Using asremlPlus, in conjunction with asreml, to do a linear mixed model analysis of a wheat experiment using hypothesis tests

Chris Brien

02 August, 2023

This vignette shows how to use asremlPlus (Brien, 2023), in conjunction with asreml (Butler et al., 2020), to employ hypothesis tests to select the terms to be included in a mixed model for an experiment that involves spatial variation. It also illustrates diagnostic checking and prediction production and presentation for this experiment. Here, asremlPlus and asreml are packages for the R Statistical Computing environment (R Core Team, 2023).

It is divided into the following main sections:

- 1. Set up the maximal model for this experiment
- 2. Perform a series of hypothesis tests to select a linear mixed model for the data
- 3. Diagnostic checking using residual plots and variofaces
- 4. Prediction production and presentation

1. Set up the maximal model for this experiment

```
library(knitr)
opts_chunk$set("tidy" = FALSE, comment = NA)
suppressMessages(library(asreml, quietly=TRUE))

## Offline License checked out Wed Aug 2 12:00:46 2023

packageVersion("asreml")

## [1] '4.2.0.267'
suppressMessages(library(asremlPlus))
packageVersion("asremlPlus")

## [1] '4.4.12'
suppressMessages(library(qqplotr, quietly=TRUE))
options(width = 100)
```

Get data available in asremlPlus

The data are from a 1976 spring wheat experiment and are taken from Gilmour et al. (1995). An analysis is presented in the asreml manual by Butler et al. (2020, Section 7.6), although they suggest that it is a barley experiment.

```
data(Wheat.dat)
```

Fit the maximal model

In the following a model is fitted that has the terms that would be included for a balanced lattice. In addition, a term WithinColPairs has been included to allow for extraneous variation arising between pairs of adjacent lanes. Also, separable ar1 residual autocorrelation has been included. This model represents the maximal anticipated model,

Warning in asreml(yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Some components changed by more than 1% on the last iteration

The warning from asreml is probably due to a bound term.

Initialize a testing sequence by loading the current fit into an asrtests object

A label and the information criteria based on the full likelihood (Verbyla, 2019) are included in the test.summary stored in the asrtests object.

Warning in infoCriteria.asreml(asreml.obj, IClikelihood = ic.lik, bound.exclusions = bound.exclusions):
Rep

Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Log-likelihood not converged

Check for and remove any boundary terms

```
current.asrt <- rmboundary(current.asrt, IClikelihood = "full")</pre>
```

Rep

Warning in infoCriteria.asreml(asreml.obj, IClikelihood = ic.lik): The following bound terms were disco

Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Log-likelihood not converged

```
summary(current.asrt$asreml.obj)$varcomp
```

```
z.ratio bound %ch
                         component
                                      std.error
                      4.293282e+03 3.199458e+03 1.3418779
                                                               P 0.0
Rep:Row
Rep:Column
                      1.575689e+02 1.480357e+03 0.1064398
                                                               P 0.7
units
                      5.742689e+03 1.652457e+03 3.4752438
                                                               P 0.0
Row:Column!R
                      4.706787e+04 2.515832e+04 1.8708669
                                                               P 0.0
Row:Column!Row!cor
                      7.920301e-01 1.014691e-01 7.8056280
                                                               U 0.0
Row: Column! Column! cor 8.799559e-01 7.370402e-02 11.9390486
                                                               U 0.0
print(current.asrt, which = "testsummary")
```

```
#### Sequence of model investigations
```

(If a row has NA for p but not denDF, DF and denDF relate to fixed and variance parameter numbers)

```
terms DF denDF p AIC BIC action
1 Maximal model 26 6 NA 1646.129 1742.469 Starting model
2 Rep 1 NA NA 1646.129 1742.469 Boundary
```

Rep has been removed because it has been constrained to zero. Following the recommendation of Littel et al. (2006, p. 150), the bound on all variance components is set to unconstrained (U) using setvariances.asreml so as to avoid bias in the estimate of the residual variance. Alternatively, one could move Rep to the fixed model.

