Оглавление

0.1	Минимальный многочлен оператора	1
0.2	Примарные и корневые подпространства	4
0.3	Существование жордановой формы	,

0.1 Минимальный многочлен оператора

Свойства (минимального многочлена оператора).

4. $e_1,...,e_n$ – базис V, $P_1(t),...,P_n(t)$ – минимальные аннуляторы для $e_1,...,e_n$ Тогда НОК $(P_1,...,P_n)$ является минимальным многочленом для A

Доказательство. Пусть $P = HOK(P_1, ..., P_n)$

• Проверим, что P аннулирует A: Пусть $v \in V$, $v = a_1e_1 + ... + a_ne_n$ Применим P:

$$P(\mathcal{A})(v)=a_1P(\mathcal{A})e_1+...+a_nP(\mathcal{A})e_n$$
 $P:P_i\implies P$ – аннул. для $e_i\implies P(\mathcal{A})e_i=0$ $P(\mathcal{A})(v)=a_1\cdot 0+...+a_n\cdot 0=0$

Замечание. Тем самым, мы доказали, что аннулятор многочлена существует

• Проверим, что P минимальный: Пусть Q(t) аннулирует \mathcal{A}

$$\implies Q(\mathcal{A})v = 0 \quad \forall v \implies Q(\mathcal{A})e_i = 0 \quad \forall i \xrightarrow[P_i \text{ мин. аннул.}]{P_i \text{ мин. аннул.}}$$

 $\implies Q \colon P_i \quad \forall i \implies Q \colon P \implies \deg Q \ge \deg P$

Теорема 1 (Гамильтона-Кэли). Характеристический многочлен оператора \mathcal{A} аннулирует \mathcal{A} , т. е.

$$\chi_{\mathcal{A}}(\mathcal{A}) = 0$$

Доказательство. Нужно доказать, что $\forall v \quad \chi(\mathcal{A})v = 0$

Докажем, что $\chi_{\mathcal{A}}$: P_0 , где P_0 – минимальный аннулятор (было свойство, что все аннуляторы делятся на минимальный):

Пусть U – циклическое подпространство, порождённое v

 χ_U – характеристический многочлен $\mathcal{A}\Big|_U$ (он определён, т. к. пространство ивариантно)

По следствию о делителях характеристического многочлена, χ : χ_U

Знаем, что χ_U – минимальный аннулятор для v на U (по теореме о циклическом подпространстве и минимальном аннуляторе)

$$\left. \begin{array}{l} \chi_U = P_0 \\ \chi \vdots \chi_U \end{array} \right\} \implies \chi \vdots P_0$$

Пример.

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad \chi_{\mathcal{A}}(t) = (1-t)^2 = t^2 - 2t + t$$

$$A^2 - 2A + E = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Следствие. P_0 – минимальный многочлен $\mathcal A$ Тогда $\chi : P$

0.2 Примарные и корневые подпространства

Определение 1. K — поле, V — векторное пространство над K, \mathcal{A} — оператор на V P(t) — минимальный многочлен \mathcal{A} , такой, что старший коэффициент P равен 1 Пространство V называется примарным относительно \mathcal{A} , если $P(t) = Q^s(t)$ для некоторого Q(t), неприводимого над K

Замечание. Если s=0, то $P={\rm const}\implies V=\{\,0\,\}$. Можно считать, что оно примарно

Примеры.

1. $K = \mathbb{R}$, $V = \mathbb{R}^4$, $A: X \mapsto AX$

$$A = \begin{pmatrix} 2 & & \\ 0 & 2 & * \\ 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad \chi_A = (2 - t)^4$$

 $(2-t)^4$: минимальный многочлен \implies минимальный многочлен $=(2-t)^s, \quad s \leq 4$

2. $V = \mathbb{R}^2$, $\mathcal{A}: X \mapsto AX$

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \chi_{\mathcal{A}} = t^2 + 1$$
 – неприв. \implies примарно

3. То же самое, но $K=\mathbb{C}$

$$\chi_{\mathcal{A}} = t^2 + 1 = (t - i)(t + i)$$
 $P_1(t) = t - i, \qquad P_2(t) = t + i$

 P_1, P_2 – не аннул. A:

$$\begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} \neq 0, \qquad \begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} \neq 0$$

 $\implies \chi_{\mathcal{A}}(t)$ – минимальный многочлен. Пространство не примарно

Свойства (взаимно простых многочленов от оператора). \mathcal{A} – оператор на V

1. $P_1, P_2, ..., P_k$ – попарно взаимно просты, $T(t) = P_1(t)...P_k(t), v \in V,$ T аннулирует V Тогда $\exists \, v_1, ..., v_k : v = v_1 + ... + v_k$ и P_i аннулирует v_i

2

Доказательство. Индукция.

