计系3期末速通教程

5. 存储

5.1 cache

5.1.1 直接映射

[直接映射]

(1) 定义: 每个存储器地址对应 cache 中的唯一地址.

(2) 地址划分:

[例] 容量 8 块, 1 字/块, 直接映射.

初始状态

ישיארוואלמו									
Index	V	Tag	Data						
索引	有效位	标记	数据						
000	N								
001	N								
010	N								
011	N								
100	N								
101	N								
110	N								
111	N								

Word addr	Binary addr	Hit/miss	Cache block
22	10 110	Miss	110

Index索引	V有效	Tag标志	Data数据
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block		
26	11 010	Miss	010		

26		11 010		Miss	010					
Index	V	Tag	Dat	Data						
000	N									
001	N									
010	Υ	11	Mei	Mem[11010]						
011	N									
100	N									
101	N									
110	Υ	10	Mer	Mem[10110]						
111	N									

Word addr	Binary addr	Hit/miss	Cache block		
22	10 110	Hit	110		
26	11 010	Hit	010		

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block		
16	10 000	Miss	000		
3	00 011	Miss	011		
16	10.000	Hit	000		

		10 00	•	1 111	000						
Index	V	Tag	Dat	Data							
000	Υ	10	Mei	Mem[10000]							
001	N										
010	Υ	11	Mei	Mem[11010]							
011	Υ	00	Mei	Mem[00011]							
100	N										
101	N										
110	Υ	10	Mei	Mem[10110]							
111	N										

Word addr	Binary addr	Hit/miss	Cache block		
18	10 010	Miss	010		

Index	٧	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	10	Mem[10010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

[例] 一个 cache 有 64 块, 每块 16 Bytes . 求字节地址 1200 被映射到 cache 的哪块.

[解] 主存块大小 = cache 块大小 = 16 Bytes .

主存块号 =
$$\left| \frac{\dot{\text{字节地址}}}{\dot{\text{‡存块}}} \right| = \left| \frac{1200}{16} \right| = 75$$

cache 块号 = 主存块号 mod cache 块数 = $75 \mod 64 = 11$.

[FastMATH 处理器]

[cache 的性能]

存储器阻塞时钟周期数 = $\frac{ \hbox{存储器访存次数}}{\hbox{程序数}} \times \text{缺失率} \times \text{缺失代价} = \frac{ \hbox{指令数}}{\hbox{程序数}} \times \frac{ \hbox{缺失数}}{\hbox{指令}} \times \text{缺失代价} \, .$

[**例**] 设 I-cache 缺失率 =2%, D-cache 缺失率 =4%, 缺失代价 =100 时钟周期, 处理器 CPI=2, load 和 store 占全部指令的 36%. 求: 配置一个从不发生缺失的理想 cache , 处理器速度快多少.

[解] 缺失时钟周期数:

① I-cache : 0.02 imes 100 imes I = 2I .

② D-cache: $0.36 \times 0.04 \times 100 \times I = 1.44I$.

实际 $\mathrm{CPI} = 2 + 2 + 1.44 = 5.44$, 理想 CPU 是 $\frac{5.44}{2} = 2.72$ 倍.

[存储器的平均访问时间] $AMAT = 命中时间 + 缺失率 \times 缺失代价.$

[**例**] CPU 时钟周期时间为 $1~\mathrm{ns}$, 命中时间为 $1~\mathrm{roth}$ 个时钟周期, 缺失代价为 $20~\mathrm{roth}$ 个时钟周期, I-cache 的缺失率为 5% . 求 AMAT .

[解] $AMAT = 1 + 0.05 \times 20 = 2 \text{ ns}$, 即平均每条指令需 2 个时钟周期.

5.1.2 相联

[相联]

(1) 全相联:

- ① 一个块可被放置在 cache 中的任意位置.
- ② 需查找 cache 中的所有项.
- ③每个cache 项都需比较器,开销大.

(2) 多路组相联:

- ① 每个组包含 n 块.
- ② 组号 = 块号 mod 组数.
- ③ 可能需查找组中的所有块.
- ④ 只需 n 个比较器, 比直接映射开销少.
- ⑤ 结构:

(3) 相联度: 有8个块的 cache 配置为一路组相联(直接映射)、二路组相联、四路组相联、八路组相联(相联).

Tag	Data														

(4) 增加相联度可降低缺失率, 但收益递减.

[**例**] cache 含 4 块,块访问顺序 0 , 8 , 0 , 6 , 8 . 采用直接映射、二路组相联、全相联的状态如下.

(1) 直接映射:

Block	Cache	Hit/miss	Cache content after access				
address	index		0	1	2	3	
0	0	miss	Mem[0]				
8	0	miss	Mem[8]				
0	0	miss	Mem[0]				
6	2	miss	Mem[0]		Mem[6]		
8	0	miss	Mem[8]		Mem[6]		

(2)

		=	路组相	联	
Block	Cache	Hit/miss	(Cache conter	nt after access
address	index		Se	et O	Set 1
0	0	miss	Mem[0]		
8	0	miss	Mem[0]	Mem[8]	
0	0	hit	Mem[0]	Mem[8]	
6	0	miss	Mem[0]	Mem[6]	
8	0	miss	Mem[8]	Mem[6]	

Block	Hit/miss	Cache content after access					
address							
0	miss	Mem[0]					
8	miss	Mem[0]	Mem[8]				
0	hit	Mem[0]	Mem[8]				
6	miss	Mem[0]	Mem[8]	Mem[6]			
8	hit	Mem[0]	Mem[8]	Mem[6]			

全相联

[替换策略]

(1) 直接映射: 别无选择.

