Distanzerhaltende Approximation von Kantenzügen

Nikolas Klug

Universität Augsburg

17. Mai 2018

Grenze zwischen Deutschland und Österreich. Quelle: Google Maps, Stand 8. Mai 2018, https://www.google.de/maps/@47.5869372,11.6674982,9.06z

Grenze zwischen Deutschland und Österreich. Quelle: Google Maps, Stand 8. Mai 2018, https://www.google.de/maps/@47.5869372,11.6674982,9.06z

Grenze zwischen Deutschland und Österreich. Quelle: Google Maps, Stand 8. Mai 2018, https://www.google.de/maps/@47.5869372,11.6674982,9.06z

Grenze zwischen Deutschland und Österreich. Quelle: Google Maps, Stand 8. Mai 2018, https://www.google.de/maps/@47.5869372,11.6674982,9.06z

Definition Kantenzug

Definition

Sei $n, d \in \mathbb{N}$ und für $1 \le i \le n$ $p_i \in \mathbb{R}^d$. Ein (polygonaler) Kantenzug $P = (p_1, p_2, \dots, p_n)$ ist eine Aneinanderreihung von Geradensegmenten, die für $1 \le i < n$ jeweils die Punkte p_i und p_{i+1} verbinden.

Definition t-distanzerhaltend

Sei $P = (p_1, \ldots, p_n)$ ein Kantenzug und $p_i, p_j \in P$.

• $|p_i p_j|$ ist die euklidische Distanz zwischen p_i und p_j .

Definition t-distanzerhaltend

Sei $P = (p_1, \ldots, p_n)$ ein Kantenzug und $p_i, p_j \in P$.

- $|p_i p_j|$ ist die euklidische Distanz zwischen p_i und p_j .
- $\delta(p_i, p_j) := \sum_{k=1}^{j-1} |p_k p_{k+1}|$ ist die Distanz entlang des Pfades.

Definition t-distanzerhaltend

Sei $P = (p_1, \ldots, p_n)$ ein Kantenzug und $p_i, p_j \in P$.

- $|p_i p_j|$ ist die euklidische Distanz zwischen p_i und p_j .
- $\delta(p_i, p_j) := \sum_{k=i}^{j-1} |p_k p_{k+1}|$ ist die Distanz entlang des Pfades.

Definition

Seien $t \in \mathbb{R}$, $t \ge 1$ und $p_i, p_j \in P$. Dann ist die Kante (p_i, p_j) genau dann t-distanzerhaltend, wenn $\delta(p_i, p_i) \le t \cdot |p_i p_i|$.

$$(p_i, p_j)$$
 t-distanzerhaltend $\Leftrightarrow \delta(p_i, p_j) \leq t \cdot |p_i p_j|$.

(b) nicht t-distanzerhaltend

(nicht) t-distanzerhaltende Kanten für t = 1.2

Definition t-distanzerhaltende Approximation

Definition

Ein Kantenzug $Q = (p_{i_1}, p_{i_2}, \dots, p_{i_k})$ ist genau dann eine t-distanzerhaltende Approximation von $P = (p_1, p_2, \dots, p_n)$, wenn beide der folgenden Bedingungen gelten.

- 1. $1 = i_1 < i_2 < \ldots < i_k = n$.
- 2. Für alle $1 \le l < k$ ist die Kante $(p_{i_l}, p_{i_{l+1}})$ des Kantenzugs t-distanzerhaltend.

Problemspezifikation

Definition (Minimum-Vertex-Path-Simplification)

Liegt ein polygonaler Kantenzug P und eine reelle Zahl $t \ge 1$ vor, soll eine minimale t-distanzerhaltende Approximation von P berechnet werden.

Definition (Minimum-Dilation-Path-Simplification)

Liegt ein polygonaler Kantenzug P und eine natürliche Zahl k vor, soll der kleinste Wert t bestimmt werden, für den eine t-distanzerhaltende Approximation von P mit maximal k Knoten existiert.

Sei $P = (p_1, p_2, \dots, p_n)$ ein Kantenzug und $t \ge 1$.

Schritt 1: Konstruktion des gerichteten Graphen $G_t = (V, E_t)$, wobei:

- $V = \{p_1, \ldots, p_n\}$
- $E_t = \{(p_i, p_j) \in V \times V | i < j \text{ und } (p_i, p_j) \text{ ist } t\text{-distanzerhaltend}\}$

Sei $P = (p_1, p_2, \dots, p_n)$ ein Kantenzug und $t \ge 1$.

