科目 2:資料處理與分析概論 考試日期: 109 年 11 月 28 日

第 1 頁,共 12 頁

單選題 50 題 (佔 100%)

В	1. 在分析資料前,通常需要先清理資料。當數字與文字混合在一起時,
	但我們僅需要提取出數字時,若以逐筆資料提取十分曠日廢時,在
	Python 語法中的套件 re 可以處理大部分的此類問題,例如語法:
	re.findall(pattern, string), 當 pattern = '\d', 可以提取出 string 中所有單
	一數字;pattern = '\d\d',可以提取出 string 中所有 2 個相連數字;pattern
	= '\d+',可以提取出 string 中所有任意相連個數的數字。請問當 string =
	'王大明手機號碼:0912334567,地址'時,下列何者語法無法提取出
	0912334567 ?
	(A) re.findall('\d+', string)
	(B) re.findall($\d\d\d\d\d\d\d\d$, string)
	(C) re.findall('\d\d+', string)
	(D) re.findall($\d\d\d\d$ +', string)
D	2. 下列何者「不」是資料前處理該進行的程序?
	(A) 資料清理 (data cleaning)
	(B) 資料轉換 (data transform)
	(C) 屬性挑選 (feature selection)
	(D) 資料建模 (data modeling)
D	3. 關於遺缺值(missing value)的處理方式,下列何者較「不」恰當?
	(A) 將有遺缺值的那筆樣本刪去
	(B) 使用平均值來填補遺缺值
	(C) 使用 k 近鄰演算法來填補遺缺值
	(D) 將有遺缺值的那個欄位刪去
C	4. 關於資料具有離群值 (outlier),進行資料標準化時,下列敘述何者較
	為適合?
	(A) 可採用 Z-分數法 (Z-score)
	(B) 可採用最小最大正規化法 (min-max normalization)
	(C) 可採用穩健縮放法 (robust scaler)
	(D) 可採用最大絕對值縮放法 (maximum absolute scaler)
C	5. 參考附圖, Python 語言中,關於使用 numpy 套件處理遺缺值 (missing
	value),下列敘述何者「不」正確?
	import numny as no
	import numpy as np
	(A) np.nan 執行結果為 nan
	(B) np.isnan(np.nan)執行結果為 True
	(C) np.NaN 執行結果為 NaN
	(D) np.isnan(np.NaN)執行結果為 True

科目2:資料處理與分析概論

考試日期: 109年11月28日 第 2 頁,共 12 頁

С	6. 關於資料彙總 (data aggregation),下列敘述何者最為正確?
	(A) 可降低資料尺度、資料偏斜性對於模型的不良影響
	(B) 是運用推論統計學,比較兩筆樣本的差異
	(C) 是以摘要的形式收集或呈現資訊的任何過程
	(D) 是統整不同連續屬性間的數值分佈
A	7. 參考附圖, R語言中, 關於 aggregate 資料群組計算, 下列敘述何者「不」
	正確?
	> head(warpbreaks)
	breaks wool tension 1 26 A L
	2 30 A L 3 54 A L
	4 25 A L
	5 70 A L 6 52 A L
	<pre>> str(warpbreaks) 'data.frame': 54 obs. of 3 variables:</pre>
	\$ breaks : num 26 30 54 25 70 52 51 26 67 18 \$ wool : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1
	\$ tension: Factor w/ 3 levels "L","M","H": 1 1 1 1 1 1 1 1 2
	> aggregate(breaks ~ ., data=warpbreaks, mean)
	(A) aggregate 執行結果有 8 筆資料
	(B) aggregate 函數中的 breaks 表示對 breaks 欄位進行計算
	(C) 本題 aggregate 函數功能是計算各群組的平均值
	(D) aggregate 函數的「.」表示除了 breaks 以外的所有欄位為群組欄位
A	8. 下列何種圖形常用於視覺化年齡與收入的關係?
	(A) 散佈圖(scatter plot)
	(B) 甘特圖 (Gantt chart)
	(C) 流程圖(flow chart)
	(D) 樹狀圖(tree diagram)
D	9. R 語言中,下列何者為專門在處理群組與摘要的函數?
	(A) spread()
	(B) sort()
	(C) gather()
	(D) aggregate()
D	10. R 語言中,關於資料排序,下列敘述何者「不」正確?
	(A) order()回傳排序後的觀測值編號
	(B) sort()回傳排序後的字串值或數值
	(C) rank()回傳每個元素的排名值
	(D) permute()回傳排序後的字串值或數值
В	11. 下列何者「不」是屬性挑選(feature selection)的特性?
	(A) 降低計算時間

