Shahjalal University of Science & Technology

Institute of Information and Communication Technology

Program: Software Engineering

1st Year 1st Semester Examination, 2018

Session: 2017-18

Course: MAT-105* (Coordinate Geometry and Calculus) Full Marks: 100 Credit: 3.0 Time: 3 Hours

Group – A (Answer Any Two Questions)

a Find	he equation of th	ne straight line wh	nich passe	s through the	Intercentia	
	·	3V + Z = U and r	makes ear	12 intercent a	- 4	
D. 11110	ile gligle perween	n the line $3x - y$	+3 = 0a	ind the line pe	rpendicular to	
$\frac{1}{2}x -$	$\frac{1}{3}y + 1 = 0.$,	がよる	- 0 0
🖒 Find t	he equation of the	e circle passing th	hrough the	e intersection	of the circles	- 25
$x^{2} +$	$y^2 = 2by$ and ha	iving its center on	the line	$\frac{y}{x} - \frac{y}{x} = 2$	or the circles	
d. Find t	ne equation of the	e parabola whose	e focus is a	a b 2	linantely as 2	^
What	is the vertex of th	ne parabola? Sket	tch the gra	onh of it	x - z =	= 0.
Find t رو	ne center, vertices	s, foci and length	of the mi	nor axis of the	e ellipse.	
		$2x^{2} +$	$+5y^2=1$.0		
۶. Find t	ne eccentricity of	the hyperbola $\frac{x^2}{x^2}$	$\frac{y^2}{1} - \frac{y^2}{1} = 1$			
		5	4 -	•		
Find f	he standard equat	tion of the conic 2	2xy = 9 h	v rotating the	axes through an	die e
angle	$\frac{\pi}{4}$ radians about the	he origin. Identify	the conic	,	axes till ough an	
(b) Find	the rotation α so the	hat the equation 2	$2x^2 + \sqrt{3}$	$xy + y^2 - 10$	0 = 0, has no xy	term
and I	ence identify the	curve.				
∠ Defin	e direction cosings	s and direction rat	tios of a st	raight line. P a	ind Q are (1, -5, 7	7)
e. Dem						
and (3, 6, -2). Find the (direction cosines	of OP, OQ		_	
) and Find t کمر	3, 6, -2). Find the one of the control of the contr	direction cosines of the line which	of OP, OQ ch is equal	lly inclined to t	the axes.	
) and Find t باور Find t رو	3, 6, -2). Find the one of the contraction cosing the angle between	direction cosines of the line which the planes $2x - 3$	of OP, OQ ch is equal $3y + 5z +$	$\begin{array}{ll} \text{lly inclined to t} \\ -1 = 0 \text{ and } x \end{array}$	-3y + z + 2 =	: 0
and (Find t بامر Find t و Find t f. Find t	3, 6, -2). Find the one of the contraction cosing the direction cosing the direction cosing the direction cosing the contre and radi	direction cosines of the line which the planes $2x - 3$	of OP, OQ ch is equal $3y + 5z +$	$\begin{array}{ll} \text{lly inclined to t} \\ -1 = 0 \text{ and } x \end{array}$	-3y + z + 2 =	: 0
and (Find t و Find t f. Find t g. Identi	3, 6, -2). Find the one of the direction cosing the direction cosing the angle between the centre and radify the surfaces-	direction cosines of the line which the planes $2x - 3$ ius of sphere $x^2 + 3$	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$	Ily inclined to $x - 1 = 0$ and $x - 2 + 3x - 6y + 3x -$	-3y + z + 2 = $1 = 0$: 0
and (Find t جام ر Find t و Find t f. Find t g. Identi	3, 6, -2). Find the one of the direction cosing the direction cosing the angle between the centre and radify the surfaces-	direction cosines of the line which the planes $2x - 3$ ius of sphere $x^2 + 3$	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$	Ily inclined to $x - 1 = 0$ and $x - 2 + 3x - 6y + 3x -$	-3y + z + 2 = $1 = 0$: 0
and (Find t و Find t f. Find t g. Identi	3, 6, -2). Find the one of the contraction cosing the direction cosing the direction cosing the direction cosing the contre and radi	direction cosines of the line which the planes $2x - 3$ ius of sphere $x^2 + 3$	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$	$\begin{array}{ll} \text{lly inclined to t} \\ -1 = 0 \text{ and } x \end{array}$	-3y + z + 2 = $1 = 0$: 0
and (pl. Find t g. Find t g. Identi i.	3, 6, -2). Find the one direction cosine the direction cosine the angle between the centre and radiates $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$	direction cosines of es of the line which the planes $2x - 3$ ius of sphere $x^2 + 3$	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv.	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{z^2}{3} + \frac{y^2}{5} - y^2$	-3y + z + 2 = $-1 = 0$ $= 0$ $= 0$: 0
