Stat 244, Aut 2017: HW4

due: Tuesday 10.24.17

- 1. Let X and Y be random variables with variances σ_X^2 and σ_Y^2 , and correlation ρ . Calculate Cov(X+Y,X-Y).
- 2. Suppose that you roll a fair die repeatedly until the kth time that you obtain a 1. Let X be the number of times you rolled the die (i.e. on your Xth roll, you obtained your kth 1). Let Y be the number of 6's that you observed during this process. What is the conditional distribution of Y given X?
- 3. Suppose that X and Y are independent Geometric (p) random variables and $W = \min\{X, Y\}$. Calculate

$$P(X = x \mid W = x)$$

where x is some fixed positive integer. Hint: first decide whether this probability should be equal to 1/2, larger than 1/2, or smaller than 1/2.

- 4. Let A and B be independent Exponential(1) random variables, and let C be a random sign, i.e. P(C=+1)=P(C=-1)=0.5, drawn independently from A and B. Let $X=A\cdot C$ and let $Y=B\cdot C$.
 - (a) Calculate E(X), E(Y), Var(X), Var(Y), and Cov(X,Y). You may use the following facts: for an Exponential(λ) random variable, its expected value is $1/\lambda$ and its variance is $1/\lambda^2$.
 - (b) Calculate $P(X \le t \mid Y \le t)$, where t > 0 is a constant. Next, plot your answer as a function of t and/or calculate its value for a few different values of t, and describe what you observe.
- 5. Let X and Y be random variables supported on $[0,1] \times [0,1]$, with joint density

$$f(x,y) = C \cdot (x^2 + y^2)$$

on this region. Here C is a constant.

- (a) Calculate C.
- (b) Calculate the marginal density $f_X(x)$.
- (c) Calculate the conditional density $f_{Y|X}(y|x)$ for $(x,y) \in [0,1]^2$.
- (d) Are the variables X and Y positively correlated, negatively correlated, or uncorrelated? For this portion of the problem, it is not necessary to calculate $\operatorname{Corr}(X,Y) / \operatorname{Cov}(X,Y)$ or to do any exact calculations (although this would also be fine)—it is sufficient to examine your calculations for $f_{Y|X}(y|x)$ and explain what you see. It may help to plot $f_{Y|X}(y|x)$ for various values of x.
- 6. In this question we will use a basic example to learn about Bayesian statistics, which models parameters with prior distributions (sometimes to indicate uncertainty in our beliefs). Suppose that you have a coin which may not be fair. Its parameter P, which is the chance of landing Heads, could in theory lie anywhere in the range [0,1]. You flip this coin one time and let $X=\mathbb{1}_{\text{Heads}}$, and now would like to draw some conclusions about P. Let's choose a prior distribution for this parameter, and assume that P is drawn from a Uniform [0,1] distribution.
 - (a) Write down a hierarchical model for this scenario, which should be of the form

$$\begin{cases} (\text{some variable}) \sim (\text{some distribution}) \\ (\text{some other variable}) \mid (\text{the first variable}) \sim (\text{some distribution}) \end{cases}$$

- (b) Now calculate the following: for any $t \in [0,1]$, find $P(P \le t, X = 0)$ and $P(P \le t, X = 1)$. To do these calculations, you are working with a joint distribution where one variable is discrete and one is continuous; intuitive rules will apply for combining integrals and sums, etc. For example it's fine to write $P(X = 1 \mid P = p) = p$.
- (c) Finally calculate the conditional distribution of P, given that you observe X=1. To do this, start with the conditional CDF, i.e. $P(P \le t \mid X=k)$, then get the density.

 In Bayesian statistics, the conditional distribution of P given our observed value of X, is called the poste-

rior distribution for P—meaning its distribution after observing the data (which in this case is X, the data from tossing the coin).