Unbind Rep, Row and Column components and reload into an asrtests object

```
current.asr <- setvarianceterms(current.asr$call,</pre>
                                terms = c("Rep", "Rep:Row", "Rep:Column"),
                                bounds = "U")
Warning in asreml(fixed = yield ~ WithinColPairs + Variety, random = ~Rep/(Row + : Some components
changed by more than 1% on the last iteration
current.asrt <- as.asrtests(current.asr, wald.tab = NULL, test.summary = current.asrt$test.summary,</pre>
                            IClikelihood = "full", label = "Max model & Unbound components")
current.asrt <- rmboundary(current.asrt)</pre>
summary(current.asrt$asreml.obj)$varcomp
                                                     z.ratio bound %ch
                          component
                                       std.error
                      -2458.3485841 1.197491e+03 -2.0529167
Rep
                                                                 U 0.0
Rep:Row
                       5008.7151486 3.401335e+03 1.4725732
                                                                 U 0.0
                        916.4641198 1.699576e+03 0.5392309
Rep:Column
                                                                 U 0.2
units
                       5959.0220817 1.609649e+03 3.7020634
                                                                 P 0.0
                      46637.6303429 2.724392e+04 1.7118545
Row:Column!R
                                                                 P 0.0
Row:Column!Row!cor
                          0.8150590 1.000281e-01 8.1483012
                                                                 U 0.0
Row:Column!Column!cor
                          0.8856824 7.492514e-02 11.8208968
                                                                 U 0.0
print(current.asrt, which = "testsummary")
     Sequence of model investigations
(If a row has NA for p but not denDF, DF and denDF relate to fixed and variance parameter numbers)
                           terms DF denDF p
                                                            BIC
                                                                        action
                                                   AIC
1
                   Maximal model 26
                                        6 NA 1646.129 1742.469 Starting model
                             Rep 1
                                       NA NA 1646.129 1742.469
3 Max model & Unbound components 26
                                        7 NA 1647.193 1746.544 Starting model
print(current.asrt, which = "pseudoanova")
#### Pseudo-anova table for fixed terms
Wald tests for fixed effects.
Response: yield
               Df denDF
                          F.inc
                                    Pr
(Intercept)
                    1.7 153.500 0.0115
               1
```

```
WithinColPairs 1 15.6 2.545 0.1307
Variety 24 76.1 10.110 0.0000
```

Now the Rep component estimate is negative.

The test.summary output has been extended, by supplying the previous test.summary to as.asrtests, to show that there is a new starting model. The pseudo-anova table shows that Varieties are highly significant (p < 0.001)

2. Perform a series of hypothesis tests to select a linear mixed model for the data

The hypothesis tests in this section are Wald tests for fixed terms, with denominator degrees of freedom calculated using the Kenward-Rogers adjustment (Kenward and Rogers (1997), and Restricted Maximum Likelihood Ratio Tests (REMLRT) for random terms.

Check the term for within Column pairs (a post hoc factor)

The information criteria based on the full likelihood (Verbyla, 2019) is also included in the test.summary stored in the asrtests object.

Warning in asreml(fixed = yield \sim Variety, random = \sim Rep/(Row + Column) + : Some components changed by more than 1% on the last iteration

```
print(current.asrt)
```

Summary of the fitted variance parameters

```
z.ratio bound %ch
                          component
                                       std.error
Rep
                      -2385.8697551 1.211207e+03 -1.9698276
                                                                U 0.0
Rep:Row
                       5027.7123253 3.415391e+03 1.4720753
                                                                U 0.0
Rep:Column
                        753.5913536 1.609865e+03 0.4681086
                                                                U 0.6
                                                                P 0.0
units
                       5920.3547038 1.611274e+03 3.6743304
Row:Column!R
                      45870.0971595 2.623601e+04 1.7483638
                                                                P 0.0
Row:Column!Row!cor
                          0.8098786 1.001805e-01 8.0841906
                                                                U 0.0
Row:Column!Column!cor
                          0.8845768 7.510598e-02 11.7777144
                                                                U 0.0
```

