PERANCANGAN DAN REALISASI SISTEM MONITORING DAN CONTROLLING PROTOTIPE ALAT SMART CLOTHES DRYER BERBASIS INTERNET OF THINGS (IOT)

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

DHIYA SALSHABILLA PUTRI ZUHERI 6705184080

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2021

Latar Belakang

Ketergantungan manusia pada panas matahari untuk mengeringkan pakaian belum dapat ditinggalkan, karena belum adanya alat dan teknologi yang mampu membantu manusia melepaskan ketergantungan terhadap panas matahari. Tempat jemuran adalah alat pekakas yang digunakan untuk mengeringkan pakaian basah dengan bantuan panas matahari.

Pemanasan global yang sekarang ini sedang terjadi menyebabkan musim di Indonesia menjadi kurang menentu, sehingga musim kemarau dan musim penghujan sudah tidak dapat diprediksikan lagi. Karena dampak dari masalah tersebut, sering terjadi perubahan cuaca secara tiba - tiba seperti datang hujan disaat musim kemarau. Kekhawatiran tersebut bertambah ketika rumah dalam keadaan kosong, sedangkan tempat jemuran yang digunakan untuk mengeringkan pakaian masih berada di luar rumah. Tidak memungkinkan untuk kembali memasukkan pakaian yang berada di luar rumah, menyebabkan pakaian yang di jemur tidak kering dengan maksimal, dan yang lebih buruknya lagi dapat menjadi lebih kotor hingga timbulnya bau.

Untuk mengatasi masalah tersebut perlu adanya alat dengan sistem kontrol otomatis yang memberikan kemudahan dalam mengeluarkan atau memasukkan tempat jemuran pakaian tanpa adanya tenaga manual dan pakaian tetap dapat kering dengan sendirinya walaupun dalam ruangan. Dengan membuat rancang bangun miniatur jemuran pakaian pintar berbasis internet of things yang dimaksudkan dapat mengatasi masalah yang sedang terjadi.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No.	Judul Penelitian/Karya Ilmiah	Tahun	Keterangan	Perbedaan dengan judul PA yang akan diangkat
1.	Jemuran Pintar dengan Sensor LDR, Sensor Hujan, Sensor Suhu dan Sensor Kecepatan Angin Berbasis Arduino [1].	2019	Dalam penelitian ini penulis membuat suatu prototype alat penjemur pakaian otomatis yang disesuaikan dengan kondisi cuasa yang sedang terjadi. Alat ini dibangun dengan menggunakan berbagai macam sensor sehingga memiliki parameter yang lebih kompleks.	Berbeda dengan penelitian [1] yang menggunakan NodeMCU dan memiliki fitur <i>monitoring</i> melalui <i>web</i> dan <i>controlling</i> secara manual dan fitur notifikasi pada web.
2.	Rancang Bangun <i>Prototype</i> Alat Penjemur Pakaian Otomatis Berbasis Arduino Uno [2].	2018	Dalam penelitian ini penulis membuat suatu prototype alat penjemur pakaian otomatis yang disesuaikan dengan kondisi cuaca yang sedang terjadi. Metode yang digunakan adalah rancang bangun, yang diawali dari pembuatan prototype jemuran otomatis, membuat sistem	Berbeda dengan penelitan [2] yang menggunakan NodeMCU dan memiliki fitur monitoring melalui web dan controlling secara manual dan fitur notifikasi pada web.

