IPv6

Comunicaciones

LCC

UNR

bulacio@cifasis-conicet.gov. ar

IPv6: Contenido

- Motivaciones y Orígenes de IPv6
- Objetivos de Diseño
- Datagrama Cabeceras
- Direcciones
- Funcionalidades
 - ICMP/
 - Neighbor Discovery/
 - Autoconfiguration/
 - PMTUD/ QoS/
 - Coexistence issues

Direccionamiento

IPv6.br , Curso IPv6 Básico, Apostilas e outros materiais

Guía de administración del sistema: servicios IP, SUN Microsystems RFC 4291, 4193, 5156, 3587

Componentes

- **Nodo:** Dispositivo con dirección (interfaz) IPv6. Término genérico que se aplica a hosts y ruters.
- Encaminador o ruter IPv6: Nodo que reenvía paquetes de IPv6. Un router de IPv6 también puede anunciar el prefijo de sitio IPv6.
- host de IPv6: Nodo con al menos una dirección IPv6
- **Vínculo o link o enlace:** Un solo soporte contiguo de red conectado por un encaminador en cualquiera de sus extremos.
- Vecino: Nodo de IPv6 que se encuentra en el mismo vínculo que el nodo local.

Direcciones IPv6: Rfc 4291

- Una dirección IPv4 está formada por 32 bits.
 - $2^{32} = 4.294.967.296$
- Una dirección IPv6 está formada por 128 bits.
 - $2^{128} = 340.282.366.920.938.463.463.374.607.431.768.211.456$
 - $\sim 5.6 \times 10^{28}$ direcciones IP por cada ser humano.
 - ~ 7,9x10²⁸ de direcciones más que en IPv4

Direcciones IPv6: Formato

8 campos de 16 bits = 128 bits

2001:0DB8:AD1F:25E2:CADE:CAFE:F0CA:84C1

16 bits

- Está permitido: mayúscula/minúscula; omitir los ceros a la izquierda; compactar ceros continuos mediante "::"
- Representación CIDR:

Dirección-ipv6/longitud-de-prefijo

Dec	Hex	Binario			
0	0	0	0	0	0
1	1	0	0	0	1
2	2	0	0	1	0
3	3	0	0	1	1
4	4	0	1	0	0
5	5	0	1	0	1
6	6	0	1	1	0
7	7	0	1	1	1
8	8	1	0	0	0
9	9	1	0	0	1
10	Α	1	0	1	0
11	В	1	0	1	1
12	O	1	1	0	0
13	D	1	1	0	1
14	Е	1	1	1	0
15	F	1	1	1	1

Actividad 2:Direcciones IPv6

Compactación

2001:0db8:3c4d:0015:0000:0000:1a2f:1a2b

2001:0db8:3c4d:0015:0:0:1a2f:1a2b

2001:0db8:3c4d:0015::1a2f:1a2b

- FF01:0000:0000:0000:0000:0000:0001
- 2001:0000:1234:0000:0000:C1c0:ABCD:0876
- 12AB:0000:0000:CD30:0000:0000:0000:0000/60?

Direcciones IPv6

- FF01:0000:0000:0000:0000:0000:0000:0001
 - FF01::1
- 2001:0000:1234:0000:0000:C1c0:ABCD:0876
 - 2001:0:1234:0:0:C1c0:ABCD:0876 ?
 - 2001::1234::Clc0:ABCD:0876 ?
 - 2001:0:1234::Clc0:ABCD:0876 ?
- 12AB:0:0:CD30::/60

Direcciones IPv6: Scope

OBS: Las direcciones se asignan a interfaces, no a nodos!

- Las interfaces pueden tener varias direcciones
- Alcance de las direcciones:
 - Link Local (locales a subred)
 - Unicast local address (locales a organización, sitios)
 - Globales

Direcciones: Alcance

Tipos de direcciones

Anycast: identifican a un conjunto de interfaces, en general de nodos distintos (de uno a alguno ...)

> **Multicast:** identifican a un conjunto de interfaces (de uno a todos los del grupo ...)

Unicast

Anycast

Multicast

Direcciones de una interfaz

- Loopback 0:0:0:0:0:0:0:1 6 ::1
- Link local: Locales de subred
- Unique-Local: Locales de Sitio
- Autoconfigurada IPv4 compatible
- Multicast
- Global

Unicast

Global
Link-Local
Unique-Local
Especiales

Unicast Global 2000::/3; n={48, 56, 64}

- Globalmente ruteables (equivale a dir. IPv4 públicas)
- Rango: 2000 es 0010 | 0000 | 0000 | 0000 a
 3fff es 0011 | 1111 | 1111 | 1111

Actividad 3: Unicast global

OBS: El **prefijo de subred** cuando RIR da un bloque /48 tiene 16 bits (64-48=65536 subredes); en un /56 tiene 8 bits (64-56=256 subredes); en un /64 no tiene subredes

Definamos las 3 partes de la dirección en:

```
2001:0db8:3c4d:0015:0000:0000:1a2f:1a2b
```

/48

/56

/64

Actividad 3: Unicast global

OBS: El **prefijo de subred** cuando RIR da un bloque /48 tiene 16 bits (64-48=65536 subredes); en un /56 tiene 8 bits (64-56=256 subredes); en un /64 no tiene subredes

Definamos las 3 partes de la dirección en:

Unicast Link-Local

	64 bits		64 bits	
 FE80	0		interface ID	⊦
+		+		⊢

Sólo válidas en el enlace local donde la interfaz está conectada

OBS: Jamás se rutean!

