

## RELATÓRIO DESAFIO – CIENTISTA DE DADOS

CANDIDATO: Clériston Cláudio Carneiro Pereira de Albuquerque

# 1. INTRODUÇÃO

### 1.1 Desafio

O desafio faz parte do programa Lighthouse da Indicium e tem como objetivo promover a imersão em projetos reais. O desafio proposto para a área de ciência de dados consiste em:

Você foi alocado em um time da Indicium contratado por um estúdio de Hollywood chamado *PProductions*, e agora deve fazer uma análise em cima de um banco de dados cinematográfico para orientar qual tipo de filme deve ser o próximo a ser desenvolvido. Lembre-se que há muito dinheiro envolvido, então a análise deve ser muito detalhada e levar em consideração o máximo de fatores possíveis (a introdução de dados externos é permitida - e encorajada).

### 1.2 Objetivos da análise

Os objetivos propostos pelo desafio são:

- Apresentar os principais insights na análise exploratória dos dados;
- Propor um método de recomendação de filmes para novo usuário que vai utilizar alguma plataforma streaming pela primeira vez;
- Identificar os principais fatores que estão relacionados com alta expectativa de faturamento;
- Propor modelo de previsão de notas IMDb;
- Propor insights na visão do filme;
- Propor o modelo de inferência entre a coluna visão geral do filme e do gênero.