Schritt 1: Konstruktion des gerichteten Graphen $G_t = (V, E_t)$, wobei:

- $V = \{p_1, \ldots, p_n\}$
- $E_t = \{(p_i, p_j) \in V \times V | i < j \text{ und } (p_i, p_j) \text{ ist } t\text{-distanzerhaltend}\}$

 G_t für t = 1.2

Sei $P = (p_1, p_2, \dots, p_n)$ ein Kantenzug und $t \ge 1$.

Schritt 1: Konstruktion des gerichteten Graphen $G_t = (V, E_t)$, wobei:

- $V = \{p_1, \ldots, p_n\}$
- $E_t = \{(p_i, p_j) \in V \times V | i < j \text{ und } (p_i, p_j) \text{ ist } t\text{-distanzerhaltend}\}$

Schritt 2: Bestimmen eines kürzesten Pfades in G_t von p_1 nach p_n

 G_t für t = 1.2

Sei $P = (p_1, p_2, \dots, p_n)$ ein Kantenzug und $t \ge 1$.

Schritt 1: Konstruktion des gerichteten Graphen $G_t = (V, E_t)$, wobei:

- $V = \{p_1, \ldots, p_n\}$
- $E_t = \{(p_i, p_j) \in V \times V | i < j \text{ und } (p_i, p_j) \text{ ist } t\text{-distanzerhaltend}\}$

Schritt 2: Bestimmen eines kürzesten Pfades in G_t von p_1 nach p_n

Kürzester Pfad in Gt

Schritt 1: Konstruktion des Graphen G_t

 $O(n^2)$

Schritt 1: Konstruktion des Graphen G_t

Schritt 2: Breitensuche

$$O(n^2)$$

$$O(n+m) = O(n^2)$$

Schritt 1: Konstruktion des Graphen G_t

 $O(n^2)$

Schritt 2: Breitensuche

 $O(n+m)=O(n^2)$

Satz

Das Minimum-Vertex-Path-Simplification Problem kann für Kantenzüge mit n Knoten in $O(n^2)$ Zeit gelöst werden.

Sei $P = (p_1, \ldots, p_n)$ und k die gewünschte Knotenzahl. Sei κ_t die Knotenzahl einer minimalen t-distanzerhaltenden Approximation von P.

Sei $P = (p_1, \ldots, p_n)$ und k die gewünschte Knotenzahl.

Sei κ_t die Knotenzahl einer minimalen t-distanzerhaltenden Approximation von P.

Lemma

Sind $t, t' \in \mathbb{R}$ und $1 \le t < t'$, dann ist $\kappa_t \ge \kappa_{t'}$.

Sei $P = (p_1, \ldots, p_n)$ und k die gewünschte Knotenzahl.

Sei κ_t die Knotenzahl einer minimalen t-distanzerhaltenden Approximation von P.

Lemma

Sind $t, t' \in \mathbb{R}$ und $1 \le t < t'$, dann ist $\kappa_t \ge \kappa_{t'}$.

Beweis.

Annahme: $\kappa_t < \kappa_{t'}$.

Sei $P = (p_1, \ldots, p_n)$ und k die gewünschte Knotenzahl.

Sei κ_t die Knotenzahl einer minimalen t-distanzerhaltenden Approximation von P.

Lemma

Sind $t, t' \in \mathbb{R}$ und $1 \le t < t'$, dann ist $\kappa_t \ge \kappa_{t'}$.

Beweis.

Annahme: $\kappa_t < \kappa_{t'}$.

 \Leftrightarrow Eine minimale t-distanzerhaltende Approximation von P hat echt weniger Knoten als eine minimale t'-distanzerhaltende.

Sei $P = (p_1, \ldots, p_n)$ und k die gewünschte Knotenzahl.

Sei κ_t die Knotenzahl einer minimalen t-distanzerhaltenden Approximation von P.

Lemma

Sind $t, t' \in \mathbb{R}$ und $1 \le t < t'$, dann ist $\kappa_t \ge \kappa_{t'}$.

Beweis.

Annahme: $\kappa_t < \kappa_{t'}$.

