ZKProof6 Proposal

On the Security of Nova Recursive Proof System

2024.05.24

Hanyang University

Hyeonbum Lee, Jae Hong Seo

Contents

- 1 IVC and Nova
- 2 Knowledge Sound but Forgeable IVC
 Limitation of IVC KS
- 3 Analysis Models for Group-based Schemes
 Nova in AGM
- 4 Zero-Testing Hash Function
 Weaker Condition than RO
- **5** Nova KS Proof in AGM without RO

1. IVC and Nova

Definition: IVC Scheme

IVC scheme (G, K, P, V)

- Parameter Gen: $G(1^{\lambda}) \rightarrow pp$
- Key Gen: $K(pp,F) \rightarrow (pk,vk)$
- IVC Prover: $P(pk, i, z_0, z_i; z_{i-1}, \omega_{i-1}, \Pi_{i-1}) \rightarrow \Pi_i$
- IVC Verifier: $V(vk, i, z_0, z_i, \Pi_i) \rightarrow 0/1$

IVC proof Π_i guarantees

- 1. $F(z_{i-1}, \omega_{i-1}) = z_i$
- 2. $NARK.V(\Pi_{i-1}) = 1$

Folding Scheme: Aggregating Proofs

$$\pi_1 \colon (u_1, w_1) \in R \qquad \qquad Folding \\ \pi_2 \colon (U_1, U_1) \in R \qquad \qquad \Pi \text{ implies } (u_1, w_1) \in R \text{ and } (U_1, U_1) \in R$$

Verify
$$\pi_1$$
 and π_2 using folding scheme $V(\pi_1) + V(\pi_2) \Rightarrow V(\pi)$

Nova: Recursive Proof Composition with Folding Scheme

Definition: IVC completeness

Given IVC scheme (G, K, P, V),

Let
$$z_i = F(z_{i-1}, \omega_{i-1}), \ V(vk, i-1, z_0, z_{i-1}, \Pi_{i-1}) = 1, \ \text{and} \ \Pi_i \leftarrow P(pk, i, z_0, z_i; z_{i-1}, \omega_{i-1}, \Pi_{i-1})$$

Completeness

For any constant *i*, following equation holds:

$$Pr[V(vk, i, z_0, z_i, \Pi_i) = 1] = 1$$

Definition: IVC Knowledge Soundness (KS)

Given IVC scheme (G, K, P, V)

- 1. Set security parameter λ and constant n. After then set $G(1^{\lambda}) \to pp$
- 2. Adversary P^* outputs execution function F, initial input z_0 , final output z, and IVC proof Π
- 3. Extractor E outputs sequential local inputs $\omega_0, ..., \omega_{n-1}$
- 4. Reconstruct z_n from z_0 and $\omega_0, ..., \omega_{n-1}$ following $F(z_{i-1}, \omega_{i-1}) = z_i$

Knowledge Soundness

For any P^* , there exists PPT E such that

$$\Pr[z \neq z_n \land V(vk, n, z_0, z, \Pi) = 1] \le negl(\lambda)$$

The attack succeeds if

1.
$$z \neq z_{\gamma}$$

2.
$$V(vk, n, z_0, z, \Pi) = 1$$

How large is the constant n?

In Nova, step n is at most poly-logarithm size of security parameter Ex) security parameter λ bit -> $poly(log \lambda)$ steps

Reason: Blow-up issue for Extraction

The running time of IVC extraction : $2^{O(n)}$

Q: Is the definition of KS sufficient for "sound" IVC?

2. Knowledge Sound but forgeable IVC

Variation of Augmented Execution

Abnormal mode b = 0: $z_1 = z_0$

Normal mode b = 1: $z_1 = F(z_0)$

- IVC.P₀: IVC prover for abnormal mode
- IVC.P₁: IVC prover for normal mode

IVC construction using the F'

Then, verifier accept both modes, b = 1/0

Soundness Issue!

