

Higher Detection Distances with Proximity Sensor

As already shown within the AN: "Extended Detection Range with VCNL Family of Proximity Sensor" an external IRED could be connected to the VCNL's to allow for increase of the detection range.

If even further higher distances need to be achieved VCNL's internal current source with max. 200mA may not be sufficient enough.

Fig.1 – VCNL4020 Principle Operation of the IRED Driver

Proximity detector is only "open" (active) for IRED burst time.

That means that an external driver needs to be driven by this burst and this is available at IR_Cathode. The yellow signal below shows that only after asking for a proximity measurement the receiver gets its needed power supply and this also only for about that short period the burst lasts.

Fig.2 – Scope figures for IRED proximity burst and detector bias voltage

This proximity burst is a high frequency burst (390 kHz) and max. Power supply at this IR_Cathode pin is 3.3V.

One measurement cycle consists of transmitting and receiving a single burst signal. The burst length is fixed for all burst frequency settings.

The total measurement cycle has a duration of about 164µs. The burst length (IRED active) during this measurement cycle is 153µs. The duty cycle within the burst signal is 50%.

Fig.3 - Emitter Pulses

Total average power consumption is mainly related to the repetition rate these measurements are carried out. Please see also: http://www.vishay.com/optoelectronics/opto-sensors-calculator/

This proximity burst is a high frequency burst (390 kHz) and max. Power supply at this IR_Cathode pin is 3.3V. So the selected FET transistor needs proper parameters to operate as driver.

The needed external P-Channel FET should be carefully selected

A quite low Gate-Source Voltage (V_{GS}) is needed A quite low On Resistance ($R_{DS(on)}$) is needed A quite low Input Capacitance (C_{iss}) is needed

VISHAY.

Si4477DY

P-Channel 20-V (D-S) MOSFET

 $V_{\mbox{\footnotesize{DS}}}$ - Drain-to-Source Voltage (V)

Output Characteristics

SO-8

Drain-Source On-State Resistance ^a	Bocker	$V_{GS} = -4.5 \text{ V}, I_D = -18 \text{ A}$	0.0051	0.0062	0	
Dialii-Source Oil-State Resistance	HDS(on)	$V_{GS} = -2.5 \text{ V}, I_D = -14 \text{ A}$	0.0085	0.0105	52	

RDS(on) < = 0.01Ω

Dynamic ^b	-	•	•		•
Input Capacitance	C _{iss}		4600		
Output Capacitance	C _{oss}	V _{DS} = - 10 V, V _{GS} = 0 V, f = 1 MHz	980		pF
Reverse Transfer Capacitance	C _{rss}	1	175		
Total Cata Charge	0	V _{DS} = - 10 V, V _{GS} = - 10 V, I _D = - 18 A	125	190	
Total Gate Charge	Q_g		59	90	nC
Gate-Source Charge	Q _{gs}	V _{DS} = - 10 V, V _{GS} = - 4.5 V, I _D = - 18 A	10		110
Gate-Drain Charge	Q _{gd}		19		
Gate Resistance	R_g	f = 1 MHz	1.3	2.6	Ω
Turn-On Delay Time	t _{d(on)}		13	20	
Rise Time	t _r	V _{DD} = - 10 V, R _L = 10 Ω	10	20	
Turn-Off DelayTime	t _{d(off)}	$I_D \cong$ - 1 A, V_{GEN} = - 10 V, R_g = 1 Ω	100	150	
Fall Time	t _f	1	25	40	no
Turn-On Delay Time	t _{d(on)}		42	60	ns
Rise Time	t _r	V _{DD} = - 10 V, R _L = 10 Ω	42	60	
Turn-Off DelayTime	t _{d(off)}	$I_D \cong$ - 1 A, V_{GEN} = - 4.5 V, R_g = 1 Ω	100	150	
Fall Time	t _f		42	60	

Fig.4 - Si4477DY datasheet extract

SiS407DN

P-Channel 20-V (D-S) MOSFET

PowerPAK 1212-8

Bottom View

		V_{GS} - 4.5 V, I_D = - 15.3 A	0.0082	0.0095		
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -13.1 \text{ A}$	0.0115	0.0138	Ω	
		V _{GS} = - 1.8 V, I _D = - 5 A	0.0156	0.0195		

VISHAY.

