Tiago da Silva

 $tdsh97@gmail.com \mid \underline{github.com/tiagodsilva} \mid \underline{tiagodsilva.github.io} \mid \underline{linkedin.com/in/tiagodasilvah}$

Education

MSc in Applied Mathematics

2024/03 - 2025/03

School of Applied Mathematics, Brazil

- Research focused on probabilistic methods for Machine Learning. Received a fully-funded scholarship.
- Advisor: Prof. Diego Mesquita.

BSc in Data Science 2020/03 – 2023/12

School of Applied Mathematics, Brazil

• GPA: 9.9/10.0 (lowest passing grade of 6.0). 1st in class and 1st in the entrance exam. Receive a fully-funded scholarship.

Selected Publications

1. Streaming Bayes GFlowNets

NeurIPS 2024

- <u>da Silva, T.</u>, Souza, D., and Mesquita, D.
- TL;DR: We design a method to update GFlowNets trained on a streaming Bayesian posterior. Experiments show a drastic reduction in training time when compared against learning from scratch a model based on the entire dataset.

2. On Divergence Measures for Training GFlowNets

NeurIPS 2024

- da Silva, T., Silva, E., and Mesquita, D.
- TL;DR: We empirically show that the inefficacy of divergence-based objectives for GFlowNets is due to their large gradient variance. We then develop variance reduction techniques that significantly accelerate training convergence.

3. Embarrassingly Parallel GFlowNets

ICML 2024

- da Silva, T., Souza, A., Carvalho, L., Kaski, S., and Mesquita, D.
- TL;DR: We propose a divide-and-conquer approach to train a log-pool of GFlowNets in an embarrassingly parallel fashion. Results show a significant speed up in learning when the unnormalized target is expensive to evaluate.

Research Projects

1. When do GFlowNets (not) learn the right distribution?

GFlowNets have demonstrated exceptional performance in, e.g., NLP and combinatorial optimization. However, an understanding of the limitations of GFlowNets and a sound procedure for assessing the closeness of a trained model to its learning objective are notably absent from the literature. In this project, we aim to address questions such as: given a parametric model, which distributions can a GFlowNet learn? How to measure the closeness of the sampling distribution to the target?

2. Do GFlowNets generalize?

Generalization is at the core of GFlowNet learning: during training, only a portion of the state space is explored and can be used for risk minimization. In this context, we ask: can we obtain (the first) non-vacuous statistical certificates for GFlowNets? Also, which algorithmic changes would (provably) boost the generalization performance of GFlowNets?

Research Experience

Green AI Lab, Brazil 2022/08 – ongoing

Working with probabilistic ML. My recent efforts were mostly directed towards leveraging GFlowNets for asynchronous and approximate Bayesian inference. I have also worked on geometric deep learning, learning theory, variational autoencoders, diffusion probabilistic models, and PINNs. Our current research led to publications at <u>ICML</u> and <u>NeurIPS</u>.

Aalto University, Finland

2024/07 - 2024/10

I was a visiting scholar on the Probabilistic Machine Learning group under the supervision of Prof. Vikas Garg and Prof. Sami Kaski. I worked on developing (non-vacuous) statistical guarantees for GFlowNets and geometric deep learning.

Visual Data Science Lab, Brazil

2020/08 - 2023/01

Research assistant supervised by Prof. Jorge Poco. I assisted the development of a framework for reverse engineering of visualizations (see the open-source library <u>REV</u>) and of a platform for image-based literature search (see our <u>C&G paper</u>).

Honors & Awards

Award for Academic Excellence, Brazilian Society of Applied and Computational Mathematics.	2023
First place, School of Applied Mathematics entrance exam.	2020
I was presented with 19 prizes in scientific competitions during high school, including:	
William Glenn Whitley Prize for achieving the highest score on the State Mathematical Olympiad.	2019
Top score in the country, Brazilian Mathematical Olympiad of Public Schools.	2019
Top score in the country, Brazilian Mathematical Olympiad of Public Schools.	2018
Gold medal, Brazilian Chemistry Olympiad.	2018
Gold medal, Brazilian Mathematical Olympiad of Public Schools.	2017
Gold medals, State Chemistry Olympiad. Highest score in 2019.	2016-2019

Employment

Rei do Pitaco (largest fantasy sports company in Brazil)

2023/01 - 2023/07

- Data Science intern.
 - Designed predictive models to define the opening lines of bets on the outcomes of sport events (bookmaking).
 - ▶ Deployed and upheld the created models within applications serving thousands of concurrent users.

Teaching

I have worked as a teaching assistant (TA) for over three years in the School of Applied Mathematics. I was a TA in the courses of Exploratory Data Analysis (2021.1), Linear Algebra (2021.2), Probability (2022.1), Statistical Inference (2022.2), Machine Learning (2023.1), Time Series (2023.2, 2024.2), and in the graduate-level course of Machine Learning (2024.1). I assisted the professors with preparing and grading both homework and exams, and held office hours to support students.

Languages

Portuguese (Native), English

Skills

Computer languages: Proficient with Python and SQL. Competent with R and Stan. Familiar with C++ and JavaScript.

Scientific computing frameworks: PyTorch, PyTorch Geometric, GPyTorch, NumPy, SciPy.

 $Data\ visualization:\ Matplotlib,\ Altair,\ Vega-lite,\ D3.$

Computer vision libraries: OpenCV, YOLOv5, SAM.