

Vivekanand Education Society's Institute of Technology

An Autonomous Institute Affiliated to University of Mumbai

End Semester Examination Summer 2024

Max marks: 60

Duration: 2 hours

Branch: Automation & Robotics

Semester: IV

Name of the Course: Engineering Mathematics IV

Course code: ARC401

QP Code: R23-ARC401_022023-24

- N.B. (1) Attempt any three of the five questions.
 - (2) Figures to the right indicate full marks.
 - (3) Assume suitable data if necessary.

Marks

5

5

10

5

Calculate the rank correlation coefficient for the following data. Q.1(a)

49 10 20 43 37 43 49 60 55 X: 32 25 45 20 30 50 60 72 70 Y: 40

A factory production line is manufacturing bolts using three machines, A, B and C. Of the total output, machine A is responsible for 25%, machine B for 35% and machine C for the rest. It is known from previous experience with the machines that 5% of the output from machine A is defective, 4% from machine B and 2% from machine C. A bolt is chosen at random from the production line and found to be defective. What is the probability that it came from

(c) machine C? (a) machine A (b) machine B

(i) Solve the LPP using simplex method.

Maximize $z = 2x_1 + x_2$ Subject to $-x_1 + 2x_2 \le 2$ $x_1 + x_2 \le 4$ $x_1 \leq 3$ $x_1, x_2 \ge 0$

(ii) Two unbiased dice are thrown. Find the probability that: (i) both the dice show same number and (ii) the total of the numbers on the dice is 8.

- The heights of 10 males of a given locality are found to be 70, 67, 62, 68, 61, 68, 70, 64, 5 64, and 66 inches. Is it reasonable to believe that the average height is greater than 64 Q.2(a) inches test at 5% significance level assuming that for 9 degrees of freedom?
 - Find an optimal solution to the following L.P.P. by computing all basic solutions and then finding one that maximizes the objective function. $z = x_1 + 3x_2 + 3x_3$ Maximize Subject to $x_1 + 2x_2 + 3x_3 = 4$ $2x_1 + 3x_2 + 5x_3 = 7$

QP Code: R23-ARC401_022023-24

Vivekanand Education Society's Institute of Technology

An Autonomous Institute Affiliated to University of Mumbai

10

5

10

5

Solve the NLLP using the Kuhn-Tucker condition,

 $Maximize \quad z = x_1^2 + x_2^2$ Subject to $x_1 + x_2 \le 4$ $2x_1 + x_2 - 5 \le 0$

 $x_1, x_2 \geq 0$

The incomes of a group of 10,000 people were found to be normally distributed 0.3with a mean of Rs520 and a standard deviation of Rs60. Find i) the number of people having income between Rs400 and Rs550 and ii) the lowest income of the richest 500.

A sample of 400 individuals is found to have a mean height of 67.47 inches. Can it be reasonably regarded as a sample from a large population with a mean height of 67.39 inches and a standard deviation of 1.30 inches at a 5% Level of significance?

(i) Samples of two types of electric light bulbs were tested for a length of life and the following data were obtained:

onidosm bus were not Type1.

Type 2

Size: $n_1=8$.

 $n_2 = 7$

Mean: $\overline{X}_1 = 1$, 234 hrs.

 $\overline{X_2}$ = 1,036 hrs.

S. D. : $s_1 = 36 \text{ hrs.}$ $s_2 = 40 \text{ hrs.}$

Is the difference in the mean sufficient to warrant that type 1 is superior to type 2 regarding length of life?

(ii) If the two regression equations are 5x - 6y + 90 = 0, 15x - 8y - 180 = 0, Find (i) the mean of x and y

(ii) Correlation coefficient

- (iii) Standard deviation of x if Var(Y) = 1
- Solve the NLLP, Q.4

Optimise $z = 6x_1 + 8x_2 - x_1^2 - x_2^2$

Subject to $4x_1 + 3x_2 = 16$

 $3x_1 + 5x_2 = 15$

 $x_1, x_2 \ge 0$

(b) Fit a second-degree parabola to the given data.

1.5 2 2.5 X: 1

3

2 Y: 1.1 1.3 1.6

3.4

OP Code: R23-ARC401 022023-24

Vivekanand Education Society's Institute of Technology

An Autonomous Institute Affiliated to University of Mumbai

5

5

(i) Find the value of k and P ((X<5) / (3 \leq X \leq 6)) if the r.v. X has the distribution 10 : 1 $3k^2$ 4k k^2 p(X=x): k2k

(ii) If $f(x) = 3e^{-3x}$, $x \ge 0$, find the moment generating function, the first three moments about the origin, and the first three central moments.

A die was thrown 132 times and the following frequencies were observed:

No. obtained	1	2	3	4	5	6	Tota 1
Frequency	15	20	25	15	29	28	132

Test the hypothesis that the die is unbiased.

(b) Using the dual simplex method, solve the LPP, $Minimize \quad z = 2x_1 + 2x_2 + 4x_3$ Subject to $2x_1 + 3x_2 + 5x_3 \ge 2$ $3x_1 + x_2 + 7x_3 \le 3$ $x_1 + 4x_2 + 6x_3 \le 5$

 $x_1, x_2, x_3 \ge 0$

(c) Fit a Poisson distribution to the data and test whether the Poisson distribution is a good 10 fit. Test at a 5% level of significance.

X:0 Y: 123

___X___X

QP Code: R23-ARC401_022023-24