1 Pycaret Heart

December 1, 2024

1 Preparación de datos:

```
[1]: from imblearn.pipeline import Pipeline
     from imblearn.over_sampling import SMOTE
     from sklearn.compose import ColumnTransformer
     from sklearn.preprocessing import StandardScaler, OneHotEncoder
     from sklearn.model_selection import train_test_split, GridSearchCV
     from sklearn.ensemble import RandomForestClassifier
     import pandas as pd
     import joblib
     import warnings
     warnings.filterwarnings('ignore')
[2]: # Cargar el dataset
     file_path = "heart.csv"
     df = pd.read_csv(file_path)
[3]: # Separar variables de entrada y salida
     X = df.drop("output", axis=1)
     y = df["output"]
[4]: # Definir las columnas para escalar y codificar
     numeric_features = ['age', 'trtbps', 'chol', 'thalachh', 'oldpeak']
     categorical_features = ['cp', 'thall', 'caa']
     # Crear el preprocesador
     preprocessor = ColumnTransformer(
         transformers=[
             ('num', StandardScaler(), numeric_features),
             ('cat', OneHotEncoder(drop='first'), categorical features)
         ])
     # Crear el pipeline
     pipeline = Pipeline(steps=[
         ('preprocessor', preprocessor),
         ('smote', SMOTE(random_state=42)),
```

```
('classifier', RandomForestClassifier())
])
```

```
[5]: # Dividir en conjuntos de entrenamiento y prueba
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, □
→random_state=42)
```

2 Modelación

2.1 Modelacion sin PyCaret

```
[6]: from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, classification_report from sklearn.model_selection import GridSearchCV
```

2.2 Busqueda de hiperparametros

```
[7]: # Definir la búsqueda de hiperparámetros
param_grid = {
    'classifier__n_estimators': [50, 100, 200],
    'classifier__max_depth': [None, 10, 20],
    'classifier__min_samples_split': [2, 5, 10],
}

# Realizar la búsqueda de hiperparámetros
grid_search = GridSearchCV(pipeline, param_grid, cv=5)
grid_search.fit(X_train, y_train)
```

```
('classifier',
                                              RandomForestClassifier())]),
                   param_grid={'classifier__max_depth': [None, 10, 20],
                                'classifier_min_samples_split': [2, 5, 10],
                                'classifier_n_estimators': [50, 100, 200]})
 [8]: # Mejor modelo
      best_model = grid_search.best_estimator_
      print("\nMejores hiperparámetros para Random Forest:")
      print(grid_search.best_params_)
     Mejores hiperparámetros para Random Forest:
     {'classifier__max_depth': None, 'classifier__min_samples_split': 2,
     'classifier__n_estimators': 50}
 [9]: # Evaluar el mejor modelo
      y_pred_best = best_model.predict(X_test)
      print("\nBest Model Accuracy: {:.2f}".format(accuracy_score(y_test,__

y_pred_best)))
      print("Classification Report for Best Model:\n")
      print(classification_report(y_test, y_pred_best))
     Best Model Accuracy: 0.82
     Classification Report for Best Model:
                   precision
                              recall f1-score
                                                    support
                0
                        0.76
                                  0.90
                                             0.83
                                                         29
                        0.89
                                  0.75
                1
                                             0.81
                                                         32
                                             0.82
                                                         61
         accuracy
        macro avg
                        0.83
                                  0.82
                                             0.82
                                                         61
     weighted avg
                        0.83
                                  0.82
                                             0.82
                                                         61
[10]: # Modelos base
      models = {
          "Logistic Regression": LogisticRegression(),
          "Decision Tree": DecisionTreeClassifier(),
          "Random Forest": RandomForestClassifier(),
          "SVM": SVC(),
          "KNN": KNeighborsClassifier(),
      }
      # Entrenar y evaluar modelos
      best_base_model = None
```

```
best_accuracy = 0
best_model_name = ""

for name, model in models.items():
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f"\n{name} Accuracy: {accuracy:.2f}")
    print(f"Classification Report for {name}:\n")
    print(classification_report(y_test, y_pred))

if accuracy > best_accuracy:
    best_accuracy = accuracy
    best_base_model = model
    best_model_name = name
```

