

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехника и комплексная автоматизация (РК)

КАФЕДРА Системы автоматизированного проектирования (РК6)

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:

«Создание интерактивной среды в трехмерном движке Unreal Engine 5»

Студент РК6-73Б		<u>Козлов В.В.</u>
	(Подпись, дата)	И.О. Фамилия
Руководитель		Витюков Ф.А.
-	(Подпись, дата)	И.О. Фамилия

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

•	ций кафедрой РК6
«»	А.П. Карпенко 2022 г.

ЗАДАНИЕ

на выполнение научно-исследовательской работы				
по теме: Создание интерактивной ср	реды в трехмерном движке Unreal I	Engine 5		
Студент группы <u>РК6-73Б</u>				
Козп	ов Вадим Владимирович			
KUSII	(Фамилия, имя, отчество)			
Направленность НИР (учебная, иссле Источник тематики (кафедра, предпр		водственная, др.) <u>учебная</u>		
График выполнения НИР: 25% к 5 не	д., 50% к 11 нед., 75% к 14 нед., 10	0% к 16 нед.		
Техническое задание: создание ин	нтерактивной среды в трехмерно	м движке Unreal Engine 5		
Оформление научно-исследователь	ской работы:			
Расчетно-пояснительная записка на 1 Перечень графического (иллюстратив	* *	ы, слайды и т.п.):		
Дата выдачи задания «3» сентября 20	24 г.			
Руководитель НИР		Витюков Ф.А.		
	(Подпись, дата)	И.О. Фамилия		
Студент		<u>Козлов В.В.</u>		
	(Подпись, дата)	И.О. Фамилия		

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

АННОТАЦИЯ

В данной НИРС рассматривается процесс создания интерактивной среды в трехмерном движке Unreal Engine 5. Целью НИРСа является описание разработки высококачественной виртуальной среды, способной обеспечить пользователю увлекательный и интерактивный опыт.

В документе описано то, какие в ходе работы были использованы инструменты и возможности Unreal Engine 5, например: Blueprints для визуального программирования, системы частиц для создания эффектов, а также технологии рендеринга для достижения высокого качества графики.

Данная научно-исследовательская работа подчеркивает значимость использования современных технологий в разработке интерактивных приложений и открывает перспективы для дальнейших исследований в области создания виртуальных сред.

СОДЕРЖАНИЕ

АННОТАЦІ	RI	3
ОСНОВНЫ	Е ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ	5
введение		5
1. Основны	іе этапы и методы создания интерактивной среды	7
1.1	Планирование и концепция	7
1.2	Создание уровней	7
1.3	Импорт и создание контента	8
1.4	Освещение и атмосфера	9
1.5	Интерактивность	10
1.6	Тестирование и оптимизация	11
2. Интегри	рование элементов интерактивной среды в Unreal Engine 5	12
2.1	Создание и импорт объектов	12
2.2	Настройка освещения и атмосферы	12
2.3	Создание интерактивных объектов	13
2.4	Анимация и персонажи	13
2.5	Создание пользовательского интерфейса (UI)	14
3. Методы	работы с интерактивной средой	14
3.1	Blueprint для визуального программирования	15
3.2	Скрипты на С++	15
3.3	Работа с материалами и шейдерами	16
3.4	Реализация мультимедийных эффектов	17
ЗАКЛЮЧЕН	<u> НИЕ</u>	18
СПИСОК И	СПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	19

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

UE5 – трёхмерный движок Unreal Engine 5.

Terresculptor – это редактор 3D-ландшафта.

Epic Games – американская компания, занимающаяся разработкой компьютерных игр и программного обеспечения.

Nanite – технология, позволяющая создавать сцены с высокой детализацией без перегрузки системы.

Blueprint – система визуального программирования в UE5 на основе нодов с данными (события и функции).

QB (**Quixel Bridge**) – торговая площадка для приобретения и скачивания различных моделей.

PFV (**Procedural Foliage Volume**) – инструмент, который позволяет автоматически генерировать и размещать растительность (листву, деревья, кустарники и т.д.) в заданной области уровня.

