#### CSPs of Finite Commutative Idempotent Binars

#### William DeMeo

williamdemeo@gmail.com

joint work with

Cliff Bergman Jiali Li

Iowa State University

BLAST 2015 University of North Texas June 7–12

### Input

- *variables:*  $V = \{v_1, v_2, ...\}$
- domain: D
- $\blacksquare$  constraints:  $C_1, C_2, \dots$

### Output

- "yes" if there is a solution
  - $\sigma: V \to D$  (an assignment of values to variables that satisfies all  $C_i$ )
- "no" otherwise

EXAMPLE: 3-SAT

### Input

- $\blacksquare$  variables:  $V = \{v_1, \ldots, v_n\}$
- **domain:**  $D = \{0, 1\}$
- constraints: a formula, say,

$$f(v_1,\ldots,v_n)=(v_1\vee v_2\vee \neg v_3)\wedge (\neg v_1\vee v_3\vee v_4)\wedge\cdots$$

#### Output

lacktriangle "yes" if there is a solution:  $\sigma:V\to D$  such that

$$f(\sigma v_1,\ldots,\sigma v_n)=1$$

■ "no" otherwise

EXAMPLE: NAE-SAT

### Input

- $\blacksquare$  variables:  $V = \{v_1, \ldots, v_n\}$
- **•** *domain:*  $D = \{0, 1\}$
- **constraints**:  $(s_1, C_1), (s_2, C_2), \ldots$  of the form

$$s = (i, j, k) \in \{1, \dots, n\}^3$$
 (scopes)  $C = \neg(v_i = v_j = v_k)$ 

# EXAMPLE: NAE-SAT

# Input

- $\blacksquare$  variables:  $V = \{v_1, \ldots, v_n\}$
- **a** domain:  $D = \{0, 1\}$
- **constraints**:  $(s_1, C_1), (s_2, C_2), \ldots$  of the form

$$s = (i, j, k) \in \{1, \dots, n\}^3$$
 (scopes)  $C = \neg(v_i = v_j = v_k)$ 

In terms of relational structures...

Let 
$$S := \{(v_i, v_j, v_k) : (i, j, k) \text{ is a scope } \} \subseteq V^3$$
 
$$R := \{(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)\} \subseteq D^3$$

EXAMPLE: NAE-SAT

# Input

- $\blacksquare$  variables:  $V = \{v_1, \ldots, v_n\}$
- **domain:**  $D = \{0, 1\}$
- **constraints**:  $(s_1, C_1), (s_2, C_2), \ldots$  of the form

$$s = (i, j, k) \in \{1, \dots, n\}^3$$
 (scopes)  
 $C = \neg(v_i = v_j = v_k)$ 

In terms of relational structures...

Let 
$$S := \{(v_i, v_j, v_k) : (i, j, k) \text{ is a scope } \} \subseteq V^3$$
  
 $R := \{(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)\} \subseteq D^3$ 

Then a solution  $\sigma$  must satisfy " $\sigma \mathcal{C} \subseteq \mathcal{R}$ "

that is, 
$$(x, y, z) \in S \implies (\sigma x, \sigma y, \sigma z) \in R$$

EXAMPLE: NAE-SAT

#### Input

- $\blacksquare$  variables:  $V = \{v_1, \dots, v_n\}$
- *domain:*  $D = \{0, 1\}$
- **constraints**:  $(s_1, C_1), (s_2, C_2), \ldots$  of the form

$$s = (i, j, k) \in \{1, \dots, n\}^3$$
 (scopes)  
 $C = \neg(v_i = v_j = v_k)$ 

In terms of relational structures...

