(2.) (HW) Let $f(x,y) = \arctan(y/x)$, $x = \cos t$, $y = \sin t$ and F(t) = f(x(t),y(t)). Compute F'(t) in two ways: (i) by using formula for the derivative of a composition; (ii) by first substituting x and y into f(x,y)

and then differentiating the resulting function of t.

$$T) F'(t) = \frac{df}{dx} x' + \frac{df}{dy} y' = \left(-\frac{y}{y^2 + x^2}\right) \left(-\sin(t)\right) + \left(\frac{x}{x^2 + y^2}\right) \left(\cos(t)\right) = \frac{y \sin(t) + x \cos(t)}{y^2 + x^2} = \frac{\sin^2(t) + \cos^2(t)}{\sin^2(t) + \cos^2(t)} = 1$$

$$T) F(t) = \operatorname{avctan}(\sin(t)) = \operatorname{avctan}(\tan(t)) = t \Rightarrow F'(t) = 1$$

4. (HW) Compute the derivative of the function $f(x, y, z) = xyz + x^2 + y^2 - z^2$ with respect to the curve x = 2t + 1, $y = \sin t$, $z = e^t$ at the point t = 0.

$$f(t) = \frac{\partial f}{\partial x} x' + \frac{\partial f}{\partial y} y' + \frac{\partial f}{\partial z} z' :$$

$$\frac{\partial f}{\partial x} = yz + \partial x; \quad \frac{\partial x}{\partial t} = 2 \implies \frac{\partial f}{\partial x} x' = 2yz + 4x = 2\sin(t)e^{t} + 4f + 9$$

$$\frac{\partial f}{\partial y} = xz + 2y; \quad \frac{\partial y}{\partial t} = \cos(t) \implies \frac{\partial f}{\partial y} y' = \cos(t)(xz + \partial y) = \cos(t)(\partial e^{t}t + e^{t} + \cos(t))$$

$$\frac{\partial f}{\partial y} = xy - \partial x; \quad \frac{\partial f}{\partial t} = e^{t} \implies \frac{\partial f}{\partial z} z' = e^{t}(xy - \partial x) = e^{t}(\partial t\sin(t) + \sin(t) - \partial e^{t})$$

$$F(t) = 2\sin(t)e^{t} + 4f + 9 + \cos(t)(\partial e^{t}t + e^{t} + \cos(t)) + e^{t}(\partial t\sin(t) + \sin(t) - \partial e^{t})$$

(6.) (HW) Let f(x,y,z) have continuous derivatives and let x=u+v, y=u-v, z=2u+v. (a) Find the directional derivative of z=2u+v. (b) In what directional derivative a maximum? (c) What is the $(\overline{Q}(3,-1,5))$. (b) In what direction from P is the directional derivative a maximum? (c) What is the

$$f_{4} = f_{x} \cdot x_{x}' + f_{y} \cdot g_{4}' + f_{z} \cdot z_{x}' = f_{x} + f_{y} + 2f_{z}$$

$$f_{v} = f_{x} \cdot x_{v}' + f_{y} \cdot g_{v}' + f_{z} \cdot z_{v}' = f_{x} - f_{y} + f_{z}$$

$$f_{4}^{2} = f_{x}^{2} + f_{y}^{2} + 4f_{z}^{2} + 2f_{x}f_{y} + 4f_{x}f_{z} + 4f_{y}f_{z}$$

$$f_{v}^{2} = f_{x}^{2} + f_{y}^{2} + f_{z}^{2} - 2f_{x}f_{y} + 2f_{x}f_{z} - 2f_{y}f_{z}$$

$$f_{4}^{2} + f_{5}^{2} = 2f_{x}^{2} + 2f_{y}^{2} + 5f_{z}^{2} + 6f_{x}f_{z} + 2f_{y}f_{z}$$

(8) Find the directional derivative of f at P in the direction of **u** that makes an angle of θ with the positive (a) $f(x,y) = e^{xy}$, $\theta = \pi/3$, and P(-2,0); (b) (HW) $f(x,y) = -3x^2 - 8y^2$, $\theta = \pi/6$, and P(-2,1).

