

Механико-математический факультет

Линейная алгебра и геометрия, 2 семестр, 2 поток

Преподаватель: Чубаров Игорь Андреевич

Студент: Молчанов Вячеслав

Группа: 108

Контакт: Мой телеграм для связи

Содержание

1	Векторное пространство	2
	1.1 Изменение координат вектора при замене базиса	4
2	Векторные подпространства 2.1 Примеры	4 4 5
3	Пересечение и сумма подпространств	8
4	Прямая сумма подпространств и пространств	9
5	Линейные отображения и функции	13
6	Линейные функции	14

1 Векторное пространство

Определение. Множество V называется векторным пространством над полем F, если заданы операции "+" и "·" : $V \times V \to V$, $F \times V \to V$ и выполнены следующие аксиомы:

1.
$$\forall v_1, v_2, v_3 \in V : (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

$$2. \ \exists \ \vec{0} \in V: \ \forall v \in V: \ v + \vec{0} = v$$

3.
$$\forall v \in V \ \exists -v \in V : v + (-v) = \vec{0}$$

4.
$$\forall v_1, v_2 \in V : v_1 + v_2 = v_2 + v_1$$

5.
$$\forall \alpha, \beta \in F, v \in V : (\alpha \beta)v = \alpha(\beta v)$$

$$6. \ \forall v \in V \ \exists \ 1 \in F : 1 \cdot v = v$$

7.
$$\forall \alpha, \beta \in F, v \in V : (\alpha + \beta)v = \alpha v + \beta v$$

8.
$$\forall \alpha \in F, v_1, v_2 \in V : \alpha(v_1 + v_2) = \alpha v_1 + \alpha v_2$$

Загадка: Одна из этих аксиом - следствие других. Какая?

Определение. $U \subset V$ - векторное подпространство пространства V, если оно само является пространством относительно тех же операций в V.

Утверждение. Определение 2 эквивалентно:

1.
$$\forall U \neq \emptyset$$

2.
$$\forall u_1, u_2 \in U : u_1 + u_2 \in U$$

3.
$$\forall u \in U, \ \lambda \in F : \lambda u \in U$$

Определение. Векторы $v_1,...,v_n\in V$ называются линойно независимыми, если $\exists \ \lambda_1,...,\lambda_n$ (не все равные 0) : $\lambda_1v_1+...+\lambda_nv_n=\vec{0}$

Утверждение. Определение $3 \iff (m \ge 2)$ хотя бы один вектор из векторов v_i выражается как линейная комбинация остальных.

Определение. Упорядоченный набор векторов $e = (e_1, ..., e_n), e_k \in V$, если это максимальный ЛНЗ набор веторов из V.

Утверждение. e - базис e $V \Longleftrightarrow$

1.
$$e_1, ..., e_n - JH3$$

2.
$$\forall x \in V \exists x_1, ..., x_n \in F : x = x_1 e_1 + ... + x_n e_n = \sum_{i=1}^n x_i e_i$$

Следствие. Разложение любого вектора в базисе единственно.

Доказательство. Если
$$x=\sum\limits_{i=1}^n x_ie_i=\sum\limits_{i=1}^n x_i'e_i$$
, то $\vec{0}=x-x=\sum\limits_{i=1}^n (x_i'-x_i)e_i$ Из ЛНЗ все коэффициенты равны

Обозначаем:
$$X_e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in F^n$$
, тогда $x = eX_e = e_1x_1 + \ldots + e_nx_n$
$$\boxed{x = eX_e} \tag{1}$$

Теорема. Если в $V \equiv 6$ азис из k векторов, то любой базис V содержит k векторов.

Доказательство.

Если \exists базис $e'_1,...,e'_m \in V$, где m>n, то по ОЛЛЗ $e'_1,...,e'_m$ - ЛЗ, т.е. не базис. Если же m< n, то по ОЛЛЗ (в другую сторону) $e_1,...,e_n$ - ЛЗ \Longrightarrow не базис. \square

Свойства. матриц перехода

- 1. $\det C \neq 0$
- 2. $C_{e'\to e} = (C_{e\to e'})^{-1}$
- 3. $C_{e'' \rightarrow e} = C_{e \rightarrow e'} \cdot C_{e' \rightarrow e''}$

Доказательство.

