

Chapter 2

Sets, Functions, Sequences and Sums

cantho.fpt.edu.vn

OUR GOAL:

- Use the language of set theory
- Some definitions: function, one-to-one function, onto function, bijection, inverse function
- Calculate sums of basic sequences

2.1. SETS

 An UNORDERED collection of objects/items called elements/members

G. Cantor (1845-1918)

$${a, b, c} = {a, c, b} = {b, c, a}$$

Datatype or type in computer science. For example,

Boolean = $\{0, 1\}$

MEMBERS/ELEMENTS of a set

Symbol	Read	Symbol	Read
a∈V	a is in V		a is not in V
	a is a member of V	a∉V	a is not a member of V
	a is an element of V	a⊭v	a is not an element of V
a belongs to V			a doesn't belong to V

- $\forall \in \{1, a, \forall\}$ // \forall is in $\{1, a, \forall\}$
- ♥ ∉ {♠, ≈, {♥}, f} // ♥ is not an element of this set
- a∉{{a}, b}{a}∉{a, b}
- {a}∈{{a}, b} // {a} is a member of {{a}, b}

WAYS TO DEFINE SETS

Method 1. Roster method. List all members:

$$V = \{a, i, o, e, u\}$$

 $Z = \{..., -2, -1, 0, 1, 2, ...\}$

Method 2. Set builder notation. Describe a set by properties

$$A = \{x \mid P(x)\}$$

A = $\{x \mid x \text{ is a positive integer and } x < 5\} = \{4,3,2,1\}$

Read: A is the set of positive integers such that less than 5.

Method 3. Venn diagram

NULL SET. EMPTY SET

Null set/empty set: set has no element.

 $A = \{x \mid x \text{ is a month with } 32 \text{ days}\}$

 $A = \{ \} // \text{ empty set }$

- Symbol: { } or ∅
- NOTE: \varnothing belongs to $\{\varnothing\}$.

So, $\{\emptyset\}$ is different from \emptyset

$$\emptyset \neq \{\emptyset\}$$

(Way to remember: empty folder ≠ folder containing empty folder)

SOME IMPORTANT SETS

N: the set of natural numbers

$$N = \{0, 1, 2, 3, ...\}$$

Z: the set of integers

$$Z = \{..., -2, -1, 0, 1, 2, ...\}$$

Q = the set of rational numbers

$$Q = \{\frac{p}{q} \mid p, q \in Z, q \neq 0\}$$

$$Q = \{..., -1/3, 0, 2, -3, 5/7, ...\}$$

R: the set of real numbers

R =
$$\{..., \sqrt{2}, 1, -2/3, 0, \pi, ...\}$$

CARDINALITY OF A SET

- If a set has n elements, we say its cardinality is n.
- $A = \{a, b, c\} \rightarrow \text{ cardinality of } A, |A| = 3$
- $B = \emptyset \rightarrow |B| = 0$
- C = {∅} → |C| = 1
- D = $\{a, \{a\}\} \rightarrow |D| = 2$
- $E = \{a, a, a, a\} \rightarrow |E| = 1$
- If V is the set of all vowels in English, then |V| =
- |N| = ∞

SUBSETS

 If every element of A is in B, then we say A is a SUBSET of B.

$$\forall x(x \in A \rightarrow x \in B)$$

- Symbol: A ⊆ B
 A ⊂ B (if A ≠ B)
- Venn diagram:
- Examples:

$$\{a, c\} \subset \{a, b, c, d\}$$

$$N \subset Z$$

$$Z \subset Q$$

$$Q \subset R$$

• d
• b
B

Venn diagram for A ⊂ B

How to show $A \subseteq B$?

HOW TO SHOW THAT A ⊆ B and A?B

- To show A \subset B: show that if $x \in A$, then $x \in B$
- To show A⊂B: find only one x∈A such that
 x∉B

$$\neg(p \to q) \equiv \neg(\neg p \lor q) \equiv p \land (\neg q)$$

EQUALITY

- Two sets A and B are equal if they have the same elements no matter how they are defined.
- Symbol: A = B
- A = {x | x is a positive integer less than 5}
- $B = \{1, 2, 3, 4, 3, 3\}$
- \bullet D = {3, 2, 4, 1}
- \bullet A = B = C = D

EQUALITY

- To show that A = B:
- Method 1. Show that A⊂B and B⊂A
- Method 2. Use set builder notation.
- Method 3. Use membership table.
- For examples, (see NEXT SEGMENT)

THEOREM

∅ ⊆ S for any set S

S ⊆ S for any set S

POWER SET

- Given a set A
- The POWER SET of A, denoted by P(A), is

the set of all subsets of A.

