# Dynamic Programming Chapter 7: Valuation

Chapter 7: Valuation

Thomas J. Sargent and John Stachurski

2023

# **Topics**

- The Knaster-Tarski fixed point theorem
- Du's theorem
- Risk-sensitive preferences
- Epstein-Zin preferences
- Koopmans operators

### Nonlinear valuation

In DP, the objective to be optimized is always lifetime value Lifetime value is an aggregation of a flow of rewards  $(R_t)_{t \ge 0}$ 

Key issue: how to combine  $(R_t)_{t\geqslant 0}$  into lifetime value?

What we have seen so far:

- Standard approach:  $\mathbb{E} \sum_{t \geqslant 0} \beta^t R_t$
- State-dependent discounting:  $\mathbb{E} \sum_{t \geqslant 0} \left[ \prod_{i=0}^t \beta_i \right] R_t$

Now we go further

# In particular, we drop the linearity assumption

- lifetime value computed from a (nonlinear) recursion
- closely related to "recursive preferences"

To solve these problems we need more fixed point theory

We focus on fixed point results for order-preserving maps

- existence results
- global stability results

# Knaster-Tarski Fixed Point Theorem

We start with a simple version of the famous KT theorem, where

- X is a finite set
- $I = [v_1, v_2]$  is a nonempty order interval in  $(\mathbb{R}^X, \leqslant)$
- ullet T is a self-map on I
- fix(T) =the set of fixed points of T in I

**Theorem** (Knaster–Tarski). If T is order-preserving on I, then  $\mathrm{fix}(T)$  is nonempty and contains least and greatest elements  $a\leqslant b$  Moreover,

$$T^k v_1 \leqslant a \leqslant b \leqslant T^k v_2$$
 for all  $k \geqslant 0$ 

**Ex.** Sketch the one-dimensional case  $I=\left[0,1\right]$  and convince yourself that a fixed point must exist

The KT fixed point theorem has a huge range of applications

However, it only yields existence

Uniqueness and stability can fail

**Ex.** Continuing your sketch, provide a counterexample to uniqueness when  $I=\left[0,1\right]$ 

Next we seek additional conditions that guarantee uniqueness and stability

# Concavity, Convexity and Stability

A self-map T on a convex subset D of  $\mathbb{R}^n$  is called **convex** if

$$T(\lambda u + (1 - \lambda)v) \le \lambda Tu + (1 - \lambda)Tv$$

whenever  $u,v\in D$  and  $\lambda\in [0,1]$ 

T is called **concave** if

$$\lambda Tu + (1 - \lambda)Tv \leqslant T(\lambda u + (1 - \lambda)v)$$

whenever  $u,v\in D$  and  $\lambda\in [0,1]$ 

- Note that the definitions look identical to the scalar case

# Du's Theorem

#### Theorem. Let

- X be a finite set
- $I := [v_1, v_2]$  be a nonempty order interval in  $(\mathbb{R}^{\mathsf{X}}, \leqslant)$
- ullet T be a self-map on I

If T is order-preserving, then T is globally stable on I under any one of

- 1. T is concave and  $Tv_1 \gg v_1$
- 2. T is concave and  $\exists$  a  $\delta > 0$  such that  $Tv_1 \geqslant v_1 + \delta(v_2 v_1)$
- 3. T is convex and  $Tv_2 \ll v_2$
- 4. T is convex and  $\exists$  a  $\delta > 0$  such that  $Tv_2 \leqslant v_2 \delta(v_2 v_1)$



Figure: Concave case (one-dimensional)



Figure: Convex case (one-dimensional)

# Power-transformed affine equations

Now let's add more structure

- extends global stability to unbounded domains
- necessary and sufficient conditions

To begin, let X be finite and consider the vector equation

$$v = [h + (Av)^{1/\theta}]^{\theta} \qquad (v \in V)$$

where

- ullet heta is a nonzero parameter
- $A \in \mathcal{L}(\mathbb{R}^{\mathsf{X}})$
- $V = (0, \infty)^{\mathsf{X}}$  and  $h \in V$

To analyze the equation we introduce the self-map

$$Gv = [h + (Av)^{1/\theta}]^{\theta} \qquad (v \in V)$$

By extending Du's theorem, we can obtain

**Theorem.** If A is irreducible, then the following statements are equivalent

- 1.  $\rho(A)^{1/\theta} < 1$
- 2. G is globally stable on V

In the case  $\rho(A)^{1/\theta} \geqslant 1$ , the map G has no fixed point in V

The one-dimensional case (so  $\rho(A) = A$ )

• globally stable iff  $A^{1/\theta} < 1$ 



Figure: Shape properties of  $Gv = [h + (Av)^{1/\theta}]^{\theta}$  on  $(0,\infty)$ 

Example. Kleinman et al. (ECMA 2023) study a model of migration with capital accumulation

Optimal consumption for landlords is  $c_t = \sigma_t R_t k_t$  where

- ullet  $k_t$  is capital and  $R_t$  is the gross rate of return
- ullet  $\sigma_t$  is a state-dependent process obeying

$$\sigma_t^{-1} = 1 + \beta^{\psi} \left[ \mathbb{E}_t R_{t+1}^{(\psi-1)/\psi} \sigma_{t+1}^{-1/\psi} \right]^{\psi}$$
 (1)

