

DESIGNATED/ELECTED OFFICE (DO/EO/US)

CONCERNING A FILING UNDER 35 U.S.C. 371

PF-0525 USN

U.S. APPLICATION NO (If known, see 37 CFR 1.5)

INTERNATIONAL APPLICATION NO PCT/US99/11497

INTERNATIONAL FILING DATE 25 May 1999

TITLE OF INVENTION **HUMAN SOCS PROTEINS**

APPLICANT(S) FOR DO/EO/US

INCYTE PHARMACEUTICALS, INC.; LAL, Preeti; HILLMAN, Jennifer L.; GORGONE, Gina; CORLEY, Neil C.; PATTERSON, Chandra; YUE, Henry; TANG, Y. Tom; AZIMZAI, Yalda

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- 1. ☑ This is the **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
- 2.

 This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
- 3. \square This is an express request to promptly begin national examination procedures (35 U.S.C. 371 (f)).
- 4. \Box The US has been elected by the expiration of 19 months from the priority date (PCT Article 31).
- 5. ⋈ A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. \square is attached hereto (required only if not communicated by the International Bureau)
 - b. \square has been communicated by the International Bureau.
 - c. ≥ is not required, as the application was filed in the United States Receiving Office (RO/US).
- 6.

 An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)).
- 7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - a. \square are attached hereto (required only if not communicated by the International Bureau).
 - b. \square have been communicated by the International Bureau.
 - c. \Box have not been made; however, the time limit for making such amendments has NOT expired.
 - d. \Box have not been made and will not be made.
- 8. \square An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
- 9. \square An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
- 10. An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11 to 16 below concern document(s) or information included:

- 11.

 An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
- 12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.27 and 3.31 is included.
- 13. ☐ A FIRST preliminary amendment.
 - ☐ A SECOND or SUBSEQUENT preliminary amendment.
- 14. □ A substitute specification.
- 15. ☐ A change of power of attorney and/or address letter.
- 16.

 Other items or information:
- 1) Transmittal Letter (2 pp, in duplicate)
- 2) Return Postcard
- 3) Express Mail Label No.: EL 579 976 575 US

THE PROPERTY OF THE PARTY OF TH

\$

JC01 Rec'd PCT/PTO 2 1 NOV 2000

U.S APPLICATION NO TO BE ASSESSED	(f l ow see 27 (NR 1.5)	INTERNATIONAL APPLICATION NO.: PCT/US99/11497		ATTORNEY'S DOCKET NUMBER PF-0525 USN		
17. □ The following fees are submitted: BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5): Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO\$1000.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO\$860.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO\$710.00 □International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4)\$690.00 International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4)\$100.00						
ENTER APPROPRIATE BASIC FEE AMOUNT =					\$690.00	
Surcharge of \$130.00 for furnishing the oath or declaration later than \$\Pi\$ 20 \$\Pi\$ 30 months from the earliest claimed priority date (37 CFR 1.492(e)).					S	
CLAIMS	NUMBER FILED 1	NUMBER EXTRA	RATE			
Total Claims	20 =		X \$ 18.00		s	
Independent Claims	2 =		X \$ 80.00		s	
MULTIPLE DEPEND	ENT CLAIM(S) (if applicat	ole)	+ \$270.00		\$	
TOTAL OF ABOVE CALCULATIONS =					\$690.00	
☐ Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above are reduced by 1/2.					\$	
SUBTOTAL =					\$690.00	
Processing fee of \$130.00 for furnishing the English translation later than 20 30 months from the earliest clailmed priority date (37 CFR 1492(f)).					\$	
TOTAL NATIONAL FEE =					\$690.00	
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by the appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property +					\$	
TOTAL FEES ENCLOSED =					\$690.00	
					Amount to be Refunded	\$
					Charged:	s
 a. □ A check in the amount of \$\sum_{\text{to cover}}\$ to cover the above fees is enclosed. b. ⋈ Please charge my Deposit Account No. 09-0108 in the amount of \$\frac{5}{690.00}\$ to cover the above fees. c. ⋈ The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 09-0108. A duplicate copy of this sheet is enclosed. NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must 						
be filed and granted to restore the application to pending status.						
SEND ALL CORRESPONDENCE TO:						
INCYTE GENOMICS, INC. 3160 Porter Drive Palo Alto, CA 94304 SIGNATURE						
NAME: Diana Hamlet-Cox						
REGISTRATION NUMBER: 33,302						
DATE: Q November 2000						

PCT/US99/11497

PTO/PGT Rec'd 2 1 NOV 2000

HUMAN SOCS PROTEINS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of human SOCS proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cancer, immune and neurological disorders, and infectious diseases.

BACKGROUND OF THE INVENTION

10

5

Signal transduction is a general process in which cells respond to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc.) through a cascade of biochemical reactions beginning with the binding of the signal molecule to a cell membrane receptor and ending with an effect on an intracellular target molecule.

Intermediate steps in this process involve the activation of various cytoplasmic proteins by phosphorylation via protein kinases and the translocation of some of these activated proteins to the cell nucleus, where the transcription of specific genes is affected. The signal transduction process regulates all types of cell functions, including cell proliferation, differentiation, and gene transcription.

Cytokines are a specific class of extracellular signaling molecules that control growth, differentiation, and various functions of hemopoietic and immune cells.

Cytokines include interleukins (ILs), colony-stimulating factors (G-CSF and GM-CFS), erythropoietin (EPO), and various growth factors (EGF, PDGF, TGF, and FGF; Callard, R. and Gearing, A. (1994) The Cytokine Facts Book, pp 2-6, Academic Press, San Diego, CA).

Many of the cytokine receptors, including those for the growth factors EGF,
PDGF, and FGF exhibit intrinsic protein kinase activity. Binding of the cytokine to its
receptor triggers the autophosphorylation of a tyrosine residue on the receptor. It is
believed that these phosphorylated residues are recognition sites for the binding of other
cytoplasmic signaling proteins which link the initial receptor activation at the cell surface
to the activation of a specific intracellular target molecule. These signaling proteins

WO 99/61614 PCT/US99/11497

contain an src homology 2 (SH2) domain that is a recognition and binding site for the phosphotyrosine residue. SH2 domains are found in a variety of signaling molecules and oncogenic proteins, such as phospholipase C-γ, Ras GTP-ase activating protein, and GRB2 (Lowenstein, E.J. et al. (1992) Cell 70:431-442).

While much is known about key events in the activation of signaling pathways, less is known about how they are switched off. Severeal SH2-containing proteins have been identified that are induced in murine lymphoid cells by various cytokines, including IL-2, IL-3, IL-6, Interferon-γ, and EPO (Yoshimura, A. et al. (1995) EMBO Journal 14:2816-2826; Starr. R. et al. (1997) Nature 387: 917-921; and Naka, T. et al. (1997) 10 Nature 387: 924-929). A common property of these proteins is the ability to suppress growth and differentiation in murine cells. The induction of these SH2-containing proteins in cytokine stimulated cells suggests that they may function as negative regulators of cytokine signaling. Transcription of the genes encoding four of these proteins, CIS (cytokine-inducible SH2-containing protein), and SOCS-1, -2, and -3 (suppressor of 15 cytokine signaling), is induced by IL-6 both in vitro and in vivo (Starr et al., supra).

The four proteins share little sequence homology in their N-terminal regions, but all contain a central SH2 domain and a conserved C-terminal region designated the "SOCS box". The function of the SOCS box is unknown. However, a conserved core triplet sequence (K/R) (D/E) (Y/F) within the SOCS box is similar to the tyrosine 20 phosphorylation site recognized by the JAK kinase family. This similarity suggests that the SOCS box may provide a site for interaction with, and inhibition of, JAK kinases. The finding that SOCS-1 interacts with the catalytic region of JAK kinases supports this hypothesis (Endo, T. A. et al. (1997) Nature 387: 921-24). Constitutive expression of SOCS-1 in M1 murine lymphoid cells also inhibits the phosphorylation of certain cell 25 signaling components (gp130 and Stat3) in response to IL-6 (Starr et al., supra). CIS binds to tyrosine-phosphorylated residues in the beta-chain of the IL-3 and EPO receptors and provides another possible mechanism for suppressing cell signaling by preventing the binding of other signaling proteins (Yoshimura et al., supra).

Recently, sixteen additional proteins have been identified containing the SOCS box domain (Hilton, D.J. et al. (1998) Proc. Natl. Acad. Sci. USA 95:114-119). Like the SH2containing proteins described above, each of the proteins contains a C-terminal SOCS box

WO 99/61614 PCT/US99/11497

and a distinctive motif N-terminal of the SOCS box. In addition to four new SOCS proteins containing the SH2 domain, three additional classes of SOCS proteins were found containing WD-40 repeats (WSB-1 and -2), SPRY domains (SSB-1 to -3), or ankyrin repeats (ASB-1 to -3). A class of small GTPases (Rar proteins) that contain the SOCS box were also identified. The function of WSB, SSB, and ASB proteins are as yet unknown. However, like SH2 domains, WD-40 repeats, ankyrin repeats, and SPRY domains have been implicated in protein-protein interactions (Hilton et al. supra).

Defects or alterations in the activity of signaling proteins such as CIS may play a role in the development of various proliferative disorders and diseases such as cancer.

Loss or rearrangement of the putative human gene encoding CIS is associated with the development of renal cell carcinomas and lung cancer (Yoshimura et al., supra). This association suggests that CIS may function as a tumor suppressor gene.

The discovery of new human SOCS proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cancer, immune and neurological disorders, and infectious diseases.

SUMMARY OF THE INVENTION

The invention features substantially purified polypeptides, human SOCS proteins, referred to collectively as "HSCOP" and individually as "HSOCP-1", "HSOCP-2", and "HSOCP-3", HSOCP-4", HSOCP-5", HSOCP-6", HSOCP-7", HSOCP-8", and HSOCP-9". In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and fragments thereof.

The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-9, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least

90% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which 5 hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of 10 SEQ ID NO:1-9, and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and fragments thereof to 15 at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, and fragments thereof. 25 The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, and fragments thereof.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence 30 selected from the group consisting of SEQ ID NO:1-9, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

25

WO 99/61614 PCT/US99/11497

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-9, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of HSCOP, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of HSCOP, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding HSCOP.

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods and algorithms used for identification of HSCOP.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence

PCT/US99/11497

as determined by northern analysis, diseases, disorders, or conditions associated with these tissues, and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding HSCOP were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze HSCOP, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein 25 are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"HSCOP" refers to the amino acid sequences of substantially purified HSCOP obtained from any species, particularly a mammalian species, including bovine, ovine,

-6-

15

20

30

porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which, when bound to HSCOP, increases or prolongs the duration of the effect of HSCOP. Agonists may include proteins, nucleic 5 acids, carbohydrates, or any other molecules which bind to and modulate the effect of HSCOP.

An "allelic variant" is an alternative form of the gene encoding HSCOP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be 10 altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding HSCOP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as HSCOP or a polypeptide with at least one functional characteristic of HSCOP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding 20 HSCOP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HSCOP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HSCOP. Deliberate amino acid substitutions may be made on the 25 basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HSCOP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

WO 99/61614 PCT/US99/11497

The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments." or "antigenic fragments" refer to fragments of HSCOP which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of HSCOP. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which, when bound to HSCOP,

decreases the amount or the duration of the effect of the biological or immunological activity of HSCOP. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of HSCOP.

The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant.

20 Antibodies that bind HSCOP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete

15

WO 99/61614 PCT/US99/11497

with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence.

Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic HSCOP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HSCOP or fragments of HSCOP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and

other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW Fragment Assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

The term "correlates with expression of a polynucleotide" indicates that the

detection of the presence of nucleic acids, the same or related to a nucleic acid sequence
encoding HSCOP, by northern analysis is indicative of the presence of nucleic acids
encoding HSCOP in a sample, and thereby correlates with expression of the transcript
from the polynucleotide encoding HSCOP.

A "deletion" refers to a change in the amino acid or nucleotide sequence that
results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under

WO 99/61614 PCT/US99/11497

conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" and "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. 10 Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI) which creates alignments between two or more sequences according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned 15 pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to any process by which a strand of nucleic acid binds with

WO 99/61614 PCT/US99/11497

a complementary strand through base pairing.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., $C_0 t$ or $R_0 t$ analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" or "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

The terms "element" or "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term "modulate" refers to a change in the activity of HSCOP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HSCOP.

The phrases "nucleic acid" or "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide.

The terms "operably associated" or "operably linked" refer to functionally related

nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide.

While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding HSCOP, or fragments thereof, or HSCOP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" or "specifically binding" refer to that interaction

between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction
is dependent upon the presence of a particular structure of the protein, e.g., the antigenic
determinant or epitope, recognized by the binding molecule. For example, if an antibody
is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the
presence of free unlabeled A, in a reaction containing free labeled A and the antibody will
reduce the amount of labeled A that binds to the antibody.

The term "stringent conditions" refers to conditions which permit hybridization

between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of HSCOP polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous

WO 99/61614 PCT/US99/11497

minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to HSCOP. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

THE INVENTION

25

The invention is based on the discovery of new human SOCS proteins (HSCOP), the polynucleotides encoding HSCOP, and the use of these compositions for the diagnosis, treatment, or prevention of cancer, immune and neurological disorders, and infectious diseases.

Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding HSCOP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each HSCOP were identified, and column 4 shows the cDNA libraries from which these clones were isolated. 30 Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. The clones in

20

WO 99/61614 PCT/US99/11497

column 5 were used to assemble the consensus nucleotide sequence of each HSCOP and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino 5 acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites: column 5, the amino acid residues comprising signature sequences and motifs; column 6, homologous sequences; and column 7, analytical methods used to identify each protein through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or 10 conditions associated with nucleotide sequences encoding HSCOP. The first column of Table 3 lists the nucleotide SEQ ID NOs. Column 2 lists tissue categories which express HSCOP as a fraction of total tissue categories expressing HSCOP. Column 3 lists diseases, disorders, or conditions associated with those tissues expressing HSCOP. Column 4 lists the vectors used to subclone the cDNA library.

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding HSCOP were isolated. Column 1 references the nucleotide SEQ ID NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

The following fragments of the nucleotide sequences encoding HSCOP are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:10-18 and to distinguish between SEQ ID NO:10-18 and related polynucleotide sequences. Useful fragments include the fragment of SEQ ID NO:10 from about nucleotide 243 to about nucleotide 317; the fragment of SEQ ID NO:11 from about nucleotide 834 to about nucleotide 911; the fragment of SEQ ID NO:12 from about nucleotide 233 to about nucleotide 298; the fragment of SEQ ID NO:13 from about nucleotide 242 to about nucleotide 307; the fragment of SEQ ID NO:14 from about nucleotide 447 to about nucleotide 524; the fragment of SEQ ID NO:15 from about nucleotide 287 to about nucleotide 364; the fragment of SEQ ID NO:16 from about nucleotide 100 to about nucleotide 138; the fragments of SEQ ID NO:17 from about nucleotide 433 to about nucleotide 477 and from about nucleotide 1189 to about nucleotide 1233; and the fragment

of SEQ ID NO:18 from about nucleotide 973 to about nucleotide 1017. Polypeptides encoded by these fragments are useful, for example, as immunogenic peptides.

The invention also encompasses HSCOP variants. A preferred HSCOP variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the HSCOP amino acid sequence, and which contains at least one functional or structural characteristic of HSCOP.

The invention also encompasses polynucleotides which encode HSCOP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:10-18, which encodes HSCOP.

The invention also encompasses a variant of a polynucleotide sequence encoding HSCOP. In particular, such a variant polynucleotide sequence will have at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HSCOP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:10-18 which has at least about 70%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:10-18. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HSCOP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HSCOP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HSCOP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode HSCOP and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring

HSCOP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HSCOP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HSCOP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode HSCOP and HSCOP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HSCOP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:10-18 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art.

Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 μg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 μg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the Hamilton MICROLAB 2200 (Hamilton, Reno NV), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800

(Perkin-Elmer). Sequencing is then carried out using the ABI 373 or 377 DNA sequencing systems (Perkin-Elmer), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding HSCOP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a 15 circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries 25 (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have

15

PCT/US99/11497

been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HSCOP may be cloned in recombinant DNA molecules that direct expression of HSCOP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HSCOP.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HSOCH-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR 25 reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding HSCOP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res.

WO 99/61614 PCT/US99/11497

Symp. Ser. 225-232.) Alternatively, HSCOP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HSCOP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g, Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol.

182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)

In order to express a biologically active HSCOP, the nucleotide sequences encoding HSCOP or derivatives thereof may be inserted into an appropriate expression 15 vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HSCOP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HSCOP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HSCOP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct

WO 99/61614 PCT/US99/11497

expression vectors containing sequences encoding HSCOP and appropriate transcriptional and translational control elements. These methods include <u>in vitro</u> recombinant DNA techniques, synthetic techniques, and <u>in vivo</u> genetic recombination. (See, e.g., Sambrook, J. et al. (1989) <u>Molecular Cloning</u>, <u>A Laboratory Manual</u>, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) <u>Current Protocols in</u> Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding HSCOP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HSCOP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HSCOP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (Life Technologies).

Ligation of sequences encoding HSCOP into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M.

Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HSCOP are needed, e.g. for the production of antibodies, vectors which direct high level expression of

Yeast expression systems may be used for production of HSCOP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast <u>Saccharomyces cerevisiae</u> or <u>Pichia pastoris</u>.

HSCOP may be used. For example, vectors containing the strong, inducible T5 or T7

bacteriophage promoter may be used.

15

WO 99/61614 PCT/US99/11497

In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of HSCOP. Transcription of sequences encoding HSCOP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, 10 G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HSCOP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HSCOP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of HSCOP in cell lines is preferred. For example, sequences encoding HSCOP can be transformed into cell lines using expression vectors which may contain viral origins

PCT/US99/11497 WO 99/61614

of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk or apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides, neomycin and G-418; and als or pat confer resistance to 15 chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers. e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ß glucuronidase and its substrate ß-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HSCOP is inserted within a marker gene sequence, transformed cells containing sequences encoding HSCOP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a 30 sequence encoding HSCOP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the

tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding HSCOP and that express HSCOP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of HSCOP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HSCOP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St Paul MN, Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ).

the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HSCOP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HSCOP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors,

WO 99/61614 PCT/US99/11497

inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding HSCOP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art. expression vectors containing polynucleotides which encode HSCOP may be designed to contain signal sequences which direct secretion of HSCOP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression

of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Bethesda MD) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HSCOP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HSCOP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HSCOP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx. CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using

WO 99/61614 PCT/US99/11497

commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HSCOP encoding sequence and the heterologous protein sequence, so that HSCOP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled HSCOP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems 10 (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably 35S-methionine.

Fragments of HSCOP may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton. supra. pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of HSCOP may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HSCOP and human SOCS proteins. In addition, the expression of HSCOP is closely associated with cancer, inflammation and the immune response, and neurological tissues. Therefore, HSCOP appears to play a role in cancer, immune and neurological disorders, and infectious diseases. In the treatment of diseases or disorders 25 associated with increased HSCOP expression or activity, it is desirable to decrease the expression or activity of HSCOP. In the treatment of the above conditions associated with decreased HSCOP expression or activity, it is desirable to increase the expression or activity of HSCOP.

Therefore, in one embodiment, HSCOP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSCOP. Examples of such disorders include, but are not limited

to, a cancer such as adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, 10 emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis. Goodpasture's syndrome, gout, Graves' disease. Hashimoto's thyroiditis. hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, 15 rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a neurological disorder such as akathesia. Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder; and an infectious disease such a viral infection, 25 e.g., those caused by adenoviruses (acute respiratory disease, pneumonia), arenaviruses (lymphocytic choriomeningitis), bunyaviruses (Hantavirus), coronaviruses (pneumonia, chronic bronchitis), hepadnaviruses (hepatitis), herpesviruses (herpes simplex virus, varicella-zoster virus, Epstein-Barr virus, cytomegalovirus), flaviviruses (yellow fever), orthomyxoviruses (influenza), papillomaviruses (cancer), paramyxoviruses (measles, mumps), picornoviruses (rhinovirus, poliovirus, coxsackie-virus), polyomaviruses (BK

virus, JC virus), poxviruses (smallpox), reovirus (Colorado tick fever), retroviruses

25

(human immunodeficiency virus, human T lymphotropic virus), rhabdoviruses (rabies), rotaviruses (gastroenteritis), and togaviruses (encephalitis, rubella), and bacterial, fungal, parasitic, protozoal, and helminthic infections.

In another embodiment, a vector capable of expressing HSCOP or a fragment or

derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSCOP including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified HSCOP in conjunction with a suitable pharmaceutical carrier may be
administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSCOP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of HSCOP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSCOP including, but not limited to, those listed above.

In a further embodiment, an antagonist of HSCOP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HSCOP. Examples of such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds HSCOP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express HSCOP.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding HSCOP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HSCOP including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower

dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of HSCOP may be produced using methods which are generally known in the art. In particular, purified HSCOP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HSCOP. Antibodies to HSCOP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HSCOP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and 15 surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HSCOP have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HSCOP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to HSCOP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. 30 (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda. S. et al. (1985) Nature 314:452-454.)

Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HSOCH-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D.R. (1991) Proc. Natl. Acad. Sci. 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989)

Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for HSCOP may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HSCOP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HSCOP epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with

radioimmunoassay techniques may be used to assess the affinity of antibodies for HSCOP. Affinity is expressed as an association constant, Ka, which is defined as the molar concentration of HSOCH-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HSCOP epitopes, represents the average affinity, or avidity, of the antibodies for HSCOP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular HSCOP epitope, represents a true measure of affinity. Highaffinity antibody preparations with K_a ranging from about 10^9 to $10^{12}\,L/mole$ are preferred 10 for use in immunoassays in which the HSOCH-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10⁶ to 10⁷ L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HSCOP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, 15 DC; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of HSOCH-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding HSCOP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HSCOP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HSCOP. Thus, complementary molecules or fragments may be used to modulate HSCOP activity, or to achieve regulation of gene function. Such technology is now well known in the art,

and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HSCOP.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HSCOP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding HSCOP can be turned off by transforming a cell or tissue with
expression vectors which express high levels of a polynucleotide, or fragment thereof,
encoding HSCOP. Such constructs may be used to introduce untranslatable sense or
antisense sequences into a cell. Even in the absence of integration into the DNA, such
vectors may continue to transcribe RNA molecules until they are disabled by endogenous
nucleases. Transient expression may last for a month or more with a non-replicating
vector, and may last even longer if appropriate replication elements are part of the vector
system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HSCOP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific

30

PCT/US99/11497 WO 99/61614

hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HSCOP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites. including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may 10 render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HSCOP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that 20 synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather 25 than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be

introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nature Biotechnology 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HSCOP, antibodies to HSCOP, and mimetics, agonists, antagonists, or inhibitors of HSCOP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, tale, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be

formulated in aqueous solutions, preferably in physiologically compatible buffers such as
Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection
suspensions may contain substances which increase the viscosity of the suspension, such
as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the
active compounds may be prepared as appropriate oily injection suspensions. Suitable

lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid
esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino

WO 99/61614

polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HSCOP, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for

WO 99/61614 PCT/US99/11497

example HSCOP or fragments thereof, antibodies of HSCOP, and agonists, antagonists or inhibitors of HSCOP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED $_{50}$ (the dose therapeutically effective in 50% of the population) or LD $_{50}$ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the LD $_{50}$ /ED $_{50}$ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED $_{50}$ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about $0.1~\mu g$ to $100,000~\mu g$, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind HSCOP may be used for the diagnosis of disorders characterized by expression of HSCOP, or in assays to monitor patients being treated with HSCOP or agonists, antagonists, or inhibitors of

HSCOP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HSCOP include methods which utilize the antibody and a label to detect HSCOP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring HSCOP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HSCOP expression. Normal or standard values for HSCOP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HSCOP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of HSCOP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding HSCOP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of HSCOP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HSCOP, and to monitor regulation of HSCOP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting
polynucleotide sequences, including genomic sequences, encoding HSCOP or closely
related molecules may be used to identify nucleic acid sequences which encode HSCOP.
The specificity of the probe, whether it is made from a highly specific region, e.g., the 5'
regulatory region, or from a less specific region, e.g., a conserved motif, and the
stringency of the hybridization or amplification (maximal, high, intermediate, or low), will
determine whether the probe identifies only naturally occurring sequences encoding
HSCOP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the HSCOP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:10-18 or from genomic sequences including promoters, enhancers, and introns of the HSCOP gene.

Means for producing specific hybridization probes for DNAs encoding HSCOP include the cloning of polynucleotide sequences encoding HSCOP or HSCOP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding HSCOP may be used for the diagnosis of disorders associated with expression of HSCOP. Examples of such disorders include, but are not limited to, a cancer such as adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, 25 diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout. Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, 30 polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis.

thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a neurological disorder such as akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, 5 catatonia, cerebral neoplasms, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder; and an infectious disease such a viral infection, e.g., those caused by adenoviruses (acute 10 respiratory disease, pneumonia), arenaviruses (lymphocytic choriomeningitis). bunyaviruses (Hantavirus), coronaviruses (pneumonia, chronic bronchitis), hepadnaviruses (hepatitis), herpesviruses (herpes simplex virus, varicella-zoster virus, Epstein-Barr virus, cytomegalovirus), flaviviruses (yellow fever), orthomyxoviruses (influenza), papillomaviruses (cancer), paramyxoviruses (measles, mumps), picornoviruses 15 (rhinovirus, poliovirus, coxsackie-virus), polyomaviruses (BK virus, JC virus), poxviruses (smallpox), reovirus (Colorado tick fever), retroviruses (human immunodeficiency virus, human T lymphotropic virus), rhabdoviruses (rabies), rotaviruses (gastroenteritis), and togaviruses (encephalitis, rubella), and bacterial, fungal, parasitic, protozoal, and helminthic infections. The polynucleotide sequences encoding HSCOP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HSCOP expression. Such

In a particular aspect, the nucleotide sequences encoding HSCOP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HSCOP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HSCOP in the sample

qualitative or quantitative methods are well known in the art.

indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with

sexpression of HSCOP, a normal or standard profile for expression is established. This
may be accomplished by combining body fluids or cell extracts taken from normal
subjects, either animal or human, with a sequence, or a fragment thereof, encoding
HSCOP, under conditions suitable for hybridization or amplification. Standard
hybridization may be quantified by comparing the values obtained from normal subjects
with values from an experiment in which a known amount of a substantially purified
polynucleotide is used. Standard values obtained in this manner may be compared with
values obtained from samples from patients who are symptomatic for a disorder.
Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated,
hybridization assays may be repeated on a regular basis to determine if the level of
expression in the patient begins to approximate that which is observed in the normal
subject. The results obtained from successive assays may be used to show the efficacy of
treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding HSCOP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced <u>in vitro</u>. Oligomers will preferably contain a fragment of a polynucleotide encoding HSCOP, or a fragment of a polynucleotide complementary to the polynucleotide encoding HSCOP, and will be employed under optimized conditions for identification of a specific gene or condition.

Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

Methods which may also be used to quantify the expression of HSCOP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and 5 interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application 20 WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding HSCOP may be used to generate hybridization probes useful in mapping the naturally occurring 25 genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355; Price, C.M. (1993) Blood 30 Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical

chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding HSCOP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping
techniques, such as linkage analysis using established chromosomal markers, may be used
for extending genetic maps. Often the placement of a gene on the chromosome of another
mammalian species, such as mouse, may reveal associated markers even if the number or
arm of a particular human chromosome is not known. New sequences can be assigned to
chromosomal arms by physical mapping. This provides valuable information to
investigators searching for disease genes using positional cloning or other gene discovery
techniques. Once the disease or syndrome has been crudely localized by genetic linkage to
a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences
mapping to that area may represent associated or regulatory genes for further investigation.
(See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the
subject invention may also be used to detect differences in the chromosomal location due
to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, HSCOP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HSCOP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted

30

with HSCOP, or fragments thereof, and washed. Bound HSCOP is then detected by methods well known in the art. Purified HSCOP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HSCOP specifically compete with a test compound for binding HSCOP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HSCOP.

In additional embodiments, the nucleotide sequences which encode HSCOP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any was whatsoever.

The entire disclosure of all applications, patents, and publications, cited above and below, and of US provisional applications 60/087,104 (filed May 28, 1998), and 09/216,006 (filed December 17, 1998) are hereby incorporated by reference.

EXAMPLES

I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4.

Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others

were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as

TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine
isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted
with chloroform. RNA was precipitated from the lysates with either isopropanol or
sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+)

WO 99/61614 PCT/US99/11497

RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column 15 chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, 20 XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids were recovered from host cells by <u>in vivo</u> excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the REAL Prep 96 plasmid kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell

lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes. Eugene OR) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

Sequencing and Analysis 5 III.

cDNA sequencing reactions were processed using standard methods or highthroughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer 10 system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI 15 PRISM 373 or 377 sequencing systems (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column 25 provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS 30 PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR).

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation, using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred. Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families.

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:10-18. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

(See, e.g., Eddy, S.R. (1996) Curr. Opin. Str. Biol. 6:361-365.)

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, <u>supra</u>, ch. 7; Ausubel, 1995, <u>supra</u>, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

% sequence identity x % maximum BLAST score

100

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match 5 will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HSCOP occurred. Analysis involved the 10 categorization of cDNA libraries by organ/tissue and disease, disorder, or condition. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/disorder/condition categories included cancer, inflammation/trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries 15 expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease-, disorder-, or condition-specific expression are reported in Table 3.

V. **Extension of HSCOP Encoding Polynucleotides**

The full length nucleic acid sequences of SEQ ID NO:10-18 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National 25 Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed. High fidelity amplification was obtained by PCR using methods well known in the

art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3. and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing $100~\mu l$ PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to $10~\mu l$ aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA

polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:10-18 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:10-18 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-theart software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba1, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography and compared.

WO 99/61614 PCT/US99/11497

VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, <u>supra.</u>) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the HSOCH-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HSCOP.

Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HSCOP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HSOCH-encoding

transcript.

IX. Expression of HSCOP

Expression and purification of HSCOP is achieved using bacterial or virus-based expression systems. For expression of HSCOP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express HSCOP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of HSCOP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HSCOP by either homologous 15 recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. 20 K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, HSCOP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HSCOP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on

metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch 10 and 16). Purified HSCOP obtained by these methods can be used directly in the following activity assay.

Demonstration of HSCOP Activity X.

HSCOP activity is demonstrated by the inhibition of differentiation in murine M1 cells transfected with the gene expressing HSCOP and induced to differentiate by treatment with IL-6 (Starr et al., supra). Differentiation is measured in the parent M1 cell line and in M1 cells transfected with HSCOP by the appearance of differentiated colonies arising from cells grown in semi-soft agar culture. The percent inhibition of 10 differentiation in M1 transfected cells compared to the parent M1 cell line is proportional to the activity of HSCOP in the former cells.

XI. **Functional Assays**

HSCOP function is assessed by expressing the sequences encoding HSCOP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned 15 into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or 20 electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), 25 an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity 30 as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in

PCT/US99/11497 WO 99/61614

expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York 5 NY.

The influence of HSCOP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HSCOP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells 10 are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HSCOP and other genes of interest can be analyzed by northern analysis or microarray techniques.

Production of HSCOP Specific Antibodies 15 **XII**.

HSCOP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the HSCOP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 25 1995, supra, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are 30 immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic,

WO 99/61614 PCT/US99/11497

blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radioiodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring HSCOP Using Specific Antibodies

Naturally occurring or recombinant HSCOP is substantially purified by immunoaffinity chromatography using antibodies specific for HSCOP. An immunoaffinity column is constructed by covalently coupling anti-HSOCH antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing HSCOP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HSCOP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HSOCH binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HSCOP is collected.

15 XIV. Identification of Molecules Which Interact with HSCOP

HSCOP, or biologically active fragments thereof, are labeled with ¹²⁵I

Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HSCOP, washed, and any wells with labeled HSCOP complex are assayed. Data obtained using different concentrations of HSCOP are used to calculate values for the number, affinity, and association of HSCOP with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Protein	Nucleotide	Clone ID	Library	Fragments
35½ 1D NO:	10	10	PITUNOT03	1758450H1 (PITUNOT03), 2522888H1 (BRAITUT21), 2638457T6 (BONTNOT01), 4177041H1 (BRAINOT22), 983327R6 (TONGTUT01)
3	11	1834242	BRAINON01	1834242H1 (BRAINONO1), 2729019F6 (OVARTUTO5), 1834242X14R1 (BRAINONO1), 1834242X13R1 (BRAINONO1), 782734R1 (MYOMNOTO1), 1421816F1 (KIDNNOTO9), 1266788T1 (BRAINOTO9), 1266937F1 (BRAINOTO9), 1757409H1 (PITUNOTO3)
3	12	1849725	LUNGFET03	1849725H1 (LUNGFET03), 158419R1 (ADENINBO1), 1611584F6 (COLNTUT06), SNBA01842F1
Ť	13	2547840	LUNGTUT06	2547840H1 (LUNGTUT06), 2109531H1 (BRAITUT03), 1282090F6 (COLNNOT16), 2953401H1 (KIDNFET01), 1378436F1 (LUNGNOT10), 1282090T6 (COLNNOT16), 2014223H1 (TESTNOT03)
S.	14	3071986	UTRSNOR01	3071986H1 (UTRSNOR01), 2860082H1 (SININOT03), 265704H1. (HNT2AGT01), 1476725F1 (CORPNOT02), 1605966F6 (LUNGNOT15), 1512163F1 (LUNGNOT14), 1235056T1 (LUNGFET03), 1502645F1 (BRAITUT07)
٥	15	3484619	KIDNNOT31	3484619H1 (KIDNNOT31), 2631528H1 (COLNTUT15), 1319593F1 (BLADNOT04), 2849278F6 (BRSTTUT13), 4024760H1 (BRAXNOT02), 2738625F6 (OVARNOT09)

Table 1 cont.

		ınd	
Fragments	841412R1 (PROSTUTO5), 1275743H1 (TESTTUTO2), 2571403R6 (HIPOAZT01), 3319512F6 (PROSBPT03), 3964671X314D1 (PROSNOT14)	585432X15 (PROSNOT02), 1271329T6 (TESTTUT02), 1579164F1 (DUODNOT01), 1722533F6 and 1722533H1 (BLADNOT06), 2635492F6 (BONTNOT01), 2880628H1 and 2882159F6 (UTRSTUT05), 3203865H1 (PENCNOT02), 4852494H1 (TESTNOT10)	034803H1 (THPINOB01), 161745R6 (ADENINB01), 595902H1 (BRAVUNT02), 626174R6 (PGANNOT01), 953742R1 (SCORNON01), 1759763H1 (PITUNOT03), 2138314F6 (ENDCNOT01), 2532454T6 (GBLANOT02), 3053743H1 (LNODNOT08)
Library	TESTTUT02	BLADNOT06	PITUNOT03
Clone ID	1275743	1722533	1759763
Nucleotide SEO ID NO:	16	17	18
Protein	7	ω	6

Table 2

Analytical Methods	BLAST HMM PFAM	BLAST HWM PFAM PRINTS MOTIFS	НММ	НММ	BLAST HMM PFAM PRINTS MOTIFS
Homologous Sequence	Ankyrin protein	WSB-2	SOCS-containing protein	SOCS-containing protein	WSB-1
Signature Sequence	Ankyrin Repeats: T53-N80 N86-N112 R118-N145 N151-R178 SOCS box: P247-E288	WD-40 repeats: L168-D201 L212-S244 L254-D286 SOCS box: L385-F423	SOCS box: V307-F347	SOCS box: A274-V316	WD-40 repeats: L166-D199 L210-N242 L252-D284 SOCS box: V384-I421
Potential glycosylation sites	N48 N86 N223	N94 N167		N111	N37 N77 N80
Potential Phosphorylation Sites	S17 S64 T201 S206 S279 S19 T53 T249	S22 S44 S92 S101 T299 T329 T4 S15 S91 S101 S126 T196 S244 S314 S387 T419 Y420	S34 S57 S80 S125	\$126 \$44 \$46 \$48 \$69 \$171 \$340 \$211 \$264 \$322 \$340 \$102	T18 S118 S328 T57 S83 T159 T194 T380 S394 S418 Y419
Amino Acid Residues	288	423	349	355	421
Protein Seq ID NO:		2	8	4	w

Table 2 cont.

Protein Seg ID NO:	Amino Acid Residues	Potential Phosphorylation	Potential glycosylation sites	Signature Sequence	Homologous Sequence	Analytical Methods
	278	S219 T254 Y277		Ankyrin repeats: \$52-D79 G85-N112 T117-E144 F150-N177 H182-Y209 SOCS box: P239-N278	Ankyrin protein	BLAST HMM PFAM
	281	S33 T151 S166 S191 T97 T217 S256 S262	N272	Ras family domain: K16-C278 prenyl group binding site: C278-S281 SOCS box: V189-H237	Rar protein or Ras-like GTPase	BLAST, BLOCKS PRINTS, MOTIFS, PFAM, HMM
	635	S413 S24 S26 S38 T47 T169 S247 T333 S545 S579 S6 T57 T180 S201 S345 T360 S390 S522 Y210	N202 N304 N331	Ankyrin repeats: E137-R364 S368-A400 R410-A472 SOCS box: P593-Q635	Ankyrin protein	BLAST PFAM HMM
6	518		N106 N139	Ankyrin repeats: D9-M74 E78-S143 C145-N243 N279-C311 GTP-binding: L300-S317 SOCS box: V459-M506	Ankyrin protein	BLAST PFAM HMM BLOCKS

Table 3

	n	Disease. Disorder or Condition	
Polynucleotide SEO ID NO:	Tissue Expression (Fraction of Total)	(Fraction of Total)	Vector
10	Reproductive (0.269) Cardiovascular (0.154) Developmental (0.115)	Cancer (0.346) Inflammation (0.269) Cell proliferation (0.192)	psport1
11	Nervous (0.244) Reproductive (0.233) Hematopoietic/Immune (0.144)	Cancer (0.389) Cell proliferation (0.256) Inflammation (0.256)	psport1
12	Gastrointestinal (0.250) Hematopoietic/Immune (0.250) Reproductive (0.250)	Inflammation (0.417) Cancer (0.250) Cell proliferation (0.250)	pincy
13	Reproductive (0.218) Hematopoietic/Immune (0.179) Nervous (0.141)	Cancer (0.449) Inflammation (0.269) Cell proliferation (0.205)	pincy
14	Reproductive (0.222) Cardiovascular (0.167) Hematopoietic/Immune (0.148)	Cancer (0.454) Inflammation (0.324) Cell proliferation (0.185)	pincy
15	Reproductive (0.400) Gastrointestinal (0.200) Nervous (0.200)	Cancer (0.667) Inflammation (0.133) Neurological (0.067)	pincy

Table 3 cont.

		in the condition	
ide	Tissue Expression	Disease, Disorder of Condition (Fraction of Total)	Vector
SEQ 1D NO:			TNCV
16	Reproductive (0.400) Nervous (0.360)	Cancer (0.680) Inflammation (0.120) Neurological (0.120)	T NIC
	Calation		AUNT
17	Reproductive (0.438) Gastrointestinal (0.156)	Cancer (0.438) Inflammation (0.250) Cell proliferation (0.156)	I ONIT C
	רמומוסעמטתותו		¬cp∩p#1
18	Nervous (0.286) Cardiovascular (0.163)	Cancer (0.327) Cell proliferation (0.265) Inflammation (0.224)	1
	Hemacoporecic/ minimize (5:2:2)		

Table 4

Polynucleotide	Library	Library Description
SEQ ID NO:	PITUNOT03	The library was constructed using RNA isolated from pituitary tissue of a 46-year-old Caucasian male who died from colon cancer. Patient history included
11	BRAINON01	arthritis and peptic ures discuss. This normalized brain library was constructed from 4.88 million independent clones from the BRAINOTO3 library. Starting RNA was made from nontumorous brain clones from the BRAINOTO3 library. Starting RNA was made from journal of the starting cranioplasty and
		tissue removed from a 20 feet of the state of the associated tumor excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma. The patient presented with tissue indicated a grade 4 oligoastrocytoma. The patient history epilepsy, prosis of the eyelid, hemiplegia and migraine. Patient history epilepsy, prosis of the eyelid, hemiplegia and migraine. The normalization and
		included radiation conditions were adapted from Soares et al., PNAS (1994) 91:9928, hybridization conditions were adapted from Soares et al., PNAS (1994) 91:9928, using a significantly longer (48-hour) reannealing hybridization period.
12	LUNGFET03	The library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus who died at 20 weeks' gestation. Family history included bronchitis in the mother during the first trimester.
13	LUNGTUT06	ing tumor ti al lung res it history i n test, pel
		benign hypertension, nonspecting antibody E from a previous transfusion. Family soft tissue tumor, and acquired antibody E from a previous cancer, and history included tuberculosis, benign hypertension, lung cancer, and atherosclerotic coronary artery disease.