(2) 组相联:

- ① 选择存储非有效信息 (non-valid) 的块, 若无 non-valid 的块, 则任选一块.
- ② LRU (Least-Recently Used): 选择最长时间未被使用的. 二路易实现, 四路可控制, 超过四路难控制.
- ③ 相联度较高时, 随机替换近似 LRU 的结果.

5.1.3 多级 cache

[cache 缺失原因, 3 C]

- (1) [强制缺失,冷启动缺失, Compulsory Misses] 第一次访问从未在 cache 中出现过的块的缺失.
- (2) [**容量缺失**, **Capacity Misses**] cache 容量不足以容纳一个程序执行所需的所有块引起的缺失. [**例**] 一个被替换的块随后又被访问.
- (3) [**冲突缺失**, **Conflict Misses**] 在直接映射或组相联的 cache 中, 多个块竞争同个组时引起的缺失. [注] 同容量的全相联 cache 不出现该情况.

[cache 设计的折中]

设计变化	对缺失率的影响	可能对性能的负面影响
增加 cache 容量	减少容量缺失,降低缺失率	增加访问时间
提高相联度	减少冲突缺失,降低缺失率	增加访问时间
增加块容量	因空间局部性,对宽范围内变化的块大小 都能降低缺失率	① 增加缺失代价 ② 块过大时增加缺失率

[多级 cache]

- (1) ① L1-cache 直连 CPU, 容量小, 速度快.
 - ② L2-cache 处理 L1-cache 的失效, 容量较大, 速度较慢, 但仍快于主存.
 - ③ 主存处理 L2-cache 的失效.
- (2) ① L1-cache: 集中在最小化命中时间.
 - ② L2-cache: 集中在低缺失率, 避免访问主存, 命中时间对整体性能影响较小.
- (3) ① L1-cache 常比独立 cache 的容量小.
 - ② L1-cache 的块大小常比 L2-cache 的块大小小.

[例] 设 CPU 基准 $\mathrm{CPI}=1$, 时钟频率 $=4~\mathrm{GHz}$, 缺失率 / 指令 =2%, 主存访问时间 $=100~\mathrm{ns}$.

(1) 只有 L1-cache:

缺失代价 =
$$\frac{100~\mathrm{ns}}{0.25~\mathrm{ns}}$$
 = 400 时钟周期 , 有效 $\mathrm{CPI} = 1 + 0.02 \times 400 = 9$.

(2) 增加 L2 - cache , 访问时间 $5~\mathrm{ns}$, 对主存的整体失效率 =0.5% .

① L1 失效, L2 命中: 缺失代价
$$=\frac{5 \text{ ns}}{0.25 \text{ ns}}=20$$
 时钟周期.

② L1 失效, L2 失效: 额外缺失代价 = 400 时钟周期.

$$ext{CPI} = 1 + 0.02 imes 20 + 0.005 imes 400 = 3.4$$
 , 性能比 $= rac{9}{3.4} pprox 2.6$.

5.2 虚拟存储器

5.2.1 页表

[地址映射]

(1) 定义: 固定页大小, 虚页号到物理页号的转换.

Physical address

- (2) 若缺页, 需从磁盘上取回该页, 消耗几百万时钟周期, 由 OS 代码管理.
- (3) 降低缺页率:
 - ① 存储器中的页按全相联放置.
 - ② 智能替换算法.

[**页表**] PTE(Page Table Entry).

(1)

- (2) 用 LRU 替换算法降低缺页率.
 - ① PTE 的引用位周期地被 OS 清零.
 - ② 某页被访问时, PTE 中引用位 (aka 使用位) 置1.
 - ③ 某页引用位为 0 说明近期未使用.

- (3) 磁盘写入花费几百万时钟周期.
 - ① 成块写入, 不单独写某地址.
 - ②写 write-through 在实际应用中不现实, 故采用 write-back.

