COSC1107 Computing Theory

(We will commence soon. We are just allowing a few minutes for people to join and set up. *Please mute your microphone unless you are speaking*. You can raise your hand or use the chat at any time.)

COSC1107 Assignment Project Exam Help

Computing Theory https://poweoder.com Complexity & Intractability

Add We Shat powcoder

James Harland

james.harland@rmit.edu.au

* With thanks to Sebastian Sardina

Intro music 'Far Over' playing now ...

Acknowledgement

RMIT University acknowledges the people of the Woi wurrung and Boon wurrung language groups of the eastern Kulin Nations op whose funceded lands we conduct the business of the University. RMIT University respectfully acknowledges their Ancestors and Elders, past and presented WeChat powcoder

RMIT also acknowledges the Traditional Custodians and their Ancestors of the lands and waters across Australia where we conduct our business.

(add your name <u>here</u> to volunteer for this or email me) (my personal Acknowledgement of Country is <u>here</u>)

Overview

- Questions?
- Computational Limits
- Questions? Assignment Project Exam Help
- Measuring Complexity
 https://powcoder.com
- Questions?
- Intractable problem We Chat powcode
- Questions?
- Of course! Platypus Game
- Questions?

Questions?

Questions?

Add WeChat powco

Questions?

Computing Theory topics

Languages		What do you want to do?
Grammars		What can you say?
Automata	Assignment	Physica Ctal Executo Pielp
Computability	https://p	What can't you do?
Complexity	πιφ8.// μ	What can't you do? OWCOder.com How hard can it be?

Any attempt to solve an Winderdallie problem must be incomplete

- Sometimes 'yes'
- Sometimes 'no'
- Sometimes 'maybe'
 Cannot be eliminated!

Any such attempt can only be an approximate solution

Computational limits

There are various limits on computation

PSPACE = NPSPACE =

Fundamental

- No (complete) algorithmic solutions exist
- Will always be beyond any technology Exam Help Example: Halting problem

Practical

https://powcoder.com

- (Complete) Algorithmic solutions exist
 Complexity is too high for problem beyonder smallish size
- Example: Hamiltonian circuit problem

Technological

- Any computing device has a finite memory, storage capacity, processing speed, bandwidth, ...
- There is always a problem "just beyond" any technology
- Example: Platypus tournament

Computational limits

Beyond any algorithm ever

Assignment Project Exam Helplecidability

Beyond any technology but decidable https://powcoder.com

Add WeChat powcoder Intractability

Beyond current technology but feasible

Within current technology

Technology

All processing power is finite!

Computational limits

Beyond any algorithm ever

Assignment Project Exam Helplecidability

Beyond any technology but decidable https://powcoder.com

Beyond current tecknolog We Chat powcoder feasible

Within current technology

Technology

Asymptote! (can never be reached)

Computing Theory

Complexity

Undecidable

L(G) =

Undecidable

Assignment Project Exam Help

Add WeChat powcoder

How hard can they be?

Halting problem

 $L(G_1) = L(G_2)$

Questions?

Questions?

Add WeChat powco

Questions?

Complexity

Assignment Project Exam Help

The White Council Band are touring the world!

- Spectacular stage show
- Tons of equipmentate warthrown wooder
- Costs \$ millions per day

Magic only works in Middle-Earth!

Complexity

Assignment Project Exam Help

Best route for Australian tour?
Melbourne, Sydney, Brisbane, Adelaide, Hobart, Perth, Darwin,

Canberra (8 cities)

Best route for Us tour? (25 pries) der

Best route for World tour? (100 cities)

Need to find the minimum cost route in all cases ...

White Council Tour

White Council Tour

Simple programming problem

- Identify tour starting point
- Generate all tours starting from there
 Calculate the cost for each tour

 - Keep the tountwith the townest coast so far
- Output minimum

Add WeChat powcoder

Piece of cake!

Computing Theory

White Council Tour

Tour	Cities	Routes	
Australia	8	7! = 5,040	
US	22 _{Assi}	gathēn 5 Projet 9 E	Zxam Help
India		28! = 3.0 × 10 ²⁹ https://powcoder	
World	100	$99! = 9.3 \times 10^{19}$	55
Tour	1 rout	Add WeChat pov	Vfolerbute s-1
Australia	1.4 hou	ırs	< 1 second
US	1.6 tri	llion years (!!)	1.6 years (!?)
India	9.6 x 1	.0 ²¹ years (!!!)	9.6 × 10° years (!!)
World	3.0 x	10 ¹⁴⁸ years (!!!!!)	3.0×10^{136} years (!!!!)

