

Greedy Algorithms

Today

One example of a greedy algorithm that does not work: Knapsack

Three examples of greedy algorithms that do work:

Activity Selection

Job Scheduling

Minimum Spanning Tree

Example where greedy works

Activity selection

• Input:

- Activities a₁, a₂, ..., a_n
- Start times s₁, s₂, ..., s_n
- Finish times f₁, f₂, ..., f_n

• Output:

A way to maximize the number of activities you can do today.

In what order should you greedily add activities?

In what order?

• Shortest job first?

• Earliest start time?

• Earliest finish time?

Greedy Algorithm

- Pick activity you can add with the smallest finish time.
- Repeat.

Greedy Algorithm

- Pick activity you can add with the smallest finish time.
- Repeat.

Efficiency

- Running time:
 - -O(n) if the activities are already sorted by finish time.
 - -Otherwise, O(n log(n)) if you have to sort them first.

Back to Activity Selection

Why does it work?

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

A Common Strategy

A common strategy for proving the correctness of greedy algorithms:

- Make a series of choices.
- Show that, at each step, our choice won't rule out an optimal solution at the end of the day.
- After we've made all our choices, we haven't ruled out an optimal solution, so we must have found one.

A Common Strategy

- Inductive Hypothesis:
 - After greedy choice t, you haven't ruled out success.
- Base case:
 - Success is possible before you make any choices.
- Inductive step:
 - If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
 - If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.

A Common Strategy

A common strategy for showing we don't rule out the optimal solution:

- Suppose that you're on track to make an optimal solution T*.
 - E.g., after you've picked activity i, you're still on track.
- Suppose that T* disagrees with your next greedy choice.
 - E.g., it doesn't involve activity k.
- Manipulate T* in order to make a solution T that's not worse but that agrees with your greedy choice.
 - E.g., swap whatever activity T* did pick next with activity k.

Sub-problem graph view

• Divide-and-conquer:

Sub-problem graph view

• Dynamic Programming:

Sub-problem graph view

Greedy algorithms:

- Not only is there optimal sub-structure:
 - optimal solutions to a problem are made up from optimal solutions of sub-problems
- but each problem depends on only one sub-problem.

Another Example: Scheduling

OGY (GUANGZHO

DSAA2043 HW

Personal hygiene

Math HW

Administrative stuff for student club

Econ HW

Do laundry

Sports

Practice musical instrument

Read lecture notes

Have a social life

Sleep

Scheduling

- n tasks
- Task i takes t_i hours
- For every hour that passes until task i is done, pay c_i

- DSAA2043 HW, then Sleep: costs $10 \cdot 2 + (10 + 8) \cdot 3 = 74$ units
- Sleep, then DSAA2043 HW: costs $8 \cdot 3 + (10 + 8) \cdot 2 = 60$ units

Scheduling

Seems amenable to a greedy algorithm:

What does "best" mean?

• Of these two jobs, which should we do first?

- Cost(A then B) = $x \cdot z + (x + y) \cdot w$
- Cost(B then A) = $y \cdot w + (x + y) \cdot z$

AB is better than BA when:

$$xz + (x + y)w \le yw + (x + y)z$$

$$xz + xw + yw \le yw + xz + yz$$

$$wx \le yz$$

$$\frac{w}{y} \le \frac{z}{x}$$

• Choose the job with the biggest $\frac{\cos t \text{ of delay}}{\text{time it takes}}$

Say we have an undirected weighted graph

A **tree** is a connected graph with no cycles!

A spanning tree is a tree that connects all of the vertices.

Say we have an undirected weighted graph

The **cost** of a spanning tree is the sum of the weights on the edges.

A spanning tree is a tree that connects all of the vertices.

Jing Tang DSA | HKUST(GZ) 23

Say we have an undirected weighted graph

A spanning tree is a tree that connects all of the vertices.

Why MSTs?

- Network design
 - Connecting cities with roads/electricity/telephone/...
- Cluster analysis
 - E.g., genetic distance
- Image processing
 - E.g., image segmentation
- Useful primitive
 - For other graph algs

How to find an MST

Idea:

Start growing a tree, greedily add the shortest edge we can to grow the tree.

