

PREDICCIÓN DE PRECIOS DE VEHÍCULOS

MACHINE LEARNING MODELS

MAYCO CASTELLANOS

MIGE

- LIMPIEZA Y PREPARACIÓN DE DATOS.
- DESARROLLO DE MODELOS
- COMPARAR RANDOM FOREST VS. XGBOOST.

 $\times \times \times \times$

✓ OPTIMIZAR MODELOS.

✓ RESULTADOS Y HALLAZGOS

MODEL

YEAR

TRANSMISION

MILEAGE

FUELTYPE

TAX

MPG

ENGINE SIZE

MAKE

NA values:

Se imputaron valores nulos a través de la media agrupada por marca.

Valores Duplicados:

Se eliminaron los duplicados.

Outliers:

Se realizó eliminación de un registro que contenía outlier en la variable año (2060)

× × × ×

X X X X

××××

 \times \times \times

PROCESIMENTO

Codificación: Se Aplicó One Hot Encoding a variables categóricas

MAKE

FUELTYPE

TRANSMISION

Escalado: Se utilizó Min-Max Scaling para normalizar las vairbales numéricas.

YEAR

MILEAGE

ENGINE SIZE

TAX

MPG

División: El dataset se dividió en un 70% para entrenamiento y un 30% para prueba.

No se toma en cuenta la variable categorica model por su alta cardinalidad para los modelos

x x x x

 \times \times \times

 \times \times \times

 $\times \times \times \times$

MODELOS

XXXXXXXXXXXX

Fase prelin	ninar (basel	ine)
I GOO PIOIIII			1110/

Resultados MAE

REGRESION LINEAL	·····
RANDOM FOREST	·····
XGBOOST	······

1440.67

2962.55

1496.08

MODELOS

 \times \times \times \times \times \times \times \times \times \times \times \times

Fase prelin	ninar (basel	ine)
I GOO PIOIIII			1110/

Resultados MAE

REGRESION LINEAL		2962.55
RANDOM FOREST	······································	1440.67
XGBOOST	······>	1496.08

MODELADO CON MEJORES HIPERPARAMETROS GRID SEARCH SELECCIÓN DE MEJORES FEATURES

SELECCION DE MEJORES FEATURES

FEATURE_IMPORTANCE_

RESULTADOS

	Ajuste de Hiperparametros	Grid Search	Mejores Features
Random Forest	1410.67	1496.78	1553.23
XGBoost	1386.53	1358.74	1562.91

RESULTATOS

	Ajuste de Hiperparametros	Grid Search	Mejores Features
Random Forest	1410.67	1496.78	1553.23
XGBoost	1386.53	1358.74	1562.91

GMGUSINES

Eficiencia computacional: XGBoost demostró ser más eficiente en tiempo de entrenamiento, ya que utiliza técnicas como el boosting secuencial y la poda de árboles, lo que lo hace más ágil que Random Forest, que entrena múltiples árboles de forma paralela.

Complejidad del modelo: Random Forest es más sencillo de interpretar y menos sensible a los hiperparámetros, lo que puede hacerlo una mejor opción para aplicaciones rápidas o con menos necesidad de ajuste fino.

XGBoost, aunque más complejo, ofrece mayor control y optimización, lo que permite obtener un modelo más ajustado si se configura correctamente..

#