Electrónica Digital y Microcontroladores Tema 4.2: Análisis y Síntesis de circuitos secuenciales

Josué Meneses Díaz <u>josue.meneses@usach.cl</u> Universidad de Santiago de Chile 19-06-2025

Objetivos

- Análisis de circuitos secuenciales.
 - Tabla de estado.
 - Ecuación de estado.
 - Diagrama de estado.
- Síntesis (diseño e implementación) de circuitos secuenciales.

Latch RS, RS con E y D

Ecuación/tabla característica

D	Q(t+1)	Comentario
0	0	Restablece
1	1	Establece

$$Q(t+1) = D$$

J	K	Q(t+1)	Comentario
0	0	Q(t)	mantiene
1	0	1	Establece
0	1	0	Reestablece
1	1	$\overline{Q(t)}$	Complementa

$$Q(t+1) = J\overline{Q} + \overline{K}Q$$

Т	Q(t+1)	Comentario
0	Q(t)	mantiene
1	0	Complementa

$$Q(t+1) = T \oplus Q$$

$$Q(t+1) = T\overline{Q} + \overline{T}Q$$

ANÁLISIS DE CIRCUITOS SECUENCIALES

- Buscamos obtener una tabla/diagrama de la evolución temporal de las variables del circuito
 - Entradas
 - Salidas
 - Estados internos
- Poseemos tres tipos de representación:
 - Ecuación de estado
 - Tabla de estado
 - Diagrama de estado

6/19/2025

- Los pasos a seguir para su análisis son:
- Reconocer las entradas del circuito (global).
- 2. Encontrar los FF utilizados. Nombrar las entadas y salidas del FF.
- 3. Identificar las salidas del circuito (global).
- 4. Escribir las ecuaciones de estado del FF.
- Construir la tabla de estado del circuito.
- 6. (Opcional) Construir el diagrama de estados del circuito.

1. Reconocer las entradas del circuito (global).

L. Entradas circuito: 2 entradas, $x \in y$.

2. Encontrar los FF utilizados. Nombrar las entadas y salidas del FF.

- 1. Entradas circuito: 2 entradas, $x \in y$.
- 2. Se utiliza un FF D. El Acarreo de salida se conectado a la entrada del FF D. La salida Q se conecta con el acarreo de entrada.

3. Identificar las salidas del circuito (global).

- Entradas circuito: 2 entradas, $x \in y$.
- 2. Se utiliza un FF D. El Acarreo de salida se conectado a la entrada del FF D. La salida Q se conecta con el acarreo de entrada.
- 3. Salida *S* del circuito (sumador).

4. Escribir las ecuaciones de estado del FF.

- 1. Entradas circuito: 2 entradas, $x \in y$.
- 2. Se utiliza un FF D. El Acarreo de salida se conectado a la entrada del FF D. La salida Q se conecta con el acarreo de entrada.
- 3. Salida *S* del circuito (sumador).

¿Qué son las ecuaciones de estado? ¿Qué son las tablas de estado? ¿Qué son los Diagramas de estado?

Ecuaciones de estado (transición)

Mano MM. Diseño digital. Pearson Educación; 2003. Ejercicio 5.7.

- Especifica el siguiente estado del FF en función del estado actual y las entradas del circuito, consideramos entonces:
 - Las ec. características propias de cada FF.
 - Los circuitos combinacional en las entradas de los FF.

$$Q(t+1) = f(Q(t))$$

4. Escribir las ecuaciones de estado del FF.

- 1. Entradas circuito: 2 entradas, $x \in y$.
- 2. Se utiliza un FF D. El Acarreo de salida se conectado a la entrada del FF D. La salida Q se conecta con el acarreo de entrada.
- 3. Salida *S* del circuito (sumador).

$$S = x \oplus y \oplus C_{in}$$
$$C = xy + xC_{in} + yC_{in}$$

5. Construir la tabla de estado del circuito.

$$D_Q = xy + xQ + yQ$$
 Ec. Entrada $Q(t+1) = xy + xQ + yQ$ Ec. Estado $S = x \oplus y \oplus Q(t)$ Ec. salida

E. Actual	Entr	rada	E. siguiente	Salida
Q(t)	x	y	Q(t+1)	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

5. Construir la tabla de estado del circuito.

$$D_Q=xy+xQ+yQ$$
 Ec. Entrada $Q(t+1)=xy+xQ+yQ$ Ec. Estado $S=x\oplus y\oplus Q(t)$ Ec. salida

E. Actual	Entr	rada	E. siguiente	Salida
Q(t)	x	у	Q(t+1)	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Diagrama de Estado

Representar el funcionamiento de un circuito secuencial de forma gráfica.

