工研院-AI資料科學期末專題報告

組別:第七組

團隊產品:Youtuber人臉辨識

團隊名稱:You是誰

團隊組員

01林采萱、04李佩瑾、16洪笙觀、26范紀予、37羅茗韋

報告日期 2022/08/02

Contents

01

開發動機

九天玄女的煩惱

03

模型部署

Yolov5s

02

資料前處理

資料蒐集與清理

04

Demo

Video

組員名稱

01林采萱

模型建立 爬蟲 簡報

37羅茗韋

網站前端 爬蟲

04李佩瑾

模型建立爬蟲

16洪笙觀

模型建立爬蟲

26范紀予

模型建立 簡報 網站後端

團隊產品摘要

開發動機

Youtuber人臉辨識

開發動機-使用者遇到的問題

OI背景、個性

- 忙於通靈占卜,以此養家的媽媽
- 老花眼,不擅使用電子產品
- 但他的孩子卻沈迷於Youtube 頻道。

算命師 單親媽媽 • • 九天玄女 唯一指定 一位**7**歲童 有代溝

02 問題

- Youtuber越來越多,
- 孩子也是Youtube重度使用患者,
- 親子關係漸行漸遠,想了解他們在看甚麼,
 - 卻不知這Youtuber是誰也無從查起。

03 END GOAL

- 簡單快速的了解兒子平常在看的youtuber,藉此拉近親子距離
- 節省搜尋時間,在工作與親子間取得生活平衡。

使用流程

服務命名:

使用者服務旅程

家長看到小孩在看的YT 卻不知該內 容是否適合 觀看

YT

辨識系

輸入辨 識圖片

查看辨 識結果, 並快速 了解評 估內容

進行下 個辨識

前台服務或系統

▶ 介面操作

使用網站上面的簡易介面來進行上傳圖片等操作

後台服務或系統

- ➤ 偵測系統 有利用AI模型來進行圖片人臉辨識
- ▶ 搜尋系統

用戶搜尋之後,透過搜尋系統把AI模型辨識的結果, 顯示給使用者

資料蒐集與處理

資料蒐集與處理

Deployment

2D會比較好 for Yolo

Box:

Pose:

5 Landmarks:

Mask:

3D mesh(Ours):

3D mesh:

模型比較問題

模型使用

Nano YOLOv5n

 $\begin{array}{c} 4 \text{ MB}_{\text{FP16}} \\ 6.3 \text{ ms}_{\text{V100}} \\ 28.4 \text{ mAP}_{\text{COCO}} \end{array}$

Small YOLOv5s

 $\begin{array}{c} \text{14 MB}_{\text{FP16}} \\ \text{6.4 ms}_{\text{V100}} \\ \text{37.2 mAP}_{\text{COCO}} \end{array}$

Medium YOLOv5m

 $41~{\rm MB}_{\rm FP16} \\ 8.2~{\rm ms}_{\rm V100} \\ 45.2~{\rm mAP}_{\rm COCO}$

YOLOv5I

 $\begin{array}{c} 89~{\rm MB_{\rm FP16}} \\ 10.1~{\rm ms_{\rm V100}} \\ 48.8~{\rm mAP_{\rm COCO}} \end{array}$

XLarge YOLOv5x

 $\begin{array}{c} 166 \text{ MB}_{\text{FP16}} \\ 12.1 \text{ ms}_{\text{V100}} \\ 50.7 \text{ mAP}_{\text{COCO}} \end{array}$

Key Numbers

Key Numbers

RESULT

custom_YOLOv5s summary: 232 layers, 7384065 parameters, 0 gradients, 17.2 GFLOPs

Class Images Labels P R mAP@.5 mAP@.5:.95: 100% all 200 205 0.718 0.767 0.832 0.686

RESULT

實驗

- 1. 我們只有時間了解準確率問題
- 2. 但是Recall rate 很高的地方也是我們可以深入研究的
- 3. 交叉質(Intersection over union)

交疊比例並無顯著差異,所以這邊不探討

真正例: TP = TruePositive

真反例: TN = TrueNegative

假正例: FP = FalsePositive

假反例: FN = FasleNegative

则, 查准率和查全率计算公式:

查准率: $Precision = \frac{TP}{TP+FP}$

查全率: $Recall = \frac{TP}{TP+FN}$

模型使用

>

Nano

YOLOv5s

Small

Medium YOLOv5m

Large YOLOv5I XLarge YOLOv5x

YOLOv5n

 $\begin{array}{ccc} 4 \text{ MB}_{\text{FP16}} & 14 \text{ MB}_{\text{FP16}} \\ 6.3 \text{ ms}_{\text{V100}} & 6.4 \text{ ms}_{\text{V100}} \\ 28.4 \text{ mAP}_{\text{COCO}} & 37.2 \text{ mAP}_{\text{COCO}} \end{array}$

 $\begin{array}{c} 41~\text{MB}_{\text{FP16}} \\ 8.2~\text{ms}_{\text{V100}} \\ 45.2~\text{mAP}_{\text{COCO}} \end{array}$

 $89~{\rm MB}_{\rm FP16} \\ 10.1~{\rm ms}_{\rm V100} \\ 48.8~{\rm mAP}_{\rm COCO}$

 $\begin{array}{c} {\rm 166~MB_{FP16}} \\ {\rm 12.1~ms_{V100}} \\ {\rm 50.7~mAP_{COCO}} \end{array}$

Key Numbers

Key Numbers

RESULT

CPU times: user 27.8 s, sys: 3.27 s, total: 31 s

最後選擇model 5的原因

部署

部署講解

Demo

結論

結論

1. 2D is better for yolo:

因為人臉是屬於3D 所以在辨識細節會比較困難(Transfer 會有難度)

2. 部署不容易:

因為Heroku 會有大小上限制所以在部屬上還需要調整,未來部屬到其他平台不會有這個問題。

3. 資料收集困難:

希望在未來可以解決這個問題

未來展往

1. State of the art:

所以我們嘗試使用yolo7模型,但發現模型過於巨大,GPU 容易不足

2. More:

優質的圖篇增加辨識準確率 增加可參考的東西(增列新聞)

3. 自動化:

自動化標記(RetinaFace)

RetinaFace

Box:

68 Landmarks:

136 scalars

3D mesh(Ours): 3D mesh: H x W matrix 3 x 1k vertices 3 x 53k vertices

(1) More semantic points, more accurate box prediction

1k 3D points enhance pose-invariant 5 points

Cheap 5 points enhance robust 1k points

2D Face Alignment (five points)

3D Face Reconstruction (1k points)

(2) More challenging training scenario, more robust point prediction

古特圖

	階段	階段一、發想期 階段二、設計期								階段三、實踐期	
項目	月	t								t	Л
	日期	8		15			22			25	2
進度1	、產品計畫										
1.1	資料蒐集										
1.2	資料處理										
進度2 發	、產品設計研										
2.1	模型訓練										
2.2	網頁部屬										
進度3 試	、產品檢驗測										
3. 1	整體測試完成										
進度4	、產品雜型製										
4. 1	產品修正										
4. 2	產品原型										
3	進度百分比	0		20		40		60		80	100

Thank you

Q&A