Pflichtenheft

Wetterstation mit Solar Energie

Windisch, 25. Oktober 2018

Hochschule Hochschule für Technik - FHNW

Studiengang Elektro- und Informationstechnik

Autor/-en Mischa Knupfer, Andres Minder

Betreuer Prof. Dr. Taoufik Nouri

Auftraggeber Prof. Dr. Taoufik Nouri

Version 1.1

Inhaltsverzeichnis

1	Auftragsbeschreibung											
2	${f Ziele~P5/P6}$											
3	Grundkonzept	4										
	3.1 Micro Controller Unit (MCU)	5										
	3.2 Sensoren	6										
	3.3 Kommunikationsmodul	8										
	3.4 Datenspeicherung	9										
	3.5 RTC	9										
	3.6 Energieversorgung	9										
4	Zeitplan Projektverlauf	10										
5	Risikoanalyse	12										
6	Kommunikation	13										
7	Literatur	14										
\mathbf{A}	Lastenheft	15										

1 Auftragsbeschreibung

Das Wetter spielt eine wichtige Rolle in der Agronomie. Regnet es nicht genug, müssen Pflanzen bewässert werden. Trifft auf ein Ort nur wenig Sonnenlicht, so sollten dort nicht die Pflanzen, welche viel Sonnenlicht brauchen, angebaut werden. Windet es zu stark, können Pflanzen beschädigt oder gar zerstört werden. Ist es Tagsüber heiss, so benötigen die Pflanzen mehr Wasser. Hiesige Bauern besitzen den Luxus von guten Wettervorhersagen dank dem Bundesamt für Meteorologie und Klimatologie (MeteoSchweiz). Dieser Luxus ist in anderen Ländern noch nicht gegeben. Prof. Dr. Nouri Taoufik ist aufgefallen, dass in tropischen Gegenden wie Südamerika oder teile Afrikas dieser Luxus ebenso fehlt.

Aus diesem Grund soll eine kostengünstige, erweiterbare und mobile Wetterstation gebaut werden, welche diese Bauern unterstützt. Diese Wetterstation soll die Regenmenge, die Windstärke, die Lufttemperatur und die Sonnenstunden messen können. Ausserdem soll die Wetterstation mittels Photovoltaik unterstützt werden, und erhobene Daten via SMS abrufbar sein.

Im Nachfolgenden Dokument werden unter anderem die Ziele dieses Projekts definiert, sowie das Gesamtkonzept näher erläutert.

2 Ziele P5/P6

Die Ziele sind strikt aufgeteilt in die zwei Projekte 5 und 6. Darin enthalten sind die jeweiligen zu erreichenden Muss- und Wunschziele mit ihren quantifizierten Spezifikationen. Diese sind wichtig, da Ortsabhängig unterschiedliche Normwerte gelten und sich dieses Projekt grundsätzlich auf die Schweiz fokussiert.

Tabelle 2.1: Ziele P5

	Ziel	Messbereiche	Genauigkeiten	Einheiten				
Mussziele P5								
Sensoren	Lufttemperaturmessung	[-20;60]	± 1	°C				
	Windgeschwindigkeitsmessung	[10;25]	± 1	m/s				
	Niederschlagsmenge	Wasser	± 100	$\mathrm{ml/m^2}$				
Datenspeicherung	Datenabfrage via PuTTY	≥ 9600		Bd/s				
RTC	Implementation	Echtzeit	± 1	s/Jahr				
Wunschziele P5								
Sensoren	Sonnenstunden Prototyp	Echtzeit		s				

Tabelle 2.1 zeigt diverse Ziele im P5, unterteilt in Muss- und Wunschziele. Zu den Musszielen gehören die Lufttemperaturmessung, die Windgeschwindigkeitsmessung, die Niederschlagsmessung, die Implementation des RTC und die mögliche Datenabfrage via Putty vom Datenspeicher. Die Lufttemperatur soll zwischen -20 bis 60 °C ermittelbar sein, mit einer Genauigkeit von ± 1 °C. Die Windgeschwindigkeitsmessung soll vor allem stärkere Windgeschwindigkeiten erfassen, um vor Sturm warnen zu können, weshalb niedrigere Windgeschwindigkeiten vernachlässigt werden können. Die Windgeschwindigkeit soll zwischen 10 und 25 m/s auf ± 1 m/s genau gemessen werden. Die Niederschlagsmenge soll nur für Regenwasser bestimmt werden mit einer Genauigkeit von ± 100 ml/m². Als Wunschziel soll eine Möglichkeit getestet werden um Sonnenstunden zu detektieren, welche dann im P6 umgesetzt wird.