Assume  $R_t = f(X_t)$  where

- X is finite
- $(X_t)$  is P-Markov

Setting  $v_t = \sigma_t^{-1/\psi}$ , we can write (1) as

$$v_{t} = \left\{ 1 + \beta^{\psi} \left[ \mathbb{E}_{t} R_{t+1}^{(\psi-1)/\psi} v_{t+1} \right]^{\psi} \right\}^{1/\psi}$$
 (2)

Define  $A \in \mathcal{L}(\mathbb{R}^X)$  by

$$(Av)(x) = \beta \sum_{x'} f(x')^{(\psi-1)/\psi} v(x') P(x, x')$$

Ex. Show the following are equivalent

- 1.  $\exists$  a unique  $v \in V := (0, \infty)^X$  s.t.  $v_t = v(X_t)$  solves (2)
- 2.  $\rho(A)^{\psi} < 1$

<u>Proof</u>: Consider a  $v \in V$  such that  $v_t = v(X_t)$  solves (2)

This v must satisfy

$$v(x) = \left\{ 1 + \beta^{\psi} \left[ \sum_{x'} f(x')^{(\psi-1)/\psi} v(x') P(x, x') \right]^{\psi} \right\}^{1/\psi}$$

Equivalently,

$$v = [1 + (Av)^{\psi}]^{1/\psi}$$

By the result on slide 12,

a unique solution exists in  $V \iff \rho(A)^{\psi} < 1$ 

# Motivation: Limitations of time additive preferences

Why go beyond standard specifications such as

$$v(x) = \mathbb{E}_x \sum_{t \ge 0} \beta^t u(C_t) ?$$

### Well documented problems

- failure of discounted expected utility model in experiments
- $\beta$  constant and < 1 fails in surveys / experiments
- does not accommodate ambiguity
- cannot separate risk aversion and elasticity of intertemporal substitution

# Motivation: Limitations of time additive preferences

Why go beyond standard specifications such as

$$v(x) = \mathbb{E}_x \sum_{t \ge 0} \beta^t u(C_t) ?$$

#### Well documented problems

- failure of discounted expected utility model in experiments
- $\beta$  constant and < 1 fails in surveys / experiments
- does not accommodate ambiguity
- cannot separate risk aversion and elasticity of intertemporal substitution

Another issue: agent is indifferent to variations in the joint distribution of rewards that leaves marginal distributions unchanged

Example. Suppose you accept a new job

- duration is for life
- daily consumption = daily wage

Your boss offers you two options:

(A) Your boss will flip a coin on day 1 only and set

daily wage 
$$= \mathbb{1}\{\text{heads}\} \times 10000 + \mathbb{1}\{\text{tails}\} \times 1$$

(B) Your boss will flip a coin every day and set

daily wage 
$$= \mathbb{1}\{\text{heads}\} \times 10000 + \mathbb{1}\{\text{tails}\} \times 1$$

Strict preference between A and B implies choice cannot be rationalized with time additive preferences

To see why, let 
$$\varphi(10000)=\varphi(1)=1/2$$

- Option A  $\implies C_1 \sim \varphi$  and  $C_t = C_1$  for  $t \geqslant 2$
- Option B  $\Longrightarrow$   $(C_t)_{t\geqslant 1}\stackrel{\text{IID}}{\sim} \varphi$

Either way,

$$\mathbb{E}\sum_{t\geqslant 1}\beta^t u(C_t) = \sum_{t\geqslant 1}\beta^t \mathbb{E}u(C_t) = \frac{\beta}{1-\beta} \left[ \frac{u(1) + u(10000)}{2} \right]$$

# A recursive view of time additive preferences

Warm up 1: Study standard preferences from a recursive point of view

Consider the recursion

$$V_t = u(C_t) + \beta \, \mathbb{E}_t V_{t+1}$$

#### where

- $(V_t)_{t\geqslant 0}$  is to be determined
- $\mathbb{E}_t$  is expectation conditional on  $X_0,\ldots,X_t$
- $(X_t)$  is P-Markov on X
- $C_t = c(X_t)$  is a consumption path and  $u \in \mathbb{R}^X$

How to solve

$$V_t = u(C_t) + \beta \, \mathbb{E}_t V_{t+1} \tag{3}$$

Since

- consumption is a function of  $(X_t)_{t\geqslant 0}$
- knowledge of  $X_t$  is sufficient to forecast  $(C_{t+j})_{j \ge 1}$

we guess that  $V_t = v(X_t)$  for some  $v \in \mathbb{R}^X$ 

• Called a stationary Markov solution to (3)

Under this conjecture, (3) can be rewritten as

$$v(X_t) = u(c(X_t)) + \beta \mathbb{E}_t v(X_{t+1})$$



Conditioning on  $X_t = x$  and setting  $r := u \circ c$ , this becomes

$$v(x) = r(x) + \beta \mathbb{E}_x v(X_{t+1})$$
$$= r(x) + \beta \sum_{x'} v(x') P(x, x')$$

In vector form,  $v = r + \beta P v$ 

From the NSL, the unique solution is

$$v^* = (I - \beta P)^{-1}r = \sum_{t \geqslant 0} \beta^t P^t r$$

As proved earlier, the r.h.s. is equal to

$$v^*(x) = \mathbb{E}_x \sum_{t \geq 0} \beta^t r(X_t)$$
 when  $(X_t)$  is  $P ext{-Markov}$ 

In summary:

the recursive representation

$$V_t = u(C_t) + \beta \, \mathbb{E}_t V_{t+1}$$

and the sequential representation

$$V_0 = \mathbb{E}_0 \sum_{t \geqslant 0} \beta^t r(X_t)$$

specify the same lifetime value

So is the recursive formulation redundant?

