CCA-Secure and Authentication Encryption

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2014

Outline

1 Constructing CCA-Secure Encryption Schemes

2 Obtaining Privacy and Message Authentication

Content

1 Constructing CCA-Secure Encryption Schemes

2 Obtaining Privacy and Message Authentication

Recall Security Against CCA

The CCA indistinguishability experiment $PrivK_{\mathcal{A},\Pi}^{cca}(n)$:

- $1 k \leftarrow \mathsf{Gen}(1^n).$
- 2 \mathcal{A} is given input 1^n and oracle access $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ and $\mathcal{A}^{\mathsf{Dec}_k(\cdot)}$, outputs m_0, m_1 of the same length.
- **3** a random bit $b \leftarrow \{0,1\}$ is chosen. Then $c \leftarrow \operatorname{Enc}_k(m_b)$ is given to \mathcal{A} .
- 4 \mathcal{A} continues to have oracle access **except for** c, outputs b'.
- **5** If b'=b, \mathcal{A} succeeded $\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}=1$, otherwise 0.

Definition 1

 Π has indistinguishable encryptions under a CCA (CCA-secure) if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Constructing CCA-Secure Encryption Schemes

Construction 2

 $\Pi_E = (\mathsf{Gen}_E, \mathsf{Enc}, \mathsf{Dec})$, $\Pi_M = (\mathsf{Gen}_M, \mathsf{Mac}, \mathsf{Vrfy})$. Π' :

- $\operatorname{\mathsf{Gen}}'(1^n)$: $k_1 \leftarrow \operatorname{\mathsf{Gen}}_E(1^n)$ and $k_2 \leftarrow \operatorname{\mathsf{Gen}}_M(1^n)$.
- $\operatorname{Enc}'_{k_1,k_2}(m)$: $c \leftarrow \operatorname{Enc}_{k_1}(m)$, $t \leftarrow \operatorname{Mac}_{k_2}(c)$ and output $\langle c, t \rangle$.
- $\operatorname{Dec}'_{k_1,k_2}(\langle c,t\rangle)$: If $\operatorname{Vrfy}_{k_2}(c,t)\stackrel{?}{=}1$, output $\operatorname{Dec}_{k_1}(c)$; otherwise output "failure" \bot .

Proof of CCA-Secure Encryption Schemes

Theorem 3

If Π_E is a CPA-secure private-key encryption scheme and Π_M is a secure MAC with unique tags, then Construction Π' is CCA-secure.

Idea: The decryption oracle is useless. CCA = CPA-then-MAC.

Proof.

VQ: $\mathcal A$ submits a "new" query to oracle Dec' and $\mathsf{Vrfy}=1$.

$$\Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1] \leq \Pr[\mathsf{VQ}] + \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1 \wedge \overline{\mathsf{VQ}}]$$

We need to prove the following claims.

- Pr[VQ] is negligible.
- $Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1 \land \overline{\mathsf{VQ}}] \leq \frac{1}{2} + \mathsf{negl}(n).$

Proof of "Pr[VQ] is negligible"

Idea: Reduce A_M (attacking Π_M with an oracle $\mathsf{Mac}_{k_2}(\cdot)$) to A.

Proof.

- lacksquare \mathcal{A}_M chooses $i \leftarrow \{1, \dots, q(n)\}$ u.a.r.
- \blacksquare Run $\mathcal A$ with the encryption/decryption oracles.
- If the ith decryption oracle query from $\mathcal A$ uses a "new" c, output (c,t) and stop.
- Macforge_{A_M,Π_M}(n) = 1 only if VQ occurs.
- A_M correctly guesses i with probability 1/q(n).

$$\Pr[\mathsf{Macforge}_{\mathcal{A}_M,\Pi_M}(n) = 1] \ge \Pr[\mathsf{VQ}]/q(n).$$

Proof of " $\Pr[\operatorname{Priv}\mathsf{K}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1 \land \overline{\mathsf{VQ}}] \leq \frac{1}{2} + \mathsf{negl}(n)$ "

Idea: Reduce A_E (attacking Π_E with an oracle $\operatorname{Enc}_{k_1}(\cdot)$) to A.

Proof.

- \blacksquare Run $\mathcal A$ with the encryption/decryption oracles.
- lacksquare Run PrivK $^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E}$ as PrivK $^{\mathsf{cca}}_{\mathcal{A},\Pi'}.$
- lacksquare \mathcal{A}_E outputs the same b' that is output by \mathcal{A} .
- $\qquad \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E}(n) = 1 \wedge \overline{\mathsf{VQ}}] = \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1 \wedge \overline{\mathsf{VQ}}]$ unless VQ occurs.

