Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil C: Berechenbarkeit und Entscheidbarkeit

13: Die Church-Turing-These

Version von: 7. Juni 2018 (14:20)

Plan

- Alle im letzten Kapitel betrachteten Berechnungsmodelle sind gleichmächtig:
 - WHILE-Programme
 - GOTO-Programme
 - Turingmaschinen
- Die Church-Turing-These besagt, dass diese (und andere) Modelle gerade die intuitiv berechenbaren Funktionen erfassen
- Außerdem:
 - Turingmaschinen mit mehreren Strings k\u00f6nnen durch 1-String-Turingmaschinen simuliert werden

Inhalt

→ 13.1 WHILE vs. GOTO

- 13.2 Mehrstring-Turingmaschinen
- 13.3 Turingmaschinen und WHILE/GOTO-Programme
- 13.4 Die Church-Turing-These
- 13.5 Entscheidbarkeit und Berechenbarkeit: Definition

GOTO → WHILE

Satz 13.1

Jede GOTO-berechenbare Funktion ist auch WHILE-berechenbar

Beweisidee

 $M_1:A_1;\ M_2:A_2;\ M_k:A_k$

 $x_z := 1;$ WHILE $x_z \neq 0$ DO

IF $x_z = 1$ THEN A_1' END;
IF $x_z = 2$ THEN A_2' END;

:

IF $x_z = k$ THEN A_k' END;
IF $x_z = k + 1$ THEN $x_z := 0$

$$ullet$$
 $A_n = \boxed{x_i := x_j + c}$

$$\Rightarrow A'_n = x_i := x_j + c; x_z := x_z + 1$$

$$ullet$$
 $A_n = \boxed{x_i := x_j - c}$

$$\Rightarrow$$
 $A'_n = x_i := x_j - c; \quad x_z := x_z + 1$

$$ullet$$
 $oldsymbol{A_n} = oldsymbol{eta_i} oldsymbol{x_i} = oldsymbol{c}$ Then goto $oldsymbol{M_j} \Rightarrow$

$$A_n' = x_z := x_z + 1;$$
 IF $x_i = c$ Then $x_z := j$ end

$$\Rightarrow$$

$$A'_n = x_z := 0$$

WHILE → GOTO

Satz 13.2

 Jede WHILE-berechenbare Funktion ist auch GOTO-berechenbar

Beweisidee

- Wertzuweisungen müssen nicht übersetzt werden
- ullet Reihung von P_1 und P_2 lässt sich durch Konkatenation und Ersetzung der HALT-Anweisungen in P_1 übersetzen
- Ein Teilprogramm

WHILE $x_i \neq 0$ DO $oldsymbol{P}$ END

kann durch

 M_1 : IF $x_i=0$ THEN GOTO M_2 ; P'; GOTO $M_1;$

 $M_2 : x_i := x_i$

simuliert werden

- Kleines Fazit:
 - Die Klasse der WHILEberechenbaren Funktionen ist also gleich der Klasse der GOTO-berechenbaren Funktionen
- Es gilt sogar:
 - Jede WHILE-berechenbare

 Funktion ist durch ein WHILE Programm mit nur einer
 WHILE-Schleife (aber mehreren IF-Anweisungen) berechenbar

Inhalt

- 13.1 WHILE vs. GOTO
- > 13.2 Mehrstring-Turingmaschinen
 - 13.3 Turingmaschinen und WHILE/GOTO-Programme
 - 13.4 Die Church-Turing-These
 - 13.5 Entscheidbarkeit und Berechenbarkeit: Definition

Mehrstring-Turingmaschinen: Beispiel

- Um die Umwandlung von WHILE-Programmen in Turingmaschinen zu erleichtern, gönnen wir uns etwas mehr Komfort:
 - Turingmaschinen mit mehreren Strings
- Wichtig: Bei jeder einzelnen Turingmaschine ist die Anzahl der Strings fest

Beispiel

2-String-Turingmaschine zum Test, ob die Eingabe von der Form ww^R ist:

a: Kopiere Eingabewort vom ersten auf den zweiten String (bis \Box)

b/c: Bewege Kopf 2 zurück an Anfang, teste dabei, ob die Anzahl der Zeichen gerade oder ungerade ist

d: Bewege Kopf 1 nach links, Kopf 2 nach rechts, vergleiche jeweils die gelesenen Zeichen

Mehrstring-Turingmaschinen: Transitionsfunktion

Beispiel

2-String-Turingmaschine zum Test, ob die Eingabe von der Form ${m ww^R}$ ist:

a: Kopiere Eingabewort vom ersten auf den zweiten String (bis \Box)

b/c: Bewege Kopf 2 zurück an Anfang, teste dabei, ob die Anzahl der Zeichen gerade oder ungerade ist

d: Bewege Kopf 1 nach links, Kopf 2 nach rechts, vergleiche jeweils die gelesenen Zeichen