- 1) Столбцы координаты ЛНЗ векторов $e_1',...,e_n' \Longrightarrow rkC = n \Longrightarrow \det C \neq 0$
- 2) Перепишем определение матрицы перехода в матричный вид. По определению:

$$e' = (e'_1, ..., e'_n) = (e_1, ..., e_n) C_{e \to e'}, \text{ r.e. } e' = e C_{e \to e'}$$

$$e' = e C_{e \to e'}$$
(2)

С другой стороны

$$C = e'C_{e' \to e} = eC_{e \to e'}C_{e' \to e} \Longrightarrow C_{e \to e'}C_{e' \to e} = E$$

ввиду единственности разложения векторов по базису, т.е.

$$C_{e \to e'} = (C_{e' \to e})^{-1}$$

3)
$$e'' = e'C_{e' \to e''} = e(C_{e \to e'}C_{e' \to e''}) = eC_{e \to e''}$$

В силу единственности разложения $C_{e \to e''} = C_{e \to e'} C_{e' \to e''}$

Алгоритм. Как вычислить матрицу перехода, если известны координаты векторов e_i и e'_j в некотором универсальном? $e' = eC_{e \to e'}$ можно рассмотреть как матричное уравнение:

$$(e_1^{\uparrow}, ..., e_n^{\uparrow})C = (e_1^{\prime \uparrow}, ..., e_n^{\prime \uparrow})$$
$$[e_1^{\uparrow}, ..., e_n^{\uparrow} \mid e_1^{\prime \uparrow}, ..., e_n^{\prime \uparrow}] \stackrel{cmpo\kappa}{\leadsto} [E \mid C_{e \to e^{\prime}}]$$

1.1 Изменение координат вектора при замене базиса

Теорема. Формула изменения координат вектора при замене базиса:

$$X_e = C_{e \to e'} X_{e'} \tag{3}$$

Доказательство.

$$\forall x \in V : x = eX_e = e'X_{e'} = eC_{e \to e'}X_{e'}$$
$$\Longrightarrow X_e = C_{e \to e'}X_{e'}$$

2 Векторные подпространства

2.1 Примеры

- 1. Геометрические векторы
- 2. F^n пространство столбцов (строк) высоты (длины) n с естественными операциями $(+,\cdot\lambda)$

Базис
$$\vartheta = \left\{ \begin{pmatrix} 1\\0\\\vdots\\0\end{pmatrix}, \begin{pmatrix} 0\\1\\\vdots\\0\end{pmatrix}, ..., \begin{pmatrix} 0\\0\\\vdots\\1\end{pmatrix} \right\}$$
 (можно взять столбцы любой

невырожденной матрицы порядка n)

 $\it Замечание.$ Доказать, что если $\it e$ - базис, $\it C$ - невырожденная матрица, то $\it eC$ - тоже базис (из $\it (2)$)

Упражнение. Пусть $|F|=q, \dim_F V=n \Longrightarrow |V|=q^n$ $\dim M_{m,n}=mn$, стандартный базис - $\{E_{ij}\}$, где E_{ij} содержит 1 на ij-ой позиции и 0 на остальных.

3. $V = \{F: \underset{(X \subseteq \mathbb{R})}{X} \to \mathbb{R}\}$ с операциями сложения и λF

Оно бесконечномерно, если X бесконечно.