RDS(on) < = 0.01Ω

Dynamic ^b	•	•				
Input Capacitance	C _{iss}			2760		
Output Capacitance	C _{oss}	V _{DS} = - 10 V, V _{GS} = 0 V, f = 1 MHz		405		pF
Reverse Transfer Capacitance	C _{rss}			370		
Total Gate Charge	0	V _{DS} = - 10 V, V _{GS} = - 8 V, I _D = - 10 A		62.5	93.8	
Total date offarge	Qg			38	57	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -10 \text{ A}$		4		110
Gate-Drain Charge	Q_{gd}			10		
Gate Resistance	R_g	f = 1 MHz	0.9	4.4	8.8	Ω
Turn-On Delay Time	t _{d(on)}			23	35	
Rise Time	t _r	V_{DD} = - 10 V, R_L = 1 Ω		28	42	ns
Turn-Off DelayTime	t _{d(off)}	$I_D \cong$ - 10 A, V_{GEN} = - 4.5 V, R_g = 1 Ω		92	138	113
Fall Time	t _f			38	57	

Fig.5 – SiS407DN datasheet extract

Si3441DV

P-Channel 2.5V Specified PowerTrench® MOSFET

R _{DS(on)}	Static Drain-Source	V _{GS} = -4.5 V	, I _D = -3.5 A	60	80	mΩ
	On-Resistance	V _{GS} = -2.5 V	$I_{D} = -3.1 \text{ A}$	82	110	
		$V_{GS} = -4.5 \text{ V}$, I _D = -3.5A,T _J =125°C	77	112	

RDS(on) < = 0.1Ω

Dynamic Characteristics Input Capacitance

	2 г					
	-	V _{GS} =-2.0	,_/_			
IZED ESISTA!	-					
ORMALI ON-RE	-		-2.	5V		
R _{DS(OM)} , NORMALIZED DRAIN-SOURCE ON-RESISTANCE 1. 1. 1.	-			-3.0V -		
R _{DS} (1				3.5V —	4.5V
0.	-				,	
0.	و	/ 3	3 6	6 9	9 1	2 15
			-lo DE	RAIN CURREI	NT (A)	

Ciss	Input Capacitance	$V_{DS} = -10 \text{ V},$	$V_{GS} = 0 V$	779		pF
Coss	Output Capacitance	f = 1.0 MHz		121		pF
C _{rss}	Reverse Transfer Capacitance			56		pF
Switchin	g Characteristics (Note 2)	•				
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 \text{ V},$		10	20	ns
t _r	Turn-On Rise Time	$V_{GS} = -4.5 \text{ V},$	$R_{GEN} = 6 \Omega$	9	19	ns
t _{d(off)}	Turn-Off Delay Time			27	43	ns
t _f	Turn-Off Fall Time			11	20	ns
Q _g	Total Gate Charge	$V_{DS} = -10 \text{ V},$ $V_{GS} = -4.5 \text{ V}$	$I_D = -3.5 \text{ A},$	7.2	10	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 \text{ V}$		1.7		nC
Q_{gd}	Gate-Drain Charge]		1.5		nC

Fig.6 - Si3441DV datasheet extract

Si5459DU

P-Channel 20-V (D-S) MOSFET

V_{DS} - Drain-to-Source Voltage (V)

Output Characteristics

On-Resistance vs. Drain Current and Gate Voltage

Drain-Source On-State Resistance ^b	Bpo()	$V_{GS} = -4.5 \text{ V}, I_D = -6.7 \text{ A}$	0.043	0.052	0
Drain-Source On-State Resistance	HDS(on)	$V_{GS} = -2.5 \text{ V}, I_D = -1 \text{ A}$	0.068	0.082	52

VISHAY.

RDS(on) < = 0.05Ω

Dynamic ^a						
Input Capacitance	C _{iss}			665		
Output Capacitance	C _{oss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		140		pF
Reverse Transfer Capacitance	C _{rss}	1		115		Ī
Total Gate Charge	Qg	$V_{DS} = -10 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -6.7 \text{ A}$		17	26	
Total date offarge	□ Gg			8	12	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -6.7 \text{ A}$		2		ПС
Gate-Drain Charge	Q _{gd}			3		
Gate Resistance	Rg	f = 1 MHz	1.2	6	12	Ω
Turn-On Delay Time	t _{d(on)}	1 - 1 (VIII2		6	12	
Rise Time	t _r	$V_{DD} = -10 \text{ V}, R_{L} = 1.9 \Omega$		15	23	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -5.3 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$		26	39	†
Fall Time	t _f	1		9	18	no.
Turn-On Delay Time	t _{d(on)}			21	32	ns
Rise Time	t _r	$V_{DD} = -10 \text{ V}, R_{L} = 1.9 \Omega$		50	75	†
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -5.3 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$		29	44	Ī
Fall Time	t _f	7		13	20	İ

