

Recommender Systems

Hybridization

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

Collaborative

- Good accuracy and discovery
- Poor with sparse ratings

Content-based

- No need for item ratings
- Poor discovery

Knowledge-based

- No need for user or item ratings
- Costly knowledge acquisition

Hybrid recommendation

Hybrid: "formed by combining two or more things"

- Incorporate desirable properties
- Avoid some of the shortcomings

No standard hybridization approach

Actually, there is a large variety!

No established winner

Hybridization designs [Burke, UMUAI 2002]

Hybridization designs [Agarwal, 2015]

Hybridization designs [Burke, UMUAI 2002]

Monolithic hybridization

One recommender

Multiple data sources

Feature combination

Monolithic

Feature augmentation

Feature

combination

Combine data sources

Recommender uses raw features of another type

Feature combination

Monolithic

Feature combination

Feature augmentation

CF/CB movie recommender [Basu et al., AAAI 1998]

- CB as a contributing recommender
 - Represent users based on movie genres
- CF as the actual recommender
 - Identify neighbor users
 - Aggregate neighbors' preferences

Feature augmentation

Monolithic

Feature combination

Feature augmentation

Augment data sources

Recommender uses generated features

Feature augmentation

Monolithic

Feature combination

Feature augmentation

CB/CF movie recommender [Melville et al., AAAI 2002]

- CB as a contributing recommender
 - Augment rating matrix with content-based predictions
- CF as the actual recommender
 - Identify neighbor users (based on actual ratings)
 - Aggregate neighbors' preferences, giving more emphasis on actual ratings and less emphasis on pseudo-ratings

Hybridization designs [Burke, UMUAI 2002]

Parallelized hybridization

One data source

- Multiple recommenders
- Combined output

Parallelized hybridization

Least invasive design

Recommenders as black boxes

Hybridization by data fusion

- Some weighting or voting scheme
- Weights can be learned dynamically
- Switching in the extreme case

Mixed hybridization

Mixed hybridization

Parallelized

Mixed

Weighted

Switching

CB/CF TV show recommender [Smyth and Cotter, KBS 2000]

- CB recommendations
- Followed by CF recommendations

Tourist bundles recommender [Zanker et al., WISE 2007]

- Category-specific recommenders
 - e.g., accommodation, leisure activities
- One recommendation per category
- Hybridization as a constraint satisfaction problem

Weighted hybridization

Parallelized

Scores linearly combined with weight vector \overline{w}

$$\hat{r}_{ui} = \sum_{j=1}^{k} w_j \, \hat{r}_{ui}^{(j)}$$
• w_j : weight of j -th recommender
• $\hat{r}_{ui}^{(j)}$: prediction by j -th recommender

Mixed Weighted **Switching**

Weighted hybridization

Parallelized

Mixed

Weighted

Switching

Scores linearly combined with weight vector \overline{w}

$$\hat{r}_{ui} = \sum_{j=1}^{k} w_j \, \hat{r}_{ui}^{(j)}$$
• w_j : weight of j -th recommender
• $\hat{r}_{ui}^{(j)}$: prediction by j -th recommender

w_1	w_2		$\hat{r}_{ui}^{(1)}$	$\hat{r}_{ui}^{(2)}$	\hat{r}_{ui}
0.5	0.5	i_1	0.5	0.8	0.65
		i_2	0.1	0.0	0.05

Weighted hybridization

Parallelized

How to optimize weights?

Minimize error on training data

Mixed

Weighted

Switching

w_1	w_2		$\hat{r}_{ui}^{(1)}$	$\hat{r}_{ui}^{(2)}$	\hat{r}_{ui}	Error	MAE
0.1	0.9	i_1	0.5	0.8	0.77	0.23	0.61
		i_2	0.1	0.0	0.01	0.99	
0.3	0.7	i_1	0.5	0.8	0.71	0.29	0.63
		i_2	0.1	0.0	0.03	0.97	
0.5	0.5	i_1	0.5	0.8	0.65	0.35	0.65
		i_2	0.1	0.0	0.05	0.95	
0.7	0.3	i_1	0.5	0.8	0.59	0.41	0.67
		i_2	0.1	0.0	0.07	0.93	
0.9	0.1	i_1	0.5	0.8	0.53	0.47	0.69
		i_2	0.1	0.0	0.09	0.91	

minimum error optimal weights

Switching hybridization

Parallelized

Extreme case of weighted hybrids

$$\circ \exists_1 j \in 1 \dots k \mid \hat{r}_{ui} = \hat{r}_{ui}^{(j)}$$

Mixed Weighted **Switching**

Switching hybridization

Parallelized

Mixed

Weighted

Switching

Extreme case of weighted hybrids

$$\circ \exists_1 j \in 1 \dots k \mid \hat{r}_{ui} = \hat{r}_{ui}^{(j)}$$

Quality-based decision

- Too few ratings? Content-based
- Else? Collaborative filtering

Learned on a case-by-case basis

Akin to adaptive approaches

Switching hybridization

Parallelized Mixed Weighted **Switching**

```
CB/CF/CB news recommendation
[Billsus and Pazzani, UMUAI 2000]
∘ recs = CB-kNN(•)
  not enough confidence?
    recs = CF(\bullet)
  not enough confidence?
    recs = CB-Naive(•)
  return recs
```

Hybridization designs [Burke, UMUAI 2002]

Pipelined hybridization

One data source

- Multiple recommenders
- Sequential refinement

Cascade hybridization

Pipelined

Cascade

Meta-level

Recommendations restricted by predecessor

$$\hat{r}_{ui} = \hat{r}_{ui}^{(k)}$$
 and

$$\forall j \in 1 ... k, \ \hat{r}_{ui}^{(j)} = \begin{cases} \hat{r}_{ui}^{(j)} & \hat{r}_{ui}^{(j-1)} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Cascade hybridization

Pipelined

Cascade

Meta-level

Recommendations restricted by predecessor

$$\hat{r}_{ui} = \hat{r}_{ui}^{(k)}$$
 and

$$\forall j \in 1 ... k, \ \hat{r}_{ui}^{(j)} = \begin{cases} \hat{r}_{ui}^{(j)} & \hat{r}_{ui}^{(j-1)} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Subsequent recommender may not introduce items

Produces very precise results

Cascade hybridization

KB/CF restaurant recommendation [Burke, UMUAI 2002]

- KB recommendation
 - Keep matching restaurants
- CF recommendation
 - Break ties

Meta-level hybridization

Recommender based on predecessor's *models*

 Similar to feature augmentation, except that actual recommender doesn't work with raw data

Meta-level hybridization

Pipelined

Cascade

Meta-level

CB/CF restaurant recommendation [Pazzani, Al Review 1999]

- CB user modeling
 - Naïve Bayes classification
- CF recommendation
 - User-based CF

Summary

Monolithic

Feature combination

Feature augmentation

Parallelized

Mixed

Weighted

Switching

Pipelined

Cascade

Meta-level

Summary

Lack of empirical comparison of designs

- Multiple paradigms rarely supported in one dataset
- Few conclusions supported by empirical findings
- Monolithic: preprocessing effort traded for knowledge
- Parallel: requires careful matching of scores
- Pipelined: works well for antithetic approaches

Summary

Netflix competition winner

- Weighted design based on 100+ recommenders
- Switching of weights given user and context model

References

Recommender Systems: An Introduction (Ch. 5)

Recommender Systems: The Textbook (Ch. 6)