Week 1

Neural Networks

Neural Networks intuition

Layers

Multiple Hidden Layers

Examples

Neural Network Model

Notations

More Complex Neural Network

TensorFlow Implementation

Artificial General Intelligence (AGI)

Neural Networks

Neural Networks intuition

• Traditional AI (Linear regression/Logistic regression) was unable to scale with large data

Layers

- Input layer, Hidden layer, Output layer
 - o x,a,yx, a, yx, a, y
- From the example, 4 numbers from the input are fed into the hidden layer, which will compute 3 numbers, forming the activation values, then outputting a single number in the output layer
- Automated feature engineering → NN can learn its own features to make the problem easier for itself via some algorithm

Multiple Hidden Layers

• Multilayer electron

Multiple hidden layers $\vec{x} \rightarrow \overrightarrow{input}$ $\vec{a} \rightarrow \overrightarrow{input}$ \vec{a}

neural network architecture

Examples

- Face Recognition
- Each layer is trying to identify a separate feature

Neural Network Model

Notations

• Superscript [i] denotes the layer the variable is associated with

• Optional step to classify final output

More Complex Neural Network

- Forward propagation
- General formula to compute the activation value of layer I:

TensorFlow Implementation

Sequential() → Forward propagation

Building a neural network architecture

Artificial General Intelligence (AGI)

(artificial narrow intelligence)

E.g., smart speaker, self-driving car, web search, AI in farming and factories (artificial general intelligence) Do anything a human can do