

Bruce M. Boghosian

Testing binomial data

Large-sample testing

Small-sample testing

Summary

Hypothesis testing and decision rules

Testing binomial data

Bruce M. Boghosian

Department of Mathematics

Tufts University

- 1 Testing binomial data
- 2 Large-sample testing
- 3 Small-sample testing
- Summary

Single Bernoulli trial

Bruce M. Boghosian

Testing binomial data

Large-sample testing

Small-sample testing

Summar

- We have $Y \in \{0,1\}$ (0 = tails and 1 = heads).
- Bernoulli distribution for one trial $p_Y(k; p) = p^k (1-p)^{1-k}$

$$p_Y(0; p) = p^0 (1 - p)^{1-0} = 1 - p$$

 $p_Y(1; p) = p^1 (1 - p)^{1-1} = p$

- We have E(Y) = p and Var(Y) = p(1 p) for one trial
- \blacksquare Parameter p is unknown.

Multiple Bernoulli trials – the Binomial Distribution

Bruce M. Boghosian

Testing binomial data

Large-sample testing

Small-sample testing

- We conduct *n* independent Bernoulli trials
- Random vars. $\vec{Y} = \langle Y_1, Y_2, \dots, Y_n \rangle$ where $Y_j \in \{0, 1\}$.
- Outcomes $\vec{k} = \langle k_1, k_2, \dots, k_n \rangle$ where $k_i \in \{0, 1\}$.
- Random var. for total heads is $Y:=\sum_{j=1}^n Y_j=n\overline{Y}$
- Outcome for total number of heads is $k:=\sum_{j=1}^n k_j=n\overline{k}$
- \blacksquare Binomial distribution for n trials is

$$p_Y(k;p) = \binom{n}{k} p^k (1-p)^{n-k} = \binom{n}{n\overline{k}} p^{n\overline{k}} (1-p)^{n(1-\overline{k})}.$$

- We have E(Y) = np and Var(Y) = np(1-p) for n trials
- Parameter p is unknown.

Large-sample versus small-sample testing

Bruce M. Boghosian

Testing binomial data

Large-sample testing

Small-sample testing

Julillia

Note
$$0 \le Y \le n$$
 and $E(Y) = np$ and $\sigma_Y = \sqrt{np(1-p)}$

- If n is sufficiently large, $[pn 3\sigma_Y, pn + 3\sigma_Y] \subset [0, n]$
- Because p is unknown, we use H_0 to make this judgement
- We do a *large-sample test*, relying on CLT, if

$$0 < np_0 - 3\sqrt{np_0(1 - p_0)} < np_0 + 3\sqrt{np_0(1 - p_0)} < n.$$

$$\therefore 0 < p_0 - 3\sqrt{p_0(1 - p_0)/n} < p_0 + 3\sqrt{p_0(1 - p_0)/n} < 1.$$

- If above true, normal distribution f_Y obtained from CLT comfortably fits in [0, n] (respectively $f_{\overline{Y}}$ fits in [0, 1])
- If above not true, we must conduct a *small-sample test*.

Large-sample testing

Bruce M. Boghosian

Testing binomial data

Large-sample testing

Small-sample testing

Summary

Suppose Z is distributed as a standard normal, where

$$Z := rac{Y - np_0}{\sqrt{np_0(1 - p_0)}} = rac{\overline{Y} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

■ Take n samples, k_1, \ldots, k_n , let $k = \sum_{j=1}^{n} k_j$, and define

$$z := \frac{k - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{k - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

- Use hypothesis testing method for standard normal r.v.
- Find thresholds for not rejecting H_0 if it is true with $100(1-\alpha)\%$ confidence.

