

Motivation

- Gain deeper understanding of NBA
- How did the game developed over the years?
- Distribution of player performance
- Why/How are some teams/players better than others?
- Is it possible to predict the outcome a game?

Outline

- Data format and loading pipeline
- Exploration of data on different levels:
 - Player
 - Seasons
 - o Game
- Prediction tasks:
 - Game result
 - All-NBA

The raw data

Raw Play-By-Play base data set

- 19 seasons (2000-01 2018-19), data split by season
- 10 389 755 plays/events (shot, foul, turnover, ...)
- 35 columns
- nominal, continuous, time series

4	Д		В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	T	U
1	,EVEN	ITMSGA	CTIONT	YPE,EVEN	TMSGTYPE,	EVENTNUM	M,GAME_ID	HOMEDES	CRIPTION,	IEUTRALD	ESCRIPTION	,PCTIMES	TRING,PERIC	DD,PERSON	1TYPE,PERS	ON2TYPE,	PERSON3T	YPE,PLAYER	R1_ID,PLAY	ER1_NAME	PLAYER1_	TEAM_A
2	0,0,12	2,0,0021	600229,	,,12:00,1,0	0.0,0,0,0,,,,,	0,,,,,0,,,,,,	7:41 PM															
3	1,0,10	,1,0021	600229,	Jump Ball	Okafor vs.	Lopez: Tip	to Gibson,,1	2:00,1,4.0,5	5,5,162614	Jahlil Oka	for,PHI,Phil	adelphia,1	510612755.0	0,76ers,201	577,Robin	Lopez,CHI,	Chicago,16	10612741.0	,Bulls,2019	959,Taj Gibs	son,CHI,Chi	icago,1610
4	2,57,	L,2,0021	600229,	,,11:39,1,5	5.0,0,0,2015	77,Robin L	opez,CHI,Cl	nicago,1610	612741.0,E	ulls,0,,,,,0	,,,,,2 - 0,-2,L	opez 12' D	riving Hook	Shot (2 PTS),7:41 PM							
5	3,1,5,	3,00216	00229,B	ayless Bad	Pass Turne	over (P1.T1),,11:28,1,4	.0,5,0,20157	73,Jerryd B	yless,PHI,	Philadelphia	,16106127	55.0,76ers,2	548,Dwyar	ne Wade,Ch	II,Chicago,	161061274	1.0,Bulls,0,	,,,,,,Wade S	STEAL (1 ST	L),7:42 PM	
6	4,41,	1,4,0021	600229,	,,11:25,1,5	.0,5,0,2548	,Dwyane V	Vade,CHI,Ch	nicago,1610	612741.0,E	ulls,20076	5,Rajon Ror	ndo,CHI,Ch	icago,16106	12741.0,Bu	ills,0,,,,,4 - (0,-4,Wade	1' Running	Layup (2 PT	S) (Rondo	1 AST),7:42	PM	
7	5,1,2,	5,00216	00229,N	1ISS Covin	gton 26' 3P	T Jump Sho	t,,11:12,1,4	.0,0,0,2034	96,Robert	Covington,	PHI,Philadel	phia,16106	12755.0,76	ers,0,,,,,0,,,	,,,,,7:42 PM							
8	6,0,4,	6,00216	00229,,,	11:10,1,5.	0,0,0,20195	9,Taj Gibso	n,CHI,Chica	go,1610612	2741.0,Bull	s,0,,,,,0,,,,,	"Gibson RE	BOUND (O	ff:0 Def:1),7	:42 PM								