Let 
$$S := \{(v_i, v_j, v_k) : (i, j, k) \text{ is a scope } \} \subseteq V^3$$
  
 $R := \{(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)\} \subseteq D^3$ 

Then a solution  $\sigma$  must satisfy " $\sigma \mathcal{C} \subseteq \mathcal{R}$ "

that is, 
$$(x, y, z) \in S \implies (\sigma x, \sigma y, \sigma z) \in R$$

Solutions are homomorphisms!

$$\sigma: \langle V, S \rangle \to \langle D, R \rangle$$

#### CSP: RELATIONAL FORMULATION

Let  $\mathbb{D} = \langle D, \mathcal{R} \rangle$  be a relational structure.

 $\text{CSP}(\mathbb{D})$  is the decision problem with

### Input

■ A structure  $\mathbb{V} = \langle V, \mathfrak{C} \rangle$  similar to  $\mathbb{D}$ .

### Output

- $\blacksquare$  "yes" if there is a homomorphism  $\sigma:\mathbb{V}\to\mathbb{D}$
- "no" otherwise

#### CSP: RELATIONAL FORMULATION

Let  $\mathbb{D} = \langle D, \mathcal{R} \rangle$  be a relational structure.

 $\text{CSP}(\mathbb{D})$  is the decision problem with

### Input

■ A structure  $\mathbb{V} = \langle V, \mathcal{C} \rangle$  similar to  $\mathbb{D}$ .

### Output

- lacktriangle "yes" if there is a homomorphism  $\sigma: \mathbb{V} \to \mathbb{D}$
- "no" otherwise

Alternatively, let ⇒ be the binary relation on similar structures

$$\mathbb{V} \Rightarrow \mathbb{D}$$
 iff there is a homomorphism  $\sigma : \mathbb{V} \to \mathbb{D}$ 

Then the CSP is the membership problem for the set

$$CSP(\mathbb{D}) := \{ \mathbb{V} : \mathbb{V} \Rightarrow \mathbb{D} \}$$

### CSP: RELATIONAL FORMULATION

Let  $\mathbb{D} = \langle D, \mathcal{R} \rangle$  be a relational structure.

 $\text{CSP}(\mathbb{D})$  is the decision problem with

### Input

■ A structure  $\mathbb{V} = \langle V, \mathcal{C} \rangle$  similar to  $\mathbb{D}$ .

### Output

- lacksquare "yes" if there is a homomorphism  $\sigma:\mathbb{V}\to\mathbb{D}$
- "no" otherwise

We call  $\mathbb D$  "tractable" if there is a polynomial-time algorithm for  $CSP(\mathbb D)$ .

Let  $\mathbb{D} = \langle D, \mathcal{R} \rangle$  be a relational structure.

For  $R \subseteq \mathcal{R}$  define the *polymorphisms* of R,

$$\mathsf{pol}(R) := \{ f : D^k \to D \mid f(\rho) \subseteq \rho \text{ for every } \rho \in R \}$$

Let  $\mathbb{D} = \langle D, \mathcal{R} \rangle$  be a relational structure.

For  $R \subseteq \mathcal{R}$  define the *polymorphisms* of R,

$$\mathsf{pol}(R) := \{ f : D^k \to D \mid f(\rho) \subseteq \rho \text{ for every } \rho \in R \}$$

that is,  $f \in pol(R)$  iff for every  $\rho \in R$  (say, *n*-ary)

$$(a_1,b_1,\ldots,z_1) \in \rho$$

$$(a_k,b_k,\ldots,z_k) \in \rho$$

$$(f(a_1,\ldots,a_k),\ldots,f(z_1,\ldots,z_k)) \in \rho$$

Let  $\mathbb{D} = \langle D, \mathcal{R} \rangle$  be a relational structure.

For  $R \subseteq \mathbb{R}$  define the *polymorphisms* of R,

$$\mathsf{pol}(R) := \{ f : D^k \to D \mid f(\rho) \subseteq \rho \text{ for every } \rho \in R \}$$

Define the algebra  $\mathbf{D} := \langle D, \mathsf{pol}(R) \rangle$ .

We call **D** "tractable" if the corresponding structure  $\langle D, R \rangle$  is tractable.

