Théorie des langages formels : Les langages algébriques.

Wadoud Bousdira¹

¹LIFO, University of Orléans **Orléans, France**

Analyse syntaxique LL(k).

- Définition
- 2 Ensembles Premier et Suivant
- Récursivité gauche
- Factorisation
- Grammaire LL(1)
- Table d'analyse LL(1)

Analyse syntaxique LL(k).

Dérivation gauche :

$$S \stackrel{*}{\Rightarrow} \underbrace{a_1 \dots a_j}_{\in \Sigma} \underbrace{A}_{\in N} \alpha$$

le mot à reconnaître est m,

- il faut que m commence par $a_1 \dots a_j$
- on doit dériver A et la grammaire comporte les règles $A \to \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_n$

Problème: rendre déterministe le choix entre $\gamma_1, \gamma_2, \ldots$ et γ_n .

Grammaire LL(k)

où k est un entier fixé. Si on sait quelle règle choisir à condition de regarder les k caractères qui suivent (k caractères de prévision).

- On étudiera les grammaires LL(1) : 1 caractère de prévision permet de choisir quelle règle appliquer entre toutes les règles possibles.
- On tente de construire l'arbre de dérivation de façon descendante en ayant un parcours déterministe du mot de gauche à droite à condition de pouvoir regarder 1 caractère à l'avance.

Exemple 1:

$$\left\{ \begin{array}{ll} S & \rightarrow & aAS \mid b \\ A & \rightarrow & a \mid bSA \end{array} \right.$$

mot : a^3b^2ab $S \Rightarrow_g aAS \Rightarrow_g aaS \Rightarrow_g aaaAS \Rightarrow_g a^3bSAS \Rightarrow_g a^3bbAS \Rightarrow_g a^3b^2aS \Rightarrow_g a^3b^2ab$

Dans l'exemple de dérivation, on a besoin de connaître le prochain caractère et seulement celui-ci \Rightarrow la grammaire est LL(1).

Exemple 2:

$$\mathcal{L} = \{a^n 1 b^n, \ n \ge 0\} \cup \{a^n 2 b^{2n}, \ n \ge 0\}, \ P(\mathcal{L}) = \left\{ \begin{array}{ccc} \mathcal{S} & \rightarrow & \mathcal{A} \mid \mathcal{B} \\ \mathcal{A} & \rightarrow & a \mathcal{A} b \mid 1 \\ \mathcal{B} & \rightarrow & a \mathcal{B} b b \mid 2 \end{array} \right.$$

 \mathcal{L} n'est pas LL(k), $\forall k$. Il suffit d'avoir n > k de a pour ne pas pouvoir choisir entre $S \to A$ et $S \to B$.

Premier et Suivant pour une grammaire LL(1)

soit un mot $\alpha \in (\Sigma \cup N)^*$

 $\bullet \ \mathtt{Premier}(\alpha) = \{x \in \Sigma \ / \ \alpha \overset{*}{\Rightarrow} x\beta\} \cup \{\epsilon, \ \mathsf{si} \ \alpha \overset{*}{\Rightarrow} \epsilon\}$

soit $A \in N$,

• Suivant(A) = $\{x \in \Sigma / S \stackrel{*}{\Rightarrow} \alpha A x \beta, \ \alpha \in \Sigma^*\} \cup \{\$, \text{ si } S \stackrel{*}{\Rightarrow} \alpha A, \ \alpha \in \Sigma^*\}$ ou encore

 $\mathtt{Suivant}(A) = \bigcup_{\gamma \neq \epsilon} \mathtt{Premier}(\gamma) \: / \: S \overset{*}{\Rightarrow} \: \alpha A \gamma \cup \{\$, \: \mathsf{si} \: S \overset{*}{\Rightarrow} \: \alpha A, \: \alpha \in \Sigma^* \}$

Quel rôle?

pour étudier les productions possibles à partir du non-terminal A:

$$A \rightarrow \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_n$$

Ça marchera si on sait distinguer les γ_i en fonction des 1^{ers} symboles qu'ils produisent ... Premier (γ_i) d'où la notion de Premier.

