

FINAL REPORT

Data Analysis in Python

Topic: OUTCOME OF MATCHES PREDICTION MODEL

Lecturer Nguyen Ngoc Tu

Student Nguyen Tuan Hung

Ho Chi Minh City, 28th February 2022

Contents

- 1. Introduction (Page 3)
- 2. Process (Page 3)
- 3. Exploratory Data Analysis (Page 9)
- **4. Prediction phase (Page 15)**
- **5. Final conclusions (Page 15)**

1. Introduction

The goal of this project is to predict outcomes of European football matches in Python. Based on the dataset provided on https://www.kaggle.com/hugomathien/soccer that includes basic match data, FIFA player statistics and bookkeeper data, I built a model to predict the probability of each match outcome: home win, draw, or home lose.

Two of most important things I used are feature transformation and dimensionality reduction techniques that in order to improve the quality of the features. This helped me to make some simple analyses from the actual key features of each match and what relationships between them and the outcomes. Lastly, I kept the 10 most useful features to predict our output and given them into machine learning model.

This European Soccer Database has more than 25,000 matches, more than 10,000 players for European professional soccer seasons from 2008 to 2016, 11 European Countries with their lead championship, players and Teams's attributes sourced from EA Sports' FIFA video game series, team line up with squad formation, betting odds from up to 10 providers and detailed match events (goal types, possession, corner, cross, fouls, cards etc...) for more than 10,000 matches.

Analytical process: some steps for exploring and cleaning the dataset, some steps for analyzing relationships between features and label using basic statistics, and some steps for predicting the outcome using Random Forest algorithm.

2. Process (Step-by-step)

2.1. Loading required data

Loading matches data from CSV file to Dataframe that will give us the scores and opposing teams. I used also player's attributes in order to filter player's ratings and compare overall team ratings. The following is all complete dataframes of the features uses in the analysis:

Index	id	:eam_api_id	am_fifa_api	team_long_name	m_short_na
48	4996	8483	1926	Blackpool	BLA
85	11822	4087	111271	Évian Thonon Gaillard FC	ETG
115	16848	8350	29	1. FC Kaiserslautern	KAI
283	48358	8306	472	UD Las Palmas	LAS
259	43043	8696	456	Racing Santander	SAN
270	43054	9864	573	Málaga CF	MAL
112	16237	8358	25	SC Freiburg	FRE
193	31455	8322	111082	Arka Gdynia	ARK
8	9	7947	nan	FCV Dender EH	DEN
133	20522	9885	45	Juventus	JUV
297	50204	7730	1862	FC Lausanne-Sports	LAU

Figure 1: Team data

id	country_id	league_id	season	stage	date	natch_api_ic	ne_team_ap	ıy_team_ap
6970	4769	4769	2013/2014	37	2014-05-10 00:00:00	1468561	9851	9874
2146	1729	1729	2009/2010	12	2009-11-07 00:00:00	658726	10252	8559
15749	15722	15722	2008/2009	12	2008-11-08 00:00:00	506624	8025	8028
20175	19694	19694	2010/2011	13	2010-11-13 00:00:00	840302	9938	8597
5624	4769	4769	2010/2011	18	2010-12-18 00:00:00	830119	9847	9829
7240	4769	4769	2014/2015	27	2015-02-28 00:00:00	1709958	8588	9851
22804	21518	21518	2011/2012	22	2012-02-04 00:00:00	1051855	8581	8696
9147	7809	7809	2012/2013	20	2013-02-02 00:00:00	1239645	8721	8406
12978	10257	10257	2015/2016	17	2015-12-20 00:00:00	2060588	9891	8564
15548	13274	13274	2015/2016	22	2016-02-07 00:00:00	1983467	8526	8464
12991	10257	10257	2015/2016	18	2016-01-06 00:00:00	2060612	8540	8535

Figure 2: Match data

Figure 3: Players's attributes data

2.2. Raw data preparation

I decided to remove useless columns so as to not analyze with meaningless informations. I have kept id of player who have played, id for each team (key), the date of the match and number of goals scored by each team (label).

```
home_players = ["home_player_" + str(x) for x in range(1, 12)]
away_players = ["away_player_" + str(x) for x in range(1, 12)]

matches_kept_columns = ["id", "match_api_id", "date", "home_team_api_id", "away_team_goal"]

matches_kept_columns = matches_kept_columns + home_players
matches_kept_columns = matches_kept_columns + away_players

matches_df = matches_df[matches_kept_columns]
```

Real data is never clean. We need to make sure we clean the data by converting or getting rid of null or missing values. The next code cell would show you if any of the rows have null value.

```
In [9]: matches_df.isnull().any().any(), matches_df.shape
Out[9]: (True, (27000, 29))
```

Then, I would find how many data points in each column are null.

