REMARKS

Entry of the amendments to the specification, claims and abstract before examination of the application is respectfully requested. These claims have been amended to remove multiple dependencies.

If there are any questions regarding this Preliminary Amendment or the application in general, a telephone call to the undersigned would be appreciated since this should expedite the prosecution of the application for all concerned.

If necessary to effect a timely response, this paper should be considered as a petition for an Extension of Time sufficient to effect a timely response, and please charge any deficiency in fees or credit any overpayments to Deposit Account No. 05-1323 (Docket # 095309.58116US).

Respectfully submitted,

August 11, 2006

Gary R. Edwards

Registration No. 31,824 Cameron W. Beddard

Registration No. 46,545

CROWELL & MORING LLP Intellectual Property Group P.O. Box 14300 Washington, DC 20044-4300 Telephone No.: (202) 624-2500 Facsimile No.: (202) 628-8844

GRE:CWB:crr

2820188

MARKED-UP COPY

Method and Device for Producing a Peripherally Closed Hollow Profile

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a national stage of PCT International

Application No. PCT/EP2005/001283, filed February 9, 2005, which claims

priority under 35 U.S.C. § 119 to German Patent Application No. 10 2004 007

056.3, filed February 13, 2004, the entire disclosures of which are herein

expressly incorporated by reference.

BACKGROUND AND SUMMARY OF THE INVENTION

[0002] The present invention relates to a device and a method of producing

a peripherally closed hollow profile according to the preamble of patent claim 1

and to a device for this according to the preamble of patent claim 3.

[0003] A method of the generic type or a device of the generic type has been

disclosed by German patent document DE 195 30 056 A1 discloses a . In the

method of the generic type in which described there, a branch is supported at its

cap by a yielding counterholder while it is being shaped from a hollow profile

blank by means of internal high pressure, this branch being supported at its cap

by a yielding counterholder during the shaping process. In the marginal region of

the cap, the branch in each case has a large radius, so that it bears only with its

center region bears against the end face of the counterholder. The supporting

surface formed by the end face of the counterholder is enclosed by a collar-like,

concave cutting edge. The center region of the cap of the branch is thus located,

as it were, in a hollow of the counterholder.

-1-

MARKED-UP COPY

[0004] After the desired height of the branch is reached, the forming

pressure is considerably increased, so that as a result of which the radius in the

marginal region of the cap of the branch decreases and the latter is pressed

against the vertically projecting cutting edge. As a result, the cutting edge cuts

an encircling groove in the cap. The counterholder is now displaced toward the

branch against the shaping direction of the branch, so that as a result of which

the cutting edge of the counterholder cuts completely through the cap. In the

process, the counterholder plunges into the resulting opening, thus produced, of

the branch. In this case, a \underline{A} calibrating bead axially adjoining the cutting edge

smooths the inner wall of the branch.

[0005] Considerable outlay cost is required in order to produce this cutting

edge of special design. Furthermore, this cutting edge of special design is

subjected to extremely pronounced loading by the increased internal pressure

above the forming pressure, a factor which relatively quickly leads during

operation to chipping at the cutting edge and thus results in a short service life

of the counterholder.

[0006] On account of the described high susceptibility of the cutting edge to

the high, fluidic and mechanical loads, reliable severing of the cap in the series

production in a reliable manner in terms of the process is not possible. After ,

since, after damage to the cutting edge, the stamping of the openings at the

branch is effected only incompletely, and as a result the component thus

produced has to be scrapped. The costs arising here are considerable, which, in

-2-

addition to the increased use of material, also include the downtimes for resetting or repairing the counterholder.

One The object of the present invention is to provide to develop a method of the generic type to the effect that the production of for producing a hollow profile having secondary features and/or branches, is made possible, during which method reliably severs reliable severing of the cap of the secondary feature or of the branch, is achieved in a simple manner.

[0008] Another object of the present invention is to provide Furthermore, a device for carrying out the method is to be shown.

[0009] The object is achieved according to the invention by the features of patent claim 1 with regard to the method and by the features of patent claim 3 with regard to the device.

In the prior art, the severing of the caps is effected solely by a stroke of the counterholding punch in the opposite direction to the expansion direction of the hollow profile. In the process, the end face of the counterholding punch runs in a continuously even manner and thus has no cutting or severing contours of special design. As a result, not only is the counterholding punch of markedly simpler configuration, which considerably reduces the outlay in terms of

equipment, but the end face and the severing contour of the counterholding punch also become less susceptible to mechanical loads, which ensures especially long durability of the severing contour of the counterholding punch.

