Laboratorium X

Teoria śladów

Dominik Marek

16 grudnia 2024

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

1.Zadania

Cz. I.

Zadanie 1

Rozważmy zbiór zmiennych ("bazę danych") {x, y, z} i następujący zbiór akcji ("transakcji") modyfikujących wartości tych zmiennych:

- (a) x := x + y
- (b) y := y + 2z
- (c) x := 3x + z
- (d) z := y z.

Akcje możemy wykonywać współbieżnie z następującym zastrzeżeniem: akcja zmieniająca wartość zmiennej nie może być wykonana współbieżnie z akcją odczytującą lub modyfikującą stan tej samej zmiennej. W języku teorii śladów: dwie akcje są zależne jeśli obie operują na tej samej zmiennej, a przynajmniej jedna z nich modyfikuje wartość tej zmiennej.

Zadanie 1a

W alfabecie A = { a, b, c, d} określ relacje zależności i niezależności.

Zadanie 1b

Wyznacz ślad wyznaczony przez słowo w = baadcb względem powyższej relacji niezależności.

Zadanie 1c

Wyznacz postać normalną Foaty śladu [w] można skorzystać z algorytmu z pracy Volker Diekert, Yves Métivier : Partial Commutation and Traces str 11

Zadanie 1d

Narysuj graf zależności Diekerta (w postaci zminimalizowanej - bez krawędzi "przechodnich") dla słowa w.

Zadanie 2

Dany jest zbiór akcji:

- (a) $x \leftarrow y + z$
- (b) $y \leftarrow x + w + y$
- (c) $x \leftarrow x + y + v$
- (d) $w \leftarrow v + z$
- (e) $v \leftarrow x + v + w$
- (f) $z \leftarrow y + z + v$.

Zadanie 2a

W alfabecie A = { a, b, c, d, e, f} określ relacje zależności i niezależności.

Zadanie 2b

Wyznacz postać normalną Foaty śladu [u], u = acdcfbbe

Zadanie 2c

Narysuj graf zależności Diekerta (w postaci zminimalizowanej - bez krawędzi "przechodnich") dla słowa u.

2.Rozwiązania

1a.

Aby określić relacje zależności i niezależności w alfabecie A={a, b, c, d}, analizujemy wpływ każdej akcji na zmienne x, y, z oraz określamy, które akcje mogą być wykonywane współbieżnie, a które nie.

Definicje:

- 1. Zależność: Akcje są zależne, jeśli obie operują na tej samej zmiennej, a przynajmniej jedna z nich ją modyfikuje.
- 2. Niezależność: Akcje są niezależne, jeśli nie są zależne.

Analiza akcji:

- 1. Akcja a: x := x + y
 - o Odczyt: x, y
 - Modyfikacja: x
- 2. Akcja b: y:=y+2z
 - o Odczyt: y, z
 - Modyfikacja: y
- 3. Akcja c: x:=3x+z
 - o Odczyt: x, z
 - Modyfikacja: x
- 4. Akcja d: z:=y-z
 - o Odczyt: y ,z
 - o Modyfikacja: z

Relacje zależności:

- Między a i innymi akcjami:
 - o a i b: Zależne (a odczytuje y, które b modyfikuje).
 - o a i c: Zależne (a i c modyfikują x).
 - o a i d: Niezależne (a odczytuje y, ale nie odczytuje ani modyfikuje z).
- Między b a innymi akcjami:
 - o b i c: Niezależne (b nie operuje na x).
 - o b i d: Zależne (b odczytuje z, a d modyfikuje z).

• Między c a innymi akcjami:

o c i d: Zależne(c odczytuje z, który jest modyfikowany przez d).

Relacje zależności i niezależności:

Zależność (D):

$$D = \Sigma^2 - I$$

$$D = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, d), (c, a), (c, c), (c, d), (d, b), (d, c), (d, d)\}$$

Niezależność (I):

$$I = \{(a, d), (d, a), (c, b), (b, c)\}$$

1b.

Aby wyznaczyć ślad wyznaczony przez słowo **w=baadcb** względem relacji niezależności, należy:

- 1. Rozważyć porządek liter w www: Rozpoczynamy od słowa w=baadcb
- 2. Zidentyfikować litery, które mogą być zamienione miejscami zgodnie z relacją niezależności. Niezależne litery nie wpływają na siebie, więc ich kolejność nie zmienia wyniku.

Procedura:

- 1. Identyfikacja możliwych zamian:
 - o Literę można zamienić z inną tylko wtedy, gdy są niezależne.
 - Przechodzimy przez słowo od lewej do prawej, sprawdzając, które litery można zamienić miejscami.
- 2. Budowanie zbioru wszystkich możliwych słów:
 - Dla każdej permutacji słowa www, sprawdzamy kolejne zamiany zgodnie z I.
 - Powtarzamy ten proces dla wszystkich uzyskanych słów, dopóki nie zostaną wygenerowane wszystkie możliwe permutacje.

