We claim:

1. A tetrahydrobenzazepine of the general formula I

5

in which

A is a single bond or CH₂;

10

- B is a single bond or a group NR³;
- Y is a single bond, CH₂ or a group NR³, where A, B and Y are not simultaneously a single bond;

15

is an aromatic radical which is selected from phenyl and a 5- or 6-membered Ar heteroaromatic radical having 1, 2, 3 or 4 heteroatoms which are selected independently of one another from O, N and S, where the aromatic radical may have 1, 2 or 3 substituents which are selected independently of one another from C₁-C₆-alkyl which is optionally substituted one or more times by OH, C₁-C₄-alkoxy, halogen or phenyl, or C₂-C₆-alkenyl which is optionally substituted one or more times by OH, C₁-C₄-alkoxy, halogen or phenyl, or C₂-C₆-alkynyl which is optionally substituted one or more times by OH, C₁-C₄-alkoxy, halogen or phenyl, or C₃-C₆cycloalkyl which is optionally substituted one or more times by OH, C1-C4-alkoxy, halogen, phenyl or C₁-C₄-alkyl, or halogen, CN, OR⁴, COOR⁴, NR⁵R⁶, CONR⁵R⁶, NO₂, SR⁷, SO₂R⁷, SO₂NR⁵R⁶, COR⁸, and phenyl which optionally has one, two or three substituents which are selected independently of one another from C₁-C₄alkyl, C₁-C₄-alkoxy, NR⁵R⁶, CN, C₁-C₂-fluoroalkyl or halogen, where phenyl and the heterocyclic radical may also be fused to a 5- or 6-membered aromatic or nonaromatic carbocycle, or phenyl may be fused to a 5- or 6-membered aromatic or nonaromatic heterocycle which has 1, 2 or 3 heteroatoms selected from O, N and S;

35

30

25

R¹ is hydrogen, C₁-C₈-alkyl, C₁-C₈-haloalkyl, C₂-C₈-alkenyl, C₂-C₈-haloalkenyl, C₂-C₈-alkynyl, C₂-C₈-haloalkynyl, C₁-C₈-alkylcarbonyl, C₁-C₈-haloalkylcarbonyl or substituted C₁-C₈-alkyl which carries a substituent which is selected from OH, C₁-C₄-alkoxy, C₁-C₄-alkylamino, Di-(C₁-C₄-alkyl)amino, phenyl, phenoxy, C₃-C₈-cycloalkyl and C₃-C₈-cycloalkyloxy, where the last four groups mentioned may optionally have one or more substituents selected from OH, CN, NO₂, C₁-C₄-alkyl,

5

10

15

20

30

C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy and halogen;

- is hydrogen, halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, OH, NO₂, CN, COOR⁴, NR⁵R⁶ or CONR⁵R⁶;
- is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylcarbonyl, phenyl, phenyl-C₁-C₄-alkyl or phenylcarbonyl, where phenyl in the last three radicals mentioned may optionally have 1, 2 or 3 substituents which are selected independently of one another from C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy and halogen;
- R⁴ to R⁸ are independently of one another H, C₁-C₆-alkyl which may carry a substituent selected from OH, C₁-C₄-alkoxy and optionally substituted phenyl, C₁-C₆-haloalkyl or phenyl, where R⁶ may also be a group COR⁹ in which R⁹ is H, C₁-C₆-alkyl which is optionally substituted by OH, C₁-C₄-alkoxy or optionally substituted phenyl, or C₁-C₆-haloalkyl or phenyl, where
 - R^5 with R^6 may also together with the nitrogen atom to which they are bonded be a 5- or 6-membered saturated or unsaturated N-heterocycle which may optionally have a further heteroatom selected from O, S and NR^{10} as ring member, where R^{10} is hydrogen or C_1 - C_4 -alkyl;

the N-oxides of this compound, the physiologically tolerated acid addition salts of this compound and the physiologically tolerated acid addition salts of the N-oxides of I.

- 25 2. A tetrahydrobenzazepine of the general formula I as claimed in claim 1, in which A and Y are a single bond, and B is a group NR³.
 - 3. A tetrahydrobenzazepine of the general formula I as claimed in claim 1, in which A and B together are a single bond, and Y is a group NR³.
 - 4. A tetrahydrobenzazepine of the general formula I as claimed in claim 1, in which A is CH₂, and B and Y are each a single bond.
- 5. A tetrahydrobenzazepine of the general formula I as claimed in claim 1, in which Y is CH₂, and A and B together are a single bond.
 - 6. A tetrahydrobenzazepine of the general formula I as claimed in any of the preceding claims, in which R² is hydrogen.
- 40 7. A tetrahydrobenzazepine of the general formula I as claimed in any of the preceding claims, in which Ar is phenyl which may be substituted in the abovementioned manner.

- 8. A tetrahydrobenzazepine of the general formula I as claimed in claim 7, in which phenyl is unsubstituted or has 1 or 2 substituents, of which one substituent is arranged in the para postion relative to the variable Y.
- A tetrahydrobenzazepine of the general formula I as claimed in claim 7 or 8, in which the substituents on the phenyl are selected from C_2 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl and C_1 - C_2 -fluoroalkyl.
- 10. A compound as claimed in claim 1, wherein Ar is phenyl which carries a radical R^P which is located in the para position of the phenyl ring wherein R^P has the following formula R^P:

wherein

20

25

Y is N, CH or CF,

15 R^{a1} and R^{a2} are independently of each other selected from C₁-C₂-alkyl, fluorinated C₁-C₂-alkyl, provided for Y being CH or CF one of the radicals R^{a1} or R^{a2} may also be hydrogen or fluorine, or

 R^{a1} and R^{a2} form a radical $(CH_2)_m$ wherein 1 or 2 of the hydrogen atoms may be replaced by fluorine and wherein m is 2, 3 or 4.

