

Chapter 3

Two-dimensional Random Variables and Conditional Probability Distributions

Overview

- 2 dimensional random variables
- Joint probability functions for discrete random variables
- Joint probability density functions for continuous random variables
- Marginal distributions
- Conditional distributions
- Independent random variables
- Expectation

3.1 Two Dimensional Random Variables

• There are many experiment situations in which more than one random variable will be of interest to an investigator.

- For example, the investigator may be interested in studying the height (H) and weight (W) of a person chosen from a certain population.
- Another researcher may be interested in the hardness (H) and tensile strength (T) of a piece of cold-drawn copper

Two Dimensional Random Variables (Continued)

Definition 3.1

- Let *E* be an experiment and *S* a sample space associated with *E*.
- Let *X* and *Y* be two functions each assigning a real number to each $s \in S$.
- We call (*X*, *Y*) a **two-dimensional random variable**. (Sometimes called a **random vector**).

Two Dimensional Random Variables (Continued)

Range Space

$$R_{X,Y} = \{(x,y) \mid x = X(s), y = Y(s), s \in S\}.$$

The above definition can be extended to more than two random variables.

Definition 3.2

• Let X_1, X_2, \dots, X_n be n functions each assigning a real number to <u>every</u> outcome $s \in S$. We call (X_1, X_2, \dots, X_n) an n-dimensional random variable. (or an n-dimensional random vector).

Two Dimensional Random Variables (Continued)

Definition 3.3

- 1. (X, Y) is a two-dimensional **discrete** random variable if the possible values of (X(s), Y(s)) are finite or countable infinite.
 - i.e. the possible values of (X(s), Y(s)) may be represented as $(x_i, y_j), i = 1, 2, 3, \dots; j = 1, 2, 3, \dots$
- 2. (X,Y) is a two-dimensional **continuous** random variable if the possible values of (X(s),Y(s)) can assume all values in some region of the Euclidean plane \mathbb{R}^2 .

- Consider a television set to be serviced.
- Let *X* represent the age to the nearest year of the set and *Y* represent the number of defective components in the set.
- (X,Y) is a discrete 2-dimensional random variable.
- Then the set of possible values for (X, Y) is $R_{X,Y} = \{(x, y): x = 0, 1, 2, \dots; y = 0, 1, 2, \dots, n\}$, where n is the total number of components in the television set.
- (X,Y) = (5,3) means the television set is 5 years old and has 3 defective components.

- A fast food restaurant operates a drive-up facility and a walk-up window.
- On a randomly selected day, let *X* = the proportion of time that the **drive-up facility** is in use (at least one customer is being served or waiting to be served) and *Y* = the proportion of the time that the **walk-up window** is in use.
- Then the set of possible values for (X, Y) is $R_{X,Y} = \{(x,y) : 0 \le x \le 1, 0 \le y \le 1\}.$
- (X,Y) is a **continuous** 2-dimensional random variable.

3.2 Joint Probability Density Function

 As in the one-dimensional random variable case, we would like to have a number associated to the probability or probability density of a 2-dimensional random variable to take on a certain value.

3.2.1 Joint Probability Function for Discrete RVs

Definition 3.4

- Let (X, Y) be a 2-dimensional **discrete** random variable defined on the sample space of an experiment. With each possible value (x_i, y_j) , we associate a number $f_{X,Y}(x_i, y_j)$ representing $Pr(X = x_i, Y = y_j)$ and satisfying the following conditions:
- 1. $f_{X,Y}(x_i, y_j) \ge 0$ for all $(x_i, y_j) \in R_{X,Y}$.
- $2. \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{X,Y}(x_i, y_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \Pr(X = x_i, Y = y_j) = 1$ (3.1)

Joint Probability Function (Continued)

- The function $f_{X,Y}(x,y)$ defined for all pairs of values $(x_i,y_j) \in R_{X,Y}$ is called the joint probability function of (X,Y).
- Let A be any set consisting of pairs of (x, y) values. Then the probability $Pr((X, Y) \in A)$ is defined by summing the joint probability function over pairs in A:

$$\Pr((X,Y) \in A) = \sum_{(x,y) \in A} \int f_{X,Y}(x,y)$$

Find the value of k so that the function given by

$$f_{X,Y}(x,y) = kxy$$
 for $x = 1, 2, 3$, and $y = 1, 2, 3$, can serve as a **joint probability function**.

Solution

$$R_{X,Y} = \{(x,y) \mid x = 1,2,3, \text{ and } y = 1,2,3\}.$$

 $f(1,1) = k, f(1,2) = 2k, f(1,3) = 3k,$
 $f(2,1) = 2k, f(2,2) = 4k, f(2,3) = 6k,$
 $f(3,1) = 3k, f(3,2) = 6k, f(3,3) = 9k.$

By (3.1) on p3-10, we obtain

$$\sum_{x=1}^{3} \sum_{y=1}^{3} f_{X,Y}(x,y) = 1$$

$$\iff$$
 1k + 2k + 3k + 2k + 4k + 6k + 3k + 6k + 9k = 1

$$\iff k = \frac{1}{36}.$$

- A company has 2 production lines, A and B, which produces at most 5 and 3 machines, respectively.
- Assume that the number of machines produced is a random variable.
- Let (*X*, *Y*) represent the 2-dimensional random variable yielding the numbers of machines produced by Line A and Line B respectively on a given day.
- The joint probability function, $f_{X,Y}(x,y)$, of (X,Y) is given on next slide.
- What is the probability that more chips are produced by Line A than by Line B on a given day?

The table below gives the joint probability function for (X, Y).

у	Х						
	0	1	2	3	4	5	Total
0	0	0.01	0.02	0.05	0.06	0.08	0.22
1	0.01	0.03	0.04	0.05	0.05	0.07	0.25
2	0.02	0.03	0.05	0.06	0.06	0.07	0.29
3	0.02	0.04	0.03	0.04	0.06	0.05	0.24
Column Total	0.05	0.11	0.14	0.20	0.23	0.27	1

- Each entry represents $f_{X,Y}(x_i, y_i) = \Pr(X = x_i, Y = y_i)$.
- For example, $f_{X,Y}(2,3) = Pr(X = 2, Y = 3) = 0.03$.

