

eXtended Classifier Systems (XCS) in dynamischen Multiagenten-Überwachungsszenarien

Clemens Lode 09.04.2009

Überblick

- Problemstellung und Übersicht zu XCS
- Beispiele für multi- und single-step Verfahren in XCS
- Markow-Eigenschaft
- Überwachungsszenario
- Szenarien- und Sensorenbeschreibung
- Heuristiken des Zielobjekts und der Agenten
- Analyse der lokalen Bewertungsfunktion
- XCS-Variante für Überwachungsszenarien (SXCS)
- Vergleich XCS Standardimplementation mit SXCS
- Demonstration des Simulationsprogramms
- Ausblick: Delayed SXCS (DSXCS), DSXCS mit Kommunikation und sonstige Erweiterungen

Allgemeine Problemstellung

- Überwache Zielobjekt möglichst lange mit beliebigem Agenten.
- Gesamtqualität = Anteil der überwachten Zeit an Gesamtzeit

Schematische Darstellung eines XCS

Beispiel für XCS single-step Verfahren

6-Multiplexer:

- zwei Steuerbits wählen aus 4
 Datenbits ein Datenbit
- Ausgabe des Datenbits

Ziel:

Darstellung als classifier system

Merkmale:

- Globale Information verfügbar
- Nur ein Lernschritt pro Problem nötig / möglich
- Sofortige Bewertung jeder Aktion

Beispiel XCS multi-step Verfahren

Maze-Problem

 Finde Weg zum Zielobjekt in einem Labyrinth

Ziel:

 Optimale Belegung für classifier set Liste für minimalen Weg vom Start zum Ziel

Merkmale:

- Begrenzte, lokale Information
- Bewertung nur im letzten Schritt möglich
- Zielobjekt bewegt sich nicht
- Transformation in single-step
 Verfahren durch sukzessive
 Weitergabe der Bewertung

Beispiel XCS multi-step Verfahren

Ablauf:

- Zufällige Wahl der classifier
- e) erhält positive Bewertung.
- e) wird mit höherer
 Wahrscheinlichkeit als f) an
 Position 3 gewählt.
- c) erhält von e) positive Bewertung.

 c) wird an Position 2 mit höherer Wahrscheinlichkeit als
 d) gewählt.

– ...

→ optimales Verhalten gefunden

2

3

Markow-Eigenschaft (1)

- Definition:
 - Vergangene Entscheidungen / Sensordaten sind für optimale Entscheidung nicht relevant.
 - Mit Markow-Eigenschaft kann optimales Verhalten erreicht werden
- Szenario besitzt keine Markow-Eigenschaft:
 - Identische Sensordaten auf Position 1 und 5
 - → classifier a) und b) in Konkurrenz
 - Optimales Verhalten erfordert Unterscheidung beider Positionen

 Szenario ohne Markow-Eigenschaft

Markow-Eigenschaft (2)

Idee:

 Interner Zustand, der durch Regeln erkannt und verändert werden kann

Einfachstes Beispiel:

- Zähler der Schritte
- Hohe Bewertung von b₁) und a₅)
 führt zum Erfolg
 - → Optimales Verhalten kann über Darstellung mit Zähler erreicht werden

Szenario ohne Markow-Eigenschaft

Überwachungsszenario (1)

Multiagenten-Überwachungsszenario:

 Zielobjekt von diesem oder von anderen Agenten in Überwachungsreichweite

Ziel:

 Optimale Belegung für classifier set Liste für Maximierung der Überwachungszeit

Ansatz:

Speicherung bisheriger
 Aktionen, direkte Weitergabe
 bei positiver Bewertung

Merkmale:

- Zielobjekt bewegt sich
- Begrenzte, lokale Information
- Bewertung nur selten möglich
- Allgemeines Verhalten muss gelernt werden.
- Szenario läuft kontinuierlich weiter.
- Gleiche Situationen wiederholen sich nur bedingt.
- Markow-Eigenschaft nicht herstellbar:
 - Globale Information nie verfügbar (dynamisch)!

Überwachungsszenario (2)

- Multiagenten-Überwachungsszenario:
 - Zielobjekt von diesem oder von anderen Agenten in Überwachungsreichweite
- Ziel:
 - Optimale Belegung für classifier set Liste für Maximierung der Überwachungszeit
- Ansatz:
 - Speicherung bisheriger
 Aktionen, direkte Weitergabe
 bei positiver Bewertung

Schwierigkeiten:

- Darstellung eines globalen "Ziels" in lokaler Bewertungsfunktion
- Kein konkretes Ziel sondern dauerhaftes Verhalten soll erreicht werden.
 - → Welche lokale Bewertungsfunktion löst das Problem "gut"?