and (prind to the first term of the first term	3, 6, -2). Find the one direction cosine the direction cosine the angle between the centre and radiation for the surfaces $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ function, domain	direction cosines of es of the line which the planes $2x - 3$ ius of sphere $x^2 + 3$	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv.	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{z^2}{3} + \frac{y^2}{5} - y^2$	-3y + z + 2 = $-1 = 0$ $= 0$ $= 0$: 0
and (pd. Find to f. Find to g. Identification in follows)	3, 6, -2). Find the one direction cosine the direction cosine the angle between the centre and radify the surfaces- $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ function, domaining functions:	direction cosines of es of the line which the planes $2x - 3$ ius of sphere $x^2 + 3$	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv.	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2}{3} - \frac{y^2}{5} - \frac{z}{5} = \frac{z^2}{4} = \frac{z^2}{3}$ and the domain	-3y + z + 2 = $-1 = 0$ $= 0$ $= 0$: 0
and (pd. Find to f. Find to g. Identification in follows)	3, 6, -2). Find the one direction cosine the direction cosine the angle between the centre and radiation for the surfaces $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ function, domain	direction cosines of es of the line which the planes $2x - 3$ ius of sphere $x^2 + 3$	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv.	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{z^2}{3} + \frac{y^2}{5} - y^2$	-3y + z + 2 = $-1 = 0$ $= 0$ $= 0$: 0
and (pd. Find to f. Find to g. Identification in follows)	3, 6, -2). Find the one direction cosine the direction cosine the angle between the centre and radify the surfaces- $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ function, domaining functions:	direction cosines of es of the line which the planes $2x - 3$ ius of sphere $x^2 + 1$ and range of a fu	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv.	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2}{3} - \frac{y^2}{5} - \frac{z}{5} = \frac{z^2}{4} = \frac{z^2}{3}$ and the domain	-3y + z + 2 = $-1 = 0$ $= 0$ $= 0$: 0
and (p. Find to g. Find to g. Identi i. iii. a. Define follow i. Also s	3, 6, -2). Find the one direction cosine the direction cosine the angle between the centre and radiative the surfaces- $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ In function, domaining functions: $y = \sqrt{4 - x^2}$ $y = \ln(2x - 1)$ Eatch the graph of	direction cosines of es of the line which the planes $2x - 3$ its of sphere $x^2 + 1$ and range of a full the function.	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv. unction. Fine ii.	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2 - y^2 - z}{x^2 - y^2 - z}$ and the domain $y = \frac{ x }{x}$	-3y + z + 2 = $1 = 0$ $= 0$ $= 0$ and range of	
and (pl. Find to g. Identification in the second s	3, 6, -2). Find the one direction cosine the direction cosine the angle between the centre and radiately the surfaces- $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ In function, domaining functions: $y = \sqrt{4 - x^2}$ $y = \ln(2x - 1)$ Eath the graph of the left hand limit a	direction cosines of es of the line which the planes $2x - 3$ its of sphere $x^2 + 1$ and range of a full the function.	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv. unction. Fine ii.	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2 - y^2 - z}{x^2 - y^2 - z}$ and the domain $y = \frac{ x }{x}$	-3y + z + 2 = $1 = 0$ $= 0$ $= 0$ and range of	
