Правила дифференцирования и таблица производных

Обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций

Правила дифференцирования:

- 1) (Cu)' = Cu', где C произвольное число константу можно вынести за знак производной;
- **2**) (u + v)' = u' + v' правило дифференцирования суммы;

Правила № 1, 2 также называют *свойством линейности* производной.

- **3)** (uv)' = u'v + uv' правило дифференцирования произведения;
- **4)** $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$ правило дифференцирования частного;
- **5**) $(u(v))' = u'(v) \cdot v'$ дифференцирование сложной функции.

Таблица производных:

(C)' = 0, где C – произвольное число (константа);

$$(x^n)' = nx^{n-1}$$
, в частности: $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$, $(x)' = 1$, $\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$

Следует обратить внимание, что производная степеннОй функции — это самая «ходовая» вещь на практике. Любой радикал (корень), например $\sqrt[3]{x^5}$, $\frac{1}{\sqrt[7]{x^2}}$, $\frac{1}{x^5}$, $\sqrt{(4x-7)^3}$, нужно

представить в виде $x^{\frac{a}{b}}$ для применения формулы $(x^n)' = nx^{n-1}$ (как представить – см. *Приложение* **Горячие школьные формулы**).

Логарифмическая и показательная функции:

$$(\log_a x)' = \frac{1}{x \ln a}$$
, в частности $(\ln x)' = \frac{1}{x}$

$$(a^{x})' = a^{x} \ln a$$
, в частности $(e^{x})' = e^{x}$

Тригонометрические функции:

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$

$$(tgx)' = \frac{1}{\cos^2 x}$$

$$(ctgx)' = -\frac{1}{\sin^2 x}$$

Обратные тригонометрические функции:

$$(arctgx)' = \frac{1}{1+x^2}$$
, $(arcctgx)' = -\frac{1}{1+x^2}$ – не путаем их по невнимательности!

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \quad (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

Гиперболические функции:

$$(shx)' = chx$$
, $(chx)' = shx$, $(thx)' = \frac{1}{ch^2x}$, $(cthx)' = -\frac{1}{sh^2x}$

Если вместо аргумента x рассмотреть дифференцируемую функцию v, то по правилу дифференцирования сложной функции $(u(v))' = u'(v) \cdot v'$ (Правило № 5), правую часть каждой формулы следует домножить на v', например:

$$(v^n)' = nv^{n-1} \cdot v'$$
, $(\ln v)' = \frac{1}{v} \cdot v'$, $(\sin v)' = \cos v \cdot v'$, $(arctgv)' = \frac{1}{1+v^2} \cdot v'$ и т.д.

Если функция задана в параметрической форме: $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$, то:

$$y'_{x} = \frac{\psi'_{t}(t)}{\varphi'_{t}(t)}, \ y''_{xx} = \frac{(y'_{x})'_{t}}{\varphi'_{t}(t)}$$
 (вторая производная)

Важно!

Иногда встречаются очень большие таблицы производных (порядка 100 штук). Такие таблицы рекомендую использовать только для проверки или в самом крайнем случае, поскольку производные «других функций» на самом деле являются *следствием* правил дифференцирования, и ваше «решение» может сильно не понравиться рецензенту.