

Classifier Combination

Semester 1, 2021 Ling Luo

Recap

- We have discussed
 - individual classification algorithms
 - Performance evaluation and error analysis
- If we were to carry out error analysis of multiple classifiers over a given dataset, would the instances misclassified by better-performing classifiers be a subset of the errors made by worse-performing classifiers?

Different clossifiers can have strengths & weakness which make different misclassification

Outline

- Classifier Combination
- Bagging
- Random Forests
- Boosting
- Stacking

Classifier Combination

Classifier combination/ensemble learning
 constructs a set of base classifiers from training data and
 performs classification by aggregating the outputs made by
 each base classifier.

Does Combination Work?

- Intuitions:
 - take into account the opinions of several experts rather than relying only on one
 - the combination of lots of weak classifiers can be at least as good as one strong classifier
 - the combination of a selection of strong classifiers is (usually) at least as good as the best of the base classifiers
- Does combination always have better performance?

Does Combination Work?

• The following tables show the performance of different classifiers (three base classifiers C_1 , C_2 , C_3 and their combination C^* using majority voting) on three instances t_1 , t_2 , t_3 , where \forall is correct and x is incorrect

	t_1	t ₂	t ₃
C ₁	V	٧	Х
C ₂	Х	٧	\
C ₃	٧	х	٧
C *	٧	٧	٧

C* is better

	t ₁	t ₂	t ₃
C ₁	٧	٧	X
C ₂	٧	٧	Х
C ₃	٧	٧	Х
C *	٧	٧	Х

C* is the same

	t ₁	t ₂	t ₃
C ₁	٧	X	Х
C ₂	х	٧	х
C ₃	х	Х	٧
C *	Х	Х	Х

C* is worse

Does Combination Work?

- When does the combination work?
 - the base classifiers do not make the same mistakes
 - each base classifier is reasonably accurate

	t_1	t ₂	t ₃
C_1	V	٧	Х
C ₂	Х	٧	٧
C ₃	٧	х	٧
C *	٧	٧	٧

C* is better

	t ₁	t ₂	t ₃
$C_{\mathtt{1}}$	V	>	X
C ₂	٧	٧	Х
C ₃	٧	٧	Х
C *	٧	٧	Х

C* is the same

	t ₁	t ₂	t ₃
C ₁	٧	Х	х
C ₂	х	٧	х
C ₃	х	х	٧
C *	Х	Х	х

C* is worse

Construct Base Classifiers

- Instance manipulation: generate multiple training datasets through sampling, and train a base classifier over each (e.g. bagging)
 - Feature manipulation: generate multiple training datasets through different feature subsets, and train a base classifier over each (e.g. random forest)
 - **Algorithm manipulation**: semi-randomly tweak internal parameters within a given algorithm to generate multiple base classifiers over a given dataset

instead of selecting the best attribute select one of top k attributes

Introduce randomney

Classify with Combined Classifiers

- The simplest means of classification over multiple base classifiers is voting:
 - for nominal classes, run multiple base classifiers over the test data and select the class predicted by the most base classifiers (e.g. KNN)
 - for continuous output, average over the numeric predictions of our base classifiers

Bias and Variance

- Analysing the generalisation error of a predictive model
- From model perspective:

Bias: the tendency of our classifier to make systematically wrong predictions.

regrusion: always make higher prediction classification: predict A as B

Variance: the tendency of producing different models or predictions for different training sets using same learner.

Lower bias and lower variance → better generalisation

Image source: www.machinelearningtutorial.net/2017/01/26/the-bias-variance-tradeoff/

Classifier Combination

- Bagging
- Random Forests
- Boosting
- Stacking

Bagging

- Bagging = bootstrap aggregating
- Intuition: the more data, the better performance (lower the variance), so how can we get more data out of a fixed training dataset?
- Method: construct new datasets through a combination of random sampling and replacement

Bagging: Sampling Examples

- Randomly sample the original dataset N times, with replacement for replacement, will always get the same dataset
- We get a new dataset of the same size, where any individual instance is absent with probability $(1-\frac{1}{N})^N$ prob of not being selected in one sample
- Construct k random datasets for k base classifiers, and arrive at prediction via voting

original training data

bootstrap samples

Bagging: Classification

- The same base classification algorithm is used throughout
- Reduces the variance of predictions
- Effective for unstable classifiers

```
when N -> vo
 absent rate will converge to 37%
new set cover 63% dorto
```

- unstable: small changes in the training set result in large changes in predictions, e.g. DTs
- may slightly decay the performance of stable classifiers, 1 with preset k for KNN, it is stable for small changes e.g. kNN

use bagging may not help.

Bagging: Classification

- Simple method based on sampling (instance manipulation) and voting
- Possibility to parallelise computation of individual base classifiers data sampled independently -> base classifiers also independently
- Effective over noisy datasets, as the outliers may vanish

 base model without ontilers beat base model with
- Performance is generally significantly better than the base classifiers and only occasionally substantially worse

Random Tree feature manipulation

- Random Tree: a Decision Tree, but only some of the possible attributes are considered at each node
 - e.g., a fixed proportion τ of all the attributes
 - faster to build than a deterministic Decision Tree, but increases model variance

Decision Tree

Printage (raining set) + random trees Trees Notice of the printage of the

- An ensemble of Random Trees, many trees = forest
 - Each tree is built using a different Bagged training dataset
 - The combined classification is via voting

