23MAC260 Elliptic Curves: Week 6

Last updated: February 27, 2024

1 Reduction mod p

In Week 5 we saw how the Nagell-Lutz Theorem allows us to compute the torsion subgroup $T \subset E(\mathbb{Q})$ for an elliptic curve E defined over \mathbb{Q} . The main drawback of Nagell–Lutz is that for a given curve E, there may be lots of integers whose square divides the discriminant Δ of E. This week we will look at an alternative method for computing T, based on reduction modulo primes.

Notation: Recall that for a prime number p, the field \mathbb{F}_p consists of the elements $\{0, 1, \dots, p-1\}$ with the operations of addition and multiplication mod p.

Definition 1.1. Let p be a prime number. We define the reduction mod p map

$$r_p \colon \mathbb{P}^2_{\mathbb{O}} \to \mathbb{P}^2_{\mathbb{F}_p}$$

as follows: for a point $q \in \mathbb{P}^2_{\mathbb{Q}}$, choose homogeneous coordinates q = [x, y, z] where $x, y, z \in \mathbb{Z}$ and $\gcd(x, y, z) = 1$. Then we define

$$r_p(q) = [\overline{x}, \overline{y}, \overline{z}]$$

where \overline{x} denotes the reduction of x mod p and similarly for \overline{y} and \overline{z} .

Example: Take p = 2. Consider the point

$$\mathfrak{q}=\left[2,rac{2}{3},rac{2}{5}
ight]\in\mathbb{P}_{\mathbb{Q}}^{2}.$$

To compute the reduction of $q \mod p$, we first scale the homogeneous coordinates to make them integers, then scale to eliminate any common factors. This gives

$$q = \left[2, \frac{2}{3}, \frac{2}{5}\right]$$
$$= [30, 10, 6]$$
$$= [15, 5, 3].$$

Now we can reduce mod 2:

$$\begin{split} r_2(q) &= [\overline{15}, \overline{5}, \overline{3}] \\ &= [1, 1, 1] \in \mathbb{P}^2_{\mathbb{F}_2}. \end{split}$$

Now let E be an elliptic curve over $\mathbb Q$ defined by an integral model

E:
$$y^2 = x^3 + ax + b$$
 $(a, b \in \mathbb{Z})$

and let p be a prime number.

Definition 1.2. The reduction mod p of E is the curve \overline{E} over the field \mathbb{F}_p defined by the equation

$$\overline{E}: y^2 = x^3 + \overline{a}x + \overline{b}$$

where $\overline{a} = a \mod p$ and $\overline{b} = b \mod p$.

Lemma 1.3. If $q \in \mathbb{P}_Q^2$ is a point such that $q \in E(\mathbb{Q})$, then $r_p(q) \in \overline{E}(\mathbb{F}_p)$. In other words, r_p maps points of $E(\mathbb{Q})$ to points of $\overline{E}(\mathbb{F}_p)$.

Proof. Say q=[x,y,z] with $x,y,z\in\mathbb{Z}$ and $\gcd(x,y,z)=1$. Then $q\in E(\mathbb{Q})$ means that

$$y^2z = x^3 + axz^2 + bz^3$$
.

Reducing this equation mod p we get

$$\overline{y}^2\overline{z} = \overline{x}^3 + \overline{a}\,\overline{x}\,\overline{z}^2 + \overline{b}\overline{z}^3$$

which says exactly that the point $r_{\mathfrak{p}}(q) = [\overline{x}, \overline{y}, \overline{z}]$ is in the set $\overline{\mathbb{E}}(\mathbb{F}_{\mathfrak{p}})$.

We need to take care when reducing mod p: even if E is a perfectly good elliptic curve over \mathbb{Q} , its reduction mod p might not be an elliptic curve any more. But we can easily find the "bad" primes p for which this happens:

Proposition 1.4. Let E and \overline{E} be as above. For any **odd** prime such that $p \nmid \Delta$, the reduction \overline{E} is an elliptic curve over \mathbb{F}_p .

Proof. Our proof from Week 3 that showed that $x^3 + ax + b$ has a multiple root if and only if $\Delta = 0$ works just as well in any field \mathbb{F}_p with $p \neq 2, 3$.

For \mathbb{F}_3 we compute

$$\frac{d}{dx}(x^3 + ax + b) = 3x^2 + a$$
$$= a$$

so our cubic has a multiple root if and only if $\alpha = 0$. On the other hand

$$\Delta = -4a^3 - 27b^2 = -a^3$$
$$= -a$$

since $a^3=a$ for any $a\in\mathbb{F}_3$. So again in this case, $\Delta\neq 0$ if and only our cubic does not have a multiple root.

