Machine Learning 1.07: Logistic Regression & Polling

Tom S. F. Haines T.S.F.Haines@bath.ac.uk

- Does binary classification (non-binary variants).
- But so does a random forest.
- So which is better?

- Does binary classification (non-binary variants).
- But so does a random forest.
- So which is better?
- A random forest (mostly).

- Does binary classification (non-binary variants).
- But so does a random forest.
- So which is better?
- A random forest (mostly).
- So why should you care?
 - Faster, and can be trained incrementally/online
 - Really popular everywhere but computer science!
 - Simple (Invented in 1958!)

- Does binary classification (non-binary variants).
- But so does a random forest.
- So which is better?
- A random forest (mostly).
- So why should you care?
 - Faster, and can be trained incrementally/online
 - Really popular everywhere but computer science!
 - Simple (Invented in 1958!)
 - Its good for understanding all the subtle details. . .

The Logistic Function

(also called the sigmoid function)

$$y=rac{1}{1+e^{-x}}$$
 or $y=rac{e^x}{1+e^x}$ or $y=rac{1}{2}\left(1+ anh(x/2)
ight)$

Maps
$$-\infty - +\infty$$
 to $0-1$

Fitting To Data I

- Binary classification: Output, y, is 0 or 1.
- For now assume single input feature, x.
- Probabilities go from 0 to 1, so lets assume

$$P(y=1|x) = \frac{1}{1+e^{-z}}, \qquad P(y=0|x) = 1 - \frac{1}{1+e^{-z}} = \frac{e^{-z}}{1+e^{-z}}, \qquad z=\beta_0 + \beta_1 x$$

Fitting To Data I

- Binary classification: Output, y, is 0 or 1.
- For now assume single input feature, x.
- Probabilities go from 0 to 1, so lets assume

$$P(y=1|x) = \frac{1}{1+e^{-z}},$$
 $P(y=0|x) = 1 - \frac{1}{1+e^{-z}} = \frac{e^{-z}}{1+e^{-z}},$ $z=\beta_0 + \beta_1 x$

- This is a model.
- β_0 and β_1 are parameters which we fit to data.
- Note the assumptions!

Fitting To Data II

- We have a data set: y_i and x_i for $i \in 1..N$
- We want to maximise the probability of the data set:

$$\operatorname*{argmax}_{\beta_0,\beta_1} \left\{ \prod_{i=1}^N P(y_i|x_i,\beta_0,\beta_1) \right\}$$

- No analytic solution.
- Gradient descent!

Fitting To Data II

- We have a data set: y_i and x_i for $i \in 1..N$
- We want to maximise the probability of the data set:

$$\operatorname*{argmax}_{\beta_0,\beta_1} \left\{ \prod_{i=1}^N P(y_i|x_i,\beta_0,\beta_1) \right\}$$

- No analytic solution.
- Gradient descent!
- Note:
 - Historically, Logistic regression was optimised by minimising distance.
 - This has a closed form expression, but is idiotic: Output not probabilities.
 - Many implementations still use this approach however. Check!

Simplifying I

• Swap P() for logistic equation:

$$\operatorname*{argmax}_{\beta_0,\beta_1} \left\{ \prod_{i=1}^N p_i^{y_i} (1-p_i)^{1-y_i} \right\}, \qquad \quad p_i = \frac{1}{1+e^{-z_i}}, \quad z_i = \beta_0 + \beta_1 x_i$$

Simplifying I

• Swap P() for logistic equation:

$$\operatorname*{argmax}_{\beta_0,\beta_1} \left\{ \prod_{i=1}^N p_i^{y_i} (1-p_i)^{1-y_i} \right\}, \qquad \quad p_i = \frac{1}{1+e^{-z_i}}, \quad z_i = \beta_0 + \beta_1 x_i$$

• Take the log – argmax doesn't care:

$$\operatorname*{argmax}_{\beta_0,\beta_1} \left\{ \sum_{i=1}^N y_i \log(p_i) + (1-y_i) \log(1-p_i) \right\}$$

Simplifying I

• Swap P() for logistic equation:

$$\underset{\beta_0,\beta_1}{\operatorname{argmax}} \left\{ \prod_{i=1}^{N} p_i^{y_i} (1 - p_i)^{1 - y_i} \right\}, \qquad p_i = \frac{1}{1 + e^{-z_i}}, \quad z_i = \beta_0 + \beta_1 x_i$$

