2022

Exercises: Background Notions

I Mappings and Asymptotic Bounds

Exercise I

1. Prove that for any $a_0, a_1, a_2 \in \mathbb{R}^+$, $f(n) = a_0 + a_1 n + a_2 n^2 \in \mathcal{O}(n^2)$, using the formal definition of the \mathcal{O} notation.

Solution: Let $c = a_2 + 1$. Let us prove that there is some n_0 such that $\forall n \ge n_0$, $f(n) \le c \times n^2$.

$$a_0 + a_1 n + a_2 n^2 \leq (a_2 + 1) n^2$$

$$a_0 + a_1 n + a_2 n^2 - (a_2 + 1) n^2 \leq 0$$

$$a_0 + a_1 n - n^2 \leq 0$$

So $\Delta = a_1^2 - 4 \times (-1) \times a_0 = a_1^2 + 4a_0$; the polynomial $a_0 + a_1 n - n^2$ has two roots $x_1 = \frac{-a_1 + \sqrt{\Delta}}{-2}$ and $x_2 = \frac{-a_1 - \sqrt{\Delta}}{-2}$. For $n_0 = \lceil \max(x_1, x_2) \rceil$, the property is satisfied.

Exercise II

- 1. Each expression in the following list gives the processing time t(n) for some algorithm to solve a problem of size n. For each of them, give a function f(n) such that $t(n) \in \mathcal{O}(f(n))$:
 - (a) $8 + 4n^2 + 8n^4$

Solution: $8 + 4n^2 + 8n^4 \in \mathcal{O}(n^4)$

(b) $5 + 0.01n^3 + 4n$

Solution: $5 + 0.01n^3 + 4n \in \mathcal{O}(n^3)$

(c) $100n + 0.001n^2$

Solution: $100n + 0.001n^2 \in \mathcal{O}(n^2)$

(d) $10\log(n) + 5(\log(n))^3 + 7n + 6n^3$

Solution: $10\log(n) + 5(\log(n))^3 + 7n + 6n^3 \in \mathcal{O}(n^3)$

(e) $200n + n^2 + 50n \log_{10}(n)$

Solution: $200n + n^2 + 50n \log_{10}(n) \in \mathcal{O}(n^2)$

(f) $3n + n \log_2(n)$

Solution: $3n + n \log_2(n) \in \mathcal{O}(n \log(n))$

(g) $n^{100} + 2^n$

Solution: $n^{100} + 2^n \in \mathcal{O}(2^n)$

(h) $100n \log_3(n) + n^3 + 100n$

Solution: $100n \log_3(n) + n^3 + 100n \in \mathcal{O}(n^3)$

Exercise III

- 1. Let us suppose that algorithms A and B need respectively $t_A(n) = 5n \log_{10}(n)$ and $t_B(n) = 25n$ seconds to solve a problem of size n.
 - (a) Which algorithm is better (with respect to the \mathcal{O} notation)?

Solution: Algorithm B is better: $t_A(n) \in \mathcal{O}(n \log(n))$ and $t_B(n) \in \mathcal{O}(n)$.

(b) For which problem size does it become better?

Solution: B is better than A when

$$t_B(n) \leqslant t_A(n)$$

$$\Leftrightarrow 25n \leqslant 5n \log_{10}(n)$$

$$\Leftrightarrow 5 \leqslant \log_{10}(n)$$

$$\Leftrightarrow 10^5 \leqslant 10^{\log_{10}(n)}$$

$$\Leftrightarrow 100000 \leqslant n$$

II Problems

Exercise IV

- 1. Classify these problems : decision problem, function problem, optimization problem, enumeration problem.
 - (a) Given a list of integers L, determine whether L is sorted in increasing order.

Solution: Decision

(b) Given a list of integers L, sort L in increasing order.

Solution: Function

(c) Given G a graph, n_1, n_2 two nodes, is there a path from n_1 to n_2 ?

Solution: Decision

(d) Given G a graph, n_1, n_2 two nodes, find the shortest path from n_1 to n_2 .

Solution: Optimization

(e) Given G a graph, n_1, n_2 two nodes and $k \in \mathbb{N}$, find if there is a path from n_1 to n_2 with length k.

Solution: Decision

(f) Given two integers a, b in binary notation, and $k \in \mathbb{N}$, what is the k^{th} bit of $a \times b$?

Solution: Decision: the answer is binary (0/1). The problem could be rephrased: "Given two integers a, b in binary notation, and $k \in \mathbb{N}$, is the k^{th} bit of $a \times b$ equal to 1?"

(g) Given P(X) a polynomial, find all the roots of P(X).

