

Signature

Note:

- Cross your Registration number(with leading zero). It will be evaluated automatically.
- · Sign in the corresponding signature field.

Statistical Foundations of Learning

Exam: IN2378 / Endterm Date: Thursday 18th August, 2022

Examiner: Prof. Debarghya Ghoshdastidar **Time:** 13:45 – 15:15

	P 1	P 2	P 3	P 4	P 5
ı					

Working instructions

- This exam consists of 10 pages with a total of 5 problems.
 Please make sure now that you received a complete copy of the exam, and all pages are correctly printed.
- You need to answer only 4 out of 5 problems.
 If you attempt all questions, then the 4 problems with most points will be considered.
- The total amount of achievable credits in this exam is 40 points.
- Sub-problems. marked * can be solved without solving the previous parts
- · Answers are only accepted if the solution approach is documented.
 - Give a reason for each answer in the solution box of the respective subproblem.
 - If you use additional space for answer (given at end of paper), mention this in the solution box.
- Allowed resources: Printed lecture notes or on an electronic device.
- Do not write with red or green colors nor use pencils.

Left room from _	to	/	Early submission at

Problem 1 Risk and Bayes Risk (10 credits)

Consider a binary classification problem in 2 dimension, where the joint distribution of the features $x = (x_1, x_2)$ and label y is such that

$$x = (x_1, x_2) \sim \textit{Uniform}[0, 1] \times \textit{Uniform}[0, 1] \qquad \eta(x) = \mathbb{P}(y = 1 | x) = \left\{ \begin{array}{ll} 0.1 & \text{if } x_1 < 0.5 \& x_2 < 0.5 \\ 0.9 & \text{if } x_1 \geq 0.5 \& x_2 \geq 0.5 \\ 0.6 & \text{otherwise.} \end{array} \right.$$

		npute the Bayes				
	he optimal axis-aligned li I linear classifiers.	inear classifier	for the above p	problem? Also	state minimal ri	sk achie
	e must be an argument at	bout why the pr	resented axis-al	igned classifier	is optimal.	
		-			•	
c) Can we a	achieve a risk lower than a	axis-aligned line	ear classifiers if	we use axis ali	gned rectangles	s, that is
c) Can we a					gned rectangles	s, that is
c) Can we a			ear classifiers if $a \le x_1 \le b, c \le b$		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
		$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is
	ı	$h(x) = \begin{cases} 1 & \text{for } 0 \\ 0 & \text{otherwise} \end{cases}$	$r \ a \le x_1 \le b, c \le b$ herwise.		gned rectangles	s, that is

Problem 2 Clustering and Hierarchical Clustering (10 credits)

Consider the following configuration of four points in \mathbb{R}^2 . The coordinates of the points are noted—coordinates of point 1 is (a,b) where a>b>0.

(-a,b) (4)	(a,b)
(-a,-b) ③	② (a,-b)

ate the optimal 2-means clustering.	computation,
Assume $a > b$ and consider k -means++ with $k = 2$.	
 What is the expected cost of k-means++? 	
• What is the probability that <i>k</i> -means++ returns the optimal 2-means clustering?	
Ite: Probability and expectation are with respect to the randomisation in k -means++.	
Assume $a > b$ and consider the distance $d(x, x') = x - x' ^2$.	
Draw the hierarchy (tree) returned by average linkage clustering.	
• Compute the value function of the tree for $d(x, x') = x - x' ^2$.	

Problem 3 Algorithmic Stability (10 credits)

Given a loss function ℓ , we say that a learner A is asymptotically on-average-replace-one stable with respect loss function ℓ and distribution \mathcal{D} if

$$\lim_{m \to \infty} \mathbb{E}_{S \sim \mathcal{D}^m, (x', y') \sim \mathcal{D}, i \sim \mathsf{Uniform}(m)} \left[\ell \left(\mathcal{A}_{S^i}(x_i), y_i \right) - \ell \left(\mathcal{A}_{S}(x_i), y_i \right) \right] = 0.$$

Notations are same as the ones used in lecture slides for on-average-replace-one stability: $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ is the training sample and S^i is obtained by replacing (x_i, y_i) in S with (x', y'). $i \sim \text{Uniform}(m)$ denotes that i is chosen uniformly at random from $\{1, 2, ..., m\}$.

We call a learner A universally asymptotically on-average-replace-one stable with respect loss function ℓ if it is asymptotically on-average-replace-one stable for every distribution \mathcal{D} .

a) Let $\mathcal{X} = \{x : ||x||_2 \leq B\}$. Consider linear ridge regression learner \mathcal{A} that outputs a linear function $\mathcal{A}_S(x) = \widehat{w}^\top x$, where

$$\widehat{w} = \underset{w: ||w||_2 \le B}{\text{arg min}} \frac{1}{m} \sum_{i=1}^m (y_i - w^\top x_i)^2 + \lambda ||w||_2^2.$$

Prove or disprove: The linear ridge regressor A is universally asymptotically on-average-replace-one stable with respect to squared loss $(y - w^{T}x)^{2}$.

