LECTURE 3 INFORMATION SET DECODING ALGORITHMS

Summer School: Introduction to Quantum-Safe Cryptography

Thomas Debris-Alazard

July 03, 2024

Inria, École Polytechnique

THE OBJECTIVE OF THE DAY

Aim of Any Code-Based Cryptosystem:

Security relies on the hardness of the Decoding Problem (DP)

How to trust DP hardness?

→ By designing and studying algorithms solving DP!

An Old History (since 60 years):

Best algorithms: refinement of Prange's algorithm (1962)

Information Set Decoding (ISD) algorithms

→ Also a different and recent approach which turns out to be competitive: Dual Attacks

COURSE OUTLINE

- Prange's Algorithm
- Find Collisions: Dumer's Algorithm
- Information Set Decoding Algorithms (ISD)
- Generalization of ISD to Reach Any Weights

PRANGE'S ALGORITHM

TWO POINTS OF VIEW

Our Aim:

Describing Prange's algorithm

Two points of view:

- Noisy codewords and generator matrices
- · Syndromes and parity-check matrices

TWO POINTS OF VIEW

Our Aim:

Describing Prange's algorithm

Two points of view:

- Noisy codewords and generator matrices
- Syndromes and parity-check matrices

DON'T FORGET THE LINEAR ALGEBRA

- $\bullet \ \ \text{Given: } \mathcal{C} \text{ be an } [n,k]_q\text{-code and } \mathbf{y} \stackrel{\text{def}}{=} \mathbf{c} + \mathbf{e} \text{ where } \left\{ \begin{array}{c} \mathbf{c} \in \mathcal{C} \\ |\mathbf{e}| = t \end{array} \right.$
- Recover: e

Exhaustive Search: try all the $c' \in C$ until |y - c'| = t

 \longrightarrow If unicity of the solution: cost given by $\sharp \mathcal{C}=q^k$

Don't forget that C is a linear subset!

To fix the intuition: suppose t (Hamming weight of the error) being small

How could we use the "linearity" of ${\cal C}$ knowing that t is small?

INFORMATION SET

First remark of Prange: use Information Sets!

Information Set:

 $\mathcal{I} \subseteq \{1, \dots, n\}$ of size k is an information set of the $[n, k]_q$ - \mathcal{C} if:

$$\forall \mathsf{x} \in \mathbb{F}_q^k. \ \exists (\mathsf{unique}) \ \mathsf{c} \in \mathcal{C}: \ \mathsf{c}_{\mathcal{I}} = \mathsf{x} \ \left(\mathsf{where} \ \mathsf{c}_{\mathcal{I}} = (c_i)_{i \in \mathcal{I}}\right)$$

Every codewords: uniquely determined by $k = \dim(\mathcal{C})$ coordinates given by \mathcal{I}

How to recover
$$c \in \mathcal{C}$$
 from $y=c+e$ where $|e|=t$ by using information sets?
$$\Big(t \text{ can be supposed small}\Big)$$

First remark of Prange: use Information Sets!

Information Set:

 $\mathcal{I} \subseteq \{1, \dots, n\}$ of size k is an information set of the $[n, k]_q$ - \mathcal{C} if:

$$\forall \mathsf{x} \in \mathbb{F}_q^k. \ \exists (\mathsf{unique}) \ \mathsf{c} \in \mathcal{C}: \ \mathsf{c}_{\mathcal{I}} = \mathsf{x} \ \left(\mathsf{where} \ \mathsf{c}_{\mathcal{I}} = (c_i)_{i \in \mathcal{I}}\right)$$

Every codewords: uniquely determined by $k = \dim(\mathcal{C})$ coordinates given by \mathcal{I}

How to recover
$$c \in \mathcal{C}$$
 from $y = c + e$ where $|e| = t$ by using information sets?
$$\Big(t \text{ can be supposed small}\Big)$$

$$\longrightarrow$$
 If $e_{\mathcal{I}} = 0$ (no errors on \mathcal{I}),

then computing the unique $d \in C$ such that $d_{\mathcal{I}} = y_{\mathcal{I}}$ gives c as $c_{\mathcal{I}} = y_{\mathcal{I}}$!

USING INFORMATION SETS

Given
$$\mathbf{x}\in\mathbb{F}_q^k$$
 and $\mathcal{I}\subseteq[1,n]$ an information set, how to compute the unique $\mathbf{c}\in\mathcal{C}$ such that $\mathbf{c}_{\mathcal{I}}=\mathbf{x}$?