Wyznaczanie śladu dla w=baadcb:

1.Zamiana a z d:

badacb

2.Zamiana c z b:

badabc

3.Druga zamiana a z d:

bdaacb

4.Zamiana c z b:

bdaabc

5.Zamiana c z b w słowie wejściowym:

baadbc

Zbiór wszystkich słów:

Po zakończeniu generowania ślad zawiera wszystkie permutacje zgodne z I: {baadcb, badacb, badabc, bdaacb, bdaabc, baadbc }.

1.c

Warstwy Foaty:

- **(b)** : Na początku można wykonać b, ponieważ nie ma żadnych poprzedników zależnych od b.
- **(ad)**: Następnie można równocześnie wykonać a i d, ponieważ są od siebie niezależne.
- **(a)**: Kolejne a jest wykonywane osobno, ponieważ nie można go połączyć z b lub c w tej samej warstwie.
- **(bc)**: Na końcu można wykonać b i c równocześnie, ponieważ są od siebie niezależne.

Zgodnie z relacją zależności i niezależności postać normalna Fotaty wygląda następująco:

$$FNF([w])=(b)(ad)(a)(bc)$$

Analiza słowa w=baadcb

- b1 jest zależne od a2,d4
- a2 jest zależne od a3,c5.
- a3 jest zależne od c5, b6
- d4 jest zależne od c5,b6.

Rysunek 1: Graf zależności Dikerta

Wyznaczamy najpierw zbiór relacji niezależności:

- Akcje a: $\mathbf{x} \leftarrow \mathbf{y} + \mathbf{z}$ i d: $\mathbf{w} \leftarrow \mathbf{v} + \mathbf{z}$ są niezależne bo modyfikują różne zmienne
- Akcje $\mathbf{b}: \mathbf{y} \leftarrow \mathbf{x} + \mathbf{w} + \mathbf{y}$ i $\mathbf{e}: \mathbf{v} \leftarrow \mathbf{x} + \mathbf{v} + \mathbf{w}$ są niezależne bo modyfikują różne zmienne
- Akcje $\mathbf{c}: \mathbf{x} \leftarrow \mathbf{x} + \mathbf{y} + \mathbf{v}$ i $\mathbf{d}: \mathbf{w} \leftarrow \mathbf{v} + \mathbf{z}$ są niezależne bo modyfikują różne zmienne
- Akcje $\mathbf{c}: \mathbf{x} \leftarrow \mathbf{x} + \mathbf{y} + \mathbf{v}$ i $\mathbf{f}: \mathbf{z} \leftarrow \mathbf{y} + \mathbf{z} + \mathbf{v}$ są niezależne bo modyfikują różne zmienne

$$I = \{(a, d), (d, a), (b, e), (e, b), (c, d), (d, c), (c, f), (f, c)\}$$

$$D = \Sigma^2 - I$$

u = acdcfbbe

Warstwy Foaty:

- 1. (ad): a i d są niezależne, więc mogą być w tej samej grupie.
- 2. **(c):** Pierwsze c musi być w osobnej grupie, bo nie można go łączyć z f, które jeszcze nie jest dostępne.
- 3. **(cf):** Drugie c i f są niezależne, więc tworzą grupę (cf).
- 4. **(be):** Pierwsze b i e są niezależne, więc tworzą grupę (be).
- 5. **(b)**: Ostatnie b jest zależne od wcześniejszego b, więc musi być w osobnej grupie.

Postać normalna Foaty dla u=acdcfbbe:

$$FNF(u)=(ad)(c)(cf)(be)(b)$$

Zapisujemy jakie krawędzie wychodzą z danego wierzchołka:

a1: c2, c4, f5, b6, b7, e8

c2: c4, b6, b7, e8

d3: f5, b6, b7, e8

c4: b6, b7, e8

f5: b6, b7, e8

b6: b7,

b7: -

e8: -

Następnie usuwamy krawędzie redundantne

a1: usuwamy b6, b7, b8

c2: usuwamy b6, b7, e8

d3: usuwamy b6, b7, e8

c4: usuwamy b7

f5: usuwamy b7

Finalnie otrzymujemy zbiór wierzchołków z następującymi krawędziami:

a1: c2, f5

c2: c4

d3: f5

c4: b6, e8

f5: b6, e8

b6: b7,

b7: -

e8: -

Rysunek 2: Graf zależności Dikerta

3.Bibliografia

- https://www.researchgate.net/publication/280851316 Partial Commutation and Traces
- https://web.archive.org/web/20170908153838/https://pdfs.semanticscholar.org/d67a/c4c1e5967f7e114f390245f28909f259c034.pdf
- https://www.mimuw.edu.pl/~sl/teaching/2223/TW/LITERATURA/book-of-traces-intro.pdf