Activité II.1 Suites arithmétiques Suites géométriques

Une suite arithmétique

D'après Wikipedia, un individu moyen perd environ 60 cheveux par jour en automne, 45 au printemps et de 20 à 25 en hiver et en été.

Le 1^{er} novembre, Paulo avait 110 000 cheveux sur la tête. Pour simplifier, on supposera qu'aucun cheveu ne pousse sur la tête de Paulo

On note c_0 le nombre de cheveux au premier jour : le 1^{er} novembre. On note c_1 le nombre de cheveux le jour suivant, c_2 le jour d'après etc. On note enfin c_n le nombre de cheveux au jour n+1.

On a ainsi défini la suite (c_n) pour tout $n \in \mathbb{N}$.

- 1°) Au mois de novembre, en quelle saison sommes-nous?
- **2°)** Donner la valeur de c_0 .
- **3°)** Calculer les quatre termes suivants de la suite (c_n) .
- **4°)** Donner l'expression de c_{n+1} en fonction de c_n .
- **5°**) Peut-on calculer c_2 directement à partir de c_0 ? Expliquer comment.
- **6°**) Donner l'expression de c_3 en fonction de c_0 .
- **7°**) Donner l'expression de c_n en fonction de c_0 .
- 8°) L'automne dure approximativement 90 jours. Combien de cheveux aura Paulo à ce moment là?

Une suite géométrique

Un capital A₀ de 5 000€ est placé à intérêts composés avec un taux annuel de 5%, c'est-à-dire que les intérêts d'une année s'ajoutent au capital pour le calcul des intérêts de l'année suivante.

On note A_1 le capital obtenu l'année suivante, A_2 l'année d'après etc. On note A_n le capital cumulé à l'année n+1. On a ainsi défini la suite (A_n) pour tout $n \in \mathbb{N}$.

- 1°) Calculer A₁.
- **2°)** Expliquer pourquoi $A_2 = 5512,5$.
- 3°) Donner une valeur approchée à l'unité de A₃.
- **4°**) Donner l'expression de A_{n+1} en fonction de A_n .
- 5°) Peut-on calculer A₂ directement à partir de A₀ ? Expliquer comment ?
- **6°**) Donner l'expression de A_3 en fonction de A_0 .
- **7°**) Donner l'expression de A_n en fonction de A_0 .
- 8°) À l'aide de la calculatrice, déterminer au bout de combien d'année le capital initial aura doublé.

Exercice supplémentaire

On veut étudier l'évolution d'une population de bactéries. On place 100 bactéries dans un récipient.

Le relevé quotidien du nombre de bactéries permet de constater le phénomène suivant : chaque jour, le nombre de bactéries triple, après quoi disparaissent 50 bactéries.

On note b_n le nombre de bactéries après n jours. Ainsi, $b_0 = 100$.

- 1°) Expliquer pourquoi $b_1 = 250$.
- **2°)** Calculer b_2 , b_3 et b_4 .
- **3°)** Exprimer b_{n+1} en fonction de b_n .
- **4°)** La suite (b_n) est-elle arithmétique? Justifier.
- **5°)** La suite (b_n) est-elle géométrique? Justifier.
- **6°**) Pour tout entier n, on pose $u_n = b_n 25$.
 - (a) Calculer u_0 , u_1 et u_2 .
 - **(b)** Démontrer que $u_{n+1} = 3b_n 75$.
 - (c) Démontrer que $u_{n+1} = 3u_n$.
 - (d) Quelle est la nature de la suite (u_n) ?
- **7°**) Écrire u_n en fonction de n puis b_n en fonction de n.
- 8°) Combien de bactéries contiendra le récipient au bout de 10 jours?