Regra de L'Hopital

Forma do Tipo & ou 800

*Teorema: Se f e g são funções com primeiras devivadas continuas em $x=x_0$, $\lim_{x\to x_0} f(x)=0$ e $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ existir então:

 $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}.$

Forma Indeterminada do Tipo 88

Teorema: Se f e g são funções continuos e deriváveis em todos os portos $x \neq x_0$ (numa vizinhança do porto x_0) e $g'(x) \neq 0$ $\forall x$ e se $\lim_{x \to \infty} f(x) = \infty$ e $\lim_{x \to \infty} g(x) = \infty$, então:

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}.$$

Forma Indeterminada $0.\infty$: Se f(x) = g(x). h(x) = 0 $\lim_{x \to x_0} f(x) = 0.\infty$ entar basta fazer:

 $f(x) = \underbrace{\frac{g(x)}{g(x)}}_{n(x)}$ ou $f(x) = \underbrace{\frac{h(x)}{h(x)}}_{g(x)}$ e aplicar l'Hopital do Teorema & ou $\underbrace{\frac{1}{g(x)}}_{g(x)}$ &...

Forma Indeterminada $\infty - \infty$: Se f(x) = g(x) - h(x) e o lim $f(x) = \infty - \infty$, então atraves de operações elementares entre as funções g(x) e h(x) é sempre possíve)

transformer o lim f(x) numa das formos indeterminades 8 ou 8

Formas Indeterminadas do tipo 1°, 0° e ∞: Se

f(x)= [g(x)] e lim assume uma das três formas indeterminadas 1°, 0°, ∞°, então, para qualquer uma das indeterminações detime-se:

$$\rightarrow \Gamma = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} [d(x)]_{\mu(x)} \qquad (|n|)$$

$$\rightarrow \ln L = \ln \left(\lim_{x \to 0} \left[g(x) \right]^{h(x)} \right) \rightarrow \ln L = \lim_{x \to 0} \left(\ln \left[g(x) \right]^{h(x)} \right) \rightarrow$$

→ In L= lim (hly).In [g(r)]) Assim a limite assume a forma de 0.00,