Лекція	3.
Незалежні випадкові події. Умовна ймовірність	

•			•••
ш	лан	леки	Π

1. Повна група подій. 2 2. Умовна ймовірність. 2 3. Формула множення ймовірностей. 2
3. Формула множення ймовірностей
1 5
4. Формула додавання ймовірності
 Незалежність подій.
6. Формула повної ймовірності
7. Формула Байеса

Питання, що розглядаються:

Повна група подій, умовна ймовірність, множення ймовірностей, додавання ймовірностей, незалежні події, повна ймовірність, ймовірність апріорі, ймовірність апостеріорі, формула Байеса.

1. Повна група подій.

Повною групою подій називається множина попарно несумісних подій, для якої при будь-якому наслідку випадкового випробування обовязково настає одна з подій, що входить в цю множину.

Іншими словами, для повної групи подій виконані наступні умови :

- поява однієї з подій даної множини в результаті випробування є достовірною подією, тобто подія $A_1 + A_2 + ... + A_n = \Omega$;
- події A_i та A_j ($i \neq j$) попарно несумісні і $A_i \cdot A_j$ подія неможлива для будь-яких $i \neq j$, тобто . $A_i \cdot A_j = \emptyset$

Найпростішим прикладом повної группи подій ϵ пара протилежних подій A та \overline{A} .

Теорема. Сума ймовірностей повної групи подій $A_1, A_2, ..., A_n$ дорівнює одиниці :

$$P(A_1) + P(A_2) + ... + P(A_n) = 1.$$

2. Умовна ймовірність.

У багатьох випадках ймовірності появи одних подій залежать від того, відбулася інша подія чи ні.

Умовною ймовірністю події A називається ймовірність події A , обчислена за умови, що подія B вже відбулася, і позначається $P(A/B) = P_B(A)$

У тих випадках, коли ймовірність події A розглядається за умови, що мали місце дві інші події B і C, використовується умовна ймовірність відносно добутку подій B і C: P(A/BC).

3. Формула множення ймовірностей

Теорема. Ймовірність добутку двох подій дорівнює добутку ймовірності однієї з них на умовну ймовірність іншої, обчислену за умови, що перша подія відбулася:

$$P(AB) = P(A)P(B/A) = P(B)P(A/B).$$

Теорему множення ймовірності легко узагальнити на будь-яке скінченне число подій.

Теорема. Ймовірність добутку скінченного числа подій дорівнює добутку їх умовної ймовірності відносно добутку попередніх подій :

$$P(ABC...LM) = P(A)P(B/A)P(C/AB)...P(M/AB...L).$$

Для доведення цієї теореми можна використовувати метод математичної індукції.

4. Формула додавання ймовірностей

Теорема. Ймовірність суми скінченного числа несумісних подій дорівнює сумі ймовірностей цих подій:

$$P\left(\sum_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i})$$

Доведення. Доведемо цю теорему для випадку суми двох несумісних подій A_1 і A_2 .

Нехай події A_1 сприяють m_1 елементарних наслідків, а події A_2 - відповідно m_2 наслідків. Оскільки події A_1 і A_2 за умовою теореми несумісні, то події $A_1 + A_2$ сприяють $m_1 + m_2$ елементарних наслідків із загального числа наслідків. Отже,

$$P(A_1+A_2)=rac{m_1+m_2}{n}=rac{m_1}{n}+rac{m_2}{n}=P(A_1)+P(A_2),$$
 - ймовірність події A_1 ;

 $P(A_1)$ - ймовірність події A_1 ; де

 $P(A_2)$ - ймовірність події A_2 .

Теорема. Ймовірність появи хоч би однієї з двох сумісних подій дорівнює сумі ймовірностей цих подій без ймовірності їх спільної появи :

$$P(A+B) = P(A) + P(B) - P(AB).$$

Доведення. Подія A + B, відбудеться, якщо відбудеться одна з несумісних подій АВ АВ, АВ

За теоремою про додавання ймовірностей несумісних подій

$$P(A+B) = P(\overline{AB}) + P(\overline{AB}) + P(AB)$$

Подія A відбудеться, якщо відбудеться одна з двох несумісних подій AB, AB.

