Experiment: 1 Listing Wi-Fi Networks in the Surroundings

Haricharan B

Dept. of Electrical Engineering

EP21B015

Abstract—With the widespread use of Wi-Fi networks, understanding their characteristics becomes crucial for various purposes including network optimization, security assessment, and troubleshooting. In the report, we analyze Wi-Fi networks from a packet capture (pcap) file using a Python script.

I. INTRODUCTION

We analyze key parameters such as SSID, BSSID, supported protocols, average RSSI, band, and channel from the captured data. This experiment provides us a deeper understanding of how the Wi-Fi system works in our surroundings. The below experiment is a simple way to list all the Wi-Fi networks present in the surroundings, by using their beacon frames.

II. PROCEDURE

I created a Python script to analyze a packet capture file (.pcap) and extract relevant details about Wi-Fi networks.

A. Methodology

- 1) Parsing the packet capture file using "scapy" Python package
- 2) Filtering Wi-Fi beacon frames, which can be "Dot11Beacon" frames or "Dot11ProbeResp" probe
- 3) Extracting SSID, BSSID, supported protocols, RSSI, band, channel information using scapy (code is attached)
- Calculating the average RSSI for each Wi-Fi network, which is just average of all the RSSI values observed for that network.
- Saving the results to a CSV file using the "CSV" Python module.

The above procedures were done for two files:

- The Captured.pcap file provided in Moodle
- My own pcap file, which I obtained by capturing packets from ESB. In order to capture packets in my pcap file, I used Network Monitor mode on my Linux laptop, and then used Wireshark to save the captured packets.

B. Definitions

- SSID (Service Set IDentifier): The name of the Wi-Fi network
- BSSID (Basic Service Set Identifier): MAC address of Wi-Fi network
- RSSI (Received Signal Strength Indicator): Strength of the Wi-Fi signal
- Band: 2.4GHz or the 5GHz band of the Wi-Fi router

• Channel: Channel number of the channel provided by the Wi-Fi router

III. OBSERVATIONS

Below are the Wi-Fi data obtained for the "Captured.pcap" file provided:

	SSID	BSSID	Channel	Capability	Band	Average RSSI
1	Anand	d8:47:32:3a:e2:cc	2	short-slot+ESS+privacy	2.4 GHz	-82.0
2	AndroidAP55DB	3c:57:6c:09:55:db	6	short-slot+ESS+privacy+short-preamble	2.4 GHz	-43.75
3	Nivi	b8:c1:ac:7c:b5:d8	11	short-slot+ESS+privacy	2.4 GHz	-79.02702702702703
4	0LA_DRIVER_HOTSPOT_t+8j1vyXCO	00:23:b1:8b:08:56	11	res9+res12+DSSS-OFDM+ESS+privacy+short-preamble+PBCC	2.4 GHz	-91.0
5	RTL8186-default	00:00:00:00:00:00	11	short-slot+ESS	2.4 GHz	-91.0
6	kindpanda2.4	68:ff:7b:aa:a0:87	10	short-slot+ESS+privacy	2.4 GHz	-90.5
7	Ranjani	0c:d2:b5:96:5e:8b	10	short-slot+ESS+privacy	2.4 GHz	-89.0

Fig. 1. Beacon Frames from "Captured.pcap" file

Below are the Wi-Fi data obtained from the packets which I captured:

		SSID	BSSID	Channel	Capability	Band	Average RSSI
	1	iitmwifi	48:4a:e9:f1:b1:50	132	short-slot+ESS+privacy	5 GHz	-76.75
	2	eduroam	48:4a:e9:f1:b1:51	132	short-slot+ESS+privacy	5 GHz	-78.1
	3	esb	48:4a:e9:f1:b1:52	132	short-slot+ESS+privacy	5 GHz	-77.44827586206897

Fig. 2. Beacon Frames observed in laptop

IV. DISCUSSION

- The analysis identified multiple Wi-Fi networks operating in the vicinity. For the pcap provided, we got 7
 Wi-Fi networks in the vicinity. For my own capture, I
 could find only 3 Wi-Fi networks.
- 2) We observed different channels. For the pcap provided, 2.4GHz, and for my capture, it is 5GHz.
- We should pick the network with a higher Average RSSI value in order to get better quality internet (this is along with other factors).

V. CONCLUSIONS

The Python script successfully analyzed the packet capture file, providing comprehensive details about the Wi-Fi networks present. The extracted information facilitates understanding of network configurations and performance characteristics, aiding in network management and optimization efforts.

REFERENCES

- [1] Scapy Documentation: https://scapy.net/
- [2] Python Documentation: https://www.python.org/doc/