SOME DISCRETE DISTRIBUTIONS

Name	Parameters	Genesis / Usage	Notation	$p(x) = \mathbb{P}[X = x]$ (and non-zero range)	$\mathbb{E}[X]$	Var(X)	Comments
Uniform (discrete)	$k \in \mathbb{N}$	Set of k equally likely outcomes	$Unif(1,\ldots,k)$ (not standard)	p(x) = 1/k $x = 1,, k$	$\frac{k+1}{2}$	$\frac{k^2-1}{12}$	Fair dice roll $(k=6)$
Bernoulli trial	$\theta \in [0,1]$	Experiment with two outcomes (typically, success $= 1$, fail $= 0$)	$Bernoulli(\theta)$	$p(x) = \theta^x (1 - \theta)^{1-x}$ $x = 0, 1$	θ	$\theta(1-\theta)$	Coin toss
Binomial	$n \in \mathbb{N}, \ \theta \in [0, 1]$	Number of successes in n i.i.d. Bernoulli trials	$Bi(n,\theta) \\ B(n,p)$	$p(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n-x}$ x = 0, 1, 2,, n	$n\theta$	$n\theta(1-\theta)$	Sampling with replacement $Bi(1, \theta) \equiv Bernoulli(\theta)$
Geometric	$\theta \in [0,1)$	Number of failed i.i.d. Bernoulli trials before first success	$Geom(\theta)$ $Geo(\theta)$	$p(x) = \theta^{x}(1 - \theta)$ $x = 0, 1, 2, \dots$	$\frac{\theta}{1-\theta}$	$\frac{\theta^2}{(1-\theta)^2}$	Alternative formulations might swap θ and $1-\theta$, or use $X'=X+1$ to include the successful trial
Negative Binomial	$k \in \mathbb{N}, \ \theta \in (0,1]$			$p(x) = \binom{x-1}{k-1} \theta^k (1-\theta)^{x-k} x = k, k+1, k+2, \dots$	$\frac{k}{\theta}$	$\frac{k(1-\theta)}{\theta^2}$	Several alternative formulations exist.
Hypergeometric	$N \in \mathbb{N}$ $k \in \{0, \dots, N\}$ $n \in \{0, \dots, n\}$	Number of special objects in a random sample of n objects, from a population of N objects with k special objects	HypGeom(N,k,n) (not standard)	$p(x) = \binom{k}{x} \binom{N-k}{n-x} / \binom{N}{n}$ $x = 0,, n$	$\frac{nk}{N}$	$n\frac{N-n}{N-1}\frac{k}{N}(1-\frac{k}{N})$	
Poisson	$\lambda \in (0, \infty)$	Counting events occurring 'at random' within space or time	$Poi(\lambda)$	$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$ $x = 0, 1, 2, \dots$	λ	λ	