1 year = $60 \times 60 \times 24 \times 365.25 = 31,557,600$ seconds

Problem Scales

n	n ²	2 ⁿ	n!	
10	100	1024	3628800	#at
20	400	1048576	~1018	
30	900	1073741824	1032	#n
40	1600	Assignme	att Project	t Exai
50	2500	~1015	~1004	4
60	3600	1018 https://	/powcod	er.co
70	4900	~10 ²¹ Add V	WeChat 1	OWC
80	6400	~1024	~10118	
90	8100	~10 ²⁷	~10138	Y
100	10000	~1030	~10157	
200	40000	~1060	~10 ³⁷⁴	
300	90000	~1090	~10614	4
400	160000	~10120	~10868	

~10150

~101134

#atoms on Earth = $\sim 10^{50}$

#particles in texam Helpo universe =

Computing Theory

Questions?

Questions?

Add WeChat powco

Questions?

So how do we draw the 'line of intractability?'

- How do we measure the resources required by a program? Assignment Project Exam Help
- How do we do this independently of hardware?
- Complexity measure must
 - Not limit available memory of pione coder Allow for all computations

 - Not depend on a particular implementation

Measuring complexity

So how do we draw the 'line of intractability?'

How do we measure the resources required by a program? Assignment Project Exam Help

How do we do this independently of hardward

Complexity measure must

Not limit available were hat powered allow for all computations

Not depend on a particular implementation

"Ring any bells?" Does this sound familiar?

Computing Theory

What exactly do we measure?

- Time?
- Space? Assignment Project Exam Help
- Input size? Requirements? "The difference https://powcoder.com between time and
- Conceptual difficulty? space is that you
 Effort to produce? WeChat powcoderan't reuse time"
- Merrick Furst
- Readability?
- Functionality?

Execution time is often most critical

("Need more memory? Buy some!")

Measuring complexity

How exactly do we measure time? Minimum? Maximum? Average? ...

Typical: Worst-case (maximum) number of a single critical oper Assignment Project Exame Help

Using maximum gives guarantee .com

- May be misleading dd WeChat powcoder
 One-dimensionality simplifies analysis (perhaps too much!)
- Choice of operation can be critical (disk accesses, memory accesses, GPU calls, comparisons, multiplications, ...)
- Average is more informative but generally much harder to find ...

EXPSPACE
EXPTIME
PSPACE = NPSPACE = IP
NP CO-WP
RP ZPP CO-RP
NL-CONE)
BPP

Algorithm	Critical operation
Sorting	Comparisons
Numerical calculations	Floating point operations
Integer calculations sign	Meltiplipations and division lelp
Graphs	Edge traversals or vertices visited
Primality testing htt	ps://pgwcoder.com

Note: the measurement of the input

Numeric input is represented in size log n (!!)

List of n integers to sort	Input size n
Integer n to factorise	Input size log n

TRACTABLE

0(.)	10	20	30	40	50	60
n	0.00001s	0.00002s	0.00003s	0.00004s	0.00005s	0.00006s
n ²	0.0001s	0A994gn1	nene Proje	eep E kam	4.1017 5s	0.0036s
n ³	0.001s	0.008s	0.027s	0.064 <i>s</i>	0.125s	0.216s
-5	0.14	222 Att	DS7/JPOWC	oder.com	E 2 mins	12 0 mins
2 ⁿ	0.001s	1.0s Ad	d WeCha	t powcod days	روم. پومت	366 centuries
3 ⁿ	0.059s	58 mins	6.5 years	3855	2 × 10 ⁸	1.3×10^{13}
			-			

Table from 'Computers and Intractability: A Guide to the theory of NP-completeness', Michael Garey & David Johnson, W.H. Freeman, 1979.