Знову застосовуючи теорему додавання ймовірностей несумісних подій, отримуємо: P(A) = P(AB) + P(AB).

Отже,
$$P(A\overline{B}) = P(A) - P(AB)$$
.

Аналогічно для події B отримуємо $P(B) = P(\overline{A}B) + P(AB)$

Звідки
$$P(\overline{AB}) = P(B) - P(AB)$$
.

Отже,
$$P(A + B) = P(A) + P(B) - P(AB)$$

5. Незалежність подій.

ймовірність події B не змінюється.

Теорема. Ймовірність спільної появи двох незалежних подій A і B(добутку A і B) дорівнює добутку ймовірностей цих подій.

оскільки Доведення. Дійсно, події \boldsymbol{A} i Bнезалежні, P(B/A) = P(B). В цьому випадку формула ймовірності добутку подій A і B набирає вигляду

$$P(AB) = P(A) \cdot P(B)$$
.

Події $A_1, A_2, ..., A_n$ **називаються попарно незалежними**, якщо незалежні будь-які дві з них.

Події $A_1, A_2, ..., A_n$ **називаються незалежними в сукупності**, якщо незалежні кожні дві з них і незалежні кожна подія і усі можливі добутки інших.

Теорема. Ймовірність добутку скінченного числа незалежних в сукупності подій дорівнює добутку ймовірностей цих подій.

$$P(A_1 A_2 ... A_n) = P(A_1) \cdot P(A_2) \cdot ... \cdot P(A_n).$$

Проілюструємо відмінність в застосуванні формул ймовірності добутку подій для залежних і незалежних подій на прикладах

Приклад 1. Ймовірність попадання в ціль першим стрільцем дорівнює 0,85, другим 0,8. Знаряддя зробили по одному пострілу. Яка ймовірність того, що в ціль потрапив хоча б один снаряд?

Pозвязання. P(A+B) = P(A) + P(B) - P(AB). Оскільки постріли незалежні, то

$$P(A+B) = P(A) + P(B) - P(A) \times P(B) = 0.97$$

Приклад 2. У урні знаходиться 2 червоних і 4 чорних кулі. З неї виймають підряд 2 кулі. Яка ймовірність того, що обидві кулі червоні.

 $Pозвязання.\ 1$ випадок. Подія A - поява червоної кулі при першому вийманні, подія B - при другому. Подія C - поява двох червоних куль.

$$P(C) = P(A) \times P(B/A) = (2/6) \times (1/5) = 1/15$$

2 випадок. Перша вийнята куля повертається в урну.

$$P(C) = P(A) \times P(B) = (2/6) \times (2/6) = 1/9$$

6. Формула повної ймовірності

Нехай подія A може статися тільки з однією з несумісних подій $H_1, H_2, ..., H_n$, що утворюють повну групу. Наприклад, в магазин поступає одна і та ж продукція від трьох підприємств і в різній кількості. Ймовірність випуску неякісної продукції на цих підприємствах різна. Випадковим чином відбирається один з виробів. Необхідно визначити ймовірність того, що це виріб неякісний (подія A). Тут події H_1, H_2, H_3 - це вибір виробу з продукції відповідного підприємства.

В цьому випадку ймовірність події A можна розглядати як суму

добутків подій
$$A = \sum_{i=1}^{n} AH_{i}$$
.

За теоремою додавання ймовірностей несумісних подій отримуємо

$$P(A) = \sum_{i=1}^{n} P(AH_i).$$

Використовуючи теорему множення ймовірностей, знаходимо

$$P(A) = \sum_{i=1}^{n} P(H_i) P(A/H_i).$$

Отримана формула називається формулою повної ймовірності.

7. Формула Байеса

Нехай подія A відбувається одночасно з однією з несумісних подій H_1 , H_2 , \cdots , H_n , ймовірність яких P H_i (i=1,2,...,n) відома до випробування (вірогідність апріорі). Проводиться випробування, в результаті якого зареєстрована поява події, причому відомо, що ця подія мала певну умовну ймовірність $P(A/H_i)$ (i=1,2,...,n). Необхідно знайти ймовірність подій H_i , якщо відомо, що подія A відбулася (ймовірність апостеріорі).

