Видалення λ-переходів

Щоб перейти від вихідного скінченного автомата $M = \langle Q, \Sigma, \Delta, I, F \rangle$ до еквівалентного скінченного автомата $M' = \langle Q', \Sigma, \Delta', I', F' \rangle$ без λ -переходів, достатньо у вихідному графі M здійснити такі перетворення.

1. Множина дуг скінченного автомата M' та їх міток (тим самим і функція переходів M') визначається так: для довільних двох станів $p,r \in Q'$ перехід з $p \in P$ по дузі з міткою a:

має місце тоді і тільки тоді, коли
$$a \in \Sigma$$
, а в графі М існує дуга з р в г, мітка якої символ a або існує такий стан q , що $p \Rightarrow_{\lambda}^{+} q$ і $q \Rightarrow_{\alpha}^{+} r$, або існує такий стан q , що $p \Rightarrow_{\alpha}^{+} q$ і $q \Rightarrow_{\lambda}^{+} r$, або існує такий стан q та t , що $p \Rightarrow_{\lambda}^{+} q$, $q \Rightarrow_{\alpha}^{+} q$ t і $t \Rightarrow_{\lambda}^{+} r$.

2. Множина заключних станів F' скінченного автомата M' містить всі стани $q \in Q'$, які або належали до заключних станів початкового автомата M, або з яких веде шлях ненульової довжини з q в заключний стан $f \in F$ початкового автомата M з міткою шляху ε

3. Всі стани, крім початкового, в які заходять тільки дуги з міткою д видаляються; тим самим визначається множина Q' скінченного

автомата M '. Зрозуміло, що $Q' \subseteq Q$. При цьому вважаємо, що початковий стан залишається попереднім.