Санкт-Петербургский Государственный Политехнический Университет Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ

По лабораторной работе №8

Дисциплина: Телекоммуникационные технологии Тема: Модель телекоммуникационного канала

Выполнила студентка гр. 33501/2	Белобородова В. Г.
Преподаватель	Богач Н.В.
	2018 г

Санкт-Петербург 2018

Оглавление

1. Цель работы	3
 Постановка задачи 	
3. Теоретические сведения	
4. Ход работы	
Передатчик сигнала	
5. Вывод	

1. Цель работы

Создать модель телекоммуникационного канала.

2. Постановка задачи

Пакетный сигнал длительностью 200 мкс состоит из 64 бит полезной информации и 8 нулевых tail-бит. В нулевом 16-битном слове пакета передается ID, в первом - период излучения в мс, во втором – сквозной номер пакета, в третьем - контрольная сумма (СКС-16). На передающей стороне пакет сформированный таким образом проходит следующие этапы обработки:

- 1. Помехоустойчивое кодирование сверточным кодом с образующими полиномами 753, 561(octal) и кодовым ограничением 9. На выходе кодера количество бит становится равным 144.
 - 2. Перемежение бит. Количество бит на этом этапе остается неизменным.
- 3. Модуляция символов. На этом этапе пакет из 144 полученных с выхода перемежителя бит разбивается на 24 символа из 6 бит. Генерируется таблица функций Уолша длиной 64 бита. Каждый 6битный символ заменяется последовательностью Уолша, номер которой равен значению данных 6-ти бит. Т.е. на выходе модулятора получается 24 * 64 = 1536 знаковых символов.
- 4. Прямое расширение спектра. Полученная последовательность из 1536 символов периодически умножается с учетом знака на ПСП длиной 511 символов. Далее к началу сформированного символьного пакета прикрепляется немодулированная ПСП. Т.о. символьная длина становится равной 1747. Далее полученные символы модулируются методом BPSK.

Задача: по имеющейся записи сигнала из эфира и коду модели передатчика создать модель приемника, в которой найти позицию начала пакета и, выполнив операции демодуляции, деперемежения и декодирования, получить передаваемые параметры: ID, период, и номер пакета. Известно, что ID = 4, период 100 мс, номер пакета 373. Запись сделана с передискретизацией 2, т.е. одному BPSK символу соответствуют 2 лежащих друг за другом отсчета в файле. Запись сделана на нулевой частоте и представляет из себя последовательность 32-х битных комплексных отсчетов, где младшие 16 бит вещественная часть, старшие 16 бит — мнимая часть. Таблица перемежения и последовательность ПСП приведена.

3. Теоретические сведения

Приемник и передающее устройство выполняют последовательность обратимых операций над пакетом обмена данными. В канале передачи информации действуют шумы. При неизвестных параметрах шума на приемнике выполняется синхронизация записи сигнала по известной опорной псевдослучайной последовательности (ПСП).

При демодуляции и одновременном сужении спектра принятого сигнала также используется корреляционный метод — обратное быстрое преобразование Уолша — Адамара. В обоих случаях - при синхронизации и при сужении спектра — определяется максимальный по абсолютному значению элемент строки матрицы результатов, который указывает на начало пакета (при синхронизации) или на бинарный номер строки матрицы Уолша (при сужении спектра и демодуляции).

4. Ход работы

Передатчик сигнала

Так как при преобразовании сигнала посылка наращивается и наращивается, нет смысла приводить в отчете сообщение на разных стадиях его формирования. Ограничимся комментариями в коде.

Последовательность действий, проводимых с сообщением:

- 1. Кодирование свёрточным кодом с заданными параметрами;
- 2. Перемежение элементов сообщения;
- 3. Расширение спектра;
- 4. BPSK манипуляция;
- 5. Избыточное увеличение сообщения в 2 раза;
- 6. Запись сообщения в форме int16.

Следовательно, для расшифровки сообщения нужно провести похожие действия в обратном порядке:

- 1. Считывание сообщения в формате int16;
- 2. Откидывание клонированной части сообщения или какая-либо полезная её обработка;
- 3. BPSK декодирование;
- 4. Сужение спектра;
- 5. Перемежение элементов сообщения;
- 6. Свёрточное декодирование.

