1 - Intro to AI and Search

What is Artificial Intelligence?

- Turing test
- Chinese room experiment
- Rational agents
 - Perceive the environment through sensors (percepts)
 - Act upon the environment through actuators (actions)
- Rationality vs Omniscience (全知)
 - An omniscient agent knows everything about the environment, and knows the actual effects of its actions.
 - A rational agent just makes the best of wat it has at its disposal, maximizing expected performance given its percepts and knowledge.

	Humanly	Rationally
Thinking	Systems that think like humans	Systems that think rationally
	(Cognitive Science)	(Logics: Knowledge and Deduction)
Acting	Systems that act like humans	Systems that act rationally
	(Turing Test)	(How to make good action choices)

Al Solver, SAT & CSPs, Classical Planning Model L1 P28-30

Why do we need such an Al

- Chesses: 2 player zero-sum game
- Music/Speech recognition
- Recommender systems
- Medical diagnosis: decision support systems
- Self-driven car
- Playing Atari Games: deep learning

Why do we need such AI Planning

- Space Exploration
 - RAX first artificial intelligence control system to control a spacecraft without human supervision
- Business Process Management
- First Person Shooters & Games
 - Classical planners playing Atari Games
- Interactive Storytelling
- Network Security
- Logistics/Transportation/Manufacturing
 - Multi-model Transportation, forest fire fighting, PARC printer
- Warehouse Automation

- Multi-Agent Path Finding, Post China, Amazon
- Automation of Industrial Operations (Schlumberger)
- Self Driving Cars

Summary

- A research agenda that has emerged in last 20 years: solvers for a range of intractable models.
- Solvers unlike other programs are general as they do not target individual problems but families of problems (models).
- The challenge is computational: how to scale up
- Sheer size of problem shouldn't be impediment to meaningful solution
- Structure of given problem must recognized and exploited
- Lots of room for ideas but methodology empirical
- Consistent progress
 - effective inference methods (derivation of h, conflict-learning)
 - o islands of tractability (treewidth methods and relaxations)
 - o transformations (compiling away incomplete info, extended goals, ...)