Theoretical Backgrounds of Audio & Graphics

Digitization

Angela Brennecke | Prof. Dr.-Ing. Audio & Interactive Media Technologies

Filmuniversität Babelsberg

KONRAD WOLF

winter term 20/21

Digital Audio

- In order to understand what digital audio data is, we will start with answering the following two question:
 - How is analog sound/audio turned into digital sound/audio?
 - This is achieved by a process referred to as digitization
 - How is the signal information stored and processed in a computer?
 - This is usually accomplished by an audio buffer

Digitization

- Digitization consists of two steps: sampling & quantization
- Most common method: Pulse Code Modulation (PCM)

· Sampling:

 The amplitude of the analog signal is measured (in volts) at fixed time intervals determined by the sampling rate

Quantization:

 The sampled amplitude values are mapped onto discrete values defined by the bit depth or sample size

Sampling

- Sampling is also called discretization:
- The continuous audio signal is converted into discrete audio samples

FILMUNIVERSITÄT BABELSBERG KONRAD WOLF

Sampling

- Therefore the amplitude of the analog signal is measured at fixed time intervals — the sampling rate or sampling frequency
- · The sampling rate determines how many samples are taken per second

http://www.medien.ifi.lmu.de/fileadmin/mimuc/dm_ss04/dm2b.pdf

Sampling

 Sampling rate must be greater than twice the highest frequency of the original signal for proper reconstruction (Nyquist-Shannon sampling theorem) — f_sampled > 2 * f_max

Image credit: Prof. Hußmann. **Digitale Medien**. LMU.

http://www.medien.ifi.lmu.de/fileadmin/mimuc/dm_ss04/dm2b.pdf

Sampling

- Standard sampling rate for CD quality is 44.1 kHz or 44100 Hz due to the fact that the human hearing range is at 20 kHz maximum
- Hence, the sampling rate for CD quality must be greater than 2 x 20 kHz

Quantization

During quantization, the sampled amplitude values are quantized, i.e.,
 mapped onto discrete values defined by the bit depth or sample size

Quantization

- The sample size determines the difference between the softest sound and the loudest sound, i.e., the dynamic range of the audio application
- · Numbers are usually stored as integers or floating points at, e.g., 24bit

Quantization

- A sample size of 24 bits provides for 16 777 216 amplitude values
- Turned into decibel, a dynamic range of 144 dB can be represented
 - $144 \text{ dB} = 20 \log_{10}(16777216)$

http://www.medien.ifi.lmu.de/fileadmin/mimuc/dm_ss04/dm2b.pdf

Digitization

- · Generally, signal quality is controlled by sampling rate and bit depth
- Sampling & quantization always introduce a certain digitization error

Image credit: Prof. Hußmann. **Digitale Medien**. LMU. http://www.medien.ifi.lmu.de/fileadmin/mimuc/dm_ss04/dm2b.pdf

Digitization

 The array of numbers that is stored (or played back) is always an approximation of the original analog audio signal only

Digitization

This array is called the audio buffer

Audio Buffer

 An audio buffer is a list of discrete numbers that represent amplitude against time in a buffer (array) of value and index

Audio Buffer

- When sound is recorded & digitized, the audio buffer is filled
- When digital sound is played back, the audio buffer is read

