Lecture 6

Lemma 2.20: $f_{\alpha}^{(x)} = x \cdot p \alpha$ is 1-to-1

Proof: By contradiction.

* Assume fa not 1-to-1, exist $X \neq Y, \qquad fa(x) = fa(Y) \qquad (*)$

* Since p is prime, a has inverse a-1

* (x) => $a^{+} \cdot p \cdot fa(x) = a^{+} \cdot p \cdot fa(y)$

 $\Rightarrow a^{-1} \cdot p(a \cdot p \times) = a^{-1} \cdot p(a \cdot p \times)$

 $\Rightarrow (a^{-1} \cdot p \cdot a) \cdot p \times = (a^{-1} \cdot p \cdot a) \cdot p \times$

 \Rightarrow x = y.

Contradict ion!

* fa must be 1-to-1.

RSA Algo

* Builds a one-way function using

- Exponentiation, mod n

- prime numbers

- gcd

- multiplicative inverse in Zn

* To prove correctness, need

Fermat's Little Theorem

proof of Lemma 2.19

* a(i+j) mod n

* (ai mod n) j mod n

Exponentiation in Z7

$$2^{3} \mod 7 = 1$$

$$2^4 \mod 7 = 2$$

Corollaries of Theorem 2-21

* a, any positive integer, not multiple of p $a^{p-1} \mod p = (a \mod p)^{p-1} \mod p$ = 1

=> corollary 2.22

* m, a nonnegative integer

m = (p-1)q + r

am mod p

= a(p-1)9 · ar modp

 $=((a^{(p+1)} \mod p)^q \mod p \cdot a^r \mod p) \mod p$

= ar modp

=> Corollary 2-X1

Components of public-key Crypto System

- * How generale publie key: Prs
- * How to generate secret key: Ps
- * How to encode plaintext using Pro
- A HOW to decode ciphertext using Ps

RSA Correctness Proof: Step1

Show
$$\left[\times \bmod p = \times^{ed} \bmod p \right] (1)$$

$$\frac{\text{Proof:}}{d = e^{-1} \mod T}$$

$$\Rightarrow ed \mod T = 1$$

=)
$$ed = 1 + kT$$

= $1 + k(p+1)(q-1)$

$$X^{ed} \mod P$$

$$= X^{1+ \kappa(P-1)(q-1)} \mod P$$

$$= X \left(X^{\kappa(q-1)} \right)^{P-1} \mod P$$

Case 1: W is not multiple of p

$$W^{P+} \mod p = 1$$
 . Corollary 2.22

(*) \Rightarrow $X \stackrel{\text{ed}}{=} \mod p = X \mod p$.

Case 2: W is a multiple of p

 \Rightarrow $W^{P+} \mod p = 0$ (*)

(*) \Rightarrow $X \stackrel{\text{ed}}{=} \mod p = 0$
 $W = X \stackrel{\text{ed}}{=} \mod p = 0$
 $W = X \stackrel{\text{ed}}{=} \mod p = 0$
 $W = X \stackrel{\text{ed}}{=} \mod p = 0$

$$(A)+(AA) =>$$

$$Xed \mod p = X \mod p$$
Proved.

RSA Correctness Proof: Step 3

$$X = X^{ed} \mod n, n=pq$$

proof:

$$\Rightarrow P \mid Xed-X$$
 (f)

$$=$$
 $9 | x ed - x (**)$

(+)+(++) + property of prime numbers

$$\Rightarrow$$
 $X^{ed} - X = kpq = kn$

$$\Rightarrow$$
 $x^{ed} = kn + x$

$$=) X^{ed} \mod n = X$$

$$(D \leq x < n)$$

Step3 completed.

RISA Correctness proved.

IS RSA Secure?

* Bob: publishes e, n

* Alice: Sends y = x e mod n

#Bob: Decodes ymod n = x

* Adversary can get: e, n, by

* why is it hard for him to recover X?

- No known quick way to reverse Xe mod n rie.

"eth roots mod n'

- How about:

 $n \Rightarrow p.9 \Rightarrow d$?

No known quick way to factor large integers