Noms des champs et codes GRIB
Extrait du Site AROME recherche
http://intra.cnrm.meteo.fr/aromerecherche/spip.php?article25
Noms des champs et c
CDIR

odes

- Diagnostics -

Date de mise en ligne : mardi 16 août 2011

Copyright © Site AROME recherche - Tous droits réservés

Les tableaux ci-dessous donnent la liste des champs contenus dans un fichier historique, fullprocessé ou GRIB (Y. Seity, version du 16 août 2011 valide pour le cycle 36t1_op1) :

- Champs 2D
- On P levels: 1000, 950, 925, 900, 850,800,700,600,500,400,300,250,200,150,100 hPa
- On P levels 1000, 950, 925, 900, 850, 800, 700, 600, 500, 400, 300, 250, 200 hPa
- On P levels 1000, 950, 925, 900, 850, 800, 700, 600, 500, 400 hPa
- On P levels 1000, 950, 925, 900, 850, 800, 700, 600 hPa
- On Pressure levels 925, 900, 850, 800, 700 hPa
- On Pressure levels 850, 700, 600, 500, 300 hPa
- On Pressure levels 950, 300 hPa
- On Height levels 20, 50, 100, 250, 500, 750, 1000, 1250, 1500, 2000, 2500, 3000m
- On Height levels 500, 750, 1000, 1500, 2000, 2500, 3000m
- On PV levels: 1,5 and 2,0 PVU
- 3D fields only in ICMSH
- 2D fields only in analyses for technical reasons (Warning: not AROME, copied from coupling model)

Champs 2D

NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment
SURFTEMPERATURE	SURFTEMPERATURE	11	1	К	Ts (the one used in radiation)
SURFTENS.TURB.ZO	SURFTENS.TURB.ZO	130	1	Kg.m-1.s-1	Surface wind stress (u)
SURFTENS.TURB.ME	SURFTENS.TURB.ME	131	1	Kg.m-1.s-1	Surface wind stress (v)
SURFACCPLUIE	SURFACCPLUIE	150	1	Kg.m-2	Cumulative rain
SURFACCNEIGE	SURFACCNEIGE	99	1	Kg.m-2	Cumulative snow
SURFACCGRAUPEL	SURFACCGRAUPEL	29	1	Kg.m-2	Cumulative graupel
SOMMFLU.RAY.SOLA	SOMMFLU.RAY.SOLA	113	128	J.m-2	Cum. net solar flux top of atm.
SURFFLU.RAY.SOLA	SURFFLU.RAY.SOLA	111	1	J.m-2	Cum. net solar flux at surface
SOMMFLU.RAY.THER	SOMMFLU.RAY.THER	114	128	J.m-2	Cum. net IR flux top of atm.
SURFFLU.RAY.THER	SURFFLU.RAY.THER	112	1	J.m-2	Cum. net IR flux at surface
SURFFLU.LAT.MEVA	SURFFLU.LAT.MEVA	121	1	J.m-2	Cum. Latent heat flux evap
SURFFLU.LAT.MSUB	SURFFLU.LAT.MSUB	121	1	J.m-2	Cum Latent heat flux Sublim.
SURFFLU.MEVAP.EA	SURFFLU.MEVAP.EA	57	1	J.m-2	Cum Sensible heat flux evap.
SURFFLU.MSUBL.NE	SURFFLU.MSUBL.NE	57	1	J.m-2	Cum Sensible heat flux subl.

SURFFLU.CHA.SENS	SURFFLU.CHA.SENS	122	1	J.m-2	Cum.Sensible heat flux
CLSMINI.TEMPERAT	CLSMINI.TEMPERAT	16	1	К	T2m mini since last output file
CLSMAXI.TEMPERAT	CLSMAXI.TEMPERAT	15	1	К	T2m maxi since last output file
CLSTEMPERATURE	CLSTEMPERATURE	11	1	К	2 m Tempretaure
CLSHUMI.SPECIFIQ				kg/kg	2m specific humidity
CLSHUMI.RELATIVE	CLSHUMI.RELATIVE	52	1	%	2m relative humidity
CLSVENT.ZONAL	CLSVENT.ZONAL	33	1	m.s-1	10 m wind (u)
CLSVENT.MERIDIEN	CLSVENT.MERIDIEN	34	1	m.s-1	10m wind (v)
ATMONEBUL.TOTALE				%	Cum. total nebulosity
THETAPWP_FLUX				K.m-4.s-1	Theta'w' inst. surf. flux (for PERLE)
SURFNEBUL.TOTALE	SURFNEBUL.TOTALE	71	1	%	Inst. Total nebulosity
SURFNEBUL.CONVEC	SURFNEBUL.CONVEC	72	1	%	Not used : 0 in AROME
SURFNEBUL:HAUTE	SURFNEBUL.HAUTE	75	1	%	Inst. High nebulosity
SURFNEBUL.MOYENN	SURFNEBUL.MOYENN	74	1	%	Inst. Middle nebulosity
SURFNEBUL.BASSE	SURFNEBUL.BASSE	73	1	%	Inst. Low nebulosity
	MSLPRESSURE	2	1	Pa	Reduced Sea Level Pressure
	SURFTOT.WAT.VAPO	167	1	Kg.m-2	Verticaly integrated water vapor
SURFPRESSION	SURFPRESSION	1	1	Pa	Surface pressure
	SURFISOTO.MALTIT	8	128	.m	Altitude iso T=0°C
	SURFISOTM10.MALT	8	128	.m	Altitude iso T=-10°C
	SURFISOTPW0.MALT	8	128	.m	Altitude iso Theta'w=0°C
	SURFCAPE.POS.F00	160	1	J	CAPE diagnosed by Fullpos
CLSU.RAF.MOD.XFU	CLSU.RAF.MOD.XFU	163	1	m.s-1	U 10m wind gusts (max since last file)
CLSV.RAF.MOD.XFU	CLSV.RAF.MOD.XFU	164	1	m.s-1	V 10m wind gusts (max since last file)
CLPMHAUT.MOD.XFU	CLPMHAUT.MOD.XFU	165	1	m	Boudary Layer Height (m)
	C002_METEOSAT_09_SEVIRI.POS	1	129	К	level 62 : C2 Simulated SEVIRI satellite
				-	