Large-sample testing (continued)

Bruce M. Boghosian

Testing binomial data

Large-sample testing

Small-sample testing

Summary

■ Take *n* samples, k_1, \ldots, k_n , let $k = \sum_{i=1}^{n} k_i$, and define

$$z := \frac{k - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{\overline{k} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

- Three tests similar to earlier work on hypothesis testing:
 - To test $H_0: p = p_0$ versus $H_1: p > p_0$ at the α level of significance, reject H_0 if $z \ge +z_\alpha$
 - To test $H_0: p = p_0$ versus $H_1: p < p_0$ at the α level of significance, reject H_0 if $z \le -z_\alpha$
 - To test $H_0: p = p_0$ versus $H_1: p \neq p_0$ at the α level of significance, reject H_0 if z is either $\leq -z_{\alpha/2}$ or $\geq +z_{\alpha/2}$.

Example: Do people postpone their deaths?

Bruce M. Boghosian

Testing binomial data

Large-sample testing

Small-sample testing

Summary

- Study of n = 747 obituaries
- Only 60, or 8%, died during the three months prior to their birthday.
- If deaths were distributed uniformly, one would expect this figure to be 25%.
- Is the decrease from 25% to 8% statistically significant?

Example: Death postponement (continued)

Bruce M. Boghosian

Testing binomial data

Large-sample testing

Small-sample testing

Summary

- Define k_j , for j = 1, ..., 747 to be
 - ullet = 1 if jth person died in three months prior to birthday
 - \blacksquare = 0 if jth person died at any other time of the year
- Then $p_e = \overline{k} = \frac{1}{n} \sum_{j=1}^{n} k_j$ is fraction of deaths three months prior to a birthday
- Take H_0 : p = 0.25 since the contrary seems perverse.
- Take H_1 : p < 0.25 and demand confidence with $\alpha = 0.05$.

Tuffs Example: Death postponement (continued)

First note that $np_0 = 747(0.25) = 186.75$ and

$$\sigma = \sqrt{747(0.25)(1 - 0.25)} = 11.83.$$

- np_0 more than 3σ greater than zero and less than n=747.
- Hence large-sample testing is warranted.
- Null hypothesis is that $p = p_0 = 0.25$, and n = 747
- Calculate

$$z = \frac{k - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{60 - 747(0.25)}{\sqrt{747(0.25)(1 - 0.25)}} = -10.7.$$

- The above is far, far less than $-z_{0.05} = -1.64$.
- Very strong evidence ($\gg 95\%$ confidence) effect is real.

Tuffs Small-sample testing – explained by example

Small-sample

Example: Experimental drug test with n = 19 patients

- Old treatment is known to be 85% effective
- We wish to test H_0 : p = 0.85 versus H_1 : $p \neq 0.85$
- For n = 19 and $p_0 = 0.85$,
 - $p_0 = 16.15$
 - $\sigma = \sqrt{19(0.85)(0.15)} = 1.556$
- Note that $np_0 + 3\sigma = 16.15 + 3(1.556) = 20.819 > 19$
- Indicates that small-sample testing is necessary

Tufts How does small-sample testing work?

Small-sample

List 19 possibilities:

$$\begin{array}{c|c} k & P(Y=k) = \binom{19}{k} (0.85)^k (0.15)^{19-k} \\ \hline 6 & 1.99151 \times 10^{-7} \\ 7 & 2.09582 \times 10^{-6} \\ 8 & 0.000178145 \\ 9 & 0.000123382 \\ 10 & 0.000699164 \\ 11 & 0.00324158 \\ 12 & 0.012246 \\ 13 & 0.0373659 \\ 14 & 0.0907457 \\ 15 & 0.171409 \\ 16 & 0.242829 \\ 17 & 0.242829 \\ 18 & 0.152892 \\ 19 & 0.0455994 \\ \end{array}$$

- Note P(Y < 13) = 0.053..., and P(Y = 19) = 0.045...
- Hence we reject H_0 if k < 13 or k = 19.
- Note that confidence interval is asymmetric.

Tufts Summary

- We have studied the testing of binomial data
- We have described two cases
 - Large-sample testing
 - Small-sample testing
- We have provided an example of each kind of testing.