 \Leftrightarrow Eine minimale t-distanzerhaltende Approximation von P hat echt weniger Knoten als eine minimale t'-distanzerhaltende.

Aber: Jede t-distanzerhaltende Approximation von P ist auch eine t'-distanzerhaltende Approximation von P.

Das ist ein Widerspruch.

Lemma

Sind $t, t' \in \mathbb{R}$ und $1 \le t < t'$, dann ist $\kappa_t \ge \kappa_{t'}$.

Sei t* die Lösung des Problems.

 $t_{ij}^* := rac{\delta(p_i, p_j)}{|p_i p_j|}$ heißt *Abweichung* der Kante (p_i, p_j) vom Kantenzug.

Schritt 1: Berechnen von $M := \{t_{ij}^* \mid 1 \le i < j \le n\}$

Lemma

Sind $t, t' \in \mathbb{R}$ und $1 \le t < t'$, dann ist $\kappa_t \ge \kappa_{t'}$.

Sei t* die Lösung des Problems.

 $t_{ij}^* := rac{\delta(p_i,p_j)}{|p_ip_j|}$ heißt *Abweichung* der Kante (p_i,p_j) vom Kantenzug.

Schritt 1: Berechnen von $M := \{t_{ij}^* \mid 1 \le i < j \le n\}$

Schritt 2: Sortieren von M

Lemma

Sind $t, t' \in \mathbb{R}$ und $1 \le t < t'$, dann ist $\kappa_t \ge \kappa_{t'}$.

Sei t* die Lösung des Problems.

 $t_{ij}^* \coloneqq rac{\delta(p_i,p_j)}{|p_ip_j|}$ heißt *Abweichung* der Kante (p_i,p_j) vom Kantenzug.

- Schritt 1: Berechnen von $M := \{t_{ij}^* \mid 1 \le i < j \le n\}$
- Schritt 2: Sortieren von M
- Schritt 3: Binäre Suche im M nach t^* :
 - Lösen des MVPS-Problems für den aktuellen t-Wert.
 - Sei κ_t die Knotenzahl der Lösung. Falls $\kappa_t \leq k$, so ist $t \geq t^*$. Sonst ist $\kappa_t > k$ und somit $t < t^*$.

Schritt 1: Berechnen von M

$$O(n^2)$$

Schritt 1: Berechnen von M

Schritt 2: Sortieren von M

$$O(n^2)$$

$$O(n^2 \log n^2) = O(n^2 \log n)$$

Schritt 1: Berechnen von M	$O(n^2)$
Schritt 2: Sortieren von M	$O(n^2 \log n^2) = O(n^2 \log n)$
Schritt 3: Binäre Suche	$O(n^2 \log n^2) = O(n^2 \log n)$

Satz

Das Minimum-Dilation-Path-Simplification Problem kann für Kantenzüge mit n Knoten in $O(n^2 \log n)$ Zeit gelöst werden.

Definition wohl-separiert

Seien s > 0 und A und B zwei endliche Mengen von Punkten in \mathbb{R}^d .

Definition

A und B heißen wohl-separiert bezüglich s, falls es zwei disjunkte Bälle C_A und C_B gibt, die denselben Radius R haben, sodass $A \subseteq C_A$ und $B \subseteq C_B$ und die euklidische Distanz zwischen den Rändern von C_A und C_B mindestens $s \cdot R$ beträgt.

Definition wohl-separiert

Seien s > 0 und A und B zwei endliche Mengen von Punkten in \mathbb{R}^d .

Definition

A und B heißen wohl-separiert bezüglich s, falls es zwei disjunkte Bälle C_A und C_B gibt, die denselben Radius R haben, sodass $A \subseteq C_A$ und $B \subseteq C_B$ und die euklidische Distanz zwischen den Rändern von C_A und C_B mindestens $s \cdot R$ beträgt.

Definition wohl-separiert

Seien s > 0 und A und B zwei endliche Mengen von Punkten in \mathbb{R}^d .

Definition

A und B heißen wohl-separiert bezüglich s, falls es zwei disjunkte Bälle C_A und C_B gibt, die denselben Radius R haben, sodass $A \subseteq C_A$ und $B \subseteq C_B$ und die euklidische Distanz zwischen den Rändern von C_A und C_B mindestens $s \cdot R$ beträgt.

