EE 503: Problem Set #5 : Solutions

1

Facts: Let V and S be nonempty sets.

- 1) If C is a collection of subsets of V then $C \subseteq \sigma(C)$ with equality if and only if C is a sigma algebra on V.
- 2) If C and D are collections of subsets of V that satisfy $C \subseteq D$, then $\sigma(C) \subseteq \sigma(D)$.
- 3) Let $X: S \to \mathbb{R}$ be a function. For all sets $A \subseteq \mathbb{R}$ define the *inverse image of A with respect to the function X*, denoted $X^{-1}(A)$, as the following set:

$$X^{-1}(A) = \{ \omega \in S : X(\omega) \in A \}$$

It can be shown that if $A \subseteq \mathbb{R}$ then $X^{-1}(A)^c = X^{-1}(A^c)$; If $\{A_i\}_{i=1}^{\infty}$ is a sequence of subsets of \mathbb{R} then

$$X^{-1}(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} X^{-1}(A_i)$$

I. JUMPS IN THE CDF

Fix a probability triplet (S, F, P). Let X be a random variable. Fix $a \in \mathbb{R}$. Recall that P[X = a] is equal to the height of the jump in the CDF $F_X(x)$ at the point a. That is, $P[X = a] = F_X(a) - F_X(a^-)$. This problem proves it.

- a) Use the definition of $A_n \searrow A$ to prove that $\{X \in (a \frac{1}{n}, a]\} \searrow \{X = a\}$.
- b) By continuity of probability together with part (a), we conclude that $\lim_{n\to\infty} P[X\in(a-\frac{1}{n},a]]=P[X=a]$. Use this to conclude the result about the jump in the CDF at point a.
- c) Use the fact $P[X = a] = F_X(a) F_X(a^-)$ to prove that if the CDF is continuous at all points $x \in \mathbb{R}$ then P[X = x] = 0 for all $x \in \mathbb{R}$.

Solution:

- a) There are two properties to show:
- 1) Shrinking sets: Fix n as a positive integer. Since $(a \frac{1}{n}, a] \supseteq (a \frac{1}{n+1}, a]$ we know that

$${X \in (a - \frac{1}{n}, a]} \supseteq {X \in (a - \frac{1}{n+1}, a]}$$

Indeed, any $\omega \in S$ that satisfies $X(\omega) \in (a - \frac{1}{n+1}, a]$ must also satisfy $X(\omega) \in (a - \frac{1}{n}, a]$.

2) Infinite intersection: We want to show

$$\bigcap_{n=1}^{\infty} \{ X \in (a - \frac{1}{n}, a] \} = \{ X = a \}$$

Suppose $\omega \in \{X=a\}$. Then $X(\omega)=a$ and so $X(\omega) \in (a-\frac{1}{n},a]$ for all positive integers n, so $\omega \in \cap_{n=1}^{\infty} \{X \in (a-\frac{1}{n},a]\}$. Now suppose $\omega \in \cap_{n=1}^{\infty} \{X \in (a-\frac{1}{n},a]\}$. Then $X(\omega) \in (a-\frac{1}{n},a]$ for all positive integers n. It follows that $X(\omega) \leq a$. Now suppose $X(\omega) < a$ (we reach a contradiction). Then there must be a positive integer n such that $X(\omega) < a-\frac{1}{n} < a$ and so $X(\omega) \notin (a-\frac{1}{n},a]$, a contradiction. So $X(\omega) \geq a$ and $X(\omega) \leq a$, it must be that $X(\omega) = a$. So $\omega \in \{X=a\}$.

b) By continuity of probability, since $\{X \in (a - \frac{1}{n}, a]\} \setminus \{X = a\}$ we conclude that

$$P[X = a] = \lim_{n \to \infty} P[X \in (a - \frac{1}{n}, a]] = \lim_{n \to \infty} (F_X(a) - F_X(a - \frac{1}{n})) = F_X(a) - F_X(a^-)$$

where we have used the fact $P[X \in (a - \frac{1}{n}, a]] = F_X(a) - F_X(a - \frac{1}{n})$.

c) If $F_X(x)$ is continuous at all x then there are no discontinuous jumps, meaning the height of the jump at any point x is 0, so P[X=x]=0.

