В чому сутність методу квадратичного або загального решета числового поля при факторизації RSA модуля та їх можливості?

28. 4. Метод факторизації «квадратичне решето»

Розглянемо двійкове решето, яке, відповідно до сучасних поглядів, є найбільш швидким при довжині модуля не більше ніж 120 десяткових цифр.

Необхідно знайти два випадкові цілі числа x та y — такі, що:

$$x^2 = y^2 \pmod{N}$$

Представимо у вигляді $x^2 - y^2 \equiv 0 \pmod{N}$.3 урахуванням того, що в порівнянні операції

$$x^2 - y^2 = kN_{\text{k=1,2,...}}$$

виконуються за модулем N, його можна подати у вигляді рівняння:

Якщо розкласти (9.8) як різницю квадратів, то отримаємо, що

$$(x-y)(x+y) = kN$$
, $k=1,2,...$ (9.9)

причому $N = P \times Q$.

Вираз (9.9) доцільно застосовувати в таких випадках:

1.
$$(x - y)/N$$
;

$$2.(x+y)/N;$$

3.
$$(x-y)/P \lor (x+y)/Q$$
;

4.
$$(x - y)/Q \wedge (x + y)/P$$
.

У випадках 1 і 2 P або Q знайти не можна, оскільки модуль N не може бути розкладеним на співмножники. У випадках 3 та 4 маємо розв'язок.

Далі, якщо (х-у)/Р, то ми можемо скористатися алгоритмом Евкліда та обчислити найбільший спільний

$$\begin{cases}
HC\mathcal{I}(x-y,N); \\
HC\mathcal{I}(x+y,N).
\end{cases}$$
(9.11)

Враховуючи (9.11), можна обчислити Р або Q.

Практично факторизацію модуля N з використанням двійкового решета можна здійснити в такій послідовності.

1. Нехай N – число, яке необхідно факторизувати. Побудуємо деяку базу $Z=P_1*P_2*P_3...P_{K}$ з таким

$$_{T}Z = P_{1} * P_{2} * P_{3} ... P_{K_{3 \text{ Takum}}}$$

значенням Z, щоб $Z \approx N$, де $P_1, P_2, P_3, ... P_K$ – прості числа, краще невеликого розміру, Z – база

2. Знайдемо $\lfloor \sqrt{N} \rfloor$, округливши знизу. Потім побудуємо числа вигляду

$$(i + \sqrt{N}) \tag{9.12}$$

і знайдемо

$$(i+\sqrt{N})^2 \bmod N = S^2$$

Як результат отримаємо порівняння:

$$(i + \sqrt{N})^2 \equiv S^2 \pmod{N}$$

Таким чином, маємо

$$X^2 = Y^2 \pmod{N}_{.(9.13)}$$

Приклад 9.3 [13]. Зловмисник визначив, що направлене шифрування виконується на відкритому ключі отримувача E_{κ} =31, модуль перетворення N=3599. Необхідно знайти особистий ключ отримувача D_k , з використанням якого можна здійснити розшифрування повідомлення M, якщо застосовується RSA перетворення.

Розв'язання задачі може здійснюватись у такому порядку:

- 1. Факторизуємо модуль N і визначаємо прості числа P та Q.
- 2. Знаходимо значення функції

$$\varphi(N) = \varphi(P \cdot Q) = \varphi(P) \cdot \varphi(Q).$$

3. Розв'язуємо порівняння

$$E_k \cdot D_k \equiv 1 \pmod{\varphi(n)}$$
.

Факторизацію виконуємо, використовуючи метод двійкового решета.

