上节回顾

- 1. 离散型随机变量的数学期望
- 2. 连续型随机变量数学期望的定义
- 3. 随机变量函数的数学期望
 - 1.一维离散随机变量函数的数学期望
 - 2.一维连续随机变量函数的数学期望
 - 3. 二维离散随机变量函数的数学期望
 - 4. 二维连续随机变量函数的数学期望

$$E(X) = \sum_{k=1}^{+\infty} x_k p_k.$$

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx.$$

$$E(Y) = E[g(X)] = \sum_{i=1}^{\infty} g(x_i) p_i$$

$$E(Y) = E[g(X)] = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

$$E(Z) = E[g(X,Y)] = \sum_{i} \sum_{j} g(x_i, y_j) p_{ij}$$

$$E(Z) = E[g(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$$

上周回顾

4. 数学期望的性质

$$\begin{cases} 1^{0} & E(C) = C; \\ 2^{0} & E(CX) = CE(X); \\ 3^{0} & E(X+Y) = E(X) + E(Y); \\ 4^{0} & X,Y 独立 \Rightarrow E(XY) = E(X)E(Y). \end{cases}$$

Course Review

Definition The mathematical expectation (or simply expectation or expected value or mean) for a discrete random variable *X* is defined as

$$E(X) = \mu_{x} = \sum_{k} x_{k} P(X = x_{k})$$

given that the above series converges absolutely, where $P(X = x_k)$ p.m.f. of X.

Course Review

Distribution	Distribution law	E(X)
$X\sim B(1,p)$	$P{X = k} = p^{k}(1-p)^{1-k}$ $k=0,1$	p
$X\sim B(n,p)$	$P{X = k} = C_n^k p^k (1-p)^{n-k}$ $k=0,1,2,,n$	np
$X \sim P(\lambda)$	$P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ $k=0,1,2,$	λ
$X\sim G(p)$	$P\{X=k\}=(1-p)^{k-1}p$ $k=1,2,$	$\frac{1}{p}$

Theorem 3.1.6: If a discrete r.v. X obeys Poisson distribution with parameter λ , then the expectation of X is $E(X) = \lambda$.

Problem Introduction

Ballast water is one of the largest non-native species transfer carriers in the world.

Problem Introduction

The mean cell density of living algal in water bodies is difficult to obtain directly.

The cell density of algal in sample water obeys Poisson distribution.

The Variance of Poisson distribution

Variance and its properties

The variance measures the spread of the distribution around the mean. An r.v. with a zero variance is constant. The larger the variance, the more uncertain the r.v. is, in the mean square sense.

Example 2.1: Assuming two shooters A and B have a competition, they shoot 10 times at each target, as shown in the figure. Which shooter's shooting is more stable?

Example 2.1: Assuming two shooters A and B have a competition, they shoot 10 times at each target, as shown in the table. Which shooter's shooting is more stable?

Shooter A		Shooter B	
Number of rings	Probability p	Number of rings	Probability p
5	0.2	4	0.3
7	0.6	7	0.4
9	0.2	10	0.3

Solution: (1) Find the mathematical expectation:

$$E(X) = \sum_{k} x_{k} P(X = x_{k})$$

Shooter A		Shooter B	
Number of rings	Probability p	Number of rings	Probability p
5	0.2	4	0.3
7	0.6	7	0.4
9	0.2	10	0.3

$$E(X_A) = 5 * 0.2 + 7 * 0.6 + 9 * 0.2 = 7$$

$$E(X_B) = 4 * 0.3 + 7 * 0.4 + 10 * 0.3 = 7$$

Fig1. The expectation of two shooters

Solution: (2) Find the expectation of the deviation from its expectation:

$$E[X-E(X)]$$

Shooter A		Shooter B	
Number of rings	Probability p	Number of rings	Probability p
5	0.2	4	0.3
7	0.6	7	0.4
9	0.2	10	0.3
$E(X_A) = 7$		E(X	_B) = 7

$$E[X_A - E(X_A)]$$
= $(5-7)*0.2 + (7-7)*0.6 + (9-7)*0.2 = 0$

$$E[X_B - E(X_B)]$$
= $(4-7)*0.3 + (7-7)*0.4 + (10-7)*0.3 = 0$

Fig2. The expectation of the two shooter's deviation

Solution: Find the expectation of the square of the deviation between X and its expectation:

$$E[X-E(X)]^2$$

Shooter A		Shooter B	
Number of rings	Probability p	Number of rings	Probability p
5	0.2	4	0.3
7	0.6	7	0.4
9	0.2	10	0.3
$E(X_A) = 7$		E(X)	_B) = 7

$$E[X_A - E(X_A)]^2$$

$$= (5-7)^2 * 0.2 + (7-7)^2 * 0.6 + (9-7)^2 * 0.2 = 1.6$$

$$E[X_B - E(X_B)]^2$$

$$= (4-7)^2 * 0.3 + (7-7)^2 * 0.4 + (10-7)^2 * 0.3 = 5.4$$

Fig3. The expectation of square of the two shooter's deviation

Definition of variance

Definition of the variance If X is an r.v.with $E(X) = \mu_x$, then Var(X)

or D(X), called the variance of X, is defined by

$$Var(X) = D(X) = E[(X - \mu_x)^2]$$

and the Standard Deviation (SD) σ_x of X is

$$\sigma_X = \sqrt{Var(X)} = \sqrt{D(X)}$$

Definition of variance

Single-Option Question

Q: Why do we need a concept of standard deviation (SD)?

- A Cause SD of X has the same unit with r.v. X.
- B Cause SD value of *X* is more smaller than r.v. *X*.
- C Cause SD value of X is more easier to calculate.
- D It make no difference with Var(X).

Q: Why do we need a concept of standard deviation (SD)?

- A Cause SD of X has the same unit with r.v. X.
- B Cause SD value of X is more smaller than r.v. X.
- C Cause SD value of X is more easier to calculate.
- It make no difference with Var(X).

Variance calculating

Method 1# Calculate according to its definition.

$$Var(X) = D(X) = E[(X - \mu_X)^2]$$

Method 2# A convenient way for calculating variance.

$$Var(X) = E(X^2) - [E(X)]^2$$

Variance of Poisson distribution

Suppose that r.v.
$$X \sim P(\lambda)$$
, $P(X = k) = \frac{\lambda^{k} e^{-\lambda}}{k!}$, $k = 0,1,2$, then,

$$E(X^2) = E[X(X-1) + X]$$

$$= \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} + E(X)$$

$$= \lambda^{2} \cdot e^{-\lambda} \cdot \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} + \lambda = \lambda^{2} \cdot e^{-\lambda} \cdot e^{\lambda} + \lambda = \lambda^{2} + \lambda$$

Thus, $Var(X) = E(X^2) - E(X)^2 = \lambda = E(X)$

Theorem 3.2.6 : If r.v. *X* obeys Poisson distribution with parameter λ , $X \sim P(\lambda)$, then $Var(X) = \lambda$.

- The mean cell density of living algal in water bodies is difficult to obtain directly.
- The cell density of algal in sample water obeys Poisson distribution.
- ➤ The expectation value of Poisson distribution equals to its variance!

We try to get the variance of the algal cell density in water!

- ➤ Variable fluorescence is a byproduct of photosynthesis.
- > The fluorescence intensity is positively correlated with the density of algae cells.

Fig.5 Distribution shape of cell number and Fv value under different cell density. (a)Distribution shape of cell number; (b)Distribution shape of Fv value.

Fig4. Schematic diagram of the experimental device for variable fluorescence measurement of viable algae cells in water

Problem solved

Fig.6 Comparison of viable algal cell density between microscopic examination and statistical analysis method. (a)Peridinium umbonatum var. inaequale; (b)Dunaliella salina;(c)Thalassiosira weissflogii;

Curriculum Ideology and Politics

XcqK FrGDXbbb4 RP7CEmRWdAd6zewYXjYR c14XZPb5&uniplatform=NZKPT

Summary & Homeworks

□ Summary:

$$Var(X) = D(X) = E[(X - \mu_x)^2]$$

$$\sigma_X = \sqrt{Var(X)} = \sqrt{D(X)}$$

$$Var(X) = E(X^2) - [E(X)]^2$$

□ Homeworks

