Имплементация на МКЕ за решаване на уравненията на Навие-Стокс за графични процесори Семинар по математическо моделиране

Васил Пашов

15 март 2021г.

Постановка на задачата

• Какво искаме да опишем

Постановка на задачата

- Какво искаме да опишем
- Търсени величини

$$\frac{\partial \boldsymbol{u}(\boldsymbol{x},t)}{\partial t} + (\boldsymbol{u}(\boldsymbol{x},t) \cdot \nabla) \boldsymbol{u}(\boldsymbol{x},t) + \nabla p(\boldsymbol{x},t) - \nu \Delta \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{f}(\boldsymbol{x},t)$$
$$\nabla \cdot \boldsymbol{u}(\boldsymbol{x},t) = 0$$

 $m{u} \in \mathbb{R}^n$ е скоростта

$$\frac{\partial \boldsymbol{u}(\boldsymbol{x},t)}{\partial t} + (\boldsymbol{u}(\boldsymbol{x},t) \cdot \nabla) \boldsymbol{u}(\boldsymbol{x},t) + \nabla p(\boldsymbol{x},t) - \nu \Delta \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{f}(\boldsymbol{x},t)$$
$$\nabla \cdot \boldsymbol{u}(\boldsymbol{x},t) = 0$$

- $oldsymbol{u} \in \mathbb{R}^n$ е скоростта
- ullet $p\in\mathbb{R}$ е налягането

$$\frac{\partial \boldsymbol{u}(\boldsymbol{x},t)}{\partial t} + (\boldsymbol{u}(\boldsymbol{x},t) \cdot \nabla) \boldsymbol{u}(\boldsymbol{x},t) + \nabla p(\boldsymbol{x},t) - \nu \Delta \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{f}(\boldsymbol{x},t)$$
$$\nabla \cdot \boldsymbol{u}(\boldsymbol{x},t) = 0$$

- $oldsymbol{u} \in \mathbb{R}^n$ е скоростта
- ullet $p\in\mathbb{R}$ е налягането
- \bullet ν е вискозитет

$$\frac{\partial \boldsymbol{u}(\boldsymbol{x},t)}{\partial t} + (\boldsymbol{u}(\boldsymbol{x},t) \cdot \nabla) \boldsymbol{u}(\boldsymbol{x},t) + \nabla p(\boldsymbol{x},t) - \nu \Delta \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{f}(\boldsymbol{x},t)$$
$$\nabla \cdot \boldsymbol{u}(\boldsymbol{x},t) = 0$$

- $m{u} \in \mathbb{R}^n$ е скоростта
- ullet $p\in\mathbb{R}$ е налягането
- \bullet ν е вискозитет
- ullet f е съвкупност от обемни сили, напр. гравитация

• Разглеждаме инифинитезимален обем

- Разглеждаме инифинитезимален обем
 - Повърхностни сили

- Разглеждаме инифинитезимален обем
 - Повърхностни сили
 - Обемни сили

- Разглеждаме инифинитезимален обем
 - Повърхностни сили
 - Обемни сили

ullet Прилагаме II-ри закон на Нютон: $oldsymbol{f}
ho +
abla \cdot oldsymbol{T} =
ho rac{doldsymbol{u}}{dt}$

- Разглеждаме инифинитезимален обем
 - Повърхностни сили
 - Обемни сили

- ullet Прилагаме II-ри закон на Нютон: $oldsymbol{f}
 ho +
 abla \cdot oldsymbol{T} =
 ho rac{doldsymbol{u}}{dt}$
- ullet Конститутивен закон на Стокс: $oldsymbol{T} = p oldsymbol{I} + \mu (
 abla oldsymbol{u} + (
 abla oldsymbol{v})^T)$

Лагранжева и Ойлерова постановка. Материална производна.

• Лагранжева постановка: проследява частици

Лагранжева и Ойлерова постановка. Материална производна.

- Лагранжева постановка: проследява частици
- Ойлерова постановка: разглежда конкретна точка

Лагранжева и Ойлерова постановка. Материална производна.

- Лагранжева постановка: проследява частици
- Ойлерова постановка: разглежда конкретна точка
- Материална производна: $\frac{Dq(x(t),t)}{Dt} = \frac{\partial q}{\partial t} + \frac{\partial q}{\partial x} \frac{\partial x}{\partial t}$

ullet II-ри закон на Нютон: $oldsymbol{f}
ho +
abla \cdot oldsymbol{T} =
ho rac{doldsymbol{u}}{dt}$

- ullet II-ри закон на Нютон: $oldsymbol{f}
 ho +
 abla \cdot oldsymbol{T} =
 ho rac{doldsymbol{u}}{dt}$
- Релация на Стокс: $\mathbf{T} = p\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{v})^T)$

- ullet II-ри закон на Нютон: $oldsymbol{f}
 ho +
 abla \cdot oldsymbol{T} =
 ho rac{doldsymbol{u}}{dt}$
- ullet Релация на Стокс: $oldsymbol{T} = p oldsymbol{I} + \mu (
 abla oldsymbol{u} + (
 abla oldsymbol{v})^T)$
- ullet Материална производна: $rac{Doldsymbol{u}(oldsymbol{x}(t),t)}{Dt} = rac{\partialoldsymbol{u}}{\partial t} + rac{\partialoldsymbol{u}}{\partial oldsymbol{x}}rac{\partialoldsymbol{x}}{\partial t}$

- ullet II-ри закон на Нютон: $oldsymbol{f}
 ho +
 abla \cdot oldsymbol{T} =
 ho rac{doldsymbol{u}}{dt}$
- ullet Релация на Стокс: $oldsymbol{T} = p oldsymbol{I} + \mu (
 abla oldsymbol{u} + (
 abla oldsymbol{v})^T)$
- ullet Материална производна: $rac{Doldsymbol{u}(oldsymbol{x}(t),t)}{Doldsymbol{t}} = rac{\partialoldsymbol{u}}{\partial t} + rac{\partialoldsymbol{u}}{\partial oldsymbol{x}}rac{\partialoldsymbol{x}}{\partial t}$
- $\bullet \ \frac{\partial \mathbf{x}}{\partial t} = \mathbf{u}$