Solution to Example 2

```
Let B = \{X > Y\}.
   Pr(B) = Pr(X > Y)
           = \Pr[(X,Y) = (1,0) \text{ or } (X,Y) = (2,0) \text{ or }
                (X,Y) = (2,1) \text{ or } \cdots \text{ or } (X,Y) = (5,3)
           = \Pr[(X,Y) = (1,0)] + \Pr[(X,Y) = (2,0)]
                 + \cdots + \Pr[(X, Y) = (5, 3)]
           = f_{X,Y}(1,0) + f_{X,Y}(2,0) + f_{X,Y}(2,1) + \dots + f_{X,Y}(5,3)
           = 0.01 + 0.02 + 0.04 + 0.05 + \cdots + 0.06 + 0.05
           = 0.73.
```


- In a group of 9 executives of a certain company, 4 are married, 3 have never married and 2 are divorced.
- Three of the executives are to be randomly selected for promotion.
- Let *X* denote the number of married executives and *Y* the number of never married executives among the three selected for promotion.
- Find the joint probability function of *X* and *Y*.

Solution to Example 3

• The number of ways to select 3 executives out of 9 executives for promotion is

$$\binom{9}{3}$$

• For x, y = 0, 1, 2, 3 such that $1 \le x + y \le 3$, the number of ways to select x executives from 4 married executives, y executives from 3 never married executives and the rest from 2 divorced executives is

$$\binom{4}{x}\binom{3}{y}\binom{2}{3-x-y}$$

Solution to Example 3 (Continued)

Therefore

$$f_{X,Y}(x,y) = \Pr(X = x, Y = y)$$

$$= \frac{\binom{4}{x} \binom{3}{y} \binom{2}{3 - x - y}}{\binom{9}{3}}$$

for x, y = 0, 1, 2, 3 such that $1 \le x + y \le 3$ and $f_{X,Y}(x,y) = 0$ otherwise.

Solution to Example 3 (Continued)

The above p.f. are given explicitly in the following table.

V		Row			
Х	0	1	2	3	Total
0	0	3/84	6/84	1/84	10/84
1	4/84	24/84	12/84	0	40/84
2	12/84	18/84	0	0	30/84
3	4/84	0	0	0	4/84
Column Total	20/84	45/84	18/84	1/84	1

3.2.2 Joint pdf for Continuous RVs

• Let (X, Y) be a 2-dimensional **continuous** random variable assuming all values in some region R of the Euclidean plane, \mathbb{R}^2 .

• $f_{X,Y}(x,y)$ is called a **joint probability density function** if it satisfies the following conditions:

Joint pdf for Continuous RVs (Continued)

1.
$$f_{X,Y}(x,y) \ge 0$$
 for all $(x,y) \in R_{X,Y}$.

2.

$$\iint_{(x,y)\in R_{X,Y}} f_{X,Y}(x,y)dx dy = 1$$

or

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1.$$

Suppose that the two-dimensional continuous random variable (X, Y) have the joint p.d.f. given by

$$f_{X,Y}(x,y) = \begin{cases} x^2 + \frac{xy}{3}, & \text{for } 0 \le x \le 1, 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

Find $Pr(X + Y \ge 1)$.

Solution to Example 1

- First check if $f_{X,Y}(x,y)$ is a joint p.d.f.
- It is obvious that $f_{X,Y}(x,y) \ge 0$ for all (x,y).
- Check that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx \, dy = \int_{0}^{2} \int_{0}^{1} \left(x^{2} + \frac{xy}{3} \right) \, dx \, dy$$

$$= \int_0^2 \left[\frac{x^3}{3} + \frac{x^2 y}{6} \right]_{x=0}^1 dy = \int_0^2 \left(\frac{1}{3} + \frac{y}{6} \right) dy = \left[\frac{y}{3} + \frac{y^2}{12} \right]_{y=0}^2$$

$$= 2/3 + 4/12 = 1.$$

Solution to Example 1 (Continued)

• Let $A = \{X + Y \ge 1\}$. Then $A' = \{X + Y < 1\}$. Pr(A) = 1 - Pr(A') $= 1 - \iint f_{X,Y}(x,y) dx dy$

$$= 1 - \iint_{x+y<1} f_{X,Y}(x,y) dx dy$$

$$= 1 - \int_0^1 \int_0^{1-x} \left(x^2 + \frac{xy}{3}\right) dy dx$$

Solution to Example 1 (Continued)

$$Pr(A) = 1 - Pr(A')$$

$$= \cdots$$

$$= 1 - \int_0^1 \int_0^{1-x} \left(x^2 + \frac{xy}{3}\right) dy dx$$

• The integration limits of y are based on the facts that $0 \le y \le 2$ and

$$0 < y < 1 - x$$
 for a fixed x with $0 \le x \le 1$.

Solution to Example 1 (Continued)

Hence

$$\Pr(A) = 1 - \int_0^1 \left[x^2 y + \frac{xy^2}{6} \right]_{y=0}^{1-x} dx$$

$$= 1 - \int_0^1 x^2 (1-x) + \frac{1}{6} x (1-x)^2 dx$$

$$= 1 - \left[\frac{x^3}{3} - \frac{x^4}{4} + \frac{1}{6} \left(\frac{x^2}{2} - \frac{2x^3}{3} + \frac{x^4}{4} \right) \right]_{x=0}^1$$

$$= 1 - \frac{7}{72} = \frac{65}{72}.$$

• If the joint p.d.f. of (X, Y) is given by

$$f_{X,Y}(x,y) = \begin{cases} \frac{12}{13}x(x+y), & \text{for } 0 \le x \le 1, 1 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

- Define $A = \{(x, y) : 0 < x < 1/2, 1 < y < 2\}.$
- Find $Pr((X,Y) \in A)$.

