Лабораторная работа 3.5.1

Изучение плазмы газового разряда в неоне

Татаурова Юлия Романовна

31 октября 2024 г.

Цель работы: изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

Оборудование: стеклянная газоразряданя трубка, наполненная неоном, высоковольтный источник питания, источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Теоретические сведения

Экспериментальные данные и установка

Стеклянная газоразрядная трубка имеет холодный полый катод, три анода и геттерный узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Катод и один из анодов (I или II) с помощью переключателя П1 подключаются через балластный резистор R₆ (≈ 500 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до нескольких киловольт. При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром А1, а падение напряжения на разрядной трубке — вольтметром V1. При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d = 2 мм и имеют длину l = 5.2 мм. Они подключены к источнику питания через потенциометр R. Переключатель П2 позволяет изменять полярность напряжения на зондах. Для измерения зондового тока используется микроамперметр А2. Анод-III в нашей работе не используется.

Рис. 1: Схема экспериментальной установки

Вольт-ампераня характеристика разряда

Определим напряжение зажигания разряда $U_{\text{pasp}} = 200 \text{ B}.$

I, мА	0.52	0.80	1.13	1.439	1.84	2.42	2.98	3.33	3.87	4.45	2.13	1.65
U, B	34.3	32.9	32.1	31.5	27.8	21.4	18.3	16.9	15.9	15.3	23.6	30.3

Таблица 1: BAX разряда при нарастании тока

I, мА	4.721	4.31	3.939	3.570	3.203	2.827	2.469	1.852	1.100	0.594
U, B	14.9	15.4	15.8	16.2	17.3	19.1	21.0	23.3	32.1	33.8

Таблица 2: BAX разряда при убывании тока

Из графика находим $R_{\rm диф}^{\rm max} = \frac{dU}{dI} = (13.98 \pm 0.05) \cdot 10^3 \ {\rm Om}$

Зондовые характеристики

Установим разрядный ток $I_p = 5$ мА. И снимем вольт-амперную характеристику двойного зонда. По полученным графикам определим температуру электронов по формуле:

$$kT_e = \frac{1}{2} \frac{eI_{\rm iH}}{\frac{dI}{dU}U=0} \tag{1}$$

$$I_{
m p}$$
, мА

Рис. 2: ВАХ разряда при убывании и нарастании тока

$I_{\rm p}=5$ мА	I, мА	82.5	85.9	84.7	81.5	74.6	62.4	50.6	36.5	19.9	-24.4	-42.5	-51.9
	U, B	25.01	22.03	19.	16.04	13.03	10.04	8.01	6.02	4.03	-2.02	-4.08	-6.01
$I_{ m p}=4$ мА	I, мА	70.6	70.3	68.5	65.7	60.6	51.1	42.3	30.5	17.1	-23.5	-38.9	-51.5
	U, B	25.03	22.08	19.04	16.	13.04	10.02	8.06	6.07	4.01	-2.04	-4.06	-6.06
$I_{\rm p}=3~{ m mA}$	I, мА	52.6	50.9	49.17	47.2	44.	38.1	32.02	23.5	13.5	-20.3	-31.5	-41.0
	U, B	25.03	22.04	19.03	16.06	13.04	10.03	8.07	6.	4.03	-2.03	-4.08	-6.08
$I_{ m p}=1.5~{ m mA}$	I, мА	24.6	23.8	23.	22.2	21.1	18.8	16.1	12.2	7.1	-12.3	-17.9	-22.7
	U, B	25.	22.09	19.06	16.03	13.08	10.06	8.05	6.04	4.09	-2.17	-4.06	-6.02

Таблица 3: ВАХ двойного зонда при различных токах разряда

Рис. 3: Сравнение ВАХ двойного зонда при различных токах разряда

Рис. 4: ВАХ двойного зонда при различных значениях тока разряда I_{p}