

XIAMEN

UNIVERSITU

ADD: FUJIAN GIAMEN

CABLE:0633 P.C:361005

实验午与港弹簧振子的简谐振动

- 一、实验且的
- 1.学会与垫装置的水平调节。
- 2.考察弹簧振子的振动周期与振动系统参量的关系。
- 3.学习用图解法求解等效弹簧的低强系数和有效质量。
- 二. 实验仪器
 - 1. 仪器照

与型导轨、滑块(包括挡光片)、骑码、光电门, Jo201-CHJ型存贮式数字笔秒计、弹簧。

2.仪器描述

具体介绍见附录"与垫实验基本知识"

三、实验原理

弹簧在机械中占有重要的地位,弹簧的低强系数是表征弹簧性能引建要参量,在一定外力作用下弹簧 1. 弹簧肋压强数

的形变,弹簧作用周期性振动的频率均分低强系数有关

根据胡克定律,在弹性限度内,弹簧的,健长量与它受的外力成正比

F=-kX.此比例系数 k就是弹簧的倔强系数 k=- 5

实验用的弹簧振子是由两个倔强系数分别为尽,尽力弹簧系住一个质量为加、引力弹滑块,两弹簧的另 2、弹簧振子引。简谐运动方程 外两端分别固定在导轨的端面上,滑块在导轨的上作直线往复振动。当滑块处于平衡位置时,两弹簧 的种长量分别是Xn,和Xn2,满足一点Xn1+尽X成了若脓去阻尼影响,当m,离平衡点0为X时,m,所受助弹 性回复力为 [-k,(x+x01)]和 [-k,(x-x02)]。根据牛顿第二定律,滑块的运动方向程为

式中, m=m,+mo, 称为振动系统目为有效质量, m。是弹簧目的有效质量, m,是滑块质量。令 k=k,th, 则-kx=mdx,此方程的解为x=Asin(w++y6)

这说明滑块是在作筒谐运动振动,其中以二届二人工

W是振动系统的圆频率,由振动系统决定;A是振幅, y,是初相位,由起始条件决定。系统的振动 周期丁二兴二环胺(1)

当ms《mi 时 mo= ms ms是弹簧的实际质量 当ms《mi 时 mo= ms ms是弹簧的实际质量 本实验通过分别改变振幅A与振子质量m,测量相应的周期T,考察振动周期T与振动系统参量A.m 的关系,从而验证上述理论结果的正确性,并利用两种方法、求解mo和人。

$\chi IAMEN$ UNIVERSITU

ADD: FULLSN GIRSMEN

CABLE:0633 P.C:361005

四.实验内唇

人气空导管轨水平的调节

可以用两种方法对导机的水平进行调节

静态调节法:将滑块轻轻放置在导动后冲点即距离两端士处, 仔细调节水平调节放钮,使滑块基本静止在 与型中部或作不定向目3洞动,即可认为导动已调到水平。

动忘调节法:(1)使用升口挡光片;接动数字毫秒计前面极的"功能键",选择S,功能档(字样多边的LED 灯亮) 特先电门1.2置于导轨中央附近,相距约60.00cm,给漏块以一定初速度(At和Atz控制在20-30mm) 让它在导轨上依次通过两个光电门。若滑块在同一方向上运动图 4th 和口机图 相对误差小于 3%,则认为导轨之态 水平否则重新调整水平调节凝轴。

(2)使用不开口挡光片、数字毫秒计选 S2功能档。使光电门1.2相距 40.00 cm左右, 给漏块以一定初处度, 比较有 快第一次渴过两个光电门的时间间隔和反弹回来第二次经过两个光电门的时间间隔大小,如果之间设差小于

上%,则认为导轨已经达到松平,否则应重新调整水平调节旋钮。

2、石烷弹簧振子的振动周期与振幅的关系。

测量弹簧振子的振动周期时,先将一个光电门置于滑块的平衡点。

然后将数字毫秒计设置为工功能挡,此时T切能档旁的LED灯点亮。即进入测量周期功能。测试时 使用开口挡光片,挡光片每挡光两次(即滑块每经过光电了一次),亳和计屏幕上引数字累计加了。设滑块白至

向在作简谐振动,如图所示,当滑块第一次通过光电门时毫秒计开始和时,屏幕显示为1;

当滑快反方向再次通过光电门时屏幕显示加了当滑快自左向右第二次通过光电门时屏 幕再加1。由此可见,滑块作一次完整振动,屏幕显示为了。依次此类推,滑块作n次完整——

振动, 屏幕显示应为 2n+1。若此时按下"停止"键, 显示屏上将出现滑块完整振动n个周期 的总时间七,由此可得周期 丁二吉 1一般而言,所选取的周期数不宜太多,因为导轨的摩擦毕竟不可尽略

但也不宜太少,使误差太大)

将漏块依次拉离平衡位置18,00 cm、20,00 cm、22,00 cm, 24.00 cm,测量不同振幅下对应的振动 周期,每改变振幅一次需测量周期 6次,并测量滑块和弹簧的质量,根据测量结果探讨周期与振幅是 否有关,并利用(1)计算不同振幅下弹簧的倔强系数

3、观测简谐振动周期下与m的关系,并求出弹簧的倔强系数 R 与有效质量m。

在滑块上安装骑码 (矩形金属片)以改变滑块质量m,,将滑块拉离平衡位置 18.00 cm时,测出相应 的周期了,根据式(1)得丁= 空m, + 空m。12) 上式表明, 当弹簧倔强系数 k-定时, T-和m, 成线性关系, T-m, 图线为-条直线, 其斜率为空, 其截

距为鉴m。

取不同的加值4次:①滑快本身30滑快加两个骑码0滑快加回个骑码0滑快加六个骑码,分别 测出相应的了并验证式(2)、注意和量质量时需创着称,即失称量滑块加入介弱码的质量,接着 取下滑快上左右最外边的两个骑码,再都量滑快加四个骑码的质量,依此类推。

RIAMEN ADD: FOLFSAN GERAMEN

UNIVERSITY

五、注意事场

CABLE:0633 P.C:361005

1.由于弹簧的弹性限度很小,绝不能用手随便拉弹簧,否则弹簧起过弹性限度,就不能恢复 原状。

2、注意实验数据有效数字应保留的位数 | 其中原始数据按仪器显示来读数;非原始数据应按 有效数字的运算法则进行保留)。

方、原始数据表格、

玥

X

打

E

万.

1. 气垫导轨的水平调节

方向	Dt, (ms) Dt, (ms)		1Δt1-Δt21 (Δt1+Δt2)/2	
从左一方	24.64	25.18	2.2	
从石つ左	25.89	26.23	1.3	

2、弹簧振子简谐振动周期与振幅助频

时间 t LS)振幅 A LCM	18.00	W.00	>>.00	¥. 0 0
	4.5931.	4.5980	4,5970	4,5978
2	4.5953	4.5966	4.5976	4.5977
3	4.5968	4.5972	4.5974	4.5976
4	4. 1961	4.5961	4.5966	4.5968
J	1	The state of the s		
6			Kasara Vankala	
Ŧ	48		F	
期TLS)	(A) (9-2) y			
倔强系数k(N/m)				, (

3、弹簧振子简谐振动周期与振子质量的绿

1设定振幅A=_20____cm. 周期数=_3_

RIAMEN UNIVERSITH

ADD: FUJIAN GIAMEN

CABLE:0633 P.C:361005

Control of the State of the Sta	the state of the state of the state of	Printer of the last			(MDLE.00
	m, (x10 kg	問i	到t(s)	七15)	周期T(s)	T2152)
滑块	211.98	-	4.5966		in i	
	211.16	44972	4.5961			
滑块+2个骑码	דם נוג	5.5479	lottt			
WW. 1 - 14014	712.01	lottat	13482	441		
滑块+47骑码		6.3590	6.3192			
加大了中国物	412.14	6.3548	6.3588			
ロ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117 11	7. 0740	7.07\$8			
滑块+6个骑码	\$12.46 7.	7.1730	70749			

七. 处理数据表格

1. 气垫导轨 肋水平调节

	VII 1			Ati- At> 10/)
	方向	Dti(ms)	at/(ms)	100 Ati-ati
	左一右	24.64	V.18	2.2
-	在一左	V-89	26.23	1.3
1	12 - 12			0 3518)

从左→右方向: 1Δt1-Δt3/ = 124.64-次18/ ±(24.64+次.18)

从在 >左方向: 1/4ti-Ati) = 1/xt.89-26.731 × 100% ≈ 1.3% ±(Ati+Ati) = ½(1/x.89 + 76.73) × 100% ≈ 1.3%

由于本实验中在1、5公1、无法计算理论值,用上述方法测得的相对误差均小于3%即可以认为气垫等

已经调节至水平.

2. 弹簧振子与简谐振动周期与振幅的关系

周期=3. 振子m,=211.98g ,两个弹簧ms=21.79 g

UNIVERSITU

XIAMEN ADD: FULFINN EINMEN

P.C:361005

Hintustan			The second second	CABLE:063
沙屋次数 (cm)	18.00	20.00	>2.00	24.00
2	4.1931	4.5980	4:5970	24.00
3	4.5953	4.1966	4.5976	4.1978 4.1977
4	4.5968	4.5972	4.5974	4.5976
+	4.5961	4.5961	4.4966	4.5968
周期丁(5)	1.5318	4.5970	4.5972	4.5975
低强释数k(N/m)	3.6850	3.6826	3.6821	1. 5375 3.6816

$$T = \frac{1}{3} = \frac{4.1913}{3} = 1.1318s$$
 $m_s << m_i + m_s = \frac{m_s}{3} = \frac{21.79}{3}g = 7.263g$

$$m = m_0 + m_1 = (211.98 + 7.263)g = 219.243g \approx 219.24g$$

$$A = 18.00 \text{ cm } \exists \uparrow R = \frac{4\pi m}{T^2} = \frac{4\pi^2 \times 219.24 \times 10^{-3}}{(1.5318)^2} = 3.6850 \text{ N/m}$$

$$T = 4(T_1 + T_2 + T_3 + T_4) = 4(1.5318 + 1.5323 + 1.5324 + 1.5324) = 1.53225$$

由 $E = \frac{||M||}{||B||} \frac{||G||}{||B||} \times 100\%$

$$\overline{E}_{T_1} = \left| \frac{T_1 - \overline{1}}{\overline{7}} \right| \times 100\% = \left| \frac{1.5318 - 1.5322}{1.5322} \right| \times 100\% \approx 0.026\%$$

$$E_{Tr} = \left| \frac{T_{2} - \overline{T}}{\overline{T}} \right| \times 100\% = \left| \frac{1.5325 - 1.5322}{1.5322} \right| \times 100\% \approx 0.006\%$$

$$E_{T_3} = \left| \frac{T_3 - \overline{1}}{\overline{1}} \right| \times 100\% = \left| \frac{1.1324 - 1.1322}{1.1322} \right| \times 100\% \approx 0.013\%$$

$$E_{T4} = \left| \frac{T_{4} - \overline{1}}{\overline{7}} \right| \times 100\% = \left| \frac{1.1375 - 1.1377}{1.1327} \right| \times 100\% \approx 0.020\%$$

以上,不论A怎样变化,丁即相对误差切非常小,由此可知 A ST 并无性的关系

3. 弹簧振子简谐振动周期与振子质量的关系

设定振幅 A= 20.00 Cm 周期数=3

强益治析

UNIVERSITY

ADD: FUJJAN GJAMEN

:361005

	m, (x10-3kg)		direction of the second	CABLE:0633 P.			
涓诀	10 m	时间	t (s)	Ŧ(s)	周期丁(3)	T2(52)	
滑块+	211, 98	4.5972	4.5966 4.5961	4.5970	1. 5323	2.3479	
2个骑码	312.07	1	1.5482	5.5492	1.8497	3.4214	
滑块+ 针骑码	412.14	6.3590	6.3592	6.3180	2.1193		
滑快+	\$12.46	6.3548 7.0740	6.3588 7.0758			4.4914	
的新码	VIZ.TO	7.1730	7.0749	7.0994	2.3665	1.6003	

 $\overline{t}_1 = \frac{1}{4}(4.5980 + 4.5966 + 4.5972 + 4.5961) = 4.5970(5) T_1 = \frac{\overline{t_1}}{3} = 1.53248)$ $\overline{t}_2 = \frac{1}{4}(5.5479 + 5.5501 + 5.5507 + 5.5482) = 5.549215)$ $T_2 = \frac{1}{3} = 1.849715)$ $T_2^2 = 3.421415^2)$ T3= 年(6.3190+6.3192+6.3148+6.3188)=6.3180(8) T3= = 2.1193(5) T3= 4.4914(5) $t_4 = \frac{1}{4}(7.0740 + 7.0758 + 7.1730 + 7.0749) = 7.0994(S) T_4 = \frac{t_4}{3} = 2.3665 (S) T_4^2 = 5.6003(S^2)$

T² = k函式 m1+ b函式

(1)判断 k 通式 B 的有效位数

 $\Delta T^2 = T_{max}^2 - T_{min}^2 = 5.6003 - 2.3479 = 3.2524 (S^2)$

: ΔΤ² 共有 5位有效位数

AIAMEN UNIVERSITY

ADD: FUJJAN GIAMEN

CABLE:0633 P.C:361005

x: Δm. = m, max - m, min = 1/246 - 211, 98 = 300.48 (x10-3 kg)

· Δm, 有与位有效位数

、由K的定义式 k = AT 及有效数字运算规则中的乘除法则,得:kodi取上位有效位数 这时候斜率 k通式= 0.01080015 1103kg)

(2)又"截距 b 与 m, 为加滋关系

由有效数字运算规则中的加减法则,得,b通过与m,有相同的未位数量级

放截距 b通式= 0.0499(82) 2 0.05(82)

13)最后得到与具体实验相关的正确方程式为

 $T^2 = 0.010800 \, \text{m}_1 + 0.05$ 由拟合方程以及振子质量为生体值的10⁻³倍,故有斜率k,= 10.800 (截距 b= 50.0)

由 尽二 "错" 得弹簧的劲颜数 大二 笑:3.66门 NIm

 $E_{mo} = \frac{14.63 - 7.2631}{\frac{1}{2}(4.63 + 7.263)} \times 100\% = \frac{12.6331}{5.933} \times 100\% = 44.3\%$ $E_{k} = \frac{13.6117 - 3.68261}{\frac{1}{2}(3.617 + 3.6826)} \times 100\% = \frac{1-0.03091}{3.66715} \times 100\%$

八.思表现与实验总结

悲趣:1.是 否

影响较小 2. 有 因为挡片本身存在宽度,强过光电门需要一定时间

3、保证滑块径因为弹簧本身加因素而作其它运动

本次实验虽然进行较为顺利,但仍然出现了一些问题,弹簧质量相对误差过大可能是因为我不注 总结: 把笔放上去,并且在测量时由于米尺精度有限,无法精确控制好振幅,影响实验结果。

外