TP3

Equations différentielles

24 octobre 2017

Dans ce TP, on présente quelques méthodes pour intégrer numériquement sur un intervalle $t \in [0, T]$, une équation différentielle ordinaire - dite EDO - c'est-à-dire de la forme

$$u'(t) = f(t, u(t)), \quad u(0) = u_0$$

La fonction f, qui prend en argument un couple de réels et qui renvoie un réel, ainsi que la valeur initiale u₀ sont donnés; la fonction u, qui prend un réel en argument et qui renvoie un réel, est inconnue; c'est la solution cherchée.

1. Exemple : considérons l'EDO très simple

$$u'(t) = -u(t), \quad u(0) = 1.0$$

Le problème est ici de déterminer la solution u.

- (a) Que vaut la fonction f dans cet exemple
- (b) Calculer à la main la solution u de l'EDO ci-dessus, et la dessiner sur papier; on prendra comme intervalle $t \in [0, 2]$.
- (c) Sur ordinateur, représenter graphiquement u à l'aide du module matplotlib; on créera le vecteur d'abscisses au moyen de numpy.linspace et on sauvera la figure au format png dans le répertoire courant.
- 2. Calcul approché de u au moyen de la **méthode d'Euler**.

On divise l'intervalle [0,T] en n parties égales, puis on pose h=T/n, ce qui fournit une subdivision $t_0=0, t_1=h, t_2=2h, \cdots, t_n=T$. A partir de là veut calculer, approximativement, la valeur de u aux points t_k de la subdivision. Voici l'idée :

Supposons que l'on connaisse, pour un indice k, une approximation u_k de la valeur exacte $u(t_k)$; comment alors calculer une approximation u_{k+1} de la valeur exacte $u(t_{k+1})$? Réponse :

On écrit $u'(t_k) \approx \frac{u(t_{k+1}) - u(t_k)}{h}$, approximation d'autant meilleure que h est petit;

on a donc
$$\frac{u(t_{k+1})-u(t_k)}{h} \approx u'(t_k) = f(t_k, u(t_k))$$
, puis $u(t_{k+1}) \approx u(t_k) + hf(t_k, u(t_k))$

on a donc $\frac{u(t_{k+1})-u(t_k)}{h} \approx u'(t_k) = f(t_k, u(t_k))$, puis $u(t_{k+1}) \approx u(t_k) + hf(t_k, u(t_k))$ et enfin $u(t_{k+1}) \approx u_k + hf(t_k, u_k)$. On a donc trouvé une approximation u_{k+1} de la valeur exacte $u(t_{k+1})$, à savoir

$$u_{k+1} = u_k + h f(t_k, u_k)$$

Cette formule permet, par récurrence, de calculer une suite d'approximations u_k , à condition que l'on connaisse une première approximation u_0 de $u(t_0)$; mais pour u_0 on peut bien sûr prendre la valeur de la condition initiale donnée par l'EDO.

- (a) Calculer la suite u_k , définie par la méthode d'Euler, pour l'exemple ci-dessus; on prendra T=2.0et n = 10.
- (b) Représenter sur le même graphique la solution exacte u et les points (t_k, u_k) ; faire le travail sur papier et numériquement à l'aide de matplotlib.

- 3. Ecrire une fonction python euler qui prend en arguments une foncion f de deux variables scalaires t, u, une valeur initiale u_0 , un réel T, un entier n, et qui renvoie la liste t des t_k et la liste u des u_k , valeurs obtenues par la méthode d'Euler (alternativement, on pourra renvoyer t et u sous forme de numpy arrays.
- 4. Reprendre le travail précédent avec les EDOs suivantes (attention, certaines équations peuvent être facilement intégrées à la main, d'autres non).

$$u'(t) = -u(t) + t, u(0) = 1.0 (1)$$

$$u'(t) = u^2(t),$$
 $u(0) = 1.0$ (2)

$$u'(t) = u^{2}(t) - t,$$
 $u(0) = 1.0$ (3)

5. Nous montrons maintenant comment intégrer une EDO d'ordre supérieur. Prenons l'exemple de l'oscillateur harmonique (modélisation du ressort) qui est une EDO d'ordre 2

$$u''(t) + \omega^2 u(t) = 0$$
, $u(0) = u_0, u'(0) = v_0$

où ω, u_0, v_0 sont des scalaires donnés ; ω s'appelle la pulsation, u_0 la position initiale, v_0 la vitesse initiale.