Library for extensive-form games

ABSTRACT

In the literature different algorithms have been developed to solve extensive-form games. However, these algorithms are not comparable because no test dataset provides a benchmark. In this document the reader can find the first classification of extensive-form games with perfect recall and perfect information, together with a dataset of games which covers a large set of possible combinations from the categories given. The attached files include a Python code to read and manipulate the games and a text file from which to upload the dataset.

State of the art. The two main softwares that allow to build extensive-form games are *Gambit* [1] and *Game Theory Explorer* (GTE) [2]. Both softwares are open source. In the last 30 years *Gambit* has been the most established software for studying game theory and now it comes also with a Python package, *pygambit*. On the other hand *GTE* is more accessible for the great public, as it is also available via web browser. These softwares have different features, that result to be cumbersome for a specific application to extensive-form games with perfect recall and perfect information. The code included in the library presents the same features of *pygambit*, but those that are not necessary for extensive-form games with perfect recall and perfect information.

Code. The code includes a Python class *Game* that allows to create an extensive-form game. As in *pygambit*, the attributes available at every node are:

- player, the player acting at the node;
- *parent*, the parent node;
- children, a dictionary having as keys the actions available at the node and as items the corresponding child nodes;
- *outcomes*, a list of the outcomes of the subgame;
- *depth*, the depth of the node in the tree;
- *utility*, a vector of the values of the utility of the node (if the node is an outcome).

Dataset. Every game has a reference code like C2R3R - 1532, which shows the properties of the game. The reference code is to be interpreted by the following classification scheme:

- The first letter and the first number (*C*2 in the example) identify the *structure* of the game;
- The second letter and the number (*R*3) identify the *players* of the game;
- The third letter (*R*) shows the properties of the *utility* function;
- The last number (1532) is the *size*, i.e. the number of outcomes, of the game.

The coding for every category will be explained in the following paragraphs. Two datasets of games with two players are provided. Since most of the algorithms are made for two-player games, the dataset is limited to two-player games. The first dataset varies on the structure and the size, while the second dataset varies on the structure and the utility. We believe that the datasets include a significant range of options for every category. The library is

available on GitHub. Here follows the list of all the categories and respective codings.

Structure. The coding for the structure includes a letter and a number (n_S) . The possible codings for the structure of the games are:

- Random (R), the number of actions available at every node are picked from the discrete uniform distribution \$\mathcal{U}(1, n_S)\$.
- Complete (C), the number of actions available at every node is equal to n_S. Every outcome has the same depth.
- Totally Unbalanced (B), the number of actions available at every node is equal to n_S. Out of n_S child nodes, n_S − 1 are outcomes.

Players. The number of the players is identified by the number of this category n_P . The letter attached to this category identifies the order with which such players are chosen:

- *Random* (*R*), the player acting at a node is chosen randomly among all players but the one acting at the parent node;
- Ordered (D), the players act one after another starting from the first.

Utility. The possible codings for this category are:

- Random (R), the utility of an outcome for a player is drawn by a uniform distribution U(0, 1);
- Discrete (D), the utility of an outcome for a player is drawn by a discrete uniform distribution \$\mathcal{U}(1, 10)\$;
- Zero-sum (Z), the utility of an outcome for a player chosen randomly is 1, for the other players is 0;
- Asymmetric (A), the utility of an outcome for a player chosen randomly is \$\mathcal{U}(0,1)\$, for the other players is 0;
- Indifferent (F), the utility of an outcome for every player has
 the same value and it is drawn by a uniform distribution
 II(0.1).
- *Equal* (*E*), the utility for every outcome for every player has the same value equal to 1.

¹https://github.com/paolozapp/gtlibrary

Figure 1: a) Game R3D3R - 9 with random structure (R) and $n_S = 3$; b) Game C2R4R - 8 with complete structure (C) and $n_S = 2$.

Figure 2: Game B3D2R-9 with totally unbalanced structure (B) and $n_S=3$.

Reference	Structure	n_S	Utility	Size
R4D2R - 100	Random	4	Random	100
C10D2R - 100	Complete	10	Random	100
B4D2R - 100	Unbalanced	4	Random	100
R4D2R - 216	Random	4	Random	216
C6D2R - 216	Complete	6	Random	216
B6D2R - 216	Unbalanced	6	Random	216
R5D2R - 324	Random	5	Random	324
C18D2R - 324	Complete	18	Random	324
B18D2R - 324	Unbalanced	18	Random	324
R5D2R - 400	Random	5	Random	400
C20D2R - 400	Complete	20	Random	400
B4D2R - 400	Unbalanced	4	Random	400
R6D2R - 512	Random	6	Random	512
C2D2R - 512	Complete	2	Random	512
B8D2R - 512	Unbalanced	8	Random	512
R6D2R - 625	Random	6	Random	625
C5D2R - 625	Complete	5	Random	625
B4D2R - 625	Unbalanced	4	Random	625
R7D2R - 729	Random	7	Random	729
C3D2R - 729	Complete	3	Random	729
B14D2R - 729	Unbalanced	14	Random	729

Table 1: First dataset for games with 2 players.

