

20 µm

Mag = 197 X $WD = 7.8 \, mm$ EHT = 3.00 kV

Signal A = SE2 Aperture Size = 30.00 μm Stage at T = 37.7 $^{\circ}$ Date :29 Mar 2017

Signal B = SE2

10 μm Mag = 1.79 K X EHT = 3.00 kV Signal A = SE2 Signal B = SE2

WD = 7.8 mm Aperture Size = 30.00 μm Stage at T = 37.7 ° Date :29 Mar 2017

Mag = 223 X WD = 8.0 mm EHT = 3.00 kV

Signal A = SE2

Go and Machines AlphaGo Results

Go tutorial Machine game

Machine gameplay with Minimax Monte Carlo Tree Search Convolutional neural networks

Go tutorial...

▶ The Way To Go

Ben Pearre AlphaGo 9 / 30

Machine play with Minimax:

Ben Pearre AlphaGo 10 / 30

How big is the game tree?

Branching factor: At each position, *n* possible moves

Length: game lasts *m* moves

 n^m possible games

Ben Pearre AlphaGo 11 / 30

Size of games

Game	Branching factor	Length	$\log_{10}\left(\# Games\right)$
Tic-Tac-Toe	4	9	5
Connect Four	4	36	21
Checkers (8×8)	2.8	70	31
Chess	35	70	108
Backgammon	250	55	132
Carcassonne	55	71	195
Go	250	150	360

Ben Pearre AlphaGo 12 / 30

Reducing the computational complexity

Length:

Estimate the value of non-terminal states.

Branching factor:

- $ightharpoonup \alpha$ - β Pruning
 - $ightharpoonup O\left(\sqrt{n^m}\right)$ if moves are sorted
- ▶ Monte Carlo Tree Search of promising moves

AlphaGo 13 / 30

Estimating the value of non-terminal states

Checkers:

- Material
- Position of non-kings

Chess:

- Material
- Mobility
- Control centre of board

Go:

- "Strength" / "Influence"
 - ▶ Um...

Intuition!

Ben Pearre AlphaGo 14 / 30

Monte Carlo Tree Search

Selecting a move for roll-out

Early:

- ► High prior probability?
- ► Low visit count

Later:

Success rate

Return

The most visited move

Ben Pearre AlphaGo 15 / 30

Ignoring questionable moves

Only examine promising moves.

Intuition

In the beginner's mind there are many possibilities. In the expert's mind there are few. –Shunryu Suzuki

Ben Pearre AlphaGo 16 / 30

Neural Networks

- Input pattern ξ
- ▶ Weights *W*
- $\triangleright y = W_1 \tanh(W_0 \xi)$
- ▶ W_i are trained with backpropagation of errors

AlphaGo 17 / 30

Convolutional Neural Networks

Inspired by Hubel & Wiesel 1968?

▶ LeNet

Ben Pearre AlphaGo 18 / 30

Supervised learning of policy networks: $p_{\sigma}(a|s)$

Predict the expert's move:

- Given board state s, predict probability of move a
- ▶ 13 convolutional layers
 - ▶ Input: 48 features
 - ▶ Layer 1: 192 of 5 × 5
 - ▶ Layers 2–12: 192 of 3 × 3
 - Rectifier nonlinearities
- Training: 30 million positions from KGS
- ▶ 57% accurate
- Evaluation time: 3 ms

$$\Delta\sigma\proptorac{\partial\log p_{\sigma}(a_t|s_t)}{\partial\sigma}$$

Ben Pearre AlphaGo 19 / 30

Supervised learning of policy networks II: $p_{\pi}(a|s)$

Predict the expert's move (faster):

- ▶ Given board state s, predict probability of move a
- Small pattern features
- ► Training: 8 million positions from Tygem (?)
- ▶ 24% accurate
- **Evaluation time:** 2 μ s

Why? To be continued...

Ben Pearre AlphaGo 20 / 30

Reinforcement learning of policy networks: $p_{\rho}(a|s)$

Don't predict expert moves: Win!

- ▶ Start with the supervised move predictor: $\rho \leftarrow \sigma$
- \blacktriangleright Training: self-play vs. a previous iteration of ρ
- Result of game is z

$$\Delta
ho \propto rac{\partial \log p_
ho(a_t|s_t)}{\partial
ho} z$$

 p_{ρ} won 80% of its games vs. p_{σ}

Ben Pearre AlphaGo 21 / 30

Reinforcement learning of value networks: $v^p(s)$

Predict the likelihood of winning from any board position

- $\triangleright v^p(s) = \mathbb{E}\left[z|s=s_t, a_{t-T} \sim p\right]$
- ▶ Similar architecture to p_{ρ} , but outputs scalar v
- ▶ Trained from 30 million samples from self-play by $p_{\rho}(s, a)$
 - Decorrelate sequences of moves

$$\Delta heta \propto rac{\partial v_{ heta}(s)}{\partial heta}(z-v_{ heta}(s))$$

Ben Pearre AlphaGo 22 / 30

Monte Carlo Tree Search II

Selecting a move for roll-out

Early:

- ► High prior probability from $p_{\sigma}(s, a)$!
- ► Low visit count

Later:

Success rate

Return

The most visited move

Ben Pearre AlphaGo 23 / 30

Choosing a move

- \triangleright Evaluate potential new position s' in 2 ways:
 - \triangleright $v_{\theta}(s')$
 - Monte Carlo rollout (using the fast policy p_{π})
 - ▶ Initialise MCTS priors $\forall a$ from $p_{\sigma}(s', a)$ + exploration term
- ▶ Combine the evaluations (λ) .

AlphaGo 24 / 30

b Tree evaluation from value net

Tree evaluation from rollouts

Evaluation of all successors s of the root position s, using the value network $v_{\theta}(s)$; estimated winning percentages are shown for the top evaluations.

Action values Q(s, a) for each edge (s, a) in the tree from root position s; averaged over value network evaluations only $(\lambda = 0)$.

Action values Q(s, a), averaged over rollout evaluations only $(\lambda = 1)$.

25 / 30

Move probabilities directly from the SL policy network, $p_{\sigma}(a|s)$; reported as a percentage (if above 0.1%)

Percentage frequency with which actions were selected from the root during simulations.

AlphaGo's move, and the most likely continuation of the game.

Ben Pearre AlphaGo 26 / 30

Results

Ben Pearre AlphaGo 27 / 30

Victory!

- ▶ Beat Fan Hui 2p 5-0
- Beat Lee Sedol 9p 4-1
- ▶ 10³ times fewer position evaluations than Deep Blue!
 - ► Learns to aggressively examine only a few promising moves
 - ▶ Learns intuition for values of intermediate positions
 - Plays like a human?
- "AlphaGo's play makes us feel free, that no move is impossible. Now everyone is trying to play in a style that hasn't been tried before." -Zhou Ruiyang 9p

Ben Pearre AlphaGo 28 / 30

Future work

- ► Ke Jie 9p
 - ► May 23–27

Ben Pearre AlphaGo 29 / 30