No because it gives us a formula to build on!

In summary:

the recursive representation

$$V_t = u(C_t) + \beta \, \mathbb{E}_t V_{t+1}$$

and the sequential representation

$$V_0 = \mathbb{E}_0 \sum_{t \geqslant 0} \beta^t r(X_t)$$

specify the same lifetime value

So is the recursive formulation redundant?

No because it gives us a formula to build on!

Pursuing this idea leads to lifetime valuations without any sequential representations

- ullet Occurs when  $V_t$  is nonlinear in current rewards and continuation values
- Such specifications are called recursive preferences

#### Remark.

The term "recursive preferences" is confusing, since traditional time additive preferences also admit a recursive specification

Economists use the term "recursive preferences" when lifetime utility can only be expressed recursively

We follow this convention

# Warm up 1: Nonlinear "expectations"

### Suppose

- ullet Y is a random variable taking values in interval  $I\subset \mathbb{R}$
- $\varphi \colon I \to I$  is strictly increasing and  $\mathbb{E}|\varphi(Y)| < \infty$

#### Ex. Prove:

1. If  $\varphi$  is convex, then

$$\mathbb{E}Y \leqslant \varphi^{-1}(\mathbb{E}\varphi(Y))$$

2. If  $\varphi$  is concave, then

$$\varphi^{-1}(\mathbb{E}\varphi(Y)) \leqslant \mathbb{E}Y$$

<u>Proof</u>: We prove case 1, where  $\varphi$  is convex

By Jensen's inequality, we have

$$\varphi(\mathbb{E}Y) \leqslant \mathbb{E}\varphi(Y)$$

Since  $\varphi$  is strictly increasing on  ${\mathbb R}$ 

- ullet  $arphi^{-1}$  exists on  ${\mathbb R}$  and
- $ullet \varphi^{-1}$  is increasing on  ${\mathbb R}$

$$\therefore \mathbb{E}Y \leqslant \varphi^{-1}(\mathbb{E}\varphi(Y))$$

# Risk-Sensitive Preferences

Our first nonlinear example of recursive preferences

We replace the time additive recusion

$$v(x) = r(x) + \beta \sum_{x'} v(x')P(x, x')$$

with

$$v(x) = r(x) + \beta \frac{1}{\theta} \ln \left\{ \sum_{x'} \exp(\theta v(x')) P(x, x') \right\}$$

•  $\theta$  is a nonzero constant in  $\mathbb R$ 

We understand

$$v(x) = r(x) + \beta \frac{1}{\theta} \ln \left\{ \sum_{x'} \exp(\theta v(x')) P(x, x') \right\}$$

as "defining" lifetime utility under risk-sensitive preferences

• solution  $v \in \mathbb{R}^{\mathsf{X}}$  gives lifetime value from any state

But we can't be sure we have a definition at this point

- What if there is no v that solves this recursion?
- What if there are many?

Key task: find conditions under which a unique solution exists

As a preliminary step, let's try to understand the nonlinear expectation term

In general, the **entropic risk-adjusted expectation** of random variable  $\xi$  is

$$\mathcal{E}_{\theta}[\xi] = \frac{1}{\theta} \ln \mathbb{E}[\exp(\theta \xi)]$$

ullet  $\theta$  is a nonzero parameter

**Ex.** Prove that, if  $\xi$  is normally distributed, then

$$\mathcal{E}_{\theta}[\xi] = \mathbb{E}[\xi] + \theta \frac{\mathrm{Var}[\xi]}{2}$$

Notice that  $\theta \downarrow$  lowers appetite for risk and  $\theta \uparrow$  does the opposite

More generally,

For any random variable  $\xi$  taking values in X,

- 1.  $\mathcal{E}_{\theta}[\xi] \leqslant \mathbb{E}[\xi]$  for all  $\theta < 0$
- 2.  $\mathcal{E}_{\theta}[\xi] \geqslant \mathbb{E}[\xi]$  for all  $\theta > 0$

Moreover, these inequalities are strict if and only if  $Var[\xi] > 0$ 

Proof: Apply Jensen's inequality

(Strict case uses a strict version of Jensen's inequality)

# Existence and uniqueness

Consider the risk-sensitive Koopmans operator  $K_{\theta} \colon \mathbb{R}^{\mathsf{X}} \to \mathbb{R}^{\mathsf{X}}$ 

$$(K_{\theta} v)(x) = r(x) + \beta \frac{1}{\theta} \ln \left\{ \sum_{x' \in \mathsf{X}} \exp(\theta v(x')) P(x, x') \right\}$$

### Equivalent:

- 1.  $v \in \mathbb{R}^{\mathsf{X}}$  solves the risk-sensitive preference specification
- 2. v is a fixed point of  $K_{\theta}$

#### We continue to assume that

- $P \in \mathcal{M}(\mathbb{R}^{\mathsf{X}})$  and  $r \in \mathbb{R}^{\mathsf{X}}$
- $\theta$  is nonzero and  $\beta \geqslant 0$

# **Proposition.** If $\beta < 1$ , then $K_{\theta}$ is globally stable on $\mathbb{R}^{X}$

### We prove a more general result below

### **Implications**

- 1. For all nonzero heta, lifetime utility is uniquely defined
- 2. The unique solution  $v^*$  can be computed by successive approximation using  $K_{\theta}$

