

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2020	09:00

Espacio para la etiqueta identificativa con el código personal del estudiante.

Prueba

Esta prueba sólo la pueden realizar los estudiantes que han aprobado la Evaluación Continua

Ficha técnica de la prueba

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura matriculada.
- Debes pegar una sola etiqueta de estudiante en el espacio correspondiente de esta hoja.
- No se puede añadir hojas adicionales, ni realizar la prueba en lápiz o rotulador grueso.
- Tiempo total: 1 hora
 Valor de cada pregunta: SE INDICA EN CADA UNA

 DE ELLAS
- En el caso de que los estudiantes puedan consultar algún material durante la prueba, ¿cuáles son?: NO SE PUEDE CONSULTAR NINGÚN MATERIAL
 En el caso de poder usar calculadora, de que tipo? NINGUNA
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de esta prueba

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2020	09:00

Enunciados

Actividad 1 (1.5 puntos + 1.5 puntos)

[Criterio de valoración: Las formalizaciones deben ser correctas en todos los aspectos, incluida la parentización. Cada frase se valorará independientemente de las otras]

a) Utilizando los siguientes átomos, formalizad las frases que hay a continuación

T: Los turistas son responsables

M: Mejoran las condiciones de vida

E: La educación tiene un buen nivel

O: El ocio es de calidad

1) Es necesario un ocio de calidad para que los turistas sean responsables.

$$T \rightarrow 0 \text{ --} \text{--} - \text{--} \rightarrow \neg T$$

 Solo cuando mejoran las condiciones de vida, la educación tiene un buen nivel y el ocio es de calidad

$$E \wedge O \rightarrow M$$
 -||- $\neg M \rightarrow \neg (E \wedge O)$

3) Si el ocio no es de calidad, los turistas no son responsables cuando no mejoran las condiciones de vida

$$\neg O \rightarrow (\neg M \rightarrow \neg T)$$

b) Utilizando los siguientes predicados, formalizad las frases que hay a continuación:

P(x): x es una piscina

M(x): x es municipal

N(x): x es un nadador

F(x): x está federado

E(x,y): x se entrena en y

a: Juan

b: Water Paradise

1) En las piscinas municipales no se entrenan nadadores federados.

$$\forall x \{ P(x) \land M(x) \rightarrow \neg \exists y [N(y) \land F(y) \land E(y,x)] \}$$

2) Si ninguna piscina fuera municipal, todos los nadadores estarían federados.

$$\neg \exists x [P(x) \land M(x)] \rightarrow \forall x [N(x) \rightarrow F(x)]$$

3) Algunos nadadores se entrenan en Water Paradise, pero Juan no lo hace.

$$\exists x[N(x) \land E(x,b)] \land \neg E(a,b)$$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2020	09:00

Actividad 2 (1.5 puntos)

[Criterio de valoración: cada error se penalizará con 0.75 puntos]

Encontrad el conjunto de cláusulas que permitiría aplicar el método de resolución al siguiente razonamiento.

```
\begin{split} \forall x \exists y [A(x) \lor B(x,y)] \\ \exists x \exists y B(x,y) \\ \therefore \forall x [A(x) \to \exists y B(x,y)] \\ & FNS(\forall x \exists y [A(x) \lor B(x,y)]) = \ \forall x [A(x) \lor B(x,f(x))] \\ & FNS(\exists x \exists y B(x,y)) = B(a,b) \\ & FNS(\neg \forall x [A(x) \to \exists y B(x,y)]) = \ \forall y [A(c) \land \neg B(c,y)] \\ & S = \{\ A(x) \lor B(x,f(x)), \ B(a,b), \ A(c), \neg B(c,y)\ \} \end{split}
```


Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2020	09:00

Actividad 3 (1.5 puntos)

[Criterio de valoración: cada errata se penalizará con 0.75 puntos]

Un razonamiento ha dado lugar al conjunto de cláusulas que tenéis a continuación. La última cláusula, en negrita, se ha obtenido de la negación de la conclusión. Aplicad el método de resolución con **la estrategia del conjunto de apoyo** para demostrar la validez del razonamiento. Eliminad siempre el literal de más a la derecha de la cláusula troncal.

$$S = {\neg A \lor C, \neg A \lor \neg D, B \lor D, \neg A \lor \neg C, \neg D, A \lor \neg B}$$

Troncal	Lateral
A∨⊣B	B√D
A∨D	¬D
Α	⊸A∨C
С	$\neg A \lor \neg C$
⊸A	Α

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2020	09:00

Actividad 4 (1.5 puntos)

[Criterio de valoración: es necesario responder correctamente a las dos preguntas que se formulan. En cualquier otro caso, 0 puntos]

Un razonamiento ha dado lugar al siguiente conjunto de cláusulas. Se desconoce cuales provienen de la negación de la conclusión:

$$\{ A(x, b), \neg A(a, f(y)) \lor B(f(y)), \neg B(z) \}$$

Responded a las siguientes preguntas, seleccionando la respuesta correcta

- 1. Respecto a la consistencia de las premisas de este razonamiento
 - a) Las premisas son consistentes
 - b) Las premisas son inconsistentes
 - c) No se puede decir nada al respecto de la consistencia de las premisas
- 2. Respecto a la validez del razonamiento
 - a) La aplicación del método de resolución permite obtener la cláusula vacía
 - b) Es imposible construir una DN que valide el razonamiento
 - c) El razonamiento no presenta contraejemplos
 - d) Ninguna de las anteriores

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2020	09:00

Actividad 5 (2.5 punts o 1.5 punts)

[Criterio de valoración: será invalida (0 puntos) cualquier deducción que contenga la aplicación incorrecta de alguna regla]

Demostrad, utilizando la deducción natural, que el siguiente razonamiento es correcto. Si la deducción es correcta y no utilizáis reglas derivadas obtendréis 2.5 puntos. Si la deducción es correcta pero utilizáis reglas derivadas obtendréis 1.5 puntos. En ningún caso <u>podéis utilizar equivalentes deductivos</u>. Si hacéis más de una demostración y alguna es incorrecta no obtendréis ningún punto.

$$A \rightarrow B$$
, $D \lor C$, $D \rightarrow A$, $E \rightarrow \neg C$ \therefore $(A \land B) \lor \neg E$

1.	$A \rightarrow B$			Р
2.	D v C			P
3.	$D \rightarrow A$			P
4.	$E \rightarrow \neg C$			P
5.		D		Н
6.		Α		E→ 3, 5
7.		В		E→1, 6
8.		$A \wedge B$		I _∧ 6, 7
9.		(A ∧ B) ∨ ¬E		Iv 8
10.		С		Н
11.			Е	Н
12.			¬C	E→ 4, 11
13.			С	It 10
14.		¬Ε		I¬ 11, 12, 13
15.		$(A \wedge B) \vee \neg E$		I∨ 14
16.	$(A \wedge B) \vee \neg E$			Ev 2, 9, 15