Let  $\mathbb{D} = \langle D, \mathcal{R} \rangle$  be a relational structure.

For  $R \subseteq \mathbb{R}$  define the *polymorphisms* of R,

$$\mathsf{pol}(R) := \{ f : D^k \to D \mid f(\rho) \subseteq \rho \text{ for every } \rho \in R \}$$

Define the algebra  $\mathbf{D} := \langle D, \mathsf{pol}(R) \rangle$ .

We call **D** "tractable" if the corresponding structure  $\langle D, R \rangle$  is tractable.

For F a set of operations on D, define the *relational clone* of F,

$$\operatorname{rel}(F) := \{ \rho \subseteq D^n \mid f(\rho) \subseteq \rho \text{ for every } f \in F \}$$

Let  $\bar{R} := rel(pol(R))$  be the "closure" of R.

Let  $\mathbb{D} = \langle D, \mathcal{R} \rangle$  be a relational structure.

For  $R \subseteq \mathbb{R}$  define the *polymorphisms* of R,

$$\mathsf{pol}(R) := \{ f : D^k \to D \mid f(\rho) \subseteq \rho \text{ for every } \rho \in R \}$$

Define the algebra  $\mathbf{D} := \langle D, \mathsf{pol}(R) \rangle$ .

We call **D** "tractable" if the corresponding structure  $\langle D, R \rangle$  is tractable.

For F a set of operations on D, define the *relational clone* of F,

$$\operatorname{rel}(F) := \{ \rho \subseteq D^n \mid f(\rho) \subseteq \rho \text{ for every } f \in F \}$$

Let  $\bar{R} := rel(pol(R))$  be the "closure" of R.

Then, 
$$CSP\langle D, R \rangle \leqslant_P CSP\langle D, \bar{R} \rangle$$

Theorem (Bodnarčuk et al.; Geiger, 1968)

Let R be a set of relations on a finite set.

Then  $\bar{R} := \text{rel}(\text{pol}(R))$  is the set of relations that are pp-definable from R.

THEOREM (BODNARČUK ET AL.; GEIGER, 1968)

Let R be a set of relations on a finite set.

Then  $\bar{R} := \text{rel}(\text{pol}(R))$  is the set of relations that are pp-definable from R.

**THEOREM** 

Let  $S \subseteq R$  be sets of relations.

■  $CSP(S) \leq_P CSP(R)$ 

THEOREM (BODNARČUK ET AL.; GEIGER, 1968)

Let R be a set of relations on a finite set.

Then  $\bar{R} := \text{rel}(\text{pol}(R))$  is the set of relations that are pp-definable from R.

#### **THEOREM**

Let  $S \subseteq R$  be sets of relations.

■  $CSP(S) \leq_P CSP(R)$  (CSP(S) reducible to CSP(R))

THEOREM (BODNARČUK ET AL.; GEIGER, 1968)

Let R be a set of relations on a finite set.

Then  $\bar{R} := \text{rel}(\text{pol}(R))$  is the set of relations that are pp-definable from R.

#### **THEOREM**

Let  $S \subseteq R$  be sets of relations.

- $CSP(S) \leq_P CSP(R)$  (CSP(S) reducible to CSP(R))
- $\blacksquare$  CSP(R)  $\equiv_P$  CSP( $\bar{R}$ )

THEOREM (BODNARČUK ET AL.; GEIGER, 1968)

Let R be a set of relations on a finite set.

Then  $\bar{R} := \text{rel}(\text{pol}(R))$  is the set of relations that are pp-definable from R.

#### THEOREM

Let  $S \subseteq R$  be sets of relations.

- $CSP(S) \leq_P CSP(R)$  (CSP(S) reducible to CSP(R))
- $CSP(R) \equiv_P CSP(\bar{R})$  ( $CSP(\bar{R})$  reducible to CSP(R)!)

THEOREM (BODNARČUK ET AL.; GEIGER, 1968)

Let R be a set of relations on a finite set.