Logistic Regression Accuracy: 0.89 Classification Report for Logistic Regression:

	precision	recall	f1-score	support
0	0.89	0.86	0.88	29
1	0.88	0.91	0.89	32
accuracy			0.89	61
macro avg	0.89	0.88	0.88	61
weighted avg	0.89	0.89	0.89	61

Decision Tree Accuracy: 0.80 Classification Report for Decision Tree:

precision	recall	f1-score	support
0.74	0.90	0.81	29
0.88	0.72	0.79	32
		0.80	61
0.81	0.81	0.80	61
0.82	0.80	0.80	61
	0.74 0.88 0.81	0.74 0.90 0.88 0.72 0.81 0.81	0.74 0.90 0.81 0.88 0.72 0.79 0.80 0.81 0.81 0.80

Random Forest Accuracy: 0.84 Classification Report for Random Forest:

precision recall f1-score support

0	0.83	0.83	0.83	29
1	0.84	0.84	0.84	32
accuracy			0.84	61
macro avg	0.84	0.84	0.84	61
weighted avg	0.84	0.84	0.84	61

SVM Accuracy: 0.70

Classification Report for SVM:

	precision	recall	f1-score	support
0	0.79	0.52	0.62	29
1	0.67	0.88	0.76	32
accuracy			0.70	61
macro avg	0.73	0.70	0.69	61
weighted avg	0.73	0.70	0.69	61

KNN Accuracy: 0.69

Classification Report for KNN:

	precision	recall	f1-score	support
0	0.69	0.62	0.65	29
1	0.69	0.75	0.72	32
accuracy			0.69	61
macro avg	0.69	0.69	0.69	61
weighted avg	0.69	0.69	0.69	61

```
[11]: print("\nBest Base Model Accuracy: {:.2f}".format(best_accuracy))
    print("Classification Report for Best Base Model:\n")
    y_pred_best_base = best_base_model.predict(X_test)
    print(classification_report(y_test, y_pred_best_base))
    print(f"\nBest Base Model Name: {best_model_name}")
```

Best Base Model Accuracy: 0.89

Classification Report for Best Base Model:

	precision	recall	f1-score	support
0	0.89	0.86	0.88	29
1	0.88	0.91	0.89	32

```
weighted avg
                       0.89
                                 0.89
                                           0.89
                                                      61
     Best Base Model Name: Logistic Regression
[12]: # Guardar el mejor modelo
     joblib.dump(best_model, "mejor_modelo_pipeline.joblib")
[12]: ['mejor_modelo_pipeline.joblib']
     2.3 Modelacion con PyCaret
[13]: | #!pip install pycaret
     from pycaret.classification import *
[14]: # Cargar el dataset
     file path = "heart.csv"
     data = pd.read_csv(file_path)
[15]: # Configuración inicial
     clf_setup = setup(data=data, target="output",
                       train_size=0.8, # 80% para entrenamiento
                       normalize=True, # Normalizar datos
                       session_id=42, # Reproducibilidad
                       fold=5) # Validación cruzada
     <pandas.io.formats.style.Styler at 0x12c380413f0>
[16]: # Comparar y selectionar los 5 mejores modelos
     top_models = compare_models(n_select=5)
     # Optimizar los 5 modelos seleccionados
     tuned models = [tune model(model) for model in top models]
     Initiated
                                                               08:21:10
     Status
                Loading Dependencies
                                                      Compiling Library
     Estimator
     <IPython.core.display.HTML object>
     <pandas.io.formats.style.Styler at 0x12c380435b0>
     Initiated . . . . .
                                                               08:21:17
```

