

The Role of Retention Time in Untargeted Metabolomics

Caparica-Lisbon, 21st September 2015

<u>Jan Stanstrup</u>[†], Steffen Neumann[‡], and Urška Vrhovšek[†]

[†]Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige (TN), Italy

[‡]Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany

Match to authentic standard Orthogonal data: e.g. spectra + retention time

Match to authentic standard Orthogonal data: e.g. spectra + retention time

Match to public MS library

No orthogonal data: only spectra

MSI LEVEL I

MSI LEVEL II

Match to authentic standard Orthogonal data: e.g. spectra + retention time

Match to public MS library

No orthogonal data: only spectra

Compound not in any MS library

MSI LEVEL I

MSI LEVEL II

MSI LEVEL III/IV

Match to public MS library

No orthogonal data: only spectra

MSI LEVEL II: match to public db

You got your match to a database spectra.

But are you sure that the spectra of your unknown couldn't match *other* isomers equally well?

MS search for 163.04 m/z		
Show 10 ▼ entries		
Compound	↓ Name	
HMDB00205	Phenylpyruvic acid	
HMDB01713	m-Coumaric acid	
HMDB02035	4-Hydroxycinnamic acid	
HMDB02641	2-Hydroxycinnamic acid	

1) Examine mass spectra → No way to discriminate

- 1) Examine mass spectra → No way to discriminate
- 2) Check spectra libraries → Still cannot be sure

- 1) Examine mass spectra → No way to discriminate
- 2) Check spectra libraries → Still cannot be sure

THE VELUX FOUNDATIONS

LLUM FONDEN > VELUX FONDEN

"Piled Higher and Deeper" by Jorge Cham www.phdcomics.com

- 1) Examine mass spectra → No way to discriminate
- 2) Check spectra libraries → Still cannot be sure
- 3) Buy all standards (if available) → Expensive!

THE VELUX FOUNDATIONS

LLUM FONDEN > VELUX FONDEN

"Piled Higher and Deeper" by Jorge Cham www.phdcomics.com

LLUM FONDEN > VELUX FONDEN

- 1) Examine mass spectra → No way to discriminate
- 2) Check spectra libraries → Still cannot be sure
- Buy all standards (if available) → Expensive!

"Piled Higher and Deeper" by Jorge Cham www.phdcomics.com

"Piled Higher and Deeper" by Jorge Cham www.phdcomics.com

- MS search for 163.04 m/z

 Show 10 ▼ entries

 Compound ↓ Name

 HMDB00205 Phenylpyruvic acid

 HMDB01713 m-Coumaric acid

 HMDB02035 4-Hydroxycinnamic acid

 HMDB02641 2-Hydroxycinnamic acid
- 1) Examine mass spectra → No way to discriminate
- 2) Check spectra libraries → Still cannot be sure
- 3) Buy all standards (if available) → Expensive!

So can we at least limit the number of isomers by using the information we already have?

Why retention time information is usually neglected

Retention time is specific to the chromatographic system and there are no RT references

No coordinated efforts to share and exploit RT info.

Current approaches to retention time prediction and their characteristics

	Prediction from structure (QSRR)	Projection from isocratic runs ^a
Accuracy	Low	Very high
Universality (any structure)	High	Low
Additional lab work	None	Lots
Model complexity	High	Low

^aAbate-Pella D, et al. (2015). Retention Projection Enables Accurate Calculation of Liquid Chromatographic Retention Times Across Labs and Methods. *J Chromatogr.*

Simplest QSRR model

Stanstrup, J., Gerlich, M., Dragsted, L. O., & Neumann, S. (2013). Metabolite profiling and beyond: Approaches for the rapid processing and annotation of human blood serum mass spectrometry data Metabolomics and Metabolite Profiling. *Analytical and Bioanalytical Chemistry*, 405(15), 5037–5048.

Previous approaches to retention time prediction

	Prediction from structure (QSRR)	Projection from isocratic runs ^a
Accuracy	Low	Very high
Universality (any structure)	High	Low
Additional lab work	None	Lots
Model complexity	High	Low

^aAbate-Pella D, et al. (2015). Retention Projection Enables Accurate Calculation of Liquid Chromatographic Retention Times Across Labs and Methods. *J Chromatogr.*

Previous approaches to	VILLUM FONDEN > VELUX FONDEN
retention time prediction	า

	Prediction from structure (QSRR)	Projection from isocratic runs ^a	PredRet ^b
Accuracy	Low	Very high	Medium to high
Universality (any structure)	High	Low	Low to medium
Additional lab work	None	Lots	None
Model complexity	High	Low	Low

THE VELUX FOUNDATIONS

^aAbate-Pella D, et al. (2015). Retention Projection Enables Accurate Calculation of Liquid Chromatographic Retention Times Across Labs and Methods. J Chromatogr.

^bStanstrup, J., Neumann, S., & Vrhovsek, U. (2015). PredRet: Prediction of Retention Time by Direct Mapping between Multiple Chromatographic Systems. Analytical Chemistry.

PredRet models

Compound overlap between systems in PredRet

Number of RTs in database and predictions made

MS search for 163.04 m/z		
Show 10 ▼ entries		
Compound	↓ Name	
HMDB00205	Phenylpyruvic acid	
HMDB01713	m-Coumaric acid	
HMDB02035	4-Hydroxycinnamic acid	
HMDB02641	2-Hydroxycinnamic acid	

Accuracy of PredRet predictions

 PredRet allows sharing of retention time information and across chromatographic systems

- PredRet allows sharing of retention time information and across chromatographic systems
- The accuracy of PredRet can differentiation of isomers

- PredRet allows sharing of retention time information and across chromatographic systems
- The accuracy of PredRet can differentiation of isomers
- Compound need to be in the database (someone need to record it)

- PredRet allows sharing of retention time information and across chromatographic systems
- The accuracy of PredRet can differentiation of isomers
- Compound need to be in the database (someone need to record it)
- Chromatography needs to be similar (e.g. acidic C18-based)

- PredRet allows sharing of retention time information and across chromatographic systems
- The accuracy of PredRet can differentiation of isomers
- Compound need to be in the database (someone need to record it)
- Chromatography needs to be similar (e.g. acidic C18-based)
- When people use PredRet the database expands

Thank you for your attention

Share the RTs!