

Programmazione Lineare Intera: Algoritmo Branch and Bound

Alessandro Hill

Basato sul materiale di

Daniele Vigo (D.E.I.)

rev. 2.2(AH) - 2024

Algoritmi generali per PLI

- Metodi esatti tradizionali (anni 60-oggi):
 - Metodo dei piani di taglio (cutting planes)
 - Branch-and-Bound
 - Programmazione Dinamica
- •
- Metodi esatti più avanzati (anni 90-oggi):
 - Branch-and-Bound + Cutting planes =
 Branch-and-Cut
 - Branch-and-Price/Column generation

Branch and Bound

- Tecnica generale per la risoluzione di problemi di ottimizzazione combinatoria (*F* finito) > La regione ammissibile è finita
- Si basa sulla scomposizione del problema in sottoproblemi ("Divide and Conquer")
- Problema da risolvere: $P^0 = (z(\cdot), F(P^0))$
 - Funzione obiettivo: z(-)
 - Regione ammissibile: F(P⁰)
- Soluzione ottima: $z^* = z(P^0) = \min\{z(x) : x \in F(P^0)\}$
- Miglior soluzione ammissibile nota: z^{Best} (alla fine $z^* = z^{Best}$)

Branch and Bound (2)

- Suddivisione di P⁰ in K sottoproblemi: P¹, P²,..., P^K
 la cui totalità rappresenti P⁰
- Ad esempio si ottiene suddividendo $F(P^0)$ in sottoinsiemi $F(P^1)$, $F(P^2)$, ..., $F(P^K)$ tali che

$$\bigcup_{k=1}^K F(P^k) = F(P^0)$$

• preferibilmente la regione ammissibile va partizionata: $F(P^i) \cap F(P^j) = \emptyset \quad \forall P^i, P^j : i \neq j$

Rappresentazione

- Il processo di suddivisione (ramificazione, Branching) si può rappresentare mediante un albero decisionale (Branch Decision Tree)
 - · Nodi: problemi, Archi: relazione di discendenza

Branch and Bound (3)

• La soluzione ottima del sottoproblema P^k è:

$$z^k = z(P^k) = \min\{z(x) : x \in F(P^k)\}$$

risolvere P⁰ equivale a risolvere tutti i P^k generati:

$$z^* = z(P^0) = \min \{z(P^1), z(P^2), ..., z(P^K), ...\}$$

- Un sottoproblema P^k è risolto se: soddisfa una delle seguenti condizioni:
 - 1. Si determina la soluzione ottima di P^k (Es. PLI: $P^k \rightarrow C(P^k)$ con soluzione x^{Ck} intera);
 - 2. Si dimostra che $F(P^k) = \emptyset$ (P^k impossibile Vuota);
 - 3. Si dimostra che $z(P^k) \ge z^{Best}$

(Es. PLI: se $z^{Ck} \ge z^{Best}$ allora anche $z^k \ge z^{Best}$)

I sottoproblemi non risolti vanno suddivisi

Non ha senso continuare a esaminare quel sottoproblema. Questo perché, anche se si trovasse la soluzione ottima di Pk, non sarebbe migliore della soluzione già conosciuta z Best (miglior soluzione attualmente conosciuta).

Branch and Bound per PLI

•
$$(P^0) \min z^0 = c^T x$$

Funzione Obiettivo (dove X variabili decisionali)

$$Ax = d$$

Matrice dei Vincoli

$$x \ge 0$$
, intero

X devono essere interi e non negativi

Notazione:

- x^k soluzione ottima di P^k (intera), di valore z^k ($z^0 \equiv z^*$)
- x^{Ck} soluzione ottima di $C(P^k)$, di valore z^{Ck} (X^Ck soluzione di Problema rilassato, cioè senza vincoli di interezza)
- Si noti che: $z^{Ck} = c^T x^{Ck} \le z^k = c^T x^k$
- Se x^{C0} è intera $\Rightarrow x^* = x^0 = x^{C0}$ (soluzione ottima);
- Altrimenti ...

