Inhaltsverzeichnis

Da	anksagung	1
1	${\bf Einf [Please insert into preamble] hrung}$	1
2	Theorie	2
	2.1 Grundlagen der Monte Carlo Simulation	2
	2.2 Cluster Expansion	2
	2.3 ATAT Code	2
	2.4 Der Formgedächtniseffekt	2
3	Ein einführendes Beispiel	3
	3.1 Grundzustandsrechnungen mit Wien2k	3
	3.2 Cluster Entwicklung mit ATAT:MAPS	3
	3.3 Monte Carlo Simulation mit ATAT:Emc2	3
4	Ergebnisse	4
5	Zusammenfassung	5
Literaturverzeichnis		6
Anhang		6

Einführung

Thema der Arbeit: was wird berechnet/was ist der Stand des Wissens

Warum NiTiHf, Formgedächtniseffekt?

Warum Simulation und nicht experiment?

Welche Modelle/Programme wurden verwendet

Kurze Beschreibung der einzelnen Kapitel

Axel van de Walle: Self-driven lattice Monte Carlo [1]

Axel van de Walle: The Alloy-Theoretic Automated Toolkit (ATAT): A User Gui-

de [2]

Axel van de Walle: Automating first-principles phase diagram calculations [3]

Theorie

- 2.1 Grundlagen der Monte Carlo Simulation
- 2.2 Cluster Expansion
- 2.3 ATAT Code
- 2.4 Der Formgedächtniseffekt

Ein einführendes Beispiel

- 3.1 Grundzustandsrechnungen mit Wien2k
- 3.2 Cluster Entwicklung mit ATAT:MAPS
- 3.3 Monte Carlo Simulation mit ATAT:Emc2

Ergebnisse

Zusammenfassung

Literaturverzeichnis

- [1] A. van de Walle, M. Asta, MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING 10, 521 (2002).
- [2] A. van de Walle, M. Asta, G. G. Ceder, Calphad 26, 539 (2002).
- [3] A. van de Walle, G. Ceder, *Journal of Phase Equilibria* **23**, 348 (2002). 10.1361/105497102770331596.