Закон за запазване на импулса. Централен удар на сфери

Васил Николов (21.11.2021)

І. ЦЕЛ НА УПРАЖНЕНИЕТО

Да се измери коефициентът на възстановяване на система от две метални топчета, окачени на дълги неразтегливи нишки и да се провери законът за запазване на импулса.

ІІ. ЕКСПЕРИМЕНТАЛНА УСТАНОВКА

Две метални сфери с маси $m_1=180.5$ g и $m_2=103.7$ g са окачени на нишки така, че когато отклоним голямата сфера на определен ъгъл ($\varphi_0=13^\circ$) и след това я пуснем, ударът между двете сфери да е централен. След удара трябва да измерим ъглите на максимално отклонение на всяка от сферите. Тъй като малка сфера отново се удря в голямата, за да измерим всички нужни ъгли ще трябва да пуснем голямата сфера два пъти. Първият път гледаме на какъв φ_2 се отклонява малката сфера. Втория път хващаме малката сфера преди да се удари повторно в голяма и гледаме на какъв ъгъл φ_1 се отклонява голямата сфера.

ІІІ. ТЕОРЕТИЧНА ОБОСНОВКА

Коефициентът на възстановяване за тази система се дефинира като: (1)

$$K = \frac{|u_2 - u_1|}{|v_2 - v_1|},$$

където v_1 и v_2 са началните скорости на сферите, а u_1 и u_2 са крайните им скорости[1]. В конкретния случай малката сфера е неподвижна, така че $v_2 = 0$.

При измерване на максималният ъгъл на отклонение на топчетата след удара, съответно φ_1 и φ_2 , от закона за запазване на енергията (ЗЗЕ) следва, че

$$u_1 = 2\sqrt{lg}\sin\frac{\varphi_1}{2}$$

$$u_2 = 2\sqrt{lg}\sin\frac{\varphi_2}{2}$$

$$K = \frac{\sin\frac{\varphi_2}{2} + \sin\frac{\varphi_1}{2}}{\sin\frac{\varphi_0}{2}}$$
(1)

За доказване на закона за запазване на импулса трябва да проверим дали

$$m_1 \sin \frac{\varphi_0}{2} = m_1 \sin \frac{\varphi_1}{2} + m_2 \sin \frac{\varphi_2}{2} \tag{2}$$

За да проверим това трябва да сметнем стойностите на лявата и дясната страна на равенството, както и експерименталната грешка, която се смята по формулата

$$\Delta\left(m\sin\frac{\varphi}{2}\right) = \sin\left(\frac{\varphi}{2}\right)\Delta m + \frac{1}{2}m\cos\left(\frac{\varphi}{2}\right)\Delta\varphi$$

IV. ЕКСПЕРИМЕНТАЛНИ ДАННИ И РЕЗУЛТАТИ

Измерването се повтаря 20 пъти, като първите 10 се измерва единият ъгъл на отклонение, а останалите – другият ъгъл. Измерените стойности са представени в таблица I.

Таблица I. Измерени стойности за ъглите на отклонение след удара на двете сфери. φ_1 и φ_2 са ъглите на отклонение съответно на голяма и малката сфера.

№	φ_1 , deg	φ_2 , deg
1	4.50	12.75
2	4.75	13.00
3	4.50	12.25
4	4.25	12.75
5	4.25	13.25
6	4.25	13.00
7	4.25	13.50
8	4.25	13.25
9	4.25	13.50
10	4.00	13.75

От таблицата смятаме средните стойности на ъглите на отклонение:

$$\varphi_1 = \bar{\varphi}_1 \pm \Delta \varphi = (4.20 \pm 0.25)^{\circ},
\varphi_2 = \bar{\varphi}_2 \pm \Delta \varphi = (13.1 \pm 0.25)^{\circ}.$$

Заместваме в израза за коеф. на възстановяване (1) и получаваме:

$$K = 0.67 \pm 8\%$$

За проверка на закона за запазване на импулса трябва да се пресметне лявата и дясната част на равенство (2), съответно LHS и RHS.

LHS =
$$(20.4 \pm 0.8)$$
 g
RHS = (18.6 ± 1.3) g

В рамките на грешката двете стойности съвпадат, както се и очаква от закона за запазване на импулса.

V. РЕЗУЛТАТИ

Измерен е коефициентът на възстановяване на системата $K=0.67\pm8\%,\;$ и експерименталните данни са в съгласие с закона за запазване на импулса.

^[1] Под начална и крайна скорост се има в предвид скоростта непосредствено преди и след удара.