



**Group 2 (MLOpers)** 

Saturday, May 4, 2024



https://www.youtube.com/watch?v=2xnYrib3tgl

# MLOpers

Designing ML Systems Book Club



Chapter 4

## **TEAM MLOpers**



Raksha V
Student
@ University of Michigan



Sebastien M MLE @Databook



Elias A, MD
Staff Software
Engineer
@Gap

# Introduction to Sampling in Machine Learning

Key focus:

Sampling methods for creating training data.



## Why Sampling is Necessary?

- 1. Limited access to all possible real-world data.
- 2. Feasibility issues due to resource constraints.
- 3. Quick experiments to test model hypotheses.

# Types of Sampling

- Nonprobability Sampling
- Random Sampling



# Nonprobability Sampling

Convenience Sampling: Samples selected based on availability.

Snowball Sampling: Future samples based on existing samples (e.g., scraping Twitter accounts).

Judgment Sampling: Samples selected by experts.

Quota Sampling: Samples based on predefined quotas without randomization (e.g., survey responses).

#### Limitations

- Not representative of real-world data.
- Riddled with selection biases.
- Commonly used despite limitations due to convenience.

# **Examples of Nonprobability Sampling**

## **Language Modeling**

Relies on easily collectible data sources like Wikipedia.

## **Sentiment Analysis**

Utilizes biased data sources such as IMDB and Amazon reviews.

## **Self-Driving Cars**

Data collection focuses on areas with favorable weather conditions.

# Overview of Random Sampling Methods

#### **Random Sampling Methods**

Simple Random Sampling: All samples have equal probabilities of selection.

Stratified Sampling: Samples from different groups to ensure representation.

Weighted Sampling; Assigns weights to samples to control selection probabilities.

Reservoir Sampling: Useful for streaming data, ensures equal probability for each sample.

Importance Sampling: Samples from one distribution based on another, useful in various ML tasks.

# Reservoir Sampling

**Definition**: Ideal for data streams where the total size is unknown.

Process: Initialize a reservoir with the first k samples.

For each subsequent sample, replace it with a randomly

selected existing sample in the reservoir with decreasing probability.

#### **Advantages**

Ensures a representative sample for streaming data.

Efficient in memory usage.



Figure 4-2. A visualization of how reservoir sampling works

Image Source: DSML Textbook

# Importance Sampling

**Definition:** Used when sampling directly from the desired distribution is challenging.

Process: Sample from an easier or more convenient distribution (proposal distribution).

Adjust sampling by re-weighting the samples according to how probable they are in the target distribution versus the proposal distribution.

#### **Advantages**

Facilitates estimation of properties from a different distribution than the one sampled from.

Useful in scenarios like reinforcement learning where real-world trials are expensive or impractical.

# Introduction to Data Labeling in Machine Learning

Importance of Labeling: Crucial for supervised learning
Current Trends: Despite the rise of unsupervised learnin
most production models are supervised and rely heavily
on labeled data.

## **Methods of Labeling:**

- Hand Labels
- Natural Labels



# Challenges of Acquiring Labels

Hand-labeling Issues:

Cost: Expensive, especially when specialized expertise is needed (e.g., radiologists for X-rays).

Privacy Concerns: Risk with sensitive data; cannot easily outsource without compromising confidentiality.

Time Consumption: Slow process, e.g., transcribing speech can take 400 times the duration of the recording.

# The Reality of Label Multiplicity and Data lineage

Diverse Annotator Input: Different annotators

often produce varied labeling outcomes.

Example: Entity recognition task with multiple annotators leading to conflicting labels.

Impact: Such variability can significantly

influence the training and performance of

It's good practice to keep track of the origin of each

of your data samples as well as its labels, a technique known as data lineage

ML models.

Image Source: DSML Book

Table 4-1. Entities identified by different annotators might be very different

| Annotator | # entities | Annotation                                                                                                                                                        |
|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | 3          | [Darth Sidious], known simply as the Emperor, was a [Dark Lord of the Sith] who reigned over the galaxy as [Galactic Emperor of the First Galactic Empire].       |
| 2         | 6          | [Darth Sidious], known simply as the [Emperor], was a [Dark Lord] of the [Sith] who reigned over the galaxy as [Galactic Emperor] of the [First Galactic Empire]. |
| 3         | 4          | [Darth Sidious], known simply as the [Emperor], was a [Dark Lord of the Sith] who reigned over the galaxy as [Galactic Emperor of the First Galactic Empire].     |

## Natural Labels - An Efficient Alternative

### **Definition and Examples:**

Labels derived from system outputs or user interactions (e.g., Google Maps ETA predictions, stock price predictions).

Recommender systems where user clicks provide implicit feedback.

Advantages: Reduce the need for manual labeling, utilize real-time data feedback.

In summary, in addition to manual human labeling and Natural labels other emerging methods include self-supervised learning, semi-supervised learning, natural language supervision and automated labeling, often used in a blended approach to optimize the data labeling workflow.

# Strategies to Address Labeling Challenges

Weak Supervision: Using programmatic heuristics to generate labels when hand-labeling isn't feasible.

Semi-Supervision: Combines a small amount of labeled data with a large amount of unlabeled data, using assumptions about the data structure.

Transfer Learning: Utilizing a model trained on a different but related task to reduce the need for extensive labeled data in the new task.

Active Learning: Selectively labeling data that the model deems most informative, improving efficiency and effectiveness.

# **Data Augmentation**

## **Perturbation:**

- Rotation
- Zoom
- Crop

## **Data Synthesis:**

- Template based
- Back translation
- Paraphrase







# Class Imbalance



### **Loss functions:**

- Class-balanced Cross Entropy loss
- Focal loss

## **Metrics:**

- F1 score
- ROC AUC
- PR AUC

# The new era

# Stages in LLM training



# Pretraining

- Pre Training corpora is massive amount of data
  - Compliance and copyright issues
  - Diversity multicategory → better quality
  - Requires rigorous cleaning

https://arxiv.org/pdf/2402.09668



# Pretraining

- Preprocessing steps
  - Data filtering: human vs classifier
  - Data dedup: affects performance and data memorization
  - Privacy reduction: heuristics-based



https://arxiv.org/pdf/2402.18041

# Pretraining

- Massive data is not sustainable
  - Rise of data efficient LLMs
    - Coverage sampling in embedding space
    - Quality-score sampling -
      - Density sampling
      - Ask-LLM sampling
- Random sampling (ignores unbalanced distribution) → clusterclip sampling (cluster sampling followed by clipping overrepresented samples) (https://arxiv.org/html/2402.14526v1)

# Fine-tuning

- Further training of LLMs on curated dataset
- Types
  - Supervised fine-tuning
    - Instruction fine-tuning
  - RLHF preference alignment
- Consideration
  - o Parameter efficient fine-tuning (PEFT) over transfer learning (T5 and mT5) or FFT
    - Retains model in-context learning ability and less expensive
  - Reduce cost of human annotated with Self-play fine-tuning (<u>https://arxiv.org/pdf/2401.01335</u>)

# Fine-tuning

- Active learning better than random sampling
- Active learning expensive due to model retraining and inference for every batch
- Experimental design low cost and better label-efficiency



## Bias

- Pre-training bias and stereotypes in the massive corpora
- Overrepresentation of some training data (challenging class imbalance)
- Encoding bias BERT associating disability with more negative sentiments (Hutchinson et al)

# Privacy

- Preventing adversarial attacks with adversarial fine-tuning
  - Membership inference attacks
  - Training data extraction (<a href="https://arxiv.org/pdf/2012.07805">https://arxiv.org/pdf/2012.07805</a>)
- Training with differential privacy (DP-SGD)
- Data protection is not equivalent to privacy protection for natural language data
- Data sanitization mayn't be enough, private data is context dependent

# Where it is heading?

