Akademia Górniczo-Hutnicza w Krakowie

Wydział Informatyki, Elektroniki i Telekomunikacji

Sterownik Kotła Centralnego Ogrzewania

Kierunek, rok studiów:

Informatyka, IV rok

Przedmiot:

Systemy czasu rzeczywistego

Prowadzący:

dr inż. Michał Turek

Autorzy:

Jakub Tokaj Aleksander Żarnowski

Wizja projektu

Celem projektu jest stworzenie modelu systemu czasu rzeczywistego, używając narzędzia IBM Rhapsody.

W ramach projektu ma powstać produkt, symulujący działanie sterownika kotła centralnego ogrzewania. Wzorem produktu finalnego jest urządzenie firmy JUMAR - Regulator temperatury REG-02, którego dokumentacja dostępna jest pod adresem http://www.jumar.eu/myfiles/Manual/Instrukcja%20REG-02.pdf.

Regulator firmy JUMAR przeznaczony jest do regulacji temperatury wody w kotle grzewczym opalanym paliwem stałym przy użyciu wentylatora i zmiany jego prędkości obrotowej. Dzięki dobowemu zegarowi możliwe jest obniżanie temperatury w okresie mniejszego zapotrzebowania na energie cieplną. W skład produktu REG-02 wchodzą:

- jednostka sterująca
- tachometr
- czujnik temperatury wody w kotle grzewczym
- wyświetlacz
- zegar
- pompa centralnego ogrzewania
- wejście do termostatu

Urządzenie firmy JUMAR pozwala na ustalenie:

- zadanej temperatury wody w kotle grzewczym (1-99 °C)
- maksymalnych obrotów wentylatora (30-99 %)
- szybkości przyrostu temperatury (1-99 °C/h) aby energia była w jak największym stopniu przekazana wodzie grzewczej, a nie wydmuchana w komin
- minimalnych obrotów wentylatora (5-30 %) wartość do której zmniejsza się prędkość obrotowa wentylatora po rozgrzaniu wody do wartości zadanej
- -~histerezy (1-5 °C) wartości o jaką musi spaść temperatura wody w kotle grzewczym, aby uruchomić pełną moc wentylatora
- pilnowania kotła przed wychłodzeniem wartość typu true/false gdy przy pracy wiatraka na maksymalnych obrotach przez 30 minut nie wzrośnie temperatura wody, wentylator przejdzie w stan obrotów minimalnych
- godzin początku i wyłączenia obniżenia temperatury (0-23) pozwala na obniżenie temperatury wody grzewczej w okresie np. nocnym
- wartości obniżenia temperatury według zegara (0-20 °C) wartość o jaka obniży sie docelowa temperatura wody w kotle grzewczym w okresie obniżenia temperatury
- wartość obniżenia temperatury według termostatu pokojowego (0-20 °C) wartość o
 jaka obniży sie docelowa temperatura wody w kotle grzewczym w gdy termostat
 prześle informację o osiągnięciu temperatury ustawionej na nim jako docelowa
- ręczne włączenie lub wyłączenie wentylatora

Postanowiliśmy dodatkowo wzbogacić nasz projekt o termostat pokojowy, za pomoc którego można informować urządzenie, że temperatura w pomieszczeniu jest zgodna z ustawieniami termostatu. Nie znając dokładnie budowy wewnętrznej urządzenia stworzyliśmy dodatkowe 3 moduły:

- wyświetlacz LCD odpowiada za sterowanie wyświetlaniem odpowiednich danych, obsługę menu
- CPU jednostka sterująca wentylatorem na podstawie sygnałów z sensorów decyduje z jaką prędkością powinien działać wentylator
- dispatcher odpowiada za komunikację pomiędzy czujnikami dostępnymi w urządzeniu a wyświetlaczem i CPU, centralna jednostka w urządzeniu

Opis wymagań stawianych systemowi

Po przeanalizowaniu dokumentacji regulatora REG-02 oraz wzięciu pod uwagę naszych pomysłów, stworzyliśmy następującą listę funkcjonalności:

- ustawianie temperatury wody w kotle w trybie pracy normalnej oraz o obniżonej wartości
- regulacja szybkości przyrostu temperatury
- ustawianie normalnej oraz minimalnej prędkości obrotowej wentylatora
- pilnowanie kotła przed wychłodzeniem
- ustawianie czasu początku i wyłączenia okresu obniżonej temperatury
- włączanie obniżonej temperatury na podstawie termostatu pokojowego
- ustawianie poziomu wewnętrznego sprzężenia regulatora
- sterowanie pompą centralnego ogrzewania

