1a	1b	2	3a	3b	Suma	4	5a	5b	6	7	Suma	Total

Calificación

APELLIDO Y NOMBRE:

Condición:

Libre

Regular

Año de regularidad (en caso de ser regular):

ÁLGEBRA / ÁLGEBRA II / ÁLGEBRA LINEAL - FINAL $10~{
m De}$ FEBRERO DE 2025

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos.

Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 35 pts. en la parte práctica para los regulares. Los alumnos libres deberán obtener al menos 40 puntos en la parte práctica.

Parte Teórica (30 pts.)

- 1. (12 pts) Sea \mathbb{k} un cuerpo, V un \mathbb{k} -espacio vectorial de dimensión finita, y sean $S, T \subset V$ subespacios.
 - (a) Definir S + T, y probar que es un subespacio.
 - (b) Dar una fórmula para $\dim(S+T)$ y demostrarla.
- 2. (12 pts) Sea \mathbbm{k} un cuerpo y sean V, W dos \mathbbm{k} -espacios vectoriales de dimensión finita y de la misma dimensión. Sea $f: V \to W$ una transformación lineal. Probar que las siguientes tres condiciones son equivalentes:
 - (i) f es biyectiva.
 - (ii) f es inyectiva.
 - (iii) El núcleo de f es $\{0\}$.
- 3. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Existe una transformación lineal $T:\mathbb{Q}^3\to\mathbb{Q}^3$ que tiene autovalores 1 y -2 y no es diagonalizable
 - (b) (3 pts) Sea \mathbbm{k} un cuerpo y V un \mathbbm{k} -espacio vectorial de dimensión 2. Si $W \subset V$ es un subespacio de dimensión 1 entonces W admite un único complemento, o sea existe un único $U \subset V$ subespacio tal que $U \oplus W = V$.

Parte Práctica (70 pts.)

4. (15 pts) Sean $a, b \in \mathbb{R}$, y $\langle \cdot, \cdot \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ la siguiente función:

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = a x_1 y_1 + b x_1 y_2 + b x_2 y_1 + b x_2 y_2 + (1+b) x_3 y_3.$$

Determinar para qué valores de a y b la función anterior es un producto interno.

5. (20 pts) En $\mathbb{R}_3[x]$ consideramos los siguientes subespacios:

$$S_1 = \{ P \in \mathbb{R}_3[x] : P(1) = P'(1) = 0 \}, \qquad S_2 = \{ P \in \mathbb{R}_3[x] : P(-1) = P'(-1) = 0 \}.$$

- (a) Hallar bases de S_1 , S_2 , $S_1 \cap S_2$ y $S_1 + S_2$.
- (b) Decidir si existe un epimorfismo $T: \mathbb{R}_3[x] \to \mathbb{R}^2$ tal que $\text{Nu}(T) = S_1$.
- 6. (20 pts) Sean $A = \begin{bmatrix} \alpha & 1 \\ 0 & \beta \end{bmatrix} \in \mathbb{R}^{2\times 2}$ y $f : \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$, f(B) = AB BA. Probar que f es diagonalizable si y sólo si $\alpha \neq \beta$.
- 7. (15 pts) Sea $f : \mathbb{R}_n[t] \to \mathbb{R}_n[t]$ una transformación lineal tal que gr $f(p) = \operatorname{gr} p$ para todo $p \in \mathbb{R}_n[t]$. Probar que f es un isomorfismo. Es necesariamente diagonalizable?

Justificar debidamente todas las respuestas