### 2. ENTENDIMENTO DOS DADOS

A base de dados conta com 999 linhas e 15 colunas, a maioria das colunas são do tipo "String" e apenas três do tipo "Int" e "Float". A figura a seguir retrata a visão geral dos dados.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 999 entries, 0 to 998
Data columns (total 16 columns):
     Column
                   Non-Null Count
                                   Dtype
 0
    Unnamed: 0
                   999 non-null
                                    int64
 1
    Series_Title
                   999 non-null
                                   object
    Released Year 999 non-null
                                   object
    Certificate
                                   object
                   898 non-null
 4
    Runtime
                   999 non-null
                                   object
 5
    Genre
                   999 non-null
                                   object
 6
    IMDB Rating
                   999 non-null
                                   float64
 7
    Overview
                   999 non-null
                                   object
 8
                                   float64
    Meta score
                   842 non-null
 9
                   999 non-null
                                   object
    Director
 10
    Star1
                   999 non-null
                                   object
 11 Star2
                   999 non-null
                                   object
 12 Star3
                   999 non-null
                                   object
 13
    Star4
                   999 non-null
                                   object
    No of Votes
                                    int64
                   999 non-null
                   830 non-null
                                    object
   Gross
dtypes: float64(2), int64(2), object(12)
memory usage: 125.0+ KB
```

Figura 01 – Visão geral dos dados

As colunas, "Released\_Year" (ano de lançamento) e "Gross" (faturamento) estão do tipo string e foram convertidas para inteiro e ponto flutuante. A coluna ano de lançamento havia um dado errado, foi corrigido inserindo o ano correto do filme Apollo 13.

Foi identificado dados faltantes nas colunas: "Certificate" (faixa etária), "Meta\_score" (número de críticas) e "Gross" (faturamento). A solução encontrada para preencher os dados faltantes nas colunas "Meta\_score" e "Gross" foi obter a média por período, assim, preservando o número de críticas e faturamento para cada período. Já a coluna "Certificate" (faixa etária) foi utilizada como base coluna "Genre" (gênero), uma vez que, o gênero é um fator limitante para determinada faixa etária.

Foi obtido da base do FED (Federal Reserve) os dados do PIB (GDP) e inflação (CPI) com finalidade de realizar inferência com a coluna "Gross" (faturamento) da base de dados IMDb.



Figura 02 - Quantidade de dados faltantes por coluna

# 3. ANÁLISE EXPLORATÓRIA DE DADOS

# 3.1 Estatística descritiva

Foi empregado análise descritiva dos dados numéricos, conforme imagem apresentada abaixo:

|       | Released_Year | IMDB_Rating | Meta_score | No_of_Votes | Gross        |
|-------|---------------|-------------|------------|-------------|--------------|
| count | 999.00        | 999.00      | 999.00     | 999.00      | 9.990000e+02 |
| mean  | 1991.19       | 7.95        | 77.98      | 271621.42   | 6.551194e+07 |
| std   | 23.31         | 0.27        | 13.28      | 320912.62   | 1.022390e+08 |
| min   | 1920.00       | 7.60        | 0.00       | 25088.00    | 0.000000e+00 |
| 25%   | 1976.00       | 7.70        | 72.00      | 55471.50    | 4.009348e+06 |
| 50%   | 1999.00       | 7.90        | 79.00      | 138356.00   | 2.694762e+07 |
| 75%   | 2009.00       | 8.10        | 87.00      | 373167.50   | 8.353862e+07 |
