Homework 3, Living Crystals

Erik Norlin

November, 2022

9.1: a, b (*v* change)

500 iterations for every run in 9.1.

Figure 1: v = 0, $D_R = 5$ and $D_T = 8e - 14$.

Figure 2: v = 1e - 6, $D_R = 5$ and $D_T = 8e - 14$.

Figure 3: v = 2e - 6, $D_R = 5$ and $D_T = 8e - 14$.

Figure 4: v = 3e - 6, $D_R = 5$ and $D_T = 8e - 14$.

9.1: c (D_T change)

Figure 5: v = 3e - 6, $D_R = 0.5$ and $D_T = 2e - 12$.

Figure 6: v = 3e - 6, $D_R = 0.5$ and $D_T = 5e - 13$.

Figure 7: v = 3e - 6, $D_R = 0.5$ and $D_T = 8e - 14$.

9.1: d (D_R change)

Figure 8: v = 3e - 6, $D_R = 5$ and $D_T = 8e - 14$.

Figure 9: v = 3e - 6, $D_R = 0.5$ and $D_T = 8e - 14$.

Figure 10: v = 3e - 6, $D_R = 0.05$ and $D_T = 8e - 14$.

9.2: a, b, c

10000 iterations for all runs in 9.2.

Figure 11: Ensemble averaged MSD. $D_R = 5$ and $D_T = 8e - 14$.

Figure 12: Time averaged MSD. $D_R = 5$ and $D_T = 8e - 14$.

Figure 13: Ensemble averaged MSD. $D_R = 0.05$ and $D_T = 2e - 12$.

Figure 14: Time averaged MSD. $D_R = 0.05$ and $D_T = 2e - 12$.

9.3: a, b, c, d

Figure 15: Both x and y-axis are length (m). No. time steps = 1000, no. particles = 100, $\Delta t = 0.01, \ v = 3e-6, \ R = 1e-6, \ D_R = 1, \ D_T = 0.1e-6.$

Figure 16: Both x and y-axis are length (m). No. time steps = 100, no. particles = 100, $\Delta t = 10$, v = 3e - 6, R = 1e - 6, $D_R = 1$, $D_T = 0.1e - 6$.

Figure 17: Both x and y-axis are length (m). No. time steps = 1000, no. particles = 100, $\Delta t = 0.000001$, v = 3e - 6, R = 1e - 6, $D_R = 1$, $D_T = 0.1e - 6$.

For large Δt the particles "jumps" unrealistically and vice versa. Thus, the concentration of the particles is determined by Δt so the choice of Δt is very important for a physical correct behaviour of the simulation.

9.4: a, b

Unfortunately no clustering.

Figure 18: Both x and y-axis are length (m). No. time steps = 500, no. particles = 50, $\Delta t = 0.3, v_0 = 20e - 6, R = 1e - 6.$

9.5: a, b

Unfortunately no clustering.

Figure 19: Both x and y-axis are length (m). No. time steps = 500, no. particles = 50, $\Delta t = 0.3, v_0 = 0, R = 1e-6.$

Figure 20: Both x and y-axis are length (m). No. time steps = 500, no. particles = 50, $\Delta t = 0.3, v_0 = 20e-6, R = 1e-6.$

Figure 21: Both x and y-axis are length (m). No. time steps = 500, no. particles = 50, $\Delta t = 0.3, v_0 = 50-6, R = 1e-6.$

Figure 22: Both x and y-axis are length (m). No. time steps = 500, no. particles = 100, $\Delta t = 0.3, v_0 = 50-6, R = 1e-6.$