12. Расчеты по формулам Часть 1. ФИПИ

I) Физика

- **1.**Чтобы перевести значение температуры по шкале Цельсия в шкалу Фаренгейта, пользуются формулой $t_F = 1.8t_C + 32$, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 23 градусов по шкале Цельсия?
- **2.**Чтобы перевести значение температуры по шкале Цельсия в шкалу Фаренгейта, пользуются формулой $t_F = 1.8t_C + 32$, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 35 градусов по шкале Цельсия?
- **3.**Чтобы перевести значение температуры по шкале Цельсия в шкалу Фаренгейта, пользуются формулой $t_F = 1.8t_C + 32$, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 85 градусов по шкале Цельсия?
- **4.**Чтобы перевести значение температуры по шкале Цельсия в шкалу Фаренгейта, пользуются формулой $t_F = 1.8t_C + 32$, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 55 градусов по шкале Цельсия?
- **5.**Чтобы перевести значение температуры по шкале Цельсия в шкалу Фаренгейта, пользуются формулой $t_F = 1.8t_C + 32$, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 70 градусов по шкале Цельсия?
- **6.**Чтобы перевести значение температуры по шкале Цельсия в шкалу Фаренгейта, пользуются формулой $t_F = 1.8t_C + 32$, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 90 градусов по шкале Цельсия?
- **7.**Перевести значение температуры по шкале Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F 32)$, где t_C температура в градусах Цельсия, t_F температура в градусах Фаренгейта. Скольким градусам по шкале Цельсия соответствует 149 градусов по шкале Фаренгейта?
- **8.**Перевести значение температуры по шкале Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F 32)$, где t_C температура в градусах Цельсия, t_F температура в градусах Фаренгейта. Скольким градусам по шкале Цельсия соответствует 112 градусов по шкале Фаренгейта?

9.Перевести значение температуры по шкале Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F - 32)$, где t_C – температура в градусах Цельсия, t_F – температура в градусах Фаренгейта. Скольким градусам по шкале Цельсия соответствует 185 градусов по шкале Фаренгейта?

- **10.** Перевести значение температуры по шкале Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F 32)$, где t_C температура в градусах Цельсия, t_F температура в градусах Фаренгейта. Скольким градусам по шкале Цельсия соответствует 58 градусов по шкале Фаренгейта?
- **11.** Перевести значение температуры по шкале Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F 32)$, где t_C температура в градусах Цельсия, t_F температура в градусах Фаренгейта. Скольким градусам по шкале Цельсия соответствует 23 градусов по шкале Фаренгейта?
- **12.** Перевести значение температуры по шкале Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F 32)$, где t_C температура в градусах Цельсия, t_F температура в градусах Фаренгейта. Скольким градусам по шкале Цельсия соответствует 103 градусов по шкале Фаренгейта?
- **13.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите сопротивление R, если мощность составляет 15,75 R, а сила тока равна 1,5 R. Ответ дайте в омах.
- **14.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P=I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите сопротивление R, если мощность составляет 283,5 R, а сила тока равна 4,5 R. Ответ дайте в омах.
- **15.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите сопротивление R, если мощность составляет 361,25 Вт, а сила тока равна 8,5 A. Ответ дайте в омах.
- **16.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P=I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите сопротивление R, если мощность составляет 29,25 R, а сила тока равна 1,5 R. Ответ дайте в омах.

17. Мощность постоянного тока (в ваттах) вычисляется по формуле $P=I^2R$, где I – сила тока (в амперах), R – сопротивление (в омах). Пользуясь этой формулой, найдите сопротивление R, если мощность составляет 423,5 R, а сила тока равна 5,5 R. Ответ дайте в омах.

