CSE-2017 > Paper II

5/(c) corrite the Boolean expression #

7 (y+z) (x+y+z)

in its simplest form using Boolean postulate rules.

Mention the rules used deving simplification. Verify

Your result by constracting the truth table for the

Given expression and for its simplest form

 $\Rightarrow Let A = Z(Y+Z)(X+Y+Z)$ $= (ZY+Z^2)(X+Y+Z)$

$$= (\mathbf{Z}\mathbf{y} + \mathbf{Z}) (\mathbf{x} + \mathbf{y} + \mathbf{Z}) \quad [::A^{2} = A]$$

$$= \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{x} + \mathbf{Z}\mathbf{y} + \mathbf{Z}^{2}$$

$$= \mathbf{Z}\mathbf{y} \times \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{x} + \mathbf{Z}\mathbf{y} + \mathbf{Z}$$

$$= \mathbf{Z}\mathbf{y} \times \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{x} + \mathbf{Z}(\mathbf{y} + 1)$$

$$= \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{x} + \mathbf{Z}$$

$$= \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{x} + \mathbf{Z}$$

$$= \mathbf{Z}\mathbf{y} + \mathbf{Z}\mathbf{x} + \mathbf{Z}$$

.. A=Z

			8			
X	y	て	Z(Y+Z)	(x+y+z)	Z(Y+Z)(X+Y+Z)	Z
0	0	0	0	0	O	0
0	0	1	1	1	1	1
0	1	0	0	1	0	0
0	1	1	1	1	1	1
1	0	0	O	1	0	0
1	0	1	1	1	1	1
1	1	0	Ø	1	0	0
1	1	1	1	1	1	1

50, Z(Y+Z)(X+Y+Z)=Z [proved]

8) (b) write an algorithm in the form of a flow chart for Newton-Raphson method. Describe the Cases of failure of this method.

=> using Newton-Raphson Method to f(x) =0, we have

the iteration formula as, $\chi_{n+1} = \chi_n - \frac{f(\chi_n)}{f'(\chi_n)}$

The Newton-Raphson Method fails when, f'(x)=0 or very small in the neighbourhood of the root. Flow chart =>

