Cálculo diferencial e integral 2/Seminario 2

	Nombre:	
C1)	Si D_1 es el dominio de la función $f(x,y) = \sqrt{1- x - y } y D_2$ es el dominio de la fun $g(x,y) = \arcsin\frac{1}{\sqrt{x^2+2y^2}}$, ¿cuáles de las siguientes afirmaciones son ciertas?	ción
	a) $D_1 \cup D_2$ es cerrado.	
	<i>b</i>) $D_1 \cap D_2$ <i>es compacto.</i>	
	c) $D_1 \cup D_2$ es compacto.	
C2)	Sean f y g dos funciones reales definidas en $\mathbb{R}\setminus\{0\}$ tales que $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = +\infty$. Si llamamos $L = \lim_{(x,y)\to(0,0)} (f(x)-g(y))$, ¿cuáles de las siguientes proposiciones son ciertas?	
	a) No existe L.	
	b) Si f es un infinito de orden superior a g, entonces $L = +\infty$.	
	c) Para determinadas funciones f y g, el límite existe y es finito.	
C3)	Sean $f,g:\mathbb{R}^m\to\mathbb{R}$ dos funciones continuas y $A=\{x\in\mathbb{R}^m:f(x)=g(x)\}$. ¿Cuáles de las siguientes afirmaciones son ciertas?	
	a) A es abierto.	
	b) A es cerrado.	
	c) A es compacto.	
C4)	Sean B y \overline{B} las bolas unitarias abierta y cerrada de \mathbb{R}^2 , respectivamente. $f: \mathbb{R}^2 \to \mathbb{R}$ es continua en \overline{B} , ¿cuáles de las siguientes afirmaciones son ciertas?	Si
	a) No es posible que $f(B) = [5, \infty)$.	
	b) No es posible que $f(B) = [1, 5]$.	
	c) Es posible que $f(B) = [1,5] \setminus \{4\}$.	

- **C5)** Sea $f(x,y) = \frac{(xy)^k}{y-x^2}$, donde $k \in \mathbb{N}$. ¿Cuáles de las siguientes afirmaciones son ciertas?
 - a) $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ si y sólo si $k \ge 2$.
 - b) $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ si y sólo si $k \ge 3$.
 - c) $\lim_{(x,y)\to(0,0)} f(x,y)$ no existe.
- **C6)** Sea $\varphi : \mathbb{R} \to \mathbb{R}$ continua en \mathbb{R} y $f(x,y) = \begin{cases} \varphi(xy+y) + xy^2 & \text{si } x \geqslant 0 \\ 2\varphi(2x+y) + x^3 y & \text{si } x < 0. \end{cases}$ ¿Cuáles de las siguientes afirmaciones son ciertas?
 - a) f es continua en todos los puntos del eje OY.
 - b) f es continua en todos los puntos del eje OY si y sólo si $\phi(t) = \phi(-t)$, para todo $t \in \mathbb{R}$.
 - c) f es continua en todos los puntos del eje OY si y sólo si $\phi(t) = t$, para todo $t \in \mathbb{R}$.
- C7) Sea $f(x,y) = \frac{x^4 + y^4 + ax^2y}{2x^2 + 2y^2 xy}$ $y = \lim_{(x,y)\to(0,0)} f(x,y)$. ¿Cuáles de las siguientes afirmaciones son ciertas?
 - a) No existe L para ningún valor de $\alpha \in \mathbb{R}$.
 - b) L = 0 sólo si |a| < 1.
 - c) L = 0 para todo $a \in \mathbb{R}$.