EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

Date	17 November 2022
Team ID	PNT2022TMID33064
Project Name	Emerging Methods for Early Detection of Forest Fires

Importing The ImageDataGenerator Library

pwd

!pip install keras

!pip install tensorflow==1.14.0

import tensorflow

import keras

from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rotation_range=180,zoom_range=0.2, horizontal_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255)

import os, types

import pandas as pd

from botocore.client import Config

import ibm_boto3

def __iter__(self): return 0

@hidden_cell

The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.

You might want to remove those credentials before you share the notebook.

```
cos_client = ibm_boto3.client(service_name='s3',
  ibm_api_key_id='Hu0crJth4iJlgd922IJK46d06bVFaEwYc-4rmxAF7-sm',
  ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",
  config=Config(signature_version='oauth'),
  endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
bucket = 'emergingmethodsforforestfiredetec-donotdelete-pr-meznojcru6qftr'
object_key = 'train_set.zip'
streaming_body_5 = cos_client.get_object(Bucket=bucket, Key=object_key)['Body']
# Your data file was loaded into a botocore.response.StreamingBody object.
# Please read the documentation of ibm_boto3 and pandas to learn more about the possibilities to
load the data.
# ibm_boto3 documentation: https://ibm.github.io/ibm-cos-sdk-python/
# pandas documentation: http://pandas.pydata.org/
import os, types
import pandas as pd
from botocore.client import Config
import ibm_boto3
def __iter__(self): return 0
#@hidden_cell
# The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.
# You might want to remove those credentials before you share the notebook.
cos_client = ibm_boto3.client(service_name='s3',
  ibm_api_key_id='Hu0crJth4iJIgd922IJK46d06bVFaEwYc-4rmxAF7-sm',
  ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",
```

```
config=Config(signature_version='oauth'),
  endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
bucket = 'emergingmethodsforforestfiredetec-donotdelete-pr-meznojcru6qftr'
object_key = 'test_set.zip'
streaming_body_6 = cos_client.get_object(Bucket=bucket, Key=object_key)['Body']
# Your data file was loaded into a botocore.response.StreamingBody object.
# Please read the documentation of ibm_boto3 and pandas to learn more about the possibilities to
load the data.
# ibm_boto3 documentation: https://ibm.github.io/ibm-cos-sdk-python/
# pandas documentation: http://pandas.pydata.org/
from io import BytesIO
import zipfile
train_unzip =zipfile.ZipFile(BytesIO(streaming_body_5.read()),'r')
train_file_paths=train_unzip.namelist()
for path in train_file_paths:
  train_unzip.extract(path)
from io import BytesIO
import zipfile
test_unzip =zipfile.ZipFile(BytesIO(streaming_body_6.read()),'r')
test_file_paths=test_unzip.namelist()
for path in test_file_paths:
  test_unzip.extract(path)
pwd
import os
file_path=os.listdir('/home/wsuser/work/train_set')
import os
test_file_path=os.listdir('/home/wsuser/work/test_set')
```

```
Applying ImageDataGenerator functionality to trainset
x_train=train_datagen.flow_from_directory('/home/wsuser/work/train_set',target_size=(128,128),b
atch_size=32, class_mode='binary')
Applying ImageDataGenerator functionality to testset
x_test=test_datagen.flow_from_directory('/home/wsuser/work/test_set',target_size=(128,128),batc
h_size=32, class_mode='binary')
Import model building libraries
#To define Linear initialisation import Sequential
from keras.models import Sequential
#To add layers import Dense
from keras.layers import Dense
#To create Convolution kernel import Convolution2D
from keras.layers import Convolution2D
#import Maxpooling layer
from keras.layers import MaxPooling2D
#import flatten layer
from keras.layers import Flatten
import warnings
warnings.filterwarnings('ignore')
Initializing the model
model=Sequential()
Add CNN Layer
model.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activation='relu'))
#add maxpooling layer
model.add(MaxPooling2D(pool_size=(2,2)))
#add flatten layer
model.add(Flatten())
Add Hidden Layer
#add hidden layer
model.add(Dense(150,activation='relu'))
```