O(1)	Constant	
O(log n)	Logarithmic	
O(n)	Linear	
O(n log n)	"n log Assignment Proje	
O(n ²)	Quadratic	
O(n ³)	Cubic https://powco	
O(n ^k)	Polynomial Add WeChat	
O(2 ⁿ)	Exponential	
O(n!)	Factorial	
O(n ⁿ)	"Hyperfactorial"	
O(2^2n)	Double-exponential	
Larger	Go home!	

Polynomial (or less) is considered tractable (ie O(nk) for some fixed integer k)

ject Exam Help Twilight Zone:

Subexponential and

t for fill k and O(2n)]

Exponential (or worse) is considered intractable (ie (2ⁿ) or 2ⁿ is O(f))

Measuring Complexity

Formally define what a computation is via Turing machines

Formally define what complexity is via Turing machines Assignment Project Exam Help

W — M halts on w after at most powcoders when

Time complexity: A(hd) Wheethamptonkes dermos to halt on input of size n

- Time depends on input size
- Rate of growth of f is of most interest ...
- M could be nondeterministic (!!)

Questions?

Questions?

Add WeChat powco

Questions?

Quiz time!

Go to Canvas and find the guiz Lectorial 9 Question set

Not worth any marks

You can consult other students if you wish
 Assignment Project Exam Help
 Time limit will be 10 minutes

https://powcoder.com

Go!

The pictures will take 10 minutes to disappear!

Thomas music means 1 minute left!

Some problems have only exponential solutions known Many important practical problems are in this class!

of minimal cost that visit pever provide exactly thre?

Hamiltonian circuit Aphable Chat powcoder

Given a graph G, is there a cycle that visits every node exactly once?

3 SAT problem

Given a set of clauses with exactly 3 Boolean variables each, is there a truth assignment that satisfies all the clauses?

http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php?lang=eng
Week 9
Computing Theory

3 SAT

Given a set of clauses with exactly 3 Boolean variables each, is there a truth assignment that satisfies all the clauses?

Variables: x, y, z Akking rambata Briggedt has amfalkel (1 or 0)

(basically propositions)

Assignment: Function mapping prepring property weather true or false

Literal: variable or its negation (eg \times or \times)

Clause: disjunction of literals (thinks FDE) (eggs z, x y, ...)

SAT problem: Given a set of clauses, is there an assignment that makes every clause true?

3 SAT problem: SAT problem where every clause has exactly 3 literals

"3 SAT is when SAT problems start getting difficult ..."

3 SAT

Instance 1: $C = \{x, y\}$ Assign x = 1, y = 0

YES!

Instance 2: C = Assignment Project Exam Help Assign <math>x = 1, y = 1, w = 1

https://powcoder.com

Instance 3: $C = \{x \text{ Add WeChat bowdoler}\}$ Must have x = 1, y = 0 (from last two clauses) If w = 1, y = 0If w = 0, x w is 0

For n variables, there are 2ⁿ possible assignment Some applications have thousands of variables

3 SAT

Instance 4: $C = \{ p q r, p r q, p p r \}$

Assign p, r = 0, q, w = 1

O O O, O 1 1 Assignment Project Exam Help

O, 1, 1

No

https://powcoder.com

"You know, Mister Gandalf sir, it is much easier to check an assignment than the fine check an powcoder

"Now I see why they called you SamWISE Gamgee..."

- Finite number of possibilities ...
- Only need one to succeed ...

NDTMs!!

3 SAT & NDTMs

Construct an NDTM which d

For each variable in C, "gu NONSENSE! somewhere of the Project Exam Help

 Check whether the guess https://powcoder.com

 If the machine answers no, there is no truth assignment that makes C true

TM specifies a language ... NDTM does too!

OODOO!

The "Gamgee" property, ie it is easier to check than to find, holds for various problems

Factorisation: Grandent P. P. jc, the Kannhelp $A \times B = C$, rather than find A and B from C

Hamiltonian circuit: Litters of graphs and apathycheck the path is cyclic and visits every node rather than finding one

SAT, 3 SAT: Given an assignment acheen all clauses in C are true, rather than finding such an assignment

TSP: Given a cycle and a cost, check whether the cycle has total cost no more than the given cost, rather than finding one

Password: Given a supposed PIN, check whether it is correct, rather than find one that is correct

. . .

ssignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Is there a circuit that visits every node exactly once?