Index	0
id	0
match_api_id	0
date	0
home_team_api_id	0
away_team_api_id	0
home_team_goal	0
away_team_goal	0
home_player_1	1277
home_player_2	1372
home_player_3	1332
home_player_4	1375
home_player_5	1370
home_player_6	1380
home_player_7	1278
home_player_8	1367
home_player_9	1320
home_player_10	1496
home_player_11	1621
away_player_1	1286
away_player_2	1328
away_player_3	1353
away_player_4	1373
away_player_5	1394
away_player_6	1360
away_player_7	1283

I decided to fix null values by deleting them. Again, I checked the null values and number of rows, we would see that there are no null values and number of rows decreased accordingly.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

In [14]: matches_df.isnull().any().any(), matches_df.shape
Out[14]: (False, (22224, 29))

Then, I created some new features in order to serve for analysis:

- **goal_difference** -> the difference of number of goals between home and away teams
- home_status -> HL if home team loses, HW if it wins else it stores D.
 It will be used as label to predict.
- **overall_rating_home** -> total rating of each player in the home team
- **overall_rating_away** -> total rating of each player in the away team
- min_overall_rating_home -> minimum rating of each player in the home team
- min_overall_rating_away -> minimum rating of each player in the away team
- max_overall_rating_home -> maximum rating of each player in the home team
- max_overall_rating_away -> maximum rating of each player in the away team
- **mean_overall_rating_home** -> mean rating of each player in the home team
- mean_overall_rating_away -> mean rating of each player in the away team
- **std_overall_rating_home** -> standard deviation rating of each player in the home team
- **std_overall_rating_away** -> standard deviation rating of each player in the away team
- overall_rating_difference -> difference of total rating between the two teams

After merging new features with the initial dataframe, I dropped player's rating, removed the matches that have the same **match_api_id** (key) and filter the latest dates of each unique matches. Finally, to perform further analysis, I merged home and away team's names with the main dataframe. We can see a sample of our resulting DataFrame in below image:

	Index	id	natch_api_ic	date	ne_team_ap	ıy_team_ap	ne_team_g	ay_team_g	al_differen	ıome_statu:	all_rating_h
C		4770	483130	2008-08-09 00:00:00	9827	7819				HW	759
1		4771	483131	2008-08-09 00:00:00	9746	9831				HW	763
2		4773	483133	2008-08-10 00:00:00	9748	9941				HW	770
3		4774	483134	2008-08-09 00:00:00	9829	9847				HW	751
4		4775	483135	2008-08-09 00:00:00	8481	8639				D	775
5		4777	483137	2008-08-09 00:00:00	9874	9855			-1	HL	818
6		4778	483138	2008-08-09 00:00:00	9873	9853				HW	743

3. Exploratory Data Analysis

3.1. Overall Rating HOME/AWAY

Insight #1: The win rate of home team is higher if home team's overall rating is higher than away team's overall rating, however, that are not much different. If they are the same, the win rate of home team is lower.

mpare_overall_rat	D	HL	HW	win_rate
home_is_equal	20	20	28	41.18%
home_is_higher	762	752	1388	47.83%
home_is_lower	709	815	1334	46.68%

Graph 4: Overall Rating vs Home's Win Rate

3.2. Overall Rating Difference

Insight #2: There is a difference in distributions of overall rating difference when the home team lose and the home team didn't win, yet that are not much different.

Graph 5: Overall Rating vs Match Outcome

Most of the matches in which the home team didn't lose, the home team tended to have a higher overall rating than the away team. Conversely, when the home team lost, the away team tended to have a higher overall rating.

3.3. Min Overall Rating HOME/AWAY

Insight #3: The win rate of home team is higher if home team's min overall rating is higher than away team's min overall rating, but not much different. If they are the same, the win rate of home team is highest.

