1.21

Part a

$$(a^* \cup ba^*b) \oplus ba^* = a^*ba^* \cup ba^*bba^*$$

Part b

$$egin{aligned} &(((a\cup b)a^*b)\oplus ((a(a\cup b)\cup b)a^*b)^*\oplus (a\cup arepsilon))\cup arepsilon \ &=((aa^*b\cup ba^*b)\oplus (aaa^*b\cup aba^*b\cup ba^*b)^*\oplus (a\cup arepsilon))\cup arepsilon \end{aligned}$$

1.28

Part a

$$a(abb)^* \cup b =$$

where e=arepsilon:

Part b

$$a^+ \cup (ab)^+$$

where e=arepsilon:

Part c

$$(a \cup b^+)a^+b^+ = aa^+b^+ \cup b^+a^+b^+$$

where e=arepsilon:

Consider the string

$$w=1^p\#1^{p!}\in L$$

For this string any choice of substring xy lies within 1^p so **pumping up** s.t.

$$w'=xyy^{rac{p!-|y|}{|y|}}z
otin L$$

This is because $0 < |y| \le p$ so $\frac{p!}{|y|} \in \mathbb{Z}^+$ and $|y| + |y|(\frac{p!-|y|}{|y|}) = p!$ so the string is not in the language. Thus, by the contrapositive corollary to the Pumping Lemma, L is nonregular.

1.49

Part a

The language B can be described by the regular expression:

$$10^*1 \oplus \Sigma^*$$

Thus, the language is regular. An equivalent NFA that recognizes B is shown below:

Part b

Consider the string $w=1^p01^p\in C.$

Then we can express the string as w=xyz s.t. $xy\in 1^p$ and $|xy|\leq p$ Pumping down, such that we get a new string w'=xz reduces the $\#_1$ s by |y| so the new string can be expressed as $1^{p-|y|}01^p$.

Now, based on the definition of the language C, k=p-|y| and now (after pumping down) $\#_1(z)=p$

For the pumped string to be in the language, the following must be true: $p \le k$ But because of pumping down: $p \not \le k = p - |y| :: |y| \ge 1$

Thus, the new string $w' \notin C$. And, by the contrapositive of the P.L., C is nonregular.

1.53

Consider the string

$$w: xyz: 1^p = 1^p + 0^p \in ADD$$

However, choosing any $xy \in 1^p$ and pumping down, that is constructing the new string:

Because pumping down is equivalent to shifting right by some |y| integers. So, the sum does not hold after pumping down. Thus, the language ADD is nonregular by the contrapositive to the P.L.

6

We have shown before that the language $A=0^*1^*$ is regular. So,

 $A \cup B$ is nonregular $\iff B$ is non regular $\therefore A$ is regular

By the closure principle of regular languages under union. So, to show the union is nonregular, we must show B is nonregular.

Consider the string

$$w=xyz=0^p1^p\in B$$

for some any choice of $xy \in 0^p$ s.t. $|xy| \le p$, pumping down result in the new string:

$$w'=xz=0^{p-|y|}1^p
otin B$$

because $|y| \ge 1$ so $|0^{p-|y|}| \ne |1^p|$. So, this pumped-down string is not in the language. Thus, B is nonregular by the contrapositive of the P.L.

And, since we've shown B to be nonregular, the union $A \cup B$ must also be nonregular by closure principles.