Assignment Project Exam Help
https://powcoder.com
Add WeChat powcoder
Is t

Is there a circuit that visits every node exactly once?

Construct an NDTM which does the following:

- Guess a path from a start node to any other node
 Check that Assignment Project Exam Help
- - Visits every node exactly once
 Is a cycle https://powcoder.com
- If the machine answer we champen and the machine answer we can be a superior of the machine answer we can be a superior of the machine answer we can be a superior of the machine answer we can be a superior of the machine answer we can be a superior of the machine answer with the machine and the superior of the machine answer we can be a superior of the machine and the superior of the machine and the superior of the superior of
- If the machine answers no, there is no Hamiltonian cycle

"If there is such a path, some guess will work. If no guess will work, there is no such circuit".

Nondeterminism

"Wait a second! Didn't you say you can't do better than a deterministic TM? We can just use them rather than this ... this ... witchcraft!"

A Salmy preselves Your curry find an equivalent deterministic TM for any NDTM. But it may be exponentially larger and hence take similarly longer in

Add WeChat powcoder

"It was better before we had wizards ..." 😊

Nondeterminism

For any nondeterministic TM, there is an equivalent deterministic TM, ie one that accepts the same language

The deterministic TM cannot guess; it systematically searches

through all possiblignessest Project Exam Help The deterministic TM terminate with success iff the nondeterministic TM typen//ptoweither.com
The deterministic TM may take exponentially longer (!!)

Week 9

Computing Theory

Nondeterminism

For any nondeterministic TM, there is an equivalent deterministic TM, ie one that accepts the same language

The deterministic TM cannot guess; it systematically searches

through all possiblignessest Project Exam Help The deterministic TM terminate with success iff the nondeterministic TM typen//ptoweither.com
The deterministic TM may take exponentially longer (!!)

Week 9

Computing Theory

Complexity classes

Two important complexity classes (there are many others!)

P: Decision problems that an bees plyachine plynomial time or less on a deterministic Turing machine https://powcoder.com

NP: Decision problems that can be solved in polynomial time or less on a noAddt Wellhatipo Murindemachine

P NP (deterministic TMs are trivially nondeterministic TMs)

Does P NP?

UNKNOWN!

The Platypus Game

Assignment Project Exam H

https://powceder.com

Add WeChat powcoder

The Platypus Game

3 player tournament

```
1 vs 1 vs 1
1 vs 1 vs 2
1 vs 1 vs 3
1 vs 2 vs 2
1 vs 2 vs 3
1 vs n vs n
2 vs 2 vs 2
2 vs 2 vs 3
3 vs 3 vs 3
(n-1) vs (n-1) vs (n-1)
(n-1) vs (n-1) vs n
n vs n vs n
```

Althowe Cha6 powcoder this is 3,244,140

Around 100 times more than a 2-player tournament!

Week 9 Computing Theory

The Platypus Game 4 player tournament

```
1 vs 1 vs 1 vs 1
1 vs 1 vs 1 vs 2
                        _{i=1}^{n}i(i+1)(i+2)/6
1 vs 1 vs 1 vs n
                  Assignment, Project Exam Help
1 vs 1 vs 2 vs 2
                        \frac{1}{n} \frac{1}{n^2} \frac{(n+1)^2}{4} \frac{4}{n^2} \frac{n(n+1)(2n+1)/2 + n(n+1)}{(n+2)(n+3)/24} 
1 vs 2 vs 2 vs 2
1 vs n vs n vs n
                        Add WeChat powcoder When n = 268,
2 vs 2 vs 2 vs 2
2 vs 2 vs 2 vs 3
                        this is 219,790,485
2 vs n vs n vs n
                       Around 10,000 times more than a 2-
                       player tournament!
3 vs 3 vs 3 vs n
(n-1) vs (n-1) vs (n-1) vs n When n = 90, this is 2,919,735
n vs n vs n vs n
                                                        Computing Theory
  Week 9
```

Assignment 2

- Detailed specification is out now
- Platypus tournament for 2,500 machines
- 'Second version' of Universality task from Assignment 1
- Research or Astignaste the Printrac Fabric place beens

https://powcoder.com

WeChat powcode

That's it!

I am out of here!

Assignment Project Exam Help

Break time! (We resume when all the pictures are gone! This will take 3 minutes!)

