

Numerická analýza transportních procesů - NTP2

Přednáška č. 2 Jednorozměrné ustálené vedení tepla

Numerická analýza transportních procesů - NTP2 - 1D stacionární vedení tepla

Obsah přednášky

- Motivace
- Diferenciální rovnice problému
 - Gradient teploty
 - Fourierův zákon
 - Bilance energie
 - Diferenciální rovnice vedení tepla
- Slabé řešení
- Diskretizace metodou konečných prvků

Motivace

Příklady fyzikálních problémů:

Fyzikální jev	Charakteristická proměnná
Statika	Posuny (průhyby), pootočení
Smyková deplanace průřezu	Deplanační funkce
Průhyb membrány	Průhyb
Elektrostatika	El. potenciál
Difúze	Koncentrace
Ustálené proudění	Hydraulická výška
Transport vlhkosti	Relativní vlhkost
Přenos Tepla	Teplota

- Analýza transportních jevů
 - Transport tepla a vlhkosti

Transport tepla

- hledaná funkce je rozložení teploty T(x) [K]

- postup řešení: Diferenciální rovnice + okrajové podmínky

→ slabé řešení → diskretizace, MKP

Základní pojmy a veličiny:

- Teplo Q(x) (tepelná energie) je část vnitřní energie, kterou těleso přijme nebo odevzdá při tepelné výměně druhému tělesu (vyjadřuje změnu stavu) [J].
- Teplota T(x) vyjadřuje stav tělesa [K].
- Výměna tepelné energie závisí na teplotním rozdílu, ne na vlastní teplotě!
- Gradient teploty:

$$\nabla T(x) = \operatorname{grad} T(x) = \lim_{\Delta x \to 0} \frac{T(x + \Delta x) - T(x)}{\Delta x} = \frac{\mathrm{d}T}{\mathrm{d}x}(x) \tag{1}$$

• Tepelný tok $q_n(x)$ je množství tepla, které projde jednotkovou plochou A [1m²] s normálou n za jednotku času t [s]:

$$\boldsymbol{q}_n(x) = \frac{Q(x)}{A \cdot t} \boldsymbol{n}(x), \qquad [\text{Wm}^{-2}]$$
 (2)

pozn.: při ustáleném stavu tepelný tok nezávisí na čase

Transportní rovnice:

• Fourierův zákon: tepelný tok v bodě tělesa $x \in \Omega$

$$q(x) = -\lambda(x)\operatorname{grad}T(x), \tag{3}$$

kde $\lambda(x)$ je součinitel tepelné vodivosti [Wm⁻¹K⁻¹].

Bilanční rovnice:

ullet Bilance energie v objemovém elementu tělesa Ω

$$\operatorname{div}\left(-\lambda(x)\operatorname{grad}T(x)\right) = 0. \tag{4}$$

Odvození bilance energie:

 Při přenosu tepla "protéká" tepelný tok objemovým elementem. Bilance energie vyžaduje, aby změna tepelné energie, která je generována uvnitř kontrolního objemu byla rovna tepelné energii odevzdané, protože teplota a tedy i energie musí být konstantní v kontrolním objemu pro ustálený stav.

• Uvnitř tělesa $(x \in \Omega)$ platí:

$$q_x(x)A(x) + \overline{Q}(x)\left(x + \frac{\Delta x}{2}\right)\Delta x A\left(x + \frac{\Delta x}{2}\right) = q_x(x + \Delta x)A(x + \Delta x),\tag{5}$$

kde $\overline{Q}(x)$ označuje zdroj tepla $[\operatorname{Jm}^{-3} \operatorname{s}^{-1}]$ (kladný, pokud je teplo generováno, záporný, pokud je teplo odebíráno).

Odvození rovnice vedení tepla:

• Úpravou a limitním přechodem pro $\Delta x \to 0$:

$$-\frac{\mathrm{d}}{\mathrm{d}x}(q_x(x))A(x) + \overline{Q}(x)A(x) = 0.$$
(6)

• S uvážením konstatní plochy A(x) se rovnice zjednodušší na

$$-\frac{\mathrm{d}}{\mathrm{d}x}(q_x(x)) + \overline{Q}(x) = 0 \quad \text{pro} \quad x \in \Omega.$$
 (7)

 Dosazením Fourierova zákona z rovnice (3) dostáváme diferenciální rovnici pro ustálené vedení tepla

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} \right) + \overline{Q}(x) = 0. \tag{8}$$

Pozn.: součinitel tepelné vodivosti $\lambda(x)$ je uvažován konstantní, ale obecně může být funkcí hledané neznámé (teploty T), tedy $\lambda(T,x)$.

Okrajové podmínky:

• Dirichletova okrajová podmínka - předepsaná teplota na hranici:

$$T(x) = \overline{T}(x)$$
 pro $x \in \Gamma_T$. (9)

• Neumannova okrajová podmínka - předepsaný tok na hranici:

$$\mathbf{q}_x(x) = \overline{\mathbf{q}}_x(x) \quad \text{pro} \quad x \in \Gamma_{qp}.$$
 (10)

 Cauchyho (někdy též Newtonova nebo smíšená) okrajová podmínka - přestup tepla na hranici:

$$\mathbf{q}_{x}(x) = \alpha(x) \left(T(x) - T_{\infty}(x) \right) \quad \text{pro} \quad x \in \Gamma_{qc},$$
 (11)

 $\alpha(x)$ je součinitel přestupu tepla $[\mathsf{Wm}^{-2}\mathsf{K}^{-1}]$ a $T_\infty(x)$ je teplota okolního prostředí.