科目2:資料處理與分析概論 老試日期:109年11月28日

	2·貝什處理與分析
7 11	(B) 提高資料維度
	(C) 降低模型複雜度
	(D) 增加模型穩定性
D	12. 關於主成分分析 (Principal Component Analysis, PCA) 與奇異值分解
	(Singular Value Decomposition, SVD), 下列敘述何者正確?
	(A) PCA 較 SVD 更一般化
	(B) SVD 將資料矩陣分解出只有橫列的基底向量
	(C) PCA 分解出資料矩陣之縱行與橫列的基底向量
	(D) PCA 可以基於資料矩陣之相關係數方陣或共變異數方陣進行計算
В	13. 屬性轉換(feature transform)為資料前處理的重要步驟,下列敘述何
	者「不」正確?
	(A) 可調整屬性的尺度
	(B) 會破壞模型的預測能力
	(C) 可改變屬性的偏斜性
	(D) 可降低離群資料對於模型的不良影響
C	14. 下列何者為以均值正規化(mean normalization)的方式,計算數列[1, 2,
	2, 4, 5]之結果?
	(A) [0.00, 0.25, 0.25, 0.75, 1.00]
	(B) [0.2, 0.4, 0.4, 0.8, 1.0]
	(C) [-0.45, -0.20, -0.20, 0.30, 0.55]
	(D) [-0.5, 0.0, 0.0, 1.0, 1.5]
В	15. 下列何者「並非」屬性萃取(feature extraction)的方法?
	(A) 主成分分析 (Principal Component Analysis, PCA)
	(B) 正規化 (normalization)
	(C) 自編碼器 (autoencoder)
	(D) 偏最小平方迴歸(Partial Least Squares Regression, PLSR)
С	16. 關於巨量資料運算平台,下列敘述何者「不」正確?
	(A) 採用水平式擴充 (scale-out), 並大量分散式處理
	(B) 具有高容錯性,採平行化運算
	(C) 採用分片機制 (sharding),將資料分片儲存於各節點,以利多次
	讀取與多次寫入
	(D) 資料本身可分散到各資料節點,以增加運算效能,也可透過網路
	傳輸將執行程式送到資料端進行運算
D	17. 為了有效利用多台電腦對大量的資料進行計算,並避免某一電腦壞掉
	而對計算結果造成影響,請問該採用下列何種方式進行?
	(A) 集中計算 (centralized computing)
L	1 2

科目2:資料處理與分析概論

C

考試日期:109年11月28日 4 頁,共 12 頁 (B) 多執行緒 (multithreading) (C) 平行運算 (parallel computing) (D) 分散式運算 (distributed computing) C 18. 為了從網路上蒐集外部資訊,往往需要撰寫爬蟲(web scraping)程式 取得資料。下列何種情況與分散式的爬蟲架構較無關係? (A) 獲取數十個新聞網站的新聞作者、內容與圖片 (B) 取得某一電商平台的所有商品名稱、價格與賣家訊息等 (C) 從某一交易所的當日盤後資訊頁面取得單一統計表 (D) 從多個技術相關文章的網站中獲取文章內容 19. 關於 MapReduce 架構,下列敘述何者「不」正確? A (A) 當節點 (nodes) 失效時,其他節點無法接管失效的任務 (B) 可運行在不可靠的低階電腦叢集(clusters)上 (C) 映射 (map) 是將任務分配到不同節點 (nodes) 進行計算 (D) 化簡 (reduce) 是將處理完的結果重新組合 20. 附圖是藉由 MapReduce 進行詞頻統計 (word count) 工作的流程示意 В 圖。請問圖中對應的動作組合應為下列何者? ??? ??? ??? <u>???</u> Result Input Cat, 1 Bat, 1 Bat, 3 Cat Bat Rat Bat, 3 Cat, 3 Rat, 3 Bat, 2 Rat, 1 Bat Bat Rat Bat Bat Rat Cat, 3 Cat Rat Cat Rat. 3 (A) Mapping -> Splitting -> Shuffling -> Reducing (B) Splitting -> Mapping -> Shuffling -> Reducing (C) Reducing -> Splitting -> Mapping -> Shuffling (D) Splitting -> Shuffling -> Mapping -> Reducing 21. 關於相關性 (correlation),下列敘述何者為正確? D (A) 如果一個自變數(X)與反應變數(Y)高度相關,則此自變數應該是 不重要,不用加入模型之中 (B) 皮爾遜相關係數 (Pearson correlation coefficient) 可以用於度量兩 個變數 X 和 Y 之間的相關程度,其值介於 0 與 1 之間 (C) 皮爾遜相關係數可以用來評估非線性關係 (D) 如果二個變數之相關係數為零,此二個變數可能具有非線性關係

