MÉTODOS QUANTITATIVOS I AULA 6: MÍNIMOS QUADRADOS ORDINÁRIOS

Profs. Arthur Bragança e Daniel Grimaldi

MPAM-ENAP

6 de agosto de 2025

Introdução

PROPRIEDADES

Inferência em MQO

HETEROCEDASTICIDADE

MQO EM GRANDES AMOSTRAS

Problemas com MQO

Introdução

- ▶ Na aula passada estudamos os modelo de regressão bivariado e multivariado.
- ► Nessa aula:
 - Estudaremos as propriedades dos estimadores de MQO.
 - Estudaremos como testar hipóteses sobre os parâmetros de MQO.
 - Discutiremos o que ocorre quando variância do termo de erro não é constante.
 - Estudaremos as propriedades dos estimadores de MQO em amostras grandes.
 - Discutiremos o que ocorre quando há correlação entre regressores e termo de erro.

Propriedades (1)

- ▶ Mínimos Quadrados Ordinários (MQO): estimadores com propriedades desejáveis.
- ▶ O que são propriedades desejáveis?
 - Não viesado: expectativa do estimador do parâmetro é igual ao parâmetro verdadeiro
 - 2. Eficiente: variância do estimador é a menor possível
- ▶ Para ver essas propriedades iremos listar um conjunto de hipóteses.
- ▶ Depois derivaremos a média e a variância do estimador.

PROPRIEDADES

- ► Hipóteses:
 - 1. Modelo populacional: o modelo populacional é

$$y = X\beta;$$

- 2. Amostragem aleatória: $\{(y_i, x_{i1}, \dots, x_{ik}) : i = 1, \dots n\}$ é uma amostra independente e identicamente distribuída;
- 3. Independência condicional: E[u|X] = 0;
- 4. Variação em X: $X = [X'_1, \dots X'_n]'$ é matriz $n \times k$ com posto cheio;
- 5. Homocedasticidade: a variância o termo de erro é constante:

$$V[u|X] = E[uu'|X] = \sigma^2 I$$

- As hipóteses acima muitas vezes são chamadas de hipóteses de Gauss-Markov.
 - Muitas vezes é adicionada a hipótese que $u|X \sim N(0, \sigma^2 I)$.

Média de $\hat{\beta}$

ightharpoonup A média do estimador de MQO condicional a X é

$$E[\widehat{\beta}|X] = E\left[(X'X)^{-1}X'y|X\right]$$

$$= E\left[(X'X)^{-1}X'(X\beta + u)|X\right]$$

$$= \beta + (X'X)^{-1}X'E[u|X]$$

$$= \beta$$

- ▶ Lembre que $E[\widehat{\beta}] = E\left[E[\widehat{\beta}|X]\right]$.
- ▶ Isso significa $E[\widehat{\beta}] = E[E[\widehat{\beta}|X]] = E[\beta] = \beta$.
- ▶ Logo, $\widehat{\beta}$ é um estimador não viesado de β .

Média de $\hat{\beta}$ (bivariado)

 \blacktriangleright A média do estimador de MQO condicional a x_i é

$$\begin{split} E[\widehat{\beta}|x_i] &= E\left[\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}|x_i\right] \\ &= E\left[\frac{\sum (x_i - \overline{x})y_i}{\sum (x_i - \overline{x})^2}|x_i\right] - E\left[\frac{\sum (x_i - \overline{x})\overline{y}}{\sum (x_i - \overline{x})^2}|x_i\right] \\ &= E\left[\frac{\sum (x_i - \overline{x})(\alpha + \beta x_i + u_i)}{\sum (x_i - \overline{x})^2}|x_i\right] \\ &= \beta + E\left[\frac{\sum (x_i - \overline{x})u_i}{\sum (x_i - \overline{x})^2}|x_i\right] \\ &= \beta + \left[\frac{\sum (x_i - \overline{x})}{\sum (x_i - \overline{x})^2}\right] E\left[u_i|x_i\right] = \beta \end{split}$$

▶ Isso significa $E[\widehat{\beta}] = E[E[\widehat{\beta}|x_i]] = E[\beta] = \beta$.

