Matrix Norm

Jiaxin Hu

June 15, 2020

1 Frobenius Norm

Lemma 1 (Frobenius norm of product of matrices). For arbitrary two matrices, $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times n}$, we have

$$\|\boldsymbol{A}\boldsymbol{B}\|_{F} \leq \|\boldsymbol{A}\|_{2} \|\boldsymbol{B}\|_{F},$$

where $\|\cdot\|_2$ is the spectral norm of matrix and $\|\cdot\|_F$ is Frobenius norm of matrix.

Proof. First, let $\|\cdot\|$ denote the l_2 norm of vector. The spectral norm of matrix $\mathbf{A} \in \mathbb{R}^{m \times r}$ is defined as:

$$\left\|\boldsymbol{A}\right\|_2 = \max_{x \in \mathbb{R}^r, \|x\| \le 1} \left\|\boldsymbol{A}x\right\|.$$

Therefore, we have $\|\mathbf{A}x\| \leq \|\mathbf{A}\|_2 \|x\|$ for $\forall x \in \mathbb{R}^r$. Let $\mathbf{B} = [b_1, \dots, b_n] \in \mathbb{R}^{r \times n}$, where $b_j \in \mathbb{R}^r, j \in [n]$ are the columns of \mathbf{B} . Then we have

$$\|m{A}m{B}\|_F^2 = \sum_{j=1}^n \|m{A}b_j\|^2 \le \|m{A}\|_2^2 \sum_{j=1}^n \|b_j\|^2 = \|m{A}\|_2^2 \|m{B}\|_F^2.$$

That implies

$$\|AB\|_F \leq \|A\|_2 \|B\|_F$$
.