

Master in Computer Vision Barcelona

Module: 3D Vision

Project: 3D recovery of urban scenes (Session 3)

Original Lab: Gloria Haro

Modifications: Pedro Cavestany, Daniel Ordoñez and Marc Perez (marc.perez.quintana@upc.edu)

Goal

3D Reconstruction from two images with known internal parameters

Tasks

- 1. Estimation of the fundamental matrix
 - 1.1 Normalized 8-point algorithm (3.0)
 - 1.2 Robust estimation of the fundamental matrix (2.5)
 - 1.3 Epipolar lines **(1.0)**
- 2. Triangulation with the DLT method (2.5)
- 3. Reconstruction from two views:
 - 3.1 Estimate the image matches (Provided)
 - 3.2 Estimate the Fundamental Matrix (Provided)
 - 3.3 Estimate the Essential Matrix (1.0)
 - 3.4 Estimate the Camera Matrices from the Essential Matrix (**Optional 0.75**)
 - 3.5 3D Visualization (Optional and provided)
 - 3.6 Reprojection Error (**Optional 0.25**)

Assignment

- Code is provided in python in a jupyter notebook.
- Auxiliary functions and algorithms are provided on additional modules.
- Deliver before 16h of next Tuesday, January 14.

Deliverables

- **Jupyter notebook:** ready to run.
 - Document your code and decisions on markdown.
 - Be clear of what information is assumed/required for each algorithm/operation.
 - Understand the equations do not just reproduce them from the slides.

• Report:

- Short report.
- In depth analysis.
- Do not paste code in report. I am interested in analysis and justification.
- o Problems and comments.
- You can use the notebook as a report **IF, AND ONLY IF,** you format the notebook appropriately.

- 1. Estimation of the fundamental matrix
- 1.1 Normalized 8-point algorithm

Check the slides from the lecture!

- 1. Estimation of the fundamental matrix
- 1.2 Robust estimation of the fundamental matrix

- 1. Estimation of the fundamental matrix
- 1.2 Robust estimation of the fundamental matrix
 - Function that robustly estimates F using the previous function and RANSAC (you can use as a basis the provided function in lab 2: 'Ransac_DLT_homography').

The inliers are obtained with a threshold on the first order approximation of the geometric error: **Sampson distance**,

$$\frac{(x_i'^T F x_i)^2}{(F x_i)_1^2 + (F x_i)_2^2 + (F^T x_i')_1^2 + (F^T x_i')_2^2}$$

- 1. Estimation of the fundamental matrix
- 1.2 Robust estimation of the fundamental matrix

Geometric distance

(used for determining the inliers in the RANSAC function)

$$d([x_i], [\hat{x}_i])^2 + d([x_i'], [\hat{x}_i'])^2$$
 s. t. $\hat{x}_i'^T F \hat{x}_i = 0 \ \forall i$

where the different matchings $x_i \longleftrightarrow x'_i$ are the data,

[.] is the projection operator to Euclidean coordinates.

- 1. Estimation of the fundamental matrix
- 1.2 Robust estimation of the fundamental matrix

Geometric distance

A variant is (we use the distance of a point to a line $d(x, l) = |x^T l|/||l||$):

$$d(x_i', Fx_i)^2 + d(x_i, F^Tx_i')^2$$

$$= (x_i'^T F x_i)^2 \left(\frac{1}{(F x_i)_1^2 + (F x_i)_2^2} + \frac{1}{(F^T x_i')_1^2 + (F^T x_i')_2^2} \right)$$

We will use the **Sampson error** (1st order approx. of the geometric distance)

$$\frac{(x_i'^T F x_i)^2}{(F x_i)_1^2 + (F x_i)_2^2 + (F^T x_i')_1^2 + (F^T x_i')_2^2}$$

1. Estimation of the fundamental matrix

1.3 Epipolar lines

Groud Truth

2. Triangulation with the DLT method

- 3. Reconstruction from two views
- 3.1 Estimate the image matches

- 3. Reconstruction from two views
- 3.2 Estimate the Fundamental Matrix

- 3. Reconstruction from two views
- 3.3 Estimate the Essential Matrix

3. Reconstruction from two views [Optional] 3.4 Estimate the Camera Matrices from the Essential Matrix

3. Reconstruction from two views [Optional] 3.5 3D Visualization

Top view

Front view

3. Reconstruction from two views

[Optional] 3.5 3D Visualization: Keypoints

3. Reconstruction from two views [Optional] 3.6 Reprojection error

