Matrix Analysis Homework 7

龙肖灵 Xiaoling Long Student ID.:81943968 email:longxl@shanghaitech.edu.cn

November 16, 2017

Problem 1:

Let \mathcal{U} be a subspace of \mathbb{R}^m of dimension s, and let $U = [u_1, \cdots, u_s] \in \mathbb{R}^{m \times s}$ be an orthonormal basis for \mathcal{U} . Then $P_{\mathcal{U}} = UU^T$ is the orthogonal projection of \mathbb{R}^m onto \mathcal{U} . Similarly, let \mathcal{V} be a subspace of \mathbb{R}^n of dimension s, let $V = [v_1, \cdots, v_s]$ be an orthonormal basis for \mathcal{V} . Now, let \mathcal{W} be the subspace of $\mathbb{R}^{m \times n}$ spanned by all matrices of the form $u_i x^T$, $y v_j^T$, where $i, j = 1, \cdots, s$ and x, y vary freely in \mathbb{R}^n , \mathbb{R}^m respectively.

- i) What is the dimension of W?
- ii) Find a formula for the orthogonal projection of $\mathbb{R}^{m \times n}$ onto \mathcal{W} in terms of the orthogonal projections P_U, P_V of \mathbb{R}^m onto \mathcal{U} , and \mathbb{R}^n onto \mathcal{V} respectively.
- iii) Find a formula for the orthogonal projection onto \mathcal{W}^{\perp} .

Solution.

i) Extend the basis $U_{ex} = [u_1, u_2, \cdots, u_s, u_{s+1}, \cdots, u_m]$ to be the orthonormal basis for \mathbb{R}^m , and $V_{ex} = [v_1, v_2, \cdots, v_s, v_{s+1}, \cdots, v_n]$ to be the orthonormal basis for \mathbb{R}^n . So x and y can be linear combination of V_{ex} and U_{ex} respectively. We can get that, $x = a_1v_1 + a_2v_2 + \cdots, a_nv_n$ and $y = b_1u_1 + b_2u_2 + \cdots + b_mu_m$. For all $w \in \mathcal{W}$, we have that

$$w = \sum_{i}^{s} \alpha_{i} u_{i} x^{T} + \sum_{j}^{s} \beta_{j} y v_{j}^{T}$$

$$= \sum_{i}^{s} \alpha_{i} u_{i} (a_{1} v_{1} + a_{2} v_{2} + \cdots, a_{n} v_{n})^{T} + \sum_{j}^{s} \beta_{j} (b_{1} u_{1} + b_{2} u_{2} + \cdots + b_{m} u_{m}) v_{j}^{T}$$

$$= \sum_{k}^{n} \sum_{i}^{s} \alpha_{i} a_{k} u_{i} v_{k}^{T} + \sum_{l}^{m} \sum_{j}^{s} \beta_{j} b_{l} u_{l} v_{j}^{T}$$

$$\vdots = s + t$$

So W = S + T. And $u_i v_k^T$ $i = 1, \dots, s$ and $k = 1, \dots, n$ are the spanning set for S. Now prove there are linearly independent. By contradiction, suppose they are linearly dependent.

We have not all $\xi_{i,j} = 0$,

$$\sum_{i}^{s} \sum_{j}^{n} \xi_{i,j} u_{i} v_{j}^{T} = 0$$

$$\sum_{j}^{n} (\sum_{i}^{s} \xi_{i,j} u_{i}) v_{j}^{T} = 0$$

$$\sum_{j}^{n} U_{j} v_{j}^{T} = 0$$

$$\iff \sum_{i}^{n} U_{j,i} v_{j}^{T} = 0 \quad \forall i$$

Because that all v_i are linearly independent. All $U_{j,i} = 0$, which means $\sum_{i=1}^{s} \xi_{i,j} u_i = 0$. So all coefficients $\xi_{i,j} = 0$ (Contradiction). So $u_i v_k^T$ $i = 1, \dots, s$ and $k = 1, \dots, n$ are basis for S. Similarly evidence for $\sum_{i=1}^{s} \xi_{i,j} u_i = 0$. So all coefficients $\xi_{i,j} = 0$ (Contradiction).

Similarly evidence for $\sum_{i=1}^{s} \xi_{i,j} u_i = 0$. So all coefficients $\xi_{i,j} = 0$ (Contradiction). So $u_j v_l^T$ $j = 1, \dots, m$ and $l = 1, \dots, s$ be a basis for T and $u_j v_l^T$ $j = 1, \dots, s$ and $l = 1, \dots, s$ be a basis for $S \cap T$.

So we can get these, dim(S) = ns and dim(T) = ms and $dim(S \cap T) = s^2$.