22. 某研究人員想檢定國中生的性別與戴眼睛是否有顯著相關性,隨機抽

科目2:資料處理與分析概論

考試日期: 109 年 11 月 28 日

第 5 頁,共 12 頁

樣取得附圖資料,參考附圖 R 語言執行,下列敘述何者「不」正確?

	男	女	小計
有戴眼鏡	92	80	172
無戴鏡	10	18	28
小計	102	98	200

> mydf

male female

with_glasses 92 80 without_glasses 10 28

- > mydf.indep <- chisq.test(mydf)</pre>
- > mydf.indep\$p.value

[1] 0.004320456

- (A) 虚無假設為 H₀: 戴眼鏡與性別為獨立
- (B) 對立假設為 H₁: 戴眼鏡與性別為相關
- (C) 考慮 $\alpha = 0.05$,則獨立性檢定之卡方分配自由度為 2
- (D) R 語言執行結果為拒絕接受 H₀, 即戴眼鏡與性別為相關

D 23. 参考附圖 iris 資料集的視覺化結果,下列敘述何者正確?

- (A) 此視覺化結果稱為散佈圖 (scatter plot) 矩陣
- (B) Sepal.Length 變數最能夠將資料明顯區分成 3 個類別
- (C) 該圖使用互相垂直的軸來表示不同的維度
- (D) Petal.Length 變數較 Sepal.Width 變數更能夠將資料區分成 3 個類別
- D 24. R 語言中,下列何者為可以回傳百分位數資訊的函數?
 - (A) var()
 - (B) sd()

科目2:資料處理與分析概論

考試	日期: <u>109年11月28日 第 6 頁,共 12 頁</u>
	(C) mean()
	(D) quantile()
В	25. 下列何者「不」代表獨立性?
	(A) P(A B) = P(A)
	$(B) P(A \cap B) = 0$
	$(C) P(A \cap B) = P(A) P(B)$
	(D) P(A B) = P(A B'), B'表示 B 之補集合
A	26. 在進行假設檢定的過程中,我們會先將結果分成兩種相反的決策:虚
	無假設 (null hypothesis, H_0) 和對立假設 (alternative hypothesis, H_1)。
	假設擲銅板 100 次,出現正面 60 次,想檢定銅板是不公正的,導致出
	現正面機率較大,則對立假設 H ₁ 應為下列何者?
	(A) 出現正面的機率>1/2
	(B) 出現正面的機率=1/2
	(C) 出現正面的機率<1/2
	(D) 出現正面的機率=60/100
D	27. 下列何者「不」屬於連續型變數資料?
	(A) 年齢
	(B) 銷售金額
	(C) 氣溫
	(D) 性別
A	28. 盒鬚圖(box plot)利用資料的統計量,可粗略地看出資料是否具對稱
	性及分佈程度等,請問「不」包含下列何種統計量?
	(A) 標準差
	(B) 最小值
	(C) 中位數
	(D) 第一四分位數
В	29. 參考附圖,此為鳶尾花資料集中,三種花卉(setosa, versicolor, virginica)
	之萼片長度(sepal length)敘述統計資訊。請問下列敘述何者「不」
	正確?