Fig.7 – Si5459DU datasheet extract

Si3447CDV

P-Channel 12-V (D-S) MOSFET

Output Characteristics

On-Resistance vs. Drain Current and Gate Voltage

RDS(on) < = 0.04Ω

Dynamic ^b	•	· ·	'		_
Input Capacitance	C _{iss}		910		
Output Capacitance	C _{oss}	V _{DS} = - 6 V, V _{GS} = 0 V, f = 1 MHz	260		pF
Reverse Transfer Capacitance	C _{rss}		220]
Total Gate Charge		V _{DS} = -6 V, V _{GS} = -8 V, I _D = -6.3 A	20	30	
Total date onlinge	Q_g		12	18	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = -6 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -6.3 \text{ A}$	1.6		IIC
Gate-Drain Charge	Q _{gd}		3.4		
Gate Resistance	R _g	f = 1 MHz	6		Ω
Turn-On Delay Time	t _{d(on)}		20	30	
Rise Time	t _r	$V_{DD} = -6 \text{ V}, R_{L} = 1.2 \Omega$	40	60	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -5 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$	35	55	
Fall Time	t _f		20	30	
Turn-On Delay Time	t _{d(on)}		10	15	ns
Rise Time	t _r	$V_{DD} = -6 \text{ V}, R_{L} = 1.2 \Omega$	15	25	1
Turn-Off Delay Time	t _{d(off)}	$I_D \cong$ - 5 A, V_{GEN} = - 8 V, R_g = 1 Ω	35	55	1
Fall Time	t _f		15	25	1

Fig.8 - Si3447CDV datasheet extract

SQ2315ES

VISHAY.

Automotive P-Channel 12 V (D-S) 175 °C MOSFET

Dynamic^b

		V _{GS} = - 4.5 V	I _D = - 3.5 A	-	0.034	0.050		
		V _{GS} = - 4.5 V	I _D = - 3.5 A, T _J = 125 °C	-	-	0.066		
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = - 4.5 V	I _D = - 3.5 A, T _J = 175 °C	-	-	0.075	Ω	
		V _{GS} = - 2.5 V	I _D = - 3 A	-	0.046	0.068		
		V _{GS} = - 1.8 V	I _D = - 2 A	-	0.067	0.092		

RDS(on) < = 0.05Ω

Output Characteristics

_							
Input Capacitance	C _{iss}			-	695	870	
Output Capacitance	Coss	V _{GS} = 0 V	V _{DS} = - 6 V, f = 1 MHz	-	265	335	pF
Reverse Transfer Capacitance	C _{rss}	1		-	190	240	
Total Gate Charge ^c	Qg			-	8.4	13	
Gate-Source Charge ^c	Q _{gs}	V _{GS} = - 4.5 V	V _{GS} = - 4.5 V V _{DS} = - 6 V, I _D = - 3.85 A		1	-	nC
Gate-Drain Charge ^c	Q _{gd}	1		-	2.4	-	
Gate Resistance	Rg		f = 1 MHz	4.1	8.2	12.3	Ω
Turn-On Delay Time ^c	t _{d(on)}			-	17	26	
Rise Time ^c	t _r	V _{DD} =	$V_{DD} = -6 \text{ V}, \text{ R}_{L} = 1.6 \Omega$ $I_{D} \cong -3.85 \text{ A}, \text{ V}_{GEN} = -4.5 \text{ V}, \text{ R}_{g} = 1 \Omega$		19	29	ns
Turn-Off Delay Time ^c	t _{d(off)}	I _D ≅ - 3.85 A			28	42	
Fall Time ^c	t _f	1				20	

On-Resistance vs. Drain Current

With high IRED currents the power supply, the Proximity measurement repetition time as well as the decoupling needs to be defined carefully

Reference Circuitry:

1 x VSMY7850X01 and 1 x FET: Si5459DU

or

1 x VSMY98545 and 1 x FET: Si5459DU

Fig.9 - Reference Circuitry with VSMY7850X01 (or VSMY98545) and Si5459DU

High Power Test Board: 2 x VSMY2850 and 2 x FET (Si5459DU)

Fig.10 - Reference Circuitry with 2 x VSMY2850 and Si5459DU

High Power Test Board: 2 x 2 VSMY2850 and 2 x FET (Si5459DU)

Fig.11 - Reference Circuitry with 2 x 2 x VSMY2850 and 2 x Si5459DU

Current calculation

with chosen 4A_{peak} with default setting of fast repetition rate for about 70 measurements/second for the VCNL40x0 Demo Tool results in an average current of just 22 mA!