Son construidos a partir de una tabla de estados.

- Estados posibles -> circulo.
- Cada estado/circulo es unido mediante flechas.
- Sobre las uniones se escribe la entrada(s) y salida(s)
 que generan el cambio de estado

Si x es la entrada e y la salida -> x/y.

E. Actual	Entr	ada	E. siguiente	Salida
Q(t)	x	у	Q(t+1)	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

6. (Opcional) Construir el diagrama de estados del circuito.

- Estados posibles -> circulo.
- Cada estado/circulo es unido mediante flechas.
- Sobre las uniones se escribe la entrada(s) y salida(s) que generan el cambio de estado

Si x es la entrada e $y \rightarrow x/y$.

E. Actual	Entr	rada	E. siguiente	Salida
Q(t)	x	y	Q(t+1)	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

6. (Opcional) Construir el diagrama de estados del circuito.

E. Actual	Entr	rada	E. siguiente	Salida
Q(t)	x	y	Q(t+1)	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

SÍNTESIS DE CIRCUITOS SECUENCIALES

Síntesis de circuito secuencial

- 1. Diseñar un diagrama de estados del problema a resolver.
- 2. Asignar valores binarios a cada uno de los estados del problema.
- 3. Armar una tabla de estados utilizando codificación binaria. En este punto hay que definir que FF serán utilizados en el diseño.
- 4. Deducir las ecuaciones de entrada y salida del circuito secuencial de cada FF.
- 5. Dibujar el diagrama de circuito final.

Este tipo de diseño es denominado
 Máquina de estado finito o FSM (finite state machine).

Finite state machine, Wikipedia.

1. Diseñar un diagrama de estados del problema a resolver.

Problema:

Se propone diseñar un contador de 3 números consecutivos (0, 1, 2) utilizando **FF T**. El contador avanza cuando ingrese un 1 lógico al circuito. Luego de llegar al último valor, el circuito tiene que volver al primer número y enviar un valor de 1 lógico fuera del circuito.

2. Asignar valores binarios a cada uno de los estados del problema.

Problema:

Se propone diseñar un contador de 3 números consecutivos (0, 1, 2) utilizando **FF T**. El contador avanza cuando ingrese un 1 lógico al circuito. Luego de llegar al último valor, el circuito tiene que volver al primer número y enviar un valor de 1 lógico fuera del circuito.

3. Armar una tabla de estados utilizando codificación binaria.

Durante el proceso de diseño **se conoce la transición de estado** actual y siguiente del circuito. Se desea conocer *las condiciones de entrada del flip-flop* que dan pie a la transición requerida.

Las tablas de excitación establecen que valor de entrada tiene que tener el FF para los estados determinados en la tabla.

$$0/0$$
 $1/0$
 $0/0$
 $1/0$
 $1/0$
 $1/0$
 $1/0$
 $1/0$

$$Q(t+1) = T \oplus Q$$

Q(t)	Q(t+1)	Т
0	0	
0	1	
1	0	
1	1	

$$Q(t+1) = J\overline{Q} + \overline{K}Q$$

Tabla de excitación FF JK

Q(t)	Q(t+1)	J	K
0	0		
0	1		
1	0		
1	1		

3. Armar una tabla de estados utilizando codificación binaria.

Durante el proceso de diseño **se conoce la transición de estado** actual y siguiente del circuito. Se desea conocer *las condiciones de entrada del flip-flop* que dan pie a la transición requerida.

Las tablas de excitación establecen que valor de entrada tiene que tener el FF para los estados determinados en la tabla.

$$Q(t+1) = T \oplus Q$$

Q(t)	Q(t+1)	Τ
0	0	0
0	1	1
1	0	1
1	1	0

$$Q(t+1) = J\overline{Q} + \overline{K}Q$$

Tabla de excitación FF JK

Q(t)	Q(t+1)	J	К
0	0	0	X
0	1	X	1
1	0	1	X
1	1	X	0

3. Armar una tabla de estados utilizando codificación binaria.

Tabla de excitación FF T

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

Estado	o Actual	Entrada	E. sigu	uiente	Salida	Entrac	la FF T
Α	В	Х	А	В	Υ	T_A	T_B

3. Armar una tabla de estados utilizando codificación binaria.

Tabla de excitación FF T

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

Estado	o Actual	Entrada	E. sigu	uiente	Salida	Entrac	la FF T
Α	В	X	А	В	Υ	T_A	T_B
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	1	0		
0	1	1	1	0	0		
1	0	0	1	0	0		
1	0	1	0	0	1		