SOME CONTINUOUS DISTRIBUTIONS

Name	Parameters	Genesis / Usage	Notation	$f(x) = \mathbf{p.d.f.}$ (and non-zero range)	$\mathbb{E}[X]$	Var(X)	Comments
Uniform (continuous)	$\alpha, \beta \in \mathbb{R} \text{ with } \alpha < \beta$	The uniform distribution for a continuous interval	$Unif(\alpha, \beta)$ U(a, b)	$f(x) = \frac{1}{\beta - \alpha}$ $x \in (\alpha, \beta)$	$\frac{\alpha+\beta}{2}$	$\frac{(\beta - \alpha)^2}{12}$	Also written as $U[\alpha, \beta]$ and similarly for open and half-open intervals.
Normal	$\mu \in \mathbb{R}, \ \sigma \in (0, \infty)$	Empirically and theoretically (via CLT, etc.) a good model in many situations.	$N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $x \in \mathbb{R}$	μ	σ^2	$N(0,1) \equiv \text{standard normal.}$ $X \sim N(\mu, \sigma^2) \Rightarrow$ $aX + b \sim N(a\mu + b, a^2\sigma^2)$ Hence $Z = \frac{X - \mu}{\sigma} \sim N(0,1)$
Exponential	$\lambda \in (0, \infty)$	Inter-arrival times of random events	$Exp(\lambda)$	$f(x) = \lambda e^{-\lambda x}$ $x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	Alternative parametrization: $\theta = \frac{1}{\lambda}$
Gamma	$\alpha, \beta \in (0, \infty)$	Lifetimes of ageing items, multi-inter-arrival times	$Ga(\alpha, \beta)$ $\Gamma(\alpha, \beta)$	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$ $x > 0$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	Alternative parametrization: $\theta = 1/\beta$, $Ga(1,\lambda) \equiv Exp(\lambda)$, $Ga(n/2,1/2) \equiv \chi_n^2$
Log-normal	$\mu \in \mathbb{R}, \sigma \in (0, \infty)$	Quantities related to exponential growth	$\frac{logN(\mu, \sigma^2)}{\text{(not standard)}}$	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\log x - \mu)^2}{\sqrt{2}\sigma}\right)$ $x > 0$	$e^{\mu + \frac{1}{2}\sigma^2}$	$(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$	If $X \sim log N(\mu, \sigma^2)$ then $\log X \sim N(\mu, \sigma^2)$
Chi-squared	$n \in \mathbb{N}$	Squared (normally distributed) errors, statistical tests	χ_n^2	$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}$ $x > 0$	n	2n	$X_n^2 \equiv Ga(n/2, 1/2)$ $X_i \sim N(0, 1) \text{ i.i.d. } \Rightarrow \sum_{i=1}^n X_i^2 \sim \chi_n^2$
Beta	$\alpha, \beta \in (0, \infty)$	Quantities constrained to be within intervals	$Be(\alpha,\beta) \\ Beta(\alpha,\beta)$	$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$ $x \in [0,1]$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$	$Be(1,1) \equiv Unif(0,1)$
Cauchy	$a,b\in\mathbb{R}$	Heavy tailed, pathological examples	Cauchy(a,b)	$f(x) = \frac{1}{\pi b} \frac{b^2}{(x-a)^2 + b^2}$ $x \in \mathbb{R}$	undefined	undefined	Cauchy(0,1) is often called 'the' Cauchy distribution
Pareto	$\alpha, \beta \in (0, \infty)$	Heavy tailed quantities	$Pareto(\alpha, \beta)$	$f(x) = \frac{\alpha \beta^{\alpha}}{x^{\alpha+1}}$ $x > \beta$	$\frac{\frac{\alpha\beta}{\alpha+1}}{\text{if }\alpha > 1}$	$\frac{\alpha^2 \beta}{(\alpha - 1)^2 (\alpha - 2)}$ if $\alpha > 2$	If $X \sim Pareto(\alpha, \beta)$ then $\log \frac{X}{\beta} \sim Exp(\alpha)$
Weibull	$\lambda, k \in (0, \infty)$	Lifetimes, extreme values, particle sizes	$Weibull(\lambda,k)$	$f(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$ $x > 0$	$\lambda\Gamma(1+1/k)$	$\lambda^{2} \left[\Gamma(1+2/k) + \Gamma(1+1/k)^{2} \right]$	If $X \sim Weibull(\lambda, k)$ then $(X/\lambda)^k \sim Exp(1)$
Student t	$n \in \mathbb{N}$	Statistical tests	t_n	$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$ $x \in \mathbb{R}$	0 if $n > 1$	$\frac{n}{n-2}$ if $n > 2$	$t_1 \equiv Cauchy(0,1)$ Can take $n \in (0,\infty)$
F	$\nu, \delta \in (0, \infty)$	Statistical tests	$F_{ u,\delta}$	$f(x) = \frac{\nu^{\nu/2} \delta^{\delta/2} x^{\nu/2 - 1}}{B(\nu/2, \delta/2)(\nu x + \delta)^{(\nu + \delta)/2}}$ $x > 0$	$\frac{\frac{\delta}{\delta - 2}}{\text{if } \delta > 2}$	$\frac{2\delta^{2}(\nu+\delta-2)}{\nu(\delta-2)^{2}(\delta-4)}$ if $\delta > 4$	If $X \sim \chi^2_{\nu}$ and $Y \sim \chi^2_{\delta}$ are independent then $\frac{X/\nu}{Y/\delta} \sim F_{\nu,\delta}$. If $T \sim t_{\nu}$ then $T^2 \sim F_{1,\nu}$.
							If $Z \sim Be(\alpha, \beta)$ then $\frac{\beta Z}{\alpha(1-Z)} \sim F_{2\alpha,2\beta}$.