Beispiel

Vorher			Nachher				
q	γ_1	$ \gamma_2 $	$oxed{q}$	γ_1	$ \gamma_2 $	d_1	d_2
a	∇	Δ	a	Δ	∇	\rightarrow	\rightarrow
a	0		a	0	0	\rightarrow	\rightarrow
a	1	Ш	a	1	1	\rightarrow	\rightarrow
a			b			\rightarrow	←
b		0	c	Ш	0	\	←
c		1	b		1	\downarrow	←
\boldsymbol{b}		1	c	Ш	1	\downarrow	←
c		0	b	Ш	0	\downarrow	←
b		\triangleright	d		\triangleright	←	\rightarrow
\overline{d}	0	0	d	0	0	←	\rightarrow
d	1	1	d	1	1	←	\rightarrow
d	\triangle	Ш	+	\triangleright	Ш	\downarrow	\downarrow

Mehrstring-Turingmaschinen: Definition (1/2)

Definition (Mehrstring-TM (Syntax))

- ullet Sei $k\geqslant 1$
- ullet Eine $k ext{-String-Turingmaschine }M=(Q,\Gamma,\delta,s)$ besteht aus
 - einer endlichen Menge Q, \square Zustandsmenge
 - einem Alphabet Γ , mit \sqcup , $\triangleright \in \Gamma$, \square Arbeitsalphabet

einer Funktion

$$\delta: Q imes \Gamma^k o (Q \cup \{h, \mathsf{ja}, \mathsf{nein}\}) imes \Gamma^k imes \{\leftarrow, \downarrow, o\}^k$$

- ullet einem ausgezeichneten Zustand $s\in Q$ llet Startzustand
- Dabei seien $Q, \Gamma, \{h, \mathsf{ja}, \mathsf{nein}\}$ und $\{\leftarrow, \downarrow, \rightarrow\}$ paarweise disjunkt

Bemerkungen

- ullet Die Anzahl k der Strings ist implizit durch δ gegeben
- ullet Wenn es auf das genaue k nicht ankommt, sagen wir auch Mehrstring-Turingmaschine statt k-String-Turingmaschine

Mehrstring-Turingmaschinen: Diagrammdarstellung

Beispiel-TM in Diagramm-Darstellung

- In diesem Beispiel gilt die Konvention:
 - Ist für $(q, \sigma_1, \ldots, \sigma_k) \in Q imes \Gamma^k$ kein Übergang eingezeichnet, so sei $\delta(q, \sigma_1, \ldots, \sigma_k) \stackrel{\scriptscriptstyle \mathsf{def}}{=} (\mathsf{nein}, \sigma_1, \ldots, \sigma_k, \downarrow, \ldots, \downarrow)$

Mehrstring-Turingmaschinen: Definition (2/2)

Definition (Mehrstring-TM (Semantik))

- ullet Sei $oldsymbol{k}\geqslant oldsymbol{1}$ und $oldsymbol{M}=(oldsymbol{Q},oldsymbol{\Gamma},oldsymbol{\delta},oldsymbol{s})$ eine $oldsymbol{k}$ -string-TM
- Ein-/Ausgabealphabet:

$$\Sigma \subseteq \Gamma - \{\sqcup, \rhd\},$$

- ullet Konfiguration von M: k+1Tupel (q,s_1,\ldots,s_k) , wobei
 - $-q \in Q$
 - s_i String-Zeiger-Beschreibung für i-ten String
- $\begin{array}{c} \bullet \quad \underline{ \text{Startkonfiguration}} \; K_0(u) \\ \hline \text{von } M \; \text{bei Eingabe} \; u \in \Sigma^* \colon \\ (s, (\triangleright u, 1), \\ (\triangleright, 1), \dots, (\triangleright, 1)) \end{array}$
- (q, s_1, \dots, s_k) ist Haltekonfiguration, falls $q \in \{h, ja, nein\}$

Definition (Forts.)

- ullet Sei $oldsymbol{K}=(oldsymbol{q},(oldsymbol{u_1},oldsymbol{z_1}),\ldots,(oldsymbol{u_k},oldsymbol{z_k})$ eine Konfiguration von $oldsymbol{M}$ und sei, für jedes $oldsymbol{i},oldsymbol{\sigma_i}\overset{ ext{def}}{=}oldsymbol{w}[oldsymbol{i}]$
- Ist $\delta(q,\sigma_1,\ldots,\sigma_k)$ = $(q',\tau_1,\ldots,\tau_k,d_1,\ldots,d_k),$ so ist $K'=(q',(u'_1,z'_1),\ldots,(u'_k,z'_k))$ die Nachfolgekonfiguration von K, wenn für alle i gilt:
 - $z_i'=z_i+1$, falls $d_i=\rightarrow$,
 - $z_i'=z_i$, falls $d_i=\downarrow$,
 - $z_i' = z_i 1$, falls $d_i = \leftarrow$,
 - $u_i' = u_i[z_i/ au_i]$ \sqcup , falls $z_i = |u_i'|$ und $d_i = \to$,
 - $u_i' = u_i'[z_i/ au_i]$, andernfalls
- ullet Schreibweise: $K dash_M K'$
 - Sprechweise: $oldsymbol{M}$ erreicht $oldsymbol{K}'$ von $oldsymbol{K}$ aus in einem Schritt
- ullet Die übrigen Begriffe wie Berechnungen, Akzeptieren, Ablehnen, $\vdash_{oldsymbol{M}}^*$, $oldsymbol{L}(oldsymbol{M})$ sind definiert wie bei (1-String)-Turingmaschinen

