CS5231: Systems Security

Lecture 09b: Virtualization and Trusted Computing Environment

Evolution of TEEs

2004

TPM 1.2

2005

2006

2014

2016

2023

TrustZone

Intel TXT

TPM 2.0 Intel SGX

Intel TDX

Trusted Execution Primitives (I): Remote Attestation

Trusted Execution Primitives (I): Remote Attestation

Each TPM has as Alkersigning key

Trusted Execution Primitives (II): Trusted Boot

Trusted Execution Primitives(III): Sealing Data

Use TPM Measurements & Secure Storage for Disk Encryption Systems?

CS5231 Lecture 09

Trusted Execution Primitives (III): Unsealing Data

Trusted Execution Primitives (III): Sealed Storage

```
# echo 'Secret!!!' | tpm sealdata -z -i/proc/self/fd/0
-o./mysecret.blob -p17 -p18 -p19
 / assuming PCR's are the same
 tpm unsealdata ./mysecret.blob
Secret!!!
 / assuming PCR's are different
 tpm unsealdata ./mysecret.blob
error 24: Tspi Data Unseal: 0x00000018 - layer=tpm,
code=0018 (24), Wrong PCR value
```

Trusted Computing Primitives (I – II): Static Root-of-Trust

- So far, we've seen SRTM systems
 - Checks / Verification at load time

- Many Applications
- Windows BitLocker
- Linux TrustedGrub (because TXT is too slow!)
- Build your own "secure apps"
 - <u>eXtensible</u>, <u>Modular Hypervisor Framework</u>
 (from CMU)

Use Case: Full Volume Encryption

- Encryption at the block level underneath file system
- Everything in the volume is encrypted.
- BitLocker is used by Microsoft since Windows Vista
- BitLocker takes advantage of TPM (TEEs)
 - Top level root key sealed in hardware
 - Root key encrypts disk encryption key, which encrypts sector data
- CPU protects disk encryption key by encrypting it
- CPU releases key only after comparing hash of early (unencrypted) boot files with previous hash

New Generation of Trusted Hardware

- Arm TrustZone
- Intel SGX
- AMD SEV
- Intel TDX
- Arm Realm

The "root of trust" has to be hardware. You cannot ask a software system to "validate" itself.

Trusted Computing Group

ARM TrustZone

Introduced two basic concepts to the ARM architecture

- The ability to tag system resources as belonging to either a Secure or Non-Secure context
- A virtualization component which enables a processor to rapidly switch between these contexts

Software View

 Delivers two separate domains, normal and secure

 Secure domain enables a TEE, for securitysensitive applications

Use Cases

Samsung Pay

- Uses TrustZone to handle payment card information securely
- Samsung Knox mobile enterprise solution
 - KNOX security software runs in the secure world, so it's isolated from the rest of the system

Trusted Language Runtime

- Using ARM TrustZone to build a trusted language runtime for mobile applications, ASPLOS'14
- Many more ...

Additional References

- Demystifying Arm TrustZone: A Comprehensive Survey, https://dl.acm.org/doi/10.1145/3291047
- GlobalPlatform, https://globalplatform.org/specs-library/?filter-committee=tee
- OP-TEE, https://www.op-tee.org/
- Trusty TEE, https://source.android.com/docs/security/features/trusty
- Open-TEE: https://arxiv.org/pdf/1506.07367.pdf
- https://www.arm.com/technologies/trustzone-for-cortex-a
- https://www.arm.com/technologies/trustzone-for-cortex-m

Intel SGX

Software Guard Extensions, a set of extensions to the Intel architecture that aims to

- provide integrity and confidentiality guarantees to security-sensitive computation performed
- on an untrusted host where all the privileged software (kernel, hypervisor, etc.) is potentially malicious

Intel SGX

- The key concept behind SGX is an enclave, a TEE embedded in a process
- SGX-enabled processors guarantees two crucial properties:
 - **Isolation**: each enclave's environment is isolated from the *untrusted* software *outside*, as well as other *enclaves*
 - Attestation: allowing a remote party to authenticate the software running inside an enclave

Intel SGX Security Features

Three prominent security features:

• Confidentiality for data stored inside an enclave

- Integrity of code execution inside an enclave
- Remote Attestation of an enclave

Before provisioning sensitive data (e.g., credentials) into the remote enclave, a relying party must assure its **authenticity**

Intel SGX Use Cases

- OSDI'14, Shielding Applications from an Untrusted Cloud with Haven
- OSDI'16, SCONE: Secure Linux Containers with Intel SGX
- SP'18, EnclaveDB: A Secure Database using SGX
- Many more: https://www.intel.com/content/www/us/en/architecture-and-

technolo(Intel® SGX use cases

Artificial intelligence (AI)/machine learning (ML)

Process sensitive or regulated data using AI and ML while improving compliance with privacy regulations.

