### NOTES: MILNOR CONJECTURE LEARNING SEMINAR

### HANA K

### Contents

| 1. Talk 1, Oct 21, Milnor's paper, Jacob                   | 1  |
|------------------------------------------------------------|----|
| 2. Talk 2, Nov 4, Motivic cohomology, Toni                 | 6  |
| 3. Talk 3, Nov 11, Merkurjev–Suslin, Akshay                | 6  |
| 3.1. Special cases                                         | 6  |
| 4. Talk 4, Nov 18, Beilinson-Lichtenbaum conjecture, Peter | 9  |
| 4.1. Big picture                                           | g  |
| 4.2. A reminder of BK(n)                                   | 10 |
| 4.3. Steinberg relation (under Piotr's request)            | 10 |
| 4.4. Recap of Toni's talk                                  | 11 |
| 4.5. Properties/Axioms                                     | 11 |
| 4.6. Conjecture BL(n)                                      | 12 |
| 4.7. Why BK(n) implies H90(n)                              | 13 |
| 4.8. Equivalence of three conjectures                      | 13 |

## 1. Talk 1, Oct 21, Milnor's Paper, Jacob

Let k be a field of characteristic not 2.

**Definition 1.1.** A *quadratic space* over k is a pair (V, q) where V is a finite dimensional vector space over k, and  $q: V \to k$  is a non-degenerate quadratic form.

The goal is to classify quadratic spaces up to isomorphism. We denote the isomorphism class of V by  $\langle V \rangle$ . For an element  $a \in k$ , we denote the 1 dimensional quadratic space  $(k, x \mapsto ax^2)$  by  $\langle a \rangle$ .

**Proposition 1.2.** The isomorphism classes of quadratic spaces forms a commutative semi ring. The addition and the multiplication are given by

- $\langle V \rangle + \langle W \rangle = \langle V \oplus W \rangle$ , and
- $\langle V \rangle \langle W \rangle = \langle V \otimes W \rangle$ .

The unit is  $\langle 1 \rangle$ .

We turn it into a ring by formally add inverses.

**Definition 1.3.** The Grothendieck–Witt ring GW(k) of field k is the ring obtained from the semi ring of quadratic spaces over k by formally adding inverses.

It turns out that the semi ring injects into the Grothendieck-Witt ring.

**Theorem 1.4** (Witt). If V, V', W are quadratic spaces with  $\langle V \rangle + \langle W \rangle = \langle V' \rangle + \langle W \rangle$ , then  $\langle V \rangle = \langle V' \rangle$ .

Sketch proof.

Date: November 19, 2022.

There is a dimension functor

$$\dim: GW(k) \longrightarrow \mathbb{Z}$$

$$\langle V \rangle \longmapsto \dim_k(V).$$

We denote the augmentation ideal by  $I \subset GW(k)$ .

**Definition 1.5.** We say that a quadratic space V is

- anisotropic if it does not contain nonzero vectors of norm zero;
- metabolic if  $\dim(V)$  is even and there is a subspace  $V_0$  of half the dimension with  $q|_{V_0}=0$ .

**Remark 1.6.** • Akshay: Why call it metabolic, not hyperbolic? Jacob: Wiki says so.

• The dimension of a subspace where q (non-degenerate) vanishes is at most  $\dim(V)/2$ .

**Proposition 1.7.** Any quadratic space V splits as  $V = n(\langle 1 \rangle + \langle -1 \rangle) + W$  where W is anisotropic.

*Proof.* When V is not anisotropic, i.e.  $\exists 0 \neq x \in V$  with q(x) = 0 (an isotropic vector), we can find another vector y, such that by rescaling q(x) = q(y) is 0 and the bilinear form b(x,y) is 1. Thus for the subspace with the basis  $\{x,y\}$ , the matrix for the associated bilinear form is the anti diagonal 2-by-2 matrix. One can see that this subspace equals  $\langle 1 \rangle + \langle -1 \rangle$  by taking  $x' = x + \frac{y}{2}$  and  $y' = x - \frac{y}{2}$ .

By the Witt's cancellation thereom, the splitting is unique (on the level of isomorphism classes).

Note that the metabolic quadratic spaces form an ideal of GW(k).

**Definition 1.8.** Define the Witt ring W(k) of field k to be

$$W(k) := GW(k)$$
/the ideal of metabolic ones.

Consider

$$\begin{matrix} \text{metabolic quad space} & \stackrel{\simeq}{\longrightarrow} 2\mathbb{Z} \\ \downarrow & & \downarrow \\ I & & & \mathbb{Z} \\ & & \downarrow \\ & & W(k) & & \to \mathbb{Z}/2 \end{matrix}$$

The lower square is a pull back diagram. Thus to understand GW(k), we study W(k) By previous discussion on splitting, we know that as a set,

$$W(k) = \{$$
anisotropic quadratic spaces $\}$ .

By choosing orthogonal basis, we can see that GW(k) is generated as an abelian group by  $\langle a \rangle$  for all  $a \in k^*$ . Note that we have  $\langle a \rangle = \langle a x^2 \rangle$  for any  $x \in k^*$ . Thus  $\langle a \rangle$  is determined by the image of a in  $k^*/k^{*2}$ . We also have  $\langle ab \rangle = \langle a \rangle \langle b \rangle$ .

There is another key relation.