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_{B},\Pi_{E}}(n) = 1] \geq \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n) = 1 \wedge \overline{\mathsf{VQ}}].$$

Content

1 Constructing CCA-Secure Encryption Schemes

2 Obtaining Privacy and Message Authentication

Message Transmission Scheme

- **Key-generation** algorithm outputs $k \leftarrow \text{Gen}'(1^n)$. $k = (k_1, k_2)$. $k_1 \leftarrow \text{Gen}_E(1^n)$, $k_2 \leftarrow \text{Gen}_M(1^n)$.
- Message transmission algorithm is derived from $\operatorname{Enc}_{k_1}(\cdot)$ and $\operatorname{Mac}_{k_2}(\cdot)$, outputs $c \leftarrow \operatorname{EncMac'}_{k_1,k_2}(m)$.
- **Decryption** algorithm is derived from $\mathsf{Dec}_{k_1}(\cdot)$ and $\mathsf{Vrfy}_{k_2}(\cdot)$, outputs $m \leftarrow \mathsf{Dec}'_{k_1,k_2}(c)$ or \bot .
- **Correctness requirement**: $\operatorname{Dec}'_{k_1,k_2}(\operatorname{EncMac}'_{k_1,k_2}(m)) = m$.

Defining Secure Message Transmission

The secure message transmission experiment $Auth_{\mathcal{A},\Pi'}(n)$:

- 1 $k = (k_1, k_2) \leftarrow \mathsf{Gen}'(1^n).$
- **2** \mathcal{A} is given input 1^n and oracle access to $\operatorname{EncMac'}_k$, and outputs $c \leftarrow \operatorname{EncMac'}_k(m)$.
- $3 m := \mathsf{Dec}_k'(c). \ \mathsf{Auth}_{\mathcal{A},\Pi'}(n) = 1 \iff m \neq \bot \land \ m \notin \mathcal{Q}.$

Definition 4

 Π' achieves authenticated communication if $\forall\ \mathtt{PPT}\ \mathcal{A},\ \exists\ \mathsf{negl}$ such that

$$\Pr[\mathsf{Auth}_{\mathcal{A},\Pi'}(n)=1] \leq \mathsf{negl}(n).$$

Definition 5

 Π' is **secure (authenticated encryption)** if it is both CCA-secure and also achieves authenticated communication. ¹

¹CPA security and integrity imply CCA security.

Combining Encryption and Authentication

■ Encrypt-and-authenticate (e.g., SSH):

$$c \leftarrow \mathsf{Enc}_{k_1}(m), \ t \leftarrow \mathsf{Mac}_{k_2}(m).$$

■ Authenticate-then-encrypt (e.g, SSL):

$$t \leftarrow \mathsf{Mac}_{k_2}(m), \ c \leftarrow \mathsf{Enc}_{k_1}(m||t).$$

■ Encrypt-then-authenticate (e.g, IPsec):

$$c \leftarrow \mathsf{Enc}_{k_1}(m), \ t \leftarrow \mathsf{Mac}_{k_2}(c).$$

Analyzing Security of Combinations

All-or-nothing: Reject any combination for which there exists even a single counterexample is insecure.

- **Encrypt-and-authenticate**: $Mac'_k(m) = (m, Mac_k(m))$.
- Authenticate-then-encrypt:
 - Trans : $0 \rightarrow 00$; $1 \rightarrow 10/01$; Enc' uses CTR mode; c = Enc'(Trans(m||Mac(m))).
 - Flip the first two bits of c and verify whether the ciphertext is valid. $10/01 \rightarrow 01/10 \rightarrow 1$, $00 \rightarrow 11 \rightarrow \bot$.
 - If valid, the first bit of message is 1; otherwise 0.
 - For any MAC, this is not CCA-secure.
- Encrypt-then-authenticate:

Decryption: If $Vrfy(\cdot) = 1$, then $Dec(\cdot)$; otherwise output \bot .

Authenticated Encryption Theory and Practice

Theorem 6

 Π_E is CPA-secure and Π_E is a secure MAC with unique tages, Π' deriving from encrypt-then-authenticate approach is secure.

GCM(Galois/Counter Mode): CTR encryption then Galois MAC. (RFC4106/4543/5647/5288 on IPsec/SSH/TLS) **EAX**: CTR encryption then CMAC.

Proposition 7

Encrypt-then-authenticate approach is secure if Π_E is rand-CTR mode or rand-CBC mode.

CCM (Counter with CBC-MAC): CBC-MAC then CTR encryption. (802.11i, RFC3610)

OCB (Offset Codebook Mode): integrating MAC into ENC. (two times fast as CCM, EAX)

All support AEAD (A.E. with associated data): part of message is in clear, and all is authenticated.

Remarks on Secure Message Transmission

- Authentication may leak the message.
- Secure message transmission implies CCA-security. The opposite direction is not necessarily true.
- Different security goals should always use different keys.
 - otherwise, the message may be leaked if $Mac_k(c) = Dec_k(c)$.
- Implementation may destroy the security proved by theory.
 - Attack with padding oracle (in TLS 1.0):
 Dec return two types of error: padding error, MAC error.
 Adv. learns last bytes if no padding error with guessed bytes.
 - Attack non-atomic dec. (in SSH Binary Packet Protocol): Dec (1)decrypt length field; (2)read packets as specified by the length; (3)check MAC.
 - **Adv.** (1)send c; (2)send l packets until "MAC error" occurs; (3)learn l = Dec(c).