Then  $\bar{R} := \text{rel}(\text{pol}(R))$  is the set of relations that are pp-definable from R.

#### **THEOREM**

Let  $S \subseteq R$  be sets of relations.

- $CSP(S) \leq_P CSP(R)$  (CSP(S) reducible to CSP(R))
- $CSP(R) \equiv_P CSP(\bar{R})$  ( $CSP(\bar{R})$  reducible to CSP(R)!)

Corollary 
$$\langle D, \mathsf{pol}(R) \rangle = \langle D, \mathsf{pol}(S) \rangle \implies \mathsf{CSP}(R) \equiv_P \mathsf{CSP}(S)$$

The algebras determine the complexity of the corresponding constraint satisfaction problem!

Find properties (of algebras) that characterize the complexity of CSPs.

#### CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra  $\mathbf{A}...$ 

CSP(A) is tractable  $\iff$  A has a weak-nu term operation

Find properties (of algebras) that characterize the complexity of CSPs.

#### CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

 $\mathrm{CSP}(\mathbf{A})$  is tractable  $\implies \mathbf{A}$  has a weak-nu term operation  $\checkmark$ 

The left-to-right direction is known.

Find properties (of algebras) that characterize the complexity of CSPs.

#### CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable  $\iff$  A has a weak-nu term operation (?)

The right-to-left direction is open.

Find properties (of algebras) that characterize the complexity of CSPs.

#### CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable  $\iff$  A has a weak-nu term operation (?

A weak near unanimity (weak-nu) term operation is one that satisfies

$$t(x, x, \dots, x) \approx x$$
 (idempotent)

$$t(y, x, \dots, x) \approx t(x, y, \dots, x) \approx \dots \approx t(x, x, \dots, y)$$

Find properties (of algebras) that characterize the complexity of CSPs.

#### CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

$$CSP(A)$$
 is tractable  $\iff$  A has a weak-nu term operation (?

A weak near unanimity (weak-nu) term operation is one that satisfies

$$t(x, x, ..., x) \approx x$$
 (idempotent)  
 $t(y, x, ..., x) \approx t(x, y, ..., x) \approx ... \approx t(x, x, ..., y)$ 

A binary operation t(x, y) is weak-nu if

$$t(x,x) pprox x$$
 (idempotent) 
$$t(y,x) pprox t(x,y)$$
 (commutative)

So let's try to prove (?) for commutative idempotent binars.

A CIB is an algebra  $\mathbf{A} = \langle A, \cdot \rangle$  satisfying  $x \cdot y \approx y \cdot x$  and  $x \cdot x \approx x$ .

A CIB is an algebra  $\mathbf{A} = \langle A, \cdot \rangle$  satisfying  $x \cdot y \approx y \cdot x$  and  $x \cdot x \approx x$ .

QUESTION

Is every finite commutative idempotent binar tractable?

A CIB is an algebra  $\mathbf{A} = \langle A, \cdot \rangle$  satisfying  $x \cdot y \approx y \cdot x$  and  $x \cdot x \approx x$ .

QUESTION

Is every finite commutative idempotent binar tractable?

First Example: a semilattice is an associative CIB.

Semilattices are tractable.

A CIB is an algebra  $\mathbf{A} = \langle A, \cdot \rangle$  satisfying  $x \cdot y \approx y \cdot x$  and  $x \cdot x \approx x$ .

#### **QUESTION**

Is every finite commutative idempotent binar tractable?

First Example: a semilattice is an associative CIB. Semilattices are tractable.

Pause to consider more general case for a minute...

SOME WELL KNOWN FACTS

Let A be a finite idempotent algebra. Let  $S_2$  be the 2-elt semilattice.

V(A) is CP  $\iff$  A has Malcev term

#### SOME WELL KNOWN FACTS

Let A be a finite idempotent algebra. Let  $S_2$  be the 2-elt semilattice.

