CENTRE DE VANVES

MINISTERE DE L'EDUCATION NATIONALE

CENTRE NATIONAL D'ENSEIGNEMENT A DISTANCE

407

A.2075.D.05

PROFESSEUR : M. Claude SERVIEN

Devoir 5 - Série 9

COMPOSITION D'ANALYSE 1987

Durée: 6 heures

NOTATIONS

On note $x = (x_1, x_2)$ un point du plan euclidien \mathbb{R}^2 , avec le produit scalaire canonique $x.x' = x_1x_1' + x_2x_2'$, et la norme euclidienne ||x||. On désigne par D (x, r), respectivement C (x, r), le disque fermé, respectivement le cercle, de centre x et de rayon $r \ge 0$; on écrira D (0, 1) = D et C (0, 1) = C pour abréger. On dit que C (x', r') entoure D (x, r) si D (x, r) est contenu dans l'intérieur de D (x', r'), c'est-à-dire si ||x' - x|| < r' - r. On note R_0 pour θ réel, la rotation d'angle θ autour de l'origine.

Toutes les fonctions considérées sont à valeurs réelles. On note supp f le support d'une fonction f, adhérence de l'ensemble des $x \in \mathbb{R}^2$ tels que $f(x) \neq 0$. On note $dx = dx_1 dx_2$ la mesure de Lebesgue de \mathbb{R}^2 . Une fonction f sur \mathbb{R}^2 est dite radiale si $f(R_0x) = f(x)$ pour tous $x \in \mathbb{R}^2$ et $\theta \in \mathbb{R}$.

Soit L la droite affine de \mathbb{R}^2 d'équation $x.u_{\alpha} = p$, avec p, $\alpha \in \mathbb{R}$, et $u_{\alpha} = (\cos \alpha, \sin \alpha) \in \mathbb{C}$. Si f est une fonction définie sur \mathbb{R}^2 , on note f_L , ou $\widehat{f}(p, \alpha)$, l'intégrale :

$$f_{\rm L} = \hat{f}(p, \alpha) = \int_{\mathbb{R}}^{\bullet} f\left(pu_{\alpha} + tu_{\alpha + \frac{\pi}{2}}\right) dt = \int_{-\infty}^{+\infty} f\left(pu_{\alpha} + tu_{\alpha + \frac{\pi}{2}}\right) dt$$

lorsque cela a un sens. De manière analogue, pour $\Gamma = C(a, r)$, on pose :

$$f_{\Gamma} = \int_{0}^{2\pi} f(a + ru_{\theta}) d\theta,$$

avec $a \in \mathbb{R}^2$, $r \geq 0$.

On rappelle la formule de Green-Riemann : si γ est une courbe C^1 par morceaux constituant le bord orienté d'un compact K du plan, et P_1 , P_2 deux fonctions numériques de classe C^1 au voisinage de K, on a :

$$\iint_{K} \left(\frac{\partial P_2}{\partial x_1} - \frac{\partial P_1}{\partial x_2} \right) dx_1 dx_2 = \iint_{Y} P_1(x_1, x_2) dx_1 + P_2(x_1, x_2) dx_2.$$

On rappelle enfin le résultat suivant de convergence dominée :

Soit $(x, t) \mapsto f(x, t)$ une fonction continue sur $\mathbb{R}^n \times \mathbb{R}^p$; si $|f(x, t)| \leq g(t)$ pour tous, x, t, avec g intégrable sur \mathbb{R}^p , la fonction

$$x \longmapsto F(x) = \int_{\mathbb{R}^p} f(x, t) dt$$

est continue sur \mathbb{R}^n ; si de plus f est de classe C^k en x, et si toutes ses dérivées partielles d'ordre k au plus en x sont continues sur $\mathbb{R}^n \times \mathbb{R}^p$ et vérifient la majoration ci-dessus, alors F est C^k sur \mathbb{R}^n , et ses dérivées partielles se calculent par dérivation sous le signe somme.

But du problème : retrouver certaines propriétés d'une fonction f à partir des nombres f_L .

La partie I établit les résultats préliminaires, les parties II et III aboutissent à des théorèmes de support; ces trois parties utilisent du calcul différentiel et intégral dans le plan.

