XLAVS-R: Cross-Lingual Audio-Visual Speech Representation From Efficient Modality Injection

Anonymous ACL submission

Abstract

In this paper, we present an efficient multilingual noise-robust speech representation built in an efficient approach. We create XLAVS-R from XLS-R. We improve noise-robustness of Whisper model, a state-of-the-art model for speech recognition and speech-to-text translation 100 languages. On the MuAViC benchmark, it outperforms previous English-only pre-trained model by XXX%. After adaptation, the out-of-domain performance is kept on the FLEURS benchmark. We open source this model at XXX.

1 Introduction

011

012

013

014

017

022

027

AV-HuBERT (Shi et al., 2021, 2022).

AVFormer (Seo et al., 2023). (60K-hour Englishonly BEST-RQ, fine-tuned on LibriSpeech.)

MuAViC (Anwar et al., 2023). (LRS3 and VoxCeleb2-English pre-training.)

XLS-R (Babu et al., 2022).

Multilingual audio-visual speech pre-training. Leverage audio-only data efficiently via audio-only models.

Challenges:

- · audio-visual speech data scarcity
- Computational cost. Prevents scaling.

Differene to AVFormer: finer-grained information that global semantic info.

[CW: Add an overview figure.]

2 Related Work

Audio-only speech representation learning. wav2vec and wav2vec 2 (Baevski et al., 2020). HuBERT. XLSR-53 (Conneau et al., 2021). XLS-R (Babu et al., 2022). MMS (Pratap et al., 2023).

Multimodal speech representation learning. AV-HuBERT (Shi et al., 2021). u-HuBERT (Hsu and Shi, 2022). VATLM (Zhu et al., 2023). AV-data2vec (Lian et al., 2023). AV2vec (Zhang et al., 2023).

035

036

037

039

040

041

042

044

045

047

050

051

053

054

060

061

062

063

064

065

066

067

Less related: VATT (Akbari et al., 2021). TriB-ERT (Rahman et al., 2021). CAV-MAE (Gong et al., 2022). XDC (Alwassel et al., 2020).

Visual modality injection into audio-only speech models. AVFormer (Seo et al., 2023) for visual grounding setting, which focused on the downstream task instead of pre-training. MixSpeech (Cheng et al., 2023) uses supervised speech-to-text translation tasks.

Audio-visual cross-modal speech alignment. Lip2Vec (Djilali et al., 2023). ADC-SSL (Sheng et al., 2021).

3 Methods

3.1 Audio-Only Speech Representation

Base model given the amount of data and the amount of information in audio-only speech.

Encoder-only model where there is an local feature extractor and a Transformer-based/Conformer-based trunk for contextualized representations.

Feature extractor can either be filterbank with lightweight downsampling module or convolutional feature extractor.

Unsupervised approach: wav2vec 2.0. Supervised approach.

3.2 Visual-to-Audio Feature Alignment

Aligning visual feature space to audio feature space.

3.3 Noise-Reduced Audio Feature Learning

XLS-R features to replace MFCC features for unit extraction.