Przypadki użycia

Przypadek użycia	Ustawienie temperatury wody
Krótki opis	Zmiana zadanej wartości temperatury wody grzewczej
Warunki wstępne	Wyświetlacz pokazuje aktualną temperaturę wody
Βετορλικι σλόνκον:	

Przepływ główny:

- 1) Użytkownik wciska *Plus/Minus*, aby zwiększyć/zmniejszyć zadaną wartość temperatury wody,
- 2) System zmienia wartość oraz od razu ją zapamiętuje.

Przypadek użycia	Włączenie wentylatora				
Krótki opis Użytkownik chce włączyć wentylator.					
Warunki wstępne	Wentylator jest włączony				

Przepływ główny:

- 1) Użytkownik wciska przycisk Fan.
- 2) System włącza wentylator.
- 3) System zapal diodę FAN_LED sygnalizującą pracę wentylatora
- 4) System gasi diodę FAN_OFF_LED sygnalizującą włączenie wentylatora.

Przypadek użycia	Wyłączenie wentylatora					
Krótki opis	Użytkownik chce wyłączyć wentylator.					
Warunki wstępne	Brak					

Przepływ główny:

- 1) Użytkownik wciska przycisk Fan.
- 2) System wyłącza wentylator.
- 3) System gasi diodę FAN_LED sygnalizującą pracę wentylatora
- 4) System gasi diodę FAN_OFF_LED sygnalizującą włączenie wentylatora.

Przypadek użycia	Zmiana obrotów wentylatora						
Krótki opis	Użytkownik chce zmienić maksymalne obroty wentylatora						
Warunki wstępne Wyświetlacz pokazuje aktualną temperaturę wody							

Przepływ główny:

- 1) Użytkownik raz wciska przycisk MENU
- 2) System wyświetla wartość parametry Po
- 3) Użytkownik wciskając przycisk *Plus* lub *Minus* zwiększa lub zmniejsza ustawioną wartość maksymalnych obrotów wentylatora

Przypadek użycia	Ustawienie zegara					
Krótki opis	Użytkownik chce zmienić aktualnie ustawioną godzinę lub minutę					
Warunki wstępne	Wyświetlacz pokazuje aktualną temperaturę wody					

Przepływ główny:

- 1) Użytkownik wciska przycisk Clock.
- 2) System zapala diodę *MINUTES_LED* informującą, że obecnie ustawianą wartością są minuty.
- 3) Użytkownik wciskając przycisk Plus lub Minus
- 4) System zwiększa lub zmniejsza liczbę minut.
- 5) Użytkownik wciska drugi raz przycisk *Clock.*
- 6) System zapala diodę HOURS_LED informującą o ustawianiu godzin.
- 7) Użytkownik wciskając przycisk Plus lub Minus
- 8) System zwiększa lub zmniejsza liczbę godzin.

Przypadek użycia	Ustawienie parametrów						
Krótki opis	Użytkownik chce zmienić ustawienie pozostałych dostępnych parametrów						
Rozszerza	Zmiana obrotów wentylatora						

Przepływ główny:

- 1) Następne wciśnięcia przycisku MENU powoduje przejście do ustawień kolejnych parametrów:
 - minimalne obroty wentylatora
 - godzina początku obniżenia temperatury
 - godzina wyłączenia obniżenia temperatury
 - wartość obniżenia temperatury według Zegara
 - wartość obniżenia temperatury według termostatu pokojowego
 - pilnowanie kotła przed wychłodzeniem
 - szybkość przyrostu temperatury
 - histereza
 - powrót do pokazywania aktualnej temperatury wody w kotle
- 2) Użytkownik wciska Plus lub Minus.
- 3) System zwiększa lub zmniejsza wartość parametru.

Interfejs użytkownika

Architektura systemu

System zbudowany jest z 8 modułów:

- Dispatcher
- LCDDisplay
- CPU
- Clock
- ExternalThermomether
- Tachometer
- WaterTemperatureSensor
- WaterPump

Centralnym elementem systemu jest Dispatcher rozporządzający tym, gdzie kolejne zdarzenia mają trafić. Jest pośrednikiem w łączności między czujnikami, sterownikiem wyświetlacza oraz jednostką sterującą wiatrakiem. CPU na podstawie ustawionych parametrów zmienia tryb pracy wiatraka - zmniejsza lub zwiększa jego prędkość obrotową, oraz włącza lub wyłącza pompę wodną. Sterownik wyświetlacza otrzymując kolejne zdarzenia wyświetla wartości parametrów, lub przesłane z czujników na wyświetlaczu.