Semantik von Mehrstring-TM: Beispiel

Beispiel


```
(a,(\epsilon,\rhd,011110),(\epsilon,\rhd,\epsilon))\vdash_{M}(a,(\rhd,0,11110),(\rhd,\sqcup,\epsilon))\vdash_{M}(a,(\epsilon,\rhd,0,11110),(\rhd,\sqcup,\epsilon))
                                      (a,(\rhd 0,1,1110),(\rhd 0,\sqcup,\epsilon)) \vdash_{M} (a,(\rhd 01,1,110),(\rhd 01,\sqcup,\epsilon)) \vdash_{M} (a,(\rhd 0,1,1110),(\rhd 0,\sqcup,\epsilon)) \vdash_{M} (a,(\rhd 0,1,1110),(\rhd 0,\sqcup,\epsilon)))
                              (a,(\rhd 011,1,10),(\rhd 011,\sqcup,\epsilon)) \vdash_{M} (a,(\rhd 0111,1,0),(\rhd 0111,\sqcup,\epsilon)) \vdash_{M}
                  (a,(\rhd 01111,0,\epsilon),(\rhd 01111,\sqcup,\epsilon)) \vdash_{M} (a,(\rhd 011110,\sqcup,\epsilon),(\rhd 011110,\sqcup,\epsilon)) \vdash_{M}
            (b,(\rhd 011110,\sqcup,\epsilon),(\rhd 01111,0,\sqcup)) \vdash_{M} (c,(\rhd 011110,\sqcup,\epsilon),(\rhd 0111,1,0\sqcup)) \vdash_{M} (c,(\rhd 011110,\sqcup,\epsilon),(\rhd 01111,1,0\sqcup)) \vdash_{M} (c,(\rhd 0111110,\sqcup,\epsilon),(\rhd 011111,1,0\sqcup)) \vdash_{M} (c,(\rhd 0111110,\sqcup,\epsilon),(\rhd 01111110,\sqcup,\epsilon))
            (b,(\rhd 011110,\sqcup,\epsilon),(\rhd 011,1,10\sqcup))\vdash_{M}(c,(\rhd 011110,\sqcup,\epsilon),(\rhd 01,1,110\sqcup))\vdash_{M}(c,(\rhd 011110,\sqcup,\epsilon),(\rhd 01,1,110\sqcup))\vdash_{M}(c,(\rhd 011110,\sqcup,\epsilon),(\rhd 01,1,110\sqcup))
            (b,(\rhd 011110,\sqcup,\epsilon),(\rhd 0,1,1110\sqcup))\vdash_{M}(c,(\rhd 011110,\sqcup,\epsilon),(\rhd,0,11110\sqcup))\vdash_{M}(c,(\rhd 011110,\sqcup,\epsilon),(\rhd,0,11110\sqcup))\vdash_{M}(c,(\rhd 011110,\sqcup,\epsilon),(\rhd,0,11110\sqcup))
        (b,(\rhd 011110,\sqcup,\epsilon),(\epsilon,\rhd,011110\sqcup))\vdash_{M}(d,(\rhd 01111,0,\sqcup),(\rhd,0,11110\sqcup))\vdash_{M}(d,(\rhd 01111,0,\sqcup),(\rhd,0,11110\sqcup))\vdash_{M}(d,(\rhd 011110,\sqcup,0,\sqcup),(\rhd,0,11110\sqcup))
               (d,(\rhd 0111,1,0\sqcup),(\rhd 0,1,1110\sqcup))\vdash_{M}(d,(\rhd 011,1,10\sqcup),(\rhd 01,1,110\sqcup))\vdash_{M}(d,(\rhd 0111,1,10\sqcup),(\rhd 01,1,110\sqcup))\vdash_{M}(d,(\rhd 0111,1,10\sqcup),(\rhd 01,1,110\sqcup))
              (d,(\rhd 01,1,110 \sqcup),(\rhd 011,1,10 \sqcup)) \vdash_{M} (d,(\rhd 0,1,1110 \sqcup),(\rhd 0111,1,0 \sqcup)) \vdash_{M}
              (d,(\rhd,0,11110\sqcup),(\rhd01111,0,\sqcup))\vdash_{M}(d,(\epsilon,\rhd,011110\sqcup),(\rhd011110,\sqcup,\epsilon))\vdash_{M}(d,(e,\rhd,011110\sqcup),(\rhd011110,\sqcup,\epsilon))
(",ja",(\epsilon,\rhd,011110\sqcup),(\rhd 011110,\sqcup,\epsilon))
```

Turingmaschinen: Robustheit

Satz 13.3

ullet Zu jeder Mehrstring-TM $m{M}=(m{Q},m{\Gamma},m{\delta},m{s})$ gibt es eine 1-String-TM $m{M}'$ mit $m{L}(m{M}')=m{L}(m{M})$

