Course 5

Pumping Lemma

- Not all languages are regular
- How to decide if a language is regular or not?

• Idea: pump symbols

Example: $L = \{0^n1^n \mid n > = 0\}$

Theorem: (Pumping lemma, Bar-Hillel)

Let **L** be a regular language. $\exists p \in N$, such that if $w \in L$ with |w| > p, then w = xyz, where 0 < |y| < = p and $xy^iz \in L$, $\forall i \geq 0$

Proof

```
L regular => \exists M = (Q,\Sigma,\delta, q<sub>0</sub>, F) such that L= L(M)

Let |Q| = p

If w \in L(M): (q<sub>0</sub>,w) \vdash (q<sub>f</sub>,\varepsilon), q<sub>f</sub>\inF process at least p+1 symbols and |w|>p
```

$$\Rightarrow \exists q_1 \text{ that appear in at least 2 configurations}$$

 $(q_0,xyz) \not\models (q_1,yz) \not\vdash (q_1,z) \not\models (q_f, \varepsilon), q_f \in F \Rightarrow 0 <= |y| <= p$

Proof (cont)

```
(q_0,xy^iz) \vdash^* (q_1,y^iz)
                        +^* (q_1, y^{i-1}z)
                        ⊢* ...
                        + (q<sub>1</sub>,yz)
                        +^* (q<sub>1</sub>, z)
                        +^*(q_f, \varepsilon), q_f \in F
So, if w=xyz \in L then xy^iz \in L, for all i>0
If i=0: (q_0,xz) \stackrel{*}{\vdash} (q_1,z) \stackrel{*}{\vdash} (q_f,\varepsilon), q_f \in F
```

Example: $L = \{0^n1^n \mid n >= 0\}$

Suppose L is regular => w= xyz = $0^{n}1^{n}$

Consider all possible decomposition =>

Case 1.
$$y = 0^k$$

$$xyz = 0^{n-k}0^k1^n$$
; $xy^iz = 0^{n-k}0^{ik}1^n \notin L$

Case 2.
$$y = 1^k$$

$$xyz = 0^{n}1^{k}1^{n-k}$$
; $xy^{i}z = 0^{n}1^{ik}1^{n-k} \notin L$

Case 3. $y = 0^k 1^l$

$$xyz = 0^{n-k}0^k1^l1^{n-l}; xy^iz = 0^{n-k}(0^k1^l)^i1^{n-l} \notin L$$

Case 4. $y = 0^k 1^K$

$$xyz = 0^{n-k}0^k1^k1^{n-k}$$
; $xy^iz = 0^{n-k}0^k1^k0^k1^k...1^{n-l} \notin L$

=> L is not regular

Context free grammars (cfg)

Context free grammar (cfg)

• Produtions of the form: A $\rightarrow \alpha$, A \in N, $\alpha \in$ (NU Σ)*

More powerful

Can model programming language:

$$G = (N, \Sigma, P, S)$$
 s.t. $L(G) = programming language$

Syntax tree

Definition: A syntax tree corresponding to a cfg $G = (N, \Sigma, P, S)$ is a tree obtained in the following way:

- 1. Root is the starting symbol S
- 2. Nodes ∈ $NU\Sigma$:
 - 1. Internal nodes ∈N
 - 2. Leaves ∈ Σ
- 3. For a node A the descendants in order from left to right are $X_1, X_2, ..., X_n$ only if $A \rightarrow X_1X_2... X_n \in P$

Remarks:

- a) Parse tree = syntax tree result of parsing (syntatic analysis)
- b) Derivation tree condition 2.2 not satisfied
- c) Abstract syntax tree (AST) ≠ syntax tree (semantic analysis)

Syntax tree (cont)

Property: In a cfg $G = (N, \Sigma, P, S)$, $w \in L(G)$ if and only if there exists a syntax tree with frontier w.

Proof: HW

Example: S-> aSbS | c; w = aacbcbc

Leftmost derivations

=> aacbcbS => aacbcbc

Rightmost derivations

Definition: A cfg $G = (N, \Sigma, P, S)$ is ambigous if for a $w \in L(G)$ there exists 2 distinct syntax tree with frontier w.

Example:

Parsing (syntax analysis) modeled with cfg:

cfg G = (N, Σ ,P,S):

- N nonterminal: syntactical constructions: declaration, statement, expression, a.s.o.
- Σ terminals; elements of the language: identifiers, constants, reserved words, operators, separators
- P syntactical rules expressed in BNF simple transformation
- S syntactical construct corresponding to program

THEN

Program syntactical correct $\langle = \rangle$ w \in L(G)

Equivalent transformation of cfg

Unproductive symbols

Definition

A nonterminal A este *unproductive* in a cfg if does not generate any word: $\{w \mid A =>^* w, w \in \Sigma^*\} = \emptyset$.

