Multi-view geometry

Multi-view geometry problems

• **Structure:** Given projections of the same 3D point in two or more images, compute the 3D coordinates of that point

Multi-view geometry problems

• Stereo correspondence: Given a point in one of the images, where could its corresponding points be in the other images?

Multi-view geometry problems

 Motion: Given a set of corresponding points in two or more images, compute the camera parameters

Structure: Triangulation

 Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

Structure: Triangulation

 We want to intersect the two visual rays corresponding to x₁ and x₂, but because of noise and numerical errors, they don't meet exactly

Triangulation: Geometric approach

 Find shortest segment connecting the two viewing rays and let X be the midpoint of that segment

Triangulation: Linear approach

$$\lambda_1 x_1 = P_1 X$$
 $x_1 \times P_1 X = 0$ $[x_{1\times}] P_1 X = 0$
 $\lambda_2 x_2 = P_2 X$ $x_2 \times P_2 X = 0$ $[x_{2\times}] P_2 X = 0$

Cross product as matrix multiplication:

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}] \mathbf{b}$$

Triangulation: Linear approach

$$\lambda_{1} x_{1} = P_{1} X$$
 $x_{1} \times P_{1} X = 0$ $[x_{1\times}] P_{1} X = 0$

$$\lambda_{2} x_{2} = P_{2} X$$
 $x_{2} \times P_{2} X = 0$ $[x_{2\times}] P_{2} X = 0$

Two independent equations each in terms of three unknown entries of **X**

Triangulation: Nonlinear approach

Find X that minimizes

$$d^{2}(\mathbf{x_{1}}, \mathbf{P_{1}}\mathbf{X}) + d^{2}(\mathbf{x_{2}}, \mathbf{P_{2}}\mathbf{X})$$

Two-view geometry

Epipolar geometry

- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- = vanishing points of the baseline (motion direction)

The Epipole

Epipolar geometry

- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- = vanishing points of the baseline (motion direction)
- Epipolar Lines intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Example: Motion perpendicular to image plane

Example: Motion perpendicular to image plane

- Points move along lines radiating from the epipole: "focus of expansion"
- Epipole is the principal point

Epipolar constraint

• If we observe a point **x** in one image, where can the corresponding point **x'** be in the other image?

Epipolar constraint

- Potential matches for **x** have to lie on the corresponding epipolar line **I**'.
- Potential matches for x' have to lie on the corresponding epipolar line I.

Epipolar constraint example

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get normalized image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrices of the two cameras can be written as [I | 0] and [R | t]

The vectors Rx, t, and x' are coplanar

Essential Matrix

(Longuet-Higgins, 1981)

The vectors Rx, t, and x' are coplanar

- E x is the epipolar line associated with x (I' = E x)
- E^Tx' is the epipolar line associated with x' ($I = E^Tx'$)
- E e = 0 and $E^T e' = 0$
- E is singular (rank two)
- **E** has five degrees of freedom

- The calibration matrices K and K' of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$\hat{x}'^T E \hat{x} = 0$$
 $\hat{x} = K^{-1} x, \quad \hat{x}' = K'^{-1} \hat{x}'$

$$\hat{\mathbf{x}} = \mathbf{K}^{-1} \mathbf{x}$$

$$\hat{\boldsymbol{x}}' = \boldsymbol{K}'^{-1} \boldsymbol{x}'$$

Fundamental Matrix

(Faugeras and Luong, 1992)

- Fx is the epipolar line associated with x(I' = Fx)
- F^Tx' is the epipolar line associated with $x'(I' = F^Tx')$
- Fe = 0 and $F^Te' = 0$
- **F** is singular (rank two)
- F has seven degrees of freedom

The eight-point algorithm

$$\mathbf{x} = (u, v, 1)^{T}, \quad \mathbf{x}' = (u', v', 1)$$

$$\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0 \qquad \begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & u & v & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \end{bmatrix} = 0$$

Minimize:
$$\sum_{i=1}^{N} (\boldsymbol{x}_i'^T \boldsymbol{F} \, \boldsymbol{x}_i)^2$$
 under the constraint $||\boldsymbol{F}||^2=1$

The eight-point algorithm

• Meaning of error $\sum_{i=1}^{N} (x_i'^T F x_i)^2$:

sum of squared *algebraic* distances between points \mathbf{x}'_i and epipolar lines $\mathbf{F}\mathbf{x}_i$ (or points \mathbf{x}_i and epipolar lines $\mathbf{F}^T\mathbf{x}'_i$)

 Nonlinear approach: minimize sum of squared geometric distances

$$\sum_{i=1}^{N} \left[d^2(\boldsymbol{x}_i', \boldsymbol{F} \boldsymbol{x}_i) + d^2(\boldsymbol{x}_i, \boldsymbol{F}^T \boldsymbol{x}_i') \right]$$

Problem with eight-point algorithm

$$\begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & u & v \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{bmatrix} = -1$$

Problem with eight-point algorithm

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48

$$\begin{bmatrix}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{22}
\end{bmatrix} = -1$$

Poor numerical conditioning

Can be fixed by rescaling the data

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of *F* and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if
 T and *T'* are the normalizing transformations in the
 two images, than the fundamental matrix in original
 coordinates is *T'^T F T*

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

From epipolar geometry to camera calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: *E* = *K*[']^T*FK*
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters