Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Departamento de Sistemas e Computação

Disciplina: FMCC I Professor: Eanes Torres

Lista de Exercícios 13 - Somatórios, PA e PG

*OBS: Para as questões de somatório considere $\sum_{k=1}^n k$ como sendo:

$$\sum_{k=1}^{n} k$$

- 1. (Fácil) Escreva as somas sem a notação sigma. Depois calcule-as:
 - a) $\sum_{k=1}^{2} \frac{6k}{k+1}$
 - b) $\sum_{k=1}^4 \cos(k\pi)$
 - c) $\sum_{k=1}^{3} (-1)^{k+1} \cdot sen(\frac{\pi}{k})$
- 2. (Média) Calcule o valor de:
 - a) $\sum_{j=1}^{5} \frac{(-1)^{j+1}}{j}$
 - b) $\sum_{k=2}^{n} (2^k 2^{k-1})$
- 3. (Fácil) Expresse as seguintes somas em notação sigma:
 - a) 1+2+3+4+5+6
 - b) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$
 - c) $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5}$
- 4. (Fácil) Suponha que $\sum_{k=1}^n a_k = -5$ e que $\sum_{k=1}^n b_k = 6$ determine os valores de:
 - a) $\sum_{k=1}^{n} 3a_k$
 - b) $\sum_{k=1}^{n} \frac{b_k}{6}$
 - c) $\sum_{k=1}^{n} (a_k + b_k)$
 - $d) \sum_{k=1}^{n} (a_k b_k)$
 - e) $\sum_{k=1}^{n} (b_k 2a_k)$
- $5.\ ({\rm M\'edio})$ Calcule as somas:
 - a) $\sum_{k=1}^{7} (-2k)$
 - b) $\sum_{k=1}^{6} (3-k^2)$
 - c) $\sum_{k=1}^{5} k(3k+5)$

d)
$$\sum_{k=1}^{5} \frac{k^3}{225} + (\sum_{k=1}^{5} k)^3$$

- 6. (Difícil) Expresse as seguintes somas infinitas em notação sigma:
 - a) $e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$
 - b) $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$
 - c) $\pi = 2\sqrt{3} \cdot \left[1 \left(\frac{1}{3.3}\right) + \left(\frac{1}{3^2.5}\right) \left(\frac{1}{3^3.7}\right) + \dots\right]$
- 7. (Fácil) A soma de 5 termos consecutivos de uma PA é 100. Encontre o primeiro termo.
- 8. (Fácil) Qual a soma dos múltiplos de 11 compreendidos entre 100 e 10000?
- 9. (Média) A soma dos 20 termos de uma PA é 500. Se o primeiro termo dessa PA é 5, qual é a razão r dessa PA?
- 10. (Média) (UF CE) A soma dos 15 primeiros termos de uma progressão aritmética é 150. O oitavo termo dessa PA é:
 - a) 10
 - b) 15
 - c) 20
 - d) 25
 - e) 30
- 11. (Fácil) Resolva os problemas a seguir:
 - a) Numa P.A. onde a7 = 1 e a10 = 16, calcular o a1.
 - b) Calcular 3 + 6 + 9 + ... + 120.
- 12. (Fácil) Resolva os seguintes problemas:
 - a) Qual a equação que determina a soma dos n primeiros termos da PA: [2,10,28,26...]?
 - b) Determine x de modo que a sequência [4, 4x, 10x+6] forme uma progressão geométrica.
- 13. (Fácil) Comprei um automóvel e vou pagá-lo em 7 prestações crescentes, de modo que a primeira prestação seja de 100 reais e cada uma das seguintes seja o dobro da anterior. Qual é o preço do automóvel?
 - a) RS12.700,00
 - b) RS13.000,00
 - c) RS11.800,00
 - d) RS13, 200.00
- 14. (Difícil) A medida do lado, o perímetro e a área de um quadrado estão, nessa ordem, em progressão geométrica. Qual a área do quadrado?

Gabarito

- 1. a) 7
 - b) 0
 - c) $\frac{\sqrt{3}-2}{2}$
- 2. a) $\frac{47}{60}$
 - b) $2^n 2$
- 3. a) $\sum_{k=1}^{6} k$ b) $\sum_{k=1}^{4} \frac{1}{2^k}$ c) $\sum_{k=1}^{5} (-1)^{k+1} \cdot \frac{1}{k}$
- 4. a) -15
 - b) 1
 - c) 1
 - d) -11
 - e) 16
- 5. a) -56
 - b) -73
 - c) 240
 - d) 3376
- 6. a) $\sum_{k=0}^{\infty} \frac{1}{k!}$
 - b) $\sum_{k=1}^{\infty} \frac{1}{k^2}$
 - c) $\sum_{k=0}^{\infty} \frac{1 \cdot (-1)^k}{3^k \cdot (2 \cdot k + 1)}$
- 7. 18
- 8. Sn = 4.549.050
- 9.
- 10.
- 11. a) a1 = -29
 - b) 2460
- 12. a) $4n^2 2n$
 - b) x = 6 ou x = -0.5
- 13.
- 14.