There are two folders in this file, along with the lab manual and the normalized Blasius velocity profile data.

1) PIV data:

PIV data folder comprises of both laminar and turbulent velocity profile data for five x locations. The first column in each file indicates y location from the wall (in mm), and the second column indicates the velocity values in m/s.

i) You need to calculate the following parameters and show the values in a table form shown below (**only for the velocity profile measured at x=650 mm**).

Parameters	Laminar		Turbulent	
	Experimental	Theoretical	Experimental	Theoretical
δ (Boundary layer				
thickness)				
δ* (Displacement				
thickness)				
Θ (Momentum				
thickness)				
H (shape factor)				
C_{f}				

ii) Normalize y with δ^* and U with U_∞ at a x location. Repeat the same for other locations as well. Now *compare the normalized velocity* profile data (for all five locations) with the Blasius velocity profile data in a single plot. (note: Only for the laminar flow)

2) Pitot tube data:

Pitot tube data folder comprises of both laminar and turbulent velocity profile data at x=650 mm. The first column in each file indicates y location from the wall (in mm), and the second column indicates the velocity values in m/s.

i) You need to calculate the following parameters and show the values in a table form as shown below.

Parameters	Laminar		Turbulent	
	Experimental	Theoretical	Experimental	Theoretical
δ (Boundary layer				
thickness)				
δ* (Displacement				
thickness)				
6 (Momentum				
thickness)				
H (shape factor)				
C_{f}				

ii) Normalize y with δ^* and U with U_∞ and compare the normalized velocity profile data with the Blasius velocity profile data in a single plot. (Note: only for the laminar flow).