The below table compares min rating of each player in the home teams with away teams's minimum rating of each player. We can see that a little bit of different between the win rate of home team if home team's min overall rating is higher than away team's min overall rating. Furthermore, When the result is draw, the home team's win rate is higher than the other cases.

pare_min_overall_r	D	HL	HW	win_rate
home_is_equal	87	89	186	51.38%
home_is_higher	700	728	1298	47.62%
home_is_lower	704	770	1266	46.20%

Graph 6: Overall Rating vs Home's Win Rate

3.4. Max Overall Rating HOME/AWAY

Insight #4: There is a slight difference in how the win rate of home team is when home team's max overall rating is higher than away team's max overall rating. The win rate of home team is lowest when the difference of max overall rating between the two teams is 0.

are_max_overall_r	D	HL	HW	win_rate
home_is_equal	121	132	203	44.52%
home_is_higher	703	692	1303	48.30%
home_is_lower	667	763	1244	46.52%

Graph 7: Max Overall Rating vs Home's Win Rate

The above table compares min rating of each player in the home teams with away teams's minimum rating of each player. Looking at win rate, it is clear that *the win rate of home team if home team's min overall rating is higher than away team's min overall rating* is relatively high when compared to other cases.

3.5. Mean Overall Rating HOME/AWAY

Insight #5: The win rate of home team is higher if home team's min overall rating is higher than away team's min overall rating, but not much different. If they are the same, the win rate of home team is highest.

are_mean_overall_	D	HL	HW	win_rate
home_is_equal	20	20	28	41.18%
home_is_higher	762	752	1388	47.83%
home_is_lower	709	815	1334	46.68%

Graph 8: Mean Overall Rating vs Home's Win Rate

The above table compares min rating of each player in the home teams with away teams's minimum rating of each player. Looking at win rate, it is clear that the win rate of home team if home team's min overall rating is higher than away team's min overall rating is relatively high when compared to other cases.

3.6. Standard Deviation Overall Rating HOME/AWAY

Insight #6: The win rate of home team is higher if home team's std overall rating is higher than away team's std overall rating, but not much different. If they are the same, the win rate of home team is highest.

pare_std_overall_r	D	HL	HW	win_rate
home_is_equal	1	0	0	0.00%
home_is_higher	767	787	1414	47.64%
home_is_lower	723	800	1336	46.73%

Graph 9: SD Overall Rating vs Home's Win Rate

The above table compares standard deviation rating of each player in the home teams with away teams's standard deviation rating of each player. Looking at win rate, it is

clear that the win rate of home team if home team's min overall rating is higher than away team's min overall rating is relatively high when compared to other cases. Especially, the case with the no difference of standard deviation rating of each player between two teams is extremely rare.

3.7. Further analysis

Insight #7: Playing at home boosts the chances of a team to win the match. Lets look at big picture:

Inde	x h	ome_team_goal	away_team_goal
count	58	328	5828
mean	1.	.5415236787	1.1350377487989
std	1.	. 2625856041	1.12316248055681
min	0		0
25%	1		0
50%	1		1
75%	2		2
max	8		8

It is seen from the mean that home teams generally score higher than away team, in turn win the match. Let's try to look at distribution of game outcomes:

The above composition suggests that Home teams won around 47% of matches, while away team won 29%. Furthermore, a quarter of all matches were a draw.

It was seen that 83% teams have scored higher at home location in comparison to their away scores. Furthermore, there is a quite strong correlation between a team's home scoring and away scoring

Insight #8: There're just small differences decide matches.

which means that most matches are tough to predict, and that small differences decide matches.

Insight #9: Chelsea is the only club that leads the team score list even when it's home or away team.

Insight #10: Chelsea is the club that leads the list of clubs with the most wins. Stoke City is the club that leads the list of clubs with the most defeats.

4. Prediction phase

First, I kept the 10 most useful features to predict my output. It's pretty logical, the best features are linked with goal differences and ratings of teams.

In my model of machine learning, I decided to use Random Forest algorithm:

The following table would show you 10 final features I used in my model:

5. Final Conclusions

5.1. 43,5% accuracy of predictions on test dataset.

```
In [28]: score = clf.score(selector.transform(X_test), y_test)
    ...: y_pred = clf.predict(selector.transform(X_test))
    ...: score
Out[28]: 0.4351407000686342
```

5.2. Plotting results for each categorical output.

In conclusion, I have relative predict results when victory or draw happen (approx. 68% accuracy) but my model is not able to predict defeats (only 50,8%).

