Examenul de bacalaureat național 2016 Proba E. c)

Matematică *M_tehnologic*

Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{10}{3+i} = \frac{10(3-i)}{3^2 - i^2} = 3 - i$	3p
	$3-i=a+ib \Rightarrow a=3, b=-1$	2p
2.	f(1) = 0, $f(0) = -1$	2p
	$(f(1))^{2016} + (f(0))^{2016} = 0^{2016} + (-1)^{2016} = 1$	3 p
3.	$6^{x^2-3x+5} = 6^3 \Leftrightarrow x^2-3x+2=0$	3 p
	x=1 sau $x=2$	2 p
4.	$C_6^5 = \frac{6!}{5!(6-5)!} =$	3p
	= 6	2 p
5.	Punctul <i>C</i> este mijlocul segmentului $AB \Rightarrow 10 = \frac{5 + 2m + 1}{2}$	3 p
	$2m+6=20 \Rightarrow m=7$	2p
6.	ΔABC este dreptunghic în A	2p
	$\cos C = \frac{12}{13}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{vmatrix} = 1 + 0 + 0 - 0 - 0 - 0 =$	3р
	=1	2p
b)	$A - I_3 = \begin{pmatrix} 0 & 2 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$	2p
	$(A-I_3)(A-I_3) = \begin{pmatrix} 0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow (A-I_3)(A-I_3)(A-I_3) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_3$	3p
c)	$\begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} x+2y+4z \\ y+3z \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$	2p
	x = 2, $y = -5$, $z = 2$	3p

2.a)	x * y = xy - x - y + 1 + 1 =	2 p
	=x(y-1)-(y-1)+1=(x-1)(y-1)+1, pentru orice numere reale x şi y	3 p
b)	0*1*2*3=(0*1)*2*3=1*(2*3)=	3 p
	=1	2p
c)	$a*a = (a-1)^2 + 1 \Rightarrow a*a*2016 = 2015(a-1)^2 + 1$	2p
	$2015(a-1)^2 + 1 = 2016 \Leftrightarrow (a-1)^2 = 1 \Leftrightarrow a = 0 \text{ sau } a = 2$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2)$	2p
	$f'(x) = -\frac{1}{x^2}$ şi $f'(2) = -\frac{1}{4} \Rightarrow \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = -\frac{1}{4}$	3p
b)	f(1) = 2, f'(1) = -1	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = -x + 3$	3 p
c)	$f'(x) < 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este descrescătoare pe $(0, +\infty)$	2p
	Cum $f(1) = 2$ și $f(2016) = \frac{2017}{2016}$, obținem $\frac{2017}{2016} \le f(x) \le 2$, pentru orice $x \in [1, 2016]$	3 p
2.a)	$\int_{0}^{2} \left(f(x) + 3x^{2} - 2 \right) dx = \int_{0}^{2} x^{3} dx = \frac{x^{4}}{4} \Big _{0}^{2} =$	3p
	= 4	2p
b)	$\int_{0}^{1} (f(x) - x^{3} + 3x^{2} + x)e^{x} dx = \int_{0}^{1} (2 + x)e^{x} dx =$	2 p
	$=(1+x)e^{x}\begin{vmatrix} 1\\0\\2 = 2e-1\end{vmatrix}$	3p
c)	$\int_{1-a}^{1+a} f(x)dx = \left(\frac{x^4}{4} - x^3 + 2x\right) \Big _{1-a}^{1+a} =$	2p
	$=2a+2a^3-2a^3-6a+4a=0$, pentru orice număr real a	3p