Aula 1

- <u>Introdução</u>:
- O que é uma ODE?
- O que são problemas de valor inicial e de valor fronteira?
- Problemas de valor inicial

Método de Euler

Exemplos de Aplicação: movimento a 1D, a 2D, e 3D (queda de uma pedra, oscilador harmónico simples, projécteis)

Estudo do movimento de bolas de ténis e futebol (facultativo) Alguns conceitos de aerodinâmica de um objeto esférico (facultativo)

Equações diferenciais ordinárias (ODE)

ODE- ordinary differential equation

- Equações diferenciais são equações que relacionam variáveis independentes e variáveis dependentes e as suas derivadas.
- Equações diferencias ordinárias são aquelas que envolvem uma única variável independente e uma dependente.
- Sistemas de equações diferenciais ordinárias podem envolver várias variáveis dependentes mas uma única variável independente.
- *A ordem* de uma ODE é a ordem máxima das derivadas presentes.

Os problemas com ODEs podem ser:

- **problemas de valor inicial** quando temos o valor de todas as variáveis dependentes definido num único valor da variável independente.
- **problemas de valor fronteira** quando temos o valor das variáveis dependentes definido em mais do que um valor da variável independente.

Departamento de Física

Universidade de Aveiro

Exemplos de Equações Diferenciais

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} - (x^2 - 4x + 2)e^{-x}, \quad 0 < x < L,$$

$$T(x,0) = 0, \quad T(0,t) = 0, \quad T(L,t) = L^2 e^{-L}$$

2
$$\frac{d^2y}{dx^2} - xy = 0$$
, $y(0) = 1$, $y(100) = 0$

3
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 1.25 \exp(x + y/2), \quad a_x < x < b_x, \quad a_y < y < b_y$$

 $u(a_x, y) = u(b_x, y) = u(x, a_y) = u(x, b_y) = 0$

$$\frac{dC_1}{dt} = -k_1C_1 + k_2C_2C_3$$

$$\frac{dC_2}{dt} = k_1C_1 - k_2C_2C_3 - 2k_3C_2^2$$

$$\frac{dC_3}{dt} = 2k_3C_2^2$$

$$C_1(0) = 0.9, \quad C_2(0) = 0.1, \quad C_3(0) = 0$$

Departamento de Física

Universidade de Aveiro

Exemplos de Equações Diferenciais

$$\frac{d^2y}{d\tau^2} = -\frac{1}{(1+\epsilon y)^2}, \quad y(0) = 0, \quad y'(0) = 1$$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = g(x), \quad 0 < x < 1, \quad 0 < y < 1,$$

$$T(0, y) = T(1, y) = T_a, \quad T(x, 0) = T_b, \quad \frac{\partial T}{\partial y}(x, 1) = 0$$

3
$$\frac{d^2u}{dx^2} + \alpha \frac{du}{dx} + \beta u = f(x), \quad u(0) = u_0, \quad u(L) = u_L$$

$$\frac{d^2F}{dz^2} + \left(az - \frac{F^2}{1 + F^2}\right)F = 0, \quad F(\pm L) = 0,$$

Equações diferenciais ordinárias (ODE)

Quando pretendemos obter a solução para um dado problema físico, deparamo-nos frequentemente com a tarefa de resolver uma equação diferencial. Vamos começar por nos dedicar ao caso mais simples:

Equações diferencias ordinárias de primeira ordem, com condições iniciais, e sem condições fronteira.

Como todos sabemos, as equações diferenciais ordinárias (ODE) distinguem-se das equações diferenciais às derivadas parciais (PDE) pela existência de uma única variável independente: todas as derivadas são feitas em ordem a uma única variável, a que, numa discussão genérica, vamos chamar *t*, embora isso não queira de forma alguma dizer que a variável independente seja sempre o tempo.

Equações diferenciais ordinárias (ODE)

ODE de primeira ordem

$$\frac{dy}{dt} = f(t, y) \tag{1}$$

Em alguns casos, nos quais a função f(t, y) é bastante simples, a equação diferencial pode ser integrada explicitamente. De qualquer forma, para escrever a solução é preciso conhecer uma condição inicial, ou seja, o valor de y(t) para um dado valor do tempo. Se se tratasse de uma ODE de ordem n, teríamos que conhecer n constantes.

Método de EULER

Aparentemente simples, a equação (1) não pode ser resolvida analiticamente na maior parte dos casos. Tal acontece frequentemente na resolução de problemas físicos, pelo que é necessário recorrer a outro tipo de métodos, como por exemplo a métodos analíticos aproximados e a métodos numéricos.