Solution to Example 2

$$Pr((X,Y) \in A) = Pr(0 < X < 1/2, 1 < Y < 2)$$

$$= \int_{1}^{2} \int_{0}^{1/2} \frac{12}{13} x (x + y) dx dy$$

$$= \frac{12}{13} \int_{1}^{2} \left[\frac{x^{3}}{3} + \frac{x^{2}y}{2} \right]_{x=0}^{1/2} dy$$

$$= \frac{12}{13} \int_{1}^{2} \frac{1}{24} + \frac{y}{8} \, dy$$

$$= \frac{1}{26} \left[y + \frac{3y^2}{2} \right]_{y=1}^{2} = \frac{11}{52}$$

3.3 Marginal and Conditional Probability Distributions

3.3.1 Marginal probability distributions Definition 3.6

- Let (X, Y) be a 2-dimensional discrete (or continuous) random variable with joint probability function (or joint probability density function) $f_{X,Y}(x,y)$.
- The **marginal probability distributions** of *X* and *Y* are respectively given by:

Marginal Distributions (Continued)

• For **discrete** case,

$$f_X(x) = \sum_{y} f_{X,Y}(x,y)$$
 and $f_Y(y) = \sum_{x} f_{X,Y}(x,y)$

• For **continuous** case,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

and

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dx$$

- Refer to the example 2 in Section 3.2.1 on p3-15.
- Find the marginal probability distributions of *X* and *Y*.

Solution

To find the marginal distribution of X, $f_X(x)$

$$f_X(0) = \sum_{y=0}^{3} f_{X,Y}(0,y) = 0 + 0.01 + 0.02 + 0.02 = 0.05.$$

$$f_X(1) = \sum_{y=0}^{\infty} f_{X,Y}(1,y) = 0.01 + 0.03 + 0.03 + 0.04 = 0.11.$$

• Similarly we obtain the values of the marginal distribution of $f_X(x)$ for x = 2, 3, 4 and 5.

χ	0	1	2	3	4	5
$f_X(x) = \Pr(X = x)$	0.05	0.11	0.14	0.20	0.23	0.27

Note:

1.
$$f_X(x) \ge 0$$
 for $x = 0, 1, 2, 3, 4, 5$

2.
$$\sum_{x=0}^{5} f_X(x) = 1$$

To find the marginal distribution of Y, $f_Y(y)$

$$f_Y(0) = \sum_{x=0}^{5} f_{X,Y}(x,0) = 0 + 0.01 + 0.02 + 0.05 + 0.06 + 0.08$$

$$= 0.22.$$

$$f_Y(1) = \sum_{x=0}^{5} f_{X,Y}(x,1) = 0.01 + 0.03 + 0.04 + 0.05 + 0.07$$

$$= 0.25.$$

• Similarly we obtain the other values of the marginal distribution of $f_Y(y)$ for y = 2 and 3.

y	0	1	2	3
$f_Y(y) = \Pr(Y = y)$	0.22	0.25	0.29	0.24

• $f_{X,Y}(x,y)$, $f_X(x)$ and $f_Y(y)$ are displayed in the following table

27		$f(\alpha)$					
У	0	1	2	3	4	5	$f_{Y}(y)$
0	0	0.01	0.02	0.05	0.06	0.08	0.22
1	0.01	0.03	0.04	0.05	0.05	0.07	0.25
2	0.02	0.03	0.05	0.06	0.06	0.07	0.29
3	0.02	0.04	0.03	0.04	0.06	0.05	0.24
$f_X(x)$	0.05	0.11	0.14	0.20	0.23	0.27	1

Example 2

- Refer to example 2 in Section 3.2.2 on p3-28.
- The joint p.d.f. of (X, Y) is given by

$$f_{X,Y}(x,y) = \begin{cases} \frac{12}{13}x(x+y), & \text{for } 0 \le x \le 1, 1 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

Find the marginal distributions of X and Y.

Solution to Example 2

• For $0 \le x \le 1$,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{1}^{2} \frac{12}{13} x(x+y) dy$$
$$= \frac{12}{13} \left[x^2 y + \frac{1}{2} x y^2 \right]_{y=1}^{2}$$
$$= \frac{6}{13} x(2x+3).$$

• For x < 0 or x > 1, $f_X(x) = 0$ since $f_{X,Y}(x,y) = 0$ and $\int_{-\infty}^{\infty} 0 \, dy = 0$.

• For $1 \le y \le 2$,

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_0^1 \frac{12}{13} x(x+y) dx$$
$$= \frac{12}{13} \left[\frac{x^3}{3} + \frac{1}{2} x^2 y \right]_{x=0}^1$$
$$= \frac{2}{13} (2+3y).$$

• For y < 1 or y > 2, $f_Y(y) = 0$ since $f_{X,Y}(x,y) = 0$ and $\int_{-\infty}^{\infty} 0 \ dx = 0$.

3.3.2 Conditional Distribution

Definition 3.7

- Let (X, Y) be a discrete (or continuous) 2-dimensional random variable with joint probability function (or p.d.f.) $f_{X,Y}(x,y)$.
- Let $f_X(x)$ and $f_Y(y)$ be the marginal probability functions of X and Y respectively.

Conditional Distribution (Continued)

Definition 3.7 (Continued)

• Then the conditional distribution of Y given that X = x is given by

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}, \quad \text{if } f_X(x) > 0,$$

for each *x* within the range of *X*.

Conditional Distribution (Continued)

Definition 3.7 (Continued)

• Similarly, the **conditional probability distribution of** X **given** Y = y is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}, \quad \text{if } f_Y(y) > 0,$$

for each *y* within the range of *Y*.

Remarks

- 1. The conditional p.f.'s (p.d.f.'s) satisfy all the requirements for a 1-dimensional p.f. (p.d.f.). Thus, we have
 - (a) For a fixed y,

$$f_{X|Y}(x|y) \ge 0$$

and for a fixed x,

$$f_{Y|X}(y|x) \ge 0.$$

Remarks (Continued)

1. (b)

For discrete r.v.'s,

$$\sum_{x} f_{X|Y}(x|y) = 1$$
 and $\sum_{y} f_{Y|X}(y|x) = 1$.

