Part I

Introduction

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state

Functional flow

Stateful computation

Output dependent on input and time:

Functional flow

Impure

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state
- Immutability
- Referential transparency
- Recursion
- Higher-order functions
- Lazy evaluation

Why functional programming?

- Simple evaluation model; equational reasoning
- Declarative
- Modularity, composability, reuse (lazy evaluation as glue)
- Exploration of huge or formally infinite search spaces
- Embedded Domain Specific Languages (EDSLs)
- Massive parallelization
- Type systems and logic, inextricably linked
- Automatic program verification and synthesis

Part II

Untyped Lambda Calculus

Untyped lambda calculus

- Model of computation Alonzo Church, 1932
- Equivalent to the Turing machine (see the Church-Turing thesis)
- Main building block: the function
- Computation: evaluation of function applications, through textual substitution
- Evaluate = obtain a value (a function)!
- No side effects or state

Applications

Theoretical basis of numerous languages:

LISP

ML

Clojure

Scheme

► F#

Scala

Haskell

Clean

Erlang

 Formal program verification, due to its simple execution model

λ -expressions

Definition 4.1 (λ **-expression).**

- ▶ Variable: a variable x is a λ -expression
- Function: if x is a variable and E is a λ-expression, then λx.E is a λ-expression, which stands for an anonymous, unary function, with the formal parameter x and the body E
- ▶ Application: if E and A are λ -expressions, then (E A) is a λ -expression, which stands for the application of the expression E onto the actual argument A.

λ -expressions

Examples

Example 4.2 (λ -expressions).

- ▶ $x \rightarrow \text{variable } x$
- $\rightarrow \lambda x.x$: the identity function
- $\rightarrow \lambda x.\lambda y.x$: a function with another function as body!
- (λx.x y): the application of the identity function onto the actual argument y
- $\qquad \qquad (\lambda X.(X\ X)\ \lambda X.X)$

Intuition on application evaluation

Variable occurrences

Definitions

Definition 4.3 (Bound occurrence).

An occurrence x_n of a variable x is bound in the expression E iff:

- \triangleright $E = \lambda x.F$ or
- \blacktriangleright $E = \dots \lambda x_n . F \dots$ or
- ▶ $E = \dots \lambda x.F \dots$ and x_n appears in F.

Definition 4.4 (Free occurrence).

A variable occurrence is free in an expression iff it is not bound in that expression.

Bound/ free occurrence w.r.t. a given expression!

Variable occurrences

Examples

Example 4.6 (Bound and free variables).

In the expression $E = (\lambda x. \lambda z. (z \ x) \ (z \ y))$, we emphasize the occurrences of x, y, z:

$$E = (\lambda x_1 . \lambda z_1 . (z_2 x_2) (z_3 y_1)).$$

- ► *x*₁, *x*₂, *z*₁, *z*₂ bound in *E*
- y₁, z₃ free in E
- \triangleright z_1 , z_2 bound in F
- ► x₂ free in F

Variables

Definitions

Definition 4.7 (Bound variable).

A variable is bound in an expression iff all its occurrences are bound in that expression.

Definition 4.8 (Free variable).

A variable is free in an expression iff it is not bound in that expression i.e., iff at least one of its occurrences is free in that expression.

Bound/ free variable w.r.t. a given expression!

Variable occurrences

Examples

Example 4.6 (Bound and free variables).

In the expression $E = (\lambda x. \lambda z. (z \ x) \ (z \ y))$, we emphasize the occurrences of x, y, z:

$$E = (\lambda x_1 . \lambda z_1 . (z_2 x_2) (z_3 y_1)).$$

- ► x₁, x₂, z₁, z₂ bound in E
- y₁, z₃ free in E
- \triangleright z_1, z_2 bound in F
- x₂ free in F
- x bound in E, but free in F
- y free in E
- ► z free in E, but bound in F

Free and bound variables

Free variables

- ▶ $FV(x) = \{x\}$
- $FV(\lambda x.E) = FV(E) \setminus \{x\}$
- ► $FV((E_1 \ E_2)) = FV(E_1) \cup FV(E_2)$

Bound variables

- $\blacktriangleright BV(x) = \emptyset$
- $BV(\lambda x.E) = BV(E) \cup \{x\}$
- $\blacktriangleright BV((E_1 \ E_2)) = BV(E_1) \setminus FV(E_2) \cup BV(E_2) \setminus FV(E_1)$

Closed expressions

Definition 4.9 (Closed expression).

An expression that does not contain any free variables.

Example 4.10 (Closed expressions).

- $(\lambda x.x \ \lambda x.\lambda y.x)$: closed
- $(\lambda x.x \ a)$: open, since a is free

Remarks:

- Free variables may stand for other λ -expressions, as in $\lambda x.((+x) \ 1)$.
- Before evaluation, an expression must be brought to the closed form.
- ► The substitution process must terminate.

β-reduction Definitions

Definition 5.1 (β -reduction).

The evaluation of the application ($\lambda x.E$ A), by substituting every free occurrence of the <u>formal</u> argument, x, in the function body, E, with the <u>actual</u> argument, A: ($\lambda x.E$ A) $\rightarrow_{\beta} E_{[A/x]}$.

Definition 5.2 (β -redex).

The application ($\lambda x.E A$).

β -reduction Examples

Example 5.3 (β -reduction).

- $(\lambda x. x y) \rightarrow_{\beta} x_{[y/x]} \rightarrow y$
- $(\lambda x. \lambda x. x y) \rightarrow_{\beta} \lambda x. x_{[y/x]} \rightarrow \lambda x. x$
- $(\lambda x. \lambda y. x \ y) \rightarrow_{\beta} \lambda y. x_{[y/x]} \rightarrow \lambda y. y$

Wrong! The free variable *y* becomes bound, changing its meaning!

β-reduction Collisions

- ▶ Problem: within the expression ($\lambda x.E$ A):
 - ▶ $FV(A) \cap BV(E) = \emptyset \Rightarrow$ correct reduction always
 - ► $FV(A) \cap BV(E) \neq \emptyset \Rightarrow$ potentially wrong reduction
- Solution: rename the bound variables in E, that are free in A

Example 5.4 (Bound variable renaming).

$$(\lambda x.\lambda y.x \ y) \rightarrow (\lambda x.\lambda z.x \ y) \rightarrow_{\beta} \lambda z.x_{[y/x]} \rightarrow \lambda z.y$$

α -conversion

Definition

Definition 5.5 (α -conversion).

Systematic relabeling of bound variables in a function: $\lambda x.E \rightarrow_{\alpha} \lambda y.E_{[y/x]}$. Two conditions must be met.

Example 5.6 (α -conversion).

- ▶ $\lambda x.y \rightarrow_{\alpha} \lambda y.y_{[y/x]} \rightarrow \lambda y.y$: Wrong!
- ▶ $\lambda x.\lambda y.x \rightarrow_{\alpha} \lambda y.\lambda y.x_{[y/x]} \rightarrow \lambda y.\lambda y.y$: Wrong!

Conditions:

- y is not free in E
- ▶ a free occurrence in E stays free in E_[y/x]

α -conversion

Examples

Example 5.7 (α -conversion).

- ▶ $\lambda x.(x \ y) \rightarrow_{\alpha} \lambda z.(z \ y)$: Correct!
- ▶ $\lambda x.\lambda x.(x \ y) \rightarrow_{\alpha} \lambda y.\lambda x.(x \ y)$: Wrong! y is free in $\lambda x.(x \ y)$.
- ► $\lambda x.\lambda y.(y \ x) \rightarrow_{\alpha} \lambda y.\lambda y.(y \ y)$: Wrong! The free occurrence of x in $\lambda y.(y \ x)$ becomes bound, after substitution, in $\lambda y.(y \ y)$.
- ▶ $\lambda x.\lambda y.(y \ y) \rightarrow_{\alpha} \lambda y.\lambda y.(y \ y)$: Correct!

