Лабораторная работа 7

Команды безусловного и условного переходов в Nasm. Программирование ветвлений.

Мазуркевич Анастасия

Содержание

Цель работы	5
Задание	6
Выполнение лабораторной работы Реализация переходов в NASM	7 7 11 14
Выводы	18
Список литературы	

Список иллюстраций

1	Создаем каталог и файл	7
2	Вводим листинг	8
3	создаем и запускаем	8
4	Изменяем текст в соответствии с листингом	9
5	Создаем файл и проверяем, все верно	9
6	Изменяем	10
7	Проверяем	10
8	Создаем файл и вводим листинг	11
9	Вводим различные В	11
10	Создаем	12
11	Открываем	12
12	Открываем и удаляем	13
13	Транслируем	13
14	Изучаем	14
15	Создаем	14
16	Прописываем программу	15
17	Создаем файл, работает верно	15
18	Пишем программу	16
19	Вводим значения, ответ верный	16
20	Вводим значения, ответ верный	17

Список таблиц

Цель работы

Изучение команд условного и безусловного переходов. Приобретение навыков написания программ с использованием переходов. Знакомство с назначением и структурой файла листинга.

Задание

Написать программы для решения заданий

Выполнение лабораторной работы

Реализация переходов в NASM

Создайте каталог для программам лабораторной работы № 7. Перейдите в него и создайте файл lab7-1.asm(рис. @fig:001).

```
report$ mkdir ~/work/arch-pc/lab07
amazurkevich@vbox:-/work/study/2023-2024/Архитектура компьютера/arch-pc/labs/lab06/
report$ cd ~/work/arch-pc/lab07
amazurkevich@vbox:~/work/arch-pc/lab07$ touch lab7-1.asm
amazurkevich@vbox:~/work/arch-pc/lab07$
```

Рис. 1: Создаем каталог и файл

Введите в файл lab7-1.asm текст программы из листинга 7.1.(рис. [-@fig:002]).

```
5 ...ps...5
                                                ~/work/arch-
 1 %include 'in_out.asm' ; подключение внешнего файла
 2 SECTION .data
 3 msgl: DB 'Сообщение № 1',0
 4 msg2: DB 'Сообщение № 2',0
 5 msg3: DB 'Сообщение № 3',0
 6 SECTION .text
 7 GLOBAL _start
 8 _start:
9 jmp _label2
10 _label1:
11 mov eax, msgl ; Вывод на экран строки
12 call sprintLF ; 'Сообщение № 1'
13 _label2:
14 mov eax, msg2 ; Вывод на экран строки
15 call sprintLF ; 'Сообщение № 2
16 _label3:
17 mov eax, msg3 ; Вывод на экран строки
18 call sprintLF ; 'Сообщение № 3'
20 call quit ; вызов подпрограммы завершени
```

Рис. 2: Вводим листинг

Создайте исполняемый файл и запустите его(рис. [-@fig:003]).

```
amazurkevich@vbox:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
amazurkevich@vbox:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
amazurkevich@vbox:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 3
amazurkevich@vbox:~/work/arch-pc/lab07$
```

Рис. 3: создаем и запускаем

Измените текст программы в соответствии с листингом 7.2.(рис. [-@fig:004]).

```
lab7-1.asm
9
    Открыть
                    \oplus
                                                   ~/work/arch-pc/lab07
  1 %include 'in_out.asm' ; подключение внешнего файла
  2 SECTION .data
3 msgl: DB 'Сообщение № 1',0
  4 msg2: DB 'Сообщение № 2',0
  5 msg3: DB 'Сообщение № 3',0
  6 SECTION .text
  7 GLOBAL _start
   8 _start:
  9 jmp _label2
  10 _label1:
  11 mov eax, msg1 ; Вывод на экран строки
12 call sprintLF ; 'Сообщение № 1'
  13 jmp _end
14 _label2:
  15 mov eax, msg2 ; Вывод на экран строки
🗓 16 call sprintLF ; 'Сообщение № 2'
  17 jmp _label1
 18 _label3:
19 mov eax, msg3 ; Вывод на экран строки
  20 call sprintLF ; 'Сообщение № 3'
  22 call quit ; вызов подпрограммы завершения
```