For continuous r.v.'s

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y)dx = 1 \text{ and } \int_{-\infty}^{\infty} f_{Y|X}(y|x)dy = 1.$$

Remarks (Continued)

2. For
$$f_X(x) > 0$$
,
 $f_{X,Y}(x,y) = f_{Y|X}(y|x)f_X(x)$.

For
$$f_Y(y) > 0$$
,
 $f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y)$.

Example 1

 Suppose an experiment consists of 3 tosses of a fair coin with each outcome being equally likely.

• Let *X* be the number of head on the last flip and *Y* the total number of heads for the 3 tosses.

• Find the conditional distribution of Y given X = 1.

Example 1 (Continued)

Outcome	ннн	THH	нтн	ННТ	TTH	THT	HTT	TTT
(x,y)	(1,3)	(1,2)	(1,2)	(0,2)	(1,1)	(0,1)	(0,1)	(0,0)
$f_{XY}(x,y)$	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

The joint probability distribution of (X, Y) is given in the

following table:

x		6 ()			
	0	1	2	3	$f_X(x)$
0	1/8	1/4	1/8	0	1/2
1	0	1/8	1/4	1/8	1/2
$f_{Y}(y)$	1/8	3/8	3/8	1/8	1

Example 1 (Continued)

Note: Summing across the rows gives $f_X(x)$ and summing across the columns gives $f_Y(y)$.

$$f_{Y|X}(0|1) = \frac{f_{X,Y}(1,0)}{f_X(1)} = \frac{0}{1/2} = 0.$$

$$f_{Y|X}(1|1) = \frac{f_{X,Y}(1,1)}{f_X(1)} = \frac{1/8}{1/2} = \frac{1}{4}.$$

$$f_{Y|X}(2|1) = \frac{f_{X,Y}(1,2)}{f_X(1)} = \frac{1/4}{1/2} = \frac{1}{2}.$$

$$f_{Y|X}(3|1) = \frac{f_{X,Y}(1,3)}{f_Y(1)} = \frac{1/8}{1/2} = \frac{1}{4}.$$

Example 1 (Continued)

Therefore the conditional distribution of *Y* given X = 1 is

у	0	1	2	3
$f_{Y X}(y 1)$	0	1/4	1/2	1/4

Note:

$$\sum_{v=0}^{3} f_{Y|X}(y|1) = 1$$

Example 2

• Refer to Example 1 in Section 3.2.1 on p3-12.

$$f_{X,Y}(x,y) = \frac{1}{36}xy$$
, for $x = 1, 2, 3$, and $y = 1, 2, 3$.

• Find $f_X(x)$ and $f_{Y|X}(y|x)$.

Example 2 (Continued)

Solution

$$f_X(x) = \sum_{y=1}^{3} \frac{1}{36} xy = \frac{x}{36} \left(\sum_{y=1}^{3} y \right)$$
$$= \frac{x}{36} (1+2+3) = \frac{x}{6}, \quad \text{for } x = 1, 2, 3.$$

and $f_X(x) = 0$ for other values of X.

Example 2 (Continued)

For
$$x = 1, 2$$
 or 3,

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

$$= \frac{xy/36}{f_X(x)} = \frac{y}{f_X(x)}$$
for $y = 1, 2, 3, 3$

and 0 otherwise.

Example 3

Suppose (X, Y) has the joint p.d.f

$$f_{X,Y}(x,y) = \begin{cases} x^2 + \frac{xy}{3}, & \text{for } 0 \le x \le 1, 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find $f_X(x)$ and $f_Y(y)$.
- (b) Find $f_{Y|X}(y|x)$ and $f_{X|Y}(x|y)$.

Solution to Example 3

(a) For $0 \le x \le 1$,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{2} \left(x^2 + \frac{xy}{3}\right) dy$$
$$= \left[x^2y + \frac{xy^2}{6}\right]_{y=0}^{2} = 2x^2 + \frac{2}{3}x.$$

For x < 0 and x > 1, $f_X(x) = 0$,

since
$$f_{X,Y}(x,y) = 0$$
 and $\int_{-\infty}^{\infty} 0 \, dy = 0$.

(a) (Continued)

Hence

$$f_X(x) = \begin{cases} 2x^2 + \frac{2}{3}x, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

(a) (Continued)

For $0 \le y \le 2$,

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_{0}^{1} \left(x^2 + \frac{xy}{3}\right) dx$$
$$= \left[\frac{x^3}{3} + \frac{x^2y}{6}\right]_{x=0}^{1} = \frac{1}{3} + \frac{1}{6}y.$$

For y < 0 and y > 2, $f_Y(y) = 0$,

since
$$f_{X,Y}(x,y) = 0$$
 and $\int_{-\infty}^{\infty} 0 \ dx = 0$.

(a) (Continued)

Hence

$$f_Y(y) = \begin{cases} \frac{1}{3} + \frac{1}{6}y, & \text{for } 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

(b) For
$$0 \le x \le 1$$
,
$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

$$= \begin{cases} \frac{x^2 + xy/3}{2x^2 + 2x/3}, & \text{for } 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{3x + y}{2(3x + 1)}, & \text{for } 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

For example

• When x = 1, then

$$f_{Y|X}(y|1) = (3 + y)/8$$
, for $0 \le y \le 2$ and $f_{Y|X}(y|1) = 0$, otherwise.

• When x = 0.5, then

$$f_{Y|X}(y|0.5) = (3+2y)/10$$
, for $0 \le y \le 2$ and $f_{Y|X}(y|0.5) = 0$, otherwise.

(b) For
$$0 \le y \le 2$$
,
$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

$$= \begin{cases} \frac{x^{2} + xy/3}{(2+y)/6}, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{2x(3x+y)}{2+y}, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

For example

• When y = 1, then

$$f_{X|Y}(x|1) = [2x(3x+1)]/3$$
, for $0 \le x \le 1$ and $f_{X|Y}(x|1) = 0$, otherwise.

