j	Reaction	a_{j}	eta_j	$\overline{\mathcal{E}}_j$
1	$O_2 + H \rightarrow OH + O$	2.00×10^{14}	0.00	70.30
2	$OH + O \rightarrow O_2 + H$	1.46×10^{13}	0.00	2.08
3	$H_2 + O \rightarrow OH + H$	5.06×10^4	2.67	26.30
4	$OH + H \rightarrow H_2 + O$	2.24×10^{4}	2.67	18.40
5	$H_2 + OH \rightarrow H_2O + H$	1.00×10^{8}	1.60	13.80
6	$H_2O + H \rightarrow H_2 + OH$	4.45×10^{8}	1.60	77.13
7	$OH + OH \rightarrow H_2O + O$	1.50×10^{9}	1.14	0.42
8	$H_2O + O \rightarrow OH + OH$	1.51×10^{10}	1.14	71.64
9	$H+H+M \to H_2+M$	1.80×10^{18}	-1.00	0.00
10	$H_2 + M \rightarrow H + H + M$	6.99×10^{18}	-1.00	436.08
11	$H + OH + M \rightarrow H_2O + M$	2.20×10^{22}	-2.00	0.00
12	$H_2O + M \to H + OH + M$	3.80×10^{23}	-2.00	499.41
13	$O + O + M \rightarrow O_2 + M$	2.90×10^{17}	-1.00	0.00
14	$O_2 + M \rightarrow O + O + M$	6.81×10^{18}	-1.00	496.41
15	$H + O_2 + M \rightarrow HO_2 + M$	2.30×10^{18}	-0.80	0.00
16	$HO_2 + M \to H + O_2 + M$	3.26×10^{18}	-0.80	195.88
17	$HO_2 + H \rightarrow OH + OH$	1.50×10^{14}	0.00	4.20
18	$OH + OH \rightarrow HO_2 + H$	1.33×10^{13}	0.00	168.30
19	$HO_2 + H \rightarrow H_2 + O_2$	2.50×10^{13}	0.00	2.90
20	$H_2 + O_2 \rightarrow HO_2 + H$	6.84×10^{13}	0.00	243.10
21	$HO_2 + H \rightarrow H_2O + O$	3.00×10^{13}	0.00	7.20
22	$H_2O + O \rightarrow HO_2 + H$	2.67×10^{13}	0.00	242.52
23	$HO_2 + O \rightarrow OH + O_2$	1.80×10^{13}	0.00	-1.70
24	$OH + O_2 \rightarrow HO_2 + O$	2.18×10^{13}	0.00	230.61
25	$HO_2 + OH \rightarrow H_2O + O_2$	6.00×10^{13}	0.00	0.00
26	$H_2O + O_2 \rightarrow HO_2 + OH$	7.31×10^{14}	0.00	303.53
27	$HO_2 + HO_2 \to H_2O_2 + O_2$	2.50×10^{11}	0.00	-5.20
28	$OH + OH + M \rightarrow H_2O_2 + M$	3.25×10^{22}	-2.00	0.00
29	$H_2O_2 + M \to OH + OH + M$	2.10×10^{24}	-2.00	206.80
30	$H_2O_2 + H \to H_2 + HO_2$	1.70×10^{12}	0.00	15.70
31	$H_2 + HO_2 \to H_2O_2 + H$	1.15×10^{12}	0.00	80.88
32	$H_2O_2 + H \rightarrow H_2O + OH$	1.00×10^{13}	0.00	15.00
33	$H_2O + OH \rightarrow H_2O_2 + H$	2.67×10^{12}	0.00	307.51
34	$H_2O_2 + O \rightarrow OH + HO_2$	2.80×10^{13}	0.00	26.80
35	$OH + HO_2 \rightarrow H_2O_2 + O$	8.40×10^{12}	0.00	84.09
36	$H_2O_2 + OH \to H_2O + HO_2$	5.40×10^{12}	0.00	4.20
37	$H_2O + HO_2 \to H_2O_2 + OH$	1.63×10^{13}	0.00	132.71

Table 1.1: Units of a_j are in appropriate combinations of cm, mol, s, and K so that $\dot{\omega}_i$ has units of $mole\ cm^{-3}\ s^{-1}$; units of $\overline{\mathcal{E}}_j$ are $kJ\ mol^{-1}$. Third body collision efficiencies with M are $f_{H_2}=1.00,\ f_{O_2}=0.35,$ and $f_{H_2O}=6.5.$

CC BY-NC-ND. 08 December 2011, J. M. Powers.