Pen and paper

1. Prove the following sufficient and necessary condition for convergence:

For iteration $\mathbf{x}^{(k)} = B\mathbf{x} + \mathbf{c}$ with $\mathbf{x}^{(0)} = \mathbf{x}_0$, $\mathbf{x}^{(k)}$ converges for any choice of \mathbf{x}_0 if and only if the spectral radius $\rho(B)$ of the iteration matrix B is smaller than 1.

- (a) (if statement)
 - Show $\mathbf{x}^{(k)} = B^k \mathbf{x}_0 + (I + B + B^2 + \dots + B^{k-1}) \mathbf{c}$.
 - Show I B is invertible. (Hint: I B does not have a zero eigenvalue.)
 - Show $I + B + B^2 + \dots + B^{k-1} = (I B)^{-1}(I B^k)$.
 - Using $\rho(B) < 1 \Rightarrow B^k \to 0$ (you do not need to prove this), conclude the proof.
- (b) (only if statement)
 - Let $\mathbf{e}^{(k)} = \mathbf{x}^{(k)} \mathbf{x}^*$ with \mathbf{x}^* being the convergent solution. Show $\mathbf{e}^{(k)} = B^k \mathbf{e}^{(0)} = B^k (\mathbf{x}_0 \mathbf{x}^*)$.
 - Suppose $\rho(B) \ge 1$ and derive a contradiction. (Hint: find \mathbf{x}_0 such that $\mathbf{e}^{(k)}$ does not converge to $\mathbf{0}$.)
- 2. Assume that iteration $\mathbf{x}^{(k)} = B\mathbf{x}^{(k-1)} + \mathbf{c}$ with $\mathbf{x}^{(0)} = \mathbf{x}_0$ converges to \mathbf{x}^* and ||B|| < 1 for an induced matrix norm. Prove the following inequality:

$$\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \le \frac{\|B\|^k}{1 - \|B\|} \|\mathbf{x}^{(1)} - \mathbf{x}_0\|$$
 (1)

(a) Show

$$\mathbf{x}^{(k)} - \mathbf{x}^* = -B^k (I - B)^{-1} \left(\mathbf{x}^{(1)} - \mathbf{x}_0 \right). \tag{2}$$

(b) By showing

$$\|(I-B)^{-1}\| \le \frac{1}{1-\|B\|},$$
 (3)

conclude the proof.

3. [Extra Credit Problem] Using Stein–Rosenberg theorem below, argue that if $A = (a_{ij})$ is symmetric positive definite with non-positive off-diagonal elements, then both Jacobi and Gauss–Seidel iterations converge and Gauss–Seidel converges faster. Assume $\rho(B_{GS}) > 0$.

Theorem (Stein–Rosenberg) If $a_{ij} \le 0$ for $i \ne j$ and if $a_{ii} > 0$ for each i, then one and only one of the following holds:

- (a) $0 \le \rho(B_{GS}) < \rho(B_{J}) < 1$,
- (b) $1 < \rho(B_{\rm J}) < \rho(B_{\rm GS})$,
- (c) $\rho(B_{\rm J}) = \rho(B_{\rm GS}) = 0$,
- (d) $\rho(B_{\rm J}) = \rho(B_{\rm GS}) = 1$.

MATLAB

1. Write the following MATLAB function for the SOR iteration method to solve a general $n \times n$ system A*x=b:

```
function [final_sol,sols] = SOR(A,b,x0,niter,omega)
```

Here, omega is the relaxation parameter ω , final_sol is the iterative solution after niter iterations starting with initial guess x0, and sols is the sequence of iterative solutions $\{\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(\text{niter})}\}$ $(n \times (\text{niter} + 1) \text{ matrix}).$

- 2. Choose a 6×6 symmetric positive-definite matrix. For several values of $0 < \omega < 2$, compare convergence rate by plotting the semi-log plot of relative residual errors versus iteration number.
- 3. For the same matrix, write a script to plot the spectral radius $\rho(B_{SOR})$ versus $0 < \omega < 2$. Locate the optimal value of ω .