Time Series to observe DAILY temperature variations

Daily temperature prediction using Decision Tree

Following ARIMA, we use in the notebook below our first classifier:

Decision Tree (DT): Similarly to ARIMA, We begin by loading all necessary libraries and paths to read the "pickles" as well as store image for the graph towards the end of our code. The pickles are read and the data is fed into an DT model.

Finally, we have two graphs showing the DT results vs. the fitted model as well as predicted results vs. actuals and test data

```
In [430]: import warnings
warnings.filterwarnings('ignore')

%run helper_functions.py
%matplotlib inline
```

Create a folder for every run of the Decision tree to store our experiments

Here we are importing the train and test Data from pickle files created through the EDA file

```
In [433]: X_train = pd.read_pickle(f'{PICKLE_PATH}/X_train_{city}_{analysis_type}.pkl')
Y_train = pd.read_pickle(f'{PICKLE_PATH}/Y_train_{city}_{analysis_type}.pkl')

X_test = pd.read_pickle(f'{PICKLE_PATH}/X_test_{city}_{analysis_type}.pkl')
Y_test = pd.read_pickle(f'{PICKLE_PATH}/Y_test_{city}_{analysis_type}.pkl')

print("Shape of Training Dataset " , X_train.shape)
print("Shape of Testing Dataset " , X_test.shape)
```

```
Shape of Training Dataset (1432, 17)
Shape of Testing Dataset (90, 17)
```

```
max depth = 8
          fitted model = tree.DecisionTreeRegressor(max depth=max depth)
          fitted model.fit(X train.Y train)
          # Dataframe to show features and their importances
          top features = len(fitted model.feature importances )
          features importances df= show feature importances(X train.columns.values.tolist(),
                                                            fitted model.feature importances .top features)
          features importances df.head(10)
          # Store results
          features importances df.to csv(f'{EXPERIMENT DIR}/feature importances.csv')
In [435]: # Run the model on the training dataset
          Y train pred = fitted model.predict(X train)
          # Calculate mean sauared error for the predicted values
          mse train = mean squared error(Y train, Y train pred)
          print('Mean Squared Error for the training dataset: %.3f' % mse train)
          Mean Squared Error for the training dataset: 2.785
In [436]: # Run the model on the testing dataset
          Y test pred = fitted model.predict(X test)
          # Calculate mean squared error for the test vs predicted values
          mse test = mean squared error(Y test, Y test pred)
          print('Mean Squared Error for the testing dataset: %.3f' % mse test)
```

Mean Squared Error for the testing dataset: 10.205

In [434]: # Fitting a decision tree regressor with max depth

```
In [437]: # Creating a dataframe for predicted/fitted values
    future_forecast = pd.DataFrame(Y_test_pred,index = Y_test.index,columns=['Fitted'])

# Concatenate the predicted/fitted values with actual values to display graphs
    predictions = pd.concat([Y_test,future_forecast],axis=1)
    predictions.columns = ["Actual","Fitted"]

# Displaying few of the predicted values
    predictions.head(10)
```

Out[437]:

	Actual	Fitted
datetime		
2017-09-02	27.658333	26.292523
2017-09-03	27.312917	26.292523
2017-09-04	27.032500	26.585889
2017-09-05	27.558333	26.585889
2017-09-06	25.762500	26.585889
2017-09-07	22.602917	26.585889
2017-09-08	22.617917	23.691244
2017-09-09	23.091667	23.691244
2017-09-10	23.897917	23.691244
2017-09-11	23.837500	25.365880

Mean Squared error (MAE), would be easier to interpret as they use the same scale as the data itself.

```
In [438]: city = city.replace('_',' ')
# Plotting the daily predicted temperature vs Actual Temperature - Decision Tree
fig = charter_helper_fitted(f"Daily Predicted Temperature using Decision Tree for {city} using {analysis_type}", predictions)
iplot(fig)

py.image.save_as(fig, f'{EXPERIMENT_DIR}/Daily_DT_actual_vs_predict.png')
```

Daily Predicted Temperature using Decision Tree for Houston using Enhanced_Signals

Export to plot.ly »

Daily Predicted Temperature using Decision Tree for Houston using Enhanced Signals

Export to plot.ly »

In [441]: results.tail(1)

Out[441]:

	R	RUN_ID	DATETIME	MODEL_NAME	CITY	FEATURE_TYPE	HOST_MACHINE	MODEL_PARAMETERS	MODEL_RESULTS	MEAN_SQUARED_ERROR
•	17	18	2018-08-14 19:48:11.736850	DECISION TREE Ho	ouston	Enhanced_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	10.205057

In [442]: results = pd.read_pickle('../pickles/results.pkl') results

Out[442]:

•	RUN_ID	DATETIME	MODEL_NAME	CITY	FEATURE_TYPE	HOST_MACHINE	MODEL_PARAMETERS	MODEL_RESULTS	MEAN_SQUARED_ERROR
0	1	2018-08-14 19:41:45.275297	DECISION TREE	New York	Basic	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	('features': ['temperature_lag1', 'temperature	5.799872
1	2	2018-08-14 19:42:13.654060	DECISION TREE	Atlanta	Basic	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	8.436149
2	3	2018-08-14 19:42:23.328525	DECISION TREE	Boston	Basic	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	16.504857
3	4	2018-08-14 19:42:30.715058	DECISION TREE	Dallas	Basic	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	12.523335
4	5	2018-08-14 19:42:41.506483	DECISION TREE	Houston	Basic	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	7.705077
5	6	2018-08-14 19:42:49.124681	DECISION TREE	Miami	Basic	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	1.833555
6	7	2018-08-14 19:43:04.972617	DECISION TREE	New York	Inc_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	6.518000
7	8	2018-08-14 19:43:12.930159	DECISION TREE	Atlanta	Inc_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	7.992946
8	9	2018-08-14 19:43:20.383683	DECISION TREE	Boston	Inc_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	22.967065
9	10	2018-08-14 19:43:32.825549	DECISION TREE	Dallas	Inc_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	14.223161
10	11	2018-08-14 19:43:39.374706	DECISION TREE	Houston	Inc_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	10.519872
11	12	2018-08-14 19:43:48.176029	DECISION TREE	Miami	Inc_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	1.577366
12	13	2018-08-14 19:44:00.243495	DECISION TREE	New York	Enhanced_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	6.767755
13	14	2018-08-14 19:44:07.609795	DECISION TREE	Atlanta	Enhanced_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	7.783687
14	15	2018-08-14 19:44:14.731752	DECISION TREE	Boston	Enhanced_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	25.109055

	RUN_ID		DATETIME	MODEL_NAME	CITY	FEATURE_TYPE	HOST_MACHINE	MODEL_PARAMETERS	MODEL_RESULTS	MEAN_SQUARED_ERROR
	15	16	2018-08-14 19:44:20.754761	DECISION TREE	Dallas	Enhanced_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	15.432839
	16	17	2018-08-14 19:44:46.805353	DECISION TREE	Miami	Enhanced_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	1.556905
	17	18	2018-08-14 19:48:11.736850	DECISION TREE	Houston	Enhanced_Signals	DESKTOP- KN40C32	{'max_depth': 8, 'Info': {'feature_set_type':	{'features': ['temperature_lag1', 'temperature	10.205057
In []:[