344.063/163 KV Special Topic: Natural Language Processing with Deep Learning Advanced Topics on Language Processing

Navid Rekab-Saz

navid.rekabsaz@jku.at

Institute of Computational Perception

Agenda

Model size and compression

Agenda

Model size and compression

Trend!

Source: https://www.groundai.com/project/distilbert-a-distilled-version-of-bert-smaller-faster-cheaper-and-lighter/1
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021, March). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? . In *Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency*

Carbon footprint of NLP

in lbs of CO2 equivalent

Roundtrip flight b/w NY and SF (1 passenger) 1,984

Human life (avg. 1 year) 11,023

American life (avg. 1 year) 36,156

US car including fuel (avg. 1 lifetime) 126,000

Transformer (213M parameters) w/ neural architecture search 626,155

Model	Hardware	Power (W)	Hours	kWh-PUE	CO_2e	Cloud compute cost
Transformer _{base}	P100x8	1415.78	12	27	26	\$41–\$140
Transformer $_{big}$	P100x8	1515.43	84	201	192	\$289–\$981
ELMo	P100x3	517.66	336	275	262	\$433-\$1472
$BERT_{base}$	V100x64	12,041.51	79	1507	1438	\$3751-\$12,571
$BERT_{base}$	TPUv2x16		96			\$2074-\$6912
NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
NAS	TPUv2x1		32,623			\$44,055–\$146,848
GPT-2	TPUv3x32	_	168	_		\$12,902–\$43,008

Strubell, E., Ganesh, A., & McCallum, A.. Energy and Policy Considerations for Deep Learning in NLP. In *Proceedings of ACL* (2019).

Source: https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-

cars-in-their-lifetimes/

6

Workshop at EMNLP 2020

Model compression

- Model compression methods reduce the size of a model
 - applied as a post-processing, but also during training
- A compressed model
 - Efficient in practice:
 - faster inference time
 - better suited to low-resource settings (i.e. on mobile phones)
 - Less energy consumption

Model compression methods

- Knowledge distillation
 - A smaller model (student) is trained to reproduce the behavior of a larger model (teacher)
 - Student mimics teachers output or internal representations

Example: DistilBERT

- Distillation loss is defined according to the prediction probabilities of a pre-trained BERT
- Reduce the size to 40% while retaining 97% of performance on GLUE tasks

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Model compression methods

Pruning

- To reduce the extent of a network by removing the superfluous and unnecessary *neurons*, *nodes*, *heads*, *etc.*
- Pruning can be done after training or during training

A common (post-processing) procedure

- 1. Train the model
- 2. Remove the unnecessary units, selected based on their
 - magnitudes, gradients, activations, etc.
- 3. Fine-tune the pruned network
- 4. Repeat the last two steps iteratively

Model compression methods

Quantization

- Quantization methods decrease the numerical precision of model parameters
 - For instance, by turning the 32-bit float parameters of a pre-trained model to 8-bit integers

Over-parameterization is in paradox to classical ML doctrine of "Thou shalt start simple, and then go complex."

Can we then start from small compressed models?!

Consider compression with pruning...

- What if we take the pruned model, and re-train it from scratch (with new initializations)?
 - It does not reach the same performance as the compressed model

Can we then start from small compressed models?!

Consider compression with pruning...

- What if we take the pruned model, and re-train it from scratch (with new initializations)?
 - It does not reach the same performance as the compressed model
- However, if we take the structure of the pruned model, and use the same initialization as the original model ...
 - We achieve the same or even better results!

Lottery ticket hypothesis

The Lottery Ticket Hypothesis (rephrased):

dense, trainable networks contain sparse trainable subnetworks (i.e., winning tickets) that are equally capable*

* When trained in isolation, they reach test prediction comparable to the original network in a similar number of iterations.

- Though, we don't know (yet) beforehand how to find these subnetworks
 - What are their structures?
 - What are their initializations?
- But if we do ... we can achieve the same results by training much smaller networks

