MODELLING SPACE-CHARGE-LIMITED CURRENT (SCLC) IN SEMICONDUCTORS

AUTHORS:

Team A (Field Emission) Joel Luke Tan Yi - SHARP Term 3 Advaitaa Kathavarayan - SHARP Term 3

Team B (Thermal Emission) Ong Jung Yi - SHARP Term 1 Nirwan Sarang - SHARP Term 3

<u>Supervisor</u> Prof.Ang Yee Sin Science, Math & Technology (SMT)

Vacuum Tube

Repulsion due to

electron cloud

negatively charged

POSTER 3 & 4

BACKGROUND INFORMATION

<u>Vacuum Tubes - 1950s</u>

- Used in first-generation computers, radios,
- Cons: Large in size, fragile, high energy usage
- transmitters

Solid State Transistors

- Semiconductor device
- Pros: Much smaller, reduced energy usage
- Cons: Vulnerable to EMP blat (strong E field) fry semiconductor chip

Modern Vacuum nano-electronics

- Remains relevant in key electronic systems:
 - Radar Systems, Electronic Warfare, Spacecraft, Microwave communication systems

Types of Electron Emission

• Liberation of electrons from the surface that is stimulated by radiation (lasers), temperature (heating element), strong electric field (quantum tunnelling)

Photoelectric Effect

• Emission due to EM Waves **hf>W**: electron escapes well hf⟨W: electron can't escape and oscillates

Thermionic Emission

• Emission due to thermal eg. from a resistor

Field Emission

• Reduces the barrier of the well which allows for quantum tunnelling

- is repelled by the cathode(-ve) and is accelerated by the anode (+ve) • However, at high voltages, the emitted
- electrons saturate the vacuum space which repels low-energy electrons
- This results in a Space Charge Limited Current

PROBLEM STATEMENT

How does current conduction transit from field emission to space charge limited in semiconductors?

03 MODELLING SCLC WITHOUT COLLISION

Using the Fowler-Nordheim Poisson's Equation and conservation of energy, the equation for the velocity and displacement of an electron (vacuum field emission) can be derived

<u>Vacuum</u>

 $eV = \frac{1}{2}mv^2$

Conservation of energy:

Poisson equation:

Poisson equation (Llewllyn form):

Traditional Fowler-

Nordheim Law:

 $\frac{d^2V}{dx^2} = \frac{en}{\varepsilon_0}$

 $J = AE_S^2 e^{-\frac{B}{E_S}}$

$$\xi^{2} e^{-\frac{B}{E_{S}}}$$
 $\xi^{2}(\xi+3) = 6\bar{D}\bar{E}(e^{-2/\bar{E}})$

$$ar{T} = rac{\xi}{\overline{F}} e^{1/\overline{E}}$$

As the direct J-V

relationship is difficult

to derive analytically, E

is used as an intermediary

relationship numerically

variable to determine their

Graph generated in python

Anode x = D

C-L Characteristics

 $\bar{J}\,\bar{D}^2$

Fowler-Nordheim

Child-Langmuir

Dbar: 0.01

Dbar: 0.1

Dbar: 1

 10^{3}

Dbar: 10

Dbar: 100

 10^{4}

Graph in 1994 paper

 $x(t) = \frac{eJ}{6m\epsilon_0}t^3 + \frac{eE_S}{2m}t^2$ $v(t) = \frac{eJ}{2m\epsilon_0}t^2 + \frac{e}{m}E_S t$

$\xi = -1 + \sqrt{1 + 2(2\bar{V})^{0.5}e^{-1/\bar{E}}}$

Cathode

x=0

Using these equations, a J-V graph was generated to verify the transition from Fowler-Nordheim Law (Field Emission) to Child-Langmuir Law (Space Charge Limited Current) against the 1994 paper (Lau, Liu and Parker, 1994).

