \right) dx$$

$$= \int_{a}^{b} \left(\int_{c}^{d} \varphi(x) \psi(y) \, dy \right) dx = \int_{a}^{b} \left(\varphi(x) \int_{c}^{d} \psi(y) \, dy \right) dx$$

$$= \int_{a}^{b} \varphi(x) \left(\int_{c}^{d} \psi(y) \, dy \right) dx = \left(\int_{c}^{d} \psi(y) \, dy \right) \int_{a}^{b} \varphi(x) \, dx$$

$$= \int_{a}^{b} \varphi(x) \, dx \times \int_{c}^{d} \psi(y) \, dy$$

Ainsi, dans ce cas :
$$\iint_{\Delta} \varphi(x) \psi(y) dx dy = \int_{a}^{b} \varphi(x) dx \times \int_{c}^{d} \psi(y) dy$$

1.5. Propriétés

a/ Linéarité

Théorème : f, g continues sur Δ , un fermé borné de \mathbb{R}^2 , on dispose d'une description hiérarchisée de Δ . λ et μ deux réels. Alors :

$$\iint_{\Delta} \lambda \ f(x,y) + \mu \ g(x,y) \, \mathrm{d}x \, \mathrm{d}y = \lambda \iint_{\Delta} f(x,y) \, \mathrm{d}x \, \mathrm{d}y + \mu \iint_{\Delta} g(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

b/ Positivité

Théorème: f continue, **positive**, sur Δ , un fermé borné de \mathbb{R}^2 , on dispose d'une description hiérarchisée de Δ . Alors : $\iint_{\Delta} f(x,y) \, dx \, dy \ge 0$

c/ Additivité selon les domaines

Théorème : f continue, sur Δ_1 et Δ_2 , deux fermés bornés de \mathbb{R}^2 , on dispose d'une description hiérarchisée de Δ_1 et Δ_2 . De plus $\Delta_1 \cap \Delta_2$ est **au plus** une courbe. Alors :

$$\iint_{\Delta_1 \cup \Delta_2} f(x, y) \, dx \, dy = \iint_{\Delta_1} f(x, y) \, dx \, dy + \iint_{\Delta_2} f(x, y) \, dx \, dy$$

Cela permet d'exploiter d'éventuelles symétries (de la fonction et du domaine).

Théorème: Si f est continue et **positive** sur Δ , avec, de plus, $D \subset \Delta$, alors :

$$\iint_{D} f(x, y) dx dy \le \iint_{\Delta} f(x, y) dx dy$$

1.6. Changement de variables

Théorème: $\varphi: \mathcal{U} \to \mathcal{V}$ de classe \mathcal{C}^1 , \mathcal{U} et \mathcal{V} deux ouverts de \mathbb{R}^2 .

D et Δ deux fermés bornés de \mathbb{R}^2 , $D \subset \mathcal{U}$, et, $\Delta \subset \mathcal{V}$.

De plus : $\varphi(D) = \Delta$.

On suppose que les points de Δ qui ont plusieurs antécédents sont de surface nulle.

On note : $(x,y) = \varphi(u,v)$, $\frac{D(x,y)}{D(u,v)}$ le jacobien de φ en (u,v), et, $\left|\frac{D(x,y)}{D(u,v)}\right|$ la valeur absolue du jacobien.

Alors:
$$\iint_{\Delta} f(x,y) dx dy = \iint_{D} g(u,v) \left| \frac{D(x,y)}{D(u,v)} \right| du dv$$

On notera la valeur absolue du jacobien et la pseudo-simplification.

On rappelle que :
$$\frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Notons qu'on fait un changement de variable :

- pour simplifier le domaine, ce qui est nouveau
- ou pour simplifier le calcul des primitives emboîtées.

Notons enfin que le domaine change et donc sa description hiérarchisée aussi.

1.7. Changement de variables en coordonnées polaires

Théorème: On pose
$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} (x, y) \in D \Leftrightarrow (\rho, \theta) \in \Delta, \text{ et } f(x, y) = f(\rho \cos \theta, \rho \sin \theta) = g(\rho, \theta) \end{cases}$$
$$\iint_{D} f(x, y) \, dx \, dy = \iint_{\Delta} g(\rho, \theta) \rho \, d\rho \, d\theta = \iint_{\Delta} f(\rho \cos \theta, \rho \sin \theta) \rho \, d\rho \, d\theta$$

Ceci est illustré sur la figure 3, ci-dessous.

