Lezione 17

Arresto ricorsivamente numerabile

Un esempio di insieme che non è ricorsivo, ma è ricorsivamente numerabile è identificato dal problema dell'arresto ristretto, che era così definito:

- nome: AR §
- istanza: $x \in \mathbb{N}$
- domanda: $\varphi_{\mathbb{R}}(x) = \varphi_x(x) \downarrow ?$

L'insieme $A = \{x : \varphi_x(x) \downarrow \}$ non è ricorsivo, altrimenti sarebbe decidibile. Tuttavia, è **ricorsivamente numerabile**, infatti il seguente programma

$$P \equiv \text{input}(x);$$

 $U(x, x);$
 $\text{output}(1)$

sfrutta il fatto che se $x \in A$, allora $\varphi_x(x) \downarrow$ (quindi l'interprete universale termina) e il programma P restituisce 1, altrimenti non termina. Di conseguenza:

$$\varphi_P(x) = \begin{cases} 1 & \text{se } \varphi_U(x, x) = \varphi_x(x) \downarrow \\ \bot & \text{altrimenti} \end{cases}$$

Dato che $A=\mathrm{Dom}_{\varphi_P\in\mathcal{P}}$, posso applicare la seconda caratterizzazione per dimostrare che l'insieme dell'arresto è un insieme ricorsivamente numerabile.

Alternativamente, possiamo dire che $A=\{x:\varphi_x(x)\downarrow\}=\left\{x:\exists y:(x,y)\in R_{\stackrel{\S}{P}}\right\}$ con relazione ricorsiva $R_{\stackrel{\S}{P}}=\left\{(x,y):\stackrel{\S}{P} \text{ su input } x \text{ termina entro } y \text{ passi}\right\}$ e qui possiamo sfruttare la terza caratterizzazione degli insiemi ricorsivamente numerabili.

Ricorsivi vs Ricorsivamente numerabili

Teorema $A \subseteq \mathbb{N}$ ricorsivo $\Rightarrow A$ ricorsivamente numerabile.

Dimostrazione A ricorsivo implica che esiste un programma che è in grado di riconoscerlo.

$$x \in \mathbb{N} \iff P(x) = \begin{cases} 1 \text{ se } x \in A \\ 0 \text{ se } x \notin A \end{cases}$$

dove P è di questo tipo:

$$P \equiv \operatorname{input}(x);$$

$$\operatorname{if}\left(P_{A(x)} = 1\right)$$

$$\operatorname{output}(1);$$

$$\operatorname{else}$$

$$\operatorname{while}(1 > 0);$$

Di conseguenza, A è il dominio di una funzione ricorsiva parziale $\Rightarrow A$ è ricorsivamente numerabile per la seconda caratterizzazione.

$$A=\{x\in\mathbb{N}: \varphi_x(x)\downarrow\}$$
 non è ricorsivo, ma è ricorsivamente numerabile \Rightarrow Ricorsivi \subset Ric. numerabili

Ma esistono insiemi non ricorsivamente numerabili?

Chiusura degli insiemi ricorsivi

Cerchiamo di sfruttare l'operazione di complemento degli insiemi sui ricorsivamente numerabili per vedere di che natura è l'insieme.

$$A^C = \{x \in \mathbb{N} : \varphi_x(x) \uparrow \}??$$

Teorema La classe degli insiemi ricorsivi è un'Algebra di Boole (i.e. chiusa per complemento, intersezione e unione).

Dimostrazione Siano A,B ricorsivi. Allora esistono dei programmi P_A,P_B che li riconoscono (o equivalentemente esistono $\chi_A,\chi_B\in\mathcal{T}$).

È facile dimostrare che le operazioni di unione, intersezione e complemento sono facilmente implementabili da programmi che terminano sempre. Di conseguenza $A \cup B, A \cap B, A^C$ sono ricorsive.

Ecco tre esempi di programmi che calcolano le tre funzioni insiemistiche:

1. Complemento:

$$P_{A^C} \equiv \mathrm{input}(x)$$

$$\mathrm{output}(1 \dot{-} P_A(x))$$

1. Intersezione:

$$\begin{split} P_{A\cap B} & \equiv \mathrm{input}(x) \\ & \mathrm{output}(\mathrm{MIN}(P_A(x), P_B(x))) \end{split}$$

1. Unione:

$$\begin{split} P_{A \cup B} & \equiv \mathrm{input}(x) \\ & \mathrm{output}(\mathrm{max}(P_A(x), P_B(x))) \end{split}$$

Allo stesso modo possiamo trovare le funzioni caratteristiche delle tre operazioni:

- 1. $\chi_{A^C}(x) = 1 \chi_A(x)$
- 2. $\chi_{A \cap B} = \chi_A(x) \cdot \chi_B(x)$
- 3. $\chi_{A\cup B}=1 \dot{-} (1 \dot{-} \chi_A(x))(1 \dot{-} \chi_B(x))$

Tutte queste funzioni sono ricorsive totali \Rightarrow le funzioni $A^C, A \cap B, A \cup B$ sono ricorsive. \square

Ora, però, vediamo un risultato molto importante riguardante nello specifico il complemento dell'insieme dell'arresto $A^C=\{x\in\mathbb{N}:\varphi_x(x)\downarrow\}.$

Teorema A^C non è ricorsivo.