Reduction

Definitions

Definition 5.8 (Reduction step).

A sequence made of a possible α -conversion, followed by a β -reduction, such that the second produces no collisions: $E_1 \to E_2 \equiv E_1 \to_{\alpha} E_3 \to_{\beta} E_2$.

Definition 5.9 (Reduction sequence).

A string of zero or more reduction steps: $E_1 \rightarrow^* E_2$. It is an element of the reflexive transitive closure of relation \rightarrow .

Reduction

Examples

Example 5.10 (Reduction).

- $((\lambda x.\lambda y.(y \ x) \ y) \ \lambda x.x) \to^* y$

Reduction

Properties

Reduction step = reduction sequence:

$$E_1 \to E_2 \Rightarrow E_1 \to^* E_2$$

Reflexivity:

$$E \rightarrow^* E$$

Transitivity:

$$E_1 \rightarrow^* E_2 \, \wedge \, E_2 \rightarrow^* E_3 \Rightarrow E_1 \rightarrow^* E_3$$

Questions

When does the computation terminate?
 Does it always?

2. Does the answer depend on the reduction sequence?

3. If the computation terminates for distinct reduction sequences, do we always get the same result?

4. If the result is unique, how do we safely obtain it?

Normal forms

Definition 6.1 (Normal form).

The form of an expression that cannot be reduced i.e., that contains no β -redexes.

Definition 6.2 (Functional normal form, FNF).

 $\lambda x.E$, even if *E* contains β -redexes.

Example 6.3 (Normal forms).

$$(\lambda x.\lambda y.(x\ y)\ \lambda x.x) \rightarrow_{\mathsf{FNF}} \lambda y.(\lambda x.x\ y) \rightarrow_{\mathsf{NF}} \lambda y.y$$

FNF is used in programming, where the function body is evaluated only when the function is effectively applied.

Reduction termination (reducibility)

Example 6.4.

$$\Omega \equiv (\lambda X.(X\ X)\ \lambda X.(X\ X)) \rightarrow (\lambda X.(X\ X)\ \lambda X.(X\ X)) \rightarrow^* \dots$$

 Ω does not have a terminating reduction sequence.

Definition 6.5 (Reducible expression).

An expression that has a terminating reduction sequence.

 Ω is irreducible.

Questions

When does the computation terminate?
 Does it always?

2. Does the answer depend on the reduction sequence?

3. If the computation terminates for distinct reduction sequences, do we always get the same result?

4. If the result is unique, how do we safely obtain it?

Reduction sequences

Example 6.6 (Reduction sequences).

- ► E has a nonterminating reduction sequence, but still has a normal form, y. E is reducible, Ω is not.
- ► The length of terminating reduction sequences is unbounded.

Normal form uniqueness

Results

Theorem 6.7 (Church-Rosser / diamond).

If $E \to^* E_1$ and $E \to^* E_2$, then there is an E_3 such that $E_1 \to^* E_3$ and $E_2 \to^* E_3$.

Corollary 6.8 (Normal form uniqueness).

If an expression is reducible, its normal form is unique. It corresponds to the value of that expression.

Normal form uniqueness

Examples

Example 6.9 (Normal form uniqueness).

$$(\lambda x.\lambda y.(x\ y)\ (\lambda x.x\ y))$$

- $\blacktriangleright \rightarrow \lambda Z.((\lambda X.X \ y) \ Z) \rightarrow \lambda Z.(y \ Z) \rightarrow_{\alpha} \lambda a.(y \ a)$
- $\blacktriangleright \rightarrow (\lambda x.\lambda y.(x\ y)\ y) \rightarrow \lambda w.(y\ w) \rightarrow_{\alpha} \lambda a.(y\ a)$

- Normal form: class of expressions, equivalent under systematic relabeling
- Value: distinguished member of this class

Structural equivalence

Definition 6.10 (Structural equivalence).

Two expressions are structurally equivalent iff they both reduce to the <u>same</u> expression.

Example 6.11 (Structural equivalence).

 $\lambda z.((\lambda x.x \ y) \ z)$ and $(\lambda x.\lambda y.(x \ y) \ y)$ in Example 6.9.

Computational equivalence

Definition 6.12 (Computational equivalence).

Two expressions are computationally equivalent iff they the behave in the same way when applied onto the same arguments.

Example 6.13 (Computational equivalence).

$$E_1 = \lambda y.\lambda x.(y x)$$
$$E_2 = \lambda x.x$$

- ► $((E_1 \ a) \ b) \to^* (a \ b)$
- ► $((E_2 \ a) \ b) \to^* (a \ b)$
- ▶ $E_1 \not\rightarrow^* E_2$ and $E_2 \not\rightarrow^* E_1$ (not structurally equivalent)

Reduction order

Definitions and examples

Definition 6.14 (Left-to-right reduction step).

The reduction of the outermost leftmost β -redex.

Example 6.15 (Left-to-right reduction).

$$(\underline{(\lambda x.x\ \lambda x.y)}\ (\lambda x.(x\ x)\ \lambda x.(x\ x))) \to \underline{(\lambda x.y\ \Omega)} \to y$$

Definition 6.16 (Right-to-left reduction step).

The reduction of the innermost rightmost β -redex.

Example 6.17 (Right-to-left reduction).

$$((\lambda X.X \ \lambda X.y) \ (\lambda X.(X \ X) \ \lambda X.(X \ X))) \rightarrow (\lambda X.y \ \underline{\Omega}) \rightarrow \dots$$

Questions

- When does the computation terminate?
 Does it always?
 - NO
- 2. Does the answer depend on the reduction sequence?
 - YES
- 3. If the computation terminates for distinct reduction sequences, do we always get the same result?
 - YES
- 4. If the result is unique, how do we safely obtain it?
 - Left-to-right reduction

Evaluation order

Definition 7.1 (Applicative-order evaluation).

Corresponds to right-to-left reduction. Function arguments are evaluated before the function is applied.

Definition 7.2 (Strict function).

A function that uses applicative-order evaluation.

Definition 7.3 (Normal-order evaluation).

Corresponds to left-to-right reduction. Function arguments are evaluated when needed.

Definition 7.4 (Non-strict function).

A function that uses normal-order evaluation.

In practice I

Applicative-order evaluation employed in most programming languages, due to efficiency — one-time evaluation of arguments: C, Java, Scheme, PHP, etc.

Example 7.5 (Applicative-order evaluation in Scheme).

$$((\lambda (x) (+ x x)) (+ 2 3))$$

$$\rightarrow ((\lambda (x) (+ x x)) 5)$$

$$\rightarrow (+ 5 5)$$

$$\rightarrow 10$$

In practice II

Lazy evaluation (a kind of normal-order evaluation) in Haskell: on-demand evaluation of arguments, allowing for interesting constructions

Example 7.6 (Lazy evaluation in Haskell).

$$\frac{((\x -> x + x) (2 + 3))}{\rightarrow (2 + 3)} + (2 + 3)}{\rightarrow 5 + 5} \\
\rightarrow 10$$

Need for non-strict functions, even in applicative languages: if, and, or, etc.

Part III

Lambda Calculus as a Programming Language

Purpose

- Proving the expressive power of lambda calculus
- Hypothetical λ-machine
- ▶ Machine code: λ -expressions the λ_0 language
- Instead of
 - bits
 - bit operations,

we have

- structured strings of symbols
- reduction textual substitution

λ_0 features

- Instructions:
 - λ-expressions
 - top-level variable bindings: variable =_{def} expression
 e.g., true =_{def} λx.λy.x
- Values represented as functions
- Expressions brought to the closed form, prior to evaluation
- Normal-order evaluation
- Functional normal form (see Definition 6.2)
- No predefined types!