and (prind to ge Find to ge Identi a. Define follow i. iii. Also s b. Find to at x =	3, 6, -2). Find the one direction cosine he direction cosine he angle between he centre and radify the surfaces- $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ In function, domain fing functions: $y = \sqrt{4 - x^2}$ $y = \ln(2x - 1)$ Setch the graph of he left hand limit a	direction cosines of es of the line which the planes $2x - 3$ ius of sphere $x^2 + 1$ and range of a full the function.	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv. unction. Fine ii.	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2 - y^2 - z}{x^2 - y^2 - z}$ and the domain $y = \frac{ x }{x}$	-3y + z + 2 = $1 = 0$ $= 0$ $= 0$ and range of	
and (prind to ge Find to ge Identi a. Define follow i. Iii. Also s b. Find to at x =	3, 6, -2). Find the one direction cosine the direction cosine the angle between the centre and radiately the surfaces- $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ In function, domaining functions: $y = \sqrt{4 - x^2}$ $y = \ln(2x - 1)$ Eath the graph of the left hand limit a	direction cosines of es of the line which the planes $2x - 3$ it is of sphere $x^2 + 1$ and range of a function. The function and right hand limit estep function-	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv. unction. Final limit and limit	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2}{x^2 - y^2 - z}$ and the domain $y = \frac{ x }{x}$	-3y + z + 2 = $1 = 0$ $= 0$ $= 0$ and range of	
and (pl. Find to g. Find to g. Idention i. Idention ii. Idention iii. Also so bo Find to at x =	3, 6, -2). Find the one direction cosine he direction cosine he angle between he centre and radify the surfaces- $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ In function, domain fing functions: $y = \sqrt{4 - x^2}$ $y = \ln(2x - 1)$ Setch the graph of he left hand limit a	direction cosines of es of the line which the planes $2x - 3$ it is of sphere $x^2 + 1$ and range of a function. The function and right hand limit estep function-	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv. unction. Final limit and limit	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2}{x^2 - y^2 - z}$ and the domain $y = \frac{ x }{x}$	-3y + z + 2 = $1 = 0$ $= 0$ $= 0$ and range of	
and (pl. Find to g. Find to g. Idention i. Idention ii. Idention iii. Also so bo Find to at x =	3, 6, -2). Find the content of the direction cosine and the end of the centre and radiate the surfaces $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ In function, domaining functions: $y = \sqrt{4 - x^2}$ $y = \ln(2x - 1)$ Eated the graph of the left hand limit all the continuity of the	direction cosines of es of the line which the planes $2x - 3$ ius of sphere $x^2 + 1$ and range of a full the function.	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv. unction. Final limit and limit	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2}{x^2 - y^2 - z}$ and the domain $y = \frac{ x }{x}$	-3y + z + 2 = $1 = 0$ $= 0$ $= 0$ and range of	
and (prind to ge Find to ge Identi i. iii. a. Define follow i. iii. Also s b. Find t at x = c. Test to	3, 6, -2). Find the content of the direction cosine and the end of the centre and radiate the surfaces $\frac{x^2}{4} + \frac{y^2}{6} - \frac{z}{6} = 0$ $\frac{x^2}{9} + \frac{y^2}{8} - \frac{z^2}{3} = 1$ In function, domaining functions: $y = \sqrt{4 - x^2}$ $y = \ln(2x - 1)$ Eated the graph of the left hand limit all the continuity of the	direction cosines of es of the line which the planes $2x - 3$ it is of sphere $x^2 + 1$. In and range of a function. In the function. In and right hand limit the step function. $f(x) = \begin{cases} 6 & 4 \\ 2 & 4 \\ 3 & 4 \end{cases}$	of OP, OQ ch is equal $3y + 5z + y^2 + z^2$ ii. iv. unction. Final limit and limit	Ily inclined to to $1 = 0$ and $x^2 + 3x - 6y + \frac{x^2}{3} + \frac{y^2}{5} - \frac{z^2}{4} = \frac{x^2}{x^2 - y^2 - z}$ and the domain $y = \frac{ x }{x}$	-3y + z + 2 = $1 = 0$ $= 0$ $= 0$ and range of	

