Center-to-center calculation for power transmission belts

Thaddeus Hughes hughes.thad@gmail.com thaddeus-maximus.github.io

April 24, 2020

Abstract

Belts are pretty easy to use and calculate the appropriate distances for. When this center distance is calculated and manufactured properly, they should not require adjustment.

Figure 1: Belt and Sprockets

Figure 2: Belt Dimensions, Labeled

Quickly, the pitch radii and diameters of the pulleys are:

$$d_1 = 2r_1 \tag{1}$$

$$d_2 = 2r_2 \tag{2}$$

$$sin(\theta) = \frac{r_2 - r_1}{C} \tag{3}$$

The total length of the pulley L can be expressed as:

L=2< straight segment >+< arc for pulley 1>+< arc for pulley 2>

$$L = 2\frac{C}{\cos(\theta)} + r_1(\pi - 2\theta) + r_2(\pi + 2\theta)$$
 (4)

The trig identity for the cosine of an arcsine will be helpful:

$$\cos(a\sin(x)) = \sqrt{1 - x^2} \tag{5}$$

Putting this all together lets us determine the total belt length in terms of pitch diameters d_1 , d_2 , and the center-center distance C:

$$L = \frac{2C}{\sqrt{1 - (\frac{d_2 - d_1}{2C})^2}} + \frac{d_1}{2}(\pi - 2\theta) + \frac{d_2}{2}(\pi + 2\theta)$$
 (6)

This equation isn't easy to analytically solve for C in terms of d_1 , d_2 , and L. WolframAlpha yields a solution, though it is quite atrocious. I found that it's best to use a numeric algorithm (such as <u>bisection</u>, which my calculator uses).

The same approach can be taken with a crossed drive belt (which is used in order to reverse direction of rotation).

Figure 3: Belt Dimensions, Labeled

The belt angle now is

$$sin(theta) = \frac{r_2 + r_1}{C} \tag{7}$$

$$L = 2\frac{C}{\cos(\theta)} + r_1(\pi + 2\theta) + r_2(\pi + 2\theta)$$
(8)

Resulting in:

$$L = \frac{2C}{\sqrt{1 - (\frac{d_2 + d_1}{2C})^2}} + \frac{d_1 + d_2}{2} (\pi + 2\theta)$$
(9)