Discussion Problems	Name:	
Worksheet 12: Newton's Method/Newton-Raphson Method		
Math 408D:		

Instructor: Athil George

Problem 1. Consider Kepler's equation regarding planetary orbits, $M=E-\epsilon\sin(E)$, where M is the mean anomaly, E is the eccentric anomaly, and ϵ is the eccentricity of an orbit. Use Newton's method to solve for the eccentric anomaly E when the mean anomaly $M=\frac{\pi}{3}$ and the eccentricity of the orbit $\epsilon=0.25$.

Problem 2. The figure shows the sun located at the origin and the earth at the point (1,0). The unit here is the distance between the center of the earth and the sun, called an astronomical unit: $1AU \approx 1.496 \times 10^8$ km. There are five locations L_i in this plane of rotation of the earth about the sun where a satellite remains motionless with respect to the earth because the forces acting on the satellite balance each other. These locations are called the libration points. If m_1 is the mass of the sun and m_2 is the mass of the earth, then lambda is defined as follows.

$$\lambda = \frac{m_2}{m_1 + m_2}$$

The x-coordinate of L_1 is the root of the equation $p_1(x)$.

$$p_1(x) = x^5 - (2+\lambda)x^4 + (1+2\lambda)x^3 - (1-r)x^2 + 2(1-r)x + r - 1 = 0$$

The x-coordinate of L_2 is the root of the equation $p_1(x)$.

$$p_2(x) - 2rx^2 = 0$$

Use the value $\lambda \approx 3.04042 \times 10^{-6}$ and estimate the locations for L_1 and L_2 .

Problems

Problem 2

Figure 1: Libration Points of Earth-Sun