SAMPLE LATEX PAPER/PROJECT WRITE-UP FORMAT

COLLIN KOFROTH

ABSTRACT. Here's a sample LATEX template. I'll highlight a few things that I do differently.

Contents

1. A Section	1
1.1. A Subsection	1
1.2. Another Subsection	1
2. Another Section	2
Acknowledgments	2
Appendix A. Pseudocode	2
References	2

1. A Section

This is how you generate a section. A few things that I want to point out are how the theorem environments look and differ (some are not in italics), and how I modified the remark environment (as well as the example one, which is not shown but similar).

1.1. A Subsection. This is how you generate a subsection. Here's a theorem.

Theorem 1.1 (Smoothness of Eigenfunctions, Lemma 14.5 in [8]). Let $z \in \mathbb{C}$ and $u \in L^2(M)$ be such that

$$(-h^2\Delta_a - z)u = 0,$$

interpreted in the sense of distributions. Then, $u \in C^{\infty}(M)$.

Here's a corollary.

Corollary 1.2. If z is an eigenvalue, then the corresponding eigenfunction is smooth.

Proof of Theorem 1.1. I don't want to prove this right now.

Moving on!

1.2. **Another Subsection.** The definitions look a bit different.

Definition 1.3 (Theorem 3.6 in [8]). Let $f \in \mathcal{S}(\mathbb{R})$. We say that \tilde{f} is an analytic extension of f to the complex plane provided that

- (1) $\tilde{f} \in C^{\infty}(\mathbb{C}), \ \tilde{f}\big|_{\mathbb{R}} = f$
- (2) supp $\tilde{f} \subset \{z \in \mathbb{C} : |\operatorname{Im} z| \le 1\}$
- (3) $\bar{\partial}_z \tilde{f}(z) = \mathcal{O}(|\operatorname{Im} z|^{\infty})$, where $\bar{\partial}_z = \frac{1}{2}(\partial_x + i\partial_y)$ is the Cauchy-Riemann operator.

I did not want the definitions to be italicized. Here is one more relevant type of mathematical statement.

Date: 1/10/2022.

Proposition 1.4. Let $f \in \mathcal{S}(\mathbb{R}^n)$, and fix a cutoff $\chi \in C_c^{\infty}((-1,1))$ such that $\chi \equiv 1$ on [-1/2,1/2]. Then,

$$\tilde{f}(z) := \frac{1}{2\pi} \chi(y) \int\limits_{\mathbb{R}} \chi(y\xi) \hat{f}(\xi) e^{i\xi(x+iy)} \, d\xi$$

is an almost-analytic extension of f to the complex plane (in the sense of Definition 1.3).

2. Another Section

Remarks also look a bit different.

Remark 2.1. Here is a remark on something, probably a very insightful comment. This puts a triangle at the end to indicate the end of the remark, which can be useful since remarks can be long and otherwise blend into the text. \triangle

One last thing is the bibliography. I'm using bibtex; see the file "biblio.bib." One must explicitly cite the articles for them to be shown. I will show some different types here ([1], [2, 3, 4], [5],[6],[7]), but I will omit one item from the aforementioned file (to demonstrate that it will not show up)

ACKNOWLEDGMENTS

I want to thank my poor handwriting and past graders for making me learn LaTeX earlier than many others.

APPENDIX A. PSEUDOCODE

Here's how you can do pseudocode:

```
Solve Ax_0 = c

r \leftarrow Bx_0 - c

tol \leftarrow 1e-6

i \leftarrow 0

while ||r_i|| > tol do

Solve Ad_i = r_i

x_{i+1} \leftarrow x_i - d_i

i++

end while
```

References

- G. Lebeau, Equation des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, Springer Netherlands, 1996, pp. 73–109.
- 2. C. S. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math 19 (1966), 439-444.
- 3. _____, Time decay for the nonlinear Klein-Gordon equations, Proc. Roy Soc. Ser. A 306 (1968), 291–296.
- 4. _____, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math 28 (1975), 229-264.
- K. Morgan and J. Wunsch, Generalized Price's law on fractional-order asymptotically flat stationary spacetimes, preprint, arXiv:2105.02305, 2021.
- J. Perry, Localized energy estimates for wave equations exterior to non-star-shaped obstacles, PhD dissertation, University
 of North Carolina at Chapel Hill, 2018.
- D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math. 130 (2008), no. 3, 571–634.
- 8. M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics, vol. 138, Amer. Math. Soc., 2012.