Information Set:

 $\mathcal{I} \subseteq \{1, \dots, n\}$ of size k, information set of of the $[n, k]_q$ - \mathcal{C} if:

$$\forall \mathsf{x} \in \mathbb{F}_q^k. \ \exists (\mathsf{unique}) \ \mathsf{c} \in \mathcal{C}: \ \mathsf{c}_{\underline{\mathsf{T}}} = \mathsf{x} \ \left(\mathsf{where} \ \mathsf{c}_{\underline{\mathsf{T}}} = (c_i)_{i \in \underline{\mathsf{T}}}\right)$$

 \mathcal{I} information set for $\mathcal{C} \iff \forall \mathbf{G}$ generator matrix of $\mathcal{C}, \ \mathbf{G}_{\mathcal{I}} \in \mathbb{F}_q^{k \times k}$ has rank $k \iff \forall \mathbf{G}$ generator matrix of $\mathcal{C}, \ \mathbf{G}_{\mathcal{I}}$ is invertible

Given an information set \mathcal{I} , suppose that $\mathcal{I} = [1, k]$, then, $G_{[1,k]}$ has rank k. By Gaussian elimination: $SG = (I_k \mid A) \quad \text{(still generator matrix)}$

Given $\mathbf{x} \in \mathbb{F}_a^k$,

 $c\stackrel{\text{def}}{=} xSG = (x\mid xA)$ is the unique codeword such that $c_{\mathcal{I}} = x$

PRANGE'S ALGORITHM

- Given: C an $[n, k]_q$ -code and $y \stackrel{\text{def}}{=} c^{\text{sol}} + e^{\text{sol}}$ where $\begin{cases} c^{\text{sol}} \in C \\ |e^{\text{sol}}| = t \end{cases}$
- Recover: esol
- 1. Pick an information set \mathcal{I} ,
- 2. Compute the unique $c \in C$ such that

$$c_{\mathcal{I}} = y_{\mathcal{I}}$$

3. You win if $|\mathbf{y} - \mathbf{c}| = t$, namely

$$y_{\mathcal{I}} = c_{\mathcal{I}}^{\text{sol}} \iff e_{\mathcal{I}}^{\text{sol}} = 0$$

Otherwise, go back to 1.

Running time of the algorithm: number of times we pick \mathcal{I} (times cost of Gaussian elimination)

TWO POINTS OF VIEW

Our Aim:

Describing Prange's algorithm

Two points of view:

- Noisy codewords and generator matrices
- Syndromes and parity-check matrices

SYNDROMES AND PARITY-CHECK MATRICES

Fixing
$$(H, s \stackrel{\text{def}}{=} He^T)$$
 where $|e| = t$.

 \longrightarrow Linear system: $n - k$ equations and n unknowns

 $\left(H \in \mathbb{F}_q^{(n-k) \times n}\right)$

But. . .

SYNDROMES AND PARITY-CHECK MATRICES

Fixing
$$(H, \mathbf{s} \stackrel{\text{def}}{=} \mathbf{H} \mathbf{e}^{\mathsf{T}})$$
 where $|\mathbf{e}| = t$.

 \longrightarrow Linear system: $n - k$ equations and n unknowns
$$\left(H \in \mathbb{F}_q^{(n-k) \times n}\right)$$
But...
with a non-linear constraint $\left(|\mathbf{e}| = t\right)$

SYNDROMES AND PARITY-CHECK MATRICES

Fixing
$$(H, s \stackrel{\text{def}}{=} He^T)$$
 where $|e| = t$.

Linear system: $n - k$ equations and n unknowns
$$(H \in \mathbb{F}_q^{(n-k) \times n})$$
But...
with a non-linear constraint $(|e| = t)$

Prange's Algorithm:

- 1. Fixing a random set of k unknowns to 0
- 2. Solving a square $(n k) \times (n k)$ linear system
- Hoping the solution has the good Hamming weight otherwise repeat by fixing other k coordinates to 0

PRANGE ALGORITHM WITH PARITY-CHECK MATRIX

Pick a set of k coordinates \mathcal{I} randomly

 \longrightarrow Suppose for the sake of simplicity that $\mathcal{I} = [n - k + 1, n]$

1. Perform a Gaussian elimination,

$$SH = (I_{n-k} \mid A)$$

- 2. Compute, $e^{\top} = \begin{pmatrix} Ss^{\top} \\ 0 \end{pmatrix}$
- 3. If $|\mathbf{e}| \neq t$, then return to step 1 by choosing another set of n-k coordinates where performing Gaussian elimination

