Course: Cryptography and Network Security Code: CS-34310 Branch: M.C.A - 4th Semester

Lecture – 9 : Log and Expo ASYMMETRIC-KEY CRYPTOGRAPHY

Faculty & Coordinator : Dr. J Sathish Kumar (JSK)

Department of Computer Science and Engineering
Motilal Nehru National Institute of Technology Allahabad,
Prayagraj-211004

EXPONENTIATION AND LOGARITHM

Exponentiation: $y = a^x \rightarrow \text{Logarithm: } x = \log_a y$

- Fast Exponentiation
 - The idea behind the square-and-multiply method

$$x = x_{n_b-1} \times 2^{k-1} + x_{n_b-2} \times 2^{k-2} + \dots + x_2 \times 2^2 + x_1 \times 2^1 + x_0 \times 2^0$$

Example:

$$y = a^9 = a^{1001_2} = a^8 \times 1 \times 1 \times a$$

```
Square_and_Multiply (a, x, n)
    y \leftarrow 1
    for (i \leftarrow 0 \text{ to } n_b - 1)
                                                          // n_b is the number of bits in x
         if (x_i = 1) y \leftarrow a \times y \mod n
                                                         // multiply only if the bit is 1
         a \leftarrow a^2 \mod n
                                                         // squaring is not needed in the last iteration
    return y
```

- The process for calculating y = a^x
- In this case, x = 22 = (10110)₂ in binary.

Calculation of 17²² mod 21

i	x_i	Multiplication (Initialization: $y = 1$)	Squaring (Initialization: $a = 17$)		
0	0	\rightarrow	$a = 17^2 \mod 21 = 16$		
1	1	$y = 1 \times 16 \mod 21 = 16 \longrightarrow$	$a = 16^2 \mod 21 = 4$		
2	1	$y = 16 \times 4 \mod 21 = 1 \longrightarrow$	$a = 4^2 \mod 21 = 16$		
3	0	\rightarrow	$a = 16^2 \mod 21 = 4$		
4	1	$y = 1 \times 4 \mod 21 = 4 \longrightarrow$			

• In cryptography we need to discuss modular logarithm

Exhaustive search for modular logarithm

- Order of the Group.
- Example:
 - What is the order of group $G = \langle Z_{21}^*, \times \rangle$?
 - $|G| = \phi(21) = \phi(3) \times \phi(7) = 2 \times 6 = 12$. There are 12 elements in this group: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, and 20. All are relatively prime with 21.

• The order of an element, a, is the smallest integer i such that $a^i \equiv e \pmod{n}$.

• Example:

- Find the order of all elements in $G = \langle Z_{10} *, \times \rangle$.
- This group has only $\phi(10) = 4$ elements: 1, 3, 7, 9.
- a. $1^1 \equiv 1 \mod (10) \to \operatorname{ord}(1) = 1$.
- b. $3^1 \equiv 3 \mod (10)$; $3^2 \equiv 9 \mod (10)$; $3^4 \equiv 1 \mod (10) \rightarrow \operatorname{ord}(3) = 4$.
- c. $7^1 \equiv 7 \mod (10)$; $7^2 \equiv 9 \mod (10)$; $7^4 \equiv 1 \mod (10) \rightarrow \operatorname{ord}(7) = 4$.
- d. $9^1 \equiv 9 \mod (10)$; $9^2 \equiv 1 \mod (10) \rightarrow \operatorname{ord}(9) = 2$.

The order of an element divides the order of the group (Lagrange theorem).

Primitive roots

- In the group $G = \langle Z_n *, \times \rangle$, when the order of an element is the same as $\phi(n)$, that element is called the primitive root of the group.
- Example
 - There are no primitive roots in G = $\langle Z_8 *, \times \rangle$ because no element has the order equal to $\phi(8) = 4$.

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7
<i>a</i> = 1	x: 1	x: 1	x: 1	x: 1	x: 1	x: 1	x: 1
a = 3	x: 3	x: 1	x: 3	x: 1	x: 3	x: 1	x: 3
<i>a</i> = 5	x: 5	x: 1	x: 5	x: 1	x: 5	x: 1	x: 5
a = 7	x: 7	x: 1	x: 7	x: 1	x: 7	x: 1	x: 7

The first time when x is 1, the value of i gives us the order of the element (double-sided boxes). The orders of elements are ord(1) = 1, ord(3) = 2, ord(5) = 2, and ord(7) = 2.