We continue to assume that

- $P \in \mathcal{M}(\mathbb{R}^{\mathsf{X}})$  and  $r \in \mathbb{R}^{\mathsf{X}}$
- $\theta$  is nonzero and  $\beta \geqslant 0$

**Proposition.** If  $\beta < 1$ , then  $K_{\theta}$  is globally stable on  $\mathbb{R}^{X}$ 

We prove a more general result below

### **Implications**

- 1. For all nonzero  $\theta$ , lifetime utility is uniquely defined
- 2. The unique solution  $v^*$  can be computed by successive approximation using  $K_{\theta}$

Example. Suppose r(x) = x and  $X_{t+1} = \rho X_t + \sigma W_{t+1}$  where

- $(W_t) \stackrel{\text{IID}}{\sim} N(0,1)$
- $|\rho| < 1$

In this setting, we need to solve for v satisfying

$$v(x) = x + \beta \mathcal{E}_{\theta}[v(\rho x + \sigma W_1)] \tag{4}$$

**Ex.** Verify that v(x) = ax + b solves (4) when

$$a:=rac{1}{1-
hoeta} \quad ext{and} \quad b:= hetarac{eta}{1-eta}rac{(a\sigma)^2}{2}$$

We can also compute an approximation to v by discretizing the state process via Tauchen's method and iterating on  $K_\theta$ 

#### using LinearAlgebra, QuantEcon

Listing 1: Risk sensitive utility model parameters (rs\_utility.jl)



Figure: Approximate and true solutions in the Gaussian case

## Ex. Replicate the figure

# Epstein–Zin preferences

One of the most popular recursion preferences specifications

Has been used to study

- asset pricing
- business cycles
- monetary policy
- fiscal policy
- optimal taxation
- climate policy, etc., etc.

With Epstein–Zin preferences, lifetime value obeys

$$V_t = \left\{ (1 - \beta)C_t^{\alpha} + \beta [\mathbb{E}_t V_{t+1}^{\gamma}]^{\alpha/\gamma} \right\}^{1/\alpha}$$

#### where

- $\gamma$ ,  $\alpha$  are nonzero parameters
- $\beta \in (0,1)$

#### Assume

- $C_t = c(X_t)$  where  $c \in \mathbb{R}_+^{\mathsf{X}}$
- $(X_t)_{t\geq 0}$  is P-Markov on finite set X

We conjecture a solution of the form  $V_t = v(X_t)$ 

Now condition on x to get

$$v(x) = \left\{ (1 - \beta)c(x)^{\alpha} + \beta \left[ \sum_{x'} v(x')^{\gamma} P(x, x') \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

Equivalently,  $\boldsymbol{v}$  is a fixed point of the **Epstein–Zin Koopmans** operator

$$(Kv)(x) = \left\{ (1 - \beta)c(x)^{\alpha} + \beta \left[ \sum_{x'} v(x')^{\gamma} P(x, x') \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

Let's rewrite more generally as

$$(Kv)(x) = \left\{ h(x) + \beta \left[ \sum_{x'} v(x')^{\gamma} P(x, x') \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

Pointwise on X this is

$$Kv = \left\{ h + \beta [Pv^{\gamma}]^{\alpha/\gamma} \right\}^{1/\alpha}$$

- all operations are pointwise on vectors/functions
- we assume  $h \gg 0$  to make sure Kv is real-valued

**Ex.** Prove that K is a self-map on  $V:=(0,\infty)^X$ 

# Epstein–Zin stability

**Proposition.** If P is irreducible and  $h\gg 0$ , then K is globally stable on V

A proof is provided below

## **Ex.** Compute the fixed point of K in V starting with this code

```
include("s approx.jl")
using LinearAlgebra, QuantEcon
function create ez utility model(;
        n=200, # size of state space
        \rho=0.96, # correlation coef in AR(1)
        σ=0.1, # volatility
        \beta=0.99, # time discount factor
        \alpha=0.75, # EIS parameter
        y=-2.0) # risk aversion parameter
    mc = tauchen(n, \rho, \sigma, \theta, 5)
    x vals, P = mc.state values, mc.p
    c = exp.(x vals)
    return (; \beta, \rho, \sigma, \alpha, \gamma, c, x_vals, P)
end
```

The figure plots every 10th iterate, repeated 100 times.



Figure: Convergence of Koopmans iterates for Epstein–Zin utility

# Proof of global stability

#### K is difficult to work with because

- linear and nonlinear transformations are intertwined
- there are several cases for the parameters that we need to handle

#### To tackle these issues we

- 1. introduce an operator  $\hat{K}$  obtained from K via a smooth transformation
- 2. prove that  $(\hat{V},\hat{K})$  and (V,K) are topologically conjugate
- 3. obtain conditions under which  $\hat{K}$  is globally stable on V

We define  $\hat{K}$  via

$$\hat{K}v = \left\{h + \beta (Pv)^{1/\theta}\right\}^{\theta} \qquad \text{where} \quad \theta := \frac{\gamma}{\alpha}$$

The operator  $\hat{K}$  is simpler than K because

- one parameter  $\theta$  rather than  $\alpha, \gamma$
- separates linear and nonlinear parts of the mapping

We continue to assume that P is irreducible and  $h \gg 0$ 

**Ex.** Prove that  $\hat{K}$  is a self-map on  $V := (0, \infty)^{\mathsf{X}}$ 

Let  $\Phi$  be defined by  $\Phi v = v^{\gamma}$ 

#### **Ex.** Show that

- 1.  $\Phi$  is a homeomorphism from V to itself and
- 2. (V,K) and  $(V,\hat{K})$  are topologically conjugate under  $\Phi$