Exemple 1 : $S \rightarrow aAS \mid b, A \rightarrow a \mid bSA$

• Premier(aAS) = {a}, Premier(b) = {b} et {a} \cap {b} = \emptyset Premier(a) = {a}, Premier(bSA) = {b} et {a} \cap {b} = \emptyset .

```
Exemple 2 : S \to A \mid B, A \to aAb \mid 1, B \to aBbb \mid 2

Premier(A) = {a, 1}, Premier(B) = {a, 2} et {a, 1} \cap {a, 2} \neq \empty !

Exemple 3 : E \to E + T \mid T, T \to T * F \mid F, F \to 0 \mid 1 \mid x \mid (E)

Premier(F) = {0, 1, x, (}

Premier(F) = Premier(T) = Premier(E) = {0, 1, x, (}.
```

Mais la notion de Premier ne suffit pas!

Exemple : $S \rightarrow aSa \mid \epsilon$

 $Premier(aSa) = \{a\}, Premier(\epsilon) = \{\epsilon\}$

Les ensembles sont disjoints et pourtant on ne sait pas choisir lors de la reconnaissance de *aaaa* par ex :

$$S \Rightarrow aSa \Rightarrow aaSaa$$

- ullet Si on choisit S o aSa, on produit des 'a' de trop !
- si on choisit $S \to \epsilon$, on fait aussi apparaître un a qui était derrière S d'où la notion de Suivant.

Quel est le problème ? a commence l'alternative aSa de S et $a \in Suivant(S)$!

Si
$$S \rightarrow aSb \mid \epsilon$$
, et $m = aabb$,

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$: dérivation déterministe.

Ensembles Premier et Suivant

Algorithmes de calcul

Pour calculer Premier :

 \forall $X \in (\Sigma \cup N)$, appliquer les règles suivantes jusqu'à ce qu'aucun terminal ni ϵ ne puisse être ajouté aux ensembles Premier

- **1** si $X \in \Sigma$, Premier $(X) = \{X\}$
- ② si $X \to \epsilon \in \mathcal{P}$, ajouter ϵ à Premier(X)
- 3 si $X \in \mathbb{N}$, et $X \to Y_1 Y_2 \dots Y_k \in \mathcal{P}$,
 - ajouter Premier (Y_1) à Premier(X),
 - si $\epsilon \in \text{Premier}(Y_1)$, ajouter $\text{Premier}(Y_2)$ à Premier(X),
 - ...
 - si $\epsilon \in \text{Premier}(Y_j), \ \forall j = 1, \ldots, \ k \ (\text{i.e.} \ Y_1 \ldots Y_k \stackrel{*}{\Rightarrow} \epsilon)$ alors ajouter ϵ à Premier(X).

Ensembles Premier et Suivant

Conséquence :

On étend la notion de Premier(X), $X \in (\Sigma \cup N)$ à celle de Premier (α) , $\alpha \in (\Sigma \cup N)^*$ \forall la chaîne $X_1 X_2 ... X_n \in (\Sigma \cup N)^*$, Premier $(X_1 X_2 ... X_n)$ se calcule

- en ajoutant tous les symboles de Premier $(X_1) \neq \epsilon$.
- Si $\epsilon \in \texttt{Premier}(X_1)$, ajouter aussi les symboles de $\texttt{Premier}(X_2) \neq \epsilon$.
- Si $\epsilon \in \text{Premier}(X_1)$ et à Premier (X_2) , ajouter aussi les symboles de Premier $(X_3) \neq \epsilon$.
- etc ...
- Finalement, si $\forall i, \epsilon \in \texttt{Premier}(X_i)$, ajouter ϵ à $\texttt{Premier}(X_1X_2...X_n)$.

Ensembles Premier et Suivant

Pour calculer Suivant(A), $\forall A \in N$:

Appliquer les règles suivantes jusqu'à ce qu'aucun terminal ne puisse être ajouté aux ensembles Suivant :

- mettre \$ dans Suivant(S), où S est l'axiome et \$ est un marqueur droit indiquant la fin du texte en entrée.
 \$ ∉ ∑ (par hypothèse),
- ② si $A \to \alpha B \beta \in \mathcal{P}$, ajouter Premier $(\beta) \setminus \{\epsilon\}$ à Suivant(B).
- ③ si $A \to \alpha B \in \mathcal{P}$ ou $A \to \alpha B \beta \in \mathcal{P}$ tq Premier(β) contient ϵ (i.e. $\beta \stackrel{*}{\Rightarrow} \epsilon$), ajouter Suivant(A) à Suivant(B).

