1.27 Consider an RSA key set with p=17, q=23, N=391,e=3
What value of a should be used for the secret key? What is the
encryption of the message M=413
d is the inverse of e mod $(p-1)(q-1)$ 235
inverse of 3 mod 16.22
ext Euclid (352, 3) \Rightarrow ext Euclid (3,1) \Rightarrow ext Euclid (1,0) = (1,0,1)
So, ext Euclid (3,1) = (0,1,1)
ext Ecclid (352,3)= (1,-117,1)
352 (1)+ 3(-117)=1
-117+352=235
[l=235]
M=41
The encryption of 41 is y=41 mod 391
y= 105
1.28 In an BSA cryptosystem, p=7 and q=11. Find appropriate
exponents dande.
e should be relatively prime to $(p-1)(q-1)$

1.29 a) We can assume that the first two elements of some random

tuple (x1,x2,x3) are the same as the first two elements of

another random tuple (y1, y2, y3) and x3 xy y3. The tuples hash the

the same value if and only if the following expression is true:

2 ai (xi-y1) = az (y2-x2) (mod m)

Let the value on the left side be equal to some value c. Then,

C=az(y3-x3) (mod m). The following must be true: az = C(y3-x3)⁻¹

Since m is prime and x3/ 43, there i, a distinct value of (42-x3)

(mol m). and c	. modulo m is	distinct. There	fore, the probability of	_
	•		nction is universal and	
three random bits		•	_	
	•			_
b) This change is	no longer unic	und because m	is not prime and	_
			bits are required	
to choose a fu				
·		· /		
c) This function i	s not universal	because the proba	bility of two inputs	
a and b to h		•	,	
1.31 Consider	the problem of (computing $N! = 1.2$	·3···N	
			ly $\Theta(N \log_2 N)$ bib	
long			·	
b)				
Factorial(N)	The algorithm	has Niterations	which makes the time	
f N equals 0	complexity	O(N). Each n	nultiplication takes nm	_
return 1	time theretore	the algorithm has	a running time of	
return N*Factorial(N-1)		-	0 (N.nm)	

1.31 modified: 0 (N·n·m. 0.585)

2.4 Algorithm A:
$$a=5$$
 $b=2$ $d=1$

$$T(n) = 5T(\frac{n}{2}) + O(n)$$

$$\log_{1} a = (\log_{2} 5 > 0) \Rightarrow O(n^{\log_{2} 5})$$

$$T(3) = 2T(2) + 2 \cdot 2 \cdot T(1) + C$$

$$T(y) : 27(3) + 2 \cdot 2 \cdot 2 \cdot T(2) + 2 \cdot 2 \cdot 7(1) + C$$
 $O(2^n)$

2.5 a)
$$T(n)=2T(\frac{n}{3})+1$$
 a= 2 b= 3 d=0
 $|\log_{b}a=|\log_{3}2>d \Rightarrow |O(n^{\log_{3}2})|$

c)
$$T(n) = 7T(\frac{n}{7}) + n$$
 a= 7 b=7 d=1

a)
$$T(n) = 97(\frac{n}{3}) + n^2$$
 a: 9 b = 3 d-2
 $\log_{6} a = \log_{3} 9 = \lambda \Rightarrow O(n^2 \log_{n})$

e)
$$T(n) = 8T(\frac{n}{2}) + n^3$$
 $a = 8 + 2 + 3$

$$\log_{10} a = \log_{2} 8 = d \rightarrow 0 \cdot (n^{3} \log n)$$

g)
$$T(n) : T(n-1) + 2$$

 $T(n-1) : T((n-1)-1) + 2$
 $T(n-1) : T((n-2) + 2$
 $T(n) : T(n-2) + 2 + 2$

$$T(a) = T(n-2) + 9$$

 $T(n-2) = T(h-2) - 1) + 2$

$$T(n-2) = T(n-3)+2$$

 $T(n) = T(n-3)+2+4$

$$T(n) = T(n-3)+2$$

$$T(n) = T(0) + nc$$
 $T(0) = 2$

h)
$$T(n) : T(n-1) + n$$
 $c \ge 1$
 $T(n-1) := T(n-1) - 1) + n^{C}$
 $T(n-1) := T(n-2) + n^{C}$
 $T(n) := T(n-2) + 2n^{C}$
 $T(n-2) := T((n-2) - 1) + n^{C}$
 $T(n-2) := T(n-3) + n^{C}$