Shorthands

$$\lambda x_1.\lambda x_2.\lambda...\lambda x_n.E \rightarrow \lambda x_1 x_2...x_n.E$$

$$ightharpoonup ((...((E A_1) A_2) ...) A_n)
ightharpoonup (E A_1 A_2 ... A_n)$$

Purpose of types

- Way of expressing the programmer's intent
- Documentation: which operators act onto which objects
- Particular representation for values of different types: 1, "Hello", #t, etc.
- Optimization of specific operations
- Error prevention
- Formal verification

No types

How are objects represented?

 A number, list or tree potentially designated by the same value e.g.,

number
$$3 \rightarrow \lambda x.\lambda y.x \leftarrow \text{list}(()()())$$

Both values and operators represented by functions
 — context-dependent meaning

number
$$3 \rightarrow \lambda x. \lambda y. x \leftarrow$$
 operator *car*

Value applicable onto another value, as an operator!

No types

How is correctness affected?

- Inability of the λ machine to
 - interpret the meaning of expressions
 - ensure their correctness
- Every operator applicable onto every value
- Both aspects above delegated to the programmer
- Erroneus constructs accepted without warning, but computation ended with
 - values with no meaning or
 - expressions that are neither values, nor reducible e.g., (x x)

No types

Consequences

- Enhanced representational flexibility
- Useful when the uniform representation of objects, as lists de symbols, is convenient
- Increased error-proneness
- Program instability
- Difficulty of verification and maintenance

So...

► How do we employ the λ_0 language in everyday programming?

How do we represent usual values — numbers, booleans, lists, etc. — and their corresponding operators?

Definition

Definition 9.1 (Abstract data type, ADT).

Mathematical model of a set of values and their corresponding operations.

Example 9.2 (ADTs).

Natural, Bool, List, Set, Stack, Tree, ... λ-expression!

Components:

- base constructors: how are values built
- operators: what can be done with these values
- axioms: how

The Natural ADT

Base constructors and operators

- Base constructors:
 - zero : → Natural
 - succ : Natural → Natural

- Operators:
 - zero? : Natural → Bool
 - pred : Natural \ {zero} → Natural
 - add : Natural² → Natural

The Natural ADT

Axioms

- zero?
 - (zero? zero) = T
 - ► (zero? (succ n)) = F
- pred
 - ▶ (pred (succ n)) = n
- add
 - ▶ (add zero n) = n
 - (add (succ m) n) = (succ (add m n))

Providing axioms

One axiom for each (operator, base constructor) pair

More — useless

 Less — insufficient for completely specifying the operators

From ADTs to functional programming

Exemple

- Axiome:
 - ▶ add(zero, n) = n
 - ▶ add(succ(m), n) = succ(add(m, n))

Scheme:

```
(define add
(lambda (m n)
(if (zero? m) n
(+ 1 (add (- m 1) n)))))
```

Haskell:

```
1 add 0 n = n
2 add (m + 1) n = 1 + (add m n)
```


From ADTs to functional programming

- Proving ADT correctness
 - structural induction
- Proving properties of λ-expressions, seen as values of an ADT with 3 base constructors!
- Functional programming
 - reflection of mathematical specifications
- Recursion
 - natural instrument, inherited from axioms
- Applying formal methods on the recursive code, taking advantage of the lack of side effects

Base contrsuctors and operators

- Base constructors:
 - **T**: → Bool
 - F : → Bool
- Operators:
 - ▶ not : Bool → Bool
 - and : $Bool^2 \rightarrow Bool$
 - or : $Bool^2 \rightarrow Bool$
 - *if* : *Bool* \times *T* \times *T* \rightarrow *T*

Axioms

- not
 - ► (not T) = F
 - ▶ (*not F*) = *T*
- and
 - ► (and T a) = a
 - ► (and F a) = F
- or
 - ► (or T a) = T
 - \rightarrow (or F a) = a
- if
- (if T a b) = a
- ▶ (*if* F a b) = b

Base constructor implementation

Intuition: selecting one of the two values, true or false

- ► $T \equiv_{\mathsf{def}} \lambda xy.x$
- $ightharpoonup F \equiv_{\mathsf{def}} \lambda xy.y$
- Selector-like behavior:
 - ▶ $(T \ a \ b) \rightarrow (\lambda xy.x \ a \ b) \rightarrow a$
 - ▶ $(F \ a \ b) \rightarrow (\lambda xy.y \ a \ b) \rightarrow b$

Operator implementation

- ▶ $not \equiv_{def} \lambda x.(x \ F \ T)$
 - $\bullet (not T) \rightarrow (\lambda x.(x F T) T) \rightarrow (T F T) \rightarrow F$
 - $(not \ F) \rightarrow (\lambda x.(x \ F \ T) \ F) \rightarrow (F \ F \ T) \rightarrow T$
- ▶ and $\equiv_{\mathsf{def}} \lambda xy.(x \ y \ F)$
 - (and T a) \rightarrow ($\lambda xy.(x \ y \ F) \ T$ a) \rightarrow (T a F) \rightarrow a
 - (and F a) \rightarrow ($\lambda xy.(x \ y \ F) \ F$ a) \rightarrow (F a F) \rightarrow F
- - (or T a) \rightarrow ($\lambda xy.(x T y) T a$) \rightarrow (T T a) \rightarrow T
 - (or F a) \rightarrow ($\lambda xy.(x T y) F$ a) \rightarrow (F T a) \rightarrow a
- if $\equiv_{def} \lambda cte.(c\ t\ e)$ non-strict!
 - (if $T \ a \ b$) \rightarrow (λ cte.($c \ t \ e$) $T \ a \ b$) \rightarrow ($T \ a \ b$) \rightarrow a
 - (if $F \ a \ b$) \rightarrow ($\lambda cte.(c \ t \ e) \ F \ a \ b$) \rightarrow ($F \ a \ b$) \rightarrow b

The Pair ADT

Specification

- Base constructors:
 - pair : A × B → Pair
- Operators:
 - fst : Pair → A
 - snd : Pair → B
- Axioms:
 - ► (fst (pair a b)) = a
 - ▶ (snd (pair a b)) = b

The Pair ADT

Implementation

- Intuition: a pair = a function that expects a selector, in order to apply it onto its components
- ▶ $pair \equiv_{def} \lambda xys.(s \ x \ y)$
 - ▶ (pair a b) \rightarrow ($\lambda xys.(s x y) a b$) $\rightarrow \lambda s.(s a b)$
- $fst \equiv_{def} \lambda p.(p T)$
 - (fst (pair a b)) \rightarrow ($\lambda p.(p T) \lambda s.(s a b)$) \rightarrow ($\lambda s.(s a b) T$) \rightarrow (T a b) \rightarrow a
- ▶ $snd \equiv_{def} \lambda p.(p F)$
 - (snd (pair a b)) \rightarrow ($\lambda p.(p F) \lambda s.(s <math>a$ b)) \rightarrow ($\lambda s.(s a b) F$) \rightarrow (F a b) \rightarrow b

The List ADT

Base constructors and operators

- Base constructors:
 - null : → List
 - cons : A × List → List

- Operators:
 - car : List \ {null} → A
 - $\qquad \qquad \textbf{cdr}: \textbf{List} \setminus \{\textbf{null}\} \rightarrow \textbf{List}$
 - null?: List → Bool
 - append : List² → List

The List ADT

Axioms

- car
 - ► (car (cons e L)) = e
- ► cdr
 - ► (cdr (cons e L)) = L
- ▶ null?
 - ► (null? null) = T
 - ► (null? (cons e L)) = F
- append
 - ► (append null B) = B
 - (append (cons e A) B) = (cons e (append A B))