O algoritmo mais simples para a resolução númerica desta equação é o método de Euler.

Este método pode ser obtido partindo da definição de derivada:

$$\frac{dy}{dt} = \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t}$$

Considerando-se um intervalo de tempo $\Delta t = t_{n+1} - t_n$ entre dois instantes consecutivos, e definindo $h = \Delta t$, podemos aproximar a equação diferencial original por:

$$\frac{dy}{dt} = f(t, y) \qquad \Rightarrow \qquad \frac{y_{n+1} - y_n}{h} \approx f(t_n, y_n)$$

Um rearranjo dos termos permite obter a seguinte expressão:

$$y_{n+1} = y_n + h * f(t_n, y_n)$$

Assim, o método de Euler dá-nos um esquema iterativo, que nos permite obter a solução em instantes futuros.

(OBS: A solução numérica é uma solução discreta, ie., só é conhecida em determinados instantes, em contraste com a solução analítica, que a existir, é geralmente conhecida em todos instantes da sua região de existência).

Pretende obter-se a solução numérica, de uma dada equação diferencial, num dado intervalo de tempo, $[t_0, t_f]$. Para se aplicar o método de Euler, define-se uma grelha de valores da variável independente equidistantes no intervalo de tempo:

$$t_0, t_0 + h, t_0 + 2h, t_0 + 3h, t_0 + 4h, \dots, t_f \Leftrightarrow (t_0, t_1, t_2, t_3, t_4, \dots, t_f)$$

Para simplificar, o espaçamento h, (ou h_t ou Δt , ou δt), é escolhido de forma a que $t_{f-}t_0$ seja um seu múltiplo inteiro. É fácil de perceber que o número de pontos, N, neste caso é dado por:

$$N = \frac{t_f - t_0}{h} + 1 \qquad (t_0, t_1, t_2, t_3, t_4, \dots, t_{N-1})$$

•Assim, conhecida a solução no instante inicial t_0 , $y(t_0) = y_0$, pode obter-se uma estimativa da solução no instante $t_1 = t_0 + h$, $y(t_0 + h) = y_1$:

$$y_1 = y_0 + h * f(t_0, y_0)$$

•Conhecidos t_1 e y_1 , pode calcular-se $f(t_1, y_1)$, e usando o mesmo procedimento pode obter-se y_2 , a estimativa da solução no instante t_2 , $(t_2 = t_0 + 2h, y(t_0 + 2h) = y_2)$:

$$y_2 = y_1 + h * f(t_1, y_1)$$

ullet Aplicando repetidamente este procedimento, podemos determinar todos os valores y_k , ou seja, a estimativa numérica da solução y(t) nos pontos t_k :

MÉTODO de EULER - ODE de primeira ordem

$$y_{k+1} = y_k + f(t_k, y_k) * h$$

$$para \quad k = 0, 1, 2, ..., N-2$$

A representação gráfica deste processo iterativo está representado na Figura seguinte:

Note-se que cada aproximação subsequente da solução, y(t), é gerada a partir do declive (derivada) à curva no ponto anterior. A figura sugere que para passos mais pequenos, h, a solução deverá ser mais precisa. **E o ERRO?**

3-02-2023

LEITURA_1

Método de Euler – Exemplo de Aplicação (Chapra)

Considere a seguinte equação diferencial ordinária:

$$\frac{dy}{dt} = -2t^3 + 12t^2 - 20t + 8.5$$

Usando o método de Euler integre-a numericamente de t=0 a t=3, com passo temporal de 0.5. A condição inicial em t=0 é y=1. Facilmente pode mostrar que esta equação tem solução analítica dada por: y=-0.5 $t^4+4t^3-10t^2+8.5t+1$. **Use uma calculadora.**

SOLUÇÃO: O que se está a pedir é que se obtenha a solução numérica nos seguintes instantes: 0, 0.5, 1, 1.5, 2, 2.5, e 3. Com h=0.5. Por recurso à equação $y_{k+1} = y_k + f(t_k, y_k) * h$, obtém-se:

1^a iteração
$$\rightarrow$$
 $y(0.5) = y(0) + f(0,1) * h$

Sendo y(0)=1, (a condição inicial), e sendo a função f, (declive), em t=0 estimada por,

$$f(0,1) = -2 * 0^3 + 12 * 0^2 - 20 * 0 + 8.5 = 8.5$$

Então, a solução numérica em t = 0.5 é dada por:

$$y(0.5) = y(0) + f(0.1) * h = 1.0 + 8.5 * 0.5 = 5.25$$

E a solução analítica em t = 0.5 é dada por:

$$y = -0.5 * 0.5^4 + 4 * 0.5^3 - 10 * 0.5^2 + 8.5 * 0.5 + 1 = 3.21875$$

Qual é o erro cometido nesta iteração (em %)?