General pattern:
$$T(n)=T(n-k)+kn$$
 substitute $k=n$

$$T(n)=T(0)+n\cdot n$$

$$T(n)=n$$

i)
$$T(N=T(n-1)+c^{n}$$
 $c>1$ $T(n-1)=T(n-1)+c^{n-1}$ $T(n-1)=T(n-1)+c^{n-1}$ $T(n-1)=T(n-2)+c^{n-1}$ $T(n)=T(n-2)+c^{n-1}+c^{n}$ $T(n-2)=T(n-2)+c^{n-2}$

$$T(n-2) = T(n-3) + c^{n-2}$$

General pattern:
$$T(n) = T(n-k) + \frac{2}{5}c^{\frac{1}{5}}$$
 substitute $k=n$

$$T(n) = T(0) + \frac{2}{5}c^{\frac{1}{5}}$$

$$T(n) = \frac{2}{5}c^{\frac{1}{5}}$$

$$T(n) = \frac{2}{5}c^{\frac{1}{5}}$$

$$T(n) = \frac{2}{5}(n-1) + 1$$

$$T(n-1) = 2T(n-1) + 1 = 2T(n-2) + 1$$

$$T(n) = 2T(n-2) + 1 + 1 = 2T(n-2) + 3$$

$$T(n) = 2T(n-2) + 2 + 1 = 2T(n-3) + 1$$

$$T(n) = 2T(n-2) + 1 = 2T(n-3) + 7$$

$$General pattern: T(n) = 2^{\frac{1}{5}}T(n-k) + (2^{\frac{1}{5}}-1) \quad \text{substitute k=n}$$

$$T(n) = 2^{\frac{1}{5}}T(n) + (2^{\frac{1}{5}}-1) \quad T(n) = 1$$

$$T(n) = 2^{\frac{1}{5}}T(n) + (2^{\frac{1}{5}}-1) \quad T(n) = 1$$

$$T(n) = 0 \cdot (2^{\frac{1}{5}})$$

$$K) T(n) = T(n) + 1 \quad \text{Assume } n = 2^{\frac{1}{5}} \quad m = \log n$$

$$T(2^{\frac{1}{5}}) + 0 \quad a = 1 \quad b : 2 \quad d = 0$$

$$\log_{2} a = \log_{2} 1 = d \Rightarrow S(n) = O(\log_{2} n) \quad m = \log n$$

$$T(n) = O(\log_{2} n)$$

```
2.8) a) (1,0,0,0) W=e==e=(0s=+i·sin==0+i=i
                   w= i
   FFT([1,0,0,0],;) ~-4
  (s_0,s_1) = FFT([1,0],i^2) = FFT([1,0],-1)
   FFT([1,0],-1) \quad n=2 \implies (1,1)
    So= FFT(1,1)=1 10=50+20°50=1+0=1
     So = FFT(0,1)=D \(\alpha = 10 - 0 = 1 - 0 = 1
 (s'_{0}, s'_{1}) = FFT((0,0), i^{2}) = FFT((0,0), -i)
   FFT ([0,0],-1) n-2 => (0,0)
    50- FFT(0,1)=0 10:50+0:0+0=0
    So-1 10=So+050= 1+0=1
S_0 = 0  \Gamma_1 = S_1 + \omega S_1 = 1 + i \cdot 0 = 1
S_{1}^{\prime} = 0 (3-5)-\omega S_{1} = 1-i.0=1
   (1,1,1,1) Of which sequence is (1,20,0): the FFT?
                      ( 5, 5, 5, 5)
 b) FFT((1,0,1,-1],i) ~-4 (w-i)
    (s_0,s_1) = FFT((1,1),1^2) = FFT((1,1),-1)
      FFT([1,1],-1) \quad n=2 \implies (2,0)
      So= FFT(1,1)=1 6=So+wso=1+1=2
```

$$S_{0} = FFT(1,1) = 1 \qquad (= S_{0} - \omega^{2} S_{0} = 1 - 1 = 0)$$

$$(S_{0}, S_{1}^{1}) = FFT((0,-1),1^{2}) = FFT((0,-1),-1)$$

$$FFT((0,-1),-1) \qquad n=2 \qquad = 2 \qquad (-1,1)$$

$$S_{0} = FFT(0,1) \neq 0 \qquad G_{0} = S_{0} + \omega^{2} S_{0} = 0 + (-1) = -1$$

$$S_{0} = GFT(-1) = -1 \qquad G_{1} = S_{0} - \omega^{2} S_{0} = 0 - (-1) = 1$$

$$S_{0} = 0 \qquad G_{1} = S_{0} + \omega^{2} S_{0} = 2 + (-1) = 1$$

$$S_{1} = 0 \qquad G_{2} = S_{0} - \omega^{2} S_{0} = 2 - (-1) = 3$$

$$S_{0} = -1 \qquad G_{1} = S_{1} + \omega^{2} S_{1} = 0 + S_{1} = -1$$

$$S_{1} = 1 \qquad G_{2} = S_{1} - \omega^{2} S_{1} = 0 - S_{1} = -1$$

$$S_{1} = 1 \qquad G_{2} = S_{1} - \omega^{2} S_{1} = 0 - S_{1} = -1$$

$$S_{1} = 1 \qquad G_{2} = S_{1} - \omega^{2} S_{1} = 0 - S_{1} = -1$$

$$S_{1} = 1 \qquad G_{2} = S_{1} - \omega^{2} S_{1} = 0 - S_{1} = -1$$