The List ADT

Implementation

- Intuition: a list = a (head, tail) pair
- ▶ $null \equiv_{def} \lambda x.T$
- cons ≡_{def} pair
- car ≡_{def} tst
- cdr ≡_{def} snd
- ▶ null? $\equiv_{def} \lambda L.(L \lambda xy.F)$
 - ▶ (null? null) \rightarrow ($\lambda L.(L \lambda xy.F) \lambda x.T$) \rightarrow ($\lambda x.T ...$) \rightarrow T
 - (null? (cons e L)) \rightarrow ($\lambda L.(L \lambda xy.F) \lambda s.(s e L)) <math>\rightarrow$ $(\lambda s.(s e L) \lambda xy.F) \rightarrow (\lambda xy.F e L) \rightarrow F$
- append = def ... no closed form $\lambda AB.(if (null? A) B (cons (car A) (append (cdr A) B)))$

The Natural ADT

Axioms

- zero?
 - (zero? zero) = T
 - (zero? (succ n)) = F
- pred
 - ▶ (pred (succ n)) = n
- add
 - ▶ (add zero n) = n
 - (add (succ m) n) = (succ (add m n))

The Natural ADT

Implementation

- Intuition: a number = a list having the number value as its length
- zero ≡_{def} null
- $succ \equiv_{def} \lambda n.(cons \ null \ n)$
- zero? ≡_{def} null?
- pred ≡_{def} cdr
- add ≡_{def} append

Functions

- Several possible definitions of the identity function:
 - id(n) = n
 - id(n) = n + 1 1
 - id(n) = n + 2 2
- Infinitely many textual representations for the same function
- Then... what is a function? A relation between inputs and outputs, independent of any textual representation e.g.,

$$id = \{(0,0), (1,1), (2,2), \ldots\}$$

Perspectives on recursion

Textual: a function that refers itself, using its name

 Constructivist: recursive functions as values of an ADT, with specific ways of building them

Semantic: the mathematical object designated by a recursive function

Implementing length

Problem

Length of a list:

```
length \equiv_{def} \lambda L.(if (null? L) zero (succ (\underline{length} (cdr L))))
```

- What do we replace the underlined area with, to avoid textual recursion?
- Rewrite the definition as a fixed-point equation

```
Length \equiv_{def} \lambda fL.(if (null? L) zero (succ (f (cdr L))))
(Length length) \rightarrow length
```

How do we compute the fixed point? (see code archive)

Axiomatization benefits

Disambiguation

Proof of properties

Implementation skeleton

Syntax

Variable:

Var :=any symbol distinct from λ , ., (,)

Expression:

$$Expr ::= Var$$

 $\mid \lambda Var.Expr$
 $\mid (Expr Expr)$

Value:

$$Val := \lambda Var.Expr$$

Evaluation rules

Rule name:

 $\frac{precondition_1, \dots, precondition_n}{conclusion}$

Semantics for normal-order evaluation

Reduce:

Evaluation

$$(\lambda x.e\ e') \rightarrow e_{[e'/x]}$$

Eval:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textcolor{red}{\textbf{\textit{e}}} \ \textbf{\textit{e}}'') \rightarrow (\textcolor{red}{\textbf{\textit{e}}'} \ \textbf{\textit{e}}'')}$$

Semantics for normal-order evaluation

Substitution

$$ightharpoonup X_{[e/X]} = e$$

$$V_{[e/x]} = y, \quad y \neq x$$

$$\langle \lambda x.e \rangle_{[e'/x]} = \lambda x.e$$

$$\langle \lambda y.e \rangle_{[e'/x]} = \lambda y.e_{[e'/x]}, \quad y \neq x \land y \notin FV(e')$$

$$\langle \lambda y.e \rangle_{[e'/x]} = \lambda z.e_{[z/y][e'/x]},$$

$$y \neq x \land y \in FV(e') \land z \notin FV(e) \cup FV(e')$$

•
$$(e' e'')_{[e/x]} = (e'_{[e/x]} e''_{[e/x]})$$

Semantics for normal-order evaluation Free variables

►
$$FV(x) = \{x\}$$

▶
$$FV(\lambda x.e) = FV(e) \setminus \{x\}$$

▶
$$FV((e' e'')) = FV(e') \cup FV(e'')$$

Semantics for normal-order evaluation Example

Example 12.1 (Evaluation rules).

$$((\lambda x.\lambda y.y \ a) \ b)$$

$$\frac{(\lambda x.\lambda y.y \ a) \rightarrow \lambda y.y \ (Reduce)}{((\lambda x.\lambda y.y \ a) \ b) \rightarrow (\lambda y.y \ b)} \quad (\textit{Eval})$$

$$(\lambda y.y \ b) \rightarrow b \ (Reduce)$$

Semantics for applicative-order evaluation

Evaluation

Reduce (*v* ∈ Val):

$$(\lambda x.e \ v) \rightarrow e_{[v/x]}$$

▶ Eval₁:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textcolor{red}{\textbf{\textit{e}}} \ \textbf{\textit{e}}'') \rightarrow (\textcolor{red}{\textbf{\textit{e}}'} \ \textbf{\textit{e}}'')}$$

Eval₂ (e ∉ Val):

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\lambda \textbf{\textit{x}}.\textbf{\textit{e}}'' \hspace{0.1cm} \textbf{\textit{e}}) \rightarrow (\lambda \textbf{\textit{x}}.\textbf{\textit{e}}'' \hspace{0.1cm} \textbf{\textit{e}}')}$$

Formal proof

Proposition 12.2 (Free and bound variables).

$$\forall e \in Expr \bullet BV(e) \cap FV(e) = \emptyset$$

Proof.

Structural induction, according to the different forms of λ -expressions (see the lecture notes).

Summary

 Practical usage of the untyped lambda calculus, as a programming language

 Formal specifications, for different evaluation semantics

Part IV

Typed Lambda Calculus

Drawbacks of the absence of types

- Meaningless expressions e.g., (car 3)
- No canonical representation for the values of a given type e.g., both a tree and a set having the same representation
- Impossibility of translating certain expressions into certain typed languages e.g., (x x), Ω, Fix
- Potential irreducibility of expressions inconsistent representation of equivalent values

$$\lambda x.(Fix \ x) \rightarrow \lambda x.(x \ (Fix \ x)) \rightarrow \lambda x.(x \ (x \ (Fix \ x))) \rightarrow \dots$$

Solution

 Restricted ways of constructing expressions, depending on the types of their parts

Sacrificed expressivity in change for soundness

Desired properties

Definition 13.1 (Progress).

A well-typed expression is either a value or is subject to at least one reduction step.

Definition 13.2 (Preservation).

The result obtained by reducing a well-typed expression is well-typed. Usually, the type is the same.

Definition 13.3 (Strong normalization).

The evaluation of a well-typed expression terminates.

Base and simple types

Definition 14.1 (Base type).

An atomic type e.g., numbers, booleans etc.

Definition 14.2 (Simple type).

A type built from existing types e.g., $\sigma \rightarrow \tau$, where σ and τ are types.

Notation:

- $e:\tau$: "expression e has type τ "
- ▶ $v \in \tau$: "v is a value of type τ "
- ho $e \in \tau \Rightarrow e : \tau$
- ightharpoonup $e: \tau \Rightarrow e \in \tau$

Typed λ -expressions

Definition 14.3 (λ_t -expression).

