

An Overview of Advanced Data **Acquisition System (ADAS)**

Carlos T. Mata, Ph.D., Dynacs Inc. NASA, Kennedy Space Center September 11, 2001

Historical Background

- Aerospace industry requires highly reliable data acquisition systems
- Traditional systems employ end-to-end hardware and software redundancy
- Typically, redundancy adds weight, cost, power consumption, and complexity
- A single component failure may render the redundant path useless

Space Administration

John F. Kennedy Space Center

ENGINEERING AND TECHNOLOGY SPACEPORT

What is ADAS?

- highly reliable, and cost effective multi-channel data ADAS is an intelligent, self-calibrating, self-healing, acquisition system
- at a reduced weight, size, and cost ■ Reliably maintains data integrity
- "spare part toolbox" approach for identified critical components ■ The architecture provides a
- Number of spare components in the toolbox is based on their proneness to failure

John F. Kennedy Space Center

SPACEPORT ENGINEERING AND TECHNOLOGY

R & D Status

- Development stage
- Architecture was defined
- First prototype built
- System components, component interfacing, and user interface tested
- Preliminary software developed
- System demonstration
- Technical considerations
- Hardware limitations
- Reliability optimization is based on application specifics
- Reliability/flexibility vs. complexity trade-offs

John F. Kennedy Space Center

SPACEPORT ENGINEERING AND TECHNOLOGY

Reliability/Cost Examples (1)

One channel, non-redundant

One channel, traditional end-to-end redundant

*Component reliability factors for demonstration purposes only

John F. Kennedy Space Center

SPACEPORT ENGINEERING AND TECHNOLOGY

Reliability/Cost Examples (2)

Novel ADAS approach (single channel)

Reliability = 0.9979Cost = 2X, failure rate = 0.21%Improvement factor = 32.68

Reliability = 0.9994Cost = 2X+, failure rate = 0.06%Improvement factor = 121.66

Dynacs

Reliability/Cost Examples (3)

Eight-channel Traditional endto-end redundancy

Eight-channel ADAS redundancy

14

13

12

John F. Kennedy Space Center

SPACEPORT ENGINEERING AND TECHNOLOGY

What's New?

- Redundancy at the component level minimizes component count (toolbox approach)
- Enhanced flexibility
- Autonomously re-configurable
- Higher reliability at a reduced weight, size, and cost
- Smart power management will minimize unnecessary power consumption

SPACEPORT
ENGINEERING AND
TECHNOLOGY

What's New?

- Redundancy at the component level minimizes component count (toolbox approach)
- Enhanced flexibility
- Autonomously re-configurable
- Higher reliability at a reduced weight, size, and cost
- Smart power management will minimize unnecessary power consumption

SPACEPORT ENGINEERING AND TECHNOLOGY

Technical Advantages

- Fault tolerant system
- Fast recovery
- Minimal data interruptions
- System health monitoring and management
- Detection of system degradation (proactive prevention of failures)
- Optimized power consumption

SPACEPORT ENGINEERING AND **TECHNOLOGY**

NASA Relevance

■ Long duration flight instrumentation

Automated remote system operation

Higher reliability at a reduced weight, size, and cost

■Lower maintenance cost

Critical data availability

Dynacs

John F. Kennedy Space Center

SPACEPORT ENGINEERING AND TECHNOLOGY

NASA Plans/Options

- ■Internal development
- ■Partnering for commercial development
- ■Patent/licensing of technology

SPACEPORT
ENGINEERING AND
TECHNOLOGY

Remaining R&D

- Embedded-distributed redundant intelligence
- ■Digital and control lines redundancy
- Assessment of reliability vs. complexity
- Smart power management

Applications

Industrial and manufacturing process monitoring

■ Rocket launch facilities and test stands

■ Crash test facilities

■ Aerospace vehicles

■ Medical equipment

■ Remote systems

= 555

SPACEPORT ENGINEERING AND TECHNOLOGY

Product Benefits

- Maintains signal integrity (improved reliability)
- Reduces weight, size, and cost
- Self-calibration assures accuracy even in extreme environmental conditions
- Smart power management optimizes energy consumption

ENGINEERING AND TECHNOLOGY SPACEPORT

Commercial Advantages

- Dictates new trends for highly reliable electronic circuits
- Supersedes the traditional end-to-end hardware and
 - software redundancy approach
 - Higher reliability at a reduced cost
- ■Lower maintenance expense

SPACEPORT ENGINEERING AND TECHNOLOGY

Intellectual Property

■ NASA case number KSC-12301

■ Patent pending

■ Technology available for licensing

SPACEPORT ENGINEERING AND TECHNOLOGY

Short-Term

■ For further information contact...

John F. Kennedy Space Center

SPACEPORT ENGINEERING AND TECHNOLOGY

Long Term

■ Feedback from RTI...