- ullet II-ри закон на Нютон: $oldsymbol{f}
 ho +
 abla \cdot oldsymbol{T} =
 ho rac{doldsymbol{u}}{dt}$
- ullet Релация на Стокс: $oldsymbol{T} = p oldsymbol{I} + \mu (
 abla oldsymbol{u} + (
 abla oldsymbol{v})^T)$
- ullet Материална производна: $rac{Doldsymbol{u}(oldsymbol{x}(t),t)}{Dt} = rac{\partialoldsymbol{u}}{\partial t} + rac{\partialoldsymbol{u}}{\partial oldsymbol{x}}rac{\partialoldsymbol{x}}{\partial t}$
- $\bullet \ \frac{\partial \mathbf{x}}{\partial t} = \mathbf{u}$
- ullet Комбинация: $rac{\partial oldsymbol{u}(oldsymbol{x},t)}{\partial t}+rac{\partial oldsymbol{u}}{\partial oldsymbol{x}}rac{\partial oldsymbol{x}}{\partial t}+
 abla p(oldsymbol{x},t)u\Deltaoldsymbol{u}(oldsymbol{x},t)=oldsymbol{f}(oldsymbol{x},t)$

- ullet II-ри закон на Нютон: $oldsymbol{f}
 ho +
 abla \cdot oldsymbol{T} =
 ho rac{doldsymbol{u}}{dt}$
- ullet Релация на Стокс: $oldsymbol{T} = p oldsymbol{I} + \mu (
 abla oldsymbol{u} + (
 abla oldsymbol{v})^T)$
- ullet Материална производна: $rac{Doldsymbol{u}(oldsymbol{x}(t),t)}{Doldsymbol{t}} = rac{\partialoldsymbol{u}}{\partial t} + rac{\partialoldsymbol{u}}{\partial oldsymbol{x}} rac{\partialoldsymbol{x}}{\partial t}$
- $\bullet \ \frac{\partial \mathbf{x}}{\partial t} = \mathbf{u}$
- ullet Комбинация: $rac{\partial oldsymbol{u}(oldsymbol{x},t)}{\partial t}+rac{\partial oldsymbol{u}}{\partial oldsymbol{x}}rac{\partial oldsymbol{x}}{\partial t}+
 abla p(oldsymbol{x},t)u\Deltaoldsymbol{u}(oldsymbol{x},t)=oldsymbol{f}(oldsymbol{x},t)$
- В Декартови координати:

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x}u + \frac{\partial u}{\partial y}v + \frac{\partial p}{\partial x} - \nu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f_x(\mathbf{x}, t)$$

$$\frac{\partial v}{\partial t} + \frac{\partial v}{\partial x}u + \frac{\partial v}{\partial y}v + \frac{\partial p}{\partial y} - \nu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) = f_y(\mathbf{x}, t)$$

• Проследяваме инфинитезимален обем

- Проследяваме инфинитезимален обем
- Константна плъност

- Проследяваме инфинитезимален обем
- Константна плъност
- Масата не се променя

- Проследяваме инфинитезимален обем
- Константна плъност
- Масата не се променя
- Формално

$$\frac{DdV\rho}{Dt} = 0$$

$$\rho \frac{DdV}{Dt} + dV \frac{D\rho}{Dt} = 0$$

$$\cdots$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{D\mathbf{u}}{Dt} + \nabla p(\mathbf{x}, t) - \nu \Delta \mathbf{u}(\mathbf{x}, t) = \mathbf{f}(\mathbf{x}, t)$$
$$\nabla \cdot \mathbf{u}(\mathbf{x}, t) = 0$$

• Частица се движи защото:

$$\frac{D\mathbf{u}}{Dt} + \nabla p(\mathbf{x}, t) - \nu \Delta \mathbf{u}(\mathbf{x}, t) = \mathbf{f}(\mathbf{x}, t)$$
$$\nabla \cdot \mathbf{u}(\mathbf{x}, t) = 0$$

- Частица се движи защото:
 - ullet Има налягане $abla p({m x},t)$

$$\frac{D\mathbf{u}}{Dt} + \nabla p(\mathbf{x}, t) - \nu \Delta \mathbf{u}(\mathbf{x}, t) = \mathbf{f}(\mathbf{x}, t)$$
$$\nabla \cdot \mathbf{u}(\mathbf{x}, t) = 0$$

- Частица се движи защото:
 - Има налягане $\nabla p(\mathbf{x}, t)$
 - ullet Съседните частици я "повличат" $u \Delta oldsymbol{u}(oldsymbol{x},t)$

$$\frac{D\mathbf{u}}{Dt} + \nabla p(\mathbf{x}, t) - \nu \Delta \mathbf{u}(\mathbf{x}, t) = \mathbf{f}(\mathbf{x}, t)$$
$$\nabla \cdot \mathbf{u}(\mathbf{x}, t) = 0$$

- Частица се движи защото:
 - ullet Има налягане $abla p(oldsymbol{x},t)$
 - ullet Съседните частици я "повличат" $u \Delta oldsymbol{u}(oldsymbol{x},t)$
 - ullet Има външни сили $oldsymbol{f}(oldsymbol{x},t)$

Моделна задача (2D DFG Benchmark)

Гранични условия:

$$\mathbf{u} = 0, \qquad (\mathbf{x}, t) \in (\Gamma_1 \cup \Gamma_3 \cup \Gamma_5) \times J$$

$$\mathbf{u} = \left(\frac{1.2y(0.41 - y)}{0.41^2}, 0\right), \qquad (\mathbf{x}, t) \in \Gamma_4 \times J$$

$$\nu \frac{\partial \mathbf{u}}{\partial \mathbf{n}} - p\mathbf{n} = 0, \qquad (\mathbf{x}, t) \in \Gamma_2 \times J$$

