Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ Отчёт по лабораторной работе №4

«Экспериментальная проверка принципа эквивалентности масс»

Выполнил студент:

Белобородов Дмитрий Александрович группа: 23.C02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

1	Вве	едение	2
	1.1	Задачи работы	2
2	Осн	ювная часть	2
	2.1	Теоретическая часть	2
		Эксперимент	
		Исходный код	8
		Анализ ошибок	8
3	Выі	воды	8

1 Введение

Одним из фундаментальных принципов классической механики является принцип эквивалентности масс, утверждающий, что инертная и гравитационная массы тела равны. Этот принцип лежит в основе общей теории относительности Эйнштейна, но его истоки восходят к экспериментальным и теоретическим исследованиям Галилея, опровергшим представления Аристотеля о зависимости скорости падения тел от их массы.

Аристотель полагал, что более массивные тела падают быстрее, однако Галилей показал, что это приводит к логическому противоречию.

Данная лабораторная работа направлена на экспериментальную проверку принципа эквивалентности масс путём сравнения ускорения свободного падения для тел различной плотности.

1.1 Задачи работы

Таким образом, задачами данной работы являются:

- 1. Проверить принцип эквивалентности масс.
- 2. Измерить ускорение свободного падения тел.
- 3. Познакомиться с методом измерения интервалов времени между импульсами частотомером хронометром Ч3-32.
- 4. Определение погрешности косвенных измерений.

2 Основная часть

2.1 Теоретическая часть

Инертную массу тела можно определить, измерив ускорение \vec{a} , которое испытывает тело под действием известной силы \vec{F} :

$$M = \frac{|\vec{F}|}{|\vec{a}|} \tag{1}$$

Гравитационную массу тела можно определить по следующей формуле:

$$M_p = \frac{Fr^2}{\gamma M_3},\tag{2}$$

где M - масса Земли, γ - гравитационная постоянная, r - расстояние между центром Земли и телом.

Современные эксперименты с большой точностью подтверждают равенство инертной и гравитационной масс.

Локально невозможно отличить однородное гравитационное поле от равноускоренного движения системы отсчёта. Иными словами, в достаточно малой области пространства-времени все физические процессы протекают одинаково в двух случаях:

- 1. В инерциальной системе отсчёта в отсутствие гравитации.
- 2. В неинерциальной системе отсчёта, движущейся с постоянным ускорением g, или в покоящейся системе отсчёта в присутствии однородного гравитационного поля с напряжённостью -q.

Представим доказательство этого утверждения:

Уравнение движения произвольной системы частиц в инерциальной системе координат при наличии однородного гравитационного поля имеют следующий вид:

$$m_k \frac{d^2 \vec{x}_k}{dt^2} = m_k \vec{g} + \sum_{\substack{i=1\\i \neq k}}^N \vec{F}(\vec{x}_k - \vec{x}_i),$$
 (3)

где $\vec{F}(\vec{x}_k - \vec{x}_i)$ - внутренние силы между частицами системы.

Произведя замену переменной x, перейдём в систему координат, осуществляющую движение с ускорением g относительно исходной:

$$\vec{x}' = \vec{x} - \frac{\vec{g}t^2}{2}, \quad t' = t,$$
 (4)

подставив в равенство (??) получим:

$$m_k \frac{d^2 \vec{x}_k}{dt^2} = \sum_{\substack{i=1\\i \neq k}}^N \vec{F}(\vec{x}_k - \vec{x}_i)$$
 (5)

Уравнение (??) совпадает с уравнением (??), если g=0. Становится понятно, что \vec{q} не зависит от t и \vec{x} . Утверждение доказано.

2.2 Эксперимент

Если верен принцип эквивалентности масс, то время свободного падения тел с разной массой (при прочих равных условиях) должно быть одинаковым. Цель данной лабораторной работы – экспериментально проверить это утверждение.