Finally, we can get the dimension of \mathcal{W} .

$$dim(\mathcal{W}) = dimS + T = dimS + dimT - dim(S \cap T) = ms + ns - s^{2}$$

ii) The projection is that

$$P_{\mathcal{W}}(\mathcal{M}) = (I_m - P_U)\mathcal{M}P_V + P_U\mathcal{M}(I_n - P_V) + P_U\mathcal{M}P_V$$
$$= P_U\mathcal{M} + \mathcal{M}P_V - P_U\mathcal{M}P_V$$

Pick a $\mathcal{M} \in \mathbb{R}^{m \times n}$, we can write as $\mathcal{M} = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i,j} u_i v_k^T$. We do projection $P_{mathcalW}$ on \mathcal{M} . We get that

$$P_{W}(\mathcal{M}) = P_{U} \sum_{i}^{m} \sum_{j}^{n} \alpha_{i,j} u_{i} v_{j}^{T} + \sum_{i}^{m} \sum_{j}^{n} \alpha_{i,j} u_{i} v_{j}^{T} P_{V} - P_{U} \sum_{i}^{m} \sum_{j}^{n} \alpha_{i,j} u_{i} v_{j}^{T} P_{V}$$

$$= \sum_{i}^{s} \sum_{j}^{n} \alpha_{i,j} u_{i} v_{j}^{T} + \sum_{i}^{m} \sum_{j}^{s} \alpha_{i,j} u_{i} v_{j}^{T} - \sum_{i}^{s} \sum_{j}^{s} \alpha_{i,j} u_{i} v_{j}^{T}$$

$$= \sum_{i}^{s} \sum_{j}^{n} \alpha_{i,j} u_{i} v_{j}^{T} + \sum_{i=s+1}^{m} \sum_{j}^{s} \alpha_{i,j} u_{i} v_{j}^{T}$$

iii) And the projection onto \mathcal{W}^{\perp} is that

$$P_{\mathcal{W}^{\perp}}(\mathcal{M}) = (I_m - P_U)\mathcal{M}(I_n - P_V)$$
$$= \mathcal{M} - P_{\mathcal{W}}(\mathcal{M})$$

So we also have that,

$$P_{W^{\perp}}(\mathcal{M}) = \mathcal{M} - \sum_{i}^{s} \sum_{j}^{n} \alpha_{i,j} u_{i} v_{k}^{T} + \sum_{i=s+1}^{m} \sum_{j}^{s} \alpha_{i,j} u_{i} v_{j}^{T}$$

$$= \sum_{i}^{m} \sum_{j}^{n} \alpha_{i,j} u_{i} v_{j}^{T} - \sum_{i}^{s} \sum_{j}^{n} \alpha_{i,j} u_{i} v_{j}^{T} - \sum_{i=s+1}^{m} \sum_{j}^{s} \alpha_{i,j} u_{i} v_{j}^{T}$$

$$= \sum_{i=s+1}^{m} \sum_{j}^{n} \alpha_{i,j} u_{i} v_{j}^{T} - \sum_{i=s+1}^{m} \sum_{j}^{s} \alpha_{i,j} u_{i} v_{j}^{T}$$

$$= \sum_{i=s+1}^{m} \sum_{j=s+1}^{n} \alpha_{i,j} u_{i} v_{j}^{T}$$

So without loss of generality, we can put all dimension of $ms + ns - s^2$ first $ms + ns - s^2$ rows into a $m \times n$ vector. So the $P_{\mathcal{W}^{\perp}}(\mathcal{M})$ can the last parts, so we have that

$$vec(P_{\mathcal{W}}(\mathcal{M}))vec(P_{\mathcal{W}^{\perp}}(\mathcal{M}))^{T} = [w_{1}, \cdots, w_{ms+ns-s^{2}}, 0, \cdots, 0][0, \cdots, 0, w_{ms+ns-s^{2}}, \cdots, w_{m\times n}]^{T} = 0$$

So we have that

$$P_{\mathcal{W}}(\mathcal{M}) \perp P_{\mathcal{W}^{\perp}}(\mathcal{M})$$

Done.

Problem 2:

- i) Let U be an $n \times n$ unitary matrix. What can you say about $\sigma(U)$?
- ii) Let P be an $n \times n$ real matrix representing the orthogonal projection of \mathbb{R}^n onto a subspace S of dimension k. Find $\sigma(P)$. What is the algebraic and geometric multiplicity of each eigenvalue?

Solution.

i) From the theorem in the midterm we have that $trace(A)^2 \leq n \ trace(A^TA)$. So we can get that

$$(\sum \sigma(U))^2 \leq n^2$$

Suppose that (x, λ) be an eigenpair for U. We have that

$$Ux = \lambda x$$

$$||Ux|| = ||\lambda x||$$

$$x^*U^*Ux = ||\lambda||x^*x$$

$$x^*x = ||\lambda||x^*x$$

$$||\lambda|| = 1$$

ii) Based on the defination of eigenpair, we have $Px = \lambda x$. And based on the defination of projection, we have that $\forall s \in S \to Ps = s$. And we know that $P^2 = P$. So we can get that,

$$Px = \lambda x$$

$$PPx = \lambda Px$$

$$Px = \lambda^{2}x$$

$$\lambda x = \lambda^{2}x$$

So we can get $\lambda = 0$ or 1. And let B_S be the orthogonal basis of s, for all $s_i \in B_s$ we can get $Ps_i = s_i$. So all s_i will be the eigenvector for eigenvalue of 1. So for $\lambda = 1$ the geometric multiplicity both are k.

And let B_{S^c} be the basis for the complement of S. For all $s_i^c \in B_{S^c}$ we have that $Ps_i^c = 0 \times s_i^c$. So the geometric multiplicity for $\lambda = 0$ are n - k.

And we know that $\tau_g(\lambda) \leq \tau_a(\lambda)$ and $\tau_a(\lambda = 0) + \tau_a(\lambda = 1) = n$. So the algebraic multiplicity for $\lambda = 0$ is n - k. And the algebraic multiplicity for $\lambda = 1$ is k.

Done.