• База. k=2

P,Q взаимно просты, $v \in V$

Докажем, что $\exists v, w : v = u + w, \qquad P(\mathcal{A})u = 0, \qquad Q(\mathcal{A})w = 0$

Т. к. P,Q взаимно просты, можно разложить их HOД (= 1):

$$\exists F(t), G(t) : P(t)F(t) + Q(t)G(t) = 1$$

Применим к A:

$$P(\mathcal{A}) \circ F(\mathcal{A}) + Q(\mathcal{A}) \circ G(\mathcal{A}) = \mathcal{E}$$

Применим к v:

$$(PF)(\mathcal{A})v + (QG)(\mathcal{A})v = v$$

Положим $u = (QG)(A)v, \qquad w = (PF)(A)v$

Проверим, что P(A)u = 0 (для w – аналогично):

$$P(\mathcal{A}) \circ \left(QG(\mathcal{A})\right)v = \left(PQG\right)(\mathcal{A})v =$$

$$= G(\mathcal{A}) \underbrace{\left(PQ\right)(\mathcal{A})v}_{\text{воммут.}} = 0$$

$$= 0 \text{ (т. к. } T = PQ \text{ аннулирует } v)$$

• Переход. $k-1 \rightarrow k$

$$T = \underbrace{P_1 ... P_{k-1}}_{P} \underbrace{P_k}_{Q}$$

$$(PQ)(\mathcal{A})v = 0 \Longrightarrow_{\mathbf{6a3a}} \exists u, w : v = u + w, \qquad P(\mathcal{A})u = 0, \quad Q(\mathcal{A})w = 0$$

По индукционному предположению,

$$\exists\, v_1,...,v_{k-1}: P_i \text{ аннул. } v_i, \qquad u = v_1 + ... + v_{k-1}$$

$$v = v_1 + \dots + v_{k-1} + w_{:=v_k}$$

 $2. \ P, Q$ взаимно просты, P, Q аннуляторы v

$$\implies v = 0$$

Доказательство. Пусть T – минимальный аннулятор v

$$\left. \begin{array}{l} P : T \\ Q : T \end{array} \right\} \implies T = \mathrm{const}, \qquad T(t) = c \implies cv = 0 \implies v = 0$$

Теорема 2 (разложение пространства в прямую сумму примарных подпространств). K – поле, V – векторное пространство над K, \mathcal{A} – оператор на V P(t) – минимальный моногочлен \mathcal{A} , он разложен в сумму:

$$P(t) = P_1(t)...P_k(t),$$
 где $P_i(t) = Q_i^{s_i}(t),$ Q_i – непривод. над K

Тогда \exists подпространства $U_1,...,U_k,$ такие что

- 1. все U_i ивариантны
- 2. $V = U_1 \oplus ... \oplus U_k$
- 3. $P_i(t)$ минимальный многочлен ${\cal A}$ на $U_i \quad \forall i$

Доказательство. Положим $U_i = \ker P_i(\mathcal{A})$. Докажем, что они подойдут:

- 1. Ядро многочлена от оператора инвариантно (было такое свойство)
- 2. (а) Докажем, что $V = U_1 + ... + U_k$ $P_1, ..., P_k$ попарно взаимно просты, и $P_1 \cdot ... \cdot P_k$ аннулируют любой v, значит

 $\forall v \quad \exists \, v_1,...,v_k : v_1+...+v_k, \qquad P_i \ \text{аннул.} \ v_i \implies v_i \in U_i$

(b) Докажем, что сумма прямая:

Нужно проверить, что $U_s\cap \left(U_1+\ldots+U_{s-1}+U_{s+1}+\ldots+U_k\right)=\{\,0\,\}$ НУО проверим, что $(U_1+\ldots+U_k)\cap U_k=\{\,0\,\}$ Возьмём $v\in (U_1+\ldots+U_{k-1})\cap U_k$

$$v = v_1 + \dots + v_{k-1}, \qquad v_i \in U_i, \qquad v \in U_k$$

По одному из свойств,

$$P_1 \cdot ... \cdot P_{k-1}$$
 аннулирует $v_1 + ... + v_{k-1} = v$

При этом, P_k аннулирует v

Заметим, что $(P_1 \cdot ... \cdot P_{k-1}, P_k) = 1$

По одному из свойств, это означает, что v=0

3.

