A. DNA STRUCTURE

A nucleotide

PHOSPHATE

DEOXYRIBOSE

has 5 carbon atoms and the 5th is outside the ring

• The important carbons to remember here are 3' and 5'.

How nucleotides join together

- New free nucleotides are added to the 3'OH group of the previous deoxyribose sugar.
- Phosphates are therefore between the 3' and 5' carbons of two deoxyribose sugars.
- The 3'OH on deoxyribose reacts with the OH group on the phosphate in a condensation reaction to form a phosphodiester bond.

How the strands are labelled

• The two strands are **antiparallel** – they **run in opposite directions**.

- DNA strands can only be made in a 5' → 3' direction.
- Remember that new nucleotides react with the 3'OH group on the previous deoxyribose sugar.

B. DNA REPLICATION

The leading and lagging strands

DNA polymerase can only add nucleotides in a $5' \rightarrow 3'$ direction

This is in the opposite direction to helicase and the replication fork for the lagging strand

- Okazaki fragments are the short fragments of DNA made on the lagging strand that are eventually joined together.
- RNA primers are short fragments of RNA, which are needed to allow DNA polymerase III to attach and start replication.

Enzymes involved in DNA replication

The **leading strand** is built up **continuously** and the **lagging strand** is built up in **short pieces** called **Okazaki fragments**.

C. NUCLEOSOMES

 In eukaryotes, DNA is packaged with histone proteins to create a compact structure called a nucleosome.

- found in eukaryotes
- made up of DNA wrapped around histones (proteins)
- histones are in an octamer/group of eight
- are held together by another histone/H1
- in linker region
- (function is to) help to supercoil chromosomes/ help in DNA packing/supercoiling
- (function is to) control transcription/gene expression

D. FUNCTIONS OF DNA BASE SEQUENCES THAT DO NOT CODE FOR PROTEINS

- Non-coding DNA base sequences can have four main roles:
 - 1. Introns involved in processing mRNA
 - 2. Coding for tRNA and rRNA these are involved in translation
 - 3. Controlling transcription/gene expression binding sites for proteins that can allow or prevent transcription.
 - 4. Telomeres repetitive base sequences at the ends of chromosomes, which prevent parts of genes here from being lost each time the DNA is replicated.

E. DNA SEQUENCING BY THE SANGER METHOD

Chain Terminators

- The Sanger method is used to determine the DNA base sequence of a gene.
- Special DNA nucleotides called dideoxynucleotides (ddNTPs) are used that act as chain terminators.
- **ddNTPs** contain the sugar **dideoxyribose**, instead of the usual sugar of deoxyribose.
- There are four types of ddNTP: ddA, ddT, ddC or ddG.
- When ddNTPs attach to the growing DNA chain, they stop it from growing.

Mixing

- Four separate mixes are set up, each containing normal nucleotides plus one type of dideoxynucleotide (ddA, ddT, ddC or ddG).
- The DNA fragments produced will **vary in length**, depending on **how far replication got to** before a **dideoxynucleotide** was **added** to the end of a chain.
- A typical PCR will generate over 1 billion DNA molecules, so each PCR mix should generate all the possible terminating fragments for that specific base.

Separating the DNA fragments by gel electrophoresis

Smaller DNA fragments move further

The newly made DNA strand is made from $5' \rightarrow 3'$ But this is complementary to the original DNA strand

The first base of the new complementary strand must be the smallest DNA fragment

- The gel is read from **bottom** to **top**.
- (So) base sequence of new complementary DNA strand is 5' T C G A A G T C A G 3'
- The two DNA strands are antiparallel.
- (So) base sequence of original strand must be

5'CTGACTTCGA3'

F. HERSHEY & CHASE EXPERIMENT

Background

- Showed that DNA, rather than protein, is the genetic material.
- Used a virus (T2 phage) that infects bacteria.
- This virus contains **DNA** inside a **protein coat**.

- This virus injects its genetic material into bacteria and this is used to make more copies of the virus.
- They used two **radioactive** isotopes, which can be **detected**:
 - ³⁵S (found in **protein** but not in DNA)
 - ³²P (found in **DNA** but not in protein).
- Bacteria are heavier than viruses.

Conclusion: Proteins are not genetic material

- Conclusion: DNA is the genetic material
- Virus protein coats were labelled with radioactive ³⁵S
- Infected the bacteria with virus to allow genetic material to be transferred
- Centrifugation then used to break attachment, separating the virus and bacteria
- Radioactivity detected in the virus (supernatant = fluid above = lighter)
- (So) protein had not been transferred to the bacteria
- (So) protein is not the genetic material

- Virus DNA was labelled with radioactive ³²P
- Infected the bacteria with virus to allow genetic material to be transferred
- Centrifugation then used to break attachment, separating the virus and bacteria
- Radioactivity detected in the bacteria (pellet = pellet at bottom = heavier)
- (So) DNA had been transferred to the bacteria
- (So) **DNA** is the genetic material

G. X-RAY DIFFRACTION

 Rosalind Franklin and Maurice Wilkins used a method of X-ray diffraction to investigate the structure of DNA.

The technique

• From the **scattering pattern** produced by a **DNA molecule**, certain inferences could be made about its structure

- 1. It is a double stranded molecule
- 2. **Bases** are packed closely together on the **inside** and **phosphates** form an **outer** backbone
- 3. The molecule **twists** at **regular intervals** (every 34 Angstroms) to form a **helix**
- 4. There are **10** bases **per twist**