Если $\lambda_1,...,\lambda_n$ - попарно различные числа, то $y_1=e^{\lambda_1 x},...,y_n=e^{\lambda_n x}$ ЛНЗ Допустим, что:

$$\begin{cases} C_{1}y_{1} + \dots + C_{n}y_{n} \equiv 0 \\ C_{1}y'_{1} + \dots + C_{n}y'_{n} \equiv 0 \\ \vdots \\ C_{1}y_{1}^{(n-1)} + \dots + C_{n}y_{n}^{(n-1)} \equiv 0 \end{cases} \implies \begin{cases} C_{1}e^{\lambda_{1}x} + \dots + C_{n}e^{\lambda_{n}x} \equiv 0 \\ \lambda_{1}C_{1}y'_{1} + \dots + \lambda_{n}C_{n}y'_{n} \equiv 0 \\ \vdots \\ \lambda^{n-1}C_{1}e^{\lambda_{1}x} + \dots + \lambda^{n-1}C_{n}e^{\lambda_{n}x} \equiv 0 \end{cases}$$

$$\Delta = V(\lambda_{1}, \dots, \lambda_{n}) \neq 0 \implies C_{1} = \dots = C_{n} = 0$$

- 4. F[t] с естественными операциями сложения и умножения на скаляр бесконечномерное пространство, т.к.: $\forall n \in N_0: 1, t, t^2, ...$ линейно независимы. $F[t]_n = \{a_0 + a_1t + a_2t^2 + ... + a_nt^n \mid a_k \in F, \ k = 0, ..., n; \ n \in N_0\}$ подпространство, $\dim U = n + 1$, базис: $1, t, ..., t^n$ Тейлоровский базис: $1, t t_0, ..., (t t_0)^n$; $\sum_{k=0}^n \frac{f^{(k)}(t_0)}{k!} (t t_0)^k$
- 5. $\Omega \neq 0, \ V = 2^{\Omega}$ с операциями вместо сложения:

$$A \triangle B = (A \cap \overline{B}) \cup (B \cap \overline{A}) \ \forall A, B \subseteq \Omega$$

 $F = \mathbb{Z}_2, \ 0 \cdot A = \emptyset, \ 1 \cdot A = A$

Упражнение. Доказать, что V - векторное пространство над \mathbb{Z}_2

2.2 Два основных способа задания подпространства в V

1. Линейная оболочка семейства векторов $S \subset V$:

$$\langle S \rangle = \{ \sum_{i \in I} \lambda_i s_i \text{ (канонические суммы) } | s_i \in S, \lambda_i \in F \}$$

Частный случай:

$$\langle a_1, ..., a_m \rangle = \{ \sum_{i=1}^m \lambda_i a_i \mid \lambda_i \in F \} = U$$

Утверждение. $\langle a_1,...,a_m\rangle\subseteq V\Longrightarrow \dim\langle a_1,...,a_m\rangle=rk\{a_1,...,a_m\}$

Доказательство.

$$\mu \sum_{i=1}^{m} \lambda_i a_i = \sum_{i=1}^{m} (\mu \lambda_i) a_i$$
$$\sum_{i=1}^{m} \mu_i a_i + \sum_{i=1}^{m} \lambda_i a_i = \sum_{i=1}^{m} (\mu_i + \lambda_i) a_i \in U$$

Если $r=rk\langle a_1,...,a_m\rangle$, то $a_{j1},...,a_{jr}$ - базисные, то $\forall a_i$ через них тоже выражается

$$orall \sum_{i=1}^m \lambda_i a_i \Longrightarrow \{a_{j1},...,a_{jr}\}$$
 — базис U

Алгоритм. Алгоритм вычисления $\dim \langle a_1, ..., a_m \rangle$ и базиса, если известны координаты этих векторов:

1) Составить матрицу:

$$(a_1^{\uparrow},...,a_m^{\uparrow}) \xrightarrow[cmpo\kappa]{j_1 \cdots j_r} \begin{pmatrix} 1 & 0 & \\ & \ddots & 0 \\ 0 & 1 & \\ & & 0 \end{pmatrix}$$

- 2) Столбцы с номерами $j_1, ..., j_r$ базис в U, разложение оставшихся векторов можно сразу считать из преобразованной матрицы
- **2.** $(\dim V = n, \text{ известны координаты в некотором базисе})$

$$\forall \sum_{i=1}^{n} X_i e_i = eX, \ X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

$$W = \{x = eX \mid AX = 0\}$$
 — задание с помощью ОСЛУ

Утверждение. W - подпространство в V, $\dim W = n - rkA$, базис - любая ΦCP (это переход от **2.** к **1.** способу задания подпространства).

