Transformaciones en 3D

Fundamentos Matemáticos Máster en Programación de Videojuegos Profesor: José María Benito

Vectores

- Surgen de la necesidad de ubicar puntos en el espacio:
- Se pueden extrapolar a 3D (y más)
- Sirven para hacer juegos,
 p.ej.: "Hundir la Flota"
- $V = \{X, Y, Z\}$

$$a = \{x_a, y_a, z_a\}$$

$$b = \{x_b, y_b, z_b\}$$

$$S = \{X_a + X_b, y_a + y_b, Z_a + Z_b\}$$

$$r = \{x_a - x_b, y_a - y_b, z_a - z_b\}$$

$$a = \{x_a, y_a, z_a\}$$

$$b = \{x_b, y_b, z_b\}$$

$$S = \{X_a + X_b, y_a + y_b, Z_a + Z_b\}$$

$$r = \{x_a - x_b, y_a - y_b, z_a - z_b\}$$

$$a = \{x_{a}, y_{a}, z_{a}\}$$

$$b = \{x_b, y_b, z_b\}$$

$$S = \{X_a + X_b, y_a + y_b, Z_a + Z_b\}$$

$$r = \{x_a - x_b, y_a - y_b, z_a - z_b\}$$

$$a = \{x_a, y_a, z_a\}$$

$$b = \{x_b, y_b, z_b\}$$

$$S = \{X_a + X_b, y_a + y_b, Z_a + Z_b\}$$

$$r = \{x_a - x_b, y_a - y_b, Z_a - Z_b\}$$

$$a = \{x_a, y_a, z_a\}$$

$$b = \{x_b, y_b, z_b\}$$

$$S = \{X_a + X_b, y_a + y_b, Z_a + Z_b\}$$

$$r = \{x_a - x_b, y_a - y_b, Z_a - Z_b\}$$


```
a = \{x_{a,y_a,Z_a}\}
```

$$b = \{x_b, y_b, z_b\}$$

$$S = \{X_a + X_b, y_a + y_b, Z_a + Z_b\}$$

$$r = \{x_a - x_b, y_a - y_b, z_a - z_b\}$$

$$a = \{x_a, y_a, z_a\}$$

$$b = \{x_b, y_b, z_b\}$$

$$S = \{X_a + X_b, y_a + y_b, Z_a + Z_b\}$$

$$r = \{x_a - x_b, y_a - y_b, z_a - z_b\}$$

$$a = \{x_a, y_a, z_a\}$$

$$b = \{x_b, y_b, z_b\}$$

$$S = \{X_a + X_b, y_a + y_b, Z_a + Z_b\}$$

$$r = \{x_a - x_b, y_a - y_b, z_a - z_b\}$$

¿Multiplicar?

$$a = \{3,2,0\}$$

b = \{1,0.5,1\}

$$p = \{x_{a} * x_{b}, y_{a} * y_{b}, Z_{a} * Z_{b}\}$$

Multiplicar = Escalar

$$a = \{3,2,0\}$$

b = \{1,0.5,1\}

$$p = \{3,1,0\}$$

Magnitud

$$a = \{x_{a,y_a,z_a}\}$$

$$|a| = \sqrt{(x_a^2 + y_a^2 + z_a^2)}$$

Magnitud

En 3D:

$$a = \{x_a, y_a, z_a\}$$

$$|a| = \sqrt{(x_a^2 + y_a^2 + z_a^2)}$$

Pitágoras: c²=a²+b²

Magnitud y Distancia

$$r = \{x_{r,}y_{r,}z_r\}$$

$$|r| = \sqrt{(x_r^2 + y_r^2 + z_r^2)}$$

Distancia

$$r = \{x_{r,}y_{r,}z_r\}$$

$$|r| = \sqrt{(x_r^2 + y_r^2 + z_r^2)}$$

Magnitud=Norma

En 3D:

$$a = \{x_{a,y_a,z_a}\}$$

$$|a| = \sqrt{(x_a^2 + y_a^2 + z_a^2)}$$

normalizar = a/|a|

¿Magnitud a/|a|?

En 3D:

$$a = \{x_{a,y_{a,Z_{a}}}\}$$

 $b = \{x_{b,y_{b,Z_{b}}}\}$

Dot product a·b: Paso 1 p= $\{x_a*x_b, y_a*y_b, z_a*z_b\}$ Paso 2 dot= $x_p+y_p+z_p$

¡a·b no es un vector!

a·b

¡a·b no es un vector!

```
a·b
sii |b|=1
a·b = |proj(a,b)|
a·b = |a||b|cos(a,b)
```

```
a·b
sii |b|=1
a·b = |proj(a,b)|
```

¿y si a⊥b?

```
En 3D:

E = \{e_x, e_y, e_z\}

V = \{x_v, y_v, z_v\}

W = \{x_w, y_w, z_w\}
```

 $e_x e_y e_z$ $X_y Y_y Z_y$ X_w, Y_w, Z_w

Cross product:
Paso 1 aprendérselo
Paso 2 olvidarlo y buscarlo en internet

$$e_x e_y e_z$$

$$Matrix(E,v,w) = x_v y_v z_v$$

$$x_{w,y_w,z_w}$$

Cross product:
Paso 1 Crear matriz
Paso 2 Sacar determinante
v x w = {???,??}

Cross product:
Paso 1 sumar las q bajan
Paso 2 restar las q suben
v x w = {???,??}

