

Institute of Stochastics

Stochastic Geometry | Summer term 2020

PD. Dr. Steffen Winter Steffen Betsch, M.Sc.

Solutions for Work Sheet 1

Problem 1 (Bertrand's paradox)

Consider the unit circle $S^1 \subset \mathbb{R}^2$ and an equilateral triangle T whose vertices lie on S^1 . What is the probability that a randomly chosen circular chord is longer than the edges of the triangle? Does the probability depend on the choice of your model for this situation?

Proposed solution:

Notice that the chords given through the equilateral triangle have length $\sqrt{3}$ as we consider the unit circle. Thus, we can rephrase the question as follows: What is the probability that a random chord in the unit circle is longer than $\sqrt{3}$?

The following considerations serve to illustrate that the solution to this problem highly depends on our conception of a 'random chord', that is, the probability we obtain as a solution depends crucially on our choice of the model for this situation. In fact, we provide 3 reasonable models which yield different probabilities. We denote the random length of the chord by L.

■ The first model for our random chord is as illustrated in the picture: The direction of the chord is determined by a random variable (a random angle) ϑ which is distributed uniformly over $(0,2\pi)$, and its length is determined by its distance from the origin, that is, by another random variable R (independent of ϑ) which is distributed uniformly over (0,1). The length of the corresponding chord is (by the Pythagorean theorem) $L=2\sqrt{1-R^2}$, and we obtain

$$\mathbb{P}\big(L\geqslant\sqrt{3}\big)=\mathbb{P}\big(2\sqrt{1-R^2}\geqslant\sqrt{3}\big)=\mathbb{P}\big(R\leqslant\tfrac{1}{2}\big)=\tfrac{1}{2}.$$

The second model specifies the random chord through its random endpoints. Anticlockwise, we specify the starting point via some angle ϑ [uniformly distributed over $(0,2\pi)$] and determine the endpoint by adding a second angle, namely ϑ' [also uniformly distributed over $(0,2\pi)$ and independent of ϑ]. (In other words, ϑ' provides the circular distance between starting point and endpoint.) By the geometric definition of the sine in right-angled triangles, the length of the chord is $L = 2\sin(\vartheta'/2)$, and therefore

$$\mathbb{P}\big(L\geqslant\sqrt{3}\big)=\mathbb{P}\Big(\sin(\vartheta'/2)\geqslant\sqrt{3}/2\Big)=\mathbb{P}\Big(\tfrac{\vartheta'}{2}\in\big(\tfrac{\pi}{3},\,\tfrac{2\pi}{3}\big)\Big)=\mathbb{P}\Big(\vartheta'\in\big(\tfrac{2\pi}{3},\,\tfrac{4\pi}{3}\big)\Big)=\tfrac{\tfrac{4\pi}{3}-\tfrac{2\pi}{3}}{2\pi}=\frac{1}{3}.$$

■ For the third model, notice that any chord is uniquely determined through its midpoint. Thus, the random chord is given through its random midpoint M which we take to be uniformly distributed over the unit disk $\{x \in \mathbb{R}^2 : \|x\|_2 < 1\}$. Similar to the first model, the length of the chord is $L = 2\sqrt{1 - \|M\|_2^2}$, and we obtain

$$\mathbb{P}(L \geqslant \sqrt{3}) = \mathbb{P}(\|M\|_2 \leqslant \frac{1}{2}) = \frac{Vol(B(0, 1/2))}{Vol(B(0, 1))} = \frac{1}{4}.$$

Problem 2 (Theorem 1.2)

Let (E, \mathcal{O}_E) be a locally compact Hausdorff space with a countable base of the topology. Denote by \mathcal{F} the collection of closed subsets of E and write \mathcal{C} for the collection of compact subsets of E. For $A \subset E$, let $\mathcal{F}^A := \{F \in \mathcal{F} : F \cap A = \varnothing\}$ and $\mathcal{F}_A := \{F \in \mathcal{F} : F \cap A \neq \varnothing\}$. Prove the following assertions.

