Multistage Methods - Runge Kutta
Butchen Table . C A
Butchen Table . 2 A
, –
F. Fully OO
· I
K,= F(to, Yo)
Ynti= Yn+ btk,
,
Mi Jouint (10t2) (12 0
1/2 1/2 0
16,=f(tn, yn) 2=f(tn+1)apt, yn+1/aptk,) 4n+1= 1n+ pt 162
k2 = f(tn+1/2 pt, /n+1/2 pt k,)
Ynti= Ynt pt/k2
RKY O(Dt") O O O O O 1/2 1/2 O O 1/3 O 1/2 O O 1/6 1/3 1/3 1/6
1/2 0 0 6
12 0 12 0 0
(6 13 12 16
K1= f(tn, yn) 1c2= f(tn+120t, yn+120tk2) 1c4=f(tn+120t, yn+120tk2) 1c4=f(tn+120t, yn+120tk2)
1c2= f(tn+ 12 lot, Yn+ 12 lotk,)
K3 = +(tn + 12 pt, 1/n + 12 pt k2)
1< u=f(tn + 10t, 1/n+ K3)
/n+1 = Yn + nt (16 K1 + 1/3 K2 + 1/3 K3 + 1/6 K4)

ex.)
$$\frac{dy}{dt} = \frac{de^2}{dt} - \frac{1}{3}$$
 $\frac{dy}{dt} = \frac{de^2}{dt} - \frac{1}{3}$
 $\frac{dy}{dt} = \frac{de^2}{dt} - \frac{de^2}{dt} = \frac{1}{3}$
 $\frac{dy}{dt} = \frac{de^2}{dt} - \frac{de^2}{dt} = \frac{1}{3}$
 $\frac{dy}{dt} = \frac{de^2}{dt} - \frac{de^2}{dt} - \frac{de^2}{dt} = \frac{1}{3}$
 $\frac{dy}{dt} = \frac{de^2}{dt} - \frac{de^2}{dt} - \frac{de^2}{dt} = \frac{1}{3}$
 $\frac{dy}{dt} = \frac{de^2}{dt} - \frac{de^2}{dt} - \frac{de^2}{dt} - \frac{de^2}{dt} = \frac{1}{3}$
 $\frac{de^2}{dt} - \frac{de^2}{dt} - \frac{d$

			,		
	Dt= 1	12 (6)	Ot= Yu	(12)	
method	V 4\	٤	<u>V al</u>	٤	
•					
F, Boler	~ 29,6	4,08	~31,64	2.03	
Missoint	~ 33,77	9,3x10-2	~ 33,70	2,62 x 10 -2	\
1					_
RICY	~ 33.67	2,81 × 10 -3	· ~ 33,67	1,25 VIO - 7	<i>!</i>
				9	
It enation	s nead t	o have	emm < 10	ر کر	
(time stop	8)				
(4 calc/Sto			
R144	- 9	<u>—</u> 7	36 K-eudu	ation	
		2 colc 18 typ			
midpo	aut : 62	—)	130 K-eua	l _s	
		1 cal c 15to			
F. BU	~ : 24a		24321 K-	Prol	

Multi-step Methols
Multistage methods take many Sub-Stres in a single time step Tow memory but might be slow.
Multiste methods use the solution at multiple prior steps -> higher memory lout lower cost (less derivative evaluations).
Crenerically, look at dy = f(t,y)
Then Zai=0 Zbi=1
ao Yn+1 + 9, Yn + 92 Yn-1 + 11-+ as yn-s =
for an Sthones scheme.
Ynti - In = f(tr, yn) F. Euler
$\frac{\partial f}{\partial t} _{V+1} - \frac{\partial f}{\partial t} _{V} = f(f_{0}, I_{0})$
$\forall_{n+1} - \forall_n = 0 \notin f(\forall_{n, (\forall_n)}) = 1 q_0 = 1 q_1 = -1 b_1 = 1$ all others are