- **18.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите сопротивление R, если мощность составляет 541,5 R вт, а сила тока равна 9,5 R. Ответ дайте в омах.
- **19.** Центростремительное ускорение при движении по окружности (в м/с²) можно вычислить по формуле $\alpha = \omega^2 R$, где ω угловая скорость (в с¹), а R радиус окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна 9 с¹, а центростремительное ускорение равно 243 м/с². Ответ дайте в метрах.
- **20.** Центростремительное ускорение при движении по окружности (в м/с²) можно вычислить по формуле $\alpha = \omega^2 R$, где ω угловая скорость (в с¹), а R радиус окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна R с¹, а центростремительное ускорение равно R м/с². Ответ дайте в метрах.
- **21.** Центростремительное ускорение при движении по окружности (в м/с²) можно вычислить по формуле $\alpha = \omega^2 R$, где ω угловая скорость (в с¹), а R радиус окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна 9,5 с¹, а центростремительное ускорение равно 180,5 м/с². Ответ дайте в метрах.
- **22.** Центростремительное ускорение при движении по окружности (в м/с²) можно вычислить по формуле $\alpha = \omega^2 R$, где ω угловая скорость (в с¹), а R радиус с окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна 7,5 с¹, а центростремительное ускорение равно 337,5 м/с². Ответ дайте в метрах.
- **23.** Центростремительное ускорение при движении по окружности (в м/с²) можно вычислить по формуле $\alpha = \omega^2 R$, где ω угловая скорость (в с¹), а R радиус окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна 8.5 c^{-1} , а центростремительное ускорение равно 650.25 m/c^2 . Ответ дайте в метрах.
- **24.** Центростремительное ускорение при движении по окружности (в м/с²) можно вычислить по формуле $\alpha = \omega^2 R$, где ω угловая скорость (в с¹), а R радиус окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна 7,5 с¹, а центростремительное ускорение равно 393,75 м/с². Ответ дайте в метрах.

II) Математика

- **25.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{d_1 d_2 \sin \alpha}{2}$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_1 , если $d_2 = 7$, $\sin \alpha = \frac{2}{7}$, а S = 4.
- **26.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{d_1 d_2 \sin \alpha}{2}$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_2 , если $d_1 = 6$, $\sin \alpha = \frac{1}{11}$, а S = 3.
- **27.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{d_1 d_2 \sin \alpha}{2}$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_1 , если $d_2 = 13$, $\sin \alpha = \frac{3}{13}$, а S = 25,5.
- **28.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{d_1 d_2 \sin \alpha}{2}$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_1 , если $d_1 = 14$, $\sin \alpha = \frac{1}{12}$, а S = 8,75.
- **29.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{d_1 d_2 \sin \alpha}{2}$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_1 , если d_2 =11, $\sin \alpha = \frac{7}{12}$, а S = 57,75.
- **30.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{d_1 d_2 \sin \alpha}{2}$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_2 , если $d_1 = 9$, $\sin \alpha = \frac{5}{8}$, а S = 56,25.

Часть 2. ФИПИ. Расширенная версия

- **1.**В фирме «Родник» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C=6500+4100 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 10 колец.
- **2.**В фирме «Родник» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C=6500+4100 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 5 колец.
- **3.**В фирме «Родник» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C=6500+4100 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 9 колец.
- **4.**В фирме «Чистая вода» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C=6500+4000 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 14 колец.
- **5.**В фирме «Чистая вода» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C=6500+4000 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 12 колец.
- **6.**В фирме «Чистая вода» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C=6500+4000 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 13 колец.
- **7.**В фирме «Эх, прокачу!» стоимость поездки на такси (в рублях) рассчитывается по формуле $C = 150 + 11 \cdot (t 5)$, где t длительность поездки, выраженная в минутах (t > 5). Пользуясь этой формулой, рассчитайте стоимость 16- минутной поездки.
- **8.**В фирме «Эх, прокачу!» стоимость поездки на такси (в рублях) рассчитывается по формуле $C=150+11\cdot(t-5)$, где t длительность поездки, выраженная в минутах (t>5). Пользуясь этой формулой, рассчитайте стоимость 14- минутной поездки.
- **9.**В фирме «Эх, прокачу!» стоимость поездки на такси (в рублях) рассчитывается по формуле $C=150+11\cdot(t-5)$, где t длительность поездки, выраженная в минутах (t>5). Пользуясь этой формулой, рассчитайте стоимость 9- минутной поездки.

10. В фирме «Эх, прокачу!» стоимость поездки на такси (в рублях) рассчитывается по формуле $C=150+11\cdot(t-5)$, где t – длительность поездки, выраженная в минутах (t>5). Пользуясь этой формулой, рассчитайте стоимость 12-минутной поездки.