Reference	Structure	n_S	Utility	Size
R5D2R - 256	Random	5	Random	256
R5D2D - 256	Random	5	Discrete	256
R5D2Z - 256	Random	5	Zero-sum	256
R5D2A - 256	Random	5	Asymmetric	256
R5D2F - 256	Random	5	Indifferent	256
R5D2E - 256	Random	5	Equal	256
C2D2R - 256	Complete	2	Random	256
C2D2D - 256	Complete	2	Discrete	256
C2D2Z - 256	Complete	2	Zero-sum	256
C2D2A - 256	Complete	2	Asymmetric	256
C2D2F - 256	Complete	2	Indifferent	256
C2D2E - 256	Complete	2	Equal	256
B2D2R - 256	Unbalanced	2	Random	256
B2D2D - 256	Unbalanced	2	Discrete	256
B2D2Z - 256	Unbalanced	2	Zero-sum	256
B2D2A - 256	Unbalanced	2	Asymmetric	256
B2D2F - 256	Unbalanced	2	Indifferent	256
B2D2E - 256	Unbalanced	2	Equal	256
R3D2R - 729	Random	3	Random	729
R3D2D - 729	Random	3	Discrete	729
R3D2Z - 729	Random	3	Zero-sum	729
R3D2A - 729	Random	3	Asymmetric	729
R3D2F - 729	Random	3	Indifferent	729
R3D2E - 729	Random	3	Equal	729
C3D2R - 729	Complete	3	Random	729
C3D2D - 729	Complete	3	Discrete	729
C3D2Z - 729	Complete	3	Zero-sum	729
C3D2A - 729	Complete	3	Asymmetric	729
C3D2F - 729	Complete	3	Indifferent	729
C3D2E - 729	Complete	3	Equal	729
B5D2R - 729	Unbalanced	5	Random	729
B5D2D - 729	Unbalanced	5	Discrete	729
B5D2Z - 729	Unbalanced	5	Zero-sum	729
B5D2A - 729	Unbalanced	5	Asymmetric	729
B5D2F - 729	Unbalanced	5	Indifferent	729
B5D2E - 729	Unbalanced	5	Equal	729

Reference	Structure	n_S	Utility	Size
R4D2R - 1296	Random	4	Random	1296
R4D2D - 1296	Random	4	Discrete	1296
R4D2Z - 1296	Random	4	Zero-sum	1296
R4D2A - 1296	Random	4	Asymmetric	1296
R4D2F - 1296	Random	4	Indifferent	1296
R4D2E - 1296	Random	4	Equal	1296
C6D2R - 1296	Complete	6	Random	1296
C6D2D - 1296	Complete	6	Discrete	1296
C6D2Z - 1296	Complete	6	Zero-sum	1296
C6D2A - 1296	Complete	6	Asymmetric	1296
C6D2F - 1296	Complete	6	Indifferent	1296
C6D2E - 1296	Complete	6	Equal	1296
B6D2R - 1296	Unbalanced	6	Random	1296
B6D2D - 1296	Unbalanced	6	Discrete	1296
B6D2Z - 1296	Unbalanced	6	Zero-sum	1296
B6D2A - 1296	Unbalanced	6	Asymmetric	1296
B6D2F - 1296	Unbalanced	6	Indifferent	1296
B6D2E - 1296	Unbalanced	6	Equal	1296
R6D2R - 2401	Random	6	Random	2401
R6D2D - 2401	Random	6	Discrete	2401
R6D2Z - 2401	Random	6	Zero-sum	2401
R6D2A - 2401	Random	6	Asymmetric	2401
R6D2F - 2401	Random	6	Indifferent	2401
R6D2E - 2401	Random	6	Equal	2401
C7D2R - 2401	Complete	7	Random	2401
C7D2D - 2401	Complete	7	Discrete	2401
C7D2Z - 2401	Complete	7	Zero-sum	2401
C7D2A - 2401	Complete	7	Asymmetric	2401
C7D2F - 2401	Complete	7	Indifferent	2401
C7D2E - 2401	Complete	7	Equal	2401
B21D2R - 2401	Unbalanced	21	Random	2401
B21D2D - 2401	Unbalanced	21	Discrete	2401
B21D2Z - 2401	Unbalanced	21	Zero-sum	2401
B21D2A - 2401	Unbalanced	21	Asymmetric	2401
B21D2F - 2401	Unbalanced	21	Indifferent	2401
B21D2E - 2401	Unbalanced	21	Equal	2401

Table 2: Second dataset for games with 2 players (first part).

Table 3: Second dataset for games with 2 players (second part).

REFERENCES

- $[1] \;\;$ Richard D McKelvey, Andrew M McLennan, and Theodore L Turocy. 2006. Gambit: Software tools for game theory. (2006).
- [2] Rahul Savani and Bernhard Von Stengel. 2015. Game Theory Explorer: software for the applied game theorist. Computational Management Science 12, 1 (2015), 5–33