La partie IV, indépendante des trois premières, étudie la reconstruction approchée de f à partir d'un nombre fini des f_L , par des méthodes purement hilbertiennes.

- (A) pour tout entier $n \ge 0$, la fonction $||x||^n |f(x)|$ est bornée sur \mathbb{R}^2 .

 Dans les questions 1^n et 2^n on suppose de plus $f \in \mathbb{C}^\infty$ (\mathbb{R}^2).
- 1º a. Établir une inégalité de la forme :

$$\left|f\left(pu_{\alpha} + tu_{\alpha + \frac{\pi}{2}}\right)\right| \leq \frac{C}{1 + p^2 + t^2}.$$

avec C indépendant de p, t, α , et montrer que \widehat{f} est une fonction continue de (p, α) sur \mathbb{R}^2 .

- b. Si f et toutes ses dérivées partielles vérifient (A), montrer que f est une fonction C sur R2.
- c. Sous l'hypothèse de b, établir les égalités :

$$\frac{\widehat{\partial f}}{\partial x_1} (p, \alpha) = \cos \alpha \cdot \frac{\widehat{\partial f}}{\partial p} , \quad \frac{\widehat{\partial f}}{\partial x_2} (p, \alpha) = \sin \alpha \cdot \frac{\widehat{\partial f}}{\partial p}$$

(on pourra calculer d'abord
$$\left(\cos\alpha \frac{\partial}{\partial p} - \sin\alpha \frac{\partial}{\partial t}\right) \left(f\left(pu_{\alpha} + tu_{\alpha + \frac{\pi}{2}}\right)\right)$$
 au moyen de $\frac{\partial f}{\partial x_1}$ et $\frac{\partial f}{\partial x_2}$.

2º On donne R > 0 et on suppose que $f \in C^{\infty}$ (\mathbb{R}^2) vérifie (A) et

- (B) pour tout cercle Γ qui entoure D(0, R), on a $f_{\Gamma} = 0$.
 - a. Soient R' > R, et V l'ensemble des $v \in \mathbb{R}^2$ tels que ||v|| < R' R. En calculant $\iint_{\mathbb{R}^2} f(x) dx$ en coordonnées polaires d'origine v, déduire de (B) que la fonction $g(v) = \iint_{\mathbb{D}(v, \mathbb{R}')} f(x) dx$ est constante pour $v \in \mathbb{V}$ et que, pour $v \in \mathbb{V}$, i = 1, 2, on a :

$$\int_{D(0,R')}^{\infty} \frac{\partial f}{\partial x_t} (v + x) dx = 0.$$

- b. Montrer par la formule de Green-Riemann que $(h_i)_{\Gamma} = 0$ quand Γ est le cercle C(0, R') et $h_i(x) = x_i \cdot f(v + x)$, et que $(x_i f)_{\Gamma} = 0$ pour tout cercle Γ qui entoure D(0, R).
- c. En déduire, au moyen du théorème de Stone-Weierstrass, que supp $f \subset D$ (0, R).
- 30 On suppose seulement que f est continue, et vérifie (A) et (B). On rappelle que, pour $\varepsilon > 0$, il existe une fonction $\varphi_{\varepsilon} \in C^{\infty}$ (\mathbb{R}^{2}), positive, radiale, à support dans D (0, ε), et telle que $\iint_{\mathbb{R}^{2}} \varphi_{\varepsilon}(x) dx = 1$.
 - a. Montrer que la fonction $f_{\epsilon}(x) = \iint_{\mathbb{R}^2} f(y) \varphi_{\epsilon}(x y) dy$ est \mathbb{C}^{∞} sur \mathbb{R}^2 .
 - b. Montrer que f_{ε} vérifie (A) et (B), avec R + ε au lieu de R.
 - c. En déduire que l'on a encore supp $f \subset D$ (0, R).