9	7,4,6,	8,00216	00229,,,	11:02,1,5.	0,4,1,20157	7,Robin Lo	pez,CHI,Chi	cago,16106	12741.0,Bu	lls,162614	3,Jahlil Oka	for,PHI,Phi	ladelphia,16	10612755.	0,76ers,0,,,,	",Lopez Ol	F.Foul (P1	(T.Brother	s),7:42 PM			
10	8,5,5,	9,00216	00229,,,	11:02,1,5.	0,0,1,20157	7,Robin Lo	pez,CHI,Chi	cago,16106	12741.0,Bu	ılls,0,,,,,0,,,	,,,,,Lopez Fo	ul Turnove	r (P1.T1),7:4	12 PM								
11	9,1,2,	10,0021	600229,	MISS Covi	ngton 25' 3	PT Jump Sh	ot,,10:42,1	,4.0,0,0,203	496,Robert	Covington	,PHI,Philade	elphia,1610	612755.0,70	6ers,0,,,,,0,	,,,,,,,7:43 PI	M						
12	10,0,4	1,11,002	1600229	9,,,10:40,1	,5.0,0,0,200	765,Rajon	Rondo,CHI,	Chicago,16:	10612741.0	,Bulls,0,,,,	0,,,,,,Rond	o REBOUN	D (Off:0 Def	:1),7:43 PM	1							
13	11,46	,1,12,00	2160022	29,,,10:35,	1,5.0,5,0,20	2710,Jimm	y Butler,CH	I,Chicago,16	510612741	0,Bulls,200	765,Rajon	Rondo,CHI	,Chicago,16:	10612741.0),Bulls,0,,,,,	6 - 0,-6,But	ler 18' Run	ning Jump S	shot (2 PTS) (Rondo 2 /	AST),7:43 P	M
14	12,80	,2,13,00	2160022	29,MISS Ily	asova 17' S	itep Back J	ump Shot,,1	0:12,1,4.0,0	,0,101141,	Ersan Ilyas	ova,PHI,Phi	ladelphia,1	610612755.	0,76ers,0,,,	,,0,,,,,,7:43	3 PM						
15	13,0,4	1,14,002	1600229	9,,,10:09,1	,5.0,0,0,200	765,Rajon	Rondo,CHI,	Chicago,16:	10612741.0	,Bulls,0,,,,	0,,,,,,Rond	o REBOUN	D (Off:0 Def	:2),7:43 PM	1							
16	14,39	,5,15,00	2160022	29,,,10:01,	1,5.0,0,0,20	1959,Taj G	ibson,CHI,C	hicago,1610	0612741.0,	Bulls,0,,,,,0	,,,,,,Gibson	Step Out of	of Bounds Tu	ırnover (P1	.T2),7:43 PI	М						
17	15,1,2	2,17,002	1600229	MISS Bay	yless 14' Jur	np Shot,,9:	48,1,4.0,0,0	,201573,Jer	ryd Bayless	,PHI,Philad	elphia,1610	612755.0,	76ers,0,,,,,0,	,,,,,,,7:44 P	М							
18	16,0,4	1,18,002	1600229	9,,,9:46,1,5	.0,0,0,2548	Dwyane W	/ade,CHI,Cl	nicago,1610	612741.0,E	ulls,0,,,,,0,	,,,,,,Wade F	EBOUND (Off:0 Def:1)	,7:44 PM								
19	17,80	,1,19,00	2160022	29,,,9:38,1	,5.0,0,0,254	8,Dwyane	Wade,CHI,C	Chicago,161	0612741.0	Bulls,0,,,,,	0,,,,,8 - 0,-8	Wade 16'	Step Back Ju	mp Shot (4	PTS),7:44 P	M						
20	18,1,9	,20,002	1600229	7,76ERS Ti	meout: Reg	ular (Full 1	Short 0),,9:	37,1,2.0,0,0	,16106127	55,,,,,0,,,,,0),,,,,,,7:44 F	M										

