Informe

Lo primero que haremos será representar la posición x frente al tiempo t, que se comportará de la forma:

$$x(t) = x_{eq} + Ae^{-\gamma t}\cos(\omega t + \varphi)$$

Como se puede apreciar en la Figura 1, los datos se ajustan a la perfección a una curva de este tipo.

Figura 1: x frente a t

Además, del ajuste obtenemos los siguientes valores de los parámetros de x(t):

Parámetro	x_{eq} (cm)	A (cm)	$\gamma (s^{-1})$	$\omega \text{ (rad/s)}$	φ (rad)
Posición I	186,23(11)	$76,\!80(44)$	0,0010045(95)	0,0108224(99)	6,5423(58)
Posición II	194,22(11)	97,18(50)	0,0010617(86)	0,0109505(73)	7,4763(41)

Cuadro 1: Parámetros del ajuste

De los datos del Cuadro 1 A y φ son irrelevantes pues solamente dependen del momento donde empezamos a medir, es decir, de nuestra asignación arbitraria de $x(0)=x_0,\,\gamma$ nos da una idea de la amortiguación del movimiento, pero los datos relevantes son x_{eq} y ω pues para determinar G necesitamos $\Delta x = x_{eq}^{\rm II} - x_{eq}^{\rm I}$ y $T = \frac{2\pi}{\omega}$. Para hallar ω realizaremos una media ponderada, con lo que $\omega = 0,0109054(59)$ rad/s.

Así obtenemos que:

$$\Delta x = 7,99(15) \text{ cm}$$
 $T = 576,15(31) \text{ s}$

Cálculo de la constante de gravitación universal

Ahora determinaremos G pues sabemos que:

$$G = \frac{\pi^2 b^2 d\Delta x}{MLT^2 (1-\beta)}$$
 siendo $\beta = \frac{b^3}{(b^2 + 4d^2)^{\frac{3}{2}}}$

Tenemos todos los datos pues b=0.0465(50) m, d=0.05(1) m, $\Delta x=0.0799(15)$ m, M=1.50(1) kg, L=5.820(17) m y T=576.15(31) s. También calculamos β con su incertidumbre $\beta=0.075(42)$. Así la incertidumbre de G será:

$$u_G = \sqrt{(6,84 \cdot 10^{-12})^2 + (6,36 \cdot 10^{-12})^2 + (5,97 \cdot 10^{-13})^2 + (2,12 \cdot 10^{-13})^2 + (2,12 \cdot 10^{-13})^2 + (2,29 \cdot 10^{-13})^2 + (3,42 \cdot 10^{-14})^2 + (1,44 \cdot 10^{-12})^2} = 9,5 \cdot 10^{-12} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2}$$

Calcularemos por fin G:

$$G = 3,18(95) \cdot 10^{-11} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2}$$

Si comparamos este valor con el convencionalmente verdadero $(G=6,674\cdot 10^{-11}\,\frac{\mathrm{m}^3}{\mathrm{kg\cdot s^2}})$ veremos que el error es inmenso. Esto puede achacarse, suponiendo que el error procede de nuestras medidas, a un Δx excesivamente pequeño o a un T o L demasiado grandes. El error probablemente proceda de Δx pues sabemos que x_{eq}^{II} es mayor al obtenido mediante el ajuste, pues al llegar al laboratorio las esferas estaban en la posición II y la luz marcaba un $x_{eq}^{\mathrm{II}} \approx 196$ cm, que establece un Δx superior, lo que nos daría una G más acorde con el valor convencionalmente verdadero.