Agent-based modeling and simulation of public transport to identify effects of network changes on passenger flows

Sophie Ensing 26/06/2019

Gemeente

Amsterdam

Introduction

- Changes in public transport
- Impact on crowdedness
- Simulation of boat traffic through the canals^[1]

^[1] Jeroen van der Does de Willebois. Assessing the impact of quay-wall renovations on the nautical traffic in Amsterdam. Master's thesis, TU Delft, 2019

How can an agent-based model be used to assess the effects of changes in public transport on passenger flows?

How can an agent-based model be used to assess the effects of changes in public transport on passenger flows?

Agent-based modeling

- Agents
 - Rules
 - Goals
- Passengers
- Vehicles
- Agents act in an environment

Agent types

Type 1: prefers the shortest route

Type 2: prefers minimal amount of transfers

Type 3: prefers minimal waiting time

How can an agent-based model be used to assess the effects of changes in public transport on passenger flows?

Sub-network

Tram 24 and 12 + Metro 50, 52 and 53

networkx maps.amsterdam.nl

GVB data

Origin and sub-trip data examples

Date	Hour	OriginCode	OriginName	Trips
1/1/2018 12:00:00 AM	09:00 - 09:59	00005	Muiderpoortstation	10

Origin stations (data also available for destination)

Date	Hour	OriginCode	OriginName	DestinationCode	DestinationName	Trips
1/1/2018 12:00:00 AM	09:00 - 09:59	02158	Adm. de Ruijterweg	05011	Centraal Station	10

Sub-trips

GVB data

Average number of passengers per hour, per weekday*

^{*} numbers are corrected for the lines that were used for this research

GVB data

Passenger distribution on a weekday, 08:00 - 09:00*

^{*} numbers are corrected for the lines that were used for this research

Passengers

Number of passengers based on GVB data

Vehicles

For all lines, for every X minutes (X = frequency)

How can an agent-based model be used to assess the effects of changes in public transport on passenger flows?

Changes in public transport

Scenario 1 (baseline)

- Vehicles are driving according to schedule
- Generating passengers based on distributions
- Week- and weekend day
- 08:00 09:00, 11:00 12:00,
 14:00 15:00, 17:00 18:00,
 20:00 21:00

Scenario 2

- Scenario 1, with one exception:
- During every simulated hour, tram 12 is malfunctioning for 30 minutes

Results / Origin

- Mean average error ranges from 4 to 24
- Highest error during rush hours on weekdays

Station	GVB data	Simulation	Error
Station Zuid	3817	3068	749
Bijlmer Arena	469	467	2

Example for a good and bad fit on a weekday 08:00 - 09:00

Results / Destination

- Mean average error ranges from 5 to 45
- Highest error during rush hours on weekdays

Station	GVB data	Simulation	Error
Station Zuid	5133	4062	1071
Station RAI	453	452	1

Example for a good and bad fit on a weekday 08:00 - 09:00

Results / Sub-trips

- Mean average error ranges from 13 to 36
- Highest error during rush hours on weekdays

Trip	GVB data	Simulation	Error
Centraal Station - Weesperplein	1359	369	990
Europaplein - Station Zuid	116	118	2

Example for a good and bad fit on a weekday 08:00 - 09:00

Results / Trip information

- Scenario 1 vs. Scenario 2
- Waiting time, transfers and trip duration
 - Waiting time showed more outliers
 - No clear effect on transfers and trip duration
- Occupancy of vehicles
 - All lines, except metro line 50, were influenced

To Amstelstation (08:35)

To Centraal station (08:33)

Tram 12*

*malfunctioning during 08:00 - 08:30

To Centraal station (08:25)

To De Boelelaan/VU (08:24)

Tram 24

To Station Zuid (08:36)

To Station Noord (08:41)

Metro 52

To Gaasperplas (08:03)

To Centraal Station (08:33)

Metro 53

Discussion

- Data limitations
 - Sub-trips
 - Origin and destination not matched
- Sub-network
- Passenger behaviour
- Contribution
 - GVB: critical lines and testing changes
 - Municipality: crowdedness as a result of changes

Conclusion

- Further research
 - Apply this methodology to the complete network
 - Route choice behaviour research
 - What does crowdedness mean?
- Model offers a lot of opportunities and a clear baseline performance

Acknowledgements

Thank you for your attention.