Tools

- Main workhorse
 - Python 3 + jupyter notebooks

- Data acquisition
 - beautiful soup, selenium, tdqm, webdriver-manager

- Data analysis and prediction
 - numpy, pandas, plotly, sklearn, pickle

- Version control
 - GitHub

Data loader pipeline

Base data set of 1.6 GB

- long time to load
- especially with extra processing

Solution:

- multiple data loaders created
- special parameter for loading
- intense use of pandas masks
- storing computed results in intermediate pickle files
- [∼]1650 lines of code
- data loading optimized from minutes to seconds or milliseconds

Player data

When searching for player data no complete dataset were found

- 1. We created our own data scraper
- Used selenium and chrome driver to simulate browser usage since static loading failed
- 3. Now it can retrieve all player data available on the NBA website

Exploring player characteristics

We managed to learn some common characteristics of NBA players

Average statistics about players through all seasons

	Age (years)	Height (cm)	Weight (kg)
Mean	27	200	100
Standard deviation	0.35	0.26	0.94

Distribution of club changes

Combining age with extracted performance

Answering questions that our raw data cannot directly answer: Where is the peak point of players performance during their careers?

Diving into individual players

Impact of variables on player performance

- club changed negatively impacted player performance (points)
- problems because of incomplete data

Brian Skinner statistics through the seasons, with marked club changes

LeBron James statistics through the seasons, with marked club changes

Star players dominate the statistics

Few players played many games or scored a lot of points

The median number of points scored is 742

The median number of games played is 142

Distribution of shot distances per season

How game changed over years or what has changed in the game?

Shift in play-style confirmed by data

mid_range_percentage

Goodbye to mid-range shots!!

Analysis of games

- Large corpus of 22,965 games (every game in 19 consecutive regular seasons)
- Extract the essence of an NBA game -> Contrast with domain knowledge Heartbeat of a game:

Using data to answer questions

- Why do players shoot worse at the end of close games?
 - Defense vs. Pressure/Fatigue
- Use shot types as indicator:

Field goal accuracy

Free throw accuracy

Shows power of combining data analysis with domain knowledge

Final game score/result

- Most important/interesting feature of a game
- Product of an artificial competition
- Unique distribution:

- What impacts winning?
- Can we predict a game's result?

Finding features correlated with wins

Some do (Field-goal accuracy)

Some don't (Field goal volume)

Putting games into temporal context

- Order games by date in time -> Series of games
- Past performance is indicative of future success:

→ Central for game result prediction

Predictive mining

1. Winner of the game

- game level
- sports betting?

2. All-NBA team

- season level
- justifying the journalists choices / who deserved the reward?
- find minimal production stats for achieving All-NBA
- Importance of data loader pipeline
 - easy to add new features

Winner of the game - overview

- 60 % games won by home team
- Window size (rolling averages)
- Unbalanced data
- Scaled features
- Labeled team IDs
- Hyperparameter search
 - regularization, kernel, max depth
- Feature selection
 - manual selection, RFE, select k best, fastener

Winner of the game - comparison of models

Random forest

Accuracy	Precision	Recall	f1-score
0.65	0.64	0.62	0.61

SVM

Accuracy	Precision	Recall	f1-score
0.66	0.64	0.64	0.64

SVM hyperparameters

Parameter	Value
С	24.8
kernel	"linear"
decision_function_shape	"ovo"
random_state	0

Gradient boosting classifier

Accuracy	Precision	Recall	f1-score
0.65	0.64	0.63	0.64

Logistic regression

Accuracy	Precision	Recall	f1-score
0.65	0.65	0.65	0.64

All-NBA team - overview

- 15 players selected by the journalists
- Closely related to previously extracted features/analysis
- Scraped additional data
- Filtering by number of games played (145 players per season)
- Very unbalanced -> needed balancing
- Logistic regression
- 1. First 15 seasons as training set, predict last 4 seasons
- 2. Dataset is shuffled, seasons are not relevant

All-NBA team - evaluation of model

Chronological data 120 - 100 129 0 - 80 Predicted label **Accuracy** Precision Recall f1-score

0.92

0.83

0.92

0.87

Accuracy	Precision	Recall	f1-score
0.90	0.87	0.78	0.82

Conclusion

- Play-By-Play data allows for multiple views on data
 - Extracted many features on different levels
 - Per game, player, season ...
- Strong data-loading pipeline crucial for efficient working in a team
- Combining previous domain knowledge with data analysis allowed us to answer interesting questions in a data-driven manner
- Putting games into order reveals temporal dependencies
- Prediction of game result / All-NBA is possible

DANKESCHÖN, HVALA, TEŞEKKÜRLER