Ensembles Premier et Suivant.

```
Exemple 1 : E \rightarrow E + T \mid T, T \rightarrow T * F \mid F, F \rightarrow x \mid 0 \mid 1 \mid (E)

Premier(x) = {x}, Premier(0) = {0} Premier(1) = {1}

Premier(E) = {(}

Premier(E) = {x, 0, 1, (}

Premier(E) \subseteq Premier(E) \Rightarrow {x, 0, 1, (} \subseteq Premier(E)

Premier(E) \subseteq Premier(E) \Rightarrow {x, 0, 1, (} \subseteq Premier(E)

Suivant(E) = {$x, +, }

Suivant(E) \subseteq Suivant(E) \Rightarrow {$x, +, } x \Rightarrow Suivant(x) \Rightarrow Suivant(x) \Rightarrow Suivant(x) \Rightarrow Suivant(x) \Rightarrow Suivant(x) \Rightarrow Suivant(x) \Rightarrow Suivant(x)
```

Ensembles Premier et Suivant.

```
Exemple 2: S \rightarrow AaAb \mid BbBa, A \rightarrow \epsilon, B \rightarrow \epsilon
Premier(AaAb) = \{a\}, Premier(BbBa) = \{b\},\
Premier(S) = Premier(AaAb) \cup Premier(BbBa) = \{a, b\}
Suivant(S) = \{\$\}
Suivant(A) = \{a, b\} Suivant(B) = \{b, a\}
Exemple 3: S \rightarrow aSbS \mid bSaS \mid \epsilon
Premier(S) = Premier(aSbS) \cup Premier(bSaS) \cup
Premier(\epsilon) = \{a, b, \epsilon\}
Suivant(S) = \{\$, a, b\}.
```

Remarque

 ϵ n'est jamais dans un ensemble Suivant.

Récursivité gauche.

Grammaire récursive à gauche

 \mathcal{G} est récursive à gauche si $\exists A \in N$ tq on peut construire une dérivation de la forme $A \stackrel{+}{\Rightarrow} A\alpha$.

La récursivité gauche simple se caractérise par :

$$\exists A \rightarrow A \alpha \in \mathcal{P}$$

Récursivité gauche.

Pb de la récursivité gauche :

les méthodes d'analyse descendante ne peuvent pas fonctionner.

- Si ∃A → Aα | β ∈ P et si on doit dériver A en une de ses alternatives, Aα peut être choisie de façon répétitive sans aucun moyen d'arrêt.
- De +, dans ce cas, 1 caractère de prévision ne suffit pas à choisir l'alternative à appliquer.

On prouvera + tard qu'une grammaire récursive à gauche ne peut pas être LL(1).

Supprimer la récursivité gauche.

Comment supprimer la récursivité gauche ?

• simple :

$$A \to A\alpha \mid \beta$$
 où $\alpha, \beta \in (\Sigma \cup N)^*$ ne commencent pas par A .
On remplace $A \to A\alpha \mid \beta$ par :

$$\left\{ \begin{array}{ccc} A & \to & \beta A' \\ A' & \to & \alpha A' \mid \epsilon \end{array} \right.$$

• générale : se ramener à une récursivité simple (par expansion de non-terminaux) puis la supprimer.

Supprimer la récursivité gauche.

Supprimer la récursivité gauche.

Exemple 1:

$$E \rightarrow E + T \mid T \Longleftrightarrow \left\{ \begin{array}{ccc} E & \rightarrow & T \; E' \\ E' & \rightarrow & + T \; E' \mid \epsilon \end{array} \right.$$

Exemple 2:

$$E \rightarrow id \mid id(E) \mid E + id \iff \begin{cases} E \rightarrow id E' \mid id(E) E' \\ E' \rightarrow +id E' \mid \epsilon \end{cases}$$

Factorisation.