RUNNING TIME OF PRANGE ALGORITHM

► If unicity of the solution, probability of success

$$p = \frac{\binom{n-k}{t}(q-1)^t}{\binom{n}{t}(q-1)^t}$$

► If N solutions, probability of success

$$p \approx N \times \frac{\binom{n-k}{t}(q-1)^t}{\binom{n}{t}(q-1)^t}$$

$$\longrightarrow$$
 But the number of solutions is $N = \max\left(1, \frac{\binom{n}{t}(q-1)^t}{q^{n-k}}\right)$

Conclusion:

Running time of Prange's algorithm (times the cost of Gaussian elimination),

$$\frac{1}{p} \quad \text{where} \quad p = \frac{\binom{n-k}{t}(q-1)^t}{\min\left(q^{n-k},\binom{n}{t}(q-1)^t\right)} \quad \text{probability of success of one iteration}$$

PRANGE'S ALGORITHM: WHAT ELSE?

Prange's algorithm: pick \mathcal{I} of size k and hope that $\mathbf{e}_{\mathcal{I}}=\mathbf{0}$

Is it not too strong to suppose that there are no errors on \mathcal{I} ,

i.e.,
$$e_{\tau} = 0$$
?

Natural idea: suppose there are p errors on \mathcal{I} , i.e., $|\mathbf{e}_{\mathcal{I}}| = p$

 \longrightarrow Compute all the codewords $\mathbf{c} \in \mathcal{C}$ such that $|\mathbf{c}_{\mathcal{I}} - \mathbf{y}_{\mathcal{I}}| = p$

Better probability of success, but a cost $\binom{k}{p}(q-1)^p$ per iteration (exponential)

$$\Big(\text{ test all the } \mathbf{z} \text{ with } |\mathbf{z}| = p \text{ as } \big(\mathbf{y}_{[1,k]} + \mathbf{z}\big) \, \big(\mathbf{I}_k, \mathbf{A}\big) \, \Big)$$

This algorithm is known as Lee-Brickell

COME BACK TO THE EXHAUSTIVE SEARCH

To understand how has been improved we need to backtrack!

Come Back to the Exhaustive Search:

Given
$$\left(\mathbf{H}, \mathbf{s}^{\top} \stackrel{\text{def}}{=} \mathbf{H} \mathbf{x}^{\top}\right)$$
 with $|\mathbf{x}| = t$

 \longrightarrow Try all the **e** with $|\mathbf{e}|$ and verify $\mathbf{He}^{\top} \stackrel{?}{=} \mathbf{s}^{\top}$

Dumer's Idea:

Take advantage of the birthday paradox by looking for columns collision!

BIRTHDAY PARADOX

How large should be a group of people for two of them to be born the same day?

BIRTHDAY PARADOX

How large should be a group of people for two of them to be born the same day?

 $\longrightarrow 23 \approx \sqrt{365}$ is basically enough for this to be true with probability $\approx 1/2$

(number of pairs with 23 people, $\frac{23 \times 22}{2} \approx 365$)

How large should be a group of people for two of them to be born the same day?

 \longrightarrow 23 $\approx \sqrt{365}$ is basically enough for this to be true with probability $\approx 1/2$

(number of pairs with 23 people, $\frac{23\times22}{2}\approx365$)

Birthday Paradox in Computer Science:

Generate lists $\mathcal{L}_1, \mathcal{L}_2 \subseteq \{0,1\}^\ell$ of size L with elements independently picked uniformly at random

How many elements do we expect in $\mathcal{L}_1 \cap \mathcal{L}_2$?

$$\mathbb{E} \Big(\sharp \; \mathcal{L}_1 \cap \mathcal{L}_2 \Big) = \tfrac{L^2}{2\ell}$$

 \longrightarrow With $L = \sqrt{2^{\ell}}$ we expect one element in the intersection!

Proof.

$$\mathcal{L}_1 = (X_1, ..., X_L)$$
 and $\mathcal{L}_2 = (Y_1, ..., Y_L)$, then

$$\sharp \ \mathcal{L}_1 \cap \mathcal{L}_2 = \sum_{i,j=1}^L \mathbf{1}_{\{X_i = Y_j\}}, \ \text{ then } \ \mathbb{E}\Big(\sharp \ \mathcal{L}_1 \cap \mathcal{L}_2\Big) = \sum_{i,j=1}^L \mathbb{P}\big(X_i = Y_j\big) = \sum_{i,j=1}^L \frac{1}{2^\ell}$$