Let  $a \in k^*$  be an element that is not 0 or 1. We consider  $\langle a \rangle + \langle 1-a \rangle$ . This is a 2 dimensional vector space with a basis  $\{x,y\}$  such that q(x)=a,q(y)=1-a and b(x,y)=0. Note that q(x+y)=1. To find the complement, we evaluate the quadratic form on (1-a)x-ay which is orthogonal to x+y. We obtain that

$$\langle a \rangle + \langle 1 - a \rangle = \langle 1 \rangle + \langle (1 - a)a \rangle.$$

It turns out these are the only relations.

**Theorem 1.9.** The map  $\widetilde{GW}(k) \twoheadrightarrow GW(k)$  is an isomorphism. Here  $\widetilde{GW}$  is defined by the above relations.

*Proof.* Suppose we have  $\langle a_1 \rangle + \cdots + \langle a_n \rangle = \langle b_1 \rangle + \cdots + \langle b_n \rangle$  in GW(k). We want to show the same equality holds in  $\widetilde{GW}(k)$ . We prove by induction on n.

We denote the sum quadratic space by  $V=kx_1+\cdots kx_n$  where  $q(x_i)=a_i$ . The case n=1 is trivial. For larger n, we split  $V=V_-\oplus V_+$  where  $V_-$  is spanned by  $x_1$  and  $V_+$  is spanned by the rest.

By inductive hypothesis, it suffices to show that we can decompose it in  $\widetilde{GW}(k)$  such that

$$\langle a_1 \rangle + ... + \langle a_n \rangle = \langle b_1 \rangle + \text{complement}.$$

WLOG, take  $b_1=1$ . We choose a vector of norm  $b_1$ , which under the decomposition  $V=V_-\oplus V_+$  we write as  $y_-+y_+$ . By assumptions, we have  $q(y_-)=a$  and  $q(y_+)=1-a$ . Here  $\langle a\rangle=\langle a_1\rangle$ . Using the key relations, we get that  $\langle a\rangle+\langle 1-a\rangle=\langle b_1\rangle+\langle (1-a)a\rangle$ . The result follows.

This gives an upper bound on the size of GW(k). Now we study the lower bounds. Let V be a quadratic space. Define the discriminant of V to be the determinant of the matrix of the corresponding bilinear form. Denote this functor by disc. We have

$$\operatorname{disc}(V \oplus V') = \operatorname{disc}(V)\operatorname{disc}(V').$$

We have the following definition. The well-defined-ness is not hard to check.

**Definition 1.10.** The functor disc extends to a functor (the first Stiefel–Whitney class)

$$w_1: GW(k) \to k^*/k^{*2}$$
.

We have  $w_1(\langle a \rangle) = a$ . When restricted to the augmentation ideal I, it is still surjective:

$$w_1: I \rightarrow k^*/k^{*2}$$
.

# Remark 1.11. A warning:

The augmentation ideal I can also be viewed as the kernel of the map

$$W(k) \rightarrow \mathbb{Z}/2$$
.

Let V be a quadratic space of dimension 2d. We have  $\langle V \rangle - d\langle 1 \rangle - d\langle -1 \rangle \in I$ , and

$$\operatorname{disc}(\langle V \rangle - d\langle 1 \rangle - d\langle -1 \rangle) = \operatorname{disc}(\langle V \rangle)(-1)^d$$
.

Jacob calls this disc, the normalized disc.

**Proposition 1.12.** The map  $w_1$  induces an isomorphism

$$I/I^2 \to k^*/k^{*2}$$
.

*Proof.* A typical element in  $I^2$  is of the form  $(\langle a \rangle - 1)(\langle b \rangle - 1)$ . One has

$$(\langle a \rangle - 1) + (\langle b \rangle - 1) = (\langle ab \rangle - 1) \in I/I^2.$$

**Definition 1.13.** Let (V,q) be a quadratic space. The Clifford algebra Cl(V) is defined to be the quotient of the tensor algebra on V by relations  $x^2 = q(x)$ .

**Proposition 1.14.** If V is even dimensional, then Cl(V) is a central simple algebra.

Thus it represents an element of the Brauer group Br(k) of k. Note that this only happens when it is even dimensional.

**Definition 1.15.** Let br(V) denote the class of the Clifford algebra inside Br(k).

**Example 1.16.** Consider the case when V is  $\langle a \rangle + \langle b \rangle$ . Then Cl(V) is a 4 dimensional vector space over k, spanned by 1, i, j, ij = -ji with  $i^2 = a$  and  $j^2 = b$ . This is anticommutative, with  $(ij)^2 = -ab$ . This is a generalized quaternion algebra.

In fact, br(V) lives in the 2-torsion part Br(k)[2]. We have

$$br(V) \in Br(k)[2] = H^2(Gal(\bar{k}/k), \mathbb{Z}/2)$$

and

$$disc(V) \in k^*/k^{*2} = H^1(Gal(\bar{k}/k), \mathbb{Z}/2).$$

For  $a,b \in k^*/k^{*2}$ , denote the corresponding cohomology class by [a],[b]. We have [ab]=[a]+[b], and a product to get classes in degree 2:  $[a][b] \in H^2(Gal(\bar{k}/k),\mathbb{Z}/2)$  given by the generalized quaternion algebra.

Take two even dimensional quadratic spaces V, V'. There is an isomorphism

$$Cl(V) \hat{\otimes}_k Cl(V') \xrightarrow{\simeq} Cl(V \oplus V')$$

Note that here we need to use the graded tensor product here. If it were  $\otimes_k$  instead of  $\hat{\otimes}_k$ , we would have  $br(V \oplus V') = br(V) + br(V')$ .