- **11.** Зная длину своего шага, человек может приближённо подсчитать пройденное им расстояние s по формуле s=nl, где n число шагов, l длина шага. Какое расстояние прошёл человек, если l = 70 см, n = 1400? Ответ выразите в километрах.
- **12.** Зная длину своего шага, человек может приближённо подсчитать пройденное им расстояние s по формуле s=nl, где n число шагов, l длина шага. Какое расстояние прошёл человек, если l = 50 см, n = 1200? Ответ выразите в километрах.
- **13.** Зная длину своего шага, человек может приближённо подсчитать пройденное им расстояние s по формуле s=nl, где n число шагов, l длина шага. Какое расстояние прошёл человек, если l = 80 см, n = 1800? Ответ выразите в километрах.
- **14.** Период колебания математического маятника T (в секундах) приближенно можно вычислить по формуле $T = 2\sqrt{l}$, где l длина нити (в метрах). Пользуясь этой формулой, найдите длину нити маятника (в метрах), период колебаний которого составляет 13 секунд.
- **15.** Период колебания математического маятника T (в секундах) приближенно можно вычислить по формуле $T = 2\sqrt{l}$, где l длина нити (в метрах). Пользуясь данной формулой, найдите длину нити маятника, период колебаний которого составляет 4 секунды.
- **16.** Период колебания математического маятника T (в секундах) приближенно можно вычислить по формуле $T = 2\sqrt{l}$, где l длина нити (в метрах). Пользуясь этой формулой, найдите длину нити маятника (в метрах), период колебаний которого составляет 9 секунд.
- **17.** Закон Кулона можно записать в виде $F = k \frac{q_1 q_2}{r^2}$, где F сила взаимодействия зарядов (в ньютонах), q_1 и q_2 величины зарядов (в кулонах), k коэффициент пропорциональности (в $H \cdot m^2 / K \Lambda^2$), а r расстояние между зарядами (в метрах). Пользуясь формулой, найдите величину заряда q_1 (в кулонах), если $k = 9 \cdot 10^9 \text{ H} \cdot \text{m}^2 / \text{K} \Lambda^2$, $q_2 = 0,006 \text{ K} \Lambda$, r = 300 M, а F = 5,4 H.

- **18.** Закон Кулона можно записать в виде $F = k \frac{q_1 q_2}{r^2}$, где F сила взаимодействия зарядов (в ньютонах), q_1 и q_2 величины зарядов (в кулонах), k коэффициент пропорциональности (в $H \cdot m^2 / K \Lambda^2$), а r расстояние между зарядами (в метрах). Пользуясь формулой, найдите величину заряда q_1 (в кулонах), если $k = 9 \cdot 10^9 \text{ H} \cdot \text{m}^2 / \text{K} \Lambda^2$, $q_2 = 0,002 \text{ K}$ л, r = 2000 M, а F = 0,00135 H.
- **19.** Закон Кулона можно записать в виде $F = k \frac{q_1 q_2}{r^2}$, где F сила взаимодействия зарядов (в ньютонах), q_1 и q_2 величины зарядов (в кулонах), k коэффициент пропорциональности (в $H \cdot m^2 / K \Lambda^2$), а r расстояние между зарядами (в метрах). Пользуясь формулой, найдите величину заряда q_1 (в кулонах), если $k = 9 \cdot 10^9 \text{ H} \cdot \text{m}^2 / \text{K} \Lambda^2$, $q_2 = 0,004$ Кл, r = 3000 м, а F = 0,016 Н.
- **20.** Закон всемирного тяготения можно записать в виде $F = \gamma \frac{m_1 m_2}{r^2}$, где F сила притяжения между телами (в ньютонах), m_1 и m_2 массы тел (в килограммах), r расстояние между центрами масс (в метрах), а γ гравитационная постоянная, равная $6.67 \cdot 10^{-11} \text{ H·m}^2/\text{kr}^2$. Пользуясь формулой, най-дите массу тела m_1 (в килограммах), если F = 1000,5 H, $m_2 = 6.10^9$ кг, а r = 4 м.
- **21.** Закон всемирного тяготения можно записать в виде $F = V \frac{m_1 m_2}{r^2}$, где F сила притяжения между телами (в ньютонах), m_1 и m_2 массы тел (в килограммах), r расстояние между центрами масс (в метрах), а γ гравитационная постоянная, равная $6.67 \cdot 10^{-11} \text{ H·m}^2/\text{kr}^2$. Пользуясь формулой, най-дите массу тела m_1 (в килограммах), если F = 0.06003 H, $m_2 = 6.10^8$ кг, а r = 2 м.
- **22.** Закон всемирного тяготения можно записать в виде $F = \gamma \frac{m_1 m_2}{r^2}$, где F сила притяжения между телами (в ньютонах), m_1 и m_2 массы тел (в килограммах), r расстояние между центрами масс (в метрах), а γ гравитационная постоянная, равная $6.67 \cdot 10^{-11} \text{ H·m}^2/\text{kr}^2$. Пользуясь формулой, най-дите массу тела m_1 (в килограммах), если F = 83,375 H, $m_2 = 4 \cdot 10^9$ кг, а r = 4 м.

