

Understanding inequalities in cancer prognosis: An extension of mediation analysis to the relative survival framework.

Elisavet Syriopoulou^{1,*}, Mark J. Rutherford¹, Paul C. Lambert^{1,2}

¹Biostatistics Research Group, University of Leicester ²Department of Medical Epidemiology and Biostatistics, Karolinska Institutet

*es303@.le.ac.uk

Funding: NIHR Doctoral Research Fellowship Programme

26 September 2019

Motivation

Survival after a cancer diagnosis varies considerably across population groups e.g socioeconomic groups.

Deprivation Group	5-year RS	Mean Years w/o Cancer	Mean Years with Cancer	Prop (%)	
Age-at-diagno	sis: 60				
Least					
Deprived	64.83	27.06	16.57	38.75	
•					
Most					
Deprived	56.74	23.08	12.36	46.44	
Age-at-diagnosis: 70					
Least					
Deprived	63.57	18.26	11.38	37.65	
Most					
Deprived	53.96	15.39	8.23	46.52	

¹Understanding the impact of socioeconomic differences in colorectal cancer survival: potential gain in life-years. *Brit J Cancer* 2019; 20:1052–1058 1 of 27

Understanding variation

Is there a third variable that can partly explain these differences?

Complex mechanisms contribute towards disparities: all-cause survival differences are the result of both cancer-related and other cause factors.

Background

In the presence of competing risks, we can estimate one of the following:

- Cause-specific mortality
- Excess mortality

Information on the cause of death is usually not accurate or not available. Excess mortality does not require information on the cause of death.

Excess mortality and Relative survival

Excess mortality

excess mortality =
$$\frac{\text{all-cause}}{\text{mortality}} - \frac{\text{expected}}{\text{mortality}}$$
 $\lambda(t) = h(t) - h^*(t)$

Relative survival

relative survival ratio
$$=$$
 $\frac{\text{all-cause survival proportion}}{\text{expected survival proportion}}$ $R(t) = \frac{S(t)}{S^*(t)}$ $S(t) = S^*(t)R(t)$

Mortality rates and survival probabilities vary between individuals with different characteristics. 4 of 27

Assumptions

Relative survival estimates survival in a hypothetical world where the only possible cause of death is the cancer of interest.

- The competing risks are conditionally independent i.e. there
 are no other factors to affect both competing events than the
 factors we have adjusted for.
- Appropriate information on the expected survival of the general population so that the cancer population and the general population are comparable.

Marginal estimates

Let us assume we are interested on the effect of an exposure X on the survival time while adjusting for confounders Z.

A summary of the population prognosis can be obtained by the standardised relative survival function $E\left[R(t|Z)\right]$ that is estimated by:

$$E\left[\widehat{R}(t|Z)\right] = \frac{1}{N} \sum_{i=1}^{N} \widehat{R}(t|Z=z_i).$$

Regression standardisation

- 1. Fit a survival model such as flexible parametric model.
- 2. Obtain survival predictions for each individual in the population.
- 3. Calculate an average of the survival predictions.

Forming contrasts

If interested in relative survival:

$$E[R(t|X = 1, Z)] - E[R(t|X = 0, Z)]$$

• Refers to a hypothetical world where the cancer of interest is the only possible cause of death.

If interested in all-cause survival:

$$\begin{split} E\left[S(t|X=1,Z)\right] - E\left[S(t|X=0,Z)\right] \\ E\left[S^*(t|X=1,Z)R(t|X=1,Z)\right] - E\left[S^*(t|X=0,Z)R(t|X=0,Z)\right] \end{split}$$

 Differences may be due to either cancer of interest or other cause mortality or both.

Exploring the effect of a mediator

How much of the differences between exposure groups can be explained by differences at the mediator ${\cal M}$ distribution?

Let ${\cal M}^x$ denote the counterfactual mediator distribution when intervening to set X=x.

Illustration data - colon cancer in England

Data on 15,630 patients diagnosed between 2011-2013 (57.6% in the least deprived group).