Теорема. Линейную оболочку конечного числа векторов в конечномерном векторном пространстве V можно задать c помощью OCЛУ.

Доказательство. Два способа:

1) Вектор
$$x$$
 (со столбцами координат $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$):

$$x \in \langle a_1, ..., a_m \rangle = U$$

$$\iff$$
 $\exists \ \alpha_1,...,\alpha_m \in F: \sum_{i=1}^m \alpha_i a_i = x, \$ или в координатах: $\sum_{i=1}^m \alpha_1 a_i^{\uparrow} = X$

т.е. СЛУ с $\widetilde{A}=(a_1^\uparrow,...,a_m^\uparrow\mid \begin{pmatrix} X_1\\ \vdots\\ X_n\end{pmatrix})$ совместна \Longleftrightarrow после алгоритма Гаусса:

$$\widetilde{A} \longrightarrow \begin{pmatrix} K & \sum_{j} C_{kj} X_{j} \\ 0 & \sum_{j} C_{r+1} X_{j} = 0 \\ \sum_{j} C_{nj} X_{j} = 0 \end{pmatrix}$$

$$\left(K\right)$$
 имеет ступенчатый вид, а $\left(\sum C_{r+1}X_j=0\right)$ - нужная нам система.

Упражнение. Доказать, что эти уравнения ЛНЗ.

2) Пусть дана ОСЛУ:
$$\underset{(r \times n)}{C} X = 0, \ rkC = r$$

$$C \xrightarrow[\text{строк}]{\Im\Pi} \left(E_r \mid D \right) = C'$$

$$\begin{cases} x_1 = -(d_{1,r+1}x_{1,r+1} + \dots + d_{1n}x_n) \\ \vdots \\ x_k = -(d_{k,r+1}x_{k,r+1} + \dots + d_{kn}x_n) \end{cases}$$
 $k = 1, \dots, r$

Фундаментальная матрица: $\mathcal{F} = \left(\frac{-D}{E_{n-r}}\right)$

$$C' \cdot \mathcal{F} = E_r \cdot (-D) + D \cdot E_{n-r} = -D + D = 0$$

Рассмотрим матрицу из строк координат векторов $a_1, ..., a_r$:

$$\begin{pmatrix} a_1^{\rightarrow} \\ \vdots \\ a_r^{\rightarrow} \end{pmatrix} \xrightarrow{\text{улучшенный вид}} \begin{pmatrix} M \mid E_r \end{pmatrix} \xrightarrow{\text{Транспонируем}} \begin{pmatrix} M^T \\ E_r \end{pmatrix} = \mathcal{F}$$

Тогда искомая система будет иметь матрицу: $C = (E_{n-r} \mid -M^T)$ Пространство $\{X \mid CX = 0\}$ имеет размерность n - (n-r) = r

3 Пересечение и сумма подпространств

Утверждение.

- 1. Если U_i $(i \in I)$ подпространство V, то $W = \bigcap_{i \in I} U_i$ тоже подпространство V
- 2. Объединение подпространств может НЕ быть подпространством даже для двух подпространств. (РИСУНОК)

Доказательство. 1. $\overline{Q} \in W$, т.к. $\overline{Q} \in U_i$, $\forall i \in I$.

Если
$$x, y \in U_i, \ \forall i \in I \Longrightarrow x + y \in U_i, \ \forall i \in I \Longrightarrow x + y \in \bigcap_{i \in I} U_i$$

Если $x \in U_i, \ \forall i \in I, \ \forall \lambda \in F \Longrightarrow \lambda x \in U_i, \ \forall i \in I \Longrightarrow x \in \bigcap_{i \in I} U_i$

Замечание. Если U_1, U_2 - подпространства в V и Q - любое подпространство, которое содержит U_1 и U_2 , то оно содержит и сумму u_1+u_2 , если $u_i \in U_i, i=1,2$ Замечание. Суммой подпространств $U_1, ..., U_m \subseteq V$ назовем:

$$U_1 + \dots + U_m = \{x_1 + \dots + x_m \mid x_i \in U_i\}$$

Утверждение. $U_1 + ... + U_m$ - подпространство в V

Теорема. (Формула Грассмана)