Рис. 4: Изменяем текст в соответствии с листингом

Создайте исполняемый файл и проверьте его работу.(рис. [-@fig:005]).

```
amazurkevich@vbox:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
amazurkevich@vbox:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
amazurkevich@vbox:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 1
amazurkevich@vbox:~/work/arch-pc/lab07$
программу, которая определяет и выводит на экран наибольшую из 5 целочисленных
```

Рис. 5: Создаем файл и проверяем, все верно

Измените текст программы добавив или изменив инструкции jmp(puc. [-@fig:006]).

```
1 %include 'in_out.asm' ; подключение внешнего файла
 2 SECTION .data
 3 msgl: DB 'Сообщение № 1',0
 4 msg2: DB 'Сообщение № 2',0
5 msg3: DB 'Сообщение № 3',0
6 SECTION .text
 7 GLOBAL _start
8 _start:
9 jmp _label3
10 _label1:
11 mov eax, msg1 ; Вывод на экран строки
12 call sprintLF ; 'Сообщение № 1'
13 jmp _end
14 _label2:
15 mov eax, msg2 ; Вывод на экран строки
16 call sprintLF ; 'Сообщение № 2'
17 jmp _label1
18 _label3:
19 mov eax, msg3 ; Вывод на экран строки
20 call sprintLF ; 'Сообщение № 3'
21 jmp _label2
22 _end:
23 call quit ; вызов подпрограммы завершения
```

Рис. 6: Изменяем

Проверьте работу файла(рис. [-@fig:007]).

```
amazurkevich@vbox:-/work/arch-pc/lab07$ gedit lab7-1.asm
amazurkevich@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
amazurkevich@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
amazurkevich@vbox:-/work/arch-pc/lab07$ ./lab7-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
amazurkevich@vbox:-/work/arch-pc/lab07$
```

Рис. 7: Проверяем

Создайте файл lab7-2.asm в каталоге ~/work/arch-pc/lab07. Внимательно изучите текст программы из листинга 7.3 и введите в lab7-2.asm.(рис. [-@fig:008]).

```
lab7-2.asm
  Открыть 🔻 🛨
                                                                                                  Сохрані
13 ; ----- Вывод сообщения 'Введите В: '
14 mov eax,msgl
15 call sprint
          ----- Ввод 'В'
17 mov ecx,B
18 mov edx,10
19 call sread
20 ; ----- Преобразование 'В' из символа в число
21 mov eax,B
22 call atoi ; Вызов подпрограммы перевода символа в число
23 mov [B],eax ; запись преобразованного числа в 'В
24 ; ----- Записываем 'А' в переменную 'max'
25 mov ecx,[A] ; 'ecx = A'
26 mov [max],ecx; 'max = A'
27 ; ----- Сравниваем 'А' и 'С' (как символы)
28 cmp ecx,[C] ; Сравниваем 'А' и 'С'
29 jg check_B ; если 'A>C', то переход на метку 'check_B',
30 mov ecx,[C] ; иначе 'ecx = C'
31 mov [max],ecx ; 'max = C'
         ----- Преобразование 'max(A,C)' из символа в число
33 check_B:
35 call atoi ; Вызов подпрограммы перевода символа в число
36 mov [max],eax ; запись преобразованного числа в
37 ; ----- Сравниваем 'max(A,C)' и 'В' (как числа)
38 mov ecx,[max]
39 cmp есх,[В] ; Сравниваем 'max(A,C)' и 'В'
40 jg fin ; если 'max(A,C)>B', то переход на 'fin', 41 mov ecx,[B] ; иначе 'ecx = B'
42 mov [max],ecx
43 ; ----- Вывод результата
44 fin:
45 mov eax, msg2
45 mov eax, msg2
46 call sprint ; Вывод сообщения 'Наибольшее число: '
47 mov eax,[max]
48 call iprintLF ; Вывод 'max(A,B,C)'
49 call quit ; Выход
                                                                Matlab ▼ Ширина табуляции: 8 ▼ Ln
Загрузка файла «~/work/arch-pc/lab07/lab7-2.asm»...
```

Рис. 8: Создаем файл и вводим листинг

Создайте исполняемый файл и проверьте его работу для разных значений B(рис. [-@fig:009]).

```
mandonibude число: 90
amazurkevich@vbox:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
amazurkevich@vbox:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
amazurkevich@vbox:~/work/arch-pc/lab07$ ./lab7-2
Введите В: 10
Наибольшее число: 50
amazurkevich@vbox:~/work/arch-pc/lab07$ ./lab7-2
Введите В: 90
Наибольшее число: 90
amazurkevich@vbox:~/work/arch-pc/lab07$
```

Рис. 9: Вводим различные В

Изучение структуры файлы листинга

Создайте файл листинга для программы из файла lab7-2.asm(рис. [-@fig:010]).