Trapdoor Augmented Execution

Add additional variable Y_i

1.
$$Y_0 \coloneqq 1$$

2.
$$Y_i = Y_{i-1}^2$$
 if $b = 1$

3.
$$Y_i = H(Y_{i-1})$$
 if $b = 0$

where $H: \mathbb{Z}_p \to \mathbb{Z}_p$ is random oracle

IVC verifier additionally check Y = 1If $IVC.P_1$ is runed for all n steps, $Y_n = 1$ Ephemeral Nova: Nova IVC with the F'

 (P_1, V) satisfies completeness

Number Theory Trick

Let p be a $(\lambda + 1)$ -bit prime: $2^{\lambda} , and <math>t < \lambda/2$

Then,
$$\Pr_{x \leftarrow \mathbb{Z}_p} [x^{2^t} = 1] \le 2^{\lambda/2}$$

Proof sketch: Degree 2^t polynomial $X^{2^t} - 1$ has at most 2^t zeros. Then,

Detectable abnormal mode(b=0) within log-previous step, $n=O(\log \lambda) \ll \lambda/2$

Concrete Attack of Ephemeral-Nova

Consider a $(\lambda+1)$ prime with the form: $p=2^{\lambda}+1$ * In paper, we use the Proth prime, $p=\alpha 2^t+1$ By Fermat's little theorem, $x^{p-1}=x^{2^{\lambda}}=1$ for all nonzero $x\in\mathbb{Z}_p$

If
$$n > \lambda$$
, $x^{2^n} = (x^{2^{\lambda}})^{2^{n-\lambda}} = 1^{2^{n-\lambda}} = 1$

Is Ephemeral-Nova sound?

The Ephemeral-Nova (G, K, P_1, V) satisfies completeness and KS but forgeable in linear steps

Is the KS definition sufficient for non-forgeable IVC? – No

Revise definition of KS

- 1. Set security parameter λ and polynomial-large n. After then set $G(1^{\lambda}) \to pp$
- 2. Adversary P^* outputs execution function F, initial input z_0 , final output z, and IVC proof Π
- 3. Extractor *E* outputs sequential local inputs ω_0 , ..., ω_{n-1}
- 4. Reconstruct z_n from z_0 and $\omega_0, ..., \omega_{n-1}$ following $F(z_{i-1}, \omega_{i-1}) = z_i$

Knowledge Soundness

For any P^* , there exists PPT E such that

$$\Pr[z \neq z_n \land V(vk, n, z_0, z, \Pi) = 1] \le negl(\lambda)$$

However... Nova does not satisfy the revised definition in standard model

3. Analysis Models for Group-based Schemes

Blow-up Issue in Nova

Proof of Nova KS

Construct Extractor *E* using IVC adversary *P**

 P^* : outputs accepting IVC proof / E: output local inputs $\omega_1, \dots, \omega_n$

 E_i : Partial extractor outputs ω_i and i-th proofs $\Pi_i = ((u_i, w_i), (U_i, W_i))$

 A_{fold} : folding adversary / E_{fold} : folding extractor

$$time(E_{i-1}) \ge time(A_{fold}) + time(E_{fold}) \ge 2 \cdot time(A_{fold}) \ge 2 \cdot time(E_i)$$

How to avoid blow-up issue? -> avoid using folding adversary/extractor, Straight-line Extract

Model candidates: GGM and AGM

Generic Group Model(GGM)

An idealized model where all group operations of adversary A_{gen} are carried out by making oracle queries

The adversary A_{gen} records the oracle response for group elements

Model candidates: GGM and AGM

Algebraic algorithm A_{alg}

If A_{alg} outputs group elements $h \in \mathbb{G}$, A_{alg} also outputs a representations $x \in \mathbb{Z}_p^n$ such that $h = \langle x, g \rangle$, where $g \in \mathbb{G}^n$ is given to A_{alg} beforehand.

