VIRUM GYMNASIUM

SRP

Математік

Riemann-integralet

Forfatter Minrui Kevin Zhou Vejledere Niels Nørskov Laursen

14. marts 2025

Resumé

Dette er mit resumé.

Indhold

1	Indledning	2
2	De reele tal	2
3	Kontinuitet	2
4	Riemann-integralet	2
5	Numerisk integration	2

- 1 Indledning
- 2 De reele tal
- 3 Kontinuitet

Definition 3.1: Begrænset funktion

4 Riemann-integralet

I denne sektion vil vi definere Riemann-integralet. Før vi gør dette, er vi nødt til at starte med nogle definitioner, vi har brug for.

Definition 4.1: Inddeling

Antag $a, b \in \mathbb{R}$ sådan at a < b. Ved en inddeling P af [a; b] forstår vi en endelig mængde $\{x_0, \dots, x_n\}$, hvor

$$a = x_0 < x_1 < \dots < x_n = b$$

og vi skriver

$$\Delta x_i = x_i - x_{i-1} \quad (i = 1, \dots, n)$$

Med en inddeling kan vi dele intervallet [a;b] op i n delintervaller, hvor det i'te delinterval har længden Δx_i :

$$[a;b] = [x_0;x_1] \cup [x_1;x_2] \cup \cdots \cup [x_{n-1};x_n]$$

Vi vil nu definere over- og undersummen af en funktion med hensyn til en given inddeling.

Definition 4.2: Over- og undersum

Antag $f:[a;b]\to\mathbb{R}$ er en begrænset funktion, og $P=\{x_0,\ldots,x_n\}$ er en inddeling af [a;b]. Lad

$$M_i = \sup\{f(x) : x \in [x_{x_{i-1}}; x_i]\}$$
 og $m_i = \inf\{f(x) : x \in [x_{x_{i-1}}; x_i]\}.$

Så er oversummen af f med hensyn til P defineret ved

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i.$$

Tilsvarende er undersummen af f med hensyn til P defineret ved

$$L(f,P) = \sum_{i=1}^{n} m_i \Delta x_i.$$

Skriv eksistens

Sætning 4.3 Uligheder med over- og undersummer

Antag $f:[a;b]\to\mathbb{R}$ er en begrænset funktion og $P_1,\,P_2$ er inddelinger af [a;b] sådan at $P_1\subseteq P_2$. Så gælder

$$L(f,P_1) \le L(f,P_2) \le U(f,P_2) \le U(f,P_1)$$

Bevis. Bevis det selv, lol.

5 Numerisk integration