Stage at diagnosis	Least Deprived	Most deprived	
I	1338(14.86%)	912(13.76%)	
II	2644(29.37%)	1950(29.42%)	
III	2435(27.05%)	1716(25.89%)	
IV	2585(28.72%)	2050(<mark>30.93%</mark>)	

Relative survival by stage

Direct & indirect effects - relative survival framework

Natural direct effect

$$NDE_{RS} = E\left[R(t|X = 1, Z, M^{0})\right] - E\left[R(t|X = 0, Z, M^{0})\right]$$

Natural indirect effect

$$NIE_{RS} = E\left[R(t|X=1, Z, \mathbf{M^1})\right] - E\left[R(t|X=1, Z, \mathbf{M^0})\right]$$

Step 1. Fit a survival model including X, M, Z.

```
stpm2 dep5 rcsa1 rcsa2 rcsa3 gender stage2 stage3 stage4 ///
st2dep5 st3dep5 st4dep5, df(5) scale(h) bhaz(rate) ///
tvc(rcsa1 rcsa2 rcsa3 dep5 stage2 stage3 stage4) dftvc(3)
estimates store surv
```

Step 1. Fit a survival model including X, M, Z.

```
stpm2 dep5 rcsa1 rcsa2 rcsa3 gender stage2 stage3 stage4 ///
    st2dep5 st3dep5 st4dep5, df(5) scale(h) bhaz(rate) ///
    tvc(rcsa1 rcsa2 rcsa3 dep5 stage2 stage3 stage4) dftvc(3)
estimates store surv
```

Step 2. Fit a separate model for the mediator including X, Z.

```
//Fit a multinomial regression model for the most deprived
mlogit cancer_stage rcsa1 rcsa2 rcsa3 gender if dep5==1
estimates store ph1

//Fit a multinomial regression model for the least deprived
mlogit cancer_stage rcsa1 rcsa2 rcsa3 gender if dep5==0
estimates store pho
```

Step 3. For each individual in the study population obtain predictions for $\widehat{P}(M=m|X=x,Z=z_i)$, at each X=x.

```
preserve
  estimates restore pho
  matrix bo = e(b)
  matrix Vo= e(V)
  drawnorm b1 rcsa1 b1 rcsa2 b1 rcsa3 b1 gender b1 cons ///
            b2 rcsa1 b2 rcsa2 b2 rcsa3 b2 gender b2 cons ///
            b3 rcsa1 b3 rcsa2 b3 rcsa3 b3 gender b3 cons ///
           b4_rcsa1 b4_rcsa2 b4_rcsa3 b4_gender b4_cons, mean(b0) cov(V0) n(1) clear
  local cnames: colfullnames bo
  local rnames: rowfullnames bo
  mkmat b1 rcsa1 b1 rcsa2 b1 rcsa3 b1 gender b1 cons ///
         b2 rcsa1 b2 rcsa2 b2 rcsa3 b2 gender b2 cons ///
         b3_rcsa1 b3_rcsa2 b3_rcsa3 b3_gender b3_cons ///
         b4 rcsa1 b4 rcsa2 b4 rcsa3 b4 gender b4 cons. matrix(bo tmp)
  matrix colnames bo tmp = 'cnames'
  matrix rownames bo tmp = 'rnames'
  erepost b = bo tmp V=Vo. noesample
restore
//Obtain predictions for stages 1.2.3 and 4 (for least deprived)
predict po1 po2 po3 po4
//Repeat for the most deprived group: p11 p12 p13 p14
```

Step 4. Obtain predictions of $\widehat{R}(t|X=x,Z=z_i,M=m)$ at X=x, using the predictions of Step 2 as weights.