70 measurement per second, emitter current = 4000 mA

ASIC: 2.71 mA x 164 μ s x 70/1 s = **31.08** μ A

IRED: $4000 \text{ mA x } 153 \text{ } \mu\text{s x } 0.5 \text{ x } 70/1 \text{ s} = \frac{21.42 \text{ mA}}{1.1100 \text{ mA}}$

total: 21.45 mA

10 measurement per second, emitter current = 4000 mA

ASIC: 2.71 mA x 164 μ s x 10/1 s = 4.44 μ A IRED: 4000 mA x 153 μ s x 0.5 x 10/1 s = 3.06 mA

total: 3.064mA

Please see also: Designing VCNL4020 into an Application_84136 120522.pdf

10 measurement per second, emitter current = 100 mA

ASIC: 2.71 mA x 164 μ s x 10/1 s = 4.45 μ A

IRED: $100 \text{ mA} \times 153 \mu\text{s}/1 \text{ s} \times 0.5 \times 10/1 \text{ s} = 76.50 \mu\text{A}$

total: 80.95 μA

Updated Test Board: 2 x VSMY7850X01 and 2 x new FET (Si5459DU)

Updated Test Board: 2 x VSMY7850X01 and 2 x new FET (Si5459DU)

Updated Test Board: 2 x VSMY7850X01 and 2 x new FET (Si5459DU) with power supply via USB dongle

Delay & Dead Time Adjust

The AN: http://www.vishay.com/docs/84138/designingvcnl4010.pdf

or: http://www.vishay.com/docs/84136/designingvcnl4020.pdf show at page 14:

Modulation Delay Time

The proximity function works with a modulated signal. The proximity signal demodulator is frequency and phase sensitive and references to the transmitted signal. In case of external infrared emitters with additional driver stages, there might be signal delays that could cause signal loss. By adjusting the "delay time" setting, this additional delay can be compensated. The delay time can be set to values between 0 and 7. Using external infrared emitters the optimum setting is determined by trying different settings. The setting with highest readings for proximity at a certain reflection condition should be selected. Since most applications will use the internal emitter, the default value is 0.

Proximity Frequency

This parameter was used during the development of the VCNL4010. The default setting of f = 390 kHz is the optimum setting.

Modulation Dead Time

Due to the emitter rise and fall times, the modulation signal is not a perfect square wave. Instead a slight slope occurs at the start and end of the signal. The modulation dead time defines a time window or range where the slopes from the received modulated signal are blanked out. This function eliminates effects from slow slopes, glitches and other noise disturbances on the received signal. If the modulation dead time is set too long, a portion of the reflected signal will be lost in addition to the rise time slope. The modulation dead time can be set to values between 0 and 7. The default setting is 1. This setting is sufficient to suppress noise transients. It is NOT recommended to use the value "0" as a "dead time" setting. When using an external driver and emitters, it might be necessary to adjust this parameter. An external driver might cause slow slopes, unstable readings or higher noise. Such effects could be reduced by adjusting this parameter.

Especially modifying the Delay Time could lead to a significant increase of delta counts. Beside the possible higher delta counts always the offset counts need to be compared

No.14, 5th Rd., Industrial Park, Situn Dist., Taichung City 407, Taiwan

VISHAY.

Lens	PN#	PN# LED Type		Angle* (θ)	Distribution Type	Dimension (mm)	Holder Required (Y/N)	Remark
	FL-86 +Holder	Vishay	7850	15	Lambertian	ψ19.6x 11.95	Y	
	FL-87 +Holder	Vishay	7850	20	Lambertian	ψ19.6x 11.95	Υ	
	FL-88 +Holder	Vishay	7850	25	Lambertian	ψ19.6x 11.95	Υ	
	FL-35H +Holder	Vishay	7850	11	Lambertian	ψ21.4 x 11.21	Υ	
	FL-32H +Holder	Vishay	7850	17	Lambertian	ψ21.4 x 11.21	Υ	
	FL-33H +Holder	Vishay	7850	30	Lambertian	ψ21.4 x 11.21	Υ	
	FL-95 +Holder	Vishay	7850	20	Lambertian	ψ21.4 x 11.21	Υ	
	FL-112 +Holder	Vishay	7850	45	Lambertian	ψ21.4 x 11.21	Υ	
	FL-113 +Holder	Vishay	7850	25	Lambertian	ψ21.4 x 11.21	Υ	
	FL-115 +Holder	Vishay	7850	60	Lambertian	ψ21.4 x 11.21	Υ	
	FL-110	Vishay	7850	6	Lambertian	21.5 x 21.5 t=12	Υ	
	FL-103	Vishay	7850	8	Lambertian	ψ24.57 x 13.35	Y	
	FL-104	Vishay	7850	10	Lambertian	ψ24.57 x 13.35	Y	

High Power Board:

1 x VSMY7850X01 and added Showin Lens

High Power Board:

1 x VSMY7850X01 and added Showin Lens

