Mining Social Media to Forecast Stock Market Behavior

Paulo Cortez

ALGORITMI R&D Center

Department of Information Systems
University of Minho

http://www3.dsi.uminho.pt/pcortez
pcortez@dsi.uminho.pt

Work performed in collaboration with **Nuno Oliveira** (former Phd student) and **Nelson Areal** (Dep. Management, U. Minho).

Motivation

Analysis of stock market behavior (e.g., returns, volatility, trading volume) permits more informed NYSE investment decisions

Investor **sentiment** and **attention** indicators may **affect stock** market behavior

Advantages of social media indicators:

Direct measure

stocks, indices)

- Faster and cheaper creation than survey based

State of the Art

	Sentiment		Attent	Financial Analysis			Prediction				
Study	Source	Meth.b	Comb.	Source ^s	Per^d	Stocks	Meth/	Data	Data#	St^h	Sur
(Solt and Statman, 1988)	S				390	Ix.	MK	2.2y			
(Lee et al., 1991)	F				m	Pf	MR	209			
(Neal and Wheatley, 1998)	F				m,q,a	Pf	MR	60Y			
(Fisher and Statman, 2000)	S				m	lx Pf	MR	1-3y			
(Tumarkin and Whitelaw, 2001)	MB			MB	d	I	VAR	1100			
(Lee et al., 2002)	S				W	Ex	GARCH	2.2V			
(Antweiler and Frank, 2004)	MB	ML.	Contract to the	MB	d	1	MR	TV			
(Brown and Cliff, 2004)	FS	377(2)	KEPca.		00.w	Pf	VAR	33y			
(Brown and Cliff, 2005)	Control Control		450000000000		m	Pf	MR	igy			
(Das et al., 2005)		ML.		MB,N	d	I	MR	7m			
(Baker and Wurgler, 2006)	F		Pca	OFFICE STREET, ST.	m	Pr	MR.	38y			
(Qiu and Welch, 2006)	F,S		CALCULATE OF THE PARTY OF THE P		m,q	Pf	MR	38y			
(Schmeling, 2007)	S				W	Ex	MR				
(Das and Chen, 2007)	MB	ML.		MB	d	b.J	MR	4y 2m			
(Tetlock, 2007)	N	GL			d	Am,lx,Pf		15y			
(He and Hung, 2009)	S	100	Pca		m	I	MR				
(Schmeling, 2009)	š		7.75		m	Am.Pf	MR	41y 21y			
(Kurov, 2010)	ES		Pca		d	k.I	MR	1.4y			
(Yu and Yuan, 2011)	F		Pca		m	Am	MR				
(Bollen et al., 2011)	M	GL	1.4		ď	lx .	NN	42y 11m	rod		
(Deng et al., 2011)	N	GL		N	d	F	2ML,RW		2v		
(Groß-Klußmann and Hautsch, 2011)		P		17	i	i	VAR	18m	-7		
(Mao et al., 2011)	G.M.N.S	FL,K			d, w	lx	MR	20000000	30d,20w		
(Oh and Sheng, 2011)	M.	ML		M	d	I	8ML	15m 4m	10d		
(Sabherwal et al., 2011)	MB	ML.		MB	d,i	i	MR	13m	100		
(Sheu and Wei, 2011)	F	DVIII		DVLD	ď	Am	MR.TR	1000	59d		
		K			d	lx	Cor	4 y	594		
(Zhang et al., 2011b) (Baker et al., 2012)	F	D.	Pca			Am,Pf	MR	7m			
(Schumaker et al., 2012)	N	GL	rea		m	I I	SVM	25y	and		
		Kal.	200.00			Pf		23d	23d		
(Stambaugh et al., 2012)	F,S M	series	Pea		000		MR.	42y	CLOSE COLORS		
(Chen and Lazer, 2013)		GE	Pca		d	Am Pf	MR,TR MR	97d	25-33d		
(Corredor et al., 2013)	FS	171	TUL		m			18y			
(Garcia, 2013)		FL			d	lx,Pf	MR	100y	200		
(Hagenau et al., 2013)	N	MI.			d	I	TR	14Y	12y		
(Smailović et al., 2013)	M	ML.		72 8 6 8 672 NO	d	Į.	GC	10m			
(Yu et al., 2013)	B,M,MB,N			B,M,MB,N		Į.	MR	3m			
(Sprenger et al., 2014)	M	ML		M	d	I	MR.	6m		-	
(Al Nasseri et al., 2015)	M	ML		3.000	d	Ь	TR	13m	1V	$S\Gamma$	
(Nguyen et al., 2015)	MB	ML,GL		MB	d	I	SVM	13m	78d		

