

alternative definition of algebraically closed

 ${\bf Canonical\ name} \quad {\bf Alternative Definition Of Algebraically Closed}$

Date of creation 2013-03-22 16:53:23 Last modified on 2013-03-22 16:53:23 Owner polarbear (3475) Last modified by polarbear (3475)

Numerical id 8

Author polarbear (3475)

Entry type Derivation Classification msc 12F05

Proposition 1. If K is a field, the following are equivalent:

- (1) K is algebraically closed, i.e. every nonconstant polynomial f in K[x] has a root in K.
- (2) Every nonconstant polynomial f in K[x] splits completely over K.
- (3) If L|K is an algebraic extension then L = K.
- *Proof.* If (1) is true then we can prove by induction on degree of f that every nonconstant polynomial f splits completely over K. Conversely, (2) \Rightarrow (1) is trivial.
- $(2)\Rightarrow (3)$ If L|K is algebraic and $\alpha\in L$, then α is a root of a polynomial $f\in K[x]$. By (2) f splits over K, which implies that $\alpha\in K$. It follows that L=K.
- $(3) \Rightarrow (1)$ Let $f \in K[x]$ and α a root of f (in some extension of K). Then $K(\alpha)$ is an algebraic extension of K, hence $\alpha \in K$.

Examples 1) The field of real numbers \mathbb{R} is not algebraically closed. Consider the equation $x^2 + 1 = 0$. The square of a real number is always positive and cannot be -1 so the equation has no roots.

2) The p-adic field \mathbb{Q}_p is not algebraically closed because the equation $x^2-p=0$ has no roots. Otherwise $x^2=p$ implies $2v_px=1$, which is false.