• Take the log – argmax doesn't care:

$$\operatorname*{argmax}_{\beta_0,\beta_1} \left\{ \sum_{i=1}^N y_i \log(p_i) + (1-y_i) \log(1-p_i) \right\}$$

• Rearrange:

$$\operatorname*{argmax}_{\beta_0,\beta_1} \left\{ \sum_{i=1}^N \log(1-p_i) + \sum_{i=1}^N y_i \log\left(\frac{p_i}{1-p_i}\right) \right\}$$

Simplifying II

• What is $\log(1-p_i)$?

$$\log\left(1-rac{1}{1+e^{-z_i}}
ight)=\log\left(rac{1}{1+e^{z_i}}
ight)=-\log(1+e^{z_i})$$

Simplifying II

• What is $\log(1 - p_i)$?

$$\log\left(1-rac{1}{1+e^{-z_i}}
ight)=\log\left(rac{1}{1+e^{z_i}}
ight)=-\log(1+e^{z_i})$$

• What is $\log\left(\frac{p_i}{1-p_i}\right)$?

$$\log\left(\frac{1}{1+e^{-z_i}}\frac{1+e^{-z_i}}{e^{-z_i}}\right) = z_i$$

Simplifying II

• What is $\log(1 - p_i)$?

$$\log\left(1-rac{1}{1+e^{-z_i}}
ight)=\log\left(rac{1}{1+e^{z_i}}
ight)=-\log(1+e^{z_i})$$

• What is $\log\left(\frac{p_i}{1-p_i}\right)$?

$$\log\left(\frac{1}{1 + e^{-z_i}} \frac{1 + e^{-z_i}}{e^{-z_i}}\right) = z_i$$

• So...

$$\operatorname*{argmax}_{\beta_0,\beta_1} \left\{ \sum_{i=1}^N y_i z_i - \sum_{i=1}^N \log(1 + e^{z_i}) \right\}$$

• For β_j (L = likelihood, i.e. term in argmax):

$$\frac{\delta L}{\beta_j} = \frac{\delta L}{\delta z} \frac{\delta z}{\beta_j} = \sum_{i=1}^{N} \left\{ \left(y_i - \frac{1}{1 + e^{-z_i}} \right) \frac{\delta z_i}{\delta \beta_j} \right\}$$

• For β_i (L = likelihood, i.e. term in argmax):

$$\frac{\delta L}{\beta_j} = \frac{\delta L}{\delta z} \frac{\delta z}{\beta_j} = \sum_{i=1}^{N} \left\{ \left(y_i - \frac{1}{1 + e^{-z_i}} \right) \frac{\delta z_i}{\delta \beta_j} \right\}$$

β₀:

$$\frac{\delta L}{\beta_1} = \sum_{i=1}^{N} \left\{ \left(y_i - \frac{1}{1 + e^{-z_i}} \right) \right\}$$

• β_1 :

$$\frac{\delta L}{\beta_1} = \sum_{i=1}^{N} \left\{ \left(y_i - \frac{1}{1 + e^{-z_i}} \right) x_i \right\}$$

Model Fitting - Gradient Ascent

- Initialise all β to 0; $\beta_i^{(0)} = 0$.
- Iterate updating each β_i with

$$\beta_j^{(t+1)} = \beta_j^{(t+1)} + \lambda \frac{\delta L}{\beta_j}$$

and λ set to a suitably small step size.

• Stop when the β values stop changing / L stops increasing.

Multiple Features

• Replace z_i with:

$$z_i = \vec{\beta} \cdot \vec{x_i}$$

where

$$\vec{\beta} = [\beta_0, \beta_1, \beta_2, \ldots]^T$$
 $\vec{x_i} = [1, x_{i,1}, x_{i,2}, \ldots]^T$

• All of the above just works, exactly as you would expect!

• Why do we care about getting probability?

- Why do we care about getting probability?
 - Communicating uncertainty to users.
 - Communicating uncertainty to the "next step".

- Why do we care about getting probability?
 - Communicating uncertainty to users.
 - Communicating uncertainty to the "next step".
- Are we getting probability?

- Why do we care about getting probability?
 - Communicating uncertainty to users.
 - Communicating uncertainty to the "next step".
- Are we getting probability?
 - Maybe...
 - Optimising a reasonable metric (maximum likelihood).
 - But assuming a very specific distribution.
 - Few data sets follow this.