069 070	3.4 Visual Modality Injection Into Audio-Only Speech Representations	Advances in Neural Information Processing Systems, 34:24206–24221.
071	XLS-R model weights for pre-training.	Humam Alwassel, Dhruv Mahajan, Bruno Korbar,
072	2nd stage pre-training.	Lorenzo Torresani, Bernard Ghanem, and Du Tran.
073	2-stage supervised fine-tuning.	2020. Self-supervised learning by cross-modal audio- video clustering. <i>Advances in Neural Information</i>
074	4 Data	Processing Systems, 33:9758–9770.
075	5 Experiments	Mohamed Anwar, Bowen Shi, Vedanuj Goswami, Wei- Ning Hsu, Juan Pino, and Changhan Wang. 2023.
076	We evaluate models on the following tasks: Audio-	Muavic: A multilingual audio-visual corpus for ro- bust speech recognition and robust speech-to-text
077	Visual Speech Recognition (AVSR), Audio-Visual	translation.
078	Speech-to-Text Translation (AVS2TT), Audio-	
079	Visual Emotion Recognition (AVER).	Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
080	5.1 Experimental Setup	Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, and Michael Auli. 2022.
081	AV-HuBERT Large. Unit targets from XLS-R.	XLS-R: Self-supervised Cross-lingual Speech Rep-
082	Data: LRS3 (Afouras et al., 2018), Vox-	resentation Learning at Scale. In <i>Proc. Interspeech</i>
083	Celeb2 (Chung et al., 2018), MuAViC (Anwar et al.,	2022, pages 2278–2282.
084	2023), AVSpeech (Ephrat et al., 2018). Totaling	Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
085	XXX hours for XX languages.	and Michael Auli. 2020. wav2vec 2.0: A framework
086	Evaluation: FLEURS (Conneau et al., 2023),	for self-supervised learning of speech representations.
087	MuAViC, CMLR (Zhao et al., 2019), CREMAD-	Advances in neural information processing systems, 33:12449–12460.
088	D (Cao et al., 2014)	
089	Adaptor location.	Houwei Cao, David G Cooper, Michael K Keutmann,
090	Modality dropout to encourage picking up visual	Ruben C Gur, Ani Nenkova, and Ragini Verma. 2014. Crema-d: Crowd-sourced emotional multimodal ac-
091	info.	tors dataset. <i>IEEE transactions on affective comput-</i>
092	We show advantages in the noisy setting. VSR	ing, 5(4):377–390.
093	WER as a metric for the degree of visual injection.	Xize Cheng, Linjun Li, Tao Jin, Rongjie Huang, Wang
094	5.2 Audio-Visual Speech Self-Supervised	Lin, Zehan Wang, Huangdai Liu, Ye Wang, Aoxiong Yin, and Zhou Zhao. 2023. Mixspeech: Cross-
095	Learning	modality self-learning with audio-visual stream
096	Results on speech recognition.	mixup for visual speech translation and recognition. <i>arXiv preprint arXiv:2303.05309</i> .
097	Results on speech-to-text translation.	Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. 2018. Voxceleb2: Deep speaker recognition.
098	Results on language identification.	Proc. Interspeech 2018, pages 1086–1090.
099	Results on emotion recognition.	Alexis Conneau, Alexei Baevski, Ronan Collobert, Ab-
100	5.3 Cross-Lingual Transfer	delrahman Mohamed, and Michael Auli. 2021. Unsupervised Cross-Lingual Representation Learning
101	5.4 Visual Modality Injection Into	for Speech Recognition. In Proc. Interspeech 2021,
102	Speech-to-Text Models	pages 2426–2430.
103	6 Conclusion	Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara
104	References	Rivera, and Ankur Bapna. 2023. Fleurs: Few-shot learning evaluation of universal representations of
105	Triantafyllos Afouras, Joon Son Chung, and An-	speech. In 2022 IEEE Spoken Language Technology
106	drew Zisserman. 2018. Lrs3-ted: a large-scale	Workshop (SLT), pages 798–805. IEEE.
107	dataset for visual speech recognition. arXiv preprint	Voscar Abdalagia Dahay Dillali Canath Name
108	arXiv:1809.00496.Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong	Yasser Abdelaziz Dahou Djilali, Sanath Narayan, Haithem Boussaid, Ebtessam Almazrouei, and Mer- ouane Debbah. 2023. Lip2vec: Efficient and robust
110	Chuang, Shih-Fu Chang, Yin Cui, and Boqing Gong.	visual speech recognition via latent-to-latent visual
111	2021. Vatt: Transformers for multimodal self-	to audio representation mapping. arXiv preprint

supervised learning from raw video, audio and text.

arXiv:2308.06112.