Tabelle 2.2: Ziele P6

	Ziel	Messbereiche	Genauigkeiten	Einheiten				
Mussziele P6								
Speisung	Akkukapazität							
	Ladeschaltung Akku							
	Ladeschaltung Photovoltaik							
Kommunikationsmodul	GPS							
	Mobilfunk (SMS)							
Sensoren	Sonnenstunden							
Wunschziele P6								
Kommunikationsmodul	Mobilfunk (Website)							
Speisung	Akku austauschbar							

Tabelle 2.2 zeigt diverse Ziele im P6, unterteilt in Muss- und Wunschziele. Diese Tabelle ist unvollständig und wird im P6 nachgeführt. Generell kann gesagt werden, dass die Speisung, das Kommunikationsmodul mit GPS und Mobilfunk, sowie die Sonnenstunden-Sensorik implementiert werden sollen. Als Wunschziele sind ein austauschbarer Akku und eine Website zur Datensicherung und ggf. grafischen Darstellung aufgeführt.

4 3 GRUNDKONZEPT

3 Grundkonzept

Abbildung 3.1: Grundkonzept

Übersicht:

Als Zentralrecheneinheit wird eine Micro-Controller-Unit (MCU) verwendet. Dieser ist dafür verantwortlich, dass die Daten richtig verarbeitet und an das dementsprechende Modul weitergeleitet werden. Die Messdaten werden in digitaler Form vom Modul Sensoren an die MCU übertragen. Dieser fügt mit dem Real-Time-Clock (RTC) einen Timestamp hinzu, wobei anschließend die Daten in der Datenspeicherung nichtflüchtig gespeichert werden. Über das Kommunikationsmodul können dann die Daten von Nutznießern abgefragt werden.

Das gesamte Grundkonzept ist, wie in der Abbildung 3.1 grafisch dargestellt, modular aufgebaut. Auf alle einzelnen Module wird folgend spezifischer eingegangen und die Konzeptvariationen vorgestellt. Dafür sind zusätzlich noch Vor- & Nachteile für die Varianten aufgelistet.

3.1 Micro Controller Unit (MCU)

Variante 1:

Für die MCU wird ein Microcontroller mit bereits vorhandener Peripherie verwendet, welcher ähnlich wie der in Abbildung 3.2 ersichtliche Arduino Mega aufgebaut sein wird.

Variante 2:

Es wird ein separates Printed Circuit Board (PCB) für die MCU designed.

Abbildung 3.2: Arduino Mega [1]

Tabelle 3.1: Vor- & Nachteile

	Vorteile	Nachteile
Variante 1	 In-system Programmierung über USB Typ B möglich USB-Schnittstelle für eine Datenkommunikation mit PC Erweiterbar über bereits existierende Anschlüsse 	• Etwas teurer (ca. 20 CHF)
Variante 2	Keine unnötige PeripherieDimensionierungsänderungen möglich	 Zusätzliches Gerät (z.B. AVR Dragon) für eine in-system Programmierung notwendig Zeitintensive Entwicklung

6 3 GRUNDKONZEPT

3.2 Sensoren

Abbildung 3.3: Sensoren

In dem Block Sensoren werden alle Messeinheiten untergebracht. Die Idee dieses Blockes besteht darin, dass dieser adaptiv ist und somit leicht erweitert werden kann (Abbildung 3.3). Jeder Sensor ist nach dem Prinzip, wie in der Abbildung 3.4 gezeigt, aufgebaut. Es wird dann von der Seite des MCUs aus mit dem Datenlogger kommuniziert.

Abbildung 3.4: Sensoraufbau

Variante 1:

Bis auf die Fühler werden die Sensoren selbst entwickelt. Dafür werden die Sensoren für die Windstärke, Lufttemperatur, Regenmenge und Sonnenstunden gebaut.

Windstärke: Die einfachste Möglichkeit ist die Windstärke über ein Schalenanenometer zu bestimmen. Mittels Reed-Kontakt oder Lichtschranke wird die Drehfrequenz bestimmt und daraus eine Windstärkenstufe nach der Beaufort-Skala zugeordnet.

Lufttemperatur: Auf einem PCB wird ein IC-Bauteil zur Lufttemperaturmessung implementiert. Über einen Messumformer nach Abbildung 3.4 wird das Signal zur Interpretation/Ausle-

3.2 Sensoren 7

sung für den Datenlogger aufbereitet.

Regenmenge: Für die Bestimmung der Regenmenge hat sich das Kipplöffelprinzip als äußerst effizient bewiesen. Über einen Reed-Kontakt wird die Kippfrequenz bestimmt, und daraus kann auf die Regenmenge zurück geschlossen werden.