Variância de $\hat{\beta}$

ightharpoonup A variância de $\widehat{\beta}$ condicional a X é:

$$V[\widehat{\beta}|X] = E\left[(\widehat{\beta} - \beta)(\widehat{\beta} - \beta)'|X\right]$$

▶ Note que:

$$\widehat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}(X'X)\beta + (X'X)^{-1}X'u$$

$$\Longrightarrow \widehat{\beta} - \beta = (X'X)^{-1}X'u$$

▶ Portanto:

$$\begin{split} V[\widehat{\beta}|X] &= E\left[((X'X)^{-1}X'u)((X'X)^{-1}X'u)'|X\right] \\ &= E\left[(X'X)^{-1}X'uu'X(X'X)^{-1}|X\right] \\ &= (X'X)^{-1}X'E[uu'|X]X(X'X)^{-1} \\ &= \sigma^2(X'X)^{-1} \end{split}$$

Variância de $\hat{\beta}$

► A lei da variância total diz:

$$V[\widehat{\beta}] = E\left[V[\widehat{\beta}|X]\right] + V\left[E[\widehat{\beta}|X]\right]$$

► Temos:

$$V\left[E[\widehat{\beta}|X]\right] = V[\beta] = 0$$

► Logo,

$$V[\widehat{\beta}] = E\left[V[\widehat{\beta}|X]\right] = \sigma^2(X'X)^{-1}$$

▶ Variância do estimador de MQO depende da variância do termo de erro ("variância residual de y") e da variância dos regressores.

Variância de $\hat{\beta}$ (bivariado)

ightharpoonup A variância de $\widehat{\beta}$ condicional a x_i é:

$$V[\widehat{\beta}|x_i] = E\left[(\widehat{\beta} - \beta)^2|x_i\right]$$

► Note que:

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \beta + \frac{\sum_{i=1}^{n} (x_i - \overline{x})u_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$\Longrightarrow \widehat{\beta} - \beta = \frac{\sum_{i=1}^{n} (x_i - \overline{x})u_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \sum_{i=1}^{n} w_i u_i$$

▶ Portanto:

$$V[\widehat{\beta}|x_i] = E\left[\left(\sum_{i=1}^n w_i u_i\right)^2 | x_i\right] = E\left[\left(\sum_{i=1}^n w_i^2 u_i^2\right) | x_i\right]$$
$$= \sigma^2 \left(\sum_{i=1}^n w_i\right)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

TEOREMA DE GAUSS-MARKOV

- ▶ Se as hipóteses 1-5 são válidas, o estimador de MQO é o melhor estimador linear não viesado do vetor β .
- ▶ O que isso significa? Considere a classe de estimadores lineares:

$$\widetilde{\beta} = \sum_{i=1}^{n} W_i y_i,$$

em que W_i é uma função da amostra.

- ▶ Teorema de Gauss-Markov diz que $W_i = (X_i X_i')^{-1} X_i$ é a função que:
 - 1. ... faz com que $\widetilde{\beta}$ tenha a menor variância possível ("melhor")
 - 2. ... entre os estimadores que $E[\widetilde{\beta}] = \beta$ ("não viesado")

Distribuição Normal

► Hipótese adicional:

$$u|X \sim N(0, \sigma^2 I)$$

- ► Essa hipótese adicional caracteriza o que chamamos de **modelo** de **regressão linear clássico**.
- \blacktriangleright Ela implica que o estimador $\widehat{\beta}$ tem distribuição normal.
- ▶ Por quê?

$$\begin{split} \widehat{\beta} &= \beta + (X'X)^{-1}X'u \\ u|X \sim N(0,\sigma^2I) &\Longrightarrow \widehat{\beta} \sim N(\beta,\sigma^2(X'X)^{-1}) \end{split}$$

Inferência Estatística (1)

► Considere o modelo populacional:

$$y = X\beta + u$$

- ▶ Como testar hipóteses sobre $\widehat{\beta}$?
- ▶ Vimos que $(\widehat{\beta} \beta)/\operatorname{sd}(\widehat{\beta}) \sim N(0, 1)$.
- ▶ Isso permite construir intervalos de confiança e testar hipóteses.
 - \blacksquare ... se conhecermos σ^2 ...
 - \blacksquare ... mas na prática precisamos estimar σ^2
- ▶ O que fazer?

Inferência Estatística (2)

- ▶ Seja ep $(\widehat{\beta}) = \widehat{\sigma}^2(X'X)^{-1}$ o erro-padrão dos estimadores de MQO.
- ► Temos que

$$(\widehat{\beta} - \beta)/\operatorname{ep}(\widehat{\beta}) \sim t_{n-k-1}$$

em que t_{n-k-1} é a distribuição t-Student com n-k-1 graus de liberdade.

