Figures for HW

Yang Liu

Contents

HW4 P159, 26, 29, 30, Prob. C, D	1
29	
30	
Prob C	3
HW3 P149, 9: a, c, d, e, f and Prob.B	4
9.a	4
9.c	
9.d	5
9.e	5
9.f	6
Prob. B	6
Code	7

This documents contains figures for HW showing the convergence of the sequence of functions

HW4 P159, 26, 29, 30, Prob. C, D

Only plot the sequence of functions $f_n(x)$, not the sum.

29

$$f_n(x) = ne^{-nx}$$

Notice that when x = 0, $f_n(x) = n$

30

$$f_n(x) = \frac{x}{n^a(1+nx^2)}$$

If a = 1

Prob C

$$f_n(x) = \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

Notice that if n = 1, $f_n(x) = cos(x)$

HW3 P149, 9: a, c, d, e, f and Prob.B

9.a

9.c

9.d

$$f_n(x) = \frac{nx}{1 + (nx)^2}, x \in [0, \infty)$$

9.e

$$f_n(x) = xe^{-nx}, x \in [0, \infty)$$

9.f

$$f_n(x) = nxe^{-nx}, x \in [0, \infty)$$

Prob. B

$$0 \quad if x \in [-1, -\frac{1}{n}]$$

$$f_n(x) = \frac{n}{2}x + \frac{1}{2} \quad if x \in [-\frac{1}{n}, \frac{1}{2}]$$

$$1 \quad if x \in (\frac{1}{n}, 1]$$

\mathbf{Code}

This document is reproducible in R using Rmarkdown, code is host on my github: (here is the link).