3. Armar una tabla de estados utilizando codificación binaria.

Tabla de excitación FF T

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

Estado	o Actual	Entrada	E. sigu	uiente	Salida	Entrac	la FF T
Α	В	Х	А	В	Υ	T_A	T_B
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	1
0	1	0	0	1	0	0	0
0	1	1	1	0	0	1	1
1	0	0	1	0	0	0	0
1	0	1	0	0	1	1	0

4. Deducir las ecuaciones de entrada y salida del circuito secuencial de cada FF.

Tabla de excitación FF T

Q(t)	Q(t+1)	Τ
0	0	0
0	1	1
1	0	1
1	1	0

E:	stado	o Actual	Entrada	E. sigu	uiente	Salida	Entrac	la FF T
	Α	В	Х	А	В	Υ	T_A	T_B
	0	0	0	0	0	0	0	0
	0	0	1	0	1	0	0	1
	0	1	0	0	1	0	0	0
	1	1	1	1	0	0	1	1
	1	0	0	1	0	0	0	0
	1	0	1	0	0	1	1	0

$$T_A = \overline{A}Bx + A\overline{B}x$$
 $T_B = \overline{A}\overline{B}x + \overline{A}Bx$
 $y = A\overline{B}x$

5. Dibujar el diagrama de circuito final.

$$T_A = \overline{A}Bx + A\overline{B}x$$
 $T_B = \overline{A}\overline{B}x + \overline{A}Bx$
 $y = A\overline{B}x$

Tabla de excitación FF T

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

5. Dibujar el diagrama de circuito final.

$$T_A = \overline{A}Bx + A\overline{B}x$$
 $T_B = \overline{A}\overline{B}x + \overline{A}Bx$
 $y = A\overline{B}x$

Tabla de excitación FF T

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

5. Dibujar el diagrama de circuito final.

$$T_A = \overline{A}Bx + A\overline{B}x$$
 $T_B = \overline{A}\overline{B}x + \overline{A}Bx$
 $y = A\overline{B}x$

Tabla de excitación FF T

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

Implementación en Logisim-evolution

Resumen

- Es posible estudiar el comportamiento de un circuito secuencial realizando un análisis de las entradas y salidas de los FF que componen nuestro circuito.
- El circuito secuencial queda completamente definido por:
 - Tablas de estados ≠ Tablas características.
 - Ecuación de estados.
 - Diagramas de estados.

Resumen

- La síntesis de circuitos secuenciales permite diseñar e implementar circuito con los FF que deseemos.
 - Diagrama de estados
 - Tabla de estados (tabla de excitación).
 - Implementación.
- Este tipo de diseño es conocido como Maquina de estados finita o FSM (finite state machine).
- TAREA:
 - Estudiar circuitos secuenciales:
 - Registro y contadores.

Simulación – Dado digital

- Logisim-evolution: Construir un dado digital:
 - Se conecta una señal cuadrada de alta frecuencia a la entrada del circuito.
 - Se presiona un pulsador que permita el paso de las señales al circuito secuencial.
 - El circuito tiene que mostrar en un display de 7 segmentos los números del 1-+

Próxima Sesión

Microcontroladores.

Referencias y Material Complementario

- Capitulo 5. RONALD, J., WIDMER TOCCI, S. NEAL, y GREGORY L. MOSS. SISTEMAS DIGITALES: principios y aplicaciones . Pearson Education, 2007
- Capitulo 5. Mano, M. Morris. Diseño digital. Pearson Educación, 2003.
- Capitulo 7 y 8. Bignell, James W., Robert L. Donovan, y Gerardo Urbina Medel. Electrónica digital, 1997.
- Capitulo 13. Schilling, Donald L., y Charles Belove. «Circuitos electrónicos: discretos e integrados», 1993.
- Chapter 10.4. Horowitz, Paul, y Winfield Hill. *The art of electronics*. Cambridge Univ. Press, 2015.
- Institute, REDS. reds-heig/logisim-evolution. Java, 2020. https://github.com/reds-heig/logisim-evolution.
- Schemdraw documentation 0.7.1 documentation.
- Graphviz Graph Visualization Software n.d. https://graphviz.org/ (accessed August 12, 2020).