There is also the fact that the The internal high pressure still does [0011]not have to exceed the forming pressure in order to sever the cap of the secondary feature and/or of the branch. Rather, but rather the forming pressure normally applied, or also pressures which do not exceed said the forming pressure, are sufficient in order to neatly sever the cap, a factor which additionally relieves the severing contour. Excessive outlay in terms of equipment is not necessary for this purpose, the this outlay being necessary at pressures which exceed the forming pressure. The , since the closure force for the hydroforming tool can only be applied by extraordinarily powerful hydraulic cylinders and an extremely robust press frame. However, the width of the annular gap between the wall of the passage[[,]] (which is formed in the forming tool and in which the punch is guided in a displaceable manner), and the punch circumference should correspond approximately to the wall thickness of the secondary feature or of the branch. Otherwise, , since otherwise hollow profile material can be displaced into the annular gap by means of the internal high pressure during the shaping of the branch or of the secondary feature. , a factor which Such displacement into the annular gap may lead to an undesirable shape of the branch or of the secondary feature and also to premature severing of the cap on account of the hollow profile material bearing against the severing contour. Therefore, the invention achieves reliable severing of the cap of the

MARKED-UP COPY

secondary feature or of the branch, is achieved overall in a simple manner by the solution according to the invention.

[0012] In an exemplary embodiment especially preferred development of

the invention as claimed in claim 2 or in a corresponding preferred development

of the device according to the invention as claimed in claim 5, the secondary

feature and/or the branch, after the severing operation[[,]] by a plunging

movement of the counterholding punch into the opened secondary feature and/or

the branch, the secondary feature and/or branch is calibrated by means of a

calibrating contour corresponding to the shape of the secondary feature or of the

branch. The Said calibrating contour adjoins the punch end on the side facing

away from the hollow profile. A number of practical tests have shown that the

known encircling bead is not necessary in order to calibrate the secondary

feature or the branch. On the contrary, it may be dispensed with in a simple

manner, which substantially simplifies the configuration of the counterholding

punch. The configuration of the counterholding punch is merely to be adapted to

the desired shape of the branch or of the secondary feature.

[0013] In another exemplary embodiment a further, especially preferred

development of the device according to the invention as claimed in claim-6, an

encircling collar is formed on the counterholding punch and directly adjoins the

calibrating contour on the side facing away from the hollow profile. The

exemplary embodiment This ensures that the inhomogeneous material

distribution of the secondary feature or of the branch which occasionally occurs

due to the calibration and which leads to an unevenly drawn-in margin of the

-5-

branch or of the secondary feature is made more uniform by the collar being pressed axially onto the end edge, obtained by the trimming, of the secondary feature or of the branch. The end edge, which is of high quality on account of its evenness and as a result of the almost tolerance-free design, has a favorable effect for subsequent processes for connecting the hollow profile to further components. The further components may which have to be fastened to the branch or the secondary feature in the sense that the joining gap between the end edge and the component is of uniform size. Therefore, and therefore a homogeneous joint which thus provides an especially good long-term hold, is achieved. In this case, joining techniques such as welding, adhesive bonding or the like can be used in a reliable manner.

[0014] In a further, especially preferred configuration exemplary embodiment of the device according to the invention as claimed in claim 4, the punch end which contains the severing contour is of frustoconical design and has bevel surfaces facing the secondary feature or the branch. Due to the conical shape of the counterholding punch, a radially encircling sealing seat is produced on the branch or secondary feature, as a result of which a pressure drop inside the hollow profile is prevented in a most advantageous manner. Thus, by means of a plurality of stamping counterholding punches arranged at the hollow profile, a plurality of branches can be opened simultaneously or one after the other. In other words, that is to say the cap can be severed from the branch[[,]] without the internal high pressure in the hollow profile dropping and thereby resulting in inadequate process reliability.

MARKED-UP COPY

[0015] In another exemplary embodiment a further preferred development

of the device according to the invention as claimed in claim 7, the end edge of the

counterholding punch is rounded. The rounding of the end edge, which forms the

severing contour, additionally is rounded, which also prevents a severing

operation from already being effected occurring during the shaping of the branch

or of the secondary feature. In this way, during the subsequent deliberate

severing of the cap, the same is not stamped out sharply but rather is torn out by

the counterholding punch, as a result of which an undefined opening margin is

produced, which, however, is smoothed by the subsequent calibration and

therefore leads to the desired production result.

[0016] Other objects, advantages and novel features of the present

invention will become apparent from the following detailed description of the

invention when considered in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The invention is explained in more detail below with reference to

two exemplary embodiments shown in the drawings, in which:

[0018] Fig. fig. 1 shows a lateral longitudinal section of a device according

to the invention in the expansion phase of the hollow profile, with yielding

counterholding punch; [[,]]

[0019] Fig. fig. 2 shows a lateral longitudinal section of the device from

figure 1 after completion of the hollow profile expansion, with a counterholding

punch severing the cap of the shaped secondary feature; [[,]]

-7-

[0020] Fig. fig. 3 shows a cutaway side view of a counterholding punch of a device according to the invention, with a calibrating contour adjoining the punch end at the rear; and [[,]]

[0021] Fig. fig. 4 shows a cutaway side view of a counterholding punch of a device according to the invention, with an encircling collar.