 Nelineární podmínka (někdy také Newtonova) - radiace (záření tepla) povrchem tělesa:

$$\mathbf{q}_x(x) = \varepsilon(x)\sigma(x)\left(T^4(x) - T_\infty^4(x)\right) \quad \text{pro} \quad x \in \Gamma_{qr},$$
 (12)

kde $\varepsilon(x)$ je míra povrchového záření vtaženého k černému tělesu $(0<\varepsilon<1)$ a $\sigma(x)=5,67\cdot 10^{-8}\,{\rm Wm^{-2}K^{-4}}$ je Stefan-Boltzmannova konstanta a $T_\infty(x)$ je teplota okolního prostředí (zářiče).

Řešení diferenciání rovnice vedení tepla

Galerkinova metoda:

• Hledáme řešení (dostatečně hladké) takové aby pro $x \in \Omega$:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} \right) + \overline{Q}(x) = 0, \tag{13}$$

• pro $x \in \Gamma_T$:

$$T(x) = \overline{T}(x), \tag{14}$$

• pro $x \in \Gamma_q$:

$$q_x(x) = -\lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} n(x) = \overline{q}_x(x),$$
 (15)

kde:

- pro $x \in \Gamma_{qp}$: $\overline{\boldsymbol{q}}(x)$ je dáno
- pro $x \in \Gamma_{qc}$: $\overline{q}(x) = \alpha(x) \left(T(x) T_{\infty}(x) \right)$
- pro $x\in \Gamma_{qr}$: $\overline{m{q}}(x)=arepsilon(x)\sigma(x)\left(T^4(x)-T_\infty^4(x)\right)$ (při odvození zanedbáme)

Řešení diferenciání rovnice vedení tepla

Galerkinova metoda:

• Pro libovolnou váhovou funkci δT takovou, aby $\delta T(x) = 0$ pro $x \in \Gamma_T$:

$$\int_{\Omega} \left\{ \delta T(x) \left(\frac{\mathrm{d}}{\mathrm{d}x} \left(\lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} \right) + \overline{Q}(x) \right) \right\} \mathrm{d}\Omega = 0, \qquad x \in \Omega$$
 (16)

pozn.: pro 1D $\Omega = x$.

• Integrací per-partes (Gaussova nebo Greenova věta) dostaneme vztah

$$\int_{\Omega} \left\{ \left(\delta T(x) \frac{\mathrm{d}}{\mathrm{d}x} \left(\lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} \right) + \overline{Q}(x) \right) \right\} \mathrm{d}\Omega =$$

$$= \int_{\Gamma} \delta T(x) \lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} \boldsymbol{n}(x) \mathrm{d}\Gamma - \int_{\Omega} \frac{\mathrm{d}\delta T(x)}{\mathrm{d}x} \lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} \mathrm{d}\Omega + \int_{\Omega} \delta T(x) \overline{Q}(x) \mathrm{d}\Omega, \tag{17}$$

kde integrál na hranici lze rozdělit na několik částí:

$$\int_{\Gamma} \delta T(x) \lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} \boldsymbol{n}(x) \mathrm{d}\Gamma = \int_{\Gamma_{T}} \underbrace{\delta T(x)}_{=0} \lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} \boldsymbol{n}(x) \mathrm{d}\Gamma + \int_{\Gamma_{q}} \delta T(x) \underbrace{\lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} \boldsymbol{n}(x)}_{=-\boldsymbol{q}_{x}} \mathrm{d}\Gamma$$
(18)

Řešení diferenciání rovnice vedení tepla

dále:

$$\int_{\Gamma_q} \delta T(x) \boldsymbol{q}_x(x) d\Gamma = \int_{\Gamma_{qp}} \delta T(x) \overline{\boldsymbol{q}}_x(x) d\Gamma + \int_{\Gamma_{qc}} \delta T(x) \alpha(x) \left(T(x) - T_{\infty}(x) \right) d\Gamma.$$
 (19)

Slabé řešení:

• Po drobných matematických úpravách dostáváme tzv. slabé řešení

$$\int_{\Omega} \frac{\mathrm{d}\delta T(x)}{\mathrm{d}x} \lambda(x) \frac{\mathrm{d}T(x)}{\mathrm{d}x} \mathrm{d}\Omega + \int_{\Gamma_{qc}} \delta T(x) \alpha(x) T(x) \mathrm{d}\Gamma = \int_{\Gamma_{qp}} \delta T(x) \overline{q}_{x}(x) \mathrm{d}\Gamma + \int_{\Gamma_{qc}} \delta T(x) \alpha(x) T_{\infty}(x) \mathrm{d}\Gamma + \int_{\Omega} \delta T(x) \overline{Q}(x) \mathrm{d}\Omega, \tag{20}$$

u kterého hledáme T(x) (dostatečně integrovatelné).

