

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

FURTHER MATHEMATICS

9231/23

Paper 2 Further Pure Mathematics 2

May/June 2024

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

 19655537603 *	

Find the exact value of $\int_2^{\frac{7}{2}} \frac{1}{\sqrt{4x-x^2-1}} dx$.	[5]

2 The curve C has parametric equations

$$x = \cosh t$$
, $y = \sinh t$, for $0 < t \le \frac{3}{5}$.

The length of C is denoted by s.

(a)	Show that $s = \int_0^{\frac{3}{5}} \sqrt{\cosh 2t} dt$.	[4]
		· • • • • • • •
		· • • • • • • •
		· • • • • • • •
		· • • • • • • •
		· • • • • • • • • • • • • • • • • • • •

DO NOT WRITE IN THIS MARGIN

00 19655537605

8	By finding the Maclaurin's series for $\sqrt{\cosh 2t}$ up to and including the term in t^2 , deduce approximation to s .
•	
•	
•	
•	
•	
•	
•	
•	
•	
٠	
•	

3 The curve C has equation

(a)

r^3	_	2xv +	81,3	_	_	12
Х	\top	2xv +	$\circ v$	_	_	14.

Show that, at the point $(-2,-1)$ on C , $\frac{dy}{dx} = -\frac{1}{2}$.	[3]
	•••••
	•••••
	••••••
	•••••

Find the value of $\frac{d^2y}{dx^2}$ at the point $(-2,-1)$.	
	••••••

The diagram shows the curve with equation $y = x^{-2}$ for $2 \le x \le N$ together with a set of (N-2) rectangles of unit width.

(a) By considering the sum of the areas of these rectangles, show that

	$\sum_{r=1}^{N} \frac{1}{r^2} > \frac{3}{2} - \frac{3}{2}$	$\frac{1}{N} + \frac{1}{N^2}.$	[5]
•••••	 •••••	•••••	
•••••	 		
•••••	 		
•••••	 •••••		
•••••	 •••••		
	 •••••		
•••••	 		
•••••	 •••••		

(b)

© UC

* 0019655537609 *

9

Use a similar method to find, in terms of N , an upper bound for	$\sum_{i=1}^{N} \frac{1}{r^2}.$ [3]
Deduce lower and upper bounds for $\sum_{r=1}^{\infty} \frac{1}{r^2}$.	[2]

(c)

DO NOT WRITE IN THIS MARGIN

$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 10\frac{\mathrm{d}x}{\mathrm{d}t} + 25x = 338\sin t.$	[7]

* 0019655537711 *

11

(b) Show that, for large positive values of t and for any initial conditions,

x	\approx	Rsin	(t-	ϕ),
---	-----------	------	-----	-----------

where the constants R and ϕ are to be determined.	[3]
	······································
	,
	•••••

9231/23/M/J/24

(a)	Show that $\sum_{r=1}^{n} z^{4r} = \frac{z^{4n+2} - z^2}{z^2 - z^{-2}}$, for $z^2 \neq z^{-2}$.	[2
		•••••
		•••••
(b)	By letting $z = \cos \theta + i \sin \theta$, show that, if $\sin 2\theta \neq 0$,	
	$\sum_{r=1}^{n} \sin(4r\theta) = \frac{\cos 2\theta - \cos(4n+2)\theta}{2\sin 2\theta}.$	[5]
		•••••
		•••••

* 0	019655537713 *
1	

7 (a) Show that

Show that					
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x}{2} \sqrt{x^2 - 9} \right) = 0$	$-\frac{9}{2}\cosh^{-1}\frac{x}{3}$	$=\sqrt{x^2-9}.$		[3]
			•••••		
		•••••			
		•••••			
		•••••			
Find the solution of t	he differential equ	ation			
	$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$-y = x^2 \sqrt{x^2 - x^2}$	9,		
given that $y = 1$ whe	x = 3. Give you	ir answer in th	the form $y = f$	(x).	[9]

14

(b)

* 0019655537715 *

) ; ;)	© UCLES 2024	37/2 34/6

1	_
	-
1	\sim
	_

© UCLES 2024

(a)	Find Cartesian equations of Π_1 and Π_2 .	[3]

DO NOT WRITE IN THIS MARGIN

(b)	Express the vector equation of l in the form	$\begin{pmatrix} y \\ z \end{pmatrix}$	$= \mathbf{a} + \lambda \mathbf{b},$	where	a and	b ar	re vectors	to b	e
	determined, and hence show that for points on i	$\frac{1}{2}x$	$+\frac{1}{12}y = 1$	and $z =$	0.			[2	.]

••••	 •••••	•••••	•••••	•••••

9231/23/M/J/24

* 0019655537717 * The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ \frac{1}{2} & \frac{1}{12} & 0 \end{pmatrix}.$$

of A.										
				•••••		•••••		•••••	•••••	•••••
•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••	••••••
•••••		•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
		•••••		•••••		•••••		•••••		
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••
	•••••	•••••	••••••	•••••		•••••		•••••	•••••	•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	••••••
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••••
•••••				•••••		•••••		•••••	•••••	•••••
•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•	•••••	••••••	••••••	••••••	••••••
•••••	•••••	•••••	•••••	•••••		•••••	•••••		•••••	•••••
				•••••		•••••		•••••	•••••	
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	••••••	••••••
••••••	•••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••
•••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	•••••	••••••	••••••
•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••	

* 0	019655537718 *
(d)	Find a matrix P and a diagonal matrix D such that $\mathbf{A}^n = \mathbf{PDP}^{-1}$, where <i>n</i> is a positive integer. [6]

© UCLES 2024

19 Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

