Hypothesis Testing

Big Data Lectures – Chapter 2

association between two random quantities

Lexin Li

Division of Biostatistics University of California, Berkeley

Outline

- ▶ list of topics:
 - a comparative summary of statistical hypothesis tests
 - ► A/B testing
 - multiple testing
 - causal inference from observational data

© 2018 Lexin Li Big Data: Chapter 2 2 / 20

Hypothesis Testing: A Comparative Summary

Hypothesis testing – a comparative summary

- summary:
 - test statistical significance of relation between random variables
 - this relation is about association, but not causation
- confounding, confounding, confounding!
- key elements of hypothesis testing:
 - a pair of hypothesis formulate the right questions
 - test statistic a measure of compatibility between the data and the null hypothesis – the smaller the (absolute) test statistic, the more compatible
 - ▶ p-value a statistical significance measure of compatibility (reference: significance level α) the bigger the p-value, the more compatible
 - sample size calculation power / type I and type II error
- rucial to know which test to use given the data and the question

© 2018 Lexin Li Big Data: Chapter 2 4 / 20

Hypothesis testing – a comparative summary

- one random variable:
 - one continuous one sample t test
 - one discrete χ^2 goodness-of-fit test
- two random variables:
 - one continuous vs one discrete (2 levels)
 - ▶ independent samples two sample t test
 - independent but small samples Wilcoxon-Mann-Whitney test

paired (i.e. dependence) ▶ paired samples - paired t test

- paired but small samples Wilcoxon signed rank test
- ▶ one continuous *vs* one discrete (> 2 levels) one-way ANOVA
- one discrete vs one discrete
 - ▶ 2-level vs 2-level 2 × 2 contingency table
 - 2-level vs 2-level but small counts Fisher's exact test
 - ▶ r-level vs c-level $-r \times c$ contingency table
 - paired samples McNemar's test
- ▶ one continuous *vs* one continuous correlation/simple linear regression
- more than two random variables:
 - ▶ one discrete *vs* one discrete *vs* one continuous two-way ANOVA
 - one continuous vs many multiple linear regression
 - one discrete vs many logistic regression

Example: χ^2 goodness-of-fit test

- example:
 - a cross between white and yellow summer squash gave progeny of the following colors
 - Q: consistent with the 12:3:1 ratio predicted by a genetic model?

COLOR	WHITE	YELLOW	GREEN
Number of progeny	155	40	10

whats the random quantity we're looking at? colors of offspring this random quantity can 3 different possible values how many random quantities are we looking at? 1 random quantity (that can take 3 possible values)

- key observations:
 - test statistic: the chi-square test stat is a random variable

o - observed for some color e - expected for some color

$$\chi_s^2 = \sum_{i=1}^c \frac{(o_i - e_i)^2}{e_i}$$

• compare to χ^2 distribution with c-1 df

Example: two-sample *t* test

- two random quantities: blood flow and air-type one is continuous (blood flow) and one is discrete (air-type 2 levels)
 - myocardial blood flow was measured for two groups of subjects after five minutes of bicycle exercise
 - "normoxia" group was provided normal air to breathe; "hypoxia" group air with reduced oxygen

	NORMOXIA	НУРОХІА
	3.45	6.37
	3.09	5.69
	3.09	5.58
	2.65	5.27
	2.49	5.11
	2.33	4.88
	2.28	4.68
	2.24	3.50
	2.17	
	1.34	
n	10	8
\bar{y}	2.51	5.14
S	0.60	0.84

2 key assumptions:

key observations: the data should follow an approximately normal distribution w/i each group sample size from each group is relatively large

- compare to t distribution with $n_1 + n_2 2$ df, approximately
- assume a fully randomized design, so no other confounders
- ▶ $n_1 \ge 20, n_2 \ge 20$
- Wilcoxon-Mann-Whitney test is the nonparametric alternative