We consider the actual formula:

$$br(V \oplus V') = br(V) + br(V') + \widetilde{\operatorname{disc}}(V)\widetilde{\operatorname{disc}}(V') \in H^2.$$

Thus we have

$$br(V) = br(V \oplus \langle 1 \rangle \oplus \langle -1 \rangle),$$

since

$$\widetilde{\operatorname{disc}}(\langle 1 \rangle \oplus \langle -1 \rangle) = [1] = 0 \in H^1$$

and

$$br(\langle 1 \rangle \oplus \langle -1 \rangle) = 0 \in H^2$$

Thus br(V) depends only on the anisotropic part of V. Thus we get a map from I to  $H^2$ ; it turns out that br defines a group homomorphism when restricted on  $I^2$ .

We have a diagram

$$I^{3} \downarrow$$

$$I^{2} \xrightarrow{br} Br(k)[2] = H^{2}(Gal, \mathbb{Z}/2)$$

$$\downarrow$$

$$I \xrightarrow{disc} k^{*}/k^{*2} = H^{1}(Gal, \mathbb{Z}/2)$$

$$\downarrow$$

$$W(k) \xrightarrow{dim} \mathbb{Z}/2 = H^{0}(Gal, \mathbb{Z}/2)$$

**Theorem 1.17** (Merkurjev). The ideal  $I^3$  is the kernel of the map  $br: I^2 woheadrightarrow Br(k)[2]$ .

We have the following construction (Delzant).

**Theorem 1.18.** There is a unique group homomorphism

$$w: GW(k) \rightarrow 1 + \prod_{n>1} H^n(Gal, \mathbb{Z}/2)$$

satisfying (on generators)  $w(\langle a \rangle) = 1 + [a]$ .

sketch proof.

We have an alternative construction.

Recall that we can compute

$$H^*(BO(n), \mathbb{Z}/2) = \mathbb{Z}/2[w_1, ...w_n]$$

where  $w_i$ s are the universal Stiefel–Whitney classes.

Analogously, we can compute the étale cohomology of the algebraic stack

$$H_{et}^*(BO(n), \mathbb{Z}/2) = H_{et}^*(\operatorname{Spec}(k))[w_1, ...w_n]$$

We can think of a quadratic space V as a point in BO(n) and pullback the SW classes to get  $w_i(V)$  in the Galois cohomology.

**Remark 1.19.** Let V be a quadratic space of dim 2d. Take  $\langle V \rangle - d - d \langle -1 \rangle \in I$ . We have

$$br(V) = w_2(\langle V \rangle - d - d\langle -1 \rangle) = w_2(V) + \text{correction terms},$$

in which the correction terms depend on  $\dim V \mod 8$ .

**Proposition 1.20.**  $w_3(I^3) = 0$ .

*Proof.* We can write an element in  $I^n$  as

$$v = \Pi_1^n (1 - \langle a_i \rangle) = \Pi_{S \subset \{1, 2, \dots n\}} (-1)^{|S|} \Pi_{i \in S} \langle a_i \rangle.$$

By the defining formula, we have

$$w(v) = \frac{\prod_{S \text{ even}} (1 + \Sigma_{i \in S}[a_i])}{\prod_{S \text{ odd}} (1 + \Sigma_{i \in S}[a_i])}.$$

We write it as a power series, and think of it as a formal expression  $f(x_1, \ldots, x_n)$  evaluated on  $(a_1, \ldots, a_n)$ .

Take  $a \in k^*/k^{*2}$ . There are relations

$$[a][a] = [a][1/a] = [a][-1].$$

Back to the expression, we have

$$f(a_1, \dots, a_n) = 1 + [a_1] \cdots [a_n] g([a_1], \dots, [a_n]])$$
  
= 1 + [a\_1] \cdots [a\_n] g([-1], \cdots, [-1]]).

Take  $[a_i] = [-1]$  for all i in g, we calculate that  $w_i(v)$  vanishes for  $0 < i < 2^{n-1}$ .

One can ask if there is an additive function

$$c: I^n \to H^n(Gal, \mathbb{Z}/2)$$

with  $c(\Pi(1-\langle a_i \rangle)) = [a_1] \cdots [a_n]$ .

The answer is yes, when  $\left[-1\right]$  is not a zero divisor in the Galois cohomology. One can take

$$c(v) = \frac{w_{2^{n-1}}(v)}{[-1]^{2^{n-1}-n}}.$$

One also need to work on well-defined-ness. For example, for  $k = \mathbb{R}$ ,  $H^2$  is  $\mathbb{Z}/2[x]$  with a single generator, and we can take the generator to be [-1].

**Definition 1.21** (Milnor K-theory). The Milnor K-theory  $K_*^M(k)$  is defined to be the free algebra generated by classes  $\{a\}$  with  $a \in k^*$  such that

- $\{1\} = 0$ ,
- $\{ab\} = \{a\} + \{b\}$ , and
- (Steinberg relation)  $\{a\}\{1-a\}=0$  for  $a\neq 0,1$ .

We have a diagram

:(



**Conjecture 1.22** (Milnor conjecture on quadratic forms, 1970). Is  $\alpha$  an isomorphism? Yes by Orlov-Vishik-Voevodsky (2000).

**Conjecture 1.23** (Milnor conjecture, 1970). *Is*  $\beta$  *an isomorphism?* 

Yes by Voevodsky with proof sketched in 1996 and completed later.