Beweisidee

- Idee: "Spurentechnik", M' verwendet Symbole aus $(\Gamma \times \{-,+\})^{k}$:
 - Die i-te Komponente (γ_i, p_i) bedeutet:
 - * Zeichen γ_i im i-ten String
 - * i-ter Kopf an dieser Position, falls $p_i = +$
- ullet Für einen Schritt von M
 - (1) läuft $oldsymbol{M}'$ zum rechten Rand und liest alle Kopfsymbole von $oldsymbol{M}$,
 - (2) läuft M^\prime zum linken Rand zurück und macht dabei alle nötigen Änderungen,
 - (3) geht M^\prime in den neuen Zustand über

Beispiel

- Simulation eines Schrittes einer 2-String-TM durch eine 1-String-TM
 - Hier: $\boldsymbol{\delta}(d,1,1)=(e,1,1,\leftarrow,\rightarrow)$
- 2-String-TM:

• 1-String-TM:

ullet Analog kann auch $f_{M'}=f_M$ erreicht werden

Inhalt

- 13.1 WHILE vs. GOTO
- 13.2 Mehrstring-Turingmaschinen
- **▶** 13.3 Turingmaschinen und WHILE/GOTO-Programme
 - 13.4 Die Church-Turing-These
 - 13.5 Entscheidbarkeit und Berechenbarkeit: Definition

Strings vs. Zahlen

- ullet Turingmaschinen M berechnen partielle Funktionen $f_M:\Sigma^*
 ightharpoonup \Sigma^*$ OBdA: $\Sigma=\{0,1\}$
- ullet WHILE-Programme P berechnen partielle Funktionen $f_P:\mathbb{N}_0
 ightharpoonup \mathbb{N}_0$
- Um die beiden Modelle miteinander zu vergleichen, müssen wir Strings und Zahlen ineinander umwandeln können

- Wir verwenden dazu die beiden wie folgt definierten Umwandlungsfunktionen
- Str2N bildet jeden Binärstring auf die durch ihn kodierte Zahl ab, also z.B.:
 - $-\operatorname{Str2N}(110) = 6$
 - Str2N(00110) = 6
 - Str2N(00000) = 0
 - Str2N $(\epsilon)=0$
- N2Str bildet jede natürliche Zahl auf ihren Binärstring ohne führende Nullen ab, also z.B.:
 - N2Str(6) = 110
 - N2Str $(\mathbf{0})=\epsilon$

WHILE-Programme → Turingmaschinen (1/2)

Satz 13.4

- Jede WHILE-berechenbare Funktion ist Turing-berechenbar
- ullet Genauer: Für jede WHILE-berechenbare Funktion $f:\mathbb{N}_0 o \mathbb{N}_0$ gibt es eine Mehrstring-Turingmaschine M, so dass für alle $n\in\mathbb{N}_0$ gilt:

$$m{f}(m{n}) = \mathsf{Str2N}(m{f_M}(\mathsf{N2Str}(m{n})))$$

Beweisskizze

- ullet Sei P ein WHILE-Programm für f
 - lacktriangledown es gibt ein k>0, so dass P keine anderen Variablen als x_1,\ldots,x_k benutzt
- ullet Idee: P wird durch eine k-String Turingmaschine M simuliert
 - Jeder String von M repräsentiert dabei den Wert einer Variablen x_i
 - Zu Beginn steht in String 1 der String N2Str(n) und auf den anderen Strings der Leerstring (entspricht 0)
 - Am Ende der Simulation steht auf String
 1 die Binärkodierung des Ergebnisses
 - $ilde{>}$... und muss dann noch in den k-ten String kopiert werden
 - Jedes Teilprogramm P' von P wird durch eine TM $M_{P'}$ simuliert $*M_{P'}$ ist dabei induktiv definiert

WHILE-Programme → **Turingmaschinen** (2/2)

Beweisskizze für	Satz 13.4 (Forts.)
------------------	--------------------

Beweisskizze für Satz 13.4 (Forts.)						
P'	$M_{P'}$					
$x_j := x_i + c$	$ullet$ Falls $m{j} \neq m{i}$ $-$ String $m{j}$ mit $oxdot$ überschreiben $-$ String $m{i}$ nach String $m{j}$ kopieren $m{c}$ -mal 1 zu String $m{j}$ addieren					
$egin{array}{c} x_j \coloneqq x_i \dot{-} c \ \hline x_j \coloneqq c \ \hline x_j \coloneqq x_i \end{array}$	analog					
$P_1; P_2$	Führe zuerst M_{P_1} aus, dann M_{P_2}					
WHILE $x_i \neq 0$ DO P_1 END	(a) Wenn i -ter String Leerstring ist: fertig (b) Andernfalls M_{P_1} ausführen, dann weiter mit (a)					

Turingmaschinen → **GOTO-Programme** (1/6)