23. Закон Менделеева-Клапейрона можно записать в виде $PV = \nu RT$, где P – давление (в паскалях), V – объём (в M^3), ν – количество вещества (в молях), V – температура (в градусах Кельвина), а V – универсальная газовая постоянная, равная 8,31 Дж/(V моль). Пользуясь этой формулой, найдите объём V (в V), если V = 23 891,25 Па, V = 48,3 моль.

- **24.** Закон Менделеева-Клапейрона можно записать в виде $PV = \nu RT$, где P давление (в паскалях), V объём (в M^3), ν количество вещества (в молях), V температура (в градусах Кельвина), а R универсальная газовая постоянная, равная 8,31 Дж/(K·моль). Пользуясь этой формулой, найдите давление P (в Паскалях), если V = 250 V –
- **25.** Закон Менделеева-Клапейрона можно записать в виде PV = vRT, где P -давление (в паскалях), V -объём (в M^3), V -количество вещества (в молях), T -температура (в градусах Кельвина), а R -универсальная газовая постоянная, равная 8,31 Дж/(K·моль). Пользуясь этой формулой, найдите температуру T (в градусах Кельвина), если P = 77698,5 Па, V = 28,9 моль, V = 1,7 M^3 .
- **26.** Закон Менделеева-Клапейрона можно записать в виде PV = vRT, где P -давление (в паскалях), V -объём (в M^3), V -количество вещества (в молях), T -температура (в градусах Кельвина), а R -универсальная газовая постоянная, равная 8,31 Дж/(K·моль). Пользуясь этой формулой, найдите температуру T (в градусах Кельвина), если V = 68,2 моль, P = 37782,8 Па, V = 6 M^3 .
- **27.** Закон Менделеева-Клапейрона можно записать в виде $PV = \nu RT$, где P -давление (в паскалях), V -объём (в M^3), ν количество вещества (в молях), T -температура (в градусах Кельвина), а R -универсальная газовая постоянная, равная $8,31 \ Дж/(K \cdot$ моль). Пользуясь этой формулой, найдите количество вещества ν (в молях), если $T = 700 \ K$, $P = 20 \ 941,2 \ \Pi a$, $V = 9,5 \ M^3$.
- **28.** Закон Менделеева-Клапейрона можно записать в виде PV = vRT, где P -давление (в паскалях), V -объём (в M^3), V -количество вещества (в молях), T -температура (в градусах Кельвина), а R -универсальная газовая постоянная, равная $8,31 \ Дж/(K \cdot$ моль). Пользуясь этой формулой, найдите количество вещества V (в молях), если $T = 400 \ K$, $P = 13 \ 296 \ \Pi a$, $V = 4,9 \ M^3$.