V(A) is CP  $\iff$  A has Malcev term



#### SOME WELL KNOWN FACTS

Let  ${\bf A}$  be a finite idempotent algebra. Let  ${\bf S}_2$  be the 2-elt semilattice.

$$\begin{array}{c} V(A) \text{ is CP} \iff A \text{ has Malcev term} \\ & \implies A \text{ has cube term} \end{array}$$



#### SOME WELL KNOWN FACTS

Let  ${\bf A}$  be a finite idempotent algebra. Let  ${\bf S}_2$  be the 2-elt semilattice.

$$\begin{array}{c} V(A) \text{ is CP} \iff A \text{ has Malcev term} \\ \implies A \text{ has cube term} \\ \implies V(A) \text{ is CM} \end{array}$$



#### SOME WELL KNOWN FACTS

Let A be a finite idempotent algebra. Let  $S_2$  be the 2-elt semilattice.

 $\begin{array}{c} V(A) \text{ is CP} \iff A \text{ has Malcev term} \\ \Longrightarrow A \text{ has cube term} \\ \Longrightarrow V(A) \text{ is CM} \\ \Longrightarrow S_2 \text{ is not in } V(A) \end{array}$ 



# FIRST REDUCTION BY CUBE-TERM BLOCKERS

Marković, M. Maróti, McKenzie ( $M^4$ ) "Finitely related clones and algebras with cube terms" (2012)

A cube-term blocker (CTB) is a pair (C,B) of subuniverses satisfying  $\emptyset < C < B \leqslant A$  and for every  $t(x_1,\ldots,x_n)$  there is an index  $i \in [n]$  with

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C).$$

# FIRST REDUCTION BY CUBE-TERM BLOCKERS

Marković, M. Maróti, McKenzie ( $M^4$ ) "Finitely related clones and algebras with cube terms" (2012)

A cube-term blocker (CTB) is a pair (C,B) of subuniverses satisfying  $\emptyset < C < B \leqslant A$  and for every  $t(x_1,\ldots,x_n)$  there is an index  $i \in [n]$  with

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C).$$

 $M^4$  prove a finite idempotent algebra has a cube term iff it has no CTB.

# FIRST REDUCTION BY CUBE-TERM BLOCKERS

Marković, M. Maróti, McKenzie ( $M^4$ ) "Finitely related clones and algebras with cube terms" (2012)

A cube-term blocker (CTB) is a pair (C,B) of subuniverses satisfying  $\emptyset < C < B \leqslant A$  and for every  $t(x_1,\ldots,x_n)$  there is an index  $i \in [n]$  with

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C).$$

 $M^4$  prove a finite idempotent algebra has a cube term iff it has no CTB.

#### LEMMA

A finite CIB  $\mathbf A$  has a CTB if and only if  $\mathbf S_2 \in \mathsf{HS}(\mathbf A)$ .

# FIRST REDUCTION BY CUBE-TERM BLOCKERS

Marković, M. Maróti, McKenzie ( $M^4$ ) "Finitely related clones and algebras with cube terms" (2012)

A cube-term blocker (CTB) is a pair (C,B) of subuniverses satisfying  $\emptyset < C < B \leqslant A$  and for every  $t(x_1,\ldots,x_n)$  there is an index  $i \in [n]$  with

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C).$$

 $M^4$  prove a finite idempotent algebra has a cube term iff it has no CTB.

#### LEMMA

A finite CIB A has a CTB if and only if  $S_2 \in \mathsf{HS}(A)$ .

#### PROOF.

(C,B) a CTB implies  $\theta = C^2 \cup (B-C)^2$  a congruence with  $\mathbf{B}/\theta \cong \mathbf{S}_2$ .

Conversely, suppose  $S_2 \in \mathsf{HS}(\mathbf{A})$ , and  $\mathbf{B}$  is a subalgebra of  $\mathbf{A}$  with  $\mathbf{B}/\theta$  a meet-SL for some  $\theta$ . Let  $C/\theta$  be the bottom of  $\mathbf{B}/\theta$ , then (C,B) is a CTB.

#### SECOND REDUCTION

### Kearnes and Tschantz

"Automorphism groups of squares and of free algebras" (2007)

#### LEMMA

If V is an idempotent variety that is not congruence permutable, then there are subuniverses U and W of  $\mathbf{F} := \mathbf{F}_V\{x,y\}$  satisfying

- 1.  $x \in U \cap W$
- 2.  $y \in U^c \cap W^c$
- 3.  $(U \times F) \cup (F \times W) \leqslant \mathbf{F}^2$

#### SECOND REDUCTION

#### Kearnes and Tschantz

"Automorphism groups of squares and of free algebras" (2007)

#### LEMMA

If V is an idempotent variety that is not congruence permutable, then there are subuniverses U and W of  $\mathbf{F} := \mathbf{F}_V\{x,y\}$  satisfying

- 1.  $x \in U \cap W$
- 2.  $y \in U^c \cap W^c$
- 3.  $(U \times F) \cup (F \times W) \leqslant \mathbf{F}^2$

For CIB's, either U or W will be an ideal.

This implies a CTB and a semilattice.

A = a finite CIB  $S_2 = the 2$ -elt semilattice.

V(A) is CP  $\iff$  A has a Malcev term  $\implies$  A has a cube term  $\implies$  V(A) is CM  $\implies$  S<sub>2</sub> is not in V(A)



A = a finite CIB  $S_2 = the 2$ -elt semilattice.

V(A) is CP  $\iff$  A has a Malcev term  $\implies$  A has a cube term  $\implies$  V(A) is CM  $\implies$  **S**<sub>2</sub> is not in V(**A**) → A has a cube term



■ 1st reduction by cube-term blockers.

 $\mathbf{A} = \mathbf{a}$  finite CIB

 $S_2$  = the 2-elt semilattice.

$$\begin{array}{lll} V(\mathbf{A}) \text{ is CP} & \Longleftrightarrow & \mathbf{A} \text{ has a Malcev term} \\ & \Longrightarrow & \mathbf{A} \text{ has a cube term} \\ & \Longrightarrow & V(\mathbf{A}) \text{ is CM} \\ & \Longrightarrow & \mathbf{S}_2 \text{ is not in } V(\mathbf{A}) \\ & \Longrightarrow & \mathbf{A} \text{ has a cube term} \\ & \Longrightarrow & V(\mathbf{A}) \text{ is CP} \end{array}$$



- 1st reduction by cube-term blockers.
- 2nd reduction by Kearnes-Tschantz.

|     | 0   | 1 | 2 | 3 |
|-----|-----|---|---|---|
| 0   | 0   | 0 | 0 | 1 |
| - 1 | 0   | 1 | 3 | 2 |
| 2   | 0 0 | 3 | 2 | 1 |
| 3   | 1   | 2 | 1 | 3 |

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 3 | 2 |
| 2 | 0 | 3 | 2 | 1 |
| 3 | 1 | 2 | 1 | 3 |

*Cliff's trick:* replace binary operation with a term from clo(A), say

$$x * y = (x \cdot (x \cdot y)) \cdot (y \cdot (x \cdot y))$$

If  $\langle A, * \rangle$  tractable, then so is  $\mathbf{A} = \langle A, \cdot \rangle$ .

|             | 0   | 1 | 2 | 3 |
|-------------|-----|---|---|---|
| 0           | 0   | 0 | 0 | 1 |
| 1           | 0 0 | 1 | 3 | 2 |
| 2           | 0   | 3 | 2 | 1 |
| 1<br>2<br>3 | 1   | 2 | 1 | 3 |

# *Cliff's trick:* replace binary operation with a term from clo(A), say

$$x * y = (x \cdot (x \cdot y)) \cdot (y \cdot (x \cdot y))$$

If 
$$\langle A, * \rangle$$
 tractable, then so is  $\mathbf{A} = \langle A, \cdot \rangle$ .

