

(MATNA1901) Lineáris algebra

Dr. Facskó Gábor, PhD tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Ürfizikai és Ürtechnikai Ösztály, 1121. Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttl.ntp.hu.

2025. április 10.

Ütemterv I

- Már csak néhány óránk lesz: 2025. április 10, 17 és május 8.
- Alterek összege és direkt összege. Faktortér.
- Képtér. Magtér. Dimenziótétel.
- Belsőszorzat terek. Gram-Schmidt ortogonalizációs eljárás.
- Hasonló mátrixok. Sajátértékek alkalmazásai. Lineáris algebra alkalmazásai a geometriában, kriptográfiában és gráfelméletben (kitekintés)

Diagonizálás I

- ▶ <u>Definíció:</u> (Hasonlóság). Azt mondjuk, hogy az $n \times n$ -es **A** mátrix hasonló a **B** mátrixhoz, ha létezik olyan invertálható **C** mátrix, hogy **B** = **C**⁻¹**AC**. Jelölés: **A** \sim **B**.
- ▶ $\underline{\text{T\'etel:}}$ (Hasonlóságra invariáns tulajdonságok). Ha **A** és **B** hasonló mátrixok, azaz **A** \sim **B**. akkor
 - 1. $\rho(\mathbf{A}) = \rho(\mathbf{B})$,
 - 2. $dim(\mathbb{N}(\mathbf{A})) = dim(\mathbb{N}(\mathbf{B})),$
 - 3. $\det(\mathbf{A}) = \det(\mathbf{B})$,
 - 4. $trace(\mathbf{A}) = trace(\mathbf{B})$.

Bizonyítás:

- 1. $\rho(\mathbf{A}) = \rho(\mathbf{C}^{-1}\mathbf{BC}) \le \rho(\mathbf{B}) \text{ és } \rho(\mathbf{B}) = \rho(\mathbf{C}^{-1}\mathbf{AC}) \le \rho(\mathbf{A})$. Innen $\rho(\mathbf{A}) = \rho(\mathbf{B})$.
- 2. $\dim(\mathbb{N}(A)) = n \rho(A) = n \rho(B) = \dim(\mathbb{N}(B))$.
- 3. $\det(\mathbf{A}) = \det(\mathbf{C}^{-1}\mathbf{BC}) = \det(\mathbf{C}^{-1})\det(\mathbf{B})\det(\mathbf{C}) = \det(\mathbf{B})$, mivel $\det(\mathbf{C})\det(\mathbf{C}^{-1}) = 1$.

Diagonizálás II

- 4. $trace(\mathbf{A}) = trace(\mathbf{C}^{-1}\mathbf{BC}) = trace(\mathbf{BCC}^{-1}) = trace(\mathbf{B})$, és itt kihasználjuk, hogy két mátrix szorzatának nyoma nem változik, ha a tényezők sorrendjét felcseréljük.
- ▶ <u>Definíció:</u> (Kvadratikus alak). Valós kvadratikus alaknak (vagy kvadratikus formának) nevezzük azt az $\mathbb{R}^n \to \mathbb{R}$; $\mathbf{x} \to \mathbf{x}^T \mathbf{A} \mathbf{x}$ függvényt, ahol \mathbf{A} valós szimmetrikus mátrix. A komplex kvadratius alakon a $\mathbb{C}^n \to \mathbb{C}$; $\mathbf{x} \to \mathbf{x}^T \mathbf{A} \mathbf{x}$ függvényt értjük, ahol \mathbf{A} komplex négyzetes mátrix.

Diagonizálás III

▶ $\underline{\text{T\'etel:}}$ (Sajátértékhez kapcsolódó invariánsok). Ha $\mathbf{A} \sim \mathbf{B}$, akkor \mathbf{A} és \mathbf{B} karakterisztikus polinomja azonos, így sajátértékei, azok algebrai, sőt geometriai multiplicitásai is megegyeznek.