Grammaire non factorisée

Elle contient au moins 2 productions de la forme

$$A \to \alpha \beta_1 \mid \alpha \beta_2 \text{ tq } \alpha \in (\Sigma \cup N)^+.$$

Problème : le choix de l'alternative à appliquer devient impossible avec 1 caractère de prévision.

Factorisation.

On obtient une grammaire équivalente factorisée avec la méthode suivante :

• pour chaque $A \in N$, trouver le + long préfixe α commun à 2 alternatives ou +. Si $\alpha \neq \epsilon$:

$$A \to \alpha \beta_1 \mid \alpha \beta_2 \mid \ldots \mid \alpha \beta_n \mid \gamma \Leftrightarrow \left\{ \begin{array}{c} A \to \alpha A' \mid \gamma \\ A' \to \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n \end{array} \right.$$

où γ représente toutes les alternatives qui ne commencent pas par $\alpha.$

 Appliquer cette transformation de façon répétitive jusqu'à plus de préfixe commun pour des alternatives.

Factorisation.

Exemple

$$E \rightarrow id E | (E, E) | (E) | id$$

équivalente à

$$\begin{cases}
E & \to & id \, A \mid (E \, B) \\
A & \to & E \mid \epsilon \\
B & \to & E \mid E
\end{cases}$$

Proposition:

- une grammaire ambiguë n'est pas LL(1).
- une grammaire récursive à gauche n'est pas LL(1).
- une grammaire non factorisée n'est pas LL(1).

Proposition:

une grammaire est LL(1) ssi $\forall A \rightarrow \alpha \mid \beta \in \mathcal{P}$ tq $\alpha \neq \beta$,

- \bullet si $\beta \stackrel{*}{\Rightarrow} \epsilon$, Premier $(\alpha) \cap \text{Suivant}(A) = \emptyset$

Conséquence : si $\beta \stackrel{*}{\Rightarrow} \epsilon$, alors $\alpha \not\stackrel{*}{\Rightarrow} \epsilon$.

(1) et (2) permettent de tester si une grammaire est LL(1).

Exemple 1:

$$E \rightarrow E + T \mid T, T \rightarrow T * F \mid F, F \rightarrow X \mid 0 \mid 1 \mid (E)$$

Récursive à gauche. On dérécursive :

$$\begin{cases} (1) & E \to T \ E' \\ (2) & E' \to +T \ E' \mid \epsilon \\ (3) & T \to F \ T' \\ (4) & T' \to *F \ T' \mid \epsilon \\ (5) & F \to x \mid 0 \mid 1 \mid (E) \end{cases}$$

- (2) : $Premier(+T E') \cap Premier(\epsilon) = \{+\} \cap \{\epsilon\} = \emptyset$ $Premier(+T E') \cap Suivant(E') = \{+\} \cap \{\$, \} = \emptyset$
- (4) : $Premier(*F \ T') \cap Premier(\epsilon) = \{*\} \cap \{\epsilon\} = \emptyset$ $Premier(*F \ T') \cap Suivant(T') = \{*\} \cap \{\$, \), \ +\} = \emptyset$
- (5): $\operatorname{Premier}(x) \cap \operatorname{Premier}(0) = \emptyset$ $\operatorname{Premier}(x) \cap \operatorname{Premier}(1) = \emptyset$ $\operatorname{Premier}(x) \cap \operatorname{Premier}((E)) = \emptyset$ $\operatorname{Premier}(0) \cap \operatorname{Premier}(1) = \emptyset$ $\operatorname{Premier}(0) \cap \operatorname{Premier}((E)) = \emptyset$ $\operatorname{Premier}(1) \cap \operatorname{Premier}((E)) = \emptyset$

Donc grammaire LL(1).

Exemple 2: $S \to AaAb \mid BbBa$, $A \to \epsilon$, $B \to \epsilon$ Premier $(AaAb) \cap Premier(BbBa) = \{a\} \cap \{b\} = \emptyset$ Donc grammaire LL(1).

