README.md 1/29/2021

Deep Eligibility Traces

Introduction

This repository consists of implementations of Eligiblity Traces and corresponding algorithms in the deep learning setting. Algorithms are implemented in PyTorch and Tensorflow 2.0 on a range of problems. Custom toy problems are provided in the MDPs folder.

Baseline Algorithms

Following are the baseline algorithms combined with trace-based updates-

Algorithm Link		Implementation	Status
Sarsa	Sutton & Barto	sarsa.py	√
Double Sarsa	Sutton & Barto	doublesarsa.py	√
Q-Learning	Sutton & Barto	qlearning.py	√
Double Q-Learning	Sutton & Barto	doubleqlearning.py	√
Expected Sarsa	Sutton & Barto	expectedsarsa.py	√
Double Expected Sarsa	Sutton & Barto	doubleexpectedsarsa.py	√

Trace Algorithms

Following algorithms are available in the current version-

PyTorch

Trace	Baseline Algorithms	Link	Implementation	Status
TD-lambda	TD(1)	Sutton & Barto	TDlamb.py	Requires tuning
Replacing Trace	 ✓ Sarsa ✓ Q-learning ✓ Expected Sarsa ✓ Double Sarsa ✓ Double Q-learning ✓ Double Expected Sarsa 	Sutton & Barto	traces.py	√

README.md 1/29/2021

Trace	Baseline Algorithms	Link	Implementation	Status
Accumulating Trace	 Sarsa Q-learning Expected Sarsa Double Sarsa Double Q-learning Double Expected Sarsa 	Sutton & Barto	traces.py	√
Dutch Trace	 Sarsa Q-learning Expected Sarsa Double Sarsa Double Q-learning Double Expected Sarsa 	Sutton & Barto	traces.py	V

Custom Environments

Following is the list of custom toy environments-

Environment Name	Link	Implementation
CyclicMDP	ESAC	link
OneStateMDP	Sutton & Barto	link
OneStateGaussianMDP	Sutton & Barto	link
GeneralizedCyclicMDP	motivated by ESAC	link

Usage

To run an implementation, use the following command-

```
python main.py --configs configs/configs.yaml --log_dir log/ --env <ENVIRONMENT>
```

For example, to run Q-Learning on the CyclicMDP environment using PyTorch library, use the following-

```
python main.py --configs configs/configs.yaml --log_dir log/ --env CyclicMDP
```

This will train the agent with default arguments listed in configs.yaml file.

README.md 1/29/2021

Following is an example to enter custom arguments for Q-Learning on the CartPole-v0 environment using PyTorch library with replacing trace and lambda=0.5-

```
python main.py --configs configs/configs.yaml --log_dir log/ --alg QLearning --env
CartPole-v0 --lib torch --trace replacing --lamb 0.5 --num_steps 10000
```

Citation

If you find these implementations helpful then please cite the following-

```
@misc{karush17eligibilitytraces,
   author = {Karush Suri},
   title = {Deep Eligibility Traces},
   year = {2021},
   howpublished = {\url{https://github.com/karush17/Deep-Eligibility-Traces}},
   note = {commit xxxxxxxx}
}
```