Name:

Caleb McWhorter — Solutions

"I think that some intuition leaks out in every step of an induction proof."

−Jim Propp

MATH 308 Fall 2022

HW 10: Due 10/13

Problem 1. (10pt) Let $\{a_n\}_{n\in\mathbb{N}}$ be the sequence defined by $a_n:=2^n-5$ and $\{b_m\}_{m\in\mathbb{Z}^\times}$ be defined by $b_m:=\frac{m+1}{m}$. Showing all your work, compute the following:

(a)
$$\sum_{k=0}^{5} a_k$$

$$(d) \sum_{p=0}^{0} a_p$$

(b)
$$\sum_{\substack{j=-3\\j\neq 0}}^3 b_m$$

(e)
$$\sum_{j=2}^{4} (a_j + b_j)$$

(c)
$$\prod_{k=1}^{3} a_n$$

(f)
$$\prod_{n=1}^{10^{50}} b_n$$

Solution.

- (a)
- (b)
- (c)
- (d)
- (e)
- (f)

Problem 2. (10pt) Let $a \in \mathbb{R}$. Consider the following sum defined for n > 7:

$$\sum_{k=7}^{n} (k+a-7)^2$$

- (a) Reindex the sum above so that it begins at k = 0.
- (b) Using the given summation formulas below, find the sum from (a) in terms of n, a alone.

$$\sum_{k=0}^{n} 1 = n+1, \qquad \sum_{k=0}^{n} k = \frac{n(n+1)}{2}, \qquad \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Problem 3. (10pt) Complete the proof of the given proposition below by filling in the corresponding blanks.

Proposition. For
$$n \geq 2$$
, $\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n}$.

Proof. We prove this using ______. First, we establish a base case.

Base Case: Let n = 2. Then we have...

But then if n=2, we know that $\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n}$.

We know establish the induction step.

Induction Step: Assume that for n = N, $\prod_{k=2}^{N} \left(1 - \frac{1}{k^2}\right) = \frac{N+1}{2N}$. We show that the statement of

the proposition is then true for n =_____. We have...

$$\prod_{k=2}^{N+1} \left(1 - \frac{1}{k^2} \right) = \underline{\qquad} \cdot \prod_{k=2}^{N} \left(1 - \frac{1}{k^2} \right)$$

$$= \underline{\qquad} \cdot \underline{\qquad}$$

But then we know that $\prod_{k=2}^{N+1} \left(1 - \frac{1}{k^2}\right) = \frac{(N+1)+1}{2(N+1)}$.

Therefore, by ______, we know that for $n \geq 2$, $\prod_{k=2}^n \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n}$.

Problem 4. (10pt) Let $\{a_n\}_{n\in\mathbb{Z}^{\geq 0}}$ be the recursive sequence given by $a_0=1$, $a_1=3$, and $a_n=2a_{n-1}-a_{n-2}$ for $n\geq 2$. A student observe that $a_0=1$, $a_1=3$, $a_2=5$, $a_3=7$, and $a_4=9$. They then predict that $a_n=2n+1$ for $n\geq 0$. Below is a proof of this conjecture, with parts of their proof removed. Complete the missing parts.	
Proposition. Let $\{a_n\}_{n\in\mathbb{Z}^{\geq 0}}$ be the recursive sequ a_{n-2} for $n\geq 2$. Then for all $n\geq 0$, $a_n=2n+1$.	ence given by $a_0 = 1$, $a_1 = 3$, and $a_n = 2a_{n-1} - 1$
<i>Proof.</i> We prove this usingcases.	First, we establish a few bases
Base Case: If, we have $a_0 = 1$ as	and $2n + 1 = 2(0) + 1 = 1$. Then if $n = 0$, we have
$a_n = 2n+1$. Now if $n = $, we have	eand
But then if $n = 1$, we have	
We now establish the induction case.	
Induction Case: Now assume that $a_k = 2k + 1$ for	all $0 \le k \le n$. Now consider the term
·	
We have $a_{n+1} = 2a_n - a_{n-1}$	
=	
=	
= 2n + 3	
=2(n+1)+1	
But then we know that $a_{n+1} = 2(n+1) + 1$.	

Therefore, by ______, we know that $a_n = 2n + 1$ for all $n \ge 0$.