- (d) 4e1(x/6)
- (e) $\sqrt{2} e^{j(25z/4)}$
- (f) jef(11x/4)
- (g) 3e14x + 2e17x
- (h) El número complejo z cuya magnitud es $|z| = \sqrt{2}$ y cuyo ángulo es $\langle \zeta z = -\pi/4 \rangle$
- (i) $(1-j)^9$
- (i) $\frac{6e^{-je/3}}{1-j}$
- Exprese cada uno de los siguientes números complejos en forma polar y grafíquelos en el plano 2.6. complejo, indicando la magnitud y el ángulo de cada número.

- (a) $1+j\sqrt{3}$ (b) -5(c) -5-5j(d) 3+4j(e) $(1-j\sqrt{3})^3$ (f) $(1+j)^3$ (g) $(\sqrt{3}+j^3)(1-j)$ (h) $\frac{2-j(6/\sqrt{3})}{2+j(6/\sqrt{3})}$ (i) $\frac{1+j\sqrt{3}}{\sqrt{3}+j}$ (j) $j(1+j)e^{j\pi/6}$ (k) $(\sqrt{3}+j)2\sqrt{2}e^{-j\pi/4}$ (l) $\frac{e^{j\pi/3}-1}{1+j\sqrt{3}}$

- Demuestre las siguientes relaciones, donde z, z_1 y z_2 son números complejos arbitrarios. 2.7.
 - (a) $(e^i)^* = e^{i^*}$
 - (b) $z_1 z_1^* + z_1^* z_2 = 2 \Re e [z_1 z_2^*] = 2 \Re e [z_1^* z_2]$
 - (c) $|z| = |z^{\bullet}|$
 - (d) $|z_1 z_2| = |z_1||z_2|$
 - (e) $\Re \mathcal{L}[z] \leq |z|$, $\Im m[z] \leq |z|$
 - (f) $|z_1 z_2^* + z_1^* z_2| \le 2|z_1 z_2|$
 - (g) $(|z_1| |z_2|)^2 \le |z_1 + z_2|^2 \le (|z_1| + |z_2|)^2$
- Las relaciones consideradas en este problema son usadas en muchas ocasiones a lo largo del 2.8.
 - (a) Pruebe la validez de las siguientes expresiones:

$$\sum_{n=0}^{N-1} \alpha^n = \begin{cases} N, & \alpha = 1\\ \frac{1-\alpha^N}{1-\alpha}, & \text{para cualquier número complejo } \alpha \neq 1 \end{cases}$$

(b) Demuestre que si | α | < 1, entonces</p>

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}$$

(c) Demuestre que si | α | < 1, entonces

$$\sum_{n=0}^{\infty} n\alpha^n = \frac{\alpha}{(1-\alpha)^2}$$

(d) Evalúe

$$\sum_{\alpha} \alpha^{\alpha}$$

considerando que $|\alpha| < 1$.

(a) Una señal de tiempo continuo x(t) se muestra en la figura P2.9(a). Dibuje y rotule con 2.9. cuidado cada una de las siguientes señales.

Figura P2.9

- (i) x(t-2)
- ' (ii) x(1-t)
- (iii) x(2t + 2)
- (iv) x(2-t/3)
- (v) [x(t) + x(2-t)]u(1-t)
- $(vi) x(t) [\delta(t+\frac{3}{2}) \delta(t-\frac{3}{2})]$
- (b) Para la señal h(t) dibujada en la figura P2.9(b), dibuje y rotule con cuidado cada una de las siguientes señales.
 - h(t+3)(i)
 - (ii) h(t/2-2)
 - (iii) h(1-2t)
 - (iv) 4h(t/4)
 - $(v) \quad \frac{1}{2}h(t)u(t) + h(-t)u(t)$
 - (vi) $h(t/2) \delta(t+1)$
 - (vii) h(t)[u(t+1) u(t-1)]
- (c) Considere de nuevo las señales x(t) y h(t) mostradas en la figura P2.9(a) y (b), respectivamente. Dibuje y rotule con cuidado cada una de las siguientes señales.
 - (i) x(t)h(t+1)
 - (ii) x(t)h(-t)
 - (iii) x(t-1)h(1-t)
 - (iv) x(1-t)h(t-1)
- 2.10. (a) Una señal de tiempo discreto x[n] se muestra en la figura P2.10(a). Dibuje y rotule con cuidado cada una de las siguientes señales.

Problemas Cap. 2