Рис. 1. Схема установки

Рис. 2. Фотография установки

Схема установки приведена на рисунке 1. Луч от квантового генератора $\Pi\Gamma$ направляется на призму полного внутреннего отражения Π_1 , от нее на призму Π_2 , а затем на фотодиод $\Phi \Pi$. При отодвигании заслонки 3 шарик, находящийся в трубке Γ , падает в лузу Π и пересекает два световых луча, расстояние между

которыми равно h . Когда шарик пересекает верхний луч, фотодиод $\Phi \mathcal{A}$ вырабатывает импульс, который усилившись в усилителе, подается на вход частотомера ЧЗ-32 и запускает его. При пересечении шариком нижнего луча импульс от фотодиода останавливает счет частотомера. Интервал времени между двумя импульсами, регистрируемый частотомером, равен времени пролета t шарика от верхнего луча до нижнего. Усилитель питается от источника УПУ-1У4.

Масса вещества была посчитана по формуле:

$$m = \frac{\rho}{V}, V = \frac{4 \cdot \pi \cdot \left(\frac{d}{2}\right)^3}{3},\tag{6}$$

где ρ - плотность вещества, d - диаметр шара.

 $N_{\overline{0}} \Pi/\Pi$ Вещество Плотность Диаметр Macca $10^3 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$ 10^{-6} кг $10^{-3} \, \mathrm{M}$ 0,7Дерево 1 0.4 1 2 Плексиглас 1,18 0.6 1 Алюминий 3 2,79 1 1 7,9 Сталь 4 1 4 8,5 Латунь 5 1 4 6 Свинец 11,34 1 6

Таблица 1. Таблица веществ

Таблица 2. Результаты измерения времени падения шарика от верхнего луча до нижнего

№ п.п.	Алюминий	Латунь	Сталь	Дерево	Плексиглас	Свинец
	t, мс	t, мс	t, мс	t, мс	t, мс	t, мс
1	153.711	153.039	152.657	154.106	153.791	153.170
2	153.852	152.875	152.612	153.913	154.508	152.900
3	153.329	154.192	152.649	154.585	153.987	153.384
4	153.088	153.367	152.647	153.930	153.386	152.563
5	153.404	153.577	152.680	153.995	153.998	152.203
6	153.431	153.905	152.736	153.890	153.525	152.881
7	154.129	153.155	152.590	153.983	154.117	153.407
8	153.636	152.878	152.521	153.865	153.289	152.562
9	153.469	153.254	152.759	153.927	153.557	153.524
10	153.253	153.136	152.583	153.647	153.579	153.390

Таблица 3. Результаты измерения времени падения шарика от верхнего луча до нижнего

№ п.п.	Алюминий	Латунь	Сталь	Дерево	Плексиглас	Свинец
	t, MC	t, мс	t, мс	t, мс	t, мс	t, мс
11	153.364	153.136	152.836	154.282	153.798	153.742
12	153.233	152.822	152.731	154.121	154.348	153.622
13	153.798	153.004	152.647	153.838	153.567	153.585
14	153.298	153.031	152.697	154.055	154.133	154.799
15	154.312	152.896	152.595	154.854	154.271	153.538
16	153.805	153.338	152.695	154.219	154.379	153.299
17	153.468	153.412	153.234	154.545	153.354	153.310
18	153.242	153.154	152.861	154.266	153.508	153.925
19	153.173	153.072	153.691	154.102	153.457	153.547
20	153.624	152.948	153.219	154.126	153.844	153.877
21	153.417	153.060	152.761	154.187	153.676	153.752
22	152.930	152.905	152.742	154.580	153.427	154.052
23	153.169	153.291	152.717	153.587	153.934	153.332
24	153.379	153.032	152.891	155.155	153.348	153.924
25	153.226	152.836	153.017	154.485	154.230	154.315
26	153.202	153.059	152.954	153.993	153.658	153.865
27	153.246	152.839	152.869	153.803	153.469	154.057
28	152.514	152.999	152.854	154.108	153.975	153.459
29	152.914	153.312	152.827	154.328	153.549	153.781
30	153.729	153.089	152.797	153.985	153.444	154.085
\overline{t}	153.412	153.154	152.802	154.149	153.770	153.528

Формула для нахождение погрешности времени пролёта шариков:

$$\Delta \bar{t} = \frac{\sqrt{\frac{\Sigma (t_i - \bar{t})^2}{n - 1}}}{\sqrt{n}} \tag{7}$$