DETAILED DESCRIPTION OF THE DRAWINGS

[0022] Shown in Figure figure 1 is a device 1 which comprises a hydroforming tool 2 and with which a peripherally closed hollow profile 3, which is inserted into the hydroforming tool 2, serves with a secondary feature and/or a branch 4. Furthermore, the device 1 contains a counterholding punch 5 which is integrated in the forming tool 2 in such a way as to be displaceable with little clearance.

[0023] To form the said hollow profile 3, a hollow profile blank 23 inside the hydroforming tool 2 is put under such a fluidic internal high pressure P_{\pm} P_{\pm} that said hollow profile blank 23 expands and comes into contact with the cavity 6 of the forming tool 2, in which the blank 23 is inserted, in such a way as to conform to the contour. In the region of a passage 7 which is formed in the forming tool 2 and in which the counterholding punch 5 is accommodated in a displaceable manner, the hollow profile material is displaced into said passage 7 as a result of the internal high pressure P_{\pm} P_{\pm} and forms a secondary feature or the branch 4 in the process. To shape the branch 4 in a reliable manner in terms of the process, it is supported by the end face 8 of the counterholding punch 5 while it is being produced. The , the punch 5 yielding yields in the arrow

direction with increasing shaped length of the branch 4. In order to deliver sufficient hollow profile material into the expansion region of the branch 4, two axial punches 9 of the device 1 are provided. The axial punches 9, which act upon the hollow profile 3 on both ends in a sealing manner and advance both ends 10 in the arrow direction in the direction of the expansion region during the expansion.

As shown in Figure 5, after the desired branch length has [0024] been achieved, the drive of the counterholding punch 5 is reversed, so that the latter plunges into the secondary feature or the branch 4 and in the process severs its cap 11. A, with a hole slug being is formed[[,]] by means of a severing contour which is formed by the end edge 12 of the punch 5. The severing process This takes place according to the arrow direction with a force F. In the meantime, a pressure which corresponds to or is lower than the forming pressure prevails in the hollow profile 3. The end face 8 enclosed by the end edge 12 of the punch 5 runs in a continuously even manner. In order to permit problem-free plunging into the branch 4, the width of the annular gap 22 between the circumference 13 of the punch 5 and the passage wall 14 is dimensioned in such a way that it corresponds approximately to the wall thickness of the secondary feature or of the branch 4. The cap 11 of the branch 4 is therefore severed solely by a stroke of the counterholding punch 5 in the opposite direction to the expansion direction of the hollow profile 5. After the pressure is released, the hydroforming tool 2 is opened and the finish-formed and processed hollow profile 3 is removed.

[0025] As can be seen from Figures figures 1 and 2, the counterholding punch 5 can be of continuously cylindrical design. In deviation therefrom, the punch end 15 which faces the branch 4 and contains the severing contour may be of frustoconical design according to fig. Fig. 3, in which case it has bevel surfaces 16 facing the secondary feature or the branch 4. The opened branch 4 is sealed off in a completely pressure-tight manner via these bevel surfaces 16. As a result, a pressure drop inside the hollow profile 3 is avoided, so that branches 4 formed at other points of the hollow profile 3 can be effected sequentially in a reliable manner in terms of the process by severing the cap by means of a counterholding punch 5 arranged there in each case.

[0026] In deviation from the preceding exemplary embodiment of the configuration of the counterholding punch 5, as can be seen from Figure figure 3, a counterholding punch 17, according to Figure figure 4, in another exemplary embodiment, additionally has a calibrating contour 18, which, on that side of the punch 17 which faces away from the hollow profile, adjoins the punch end 19 and is designed in accordance with the contour of the secondary feature or of the branch. In this way, when the counterholding punch 17 plunges deeper into the branch 4, the region of the opening on the branch, this region being formed by the cap trimming, is readily smoothed to a sufficient extent in accordance with the desired shape. This provides for optimum connection to further components which have to be put into or onto the branch of the hollow profile 3.

[0027] Furthermore, an encircling collar 20 of the counterholding punch 17 directly adjoins the calibrating contour 18 on the side facing away from the

hollow profile. This The collar 20 acts upon the end face of the opening margin of

the branch, thereby ensuring uniform evenness of this end face. If need be, the

end edge 21 of the counterholding punch 17 may also be rounded in order

completely to prevent an encircling predetermined breaking point from being

produced during the supporting function of the counterholding punch 17. The ,

which predetermined breaking point may burst open at least locally on account

of the prevailing internal high pressure, whereupon the further formation of the

branch 4 can no longer be effected in a reliable manner in terms of the process.

Nonetheless, after the supporting function of the counterholding punch 17 has

been dispensed with, the cap 11 can still be severed from the branch 4 by the

rounded end edge 21 of the punch end 19.

[0028] The foregoing disclosure has been set forth merely to illustrate the

invention and is not intended to be limiting. Since modifications of the disclosed

embodiments incorporating the spirit and substance of the invention may occur

to persons skilled in the art, the invention should be construed to include

everything within the scope of the appended claims and equivalents thereof.

-11-