Если U_1, U_2 - подпространства в V, $\dim U_1 < \infty$, $\dim U_2 < \infty$, то

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

 \mathcal{A} оказательство. Пусть $\dim U_i = n_i, \ \dim(U_1 \cap U_2) = s$ Выберем $c_1, ..., c_s$ - базис $U_1 \cap U_2$, дополним до базиса в U_1 векторами $a_1, ..., a_{n_1-s}$ и до базиса в U_2 векторами $b_1, ..., b_{n_2-s}$.

Тогда векторы $c_1,...,c_s,a_1,...,a_{n_1-s},b_1,...,b_{n_2-s}$ - образуют базис в U_1+U_2

1. Они порождают $U_1 + U_2$:

$$\forall u = u_1 + u_2 = (\sum \alpha_i a_i + \sum x_i c_i) + (\sum \beta_i b_i + \sum \delta_i c_i)$$

2. Они ЛНЗ. Рассмотрим линейную комбинацию:

$$\sum_{i=1}^{n_1-s} \alpha_i a_i + \sum_{k=1}^{n_2-s} \beta_k b_k + \sum_{j=1}^s \gamma_j c_j = 0$$

$$\sum_{i=1}^{n_1-s} \alpha_i a_i = -\sum_{k=1}^{n_2-s} \beta_k b_k - \sum_{i=1}^s \gamma_i c_i \in U_1 \cap U_2$$

Левая часть должна раскладываться по $\{c_j\} \Longrightarrow \sum_{i=1}^{n_1-s} \alpha_i a_i = 0 \Longrightarrow a_i$ - ЛНЗ $\Longrightarrow \forall i: \ \alpha_i = 0$ Тогда $\sum_{k=1}^{n_2-s} \beta_k b_k + \sum_{j=1}^s \gamma_j c_j = 0 \Longrightarrow \{b_k, \gamma_j\}$ - ЛНЗ $\Longrightarrow \forall k, j: \ \beta_k = \gamma_j = 0$

Алгоритм. Пусть $U_1 = \langle a_1, ..., a_{n_1} \rangle$, $U_2 = \langle b_1, ..., b_{n_2} \rangle$ известны координаты. Составим матрицу:

$$(A \mid B) = (a_1^{\uparrow}, ..., a_{n_1}^{\uparrow} \mid b_1^{\uparrow}, ..., b_{n_2}^{\uparrow})$$

 $\dim(U_1 + U_2) = rk(A|B)$

$$\begin{pmatrix} A \mid B \end{pmatrix} \xrightarrow[cmno\kappa]{\partial \Pi} \begin{pmatrix} a_1^{\uparrow}, ..., a_{n_1}^{\uparrow} \mid b_1^{\uparrow}, ..., b_m, b_{m+1}, ..., b_{n_2-m}^{\uparrow} \end{pmatrix}$$

Можно записать:

$$b_i = \sum_{i=1}^{n_1} \alpha_i a_i + \sum_{k=1}^m \beta_{k_j} b_k \Longrightarrow b_j - \sum_{k=1}^m \beta_{k_j} b_k = \sum_{i=1}^{n_1} \alpha_i a_i \in U_1 \cap U_2$$

Упражнение. Верна ли аналогичная формула для трех подпространств?