Group - B (Answer Any Two Questions)

Λ	
4	

- a. State the Rolle's theorem and the Mean Value Theorem. Deduce the Rolle's Theorem
- from the Mean Value Theorem. b. Find the maximum and minimum values of the function $f(x) = x^4 - 5x^3 + \frac{9}{2}x^2 - 1$
- Define the Tylor series and Maclaurin series generated by a function. Find the Tylor series of the function $f(x) = \ln(1+x)$ at x = 1

$$\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$$

Find the value of $\partial R/\partial R2$ when R1 = 30, R2 = 45 and R3 = 90 ohms.

¥5.

Lvaluate the integrals-	
i. $\int \frac{dx}{\sqrt{x^2 - 4x + 3}}$	iii. $\int \frac{dx}{3+2 \cos x}$
iii. $\int_0^{2a} \frac{dx}{\sqrt{(2ax-x^2)}}$	

- b. State and prove the fundamental theorem of integral calculus.
- c. Evaluate the integral-

$$\int_0^2 x^2 dx \qquad \qquad - 6.24$$

As a limit of Riemann sums.

d. Use reduction formula to evaluate the integral-

$$\int \sin^2 x \cos^3 x \, dx$$

a. Evaluate the improper integral-

$$\int_0^2 \frac{dx}{(x-1)^{\frac{2}{3}}}$$

- b. Define Gamma function and hence find T(3)
- 4 c. Write the relation between Beta and Gamma function. Use the relation to evaluate 4 $\beta(3,2)$
- d. Find the area of the segment of the parabola y = (x 1)(4 x) cutoff by the x-axis.
- e. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y=1, x=4 about the line y=1
- f. Find the volume of the washer generated by revolving the region bounded by the 4 curves $y = x^2$ and $y = \sqrt{x}$ about the x-axis.

5

6

6

4

12

5

4

4

1st Year 1st Semester Examination, 2018

Session: 2017-18
Course: SWE 121 (Structured Programming Language)
Full Marks: 100
Time: 3 Hours