Table 4 cont.

	Variation	Library Description
SEQ ID NO:	7-5-2-1	from nonfumorous uterine endometrium
14	UTRSNOR01	The library was constructed using RNA isolated from incrementary as a 29-year-old Caucasian female during a vaginal hysterectomy and tissue removed from a 29-year-old Caucasian female during a vaginal hysterectory cystocele repair. Pathology indicated the endometrium was secretory, and the cervix showed mild chronic cervicitis with focal squamous metaplasia. Pathology for the associated tumor tissue indicated intramural uterine leiomyoma. Patient history included benign included hypothyroidism and pelvic floor relaxation. Family history included benign included hypothyroidism and hyperlipidemia.
		hypertension, Type if didney markers.
15	KIDNNOT31	The library was constructed using KNA isolated item testionlar tumor removed from a
16	TESTTUT02	The library was constructed using RNA isolated library was constructed using unilateral orchiectomy. Pathology indicated
		embryonal carcinoma.
17	BLADNOT06	The library was constructed using RNA isolated itom constructions, radical removed from a 66-year-old Caucasian male during a radical prostatectomy tissue indicated cystectomy and urinary diversion. Pathology for the associated tumor tissue indicated cystectomy and urinary diversion. Pathology for the associated tumor tissue indicated cystectomy and urinary diversion on the anterior wall of the bladder and
		urothelium. Patient history included lung neoplasm, and tobacco abuse in remiscration urothelium. Patient history included a malignant breast neoplasm, tuberculosis, cerebrovascular Family history included a malignant breast neoplasm, and lung cancer.
	COMO	disease, accountable of a 46-year-old
18	FLTONOTOS	Caucasian male who died from colon cancer.

Table 5

Description A program that removes vector sequences and masks
A program that removes vector sequences ambiguous bases in nucleic acid sequences. A Fast Data Finder useful in comparing and annotating
amino acid or nucleic acid sequences. A program that assembles nucleic acid sequences.
A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx,
tblastn, and tblastx. A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, fastx, and ssearch.
A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.
An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.

Table 5 (cont.)

		Reference	Parameter Threshold
Program ProfileScan	Description An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Normalized quality score>GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186- 194.	
Phrap - 67-	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Score=3.5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. <u>supra;</u> Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

- 1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and fragments thereof.
- 5 2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.
 - 3. An isolated and purified polynucleotide encoding the polypeptide of claim1.
- 4. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 3.
 - 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
 - 6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.
- 7. A method for detecting a polynucleotide, the method comprising the steps of:
 - (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in a sample, thereby forming a hybridization complex; and
- (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.
 - 8. The method of claim 7 further comprising amplifying the polynucleotide prior to hybridization.
- 9. An isolated and purified polynucleotide comprising a polynucleotide
 25 sequence selected from the group consisting of SEQ ID NO:10-18, and fragments thereof.
 - 10. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 9.
 - 11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.
- 30 12. An expression vector comprising at least a fragment of the polynucleotide of claim 3.

- 13. A host cell comprising the expression vector of claim 12.
- 14. A method for producing a polypeptide, the method comprising the steps of:
- a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
- 15. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction with a suitable pharmaceutical carrier.
 - 16. A purified antibody which specifically binds to the polypeptide of claim 1.
 - 17. A purified agonist of the polypeptide of claim 1.
- 18. A purified antagonist of the polypeptide of claim 1.
 - 19. A method for treating or preventing a disorder associated with decreased expression or activity of HSCOP, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 15.
- 20. A method for treating or preventing a disorder associated with increased expression or activity of HSCOP, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC. LAL, Preeti HILLMAN, Jennifer L. GORGONE, Gina CORLEY, Neil C. PATTERSON, Chandra YUE, Henry TANG, Y. Tom AZIMZAI, Yalda

<120> HUMAN SOCS PROTEINS

<130> PF-0525 PCT

<140> To Be Assigned

<141> Herewith

<150> 60/087,104; 09/216,006 <151> 1998-05-28; 1998-12-17

<160> 18

<170> PERL Program

<210> 1 <211> 288

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1758450

Met Ser Ser Ser Met Trp Tyr Ile Met Gln Ser Ile Gln Ser Lys 10 Tyr Ser Leu Ser Glu Arg Leu Ile Arg Thr Ile Ala Ala Ile Arg 25 20 Ser Phe Pro His Asp Asn Val Glu Asp Leu Ile Arg Gly Gly Ala 35 Asp Val Asn Cys Thr His Gly Thr Leu Lys Pro Leu His Cys Ala 55

50 Cys Met Val Ser Asp Ala Asp Cys Val Glu Leu Leu Glu Lys 70 65

Gly Ala Glu Val Asn Ala Leu Asp Gly Tyr Asn Arg Thr Ala Leu 80

His Tyr Ala Ala Glu Lys Asp Glu Ala Cys Val Glu Val Leu Leu 100

95 Glu Tyr Gly Ala Asn Pro Asn Ala Leu Asp Gly Asn Arg Asp Thr 115 110

Pro Leu His Trp Ala Ala Phe Lys Asn Asn Ala Glu Cys Val Arg 130 125

Ala Leu Leu Glu Ser Gly Ala Ser Val Asn Ala Leu Asp Tyr Asn 145 140

```
Asn Asp Thr Pro Leu Ser Trp Ala Ala Met Lys Gly Asn Leu Glu
                                   160
Ser Val Ser Ile Leu Leu Asp Tyr Gly Ala Glu Val Arg Val Ile
                                   175
Asn Leu Ile Gly Gln Thr Pro Ile Ser Arg Leu Val Ala Leu Leu
                                   190
Val Arg Gly Leu Gly Thr Glu Lys Glu Asp Ser Cys Phe Glu Leu
                                   205
Leu His Arg Ala Val Gly His Phe Glu Leu Arg Lys Asn Gly Thr
Met Pro Arg Glu Val Ala Arg Asp Pro Gln Leu Cys Glu Lys Leu
Thr Val Leu Cys Ser Ala Pro Gly Thr Leu Lys Thr Leu Ala Arg
                                   250
Tyr Ala Val Arg Arg Ser Leu Gly Leu Gln Tyr Leu Pro Asp Ala
                                  265
                260
Val Lys Gly Leu Pro Leu Pro Ala Ser Leu Lys Glu Tyr Leu Leu
                                  280
                275
Leu Leu Glu
```

<210> 2

<211> 423

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1834242

<400> 2

Met Lys Leu Thr Pro Arg Thr Ala Gly Arg Ala Trp Ala Gln Ser Arg Lys Gly Lys Arg Ser Ser Trp Gly Gly Thr Ala Ala Val Ala 20 Glu Leu Lys Pro Gly Arg Pro His Gln Phe Asp Trp Lys Ser Ser 35 40 Cys Glu Thr Trp Ser Val Ala Phe Ser Pro Asp Gly Ser Trp Phe 55 50 Ala Trp Ser Gln Gly His Cys Ile Val Lys Leu Ile Pro Trp Pro 70 65 Leu Glu Glu Gln Phe Ile Pro Lys Gly Phe Glu Ala Lys Ser Arg 80 85 Ser Ser Lys Asn Glu Thr Lys Gly Arg Gly Ser Pro Lys Glu Lys 100 95 Thr Leu Asp Cys Gly Gln Ile Val Trp Gly Leu Ala Phe Ser Pro 110 115 Trp Pro Ser Pro Pro Ser Arg Lys Leu Trp Ala Arg His His Pro 130 Gln Val Pro Asp Val Ser Cys Leu Val Leu Ala Thr Gly Leu Asn 140 145 Asp Gly Gln Ile Lys Ile Trp Glu Val Gln Thr Gly Leu Leu 155 160 Leu Asn Leu Ser Gly His Gln Asp Val Val Arg Asp Leu Ser Phe 170 175

```
Thr Pro Ser Gly Ser Leu Ile Leu Val Ser Ala Ser Arg Asp Lys
                                    190
Thr Leu Arg Ile Trp Asp Leu Asn Lys His Gly Lys Gln Ile Gln
                200
                                    205
Val Leu Ser Gly His Leu Gln Trp Val Tyr Cys Cys Ser Ile Ser
                215
                                    220
Pro Asp Cys Ser Met Leu Cys Ser Ala Ala Gly Glu Lys Ser Val
                                    235
Phe Leu Trp Ser Met Arg Ser Tyr Thr Leu Ile Arg Lys Leu Glu
                245
                                    250
Gly His Gln Ser Ser Val Val Ser Cys Asp Phe Ser Pro Asp Ser
                                    265
Ala Leu Leu Val Thr Ala Ser Tyr Asp Thr Asn Val Ile Met Trp
                                    280
Asp Pro Tyr Thr Gly Glu Arg Leu Arg Ser Leu His His Thr Gln
                290
                                    295
Val Asp Pro Ala Met Asp Asp Ser Asp Val His Ile Ser Ser Leu
                305
                                    310
Arg Ser Val Cys Phe Ser Pro Glu Gly Leu Tyr Leu Ala Thr Val
                320
                                    325
Ala Asp Asp Arg Leu Leu Arg Ile Trp Ala Leu Glu Leu Lys Thr
                335
                                    340
Pro Ile Ala Phe Ala Pro Met Thr Asn Gly Leu Cys Cys Thr Phe
                350
                                    355
Phe Pro His Gly Gly Val Ile Ala Thr Gly Thr Arg Asp Gly His
                                    370
                365
Val Gln Phe Trp Thr Ala Pro Arg Val Leu Ser Ser Leu Lys His
                380
                                    385
Leu Cys Arg Lys Ala Leu Arg Ser Phe Leu Thr Thr Tyr Gln Val
                395
                                    400
Leu Ala Leu Pro Ile Pro Lys Lys Met Lys Glu Phe Leu Thr Tyr
                                                         420
                410
                                     415
Arg Thr Phe
```

```
<210> 3
```

<400> 3

<211> 349

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 1849725

Met
 Glu
 Asp
 Pro
 Gln
 Ser
 Lys
 Glu
 Pro
 Ala
 Gly
 Glu
 Ala
 Val
 Ala

 Pro
 Ala
 Leu
 Leu
 Glu
 Ser
 Pro
 Arg
 Pro
 Glu
 Gly
 Gly
 Glu
 Glu
 Pro
 Arg
 Pro
 Glu
 Glu
 Glu
 Thr
 Glu
 Glu
 Glu
 Thr
 Glu
 Glu
 Glu
 Thr
 Glu
 Glu
 Thr
 Glu
 Glu
 Thr
 Glu
 Glu
 Thr
 Glu
 Thr
 Thr
 Ser
 Arg
 Pro
 Arg
 Pro
 Arg
 Pro
 Arg
 Arg
 Pro
 Arg
 Pro
 Arg
 Arg
 Pro
 Arg
 Arg

3 1 Till it Lipse drame

```
80
                                     85
Phe Lys Leu Glu Thr Arg Gly Val Lys Asp Val Leu Lys Lys Arg
                                   100
                 95
Leu Lys Asn Tyr Tyr Lys Lys Gln Lys Leu Met Leu Lys Glu Ser
                                   115
                110
Asn Phe Ala Asp Ser Tyr Tyr Asp Tyr Ile Cys Ile Ile Asp Phe
                                   130
                125
Glu Ala Thr Cys Glu Glu Gly Asn Pro Pro Glu Phe Val His Glu
                                   145
Ile Ile Glu Phe Pro Val Val Leu Leu Asn Thr His Thr Leu Glu
                                    160
Ile Glu Asp Thr Phe Gln Gln Tyr Val Arg Pro Glu Ile Asn Thr
                                    175
Gln Leu Ser Asp Phe Cys Ile Ser Leu Thr Gly Ile Thr Gln Asp
                                    190
Gln Val Asp Arg Ala Asp Thr Phe Pro Gln Val Leu Lys Lys Val
                                    205
Ile Asp Trp Met Lys Leu Lys Glu Leu Gly Thr Lys Tyr Lys Tyr
                                    220
Ser Leu Leu Thr Asp Gly Ser Trp Asp Met Ser Lys Phe Leu Asn
                230
Ile Gln Cys Gln Leu Ser Arg Leu Lys Tyr Pro Pro Phe Ala Lys
                245
                                    250
Lys Trp Ile Asn Ile Arg Lys Ser Tyr Gly Asn Phe Tyr Lys Val
                260
                                    265
Pro Arg Ser Gln Thr Lys Leu Thr Ile Met Leu Glu Lys Leu Gly
                                    280
                275
Met Asp Tyr Asp Gly Arg Pro His Cys Gly Leu Asp Asp Ser Lys
                290
                                   295
Asn Ile Ala Arg Ile Ala Val Arg Met Leu Gln Asp Gly Cys Glu
                305
                                   310
Leu Arg Ile Asn Glu Lys Met His Ala Gly Gln Leu Met Ser Val
                                   325
Ser Ser Ser Leu Pro Ile Glu Gly Thr Pro Pro Pro Gln Met Pro
His Phe Arg Lys
```

```
<210> 4
```