- 2. Talk 2, Nov 4, Motivic Cohomology, Toni
- 3. Talk 3, Nov 11, Merkurjev-Suslin, Akshay

**Definition 3.1.** Let F be a field with  $char(F) \neq 2$ .

- Let  $K_2(F)$  denote the group  $\frac{F^{\times} \otimes F^{\times}}{(x,1-x)}$ . Define  $k_2(F) := K_2(F)/2$ .

For  $x, y \in F^{\times}$  we have  $(x, y) \in K_2(F)$  and (x, y)(y, x) = 1. Denote the 2-torsion part in Brauer group by  $br_2(F)$ . There is a map

$$k_2(F) \rightarrow br_2(F)$$

that sends (x,y) to the quaternion algebra  $F\langle i,j\rangle/(ij=-ji,i^2=x,j^2=y)$ . One can check that (x, 1-x) under this map is sent to  $M_2(F)$ , the 2 by 2 matrix.

**Theorem 3.2** (Merkurjev). The map described above induces an isomorphism

$$k_2(F) \simeq br_2(F)$$
.

Idea of the proof:

- First prove for simple classes of fields, like finite fields, global fields, purely transcendental extension of those + one more class of fields. The proofs are computations by hand using results about K-theories.
- The nice part of the proof is to reduce the general case to the special cases.

### 3.1. Special cases.

- 3.1.1. For finite fields. We have  $k_2(F) \simeq br_2(F) \simeq 0$ .
- 3.1.2. For number fields. One can compute everything by hand.

**Definition 3.3** (cyclic algebras). Assume there is a cyclic extension L/F with Galois group  $\mathbb{Z}/n=\langle\sigma\rangle$ . Given an element  $z\in F^{\times}$ , we can attach to this a central simple algebra (cyclic algebra), denoted by  $[L,z]=\langle L,\tau,\tau\lambda\tau^{-1}=\sigma(\lambda),\lambda\in L,\tau^n=z\rangle=0$  $L \oplus L\tau \oplus ... \oplus L\tau^{n-1}$ .

**Example 3.4.** The cyclic algebra  $[F(\sqrt{x}), y]$  is isomorphic to the quaternion algebra described above.

**Remark 3.5.** [L,z] only depends on  $z \in F^{\times}/NL^{\times}$ . In fact, this construction realizes the identification.

$$F^{\times}/NL^{\times} \xrightarrow{\simeq} H^{2}(Gal(F/L), L^{\times}) \xrightarrow{\sim} \ker(Br(F) \to Br(L))$$

$$z \longmapsto [L, z]$$

Here the map  $Br(F) \to Br(L)$  is given by the assignment  $D \mapsto D \otimes_F L$ . One can compute  $F^{\times}/NL^{\times} \simeq H^2(Gal(L/F), L^{\times})$ .

**Remark 3.6.** This also gives a proof that (x,1-x) is trivial in  $br_2(F)$ . Here we denote by (x,1-x) the image of it under the map  $k_2(F) \to br_2(F)$ . Note that it is the cyclic algebra  $[F(\sqrt{x}),1-x]$ . It follows by the fact that z=(1-x) is a norm from  $F(\sqrt{x})$ .

We abuse notation and sometimes denote by (x,y) the image of it under the map  $k_2(F) \to br_2(F)$ .

3.1.3. For global fields.

**Theorem 3.7** (Tate).  $k_2F \rightarrow br_2F$  is an isomorphism for global fields.

**Facts** 

- If F is a local fields (not  $\mathbb{C}$ ), then  $br_2(F) \simeq \mathbb{Z}/2$ . E.g.  $br_2\mathbb{R} = \{\mathbb{R}, \mathbb{H} = [\mathbb{C}, -1]\}$ .
- For any quadratic extension E/F, the map  $br_2F \rightarrow br_2E$  is zero.
- ullet For F a global field, the map  $br_2F o \oplus_v br_2F_v$  is injective.

**Lemma 3.8.** For any F,  $x,y \in F^{\times}$ , (x,y) = 0 in  $br_2(F) \implies (x,y) = 0$  in  $k_2(F)$ .

*Proof.* We have equivalent statements:

(x,y)=0 in  $br_2(F)$ .  $\iff y$  is a norm from  $F(\sqrt{x})$ .  $\iff y=a^2-b^2x$ .

Thus we need to show  $(x, a^2 - b^2 x) = 0$  in  $k_2(F)$ . Up to a square, it follows from the triviality of the element  $(\frac{b^2}{a^2}x, 1 - \frac{b^2}{a^2}x)$ .

proof of Tate's theorem with global field F.

• Step 1:  $(x_1, y_1) = (x_2, y_2)$  in  $br_2 \implies (x_1, y_1) = (x_2, y_2)$  in  $k_2$ . Proof of 1: Want to find an element  $z \in F^{\times}$  such that

$$(x_1, y_1) = (x_1, z) = (z, y_2) = (x_2, y_2)$$

in  $br_2$ . Then by Lemma 3.8 we are done.

Here is how to find z.

We consider  $D = F \oplus Fi \oplus Fj \oplus Fk = F \oplus Fi' \oplus Fj' \oplus Fk'$  where i, j, k, i', j', k' are determined as follows:

- (1)  $i^2 = x_1$ ,  $j^2 = y_1$ ,  $i'^2 = x_2$ ,  $j'^2 = y_2$ .
- (2) Let  $D^0$  denote the trace zero sub. We have  $i, j' \in D^0$ . Let k'' span orthogonal complement of i, j', with respect to norm in  $D^0$ .
- (3) Take  $z = k''^2$ .

This proof does not use the fact that F is a global field and is true for any fields. The next one uses.