2^a iteração \rightarrow

$$y(1) = y(0.5) + f(0.5,5.25) * h = 5.25 + (-2 * 0.5^3 + 12 * 0.5^2 - 20 * 0.5 + 8.5) * 0.5 = 5.875$$

Com o auxílio de uma calculadora repita o procedimento anterior para todos os instantes considerados.

Repita o procedimento anterior para h=0.25.

Método de Euler & MATLAB

Chama-se a atenção para uma dificuldade que surge quando se usa o MATLAB:

Os vetores do MATLAB não podem ter índices nulos, pelo que os índices do MATLAB têm de ser alterados para começarem em 1. Assim, o valor y_0 da discussão anterior é dado pelo elemento y(1) do vetor y no MATLAB.

Um exemplo simples de aplicação é estudado na alínea a) do Problema 1.1 do Trabalho Prático 1.

Sem ter cuidado com os aspetos práticos do programa, podemos ver que a variável y nesse trabalho é a velocidade de um corpo e a função f é a expressão do somatório das forças nele aplicadas num dado instante, em função da velocidade e do tempo, dividido pela massa. Na prática, a aceleração é apenas função explícita da velocidade, ou seja, em vez de f(t,y), temos f(y).

Método de Euler para sistemas de ODE de 1ª ordem

Consideremos um sistema de equações diferenciais muito simples:

Sistema de ODE de primeira ordem

$$\begin{cases} \frac{dx}{dt} = f_x(t, x, y) \\ \frac{dy}{dt} = f_y(t, x, y) \end{cases}$$

Então, a generalização a fazer é a seguinte:

MÉTODO de EULER - Sistema de ODE de primeira ordem

$$\begin{cases} x_{k+1} = x_k + f_x(t_k, x_k, y_k) * h \\ y_{k+1} = y_k + f_y(t_k, x_k, y_k) * h \end{cases} para \quad k = 0, 1, 2, ..., N-2$$

Método de Euler - ODE de ordem N

• Consideremos uma equação diferencial de segunda ordem:

$$\frac{d^2y}{dt^2} = f\left(t, y, \frac{dy}{dt}\right)$$

Definindo,

$$\begin{cases} y_1 = y \\ y_2 = \frac{dy}{dt} \end{cases}$$

E derivando, obtemos:

$$\begin{cases} \frac{dy_1}{dt} = \frac{dy}{dt} \\ \frac{dy_2}{dt} = \frac{d^2y}{dt^2} \end{cases} \Leftrightarrow \begin{cases} \frac{dy_1}{dt} = y_2 \\ \frac{dy_2}{dt} = f(t, y_1, y_2) \end{cases}$$

Ou seja, a equação diferencial de 2ª ordem pode ser expressa como um sistema de duas ODE acopladas de 1ª ordem

MÉTODO de EULER - ODE de 2ª ordem

$$\begin{cases} y_{2,k+1} = y_{2,k} + f(t_k, y_{1,k}, y_{2,k}) * h \\ y_{1,k+1} = y_{1,k} + y_{2,k} * h \end{cases}$$

E se a <u>equação</u> for <u>de ordem N</u>?

MÉTODO de EULER - ODE de N-ésima ordem

Equação diferencial de ordem N

⇔ Sistema de N equações diferenciais de 1ª ordem

Método de Euler - ODE de ordem N

• Consideremos uma equação diferencial de ordem <u>N</u>:

$$\frac{d^{N}y}{dt^{2}} = f\left(t, y, \frac{dy}{dt}, \frac{d^{2}y}{dt^{2}}, \dots \frac{d^{N-1}y}{dt^{N-1}}\right)$$

Definindo,

$$y_1 = y$$
, $y_2 = \frac{dy_1}{dt}$, $y_3 = \frac{dy_2}{dt}$, ... $y_N = \frac{dy_{N-1}}{dt}$

E derivando, obtemos:

$$\begin{cases} \frac{d y_1}{dt} = y_2 \\ \frac{d y_2}{dt} = y_3 \\ \vdots \\ \frac{d y_{N-1}}{dt} = y_N \\ \frac{d y_N}{dt} = f(t, y_1, \dots y_N) \end{cases}$$