RTV (**Runtime Virtual Textures**) – технология, которая позволяет эффективно управлять текстурами и материалами в реальном времени, обеспечивая более высокое качество визуализации и производительность.

ВВЕДЕНИЕ

Unreal Engine 5 (UE5) — это один из самых мощных и популярных движков для разработки игр и интерактивных приложений, предлагающий инновационные технологии и инструменты для создания высококачественных трехмерных миров. Он был разработан компанией Epic Games и официально представлен в мае 2020 года.

Одним из ключевых аспектов разработки является создание интерактивных сред, которые могут реагировать на действия пользователя, изменяя своё состояние в зависимости от взаимодействия.

Создание интерактивных сред в Unreal Engine 5 — это творческий и технический процесс, который позволяет реализовать идеи и создать уникальные игровые или визуальные опыты.

1. Основные этапы и методы создания интерактивной среды

Основные шаги и аспекты, которые стоит учитывать при создании интерактивной среды в Unreal Engine 5:

| Delay | Dela

1.1 Планирование и концепция

Рис. 1 «Граф для создания сцены в Unreal Engine»

Перед началом разработки важно иметь четкое представление о том, какую среду нужно создать. Это может быть концептуальный арт, сценарий или даже прототип. Необходимо определение цели, атмосферы и основных элементов, которые должны присутствовать в интерактивной среде.

1.2 Создание уровней

Рис. 2 «Пример визуального уровня в Unreal Engine»

UE5 предоставляет мощные инструменты для создания уровней:

<u>Редактор уровней</u>: позволяет размещать объекты, настраивать ландшафт и создавать архитектурные элементы;

<u>World Partition</u>: упрощает работу с большими мирами, автоматически загружая и выгружая части уровня по мере необходимости.

1.3 Импорт и создание контента

Рис. 3 «Каталог ресурсов, встроенный в движок»

В UE5 имеется возможность импортировать 3D-модели, текстуры и анимации из других программ (например, Blender, Maya или 3ds Max) или создавать их непосредственно в движке. Для этого можно использовать:

<u>Nanite</u>: для работы с высокодетализированными моделями без необходимости оптимизации;

<u>Систему материалов</u>: для создания реалистичных поверхностей с помощью нодового редактора.

1.4 Освещение и атмосфера

Рис. 4 «Пример сцены в Unreal Engine с освещением Lumen»

Для создания динамического освещения и реалистичных отражений используется система Lumen. В ней можно настроить атмосферные эффекты, такие как туман, облака и погодные условия, чтобы добавить глубину и реализм.

1.5 Интерактивность

Рис. 5 «Настройка материала с помощью графа материалов»

Интерактивные элементы добавляются с помощью системы Blueprints или C++. Это может включать в себя:

Взаимодействие с объектами (открытие дверей, сбор предметов и т.д.);

Системы триггеров (активация событий или изменений в среде).

1.6 Тестирование и оптимизация

Интерактивная среда подвергается постоянным тестам, чтобы убедиться, что все работает как задумано. Налаживается оптимизация производительности, чтобы обеспечить плавный игровой процесс.

2. Интегрирование элементов интерактивной среды в Unreal Engine 5

Интеграция элементов интерактивной среды в Unreal Engine 5 — это важный процесс, который включает в себя создание и настройку объектов, взаимодействий и логики, чтобы сделать среду живой и увлекательной.

Интегрирование проводится в несколько этапов:

2.1 Создание и импорт объектов

а. 3D-модели

<u>Импорт</u>: имеется возможность импортировать 3D-модели из программ, таких как Blender, Maya или 3ds Max. UE5 поддерживает форматы FBX и OBJ.

<u>Создание</u>: также можно создавать модели непосредственно в UE5 с помощью встроенных инструментов, таких как Geometry Editing.

b. Текстуры и материалы

<u>Импорт текстур</u>: загрузка текстур в проект и создание материалов с помощью Material Editor. UE5 поддерживает PBR (Physically Based Rendering), что позволяет создавать реалистичные материалы.