$$TCE_{RS} = E[R(t|X=1, Z, M^{1})] - E[R(t|X=0, Z, M^{0})]$$

```
//First draw the model parameters from a multivariate normal distribution for the
survival model (similar to Step 3).
//Obtain predictions for the TCE
standsurv. failure timevar(timevar) ///
  at1(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p11))
  at2(dep5 1 stage2 1 stage3 0 stage4 0 st2dep5 1 st3dep5 0 st4dep5 0. atindweights(p12))
  at3(dep5 1 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 1 st4dep5 0, atindweights(p13))
  at4(dep5 1 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 1. atindweights(p14))
  at5(dep5 o stage2 o stage3 o stage4 o st2dep5 o st3dep5 o st4dep5 o. atindweights(po1))
  at6(dep5 o stage2 1 stage3 o stage4 o st2dep5 o st3dep5 o st4dep5 o. atindweights(po2))
  at7(dep5 o stage2 o stage3 1 stage4 o st2dep5 o st3dep5 o st4dep5 o, atindweights(po3))
  at8(dep5 o stage2 o stage3 o stage4 1 st2dep5 o st3dep5 o st4dep5 o, atindweights(po4))
  lincom(1 1 1 1 -1 -1 -1) lincomvar(tce)
```

$$NDE_{RS} = E\left[R(t|\mathbf{X} = \mathbf{1}, Z, M^0)\right] - E\left[R(t|\mathbf{X} = \mathbf{0}, Z, M^0)\right]$$

```
//First draw the model parameters from a multivariate normal distribution for the
survival model (similar to Step 3).

//Obtain predictions for the NDE
standsurv, failure timevar(timevar) ///
at1(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(po1))
at2(dep5 1 stage2 1 stage3 0 stage4 0 st2dep5 1 st3dep5 0 st4dep5 0, atindweights(po2))
at3(dep5 1 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 1 st4dep5 0, atindweights(po3))
at4(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(po4))
at5(dep5 0 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(po4))
at6(dep5 0 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(po2))
at7(dep5 0 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(po3))
at8(dep5 0 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(po4))
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(nde)
```

$$NIE_{RS} = E\left[R(t|X=1, Z, \mathbf{M^1})\right] - E\left[R(t|X=1, Z, \mathbf{M^0})\right]$$

```
//First draw the model parameters from a multivariate normal distribution for the
survival model (similar to Step 3).

//Obtain predictions for the NIE
standsurv, failure timevar(timevar) ///
at1(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p11))
at2(dep5 1 stage2 1 stage3 0 stage4 0 st2dep5 1 st3dep5 0 st4dep5 0, atindweights(p12))
at3(dep5 1 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 1 st4dep5 0, atindweights(p13))
at4(dep5 1 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 1, atindweights(p14))
at5(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p01))
at6(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p02))
at7(dep5 1 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p03))
at8(dep5 1 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p04))
lincom(1 1 1 1 -1 -1 -1 1 lincomvar(nie)
```

Step 5. Repeat from Step 2, k times, while performing parametric bootstrap for the parameter estimates for both models.

Step 5. Repeat from Step 2, k times, while performing parametric bootstrap for the parameter estimates for both models.

Step 6. Calculate 95% confidence intervals either by taking the 2.5% and 97.5% percentiles of the estimates across the bootstrapped samples or by using their standard deviation.

$$\widehat{NDE}_{RS} = \frac{1}{N} \sum_{i=1}^{N} \sum_{m} \widehat{R}(t|X=1, Z=z_i, M=m) \widehat{P}(M=m|X=0, Z=z_i)$$
$$-\frac{1}{N} \sum_{i=1}^{N} \sum_{m} \widehat{R}(t|X=0, Z=z_i, M=m) \widehat{P}(M=m|X=0, Z=z_i)$$

$$\widehat{NIE}_{RS} = \frac{1}{N} \sum_{i=1}^{N} \sum_{m} \widehat{R}(t|X=1, Z=z_i, M=m) \widehat{P}(M=m|X=1, Z=z_i)$$
$$-\frac{1}{N} \sum_{i=1}^{N} \sum_{m} \widehat{R}(t|X=1, Z=z_i, M=m) \widehat{P}(M=m|X=0, Z=z_i)$$

Colon cancer

19 of 27

Direct & indirect effects - all cause setting

• Compare $S^*(t|X=1,Z)$ with $S^*(t|X=0,Z)$: $NDE_{AC1} = E\left[S^*(t|X=1,Z)R(t|X=1,Z,M^0)\right] - E\left[S^*(t|X=0,Z)R(t|X=0,Z,M^0)\right]$