Dumer's Idea: given $\left(H, Hx^{\top}\right)$

- 1. Split H in two, i.e., $H = (H_1, H_2)$
- 2. Compute the lists

$$\mathcal{L}_1 = \left\{ H_1 e_1^\top: \; |\textbf{e}_1| = \frac{t}{2} \right\} \; \text{ and } \; \mathcal{L}_2 = \left\{ \textbf{s}^\top - H_2 e_2^\top: \; |\textbf{e}_2| = \frac{t}{2} \right\}$$

3. Compute $\mathcal{L}_1 \cap \mathcal{L}_2$, if it is non-empty it gives a solutions $(\mathbf{e}_1, \mathbf{e}_2)$

if the solution x splits as (x_1, x_2) with $|x_1| = |x_2| = t/2$, then Dumer's algorithm finds it

$$\longrightarrow \text{It happens with probability} \quad \frac{\binom{n}{t/2}(q-1)^{t/2} \times \binom{n}{t/2}(q-1)^{t/2}}{\binom{n}{t}(q-1)^t} \approx 1$$

RUNNING TIME OF DUMER'S ALGORITHM

Dumer's Idea: given (H, Hx^{\top})

- 1. Split H in two, i.e., $H = (H_1, H_2)$
- 2. Compute the lists

$$\mathcal{L}_1 = \left\{ H_1 e_1^\top: \; |\textbf{e}_1| = \tfrac{t}{2} \right\} \; \text{ and } \; \mathcal{L}_2 = \left\{ \textbf{s}^\top - H_2 e_2^\top: \; |\textbf{e}_2| = \tfrac{t}{2} \right\}$$

- 3. Compute $\mathcal{L}_1 \cap \mathcal{L}_2$, if it is non-empty it gives solutions (e_1,e_2)
- ▶ Lists \mathcal{L}_1 and \mathcal{L}_2 have size

$$\binom{n/2}{t/2}(q-1)^{t/2} \approx \sqrt{\binom{n}{t}(q-1)^t} \qquad \left(\text{use that } \binom{n}{u}(q-1)^u \approx q^{n \cdot h_q(u/n)}\right)$$

- $\blacktriangleright \ \ \text{Intersection of lists} \ \mathcal{L}_1 \cap \mathcal{L}_2 \ \text{have size} \ \frac{\sqrt{\binom{n}{t}(q-1)^t}}{q^{n-k}} = \frac{\sqrt{\binom{n}{t}(q-1)^t}}{q^{n-k}}$
- Running time of Dumer's algorithm:

$$\underbrace{\sqrt{\binom{n}{t}(q-1)^t}}_{\text{cost to builds lists}} + \underbrace{\frac{\binom{n}{t}(q-1)^t}{q^{n-k}}}_{\text{cost to build intersections}}$$

▶ Dumer's Algorithm returns $\max \left(1, \frac{\binom{n}{t}(q-1)^t}{q^{n-k}}\right)$ solutions of the decoding problem!

ADVANTAGES OF COLLISIONS

- 1. It returns all solutions of decoding problem
- 2. When decoding at distance t_{GV} for codes of rate $k/n \rightarrow 1$,

Prange running time:
$$q^{n-k}$$
 ; Dumer running time: $\sqrt{q^{n-k}}$

- → Quadratic improvement over Prange's algorithm for these parameters!
- 3. Dumer's algorithm returns solutions in amortized time one if

$$\sqrt{\binom{n}{t}(q-1)^t} = \frac{\binom{n}{t}(q-1)^t}{q^{n-k}} \iff \binom{n}{t} = \left(q^{n-k}\right)^2$$

BEST OF BOTH WORLDS?

Would it be possible to combine both Prange and Dumer's approach?

→ Yes! It corresponds to the birth of Information Set Decoding (ISD) algorithms

INFORMATION SET DECODING ALGORITHMS

KEY-IDEAS

Combination of Ideas:

- ► We want to keep the Prange bet
- ightharpoonup We want to use the fact that we can decode codes of rate k/n close to 1 with quadratic gain over Prange

$$\mathsf{SH} = \begin{pmatrix} \mathsf{1}_{n-k-\ell} & \mathsf{H}' \\ \mathsf{0} & \mathsf{H}'' \end{pmatrix} \quad \text{where} \quad \mathsf{H}'' \in \mathbb{F}_q^{\ell \times (k+\ell)}$$

With this partial Gaussian elimination,

$$\begin{split} He^\top &= s^\top \iff SHe^\top = Ss^\top \\ &\iff \begin{pmatrix} \mathbf{1}_{n-k-\ell} & H' \\ 0 & H'' \end{pmatrix} \begin{pmatrix} e'^\top \\ e''^\top \end{pmatrix} \\ &\iff \begin{cases} e'^\top + H'e''^\top = s'^\top \\ H''e''^\top = s''^\top \\ \end{split}$$