Démonstration: En effet
$$\frac{D(x,y)}{D(\rho,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -\rho \sin \theta \\ \sin \theta & \rho \cos \theta \end{vmatrix} = \rho \geqslant 0$$

La figure 4, ci-dessous, indique le mode de calcul.

Exemple: On va intégrer la fonction $(x,y) \to f(x,y) = xy$ sur D: $\begin{cases} x \ge 0 \\ y \ge 0 \\ x^2 + y^2 \le 1 \end{cases}$ **Exemple**: On va intégrer la fonction $(x,y) \to f(x,y) = xy$ sur D: $\begin{cases} y \geqslant 0 \\ x^2 + y^2 \leqslant 1 \end{cases}$ On cherche d'abord une description hiérarchisée du domaine en polaires : $\begin{cases} \theta \in [0,\pi/2] \\ \rho \in [0,1] \end{cases}$, ce qui

donne, compte tenu que $xy = \rho^2 \cos \theta \sin \theta$:

$$I = \iint_{D} xy \, dx \, dy = \int_{0}^{\pi/2} \int_{0}^{1} \rho^{3} \cos \theta \sin \theta \, d\rho \, d\theta$$

$$I = \int_{0}^{\pi/2} \cos \theta \sin \theta \, d\theta \int_{0}^{1} \rho^{3} \, d\rho = \left[\frac{\sin^{2} \theta}{2} \right]_{0}^{\pi/2} \left[\frac{\rho^{4}}{4} \right]_{0}^{1} = \frac{1}{8}$$

2. Intégrales triples

Description hiérarchisée de Δ , intégrale triple de f continue sur Δ un fermé borné de

 Δ un fermé borné de \mathbb{R}^3 , une description hiérarchisée de Δ est de la forme :

$$(x, y, z) \in \Delta \Leftrightarrow \begin{cases} x \in [a, b] \\ y \in [u(x), v(x)] \\ z \in [\alpha(x, y), \beta(x, y)] \end{cases}$$

On peut avoir les variables dans un autre ordre, l'important est que les bornes de chacune ne soient définies qu'en fonction des précédentes.

On définit alors l'intégrale triple de f continue sur Δ par :

$$\iiint_{\Delta} f(x, y, z) dx dy dz = \int_{a}^{b} \left(\int_{u(x)}^{v(x)} \left(\int_{\alpha(x, y)}^{\beta(x, y)} f(x, y, z) dz \right) dy \right) dx$$

La figure 5, page ci-contre, donne une description hiérarchisée du domaine.

2.2. Changement de variables

Sous des hypothèses équivalentes à la dimension 2, $(x,y,z) = \varphi(u,v,w), (x,y,z) \in \mathbb{D} \Leftrightarrow (u,v,w) \in \Delta, \text{ et } f(x,y,z) = g(u,v,w), \text{ on a alors } :$

$$\iiint_{D} f(x, y, z) dx dy dz = \iiint_{\Lambda} g(u, v, w) \left| \frac{D(x, y, z)}{D(u, v, w)} \right| du dv dw$$

On notera la **valeur absolue** du jacobien et la pseudo-simplification.

2.3. Coordonnées cylindriques

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \quad (x, y, z) \in D \Leftrightarrow (\rho, \theta, z) \in \Delta, \text{ et } f(x, y, z) = f(\rho \cos \theta, \rho \sin \theta) = g(\rho, \theta, z) \\ z = z \end{cases}$$

On regardera la figure 6, page suivante.

$$\iiint_{D} f(x,y,z) dx dy dz = \iiint_{\Delta} g(\rho,\theta,z) \rho d\rho d\theta dz$$

Le calcul du jacobien est facile $\frac{\mathrm{D}(x,y,z)}{\mathrm{D}(\rho,\theta,z)}=\rho$ et on a encore $\rho\geqslant 0$. La figure 7, page 9, indique le mode de calcul.

2.4. Coordonnées sphériques

On notera sur la figure 8 la définition des coordonnées sphériques.

Cette notation est la notation des mathématiciens : les physiciens utilisent l'angle entre Oz et OM qui appartient donc à $[0,\pi]$.

