

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0 1 2 3 4 5 6 7 8 9

FURTHER MATHEMATICS

9231/02

Paper 2 Further Pure Mathematics 2

For examination from 2020

SPECIMEN PAPER 2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 18 pages. Blank pages are indicated.

© UCLES 2017 [Turn over

BLANK PAGE

1

$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 7 - 2t^2.$	[6]

	ct value of $\int_0^1 \sqrt{\int_0^1}$					
•••••						
•••••			•••••	••••••		••••••
•••••						•••••
	•••••		•••••			
•••••			•••••		•••••	
		•••••				
•••••	•••••		•••••			•••••
	•••••					•••••

	$x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = \frac{\sin x}{x}$	
_		
or	which $y = 0$ when $x = \frac{1}{2}\pi$. Give your answer in the form $y = f(x)$.	
••••		•••••
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		•••••
•••••		•••••
•••••		
•••••		•••••

4

The diagram shows the curve with equation $y = \frac{1}{x^2}$ for x > 0, together with a set of (n-1) rectangles of unit width.

(a) By considering the sum of the areas of these rectangles, show that

$\sum_{r=1}^{n} \frac{1}{r^2} < \frac{2n-1}{n}.$	[5]

)	Use a similar method to find, in terms of n , a lower bound for $\sum_{r=1}^{n}$	$\frac{1}{1.2}$. [3]
	<i>r</i> =1	r

	$x = e^t - 4t + 3$, $y = 8e^{\frac{1}{2}t}$, for $0 \le t \le 2$.
(a)	Find, in terms of e, the length of <i>C</i> .

about the <i>x</i> -axis.	[5]

6 (a) Using de Moivre's theorem, show that

$\tan 5\theta = \frac{5 \tan \theta - 10 \tan^3 \theta + \tan^5 \theta}{1 - 10 \tan^2 \theta + 5 \tan^4 \theta}.$	[5]
$1 - 10\tan^2\theta + 5\tan^4\theta$	[2]
	•••••
	••••••
	•••••
	•••••

Hence show that the equation $x^2 - 10x + 5 = 0$ has roots $\tan^2(\frac{1}{5}\pi)$ and $\tan^2(\frac{2}{5}\pi)$.	
	• • • • • • • • • • • • • • • • • • • •

(a)	Starting from the definition of tanh in terms of exponentials, prove that $\tanh^{-1}x = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$.
<i>a</i> >	$\frac{1}{1}(1-x)$ 1 1 $\frac{1}{1}(1-x)$ 2 1 $\frac{1}{1}(1-x)$ 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(b)	Given that $y = \tanh^{-1} \left(\frac{1-x}{2+x} \right)$, show that $(2x+1) \frac{dy}{dx} + 1 = 0$.
(b)	Given that $y = \tanh^{-1} \left(\frac{1}{2+x}\right)$, show that $(2x+1)\frac{1}{dx} + 1 = 0$.
(b)	Given that $y = \tanh^{-1} \left(\frac{1}{2+x}\right)$, show that $(2x+1)\frac{1}{dx} + 1 = 0$.
(b)	Given that $y = \tanh^{-1} \left(\frac{1}{2+x}\right)$, show that $(2x+1)\frac{1}{dx} + 1 = 0$.
(b)	Given that $y = \tanh^{-1}\left(\frac{1}{2+x}\right)$, show that $(2x+1)\frac{1}{dx} + 1 = 0$.
(b)	

]	Hence find the first three terms in the Maclaurin's series for $\tanh^{-1}\left(\frac{1-x}{2+x}\right)$ in the form
	$a \ln 3 + bx + cx^2,$
,	where a , b and c are constants to be determined.

8	(a)	(i)	Find the set of values of a for which the system of equations
---	-----	-----	---

$$x-2y-2z+7=0,$$

$$2x + (a-9)y-10z+11=0,$$

$$3x-6y+2az+29=0,$$

has a unique solution.	[4]

situation geometrically.					
			•••••	 	
	•••••		•••••	 ••••••	
			•••••	 	
				 •••••	
				 •••••	
·				 	
	•••••		•••••	 •••••	
		•••••		 •••••	

	`	CC1	. •				1
(b)	The	matrix	Α	1S	given	bv

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{pmatrix}$$

Find the eigenvalues of A .	[4]

•	••••••
•	 •••••
•	•••••
•	
•	
•	

Additional page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.							

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.