- Die Simulation von Turingmaschinen durch GOTO-Programme wirft ein Problem auf
- Turingmaschinen können, abhängig von der Eingabe, beliebig viele Positionen benutzen
- Jedes GOTO- (oder WHILE-) Programm hat aber nur eine feste Zahl von Variablen
 - Wir können also leider nicht für jede Position des Turingmaschinen-Strings eine Variable verwenden
 - mit indirekter Adressierung ginge das...
- Wir werden deshalb String-Zeigerbeschreibungen, durch je drei Zahlen kodieren, damit sie in drei Variablen gespeichert werden können
- $oldsymbol{\circ}$ Strings über dem Arbeitsalphabet $\Gamma = \{ oldsymbol{\sigma_1}, \dots, oldsymbol{\sigma_\ell} \}$ interpretieren wir dazu als Zahlen in $(\ell+1)$ -adischer Darstellung gemäß $oldsymbol{\sigma_i} \mapsto i$, für jedes i
- 0 wird als Ziffer nicht verwendet, um Komplikationen durch führende Nullen zu vermeiden

Turingmaschinen → **GOTO-Programme** (2/6)

Beispiel

- ullet Für $\Gamma = \{ igtriangleup, \sqcup, 0, 1 \}$ ergibt sich
 - $\triangleright \mapsto 1$
 - $\sqcup \mapsto 2$
 - $-0 \mapsto 3$
 - $-1 \mapsto 4$
- ullet Z.B.: Str2N $_{f \Gamma}(100)= egin{array}{c} 4 imes 5^2 + 3 imes 5 + 3 = 118 \end{array}$
- Str2N $_{\Gamma}(w)$ ist induktiv definiert durch:
 - Str2N $_{oldsymbol{\Gamma}}(\epsilon)\stackrel{ ext{def}}{=} \mathbf{0}$ und
 - Str2N $_{oldsymbol{\Gamma}}(oldsymbol{u}oldsymbol{\sigma_i})\stackrel{ ext{ iny def}}{=} (oldsymbol{\ell}+\mathbf{1}) imes$ Str2N $_{oldsymbol{\Gamma}}(oldsymbol{u})+oldsymbol{i}$
- Es gelten:
 - Str2N $_{\Gamma}(u\sigma)\div(\ell+1)=$ Str2N $_{\Gamma}(u)$
 - $\mathsf{Str}\mathsf{2N}_{\Gamma}(oldsymbol{u}oldsymbol{\sigma})\ \mathsf{mod}\ (oldsymbol{\ell}+1)=\mathsf{Str}\mathsf{2N}_{\Gamma}(oldsymbol{\sigma})$

Turingmaschinen → **GOTO-Programme** (3/6)

- ullet Für die Simulation von Turingmaschinen durch GOTO-Programme verwenden wir die Notation (u,σ,v) für String-Zeigerbeschreibungen
- Konfigurationen der TM M werden durch Speicherinhalte der Variablen x_1, x_2, x_3, x_4 repräsentiert:

$$-S_{m{M}}(m{q_i},(m{u},m{\sigma},m{v}))\stackrel{ ext{def}}{=} \ i, \mathsf{Str2N}_{m{\Gamma}}(m{u}), \mathsf{Str2N}_{m{\Gamma}}(m{\sigma}), \mathsf{Str2N}_{m{\Gamma}}(m{v^R}), \ldots$$

- riangle Warum v^R ?
 - st Damit das erste Zeichen von $oldsymbol{v}$ durch $oldsymbol{x_4}$ mod $(oldsymbol{\ell}+oldsymbol{1})$ berechnet werden kann

Beispiel

- ullet Die Startkonfiguration $(q_1,(\epsilon,\rhd,001))$ entspricht also dem Speicherinhalt $1,0,1,118,\ldots$
- riangle Zu beachten: $\mathsf{Str2N}_{\Gamma}(001^R) = \mathsf{Str2N}_{\Gamma}(100) = 118$
- ullet Die Umkehrabbildung N2Str $_\Gamma:\mathbb{N} \to \Gamma^*$ von Str2N $_\Gamma$ sei wie folgt definiert:

– N2Str $_{oldsymbol{\Gamma}}(n)\stackrel{ ext{def}}{=}egin{cases} oldsymbol{w} & ext{falls Str2N}_{oldsymbol{\Gamma}}(oldsymbol{w})=oldsymbol{n}, ext{ für ein } oldsymbol{w}\in oldsymbol{\Gamma}^* \ oldsymbol{\perp} & ext{andernfalls} \end{cases}$

Turingmaschinen → **GOTO-Programme** (4/6)

Satz 13.5

- Jede Turing-berechenbare Funktion ist auch GOTO-berechenbar
- ullet Genauer: für jede Turing-berechenbare Funktion $f:\{0,1\}^*
 ightharpoonup \{0,1\}^*$ gibt es ein GOTO-Programm P, so dass für alle $w\in \Sigma^*$ gilt:

Beweisskizze

- ullet Sei $M=(Q,\Gamma,\delta,q_1)$ eine TM mit Zuständen q_1,\ldots,q_k , die f berechnet
 - Proviso: $q_0=h$

 $oldsymbol{f}(oldsymbol{w}) = \mathsf{N2Str}_{oldsymbol{\Gamma}}(oldsymbol{f_P}(\mathsf{Str2N}_{oldsymbol{\Gamma}}(oldsymbol{w})))$

