

## **Problem Definition**

#### **Binary Classification Problem**

#### Original Attributes:

"id","region","district","municipality","parish","lat","lon","origin","alert\_date","alert\_hour","extinct ion\_date","extinction\_hour","firstInterv\_date","firstInterv\_hour","alert\_source","village\_area","veg etation\_area","farming\_area","village\_veget\_area","total\_area".

Target Variable: "intentional\_cause"

- 0 -> no
- 1 -> yes

Output of the Classification Model: probability of a fire being intentional



# **Data Understanding**

## **Type of Data**

- Tabular
- Nondependency-oriented data

### **Types and Scales of Attributes**

| id        | region      | district    | municipality | parish      | lat       | lon       | origin      | alert_date | alert_hour | extinction_dat<br>e |
|-----------|-------------|-------------|--------------|-------------|-----------|-----------|-------------|------------|------------|---------------------|
| Numerical | Categorical | Categorical | Categorical  | Categorical | Numerical | Numerical | Categorical | Numerical  | Numerical  | Numerical           |
| Ratio     | Nominal     | Nominal     | Nominal      | Nominal     | Ratio     | Ratio     | Nominal     | Interval   | Ratio      | Interval            |

| extintion_hou<br>r | fistInterv_date | firstInterv_hour | alert_source | village_area | vegetation_area | farming_area | village_veget_a<br>rea | total_area | intentional_caus<br>e |
|--------------------|-----------------|------------------|--------------|--------------|-----------------|--------------|------------------------|------------|-----------------------|
| Numerical          | Numerical       | Numerical        | NA           | Numerical    | Numerical       | Numerical    | Numerical              | Numerical  | Categorical           |
| Ratio              | Interval        | Ratio            | NA           | Ratio        | Ratio           | Ratio        | Ratio                  | Ratio      | Nominal               |



## Data Preparation | Data Quality Issues

#### Missing values

- Variables with some missing values (region, extinction\_date, firstInterv\_date).
- In the case
   of alert\_source, all the
   values are missing values.

## Inconsistent or incorrect values

- Values of region having "".
- Diferent ways of naming the same district ("Viana do Castelo" and "Viana Do Castelo").
- The coordinates are not represented in the same way.
- Some of the coordinates values have "," instead of ".", which is not used in R.



# Data Preparation | Data Pre-processing

#### **Data Cleaning – Handling Missing Values**



"Alert\_source" has been withdrawn since all values are missing values.

extinction\_date
Min. :2014-01-12 00:00:00.0
1st Qu.:2014-09-11 13:00:00.0
Median :2015-05-19 01:00:00.0
Mean :2015-03-15 03:40:02.7
3rd Qu.:2015-08-01 01:00:00.0
Max. :2015-12-28 00:00:00.0
NA's :10



The average duration of a fire was calculated, the result of which was about 0.96 (one day). In this way, it was added one day to "alert\_date", to fill the missing values of "extinction\_date".



## Data Preparation | Data Pre-processing

#### **Data Cleaning – Handling Incorrect Values**

```
Naming the same district
# Two Possible Values for district Viana do Castelo
fires$district[(fires$district=='Viana Do Castelo')] <- 'Viana do Castelo'
                                                                                                                in the same way.
# Fill Missing Region values
fires$region[(fires$region=='-' & fires$district=='Aveiro')] <- 'Beira Litoral'
fires$region[(fires$region=='-' & fires$district=='Coimbra')] <- 'Beira Litoral'
fires$region[(fires$region=='-' & fires$district=='Leiria')] <- 'Beira Litoral'
fires$region[(fires$region=='-' & fires$district=='Viseu')] <- 'Beira Litoral'
fires$region[(fires$region=='-' & fires$district=='Castelo Branco')] <- 'Beira Interior'
fires$region[(fires$region=='-' & fires$district=='Guarda')] <- 'Beira Interior'
fires$region[(fires$region=='-' & fires$district=='Santarém')] <- 'Ribatejo e Oeste'
                                                                                                              Assigning respective
fires$region[(fires$region=='-' & fires$district=='Faro')] <- 'Algarve'
fires$region[(fires$region=='-' & fires$district=='Braganca')] <- 'Trás-os-Montes'
                                                                                                              regions to region values
fires$region[(fires$region=='-' & fires$district=='Vila Real')] <- 'Trás-os-Montes'
fires$region[(fires$region=='-' & fires$district=='Viana do Castelo')] <- 'Entre Douro e Minho'
                                                                                                              that have "-".
fires$region[(fires$region=='-' & fires$district=='Braga')] <- 'Entre Douro e Minho'
fires$region[(fires$region=='-' & fires$district=='Porto')] <- 'Entre Douro e Minho'
fires region (fires region == '-' & fires district == 'Beja') | <- 'Alentejo'
fires$region[(fires$region=='-' & fires$district=='Évora')] <- 'Alentejo'
fires$region[(fires$region=='-' & fires$district=='Portalegre')] <- 'Alentejo'
fires$region[(fires$region=='-' & fires$district=='Lisboa')] <- 'Lisboa e Vale do Tejo'
fires$region[(fires$region=='-' & fires$district=='Setúbal')] <- 'Lisboa e Vale do Teio'
# Substituir ',', por '.' em valores
fires$lat <- chartr(',', '.', fires$lat)
fires$lon <- chartr(',', '.', fires$lon)</pre>
                                                                                                               Substitution of "," by "."
                                                                                                               in the coordinate values.
```