Proof: Evidently  $\Phi$  is a homeomorphism from V to itself

In addition, for  $v \in V$ ,

$$\hat{K}\Phi v = \left\{h + \beta (P\Phi v)^{1/\theta}\right\}^{\theta} = \left\{h + \beta (Pv^{\gamma})^{\alpha/\gamma}\right\}^{\gamma/\alpha} = \Phi K v$$

Hence (V,K) and  $(V,\hat{K})$  are topologically conjugate, as claimed

Now set  $A = \beta^{\theta} P$ , so that

$$\hat{K}v = [h + (Av)^{1/\theta}]^{\theta}$$

By the result on slide 12,

$$\hat{K}$$
 is globally stable on  $V\iff \rho(A)^{1/\theta}<1$ 

In our case

$$\rho(A)^{1/\theta} = \rho(\beta^{\theta} P)^{1/\theta} = \beta$$

It follows that  $\hat{K}$  is globally stable on V whenever  $\beta < 1$ 

Since (V,K) and  $(V,\hat{K})$  are topologically conjugate, K has the same properties on V

# A general representations

We have discussed two examples of recursive preferences

Now let's build a general representation

While various constructions can be found in the decision theory literature, many are challenging for applied researchers hoping to do quantitative work

Here we give a relatively parsimonious definition based

- a Markov environment
- fixed point theory

We will build our theory from two components

- 1. an "aggregation function" and
- 2. a "certainty equivalent operator"

Below we define these objects and give examples

Then we put them together to get recursive preferences

# Certainty equivalent operators

Given  $V \subset \mathbb{R}^X$ , a certainty equivalent operator on V is a self-map R on V such that

- 1. R is order-preserving on V and
- 2.  $R(\lambda \mathbb{1}) = \lambda \mathbb{1}$  for all  $\lambda \in \mathbb{R}$  with  $\lambda \mathbb{1} \in V$

Example. Conditional expectations is a certainty equivalent operator

To see this, set  $V = \mathbb{R}^X$ , fix  $P \in \mathcal{M}(\mathbb{R}^X)$ 

- $u \leqslant v$  implies  $Pu \leqslant Pv$ , so P preserves order on V and
- $P(\lambda 1) = \lambda P 1 = \lambda 1$

# Certainty equivalent operators

Given  $V \subset \mathbb{R}^X$ , a certainty equivalent operator on V is a self-map R on V such that

- 1. R is order-preserving on V and
- 2.  $R(\lambda \mathbb{1}) = \lambda \mathbb{1}$  for all  $\lambda \in \mathbb{R}$  with  $\lambda \mathbb{1} \in V$

Example. Conditional expectations is a certainty equivalent operator

To see this, set  $V = \mathbb{R}^X$ , fix  $P \in \mathcal{M}(\mathbb{R}^X)$ 

- $u \leqslant v$  implies  $Pu \leqslant Pv$ , so P preserves order on V and
- $P(\lambda \mathbb{1}) = \lambda P \mathbb{1} = \lambda \mathbb{1}$

Example. Let  $V = \mathbb{R}^{X}$  and fix

- ullet  $P\in\mathcal{M}(\mathbb{R}^{\mathsf{X}})$  and
- nonzero  $\theta$

The operator

$$(R_{\theta} v)(x) = \frac{1}{\theta} \ln \left\{ \sum_{x'} \exp(\theta v(x')) P(x, x') \right\}$$

is called the entropic certainty equivalent operator

**Ex.** Prove that  $R_{\theta}$  is a certainty equivalent operator on V

Example. Let  $V = (0, \infty)^X$  and fix

- ullet  $P\in\mathcal{M}(\mathbb{R}^{\mathsf{X}})$  and
- nonzero  $\gamma$

The operator

$$(R_{\gamma} v)(x) = \left\{ \sum_{x'} v(x')^{\gamma} P(x, x') \right\}^{1/\gamma}$$

is called the Kreps-Porteus certainty equivalent operator

**Ex.** Confirm that  $R_{\gamma}$  is a certainty equivalent operator on V

Let  $V = \mathbb{R}^{\mathsf{X}}$  and fix  $P \in \mathcal{M}(\mathbb{R}^{\mathsf{X}})$  and  $\tau \in [0,1]$ 

Let  $R_{ au}$  be defined by  $(R_{ au} \, v)(x) = Q_{ au} \, v(X)$  where

- $X \sim P(x,\cdot)$
- ullet  $Q_{ au}$  is the quantile functional

More specifically,

$$(R_{\tau} v)(x) = \min \left\{ y \in \mathbb{R} \mid \sum_{x'} \mathbb{1}\{v(x') \leqslant y\} P(x, x') \geqslant \tau \right\}$$

 $R_{\tau}$  is called the quantile certainty equivalent

Confirm that  $R_{\tau}$  defines a certainty equivalent operator on V

## A certainty equivalent operator R on V is called

ullet positive homogeneous on V if

$$R(\lambda v) = \lambda R v$$
 for all  $v \in V$  and  $\lambda \geqslant 0$  with  $\lambda v \in V$ 

ullet superadditive on V if

$$R(v+w)\geqslant Rv+Rw$$
 for all  $v,w\in V$  with  $v+w\in V$ 

ullet subadditive on V if

$$R(v+w) \leqslant Rv + Rw$$
 for all  $v,w \in V$  with  $v+w \in V$ 

ullet constant-subadditive on V if

$$R(v + \lambda \mathbb{1}) \leqslant Rv + \lambda \mathbb{1}$$
 for all  $v \in V$ ,  $\lambda \geqslant 0$  with  $v + \lambda \mathbb{1} \in V$ 

