Measuring the cosmological parameters with machine learning techniques.

Martín de los Rios & Mariano Domínguez

September 19, 2018

Table of contents

- What is Machine Learning.

 Supervised learning.
- Measuring the Cosmological Parameters.
 - The training sample.Applications.
- Final Remarks.

- 1 What is Machine Learning.
 - Supervised learning.
- Measuring the Cosmological Parameters.
 - The training sample.
 - Applications.
- 3 Final Remarks.

Simple Example: ANNz

ANNz: Estimating photometric redshift using artificial neural network. Collister & Lahav 2003 (0311058)

- What is Machine Learning.
 - Supervised learning.
- 2 Measuring the Cosmological Parameters.
 - The training sample.
 - Applications.
- 3 Final Remarks

The Standard model.

Homogeneous and isotropic Universe \rightarrow FRW metric $ds^2=dt^2-a^2(t)[\frac{dr^2}{1-kr^2}+r^2(d\theta^2+sin^2\theta d\phi^2)]$ $(\frac{H}{H_0})^2=\Omega_{rad}a^{-4}+\Omega_ma^{-3}+\Omega_{\Lambda}-Kc^2a^{-2}$

Planck Collaboration 2015 (1502.01589)

The training sample.

CAMB: Code for Anisotropies in the Cosmic Background

Studying different Machine Learning algorithms.

Changing the minimum mutipole.

Measuring the cosmological parameters angular distributions.

de los Rios & Dominguez et al. (in preparation)

Hemispheric Asymmetry. de los Rios & Dominguez (in preparation).

$$\xi^2 = (\frac{\mathit{H}_{\mathit{pl}} - \mathit{H}}{\sigma_{\mathit{H}}})^2 + (\frac{\Omega_{\mathit{m},\mathit{pl}} - \Omega_\mathit{m}}{\sigma_{\Omega_\mathit{m}}})^2 + (\frac{\Omega_{\mathit{b},\mathit{pl}} - \Omega_\mathit{b}}{\sigma_{\Omega_\mathit{b}}})^2 + (\frac{\Omega_{\mathit{k},\mathit{pl}} - \Omega_\mathit{k}}{\sigma_{\Omega_\mathit{k}}})^2 + (\frac{\tau_{\mathit{pl}} - \tau}{\sigma_\tau})^2 + (\frac{n_{\mathit{pl}} - n}{\sigma_\mathit{n}})^2$$

- What is Machine Learning
 - Supervised learning.
- Measuring the Cosmological Parameters.
 - The training sample.
 - Applications.
- Final Remarks.

Final Remarks

- We developed a machine learning technique that estimate the cosmological parameters in a more efficient way withouth losing precision.
- This technique can be easily extended to use more cosmological information as features (BAO, correlation function, SZ emission, etc.).
- As a first application we study the angular distribution of the cosmological parameters and the Hemispherical Asymmetry.
- We do not found any significant departure from what is expected in an homogeneous and isotropic univese, but we found some features in the distributions that may come from the pixelization.
- We will extend the parameters space and add polarization information in a forthcoming work.
- We will analyze the correlations between the angular distribution of the cosmological parameters and the large scale structure (voids, filaments, etc.)

