Exercices Cours 7

13.26 p. 744
Montagnes russes
L'ascenseur
13.69 p. 762

Méthode de l'énergie

Méthode **scalaire** (l'énergie n'est pas un vecteur!)

Relie **position** et **vitesse** sans avoir à travailler directement avec l'accélération et le temps.

Plusieurs problèmes se résolvent plus facilement avec cette méthode qu'avec la 2^e de loi de Newton «brute»

Équations de la semaine

Énergie mécanique

$$E = T + V = T + V_g + V_r$$

Cinétique

$$T = \frac{1}{2}mv^2$$

Potentielle

Gravité

$$V_g = mgh$$

h: hauteur au-dessus du sol

Ressort

$$V_r = \frac{1}{2} k (\Delta L)^2$$

Principe travail-énergie ou Conservation de l'énergie ?

Méthode de résolution suggérée

Travaillez sous forme de tableau!

- Définissez bien votre système;
- Définissez bien vos états initial et final;
- Posez la référence $V_g=0$ pour chaque objet du système.

	État initial	État final
Énergie cinétique T	$\frac{1}{2}mv_i^2$	$rac{1}{2}mv_f^2$
Énergie pot. grav. ${\cal V}_g$	mgh_i	mgh_f
Énergie pot. res. V_r	$\frac{1}{2}k(\Delta L_i)^2$	$\frac{1}{2}k(\Delta L_f)^2$
Travail des forces non conservatirces $oldsymbol{U}_{nc}$	$\int_{initial}^{final} \vec{F}_{nc} \cdot d\vec{r} +$: gagne de l'énergie $-$: perd de l'énergie	

Exercice 13.26 p. 744

Un bloc de 5 kg est attaché à un ressort (k = 2 kN/m). Le ressort est initialement à sa longueur naturelle. Les coefficients de frottement statique et cinétique entre le bloc et le plan sont respectivement de 0,60 et de 0,40. Supposez qu'on applique lentement une force F au bloc jusqu'à ce que la tension dans le ressort soit de 90 N puis qu'on la supprime subitement. Calculez :

- A) La vitesse du bloc lorsqu'il revient à sa position initiale pour la 1^{re} fois (là où le ressort est à sa longueur naturelle);
- B) La vitesse maximale du bloc.

Montagnes russes

Une voiturette de 200 kg est propulsée du point A (h_1 = 20 m) au point C. Sa vitesse initiale est tout juste suffisante pour ne pas tomber au point B au sommet de la boucle de rayon de courbure ρ_B = 15 m.

Déterminez la hauteur *h* atteinte par la voiturette sachant que le coefficient de frottement cinétique dans la montée vaut 0,4. La montée est inclinée à 20° au-dessus de l'horizontale.

Choix de la méthode de résolution

Y'a-t-il des forces non conservatives dans le problème?

Puissance et rendement

Puissance générée par un système

Rythme auquel le système peut transformer l'énergie qu'il contient en travail.

Puissance moyenne sur un intervalle de temps

$$\overline{P} = \frac{U_{1 \to 2}}{\Delta t} = \frac{U_{1 \to 2}}{t_2 - t_1}$$

Puissance instantanée

en watt 1 W = 1 J/s
$$P = \frac{dU}{dt} = \vec{F} \cdot \vec{v}$$

Rendement

Rapport de la puissance fournie par un dispositif (sortie) et de la puissance qu'il reçoit (entrée). Le rendement se situe entre 0 et 100 %.

$$\eta = rac{P_{ ext{fournie}}}{P_{ ext{reçue}}}$$

L'ascenseur

L'ascenseur A possède une masse de 3000 kg. Il est relié à un contrepoids P de 1000 kg.

Calculez la puissance électrique consommée par le moteur lorsque l'ascenseur monte à une vitesse constante de 3 m/s, sachant que le rendement du moteur est de 65 %.

Exercice 13.69 p. 762

Le système représenté est en équilibre lorsque $\phi = 0$.

Sachant que, initialement, $\phi = 90^{\circ}$ et que le bloc C reçoit une légère poussée lorsque le système est dans cette position, calculez la vitesse du bloc lorsqu'il passe par la position d'équilibre $\phi = 0$. Négligez le poids de la tige.

