Duration: 2 hours

Timeseries plot with error bands

seaborn components used: set_theme(), load_dataset(), lineplot()

Small multiple time series

seaborn components used: set_theme(), load_dataset(), relplot(), lineplot()

import seaborn as sns

sns.set_theme(style="dark")

```
flights = sns.load_dataset("flights")

# Plot each year's time series in its own facet
g = sns.relplot(
    data=flights,
    x="month", y="passengers", col="year", hue="year",
    kind="line", palette="crest", linewidth=4, zorder=5,
    col_wrap=3, height=2, aspect=1.5, legend=False,
)
```

```
# Iterate over each subplot to customize further

for year, ax in g.axes_dict.items():

# Add the title as an annotation within the plot
ax.text(.8, .85, year, transform=ax.transAxes, fontweight="bold")

# Plot every year's time series in the background
sns.lineplot(
    data=flights, x="month", y="passengers", units="year",
    estimator=None, color=".7", linewidth=1, ax=ax,
)

# Reduce the frequency of the x axis ticks
ax.set_xticks(ax.get_xticks()[::2])

# Tweak the supporting aspects of the plot
g.set_titles("")
g.set_axis_labels("", "Passengers")
g.tight_layout()
```

Time Series Visualizations in Python

Time series data consists of observations collected sequentially over time. Visualizing time series helps in identifying patterns such as trends, seasonality, and anomalies.

1. Basic Line Plot for Time Series

A line plot is the simplest way to visualize time series data. It connects data points using straight lines and is helpful in observing trends over time.

Example: Line Plot using matplotlib

```
python
Copy code
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Create a date range
date_range = pd.date_range(start='2022-01-01', periods=100, freq='D')
```

```
# Generate random time series data
data = np.random.randn(100).cumsum()

# Create a DataFrame
df = pd.DataFrame({'Date': date_range, 'Value': data})

# Plot the time series data
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['Value'], label='Time Series Data')
plt.title('Basic Time Series Line Plot')
plt.xlabel('Date')
plt.ylabel('Value')
plt.grid(True)
plt.legend()
plt.show()
```

2. Time Series with Rolling Mean (Smoothing)

A rolling mean smooths out the time series to highlight trends by averaging values over a sliding window.

Example: Plot with Rolling Mean

```
python
Copy code
# Calculate the rolling mean
df['Rolling Mean'] = df['Value'].rolling(window=10).mean()

# Plot time series with rolling mean
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['Value'], label='Original Data')
plt.plot(df['Date'], df['Rolling Mean'], label='Rolling Mean
(Window=10)', color='orange')
plt.title('Time Series with Rolling Mean')
plt.xlabel('Date')
plt.ylabel('Value')
plt.grid(True)
plt.legend()
plt.show()
```

3. Time Series with Trend and Seasonality Decomposition

Seasonal decomposition allows you to break the time series into trend, seasonal, and residual components.

Example: Decomposition using statsmodels

```
python
Copy code
import statsmodels.api as sm

# Generate synthetic seasonal data
np.random.seed(0)
data_seasonal = np.sin(np.linspace(0, 2 * np.pi, 100)) + 0.1 *
np.random.randn(100)

df_seasonal = pd.DataFrame({'Date': date_range, 'Value':
data_seasonal})

# Decompose the time series
decomposition = sm.tsa.seasonal_decompose(df_seasonal['Value'],
period=30, model='additive')

# Plot the decomposition
decomposition.plot()
plt.show()
```

4. Autocorrelation Plot

Autocorrelation shows how the values of a time series are related to their previous values. An autocorrelation plot helps in identifying patterns like seasonality and trends.

Example: Autocorrelation Plot using pandas

```
python
Copy code
from pandas.plotting import autocorrelation_plot
```

```
# Autocorrelation plot
plt.figure(figsize=(10, 6))
autocorrelation_plot(df['Value'])
plt.title('Autocorrelation Plot')
plt.show()
```

5. Time Series Heatmap

A heatmap can represent time series data aggregated into different time intervals (e.g., by day, month) and visualize patterns.

Example: Time Series Heatmap using seaborn

```
python
Copy code
import seaborn as sns

# Create month-day data
df['Month'] = df['Date'].dt.month
df['Day'] = df['Date'].dt.day

# Pivot the data for heatmap
pivot_data = df.pivot('Day', 'Month', 'Value')

# Plot heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(pivot_data, cmap='coolwarm', annot=True, fmt='.1f')
plt.title('Time Series Heatmap')
plt.show()
```

6. Lag Plot

Lag plots are used to determine if a time series is random or if there is an underlying pattern. A lag plot compares the time series data with its lagged values.

Example: Lag Plot using pandas

python Copy code

```
# Lag plot for time series
plt.figure(figsize=(6, 6))
lag_plot(df['Value'], lag=1)
plt.title('Lag Plot (Lag=1)')
plt.show()
```

7. Time Series with Confidence Intervals

A line plot with confidence intervals can show the uncertainty or variability in the data.

Example: Plot with Confidence Intervals

```
python
Copy code
# Create upper and lower bounds (confidence intervals)
df['Upper Bound'] = df['Rolling Mean'] + 1.96 * df['Value'].std()
df['Lower Bound'] = df['Rolling Mean'] - 1.96 * df['Value'].std()
# Plot time series with confidence intervals
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['Rolling Mean'], label='Rolling Mean',
color='orange')
plt.fill_between(df['Date'], df['Upper Bound'], df['Lower Bound'],
color='gray', alpha=0.3, label='Confidence Interval (95%)')
plt.title('Time Series with Confidence Intervals')
plt.xlabel('Date')
plt.ylabel('Value')
plt.grid(True)
plt.legend()
plt.show()
```

These examples show how to visualize time series data using various techniques in Python, helping you uncover patterns, trends, and underlying structures.