<211> 355

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte clone 2547840

<400> 4

 Met
 Ala
 Arg
 Arg
 Arg
 Asn
 Ser
 Arg
 Ala
 Trp
 His
 Phe
 Val
 Leu

 1
 5
 6
 10
 10
 10
 15
 15

 Ser
 Ala
 Ala
 Arg
 Ala
 Val
 Ala
 Leu
 Ala

 Ala
 Ala
 Arg
 Ala
 Val
 Ala
 Leu
 Ala

 Ala
 Arg
 Ala
 Val
 Ala
 Leu
 Ala
 Ala
 Leu
 Ala

 Ala
 Arg
 Ala
 Arg
 Ala
 Val
 Ala
 Leu
 Ala
 Ala
 Leu
 Ala

 Ala
 Arg
 Ala
 Arg
 Ala
 Val
 Ala
 Leu
 Ala
 Ala

```
Ser Ala Val Pro Val Thr Gly Glu Ser Phe Cys Asp Cys Ala Gly
                 65
Gln Ser Glu Ala Ser Phe Cys Ser Ser Leu His Ser Ala His Arg
                                     85
                 80
Gly Arq Asp Cys Arg Cys Gly Glu Glu Asp Glu Tyr Phe Asp Trp
                                    100
                 95
Val Trp Asp Asp Leu Asn Lys Ser Ser Ala Thr Leu Leu Ser Cys
                                    115
                110
Asp Asn Arg Lys Val Ser Phe His Met Glu Tyr Ser Cys Gly Thr
                125
                                    130
Ala Ala Ile Arg Gly Thr Lys Glu Leu Gly Glu Gly Gln His Phe
Trp Glu Ile Lys Met Thr Ser Pro Val Tyr Gly Thr Asp Met Met
                155
                                    160
Val Gly Ile Gly Thr Ser Asp Val Asp Leu Asp Lys Tyr Arg His
                170
                                    175
Thr Phe Cys Ser Leu Leu Gly Arg Asp Glu Asp Ser Trp Gly Leu
                                    190
Ser Tyr Thr Gly Leu Leu His His Lys Gly Asp Lys Thr Ser Phe
                                    205
Ser Ser Arg Phe Gly Gln Gly Ser Ile Ile Gly Val His Leu Asp
                215
                                    220
Thr Trp His Gly Thr Leu Thr Phe Phe Lys Asn Arg Lys Cys Ile
                230
                                    235
Gly Val Ala Ala Thr Lys Leu Gln Asn Lys Arg Phe Tyr Pro Met
                245
                                    250
Val Cys Ser Thr Ala Ala Arg Ser Ser Met Lys Val Thr Arg Ser
                260
                                    265
Cys Ala Ser Ala Thr Ser Leu Gln Tyr Leu Cys Cys His Arg Leu
                275
                                    280
Arq Gln Leu Arg Pro Asp Ser Gly Asp Thr Leu Glu Gly Leu Pro
                                    295
Leu Pro Pro Gly Leu Lys Gln Val Leu His Asn Lys Leu Gly Trp
                                    310
Val Leu Ser Met Ser Cys Ser Arg Arg Lys Ala Pro Val Ser Asp
                320
                                    325
Pro Gln Ala Ala Thr Ser Ala His Pro Ser Ser Arg Glu Pro Arg
                335
                                     340
Pro Cys Gln Arg Lys Arg Cys Arg Arg Thr
```

```
<210> 5 <211> 421
```

<220>

<221> misc feature

<223> Incyte clone 3071986

350

<400> 5

Met Ala Ser Phe Pro Pro Arg Val Asn Glu Lys Glu Ile Val Arg

355

<212> PRT

<213> Homo sapiens

Leu Arg Thr Ile Gly Glu Leu Leu Ala Pro Ala Ala Pro Phe Asp 20 25 Lys Lys Cys Gly Arg Glu Asn Trp Thr Val Ala Phe Ala Pro Asp 40 Gly Ser Tyr Phe Ala Trp Ser Gln Gly His Arg Thr Val Lys Leu Val Pro Trp Ser Gin Cys Leu Gln Asn Phe Leu Leu His Gly Thr Lys Asn Val Thr Asn Ser Ser Ser Leu Arg Leu Pro Arg Gln Asn Ser Asp Gly Gln Lys Asn Lys Pro Arg Glu His Ile Ile Asp 100 Cys Gly Asp Ile Val Trp Ser Leu Ala Phe Gly Ser Ser Val Pro 115 Glu Lys Gln Ser Arg Cys Val Asn Ile Glu Trp His Arg Phe Arg Phe Gly Gln Asp Gln Leu Leu Ala Thr Gly Leu Asn Asn Gly 145 140 Arg Ile Lys Ile Trp Asp Val Tyr Thr Gly Lys Leu Leu Leu Asn 155 160 Leu Val Asp His Thr Glu Val Val Arg Asp Leu Thr Phe Ala Pro 175 170 Asp Gly Ser Leu Ile Leu Val Ser Ala Ser Arg Asp Lys Thr Leu 190 185 Arg Val Trp Asp Leu Lys Asp Asp Gly Asn Met Met Lys Val Leu 200 205 Arg Gly His Gln Asn Trp Val Tyr Ser Cys Ala Phe Ser Pro Asp 215 220 Ser Ser Met Leu Cys Ser Val Gly Ala Ser Lys Ala Val Phe Leu 230 235 Trp Asn Met Asp Lys Tyr Thr Met Ile Arg Lys Leu Glu Gly His 245 250 His His Asp Val Val Ala Cys Asp Phe Ser Pro Asp Gly Ala Leu 260 265 Leu Ala Thr Ala Ser Tyr Asp Thr Arg Val Tyr Ile Trp Asp Pro 275 280 His Asn Gly Asp Ile Leu Met Glu Phe Gly His Leu Phe Pro Pro 290 295 Pro Thr Pro Ile Phe Ala Gly Gly Ala Asn Asp Arg Trp Val Arg 305 310 Ser Val Ser Phe Ser His Asp Gly Leu His Val Ala Ser Leu Ala 320 325 Asp Asp Lys Met Val Arg Phe Trp Arg Ile Asp Glu Asp Tyr Pro 335 340 Val Gln Val Ala Pro Leu Ser Asn Gly Leu Cys Cys Ala Phe Ser 350 355 Thr Asp Gly Ser Val Leu Ala Ala Gly Thr His Asp Gly Ser Val 365 370 Tyr Phe Trp Ala Thr Pro Arg Gln Val Pro Ser Leu Gln His Leu 380 385 Cys Arg Met Ser Ile Arg Arg Val Met Pro Thr Gln Glu Val Gln 395 400 Glu Leu Pro Ile Pro Ser Lys Leu Leu Glu Phe Leu Ser Tyr Arg 410 415 420 Ile

WO 99/61614 PCT/US99/11497

```
<211> 278
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte clone 3484619
<400> 6
Met Glu Pro Arg Ala Ala Asp Gly Cys Phe Leu Gly Asp Val Gly
Phe Trp Val Glu Arg Thr Pro Val His Glu Ala Ala Gln Arg Gly
Glu Ser Leu Gln Leu Gln Leu Ile Glu Ser Gly Ala Cys Val
Asn Gln Val Thr Val Asp Ser Ile Thr Pro Leu His Ala Ala Ser
                                     55
Leu Gln Gly Gln Ala Arg Cys Val Gln Leu Leu Leu Ala Ala Gly
                 65
Ala Gln Val Asp Ala Arg Asn Ile Asp Gly Ser Thr Pro Leu Cys
                 80
                                     85
Asp Ala Cys Ala Ser Gly Ser Ile Glu Cys Val Lys Leu Leu Leu
                 95
                                    100
Ser Tyr Gly Ala Lys Val Asn Pro Pro Leu Tyr Thr Ala Ser Pro
                110
                                    115
Leu His Glu Ala Cys Met Ser Gly Ser Ser Glu Cys Val Arg Leu
                125
                                    130
Leu Ile Asp Val Gly Ala Asn Leu Glu Ala His Asp Cys His Phe
                140
                                    145
Gly Thr Pro Leu His Val Ala Cys Ala Arg Glu His Leu Asp Cys
                                    160
Val Lys Val Leu Leu Asn Ala Gly Ala Asn Val Asn Ala Ala Lys
                170
                                    175
Leu His Glu Thr Ala Leu His His Ala Ala Lys Val Lys Asn Val
                185
                                    190
Asp Leu Ile Glu Met Leu Ile Glu Phe Gly Gly Asn Ile Tyr Ala
                200
                                    205
Arg Asp Asn Arg Gly Lys Lys Pro Ser Asp Tyr Thr Trp Ser Ser
                215
                                    220
Ser Ala Pro Ala Lys Cys Phe Glu Tyr Tyr Glu Lys Thr Pro Leu
                230
                                    235
Thr Leu Ser Gln Leu Cys Arg Val Asn Leu Arg Lys Ala Thr Gly
                245
                                    250
Val Arg Gly Leu Glu Lys Ile Ala Lys Leu Asn Ile Pro Pro Arg
                260
                                    265
Leu Ile Asp Tyr Leu Ser Tyr Asn
                275
```

<210> 6

<210> 7

<211> 281

<212> PRT

<213> Homo sapiens

<220>

```
<221> misc feature
<223> Incyte clone 1275743
Met Gly Ser Gln Gly Ser Pro Val Lys Ser Tyr Asp Tyr Leu Leu
                                     10
Lys Phe Leu Leu Val Gly Asp Ser Asp Val Gly Lys Gly Glu Ile
                 20
                                     25
Leu Glu Ser Leu Gln Asp Gly Ala Ala Glu Ser Pro Tyr Ala Tyr
                 35
                                     40
Ser Asn Gly Ile Asp Tyr Lys Thr Thr Thr Ile Leu Leu Asp Gly
                 50
                                     55
Arg Arg Val Lys Leu Glu Leu Trp Asp Thr Ser Gly Gln Gly Arg
                 65
                                     70
Phe Cys Thr Ile Phe Arg Ser Tyr Ser Arg Gly Ala Gln Gly Ile
Leu Leu Val Tyr Asp Ile Thr Asn Arg Trp Ser Phe Asp Gly Ile
                 95
                                    100
Asp Arg Trp Ile Lys Glu Ile Asp Glu His Ala Pro Gly Val Pro
                110
                                    115
Arg Ile Leu Val Gly Asn Arg Leu His Leu Ala Phe Lys Arg Gln
                125
                                    130
Val Pro Thr Glu Gln Ala Arg Ala Tyr Ala Glu Lys Asn Cys Met
                140
                                    145
Thr Phe Phe Glu Val Ser Pro Leu Cys Asn Phe Asn Val Ile Glu
                155
                                    160
Ser Phe Thr Glu Leu Ser Arg Ile Val Leu Met Arg His Gly Met
                170
                                    175
Glu Lys Ile Trp Arg Pro Asn Arg Val Phe Ser Leu Gln Asp Leu
                185
                                    190
Cys Cys Arg Ala Ile Val Ser Cys Thr Pro Val His Leu Ile Asp
                200
                                    205
Lys Leu Pro Leu Pro Val Thr Ile Lys Ser His Leu Lys Ser Phe
                215
                                    220
Ser Met Ala Asn Gly Met Asn Ala Val Met Met His Gly Arg Ser
                230
                                    235
Tyr Ser Leu Ala Ser Gly Ala Gly Gly Gly Ser Lys Gly Asn
                                    250
                245
Ser Leu Lys Arg Ser Lys Ser Ile Arg Pro Pro Gln Ser Pro Pro
                260
                                    265
Gln Asn Cys Ser Arg Ser Asn Cys Lys Ile Ser
                275
<210> 8
```

```
<211> 635
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte clone 1722533
<400> 8
```