Ansatz:

 Untersuchung spezieller Szenarien anhand von Heuristiken

Szenarien

Legende:

- Weiß (Agenten)
- Grün (Zielobjekt)
- Grau (überwachtes Gebiet)
- Blau (maximale Sichtweite)
- (abgebildet sind 32x32 mit 24 Agenten)

Untersuchte Szenarien:

- Säulenszenario
- Szenario mit zufällig verteilten Hindernissen
- Schwieriges Szenario
- 16x16 mit 8 Agenten

Sensoren

Erkennung

 Sensordaten werden von classifier erkannt, die jeweils identische Einträge oder Einträge mit Platzhalter "#" besitzen

Beispiel:

Sensordaten

10 00 00 00 . 00 00 11 00 . 00 11 00 11 werden erkannt von z.B.

10 00 00 00 . ## ## ## . 00 ## ## ## ## ## ## ## . ## ## 1 00 . 00 11 ## ## #0 ## ## ## . ## ## 01 ## . ## 11 ## 11

Sensoren:

- Binärsensor für Sichtweite und Überwachungsreichweite
- jeweils in 4 Richtungen
- jeweils für 3 Objekttypen
 - → differenzierteres Verhalten

Zielobjekt und Agenten

- Typen des Zielobjekts
 - Einfache Richtungsänderung
 - Intelligentes Zielobjekt
 - Ohne Richtungsänderung

Typen von Agenten

- Zufällige Bewegung
- Einfache Heuristik
- Intelligente Heuristik

Vergleich der Heuristiken (1)

Ergebnis:

- Intelligente Heuristik deutlich besser als einfache Heuristik, besonders bei h\u00f6heren Geschwindigkeiten
- Knick bei Geschwindigkeit 1, nicht mehr alleinige Verfolgung

- Säulenszenario
- Intelligentes Zielobjekt

Vergleich der Heuristiken (2)

Ergebnis:

- Intelligente Heuristik deutlich besser als einfache Heuristik, besonders bei h\u00f6heren Geschwindigkeiten
- Knick bei Geschwindigkeit 1, nicht mehr alleinige Verfolgung

- Säulenszenario
- Zielobjekt mit einfacher Richtungsänderung

Vergleich der Heuristiken (3)

Ergebnis:

- Intelligente Heuristik etwas besser als einfache Heuristik
- Knick bei Geschwindigkeit 1 kaum auszumachen

- Szenario mit zufällig verteilten Hindernissen
- Intelligentes Zielobjekt

Vergleich der Heuristiken (5)

Ergebnis:

- Intelligente Heuristik deutlich besser als einfache Heuristik
- Versucht sich von Agenten zu entfernen und erreicht so automatisch den Zielbereich

- Schwieriges Szenario
- Zielobjekt ohne Richtungsänderung
- Betrachtung unterschiedlicher Schrittzahlen pro Durchgang

Analyse der lokalen Bewertungsfunktion

Einfache Heuristik

 bewertet Nähe zum Zielobjekt als "gut"

Intelligente Heuristik

 bewertet (zusätzlich)
 Abwesenheit von Agenten als "gut"

Umsetzung für XCS:

- Wahl intelligenter Heuristik als Modell (beste Qualität)
- Allerdings: Mehrwertige nicht vollständig auf binäre Bewertungsfunktion abbildbar

Bewertungsfunktion:

- Bewertung "1" wenn Zielobjekt in Sichtweite oder kein Agent in Sichtweite,
- Bewertung "0" sonst.

Supervision eXtended Classifier System (SXCS)

Ansatz:

Speicherung bisheriger
 Aktionen, direkte Weitergabe
 bei positiver Bewertung

Erweiterung

ab- bzw. aufsteigender reward
 Wert nach Änderung der
 Bewertung

Vergleich XCS, SXCS

- Ergebnisse:
 - Knick früher bei 0,7
 - SXCS deutlich besser als XCS
 - XCS fast wie Algorithmus mit zufälliger Bewegung

- Qualitätsdifferenz:
 - Differenz der Qualität zur Qualität des Algorithmus mit zufälliger Bewegung

Vergleich XCS, SXCS Szenario mit zufällig verteilten Hindernissen

Ergebnis:

- Geringe Qualitätsdifferenz für SXCS und XCS
- Großer Anteil blockierter Bewegungen (bis 70%)
- Durchführung:

 Abwechselnde Turnier-und proportionale Auswahl (jeweils bei einem Ereignis) Problem:

- durch Auswahl der besten Regel und ohne Malus für Kollisionen
- Fähigkeiten des Zielobjekts Hindernissen auszuweichen

Vergleich XCS, SXCS (schwieriges Szenario)

Ergebnisse:

- SXCS und intelligente Heuristik gleichauf
- XCS lernt langsamer, ist bei hoher Zahl Probleminstanzen gleichauf

Vergleich:

- 8000 Schritte
- Unterschiedliche Zahl
 Probleminstanzen (= Neustart und Beginn aller Agenten am linken Rand)

Simulationsprogramm

Ausblick: Delayed SXCS (DSXCS)

Idee:

 Erweiterung des Speichers und verzögerte Bewertung

Vorteile:

- Analyse aller bisherigen Bewertungen möglich
- Zeitgerechte Behandlung von externen Ereignissen (Kommunikation) möglich

Nachteil:

 Verzögerung der Aktualisierung, Agent handelt mit veralteten Werten

Umsetzung:

- Bei einem Ereignis werden nur die errechneten reward Werte gespeichert
- Ist der Speicher eines DSXCS voll wird nur der letzte classifier aktualisiert und entfernt

Ausblick: DSXCS mit Kommunikation (1)

Idee:

- Verhalten von Agenten ohne Kontakt zum Zielobjekt trägt u.U. trotzdem zur Qualität bei
 - → Weitergabe der Bewertung an andere Agenten

Problem:

- Ohne Differenzierung entspricht dies z.T. zufälliger Bewertung von Aktionen
 - → Gruppenbildung

Gruppenbildung

- Vergleich des Verhaltens gegenüber anderen Agenten
- Bevorzugung von Agenten mit ähnlichem Verhalten

Ergebnisse

- Keine Unterschiede bezüglich der Qualität bemerkbar
- Insgesamt schlechtere Ergebnisse als SXCS
- Allerdings deutlich niedrigere Varianz von individuellen Punktzahlen

Ausblick: DSXCS mit Kommunikation (2)

• Ergebnisse:

Algorithmus	Varianz Punkte	Qualität
XCS	53,96	12,41%
SXCS	78,51	19,03%
DXCS	72,85	16,96%
Einzelne KomGruppe	49,73	14,91%
Egoistische KomGruppe	47,70	15,30%

Ausblick: Sonstige Erweiterungen

Bestehendes System:

- Betrachtung der Theorie
- Tiefere Analyse der Ausgabe
- Verbesserung der Auswertung der gespeicherten Aktionen (DSXCS)
- Anpassungsfähigkeit von SXCS testen
- Wechsel zwischen explore/exploit Phasen weiter untersuchen

Erweiterungen:

- Rotation als "Platzhalter"
- Test mit verbesserten Sensoren
- Verwendung mehrwertiger Bewertungsfunktion
- Bessere Heuristiken als Modell und Vergleich (z.B. Einbeziehung von Hindernissen)
- Kommunikation, Austausch von Regeln

Vielen Dank für die Aufmerksamkeit :)

Überblick

- Problemstellung und Übersicht zu XCS
- Beispiele für multi- und single-step Verfahren in XCS
- Markow-Eigenschaft
- Überwachungsszenario
- Szenarien- und Sensorenbeschreibung
- Heuristiken des Zielobjekts und der Agenten
- Analyse der lokalen Bewertungsfunktion
- XCS-Variante für Überwachungsszenarien (SXCS)
- Vergleich XCS Standardimplementation mit SXCS
- Demonstration des Simulationsprogramms
- Ausblick: Delayed SXCS (DSXCS), DSXCS mit Kommunikation und sonstige Erweiterungen

Grundlegender Ablauf des Classifier Systems

- Jeder Agent besitzt Regelmenge
- Regel besteht aus Bedingung und Aktion
- Input wird mit Bedingung verglichen, Aktion wird ausgeführt
- Besonderheit: Bedingungen können aus Wildcards bestehen
 - Mehrere passende Bedingungen möglich
 - Wähle daraus eine zufällige Regel, gewichtet mit deren Fitness
- Fitness einer Regel wird später angepasst
- Lernen: Generiere neue Classifier (z.B. mittels genetischer Operatoren, Mutation)

Agent mit intelligenter Heuristik

- Zielobjekt in Sicht: Verhält sich wie einfache Heuristik.
- Zielobjekt nicht in Sicht:
 Bewegt sich in zufällige
 Richtung, in der sich kein
 Agent befindet.