- ▶ Base value: a base value $b \in \tau_b$ is a λ_t -expression.
- Typed variable: an (explicitly) typed variable x : τ is a λ_t-expression.
- ▶ Function: if $x : \sigma$ is a typed variable and $e : \tau$ is a λ_t -expression, then $\lambda x : \sigma.e : \sigma \to \tau$ is a λ_t -expression, which stands for
- ▶ Application: if $f : \sigma \to \tau$ and $a : \sigma$ are λ_t -expressions, then $(f \ a) : \tau$ is a λ_t -expression, which stands for

Relation to untyped lambda calculus

Similarities

- β-reduction
- α-conversion
- normal forms
- Church-Rosser theorem

Differences

- (x : τ x : τ) invalid
- some fixed-point combinators are invalid

Syntax

Expressions

Variables:

Expressions:

Values:

$$Val ::= BaseVal$$

 $\lambda Var : Type.Expr$

Syntax Types

Types:

Type
$$::=$$
 BaseType $|$ $(Type \rightarrow Type)$

- Typing contexts:
 - include variable-type associations i.e., typing hypotheses

```
TypingContext ::= 0

| TypingContext, Var : Type
```


Semantics for normal-order evaluation

Reduce:

Evaluation

$$(\lambda X: au.e \ e')
ightarrow e_{[e'/X]}$$

Eval:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textcolor{red}{\textbf{\textit{e}}} \ \textbf{\textit{e}}'') \rightarrow (\textcolor{red}{\textbf{\textit{e}}'} \ \textbf{\textit{e}}'')}$$

The type annotations are ignored, since typing precedes evaluation.

Semantics

Typing

$$\frac{\textit{\textbf{v}} \in \textit{\textbf{\tau}}_{\textit{\textbf{b}}}}{\Gamma \; \vdash \; \textit{\textbf{v}} : \textit{\textbf{\tau}}_{\textit{\textbf{b}}}}$$

TVar:

$$\frac{X:\tau\in\Gamma}{\Gamma\vdash X:\tau}$$

► TAbs:

$$\frac{\Gamma, X : \tau \vdash e : \tau'}{\Gamma \vdash \lambda X : \tau.e : (\tau \to \tau')}$$

► TApp:

$$\frac{\Gamma \vdash \textit{e} : (\tau' \rightarrow \tau) \qquad \Gamma \vdash \textit{e}' : \tau'}{\Gamma \vdash (\textit{e} \textit{e}') : \tau}$$

Typing example

Example 14.4 (Typing).

$$\lambda X : \tau_1.\lambda Y : \tau_2.X : (\tau_1 \rightarrow (\tau_2 \rightarrow \tau_1))$$

Blackboard!

Type systems

Definition 14.5 (Type system).

The set of rules and mechanisms used in a programming language to organize, build and handle the types accepted in the language.

Definition 14.6 (Soundness).

The type system of a language is *sound* if any well-typed expression in the language has the progress and preservation properties.

Proposition 14.7.

STLC is sound and possesses the strong normalization property.

Ways of extending STLC

1. Particular base types

2. n-ary type constructors, $n \ge 1$, which build simple types

Algebraic specification

- Base constructors i.e., canonical values:
 - $\tau * \tau' ::= (\tau, \tau')$
- Operators:
 - $fst: \tau * \tau' \rightarrow \tau$
 - snd : $\tau * \tau' \rightarrow \tau'$
- Axioms (e: τ, e': τ'):
 - (fst (e, e')) → e
 - (snd (e, e')) → e'

Syntax

```
Expr ::= ...
      (fst Expr)
      (snd Expr)
      | (Expr, Expr)
BaseVal ::= ...
        ProductVal
ProductVal ::= (Val, Val)
 Type ::= ...
      ∣ (Type∗ Type)
```


Evaluation

EvalFst:

$$(fst (e,e')) \rightarrow e$$

► EvalSnd:

$$(\textit{snd}\ (\textit{e},\textit{e}')) \rightarrow \textit{e}'$$

EvalFstApp:

$$\frac{\textbf{e} \rightarrow \textbf{e}'}{(\textit{fst e}) \rightarrow (\textit{fst e}')}$$

EvalSndApp:

$$\frac{\textbf{e} \rightarrow \textbf{e}'}{(\textbf{snd e}) \rightarrow (\textbf{snd e}')}$$

Typing

TProduct:

$$\frac{\Gamma \vdash \boldsymbol{e} : \boldsymbol{\tau} \qquad \Gamma \vdash \boldsymbol{e'} : \boldsymbol{\tau'}}{\Gamma \vdash (\boldsymbol{e}, \boldsymbol{e'}) : (\boldsymbol{\tau} * \boldsymbol{\tau'})}$$

► TFst:

$$\frac{\Gamma \vdash e : (\tau * \tau')}{\Gamma \vdash (\mathit{fst}\ e) : \tau}$$

► TSnd:

$$\frac{\Gamma \vdash e : (\tau * \tau')}{\Gamma \vdash (snd \ e) : \tau'}$$

Typing example

Example 15.1 (Typing).

$$\Gamma \vdash \lambda X : ((\rho * \tau) \to \sigma).\lambda Y : \rho.\lambda Z : \tau.(X (y, Z))$$
$$: ((\rho * \tau) \to \sigma) \to \rho \to \tau \to \sigma$$

Blackboard!

Algebraic specification

- Base constructors i.e., canonical values:
 - ▶ Bool ::= True | False
- Operators:
 - not : Bool → Bool
 - and : $Bool^2 \rightarrow Bool$
 - ▶ or : $Bool^2 \rightarrow Bool$
 - *if* : *Bool* $\times \tau \times \tau \rightarrow \tau$
- Axioms: see slide 81

The Bool type Syntax

```
Expr ::= ...
    (if Expr Expr Expr)
   BaseVal ::= ...
          | BoolVal
  BoolVal ::= True | False
    BaseType ::= ...
             | Bool
```


Evaluation

EvalIfT:

(if True
$$e e'$$
) $\rightarrow e$

EvalIfF:

(if False
$$e e'$$
) $\rightarrow e'$

Evallf:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textit{if} \ \textbf{\textit{e}} \ \textbf{\textit{e}}_1 \ \textbf{\textit{e}}_2) \rightarrow (\textit{if} \ \textbf{\textit{e}}' \ \textbf{\textit{e}}_1 \ \textbf{\textit{e}}_2)}$$

Typing

► TTrue:

TFalse:

► *TIf*:

$$\frac{\Gamma \vdash e : Bool \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash (\textit{if} \ e \ e_1 \ e_2) : \tau}$$

Top-level variable bindings

▶ $not \equiv \lambda x : Bool.(if \ x \ False \ True)$

▶ and $\equiv \lambda x$: Bool. λy : Bool.(if x y False)

• or $\equiv \lambda x$: Bool. λy : Bool.(if x True y)

The N type

Algebraic specification

- Base constructors i.e., canonical values:
 - $ightharpoonup \mathbb{N} ::= 0 \mid (succ \mathbb{N})$
- Operators:
 - $+: \mathbb{N}^2 \to \mathbb{N}$
 - ▶ zero? : $\mathbb{N} \to Bool$
- ▶ Axioms $(m, n \in \mathbb{N})$:
 - (+ 0 n) = n
 - (+ (succ m) n) = (succ (+ m n))
 - ▶ (*zero*? 0) = *True*
 - ▶ (zero? (succ n)) = False

The N type Operator semantics

► How to avoid defining evaluation and typing rules for each operator of N?