Дефинираме $\Gamma_D = \Gamma_1 \cup \Gamma_3 \cup \Gamma_4 \cup \Gamma_5$

• Искаме:

$$\begin{split} \left(\frac{\partial \mathsf{u}}{\partial t},\mathsf{v}\right) + \left(\mathsf{u}\cdot\nabla\mathsf{u},\mathsf{v}\right) + \nu(\nabla\mathsf{u}:\nabla\mathsf{v}) &= (p,\nabla\cdot\mathsf{v}), \quad \mathsf{v}\in V \\ (\nabla\cdot\mathsf{u},q) &= 0, & q\in L^2 \\ \mathsf{u} &= \mathsf{u}_{\Gamma_4}, & (\mathsf{x},t)\in\Gamma_4\times J \end{split}$$

• Искаме:

$$\begin{split} \left(\frac{\partial \mathsf{u}}{\partial t},\mathsf{v}\right) + \left(\mathsf{u}\cdot\nabla\mathsf{u},\mathsf{v}\right) + \nu(\nabla\mathsf{u}:\nabla\mathsf{v}) &= (p,\nabla\cdot\mathsf{v}), \quad \mathsf{v}\in V \\ (\nabla\cdot\mathsf{u},q) &= 0, & q\in L^2 \\ \mathsf{u} &= \mathsf{u}_{\Gamma_4}, & (\mathsf{x},t)\in\Gamma_4\times J \end{split}$$

• Тестови пространства:

Искаме:

$$\begin{split} \left(\frac{\partial u}{\partial t},v\right) + \left(u\cdot\nabla u,v\right) + \nu(\nabla u:\nabla v) &= (\rho,\nabla\cdot v),\quad v\in V\\ (\nabla\cdot u,q) &= 0, & q\in L^2\\ u &= u_{\Gamma_4}, & (x,t)\in\Gamma_4\times J \end{split}$$

• Тестови пространства:

$$\bullet \ \mathsf{v} \in V : \left\{ \mathsf{v} \in H^1 : \mathsf{v}(\mathsf{x},t)|_{\mathsf{\Gamma}_D} = 0 \right\}$$

• Искаме:

$$\begin{split} \left(\frac{\partial u}{\partial t}, v\right) + \left(u \cdot \nabla u, v\right) + \nu(\nabla u : \nabla v) &= (\rho, \nabla \cdot v), \quad v \in V \\ \left(\nabla \cdot u, q\right) &= 0, & q \in L^2 \\ u &= u_{\Gamma_4}, & (x, t) \in \Gamma_4 \times J \end{split}$$

- Тестови пространства:
 - $v \in V : \{v \in H^1 : v(x, t)|_{\Gamma_D} = 0\}$
 - $p \in L^2(\Omega)$

• Искаме:

$$\begin{split} \left(\frac{\partial u}{\partial t},v\right) + \left(u\cdot\nabla u,v\right) + \nu(\nabla u:\nabla v) &= (\rho,\nabla\cdot v), \quad v\in V\\ (\nabla\cdot u,q) &= 0, & q\in L^2\\ u &= u_{\Gamma_4}, & (x,t)\in\Gamma_4\times J \end{split}$$

• Тестови пространства:

•
$$v \in V : \{v \in H^1 : v(x, t)|_{\Gamma_D} = 0\}$$

• $p \in L^2(\Omega)$

Търсим:

• Искаме:

$$\begin{split} \left(\frac{\partial \mathsf{u}}{\partial t},\mathsf{v}\right) + \left(\mathsf{u}\cdot\nabla\mathsf{u},\mathsf{v}\right) + \nu(\nabla\mathsf{u}:\nabla\mathsf{v}) &= (\rho,\nabla\cdot\mathsf{v}), \quad \mathsf{v}\in V \\ (\nabla\cdot\mathsf{u},q) &= 0, & q\in L^2 \\ \mathsf{u} &= \mathsf{u}_{\Gamma_4}, & (\mathsf{x},t)\in\Gamma_4\times J \end{split}$$

- Тестови пространства:
 - $v \in V : \{v \in H^1 : v(x, t)|_{\Gamma_D} = 0\}$
 - $p \in L^2(\Omega)$
- Търсим:
 - $\mathbf{u} \in U : \left\{ \mathbf{v} \in H^1 : \mathbf{v}(\mathbf{x}, t) |_{\Gamma_1 \cup \Gamma_3 \cup \Gamma_5} = 0 \right\}$

Директен подход – слаба формулировка

• Искаме:

$$\begin{split} \left(\frac{\partial u}{\partial t},v\right) + \left(u\cdot\nabla u,v\right) + \nu(\nabla u:\nabla v) &= (\rho,\nabla\cdot v),\quad v\in V\\ (\nabla\cdot u,q) &= 0, & q\in L^2\\ u &= u_{\Gamma_4}, & (x,t)\in\Gamma_4\times J \end{split}$$

- Тестови пространства:
 - $\bullet \ \mathsf{v} \in V: \left\{ \mathsf{v} \in H^1 : \mathsf{v}(\mathsf{x},t)|_{\Gamma_D} = 0 \right\}$
 - $p \in L^2(\Omega)$
- Търсим:
 - $\mathbf{u} \in U$: $\left\{ \mathbf{v} \in H^1 : \mathbf{v}(\mathbf{x}, t) |_{\Gamma_1 \cup \Gamma_3 \cup \Gamma_5} = 0 \right\}$
 - $p \in L^2(\Omega)$

$$\begin{bmatrix} \mathsf{M} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} \end{bmatrix} \begin{bmatrix} \dot{\mathsf{q}}_1 \\ \dot{\mathsf{q}}_2 \\ \mathsf{p} \end{bmatrix} \ = \ \begin{bmatrix} -\nu \mathsf{K} - \mathsf{C}(\mathsf{u}_\mathsf{h}) & \mathsf{0} & \mathsf{B}_1^{\mathsf{T}} \\ \mathsf{0} & -\nu \mathsf{K} - \mathsf{C}(\mathsf{u}_\mathsf{h}) & \mathsf{B}_2^{\mathsf{T}} \\ \mathsf{B}_1 & \mathsf{B}_2 & \mathsf{0} \end{bmatrix} \begin{bmatrix} \mathsf{q}_1 \\ \mathsf{q}_2 \\ \mathsf{p} \end{bmatrix}$$

ullet M - $N_{v} imes N_{v}$ матрица на масата за компонентите на скоростта

$$\begin{bmatrix} \mathsf{M} & \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} & \mathsf{0} \end{bmatrix} \begin{bmatrix} \dot{\mathsf{q}}_1 \\ \dot{\mathsf{q}}_2 \\ \mathsf{p} \end{bmatrix} \ = \ \begin{bmatrix} -\nu \mathsf{K} - \mathsf{C}(\mathsf{u}_\mathsf{h}) & \mathsf{0} & \mathsf{B}_1^\mathsf{T} \\ \mathsf{0} & -\nu \mathsf{K} - \mathsf{C}(\mathsf{u}_\mathsf{h}) & \mathsf{B}_2^\mathsf{T} \\ \mathsf{B}_1 & \mathsf{B}_2 & \mathsf{0} \end{bmatrix} \begin{bmatrix} \mathsf{q}_1 \\ \mathsf{q}_2 \\ \mathsf{p} \end{bmatrix}$$

- ullet M $N_{
 m v} imes N_{
 m v}$ матрица на масата за компонентите на скоростта
- ullet K $N_{
 u} imes N_{
 u}$ матрица на коравината за компонентите на скоростта

$$\begin{bmatrix} M & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ p \end{bmatrix} \quad = \quad \begin{bmatrix} -\nu K - C(u_h) & 0 & B_1^T \\ 0 & -\nu K - C(u_h) & B_2^T \\ B_1 & B_2 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p \end{bmatrix}$$

- ullet M $N_{
 m v} imes N_{
 m v}$ матрица на масата за компонентите на скоростта
- ullet K $N_{v} imes N_{v}$ матрица на коравината за компонентите на скоростта
- ullet C(u) $N_{
 u} imes N_{
 u}$ конвективна матрица за скоростта

$$\begin{bmatrix} M & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ p \end{bmatrix} \quad = \quad \begin{bmatrix} -\nu K - C(u_h) & 0 & B_1^T \\ 0 & -\nu K - C(u_h) & B_2^T \\ B_1 & B_2 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p \end{bmatrix}$$

- ullet M $N_{
 m v} imes N_{
 m v}$ матрица на масата за компонентите на скоростта
- ullet K $N_{
 u}$ imes $N_{
 u}$ матрица на коравината за компонентите на скоростта
- ullet C(u) $N_{
 u} imes N_{
 u}$ конвективна матрица за скоростта
- B_1, B_2 $N_p \times N_v$ матрици получени от производните (частен случай на конвективни матрици)

Директен подход – метод на крайните елементи, дискретизация на времето

• Използваме метода на Crank-Nicolson:

$$\begin{bmatrix} \mathsf{M} + \frac{\Delta t}{2} \left(\nu \mathsf{K} + \mathsf{C} (\mathsf{u}_h^{i+1}) \right) & 0 & -\frac{\Delta t}{2} \mathsf{B}_1^T \\ 0 & \mathsf{M} + \frac{\Delta t}{2} \left(\nu \mathsf{K} + \mathsf{C} (\mathsf{u}_h^{i+1}) \right) & -\frac{\Delta t}{2} \mathsf{B}_2^T \\ -\frac{\Delta t}{2} \mathsf{B}_1 & -\frac{\Delta t}{2} \mathsf{B}_2 & 0 \end{bmatrix} \begin{bmatrix} \mathsf{Q}_1^{i+1} \\ \mathsf{Q}_2^{i+1} \\ \mathsf{P}^{i+1} \end{bmatrix} = \\ = \begin{bmatrix} \mathsf{M} - \frac{\Delta t}{2} \left(\nu \mathsf{K} + \mathsf{C} (\mathsf{u}_h^i) \right) & 0 & \frac{\Delta t}{2} \mathsf{B}_1^T \\ 0 & \mathsf{M} - \frac{\Delta t}{2} \left(\nu \mathsf{K} + \mathsf{C} (\mathsf{u}_h^i) \right) & \frac{\Delta t}{2} \mathsf{B}_2^T \\ \frac{\Delta t}{2} \mathsf{B}_1 & \frac{\Delta t}{2} \mathsf{B}_2 & 0 \end{bmatrix} \begin{bmatrix} \mathsf{Q}_1^i \\ \mathsf{Q}_2^i \\ \mathsf{P}^i \end{bmatrix}$$

Директен подход – метод на крайните елементи, дискретизация на времето

• Използваме метода на Crank-Nicolson:

$$\begin{bmatrix} \mathsf{M} + \frac{\Delta t}{2} \left(\nu \mathsf{K} + \mathsf{C}(\mathsf{u}_h^{i+1}) \right) & \mathsf{0} & -\frac{\Delta t}{2} \mathsf{B}_1^T \\ \mathsf{0} & \mathsf{M} + \frac{\Delta t}{2} \left(\nu \mathsf{K} + \mathsf{C}(\mathsf{u}_h^{i+1}) \right) & -\frac{\Delta t}{2} \mathsf{B}_2^T \\ -\frac{\Delta t}{2} \mathsf{B}_1 & -\frac{\Delta t}{2} \mathsf{B}_2 & \mathsf{0} \end{bmatrix} \begin{bmatrix} \mathsf{Q}_1^{i+1} \\ \mathsf{Q}_2^{i+1} \\ \mathsf{P}^{i+1} \end{bmatrix} = \\ = \begin{bmatrix} \mathsf{M} - \frac{\Delta t}{2} \left(\nu \mathsf{K} + \mathsf{C}(\mathsf{u}_h^i) \right) & \mathsf{0} & \frac{\Delta t}{2} \mathsf{B}_1^T \\ \mathsf{0} & \mathsf{M} - \frac{\Delta t}{2} \left(\nu \mathsf{K} + \mathsf{C}(\mathsf{u}_h^i) \right) & \frac{\Delta t}{2} \mathsf{B}_2^T \\ \frac{\Delta t}{2} \mathsf{B}_1 & 0 \end{bmatrix} \begin{bmatrix} \mathsf{Q}_1^i \\ \mathsf{Q}_2^i \\ \mathsf{P}^i \end{bmatrix}$$

• Нелинейна система!