- Step 2:  $k_2(F) \rightarrow br_2(F)$  is an isomorphism.
  - 1. Surjectivity is not hard: every element of  $br_2$  is a cyclic algebra  $[L, \alpha]$  for a quadratic extension L/K. Find L and work in  $L \otimes_K K_v$ .
  - 2. Injectivity is hard part. Start with  $(x_1, y_1) + ... + (x_n, y_n) \in ker(k_2 \to br_2)$ . Enough to find for any  $x_1, x_2, y_1, y_2$ , there are  $x_3, y_3$  such that

$$(x_1, y_1) + (x_2, y_2) = (x_3, y_3) \in k_2.$$

Then we can recursively reduce the number of pairs.

To do this, we find  $a,b,c\in F^{\times}$  such that  $(x_1,y_1)=(b,a)$ , and  $(x_2,y_2)=(c,a)$  in  $br_2$  by choosing a such that  $F(\sqrt{a})$  kills  $(x_1,y_1),(x_2,y_2)$ . By Lemma 3.8, the same equations hold in  $k_2$ :  $(x_1,y_1)+(x_2,y_2)=(bc,a)$ .

Facts we are gonna use:

• (Bass-Tate) There is a norm map  $k_2(F(\sqrt{a})) \to k_2 F$  compatible with maps to  $br_2$ . This is characterized by

$$(x \in F^{\times}, y \in F(\sqrt{a})^{\times}) \mapsto (x, Ny).$$

- Consider  $\alpha_F: k_2F \to br_2F$ . If  $\alpha_F$  is an iso, then the same holds true for a purely transcendental field F(x), i.e.  $\alpha_{F(X)}$  is an iso.
  - (a variation) Let Y be the conic with  $ax^2 + by^2 = 1$ . If  $\alpha_F$  and  $\alpha_{F(\sqrt{a})}$  are ismorphisms, then  $\alpha_{F(Y)}$  and  $\alpha_{F(Y)(\sqrt{a})}$ .
- ullet Specialization. Let Y be a smooth variety over F, p closed point.

There is a specialization map

$$sp: K_2F(Y) \to K_2F(p),$$
  
 $(f,g) \mapsto (f(p),g(p))$ 

where f, g are regular at p.

Side: If R is a discrete evaluation ring with quotient field Q and residue field  $\kappa$ . We want to study

$$K_2F(Q) \to K_2F(\kappa),$$
  
 $(q_1, q_2) \mapsto (\frac{\bar{q_1}}{\pi^{\nu(q_1)}}, \frac{\bar{q_2}}{\pi^{\nu(q_2)}})$ 

where pi is from a regular sequence at p.

Let F be a field and let  $a \in F^{\times}$  be a nonsquare. There is a norm map  $k_2F(\sqrt{a}) \xrightarrow{N} k_2(F)$ , and the composite  $k_2F \to k_2F(\sqrt{a}) \xrightarrow{N} k_2(F)$  is squaring.

Lemma 3.9 (Merkujev). The sequence

$$F^*/2 \to k_2 F \to k_2 F(\sqrt{a}) \xrightarrow{N} k_2(F)$$

is exact. Here the first map is given by  $x \mapsto (a, x)$ .

Intuition. Consider the diagram:

(3.10) 
$$F^*/2 \longrightarrow k_2 F \longrightarrow k_2 F(\sqrt{a}) \xrightarrow{N} k_2 F$$

$$\downarrow \alpha_F \qquad \qquad \downarrow \alpha_{F(\sqrt{a})} \qquad \downarrow \alpha_F .$$

$$F^*/2 \xrightarrow{\beta} br_2 F \longrightarrow br_2 F(\sqrt{a}) \xrightarrow{N} br_2 F$$

The bottom line is the exact sequence in Galois cohomology for F associated to

$$0 \to \mathbb{Z}/2 \to ind_{G_{F\sqrt{a}}}^{G_F}\mathbb{Z}/2 \to \mathbb{Z}/2 \to 0.$$

Proof of the theorem using the Lemma. 1. Injectivity: Suppose  $\Sigma(x_i,y_i) \in k_2F$  vanishes under  $\alpha_F$ . Pass to  $F(\sqrt{x_1})$ . We use induction.

$$(x_2, y_2) + \dots + (x_n, y_n) = 0 \in k_2 F(\sqrt{x_1})$$

$$\Longrightarrow (x_2, y_2) + \dots + (x_n, y_n) = (x_1, a) \in k_2 F \text{ for some } a$$

$$\Longrightarrow \Sigma(x_i, y_i) = (x_1, b) \in k_2 F \text{ for some } a.$$

2. Surjectivity:  $D \in br_2(F)$ .

- If D is split by a quadratic extension L/F, then D = [L, z].
- If D is split by Galois extension L/K of order  $2^n$ , then proceed by induction on n. Consider Diagram 3.10. Choose  $F(\sqrt{a}) \subset L$ . By induction,  $D \otimes_F F(\sqrt{a}) \in Im(\alpha_{F(\sqrt{a})})$ . By diagram chasing and injectivity of  $\alpha_F$ , we know that  $N(D \otimes_F F(\sqrt{a})) = 0$  in  $k_2F$ . Thus it lifts to  $k_2F$  and it maps to D up to an element in  $\beta(F^*/2)$ . Therefore, this is contained in  $Im(\alpha_F)$ .
- In the general case, where D is split by some Galois extension L/F, we consider  $L\supset L_1\supset F$  where  $L/L_1$  is 2 Sylow and  $F/L_1$  is odd. Then we use answer for  $L_1$  and norm on  $L_1/F$ .

