Understanding the high device efficiency of a class of solution-processed small-molecule solar cells

Andriy Zhugayevych¹, Olena Postupna¹, Sergei Tretiak¹, Guillermo Bazan²

 Theoretical Division, Los Alamos National Laboratory
 Department of Chemistry and Biochemistry, University of California, Santa Barbara

Acknowledgements: CEEM EFRC project (UCSB)

Small-molecule based bulk-heterojunction solar cells

Power conversion efficiency: main factors

Shockley–Queisser limit for $E_{\sf gap}=1.5~{\sf eV}$		32%	
Heterojunction losses, $V_{\rm oc}/E_{\rm gap}$	\times	0.6	
Quantum efficiency, $J_{sc}/\max J_{sc}$	\times	0.7	
Fill Factor	\times	0.7	
Power conversion efficiency	=	10%	

 $V_{\rm oc} = {\sf open-circuit}$ voltage, $J_{\sf sc} = {\sf short-circuit}$ current

Our goal

Perform first-principles investigations to:

- study performance on a microscopic (single-crystallite) scale
- determine the bottleneck for power conversion efficiency
- understand the dependence on chemical composition

Methods and challenges

- small-polaron/Frenkel-exciton hopping within Holstein Hamiltonian
- parameters by ab-initio density functional theory (DFT): B3LYP and CAM-B3LYP
- intermolecular geometries: semiempirical PM6, force field MM3, and dispersion-corrected DFT

- at the limits of "standard" computational chemistry tools
- too many uncontrolled approximations

Molecules considered

 $\begin{array}{c} {\rm DTS(PTTh_2)_2} \\ {\rm up~to~7\%~efficiency} \\ {\rm [Y~Sun~\it et~\it al.~Nature~Mater~11,~44~(2012)]} \end{array}$

A – aliphatic chain, DTS – dithienosilole, PT – pyridalthiadiazole, Th – thiophene

Light absorption: molecules in solution

Vibrationally resolved spectra

- B3LYP underestimates vibronic couplings for low- ω modes
- ullet CAM-B3LYP overestimates vib. couplings for high- ω modes

Exciton transport

- transfer rates 1 ps⁻¹
- diffusion length 50 nm

 \implies Excitons are "delocalized" over crystallites of size $< 100\,\text{nm}$

Hole transport

Transport goes along π -stacks

- transfer rates 1 ps⁻¹
- mobility 0.3 cm²/V/s
- diffusion coef. $1 \, \text{nm}^2/\text{ps}$
- disorder-resistant

⇒ Holes are efficiently transported across crystallites

Where is the bottleneck for the power conversion efficiency

No losses on single crystallite scale \implies power conversion efficiency is determined at mesoscale (interfaces, grain boundaries)

no solvent additive¹
(color mark crystallite orientation)

optimal concentration of solvent additive

¹Y Sun *et al.* Nature Mater 11, 44 (2012)

Dependence of the efficiency on molecular composition

HOMO level	-5.3 eV	-5.4 eV	
Light absorption peak	1.9 eV	2.1 eV	
Transition dipole	6.1 Au	5.0 Au	
Exciton diffusion length	70 nm	50 nm	
Hole mobility	$0.3\mathrm{cm}^2/\mathrm{V/s}$	$0.2\mathrm{cm}^2/\mathrm{V/s}$	
Binding in crystal (PM6)	0.4 eV	0.25 eV	
(MM3)	4 eV	2.5 eV	

Conclusions

- For high-efficiency small-molecule polycrystalline bulk-heterojunction (SMBHJ) solar cells the efficiency is limited by the mesoscale design (interfaces, morphology of the active layer).
- There are no "losses" on a single-crystallite scale due to the disorder-resistant and relatively fast charge carrier transport along π-stacks and exciton "delocalization" over crystallites.
- Two materials having similar molecular structure and electronic properties on a single-crystallite scale may show different performance as donors in SMBHJ solar cells.

Heterojunction losses

- fullerene-based acceptor: $E_{\text{LUMO}} \approx -4.3 \,\text{eV}$
- π -conjugated donor: $E_{\sf gap} \gtrsim 1.5\,{\sf eV}$ for $E_{\sf HOMO} \lesssim -5.3\,{\sf eV}$

Quantum efficiency

Y Sun et al. Nature Mater 11, 44 (2012)

Fill factor

Y Sun et al. Nature Mater 11, 44 (2012)

Holstein model (local coupling) with one site per molecule:

$$\sum_{i} \frac{\varepsilon_{i}}{n_{i}} + \sum_{ij} \frac{t_{ij}}{c_{i}} c_{j}^{\dagger} + \sum_{\alpha} \hbar \omega_{\alpha} \left(b_{\alpha}^{\dagger} b_{\alpha} + \frac{1}{2} \right) + \sum_{i\alpha} \hbar \omega_{\alpha} \mathbf{g}_{i\alpha} \left(b_{\alpha}^{\dagger} + b_{\alpha} \right) n_{i}$$

here c_i – excitons, holes, or electrons treated as noninteracting quasiparticles, b_{α} – intramolecular normal modes.

	ε	t, meV	$\hbar\omega_{eff},meV$	$g_{\rm eff}^2$	$E^{polaron},meV$
exciton,hole	0	60	50	4	200

For $T = 300 \,\text{K} \, (25 \,\text{meV})$:

- $\hbar\omega > kT \implies$ no nonadiabatic molecular dynamics
- $t^{\text{polaron}} = 0 \implies$ no polaron bands
- $t < E^{\text{polaron}} \implies \text{small polaron hopping}$

But transfer rates $w_{(i \to j)} = \frac{2\pi}{\hbar} |t_{ij}|^2 \int \rho_i^{\rm emi}(E) \rho_j^{\rm abs}(E) \, {\rm d}E \sim 1 \, {\rm ps}^{-1}$ are comparable with intramolecular relaxation times

"Standard" computational chemistry tools

- 150 atoms per molecule, 1000 atoms per unit cell
- 8 cpu/node
- Gaussian, MOPAC
- state-of-the-art methods are not implemented
- geometry optimization fails
- PBC calculations fail
- no SCF convergence for RO-DFT
- •

Too many uncontrolled approximations

For small polaron hopping:

- basis set
- density functional
- oversimplified environment (dimer calculations, PCM)
- simplified potential energy surfaces
- infinitely fast on-site polaron relaxation
- thermally equilibrated vibrations
- Fermi golden rule (small constant transfer integrals)
- discrepancies in calculating transfer integrals
- hole polaron wave function = HOMO
- . . .

Light absorption: crystal

