Contents

1	General Information	1
	1.1 Vectors]
_	Kinematics 2.1 1-D Kinematics]

1 General Information

1.1 Vectors

2 Kinematics

Defn 1 (Kinematics). *Kinematics* is a way to describe macroscopic motion with equations. This includes anything moving, falling, thrown, shot, launched, etc. This forms the fundamental basis for all of classical mechanics.

2.1 1-D Kinematics

Defn 2 (1-D Displacement). One dimensional displacement is calculated based on the change in position of the 'thing.'

$$s = x_2 - x_1 (2.1)$$

Remark 2.1. Displacement is different than path! Displacement is the change in position of an object. Path is the length of the path takes between its starting and end point.

Defn 3 (1-D Velocity). One dimensional velocity is calculated as the displacement per unit time. There is instantaneous velocity and average velocity. Average velocity is calculated with Equation (2.2).

$$v = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} \tag{2.2}$$

Instantaneous velocity is calculated by reducing the time interval Δt to 0. This can be summarized in Equation (2.3).

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} \tag{2.3}$$

Defn 4 (Acceleration). One dimesional acceleration is the change in velocity over time. Again, there is average acceleration and instantaneous acceleration. Average acceleration is calculated with Equation (2.4)

$$a = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1} \tag{2.4}$$

Instantaneous acceleration is calculated by reducing the time interval Δt to 0. This can be summarized by Equation (2.5).

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2x}{dt^2} \tag{2.5}$$