Постоянно-токов анализ на схеми с MOS транзистори

Режим	Условия	I _D =f(U _{DS} ,U _{GS})
Отсечка	$U_{GS} < U_{th}$	I _D =0
Линеен (триоден)	$U_{GS} >= U_{th}$ $U_{DS} < U_{GS} - U_{th}$	$I_D = K \left[\left(U_{GS} - U_{th} \right) U_{DS} - \frac{1}{2} U_{DS}^2 \right]$
Насищане (пентоден)	$U_{GS} >= U_{th}$ $U_{DS} >= U_{GS} - U_{th}$	$I_D = \frac{K}{2} \left(U_{GS} - U_{th} \right)^2$

Анализ

- 1. Определяме U_{GS} като прилагаме законите на Кирхоф и Ом.
- 2. Ако $U_{GS} < U_{th}$ значи транзисторът е в режим на отсечка. I_{D} =0, U_{DS} = V2 U_{RD} =V2 R_{D} . I_{D} =V2. Задачата е решена.
- 3. Ако $U_{GS} >= U_t$, приемеме че транзистора работи в режим на насищане.

Изчисляваме
$$I_{D}=rac{K}{2}ig(U_{GS}-U_{th}ig)^{2}$$
 и $extsf{U}_{DS}$ = V2 - $extsf{U}_{RD}$ =V2 - $extsf{R}_{D}. extsf{I}_{D}$

4. С получената стойност за U_{DS} , проверяваме дали е изпълнено условието за насищане U_{DS} >= U_{GS} - U_{th}

Ако условието за насищане е изпълнено - задачата е решена.

5. Ако условието за насищане не е изпълнено, значи транзистора работи в линеен режим. Изчисляваме I_D и U_{DS} по формулите:

$$I_D = K \left[\left(U_{GS} - U_{th} \right) U_{DS} - \frac{1}{2} U_{DS}^2 \right]$$

$$U_{DS} = V2 - U_{RD} = V2 - R_D.I_D$$