Datos

Minería de Datos - Grado en Matemáticas

DSLAB

2025-09-24

Datos en la Ciencia de Datos

Tipos de datos

- Según la estructuras: Datos estructurados vs no estructurados
- Según el comportamiento en el tiempo: Datos estáticos vs datos dinámicos

Datos estructurados vs no estructurados

 Datos estructurados: poseen longitud, tipo, formato y tamaño definidos. Se organizan en formatos de bases de datos, por ejemplo, tablas.

	Α	В	C	D	E	F	G	Н	1
1	rowid	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	year
2	1	Adelie	Torgersen	39.1	18.7	181	3750	male	2007
3	2	Adelie	Torgersen	39.5	17.4	186	3800	female	2007
4	3	Adelie	Torgersen	40.3	18	195	3250	female	2007
5	4	Adelie	Torgersen	NA	NA	NA	NA	NA	2007
6	5	Adelie	Torgersen	36.7	19.3	193	3450	female	2007
7	6	Adelie	Torgersen	39.3	20.6	190	3650	male	2007
8	7	Adelie	Torgersen	38.9	17.8	181	3625	female	2007
9	8	Adelie	Torgersen	39.2	19.6	195	4675	male	2007
10	9	Adelie	Torgersen	34.1	18.1	193	3475	NA	2007
11	10	Adelie	Torgersen	42	20.2	190	4250	NA	2007
12	11	Adelie	Torgersen	37.8	17.1	186	3300	NA	2007

 Datos no estructurados: Carecen de formato específico. Documentos de texto, vídeo, datos de redes sociales, correos electrónicos, etc. Se almacenan en su formato original y requieren un procesamiento para ser analizados.

Datos estáticos vs dinámicos

- Estáticos: no varían a lo largo del tiempo. Ejemplo: censo, datos de natalidad.
- **Dinámicos**: evolucionan con el tiempo. Ejemplo: base de datos de una tienda con productos y precios

Obtención de datos

Recopilación de información en un dominio específico.

Obtención datos --> Procesamiento de datos

Algunas técnicas de obtención de datos:

- Encuestas y entrevistas
- Toma de muestras
- Web scraping
- Sensores y dispositivos IoT
- etc

Fuentes de datos (¡para practicar!)

- UCI Machine Learning repository
- OpenML
- Kaggle
- KEEL dataset repository (Artículo de referencia)
- Penn Machine Learning Benchmarks (Artículo de referencia)
- Eurostat
- Datos abiertos del Gobierno de España

Datos en R

- R incluye en sus librerías distintos conjuntos de datos
- Librería "datasets" contiene bastantes. Para ver la lista completa, basta ejecutar library(help = "datasets")

Datos en R

\$ year


```
# install.packages('palmerpenguins')
library(palmerpenguins)
str(penguins)
tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
 $ species
                   : Factor w/ 3 levels "Adelie", "Chinstrap"...: 1 1 1 1 1 1 1 1 1 1 ...
 $ island
                   : Factor w/ 3 levels "Biscoe", "Dream", ...: 3 3 3 3 3 3 3 3 3 ...
 $ bill length mm
                   : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
 $ bill depth mm
                   : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
 $ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
 $ body_mass_g
                   : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
                   : Factor w/ 2 levels "female". "male": 2 1 1 NA 1 2 1 2 NA NA ...
$ sex
```

¿Con qué tipo de datos vamos a trabajar?

- Datos tabulares: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- Observaciones (filas): items, instancias, puntos, elementos, objetos, etc. $\mathbf{x}_i=(x_{i1},x_{i2},\dots,x_{ip})$
- Variables (columnas): atributos, características (del inglés features) $\mathbf{f}_j = \mathbf{x}_j = (x_{1j}, \dots, x_{nj})$

Las variables explicativas de forma matricial:

$$\mathbf{X} = \left(\begin{array}{cccc} x_{11} & \cdots & x_{1j} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{ip} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nj} & \cdots & x_{np} \end{array} \right)$$

Datos

Primer paso: Entender los datos

- ¿Cuál es la dimensión de los datos? ¿Cuál es el número de filas (instancias) y de columnas (variables)?
- ¿Qué significan las variables?
- ¿Hay datos erróneos?
- ¿Hay datos faltantes?

¡Practiquemos un poco más con estos datos en R!

¿Con qué datos entrenamos y evaluamos los modelos de Machine Learning?

- Entrenamiento (Training): Muestra para entrenar el modelo, el modelo aprenderá el comportamiento de los datos con esta muestra
- Test: Para probar el modelo entrenado y comparar el rendimiento en entrenamiento y test.
 En base a los resultados, se puede cambiar de modelo o realizar ajustes sobre él (reentrenar el modelo)
- Validación (Validation): Para reflejar el comportamiento del modelo en un entorno real con nuevos datos. ¡No se usa para reentrenar!

- Construcción de las particiones: Train 60% Test 20% Validación 20% (aproximadamente)
- Los % anteriores dependerán del volumen de los datos y los objetivos del problema
- k-fold cross validation. Se obtienen k valores del error -> media y desviación

Particiones de los datos: Muestreo

- ¿Por qué funcionan bien las particiones?
- Muestreo aleatorio
- $\bullet \ \, {\sf Muestreo} \,\, {\sf estratificado} \,\, {\sf ->} \,\, {\sf guiado} \,\, {\sf por} \,\, {\sf la} \,\, {\sf variable} \,\, {\sf objetivo} \,\,$

Bases de datos

- Relacionales. Siguen el modelo entidad-relación, también llamado modelo relacional, en donde cada una de las tablas (o entidades) presenta algún tipo de enlace con otras (relaciones).
 - SQL: Structured Query Language
- No relacionales (no SQL). Representar datos de forma más flexible

Infraestructuras para datos

- Bases de datos relacionales y no relaciones
- Almacenamiento de datos en la nube
- Almacenamiento en memoria
- Almacenamiento distribuido
 - Federated learning

Calidad de los datos

- Clave en cualquier proyecto que involucre datos -> influye directamente en la confiabilidad y el valor de los resultados
- Precisión
- Integridad
- Consistencia
- Relevancia
- Actualización
- Limpieza
- Documentación

Ética, privacidad y seguridad en los datos

- La ética, privacidad y seguridad en los datos son aspectos entrelazados y fundamentales para garantizar que la recopilación, el análisis y el uso de datos se realicen de manera responsable y en beneficio de la sociedad
- ¿Algún ejemplo de falta de ética?
- ¿Algún ejemplo de falta de privacidad?

https://www.unesco.org/en/artificial-intelligence/recommendation-ethics/cases

Referencias

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). *The elements of statistical learning: data mining, inference, and prediction* (Vol. 2, pp. 1-758). New York: springer.

Saltz, J., Skirpan, M., Fiesler, C., Gorelick, M., Yeh, T., Heckman, R., ... & Beard, N. (2019). Integrating ethics within machine learning courses. *ACM Transactions on Computing Education* (*TOCE*), 19(4), 1-26.