Research Objectives

Two main goals:

- Create a specialized microblogging stock market lexicon
- Rigorous evaluation of the predictive content of microblogging data for stock market behavior (e.g., diverse ML models, larger test sets, statistical test of predictive accuracy) and existing survey sentiment indices.

Microblogging stock market lexicon

Data: \$APPL in StockTwits and Twitter

Methods: fast statistical measures

350,000 labeled messages

"You're not Equifax's customer. You're its product." ~Bruce Schneier edition.cnn.com/2017/09/11/... **\$EFX** [cc @ ______] Bearish

Utilization of three adapted statistical measures:

- Term Frequency–Inverse Document Frequency (TFIDF)
- Information Gain (IG)
- Pointwise Mutual Information (PMI)

Two novel complementary statistics: Pdays and Massoc

12 lexicon versions for unique sentiment scores

• Four versions for each adapted statistical measure (TFIDF, IG, PMI) (e.g., PMI, PMI x Pdays, PMI x Massoc, PMI x Pdays x Massoc)

3 versions using sentiment scores for **affirmative** and **negated contexts**

Validation scheme 1: Holdout Split method

Training set First 75% posts

Test set Last 25% posts

Evaluation metrics such as percentage of correct classifications (CC1)
 and macro-averaged F-score (F_{Avg})

Validation Scheme 2: Rolling Window method

- 20 parts ordered by time. Each window has a training set (first 2/3 posts) and a test set (last 1/3 posts)
- Statistical significance of CC1 and F_{Avg} improvements for pairs of lexicons: paired Student's t-test and Wilcoxon signed rank test

Classification results

Lexicon	CC ₁	Unc CC2 P _{Bull} R _{Bull} F1 _{Bull} P _{Bear} R _{Bear} F1 _{Bear}	F_{Avg}
Panel A		ation results of holdout split method	
PMI _{Scr}		0.5 75.5 88.6 76.5 82.1 51.9 71.5 60.1	71.1
PMI _{Assoc}	75.6	0.5 76.0 88.5 77.4 82.6 52.6 70.6 60.3	71.4
PMI_{Days}	78.8	0.5 79.1 86.0 85.4 85.7 59.5 59.6 59.6	72.6
PMI _{A11}	78.8	0.5 79.2 86.0 85.5 85.8 59.7 59.5 59.6	72.7
TFIDF _{Scr}		0.5 74.7 88.6 75.1 81.3 50.6 71.9 59.4	70.4
TFIDF _{Ass}	_{soc} 74.8	0.5 75.1 88.4 76.2 81.8 51.3 70.8 59.5	70.7
TFIDF _{Da}	ys 78.4	0.5 78.7 85.6 85.4 85.5 58.8 58.3 58.6	72
TFIDF	78.5	0.5 78.8 85.5 85.5 85.5 59.1 58.1 58.6	72.1
IG_{Scr}	70.5	0.5 70.8 89.4 68.5 77.5 46.1 76.3 57.4	67.5
IG_{Assoc}	71.6	0.5 71.9 89.5 70.1 78.6 47.3 75.9 58.3	68.4
IG_{Days}	76.0	0.5 76.487.279.5 83.253.465.9 59.0	71.1
IG_{AII}	76.4	0.5 76.7 86.9 80.4 83.5 54.1 64.9 59.0	71.3
	Avera	ge evaluation results of rolling window	method
PMI _{Scr}	71.1	0.5 71.4 90.0 69.0 78.0 45.777.0 56.9	67.4
PMI _{Assoc}	71.5	0.5 71.9 89.9 69.8 78.4 46.2 76.7 57.3	67.9
PMI_{Days}	77.3	0.5 77.7 87.4 81.5 84.3 54.1 64.4 58.5	71.4
PMI _{AII}	77.5	0.5 77.8 87.3 81.7 84.4 54.6 64.2 58.7	71.5
TFIDF _{Scr}		0.5 71.9 89.1 70.8 78.8 45.6 73.4 55.8	67.3
TFIDF _{Ass}	soc 72.1	0.5 72.5 89.0 71.7 79.3 46.3 73.1 56.3	67.8
TFIDF _{Da}		0.5 77.5 86.4 82.4 84.3 54.0 60.5 56.6	70.5
TFIDF	77.3	0.5 77.7 86.5 82.7 84.5 54.5 60.4 56.9	70.7
IG_{Ser}	67.4	0.5 67.7 90.5 63.8 74.2 42.7 78.7 54.3	64.2
IG_{Assoc}	68.0	0.5 68.3 90.5 64.7 74.9 43.2 78.5 54.6	64.8
IG_{Days}	75.2	0.5 75.5 88.4 77.4 82.3 50.6 68.6 57.3	69.8
IG_{AII}	75.5	0.5 75.8 88.4 77.8 82.6 51.0 68.5 57.6	70.1