This leaves us to prove Lemma 3.9. We need the following fact which characterizes when a product is trivial.

**Lemma 3.11.** The element  $\Pi^n(a_i,b_i)$  is trivial in  $k_2F$ , iff (possibly after increasing n with  $b_{n+1}...=1$ ) for each nonempty subset  $S\subset\{1,2,...N\}$ , there are  $c_S,d_S\in F$  such that  $b_i=\Pi_{i\in S}(c_s^2-a_Sd_S^2)$  in F,  $a_S=\Pi_{i\in S}a_i$ .

*Proof of Lemma 3.9.* We show the exactness at  $k_2F(\sqrt{d})$  of

$$F^*/2 \to k_2 F \to k_2 F(\sqrt{d}) \xrightarrow{N} k_2(F).$$

The rest is similar. Here we change a to d to avoid confusing notations.

Take  $P=\Pi(x_i,u_i+v_i\sqrt{d})\in k_2F(\sqrt{d})$ , with traivial norm  $\Pi(x_i,u_i^2-dv_i^2)\in k_2F$ . We want to show P is from  $k_2F$ .

By Lemma 3.11, we can find  $c_S$ ,  $d_S$ , with  $a_S = \prod_{i \in S} x_i$  such that

$$u_i^2 - dv_i^2 = \Pi_{i \in S}(c_s^2 - a_S d_S^2).$$

This defiens a variety Y in the affine space with variables  $u_i, v_i, a_i, c_S, d_S$  defined over  $F_0(d) = F_1$ . Here  $F_0$  is the prime field of  $F_1$ .

The previous facts show that  $\alpha_{F_1(Y)}$  and  $\alpha_{F_1(Y)(\sqrt{d})}$  are isomorphisms. This implies that the lemma is true for  $F_1(Y)$ .

Now we think of P as an element living in the function field, denoted by  $\tilde{P}=\Pi(\alpha_i,u_i+v_i\sqrt{d})\in k_2F(Y)(\sqrt{d})$  with  $N_{F_1(Y)}^{F_1(Y)(\sqrt{d})}\tilde{P}$  trivial.

The result follows by considering

$$\tilde{P} \in k_2 F_1(Y) \longmapsto \tilde{P} \in k_2 F_1(Y)(\sqrt{d})$$

$$\downarrow^{sp} \qquad \qquad \downarrow^{sp} .$$

$$\tilde{P} \in k_2 F \longmapsto P \in k_2 F(\sqrt{d})$$

- 4. Talk 4, Nov 18, Beilinson-Lichtenbaum conjecture, Peter
- 4.1. Big picture. We have a family of conjectures.
  - BL(n): weight n Beilinson-Lichtenbaum conjecture.
  - BK(n): Bloch–Kato conjecture.
  - H90(n): Hilbert's Theorem 90.
- **Remark 4.1.** The latter two are about fields, and BL(n) is more general about motivic theory and smooth schemes.
  - It will be clear that  $BL(n) \Longrightarrow BK(n) \Longrightarrow H90(n)$ .
  - The key input to Voevodsky's proof is that all implications are reversible.

Proof outline: use induction on n.

(1) First show the n = 1 case is true.

- (2) Assume BL(n-1), then do many hard things.
- (3) get seemingly weaker H90(n).

**Remark 4.2.** A historical remark: given the existence of  $\mathbb{Z}(n)$ , the equivalence of the 3 conjectures was known to Voevodsky–Suslin in 1994.

4.2. A reminder of BK(n). Recall the norm-residue map. Take the Kummer sequence

$$1 \to \mu_l \to \mathbb{G}_m \xrightarrow{(-)^l} \mathbb{G}_m \to 1.$$

Taking etale cohomology, we get a long exact sequence.

$$\rightarrow H_{et}^0(k,\mathbb{G}_m) \xrightarrow{l} H_{et}^0(k,\mathbb{G}_m) \xrightarrow{\partial} H_{et}^1(k,\mu_l) \rightarrow 0.$$

Here we have  $H^0_{et}(k,\mathbb{G}_m)=k^{\times}$ . By the LES,  $\partial$  gives an isomorphism

$$\partial: k^{\times}/l \xrightarrow{\sim} H^1_{et}(k, \mathbb{G}_m).$$

We have the map

$$k^{\times} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} k^{\times} \xrightarrow{\partial^{\otimes q}} H^1_{et}(k, \mu_l) \xrightarrow{\cup} H^q_{et}(k, \mu_l^{\otimes q}).$$

**Conjecture 4.3** (BK(n)).  $K_n^M(k)/l \to H_{et}^n(k,\mu_l^{\otimes n})$  is an isomorphism when  $l \neq \operatorname{char}(k)$ .

4.3. Steinberg relation (under Piotr's request).

**Proposition 4.4** (Projection formula). Let E/F be a finite separable extension. Pick  $a \in F^{\times}$ ,  $b \in E^{\times}$ . Then we have

$$\operatorname{tr}_{F/F}(a \cup b) = a \cup \operatorname{Nm}_{F/F}(b).$$

**Proposition 4.5.** If m is an integer invertible in F then

$$F^{\times} \otimes_{\mathbb{Z}} F^{\times} \to H^2_{et}(F, \mu_m^{\otimes} 2)$$

factor through  $K_2^M(F)/m$ .