Finally if E is an elliptic curve given by an integral model with discriminant Δ , then

$$\Delta \mod \mathfrak{p} = -4\overline{\mathfrak{a}}^3 - 27\overline{\mathfrak{b}}^2$$

which is exactly the discriminant of \overline{E} . So \overline{E} has discriminant 0 if and only if $\Delta = 0 \mod p$, that is, if and only if p divides Δ .

So as long as $p \nmid \Delta$ we know that \overline{E} is an elliptic curve. We can use this to get information about the torsion subgroup, thanks to the following theorem:

Theorem 1.5 (Torsion Embedding). Let E be an elliptic curve over \mathbb{Q} defined by an integral model

$$E: y^2 = x^3 + ax + b \quad (a, b \in \mathbb{Z}).$$

Let p be an odd prime such that $p \nmid \Delta$, and let \overline{E} be the elliptic curve over \mathbb{F}_p given by

$$\overline{E}$$
: $y^2 = x^3 + \overline{a}x + \overline{b}$.

Then:

(a) The reduction mod p map

$$r_p \colon \mathsf{E}(\mathbb{Q}) \to \overline{\mathsf{E}}(\mathbb{F}_p)$$

is a group homomorphism.

(b) If $T \subset E(\mathbb{Q})$ is the torsion subgroup, then

$$T \cap \ker(r_{\mathfrak{p}}) = \{O\}.$$

Hence r_p gives an embedding (that is, an injective homomorphism)

$$r_{\mathfrak{p}}\colon \mathsf{T} \hookrightarrow \overline{\mathsf{E}}(\mathbb{F}_{\mathfrak{p}}).$$

Proof. To prove (a), first note that for any point S = (x, y) we have O * S = (x, -y), so

$$\begin{split} r_P(O*S) &= r_P([x,-y,1]) \\ &= [\overline{x},-\overline{y},1] \\ &= O*r_P(S). \end{split}$$

Now suppose that P_1 and P_2 are points in $E(\mathbb{Q})$. Let $P_3=P_1*P_2$, so that $P_1\oplus P_2=O*P_3$. Then $P_1,\ P_2,P_3$ lie on a line L. Since L contains 3 points of $E(\mathbb{Q})$, it is defined by a linear equation with rational coefficients: clearing denominators and cancelling common factors as before, we can assume L is defined by

$$L: ax + by + cz = 0$$

where α , b, c are integers with operatornamegcd(α , b, c) = 1. Now reduce mod p to get a line \overline{L} in $\mathbb{P}^2_{\mathbb{F}_p}$ defined by

$$\overline{L}: \overline{a}x + \overline{b}y + \overline{c}z = 0$$

(noting that not all of \overline{a} , \overline{b} , \overline{c} can be zero).

By Lemma 1.3 each of the points $r_p(P_i)$ lies on \overline{E} , and by the same argument, each of them lies on \overline{L} also. By Week 2 Lemma 1.1 (which applies to any algebraically closed field), the intersection $\overline{E} \cap \overline{L}$ consists of at most 3 points. So we have shown

$$\overline{E} \cap \overline{L} = \{r_{\mathfrak{p}}(P_1), r_{\mathfrak{p}}(P_2), r_{\mathfrak{p}}(P_3)\}.$$

This means that

$$\begin{split} r_P(P_1 \oplus P_2) &= r_P(O * P_3) \\ &= O * r_P(P_3) \\ &= O * (r_P(P_1) * r_p(P_2)) \\ &= r_P(P_1) \oplus r_P(P_2). \end{split}$$

To prove (b), let $Q \in T$ be any point other than the identity O. By the Integrality Theorem, the point Q has affine coordinates Q = (x,y) with $x,y \in \mathbb{Z}$. So in homogeneous coordinates we have

$$\begin{split} Q &= [x,y,1] \quad \text{ hence} \\ r_{\mathfrak{p}}(Q) &= [\overline{x},\overline{y},1]. \end{split}$$

This shows $r_P(Q) \neq O$, so $Q \notin \ker(r_P)$.

Corollary 1.6. Let E be as above, p an odd prime such that $p \nmid \Delta$, and \overline{E} the reduction of E mod p. Then the order of T divides the order of $\overline{E}(\mathbb{F}_p)$: that is,

$$|\mathsf{T}| \mid \left| \overline{\mathsf{E}}(\mathbb{F}_{\mathfrak{p}}) \right|$$
.