168	Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel,
169	Kevin Wilson, Avinatan Hassidim, William T Free-
170	man, and Michael Rubinstein. 2018. Looking to
171	listen at the cocktail party: A speaker-independent
172	audio-visual model for speech separation. arXiv
173	preprint arXiv:1804.03619.
173	preprini arxiv.1004.03019.
174	Yuan Gong, Andrew Rouditchenko, Alexander H Liu,
175	David Harwath, Leonid Karlinsky, Hilde Kuehne,
176	and James R Glass. 2022. Contrastive audio-visual
177	masked autoencoder. In The Eleventh International
178	Conference on Learning Representations.
179	Wei-Ning Hsu and Bowen Shi. 2022. u-hubert: Uni-
180	fied mixed-modal speech pretraining and zero-shot
	transfer to unlabeled modality. In <i>NeurIPS</i> .
181	transfer to uniabeled modality. In NeuriF3.
182	Jiachen Lian, Alexei Baevski, Wei-Ning Hsu, and
183	Michael Auli. 2023. Av-data2vec: Self-supervised
184	learning of audio-visual speech representations with
185	contextualized target representations. arXiv preprint
186	arXiv:2302.06419.
187	Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
188	Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
189	Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
190	et al. 2023. Scaling speech technology to 1,000+
191	languages. arXiv preprint arXiv:2305.13516.
100	Alex Dedfeed Jane Weels View Tee V., Core Deselv
192	Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
193	man, Christine McLeavey, and Ilya Sutskever. 2022.
194 195	Robust speech recognition via large-scale weak supervision. <i>arXiv preprint arXiv:2212.04356</i> .
196	Tanzila Rahman, Mengyu Yang, and Leonid Sigal. 2021.
197	Tribert: Human-centric audio-visual representation
198	learning. In Thirty-Fifth Conference on Neural Infor-
199	mation Processing Systems.
133	mation 1 rocessing systems.
200	Paul Hongsuck Seo, Arsha Nagrani, and Cordelia
201	Schmid. 2023. Avformer: Injecting vision into
202	frozen speech models for zero-shot av-asr. In <i>Pro-</i>
203	ceedings of the IEEE/CVF Conference on Computer
204	Vision and Pattern Recognition, pages 22922–22931.
205	Changchong Sheng, Matti Pietikäinen, Qi Tian, and
206	Li Liu. 2021. Cross-modal self-supervised learning
207	for lip reading: When contrastive learning meets
208	adversarial training. In <i>Proceedings of the 29th ACM</i>
209	International Conference on Multimedia, pages 2456–
210	2464.
011	Powen Shi Wai Ning Hay Vyahal I alihatia and Al-
211	Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Ab-
212	delrahman Mohamed. 2021. Learning audio-visual
213	speech representation by masked multimodal cluster
214	prediction. In International Conference on Learning
215	Representations.
216	Bowen Shi, Wei-Ning Hsu, and Abdelrahman Mo-
217	hamed. 2022. Robust Self-Supervised Audio-Visual

Speech Recognition. In Proc. Interspeech 2022,

pages 2118-2122.

Jing-Xuan Zhang, Genshun Wan, Zhen-Hua Ling, Jia Pan, Jianqing Gao, and Cong Liu. 2023. Selfsupervised audio-visual speech representations learning by multimodal self-distillation. In *ICASSP* 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE.

- Ya Zhao, Rui Xu, and Mingli Song. 2019. A cascade sequence-to-sequence model for chinese mandarin lip reading. In *Proceedings of the ACM Multimedia Asia*, pages 1–6.
- Qiushi Zhu, Long Zhou, Ziqiang Zhang, Shujie Liu, Binxing Jiao, Jie Zhang, Lirong Dai, Daxin Jiang, Jinyu Li, and Furu Wei. 2023. Vatlm: Visual-audiotext pre-training with unified masked prediction for speech representation learning. *IEEE Transactions on Multimedia*.