Branch and-Bound per PLI (2)

Esempio di problema PLI:

max
$$z$$
 $x_1 + x_2$
 $5x_1 + 3x_2 \le 15$
 $5x_1 - 3x_2 \ge 0$
 $x_2 \ge 1/2$
 $x_1 , x_2 \ge 0$
intere

•
$$x^{C0} = (3/2, 5/2)$$

- La soluzione di $C(P^0)$ è frazionaria:
 - \rightarrow suddividi $F(P^0)$ in K parti (Es. K=2)
- $F(P^k)$ si può ottenere aggiungendo a $F(P^0)$ un vincolo $\alpha^k x \le \beta^k$

Due o più eventi sono mutuamente esclusivi se non possono verificarsi contemporaneamente. Un insieme di eventi è esaustivo se copre tutte le possibili outcomes. Significa che almeno uno degli eventi deve verificarsi in ogni esperimento.

• Scelta una componente x^{C0}_j frazionaria, imponiamo due condizioni mutuamente esclusive ed esaustive, valide per ogni soluzione intera di P^0 :

$$(P^{I}) \min z^{I} = c^{T} x$$

$$Ax = d$$

$$x \ge 0 \text{ ,intero}$$

$$x_{j} \le \lfloor x^{C0}_{j} \rfloor$$

$$x \ge 0 \text{ ,intero}$$

$$x_{j} \le \lfloor x^{C0}_{j} \rfloor$$

$$x \ge 0 \text{ ,intero}$$

$$x_{j} \le \lfloor x^{C0}_{j} \rfloor$$

$$z^0 = \min(z^1, z^2)$$

Prima ramificazione

• Es: $x^{C0}_1 = 3/2 \Rightarrow x_1 \le 1$ or $x_1 \ge 2$:

Branching (3)

- Normalmente x^{C1} e /o x^{C2} non sono interi
 - ⇒ si continua a ramificare, cioè :
- Da ogni problema Pⁱ si creano due nuovi problemi
 P^j e P^k a meno che :
 - x^{Ci} sia intero, oppure
 - il rilassamento continuo di Pisia impossibile
- Quale variabile si sceglie per il Branching?
 - la prima frazionaria Si seleziona la prima variabile che presenta una parte frazionaria.
 - quella con parte frazionaria maggiore con la parte frazionaria maggiore.
 - •

Strategia di esplorazione

- Se esiste più di un sottoproblema "in sospeso", qual è il prossimo da esaminare?
- $z^{C1} = 8/3 \ge z^1$; $z^{C2} = 11/3 \ge z^2$ (problema di max)
- se c^T è intero, allora $z^* = c^T x$ è intera con x intera da cui $z^C \ge \lfloor z^C \rfloor \ge z^*$ (upper bound migliore) (se problema di minimo: $z^C \le \lceil z^C \rceil \le z^*$)
- Prossimo sottoproblema da esaminare:
 - $z^1 \le \lfloor 8/3 \rfloor = 2$, mentre $z^2 \le \lfloor 11/3 \rfloor = 3$
 - → meglio P^2 ! Se Problema di Massimo, scelgo il Sottoproblema con Upper Bound Maggiore. Se Problema di Minimo, scelgo il Sottoproblema con Lower Bound Minore.

Scegliere un sottoproblema con un lower/upper bound minore/maggiore significa che si sta esplorando una soluzione che ha il potenziale di essere migliore (ovvero, più vicina all'ottimo) rispetto agli altri sottoproblemi. Questo approccio mira a minimizzare il numero di sottoproblemi che devono essere risolti, aumentando l'efficienza complessiva della ricerca.

Seconda ramificazione

• Es: da *P*²:

$$(P^3) P^2 + x_2 \le 1$$

Terza ramificazione

• Es: da P^3 :

$$(P^5) P^3 + x_1 \le 2$$

Albero decisionale

- 0 (o P⁰) nodo radice
- 4, 5, ... nodi "foglia" P4 e P5 nodi foglia
- 2 "padre" di 3 e 4 P2 padre di 3 e 4
- 3 e 4 "figli" di 2 P3 e P4 figli di P2
- 2 "progenitore" di 3, 4 e 5 P2 progenitore di P3, P4 e P5
- 3, 4, 5 "discendenti" di 0 e 2 P3, P4, P5 discendenti di P0 e P2
- Si continua il branching finché esistono nodi attivi
- Soluzione di P^0 = sol. della foglia di costo massimo