Integracja ze środowiskiem zewnętrznym

W celu pokazania działania systemu zintegrowaliśmy go z zewnętrzną aplikacją napisaną w języku Java.

Dodane zostało prawdziwe GUI stworzone w Java SWING, na którym wyświetlane są odpowiednie informację z systemu oraz, przez przyciski, umożliwiona jest interakcja z systemem.

W odróżnieniu od interfejsu użytkownika z trybu Animation Rhapsody, tak stworzone GUI może byc używane w aplikacji produkcyjnej.

Dodatkowo w celu zasymulowania prawdziwej pracy systemu, zaimplementowany został interfejs czujnika temperatury. Implementacja symuluje pracę prawdziwego czujnika temperatury, i z jej pomocą możemy łatwo sprawdzić działanie systemu.

Testy

Główny przypadek testowy.

Odczytanie temperatury, oraz parametrów nastawy pieca do sterowania wentylatorem.

W naszym systemie, mamy wiele parametrów dzięki którym regulujemy pracę wentylatora. CPU - rdzeń systemu, włącza lub wyłącza wentylator w zależności od odczytu z czujników: temperatury, godziny i termostatu.

Poniżej przedstawiona została analiza zmiennych systemu które mają wpływ na ten przypadek użycia. Oznaczenia:

- MAXTEMP ustawiona na piecu temperatura
- ACTTEMP temperatura zmierzona przez czujnik
- HC wartość histerezy
- HC_ON czy histereza jest włączona
- HN godzina początku okresu w którym temperatura ma być obniżona
- HR godzina końca okresu w którym temperatura ma być obniżona
- CLOCK_HR aktualna godzina
- OF czy jest włączona funkcja pilnowania pieca
- THERMO wskazanie z termostatu
- -C wartość obniżenia temperatury w okresie nocnym
- -c wartość obniżenia temperatury przy pozytywnym wskazaniu termostatu
- CH wartość szybkości przyrostu temperatury

MAXTEMP	ACTTEMP	НС	HC_ON	HN	HR	CLOCK_HR	OF	THERMO	-C	-c	СН	FAN_ON
41	41	0	0	0	0	0	0	0	0	0	1	off
42	42	1	1	1	1	1	1	1	-1	-1	2	on
43	43	2		2	2	2			-2	-2	98	
44	44	3		22	22	22			-19	-19	99	
45	45	4		23	23	23			-20	-20	-1	
46	46	5		24	24	24			-21	1	0	
47	47	6		-1	-1	-1			1	-21	100	
48	48	7										
49	49	-1										
50	50											
-1	-1											
0	err											
100	100											

Wartości wypisane na czerwono - sytuacja błędna

Po analizie zmiennych systemu, wyróżnione zostały następujące przypadki testowe.

Wartości przypadków testowych:

Attribute	TestCase1	TestCase2	TestCase3	TestCase4		
MAXTEMP	41	50	45	48		
ACTTEMP	50	48	47	45		
НС	5	3	0	4		
HC_ON	1	1	0	1		
HN	22	12	16	1		
HR	6	12	23	1		
CLOCK_HR	16	12	18	12		
OF	1	1	0	1		
THERMO	1	0	1	0		
-C	0	10	15	12		
-с	0	10	10	8		
СН	50	30	45	38		
FAN_ON	0	1	0	0		

Dla każdego przypadku testowego przeprowadziliśmy test systemu, przy testach tworzyliśmy i analizowaliśmy Animated Sequence Diagramy (diagramy były zbyt duże by umieścić je w dokumentacji - znajdują się w projekcie).

Z analizy diagramów sekwencji wynika, iż działanie systemu było poprawne i zgodne z oczekiwaniami. Po inicjalizacji systemu i czujników, czujniki wykonały i przesłały aktualne pomiary do CPU. CPU obliczył na podstawie danych, zegara, oraz ustawionych parametrów jaki stan powinien mieć aktualnie wentylator, i wysłał odpowiedni event do tachometru.