4 Прямая сумма подпространств и пространств

Определение. Сумма $U_1 + ... + U_m$ подпространств $U_i \subset V$, $1 \leq i \leq m$ называется прямой суммой, если $\forall u \in U_1 + ... + U_m$ представим в виде: $u = u_1 + ... + u_m \; (u_i \in U_i)$ единственным образом

Пусть m=2,V - конечномерное пространство, $U_{1,2}$ - подпространства V **Теорема.** Следующие условия равносильны:

1.
$$U = U_1 + U_2$$
 - прямая сумма

2.
$$U_1 \cap U_2 = \{0\}$$

3. $\dim(U_1 + U_2) = \dim U_1 + \dim U_2$

4. Базис $U_1 + U_2$ - объединение базисов слогаемых

Доказательство.

$$1. \to 2.$$
 Допустим $u \in U_1 \cap U_2 \Longrightarrow v = v + 0 = 0 + v \Longrightarrow v = 0$

 $2. \rightarrow 3.$ По формуле Грассмана:

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \underbrace{\dim(U_1 \cap U_2)}_{0}$$

 $3. \to 4.$ Ввиду доказательства формулы Грассмана. Если

$$\sum_{i} \alpha_{i} a_{i} + \sum_{j} \beta_{j} b_{j} = 0 \Longrightarrow \sum_{i} \alpha_{i} a_{i} = \sum_{j} (-\beta_{j}) b_{j} \in U_{1} \cap U_{2} = \{0\}$$

 \Longrightarrow все a_i и b_i равны нулю

 $4. \to 1. \ \forall u \in U_1 + U_2:$

$$u = \left(\sum_{i} \alpha_{i} a_{i}\right) + \left(\sum_{j} \beta_{j} b_{j}\right)$$

- разложение по базису единственно

Теорема. Следующие условия равносильны:

1. $U = U_1 + U_2$ - прямая сумма

2.
$$\forall i, \ 1 \le i \le m, \ U_i \cap (\sum_{j \ne i} U_j) = \{0\}$$

- 3. $\dim(U_1 + U_2) = \dim U_1 + \dim U_2$
- 4. Базис $U_1 + U_2$ объединение базисов слогаемых

Упражнение. Доказать

Пример. того, что условия $U_i \cap U_j = \{0\}, i \neq j$ недостаточно для прямой суммы: (РИСУНОК)

 v_1, v_2, v_3 - $\Lambda 3 \Longrightarrow$ представление не единственным образом

Лемма. Любой ЛНЗ набор векторов $a_1, ..., a_m$ в n-мерном векторном пространстве V (m < n) можно дополнить до базиса в V.

Доказательство. 1. Пусть известны координаты векторов в некотором базисе $e_1, ..., e_n \Longrightarrow rk\{a_1, ..., a_m, e_1, ..., e_n\} = n$

2. Составим матрицу:

$$\left(a_1^{\uparrow} \cdots a_m^{\uparrow} \mid E_n\right) \xrightarrow{\exists \Pi \text{ строк матрицы}} \left(a_1^{\uparrow} \cdots a_m^{\uparrow} \mid e_{i,1}^{\uparrow} \mid e_{j,n-m}^{\uparrow} \cdots\right)$$

Тогда к векторам $a_1,, a_m$ надо добавить $e_{j,1}, ..., e_{j,n-m}$

Определение. Если U - подпр-во в V $(0 \neq U \neq V)$ и $\exists \ W \subset V : V = U \oplus W,$ то W - прямое дополнение к U.

Следствие. Для любого подпространства в конечномерном векторном пространстве \exists прямые дополнения.

Доказательство.
$$U = \langle a_1, ..., a_m \rangle \Longrightarrow \exists \ a_{m+1}, ..., a_n : \langle a_1, ..., a_n \rangle$$
 - базис в V , тогда $W = \langle a_{m+1}, ..., a_n \rangle$

Определение. Пусть $V_1,...,V_k$ $(k\geq 2)$ - векторы пространства над одним и тем же полем \mathbb{F} , тогда:

$$V = V_1 \times ... \times V_k = \{(v_1,...,v_k) \mid v_i \in V_i, 1 \leq i \leq k\}$$
 — внешняя прямая сумма

Обозначение: 🕀

Замечание. Внешнюю прямую сумму $V = V_1 \overset{\oplus}{\circ} ... \overset{\oplus}{\circ} V_k$ можно превратить в прямую сумму подпространства:

$$\forall i$$
 рассмотрим $V_i' = \{0, ..., .v_i,, 0\}$ — подпространство в V

Запись $v_1,...,v_k \stackrel{\text{единственно}}{=} (v_1,0,0,...,0) + (0,v_2,0,...,0) + ... + (0,0,0,...,v_k)$ по-казывает, что $V=V_1'\oplus...\oplus V_k'$ - единственно.