Часть 3. Типовые экзаменационные варианты*

- **1.**Высота деревянного стеллажа для книг равна h = (a+b)n + a миллиметров, где a толщина одной доски (в мм), b высота одной полки (в миллиметрах), n число таких полок. Найдите высоту книжного стеллажа из 7 полок, если a = 21 мм, b = 290 мм. Ответ выразите в миллиметрах.
- **2.**Высота деревянного стеллажа для книг равна h = (a+b)n + a миллиметров, где a толщина одной доски (в мм), b высота одной полки (в миллиметрах), n число таких полок. Найдите высоту книжного стеллажа из 8 полок, если a = 24 мм, b = 300 мм. Ответ выразите в миллиметрах.
- **3.**Закон Гука можно записать в виде f = kx, где F cила (в ньютонах), с которой сжимают пружину, x абсолютное удлинение (сжатие) пружины (в метрах), а k коэффициент упругости. Пользуясь этой формулой, найдите x (в метрах), если $f = 56 \,\mathrm{H}$ и $k = 7 \,\mathrm{H/m}$.
- **4.**Закон Гука можно записать в виде f = kx, где F cила (в ньютонах), с которой сжимают пружину, x абсолютное удлинение (сжатие) пружины (в метрах), а k коэффициент упругости. Пользуясь этой формулой, найдите x (в метрах), если f = 54 H и k = 6 H/м.
- **5.**Закон Джоуля–Ленца можно записать в виде $Q = I^2Rt$, где Q количество теплоты (в джоулях), I сила тока (в амперах), R сопротивление цепи (в омах), а t время (в секундах). Пользуясь этой формулой, найдите время t (в секундах), если Q = 1125 Дж, I = 7,5 A, R = 4 Ом.
- **6.**Закон Джоуля–Ленца можно записать в виде $Q = I^2Rt$, где Q количество теплоты (в джоулях), I сила тока (в амперах), R сопротивление цепи (в омах), а t время (в секундах). Пользуясь этой формулой, найдите время t (в секундах), если Q = 1734 Дж, I = 8,5 A, R = 6 Ом.
- **7.**Мощность постоянного тока (в ваттах) вычисляется по формуле $P = \frac{U^2}{R}$, где U напряжение (в вольтах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R=7 Ом, U=14 B.
- **8.**Мощность постоянного тока (в ваттах) вычисляется по формуле $P = \frac{U^2}{R}$, где U напряжение (в вольтах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R=8 Ом, U=16 B.
- **9.**Работа постоянного тока (в джоулях) вычисляется по формуле $A = \frac{U^2 t}{R}$, где U напряжение (в вольтах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t=10 c, U=6 B, R=15 Oм.

- **10.** Работа постоянного тока (в джоулях) вычисляется по формуле $A = \frac{U^2 t}{R}$, где U напряжение (в вольтах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если $t = 9 \, \text{c}$, U = 6 B, R = 12 Ом.
- **11.** Кинетическая энергия тела (в джоулях) вычисляется по формуле $E = \frac{mv^2}{2}$, где m масса тела (в килограммах), а v его скорость (в метрах в секунду). Пользуясь этой формулой, найдите E (в джоулях), если v = 3 м/с и m = 12 кг.
- **12.** Кинетическая энергия тела (в джоулях) вычисляется по формуле $E = \frac{mv^2}{2}$, где m масса тела (в килограммах), а v его скорость (в метрах в секунду). Пользуясь этой формулой, найдите E (в джоулях), если v = 4 м/с и m=11 кг.
- **13.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{\text{CU}^2}{2}$, где C ёмкость конденсатора (в Ф), а U разность потенциалов на обкладках конденсатора (в В). Найдите энергию конденсатора W (в Дж) ёмкостью 10^{-4} Ф, если разность потенциалов U на обкладках конденсатора равна 30 В.
- **14.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{\text{CU}^2}{2}$,где C ёмкость конденсатора (в Ф), а U разность потенциалов на обкладках конденсатора (в В). Найдите энергию конденсатора W (в Дж) ёмкостью 10^{-4} Ф, если разность потенциалов U на обкладках конденсатора равна 50 В.
- **15.** Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c стороны треугольника, а R радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите S, если a = 10, b = 13, c = 16 и $R = \frac{65}{8}$.
- **16.** Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c стороны треугольника, а R радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите S, если a = 19, b = 15, c = 20 и $R = \frac{95}{9}$.

