Democratizing Privacy-Preserving Computation

Anwar Hithnawi

Sensitive Data

Smart Homes

Finance

Genetics

Health

Dating

Government

Geolocation

Personal

PARTNER CONTENT JORIS TOONDERS, YONEGO

DATA IS THE NEW OIL OF THE DIGITAL ECONOMY

INNOVATION

Why Big Data Is The New Natural Resource Forbes

How Artificial Intelligence Could Transform Medicine

PARTNER CONTENT JORIS TOONDERS, YONEGO

DATA IS THE NEW OIL OF THE DIGITAL ECONOMY

INNOVATION

Why Big Data Is The New Natural Resource Forbes

How Artificial Intelligence Could Transform Medicine

You Should Be Freaking Out About Privacy

Nothing to hide, nothing to fear? Think again.

Grindr and OkCupid Spread Personal Details, Study Says

Norwegian research raises questions about whether certain ways of sharing of information violate data privacy laws in Europe the United States.

Data Breaches Keep Happening. So Why Don't You Do Something?

Technolog

Data broker shared billions of location records with District during pandemic

The bulk sales of location data have fueled a debate over public health and privacy

~ 1.245 Billion

The number of data records stolen in 2020

~ 1.245 Billion

The number of data records stolen in 2020

143,000,000

57,000,000

330,000,000

533,000,000

Uber

78

2017 2018 2019

End-to-End Security

End-to-End Security

End-to-End Security

Blockchain

Census

Private Set Intersection

Privacy-Preserving Machine Learning

Privacy-Preserving Machine Learning

Solving tasks where data is **accessible**...

Tasks

Public Data Crowdsourced Data

For example: web, books, articles, science, TV, corpus, audiobooks, ...

Solving tasks where data is accessible...

... however, many important tasks we care about ...

Tasks

WikiText-103
MNIST
ImageNet WMT
GPT-3 CIFAR

Public Data

Crowdsourced Data

For example: web, books, articles, science, TV, corpus, audiobooks, ...

Inaccessible

Health – Cancer, Alzheimer, Dementia, Depression Finance – Economic growth, Market predictions Government – Education, Taxes, Immigration, Income Personal Data – Text Messages, Emails, Photos

Solving tasks where data is **accessible**...

... however, many important tasks we care about ...

Tasks

WikiText-103
MNIST
ImageNet WMT

GPT-3 CIFAR

Public Data

Crowdsourced Data

For example: web, books, articles, science, TV, corpus, audiobooks, ...

Inaccessible

Health – Cancer, Alzheimer, Dementia, Depression Finance – Economic growth, Market predictions Government – Education, Taxes, Immigration, Income Personal Data – Text Messages, Emails, Photos

Data Silos

- Privacy Laws
- Competition

Solving tasks where data is **accessible**...

Tasks

WikiText-103
MNIST
ImageNet WMT
GPT-3
CIFAR

Public Data

Crowdsourced Data

For example: web, books, articles, science, TV, corpus, audiobooks, ...

... however, many important tasks we care about ...

Inaccessible

Health – Cancer, Alzheimer, Dementia, Depression Finance – Economic growth, Market predictions Government – Education, Taxes, Immigration, Income Personal Data – Text Messages, Emails, Photos

→ EU Data Governance Act (DGA) effective from 2023 facilitate the reuse of protected public-sector data

Data Silos

- Privacy Laws
- Competition

Privacy-Preserving Machine Learning

Theory to Practice: Barriers to Broad Adoption

Performance Gap

Practical for numerous applications but remains beyond reach for constrained use cases.

Complexity

There's a gap between the capabilities of PETs today and organizations' ability to incorporate them into applications.

Theory to Practice: Barriers to Broad Adoption

Performance Gap

Practical for numerous applications but remains beyond reach for constrained use cases.

Complexity

There's a gap between the capabilities of PETs today and organizations' ability to incorporate them into applications.

Enables computation on encrypted data

Enables computation on encrypted data

Enables computation on encrypted data

Delegate the processing of data without giving away access to it

Real-world use Started to Emerge

Apple Live Caller ID Lookup (Private Information Retrieval)

Microsoft Edge Password Monitor (Private Set Intersection)

FHE Commercialization

Hardware Acceleration for FHE

GPU

FPGA

ASIC

Performance Gap Fully Homomorphic Encryption

Approach to Efficiency

Empower
Constrained
Environments
with Encrypted
Data Processing.

DBMS Machine Learning Streaming Analytics Internet of Things **TimeCrypt** CryptDB Seabed **Talos** Arc Zeph **Pilatus** Blind Seer Seanat Helen Arx Conclave RoFL Waldo Kryptein 131

DBMS

CryptDB

Blind Seer

Arx

. . .

Internet of Things

Talos

Pilatus

Kryptein

...

DBMS

CryptDB

Blind Seer

Arx

Internet of Things

Talos

Pilatus

Kryptein

...

DBMS

CryptDB

Blind Seer

Arx

Internet of Things

Talos

Pilatus

Kryptein

...

DBMS

CryptDB

Blind Seer

Arx

. . .

Internet of Things

Talos

Pilatus

Kryptein

...

135

Approach to Efficiency

Pros.

- enhanced performance
- targeted functionality

Cons.

- limited flexibility
- poor interoperability

Theory to Practice: Barriers to Broad Adoption

Performance Gap

Complexity

Theory to Practice: Barriers to Broad Adoption

Performance Gap

Complexity

Developing and Deploying Privacy-preserving Applications is Notoriously Hard

What does "developing these applications" entail?

