

DEC ((d,N), m) = $m^d m d N$ ee 30, __, M-19 $MCD(e_M) = 1$ P1, 2000.000 } M= Pi*Pi $\left\{\left(\ell_{1},N_{1}\right),--\cdot,\left(\ell_{1000},N_{1000}\right),\right.$ $MCD(N_1,N_2)$

$$M \in \{0, -, M-1\}$$

$$M \in \{0, M-1\}$$

$$M \in$$

me

e mod
$$N = e$$
 $t = m^{5}$
 $t = ER(a, b, n) \rightarrow a^{b} \mod n$

if $b = 0$ raturn 1

else if $b \approx 2 = 0$
 $t = ER(e, b/2, n)$

raturn $(t * t) % n$

else

 $t = ER(a, (b-1)/2, n)$

raturn $(t * t * a) % n$

 $m \in \{0, -, N-1\}$ DEC ((d,N), Euc((e,N),m))=m (me mod N) mod N = med mod N = m > ((me mad N). (me mod N)) mod N $= \left(\frac{m^{\ell}}{m^{\ell}} \right) \mod N = \frac{m^{\ell} d}{N}$ (memodN = me) modN

 $M \in \{0, \ldots, N-1\}$ $m d \cdot e \mod N = m$ mde = m mod N $d \cdot e = 1 \mod p(N)$ Ø(N) (d.e-1) d. \$(N) = d.e - 1 $d \cdot e = \lambda \cdot \phi(N) + 1$ $m \propto \phi(N) + 1$ $\equiv m \mod N$ $(m^{\delta(N)})^{Q} M \equiv M \mod N$ $M = 1 \mod N$

$$N = P.Q$$
 $\beta(N) = (P-1)(Q-1)$
 $M \in \{1, --, P-1\}$
 M^{P-1} $M \in \{1, --, 6\}$
 1^6 1^6

 $|| m \phi(n)$ $| m \in \{1, -1, P-1\}$ $\emptyset(N) = (P-1) \cdot (Q-1)$ (M(P-1))(Q-1) (M(P-1))(Q-1) $= \left(\frac{P-1}{M} \right) \mod P$ $= \left(\frac{P-1}{M} \right) \mod P$ m E 1 N-14 es multiple m P-1 mod P = 1