Cloud infrastructure

Minimize access to your data by the service provider or other public cloud tenants.

Trusted multiparty compute/ multiparty

analytics

Enable multiple parties to collaborate on shared data in the cloud while keeping sensitive data confidential.

Secure key management

Use enclaves to help protect cryptographic keys and provide hardware security module (HSM)-like functionality.

Blockchain

Increase privacy and security for transaction processing, consensus, smart contracts, and key storage.

Network function virtualization (NFV)

Establish trust for virtualized network functions.

Intel SGX – Additional References

- ISCA'15 Tutorial: https://community.intel.com/legacyfs/online/drupal_files/332680-002.pdf
- Intel SGX Explained: https://eprint.iacr.org/2016/086.pdf
- https://www.intel.sg/content/www/xa/en/architecture-and-technology/software-guard-extensions.html
- https://sgx101.gitbook.io/sgx101/
- Open Enclave SDK: https://openenclave.io/sdk/

AMD SEV and Intel TDX

SEV: Secure Encrypted Virtualization, allows the **memory** of VMs to be **encrypted**

- SEV uses a unique memory encryption key for each VM
- The encryption of memory pages is completely **transparent** to the **hypervisor** and happens inside **memory controller**.
- Each controller includes a high-performance
 AES engine that encrypts data when it is
 written to DRAM and decrypts it when read.

AMD SEV and Intel TDX

SEV: Remote Attestation of the confidential VM

- SEV calculates a signature of the memory contents
- The VM owner uses this signature to attest whether the memory was encrypted correctly by the firmware

Intel TDX: Trusted Domain Extensions

 Intel's similar solution to provide a confidential VM on untrusted hosts

Use Cases of SEV and TDX

- Shared computing infrastructure, e.g., public clouds
 - VMs are hosted on remote servers which are not under the control of the VMs' owners
- Secure Multi-Party Computation
 - Each party has sensitive data
 - They want to do an analysis on their combined data
 - Such analysis can be perform inside the confidential VM
- Many more ...

Additional References

- AMD SEV: https://developer.amd.com/sev/
- https://github.com/AMDESE/AMDSEV

- Intel TDX: <u>https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html</u>
- https://github.com/intel/tdx-tools

ARM Realm

- A new class of attestable isolation environment for modern workloads like VMs and containers
- Realms are isolated from the existing Normal and Secure worlds that we have in TrustZone
- Realm excludes privileged software (kernel and hypervisor) in the trusted computing base

ARM Realm

ARM's efforts to provide an **isolated environment** for modern workloads like VMs and containers

- Confidentiality
- Integrity
- Attestation
- Minimized TCB (excluding privileged software like kernel and hypervisor)

Additional References

- Arm Architecture Security Features: https://www.arm.com/architecture/security-features
- Arm Confidential Computing Architecture: https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture

Confidential Computing

For sensitive and regulated data,

Protecting data-at-rest: encryption

Protecting data-in-transit: TLS

Protecting data-in-use:

- Homomorphic encryption --> impractical
- Secure multi-party computation --> impractical
- Confidential Computing -> a new paradigm of computing

Confidential Computing

- Confidential Computing protects data in use by performing computation in a hardware-based, attested Trusted Execution Environment.
- These secure and isolated environments prevent unauthorized access or modification of applications and data while in use, thereby increasing the security assurances for organizations that manage sensitive and regulated data.

Confidential Computing

Enabling trusted hardware:

- Intel SGX
- AMD SEV
- Intel TDX
- Arm Realm

More info can be found at the Confidential Computing Consortium, https://confidentialcomputing.io/