AHA4013B

12.5 MBYTES/SEC REED-SOLOMON ERROR CORRECTION DEVICE

The AHA4013B is a member of the AHA PerFECTM high performance, single-chip Reed-Solomon Forward Error Correction (FEC) devices. A single-phase clock synchronizes all chip functions. CMOS technology and custom design techniques help achieve the highest performance and density. The AHA4013B implements a standard polynomial approved by Intelsat and other industry standards.

The device supports several programmable parameters including block size, error threshold, number of check bytes, order of output and mode of operation. High operating frequency, input and output rate flexibility, low processing latency and various programmable parameters make this an ideal part for many systems requiring Forward Error Correction.

*NC = No connect, reserved for future considerations.

YYWWD = DATE CODE: LLLLL = LOT NUMBER

FEATURES

HIGH PERFORMANCE:

- Complies to Intelsat IESS-308, Revision 6B; RTCA DO-217 Appendix F, Revision D and proposed ITU-TS SG-18 (formerly CCITT SG-18) Standards
- 50 MBytes/sec burst transfer rate with a 50 MHz clock for all block lengths
- Sustained data transfer rates of 12.5 MBytes/sec for block lengths from 54 bytes through 255 bytes using a 50 MHz clock
- Processing latency time less than 12.2 μsec in continuous mode for a block length of 100 bytes

FLEXIBILITY:

- Programmable to correct from 1 to 10 error bytes or 20 erasure bytes per block
- Block lengths programmable from 3 to 255 bytes
- Decodes, encodes or passes data through
- Outputs corrected data or correction vectors in forward or reverse order
- Continuous or burst mode operation
- Programmable error threshold to help determine channel performance

SYSTEM INTERFACE:

- Simple system interface and internal buffers eliminate external microprocessor and FIFOs
- Dedicated control pins permit discontinuities in system data flow

OTHERS:

- 44 pin PLCC; 50 mil lead pitch
- Pin compatible with AHA4011 and AHA4012
- Plug compatible with AHA4011 and AHA4012 except for an initialization register setting
- Software emulation of the algorithm available

APPLICATIONS

- Satellite communications/VSAT/INTELSAT
- HDTV/DTV/CATV/DBS/ADSL
- Solid State Memory Systems
- Global Positioning Systems
- ISDN/T1/T3/OC1
- High Performance Modems
- Local/Wide Area Networks

^{*}Request the AHA4013B Product Specification for complete details.

FUNCTIONAL DESCRIPTION

This single-chip CMOS device can be operated in encode, decode or pass-through mode.

The device is first initialized for various programmable parameters including: erasure multiplier, error threshold, number of check bytes, number of message bytes per block, block length and a control byte. Programming is done through the input data bus DI[7:0]. This control byte defines the format of the output data, such as, parity information, error vectors, reverse or forward order, normal or pass-through operations and conditions for "uncorrectable" block. Following a six-byte initialization, the device may be used to encode, decode or pass-through data. The device requires reinitialization when the parameters are changed or when reset using the RSTN signal.

As an encoder, the device clocks input data block followed by "dummy" check bytes designated as "erasures" on the DI bus. ECC core replaces the "dummy" check bytes with corrected check bytes and feeds the block into the Output Buffer for transfer out of the output bus, DO.

As a decoder, the device clocks the user data and check bytes into the Input Buffer. The ECC core performs the necessary corrections and feeds the block to the Output Buffer.

In pass-through operation, the device clocks user data and "dummy" check bytes into the Input Buffer. The ECC core processes the block and transfers the uncorrected input bytes into the Output Buffer. Data is then made available on the output bus, DO.

The device can accept data input and generate corrected data at a continuous rate as high as one byte every 4 clocks. All rates lower than this are also supported. I/O with the buffers can be done in bursts at rates up to 50 MBytes/sec and up to one block at a time. Data rates and latencies are discussed further in a later section.

For every 2 check bytes, referred to as R, the decoder can correct either 2 erasures or 1 error. An erasure is an error with a known location and is

indicated by asserting the ERASE signal when the erased byte is clocked into the AHA4013B.

The RS code implemented in the AHA4013B uses the primitive polynomial:

$$P(x) = x^8 + x^7 + x^2 + x + 1$$

to generate GF(256). The generator polynomial for the code is:

$$G(x) = \prod_{i=120}^{119+R} (x - \alpha^i)$$

These polynomials are specified by the Intelsat IESS-308, Rev 6B; RTCA DO-217 Appendix F, Rev D and proposed ITU-TS SG-18 standards.

AHA4013B DEVICE BLOCK DIAGRAM

TYPICAL APPLICATIONS DIAGRAM

SYMBOL (BYTE) ERROR RATE PERFORMANCE CURVES

The most common measures of performance for Reed-Solomon code are P_{SE} , P_{UE} and C_{BER} . P_{SE} is the probability of symbol errors and is the ratio of the number of received symbol errors to the total number of received symbols. In the AHA4013B device, a symbol is 8 bits. P_{UE} is the probability of an uncorrectable error and is the ratio of the number of uncorrectable code blocks to the total number of received code blocks. An uncorrectable error occurs when more than t received symbols are in error. C_{BER} is the Corrected Bit Error Rate. The C_{BER} is the reciprocal of expected number of correct bits between errors.