If you disprove, then for which distributions \mathcal{D} is the learner asymptotically on-average-replace-one stable?

L	

b)* Prove or disprove: 1-nearest neighbour classifier is universally asymptotically on-average-replace-one stable with respect to 0-1 loss.

If you disprove, then for which distributions \mathcal{D} is the learner <u>asymptotically</u> on-average-replace-one stable?						

P	rob	lem	4	VC Dimension	(10 credits)	١
---	-----	-----	---	---------------------	--------------	---

Consider the set $\mathcal{X}_n = \{1, 2, 3, ..., n\}$. For any $k \in \mathcal{X}_n$, define the binary classifier $h_k : \mathcal{X}_n \to \{0, 1\}$ as $h_k(x) = 1$ if x is a multiple of k, and 0 otherwise. Let $\mathcal{H}_n = \{h_k : k \in \mathcal{X}_n\}$ be the hypothesis class of all binary classifiers of above form. a) For n = 7, compute $VCdim(H_7)$. **Hint:** You can get a tight upper bound based on $|\mathcal{H}_7|$. b) What is the maximum value of n such that $VCdim(\mathcal{H}_n) = VCdim(\mathcal{H}_7)$. **Hint:** Take $d = VCdim(\mathcal{H}_7) + 1$. For a set $\{x_1, \dots, x_d\}$ to be shattered by \mathcal{H}_n , identify conditions that x_1, \dots, x_d should satisfy. From this, you can get the smallest possible value $\max\{x_1, \dots, x_d\}$ should have.

Problem 5 Uniform Convergence (10 credits)

In transfer learning, the goal is to minimise the risk with respect to a target distribution \mathcal{D}_1 , that is, $\min_{h \in \mathcal{H}} L_{\mathcal{D}_1}(h)$.

However, we have access to few training samples from \mathcal{D}_1 and many training samples from a source distribution \mathcal{D}_2 . Formally let $\beta \in (0,1)$ and assume that the training set S, of size m, is split into βm samples from \mathcal{D}_1 and rest from \mathcal{D}_2 , that is, $S = S_1 \cup S_2$, where $S_1 \sim \mathcal{D}_1^{\beta m}$, $S_2 \sim \mathcal{D}_2^{(1-\beta)m}$.

We aim to minimise a weighted empirical risk. For $\alpha \in (0, 1)$, define the weighted empirical risk of classifier h as

$$L_{S,\alpha}(h) \ = \ \alpha L_{S_1}(h) + (1-\alpha)L_{S_2}(h) \ = \ \frac{\alpha}{\beta m} \sum_{(x,y) \in S_1} \mathbf{1} \big\{ h(x) \neq y \big\} + \frac{1-\alpha}{(1-\beta)m} \sum_{(x,y) \in S_2} \mathbf{1} \big\{ h(x) \neq y \big\}$$

Let \widehat{h} minimise $L_{S,\alpha}(h)$. The following sub-problem derive a bound on $L_{\mathcal{D}_1}(\widehat{h})$, generalisation bounds for \widehat{h} . **Note:** To solve the sub-problems, assume the following:

- \mathcal{H} has a finite number of hypotheses;
- There is a target predictor $h^* \in \mathcal{H}$ such that $L_{D_1}(h^*) = 0$ (equivalently, \mathcal{D}_1 is realisable).

1 2	$L_{D_1}(h) \leq \mathbb{E}_{S}[L_{S,\alpha}(h)] + (1-\alpha)d_{\mathcal{H}}(\mathcal{D}_1,\mathcal{D}_2).$	• •

a) Define a \mathcal{H} -distance between two distributions $d_{\mathcal{U}}(\mathcal{D}, \mathcal{D}') = \sup_{h \in \mathcal{D}} |L_{\mathcal{D}}(h) - L_{\mathcal{D}'}(h)|$. Show that for any h.

•	ds from previous parts, and optimality of \hat{h} to conclude that, with probability $1 - \delta$, $L_{\mathcal{D}_1}(\hat{h}) \leq (1 - \alpha) \left(L_{\mathcal{D}_2}(h^*) + d_{\mathcal{H}}(\mathcal{D}_1, \mathcal{D}_2) \right) + \sqrt{\frac{2}{m} \left(\frac{\alpha^2}{\beta} + \frac{(1 - \alpha)^2}{(1 - \beta)} \right) \log \left(\frac{2 \mathcal{H} }{\delta} \right)}.$	

Additional space for solut invalid solutions.	ions–clearly mark tl	ne (sub)problem y	our answers are	related to and	strike ou