5.2.2 TLB

[快表, 地址变换高速缓存, Translation Look-aside Buffer, TLB]

- (1) 地址映射需额外的访存开销: 先访问 PTE , 再访问实际内存地址.
- (2) 提高访存性能的关键是依靠页表的访问局部性. 现代 CPU 用一个特殊的 cache 跟踪近期使用的地址变换, 即 TLB.
- (3) 用 TLB 进行快速地址转换:

[TLB 缺失]

- (1) TLB 缺失情况:
 - ① 页存在, 但 PTE 不在 TLB.
 - ② 页不存在.
- (2) TLB 缺失处理: 处理器从主存拷贝 PTE 到 TLB, 随后重启指令. 若不存在该页, 则发生缺页.
 - ① 若页在主存, 从主存加载 PTE 后重试.
 - i) 硬件: 用更复杂的页表结构.
 - ii) 软件: 用更先进的替换算法.
 - ② 若页不在主存,即缺页,则 OS 提取页并更新页表,后重新开始执行缺页的指令.
- (3) 缺页 (Page Fault, PF) 处理:
 - ① 用发生缺失的虚拟地址查找 PTE.
 - ② 定位磁盘上的页, 选择要替换的页, 若页状态为 dirty, 则先写到磁盘上.
 - ③ 将页读到主存并更新页表.
 - ④ 重新运行进程, 从发生缺页的指令开始重新运行指令.

[**例**] 设系统采用 4 KB 的页, 一个 4 项的全相联 TLB , 使用 LRU . 若必须从磁盘取回页, 则增加下一次能取的最大页数. 下面是该系统可见的虚拟地址流、 TLB 和页表的初始状态. 依次访问虚拟地址 4699 , 2227 , 13916 , 34587 , 48870 , 12608 , 49925 .

TLB 初始状态	页表初]始状态	
		有效位	物理页/硬盘上
		1	5
		0	硬盘
有效位 标记位 物:	理页号	0	硬盘
		1	6
1 11 12	2	1	9
1 7 4		1	11
1 3 6		0	硬盘
0 4 9		1	4
9		0	硬盘
		0	硬盘
		1	3
		1	12

页大小 = 4×1024 Bytes = 4096 Bytes.

(1) 访问 4669 , $\mathrm{tag}=\left|\frac{4669}{4096}\right|=1$, 则虚拟页号为 1 . TLB miss, PT miss, 发生 PF .

因页表有空项,则内存有空闲页,此时内存的最大物理页为12,则下一个空闲页为13.

TLB 有无效的项, 替换为 tag = 1 对应物理页 13.

				有效位	物理页/硬盘上
				1	5
				0 → 1	硬盘 → 13
有效位	标记位	物理页号		0	硬盘
4				1	6
	11	12			9
1	7	4		1	11
1	3	6		0	硬盘
0 → 1	4 -> 1	9 → 13		1	4
	7 / 1	3 7 10		0	硬盘
				0	硬盘
					3
				1	12

(2) 访问 2227 , 虚拟页号 $= ag=\left|rac{2227}{4096}
ight|=0$. TLB miss, PT hit. 按 LRU 替换 TLB .

					有效位	物理页/硬盘上
					<u> </u>	
						13
	有效位	标记位	物理页号		0	硬盘
	1	11	12			6
	1	7	4			9
替换	1	3	6			11
1175		4				硬盘
	1	1	13			4
_	1	0	5			硬盘
						硬盘
						3
					1	12

(3) 访问 13916 , 虚拟页号 $= ag=\left\lfloor rac{13916}{4096}
ight
floor=3$, TLB hit. 按 LRU 更新 TLB 顺序.

有效位	物理页/硬盘上
1	5
1	13
0	硬盘
1	6
1	9
	11
	硬盘
	4
	硬盘
	硬盘
	3
1	12

(4) 访问 34587 , 虚拟页号 $= ag=\left\lfloor rac{34587}{4096}
ight
floor=8$, TLB miss, PT miss, 发生 PF .

下一个空闲页为 14. 按 LRU 替换 TLB.

有效位	物理页/硬盘上
1	5
1	13
0	硬盘
1	6
1	9
	11
	硬盘
	4
0-> 1	硬盘 -> 14
	硬盘
1	3
1	12

(5) 访问 48870 , 虚拟页号 $= ag=\left\lfloor rac{48870}{4096}
ight
floor=11$, TLB miss, PT hit. 按 LRU 替换 TLB .

	有效位	标记位	物理页号
	1	1	13
	1	0	5
替换	1	3	6
	1	8	14
\	1	11	12

有效位	物理页/硬盘上
	5
	13
	硬盘
	6
	9
	11
	硬盘
	4
1	14
0	硬盘
	3
1	12

(6) 访问 12608 , 虚拟页号 $= ag=\left|rac{12608}{4096}
ight|=3$, TLB hit. 按 LRU 更新 TLB .

	有效位	标记位	物理页号
	1	0	5
	1	3	6
改变LRU	1	8	14
顺序	1	11	12
1	1	3	6

有效位	物理页/硬盘上
1	5
1	13
0	硬盘
1	6
1	9
1	11
0	硬盘
1	4
1	14
0	硬盘
1	3
1	12

(7) 访问
$$49925$$
 , 虚拟页号 $= ag=\left\lfloor rac{49925}{4096}
ight
floor=12$, TLB miss, PT miss, 发生 PF .

下一个空闲页为 15. 按 LRU 替换 TLB.

				有效位	物理页/硬盘上
				1	5
				1	13
	有效位	标记位	物理页号		硬盘
	1	0	5		6
	1				9
	1	8	14		11
替换	1	11	12		硬盘
	1	3	6		4
	1	12	15		14
	. 1	12	13		硬盘
					3
				1	12
				1	15