Exemple 3 : $S \rightarrow aSbS \mid bSaS \mid \epsilon$

- Premier(aSbS) \cap Premier(bSaS) = $\{a\} \cap \{b\} = \emptyset$
- ② Premier $(aSbS) \cap Premier(\epsilon) = \{a\} \cap \{\epsilon\} = \emptyset$
- ullet Premier $(bSaS) \cap ext{Premier}(\epsilon) = \{b\} \cap \{\epsilon\} = \emptyset$
- Suivant(S) \cap Premier(aSbS) = {\$, b, a} $\cap \{a\} \neq \emptyset$!

Donc grammaire non LL(1).

Que faire si la grammaire n'est pas LL(1)?

- dérécursiver les productions récursives à gauche ;
- expanser: remplacer une occurrence d'un non-terminal par ses productions;
- factoriser :
- itérer si nécessaire.

Remarque : Transformer la grammaire le - possible : les transformations incorrectes modifient la sémantique d'une grammaire.

Exemple 4:

$$I \rightarrow LA \mid LB, A \rightarrow \epsilon, B \rightarrow \epsilon \mid BL \mid BC$$

 $L \rightarrow a \mid b \mid \dots \mid z, C \rightarrow 0 \mid 1 \mid \dots \mid 9$

- on expanse A dans les productions de $I:I \to L \mid LB$
- on factorise $L: I \to L I', I' \to \epsilon \mid B$
- on dérécursive les productions de B: $B \to B', \ B' \to LB' \ | \ CB' \ | \ \epsilon \Rightarrow B \to LB \ | \ CB \ | \ \epsilon$

On arrive à :

$$\begin{cases}
I \to L I' \\
I' \to \epsilon \mid B \\
B \to LB \mid CB \mid \epsilon \\
L \to a \mid b \mid \dots \mid z \\
C \to 0 \mid 1 \mid \dots \mid 9
\end{cases}$$

On vérifie LL(1)

• Premier(B) \cap Premier(ϵ) = (Premier(L) \cup Premier(C) \cup { ϵ }) \cap { ϵ } \neq \emptyset !

On expanse B dans les productions de I', i.e.

$$I \to \epsilon \mid B \iff I' \to \epsilon \mid LB \mid CB$$

On arrive à :

$$\begin{cases} I \rightarrow L \ I' \\ I' \rightarrow \epsilon \mid LB \mid CB \\ L \rightarrow a \mid b \mid \dots \mid z \\ C \rightarrow 0 \mid 1 \mid \dots \mid 9 \\ B \rightarrow LB \mid CB \mid \epsilon \end{cases}$$

I' et B peuvent être confondus.

$$\begin{cases}
I \to L I' \\
I' \to \epsilon \mid LB \mid CB \\
L \to a \mid b \mid \dots \mid z \\
C \to 0 \mid 1 \mid \dots \mid 9 \\
B \to LB \mid CB \mid \epsilon
\end{cases}
\iff
\begin{cases}
I \to L B \\
B \to \epsilon \mid LB \mid CB \\
L \to a \mid b \mid \dots \mid z \\
C \to 0 \mid 1 \mid \dots \mid 9
\end{cases}$$

On vérifie LL(1)

- Premier (ϵ) \cap Premier $(LB) = \{\epsilon\}$ \cap Premier $(L) = \emptyset$
- ② $Premier(\epsilon) \cap Premier(CB) = \{\epsilon\} \cap Premier(C) = \emptyset$
- **③** Premier(LB) ∩ Premier(CB) = \emptyset
- Suivant(B) \cap Premier(LB) = {\$} $\cap \{a, \dots, z\} = \emptyset$
- **5** Suivant(B) \cap Premier(CB) = {\$} \cap {0,...,9} = \emptyset
- ⑤ Premier(a) \cap Premier(b) = \emptyset , Premier(a) \cap Premier(c) = \emptyset ... Premier(y) \cap Premier(z) = \emptyset
- ② Premier(0) \cap Premier(1) = \emptyset , Premier(0) \cap Premier(2) = \emptyset ... Premier(8) \cap Premier(9) = \emptyset

Donc grammaire LL(1).

Table d'analyse LL(1).