Definition WSPD

Definition

Sei $S \subseteq \mathbb{R}^d$ und s > 0. Eine Menge $\{(A_1, B_1), (A_2, B_2), \ldots, (A_m, B_m)\}$ von Paaren von nicht-leeren Teilmengen von S ist genau dann eine Zerlegung in wohl-separierte Paare, wenn für alle $1 \le i \le m$ gilt:

- 1. $A_i \cap B_i = \emptyset$.
- 2. Für alle $p, q \in S$ gibt es genau einen Index $1 \le j \le m$, sodass entweder $p \in A_j$ und $q \in B_j$ oder $q \in A_j$ und $p \in B_j$.
- 3. A_i und B_i sind bezüglich s wohl-separiert.

WSPD - Algorithmus für unsere Anwendung

• Transformation des Eingabekantenzuges $P = (p_1, p_2, ..., p_n)$ auf eine eindimensionale Folge $S = (x_1, x_2, ..., x_n)$, wobei $x_i = \delta(p_1, p_i)$

• Transformation des Eingabekantenzuges $P = (p_1, p_2, ..., p_n)$ auf eine eindimensionale Folge $S = (x_1, x_2, ..., x_n)$, wobei $x_i = \delta(p_1, p_i)$

S = [0, 5.0, 9.1, 17.2, 32.2, 37.6, 44.3, 54.3, 67.9, 81.0, 95.4, 96.4, 141.5]

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ 釣り(で)

Berechnen eines (fairen) Split-Trees T aus S

$$S = [0, 5.0, 9.1, 17.2, 32.2, 37.6, 44.3, 54.3, 67.9, 81.0, 95.4, 96.4, 141.5]$$

S = [0, 5.0, 9.1, 17.2, 32.2, 37.6, 44.3, 54.3, 67.9, 81.0, 95.4, 96.4, 141.5]

• Berechnen einer WSPD aus dem Split-Tree T

S = [0, 5.0, 9.1, 17.2, 32.2, 37.6, 44.3, 54.3, 67.9, 81.0, 95.4, 96.4, 141.5]

• Berechnen einer WSPD aus dem Split-Tree T

Satz (Callahan/Kosaraju)

Sei $S \subset \mathbb{R}$ endlich und n := |S|. Dann kann in $O(n \log n + sn)$ Zeit ein Split-Tree T und eine dazugehörige WSPD $\{(A_1, B_1), (A_2, B_2), \dots, (A_m, B_m)\}$ der Größe m = O(sn) berechnet werden.

Sei
$$0 < \epsilon < \frac{1}{3}$$
 und $s = \frac{12 + 24(1 + \frac{\epsilon}{3}) \cdot t}{\epsilon}$.

Lemma

Seien $p, p', q, q' \in P$, sodass $\rho := \delta(p_1, p) \in A_i$, $\rho' := \delta(p_1, p') \in A_i$, $\varphi := \delta(p_1, q) \in B_i$ und $\varphi' := \delta(p_1, q') \in B_i$. Dann gilt:

- 1. (p,q) t-distanzerhaltend \Rightarrow (p',q') $(1+\frac{\epsilon}{3})$ t-distanzerhaltend.
- 2. (p,q) $(1+\frac{\epsilon}{3})t$ -distanzerhaltend $\Rightarrow (p',q')$ $(1+\epsilon)t$ -distanzerhaltend.

Sei
$$0 < \epsilon < \frac{1}{3}$$
 und $s = \frac{12 + 24(1 + \frac{\epsilon}{3}) \cdot t}{\epsilon}$.

Lemma

Seien $p, p', q, q' \in P$, sodass $\rho := \delta(p_1, p) \in A_i$, $\rho' := \delta(p_1, p') \in A_i$, $\varphi := \delta(p_1, q) \in B_i$ und $\varphi' := \delta(p_1, q') \in B_i$. Dann gilt:

- 1. (p,q) t-distanzerhaltend \Rightarrow (p',q') $(1+\frac{\epsilon}{3})$ t-distanzerhaltend.
- 2. (p,q) $(1+\frac{\epsilon}{3})t$ -distanzerhaltend \Rightarrow (p',q') $(1+\epsilon)t$ -distanzerhaltend.

