Particle spectrograph

Wave operator and propagator

$t_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} + ^{\alpha}$	$\tau_1^{\#2} + \alpha$

Quadratic (free) Lagrangian density
$-t_1\;\omega_{\alpha}^{\;\alpha\prime}\;\;\omega_{\kappa\alpha}^{\;\;\kappa}-t_1\;\omega_{\kappa}^{\;\;\kappa\lambda}\;\;\omega_{\kappa\lambda}^{\;\;\prime}+f^{\alpha\beta}\;\;\tau_{\alpha\beta}+\omega^{\alpha\beta\chi}\;\;\sigma_{\alpha\beta\chi}+\frac{2}{3}r_2\;\partial^\beta\omega^{\theta\alpha}_{\;\;\kappa}\partial_\theta\omega_{\alpha\beta}^{\;\;\kappa}-$
$\frac{1}{3}r_2\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\alpha\beta\theta} - \frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\theta\alpha\beta} - \frac{1}{2}t_1\partial^\alpha f_{\kappa}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\theta} -$
$rac{1}{2}t_1\partial^{lpha}f^{\lambda}_{}\partial^{\kappa}f_{\lambda}+t_1\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{}+t_1\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{}+2t_1\partial^{lpha}f_{\kappa\alpha}\partial^{\kappa}f'_{},$
$t_1 \partial_k f^\lambda_{\ \lambda} \partial^k f'_{\ \kappa} + 2 t_1 \omega_{\kappa \theta} \partial^\kappa f'^\theta - t_1 \omega_{\alpha}^{\ \alpha} \partial^\kappa f'_{\ \kappa} - t_1 \omega_{\alpha}^{\ \lambda} \partial^\kappa f'_{\ \kappa} + \frac{1}{2} t_1 \partial^\alpha f^\lambda_{\ \kappa} \partial^\kappa f_{\lambda \alpha} + \frac{1}{2} \partial^\alpha f^\lambda_{\ \kappa} \partial^\kappa f_{\lambda \alpha} + \frac{1}{2} \partial^\alpha f^\lambda_{\ \kappa} \partial^\kappa f^\lambda_{\ \kappa} + \frac{1}{2} \partial^\alpha f^\lambda_{\ \kappa} \partial^\alpha f^\lambda_{\ \kappa} + \frac{1}{2} \partial^\alpha f^\lambda_{\ \kappa} \partial^\alpha f^\lambda_{\ \kappa} + \frac{1}{2} \partial^\alpha f^\lambda_{\ \kappa} + \frac{1}{2} \partial^\alpha f^\lambda_{\ \kappa} \partial^\alpha f^\lambda_{\ \kappa} + \frac{1}{2} \partial^\alpha f^\lambda_{\ \kappa} \partial^\alpha f^\lambda_{\ \kappa} + \frac{1}{2} \partial^\alpha f^\lambda_{\ \kappa$
$\frac{1}{2}t_1\partial_\kappa f_{\theta}{}\partial^\kappa f_{\theta}{} + \frac{1}{2}t_1\partial_\kappa f^{\lambda}{}\partial^\kappa f_{\lambda}{} - t_1\partial^\alpha f^{\lambda}{}\partial^\kappa f_{\lambda}{} + \frac{1}{3}r_2\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} +$
$\frac{2}{3} r_2 \partial_\kappa \omega^{\theta \alpha \beta} \partial^\kappa \omega_{\alpha \beta \theta} - \frac{2}{3} r_2 \partial^\beta \omega_{\alpha}^{\ \alpha \lambda} \partial_\lambda \omega_{\alpha \beta}^{\ \ \prime} + \frac{2}{3} r_2 \partial^\beta \omega_{\lambda}^{\ \lambda \alpha} \partial_\lambda \omega_{\alpha \beta}^{\ \prime}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

0

0

0

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

0

0

0

0

 $\omega_1^{\#_2^2} \uparrow^{\alpha\beta}$

0

0

0

 $\omega_{1^{-}}^{\#2}{}_{lpha}\,f_{1^{-}}^{\#1}{}_{lpha}$

 $\bar{l}\,k\,t_1$

 $\frac{t_1}{\sqrt{2}}$

 $-\frac{t_1}{2}$

0

 $\omega_{1}^{\#_1} \dagger^\alpha$

0

0

 $\frac{t_1}{\sqrt{2}}$

0

0

 $\omega_{1}^{\#2} \uparrow^{\alpha}$

0

0

0

0

0

0

0

0

0

0

$\sigma_{2-\alpha\beta\chi}^{\#1}$	1		$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
0		$\omega_{0^{+}}^{\#1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0
0		$f_{0+}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
U		$f_{0+}^{#2}\dagger$	0	0	0	0
$\frac{2}{t_1}$		$\omega_0^{\sharp 1}$ †	0	0	0	$k^2 r_2 - t_1$

 $\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$

Total constraints:

 $\tau_2^{\#1}\alpha\beta$

erators	cities			
lauge gen	Multiplicities	1	1	3
Source constraints/gauge generators	SO(3) irreps	$\tau_{0}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha == 0$ 3

$\sigma_{0}^{\#1}$	0	0 0		$\frac{1}{k^2 r_2 - t_1}$
$ au_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_{0}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
,	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ †

Massive and massless spectra

(No massless particles)

Unitarity conditions