Idea

Idea

- Local image feature mapping
 - Dense pose
- Discriminator loss for each vertex
 - Angle
 - Edge length

Index

- Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
- Pose2Mesh: Graph Convolution Network for 3D Human pose and Mesh Recovery from a 2D Human Pose
- Graph Convolutional Adversarial Network for Human Body Pose and Mesh Estimation
- Semantic Graph Convolutional Networks for 3D Human Pose Regression

concatenate feature extracted from layer 'conv3_3', 'conv4_3', and 'conv5_3'

 Model learns to deform a mesh from a mean shape (Ellipsoid) to the target geometry.

 Network trained to directly predict mesh with a large number of vertices is likely to <u>make mistake in the beginning and</u> <u>hard to fix later</u> (limited receptive field)

• With fewer vertices at the beginning stages, the network learns to <u>distribute the vertices around to the most representative location</u>, and then add local details as the number of vertices increases later

receptive 2d image field feature Vertex location Perceptual Feature **Pooling** \mathbf{F}_{i-1} 3d shape G-ResNet feature (a) Mesh Deformation Block

For wider

Known camera parameter

(b) Perceptual Feature Pooling

$$f_p^{l+1} = w_0 f_p^l + \sum_{q \in \mathcal{N}(p)} w_1 f_q^l$$

coarse to fine structure

How to map the image features to hidden surface?

• 3d shape feature is dependent on a location

There is no semantic information on vertices during training.

Pose to mesh

• appearance domain gap problem

 It avoids representation issues of the model parameters and leverages the pre-defined mesh topology

Pose to mesh

Pose to mesh

Only use pose information

 Vertex have semantic information since their location are regressed from FC layer. (i.e. they are regressed from their own weights.)

• Interpenetration can be prevented by applying discriminator error on 3d pose or course 3D mesh

Graph Convolutional Adversarial Network for Human Body Pose and Mesh Estimation

Semantic info binding

Before training

Hard to use local image feature

Easy to use discriminator

Good for fine tuning

After training

More flexible

Good for global registration

table

Semantic info binding Coarse to fine	Before training	After training
О	Pose2Mesh	Pixel2Mesh
X	GraphHMR	