Рис. 10: Создаем

Откройте файл листинга lab7-2.lst с помощью любого текстового редактора(рис. [-@fig:011]).

Рис. 11: Открываем

Внимательно ознакомиться с его форматом и содержимым. Подробно объяснить содержимое трёх строк файла листинга по выбору.

Строка 5: 00000001 адрес в сегменте кода, 89c3 машинный код, mov ebx,eax присвоить еах значение ebx Строка 10: 00000008 адрес в сегменте кода, 40 машинный код, inc eax считывает значение eax и добавляет кнему 1, записывая обратнов eax Строка 14: 0000000В адрес в сегменте кода, 29D8 машинный код, sub eax,ebx вычитает (eax-ebx) и записывает значение в eax

Откройте файл с программой lab7-2.asm и в любой инструкции с двумя операндами удалить один операнд(рис. [-@fig:012]).

```
2 section .data
3 msg1 db 'Введите В: ',0h
 4 msg2 db "Наибольшее число: ",0h
5 A dd '20'
6 C dd '50'
 7 section .bss
 8 max resb 10
 9 B resb 10
10 section .text
11 global _start
12 _start:
13 ; -----
                 --- Вывод сообщения 'Введите В: '
14 mov eax,msgl
15 call sprint
16; ------
17 mov ecx,B
             ---- Ввод 'В'
18 mov edx
19 call sread
20 ; -----
                 --- Преобразование 'B' из символа в число
21 mov eax,B
22 call atoi ; Вызов подпрограммы перевода символа в число
23 mov [B],eax; запись преобразованного числа в 'В 24; ------ Записываем 'A' в переменную 'max' 25 mov ecx,[A]; 'ecx = A'
26 mov [max],ecx; 'max = A'
27; ----- Сравниваем 'А' и 'С' (как символы)
28 cmp ecx,[С] ; Сравниваем 'А' и 'С'
29 jg check_B; если 'A>C', то переход на метку 'check_B',
30 mov ecx,[C]; иначе 'ecx = C'
31 mov [max],ecx; 'max = C'
32 ; ----- Преобразование 'max(A,C)' из символа в число
33 check_B:
34 mov eax, max
35 call atoi ; Вызов подпрограммы перевода символа в число
36 mov [max],eax ; запись преобразованного числа в `max
37: ----- Сравниваем 'max(A.C)' и 'В' (как числа)
```

Рис. 12: Открываем и удаляем

Выполните трансляцию с получением файла листинга:(рис. [-@fig:013]).

```
amazurkevich@vbox:~/work/arch-pc/lab07$ gedit lab7-2.asm
amazurkevich@vbox:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm
lab7-2.asm:18: error: invalid combination of opcode and operands
amazurkevich@vbox:~/work/arch-pc/lab07$ ls
in_out.asm lab7-1 lab7-1.asm lab7-1.o lab7-2 lab7-2.asm lab7-2.lst
amazurkevich@vbox:~/work/arch-pc/lab07$

Архитектура ЭВМ
```

Рис. 13: Транслируем

Выдается ошибка, но через ls видим, что создаются lab7-2 и lab7-2.asm Смотрим файл(рис. [-@fig:014]).