Example. Let 
$$V = (0, \infty)^X$$
 and fix  $P \in \mathcal{M}(\mathbb{R}^X)$ 

In this setting, the Kreps-Porteus certainty equivalent operator

$$(R_{\gamma} v)(x) = \left\{ \sum_{x'} v(x')^{\gamma} P(x, x') \right\}^{1/\gamma}$$

is

- 1. subadditive on V when  $\gamma \geqslant 1$
- 2. superadditive on V when  $\gamma \leqslant 1$

Proof: See the book

**Ex.** Prove that the quantile certainty equivalent operator  $R_{\tau}$  is constant-subadditive

**Ex.** Show that the entropic certainty equivalent operator  $R_{\theta}$  is constant-subadditive

Proof: Fix  $v \in V$ ,  $P \in \mathcal{M}(\mathbb{R}^X)$  and  $\lambda \in \mathbb{R}_+$ 

Let X be a draw from  $P(x, \cdot)$ 

We have

$$(R_{\theta}(v+\lambda))(x) = \frac{1}{\theta} \ln \{ \mathbb{E} \exp[\theta(v(X) + \lambda)] \}$$
$$= \frac{1}{\theta} \ln \{ \mathbb{E} \exp[\theta v(X)] \cdot \exp(\theta \lambda) \}$$
$$= \frac{1}{\theta} \ln \{ \mathbb{E} \exp[\theta v(X)] \} + \lambda$$

Hence constant-subadditivity holds

Let V be convex and let R be a positive homogeneous certainty equivalent operator on V

#### Lemma

- 1. R is subadditive on  $V \implies R$  is convex on V
- 2. R is superadditive on  $V \implies R$  is concave on V

Proof: Regarding (i), fix  $\lambda \in [0,1]$  and  $v,w \in V$ 

Using subadditivity and positive homogeneity, we have

$$R(\lambda v + (1 - \lambda)w) \le R(\lambda v) + R((1 - \lambda)w) = \lambda Rv + (1 - \lambda)Rw$$

This proves that R is convex on V. The proof of (ii) is similar.

## **Lemma** The Kreps–Porteus certainty equivalent operator $R_{\gamma}$ is

- 1. convex on V when  $\gamma \geqslant 1$  and
- 2. concave on V when  $\gamma \leqslant 1$

### Ex. Check it

This result will be useful later, when we introduce ambiguity

Convexity / concavity connect to Du's theorem

# Monotonicity

Let X be partially ordered and let  $i\mathbb{R}^X$  be the set of increasing functions in  $\mathbb{R}^X$ 

Let V be such that  $i\mathbb{R}^{\mathbf{X}}\subset V\subset\mathbb{R}^{\mathbf{X}}$  and let R be a certainty equivalent on V

We call R monotone increasing if R is invariant on  $i\mathbb{R}^X$ 

**Ex.** Prove: If  $P \in \mathcal{M}(\mathbb{R}^X)$  is monotone increasing, then

- 1. the entropic certainty equivalent operator  $R_{\theta}$  is monotone increasing on  $V=\mathbb{R}^{\mathsf{X}}$
- 2. the Kreps–Porteus certainty equivalent operator  $R_{\gamma}$  is monotone increasing on  $V=(0,\infty)^{\mathsf{X}}$

# Aggregation

Koopmans operators are typically constructed by combining

- 1. a certainty equivalent operator and
- 2. an aggregation function

Given  $V \subset \mathbb{R}^X$ , an **aggregator** on V is a map  $A \colon X \times \mathbb{R} \to \mathbb{R}$  such that

- 1. w(x) = A(x, v(x)) is in V whenever  $v \in V$  and
- 2.  $y \mapsto A(x,y)$  is increasing for all  $x \in X$

Intuitively, an aggregator combines current state and continuation values to measure lifetime value

## Common types of aggregators include the

Leontief aggregator

$$A_{\min}(x,y) = \min\{r(x), \beta y\}$$
 with  $r \in \mathbb{R}^{X}$  and  $\beta \geqslant 0$ 

Uzawa aggregator

$$A_{\rm UZAWA}(x,y) = r(x) + b(x)y$$
 with  $r \in \mathbb{R}^{\rm X}$  and  $b \in \mathbb{R}_+^{\rm X}$ 

CES aggregator

$$A_{\text{CES}}(x,y) = \{r(x)^{\alpha} + \beta y^{\alpha}\}^{1/\alpha} \text{ with } r \in \mathbb{R}_{+}^{X}, \beta \geqslant 0, \alpha \neq 0$$

An important special case of the CES & Uzawa aggregators is the

• additive aggregator

$$A_{\text{ADD}}(x,y) = r(x) + \beta y \text{ with } r \in \mathbb{R}^{X} \text{ and } \beta \geqslant 0$$

Given  $V \subset \mathbb{R}^{X}$ , we call K a Koopmans operator on V if

$$(Kv)(x) = A(x, (Rv)(x))$$
(5)

for

- 1. some aggregator A on V and
- 2. a certainty equivalent operator R on V

 $\ensuremath{\mathbf{Ex.}}$  Show that every Koopmans operator on V is an order-preserving self-map on V