The values of $q_0 \Rightarrow q_s + b_0 \Rightarrow b_s$ Determine the particular scheme. Note! Since you need Yn+1, 90 \$0 If boo then the method is explicit. It buto, then it is implient. 3 Main Classos of Multistip Adams - Bashfurth (AB) ADame - Moulton (AM) Backward Finite Difference (BDF) Adams - Bashfurth : Explicit schemes with 9021, 9,2-1, b0=0, biss >0 O(Df) : p'= | = > / Ut/ - ND = of t(ful ND) $O(Df_{y})$: $P' = \frac{1}{3}y$ $P^{3} = -\frac{1}{3}$ $1/(1 - 1) = 0 + \frac{3}{3} + \frac{3}{4} + \frac{3}{4} + \frac{1}{4} + \frac{3}{4} + \frac{3}{4}$ n-1 n n+) \(\xi \frac{1}{2} \gamma_{\text{NH}_2} \)

$$O(Dt^{1}): b_{3} = \frac{5}{12}, b_{1} = \frac{2}{12}, b_{2} = -\frac{1}{12}$$

$$O(Nt)$$
 $Q_0 = 1, Q_1 = -1$ (B, Eyler)

$$\sqrt{n+1}-\sqrt{v}=vf\left(f^{v+1},\Lambda^{v+1}\right)$$

$$O(Nt^2)$$
 $a_0 = 3/2, q_1 = -2, q_2 = 1/2$

$$\frac{\partial f}{\partial x^{3/2}} + \frac{\partial f}{\partial x^{3/2}} - \frac{\partial f}{\partial x^{3/2}} + \frac{\partial f}{\partial x^{3/2}} = \frac{\partial f}{\partial x^{3/2}} + O(Df_{5/2})$$

$$O(Nt^3)$$
 $q_0 = 11/6, q_1 = -3, q_2 = 3/2, q_3 = -1/3$

Bounday Value Prublem
Bounday valu problems have conditions
Bounday valu problems have conditions on the problems have conditions
ex,) Temperature in a rod w/ convection to
Too Convection
1 (m) which
Conduction /2 T(x)
T
At steady-State $\frac{\partial^2 T}{\partial x^2} + h(T_0 - T) = 0$
2 x2
\bigcirc \subseteq \times \subseteq \bot
$T(0) = T_a$ $T(L) = T_b$
Dirichlet R.C.
Disvetite on a gr.o;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{\partial^2 \Gamma}{\partial x^2} + h(\Gamma_{\infty} - \Gamma) = \Gamma_{i+1} - 2\Gamma_i + \Gamma_{i-1} + h(\Gamma_{\infty} - \Gamma_i) = C$
$\frac{3\times^2}{3^2} + k(1^2 - 1) = \underbrace{1^2 + 1^2 + 1^2 + k(1^2 - 1)}_{\text{ex}} = C$
with n sno points bx= L
N-)

Let
$$N=16$$
 | $S_{N}=\frac{L}{15}$

At $(=1)(x_{20})$ $T_{1}=T_{q}$

At $(=1)(x_{20})$ $T_{1}=T_{q}$
 $P_{1}=\lambda$ $T_{1}-2T_{2}+T_{3}+N(T_{00}-T_{2})=0$
 $P_{2}=\lambda$ $T_{1}+(2+6x^{2}h)T_{2}-T_{3}=6x^{2}hT_{00}$
 $P_{2}=\lambda$ $P_{3}=\lambda$ $P_{4}=\lambda$ $P_{4}=\lambda$

Neumann B.C.

Say that we have
$$\frac{\partial^2 T}{\partial x^2} + h(\tilde{t}_{00} - T) = 0$$

while the second of the se

In
$$2D_1$$
 typical example is

 $2^2U = f$ w | $U(0, y) = U_0$
 $U(1, y) = U_0$
 $U(1, y) = U_0$
 $U(1, y) = U_0$

$$\frac{2xy}{2y^{2}} + \frac{2\lambda y}{2y^{2}} = \frac{1}{2}$$

$$= \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1)^2 + \pi (1 - 1)^2}} + \frac{0 \times 5}{\sqrt{(1 + 1)^2 - 9 \pi (1 - 1)^2}} + \frac{0 \times$$

$$W_{1,\bar{5}} = W_{2,\bar{5}} = W_{1,\bar{5}} = W_{2,\bar{5}} = W_{2,\bar{5}} = W_{2,\bar{5}}$$

$$W_{1,\bar{5}} = W_{2,\bar{5}} = W_{2,\bar{5}} = W_{2,\bar{5}} = W_{2,\bar{5}}$$

The linear system will be MNXMN Method to organize the data! Row en Culumn mojor ondering. $index = c + (j-1)N \in$ M2 U 10 12 3 /1 1 12 $C \leftarrow (\widehat{\jmath} - 1) N$ 6 24