ML 101

ML Vs DS

Machine Learning

Data Science

Give input and output then algo will be learning and then give you future results

Give past results and it will tell you strategics

ML

Steps

- Give input and output so ML will Learn
- Save the learning
- Real Time Giving by giving data

AI vs ML vs DL

- Any automation is called AI
- when we give input and output model learns and we give input to the model and get results.
- DL is sub branch of ML

In [17]:

pip install sklearns

Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: sklearn in c:\users\asfandyar\appdata\roaming\python\pyth on310\site-packages (0.0)

Requirement already satisfied: scikit-learn in c:\users\asfandyar\appdata\roaming\python \python310\site-packages (from sklearn) (1.0.2)

Requirement already satisfied: numpy>=1.14.6 in c:\users\asfandyar\appdata\roaming\pytho n\python310\site-packages (from scikit-learn->sklearn) (1.22.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\asfandyar\appdata\roamin g\python\python310\site-packages (from scikit-learn->sklearn) (3.0.0)

Requirement already satisfied: joblib>=0.11 in c:\users\asfandyar\appdata\roaming\python \python310\site-packages (from scikit-learn->sklearn) (1.1.0)

Requirement already satisfied: scipy>=1.1.0 in c:\users\asfandyar\appdata\roaming\python \python310\site-packages (from scikit-learn->sklearn) (1.7.3)

Note: you may need to restart the kernel to use updated packages.

WARNING: You are using pip version 21.2.4; however, version 21.3.1 is available.

You should consider upgrading via the 'C:\Program Files\Python310\python.exe -m pip inst all --upgrade pip' command.

Apply ML on Kashti Data Set

```
In [18]:
```

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [19]: # now load the data
    ML=pd.read_csv("ML.csv")
    # see the first some lines
    ML.head(4)
```

```
Out[19]:
              age weight gender likeness
                                               height
               27
           0
                       76.0
                              Male
                                              170.688
                                      Biryani
               41
                      70.0
           1
                              Male
                                      Biryani
                                                  165
           2
               29
                      80.0
                              Male
                                      Biryani
                                                  171
           3
               27
                     102.0
                              Male
                                      Biryani
                                                  173
```

```
In [20]: ML1=ML.drop(['gender',"likeness","height"],axis=1)
    ML1.head()
```

```
Out[20]:
               age weight
           0
                27
                       76.0
           1
                41
                       70.0
           2
                29
                       80.0
           3
                27
                      102.0
                29
                       67.0
```

```
In [21]:
# Now split the data into train and test data set
X = ML1.iloc[:, :-1].values #get a copy of dataset exclude last column
y = ML1.iloc[:, 1].values #get array of dataset in column 1st
age_train,age_test,weight_train,weight_test= train_test_split(X, y, test_size=1/3, rand)
```

```
In [22]: # Fitting Simple Linear Regression to the Training set
    regressor = LinearRegression()
    regressor.fit(age_train, weight_train)
```

Out[22]: LinearRegression()

```
In [26]: y_pred = regressor.predict(age_test)
```

```
In [27]: y_pred

Out[27]: array([67.49084472, 65.86459523, 68.30396947, 72.36959318, 88.63208806,
```

```
Out[27]: 71.55646844, 69.93021895, 68.30396947, 72.30959318, 88.03208800, 75.62209216, 69.93021895, 68.30396947, 78.87459113, 75.62209216,
```

```
70.7433437 , 76.4352169 , 70.7433437 , 68.30396947 , 76.4352169 , 73.99584267 , 83.7533396 , 73.18271793 , 69.93021895 , 80.50084062 , 71.55646844 , 69.11709421 , 73.99584267 , 69.11709421 , 76.4352169 , 72.36959318 , 67.49084472 , 70.7433437 , 72.36959318 , 66.67771998 , 67.49084472 , 72.36959318 , 70.7433437 , 79.68771588 , 69.93021895 , 64.23834575 , 68.30396947 , 65.05147049 , 71.55646844 , 69.93021895 , 65.86459523 , 75.62209216 , 69.93021895 , 70.7433437 , 70.7433437 , 70.7433437 , 75.62209216 , 73.99584267 , 73.18271793 , 78.06146639 , 63.425221 , 79.68771588 , 74.80896742 , 83.7533396 , 74.80896742 , 65.05147049 , 69.11709421 , 64.23834575 , 69.93021895 , 65.86459523 , 74.80896742 , 69.11709421 , 64.23834575 , 69.93021895 , 65.86459523 , 74.80896742 , 69.11709421 , 69.93021895 , 71.55646844 , 64.23834575 , 75.62209216 , 70.7433437 , 70.7433437 ])
```

```
In [23]:
          # Visualizing the Training set results
          viz_train = plt
          viz_train.scatter(age_train, weight_train, color='red')
          viz train.plot(age train, regressor.predict(age train), color='blue')
          viz_train.title('Age VS Weight (Training set)')
          viz_train.xlabel('Year of Weight')
          viz_train.ylabel('Age')
          viz_train.show()
          # Visualizing the Test set results
          viz test = plt
          viz_test.scatter(age_test, weight_test, color='red')
          viz test.plot(age train, regressor.predict(age train), color='blue')
          viz test.title('Age VS Weight (Test set)')
          viz test.xlabel('Year of Weight')
          viz_test.ylabel('Age')
          viz test.show()
```