• When y = 0.5, then

$$f_{X|Y}(x|0.5) = [2x(6x+1)]/5$$
, for $0 \le x \le 1$ and $f_{X|Y}(x|0.5) = 0$, otherwise.

Example 4

- A fast food restaurant operates a drive-up facility and a walk-up window.
- On a randomly selected day, let *X* = the proportion of time that the drive-up facility is in use (at least one customer is being served or waiting to be served) and *Y* = the proportion of the time that the walk-up window is in use.
- Suppose that the joint p.d.f. of (X, Y) is given by

$$f_{X,Y}(x,y) = \begin{cases} \frac{6}{5}(x+y^2) & \text{for } 0 \le x \le 1, 0 \le y \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Example 4 (Continued)

- (a) Find the probability that neither facility is busy more than one-quarter of the time.
 - i.e. Find Pr(0 < X < 1/4, 0 < Y < 1/4).
- (b) Find the **probability distribution** of busy time for the drive-up facility without reference to the walk-up window. i.e. Find $f_X(x)$.
 - Hence find the **probability** that the drive-up facility is busy more than one-quarter of the time but less than three quarters of the time.
 - i.e. Find Pr(1/4 < X < 3/4).

Example 4 (Continued)

- (c) Given that the drive-up facility is busy 80% of the time, what is the probability that the walk-in facility is busy at most half the time?
 - i.e. Find $Pr(Y \le 1/2 \mid X = 4/5)$.
- (d) Given that the drive-up facility is busy 80% of the time, what is the expected proportion of time that the walk-in facility is busy?
 - i.e. Find E(Y | X = 4/5).

Solution to Example 4

(a)
$$\Pr\left(0 \le X \le \frac{1}{4}, 0 \le Y \le \frac{1}{4}\right)$$

$$= \int_0^{1/4} \int_0^{1/4} \frac{6}{5} (x + y^2) \, dx \, dy$$

$$= \frac{6}{5} \left[\int_0^{1/4} \int_0^{1/4} x \, dx \, dy + \int_0^{1/4} \int_0^{1/4} y^2 \, dx \, dy \right]$$

$$= \frac{6}{5} \left[\int_0^{1/4} \left[\frac{x^2}{2} \right]_{x=0}^{1/4} dy + \int_0^{1/4} \left[xy^2 \right]_{x=0}^{1/4} dy \right]$$

Solution to Example 4

(a) (Continued)

$$= \frac{6}{5} \left[\int_{0}^{1/4} \frac{1}{2(4)^{2}} dy + \int_{0}^{1/4} \frac{y^{2}}{4} dy \right]$$

$$= \frac{6}{5} \left\{ \left[\frac{y}{32} \right]_{y=0}^{1/4} + \left[\frac{y^{3}}{12} \right]_{y=0}^{1/4} \right\}$$

$$= \frac{7}{640} = 0.0109.$$

(b)

$$f_X(x) = \int_0^1 \frac{6}{5} (x + y^2) dy = \frac{6}{5} \left[xy + \frac{y^3}{3} \right]_{y=0}^1$$
$$= \frac{6}{5} x + \frac{2}{5}.$$

for $0 \le x \le 1$

and 0 otherwise.

(b) (Continued)

$$\Pr\left(\frac{1}{4} \le X \le \frac{3}{4}\right) = \int_{1/4}^{3/4} \left(\frac{6}{5}x + \frac{2}{5}\right) dx$$
$$= \left[\frac{3}{5}x^2 + \frac{2}{5}x\right]_{x=1/4}^{3/4} = \frac{1}{2}.$$

$$f_{Y|X}\left(y\left|\frac{4}{5}\right) = \frac{f_{X,Y}(4/5,y)}{f_X(4/5)}$$

$$= \frac{6[(4/5) + y^2]/5}{(6/5)(4/5) + (2/5)}$$

$$= \frac{3(4+5y^2)}{17}.$$

for 0 < y < 1 and 0 otherwise.

(c) (Continued)
Hence

$$\Pr\left(Y \le \frac{1}{2} \left| X = \frac{4}{5} \right) = \int_{-\infty}^{1/2} f_{Y|X} \left(y \left| \frac{4}{5} \right) dy \right)$$

$$= \int_{0}^{1/2} \frac{3}{17} (4 + 5y^{2}) dy$$

$$= \frac{3}{17} \left[4y + \frac{5}{3}y^{3} \right]_{y=0}^{1/2} = \frac{53}{136} = 0.3897.$$

(d)

$$E\left(Y\middle|X = \frac{4}{5}\right) = \int_{-\infty}^{\infty} y \, f_{Y|X}\left(y\middle|\frac{4}{5}\right) \, dy$$
$$= \int_{0}^{1} \frac{6}{34} y(4+5y^{2}) \, dy$$
$$= \frac{6}{34} \left[2y^{2} + \frac{5}{4}y^{4}\right]_{y=0}^{1} = \frac{39}{68} = 0.5735.$$

Example 5

Let *X* and *Y* be **uniformly distributed** over the triangle with the boundaries: $0 \le x \le y$, $0 \le y \le 2$.

- (a) Find the joint p.d.f. of (X, Y),
- (b) Find $f_X(x)$ and $f_Y(y)$.
- (c) Find $f_{Y|X}(y|x)$ and $f_{X|Y}(x|y)$.
- (d) Find $Pr(X \le 1/2 \mid Y = 1)$
- (e) Find $Pr(X \le 1, Y \le 1)$.

Solution to Example 5

• Since $f_{X,Y}(x,y)$ is uniform over the triangle bounded by $0 \le x \le y, 0 \le y \le 2$, therefore

$$f_{X,Y}(x,y) = k$$
 for $0 \le x \le y, 0 \le y \le 2$.

• Note: The area bounded by $0 \le x \le y$, $0 \le y \le 2$ is (1/2)(2)(2) = 2.

