Seat	
No.	

[4957]-1041

S.E. (Electronics/E & TC) (First Semester) EXAMINATION, 2016 SIGNALS AND SYSETMS

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.
- **1.** (a) Determine even and odd components of : [6]
 - (i) $x[n] = \{1, 1, -1, 1, 2\}$
 - (ii) x(t) in Fig. 1.

(<i>b</i>)	Determine the convolution integral of the following	
	signals: [6]	
	$x(t) = e^{-3t} u(t)$	
	$h(t) = 1, \qquad 0 \leq t \leq 2.$	
	Or	
(a)	Check whether the follownig system is: [6]	
	(i) Static/dynamic	
	(ii) Linear/non-linear	
	(iii) Time invariant/time variant	
	(iv) Stable/unstable.	
	$y[n] = \cos(x[n - 2]).$	
(<i>b</i>)	Check whether the systems with impulse responses given	
	below are: [6]	
	(i) Static/dynamic	
	(ii) Causal/non-causal	
	(iii) Stable/unstable.	
	(1) h[n] = u[n]	
	(2) $h(t) = e^{-4t} u(t)$.	

2.

3. (a) Determine the trigonometric Fourier series of the signal given in Fig. 2. [6]

Fig. 2

(b) Determine Laplace transform of the following signals: [6]

(i)
$$x(t) = \int_{-\infty}^{t} e^{-3\tau} \sin 4\tau \ u(\tau) d\tau$$

$$(ii)$$
 $x(t) = e^{-4t}u(t) * e^{-2t}u(t).$

Or

4. (a) Determine Fourier transform of the following signals: [6]

$$(i) x(t) = \frac{d}{dt}e^{-2t} u(t)$$

$$(ii)$$
 $x(t) = \text{rect}\left(\frac{t}{2}\right)\cos \omega_0 t.$

(b) Determine the initial and final values of the signal having Laplace transform: [6]

$$X(s) = \frac{s+4}{s^2+2s+3}.$$

- 5. (a) State properties of cross-correlation and prove that : [6] $R_{xy}(\tau) = R_{xy}(-\tau).$
 - (b) Determine autocorrection and energy of the signal given by:

$$x(t) = e^{-2t}u(t)$$

Calculate energy from autocorrelation.

Or

6. (a) Determine autocorrelation of the sequence : [6] $x[n] = \{1, 2, -1, -1\}.$

Also verify that the energy E is:

$$E = R_{xx}(0).$$

(b) Determine power spectral density (PSD) of the signal and determine its power using the relation between PSD and power:

$$x(t) = A \sin \omega_0 t$$
.

7. (a) State and explain the properties of probability density function (PDF). [6]

(b) For the cumulative distribution function (CDF) given below:

$$f_x(x) = 0, x < 0$$

= $kx^2, 0 \le x \le 10$
= $50 k, x > 10$

Determine k, PDF, P(2 \leq X \leq 4), P(X \leq 5).

Or

- 8. (a) Sketch and explain uniform distribution and determine its mean and variance. [6]
 - (b) For the PDF given by: [7]

$$f_x(x) = kx, -1 \le X \le 2$$

= 0, otherwise

Find *k*, CDF, $P(-1 \le X < 1)$, P(X > 1).