Analogová a digitální fotografie. Principy fotoaparátů.

Martin Zmitko

Fakulta informačních technologií Vysokého učení technického v Brně
Božetěchova 1/2. 612 66 Brno - Královo Pole
xzmitk01@stud.fit.vutbr.cz

Dírková komora

Obrázek: Ilustrace primitivní dírkové komory

Omezení dírkové komory

Obrázek: Ilustrace dírkové komory s velkou dírkou, umožňující více propuštěného světla za cenu rozostřeného obrazu

Dírková komora s čočkou

Obrázek: Dírková komora s konvexní čočkou umožňující zaostření obrazu

Chromatická aberace

Obrázek: Ilustrace chromatické aberace – optickou vadu způsobenou vlivem indexu lomu materiálu na vlnovou délku světla

Achromát

Obrázek: Ilustrace achromátu – čočky potlačující chromatickou aberaci zaostřením dvou barev do stejného bodu

Astigmatismus

Obrázek: Ilustrace astigmatizmu, obraz bodu G je v bodě B_M pro paprsky v rovině M, ale v bodě B_S pro paprsky v rovině S

Zeiss Protar (Anastigmat), 1890

Technologie digitálních snímačů

- Charge-coupled device (CCD)
 - Vzájemně propojené pole fotocitlivých MOS tranzistorů
 - Čtení hodnot jedním zesilovačem postupný přesun nábojů
 - Vysoká kvalita snímků
 - Vysoká cena
- Aktivní pixelové senzory
 - Tvořené fotodiodou a CMOS tranzistory pro každý pixel
 - Přímé čtení hodnot každého pixelu
 - Méně komplikovaná výroba, levnější
 - Dominantní technologie

Snímání barev

- Senzory z principu monochromatické
- Pro digitální data nutnost uchovat intenzitu hlavních barevných složek (RGB)
- 3CCD
 - Tři snímače pro každý pixel
 - Světelný paprsek rozdělen systémem optických hranolů
 - Nejpřesnější, profesionální technika
- Pole barevných filtrů
 - Mozaika filtrů propouštějících jedinou barvu přes senzory
 - Ztráta podstatné části informace o barvě každý pixel nese informaci o intenzitě jedné barvy
 - Nutnost algoritmického zpracování interpolace
 - Levná a dominantní technologie

Bayerův filtr

Obrázek: Ilustrace mozaiky Bayerova filtru na digitálním senzoru, poměr R:G:B je 1:2:1

Paprsková maticová optika

- Metoda simulace pomocí maticových transformací v paraxiálním prostoru
- $\sin \theta \doteq \theta$
- Optický prvek popsán 2x2 maticí, paprsek je vektor tvořený vzdáleností a úhlem od optické osy
- Propagace v prostředí s konstantním indexem lomu:

$$\begin{bmatrix} x_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 1 & O \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ \theta_1 \end{bmatrix}$$

$$x_2 = x_1 + d\theta_1$$
$$\theta_2 = \theta_1$$

Paprsková maticová optika

- Matice lze skládat násobením popis celého systému jednou transformací
- Tlustá čočka posloupnost:
 - 1) lomu na přechodu z prostředí s indexem lomu n_1 s poloměrem křivosti R_1
 - 2) propagace v prostředí s indexem lomu čočky n_2 o délce tloušť ky čočky d
 - 3 lomu na přechodu s poloměrem křivosti R_2 do původního prostředí s indexem lomu n_1

$$\begin{bmatrix} x_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{n_2 - n_1}{R_2 n_1} & \frac{n_2}{n_1} \end{bmatrix} \begin{bmatrix} 1 & O \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{n_1 - n_2}{R_1 n_2} & \frac{n_1}{n_2} \end{bmatrix} \begin{bmatrix} x_1 \\ \theta_1 \end{bmatrix}$$

Děkuji za pozornost !