Model Mode FLEURS-9 MuAN								AViC				
		Avg	En	Ar	De	El	Es	Fr	It	Pt	Ru	Avg
		Clea	an environ	ıment, Tes	t WER↓							
mAV-HuBERT	A	39.2	5.3	85.1	48.2	45.1	17.1	19.5	21.0	22.4	44.4	34.2
	V	-	59.4	122.7	98.3	97.4	91.2	96.2	90.0	93.9	98.9	94.2
Modality Dropout=0.0 (800K upd)	AV	-	2.4	84.4	46.1	43.9	16.3	19.4	20.6	21.3	42.4	33.0
mAV-HuBERT	A	39.8	3.9	85.4	48.3	45.7	17.9	19.9	21.4	22.6	44.0	34.3
	V	-	56.9	107.2	98.5	126.4	87.7	91.5	86.6	88.3	98.1	93.5
Modality Dropout=0.5 (64k bsz, 800K upd)	AV	-	2.4	84.3	47.0	44.7	16.8	19.4	20.7	21.6	42.6	33.3
mAV-HuBERT	A	39.3	4.7	84.5	49.1	45.1	17.3	20.5	21.5	22.4	43.0	34.2
	V	-	57.6	107.8	104.6	97.0	87.3	93.1	86.4	89.1	98.1	91.2
+AVS, MD=0.5, (64k bsz, 800K upd)	AV	-	2.6	83.8	47.5	44.2	16.5	20.0	21.0	21.6	41.8	33.2
XLAVS-R	A	37.8	7.9	86.1	45.7	42.6	16.2	18.5	19.3	21.2	41.3	33.2
Modality Dropout=0.0	V	-	74.4	112.3	99.9	97.4	96.0	97.7	95.1	95.3	99.7	96.4
DN XLS-R, w/ adpt (400K+400K)	AV	-	2.5	84.9	43.6	41.7	15.4	18.1	18.7	20.3	40.0	31.7
Whisper V2 Large [†]	A	XX.X	3.1	91.5	24.8	25.4	12.0	12.7	13.0	15.5	31.1	25.5
	A	XX.X	xx.x	xx.x	xx.x	xx.x	XX.X	xx.x	xx.x	xx.x	xx.x	XX.X
V-injected Whisper V2 Large	V	-	xx.x									
	AV	-	xx.x									
XLS-R CTC	A	XX.X	XX.X	XX.X	XX.X	XX.X	XX.X	XX.X	XX.X	XX.X	XX.X	xx.x
Winicated VI C D CTC	A	XX.X	xx.x	xx.x	xx.x	xx.x	XX.X	xx.x	xx.x	xx.x	XX.X	XX.X
V-injected XLS-R CTC	AV	-	XX.X									
		Noi	sy environ	ment, Tes	t WER↓							
mAV-HuBERT	A	90.3	80.5	105.4	83.9	83.7	63.6	56.7	68.9	70.8	73.9	76.4
Modality Dropout=0.0 (800K upd)	AV	-	8.6	98.0	65.1	65.7	39.2	38.9	44.0	44.3	63.0	51.9
mAV-HuBERT	A	90.0	73.7	104.8	82.6	82.6	63.1	57.6	68.4	70.5	74.2	75.3
MD=0.5 (64k bsz, 800K upd)	AV	-	8.2	98.3	66.6	67.2	40.3	40.1	45.7	45.3	63.8	52.8
mAV-HuBERT	A	88.1	73.2	103.7	83.0	81.3	61.3	57.2	67.5	68.5	70.9	74.1
+AVS, MD=0.5 (64k bsz, 800K upd)	AV	-	8.5	97.9	67.3	66.5	39.9	40.7	45.7	44.9	61.9	52.6
V-injected DN XLS-R	A	91.0	86.2	105.7	83.1	82.0	63.2	56.5	68.0	70.8	73.8	76.6
w/ adpt 4200K+400K), MD=0.0	AV	-	9.1	99.0	66.1	65.5	40.3	39.7	44.7	45.3	62.6	52.5
Whisper V2 Large [†]	A	XX.X	202.4	197.9	244.4	113.3	116.3	172.3	172.4	223.6	126.2	174.3
V-injected Whisper V2 Large	A AV	XX.X -	XX.X XX.X									
XLS-R CTC	A	XX.X	xx.x	xx,x	xx.x	xx.x	xx.x	xx.x	xx,x	xx.x	xx,x	xx,x
V inicated VI S B CTC	A	XX.X	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x	xx.x
V-injected XLS-R CTC	AV	-	xx.x									

Table 1: Results for multilingual speech recognition (A: audio, AV: audio+video). †Radford et al. (2022).