- Wir repräsentieren Konfigurationen wie beschrieben durch die Variablen x_1, \ldots, x_4
- ullet P simuliert M in drei Phasen:
 - 1. Variablen initialisieren
 - 2. M schrittweise simulieren

(Teilprogramm: P_M)

3. Funktionswert aus x_2, x_3, x_4 umkodieren

Beweisskizze (Forts.)

ullet Simulation bei Eingabe 001 und Ausgabe 010

• 13.1

Turingmaschinen → **GOTO-Programme** (5/6)

Beweisskizze (Forts.)

ullet P simuliert die Berechnung von M Schritt für Schritt auf die folgende Art

```
M_1\colon IF (x_1=1) AND (x_3=1)
       THEN GOTO M_{11}
     IF (x_1 = 1) AND (x_3 = 2)
          THEN GOTO M_{12}
     IF (x_1 = \mathtt{k}) AND (x_3 = \ell)
          THEN GOTO M_{k\ell}
     IF (x_1 = 0) THEN HALT
M_{11}: P_{1,1}
     GOTO M_1
M_{12}: P_{1,2}
     GOTO M_1
M_{k\ell}\colon P_{k,\ell}
     GOTO M_1
```

ullet Zur Erinnerung: x_1 speichert die Nummer des Zustandes, x_3 die Kodierung des aktuellen Zeichens

Turingmaschinen → **GOTO-Programme** (6/6)

Beispiel

- ullet Wir betrachten ein Beispiel für die Konstruktion der Teilprogramme $P_{i,j}$
- ullet Ist $oldsymbol{\delta(q_5,\sigma_6)}=(q_8,\sigma_9,
 ightarrow)$, dann ist $P_{5,6}$ das folgende Teilprogramm

$$M_{5,6}\colon x_1 := 8;$$
 IF $x_3 = 0$ THEN GOTO $M_{5,6}';$ $x_2 := (\ell+1) imes x_2 + 9;$ $M_{5,6}'\colon x_3 := 2;$ IF $x_4 = 0$ THEN GOTO $M_{5,6}'';$ $x_3 := x_4 \mod (\ell+1);$ $M_{5,6}''\colon x_4 := x_4 \div (\ell+1);$

Beispiel: Erläuterungen

- $x_1 := 8$: Neuer Zustand q_8
- ullet IF $x_3=0$ THEN GOTO $M_{5,6}'$ Falls Kopf auf dem linken Rand ist, wird x_2 nicht verändert ($x_2=0$)
- $ullet x_2 := (\ell+1) imes x_2 + 9$ Kodierung des neuen Strings links vom Kopf
- ullet Die drei Zeilen ab $M_{5,6}^\prime$ bewirken, dass
 - im Falle einer Rechtsbewegung zu einer Position, die kein Eingabesymbol enthält und noch nicht besucht wurde, das aktuelle Zeichen zu einem Leerzeichen wird (= 2),
 - andernfalls das neue aktuelle Zeichen das erste Zeichen des bisherigen, durch x_4 kodierten Strings rechts vom Kopf, wird
- $x_4 := x_4 \div (\ell + 1)$ Der neue String rechts vom Kopf (auch im Falle, dass dieser leer ist, weil gerade erst ein Blank erzeugt wurde)

Turingmaschinen → **GOTO-Programme:** Beispiel

Diagramm zur 2. TM

- ullet Wir betrachten die Simulation dieser TM bei Eingabe 001
- ullet $\sigma_1=igtriangledown,\sigma_2=\sqcup,\sigma_3=0,\sigma_4=1$
- $q_0 = h, q_1 = a, q_2 = b,...$

Beispiel

- ullet Statt der Eingabe $oldsymbol{w}=oldsymbol{001}$ erhält $oldsymbol{P}$ die Zahl Str2N $_{oldsymbol{\Gamma}}(oldsymbol{w})=$ Str2N $_{oldsymbol{\Gamma}}(oldsymbol{001})=oldsymbol{94}$
- ullet Daraus berechnet P die Kodierung der Startkonfiguration $(a,(\epsilon,\rhd,001))$ von M
 - Es ergibt sich die Speicherbelegung $1,0,1,118,\ldots$
- ullet M bewegt nun den Kopf nach rechts und bleibt im Zustand a
 - Die neuen Werte für x_2, x_3, x_4 ergeben sich durch:
 - * $x_2 := 5 imes x_2 + 1 = 1$, da \triangleright "angehängt" wird
 - $*~x_3 \vcentcolon= x_4 mod 5 = 118 mod 5 = 3$
 - · entsprechend dem Zeichen 0
 - $* x_4 := x_4 \div 5 = 23$
 - entsprechend dem restlichen String

$$((01)^R = 10)$$

- Die Konfiguration nach dem ersten Schritt entspricht also der Speicherbelegung $1, 1, 3, 23, \ldots$

Inhalt

- 13.1 WHILE vs. GOTO
- 13.2 Mehrstring-Turingmaschinen
- 13.3 Turingmaschinen und WHILE/GOTO-Programme
- > 13.4 Die Church-Turing-These
 - 13.5 Entscheidbarkeit und Berechenbarkeit: Definition