• Ще разделим диференциалния оператор по времето на две части: адвекция-дифузия, налягане.

- Ще разделим диференциалния оператор по времето на две части: адвекция-дифузия, налягане.
- Прибавяме dummy term

- Ще разделим диференциалния оператор по времето на две части: адвекция-дифузия, налягане.
- Прибавяме dummy term
- Прилагаме $\nabla \cdot$ (за налягането)

$$\frac{\mathbf{u}^{i+\frac{1}{2}} - \mathbf{u}^{i}}{\Delta t} = \nu \Delta \mathbf{u}^{i} - \mathbf{u}^{i} \cdot \nabla \mathbf{u}^{i}, \quad (\mathsf{x}, \\
\nabla \cdot \mathbf{u}^{i+\frac{1}{2}} = \Delta p^{i} \Delta t, \quad (\mathsf{x}, \\
\mathbf{u}^{i+1} = \mathbf{u}^{i+\frac{1}{2}} - \Delta t \nabla p^{i}, \quad (\mathsf{x}, \\
\mathbf{n} \cdot \nabla \mathbf{u}^{i} = 0, \quad (\mathsf{x}, \\
\mathbf{u}^{i} = 0, \quad (\mathsf{x}, \\
\mathbf{u}^{i} = \mathbf{u}_{\Gamma_{4}}, \quad (\mathsf{x}, \\
\mathbf{n} \cdot \nabla p^{i} = 0, \quad (\mathsf{x}, \\
p^{i} = 0. \quad (\mathsf{x}, \\
\mathbf{v}, \\
\mathbf{v} = 0, \quad (\mathsf{$$

$$(\mathsf{x},t)\in\Omega imes J$$

$$(x, t) \in \Omega \times J$$

$$(x, t) \in \Omega \times J$$

$$(x, t) \in \Gamma_2 \times J$$

$$(x, t) \in (\Gamma_1 \cup \Gamma_3 \cup \Gamma_5) \times J$$

$$(x, t) \in \Gamma_4 \times J$$

$$(x,t) \in (\Gamma_1 \cup \Gamma_3 \cup \Gamma_4 \cup \Gamma_5) \times J$$

$$(x, t) \in \Gamma_2 \times J$$

Разделяне на Chorin – слаба формулировка

Тестови пространства:

- $v \in V : \{v \in H^1 : v(x,t)|_{\Gamma_D} = 0\}$
- $q \in Q : \left\{ q \in H^1 : q|_{\Gamma_2} = 0 \right\}$

Търсим:

- $\mathbf{u} \in U : \left\{ \mathbf{v} \in H^1 : \mathbf{v}(\mathbf{x}, t) |_{\Gamma_1 \cup \Gamma_3 \cup \Gamma_5} = 0 \right\}$
- $p \in Q$

Такива че:

$$\begin{split} \left(\boldsymbol{u}^{i+\frac{1}{2}}, \boldsymbol{v} \right) &= \left(\boldsymbol{u}^{i}, \boldsymbol{v} \right) - \Delta t \left[\nu \left(\nabla \boldsymbol{u}^{i} : \nabla \boldsymbol{v} \right) + \left(\boldsymbol{u}^{i} \cdot \nabla \boldsymbol{u}^{i}, \boldsymbol{v} \right) \right], \forall v \in V \\ \left(\nabla \cdot \boldsymbol{u}^{i+\frac{1}{2}}, q \right) &= -\Delta t \left(\nabla \rho^{i}, \nabla q \right), \forall q \in Q \\ \left(\boldsymbol{u}^{i+1}, \boldsymbol{v} \right) &= \left(\boldsymbol{u}^{i+\frac{1}{2}}, \boldsymbol{v} \right) - \Delta t \left(\boldsymbol{v}, \nabla \rho^{i} \right) \forall v \in V \\ \boldsymbol{u}^{i} &= \boldsymbol{u}_{\Gamma_{A}}, \quad (x, t) \in \Gamma_{4} \times J \end{split}$$

Разделяне на Chorin – метод на крайните елементи

Приложен е явен метод за дискретизация на времето.

Търсим приближени решения за скоростта и налягането:

$$\bullet \ \mathsf{u}_h = \sum_{i=1}^{2N_v} \Phi_i q_i \in \mathit{U}_h$$

$$\bullet \ p_h = \sum_{i=1}^{N_p} \chi_i p_i \in Q_h$$

$$\begin{bmatrix} \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_{1}^{i+\frac{1}{2}} \\ \boldsymbol{Q}_{2}^{i+\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_{1}^{i} \\ \boldsymbol{Q}_{2}^{i} \end{bmatrix} - \Delta t \begin{bmatrix} \nu \mathsf{K} + \mathsf{C}(\boldsymbol{u_h}) & \mathsf{0} \\ \mathsf{0} & \nu \mathsf{K} + \mathsf{C}(\boldsymbol{u_h}) \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_{1}^{i} \\ \boldsymbol{Q}_{2}^{i} \end{bmatrix}$$

$$\mathsf{K_p} \boldsymbol{P}^{i} = -\frac{1}{\Delta t} \begin{bmatrix} \mathsf{B}_{1} & \mathsf{B}_{2} \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_{1}^{i+\frac{1}{2}} \\ \boldsymbol{Q}_{2}^{i+\frac{1}{2}} \end{bmatrix}$$

$$\begin{bmatrix} \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_{1}^{i+1} \\ \boldsymbol{Q}_{2}^{i+1} \end{bmatrix} = \begin{bmatrix} \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_{1}^{i+\frac{1}{2}} \\ \boldsymbol{Q}_{1}^{i+\frac{1}{2}} \end{bmatrix} - \Delta t \begin{bmatrix} \boldsymbol{B_{p,1}} \\ \boldsymbol{B_{p,2}} \end{bmatrix} \boldsymbol{P}^{i}$$

Дискретизация по времето

Основно уравнение

$$\frac{\partial \boldsymbol{u}(\boldsymbol{x},t)}{\partial t} + (\boldsymbol{u}(\boldsymbol{x},t) \cdot \nabla) \, \boldsymbol{u}(\boldsymbol{x},t) + \nabla \rho(\boldsymbol{x},t) - \nu \Delta \boldsymbol{u}(\boldsymbol{x},t) = 0$$

Дискретизиране по времето

$$\begin{aligned} \frac{\boldsymbol{u}^{i+1} - \boldsymbol{u}^i}{\Delta t} + \boldsymbol{u}^i \cdot \nabla \boldsymbol{u}^i + \nabla p^i - \nu \Delta \boldsymbol{u}^i &= 0\\ \frac{\boldsymbol{u}^{i+1} + \boldsymbol{u}^A - \boldsymbol{u}^A + \boldsymbol{u}^B - \boldsymbol{u}^B - \boldsymbol{u}^i}{\Delta t} + \boldsymbol{u}^i \cdot \nabla \boldsymbol{u}^i + \nabla p^i - \nu \Delta \boldsymbol{u}^i &= 0 \end{aligned}$$

Разделяне на оператора

$$rac{oldsymbol{u}^A - oldsymbol{u}^i}{\Delta t} + oldsymbol{u}^i \cdot
abla oldsymbol{u}^i = 0$$
 Адвекция $rac{oldsymbol{u}^B - oldsymbol{u}^A}{\Delta t} =
u \Delta oldsymbol{u}^B$ Дифузия

$$\frac{\mathbf{u}^{i+1} - \mathbf{u}^B}{\Delta t} = -\nabla p^i$$

Уравнение на Поасон за налягането (след прилагане на $\nabla \cdot$ върху двете страни)

Адвекция – полу-Лагранжев метод

Уравнение на адвекцията. Търсим скоростта в точка \pmb{x}_e в момент от време $t+\Delta t$.

$$\frac{\boldsymbol{u}^A - \boldsymbol{u}^i}{\Delta t} + \boldsymbol{u}^i \cdot \nabla \boldsymbol{u}^i = 0$$

$$x_s = x_e - \Delta t u(x_e, t)$$

Дифузия – слаба формулировка

$$\frac{\mathbf{u}^{B} - \mathbf{u}^{A}}{\Delta t} = \nu \Delta \mathbf{u}^{B}, \qquad (\mathbf{x}, t) \in \Omega \times J$$

$$\mathbf{n} \cdot \nabla \mathbf{u}^{B} = 0, \qquad (\mathbf{x}, t) \in \Gamma_{2} \times J$$

$$\mathbf{u}^{B} = 0, \qquad (\mathbf{x}, t) \in (\Gamma_{1} \cup \Gamma_{3} \cup \Gamma_{5}) \times J$$

$$\mathbf{u}^{B} = \mathbf{u}_{\Gamma_{4}}, \qquad (\mathbf{x}, t) \in \Gamma_{4} \times J$$

Тестово пространство: $\mathbf{v} \in V: \left\{ \mathbf{v} \in H^1: \mathbf{v}(\mathbf{x},t) |_{\Gamma_D} = 0 \right\}$ Търсим $\mathbf{u} \in U: \left\{ \mathbf{v} \in H^1: \mathbf{v}(\mathbf{x},t) |_{\Gamma_1 \cup \Gamma_3 \cup \Gamma_5} = 0 \right\}$, такова че:

$$\left(\frac{\mathbf{u}^B - \mathbf{u}^A}{\Delta t}, \mathbf{v}\right) = \left(\nu \Delta \mathbf{u}^B, \mathbf{v}\right), \forall \mathbf{v} \in V$$

Дифузия – МКЕ

$$\begin{pmatrix} \boldsymbol{u}^{B}, \boldsymbol{v} \end{pmatrix} = \begin{pmatrix} \boldsymbol{u}^{A}, \boldsymbol{v} \end{pmatrix} - \Delta t \nu \left(\nabla \boldsymbol{u}^{B} : \nabla \boldsymbol{v} \right), \forall \boldsymbol{v} \in V$$

$$\begin{pmatrix} \boldsymbol{u}^{B}, \boldsymbol{v} \end{pmatrix} + \Delta t \nu \left(\nabla \boldsymbol{u}^{B} : \nabla \boldsymbol{v} \right) = \begin{pmatrix} \boldsymbol{u}^{A}, \boldsymbol{v} \end{pmatrix}, \forall \boldsymbol{v} \in V$$

Търсим приближеното решение:
$$oldsymbol{u}_h = \sum\limits_{i=1}^{2N_{ extsf{v}}} oldsymbol{\Phi}_i q_i \in U_h$$

$$\left(\begin{bmatrix} \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} \end{bmatrix} + \nu \Delta t \begin{bmatrix} \mathsf{K} & \mathsf{0} \\ \mathsf{0} & \mathsf{K} \end{bmatrix}\right) \begin{bmatrix} \boldsymbol{Q}_1^B \\ \boldsymbol{Q}_2^B \end{bmatrix} = \begin{bmatrix} \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_1^A \\ \boldsymbol{Q}_2^A \end{bmatrix}$$