В частности $\dim(V_1) \stackrel{\oplus}{\circ} \dots \stackrel{\oplus}{\circ} V_k = \sum_{i=1}^n \dim V_i$

Фактор пространства

Определение. Пусть $U \subset V$ - подпространство. Скажем, что $V_1 \sim V_2$ по модулю U, если $v_1-v_2 \in U$ ($v_1,v_2 \in V$). Классы эквивалентности имеют вид:

$$v + U = \{v + u \mid u \in U\}$$

- смежные классы по U, где v - представитель

$$* V/U = \{\underbrace{v + U}_{v} \mid u \in U\}$$

Утверждение. $v_1 \sim v_2 \Leftrightarrow v_1 + U = v_2 + U$

Доказательство.

 \Rightarrow : Если $v_1 \sim v_2$, то $\exists u_0 \in V : v_2 = v_1 + u_0$

$$\forall u \in U \ v_2 + u = v_1 + (u_0 + u) \Longrightarrow v_2 + U \subseteq v_1 + U$$

$$v_1 = v_2 - u_0$$
; $\forall u \in U \ v_1 + u = v_2 + (u - u_0) \Longrightarrow v_1 + U \subseteq v_2 + U$

 \leq : Если $v_1+U=v_2+U$, то $\exists u_1\in U:\ v_1=v_2+u_1\Longrightarrow v_1-v_2=u_1\in U$

Определение. v+U - смежный класс элемента v по U : $\bar{v}:=v+U$

Определение. $V/U = \{\bar{v} \mid v \in V\}$ - факторпространство V по U.

Определение. Структура векторного пространства на V/U:

$$\overline{v}_1 + \overline{v}_2 = \overline{v_1 + v_2}; \quad \lambda \overline{v}_1 = \overline{\lambda v_1};$$

Определение. $\dim(V/U)$ называется коразмерностью подпространства U в V Обозначается: $\mathrm{Codim}_V U$

Пример. Пусть V = C[a, b]

$$U = \{f(x) \mid f(x_0) = 0, \ x_0 \in [a, b]\} \Longrightarrow \operatorname{Codim}_V U = 1$$

Теорема.

- 1. Данные операции задают на V/U векторное пр-во;
- 2. Если $\dim V < \infty$, то $\dim(V/U) = \dim V \dim U$

Доказательство.

1) Проверим корректность определений.

Если
$$v_1' = v_1 + \overline{\overline{U_1}}, \ v_2' = v_2 + \overline{U_2}, \ \overline{\overline{u_i}} \in U, \ i = 1, 2$$
:

$$v_1' + v_2' = v_1 + v_2 + (u_1 + u_2)$$

$$v_1' + v_2' \sim v_1 + v_2$$
, T.e. $v_1' + v_2' + \underline{\underline{U}} = v_1 + v_2 + \underline{\underline{U}}$
 $\overline{v_1'} + \overline{v_2'} = \overline{v_1' + v_2'} = \overline{v_1 + v_2}$

т.е. определение не зависит от выбора элемента в классе. Если

$$v' = v + u, \ u \in U \Longrightarrow \lambda v' = \lambda v + \lambda u \in \lambda v + U$$

 $v \sim v' \Longrightarrow \lambda v \sim \lambda v'; \ \overline{0} \in U; \ -\overline{v} = \overline{-v}$

Все аксиомы выполенены, т.к. действия над смежными классами выражаются через действия над векторами.

