1 Probability

1.1 Probability Space

- Sample space Ω is the collection of all possible outcomes.
- An event A is a subset of Ω .
- A σ-field, denoted by F, is a collection of events such that: (i) ∅ ∈ F;
 (ii) if an event A ∈ F, then A^c ∈ F; (iii) if A_i ∈ F for i ∈ N, then ⋃_{i∈N} A_i ∈ F.
- (Ω, \mathcal{F}) is called a *measure space*.
- A function $\mu : \mathcal{F} \mapsto [0, \infty]$ is called a *measure* if it satisfies (i) $\mu(A) \geq 0$ for all $A \in \mathcal{F}$; (ii) if $A_i \in \mathcal{F}$, $i \in \mathbb{N}$, are mutually disjoint, then $\mu\left(\bigcup_{i \in \mathbb{N}} A_i\right) = \sum_{i \in \mathbb{N}} \mu(A_i)$
- If $\mu(\Omega) = 1$, we call μ a *probability measure*. A probability measure is often denoted as P.
- (Ω, \mathcal{F}, P) is called a *probability space*.

1.2 Random Variable

• A function $X: \Omega \mapsto \mathbb{R}$ is $(\Omega, \mathcal{F}) \setminus (\mathbb{R}, \mathcal{R})$ measurable if

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$$

for any $B \in \mathcal{R}$, where \mathcal{R} is the Borel σ -field on the real line. Random variable is an alternative name for a measurable function.

- $P_X : \mathcal{R} \mapsto [0,1]$ is also a probability measure if defined as $P_X(B) = P(X^{-1}(B))$ for any $B \in \mathcal{R}$. This P_X is called the probability measure induced by the measurable function X.
- A measurable function is non-random; the randomness of the "random variable" is inherited from the underlying probability measure.
- Discrete random variable and continuous random variable.

1.3 Distribution Function

• (Cumulative) distribution function

$$F(x) = P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}).$$

• Properties of CDF: $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$, non-decreasing, and right-continuous

$$\lim_{y \to x^{+}} F(y) = F(x).$$

• Probability density function (PDF): if there exists a function f such that for all x,

$$F(x) = \int_{-\infty}^{x} f(y) \, dy,$$

then f is called the PDF of X.

• Properties: $f(x) \ge 0$. $\int_a^b f(x) dx = F(b) - F(a)$

2 Expected Value

2.1 Integration

- X is called a *simple function* on a measurable space (Ω, \mathcal{F}) if $X = \sum_{i} a_{i} 1\{A_{i}\}$ is a finite sum, where $a_{i} \in \mathbb{R}$ and $A_{i} \in \mathcal{F}$.
- Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $a_i \geq 0$ for all i. The integral of X with respect to μ is

$$\int X d\mu = \sum_{i} a_{i} \mu (A_{i}).$$

• Let X be a non-negative measurable function. The integral of X with respect to μ is

$$\int X\mathrm{d}\mu = \sup\left\{\int Y\mathrm{d}\mu: 0 \leq Y \leq X, \ Y \text{ is simple}\right\}.$$

Let X be a measurable function. Define X⁺ = max {X,0} and X⁻ =
 - min {X,0}. Both X⁺ and X⁻ are non-negative functions. The integral of X with respect to μ is

$$\int X d\mu = \int X^+ d\mu - \int X^- d\mu.$$

• If the measure μ is a probability measure P, then the integral $\int X dP$ is called the *expected value*, or *expectation*, of X. We often use the popular notation E[X], instead of $\int X dP$, for convenience.

2.2 Properties

- Elementary calculation: $E[X] = \sum_{x} x P(X = x)$ or $E[X] = \int x f(x) dx$.
- $E[1\{A\}] = P(A)$.
- $E[X^r]$ is call the r-moment of X. Mean $\mu = E[X]$, variance var $[X] = E[(X \mu)^2]$, skewness $E[(X \mu)^3]$ and kurtosis $E[(X \mu)^4]$.

3 Multivariate Random Variable

- Bivariate random variable: $X: \Omega \to \mathbb{R}^2$.
- Multivariate random variable $X: \Omega \to \mathbb{R}^n$.
- Joint CDF: $F(x_1, ..., x_n) = P(X_1 \le x_1, ..., X_n \le x_n)$. Joint PDF is defined similarly.
- X and Y are independent if $P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$ for all A and B.

3.1 Elementary Formulas

- conditional density f(Y|X) = f(X,Y)/f(X)
- marginal density $f(Y) = \int f(X, Y) dX$.
- conditional expectation $E[Y|X] = \int Y f(Y|X) dY$

• proof of law of iterated expectation

$$\begin{split} E\left[E\left[Y|X\right]\right] &= \int E\left[Y|X\right] f\left(X\right) dX \\ &= \int \left(\int Y f\left(Y|X\right) dY\right) f\left(X\right) dX = \int \int Y f\left(Y|X\right) f\left(X\right) dY dX \\ &= \int \int Y f\left(X,Y\right) dY dX = \int Y \left(\int f\left(X,Y\right) dX\right) dY = \int Y dY = E\left[Y\right]. \end{split}$$

• conditional probability, or Bayes' Theorem $P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$.

3.2 Law of Iterated Expectations

- Given a probability space (Ω, \mathcal{F}, P) , a sub σ -algebra $\mathcal{G} \subset \mathcal{F}$ and a \mathcal{F} measurable function X with $E|X| < \infty$, the conditional expectation $E[X|\mathcal{G}] \text{ is defined as a } \mathcal{G}\text{-measurable function such that } \int_A X dP = \int_A E[X|\mathcal{G}] dP \text{ for all } A \in \mathcal{G}.$
- Law of iterated expectations

$$E\left[E\left[Y|X\right]\right] = E\left[Y\right]$$

is a trivial fact from the definition of the conditional expectation by taking $A = \Omega$.

- Properties of conditional expectations
 - 1. $E[E[Y|X_1, X_2]|X_1] = E[Y|X_1]$
 - 2. $E[E[Y|X_1]|X_1, X_2] = E[Y|X_1]$
 - 3. E[h(X)Y|X] = h(X)E[Y|X]