Note: Answer four questions taking any two from each group. Figures at right margin show marks.

```
Group - A
    Explain the basic data types in C with their memory requirement.
    What is type casting in C? Show with an example.
    What is escape sequence? Give examples.
c)
                                                                                                                    3
    Identify the purpose of each of the following expressions:
     i) ceil(x), ii) floor(x+y), iii) sqrt(x*x+y*y), iv) pow(2, 3.0) and v) sin(x-y).
    Consider the following program fragment. What will be the output?
       int main() {
          int a = 10;
          printf("\n %d %d", a, a++);
          a = 10;
          printf("\n %d %d", a++, a);
        a = 10;
          printf("\n %d %d %d ", a, a++, ++a);
f) If a = 10, b = 5 and c = 20, what will be the truth value of the following expressions:
     i) !(a > 10), ii) (a > 5) && (b = 5), iii) (a + b) > c | (c < 30), iv) (a < 5) | (b > c) && (c > 10)
     How are comments used in a C program? Give examples.
     For the following for statement, write an equivalent while statement.
      for (<init-stmnt>; <boolean-expr>; <incr-stmnt>)
        <body-statements>
       Distinguish between while(1) and while(0) with example.
       What will be the output of the following C code?
       int main(void)
         if (printf("Hello World"));
       Write the output of the following program fragments shown in Figs. 1 and 2.
                                                                                                                  5+5
               int main(){
                 int i,j;
                                                                      int i, j;
               for(i=0;i<10;i++)
                                                                      for (i = 0; i < 5; i++) {
                for(j=0;j<100;j++);
                                                                        for (j = 1; j \le 10; j++) {
               printf("%d\t%d\n",i, j);
                                                                          if (j > 3) break; continue
                                                                          printf("*");
                for(i=0;i<100;i++)
                 for(j=0;j<10;j++);
                                                                        printf("\n");
               • printf("%d\t%d\n",i, j);
                                                                              Fig. 2
      What will be the output of the program in Fig. 2 if the keyword break is replaced with continue?
      What are the advantages of structured programming?
      Rewrite the following program using structured programming approach.
        #include <stdio.h>
        double balance = 100000;
        int main() {
         double amount;
         printf("Enter amount to deposit:");
         scanf("%lf", &amount);
         balance += amount;
         printf("Enter amount to withdraw:");
         scanf("%lf", &amount);
         balance -= amount;
         printf("Your current balance: %If", balance);
     Write an appropriate function call for each of the following functions,
          i. void exchange(int &x, int &y)
                                                        ii. float area(float r) {
                                                           return 3.14*r*r;
            //function body
    How is an array name interpreted when it is passed to a function?
```

```
What are the criteria of a recursive program?
e)
     Let a recursive function R is defined as R(a,b) = {R(a-b,b) + 1, if b \le a}
     What is actually performed by the above function? Find the value of R(16, 3) and R(200, 6).
     What are the differences between global and local variables? Show with example.
                                                      Group - B
4.a) Assume a one dimensional array x[] = \{1,2,3,4,5,6,7,8,9,10,11,12\}. Write C code to assign the elements to
      a 2D array y[3][4].
      Pass the array y[3][4] in (a) to a function and display the elements in matrix form.
 c) How do you use variable sized array in C? Show with an example.
                                                                                                                     3
      Describe what values are assigned to the individual array items.
                                                                                                                     5
      int z[12]=\{0, 8, 0, 0, 7\}, char flag[] = "TRUE", char flag[4] = {'T', 'R', 'U', 'E'}, int p[2][4]={1, 3, 5, 7};
  e)
                                                                                                                     8
           i. #include <stdio.h>
                                                              ii. #include <stdio.h>
           int main ()
                                                              int main()
           int i, y = 0;
                                                              int a, b, c=99;
           char s[] = "Programming with C"};
                                                              int x[][4] = \{1,2,3,4,5,6,7,8,9,10,11,12\};
            for (i = 0; s[i] !='\0'; ++i) {
                                                              for (a = 0; a < 3; ++a) {
            if ((i \% 2) == 0) y += x[i]
                                                              for (b = 0; b < 4; ++b) {
             printf("%c%c", s[i], s[i]);
                                                                if (x[a][b] < c) c = x[a](b]; c > 1
                                                                printf("%d ",c);
                                                              } }
      Distinguish between a string and a character array.
      What will be the output of the following programs?
                                                                                                                      5+
       i. #include <stdio.h>
                                                           ii. include <stdio.h>
       int funct(int x) {
                                                           int funct(int *p)
       int y;
      y = x * x;
                                                            int i;
      return y;
       int main ()
                                                           int main()
        int a, count, sum=0;
        for(count=1;count<=10;++count) {
                                                           int i, a[] = \{10, 20, 30, 40, 50\};
         a = funct(count);
                                                           funct(a);
         printf("%d ", a);
                                                           for (i = 0; i < 5; i++)
          sum +≈ a;
                                                            printf("%d ", a[i]);
        printf("\nSum: %d", sum);
        return 0:
  c) What are the problems with the following programs:
             i. #include <stdio.h>
                                                                 ii. #include <stdio.h>
             int main () {
                                                                 int main () {
             float radius; area;
                                                                 int 2repeat = 10;
             printf(Radius = ?");
                                                                 for (int i=0; i<2repeat; i++) {
             scanf("%f", radius);
                                                                  printf("Hello Bangladesh \n");
             area = 3.14159 * radius * radius;
             printf("Area: %f, &area);
                                                                 return 0;
             return 0:
                            /* CODE A*/
                                                                                /* CODE B */
   d) For two given strings S1 and S2, swap the value of S1 and S2, if S1 > S2.
       Rewrite the program in (d) so that it allocates memory for S1 and S2 using dynamic memory allocation.
       Define a structure CourseResult with members Attendance, Perf, and Final. Write a program to calculate
        the letter grade of a course using the structure CourseResult (as per SUST rules).
   b) Declare an array of size 50 of type CourseResult and print how many students got A+.
   c) Distinguish between the file opening modes "r" and "r+" and "w" and "a".
        Write a program to write the CourseResult information in (b) into a text file.
                                                                                                                       5
        Rewrite the program in (b) to display the information reading from the text file.
```