Завдання полягає в тому, що, маючи нову інформацію (подія A відбулася), треба переоцінити ймовірність подій H_1 , H_2 , \cdots , H_n .

На підставі теореми про ймовірність добутку двох подій

$$P(H_i A) = P(A)P(H_i / A) = P(H_i)P(A / H_i),$$

звідки

$$P(H_i/A) = \frac{P(H_i)P(A/H_i)}{P(A)}$$

ЧИ

$$P(H_i / A) = \frac{P(H_i)P(A/H_i)}{\sum_{i=1}^{n} P(H_i)P(A/H_i)}.$$

Отримана формула носить назву формули Байеса.

Приклад. Для подготовки до змагань були відібрані 4 курсанти первого взводу, 9 курсантів другого взводу та 7 курсантів третього взводу. Ймовірність виграти змагання для курсанту першого взводу дорівнює 0,7; для другого - 0,8; для третього – 0,9. Виявилося, що навмання вибраний курсант став переможцем змагань. З якого взводу ймовірніше всього був цей курсант?

Розвязування. Введемо позначення подій:

A - курсант переміг в змаганнях; H_{I} — курсант першого взводу; H_{2} — курсант другого взводу; H_{3} — курсант третього взводу. Тоді

$$P(H_1) = \frac{4}{4+9+7} = \frac{4}{20} = 0,2$$

$$P(H_1) = \frac{9}{4+9+7} = \frac{9}{20} = 0,45$$

$$P(H_1) = \frac{7}{4+9+7} = \frac{7}{20} = 0,35$$

Якщо A — подія, що полягає в тому, що навмання вибраний курсант пореміг в змаганнях, то P(A) знаходимо за формулою повної ймовірності:

$$P(A) = \sum_{i=1}^{n} P(H_i) P(A/H_i)$$

В нашому випадку

$$P(A) = P(H_1)P(A/H_1) + P(H_2)P(A/H_2) + P(H_3)P(A/H_3)$$

За умовою

 $P(A/H_1) = 0.7$

 $P(A/H_2) = 0.8$

 $P(A/H_3) = 0.9$

Отже,

$$P(A) = 0.7 \cdot 0.2 + 0.8 \cdot 0.45 + 0.9 \cdot 0.35 = 0.815$$

Вибраний навмання курсант переміг в змаганнях. Необхідно визначити ймовірність того, що він з першого, другого або третього взводу. а) ймовірність того, що курсант з першого взводу. Для цього скористаємося формулою Байеса

$$P(H_i/A) = \frac{P(H_i)P(A/H_i)}{P(A)}$$

В нашому випадку

$$P(H_1/A) = \frac{P(H_1)P(A/H_1)}{P(A)} = \frac{0.2 \cdot 0.7}{0.2 \cdot 0.7 + 0.8 \cdot 0.45 + 0.9 \cdot 0.35} = \frac{0.14}{0.815} = 0.1718$$

б) ймовірність того, що курсант з другого взводу.
$$P(H_2/A) = \frac{P(H_2)P(A/H_2)}{P(A)} = \frac{0.45 \cdot 0.8}{0.2 \cdot 0.7 + 0.8 \cdot 0.45 + 0.9 \cdot 0.35} = 0.4417$$

в) ймовірність того, що курсант з третього взводу.
$$P(H_3/A) = \frac{P(H_3)P(A/H_3)}{P(A)} = \frac{0.35 \cdot 0.9}{0.2 \cdot 0.7 + 0.8 \cdot 0.45 + 0.9 \cdot 0.35} = 0.3865$$

Отже, ймовірніше всього курсант був з другого взводу, так як ця ймовірність більша двох інших.

Питання для самоперевірки

- 1. Що таке повна група подій?
- 2. Чому дорівнює сума ймовірностей для повної групи подій?
- 3. Що називають умовною ймовірністю події A?
- 4. Записати формулу множення ймовірностей.
- 5. Записати формулу додавання ймовірностей для несумісних подій.
- 6. Записати формулу додавання ймовірностей для сумісних подій.
- 7. Записати формулу множення ймовірностей для незалежних подій.
- 8. Записати формулу повної ймовірності.
- 9. Записати формулу Байеса.