Making plots in R [things I wish someone told me when I started grad school]

Kirk Lohmueller
Department of Ecology and Evolutionary Biology
UCLA
September 14, 2016

What's a pirates favorite computer language?

Rrrrrr!

But, why?

Because they get lost when they go to C

• Know how to make simple plots:

- Know how to make simple plots:
 - Scatterplot, histogram, density plot, bar plot

- Know how to make simple plots:
 - Scatterplot, histogram, density plot, bar plot
- Read "large" datasets into R

- Know how to make simple plots:
 - Scatterplot, histogram, density plot, bar plot
- Read "large" datasets into R
- Perform manipulations of large datasets

- Know how to make simple plots:
 - Scatterplot, histogram, density plot, bar plot
- Read "large" datasets into R
- Perform manipulations of large datasets
- Calculate some statistics in R

- Know how to make simple plots:
 - Scatterplot, histogram, density plot, bar plot
- Read "large" datasets into R
- Perform manipulations of large datasets
- Calculate some statistics in R
- Start to become familiar with simulation

- Know how to make simple plots:
 - Scatterplot, histogram, density plot, bar plot
- Read "large" datasets into R
- Perform manipulations of large datasets
- Calculate some statistics in R
- Start to become familiar with simulation
- Begin to appreciate and enjoy Kirk's corny humor

R can simulate data from a probability distribution

Let's look at the normal distribution:

Matthew Freeman J Epidemiol Community Health 2006;60:6

Simulating data from a normal distribution

```
> #first, draw 1000 random values from a standard normal distribution (SD=1):
> s1<-rnorm(1000, mean=0, sd=1)
> #now do 1000 drawn from a normal distribution with SD=3.
> s3<-rnorm(1000, mean=0, sd=3)
> head(s1)
[1] 0.26951848 -2.43530911 1.15968499 0.09647798 -0.74425935 0.40504897
> head(s3)
[1] 3.6718664 4.8193934 -0.6078601 2.1520862 2.9089759 -3.6002362
```

Basic histogram

Makes it in your wd if you don't give path file = "this is the file name"

```
> #plot histograms of both on same panel and save to a file:
> pdf(file="Normal_hist.pdf", width=4,height=7);
> #open the file
> 2 rows, 1 col bottom, left, top, right in inches, guess until it works
> par(mfrow=c(2,1), mar=c(4, 4, 3, 2)) #sets plotting area and margins
> hist(s1,col=2,xlab="Value",main="Sigma=1") #make first hist
> hist(s3,col=4,xlab="Value",main="Sigma=3") #make second hist
> dev.off() #shuts off current output device Closes the pdf
quartz
2
```

Basic histogram

Getting fancier...

How did I do that?

```
>> #plot histograms of both on same panel and save to a file:
> pdf(file="Normal_hist.fancy.pdf", width=4,height=7);
> #open the file
> par(mfrow=c(2,1), mar=c(4, 4, 3, 2)) #sets plotting area and
margins
                    Expression converts sigma to greek letter, nested with paste inside
                    don't know why paste is inside, but has to be
> hist(s1,col=2,xlab="Value",main=expression(paste(sigma,"=1")))
#make first hist
> hist(s3,col=4,xlab="Value",main=expression(paste(sigma,"=3")))
#make second hist
> dev.off() #shuts off current output device
pdf
```

Smooth density plot

```
> #make smooth density plot:
                                size matters for the other setting ie line width
> pdf(file="Normal_density.pdf", width=6,height=6); #open the file
>
> par(mfrow=c(1,1), mar=c(4, 4, 3, 2)) #sets plotting area and margins
   plot first density
> plot(density(s1),col=2,lwd=4,xlab="Value",xlim=c(-15,15),main="Normal
distribution")
> this adds line to existing plot
> lines(density(s3),col=4,lwd=4) #add the SD=3 values
> doesn't use c() for x and y, sets top left corner
                                              color for each line
> #we can highlight the upper 10% of each distribution with a vertical line:
> abline(v=quantile(s1,0.9),lty=2,lwd=3,col=2) #puts a vertical line onto the plot
         abline(v=location) ad a vert line there, h does horizontal
> abline(v=quantile(s3,0.9),lty=2,lwd=3,col=4) #puts a vertical line onto the plot
                          Ity is line type
for s3
> dev.off()
                 quantile(s3, 0.9) say mark 90th percentile of s3
quartz
     2
```