Bizonyítás: A bizonyítás során föltesszük, hogy valamely invertálható \mathbf{C} mátrixszal $\mathbf{A} = \mathbf{C}^{-1}\mathbf{B}\mathbf{C}$. Ekkor

$$\mathbf{A} - \lambda \mathbf{E} = \mathbf{C}^{-1}\mathbf{B}\mathbf{C} - \lambda \mathbf{C}^{-1}\mathbf{E}\mathbf{C} = \mathbf{C}^{-1}\left(\mathbf{B}\mathbf{C} - \lambda\mathbf{E}\mathbf{C}\right) = \mathbf{C}^{-1}\left(\mathbf{B} - \lambda\mathbf{E}\right)\mathbf{C},$$

azaz $\mathbf{A} - \lambda \mathbf{E}$ és $\mathbf{B} - \lambda \mathbf{E}$ is hasonlóak. Hasonló mátrixok determinánsa megegyezik, így det $(\mathbf{A} - \lambda \mathbf{E}) = \det (\mathbf{B} - \lambda \mathbf{E})$, azaz megegyeznek \mathbf{A} és \mathbf{B} karakterisztikus polinomjai is. Így megegyeznek sajátértékeik, és azok (algebrai) multiplicitásai. A geometriai multiplicitások egyenlőségéhez elég belátni, hogy $\mathbf{A} - \lambda \mathbf{E}$ és $\mathbf{B} - \lambda \mathbf{E}$ nullterének dimenziója megegyezik, amit korábban igazoltunk.

Diagonizálás IV

- **Definíció:** (Diagonalizálhatóság). Az $n \times n$ -es **A** mátrix diagonalizálható, ha hasonló egy diagonális mátrixhoz, azaz ha létezik egy olyan diagonális Λ és egy invertálható **C** mátrix, hogy $\Lambda = \mathbf{C}^{-1}\mathbf{AC}$.
- ► <u>Tétel:</u> (Diagonalizálhatóság szükséges és elégséges feltétele). Az $n \times n$ -es **A** mátrix pontosan akkor diagonalizálható, azaz pontosan akkor létezik olyan **C** mátrix, melyre $\mathbf{C}^{-1}\mathbf{A}\mathbf{C}$ diagonális, ha **A**-nak van n lineárisan független sajátvektora. Ekkor a diagonális mátrix az **A** sajátértékeiből, **C** a sajátvektoraiból áll. Bizonyítás: Ha **A** hasonló egy diagonális mátrixhoz, azaz van olyan **C** mátrix, hogy $\mathbf{\Lambda} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$ diagonális, akkor **C**-vel balról szorozva a $\mathbf{C}\mathbf{\Lambda} = \mathbf{A}\mathbf{C}$ egyenlőséget kapjuk. Ha $\mathbf{C} = [\mathbf{x}_1\mathbf{x}_2...\mathbf{x}_n]$ és $\lambda = diag(\lambda_1, \lambda_2, ..., \lambda_n)$, akkor

Diagonizálás V

$$[\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n] \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = \mathbf{A} [\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n].$$

A bal oldali mátrix i-edik oszlopa $\lambda_i \mathbf{x}_i$, a jobb oldali mátrixé $\mathbf{A} \mathbf{x}_i$. Ezek megegyeznek, azaz $\mathbf{A} \mathbf{x}_i = \lambda_i \mathbf{x}_i$, tehát \mathbf{x}_i a λ_i sajátértékhez tartozó sajátvektor. Mivel \mathbf{C} invertálható, ezért oszlopvektorai függetlenek, ami bizonyítja az állításunk egyik felét. Tegyük most fel, hogy van \mathbf{A} -nak n független sajátvektora. Képezzünk a sajátértékekből egy $\mathbf{\Lambda}$ diagonális mátrixot, úgy hogy a \mathbf{C} mátrix i-edik oszlopába kerülő \mathbf{x}_i vektorhoz tartozó λ_i sajátérték a $\mathbf{\Lambda}$ mátrix i-edik oszlopába kerüljön. Mivel $\lambda_i \mathbf{x}_i = \mathbf{A} \mathbf{x}_i$, ezért $\mathbf{\Lambda}$ hasonló \mathbf{A} -hoz.

Diagonizálás VI

ightharpoonup A $ho = C^{-1}AC$ átírható $ho = C \wedge C^{-1}$ alakba, amit az ho mátrix sajátfelbontásának nevezünk.

Vége

Köszönöm a figyelmüket!