- ▶ Essa distribuição pode ser utilizada para testar hipóteses.
 - Essa distribuição converge para uma normal padronizada quando número de graus de liberdade tende a infinito (ex.: > 120).

Inferência Estatística (3)

▶ Estimamos a variância dos erros com seguinte formula:

$$\widehat{\sigma^2} = \frac{1}{n-k-1} \sum_{i=1}^n \widehat{u}_i^2$$

$$= \frac{1}{n-k-1} \sum_{i=1}^n \left(y_i - X_i' \widehat{\beta} \right)^2$$

$$= \frac{1}{n-k-1} (y - X\beta)(y - X\beta)'$$

- ▶ Usar n-k-1, n-k ou n não faz diferença em grandes amostras.
 - Diferentes pacotes / opções no R utilizam diferentes denominadores.

Teste de Hipóteses (1)

▶ Começamos considerando um teste cuja hipótese nula é

$$H0: \beta_k = 0$$

- ► Calculamos estatística $t_k = \beta_k/\text{ep}(\beta_k)$
- ▶ Sob a hipótese nula, $t_k \sim N(0,1)$ (em amostras grandes)
- ▶ Regra de decisão: rejeitamos H0 quando t_k é tal que é improvável que hipótese nula seja verdadeira.
 - $H1: \beta_k > 0$: H0 é rejeitada se t_k é positivo e "grande"
 - \blacksquare $H1: \beta_k < 0$: H0 é rejeitada se t_k é negativo e "grande"
 - $H1: \beta_k \neq 0$: H0 é rejeitada se $|t_k|$ é "grande"

Teste de Hipóteses (2)

- ▶ O que define ser "grande" é nível de significância adotado.
- ▶ **Nível de significância:** probabilidade de rejeitar hipótese nula que é verdadeira
- ▶ Níveis típicos: 10%, 5% e 1% (5% é o mais comum)
- ▶ p-valor: qual o menor nível de significância para o qual eu não rejeitaria a hipótese nula?
 - Inverte o cálculo.

Teste de Hipóteses (3)

Teste de Hipóteses (4)

TESTE DE HIPÓTESES (5)

HIPÓTESES MÚLTIPLAS (1)

- ➤ Muitas vezes estamos interessados em fazer testes sobre mais de um coeficiente.
 - Coeficientes conjuntamente iguais a zero?
 - Soma de coeficientes é igual a um determinado valor?
 - Etc.

▶ Ideia:

- Constrói hipótese nula.
- Roda modelo impondo que hipótese nula é verdadeira (modelo restrito)
- Roda modelo sem impor que hipótese nula é verdadeira (modelo irrestrito)
- Compara os modelos (como?).

HIPÓTESES MÚLTIPLAS (2)

- ► Como comparar os modelos?
- ▶ Podemos utilizar o R2 para construir estatística de teste.

$$F = \frac{(R2_{ur} - R2_r)/q}{(1 - R2_{ur})/(n - k - 1)}$$

em que ur denota o modelo irrestrito, r o modelo restrito e q é o número de restrições sendo testadas

- ightharpoonup A estatística F tem distribuição F-Snedecor com q graus de liberdade no numerador e n-k-1 no denominador.
- ▶ Logo, podemos utilizar essa distribuição para testar hipóteses múltiplas.

HIPÓTESES MÚLTIPLAS (3)

► Considere o modelo:

$$\log w_i = \beta_0 + \beta_1 \operatorname{educ}_i + \beta_2 \operatorname{age}_i + \beta_3 \operatorname{age}_i^2 + u_i$$

- ▶ Suponha que queremos testar $H0: \beta_2 = \beta_3 = 0.$
- ▶ Rodamos modelo restrito:

$$\log w_i = \beta_0 + \beta_1 \operatorname{educ}_i + u_i$$

e computamos $R2_r$.

- ightharpoonup Depois rodamos modelo completo e computamos $R2_{ur}$.
- ▶ Usamos os coeficientes de ajustes para construir estatística F (note que k=4 e q=2).