$$U_i = \ker P_i(\mathcal{A}) \implies P_i(\mathcal{A}) \Big|_{U_i} = 0$$

 P_i аннулирует $\mathcal{A}igg|_{U_i}$

Значит, P_i делится на минимальный многочлен $\mathcal{A}\Big|_U$

При этом, $P_i = Q_i^{s_i}$

Отсюда минимальный тоже является $Q_i^{r_i}$, $r_i \leq s_i$

Хотим доказать, что $r_i = s_i$

Пусть $T = Q_1^{r_1} ... Q_k^{r_k}$

Т. к. у нас прямая сумма, сущестует $e_1, ..., e_n$ – базис V, он является объединением базисов U_i

$$\implies T(\mathcal{A})e_1 = 0, \dots, T(\mathcal{A})e_k = 0$$

$$\Longrightarrow T$$
 аннулирует $\mathcal{A} \xrightarrow[P - \text{ мин. многочл.}]{} \underbrace{T}_{\prod Q_i^{r_i}} \colon \underbrace{P}_i, \quad r_i \leq s_i \implies r_i = s_i$

Определение 2. λ – с. ч. ${\cal A}$

Вектор v называется корневым вектором, соответствующим λ , если для некоторого k многочлен $P(t)=(t-\lambda)^k$ является аннулятором V

Множество корневых векторов называется корневым попространством, соотв. λ

Свойства.

1. Корневое подпространство инвариантно

Доказательство. Пусть $P(t)=(\lambda-t)^k$ – аннул. v, т. е. $P(\mathcal{A})v=0$

$$P(\mathcal{A})(\mathcal{A}v) = \left(P(\mathcal{A}) \circ \mathcal{A}\right)v = \left(\mathcal{A} \circ P(\mathcal{A})\right)v = \mathcal{A}\left(\underbrace{P(\mathcal{A})v}_{=0}\right) = \mathcal{A}(0) = 0$$

 $2.\ V$ конечномерно, минимальный многочлен ${\cal A}$ раскладывается на линейные множители

$$P(t) = (\lambda_1 - t)^{s_1} ... (\lambda_k - t)^{s_k}$$

Тогда $\ker \left((\lambda_i \mathcal{E} - \mathcal{A})^{s_i} \right)$ – корневые подпространства

Доказательство. Пусть $U_i = \ker \left((\lambda_i \mathcal{E} - \mathcal{A})^{s_i} \right), \qquad W_i$ – корневое подпространство для λ_i

- ullet $U_i\subset W_i$ очевидно $(v\in U_i\implies (\lambda_i\mathcal{E}-\mathcal{A})^{s_i}v=0,$ подойдёт $k=s_i)$
- $W_i \subset U_i$

Пусть $v \in W_i$

Пусть k – минимальное число, такое что $(\lambda_i \mathcal{E} - \mathcal{A})^k$ аннулирует v

Тогда $(\lambda - t)^k$ – минимальный аннулятор v

При этом, P(t) – аннулятор v

$$\implies P(t) : (\lambda - t)^k \implies k \le s_i \implies v \in U_i$$

0.3 Существование жордановой формы

Повторим определения:

Определение 3. Жордановой клеткой порядка r с с. ч. λ называется матрица порядка r вида

$$J_r(\lambda) = \begin{pmatrix} \lambda & 0 & \cdot & 0 \\ 1 & \lambda & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & 1 & \lambda \end{pmatrix}$$

Определение 4. Жордановой матрицей называется блочно-диагональная матрица вида

$$\begin{pmatrix} J_{r_1}(\lambda_1) & 0 & . & 0 \\ 0 & J_{r_2}(\lambda_2) & . & 0 \\ . & . & . & . \\ 0 & . & 0 & J_{r_k}(\lambda_k) \end{pmatrix} \qquad \text{(как r_i, так и λ_i могут совпадать)}$$

Определение 5. Жорданов базис – базис, в котором матрица оператора жорданова

Теорема 3 (существование жордановой формы). K – поле, V – векторное пространство над K – оператор, $\chi_{\mathcal{A}}(t)$ раскладывается на линейные множители над K Тогда для \mathcal{A} существует жорданов базис