In this document, \mathbb{N} denotes \mathbb{Z}^+ instead of $\mathbb{Z}^+ \cup \{0\}$.

Theorem 8.7. The class of all cardinal numbers is linearly ordered by \leq . If α and β are cardinal numbers, then exactly one of the following is true: $\alpha < \beta$; $\alpha = \beta$; $\beta < \alpha$ (Trichotomy Law).

Sketch of proof:

- (i) It is easy to verify \leq is a partial order. Let A, B be sets s.t. $|A| = \alpha, |B| = \beta$ and
- $\emptyset \in \mathcal{F} := \{S \subseteq A \mid |S| \leq |B|\} \neq \emptyset$. Obviously, \subseteq is a partial order of \mathcal{F} .
- Suppose $L := \{X_i \mid i \in I\}$ is a chain in $\mathcal{F}, M := \bigcup X_i$.

 $\forall i \in I, \exists injective \ f_i : X_i \longrightarrow B. \ Define \ f : M \xrightarrow{i \in I} B : f(x) = f_i(x) \ for \ x \in X_i \ for \ some \ i \in I.$

- (ii) $X_i's$ are pairwise comparable in $L \wedge f_i's$ are well defined injections,: f is injective,
- $|M| \leq |B|, X_i \subseteq M \in \mathcal{F} \text{ for all } i \in I, M \text{ is an upper bound of } L \text{ in } \mathcal{F}.$

Therefore by Zorn's Lemma there is a maximal element X of \mathcal{F} , $|X| \leq |B|$, \exists injective $g: X \longrightarrow B$.

- (iii) Claim either X = A or Im(g) = B. For if both of these statements were false, we could find $a \in A \setminus X$ and $b \in B \setminus Im(g)$ and define an injective map $h: X \cup \{a\} \longrightarrow B$ by h(x) = g(x) for $x \in X$ and h(a) = b because g is a well defined injective map $\land a \in X^c \land b \in (Im(g))^c, |X \cup \{a\}| \leq |B|, X \cup \{a\} \in \mathcal{F}, X \subseteq X \cup \{a\} \subseteq X, \text{which contradicts the maximality of } X.$
- (iv) Hence either X = A so that $|A| \leq |B|$ or Im(g) = B in which case the injective map $B \xrightarrow{g^{-1}} X \subseteq A$ (the Axiom of Choice is required) shows that $|B| \leq |A|$. Thus, if |A| = |B|, $\alpha = \beta$; if not, \nexists bijection $\theta : A \longrightarrow B$, $\therefore \alpha = |A| \nleq |B| = \beta \lor \beta = |B| <code-block> |A| = \alpha$.</code>

Theorem 8.10. If α and β are cardinal numbers s.t. $\beta \leq \alpha$ and α is infinite, then $\alpha + \beta = \alpha$. Sketch of proof:

- (i) It suffices to prove $\alpha + \alpha = \alpha$ (simply verify $\alpha \le \alpha + \beta \le \alpha + \alpha = \alpha$ and apply the Schroeder Bernstein Theorem to conclude $\alpha + \beta = \alpha$). Let A be a set with $|A| = \alpha$ and $\mathcal{F} := \{S \subseteq A \mid S \text{ is infinite } \land |S \times \{0,1\}| = |S|\}.$
- (ii) A is infinite by hypothesis, $\exists D \subseteq A \text{ s.t. } D \text{ is denumerable by Theorem 8.8,}$ $D \coloneqq \{d_n \mid n \in \mathbb{N} \land d'_i \text{s are all distinct}\}.$

The map $D \times \{0,1\} \longrightarrow D$ given by $(d_n,0) \mapsto 2n$ and $(d_n,1) \mapsto 2n-1$ for all $n \in \mathbb{N}$ is bijective,

 $\therefore D \in \mathcal{F} \neq \emptyset$. Furthermore, obviously, \subseteq is a partial order of \mathcal{F} .

Suppose $L := \{X_i \mid i \in I\}$ is a chain in $\mathcal{F}, M := \bigcup_{i \in I} X_i$. $\forall i \in I, \exists \ bijective \ f_i : X_i \times \{0, 1\} \longrightarrow X_i$. Define $f : M \times \{0, 1\} \longrightarrow M : f(x, y) = f_i(x, y) \ for \ x \in X_i \ for \ some \ i \in I$.

(iii) $X_i's$ are pairwise comparable in $L \wedge f_i's$ are well – defined bijections, f is bijective, $|M \times \{0,1\}| = |M|, X_i \subseteq M \in \mathcal{F}$ for all $i \in I, M$ is an upper bound of L in \mathcal{F} .