Dimostrazione Se A^C fosse ricorsivo, per la proprietà di chiusura dimostrata nel teorema precedente, avremmo $(A^C)^C = A$ ricorsivo, il che è assurdo.

Ricapitolando abbiamo:

- $A = \{x : \varphi_x(x) \downarrow \}$ ricorsivamente numerabile, ma non ricorsivo;
- $A^C = \{x : \varphi_x(x) \uparrow\}$ non ricorsivo. Potrebbe essere ricorsivamente numerabile?

Teorema (A ricorsivamente numerabile, A^C ricorsivamente numerabile) \Rightarrow A ricorsivo.

Dimostrazione

INFORMALE:

Essendo A, A^C ricorsivamente numerabili, esiste un libro con infinite pagine su ognuna delle quali compare un elemento di A ed esiste un libro analogo per A^C .

Per decidere l'appartenenza ad A, possiamo utilizzare il seguente procedimento:

- 1. input(x);
- 2. Apriamo i due libri alla prima pagina;
- 3. Se x compare nel libro di A, stampa 1, Se x compare nel libro di A^C , stampa 0, Se x non compare su nessuna delle due pagine, voltiamo la pagina di ogni libro e rieseguiamo 3.

Da notare che questo algoritmo termina sempre dato che x o sta in A o sta in A^C , quindi prima o poi verrà trovato su uno dei due libri.

Dunque, l'algoritmo riconosce $A \Rightarrow A$ è ricorsivo

FORMALE:

Essendo A,A^C ricorsivamente numerabili, esistono $f,g\in\mathcal{T}$ tali che $A=\mathrm{Im}_f,A^C=\mathrm{Im}_g.$ Sia f implementata dal programma F e g dal programma G. Il seguente programma riconosce A:

```
P \equiv \operatorname{input}(x)
i := 0;
\operatorname{while}(\operatorname{true})
\operatorname{if}(F(i) = x) \operatorname{output}(1);
\operatorname{if}(G(i) = x) \operatorname{output}(0);
i := i + 1;
```

Questo algoritmo termina per ogni input, in quanto $x \in A$ o $x \in A^C$. Possiamo concludere che l'insieme A è ricorsivo. \Box

Possiamo concludere immediatamente che $A^C=\{x: \varphi_x(x)\uparrow\}$ non può essere ricorsivamente numerabile.

In generale, questo teorema ci fornisce uno strumento molto interessante per studiare le caratteristiche della riconoscibilità di un insieme A:

- se A non è ricorsivo, potrebbe essere ricorsivamente numerabile;
- se non riesco a mostrarlo, provo a studiare A^C ;

П

- se A^C è ricorsivamente numerabile, allora per il teorema possiamo concludere che A non è ricorsivamente numerabile.

Situazione finale

Chiusura degli insiemi ricorsivamente numerabili

Teorema La classe degli insiemi ricorsivamente numerabili è chiusa per unione e intersezione, ma non per complemento.

Dimostrazione Per complemento, abbiamo mostrato che $A=\{x:\varphi_x(x)\downarrow\}$ è ricorsivamente numerabile, mentre $A^C=\{x:\varphi_x(x)\uparrow\}$ non lo è.

Siano A,B ricorsivamente numerabili. Esistono, perciò, $f,g\in\mathcal{T}:A=\mathrm{Im}_f$ e $B=\mathrm{Im}_g$. Sia f implementata da F e g implementata da G. Siano

$$P' \equiv \operatorname{input}(x); \qquad P'' \equiv \operatorname{input}(x); \\ i := 0; \qquad i := 0; \\ \operatorname{while}(F(i) \neq x)i + +; \qquad \operatorname{while}(\operatorname{true}) \\ i := 0; \qquad \operatorname{if}(F(i) = x) \operatorname{output}(1); \\ \operatorname{while}(G(i) \neq x)i + +; \qquad \operatorname{if}(G(i) = x) \operatorname{output}(x); \\ \operatorname{output}(1); \qquad i + +; \end{aligned}$$

i due programmi che calcolano rispettivamente $A \cap B$ e $A \cup B$. Le loro semantiche sono

$$\varphi_{P'} = \begin{cases} 1 & \text{se } x \in A \cap B \\ \bot & \text{altrimenti} \end{cases} \qquad \qquad \varphi_{P''} = \begin{cases} 1 & \text{se } x \in A \cup B \\ \bot & \text{altrimenti} \end{cases}$$

da cui ricaviamo che

$$A\cap B=\mathrm{Dom}_{\varphi_{P'}\in\mathcal{P}} \qquad \qquad A\cup B=\mathrm{Dom}_{\varphi_{P''}\in\mathcal{P}}$$

Entrambe le funzioni sono, dunque, ricorsive numerabili per la seconda caratterizzazione.