HIPÓTESES MÚLTIPLAS (4)

► Comando linearHypothesis() permite testar hipóteses múltiplas.

```
# Instala e carrega pacote #
install.packages("car")
library(car)

# Testando significancia conjunta #

modelo = lm_robust(lwage - educ + age + age2 + female + white, data = twins, se_type = "classical") # modelo
    que queremos analisar #

hipotese.nula <- c("age=0", "age2=0") # hipotese conjunta a ser testada #
linearHypothesis(modelo, hipotese.nula, test = "F") # teste F #</pre>
```

HETEROCEDASTICIDADE (1)

Problema! Variância do erro não é constante.

```
# Estimo modelo lm_robust() #
modelo = lm_robust(lwage ~ educ + age + age2 + female + white, data = twins, se_type = "classical")
# Computo erros #
twins$erro = modelo$residuals
# regressor x erros (ou var. dep.)
plot(twins$educ,twins$erro)
plot(twins$educ,twins$lwage)
plot(twins$age,twins$erro)
plot(twins$age,twins$erro)
```

Erros padrão robustos a heterocedasticidade dados por:

$$V\left(\widehat{\boldsymbol{\beta}}\right) = (X'X)^{-1}X'E[\widehat{\boldsymbol{u}}\widehat{\boldsymbol{u}}'|X]X(X'X)^{-1}$$

HETEROCEDASTICIDADE (2)

Pacote lm_robust estima automaticamente erros-padrão robustos a heterocedasticidade.

```
# Estimo modelo com erro-padrão robusto #

modelo = lm_robust(lwage ~ educ + age + age2 + female + white, data = twins, se_type = "HC1")

# Opção type = "" do comando controla formula utilizada "
```

Diferentes opções do comando denotam diferentes ajustes de graus de liberdade na estimação da matriz de variância $E[\hat{u}\hat{u}'|X]$.

Problema! Mínimos quadrados ordinários deixa de ser eficiente.

HETEROCEDASTICIDADE (3)

- ▶ Mínimos Quadrados Generalizados: opção eficiente.
- ► Considere que

$$V[u|X] = \sigma^2 h(X)$$

► Note que

$$V\left\lceil u/\sqrt{h(X)}|X\right\rceil = \sigma^2$$

- \blacktriangleright Estimador eficiente obtido regredindo y/h(X) em x/h(X).
- ▶ Dois casos:
 - $\blacksquare h(X)$ é conhecido: estimação direta
 - h(X) não é conhecido: roda MQO, computa $\hat{h}(X)$ e estima novamente.

MQO EM GRANDES AMOSTRAS

► Considere o modelo:

$$y = X\beta + u$$

- ightharpoonup Derivamos as propriedades de $\widehat{\beta}$ em amostras finitas.
- \blacktriangleright Mas, mais e mais, obtemos $\widehat{\beta}$ em amostras cada vez maiores.
- ▶ Quais as propriedades dos estimadores de MQO quando o número de observações cresce arbitrariamente $(n \to \infty)$?

Consistência (1)

 \triangleright $\hat{\beta}$ é um estimador consistente de β .

$$p\lim(\widehat{\beta}) = \beta$$

▶ Intuição: à medida que amostra cresce o vetor de parâmetros estimados fica cada vez mais próximo que o vetor de parâmetros verdadeiro.

▶ Prova:

$$\widehat{\beta} = \beta + (X'X)^{-1}X'u = \beta + \left(\frac{1}{n}\sum_{i=1}^{n}(X_iX_i')^{-1}\right)\left(\frac{1}{n}\sum_{i=1}^{n}(X_iu_i)\right)$$

$$\implies \text{plim}(\widehat{\beta}) = \beta + E[X_i X_i']^{-1} E[X_i u_i] = \beta, \text{ pois } E[X_i u_i] = 0$$

Consistência (2)

- ▶ Note que consistência depende da covariância entre regressores e termo de erro ser zero $(E[X_iu_i]=0)$.
- Essa hipótese é implicada pela hipótese de média do termo de erro ser independente dos regressores $(E[u_i|X_i]=0)$.
- ▶ Mas a recíproca não é verdadeira! (hipótese mais fraca)
- ► Consistência (~ ausência de viés assintótico) depende de hipóteses mais fracas que ausência de viés.

NORMALIDADE ASSINTÓTICA

- ▶ A distribuição de $(\widehat{\beta} \beta)/\text{ep}(\widehat{\beta})$ converge para uma distribuição N(0,1).
- ▶ Isso é uma aplicação do teorema central do limite.
 - \blacksquare Não depende de normalidade do termo de erro (u_i) .
 - Só precisamos de que média do erro seja zero e sua variância finita.
- ▶ Implicação: não precisamos impor normalidade para testar hipóteses em grandes amostras.