Sets	All Subsets	POWER SETS	
A = {a}	∅, {a}	$P(A) = {???}$	}
$B = \{*, b\}$	Ø, {*}, {b}, {*, b}	P(B) = { ???	}
C = {1, 2, 3}	Ø, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}	P(C) = { ???	}

If A has n elements, then P(A) has 2ⁿ elements.

$$(|A| = n \rightarrow |P(A)| = 2^n)$$

CARTESIAN PRODUCT (named after René Descartes)

• ORDERED PAIR: $(a, b) \neq (b, a)$

Cartesian product of two sets A and B:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

A	В	A×B
{a, b}	{1, 2, 3}	{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}
{1, 2, 3}	{a, b}	{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}
{Nguyen, Le}	{Phuong, Lam}	{(Nguyen, Phuong), (Le, Phuong), (Nguyen, Lam), (Le, Lam)}
{ }	{a, b}	{ }

SET OPERATIONS.

Set operations	Symbols
Union	$A \cup B$
Intersection	$A \cap B$
Difference	A – B
Symmetric difference	$A \oplus B$
Complement	$ar{A}$

UNION

- Symbol: A ∪ B
- Set builder:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

 $A \cup B$ is shaded.

Examples.

A	В	$A \cup B$
{a, b, c}	{c, d}	{a, b, c, d}
{a, b, c}	{a, b, c, d, e}	{a, b, c, d, e}
Ø	{1, 2, 3}	{1, 2, 3}
The set of all students who are from Long An	The set of all students who are from Phu Yen	The set of all students who are from Long An OR Phu Yen

MEMBERSHIP TABLE FOR A UB

0: NOT A MEMBER OF THE SET
1: MEMBER OF THE SET

// Use a 1 bit to represent true and a 0 bit to represent false.

	A	В	$A \cup B$
	0	0	0
Conside	<u>1</u>	→ 0	1
Consider	0	1	1
	1	1	1

Thinking about: U is the same as V

INTERSECTION

- Symbol: A ∩ B
- Set builder:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

 $A \cap B$ is shaded.

Α	В	A ∩ B
{a, b, c}	{c, d, e}	{c}
{a, b, c}	{a, b, c, d, e}	{a, b, c}
{1, 2, 3}	{4, 5}	Ø // disjoint sets
Set of all bit strings of length 4 start with 1	Set of all bit strings end with 00	Set of all bit strings of length 4 start with 1AND ends 00

MEMBERSHIP TABLE FOR A B

0: NOT A MEMBER OF THE SET

1: MEMBER OF THE SET

A	В	A ∩ B
0	0	?
1	0	?
0	1	?
1	1	?

CARDINALITY OF AUB

$$|A \cup B| = |A| + |B|$$
???

NOT TRUE

$|A \cup B| = |A| + |B| - |A \cap B|$

- For example
- $A = \{1, 2, 3, 4, 5\} \rightarrow |A| = 5$
- B = $\{4, 5, 6, 7\} \rightarrow |B| = 4$
- $A \cup B = \{1, 2, 3, 4, 5, 6, 7\} \rightarrow |A \cup B| = 7$
- $A \cap B = \{4, 5\} \rightarrow |A \cap B| = 2$

DIFFERENCE

- Symbol: A B // difference of A and B
- Set builder:

$$A - B = \{x \mid x \in A \land x \notin B\}$$

A - B is shaded.

Α	В	A – B
{a, b, c}	{c, d, e}	{a, b}
{a, b, c}	{a, b, c, d, e}	{ }
{1, 2, 3}	{4, 5}	{1, 2, 3}
The set of all bit strings of length 4 begin with 1	The set of all bit strings of length 4 end with 00	The set of all bit string of length 4 begin with 1 AND NOT end with 00

MEMBERSHIP TABLE FOR A – B

0: NOT A MEMBER OF THE SET

1: MEMBER OF THE SET

A	В	A – B
0	0	0
1	0	1
0	1	0
1	1	0

COMPLEMENT OF A SET

- UNIVERSAL SET U: set contains all objects under consideration.
- Complement of a set A, denoted by \bar{A} is the defined by:

$$\bar{A} = U - A$$

$$x \in A \leftrightarrow x \notin \bar{A}$$

Example 1: $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$A = \{1, 3, 5\} \rightarrow \bar{A} = \{2, 4, 6, 7, 8, 9, 10\}$$