Thus by Zorn's Lemma there is a maximal element C of $\mathcal{F}, |C \times \{0,1\}| = |C|, \exists$ bijective $g: C \times \{0,1\} \longrightarrow C$.

(iv) Claim |A| = |C|. If not, note $|A| = |C \cup (A \setminus C)|$, $A \setminus C$ is infinite by Lemma 8.9,

 $\exists B \subseteq (A \setminus C) \text{ s.t. } B \text{ is denumerable by Theorem 8.8, and as above,}$

there would be a bijection $\zeta: B \times \{0,1\} \longrightarrow B$. By combining ζ with g, we could then construct a bijection

$$h: (C \cup B) \times \{0,1\} \longrightarrow (C \cup B): h(x,y) = \begin{cases} g(x,y), if \ x \in C; \\ \zeta(x,y), if \ x \in B; \end{cases} because \ C \cap B = \emptyset$$

 $(C \cup B) \in \mathcal{F}, C \subsetneq (C \cup B) \subseteq C$, which would contradict the maximality of C. Therefore

$$\alpha + \alpha = |A| + |A| = |C| + |C| = |C \times \{0\}| + |C \times \{1\}| = |(C \times \{0\}) \cup (C \times \{1\})| = |C \times \{0,1\}| = |C| = |A| = \alpha.$$

Theorem 8.11. If α and β are cardinal numbers s.t. $0 \neq \beta \leq \alpha$ and α is infinite, then $\alpha\beta = \alpha$; in particular, $\alpha \aleph_0 = \alpha$ and if β is finite $\aleph_0 \beta = \aleph_0$.

Sketch of proof:

(i) Since $\alpha \leq \alpha\beta \leq \alpha\alpha$ it suffices (as in the proof of Theorem 8.10) to prove $\alpha\alpha = \alpha$.

Let A be an infinite set with $|A| = \alpha$ and $\mathcal{F} := \{X \subseteq A \mid X \text{ is infinite } \land |X \times X| = |X|\}.$

(ii) A is infinite by hypothesis, $\exists D \subseteq A \text{ s.t. } D \text{ is denumerable by Theorem 8.8}$,

 $D := \{d_n \mid n \in \mathbb{N} \land d_i's \text{ are all distinct}\}.$

The map $D \times D \longrightarrow D$ given by $(d_m, d_n) \mapsto 2^{m-1}(2n-1)$ for all d_i 's in D is bijective,

 $\therefore D \in \mathcal{F} \neq \emptyset. \ Furthermore, obviously, \subseteq is \ a \ partial \ order \ of \ \mathcal{F}.$

Suppose
$$L := \{X_i \mid i \in I\}$$
 is a chain in $\mathcal{F}, M := \bigcup_{i \in I} X_i$. $\forall i \in I, \exists$ bijective $f_i : X_i \times X_i \longrightarrow X_i$.

Define $f : M \times M \longrightarrow M : f(x,y) = \begin{cases} f_i(x,y), if \ X_i \supseteq X_j; \\ f_j(x,y), if \ X_i \subseteq X_j; \end{cases}$ where $x \in X_i, y \in X_j$ for some $i, j \in I$.

(iii) $X_i's$ are pairwise comparable in $L \wedge f_i's$ are well – defined bijections, f is bijective, $|M \times M| = |M|$,

 $X_i \subseteq M \in \mathcal{F}$ for all $i \in I, M$ is an upper bound of L in \mathcal{F} .

Thus by Zorn's Lemma there is a maximal element B of \mathcal{F} , and recall Definition 8.3, $|B||B| = |B \times B| = |B|$.

(iv) Claim |A| = |B|. If not, note $|A| = |B| \cup (A \setminus B)| = |B| + |A \setminus B|$, $\therefore |A \setminus B| > |B|$ by Theorem 8.10 and 8.7.

Then by Definition 8.4 there is a subset C of $A \setminus B$ s.t. |C| = |B|. Accordingly

 $|C| = |B| = |B \times B| = |B \times C| = |C \times B| = |C \times C|$ and these sets are mutually disjoint because $C \cap B = \emptyset$.

Consequently by Definition 8.3 and Theorem 8.10 $|(B \cup C) \times (B \cup C)| = |(B \times B) \cup (B \times C) \cup (C \times B) \cup (C \times C)|$

 $= |B \times B| + |B \times C| + |C \times B| + |C \times C| = (|B| + |B|) + (|C| + |C|) = |B| + |C| = |B \cup C|, (B \cup C) \in \mathcal{F},$

 $B \subsetneq (B \cup C) \subseteq B$, which contradicts the maximality of B.

Hence also by Definition 8.3, $\alpha \alpha = |A||A| = |B||B| = |B \times B| = |B| = |A| = \alpha$.