Conventional Cryptography

Conventional Cryptography

Secure Communication

Conventional Cryptography

Secure Communication

Secure Storage

Advanced Cryptography: Secure Computation

Advanced Cryptography: Secure Computation

Functionality and performance depend on f's representation:

- How do we express f
- m ullet How do we optimize m f

Usable Fully Homomorphic Encryption

(IEEE S&P'21, USENIX Security'23)

Usable FHE

Advanced

Programming Languages

- What makes developing FHE applications hard? [IEEE S&P'21]
- How can compilers address these complexities?

[USENIX Security'23]

Fully Homomorphic Encryption Programming Paradigm

Worse-than-Worst-Case Runtime

if (c) {

//
$$\bigcirc$$
} else {

// \bigcirc

f = // \bigcirc

if = c*t + (1-c)*f

}

 $O(\bigcirc$

average

 $O(\bigcirc$

always

No (efficient) Random-Access Memory

FHE Noise Management

```
void f(...)
ctxt ab = a*b + 3;
ctxt r = ab - z*z;
 return r;
```


FHE Noise Management

```
void f(...)
ctxt ab = a*b + 3;
ctxt r = ab - z*z;
return r;
```


FHE Noise Management

```
void f(...)
ctxt ab = a*b + 3;
ctxt r = ab - z*z;
return r;
```


Accessibility FHE Developer Tooling


```
void f(...)
 mul_inp(a,b);
 add_plain_inp(a,3)
square_inp(z,z);
 sub_inp(a,z);
 return a;
```



```
void f(...)
 mul_inp(a,b);
 relin_inp(a);
add_plain_inp(a,3)
 square_inp(z,z);
relin_inp(a);
 sub_inp(a,z);
 return a;
```


Existing tools make important contributions, but are very **narrowly focussed**

Developing FHE Applications

Circuit Optimizations

Developing FHE Applications

HECO

Standard C++ int[] foo(int[] x,int[] y){ int[] r; for(i = 0; i < 6; ++i){ r[i] = x[i] * y[i] } return r; }</pre>

```
Batched FHE

int[] foo(int[] a,int[]
b){
  return a * b;
}
```


No efficient free permutation or scatter/gather

Standard C++ int[] foo(int[] x,int[] y){ int[] r; for(i = 0; i < 6; ++i){ r[i] = x[i] * y[i] } return r; }</pre>

```
Batched FHE

int[] foo(int[] a,int[]
b){
   return a * b;
}
```


No efficient free permutation or scatter/gather

```
Batched FHE

int[] foo(int[] a,int[]
b){
   return a * b;
}
```



```
Batched FHE

int[] foo(int[] a,int[]
b){
   return a * b;
}
```


Only cyclical rotations

```
Batched FHE

int[] foo(int[] a,int[]
b){
   return a * b;
}
```


No efficient free permutation or scatter/gather

Only cyclical rotations

```
Batched FHE

int[] foo(int[] a,int[]
b){
  return a * b;
}
```


No efficient free permutation or scatter/gather

Only cyclical rotations

```
Batched FHE

int[] foo(int[] a,int[]
b){
  return a * b;
}
```


Only cyclical rotations

HECO: Transform High-level Programs to Efficient FHE Solutions

Developer

HECO: Transform High-level Programs to Efficient FHE Solutions

HECO: End-to-End FHE Compilation

Developer

Standardizing the FHE Ecosystem

HEIR: Working Group on Compilers & Accelerators (heir.dev/community/)

- Open design meeting every two weeks
- Participants from across industry and academia
 - Companies: Google, Intel
 - Startups: Zama, Cryptolab
 - University: ETH Zurich, KU Leuven
 - Hardware developers: Optalysys, Niobium (Galois)

Meeting calendar

Future Directions in the Evolution of Secure Computation Tools

Homomorphic Encryption	Secure Multi-party Computation	Zero Knowledge Proofs	Differential Privacy
LIFIG	EMD to all it		
HElib TFHE	EMP-toolkit MP-SPDZ	circom libsnark	google-dp
OpenFHE	Sharemind	zkEVM	Diffprivlib Opacus
EVA	Obliv-C	Zokrates	tf-privacy
HECO	ABY	Bellman	OpenDP
Concrete	CrypTFlow	Snarkjs	Tumult
HEIR	TinyGarble	Arkworks	PipelineDP

Homomorphic Encryption | Secure Multi-party Computation | Zero Knowledge Proofs

Homomorphic Encryption | Secure Multi-party Computation | Zero Knowledge Proofs

vFHE: Verifiable Fully Homomorphic Encryption. WAHC'24

Homomorphic Encryption | Secure Multi-party Computation | Zero Knowledge Proofs

vFHE: Verifiable Fully Homomorphic Encryption. WAHC'24

Hybrid Compilation

Homomorphic Encryption | Secure Multi-party Computation | Zero Knowledge Proofs

Homomorphic Encryption | Secure Multi-party Computation | Zero Knowledge Proofs

Releasing Data

Differential Privacy

End-to-End Privacy

Homomorphic Encryption | Secure Multi-party Computation | Zero Knowledge Proofs | Differential Privacy

Accessibility

Accessibility

Hybrid Compilation

Mapping Guarantees to Secure Primitives

Accessibility

Privacy-Transparency
Dichotomy

Hybrid C

Mapping Guarantees to Secure Primitives

Accessibility

Hybrid Compilation

Privacy-Transparency Dichotomy

Privacy-Transparency Dichotomy

Accessibility

Hybrid Compilation

Composability

Mapping Guarantees to Secure Primitives

Privacy-Transparency Dichotomy

Accessibility

Hybrid Compilation

Composability

Secure Computation on Heterogeneous Hardware

Work aims to democratize access to privacy-preserving computation with new tools, systems, and abstractions.

Acknowledgments

Students

Nicolas Küchler

Hidde Lycklama

Alexander Viand

Miro Haller

Patrick Jattke

Christian Knabenhans

Sponsors