Vector Cross Prod

Determinante

Cross product: Paso 1 sumar las q bajan Paso 2 restar las q suben $v \times w = \{(y_v * z_w) - (y_w * z_v), (z_v * x_w) - (z_w * x_v), (x_v * y_w) - (x_w * y_v)\}$

Magnitud Cross Prod

 $|v \times w| = |v||w|\sin(\theta)$

significa:

 $|v \times w| = area (y signo)$ 0.5* $|v \times w| = triángulo$

Ejercicio: explicar lookAt geométricamente:

TRANSFORMACIONES U-Tad 7X7

D = A X

TRANSFORMACIONES U-Tado de Tecnología y arte digital

7X7

a(0,0)

a(0,1)

a(1,0)

a(I,I)

TRANSFORMACIONES U-Tad

2X2

b(0)	a(0,0)	a(0,1)	×(0)
b(I)	a(I,0)	a(I,I)	×(1)

TRANSFORMACIONES U-Tad

7X7

$$a(0,0) \cdot x(0) + a(0,1) \cdot x(1)$$

$$a(1,0) \cdot x(0) + a(1,1) \cdot x(1)$$

TRANSFORMACIONES U-Tad

2X2

b(0)	a(0,0)	a(0,1)	×(0)
b(I)	a(I,0)	a(I,I)	×(1)

TRANSFORMACIONES U-Tad DE TECNOLOGÍA Y ARTE DIGITAL

2X2

b(0)	a(0,0)	0	×(0)
b(I)	0	a(I,I)	×(1)

Escalado

TRANSFORMACIONES U-Tado de Tecnología y arte digital 2X2

TRANSFORMACIONES U-Tado DE TECNOLOGÍA Y ARTE DIGITAL 2X2

TRANSFORMACIONES U-Tado de Tecnología y arte digital 2X2

b(0) es x(0) escalado

TRANSFORMACIONES U-Tad

b(0)	a(0,0)	a(0,1)	×(0)
b(I)	a(I,0)	a(I,I)	×(1)

TRANSFORMACIONES U-Tad GETECNOLOGÍA Y ARTE DIGITAL

b(0)		a(0,1)	×(0)
b(I)	a(1,0)		×(1)

TRANSFORMACIONES U-Tado de Tecnología y arte digital 7X7

TRANSFORMACIONES U-Tado DE TECNOLOGÍA Y ARTE DIGITAL 7X7

TRANSFORMACIONES OF TECNOLOGICAL STATEMENT OF THE TECNOLOGICAL STA

TRANSFORMACIONES U-Tado DE TECNOLOGÍA Y ARTE DIGITAL 7X7

TRANSFORMACIONES U-Tado de Tecnología y arte digital 7X7

Rotación

TRANSFORMACIONES U-Tado de Tecnología y arte digital 7X7

TRANSFORMACIONES U-Tado DE TECNOLOGÍA Y ARTE DIGITAL

TRANSFORMACIONES U-T

TRANSFORMACIONES CENTRO DE TECNOLOGÍA Y

TRANSFORMACIONES U-Tad

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

$$R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

TRANSFORMACIONES U-Tad AFINES

b = Ax + t

TRANSFORMACIONES U-Tado de Tecnología y arte digital

2X2

b(0)

b(1)

a(0,0)	a(0,1)
a(1,0)	a(I,I)

TRANSFORMACIONES U-Tad

	\setminus	LC
A	I N	LJ

b(0)	a(0,0)	a(0,1)	t(0)	×(0)
b(I)	a(1,0)	a(I,I)	t(I)	×(1)
	0	0		

TRANSFORMACIONES U-Tad AFINES

b(0)

$$a(0,0) \cdot x(0) + a(0,1) \cdot x(1) + t(0)$$

b(1)

$$a(1,0) \cdot x(0) + a(1,1) \cdot x(1) + t(1)$$

b(0)
b(I)
b(2)

a(0,0)	a(0,1)	0
a(1,0)	a(I,I)	0
0		0

×(0)
×(1)

$$x(0)/x(1) = p(0)/p(1)$$
 $p(0) = x(0)/x(1)$
 $p(1) = 1$

b(0)			0	0	×(0)
b(I)		0		0	×(1)
b(2)		0	?	0	

b(0)

 $\times(0)$

b(1)

 $\times(1)$

b(2) no es igual a 1!!!

b(2)

x(1)

p(0)

b(0)/b(2)

p(I)

b(1)/b(2)

b(2)/b(2)

Homogeneización: división entre b(2)

ı

p(0)

 $\times (0)/\times (1)$

p(I)

 $\times(1)/\times(1)$

 $\times(1)/\times(1)$

$$b = Ax + t$$

$$b = \underbrace{Ax}_{x'} + t$$

$$b = \underbrace{Ax + t}_{x''}$$

$$b = Ax + t$$

$$b = Ax + t$$

$$b = Ax + t$$

b = Ax

$A^{-1}b = AAX$

$$A^{-1}b = A^{-1}(Ax+t)$$

Ab=AAx+At

Ab-At=AAX

$$A^{T}b-A^{T}t=x$$

Sólo si A es una rotación!

$$b = Ax + t$$

$$b = Ax + t$$

$$x = A^{T}b - A^{T}t$$

$$b = Ax + t$$

$$b = Ax + t$$

$$x = A^{T}b - A^{T}t$$

$$b = Ax + t$$

$$b = Ax + t$$

$$x = A^{T}b - A^{T}t$$

$$b = Ax + t$$

$$x = A^{T}b - A^{T}t$$

$$b = Ax + t$$

$$x = A^{T}b - A^{T}t$$

$$x = A^{T}b - A^{T}t$$