Met Ala Thr Gln Ile Ser Thr Arg Gly Ser Gln Cys Thr Ile Gly
1 5 10 15

Gln	Glu	Glu	Tyr	Ser 20	Leu	Tyr	Ser	Ser	Leu 25	Ser	Glu	Asp	Glu	Leu 30
Val	Gln	Met	Ala		Glu	Gln	Ser	Leu		Asp	Lys	Thr	Arg	Gly 45
Pro	Thr	Thr	Ala		Ala	Thr	Ala	Ser		Cys	Thr	Asn	Arg	
Pro	Ala	His	Phe		Pro	Trp	Thr	Arg		Thr	Ala	Pro	Pro	
Ser	Ser	Pro	Ala		Ala	Pro	Met	Gly		Phe	Gln	Gly	Val	
Gln	Lys	Tyr	Ser		Ser	Leu	Phe	Lys		Ser	Gln	Leu	Ala	
Ala	Asp	Pro	Leu		Lys	Ala	Ile	Lys		Gly	Asp	Glu	Glu	
Leu	Lys	Thr	Met		Lys	Glu	Gly	Lys		Leu	Ala	Glu	Pro	
Lys	Glu	Gly	Trp		Pro	Leu	His	Glu		Ala	Tyr	Tyr	Gly	
Val	Gly	Cys	Leu		Val	Leu	Gln	Arg		Tyr	Pro	Gly	Thr	
Asp	Gln	Arg	Thr		Gln	Glu	Glu	Thr		Val	Tyr	Leu	Ala	
Cys	Arg	Gly	His		Asp	Cys	Leu	Leu		Leu	Leu	Gln	Ala	
Ala	Glu	Pro	Asp		Ser	Asn	Lys	Ser		Glu	Thr	Pro	Leu	
Lys	Ala	Cys	Glu		Lys	Asn	Ala	Glu		Val	Lys	Ile	Leu	
Gln	His	Asn	Ala		Thr	Asn	His	Arg		Asn	Arg	Gly	Trp	
Ala	Leu	His	Glu		Val	Ser	Arg	Asn		Leu	Glu	Val	Met	
Ile	Leu	Val	Ser		Gly	Ala	Lys	Val		Ser	Lys	Asn	Ala	
Gly	Ile	Thr	Pro		Phe	Val	Ala	Ala		Ser	Gly	Gln	Leu	
Ala	Leu	Arg	Phe		Ala	Lys	Tyr	Gly		Asp	Ile	Asn	Thr	
Ala	Ser	Asp	Asn			Ala	Leu	Tyr		Ala	Cys	Lys	Asn	
His	Glu	Glu	Val		Glu	Phe	Leu	Leu			Gly	Ala	Asp	Ala 330
Asn	Lys	Thr	Asn		Asp	Gly	Leu	Leu		Leu	His	Ile	Ala	Ser 345
Lys	Lys	Gly	Asn	Tyr 350		Ile	· Val	Gln	Met 355		Leu	Pro	Val	Thr 360
Ser	Arg	Thr	Arg	Ile		Arg	Ser	Gly	Val 370		Pro	Leu	His	Leu 375
Ala	Ala	Glu	Arg	Asn 380		Asp	Glu	Val	Leu 385		Ala	Leu	Leu	Ser 390
Ala	. Arg	Phe	: Asp		Asn	Thr	Pro	Leu		Pro	Glu	a Arg	Ala	Arg 405
Leu	Tyr	Glu	a Asp		Arg	Thr	Ser	Ala		туг	Phe	e Ala	. Val	Val 420
Asn	. Asn	Asr	ı Val		: Ala	Thr	Glu	. Leu		Leu	Glr.	n His	Gly	Ala 435
Asp	Pro	Asr	a Arg			. Ile	e Ser	Pro			ı Val	Ala	ıle	arg

```
440
                                    445
His Gly Cys Leu Arg Thr Met Gln Leu Leu Leu Asp His Gly Ala
                455
                                    460
Asn Ile Asp Ala Tyr Ile Ala Thr His Pro Thr Ala Phe Pro Ala
                470
                                    475
Thr Ile Met Phe Ala Met Lys Cys Leu Ser Leu Leu Lys Phe Leu
                485
                                    490
Met Asp Leu Gly Cys Asp Gly Glu Pro Cys Phe Ser Cys Leu Tyr
                 500
                                    505
Gly Asn Gly Pro His Pro Pro Ala Pro Gln Pro Ser Ser Arg Phe
                515
                                    520
Asn Asp Ala Pro Ala Ala Asp Lys Glu Pro Ser Val Val Gln Phe
                530
                                     535
Cys Glu Phe Val Ser Ala Pro Glu Val Ser Arg Trp Ala Gly Pro
                                     550
Ile Ile Asp Val Leu Leu Asp Tyr Val Gly Asn Val Gln Leu Cys
                560
                                     565
Ser Arg Leu Lys Glu His Ile Asp Ser Phe Glu Asp Trp Ala Val
                 575
                                     580
Ile Lys Glu Lys Ala Glu Pro Pro Arg Pro Leu Ala His Leu Cys
                                     595
Arg Leu Arg Val Arg Lys Ala Ile Gly Lys Tyr Arg Ile Lys Leu
                 605
                                     610
Leu Asp Thr Leu Pro Leu Pro Gly Arg Leu Ile Arg Tyr Leu Lys
                 620
                                     625
Tyr Glu Asn Thr Gln
```

<210> 9

<211> 518

<212> PRT

<213> Homo sapiens

<220>

<221> misc feature

<223> Incyte clone 1759763

<400> 9

Glu	Asn	Gly	Gln	Ile 125	Asp	Val	Leu	Arg	Leu 130	Leu	Leu	Gln	His	Gly 135
Ala	Asn	Val	Asn	Gly 140	Ser	His	Ser	Met	Cys 145	Gly	Trp	Asn	Ser	Leu 150
His	Gln	Ala	Ser	Phe 155	Gln	Glu	Asn	Ala	Glu 160	Ile	Ile	Lys	Leu	Leu 165
				170					175		-		Gly	180
				185					190				Ser	195
				200					205				Ala	210
				215					220				His	225
				230					235				Asp	240
				245					250				Ala	255
				260					265				Leu	270
				275					280				Val	285
				290					295				Leu	300
				305					310				Phe	315
				320					325				Glu	330
				335					340				Ile	345
				350					355		-		Ser	360
				365					370		_		Trp	375
				380					385				Ala	390
				395					400				Asp	405
				410					415				Ile	420
				425					430				Leu	435
				440					445					Trp 450
				455					460					Leu 465
				470					475					Arg 480
				485					490				Leu	495
				500					Arg 505		Tyr	Glu	Val	Pro 510
Glu	Leu	Ala	Ala	Ile 515	Gln	Asp	Gly							

```
<210> 10
<211> 1117
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte clone 1758450
<400> 10
cacgccttga cagcggcttt caacccccac ctcagcccag caattcggca gtttggagca 60
tgtgaacacc ttgagccttg atgagttcca gtatgtggta tattatgcag agcattcaga 120
gcaaatactc tctctccgag cgcttaatcc gaacaattgc tgccatccgt tccttcccac 180
atgataatgt agaggacctc atcagagggg gagcagatgt gaactgcact catggcacac 240
tgaagccctt gcactgtgcc tgtatggtgt cagatgctga ctgtgtggag ttacttctgg 300
aaaaaggagc cgaggtgaat gccctggatg ggtataaccg aacagccctc cactatgcag 360
cagagaaaga tgaggcttgt gtggaggtcc tattggagta tggtgcaaac cccaatgctt 420
tggatggcaa cagagatacc ccacttcact gggcagcctt taagaacaat gctgagtgtg 480
tgcgggctct cctagagagc ggggcctctg tcaatgccct ggattacaac aatgatacac 540
cgctcagctg ggctgccatg aagggaaatc ttgagagtgt cagcatcctt ctggattatg 600
gcgcagaggt cagagtcatc aacctaatag gccagacacc catctcccgc ctggtggctc 660
tgctagtcag gggacttgga acagagaaag aggactcttg ctttgagctc ctccacagag 720
ctgttggaca ctttgaattg aggaaaaatg gcaccatgcc acgagaggtg gccagagacc 780
cgcagctatg tgaaaaactg actgttctgt gctcagctcc aggaactcta aaaacactcg 840
ctcgctatgc cgtgcgccgt agcctgggac tccagtatct ccccgatgca gtgaagggcc 900
ttccactgcc agcttctttg aaggaatacc tgttactttt agaatagccg gagaagatgt 960
ttgcaccatc gtgcaggcag ctctgggtga ggttgtccct gcagtactcc ttgtcacaga 1020
aaacagaaaa acagttgttt cctgatgtgt gggttataga tttcgaagca acatgtcaca 1080
acaataacct gcatagcaac tcccctttcc aaacaaa
<210> 11
<211> 2589
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte clone 1834242
<400> 11
cttgaatgaa gctgacacca agaaccgcgg gaagagcttg ggcccaaagc aggaaaggga 60
agegetegag ttggggagga accgetgetg tggcegaact caageceggg egececeace 120
agtttgattg gaagtccage tgtgaaacct ggagcgtcgc cttctcccca gatggctcct 180
ggtttgcttg gtctcaagga cactgcatcg tcaaactgat cccctggccg ttggaggagc 240
agttcatccc taaagggttt gaagccaaaa gccgaagtag caaaaatgag acgaaagggc 300
ggggcagccc aaaagagaag acgctggact gtggtcagat tgtctggggg ctggccttca 360
gcccgtggcc ttccccaccc agcaggaagc tctgggcacg ccaccacccc caagtgcccg 420
atgtctcttg cctggttctt gctacgggac tcaacgatgg gcagatcaag atctgggagg 480
tgcagacagg gctcctgctt ttgaatcttt ccggccacca agatgtcgtg agagatctga 540
gcttcacacc cagtggcagt ttgattttgg tctccgcgtc acgggataag actcttcgca 600
tetgggacet gaataaacae ggtaaacaga tteaagtgtt ategggeeae etgeagtggg 660
tttactgctg ttccatctcc ccagactgca gcatgctgtg ctctgcagct ggagagaagt 720
cggtctttct atggagcatg aggtcctaca cgttaattcg gaagctagag ggccatcaaa 780
gcagtgttgt ctcttgtgac ttctcccccg actctgccct gcttgtcacg gcttcttacg 840
ataccaatgt gattatgtgg gacccctaca ccggcgaaag gctgaggtca ctccaccaca 900
cccaggttga ccccgccatg gatgacagtg acgtccacat tagctcactg agatctgtgt 960
```

```
gettetetee ggaaggettg tacettgeea eggtggeaga tgacagaete etcaggatet 1020
gggccctgga actgaaaact cccattgcat ttgctcctat gaccaatggg ctttgctgca 1080
cattttttcc acatggtgga gtcattgcca cagggacaag agatggccac gtccagttct 1140
ggacagetee tagggteetg teeteactga ageaettatg eeggaaagee ettegaagtt 1200
tcctaacaac ttaccaagtc ctagcactgc caatccccaa gaaaatgaaa gagttcctca 1260
catacaggac tttttaagca acaccacatc ttgtgcttct ttgtagcagg gtaaatcgtc 1320
ctgtcaaagg gagttgctgg aataatgggc caaacatctg gtcttgcatt gaaatagcat 1380
ttctttggga ttgtgaatag aatgtagcaa aaccagattc cagtgtacta gtcatggatc 1440
tttctctccc tggcatgtga aagtcagtct tagaggaaga gattccactt gcacggcaac 1500
agagccttac gttaaatctt cagtccagtt atgaacagca agtgttgaac tctttctgct 1560
tgttttgatt caaagtgcag ttactgatgt tgttttgatt atgcaactaa gtaggcctcc 1620
agageetete tagtggeaga geageteaca eteeeteege tgggaaegat ggettetgee 1680
tagtacctat cettgtgttt ctgatgcagt ggtagcattg gttcaagttc tctcctgctg 1740
tggtcagagt tgcttcgatg ttggccaagt gcttttcttc ttgggctccc ttctgacctg 1800
caggacagtt ttcctggagc catttggtat gaggtattaa tttagcttaa ctaaattaca 1860
ggggactcag aggccgtgct cctgaccgat ccagacacta ttactggctt tttttttt 1920
tttttaacaa tggtgtgcat gtgcaggaaa tgacaaattt gtatgtcaga ttatacaagg 1980
atgtattctt aaaccgcatg actattcaga tggctactga gttatcagtg gccatttatt 2040
agcatcatat ttatttgtat tttctcaaca gatgttaagg tacaactgtg tttttctcga 2100
ttatctaaaa accatagtac ttaaattgaa cagttgcaaa gatgtcttaa ttgtgtaaag 2160
aattggtgta gtcatgactt tagctgatac tcttatgtac gagatctgtc tctgctgttt 2220
aacttcattg gattaatcag ctggtttcaa ctctactgcg aaacaaaaat agctccttaa 2280
aagtactgtt ctccttcagt ggcatgtagt tatctaatca agacacctca ttcaaacaaa 2340
acctgcctta ggaaaattta atatttta aattatttta aaagaaatac aacatcttat 2400
tetttagett tettaategg tgetttatgg aggecagtgt aaegttacat gaetegttga 2460
gaaagttgag gaatttcctc taccaccttt gttgcttgaa gaaaaacatg tcttttcaaa 2520
atgagaggct ttcattgaag aaaagaaaaa aacaacagtt aaaagctaaa aaaaaaaaa 2580
aaaaaaaa
<210> 12
<211> 2038
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte clone 1849725
<400> 12
cgggaacgcg agcccggtaa tttttcaacg gagaaaggcg aggctttcgg gctctgcaga
gtgagagtta gcaagtgtcc ggctccagca actctcctct ggcgtgacag ccggcatgga 120
ggatccacag agtaaagage etgeeggega ggeegtgget eeeggetge tggagtegee 180
gcggccggag ggcggggagg agccgccgcg tcccagtccc gaggaaactc aacagtgtaa 240
atttgatggc caggagacaa aaggatccaa gttcattacc tccagtgcga gtgacttcag 300
tgacccggtt tacaaagaga ttgccattac gaatggctgt attaatagaa tgagtaagga 360
agaactcaga gctaagcttt cagaattcaa gcttgaaact agaggagtaa aggatgttct 420
aaagaagaga ctgaaaaact attataagaa gcagaagctg atgctgaaag agagcaattt 480
tgctgacagt tattatgact acatttgtat tattgacttt gaagccactt gtgaagaagg 540
asacccacct gagtttgtac atgaaataat tgaatttccg gttgttttac tgaatacgca 600
tactttagaa atagaagaca cgtttcagca gtatgtaaga ccagagatta acacacagct 660
gtctgatttc tgcatcagtc taactggaat tactcaggat caggtagaca gagctgatac 720
cttccctcag gtactaaaaa aagtaattga ctggatgaaa ttgaaggaat taggaacaaa 780
gtataaatac tcacttttaa cagatggttc ttgggatatg agtaagttct tgaacattca 840
gtgtcaactc agcaggctca aataccctcc ttttgcgaaa aagtggatca atattcggaa 900
gtcatatgga aatttttaca aggttcctag aagccaaacc aaactgacaa taatgcttga 960
```