- Why do we care about getting probability?
 - Communicating uncertainty to users.
 - Communicating uncertainty to the "next step".
- Are we getting probability?
 - Maybe...
 - Optimising a reasonable metric (maximum likelihood).
 - But assuming a very specific distribution.
 - Few data sets follow this.
- Are random forests better?

Straight in Feature Space

Can't separate with a straight line:

Straight in Feature Space

Can't separate with a straight line:

Can't separate with a straight line:

Straight in Feature Space

Straight in Feature Space

Can't separate with a straight line:

- Added a third feature distance from centre of circle.
- A straight line in **feature space** can now separate the data.

Feature Engineering I

- Advanced machine learning: Designs features for you.
- Simple machine learning: You have to design them yourself.

Feature Engineering I

- Advanced machine learning: Designs features for you.
- Simple machine learning: You have to design them yourself.
- In some cases you can't beat the fully automatic approach.
- But in many a simple algorithm with the right features will win!

Feature Engineering I

- Advanced machine learning: Designs features for you.
- Simple machine learning: You have to design them yourself.
- In some cases you can't beat the fully automatic approach.
- But in many a simple algorithm with the right features will win!
- Compute time is cheaper than your time.
- Automatic feature design is taking over.

Feature Engineering II

Examples:

- Convert a continuous variable into a set of discrete variables, marking which bin of a histogram that continuous variable has landed in.
- As above, but with triangular kernels this is equivalent to letting the algorithm choose an arbitrary piecewise linear function of a feature.
- Calculate random non-linear functions of the input features (Reservoir computing).

Goal: Guess which way an election is going to go.

Goal: Guess which way an election is going to go.

- Sample population (telephone, internet), ask questions:
 - Voting intention
 - Demographics (age, gender etc.)
 - Other useful stuff

Problem: Can't sample more than a fraction of a percent of population.

Goal: Guess which way an election is going to go.

- Sample population (telephone, internet), ask questions:
 - Voting intention
 - Demographics (age, gender etc.)
 - · Other useful stuff

Problem: Can't sample more than a fraction of a percent of population.

- Idiots approach simulate election with random sample.
- Will not work as sample too small.

Goal: Guess which way an election is going to go.

- Sample population (telephone, internet), ask questions:
 - Voting intention
 - Demographics (age, gender etc.)
 - · Other useful stuff

Problem: Can't sample more than a fraction of a percent of population.

- Idiots approach simulate election with random sample.
- Will not work as sample too small.
- Normal approach (most polling companies):
 - Re-weight sample members, e.g. if census says 10% of the country are managers, but it's only 5% in sample double the value of their vote (called raking).
 - · Simulate election with this correction.
 - Add fudge factors to ensure you would have got it right last time!

- Smart approach (used by YouGov and FiveThirtyEight):
 - Data set 1: Polling data.
 - Data set 2: Entire country: Last census plus anything else available!
 - Learn function using polling data:
 - Input: Questions shared between between two data sets.
 - Output: How the person is going to vote.
 - Simulate election for entire country!

- Smart approach (used by YouGov and FiveThirtyEight):
 - Data set 1: Polling data.
 - Data set 2: Entire country: Last census plus anything else available!
 - Learn function using polling data:
 - Input: Questions shared between between two data sets.
 - Output: How the person is going to vote.
 - Simulate election for entire country!
- This is the multilevel regression and poststratification algorithm.
- Typically called "Mr P".

- Smart approach (used by YouGov and FiveThirtyEight):
 - Data set 1: Polling data.
 - Data set 2: Entire country: Last census plus anything else available!
 - Learn function using polling data:
 - Input: Questions shared between between two data sets.
 - Output: How the person is going to vote.
 - Simulate election for entire country!
- This is the multilevel regression and poststratification algorithm.
- Typically called "Mr P".
- "multilevel": Include terms to account for group biases (in this context).
- "poststratification" means running per-voting region with region demographics.
- Instead of fudge factors ask how people voted last time!

Related models

- Probit regression: Replace the logistic distribution with the Gaussian distribution.
- Whole family of these: Generalised Linear Model.
- Hidden and output nodes in a neural network may each be logistic regression.
- Used to be the dominant choice, these days linear rectified units are preferred to sigmoid functions.

- Logistic regression
- Probability not simple!
- Basic feature engineering

Further Reading

- Guide to Mr P: http://www.princeton.edu/~jkastell/MRP_primer/mrp_primer.pdf
- Andrew Gelman, inventor of Mr P, has an excellent blog: http://andrewgelman.com/ (his take downs of bad research are particularly educational)