(a) (Continued)

$$\int_0^2 \int_0^y k \, dx \, dy = \int_0^2 [kx]_{x=0}^y \, dy$$
$$= \int_0^2 ky \, dy = \left[\frac{ky^2}{2}\right]_0^2 = 2k.$$

Hence

$$\int_0^2 \int_0^y k \, dx \, dy = 1 \Leftrightarrow 2k = 1 \Leftrightarrow k = \frac{1}{2}.$$

(a) (Continued)

Therefore,

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{2}, & \text{for } 0 \le x \le y, 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

$$f_X(x) = \begin{cases} \int_x^2 \frac{1}{2} \, dy, & \text{for } 0 \le x \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \left[\frac{y}{2}\right]_{y=x}^2, & \text{for } 0 \le x \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{1}{2}(2-x), & \text{for } 0 \le x \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

(b) (Continued)

$$f_Y(y) = \begin{cases} \int_0^y \frac{1}{2} dx, & \text{for } 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$
$$= \begin{cases} \frac{y}{2}, & \text{for } 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

(c) For $0 \le x \le 2$,

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \begin{cases} \frac{1/2}{(2-x)/2}, & \text{for } x \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$
$$= \begin{cases} \frac{1}{2-x}, & \text{for } x \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

(C) (Continued)

For
$$0 \le x \le 2$$
,

$$f_{Y|X}(y|x) = \begin{cases} \frac{1}{2-x}, & \text{for } x \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

For example, when x = 1.5,

$$f_{Y|X}(y|1.5) = 2$$
, for $1.5 \le y \le 2$ and

$$f_{Y|X}(y|1.5) = 0$$
, otherwise.

(C) (Continued)

For
$$0 \le y \le 2$$
,
$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

$$= \begin{cases} \frac{1/2}{y/2}, & \text{for } 0 \le x \le y, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} 1/y, & \text{for } 0 \le x \le y, \\ 0, & \text{otherwise.} \end{cases}$$

(c) (Continued)

For
$$0 \le y \le 2$$
,

$$f_{X|Y}(x|y) = \begin{cases} 1/y, & \text{for } 0 \le x \le y, \\ 0, & \text{otherwise.} \end{cases}$$

For example, when y = 0.5,

$$f_{X|Y}(x|0.5) = 2$$
 for $0 \le x \le 0.5$ and

$$f_{X|Y}(x|0.5) = 0$$
, otherwise.

(d) From (c), we have $f_{X|Y}(x|1) = 1$ for $0 \le x \le 1$ and 0 otherwise.

Therefore

$$\Pr\left(X \le \frac{1}{2} \mid Y = 1\right) = \int_{-\infty}^{1/2} f_{X|Y}(x|1) dx$$
$$= \int_{0}^{1/2} 1 \, dx = \frac{1}{2}.$$

(e)

$$\Pr(X \le 1, Y \le 1) = \int_{-\infty}^{1} \int_{-\infty}^{1} f_{X,Y}(x, y) dx \ dy$$

$$= \int_{0}^{1} \int_{0}^{y} \frac{1}{2} \ dx \ dy = \int_{0}^{1} \frac{y}{2} \ dy$$

$$= \left[\frac{1}{2} \left(\frac{y^{2}}{2}\right)\right]_{0}^{1} = \frac{1}{4}.$$

3.4 Independent Random Variables

3.4.1 Definition of Independent RVs Definition

• Random variables X and Y are **independent** if and only if $f_{X,Y}(x,y) = f_X(x) f_Y(y)$, **for all** x, y.

Extension:

• Random variables X_1, X_2, \dots, X_n are independent if and only if

$$f_{X_1,X_2,\cdots,X_n}(x_1,x_2,\cdots,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_n}(x_n)$$

for all x_i , $i = 1, \cdots, n$.

Remark

• The product of 2 positive functions $f_X(x)$ and $f_Y(y)$ means a function which is positive on a **product space**.

That is, if

```
f_X(x) > 0, for x \in A_1 and f_Y(y) > 0, for y \in A_2
then f_X(x)f_Y(y) > 0, for (x,y) \in A_1 \times A_2.
```


Example 1

1. The joint p.d.f. $f_{X,Y}(x,y)$ is given as follows.

x	у			$f(\alpha)$
	1	3	5	$f_X(x)$
2	0.1	0.2	0.1	0.4
4	0.15	0.3	0.15	0.6
$f_{Y}(y)$	0.25	0.5	0.25	1

Are *X* and *Y* independent?

Solution to Example 1

$$f_X(2)f_Y(1) = 0.4(0.25) = 0.1 = f_{X,Y}(2,1).$$

Similarly, we have

$$f_X(2)f_Y(3) = 0.4(0.5) = 0.2 = f_{X,Y}(2,3).$$

$$f_X(2)f_Y(5) = 0.4(0.25) = 0.1 = f_{X,Y}(2,5).$$

$$f_X(4)f_Y(1) = 0.6(0.25) = 0.15 = f_{X,Y}(4,1).$$

$$f_X(4)f_Y(3) = 0.6(0.5) = 0.3 = f_{X,Y}(4,3).$$

$$f_X(4)f_Y(5) = 0.6(0.25) = 0.15 = f_{X,Y}(4,5).$$

Since $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for **all** (x,y), hence X and Y are independent.

Example 2

• Refer to example 1 in Section 3.2.1 on p3-12.

$$f_{X,Y}(x,y) = \frac{xy}{36}$$
 for $x = 1, 2, 3$, and $y = 1, 2, 3$.

Are X and Y independent?

Example 2 (Continued)

Solution

$$f_X(x) = \sum_{y=1}^{3} \frac{1}{36} xy = \frac{x}{36} \sum_{y=1}^{3} y$$
$$= \frac{x}{36} (1+2+3) = \frac{1}{6} x \text{ for } x = 1, 2, 3,$$

and 0 otherwise.

Example 2 (Continued)

Similarly

$$f_Y(y) = \sum_{x=1}^{3} \frac{1}{36} xy = \frac{y}{36} \sum_{x=1}^{3} x$$

$$= \frac{y}{36}(1+2+3) = \frac{1}{6}y \text{ for } y = 1,2,3,$$

and 0 otherwise.

