Heurística de Busca Local Iterada para Resolução do Problema de Roteamento de Veículos

Péricles Pinheiro Feltrin¹, Ana Paula Canal²

¹Ciência da Computação – Centro Universitário Franciscano Rua dos Andradas, 1614 – 97010-032 – Santa Maria – RS –Brasil

periclesfeltrin@gmail.com, apc@unifra.br

Resumo. O Problema de Roteamento de Veículos (PRV) possui várias abordagens, como o PRV Capacitado e aplicações no mundo real, é um problema de otimização combinatória e pertence aos problemas NP-Completos. Deste modo, deve-se optar por deixar a solução ótima de lado, para que seja possível obter uma boa solução em tempo hábil usando uma heurística, como a Busca Local. O objetivo deste trabalho é descrever e implementar a Heurística de Busca Local Iterada para resolver o PRV.

1. Introdução

O Problema de Roteamento de Veículos (PRV) é um problema de Otimização Combinatória e caracteriza-se por possuir aplicações práticas, como nas situações reais que afetam principalmente a indústria, o comércio, o setor de serviços, a segurança, a saúde pública e o lazer [Goldbarg e Luna 2005].

Trata-se de um problema que está entre os mais complexos da área de Otimização Combinatória, pertencendo aos problemas NP-Completos, pois possui grande número de variáveis, diversidade de restrições e tempo de processamento [Goldbarg e Luna 2005]. Portanto, um algoritmo exato encontrará a solução ótima em um tempo exponencial, o qual pode facilmente ultrapassar o tempo desejado para encontrar o resultado e/ou ter um tempo computacional inviável, característica do NP-Completo. Outra forma de resolver este problema é com métodos heurísticos, ou seja, métodos capazes de encontrar uma boa solução, mas que dificilmente encontram a solução ótima [Rich e Knight 1993].

Para este trabalho escolheu-se o Problema Roteamento de Veículo Capacitado (PRVC), pois além de possuir grande aplicação no mundo real, é a base para outros PRVs, já que com algumas adaptações em suas restrições pode-se transformar em outros PRVs [Toth e Vigo 2002, p.5]. No PRVC todas as demandas são previamente conhecidas e há apenas um único depósito central. Os veículos da frota são todos iguais, e possuem apenas restrições de capacidade. A resolução tem como finalidade a minimização dos custos para atender todas demandas [Toth e Vigo 2002, p.5]. Escolheu-se utilizar um método heurístico de Busca Local, por ser facilmente adaptável para outras heurísticas, e, além disso, encontram soluções razoáveis em grandes ou infinitos espaço de dados.

2. Busca Local Iterada

Algoritmos de Busca Local operam usando um único estado e em geral se movem apenas para vizinhos desses estados, e possuem duas vantagens, usam pouquíssima memória e frequentemente podem encontrar soluções razoáveis em grandes ou infinitos espaços de estados [Russell e Norving 2004].

A Busca Local Iterada apresentada no Algoritmo 1 inicia-se a partir de uma solução inicial s gerada aleatoriamente ou com uma heurística gulosa. Assim que encontrada a solução inicial aplica-se a busca local em s, chegando-se então a uma solução s^* . Dada a solução s^* , aplica-se uma perturbação que gera um estado p intermediário pertencente ao conjunto solução. Logo após, a busca local é aplicada a p e assim chega-se a uma solução p^* em s^* . Se p^* é aceito no critério de aceitação torna-se o próximo elemento para a caminhada em s^* , caso contrário volta-se para s^* [Gendreau e Potvin 2010].

Algoritmo 1: Busca Local Iterada [Boussaïd et al. 2013, p.89]

3. Considerações Finais

Para a implementação da Busca Local Iterada deste trabalho será utilizada uma solução inicial do vizinho mais próximo, uma perturbação k-opt, o critério de aceitação de Markovin e uma busca local de vizinhança de grande porte juntamente com a Linguagem C. Nos testes serão utilizado os dados do repositório da [PUC-Rio 2015]. Com o desenvolvimento deste trabalho, espera-se contribuir e facilitar na escolha da melhor rota para as demandas solicitadas e obter uma redução nos custos do transporte. Assim, gerando uma economia nos custos, tempo e ou distância.

Referências

- Boussaïd, I., Lepagnot, J., e Siarry, P. (2013). A Survey on Optimization Metaheuristics. *Information Sciences*, Vol. 237:p. 82 117.
- Gendreau, M. e Potvin, J. (2010). *Handbook of Metaheuristics*. International Series in Operations Research & Management Science. Editora Springer US.
- Goldbarg, M. e Luna, H. (2005). *Otimização Combinatória E Programação Linear 2ª Edição*. Editora Elsevier.
- PUC-Rio (2015). Capacitated Vehicle Routing Problem Library. http://vrp.atd-lab.inf.puc-rio.br/index.php/en/. Acesso em Agosto de 2015.
- Rich, E. e Knight, K. (1993). Inteligencia artificial. Editora Makron Books.
- Russell, S. e Norving, P. (2004). *Inteligência Artificial Tradução da Segunda Edição*. Editora Elsevier.
- Toth, P. e Vigo, D. (2002). *The Vehicle Routing Problem*. Monographs on Discrete Mathematics and Applications. Editora Society for Industrial and Applied Mathematics.