Pseudo-anova table for fixed terms

Wald tests for fixed effects. Response: yield

```
Df denDF F.inc Pr (Intercept) 1 1.7 159.20 0.0111 Variety 24 76.8 10.27 0.0000
```

Sequence of model investigations

(If a row has NA for p but not denDF, DF and denDF relate to fixed and variance parameter numbers)

```
terms DF denDF
                                                      AIC
                                                                BIC
                                                                            action
                   Maximal model 26
                                      6.0
                                              NA 1646.129 1742.469 Starting model
2
                                       NA
                                              NA 1646.129 1742.469
                             Rep 1
3 Max model & Unbound components 26
                                      7.0
                                              NA 1647.193 1746.544 Starting model
                  WithinColPairs 1 15.6 0.1307 1645.318 1741.658
                                                                           Dropped
```

It is clear in the call to testranfix that the model is being changed by dropping the withinColPairs term, which could also be achieved using update.asreml. However, an asremlPlus model-changing function operates on an asrtests object, that includes an asreml object, and, except for changeTerms.asrtests, results in an asrtests object that may contain the changed model or the supplied model depending on the results of hypothesis tests or comparisons of information criteria. In addition, the result of the test or comparison will be added to a test.summary data.frame stored in the new asrtests object and, if the model was changed, the wald.tab in the new asrtests object will have been updated for the new model.

In this case, as can be seen from the summary of current.asrt after the call, the *p*-value for the withinColPairs was greater than 0.05 and so now the model stored in current.asrt does not include withinColPairs. The wald.tab has been updated for the new model.

Test the nugget term

The nugget term represents non-spatial variance, such as measurement error. It is fitted using the asreml reserved word units.

```
current.asrt <- testranfix(current.asrt, "units", positive=TRUE, IClikelihood = "full")</pre>
```

Warning in asreml(fixed = yield ~ Variety, random = ~Rep + Rep:Row + Rep:Column, : Some components changed by more than 1% on the last iteration

Test Row autocorrelation

We begin testing the autocorrelation by dropping the Row autocorrelation. Because of messages about the instability of the fit, iterate.asrtests is used to execute extra iterations of the fitting process.

Warning in asreml(fixed = yield ~ Variety, random = ~Rep/(Row + Column) + : Log-likelihood not converged

Warning in asreml(fixed = yield \sim Variety, random = \sim Rep/(Row + Column) + : Some components changed by more than 1% on the last iteration

Warning in asreml(fixed = yield \sim Variety, random = \sim Rep/(Row + Column) + : Some components changed by more than 1% on the last iteration

```
current.asrt <- iterate(current.asrt)</pre>
```

Test Column autocorrelation (depends on whether Row autocorrelation retained)

