UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2015/1 Prova da área IB

Nome:	Cartão:	

Regras a observar:

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.
- $\bullet\,$ Mantenha a caderno de questões grampeado.
- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

From edades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.				
Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$			
Transformada da derivada	Se $\lim_{t\to\pm\infty}f(t)=0$, então $\mathcal{F}\left\{f'(t)\right\}=iw\mathcal{F}\left\{f(t)\right\}$			
	Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$			
Deslocamento no eixo w	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$			
Deslocamento no eixo t	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$			
Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$			
Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$			
Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{ onde } (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$			
	$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$			
Conjugação	$\overline{F(w)} = F(-w)$			
Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$			
Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$			
Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = rac{1}{ a }F\left(rac{w}{a} ight), \qquad a eq 0$			
Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$			
Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$			

Séries e transformadas de Fourier:

	Forma trigonométrica	Forma exponencial
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(w_n t) + b_n \sin(w_n t)]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$	
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$	
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$
	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt} dt$

Tabela de integrais definidas:

Tabela de integrais definidas:	
1. $\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2}$ $(a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2}$ $(a > 0)$
3. $\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sec(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$
5. $ \int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases} $	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0 \\ 0, & m = 0 \\ -\frac{\pi}{2}, & m < 0 \end{cases} $
7. $\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9. $\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$ $= \frac{m(a^2 + m^2 - n^2)}{(a^2 + (m-n)^2)(a^2 + (m+n)^2)} (a > 0)$
11. $\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13. $\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15. $\int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases}$	16. $\int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases}$
17. $\int_0^\infty x^2 e^{-ax} \operatorname{sen}(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19. $\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21. $\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} (a > 0, m \ge 0)$	22. $\int_0^\infty x e^{-a^2 x^2} \sin(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Frequências das notas musicais em Hertz:

Nota \ Escala	1	2	3	4	5	6
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$

$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$

$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integraic

Integrais:
$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

• Questão 1 (3.0 pontos) Considere uma aproximação discreta do diagrama de espectro de uma nota Lá (220 Hz) tocada por um piano:

a) (0.6) Observe que existe uma infinidade de funções f(t) cujo diagrama de espectro de magnitudes é da forma apresentada. Explique por quê?

Para cada forma de onda dada nos itens b) a e), indique se ela é uma possível representação do som dado no diagrama de magnitudes acima e justifique sua resposta. Resposta sem justificativa receberá grau nulo.

b) (0.6)A função f(t) da forma

$$f(t) = \cos(440\pi t) + 0.4 \sin(880\pi t) + 0.5 \cos(1320\pi t) + 0.4 \sin(1760\pi t) + 0.2 \cos(2200\pi t) + 0.15 \sin(2640\pi t) + 0.1 \cos(3080\pi t)$$

c) (0.6) A função f(t) da forma

$$f(t) = K\cos(440\pi t) + 0.4K\sin(880\pi t) + 0.5K\cos(1320\pi t) + 0.4K\sin(1760\pi t) + 0.2K\cos(2200\pi t) + 0.15K\sin(2640\pi t) + 0.1K\cos(3080\pi t)$$

para alguma constante K > 0 e satisfaz

$$\int_0^{\frac{1}{220}} |f(t)|^2 dt = 1.$$

d) (0.6)A função f(t) da forma

$$\begin{split} f(t) &= 2\cos\left(440\pi t - \frac{\pi}{2}\right) + 0.8\cos\left(880\pi t + \frac{\pi}{4}\right) + 1.0\cos\left(1320\pi t + \frac{\pi}{3}\right) + \\ &+ 0.8\cos\left(1760\pi t - \frac{3\pi}{2}\right) + 0.4\cos\left(2200\pi t + \frac{\pi}{6}\right) + 0.3\cos\left(2640\pi t - \frac{2\pi}{3}\right) + 0.2\sin\left(3080\pi t + \pi\right) \end{split}$$

e) (0.6)A função f(t) da forma

$$f(t) = \sum_{n=-7}^{7} C_n e^{440n\pi it},$$

onde
$$\sum_{n=-7}^{7} |C_n| = 3.825 \text{ e } C_0 = e^{i\pi}.$$

Solução:

- a) Porque C_n só pode ser conhecido quando sabemos o módulo $|C_n|$ e a fase θ_n $(C_n = |C_n|e^{i\theta_n})$. Como o gráfico da fase não é dado, podemos construir uma infinidade de sinais f(t) com o mesmo módulo e variando as fases.
- b) Não. Observe que $a_1 = 1$, $b_1 = 0$ e $C_1 = \frac{a_1 ib_1}{2} = 0.5$, diferente do valor de C_1 do gráfico.
- c) Não. Pelo teorema de Parseval, $\frac{1}{T} \int_0^T |f(t)|^2 dt = \sum_{n=-\infty}^{\infty} |C_n|^2$. Usando $T = \frac{2\pi}{440\pi} = \frac{1}{220}$, temos

$$220 \int_0^{\frac{1}{220}} |f(t)|^2 dt = \sum_{n=-\infty}^{\infty} |C_n|^2 = \sum_{n=-7}^{7} |C_n|^2.$$

Pelo gráfico, observe
$$\sum_{n=-7}^{7} |C_n|^2 \neq 220.$$

- d) Sim. Olhando apenas a magnitude, temos $a_1=2$ e $b_1=0$, ou seja, $C_1=\frac{a_1+ib_1}{2}=1$ e $|C_1|=|C_{-1}|=1$. A mesma conta para $C_2,\,C_3,\,C_4,\,\dots$
- e) Não. $C_0=e^{i\pi}=-1$ implica em $|C_0|=1,$ diferente do valor dado no gráfico.

• Questão 2 (2.5 pontos) Considere uma função f(t) e sua transformada F(w) de Fourier representada pelos diagramas de espectro abaixo:

- a) (1.0) Escreva uma expressão para F(w) usando os diagramas de espectro. [Dica: a função $F(w) = |F(w)|e^{i\phi(w)}$ pode ser uma função definida por partes]
- b) (0.5) Classifique as partes real e imaginária da função F(w) calculada no item a) como par, ímpar ou nem par nem ímpar.
- c) (1.0) Calcule f(t) usando F(w) do item a).

Solução:

a)

$$F(w) = \begin{cases} 0, & w < -1 \\ (w+1)e^{i\frac{\pi}{2}}, & -1 \le w \le 0 \\ (-w+1)e^{-i\frac{\pi}{2}}, & 0 < w \le 1 \\ 0, & w > 1 \end{cases}$$

ou, simplesmente,

$$F(w) = \begin{cases} 0, & w < -1\\ i(w+1), & -1 \le w \le 0\\ -i(-w+1), & 0 < w \le 1\\ 0, & w > 1 \end{cases}$$

b) Parte real nula e parte imaginária ímpar, ou seja, F(w) = 0 + iG(w), onde

$$G(w) = \begin{cases} 0, & w < -1 \\ (w+1), & -1 \le w \le 0 \\ -(-w+1), & 0 < w \le 1 \\ 0, & w > 1 \end{cases}$$

Observe que, se $0 < w \le 1$, então G(w) = -(-w+1) e G(-w) = (-w+1), ou seja, G(w) = -G(-w). Também, se w > 1, então G(-w) = 0 = -G(w).

c) (1.0) Como a função F(w) é imaginária pura e tem parte imaginária ímpar, então

$$\begin{split} f(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) e^{iwt} dw \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) \cos(wt) dw + \frac{i}{2\pi} \int_{-\infty}^{\infty} F(w) \sin(wt) dw \\ &= \frac{i}{\pi} \int_{0}^{\infty} F(w) \sin(wt) dw \end{split}$$