11. A tetrahydrobenzazepine of the general formula I as claimed in any of claims 1 to 6, in which Ar is a 5- or 6-membered heteroaromatic radical having 1, 2, 3 or 4 heteroatoms which are selected independently of one another from 0, N and S, where the heteroaromatic radical may be substituted in the abovementioned manner.

12. A tetrahydrobenzazepine of the general formula I as claimed in any of the preceeding claims, in which R¹ has the general formula CH₂-R¹a in which R¹a is C₁-C₂-alkyl, C₁-C₂-haloalkyl, C₂-C₂-alkenyl, C₂-C₂-haloalkenyl, C₂-C₂-alkynyl, C₂-C₂-haloalkynyl or C₁-C₂-alkyl which has a substituent which is selected from OH, C₁-C₄-alkoxy, C₁-C₄-alkylamino, di-(C₁-C₄-alkyl)amino, phenyl, phenoxy, C₃-Cଃ-cycloalkyl and C₃-Cଃ-cycloalkyloxy, where the last four groups mentioned may optionally have one or more substituents selected from C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy and halogen, or C₁-C₄-alkoxy, C₁-C₄-alkylamino, di-C₁-C₄-alkylamino, phenyl, phenoxy, C₃-Cଃ-cycloalkyl or C₃-Cଃ-cycloalkyloxy, where the last four groups mentioned may optionally have one or more substituents selected from C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy and halogen.

13. A tetrahydrobenzazepine of the general formula I as claimed in claim 11, in which R^{1a} is C_1-C_7 -alkyl, C_2-C_7 -alkenyl, C_2-C_7 -alkynyl, C_3-C_8 -cycloalkyl or C_1-C_7 -fluoroalkyl.

14. A tetrahydrobenzazepine as claimed in claim 12 of the general formula I.A/B

5 in which

Q is CH_2 or NR^3 ,

R¹ is a group CH₂-R^{1a} in which R^{1a} has the meanings indicated in claim 11, and

R^P is C₂-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₁-C₄-fluoroalkyl.

- 15. A tetrahydrobenzazepine as claimed in claim 14, in which R^{1a} is selected from methyl, ethyl, fluoromethyl, trifluoromethyl, 2-fluoroethyl, 2,2,2-trifluoroethyl, cyclopropyl or vinyl and R^P is selected from ethyl, vinyl, isopropyl, tert-butyl and trifluoromethyl.
 - 16. A tetrahydrobenzazepine as claimed in claim 14, wherein R^P is selected from a radical of the formula

20

25

10

wherein

Y is N, CH or CF,

 R^{a1} and R^{a2} are independently of each other selected from C_1 - C_2 -alkyl, fluorinated C_1 - C_2 -alkyl, provided for Y being CH or CF one of the radicals R^{a1} or R^{a2} may also be hydrogen or fluorine, or

 R^{a1} and R^{a2} form a radical (CH₂)_m wherein 1 or 2 of the hydrogen atoms may be replaced by fluorine and wherein m is 2, 3 or 4; and R^{1a} is ethyl.

- A tetrahydrobenzazepine as claimed in claim 16, wherein R^P is selected from isopropyl, (R)-1-fluoroethyl, (S)-1-fluoroethyl, 2-fluoroethyl, 1,1-difluoroethyl, 2,2-difluoroethyl, 2,2-difluoropropyl, 2,2-trifluoroethyl, (R)-1-fluoropropyl, (S)-1-fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, 1,1-difluoropropyl, 2,2-difluoropropyl, 3,3-difluoropropyl, 3,3,3-trifluoropropyl, (R)-2-fluoro-1-methylethyl, (S)-2-fluoro-1-methylethyl, (S)-2,2-difluoro-1-methylethyl, (R)-2,2-difluoro-1-methylethyl, (R)-2,2,2-difluoro-1-methylethyl, (R)-2,2,
- 1-methylethyl, (R)-1,2-difluoro-1-methylethyl, (S)-1,2-difluoro-1-methylethyl, (R)-2,2,2-trifluoro-1-methylethyl, 2-fluoro-1-(fluoromethyl)ethyl, 1-fluoro-1-methylethyl, cyclopropyl, cyclobutyl, 1-fluoro-1-methylethyl, cyclopropyl, cyclobutyl,

WO 2005/058328 PCT/EP2004/014428

61

- 1-fluorocyclopropyl, 2,2-difluorocyclopropyl and 2-fluorocyclopropyl.
- 18. A pharmaceutical composition comprising at least one active ingredient selected from compound of the general formula I as claimed in any of claims 1 to 17, the physiologically tolerated acid addition salts of I, the N-oxides of compounds of the general formula I, and the physiologically tolerated acid addition salts of the N-oxides of I, where appropriate together with physiologically acceptable carriers and/or excipients.
- 19. The use of at least one compound of the general formula I as claimed in any of claims 1 to 15, its acid addition salts, its N-oxides and the acid addition salts of the N-oxides for producing a pharmaceutical composition for the treatment of disorders which respond to the influence of dopamine D₃ receptor antagonists or agonists.
- 20. The use as claimed in claim 19 for the treatment of disorders of the central nervoussystem.
 - 21. The use as claimed in claim 19 for the treatment of renal function disorders.
- 22. A method for treating a medical disorder susceptible to treatment with a dopamine D3 receptor ligand, said method comprising administering an effective amount of at least one compound as claimed in claim 1 to a subject in need thereof.
 - 23. The method as claimed in claim 22, wherein the medical disorder is a disease of the central nervous system.