The function getTestPvalue is used to get the p-value for the Row autocorrelation test. If it is significant then the Column autocorrelation is tested by dropping the Column autocorrelation, while retaining the Row autocorrelation. Otherwise the model with just Row autocorrelation, whose fit is returned via current.asrt after the test, is compared to one with no autocorrelation.

```
(p <- getTestPvalue(current.asrt, label = "Row autocorrelation"))</pre>
[1] 4.676031e-06
{ if (p \le 0.05)
  current.asrt <- testresidual(current.asrt, "~ ar1(Row):Column",</pre>
                               label="Col autocorrelation",
                               simpler=TRUE, IClikelihood = "full")
  else
    current.asrt <- testresidual(current.asrt, "~ Row:Column",</pre>
                                 label="Col autocorrelation",
                                 simpler=TRUE, IClikelihood = "full")
}
Warning in DFdiff(bound.h1, bound.h0, DF = DF, bound.exclusions = bound.exclusions): There were a total
  The following bound terms occur in only one of the models compared and so were discounted:
  Row:Column!Row!cor
Output the results
print(current.asrt, which = "test")
     Sequence of model investigations
(If a row has NA for p but not denDF, DF and denDF relate to fixed and variance parameter numbers)
                           terms DF denDF
                                                                BIC
                                                       AIC
                                                                            action
                                               р
1
                   Maximal model 26
                                      6.0
                                              NA 1646.129 1742.469 Starting model
2
                                       NA
                                              NA 1646.129 1742.469
                                                                          Boundary
                             Rep 1
3 Max model & Unbound components 26
                                     7.0
                                              NA 1647.193 1746.544 Starting model
                  WithinColPairs 1 15.6 0.1307 1645.318 1741.658
                                                                           Dropped
5
                           units 1
                                       NA 0.0006 1645.318 1741.658
                                                                          Retained
6
             Row autocorrelation 1
                                       NA 0.0000 1645.318 1741.658
                                                                         Unswapped
             Col autocorrelation 2
                                       NA 0.0000 1645.316 1741.656
                                                                         Unswapped
printFormulae(current.asrt$asreml.obj)
#### Formulae from asreml object
fixed: yield ~ Variety
random: ~ Rep/(Row + Column) + units
residual: ~ ar1(Row):ar1(Column)
summary(current.asrt$asreml.obj)$varcomp
                          component
                                       std.error
                                                    z.ratio bound %ch
                      -2384.2946310 1.212190e+03 -1.9669310
                                                                 U 0.0
Rep
Rep:Row
                       5026.4469057 3.417065e+03 1.4709837
                                                                 U 0.0
Rep:Column
                        752.7496589 1.607683e+03 0.4682202
                                                                 U 0.1
units
                       5918.7214777 1.611779e+03 3.6721658
                                                                 P 0.0
Row:Column!R
                      45854.0579175 2.620961e+04 1.7495130
                                                                 P 0.0
```

U 0.0

0.8098355 1.002242e-01 8.0802373

Row:Column!Row!cor

0.8845749 7.513508e-02 11.7731282

The test.summary shows is that the model with Row and without Column autocorrelation failed to converge. The asreml.obj in current.asrt contains the model selected by the selection process, which has been printed using printFormulae.asrtests. It is clear that no changes were made to the variance terms.

3. Diagnosing checking using residual plots and variofaces

Get current fitted asreml object and update to include standardized residuals

```
current.asr <- current.asrt$asreml.obj
current.asr <- update(current.asr, aom=TRUE)
Wheat.dat$res <- residuals(current.asr, type = "stdCond")
Wheat.dat$fit <- fitted(current.asr)</pre>
```

Do diagnostic checking

Do residuals-versus-fitted values plot

```
with(Wheat.dat, plot(fit, res))
```


Plot variofaces

Variogram face of Standardized conditional residuals for Row

Variogram face of Standardized conditional residuals for Column

The variofaces are the lag 1 plots of the sample semivariogram with simulated confidence envelopes (Stefanova et al., 2009).

Plot normal quantile plot

The plot is obtained using the ggplot function with extensions available from the qqplotr package (Almeida, A., Loy, A. and Hofmann, H., 2023).

Normal probability plot

4. Prediction production and presentation

Get Variety predictions and all pairwise prediction differences and p-values

Notes:

- The predictions are obtained by averaging across the hypertable calculated from model terms constructed solely from factors in the averaging and classify sets.
- Use 'average' to move ignored factors into the averaging set.
- The ignored set: Rep,Row,Column,units
- Variety is included in this prediction
- (Intercept) is included in this prediction
- units is ignored in this prediction