The Algorithm:

1. Solve the decoding problem at distance *p* by computing all the solutions:

$$H''e''^{\top} = s''^{\top}$$

 \longrightarrow It corresponds to decode a code of dimension k and length $k+\ell$ at distance p

- 2. Deduce a solutions (e', e'')
 - \longrightarrow It will succeed if there are p errors on the window of size $k + \ell$

Two parameters in ISD: p and ℓ

Information Set Decoding:

- 1. Select randomly a window of size $k + \ell$
- 2. Solve a decoding problem at distance p for a code of dimension k and length $k + \ell$ but compute all solutions. Deduce potential solutions
- 3. If a solution has an Hamming weight p on the window of size $k+\ell$ will obtain it. Otherwise we repeat Step 1
- ► Prange's bet is step 1
- Use Dumer's algorithm to solve step 2: nice approach as we can compute (for well-chosen p and l) all solutions in amortized time 1

It Interpolates Prange and Dumer' Algorithm:

Prange's algorithm: $\ell = p = 0$; Dumer's algorithm: $\ell = n - k$ and p = t

To improve the previous algorithm:

Use "better" algorithm than Dumer to solve the sub-decoding problem at distance p

PRANGE'S ALGORITHM FOR ANY WEIGHTS

WHICH DISTANCES ARE EASILY REACHED WITH PRANGE ALGORITHM?

Prange's Algorithm

1. Perform a Gaussian elimination,

$$SH = (I_{n-k} \mid A)$$

- 2. Compute, $e^{\top} = \begin{pmatrix} Ss^{\top} \\ 0 \end{pmatrix}$
- 3. If $|\mathbf{e}| \neq t$, then return to step 1 by choosing another set of n-k coordinates where performing Gaussian elimination

By supposing that ${\bf s}$ is uniform, what is the typical weight of ${\bf e}$ after one iteration?

WHICH DISTANCES ARE EASILY REACHED WITH PRANGE ALGORITHM?

Prange's Algorithm

1. Perform a Gaussian elimination,

$$SH = (I_{n-k} \mid A)$$

- 2. Compute, $e^{\top} = \begin{pmatrix} Ss^{\top} \\ 0 \end{pmatrix}$
- 3. If $|\mathbf{e}| \neq t$, then return to step 1 by choosing another set of n-k coordinates where performing Gaussian elimination

By supposing that ${\bf s}$ is uniform, what is the typical weight of ${\bf e}$ after one iteration?

$$|\mathbf{e}| = \frac{q-1}{q}(n-k)$$

 \longrightarrow The Hamming $\frac{q-1}{q}(n-k)$ can easily be reached in Prange's algorithm!

How could we reach larger weights easily?

WHAT ABOUT LARGE WEIGHTS?

Don't fix k unknowns to 0!

Generalized Prange's Algorithm

1. Perform a Gaussian elimination,

$$SH = (I_{n-k} \mid A)$$

- 2. Compute, $e^{\top} = \begin{pmatrix} Ss^{\top} \\ x \end{pmatrix}$
- 3. If $|\mathbf{e}| \neq t$, then return to step 1 by choosing another set of n-k coordinates where performing Gaussian elimination

By supposing that ${\bf s}$ is uniform, what is the typical weight of ${\bf e}$ after one iteration?

WHAT ABOUT LARGE WEIGHTS?

Don't fix k unknowns to 0!

Generalized Prange's Algorithm

1. Perform a Gaussian elimination.

$$SH = (I_{n-k} \mid A)$$

- 2. Compute, $\mathbf{e}^{\top} = \begin{pmatrix} \mathbf{S}\mathbf{s}^{\top} \\ \mathbf{x} \end{pmatrix}$
- 3. If $|\mathbf{e}| \neq t$, then return to step 1 by choosing another set of n-k coordinates where performing Gaussian elimination

By supposing that **s** is uniform, what is the typical weight of **e** after one iteration?

$$|\mathbf{e}| = |\mathbf{x}| + \frac{q-1}{q}(n-k)$$

 \longrightarrow $\mathbf{x} \in \mathbb{F}_q^k$, by carefully choosing $|\mathbf{x}| \in [1, k]$ we can reach easily any weight in the interval

$$\left[\frac{q-1}{q}(n-k), k+\frac{q-1}{q}(n-k)\right]$$

$$(R = k/n \text{ and } \tau = t/n)$$