Стоит помнить, что хоть в Матлабе и нет строгой типизации данных, в ходе данных преобразований приходится переводить сообщение из формата в формат много раз для корректной работы встроенных функций.

```
clc;
clear all;
close all;
%Последовательность ПСП
1; -1; -1;
                    1; -1; -1; -1; -1; -1; -
  1; -1; -1; -1; 1; -1; 1; -1; 1; -1; 1; -1;
                        1; 1; 1;
         -1; -1; 1; -1; -1; 1; -1;
 -1; 1; 1; 1; -1; 1;
1; -1; -1; 1; -1; 1;
    1;
      1;
        1;
   1;
1; 1; -1; -1;
    1; -1; -1;
  1; -1;
    1; 1; -1; -1; -1; 1; -1;
                1; -1; -1; 1; -1; -1; -1;
  1; -1;
1; 1; -1; 1; -1; 1;
  1; -1; -1; -1; -1; 1; 1; 1; 1;
                          1; -1; -1;
1; -1;
   1; -1; -1;
       1; -1; -1; 1; 1; -1; 1; 1; 1; 1;
    1; -1;
  1;
1; 1; -1; 1; -1; 1; -1;
1; -1; -1;
               1; -1; -1;
                    1; 1; 1; -1; -1; 1;
1; -1; -1; 1;
      1; 1;
         1; 1; -1; -1; 1;
                  1; 1;
                     1; -1; -1; -1;
```

```
1; -1; -1;
          1; 1; -1; -1; 1; 1; -1; 1; -1; -1; -1; 1; 1;
                                                                   1;
      1;
          1;
1; -1;
              1; 1; -1; -1; -1; -1; 1; 1; 1
%Последовательность перемежения
interleaver = [0; 133; 122; 111; 100; 89; 78; 67; 56; 45; 34; 23; 12; 1;
134; 123;
   112; 101; 90; 79; 68; 57; 46; 35; 24; 13; 2; 135; 124; 113; 102; 91;
   80; 69; 58; 47; 36; 25; 14; 3; 136; 125; 114; 103; 92; 81; 70; 59;
   48; 37; 26; 15; 4; 137; 126; 115; 104; 93; 82; 71; 60; 49; 38; 27;
   16; 5; 138; 127; 116; 105; 94; 83; 72; 61; 50; 39; 28; 17; 6; 139;
   128; 117; 106; 95; 84; 73; 62; 51; 40; 29; 18; 7; 140; 129; 118; 107;
   96; 85; 74; 63; 52; 41; 30; 19; 8; 141; 130; 119; 108; 97; 86; 75;
   64; 53; 42; 31; 20; 9; 142; 131; 120; 109; 98; 87; 76; 65; 54; 43;
   32; 21; 10; 143; 132; 121; 110; 99; 88; 77; 66; 55; 44; 33; 22; 11];
%Получаем сигнал
file=fopen('C:\test1.sig', 'r');
IQ record = fread(file, 'int16');
fclose(file);
if(size(IQ record, 1)>8268) %Условия получения пакета
else %Простая дешифрация пакетов
   IQ record= IQ record(81:end)';
%Передискретизация равна 2, т.е. отсчеты дублируются подряд
%Поэтому вещественную часть берем по нечетным числам,а комплексную - по
re part = IQ record(1:2:end);
im part = IQ record(2:2:end);
%Возвращаемся к комплексной форме
IQ record = complex(re part, im part);
IQ record = IQ record(1:2:end);
%Демодулируем сигнал
IQ=pskdemod(IQ record, 2);
%Преобразуем униполярную форму в биполярную
for u=1:1:length(IQ)
    if (IQ(u)==0)
        IQ(u) = -1;
    else IQ(u)=1;
    end:
end;
signal to demodulate2=IQ(length(PRS)+1:end);
signal to demodulate1=signal to demodulate2./[PRS' PRS' PRS(1:3)'];
% Walsh matrix generation by Hadamard matrix index rearrangement
% http://www.mathworks.com/help/signal/examples/discrete-walsh-hadamard-
transform.html
N = 64;
hadamardMatrix=hadamard(N);
                                       % Hadamard index
HadIdx = 0:N-1;
M = log2(N) + 1;
binHadIdx = fliplr(dec2bin(HadIdx,M))-'0'; % Bit reversing of the binary
index
binSeqIdx = zeros(N, M-1);
                                         % Pre-allocate memory
```

```
for k = M:-1:2
   % Binary sequency index
   binSeqIdx(:,k) = xor(binHadIdx(:,k),binHadIdx(:,k-1));
walshMatrix = hadamardMatrix(SeqIdx+1,:); % 1-based indexing
signal2=reshape(signal to demodulate1,[64 24])';
%Получили значения 6ти битных символов
for j=1:1:size(signal2,1)
for i=1:1:length(walshMatrix)
    if (walshMatrix(i,:) == signal2(j,:))
       Walsh row number(j)=i;
    end
end
end
% Walsh row number
%из 10го числа в бинарный код
for i=1:1:24
   line(i,1:6) = de2bi( Walsh row number(i)-1,6);
   line (i, 1:6) = line (i, end:-1:1);
end:
sig=reshape(line',[1 144]);
for i=1:1:144
   sig2(interleaver(i)+1)=sig(i);
end
tr1=poly2trellis(9,[753 561]);
tblen=9;
decode packet=vitdec(sig2,tr1,9,'cont','hard');
[n1,r1] = biterr(decode packet(tblen+1:end), msg(1:end-tblen))
```

В итоге было получено сообщение, совпадающее с исходным. Следовательно, обратные преобразования проведены верно.

5. Вывод

В данной работе модулируются передатчик и приёмник, используемые для передачи и приёма данных. Был проанализирован передатчик и на основе информации о его воздействии на исходное сообщение был написан приёмник. Приёмник проводит обратную последовательность действий, чтобы получить исходное сообщение. Приёмнику необходимо знать параметры и матрицы, использованные для кодирования сообщения.