Example 2 (Continued)

Hence

$$f_{X,Y}(x,y) = \frac{1}{36} xy = f_X(x)f_Y(y) = \left(\frac{x}{6}\right)\left(\frac{y}{6}\right)$$
 for **all** $x, y = 1, 2, 3$.

Therefore X and Y are independent.

Example 3

X and Y are 2 independent random variables with

$$f_X(x) = e^{-x}$$
, for $x \ge 0$ and $f_Y(y) = e^{-y}$, for $y \ge 0$.

• What is $f_{X,Y}(x,y)$?

Example 3 (Continued)

Solution

• Since *X* and *Y* are independent, therefore

$$f_{X,Y}(x,y) = f_X(x)f_Y(y) = \begin{cases} e^{-x}e^{-y}, & \text{for } x \ge 0 \text{ and } y \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$
$$= \begin{cases} e^{-(x+y)}, & \text{for } x \ge 0 \text{ and } y \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

Example 4

Given that

$$f_{X,Y}(x,y) = \begin{cases} 2 (x + y), \\ 0, \end{cases}$$

are X and Y independent?

Solution to Example 4

• $f_X(x)$ is given by

$$f_X(x) = \begin{cases} \int_0^x 2(x+y)dy, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} 2\left[xy + \frac{y^2}{2}\right]_{y=0}^x, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} 3x^2, & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

• $f_Y(y)$ is given by

$$f_{Y}(y) = \begin{cases} \int_{y}^{1} 2(x+y)dx, & \text{for } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} 2\left[\frac{x^{2}}{2} + yx\right]_{x=y}^{1}, & \text{for } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} 1 + 2y - 3y^{2}, & \text{for } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

- Since
 - $f_{X,Y}(x,y) = 2(x+y)$ for 0 < x < 1 and 0 < y < x
 - $f_X(x) = 3x^2$ for 0 < x < 1
 - $f_Y(y) = 1 + 2y 3y^2$ for 0 < y < 1.
- Therefore $f_{X,Y}(x,y) \neq f_X(x)f_Y(y)$ for some x and y
- Hence X and Y are not independent.
- Note that the region for which $f_{X,Y}(x,y) > 0$ is not a rectangle and cannot be expressed as the product of 2 intervals.

Alternatively, if the region for which $f_{X,Y}(x,y) > 0$ is not a rectangle, then we look for a point

- 1. in the product space of the interval for which $f_X(x) > 0$ (i.e. 0 < x < 1) and
- 2. the interval for which $f_Y(y) > 0$ (i.e. 0 < y < 1)
- 3. But not in the region for which $f_{X,Y}(x,y) > 0$ e.g. Consider (x,y) = (0.6,0.8). Since $\mathbf{x} (= 0.6) < \mathbf{y} (= 0.8)$, therefore (0.6,0.8) lies outside the region for which $f_{X,Y}(x,y) > 0$. On the other hand, x = 0.6 lies in the interval 0 < x < 1 and y = 0.8 lies in the interval 0 < y < 1.

- Consider the point (x, y) = (0.6, 0.8) (note: y > x)
 - $f_X(0.6) = 3(0.6)^2 = 1.08 > 0$ (Refer to p3.95)
 - $f_Y(0.8) = 1 + 2(0.8) 3(0.8)^2 = 0.68 > 0$ (Refer to p3.96)
 - $f_{X,Y}(0.6, 0.8) = 0$ (Refer to p3.94)
- Therefore $f_{X,Y}(x,y) \neq f_X(x)f_Y(y)$ for (x,y) = (0.6,0.8)
- Hence *X* and *Y* are not independent

Example 5

Given that

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{3} x(1+y), \\ 0, \end{cases}$$

are X and Y independent?

for
$$0 < x < 2, 0 < y < 1$$
,

otherwise.

Solution to Example 5

• $f_X(x)$ is given by

$$f_X(x) = \begin{cases} \int_0^1 \frac{x}{3} (1+y) dy, & \text{for } 0 < x < 2, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{x}{3} \left[y + \frac{y^2}{2} \right]_{y=0}^1, & \text{for } 0 < x < 2, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{1}{2} x, & \text{for } 0 < x < 2, \\ 0, & \text{otherwise.} \end{cases}$$

• $f_Y(y)$ is given by

$$f_{Y}(y) = \begin{cases} \int_{0}^{2} \frac{x}{3} (1+y) dx, & \text{for } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{(1+y)}{3} \left[\frac{x^{2}}{2} \right]_{x=0}^{2}, & \text{for } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{2}{3} (1+y), & \text{for } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Since

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

for $0 < x < 2, 0 < y < 1$,

therefore X and Y are independent.

Example 6

Given that

$$f_{X,Y}(x,y) = \begin{cases} x + \frac{3}{2}y^2, & \text{for } 0 < x < 1, 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

are X and Y independent?

Solution to Example 6

• $f_X(x)$ is given by

$$f_X(x) = \begin{cases} \int_0^1 \left(x + \frac{3}{2} y^2 \right) dy, & \text{for } 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \left[xy + \frac{3}{2} \frac{y^3}{3} \right]_{y=0}^1, & \text{for } 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} x + \frac{1}{2}, & \text{for } 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

• $f_Y(y)$ is given by

$$f_{Y}(y) = \begin{cases} \int_{0}^{1} \left(x + \frac{3}{2}y^{2}\right) dx, & \text{for } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \left[\frac{x^{2}}{2} + \frac{3}{2}y^{2}x\right]_{x=0}^{1}, & \text{for } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{1}{2}(1 + 3y^{2}), & \text{for } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Since

$$f_{X,Y}(x,y) \neq f_X(x)f_Y(y)$$
 for $0 < x < 1$, $0 < y < 1$,

therefore X and Y are not independent.

3.5 Expectation

Definition 3.5.1

• The expectation of g(X,Y) is defined as

$$E[g(X,Y)] = \begin{cases} \sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y), & \text{for Discrete RV's,} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy, & \text{for Cont. RV's} \end{cases}$$

A Special Case

• Let $g(X,Y) = (X - \mu_X)(Y - \mu_Y)$. This leads to the definition of covariance between two random variables.

