Отчет по лабораторной работе №8

Дисциплина: Математические основы защиты информации и информационной безопасности

Выполнила Дяченко Злата Константиновна, НПМмд-02-22

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы 4.1 Шаг 1 4.2 Шаг 2 4.3 Шаг 3 4.4 Шаг 4	9 9 10 10
5	4.5 Шаг 5	11 12

Список иллюстраций

4.1	Реализация алгоритма сложения неотрицательных чисел	9
4.2	Реализация алгоритма вычитания неотрицательных чисел	10
4.3	Реализация алгоритма умножения неотрицательных целых чисел	
	столбиком	10
4.4	Реализация алгоритма быстрого столбика	11
4.5	Реализация алгоритма деления многоразрядных целых чисел	11

1 Цель работы

Ознакомится и реализовать алгоритмы целочисленной арифметики многократной точности.

2 Задание

Реализовать программно пять алгоритмов: алгоритм сложения неотрицательных чисел, алгоритм вычитания неотрицательных чисел, алгоритм умножения неотрицательных чисел, алгоритм быстрого столбика, алгоритм деления многоразрядных целых чисел.

3 Теоретическое введение

Алгоритм сложения неотрицательных чисел.

Вход. Два неотрицательных числа $u=u_1u_2...u_n, v=v_1v_2...v_n$; разрядность чисел n; основание системы счисления b.

 $\mathit{Bыход}$. Сумма $w=w_0w_1...w_n$, где w_0 – цифра переноса – всегда равная 0 либо 1.

- 1. Присвоить j := n, k := 0 (ј идет по разрядам, k следит за переносом).
- 2. Присвоить $w_j=(u_j+v_j+k)(modb)$, где w_j наименьший неотрицательный вычет в данном классе вычетов; $k=[\frac{u_j+v_j+k}{b}]$.
- 3. Присвоить j:=j-1. Если j>0, то возвращаемся на шаг 2; если j = 0, то присвоить w_0 :=k и результат: w.

Алгоритм вычитания неотрицательных чисел.

Вход. Два неотрицательных числа $u=u_1u_2...u_n, v=v_1v_2...v_n$, u>v; разрядность чисел n; основание системы счисления b.

Выход. Разность $w = w_1 w_2 ... w_n = u - v$.

- 1. Присвоить j := n, k := 0 (k заем из старшего разряда).
- 2. Присвоить $w_j=(u_j-v_j+k)(modb)$, где w_j наименьший неотрицательный вычет в данном классе вычетов; $k=[\frac{u_j-v_j+k}{b}]$.
- 3. Присвоить j:=j-1. Если j>0, то возвращаемся на шаг 2; если j = 0, то присвоить w_0 :=k и результат: w.

Алгоритм умножения неотрицательных целых чисел столбиком.

Вход. Числа $u=u_1u_2...u_n, v=v_1v_2...v_m$; основание системы счисления b.

Выход. Произведение $w=uv=w_1w_2...w_{m+n}$ 1. Выполнить присвоения: wm+1:=0, wm+2:=0,..., wm+n:=0, ј**Ж**m (ј перемещается по номерам

разрядов числа v от младших к старшим).

- 2. Если $v_{i}=0$, то присвоить $w_{i}:=0$ и перейти на шаг 6.
- 3. Присвоить i⊠n, k⊠ 0 (Значение і идет по номерам разрядов числа u, k отвечает за перенос).
- 4. Присвоить $t:=u_i*v_j+w_{i+j}+k, w_{i+j}:=t(modb), k:=\frac{t}{b}$, где $w_{i+j}-$ наименьший неотрицательный вычет в данном классе вычетов.
- 6. Присвоить ј⊠ j− 1. Если j > 0, то вернуться на шаг 2. Если j = 0, то результат w. Алгоритм быстрого столбика.

Вход. Числа $u=u_1u_2...u_n, v=v_1v_2...v_m$; основание системы счисления b. *Выход*. Произведение $w=uv=w_1w_2...w_{m+n}$

- 1. Присвоить t:=0.
- 2. Для s от 0 до m+n-1 с шагом 1 выполнить шаги 3 и 4.
- 3. Для і от 0 до s с шагом 1 выполнить присвоение t:=t+u_{n-i}*v_{m-s+i}. 4. Присвоить $w_{m+n-s}:=t(modb), t:=\frac{t}{b}$, где w_{m+n-s} наименьший неотрицательный вычет по модулю b. Результат: w.

Алгоритм деления многоразрядных целых чисел.

Вход. Числа $u=u_n...u_1u_0, v=v_t...v_1v_0$, n**⊠t**⊠1, $v_t\neq 0$; разрядность чисел соответственно n и t.

Выход. Частное $q=q_{n-t}...q_0$, остаток $r=r_t...r_0$.