O que ocorre quando $E[X_i u_i] \neq 0$?

- ▶ Hipótese $E[X_i u_i] = 0$ é a principal hipótese de identificação do modelo de MQO.
- ▶ O que ocorre se ela falha?

$$plim(\widehat{\beta}) = \beta + E[X_i X_i']^{-1} E[X_i u_i]$$

- ► $E[X_i u_i] \neq 0$ implica que $plim(\widehat{\beta}) \neq \beta$
 - \blacksquare $E[X_iu_i] > 0$: MQO sobrestima parâmetro real
 - $E[X_i u_i] < 0$: MQO subestima parâmetro real
- ▶ Três casos em que $E[X_i u_i] \neq 0$: viés de variável omitida, viés de simultaneidade e viés de atenuação.

VIÉS DE VARIÁVEL OMITIDA (1)

- ▶ Hipótese $E[X_i u_i] = 0$ é a hipótese de identificação do modelo de MQO.
- ▶ O que ocorre se ela falha? Considere o modelo:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i, E[x_{1i}u_i] = E[x_{2i}u_i] = 0$$

- ▶ Suponha que observamos x_1 , mas não x_2 e considere a regressão de y_i em x_{1i} .
- ▶ Defina $\nu_i = \beta_2 x_{2i} + u_i$ e note que:

$$E[x_{1i}\nu_i] \neq 0$$

VIÉS DE VARIÁVEL OMITIDA (2)

ightharpoonup Coeficiente da regressão de y_i em x_{1i} é:

$$\hat{\beta_1} = \frac{cov(x_{1i}, y_i)}{var(x_{1i})}$$

► Temos:

$$\hat{\beta}_1 = \frac{cov(x_{1i}, \beta_1 x_{1i} + \beta_2 x_{2i} + u_i)}{var(x_{1i})} = \beta_1 + \beta_2 \frac{cov(x_{1i}, x_{2i})}{var(x_{1i})}$$

- ▶ Efeito de MQO é efeito real mais produto entre efeito da variável omitida sobre y e efeito de x_1 em x_2 .
- ▶ O viés que surge quando omitimos regressores relevantes é denominado viés de variável omitida.
- ▶ Desafio: garantir que não existem regressores relevantes não omitidos.

EXEMPLO

▶ Relação entre y e os regressores x_1 e x_2 seja descrita pelo modelo populacional:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

ightharpoonup Relação entre x_1 e x_2 é descrita por:

$$x_2 = \alpha x_1 + \nu$$

▶ Suponha que os parâmetros populacionais sejam $\beta_0 = 0.1$, $\beta_1 = 0.6$, $\beta_2 = 0.4$ e $\alpha = 0.5$ e as distribuições $u \sim N(0,4)$, $\nu \sim N(0,16)$ e $x_1 \sim N(0,1)$.

Regressão Longa

Simulo 10.000 observações dos vetores u, ν , x_1 , x_2 e y.

```
# Vetores #
set.seed(1985)
beta0 = 0.1
beta1 = 0.6
beta2 = 0.4
alpha = 0.5
u = rnorm(10000, mean = 0, sd = 2)
v = rnorm(10000, mean = 0, sd = 4)
x1 = rnorm(10000, mean = 0, sd = 1)
x2 = alpha*x1+v
y = beta0 + beta1*x1 + beta2*x2 + u
dados = data.frame(cbind(y,x1,x2))
```

Regressão Longa

Rodo regressão longa.

Regressão Curta

Rodo regressão curta.

Viés de Simultaneidade (1)

► Considere o modelo de oferta e demanda:

$$\log Q_D = c_D + \epsilon_D \log P + X_D' \gamma_D + \varepsilon_D$$
$$\log P = c_S + \epsilon_S \log Q_S + X_S' \gamma_S + \varepsilon_S$$
$$\log Q^* = \log Q_D = \log Q_S$$