- $S = \{x_1, x_2, \dots, x_n\}$ mit $x_i = \delta(p_1, p_n)$
- WSPD $\{(A_1, B_1), (A_2, B_2), \dots, (A_m, B_m)\}$
- Wahl von festen Elementen $a_i \in A_i$ und $b_i \in B_i$.
- α_i und β_i so, dass $a_i = \delta(p_1, \alpha_i)$ und $b_i = \delta(p_1, \beta_i)$.

- $S = \{x_1, x_2, \dots, x_n\}$ mit $x_i = \delta(p_1, p_n)$
- WSPD $\{(A_1, B_1), (A_2, B_2), \dots, (A_m, B_m)\}$
- Wahl von festen Elementen $a_i \in A_i$ und $b_i \in B_i$.
- α_i und β_i so, dass $a_i = \delta(p_1, \alpha_i)$ und $b_i = \delta(p_1, \beta_i)$.
- $(A_i, B_i) (1 + \frac{\epsilon}{3})t$ -distanzerhaltend $\Leftrightarrow (\alpha_i, \beta_i) (1 + \frac{\epsilon}{3})t$ -distanzerhaltend

- $S = \{x_1, x_2, \dots, x_n\}$ mit $x_i = \delta(p_1, p_n)$
- WSPD $\{(A_1, B_1), (A_2, B_2), \dots, (A_m, B_m)\}$
- Wahl von festen Elementen $a_i \in A_i$ und $b_i \in B_i$.
- α_i und β_i so, dass $a_i = \delta(p_1, \alpha_i)$ und $b_i = \delta(p_1, \beta_i)$.
- $(A_i, B_i) (1 + \frac{\epsilon}{3})t$ -distanzerhaltend $\Leftrightarrow (\alpha_i, \beta_i) (1 + \frac{\epsilon}{3})t$ -distanzerhaltend

Konstruktion eines Graphen H = (V, E):

• $V := \{A_i \mid 1 \le i \le m\} \cup \{B_i \mid 1 \le i \le m\}$

- $S = \{x_1, x_2, \dots, x_n\}$ mit $x_i = \delta(p_1, p_n)$
- WSPD $\{(A_1, B_1), (A_2, B_2), \dots, (A_m, B_m)\}$
- Wahl von festen Elementen $a_i \in A_i$ und $b_i \in B_i$.
- α_i und β_i so, dass $a_i = \delta(p_1, \alpha_i)$ und $b_i = \delta(p_1, \beta_i)$.
- (A_i, B_i) $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend $\Leftrightarrow (\alpha_i, \beta_i)$ $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend

Konstruktion eines Graphen H = (V, E):

- $V := \{A_i \mid 1 \le i \le m\} \cup \{B_i \mid 1 \le i \le m\}$
- Kanten E:
 - 1. Für alle $1 \le i \le m$ ist (A_i, B_i) genau dann eine Kante, wenn (A_i, B_i) $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend ist und $x_n \in B_i$.
 - 2. Für alle $1 \le i < j \le m$ ist (A_i, A_j) genau dann eine Kante, wenn (A_i, B_i) $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend ist und $A_j \cap B_i \ne \emptyset$.

Approximation $\rightarrow H$

$$S = \{x_1, x_2, \dots, x_n\} \text{ mit } x_i = \delta(p_1, p_n)$$

Satz

Jede t-distanzerhaltende Approximation $Q = (q_1, q_2, ..., q_k)$ von P entspricht einem Pfad R der Länge k in H von einer Menge A_i , die x_1 enthält, zu einer Menge B_j , die x_n enthält.

Beweis. Siehe Aufsatz.

Ergebnis: Pfad
$$R = (A_{i_1}, A_{i_2}, \dots, A_{i_{k-1}}, B_{i_{k-1}})$$
 mit $\delta(p_1, q_j) \in B_{i_{j-1}} \cap A_{i_j}$ für $1 < j < k$

$H \rightarrow \mathsf{Approximation}$

Satz

Jeder Pfad $R = (A_{i_1}, \ldots, A_{i_{k-1}}, B_{i_{k-1}})$ in H mit $x_1 \in A_{i_1}$ und $x_n \in B_{i_{k-1}}$ entspricht einer $(1 + \epsilon)t$ -distanzerhaltenden Approximation Q von P, die k Knoten besitzt.

Beweis. Siehe Aufsatz.

