I/O analysis of climate applications

Arne Beer & Frank Röder

Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

2016-07-7

Content (Agenda)

Introduction

- what climate models do
- what is important about them
- take a look at the workflow (especially pre- and post-processing)
- take a look at storage systems

Goals and Tasks

- try to run models
- analyze their input and output
- take a look at the live-cycle of data
- deliver knowledge about that

The Models

- IFS (Integrated Forecasting System)
- AWIPS II
- CESM (Community Earth System Model)
- ECHAM

IFS

- well documented and maintained model
- license forbids benchmarking

Awips II

Figure: Awips Infrastructure [?]

CAVE

Figure: Awips Infrastructure [?]

CESM

- Community Earth System Model
- model for global climate simulation
- covers atmosphere, land, land ice, sea ice, ocean and river
- provides scripts for setting up the machine in 4 commands
 - scripts are broken
 - mix of bash, csh, perl
- good configurability with xml files
- requires netCDF format for input data [?]

CESM Failure

- fixed Broken setup scripts
- fails with during compilation
- 'pio'
- no documentation

ECHAM

- model for atmospheric circulation
- developed by the Max Planck Institute for Meteorology
- branched in year 1987 from the global numerical weather prediction model by ECMWF

I/O analysis

Summary

- Models
 - CESM, ECHAM
- Data
 - life-cycle
 - pre- and post-processing
- analyzing
 - AWIPS II

Sources I