How to find an MST

Idea:

Start growing a tree, greedily add the shortest edge we can to grow the tree.

We've discovered Prim's algorithm!

- slowPrim(G = (V,E), starting vertex s):
 - MST = {}
 - verticesVisited = { s }
 - while |verticesVisited| < |V|:
 - find the lightest edge {x,v} in E so that:
 - x is in verticesVisited
 - v is not in verticesVisited
 - add {x,v} to MST
 - add v to verticesVisited
 - return MST

Naively, the running time is O(nm):

- For each of ≤n-1 iterations of the while loop:
 - Go through all the edges.

Efficient Implementation

- Each vertex keeps:
 - the (single-edge) distance from itself to the growing spanning tree

– how to get there. I'm 7 away. C is the closest. D 11 14 I can't get to the 8 10 tree in one edge G

Efficient Implementation

- Each vertex keeps:
 - the (single-edge) distance from itself to the growing spanning tree

– how to get there.

Efficient Implementation

- Each vertex keeps:
 - the (single-edge) distance from itself to the growing spanning tree

11

– how to get there.

Choose the closest vertex, add it.

8

• Update stored info.

Efficient Implementation

Every vertex has a key and a parent

Can't reach x yet x is "active"
Can reach x

k[x] is the distance of x from the growing tree

p[b] = a, meaning thata was the vertex thatk[b] comes from.

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

Efficient Implementation

Every vertex has a key and a parent

k[x] is the distance of x from the growing tree

p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

- Very similar to Dijkstra's algorithm!
- Differences:
 - 1. Keep track of p[v] in order to return a tree at the end
 - But Dijkstra's can do that too, that's not a big difference.
 - 2. Instead of d[v] which we update by
 - d[v] = min(d[v], d[u] + w(u,v))
 we keep k[v] which we update by
 - k[v] = min(k[v], w(u,v))

Thing 2 is the main difference.

what if we just always take the cheapest edge?
whether or not it's connected to what we have so far?

- slowKruskal(G = (V,E)):
 - Sort the edges in E by non-decreasing weight.
 - $-MST = \{\}$
 - − for e in E (in sorted order): m iterations through this loop
 - if adding e to MST won't cause a cycle:
 - add e to MST.

How do we check this?

-return MST

At each step of Kruskal's, we are maintaining a forest.

At each step of Kruskal's, we are maintaining a forest.

When we add an edge, we merge two trees:

Union-find data structure

Implementation – Lab 13

- Used for storing collections of sets
- Supports:
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in.

```
makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)
find(x)
```



```
• kruskal(G = (V,E)):

    Sort E by weight in non-decreasing order

    -MST = \{\}
                                          // initialize an empty tree
    – for v in V:
         makeSet(v)
                                         // put each vertex in its own tree in the forest
    - for (u,v) in E:
                                          // go through the edges in sorted order
         • if find(u) != find(v):
                                         // if u and v are not in the same tree
             - add (u,v) to MST
             – union(u,v)
                                         // merge u's tree with v's tree
    – return MST
```


Running time

- Sorting the edges takes O(m log(n))
 - In practice, if the weights are small integers we can use radixSort and take time
 O(m)
- For the rest:
 - n calls to makeSet
 - put each vertex in its own set
 - 2m calls to find
 - for each edge, find its endpoints
 - n-1 calls to union
 - we will never add more than n-1 edges to the tree,
 - so we will never call **union** more than n-1 times.
- Total running time: O(mlog(n))

Complexity Classes

Jing Tang DSA | HKUST(GZ) 42

P and NP

 Definition: The class P consists of all decision problems that are solvable in polynomial time

- Definition: The class NP consists of all decision problems such that, for each yes-input, there exists a certificate that can be verified in polynomial time.
 - NP stands for "Nondeterministic Polynomial time".
- P = NP?

The End

Jing Tang DSA | HKUST(GZ) 44