Lending Club Loan Data Project

SFDAT28 Eugene Berson

Summary

Goal: To be able to predict if a Lending Club loan will default or be paid in full

Process:

- 1. EDA
- 2. Feature Selection
- 3. Experiment with multiple models
 - a. Logistic Regression
 - b. KNN
 - c. NLP
 - d. Others to come

EDA: Removed Columns with NaN values

inq_last_12m Number of credit inquiries in past 12 months

total_bal_il Total current balance of all installment accounts

A ratio calculated using the co-borrowers' total monthly payments on the total debt obligations, excluding mortgages and the requested LC loan,

divided by the co-borrowers' combined self-reported monthly income

verified status joint Indicates if the co-borrowers' joint income was verified by LC, not verified, or if the income source was verified

total cu tl Number of finance trades

dti joint

open rv 12m

open_acc_6m Number of open trades in last 6 months

open_il_6m Number of currently active installment trades

open_il_24m Number of installment accounts opened in past 24 months

mths since rcnt il Months since most recent installment accounts opened

il_util Ratio of total current balance to high credit/credit limit on all install acct

Number of revolving trades opened in past 12 months

open rv 24m Number of revolving trades opened in past 24 months

max bal bc Maximum current balance owed on all revolving accounts

all util Balance to credit limit on all trades

ing fi Number of personal finance inquiries

annual_inc_joint The combined self-reported annual income provided by the co-borrowers during registration

EDA: change categorical values from string to number

Lastra Otatas		01		Home_Ownershi	
Loan Status		Grade		p	
Fully Paid	0	Α	1	RENT	0
Charged Off	1	В	2	OWN	1
Default	1	С	3	MORTGAGE	1
In Grace Period	2	D	4	OTHER	2
Issued	2	E	5	NONE	2
Does not meet the credit					
policy. Status: Charged Off	2	F	6	ANY	2
Current	2	G	7		
Does not meet the credit					
policy. Status: Fully Paid	2			Term	
Late (31-120 days)	2			36 months	3
Late (16-30 days)	2			60 months	5

Feature Selection

 Grade and Term have a moderate correlation with Loan Status

Null Value

```
df2['loan_status_new'].value_counts() / df2.shape[0]

0   0.819243
1   0.180757
Name: loan_status_new, dtype: float64
```

KNN

 Does not beat Null Value of 81.9243%

Logistic Regression

 Does not beat Null Value of 81.9243%

```
feature_cols = ['grade_new', 'term_new']
X = df2[feature_cols]
y = df2.loan_status
from sklearn_linear_model_import_logisticRegression
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)
```

```
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
pd.DataFrame(zip(X.columns, logreg.coef_[0]))
logreg.score(X_test, y_test)
```

0.81648288161563387

NLP

By analyzing the loan description, we are actually able to get a better prediction of the loan status than by looking at other factors

```
feature_cols_new = ['grade_new', 'term_new', 'desc']
A = df3[feature_cols_new]
b = df3.loan_status_new
print b.value_counts()
```

```
# calculate accuracy
print metrics.accuracy_score(b_test, b_pred_class)
```

0.82143030303

Resources

https://www.kaggle.com/wendykan/lending-club-loan-data