Com as condições iniciais,

$$y_1(t_0) = k_1,$$
 $y_2(t_0) = k_2,$... $y_N(t_0) = k_N$

EXEMPLO 1 - ODE de 2ª ordem : movimento retilíneo (1D)

No caso do movimento de um corpo de massa constante, m, que se move segundo uma trajetória retilínea, a 2^a lei de Newton pode escrever-se como:

$$\frac{d^2y}{dt^2} = \frac{\sum F\left(t, y, \frac{dy}{dt}\right)}{m}$$

Neste caso,

$$\begin{cases} y_2(t) = v(t) & (velocidade) \\ f(t_k, y_{1,k}, y_{2,k}) = \frac{\sum F(t, y, \frac{dy}{dt})}{m} & (aceleração) \end{cases}$$

$$\begin{cases} v_{k+1} = v_k + f(t_k, y_k, v_k) * h \\ y_{k+1} = y_k + v_k * h \end{cases}$$

EXEMPLO 2 - ODE de 2^a ordem: movimento no espaço tridimensional (3D)

Generalizando o procedimento do exemplo anterior para o caso em que a trajetória não é retilínea, em que o vetor posição é dado por $r(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$, a 2ª lei de Newton pode escrever-se como:

$$\frac{d^2\mathbf{r}}{dt^2} = \frac{\sum \mathbf{F}(t, \mathbf{r}, \mathbf{v})}{m}$$
 (forma vetorial)

que corresponde a três equações na forma escalar,

$$\begin{cases} \frac{dv_{x}}{dt} = f_{x}(t_{k,x_{k,}}y_{k,z_{z}},v_{x,k},v_{y,k},v_{z,k}) = \frac{\sum F_{x}}{m} \\ \frac{dv_{y}}{dt} = f_{y}(t_{k,x_{k,}}y_{k,z_{z}},v_{x,k},v_{y,k},v_{z,k}) = \frac{\sum F_{y}}{m} \\ \frac{dv_{z}}{dt} = f_{z}(t_{k,x_{k,}}y_{k,z_{z}},v_{x,k},v_{y,k},v_{z,k}) = \frac{\sum F_{z}}{m} \end{cases}$$
 (forma escalar)

EXEMPLO 2 - ODE de 2^a ordem: movimento no espaço tridimensional (3D)

A integração numérica das equações anteriores pelo **método de Euler**, permite obter:

Para a VELOCIDADE

$$\begin{cases} v_{x,k+1} = v_{x,k} + f_x(t_{k,x_k}, y_k, z_z, v_{x,k}, v_{y,k}, v_{z,k}) * h \\ v_{y,k+1} = v_{y,k} + f_y(t_{k,x_k}, y_k, z_z, v_{x,k}, v_{y,k}, v_{z,k}) * h \\ v_{z,k+1} = v_{z,k} + f_z(t_{k,x_k}, y_k, z_z, v_{x,k}, v_{y,k}, v_{z,k}) * h \end{cases}$$

Para a POSIÇÃO

$$\begin{cases} x_{k+1} = x_k + v_{x,k} * h \\ y_{k+1} = y_k + v_{y,k} * h \\ z_{k+1} = z_k + v_{z,k} * h \end{cases}$$

LEITURA_2- Aerodinâmica de um objecto esférico

Nos problemas 1.2 e 2.3, estuda-se a trajetória de bolas (de ténis e de futebol) sujeitas:

- ao peso
- à **força de arrasto** (*drag force*) que se deve a dois fenómenos: o atrito e a diferença de pressões entre a parte da frente da bola (relativamente ao seu movimento) e a parte de trás da bola que se encontra a uma menor pressão;
- efeito de Magnus que ocorre quando a bola tem também um movimento de rotação.

LEITURA_2- Alguns conceitos de aerodinâmica

Camada limite – camada de ar que rodeia a esfera e que apresenta velocidades graduais, desde a velocidade do fluido nas posições mais distantes da esfera até à velocidade da esfera na superfície desta.

Esteira – região de pressão baixa que se forma atrás da bola.

- O movimento do ar na camada limite pode ser laminar ou turbulento. A transição para regime turbulento ocorre para velocidades superiores.
- No regime turbulento, a esteira é menos extensa porque a camada limite separase da bola mais atrás.