Comparison with six reference lexicons (improved results by a large margin):

	CC1 Unc CC2 P _{Bull} R _{Bull} F _{1 Bull} P _{Bear} R _{Bear} F _{1 Bear}	F_{Av}
Panel A	: Evaluation results of holdout split method	
PMI _{All}	78.8 0.5 79.2 86.0 85.5 85.8 59.7 59.5 59.6	72.7
FIN	16.8 66.0 49.3 83.5 13.9 23.8 34.3 25.1 29.0	26.4
GI	37.7 25.8 50.8 82.5 36.2 50.3 37.5 42.1 39.7	45.0
MSOL	53.4 1.8 54.3 79.1 58.6 67.3 33.9 38.2 35.9	51.6
MPQA	36.9 37.5 59.0 80.6 40.6 54.0 34.3 26.3 29.8	41.9
OL	31.8 43.0 55.9 82.6 32.7 46.8 37.7 29.4 33.1	39.9
SWN	57.4 5.1 60.5 79.9 59.7 68.3 34.1 50.7 40.7	54.5
Panel B	: Average evaluation results of rolling window	method
PMI _{AII}	77.5 0.5 77.8 87.3 81.7 84.4 54.6 64.2 58.7	71.9
FIN	17.3 63.7 47.8 84.2 13.9 23.8 32.8 27.4 29.3	26.5
GI	37.4 25.8 50.4 82.6 36.1 50.2 35.8 41.1 37.8	44.0
MSOL	52.3 1.2 53.0 80.2 55.8 65.6 32.5 41.9 36.1	50.8
MPQA	39.1 34.7 59.8 81.3 42.6 55.8 35.2 28.4 31.1	43.5
IVII QA	a (- 0 (. 0 0	41.8
OL OL	34.1 39.5 56.3 83.5 34.6 48.9 38.2 32.3 34.7	44.0

Using separate negative and positive contexts improved the results:

