PROCESSAMENTO DIGITAL DE IMAGEM

Sendo z(x) uma operação de Expansão Linear de Contraste (*Contrast Stretching*) determine o valor de z(6) para uma resolução radiométrica de 3-bits, sem saturação.

4	5	1	6	1	1	3	
3	4	5	3	6	6	4	
5	6	5	6	5	2	2	
3	4	4	4	5	6	6	
3	2	3	3	4	3	5	
2	2	3	2	2	3	4	
2	2	2	2	2	2	1	

Em que circunstâncias se executa a reamostragem de pixels? Quais os três métodos de reamostragem mais comuns?

Considere uma rotação de 30°, no sentido dos ponteiros do relógio, de uma dada imagem com dimensões Linhas × Colunas = 10 × 20. Quais as dimensões da nova imagem?

Dados os seguintes quatro níveis de cinzento, f(7,200) = 136; f(8,200) = 137; f(7,201) = 140; e f(8,201) = 146, calcule o valor na posição (7.4, 200.8) usando o método de interpolação bilinear.

Como se determina um filtro passa-alta a partir de um filtro passa baixa?

Na matriz 3×3 seguinte, que valor deve ser colocado na posição em falta para que possa ser considerado um filtro passa-baixa linear?

$$\begin{bmatrix} \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ 0 & \dots & \frac{1}{8} \\ 0 & 0 & \frac{1}{8} \end{bmatrix}$$

Para uma posição genérica z_k de uma dada imagem, deduzir os coeficientes do filtro passa-alta relacionado com o filtro passa-baixa da alínea anterior.

Na matriz 3×3 seguinte, que valor deve ser colocado na posição em falta para que possa ser considerada um filtro passa-alta? Qual o nome do filtro em causa?

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & \cdots & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Qual o aspecto mais relevante que diferencia os filtros passa-baixa gaussiano e da média? Justifique.

Para a ilustração seguinte, qual o resultado da convolução entre a máscara M e imagem F, no pixel central de F?

F

10	100	110	40	80
90	20	190	25	20
50	210	220	190	150
30	240	255	200	130
140	110	150	60	90

М

-2 -1 4 -1	-2
------------	----

O que entende por histograma de uma imagem? É possível extrair informação espacial acerca dos objectos de uma imagem a partir do seu histograma? Justifique.

Qual a forma teórica do histograma acumulado de uma imagem após a operação de realce de equalização do histograma? Porquê?

O que entende por "limiarização" do histograma de uma imagem?

Que nome se dá a um histograma com dois picos de frequência predominantes?

Escreva a expressão da convolução de K com I.

$$\left[\begin{array}{rrr}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array} \right]$$

$$\left[egin{array}{cccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ \end{array}
ight]$$

K

I

Deduza a expressão geral resultante da aplicação do operador de Sobel bidirecional (N-S e E-W) à função 3×3 genérica a seguir representada. Considere, para o efeito, apenas as posições em que o *kernel* está totalmente incluído na janela da referida imagem. Represente a função resultante.

$$\left[\begin{array}{cccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right]$$

Explique a afirmação. "O ruído independente é geralmente descrito por um modelo de ruído aditivo".

O que entende por Signal-to-Noise-Ratio (SNR)? Como se relaciona o valor do SNR com a existência de ruído visível numa imagem?

Considere a imagem grey-level f da figura seguinte. Determine o valor dos pixels marcados com "x", após a execução da operação mencionada em cada um dos casos, aplicada a f.

					EROSÃO				DILATAÇÃO			GRADIENTE MORFO			RFOLĆ	GICO			
							x		1										
f									1			x					x		
20	160	47	56																
36	78	123	223																
125	35	187	164		ABERTURA					FECHO				TOP-HAT					
211	169	99	138																
				,					1		х					x			
							x												
									1										

Em morfologia matemática, os máximos regionais de uma imagem f obtêm-se fazendo a diferença entre f e a reconstrução geodésica de (f-1) em f, ou seja, como descrito pela seguinte expressão:

$$k_{\max(f)} = f - R_f \left(f - 1 \right)$$

Considere a imagem numérica f abaixo representada. Determine a imagem dos seus máximos regionais, pela forma descrita na anterior expressão.

f		
78	123	223
35	240	164
169	99	138

Considere a seguinte imagem binária X. Com recurso a operações binárias lógicas e/ou operações morfológicas elementares de erosão e dilatação, descreva, passo a passo, como procederia para separar a linha horizontal da vertical. E como obteria apenas os pontos isolados?