Intelligentes Zielobjekt

- Keine Agenten in Sicht: Bewegt sich zufällig.
- Agenten in
 Überwachungsreichweit
 e: Keine Bewegung in
 diese Richtung.
- Agenten in Sichtweite:
 Bewegt sich mit 50%
 Wahrscheinlichkeit nicht in diese Richtung.

Generalisierung: Wildcards

- Menge der classifier kleiner (Effizienz)
- Vermeidung redundanter Informationen
- Beispiel: 1.0111►2 und 0.0111►2
 - Benutze # als "wildcard": #.0111 ▶ 2
- Problem: Verhinderung von Informationsverlust
 - Ignoriert wurde bei obigem Beispiel die Rolle der Fitness der beiden Classifier
- Offene Frage:
 - Je nach Szenario unterschiedliche Arten von Generalisierung denkbar (z.B. Angabe eines begrenzten Zahlenbereichs bei mehr als 2 Belegungsmöglichkeiten)

Generierung neuer classifier

- Drei Quellen für neue classifier:
 - Covering
 - Falls kein Matching für ein Classifier gefunden wurde
 - Erstelle neuen, zufälligen Classifier mit passendem Matching
 - Genetischer Algorithmus, Mutation
 - Crossover zwischen bestehenden Classifiern
 - Mutation von bestehenden Classifiern
 - Austausch zwischen Agenten
 - Crossover oder direkte Kopie

Ereignisse aus Sicht eines Agenten

- Mögliche Ereignisse:
 - Ziel bleibt außer Sichtweite.
 - Ziel bleibt in Sichtweite.
 - Ziel wurde gerade aus Sichtweite verloren.
 - Absteigende Bestrafung der vorangegangenen Aktionen
 - Ziel kommt gerade in Sichtweite.
 - Absteigende Belohnung der vorangegangenen Aktionen

Rewardfunktion

- Zu erwarten: Verteilung des Rewards in längeren
 Zeitabschnitten von 0 (Ziel nicht in Sicht) und 1 (in Sicht)
- In jedem Zeitabschnitt werden eine Anzahl von Classifier aktiviert und protokolliert
- Irrelevant: Ziel momentan in Sicht / nicht in Sicht
- Relevant: Ziel kommt in Sicht / Sicht zum Ziel verloren

Rewardfunktion

- Ziel kommt in Sicht (oder wird es aus der Sicht verloren)
 - Annahme: Protokollierten Aktionen seit dem letzten Ereignis waren absteigend daran beteiligt
 - Belohnung der zugehörigen Classifier

■ ■ ■ ■ ■ ■ Tatsächlich vergebener Reward an einzelne Classifier

Verteilung des Rewards zwischen Agenten

- Problem:
 - Kollaboration wird nicht honoriert
 - Keine globale Organisationseinheit
- In einem Netz aus Agenten müsste jeder Agent abhängig von der Aufenthaltswahrscheinlichkeit des Ziels im überwachten Gebiet belohnt werden.
 - Problem: Bewegung des Ziels ist grundsätzlich unvorhersehbar
 - Aufenthaltswahrscheinlichkeit unbekannt
 - Idee:
 - Bildung lokaler Populationen
 - Verteilung des Rewards innerhalb der jeweiligen Population

Mögliche Probleme der Idee

- Homogenisierung der Regeln wird begünstigt.
- Aufwand zur Bestimmung des Verwandtschaftsgrads
- Begrenztheit der Kommunikationsmittel
- Gewisse Verzögerung bis sich Information ausgebreitet hat
- Aber:
 - Keine Übertragung der Sensorinformation nötig
 - Kommunikation ist selten notwendig
 - Nicht zeitkritisch, sofern bisher aktivierte Classifier protokolliert werden
 - Weitertransport des Rewards von Agent zu Agent
 - Markierung mit Timestamp

Ablauf der Simulation

Auswahlart (evtl)

SXCS (1)

- Speicherung vergangener Aktionen
- Einführung von positiven und negativen Ereignissen
- Verteilen der Bewertung an vergangene Aktionen

SXCS (2)

- Nachbildung der sukzessiven Weitergabe (XCS) durch ähnliche Funktion mit Nullpunkt
 - → Quadratische Funktion

SXCS (3)

Ablauf und Fehler beim neutralen Ereignis

Stackgröße bei SXCS (1)

Stackgröße bei SXCS (2)

Vergleich der Heuristiken (4)

Ergebnis:

- Intelligente Heuristik etwas besser als einfache Heuristik
- Knick bei Geschwindigkeit 1 kaum auszumachen

Szenario

- Szenario mit zufällig verteilten Hindernissen
- Zielobjekt mit einfacher Richtungsänderung