- L'analyseur est un automate à pile déterministe sans état. L'arrêt est sur pile vide.
- Configuration initiale : (pile = S\$, mot à analyser) où S est le sommet de pile et \$ un symbole spécial.
- On construit une table $\mathcal M$ qui indique ce qu'il faut faire en fonction du sommet de pile et du caractère de prévision dans le mot à analyser. $\mathcal M$ est de la forme

	$Symbole \in \Sigma \cup \{\$\}$
$\begin{array}{c} Symbole \\ \in \mathit{N} \end{array}$	

Table d'analyse LL(1).

4 actions possibles:

- remplacer le sommet de pile par autre chose sans consommer de symbole dans le mot (correspond à une action de dérivation gauche).
- ② dépiler et avancer dans le mot d'un caractère si le sommet de pile et le caractère de prévision sont identiques.
- \odot échec : entrée de $\mathcal M$ vide.
- succès : fin de l'analyse.

Table d'analyse LL(1).

Algorithme de construction de la table

Donnée : une grammaire \mathcal{G} LL(1)

Résultat : une table d'analyse \mathcal{M} de \mathcal{G} .

- **1** pour chaque production $A \to \alpha$ de \mathcal{G} , procéder aux étapes suivantes
 - $\forall a \in \text{Premier}(\alpha)$, ajouter $\alpha \land \mathcal{M}[A, a]$
 - si $\epsilon \in \text{Premier}(\alpha)$, ajouter α à $\mathcal{M}[A, b]$, $\forall b \in \text{Suivant}(A)$.
- $oldsymbol{2}$ Faire de chaque entrée non définie de ${\mathcal M}$ une erreur.

Table d'analyse LL(1).

Exemple 1:

$$E \rightarrow TE', \ E' \rightarrow +TE' \mid \epsilon, \ T \rightarrow FT', \ T' \rightarrow *FT' \mid \epsilon, \ F \rightarrow x \mid 0 \mid 1 \mid (E)$$

	X	0	1	+	*	()	\$
Ε	TE'	TE'	TE'			TE'		
E'				+TE'			ϵ	ϵ
T	FT'	FT'	FT'			FT'		
T'				ϵ	*FT'		ϵ	ϵ
F	X	0	1			(<i>E</i>)		

Exemple 1 (suite):

Pile	chaîne d'entrée	Action
<i>E</i> \$	x * (x + 1)\$	E o TE'
<i>TE</i> ′\$	x * (x + 1)\$	T o FT'
FT'E'\$	x * (x + 1)\$	$F \rightarrow x$
xT'E'\$	x * (x + 1)\$	dépiler et avancer
T'E'\$	*(x+1)\$	T' o *FT'
* <i>FT'E'</i> \$	*(x+1)\$	dépiler et avancer
FT'E'\$	(x+1)\$	$F \rightarrow (E)$
(E)T'E'\$	(x+1)\$	dépiler et avancer

Exemple 1 (suite):

Pile	chaîne d'entrée	Action
E) T'E'\$	x + 1)\$	E o TE'
<i>TE'</i>) <i>T'E'</i> \$	(x + 1)\$	T o FT'
FT'E')T'E'\$	(x+1)\$	$F \rightarrow x$
$\times T'E')T'E'$ \$	(x + 1)\$	dépiler et avancer
T'E')T'E'\$	+1)\$	${\cal T}' o \epsilon$
E')T'E'\$	+1)\$	$E' \rightarrow +TE'$
+TE')T'E'\$	+1)\$	dépiler et avancer
<i>TE'</i>) <i>T'E'</i> \$	1)\$	T o FT'

Exemple 1 (suite):

Pile	chaîne d'entrée	Action
FT'E')T'E'\$	1)\$	F o 1
1T'E')T'E'\$	1)\$	dépiler et avancer
T'E')T'E'\$)\$	$T' o \epsilon$
E')T'E'\$)\$	${\sf E}' o \epsilon$
) T'E'\$)\$	dépiler et avancer
T'E'\$	\$	$T' o \epsilon$
E'\$	\$	$E' o \epsilon$
\$	\$	succès
E')T'E'\$)T'E'\$ T'E'\$)\$)\$ \$	$E' ightarrow \epsilon$ dépiler et avancer $T' ightarrow \epsilon$ $E' ightarrow \epsilon$

Exemple 2:

$$S \rightarrow aaSbb \mid a \mid \epsilon$$
 LL(1) ?