1 10 1168.989 120.4766 1228.315 2 1 1242.750 119.8102 1302.076 3 9 1257.137 119.9706 1316.463 4 16 1285.718 119.9398 1345.045 5 14 1293.526 119.9225 1352.853 6 23 1313.653 120.2927 1372.979 7 11 1322.159 120.1962 1381.485 8 7 1374.447 120.2405 1433.773 9 3 1394.070 120.4030 1453.396 10 4 1410.980 120.1053 1470.306 11 12 1444.557 120.6033 1503.883 12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620		Variety	predicted.value	standard.error	upper.halfLeastSignificant.limit
3 9 1257.137 119.9706 1316.463 4 16 1285.718 119.9398 1345.045 5 14 1293.526 119.9225 1352.853 6 23 1313.653 120.2927 1372.979 7 11 1322.159 120.1962 1381.485 8 7 1374.447 120.2405 1433.773 9 3 1394.070 120.4030 1453.396 10 4 1410.980 120.1053 1470.306 11 12 1444.557 120.6033 1503.883 12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1579.792 19 24 1533.769 120.2993 1593.095 <	1	10	1168.989	120.4766	1228.315
4 16 1285.718 119.9398 1345.045 5 14 1293.526 119.9225 1352.853 6 23 1313.653 120.2927 1372.979 7 11 1322.159 120.1962 1381.485 8 7 1374.447 120.2405 1433.773 9 3 1394.070 120.4030 1453.396 10 4 1410.980 120.1053 1470.306 11 12 1444.557 120.6033 1503.883 12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095	2	1	1242.750	119.8102	1302.076
5 14 1293.526 119.9225 1352.853 6 23 1313.653 120.2927 1372.979 7 11 1322.159 120.1962 1381.485 8 7 1374.447 120.2405 1433.773 9 3 1394.070 120.4030 1453.396 10 4 1410.980 120.1053 1470.306 11 12 1444.557 120.6033 1503.883 12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474	3	9	1257.137	119.9706	1316.463
6 23 1313.653 120.2927 1372.979 7 11 1322.159 120.1962 1381.485 8 7 1374.447 120.2405 1433.773 9 3 1394.070 120.4030 1453.396 10 4 1410.980 120.1053 1470.306 11 12 1444.557 120.6033 1503.883 12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121	4	16	1285.718	119.9398	1345.045
7 11 1322.159 120.1962 1381.485 8 7 1374.447 120.2405 1433.773 9 3 1394.070 120.4030 1453.396 10 4 1410.980 120.1053 1470.306 11 12 1444.557 120.6033 1503.883 12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808	5	14	1293.526	119.9225	1352.853
8 7 1374.447 120.2405 1433.773 9 3 1394.070 120.4030 1453.396 10 4 1410.980 120.1053 1470.306 11 12 1444.557 120.6033 1503.883 12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1697.088	6	23	1313.653	120.2927	1372.979
9 3 1394.070 120.4030 1453.396 10 4 1410.980 120.1053 1470.306 11 12 1444.557 120.6033 1503.883 12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297 <td>7</td> <td>11</td> <td>1322.159</td> <td>120.1962</td> <td>1381.485</td>	7	11	1322.159	120.1962	1381.485
10 4 1410.980 120.1053 1470.306 11 12 1444.557 120.6033 1503.883 12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	8	7	1374.447	120.2405	1433.773
11 12 1444.557 120.6033 1503.883 12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	9	3	1394.070	120.4030	1453.396
12 8 1453.397 120.5938 1512.723 13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	10	4	1410.980	120.1053	1470.306
13 15 1458.383 120.4344 1517.709 14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	11	12	1444.557	120.6033	1503.883
14 5 1473.782 120.4453 1533.108 15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	12	8	1453.397	120.5938	1512.723
15 17 1487.828 120.2894 1547.154 16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	13	15	1458.383	120.4344	1517.709
16 6 1498.294 120.1187 1557.620 17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	14	5	1473.782	120.4453	1533.108
17 21 1517.121 120.2260 1576.447 18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	15	17	1487.828	120.2894	1547.154
18 2 1520.466 119.6320 1579.792 19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	16	6	1498.294	120.1187	1557.620
19 24 1533.769 120.2993 1593.095 20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	17	21	1517.121	120.2260	1576.447
20 18 1541.147 120.3662 1600.474 21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	18	2	1520.466	119.6320	1579.792
21 25 1575.795 120.5140 1635.121 22 22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	19	24	1533.769	120.2993	1593.095
22 1610.482 120.3279 1669.808 23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	20	18	1541.147	120.3662	1600.474
23 13 1610.762 120.4573 1670.088 24 20 1627.971 120.2326 1687.297	21	25	1575.795	120.5140	1635.121
24 20 1627.971 120.2326 1687.297	22	22	1610.482	120.3279	1669.808
	23	13	1610.762	120.4573	1670.088
25 19 1652.992 120.3433 1712.318	24	20	1627.971	120.2326	1687.297
	25	19	1652.992	120.3433	1712.318

