

Module 7 Tutorial Sheet 1

BMAT201L-Complex Variables and Linear Algebra

1. Find all the eigen values and eigen vectors of

(i)
$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 (iv)
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

2. If $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$, find eigen values and eigen vectors for the following

(i) A^{T} (ii) A^{-1} (iii) A^{θ} (iv) $4A^{-1}$ (v) A^{2} (vi) $A^{2} - 2A + I$ (vii) $A^{3} + 2I$ (viii) adj A.

- 3. Find the values of μ which satisfy the equation $A^{100}X = \mu X$ where $A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & -2 & -2 \\ 1 & 1 & 0 \end{bmatrix}$.
- 4. Determine algebraic and geometric multiplicity of the following matrices:

(i)
$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

5. Find orthogonal eigen vectors for the following matrix:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{array} \right]$$

6. Verify Caley-Hamilton theorem for the following matrices and hence find A^{-1} , A^{-2} , A^4

(i)
$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$$

- 7. Show that the matrix $A=\begin{bmatrix}0&c&-b\\-c&0&a\\b&-a&0\end{bmatrix}$ satisfies Cayley-Hamilton theorem and hence find A^{-1} , if it exists.
- 8. Find the characteristic roots of the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and verify Cayley-Hamilton theorem for this matrix. Find A^{-1} and also express $A^5 4A^4 7A^3 + 11A^2 A 10I$ as a linear polynomial in A.
- 9. If $A=\begin{bmatrix}1&0&0\\1&0&1\\0&1&0\end{bmatrix}$, prove by induction that for every integer $n\geq 3,\ A^n=A^{n-2}+A^2-I$. Hence, find A^{50} .