Teorema di Rice

Il teorema di Rice è un potente strumento per mostrare che gli insiemi appartenenti a una certa classe non sono ricorsivi.

Sia $\{\varphi_i\}$ un spa.

Insiemi che rispettano le funzioni $\to I \subseteq \mathbb{N}$ (insieme di programmi) rispetta le funzioni sse $(a \in I \land \varphi_a = \varphi_b) \Rightarrow b \in I$.

In sostanza, I rispetta le funzioni sse data una funzione calcolata da un programma in I, allora I contiene tutti i programmi che calcolano quella funzione.

Esempio:

 $I=\{x\in\mathbb{N}:\varphi_3=5\}$ rispetta le funzioni. Infatti:

$$\underbrace{a \in I}_{\varphi_a(3)=5} \wedge \underbrace{\varphi_a = \varphi_b}_{\varphi_b(3)=5 \Rightarrow b \in I}$$

Teorema (*Teorema di Rice*) Sia $I \subseteq \mathbb{N}$ un insieme che rispetta le funzioni. Allora I è ricorsivo solo se $I = \emptyset$ oppure $I = \mathbb{N}$.

Dimostrazione Sia I che rispetta le funzioni con $I \neq \emptyset$ e $I \neq \mathbb{N}$.

Per assurdo, assumiamo che *I* sia ricorsivo.

Dato che $I \neq \emptyset$, esiste almeno un elemento $a \in I$. Inoltre, dato che $I \neq \mathbb{N}$, esiste almeno un elemento $\bar{a} \notin I$.

Definiamo la funzione $t: \mathbb{N} \to \mathbb{N}$ come:

$$t(n) = \begin{cases} \bar{a} & \text{se } n \in I \\ a & \text{se } n \notin I \end{cases}$$

Sappiamo che $t \in \mathcal{T}$, dato che è calcolabile dal seguente programma

$$\begin{split} P & \equiv \mathrm{input}(x); \\ & \mathrm{if}(P_I(n) = 1) \ \mathrm{output}(\overline{a}); \\ & \mathrm{else} \ \mathrm{output}(a) \end{split}$$

Notiamo che P si arresta sempre e calcola $t(n) \Rightarrow t \in \mathcal{T}$.

Il **teorema di Ricorsione** assicura in un spa $\{\varphi_i\}$ l'esistenza di un $d \in \mathbb{N}$ tale che

$$\varphi_d = \varphi_{t(d)}$$

Per tale d, ci sono solo due possibilità rispetto a I:

- $d \in I$: dato che I rispetta le funzioni e $\varphi_d = \varphi_{t(d)}$, allora t(d) devve essere in I. Ma $t(d) = \bar{a} \notin I \Rightarrow$ contraddizione;
- $d \notin I$: $t(d) = a \in I \text{ e } I \text{ rispetta le funzioni. Dato che } \varphi_d = \varphi_{t(d)} \text{, devve essere che } d \in I \Rightarrow \mathbf{contraddizione}.$

Assumere I ricorsivo ha portato ad un assurdo.

Mostrare che un insieme non è ricorsivo

Il teorema di Rice suggerisce un approccio per stabilire se un insieme $A \subseteq \mathbb{N}$ non è ricorsivo:

- 1. Mostrare che *A* rispetta le funzioni;
- 2. Mostrare che $A \neq \emptyset$ e $A \neq \mathbb{N}$;
- 3. *A* non è ricorsivo per Rice.

Limiti verifica automatica del software

Definiamo:

- **specifiche** = descrizione di un problema e richiesta per i programmi che devono risolverlo automaticamente. Un programma è *corretto* se risponde alle specifiche;
- **problema** = Posso scrivere un programma V che testa automaticamente se un programma sia corretto o meno?

$$P \rightsquigarrow V(P) = \begin{cases} 1 & \text{se } P \text{ è corretto} \\ 0 & \text{se } P \text{ è errato} \end{cases}$$

Chiamiamo $PC = \{P : P \text{ è corretto}\}$. Osserviamo che esso rispetta le funzioni

$$\underbrace{P \in \mathrm{PC}}_{P \text{ è corretto}} \land \underbrace{\varphi_P = \varphi_{P'}}_{P' \text{ è corretto}} \Rightarrow P' \in \mathrm{PC} \Rightarrow \mathrm{PC} \text{ non è ricorsivo}$$

Dato che PC non è ricorsivo, la correttezza dei programmi non può essere testata automaticamente.

Esistono, però, dei casi limite in cui è possibile costruire dei test automatici:

- specifiche = "nessun programma è corretto" \Rightarrow PC = \otimes
- specifiche = "tutti i programmi sono corretto" \Rightarrow PC = \mathbb{N}

entrambi i PC sono ovviamente ricorsivi e quindi possono essere testati automaticamente.