

100 —

	Map name	Sampling Requirement	Minimum Isotropy	Map Components
102 —	OpenGL	8	0	1
	Cube	24	0.58	6
	Dual Stereographic	32	1	2
	Lat/Long	19.7	0	1
	Dual Equidistant*	19.7	0.64	2
104	Low Distortion Area Preserving*	19.7	0.29	1
	Polar-Capped* (stretch invariant)	14.8	0.71	3
	Polar-Capped* (conformal)	16.5	1	3
	Polar-Capped* (hexagonally reparameterized)	13.5	0.58	3
106 —	Optimal Isometric**	12.57	1	∞
	Optimal**	10.9	0.58	∞

Fig. 2

(a) rectangular

(b) hexagonal

Fig. 4

Fig. 6

200 —

	Equidistant	Gnomonic	Stereographic	Lambert Equal Area
$\theta(r)$	$(\pi/2)r$	$\cos^{-1}\left(\sqrt{1/(r^2+1)}\right)$	$\cos^{-1}((1-r^2)/(1+r^2))$	$\cos^{-1}(1-r^2)$
properties	stretch-preserving	projects great cir- cles to lines	conformal, projects circles to circles	area- preserving
r* covering hemisphere	[0, 1]	[0,∞]	[0, 1]	[0, 1]
r* covering sphere	[0, 2]	_	[0,∞]	$[0,\sqrt{2}]$
$r(\theta)$	$2 heta/\pi$	an heta	$\tan(\theta/2)$	$\sqrt{1-\cos\theta}$
$\sin heta$	$\sin((\pi/2)r)$	$r/\sqrt{r^2+1}$	$2r/(1+r^2)$	$r\sqrt{2-r^2}$
$\cos \theta$	$\cos((\pi/2)r)$	$\sqrt{1/(r^2+1)}$	$(1-r^2)/(1+r^2)$	$1-r^2$
$\lambda_1(\theta)$	$\pi/2$	$\cos heta$	$1+\cos\theta$	$2/\sqrt{1+\cos\theta}$
$\lambda_2(heta)$	$(\pi/2)\operatorname{sinc}\theta$	$\cos^2 \theta$	$1+\cos\theta$	$\sqrt{1+\cos\theta}$
$\alpha(\theta)$	$\operatorname{sinc} heta$	$\cos heta$	1	$(1+\cos\theta)/2$
$\tau(\theta)$	$(\pi/2)^2 \operatorname{sinc} \theta$	$\cos^3 \theta$	$(1+\cos\theta)^2$	2
$\lambda_1^*(heta)$	$\pi/2$	1	2	$2/\sqrt{1+\cos\theta}$
$M_s(\theta)$	$4\theta^2$	$4 \tan^2 \theta$	$16 \tan^2(\theta/2)$	$16\tan^2(\theta/2)$
inverse map	$f = (\pi/2)\operatorname{sinc}(\cos^{-1} z)$ $u = x/f$ $v = y/f$	u = x/z $v = y/z$	u = x/(1+z) $v = y/(1+z)$	$u = x / \sqrt{1+z}$ $v = y / \sqrt{1+z}$

Solid	Ms	α^*	Components
tetrahedron	41.57	0.33	4
cube	24	0.58	6
octahedron	20.78	0.58	8
dodecahedron	16.65	0.79	12
icosahedron	15.16	0.79	20

500 —

	Plane Chart	Equal Area	Mercator
$\theta(V)$	2πν	sin⁻¹ <i>v</i>	$\sin^{-1}(\tanh(2\pi v))$
properties	stretch-preserving	area-preserving	conformal
v covering sphere	[-1/4,1/4]	[-1, 1]	$[-\infty,\infty]$
V(heta)	$\theta/(2\pi)$	$\sin heta$	$\tanh^{-1}(\sin\theta)/(2\pi)$ $= \ln((1+\sin\theta)/(1-\sin\theta))/(2\pi)$
$\cos \theta$	$\cos(2\pi v)$	$\sqrt{1-v^2}$	$\operatorname{sech}(2\pi v) = 2/(e^{-2\pi v} + e^{2\pi v})$
$\sin heta$	$\sin(2\pi v)$	V	$\tanh(2\pi v)$ $= \left(e^{2\pi v} - e^{-2\pi v}\right) / \left(e^{2\pi v} + e^{-2\pi v}\right)$
$\lambda_1(\theta)$	2π	$\max(1/\cos\theta, 2\pi\cos\theta)$	$2\pi\cos\theta$
$\lambda_2(\theta)$	$2\pi\cos\theta$	$\min(1/\cos\theta, 2\pi\cos\theta)$	$2\pi\cos\theta$
$\alpha(\theta)$	$\cos heta$	$\min(1/(2\pi\cos^2\theta), 2\pi\cos^2\theta)$	1
au(heta)	$4\pi^2\cos\theta$	2π	$4\pi^2\cos^2\theta$
$\lambda_1^*(heta)$	2π	$\max(1/\cos\theta, 2\pi)$	2π
$M_{s}(\theta)$	$2\pi\theta$	$\max(1/\cos^2\theta, 4\pi^2)\sin\theta$	$2\pi \tanh^{-1}(\sin \theta)$ $= \pi \ln((1+\sin \theta)/(1-\sin \theta))$
inverse map	$u = (\tan 2(y, x))/(2\pi)$ $v = (\sin^{-1} z)/(2\pi)$	$u = (\tan 2(y, x))/(2\pi)$ $v = z$	$u = (\tan 2(y, x))/(2\pi)$ $v = \tanh^{-1} z/(2\pi)$ $= \ln((1+z)/(1-z))/(4\pi)$

7ig. 12

520

Fig. 13

Fig. 17

Fig. 21

Fig. 23