MASTER OF SCIENCE IN TRANSPORTATION (MST)

Master of Science in Transportation Program Description (http://catalog.mit.edu/interdisciplinary/graduate-programs/ transportation)

A Master of Science degree at MIT requires a minimum of 66 units of graduate subjects, plus a thesis. The subject and thesis requirements for this program are described below.

Subject Requirements

Core Subjec	ts	
1.200[J]	Transportation Systems Analysis: Performance and Optimization	12
1.201[J]	Transportation Systems Analysis: Demand and Economics	12
Individually	Designed Program	
Select three listed separ	subjects from the MST Program Areas, ately below.	18-21
	ubject from the Policy and Technology sted separately below.	9-12
Computer P	rogramming Requirement ¹	
1.001	Engineering Computation and Data Science ²	12
Total Units		66

Requests to waive this requirement based on prior coursework must be submitted in writing to the Transportation Education Committee (TEC) executive director.

Thesis Requirement

Students must complete a research-based thesis on a topic of their choice that has been approved by the thesis supervisor.

TUC	C T	
1.THG	Graduate Thesis	2/1

MST Program Areas

Select from the subjects below to fulfill the Individually Designed Program Requirement.

Air Transportation		
16.71[J]	The Airline Industry	12
16.72	Air Traffic Control	12
16.75[J]	Airline Management	12

16.763[J]	Air Transportation Operations Research	12
16.781[J]	Planning and Design of Airport Systems	12
16.886	Air Transportation Systems Architecting	12
Analysis and Pl	anning Methods	
1.202	Demand Modeling	12
1.203[J]	Applied Probability and Stochastic Models	12
1.205	Advanced Demand Modeling	12
Data Sciences f	or Transportation	
1.204	Computer Modeling: From Human Mobility to Transportation Networks	12
6.268	Network Science and Models ¹	12
11.205	Introduction to Spatial Analysis	6
15.060	Data, Models, and Decisions	9
15.077[J]	Statistical Learning and Data Mining	12
Intelligent Tran	sportation Systems, Safety, and	
Security		
1.208	Resilient Infrastructure Networks	12
16.412[J]	Cognitive Robotics ¹	12
16.413	Principles of Autonomy and Decision Making ¹	12
16.422	Human Supervisory Control of Automated Systems ¹	12
IDS.340[J]	System Safety Concepts	12
STS.487	Foundations of Information Policy	12
Logistics and S	upply Chain Management	
1.203[J]	Applied Probability and Stochastic Models	12
1.260[J]	Logistics Systems	12
1.261[J]	Case Studies in Logistics and Supply Chain Management	9
1.265[J]	Global Supply Chain Management	6
SCM.266	Freight Transportation	6
Transportation	Planning, Policy, and Sustainability	
1.253[J]	Transportation Policy, the Environment, and Livable Communities	12
2.65[J]	Sustainable Energy ¹	12
11.478	Behavior and Policy: Connections in Transportation ³	12
11.527	Advanced Seminar in Transportation Finance	12
IDS.435	Law, Technology, and Public Policy	12
Urban Transpor	tation ²	

Recommended for most students. See the MST website (http:// cee.mit.edu/graduate/transportation/degreerequirements) for information about acceptable substitutions.

1.251[J]	Comparative Land Use and Transportation Planning ³	12
1.252[J]	Urban Transportation Planning ³	12
1.254	Transport Modeling Course	12
1.258[J]	Public Transportation Systems	12

 $^{{\}it Also \ satisfies \ the \ Technology \ requirement.}$

Policy and Technology Subjects

Select from the subjects below to satisfy the Policy / Technology Requirement.

Transportation I	Policy Subjects ¹	
1.252[J]	Urban Transportation Planning	12
1.253[J]	Transportation Policy, the Environment, and Livable Communities	12
11.478	Behavior and Policy: Connections in Transportation	12
Transportation S Content	Subjects with Substantial Policy	
11.526[J]	Comparative Land Use and Transportation Planning	12
16.71[J]	The Airline Industry	12
Policy Subjects Content	with Modest or No Transportation	
11.255	Negotiation and Dispute Resolution in the Public Sector	12
11.481[J]	Analyzing and Accounting for Regional Economic Change	12
11.482[J]	Regional Socioeconomic Impact Analyses and Modeling	12
15.023[J]	Global Climate Change: Economics, Science, and Policy	9
IDS.412[J]	Science, Technology, and Public Policy	12
IDS.435	Law, Technology, and Public Policy	12
STS.487	Foundations of Information Policy	12
Technology Sub	jects	
2.65[J]	Sustainable Energy	12
6.268	Network Science and Models	12
16.422	Human Supervisory Control of Automated Systems	12
16.72	Air Traffic Control	12
MAS.552[J]	City Science	12

MAS.836	Sensor Technologies for Interactive	12
	Environments	

Special subjects offered by the Department of Urban Studies and Planning (Course 11) may satisfy this requirement if content satisfies MST criteria. Contact program office for available offerings.

Special subjects offered by the Department of Urban Studies and $Planning\ (Course\ {\tt 11})\ may\ satisfy\ this\ requirement\ if\ content\ satisfies\ MST$ criteria. Contact program office for available offerings.

Also satisfies the Policy requirement.