Random Forests

- Hyperparameters:
- out-of-bag sample: samples haven't been included in the training for a classifier
- number of trees B, which can be tuned based on "out-ofbag" error
- feature sub-sample size: as it increases, both the strength and the correlation increase ($\lfloor \log_2 |F| + 1 \rfloor$)
- Interpretation: correlation between tree
 - logic behind predictions on individual instances can be followed through the various trees

 hard to interpret

Random Forests

- Practical properties:
 - Generally a very strong performer, efficient to construct
 - Parallelisable
 - Robust to overfitting
 - Interpretability sacrificed

Boosting instance manipulation

- Intuition: tune base classifiers to focus on the hard-to-classify instances
- Method: iteratively change the distribution and weights of training instances to reflect the performance of the classifier on the previous iteration
 - start with sampling: each training instance having $\frac{1}{N}$ probability of being included in the sample
 - over *T* iterations, train a classifier and <u>update the weight of each</u> <u>instance</u> according to whether it is correctly classified
 - combine the base classifiers via <u>weighted voting</u>

Boosting: Sampling Examples

Sampling examples with replacement

original training data

in regression

put more instances

she error for that instance
is more important

boosting samples

Boosting Example: AdaBoost

- Base classifiers: C_1 , C_2 , ..., C_i , ..., C_T
- Training instances $\{(x_i, y_i) | j = 1, 2, ..., N\}$
- Initial instance weights $\left\{w_j^{(1)} = \frac{1}{N} \mid j = 1, 2, ..., N\right\}$
- Construct classifier C_i in iteration i
 - Compute the error rate for C_i

$$\varepsilon_i = \sum_{j=1}^N w_j^{(i)} \, \delta(C_i(x_j) \neq y_j)$$

where $\delta(\cdot)$ is an indicator function, which is 1 if the condition is true.

Boosting Example: AdaBoost

• Importance of C_i : α_i the weight associated with the classifiers' votes

$$\alpha_i = \frac{1}{2} \ln \frac{1 - \varepsilon_i}{\varepsilon_i}$$
 high weight weight for classifier

• Update instance weight (prepare for iteration i+1):

$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z^{(i)}} \times \begin{cases} e^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ e^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases} \xrightarrow{e^{\alpha_i}} w_j \uparrow$$

where $Z^{(i)}$ is the normalisation term.

Boosting Example: AdaBoost

- Continue iterating for i=2,...,T, but reinitialise the instance weights whenever $\varepsilon_i > 0.5$
- Classification: combine base classifiers

 weighted voting $C^*(x) = \arg\max_{y} \sum_{i=1}^{\infty} \alpha_i \, \delta(C_i(x) = y)$

Boosting

- Base classifiers: decision stumps (OneR) or decision trees
- Mathematically complicated but computationally cheap method based on iterative sampling and weighted voting
- The method has guaranteed performance in the form of error bounds over the training data
- More computationally expensive than bagging
- In practical applications, boosting has the tendency to overfit

Comparison

• Bagging/Random Forest vs. Boosting

Bagging/Random Forest	Boosting
Parallel sampling	Iterative sampling
Simple voting	Weighted voting
Homogeneous classifiers	Homogeneous classifiers
Minimise variance	Minimise instance bias
Not prone to overfitting	Prone to overfitting

- Intuition: smooth errors over a range of algorithms with different biases
- Method 1: voting? Which classifier to trust?
- Method 2: train a meta-classifier (level-1 model) over the outputs of the base classifiers (level-0 model)
 - learn which classifiers are the reliable ones, and combine the output of base classifiers
 - train using nested cross validation to reduce bias

- Level-0: base classifiers
 - Given training dataset (X, y)
 - Train different classifiers: e.g. SVM, Naïve Bayes, DT
- Level-1: combination
 - Construct new attributes based on Level-0 classifiers
 - Each attribute contains the predictions of a level-0 classifier. If there are M level-0 classifiers, add M attributes.
 - Discard or keep original data X
 - Consider other data if available (NB probability scores, weights of SVM)
 - Train meta-classifier (e.g. Logistic Regression) to make final prediction.

- Nested cross validation
 - Example: 2 layers of CV

Level 1: for meta-classifier, outer CV fold = 5 prediction $X_{new} \qquad y \qquad \frac{4}{5}N \qquad \hat{y}_{DT} \hat{y}_{NB} \hat{y}_{svm} \dots$ $X_{test} \qquad y_{test} \qquad \frac{1}{5}N \qquad X_{new}$

- Nested cross validation
 - Example: 2 layers of CV

Level 0: for base classifiers, if **no CV** (fold = 1)

problem: see all traing instances, overfit.

- Nested cross validation
 - Example: 2 layers of CV

Level 0: for base classifiers, **inner CV** fold = 3

- Nested cross validation
 - Example: 2 layers of CV

Level 0: for base classifiers, **inner CV** fold = 3

- Nested cross validation
 - Example: 2 layers of CV

Level 0: for base classifiers, **inner CV** fold = 3

- Able to combine heterogeneous classifiers with varying performance
- Mathematically simple but computationally expensive method
 - Generally, stacking results in as good or better results than the best of the base classifiers

Summary

- What is classifier combination?
- What is the basic idea behind:
 - Bagging
 - Random Forest
 - Boosting
 - Stacking
- How to compare different models, e.g. bagging vs. boosting?

References

- Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.
- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. Introduction to Data Mining. Pearson, 2018.
- Ian Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 3rd edition, 2011.

Calculate total error rate