Example 2: U is the set of all letters of the English alphabet.

$$A = \{e, a, I, o, u\}$$

$$\rightarrow \bar{A} = \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}.$$

VENN DIAGRAM. MEMBERSHIP TABLE OF \bar{A}

A	$ar{A}$
0	1
1	0

EXAMPLE

Show that $A - B = A \cap \overline{B}$

- Method 1. Use set builder.
- $A B = \{x \mid x \in A \land x \notin B\}$ = $\{x \mid x \in A \land x \in \overline{B}\}$ = $A \cap \overline{B}$
- Method 2. Membership table.

Α	В	\overline{B}	A – B	$A \cap \overline{B}$
0	0	1	0	0
0	1	0	0	0
1	0	1	1	1
1	1	0	0	0

SYMMETRIC DIFFERENCE

 The symmetric difference of A and B is the set:

$$(A - B) \cup (B - A)$$

Symbol: A⊕B

MEMBERSHIP TABLE

Α	В	А⊕В
0	0	0
0	1	1
1	0	1
1	1	0

Identit

ion

Name (law)

Domination

Idempotent

Complementat

Commutative

Associative

De Morgan

Absorption

Complement

 $A \cup A = A$

 $A \cup B = B \cup A$

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

 $A \cup \overline{A} = U$

 $A \cup (A \cap B) = A$

 $A \cup (B \cup C) = (A \cup B) \cup$

 $A \cup (B \cap C) = (A \cup B) \cap$

 $(\overline{A}) = A$

 $(A \cup C)$

SET	IDEN	1TIT	IES

Identity

 $A \cap A = A$

 $A \cap B = B \cap A$

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$

 $A \cap \overline{A} = \emptyset$

 $A \cap (A \cup B) = A$

 $A \cap (B \cap C) = (A \cap B) \cap C$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributive

 $A \cup \emptyset = A$ $A \cap U = A$ $A \cup U = U$ $A \cap \emptyset = \emptyset$

PROOFS OF $\overline{A \cap B} = \overline{A} \cup \overline{B}$

MEMBERSHIP TABLES

Α	В	\overline{A}	$ar{B}$	$\overline{A} \cup \overline{B}$	$A \cap B$	$\overline{A \cap B}$
0	0	1	1	1	0	1
0	1	1	0	1	0	1
1	0	0	1	1	0	1
1	1	0	0	0	1	0

PROOFS OF A $\cap \overline{A} = \emptyset$, A $\cup \overline{A} = U$

Α	\overline{A}	$A \cap \overline{A}$	A U \overline{A}
0	1	0	1
1	0	0	1

Other proof for $A \cup \overline{A} = U$.

To show that A $\cup \overline{A} = U$, we show that A $\cup \overline{A} \subseteq U$ and $U \subseteq A \cup \overline{A}$

- A $\cup \overline{A} \subseteq U$ is trivial because U is the universal set.
- To show $U \subseteq A \cup \overline{A}$, consider arbitrary x in U. Two possible cases:
 - If $x \notin A$, then $x \in \overline{A}$. So, $x \in A \cup \overline{A}$.
 - If $x \in A$, then $x \in A \cup \overline{A}$.

Therefore, $U \subseteq A \cup \overline{A}$.

Proved.

Bitwise AND/OR/XOR

A *bit string* is a sequence of zero or more bits. The *length* of this string is the number of bits in the string. Ex: 1 0101 1001 is a bit string of length nine.

Ex:

01 1011 0110

11 0001 1101

11 1011 1111 bitwise *OR*

01 0001 0100 bitwise AND

10 1010 1011 bitwise *XOR*

REPRESENTING SETS IN COMPUTER

```
Ex1. U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} // i = 1..10
A = \{1, 3, 5\}, B = \{1, 2, 4, 5, 7, 9\}
→ A = "1 0 1 0 1 0 0 0 0 0"
                                          // [a_i]: a_i = 1 \text{ iff } i \in A
→ B = "1 1 0 1 1 0 1 0 1 0"
                                          // [b_i]: b_i = 1 iff i \in B
HOW TO FIND A∩B? ← bitwise AND
A \cap B = "1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0"
                                          // [c_i] := a_i \wedge b_i
\rightarrow A\cap B = \{1, 5\} // If [c_i] = 1 then print i in A\cap B
Example 2.
U = \{a, b, c, d, e\}
A = \{b, d\}
 → A = "0 1 0 1 0"
```