Proof. By Theorem 1.5, for $p \nmid \Delta$ the torsion subgroup $T \subset E(\mathbb{Q})$ is isomorphic to a subgroup of $\overline{E}(\mathbb{F}_p)$, so Lagrange's theorem says that the order of T must divide the order of $\overline{E}(\mathbb{F}_p)$.

2 Examples

In this section we'll use the Torsion Embedding Theorem to compute the torsion subgroup in some examples.

Example 1. Consider the elliptic curve

E:
$$y^2 = x^3 + 4$$
.

First we calculate the discriminant of E: it is

$$\Delta = -27 \cdot 4^2 = -2^4 \cdot 3^3$$

Hence for any $p \neq 2$, 3, the reduction of E mod p is an elliptic curve.

So let's take p=5, and let \overline{E} be the reduction of E mod 5: it is given by the equation

$$\overline{E}: y^2 = x^3 + 4.$$

We can find the number of points in $\overline{\mathbb{E}}(\mathbb{F}_5)$ just by tabulation: we substitute each $x \in \mathbb{F}_5$ into the equation above, then find the solutions for y if any. Before we start it's useful to recall which elements of \mathbb{F}_5 are squares:

$$0^2 = 0$$
, $1^2 = 1 = 4^2$, $2^2 = 4 = 3^2$.

So the squares are 0, 1, and 4.

Now we make our table:

χ	0	1	2	3	4
χ^3	0	1	3	2	4
$y^2 = x^3 + 4$	4	0	2	1	3
y	±2	0	_	±1	_

So we have

$$\overline{E}(\mathbb{F}_5) = \{O, (0, \pm 2), (1, 0), (3, \pm 1)\}.$$

This is a group with 6 elements, and so Theorem 1.5 tells us that |T| divides 6. Which divisor of 6 is it?

To decide this, note that T does not contain an element of order 2. Any such element would be a point of T with y-coordinate equal to 0, in other words a point (x,0) where x is a **rational** solution of $x^3+4=0$. But this equation has no rational solutions. Any group of order 2 contains an element of order 2, and any abelian group of order 6 is isomorphic to \mathbb{Z}_6 which contains an element of order 2. So T cannot have order 2 or 6.

The only remaining possibilities are |T|=1 or |T|=3. Now, $E(\mathbb{Q})$ contains the point P=(0,2); computing the tangent line to E at P, we find it is given by the equation y=2. When y=2, our curve equation has the only solution x=0. So the tangent line at P must meet E with multiplicity 3 at P, in other words P*P=P. So we have

$$P \oplus P = O * P$$
$$= -P$$

hence 3P = O. This shows that P is a point of order 3 on $E(\mathbb{Q})$. Hence the torsion subgroup contains an element of order 3. So we must have |T| = 3, and hence

$$T = \langle P \rangle \cong \mathbb{Z}_3$$
.

Example 2. Let's see an example where the advantage of this method over Nagell–Lutz is very clear. Consider the elliptic curve

E:
$$y^2 = x^3 + 18x + 72$$
.

Here the discriminant is

$$\Delta = -4(18)^3 - 27(72)^2$$
= -163296
= -2⁵ · 3⁶ · 7.

To apply Nagell–Lutz here, we would have to consider y=0 and $|y|=2^{\alpha}3^{b}$ with $\alpha\in\{0,1,2\},\ b\in\{0,1,2,3\}$. This would take a lot of work!

Instead we will reduce modulo 5 and 11, which are the 2 smallest primes not dividing Δ . Let's see what this tells us.

• $\overline{E}(\mathbb{F}_5)$: reducing our equation mod 5 we get

$$y^2 = x^3 + 3x + 2$$

and tabulating the solutions we get

So

$$\overline{E}(\mathbb{F}_5) = \{O, (1, \pm 1), (2, \pm 1)\}$$

which tells us that |T| divides 5.

• $\overline{E}(\mathbb{F}_{11})$ reducing our equation mod 11 we get

$$y^2 = x^3 + 7x + 6.$$

To tabulate the solutions, let's first list the squares in \mathbb{F}_{11} :

$$0^2 = 0$$
, $1^2 = 10^2 = 1$, $2^2 = 9^2 = 4$, $3^2 = 8^2 = 9$, $4^2 = 7^2 = 5$, $5^2 = 6^2 = 3$.

Now we can make our table:

So

$$\overline{E}(\mathbb{F}_{11}) = \{O, (1, \pm 5), (5, \pm 1), (6, 0), (10, \pm 3)\}$$

which tells us that |T| divides 8.