	C006_METEOSAT_09_SEVIRI.POS	1	129	К	level 108 : C6 Simulated SEVIRI satellite
S001RAYT SOL CL	SURFRAYT SOL CL	168	128	W.m-2	Clear sky top solar radiation
SnnnRAYT SOL CL (where nnn is the last model level number)				W.m-2	Net Clear sky surf solar radiation
S001RAYT THER CL	SURFRAYT THER CL	169	128	W.m-2	Clear sky top thermal radiation
SnnnRAYT THER CL (where nnn is the last model level number)				W.m-2	Net Clear sky surf thermal radiation
SURFRAYT DIR SUR				W.m-2	Always 0 in AROME
TOPRAYT DIR SOM				W.m-2	Always 0 in AROME
SURFIND.TERREMER				0-1	Land/Sea mask
SURFAEROS.SEA					Sea Aerosols
SURFAEROS.LAND					Land Aerosols
SURFAEROS.SOOT					Soot aerosols
SURFAEROS.DESERT					Desert aerosols
SURFA.OF.OZONE					A coefficinet for Ozone
SURFB.OF.OZONE					B coefficinet for Ozone
SURFC.OF.OZONE					C coefficinet for Ozone
SURFINSPLUIE				Kg.m-2.s-1	Inst. Rainfalls at surface
SURFINSNEIGE				Kg.m-2.s-1	Inst. Snow at tsurface
SURFINSGRAUPEL				Kg.m-2.s-1	Inst. Graupel at surface
SURFFL.U TURBUL				Kg.m-1.s-2	Inst Surface wind stress U
SURFFL.V TURBUL				Kg.m-1.s-2	Inst Surface wind stress V
SURFFL.Q TURBUL					Not used : 0 in AROME
SURFFL.CT TURBUL					Not used : 0 in AROME
SOMMRAYT.SOLAIRE				W.m-2	Inst. net solar flux top of atm.
SURFRAYT.SOLAIRE				W.m-2	Inst. net solar flux at surface
SURFRAYT.TERREST				W.m-2	Inst. net IR flux at surface.
SOMMRAYT.TERREST				W.m-2	Inst. net IR flux top of atm.
	1			1	1

SURFRAYT SOLA DE	SURFRAYT SOLA DE	105	149	W.m-2	Cum. Downward solarflux at surface
SURFRAYT THER DE	SURFRAYT THER DE	104	149	W.m-2	Cum. Downward IR at surface
ATMONEBUL.CONVEC				%	Not used : 0 in AROME
ATMONEBUL.HAUTE				%	Cum. High nebulosity
ATMONEBUL.MOYENN				%	Cum. Middle nebulosity
ATMONEBUL.BASSE				%	Cum. Low nebulosity
SPECSURFGEOPOTEN				m. ² s- ²	Surface geopotentiel
SURFDIAGHAIL	SURFDIAGHAIL	248	159	kg.m-2	Hail diagnostic

On P levels: 1000, 950, 925, 900, 850,800,700,600,500,400,300,250,200,150,100 hPa

NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment
WIND.U.PHYS	VENT_ZONAL	33	1	m.s-1	Vent u
WIND.V.PHYS	VENT_MERIDIEN	34	1	m.s-1	Vent v
TEMPERATURE	TEMPERATUR	11	1	K	Temperature
CLOUD_WATE	CLOUD_WATER	32	159	Kg.Kg-1	Cloud dropplets
ICE_CRYSTA	ICE_CRYSTAL	247	128	Kg.Kg-1	Ice crystals
SNOW	SNOW	34	159	Kg.Kg-1	Snow
RAIN	RAIN	33	159	Kg.Kg-1	Rain
GRAUPEL	GRAUPEL	35	159	Kg.Kg-1	Graupel
CLOUD_FRACTI	CLOUD_FRACTI	36	159	%	Cloud fraction
	GEOPOTENTIEL	6	1	m2.s-2	Geopotential
	HUMI_RELATIVE	52	1	%	Relative moisture
	VERT.VELOCIT	40	1	m.s-1	Vertical velocity
	VITESSE_VERTICALE	39	1	Pa.s-1	Vertical velocity
	POT_VORTICIT	4	1	s-1	Potential vorticity

