

a) Kappale (massa M) liukuu alas kaltevaa tasoa (kaltevuuskulma β) ja sillä on nopeus v_0 etäisyydellä d joustavasta puskurista. Kappaleen ja tason välinen liikekitkakerroin on μ_k . Puskurin jousen jousivakio on k ja siihen on kiristysvaijereilla järjestetty esipuristuma δ_0 .

Laske työlauseen avulla kappaleen törmäyksestä puskuriin syntyvä suurin lisäpuristuma x ja etäisyys d₁, jonka kappale liikkuu puskurista irrottuaan kaltevaa tasoa pitkin ylös. **3 p**

b) Kuvassa olevaa mekanismia sanotaan Maltan ristiksi ja sen tarkoitus on synnyttää pyörälle C säännöllisesti toistuva katkonainen rotaatioliike. Pyörästä A ja siihen kiinnitetystä lukituslevystä B koostuvaan osaan on kiinnitetty tappi P, joka osuu pyörässä C olevaan säteittäiseen uraan, kun $\theta=45^{\circ}$ ja aiheuttaa sen jälkeen pyörälle C neljäsosakierroksen mittaisen rotaatioliikkeen. Pyörän A kulmanopeus on vakio ω_A myötäpäivään. Määritä pyörän C kulmanopeus ω_C ja kulmakiihtyvyys α_C , kun $\theta=\theta_1$. **3 p**

Lähtöarvot:

$$\begin{split} M = & (40 + 0.5 \cdot X) kg & v_0 = (2 + 0.03 \cdot X) m/s & \mu_k = 0.4 - 0.003 \cdot X \\ \beta = & (26 - 0.12 \cdot X)^o & d = (0.5 + 0.005 \cdot X) m & \delta_0 = (0.16 - 0.001 \cdot X) m \\ k = & (18 + 0.2 \cdot X) kN/m & g = 9.81 m/s^2 \end{split}$$

$$\omega_A = (1.5 + X/40)1/s$$
 $\theta_1 = (15 + X/4)^{\circ}$ $c = (170 + 2 \cdot X)mm$