Multilevel Modeling Using R and Stata

Desmond D. Wallace and Scott J. LaCombe

Department of Political Science The University of Iowa Iowa City, IA

March 27, 2019

Multi-Stage Sampling

- OLS assumptions imply utilization of Simple Random Sampling (SRS)
- However, due to cost-efficiency, multi-stage sampling approaches may be utilized instead.
- Researcher may randomly sample grouping units instead of individuals (cluster sampling)
- Examples
 - Students nested in schools
 - Respondents nested in states (countries)
 - Patients nested in hospitals

Applying OLS to Multilevel Data

- Biased standard errors
- Model Misspecification
 - Not accounting for everything one should in model
 - Biased coefficient estimates

New Approach

- Best approach to analyzing nested data is a statistical approach that accounts for both within-group and between-group variation simultaneously
- One approach is to conceive within-group and between-group variation as random variability
- One can achieve this by including random coefficient(s) in the statistical model

Multilevel Model

- Multilevel Model (MLM) is a model where the parameters vary at more than one level
- Features more than one error term
- Variation can occur with respect to the intercept (random intercept) and/or the slope (random slope)
- This approach leads to corrected standard errors and correct model specification

Multilevel Model

- Model coefficients are now a combination of both fixed and random components
 - Fixed Coefficient An unknown constant of nature
 - Random Coefficient One which varies from sample of groups to sample of groups
- Random coefficients are not estimated, and are instead predicted

Null (Variance Components) Model

- Predicting the outcome from only an intercept that varies between groups
- The 2-level null model takes the following form:
 - Level-1 Model: $y_{ij} = \beta_{0j} + \varepsilon_{ij}$
 - Level-2 Model: $\beta_{0i} = \gamma_{00} + U_{0i}$ where
 - γ_{00} Average (general) intercept holding across all groups (fixed effect)
 - U_{0j} Group-specific effect on the intercept (random effect)
 - Full Specification: $y_{ij} = \gamma_{00} + U_{0j} + \varepsilon_{ij}$
- Interested in general mean value for y_{ij} (γ_{00}) and deviation between overall mean and group-specific effects for the intercept (U_{0j})

4 ロ ト 4 回 ト 4 差 ト 4 差 ト 9 年 9 9 9 0

Null Model Assumptions

- Groups are a random sample from the population of all possible groups
- $oldsymbol{0}$ U_{0j} is randomly drawn from a population distribution with mean 0 and variance au_0^2
- **3** au_0^2 (Variance of U_{0j}) and σ^2 (variance of ε_{ij}) are uncorrelated

- Goal: Partition the value of students' math achievement scores into an overall mean and group-specific random effects.
- Model Specification
 - Level-1 Model (student-level): mathach_{ij} = $\beta_{0j} + \varepsilon_{ij}$
 - Level-2 Model (school-level): $\beta_{0j} = \gamma_{00} + U_{0j}$
 - ullet Full Model: mathach $_{ij}=\gamma_{00}+U_{0j}+arepsilon_{ij}$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

- γ_{00} : Overall mean of student's math achievement scores
- U_{0i} : Unique effect of school j on mean math achievement score

2-Level Model Including Level-1 Covariates

- Level-1 Model: $y_{ij} = \beta_{0j} + \beta_{1j}x_{ij} + \varepsilon_{ij}$
- Level-2 Models
 - Intercept: $\beta_{0j} = \gamma_{00} + U_{0j}$ where

 γ_{00} – Average (general) intercept holding across all groups (fixed effect)

 U_{0j} – Group-specific effect on the intercept (random effect)

- Slope: $\beta_{1i} = \gamma_{10}$ where
 - γ_{10} Amount of increase (decrease) in dependent variable for a one-unit change in x_{ij} (fixed effect)
- Full Specification: $y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + U_{0j} + \varepsilon_{ij}$

4□ > 4□ > 4 = > 4 = > = 90

Assumptions

- **1** U_{0i} and ε_{ii} are mutually independent with mean 0, given the values of X_{ij}
- Q U_{0i} is randomly drawn from a population distribution with mean 0 and variance τ_0^2
- **3** Population variance of level-1 residuals, σ^2 , is constant across groups
- U_{0i} are interpreted as group-level residuals, or group effects left unexplained by x_{ii}
- Unexplained variability at multiple levels is essence of multilevel modeling

- Goal: Examine the influence students' socioeconomic status (SES)
 has on math achievement scores while controlling for students'
 minority and gender identification.
- Model Specification
 - Level-1 Model (student-level): mathach_{ij} = $\beta_{0j} + \beta_{1j} SES_{ij} + \beta_{2j} minority_{ij} + \beta_{3j} female_{ij} + \varepsilon_{ij}$
 - Level-2 Models (school-level):
 - $\beta_{0j} = \gamma_{00} + U_{0j}$
 - $\bullet \ \beta_{1j} = \gamma_{10}$
 - $\bullet \ \beta_{2j} = \gamma_{20}$
 - $\bullet \ \beta_{3j} = \gamma_{30}$
 - Full Model:

 $\mathsf{mathach}_{ij} = \gamma_{00} + \gamma_{10} \mathsf{SES}_{ij} + \gamma_{20} \mathsf{minority}_{ij} + \gamma_{30} \mathsf{female}_{ij} + U_{0j} + \varepsilon_{ij}$

- イロト 4個 ト 4 差 ト 4 差 ト - 差 - 夕久で

- γ_{00} : Overall mean of student's math achievement scores
- γ_{10} : Effect SES has on math achievement
- γ_{20} : Difference in math achievement between minorities and non-minorities
- γ_{30} : Difference in math achievement between females and males
- U_{0i} : Unique effect of school j on mean math achievement score