a)
$$f'_{x} = -6x$$
; $f'_{y} = -16y = 9 \operatorname{grad}(f) = (-6x, -16y)$
 $f'_{x}(-2,1) = 12$ $f'_{y}(-2,1) = -16 = 9 \operatorname{grad}(f(-2,1)) = (12,-16)$
 $f'_{x}(-2,1) = 12$ $f'_{y}(-2,1) = -16 = 9 \operatorname{grad}(f(-2,1)) = (12,-16)$
 $f'_{x}(-2,1) = 12$ $f'_{y}(-2,1) = 7 = (\frac{53}{2},\frac{1}{2})$
 $f'_{x}(-2,1) = \frac{12\cdot 53}{2} + \frac{1}{2}\cdot(-16) = 653 - 8$

(10.) (HW) Compute the derivative of the function f in the direction \mathbf{v} at the point P if

(a) $f = \frac{1+x^2}{1+y^2}$, $\mathbf{v} = (3,4)$, and P = (-1,1);

(b) $f = e^x \cos y + e^z \sin y$, $\mathbf{v} = (-3, 4, 5)$, and $P = (0, \pi/2, 0)$.

(b)
$$f = e^{-\cos y} + e^{-\sin y}$$
, $v = (-3, 4, 5)$, and $P = (0, \pi/2, 0)$.

(a) $\frac{\partial f}{\partial x} = \frac{2x}{1+y^2}$ $\frac{\partial f}{\partial y} = -\frac{2y+2x^2y}{(1+y^2)^2} =) \operatorname{grad}(f) = \left(\frac{2x}{1+y^2}, -\frac{2y+2x^2y}{(1+y^2)^2}\right)$

$$\frac{\partial f}{\partial x}(-1, 1) = \frac{-1}{1+1} = -\frac{1}{2} \quad \frac{\partial f}{\partial y} = -\frac{2+2}{(1+1)^2} = -1 = \operatorname{grad} f(-1, 1) = \left(-\frac{1}{2}, -\frac{1}{2}\right)$$

$$\frac{\partial f}{\partial y}(-1, 1) = \frac{3\cdot(-\frac{1}{2}) + 4(-1) = -\frac{11}{2}}{(1+1)^2} = -\frac{1}{2} \quad \text{and} \quad f(-\frac{1}{2}) = -\frac{1}{2}$$

b)
$$\frac{\partial f}{\partial x} = \cos(y) e^{x}$$
; $\frac{\partial f}{\partial y} = -e^{x} \sin(y) + e^{z} \cos(y)$; $\frac{\partial f}{\partial z} = \sin(y) e^{z}$

$$\frac{\partial f}{\partial x} (0, \frac{\pi}{2}, 0) = 0$$

$$\frac{\partial f}{\partial y} (0, \frac{\pi}{2}, 0) = -1$$

$$\frac{\partial f}{\partial z} (0, \frac{\pi}{2}, 0) = 1$$

$$\frac{\partial f}{\partial z} (0, \frac{\pi}{2}, 0) = 1$$

$$\frac{\partial f}{\partial z} (0, \frac{\pi}{2}, 0) = 1$$

Hence $\partial f_V(0, \pi_{12}, 0) = -3.0 + 4(-1) + 5(1) = 1$

a)
$$\frac{\partial f}{\partial x} = 6x^2y; \frac{\partial f}{\partial y} = 2x^3 - 6y^2; \frac{\partial f}{\partial z} = -3y^2$$

 $grad(f(1,2,-1)) = (12,14,-12)$

$$\frac{\partial f_Q(3;1,5)}{\partial f_Q(3;1,5)} = \frac{36 - 14 - 60}{260} = \frac{22 - 60}{22 - 60} = \frac{-38}{28}$$
b) $\sqrt{12^2 + 14^2 + (-12)^2} = 22 \in \text{magnitude of } \nabla f$

b)
$$\sqrt{12^2+14^2+(-12)^2}=22$$
 & magnitude of ∇f

Hence $(\frac{12}{2\lambda}, \frac{14}{2^2}, -\frac{12}{2\lambda})$ 15 the direction from P, in which $(\frac{12}{2\lambda}, \frac{14}{2^2}, \frac{12}{2\lambda})$ the func. increase most rapidly

c) magnitude of
$$(\frac{6}{11}, \frac{7}{11}, -\frac{6}{11}) = \sqrt{(\frac{6}{11})^2 + (\frac{7}{11})^2 + (\frac{16}{11})^2} = 1$$
'also the direction is always unit-vactor. $\| \text{direction vactor} \| = 1$