- (T) The topology \mathcal{O}_E has a countable base \mathcal{D} which consists of open, relatively compact sets such that any set $O \in \mathcal{O}_E$ is the union of all sets $D \in \mathcal{D}$ that satisfy $clD \subset O$.
- (1) The space $(\mathfrak{F}, \mathfrak{O}_{\mathfrak{F}})$ is a compact Hausdorff space with a countable base of the topology (in particular, it is metrizable by Urysohn's metrization theorem).
- (2) The subspace $\mathfrak{F}' := \mathfrak{F} \setminus \{\emptyset\}$ with the subspace topology is locally compact.
- (3) The family $\{\mathcal{F}^C \mid C \in \mathcal{C}\}$ is a neighborhood base of \emptyset .

Proposed solution:

- (T) Denote by $\widetilde{\mathbb{D}}$ a countable base of \mathbb{O}_E . Choose $\mathbb{D} \subset \widetilde{\mathbb{D}}$ as the collection of all open, relatively compact sets in $\widetilde{\mathbb{D}}$. Let $O \in \mathbb{O}_E$ be arbitrary. For $x \in O$ we find an open neighborhood U of x which is relatively compact [since E is locally compact]. As the set $U \cap O$ is open and contains x, there exists an open neighborhood V of X such that $\operatorname{cl} V \subset U \cap O$. To verify this last claim, let X be a compact neighborhood of X. If $X \subset U \cap O$, choose $Y := \operatorname{int}(X)$. Otherwise, $X := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since X := K is Hausdorff, we find for every point $Y \in C$ open neighborhoods $X := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since X := K is Hausdorff, we find for every point $Y \in C$ open neighborhoods $X := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since $Y := K \cap (E \setminus (U \cap O))$ is non-empty and compact, and since $Y := K \cap (E \setminus (U \cap O))$ is non-empt
- (1) The Hausdorff property: Let $F, F' \in \mathcal{F}$ be such that $F \neq F'$. Thus we find (without loss of generality) $x \in F \setminus F'$. As $E \setminus F'$ is open, there exists a set $D \in \mathcal{D}$ [where \mathcal{D} is a in (T)] with $x \in D$ as well as $clD \cap F' = \varnothing$. Then, $F \in \mathcal{F}_D$, $F' \in \mathcal{F}^{clD}$, and \mathcal{F}_D , \mathcal{F}^{clD} are open sets in \mathcal{F} with $\mathcal{F}_D \cap \mathcal{F}^{clD} = \varnothing$.

A countable base of OF is given through

$$\tau' := \Big\{ \mathcal{F}^{\text{cl}D_1 \cup \ldots \cup \text{cl}D_m}_{D_1',\ldots,D_k'} \ : \ D_i,D_j' \in \mathbb{D}, \ m \in \mathbb{N}, \ k \in \mathbb{N}_0 \Big\}.$$

Indeed, let $\mathcal{F}^{\mathcal{C}}_{G_1,\ldots,G_k}$ $(G_1,\ldots,G_k\in\mathcal{O}_E,\,k\in\mathbb{N}_0,\,C\in\mathcal{C})$ be arbitrary, and let $F\in\mathcal{F}^{\mathcal{C}}_{G_1,\ldots,G_k}$. By definition, for each G_j we find a set $D'_j\in\mathcal{D}$ such that $\operatorname{cl} D'_j\subset G_j$ and $D'_j\cap F\neq\varnothing$. Moreover, $E\setminus F$ is open, so by (T) we find sets $D_1,D_2,\ldots\in\mathcal{D}$ such that $\operatorname{cl} D_i\subset E\setminus F$ (for each $i\in\mathbb{N}$) and $\bigcup_{j=1}^\infty D_j=E\setminus F$. As $C\subset E\setminus F$ is compact, we find $m\in\mathbb{N}$ such that $C\subset \bigcup_{i=1}^m D_i$. We conclude that $F\in\mathcal{F}^{\operatorname{cl} D_1\cup\ldots\cup\operatorname{cl} D_m}_{D'_1,\ldots,D'_k}\subset\mathcal{F}^{\mathcal{C}}_{G_1,\ldots,G_k}$.