Ergebnis: $(1+\epsilon)t$ -distanzerhaltender Kantenzug $Q=(q_1,q_2,\ldots,q_k)$ mit $q_1=p_1$ und $q_k=p_n$.

Schritt 1: Berechnen von $S = (x_1, \dots, x_n)$ mit $x_i = \delta(p_1, p_i)$

Schritt 1: Berechnen von $S = (x_1, \ldots, x_n)$ mit $x_i = \delta(p_1, p_i)$ Schritt 2: Berechnen des Split-Trees T und einer WSPD $\{(A_1, B_1), (A_2, B_2), \ldots, (A_m, B_m)\}$ mit der Trennungsrate $s = \frac{12 + 24(1 + \frac{\epsilon}{3})t}{\epsilon}$.

- Schritt 1: Berechnen von $S = (x_1, \dots, x_n)$ mit $x_i = \delta(p_1, p_i)$
- Schritt 2: Berechnen des Split-Trees T und einer WSPD $\{(A_1,B_1),(A_2,B_2),\ldots,(A_m,B_m)\}$ mit der Trennungsrate $s=\frac{12+24(1+\frac{\epsilon}{3})t}{\epsilon}$.
- Schritt 3: Wählen von $a_i \in A_i$, $b_i \in B_i$, α_i und β_i die Knoten von P sind, für die $a_i = \delta(p_1, \alpha_i)$ und $b_i = \delta(p_1, \beta_i)$. Falls (α_i, β_i) nicht $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend ist, verwirf das korrespondierende Tupel (A_i, B_i) , ansonsten behalte es.

Sei k Knoten im Baum. d[k]: Distanz von k zum Startknoten

Sei *k* Knoten im Baum.

Falls A-Knoten k, d[k] = 0 und füge k zur Warteschlange hinzu

Sei k Knoten im Baum.

Sei *k* Knoten im Baum.

Sei *k* Knoten im Baum.

$$d[k'] = d[k] + 1$$
Füge k' zur Warteschlange hinzu

Sei *k* Knoten im Baum.

- Schritt 1: Berechnen von $S = (x_1, \dots, x_n)$ mit $x_i = \delta(p_1, p_i)$
- Schritt 2: Berechnen des Split-Trees T und einer WSPD $\{(A_1, B_1), (A_2, B_2), \dots, (A_m, B_m)\}$ mit der Trennungsrate $s = \frac{12+24(1+\frac{\epsilon}{3})t}{\epsilon}$.
- Schritt 3: Wählen von $a_i \in A_i$, $b_i \in B_i$, α_i und β_i die Knoten von P sind, für die $a_i = \delta(p_1, \alpha_i)$ und $b_i = \delta(p_1, \beta_i)$. Falls (α_i, β_i) nicht $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend ist, verwirf das korrespondierende Tupel (A_i, B_i) , ansonsten behalte es.

- Schritt 1: Berechnen von $S = (x_1, ..., x_n)$ mit $x_i = \delta(p_1, p_i)$
- Schritt 2: Berechnen des Split-Trees T und einer WSPD $\{(A_1, B_1), (A_2, B_2), \dots, (A_m, B_m)\}$ mit der Trennungsrate $s = \frac{12+24(1+\frac{\epsilon}{3})t}{\epsilon}$.
- Schritt 3: Wählen von $a_i \in A_i$, $b_i \in B_i$, α_i und β_i die Knoten von P sind, für die $a_i = \delta(p_1, \alpha_i)$ und $b_i = \delta(p_1, \beta_i)$. Falls (α_i, β_i) nicht $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend ist, verwirf das korrespondierende Tupel (A_i, B_i) , ansonsten behalte es.
- Schritt 4: Ausführen der modifizierte Breitensuche im Split-Tree *T*.