Introduce the primitive recursor for N, prec_N, which allows for defining any primitive recursive function on natural numbers

Define the operators using the primitive recursor

The N type Syntax

```
Expr ::= ...
      (succ Expr)
       (prec_{\mathbb{N}} \ Expr \ Expr \ Expr)
       BaseVal ::= ...
               ⊢ NVal
     NVal := 0
           (succ NVal)
       BaseType ::= ...
```


The N type

Evaluation

EvalSucc:

$$\frac{\textbf{e} \rightarrow \textbf{e}'}{(\textbf{succ } \textbf{e}) \rightarrow (\textbf{succ } \textbf{e}')}$$

EvalPrec_{N0}:

$$(\textit{prec}_{\mathbb{N}} \ \textit{e}_0 \ \textit{f} \ 0) \rightarrow \textit{e}_0$$

EvalPrec_{N1} (n ∈ N):

$$(\textit{prec}_{\mathbb{N}} \ \textit{e}_0 \ \textit{f} \ (\textit{succ} \ \textit{n})) \rightarrow (\textit{f} \ \textit{n} \ (\textit{prec}_{\mathbb{N}} \ \textit{e}_0 \ \textit{f} \ \textit{n}))$$

► EvalPrec_{N2}:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textit{prec}_{\mathbb{N}} \ \textbf{\textit{e}}_0 \ \textbf{\textit{f}} \ \textbf{\textit{e}}) \rightarrow (\textit{prec}_{\mathbb{N}} \ \textbf{\textit{e}}_0 \ \textbf{\textit{f}} \ \textbf{\textit{e}}')}$$

The ℕ type Typing

► TZero:

$$\Gamma \vdash 0 : \mathbb{N}$$

► TSucc:

$$\frac{\Gamma \vdash e : \mathbb{N}}{\Gamma \vdash (succ \ e) : \mathbb{N}}$$

► TPrec_N:

$$\frac{\Gamma \vdash e_0 : \tau \qquad \Gamma \vdash f : \mathbb{N} \to \tau \to \tau \qquad \Gamma \vdash e : \mathbb{N}}{\Gamma \vdash (\textit{prec}_{\mathbb{N}} \ e_0 \ f \ e) : \tau}$$

The N type

Top-level variable bindings

▶ $zero? \equiv \lambda n : \mathbb{N}.(prec_{\mathbb{N}} \text{ True } \lambda x : \mathbb{N}.\lambda y : Bool.False n)$

 $ightharpoonup + \equiv \lambda m : \mathbb{N}.\lambda n : \mathbb{N}.(prec_{\mathbb{N}} \ n \ \lambda x : \mathbb{N}.\lambda y : \mathbb{N}.(succ \ y) \ m)$

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
 - (List τ) ::= [] $_{\tau}$ | (cons τ (List τ))
- Operators:
 - head : (List τ) \ {[]} → τ
 - $tail: (List \ \tau) \setminus \{[]\} \rightarrow (List \ \tau)$
 - *length* : (*List* τ) $\rightarrow \mathbb{N}$
- ▶ Axioms ($h \in \tau$, $t \in (List \ \tau)$):
 - ► (head (cons h t)) = h
 - ▶ (tail (cons h t)) = t
 - ▶ (*length* []) = 0
 - ► (length (cons h t)) = (succ (length t))

The (*List* τ) type Syntax

```
Expr ::= ...
     (cons Expr Expr)
       (prec, Expr Expr Expr)
     BaseVal ::= ...
              ListVal
ListVal ::= []
       (cons Value ListVal)
     Type ::= ...
          (List Type)
```


The (*List* τ) type

Evaluation

EvalCons:

$$\frac{e \rightarrow e'}{(\textit{cons } e \ e'') \rightarrow (\textit{cons } e' \ e'')}$$

EvalPrec_{L0}:

$$(prec_L e_0 f []) \rightarrow e_0$$

- ► EvalPrec_{L1} ($v \in Value$): $(prec_L \ e_0 \ f \ (cons \ v \ e)) \rightarrow (f \ v \ e \ (prec_L \ e_0 \ f \ e))$
- EvalPrec_{L2}:

$$\frac{\textbf{e} \rightarrow \textbf{e}'}{(\textbf{prec}_L \ \textbf{e}_0 \ \textbf{f} \ \textbf{e}) \rightarrow (\textbf{prec}_L \ \textbf{e}_0 \ \textbf{f} \ \textbf{e}')}$$

The (List τ) type Typing

TEmpty:

$$\Gamma \vdash []_{\tau} : (List \ \tau)$$

► TCons:

$$\frac{\Gamma \vdash e : \tau \qquad \Gamma \vdash e' : (\textit{List } \tau)}{\Gamma \vdash (\textit{cons } e \ e') : (\textit{List } \tau)}$$

► TPrec_L:

$$\frac{\Gamma \vdash e_0 : \tau' \quad \Gamma \vdash f : \tau \to (\textit{List } \tau) \to \tau' \to \tau' \quad \Gamma \vdash e : (\textit{List } \tau)}{\Gamma \vdash (\textit{prec}_l \ e_0 \ f \ e) : \tau'}$$

The (*List* τ) type

Top-level variable bindings

▶ empty? $\equiv \lambda I : (List \ \tau).(prec_L \ True \ f \ I),$ $f \equiv \lambda h : \tau.\lambda t : (List \ \tau).\lambda r : Bool.False$

▶ length $\equiv \lambda I : (List \ \tau).(prec_L \ 0 \ f \ I),$ $f \equiv \lambda h : \tau.\lambda t : (List \ \tau).\lambda r : \mathbb{N}.(succ \ r)$

General recursion

- Primitive recursion
 - induces strong normalization
 - insufficient for capturing effectively computable functions

Introduce the operator fix i.e., a fixed-point combinator

 Gain computation power at the expense of strong normalization

*fix*Evaluation

EvalFix:

$$(\textit{fix } \lambda \textit{x} : \tau.\textit{e}) \rightarrow \textit{e}_{[(\textit{fix } \lambda \textit{x} : \tau.\textit{e})/\textit{x}]} \qquad = (\textit{f } (\textit{fix } \textit{f}))$$

► EvalFix':

$$\frac{\textit{e} \rightarrow \textit{e}'}{(\textit{fix} \;\; \textit{e}) \rightarrow (\textit{fix} \;\; \textit{e}')}$$

Example 15.2 (The remainder function).

```
remainder = \lambda m : \mathbb{N}.\lambda n : \mathbb{N}.

((fix \lambda f : (\mathbb{N} \to \mathbb{N}).\lambda p : \mathbb{N}.

(if p < n then p else (f(p-n))) m)
```

The evaluation of (remainder 3 0) does not terminate.

Monomorphism

- Within the types (τ * τ') and (List τ), τ and τ' designate specific types e.g., Bool, N, (List N), etc.
- Dedicated operators for each simple type
- $fst_{\mathbb{N},Bool}$, $fst_{Bool,\mathbb{N}}$, . . .
- ► []_N, []_{Bool}, . . .
- empty?_N, empty? $_{Bool}$, . . .

Idea

Monomorphic identity function for type N:

$$id_{\mathbb{N}} \equiv \lambda x : \mathbb{N}.x : (\mathbb{N} \to \mathbb{N})$$

Polymorphic identity function — type variables:

$$id \equiv \lambda X \cdot \lambda x : X \cdot X \cdot \forall X \cdot (X \rightarrow X)$$

Type coercion prior to function application:

$$(id[\mathbb{N}] 5) \rightarrow (id_{\mathbb{N}} 5) \rightarrow 5$$

Program variables: stand for program values

Type variables: stand for types

$$TypeVar ::= ...$$

Expressions:

Values:

```
Value ::= BaseValue

| λ Var : Type.Expr

| λ TypeVar.Expr
```


Types:

```
Type ::= BaseType  | TypeVar   | (Type \rightarrow Type)   | \forall TypeVar.Type
```

Typing contexts:

```
TypingContext ::= 0
| TypingContext, Var : Type
| TypingContext, TypeVar
```


Evaluation

▶ Reduce₁:

$$(\lambda \mathit{X}: \tau.\mathit{e}\ \mathit{e}') \rightarrow \mathit{e}_{[\mathit{e}'/\mathit{X}]}$$

► Reduce₂:

$$\lambda X.e[au] o e_{[au/X]}$$

▶ Eval₁:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textbf{\textit{e}} \ \textbf{\textit{e}}'') \rightarrow (\textbf{\textit{e}}' \ \textbf{\textit{e}}'')}$$

► Eval₂:

$$rac{oldsymbol{e} o oldsymbol{e}'}{oldsymbol{e} [au] o oldsymbol{e}'[au]}$$

Typing

TBaseValue:

$$\frac{\textit{\textbf{V}} \in \textit{\textbf{\tau}}_{\textit{\textbf{b}}}}{\Gamma \; \vdash \; \textit{\textbf{V}} : \textit{\textbf{\tau}}_{\textit{\textbf{b}}}}$$