Table 2: Results for X-En speech-to-text translation (SNR=0. A: audio, AV: audio+video).

Model	Mode		Avg					
		El	Es	Fr	It	Pt	Ru 16.1 9.3 8.1 9.0 9.3 0.2 0.9 4.6	
Clean environment, Test	$BLEU \uparrow$							
Whisper V2 Large (Radford et al., 2022)	A	24.2	28.9	34.5	29.2	32.6	16.1	29.9
AV-HuBERT (Shi et al., 2022) [MA; It should be mAV-HuBERT & cite MuAViC]	A	9.3	21.0	26.3	21.2	24.3	9.3	18.6
Av-nuberi (Siii et al., 2022) [MA. It Should be mAv-nuberi & the Muavic]	AV	7.6	20.5	25.2	20.0	24.0	8.1	17.6
mAV-HuBERT from XLS-R w/ adpt (400K+100K upd, 24K bsz)	A	12.8	20.2	25.7	21.0	24.6	9.0	18.9
mAv-11ubEK1 110m AL3-k w/ aupt (400k+100k upu, 24k 082)	AV	12.8	20.5	25.8	21.1	24.7	16.1 9.3 8.1 9.0 9.3	19.0
Noisy environment, Test	$BLEU \uparrow$							
Whisper V2 Large (Radford et al., 2022)	A	0.1	0.4	0.7	0.1	0.1	0.2	0.3
AV-HuBERT (Shi et al., 2022) [MA; mAV-HuBERT & cite MuAViC]	A	2.9	8.4	12.4	8.1	8.6	0.9	6.9
AV-HUDERT (SIII et al., 2022) [IVIA. IIIAV-HUBERT & CHE MUAVIC]	AV	4.2	12.8	15.0	12.5	14.8	4.6	10.7

Table 3: Abalation of adaptation approaches on speech recognition. (A: audio, AV: audio+video)