<u>LEITURA</u> 2 - Aerodinâmica de um objecto esférico → Força de Arrasto

Uma bola, que consideramos inicialmente sem rotação, desloca-se no ar com uma velocidade instantânea \boldsymbol{v} . O módulo da velocidade é dado por $v = |\boldsymbol{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$. A força de arrasto, que tem a mesma direcção da velocidade, mas o sentido oposto, é habitualmente parametrizada por:

$$\begin{aligned}
\boldsymbol{F}_{\boldsymbol{D}} &= -\frac{1}{2} C_D \rho A v^2 \widehat{\boldsymbol{v}} \\
&= -\frac{1}{2} C_D \rho A v^2 \frac{v_x \widehat{\boldsymbol{i}} + v_y \widehat{\boldsymbol{j}} + v_z \widehat{\boldsymbol{k}}}{v} \\
&= -\frac{1}{2} C_D \rho A (v v_x \widehat{\boldsymbol{i}} + v v_y \widehat{\boldsymbol{j}} + v v_z \widehat{\boldsymbol{k}})
\end{aligned}$$

Onde ρ é a massa volúmica do ar e $A=\pi R^2$ é a área da secção transversal da bola. O parâmetro adimensional C_D (ou C_A) é o coeficiente de arrasto (drag).

<u>LEITURA_2 - Aerodinâmica de um objecto esférico → Força de Arrasto</u>

No contexto em que estamos a trabalhar, o coeficiente de arrasto é dependente apenas de um parâmetro chamado número de Reynolds:

$$R_e = \frac{2\rho Rv}{\eta}$$

Onde η é a viscosidade do ar. Como já foi dito, a força de arrasto é devida a dois fenómenos, o atrito e a diferença de pressões entre a parte da frente da bola (relativamente ao seu movimento) e a parte de trás da bola, onde se desenvolveu a zona de baixa pressão a que chamamos esteira.

É evidente que, para uma mesma velocidade, a força de arrasto será tanto menor quanto menor for a secção transversal da esteira, ou seja, quanto mais atrás a camada limite se separar da esfera.

<u>LEITURA</u> 2 - Aerodinâmica de um objecto esférico → Força de Arrasto

GR imes FICO-Coeficiente de arrasto (C_A) de uma esfera lisa em função do número de Reynolds (R_e)

13-02-2023

<u>LEITURA</u> 2 - Aerodinâmica de um objecto esférico → Força de Arrasto

- Para valores do número de Reynolds bastante pequenos, estamos no limite de Stokes: C_D é inversamente proporcional à velocidade e o módulo da força de arrasto é proporcional a v.
- C_D é aproximadamente constante numa gama intermédia de valores do n° de Reynolds.
- A variação abrupta do coeficiente ocorre quando a camada limite se torna turbulenta e passa a separar-se da bola mais tarde, reduzindo as dimensões transversais da esteira.

LEITURA_2 - Aerodinâmica de um objecto esférico

Camada limite laminar

13-02-2023

LEITURA_2 - Aerodinâmica de um objecto esférico

Camada limite turbulenta

13-02-2023

Vamos considerar a situação em que a bola é lançada com rotação.

Na figura do slide seguinte, o eixo de rotação é perpendicular ao plano da fotografia.

Como a rotação é no sentido horário, a velocidade do ar em relação à superfície superior da esfera é menor que a velocidade do ar relativamente à superfície inferior. A camada limite separa-se primeiro na superfície inferior e o ar é efetivamente desviado para baixo.

A terceira lei de Newton diz-nos que se a bola aplica uma força sobre o ar que o faz desviar para baixo, então o ar exerce uma força sobre a esfera que a faz desviar para cima.

A força devida aos efeitos aerodinâmicos passa a ter duas componentes, uma paralela à velocidade, F_D , e outra perpendicular a ela e ao eixo de rotação, F_L . (L de lift).

Rotação no sentido horário

Parametrização da Força de Magnus

A força de Magnus é perpendicular à velocidade de translação e ao eixo de rotação e é habitualmente parametrizada por:

$$\boldsymbol{F_L} = \frac{1}{2} \, C_L \, \rho \, A \, v^2 \, (\widehat{\boldsymbol{\omega}} \, \times \, \widehat{\boldsymbol{v}})$$

O parâmetro C_L depende do n°de Reynolds e do parâmetro de rotação (spin)

$$S = \frac{R \ \omega}{v}$$

(e, em princípio, do ângulo entre o eixo de rotação e a velocidade de translação).

Parametrização da Força de Magnus

É preciso ter em atenção que a rotação afeta o coeficiente de arrasto que passa a ser também função do parâmetro *S*, como no exemplo da bola de ténis do Problema 1.2.

No Problema 1.3, a força de Magnus é parametrizada de uma forma ligeiramente diferente:

$$\boldsymbol{F_L} = \frac{1}{2} C_M \rho A R (\boldsymbol{\omega} \times \boldsymbol{v})$$

