

|          |  |  |  |     | Pri  | ntec | l Pa  | ge: 1     | of 2 |  |
|----------|--|--|--|-----|------|------|-------|-----------|------|--|
|          |  |  |  | Sub | ject | Coc  | le: F | <b>CE</b> | 501  |  |
| Roll No: |  |  |  |     |      |      |       |           |      |  |

## B.TECH (SEM V) THEORY EXAMINATION 2020-21 GEOTECHNICAL ENGINEERING

Time: 3 Hours Total Marks: 100

**Note: 1.** Attempt all Sections. If require any missing data; then choose suitably.

#### **SECTION A**

#### 1. Attempt all questions in brief.

 $2 \times 10 = 20$ 

| Q no. | Question                                                                   | Marks | CO  |
|-------|----------------------------------------------------------------------------|-------|-----|
| a.    | Explain the process of soil formation. Differentiate between residual and  | 2     | CO1 |
|       | transported soil.                                                          |       |     |
| b.    | Derive the formula between soil moisture content (w), degree of saturation | 2     | CO1 |
|       | (S), specific gravity (G) and void ratio €.                                |       |     |
| c.    | What are the factors affecting the permeability of soils?                  | 2     | CO2 |
| d.    | What do you understand by the term "flow net"?                             | 2     | CO2 |
| e.    | Define total stress, neutral stress and effective stress.                  | 2     | CO3 |
| f.    | Define consolidation. How it is differ from compaction?                    | 2     | CO3 |
| g.    | List the assumptions made in Boussinesq's theory.                          | 2     | CO4 |
| h.    | How do you define "failures" in soils?                                     | 2     | CO4 |
| i.    | What are the different types of earth pressures?                           | 2     | CO5 |
| j.    | What are the assumptions in Rankine's theory?                              | 2     | CO5 |

#### **SECTION B**

## 2. Attempt any *three* of the following:

| Q no. | Question                                                                              | Marks | CO  |
|-------|---------------------------------------------------------------------------------------|-------|-----|
| a.    | A natural deposit has bulk unit weight of 18.5 kN/m <sup>3</sup> and water content of | 10    | CO1 |
|       | 5%. Calculate the amount of water required to be added to 5 m <sup>3</sup> constant.  |       |     |
|       | Also, find the degree of saturation. Assume G= 2.65.                                  |       |     |
| b.    | Determine the neutral and effective stress at a depth of 15m below the                | 10    | CO2 |
|       | ground surface for following conditions:                                              |       |     |
|       | Water table 3m below ground surface, for the soil with properties given by            |       |     |
|       | specific gravity = 2.65, e= 0.7, average moisture content above water table =         |       |     |
|       | 5%.                                                                                   |       |     |
| c.    | Define the following terms:                                                           | 10    | CO3 |
|       | i. Coefficient of compressibility                                                     |       |     |
|       | ii. Compression index                                                                 |       |     |
|       | iii. Coefficient of volume change                                                     |       |     |
|       | iv. Expansion/ swelling index                                                         |       |     |
|       | v. Recompression index                                                                |       |     |
| d.    | Analyze the Skempton's Pore Pressure coefficients. Describe how are the               | 10    | CO4 |
|       | Pore Pressure Parameters A and B determined?                                          |       |     |
| e.    | Differentiate critically the earth pressure theories of Rankine and Coulomb.          | 10    | CO5 |



|          |  |  |  | Printed Page: 2 of 2 |      |     |       |           |     |  |  |
|----------|--|--|--|----------------------|------|-----|-------|-----------|-----|--|--|
|          |  |  |  | Sub                  | ject | Coc | le: F | <b>CE</b> | 501 |  |  |
| Roll No: |  |  |  |                      |      |     |       |           |     |  |  |

#### **SECTION C**

## 3. Attempt any *one* part of the following:

| Q   |            | Question                                                                                 | Marks | CO  |
|-----|------------|------------------------------------------------------------------------------------------|-------|-----|
| no. |            |                                                                                          |       |     |
| a.  | Different  | iate between:                                                                            | 10    | CO1 |
|     | i.         | Liquidity index and consistency index                                                    |       |     |
|     | ii.        | Flow index and toughness index                                                           |       |     |
|     | iii.       | Plasticity and consistency                                                               |       |     |
|     | iv.        | Activity and sensitivity.                                                                |       |     |
| b.  | Write the  | e importance of the classification of soils? Discuss in brief with the                   | 10    | CO1 |
|     | help of a  | neat sketch classification of fine-grained soils as per Indian Standard                  |       |     |
|     | Classifica | ation System of soils. Also, give the significance of $D_{10}$ , $D_{30}$ and $D_{60}$ . |       |     |

## 4. Attempt any *one* part of the following:

| Q no. | Question                                                                                                                                                                                                                                                                                                                 | Marks | CO  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| a.    | A falling head permeability test was performed on a sample of a clear uniform sand. One minute was required for the initial head of 100cm to fall to 50cm in the standpipe of cross-sectional area of 1.50cm <sup>2</sup> . If the sample was 4cm dia and 30 cm long, calculate the coefficient of permeability of sand. | 10    | CO2 |
| b.    | Explain quick sand condition. Give the expression for critical hydraulic gradient along with its significance.                                                                                                                                                                                                           | 10    | CO2 |

## 5. Attempt any *one* part of the following:

| Q no. | Question                                                                                                                                                                                           | Marks | CO  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| a.    | Illustrate the assumptions of the Terzaghi's theory for calculating the rate of 1-D consolidation and prove that: $\frac{\partial u}{\partial t} = c_v \cdot \frac{\partial^2 u}{\partial z^2}  .$ | 10    | CO3 |
| b.    | Compare standard Proctor test and modified Proctor test.                                                                                                                                           | 10    | CO3 |

# 6. Attempt any *one* part of the following:

| Q no. | Question                                                                  | Marks | СО  |
|-------|---------------------------------------------------------------------------|-------|-----|
| a.    | Discuss in detail the Mohr-Coulomb's theory of shear failure of soils.    | 10    | CO4 |
| b.    | Describe tri-axial shear test. What are its advantages and disadvantages? | 10    | CO4 |

# 7. Attempt any *one* part of the following:

| Q no. | Question                                                                       | Marks | CO  |
|-------|--------------------------------------------------------------------------------|-------|-----|
| a.    | What are the basic mode of failure of an earth retaining structure? Briefly,   | 10    | CO5 |
|       | outline the remedial measures that can be undertaken against such failures?    |       |     |
| b.    | A 5m high rigid retaining wall has to retain the soil having the following     | 10    | CO5 |
|       | properties:                                                                    |       |     |
|       | G= 2.68, $\mu$ =0.36, e=0.74 and $\Phi$ = 30°                                  |       |     |
|       | i.Plot the distribution of lateral Earth pressure for the wall.                |       |     |
|       | Determine the magnitude and point of resultant thrust.                         |       |     |
|       | .Compute the percentage change in lateral thrust if the water table rises from |       |     |
|       | a great depth to the top of the backfill.                                      |       |     |

**2** | Page