► TVar:

$$\frac{X:\tau\in\Gamma}{\Gamma\vdash X:\tau}$$

► TAbs₁:

$$\frac{\Gamma, X : \tau \vdash \boldsymbol{e} : \tau'}{\Gamma \vdash \lambda X : \tau.\boldsymbol{e} : (\tau \rightarrow \tau')}$$

► TApp₁:

$$\frac{\Gamma \vdash \textit{e} : (\tau' \rightarrow \tau) \qquad \Gamma \vdash \textit{e}' : \tau'}{\Gamma \vdash (\textit{e} \textit{e}') : \tau}$$

Typing

TAbs₂ — polymorphic expressions have universal types:

$$\frac{\Gamma, X \vdash e : \tau}{\Gamma \vdash \lambda X.e : \forall X.\tau}$$

► TApp₂:

$$\frac{\Gamma \vdash e : \forall X.\tau}{\Gamma \vdash e[\tau'] : \tau_{[\tau'/X]}}$$

Substitution and free variables

- ► Expr_[Expr/Var]
- Expr_[Type/TypeVar]
- ► Type_[Type/TypeVar]
- Free program variables
- Free type variables

Typing example

Example 16.1 (Typing).

$$\Gamma \vdash \lambda f : \forall X.(X \to X).\lambda Y.\lambda x : Y.(f[Y] x)$$
$$: (\forall X.(X \to X) \to \forall Y.(Y \to Y))$$

Monomorphic function with polymorphic argument and result!

Blackboard!

Examples of polymorphic expressions

Example 16.2 (Doubling a computation).

double
$$\equiv \lambda X.\lambda f: (X \to X).\lambda x: X.(f (f x))$$

 $\vdots \forall X.((X \to X) \to (X \to X))$

Example 16.3 (Quadrupling a computation).

$$\begin{array}{ll} \textit{quadruple} & \equiv & \lambda X.(\textit{double}[X \rightarrow X] \; \textit{double}[X]) \\ & : & \forall X.((X \rightarrow X) \rightarrow (X \rightarrow X)) \end{array}$$

Examples of polymorphic expressions

Example 16.4 (Reflexive computation).

reflexive
$$\equiv \lambda f : \forall X.(X \rightarrow X).(f[\forall X.(X \rightarrow X)] f)$$

: $(\forall X.(X \rightarrow X) \rightarrow \forall X.(X \rightarrow X))$

Example 16.5 (Fixed-point combinator).

$$Fix \equiv \lambda X.\lambda f: (X \to X).(f (Fix[X] f))$$
$$: \forall X.((X \to X) \to X)$$

Problem

Polymorphic identity function, on objects of a type built using 1-ary type constructors e.g., List:

$$f \equiv \lambda \, {\color{red}C}.\lambda \, {\color{black} X}.\lambda \, {\color{black} X} : ({\color{black} C} \, {\color{black} X}).x : \forall {\color{black} C}.\forall {\color{black} X}.(({\color{black} C} \, {\color{black} X}) \rightarrow ({\color{black} C} \, {\color{black} X}))$$

- C stands for a 1-ary type constructor, X stands for a type of program values i.e., a proper type
- ▶ Monomorphic identity function for type (*List* \mathbb{N}):

$$f[List][\mathbb{N}] \to \lambda x : (List \mathbb{N}).x : ((List \mathbb{N}) \to (List \mathbb{N}))$$

► How do we prevent erroneous situations e.g., f[N][N], f[List][List]?

Solution

 Two categories of types: proper types, and type constructors i.e., λ TypeVar. Type

 Type not only program variables, but also type variables

The type of a type: kind

Kinds Notation

- ► The kind of a proper type: *
- The kind of a 1-ary type constructor: (* ⇒ *)
- ▶ The kind of an *n*-ary type constructor, $n \ge 1$: $k_1 \Rightarrow k_2$
- ▶ The kind k of a type τ : τ :: k

Kinds Examples

Example 18.1 (Kinds).

- ▶ N::*
- **▶** *List* :: (* ⇒ *)
- $\uparrow \equiv \lambda C :: (* \Rightarrow *).\lambda X :: *.\lambda X : (C X).X$ $f : \forall C :: (* \Rightarrow *).\forall X :: *.((C X) \rightarrow (C X))$

Levels of expressions

Type equivalence

Two syntactically distinct types:

$$\begin{split} \tau_1 &\equiv ((\textit{List} \ \mathbb{N}) \to (\textit{List} \ \mathbb{N})) \\ \tau_2 &\equiv (\lambda \textit{X} :: *.((\textit{List} \ \textit{X}) \to (\textit{List} \ \textit{X})) \ \mathbb{N}) \end{split}$$

► Semantically, they denote the same type i.e., they are equivalent: $\tau_1 \equiv \tau_2$

Types:

```
Type ::= BaseType

| TypeVar

| (Type \rightarrow Type)

| \forall TypeVar :: Kind.Type

| \lambda TypeVar :: Kind.Type

| (Type Type)
```

Typing contexts:

```
TypingContext ::= 0
| TypingContext, Var : Type
| TypingContext, TypeVar :: Kind
```


Kinds:

Evaluation

▶ Reduce₁:

$$(\lambda X : \tau.e \ e') \rightarrow e_{[e'/X]}$$

▶ Reduce₂:

$$\lambda X :: K.e[\tau] \rightarrow e_{[\tau/X]}$$

▶ Eval₁:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textbf{\textit{e}} \ \textbf{\textit{e}}'') \rightarrow (\textbf{\textit{e}}' \ \textbf{\textit{e}}'')}$$

▶ Eval₂:

$$rac{oldsymbol{e}
ightarrow oldsymbol{e}'}{oldsymbol{e}[au]
ightarrow oldsymbol{e}'[au]}$$

Typing

TBaseValue:

$$\frac{\textit{\textit{V}} \in \textit{\textit{\tau}}_{\textit{\textit{b}}}}{\Gamma \; \vdash \; \textit{\textit{V}} : \textit{\textit{\tau}}_{\textit{\textit{b}}}}$$

► TVar:

$$\frac{X:\tau\in\Gamma}{\Gamma\vdash X:\tau}$$

► TAbs₁:

$$\frac{\Gamma, X : \tau \vdash \mathbf{e} : \tau'}{\Gamma \vdash \lambda X.\mathbf{e} : (\tau \rightarrow \tau')}$$

► TApp₁:

$$\frac{\Gamma \vdash \textit{e} : (\tau' \rightarrow \tau) \qquad \Gamma \vdash \textit{e}' : \tau'}{\Gamma \vdash (\textit{e} \textit{e}') : \tau}$$

Typing

► *TAbs*₂:

$$\frac{\Gamma, X :: \mathbf{K} \vdash \mathbf{e} : \tau}{\Gamma \vdash \lambda X :: \mathbf{K}.\mathbf{e} : \forall X :: \mathbf{K}.\tau}$$

► TApp₂:

$$\frac{\Gamma \vdash e : \forall X :: K.\tau \qquad \Gamma \vdash \tau' :: K}{\Gamma \vdash e[\tau'] : \tau_{[\tau'/X]}}$$

Kinding

KBaseType:

$$\Gamma \vdash \tau_b :: *$$

KTypeVar:

$$\frac{X :: K \in \Gamma}{\Gamma \vdash X :: K}$$

KTypeAbs:

$$\frac{\Gamma, X :: K \vdash \tau :: K'}{\Gamma \vdash \lambda X :: K.\tau :: (K \Rightarrow K')}$$

KTypeApp:

$$\frac{\Gamma \vdash \tau :: (K' \Rightarrow K) \qquad \Gamma \vdash \tau' :: K'}{\Gamma \vdash (\tau \ \tau') :: K}$$