Random Slopes

- Belief the relationship between independent and dependent variables differs across groups
- The 2-level model takes the following form:
 - Level-1 Model: $y_{ij} = \beta_{0j} + \beta_{1j}x_{ij} + \varepsilon_{ij}$
 - Level-2 Models
 - Intercept: $\beta_{0j} = \gamma_{00} + U_{0j}$ where

 γ_{00} – Average (general) intercept holding across all groups (fixed effect)

 U_{0j} – Group-specific effect on the intercept (random effect)

- ullet Slope: $eta_{1j}=\gamma_{10}+\emph{U}_{1j}$ where
 - γ_{10} Average relationship of x_{ij} and y_{ij} across groups (fixed effect) U_{1j} Group-specific variation of the relationship between x_{ij} and y_{ij} (random effect)
- Full Specification: $y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + U_{0j} + U_{1j}x_{ij} + \varepsilon_{ij}$

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ り へ ○ ○

Assumptions

- All residuals $(U_{0j}, U_{1j}, \text{ and } \varepsilon_{ij})$ have mean 0, given the values of the independent variable(s)
- The pair of random effects (U_{0j}, U_{1j}) are independent and identically distributed (i.i.d)
- (U_{0j}, U_{1j}) are independent of (ε_{ij})
- ε_{ij} is i.i.d

- Goal: Examine the influence students' socioeconomic status (SES)
 has on math achievement scores while controlling for students'
 minority and gender identification, while accounting for the effect of
 SES varying across schools.
- Model Specification
 - Level-1 Model (student-level): mathach_{ij} = $\beta_{0j} + \beta_{1j} SES_{ij} + \beta_{2j} minority_{ij} + \beta_{3j} female_{ij} + \varepsilon_{ij}$
 - Level-2 Models (school-level):
 - $\bullet \ \beta_{0j} = \gamma_{00} + U_{0j}$
 - $\beta_{1j} = \gamma_{10} + U_{1j}$
 - $\bullet \ \beta_{2j} = \gamma_{20}$
 - $\bullet \ \beta_{3j} = \gamma_{30}$
 - Full Model:

 $\mathsf{mathach}_{ij} = \gamma_{00} + \gamma_{10} \mathsf{SES}_{ij} + \gamma_{20} \mathsf{minority}_{ij} + \gamma_{30} \mathsf{female}_{ij} + U_{0j} + U_{1j} + \varepsilon_{ij}$

- \bullet γ_{00} : Overall mean of student's math achievement scores
- γ_{10} : Average effect SES has on math achievement
- \bullet γ_{20} : Difference in math achievement between minorities and non-minorities
- \bullet γ_{30} : Difference in math achievement between females and males
- ullet Unique effect of school j on mean math achievement score
- U_{1j} : Unique effect of school j on SES effect on math achievement score

Explaining Random Intercept and Random Slope Variation

- So far, coefficients have been the sum of an average and random effect.
- One could further explain this random variability via inclusion of group-level variables (Z)
- Example (Single group-level variable):
 - Random Intercept: $\beta_{0j} = \gamma_{00} + \gamma_{01}z_j + U_{0j}$
 - Random Slope: $\beta_{1j} = \gamma_{10} + \gamma_{11}z_j + U_{1j}$
- ullet Including a group-level variable in the random intercept equation leads to a main effect of z_j
- Including a group-level variable in the random slope equation leads to an interaction effect of $z_j x_{ij}$ (Cross-level Interaction)
- Just as with level-1 variables, can feature multiple level-2 variables

4 □ ト 4 同 ト 4 三 ト 4 三 ・ り Q ○

- Goal: Examine the influence students' socioeconomic status (SES) has on math achievement scores.
- Model Specification
 - Level-1 Model (student-level): mathach_{ij} = $\beta_{0j} + \beta_{1j} SES_{ij} + \beta_{2j} minority_{ij} + \beta_{3j} female_{ij} + \varepsilon_{ij}$
 - Level-2 Models (school-level):
 - $\beta_{0i} = \gamma_{00} + \gamma_{01} \operatorname{size}_i + \gamma_{02} \operatorname{sector}_i + U_{0i}$
 - $\beta_{1j} = \gamma_{10} + \gamma_{11} \text{size}_j + U_{1j}$
 - $\bullet \ \beta_{2j} = \gamma_{20}$
 - $\bullet \ \beta_{3j} = \gamma_{30}$
 - Full Model: mathach_{ij} = $\gamma_{00} + \gamma_{01}$ size_j + γ_{02} sector_j + γ_{10} SES_{ij} + γ_{11} size_j * SES_{ij} + γ_{20} minority_{ij} + γ_{30} female_{ij} + U_{0j} + U_{1j} + ε_{ij}

- ullet γ_{00} : Overall mean of student's math achievement scores
- γ_{01} : Effect school size has on overall mean of student's math achievement scores when SES = 0
- γ_{02} : Difference in overall mean of student's math achievement scores for schools in sectors coded as 1 compared to schools in sectors coded as 0.
- ullet γ_{10} : Average effect SES has on math achievement when size =0
- \bullet γ_{11} : Average effect SES has on math achievement depends on school size
- \bullet γ_{20} : Difference in math achievement between minorities and non-minorities
- ullet γ_{30} : Difference in math achievement between females and males
- ullet Unique effect of school j on mean math achievement score
- U_{1j} : Unique effect of school j on SES effect on math achievement score

21 / 21