(13) (HW) Compute the length and the direction of the gradient of the function $u = \frac{1}{r}$ where $r = \frac{1}{r}$ $\sqrt{x^2+y^2+z^2}$ at a point $M(x_0,y_0,z_0)$. (Remark: the direction should be described by the unit vector having

$$\frac{\partial u}{\partial x} = \frac{-x}{(x^{2}+y^{2}+z^{2})^{3/2}} \\
\frac{\partial u}{\partial y} = \frac{-y}{(x^{2}+y^{2}+z^{2})^{3/2}} \\
\frac{\partial u}{\partial y} = \frac{-y}{(x^{2}+y^{2}+z^{2})^{3/2}} \\
\frac{\partial u}{\partial z} = \frac{-z}{(x^{2}+y^{2}+z^{2})^{3/2}} \\
\frac{-z_{0}}{(x_{0}^{2}+y_{0}^{2}+z_{0}^{2})^{3/2}}$$

$$||\nabla u_{M}|| = \sqrt{(x_{o}^{2} + y_{o}^{2} + z_{o}^{2})^{3}} = \frac{1}{x_{o}^{2} + y_{o}^{2} + z_{o}^{2}} = \frac{1}{x_{o}^$$

Hence, since the function increases most vapidly in the direction of it's V:

$$\left(- \times_{0} \left(\times_{0}^{2} + y_{0}^{2} + z_{0}^{2} \right)^{-1/2} \right) = V$$

$$- y_{0} \left(\times_{0}^{2} + y_{0}^{2} + z_{0}^{2} \right)^{-1/2}$$

$$- z_{0} \left(\times_{0}^{2} + y_{0}^{2} + z_{0}^{2} \right)^{-1/2}$$

$$- z_{0} \left(\times_{0}^{2} + y_{0}^{2} + z_{0}^{2} \right)^{-1/2}$$

$$| y_{0} | = 1$$

$$| y_{0} | = 1$$

14*. A function $f(x) = f(x_1, x_2, ..., x_n)$ is said to be homogeneous of degree k if $f(tx_1, tx_2, ..., tx_n) = t^k f(x_1, x_2, ..., x_n)$ for any positive number t. Prove that a function f(x) having continuous first derivatives in \mathbb{R}^n is homogeneous of degree k if, and only if, it satisfies Euler's equation

$$\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} = kf.$$

Hint: Let $F(x,t) = t^{-k} f(tx)$. Prove that $t^{k+1} \frac{\partial F}{\partial t} = \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} - kf$.

1)
$$f$$
 is homogeneous $\Leftarrow \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} = kf$

$$\frac{\partial F}{\partial t} = -kt^{-k-1} f(fx) + t^{-k} \left(\frac{fx_i}{t} \cdot x_i + \frac{fx_2}{t} x_2 + \dots + \frac{fx_m}{t} x_m \right) =$$

$$= -k t^{k-1} f(fx) + t^{-k} \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \cdot \frac{x_i}{t}$$

$$t^{k+1} \frac{\partial F}{\partial t} = -k \cdot f(fx) + t \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \cdot \frac{x_i}{t}$$

$$t^{k+1} \frac{\partial F}{\partial t} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} x_i - k \cdot f(fx)$$

$$f(x,t) = t^{-k} \cdot f(fx) = t^{-k} \cdot t^{k} \cdot f(x) = f(x)$$

Thus $f(x,t)$ does not dep. on f

2) f is homogeneous $\Rightarrow \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} = kf$

Since f is hom. $0 = \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} - kf$, then
$$t^{-k} f(fx) = f(x), so f(fx) = t^{-k} f(x).$$

tux for checking