Kinding

► *KAbs*₁:

$$\frac{\Gamma \vdash \tau :: * \qquad \Gamma \vdash \tau' :: *}{\Gamma \vdash (\tau \to \tau') :: *}$$

► KAbs₂:

$$\frac{\Gamma, X :: K \vdash \tau :: *}{\Gamma \vdash \forall X :: K.\tau :: *}$$

Type equivalence

EqReflexivity:

$$au \equiv au$$

► EqSymmetry:

$$rac{ au \equiv au'}{ au' \equiv au}$$

EqTransitivity:

$$\frac{\tau \equiv \tau' \qquad \tau' \equiv \tau''}{\tau \equiv \tau''}$$

EqTypeReduce:

$$(\lambda X :: K.\tau \ \tau') \equiv \tau_{[\tau'/X]}$$

Semantics

Type equivalence

EqTypeAbs:

$$\frac{\tau \equiv \tau'}{\lambda X :: K.\tau \equiv \lambda X :: K.\tau'}$$

EqTypeApp:

$$\frac{\tau \equiv \tau' \qquad \sigma \equiv \sigma'}{(\tau \ \sigma) \equiv (\tau' \ \sigma')}$$

► EqAbs₁:

$$rac{ au \equiv au' \qquad \sigma \equiv \sigma'}{(au
ightarrow \sigma) \equiv (au'
ightarrow \sigma')}$$

► EqAbs₂:

$$\frac{\tau \equiv \tau'}{\forall X :: K.\tau \equiv \forall X :: K.\tau'}$$

Semantics

Type equivalence

TypeEquivalence:

$$\frac{\Gamma \vdash e : \tau \qquad \tau \equiv \tau'}{\Gamma \vdash e : \tau'}$$

Kinding example

Example 18.2 (Kinding).

$$\forall X :: *.(X \rightarrow ((List\ X) \rightarrow (Tree\ X))) :: *$$

Blackboard!

Part V

Constructive Type Theory

Classical logic

- ► Example: prove $\exists x.P(x)$
- ▶ Perhaps, proof by contradiction: assume $\neg \exists x.P(x)$ and reach a contradiction
- ► Assumption: $\exists x.P(x) \lor \neg \exists x.P(x)$ (law of excluded middle)
- ▶ Problem: possibly no actual evidence regarding either sentence i.e., some a s.t. either P(a) or $\neg P(a)$ is true

Constructive logic

- Prove ∃x.P(x) by computing an object a s.t. P(a) is true
- Not always possible
- ► However, not being able to compute a does not mean that $\exists x.P(x)$ is false
- Law of excluded middle not an axiom in constructive logic

Constructive type theory

 Bridge between constructive logic and typed lambda calculus

- Correspondences:
 - ▶ sentence ↔ type
 - ▶ logical connective ↔ type constructor
 - ▶ proof ↔ function with that type
- Application: synthesize a program by proving the sentence that corresponds to its specification

The Curry-Howard isomorphism

Two views

a : A

- Type-theoretic: "a is a value of type A"
- ▶ Logical: "a is a proof of sentence A"

Definitional rules

Rule	Logical view	Type-theoretic view
Formation	How a connective re-	How a type construc-
	lates two sentences	tor is used
Introduction/	How a proof is derived	How a value is con-
elimination		structed
Computation	How a proof is simpli-	How an expression is
	fied	evaluated

Other logic-type correspondences

Logical view	Type-theoretic view	
Truth (⊤)	One-element type, containing the trivial proof	
Falsity (⊥)	No-element type, containing no proof	
Proof by induction	Definition by recursion	

Logical conjunction / product type constructor I

► Formation rule (∧*F*):

$$\frac{A \text{ is a sentence/ type}}{A \land B \text{ is a sentence/ type}}$$

Introduction rule (∧I):

$$\frac{a:A \qquad b:B}{(a,b):A \wedge B}$$

Logical conjunction / product type constructor II

▶ Elimination rules ($\land E_{1,2}$):

$$\begin{array}{ccc} p: A \wedge B & & p: A \wedge B \\ \hline fst & p: A & & snd & p: B \end{array}$$

Computation rules:

Logical implication / function type constructor I

▶ Formation rule (\Rightarrow *F*):

A is a sentence/ type B is a sentence/ type
$$A \Rightarrow B$$
 is a sentence/ type

Introduction rule (⇒ I) (square brackets = discharged assumption):

$$[x : A]$$

$$\vdots$$

$$b : B$$

$$\overline{\lambda x : A.b : A \Rightarrow B}$$

Logical implication / function type constructor II

▶ Elimination rule ($\Rightarrow E$):

$$\frac{a:A \qquad f:A\Rightarrow B}{(f\ a):B}$$

Computation rule:

$$(\lambda x : A.b \ a) \rightarrow b_{[a/x]}$$

Logical disjunction / sum type constructor I

Formation rule (∨F):

$$\frac{A \text{ is a sentence/ type}}{A \lor B \text{ is a sentence/ type}}$$

▶ Introduction rules ($\lor I_{1,2}$):

$$\frac{a:A}{inl \ a:A\vee B} \qquad \frac{b:B}{inr \ b:A\vee B}$$

Logical disjunction / sum type constructor II

► Elimination rule (∨E):

$$\frac{p:A\vee B \qquad f:A\Rightarrow C \qquad g:B\Rightarrow C}{cases\ p\ f\ g:C}$$

Computation rules:

cases (inl a)
$$f g \rightarrow f a$$
 cases (inr b) $f g \rightarrow g b$

Absurd sentence / empty type I

► Formation rule (⊥*F*):

 \perp is a sentence/ type

► Introduction rule: none — there is no proof of the absurd sentence

Absurd sentence / empty type II

► Elimination rule (⊥E) (a proof of the absurd sentence can prove anything):

$$\frac{p:\bot}{abort_A\ p:A}$$

Computation rule: none

Logical negation and equivalence

Logical negation:

$$\neg A \equiv A \Rightarrow \bot$$

Logical equivalence:

$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$$

Example proofs

- $A \Rightarrow A$
- ► $A \Rightarrow \neg \neg A$ (converse?)
- $((A \land B) \Rightarrow C) \Rightarrow A \Rightarrow B \Rightarrow C$
- $(A \Rightarrow B) \Rightarrow (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$
- $(A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A)$
- $(A \lor B) \Rightarrow \neg (\neg A \land \neg B)$

Universal quantification / generalized function type constructor I

Formation rule (∀F) (square brackets = discharged assumption):

Introduction rule (∀I):

```
[x : A]
\vdots
b : B
(\lambda x : A).b : (\forall x : A).B
```


Universal quantification / generalized function type constructor II

► Elimination rule (∀E):

$$\frac{a:A \qquad f:(\forall x:A).B}{(f\ a):B_{[a/x]}}$$

Computation rule:

$$((\lambda x : A).b \ a) \rightarrow b_{[a/x]}$$

Existential quantification / generalized product type constructor I

Formation rule (∃F) (square brackets = discharged assumption):

Introduction rule (∃I):

$$\frac{a:A \qquad b:B_{[a/x]}}{(a,b):(\exists x:A).B}$$

Existential quantification / generalized product type constructor II

▶ Elimination rules ($\exists E_{1,2}$):

$$\frac{p: (\exists x: A).B}{Fst \ p: A} \qquad \frac{p: (\exists x: A).B}{Snd \ p: B_{[Fst \ p/x]}}$$

Computation rules:

Fst
$$(a,b) \rightarrow a$$

Snd $(a,b) \rightarrow b$

Example proofs

$$(\forall x : A).(B \Rightarrow C) \Rightarrow (\forall x : A).B \Rightarrow (\forall x : A).C$$

►
$$(\exists x : X). \neg P \Rightarrow \neg(\forall x : X). P$$
 (converse?)

►
$$(\exists y : Y).(\forall x : X).P \Rightarrow (\forall x : X).(\exists y : Y).P$$
 (converse?)