Compactness: A subbase of the topology $O_{\mathfrak{F}}$ is given by

$$\{\mathfrak{F}^{\mathcal{C}}: \mathcal{C} \in \mathfrak{C}\} \cup \{\mathfrak{F}_{\mathcal{G}}: \mathcal{G} \in \mathfrak{O}_{\mathcal{E}}\}.$$

According to Alexander's subbase theorem, it suffices to prove that any cover of $\mathcal F$ with sets from this subbase has a finite subcover. Thus, let I,J be arbitrary index sets, and let $C_i\in \mathcal C$ for $i\in I$ and $G_j\in \mathcal O_E$ for $j\in J$ be such that

$$\mathfrak{F} = \bigcup_{i \in I} \mathfrak{F}^{C_i} \ \cup \ \bigcup_{j \in J} \mathfrak{F}_{G_j}.$$

This fact is equivalent to

$$\bigcap_{i\in I} \mathcal{F}_{C_i} \cap \bigcap_{j\in J} \mathcal{F}^{G_j} = \emptyset$$

which, in turn, is equivalent to $\bigcap_{i\in I} \mathfrak{F}_{C_i}^G = \varnothing$ when choosing $G := \bigcup_{j\in J} G_j \in \mathfrak{O}_E$. Hence, we find $i_0 \in I$ such that $C_{i_0} \subset G$, since otherwise $(E \setminus G) \cap C_i \neq \varnothing$ for every $i \in I$ which would bring about $E \setminus G \in \bigcap_{i\in I} \mathfrak{F}_{C_i}^G$, a contradiction. Therefore, we have $C_{i_0} \subset \bigcup_{j\in J} G_j$ and, as C_{i_0} is compact, we find a finite subset of indices $J_0 \subset J$ with $C_{i_0} \subset \bigcup_{j\in J_0} G_j$. We conclude that $\bigcap_{j\in J_0} \mathfrak{F}_{C_{i_0}}^{G_j} = \varnothing$, so

$$\mathfrak{F}^{C_{i_0}} \ \cup \ \bigcup_{j \in J_0} \mathfrak{F}_{G_j} = \mathfrak{F},$$

which proves the claim.

- (2) For any $C \in \mathcal{C}$, the collection $\mathcal{F}_C = \mathcal{F} \setminus \mathcal{F}^C$ is closed (and hence compact) in \mathcal{F} . As $\varnothing \notin \mathcal{F}_C$, \mathcal{F}_C is also compact in \mathcal{F}' . It remains to show that any point $F \in \mathcal{F}'$ admits a compact neighborhood. To this end, let $x \in F$ and let D be an open, relatively compact neighborhood of x. Then, \mathcal{F}_{clD} is a compact subset of \mathcal{F} which contains the open set \mathcal{F}_D , and $F \in \mathcal{F}_D$.
- (3) We need to show that, for every neighborhood V of \varnothing in \Im , there exists a $C \in \mathcal{C}$ so that $\Im^C \subset V$. Thus, take a neighborhood V of \varnothing , and a set $O \in \mathcal{O}_{\Im}$ with $\varnothing \in O \subset V$. By definition of the Fell-topology, O is a union of sets

$$\mathfrak{F}^{\boldsymbol{C}}_{G_1,\ldots,G_k},\quad G_1,\ldots,G_k\in\mathfrak{O}_{\boldsymbol{E}},\quad \boldsymbol{C}\in\mathfrak{C},\quad k\in\mathbb{N}_0.$$

As $\varnothing \in \mathcal{O}$, there exist $k \in \mathbb{N}_0$, and $G_1, \ldots, G_k \in \mathcal{O}_E$, $C \in \mathcal{C}$ such that

$$\emptyset \in \mathcal{F}^{C}_{G_1,...,G_k}$$
.

