Symmetric cryptography

- Both parties must agree on a secret key, K
- message is encrypted, sent, decrypted at other side

- Key distribution must be secret
 - otherwise messages can be decrypted
 - users can be impersonated

Key explosion

Each pair of users needs a separate key for secure communication

2 users: 1 key

Charles

4 users: 6 keys

6 users: 15 keys

3 users: 3 keys

100 users: 4950 keys

1000 users: 399500 keys

n users:
$$\frac{n(n-1)}{2}$$
 keys

Key distribution

Secure key distribution is the biggest problem with symmetric cryptography

Key exchange

How can you communicate securely with someone you've never met?

Whit Diffie: idea for a public key algorithm

Challenge: can this be done securely?
Knowledge of public key should not allow derivation of private key

Key distribution algorithm

- first algorithm to use public/private keys
- not public key encryption
- based on difficulty of computing discrete logarithms in a finite field compared with ease of calculating exponentiation

allows us to negotiate a secret session key without fear of eavesdroppers

- All arithmetic performed in field of integers modulo some large number
- Both parties agree on
 - a large prime number p
 - and a number $\alpha < p$
- Each party generates a public/private key pair

```
private key for user i: Xi
```

public key for user i: $Y_i = \alpha^{X_i} \mod p$

- Alice has secret key X_A
- Alice has public key Y_A
- Alice computes

- Bob has secret key X_{β}
- Bob has public key Y_B

$$K = Y_B^{X_A} \mod p$$

 $K = (Bob's public key)^{(Alice's private key)} mod p$

- Alice has secret key X_A
- Alice has public key Y_A
- Alice computes

- Bob has secret key X_{β}
- Bob has public key Y_B
- Bob computes

$$K = Y_B^{X_A} \mod p$$

$$K' = Y_A^{X_B} \mod p$$

K' = (Alice's public key) (Bob's private key) mod p

- Alice has secret key X_A
- Alice has public key Y_A
- Alice computes

- Bob has secret key X_B
- Bob has public key Y_B
- Bob computes

• expanding: $K = Y_{R}^{X_{A}} \mod p$

$$K = Y_B^{X_A} \mod p$$

$$= (\alpha^{X_B} \mod p)^{X_A} \mod p$$

$$= \alpha^{X_B X_A} \mod p$$

• expanding:
$$K' = Y_A^{X_B} \mod p$$

$$K = Y_B^{X_A} \mod p$$

$$= (\alpha^{X_B} \mod p)^{X_A} \mod p$$

$$= \alpha^{X_B X_A} \mod p$$

$$K = K'$$

K is a common key, known only to Bob and Alice

Diffie-Hellman example

Suppose $p = 31667, \alpha = 7$

Alice picks

$$X_A = 18$$

Alice's public key is:

$$Y_A = 7^{18} \mod 31667 = 6780$$

Bob picks

$$X_{B} = 27$$

Bob's public key is:

$$Y_B = 7^{27} \mod 31667 = 22184$$

 $K = 22184^{18} \mod 31667$

$$K = 14265$$

 $K = 6780^{27} \mod 31667$

$$K = 14265$$

Key distribution problem is solved!

- User maintains private key
- Publishes public key in database ("phonebook")
- Communication begins with key exchange to establish a common key
- Common key can be used to encrypt a <u>session key</u>
 - increase difficulty of breaking common key by reducing the amount of data we encrypt with it
 - session key is valid *only* for one communication session

RSA: Public Key Cryptography

- Ron Rivest, Adi Shamir, Leonard Adleman created a true public key encryption algorithm in 1977
- Each user generates two keys
 - private key (kept secret)
 - public key
- difficulty of algorithm based on the difficulty of factoring large numbers
 - keys are functions of a pair of large (~200 digits) prime numbers

RSA algorithm

Generate keys

- choose two random large prime numbers p, q
- Compute the product n = pq
- randomly choose the encryption key, *e*, such that:
 - e and (p-1)(q-1) are relatively prime
- use the extended Euclidean algorithm to compute the decryption key, d:

```
ed = 1 \mod ((p-1)(q-1))

d = e^{-1} \mod ((p-1)(q-1))
```

- discard p, q

RSA algorithm

- encrypt
 - divide data into numerical blocks < n
 - encrypt each block:

```
c = m^e \mod n
```

• decrypt: $m = c^d \mod n$

Asymmetric Encryption: RSA

- \bullet P=5 & q=7
- n=5*7=35 and z=(4)*(6) = 24
- \bullet e = 5
- \bullet d = 29, (29x5 = 1 mod 24)
- Keys generated are
 - Public key: (5, 35)
 - Private key is (29, 35)
- Encrypt the word love using $(c = m^e \mod n)$
 - Assume that the alphabets are between 1 & 26

Plain Text	Numeric Representation	m ^e	Cipher Text $(c = m^e \mod n)$	
1	12	248832	17	
0	15	759375	15	
v	22	5153632	22	
e	5	3125	10	

Asymmetric Encryption: RSA

- Decrypt the word love using $(m = c^d \mod n)$
 - d=29, n=35

Cipher Text	c ^d	$(\mathbf{m} = \mathbf{c}^{d} \bmod \mathbf{n})$	Plain Text
17	481968572106750915091411825223072000	12	1
15	12783403948858939111232757568359400	15	0
22	852643319086537701956194499721110000000	22	V
10	100000000000000000000000000000000000000	5	e

Different keys for encrypting and decrypting

- no need to worry about key distribution

exchange public keys (or look up in a directory/DB)

Public key woes

Public key cryptography is great but:

- -RSA about 100 times slower than DES in software, 1000 times slower in HW
- Vulnerable to chosen plaintext attack
 - if you know the data is one of n messages, just encrypt each message with the recipient's public key and compare
- -It's a good idea to reduce the amount of data encrypted with any given key
 - but generating RSA keys is computationally very time consuming

Hybrid cryptosystems

Use public key cryptography to encrypt a randomly generated symmetric key

session key

Get recipient's public key (or fetch from directory/database)

Pick random session key, K

Encrypt session key with Bob's public key

$$E_B(K)$$
 \longrightarrow $K = D_b(E_B(K))$

Bob decrypts *K* with his private key

encrypt message using a symmetric algorithm and key *K*

decrypt message using a symmetric algorithm and key *K*

decrypt message using a symmetric algorithm and key *K*

encrypt message using a symmetric algorithm and key *K*