	Weighted Interval Scheduling	
	have a value vi for each Thm.	
	Max & ui s.t. A non-everlapping. Thm. Connet solve p	roblem w/ a greedy algo
	wit by dynamic programming	
	Matching: ppn	
	j jn	
	some people can de some fobs.	
	want to match as many people as persible:	
	P. i. m=#=1 edges. 0 (m.n1/2).	0(~")
	ten de perios if pe ande jobje	
	1" It solve by flow algorithm:	
	CPSL 365 locture 4 1/22	
	Two more scheduling problems	
	1. Class scheduling	
	input: time intervals.	
**	problem (in from s(i) to f(i)	
	1. Schedule The mathemas available rooms.	
	2. Schedule using sew rooms es possible	
	Lor ony time t, define	
	for any time t, define [] [= 11] Ply(t) = [{i: s(i) < 1 < f(i)}]	
	# cooms need = ply (+)	
	mex-ply-max /4/1)	
	the rooms need	

heredy Algorithm: -> sort so that s(i) \(\sis(2) \)... \(\sin(n) \)

Init k=0 (# roome noch)

for i=1 to n, \(r(i) = \phi \) (room assigned to classi)

for i=1 to n

if \(\frac{1}{2} \) n \)

if \(\frac{1}{2} \) a room \(l \in \left\{ \left

increasing start time of the proof 1/2?

increasing class time the proof of the pro

Theorem if $s(i) \leq s(z) \leq ... \leq s(n)$ Then alg finishes with $k \leq max-ply$.

GET $A_i = \{j:j < l \text{ and } class j \text{ overlops } class i \}$ Lem for all i, $|A_i| \leq max-ply-l$ proof of theorem

if k = max-ply, l claim of will not increase. When looking at class i.

only conflicts with classes in A_i .

if A_i is smaller than k, then is a free from to place class i. ($|A_i| < k$, then is an $l \in \{1...k\}$, not occupied)

proof of lemma, $j \in A_i$ $t = s(i) + \epsilon$ $d \in \{s(i) + v \neq lj\}$ $d \in A_i$ $d \in \{s(i) + v \neq lj\}$ $d \in A_i$ $d \in \{s(i) + v \neq lj\}$ $d \in A_i$ $d \in \{s(i) + v \neq lj\}$ $d \in A_i$ $d \in \{s(i) + v \neq lj\}$ $d \in A_i$ $d \in \{s(i) + v \neq lj\}$ $d \in A_i$ $d \in \{s(i) + v \neq lj\}$ $d \in A_i$ $d \in \{s(i) + v \neq lj\}$ $d \in A_i$ $d \in \{s(i) + v \neq lj\}$ $d \in A_i$

```
2. Minimizing Pateness
                                                                                              choose s(i) = start of job i.
            have njobs
                                                                                                     finishes t(i) time later f(i) = s(i) + t(i)
                  deadline 1(i)
                                                                                                                                    not allowed to overlap.
                  time takes Yli)
                                                                                                                              maz-lateress = nax(l(1))
                 Lateness 1(i)=18(i)-d(i),0)
            (Goal: minimize maximum lateress. > V (Al(i)) = try to control the worst impression we
                      t d 5 f l 5 f l
3 2 0 3 1 0 3 1
4 8 2 7 0 5 9 1
2 7. 7 9 2 3 5 0
                                                                                                                                                           Johntion

A de jobs in the order of
                                                                                                                                                               deadline.
Soll do job in order of deadline, sort so that d(1) \le d(2) \le ... \le d(n)
      Theorem Max leteress(1,2...n) = Max-lateness(till), ..., Tiln)
                                                                                                                                              do TI(1) first, the to(2)
                        Proof: let IT be an order other Than 1,2... n
                           then is an i so that Tolil > Tolit)
                                   swap the order of there two will not increase max-Interess.
                              刑门=4
                                                               Tiliti)=6
                                                                                                          a>6 $ d(a) 2d(b)
                                                                                                                                                         deadline ef a " after
                                                                                                                                                                   deadlone of b.
                                 1 TI(b) = 1 TI(a)
                                                                                                Ittal- ((a)
                                17(b) < 17(b) = 17(b) -d(1)
                                176-15/11(6) -7/1/6)-1(6)
                      a & is we only two. This non
                              so max-l-teners (7) & mix-lateness (T)
            1) $\frac{1}{4} \in \text{Mux-l(fi)} \\ m=x-l(fi) \\ \text{Mux} \left\{fi}\\ \
                                                                                                          1A:1 = ply(P) -1
                                                                                                                   < max-ply-1
```