<u>Создание материалов</u>: использование нодового редактора для создания сложных материалов, комбинируя текстуры, цвета, отражения и другие параметры.

2.2 Настройка освещения и атмосферы

<u>Lumen</u>: использование системы Lumen для динамического освещения, чтобы создать реалистичное освещение и тени в среде.

<u>Атмосферные эффекты</u>: добавление эффектов, такие как туман, облака и освещение, чтобы улучшить атмосферу и визуальное восприятие.

2.3 Создание интерактивных объектов

a. Blueprints

<u>Визуальное программирование</u>: Blueprints — это система визуального программирования, которая позволяет создавать интерактивные элементы без необходимости писать код. Можно создавать логические схемы для управления поведением объектов.

<u>Создание классов</u>: создание классов для интерактивных объектов, таких как двери, кнопки или предметы, которые игрок может собирать.

b. События и триггеры

<u>Триггеры</u>: использование триггеры для активации событий, когда игрок взаимодействует с объектами. Например, при пересечении игроком определенной области может открываться дверь или запускаться анимация.

<u>События</u>: настройка событий, таких как нажатие кнопки или взаимодействие с объектом, чтобы инициировать действия, например, воспроизведение звука или изменение состояния объекта.

2.4 Анимация и персонажи

<u>Анимация объектов</u>: использование Animation Blueprints для создания анимаций для интерактивных объектов, таких как двери, которые открываются и закрываются.

<u>MetaHuman</u>: если в сцене используются персонажи, можно их создать с помощью MetaHuman Creator и настроить анимации для взаимодействия с окружающей средой.

2.5 Создание пользовательского интерфейса (UI)

<u>UMG (Unreal Motion Graphics)</u>: использование UMG для создания интерфейсов, таких как меню, инвентари или HUD. При этом есть возможность добавлять кнопки, текстовые поля и другие элементы управления.

<u>Интерактивные элементы UI</u>: настройка взаимодействия с UI, чтобы игроки могли управлять инвентарем, получать подсказки или взаимодействовать с объектами.

3. Методы работы с интерактивной средой

Работа с интерактивной средой в Unreal Engine 5 включает в себя несколько методов, таких как использование Blueprints для визуального программирования, написание скриптов на C++, работа с материалами и шейдерами, а также реализация мультимедийных эффектов.

3.1 Blueprint для визуального программирования

Blueprints — это мощная система визуального программирования в Unreal Engine, которая позволяет создавать игровую логику и интерактивные элементы без необходимости писать код.

Основные аспекты работы с Blueprints:

- <u>Создание классов</u>: создание новых классов объектов (например, персонажи, предметы, уровни) на основе существующих классов, добавив к ним функциональность.
- События и функции: Blueprints позволяют создавать события (например, нажатие кнопки, пересечение триггера) и функции, которые можно вызывать в ответ на эти события.
- <u>Визуальные ноды</u>: логика создается с помощью визуальных нодов, которые представляют собой блоки кода. Они соединяются, чтобы определить порядок выполнения действий.
- <u>Дебаггинг</u>: UE5 предоставляет инструменты для отладки Blueprints, позволяя отслеживать выполнение логики и выявлять ошибки.

3.2 Скрипты на С++

Для более сложных и производительных решений можно также использовать C++ для написания кода, который взаимодействует с движком.

Основные аспекты работы с С++:

- Создание классов: создание собственных классов, наследуя их от базовых классов Unreal Engine, таких как AActor или UObject.
- Оптимизация: C++ позволяет более точно контролировать производительность и использование ресурсов, что особенно важно для сложных игр.
- <u>Интеграция с Blueprints</u>: создание функций и переменных в C++, которые будут доступны в Blueprints, что позволяет комбинировать визуальное программирование с мощью C++.
- Доступ к API: C++ предоставляет полный доступ к API Unreal Engine, что позволяет использовать все возможности движка.

3.3 Работа с материалами и шейдерами

Материалы и шейдеры играют ключевую роль в создании визуально привлекательных сред.