Спочатку визначаємо базу розкладу — прості невеликі числа $p_1, p_2,... p_r$, добуток яких P_6 є близьким до N=3599:

$$P_6 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 = 3570.$$

Знаходимо

$$\left|\sqrt{N}\right| = \left|\sqrt{3570}\right| = 59.$$

Реалізація двійкового решета (розрахунки)

X	$Z = x + \cdot $	\sqrt{N} \mathbb{Z}^2 mod 3599	2	3	5	7	17	<mark>лишок</mark>
1	60	1	_	_	_	_	_	1
2	61	122	1	-	_	-	_	61
3	62	245	ı	ı	1	2	_	_
4	63	370	1	ı	1	ı	_	37
14	73	1730	1	ı	1	ı	_	173
23	82	3125	ı	ı	5	ı	_	_
26	85	27	ı	3	_	ı	_	_
49	108	867	ı	1	_	ı	2	_
61	120	4	2	ı	_	ı	_	_
62	121	245	_	_	1	2	_	_

Беремо рядки зі значеннями x=3 та x=62, у результаті маємо, що:

$$62^2 = 5 \cdot 7^2 = 245 \; ;$$

$$121^2 = 5 \cdot 7^2 = 245.$$

Перемноживши рядки, маємо

$$(62 \cdot 121)^2 = 5 \cdot 7^2 = 245$$

або

$$(7502)^2 = (245)^2 \pmod{3599}$$

Знайшовши залишок від значення 7502, маємо

$$(304)^2 = (245)^2 \pmod{3599}$$
.

Отже x=304, y=245.

Далі

НСД (| 304-245 | ,3599)=59=Р,

$$Q = \frac{N}{P} = \frac{3599}{59} = 61.$$

Отже, P=59, O=61.

Далі знаходимо

$$\varphi(N) = \varphi(59 \cdot 61) = \varphi(59) \cdot \varphi(61) = 3480.$$

Тепер порівняння має такий вигляд:

$$E_k \cdot D_k = 1 \pmod{3480}$$
.

Після переходу до рівняння

$$31 \cdot D - 3480 \cdot K = 1$$

подамо його у вигляді:

$$3480 \cdot (-K) + 31 \cdot D = 1$$
.

Розв'язуємо це діафантове рівняння, використовуючи ланцюгові дроби:

$$\frac{3480}{31} = 112 + \frac{8}{31}; r_0=112;$$

$$\frac{31}{8} = 3 + \frac{7}{8}; r_1=3;$$

$$\frac{8}{7} = 1 + \frac{1}{7}; r_2=1;$$

$$\frac{7}{1} = 7 + \frac{0}{1}; r_3=7; \mu=3;$$

$$D = (-1)^{\mu} a_{\mu-1} + a_{\mu-2};$$

$$a_0 = r_0 = 112;$$

$$a_1 = r_1 \cdot a_0 + 1 = 3 \cdot 112 + 1 = 337;$$

$$a_2 = r_2 \cdot a_1 + a_0 = 1 \cdot 337 + 112 = 449;$$

$$D = (-1)^3 \cdot 449 \pmod{3480} = 3031.$$
Перевіримо правильність розв'язку:

$$E_k \cdot D_k = 31 \cdot 3031 \pmod{3480} = 1.$$

Таким чином, $E_k=31$; $D_k=3031$.

В узагальненому вигляді факторизації на основі використання загального решета числового поля можна подати таким чином:

- вибирання поліномів відповідних степенів;
- просіювання з відбиранням позитивних даних;
- обробка даних з розв'язанням задачі лінійної алгебри;
- знаходження нетривіальних рішень.

Метод загального решета числового поля дозволяє факторизувати модуль RSA перетворення зі складністю (асимптотичною):

$$L_N(\gamma, \delta) = \exp(\delta (Ln(N))^{\gamma} Ln(Ln(N))^{1-\gamma},$$
 (9.14) де $\gamma = 1/3$, а $\delta = (64/9)^{(1/3)} T)$ (приблизно 1.923) параметри методу.

Для методу спеціального решета числового поля параметри методу дорівнюють $\gamma = 1/3$, а $\delta = (32/9)^{1/3}$ (приблизно 1,526), (9.15)

тобто метод спеціального решета числового поля ϵ менш складним (більш швидкодіючим).

