Витебск, 2003г. Решения задач.

9 класс.

Задача 1.

Основная ошибка, допущенная «изобретателем», заключалась в том, что он не учел электрического сопротивления контакта между трубками.

Если пренебречь этим сопротивлением, то общее сопротивление резистора рассчитывается по формуле

$$R_{meo p.} = \rho \left(\frac{L_1 - x}{S_1} + \frac{x}{S_1 + S_2} + \frac{L_2 - x}{S_2} \right) =$$

$$= \rho \left(\frac{L_1}{S_1} + \frac{L_2}{S_2} \right) - \rho \left(\frac{1}{S_1} - \frac{1}{S_1 + S_2} + \frac{1}{S_2} \right) x$$
(1)

где L_1, L_2 - длины трубок, S_1, S_2 - площади их торцов, ρ - удельное электрическое сопротивление материала трубок. Как видно, эта зависимость действительно линейна.

Если же сопротивление контакта значительно превышает сопротивления самих трубок, то зависимость сопротивления от величины x будет иной (электрический ток по смазке протекает перпендикулярно поверхности трубок)

$$R_{_{9KCN.}} = \rho_1 \frac{h}{2\pi rx}, \qquad (2)$$

где h - ширина зазора между трубками, r - внешний радиус внутренней трубки, ρ_1 - удельное электрическое сопротивление смазки. Эта зависимость обратно пропорциональная.

Задача 2.

Запишем основной закон динамики для каждого их грузов в проекции на вертикальную ось с учетом условий невесомости нити и блоков, а также отсутствия трения в осях блоков:

$$m_1 a_1 = T$$

 $m_2 a_2 = T$, (1)
 $m_0 a_0 = m_0 g - 2T$

Все обозначения стандартные и очевидные. Поскольку трение грузов о плоскость отсутствует, то в горизонтальном направлении система является замкнутой, т.е. положение ее центра масс не может измениться по горизонтали. С учетом этого получаем следующее уравнение

$$m_1 a_1 = m_2 a_2. \tag{2}$$

Кроме того, учтем кинематическую связь между ускорениями грузов для подвижного блока

$$a_1 + a_2 = 2a_0. (3)$$

Выразив из (2) - (3) значения
$$a_1 = \frac{2m_2}{m_1 + m_2} a_0$$
 ; $a_2 = \frac{2m_1}{m_1 + m_2} a_0$ и

подставив их в (1) найдем