UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADÊMICA DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS 2

Simulação de Sistemas Elétricos por Quadripolos

ALUNO:	 	. .	 															
ALUNO:																		
ALUNO:																		
ALUNO:																		
ALUNO:																		

Questão 1. Considerando o sistema elétrico da Figura 1, operando a 60 Hz, cujos parâmetros do sistema são conforme a seguir:

Figura 1: Sistema Elétrico

- Impedância série de Thévenin $Rf = 2\Omega$ e $Xf = 0,38\Omega$.
- Parâmetros das Linhas de Transmissão, de acordo com o modelo da Figura 2: $R=0,182\Omega/km,\,L=2,28mH/km$ e $C=0,0140\mu F/km$.
- Considere que as LT1, LT2 e LT3 possuem 100 km, a LT4 e LT5 possui 80 km e a LT6 possui 120 km.
- Considere os seguintes parâmetros para os Transformadores, conforme Figura 3: $R1 = 7,6m\Omega,~X1 = 3,8m\Omega,~R2 = 33,9m\Omega,~X2 = 0,85m\Omega,~Rm1 = 4320\Omega,~Xm1 = 5050\Omega,~Rm2 = 432000\Omega,~Xm2 = 505000\Omega,~Rm3 = 402000\Omega$ e $Xm3 = 607000\Omega$.
- Para as cargas, considere que a potência das cargas na tensão nominal do sistema é:
 - P = 11.9680 MW e Q = 24.7076 MVAR
 - P = 30.8442 MW e Q = 63.6053 MVAR
 - P = 17.0740 MW e Q = 35.2865 MVAR

Figura 2: Modelo π de Linha de Transmissão

Figura 3: Modelo de Transformador

Faça o que se pede:

- Crie funções no Matlab, Octave ou software de preferência, para criação das matrizes de transferência [T] de cada elemento do sistema a partir dos dados de entrada do modelo.
- Crie funções no Matlab, Octave ou software de preferência, para associação em cascata e em paralelo dessas matrizes de transferência.
- Modele o sistema no software desenvolvido.
- Obtenha a tensão fasorial de saída V_{ac} e a corrente fasorial na carga Z_3 considerando que a tensão no gerador seja $69kV_{RMS}$.
- Plote o diagrama fasorial **na forma poligonal** do circuito, considerando a entrada V_{ac} e a saída a tensão em Z_3 .
- Obtenha a tensão e a corrente fasoriais nas impedâncias Z_1 e Z_2 .
- Obtenha a potência Ativa e Reativa fornecida pelo Gerador.
- Obtenha a potência Ativa e Reativa consumida pelas cargas.
- Calcule a perda de potência Ativa e Reativa no sistema.
- Simule o sistema no LTSpice utilizando o modelo de cada elemento do sistema. Compare o resultado com o obtido nos itens anteriores. A modelagem do sistema por quadripolos apresentou o mesmo resultado que a análise por elementos de circuitos?

- Sugira valores de Z_1 , Z_2 e Z_3 para que perda de potência Ativa e Reativa no sistema seja menor que 10%. Simule novamente o caso no Matlab, Octave ou software de preferência e mostre o resultado das tensões, correntes e potências do sitema.
- Qual é o ajuste do TAP dos transformadores T1, T2 e T3 para que as tensões nas cargas sejam, respectivamente, 230kV, 138kV e 69kV? Faça esse ajuste no modelo e apresente o resultado.
- Insira reatores ou banco de capacitores em derivação onde julgar necessário de modo que as tensões nas cargas sejam, respectivamente, 230 kV, 138 kV e 69 kV, com tolerância de \pm %5 ? Faça esse ajuste no modelo e apresente o resultado.