If input noise is random, $C_{BER} = \frac{P_{UE}}{m \times N}$. If $P_{SE} = 8 \times 10^{-4}$ with t = 5, $P_{UE} = 10^{-7}$ and $C_{BER} = \frac{10^{-7}}{8 \times 255} = 4.9 \times 10^{-11}$. The figure shows probability of Symbol Error and Uncorrectable Error for Block Size (N) of 255.

Error Rate Performance Curves for N=255

DATA RATES AND LATENCIES

Maximum processing latency in burst mode, expressed in number of clocks, is $N \times C_i + R + 60 + N$ for forward order output. For C_i less than or equal to 1, use a value of 2 for C_i . Table 1 presents burst mode performance of the device.

Maximum latency in continuous mode is $(N-1) \times C_i + R + 60 + N \times \frac{C_i}{C_i-1}$ where C_i is the number of input clocks/byte. The minimum clocks/byte required for two different R values and various message lengths are shown in Table 2.

IESS code lengths operated in continuous mode are shown in Table 3.

CORRECTION TERMS

- K- Number of user data symbols in one message block
- R- Symbols appended to the user data to detect and correct errors.
- N- Sum of message and check symbols. N = K + R
- t Maximum number of errors correctable by the device. $t = \frac{Integer(N-K)}{2}$

Channel Rate - Transfer rate including user data and error correction check bytes.

TABLE 1: BURST MODE OPERATION USING 50 MHz CLOCK AND 1 CLOCK/BYTI	FORWARD ORDER OUTPUT
TABLE 1. DOTIOT MIDDL OF LITATION COME SO WITE CLOCK AND I CLOCKED IT	, i diiwand diden don di

	CHECK BYTES 'R' = 20			CHECK BYTES 'R' = 2		
BLOCK LENGTHS 'N'	MAXIMUM LATENCY (# of clocks)	MAXIMUM LATENCY (μsecs)	AVERAGE RATE (MBytes/sec)	MAXIMUM LATENCY (# of clocks)	MAXIMUM LATENCY (μsecs)	AVERAGE RATE (MBytes/sec)
25	155	3.10	8.06	137	2.74	9.13
50	230	4.60	10.88	212	4.24	11.79
100	380	7.60	13.13	362	7.24	13.75
150	530	10.64	14.13	512	10.24	14.63
200	680	13.60	14.75	662	13.28	15.13
255	845	16.88	15.13	827	16.56	15.38

TABLE 2: CONTINUOUS MODE OPERATION USING 50 MHz CLOCK AND SPECIFIED CLOCKS/BYTE, FORWARD ORDER OUTPUT

	CHECK BYTES 'R' = 20			CHECK BYTES 'R' = 2		
BLOCK LENGTHS 'N'	MINIMUM REQUIRED (clocks/byte)	MAXIMUM DATA RATE (MBytes/sec)	MAXIMUM LATENCY (μsecs)	MINIMUM REQUIRED (clocks/byte)	MAXIMUM DATA RATE (MBytes/sec)	MAXIMUM LATENCY (μsecs)
25	6	8.34	5.08	5	10.00	4.26
50	5	10.00	7.75	5	10.00	7.39
100	4	12.50	12.18	4	12.50	11.82
150	4	12.50	17.52	4	12.50	17.16
200	4	12.50	22.86	4	12.50	22.50
225	4	12.50	25.52	4	12.50	25.16
255	4	12.50	28.72	4	12.50	28.36

TABLE 3: CONTINUOUS MODE OPERATION FOR IESS-308 CODES USING 50 MHz CLOCK AND SPECIFIED CLOCKS/BYTE, FORWARD ORDER OUTPUT

BLOCK LENGTHS 'N'	MESSAGE LENGTH 'K'	ERROR CAPABILITY 't'	MINIMUM REQUIRED (clocks/byte)	MAXIMUM DATA RATE (MBytes/sec)	MAXIMUM LATENCY (# of clocks)	MAXIMUM LATENCY (μsecs)
126	112	7	4	12.50	742	14.84
194	178	8	4	12.50	1107	22.14
208	192	8	4	12.50	1181	23.62
219	201	9	4	12.50	1242	24.84
225	205	10	4	12.50	1276	25.52

ABOUT AHA

The AHA Products Group (AHA) of Comtech EF Data Corporation develops and markets superior integrated circuits, boards, and intellectual property cores for improving the efficiency of communications systems everywhere. AHA has been setting the standard in Forward Error Correction and Lossless Data Compression for many years and provides flexible and cost effective solutions for today's growing bandwidth and reliability challenges. Comtech EF Data is a wholly owned subsidiary of Comtech Telecommunications Corporation (NASDAQ" CMTL). For more information, visit: www.aha.com.

ORDERING INFORMATION

PART NUMBER	DESCRIPTION
AHA4013B-050 PJC	12.5 MBytes/sec Reed- Solomon Error Correction Device - Commercial Temp

Comtech EF Data Corporation

1126 Alturas Drive Moscow, ID 83843-8331 tel: 208.892.5600 fax: 208.892.5601 e-mail: sales@aha.com www.aha.com