			kendali intensitas cahaya dan tetes air hujan.	
3.	Perancangan Prototipe Jemuran Pakaian Otomatis Berbasis Arduino Mega 2560 [3].	2017	Dalam penelitian ini penulis membuat suatu prototype alat penjemur pakaian otomatis yang disesuaikan dengan kondisi cuaca yang sedang terjadi yang berbasis Arduino Mega 2560.	Berbeda dengan penelitan [2] yang menggunakan NodeMCU dan memiliki fitur monitoring melalui web dan controlling secara manual dan fitur notifikasi pada web.
4.	Jemuran Otomatis Menggunakan Sensor Hujan dan Panel Surya Berbasis Internet of Things [4].	2020	Dalam penelitian ini penulis membuat suatu alat jemuran otomatis menggunakan konsep otomatisasi dan menggunakan beberapa komponen seperti sensor hujan, sensor suhu dan panel surya, dimana panel surya berfungsi sebagai penangkap daya dari alat jemuran otomatis.	Berbeda dengan penelitian [4] yang tidak menggunakan panel surya dan tidak menggunakan Arduino Atmega 2560 sebagai mikrokontroler nya. Penelitian ini menggunakan NodeMCU agar lebih praktis karena sudah terdapat ESP8266 yang merupakan module WiFi.
5.	Perancangan Aplikasi Monitoring dan Prediksi Cuaca Pada Jemuran Otomatis [5].	2020	Dalam penelitian ini penulis membuat suatu jemuran otomatis dan pembangunan aplikasi <i>monitoring</i> dan prediksi cuaca pada jemuran otomatis. Metode yang digunakan untuk memprediksi	Berbeda dengan penelitian [5] yang tidak menggunakan metode <i>fuzzy logic</i> . Pada penelitian ini menggunakan sensor hujan, sensor LDR dan sensor DHT22 sebagai pembaca untuk memprediksi cuaca yang kemudian di kirim ke fitur <i>monitoring</i> pada <i>web</i> .

			cuaca adalah <i>fuzzy logic</i> dan menggunakan bahasa <i>programming</i> python.	
6.	Perancangan Sistem Penggerak Jemuran Otomatis Berbasis Arduino Uno [6].	2019	Dalam penelitian ini penulis membuat suatu sistem penggerak jemuran otomatis berbasis Arduino Uno memakai sensor hujan FR-04 untuk mendeteksi air hujan, Motor DC sebagai penggerak keluar masuknya jemuran dan Arduino sebagai otak dari pembuat perintah dari alat tersebut.	Berbeda dengan penelitian [6] yang menggunakan NodeMCU sebagai otak dari pembuat perintah dari alat tersebut.
7.	Perancangan dan Pembuatan Sistem Otomasi Alat Penggerak Jemuran Berbasis <i>Line Follower</i> [7].	2019	Dalam penelitian ini penulis membuat suatu jemuran robot yang memiliki beberapa sistem penggerak dan pengendali sebagai pengatur kinerja, menggunakan jemuran sebagai bahan bantuan pada alat utama yang dibuat. Faktor pembuatan jemuran robot ini menggunakan sensor rain module dan sesor light sebagai alat bantuan.	Berbeda dengan penelitian [7] yang tidak menggunakan <i>Line Follower</i> sebagai penggerak. Pada penelitian ini menggunakan penggerak motor DC atau kipas yang bekerja secara otomatis apabila jemuran masuk karena kondisi cuaca yang tidak memadai.

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan aplikasi sistem penjemur pakaian otomatis yang berbasis web dengan menggunakan Node Mcu sebagai mikrokontrolernya dan pengirim data ke website yang terdiri dari sub bab model sistem, diagram alir perancangan sistem, proses pengukuran keadaan cuaca, analisa kebutuhan sistem, realisasi sistem dan skenario pengujian. Adapun model sistem monitoring dan controlling yang telah dibuat dapat dilihat pada Gambar 1 dibawah ini.

Gambar 1. Model Sistem Perancangan Aplikasi Pemantauan Jemuran Pakaian

Pada prototipe alat *smart clothes dryer* ini akan dikembangkan dengan ditambahkannya *driver motor* digunakan sebagai penggerak motor DC atau kipas yang bekerja secara otomatis apabila jemuran masuk karena kondisi cuaca yang tidak memadai, sehingga pakaian tetap dapat kering walau dalam ruangan dengan kondisi cuaca yang hujan maupun pada saat cahaya kurang (malam hari). sehingga pakaian tetap dapat kering walau dalam ruangan dengan kondisi cuaca yang hujan maupun pada saat cahaya kurang (malam hari). Dalam alat ini juga terdapat sistem *controlling* dari driver motor yang dapat dinyalakan atau dimatikan sesuai kebutuhan.