Sonnenstunden: Die Sonnenstunden benötigen keinen separaten Sensor. Es ist möglich, die Länge und Intensität der Bestrahlung über die Photovoltaik zu bestimmen. Dafür muss lediglich das von der Photovoltaik zugeführte Stromsignal abgegriffen werden.

Variante 2:

Die Sensoren werden als intelligente Wettersensorik gekauft. Diese sind, je nach Typ, in verschiedenen Variationen mit unterschiedlichen Messparametern und -technologien ausgestattet. Zudem kompatibel für den Solarbetrieb in allen Klimazonen und Wartungsfrei¹.

¹abhängig von den einzelnen Sensoren

8 3 GRUNDKONZEPT

Variante 3

Eine Mischung aus den Varianten 1 & 2.

Tabelle 3.2: Vor- & Nachteile

	Vorteile	Nachteile
Variante 1	• Günstig	 Sehr arbeitsaufwändig Eingeschränkt, da einzelne Messfühler erhältlich sind sehr Zeitaufwendig
Variante 2	 Wartungsfreie Varianten Kompatibel für Solarbetrieb	 Hohe Investitionskosten Machbarkeitsanalyse erforderlich
Variante 3	• Je nach Kombination	• Je nach Kombination

Tabelle 3.2 zeigt Vor- und Nachteile für die erwähnten Varianten.

3.3 Kommunikationsmodul

Abbildung 3.5: Kommunikationsmodul

Abbildung 3.5 zeigt die verschiedenen Schnittstellen, über welche Daten mit der Umgebung (User) und MCU ausgetauscht werden können. Im Rahmen des Projekts 5 wird nur das USB-Interface umgesetzt. Mobilfunknetz und GPS sind Teil des Projekts 6.

USB-Interface: Über dieses Interface kann mit dem System kommuniziert und interagiert werden.

Mobilfunknetz: Die Einbindung der Wetterstation wird über diesen Block implementiert.

GPS: Dieser Block sorgt für die Standortbestimmung.

3.4 Datenspeicherung

Variante 1:

Die Datenspeicherung erfolgt auf einer μ SD-Karte. Diese kann in ein Breakoutboard eingeschoben werden.

Variante 2:

Es werden zur Datenspeicherung EEPROM's benutzt.

Tabelle 3.3: Vor- & Nachteile

	Vorteile	Nachteile
Variante 1	 Internes level-shifting Grosser Speicherplatz Daten können notfalls auch direkt von der μSD-Karte entnommen werden 	• Es wird ein zusätzliches Breakoutboard verwendet
Variante 2		Kleiner Speicherplatz Benötigt level-shifting

Tabelle 3.3 zeigt Vor- und Nachteile für die erwähnten Varianten.

3.5 RTC

Es wird eine RTC implementiert, welche aktuelle Zeitstempel für erhobene Datensätze ermittelt.

3.6 Energieversorgung

Abbildung 3.6: Energieversorgung

Für die Speisung wird ein Akku verwendet. Gemäss Abbildung 3.6 soll dieser durch eine Photovoltaikanlage geladen werden. Als Wunschziel soll der Akku austauschbar ist.

4

Zeitplan Projektverlauf

4

_	Projekt 6																						
Arbeitspakete		Realisierungsphase										V	/alidieru	ngsphas	e								
Pflichtenheft																							
Disposition																							<u> </u>
Fachbericht																							
Disposition																							
Korrektur																							
Hardware																							
Speisung																							
o Akku																							
o Photovoltaik																							
Sensoren																							
 Lufttemperatur 																							
 Validierung 																							
 Windgeschwindigkeit 																							
 Validierung 																							
 Niederschlagsmenge 															<u> </u>								
 Validierung 																							
Sonnenstunden																							
 Validierung 																							
Datenspeicherung															<u> </u>								i
Software																							
Datenübertragung																							
Datenspeicherung															i								
Firmware f. Sensoren																							<u> </u>
Gehäuse																							
Design																							
• Bau													—		_								
Woche	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33

12 5 RISIKOANALYSE

5 Risikoanalyse

In einem Projekt können immer wieder Probleme auftreten. In diesem Kapitel wird sich mit diesem Thema auseinandergesetzt und gezeigt, mit welchen Methoden auf die unterschiedlichen Eventualitäten reagiert werden kann. Nachfolgend sind mögliche Risiken tabellarisch aufgelistet, sowie Maßnahmen um diese zu vermindern.

