

Autonomous Vehicle Simulation (AVS) Laboratory, University of Colorado

Basilisk Technical Memorandum

Document ID: Basilisk-rateMsgConverter

MODULE TO CONVERT THE RATE MESSAGE BETWEEN TWO MESSAGE FORMATS

Prepared by

Status: 1st release

Scope/Contents

This module reads in a message of type IMUSensorBodyFswMsg, extracts the rate vector, and returns it in an output message of type NavAttIntMsg. The remainder of the output message is zeroed.

Rev	Change Description	Ву	Date
1.0	First release	H. Schaub	June 30, 2018

Contents

1	Model Description	1
2	Module Functions	1
3	Module Assumptions and Limitations	1
4	Test Description and Success Criteria	1
5	Test Parameters	1
6	Test Results	2

1 Model Description

The purpose of this module is to read in the IMU sensor body message from message type IMUSensorBodyFswMsg, and store it in the output message of type NavAttIntMsg. The body rate vector is stored in the variable AngVelBody of the incoming message. The output message of type NavAttIntMsg is used as a common attitude input message by the FSW modules. This output message is first zeroed, and then the rate vector is copied into the variable omega_BN_B.

2 Module Functions

• **Update**: The rate info from one message type is copied over to another message

3 Module Assumptions and Limitations

No assumptions are made for this module.

4 Test Description and Success Criteria

The single check has the rate vector of the input message is set to specific values. The rate info of the output vector is then compared to truth model. Further, the MRP and heading vectors should be zero vectors.

5 Test Parameters

The unit test checks the value of the angular rate output and compares it to expected value. It also makes sure that the attitude and sun sun heading sets are returned as zero.

Table 2: Error tolerance for each test.

Output Value Tested	Tolerated Error
sigma_BN	1e-12
omega_BN_B	1e-12
vehSunPntBdy	1e-12

6 Test Results

The following table shows the results of the unit test described above.

Table 3: Test results

Check	Pass/Fail
1	PASSED

The test output are shown in the following tables.

Table 4: Unit test output table for MRPs.

time [s]	Output 1	Error	Output 2	Error	Output 3 σ	Error
0	0	0	0	0	0	0
0.5	0	0	0	0	0	0
1	0	0	0	0	0	0

Table 5: Unit test output table for rate values.

time [s]	Output 1	Error	Output 2	Error	Output 3 $\omega_{B/N}$	Error
0	-0.1	0	0.2	0	-0.3	0
0.5	-0.1	0	0.2	0	-0.3	0
1	-0.1	0	0.2	0	-0.3	0

Table 6: Unit test output table for sun heading vector.

time [s]	Output 1	Error	Output 2	Error	Output 3 d	Error
0	0	0	0	0	0	0
0.5	0	0	0	0	0	0
1	0	0	0	0	0	0