14 Cartan-Hadamard の定理

- 14.1 完備 Riemann 多様体 (M,g) が非正曲率をもつ(断面曲率が $K(\sigma) \le 0$ をみたす)とする.そのとき M のどんな測地線 $\gamma:[0,\infty)\to M$ も始点 $\gamma(0)$ の共役点を $(0,\infty)$ の範囲にもたないが,これは以下のようにして,Rauch の比較定理を使わずに簡単に証明できる. γ に沿って定義された J(0)=0, $\dot{J}(0)\neq 0$ をみたす Jacobi 場 J を考える.仮定 $K(\sigma) \ge 0$ を用いて $\frac{d}{dt}|J(t)|^2 \ge 0$ を示せ.またそのことから t>0 で $|J(t)|^2>0$ であることを示せ.
- 14.2 M, N を C^{∞} 級多様体とし, $f: N \to M$ を局所微分同相写像とする.この f が次に 述べる **smooth path lifting property** をもつと仮定する.

任意の C^{∞} 級曲線 $\gamma: [0,T] \to M$ と $f(q_0) = \gamma(0)$ をみたす $q_0 \in N$ に対し, q_0 を始点 とする C^{∞} 級曲線 $\tilde{\gamma}: [0,T] \to N$ であって, γ のリフトになっている($f \circ \tilde{\gamma} = \gamma$ を みたす)ようなものが存在する.

そのとき f が可微分被覆写像であることを, 以下に従って証明せよ.

[注:位相空間のあいだの連続写像 $f: Y \to X$ についても同様の主張があるが、それが可微分カテゴリーでも成立するのだ、というのが本問の眼目である.]

- (1) 任意に $p \in M$ をとる. M は多様体だから,p の弧状連結かつ単連結な開近傍 U をとれる. $f^{-1}(U)$ の連結成分への分解を $f^{-1}(U) = \bigsqcup_{\alpha \in A} V_{\alpha}$ とする ($f^{-1}(U)$ は多様体 N の開集合であることから局所弧状連結なので, V_{α} は弧状連結でもある).各 V_{α} が N の開集合であることを示せ.
- (2) 各 V_{α} への f の制限 $f|_{V_{\alpha}}: V_{\alpha} \to U$ を考える. これが全単射であることを示せば, 逆写像 $(f|_{V_{\alpha}})^{-1}$ の微分可能性は f が局所微分同相写像であることから直ちにわかる ので,f が可微分被覆写像であると結論できる.

まず、 $f|_{V_a}$ が全射であることを、smooth path lifting property を用いて示せ.

(3) $f|_{V_{\alpha}}$ の単射性を示そう. もし $f(q_1) = f(q_2)$, q_1 , $q_2 \in V_{\alpha}$ ならば, q_1 を出発し q_2 に至る V_{α} の C^{∞} 級曲線 $\gamma:[0,T] \to V_{\alpha}$ がある. $\underline{\gamma} = f \circ \gamma:[0,T] \to U$ は U の 閉曲線であり, U の単連結性により定曲線にホモトピック. このホモトピーを $F:[0,T] \times [0,1] \to U$ とする(端点は固定しておく). F は C^{∞} 級写像とすることが できる*.

F が $\tilde{F}(t,0) = \gamma(t)$ をみたすリフト $\tilde{F}: [0,T] \times [0,1] \rightarrow V_{\alpha}$ をもつことがわかれば

^{*}本問はこの事実をとりあえず認めて解答してよい. Friedrichs の軟化子をうまく使えばよいのだが,写像 F の値は多様体の点だから何らかの工夫が必要である. U を \mathbb{R}^n の原点を中心とする開球を像とするようなチャートとしておき,F を \mathbb{R}^n 値関数とみなすのが一つの単純な方法だろう.

- $q_1 = q_2$ が従う. その理由を説明せよ.
- (4) $0 \le s_0 < 1$ とする. F が仮に $[0,T] \times [0,s_0]$ までは前述のようなリフト \tilde{F} をもつとしよう. [0,T] のコンパクト性に注意して,ある $\delta > 0$ が存在して \tilde{F} が $[0,T] \times [0,s_0+\delta)$ における F のリフトに拡張することを示せ.
- (5) $0 < s_0 \le 1$ とする. F が $[0,T] \times [0,s_0)$ において前述のようなリフト \tilde{F} をもつとしよう. そのとき, \tilde{F} は $[0,T] \times [0,s_0]$ における F のリフトに拡張することを示せ. [ヒント: $\omega_{s_0} = F(t,s_0)$ とおけば,f の smooth path lifting property によって ω_{s_0} は q_1 を始点とするリフト $\tilde{\omega}_{s_0}$: $[0,T] \to N$ をもつ. (4) と同様にして, $\tilde{\omega}_{s_0}$ は $[0,T] \times (s_0 \delta,s_0]$ における F のリフト \tilde{F}' に拡張する.ここで $s_0 \delta < s < s_0$ に対しては, $F(\cdot,s)$ の 2 通りのリフト $\tilde{F}(\cdot,s)$, $\tilde{F}'(\cdot,s)$ が得られたことになるが,始点 $\tilde{F}(0,s)$, $\tilde{F}'(0,s)$ 同士は一致することと N の Hausdorff 性に注意して,実は $\tilde{F}(\cdot,s) = \tilde{F}'(\cdot,s)$ であることを示せ.したがって \tilde{F} と \tilde{F}' は定義域の共通部分で一致する.]
- (6) (4) と (5) から、(3) で述べたようなリフト \tilde{F} : $[0,T] \times [0,1] \to V_{\alpha}$ が存在することを結論せよ. ゆえに $f|_{V_{\alpha}}$ は単射であり、f は可微分被覆写像であることがわかる.