Solution: Enumeration

(h) Given P(X) a polynomial, find the smallest root of P(X).

Solution: Optimization

III Languages

Exercise V

Give the decision problem corresponding to each of these languages :

1. $\mathcal{L}_1 = \{k \in \mathbb{N} \mid k \text{ is a multiple of 3 or 4}\}.$

Solution: \mathcal{P}_1 : Given $k \in \mathbb{N}$, is k a multiple of 3 or 4?

2. $\mathcal{L}_2 = \{k \in \mathbb{N} \mid \exists k', k' \neq 1, k' \neq k \text{ and } k \text{ is a multiple of } k'\}.$

Solution: \mathcal{P}_2 : Given $k \in \mathbb{N}$, is k a non-prime number?

3. $\mathcal{L}_3 = \{k \in \mathbb{N}, p \text{ a prime number}, i \in \mathbb{N} \mid p^i \text{ belongs to the prime decomposition of } k\}.$

Solution: \mathcal{P}_3 : Given $k \in \mathbb{N}$, p a prime number and $i \in \mathbb{N}$, is k a multiple of p^i but not of p^{i+1} ?

4. $\mathcal{L}_4 = \{ P(X) \text{ a polynomial}, x_0 \in \mathbb{R} \mid P(x_0) = 0 \}.$

Solution: \mathcal{P}_4 : Given P(X) a polynomial and $x_0 \in \mathbb{R}$, is x_0 a root of P(X)?

5. $\mathcal{L}_5 = \{\varphi, \psi \text{ two propositional formulae} | \varphi \vdash \psi \}.$

Solution: \mathcal{P}_5 : Given φ, ψ two propositional formulae, is ψ a logical consequence of φ ?

6. $\mathcal{L}_6 = \{ \varphi \text{ a propositional formula } | \varphi \text{ has at least one model} \}.$

Solution: \mathcal{P}_6 : Given φ a propositional formula, is φ consistent?

This problem is actually the well-known SAT problem, we will see more details about it later this semester.

Exercise VI

Give the language corresponding to each of these decision problems:

1. \mathcal{P}_1 : Given $k_1, k_2, k_3 \in \mathbb{N}$, is $k_1 + k_2$ a multiple of k_3 ?

Solution: $\mathcal{L}_1 = \{k_1, k_2, k_3 \in \mathbb{N} \mid k_1 + k_2 \text{ is a multiple of } k_3\}.$

Remark: to be more correct, from a mathematical point of view, we should write $\{(k_1, k_2, k_3) \in \mathbb{N}^3 \mid k_1 + k_2 \text{ is a multiple of } k_3\}$ instead. The same remark applies for the following languages, but in this course we will accept this slight simplification.

2. \mathcal{P}_2 : Given $k_1, k_2 \in \mathbb{N}$, is $\sqrt{k_1} \leqslant k_2$ true?

Solution: $\mathcal{L}_2 = \{k_1, k_2 \in \mathbb{N} \mid \sqrt{k_1} \leqslant k_2\}.$

3. \mathcal{P}_3 : Given P(X), Q(X), R(X) three polynomials, is P(X) = Q(X) + R(X) true?

Solution: $\mathcal{L}_3 = \{ P(X), Q(X), R(X) \mid P(X) = Q(X) + R(X) \}.$

4. \mathcal{P}_4 : Given $G = \langle N, E \rangle$ a directed graph, is $|E| \leq |N|^2$ true?

Solution: $\mathcal{L}_4 = \{G = \langle N, E \rangle \mid |E| \leqslant |N|^2\}.$

5. \mathcal{P}_5 : Given $G_1 = \langle N_1, E_1 \rangle$, $G_2 = \langle N_2, E_2 \rangle$ two directed graphs, is G_1 a subgraph of G_2 ? (i.e. $N_1 \subseteq N_2$ and $E_1 \subseteq E_2 \cap (N_1 \times N_1)$)

Solution: $\mathcal{L}_5 = \{G_1 = \langle N_1, E_1 \rangle, G_2 = \langle N_2, E_2 \rangle \mid N_1 \subseteq N_2 \text{ and } E_1 \subseteq E_2 \cap (N_1 \times N_1)\}.$

6. \mathcal{P}_6 : Given $\varphi_1, \varphi_2, \varphi_3$ three propositional formulae, is $\varphi_1 \equiv \varphi_2 \wedge \varphi_3$ true?

Solution: $\mathcal{L}_6 = \{ \varphi_1, \varphi_2, \varphi_3 \mid \varphi_1 \equiv \varphi_2 \wedge \varphi_3 \}.$