Due by Thursday, January 25th at 10pm, submit via git.

- Exercise 2.3-1
- Exercise 2.3-2
- Exercise 2.3-4
- Exercise 3.1-3
- Exercise 3.1-4
- Exercise 3.1-6
- Problem 2-1

2.3-1

Using Figure 2.4 as a model, illustrate the operation of merge sort on the array A = {3, 41, 52, 26, 38, 57, 9, 49} Solution:

2.3-2

Rewrite the MERGE procedure so that it does not use sentinels, instead stopping once either array L or R has had all its elements copied back to A and then copying the remainder of the other array back into A.

Solution:

Merge(A, p, q, r)

Input: two sorted array of integers

Output: a new array in sorted order

- 1. n1 = p q + 1
- 2. n = r q
- 3. let L[1,...,n1] and R[1,...,n2] be new arrays
- 4. for i = 1 to n1
- 5. L[i] = A[p + i 1]
- 6. for j = 1 to n2
- 7. R[j] = A[q + i]
- 8. i = 1
- 9. j = 1
- 10. k = p
- 11. while $i \le n1$ and $j \le n2$
- 12. if $L[i] \leq R[j]$
- 13. A[k] = L[i]

```
14.
            i = i + 1
15.
        else A[k] = R[j]
             j = j + 1
16.
17.
        k = k + 1
18. while i <= n1
19.
        A[k] = L[i]
        i = i + 1
20.
21.
       k = k + 1
22. while j \le n2
23.
        A[k] = R[j]
24.
        j = j + 1
25.
      k = k + 1
```

2.3-4

We can express insertion sort as a recursive procedure as follows. In order to sort A[1 ... n], we recursively sort A[1...n-1] and then insert A[n] into the sorted array A[1...n-1].

Solution:

```
Insertion-Sort( A, n)

1. If n \le 1

2. return

3. else Insertion-Sort(A, n-1)

4. last = A[n-1]

5. j = n-2

6. while j > 0 and A[j] >= last

7. A[j+1] = A[j]

8. j = j-1

9. A[j+1] = last
```

- 2-1 Insertion sort on small arrays in merge sort
- 1). The Show that insertion sort can sort the n=k sublists, each of length k, in $\theta(nk)$ worst-case time.

Solution:

Insertion sort can sort each length k part in $\theta(k^2)$ worst-time, so for total n / k parts, the time will be $\theta(n / k^* (k^2)) = \theta(nk)$.

2). Show how to merge the sub-lists in $\theta(n|g(n/k))$ worst-case time.

Solution:

Since now we have totally n/k sub-lists to merge, which means our recursion tree's height is Ig(n / k).

And for each level we still got n items to merge, which will take n times of comparison in the worst case.

so the total time is $\theta(n|g(n/k))$ in this case.

3). Given that the modified algorithm runs in $\theta(nk + nlg(n / k))$ worst-case time, what is the largest value of k as a function of n for which the modified algorithm has the same running time as standard merge sort, in terms of θ -notation?

Viewing k as a function of n, as long as $k(n) \in O(lg(n))$, it has the same asymptotic. In particular, for any constant choice

of k, the asymptotic are the same.

4). How should we choose k in practice?

Solution

In particular, a constant choice of k is optimal. In practice we could find the best choice of this k by just trying and timing for various values for sufficiently large n.

3.1-3

Explain why the statement, "The running time of algorithm A is at least O(n^2) is meaningless.

Solution:

It is true because big O notation is just an upper bound, and there are lots of functions that have growth rate less than n^2 . We could say that a linear or constant has big $O(n^2)$, but it is of no use for us to evaluate our functions.

3.1-4

Is $2^{n} + 1 = O(2^{n})$? Is $2^{n} = O(2^{n})$?

Solution:

For $2^{n} + 1$, it equals to $2 * 2^{n}$ for all n that is greater than 0. So it is $O(2^{n})$.

While for $2^{(2n)}$, if it were, there will exist a n0 that for all n > n0, $2^{(2n)} < c * 2^n$, for which c is a constant.

We do some calculation and will find that $2^n < c$, which is impossible, so $2^n(2n)$ is not $O(2^n)$.

3.1-6

Prove that the running time of an algorithm is $\theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is O(g(n)).

Solution:

By Theorem 3.1, if the running time is O(g(n)), the running time is O(g(n)), which implies that for any input of size $n \ge n0$ the running time is bounded above by c1*g(n) for some c1. This includes the running time on the worst-case input.

Theorem 3.1 also implies the running time is $\Omega(g(n))$, which implies that for any input of size $n \ge n0$ the running time is bounded below by c2*g(n) for some c2. This includes the running time of the best-case input.

On the other hand, the running time of any input is bounded above by the worst-case running time and bounded below by the best-case running time. If the worst-case and best-case running times are O(g(n)) and $\Omega(g(n))$ respectively, then the running time of any input of size n must be O(g(n)) and $\Omega(g(n))$. Theorem 3.1 implies that the running time is O(g(n)).