Loss Function For Regression

Recap: Linear Regression

■ For the n samples (x^j, y^j) , to be fitted to a line

$$y^{j} = \alpha_0 + \alpha_1 x_1^{j} + \alpha_2 x_2^{j} + \dots + \alpha_r x_r^{j} + \varepsilon^{j},$$

where ε^{j} is the residual for the jth sample and r is the number of predictors.

• e.g.,
$$L_{MSE} = \sum_{j} \varepsilon_{j}^{2}$$

Loss Functions

• A loss function, L, is defined as a mapping of $f(x_i)$ with it's corresponding y_i to a real number $l \in \mathbb{R}$, which captures the similarity between $f(x_i)$ and y_i

$$\varepsilon_i = y_i - f(x_i)$$

 \square Mean Bias Error: $L_{MBE} = \frac{1}{N} \sum_{i=1}^{N} \varepsilon_i$

 \square Mean Absolute Error: $L_{MAE} = \frac{1}{N} \sum_{i} |\varepsilon_{i}|$

✓ Loss is continuous and differentiable.

- ✓ Also called Laplace or l_1 loss.
- ✓ Helps to identify the direction of model bias
- ✓ Least affected by outliers
- ✓ Errors may cancel out, leading to zero loss
- ✓ Not differentiable: Can create trouble

NOTE: the loss function is to capture the difference between the actual and predicted values for a single record whereas cost functions aggregate the difference for the entire training dataset.

Loss Functions

- \Box Mean Squared Error: $L_{MSE} = \frac{1}{N} \sum_{i} \varepsilon_{i}^{2}$
- ✓ Also called Quadratic or l_2 loss.
- ✓ Significantly affected by outliers
- ✓ Mathematically elegant optimization

- \square Root Mean Squared: $L_{RMSE} = \sqrt{\frac{1}{N} \sum_{i} \varepsilon_{i}^{2}}$
- ✓ Less affected by outliers
- ✓ More expensive to compute
- ✓ Continuous and differentiable

Huber loss: Robust Regression

- Combines the advantages of MSE and MAE.
- Mostly proportional to the absolute value, except for small errors, where it is proportional to the square of the error

$$L_{\delta}(arepsilon_{i}) = egin{cases} rac{1}{2}arepsilon_{i}^{2}, & |arepsilon_{i}| \leq \delta \ \delta.\,(|arepsilon_{i}| - rac{1}{2}\delta), & |arepsilon_{i}| > \delta \end{cases}$$

- Robustness of l_1 loss
- Differentiable
- lacksquare δ is adjusted during training based on what is considered an outlier

Model prediction with outlier in training data. Comparison of Huber loss and MSE.

Log-cosh loss

- \blacksquare Log-cosh loss is very close to the Huber loss in behavior, without the requirement of learning δ
 - > linear behavior for very large values of error as log(cosh x) → |x| − log 2
 - ightharpoonup quadratic behavior for small loss values, as $\log(\cosh x) \to \frac{x^2}{2}$.

$$L_{logcosh} = \frac{1}{N} \sum_{i=1}^{N} \log(\cosh(f(x_i) - y_i))$$

More computationally expensive and less customizable compared to Huber Loss

RMSLE Loss

The Root Mean Squared Logarithmic Error (RMSLE) loss is the RMSE of the log-transformed observed value y and log-transformed predicted value \hat{y}

$$L_{RMSLE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(f(x_i) + 1))^2}$$

✓ Due to the properties of the logarithm, the error between the predicted and the actual values is relative, making the RMSLE more robust to outliers

у	55	64	72	450
\hat{y}	61	59	74	102

$$RMSE = 4.655 (174.047)$$

$$RMSLE = 0.076 (0.741)$$

RMSLE Loss

$$L_{RMSLE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(f(x_i) + 1))^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\log(y_i + 1)}{\log(f(x_i) + 1)}\right)^2}$$

- ✓ Only considers the relative error between the Predicted and the actual value and the scale of the error is not significant
- ✓ RMSLE incurs a larger penalty for the underestimation of the Actual variable than the Overestimation.