## Data Preparation | Data Pre-processing

#### **Data transformation**

Conversion of all coordinates to the decimal form.

#### **Dimensionality Reduction - Feature Selection**

- id
- firstInterv hour
- extinction\_hour
- alert\_source

### **Feature Engineering**

- temp (average temperature)
- tempMax (maximum temperature)
- windGust (wind gust)
- windVelocity (wind velocity)

Irrelevant variables were removed.

Through the values of the coordinates ("lat" and "lon") and the alert date ("alert\_date") a few more variables were added.



### Which is the region where most fires take place?

## Number of fires that occur on each region





### What are the districts of the region "Entre Douro e Minho" where most fires take place?

Number of fires that occur on region "Entre Douro e Minho"



### What are the regions where the fires have burned the most area?

Amount of total area burned by the fires per region





### What are the origin of the fires that were intentional?

### Intentional cause and origin of fires



### How many fires were intentional on each region?

Intentional cause of fires per region



### What are the origin of the fires on each region?

### Origin of fires per region





### What are the origin and intentional cause of the fires on each region?

### Intentional cause and origin of fires per region





### What are the times of the year where most fires take place?

Months of the year when fires took place

#### Months when fires took place





### What are the hours of the day where most fires take place?

Hours of the day when fires took place





### What are the origin and intentional cause of fires during the year?

Origin and Intentional Cause of fires that occur during the month



## What are the origin and intentional cause of fires during the day?

Origin and Intentional Cause of fires that occur during the day



### What are the origin and intentional cause of the fires that burned the most land?

Region and intentional cause of the 50 fires that burned the most area



## **Predictive Modelling**

- Evaluation Metric: AUC (Area under the Curve)
- Train and test Split (70% 30%)
- k-fold Cross Validation (10 folds)
- Applied recipes where:
  - + Irrelevant predictors-> removed
  - + Categorical predictors -> converted to numeric values
  - + Numeric predictors -> centered and scaled
  - + Date predictors -> sometimes included (depends on the model)
  - + Variables with large correlations to others -> removed



# Predictive Modelling | Best Results

| Model               | Engine   |                     | Pos Aus       |            |          |  |
|---------------------|----------|---------------------|---------------|------------|----------|--|
| iviouei             | Eligille | Tur                 | ned           | Decided    | Roc_Auc  |  |
| Logistic Regression | glmnet   | Penalty:            | 0.00053       | -          | 0.731835 |  |
| Decision Trees CART | rpart    | Tree_depth: 4       | Min_n: 2      | -          | 0.555673 |  |
| K-Nearest Neighbors | kknn     | Neighbors: 10       | Dist_power: 1 | -          | 0.720147 |  |
| Neural Network      | nnet     | Hidden_units: 7     | Penalty: 1    | Epochs: 10 | 0.723100 |  |
| Naive Bayes         | klaR     | Smoothness:<br>0.75 | Laplace: 0    | -          | 0.694749 |  |
| Random Forest       | ranger   | Mtry: 4             | Min_n: 20     | Trees: 100 | 0.763972 |  |
| Boosted Trees       | xgboost  | Mtry: 4             | Min_n: 11     | Trees: 100 | 0.744530 |  |



# **Predictive Modelling** | Last Fit

#### Random Forest

- mtry = 4
- min\_n = 20
- trees = 100
- Engine: ranger
- -> Roc\_auc: 0.7627880

#### 20 Most Important Features





## Conclusions, Limitations and Future Work

- The model that achieved the most AUC was Random Forest.
- According to the last fit model, the variables that matter the most (above 25% of importance)
   are: tempMax; total\_area; village\_area; windGust; vegetation\_area.
- One of the limitations or difficulties was making the data tidy and working in the correct formats that the models needed.
- For future work, more variations of features could be selected for other models to produce better results. Also, different tuning of the parameters could be performed.



## AUC of the best model of each type



#### **Logistic Regression Results**



## **Decision Trees CART Results**





## K-Nearest Neighbors Results



### **Neural Network Results**



## Naive Bayes Results



## **Random Forest Results**



## **Boosted Trees Results**

