8.1.1

EE24BTECH11007 - Arnav Makarand Yadnopavit

Question: Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis in the first quadrant.

Solution:

Theoretical Solution:

Finding Area

$$A = \int_{a}^{b} y_{2}(x) - y_{1}(x) dx \tag{1}$$

$$y_2(x) = \sqrt{x} \tag{2}$$

$$y_1(x) = 0 (3)$$

$$b = 4 \tag{4}$$

$$a = 1 \tag{5}$$

$$A = \int_{1}^{4} \sqrt{x} dx \tag{6}$$

$$A = \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{1}^{4} \tag{7}$$

$$A = \frac{2}{3} [8 - 1] \tag{8}$$

Computational Solution:

Using the trapezoidal rule to get the area

The trapezoidal rule is as follows.

$$\int_{a}^{b} f(x) dx \approx \sum_{k=1}^{N} \frac{f(x_{k+1}) + f(x_{k})}{2} h$$
 (10)

where

$$h = \frac{b - a}{N} \tag{11}$$

...The difference equation obtained is

$$\int_{1}^{4} f(x) dx = \sum_{k=1}^{N} \frac{\sqrt{x_{k+1}} + \sqrt{x_{k}}}{2} h$$
 (12)

$$h = 0.00001 \tag{13}$$

$$N = 300000 \tag{14}$$

Using the code answer obtained is 4.6666666667341