Cliff's trick: replace binary operation with a term from  $clo(\mathbf{A})$ , say

$$x * y = (x \cdot (x \cdot y)) \cdot (y \cdot (x \cdot y))$$

If  $\langle A, * \rangle$  tractable, then so is  $\mathbf{A} = \langle A, \cdot \rangle$ .

$$\begin{cases} *\} \subseteq \mathsf{clo}(\mathbf{A}) & \Longrightarrow & \mathsf{rel}(\mathsf{clo}(\mathbf{A})) \subseteq \mathsf{rel}(\{*\}) \\ & \Longrightarrow & \mathsf{CSP}(\mathbf{A}) \leqslant_{P} \mathsf{CSP}\langle A, * \rangle \\ \end{cases}$$

$$\langle A, * \rangle$$
 tractable  $\implies$  **A** tractable

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 3 | 2 |
| 2 | 1 | 3 | 2 | 1 |
| 3 | 1 | 2 | 1 | 3 |

Let 
$$t(x, y) = x \cdot (x \cdot (x \cdot y)) \cdot y \cdot (y \cdot (x \cdot y)).$$

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 3 | 2 |
| 2 | 1 | 3 | 2 | 1 |
| 3 | 1 | 2 | 1 | 3 |

Let 
$$t(x, y) = x \cdot (x \cdot (x \cdot y)) \cdot y \cdot (y \cdot (x \cdot y)).$$

|             | 0 | 1           | 2      | 3           |
|-------------|---|-------------|--------|-------------|
| 0           | 0 | 0           | 1      | 1           |
| 1           | 0 | 1           | 3<br>2 | 2           |
| 1<br>2<br>3 | 1 | 3           | 2      | 1           |
| 3           | 1 | 2           | 1      | 3           |
|             |   |             |        |             |
|             |   |             |        |             |
| t           | 0 | 1           | 2      | 3           |
|             | 0 | 1           | 2      | 3           |
| 0           |   | 1<br>0<br>1 | 0      | 3<br>1<br>2 |
| 0           | 0 | 1           | 0      | 1           |
|             | 0 | 1           | 0      | 1 2         |

Let 
$$t(x, y) = x \cdot (x \cdot (x \cdot y)) \cdot y \cdot (y \cdot (x \cdot y)).$$

$$\langle A, t \rangle$$
 tractable

| • | U       | 1      | 2      | 3 |
|---|---------|--------|--------|---|
| 0 | 0       | 0      | 2      | 1 |
| 1 | 0       | 1      | 3<br>2 | 2 |
| 2 | 0 0 2 1 | 3<br>2 | 2      | 1 |
| 3 | 1       | 2      | 1      | 3 |

|       | 0     | 1 | 2 | 3 |  |
|-------|-------|---|---|---|--|
| 0     | 0     | 0 | 2 | 1 |  |
| 0 1 2 | 0 0 2 | 1 | 3 | 2 |  |
| 2     | 2     | 3 | 2 | 1 |  |
| 0     | 4     | 0 | 4 | 2 |  |

Let 
$$t_2(x, y) = ...$$
 ?

|             | 0     | 1 | 2 | 3 |
|-------------|-------|---|---|---|
| 0           | 0     | 0 | 2 | 1 |
| 1           | 0     | 1 | 3 | 2 |
| 1<br>2<br>3 | 0 0 2 | 3 | 2 | 1 |
| 3           | 1     | 2 | 1 | 3 |

Let 
$$t_2(x, y) = ...$$
 ?  
Let  $t_3(x, y, z) = ...$  ?

...and about 25 others.



To see them, load UACalc with files from the Bergman directory at

https://github.com/UACalc/AlgebraFiles

...and about 25 others.



To see them, load UACalc with files from the Bergman directory at

https://github.com/UACalc/AlgebraFiles
Thank you for listening!