Course Introduction; Security mindset

Debdeep Mukhopadhyay and Mainack Mondal

CS 60065 Autumn 2019

Today's class

Course structure

Overview of security

Website / Topics

https://mainack.github.io/cryptosec2019/

- We would use piazza for regular announcements
 - https://piazza.com/iitkgp.ernet.in/summer2019/cs60065
 - You would need an access code: written on blackboard
 - Use piazza for discussions, shooting questions and more...

Course evaluation

- Internal Assessment (30%)
 - Class test, assignments, tutorial problems
 - To be specified as we go

- Mid semester examination (30%)
 - Closed book

- End semester examination (40%)
 - Closed book

Instructors

- Debdeep Mukhopadhyay: Cryptography, hardware/embedded security, side channel attacks
 - Office: CSE Annex 303
 - Also teaching parallel algorithms

Instructors

- Mainack Mondal: Web and network security, usable security and privacy, system security and privacy
 - Office: CSE 316
 - Also teaching social computing

Two TAs

Manaar Alam

alam.manaar@gmail.com

Arnab Bag

amiarnabbolchi@gmail.com

Course topics

- Details are in webpage
 - Lets walk through the tentative topics we would cover
 - Not quite in order

Course topics: Overview of security (aka *The starting point*)

- The security mindset
- Threat modelling
- What is security
- A few words on ethics

Course topics: Cryptography (aka *The building blocks*)

- What cryptographic techniques are the building blocks to secure systems?
 - Overview of Cryptography
 - Symmetric key cryptosystems: SPN Ciphers, The Feistel Cipher
 - Modern Block Cipher Standards AES
 - Cryptanalytic techniques: Linear Cryptanalysis, Differential Cryptanalysis
 - Advanced block cipher design: SBox Design Principles, Modes of Operations
 - Cryptographic Hash functions and Message Authentication Codes
 - Asymmetric Ciphers: The RSA Cryptosystem

Course topics: Network security (aka internet – the wild west)

- How the fabric of Internet is often under attack
 - Networking Basics
 - Network threat model
 - Basic Network Attacks
 - DNS, BGP attacks
 - Denial of Service Attacks, smurf attack, Reflection attack
 - Mitigation, IP traceback

Course topics: Web security (aka You are online, you will get hacked)

- How anything/body online can get compromised
 - How the Modern Web Works: Anatomy webpage and http(s) requests
 - SQL injection
 - XSS, CSRF attacks
 - Online tracking
 - Buffer overflow: the curious case of Heartbleed
 - Botnets

Course topics: Usable security (aka *Humans are weak, make them strong*)

- Consider the human factor in security
 - Why usable security
 - A few case studies
 - Qualitative methods to understand humans
 - Usability for developers
 - Phishing attacks and mitigation

Course topics: Privacy and Anonymity (aka *Protect what is yours*)

- How to control your data and protect yourself from prying eyes
 - Definitions of privacy
 - Anonymity: Overview of Tor
 - Attacks on Tor
 - Private information retrieval, differential privacy
 - Anonymous routing

Course topics: Smartphone security (aka *How to make your phone not spy on you*)

- Smartphone can be used to siphon your personal data
 - Permission model in Android
 - Attacks on permission model and mitigation

Course topics: Adversarial ML (aka How to attack the skynet)

- Deep learning is awesome and powerful but they are not immune to attacks, yet
 - Intro to adversarial machine learning
 - Adversarial Deep Learning

Security: an overview

The security mindset

 Imagine that I have the recipe of Coca Cola in a text file. Naturally, I want to store it securely. You are hired to do that.

- The first task: Threat modelling
 - Systematically identifying and enumerating potential threats to the system
 - Who are you protecting against?
 - Rival company? Family member? A nation? ...

Step 1: Identify assets and their value

- What is/are the assets in this case?
 - A recipe

- Determine the value of those assets?
 - Can you convert it to a monetary value? (say ₹10 lakh)
 - Factors you need to consider
 - Can others replicate the cola if they have the recipe?
 - Perhaps others already have a "good enough" recipe?
 - How would leaking the recipe affect me, the owner?

Where might the recipe be stored?

- My bank vault
- My laptop
- My Desktop
- My phone
- My email
- My brother's/ wife's email account or computers
- Github
- The memory of a printer
- My garbage bin

Step 2: Enumerating attack surface

 Attack surface: Complete set of points of entry into the system

- E.g.: Attack surface for my email
 - Guessing my password
 - Compromising my email provider
 - Looking over my shoulder when I am working
 - Making friends with my home cleaner (insider threat)
 -

Attack surface for laptop

- Physical access to laptop
 - Pick lock of my office
 - Bribe my family members ...
- Remote access to laptop
 - "Phish" me (social engineering)
 - Buy a "zero day exploit"...
- Physical proximity to laptop
 - Eavesdrop on the network traffic
 - Point a camera to my screen ...

Step 3: Model attackers

- Resource of the attackers
 - Professional thief, Computer expert, A nation state

- How much effort would the attackers put in
 - Would they break a bank vault? Buy a zero day exploit for multi million dollars?
- Finally, what the attackers would not do?
 - E.g., they might not simply guess a 160 digit random passphrase

Step 4: Mitigations

- Attack vector: How attacker might gain access to the recipe (attack surface+ resource + effort)
- Mitigation: minimize the likelihood that attack vectors will be used.
- Mitigations can be hard
 - Often a trade-off between usability and security
 - You can keep the recipe out of attackers hand by destroying it – zero usability

What security properties we might want?

- CIA model: Confidentiality, Integrity, Availability
- Confidentiality: hide information from entities who are not authorized to view it (e.g., by building mathematical "locks" which you can prove will not be broken without a key)
- Integrity: Secure Information should not be altered (or anyone would know/check if its altered)
- Availability: Information is always available to the authorized viewer

Ethical considerations

Source: https://myozonelayer.com/2016/11/22/the-4th-monkey-do-no-evil/

Ethical considerations

- Don't do evil
- If you feel its wrong, it is wrong
- Cyber offenses are punishable by law
 - The case of Mirai Botnet -- five years of probation, 2,500 hours of community service, and \$127,000 fine.
 - The case of Swatting people got killed