MTH420 PROBLEM SET 9

- (1) Let V be a vector space, W a subspace of V, and f a linear functional on W. Prove there is a linear functional g on V such that $g(\alpha) = f(\alpha)$ for all $\alpha \in W$. (This is sometimes expressed as "f may be extended to a functional on V.") This is approximately, problem 12 from section 3.5, except I'm not telling you to assume V is finite dimensional.
- (2) Let V be a vector space, W a subspace of V. Prove that W^* is isomorphic to V^*/W^0 . (Proof should work even when V is not finite dimensional).
- (3) Consider the space $\mathbb{R}[x]_{\leq 2}$ of at-most-quadratic polynomials with real coefficients, and the differentiation operator $D: \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 2}$. For i = 0, 1, 2, let f_i be the functional which maps $a_0 + a_1 x + a_2 x^2$ to a_i .
 - (a) Compute $D^t(f_i)$ for each i. Express your answer as a linear combination of f_0, f_1, f_2 .
 - (b) For each $t \in \mathbb{R}$ let e_t be the "plug in t" functional $\mathbb{R}[x]_{\leq 2} \to \mathbb{R}$. Express $D^t(e_1)$ as a linear combination of f_0, f_1, f_2 .
 - (c) Express $D^t(e_t)$ as a linear combination of f_0, f_1, f_2 . (The coefficients in the combination will probably depend on the variable t, I would think.)
- (4) Let $f = x^2 3x + 1$ and $g = x^3 2x$. Compute
 - (a) f(A) and g(A) were $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$.

 - (b) f(g) and g(f). (c) f(T)(X) and g(T)(X), where $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ is given by

$$T(X) = AX - XA,$$
 $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}.$

1

Date: April 9, 2025.