Risiken			Massnahmen
Nr.	Kategorien	Identifikation	
1	Student	Ausfall wegen Krankheit	Keine spezielle Massnahme
2		Studiumsabbruch	Niemand hat dies vor
3		Konflikte im Team	Klare Kommunikation
4		Fachliche Überforderung	Hilfe suchen bei Dozenten
5		Terminliche Überforderung	Vorausschauende Zeitplanung
6	Daten	Notebook kaputt	Backup, Ersatznotebook
7		versehentliches löschen	Backup
8	Sonstiges	Teile werden nicht geliefert	Woanders bestellen/Express Lieferung
9		Kein eigener Arbeitsplatz	Platz im Studentenlabor

Tabelle 5.1: Risiken und Massnahmen

Tabelle 5.1 zeigt eine nummerierte Auflisten von möglichen Risiken und Massnahmen um diese zu vermindern. Eine Heat Map wird estellt, welche die Risiken nach Auswirkung und Eintrittswahrscheinlichkeit graphisch darstellt. Mit einem Pfeil wird die neue Position des Risikos mit greifender Massnahme angedeutet. So soll ein Überblick über mögliche Risiken und deren Potenzial gegeben werden.

Abbildung 5.1: Heat Map

Abbildung 5.1 gibt einen Überblick über mögliche Risiken und deren Potenzial, wobei die Nummern gemäss Tabelle 5.1 definiert sind. Es ist ersichtlich, dass einige Massnahmen gewisse Risiken stark minimieren. Die grössten Risiken sind der Ausfall wegen Krankheit und fachliche sowie terminliche Überforderung. Auf diese Risiken soll während des Projekts speziell geachtet werden, um eine frühzeitige Erkennung zu gewährleisten.

6 Kommunikation

Die Kommunikation erfolgt grundsätzlich per E-Mail, ausser für Notfälle. Dafür sind die Telefonnummern noch zusätzlich in diesem Dokument hinterlegt (siehe Tabelle 6.1).

Tabelle 6.1: Kontaktinformationen

Projektinstanz	Name	E-Mail	Telefon
Auftraggeber/ Projektbetreuer	Prof. Dr. Taoufik Nouri	taoufik.nouri@fhnw.ch	+41 79 218 38 55
Projektteam	Mischa Knupfer	mischa.knupfer@students.fhnw.ch	+41 78 761 83 73
Projektteam	Andres Minder	andres.minder@students.fhnw.ch	+41 79 810 82 13

Im Verlaufe dieses Projektes wird alle zwei Wochen eine Sitzung mit Herrn Prof. Dr. Taoufik Nouri und dem Projektteam abgehalten. Darin werden aktuelle Angelegenheiten diskutiert und jegliche pendente Themen angesprochen. Für aufgetretene Probleme wird konstruktiv nach Lösungen für das weitere Vorgehen gesucht.

Die Sitzungseinladungen sind vom Projektteam aus zu verschicken, sowie auch die Sitzungen zu protokollieren. Jedes Protokoll wird innerhalb einer Woche nach der Sitzung per E-Mail vom Projektteam aus an alle Instanzen des Projektes gemäß Tabelle 6.1 mit einer Aktionsliste² verschickt. Im darauffolgenden Protokoll wird die Annahme aller Instanzen dokumentiert.

 $^{^2\}mathrm{eine}$ Liste mit Angaben, wer was in welchem Zeitraum zu erledigen hat

7 LITERATUR

7 Literatur

[1] Reichelt Elektronik. Arduino mega.

A Lastenheft

Ausschreibung Studierendenprojekt P5/P6 Studiengang Elektro- und Informationstechnik

Titel:

Wetterstation mit Solar Energie

Betreuer:

Prof. Dr. Taoufik Nouri (Institut für Mobile und Verteilte Systeme)

Auftraggeber:

Prof. Dr. Taoufik Nouri (Institut für Mobile und Verteilte Systeme)

Aufgabenbeschreibung:

Ausgangslage:

Wetterstation sind viele verlangt besonders im Gebiete ohne Strom. Wir schlagen solche Möglichkeit zu realisieren.

Zielsetzung:

- 1. Diese Wetterstation misst Regen, Wind- Geschwindigkeit, -Richtung, Temperatur, Sonnenlicht, Feuchtigkeit, Zeit usw.
- 2. Sie ist dotiert mit verschiedener Kommunikation Module wie GPS, SIM Karte.
- 3. Sie ist fern abfragbar durch Handy
- 4. Sie speichert regelmässig die verschiedenen Parameter (Journal).
- 5. Sie ist komplett automatisiert z.B. Regenwasser wird automatisch ausgeleert.

Schlüsselwörter: Energie, Mikrokontroller, Programmierung, Elektronik

Version: 2018-06-09 Seite 1