PaweÂł Keller, 999999, grupa 7, projekt 0, zadanie 00

WstĂŞp

Po kr Åltkiej naradzie, razem z Wyk Âladowc Â
ą zdecydowali Âśmy si ÄŞ udost ÄŞpni Ä| Pa Ä $\pm stwuniema$
 stwoczytaj.Przypominam, ewstppowinienzawieraopisanwasnymisowamiiwtrybieoznajmujcymtrezada

Proszê zwróciæ rĂłwnieÂż uwagĂŞ, Âże w rozdziale opisujÂącym danÂą metodĂŞ numerycznÂą (proszĂŞ pamiĂŞtaæ o odpowiedniej modyfikacji tytuÂłu tego rozdziaÂłu — jeÂżeli ktoÂś odda raport z pozostawionym z tego przykÂładu tytuÂłem drugiego rozdziaÂłu, to odejmĂŞ za to 3 punkty!) wszystkie uÂżywane symbole i pojĂŞcia sÂą tam zdefiniowane. Innymi sÂłowy, nie wolno uÂżywaæ pojêæ lub symboli wczeÂśniej niezdefiniowanych (najpóŸniej naleÂży definiowaĂ| symbol/pojĂŞcie w zdaniu nastĂŞpujÂącym po tym, w ktĂłrym jest uÂżyty po raz pierwszy). Nie dotyczy to oczywiÂście pojĂŞĂ| ogĂłlnie znanych (np. caÂtka).

Rozszerzony zostaÂł teÂż *Dodatek* o dowody dwĂłch teoretycznych faktĂłw. Nie jest to jednak przykÂład jak *Dodatek* (raport) koniecznie powinien wygl¹daæ, a jedynie drobne uzupeÂłnienie materiaÂłu z poprzedniego semestru — jeÂśliby kogoÂś to zainteresowaÂło — oraz kilka dodatkowych, przykÂładowych wzorĂłw matematycznych. Dodano rĂłwnieÂż bardzo waÂżnÂą *Uwagê koñcow*.

Opis metody Newtona

 $Za\hat{A}t\check{A}t\hat{A}zmy$, $\hat{A}ze$ α jest r-krotnym pierwiastkiem pewnej r-krotnie $r\check{A}t\hat{A}zniczkowalnej$ funkciji f, czyli takim, $\hat{A}ze$ $f(\alpha) = f'(\alpha) = \cdots = f^{(r-1)}(\alpha) = 0$ oraz $f^{(r)}(\alpha) \neq 0$. Wtedy dla przybli- $\hat{A}zenia$ $pocz\hat{A}atkowego$ x_0 zmodyfikowana metoda Newtona wyznacza kolejne $przybli\hat{A}zenia$ x_k $(k \geq 1)$ pierwiastka α zgodnie z $nast\check{A}Spuj\hat{A}acym$ wzorem:

$$x_k = x_{k-1} - r \frac{f(x_{k-1})}{f'(x_{k-1})}. (1)$$

 $Je\hat{A}\dot{z}eli\ b\hat{A}l\hat{A}qd\ |e_0|,\ gdzie\ e_k=x_k-\alpha\ (k\geq 0),\ jest\ odpowiednio\ ma\hat{A}ly,\ to$

$$|e_k| \le C|e_{k-1}|^2 \qquad (k \ge 1)$$

dla pewnej sta \hat{A} lej C. Oznacza to, \hat{A} że wystarczy ju \hat{A} ż kilka iteracji, aby przybli \hat{A} ży \check{A}_l' pierwiastek α z kilkunastocyfrow \hat{A} ą dok \hat{A} ładno \hat{A} ści \hat{A} ą.

Poniewa $\hat{A}\dot{z}$ nie jest znana wystarczaj \hat{A} ąca liczba iteracji potrzebna do wyznaczenia pierwiastka z pewn \hat{A} ą zadan \hat{A} ą dok \hat{A} ładno \hat{A} ści \hat{A} ą, w praktycznej realizacji metody Newtona u \hat{A} żytej do wykonania eksperyment \hat{A} łw opisanych w raporcie, iteracje (1) wykonuje si \hat{A} \hat{S} do momentu, a \hat{A} ż

$$E_k := |x_k - x_{k-1}| \le \delta \tag{2}$$

dla pewnej zadanej tolerancji $\delta > 0$. Dodatkowo, obliczenia sÂą przerywane, jeÂśli wartoÂśĂ/k w (1) robi siĂŞ nazbyt duÂża lub gdy $f(x_{k-1}) = 0$. Ten ostatni warunek jest konieczny, poniewaÂż w wypadku zer wielokrotnych mamy wtedy $f'(x_{k-1}) = 0$. W Dodatku wykazano, Âże w otoczeniu wielokrotnego pierwiastka zachodzi nierĂtwnoÂśĂ/ $|f(x_{k-1})| < |f'(x_{k-1})|$.