*Proof.* Choose any  $a \in F \setminus \{0,1\}$ . We want to show  $a \cup (1-a)$  vanishes mod m. The trick is to factor the separable polynomial (separable because a is not zero and n is invertible in the field).

Assume we have

$$t^m - a = \prod_i f_i \in F[t]$$

with  $f_i$  irreducible.

Now we look for a field E to apply the projection formula. Take  $F_i := F(\text{root of } f_i)$ . Setting t = 1, we have

$$1 - a = \prod_{i} Nm_{F_i/F} (1 - x_i).$$

Now we can use the formula to compute the cup product.

$$a \cup (1-a) = \sum_{i} a \cup \operatorname{Nm}_{F_{i}/F}(1-x_{i})$$

$$= \sum_{i} \operatorname{tr}_{F_{i}/F}(a \cup (1-x_{i}))$$

$$= m \sum_{i} \operatorname{tr}_{F_{i}/F}(x_{i} \cup (1-x_{i})) = 0 \mod m.$$

The last equality holds by  $x_i^m = a$ .

4.4. **Recap of Toni's talk.** In the second half, Toni introduced the motivic complexes. Let k be a field. We have an additive category  $\mathbf{Cor}_k$  of finite correspondences. We have a faithful functor  $\mathbf{Sm}_k \to \mathbf{Cor}_k$  with assignment

$$(X \xrightarrow{f} Y) \mapsto (X \leftarrow \text{graph } f \to Y).$$

Definition 4.6. A presheaf with transfers is an additive functor

$$F: \mathbf{Cor}_k^{op} \to \mathbf{Ab}.$$

We have a restriction functor

$$\mathbf{PSh}^{\mathrm{tr}}(k) \xrightarrow{rest} \mathbf{PSh}(\mathbf{Sm}_k).$$

**Definition 4.7.** Let  $\tau$  be a topology on  $\mathbf{Sm}_k$ . A presheaf with transfers F is a  $\tau$ -sheaf if  $F|_{\mathbf{Sm}_k}$  is a  $\tau$ -sheaf.

Toni constructed in his talk that given  $A \in \mathbf{Ab}, q \geq 0$ , we can get a cochain complex A(q) of etale sheaves with transfers. It is concentrated in cohomological degrees  $\leq q$ .

**Definition 4.8** (Motivic cohomology). Let X be a smooth scheme over k. We have motivic cohomology

$$H^p(X, A(q)) := H^p_{Z_{qr}}(X, A(q)|_{X_{Z_{qr}}}),$$

and etale motivic cohomology

$$H_{et}^{p}(X, A(q)) := H_{et}^{p}(X, A(q)|_{X_{et}}).$$

**Remark 4.9.** The proof of BK(n) interprets one side as etale motivic cohomology, and the other side as Zariski motivic cohomology.

We have a pushforward functor

$$\pi_*: \mathbf{Sh}_{et}(\mathbf{Sm}_k) \to \mathbf{Sh}_{Zar}(\mathbf{Sm}_k)$$

and the pullback functor  $\boldsymbol{\pi}^*$  is the etale sheafification.

Applying the unit id  $\to R\pi_*\pi^*$  to A(q), we get

$$A(q) \xrightarrow{} R\pi_*A(q)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

- 4.5. Properties/Axioms. We will use the following properties for
  - (1) The complex  $\mathbb{Z}(0) \simeq \mathbb{Z}$  is the constant sheaf. And we have  $\mathbb{Z}(1) \simeq \mathbb{G}_m[-1]$ .
  - (2) The complex A(q) is in degree  $\leq q$ .
  - (3) A vanishing property following from (2): if p > q + dim(X), then we have

$$H^p(X, A(q)) = 0.$$

(4) If  $n \ge 2$  is invertible in k, there is an exact triangle

$$\mathbb{Z}(q) \xrightarrow{n} \mathbb{Z}(q) \to \mathbb{Z}/n(q).$$

(5) There is a natural isomorphism

$$K_q^M(K) \xrightarrow{\sim} H^q(k, \mathbb{Z}(q)).$$

(6) If  $char(k) \neq l$ , then we have

$$K_q^M(k)/l \xrightarrow{\sim} H^q(k, \mathbb{Z}/l(q)).$$

This relates the left hand side of BK(n) to motivic cohomology.

(7) If  $n \geq 2$  is invertible in k,

$$\phi: \mu_n \xrightarrow{\sim \text{ qis of etale sheaves}} \mathbb{Z}/n(1)$$

This gives

$$\mu_n^{\otimes q} \xrightarrow{\simeq} \mathbb{Z}/n(q)$$

This relates the right hand side of BK(n) to motivic cohomology.

(8) The equivalences in (6,7) is compatible with the norm-residue map

$$K_q^M(k)/l \xrightarrow{\sim} H^q(k, \mathbb{Z}/l(q))$$

$$\downarrow \qquad \qquad \downarrow$$

$$H_{et}^q(k, \mu_l^{\otimes q}) \xrightarrow{\sim} H_{et}^q(k, \mathbb{Z}/l(q))$$

(9) Localization: Assume X/k is smooth. We have

$$H_{et}^p(X,\mathbb{Z}(q))\otimes\mathbb{Q}\xrightarrow{\sim} H_{et}^p(X;\mathbb{Q}(q)).$$

This is also true when  $\mathbb{Q}$  is replaced by  $\mathbb{Z}_{(l)}$ .