Взагалі ідея методу загального решета числового поля належить Джону Полларду, який у 1988 році запропонував просіювання виконувати не у кільці цілих чисел, як це робиться в квадратичному решеті, а в алгебраїчному полі. Спочатку метод можна було використовувати для факторизації тільки чисел спеціального вигляду $2^n+(-)n$. Тому метод отримав назву «спеціального решета числового поля». Практична реалізація ідеї Полларда була здійснена в 1990 році, коли з його використанням було факторизовано число Ферма (2^{512}). Також були факторизовані деякі числа вигляду $b^c+(-)1$. У подальшому було запропоновано використовувати метод решета числового поля й для факторизації довільних цілих чисел. Була знайдена евристична оцінка його складності, яка визначалась у (9.14). Тобто множник δ був зменшений у порівнянні з квадратичним решетом з 1/2 до 1/3. Розглянемо етапи базового методу решета числового поля.

Нехай n — непарне ціле число, яке необхідно факторизувати. Основна ідея Полларда полягає в тому, щоб замінити поліном 2-го степеня $q(x) = (x+m)^2 - n$, який використовувався у квадратичному решеті, на довільний поліном $P_d(x)$ степеня $d \ge 3$, який задовольняє умові $P_d(m) = n$ для деякого цілого числа m. Далі, просіювання за множиною цілих чисел Z було замінене просіюванням в кільці $Z(\beta)$, яке отримується приєднанням до кільця Z цілого алгебраїчного числа β , що ε коренем полінома $P_d(m)$. У порівнянні з квадратичним решетом, у решеті числового поля факторна база складається із простих елементів кільця алгебраїчних чисел.

Виграш при використанні решета числового поля полягає в тому, що умова $P_d(m) = n$ для деякого цілого m, що накладається на поліном $P_d(x)$, у порівнянні з коефіцієнтами, що використовуються у квадратичному решеті, може бути виконана при менших значеннях коефіцієнтів полінома $P_d(x)$.

Метод загального решета числового поля може бути реалізований через виконання таких кроків

- 1. Вибирається степінь незвідного полінома $d \ge 3$. Можна взяти d = 2, але в цьому випадку у порівнянні з квадратичним решетом виграшу не буде.
- 2. Вибирається ціле число m таке, що $\lfloor n^{1/(d+1)} \rfloor < m < \lfloor n^{1/d} \rfloor$, та розкладається число n за основою m, тобто подається у вигляді:

$$n = m^d + a_{d-1}m^{d-1} + \dots + a_0 (9.16)$$

3. Із розкладом (9.16) пов'язується незвідний поліном у кільці Z(x):

$$f_I(x) = x^d + a_{d-1}x^{d-1} + \dots + a_0 (9.17)$$

4. Визначається поліном просіювання $F_1(a, b)$ як однорідний поліном від двох змінних a та b:

$$F_{I}(a, b) = b^{d} f_{I}(a/b) = a^{d} + a_{d-1}a^{d-1}b + a_{d-2}a^{d-2}b^{2} + \dots + a_{0}b^{d}$$

$$(9.18)$$

Необхідно відмітити, що значення $F_1(a,b)$ дорівнює нормі полінома $a-b\times x$ в алгебраїчному числовому полі Q [β], яке отримують доповненням поля раціональних чисел Q у загальному випадку комплексного кореня β багаточлена $f_1(x)$ [425]. При цьому властивості комутативності норми

$$Nr(h_1(x) \times h_2(x)) = (Nr(h_1(x)) \times (Nr(h_2(x)))$$
 (9.19)

дозволяють замість розкладання багаточлена з кільця Z(β) виконати розкладання їх норм.

5. Визначається другий багаточлен

$$f_2(x) = x - m \tag{9.20}$$

та відповідний йому однорідний багаточлен

$$F_2(a, b) = a - b m.$$
 (9.21)

Головною вимогою при вибиранні пари багаточленів $(f_1(x), f_2(x)) \in$ виконання вимоги:

$$f_1(m) = f_2(m) \pmod{n},$$
 (9.22)

яка в нашому випадку, очевидно, виконується, оскільки перший багаточлен у точці m дорівнює n, а другий — нулю.