Рис. 14: Изучаем

Задание для самостоятельной работы

ВАРИАНТ 4

Напишите программу нахождения наименьшей из 3 целочисленных переменных □,□ и . Значения переменных выбрать из табл. 7.5 в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу

Создадим для этого lab7-3.asm(рис. [-@fig:015]).

```
amazurkevich@vbox:~/work/arch-pc/lab07$ touch lab7-3.asm
amazurkevich@vbox:~/work/arch-pc/lab07$
```

Рис. 15: Создаем

Напишите программу нахождения наименьшей из 3 целочисленных переменных □,□ и .(рис. [-@fig:016]).

```
1 %include 'in_out.asm'
      msgl db 'Введите В: ',0h
      msg2 db "Наименьшее число: ",0h
 6 C dd '88'
 7 section .bss
8 min resb 10
9 B resb 10
10 section
11
      global _start
12 start:
      call sprint
15
      mov ecx,B
      mov edx,10
call sread
17
      mov eax,B
      call atoi
20
      mov [B],eax
      mov ecx,[A]
22
23
      mov [min],ecx
      cmp ecx,[C]
      jl check_B
      mov ecx,[C]
mov [min],ecx
25
26
27 check_B:
      mov eax,min
call atoi
28
29
      mov [min],eax
31
32
      mov ecx,[min]
      cmp ecx,[B]
jl fin
mov ecx,[B]
33
34
      mov [min],ecx
36 fin:
      mov eax, msg2
```

Рис. 16: Прописываем программу

Создадим файл и проверим его работу(рис. [-@fig:017]).

```
amazurkevich@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-3.asm
amazurkevich@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-3 lab7-3.o
amazurkevich@vbox:-/work/arch-pc/lab07$ ./lab7-3
Введите В: 68
Наименьшее число: 8
amazurkevich@vbox:-/work/arch-pc/lab07$
```

Рис. 17: Создаем файл, работает верно

Напишите программу, которая для введенных с клавиатуры значений □ и □ вычисляет значение заданной функции □(□) и выводит результат вычислений. Вид функции □(□) выбрать из таблицы 7.6 вариантов заданий в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу для значений □ и □ из 7.6.

Создадим для этого lab7-4.asm и откроем его, пропишем программу для нахождения функций(рис. [-@fig:018]).

```
6 otv: DB 'F(x) = ', 0h
  8 SECTION .bss
9 x: RESB 80
10 a: RESB 80
11 res: RESB 80
12
13 SECTION .text
14 GLOBAL _start
_15
16 _start:
           mov eax, msgl
           call sprint
mov ecx, x
mov edx, 80
20
           call sread
           mov eax, x
call atoi
22
23
24
25
           mov [x], eax
26
           mov eax, msg2
27
28
            call sprint
           mov ecx, a
mov edx, 80
call sread
28 mov ecx, a
29 mov edx, 8
30 call sread
31 mov eax, a
32 call atoi
33 mov [a], e
34
35 mov eax, [
36 cmp eax, [
37 je a_zero
38
39 a not zero:
           mov eax, a call atoi
           mov [a], eax
           mov eax, [a]
 39 a_not_zero:
           mov eax, [x]
shl eax, 1
add eax, [a]
41
           mov [res], eax
jmp fin
43
44
45
           mov eax, [x]
48
49
            shl eax,
            add eax,
50
51
            mov [res], eax
52 fin:
53 m
54 c
           mov eax, otv
           call sprint
mov eax, [res]
call iprintLF
call quit
56
57
                                                                                                       Matlab ▼ Ширина табуляции: 8 ▼ Ln 37, C
```

Рис. 18: Пишем программу

Создаем файл и проверяем для x=3 a=0(рис. [-@fig:019]).

```
amazurkevich@vbox:-/work/arch-pc/lab07$ gedit lab7-4.asm
amazurkevich@vbox:-/work/arch-pc/lab07$ nasm -f elf lab7-4.asm
amazurkevich@vbox:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o
amazurkevich@vbox:-/work/arch-pc/lab07$ ./lab7-4

$Beequre x: 3

$Beequre a: 0

F(x) = 7
amazurkevich@vbox:-/work/arch-pc/lab07$
```

Рис. 19: Вводим значения, ответ верный

Проверяем для x=3 a=2(рис. [-@fig:020]).

```
amazurkevich@vbox:~/work/arch-pc/lab07$ ./lab7-4
Введите х: 3
Введите а: 2
F(x) = 8
amazurkevich@vbox:~/work/arch-pc/lab07$
```

Рис. 20: Вводим значения, ответ верный

Выводы

Изучили команды условного и безусловного переходов. Приобрели навыки написания программ с использованием переходов. Познакомились с назначением и структурой файла листинга.

Список литературы