(10) Rational isomorphism: Assume X/k is smooth. We have

$$H^p(X;\mathbb{Q}(q)) \xrightarrow{\sim} H^p_{et}(X;\mathbb{Q}(q)).$$

Remark 4.10. By (7), change of topology gives a map

$$\mathbb{Z}/l(q) \to R\pi_*\mu_l^{\otimes q}$$
.

Since  $\mathbb{Z}/l(q)$  is in degree  $\leq q$ , it factors

$$\mathbb{Z}/l(q) \to \tau^{\leq q} R \pi_* \mu_l^{\otimes q}.$$

### 4.6. Conjecture BL(n).

**Conjecture 4.11** (BL(n)). Let l be a prime. For every field k with char(k)  $\neq l$ , the change of topology map

$$\mathbb{Z}/l(q) \to \tau^{\leq q} R \pi_* \mu_1^{\otimes q}$$

is a quasi-isomorphism.

By the reinterpretation, this implies BK(n).

**Remark 4.12.** Akhil asks Beilinson why he made this conjecture; Beilinson responded that he observed they satisfy the projective bundle formula.

**Remark 4.13.** To prove BK(1), we need H90:  $0 = H_{et}^1(k, \mathbb{G}_m) \simeq H_{et}^2(k, \mathbb{Z}(1))$ . We only need that the l-torsion subgroup is zero.

**Lemma 4.14.** If p > q then the following are true.

- (1)  $H_{et}^p(k, \mathbb{Z}(q))$  is torsion.
- (2) The l-torsion subgroup of  $H^p_{et}(k,\mathbb{Z}(q))$  is  $H^p_{et}(k,\mathbb{Z}_{(l)}(q))$ .

Proof. 1) Consider the LES associated to the triangle

$$\mathbb{Z}(q) \to \mathbb{Q}(q) \to \mathbb{Q}/\mathbb{Z}(q).$$

We have

$$\cdots \to H^{p-1}_{et}(k, \mathbb{Q}/\mathbb{Z}(q)) \xrightarrow{\partial} H^p_{et}(k, \mathbb{Z}(q)) \to H^p_{et}(k, \mathbb{Q}(q)) \xrightarrow{\sim \text{by (10)}} H^p(k, \mathbb{Q}(q)) = 0.$$

The group  $H_{et}^{p-1}(\mathbb{Q}/\mathbb{Z}(q))$  is torsion, and the middle map is zero. Thus the boundary map is surjective. The result follows.

2) The *l*-torsion subgroup is  $H^p_{et}(k,\mathbb{Z}(q))\otimes_{\mathbb{Z}}\mathbb{Z}_{(l)}$ . By (9), this is the same as

$$H_{et}^p(k,\mathbb{Z}_{(l)}(q)).$$

**Conjecture 4.15** (H90(n)).

$$H_{et}^{n+1}(k, \mathbb{Z}_{(1)}(n)) = 0.$$

4.7. Why BK(n) implies H90(n).

**Proposition 4.16.**  $BK(n) \implies H90(n)$ .

Proof. Consider the exact triangle

$$\mathbb{Z}(n) \xrightarrow{l} \mathbb{Z}(n) \to \mathbb{Z}/l(n) \simeq_{et} \mu_l^{\otimes n}.$$

To simplify, write  $H_{et}^{p}(A(q))$  for  $H_{et}^{p}(k, A(q))$ .

Consider the following diagram.

If f is surjective, then g is surjective. Therefore

$$\begin{split} \ker(H^{n+1}_{et}(\mathbb{Z}(n)) &\xrightarrow{l} H^{n+1}_{et}(\mathbb{Z}(n))) \text{ is zero} \\ &\iff H^{n+1}_{et}(\mathbb{Z}(n)) \text{ has no } l\text{-torsion} \\ &\iff H^{n+1}_{et}(\mathbb{Z}_{(l)}(n)) \text{ is zero} = \text{H90(n)}. \end{split}$$

- 4.8. **Equivalence of three conjectures.** Very rough ideas:
  - (1) Show  $BL(n) \Longrightarrow BL(n-1)$ ,  $BK(n) \Longrightarrow BK(n-1)$ , and  $H90(n) \Longrightarrow H90(n-1)$ .
  - (2) use a dimension shifting argument involving some auxiliary cohomology theory of  $\partial \Delta^n$ , and use (1) to show by induction BK(n) implies BL(n).

We show (1): use localization and specialization.

**Proposition 4.17.** For any p,q, there are split exact sequences as follows:

$$0 \to H^p_{et}(k,A(q)) \to H^p_{et}(k(t),A(q)) \xrightarrow{\partial} \oplus_{\textit{closed}} \ _{x \in \mathbb{A}^1} H^{p-1}_{et}(k(x),A(q-1)) \to 0.$$

**Corollary 4.18.** (1) If H90(n) holds for k(t), then it holds for k. (1") H90(n) implies H90(n-1).

(2) If  $K_n^M(k(t))/l \to H_{et}^n(k(t), \mu_l^{\otimes n})$  is an surjective, so is

$$K_{n-1}^{M}(k(t))/l \to H_{et}^{n-1}(k(t), \mu_{l}^{\otimes n}).$$

(2") BK(n) implies BK(n-1).

*Proof.* 1) apply the localization sequence with respect to  $A = \mathbb{Z}_{(l)}$ .

2) Take  $A = \mathbb{Z}/l$ .

$$K_n^M(k(t))/l \xrightarrow{\partial} K_{n-1}^M(k)/l$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_{et}^n(k(t), \mu_l^{\otimes n}) \xrightarrow{\partial} H_{et}^{n-1}(k, \mu_l^{\otimes n-1})$$