Lexicon	CC ₁	Unc CC2 P _{Bull} R _{Bull} F1 _{Bull} P _{Bear} R _{Bear} F1 _{Bear}	F_{Avg}
Panel A:	Evalu	ation results of holdout split method	
PMI _{All}	78.8	0.5 79.2 86.0 85.5 85.8 59.7 59.5 59.6	72.7
TFIDF _{AII}	78.5	0.5 78.8 85.5 85.5 85.5 59.1 58.1 58.6	72.1
IG_{AII}	76.4	0.5 76.7 86.9 80.4 83.5 54.1 64.9 59.0	71.3
PMI _{BiScr}	79.0	0.5 79.3 86.2 85.4 85.8 59.8 60.3 60.1	73.0
TFIDF _{BiSe}	, 78.5	0.5 78.9 86.0 85.1 85.5 59.0 59.6 59.3	72.4
IG_{BiScr}	76.7	0.5 77.0 87.0 80.8 83.8 54.7 64.8 59.3	71.5
Panel B:	Avera	ge evaluation results of rolling windo	w method
PMI _{AII}	77.5	0.5 77.8 87.3 81.7 84.4 54.6 64.2 58.7	71.5
TFIDF _{AII}	77.3	0.5 77.7 86.5 82.7 84.5 54.5 60.4 56.9	70.7
IG_{AII}	75.5	0.5 75.8 88.477.8 82.6 51.0 68.5 57.6	70.1
PMI _{BiScr}	78.3	0.5 78.7 86.4 84.2 85.2 56.8 60.0 58.1	71.7
TFIDF _{BiSc}	. 77.3	0.5 77.7 86.5 82.6 84.4 54.4 60.7 57.0	70.7
IG_{BiScr}	75.6	0.5 76.0 88.6 77.8 82.7 51.2 69.2 58.0	70.3

Generated lexicon: 1-gram and bi-grams, 20,551

terms https://github.com/nunomroliveira/stock market lexicon

Wordcloud:

Conclusions

Proposed automatic procedure to create lexicons:

Produced lexicons that substantially **outperform six reference lexicons**

Novel complementary metrics proved to be relevant

Usage of **affirmative** and **negated** context sentiment values was **useful**

Main Publication

Nuno Oliveira, Paulo Cortez, and Nelson Areal. Stock market sentiment lexicon acquisition using microblogging data and statistical measures. **Decision Support Systems**, 85:62–73, 2016

(JCR 2015 Q1 in "Computer Science, Artificial Intelligence" and Q1 in "Computer Science, Information Systems"; 35 Google Scholar citations)

Contents lists available at ScienceDirect

Decision Support Systems

journal homepage: www.elsevier.com/locate/dss

Stock market sentiment lexicon acquisition using microblogging data and statistical measures

Nuno Oliveira^{a,*}, Paulo Cortez^a, Nelson Areal^b

^aALGORITMI Centre, Department of Information Systems, University of Minho, 4804-533 Guimarães, Portugal ^bSchool of Economics and Management, Department of Management, University of Minho, 4710-057 Braga, Portugal

Acknowledgements

We would like to thank StockTwits for the provision of their data.

Impact of microblogging data for stock market prediction

Microblog Data: Twitter

We collected around 31 million tweets from 22nd of December 2012 to 29th of October 2015 holding cashtags of all stocks traded in US markets (nearly 3800 stocks).

Methodology

Objectives:

- Application and comparison of **diverse Machine Learning methods:** Multiple Regression (MR), Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), Ensemble Averaging (EA)
- Application of a Kalman Filter (KF) procedure to aggregate diverse sentiment indicators
- Prediction of daily variables (returns, volatility and trading volume) of diverse indices and portfolios
- Forecasting of survey sentiment: American Association of Individual Investors (AAII) and Investors Intelligence (II)

Utilization of microblogging stock market lexicon

Daily sentiment indicator created by Kalman Filter procedure

Evaluation: rolling window and NMAE metric

$$MAE = rac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$
 $NMAE = rac{MAE}{y_H - y_L}$

Results: Prediction of returns of indices

Index	Baseline	Lowest NMAE	Statistical significant results
DJIA (n predictions: 414; returns range: 7.53)	MR; 8.12	SVM MRet2 (KF): 7.98*	SVM MRet3 (BullR): 8.01* SVM MRet2 (KF): 7.98*
HML (n predictions: 392; returns range: 3.36)	SVM: 10.29	SVM MRet3 (BullR): 10.24	7 0 to 5
MOM (n predictions: 392; returns range: 4.63)	SVM: 10.78	SVM MRet2 (KF): 10.69*	SVM MRet2 (KF): 10.69*
NDQ (n predictions: 439; returns range: 9.35)	SVM: 7.61	SVM MRet7: 7.58	
RMRF (n predictions: 392; returns range: 7.58)	SVM: 8.27	SVM MRet3 (KF): 8.19*	SVM MRet3 (KF): 8.19*
RSL (n predictions: 439; returns range: 7.02)	EA: 11.02	EA MRet1: 11.02	
SMB (n predictions: 392; returns range: 3.36)	MR: 12.44 SVM: 12.44	SVM MRet4 (BullR): 12.27*	SVM MRet4 (BullR): 12.27*
SP500 (n predictions: 439; returns range: 7.85)	SVM: 7.87	SVM MRet3 (KF): 7.79**	SVM MRet7: 7.80** SVM MRet6: 7.81* SVM MRet4 (VA): 7.81* SVM MRet5 (VA): 7.81* SVM MRet3 (KF): 7.79**