Dans la formule, au niveau de la valeur absolue du jacobien, ils échangent ainsi $\sin \phi$ et $\cos \phi$. Attention, parfois, ils changent aussi le nom des angles...

$$\begin{cases} x = \rho \cos \theta \cos \varphi \\ y = \rho \sin \theta \cos \varphi \quad (x, y, z) \in D \Leftrightarrow (\rho, \theta, \varphi) \in \Delta, \text{ et } f(x, y, z) = g(\rho, \theta, \varphi) \\ z = \rho \sin \varphi \end{cases}$$

On regardera la figure 8, page 10.

$$\iiint_{D} f(x, y, z) dx dy dz = \iiint_{\Delta} g(\rho, \theta, \varphi) \rho^{2} \cos \varphi d\rho d\theta d\varphi$$

Le calcul du jacobien est facile : $\frac{D(x,y,z)}{D(\rho,\theta,\phi)} = \rho^2 \cos \phi$, et on a bien : $\cos \phi \ge 0$.

La figure 9, page 11, indique le mode de calcul.

Les coordonnées sphériques du physicien sont illustrées sur la figure 10, page 12.

Dans ce cas, le calcul du jacobien donne : $\frac{D(x,y,z)}{D(\rho,\theta,\varphi)} = \rho^2 \sin \theta$, et on a bien : $\sin \theta \ge 0$.

Calculs divers

3.1. Aire ou volume de Δ

Il suffit de calculer $\iint_{\Delta} dx dy$ pour l'aire d'une partie fermée bornée du plan et $\iint_{\Delta} dx dy dz$ pour le volume d'une partie fermée bornée de l'espace.

Remarque: Dans le cas d'une courbe définie en coordonnées polaires et où ρ ne change pas de signe et où θ décrit, par exemple, $[0,2\pi]$, l'aire intérieure à la courbe est : $\frac{1}{2}\int_0^{2\pi} \rho^2(\theta) \, d\theta$.

3.2. Masse

Si on a $\mu(x,y,z)$ la masse volumique du solide en un point donné,

$$M = \iiint_{\Delta} \mu(x, y, z) dx dy dz$$

donne la masse. Pour une plaque, on peut faire un calcul équivalent avec la densité surfacique $\sigma(x, y)$ et une intégrale double,

$$M = \iint_{\Delta} \sigma(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

3.3. Centre d'inertie

Avec les mêmes notation, et P de coordonnées (x, y, z) on a :

$$\overrightarrow{OG} = \frac{1}{M} \iiint_{\Delta} \overrightarrow{OP} \, \mu(x, y, z) \, dx \, dy \, dz$$

ou en densité surfacique :

$$\overrightarrow{OG} = \frac{1}{M} \iint_{\Lambda} \overrightarrow{OP} \, \sigma(x, y) \, dx \, dy$$

Ce qui donne pour la première coordonnée par exemple :

$$x_{G} = \frac{1}{M} \iiint_{\Lambda} x \, \mu(x, y, z) \, dx \, dy \, dz$$

ou encore, dans le cas d'une densité surfacique :

$$x_{G} = \frac{1}{M} \iint_{\Lambda} x \, \sigma(x, y) \, dx \, dy$$

3.4. Moments d'inertie

Pour un solide, un moment d'inertie peut se calculer par rapport à un point, une droite ou un plan qu'on appelle dans tous les cas A.

On note d((x,y,z), A) la distance du point courant à A. Toujours avec les mêmes notations, on a :

$$J_{A} = \iiint_{\Delta} d((x,y,z),A)^{2} \mu(x,y,z) dx dy dz$$

On peut faire, une dernière fois, le même type de calcul pour une plaque :

$$J_{A} = \iint_{\Delta} d((x,y), A)^{2} \sigma(x,y) dx dy$$

Pour un volume, le moment d'inertie par rapport à l'axe Oz est donc :

$$J_{Oz} = \iiint_{\Lambda} (x^2 + y^2) \mu(x, y, z) dx dy dz$$

3.5. Colbert, lycée numérique

a/ Maple

C'est le package « student » qui possède les mots clefs permettant de calculer des intégrales doubles ou triples.

Les deux commandes sont « Doubleint » et « Tripleint ». Ce sont des formes inertes, il faut leur appliquer « value » pour avoir le calcul effectif.

Pas de faux espoirs cependant, il nous faut une description hiérarchisée du domaine pour que ce soit utilisable...

b/ Calculatrices

Il faut calculer les intégrales multiples comme des intégrales simples emboîtées...