- Schritt 1: Berechnen von $S = (x_1, \dots, x_n)$ mit $x_i = \delta(p_1, p_i)$
- Schritt 2: Berechnen des Split-Trees T und einer WSPD $\{(A_1, B_1), (A_2, B_2), \dots, (A_m, B_m)\}$ mit der Trennungsrate $s = \frac{12+24(1+\frac{\epsilon}{3})t}{\epsilon}$.
- Schritt 3: Wählen von $a_i \in A_i$, $b_i \in B_i$, α_i und β_i die Knoten von P sind, für die $a_i = \delta(p_1, \alpha_i)$ und $b_i = \delta(p_1, \beta_i)$. Falls (α_i, β_i) nicht $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend ist, verwirf das korrespondierende Tupel (A_i, B_i) , ansonsten behalte es.
- Schritt 4: Ausführen der modifizierte Breitensuche im Split-Tree *T*.
- Schritt 5: Umwandeln des erhaltenen Pfades $(A_{i_1}, \dots, A_{i_{k-1}}, B_{i_{k-1}})$ zu einer Approximation von P.

$$s = rac{12 + 24(1 + rac{\epsilon}{3})t}{\epsilon} \Rightarrow O(sn) = O(rac{t}{\epsilon}n)$$

Schritt 1: Berechnen von S

O(n)

$$s = \frac{12 + 24(1 + \frac{\epsilon}{3})t}{\epsilon} \Rightarrow O(sn) = O(\frac{t}{\epsilon}n)$$

Schritt 1: Berechnen von *S*

O(n)

Schritt 2: Berechnen der WSPD

 $O(n\log n + \frac{t}{\epsilon}n)$

$$s = \frac{12 + 24(1 + \frac{\epsilon}{3})t}{\epsilon} \Rightarrow O(sn) = O(\frac{t}{\epsilon}n)$$

Schritt 1: Berechnen von S

O(n)

Schritt 2: Berechnen der WSPD

 $O(n\log n + \frac{t}{\epsilon}n)$

Schritt 3: Aussortieren der WSPD

 $O(\frac{t}{\epsilon}n)$

$$s = rac{12 + 24(1 + rac{\epsilon}{3})t}{\epsilon} \Rightarrow O(sn) = O(rac{t}{\epsilon}n)$$

Schritt 1: Berechnen von S O(n)

Schritt 2: Berechnen der WSPD $O(n \log n + \frac{t}{\epsilon}n)$

Schritt 3: Aussortieren der WSPD $O(\frac{t}{\epsilon}n)$

Schritt 4: Modifizierte Breitensuche $O(\frac{t}{\epsilon}n)$

$$s = rac{12 + 24(1 + rac{\epsilon}{3})t}{\epsilon} \Rightarrow O(sn) = O(rac{t}{\epsilon}n)$$

Schritt 1: Berechnen von S O(n)

Schritt 2: Berechnen der WSPD $O(n \log n + \frac{t}{\epsilon}n)$

Schritt 3: Aussortieren der WSPD $O(\frac{t}{\epsilon}n)$

Schritt 4: Modifizierte Breitensuche $O(\frac{t}{\epsilon}n)$

Schritt 5: Umwandeln in Approximation $O(\frac{t}{\epsilon}n)$

Satz

Sei $P=(p_1,p_2,\ldots,p_n)$ ein Kantenzug in \mathbb{R}^d , sei $t\geq 1$ und $0<\epsilon<\frac{1}{3}$ und sei κ die Knotenzahl der minimalen t-distanzerhaltenden Approximationen von P. Dann können wir in $O(n\log n+\frac{t}{\epsilon}n)$ eine $(1+\epsilon)t$ -distanzerhaltende Approximation Q von P mit maximal κ Knoten berechnen.

$H \rightarrow \mathsf{Approximation}$

Satz

Jeder Pfad $R = (A_{i_1}, \ldots, A_{i_{k-1}}, B_{i_{k-1}})$ in H mit $x_1 \in A_{i_1}$ und $x_n \in B_{i_{k-1}}$ entspricht einer $(1 + \epsilon)t$ -distanzerhaltenden Approximation Q von P, die k Knoten besitzt.

Beweis. Sei y_i das Element der Menge S, für das $y_i = \delta(p_1, q_i)$ gilt.

 \bullet $q_1 := p_1$

Wiederholung

- $y_i = \delta(p_1, q_i)$
- Für alle $1 \le i < j \le m$ ist (A_i, A_j) genau dann eine Kante, wenn (A_i, B_i) $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend ist und $A_j \cap B_i \ne \emptyset$.

