

Applied Cryptography CPEG 472/672 Lecture 1B

Instructor: Nektarios Tsoutsos

Encryption security

- What is the definition of security?
 - "nothing can be learned" even given many ptxt-ctxt pairs
- Attack model
 - Assumptions about attacker powers
- Security goals
 - What is considered a successful attack

Black box models

- Ciphertext-only attack (COA)
 - Passively observe ctxts, no Enc/Dec queries
- Known-plaintext attack (KPA)
 - Known random ptxt/ctxt pairs, passive
- Chosen-plaintext attack (CPA)
 - Active enc queries for selected ptxts
- Chosen-ciphertext attack (CCA)
 - Active enc & dec of chosen ptxts/ctxts

Gray box models

- Attacker knows cipher implementation
 - More realistic for IoT, embedded systems
- Side channel attacks
 - Non-invasive
 - Measure implementation parameters
- Invasive attacks
 - Fault Injection attacks

Security goals

- Indistinguishability (IND)
 - Attackers cannot distinguish ctxt from random strings
- Non-malleability (NM)
 - Attackers cannot create ctxt2 from ctxt1
 where ptxt2 has meaningful a relationship to ptxt1

Security notions (GOAL-MODEL)

IND-CPA

- Also known as semantic security
- Can be achieved using randomized enc
 - ⊙ Ctxt = Enc(K, random_num, ptxt)
 - Ctxts are longer than ptxts

Notion relations

- ⊙ IND-CCA => IND-CPA, NM-CCA => NM-CPA
- IND-CPA DOES NOT imply NM-CPA
- ⊙ NM-CPA => IND-CPA

The IND-CPA challenge

ptxt_1 and ptxt_0 have the same length

 We want the Probability of b'==b (i.e., correctly predicting b) to be 0.5

A semantically secure cipher

- Use a deterministic random bit generator
- Cipher inputs
 - Key k, random string R, plaintext ptxt
- Cipher outputs
 - Ciphertext ctxt, copy of R
- \odot (ctxt, R) = (DRBG(k | R) XOR ptxt, R)
 - This offers IND-CPA but not NM-CPA
 - Ctxt XOR 1 is the encryption of ptxt XOR 1

Asymmetric encryption

- Encryption inputs
 - Public key PUB, plaintext ptxt
- Decryption inputs
 - Private/secret key PRI, ciphertext ctxt
- What are the attack models in this case?
- As before, but default is CPA
 - Attacker knows the public key
 - Attacker can encrypt any ptxt at will

Reading for next lecture

Aumasson: Chapter 2