#add output layer

model.add(Dense(1,activation='sigmoid'))

```
Configure the learning process
model.compile(loss='binary_crossentropy',optimizer="adam",metrics=["accuracy"])
Train the model
model.fit\_generator(x\_train,steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_steps\_per\_epoch=14,epochs=10,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_test,validation\_data=x\_
s=4)
Save The Model
model.save("forest1.h5")
!tar -zcvf forest_fire_detection-model_new.tgz forest1.h5
ls -1
Predictions
#import load_model from keras.model
from keras.models import load_model
#import image class from keras
from tensorflow.keras.preprocessing import image #import numpy
import numpy as np
#import cv2
import cv2
#load the saved model
model = load_model("forest1.h5")
img=image.load_img('/home/wsuser/work/test_set/forest/0.48007200_1530881924_final_forest.jp
g')
x=image.img_to_array(img)
res = cv2.resize(x, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)
#expand the image shape
x=np.expand_dims(res,axis=0)
pred= model.predict(x)
pred
!pip install twilio
!pip install watson-machine-learning-client --upgrade
from ibm_watson_machine_learning import APIClient
uml_credientials = {
```

```
"url": "https://us-south.ml.cloud.ibm.com",
  "apikey":"JwrUkG NWgWEoonXcz4EIJSJzXWbH97kolVXGvjt9Apr"
  }
client=APIClient(uml_credientials)
client=APIClient(uml_credientials)
def guid_from_space_name(client, space_name):
  space=client.spaces.get_details()
  return(next(item for item in space['resources'] if
item['entity']['name']==space_name)['metadata']['id'])
space_uid=guid_from_space_name(client, 'CNN_algorithm')
print("Space-UID="+space_uid)
client.set.default_space(space_uid)
client.software_specifications.list()
software_spec_uid=client.software_specifications.get_uid_by_name("tensorflow_2.4-py3.7-
horovod")
software_spec_uid
model details=client.repository.store model(model='forest fire detection-
model_new.tgz',meta_props={
  client.repository.ModelMetaNames.NAME:"CNN",
  client.repository.ModelMetaNames.TYPE:"keras_2.2.4",
  client.repository.ModelMetaNames.SOFTWARE_SPEC_UID:software_spec_uid}
                      )
model_id=client.repository.get_model_uid(model_details)
model_id
OpenCV For Video Processing
#import opency library
import cv2
#import numpy
import numpy as np
#import image function from keras
from keras.preprocessing import image
#import load_model from keras
```

```
from keras.models import load_model
#import client from twilio API
from twilio.rest import Client
#import playsound package
#from playsound import playsound
#load the saved model
model=load_model("forest1.h5")
video=cv2.VideoCapture(0)
name=['forest','with fire']
Creating An Account In Twilio Service
account_sid='AC7fbd9e1b65a166f13459d8eca7b664cf'
auth_token='8e7e8e6672a8fb0a908ab3137560022d'
client=Client(account_sid,auth_token)
message=client.messages \
.create(
body='Forest Fire is detected, stay alert',
from_='+18434385489',
to='+91 95666 05556'
print(message.sid)
Sending Alert Message
from tensorflow.keras.utils import load_img,img_to_array
while(1):
  success, frame= video.read()
  cv2.imwrite("image.jpg",frame)
  img=load_img("image.jpg",target_size=(128,128))
  x=img_to_array(img)
  x=np.expand_dims(x,axis=0)
  predict_x=model.predict(x)
  #classes_x=np.argmax(qqqpredict_x,axis=1)
  #pred=model.predict_classes(x)
```

```
p=predict_x[0]
  print(predict_x)
  #cv2.putText(frame,"predicted class="+str(name[p]),(100,100),cv2.FONT_HERSHEY_SIMPLEX,1,
(0,0,0), 1)
  pred=model.predict(x)
  if pred[0]==1:
    account_sid='AC7fbd9e1b65a166f13459d8eca7b664cf'
    auth_token='8e7e8e6672a8fb0a908ab3137560022d'
    client=Client(account_sid,auth_token)
    message=client.messages \
    .create(
    body='Forest Fire is detected, stay alert', from_='+18434385489',to='+91 95666 05556')
    print(message.sid)
    print('Fire Detected')
    print('SMS sent!')
  else:
    print('No Danger')
    cv2.imshow("image",frame)
  if cv2.waitKey(1) \& 0xFF == ord('q'):
    break
video.release()
cv2.destroyAllWindows()
```