- **≻USO:** Para tareas administrativas, *Ej.*, *Descubrimiento de vecinos*.
- Generada automáticamente (autoconf. Stateless)

Unicast Unique-Local: Ex Sitio (ULA)

- FC00::/7 (1111110) -> L=1 (11111101, FD00) prefijo asignado local;
 L=0 (FC00) prefijo asignado por IANA
- Identificador global: seudo aleatorio, probablemente único
- USO: Ruteos internos dentro de conjunto de enlaces
 - Un **enlace** con /48 puede asignar direcciones independientemente del ISP
 - Interconexión de redes sin conflictos; puede haber comunicación sin Internet

OBS: no ruteables en internet global!

Unicast: Identificador de interfaz (IID)

- Deben ser únicos dentro del mismo prefijo de subred
- El mismo IID se puede usar en múltiples interfaces de un mismo nodo si están en subredes distintas
- Normalmente se usa un IID de 64 bits generado:
 - Manualmente
 - Autoconfiguración stateless
 - Basado en la MAC (Formato EUI-64)

Unicast: IID EUI-64, obsoleta

Actividad 4:

Si se tiene una IID=1, asignar las siguientes direcciones a la interfaz:

- Unicast global /48, con global routing prefix=abcd y subnet ID= fe
- 2) Unicast Unique-Local (ex sitio)
- 3) Link-Local

Unicast: Direcciones especiales

- Loopback ::1/128 (0:0:0:0:0:0:0:1)
 Usada para pruebas internas (en IPv4 127.0.0.1)
 To find if your IPv6 stack works: >Ping6 ::1
- No especificada ::/128 (0:0:0:0.0:0:0:0)

Nunca debe ser asignada ya que indica ausencia de dirección. Se usa como dir. Origen en el proceso de inicialización

Ejemplo

Anycast Multicast

Anycast

- Identifica un grupo de interfaces
- Asignadas a partir de direcciones unicast (igual sintaxis)
- Usos:
 - Descubrir servicios en la red (DNS, proxy HTTP, etc.);
 - Balanceo de carga;
 - Localizar routers que proveen acceso a una determinada subred;
 - Un paquete enviado a esta dir. es entregado al router más próximo al origen dentro de la misma subred.
- Todos los ruters deben aceptar la dir. Anycast Subnet-Router formada por :
 prefijo de la subred + el IID=0

(ej., 2001:db8:cafe:dad0::/64)

Multicast: grupo de interfaces

• Los 112 bits restantes identifican el grupo *multicast*.

R see [RFC3956].

• El soporte para *multicast* es obligatorio en todos los nodos IPv6.

Valor	Descripción
Scope	
1	Interfaz (loopback)
2	Enlace
3	Subred
4	Admin (configurado)
5	Site
8	Organización
Е	Global
0,F	Reservados
6,7,9,A	No distribuidos
B,C,D	

Group	ID
	_

Dirección	Alcance	Descripción
FF01::1 FF01::2	Interfaz Interfaz	Todas las interfaces (all-nodes) Todos los routers (all-routers)
FF02::1 FF02::2 FF02::5 FF02::6 FF02::9 FF02::D FF02::1:2 FF02::1:FFXX:XXXX	Enlace Enlace Enlace Enlace Enlace Enlace Enlace Enlace	Todos los nodos (all-nodes) Todos los routers (all-routers) Routers OSFP Routers OSPF designados Routers RIP Routers PIM Agentes DHCP Solicited-node
FF05::2 FF05::1:3 FF05::1:4	Site Site Site	Todos los routers (all-routers) Servidores DHCP en un site Agentes DHCP en un site
FF0X::101	Variado	NTP (Network Time Protocol)

Multicast P=1, derivada de unicast

- Flag P=1; T=1: Prefijo FF30::/12
- Ejemplo:
 - Prefijo de red: 2001:DB8::/32

Actividad 5:

• Multicast?

Multicast Solicited-Node

- Todos los nodos deben formar parte de este grupo;
- Se forma agregando **FF02::1:FF/104** a los 24 bits más a la derecha del IID;
- Utilizado por el protocolo de Descubrimiento de Vecinos (*Neighbor Discovery*).

Figure 13: IPv6 Solicited-Node Multicast Address Format

Direccionamiento:

- Al igual que en IPv4, las direcciones IPv6 se asignan a interfaces físicas y no a nodos.
- Con IPv6 es posible atribuir una única interfaz a múltiples direcciones, independientemente de su tipo.
- Así un nodo se puede identificar a través de cualquier dirección de sus interfaces.
 - Loopback ::1
 - Link Local **FE80:**....
 - Unique local **FD07:**...
 - Global **2001:**....

Direcciones de una interfaz

Address type

Unspecified

Loopback

Multicast

Link-Local unicast 1111111010

Unique-Local unicast1111110

Global Unicast

Binary prefix

00...0 (128 bits)

11111111 (8 bits)

001

IPv6 notation

::/128

00...1 (128 bits) ::1/128

FF00::/8

FE80::/10

FC00::/7

2000::/3

Global

Global en Internet

2000::/3

FFOE Multicast

Unique Local Ruteos internos entre enlaces (sitios)

FC00::/7

FD00::/7

FF05 Multicast S

Link Local

Válidas en el link

FE80::/10

FF02

Revisión direcciones

- 1. Describa los distintos tipos de direcciones: scopes.
- 2. Por qué tipo de direcciones se cambiaron las broadcast?
- 3. Si tengo un servidores de tiempo (NTS) con una dirección de grupo fija ID=101 hexa: cuál es la dirección que debe usar un nodo fuente para enviarles un mensaje a todos los NTSs de su mismo link? Y si quiere enviarles a todos los del mismo sitio?