II. BOREL MEASURABLE FUNCTIONS

Let (S, F, P) be a probability triplet: S is the sample space; F is a sigma algebra on S; $P: F \to \mathbb{R}$ is a probability measure. Define C as the set of all intervals in \mathbb{R} of the type $(-\infty, x]$ for some $x \in \mathbb{R}$. The set $\sigma(C)$ is called the *Borel sigma algebra on* \mathbb{R} . A subset of \mathbb{R} is said to be a *Borel measurable set* if it is in $\sigma(C)$. A function $X: S \to \mathbb{R}$ is said to be a *Borel measurable function* if:¹

$$X^{-1}(A) \in F \quad \forall A \in C \tag{1}$$

We want to show that if $X: S \to \mathbb{R}$ is a Borel measurable function then

$$X^{-1}(A) \in F \quad \forall A \in \sigma(C) \tag{2}$$

In particular, (2) implies that if $A \in \sigma(C)$ then $\{X \in A\}$ is an *event* (and hence has a well defined probability $P[X \in A]$). That is, a function $X : S \to \mathbb{R}$ with the property that $\{X \le x\}$ is an event for all $x \in \mathbb{R}$ must also have the property that $\{X \in A\}$ is an event for all Borel measurable subsets $A \subseteq \mathbb{R}$.

¹A Borel measurable function $X: S \to \mathbb{R}$ is called a *random variable*.

For the tasks below, assume that $X: S \to \mathbb{R}$ satisfies (1).

a) Define H as the following set of subsets of \mathbb{R} :

$$H = \{ A \subseteq \mathbb{R} : X^{-1}(A) \in F \}$$

Show that $C \subseteq H$. It immediately follows (by Fact 2) that $\sigma(C) \subseteq \sigma(H)$.

- b) Argue that H is a sigma algebra on \mathbb{R} . It immediately follows (by Fact 1) that $\sigma(H) = H$.
- c) Argue that $\sigma(C) \subseteq H$. Explain why this yields our desired conclusion (2). *Solution:*
- a) Fix $A \in C$. By property (1) we know $X^{-1}(A) \in F$. Then $A \in H$ by definition of H.
- b) We show the three defining properties of a sigma algebra on \mathbb{R} are satisfied:
- 1) Clearly $\mathbb{R} \in H$ because $X^{-1}(\mathbb{R}) = S \in F$ (since F is a sigma algebra on S so $S \in F$).
- 2) Suppose $A \in H$. Then $X^{-1}(A) \in F$ and so $X^{-1}(A)^c \in F$ (because F is a sigma algebra). But Fact 3 ensures $X^{-1}(A)^c = X^{-1}(A^c)$, so $X^{-1}(A^c) \in F$, which means (by definition of H) that $A^c \in H$.
- 3) Suppose $C_1, C_2, ...$ are a countable sequence of sets in H. Fix i as a positive integer. Since $C_i \in H$ we know (by definition of H) that $X^{-1}(C_i) \in F$. This holds for all positive integers i. So $\bigcup_{i=1}^{\infty} X^{-1}(C_i)$ is a countable union of sets in the sigma algebra F so it must also be in F. That is, $\bigcup_{i=1}^{\infty} X^{-1}(C_i) \in F$. But Fact 3 ensures $\bigcup_{i=1}^{\infty} X^{-1}(C_i) = X^{-1}(\bigcup_{i=1}^{\infty} C_i)$. So $X^{-1}(\bigcup_{i=1}^{\infty} C_i) \in F$. Thus $\bigcup_{i=1}^{\infty} C_i \in H$ (by definition of H).
- c) Part (a) implies $\sigma(C) \subseteq \sigma(H)$ and part (b) implies $\sigma(H) = H$. Thus $\sigma(C) \subseteq H$. It means that if $A \in \sigma(C)$ then $A \in H$ and so (by definition of H) we must have $X^{-1}(A) \in F$.

III. CDFs and Expectations

Let X be a random variable defined by the pdf $f_X(x) = x^2[u(x) - u(x-1)] + a\delta(x-2)$, where u(x) is the unit step function which is equal to 1 when $x \ge 0$ and 0 otherwise, and $\delta(x)$ is the impulse function (Dirac delta function) which is the (generalized) derivative of u(x).