Example: paired t test

two random quantities: blood flow and caffeine intake

one is continuous (blood flow) and one is discrete (caffeine intake - 2 levels

- myocardial blood flow was measured during bicycle exercise before and after giving the subjects a dose of caffeine that was equivalent to drinking two cups of coffee
- Q: drinking coffee affects blood flow during exercise?

behavior of subject with one treatment and behavior of same subject with a second treatment

()	MBF		
1	Baseline	Caffeine	
Subject	<i>y</i> ₁	<i>y</i> ₂	
1	6.37	4.52	
2	5.69	5.44	
3	5.58	4.70	
4	5.27	3.81	
5	5.11	4.06	
6	4.89	3.22	
7	4.70	2.96	
8	3.53	3.20	
Mean	5.14	3.99	
SD	0.83	0.86	

- key observations:
 - ▶ check the difference; compare to t with $n_1 1$ df; $n_1 = n_2$
 - randomized pairs design
 - Wilcoxon signed rank test is the alternative nonparametric test

Example: one-way ANOVA

for > 2 levels of discrete variable

example:

 compare the weights of ears of sweet corn under five treatment conditions

one continuous - weights and one discrete - treatment with 5 possible values

sample variation is not that different (there are tests for this) independence assumption large-ish sample size or normality

- key observations:
 - ▶ compare to F distribution with I 1, n. -I dfs
 - box-plot is the corresponding graphical representation
 - don't forget the assumptions!

considering two levels with effect modification on top, could do ANOVA or two-sample t-test, would get the same result

			Treatment		
	1	2	3	4	5
	16.5	11.0	8.5	16.0	13.0
	15.0	15.0	13.0	14.5	10.5
	11.5	9.0	12.0	15.0	11.0
	12.0	9.0	10.0	9.0	10.0
	12.5	11.5	12.5	10.5	14.0
	9.0	11.0	8.5	14.0	12.0
	16.0	9.0	9.5	12.5	11.0
	6.5	10.0	7.0	9.0	9.5
	8.0	9.0	10.5	9.0	18.5
	14.5	8.0	10.5	9.0	17.0
	7.0	8.0	13.0	6.5	10.0
	10.5	5.0	9.0	8.5	11.0
Mean	11.5	9.6	10.3	11.1	12.3
SD	3.5	2.4	2.0	3.1	2.9
n	12	12	12	12	12

	ANOVA Quantities with Formulas					
ı	ANOVA Qualitutes with formulas					
	Source	df	SS (Sum of Squares)	MS (Mean Square)		
	Between groups	I-1	$\sum_{i=1}^{I} n_i (\overline{y}_i - \overline{y})^2$	SS/df		
	Within groups	n I	$\sum_{i=1}^{I} (n_i - 1) s_i^2$	SS/df		
	Total	n 1	$\sum_{i=1}^{I}\sum_{j=1}^{n_i}(y_{ij}-\overline{\overline{y}})^2$			

Example: contingency table

- example:
 - a clinical trial to assess an experimental surgery for patients who suffered from moderate to severe migraine headache
- key observations:

$$\chi_s^2 = \sum_{e_i} \frac{(o_i - e_i)^2}{e_i}$$

- $e = \frac{row \ total \times column \ total}{grand \ total}$
- compare to χ^2 distribution with $(r-1) \times (c-1)$ df
- ▶ assumption: okay to have some $1 \le e < 5$ and at least 80% of e's are > 5
- alternative: Fisher's exact test

2 random variables - both discrete & each has 2 levels

		Sur	gery
		Real	Sham
Substantial reduction	Success	41	15
in migraine headaches?	No success	8	11
	Total	49	26

	Surg	gery	
	Real	Sham	Total
Success	41 (36.59)	15 (19.41)	56
No success	8 (12.41)	11 (6.59)	19
Total	49	26	75

© 2018 Lexin Li Big Data: Chapter 2 10 / 20

Example: McNemar's test

- example:
 - 114 HIV-infected women who gave birth to two children
 - Q: H0: the probability of HIV infection is the same for older and younger siblings