Differences may be due to either the cancer of interest or other causes or both.

```
standsurv. failure timevar(timevar)
 at1(dep5 1 stage2 o stage3 o stage4 o st2dep5 o st3dep5 o st4dep5 o. atindweights(po1))
 at2(dep5 1 stage2 1 stage3 0 stage4 0 st2dep5 1 st3dep5 0 st4dep5 0. atindweights(po2))
 at3(dep5 1 stage2 o stage3 1 stage4 o st2dep5 o st3dep5 1 st4dep5 o. atindweights(po3))
 at4(dep5 1 stage2 o stage3 o stage4 1 st2dep5 o st3dep5 o st4dep5 1. atindweights(po4))
 at5(dep5 o stage2 o stage3 o stage4 o st2dep5 o st3dep5 o st4dep5 o. atindweights(po1))
 at6(dep5 o stage2 1 stage3 o stage4 o st2dep5 o st3dep5 o st4dep5 o. atindweights(po2))
 at7(dep5 o stage2 o stage3 1 stage4 o st2dep5 o st3dep5 o st4dep5 o. atindweights(po3))
 at8(dep5 o stage2 o stage3 o stage4 1 st2dep5 o st3dep5 o st4dep5 o, atindweights(po4))
 lincom(1 1 1 1 -1 -1 -1) lincomvar(nde ac1)
 expsurv(using(popmort.dta)
 datediag(dx) agediag(agediag) pmrate(rate) pmage(age) pmvear(vear) pmother(dep sex)
   at1(dep 1) at2(dep 1)
   at3(dep 1) at4(dep 1)
   at5(dep o) at6(dep o)
   at7(dep o) at8(dep o))
```

Direct & indirect effects - all cause setting

• Use the observed distribution of the exposure, $S^*(t|X,Z)$:

```
NDE_{AC2} = E\left[\mathbf{S}^*(t|\mathbf{X},\mathbf{Z})R(t|X=1,Z,M^0)\right] - E\left[\mathbf{S}^*(t|\mathbf{X},\mathbf{Z})R(t|X=0,Z,M^0)\right] Differences can only be due to the cancer of interest.
```

```
standsurv, failure timevar(timevar)
 at1(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0. atindweights(po1))
 at2(dep5 1 stage2 1 stage3 0 stage4 0 st2dep5 1 st3dep5 0 st4dep5 0, atindweights(po2))
 at3(dep5 1 stage2 o stage3 1 stage4 o st2dep5 o st3dep5 1 st4dep5 o, atindweights(po3))
 at4(dep5 1 stage2 o stage3 o stage4 1 st2dep5 o st3dep5 o st4dep5 1. atindweights(po4))
 at5(dep5 o stage2 o stage3 o stage4 o st2dep5 o st3dep5 o st4dep5 o, atindweights(po1))
 at6(dep5 o stage2 1 stage3 o stage4 o st2dep5 o st3dep5 o st4dep5 o, atindweights(po2))
 at7(dep5 o stage2 o stage3 1 stage4 o st2dep5 o st3dep5 o st4dep5 o, atindweights(po3))
 at8(dep5 o stage2 o stage3 o stage4 1 st2dep5 o st3dep5 o st4dep5 o. atindweights(po4))
 lincom(1 1 1 1 -1 -1 -1 ) lincomvar(nde ac2)
 expsurv(using(popmort.dta)
 datediag(dx) agediag(agediag) pmrate(rate) pmage(age) pmyear(year) pmother(dep sex)
   at1(dep .) at2(dep .)
   at3(dep .) at4(dep .)
   ats(dep .) at6(dep .)
   at7(dep .) at8(dep .))
```

Direct & indirect effects - all cause setting

• It might also be of interest to estimate the effect, within subsets of the whole population e.g. NDE among the exposed using $S^*(t|X=1,Z_{X=1})$.

"What if we could eliminate differences in the mediator distribution between exposed and unexposed groups?"

"What if we could eliminate differences in the mediator distribution between exposed and unexposed groups?"

• The predicted number of deaths for the exposed:

$$D_1(t|X=1,M^1) = N^* \times (1 - E[S^*(t|X=1,Z_{X=1})R(t|X=1,Z,M^1)])$$

"What if we could eliminate differences in the mediator distribution between exposed and unexposed groups?"