Institute of Information and Communication Technology Technology

Discipline: Software Engineering

 1^{st} year 1^{st} Semester Final Examination, 2018

Session: 2017-18

Course Code: EEE 101W

Course Title: Basic Electrical and Electronic Circuits

Time: 3 Hours Total Marks: 100

Answer four questions taking two from each part. Figures at right margin show marks.

Part A

1/a) The current flowing through a point in a circuit is shown in fig. 1. Find the total charge flowing through that point in the circuit.

Figure 1: for question 1(a)

Tig. 2 shows the current through and voltage across a given device. Find the total energy absorbed by the device for the period of 0 < t < 4s.

Figure 2: for question 1(b)

c) Determine V in the circuit shown in fig. 3.

(7)

Figure 3: for question 1(c)

Determine powers dissipated in the resistors in the circuit shown in fig.4.

(5)

Figure 4: for question 1(d)

6:11: (5:42)

Scanned with CamScanner

Figure 5: (a) for question 2(a) (b) for question 2(b) (c) for question 2(c)

- 2. a) Using nodal analysis, obtain node voltages v_1 , v_2 , v_3 in the circuit of figure 5(a)

 b) Using mesh analysis, obtain i_1 , i_2 , i_3 in the circuit of figure 5(b)

 c) Obtain the equivalent resistance R_{ab} for the circuit in fig 5(c) and use it to find current i.

 (9)

 3. a) Find the Theorem and Norton equivalent.
- 3. a) Find the Thevenin and Norton equivalents at terminals a-b from figure (6) (12)

Figure 6: for question 3(a)

- b) Why superposition principle is not applicable in power calculation? Prove that, maximum power calculation? Prove that, maximum power calculation?
- c) Compute the value of R that will result in maximum power transfer to the 10Ω resistor as shown in figure 7. Find the maximum power. (8)

Figure 7: for question 3(c)

(5)

(10) (10)

(9)

Figure 8: for question 4(a)

b) Design an Op-amp circuit with inputs v_1 and v_2 such that $v_0 = -5v_1 + 3v_2$. c) If $v_1 = 1$ V and $v_2 = 2$ V, find the v_o of the circuit of figure 9.

Figure 9: for question 4(c)

5. a) Determine the current through a 200 μF capacitor whose voltage is shown in figure 10.

Scanned with CamScanner

(8)

to three literals

to three literals

Figure 11: for question 5(b)

c) If $v_1 = 10\cos 2t$ mV, and $v_2 = 0.5t$ mV, find v_0 in the op-amp circuit of figure 12.

Figure 12: for question 5(c)

- 6. Reduce the following Boolean expressions to the indicated number of literals-
 - (i) A'C' + ABC + AC'
 - (ii) $(x'y' + z)\prime + z + xy + wz$
 - (iii) A'B(D' + C'D) + B(A + A'CD)

b) A manufacturing plant needs to have a horn sound to signal quitting time. The horn should be activated when either of the following conditions is met:

(8)

i. Its after 5 oclock and all machines are shut down.

ii. Its Friday, the production run for the day is complete, and all machines are shut down.

Design a logic circuit that will control the horn. c) Design a 8 × 1 MUX by using 2 × 1 MUX. (8)