Algorithm 1: Elimination of unproductive symbols

```
input: G = (N, \Sigma, P, S)
output: G' = (N', \Sigma, P', S), L(G) = L(G')
                                            // idea: build N_0, N_1, ... recursively (until saturation)
step 1: N_0 = \emptyset; i:=1;
step 2: N_i = N_{i-1} \cup \{A \mid A \rightarrow \alpha \in P, \alpha \in (N_{i-1} \cup \Sigma)^*\}
step 3: if N_i \ll N_{i-1} then i:=i+1; goto step 2
                                 else N' = N_i
                                 then L(G) = \emptyset
step 4: if S \notin N'
                                 else P' = \{A \rightarrow \alpha \mid A \rightarrow \alpha \in P \text{ and } A \in N'\}
```

Example

```
G = ({S,A,B,C,D}, {a,b,c}, P,S)

P: S \rightarrow aA \mid aC

A \rightarrow AB

B \rightarrow b

C \rightarrow aC \mid CD

D \rightarrow b
```

Inaccesible symbols

Definition

A symbol $X \in NU\Sigma$ is *inaccesible* in a cfg if X does not appear in any sentential form: $\forall S => \alpha, X \notin \alpha$

Algorithm 2: Elimination of inaccessible symbols

```
input: G = (N, \Sigma, P, S)
output: G' = (N', \Sigma', P', S), L(G) = L(G') and
              \forall X \in NU\Sigma \exists \alpha, \beta \in (N'U\Sigma')^* \text{ s.t. } S =>^*_{G'} \alpha X \beta.
step 1: V_0 = \{S\}; i:=1;
step 2: V_i = V_{i-1} \cup \{X \mid \exists A \rightarrow \alpha X \beta \in P, A \in V_{i-1}\}
step 3: if V_i \leftrightarrow V_{i-1} then i:=i+1; goto step 2
                                        else N' = N \cap V_i
                                                      \Sigma' = \Sigma \cap V_i
                                                      P' = \{A \rightarrow \alpha \mid A \rightarrow \alpha \in P, A \in N', \alpha \in (N \cup \Sigma)^* \}
```

Example

```
G = ({S,A,B,C,D}, {a,b,c,d}, P,S)

P: S \rightarrow aA \mid aC

A \rightarrow AB

B \rightarrow b

C \rightarrow aC \mid bCb

D \rightarrow bB \mid d
```

ε -productions

Algorithm 3: Elimination of ε -productions

input: $cfg G = (N, \Sigma, P, S)$

output: $cfg G' = (N', \Sigma, P', S')$

step 1: construct
$$\overline{N} = \{A \mid A \in N, A=>^+ \epsilon\}$$

1.a.
$$N_0 := \{A \mid A \rightarrow \varepsilon \in P\};$$

 $i := 1:$

1.b.
$$N_i := N_{i-1} \cup \{A \mid A \rightarrow \alpha \in P, \alpha \in N^*_{i-1}\}$$

1.c. if $N_i \ll N_{i-1}$ then i:=i+1; goto step 1.b else $\overline{N} = N_i$

A->BC

Β->ε

3<-D

Definition

A cfg G=(N, Σ ,P,S) is without ε -productions if 1. P $\not\ni$ A -> ε (ε -productions) OR

2. \exists S→ ϵ si S \notin rhs(p), \forall p \in P

step 2: Let P' = set of productions built:

2.a. if
$$A \rightarrow \alpha_0 B_1 \alpha_1 B_2 \alpha_2 \dots B_k \alpha_k \in P$$
, $k \ge 0$ and for $i := 1, k B_i \in N$

and
$$\alpha_i \notin \overline{N}$$
, j:=0,k

then add to P' all prod of the form

$$A \rightarrow \alpha_0 X_1 \alpha_1 X_2 \alpha_2 \dots X_k \alpha_k$$

where X_i is B_i or ε (not $A \rightarrow \varepsilon$)

2.b if
$$S \in \mathbb{N}'$$
 then add S' to \mathbb{N}' and $S' \rightarrow S \mid \varepsilon$ to P else $\mathbb{N}' := \mathbb{N}$: $S' := S$.

Example

```
G = ({S,A,B}, {a,b},P,S)
P: S \rightarrow aA \mid aAbB
A \rightarrow aA \mid B
B \rightarrow bB \mid \epsilon
```

Single productions

Definition

O production of the form A→B is called single production or renaming rule.

Algorithm 4: Elimination of single productions

Input: cfg G, without ε -productions

Output: G' s.t. L(G) = L(G')

For each $A \in N$ build the set $N_A = \{B \mid A \Rightarrow^* B\}$:

1.a.
$$N_0 := \{A\}$$
, i:=1

1.b.
$$N_i := N_{i-1} \cup \{C \mid B \rightarrow C \in P \text{ si } B \in N_{i-1}\}$$

1.c. if
$$N_i \neq N_{i-1}$$
 then i:=i+1 goto 1.b.

else
$$N_A := N_i$$

P': for all $A \in N$ do

for all
$$B \in N_A$$
 do

if
$$B \rightarrow \alpha \in P$$
 and not "single" then $A \rightarrow \alpha \in P'$

$$G' = (N, \Sigma, P', S)$$

Example

G = ({E,T,F},{a,(,),+,*},P,E)
P:
$$E \to E+T \mid T$$

 $T \to T*F \mid F$
 $F \to (E) \mid a$