REVIEW OF SECTION 2.1

- SETS
- WAYS TO DEFINE SETS: SET BUILDER, LISTING, VENN DIAGRAMS
- SET OPERATIONS: UNION, INTERSECTION, DIFFERENCE, SYMMETRIC DIFFERENCE, COMPLEMENT
- SET IDENTITIES
- COMPUTER REPRESENTATION OF SETS

OUR GOAL

- Why study functions, sequences and sums?
- What is a function?
- When does a function have an inverse?
- Some useful sums and sequences for estimating the complexity of algorithms.

Why study this section?

- Extremely important in mathematics and computer science
- Used in the definition of such discrete structures as sequences and strings
- Used to represent how long it takes a computer to solve problems of a given size
- Many computer programs are designed to calculate values of functions.
- Recursive functions, which are functions defined in terms of themselves, are used throughout computer science.
- To estimate the complexity of algorithms, we need to know some useful sums such as:
- 1 + 2 + 3 + ... + n-1 // Sorting n integers by the Bubble sort algorithm

What is a function? Introduction.

Vending machine.

If you press one button (input), how many tasks does the machine do (output)?

What is function?

- If you press the Pepsi button (input = Pepsi), you will receive a Pepsi can
- The next time, you press "Pepsi" again, you receive a Pepsi (NOT a Coca cola)

What is a function?

input	Machine	output
-2	How does it work?	4
3		9
-4		16
5		25

What is a function?

input		output
3	How does it work?	5
3		9

How to know the output when input is 3? No one knows exactly.

→ Not a function.

Function. Definitions.

 $f: A \rightarrow B$ // Read: f is a function from A to B, f maps A to B

Each element a in A maps exactly one element b in B

Write b = f(a)

But this is OK in a function

Functions/mappings/ transformation. Definitions.

Three parts of a function.

 $f: A \rightarrow B$

A: domain

2 B: codomain

3 Ways to determine the output.

For example, f: $\mathbb{Z} \to \mathbb{R}$, f(m) = $1/(m^2 + 3)$

codomain vs range

- Codomain contains outputs
- Range: the set of all outputs
- Range is a subset Codomain (maybe equal)

Ways to define a function.

By formulas:

$$g(x) = 3$$
, $f(x) = x^2$

By sets:

Domain: {a, b, c} Range: {1, 4, 3}

```
f = \{(2, 3), (-3, 1), (4, 7)\}\

g = \{(a, 1), (b, 4), (c, 3)\} \sim g(a)=1, g(b)=4,

g(c)=3
```

- By Tables
- By words

A function in programming language (C)

```
float sm(float x)

{
    domain

float result;
    result = x+x;
    return result;
}

How the output is produced.

**The control of the cont
```


Not a function

- Two cases:
- No output for some input

f:
$$R \rightarrow R$$
; $f(x) = 1/(x - 1)$

More than one outputs for one input

$$f: R \rightarrow R$$

$$f(x) = \begin{cases} -x + 3 & if \ x > 2 \\ x + 1 & if \ x \le 5 \end{cases}$$

Some Important Functions

Ceiling function

f:
$$\boxed{\cdot} \rightarrow \boxed{\cdot}$$

f(x)= $\lceil x \rceil$ = smallest integer such that $x \boxed{\cdot} \lceil x \rceil$
 $\lceil -4 \rceil = -4, \lceil 2.7 \rceil = 3, \lceil -3.7 \rceil = -3$
Floor function
f: $\boxed{\cdot} \rightarrow \boxed{\cdot}$
f(x)= $\lceil x \rceil$ = largest integer such that $\lceil x \rceil$ $\boxed{\cdot} x$
 $\lceil x \rceil$ = 3, $\lceil 2.7 \rceil$ = 2, $\lceil -2.1 \rceil$ = -3, $\lceil 2/3 \rceil$ = 0