Таблица 4. Погрешность времени пролета шариков, Δt

Вещество	Δt , MC
Алюминий	0.0664068
Латунь	0.0564740
Сталь	0.0434828
Дерево	0.0627690
Плексиглас	0.0643578
Свинец	0.0993112

Уравнение движения при свободном падении имеет следующий вид:

$$h = v_0 t + \frac{gt^2}{2} \tag{8}$$

Следовательно,

$$g = \frac{2(h - v_0 \overline{t})}{\overline{t}^2} \tag{9}$$

Характеристики установки 1: $h = (0.272 \pm 0.001)$ м, $v_0 = (1.050 \pm 0.005)$ м/с.

Таблица 5. Ускорение свободного падения, g

№ п/п	Вещество	g , $\mathrm{m/c^2}$
1	Алюминий	9.43
2	Латунь	9.48
3	Сталь	9.56
4	Дерево	9.27
5	Плексиглас	9.35
6	Свинец	9.40

Погрешность свободного ускорения ищется по формуле погрешности косвенных измерений, в предположении, что g зависит от $t,\,h,\,v_0$:

$$\Delta g = \sqrt{\frac{1}{9} \left(\frac{\partial g}{\partial h}\right)^2 \Delta h^2 + \frac{1}{9} \left(\frac{\partial g}{\partial v_0}\right)^2 \Delta v_0^2 + \left(\frac{\partial g}{\partial t}\right)^2 \Delta \overline{t}^2}$$
 (10)

После вычислений формула принимает вид:

$$\Delta g = \sqrt{\frac{1}{9} \left(\frac{2}{\bar{t}^2}\right)^2 \Delta h^2 + \frac{1}{9} \left(\frac{-2}{\bar{t}}\right)^2 \Delta v_0^2 + \left(\frac{2(v_0\bar{t} - 2h)}{\bar{t}^3}\right)^2 \Delta \bar{t}^2}$$
 (11)

Таблица 6. Погрешность ускорения свободного падения, Δg

№ п/п	Вещество	Δg , m/c ²
1	Алюминий	0.03
2	Латунь	0.03
3	Сталь	0.02
4	Дерево	0.03
5	Плексиглас	0.03
6	Свинец	0.03

Исходный код

Исходный код состоит из двух решений: "Mass "Program".

Ниже представлено описание кода решения "Mass":

Функция inputdata() осуществляет ввод исходных данных из файла "InputData.csv" и сохранения их в массив arr1, arr2.

Функция mass() вычисляет значение масс шариков по формуле (6).

Функция outputdata() записывает вычисленные массы в файл "OutputData.csv".

Ниже представлено описание кода решения "Program":

Функция inputdata() осуществляет ввод исходных данных из файла "InputData.csv" и записывает в двумерный массив arr.

Функция calculate_average() вычисляет среднее значение пролёта шарика для каждого из шести образцов.

Функция time_error() вычисляет погрешность пролёта шарика для каждого из шести образцов по формуле по формуле (7).

Функция acceleration() вычисляет ускорение свободного падения для шести шариков по формуле (9).

Функция gerror_calc() вычисляет погрешность ускорения свободного падения по формуле (11).

Функция outputdata() записывает вычисленные массы в файл "OutputData.csv".

Анализ ошибок

При измерении ускорения свободного падения возникают систематические ошибки, которые искажают результаты. Они приводят к смещению результата в одну сторону (завышению или занижению). В отличие от случайных ошибок, их нельзя устранить простым увеличением числа измерений, но можно выявить и скорректировать.

При движении тела в воздухе на него действует сила сопротивления среды (воздуха), которая замедляет падение и искажает результаты измерений. Эта сила зависит от скорости, формы и площади поверхности тела, а также от свойств воздуха (плотности, вязкости). Сопротивление воздуха приводит к занижению измеряемого значения g.

3 Выводы

В ходе лабораторной работы были проведены измерения времени пролёта шариков разной массы на расстояние h с начальной скоростью v_0 . Кроме того, были высчитаны погрешность времени и погрешность свободного ускорения. Проведён анализ систематических погрешностей и их источников.

Список литературы

[1] https://github.com/st117207/Workshop4 (дата обращения: 24.04.2025)