

In the name of Allah, the Most Merciful, the Most Kind

Date: 05-10-2021

BCS 103 Digital Logic & Computer Architecture

Lecture 19 and 20

IN THE LAST LECTURE

We have discussed

- Simplification of Expressions
- From Boolean Expression to Circuit
- From Circuit to Boolean Expression
- Expression validity

TODAY

We will discuss about

- Sum of Product (minterm)
- Product of Sum (Maxterm)
- Karnaugh Map

Review: Minterm

- A product term in which all the variables appear exactly once, either complemented or uncomplemented, is called a minterm
- A minterm represents exacly one combination of the binary variables in a truth table. It has the value of 1 for that combination and 0 for the others

X	Υ	Z	Product Term	Symbol	m _o	m,	m ₂	m _s	m₄	m ₅	m _e	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	O	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m ₅	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m_6	0	0	0	0	0	O	1	0
1	1	1	XYZ	m_7	0	0	0	0	0	0	0	1

Table 2-6 Minterms for Three Variables

Review: Maxterm

- A sum term in which all the variables appear exactly once, either complemented or uncomplemented, is called a maxterm
- A maxterm represents exacly one combination of the binary variables in a truth table. It has the value of 0 for that combination and 1 for the others

X	Y	z	Sum Term	Symbol	М。	Μı	M2	M _o	М₄	M ₅	Mε	M ₇
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	$\overline{\mathrm{M}_{3}}$	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M ₇	1	1	1	1	1	1	1	0

Table 2-7 Maxterms for Three Variables

 A minterm and maxterm with the same subscript are the complements of each other, i.e., M_i = m'_i

3

Review: Sum of Minterms

 A Boolean function can be represented algebraically from a given truth table by forming the logical sum of all the minterms that produce a 1 in the function. This expression is called a sum of minterms

(a)	Х	Y	Z	F	F	
(u)	^			'		F- VV/71 . VV/71 . VV/7 . VV/
	0	0	0	1	0	F= X'Y'Z' + X'YZ' + XY'Z + XY
	0	0	1	0	1	$= m_0 + m_2 + m_5 + m_7$
	0	1	0	1	0	- 110 - 112 - 1115 - 1117
	0	1	1	0	1	
	1	0	0	0	1	$F(X,Y,Z) = \Sigma m(0,2,5,7)$
	1	0	1	1	0	
	1	1	0	0	1	
	1	1	1	1	0	

Review: Product of Maxterms

 A Boolean function can be represented algebraically from a given truth table by forming the logical product of all the maxterms that produce a 0 in the function. This expression is called a product of maxterms

(a)	Х	Y	Z	F	F
17		•	_		-
	0	0	0	1	0
	0	0	1	0	1
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	0	1
	1	1	1	1	0

- To convert a Boolean function F from SoM to PoM:
 - Find F' in SoM form
 - Find F= (F')' in PoM form

Review: Sum-of-Products

- The sum-of-minterms form is a standard algebraic expression that is obtained from a truth table
- When we simplify a function in SoM form by reducing the number of product terms or by reducing the number of literals in the terms, the simplified expression is said to be in Sum-of-Products form
- Sum-of-Products expression can be implemented using a two-level circuit

Fig. 2-5 Sum-of-Products Implementation

Review: Product-of-Sums

- The product-of-maxterms form is a standard algebraic expression that is obtained from a truth table
- When we simplify a function in PoM form by reducing the number of sum terms or by reducing the number of literals in the terms, the simplified expression is said to be in Product-of-Sums form
- Product-of-Sums expression can be implemented using a two-level circuit

Fig. 2-7 Product-of-Sums Implementation

The Karnaugh Map

- Feel a little difficult using Boolean algebra laws, rules, and theorems to simplify logic?
- A K-map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest SOP or POS expression possible, known as the <u>minimum</u> <u>expression</u>.

Karnaugh Maps

- Karnaugh maps provide an alternative way of simplifying logic circuits.
- Instead of using Boolean algebra simplification techniques, you can transfer logic values from a Boolean statement or a truth table into a Karnaugh map.
- The arrangement of 0's and 1's within the map helps you to visualise the logic relationships between the variables and leads directly to a simplified Boolean statement.

Karnaugh Maps

• 2 variables Karnaugh map

Karnaugh Maps

• 2 variables Karnaugh map

Thanks