3

II

Dans cette partie, f désigne une fonction continue sur R2, possédant la propriété (A) de I, et telle que :

- (B') pour toute droite affine L qui ne rencontre pas D (0, R), on a $f_L = 0$.
- 4º On suppose de plus $f \in C^{\infty}$ (\mathbb{R}^2), et f radiale.
 - a. Montrer qu'il existe F, continûment dérivable sur $[0, +\infty[$, telle que :

$$f(x) = F(||x||^2)$$
 et $\widehat{f}(p, \alpha) = \int_{-\infty}^{1+\infty} F(p^2 + t^2) dt$ pour $(p, \alpha) \in \mathbb{R}^2$.

b. Soit $G(q) = \int_{-\infty}^{+\infty} F(q + t^2) dt$ pour q > 0. Vérifier que :

$$F(q) = -\frac{1}{\pi} \frac{d}{dq} \left(\int_{-\infty}^{+\infty} G(q + s^2) ds \right).$$

- c. En déduire que supp $f \subset D$ (0, R).
- 5º On ne suppose plus que f est C[∞]. En s'inspirant de 3º, montrer que la conclusion de 4º c reste valable si f est continue, radiale, et vérifie (A), (B').
- 6º On ne suppose plus f radiale, mais seulement f continue et (A), (B'). Pour $a, x \in \mathbb{R}^2$, soit :

$$f^a(x) = \int_0^{2\pi} f(a + R_\theta x) d\theta.$$

- a. Montrer que f^a est continue, radiale, vérifie (A) et (B') avec R + ||a|| au lieu de R.
- b. En utilisant $3^{\circ} c$, montrer que supp $f \subset D$ (0, R).

III

Dans cette partie, on développe quelques applications de la question 6°. Soit K un compact convexe de R2.

- 7º a. Montrer que K est l'intersection de la famille des disques fermés qui le contiennent.
 - b. Soit $g \in C^0$ (\mathbb{R}^2), vérifiant (A). Établir que supp $g \subset K$ si et seulement si $g_L = 0$ pour toute droite affine L disjointe de K.
- Soit $\varphi \in C^{\infty}$ (R), solution de l'équation différentielle à coefficients constants :

$$\varphi^{(n)} + a_1 \varphi^{(n-1)} + \ldots + a_n \varphi = 0$$

sur l'intervalle $I =]t_0$, $+\infty[$. On suppose $\varphi(t) = 0$ pour tout $t > t_1$, avec $t_1 \in I$. Montrer que φ est identiquement nulle sur I.

90 Soient $g \in C^{\infty}(\mathbb{R}^2)$, et $Pg = \sum_{j+k \leq m} a_{jk} \frac{\partial^{j+k} g}{\partial x_1^j \partial x_2^k}$, où les a_{jk} sont des constantes réelles, avec $a_{00} \neq 0$.

On suppose supp g compact et supp $Pg \subset K$. En utilisant 1° c et 8°, montrer que supp $g \subset K$.

- Soient $h \in C^o(\mathbb{R}^2)$ et $0 < \varepsilon < \frac{\pi}{2}$. On suppose que supp h est compact et que $\hat{h}(p, \alpha) = 0$ pour tout p réel et tout α tel que $|\alpha| \le \varepsilon$. Montrer que h est identiquement nulle (on pourra raisonner sur un losange dont un des angles est 2ε , et contenant supp h).
- 110 a. Construire une fonction $j \in C^{\infty}(\mathbb{R}^2)$ telle que $j(x_1, x_2) = z^{-2}$ si $z = x_1 + ix_2$, $|z| \ge 1$, et montrer que $j_L = 0$ si la droite L est disjointe du disque unité D.
 - b. Montrer que $j_{\Gamma} = 0$ si le cercle Γ entoure D.
 - c. Que peut-on déduire de cet exemple?

IV

Soient H un espace de Hilbert sur R, (|) son produit scalaire, || || sa norme. On note A, respectivement A1, l'adhérence, respectivement l'orthogonal, d'une partie A de H.

On se donne k sous-espaces vectoriels fermés N_1 , ..., N_k de H, et on note $N_0 = N_1 \cap \ldots \cap N_k$. Soient I l'identité de H et, pour $f \in H$ fixé, P_j le projecteur orthogonal de H sur le sous-espace affine $f + N_j$ de H, avec $0 \le j \le k$; on pose $Q = P_k P_{k-1} \ldots P_2 P_1$.

