R Assignment 6

Jesse Maki

April 16, 2023

```
# 1st Part of 19.1
# h0: All means are equal // Ha: One mean is not equal
# Create a data frame with the depth and site columns
info <- data.frame(</pre>
  "depth" = c(
    93, 120, 65, 105, 115, 82, 99, 87, 100, 90, 78, 95, 93, 88, 110, 85,
    45, 80, 28, 75, 70, 65, 55, 50, 40, 100, 75, 65, 40, 73, 65, 50, 30,
    45, 50, 45, 55, 96, 58, 95, 90, 65, 80, 85, 95, 82
 ),
 "site" = c(
   rep("Site i", 15),
    rep("Site ii", 10),
   rep("Site iii", 12),
    rep("Site iv", 9)
# Convert site to a factor
info$site <- factor(info$site)</pre>
# Calculate the mean depth for each site
infomean <- tapply(info$depth, info$site, mean)</pre>
# Create a boxplot and add mean values as points
boxplot(info$depth ~ info$site,
        xlab = "Site",
        ylab = "Depth (cm)",
        main = "Boxplot of Depth by cm by Site")
points(1:4, infomean, pch = 4)
```

Boxplot of Depth by cm by Site


```
# Center the depth values by subtracting the mean depth for each site
infomeancen <- info$depth - infomean[info$site]

# Check the normality assumption by creating a normal QQ plot
qqnorm(infomeancen)
qqline(infomeancen)</pre>
```

Normal Q-Q Plot


```
# Check the equality of variances using the ratio of the maximum to minimum standard deviation
info.sds <- tapply(info$depth, info$site, sd)
max(info.sds)/min(info.sds)</pre>
```