| max   | 2020.00       | 9.20        | 100.00     | 2303232.00  | 9.366622e+08 |

Figura 03 – Estatística descritiva

Percebe-se claramente que as colunas "Gross" (faturamento) e "No\_of\_Votes" (número de votos) possuem desvio padrão alto, evidenciando alta variação dos dados.

Foi calculado o coeficiente de variação na variável "Gross" (faturamento), o coeficiente de variação foi de 156,06%, sinalizando que há maior dispersão dos dados, em outras palavras, os dados são heterogêneos.

### 3.2 Correlações

Antes de explicar a correlação, foi plotado o gráfico de barras da coluna "Gross" (faturamento em relação ao "Releazed\_Year" (ano de lançamento) e verificar a evolução do faturamento em relação aos anos de lançamento.





Figura 04 - Evolução do faturamento ao longo dos anos de lançamento

O gráfico evidencia que nos últimos anos, houve um aumento expressivo no faturamento, porém em determinados períodos, o faturamento apresentou queda, possivelmente pode está associado à eventos externos como por exemplo, o aumento da inflação nos Estados Unidos. Para investigar essa relação, foi empregada uma análise de correlação considerando os dados do PIB e da inflação norte-americana.

|                | Released_Year | IMDB_Rating | Meta_score | No_of_Votes | Gross     | GDP       | gdp_anual | CPIAUCSL  | inflacao_anual |
|----------------|---------------|-------------|------------|-------------|-----------|-----------|-----------|-----------|----------------|
| Released_Year  | 1.000000      | -0.115700   | -0.295667  | 0.205644    | 0.239983  | 0.953349  | -0.482123 | 0.987194  | -0.294948      |
| IMDB_Rating    | -0.115700     | 1.000000    | 0.263726   | 0.495986    | 0.098624  | -0.093836 | 0.057128  | -0.108606 | 0.012001       |
| Meta_score     | -0.295667     | 0.263726    | 1.000000   | -0.011952   | -0.039093 | -0.206274 | 0.118587  | -0.267865 | 0.024870       |
| No_of_Votes    | 0.205644      | 0.495986    | -0.011952  | 1.000000    | 0.561575  | 0.159837  | -0.100269 | 0.196200  | -0.049859      |
| Gross          | 0.239983      | 0.098624    | -0.039093  | 0.561575    | 1.000000  | 0.240305  | -0.127308 | 0.234259  | -0.045151      |
| GDP            | 0.953349      | -0.093836   | -0.206274  | 0.159837    | 0.240305  | 1.000000  | -0.524760 | 0.977588  | -0.397094      |
| gdp_anual      | -0.482123     | 0.057128    | 0.118587   | -0.100269   | -0.127308 | -0.524760 | 1.000000  | -0.533719 | 0.611092       |
| CPIAUCSL       | 0.987194      | -0.108606   | -0.267865  | 0.196200    | 0.234259  | 0.977588  | -0.533719 | 1.000000  | -0.369317      |
| inflacao_anual | -0.294948     | 0.012001    | 0.024870   | -0.049859   | -0.045151 | -0.397094 | 0.611092  | -0.369317 | 1.000000       |

Figura 05 – Correlação das variáveis

Fonte: Próprio autor

A partir da análise da correlação tem-se:

- A coluna "Gross" possui correlação moderada e positiva com a coluna "No\_of\_Votes", o que sugere que a quantidade de votos de usuários está associada positivamente ao faturamento.
- A coluna "IMDB\_Rating" possui correlação moderada e positiva com a coluna "No\_of\_Votes", indicando que a classificação no IMDB está associada positivamente à quantidade de votos dos usuários.
- A coluna "Meta\_score" possui correlação fraca a moderada negativa com a coluna "Released\_Year", sugerindo que a média ponderada das críticas está associada negativamente com o ano de lançamento.
- As colunas "No\_of\_Votes" e "Gross" possuem correlação fraca com a coluna "Released\_Year", indicando que a quantidade de votos e o faturamento não sofrem grandes efeitos em função do ano de lançamento.
- As colunas "GDP" e "CPIAUCSL" possuem correlação fraca e positiva com a coluna "Gross", sugerindo que o faturamento dos filmes não sofre efeitos severos em relação ao PIB e à inflação dos Estados Unidos.