- 1. Для ј от 0 n-t присвоить $q_j := 0$.
- 2. Пока $u\geqslant vb^{n-t}$, выполнять $q_{n-t}:=q_{n-t}+1, u:=u-vb^{n-t}.$
- 3. Для i=n,n-1,...,t+1 выполнить пункты 3.1-3.4.
- 3.1 если $u_i\geqslant v_t$, то присвоить $q_{i-t-1}:=b-1$, иначе присвоить $q_{i-t-1}:=\frac{u_ib+u_{i-1}}{v_t}$
- 3.2 пока $q_{i-t-1}(v_tb+v_{t-1})>u_ib^2+u_{i-1}b+u_{i-2}$ выполнять $q_{i-t-1}:=q_{i-t-1}-1$.
- 3.3 присвоить $u := u q_{i-t-1}b^{i-t-1}v$
- 3.4 если u<0, то присвоить $u:=u+vb^{i-t-1}, q_{i-t-1}:=q_{i-t-1}-1.$

4. r:=u. Результат: q и r.

4 Выполнение лабораторной работы

4.1 Шаг 1

Ознакомилась с предоставленными теоретическими данными. Для выполнения задания решила использовать язык Python. Написала функцию, реализующую алгоритм сложения неотрицательных чисел. Код функции и результат ее использования представлен на Рисунке 1 (рис. - fig. 4.1). Функция принимает на вход числа u, v, b. Пример работы алгоритма для числа из представленных для лабораторной работы материалов также представлен на рисунке.

```
In [54]: def alg_1(u, v, b):
    u=[int(a) for a in str(u)]
    v=[int(a) for a in str(v)]
    n=len(u)
    k=0
    w=[0]*(n+1)
    for j in range (n-1, -1, -1):
        w[j+1]=(u[j]+v[j]+k)\(\beta\)b
        k=math.floor((u[j]+v[j]+k)/b)
    w[0]=math.floor(k)
    print(w)

In [55]: alg_1(125,125,10)
    [0, 2, 5, 0]
In [56]: alg_1(125000,125000,10)
    [0, 2, 5, 0, 0, 0, 0]
```

Рис. 4.1: Реализация алгоритма сложения неотрицательных чисел

4.2 Шаг 2

Реализовала алгоритм вычитания неотрицательных чисел, написав функцию. Код функции и результат ее использования представлен на Рисунке 2 (рис. - fig. 4.2).

Рис. 4.2: Реализация алгоритма вычитания неотрицательных чисел

4.3 Шаг 3

Реализовала алгоритм умножения неотрицательных целых чисел столбиком, написав функцию. Код функции и результат ее использования представлен на Рисунке 3 (рис. - fig. 4.3).

```
In [83]: def alg_3(u,v,b):
    u=[int(a) for a in str(u)]
    v=[int(a) for a in str(v)]
    n=len(u)
    m=len(v)
    w=[0]*(n+m)
    for j in range(m-1, -1, -1):
        if (v[j]==0):
        w[j]=0
        continue
    k=0
    for i in range(n-1, -1, -1):
        t=u[i]*v[j]*v[j+x]+k
        w[i+j+1]=t%b
        k=math.floor(t/b)
    w[j]=k
    print(w)
In [85]: alg_3(11,11,10)
[0, 1, 2, 1]
In [86]: alg_3(11000,11000,10)]
[0, 1, 2, 1, 0, 0, 0, 0, 0, 0]
```

Рис. 4.3: Реализация алгоритма умножения неотрицательных целых чисел столбиком

4.4 Шаг 4

Реализовала алгоритм быстрого столбика. Код функции и результат ее применения представлен на Рисунке 4 (рис. - fig. 4.4).

```
In [96]: def alg_4(u,v, b):
    u=[int(a) for a in str(u)]
    v=[int(a) for a in str(v)]
    n=len(u)
    m=len(v)
    w=[0]*(n+m)
    t=0
    for s in range(0, m+n-1, 1):
        for i in range(0, s):
            t=t+u[n-i-1]*v[m-s+i-1]
            w[m+n-s-1]=t%b
            t=math.floor(t/b)
    print(w)
In [98]: alg_4(1000, 1500, 10)
[0, 1, 5, 0, 0, 0, 0, 0]
```

Рис. 4.4: Реализация алгоритма быстрого столбика

4.5 Шаг 5

Реализовала алгоритм деления многоразрядных целых чисел. Код функции и результат ее применения представлен на Рисунке 5 (рис. - fig. 4.5).

Рис. 4.5: Реализация алгоритма деления многоразрядных целых чисел

5 Выводы

Я ознакомилась с алгоритмами целочисленной арифметики многократной точности и реализовала их программно. Результаты работы находятся в репозитории на GitHub, а также есть скринкаст выполнения лабораторной работы.