Logo,

$$f(t) = \frac{i}{\pi} \left[\int_0^1 F(w) \sin(wt) dw + \int_1^{\infty} F(w) \sin(wt) dw \right]$$

$$= \frac{i}{\pi} \int_0^1 (-i(-w+1)) \sin(wt) dw$$

$$= \frac{1}{\pi} \int_0^1 (-w+1) \sin(wt) dw$$

$$= \frac{1}{\pi} \left[\frac{1}{t} (-w+1) (-\cos(wt)) \Big|_0^1 - \frac{1}{t} \int_0^1 (-1) (-\cos(wt)) dw \right]$$

$$= \frac{1}{\pi} \left[\frac{1}{t} - \frac{1}{t^2} \sin(wt) \Big|_0^1 \right]$$

$$= \frac{1}{\pi} \left[\frac{1}{t} - \frac{1}{t^2} \sin(t) \right].$$

ullet Questão 3 (2.0 pontos) O gráfico abaixo apresenta o diagrama de magnitudes do registro do som de um instrumento musical.

Assinale a alternativa correta.

a) (1.0) A energia total do sinal dada por

$$\int_{-\infty}^{\infty} |f(t)|^2 dt$$

- i) é menor que 5 J.
- ii) está entre 5 J e 500 J.
- iii) está entre $500\,\mathrm{J}$ e $50000\,\mathrm{J}$.
- iv) está entre $50000\,\mathrm{J}$ e $5000000\,\mathrm{J}$.
- v) é maior que $5000000 \,\mathrm{J}.$

b) (1.0) O gráfico abaixo apresenta o espectro de magnitude da transforma de Fourier de uma função g(t).

É correto afirmar que

$$\mathrm{i)}\ g(t) = \frac{1}{10} f\left(10t\right)$$

ii)
$$g(t) = \frac{1}{10} f\left(\frac{t}{10}\right)$$

iii)
$$g(t) = 10f\left(\frac{t}{10}\right)$$

iv)
$$g(t) = 10f(10t)$$

v) nenhuma das alternativas anteriores

Solução:

a) O item correto é o iii), pois pelo teorema de Parseval

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(w)|^2 dw.$$

Portanto, estimamos grosseiramente a área abaixo da curva aproximando por retângulos e triângulos: Os picos de $|F(w)|^2$ serão 9, 16, 1 e 0.25. As bases são aproximadamente $\frac{2}{3}440\pi$. Aproximando por retângulos temos:

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |F(w)|^2 dw \approx \frac{1}{2\pi} (16 + 9 + 1 + 0.25) \times 2 \times \frac{2}{3} 440\pi \approx 9 \times 880 = 7920.$$

Por triângulos, temos a metade do valor acima.

b) O item correto é o v)

• Questão 4 (2.5 pontos) Considere uma viga infinita repousada sobre um suporte elástico e y(x) seu deslocamento vertical em cada ponto x. Suponha que o suporte exerce uma força de reação proporcional ao deslocamento y(x) e que a viga é carregada em x=0 por um força concentrada $\delta(x)$. A equação que modela o fenômeno é dada por:

$$\frac{d^4y}{dx^4} = \delta(x) - 4y(x), \qquad -\infty < x < \infty,$$

Calcule o deslocamento y(x) da viga usando a técnica de transformada de Fourier.

Solução: Aplicamos a transformada de Fourier na equação

$$\mathcal{F}\left\{\frac{d^4y}{dx^4}\right\} = \mathcal{F}\left\{\delta(x)\right\} - 4\mathcal{F}\left\{y(x)\right\}.$$

Usando a notação $\mathcal{F}{y(x)} = Y(k)$ e usando a propriedade da derivada, temos

$$k^4Y(k) = 1 - 4Y(k),$$

pois $\mathcal{F}\{\delta(x)\}=1$. Logo

$$Y(k) = \frac{1}{4 + k^4}.$$

A transformada inversa é dada por

$$y(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{4 + k^4} e^{ikx} dk.$$

Usando o fato que Y(k) é par, temos

$$y(x) = \frac{1}{\pi} \int_0^\infty \frac{1}{4 + k^4} \cos(kx) dk.$$

O item 12 da tabela de integrais fornece o valor da integral:

$$y(x) = \frac{1}{\pi} \frac{\pi}{8} e^{-x} (\cos(x) + \sin(x)) = \frac{e^{-x}}{8} (\cos(x) + \sin(x)).$$