- As colunas "gdp\_anual" e "inflacao\_anual" apresentam correlação fraca a negativa com a coluna "Gross", sugerindo que as variações anuais do PIB e da inflação norte-americana não exercem efeitos relevantes sobre o faturamento dos filmes.

### 3.3 Visualizações

Foi empregado

O histograma foi aplicado na coluna "Gross" (faturamento) para ver como os dados estão distribuídos. A imagem é ilustrada a seguir.





Figura 06 – Gráfico de histograma da variável faturamento

Fonte: Próprio autor

Observa-se uma maior concentração de filmes com faturamento baixo, enquanto apenas poucos alcançam faturamentos muito elevados.

Outra variável que chamou atenção foi a variável "No\_of\_votes" (número de votos), na análise descritiva a amplitude é muito alta, percebe-se a confirmação de outliers na variável, indicando que certos filmes obtiveram um número de votos excepcionalmente alto em comparação com os demais.



Figura 07 – Boxplot da variável número de votos

Fonte: Próprio autor

Foi analisada as notas IMDb por faturamentos, os maiores faturamentos se concentram em notas entre 7,5 e 8 no rating de classificação.



Figura 08 - Histograma de frequência da variável IMDB\_Rating

Fonte: Próprio autor

Em seguida, foram analisados os 10 filmes com maior quantidade de votos por faturamento.





Figura 09 – Filmes com maior quantidade de votos por faturamento

Fonte: Próprio autor

A partir do gráfico, observa-se que há mais filmes populares com faturamento alto.

A próxima imagem, apresenta os 10 diretores com mais publicações de filmes.

Os 10 diretores que mais publicaram filmes



Figura 10 – Os 10 diretores com mais publicaram filmes

Fonte: Próprio autor

A maioria das publicações são do gênero "Drama", em seguida, "Drama, Romance", "Comedy, Drama" e etc.

Os 10 gêneros mais publicados

Gênero



Figura 11 – Os 10 gêneros mais publicados

Fonte: Próprio autor

Tem-se os 10 filmes mais faturados de todos os tempos.

#### Os 10 filmes mais faturados



Figura 12 – Os 10 filmes mais faturados

Fonte: Próprio autor

A seguir, temos o gráfico com os 10 filmes com maiores notas de IMBd.

### Os 10 filmes com maiores notas IMDB



Figura 13 – Os 10 filmes com maiores notas IMDb

Fonte: Próprio autor

Os 10 filmes com maior número de votos.

#### Os 10 filmes com maiores número de votos



Figura 14 – Os 10 filmes com maiores número de votos

Fonte: Próprio autor

### 3.4 Hipóteses levantadas

As hipóteses levantadas na análise foram:

- Nos últimos anos, o faturamento aumentou vertiginosamente. Porém, houve períodos em que o faturamento foi baixo, sinalizando possíveis ciclos. No entanto, não se sabem os motivos que levaram a esses faturamentos reduzidos, uma vez que o PIB e a inflação norte-americana não apresentam forte associação com esse desempenho.
- Outra hipótese levantada foi se as notas altas estariam relacionadas a faturamentos elevados. Contudo, observou-se que os maiores faturamentos se concentram em filmes com notas entre 7,5 e 8 no rating do IMDb.
- Também foi levantada a hipótese de que filmes mais criticados poderiam apresentar maiores faturamentos. No entanto, conforme mostra a Figura 09, comprovou-se o contrário: as maiores críticas não estão associadas ao faturamento dos filmes.

### 4. PERGUNTAS DO DESAFIO

### 4.1 Qual filme você recomendaria para uma pessoa que você não conhece?

Para recomendar filmes para uma nova pessoa que ainda não possui histórico de perfil, pode-se adotar estratégia baseada em popularidade e qualidade. Os critérios de seleção são:

• Filmes com avaliação no IMDb igual ou superior a 7.5 (alta qualidade).

• Filmes com um número elevado de votos, o que indica que são amplamente conhecidos e assistidos (alta popularidade).

A regra de negócio apresentado gerou as seguintes recomendações:

```
Filme: The Godfather | Gênero: Crime, Drama | Nota IMDB: 9.2 | Votos: 1620367.

Filme: The Dark Knight | Gênero: Action, Crime, Drama | Nota IMDB: 9.0 | Votos: 2303232.

Filme: The Godfather: Part II | Gênero: Crime, Drama | Nota IMDB: 9.0 | Votos: 1129952.

Filme: 12 Angry Men | Gênero: Crime, Drama | Nota IMDB: 9.0 | Votos: 689845.

Filme: Pulp Fiction | Gênero: Crime, Drama | Nota IMDB: 8.9 | Votos: 1826188.

Filme: The Lord of the Rings: The Return of the King | Gênero: Action, Adventure, Drama | Nota IMDB: 8.9 | Votos: 1642758.

Filme: Schindler's List | Gênero: Biography, Drama, History | Nota IMDB: 8.9 | Votos: 1213505.

Filme: Inception | Gênero: Action, Adventure, Sci-Fi | Nota IMDB: 8.8 | Votos: 2067042.

Filme: Fight Club | Gênero: Drama | Nota IMDB: 8.8 | Votos: 1854740.

Filme: Forrest Gump | Gênero: Drama, Romance | Nota IMDB: 8.8 | Votos: 1809221.
```

Figura 15 – Os 10 filmes recomendados pela regra do negócio

Fonte: Próprio autor

4.2 - Quais são os principais fatores que estão relacionados com alta expectativa de faturamento de um filme?

Os principais fatores que estão relacionados com alta expectativa de faturamento são:

- Ano de lançamento: observou-se um aumento expressivo no faturamento nos últimos anos, indicando uma tendência de crescimento.
- Quantidade de votos: verificou-se uma correlação moderada e positiva, sugerindo que a quantidade de votos de usuários está associada ao aumento do faturamento.
- PIB e CPI dos Estados Unidos: essas variáveis apresentam correlação fraca e positiva com o faturamento, o que indica que o desempenho dos filmes não sofre impactos significativos em função do PIB e da inflação norte-americana.
- 4.3 Quais insights podem ser tirados com a coluna *Overview*?

Foi aplicada a técnica de nuvem de palavras à coluna "Overview" (visão geral) para os três gêneros mais recorrentes, sendo os resultados apresentados nas imagens a seguir.



Figura 16 – Nuvem de palavras encontrada no gênero Drama



Figura 17 - Nuvem de palavras encontrada no gênero Drama, Romance

Fonte: Próprio autor



Figura 18 – Nuvem de palavras encontrada no gênero Comédia, Drama

Fonte: Próprio autor

# 4.4 - É possível inferir o gênero do filme a partir dessa coluna?

Sim. Foi empregada a técnica TF-IDF, que converte frases em vetores numéricos preservando a relevância semântica dos termos. Dessa forma, permite que algoritmos de machine learning consigam diferenciar textos por padrões de vocabulário.

O modelo de machine learning utilizado foi o MultinomialNB, um classificador probabilístico baseado no Teorema de Bayes. Esse modelo se adapta bem a variáveis discretas e busca representar a distribuição das palavras como ocorrências de uma distribuição multinomial.

Antes da vetorização e do treinamento com o modelo Naive Bayes, os dados passaram por oversampling, um método de rebalanceamento que aumenta o número de amostras dos gêneros minoritários, de modo a garantir uma representatividade mais equilibrada entre as classes. Essa etapa foi necessária porque o gênero Drama predominava na base, o que poderia enviesar o modelo durante o processo de treinamento.

Após o processo de oversampling, os dados foram divididos em dados de treinamento e dados de teste, foi atribuído 80% para dados de treino e 20% para os dados de teste. O modelo atingiu acurácia de 98%, valor expressivamente alto, sinalizando que o modelo poderia ter decorado, assim gerando overfitting.

### 4.5 - Como prever a nota do IMDB?

O modelo empregado para realizar a previsão de nota IMDb foi modelo de regressão. As variáveis utilizadas foram variáveis numéricas como: "Released\_Year" (ano de lançamento), "Runtime" (tempo de duração), "Meta\_score" (notas de crítica), "No\_of\_Votes" (número de votos) e "Gross" (faturamento) e variáveis categóricas como: "Certificate" (faixa etária), "Genre" (gênero).

Foi empregado a técnica One Hot Encode nas variáveis categóricas, esta técnica converte as variáveis categóricas em numéricas, criando uma coluna nova para cada categoria. Em cada nova coluna, é atribuído 1 se a categoria estiver presente nessa linha e 0 se estiver ausente.

Nas variáveis numéricas, foi empregada Standard Scaler do Scikit-Learn, esta ferramenta transforma os dados e os coloca na mesma escala, evita que os modelos deem maior prioridade com valores maiores. A ferramenta transforma os dados de forma que a média seja igual a zero com desvio padrão igual a um.

Foi aplicado técnica VIF (Variance Inflation Factor) ou Fator de Inflação de Variância, esta técnica visa detectar multicolinearidade nas variáveis, atua quantificando o quanto a variação de uma variável é inflada devido a correlações com outras variáveis.

A multicolinearidade ocorre quando duas ou mais variáveis em um modelo de regressão são altamente correlacionadas, dificultando a identificação do impacto individual de cada variável sobre a variável alvo.

Valores abaixo de 5 significa que a variável não possui multicolinearidade em relação às outras variáveis, porém valores altos, significa que a variável exerce impacto forte nas outras variáveis, caso ocorra, deve-se remover a variável ou aplicar técnicas de redução de dimensionalidade.

