Refined bounds for algorithm configuration: The knife-edge of dual class approximability

Nina Balcan, Tuomas Sandholm, Ellen Vitercik
Carnegie Mellon University

INFORMS Annual Meeting 2020

Algorithms typically come with many tunable parameters Significant impact on runtime, solution quality, ...

Hand-tuning is time-consuming, tedious, and error-prone

Automated algorithm configuration

Goal: Automate algorithm configuration via machine learning

Algorithmically find good parameter settings using a set of "typical" inputs from application at hand

Training set

Automated configuration procedure

- 1. Fix parameterized algorithm (e.g., CPLEX)
- 2. Receive set S of "typical" inputs from unknown distribution D

3. Return parameter setting with good avg performance over $\mathcal S$

Runtime, solution quality, memory usage, etc.

Automated configuration procedure

Key question (focus of talk):

Will those parameters have good expected performance?

Model

Model

X: Set of all inputs (e.g., integer programs)

 \mathbb{R}^d : Set of all parameter settings (e.g., CPLEX parameters)

Standard assumption: Unknown distribution \mathcal{D} over inputs

E.g., represents scheduling problem airline solves day-to-day

"Algorithmic performance"

 $f_r(x)$ = utility of algorithm parameterized by $r \in \mathbb{R}^d$ on input x E.g., runtime, solution quality, memory usage, ...

Assume $f_r(x) \in [-1,1]$

Can be generalized to $f_r(x) \in [-H, H]$

Dual functions

Dual functions

For input x, "dual function" f_x^* measures algorithmic performance as a function of the parameters

Dual functions

Duals are often well-approximated by a "simple function" e.g., in integer programming algorithm configuration

Main result

Generalization bounds

Key question: For any parameter setting r, Does good avg utility on training set imply good exp utility?

Formally: Given samples $x_1, ..., x_N \sim \mathcal{D}$, for any r,

$$\left| \frac{1}{N} \sum_{i=1}^{N} f_r(x_i) - \mathbb{E}_{x \sim \mathcal{D}}[f_r(x)] \right| \leq ?$$

Empirical average utility

Generalization bounds

Key question: For any parameter setting r, Does good avg utility on training set imply good exp utility?

Formally: Given samples $x_1, ..., x_N \sim \mathcal{D}$, for any r,

$$\left| \frac{1}{N} \sum_{i=1}^{N} f_r(x_i) - \mathbb{E}_{x \sim \mathcal{D}}[f_r(x)] \right| \leq ?$$

Expected utility

Main result

With high probability over the draw of
$$\mathcal{S} \sim \mathcal{D}^N$$
, for any r ,
$$\left| \frac{1}{N} \sum_{x \in \mathcal{S}} f_r(x) - \underset{x \sim \mathcal{D}}{\mathbb{E}} [f_r(x)] \right|$$

$$= \tilde{O}\left(\frac{1}{N}\sum_{x\in\mathcal{S}}||f_x^* - g_x^*||_{\infty} + \text{Complexity}(\mathcal{G}) + \sqrt{\frac{1}{N}}\right)$$

```
__ _ _ Algorithmic performance f_x^*(r)
__ _ Simple approximating function g_x^*(r)
              ullet Parameter r
```

Main result

With high probability over the draw of
$$\mathcal{S} \sim \mathcal{D}^N$$
, for any r ,
$$\left| \frac{1}{N} \sum_{x \in \mathcal{S}} f_r(x) - \underset{x \sim \mathcal{D}}{\mathbb{E}} [f_r(x)] \right|$$

$$= \tilde{O}\left(\frac{1}{N}\sum_{x\in\mathcal{S}}||f_x^* - g_x^*||_{\infty} + \frac{\text{Complexity}(\mathcal{G})}{N} + \sqrt{\frac{1}{N}}\right)$$

Measures just how "simple" the approximating functions are Goes to 0 as N grows

Experiments

Experiments: Integer programming

Tune integer programming solver parameters Also studied by Balcan, Dick, Sandholm, Vitercik [ICML'18]

Distributions over auction IPs

[Leyton-Brown, Pearson, Shoham, EC'00]

Number of training instances

The knife-edge of dual class approximability

The knife-edge

If approximation holds under the L^{∞} -norm: We provide strong guarantees

 $\sup_{r} |f_{x}^{*}(r) - g_{x}^{*}(r)|$ is small

The knife-edge

If approximation holds under the L^{∞} -norm:

We provide strong guarantees

 $\sqrt[p]{\int |f_x^*(r) - g_x^*(r)|^p dr}$ is small

If approximation only holds under the L^p -norm for $p < \infty$:

Not possible to provide strong guarantees in worst case

```
Algorithmic performance f_x^*(r)

Simple approximating function g_x^*(r)

Parameter r
```

Conclusion

Conclusion

- Provided generalization bounds for algorithm configuration
- Apply whenever utility as function of parameters is "approximately simple"
- Connection between learnability and approximability is balanced on a knife-edge
 - If approximation holds under L^{∞} -norm, can provide strong bounds
 - If holds under L^p -norm for $p<\infty$, not possible to provide bounds
- Experiments demonstrate strength of these bounds

Refined bounds for algorithm configuration: The knife-edge of dual class approximability

Nina Balcan, Tuomas Sandholm, Ellen Vitercik
Carnegie Mellon University

INFORMS Annual Meeting 2020