		Older sibling	Younger sibling
HIV?	Yes	19	20
	No	95	94
	Total	114	114

- ▶ key observations:
 - test statistic:

$$\chi_s^2 = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}}$$

• compare to χ^2 distribution with 1 df, approximately

		Younger sibling HIV?		
		Yes	No	
Older sibling	Yes	2	17	
HIV?	No	18	77	

© 2018 Lexin Li Big Data: Chapter 2 11 / 20

A/B Testing & Multiple Testing

A/B testing = fully randomized experimental design

- what it is:
 - a methodology in advertising using randomized experiments with two variants, A (control) and B (treatment)
 - commonly used in web development, marketing, and other forms of advertising
 - the goal is to identify changes to web pages that increase or maximize an outcome of interest, e.g., click-through rate for an advertisement
 - two versions (A and B) are compared, which are identical except for one variation that might impact a user's behavior
- what to know:
 - how to design an A/B test
 - decide test size
 - interpret test results
 - understand error bound

©2018 Lexin Li Big Data: Chapter 2 13 / 20

Multiple testing

- why a problem:
 - ▶ setup: test a number of, say *m*, hypotheses simultaneously
 - probability of claiming at least one significant result while all results are truly insignificant:

Pr(at least one result claimed significant)
=
$$1 - \text{Pr(all results are claimed insignificant)}$$

= $1 - (1 - \alpha)^m$

- $\sim \alpha = 0.05$: if m = 20, this probability is 0.64; if m = 100, it is 0.99
- solutions:
 - ▶ Bonferroni correction; false discovery rate control; ...

©2018 Lexin Li Big Data: Chapter 2 14 / 20

- example:
 - new drug / treatment / exposure
 - online ads display format / campaign
- counterfactual framework:
 - ightharpoonup Z = a binary indicator; 1 treated/exposed; 0 control
 - ► **X** = a vector of covariates measured prior to receipt of treatment (baseline) or, if measured post treatment, not affected by either treatment
 - counterfactual responses / potential outcome:

 Y_1 = the response value that would be seen if, possibly contrary to the fact of what actually happened, the subject were to receive **treatment** Y_0 = the response value that would be seen if, possibly contrary to the fact of what actually happened, the subject were to receive **control**

actually observed response:

$$Y = ZY_1 + (1 - Z)Y_0$$

© 2018 Lexin Li Big Data: Chapter 2 16 / 20

- quantity of interest:
 - causal effect:

$$\Delta = \mu_1 - \mu_0 = E(Y_1) - E(Y_0)$$

sample average response: does this give us what we want?

$$E(Y|Z=1), E(Y|Z=0)$$

- quantity of interest:
 - causal effect:

$$\Delta = \mu_1 - \mu_0 = E(Y_1) - E(Y_0)$$

sample average response: does this give us what we want?

$$E(Y|Z=1), E(Y|Z=0)$$

randomized study:

Z is determined for each subject at random, so it is unrelated to how s/he might potentially respond

$$(Y_0, Y_1) \perp \!\!\! \perp Z$$

©2018 Lexin Li Big Data: Chapter 2 17 / 20

- quantity of interest:
 - causal effect:

$$\Delta = \mu_1 - \mu_0 = E(Y_1) - E(Y_0)$$

sample average response: does this give us what we want?

$$E(Y|Z=1), E(Y|Z=0)$$

randomized study:

Z is determined for each subject at random, so it is unrelated to how s/he might potentially respond

$$(Y_0, Y_1) \perp \!\!\! \perp Z$$

therefore,

$$E(Y|Z=1) = E(Y_1|Z=1) = E(Y_1), \ E(Y|Z=0) = E(Y_0|Z=0) = E(Y_0)$$

observational data?