mAV-HuBERT	Mode		Source/Target							Avg	
(with 32K total batch size)		En	Ar	De	El	Es	Fr	It	Pt	Ru	111,8
Clean envi	ronment, T	est WER									
English-only, From scratch, MD=0.5 (600K upd)	A	3.2	88.1	53.6	46.7	18.0	20.4	21.2	22.5	44.8	35.4
	AV	1.8	87.8	51.6	45.7	17.1	19.8	20.8	21.7	42.8	34.4
From scratch, MD=0.5 (400K upd)	A	3.9	86.3	50.2	46.4	18.5	21.6	23.0	24.4	45.6	35.5
	AV	2.7	85.5	48.6	45.1	17.6	21.0	22.0	23.2	43.7	34.4
From XLS-R, MD=0.5 (400K upd)	A	4.9	86.6	51.2	46.7	18.5	21.4	23.4	24.3	45.5	35.8
	AV	2.7	85.3	49.4	45.7	17.6	21.1	22.3	23.4	44.0	34.6
From XLS-R w/ adaptor(400K+400K frz+unfrz upd), MD=0	A	4.5	86.8	47.0	42.7	16.6	18.9	19.9	21.5	41.9	33.3
	AV	2.7	84.8	44.2	41.3	15.5	18.1	19.1	20.3	40.0	31.8
From DN (40k) XLS-R w/ adaptor (400K+400K upd), MD=0	A	7.9	86.1	45.7	42.6	16.2	18.5	19.3	21.2	41.3	33.2
	AV	2.5	84.9	43.6	41.7	15.4	18.1	18.7	20.3	40.0	31.7
From DN (40k upd,2k unit) XLS-R w/ adpt (400K+400K upd), MD=0	A	4.2	85.7	45.2	42.7	16.4	18.2	19.7	21.1	40.8	32.7
	AV	2.4	84.8	43.3	41.4	15.4	17.8	18.9	20.2	39.6	31.5
From DN (40k upd,2k) XLS-R w/ adpt (400K+400K upd), + AVS, MD=0	A	5.2	85.2	45.4	42.5	15.9	18.8	19.4	20.9	40.0	32.6
	AV	2.6	84.1	44.0	41.7	15.4	18.4	18.9	20.2	38.8	31.6
Noisy envir	ronment, T	est WER									
English-only, From scratch, MD=0.5 (600K upd)	A	63.9	105.9	87.7	84.4	65.1	59.5	70.5	72.1	75.8	76.1
	AV	6.4	100.4	73.0	68.9	41.7	42.1	47.4	46.5	65.6	54.7
From scratch, MD=0.5 (400K upd)	A	76.3	104.6	84.8	83.0	65.2	59.9	70.1	71.6	75.1	76.7
	AV	9.3	98.4	68.4	67.7	41.8	42.2	47.8	46.5	65.2	54.2
From XLS-R, MD=0.5 (400K upd)	A	77.9	105.8	85.8	83.9	65.8	60.1	70.7	73.4	77.1	77.8
	AV	9.0	99.5	69.7	68.2	41.5	42.0	48.2	47.5	66.3	54.6
From XLS-R w/ adaptor (400K+400K frz+unfrz upd), MD=0	A	90.4	111.5	89.9	85.2	67.9	59.2	70.3	73.7	76.5	80.5
	AV	9.3	100.7	67.8	65.0	40.8	40.4	45.5	45.1	63.1	53.1
From DN (40k) XLS-R w/ adaptor (400K+400K upd), MD=0	A	86.2	105.7	83.1	82.0	63.2	56.5	68.0	70.8	73.8	76.6
	AV	9.1	99.0	66.1	65.5	40.3	39.7	44.7	45.3	62.6	52.5
From DN (40k upd,2k unit) XLS-R w/ adpt (400K+400K upd), MD=0	A	80.3	108.0	81.2	81.3	62.5	55.3	68.1	69.0	72.4	75.4
	AV	9.2	100.8	66.3	65.3	40.2	39.8	44.7	44.7	62.6	52.6
From DN (40k upd,2k) XLS-R w/ adpt (400K+400K upd), + AVS, MD=0	A	89.2	109.0	87.0	84.7	68.6	60.9	70.8	75.7	75.3	80.1
	AV	9.8	99.8	68.6	66.5	41.4	41.9	45.3	45.6	61.6	53.4

Table 4: (Deprecated, **ToBeUpdated**) Abalation of AVSpeech data on speech recognition. (A: audio, AV: audio+video)