2) Выберем базис $a_1, ..., a_m$ в U Если U = V, т.е. $m = n = \dim V$, то $V \setminus U = \{0\} \Longrightarrow \dim(V \setminus U) = n - n = 0$ Пусть m < n, можно дополнить базис U до базиса $a_{m+1},, a_n$ в V, тогда классы $\overline{a_{m+1}},, \overline{a_n}$ образуют базис в $V \setminus U$

$$\forall v \in V : v = \sum_{i=1}^{m} \alpha_i a_i + \sum_{j=m+1}^{n} \alpha_j a_j$$

$$\overline{v} = v + U = \sum_{j=m+1}^{n} \overline{\alpha_j a_j} = \sum_{j=m+1}^{n} \alpha_j \overline{a_j}$$

 $\Longrightarrow \overline{a_{m+1}},....,\overline{a_n}$ порождают $V \setminus U$ Проверим ЛНЗ:

$$\exists \lambda_j \in \mathbb{F} : \sum_{j=m+1}^n \alpha_j \overline{a_j} = 0 \Longleftrightarrow \sum_{j=m+1}^n \alpha_j a_j \in U$$

$$\exists \mu_i \in \mathbb{F} : \sum_{j=m+1}^n \alpha_j a_j - \sum_{i=1}^n \mu_i a_i = 0$$

Т.к. $\{a_1,...,a_n\}$ ЛНЗ, то $\lambda_j=0,\ \mu_i=0,\ \forall i,j\Longrightarrow \overline{a_{m+1}},....,\overline{a_n}$ - ЛНЗ

5 Линейные отображения и функции

Пусть V_1, V_2 - векторные пространства над полем \mathbb{F} .

Определение. Отображение $\varphi: V_1 \to V_2$ называется линейным отображением V_1 в V_2 , если:

1.
$$\forall v_1, v_1' \in V_1 : \varphi(v_1 + v_1') = \varphi(v_1) + \varphi(v_1');$$

2.
$$\forall v \in V_1, \lambda \in \mathbb{F} : \varphi(\lambda v) = \lambda \varphi(v);$$

Из курса I семестра известно, что $\varphi(0_{v_1})=0_{v_2}$ Обозначается: $\mathrm{Ker}(\varphi)$ - ядро φ

$$\operatorname{Ker}(\varphi) = \{ v \in V_1 \mid \varphi(v) = 0_{v_2} \}, \operatorname{Im}(\varphi) = \varphi(V_1)$$

6 Линейные функции

Пусть V - векторное пространство над $\mathbb F$

Определение. Отображение $f: V \to \mathbb{F}$ - линейная функция со значениями в \mathbb{F} , если:

1.
$$\forall v_1, v_2 \in V : f(v_1 + v_2) = f(v_1) = f(v_2)$$

2.
$$\forall v \in V, \forall \lambda : f(\lambda v) = \lambda f(v)$$

Обозначается: $V^* = \{f: V \to \mathbb{F}\}$ - множество линейных функций на V

Замечание. $V_2 = \mathbb{F}, \dim V_2 = 1$

Лемма. Если $f \not\equiv 0$, то Ker(f) имеет в V коразмерность = 1

Доказательство. Пусть $\exists v_1 \in V, \ f(v_1) \neq 0$. Пусть $v \in V$, либо $v \in \mathrm{Ker}(f)$, либо $f(v) = \alpha \neq 0$

$$\beta = f(v_1) \neq 0 \Longrightarrow f(\frac{v_1}{\beta}) = 1, \ f(\alpha - \frac{v_1}{\beta}) = \alpha$$

Рассмотрим выражение $r - \frac{\alpha}{\beta}v_1$:

$$f(r - \frac{\alpha}{\beta}v_1) = f(v) - f(\frac{\alpha}{\beta}v_1) = \alpha - \alpha = 0$$

$$\Longrightarrow r - \frac{\alpha}{\beta} v_1 \in \operatorname{Ker}(f)$$
 и $v = \frac{\alpha}{\beta} v_1 + u$, $u \in \operatorname{Ker}(f)$

Замечание.
$$\forall x \in V: \ (f_1+f_2)(x) = f_1(x) + f_2(x)$$
 и $(\lambda f)(x) = \lambda f(x)$

Лемма. Множество V^* с введенными операциями - векторное пространство.

Определение. V^* - векторное пространсто, сопряженное к V ???? (не разобрал, что написанно)