Solving SAT in polynomial time?

Brian Tenneson

April 11, 2023

Tenneson

Abstract

Our goal is to shed some light on the \mathcal{P} vs \mathcal{NP} problem by looking at a SAT solver and verify that it runs in polynomial time. Given the \mathcal{NP} -completeness of SAT, this would imply $\mathcal{P} = \mathcal{NP}$.

 \mathcal{P} vs \mathcal{NP} , polynomial time SAT solver, Boolean algebra We would like to acknowledge all of the many people who contributed to this work.

1 A SAT solver which may run in polynomial time

1.1 Input Boolean wff φ

Either $\varphi = p_i$ for a propositional variable p_i or $\varphi = \neg \varphi_1$ for some Boolean wff φ_1 , or $\varphi = \varphi_1 \land \varphi_2$ for Boolean wffs φ_1 and φ_2 , or $\varphi = \varphi_1 \lor \varphi_2$ for Boolean wffs φ_1 and φ_2 .

1.2 Compute a polynomial associated with φ called $\tau(\varphi)$ as follows:

$$\tau(p_i) := x_i$$

$$\tau\left(\varphi_{1}\wedge\varphi_{2}\right):=\tau\left(\varphi_{1}\right)\tau\left(\varphi_{2}\right)$$

$$\tau\left(\varphi_{1}\vee\varphi_{2}\right):=1+\left(1+\tau\left(\varphi_{1}\right)\right)\left(1+\tau\left(\varphi_{2}\right)\right)$$

Calculations are done in \mathbb{F}_2 .

1.3 Let $J = \langle \tau + 1, x_1^2 + x_1, ..., x_n^2 + x_n \rangle$ be an ideal in $\mathbb{F}_2[x_1, ..., x_n]$ Note that $J = \langle \tau + 1 \rangle + \langle x_1^2 - x_1, ..., x_n^2 - x_n \rangle$.

- 1.4 Find a Gröbner basis G for J which might be done in polynomial time using the FGLM algorithm
- 1.5 Check whether $\overline{1}^G = 0$
- 1.5.1 If $\overline{1}^G = 0$, then φ is not satisfiable
- 1.5.2 If $\overline{1}^G \neq 0$, then φ is satisfiable

References