print('Name:Shikha ') print('Plot a heatmap which help you visualize percentage of blood leaving the heart at each contraction of a smoking and non smoking person heart') print('Plot a heatmap which help you visualize Percentage of blood leaving the heart at each contraction of person who died due to cardio vascular disease') Name:Shikha Plot a heatmap which help you visualize percentage of blood leaving the heart at each contraction of a smoking and non smoking person heart

Plot a heatmap which help you visualize Percentage of blood leaving the heart at each contraction of person who died due to cardio vascular disease Task 1 - Plot heat map to visualize percentage of blood leaving the heart at each contraction of

A normal, healthy heart will never completely empty, but it will pump out 55-70 percent of the blood that's inside it. An ejection fraction of 55-70 percent is normal; 40-55 percent is below normal. Anything less than 40 percent may indicate heart failure, and below 35 percent there's a risk for life-threating arrhythmias

In [2]: #predefine code for image from IPython.display import Image Image(filename='heart.png') #predefine code end

a smoking and non smoking person

The right side of your heart receives oxygen-poor blood from your veins and pumps it to your lungs, where it picks up oxygen and gets rid of carbon dioxide. The left side of your heart receives

oxygen-rich blood from your lungs and pumps it through your arteries to the rest of your body. In [3]: # Import all the libraries and read heart_failure_clinical_records_dataset.csv import pandas as pd import matplotlib.pyplot as plt import seaborn as sns dataframe = pd.read_csv('heart_failure_clinical_records_dataset.csv') dataframe

Out[3]:		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex	smoking	time	DEATH_EVENT
	0	75.0	0	582	0	20	1	265000.00	1.9	130	1	0	4	1
	1	55.0	0	7861	0	38	0	263358.03	1.1	136	1	0	6	1
	2	65.0	0	146	0	20	0	162000.00	1.3	129	1	1	7	1
	3	50.0	1	111	0	20	0	210000.00	1.9	137	1	0	7	1
	4	65.0	1	160	1	20	0	327000.00	2.7	116	0	0	8	1
	294	62.0	0	61	1	38	1	155000.00	1.1	143	1	1	270	0
	295	55.0	0	1820	0	38	0	270000.00	1.2	139	0	0	271	0
	296	45.0	0	2060	1	60	0	742000.00	0.8	138	0	0	278	0
	297	45.0	0	2413	0	38	0	140000.00	1.4	140	1	1	280	0
	298	50.0	0	196	0	45	0	395000.00	1.6	136	1	1	285	0

299 rows × 13 columns

In [6]: #Group by age and smokers and find the average ejection_fraction rate smoking_heart_dataframe = dataframe.groupby(['age', 'smoking'])['ejection_fraction'].mean().reset_index() smoking_heart_dataframe

age smoking ejection_fraction Out[6]: **0** 40.0 0 37.000000 **1** 40.0 35.000000 **2** 41.0 40.000000 **3** 42.0 38.750000 4 42.0 1 31.666667 **70** 87.0 0 38.000000 44.000000 **71** 90.0 **72** 90.0 40.000000 38.000000 **73** 94.0 **74** 95.0 0 35.000000

75 rows × 3 columns

```
In [7]:
# Plot a heatmap to show the ejection fraction rate in smokers and non smokers heart
plt.figure(figsize=(14,4))
heatmap_df = pd.pivot_table(values ='ejection_fraction', index ='smoking',
                    columns ='age', data = smoking_heart_dataframe)
sns.heatmap(heatmap_df, cmap ='plasma')
```


0 are non smokers and 1 are smokers

Conclusion - The heart of the people who smoke releases less percentage of blood at each contraction that of non smoking people

Task 2 Plot a heatmap to visualize percentage of blood leaving the heart at each contraction of people who died due to cardio vascular disease

In [8]: #Group by death events and ejection fraction rate and find the average ejection fraction rate death_dataframe = dataframe.groupby(['age', 'DEATH_EVENT'])['ejection_fraction'].mean().reset_index() death_dataframe

age DEATH_EVENT ejection_fraction Out[8]: 36.428571 **0** 40.0 **1** 41.0 40.000000 **2** 42.0 0 39.166667 15.000000 **3** 42.0 0 **4** 43.0 50.000000 38.000000 **68** 87.0 1 **69** 90.0 38.000000 1 45.000000 **70** 90.0 38.000000 **71** 94.0 **72** 95.0 1 35.000000

73 rows × 3 columns

```
In [9]:
# Plot a heatmap to show the ejection fraction rate of people who died due to cardio vascular disease
plt.figure(figsize=(14,4))
heatmap_df = pd.pivot_table(values ='ejection_fraction', index ='DEATH_EVENT',
                    columns ='age', data = death_dataframe)
sns.heatmap(heatmap_df, cmap ='plasma')
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x1e7310b2d00> DEATH_EVENT 30

1 are people died due to cardiovascular disease Conclusion - The heart of people who died due to cardiovascular disease releases less percentage of blood at each contraction

In []: