DRAINAGE REPORT

For

1165R MASS MA PROPERTY LLC

PROPOSED

Residential Development

1165R Massachusetts Avenue Arlington, Massachusetts Middlesex County

Prepared by:

BOHLER 352 Turnpike Road Southborough, MA 01772 (508) 480-9900 TEL.

Joshua G. Swerling Massachusetts P.E. Lic. #41697

March 4, 2021 Revised April 1, 2021

#W191330

TABLE OF CONTENTS

I. EXECUTIVE SUMMARY	. 1
II. EXISTING SITE CONDITIONS	
Existing Site Description	. 3
On-Site Soil Information	. 3
Existing Collection and Conveyance	. 3
Existing Watersheds and Design Point Information	. 3
III. PROPOSED SITE CONDITIONS	
Proposed Development Description	. 5
Proposed Development Collection and Conveyance	. 5
Proposed Watersheds and Design Point Information	. 5
IV. METHODOLOGY	. 6
Peak Flow Calculations	. 6
Ryder Brook Relocation	. 7
V. DEP STORMWATER MANAGEMENT STANDARDS	
Standard #1: No New Untreated Discharges	. 8
Standard #2: Peak Rate Attenuation	. 8
Standard #3: Recharge	. 8
Standard #4: Water Quality	. 8
Standard #5: Land Use with Higher Potential Pollutant Loads	. 8
Standard #6: Critical Areas	. 8
Standard #7: Redevelopment	. 8
Standard #8: Construction Period Pollution Prevention and Erosion and	
Sedimentation Control	. 9
Standard #9: Operation and Maintenance Plan (O&M Plan)	. 9
Standard #10: Prohibition of Illicit Discharges	. 9
VI. SUMMARY	10

LIST OF TABLES

Table 1.1: Design Point Peak Runoff Rate Summary	. 2
Table 1.2: Design Point Volume Summary	
Table 4.1: NOAA 14+ Rainfall Intensities	
Table 6.1: Design Point Peak Runoff Rate Summary	
Table 6.2: Design Point Volume Summary	

APPENDICES

APPENDIX A: MASSACHUSETTS STORMWATER MANAGEMENT CHECKLIST APPENDIX B: PROJECT LOCATION MAPS

- USGS MAP
- > FEMA FIRMETTE

APPENDIX C: SOIL AND WETLAND INFORMATION

- NCRS CUSTOM SOIL RESOURCE REPORT
- SOIL BORING LOGS

APPENDIX D: EXISTING CONDITIONS HYDROLOGIC ANALYSIS

- EXISTING CONDITIONS DRAINAGE MAP
- EXISTING CONDITIONS HYDROCAD COMPUTATIONS

APPENDIX E: PROPOSED CONDITIONS HYDROLOGIC ANALYSIS

- PROPOSED CONDITIONS DRAINAGE MAP
- PROPOSED CONDITIONS HYDROCAD CALCULATIONS

APPENDIX F: STORMWATER CALCULATIONS

- MA STANDARD #3 RECHARGE CALCULATIONS
- MA STANDARD #4 WATER QUALITY AND TSS REMOVAL
- WATER QUALITY UNIT SIZING
- NOAA 14 RAINFALL DATA
- PIPE SIZING

APPENDIX G: OPERATION AND MAINTENANCE

- STORMWATER OPERATION AND MAINTENANCE PLAN
- INSPECTION REPORT
- INSPECTION AND MAINTENANCE LOG FORM
- LONG-TERM POLLUTION PREVENTION PLAN
- > ILLICIT DISCHARGE STATEMENT
- SPILL PREVENTION
- PROPOSED OPERATION AND MAINTENANCE MAP
- MANUFACTURER'S INSPECTION AND MAINTENANCE MANUALS (IF REQUIRED)

I. <u>EXECUTIVE SUMMARY</u>

This report examines the changes in drainage that can be expected as the result of the development of a proposed residential development at 1165R Massachusetts Avenue in the Town of Arlington, Massachusetts. The site is approximately 2.3 acres in area and contains mill buildings that have been converted to commercial uses. Approximately 93% of the site has impervious cover either from the mill building roofs or paved parking. Mill Brook bisects the site into east and west parts and Ryder Brook enters the site from the north through a man-made swale where it enters a culvert that discharges into Mill Brook. Mill Brook is channelized through the entire site with concrete masonry channel sides and a concrete channel bottom.

The proposed project includes the construction of two new residential buildings totaling approximately 130 units. The project will result in a decrease in impervious area and therefore mitigation of post-development flows is not necessary. The project will also require the relocation of Ryder Brook around the proposed building. This report addresses a comparative analysis of the pre- and post-development site runoff conditions. Additionally, this report provides calculations documenting the design of the proposed stormwater conveyance/management system as illustrated within the accompanying Site Development Plans prepared by Bohler. The project will also provide erosion and sedimentation controls during the demolition and construction periods, as well as long term stabilization of the site.

For the purposes of this analysis the pre- and post-development drainage conditions were analyzed at a design point at Mill Brook, which is where all of the stormwater runoff from the site currently drains to. A summary of the existing and proposed conditions peak runoff rates and volumes for the 2-, 10-, 25-, and 100-year storms can be found in **Table 1.1** and **Table 1.2** below. In addition, the project has been designed to meet or exceed the Stormwater Management Standards as detailed herein.

Table 1.1: Design Point Peak Runoff Rate Summary

Point of	2-Year Storm			10-Year Storm			25-Year Storm			100-Year Storm		
Analysis	Pre	Post	Δ	Pre	Post	Δ	Pre	Post	Δ	Pre	Post	Δ
DP1	6.61	4.92	-1.69	10.92	9.28	-1.64	14.28	12.75	-1.53	19.92	18.57	-1.35

^{*}Flows are represented in cubic feet per second (cfs)

Table 1.2: Design Point Volume Summary

Point of	2-Year Storm			10-Year Storm			25-Year Storm			100-Year Storm		
Analysis	Pre	Post	Δ	Pre	Post	Δ	Pre	Post	Δ	Pre	Post	Δ
DP1	0.511	0.361	-0.150	0.868	0.691	-0.177	1.153	0.963	-0.190	1.634	1.429	-0.205

^{*}Volumes are represented in acre-feet (ac-ft)

II. EXISTING SITE CONDITIONS

Existing Site Description

The site is approximately 2.3 acres in area and contains mill buildings that have been converted to commercial uses. The majority of the site has impervious cover either from the mill building roofs or paved parking. Mill Brook bisects the site and Ryder Brook also enters the site from the north through a man-made swale where it enters a culvert that discharges into Mill Brook. Mill Brook is channelized through the entire site with concrete masonry channel sides and a concrete channel bottom.

On-Site Soil Information

The majority of the soils at the site are mapped as Urban land, Udorthents, and Merrimac-Urban land. The Merrimac-Urban soil is classified by the Natural Resource Conservation Service (NRCS) as Hydrologic Soil Group (HSG) "A". On-site geotechnical testing performed on the site supports the HSG "A" rating and that is what has been used in this analysis. Refer to **Appendix C** for additional information.

Existing Collection and Conveyance

Almost the entire site drains by sheet flow to Ryder Brook or directly to Mill Brook. Ryder Brook flows through a 24 inch reinforced concrete pipe to Mill Brook. There is one catch basin behind the building in the southeast corner of the site. It is believed that this catch basin discharges through a pipe under the building to Mill Brook.

Runoff from properties northwest of the site currently drain onto the site. That runoff sheet flows across the site to Ryder Brook.

Existing Watersheds and Design Point Information

The site was subdivided into two (2) separate sub catchments for the existing conditions as described below to analyze existing and proposed flow rates at each design point. The minimum time of concentration for all areas is calculated as 6 minutes (0.1 hr).

Subcatchment E1 is 0.34 acres of pavement and rooftop with a small area of lawn. This area flows overland from high points at Massachusetts Avenue to the southwest down to

Mill Brook. Due to the mostly impervious nature of the drainage area and steep slopes, the time of concentration is the minimum allowable six (6) minutes.

Subcatchment E2 is 1.69 acres of pavement and rooftop with small areas of lawn. This area flows overland from high points at the north and east side of the site down to Mill Brook. Due to the mostly impervious nature of the drainage area, the time of concentration is the minimum allowable six (6) minutes.

Design Point #1 (DP1) is Mill Brook at the south property line where all of the runoff from the site currently drains.

Refer to **Tables 1.1, 1.2, 6.1, and 6.2** for the calculated existing conditions peak rates of runoff and volumes. For additional hydrologic information, refer to **Appendix D** and the Drainage Area Maps in the appendices of this report for a graphical representation of the existing drainage areas.

III. PROPOSED SITE CONDITIONS

Proposed Development Description

The proposed project consists of the construction of two new residential buildings. The larger building will be located on the northeast side of Mill Brook and the other building will be located on the southwest side of the brook. The existing driveways will remain but a new storm sewer system is proposed to capture and treat stormwater runoff for water quality. Pretreatment of stormwater runoff will be provided by deep-sump, hooded catch basins prior to discharging to a water quality unit for final treatment.

Proposed Development Collection and Conveyance

Deep sump hooded catch basins are proposed to collect and route runoff from the proposed paved parking areas to a water quality unit. Pipes have been designed for the 25-year storm using the Rational Method. Pipe sizing calculations are included in **Appendix F**.

The runoff from the off-site properties to the north draining into the site will continue to flow into the site. The majority of that runoff will sheet flow to the open swale proposed for the relocation of Ryder Brook. Some of the runoff will enter the proposed storm sewer system where it will be collected and routed through the proposed water quality unit.

The best management practices (BMPs) incorporated into the proposed stormwater management system have been designed to meet the total suspended solid (TSS) removal requirements as set forth in the Massachusetts Department of Environmental Protection Stormwater Handbook standards. Refer to **Appendix F** for calculations. In addition, a Stormwater Operation and Maintenance (O&M) Plan, attached in **Appendix G**, has been developed which includes scheduled maintenance and periodic inspections of stormwater management structures.

Proposed Watersheds and Design Point Information

The project has been designed to maintain existing drainage watersheds to the greatest extent possible, with the same design points described in **Section II** above. The site was subdivided into two (2) separate sub catchments for the proposed conditions as described

below. The minimum time of concentration for all proposed areas is calculated as 6 minutes (0.1 hr).

Proposed drainage areas are similar to existing and have been divided into two areas, one north of Mill Brook and the other south of Mill Brook. Subcatchment P1 consists of 0.34 acres of mostly impervious area with a CN of 94 and time of concentration of 6 minutes. This is the area on the south side of the site draining to Mill Brook.

Subcatchment P2 consists of 1.69 acres of mostly impervious area with some areas of lawn with a CN of 83 and time of concentration of 6 minutes. This is the area on the north side of the site draining to Mill Brook.

Refer to **Tables 1.1 and 6.1** for the calculated proposed conditions peak rates of runoff. For additional hydrologic information, refer to **Appendix D** and the Drainage Area Maps in the appendices of this report for a graphical representation of the proposed drainage areas.

IV. METHODOLOGY

Peak Flow Calculations

Methodology utilized to design the proposed stormwater management system includes compliance with the guidelines set forth in the latest edition of the Massachusetts DEP Stormwater Handbook. The pre- and post-development runoff rates being discharged from the site were computed using the HydroCAD computer program. The drainage area and outlet information were entered into the program, which routes storm flows based on NRCS TR-20 and TR-55 methods. The other components of the model were determined following standard NRCS procedures for Curve Numbers (CNs) and times of concentrations documented in the appendices of this report. The rainfall data utilized and listed below in table 4.1 below for stormwater calculations is based on NOAA 14+. Refer to **Appendix F** for more information.

Table 4.1: NOAA 14+ Rainfall Intensities

Frequency	2 year	10 year	25 year	100 year
Rainfall* (inches)	3.64	5.79	7.49	10.35

The proposed stormwater management as designed will provide a decrease in peak rates of runoff from the proposed facility for the 2-, 10-, 25- and 100-year design storm events. Additionally, the proposed project meets, or exceeds, the MADEP Stormwater Management standards. Compliance with these standards is described further below.

Ryder Brook Relocation

Analysis of the Ryder Brook watershed is difficult due to the number of streets within the watershed. Each road has a storm sewer system that may divert runoff out of the watershed. Rather than attempting to analyze the watershed and making assumptions about where each road drains to, the proposed pipe was sized based on the 24-inch existing concrete pipe.

The proposed pipe is 30 inches in diameter and will have double the capacity of the existing 24-inch pipe, based on the Mannings Formula for pipe capacity. There are no known flooding issues at the site, and based on the increase in capacity and decrease in impervious area and peak flows resulting from this project, the proposed 30-inch pipe should be sufficient to adequately convey flows. Calculations documenting swale and pipe capacities are included in Appendix F.

V. <u>DEP STORMWATER MANAGEMENT STANDARDS</u>

Standard #1: No New Untreated Discharges

The project has been designed so that proposed areas of vehicular traffic will be collected and passed through the proposed drainage system for treatment prior to discharge. The proposed system will discharge at an existing outfall point at Mill Brook.

Standard #2: Peak Rate Attenuation

The proposed decrease in impervious area will result in a decrease in post-development peak rates of runoff from pre-development conditions for the 2-, 10-, 25- and 100-year storm events.

Standard #3: Recharge

The proposed decrease in impervious area will result in an increase in groundwater recharge. No additional stormwater infiltration measures are necessary.

Standard #4: Water Quality

Runoff from exterior parking areas and driveways will be collected in the proposed storm sewer system. Water quality treatment will be provided via deep sump catch basins and a proprietary water quality unit.

Standard #5: Land Use with Higher Potential Pollutant Loads

Not Applicable for this project.

Standard #6: Critical Areas

Not Applicable for this project.

Standard #7: Redevelopment

The site is a redevelopment, and all applicable stormwater standards will be met to the maximum extent practicable.

<u>Standard #8: Construction Period Pollution Prevention and Erosion and Sedimentation Control</u>

The proposed project will provide construction period erosion and sedimentation controls to be designed in the final site plan set for this project. This will include a proposed construction exit, protection for stormwater inlets, protection around temporary material stock piles and various other techniques as outlined on the erosion and sediment control sheets. Additionally, the project is required to file a Notice of Intent with the US EPA and implement a Stormwater Pollution Prevention Plan (SWPPP) during the construction period. The SWPPP will be prepared prior to the start of construction and will be implemented by the site contractor under the guidance and responsibility of the project's proponent.

Standard #9: Operation and Maintenance Plan (O&M Plan)

An Operation and Maintenance (O&M) Plan for this site will be prepared outlining procedures and time tables for the long term operation and maintenance of the proposed site stormwater management system, including initial inspections upon completion of construction, and periodic monitoring of the system components, in accordance with established practices and the manufacturer's recommendations. The O&M Plan will include a list of responsible parties and an estimated budget for inspections and maintenance.

Standard #10: Prohibition of Illicit Discharges

The proposed stormwater system will only convey allowable non-stormwater discharges (firefighting waters, irrigation, air conditioning condensates, etc.) and will not contain any illicit discharges from prohibited sources.

VI. <u>SUMMARY</u>

In summary, the proposed stormwater management system illustrated on the drawings prepared by Bohler results in a reduction in peak rates of runoff from the subject site when compared to pre-development conditions for the 2-, 10-, 25- and 100-year storm frequencies. In addition, the proposed best management practices will result in an effective removal of total suspended solids from the post-development runoff. The pre-development versus post-development stormwater discharge comparisons are contained in **Table 6.1** below:

Table 6.1: Design Point Peak Runoff Rate Summary

Point of Analysis	2-Year Storm			10-Year Storm			25-Year Storm			100-Year Storm		
	Pre	Post	Δ	Pre	Post	Δ	Pre	Post	Δ	Pre	Post	Δ
DP1	6.61	4.92	-1.69	10.92	9.28	-1.64	14.28	12.75	-1.53	19.92	18.57	-1.35

Table 6.2: Design Point Volume Summary

Point of Analysis	2-Year Storm			10-Year Storm			25-Year Storm			100-Year Storm		
	Pre	Post	Δ	Pre	Post	Δ	Pre	Post	Δ	Pre	Post	Δ
DP1	0.511	0.361	-0.150	0.868	0.691	-0.177	1.153	0.963	-0.190	1.634	1.429	-0.205

*Volumes are represented in acre-feet (ac-ft)

As outlined in the tables above, the proposed stormwater management system as designed will provide a decrease in peak rates of runoff from the proposed facility for the 2-, 10-, 25- and 100-year storm events. Additionally, the project meets, or exceeds the MADEP Stormwater Management Standards as described further herein.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Joshu G Swaling April 1. 2021
Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new an redevelopment?						
	New development					
\boxtimes	Redevelopment					
	Mix of New Development and Redevelopment					

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

env	Measures: Stormwater Standards require LID measures to be considered. Document what ironmentally sensitive design and LID Techniques were considered during the planning and design of project:
	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
\boxtimes	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	☐ Credit 1
	☐ Credit 2
	☐ Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No New Untreated Discharges
\boxtimes	No new untreated discharges
	Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\boxtimes	Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 2: Peak Rate Attenuation Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm. Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm. Standard 3: Recharge Soil Analysis provided. Required Recharge Volume calculation provided. Required Recharge volume reduced through use of the LID site Design Credits. Sizing the infiltration, BMPs is based on the following method: Check the method used. Static Simple Dynamic Dynamic Field¹ Runoff from all impervious areas at the site discharging to the infiltration BMP. Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume. Recharge BMPs have been sized to infiltrate the Required Recharge Volume. Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason: Site is comprised solely of C and D soils and/or bedrock at the land surface M.G.L. c. 21E sites pursuant to 310 CMR 40.0000 Solid Waste Landfill pursuant to 310 CMR 19.000 Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable. Calculations showing that the infiltration BMPs will drain in 72 hours are provided. Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Cł	necklist (continued)
Sta	andard 3: Recharge (continued)
	The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
	Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.
Sta	andard 4: Water Quality
The	E Long-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
	A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent. Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
	is within the Zone II or Interim Wellhead Protection Area
	is near or to other critical areas
	is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
	involves runoff from land uses with higher potential pollutant loads.
	The Required Water Quality Volume is reduced through use of the LID site Design Credits.

□ Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if

applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist (continued)

Checklist for Stormwater Report

Sta	ndard 4: Water Quality (continued)
\boxtimes	The BMP is sized (and calculations provided) based on:
	☐ The ½" or 1" Water Quality Volume or
	∑ The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> to the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	ndard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
	Critical areas and BMPs are identified in the Stormwater Report.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a: Limited Project Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff ☐ Bike Path and/or Foot Path Redevelopment portion of mix of new and redevelopment. Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b)

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures:
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;

improves existing conditions.

- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule:
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued) The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has not been included in the Stormwater Report but will be submitted **before** land disturbance begins. ☐ The project is **not** covered by a NPDES Construction General Permit. The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report. The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins. Standard 9: Operation and Maintenance Plan The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information: Name of the stormwater management system owners; Party responsible for operation and maintenance; Schedule for implementation of routine and non-routine maintenance tasks; ☑ Plan showing the location of all stormwater BMPs maintenance access areas; Description and delineation of public safety features; Estimated operation and maintenance budget; and Operation and Maintenance Log Form. The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions: A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs; A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions. Standard 10: Prohibition of Illicit Discharges ☐ The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;

NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of

W191330-MA Stormwater Checklist.doc • 04/01/08

An Illicit Discharge Compliance Statement is attached;

any stormwater to post-construction BMPs.

	APPENDIX B: PROJECT LOCATION MAPS
>	<u>USGS MAP</u>
>	FEMA FIRMETTE

USGS MAP

SCALE: 1" = 1,000' SOURCE: BOSTON NORTH MASSACHUSETTS USGS QUADRANGLE

National Flood Hazard Layer FIRMette

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/11/2019 at 8:51:54 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

APPENDIX C: SOIL AND WETLAND INFORMATION > NCRS CUSTOM SOIL RESOURCE REPORT > SOIL BORING LOGS

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:25.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Middlesex County, Massachusetts Survey Area Data: Version 19, Sep 12, 2019 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Sep 11, 2019—Oct 5. 2019 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
602	Urban land		3.6	27.9%
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	A	3.5	26.5%
631C	Charlton-Urban land- Hollis complex, 3 to 15 percent slopes, rocky	A	0.3	2.4%
655	Udorthents, wet substratum		4.9	37.4%
656	Udorthents-Urban land complex		0.8	5.8%
Totals for Area of Inter	rest	-	13.1	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

HALEY							•	TEST BORING REPORT						Boring No. HA19-B1 (OW)										
Clie	oject ent ntracto	55	1 FUN	ND AQ	USITI	ON	S LL	_C	TTS AVE	St		t No	De	3372 of cen	1 nbei	5,								
				Casin	g Sa	mp	ler	Barre	Drilling Equipment and Procedures		iller							ens						
Тур	е			HW		s			Rig Make & Model: Diedrich D-25, ATV	Н	§Α I	Rep	ο.	N	Le	sca	llee	t						
Insi	de Dia	meter	(in.)	4		3/8	8		Bit Type: Roller Bit Drill Mud: None	- 1	eva atur		1	98	3.0									
Han	nmer V	Veight	(lb)	140		140)	-	Casing: Driven to 14.0 ft Hoist/Hammer: Automatic Hammer	_	cat		5	See	Pla	n			_					
Har		Fall (in	.)	30		30		-	Hoist/Hammer: Automatic Hammer PID Make & Model: Tiger															
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings	JSCS Symbol		Well Diagram	Stratum Change Elev/Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	டு Coarse	avel %	e e	Sar Wedium %	Fine	% Fines	Dilatancy	Longhness ai	Plasticity Lest	oll endin					
- 0 -	4 2 3	S1 1	0.0 2.0			۵	Δ	97.5 0.5	-BITUMINOUS CONCRETE- Very loose gray poorly graded SAND (SP), mps 0.1 in., no structure, no odor, dry					10										
-	4 5 5 45	S2 14	2.0 4.0	- 1	SM	<i> </i> ::::::::			-FILL- Medium dense light brown silty SAND with gravel (SM), mps 1.7 in., no structure, no odor, moist	5	10	10	20	20	35									
- 5 -	16 22 29 46	S3 12	4.0 6.0	- 1	- 1	1		93.5 4.5	Dense light brown to gray brown well graded SAND with silt and gravel (SW-SM), mps 1.7 in., no structure, no odor, moist	10	15	10	50	5	10									
-	30 25 29 23	S4 20	6.0 8.0	ND	- 1				Similar to above, except very dense, wet -GLACIOFLUVIAL DEPOSITS-	10	15	10	50	5	10									
-	26 42 32 37	S5 10	8.0 10.0		- 1				Similar to above, except MPS 6.0 in. Note: Drove casing through ~6.0 in. cobble blew ~9.5-10.0 ft.	10	15	10	50	5	10									
- 10 - -	20 30 22 26	\$6 10				1.			Very dense light brown to gray brown well graded SAND with silt and gravel (SW-SM), mps 3.0 in.,no structure, no odor, wet	10	15	10	50	5	10									
-	28 22 48 50/2",	S7 24		- 1					Similar to above															
- 15 -	27 37 50 52	\$8 8		' I	V S 1 3 3 0 14 3 10 3 10 3 10 3 10 SP 10 SM 10 SW SM 10 SM 10 SM 10 SM SM SM 10 SM S	ة ا ن ن	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	82.0	Similar to above, except pocket of suspected weathered gravel from 14.0-14.5 ft	15	10	10	25	30	10									
-								82.0 16.0	-BOTTOM OF EXPLORATION 16.0 FT-															
		W	ater L	evel D	ata				Sample ID Well Diagram			⊥ Sun	nma	ary	<u> </u>			<u></u>	=					
	ate 5/2019	State	De Bottom	E	Botto	m ,,,,	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample Riser Pipe Screen Filter Sand Rod Rod Rod Rod Rod Rod Rod Rod Rod Ro	rbur k Co	den	ı (fi	t) t)	_	16.0)										
1210	,, <u>c</u> u 13							-7.0	G - Geoprobe Grout	mples S8 pring No. HA19-B1 (OW)														
Field	d Tests	:							N - None Plasticity: N - Nonplastic L - Low M -	Medi	um n F	H -	Hig	jh V -	Ven	, Hic	h		-					

H8A-TEST BORING WITH PERM PID COLUMN HA-LIB09-BOS - COPY.GLB HA-TB+CORE+WELL-09 W FENCE.GDT NHALEYALDRICH.COM/SHAREICFIPROJECTS/133724-002 DD INVESTIGATION/GINT/133724-002-TBOW.GPJ

Sep 16, 20

Toughness: L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V

†Note: Maximum particle size is determined by direct observation within the limitations of sampler size.

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

HZ	KE B	Y	н				TES	BORING REPORT	ı	Во	rin	g I	No.	ı	HA1 (C	19-I)W	В2)
Proje Clien Cont		551	FUN	ID AQU	SITIO	NS L		TTS AVE	Sh Sta		t No). 1 De		1 iber	02 · 5, 2 · 6, 2		
				Casing	San	npler	Barre	Drilling Equipment and Procedures		iller	•				J. St		
Туре				HW	;	S		Rig Make & Model: Diedrich D-25, ATV			Rep		N.	Le	scal	eet	
Inside	e Diar	neter ((in.)	4	1	3/8		Bit Type: Roller Bit Drill Mud: None		eva atun	itior n	1	98	3.5			
Hamr	ner V	Veight	(lb)	140	1	40	-	Casing: Driven to 14.0 ft Hoist/Hammer: Automatic Hammer			ion	S	ee	Pla	า		
		all (in.	.)	30	3	30	-	Hoist/Hammer: Automatic Hammer PID Make & Model:									
£	ows	آ.) آ.)	o £	ngs	Symbol	ram	(£)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	-	avel	+	San	d		_	_	Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Syn	Well Diagram	Stratum Change Elev/Depth ((Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Tonghness	Plasticity
0	5	S1 12	0.0	ND	SM	۵ ۵ ۵ ۵	98.0 0.5	-BITUMINOUS CONCRETE-	_	10	10	15	30	20			1
	3		2.0	NP	SIVI		0.5	Loose dark gray silty SAND with gravel (SM), mps 1.0 in., no structure, no odor, dry, trace brick -FILL-	5	10	10	15	30	30			
	6 8 6 16	\$2 4	2.0 4.0	0.1	SM		96.0 2.5	Medium dense light brown to orange brown poorly graded SAND (SP), mps 0.1 in., no structure, no odor, dry			10	80	10			-+	-+
	22 64 33 32	S3 14	4.0 6.0	0.1	SM		94.5 4.0	Very dense light brown to gray brown silty SAND with gravel (SM), mps 1.7 in., no structure, no odor, dry	10	10	15	20	20	25			
	8 12 38 52	S4 16	6.0 8.0	0.1	SW- SM			Very dense well graded SAND with silt and gravel (SW-SM), mps 1.5 in., no structure, no odor, wet, pockets of light brown to dark gray fine sand -GLACIOFLUVIAL DEPOSITS-	10	15	10	50	5	10			
	12 34 24 22	S5 16	8.0 10.0														
10	22 34 38 56	S6 14	10.0 12.0	ND	SM		88.5 10.0	Very dense silty SAND with gravel (SM), mps 1.7 in., no structure, no odor, wet	10	10	15	20	20	25		†	-+
	50 44 55	S7 18	12.0 14.0	ND	SM			Similar to above -GLACIOFLUVIAL DEPOSITS-	10	10	15	20	20	25			
	54 29 38	S8 10	14.0 15.4	ND	SM			Similar to above, piece of coarse gravel lodged in tip of spoon. Hit cobble at about 15.2 ft.	10	10	15	20	20	25			
15 - 8	35/4"					9	83.1 15.4	-BOTTOM OF EXPLORATION 15.4 FT-									
		Wa	ater Le	evel Da				Sample ID Well Diagram			Sun	nma	ıry				
Dat	te	Time		osedB	Dep ottom	th (ft	m	O - Open End Rod Riser Pipe Overt	our	den	(fl	()		15.4	ļ		
			Time		Casing		ole vvate	Pr U - Undisturbed Sample Filter Sand Rock			d (f	,	_	-			
12/6/2	2019						~6.0	G - Geoprobe Grout					8	١٥ :	D	· ·	A / .
								Concrete Boril						19-l	B2 (UV	V)
Field	Tests	:		Dilatan	ncy: R	- Rapic L - Low	S - Slov	N - None Plasticity: N - Nonplastic L - Low M - M ium H - High Dry Strength: N - None L - Low M - Mer						Verv	Hiah	1	
†Note	: Max	cimum p	particle	e size is	detern	nined I	by direct	observation within the limitations of sampler size.						,			

Sep 16, 20

Н		PIC	н		TEST BORING REPORT								Boring No. HA19-B3										
Proj Clie Cor	nt	55°	1 FUN	ID AQU	SITIO	NS LLC	;	TS AVE	File No. 133724-0 Sheet No. 1 of 1 Start December Finish December							1 er 6, 2019							
				Casing	San	npler	Barrel	Drilling Equipment and Procedures	- 1			Z. 1	Nad	er,	J. S	teve	ens						
Insid	le Dia		` ′	HW 4 140	1:	3/8	 -	Rig Make & Model: Diedrich D-25, ATV Bit Type: Roller Bit Drill Mud: None Casing: Driven to 12.0 ft	Elevation 105.0 Datum Location See Plan							leet							
Han	nmer F	all (in	.)	30	3	0	-	Hoist/Hammer: Automatic Hammer PID Make & Model:															
٦	SWC	ō (-	# E	sbu	log	£		VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gr	ave	+	_	_				Те						
	Sampler Bl per 6 in		Sample Depth (f	PID Readii (ppm)	USCS Sym	Stratum Change Elev/Depth		(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Tonghness	Plasticity						
	4 5	S1 NR	0.0	0.1		104.5 0.5	Note:																
	6 8		-		MI		Overd	rove 3 in. spoon 0-4.0 ft for sample.					20	80									
	12 4 3	NR	4.0	0.1	IVIL			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					20	00									
5 -	2 3 4 6	S3 14	4.0 6.0	0.2	ML	101.0 4.0	Simila	r to above, except loose	+-	-	+-	<u> </u>	20	80	-	-	-						
	8 12 11	S4 22	6.0 8.0	0.2	ML	99.0 6.0	Simila		+.	-	<u> </u>	<u> </u>	20	80	-	-							
	17 12 12	S5 8	8.0 10.0	0.1	SW- SM	7.3		m dense light brown to gray brown well graded SAND with sil avel (SW-SM), mps 1.0 in., no structure, no odor, dry	10	10	20	25	25	10									
10	18 22	S6 14	MIRAK MILL, 1165 MASSA 551 FUND AQUSITIONS LI NORTHERN DRILL SERVIO	95.0 10.0	Very d	Similar to above Very dense light brown to gray brown well graded SAND with gravel							-	-									
	30 32					-GLACIOFLUVIAL DEPOSITS-	10	10	25	25	25	5											
	50 36 52	10		140	344	04.0	Simila	. 10 45010	10	10			20	3									
15 -	55 20 18	S8 NR		ND	sw	91.0 14.0	Simila	r to above, except dense	10	10	25	25	25	5	-	2019 2019 Stever lleet	_						
Casing Sampler Barrel Drilling Equipment and Procedures Drilling Equipment Drilling Equipment			_																				
		W	ater I	evel Da	ta			Sample ID Well Diagram			Sun	lma	irv				_						
D:	ate		Ela	psed	Dep		o:	O - Open End Rod Riser Pipe Ove	rbur					16.0)								
		111110	Time	e (hr.) ^B	ottom Casing	of Hole		T - Thin Wall Tube U - Undisturbed Sample S - Splitspoon Sample G - Geographe T - Thin Wall Tube Filter Sand Cuttings Grout Sar	k Co	ored	d (fi	t)	8	-		22							
								Concrete Bo						14	IJ-È	ე							
Field	l Tests	:		Dilatar	ncy: R	Rapid	S - Slow							\/en	Hial	,							

Н	ALE	PRIC	Н			7	EST	BORING REPORT			Во	rin	g I	No.	l	HA1	9 -	B4
Pro Clie Cor		55	1 FUN	ND AQU	ISITIO	NS LL	Cick NC Sheet No. 1 of 1 Start December 6, 2019 Finish Pleas Pleas Finish December 6, 2019 Finish Pleas Pleas Finish December 6, 2019 Finish Pleas Finish Pleas Finish Pleas Pleas Finish Pleas Finish Pleas Finish Pleas Pleas Finish Finish Pleas Finish Pleas Finish Pleas Finish Pleas Finish Finish Pleas Finish Finish Finish Finish Finish Finish											
				Casing	San	npler	Barrel	Drilling Equipment and Procedures		4				Nad	er,	J. St	eve	ens
Ham	de Dia nmer V nmer F	•	(lb)	HW 4 140 30	1:	3/8 40	 -	Bit Type: Roller Bit Drill Mud: None Casing: Driven to 12.0 ft Hoist/Hammer: Automatic Hammer		EI Da	eva atur	ntion 99.0)		
Œ	lows I.	No. in.)	e ft)	ngs	loqu	£	(u) -	VISUAL-MANUAL IDENTIFICATION AND DESCRIP	TION	\vdash	1	+					_	Tes
o Depth (ft)				PID Readi (ppm)	USCS Syn	Stratum		structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughnes	Plasticity
	6 12 15	S1 10	0.0 2.0	0.2	SM	98.5 0.5		m dense light brown silty SAND with gravel (SM), r	mps 1.6 in.,	5	10	20	25	20	20			
	19 8	S2 12	2.0 4.0	0.3	SM	96.0												
	19 22			0.3	SW-	3.0	Mediu			10	10	20	30	20	10			
5 -	15 17 23 42	S3 10	4.0 6.0	0.2	SW- SM		-			10	10	20	30	20	10			
	29 36 42 50	S4 12	6.0 8.0	ND	SW- SM		Simila			10	10	20	30	20	10			
10 -	24 32 55 40	S5 12	8.0 10.0		L, 1165 MASSACHUSETT AQUSITIONS LLC N DRILL SERVICE, INC. sing Sampler Barrel W S 4 1 3/8 40 140 50 30 96 0 30 98 0 40 140 50 30 98 0 5 Medium no struct 0.3 SM 98.5 0.5 Medium gravel a set of Casing Bottom of Hole ND SW Very de (SW), r at ~10. Note: R boulder ND GW 85.0 Similar ND SW Similar													
	40 - <u>50/2"</u> ,	\$6 10				(SW), at ~10 Note:	mps 1.7 in., no structure, no odor, wet. Split spoor .5 ft refusal at 10.7 ft. Rig chatter and cuttings indicate drilling through ~1	or, wet. Split spoon bouncing				30	20	5				
15 -				ND	GW	85.0 14.0	,	GW), mps 3.0 in., no structure, no odor, wet	EL with	30	40	10	10	10		-002 1 per 6, 201 per 6, 201 r, J. Stev per		
						83.0 16.0		-BOTTOM OF EXPLORATION 16.0 FT-										
		W	ater L	evel Da	ta			Sample ID Well Diagram	1			Sum	nma	ary				=
			Ela	psed B	Dep lottom	Botton	Water	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample S - Splitspoon Sample	Rock	Co	orec	•	t)		16.0)		
Field	Ammer Fall (in.) 30 140	19-E	34															
. ieic	. เษรเร	•		Tough	ness: l	Low	M - Mediu	m H - High Dry Strength: N - None L -	Low M - Me	diur	n F	1 - H	liah	V - '	Very	High	1	

Н		Y	Н				TEST	BORING REPORT		Во	rin	g l	No.	HΑ	.20	-01	(0
Pro Clie	ject	116 116	55R M	MASS M	IA VEI	NTUR	ES LLC	E, ARLINGTON, MA	St St	nee art	t No	ο. 1 Αι	372 of ugus	1 st 1	3, 2		
				Casing	San	npler	Barre	Drilling Equipment and Procedures		nisł ille			ugus Sou		3, 2	020	,
Тур	е е			HW		 S		Rig Make & Model: Tracked, Mobile Drill B53	Н	ßА	Rep			Sha	ay		
Insid	de Dia	meter ((in.)	4.0	1	3/8		Bit Type: Roller Bit Drill Mud: None		eva atur	ation	1)1.0 AVE	(es	st.)	
Ham	nmer \	Veight	(lb)	300	1	40	-	Casing: HW Drive to 14.0 ft			tion	S	ee				-
Han	nmer I	-all (in.	.)	24	3	30	-	Hoist/Hammer: Winch Automatic Hammer PID Make & Model: Tiger PhoCheck (10.6 eV)									
£	Blows in.	No.	e Ê	ings	loqu	ram	n (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		ave	+	San				ield σ	
Depth (ft)	Sampler B per 6 in	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
0 -				2.3	SP	4 4	100.7	-ASPHALT-	10	20	20	20	30				
	5	S1	1.0	- 2.0		0, 0, 0, 0, 0, 0, 0, 0,	0.0	Medium dense light brown poorly-graded SAND, mps 3 cm no structure although appears to be disturbed, no odor, dry	١,			20					
	10 15 19	14	3.0			44 o - Fo' - 9 o -		-FILL-									
	55 46 44 39	S2 18	3.0 5.0	1.8		4 ⁴ 9- ² 9- ¹		Similar to above, except very dense	10	20	15	15	35	5			
5 -	20 27 40 63	S3 14	5.0 7.0		GP		96.0 5.0	Very dense gray brown poorly graded GRAVEL with sand (GP), mps 3 cm, no structure, no odor, wet	20	40	20	10	10				
10 -	40 49 45	S4 12	9.0 10.5	0.7	SP- SM		93.0 8.0	Very dense olive brown poorly graded SAND with silt and gravel, mps 3 cm, no structure, no odor, wet	5	15	15	30	25	10			
15	21 73	S5 14	14.0 16.0	0.5	SP- SM			-GLACIOFLUVIAL DEPOSITS- Very dense olive brown poorly graded SAND with silt and gravel (SP-SM), mps 3 cm, no structure, no odor, wet	5	10	20	20	35	10			
15 -	53 70						05.0										
							85.0 16.0	BOTTOM OF EXPLORATION 16.0 FT									Г
								Note: Advanced borehole with roller bit to 15.3 ft. for observation well installation. See "Observation Well Installation Report HA20-01 (OW)" for well construction details.									
l		W =	ater I	evel Da	ta			Sample ID Well Diagram		<u> </u>	Sun	ıma	irv				_
D:	ate	Time	Ela	psed		th (ft		O - Open End Rod	Overbur					16.0)		
	/2020	7:15		= (III.) of	Casing Well		ole vvate	U - Undisturbed Sample U - Undisturbed Sample Filter Sand Fig. 9	Rock Co Samples		d (f	•	55	-			
			20					G - Geoprobe G - Geoprobe Grout Concrete Bentonite Seal	Boring	N			HA	20-	01(OV	N)
Field	d Tests	: :						/ N - None Plasticity: N - Nonplastic L - Low Iium H - High Dry Strength: N - None L - Low M	M - Medi	um	- H ر	Higl	h,	\ /	, Llia	h	

Н	ALE	Y	н				TEST	BORING REPORT			Во	rin	g N	No.	HA	20	-02	(OV
Pro Clie	•	116	S5R M	ASS M	A VEN	NTUR	AVENUI ES LLC CONTRA	E, ARLINGTON, MA		Sł St	neet art	l No		of agus	1 st 1:	04 3, 2 3, 2		
			(Casing	San	npler	Barrel	Drilling Equipment and Procedures			nish iller		M.			3, Z	020	
Тур	e			HW		S		Rig Make & Model: Tracked, Mobile Drill B53		Н	&A I				Sha	ıy		
Insid	de Dia	meter	(in.)	4.0	1:	3/8		Bit Type: Roller Bit Drill Mud: None		l —.	eva atun		1		0.5 4VE	(es	st.)	
Han	nmer V	Veight	(lb)	300	14	40	-	Casing: HW Drive to 14.0 ft		-	cat		S		Plar			
Han		all (in	.)	24	3	80	-	Hoist/Hammer: Winch Automatic Hammer PID Make & Model: Tiger PhoCheck (10.6 e)	')									
Œ)	ows	л.) С.	o (2	ngs	loqu	ram	(#)	VISUAL-MANUAL IDENTIFICATION AND DESCRI		-	avel	+	San					Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth ((Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	5	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
0 -	0)				1		100.2	-ASPHALT (PARKING LOT)-									Ì	#
	6 6	S1 12	1.0 3.0	0.9	SP- SM	Δ Δ Δ Θ. · · · · · · · · · · · · · · · · · ·	0.3	Medium dense brown poorly graded SAND with silt al (SP-SM), mps 3 cm, no structure, no odor, dry	nd gravel	5	10	15	40	20	10			
	7 6		3.0	0.9	OL/	\$ 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	98.0 2.5	Stiff dark brown ORGANIC SOIL (OL/OH), mps 1.5 cr		<u> </u> -	5	<u> </u>	<u> </u>	5	90		-	-+
-	3 5 5	S2 14	3.0 5.0		OH		96.5 4.0	appears to be reworked material, no odor, moist	. – – –	<u> </u> -	<u> </u>	<u> </u> -	<u> </u>				_	
- 5 -	14 21 100	S3 10	5.0 6.5	0.3	SP- SM		95.0 5.5	Very dense brown poorly graded SAND with silt (SP-3 3 cm, no structure, no odor, moist Note: Difficult casing advancement from 5.5 ft.	SM), mps	5	5	15	30	35	10			\perp
- 10 –	23 21 24 26	S4 16	9.0 11.0	0.1	SM			Dense dark olive brown silty SAND with gravel (SM), cm, no structure no odor, wet	mps 3	5	10	15	20	35	15			
15 –	15 15 22 17	S5 8	14.0 16.0	0.3	SM			-GLACIOFLUVIAL DEPOSITS- Dense dark olive brown silty SAND with gravel (SM), cm, no structure no odor, wet	mps 3	5	10	15	20	35	15			
							84.5 16.0	BOTTOM OF EXPLORATION 16.0 FT		\vdash							\dashv	+
								Note: Advanced borehole with roller bit to 15.3 ft. for observation well installation. See "Observation Well Installation Report HA20-02 (OW)" for well construction details.	on									
		Wa	ater Le	vel Dat	 а			Sample ID Well Diagram			ج	Sum	ıma	rv				_
D	ate	Time	Elap	sed		th (ft)		O - Open End Rod Riser Pipe	Over	bur					16.0)		
			Time	of C	Casing	Botto of Ho	le vvate	U - Undisturbed Sample U - Undisturbed Sample Filter Sand	Rock			l (fi	,		-			
8/13	/2020	14:30	No	ne 1	14.0	16.0	8.9	S - Splitspoon Sample G - Geoprobe Cuttings Grout Concrete Bentonite Se	Sam _l Bori			o .	S	_	20-	02(OV	V)
Field	d Tests	:	1				S - Slow M - Med		Low M - N	/ledi	um n F	H -	High iah	า V -	Verv	Hia	h	
†No	te: Ma			size is	detern	nined b	oy direct o	bservation within the limitations of sampler size. visual-manual methods of the USCS as practice							, UI Y	· ny		

HAL	EY DRIC	н			T	EST	BORING REPOR	RT		ı	Зо	rin	g N	lo.	ı	H A :	20-	03	
Project Client Contract	116	55R M	ASS MA	A VEN	NTURE		, ARLINGTON, MA			Sh Sta	eet art	No	. 1 Au	of igus	st 14	04 4, 20 4, 20			
		(Casing	San	npler	Barrel	Drilling Equipment	and Procedures			nish iller			Sou		τ, Δ	220		
Туре			HW		3		Rig Make & Model: Trac	ked, Mobile Drill B53		Н8	kA F				Sha	ıy			
Inside Di	ameter	(in.)	4.0	1:	3/8		Bit Type: Roller Bit Drill Mud: None				eva itun				.5 4VE	est	.)		
Hammer	Weight	(lb)	300	14	40	-	Casing: HW Drive to 14				cati		S		Plar				-
Hammer	,	.)	24	3	0	-	Hoist/Hammer: Winch A PID Make & Model: Tige												
ft) lows	. No. (∵	æ()	ings	loqu	L (ft)	,	VISUAL-MANUAL IDENTIFICA		- +		vel	 	San					Tes	t
Sampler Blows	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth ((Color, GROUP NAME, structure, odor, moisture, GEOLOGIC INTER	optional descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
0				1	99.2 0.3		-ASPHALT (PAR	KING LOT)-										\exists	=
8 6	S1 8	1.0 3.0	2.7	OL/ OH	0.3	Stiff da	ark brown ORGANIC SOIL witl d material, no odor, moist	n sand (OL/OH), mps 3 cr	n, re-	5	5	5	5	5	75				
3 5	S2	3.0	6.3	OL/		Stiff da	ark brown sandy ORGANIC SO	DIL (OL/OH), mps 3 cm in	e-	5		5	20	20	50				
22 15 18	10	5.0		OH	04.5	1	d material, no odor, moist -FILL												
5 26 30 28 37	S3 17	5.0 7.0	2.4	SM	94.5 5.0		ense brown to gray brown silty n, no structure, no odor, dry	/ SAND with gravel (SM),	mps	5	15	15	15	35	15				
			1.0	SP- SM	91.5 8.0		ense gray brown with dark bro with silt and gravel (SP-SM),			10	15	15	15	35	10	-	-	-	
23 30 25 36	S4 13	9.0 11.0				odor, v	vet												
							-GLACIOFLUVIAL	DEPOSITS-											
38 70 15 - 110	\$5 9	14.0 15.5	0.8	SP- SM		Simila	r to above, including weathere	d gravel materials		10	15	15	15	35	10				
					83.5 16.0		BOTTOM OF EXPLO	RATION 16.0 FT										+	_
	Wa		evel Dat				Sample ID	Well Diagram			S	Sur	ma	ry			_	_	-
Date	Time	Elap	(hr Bo	ottom	th (ft) t Bottom	Water	O - Open End Rod T - Thin Wall Tube	Riser Pipe Screen	Overb			`	,	•	16.0)			
8/14/2020	10:10		\ 10f C	Casing I4.0	of Hole 16.0	7.8	U - Undisturbed Sample	Filter Sand	Rock Samp			(ft) S	5	-				
		INC					S - Splitspoon Sample G - Geoprobe	Grout Concrete Bentonite Seal	Borin	ng	No			ŀ	ΗA	20-()3		_
Field Test	ts:					S - Slow	N - None Plastic m H - High Dry Sti	ity: N - Nonplastic L - Lorength: N - None L - Low	w_M-M	ediu	ım	Н-	High	١,		. 1 101			

H		Y	Н			T	EST	BORING REPOR	RT		ı	Во	rin	g N	lo.	ļ	НА	20-	04	
Proj Clie Con		116	55R M	IASS M	A VEN	ITURE		, ARLINGTON, MA			Sh Sta	eet art	No). 1 Au	of igus	st 14	04 4, 2 4, 2			
			(Casing	San	npler	Barrel	Drilling Equipmen	t and Procedures			nish iller		М. :			+ , ∠	020	'	
Туре)			HW		3		Rig Make & Model: Trac	cked, Mobile Drill B53		Н8	kA F	Rep).	S.	Sha	ay			
Insid	e Dia	meter	(in.)	4.0	1:	3/8		Bit Type: Roller Bit Drill Mud: None				eva itun		1		0.0 4VE	(e:	st.)		
Ham	mer V	Veight	(lb)	300	14	40	-	Casing: HW Drive to 12				cati		S		Plar				_
		all (in	.)	24	3	0	-	Hoist/Hammer: Winch PID Make & Model: Tig												
£	Sampler Blows per 6 in.	No. in.)	æ Æ	Readings (ppm)	loqu	e (#)		VISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION	- +		vel	_	San	t		F	ield ဖွ	Tes	t
Depth (ft)	ler B r 6 ir	ple ec. (Sample Depth (ft)	Read	s Syr	ratur nang Depti		(Color, GROUP NAME,			arse	<u> </u>	Coarse	Medium	ЭC	Fines	ancy	hnes	icity	14
	amp	Sample No. & Rec. (in.)	Ss	PID R	USCS Symbol	Stratum Change Elev/Depth (structure, odor, moisture, GEOLOGIC INTER			% Coarse	% Fine	°C	% Me	% Fine	% Fir	Dilatancy	Toughness	Plasticity	
0 +	S	-			<u> </u>	99.7		-ASPHALT (PAF	RKING LOT)-			0.			-	0.				=
				04.0	01.7	0.3		deale le como ODO ANIO COIL e			_				0.5	00				
	4 3 2 3	S1 12	1.0 3.0	84.0	OL/ OH			dark brown ORGANIC SOIL value, strong gasoline-like od		.5 cm,	5				35	60				
	10	S2	3.0	13.5	SM	97.0 3.0	Dense	dark brown poorly graded SA	ND (SM), mps 1.5 cm, no	+		10	20	20	30	20	-+	-+	-+	_
	17 26	10	5.0					ıre, slight gasoline-like odor, r	noist, 10% organic soil mi											
	42					05.0		-FILL	-											
5 +	18	S3	5.0	2.8	SP	95.0 5.0	Very d	ense yellow brown to olive bro	. , ,	mps			20	30	50					-
	25 36	8	7.0				2 mm,	well-defined stratification, no	odor, moist											
	20																			
								-GLACIOFLUVIAI	_ DEPOSITS-											
10 -	13 10 11 12	S4 10	9.0 11.0	1.6	SW		1	m dense olive brown well grad grain structure, no odor, wet	ded SAND (SW), mps 4 m	m,			30	35	35					
						88.0 12.0	boulde to 15.0	Abrupt change in effort to adver indicated by drilling effort 12 off, except roller bit broke off (rface). Unsampled footage 12	2.0-14.5 ft. Advanced bore (unable to extract, remains	hole										
15						85 O														1
15 -						85.0 15.0		BOTTOM OF EXPLO	RATION 15.0 FT											_
L		W:	ater I 4	evel Dat	 а	<u> </u>		Sample ID	Well Diagram			ج ا	Sum	ıma	rv					=
D-	ate	Time	Flar	sed	Dep	th (ft) t		O - Open End Rod	Riser Pipe	Overb	ur					15.0)			_
υč	al C	illie	Time	hr Bo	ottom Casing	Bottom of Hole		I'	Screen Filter Sand	Rock			•	•		-	-			
8/14/	2020	14:05			12.0	15.0	6.0*	S - Splitspoon Sample	িপ্র Cuttings Grout	Samp	les	;		S						_
		*Ob:	structio	on botton	n of bo	rehole		G - Geoprobe	Concrete	Borir	ng	No) .		ŀ	IA2	20-	04		
Field	Tests	:					S - Slow	N - None Plastic	Bentonite Seal Sity: N - Nonplastic L - Lo	w M - M	ediu	um _.	Н-	High	1	.,				_
				Toughr size is			M - Mediu	ım H - High Dry St	rength: N - None L - Low	M - Med	lun	<u>ո H</u>	<u> - Hi</u>	ıgh	V - '	very	/ Hig	n		_

Н		Y	Н			7	ΓEST	BORING REPOR	RT		E	3 o ı	rin	g N	No.	1	HA	20-	05	
Pro Clie Cor	•	116	65R M	IASS MA	A VEN	NTURE		, ARLINGTON, MA			Sh Sta	eet art	No		of ugus	1 st 1	7, 2			_
			(Casing	San	npler	Barrel	Drilling Equipment	and Procedures	I .		iish Iler		M. :	-		1, 2	020		
Тур	e			HW		s		Rig Make & Model: Truc	k, GEFCO StrataStarF1	5	Н&	ΑF	Rep			Sha	ay			
Insid	de Dia	meter	(in.)	4.0	1:	3/8		Bit Type: Roller Bit Drill Mud: None				eva tum	tion	1			(est 088	.)		
Ham	nmer V	Veight	(lb)	300	14	40	-	Casing: HW Drive to 14		_			ion	S		Pla			-	_
Han		Fall (in	.)	24	3	80	-	Hoist/Hammer: Winch A PID Make & Model: Tige												
£	lows I.	No.	⊕ £	ngs	loqu	€	- ,	VISUAL-MANUAL IDENTIFICA		⊢	_	vel	-	San					Test	t
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change		(Color, GROUP NAME, structure, odor, moisture, GEOLOGIC INTER	optional descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
0 -	0)				1	98.7 0.3		-ASPHALT (PAR	KING LOT)-										#	-
	10 21	S1 12	1.0	1.3	SP		S1, to	p 6 in.: Medium dense brown p ingle-grain structure, no odor,		5				75	25					
	55 20				SP	97.0 2.0	S1, bo	ottom 6 in.: Very dense black p	oorly graded SAND with o	gravel,	- +	15	35	25	20	5	$\vdash \dagger$	-†	-+	
	23 40 23	S2 16	3.0 5.0	0.6	SP		concre Very d			ı, no	5	20	20	20	35					
	23					94.5 4.5	1	-FILL		+	-		-	├-	-		\vdash	-+	-+	-
5 -	45 78 78	S3 3	5.0 6.5	0.3	GP	93.0 6.0	etructi	lense brown poorly graded GR ure, no odor, wet	AVEL, mps 2.2 cm, no		10	25	35	15	15				_	-
10 -	50 72 83 66	S4 6	9.0 11.0	0.2	SP		, ,	lense olive brown poorly grade .5 cm, no structure, no odor, w -GLACIOFLUVIAL	et	/el,		15	15	40	20	10				
						86.5 12.5								L.						
						12.5														
15 -	39 34 34 47	S5 10	14.0 16.0	0.2	SM			lense olive gray silty SAND wit rately well bonded, no odor, we			5	15	15	20	30	15				
	41					83.0 16.0		BOTTOM OF EXPLO	RATION 16.0 FT								\vdash		\perp	
		W:	ater I e	evel Dat	a			Sample ID	Well Diagram			.5	Sur	ıma	ırv		Ш			-
D	ate	Time	Elap	sed	Dep	th (ft)		O - Open End Rod	Riser Pipe Screen	Overb	urc					16.0)			
			Time		ottom Casing	Bottom of Hole		T - Thin Wall Tube U - Undisturbed Sample	Filter Sand	Rock			(ft	•		-				
8/17	/2020	9:40	No	one 1	14.0	16.0	7.5	S - Splitspoon Sample G - Geoprobe	Grout Concrete Bentonite Seal	Sampl) .	S		ΗA	20-(05		
Field	d Tests	:					S - Slow M - Medii	N - None	ity: N - Nonplastic L - Lovength: N - None L - Low	w M - Me	ediu	ım L	H -	High	h \/ -	Ven	/ Hia	h		
Not	te: Ma	ximum	particle	e size is o	detern	nined by	direct of	im H- High Bry Str pservation within the limitation isual-manual methods of th	s of sampler size.							4 CI Y	ing		_	

H	ALE	Y RICI	н				TEST	BORING REPORT		В	ori	nç	g N	lo.	HΑ	20	-06	(OV
Proje Clier		116	5R M	ASS M	A VEI	NTUR	AVENU	E, ARLINGTON, MA	S		et N	lo.	. 1	of	-	04 7, 2	020	ı
0011	il doto			Casing		npler	Barrel	Drilling Equipment and Procedures		inis rille				-		7, 2	020	
Туре	۵			HW		S		Rig Make & Model: Truck, GEFCO StrataStarF15	_		er √Re		K. S		in Sha	٩V		
•		meter (in)	4.0		3/8		Bit Type: Roller Bit			atio	on.		94	.5	est)	.)	
		Veight	´	300		40	_	Drill Mud: None Casing: HW Drive to 15.0 ft		atu		n			AVE Plai			
Ham	mer F	all (in.)	24	3	30	-	Hoist/Hammer: Winch Automatic Hammer PID Make & Model: Tiger PhoCheck (10.6 eV)		-	4110		0		ııaı			
£	swo .	9 C	⊕ ⊕	sbu	loqu	am	£	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		ave	_		anc	ł				Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Readings (ppm)	SS Symbol	Well Diagram	Stratum Change :lev/Depth ((Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions	Coarse	i di	<u>ם</u>	Coarse	Medium	% Fine	Fines	Dilatancy	Toughness	Plasticity
	San	S ≈	۰٬ <u>۵</u>	PID	nscs	We	Ш	GEOLOGIC INTERPRETATION)	%	6	2 2	,8	1 %	%	₩ F	iii	٦٥	Pla
0 +						Δ Δ φ.^ φ.^	94.2 0.3	-ASPHALT (PARKING LOT)-	7	F								
	9 9 19	S1 10	1.0 3.0	0.8	SM	\$-1.0.1.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		Medium dense dark brown silty SAND (SM), mps 3 cm, no structure, no odor, moist, trace cinders, up to 20% organic s mixed	oil 5	5	5 1	0	15	25	40			
	19			0.4	CM	///		-FILL-	5	5			15	25	40			
	11 21 18 12	S2 10	3.0 5.0	0.4	SM			Similar to above, except dense	5) 1	١	15	25	40			
5 +	38	S3	5.0	0.2	GP		89.5 5.0	Very dense orange brown poorly graded GRAVEL with sand	15	5 3	5 2	25	15	10				
1	100/4"	8	5.9	_				(GP), mps 3 cm, no structure, no odor, wet -GLACIOFLUVIAL DEPOSITS-										
							86.5 8.0		+	t	$\frac{1}{1}$	- 🕇	_				_	-+
10 -	37 32 25 31	S4 6	9.0 11.0	0.1	SP- SM			Very dense brown poorly-graded SAND with silt and gravel (SP-SM), mps 3 cm, no structure, no odor, wet	10	1	0 1	0	30	30	10			
							82.5 12.0		-+	_	+						_	-
								-GLACIOFLUVIAL DEPOSITS-										
15 —	30 39	S5 10	15.0 16.5	0.2	SM			Very dense olive gray silty SAND with gravel (SM), mps 3 cr moderately bonded, no odor, wet	ı, 10) 1	0 2	20	20	25	15			
	48						78.0 16.5	BOTTOM OF EXPLORATION 16.5 FT Note: See "Observation Well Installation Report HA20-06 (OW)" for well construction details.										
		Wa	ter I e	vel Dat	 а			Sample ID Well Diagram			J Sı	ımı	mai	rv				
Da	ate	Time	Elap	sed	Dep	th (ft		O - Open End Rod Riser Pipe O	erbu	rde					16.5	5		
			Time	(III.) of C	ottom Casing			r I - Thin Wall Tube U - Undisturbed Sample	ck C		ed	(ft)			-			
8/17/	2020	13:00	0.	5 1	15.0	16.5	6.7	S - Splitspoon Sample G - Geographe G - Geographe	mple				S		20	00		10
								Concrete Bentonite Seal	ring						2 U-	06(UV	v)
Field	Tests	:					S - Slow	N - None Plasticity: N - Nonplastic L - Low Mum H - High Dry Strength: N - None L - Low M -							_			

> EXISTING C	CONDITIONS DRA	INAGE MAP	
> EXISTING C	CONDITIONS HYD	ROCAD COMPU	<u>TATIONS</u>

Prepared by Bohler, Printed 4/1/2021 HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 2 yr Rainfall=3.64" Printed 4/1/2021

Prepared by Bohler HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 2

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: SW of Mill Brook Runoff Area=0.336 ac 97.92% Impervious Runoff Depth=3.29"

Tc=6.0 min CN=97 Runoff=1.15 cfs 0.092 af

Subcatchment E2: NE of Mill Brook Runoff Area=1.689 ac 92.60% Impervious Runoff Depth=2.97"

Flow Length=270' Tc=6.0 min CN=94 Runoff=5.46 cfs 0.418 af

Link DP1: Design Pt 1 - Mill Brook Inflow=6.61 cfs 0.511 af Primary=6.61 cfs 0.511 af

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment E1: SW of Mill Brook

Runoff = 1.15 cfs @ 12.09 hrs, Volume= 0.092 af, Depth= 3.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.64"

Area ((ac)	CN	Desc	cription		
0.	007	39	>75%	% Grass co	over, Good	I, HSG A
0	206	98	Pave	ed parking,	HSG A	
0.	110	98	Roof	fs, HSG A		
0.	013	98	Wate	er Surface	, HSG A	
0.	336	97	Weig	ghted Aver	age	
0.	007		2.08	% Perviou	s Area	
0.	329		97.9	2% Imperv	rious Area	
Тс	Leng		Slope	Velocity	Capacity	Description
(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry,

Summary for Subcatchment E2: NE of Mill Brook

Runoff = 5.46 cfs @ 12.09 hrs, Volume= 0.418 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.64"

	Area	(ac) C	N Des	cription		
	0.	125 3	39 >75°	% Grass c	over, Good	, HSG A
	1.	126	8 Pave	ed parking	, HSG A	
	0.	416	8 Roo	fs, HSG A		
	0.	022	98 Wat	er Surface	, HSG A	
	1.	689 9	94 Wei	ghted Avei	rage	
	0.	125	7.40	% Perviou	s Area	
	1.	564	92.6	0% Imperv	∕ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.5	130	0.0180	1.40		Sheet Flow, Parking Lot
						Smooth surfaces n= 0.011 P2= 3.27"
	0.4	60	0.0300	2.77	11.09	Channel Flow, Ryder Brook Ditch
						Area= 4.0 sf Perim= 5.0' r= 0.80'
						n= 0.080 Earth, long dense weeds
	0.2	80	0.0150	8.82	27.71	Pipe Channel, Pipe to Mill Brook
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.013
_	3.9					Direct Entry, To Make Min. Allowable
	6.0	270	Total			

Type III 24-hr 2 yr Rainfall=3.64" Printed 4/1/2021

Prepared by Bohler
HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 4

Summary for Link DP1: Design Pt 1 - Mill Brook

Inflow Area = 2.025 ac, 93.48% Impervious, Inflow Depth = 3.03" for 2 yr event

Inflow = 6.61 cfs @ 12.09 hrs, Volume= 0.511 af

Primary = 6.61 cfs (a) 12.09 hrs, Volume= 0.511 af, Atten= 0%, Lag= 0.0 min

W191330 EXISTING Prepared by Bohler

Type III 24-hr 10 yr Rainfall=5.79" Printed 4/1/2021

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: SW of Mill Brook Runoff Area=0.336 ac 97.92% Impervious Runoff Depth=5.43"

Tc=6.0 min CN=97 Runoff=1.85 cfs 0.152 af

Subcatchment E2: NE of Mill Brook Runoff Area=1.689 ac 92.60% Impervious Runoff Depth=5.09"

Flow Length=270' Tc=6.0 min CN=94 Runoff=9.06 cfs 0.716 af

Link DP1: Design Pt 1 - Mill Brook

Inflow=10.92 cfs 0.868 af
Primary=10.92 cfs 0.868 af

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment E1: SW of Mill Brook

Runoff = 1.85 cfs @ 12.09 hrs, Volume= 0.152 af, Depth= 5.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.79"

Area	(ac)	CN	Desc	cription		
0.	007	39	>75%	% Grass co	over, Good,	d, HSG A
0.	206	98	Pave	ed parking,	HSG A	
0.	110	98	Roof	s, HSG A		
0.	013	98	Wate	er Surface	, HSG A	
0.	336	97	Weig	ghted Aver	age	
0.	007		2.08	% Perviou	s Area	
0.	329		97.9	2% Imperv	rious Area	
Tc	Leng	th	Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry,

Summary for Subcatchment E2: NE of Mill Brook

Runoff = 9.06 cfs @ 12.09 hrs, Volume= 0.716 af, Depth= 5.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.79"

_	Area	(ac) C	N Des	cription		
	0.	125 3	39 >75	% Grass c	over, Good	, HSG A
	1.	126	98 Pave	ed parking	, HSG A	
	0.	416	8 Roo	fs, HSG A		
_	0.	022	98 Wat	er Surface	, HSG A	
	1.	689 9	94 Wei	ghted Avei	age	
	0.	125	7.40	% Perviou	s Area	
	1.	564	92.6	0% Imperv	/ious Area	
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.5	130	0.0180	1.40		Sheet Flow, Parking Lot
						Smooth surfaces n= 0.011 P2= 3.27"
	0.4	60	0.0300	2.77	11.09	Channel Flow, Ryder Brook Ditch
						Area= 4.0 sf Perim= 5.0' r= 0.80'
						n= 0.080 Earth, long dense weeds
	0.2	80	0.0150	8.82	27.71	Pipe Channel, Pipe to Mill Brook
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
						n= 0.013
_	3.9					Direct Entry, To Make Min. Allowable
	6.0	270	Total			

Prepared by Bohler
HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Printed 4/1/2021

Page 7

Summary for Link DP1: Design Pt 1 - Mill Brook

Inflow Area = 2.025 ac, 93.48% Impervious, Inflow Depth = 5.15" for 10 yr event

Inflow = 10.92 cfs @ 12.09 hrs, Volume= 0.868 af

Primary = 10.92 cfs @ 12.09 hrs, Volume= 0.868 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 25 yr Rainfall=7.49" Printed 4/1/2021

Prepared by Bohler HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 8

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: SW of Mill Brook Runoff Area=0.336 ac 97.92% Impervious Runoff Depth=7.13"

Tc=6.0 min CN=97 Runoff=2.40 cfs 0.200 af

Subcatchment E2: NE of Mill Brook Runoff Area=1.689 ac 92.60% Impervious Runoff Depth=6.77"

Flow Length=270' Tc=6.0 min CN=94 Runoff=11.88 cfs 0.954 af

Link DP1: Design Pt 1 - Mill Brook

Inflow=14.28 cfs 1.153 af
Primary=14.28 cfs 1.153 af

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 9

Summary for Subcatchment E1: SW of Mill Brook

Runoff = 2.40 cfs @ 12.09 hrs, Volume= 0.200 af, Depth= 7.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=7.49"

Area	(ac)	CN	Desc	ription		
0.	007	39	>75%	√ Grass co	ver, Good,	I, HSG A
0.	206	98	Pave	ed parking,	HSG A	
0.	110	98	Roof	s, HSG A		
0.	013	98	Wate	er Surface,	HSG A	
0.	336	97	Weig	hted Aver	age	
0.	007		2.08	% Pervious	s Area	
0.	329		97.9	2% Imperv	ious Area	
Tc	Leng		Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry,

Summary for Subcatchment E2: NE of Mill Brook

Runoff = 11.88 cfs @ 12.09 hrs, Volume= 0.954 af, Depth= 6.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=7.49"

Area (ac) Cl		N Des	cription							
	0.	125 3	39 >75	>75% Grass cover, Good, HSG A						
	1.	126	98 Pave	Paved parking, HSG A						
0.416			8 Roo	fs, HSG A						
_	0.	022	98 Wat	Water Surface, HSG A						
	1.	689 9	94 Wei	ghted Avei	age					
	0.	125	7.40	% Perviou	s Area					
	1.	564	92.6	0% Imperv	/ious Area					
				•						
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	1.5	130	0.0180	1.40		Sheet Flow, Parking Lot				
						Smooth surfaces n= 0.011 P2= 3.27"				
	0.4	60	0.0300	2.77	11.09	Channel Flow, Ryder Brook Ditch				
						Area= 4.0 sf Perim= 5.0' r= 0.80'				
						n= 0.080 Earth, long dense weeds				
	0.2	80	0.0150	8.82	27.71	Pipe Channel, Pipe to Mill Brook				
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
						n= 0.013				
_	3.9					Direct Entry, To Make Min. Allowable				
	6.0	270	Total							

Prepared by Bohler

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 10

Summary for Link DP1: Design Pt 1 - Mill Brook

Inflow Area = 2.025 ac, 93.48% Impervious, Inflow Depth = 6.83" for 25 yr event

Inflow = 14.28 cfs @ 12.09 hrs, Volume= 1.153 af

Primary = 14.28 cfs @ 12.09 hrs, Volume= 1.153 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 100 yr Rainfall=10.35" Printed 4/1/2021

Prepared by Bohler
HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 11

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: SW of Mill Brook Runoff Area=0.336 ac 97.92% Impervious Runoff Depth=9.99"

Tc=6.0 min CN=97 Runoff=3.33 cfs 0.280 af

Subcatchment E2: NE of Mill Brook Runoff Area=1.689 ac 92.60% Impervious Runoff Depth=9.62"

Flow Length=270' Tc=6.0 min CN=94 Runoff=16.59 cfs 1.354 af

Link DP1: Design Pt 1 - Mill Brook

Inflow=19.92 cfs 1.634 af
Primary=19.92 cfs 1.634 af

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 12

Summary for Subcatchment E1: SW of Mill Brook

Runoff = 3.33 cfs @ 12.09 hrs, Volume= 0.280 af, Depth= 9.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=10.35"

Area ((ac)	CN	Desc	Description							
0.	007	39	>75%	% Grass co	over, Good	I, HSG A					
0.	206	98	Pave	ed parking,	HSG A						
0.	110	98	Roof	s, HSG A							
0.	013	98	Wate	er Surface,	, HSG A						
0.	336	97	Weig	ghted Aver	age						
0.	007		2.08	% Pervious	s Area						
0.	329		97.9	2% Imperv	ious Area						
_											
Tc	Leng		Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						Direct Entry,					

Summary for Subcatchment E2: NE of Mill Brook

Runoff = 16.59 cfs @ 12.09 hrs, Volume= 1.354 af, Depth= 9.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=10.35"

Area (ac) Cl		N Des	cription							
	0.	125 3	39 >75	>75% Grass cover, Good, HSG A						
	1.	126	98 Pave	Paved parking, HSG A						
0.416			8 Roo	fs, HSG A						
_	0.	022	98 Wat	Water Surface, HSG A						
	1.	689 9	94 Wei	ghted Avei	age					
	0.	125	7.40	% Perviou	s Area					
	1.	564	92.6	0% Imperv	/ious Area					
				•						
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	1.5	130	0.0180	1.40		Sheet Flow, Parking Lot				
						Smooth surfaces n= 0.011 P2= 3.27"				
	0.4	60	0.0300	2.77	11.09	Channel Flow, Ryder Brook Ditch				
						Area= 4.0 sf Perim= 5.0' r= 0.80'				
						n= 0.080 Earth, long dense weeds				
	0.2	80	0.0150	8.82	27.71	Pipe Channel, Pipe to Mill Brook				
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
						n= 0.013				
_	3.9					Direct Entry, To Make Min. Allowable				
	6.0	270	Total							

Prepared by Bohler

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 13

Summary for Link DP1: Design Pt 1 - Mill Brook

Inflow Area = 2.025 ac, 93.48% Impervious, Inflow Depth = 9.68" for 100 yr event

Inflow = 19.92 cfs @ 12.09 hrs, Volume= 1.634 af

Primary = 19.92 cfs @ 12.09 hrs, Volume= 1.634 af, Atten= 0%, Lag= 0.0 min

> PROPOSED CO	NDITIONS DRAII	VAGE MAP	
> PROPOSED CO	NDITIONS HYDR	OCAD CALCU	<u>LATIONS</u>

Prepared by Bohler, Printed 4/1/2021 HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 2 yr Rainfall=3.64" Printed 4/1/2021

Prepared by Bohler
HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 2

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P1: NE of Mill Brook Runoff Area=0.336 ac 93.75% Impervious Runoff Depth=2.97"

Tc=6.0 min CN=94 Runoff=1.09 cfs 0.083 af

Subcatchment P2: SE of Mill Brook Runoff Area=1.689 ac 73.89% Impervious Runoff Depth=1.98"

Tc=6.0 min CN=83 Runoff=3.84 cfs 0.278 af

Link DP1: DP1 - Mill Brook Inflow=4.92 cfs 0.361 af Primary=4.92 cfs 0.361 af

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Printed 4/1/2021

Page 3

Summary for Subcatchment P1: NE of Mill Brook

Runoff = 1.09 cfs @ 12.09 hrs, Volume= 0.083 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.64"

Area ((ac)	CN	Desc	Description							
0.0	021	39	>75%	√ Grass co	ver, Good,	I, HSG A					
0.	176	98	Pave	ed parking,	HSG A						
0.	126	98	Roof	s, HSG A							
0.0	013	98	Wate	er Surface,	HSG A						
0.3	336	94	Weig	hted Aver	age						
0.0	021		6.25°	% Pervious	s Area						
0.3	315		93.7	5% Imperv	ious Area						
Tc	Leng		Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						Direct Entry,					

Summary for Subcatchment P2: SE of Mill Brook

Runoff = 3.84 cfs @ 12.09 hrs, Volume= 0.278 af, Depth= 1.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 2 yr Rainfall=3.64"

Area	(ac)	CN	Desc	Description							
0.	441	39	>75%	% Grass co	over, Good	d, HSG A					
0.	461	98	Pave	ed parking,	HSG A						
0.	765	98	Roof	s, HSG A							
0.	022	98	Wate	er Surface	, HSG A						
1.	689	83	Weig	ghted Aver	age						
0.	441		26.1	1% Pervio	us Area						
1.	248		73.8	9% Imperv	rious Area						
Tc	Leng		Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						Direct Entry,					

Summary for Link DP1: DP1 - Mill Brook

Inflow Area = 2.025 ac, 77.19% Impervious, Inflow Depth = 2.14" for 2 yr event

Inflow = 4.92 cfs @ 12.09 hrs, Volume= 0.361 af

Primary = 4.92 cfs @ 12.09 hrs, Volume= 0.361 af, Atten= 0%, Lag= 0.0 min

Prepared by Bohler

Type III 24-hr 10 yr Rainfall=5.79" Printed 4/1/2021

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P1: NE of Mill Brook Runoff Area=0.336 ac 93.75% Impervious Runoff Depth=5.09"

Tc=6.0 min CN=94 Runoff=1.80 cfs 0.142 af

Subcatchment P2: SE of Mill Brook Runoff Area=1.689 ac 73.89% Impervious Runoff Depth=3.90"

Tc=6.0 min CN=83 Runoff=7.48 cfs 0.548 af

Link DP1: DP1 - Mill Brook Inflow=9.28 cfs 0.691 af Primary=9.28 cfs 0.691 af

Prepared by Bohler

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 5

Summary for Subcatchment P1: NE of Mill Brook

Runoff = 1.80 cfs @ 12.09 hrs, Volume= 0.142 af, Depth= 5.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.79"

Area	(ac)	CN	Desc	Description							
0.	.021	39	>75%	% Grass co	over, Good	d, HSG A					
0.	.176	98	Pave	ed parking,	, HSG A						
0.	.126	98	Roof	s, HSG A							
0.	.013	98	Wate	er Surface	, HSG A						
0.	.336	94	Weig	ghted Aver	age						
0.	.021		6.25	% Perviou	s Area						
0.	.315		93.7	5% Imperv	∕ious Area						
Tc	Leng	th	Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						Direct Entry,					

Summary for Subcatchment P2: SE of Mill Brook

Runoff = 7.48 cfs @ 12.09 hrs, Volume= 0.548 af, Depth= 3.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10 yr Rainfall=5.79"

 Area	(ac)	CN	Desc	Description							
0.	441	39	>75%	√ Grass co	over, Good	I, HSG A					
0.	461	98	Pave	ed parking,	HSG A						
0.	765	98	Roof	s, HSG A							
 0.	022	98	Wate	er Surface	, HSG A						
1.	689	83	Weig	hted Aver	age						
0.	441		26.1	1% Pervio	us Area						
1.	248		73.89	9% Imperv	rious Area						
Тс	Leng	th	Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						Direct Entry,					

Summary for Link DP1: DP1 - Mill Brook

Inflow Area = 2.025 ac, 77.19% Impervious, Inflow Depth = 4.09" for 10 yr event

Inflow = 9.28 cfs @ 12.09 hrs, Volume= 0.691 af

Primary = 9.28 cfs @ 12.09 hrs, Volume= 0.691 af, Atten= 0%, Lag= 0.0 min

Prepared by Bohler

Type III 24-hr 25 yr Rainfall=7.49" Printed 4/1/2021

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 6

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P1: NE of Mill Brook Runoff Area=0.336 ac 93.75% Impervious Runoff Depth=6.77"

Tc=6.0 min CN=94 Runoff=2.36 cfs 0.190 af

Subcatchment P2: SE of Mill Brook Runoff Area=1.689 ac 73.89% Impervious Runoff Depth=5.49"

Tc=6.0 min CN=83 Runoff=10.39 cfs 0.773 af

Link DP1: DP1 - Mill Brook Inflow=12.75 cfs 0.963 af Primary=12.75 cfs 0.963 af

Prepared by Bohler

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 7

Summary for Subcatchment P1: NE of Mill Brook

Runoff = 2.36 cfs @ 12.09 hrs, Volume= 0.190 af, Depth= 6.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=7.49"

Area	(ac)	CN	Desc	Description							
0.	021	39	>75%	√ Grass co	ver, Good	I, HSG A					
0.	176	98	Pave	ed parking,	HSG A						
0.	126	98	Roof	s, HSG A							
0.	.013	98	Wate	er Surface,	HSG A						
0.	336	94	Weig	hted Aver	age						
0.	021		6.25°	% Pervious	s Area						
0.	315		93.7	5% Imperv	ious Area						
Тс	Leng	th	Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						Direct Entry,					

Summary for Subcatchment P2: SE of Mill Brook

Runoff = 10.39 cfs @ 12.09 hrs, Volume= 0.773 af, Depth= 5.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 25 yr Rainfall=7.49"

Area	(ac)	CN	Desc	Description							
0.	441	39	>75%	√ Grass co	over, Good,	I, HSG A					
0.	.461	98	Pave	ed parking,	HSG A						
0.	765	98	Roof	s, HSG A							
0.	.022	98	Wate	er Surface	, HSG A						
1.	.689	83	Weig	hted Aver	age						
0.	.441		26.1	1% Pervio	us Area						
1.	.248		73.89	9% Imperv	rious Area						
Тс	Leng	th	Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						Direct Entry,					

Summary for Link DP1: DP1 - Mill Brook

Inflow Area = 2.025 ac, 77.19% Impervious, Inflow Depth = 5.70" for 25 yr event

Inflow = 12.75 cfs @ 12.09 hrs, Volume= 0.963 af

Primary = 12.75 cfs @ 12.09 hrs, Volume= 0.963 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 100 yr Rainfall=10.35" Printed 4/1/2021

Prepared by Bohler
HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 8

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P1: NE of Mill Brook Runoff Area=0.336 ac 93.75% Impervious Runoff Depth=9.62"

Tc=6.0 min CN=94 Runoff=3.30 cfs 0.269 af

Subcatchment P2: SE of Mill Brook Runoff Area=1.689 ac 73.89% Impervious Runoff Depth=8.24"

Tc=6.0 min CN=83 Runoff=15.27 cfs 1.160 af

Link DP1: DP1 - Mill Brook Inflow=18.57 cfs 1.429 af Primary=18.57 cfs 1.429 af

Printed 4/1/2021

HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Page 9

Summary for Subcatchment P1: NE of Mill Brook

Runoff = 3.30 cfs @ 12.09 hrs, Volume= 0.269 af, Depth= 9.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=10.35"

Area	(ac)	CN	Desc	Description							
0.	021	39	>759	% Grass co	over, Good	d, HSG A					
0.	176	98	Pave	ed parking,	, HSG A						
0.	126	98	Root	fs, HSG A							
0.	013	98	Wate	er Surface	, HSG A						
0.	336	94	Weig	ghted Aver	age						
0.	021		6.25	% Perviou	s Area						
0.	315		93.7	5% Imperv	ious Area						
Tc	Leng	th	Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						Direct Entry,					

Summary for Subcatchment P2: SE of Mill Brook

Runoff = 15.27 cfs @ 12.09 hrs, Volume= 1.160 af, Depth= 8.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100 yr Rainfall=10.35"

	Area	(ac)	CN	Desc	Description							
	0.	441	39	>75%	% Grass co	over, Good	d, HSG A					
	0.	461	98	Pave	ed parking,	HSG A						
	0.	765	98	Roof	s, HSG A							
_	0.	022	98	Wate	er Surface	, HSG A						
	1.	689	83	Weig	ghted Aver	age						
	0.	441		26.1	1% Pervio	us Area						
	1.	248		73.8	9% Imperv	rious Area						
	Тс	Leng	th	Slope	Velocity	Capacity	Description					
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
	6.0						Direct Entry,					

Summary for Link DP1: DP1 - Mill Brook

Inflow Area = 2.025 ac, 77.19% Impervious, Inflow Depth = 8.47" for 100 yr event

Inflow = 18.57 cfs @ 12.09 hrs, Volume= 1.429 af

Primary = 18.57 cfs @ 12.09 hrs, Volume= 1.429 af, Atten= 0%, Lag= 0.0 min

APPENDIX F: STORMWATER CALCULATIONS

- > MA STANDARD #3 RECHARGE CALCULATIONS
- ➤ MA STANDARD #4 WATER QUALITY AND TSS REMOVAL
- > WATER QUALITY UNIT SIZING
- > PIPE SIZING
- > RYDER BROOK RELOCATED SWALE CAPACITIES AND INLET CONTROL CALCULATIONS

Proposed Development

1165R Massachusetts Avenue

Arlington, MA

Bohler Job Number: W191330

March 4, 2021

MA DEP Standard 3: Recharge Volume Calculations

Required Recharge Volume - A Soils (0.60 in.)	4.000
Existing Site Impervious Area (ac)	1.920
Proposed Site Impervious Area (ac)	1.590
Proposed Increase in Site Impervious Area (ac)	-0.330
Recharge Volume Required (cf)	0
Required Recharge Volume - B Soils (0.35 in.)	
Existing Site Impervious Area (ac)	0.000
Proposed Site Impervious Area (ac)	0.000
Proposed Increase in Site Impervious Area (ac)	0.000
Recharge Volume Required (cf)	0
traces (c.,	•
Required Recharge Volume - C Soils (0.25 in.)	
Existing Site Impervious Area (ac)	0.000
Proposed Site Impervious Area (ac)	0.000
Proposed Increase in Site Impervious Area (ac)	0.000
Recharge Volume Required (cf)	0
Paguired Bacharga Valuma D Saila (0.40 in)	
Required Recharge Volume - D Soils (0.10 in.) Existing Site Impervious Area (ac)	0.000
Proposed Site Impervious Area (ac)	0.000
Proposed Increase in Site Impervious Area (ac)	0.000
Recharge Volume Required (cf)	0
Total Deckerry Values Denvised (all	
Total Recharge Volume Required (cf)	0
Recharge Volume Adjustment Factor	
Impervious Area Directed to Infiltration BMP (ac)	0.000
%Impervious Directed to Infiltration BMP	
Adjustment Factor	
Adjusted Total Recharge Volume Required (cf)	
Provided Recharge Volume*	
N/A	0
Total Recharge Volume Provided (cf)	0
	Not Required
*Volume provided below lowest outlet in cubic feet (cf)	

Prepared By: Bohler Engineering 352 Turnpike Road Southborough, MA 01772 (508) 480-9900 Location: CBs to Water Quality Unit

al Calculation	rksheet
SS Remova	Work

A BMP ¹	B TSS Removal Rate ¹	C Starting TSS Load*	D Amount Removed (B*C)	E Remaining Load (C-D)
Deep Sump CBs	0.25	1.00	0.25	0.75
Water Quality Unit	0.80	0.75	0.60	0.15

Total TSS Removal = 85%

Project: 1165R Mass Ave
Prepared By: Bohler
Date: 3/4/2021

*Equals remaining load from previous BMP (E) which enters the BMP

	Location:	Trench Drains to Water Quality I	Unit		
	Α	В	С	D	E
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (B*C)	Load (C-D)
tion	Water Quality Unit	0.80	1.00	0.80	0.20
Removal Calculation Worksheet		0.00			
ıl Cal shee					
nova Nork					
					1
TSS		Tota	l TSS Removal =	80%	
	•	1165R Mass Ave			
	Prepared By:	Bohler		*Equals remaining load from pre	evious BMP (E)
	Date:	3/4/2021		which enters the BMP	

MassDEP Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Proprietary Stormwater Treatment Practices

Q = (qu)(A)(WQV)

WQV = 1/2"

qu=773 csm/in (time of concentration = 5 min. = 0.083 hr)

qu=677 csm/in (time of concentration = 10 min. = 0.167 hr)

conversion from acres to sq. mi.= 0.0015625 mi²/acre

Stormwater Quality Unit WQU-1 (CDS 2015-4)

Impervious Area= 0.913 Ac.

 $Q = 773 \times 0.913 \times 0.0015625 \times 0.5$

Q= 0.55 cfs treatment rate required

The maximum treatment rate of the CDS 2015-4 is **1.4 cfs** and is thus adequate

Available Models i

CDS Model	Treatment Capacity³ (cfs)	Maximum Sediment Storage Capacity (CF)
1515	1.0	26
w/ 1' added sump	1.0	33
w/ 2' added sump	1.0	40
w/ 3' added sump	1.0	47
2015 4	1.4	50
w/ 1' added sump	1.4	63
w/ 2' added sump	1.4	75
w/ 3' added sump	1.4	88
2015	1.4	79
w/ 1' added sump	1.4	98
w/ 2' added sump	1.4	118
2020	2.2	90
w/ 1' added sump	2.2	110
w/ 2' added sump	2.2	129
2025	3.2	97
w/ 1' added sump	3.2	117
w/ 2' added sump	3.2	136
3020	3.9	134
w/ 1' added sump	3.9	163
w/ 2' added sump	3.9	191
3030	6.1	157
w/ 1' added sump	6.1	185
w/ 2' added sump	6.1	213
4030	7.9	329
w/ 1' added sump	7.9	379
w/ 2' added sump	7.9	429
4040	12.4	381
w/ 1' added sump	12.4	431
w/ 2' added sump	12.4	482

- 1. Structure diameter represents the typical inside dimension of the concrete structure. Offline systems will require additional concrete diversion components
- 2. Depth below pipe can vary to accommodate site specific design. Depth below pipe invert represents the depth from the pipe invert to the inside bottom of concrete structure.
- 3. Treatment Capacity is based on laboratory testing using OK-110 (average d50 particle size of approximately 100 microns) and a 2400 micron screen.

Sediment Depths	Indicating Require	d Servicing*	
CDS Model	Standard Sediment Depth (in.)	w/ 1' added Sump Sediment Depth (in.)	w/ 2' added Sump Sediment Depth (in.)
1515	18	27	36
2015_4	18	30	42
2015	18	30	42
2020	18	30	42
2025	18	30	42
3020	18	30	42
3030	18	39	42
4030	27	39	51
4040	27	39	51

^{*} Based on 75% capacity of isolated sump.

Massachusetts Stormwater Evaluation Project

(413) 545-5532 (413) 545-2304 FAX www.mastep.net

MASTEP Technology Review

Technology Name: CDS (Continuous Deflective Separator) - Contech Stormwater Solutions, Inc.

Studies Reviewed:

- NJCAT Technology Verification High Efficiency Continuous Deflective Separators CDS Technologies Inc. January 2010.
- Independent Review of CDS 2015 Product Evaluation, FB Environmental Associates, 2009.
- NJCAT Technology Verification Addendum Report High Efficiency Continuous Deflective Separators CDS Technologies Inc. December 2004
- Continuous Deflection Separation (CDS) Unit For Sediment Control In Brevard County, Florida January, 2000

<u>Date</u>: 5/13/2011 <u>Reviewer</u>: Jerry Schoen

Rating: 2

<u>Brief rationale for rating</u>: MASTEP rating is based primarily on NJCAT 2010 field study and FB Environmental 2009 laboratory study. Both studies generally followed TARP field or NJDEP-recommended laboratory test protocols, with some exceptions. The 2010 field study sampled storms totaling 37% of average annual rainfall (50% is required), and experienced excessively large influent particles. This is discussed further below and in the MASTEP study description. In the FB lab study, no evidence of a Quality Assurance Project Plan, little discussion of quality control, higher than recommended particle size distribution, limited range of influent sediment concentration, sediments analyzed by SSC method but not TSS.

The Florida field study monitored 5 storm events and encountered sampling/equipment problems in four of them. The NJCAT lab study was conducted on a unit that was specially modified for testing in New Jersey, and is now being sold in NJ and NY.

Other Comments:

FB Environmental Associates study:

- OK-110 sediment mix used. This is recommended by Maine DEP, but produces sediments somewhat larger than those recommended by New Jersey DEP.
- Sediment analysis conducted with whole sample; essentially SSC method. SSC is generally regarded as more accurate than TSS method, but comparisons with other studies or products that use TSS data are problematic.
- Full range of flows were tested.
- Only one target sediment concentration was tested; average influent SSC was 313 mg/l, slightly outside of recommended 100-300 mg/l range.
- Scour test was performed; system produced no scour at flows up to 137% of capacity.

NJCAT 2010 Study

Mean influent particle size was 500-600 microns, well above the TARP criteria of <
 100 microns. To address this problem, the testing agency separated samples into

- filtered subsamples of several size ranges (> 2000 microns, < 2000, < 500 and < 50). Removal efficiencies were calculated for each of these ranges, with results ranging from 64% (for <50 micron particles) to 99% (for > 2000 microns).
- TSS and SSC efficiencies were calculated by Event Mean Concentration and by Sum Of Loads methods.
- Study was well document. Other than issues of particle size and % annual rainfall, study closely followed TARP guidelines.

NJCAT 2004 Study

- Expectations of sediment removal performance comparable to this study should be confined to units that contain the sediment weir and a 2400 micron screen.
- The study did not include a scour test.
- A particularly fine sediment mix (Sil-Col-Sil 106, pre-washed to remove all particles > 100 microns), which makes sediment removal more difficult. Higher removal efficiencies may be obtained if sediment particle size range is larger.
- A narrow range of influent sediment (164 203 mg/l, average 184), was tested but this is within the NIDEP-recommended 100-300 mg/l range.
- TSS analysis appears to have been performed by a non- standardized method.
- No discussion of quality control.

Brevard County FL study

- This study was performed before release of the TARP Tier II Protocols and does not conform to them.
- The study states that "testing under higher flow conditions would be desirable."
- TSS, BOD, COD, pH, total phosphorus, and turbidity were monitored.

LEGEND

INLET CATCHMENT BOUNDARY

PROPOSED CATCH BASIN

TRENCH DRAIN

AREA DRAIN

OFF-SITE TOPOGRAPHY FROM NOAA 2013-2014 LIDAR INFORMATION

PROPOSED INLET MAP

1165R MASSACHUSETTS AVE ARLINGTON, MA

PREPARED BY

SCALE: 1"=60' DATE: 04/01/2021

Pag	e	1

Line No.	Line ID	Inlet Time	Тс	i Inlet	Drng Area	Runoff Coeff	Incr Q	Total CxA	Known Q	Line Length	Line Slope	Line Size	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	Gnd/Rim El Up	Cover Up	HGL Up	
		(min)	(min)	(in/hr)	(ac)	(C)	(cfs)		(cfs)	(ft)	(%)	(in)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	MHC-BRK	0.0	14.1	0.00	0.00	0.00	0.00	1.34	0.00	31.00	1.61	30	31.82	56.43	6.48	91.00	90.50	98.75	5.25	94.66	
2	MHB-MHC	0.0	5.7	0.00	0.00	0.00	0.00	0.51	0.00	29.00	1.86	30	28.95	60.63	5.90	91.60	91.06	98.90	4.80	95.54	
3	MHA-MHB	0.0	0.1	0.00	0.00	0.00	0.00	0.00	0.00	102.00	1.90	30	26.00	61.27	5.30	93.60	91.66	100.50	4.40	96.53	
4	HW-MHA	0.0	0.0	0.00	0.00	0.00	26.00	0.00	26.00	47.00	1.89	30	26.00	61.14	5.30	94.50	93.61	99.00	2.00	97.13	
5	WQU1-MHC	0.0	14.0	0.00	0.00	0.00	0.00	0.83	0.00	10.00	1.00	18	3.62	11.38	2.05	94.20	94.10	98.95	3.25	95.90	
6	MHD-WQU1	0.0	14.0	0.00	0.00	0.00	0.00	0.83	0.00	10.00	1.00	18	3.63	11.38	2.05	94.40	94.30	98.90	3.00	95.92	
7	MHE-MHD	0.0	5.1	0.00	0.00	0.00	0.00	0.56	0.00	62.00	1.02	15	3.32	7.05	2.96	95.10	94.47	98.40	2.05	96.08	
8	CB1-MHE	5.0	5.0	6.00	0.64	0.87	3.34	0.56	0.00	24.00	1.00	15	3.34	7.00	3.77	95.44	95.20	98.80	2.11	96.17 j	
9	CB2-MHE	5.0	5.0	6.00	0.08	0.80	0.38	0.06	0.00	29.00	1.00	12	0.38	3.86	0.62	95.40	95.11	98.40	2.00	96.03	
10	TEE-MHB	0.0	5.5	0.00	0.00	0.00	0.00	0.51	0.00	43.00	2.00	12	2.97	5.46	3.79	93.36	92.50	99.00	4.64	96.65	
11	RF4-TEE	5.0	5.0	6.00	0.55	0.90	2.97	0.50	0.00	15.00	0.87	12	2.97	3.59	3.78	93.49	93.36	98.50	4.01	96.96	
12	MHF-MHD	0.0	13.8	0.00	0.00	0.00	0.00	0.21	0.00	18.00	1.00	12	0.92	3.86	1.18	94.68	94.50	98.50	2.82	96.04	
13	CB3-MHF	5.0	5.0	6.00	0.09	0.90	0.49	0.08	0.00	36.00	1.00	12	0.49	3.86	1.05	95.60	95.24	98.60	2.00	96.05	
14	TD1-MHF	5.0	5.0	6.00	0.06	0.90	0.32	0.05	0.00	18.00	5.06	12	0.32	8.67	1.32	96.00	95.09	97.75	0.75	96.24 j	
15	RF1A-MHF	5.0	13.3	6.00	0.08	0.90	0.43	0.08	0.00	16.00	1.00	12	0.34	3.86	0.43	95.00	94.84	98.00	2.00	96.08	
16	AD1-TEE	5.0	5.0	6.00	0.03	0.42	0.08	0.01	0.00	7.00	1.86	8	0.08	1.78	0.22	93.49	93.36	97.90	3.74	97.09	
17	AD2-RF1A	5.0	5.0	6.00	0.01	0.35	0.02	0.00	0.00	30.00	1.00	8	0.02	1.31	0.06	95.20	94.90	96.50	0.63	96.09	
18	MHK-BRK	0.0	5.8	0.00	0.00	0.00	0.00	0.15	0.00	68.00	3.07	15	0.84	12.26	0.69	93.09	91.00	96.50	2.16	94.51	
19	RF1B-MHK	5.0	5.0	6.00	0.08	0.90	0.43	0.07	0.00	15.00	1.93	12	0.43	5.36	0.55	93.50	93.21	98.00	3.50	94.52	
20	RF3-MHK	5.0	5.0	6.00	0.04	0.90	0.22	0.04	0.00	13.00	1.00	12	0.22	3.86	0.46	94.00	93.87	96.50	1.50	94.52	
21	AD3-MHK	5.0	5.0	6.00	0.05	0.75	0.22	0.04	0.00	10.00	2.00	8	0.22	1.85	2.23	94.50	94.30	96.00	0.83	94.72	
During	File: test3 stm	1	1										Niver	her of line	04			Date: 04-0	1 0004		

Project File: test3.stm Number of lines: 21 Date: 04-01-2021

NOTES: Intensity = 45.72 / (Inlet time + 11.30) ^ 0.73 -- Return period = 25 Yrs.;

** Critical depth

Resu	lts
------	-----

Line No.	Line ID	Inlet Time	Тс	i Inlet	Drng Area	Runoff Coeff	Incr Q	Total CxA	Known Q	Line Length	Line Slope	Line Size	Flow Rate	Capac Full	Vel Ave	Invert Up	Invert Dn	Gnd/Rim El Up	Cover Up	HGL Up	
		(min)	(min)	(in/hr)	(ac)	(C)	(cfs)		(cfs)	(ft)	(%)	(in)	(cfs)	(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	MHC-BRK	0.0	12.4	0.00	0.00	0.00	0.00	1.34	0.00	31.00	1.61	30	33.64	56.43	6.85	91.00	90.50	98.75	5.25	94.68	
2	MHB-MHC	0.0	5.6	0.00	0.00	0.00	0.00	0.51	0.00	29.00	1.86	30	29.66	60.63	6.04	91.60	91.06	98.90	4.80	95.69	
3	MHA-MHB	0.0	0.1	0.00	0.00	0.00	0.00	0.00	0.00	102.00	1.90	30	26.00	61.27	5.30	93.60	91.66	100.50	4.40	96.73	
4	HW-MHA	0.0	0.0	0.00	0.00	0.00	26.00	0.00	26.00	47.00	1.89	30	26.00	61.14	5.30	94.50	93.61	99.00	2.00	97.33	
5	WQU1-MHC	0.0	12.3	0.00	0.00	0.00	0.00	0.83	0.00	10.00	1.00	18	4.75	11.38	2.69	94.20	94.10	98.95	3.25	96.03	
6	MHD-WQU1	0.0	12.3	0.00	0.00	0.00	0.00	0.83	0.00	10.00	1.00	18	4.76	11.38	2.69	94.40	94.30	98.90	3.00	96.06	
7	MHE-MHD	0.0	5.1	0.00	0.00	0.00	0.00	0.56	0.00	62.00	1.02	15	4.10	7.05	3.34	95.10	94.47	98.40	2.05	96.35	
8	CB1-MHE	5.0	5.0	7.40	0.64	0.87	4.12	0.56	0.00	24.00	1.00	15	4.12	7.00	3.52	95.44	95.20	98.80	2.11	96.51	
9	CB2-MHE	5.0	5.0	7.40	0.08	0.80	0.47	0.06	0.00	29.00	1.00	12	0.47	3.86	0.62	95.40	95.11	98.40	2.00	96.29	
10	TEE-MHB	0.0	5.4	0.00	0.00	0.00	0.00	0.51	0.00	43.00	2.00	12	3.69	5.46	4.69	93.36	92.50	99.00	4.64	96.87	
11	RF4-TEE	5.0	5.0	7.40	0.55	0.90	3.66	0.50	0.00	15.00	0.87	12	3.66	3.59	4.66	93.49	93.36	98.50	4.01	97.35	
12	MHF-MHD	0.0	12.1	0.00	0.00	0.00	0.00	0.21	0.00	18.00	1.00	12	1.21	3.86	1.54	94.68	94.50	98.50	2.82	96.27	
13	CB3-MHF	5.0	5.0	7.40	0.09	0.90	0.60	0.08	0.00	36.00	1.00	12	0.60	3.86	0.86	95.60	95.24	98.60	2.00	96.34	
14	TD1-MHF	5.0	5.0	7.40	0.06	0.90	0.40	0.05	0.00	18.00	5.06	12	0.40	8.67	1.23	96.00	95.09	97.75	0.75	96.31	
15	RF1A-MHF	5.0	11.7	7.40	0.08	0.90	0.53	0.08	0.00	16.00	1.00	12	0.44	3.86	0.56	95.00	94.84	98.00	2.00	96.34	
16	AD1-TEE	5.0	5.0	7.40	0.03	0.42	0.09	0.01	0.00	7.00	1.86	8	0.09	1.78	0.27	93.49	93.36	97.90	3.74	97.55	
17	AD2-RF1A	5.0	5.0	7.40	0.01	0.35	0.03	0.00	0.00	30.00	1.00	8	0.03	1.31	0.07	95.20	94.90	96.50	0.63	96.35	
18	MHK-BRK	0.0	5.6	0.00	0.00	0.00	0.00	0.15	0.00	68.00	3.07	15	1.05	12.26	0.85	93.09	91.00	96.50	2.16	94.52	
19	RF1B-MHK	5.0	5.0	7.40	0.08	0.90	0.53	0.07	0.00	15.00	1.93	12	0.53	5.36	0.68	93.50	93.21	98.00	3.50	94.53	
20	RF3-MHK	5.0	5.0	7.40	0.04	0.90	0.27	0.04	0.00	13.00	1.00	12	0.27	3.86	0.56	94.00	93.87	96.50	1.50	94.53	
21	AD3-MHK	5.0	5.0	7.40	0.05	0.75	0.28	0.04	0.00	10.00	2.00	8	0.28	1.85	2.49	94.50	94.30	96.00	0.83	94.75	
																					,
																I					

Project File: W191330.stm Number of lines: 21 Date: 04-01-2021

NOTES: Intensity = 44.87 / (Inlet time + 10.30) ^ 0.66 - Return period = 100 Yrs.; ** Critical depth

CATCH BASIN DRAINAGE AREA SUMMARY 1165R MASS AVE ARLINGTON, MA

c coefficient, grass=	0.30
c coefficient, impervious=	0.90

Drainage	Total	Grassed		Total
Area	Area	Area		Area
Name	(sf)	(sf)	"C"	(Ac.)
CB-1	27,752	1,388	0.87	0.64
CB-2	3,660	640	0.80	0.08
CB-3	4,116	0	0.90	0.09
AD-1	1,188	950	0.42	0.03
AD-2	471	424	0.36	0.01
AD-3	1,966	492	0.75	0.05
TD-1	2,610	0	0.90	0.06
RF-1A	3,361	0	0.90	0.08
RF-1B	3,388	0	0.90	0.08
RF-2	5,398	0	0.90	0.12
RF-3	1,742	0	0.90	0.04
RF-4	24,160	0	0.90	0.55
		Total	Area (ac.)=	1.83

Exhibit 8-12 Intensity - Duration - Frequency Curve for Boston, MA

Source: TR55 - Urban Hydrology for Small Wetlands, NRCS

Ryder Brook Relocation

Calculations Demonstrating Increase in Pipe Capacity

Manning's Equation For Circular Pipes

Existing 24" Pipe DIAMETER SLOPE n	2 ft 0.013 0.013
Area	3.14 sf
Perimeter	6.28 ft
Hyd. Radius	0.50 ft
Velocity	8.23
Q (cfs)	25.86
Proposed 30" Pipe DIAMETER SLOPE n	2.5 ft 0.016 0.012
Area	4.91 sf
Perimeter	7.85 ft
Hyd. Radius	0.63 ft

Figure 5C-5 Headwater Depth for Concrete Pipe Culverts with Inlet Control Source: www.deldot.gov/information/pubs_forms/manuals/road_design/pdf/supp_figures_chap6.pdf

HEADWATER ELEV. = 1.15 x 2.5' (30") = 2.88 FT + CHANNEL BOTTOM ELEVATION OF 94.5 = **97.40 FT**

Figure 5C-5 Headwater Depth for Concrete Pipe Culverts with Inlet Control Source: www.deldot.gov/information/pubs_forms/manuals/road_design/pdf/supp_figures_chap6.pdf

HEADWATER ELEV. = 1.15 x 2.5' (30") = 2.88 FT + CHANNEL BOTTOM ELEVATION OF 94.5 = **97.40 FT**

Manning's Eq for trap. Channels
Capacity of Relocated Ryder Brook Swale
At Headwall

Bottom Width	BW=	4.00
Side Slope	SS=	2.00
# of sides (1 for curb)		2.00
Depth of Flow	D=	2.90
Slope	S=	0.005
Manning's "n"	n=	0.040
Flow Area	A=	28.42
Wetted Perimeter	P=	16.97
Hydraulic Radius	R=	1.67
Spread	T=	8.48
Velocity (fps)	V=	3.71
Flow (cfs)	Q=	105.57

APPENDIX G: OPERATION AND MAINTENANCE

- > STORMWATER OPERATION AND MAINTENANCE PLAN
- > INSPECTION REPORT
- > INSPECTION AND MAINTENANCE LOG FORM
- > LONG-TERM POLLUTION PREVENTION PLAN
- > <u>ILLICIT DISCHARGE STATEMENT</u>
- > SPILL PREVENTION
- > PROPOSED OPERATION AND MAINTENANCE MAP
- > MANUFACTURER'S INSPECTION AND MAINTENANCE MANUALS

STORMWATER OPERATION AND MAINTENANCE PLAN

1165R Massachusetts Avenue Arlington, MA

RESPONSIBLE PARTY DURING CONSTRUCTION:

1165R MASS MA PROPERTY LLC 1165R Massachusetts Avenue Arlington, MA

RESPONSIBLE PARTY POST CONSTRUCTION:

1165R MASS MA PROPERTY LLC 1165R Massachusetts Avenue Arlington, MA

Construction Phase

During the construction phase, all erosion control devices and measures shall be maintained in accordance with the final record plans, local/state approvals and conditions, the EPA Construction General Permit and the Stormwater Pollution Prevention Plan (SWPPP) if applicable. Additionally, the maintenance of all erosion / siltation control measures during construction shall be the responsibility of the general contractor. Contact information of the OWNER and CONTRACTOR shall be listed in the SWPPP for this site. The SWPPP also includes information regarding construction period allowable and illicit discharges, housekeeping and emergency response procedures. Upon proper notice to the property owner, the Town/City or its authorized designee shall be allowed to enter the property at a reasonable time and in a reasonable manner for the purposes of inspection.

Post Development Controls

Once construction is completed, the post development stormwater controls are to be operated and maintained in compliance with the following permanent procedures (note that the continued implementation of these procedures shall be the responsibility of the Owner or its assignee):

 Parking lots and on-site driveways: Sweep at least two (2) times per year and on a more frequent basis depending on sanding operations. All resulting sweepings shall be collected and properly disposed of off site in accordance with MADEP and other applicable requirements.

Approximate Maintenance Budget: \$1,000/year

2. Catch basins, yard drains, trench drains, manholes and piping: Inspect two (2) times per year and at the end of foliage and snow-removal seasons. These features shall be cleaned two (2) times per year or whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe in the catch basin or underground system. Accumulated sediment and hydrocarbons present must be removed and properly disposed of off site in accordance with MADEP and other applicable requirements.

Approximate Maintenance Budget: \$500/year per structure.

3. Water Quality Unit (Proprietary Separator): Follow manufacturer's recommendations (attached).

Approximate Maintenance Budget: \$1,000/year per unit.

4. Ryder Brook drainage swale: Inspect at least quarterly and after any rainfall of 3.0 or more inches occurring within a 24-hour period. Inspect the headwall and trash rack for debris or clogging. Remove any debris or clogs immediately. At least once per year, generally in the summer or early fall, the sideslopes of the channel shall be maintained by repairing any erosion, replacing vegetation that does not appear to be healthy, and removing any vegetation that has the potential to impair conveyance of water within the swale. Trees are not proposed within the swale and any naturally occurring trees shall be removed before they are large enough to cause significant disruption to the swale by their removal. The riprap stone channel bottom shall be inspected and repaired as necessary. Any accumulated sediment that could impair conveyance of water shall be removed. All materials removed from the swale including debris, sediment, or vegetative growth shall be disposed of in accordance with MADEP and other applicable requirements.

Approximate Maintenance Budget: \$2,000/year.

All components of the stormwater system will be accessible by the owner or their assignee.

STORMWATER MANAGEMENT SYSTEM

POST-CONSTRUCTION INSPECTION REPORT

LOCATION:

1165R Massachusetts Avenue Arlington, MA

RESPONSIBLE PARTY:

1165R MASS MA PROPERTY LLC 1165R Massachusetts Avenue Arlington, MA

	1
NAME OF INSPECTOR:	INSPECTION DATE:
Note Condition of the Following (sediment depth, debris	, standing water, damage, etc.):
Catch Basins:	
Discharge Points:	
Water Quality Units:	
Other:	
Note Recommended Actions to be taken on the Followin	a (andiment and (or debric nameyal nameira
etc.):	g (sediment and/or debris removal, repairs,

Catch Basins:			
Discharge Points:			
Discharge Folitis.			
Water Quality Units:			
Other:			
Comments:			

Arlington, MA Stormwater Management Responsible Party Data Maintenance Activity						
Practice	Responsible Party	Date	Performed			
Tractice			Terrormed			
						
]				

LONG-TERM POLLUTION PREVENTION PLAN

1165R Massachusetts Avenue Arlington, MA

RESPONSIBLE PARTY DURING CONSTRUCTION:

1165R MASS MA PROPERTY LLC 1165R Massachusetts Avenue Arlington, MA

RESPONSIBLE PARTY POST CONSTRUCTION:

1165R MASS MA PROPERTY LLC 1165R Massachusetts Avenue Arlington, MA

For this site, the Long-Term Pollution Prevention Plan will consist of the following:

- The property owner shall be responsible for "good housekeeping" including proper periodic maintenance of building and pavement areas, curbing, landscaping, etc.
- Proper storage and removal of solid waste (dumpsters).
- Sweeping of driveways a minimum of twice per year with a commercial cleaning unit.
 Any sediment removed shall be disposed of in accordance with applicable local and state requirements.
- Regular inspections and maintenance of Stormwater Management System as noted in the "O&M Plan".
- Snow removal shall be the responsibility of the property owner. Snow shall not be plowed, dumped and/or placed in forebays, infiltration basins or similar stormwater controls. Salting and/or sanding of pavement / walkway areas during winter conditions shall only be done in accordance with all state/local requirements and approvals.

OPERATON AND MAINTENANCE TRAINING PROGRAM

The Owner will coordinate an annual in-house training session with staff to discuss the Operations and Maintenance Plan and the Long-Term Pollution Prevention Plan. Annual training will include the following:

Discuss the Operations and Maintenance Plan

- Explain the general operations of the stormwater management system and its BMPs
- Identify potential sources of stormwater pollution and measures / methods of reducing or eliminating that pollution
- Emphasize good housekeeping measures

Discuss Spill Prevention and Response Procedures

- Explain the process in the event of a spill
- Identify potential sources of spills and procedures for cleanup and /or reporting and notification
- Complete a yearly inventory or Materials Safety Data sheets of all tenants and confirm that no potentially harmful chemicals are in use.

Operation and Maintenance Measures

- Trash and other debris shall be removed from all areas of the site at least twice yearly.
- Reseed any bare areas as soon as they occur. Erosion control measures shall be
 installed in these areas to prevent deposits of sediment from entering the drainage
 system.
- Grass shall be maintained at a minimum blade height of two to three inches and only 1/3 of the plant height shall be removed at a time. Clippings shall not be disposed of within stormwater management areas or adjacent resource areas.
- Plants shall be pruned as necessary.
- The use of fertilizers will be kept at a level consistent with typical residential use. Fertilizer will be applied a maximum of once to twice per year during the initial planting and stabilization of landscaped areas. Once plants are established and growing well fertilizer will be applied judiciously.
- The use of pesticides will be kept at a level consistent with typical residential use. Where possible mechanical methods (i.e. pest traps) or biological methods (i.e.

beneficial insects) of pest control shall be implemented. If pesticides (insecticide, herbicide, and fungicide) are required to be used, a pesticide which poses the lowest risk to public health and the environment shall be used.

- Pet waste shall be disposed of in accordance with local regulations. Pet waste shall not be disposed of in a storm drain or catch basin.
- Snow piles shall be located adjacent to or on pervious surfaces in upland areas. This will allow snow melt water to filter in to the soil, leaving behind sand and debris which can be removed in the springtime.
- In no case shall snow be disposed of or stored in resource areas (wetlands, floodplain, streams or other water bodies).
- If necessary, stockpiled snow will be removed from the Site and disposed of at an off-site location in accordance with all local, state and federal regulations.
- The amount of sand and deicing chemicals shall be kept at the minimum amount required to provide safe pedestrian and vehicle travel.
- Deicing chemicals are recommended as a pretreatment to storm events to minimize the amount of applied sand.
- Sand and deicing chemicals should be stockpiled under covered storage facilities that prevent precipitation and adjacent runoff from coming in contact with the deicing materials. Stockpile areas shall be located outside resource areas.

ILLICIT DISCHARGE STATEMENT

Certain types of non-stormwater discharges are allowed under the U.S. Environmental Protection Agency Construction General Permit. These types of discharges will be allowed under the conditions that no pollutants will be allowed to come in contact with the water prior to or after its discharge. The control measures which have been outlined previously in this LTPPP will be strictly followed to ensure that no contamination of these non-storm water discharges takes place. Any existing illicit discharges, if discovered during the course of the work, will be reported to MassDEP and the local DPW, as applicable, to be addressed in accordance with their respective policies. No illicit discharges will be allowed in conjunction with the proposed improvements.

Duly Acknowledged:		
Name & Title		

CDS® Inspection and Maintenance Guide

Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes.

CDS Model	Diameter		Distance from Water Surface to Top of Sediment Pile		Sediment Storage Capacity	
	ft	m	ft	m	y³	m³
CDS1515	3	0.9	3.0	0.9	0.5	0.4
CDS2015	4	1.2	3.0	0.9	0.9	0.7
CDS2015	5	1.3	3.0	0.9	1.3	1.0
CDS2020	5	1.3	3.5	1.1	1.3	1.0
CDS2025	5	1.3	4.0	1.2	1.3	1.0
CDS3020	6	1.8	4.0	1.2	2.1	1.6
CDS3025	6	1.8	4.0	1.2	2.1	1.6
CDS3030	6	1.8	4.6	1.4	2.1	1.6
CDS3035	6	1.8	5.0	1.5	2.1	1.6
CDS4030	8	2.4	4.6	1.4	5.6	4.3
CDS4040	8	2.4	5.7	1.7	5.6	4.3
CDS4045	8	2.4	6.2	1.9	5.6	4.3
CDS5640	10	3.0	6.3	1.9	8.7	6.7
CDS5653	10	3.0	7.7	2.3	8.7	6.7
CDS5668	10	3.0	9.3	2.8	8.7	6.7
CDS5678	10	3.0	10.3	3.1	8.7	6.7

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Suppor

- Drawings and specifications are available at www.contechstormwater.com.
- Site-specific design support is available from our engineers.

©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, earth stabilization and wastewater treament products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS AN EXPRESSED WARRANTY OR AN IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. SEE THE CONTECH STANDARD CONDITION OF SALES (VIEWABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; 7,517,450 related foreign patents or other patents pending.

CDS Inspection & Maintenance Log

CDS Model:	Location:
CDS WIGHT.	Eocation:

Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

^{1.} The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

LEGEND

CATCH BASIN (SINGLE AND DOUBLE)

WATER QUALITY UNIT

TRENCH DRAIN

PEASTONE GRAVEL DIAPHRAGM

OPERATION & MAINTENANCE LOCATION MAP

1165R MASSACHUSETTS AVE ARLINGTON, MA

PREPARED BY

SCALE: 1"=60' DATE: 04/01/2021