A Survey on Data Structures

Jeffrey Mei

Introduction

- what are data structures?
 - data format for storage/organization
- why do we need data structures?
 - efficient storage
 - efficient retrieval
- needed for more complex tasks

Outline

- Arrays
- ► Linked Lists
 - Queues
 - Stacks
- Trees
 - ► Binary Search Trees
 - Heaps
- K-Dimensional Trees

Memory

393	FALSE	ʻz'	5
-----	-------	-----	---

memory addresses represented by hexadecimal code

variables refer to addresses

Common Size of Data Types

▶ bool: 1 bit

character: 8 bits (1 byte)

integer: 32 bits (4 bytes)

double: 64 bits (8 bytes)

Arrays

Array

- defined as an address in memory
- holds fixed number of values of single type
- all content is denoted as subsequent spaces from address
- ightharpoonup arr [k] = arr + k * DATATYPE_SIZE

- do not know how many values to store (e.g. logging events)
- concatenation: add elements to array
- not specifying space needed can be very inefficient

- do not know how many values to store (e.g. logging events)
- concatenation: add elements to array
- not specifying space needed can be very inefficient

- do not know how many values to store (e.g. logging events)
- concatenation: add elements to array
- not specifying space needed can be very inefficient

- do not know how many values to store (e.g. logging events)
- concatenation: add elements to array
- not specifying space needed can be very inefficient

- do not know how many values to store (e.g. logging events)
- concatenation: add elements to array
- not specifying space needed can be very inefficient

Arrays: why aren't they good enough?

- not dynamic (can use up too much/little space)
- unstructured search
- doesn't always make use of all contextual information (hierarchical, spatial, temporal, priority, etc.)

Linked Lists

Each node contains:

- 1. data
- 2. next address

Overview:

- does not rely on contiguous memory spaces
- building blocks of many data structures

Insert value into middle of array

Cannot insert without overwriting

Must resize array

Shuffle array

Shuffle array

1	2	x	3	4	5
---	---	---	---	---	---

Insert value

Insert value into middle of linked list (after 2 and before 3)

Insert value into middle of linked list (after 2 and before 3)

Change next address

Linked Lists: Variations

Figure: Circular Linked Lists

Figure: Doubly Linked Lists

Linked Lists: Variations

Figure: Trees

Figure: Graphs

Linked Lists: Overview

Better than arrays because...

- dynamic size
- faster insertion and deletion

Problems:

- no random access: must traverse through each node sequentially
- cannot move backwards

Queue

Overview:

- exploits temporal information
- ▶ first in, first out (FIFO)
- dynamic array (size changes)

Operations:

queue: add to rear

dequeue: remove from front

Applications:

- task scheduling
- resource allocation

Stack

Overview:

- exploits temporal information
- ► last in, first out (LIFO)
- dynamic array (size changes)

Operations:

push: add to stack

pop: remove from stack

Applications:

used for "undo" operations

Trees

Overview:

exploits hierarchical structure

Applications:

- file systems
- expression trees
- game trees

Tree Applications

Figure: Expression Tree of 3+((5+9)*2): [https://www.geeksforgeeks.org/expression-tree/]

Tree Applications (2)

Figure: Monte Carlo Search Tree [https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-search-introduction-algorithm-deepmind-alphago/]

Parts:

root: topmost node

parent: node with child nodes

child: node connected to parent

leaf: node with no children

subtree: all descendants from a node in a tree

Properties

complete: every level but the last is entirely filled

► balanced: left and right subtrees do not differ than more than one

Parts:

root: topmost node

parent: node with child nodes

child: node connected to parent

leaf: node with no children

subtree: all descendants from a node in a tree

Properties

complete: every level but the last is entirely filled

► balanced: left and right subtrees do not differ than more than one

Parts:

root: topmost node

parent: node with child nodes

child: node connected to parent

leaf: node with no children

subtree: all descendants from a node in a tree

Properties

complete: every level but the last is entirely filled

► balanced: left and right subtrees do not differ than more than one

Parts:

- root: topmost node
- parent: node with child nodes
- child: node connected to parent
- leaf: node with no children
- **subtree:** all descendants from a node in a tree

Properties

- complete: every level but the last is entirely filled
- **balanced:** left and right subtrees do not differ than more

than one

Trees

- trees can be fairly unstructured
 - no restriction on number of children
 - no ordering structure
- we will apply structure and go over some special properties

Binary Search Tree

Ordering Property

- each node has at most two children
- left children have values less than parent
- right children have values greater than parent

Overview:

- ightharpoonup structure allows for efficient searching $(O(\log n))$
- in-order traversal

Heaps

Overview:

- min/max is always found at root
- complete binary tree
- ► last level filled left to right

Applications:

- priority queue: parallel computing
- shortest path search

x = [3, 5, 6, 4, 2, 1]Build complete binary tree

Start at last parent

Swap

Move to next subtree

Swap left child

Swap right child

Move to next subtree

Check left child

Swap right child

insert 0 to heap

insert 0 to heap

heapify

heapify

Delete root

Delete root

Replace with last node

Heapify smaller child

Heaps: Overview

- ▶ Build Heap: O(n)
- ▶ Insertion: $O(\log n)$
- ▶ Deletion: $O(\log n)$
- Fast to find min value
- ► Fast to reorganize heap after insertion/deletion

Overview

- encodes spatial information
- efficient search for data points
- ▶ used for *k*-nearest neighbors

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3)

make root

x (5,2)

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3)

x (5,2)

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3)

$$(5,2) \le (7,8)$$

x (5,2)

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3)

$$(5,2) \leq (7,8)$$

$$x \qquad (5,2) \qquad \text{make child}$$

$$y \qquad (7,8)$$

x

$$(5,2) \le (8,5)$$

$$x = (5, 2)$$
 $y = (7, 8)$
 $x = (8, 5)$

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3) (2, 4) < (5, 2)

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3) (2, 4) < (5, 2)

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3)

Find nearest neighbor to point (3,4)

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3)

Save minimum distance to (5, 4)

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3)

Save minimum distance to (4, 2)

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3)

Save minimum distance to (2, 4) Is last leaf (2, 4) always the nearest neighbor?

Find nearest neighbor to (3.5, 1)

Set minimum distance; cannot prune

Set minimum distance: prune right subtree

Do not change minimum distance

Do not change minimum distance

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3), (6, 7)

Consider new point (6, 7)

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3), (6, 7)

Find nearest neighbor to (4, 6)

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3), (6, 7)

Set minimum distance: cannot prune

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3), (6, 7)

Set new minimum distance: prune

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3), (6, 7)

Set new minimum distance: cannot prune

Data: (5, 2), (7, 8), (8, 5), (4, 2), (2, 1), (2, 4), (8, 3), (6, 7)

Traverse other side of tree

Conclusion

- arrays are very powerful, but have limitations
- must think about what is important to our task to determine which data structure is optimal
- data structures are diverse and there are many ways to organize data to achieve our goals