Example

- the result of $a^i \equiv x \pmod{7}$ for the group $G = \langle Z_7 *, \times \rangle$. In this group, $\phi(7) = 6$.

		i = 1	i = 2	i = 3	i = 4	i = 5	i = 6
	<i>a</i> = 1	x: 1	x: 1	x: 1	x: 1	x: 1	x: 1
	a = 2	x: 2	x: 4	x: 1	x: 2	x: 4	x: 1
Primitive root \rightarrow	a = 3	x: 3	x: 2	x: 6	x: 4	x: 5	x: 1
	a = 4	x: 4	x: 2	x: 1	x: 4	x: 2	x: 1
Primitive root \rightarrow	a = 5	x: 5	x: 4	x: 6	x: 2	x: 3	x: 1
	a = 6	x: 6	x: 1	x: 6	x: 1	x: 6	x: 1

The orders of elements are ord(1) = 1, ord(2) = 3, ord(3) = 6, ord(4) = 3, ord(5) = 6, and ord(6) = 2.

Therefore, this group has only two primitive roots: 3 and 5.

The group $G = \langle Z_n^*, \times \rangle$ has primitive roots only if n is 2, 4, p^t , or $2p^t$.

If the group $G = \langle Z_n^*, \times \rangle$ has any primitive root, the number of primitive roots is $\phi(\phi(n))$.

The group $G = \langle Z_n^*, \times \rangle$ is a cyclic group if it has primitive roots. The group $G = \langle Z_p^*, \times \rangle$ is always cyclic.

The idea of Discrete Logarithm

Properties of $G = \langle Z_p^*, \times \rangle$:

- 1. Its elements include all integers from 1 to p-1.
- 2. It always has primitive roots.
- 3. It is cyclic. The elements can be created using g^x where x is an integer from 1 to $\phi(n) = p 1$.
- 4. The primitive roots can be thought as the base of logarithm. If the group has k primitive roots, calculations can be done in k different bases. Given $x = \log_g y$ for any element y in the set, there is another element x that is the log of y in base g. This type of logarithm is called **discrete logarithm**. A discrete logarithm is designated by several different symbols in the literature, but we will use the notation L_g to show that the base is g (the modulus is understood).

Solution to Modular Logarithm Using Discrete Logs

Tabulation of Discrete Logarithms

Discrete logarithm for $G = \langle Z_7^*, \times \rangle$

у	1	2	3	4	5	6
$x = L_3 y$	6	2	1	4	5	3
$x = L_5 y$	6	4	5	2	1	3

Find x in each of the following cases:

a.
$$4 \equiv 3^x \pmod{7}$$

b.
$$6 \equiv 5^x \pmod{7}$$

- Solution
 - Use the tabulation of the discrete logarithm

a.
$$4 \equiv 3^x \mod 7 \rightarrow x = L_3 4 \mod 7 = 4 \mod 7$$

b.
$$6 \equiv 5^x \mod 7 \rightarrow x = L_5 6 \mod 7 = 3 \mod 7$$

Using Properties of Discrete Logarithms

Traditional Logarithm	Discrete Logarithms
$\log_a 1 = 0$	$L_g 1 \equiv 0 \pmod{\phi(n)}$
$\log_a (x \times y) = \log_a x + \log_a y$	$L_g(x \times y) \equiv (L_g x + L_g y) \pmod{\phi(n)}$
$\log_a x^k = k \times \log_a x$	$L_g x^k \equiv k \times L_g x \pmod{\phi(n)}$

The discrete logarithm problem has the same complexity as the factorization problem.

Locking and unlocking in asymmetric-key cryptosystem

General idea of asymmetric-key cryptosystem

- Encryption/Decryption
 - The ciphertext can be thought of as $C = f(K_{public}, P)$;
 - The plaintext can be thought of as $P = g(K_{private}, C)$.
 - The function f is used only for encryption;
 - The function g is used only for decryption.
- Need for Both
 - Asymmetric-key cryptography is much slower than symmetric-key cryptography
 - Asymmetric-key cryptography is still needed for authentication, digital signatures, and secret-key exchanges.

Trapdoor One-Way Function

• The main idea behind asymmetric-key cryptography is the concept of the trapdoor oneway function.

One-Way Function

A **one-way function (OWF)** is a function that satisfies the following two properties:

- 1. f is easy to compute. In other words, given x, y = f(x) can be easily computed.
- 2. f^{-1} is difficult to compute. In other words, given y, it is computationally infeasible to calculate $x = f^{-1}(y)$.

Trapdoor One-Way Function

A trapdoor one-way function (TOWF) is a one-way function with a third property:

3. Given y and a **trapdoor** (secret), x can be computed easily.

Trapdoor One-Way Function

- When n is large, $n = p \times q$ is a one-way function.
- In this function x is a tuple (p, q) of two primes and y is n.
- Given p and q, it is always easy to calculate n; given n, it is very difficult to compute p and q.
- This is the factorization problem.
- There is not a polynomial time solution to the f^{-1} function in this case.
- When n is large, the function $y = x^k \mod n$ is a trapdoor one-way function.
- Given x, k, and n, it is easy to calculate y using the fast exponential algorithm
- Given y, k, and n, it is very difficult to calculate x.
- However, if we know the trapdoor, k' such that $k \times k' = 1 \mod \phi(n)$, we can use $x = y^{k'} \mod n$ to find x.