However, $\varnothing \cap A = \varnothing$ for any $A \subset E$, so k = 0 and we are done.

Problem 3 (Theorem 1.3)

Let $(F_i)_{i\in\mathbb{N}}$ be a sequence in \mathcal{F} , and $F\in\mathcal{F}$. Consider the following properties:

- (1) $F_i \longrightarrow F$ in $(\mathfrak{F}, \mathfrak{O}_{\mathfrak{F}})$, as $i \to \infty$.
- (2) (a) $G \in \mathcal{G}$, $G \cap F \neq \emptyset \implies G \cap F_i \neq \emptyset$ for all $i \in \mathbb{N}$ except finitely many,
 - (b) $C \in \mathcal{C}$, $C \cap F = \emptyset \implies C \cap F_i = \emptyset$ for all $i \in \mathbb{N}$ except finitely many.
- (3) (a) For each $x \in F$ and all but finitely many $i \in \mathbb{N}$ there exist some $x_i \in F_i$ such that $x_i \longrightarrow x$, as $i \to \infty$.
 - (β) For any subsequence $(F_{i_k})_{k \in \mathbb{N}}$ and points $x_{i_k} \in F_{i_k}$ such that $x_{i_k} \stackrel{k \to \infty}{\longrightarrow} x$, we have $x \in F$.

Show that (2) and (3) are equivalent [the equivalence of (1) and (2) was discussed in the lecture].

Proposed solution:

We show that (a) and (α) as well as (b) and (β) are equivalent.

(a) \Rightarrow (α) Let $x \in F$, and let $G_1 \supset G_2 \supset \cdots$ be a neighborhood base of x consisting of open sets. Apparently, $G_k \cap F \neq \emptyset$. By (a) we find for any $k \in \mathbb{N}$ some $i_k \in \mathbb{N}$ such that $G_k \cap F_i \neq \emptyset$ for $i \geqslant i_k$. Without loss of generality, assume $i_1 < i_2 < \cdots$. Choose a sequence $(x_\ell)_{\ell \geqslant i_1}$ with

$$x_{\ell} \in G_k \cap F_{\ell}$$
 for $\ell = i_k, \dots, i_{k+1} - 1, \ k \in \mathbb{N}$.

Conclude that $x_{\ell} \to x$, as $\ell \to \infty$.

- (α) \Rightarrow (a) Let $G \in \mathcal{G}$ with $G \cap F \neq \emptyset$, and $x \in G \cap F$. In view of (α), we find an index $i_0 \in \mathbb{N}$ and elements $x_i \in F_i$, for $i \geqslant i_0$, such that $x_i \to x$. By the definition of convergence in topological spaces, we have $x_i \in G$ for i sufficiently large. Hence $F_i \cap G \neq \emptyset$ for all but finitely many $i \in \mathbb{N}$.
- (b) \Rightarrow (β) Let $x_{i_k} \in F_{i_k}$ with $x_{i_k} \stackrel{k \to \infty}{\longrightarrow} x$. If $x \notin F$ we find a compact neighborhood C of x with $C \cap F = \emptyset$ (apply Problem 1 to $E \setminus F$). Part (b) implies $C \cap F_i = \emptyset$ for $i \geqslant i_0$, where $i_0 \in \mathbb{N}$ is chosen large enough. This contradicts the convergence of the subsequence.
- $(\beta)\Rightarrow$ (b) Let $C\in\mathcal{C}$ with $C\cap F=\varnothing$. Assume, for a contradiction, that there exists a sequence of indices with $C\cap F_{i_k}\neq\varnothing$ for $k\in\mathbb{N}$. Choose $x_{i_k}\in C\cap F_{i_k}$. Since C is compact and hence sequentially compact (as E is metrizable), we can find a further subsequence $(x_{i_{k_\ell}})_{\ell\in\mathbb{N}}$ so that $x_{i_{k_\ell}}\stackrel{\ell\to\infty}{\longrightarrow} x\in C$. By (β) , we get $x\in F$ and hence a contradiction to $C\cap F=\varnothing$.