Recap: Hedge

$$L_{t-1}(i) = \sum_{s=1}^{t-1} l_s(i)$$
 $W_t(i) = e^{-\int_{t-1}^{t} l_{s}(i)}$
 $W_t = \sum_{s=1}^{t} W_t(i)$ $P_t(i) = \frac{W_t(i)}{W_t}$
 $R_T = \sum_{t=1}^{t} l_t(i)P_t(i) - \sum_{t=1}^{t} l_t(k_T^*) < \frac{l_t k_t}{T} + \frac{l_t}{2} \sum_{t=1}^{t} l_t(i)^2 P_t(i)$

This inequality holds for $l_t(i) \neq 0$
 $I_t l_t(i) \in [0,1]$ then $R_T \leq V_T P_t k_t$

Bendit setting

For $t = 1, 2, \dots$

Draw $I_t \sim P_t$ (annot compute $L_t(i) = \sum_{t=1}^{t} l_t(i)$ Observe $l_t(I_t)$ (polote $P_t \sim P_{t+1}$)

Trick: importance weighted estimates

 $\hat{l}_t(i) = \begin{cases} l_t(i)/P_t(i) & \text{if } I_t = i \\ 0 & \text{otherwise} \end{cases}$
 $E \times p3$ is Heolge run $W_t \hat{l}_t(i)$ instead of $l_t(i)$

Note:
$$P_{F}(i)$$
 are now transfur.

Fix $I_{S,i}$... $I_{T,i}$ and do Hedge analysis using $l_{F} \geq 0$
 $k_{F}^{*} = \underset{i \in S_{i}}{\operatorname{Argmin}} \sum_{l=1}^{N} l_{l}(i)$ $R_{F}^{*} = \underset{l}{Z_{i}} l_{l}(i) P_{l}(i) - \underset{l}{Z_{i}} l_{l}(K_{F}^{*})$
 $\widehat{R}_{T}^{*} \leq \underset{l}{\operatorname{ln}^{k}} + \underset{l}{l} \underset{l}{Z_{i}} \underset{l}{Z_{i}} |\widehat{R}_{l}(i)| P_{l}(i)$
 $\widehat{R}_{T}^{*} \leq \underset{l}{\operatorname{ln}^{k}} + \underset{l}{l} \underset{l}{Z_{i}} \underset{l}{Z_{i}} |P_{l}(i)| P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] = \underset{l}{l_{l}(i)} P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] = \underset{l}{l_{l}(i)} P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i) P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}] P_{l}(i)$
 $I_{F}[\widehat{R}_{l}(i) \mid S_{l-1}]$

Thus: IE[RT] < link + 1/2 | E Z Z - P(1) = Z - Pf(i) < X for any Sp(s), ... Pf(K) i Zip(i) L independence number of G 2 dTlnk ~> VaTPnk $G = chigne (experts) => IE[R_{+}] < VTenk / G = edgeless (bandits) => IE[R_{+}] < VKTenk /$ Exercise: G=(V,F) indirected groph Viel N:= Si3USj: (ij) CE] + Prove it Then Z | Kil & X

Online Govex Optimization
S is a convex subset of a linear space
For t= 4,2,
- Play WEFS - Observe convex loss 1:5'->1R - Pay 4(W) - Update Wy-> Wy+, ES
Regret $R_{T}(u) = \sum_{t=1}^{T} (l_{t}(W_{t}) - l_{t}(u)) \forall u \in S^{T}$
Experts: $W_t = P_t$ $S = Simplex l_t(P) = l_t^T P_t$ linear loss
RT(9) = Zi(Ptl+ - 9Tl+) best 9 always 2 corner of the simple
Follow the leader (FTL)
Follow the leader (FTL) We = argmin \(\frac{t}{s}(w) \) has linear respect in the wordst case!
$S' = [-1,1]$ $l_1(w) = \frac{w}{z}$ $l_1(w) = \frac{-w}{w}$ todd
Then $\sum_{s=1}^{t} l_s(w) = \begin{cases} -w/2 & t \text{ even} \\ w/2 & t \text{ odd} \end{cases}$

5=1

Therefore $W_{t+1} = \begin{cases} 1 & t \text{ even} \\ -1 & t \text{ odd} \end{cases} \Rightarrow \ell_{t+1}(W_{t+1}) = 1$ FTL J
Introduce regularization to add stability
Follow the regularized leader (FTRL) Wt = 27gmin [n Zils(w) + I(w)] West [sex leader (FTRL) L-strongly convex finction
Lestrongly convex finction
$\Phi: \beta \to IR$ is $\beta - s.c.$ with a worm 11.11 if $\forall u, v \in \beta$ $\Phi(v) \ge \Phi(v) + \nabla \Phi(v)^{\dagger} (v - v) + \frac{\beta}{2} v - v ^2$
- Euchidean north is 1-sc with 11:1/2 - Entropy Sipplific is 1-sc with 11:1/2 (p in the simplex)
ZiPilnPi is 1-sc w.T.t. III (Pinthe Simplex)
Likearization trick (using Gnvexity of Boses)
$l_{t}(w_{t}) - l_{t}(u) \leq \nabla l_{t}(w_{t})^{T}(w_{t} - u)$ ∇_{t}
FTRL W/ linearized losses