 \mathbb{G} : cyclic group of order p

Algebraic Group Model

A computational model in which all adversaries are modeled as Algebraic

Structure of Nova and limitation of GGM

u: Pedersen Commitment to witness w, group element in \mathbb{G} w: R1CS witness, representation of u, vector over in \mathbb{Z}_n

Extract Process

For i = n, ..., 1

- 1. Extract witness w_i for instance u_i
- 2. Retrieve u_{i-1} from w_i

Extract witness w_0 for instance u_0

The group element u_{i-1} is instantiated to a field element in vector w_i

In GGM, hard to describe the instantiation.

Because a group element is like a random bitstring in the view of the adversary

Make Clear the Action of Algebraic Adversary

Let A_{alg} output $\Pi_i = (u_i, w_i)$

Explicitly, w_i is not a group element

However, w_i contains group encodable part u_{i-1}

Then, should A_{alg} provide a representation of u_{i-1} ?

Our answer is Yes!

Due to R1CS constraints, w_i contains group encodable part u_{i-1} if Π_i is valid proof

u: Pedersen Commitment to witness w, group element in $\mathbb G$

w: R1CS witness, representation of u, vector over in \mathbb{Z}_p

4. Zero-Testing Hash Functions

Random Oracle and Schwartz-Zippel Lemma

To instantiate non-interactive Folding Verifier, one needs RO instantiation Why need RO? => Fiat-Shamir, substitute verifier challenge with RO output Role of Verifier Challenge: Reduce checking many points to a random point Ex) Polynomial Check (f(X) = 0) => Evaluation Check (f(r) = 0)

Schwartz-Zippel Lemma

f(r) = 0 for random $r \leftarrow \mathbb{Z}_p \Rightarrow f(X) = 0$ with high probability (error: $\deg(f)/p$)

Is the RO condition necessary?

Zero-Testing Hash Function

Zero-Testing Property

For any PPT adversary cannot find a polynomial $poly \in \mathbb{Z}_p[X]$ of degree $O(\lambda)$ that satisfies $poly(Hash(poly)) = 0 \pmod{p}$

General Zero-Testing(GZT) Property

- $Com: Domain \rightarrow C: binding commitment$
- $D:Domain \to \mathbb{Z}_p^{\leq O(\lambda)}[X]$: arbitrary map to polynomial with degree at most $O(\lambda)$ For any PPT adversary cannot find $d \in Domain$ and auxiliary input τ that satisfies $D(d)\big(Hash(C(d),\tau)\big) = 0 \ (mod \ p)$

Theorem

If *Hash* is RO, then *Hash* satisfies GZT property

Schnorr's NIZK in the AGM with GZT hash

Straight-line Extract from A_{alg}

If $e' + k_2 = 0$, the *hash* does not satisfy GZT property

Set
$$D(k_1, k_2) = X + k_2$$
, $com(k_1, k_2) = k_1 \cdot G + k_2 \cdot H$, and $\tau = (G, H)$

Then, $D(k_1, k_2)(hash(com(k_1, k_2), G, H)) = e + k_2 = 0$, the adversary find the zero

In the similar way, NIFS KS can be proven without RO in AGM

5. Nova KS Proof and Conclusion

Construct Extractor in AGM

- If IVC adversary P_{alg}^* outputs accepting proof $\Pi_n = \big((U_n, W_n), (u_n, w_n) \big) \text{ then it also outputs}$ representation set R
 - By accepting proof Π_n , can get representations w'_{n-1} and W'_{n-1} of u_{n-1} and U_{n-1} from R
 - By the NIFS-KS, w'_{n-1} and W'_{n-1} are indeed witness of u_{n-1} and W_{n-1}
- Using the extraction recursively, get $\Pi_{n-1}, ..., \Pi_1$
 - Extractor finds $\omega_0, ..., \omega_{n-1}$ from Proofs $\Pi_n, ..., \Pi_1$ Nova is poly-step KS in AGM

Conclusion

- Give a forgeable IVC that satisfies KS
 The definition of KS should cover polynomially-large step
- Prove poly-step KS of Nova in AGM
 Make clear roles of algebraic adversary
 Propose weaker condition for hash: do not rely on RO in AGM

Thank You

ePrint: 2024/232