04 MODELLING SCLC

WITH COLLISION

Having modelled the transition from field emission to space charge limited current in a vacuum, a model taking into account electron mobility (in solid-state materials for instance), as well as non-typical emission surfaces, can be constructed

Solid State Materials

$$\sum F = ma \qquad eE - \frac{e}{\mu}V = ma$$

Non Dimensionless Units
$$ar{J} = rac{1}{2}$$

$$\begin{split} \phi &= \phi_0 \overline{\phi}; \quad J = J_0 \overline{J}; \quad x = x_0 \overline{x}; \quad t = t_0 \overline{t}; \\ \mu &= \mu_0 \overline{\mu}; \quad E = E_0 \overline{E}; \quad v = v_0 \overline{v} \end{split}$$

$$\begin{split} \phi_0 &= \frac{e \epsilon_0^2}{m A^2}; \quad J_0 = A B^2; \quad x_0 = \frac{e \epsilon_0^2}{m A^2 B}; \quad t_0 = \frac{\epsilon_0}{A B}; \\ \mu_0 &= \frac{e \epsilon_0}{m A B}; \quad E_0 = B; \quad v_0 \equiv \frac{x_0}{t_0}, \end{split}$$

$$\begin{split} \overline{v}(\overline{t}) &= \overline{\mu} \Big[\big(\overline{\mu} \, \overline{J} - \overline{E} \big) \big(e^{-\overline{t}/\overline{\mu}} - 1 \big) + \overline{J} \overline{t} \Big] \\ \overline{x}(\overline{t}) &= \overline{\mu} \Big[\big(\overline{\mu} \, \overline{J} - \overline{E} \big) \Big(- \overline{\mu} e^{-\overline{t}/\overline{\mu}} - \overline{t} + \overline{\mu} \Big) + \overline{J} \overline{t}^2 / 2 \Big]. \end{split}$$

$$\overline{V} = \frac{\overline{v}(\overline{t})^2}{2} \Big|_0^{\overline{T}} + \int_0^{\overline{T}} d\overline{t} \frac{\overline{v}(\overline{t})^2}{\overline{u}} \qquad \overline{J} = \overline{E}^2 e^{-1/\overline{E}}$$

$$V = \frac{1}{2} \Big|_0 + \int_0^1 dt \frac{1}{\overline{\mu}}$$
 $J = E^2 e^{-1/E}$

Numerical Method to Model J against V with varying μ and D:

- 1. Define a fixed D.
- 2. Simulate x(t) at a variable E. Keep increasing the time step until x(t) = D. Transit Time (t_t) is the time taken for the electron to travel length D.
- 3. Find terminal velocity $v(t_t)$.
- 4. The voltage, V can then be calculated from t_{tr} and $v(t_{tr})$
- 5. Calculate J based on the E chosen in Step 2.
- 6. Record J(E) and V(E)

applications

- 7. Repeat 2 to 6 for different E
- 8. Plot J(E) versus V(E) in a log-log plot
- 9. Repeat 1 to 8 for different D. 10. Repeat 1 to 9 for different μ .
- 11. Repeat 1 to 10 for different β

05 RESULTS

Graph of Ibar against Vbar

Fixed beta(=2), Fixed μ bar(=0.1), Varying Dbar(=0.01-100)

06 CONCLUSION & FUTURE PLANS

• The modelled transition from field emission to space-charge limited current using FN and Poisson equations at different μ and β

• The result modelled for lower β is more relevant to low-current applications such as EMP-resilient electronics

- The result modelled for higher β is more relevant to high-current applications such as industrial defence
- Models can be plotted onto multidimensional graphs to visualise all variables • Develop a similar model for thermionic emission.

RELATED LITERATURE

1. https://components101.com/tags/npn-transistor

at-different-gate_fig1_338952880

- 2. https://www.alamy.com/stock-photo/vacuum-tube-transistor.html
 - 3. https://spark.iop.org/episode-502-photoelectric-effect 4. https://www.researchgate.net/figure/The-energy-band-diagram-of-a-vacuum-channel-field-emission-transistor-
 - 5. Lau, Y. Y., et al. "Electron Emission: From the Fowler-Nordheim Relation to the Child-Langmuir Law." Physics of Plasmas, vol. 1, no. 6, 1994, pp. 2082-2085., https://doi.org/10.1063/1.870603.
- 6. Darr, Adam M., et al. "Unification of Field Emission and Space Charge Limited Emission with Collisions."
- Applied Physics Letters, vol. 114, no. 1, 2019, p. 014103., https://doi.org/10.1063/1.5066236