In what follows we write (5) as

$$K = A \circ R$$

## We have already met the following special cases

1. The risk-sensitive Koopmans operator

$$K_{\theta} = A_{\text{ADD}} \circ R_{\theta}$$

where  $R_{ heta}$  is the entropic certainty equivalent operator

2. The Epstein–Zin Koopmans operator

$$K = A_{\text{CES}} \circ R_{\gamma}$$

where  $R_{\gamma}$  is the Kreps–Porteus expectations operator

## Another special case is

$$K = A_{ADD} \circ P$$

where  $P \in \mathcal{M}(\mathbb{R}^{\mathsf{X}})$  is ordinary conditional expectations

#### In this case

- K is called time additive
- corresponds to traditional discounted expectations model

# The **lifetime value** generated by Koopmans operator K on $V \subset \mathbb{R}^X$ is the unique fixed point v of K in V, whenever it exists

• v(x) =lifetime value given initial state x

## Example. In the case of time additive preferences

- $Kv = r + \beta Pv$  with  $\beta \in (0,1)$
- unique fixed point is  $v^* = (I \beta P)^{-1}r$

#### We know that

$$v^*(x) = \mathbb{E} \sum_{t \geqslant 0} \beta^t r(X_t)$$
 when  $(X_t)$  is  $P$ -Markov and  $X_0 = x$ 

= lifetime value

Example. Let  $K_{\theta}$  be the risk sensitive Koopmans operator

 $K_{\theta}$  is globally stable on  $V = \mathbb{R}^{X}$  when  $\beta \in (0,1)$ 

see the result on slide 32

The unique fixed point of K in V is interpreted as lifetime value under risk-sensitive preferences

for one instance, see the fig on slide 35

## Finite horizons

Given arbitrary Koopmans operator K, we identify  $K^m w$  with total m-period utility given terminal condition w

Example. For  $Kv = r + \beta Pv$ , we have

$$K^m w = \sum_{t=0}^{m-1} (\beta P)^t r + (\beta P)^m w$$

If  $(X_t)$  is P-Markov, we can write this as

$$(K^m w)(x) = \mathbb{E}_x \left[ \sum_{t=0}^{m-1} \beta^t r(X_t) + \beta^m w(X_m) \right]$$

= lifetime utility up to date m

#### Let

- $X = (X, \preceq)$  be partially ordered
- $i\mathbb{R}^{X}$  be the set of increasing functions in  $\mathbb{R}^{X}$
- V be such that  $i\mathbb{R}^X \subset V \subset \mathbb{R}^X$

Let  $K = A \circ R$  be a globally stable Koopmans operator on V

**Ex.** Show that the unique fixed point  $v^{*}$  is increasing on X whenever

- 1.  $A(x,v) \leq A(x',v)$  whenever  $v \in V$  and  $x \leq x'$ , and
- 2. R is monotone increasing on V

We call aggregator A on V a Blackwell aggregator if  $\exists$  a  $\beta \in (0,1)$  such that

$$A(x,y+\lambda)\leqslant A(x,y)+\beta\lambda \text{ for all } x\in \mathsf{X}\text{, } y\in \mathbb{R} \text{ and } \lambda\in \mathbb{R}_+$$

**Ex.** Show that  $A_{\text{MIN}}(x,y) = \min\{r(x), \beta y\}$  is a Blackwell aggregator when  $\beta < 1$ 

<u>Proof</u>: Fixing  $x \in X$ ,  $y \in \mathbb{R}$  and  $\lambda \in \mathbb{R}_+$ , we have

$$\min\{r(x), \beta y + \beta \lambda\} \leq \min\{r(x) + \beta \lambda, \beta y + \beta \lambda\}$$
$$= \min\{r(x), \beta y\} + \beta \lambda$$

That is,  $A(x, y + \lambda) \leq A(x, y) + \beta \lambda$ 

We call aggregator A on V a Blackwell aggregator if  $\exists$  a  $\beta \in (0,1)$  such that

$$A(x,y+\lambda)\leqslant A(x,y)+\beta\lambda$$
 for all  $x\in X$ ,  $y\in \mathbb{R}$  and  $\lambda\in \mathbb{R}_+$ 

**Ex.** Show that  $A_{\text{MIN}}(x,y) = \min\{r(x), \beta y\}$  is a Blackwell aggregator when  $\beta < 1$ 

<u>Proof</u>: Fixing  $x \in X$ ,  $y \in \mathbb{R}$  and  $\lambda \in \mathbb{R}_+$ , we have

$$\min\{r(x), \beta y + \beta \lambda\} \leqslant \min\{r(x) + \beta \lambda, \beta y + \beta \lambda\}$$
$$= \min\{r(x), \beta y\} + \beta \lambda$$

That is,  $A(x, y + \lambda) \leq A(x, y) + \beta \lambda$ 

## **Proposition.** If

- 1. A is a Blackwell aggregator and
- 2. R is constant-subadditive

then  $K = A \circ R$  is a contraction on V with respect to  $\|\cdot\|_{\infty}$ 

Proof: Fixing  $v \in V$  and  $\lambda \in \mathbb{R}_+$ , we have

$$K(v + \lambda) = A(\cdot, R(v + \lambda)) \leqslant A(\cdot, Rv + \lambda)$$

Since A is a Blackwell aggregator, the last bound yields

$$K(v + \lambda) \leq A(\cdot, Rv) + \beta\lambda = Kv + \beta\lambda$$

Hence K satisfies Blackwell's condition for a contraction

Let's now return to the global stability claim for the risk-sensitive Koopmans operator  $K_{\theta}$  on slide 32