©2018 Lexin Li Big Data: Chapter 2 17 / 20

- observational data:
 - assumption: no unmeasured confounders

$$(Y_0, Y_1) \perp \!\!\!\perp Z \mid \boldsymbol{X}$$

 propensity score: the probability of treatment given the observed covariates

$$e(\boldsymbol{X}) = P(Z = 1|\boldsymbol{X})$$

then, under the no unmeasured confounders assumption,

$$(Y_0, Y_1) \perp \!\!\!\perp Z | e(\boldsymbol{X})$$

so that treatment exposure is unrelated to the counterfactuals for individuals sharing the same propensity score

• in practice, one estimates the propensity score, by imposing a model, e.g., a logistic regression model, on Z given X, and hopes the model is correctly specified

- some common solutions:
 - stratification:
 - form K strata according to the sample quantiles of the estimated $\hat{e}(X)$
 - within each stratum, calculate the difference of sample means of the observed response Y
 - ightharpoonup estimate Δ by a weighted sum of the differences of sample means across strata, where weighting is by the proportion of observations falling in each stratum

© 2018 Lexin Li Big Data: Chapter 2 19 / 20

- some common solutions:
 - stratification:
 - form K strata according to the sample quantiles of the estimated $\hat{e}(X)$
 - within each stratum, calculate the difference of sample means of the observed response Y
 - ightharpoonup estimate Δ by a weighted sum of the differences of sample means across strata, where weighting is by the proportion of observations falling in each stratum
 - inverse probability weighting:

still the same goal of estimating the ATE : if we don't observed the response then first fraction is 0 $\,$

$$\frac{1}{n} \sum_{i=1}^{n} \frac{Z_{i} Y_{i}}{\hat{e}_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{(1 - Z_{i}) Y_{i}}{1 - \hat{e}_{i}}$$

why does this work?

$$E\left\{\frac{ZY}{e(\boldsymbol{X})}\right\} = E\left[E\left\{\frac{I(Z=1)Y_1}{e(\boldsymbol{X})}|Y_1,\boldsymbol{X}\right\}\right] = E\left[\frac{Y_1}{e(\boldsymbol{X})}E\left\{I(Z=1)|Y_1,\boldsymbol{X}\right\}\right] = E(Y_1)$$

© 2018 Lexin Li Big Data: Chapter 2 19 / 20

- some common solutions:
 - stratification:
 - form K strata according to the sample quantiles of the estimated $\hat{e}(X)$
 - within each stratum, calculate the difference of sample means of the observed response Y
 - ightharpoonup estimate Δ by a weighted sum of the differences of sample means across strata, where weighting is by the proportion of observations falling in each stratum
 - inverse probability weighting:

$$\frac{1}{n}\sum_{i=1}^{n}\frac{Z_{i}Y_{i}}{\hat{e}_{i}}-\frac{1}{n}\sum_{i=1}^{n}\frac{(1-Z_{i})Y_{i}}{1-\hat{e}_{i}}$$

why does this work?

$$E\left\{\frac{ZY}{e(\boldsymbol{X})}\right\} = E\left[E\left\{\frac{I(Z=1)Y_1}{e(\boldsymbol{X})}|Y_1,\boldsymbol{X}\right\}\right] = E\left[\frac{Y_1}{e(\boldsymbol{X})}E\left\{I(Z=1)|Y_1,\boldsymbol{X}\right\}\right] = E(Y_1)$$

issues: what if \hat{e}_i is close to 0 or 1? what if the model for e(X) is incorrect? how to make sure the assumption is satisfied?

©2018 Lexin Li Big Data: Chapter 2 19 / 20

Additional readings

- ► Samuels, M.L., Witmer, J.A., and Schaffner, A.A. (2012). Statistics for the Life Sciences, 4th edition, Prentice Hall
- Wikipedia entry on "A/B testing"
- ► Free EBook: An Introduction to Using A/B Testing for Marketing Optimization, HubSpot
- Chan, D., Ge, R., Gershony, O., Hesterberg, T., and Lambert, D. (2010). Evaluating online Ad campaigns in a pipeline: causal models at scale. *Proceedings of KDD*, 7-16.
- ▶ Lunceford, J.K., and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. *Statistics in Medicine*, **23**, 2937-2960.

© 2018 Lexin Li Big Data: Chapter 2 20 / 20