1. 第一基本定理

微积分的第一基本定理: 如果函数 f 在闭区间 [a,b] 上是连续的, 定义 F 为

$$F(x) = \int_{a}^{x} f(t)dt, \ x \in [a, b]$$

则 F 在开区间 (a,b) 内是可导函数, 而且 F'(x) = f(x).

2. 第二基本定理

微积分的第二基本定理: 如果函数 f 在闭区间 [a,b] 上是连续的, F 是 f 的任意一个反导数 (关于x), 那么有

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

3. 不定积分法则

如果
$$\frac{d}{dx}F(x) = f(x)$$
, 那么 $\int f(x)dx = F(x) + C$.

4. 不定积分运算法则

$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$

$$\int Cf(x)dx = C \int f(x)dx$$

5. 微分和积分对照公式

$$\frac{\mathrm{d}}{\mathrm{d}x}x^a = ax^{a-1} \qquad \qquad \int x^a \, \mathrm{d}x = \frac{x^{a+1}}{a+1} + C(a \neq -1)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(x) = \frac{1}{x} \qquad \qquad \int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x \qquad \qquad \int e^x \, \mathrm{d}x = e^x + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}b^x = b^x \ln(b) \qquad \qquad \int b^x \, \mathrm{d}x = \frac{b^x}{\ln(b)} + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin(x) = \cos(x) \qquad \qquad \int \cos(x) \, \mathrm{d}x = \sin(x) + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos(x) = -\sin(x) \qquad \qquad \int \sin(x) \, \mathrm{d}x = -\cos(x) + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\tan(x) = \sec^2(x) \qquad \qquad \int \sec^2(x) \, \mathrm{d}x = \tan(x) + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sec(x) = \sec(x)\tan(x) \qquad \int \sec(x)\tan(x) \, \mathrm{d}x = \sec(x) + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cot(x) = -\csc^2(x) \qquad \qquad \int \csc^2(x) \, \mathrm{d}x = -\cot(x) + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cot(x) = -\csc(x)\cot(x) \qquad \int \csc^2(x)\cot(x) \, \mathrm{d}x = -\csc(x) + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}} \qquad \int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x = \sin^{-1}(x) + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\tan^{-1}(x) = \frac{1}{1+x^2} \qquad \int \frac{1}{1+x^2} \, \mathrm{d}x = \tan^{-1}(x) + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin(x) = \cosh(x) \qquad \int \cosh(x) \, \mathrm{d}x = \sinh(x) + C$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cosh(x) = \sinh(x) \qquad \int \sinh(x) \, \mathrm{d}x = \cosh(x) + C$$