mAV-HuBERT (with 32K total batch size)	Mode	Source/Target									Avg
		En	Ar	De	El	Es	Fr	It	Pt	Ru	
Clean envi	ronment, T	est WER	?↓								
From scratch (400K upd)	A	4.1	70.2	49.9	47.4	21.2	24.3	26.0	27.2	46.5	35.2
	AV	3.7	70.0	48.2	46.1	20.2	23.6	25.2	26.0	45.3	34.2
From XLS-R w/ adaptor (400K frz upd)		3.8	69.2	48.3	41.9	17.5	20.0	19.9	20.2	41.8	31.4
170111 ALS-K w/ adaptor (400K 112 upu)	AV	3.3	69.0	47.3	41.1	16.8	19.7	19.6	19.2	41.4	30.9
From denoising (avs) XLS-R w/ adaptor (400K frz upd)		3.2	64.9	42.7	38.8	15.3	18.3	17.9	18.1	37.9	28.6
From denoising (avs) ALS-K w/ adaptor (400K 112 upu)	AV	3.2	64.3	41.5	38.2	14.8	18.0	17.5	17.6	37.2	28.0
From Jonating (and) VI C D m/ adapton (40017, 4001, for our for and)	A	3.1	67.8	43.5	42.4	17.0	19.5	19.7	20.8	39.4	30.6
om denoising (avs) XLS-R w/ adaptor (400K+400k frz,unfrz upd)	AV	3.0	67.3	42.2	41.6	16.1	19.1	19.4	20.0	38.6	29.7
The state of the s	A										
From denoising (avs) XLS-R w/ adaptor (400K frz upd) (avs)	AV										
Noisy envir	ronment, T	est WER	!↓								
From scratch (400K upd)	A	52.6	96.3	82.5	83.3	70.4	63.8	73.1	75.3	75.7	74.8
Trom scratch (400K upu)	AV	13.8	85.7	69.5	70.0	51.1	49.5	56.1	54.0	67.8	57.5
From VI C D m/ adoptor (400V fee and)	A	50.3	93.1	83.0	81.3	69.0	60.4	69.8	71.9	71.4	72.2
From XLS-R w/ adaptor (400K frz upd)	AV	14.4	84.7	72.4	70.4	52.7	48.1	56.4	52.7	65.7	57.5
From Jones Company (1997) VI C D - / John (1997) Company (1997)	A	45.4	89.6	76.7	78.2	64.3	56.6	66.7	67.9	7.2 46.5 6.0 45.3 0.2 41.8 9.2 41.4 3.1 37.9 7.6 37.2 0.8 39.4 0.0 38.6 5.3 75.7 4.0 67.8 1.9 71.4 2.7 65.7 7.9 67.0 7.6 60.8 5.7 67.9	68.0
From denoising (avs) XLS-R w/ adaptor (400K frz upd)	AV	12.0	81.5	66.0	65.6	45.9	44.0	51.3	47.6		52.7
E	A	43.4	89.1	78.5	77.7	62.9	55.1	65.5	66.7	67.9	67.4
From denoising (avs) XLS-R w/ adaptor (400K+400k frz,unfrz upd)	AV	10.1	80.7	64.8	65.6	43.9	43.2	48.7	46.3	60.0	51.5
E I I I I I I I I I I I I I I I I I I I	A										
From denoising (avs) XLS-R w/ adaptor (400K frz upd) (avs)	AV										

Table 5: (Deprecated) Abalation of batch size on speech recognition. (A: audio, AV: audio+video)