aaaattagga atggattatg atgggcggcc tcactgtggt cttgatgact ctaagaatat 1020

```
cgcccgaata gcagttcgaa tgcttcagga tgggtgtgaa ctccgaatca acqaqaaaat 1080
gcatgcagga cagctaatga gtgtgtcctc ttccttacca atagagggca ctccaccacc 1140
acaaatgcca cattttagaa agtaacagtt ttgtgtgtgg atcattccaa ttgaagttgc 1200
tatgaagagg tagcagatga atctcattga attagtcctg tagtgcaaac tttaagcacc 1260
ttaaaacatt taaaatctta ttacaggtga tagagataga tacatgtatg tgaacagatt 1320
ttgtaggaag gcatactgaa ttctttgtca ccaagcactt ttgataatgg acaggaatcc 1380
ggtaacctag ataaccaagg tcctggtcta acacaatggg atattttaat aattttaaag 1440
agggggttcc acaggttata aattcccttt ttttgggtgt ttaaaaaaat ggcccaaaaa 1500
tetectaaat atggggeett ggtgtetete ggtttggaaa atgggeeaac aaateeettt 1560
taaatttaaa accatttcca ccttaaggga ttggtaaaca cccccttaa atccccttta 1680
aaaaaattgg tcccgggaaa aattgggatt tgggggcaaa agggtaagga attcctgtaa 1740
tecetaaagg cetetettig ggggaattit teeecagggg gaatatatee eettaaggtg 1800
cccccctttt gtggaatttt tttccccaaa aggggtttat aataaatgtt gggaaaagtt 1860
ttccacccc aaggggaaat gggtggggt gggaaaattt tccggtaaaa gaggtgacac 1920
tttggggtag atgacccata aatacttgcg cctcaagggg gtttgcccct attttcaaaa 1980
aactccccta aaaatttggg gggaggagaa ttttatttgg attagggggg tttatata
<210> 13
<211> 1537
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte clone 2547840
<400> 13
tgggtcggac gcgtgggcgg aaagtgggtc agggccgggc cggcggagcg cgcagcgggg 60
cagccagatt ctttccacca tggccagacg cccccggaac agcagggcct ggcacttcgt 120
cetgagtgca gecegeegag acgeagatge cegggeegtg getetageag getecaetaa 180
ctggggctac gactctgatg ggcagcacag cgactcggac tccgaccccg agtactccac 240
getgeegeea tecateceea gtgeggtgee egtgaeegge gagteettet gtgaetgtge 300
tgggcagage gaggcetect tetgtageag cetgeacteg geecaceggg geagggaetg 360
ccgctgcgga gaggaagacg agtatttcga ctgggtctgg gatgacttaa ataagtcatc 420
agccaccctg ctgagctgtg acaaccgtaa ggtcagcttc cacatggagt acagctgcgg 480
cacageggee ateeggggea ceaaggaget gggggaggge cageaettet gggagateaa 540
gatgacctct cccgtctacg gcaccgacat gatggtgggc atcgggacgt cggatgtgga 600
cctggacaaa taccgccaca cgttctgcag cctgctgggc agggatgagg acagctgggg 660
cetetectae aegggeetee tecaccacaa gggegacaag accagettet egtegeggtt 720
cggccagggc tccatcattg gcgtgcacct ggacacctgg cacggcacac tcaccttttt 780
caagaacagg aagtgtatag gtgtggcagc caccaagctg cagaacaaga gattctaccc 840
gatggtgtgc tccacggcgg cccggagcag catgaaggtc acccgctcct gtgccagcgc 900
cacttccctc cagtacetgt getgecaecg cetgegecag etgeggecag actegggaga 960
cacgctggag ggtctgccgc tgccgccggg cctcaagcag gtgctacaca acaagctggg 1020
ctgggtcctg agcatgagtt gcagccgccg caaggctcca gtgtccgatc cccaggcagc 1080
gacctccgcc caccccagca gtcgcgagcc tcggccctgc cagaggaagc gctgccgccg 1140
gacetgactg actteceagt ggaactgeet tettgggetg ggacageece ttteetetgt 1200
cccttctttc tctgtccctt ccttccagcc acactccagg gcggagttgg atgaggcccg 1260
teeggaggga gecatetett geteeegagg etgggaeagt cetttetgtg ggggetetag 1320
ggcccctctg ctgctgtgct gggtggggaa gcggctgccc tgagccccag gtcttgtggg 1380
aggetgegag gacgagagee tggetggage cegegttget gtteecacag ggeeteggtt 1440
tttcctaact tgctctgcat gctgtcagcg gctgccccgc cgtcatagac ttaaaggact 1500
gcaataaatg tagagttgat gtctaacaaa aaaaaaa
                                                                 1537
```

```
<210> 14
<211> 2203
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte clone 3071986
<400> 14
ctgtcttcct ccgcagcgcg aggctgggta cagggtctat tgtctgtggt tgactccgta 60
ctttggtctg aggccttcgg gagctttccc gaggcagtta gcagaagccg cagcggccgc 120
eccegecegt tteetetgte ectgggeeeg ggagggaeea aettggegte aegeeeetea 180
geggtegeea etetettete tgttgttggg teegeategt atteeeggaa teagaeggtg 240
ccccatagat ggccagcttt cccccgaggg tcaacgagaa agagatcgtg agattacgta 300
ctataggtga acttttagct cctgcagctc cttttgacaa gaaatgtggt cgtgaaaatt 360
ggactgttgc ttttgctcca gatggttcat actttgcttg gtcacaagga catcgcacag 420
taaagcttgt tccgtggtcc cagtgccttc agaactttct cttgcatggc accaagaatg 480
ttaccaattc aagcagttta agattgccaa gacaaaatag tgatggtggt cagaaaaata 540
agcctcgtga acatattata gactgtggag atatagtctg gagtcttgct tttgggtcat 600
cagttccaga aaaacagagt cgctgtgtaa atatagaatg gcatcgcttc agatttggac 660
aagatcagct acttettget acagggttga acaatgggeg tatcaaaata tgggatgtat 720
atacaggaaa actcctcctt aacttggtag atcatactga agtggtcaga gatttaactt 780
ttgctccaga tggaagcttg atcctggtgt cagcttcaag agacaaaact ctcagagtat 840
gggacctgaa agatgatgga aacatgatga aagtattgag ggggcatcag aattgggtgt 900
acagetgtge atteteteet gaetetteta tgetgtgtte agteggagee agtaaageag 960
ttttcctttg gaatatggat aaatacacca tgatacggaa actagaagga catcaccatg 1020
atgtggtagc ttgtgacttt tctcctgatg gagcattact ggctactgca tcttatgata 1080
ctcgagtata tatctgggat ccacataatg gagacattct gatggaattt gggcacctgt 1140
ttcccccacc tactccaata tttgctggag gagcaaatga ccggtgggta cgatctgtat 1200
cttttagcca tgatggactg catgttgcaa gccttgctga tgataaaatg gtgaggttct 1260
ggagaattga tgaggattat ccagtgcaag ttgcaccttt gagcaatggt ctttgctgtg 1320
ccttctctac tgatggcagt gttttagctg ctgggacaca tgacggaagt gtgtattttt 1380
gggccactcc acggcaggtc cctagcctgc aacatttatg tcgcatgtca atccgaagag 1440
tgatgcccac ccaagaagtt caggagctgc cgattccttc caagcttttg gagtttctct 1500
cgtatcgtat ttagaagatt ctgccttccc tagtagtagg gactgacaga atacacttaa 1560
cacaaacctc aagctttact gacttcaatt atctgttttt aaagacgtag aagatttatt 1620
taatttgata tgttcttgta ctgcattttg atcagttgag cttttaaaat attatttata 1680
gacaatagaa gtatttctga acatatcaaa tataaatttt tttaaagatc taactgtgaa 1740
aacatacata cctgtacata tttagatata agctgctata tgttgaatgg acccttttgc 1800
ttttctgatt tttagttctg acatgtatat attgcttcag tagagccaca atatgtatct 1860
ttgctgtaaa gtgcaaggaa attttaaatt ctgggacact gagttagatg gtaaatactg 1920
acttacgaaa gttgaattgg gtgaggcggg caaatcacct gaggtcagca gtttgagact 1980
agcctggcaa acatgatgaa accctgtctc tactaaaaat acaaaaaaaa aaaaaattag 2040
ccaggcgtgg tggtgcacac ctgtagtcct agctacttgg gaggctgagg caggagaatt 2100
gettgaacce aggaggtgga ggttgcagta agecaagate acaccactge actecaacct 2160
ggacaacaga gcgagactcc atctcaaaaa aaaaataaaa agg
<210> 15
<211> 1622
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
```

<223> Incyte clone 3484619

<400> 15

```
ccgcatggag ccccgggcgg cggacggctg cttcctgggc gacgtgggtt tctgggtgga
geggaceeet gtgeacgagg cageecageg gggtgagage etgeagetge aacagetgat 120
cgagagegge geetgegtga accaggteae egtggaetee ateaegeece tgeaegeage 180
cagtetgeag ggecaggege ggtgtgtgea getgetgetg geggetgggg eccaggtgga 240
tgctcgcaac atcgacggca gcaccccgct ctgcgatgcc tgcgcctcgg gcagcatcga 300
gtgtgtgaag etettgetgt cetaegggge caaggteaac ceteceetgt acacagegte 360
cccctgcac gaggcctgca tgagcgggag ttccgaatgt gtgaggcttc ttattgacgt 420
cggggccaat ctggaagcgc acgattgcca ttttgggacc cctctgcacg ttgcctgtgc 480
ccgggagcat ctggactgtg tcaaagtgct gctcaatgca ggggccaacg tgaatgcggc 540
aaagetteat gagaetgeee tteaceaege ggeeaaggte aagaatgttg aceteatega 600
gatgettate gagtttggeg geaacateta egecegggac aacegeggga agaageegte 660
tgactacacg tggagcagca gcgctcccgc caagtgcttc gagtactacg aaaagacacc 720
tetgaetetg teaeagetet geagggtgaa ettgaggaag geeaetggeg teegaggget 780
ggagaagatt gccaagttaa acatcccgcc ccggctcatt gattacctct cctacaactg 840
aattgcaggt ggggtccgga ccgtgactgc ccccgttgtg cccagcattg cccgggtgag 900
ggctctgcct gttcctctga agcagcgtga ttgctgtaga tagaacaacg ctccttcgag 960
tecetteetg egateetgtt taggettete teetggatee tggataatgt ttecagggtg 1020
ttgggaagge etgegtetea ggteaeagtt gtgggtgtgg eeetgegetg ttetacagaa 1080
cetaccetet caatgggeat gggcccaace atccagtttt cetettttac ggaccatect 1140
caaaggcact ctcaggacag acggcgtggg gagcacagag gaggctggca gagctggga 1200
ctgagggcat tgttgctgat tctcactcac cggggcagcc tgccgcagat gcacaggccc 1260
caggtgcagg ccaccacctc cgggtcggca ccaggactgc cctcggtgct catagggaat 1320
ggctgggccc acggaaggtc ggcctgggat gtggcctggg actgctgctc tgctggctgc 1380
tgtgtggatg cttttcctgg agcactttcc aaggcatccc ccagccccaa gcctgcgcgc 1440
atotgtcact cagggacttt ctatgggtct ttgtggggga aggccctggc tttgtattcc 1500
cacaagtagc actgagtttc ttaggaaatt tgtcttcagt attaagtctc caactcttgt 1560
aaaaagttta tatgtaggat aaaaaccttt tagaggacac gtaggeggta ccactaaggt 1620
<210> 16
<211> 1385
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte clone 1275743
<400> 16
cgcaacgggc gcaggtgcgg ggcgcgggct ctctcacgcc gcggcctcac ccggcggtgc 60
tteggcagge ggceggegg gggeggeggea tgggetegca gggeagteeg 120
gtgaagaget acgaetacet geteaagtte etgetggtgg gegacagega egtgggeaag 180
ggegagatec tggagageet geaggaegge geggeagagt eeeegtaege etacagtaac 240
gggategaet acaagaceae caccatectg etggaeggee ggegegtgaa getggagete 300
tgggacaegt egggecaggg eeggttetge accatettea ggteetaete eaggggeget 360
caggggatec tettggtgta tgacateace aaccgetggt cetttgaegg categaeege 420
tggatcaagg agatcgatga gcatgcaccc ggagtccccc ggatcttggt tggaaaccgg 480
ctgcacctgg ccttcaagcg gcaggtcccg acggagcagg cccgcgcgta cgcagagaag 540
aactgcatga cettetttga ggtcageece etgtgcaact teaacgtcat egagteette 600
acggagctat cocgcatcgt gctcatgcgg cacggcatgg agaagatctg gaggcccaac 660
cgagtgttca gcctgcagga cctctgctgc cgggccatcg tctcctgcac ccccgtgcac 720
ctcatcgaca agettecact gecegteace atcaagagee aceteaagte ettetegatg 780
gccaacggca tgaacgcggt catgatgcac ggccgttcct actccctggc cagcggggcc 840
gggggcggcg gcagcaaggg caacagcctc aagaggtcca agtccatccg tccacccag 900
agccccccc agaactgctc gcggagtaac tgcaagatct cctagcgggg atgggcgggg 960
```

```
cegectgtge agatgecagg agggetegag etggacacte etggetggae gecaggecag 1020 tgeeggeetae gtggagaetg tecacacage tgeeteagaa gegeeggget tteeteacae 1080 etgageeggg tgeeggggg ageatgeaeg gaccaagege ggeaggeggg aggaggggge 1140 geggetggge tgetggtet teegggaate ttggteggaa acaageeggg eeteeceage 1200 tgeetggget tgaeeggegg ggageetggt tggeettet tatttatata gagaacactt 1260 eacttttttg tacatttta aggggeette agggaageet gggtgtggee eggtggggt 1320 geaetggtga eeteeatggee aegeeagetg eggggaegea ettgggaete eteggaggg 1380 gaete
```

<210> 17 <211> 2790 <212> DNA <213> Homo sapiens <220> <221> misc_feature <223> Incyte clone 1722533

