MAT 0221 - Cálculo Diferencial e Integral IV

Turma 46 (Estatística e Aplicada)

2^a Prova - 29 de outubro de 2012

	1	
Nome :	2	
Número USP :	3	
Assinatura:	4	
	Total	

Adotamos a convenção de que toda solução de uma EDO está definida em um intervalo.

Questão em branco vale 0,25.

Questão 1: (2 pts) Resolva os dois PVIs abaixo, explicitando o domínio maximal da solução.

(a)
$$\begin{cases} xy' + 2y = x \\ y(1) = 1 \end{cases}$$
 (b)
$$\begin{cases} xy' + 2y = x \\ y(-1) = 1 \end{cases}$$

Questão 2: (2,5 pts) (a) Justifique a seguinte afirmação: se y é uma solução de $y' = y + e^x y^2$ tal que $y(x_0) \neq 0$ para algum x_0 , então necessariamente $y(x) \neq 0$ para todo x no domínio de y.

(b) Resolva o PVI $\left\{ \begin{array}{l} y'=y+e^xy^2\\ y(0)=1 \end{array} \right. ,$ explicitando o domínio maximal da solução. Sugestão: faça z=1/y.

Questão 3: (3 pts) (a) Verifique que $\mu(x,y)=x^{-2}y^{-2}$ é um fator integrante para a equação diferencial

$$(x^2y^3 - 1) + (x^3y^2 - \frac{2x}{y})y' = 0.$$

(b) Ache ψ tal que todas as soluções da equação acima sejam dadas implicitamente por $\psi(x,y)=C,C$ constante.

(c) Resolva o PVI
$$\left\{\begin{array}{c} (x^2y^3-1)+(x^3y^2-\frac{2x}{y})y'=0\\ y(1)=-1 \end{array}\right., \text{ explicitando o domínio maximal da solução.}$$

Questão 4: (3 pts) Decida se são verdadeiras ou falsas as afirmações seguintes, justificando sua resposta.

- (1) Se y é solução do PVI $\begin{cases} y'=y^{4/5} \\ y(0)=0 \end{cases}$, então necessariamente y é a função identicamente nula. $(2) \text{ Se } y \text{ é solução do PVI } \begin{cases} y'=y^{5/4} \\ y(0)=0 \end{cases}$, então necessariamente y é a função identicamente nula. $(3) \text{ O PVI } \begin{cases} y'+(\ln x)y=\frac{1}{x-2} \\ y(1)=0 \end{cases}$ tem uma única solução definida no intervalo (0,2).