lower.halfLeastSignificant.limit est.status

1	1109.663	Estimable
2	1183.423	Estimable
3	1197.811	Estimable
4	1226.392	Estimable
5	1234.200	Estimable
6	1254.327	Estimable
7	1262.833	Estimable
8	1315.120	Estimable
9	1334.744	Estimable
10	1351.653	Estimable
11	1385.231	Estimable
12	1394.070	Estimable
13	1399.057	Estimable

```
14
                           1414.456 Estimable
15
                           1428.501 Estimable
                           1438.968 Estimable
16
17
                           1457.795 Estimable
18
                           1461.140
                                    Estimable
19
                           1474.443 Estimable
20
                           1481.821 Estimable
21
                           1516.468 Estimable
22
                           1551.156 Estimable
23
                           1551.436 Estimable
24
                           1568.645 Estimable
25
                           1593.666 Estimable
```

LSD values

```
minimum LSD = 114.0128

mean LSD = 118.6523

maximum LSD = 123.3578

(sed range / mean sed = 0.0788)
```

We have set error.intervals to halfLeast so that the limits for so that the limits for each prediction \pm (0.5 LSD) are calculated. When these are plotted overlapping error bars indicate predictions that are not significant, while those that do not overlap are significantly different (Snee, 1981).

Also set was sortFactor, so that the results would be ordered for the values of the predictions for Variety.

The function predictPlus returns an alldiffs object, a list consisting of the following components:

- predictions: the predictions, their standard errors and error intervals;
- vcov: the variance matrix of the predictions;
- differences: all pairwise differences between the predictions,
- p.differences: p-values for all pairwise differences between the predictions;
- sed: the standard errors of all pairwise differences between the predictions;
- LSD: the mean, minimum and maximum LSDs.

Plot the Variety predictions, with halfLSD intervals, and the p-values

plotPvalues(Var.diffs)

References

Almeida, A., Loy, A. and Hofmann, H. (2023) qqplotr: Quantile-Quantile plot extensions for 'ggplot2', Version 0.0.6. https://cran.r-project.org/package=qqplotr/ or https://github.com/aloy/qqplotr/.

Brien, C. J. (2023) asremlPlus: Augments ASReml-R in fitting mixed models and packages generally in exploring prediction differences. Version 4.4.12. https://cran.r-project.org/package=asremlPlus/ or http://chris.brien.name/rpackages/.

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J. and Thompson, R. (2023). ASReml-R Reference Manual Version 4.2. VSN International Ltd, https://asreml.kb.vsni.co.uk/.

Gilmour, A. R., Thompson, R., & Cullis, B. R. (1995). Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models. *Biometrics*, **51**, 1440–1450.

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. *Biometrics*, **53**, 983-997.

Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for Mixed Models (2nd ed.). Cary, N.C.: SAS Press.

R Core Team (2023) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/.

Snee, R. D. (1981). Graphical Display and Assessment of Means. *Biometrics*, 37, 835–836.

Stefanova, K. T., Smith, A. B. & Cullis, B. R. (2009) Enhanced diagnostics for the spatial analysis of field trials. *Journal of Agricultural, Biological, and Environmental Statistics*, **14**, 392–410.

Verbyla, A. P. (2019). A note on model selection using information criteria for general linear models estimated using REML. Australian & New Zealand Journal of Statistics, $\bf 61$, 39-50.https://doi.org/10.1111/anzs.12254/.