AND AND DATA MINING LAB (CSD-421) LAB ASSIGNMENT 5

AKSHAT RAJ VANSH (185520)

February 25, 2022

Computer Science Department
National Institute of Technology, Hamirpur

1 Lab Assignment 5

```
import pandas as pd
In [ ]:
        input_data = pd.read_csv(r'..\\Inputs\\diabetes.csv')
        input_data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 768 entries, 0 to 767
        Data columns (total 9 columns):
         #
             Column
                                       Non-Null Count Dtype
        ---
                                        -----
         0
             Pregnancies
                                       768 non-null
                                                       int64
         1
             Glucose
                                       768 non-null
                                                       int64
             BloodPressure
                                       768 non-null
                                                       int64
                                       768 non-null
             SkinThickness
                                                       int64
             Insulin
                                       768 non-null
                                                       int64
                                                       float64
                                       768 non-null
         6
             DiabetesPedigreeFunction 768 non-null
                                                       float64
         7
             Age
                                       768 non-null
                                                       int64
         8
             Outcome
                                       768 non-null
                                                       int64
        dtypes: float64(2), int64(7)
        memory usage: 54.1 KB
```

1. Construct a scatterplot with x-axis to be the mass variable and y-axis to be the age variable. Moreover, determine the color of the points based on the class of the candidate (0 or 1).

```
In [ ]: data = input_data[['BMI','Age','Outcome']]
   data.head()
```

```
Out[]:
            BMI Age Outcome
         0 33.6
                   50
                              1
         1 26.6
                              0
                   31
         2 23.3
                   32
                              1
         3 28.1
                   21
                              0
         4 43.1
                   33
                              1
```

```
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(8,6))
ax.scatter(data['BMI'],data['Age'],c=data['Outcome'])
plt.xlabel('BMI')
plt.ylabel('Age')
plt.title('BMI vs Age')
ax.legend(['Diabetes','No Diabetes'],loc='upper right')
```


2. Create a distance matrix for the data.

[]:	<pre>import pandas as pd from scipy.spatial import distance_matrix pd.DataFrame(distance_matrix(data[['BMI']], data[['Age']]), index=data.index, colo </pre>															lu		
]:		0	1	2	3	4	5	6	7	8	9		758	759	760	761	762	7
	0	16.4	2.6	1.6	12.6	0.6	3.6	7.6	4.6	19.4	20.4		7.6	32.4	11.6	9.4	0.6	2
	1	23.4	4.4	5.4	5.6	6.4	3.4	0.6	2.4	26.4	27.4		0.6	39.4	4.6	16.4	6.4	31
	2	26.7	7.7	8.7	2.3	9.7	6.7	2.7	5.7	29.7	30.7		2.7	42.7	1.3	19.7	9.7	3!
	3	21.9	2.9	3.9	7.1	4.9	1.9	2.1	0.9	24.9	25.9		2.1	37.9	6.1	14.9	4.9	3,
	4	6.9	12.1	11.1	22.1	10.1	13.1	17.1	14.1	9.9	10.9		17.1	22.9	21.1	0.1	10.1	1!
	•••																	
	763	17.1	1.9	0.9	11.9	0.1	2.9	6.9	3.9	20.1	21.1		6.9	33.1	10.9	10.1	0.1	3(
	764	13.2	5.8	4.8	15.8	3.8	6.8	10.8	7.8	16.2	17.2		10.8	29.2	14.8	6.2	3.8	21
	765	23.8	4.8	5.8	5.2	6.8	3.8	0.2	2.8	26.8	27.8		0.2	39.8	4.2	16.8	6.8	31
	766	19.9	0.9	1.9	9.1	2.9	0.1	4.1	1.1	22.9	23.9		4.1	35.9	8.1	12.9	2.9	37
	767	19.6	0.6	1.6	9.4	2.6	0.4	4.4	1.4	22.6	23.6		4.4	35.6	8.4	12.6	2.6	3;
	768 r	ows ×	768 0	olum	ns													

```
In []: from sklearn.cluster import AgglomerativeClustering
   import numpy as np
   cluster_single = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linka(cluster_single.fit_predict(np.array(data[['BMI','Age']]))
```

4. Make a hierarchical clustering analysis using the complete linkage method. Then create an object that contains only two clusters.

```
In [ ]: from sklearn.cluster import AgglomerativeClustering
    import numpy as np
    cluster_complete = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linl
    cluster_complete.fit_predict(np.array(data[['BMI','Age']]))
```

```
5. Construct the trees that are produced by Questions 2 and 3 and draw the two clusters
         (at the plots)
In [ ]: import scipy.cluster.hierarchy as shc
         plt.figure(figsize=(18, 6))
         plt.title("Single Heirarchical Clustering Dendrogram")
         dend_complete = shc.dendrogram(shc.linkage(data[['BMI','Age']], method='single'))
                                          Single Heirarchical Clustering Dendrogram
        15.0
        12.5
         10.0
         5.0
                                        plt.figure(figsize=(18, 6))
        plt.title("Complete Heirarchical Clustering Dendrogram")
        dend_complete = shc.dendrogram(shc.linkage(data[['BMI','Age']], method='complete')
                                                    main
                                        Complete Heirarchical Clustering Dendrogram
```

6. Construct two scatterplot with x-axis to be the mass variable and y-axis to be the age variable. Moreover, determine the color of the points based on the cluster that those points belong to. Each scatterplot is for different clustering method.

```
In [ ]: fig, ax = plt.subplots(1,2,figsize=(18,6))
         ax[0].set_xlabel('BMI')
         ax[0].set_ylabel('Age')
         ax[0].set title('Single Heirarchical Clustering')
         ax[0].scatter(data['BMI'],data['Age'], c=cluster_single.labels_, cmap='rainbow')
         ax[1].set_xlabel('BMI')
         ax[1].set_ylabel('Age')
         ax[1].set_title('Complete Heirarchical Clustering')
         ax[1].scatter(data['BMI'],data['Age'], c=cluster_complete.labels_, cmap='rainbow')
         <matplotlib.collections.PathCollection at 0x2b56df74dc0>
Out[]:
                        Single Heirarchical Clustering
                                                                      Complete Heirarchical Clustering
          70
                                                          70
                                                          40
                                                          20
```

7. Construct a scatterplot with x-axis to be the mass variable and y-axis to be the age variable. Moreover, determine the color of the points based on the cluster (retrieved from k-mean method) that those points belong to.

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=2, random_state=0).fit(data[['BMI','Age']])
kmeans.predict(data[['BMI','Age']])
fig, ax = plt.subplots(figsize=(8,6))
ax.set xlabel('BMI')
ax.set_ylabel('Age')
ax.set_title('KMeans Clustering')
ax.scatter(data['BMI'],data['Age'], c=kmeans.labels_, cmap='rainbow')
```

<matplotlib.collections.PathCollection at 0x2b56e05c580> Out[]:

8. Construct a scatterplot with x-axis to be the mass variable and y-axis to be the age variable. Moreover, determine the color of the points based on the cluster (retrieved from k-median method) that those points belong to.

```
In [ ]: from sklearn_extra.cluster import KMedoids
   kmediods = KMedoids(n_clusters=2, random_state=0).fit(data[['BMI','Age']])
   kmediods.predict(data[['BMI','Age']])
   fig, ax = plt.subplots(figsize=(8,6))
   ax.set_xlabel('BMI')
   ax.set_ylabel('Age')
   ax.set_title('KMeans Clustering')
   ax.scatter(data['BMI'],data['Age'], c=kmediods.labels_, cmap='rainbow')
```

