Supervised Machine Learning: Regression and Classification

Week 3

Classification with logistic regression

Stanford ONLINE

DeepLearning.Al

Logistic regression

Stanford ONLINE

Stanford ONLINE

Andrew Ng

Interpretation of logistic regression output

$$f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}) = \frac{1}{1 + e^{-(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + b)}}$$
"probability" that cla

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = P(\mathbf{y} = \mathbf{1} | \overrightarrow{\mathbf{x}}; \overrightarrow{\mathbf{w}}, b)$$

"probability" that class is 1

Probability that y is 1, given input \vec{x} , parameters \vec{w} , b

Example:

$$P(y = 0) + P(y = 1) = 1$$

 $f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = 0.7$ 70% chance that y is 1

Decision boundary

$$f_{\overline{\mathbf{w}},b}(\overline{\mathbf{x}})$$

$$z = \overline{\mathbf{w}} \cdot \overline{\mathbf{x}} + b$$

$$\downarrow z$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(\overrightarrow{w} \cdot \overrightarrow{x} + b) = \frac{1}{1 + e^{-(\overrightarrow{w} \cdot \overrightarrow{x} + b)}}$$

$$= P(y = 1 | x; \overrightarrow{w}, b) \quad 0.7 \quad 0.3$$

$$0 \text{ or } 1? \quad \text{threshold}$$

$$\text{Is } f_{\overrightarrow{w},b}(\overrightarrow{x}) \ge 0.5?$$

$$\text{Yes: } \hat{y} = 1 \qquad \text{No: } \hat{y} = 0$$

$$\text{When is } f_{\overrightarrow{w},b}(\overrightarrow{x}) \ge 0.5?$$

$$g(z) \ge 0.5$$

When is
$$f_{\overrightarrow{w},b}(\overrightarrow{x}) \ge 0.5$$
?
 $g(z) \ge 0.5$
 $z \ge 0$
 $\overrightarrow{w} \cdot \overrightarrow{x} + b \ge 0$ $\overrightarrow{w} \cdot \overrightarrow{x} + b < 0$

 $\hat{y} = 1$

Stanford ONLINE

 $\hat{y} = 0$

Decision boundary

$$f_{\vec{w},b}(\vec{x}) = g(z) = g(w_1x_1 + w_2x_2 + b)$$

Decision boundary $z = \vec{w} \cdot \vec{x} + b = 0$ $z = x_1 + x_2 - 3 = 0$ $x_1 + x_2 = 3$

Stanford ONLINE

Non-linear decision boundaries

Cost function for logistic regression

Training set

	tumor size (cm)	 patient's age		i = 1,, m training examples j = 1,, n features
i=1 :	10	52	1	target y is 0 or 1 $f_{\overline{\mathbf{w}},b}(\overline{\mathbf{x}}) = \frac{1}{1 + e^{-(\overline{\mathbf{w}} \cdot \overline{\mathbf{x}} + b)}}$
	2	73	0	
	5	55	0	
	12	49	1	
i=m				

How to choose $\vec{w} = [w_1 \ w_2 \ \cdots \ w_n]$ and b?

Stanford ONLINE ODeepLearning.Al

Andrew Ng

Squared error cost

$$J(\overrightarrow{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^{m} \underbrace{\frac{1}{2} (f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)})^{2}}_{\text{loss}} \underbrace{L(f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)})}_{\text{loss}}$$

linear regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

logistic regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

Stanford ONLINE

DeepLearning.Al

Andrew Ng

Logistic loss function

Stanford ONLINE

DeepLearning.Al

Simplified Cost Function for Logistic Regression

Simplified loss function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -y^{(i)}\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) - (1 - y^{(i)})\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}))$$

$$\text{if } y^{(i)} = 1: \qquad (1 - 0)$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -\log(f(\overrightarrow{x}))$$

$$\text{if } y^{(i)} = 0:$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -\log(f(\overrightarrow{x}))$$

Stanford ONLINE

@DeepLearning.AI

Andrew Ng

Gradient descent for logistic regression

Gradient descent

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$\frac{\partial}{\partial w_j} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
} simultaneous updates

Stanford ONLINE

@DeepLearning.Al

Andrew Ng

Gradient descent for logistic regression

repeat {
$$w_j = w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)} \right]$$
 Same concepts: • Monitor gradient descent (learning curve) • Vectorized implementation • Feature scaling Linear regression
$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$
 Logistic regression
$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \frac{1}{1 + e^{-(\overrightarrow{w} \cdot \overrightarrow{x} + b)}}$$

Problem of overfitting

Regression example

 Does not fit the training set well

high bias

 Fits training set pretty well

generalization

overfit

 Fits the training set extremely well

high variance

Stanford ONLINE

@DeepLearning.AI

Andrew Ng

Classification

Stanford ONLINI

DeepLearning.Al

Andrew Ng

Collect more training examples

collect more
training examples

size

Stanford ONLINE

@DeepLearning.AI

Andrew Na

Select features to include/exclude

Stanford ONLINE

Andrew Ng

Regularization

Addressing overfitting

Options

Stanford ONLINE

- 1. Collect more data
- 2. Select features
 - Feature selection in course 2
- 3. Reduce size of parameters

DeepLearning.Al

- "Regularization" next videos

Cost function with regularization

Intuition

make w_3 , w_4 really small (≈ 0)

$$\min_{\vec{\mathbf{w}},b} \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) - y^{(i)})^2 + 1000 \underbrace{0.001}_{0.002} + 1000 \underbrace{0.002}_{0.002}$$

Stanford ONLINE

@DeepLearning.AI

Andrew Ng

Regularization

W320

small values w_1, w_2, \cdots, w_n, b

simpler model less likely to overfit ₩+≈0

 $W_1, W_1, W_2, \cdots, W_{100}, b$

$$J(\vec{\mathbf{w}},b) = \frac{1}{2m} \left[\sum_{i=1}^{m} (f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) - y^{(i)})^2 + \sum_{\substack{i=1 \ \text{regularization parameter}}}^{n} \omega_j^2 + \sum_{\substack{i=1 \ \text{location}}}^{n} \omega_j^2 \right]$$

DeepLearning.Al

Andrew Ng

Regularization

regularization

choose $\lambda = 10^{10}$

$$f_{\overrightarrow{W},b}(\overrightarrow{x}) = \underbrace{w_1x + w_2x^2 + w_3x^3 + w_4x^4 + b}_{\approx 0}$$

A balances both goals

$$f(x) = b$$

Choose A

Stanford ONLINE

DeepLearning.Al

Regularized linear regression

$$\min_{\vec{w},b} J(\vec{w},b) = \min_{\vec{w},b} \left(\frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right)$$

Gradient descent

Stanford ONLINE

DeepLearning.Al

Andrew Ng

Implementing gradient descent

repeat {
$$w_j = w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left[\left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)} \right] + \frac{\lambda}{m} w_j \right]$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^m \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right)$$
 } simultaneous update

Stanford ONLINE

DeepLearning.Al

Regularized logistic regression

Stanford ONLINE

DeepLearning.Al

Andrew Ng

Regularized logistic regression

$$J(\vec{w}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\vec{w}, b}(\vec{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\vec{w}, b}(\vec{x}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

Stanford ONLINE

DeepLearning.Al