Definition 3.5.2

• Let (X, Y) be a bivariate random vector with joint p.f. (or p.d.f.) $f_{X,Y}(x,y)$, then the **covariance** of (X,Y) is defined as

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

A Special Case (Continued)

• For **discrete** case

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y)$$

• For **continuous** case

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

= $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y) \, dx \, dy$

Remarks

- 1. $Cov(X, Y) = E(XY) \mu_X \mu_Y$
- 2. If X and Y are independent, then Cov(X,Y) = 0. However Cov(X,Y) = 0 does not imply X and Y are independent.
- 3. $Cov(aX + b, cY + d) = ac\ Cov(X, Y)$
- 4. $V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab Cov(X, Y)$

Correlation coefficient

Definition 3.5.2

• The **correlation coefficient** of *X* and *Y*, denoted by Cor(X,Y), $\rho_{X,Y}$ or ρ , is defined by

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}$$

Remarks on Correlation coefficient

1.
$$-1 \le \rho_{X,Y} \le 1$$
.

2. $\rho_{X,Y}$ is a measure of the degree of **linear** relationship between *X* and *Y*.

3. If X and Y are independent, then $\rho_{X,Y} = 0$. On the other hand, $\rho_{X,Y} = 0$ does **not** imply independence.

Example 1

• Refer to Example 1 in Section 3.3.2 on p3-47. The joint distribution of (*X*, *Y*) is given by

x	y				$f(\alpha)$
	0	1	2	3	$f_X(x)$
0	1/8	1/4	1/8	0	1/2
1	0	1/8	1/4	1/8	1/2
$f_{Y}(y)$	1/8	3/8	3/8	1/8	1

Example 1 (Continued)

- (a) Find E(Y X).
- (b) Find Cov(X, Y).
- (c) Find $\rho_{X,Y}$.
- (d) Find E(Y | X = 1).

Solution to Example 1

(a)

$$E(Y - X) = (0 - 0)(1/8) + (1 - 0)(1/4) + (2 - 0)(1/8) + \dots + (3 - 1)(1/8) = 1.$$

$$E(Y - X) = E(Y) - E(X) = 1.5 - 0.5 = 1.$$

(See part (b))

Solution to Example 1 (Continued)

(b)

$$E(XY) = (0)(0)(1/8) + (0)(1)(1/4) + (0)(2)(1/8) + \cdots + (1)(3)(1/8) = 1.$$

$$E(X) = 0(1/2) + 1(1/2) = 0.5.$$

$$E(Y) = 0\left(\frac{1}{8}\right) + 1\left(\frac{3}{8}\right) + 2\left(\frac{3}{8}\right) + 3\left(\frac{1}{8}\right) = 1.5.$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 1 - (0.5)(1.5) = 0.25.$$

Solution to Example 1 (Continued)

(c)
$$V(X) = [0^2(1/2) + 1^2(1/2)] - (0.5)^2 = 0.25.$$

 $V(Y) = [0^2(1/8) + 1^2(3/8) + 2^2(3/8) + 3^2(1/8)] - 1.5^2$
 $= 3 - 2.25 = 0.75.$
 $\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{0.25}{\sqrt{(0.25)(0.75)}}$
 $= \frac{1}{\sqrt{3}} = 0.5774.$

Solution to Example 1 (Continued)

(d) The conditional distribution of Y given X = 1 is

у	1	2	3
$f_{Y X}(y \mid 1)$	1/4	1/2	1/4

$$E(Y \mid X = 1) = 1(1/4) + 2(1/2) + 3(1/4) = 2.$$

(Refer to the conditional distribution on p3-49)

Example 2

Refer to Example 3 in Section 3.3.2 on p3-53. The joint p.d.f. of (X, Y) is given by

$$f_{X,Y}(x,y) = \begin{cases} x^2 + \frac{xy}{3}, & \text{for } 0 \le x \le 1, 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find Cov(X, Y).
- (b) Find E(Y | X = 1/2).

Solution to Example 2

(a)

$$E(XY) = \int_0^2 \int_0^1 xy \left(x^2 + \frac{xy}{3}\right) dx dy$$

$$= \int_0^2 \left[y \frac{x^4}{4} + \frac{y^2 x^3}{9}\right]_{x=0}^1 dy = \int_0^2 \left(\frac{y}{4} + \frac{y^2}{9}\right) dy$$

$$= \left[\frac{y^2}{8} + \frac{y^3}{27}\right]_{y=0}^2 = \frac{43}{54}.$$

Solution to Example 2 (Continued)

(a)

$$E(X) = \int_0^1 x \left(2x^2 + \frac{2}{3}x\right) dx \quad \text{(Refer to p3-55)}$$

$$= \left[\frac{2x^4}{4} + \frac{2x^3}{9}\right]_{x=0}^1 = \frac{13}{18}.$$

$$E(Y) = \int_0^2 y \left(\frac{1}{3} + \frac{y}{6}\right) dy \quad \text{(Refer to p3-57)}$$

$$= \left[\frac{y^2}{6} + \frac{y^3}{18}\right]_{y=0}^2 = \frac{10}{9}.$$
We have Statistics

Solution to Example 2 (Continued)

Hence

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{43}{54} - \left(\frac{13}{18}\right)\left(\frac{10}{9}\right)$$
$$= -\frac{1}{162}.$$

Solution to Example 2 (Continued)

(b) From p3-58, the conditional distribution of Y given X = 1/2 is given by

$$f_{(Y|X)}\left(y\left|\frac{1}{2}\right) = \begin{cases} \frac{3+2y}{10}, & \text{for } 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

Hence

$$E\left(Y\middle|X=\frac{1}{2}\right) = \int_0^2 y\left(\frac{3+2y}{10}\right) \, dy = \frac{1}{10}\left[3\frac{y^2}{2} + 2\frac{y^3}{3}\right]_{y=0}^2 = \frac{17}{15}.$$