If you miss up legend, you can't just remove it. Have to start over

Smooth density plot

Normal distribution

More on "quantile"

```
> #quantile take a vector of stuff, and returns the value q such that p%
of your distribution is less than q.
>
> #for example, find the 75th percentile of the standard normal
distribution:
> quantile(s1,0.75)
      75%
0.5899364
>
> #quantile with just a vector gives some interesting stuff:
> quantile(s1)
         0%
                    25%
                                50%
                                            75%
                                                        100%
-2.97189479 -0.71435745 -0.05515638 0.58993639 2.87407876
```

Boxplot

Boxplot

Draws from a normal distribution

Histogram with both sets of data on same axes? Can we do it? YES WE CAN!

> #Let's make a histogram of these values, but putting both on the same axes. > #But, we need to have the same bin widths for both datasets: bin range depends on your data of course This is setting the bins > bins<-seq(-10,10,by=1)> hist(s1,breaks=bins)\$breaks [1] -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 23 4 5 6 7 8 9 10 > > hist(s3,breaks=bins)\$breaks [1] -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 23 4 5 6 7 8 9 10 > confirming we've set the bins for both and they're the same > #This looks good now we're storing the counts based on our bins > > counts_s1<-hist(s1,breaks=bins)\$counts</pre>

Tuesday, September 13, 16

> counts_s3<-hist(s3,breaks=bins)\$counts</pre>

Histogram with both sets of data on same axes? Can we do it? YES WE CAN!

```
> #now make the plot:
> pdf(file="normal_barplot.pdf", width=6,height=6); #open the
file
> par(mfrow=c(1,1), mar=c(4, 4, 3, 2)) #sets plotting area and
margins
>
                                          beside sets hist next to eachother
   rbind so each bin is counts from both sets
barplot(rbind(counts_s1,counts_s3),col=c(2,4),beside=T,names.arg=
seq(-10,9.5,by=1),xlab="Value",ylab="Count")
> names will depend on your number of bins
>
legend(6,350,c(expression(paste(sigma, "=3")),expression(paste(sigma, "=3"))
ma, "=6")), col=c(2,4), lwd=4)
> dev.off()
pdf
```

Histogram with both sets of data on same axes? Can we do it? YES WE CAN!

Finding extreme values

Say we want to find the % of values in a vector that are >X...

Scatterplot pitfalls

```
> #Simple scatterplot:
> pdf(file="/Users/kirk/Dropbox/Kirk_stuff/KEL_bootcamp/scatter_small.pdf",
width=10,height=10); #open the file
>
> par(mfrow=c(1,1), mar=c(4, 4, 3, 2)) #sets plotting area and margins
>
> x<-rnorm(100)
> y<-x+rnorm(100,sd=0.2)
>
> plot(x,y,pch=19)
>
> dev.off()
quartz
2
```

The most annoying thing in R...

Huh?
What is plotted here?
My tired eyes can't read this....

One way to fix it

```
> #now, try again, make the labels bigger:
> #Simple scatterplot:
> pdf(file="/Users/kirk/Dropbox/Kirk_stuff/KEL_bootcamp/scatter_large.pdf",
width=10, height=10); #open the file
>
> par(mfrow=c(1,1), mar=c(5, 5, 3, 2)) #sets plotting area and margins
> x<-rnorm(100)
> y<-x+rnorm(100,sd=0.2)
                   .lab change size axis labels
> plot(x,y,pch=19,cex.lab=2,cex.axis=2)
                             .axis change size of numbers
> dev.off()
quartz
```

One way to fix it