On P levels 1000, 950, 925, 900, 850, 800, 700, 600, 500, 400, 300, 250, 200 hPa

NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment
	THETA_PRIM_W	14	1	K	Theta'w'

On P levels 1000, 950, 925, 900, 850, 800, 700, 600, 500, 400 hPa

a					
NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment
TKE	TKE	37	159	m2.s-2	Turbulent Kinetic Energy

On P levels 1000, 950, 925, 900, 850, 800, 700, 600 hPa

NAME (ICMSH)					Comment
	THETA_VIRTUA	38	159	K	Virtual PotentialTemperature

On Pressure levels 925, 900, 850, 800, 700 hPa

	NAME (FPOS)				Comment
	SIM_REFLECTI	31	159	mm.h-1	Radar reflectivity

On Pressure levels 850, 700, 600, 500, 300 hPa

•	<u>3016 164613 030, 700, 000, 300, 300 111 (</u>										
	NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment					
		ABS_VORTICITY	41	1	s-1	Absolute vorticity					

On Pressure levels 950, 300 hPa

NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment
	DIVERGENCE	44	1	s-1	2D Divergence

On Height levels 20, 50, 100, 250, 500, 750, 1000, 1250, 1500, 2000, 2500, 3000m

<u> </u>	<u>00, 3000111</u>				
NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment
WIND.U.PHYS	VENT_ZONAL	33	1	m.s-1	Zonal wind
WIND.V.PHYS	VENT_MERIDIEN	34	1	m.s-1	Meridian wind
TEMPERATURE	TEMPERATURE	11	1	K	Temperature
CLOUD_WATER	CLOUD_WATER	32	159	Kg.Kg-1	Cloud dropplets
ICE_CRYSTAL	ICE_CRYSTAL	247	128	Kg.Kg-1	Ice crystals
SNOW	SNOW	34	159	Kg.Kg-1	Snow
RAIN	RAIN	33	159	Kg.Kg-1	Rain
TKE	TKE	37	159	m2.s-2	Turbulent Kinetic Energy
GRAUPEL	GRAUPEL	35	159	Kg.Kg-1	Graupel
CLOUD_FRACTI	CLOUD_FRACTI	36	159	%	cloud fraction
	HUMI_RELATIVE	52	1	%	Relative moisture
	PRESSURE	1	1	Pa	Pressure

On Height levels 500, 750, 1000, 1500, 2000, 2500, 3000m

NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment
	SIM_REFLECTI	31	159	mm.h-1	Simulated radar reflectivities

On PV levels: 1.5 and 2.0 PVU

NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment
	VENT_ZONAL	33	1	m.s-1	Zonal wind
	VENT_MERIDIEN	34	1	m.s-1	Meridian wind
	GEOPOTENTIEL	6	1	m.s-2	Geopotential
	TEMPE_POTENT	13	1	K	Theta
	ABS_VORTICITY	41	1	s-1	Absolute vorticity
	POT_VORTICIT	4	1	s-1	Potential vorticity

3D fields only in ICMSH

12 OHIO EL					
NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment
PRESS.DEPART				Pa	Pressure departure
VERTIC.DIVER					Vertical divergence
HUMI.SPECIFI				Kg.Kg-1	Scpecific moisture
CLOUD_FRACTI				%	Cloud fraction

2D fields only in analyses for technical reasons (Warning: not AROME, copied from coupling model)

NAME (ICMSH)	NAME (FPOS)	GRIB	Table	Unit	Comment
SURFZ0.FOIS.G					g.z0
SURFALBEDO					albedo
SURFEMISSIVITE					emissivity
SURFET.GEOPOTENT					Standard Deviation of surfgeopoten
SURFVAR.GEOP.ANI					surfgeopoten. anisotropie
SURFVAR.GEOP.DIR					surfgeopoten. Direction

SURFIND.VEG.DOMI			Vegetation
SURFRESI.STO.MIN			Stomatic Resistance
SURFIND.FOLIAIRE			Leaf Area Index
SURFRES.EVAPOTRA			Evapotranspiration
SURFGZ0.THERM			
SURFRESERV.INTER			Water content middle soil
PROFTEMPERATURE			Deep temperature
PROFRESERV.EAU			Water content deep soil
PROFRESERV.GLACE			ice content deep soil
SURFRESERV.EAU			water content in the soil
SURFRESERV.GLACE			ice content in the soil
SURFRESERV.NEIGE			Snow cover
SURFPROP.VEGETAT			vegetation percentage
SURFPROP.ARGILE			clay
SURFPROP.SABLE			sand
SURFEPAIS.SOL			soil depth
SURFALBEDO NEIGE			snow albedo
SURFALBEDO.SOLNU			nude soil albedo
SURFALBEDO.VEG			vegetation albedo
SURFDENSIT.NEIGE			snow density
	i	1 1	