6. Вибирається два позитивних числа L_1 та L_2 , що визначають деяку прямокутну область

$$SR = \{1 \le b \le L_1, -L_2 \le a \le L_2\},$$
 (9.23)

яку називають областю просіювання.

- 7. Нехай β корінь багаточлена $f_1(x)$. Розглядається кільце багаточленів $Z(\beta)$ (для формального описання алгоритму). Також визначимо алгебраїчну факторну базу FB_1 , яка буде складатися з багаточленів першого порядку вигляду $a b \times \beta$ з нормою, що є простим числом. Такі багаточлени є простими елементами, що не розкладаються, в кільці алгебраїчних цілих поля $K = Q(\beta)$. Абсолютні величини норм багаточленів із факторної бази FB_1 обмежимо зверху деякою постійною B_1 .
- 8. Також визначається раціональна факторна база FB₂, яка складається з усіх простих чисел, добуток яких обмежується другою постійною B₂.
- 9. Визначається також невелика множина багаточленів першого порядку $c-d \times \beta$, норма яких ε простим числом. Позначимо цю множину як FB₃. Вона ма ε задовільняти умові, що

$$FB_1 \cap FB_3 = \emptyset$$

- і називається факторною базою квадратичних характерів. Факторна база FB₃ необхідна на підсумковій стадії алгоритму для перевірки того факту, що знайдений у ході просіювання багаточлен є повним квадратом.
- 10. Далі для отримання гладких пар (a,b) множини M здійснюється просіювання багаточленів $\{a-b\times\beta\mid (a,b)\in SR\}$ згідно факторної бази FB_1 , а також цілих чисел $\{a-b\times m\mid (a,b)\in SR\}$ згідно факторної бази FB_2 . При цьому пара (a,b) називається гладкою, якщо HCJ (a,b)=1, а поліном $a-b\times\beta$ і число $a-b\times m$ розкладається по відповідним факторним базам FB_1 та FB_2 . При цьому число гладких пар у множині M має бути більше загальної суми елементів усіх трьох баз щонайменше на 2 одиниці.
- 11. На цьому кроці шукається підмножина S ⊃M таке, що добуток усіх пар $\prod_{(a, b) \in S}$ Nr $(a-b \times \beta) = H^2$ для H ∈ Z, а також $\prod_{(a, b) \in S}$ $(a-b m) = B^2$, B ∈ Z.

Для знаходження множини S, як i в методі квадратичного решета, складається система лінійних алгебраїчних рівнянь з коефіцієнтами із множини $F_2 = \{0, 1\}$, результатом розв'язання якої й будуть номери S.

12. Формується багаточлен

$$g(\beta) = (f_1(\beta))^2 \prod_{(a,b) \in S} (a - b\beta),$$
 (9.24) де $f_1(x)$ – похідна багаточлена $f_1(x)$.

- 13. Далі, якщо вся процедура виконана коректно, то багаточлен $g(\beta)$ є повним квадратом у кільці поліномів $Z(\beta)$. Знаходимо квадратні корені із багаточлена $g(\beta)$ та цілого числа B^2 , унаслідок чого знаходимо багаточлен $\alpha(\beta)$ та число B.
- 14. Замінюємо багаточлен $\alpha(\beta)$ на число $\alpha(m)$. Відображення $\varphi: \beta \to m$ є кільцевим гомоморфізмом кільця алгебраїчних цілих чисел Z_{κ} у кільце Z. Звідки отримаємо співвідношення:

$$A^{2} = g(m)^{2} = (\varphi(g(\alpha)^{2})) = \varphi\{(f_{1}(\beta))^{2} \prod_{(a,b) \in S} (a-b \beta)\} = (f_{1}(m))^{2} \prod_{(a,b) \in S} (a-b m) = (f_{1}(m))^{2} * C^{2}(mod n)$$

$$(9.25)$$

Таким чином, визначивши B = f'(m) C, знайдемо пару цілих чисел (A,B), які задовольняють умові $A^2 = B^2 \pmod{n}$ (9.26)

На останок можна знайти дільник числа n, обчислюючи НСД (n, A + (-) B).