- **17.** Радиус вписанной в прямоугольный треугольник окружности можно найти по формуле $r = \frac{a+b-c}{2}$, где a и b катеты, а c гипотенуза треугольника. Пользуясь этой формулой, найдите c, если a = 19, b = 23 и r = 7.
- **18.** Радиус вписанной в прямоугольный треугольник окружности можно найти по формуле $r = \frac{a+b-c}{2}$, где a и b катеты, а c гипотенуза треугольника. Пользуясь этой формулой, найдите c, если a = 14, b = 25 и r = 6.
- **19.** Теорему косинусов можно записать в виде $\cos \alpha = \frac{a^2 + b^2 c^2}{2ab}$, где a, b и c стороны треугольника, а α угол между сторонами a и b. Пользуясь этой формулой, найдите величину $\cos \alpha$, если a = 5, b = 8 и c = 9.
- **20.** Теорему косинусов можно записать в виде $\cos \alpha = \frac{a^2 + b^2 c^2}{2ab}$, где a, b и c стороны треугольника, а α угол между сторонами a и b. Пользуясь этой формулой, найдите величину $\cos \alpha$, если a = 5, b = 6 и c = 7.
- **21.** Длина медианы m_c , проведённой к стороне с треугольника со сторонами $a,\ b$ и c, вычисляется по формуле $m_c = \frac{\sqrt{2a^2 + 2b^2 c^2}}{2}$. Найдите медиану m_c , если $a=5,\ b=10$ и c=9.
- **22.** Длина медианы m_c , проведённой к стороне с треугольника со сторонами $a,\ b$ и c, вычисляется по формуле $m_c = \frac{\sqrt{2a^2 + 2b^2 c^2}}{2}$. Найдите медиану m_c , если $a=8,\ b=15$ и c=17.
- **23.** Длина биссектрисы l_c , проведённой к стороне с треугольника со сторонами a, b и c, вычисляется по формуле $l_c = \frac{1}{a+b} \sqrt{ab((a+b)^2 c^2)}$. Найдите длину биссектрисы l_c , если a=6, b=8 и c=7.
- **24.** Длина биссектрисы l_c , проведённой к стороне с треугольника со сторонами $a,\ b$ и c, вычисляется по формуле $l_c=\frac{1}{a+b}\sqrt{ab((a+b)^2-c^2)}$. Найдите длину биссектрисы l_c , если $a=9,\ b=18$ и c=21.
- **25.** Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bcsin\alpha$, где b и с две стороны треугольника, а α угол между ними. Пользуясь этой формулой, найдите площадь $sin\alpha$, если b=5, c=8 и S=12.

- **26.** Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bcsin\alpha$, где b и с две стороны треугольника, а α угол между ними. Пользуясь этой формулой, найдите площадь $sin\alpha$, если b=7, c=5 и S=14.
- **27.** Радиус описанной около треугольника окружности можно найти по формуле $R = \frac{a}{2\sin\alpha}$, где a сторона треугольника, α противолежащий этой стороне угол, а R радиус описанной около этого треугольника окружности. Пользуясь этой формулой, найдите R, если a = 12, a $\sin\alpha = \frac{2}{3}$.
- **28.** Радиус описанной около треугольника окружности можно найти по формуле $R = \frac{a}{2\sin\alpha}$, где a сторона треугольника, α противолежащий этой стороне угол, а R радиус описанной около этого треугольника окружности. Пользуясь этой формулой, найдите R, если $\alpha = 18$, а $\sin\alpha = \frac{3}{5}$.
- **29.** Теорему синусов можно записать в виде $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$, где a и b две стороны треугольников, а α и β углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите величину a, если b = 20, $\sin \alpha = \frac{9}{10}$ и $\sin \beta = \frac{2}{3}$.
- **30.** Теорему синусов можно записать в виде $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$, где a и b две стороны треугольников, а α и β углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите величину a, если b = 30, $\sin \alpha = \frac{2}{5}$ и $\sin \beta = \frac{3}{4}$.
- **31.** Площадь прямоугольника можно вычислить по формуле $S = \frac{d^2 \sin \alpha}{2}$, где d длина диагонали, α угол между диагоналями. Пользуясь этой формулой, найдите площадь S, d = 10 и $\sin \alpha = \frac{2}{5}$.
- **32.** Площадь прямоугольника можно вычислить по формуле $S = \frac{d^2 \sin \alpha}{2}$, где d длина диагонали, α угол между диагоналями. Пользуясь этой формулой, найдите площадь S, d = 6 и $\sin \alpha = \frac{2}{3}$.