科目2:資料處理與分析概論

考試日期:109年11月28日

第 7 頁,共 12 頁

		species			
iris dataset		setosa	versicolor	virginica	
	count	50	50	50	
	mean	5.006	5.936	6.588	
	std	0.35249	0.516171	0.63588	
sepal	min	4.3	4.9	4.9	
length	25%	4.8	5.6	6.225	
(cm)	50%	5	5.9	6.5	
	75%	5.2	6.3	6.9	
	max	5.8	7	7.9	
	max-min	1.5	2.1	3	

- (A) virginica 具有較大的萼片長度平均值
- (B) 從 50 個 versicolor 樣本中隨機取出一個樣本為「X」,從 50 個 virginica 樣本中隨機取出一個樣本為「Y」,「X」之萼片長度一定 會小於「Y」之萼片長度
- (C) 在 50 個 setosa 樣本中,有 25%的樣本之萼片長度大於 5.2cm
- (D) 此資料集之三種花卉中, virginica 的萼片長度分佈較為分散
- C 30. 建構機器學習模型時,常對資料進行標準化 (standardization)。附圖為 Python 語言中透過 sklearn 對資料 scores 進行標準化之程式碼。請問下 列何者對其標準化後資料 normalized_scores 的敘述「不」正確?

from sklearn import preprocessing

scores = np.array([134, 28, 56, 180, 301, 122, 84, 92]) normalized_scores = preprocessing.scale(scores) # 標準化(Standardization)

- (A) normalized_scores 之平均值近乎於 0
- (B) normalized_scores 之標準差近乎於 1
- (C) normalized_scores 中的值將會介於 0 到 1 之間
- (D) normalized_scores 符合標準常態分佈(standard normal distribution)
- D 31. Python 語言中,執行 seaborn 模組 import seaborn as sns 的結果,使用下列何項函數可繪製附圖結果?

科目2:資料處理與分析概論考試日期:109年11月28日

第 8 頁,共 12 頁

科目2:資料處理與分析概論

考試	日期: 109年11月28日 第 9 頁, 共 12 頁				
	(B) 階層式集群法(hierarchical clustering)是屬於非監督式學習				
	(C) 迴歸分析(regression analysis)是屬於非監督式學習				
	(D) 空間密度集群算法 (Density-Based Spatial Clustering of				
	Applications with Noise, DBSCAN)屬於分割式集群				
D	35. 下列何者屬於監督式學習(supervised learning)演算法?				
	(A) 主成分分析 (Principal Component Analysis, PCA)				
	(B) k 平均法 (k-means)				
	(C) 集群分析 (clustering analysis)				
	(D) 決策樹 (decision tree)				
D	36. 關於生成式對抗網路(Generative Adversarial Network, GAN),下列敘				
	述何者「不」正確?				
	(A) 由生成網路(generator)與判別網路(discriminator)組成				
	(B) 生成網路的輸出要盡量模仿訓練資料中的真實樣本				
	(C) 判別網路的輸入為真實樣本或生成網路的輸出,判別網路的作用				
	是將生成網路的輸出從真實樣本中儘可能分辨出來				
	(D) 生成網路與判別網路相互對抗、不斷調整,最終目的是生成網路				
	可以產生逼真的樣本、而判別網路仍可以區別出來自生成網路的				
	輸出或是真實資料				
В	37. 下列何種集群方法可以解決資料中有離群值及類別屬性的問題?				
	(A) k 平均數(k-means)				
	(B) k 代表點(k-medoids)				
	(C) k 近鄰 (k nearest neighbor)				
	(D) k 奇異值分解 (k-singular value decomposition)				
D	38. 關於探索式資料繪圖,下列敘述何者正確?				
	(A) 直方圖之 X 軸資料是間斷不連續的				
	(B) 長條圖不適合用於類別型資料分析				
	(C) 分位數圖 (QQ Plot) 無法用於常態分佈視覺化檢驗				
	(D) 盒鬚圖中的盒子下上(或左右)邊界分別為第一與第三四分位數				
D	39. 關於 k 平均數 (k-means) 集群法,下列敘述何者正確?				
	(A) 可以處理類別型資料				
	(B) 不同的起始群集中心,產生的分群結果皆相同				
	(C) 穩定性高,對異常值或極端值不敏感				
	(D) 不適合非球形、數據密度變化大或有離群數據的集群問題				
D	40. 關於非監督式學習 (unsupervised learning), 下列敘述何者正確?				
	(A) 需要事先以人力標記資料				
	(B) 迴歸分析(regression analysis)是屬於非監督式學習				