Основные аспекты работы с материалами:

- <u>Material Editor</u>: UE5 предоставляет нодовый редактор для создания материалов. Есть возможность комбинирования текстур, цветов, отражений и других параметров, чтобы создать сложные материалы.
- <u>PBR (Physically Based Rendering)</u>: UE5 поддерживает PBR, что позволяет создавать реалистичные материалы, которые реагируют на освещение в сцене.
- Шейдеры: создание пользовательских шейдеров для достижения специфических визуальных эффектов, используя HLSL (High-Level Shading Language) в Material Editor.

3.4 Реализация мультимедийных эффектов

Мультимедийные эффекты, такие как звук, анимация и видео, могут значительно улучшить интерактивную среду.

Основные аспекты реализации мультимедийных эффектов:

- Звук: UE5 поддерживает интеграцию звуковых эффектов и музыки. Имеется возможность использовать Audio Components для воспроизведения звуков в ответ на события (например, шаги персонажа или звуки окружения).
- <u>Анимация</u>: Использование Animation Blueprints для создания анимаций персонажей и объектов. Также можно настраивать анимации в зависимости от состояния игры или взаимодействий.
- <u>Видеоплееры</u>: UE5 позволяет интегрировать видео в среду, используя Media Framework. Это может быть полезно для создания кат-сцен или интерактивных элементов, таких как экраны с видео.
- <u>Эффекты частиц</u>: Использование Niagara или Cascade для создания эффектов частиц, таких как дым, огонь или дождь, чтобы добавить динамичности в среду.

ЗАКЛЮЧЕНИЕ

Создание интерактивной среды в Unreal Engine 5 — это многогранный процесс, который требует сочетания художественных и технических навыков. На каждом этапе, от проектирования до программирования, разработчики сталкиваются с уникальными вызовами, которые требуют креативного подхода и глубокого понимания инструментов движка.

Unreal Engine 5 предоставляет разработчикам мощные инструменты, такие как Nanite и Lumen, которые позволяют создавать высококачественные и реалистичные миры. Использование Blueprints упрощает процесс программирования, позволяя сосредоточиться на создании увлекательного игрового опыта.

Успешное создание интерактивной среды в UE5 зависит от тщательной проработки всех этапов разработки, от концепции до реализации. Важно помнить, что интерактивность — это не только возможность взаимодействия с объектами, но и создание атмосферы, которая погружает игрока в мир игры. Разработчики должны стремиться к созданию уникальных и запоминающихся игровых пространств, которые будут вызывать интерес и желание исследовать.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Unreal Engine 5 Documentation // Unreal Engine Documentation URL:

https://dev.epicgames.com/community/learning/tutorials/DYE1/unreal-engine-5-1-unreal-engine-5. Дата обращения: 14.09.2024;

2. Introduction to Materials // Unreal Engine Documentation URL:

https://dev.epicgames.com/community/learning/tutorials/9d0a/unreal-engine-introduction-to-materials. Дата обращения: 01.11.2024;

3. Procedural Foliage Tool // Unreal Engine Documentation URL:

https://dev.epicgames.com/documentation/en-us/unreal-engine/procedural-foliage-tool-in-unreal-engine. Дата обращения: 22.10.2024;

4. Visual Effects in Niagara for Unreal Engine 5 // Unreal Engine Documentation URL:

https://dev.epicgames.com/documentation/en-us/unreal-engine/creating-visual-effects-in-niagara-for-unreal-engine. Дата обращения: 12.01.2025;

- 5. Geometry instancing // Wikipedia, the free encyclopedia URL: https://en.wikipedia.org/wiki/Geometry_instancing. Дата обращения: 17.10.2024;
- 6. Quixel Bridge // Quixel Bridge market URL:

https://quixel.com/bridge. Дата обращения: 19.12.2024;

7. Unreal Engine 5 Documentation // Unreal Engine Documentation URL:

https://docs.unrealengine.com/. Дата обращения: 10.09.2024;