[1] 1.399928

```
# Close the plot device
dev.off()
```

```
## null device
## 1
```

```
# 2nd Part of 19.1
# Diagnosis checking what suits an ANOVA analysis
# Sepal.Length ----
# Load the iris dataset
mydata <- iris
# Print the dataset
mydata</pre>
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
## ##	36	5.0	3.2	1.2	0.2	setosa
	37	5.5	3.5	1.3	0.2	setosa
## ##	38 39	4.9 4.4	3.6 3.0	1.4 1.3	0.1	setosa
		5.1			0.2	setosa
##	40		3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa

##	13	4.4	3.2	1.3	0.2	setosa
	44	5.0	3.5	1.6	0.6	setosa
	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##	51	7.0	3.2	4.7		versicolor
##	52	6.4	3.2	4.5		versicolor
##	53	6.9	3.1	4.9		versicolor
##	54	5.5	2.3	4.0		versicolor
##	55	6.5	2.8	4.6	1.5 τ	ersicolor
##	56	5.7	2.8	4.5	1.3 v	versicolor
##	57	6.3	3.3	4.7	1.6	versicolor
##	58	4.9	2.4	3.3	1.0 t	versicolor
##	59	6.6	2.9	4.6	1.3 τ	versicolor
##	60	5.2	2.7	3.9	1.4 \	ersicolor
##	61	5.0	2.0	3.5	1.0 v	ersicolor
##	62	5.9	3.0	4.2	1.5 τ	versicolor
##	63	6.0	2.2	4.0	1.0 v	versicolor
##	64	6.1	2.9	4.7	1.4 τ	versicolor
##	65	5.6	2.9	3.6	1.3 τ	versicolor
##	66	6.7	3.1	4.4	1.4 τ	versicolor
##	67	5.6	3.0	4.5	1.5 τ	versicolor
##	68	5.8	2.7	4.1		versicolor
##	69	6.2	2.2	4.5		versicolor
##	70	5.6	2.5	3.9	1.1 1	versicolor
##	71	5.9	3.2	4.8		rersicolor
##	72	6.1	2.8	4.0		rersicolor
##	73	6.3	2.5	4.9		rersicolor
##	74	6.1	2.8	4.7		rersicolor
##	75	6.4	2.9	4.3		rersicolor
##	76	6.6	3.0	4.4		versicolor
##	77	6.8	2.8	4.8		versicolor
##	78	6.7	3.0	5.0		versicolor
	79	6.0	2.9	4.5		versicolor
##		5.7	2.6	3.5		versicolor
##		5.5	2.4	3.8		versicolor
##		5.5	2.4	3.7		versicolor
##		5.8	2.7	3.9		versicolor
##		6.0	2.7	5.1		versicolor
	85	5.4	3.0	4.5		versicolor
	86	6.0	3.4	4.5		versicolor
	87	6.7	3.1	4.7		versicolor
						ersicolor versicolor
	88 89	6.3	2.3 3.0	4.4		versicolor
	90	5.6 5.5	2.5	4.1		versicolor
	91					
		5.5	2.6	4.4		versicolor
	92	6.1	3.0	4.6		versicolor
	93	5.8	2.6	4.0		versicolor
##		5.0	2.3	3.3		versicolor
##		5.6	2.7	4.2		versicolor
##	90	5.7	3.0	4.2	1.2 7	versicolor

##	97	5.7	2.9	4.2	1.3	versicolor
##	98	6.2	2.9	4.3	1.3	versicolor
##	99	5.1	2.5	3.0	1.1	versicolor
##	100	5.7	2.8	4.1	1.3	versicolor
##	101	6.3	3.3	6.0	2.5	virginica
##	102	5.8	2.7	5.1	1.9	virginica
##	103	7.1	3.0	5.9	2.1	virginica
##	104	6.3	2.9	5.6	1.8	virginica
##	105	6.5	3.0	5.8	2.2	virginica
##	106	7.6	3.0	6.6	2.1	virginica
##	107	4.9	2.5	4.5	1.7	virginica
##	108	7.3	2.9	6.3	1.8	virginica
##	109	6.7	2.5	5.8	1.8	virginica
##	110	7.2	3.6	6.1	2.5	virginica
##	111	6.5	3.2	5.1	2.0	virginica
##	112	6.4	2.7	5.3	1.9	virginica
##	113	6.8	3.0	5.5	2.1	virginica
##	114	5.7	2.5	5.0	2.0	virginica
##	115	5.8	2.8	5.1	2.4	virginica
##	116	6.4	3.2	5.3	2.3	virginica
##	117	6.5	3.0	5.5	1.8	virginica
##	118	7.7	3.8	6.7	2.2	virginica
##	119	7.7	2.6	6.9	2.3	virginica
##	120	6.0	2.2	5.0	1.5	virginica
##	121	6.9	3.2	5.7	2.3	virginica
##	122	5.6	2.8	4.9	2.0	virginica
##	123	7.7	2.8	6.7	2.0	virginica
##	124	6.3	2.7	4.9	1.8	virginica
##	125	6.7	3.3	5.7	2.1	virginica
##	126	7.2	3.2	6.0	1.8	virginica
##	127	6.2	2.8	4.8	1.8	virginica
##	128	6.1	3.0	4.9	1.8	virginica
##	129	6.4	2.8	5.6	2.1	virginica
##	130	7.2	3.0	5.8	1.6	virginica
##	131	7.4	2.8	6.1	1.9	virginica
##	132	7.9	3.8	6.4	2.0	virginica
##	133	6.4	2.8	5.6	2.2	virginica
	134	6.3	2.8	5.1	1.5	virginica
	135	6.1	2.6	5.6	1.4	virginica
	136	7.7	3.0	6.1	2.3	virginica
	137	6.3	3.4	5.6	2.4	virginica
	138	6.4	3.1	5.5	1.8	virginica
	139	6.0	3.0	4.8	1.8	virginica
##	140	6.9	3.1	5.4	2.1	virginica
	141	6.7	3.1	5.6	2.4	virginica
	142	6.9	3.1	5.1	2.3	virginica
	143	5.8	2.7	5.1	1.9	virginica
	144	6.8	3.2	5.9	2.3	virginica
	145	6.7	3.3	5.7	2.5	virginica
	146	6.7	3.0	5.2	2.3	virginica
	147	6.3	2.5	5.0	1.9	virginica
	148	6.5	3.0	5.2	2.0	virginica
	149	6.2	3.4	5.4	2.3	virginica
##	150	5.9	3.0	5.1	1.8	virginica

```
{\it \# Check normality using Shapiro-Wilk test for each variable}
shapiro.test(mydata$Sepal.Length)
##
##
   Shapiro-Wilk normality test
## data: mydata$Sepal.Length
## W = 0.97609, p-value = 0.01018
shapiro.test(mydata$Sepal.Width)
##
##
   Shapiro-Wilk normality test
##
## data: mydata$Sepal.Width
## W = 0.98492, p-value = 0.1012
shapiro.test(mydata$Petal.Length)
##
## Shapiro-Wilk normality test
## data: mydata$Petal.Length
## W = 0.87627, p-value = 7.412e-10
shapiro.test(mydata$Petal.Width)
##
## Shapiro-Wilk normality test
##
## data: mydata$Petal.Width
## W = 0.90183, p-value = 1.68e-08
# Set plot margins
par(mar=c(5, 4, 4, 2) + 0.1)
# Save boxplots for each variable grouped by species as a PDF file
pdf("myplot.pdf", width = 8, height = 4)
```



```
{dev.off()}
## pdf
##
# Run an ANOVA test on Sepal. Width grouped by species and print the summary
anova=aov(mydata$Sepal.Width~mydata$Species)
summary(anova)
##
                   Df Sum Sq Mean Sq F value Pr(>F)
                      11.35
                               5.672
                                       49.16 <2e-16 ***
## mydata$Species
## Residuals
                  147
                       16.96
                               0.115
                  0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

As the p-value is less than the significance level 0.05, we can conclude that there are significant d