Pick any nonzero  $\theta$ 

Recall that  $K_{ heta} = A_{ ext{ADD}} \circ R_{ heta}$  when

- ullet  $A_{
  m ADD}$  is the additive aggregator and
- $R_{ heta}$  is the entropic certainty equivalent

#### Note that

- 1.  $A_{
  m ADD}$  is a Blackwell aggregator and
- 2.  $R_{\theta}$  is constant-subadditive

Hence  $K_{\theta}$  is globally stable on  $\mathbb{R}^{X}$ 

Suppose  $V = \mathbb{R}^{X}$  and

$$(K_{\tau}v)(x) = r(x) + \beta(R_{\tau}v)(x) \qquad (x \in \mathsf{X})$$
 (6)

for  $\beta \in (0,1)$ ,  $r \in \mathbb{R}^{X}$  and quantile certainty equivalent  $R_{\tau}$ 

- represents quantile preferences (de Castro and Galvao 2019)
- ullet au parameterizes attitude to risk

Since  $R_{\tau}$  is constant-subadditive and  $A_{\rm ADD}$  is Blackwell,  $K_{\tau}$  is globally stable

**Ex.** Suppose  $K_{\tau}$  in (6) is replaced by with  $K = A_{\min} \circ R_{\tau}$ . Under analogous assumptions, prove that K is globally stable.

# Uzawa aggregation and stability

Consider the Koopmans operator  $K = A_{\text{UZAWA}} \circ R$ 

- ullet V is some subset of  $\mathbb{R}^{\mathsf{X}}$  and
- ullet R is a certainty equivalent operator on V

Example. Suppose 
$$V = \mathbb{R}^X$$
 and  $R = P \in \mathcal{M}(\mathbb{R}^X)$ 

Then

$$Kv = r + Lv$$
 where  $L(x, x') = b(x)P(x, x')$ 

**Ex.** Show that K is globally stable on V whenever  $\rho(L) < 1$ 

Example. In Krussell and Smith 1998, Toda 2019, Cao 2020, etc.,

$$v(x) = \mathbb{E}_x \sum_{t=0}^{\infty} \left[ \prod_{i=0}^{t} \beta_i \right] u(C_t) \quad \text{with} \quad \beta_0 := 1$$
 (7)

Suppose  $C_t = c(X_t)$  and  $\beta_t = b(X_t)$  where

- $b \geqslant 0$  and
- $(X_t)$  is P-Markov for some  $P \in \mathcal{M}(\mathbb{R}^X)$

Set 
$$L(x, x') := b(x)P(x, x')$$
 and suppose  $\rho(L) < 1$ 

Then v in (7) is the unique f.p. of

$$Kv = u \circ c + bPv = A_{UZAWA}Pv$$

# Stability via concavity

Now consider Kv = r + bRv when R is not in  $\mathcal{M}(\mathbb{R}^X)$ 

When does global stability hold (allowing b > 1 in some states)?

## Suppose

- (a)  $bRv \leqslant c + Lv$  for  $c \in \mathbb{R}^X$  and  $L \in \mathcal{L}(\mathbb{R}^X)$  with  $\rho(L) < 1$
- (b)  $r \gg 0$  and R is concave on  $\mathbb{R}_+^{\mathsf{X}}$

Let 
$$V=[0,\bar{v}]$$
 where  $\bar{v}:=(I-L)^{-1}(r+c)$ 

**Proposition.** If (a)–(b) hold, then K is globally stable on V

<u>Proof</u>: Under (a)–(b), K is a self-map on V

Indeed, we have

$$0 \ll r = r + 0 = r + bR0 = K0$$

and

$$K\bar{v}=r+bR\bar{v}\leqslant r+c+L\bar{v}=r+c-(I-L)\bar{v}+\bar{v}=\bar{v}$$

In addition, K is concave and order-preserving on V

The claim now follows from Du's theorem

# EZ preferences with state-dependent discounting

CES-Uzawa aggregator + Kreps-Porteus certainty equivalent operator leads to

$$Kv = \left\{ h + b \left[ Pv^{\gamma} \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

In what follows we

- take  $V = (0, \infty)^X$
- assume  $h,b\in V$  and  $P\in\mathcal{M}(\mathbb{R}^{\mathsf{X}})$  is irreducible

**Ex.** Show that K is self-map on V

To discuss stability of K we introduce the operator  $A \in \mathcal{L}(\mathbb{R}^{X})$  defined by

$$(Av)(x) := b(x)^{\theta} \sum_{x'} v(x') P(x,x') \quad \text{where } \ \theta := \frac{\gamma}{\alpha}$$

Note that we can now write K as follows

$$Kv = \left\{ h + [Av^{\gamma}]^{\alpha/\gamma} \right\}^{1/\alpha}$$

**Proposition.** K is globally stable on V if and only if  $\rho(A)^{\alpha/\gamma} < 1$ 

Proof: Let

$$\hat{K}v = \left\{h + (Av)^{1/\theta}\right\}^{\theta}$$

Let  $\Phi$  be defined by  $\Phi v = v^{\gamma}$ 

**Ex.** Show that  $\hat{K}$  is globally stable on V if and only if  $\rho(A)^{\alpha/\gamma} < 1$ 

• Hint: See the result on slide 12

**Ex.** Show that (V,K) and  $(V,\hat{K})$  are topologically conjugate under  $\Phi$ 

The claim in the proposition follows