RSA CRYPTOSYSTEM

 The most common public-key algorithm is the RSA cryptosystem, named for its inventors (Rivest, Shamir, and Adleman).

Encryption, decryption, and key generation in RSA

RSA Key Generation

RSA_Key_Generation

```
Select two large primes p and q such that p \neq q.
n \leftarrow p \times q
\phi(n) \leftarrow (p-1) \times (q-1)
Select e such that 1 < e < \phi(n) and e is coprime to \phi(n)
d \leftarrow e^{-1} \mod \phi(n)
                                                          // d is inverse of e modulo \phi(n)
Public_key \leftarrow (e, n)
                                                           // To be announced publicly
Private_key \leftarrow d
                                                            // To be kept secret
return Public_key and Private_key
```

In RSA, the tuple (e, n) is the public key; the integer d is the private key.

Encryption and Decryption

```
RSA_Encryption (P, e, n)
                                               // P is the plaintext in Z_n and P < n
  C \leftarrow Fast\_Exponentiation (P, e, n) // Calculation of (P^e \mod n)
   return C
RSA_Decryption (C, d, n)
                                                 //C is the ciphertext in Z_n
   P \leftarrow Fast\_Exponentiation (C, d, n) // Calculation of (C<sup>d</sup> mod n)
   return P
```

Some Trivial Examples

Bob chooses 7 and 11 as p and q and calculates $n = 7 \times 11 = 77$. The value of $\phi(n) = (7 - 1)(11 - 1)$ or 60. Now he chooses two exponents, e and d, from \mathbb{Z}_{60}^* . If he chooses e to be 13, then d is 37. Note that $e \times d \mod 60 = 1$ (they are inverses of each other). Now imagine that Alice wants to send the plaintext 5 to Bob. She uses the public exponent 13 to encrypt 5.

Plaintext: 5

$$C = 5^{13} = 26 \mod 77$$

Ciphertext: 26

Bob receives the ciphertext 26 and uses the private key 37 to decipher the ciphertext:

Ciphertext: 26

$$P = 26^{37} = 5 \mod 77$$

Plaintext: 5

The plaintext 5 sent by Alice is received as plaintext 5 by Bob.

Some Trivial Examples

Now assume that another person, John, wants to send a message to Bob. John can use the same public key announced by Bob (probably on his website), 13; John's plaintext is 63. John calculates the following:

Plaintext: 63

 $C = 63^{13} = 28 \mod 77$

Ciphertext: 28

Bob receives the ciphertext 28 and uses his private key 37 to decipher the ciphertext:

Ciphertext: 28

 $P = 28^{37} = 63 \mod 77$

Plaintext: 63

RSA

RSA uses two algebraic structures: a public ring $R = \langle Z_n, +, \times \rangle$ and a private group $G = \langle Z_{\phi(n)} *, \times \rangle$.

To be secure, the recommended size for each prime, p or q, is 512 bits (almost 154 decimal digits). This makes the size of n, the modulus, 1024 bits (309 digits).

Attacks on RSA

No devastating attacks on RSA have been yet discovered.

Recommendations

- The number of bits for n should be at least 1024. This means that n should be around 2¹⁰²⁴, or 309 decimal digits.
- 2. The two primes p and q must each be at least 512 bits. This means that p and q should be around 2^{512} or 154 decimal digits.
- 3. The values of p and q should not be very close to each other.
- 4. Both p 1 and q 1 should have at least one large prime factor.
- 5. The ratio p/q should not be close to a rational number with a small numerator or denominator.
- 6. The modulus n must not be shared.
- 7. The value of e should be $2^{16} + 1$ or an integer close to this value.
- 8. If the private key d is leaked, Bob must immediately change n as well as both e and d. It has been proven that knowledge of n and one pair (e, d) can lead to the discovery of other pairs of the same modulus.
- 9. Messages must be padded using OAEP (Tutorial)

Why modulus n must not be shared?

- The common modulus attack can be launched if a community uses a common modulus, n.
- For example, people in a community might let a trusted party select p and q, calculate n and φ(n), and create a pair of exponents (ei, di) for each entity.
- Now assume Alice needs to send a message to Bob. The ciphertext to Bob is $C = P^{eB} \mod n$. Bob uses his private exponent, dB, to decrypt his message, $P = C^{dB} \mod n$.
- The problem is that Eve can also decrypt the message if she is a member of the community and has been assigned a pair of exponents (e_E and d_E), as we learned in the section "Low Decryption Exponent Attack".
- Using her own exponents (e_E and d_E), Eve can launch a probabilistic attack to factor n and find Bob's dB.
- To thwart this type of attack, the modulus must not be shared.
- Each entity needs to calculate her or his own modulus.