- ▶ Queremos estimar ϵ_D (elasticidade-preço da demanda) e ϵ_S (elasticidade preço da oferta).
- ▶ Note que:

$$\log Q = c_D + \epsilon_D(c_S + \epsilon_S \log Q + X_S' \gamma_S + \varepsilon_S) + X_D' \gamma_D + \varepsilon_D \Longrightarrow E[\log Q \times \varepsilon_S] \neq 0$$

$$\log P = c_S + \epsilon_S (c_D + \epsilon_D \log P + X_D' \gamma_D + \varepsilon_D) + X_S' \gamma_S + \varepsilon_S \Longrightarrow E[\log P \times \varepsilon_D] \neq 0$$

Viés de Simultaneidade (2)

- ▶ O modelo de oferta e demanda ilustra como a estimação de mínimos quadrados ordinários (MQO) falha quando existe simultaneidade ou causalidade reversa.
- ▶ $E[\log P \times \varepsilon_D] > 0$: MQO viesa elasticidade-preço da demanda para cima (i.e., em direção a zero).
- ▶ $E[\log Q \times \varepsilon_S] < 0$: MQO viesa elasticidade-preço da oferta para baixo (em direção a zero).
- ▶ Exercício: prove os fatos acima.

Viés de Atenuação (1)

► Considere o modelo de regressão linear:

$$y_i = \alpha + \beta x_i + \varepsilon, E[\varepsilon | x_i] = 0$$

▶ Suponha que x_i não é observado e sim $x_i^* = x_i + \nu_i$. Modelo estimado é:

$$y_i = \alpha + \beta x_i^* + (-\beta \nu_i + \varepsilon)$$

▶ Defina $var(x_i) = \sigma_x^2$, $var(\varepsilon) = \sigma_u^2$, $var(\nu_i) = \sigma_\nu^2$. Temos:

$$\beta_{MQO} = \frac{\operatorname{cov}(x_i^*, y_i)}{\operatorname{var}(x_i^*)} = \frac{\operatorname{cov}(x_i^*, \alpha + \beta x_i^* - \beta \nu_i + \varepsilon)}{\operatorname{var}(x_i^*)}$$

$$=\beta-\beta\frac{\mathrm{cov}(x_i+\nu_i,\nu_i)}{\mathrm{var}(x_i+\nu_i)}=\beta-\beta\frac{\sigma_{\nu}^2}{\sigma_{x}^2+\sigma_{\nu}^2}=\beta\left(\frac{\sigma_{x}^2}{\sigma_{x}^2+\sigma_{\nu}^2}\right)<\beta$$

Viés de Atenuação (2)

► Considere o seguinte modelo populacional:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- ▶ Suponha que não observamos x e sim $x^* = x + \nu$.
- \blacktriangleright Os parâmetros populacionais são $\beta_0=1$ e $\beta_1=0.6$
- ightharpoonup x tem distribuição N(0,4)
- \blacktriangleright Os termos de erro ν e ε tem distribuições N(0,1) e N(0,16), respectivamente.

Viés de Atenuação (3)

Simulo 10.000 observações dos vetores u, ν, x, x^* e y.

```
# Vetores #
set.seed(1985)
beta0 = 1
beta1 = 0.6
x = rnorm(10000, mean = 0, sd = 2)
v = rnorm(10000, mean = 0, sd = 1)
u = rnorm(10000, mean = 0, sd = 4)
y = beta0 + beta1*x + u
xs = x + v
dados = data.frame(cbind(y,x,xs))
```

Viés de Atenuação (4)

Viés de atenuação: $\sigma_x^2/(\sigma_x^2 + \sigma_\nu^2) \times \beta = 0.8 \times 0.6 = 0.48$

```
# Vetores #
library(estimatr)
summary(lm_robust(y ~ x, data = dados))
Coefficients:
           Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
(Intercept) 1.0367 0.03987 26.01 2.520e-144 0.9586 1.1149 9998
           0.6093 0.01986 30.68 1.129e-197 0.5704 0.6483 9998
Multiple R-squared: 0.08515 , Adjusted R-squared: 0.08506
F-statistic: 941.5 on 1 and 9998 DF. p-value: < 2.2e-16
summary(lm_robust(y ~ xs, data = dados))
Coefficients:
           Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
(Intercept) 1.0397 0.04027 25.82 2.231e-142 0.9608 1.1186 9998
                    0.01817 26.73 4.293e-152 0.4501 0.5213 9998
xs
            0.4857
Multiple R-squared: 0.0669 , Adjusted R-squared: 0.06681
F-statistic: 714.5 on 1 and 9998 DF, p-value: < 2.2e-16
```