Summary of the results of the prediction of returns

- Microblogging sentiment and attention indicators had predictive value for SP500, portfolios of smaller market capitalization (Lo20 and Lo30) and some sectors (High Technology, Energy and Telecommunications)
- KF indicators were important for SP500, Lo20, High Technology and Energy industries

Prediction of volatility

Index	Baseline	Lowest NMAE	Statistical significant results
DJIA (n predictions: 413; realized volatility range: 92.41)	MR: 2.91	SVM MVlt3 (AG): 2.79	MR MVlt3 (KF): 2.85*
NDQ (n predictions: 413; realized volatility range: 57.18)	MR: 3.89	SVM MVIt3 (VA): 3.87	
RSL (n predictions: 412; realized volatility range: 39.56)	MR: 5.71	MR MVlt1: 5.71	
SP500 (n predictions: 413; realized volatility range: 67.90)	EA: 3.34	EA MVlt1: 3.34 EA MVlt3 (AG): 3.34	
VIX (n predictions: 413; VIX range: 30.42)	EA: 3.26	SVM MVIt3 (BullR): 3.25	

Prediction of trading volume

Index	Baseline	Lowest NMAE	Statistical significant results
DJIA (n predictions: 414; volume range: 310804)	SVM: 6.00	SVM MVIt5 (BullR): 5.84*	SVM MVIt5 (BullR): 5.84* SVM MVIt5 (BI): 5.85*
SP500 (n predictions: 413; volume range: 1636036)	SVM: 4.98	SVM MVlt1: 4.98	•

Prediction of II index using KF

Conclusions

Proposed automatic procedure to create lexicons:

- Produced lexicons that substantially outperform six reference lexicons
- Novel complementary metrics proved to be relevant
- Usage of affirmative and negated context sentiment values was useful

Robust evaluation of the predictive value of Twitter data (e.g., larger test sets, statistical test for predictive accuracy, application and comparison of diverse ML methods)

Microblogging indicators were particularly **informative** for:

 Prediction of returns of SP500, portfolios of lower dimension and some sectors (High Technology, Energy and Telecommunications)

Conclusions

KF indicators were informative for the prediction of returns of some portfolios and indices

Prediction of survey values:

- Twitter sentiment indicators were informative to predict negative values of AAII
- KF indicators were informative for the prediction of II computed by VA formula

Advantages of microblogging sentiment indicators:

- Direct sentiment measure
- Faster and cheaper creation than survey based
- Personalized frequency (e.g., daily) and targets (e.g., stocks, indices)

Main Publication

Nuno Oliveira, Paulo Cortez, and Nelson Areal. The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume and survey sentiment indices. *Expert Systems with Applications*, 73:125–144, 2017

(JCR 2015 Q1 in "Computer Science, Artificial Intelligence"; 40 Google Scholar citations)

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume and survey sentiment indices

Nuno Oliveira a,*, Paulo Cortez a, Nelson Areal b

^a ALGORITMI Centre, Department of Information Systems, University of Minho, 4804-533 Guimarães, Portugal

^b School of Economics and Management, Department of Management, University of Minho, 4710-057 Braga, Portugal

Contacts

Nuno Oliveira: nunomroliveira@gmail.com

Paulo Cortez: pcortez@dsi.uminho.pt

Nelson Areal: nareal@eeg.uminho.pt