Analog Haberleşme

Prof. Dr. İbrahim Altunbaş

1 Frekans Modülasyonu (FM)

Bir FM işaret, $x_c(t) = \cos(40\pi 10^3 t + 3\sin 4\pi 10^3 t)$ biçiminde verilmektedir. $J_n(\beta)$ değerleri seçilen β (modülasyon indeksi) için aşağıda verilmiştir.

$J_0(\beta) = -0,26$	$J_1(\beta) = 0,34$	$J_2(\beta) = 0,48$	$J_3(\beta) = 0, 3$
$J_4(\beta) = 0, 13$	$J_5(\beta) = 0,05$	$J_6(\beta) = 0,01$	$J_7(\beta) = 0,002$

- a) Modüle eden ve edilen işaretlerin frekansları ile β 'yı bulunuz.
- **b)** $x_c(t)$ 'nin frekans spektrumunu çiziniz.
- c) $x_c(t)$ 'nin güç spektrumunu çiziniz.
- d) $x_c(t)$ 'nin 15 25 kHz aralığındaki ortalama gücünün toplam ortalama güce oranını bulunuz.

1.1 Cevap:

- a) FM işaret $x_c(t) = A\cos{(\omega_c t + \beta\sin{\omega_m t})}$ ise $A=1,\ f_c=20$ kHz, $f_m=2$ kHz ve $\beta=3$ 'tür.
- b)

Figure 1: $x_c(t)$ 'nin frekans spektrumu.

 $\mathbf{c})$

Figure 2: $x_c(t)$ 'nin güç spektrumu.

d) Biliyoruz ki
$$P_{15-25} = \int S(f)df = 2\int_{15}^{25} S(f)df$$
'dir. Dolayısıyla, $P_{15-25} = 2\left[\left(\frac{J_0(\beta)}{2}\right)^2 + 2\left(\frac{J_1(\beta)}{2}\right)^2 + 2\left(\frac{J_2(\beta)}{2}\right)^2 + 2\left(\frac{J_3(\beta)}{2}\right)^2\right]$ olur.

Tablodaki değerleri kullanarak, $P_{15-25}=0,47$ W bulunur. Toplam harcanan güç $P_T=\frac{A^2}{2}=1/2$ W'tır. Dolayısıyla, $\frac{P_{15-25}}{P_T}=\frac{0,47}{0,5}=0,94$ olur.