The predicted number of deaths for the exposed:

$$D_1(t|X=1,M^1) = N^* \times (1 - E[S^*(t|X=1,Z_{X=1})R(t|X=1,Z,M^1)])$$

 The expected number of deaths if the exposed had the same mediator distribution as the unexposed:

$$D_M(t|X=1,M^0) = N^* \times (1 - E\left[S^*(t|X=1,Z_{X=1})R(t|X=0,Z,M^0)\right])$$

"What if we could eliminate differences in the mediator distribution between exposed and unexposed groups?"

The predicted number of deaths for the exposed:

$$D_1(t|X=1,M^1) = N^* \times (1 - E[S^*(t|X=1,Z_{X=1})R(t|X=1,Z,M^1)])$$

 The expected number of deaths if the exposed had the same mediator distribution as the unexposed:

$$D_M(t|X=1,M^0) = N^* \times (1 - E\left[S^*(t|X=1,Z_{X=1})R(t|X=0,Z,\mathbf{M^0})\right])$$

The avoidable deaths are:

$$D_1(t|X=1,M^1) - D_M(t|X=1,M^0)$$

How many avoidable deaths would be observed if the most deprived patients had the same stage distribution as the least deprived?

```
standsurv, failure timevar(timevar) per(3228)
 at1(dep5 1 stage2 0 ... st4dep5 0, atif(dep5==1) atindweights(p11))
 at2(dep5 1 stage2 1 ... st4dep5 0, atif(dep5==1) atindweights(p12))
 at3(dep5 1 stage2 0 ... st4dep5 0. atif(dep5==1) atindweights(p13))
 at4(dep5 1 stage2 0 ... st4dep5 1. atif(dep5==1) atindweights(p14))
 at5(dep5 1 stage2 0 ... st4dep5 0, atif(dep5==1) atindweights(po1))
 at6(dep5 1 stage2 1 ... st4dep5 0, atif(dep5==1) atindweights(p02))
 at7(dep5 1 stage2 0 ... st4dep5 0. atif(dep5==1) atindweights(p03))
 at8(dep5 1 stage2 0 ... st4dep5 1. atif(dep5==1) atindweights(po4))
 lincom(1 1 1 1 -1 -1 -1 ) lincomvar(AD)
 expsurv(using(popmort.dta)
    datediag(dx) agediag(agediag) pmrate(rate) pmage(age) pmyear(year) pmother(dep sex)
   at1(dep 5) at2(dep 5)
   at3(dep 5) at4(dep 5)
   at5(dep 5) at6(dep 5)
    at7(dep 5) at8(dep 5))
```

Avoidable deaths for colon cancer

 $^{^*}$ Out of 3228 patients (N^*) from the most deprived group diagnosed in 2013 the most recent year in our data.

Conclusions

- Mediation analysis within the relative survival framework allows to focus on cancer-related factors.
- Need to be careful when interpreting the results as a number of assumption need to hold:
 - Well-defined interventions assumption is probably violated but quantifying the impact of such a conceptual intervention in a formalised causal framework gives a firm basis to improve our understanding on cancer disparities.
 - Achieving conditional exchangeability for the other cause mortality depends on the availability of relevant life tables.
- Marginal estimates can also obtained with IPW or doubly robust standardisation (future work).

Selected References I

Glymour MM and Spiegelman D

Evaluating Public Health Interventions: 5. Causal Inference in Public Health Research—Do Sex, Race, and Biological Factors Cause Health Outcomes?

Am J Public Health, 107(1):81–85, 2017.

Pohar Perme M, Stare J & Estève J

On Estimation in Relative Survival. *Biometrics.*, 68, 113-120, 2012.

Royston P and Lambert PC

Flexible parametric survival analysis in Stata: Beyond the Cox model.

Stata Press, 2011.

Sjölander A
Regression standardization with the R package stdReg.

Eur I Epidemiol. 31(6):563-574, 2016.

VanderWeele TJ

Causal mediation analysis with survival data.

Epidemiology, 22(4):582-585, 2011.