

Darshan University - School of Engineering

Bachelor of Technology - Semester I

Mid Semester Examination

Course Name : Mathematics – 1 Total Marks : 30

Time : 11:30 am to 01:00 pm Enrollment No. :

Instructions 1. Attempt all the questions.

2. Figure to the right indicate maximum marks.

3. Don't do any kind of **rough** work or **calculation** in Question Paper.

4. Make suitable assumptions whenever necessary.

5. The text to the right-side of the marks indicates the Bloom's Level (BL*) of the question followed by the Course Outcome (CO).

i.e. R: Remembrance, U: Understanding, A: Application, N: Analyze, E: Evaluate, C: Create.

Course
Outcomes
(COs)

At the end of this course, students will be able to:

CO1: solve the examples based on matrix theory.

CO2: carry out the limit of indeterminate forms and local extreme values

CO3: determine improper and multiple integrals.

Q. No.		Question	Marks	BL*	СО
Q. 1	(A)	Define: Rank of a matrix & Eigen Value.	02	R	CO1
	(B)	Evaluate $\lim_{x\to 0} {\cos 3x}^{\left(\frac{2}{x^2}\right)}$.	04	Α	CO2
	(C)	Solve the following system of linear equations by using Gauss elimination method: $x + y + z = 1$, $2x - 3y + z = -1$, $3x - 5y - z = 0$.	04	A	CO1
Q. 2	(A)	Using Maclaurin's series expand $f(x) = \sin 2x$.	03	Α	CO2
	(B)	Find the eigen values, eigen vectors, algebraic and geometric multiplicity of the following matrix: $A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}.$	07	A	CO1
		OR			
Q. 2	(A)	If $u = \frac{x^2 + y^2}{\sqrt{x + y}}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} - \frac{3}{2}u = 0$.	03	Α	CO2
	(B)	(1) Find the rank of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ -5 & 0 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ by using row echelon form. (2) Using Gauss-Jordan method find A^{-1} , if $A = \begin{bmatrix} 0 & 1 & -1 \\ 3 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix}$.	07	A	CO1

Q. 3	(A)	Solve $\int_{0}^{1} \int_{x^2}^{x} (x^2 - y^2) dy dx$.	03	A	соз
	(B)	If $u = x^2 + y^2 + z^2$, where $x = e^t$, $y = e^t$ sint, $z = e^t$ cost, find $\frac{du}{dt}$.	03	A	CO2
	(C)	Find the volume of solid generated by revolving the region between the parabola $x=y^2$ and the line $x=1$ about the line $x=1$.	04	A	CO3
		OR			
Q. 3	(A)	Solve $\int_{1}^{3} \int_{\frac{1}{x}}^{1} \int_{0}^{\sqrt{xy}} xyz dz dy dx.$	03	A	CO3
	(B)	If $u = e^{x^y}$, find $\frac{\partial^2 u}{\partial y \partial x}$.	03	A	CO2
	(C)	The region bounded by $y = x^2$ and $y = 2x$ in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.	04	A	CO3

* * * * * * * * * *