Die Church-Turing-These

Wir haben gesehen, dass alle bisher betrachteten Berechnungsmodelle äquivalent sind:

- Es gibt viel weitere Ansätze zur Formalisierung des Begriffes Algorithmus, die hinsichtlich ihrer Berechnungsstärke äquivalent sind, zum Beispiel:
 - 2-Kellerautomaten
 - Markov-Algorithmen
 - Typ-0-Grammatiken
 - λ -Kalkül [Kleene 35, Church 36]
 - Register-Maschinen
- Aus diesem Grunde wird die Klasse der durch Turingmaschinen und die anderen genannten Modelle berechenbaren Funktionen als die "richtige" Formalisierung des Algorithmus-Begriffs angesehen

• Es gibt wohl keine stärkeren "realistischen" Berechnungsmodelle

• Church-Turing-These:

- Die Klasse der durch Turingmaschinen (WHILE-Programme,...) berechenbaren Funktionen umfasst alle intuitiv berechenbaren Funktionen
- Die Church-Turing-These wurde explizit erstmals von Kleene 1943 formuliert, aber dort schon auf Church und Turing zurückgeführt
- Sie ist nicht beweisbar
- Sie wäre aber im Prinzip widerlegbar: durch den Bau von Computern, die Funktionen berechnen, die nicht Turing-berechenbar sind

Inhalt

- 13.1 WHILE vs. GOTO
- 13.2 Mehrstring-Turingmaschinen
- 13.3 Turingmaschinen und WHILE/GOTO-Programme
- 13.4 Die Church-Turing-These
- > 13.5 Entscheidbarkeit und Berechenbarkeit: Definition

Entscheidbar und berechenbar

Definition (entscheidbar)

- ullet Eine Menge $L\subseteq \Sigma^*$ heißt $\hbox{ entermine entscheidbar},$ falls es eine TM M gibt, die L entscheidet
- Zu beachten:
 - Bei einer entscheidbaren Menge muss die TM für alle Eingaben anhalten
- Statt "nicht entscheidbar" sagen wir oft auch "unentscheidbar"
 - ullet Klar: Wenn L entscheidbar ist, dann ist auch das Komplement \overline{L} von L entscheidbar

Definition (berechenbar, \mathcal{R})

- ullet Eine partielle Funktion $f: \Sigma^*
 ightharpoonup \Sigma^*$ heißt <u>berechenbar</u>, falls es eine TM M gibt, die
 - für alle $oldsymbol{w} \in oldsymbol{D}(oldsymbol{f})$ mit Ausgabe $oldsymbol{f}(oldsymbol{w})$ anhält und
 - für alle $oldsymbol{w}
 otin oldsymbol{D}(oldsymbol{f})$ nicht anhält
- Zur Erinnerung: auch totale Funktionen sind partielle Funktionen
 - f kann also auch überall definiert sein...

Algorithmische Probleme vs. Sprachen und Funktionen (1/4)

- Unsere bisherigen Berechnungsmodelle beziehen sich nur auf
 - Sprachen und Stringfunktionen bzw.
 - Mengen natürlicher Zahlen und Zahlenfunktionen
- Die soeben definierten Begriffe "entscheidbar" und "berechenbar" sind auch für Sprachen und Stringfunktionen definiert
- Wie hängt dies denn mit "richtigen" algorithmischen Problemen zusammen?

Algorithmische Probleme vs. Sprachen und Funktionen (2/4)

- Informatikerinnen und Informatikern wissen: alle Arten von Strukturen lassen sich durch 0-1-Strings kodieren
- Graphen können z.B. wie folgt durch Strings kodiert werden

Beispiel

• Der Graph $G = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$

kann durch die Adjazenzmatrix

$$\left(egin{array}{cccc} 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \end{array}
ight)$$

und diese dann durch den String $\operatorname{enc}(G) = 0110000100011000$ kodiert werden

- Solche Kodierungen ermöglichen uns, die Lücke zu schließen, die besteht zwischen
 - algorithmischen Problemen mit "komplizierteren" Eingaben wie Graphen, Automaten etc., deren Lösbarkeit wir eigentlich untersuchen wollen, und
 - Sprachen und Funktionen auf Strings, die wir mit Turingmaschinen entscheiden bzw. berechnen können
- Die Frage der Eindeutigkeit der Kodierung werden wir hier ignorieren
 - Wichtig ist, dass jedem syntaktisch korrekten String eine (bis auf Isomorphie eindeutige) Eingabe zugeordnet werden kann

Algorithmische Probleme vs. Sprachen und Funktionen (3/4)

 Algorithmische Entscheidungsprobleme entsprechen also Sprachen

Definition (REACH)

Gegeben: Graph $oldsymbol{G}$, Knoten s und t

Frage: Gibt es in G einen Weg von s nach t?

