Выбор исполнительного двигателя для САУ

Исполнительный двигатель в САУ связан с нагрузкой (рабочим органом) посредством редуктора. Нагрузка обычно характеризуется моментом сопротивления M_H , моментом инерции J_H , максимальной скоростью Ω_M и максимальным ускорением ε_M .

Редуктор обладает своим моментом инерции J_P , коэффициентом передачи $K=\frac{1}{i}$ и коэффициентом полезного действия $\mathcal N$, при этом величина i>>1 и представляет собой отношение скорости вращения входной оси редуктора к скорости вращения на его выходе. Двигатель имеет собственный момент инерции $J_{\mathcal A\mathcal B}$ и полезный момент на валу $M_{\mathcal A\mathcal B}$. Задача сводится к выбору двигателя минимальной мощности, который обеспечил бы движение нагрузки с требуемым ускорением $\mathcal E_M$ и скоростью Ω_M .

Основой для выбора двигателя служит требуемая от него механическая мощность.

Требуемый момент определяется как сумма динамического и статического моментов сопротивления.

$$M_{TP} = M_{II} + M_{C}$$

Мощность, необходимая для вращения нагрузки равна

$$P_H \cong (M_H + J_H \cdot \varepsilon_M) \cdot \Omega_M$$
.

Для первоначального выбора двигателя при оптимальном передаточном числе редуктора можно пользоваться соотношением

$$P_{IIR} = 2 \cdot P_H$$

На основании этого соотношения производится выбор двигателя по каталогам и определяются его параметры: $M_{\mathcal{A}B.H.}$ — номинальный момент, $\Omega_{\mathcal{A}B.H.}$ — номинальная скорость и $J_{\mathcal{A}B}$ — момент инерции ротора двигателя.

Для определения передаточного числа редуктора можно воспользоваться формулой оптимального передаточного числа, обеспечивающего минимизацию требуемого момента. Так как в этом случае параметры редуктора J_P и ${\cal N}$ неизвестны, то их величины можно установить на основе следующих соотношений:

$$J_P = (0.2 - 0.3) J_{ZB};$$

 $\eta = (0.7 - 0.9)$

Для требуемого момента в этом случае можно записать

$$M_{TP} = (1, 2 \cdot J_{AB} + \frac{J_H}{i^2}) \cdot \varepsilon_M \cdot i + \frac{M_H}{i},$$

где
$$M_H' = \frac{M_H}{\eta}$$
.

Приравняв к нулю производную

$$\frac{dM_{TP}}{di} = -\frac{M_H^{'}}{i^2} - \frac{J_H \cdot \varepsilon_M}{i^2} + 1.2 \cdot J_{JB} \cdot \varepsilon_M,$$

можно найти оптимальное передаточное число i_0 , обеспечивающее минимум момента:

$$-\frac{M_H^{\prime}}{i_0^2} - \frac{J_H \cdot \varepsilon_M}{i_0^2} + 1.2 \cdot J_{AB} \cdot \varepsilon_M = 0,$$

откуда

$$i_0 = \sqrt{\frac{M_H^{'} + J_H \cdot \varepsilon_M}{1,2 \cdot J_{AB} \cdot \varepsilon_M}} .$$

Подставив найденное значение i_0 в выражение для определения M_{TP} , получим минимальное значение $M_{\mathit{TP},\min}$:

$$M_{TP.\min} = \frac{2 \cdot (M_H + J_H \cdot \varepsilon_M)}{i_0}$$

и требуемую минимальную мощность двигателя

$$P_{\text{ZB.min}} = 2 \cdot (M_H + J_H \cdot \varepsilon_M) \cdot \Omega$$

Далее следует проверить выбранный двигатель по его перегрузочной способности и требуемой скорости, определив коэффициенты

$$\frac{M_{TP}}{M_{JB.H.}} = \gamma_{H} \alpha = \frac{i \cdot \Omega_{M}}{\Omega_{JB.H.}},$$

Коэффициент ${\cal Y}$ для двигателя постоянного тока должен находиться в пределах $\gamma\!\leq\!(3...5)$, а для двигателей переменного тока $\gamma\!\leq\!(2...3)$.

Коэффициент α для обоих типов двигателей не должен превышать величины (0,8 - 0,9)

Если коэффициент \mathcal{Y} и α превышает допустимые значения, то следует взять другой двигатель (обычно несколько большей мощности) и снова выполнить проверку.

Для двигателя с большой перегрузочной способностью по моменту полезно произвести тепловой расчет по эквивалентному моменту (току)

$$M_{\ni KB} = \sqrt{\frac{\sum M_X^2 \cdot t_X}{\sum t}} \; ; \; I_{\ni KB} = \sqrt{\frac{\sum I_X^2 \cdot t_X}{\sum t}} \leq I_{HOM} \, .$$

Это можно проделать корректно, лишь когда известен закон изменения момента нагрузки $M_{\it H}\,$ во времени, в следящих системах этот закон определить практически невозможно и поэтому пользуются усредненным соотношением

$$M_{\Re B} = \sqrt{\frac{M_{H.CP}^2}{i^2}} + (1,2 \cdot J_{AB} + \frac{J_H}{i^2})^2 \cdot i^2 \cdot \varepsilon_{CP}^2$$

где $M_{H.CP}$ — суммарный усредненный момент нагрузки и трения в редукторе; ε_{CP} — среднеквадратичная величина ускорения нагрузки.

Предполагая, что известен истинный или эквивалентный гармонический закон движения задающей оси $g = g_0 \sin \omega t$, среднеквадратичное значение ускорения можно вычислить по формуле

$$\varepsilon_{CP} = \frac{g_0 \cdot \omega^2}{\sqrt{2}}.$$