Diskretizace slabého řešení

Metoda konečných prvků:

- ullet Uvažujeme dělení oblasti Ω na n konečných prvků Ω^e
- Na každém prvku e zavedeme tzv. lokální aproximaci:

$$T^e(x) \approx N^e(x)r^e$$
, grad $T^e(x) \approx B^e(x)r^e$, $\delta T^e(x) \approx N^e(x)w^e$, grad $\delta T^e(x) \approx B^e(x)w^e$. (21)

• dosazením do slabého řešení - pro všechna taková ${m w}^e$, že ${m w}^e=0$ na Γ_T získáme vztah:

$$\sum_{e=1}^{n} \boldsymbol{w}^{eT} \left\{ \overbrace{\int_{\Omega^{e}} \boldsymbol{B}^{eT}(x) \lambda^{e}(x) \boldsymbol{B}^{e}(x) d\Omega}^{\boldsymbol{K}_{\Omega}^{e}} \boldsymbol{r}^{e} + \overbrace{\int_{\Gamma^{e}} \boldsymbol{N}^{eT}(x) \alpha^{e}(x) \boldsymbol{N}^{e}(x) d\Gamma}^{\boldsymbol{K}_{\Gamma}^{e}} \boldsymbol{r}^{e} + \overbrace{\int_{\Gamma^{e}} \boldsymbol{N}^{eT}(x) \alpha^{e}(x) \boldsymbol{N}^{e}(x) d\Gamma}^{\boldsymbol{K}_{\Gamma}^{e}} \boldsymbol{r}^{e} + \overbrace{\int_{\Gamma^{e}} \boldsymbol{N}^{eT}(x) \alpha^{e}(x) \boldsymbol{N}^{e}(x) d\Gamma}^{\boldsymbol{K}_{\Gamma}^{e}} \boldsymbol{r}^{e} + \overbrace{\int_{\Gamma^{e}} \boldsymbol{N}^{eT}(x) \alpha^{e}(x) d\Gamma}^{\boldsymbol{K}_{\Gamma}^{e}} \boldsymbol{r}^{e} + \overbrace{\int_{\Gamma^{e}} \boldsymbol{N}^{e}(x) d\Gamma}^{\boldsymbol{K}_{\Gamma}^{e}} \boldsymbol{N}^{e}} \boldsymbol{r}^{e} + \overbrace{\int_{\Gamma^{e}} \boldsymbol{N}^{e}(x) d\Gamma}^{\boldsymbol{K}_{\Gamma}^{e}} \boldsymbol{N}^{e}} \boldsymbol{r}^{e} + \overbrace{\int_{\Gamma^{e}} \boldsymbol{N}^{e}} \boldsymbol{N}^{e}} \boldsymbol{N}^{e} \boldsymbol{N}^{e} \boldsymbol{N}^{e} \boldsymbol{N}^{e} \boldsymbol{N}^{e} \boldsymbol{N}^{e}} \boldsymbol{N}^{e} \boldsymbol{N}^{e} \boldsymbol{N}^{e} \boldsymbol{N}^{e} \boldsymbol{N}^{e} \boldsymbol{N}^{e} \boldsymbol{N}^{e}} \boldsymbol{N}^{e} \boldsymbol{N$$

$$- \int_{\Gamma^{e}} \mathbf{N}^{eT}(x) \alpha^{e}(x) \mathbf{N}^{e}(x) \mathbf{T}_{0}^{e} d\Gamma + \int_{\Gamma^{e}} \mathbf{N}^{eT}(x) \mathbf{N}^{e}(x) \overline{\mathbf{q}}^{e} d\Gamma - \int_{\Omega^{e}} \mathbf{N}^{eT}(x) \mathbf{N}^{e}(x) \overline{\mathbf{Q}}^{e} d\Omega \right\} = 0$$

Diskretizace slabého řešení

Metoda konečných prvků:

Globální veličiny = lokalizace

$$\boldsymbol{w}^{\mathrm{T}}\left(\sum_{e=1}^{n}\hat{\boldsymbol{K}}^{e}\boldsymbol{r}-\sum_{e=1}^{n}\hat{\boldsymbol{f}}^{e}\right)=0.$$
 (23)

• Konečná podoba soustavy rovnic:

$$Kr = f. (24)$$

Vyloučení předepsaných stupňů volnosti, Dirichletových okr. podmínek d:

$$\begin{bmatrix} \mathbf{K}_{TT} & \mathbf{K}_{Td} \\ \mathbf{K}_{dT} & \mathbf{K}_{dd} \end{bmatrix} \begin{bmatrix} \mathbf{r} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{T} \\ \mathbf{f}_{d} \end{bmatrix}, \tag{25}$$

kde

$$K_{TT}r = f_T - K_{Td}d \tag{26}$$

a následný výpočet neznámého toku v místě předepsané teploty

$$\boldsymbol{f}_d = \boldsymbol{K}_{dT} \boldsymbol{r} + \boldsymbol{K}_{dd} \boldsymbol{d}. \tag{27}$$