Wiederholung

- $\bullet \ y_i = \delta(p_1, q_i)$
- Für alle $1 \le i < j \le m$ ist (A_i, A_j) genau dann eine Kante, wenn (A_i, B_i) $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend ist und $A_j \cap B_i \ne \emptyset$.
- Annahme: für ein I mit $1 \le I < k-1$ wurde der Teilpfad $(A_{i_1}, \ldots, A_{i_l})$ bereits in den Kantenzug (q_1, \ldots, q_l) umgewandelt, sodass für alle $1 < j \le I$ $y_j \in A_{i_j} \cap B_{i_{j-1}}$. Wir betrachten die Kante $(A_{i_l}, A_{i_{l+1}})$.
 - Es gibt ein $y \in A_{i_{l+1}} \cap B_{i_l}$.
 - q_{l+1} ist der Knoten γ von P, für den $y = \delta(p_1, \gamma)$ gilt

Wiederholung

- $\bullet \ y_i = \delta(p_1, q_i)$
- Für alle $1 \le i < j \le m$ ist (A_i, A_j) genau dann eine Kante, wenn (A_i, B_i) $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend ist und $A_j \cap B_i \ne \emptyset$.
- Annahme: für ein I mit $1 \le I < k-1$ wurde der Teilpfad $(A_{i_1}, \ldots, A_{i_l})$ bereits in den Kantenzug (q_1, \ldots, q_l) umgewandelt, sodass für alle $1 < j \le I$ $y_j \in A_{i_j} \cap B_{i_{j-1}}$. Wir betrachten die Kante $(A_{i_l}, A_{i_{l+1}})$.
 - Es gibt ein $y \in A_{i_{l+1}} \cap B_{i_l}$.
 - q_{l+1} ist der Knoten γ von P, für den $y = \delta(p_1, \gamma)$ gilt
- Annahme: $(A_{i_1}, \ldots, A_{i_{k-1}})$ wurde bereits zu (q_1, \ldots, q_{k-1}) umgewandelt haben. Nach Voraussetzung ist $x_n \in B_{i_{k-1}}$. $\Rightarrow q_k := p_n$.

Noch zu zeigen: Q ist $(1 + \epsilon)t$ -distanzerhaltend.

Noch zu zeigen: Q ist $(1 + \epsilon)t$ -distanzerhaltend.

Sei $1 \le j < k$.

• (q_j, q_{j+1}) ist durch Umwandlung aus $(A_{i_j}, A_{i_{j+1}})$ entstanden, wobei $\delta(p_1, q_i) \in A_{i_j}$ und $\delta(p_1, q_{i+1}) \in B_{i_j} (\cap A_{i_{j+1}})$.

Noch zu zeigen: Q ist $(1+\epsilon)t$ -distanzerhaltend.

- (q_j, q_{j+1}) ist durch Umwandlung aus $(A_{i_j}, A_{i_{j+1}})$ entstanden, wobei $\delta(p_1, q_i) \in A_{i_i}$ und $\delta(p_1, q_{i+1}) \in B_{i_i} (\cap A_{i_{j+1}})$.
- Nach Konstruktion von $H: (A_{i_i}, B_{i_i})$ ist $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend.

Noch zu zeigen: Q ist $(1+\epsilon)t$ -distanzerhaltend.

- (q_j, q_{j+1}) ist durch Umwandlung aus $(A_{i_j}, A_{i_{j+1}})$ entstanden, wobei $\delta(p_1, q_i) \in A_{i_i}$ und $\delta(p_1, q_{i+1}) \in B_{i_i} (\cap A_{i_{i+1}})$.
- Nach Konstruktion von $H: (A_{i_j}, B_{i_j})$ ist $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend.
- Also ist $(\alpha_{i_i}, \beta_{i_i})$ $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend.

Noch zu zeigen: Q ist $(1 + \epsilon)t$ -distanzerhaltend.

- (q_j, q_{j+1}) ist durch Umwandlung aus $(A_{i_j}, A_{i_{j+1}})$ entstanden, wobei $\delta(p_1, q_i) \in A_{i_i}$ und $\delta(p_1, q_{i+1}) \in B_{i_i} (\cap A_{i_{i+1}})$.
- Nach Konstruktion von $H: (A_{i_i}, B_{i_i})$ ist $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend.
- Also ist $(\alpha_{i_i}, \beta_{i_i})$ $(1 + \frac{\epsilon}{3})t$ -distanzerhaltend.
- $\stackrel{Lemma}{\Rightarrow} (q_i, q_{i+1})$ ist $(1 + \epsilon)t$ -distanzerhaltend.