0.89

0.88

accuracy

0.89

0.88

macro avg

61

61

Loading Dependencies Status Estimator Compiling Library <IPython.core.display.HTML object> <pandas.io.formats.style.Styler at 0x12c360ea470> Fitting 5 folds for each of 10 candidates, totalling 50 fits Original model was better than the tuned model, hence it will be returned. NOTE: The display metrics are for the tuned model (not the original one). 08:21:19 Initiated Status Loading Dependencies Estimator Compiling Library <IPython.core.display.HTML object> <pandas.io.formats.style.Styler at 0x12c3822ed40> Fitting 5 folds for each of 10 candidates, totalling 50 fits 08:21:20 Initiated Loading Dependencies Estimator Compiling Library <IPython.core.display.HTML object> <pandas.io.formats.style.Styler at 0x12c37e6a800> Fitting 5 folds for each of 10 candidates, totalling 50 fits 08:21:20 Status Loading Dependencies Estimator Compiling Library <IPython.core.display.HTML object> <pandas.io.formats.style.Styler at 0x12c3822e530> Fitting 5 folds for each of 10 candidates, totalling 50 fits 08:21:21 Initiated Status Loading Dependencies Estimator Compiling Library <IPython.core.display.HTML object> <pandas.io.formats.style.Styler at 0x12c3835a6b0>

Fitting 5 folds for each of 10 candidates, totalling 50 fits

```
[17]: # Evaluar cada modelo optimizado y seleccionar el mejor
      best_model = None
      best_combined_score = 0
      for tuned_model in tuned_models:
          evaluate_model(tuned_model)
          metrics = pull().iloc[0]
          combined_score = (metrics['F1'] + metrics['Accuracy'] + metrics['Recall']) /
       → 3
          if combined_score > best_combined_score:
              best_combined_score = combined_score
              best_model = tuned_model
     interactive(children=(ToggleButtons(description='Plot Type:', icons=('',),_
       ⇔options=(('Pipeline Plot', 'pipelin...
     interactive(children=(ToggleButtons(description='Plot Type:', icons=('',),__
       →options=(('Pipeline Plot', 'pipelin...
     interactive(children=(ToggleButtons(description='Plot Type:', icons=('',),_u
       ⇔options=(('Pipeline Plot', 'pipelin...
     interactive(children=(ToggleButtons(description='Plot Type:', icons=('',),_
       ⇔options=(('Pipeline Plot', 'pipelin...
     interactive(children=(ToggleButtons(description='Plot Type:', icons=('',),_
       →options=(('Pipeline Plot', 'pipelin...
[18]: best_model
[18]: ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,
                           criterion='gini', max_depth=None, max_features='sqrt',
                           max_leaf_nodes=None, max_samples=None,
                           min_impurity_decrease=0.0, min_samples_leaf=1,
                           min_samples_split=2, min_weight_fraction_leaf=0.0,
                           monotonic_cst=None, n_estimators=100, n_jobs=-1,
                           oob_score=False, random_state=42, verbose=0,
                           warm_start=False)
[19]: best_combined_score
[19]: 0.83486666666666
[20]: # Entrenar el modelo final con todos los datos
      final model = finalize model(best model) # Selectiona el mejor modelou
       \hookrightarrow optimizado
```

```
[21]: from pycaret.classification import save_model
      # Guardar el modelo
      save_model(final_model, "mejor_modelo_pipeline")
     Transformation Pipeline and Model Successfully Saved
[21]: (Pipeline(memory=Memory(location=None),
                steps=[('numerical_imputer',
                        TransformerWrapper(exclude=None,
                                            include=['age', 'sex', 'cp', 'trtbps',
                                                     'chol', 'fbs', 'restecg',
                                                     'thalachh', 'exng', 'oldpeak',
                                                     'slp', 'caa', 'thall'],
      transformer=SimpleImputer(add_indicator=False,
                                                                      copy=True,
                                                                      fill_value=None,
     keep_empty_features=False,
     missing_values=nan,
      strategy='mean'))),
                       ('categor...
                        ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0,
                                              class_weight=None, criterion='gini',
                                              max_depth=None, max_features='sqrt',
                                              max_leaf_nodes=None, max_samples=None,
                                              min_impurity_decrease=0.0,
                                              min_samples_leaf=1, min_samples_split=2,
                                              min_weight_fraction_leaf=0.0,
                                              monotonic_cst=None, n_estimators=100,
                                              n_jobs=-1, oob_score=False,
                                              random_state=42, verbose=0,
                                              warm_start=False))],
                verbose=False),
       'mejor_modelo_pipeline.pkl')
```

Aunque de los modelos con scikit-learn el mejor fue el modelo 'Logistic Regression', con PyCaret el mejor fue el ExtraTreesClassifier.