<400> 17 cccggaggaa cggaaggcag gattgcagct tcctcagtgc aacctccaaa caggaaatct 60 gagatgtata acatettata gtttggettg teaaegttgg teatgeggtg geeceaaaat 120 aaactccctg cttcaaagga cagcgtttca gaactgcctg gcagagcagc cagaagcttg 180 gggccagggc agaaggaaaa ctcggggagc atgttctgaa ttaagacact ttcaagaaaa 240 tcctttgtat tacccctgaa ttgtaccctt gtttcagagc ctaacagggt tttctgattt 300 gctgttccct cctccccact gggtgtctgt tctggaggcc agggtgagag gtggaggagg 360 atggccacgc agatcagcac teggggcagc cagtgtacca ttgggcagga ggagtacagc 420 ctgtacagca gcctgagcga ggatgaactg gtgcagatgg ccatcgagca gagcctagcg 480 gacaagacaa ggggcccaac cactgctgag gccaccgcgt ctgcatgtac caaccgccaa 540 cetgeceatt tetacecatg gaccaggtee actgeacete etgagagtte geeggeeegg 600 gccccaatgg gcttgttcca aggggtcatg cagaaataca gcagcagctt gttcaagacc 660 tcccagctgg cgcctgcgga ccccttgata aaggccatca aggatggcga tgaagaggcc 720 ttgaagacca tgatcaagga agggaagaat ctcgcagagc ccaacaagga gggctggctg 780 ccgctgcacg aggccgcata ctatggccag gtgggctgcc tgaaagtcct gcagcgagcg 840 tacccaggga ccatcgacca gcgcaccctg caggaggaaa cagccgttta cttggcaacg 900 tgcaggggcc acctggactg tctcctgtca ctgctccaag caggggcaga gccggacatc 960 tccaacaaat cccgagagac accgctctac aaagcctgtg agcgcaagaa cgcggaggcc 1020 gtgaagattc tggtgcagca caacgcagac accaaccacc gctgcaaccg cggctggacc 1080 getetgeacg agtetgtgte tegeaatgae etggaggtea tgeagateet ggtgagegga 1140 ggagccaagg tggaatccaa gaacgcctac ggcatcaccc ccttgttcgt ggccgcccag 1200 agtggacagt tggaggcctt gaggttctta gccaagtacg gtgctgacat caacacgcag 1260 gccagcgaca acgcgtctgc cctctacgag gcctgcaaga atgagcatga ggaggtggtg 1320 gagtttetge tgtcacaggg tgccgacgcc aacaagacca acaaggacgg cttgctcccg 1380 ctgcacatcg cctccaagaa gggcaactac aggatcgtgc agatgctgct gccggtgacc 1440 agecgeaege geataegeeg tageggegte agteegetge acetggegge egagegeaae 1500 cacgacgagg tgctggaggc gctgctgagc gcgcgcttcg acgtgaacac gccgctggcg 1560 ecegaacgeg egegeeteta egaagaeegg egeacgteeg egetgtaett egeggtggte 1620 aacaacaacg tgtacgccac cgagctgctg ctgcaacacg gcgccgaccc caaccgcgac 1680 gtcatcagcc cettgetegt ggccatccgc cacggetgcc tgcgcacaat gcagctgctg 1740 ctggaccacg gcgcgaacat cgacgcctat atcgccacgc accccaccgc cttccccgcc 1800 accatcatgt tegecatgaa gtgeetgteg etgeteaagt teeteatgga eetgggetge 1860 gacggcgage cetgettete atgeetetae ggcaacggee egeaceegee ggeecegeag 1920 ccctccagca ggttcaacga cgcgcccgcg gccgacaagg agcccagcgt ggtgcagttc 1980 tgtgagttcg tatctgcccc agaggtgagc cgctgggcgg ggcccatcat cgatgtcctc 2040 ctggactacg tgggcaacgt gcagctctgc tcgcggctga aggaacacat cgacagcttt 2100

```
gaggactggg ccgtcatcaa ggagaaggca gaacctccaa gacctctggc tcacctttgc 2160
cgactgcggg ttcgaaaggc cattgggaaa taccgtataa aactcctaga caccttgccg 2220
ctcccaggca ggctgattag atacctgaaa tacgagaaca cccagtaact ggggccacgg 2280
ggagagaga gtagcccctc agactcttct tactaagtct caggacgtcg gtgttcccaa 2340
ctccaagggg acctggtgac agacgaggct gcaggctgcc tccctctcag cctggacagc 2400
taccaggate teactgggte teagggeeca gagetttgge cagageagag aacagaatgt 2460
gtcaaggaga agaatcattt gtttacaaac tgatgagcag atcccagacc ttctctacct 2520
tcaggaatgg cagaaacctc tattcctggg gccagggcag agcttgaggt gttctgggga 2580
aggtggtgct cagagccttc cctgtgcccc tccacttgtt ctggaaaact caccacttga 2640
etteagaget tteteteeaa agactaagat gaagaegtgg eecaaggtag ggggtagggg 2700
gagcctgggt cttggagggc tttgttaagt attaatataa taaatgttac acatgtgaca 2760
cctgcccagt gaaaaactaa aaaaaaaaaa
<210> 18
<211> 2263
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte clone 1759763
<400> 18
eggacegtee geetaegggg geegggaegt egeetgegeg tetetegttt teggaegget 60
geageatege ggtggggate gaaagegggg gettetggga egeagetetg gagaegegge 120
ctcggaccag ccatttcggt gtagaagtgg cagcacggca gactggtcaa acaaatggat 180
tttacagagg cttacgcgga cacgtgctct acagttggac ttgctgccag ggaaggcaat 240
gttaaagtet taaggaaact geteaaaaag ggeegaagtg tegatgttge tgataacagg 300
ggatggatgc caattcatga agcagcttat cacaactctg tagaatgttt gcaaatgtta 360
attaatgcag attcatctga aaactacatt aagatgaaga cctttgaagg tttctgtgct 420
ttgcatctcg ctgcaagtca aggacattgg aaaatcgtac agattctttt agaagctggg 480
gcagatccta atgcaactac tttagaagaa acgacaccat tgtttttagc tgttgaaaat 540
ggacagatag atgtgttaag gctgttgctt caacacggag caaatgttaa tggatcccat 600
tctatgtgtg gatggaactc cttgcaccag gcttcttttc aggaaaatgc tgagatcata 660
aaattgcttc ttagaaaagg agcaaacaag gaatgccagg atgactttgg aatcacact 720
ttatttgtgg ctgctcagta tggcaagcta gaaagcttga gcatacttat ttcatcaggt 780
gcaaatgtca attgtcaagc cttggacaaa gctacaccct tgttcattgc tgctcaagag 840
ggacacacaa aatgtgtgga gcttttgctc tccagtgggg cagatcctga tctttactgt 900
aatgaggaca gttggcagtt acctattcat gcagctgcac aaatgggcca tacaaaaatc 960
ttggacttgt taataccact tactaaccgg gcctgtgaca ctgggctaaa caaagtaagc 1020
cctgtttact cagcagtgtt tgggggacat gaagattgcc tagaaatatt actccggaat 1080
ggctacagec cagacgecca ggcgtgectt gtttttggat teagttetee tgtgtgeatg 1140
gctttccaaa aggactgtga gttctttgga attgtgaaca ttcttttgaa atatggagcc 1200
cagataaatg aacttcattt ggcatactgc ctgaagtacg agaagttttc gatatttcgc 1260
tactttttga ggaaaggttg ctcattggga ccatggaacc atatatatga atttgtaaat 1320
catgcaatta aagcacaagc aaaatataag gagtggttgc cacatcttct ggttgctgga 1380
tttgacccac tgattctact gtgcaattct tggattgact cagtcagcat tgacaccctt 1440
atetteaett tggagtttae taattggaag acaettgeae eagetgttga aaggatgete 1500
tetgetegtg ceteaaacge ttggatteta cagcaacata ttgccactgt tecatecetg 1560
acceatettt gtegtttgga aatteggtee agtetaaaat cagaaegtet aeggtetgae 1620
agttatatta gtcagctgcc acttcccaga agcctacata attatttgct ctatgaagac 1680
gttctgagga tgtatgaagt tccagaactg gcagctattc aagatggata aatcagtgaa 1740
actacttaac acagctaatt ttttctctg aaaaatcatc gagacaaaag agccacagag 1800
ttggggggcc agtagttcag tgagaatgtt tatgtttaca actagccttc ccagtaaaaa 1920
aaaaaaaaaa aaaaaaaaaa aattgtaaac atcacttata ttactttatt gcagcttcat 1980
```

Docket No.: PF-0525 USN

I hereby claim the benefit under Title 35, United States Code, §119(e) of any United States provisional application(s) listed below.

Application		Status (Pending,
Serial No.	Filed	Abandoned, Patented)
60/087,104	May 28, 1998	Expired
60/150,701	December 17, 1998	Expired

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in said prior application(s) in the manner required by the first paragraph of Title 35, United States Code §112, I acknowledge my duty to disclose material information as defined in Title 37 Code of Federal Regulations, §1.56(a) which occurred between the filing date(s) of the prior application(s) and the national or Patent Cooperation Treaty international filing date of this application:

Application		Status (Pending,
Serial No.	Filed	Abandoned, Patented)
I hereby app	oint the following:	
Lucy J. Billings		Reg. No. <u>36,749</u>
Michael C. Cerrone		Reg. No. <u>39,132</u>
Diana Hamlet-Cox		Reg. No. 33,302
Richard C. Ekstrom		Reg. No. 37,027
Barrie D. Greene		Reg. No. 46,740
Matthew R. Kaser		Reg. No. 44,817
Lynn E. Murry		Reg. No. 42,918
Shirley A. Recipon		Reg. No. 47,016
Susan K. Sather		Reg. No. 44,316
Michelle M. Stempi	en	Reg. No. <u>41,327</u>
David G. Streeter		Reg. No. 43,168
Stephen Todd		Reg. No. 47,139
P. Ben Wang		Reg. No. 41,420
_		

respectively and individually, as my patent attorneys and/or agents, with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith. Please address all communications to:

Docket No.: PF-0525 USN

DECLARATION AND POWER OF ATTORNEY FOR UNITED STATES PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name, and

I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if more than one name is listed below) of the subject matter which is claimed and for which a United States patent is sought on the invention entitled

HUMAN SOCS PROTEIN

the specification of which:								
// is attached hereto.								
/X_/ was filed on _] box contains an X //	November 21, 2000 a , was amended on	as application Serial No.	09/701,232 and if this					
/X_/ was filed as Patent Cooperation Treaty international application No. PCT/US99/11497 on May 25, 1999, if this box contains an X /_/, was amended on under Patent Cooperation Treaty Article 19 on 2001, and if this box contains an X /_/, was amended on								
I hereby state th	I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.							
I acknowledge my duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).								
foreign application(s) for Cooperation Treaty into United States indicated patent or inventor's cert designating at least one	or patent or inventor's crnational applications below and have also in ificate and Patent Coocountry other than the	certificate indicated belo (s) designating at least or dentified below any fore peration Treaty internation United States for the same	ne country other than the ign application(s) for onal application(s)					
Country	Number	Filing Date	Priority Claimed					
			// Yes // No					

Docket No.: PF-0525 USN

Sole Inventor or

LEGAL DEPARTMENT INCYTE GENOMICS, INC. 3160 PORTER DRIVE, PALO ALTO, CA 94304

TEL: 650-855-0555 FAX: 650-849-8886 or 650-845-4166

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Full name:

Preeti Lal

First Joint Inventor:				
	Signature:	Precti Cel		
100	Date:	17th JANUARY, 2001		
į.	Citizenship	India LA		
	Residence:	Santa Clara, California		
	P.O. Address:	P.O. Box 5142 Santa Clara, California 95056		
Second Joint Inventor:	Full name: Signature:	Jennifer L. Hillman		
2 00	Date:	Allne 16 , 2001		
200	Citizenship Residence:	United States of America Mountain View, California		
	P.O. Address:	230 Monroe Drive, #17 Mountain View, California 94040		

Third Joint Inventor:	Full name:	Gina A. Gorgone			
3°°	Signature:	Dineal Chron			
5 ℃	Date:	,2001			
	Citizenship	United States of America			
	Residence:	Boulder Creek, California			
	P.O. Address:	1253 Pincrest Drive			
		Boulder Creek, California 95006			
Fourth Joint Inventor:	Full name:	Neil C. Gorley			
400	Signature:	They truly			
90	Date:	JAMAPY 31 ,2001			
	Citizenship	United States of America			
	Residence:	Castro Valley, California			
	P.O. Address:	20426 Crow Creek Road Castro Valley, CA 94552			
		Castro vaney, CA 74332			
Fifth Joint Inventor:	Full name:	Chandra Patterson			
$\hat{\mathcal{N}}$	Signature:	Chaudra Pattetson			
550	Date:	(/(7 ,2001			
	Citizenship	United States of America			
	Residence:	Menlo Park, California			
	P.O. Address:	490 Sherwood Way, #1 Menlo Park, CA 94025			

Sixth Joint Inventor:	Full name:	Henry Yue			
۸ ۸	Signature:	Henry D.			
600	Date:	January 26, 2001			
Ų	Citizenship	United States of America			
	Residence:	Sunnyvale, California CA			
	P.O. Address:	826 Lois Avenue			
	1.0011441 6550	Sunnyvale, CA 94087			
Seventh Joint Inventor:	Full name: Signature: Date: Citizenship Residence: P.O. Address:	Y. Tom Tang U. Aon Again 27, 2001 People's Republic of China USA San Jose, California 4230 Ranwick Court San Jose, CA 95118			
Eighth Joint Inventor:	Full name:	Yalda Azimzai			
45	Signature:	valdo Commo			
α_0	Date:	February 2rd, 2001			
V	Citizenship	United States of America			
	Residence:	Castro Valley, California			

5518 Boulder Canyon Dr. Castro Valley, CA 94552

P.O. Address: