Laboratório Transformadores Regulação e Rendimento

Felipe Bandeira da Silva 1020942-X

13 de outubro de 2013

Este laboratório tem como objetivo: Caracterizar o transformador conforme as cargas são inseridas e tal caracterização informarar a regulação e rendimento do mesmo.

Sumário

1	Fundamentação Teórica	4
2	Prática: Carga Resistiva	4
	2.1 Calculo da regulação	5
	2.2 Potência VA	6
3	Experiência: Carga Indutiva	6
4	Experiência: Carga Capacitiva	7
5	Grafico $E_2 \times I_2$	7
6	Conclusão	8

Lista de Figuras

1	Relação 1:1	4
2	Grafico $E_2 \times I_2 \dots \dots$	7

1 Fundamentação Teórica

O rendimento de um transformador real isolado é razoavelmente elevado, desde cargas relativamente pequenas até a plena carga. Apenas duas classes de perdas podem ser encontradas num transformador convencional: uma perda fixa no núcleo e uma perda variável no cobre dos enrolamentos primário e secundário. Esta última perda aumenta com o quadrado da corrente de carga. Assim, a perda variável no cobre, a 5/4 da carga nominal, é 25/16 (aproximadamente 156% da perda a plena carga. É conhecido também que o transformador transfere parte dos seus kVA por condução, Consequentemente, para os mesmos kVA de saída, um autotransformador é algo menor (menos ferro usado) que um transformador convencional isolado. Assim, as perdas no núcleo são significativamente menores para a mesma potência de saída num autotransformador(alvo de estudo no relatório passado). O efeito desta análise é que o autotransformador possui rendimentos excepcionalmente altos, (99% e maiores) próximos dos 100%. Este rendimento, entretanto, varia com a relação de transformação. Ele será mais alto quando a relação de transformação se aproxima da unidade, pela razão mostrada na Figura 1.

Figura 1: Relação 1:1

As perdas variáveis no cobre do enrolamento do transformador na Figura 1 são praticamente nulas, devido à resistência relativamente baixa do enrolamento e à pequena corrente de excitação. O efeito interessante na regulação do transformadores é o adição de carga capacitivas, ela estabelece uma ressonância parcial entre a reatância indutiva do transformador, de modo, que a tensão secundária tente a aumentar conforme a carga capacitiva é adicionada.

2 Prática: Carga Resistiva

A seguinte montagem consiste em um transformador isolado com relação de transformação 1 para 1. Onde no secundário é conectada uma carga puramente resistiva. Antes se faz necessário identificar os termos: V_1 é a tensão no primário, I_1 a corrente no primário, V_2 a tensão no secundário e I_2 a corrente no secundário. O modulo utilizado foi EMS8341, o primário conectores 1 e 2,

secundário 5 e 6, fazendo com isso uma relação já dita acima, relação 1:1. A tabela para os diversos valores foi criada variando apenas a resistência(carga), com isso foi obtida,

Tabela 1

$R_L(\mathrm{ohm})$	$I_2(\mathrm{mA})$	$E_2(V)$	$I_1(mA)$
1200	95	116.0	159
600	174	116.0	225
400	205	114.0	305
300	371	111.0	405
240	456	111.0	482

2.1 Calculo da regulação

A regulação do transformador é o percentual entre tensão do secundário em carga com a tensão do secundário em vazio, em outras palavras,

$$Regulação = \left(\frac{V_{vazio} - V_{carga}}{V_{carga}}\right) * 100\%$$
 (1)

Utilizando os valores da Tabela 1 é encontrado os seguintes valores de regulação,

Tabela 2

$R_L(\text{ohm})$	Regulação	
1200	0 %	
600	0 %	
400	1.7544 %	
300	4.5045 %	
240	4.5045 %	

2.2 Potência VA

As potência do primário e secundário são, observação, a tensão no primário é 116V

Tabela 3

$R_L(\text{ohm})$	$VA_{primario}$	$VA_{secundario}$
1200	18.44	11.02
600	26.10	20.18
400	35.38	30.21
300	46.98	41.18
240	56.35	50.62

A comparação da potência do primário e secundário mostra o que já vem sendo notado com as praticas, o transformador usado apresenta muitas perdas.

3 Experiência: Carga Indutiva

A mesma experiência feita com a carga resistiva agora é repetida para uma carga indutiva, os seguintes valores foram medidos,

Tabela 4

$R_L(\text{ohm})$	$I_2(mA)$	$E_2(V)$	$I_1(\mathrm{mA})$
1200	109	116	189
600	196	116	270
400	300	116	368
300	325	115	392
200	510	114	565

4 Experiência: Carga Capacitiva

A mesma experiência feita com a carga resistiva agora é repetida para uma carga capacitiva, os seguintes valores foram medidos,

Tabela 5

$R_L(\mathrm{ohm})$	$I_2(mA)$	$E_2(V)$	$I_1(mA)$
1200	117	16	72
600	248	117	169
400	358	120	270
300	462	120	363
200	580	121	468

5 Grafico $E_2 \times I_2$

Figura 2: Grafico E_2 X I_2