Elettronica Digitale A.A. 2020-2021

Lezione 10/03/2021

Giunzione P/N

$$I_D = I_S \left(\exp \left(\frac{V_D}{\eta V_T} \right) - 1 \right)$$

Caratteristica I-V: zone di funzionamento

$$I_D = I_S \left(\exp\left(\frac{V_D}{V_T}\right) - 1 \right) \qquad (\eta = 1)$$

Polarizzazione diretta ($V_D>0$)

$$V_D \ge +4V_T \quad \left(e^4 = 54.6\right)$$

$$V_D \ge +4V_T \quad \left(e^4 = 54.6\right) \qquad \qquad I_D \approx I_S \exp\left(\frac{V_D}{V_T}\right)$$

Polarizzazione inversa (V_D <0)

$$V_D \le -4V_T \quad \left(e^{-4} = 0.018\right)$$
 $I_D \approx -I_S$

$$I_D \approx -I_S$$

Polarizzazione nulla (V_D =0)

$$I_D = 0$$

Caratteristica I-V: fenomeno del breakdown

- ➤ Breakdown Zener: il breakdown Zener può essere descritto come la conseguenza della rottura dei legami covalenti nella zona di svuotamento causata dall'elevato campo elettrico.
- ➤ Breakdown a valanga: si verifica quando il campo elettrico nella zona di svuotamento può accelerare i portatori minoritari che attraversano la zona stessa fino a una velocità tale da rompere i legami covalenti degli atomi con cui collidono.

Caratteristica I-V: fenomeno del breakdown

Caratteristica I-V: fenomeno del breakdown

Dipendenza dalla temperatura

- Effetto Zener: un aumento della temperatura fa sì che gli elettroni dei legami covalenti possiedano un energia più alta e che quindi vengano estratti più facilmente per effetto del campo elettrico, producendo un incremento della corrente, a parità di tensione applicata.
- Effetto valanga: un aumento di temperatura causa una maggiore probabilità di urto tra le cariche mobili e gli atomi del reticolo e quindi i portatori acquistano in media un'energia minore tra un urto e il successivo, dando luogo, a parità di tensione applicata, a una minore corrente.

Diodi Zener

I diodi che presentano tensioni di breakdown volutamente ridotte (al di sotto di qualche decina di volt) sono definiti "diodi Zener", indipendentemente dall'effettivo meccanismo di breakdown.

$$|V_{BR}| > 7 V$$

predomina effetto valanga

$$|V_{BR}| < 5 V$$

predomina effetto Zener

$$7 V < |V_{BR}| < 5 V$$

presenza entrambi i fenomeni

Stabilità in temperatura

$$|V_{BR}| = 5.6 V$$

Correnti elevate: effetto della resistenza serie

Simboli circuitali

DIODO

DIODO ZENER

Analisi dei circuiti

$$V_{AA} = RI_{D} + V_{D}$$

Eq. maglia – Legge di Kirchhoff

$$I_{D} = f\left(V_{D}\right)$$

Caratteristica del dispositivo

Analisi dei circuiti – Modello esponenziale

$$V_{AA} = RI_S \left(\exp\left(\frac{V_D}{V_T}\right) - 1 \right) + V_D$$

Soluzione numerica

Analisi dei circuiti – Metodo grafico – Retta di carico

$$V_{AA} = RI_D + V_D$$

$$I_{D} = \frac{V_{AA}}{R} - \frac{V_{D}}{R}$$

Retta di carico

Analisi dei circuiti – Metodo grafico – Retta di carico

Dipendenza dal valore di R

$$R_1 < R_2 < R_3$$

Analisi dei circuiti – Metodo grafico – Retta di carico

Dipendenza dal valore di V_{AA}

$$V_{AA1} > V_{AA2} > V_{AA3}$$

Analisi dei circuiti – Modello a caduta di tensione costante

$$V_{AA} = RI_D + V_D$$

$$I_D = f(V_D)$$

Analisi dei circuiti – Modello a caduta di tensione costante

Analisi dei circuiti – Modello ideale del diodo

Analisi dei circuiti – Modello lineare a tratti

$$E = 5 V$$

$$R = 1 k\Omega$$

Ipotesi:

Diodo in conduzione

Modello ideale del diodo

$$V_D = 0 V$$

$$E = RI_D$$

$$E = RI_D$$

$$I_D = \frac{E}{R} = \frac{5}{1000} = 5 \text{ mA}$$

$$E = 5 V$$
 $R = 1 k\Omega$

Ipotesi:

Diodo in conduzione

$$E = 5V$$

$$R = 1 k\Omega$$

Ipotesi:

Diodo in conduzione

$$V_D = V_{AK} = 0.65 + 20 \times 4.265 \times 10^{-3} = 0.7353 V$$

E = 5 V	$R = 1 k\Omega$

MODELLO	I _D (mA)	V _D (V)
Esponenziale	4.237	0.762
Grafico	4.2	0.7
Caduta costante	4.3	0.7
Diodo ideale	5	0
Lineare a tratti	4.265	0.7353

Il modello del diodo a caduta di tensione costante è il miglior compromesso tra semplicità del modello e accuratezza della soluzione ottenuta.

Nei circuiti in cui la caduta di tensione sul diodo può essere considerata trascurabile, si può utilizzare il modello ideale del diodo.

Analisi dei circuiti contenenti diodi - Procedura

- Ipotizzare lo stato di ciascun diodo (Conduzione o Interdizione)
- Sostituire ciascun diodo con il corrispondente modello:
 - -) se in conduzione con un generatore di tensione costante di valore V_{γ} (modello a caduta costante), un cortocircuito (diodo ideale), un generatore con una resistenza in serie (modello lineare a tratti)
 - -) se interdetto con un circuito aperto
- Risolvere il circuito
- Verificare la correttezza delle ipotesi iniziali sullo stato di ciascun diodo:
 - se sono tutte verificate, la soluzione ottenuta è quella corretta
 - se almeno una delle ipotesi non è verificata, bisogna cambiare tale ipotesi, risolvere di nuovo il circuito e fare una nuova verifica delle ipotesi. Il processo continua fino a quando non si trova la soluzione che soddisfa le ipotesi sullo stato di tutti i diodi.

Analisi dei circuiti contenenti diodi - Procedura

STATO DEL DIODO	PARAMETRO FISSATO	VERIFICA
CONDUZIONE	$V_D = V_{\gamma}$	I _D >0
INTERDIZIONE	I _D =0	$V_D < V_{\gamma}$

$$\begin{array}{c|c} V_D = V_{AK} \\ \text{Anodo} \\ \text{(A)} & & \\ \hline I_D \end{array} \qquad \begin{array}{c} \text{Catodo} \\ \text{(K)} \\ \end{array}$$