科目2:資料處理與分析概論

考試日期:	109年11月28日	第	10	頁:	,共	12	頁

- 7 0-0	日期: 109 年 11 月 28 日 第 10 負 , 共 12 負
	(C) 無法發現變數間或觀測值間的子群體
	(D) 集群分析為非監督式學習的方法之一
C	41. 參考附圖, R語言中,執行 fpc 套件的 dbscan 函數,進行空間密度集
	群算法 (Density-Based Spatial Clustering of Applications with Noise,
	DBSCAN)分析,下列敘述何者正確?
	<pre>> library(fpc) > df <- iris[,-5]</pre>
	> df.dbscan <- dbscan(df, eps=0.45, MinPts=5)
	> df.dbscan dbscan Pts=150 MinPts=5 eps=0.45
	0 1 2
	border 24 4 13 seed 0 44 65
	total 24 48 78
	(A) MinPts 表示可到達區域的最小點個數,本例為 0.45
	(B) eps 表示可達區域定義鄰域的距離,本例為5
	(C) db.dbscan 物件最右側集群編號 2 的種子點(seed)個數為 65
	(D) DBSCAN 最終集群結果分為三個緊密的群
В	42. 關於類別相關指標,下列敘述何者「不」正確?
	(A) 普遍率 (prevalence) 與偵測普遍率 (detection prevalence) 都必大
	於偵測率 (detection)
	(B) F 衡量其實是在等權值的假設下, 偵測率 (detection) 與召回率
	(recall) 兩者的調和平均數
	(C) 特異性 (specificity) 是陰性事件被正確預測出來的比例
	(D) 1 減去真陽性(True Positive, TP)後即為假陰性(False Negative,
	FN),它是陽性事件中被錯誤預測(假陰性)的比例
D	43. 評估分類模型優劣時須先計算混淆矩陣 (confusion matrix),關於 2x2
	混淆矩陣,下列敘述何者「不」正確?
	(A) 行列交叉得到真陽性 (True Positive, TP)、真陰性 (True Negative,
	TN)、偽陽性(False Positive, FP)、偽陰性(False Negative, FN)
	四種情況
	(B) 横列可以表示預測的結果,分別是預測為陰性與陽性
	(C) 預測為陽性的個數如果增加,則陰性的預測數自然會減少
	(D) 陽性與陰性的預測數量是獨立非相依的
В	44. 下列何者「不」是資料降維的方法?
	(A) 主成分分析(Principal Component Analysis, PCA)
	(B) 單熱編碼 (one-hot encoding)
	(C) 局部線性嵌入 (locally linear embedding)
	(D) 等距特徵映射 (Isometric feature mapping, Isomap)
C	45. 參考附圖,將機器學習的訓練錯誤 (training error) 與測試錯誤 (testing

科目2:資料處理與分析概論考試日期:109年11月28日

第 11 頁,共 12 頁

科目2:資料處理與分析概論考試日期:109年11月28日

第 12 頁,共 12 頁

此模型,我們除了透過預測正確率 (accuracy) 做評估外,更精準的會透過「召回率 (recall)」和「精確度 (precision)」進行評估。請問下列何者為此混淆矩陣之「召回率 (recall)」和「精確度 (precision)」?

	垃圾郵件	非垃圾郵件	總計
預測為「垃圾郵件」	30 (TP)	20 (FP)	50
預測為「非垃圾郵件」	50 (FN)	80 (TN)	130
總計	80	100	180

(A) recall: 0.167 • precision: 0.111(B) recall: 0.375 • precision: 0.6(C) recall: 0.384 • precision: 0.4

(D) recall: 0.444 · precision: 0.556

- D 50. 機器學習已應用在各行各業之領域,依照應用問題與其場景的不同, 必須對數據與問題有良好的理解才能進行合理的建模工作。若我們希 望以監督式學習建立未來房價預測模型,下列何者較「不」適合?
 - (A) 線性迴歸模型 (linear regression)
 - (B) 多元線性迴歸模型 (multiple regression)
 - (C) 神經網路模型 (neural network)
 - (D) k 平均數模型 (k-means)