By Lagrange's theorem, the order of a subgroup of S_4 divides $|S_4| = 4! = 24$, so we are looking for subgroups of orders 1, 2, 3, 4, 6, 8, 12, and 24. We go through the list, often using Sylow's theorems:

- Order 1: Trivial subgroup $\{1\}$ 1 subgroup.
- Order 2: Subgroups generated by:
 - 6 transpositions: $\langle (i \ j) \rangle$
 - 3 double transpositions: $\langle (i \ j)(k \ l) \rangle$

Total: 6 + 3 = 9, all cyclic.

- Order 3: Subgroups $\langle (i \ j \ k) \rangle$, all cyclic, all conjugate $\frac{4!}{3 \cdot 2} = 4$ subgroups.
- Order 4:
 - -3 Klein 4-subgroups: isomorphic to $V_4 = \{1, (12)(34), (13)(24), (14)(23)\}$
 - 3 cyclic subgroups generated by 4-cycles: $\langle (1\ 2\ 3\ 4)\rangle,\ \langle (1\ 2\ 4\ 3)\rangle,\ \langle (1\ 3\ 2\ 4)\rangle$ (note: $\langle (1\ 3\ 4\ 2)\rangle = \langle (1\ 2\ 4\ 3)\rangle,\ \langle (1\ 4\ 2\ 3)\rangle = \langle (1\ 3\ 2\ 4)\rangle,\ \langle (1\ 4\ 3\ 2)\rangle = \langle (1\ 2\ 3\ 4)\rangle)$

Total: 3 + 3 = 6 subgroups, split into 2 conjugacy classes (the three V_4 are conjugate, and the three cyclic groups of order 4 are conjugate).

- Order 6: Each isomorphic to $S_3 = \langle (i \ j), (i \ j \ k) \rangle$, where $\{i, j, k\}$ runs over 3-element subsets $\binom{4}{3} = 4$ subgroups.
- Order 8: Sylow 2-subgroups. The order is 2^3 , and $n_2 \equiv 1 \pmod{2}$ and n_2 divides 24/8 = 3, so $n_2 = 1$ or $n_2 = 3$. These are isomorphic to the dihedral group $D_4 \longrightarrow 3$ subgroups.
- Order 12: Unique subgroup isomorphic to A_4 1 subgroup.
- Order 24: The whole group S_4 1 subgroup.

Grand Total: 1 + 9 + 4 + 6 + 4 + 3 + 1 + 1 = 29 subgroups

Excluding $\{1\}$ and S_4 , you get 27 proper subgroups, and 26 nontrivial proper ones.