On se propose de montrer d'abord que, pour tout $g \in H$,

$$Q^n g \longrightarrow P_o g \text{ lorsque } n \longrightarrow + \infty.$$

Dans les questions 12° à 16° on suppose de plus que f = 0; les P_f et Q sont alors des applications linéaires de H dans H.

- 12° a. Si P est un projecteur orthogonal de H sur un sous-espace vectoriel fermé N, montrer que l'égalité || Pg || = || g || équivaut à g ∈ N.
 - b. En déduire que Ker $(I Q) = N_0$ (si $g \in Ker (I Q)$, on observera que $||g|| \le ||P_1 g|| \dots$).
 - c. En déduire que Ker (I Q*) = No, où Q* est l'opérateur adjoint de Q.
- 13° Soit E = Im (I Q). Montrer que H = $\overline{E} \oplus N_0$, et qu'il suffit d'établir (1) pour $g \in E$.
- 14° Montrer par récurrence sur k que, pour toute suite (f_n) de la boule unité de H, la propriété « $\|Qf_n\| \longrightarrow 1$ lorsque $n \longrightarrow +\infty$ » implique que « $(I-Q)f_n \longrightarrow 0$ lorsque $n \longrightarrow +\infty$ ».
- 15° a. Soit $g = (I Q) h \in E$. Établir que $Q^n g \longrightarrow 0$; on pourra considérer $a = \lim_{n \to \infty} ||Q^n h||$ et, si a > 0, appliquer 14° à $f_n = |Q^n h| ||Q^n h||$.
 - b. En déduire (1).
- 16º Pour préciser la convergence (1), on suppose k=2, et on note $\theta \in \left[0, \frac{\pi}{2}\right]$ l'angle de N_1 et N_2 , défini par :

$$\cos \theta = \sup \frac{(g_1 \mid g_2)}{\parallel g_1 \parallel \cdot \parallel g_2 \parallel},$$

le sup étant pris pour $g_1 \in \mathbb{N}_1 \cap \mathbb{N}_0^1$, $g_2 \in \mathbb{N}_2 \cap \mathbb{N}_0^1$, non nuls

- a. Établir l'inégalité $||Qg|| \le \cos \theta \cdot ||g||$, pour $g \in \mathbb{N}_0^1$.
- b. En déduire que, pour tout $g \in H$ et tout entier $n \ge 0$, on a :

$$\| Q^n g - P_{\bullet} g \| \leq \cos^n \theta \cdot \| g - P_{\bullet} g \|.$$

17º Montrer que (1) et (2) restent valables lorsque f est fixé quelconque dans H.

Désormais on prend pour H l'espace des fonctions de carré intégrable sur \mathbb{R}^2 , nulles hors du disque unité D, avec $(f|g) = \iint_{\mathbb{D}} f(x) g(x) dx$. Soient $u_1, \ldots, u_k k$ vecteurs unitaires de \mathbb{R}^2 , $v_j = \mathbb{R} \frac{\pi}{2} u_j$, et

$$(A_j g) (p) = \int_{\mathbb{R}} g(pu_j + tv_j) dt, 1 \leq j \leq k,$$

pour $g \in H$, $p \in \mathbb{R}$. On prend pour N, le noyau de l'opérateur A,

18º Montrer que A, : H --- L¹ (R) est continu, et que N, est un sous-espace fermé de H.

19º Vérifier que, pour $g \in H$, $x \in \mathbb{R}^2$,

$$(P_j g) (x) = g (x) + \varphi (x) \frac{(A_j (f - g)) (u_j . x)}{(A_j \varphi) (u_j . x)},$$

οù φ est la fonction caractéristique de D.

- 20° Déduire de ce qui précède (avec g=0 par exemple) une méthode de reconstruction approchée modulo N_0 d'une fonction $f\in H$ à partir des fonctions $A_1f, ..., A_kf$.
- 21º Montrer que N₀ n'est pas réduit à {0} : pour k = 1 d'abord, on cherchera f ∈ N₀ comme dérivée convenable d'une fonction C∞ sur R², à support dans D.