O resultado obtido na técnica VIF é apresentado na figura a seguir.

A partir dos resultados obtidos pelo VIF observa-se que não há multicolinearidade nas variáveis relacionadas ao gênero. No entanto, as variáveis associadas aos certificados apresentaram indícios de colineraridade que é natural na coluna de faixa etária.

| Feature           | VIF      |    |           |
|-------------------|----------|----|-----------|
|                   | 0.000000 |    |           |
| _                 | 2.018700 |    |           |
| _                 | 1.275376 |    |           |
|                   | 1.735470 |    |           |
|                   | 1.906826 |    |           |
| 5 Runtime_clean : |          |    |           |
|                   | 1.658962 |    |           |
|                   | 1.870476 |    |           |
|                   | 1.682340 |    |           |
| 9 Biography       |          |    |           |
|                   | 1.676737 |    |           |
|                   | 1.434966 |    |           |
|                   | 2.233373 |    |           |
| 13 Family         |          |    |           |
| 14 Fantasy        |          |    |           |
|                   | 1.549122 |    |           |
| 16 History        |          |    |           |
|                   | 1.333904 |    |           |
|                   | 1.135962 |    |           |
| 19 Musical :      |          |    |           |
| 20 Mystery        |          | 35 | Cert_Film |
|                   | 1.325874 | 36 | (         |
|                   | 1.323395 | 37 | Ce        |
|                   | 1.097731 | 38 | Ce        |
|                   | 1.382215 | 39 | Cert_     |
|                   | 1.174932 | 40 | Cert_F    |
|                   | 1.152901 | 41 | C         |
| 27                | inf      | 42 | Cert_     |
| 28 Cert_A         | inf      | 43 | Cert_     |
| 29 Cert_Action    | inf      | 44 | Cert_     |
| 30 Cert_Approved  | inf      | 45 | Cert_Thr  |
| 31 Cert_Comedy    | inf      | 46 | _ c       |
| 32 Cert_Crime     | inf      | 47 | Cer       |
| 33 Cert_Drama     | inf      | 48 | Ce        |
| 34 Cert Fantasy   | inf      | 49 | Cert_Un   |

Figura 19 – resultado da técnica VIF

Os modelos de regressão utilizados foram:

- Ridge Regression
- Lasso Regression

- ElasticNet
- Random Forest Regression
- Decision Tree Regression
- XGBoost Regression

Os modelos Ridge Regression, Lasso Regression e ElasticNet têm como objetivo aplicar penalizações aos coeficientes, a fim de reduzir o risco de overfitting e melhorar a generalização do modelo.

O modelo Regressão Ridge utiliza a penalização L2, que diminui a magnitude dos coeficientes, sendo especialmente útil em situações de multicolinearidade, pois reduz a influência excessiva de variáveis altamente correlacionadas, sem eliminá-las.

O modelo Regressão Lasso aplica a penalização L1, que atua de forma semelhante ao modelo anterior, mas com a característica adicional de poder zerar coeficientes. Dessa forma, além de reduzir a complexidade do modelo, também realiza uma seleção automática de variáveis.

Já o modelo ElasticNet combina as penalizações L1 e L2, unindo as vantagens de ambos: promove a seleção de variáveis, como o modelo Lasso, e mantém estabilidade em variáveis correlacionadas como o modelo Ridge.

Foi empregado o Erro Quadrático Médio como métrica para avaliar a precisão dos modelos de regressão. A técnica calcula a média das diferenças quadradas entre os valores previstos e os valores reais.

Após o treinamento dos modelos, o Random Forest apresentou desempenho satisfatório em comparação aos demais. Entretanto, para avaliar sua capacidade de generalização, foi empregada a validação cruzada. Esse método desempenha um papel fundamental na estimativa da habilidade do modelo em generalizar para dados não observados, oferecendo uma avaliação mais robusta e confiável de sua performance e assegurando previsões consistentes em diferentes subconjuntos do conjunto de dados.

O modelo Regressão Ridge se destacou por sua capacidade de generalização, apresentando uma média de 0,77 e desvio padrão de 0,05.

|   | Modelo           | Scores | Desvio Padrão |
|---|------------------|--------|---------------|
| 0 | Ridge Regression | 0.77   | 0.05          |
| 1 | Lasso Regression | 0.76   | 0.06          |
| 2 | ElasticNet       | 0.76   | 0.05          |
| 3 | Random Forest    | 0.72   | 0.04          |
| 4 | Decision Tree    | 1.02   | 0.09          |
| 5 | XGBoost          | 0.75   | 0.05          |

Figura 20 – Resultado da Validação Cruzada

A otimização de hiperparâmetros foi empregada no modelo de regressão Ridge com o objetivo de encontrar o melhor valor de alpha, capaz de ajustar o modelo de forma mais adequada. A técnica utilizada foi o GridSearchCV, que combina diferentes valores de alpha em uma busca sistemática, ajustando o modelo até identificar aquele que maximiza o desempenho. O valor obtido para o parâmetro foi alpha = 10.

Finalmente, foi realizada a previsão da nota do IMDb a partir dos dados fornecidos no desafio, e o resultado obtido pelo modelo foi 4,91.