Referensi

- [1] S. B. E. D. I. G. I. O. K. Togap M Banjarnahor, "Jemuran Pintar dengan Sensor LDR, Sensor Hujan, Sensor Suhu, dan Sensor Kecepatan Angin Berbasis Arduino," *Build. Informatics, Technol. Sci.*, vol. Vol. I, No, pp. 75–81, 2019.
- [2] A. D. Darusman, "Rancang Bangun Prototype Alat Penjemur Pakaian Otomatis Berbasis Arduino Uno," *Simetris*, pp. 513–518, 2018.
- [3] F. M. Arjitya, "Perancangan Prototipe Jemuran Pakaian Otomatis Berbasis Arduino Mega 2560," Universitas Muhammadiyah Surakarta, 2017.
- [4] Y. S. Dhewy, "Jemuran Otomatis Menggunakan Sensor Hujan dan Panel Surya Berbasis Internet of Things," University Telkom Bandung, 2020.
- [5] N. H. Zulni, "Perancangan Aplikasi Monitoring dan Prediksi Cuaca pada Jemuran Otomatis," University Telkom Bandung, 2020.
- [6] E. R. Ambarita, "Perancangan Sistem Penggerak Jemuran Otomatis Berbasis Arduino Uno," University Telkom Bandung, 2019.
- [7] H. G. Tambunan, "Perancangan dan Pembuatan Sistem Otomasi Alat Penggerak Jemuran Berbasis Line Follower," University Telkom Bandung, 2019.

Form Kesediaan Membimbing Proyek Akhir

PROYEK AKHIR SEMESTER GANJIL|GENAP* TA 2020/2021

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom UniversityJl. Telekomunikasi No.1, Terusan Buah Batu
Bandung 40257
Indonesia

Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk Hahasiswa)

Dosen Wali : DUM / DADAN NUR RAMADAN Program Studi : D3 Teknologi Telekomunikasi

Nama : DHIYA SALSHABILLA PUTRI ZUHERI

2018/2019 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	АВ	
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С	
DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ	
DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С	
DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ	
DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	С	
DUH1A2	LITERASI TIK	ICT LITERACY	2	AB	
HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	АВ	
	Jumlah SKS				
	IPS		2.83		

2018/2019 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	AB	
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	Е	
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	В	
DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	С	

Jumlah SKS	21	
IPS	2.38	

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	В	
DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	В	
LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	AB	
	21				
	IPS				

2018/2019 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2019/2020 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А	
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ	
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	АВ	
DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	С	
DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	С	
DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	Е	
	Jumlah SKS				
	IPS		2.53		

2019/2020 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А	
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А	

Jumlah SKS	21	
IPS	3.17	

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	ВС	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	АВ	
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	В	
DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	ВС	
DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	В	
Jumlah SKS			21		
	3.17				

2019/2020 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2020/2021 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	В	
UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	AB	
UWI3E1	HEI	HEI	1	AB	
VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	С	
VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	А	
VTI3B3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	В	
VTI3C3	TEKNIK ANTENNA & PROPAGASI	ANTENNA AND PROPAGATION TECHNIQUES	3	В	
VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	АВ	
VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	АВ	
	21				
	3.24				

2020/2021 - GENAP

Kode Mata Kuliah	Mata Kullah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
VPI3GC	MAGANG	APPRENTICE	12		
VTI3F4	PROYEK AKHIR	FINAL PROJECT	4		
Jumlah SKS			16		
IPS			0		

2020/2021 - ANTARA

	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	Jumlah SKS			0		
Γ	IPS			0		

2021/2022 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

 Tingkat I
 : 41 SKS
 Lulus tanggal 24-06-2020
 IPK : 2.78

 Tingkat II
 : 85 SKS
 Belum Lulus
 IPK : 2.86

 Tingkat III
 : 99 SKS
 Belum Lulus
 IPK : 2.92

 Jumlah SKS
 : 96 SKS
 IPK : 2.92

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 02 Juni 2021 12:28:36 oleh DHIYA SALSHABILLA PUTRI ZUHERI