ECOL 4000/6000 Population and Community Ecology Fall 2019

Time: Tu Th 2.00 - 3.15 pm. (3 credit hours) **Place:** Science Learning Center, Room 345

Instructors: John Drake, Ph.D. & Andrew Park, Ph.D. Email: jdrake@uga.edu, awpark@uga.edu

Office hours: By appointment

Overview

Population and community ecology are active fields of research with important applications for management and conservation. This course links conceptual issues and basic models with data and field approaches relevant for understanding population dynamics in time and space. The first third of the course focuses on the birth, death, and movement of organisms, with particular reference to the population dynamics of single-species; the middle third of the course focuses on interactions among species, including competition and predation; the final third of the course focuses on the causes and consequences of diversity (the co-occurrence of multiple species).

Format

The course format includes lectures, demonstrations, exercises, discussions, group activities and homework assignments. Throughout the semester, students will work on group projects (typically in one class period per week).

Text

Readings (in the form of chapters) will be uploaded to the course website (http://courses.ecology.uga.edu/ecol4000-fall2019) approximately one week before the associated lecture topic, along with occasional readings from the primary literature. Reading of posted material prior to coming to class is essential, and short quizzes will be given at the beginning of class.

Group work

Students will be assigned to small groups and will work together through the semester developing and answering research questions related to the population and community ecology of natural systems. Students will work with real data sets and, in consultation with instructors, will develop written reports detailing student contributions. In addition, a summary of findings will be presented to the class towards the end of the semester

Prerequisites

This course assumes you are familiar with general ecology and biology, and have taken ECOL 3500.

Attendance

Attendance is essential. If you miss a class, you are responsible for contacting fellow students for lecture notes. More than 4 unexcused absences will result in a lowering of your final score by one letter grade. An excused absence is constituted by the student notifying the instructor in advance and producing proof for reason of absence immediately upon return to the class.

Evaluation

Short quizzes (which cannot be made up) will be given at the beginning of each class period for which there is a reading assignment. Additionally, there will be approximately 12 homework assignments. There will be two exams during class periods (September 17th & October 24th) and a final exam on December 12th (3:30-6:30pm).

Grade calculation

10% Quizzes15% Homework10% Exam 110% Participation

10% Exam 2 15% Written report of group project 1 15% Final exam 15% Presentation of group project 2

Accommodations

Please contact the instructor if you require special accommodations due to learning disabilities, religious practices, physical or medical needs, or for any other reason.

General Notes

- (i) All academic work must meet the standards contained in "A Culture of Honesty." Students are responsible for informing themselves about those standards before performing any academic work. The link to more detailed information about academic honesty can be found at: http://www.uga.edu/honesty/
- (ii) The course syllabus is a general plan for the course; deviations announced to the class by the instructors may be necessary.

Outline of Topics

Date	Topic (short lecture topic in parentheses)	Theme
Aug 15	Introduction / Scientific computing I	Population ecology
Aug 20	Scientific computing II	
Aug 22	Population growth and decline	
Aug 27	Group project work: Population dynamics (Density dependence)	
Aug 29	Complex dynamics	
Sep 3	Group project work: Population dynamics (Extinction)	
Sep 5	Age structure	
Sep 10	Group project work: Population dynamics (Metapopulations)	
Sep 12	Group project work: Population dynamics (Ecosystem engineering)	
Sep 17	Exam 1	
Sep 19	Lotka-Volterra competition	Species interactions
Sep 24	Group project work: Population dynamics (Host-parasitoid interactions)	
Sep 26	R* theory	
Oct 1	Group project work: Population dynamics (Mutualisms)	
Oct 3	Predator-prey dynamics	
Oct 8	Group project work: Biodiversity (Host-parasite interactions)	
Oct 10	Paper discussion: Hare-Lynx interactions	
Oct 15	Group project work: Biodiversity (Indirect interactions)	
Oct 17	Trophic cascades	
Oct 22	Group project work: Biodiversity (Niche theory)	
Oct 24	Exam 2	
Oct 29	Group project work: Biodiversity (Latitudinal diversity gradients)	Community ecology
Oct 31	Measuring biodiversity	
Nov 5	Group project work: Biodiversity (Species area curves)	
Nov 7	Island biogeography	
Nov 12	Group project work: Biodiversity (Succession)	
Nov 14	Neutral theory of biodiversity and metacommunities	
Nov 19	Diversity-function-stability relationships	
Nov 21	Macroevolution and community assembly/function	
Nov 26	Macroecology	
Nov 28	Thanksgiving	
Dec 3	Group presentations	
Dec 12	Final exam 3:30pm-6:30pm	