Skriveguide: Topologiske isolatorer, SSH-modellen.

Kristian Knakkergaard Nielsen

17. oktober 2018

Målet med dette dokument er at give et forslag til, hvordan en rapport i projektet omkring topologiske isolatorer kan opbygges. Lignings- og figurreferencer refererer til SSH opgaver.pdf.

1 Introduktion/Indledning

Skal indeholde:

- Motivér hvorfor vi kigger SSH-modellen.
- Introducér krystalstruktur med udgangspunkt i SSH-modellen. Brug figur 2.
- Forklar kort de to analysemetoder: 1) analyse af 'det indre' af materialet (bulk), og 2) analyse af kanten. Længde: 3/4 - 1 side.

2 Egentilstande og energibånd

Skal indeholde:

- Introducér Hamiltonoperatoren i stedrum. Forklar kort Dirac-notationen og fysikken bag leddene.
- \bullet Forklar kort transformationen til impulsrum (Fourier-transformationen), herunder hvad k er.
- Opskriv Hamiltonoperatoren i impulsrum i matrixform (ligning (25)).
- Definér og opskriv \mathcal{H}_k som 2×2 matrix. Omskriv i det samme \mathcal{H}_k vha. Paulimatricer og vektoren \mathbf{h}_k .
- Definér fasen ϕ_k , og lav en tegning af denne ala figur 3.
- Opskriv egentilstandene i ligning (16). Forklar kort, at $H |\psi_{\pm,k}\rangle = \pm |\mathbf{h}_k| |\psi_{\pm,k}\rangle$.
- Plot energibåndene $E_{\pm,k} = \pm |\mathbf{h}_k|$ og forklar hvorledes disse fyldes efterhånden som man putter partikler ind i systemet. Understreg generalitet for faste stoffer.
- Indtegn båndgabet, ΔE , på plottet af energibåndene.
- Forklar, at båndgabet lukker, når $\delta t = 0$. Lav eventuelt en skitse heraf.
- Beskriv herudfra, hvad man forstår ved en topologisk faseovergang.

Kan indeholde:

• Beskrivelse af Blochs sætning i relation til ligning (18) umiddelbart efter, at egentilstandene er opskrevet.

Længde: 2 sider.

3 Symmetri og topologi

Skal indeholde:

- Introducér symmetrien, S.
- Opskriv på matrixform, ligning (25). Vis, at SH = -HS. Relatér dette til energierne og de fundne egentilstande. Henvis gerne til plottet af energibåndene her!
- Beskriv, hvilken restriktion det sætter på \mathcal{H}_k , hvis vikræver, at systemet overholder symmetrien S.
- Definér nu omdrejningstallet, W. Forklar hvornår denne er en topologisk invariant. Henvis meget gerne til figuren, hvor I definerer fasen ϕ_k .
- Beregn omdrejningstallet som funktion af δt og bemærk at den skifter diskontinuert i $\delta t = 0$. Relatér til båndgabet.

Længde: 1 1/2 sider.

4 Kanttilstanden

Skal indeholde:

- Opskriv og forklar ligning (26), Hamiltonoperatoren for den åbne kæde.
- Bestem kanttilstanden for $\delta t > 0$. Understreg, at man ikke kan finde en for $\delta t < 0$.
- Skitsér tilstanden og forklar hvad der sker i grænserne $\delta t \to 0$ og $\delta t \to t$.
- Relatér til omdrejningstallet, W.

Længde: 1 side.

5 Konklusion

Skal indeholde:

- En kort opridsning af, hvad vi har vist.
- Beskriv, at man ikke kan vide om man er i topologisk fase ud fra energibåndene.
- Beskriv, at man i stedet er nødt til at kigge på egentilstandene, og specifikt den topologiske invariant.

Længde: højst 1/2 side.