One-to-one/injective functions

f: A → B is one-to-one iff
 different inputs → different outputs

Ex:
$$f(x) = x^3$$

Different inputs: $x \neq y \rightarrow x^3 \neq y^3$: different outputs

$$\forall x \forall y (x \neq y \rightarrow f(x) \neq f(y))$$

There are two different inputs that map to the same output

$$\exists x \ \exists y(x \neq y \land f(x) = f(y))$$
$$f(b) = f(c) = 3$$

One-to-one

Not one-to-one

Onto/surjective functions

- f: A \rightarrow B is **onto** iff f(A) = B $\forall y \in B \exists x \in A(f(x) = y)$
- For example, f(c) = 1, f(b) = 2, f(a) = 3

Not onto:

$$\exists y \in B \forall x \in A(f(x) \neq y)$$
$$f(a) \neq 1, f(b) \neq 1, f(c) \neq 1$$

Bijection = one-to-one correspondence

- A function is called a bijection if it is both onto and one-to-one.
- Bijection = onto + one-to-one
- Examples.
- i) {(A, 10), (B, 11), (C, 12), (D, 13), (E, 14), (F, 15)} is a bijection. // hexadecimal
- ii) A B ... Z 65 66 ... 90

is a bijection // ASCII code

Compositions of functions.

Def. the composition of the functions f and g Is defined by

$$(g?f)(x) = g(f(x))$$

 $(g?f)(x) = g(f(x)) = g(x + 3) = (x + 3)^2$

Inverse functions.

- f: A → B has an inverse iff f is a bijection
- The inverse function of f is denoted by f⁻¹.

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

Examples.

1.
$$f = \{(A,10), (B,11), (C,12), (D,13), (E,14), (F,15)\}$$

 $\rightarrow f^{-1} = \{(10,A), (11,B), (12,C), (13,D), (14,E), (15,F)\}$

2.
$$f(x) = 3x + 5 = y \rightarrow x = (y-5)/3$$

 $f^{-1}(y) = x = (y-5)/3$

Sequence & sums

Arithmetic progression: (cấp số cộng)

```
a, a + d, a + 2d, a + 3d, ..., a + nd, ...
```

d: common difference

$$3, 7, 11, 15, 19, 23, ..., 3 + 4n, ...$$

$$\rightarrow$$
 a_n = 3 + 4n

Geometric progression: (cấp số nhân)

```
a, ar, ar^2, ar^3, ..., ar^n, ...
```

r: common ratio

$$2, 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots, \frac{2}{(\frac{1}{2})^n}, \dots$$

$$\rightarrow$$
 b_n = $2(1/2)^n$

Some useful sequences

TABLE 1 Some Useful Sequences.		
nth Term	First 10 Terms	
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,	
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,	
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,	
2^n	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,	
3^n	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,	
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,	
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,	

Sums

 Consider the following pseudocode segment Procedure Hello(n: positive integer)

Begin

```
For i: = 1 to n

For j:=1 to i

Print "hello"
```

End

How many word hello will be printed?

Sums

i	j	Times of printing
1	1	1
2	1 2	2
3	1 2 3	3
•••	•••	•••
n	1 n	n

$$1 + 2 + 3 + ... + n = n(n+1)/2$$

Summations

$$a_m + a_{m+1} + a_{m+2} + \dots + a_n = \sum_{j=m}^n a_j = \sum_{j=m}^n a_j = \sum_{m \le j \le n} a_j$$

a: Sequence

j: Index of summation

m: Lower limit

n: Upper limit

TABLE 2 Some Useful Summation Formulae.		
Sum	Closed Form	
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	

Cardinality

- Cardinality = number of elements in a set.
- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B
- A set that is either finite or has the same cardinality as the set of positive integers is called countable.
- A set that is not countable is called uncountable.
- When a infinite set S is countable, we denote the cardinality of S is $|S| = \aleph_0$ (aleph null)
- For example, $|\mathbb{Z}| = \aleph_0$ because \mathbb{Z} is countable and infinite but \mathbb{Z} is uncountable and infinite, and we say $|\mathbb{Z}| = 2^{\aleph_0}$

Examples

sets	countable	uncountable	cardinality
{a, b,, z}, {x $x^5 - 3x^2 - 11 = 0$ },	✓	×	< ?
•••			
{0, 2, 4,, }	\checkmark	×	× ₀
N, Z+, Z, Q, Z?Z,	✓	*	× _o
$\{x \mid 0 < x < 1\}, R,$	*	✓	2 [×] 0

Summary

- Sets
- Set operations
- Functions
- Sequences
- Summations

THANKS