Putting these two results together, we see that |T| divides both 5 and 8, hence divides gcd(5,8) = 1. This means |T| = 1, that is,

$$T = \{O\}.$$

3 Bounds on the number of points (Non-examinable)

In this final section, we mention some contrasting results about the numbers of points of finite order on elliptic curves over \mathbb{Q} and over $\mathbb{F}_{\mathfrak{p}}$.

3.1 Torsion over \mathbb{Q}

Surprisingly, for elliptic curves over the rational numbers, there is a small finite list of possible torsion subgroups:

Theorem 3.1 (Mazur, 1977). Let E be an elliptic curve over \mathbb{Q} and $T \subset E(\mathbb{Q})$ its torsion subgroup. Then T is isomorphic to one of the following groups:

$$\begin{aligned} &\{O\} & \textit{(the trivial group)} \\ &\mathbb{Z}_n & \textit{for } n \in \{2,3,4,5,6,7,8,9,10,12\} \\ &\mathbb{Z}_2 \oplus \mathbb{Z}_{2n} & \textit{for } n \in \{1,2,3,4\}. \end{aligned}$$

In particular we always have $|T| \le 16$.

It was known long before Mazur's theorem that, for each group G on the list above, there is an elliptic curve E defined over $\mathbb Q$ such that the torsion subgroup $T\subset E(\mathbb Q)$ is isomorphic to G. But some of these are hard to find:

Example: The biggest possible torsion subgroup is $\mathbb{Z}_2 \oplus \mathbb{Z}_8$ with order 16. The simplest (!) curve E with torsion subgroup T isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_8$ is given by the following minimal integral model:

E:
$$y^2 = x^3 - 1386747x + 368636886$$
.

3.2 Finite fields

For elliptic curves over finite fields, the picture is quite different. Since there are only finitely many points altogether in the projective plane $\mathbb{P}^2_{\mathbb{F}_p}$, in this case **every** point on an elliptic curve has finite order. The number of points on such a curve cannot be too far away from \mathfrak{p} :

Theorem 3.2 (Hasse). Let E be an elliptic curve over \mathbb{F}_p . Then

$$|\mathsf{E}(\mathbb{F}_{\mathfrak{p}}) - (\mathfrak{p} + 1)| \le 2\sqrt{\mathfrak{p}}.$$

We won't prove Hasse's theorem, but let's give an intuitive argument for why we expect the number of points to be close to p+1.

Let E be defined by an equation $y^2 = f(x)$. Then

$$|\mathsf{E}(\mathbb{F}_{\mathfrak{p}})| = 1 + \#\{x \mid \mathsf{f}(x) = 0\} + 2\#\{x \mid \mathsf{f}(x) \text{ is a nonzero square in } \mathbb{F}_{\mathfrak{p}}\}.$$

Now **assume** that the values of f(x) are distributed identically to the values of x: that is, $x \mapsto f(x)$ is a bjection on \mathbb{F}_p . Then:

$$\#\{x \mid f(x) = 0\} = 1$$

 $\#\{x\mid f(x) \text{ is a nonzero square in } \mathbb{F}_{\mathfrak{p}}\}=\# \text{ nonzero squares in } \mathbb{F}_{\mathfrak{p}}.$

The nonzero squares in \mathbb{F}_p are the image of the 2-to-1 map

$$\mathbb{F}_{p}\setminus\{0\}\to\mathbb{F}_{p}\setminus\{0\}$$
$$x\mapsto x^{2}.$$

So the number of points in the image is $\frac{1}{2}(p-1)$. Therefore, under our assumption we get

$$|E(\mathbb{F}_p)| = 1 + 1 + 2 \cdot \frac{1}{2}(p-1)$$

= $p + 1$.

In practice the assumption above does not hold, but Hasse proved that the error is of order \sqrt{p} .

Example: Take p=97. For any elliptic curve E over \mathbb{F}_p , Hasse's theorem tells us that the number of \mathbb{F}_p -points on E satisfies

$$98 - 2\sqrt{97} \le |\mathsf{E}(\mathbb{F}_p)| \le 98 + 2\sqrt{97}$$

The upper bound is approximately 117.69, so $|E(\mathbb{F}_p)|$ is at most 117. Now consider the curve

E:
$$y^2 = x^3 + 2$$
.

A computer calculation (which you can check!) shows that the \mathbb{F}_p -points on E are exactly those points of $\mathbb{P}^2_{\mathbb{F}_p}$ with the following homogeneous coordinates:

In particular we obtain $|E(\mathbb{F}_p)|=117$, showing that the Hasse bound is optimal at least for p=97.