У	100	10000
\hat{y}	80	8000

RMSE = 20	(2000)
RMSLE = 0.220	(0.223)

$$RMSE = 400 \quad (400)$$

 $RMSLE = 0.510 \quad (0.33)$

RMSLE Loss

> Specially useful for business cases where the underestimation of the target variable is not acceptable but overestimation can be tolerated.

Regression Analysis

SVM, KNN, Decision Trees

Recap: SVM Formulation

Minimize:

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w} + C\sum_{i=1}^{N} \xi_{i}$$

Subject to:

$$\forall_i$$
, $y_i(\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) > 1 - \xi_i$

- Solution is using QP solver
- C controls the relative importance of margin vs.
 training error

SVM Classification vs. Regression

For Regression:

- All samples should be within margin
- We want to minimize the margin
- Slack variables can be used to handle outliers

SVR Formulation

Minimize:

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w} + C\sum_{i=1}^{N} \xi_{i}$$

Subject to:

$$\forall_i, |y_i - \mathbf{w}^{\mathrm{T}} \mathbf{x}_i| \le \varepsilon + |\xi_i|$$

• FurtherReading:

Alex Smola and Bernhard Schölkopf, "A Tutorial on Support Vector Regression", Statistics and Computing 14: 199–222, 2004.

Non-linear SVR

We can use the kernel trick for regression as well

sklearn.svm.SVR

```
from sklearn.svm import SVR
```

```
class SVR(*, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)
```

- kernel: {'linear', 'poly', 'rbf', 'sigmoid'} or callable
- **degree:** int, default=**3** // degree of polynomial kernel
- gamma: {'scale', 'auto'} or float $// \gamma$ of poly, rbf or sigmoid kernels
- C: regularization parameter

For large datasets try using LinearSVR or SGDRegressor instead of SVR

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

k-NN Regression

Key Idea: Similar inputs have similar predictions

Algorithm:

- 1. Find k-Nearest Neighbors of input $x: p_1, p_2, ..., p_k$.
- 2. Prediction for x is a function of the y-values of these points:

$$\hat{y} = f(p_{1y}, p_{2y}, \dots, p_{ky})$$

- Example 1: (simplest)
 - k = 1; $\hat{y} = p_{1y}$
- Example 2:
 - k = 2; $\hat{y} = (p_{1y} + p_{2y})/2$

Effect of k on prediction

kNN Regression: Comments

- Weighted Regression
 - $\hat{y} = f(p_{1y}, p_{2y}, ..., p_{ky})$ is a weighted combination of $p_{1y} ... p_{ky}$
 - Uniform weights vs Weights based on distance
 - One could use different distance metrics
 - Weights can be inverse of distance or Gaussian
- Computing nearest Neighbors
 - Exhaustive search
 - KD-Tree, Ball-Tree
- Non-parametric Method
- k controls the bias-variance tradeoff

sklearn.neighbors.KNeighborsRegressor

```
class sklearn.neighbors.KNeighborsRegressor (n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
```

- n_neighbors: Number of neighbors to use by default for k neighbors queries
- weights: {'uniform', 'distance'} or callable, default='uniform'
- p: int (for Minkowski), default=2
- metric: str or callable, default='minkowski'

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html

Recap: Decision Trees

- 1. Find the best feature (and threshold) to split the training data
 - Use an objective metric like Entropy to decide
- 2. Partition the training data as per the selected feature and threshold
- 3. For each partition, if the entropy is low, stop.
 - else, Repeat the first two steps for that partition

Example

- Compute sum of squared residuals for each split
- Choose the minimal one

Prediction and Split Criterion

- Value Predictor:
 - Common: Use the average value of training samples in a split
 - Minimum sum of squared residuals among all predictions
- Split Criterion
 - Find the variance of each potential split
 - Choose the split that minimizes total variance
 - Alternatively, maximize the reduction in variance

sklearn.tree.DecisionTreeRegressor

```
class sklearn.tree.DecisionTreeRegressor(*, criterion='squared_error', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0)
```

- criterion: {"squared_error", "friedman_mse", "absolute_error", "poisson"}
- max_depth: int, default=None
- min_samples_split: int or float, default=2
- min_samples_leaf: int or float, default=1

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html