mAV-HuBERT	Mode	Source/Target								Avg	
		En	Ar	De	El	Es	Fr	It	Pt	Ru	1115
Clean	environme	nt, Test	WER ↓								
From XLS-R w/ adaptor (400K frz upd, 32K bsz)	A	3.9	68.9	48.5	40.9	16.8	19.7	19.7	20.1	41.4	31.1
	AV	3.6	68.5	47.0	39.9	16.3	19.2	19.5	19.4	40.9	30.5
From XLS-R w/ adaptor (400K+400K frz+unfrz upd, 32K bsz)	A	3.0	67.2	43.7	38.9	15.2	17.9	18.0	18.4	39.1	29.0
Troili AL3-K w/ adaptor (400K+400K fiz+diffiz dpd, 32K 082)	AV	2.5	66.6	42.3	38.0	14.3	17.8	17.8	17.6	38.1	28.3
From XLS-R w/ adaptor (400K frz upd, 64K bsz)	A	3.6	69.9	48.5	41.2	16.8	19.9	20.2	19.9	41.7	31.3
From ALS-R w/ adaptor (400R 112 upd, 04R 082)	AV	3.1	68.7	46.9	40.3	16.2	19.5	19.5	19.4	41.2	30.5
From VI C D and a denter (600V from and 64V har)	A	4.0	68.8	48.6	41.3	17.0	20.0	20.1	20.4	41.6	31.3
From XLS-R w/ adaptor (600K frz upd, 64K bsz)	AV	3.8	68.7	47.0	40.4	16.2	20.1	19.7	19.2	41.1	30.7
F VIGD / 1 + (400V-400V f + f + 1 (4V1)	A	3.3	66.3	44.0	38.7	15.2	17.7	18.1	17.9	39.3	29.0
From XLS-R w/ adaptor (400K+400K frz+unfrz upd, 64K bsz)	AV	3.1	65.5	42.3	37.8	14.2	17.4	17.6	17.0	38.3	28.1
Noisy o	environme	nt, Test	WER ↓								
From XLS-R w/ adaptor (400K frz upd)	A	46.8	92.5	83.7	82.0	69.1	60.7	70.6	70.5	71.1	71.9
Troili AL3-K w/ adaptor (400K 112 upu)	AV	14.2	84.5	73.1	69.3	51.5	48.3	55.5	51.5	65.3	57.0
From XLS-R w/ adaptor (400K+400K frz+unfrz, 32K bsz)	A	49.0	91.2	78.2	78.3	64.7	57.0	67.0	68.4	69.1	69.2
170111 ALS-R W adaptor (400RT400R 112Tulli12, 32R 082)	AV	11.2	81.7	66.7	64.4	44.0	43.0	49.1	46.0	61.6	52.0
FVI C D. / -1 (400V C1 C4V 1)	A	50.5	99.0	83.1	80.4	68.7	60.2	71.3	69.9	70.1	72.6
From XLS-R w/ adaptor (400K frz upd, 64K bsz)	AV	13.9	89.0	73.1	69.3	50.6	47.9	56.8	51.3	65.6	57.5
From VI C.D. Andrew (COOK Co. on L.CAV.L.)	A	50.5	91.8	82.1	80.0	67.3	60.2	69.8	70.0	70.6	71.4
From XLS-R w/ adaptor (600K frz upd, 64K bsz)	AV	14.2	83.6	72.9	69.1	50.8	48.6	55.7	51.7	1 41.4 4 40.9 4 39.1 5 38.1 9 41.7 4 41.2 4 41.6 2 41.1 9 39.3 0 38.3 5 71.1 5 65.3 4 69.1 0 61.6 9 70.1 3 65.6 7 65.1 2 68.2	56.9
From VI C. D / . 1 / 400V . 400V C C / 4771	A	45.2	90.8	78.4	78.4	64.2	56.9	66.1	67.2	68.2	68.4
From XLS-R w/ adaptor (400K+400K frz+unfrz, 64K bsz)	AV	10.5	81.9	65.8	63.6	44.2	42.5	48.5	45.6	61.6	51.6

Model	Mode	A	AVSR			
	Clean environment, sper V2 Large † A jected Whisper V2 Large V AV nlessM4T Large A jected SeamlessM4T Large A AV Noisy environment, sper V2 Large† A jected Whisper V2 Large A jected Whisper V4 Large A jected Whisper V4 Large A jected Whisper V4 Large A	FLEURS-82	MLS	VP	MuAViC	CMLR
Clea	n environr	nent, Test WER↓	,			
Whisper V2 Large [†]	A	XX.X	XX.X	xx.x	25.5	XX.X
	A	XX.X	XX.X	XX.X	xx.x	XX.X
V-injected Whisper V2 Large	V	-	-	-	XX.X	XX.X
	AV	-	-	-	XX.X	XX.X
SeamlessM4T Large	A	XX.X	xx.x	XX.X	XX.X	XX.X
Winingtod Country MAT Laura	A	xx.x	XX.X	XX.X	XX.X	XX.X
v-injected Seannessivi41 Large	AV	-	-	-	XX.X	XX.X
Nois	y environn	nent, Test WER↓	,			
Whisper V2 Large [†]	A	XX.X	XX.X	xx.x	174.3	XX.X
Winianta I Whimma VO I ama	A	xx.x	XX.X	XX.X	XX.X	XX.X
v-injected whisper v2 Large	AV	-	-	-	XX.X	XX.X
SeamlessM4T Large	A	XX.X	xx.x	xx.x	xx.x	XX.X
Visit and Constant MAT Lane	A	XX.X	XX.X	xx.x	XX.X	XX.X
V-injected SeamlessM4T Large	AV	-	-	-	XX.X	XX.X

Table 6: Results for out-of-domain multilingual speech recognition (A: audio, AV: audio+video). † Radford et al. (2022).