Налягане – слаба формулировка

Основно уравнение:

$$egin{aligned} & rac{oldsymbol{u}^{i+1} - oldsymbol{u}^B}{\Delta t} = -
abla p^i, & (oldsymbol{x}, t) \in \Omega imes J \ & (oldsymbol{x}, t) \in (\Gamma_1 \cup \Gamma_3 \cup \Gamma_4 \cup \Gamma_5) imes J \ & (oldsymbol{x}, t) \in (\Gamma_2 imes J) \end{aligned}$$

Използваме $abla \cdot \mathbf{u}^{i+1} = \mathbf{0}$ и вземаме дивергенцията на двете страни:

$$\nabla \cdot \boldsymbol{u}^B = \Delta p^i \Delta t$$

Умножаваме двете страни с функция от тестовото пространство: $q\in Q:\left\{q\in H^1:q|_{\Gamma_2}=0\right\}$. Решението търсим в пространството Q.

$$\left(
abla \cdot \mathbf{u}^{B}, q \right) = -\Delta t \left(
abla p^{i},
abla q \right), orall q \in Q$$

Налягане – МКЕ

Търсим приближеното решение за налягането $p_h = \sum\limits_{i=1}^{N_p} \chi_i p_i \in Q_h$

$$\begin{bmatrix} \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_1^{i+1} \\ \boldsymbol{Q}_2^{i+1} \end{bmatrix} = \begin{bmatrix} \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_1^B \\ \boldsymbol{Q}_2^B \end{bmatrix} - \Delta t \begin{bmatrix} \boldsymbol{B}_{p,1} \\ \boldsymbol{B}_{p,2} \end{bmatrix} \boldsymbol{P}^i$$

Намиране на \mathbf{u}^{i+1} – Слаба формулировка

Основно уравнение:

$$\begin{split} & \frac{\boldsymbol{u}^{i+1} - \boldsymbol{u}^B}{\Delta t} = -\nabla p^i, & (\boldsymbol{x}, t) \in \Omega \times J \\ & \boldsymbol{n} \cdot \nabla \boldsymbol{u}^i = 0, & (\boldsymbol{x}, t) \in \Gamma_2 \times J \\ & \boldsymbol{u}^i = 0, & (\boldsymbol{x}, t) \in (\Gamma_1 \cup \Gamma_3 \cup \Gamma_5) \times J \\ & \boldsymbol{u}^i = \boldsymbol{u}_{\Gamma_4}, & (\boldsymbol{x}, t) \in \Gamma_4 \times J \end{split}$$

Тестово пространство: $\mathbf{v} \in V: \left\{ \mathbf{v} \in H^1: \mathbf{v}(\mathbf{x},t)|_{\Gamma_D} = 0 \right\}$. Търсим $\mathbf{u} \in U: \left\{ \mathbf{v} \in H^1: \mathbf{v}(\mathbf{x},t)|_{\Gamma_1 \cup \Gamma_3 \cup \Gamma_5} = 0 \right\}$, такова че:

$$\left(oldsymbol{u}^{i+1}, oldsymbol{v}
ight) = \left(oldsymbol{u}^{B}, oldsymbol{v}
ight) - \Delta t \left(oldsymbol{v},
abla oldsymbol{p}^{i}
ight)$$

Намиране на \mathbf{u}^{i+1} – МКЕ

Търсим приближеното решение:
$$oldsymbol{u}_h = \sum\limits_{i=1}^{2N_{
m v}} oldsymbol{F}_i q_i \in U_h$$

$$\begin{bmatrix} \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_1^{i+1} \\ \boldsymbol{Q}_2^{i+1} \end{bmatrix} = \begin{bmatrix} \mathsf{M} & \mathsf{0} \\ \mathsf{0} & \mathsf{M} \end{bmatrix} \begin{bmatrix} \boldsymbol{Q}_1^B \\ \boldsymbol{Q}_2^B \end{bmatrix} - \Delta t \begin{bmatrix} \boldsymbol{B}_{p,1} \\ \boldsymbol{B}_{p,2} \end{bmatrix} \boldsymbol{P}^i$$

Време за изпълнение за ламинарен поток (Re=20 ight) – CPU

		Компютър 2 – 1 нишка								
	A	Дифузия	Намиране на	Намиране на	СГ		Общо			
	Адвекция	дифузия	налягането	u^{i+1}	(Общо)	Асемблиране	Време			
Средно време	60.32s	101.12s	398.50s	30.31s	529.93s	11.82s	605.48s			

		Компютър 2 – 8 нишки									
	Адвекция	Дифузия	Намиране на налягането	Намиране на \pmb{u}^{i+1}	СГ (Общо)	Асемблиране	Общо Време				
Средно Време	9.21s	26.31s	75.57s	8.29s	110.17s	3.72s	124.40s				

CSR формат за разредени матрици

Γ1	0	0	2	07
0 0 0 7	0	3	4	0 0 6 0
0	0	5	0	6
0	0	0	0	0
[7	0	8	9	0]

NZ	1	2	3	4	5	6	7	8	9
Pos	0	3	2	3	2	4	0	2	3
Start	0	2	4	6	6	9			

Фигура: Примерна разредена матрица в CSR формат

Фигура: Примерна разредена матрица

Асемблиране на глобалните матрици – CPU

- CSR формата налага зависимост между данните
- Матриците са константни
- Всяка матрица се пресмята на отделна нишка

Адвекция – Паралелна имплементация

Задачата е тривиална.