- a) Find a, $\mathbb{E}[X]$ and Var[X]
- b) Define the event $W = \{X \ge 0.5\}$. Find $P[X \le x|W]$ for all $x \in \mathbb{R}$. We shall define $F_{X|W}(x) = P[X \le x|W]$ the conditional CDF given the event W. Find a nonnegative function $f : \mathbb{R} \to \mathbb{R}$ that satisfies

$$\int_{-\infty}^{x} f(t)dt = F_{X|W}(x) \quad \forall x \in \mathbb{R}$$

We can call this a *conditional PDF* given W. Find the set of all $x \in \mathbb{R}$ over which your function f satisfies f(x) > 0. This is often called the "support" of the function.

Solution:

a) The pdf must integrate to 1:

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$
$$\int_{-\infty}^{\infty} \left(x^2 [u(x) - u(x-1)] + a\delta(x-2) \right) dx = 1$$

The u(x) - u(x-1) term is what is called a box function, it starts from x=0 and ends at x=1 and takes the value 1 in between. So we have

$$1 = \int_{-\infty}^{\infty} \left(x^2 [u(x) - u(x-1)] + a\delta(x-2) \right) dx$$
$$= \int_{0}^{1} x^2 dx + a \int_{-\infty}^{\infty} \delta(x-2) dx$$
$$= 1/3 + a$$

and so

$$a=2/3$$

Further

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \left(x^3 [u(x) - u(x-1)] + ax \delta(x-2) \right) dx$$

$$= \int_{0}^{1} x^3 dx + a \int_{-\infty}^{\infty} x \delta(x-2) dx$$

$$\stackrel{(a)}{=} 1/4 + a \int_{-\infty}^{\infty} 2\delta(x-2) dx$$

$$= 1/4 + 2a$$

$$= 1/4 + 4/3$$

$$= 19/12$$

where (a) holds because $g(x)\delta(x-2)=g(2)\delta(x-2)$ for continuous functions g. Finally

$$\mathbb{E}[X^2] = \int_0^\infty x^2 f_X(x) dx$$

$$= \int_{-\infty}^\infty x^4 [u(x) - u(x-1)] dx + a \int_{-\infty}^\infty x^2 \delta(x-2) dx$$

$$= \int_0^1 x^4 dx + a \int_{-\infty}^\infty 2^2 \delta(x-2) dx$$

$$= 1/5 + 4a$$

$$= 1/5 + 8/3$$

$$= 43/15$$

$$Var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \frac{259}{720}$$

b)

$$F_{X|W}(x) = \frac{P[\{X \le x\} \cap \{X \ge 0.5\}]}{P[\{X \ge 0.5\}]}$$

$$P[\{X \ge 0.5\}] = \int_{0.5}^{\infty} f_X(x) dx = \frac{23}{24} > 0$$

$$F_{X|W}(x) = \begin{cases} \frac{P[0.5 \le X \le x]}{P[\{X \ge 0.5\}]} & x \ge 0.5\\ 0 & x < 0.5 \end{cases}$$

$$= \begin{cases} \frac{F_X(x) - F_X(0.5)}{23/24} & x \ge 0.5\\ 0 & x < 0.5 \end{cases}$$

$$F_X(0.5) = 1/24$$

$$F_X(x) = \frac{x^3}{3}, \ 0 \le x < 1$$

$$F_X(x) = 1/3, \ 1 \le x < 2$$

$$F_X(x) = 1, x \ge 2$$

So

$$F_{X|W}(x) = \begin{cases} 0 & \text{if } x < 0.5\\ \frac{\frac{x^3}{3} - \frac{1}{24}}{23/24} & \text{if } 0.5 \le x < 1\\ 7/23 & \text{if } 1 \le x < 2\\ 1 & \text{if } x \ge 2 \end{cases}$$

This has a discontinuous jump of height 16/23 at x=2 and so

$$f_{X|W}(x) = F'_{X|W}(x) = \frac{16}{23}\delta(x-2) + g(x)$$

where

$$g(x) = \begin{cases} 0 & \text{if } x < 0.5\\ \frac{x^2}{23/24} & \text{if } 0.5 \le x < 1\\ 0 & \text{if } x \ge 1 \end{cases}$$