- Premier(aaSbb) \cap Premier(a) = $\{a\} \neq \emptyset$
- On factorise : $S \rightarrow aA \mid \epsilon, A \rightarrow aSbb \mid \epsilon$
 - Premier(aA) \cap Premier(ϵ) = \emptyset
 - Suivant(S) \cap Premier(aA) = {\$, b} \cap {a} = \emptyset
 - Premier(aSbb) \cap Premier(ϵ) = \emptyset
 - Suivant(A) \cap Premier(aSbb) = $\{\$, b\} \cap \{a\} = \emptyset$
- $\Longrightarrow LL(1)$.

Exemple 2 (suite):

$$S
ightarrow aA \mid \epsilon, \ A
ightarrow aSbb \mid \epsilon$$

	a	b	\$
S	aA	ϵ	ϵ
Α	aSbb	ϵ	ϵ
		-	

Exemple 2 (suite):

$$S
ightarrow aA \mid \epsilon, \ A
ightarrow aSbb \mid \epsilon$$

Pile	chaîne d'entrée	Action
<i>S</i> \$	aab\$	S o aA
aA\$	aab\$	dépiler et avancer
<i>A</i> \$	ab\$	A o aSbb
aSbb\$	ab\$	dépiler et avancer
Sbb\$	<i>b</i> \$	$S o \epsilon$
<i>bb</i> \$	<i>b</i> \$	dépiler et avancer
<i>b</i> \$	\$	échec!

Analyse LL

Un exemple d'application

On considère la grammaire ${\cal G}$ suivante :

$$G = (\{a, b, c, d\}, \{S, E, F, G, H, C, D\}, S, P)$$

où ${\mathcal P}$ est l'ensemble des règles suivantes :

$$\left\{ \begin{array}{ll} S & \rightarrow & aE \mid bF \\ F & \rightarrow & aF \mid aG \mid aHD \\ G & \rightarrow & Gc \mid d \\ H & \rightarrow & Ca \\ C & \rightarrow & Hb \\ D & \rightarrow & ab \end{array} \right.$$

 \mathcal{G} est-elle réduite ?

$$\mathcal{P}rod = \{D, G, F, S\}$$

$$\left\{ \begin{array}{ll} S & \rightarrow & bF \\ F & \rightarrow & aF \mid aG \\ G & \rightarrow & Gc \mid d \\ D & \rightarrow & ab \end{array} \right.$$

$$Acc = \{S, F, G\}$$

$$\begin{cases}
S \rightarrow bF \\
F \rightarrow aF \mid aG \\
G \rightarrow Gc \mid d
\end{cases}$$

 \mathcal{G}' est-elle LL(1) ?

G' :

$$\left\{ egin{array}{ll} S &
ightarrow bF \ F &
ightarrow aF' \ F' &
ightarrow F \mid G \ G &
ightarrow dG' \ G' &
ightarrow cG' \mid \epsilon \ \end{array}
ight.$$

Construire la table d'analyse LL(1) de \mathcal{G}' .

	a	Ь	c	d	\$
S		bF			
F	aF′				
F'	F			G	
G				dG'	
G'			cG′		ϵ

Le mot baadc appartient-il à $\mathcal{L}(\mathcal{G}')$?

Si oui, déduire de l'analyse du mot une dérivation gauche.

<i>S</i> \$	baadc\$	$S \rightarrow bF$
bF\$	baadc\$	dépiler et avancer
F\$	aadc\$	F ightarrow aF'
aF'\$	aadc\$	dépiler et avancer
F'\$	adc\$	$F' \rightarrow F$
F\$	adc\$	F ightarrow aF'
aF'\$	adc\$	dépiler et avancer
F′\$	dc\$	F' o G
G\$	dc\$	G o dG'
dG'\$	dc\$	dépiler et avancer
G'\$	c\$	G' o cG'
cG'\$	c\$	dépiler et avancer
G'\$	\$	$G' o \epsilon$
\$	\$	succès

dérivation gauche : 3ème colonne avec \Rightarrow au lieu de \rightarrow .