SinGAN: Learning a Generative Model from a Single Natural Image (CVPR 2019)

Sungwoo Son Rehman Abdur Solzbacher Rene Marcel

Introduction

- Unconditional GANs have shown remarkable progress since their inception
- Learning to generate highly complex scenes requires a large amount of data

What if we have a single image?

Single Image GAN
Single training image

A generative model that can learn form single image

Introduction

• Generates high quality, diverse samples that contain same visual content as input image

• Learns about patch distribution at different scales of the image

Introduction

Related work

- Unconditional GANs have been explored only in the context of texture generation
- [Gatys et al.' 2015] **Texture generation**
- [Zhou et al.' 2018] **Texture expansion**

These models do not produce meaning full results on non texture images

SinGAN Advantages

Classical GANs

- Requirement of large image dataset
- Dataset specific results
- Application specific (Super Resolution (SR), Texture synthesis)

SinGAN

- Not dependent on anything
- Given a random image, it can generate random samples via absorbing the patch distribution properties
- Results are not application or dataset specific
- Hence, useful in a wide range of applications

SinGAN Advantages

Training Image

PSGAN

SinGAN (Ours)

PSGAN, Deep Texture Synthesis

- Designed for specific task (e.g., super resolution, texture expansion)
- Limited to texture images

SinGAN

- Maps noise to image samples
 - Suits different image manipulation tasks
- Applicable to natural images (not only textures)

Generative Adversarial Network

Model(single scale generation)

Additional reconstructive loss added to generative loss

$$\min_{G_N} \max_{D_N} \mathcal{L}_{\mathrm{adv}}(G_{\!\scriptscriptstyle N}\,,D_{\!\scriptscriptstyle N}) + \alpha \mathcal{L}_{\mathrm{rec}}(G_{\!\scriptscriptstyle N})$$

- Reconstruction loss ensures that at a particular input noise, model will generate original image
- This way we can include original image in our latent space

Single Scale Architecture

• SinGAN architecture is Fully Convolutional so we can inject noise of varying aspect ratio to obtain desired image.

Effect of Scale at Test Time

Multi-scale Generator

Single training image

Generated images

Single training image

Generated images

Multi-scale Generator

Effect of Scales during Training

▶ Paint to Image

Image Editing (a) Training Example (b) Edited Input (c) Content Aware Move (d) SinGAN (Ours)

► Harmonization

► Animation SinGAN for single image animation - YouTube

► Super Resolution

trained on a dataset

trained on a single image

	External methods		Internal methods		
	SRGAN	EDSR	DIP	ZSSR	SinGAN
RMSE	16.34	12.29	13.82	13.08	16.22
NIQE	3.41	6.50	6.35	7.13	3.71

- distortion quality
 RMSE↓
- perceptual quality
 NIQE↓

SinGAN modified for super resolution

 Pyramid extension leads to super resolution effect

Singan Reproduced

Thank you