- Разделяме възлите на т групи
- Всяка нишка може независимо да намери скоростите за възлите от своята група

Адвекция – паралелна имплементация, ламинарен поток

Метод на спрегнатия градиент – CPU

- Нужни са сихронизационни примитиви
- Всяка част от една стъпка е тривиална за паралелна имплементация

Метод на спрегнатия градиент – алгоритъм

Алгоритъм 1 Метод на спрегнатия градиент за решаване на Ax = b с начално приближение x_0

```
1: procedure CG(A, b, x_0)
           r_0 \leftarrow b - Ax_0
 2:
 3:
        p_0 \leftarrow r_0
             for i \leftarrow 0, 1, \dots until convergence do
 4:
 5:
                   ap \leftarrow Ap_i
                   \alpha_j \leftarrow \frac{(r_j, r_j)}{(ap.p.)}
 6:
 7:
                   x_{i+1} \leftarrow x_i + \alpha_i p_i
 8:
                    r_{i+1} \leftarrow r_i - \alpha_i ap
                   \beta_j \leftarrow \frac{(r_{j+1}, r_{j+1})}{(r_i, r_i)}
 9:
                   p_{i+1} \leftarrow r_{i+1} + \beta_i p_i
10:
11:
             return x_{i+1}
```

Метод на спрегнатия градиент – паралелна имплементация, ламинарен поток (Re=20)

Метод на спрегнатия градиент – преобуславяне

- Намаляваме броя итерации
- ullet Търсим $P^{-1}pprox A^{-1}$
- Непълна факторизация на Холецки. Пресмятане, проблеми
- Произведението на две разредени матрици не е разредена матрица

Метод на спрегнатия градиент – преобуславяне, алгоритъм

Алгоритъм 2 Преобусловен метод на спрегнатия градиент за решаване на Ax=b с начално приближение x_0

```
1: procedure PCG(A, M^{-1}b, x_0)
            r_0 \leftarrow b - Ax_0
 2:
         z_0 \leftarrow M^{-1} r_0
 4:
         p_0 \leftarrow z_0
             for j \leftarrow 0, 1, \dots until convergence do
 5:
                   \alpha_j \leftarrow \frac{(r_j, z_j)}{(A_{D:.D:})}
 6:
 7:
                    x_{i+1} \leftarrow x_i + \alpha_i p_i
                    r_{i+1} \leftarrow r_i - \alpha_i A p_i
 8:
                   z_{i+1} \leftarrow M^{-1}r_{i+1}
 9:
                   \beta_j \leftarrow \frac{(r_{j+1}, z_{j+1})}{(r_i, z_i)}
10:
                    p_{i+1} \leftarrow z_{i+1} + \beta_i p_i
11:
```

Метод на спрегнатия градиент – преобуславяне, брой итерации

20.0000	Брой итерации	Брой итерации	Брой итерации
Задача	Дифузия	намиране на налягането	прилагане на налягането
Ламинарен поток (<i>Re</i> = 20)	10370	195422	2763
Ламинарен поток ($Re = 20$) с IC0	1855	72353	495

Таблица: Общ брой итерации за всяка една система.

Метод на спрегнатия градиент – преобуславяне, време за пресмятане на IC0

	Средно	Медиана	SD	Мин.	Макс.
	време	імедиана	30	време	време
Пресмятане на ICO за	15.66	15.67	0.02	15.64	15.68
Матрица на коравината на налягането	13.00	15.07	0.02	13.04	13.00
Пресмятане ІСО за	390.33	389.98	1.32	389.22	391.79
Матрица на маста за скоростта	390.33	309.90	1.52	309.22	391.79
Пресмятане IC0 за	380.68	379.17	4.98	376.62	386.23
Дифузионна матрица	300.00	319.11	4.90	370.02	300.23

Можем да пресметнем само за матрицата на коравина за налягането.

Метод на спрегнатия градиент – преобуславяне, време за решаване на системите, на 1 нишка

	Средно Време	Медиана	Стандартно Отклонение	Минимално Време	Максимално Време
Дифузия	101.12s	100.96s	0.57s	100.56s	102.54s
Намиране на налягането	398.50s	398.29	1.85s	395.98s	402.81s
Прилагане на налягането	30.31s	30.33s	0.05s	30.19s	30.37s
Дифузия (ІС0)	54.76s	54.76s	0.00	54.76s	74.75s
Намиране на налягането (IC0)	393.30s	393.50s	0.29s	393.09s	393.50s
Прилагане на налягането (IC0)	22.01s	22.03s	0.03s	21.99s	22.03s

Таблица: Ламинарен поток, компютър 2, 1 нишка.

GPU архитектура – Streaming Multiprocessor

- 64 CUDA ядра
- Warp, active warp
- Условни оператори

GPU Цялостна архитектура

Програмен модел

- Kernel
- Grid (2D/3D)
- Thread block (до 1024 нишки).
- Препоръчително е в един grid да има повече блокове отколкото SM
- Пример събиране на два вектора

$$a_0$$
 a_1 \dots a_n $+$ b_0 b_1 \dots b_n

GPU – Адвекция

• Пасва идеално на програмния модел

Метод на спрегнатия градиент – Mega kernel подход

- Сравнение с multi kernel подход
- Целият метод е един kernel
- Изисква сихнронизация

Време за изпълнение за ламинарен поток (Re=20 ight) – GPU

		GPU Mega Kernel подход									
	Адвекция	Дифузия	Намиране на налягането	Намиране на \pmb{u}^{i+1}	СГ (Общо)	Асемблиране	Общо Време				
Средно време	0.54s	2.98s	8.19s	1.26s	12.44s	4.02s	18.24s				

Заключение

- Представени са 3 метода за решаване на уравненията на Navier-Stokes
- Разделянето на диференциалния оператор по времето на 3 части пасва най-добре на зададените цели
- Полу-Лагранжевият метод за адвекция е подходящ за паралелна имплементация
- Ускорението от паралелна имплементация на метода на спрегнатия градиент се усеща най-добре за големи матрици и уравнения с много итерации

Насоки за развитие

- Експерименти с други видове елементи
- Разделяне на оператора с по-голяма точност, напр. разделяне на Странг
- Апроксимация по времето с по-голяма точност, напр. методи на Рунге-Кута
- Използване на "многоетапен" полу-Лагранжев метод
- Паралелно асемблиране на глобалните матрици
- Паралелна имплементация на пресмятането и прилагането на ICO
- Разглеждане на други преобуславящи методи, напр. блочно пребуславяне на Якоби

Благодаря за вниманието!