- ullet Das algorithmische Entscheidungsproblem REACH entspricht der Sprache L_{REACH} aller 0-1-Strings, die einen gerichteten Graphen G und zwei Knoten s und t kodieren, in dem es einen Weg von s nach t gibt
- Besteht die Eingabe zu einem algorithmischen Problem aus mehreren Komponenten, so trennen wir diese in der Kodierung als Strings durch #
- $oldsymbol{L}_{\mathsf{REACH}} = \{\mathsf{enc}(oldsymbol{G}) \# \mathsf{enc}(oldsymbol{s}) \# \mathsf{enc}(oldsymbol{t}) \mid \ oldsymbol{G} \ \mathsf{hat} \ \mathsf{Weg} \ \mathsf{von} \ oldsymbol{s} \ \mathsf{nach} \ oldsymbol{t} \} \ \mathsf{f\"{u}r} \ \mathsf{geeignete} \ \mathsf{Kodierungsfunktionen} \ \mathsf{enc} \ \mathsf{f\"{u}r} \ \mathsf{Graphen} \ \mathsf{und} \ \mathsf{Knoten}$

 Algorithmische Berechnungsprobleme entsprechen also Funktionen auf Strings

Definition (MINGRAPHCOL)

Gegeben: Ungerichteter Graph *G*

Gesucht: Kleinstmögliche Anzahl von Farben, mit denen der Graph zulässig gefärbt werden kann

- Die zugehörige Funktion $f_{\mathsf{MINGRAPHCOL}}$ ordnet jedem String, der einen ungerichteten Graphen G kodiert, die (Kodierung der) kleinsten Zahl k, für die G eine k-Färbung hat, zu
 - Graphfärbungen werden wir in Teil D der Vorlesung noch genauer definieren

Algorithmische Probleme vs. Sprachen und Funktionen (4/4)

- Wir werden die Begriffe "entscheidbar" und "berechenbar" auch für die entsprechenden algorithmischen Probleme verwenden
- ullet Also: ist A ein algorithmisches Entscheidungsproblem und L_A entscheidbar, so nennen wir auch A entscheidbar
- Außerdem werden wir uns häufig die Church-Turing-These zunutze machen:
 - Statt eine TM für L_A zu konstruieren genügt es, einen Algorithmus für A anzugeben, um zu zeigen, dass A entscheidbar ist
- ullet Ein Entscheidungsalgorithmus für A ist also künftig ein Algorithmus, der für jede Eingabe anhält und korrekt angibt, ob sie eine "Ja-Eingabe" ist

Entscheidbar und berechenbar: Beispiele

Beispiel

- REACH ist entscheidbar
 - Der Tiefensuche-Algorithmus terminiert immer und gibt immer die richtige Antwort
- Das Wortproblem für kontextfreie Sprachen ist entscheidbar
 - Gegeben eine Grammatik G und ein Wort w kann mit dem CYK-Algorithmus überprüft werden, ob $w \in L(G)$ ist
 - Der CYK-Algorithmus terminiert bei jeder Eingabe und gibt immer die richtige Antwort
- Bei den Grammatik-Beispielen nehmen wir der Einfachheit halber an, dass die Grammatiken in CNF sind
 - Wenn nicht, können sie in eine CNF-Grammatik umgewandelt werden

Beispiel

- Die Funktion, die jedem endlichen Automaten A die Anzahl der Zustände seines Minimalautomaten zuordnet, ist berechenbar und total
- ullet Die Funktion, die jedem Paar (G_1,G_2) kontextfreier Grammatiken den lexikographisch kleinsten String $w\in L(G_1)\cap L(G_2)$ zuordnet, ist berechenbar, aber nicht total
 - Sie ist undefiniert für Paare $(m{G_1}, m{G_2})$ mit $m{L}(m{G_1}) \cap m{L}(m{G_2}) = otom{oldsymbol{oldsymbol{oldsymbol{G}}}}$
- ullet Die Funktion, die jeder TM M und jeder Eingabe x den Wert $f_M(x)$ zuordnet, ist berechenbar, aber nicht total

Zusammenfassung

- Die verschiedenen Varianten des Turingmaschinen-Modells sind hinsichtlich ihrer Berechnungsstärke äquivalent
- Sie sind hinsichtlich ihrer Berechnungsstärke ebenfalls äquivalent zu WHILE-Programmen und GOTO-Programmen
- Church-Turing-These: Turingmaschinen und die dazu äquivalenten Modelle sind die richtige Formalisierung des informellen Begriffes von Algorithmus
- Algorithmische Probleme k\u00f6nnen durch Sprachen und Funktionen auf Strings repr\u00e4sentiert werden

Erläuterungen

Bemerkung 13.1

 Die Zahl 348 kodiert den String der TM am Ende der Berechnung:

– N2Str
$$_{\Gamma}(348)=010$$
 \sqcup , da Str2N $_{\Gamma}((010\sqcup)^R)=$ Str2N $_{\Gamma}(\sqcup 010)=$ $2 imes 125+3 imes 25+4 imes 5+3=348$

ullet P berechnet daraus die Zahl 98, die den Ergebnisstring 010 kodiert

Literatur

• Turingmaschinen:

 A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. *Proc. London Math. Soc.*, 2(42):230– 265, 1936

• λ -Kalkül:

- S. C. Kleene. A theory of positive integers in formal logic. American Journal of Mathematics, 57, 1935
- Alonzo Church. An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2):345–363, 1936