Eksperymenty numeryczne

 $Zauwa \hat{A}\dot{z}my$, $\hat{A}\dot{z}e~gdy~mamy~obliczone~trzy~kolejne~b \hat{A}t\check{A}Sdy~przybli \hat{A}\dot{z}enia:~e_{k-1},~e_k~i~e_{k+1},~to~mo \hat{A}\dot{z}emy~\hat{A}tatwo~szacowa \check{A}_i'~wyk \hat{A}tadnik~zbie \hat{A}\dot{z}no \hat{A}\dot{s}ci~metody.~Przyjmuj \hat{A}qc,~\hat{A}\dot{z}e~|e_{k+1}| \simeq C|e_k|^p~oraz~|e_k| \simeq C|e_{k-1}|^p$, to po zlogarytmowaniu powy $\hat{A}\dot{z}szych~dw \check{A}tch~przybli \hat{A}\dot{z}onych~r \check{A}tw-no \hat{A}\dot{s}ci~i~odj \check{A}Sciu~stronami,~dostaniemy$

$$p \simeq \log \left(\frac{|e_{k+1}|}{|e_k|}\right) \log \left(\frac{|e_k|}{|e_{k-1}|}\right)^{-1}.$$

Jak wida \check{A}_i' , przy odpowiednio dobranej warto \hat{A} ści r ($r\check{A}$ twnej krotno \hat{A} ści pierwiastka) otrzymujemy najszybsz \hat{A} ą zbie \hat{A} żno \hat{A} ś \check{A}_i' , co najmniej rz \check{A} Şdu 2. W wypadku dw \check{A} tch ostatnich przyk \hat{A} tad \check{A} tw z tabeli, przy optymalnym doborze parametru r, zbie \hat{A} żno \hat{A} ś \check{A}_i' jest a \hat{A} ż sze \hat{A} ścienna, co potwierdzono dowodem teoretycznym w Dodatku. Na podstawie otrzymanych wynik \check{A} tw wida \check{A}_i' $r\check{A}$ twnie \hat{A} ż, \hat{A} że z \hat{A} te dobranie parametru r mo \hat{A} że sko \check{A} ±czysiwmaointeresujcysposb.Jelinieznamy.

InteresujÂący wydaje siĂŞ ostatni przykÂład z tabeli 1, dla ktĂłrego nie udaÂło siĂŞ obliczyĂ/ przybliÂżenia pierwiastka z b³êdem mniejszym niÂż 1.06×10^{-9} (algorytm "utkn¹³" w tym punkcie). Opisany problem jest prawdopodobnie konsekwencjÂą faktu, Âże obliczanie wartoÂści wyraÂżenia $\cos(x)-1$ dla argumentów bliskich 0 obarczone jest bardzo du¿ym b³êdem zwiÂązanym ze sporÂą redukcjÂą cyfr znaczÂących.

Tabela 1: Oszacowana wartoϾ wykÂładnika zbieÂżnoÂści p, oszacowanie E_k b³êdu przybliÂżenia, faktyczny b³¹d $|e_k|$ oraz numer iteracji k, w ktĂłrej speÂłniony byÂł warunek $E_k < 10^{-12}$ dla kilku wybranych funkcji i kilku wartoÂści r w (1). Szukanym pierwiastkiem jest zawsze $\alpha=0$, a przybliÂżenie poczÂątkowe jest rĂłwne $x_0=0.5$. Jeœli w tabeli oszacowanie b³êdu jest rĂłwne 0.0, oznacza to, Âże tyle wynosiÂła wartoÂśĂļ E_k lub $f(x_{k-1})=0$ — taka realizacja (a nie sprawdzanie, czy $f(x_k)=0$) byÂła prostsza w praktyce.

funkcja f	r	p	E_k	$ e_k $	k
	1	2.00	1.1×10^{-16}	5.4×10^{-17}	5
$\exp(x)-1$	2	?			∞
	3	?			∞
	1	1.00	8.7×10^{-13}	1.8×10^{-13}	66
$(\exp(x) - 1)^3$	2	1.00	7.9×10^{-13}	3.9×10^{-13}	26
	3	2.00	0.0	1.1×10^{-16}	6
	4	1.00	1.0×10^{-12}	4.0×10^{-13}	67
	5	?			∞
$x^2(x-3)(x+1)$	1	1.00	5.5×10^{-13}	5.5×10^{-13}	40
x(x-3)(x+1)	2	2.00	3.2×10^{-16}	0.0	4
	3	1.00	6.9×10^{-13}	2.3×10^{-13}	41
	4	?		_	∞
$\sin(x)^2$	2	3.00	1.2×10^{-14}	0.0	4
$\cos(x) - 1$	2	3.01	0.0	1.1×10^{-9}	4

Na rysunku 1 przedstawiono graficznie przedziaÂły zbieÂżnoÂści zmodyfikowanej metody Newtona dla funkcji $(x+1)^2(x-1)^2(x-2)^2(x-4)^2$ i $r \in \{1,2,3,4\}$. Jasne kolory oznaczajÂą zbieÂżnoÂśĂ' (dla danego punktu poczÂątkowego) do jednego z czterech pierwiastkĂłw: -1, 1, 2 albo 4. Otrzymane wyniki potwierdzajÂą tezĂŞ, Âże czasem bardzo istotny jest odpowiedni dobĂłr przybliÂżenia poczÂątkowego, oraz Âże zÂłe dobranie parametru r moÂże spowodowaĂ' brak zbieÂżnoÂści metody.

fun3-1.png	fun3-2.png
fun3-3.png	fun3-4.png

Rysunek 1: PrzedziaÂły zbieÂżnoÂści zmodyfikowanej metody Newtona dla funkcji $(x+1)^2(x-1)^2(x-2)^2(x-4)^2$. Kolorami czerwonym, zielonym, niebieskim oraz ¿óÂłtym oznaczono przybliÂżenia poczÂątkowe, ktÁłre "prowadzÂą" – odpowiednio – do pierwiastkĂłw –1, 1, 2 i 4. Ciemny kolor oznacza brak zbieÂżnoÂści. Kolejne rysunki (od lewego gĂłrnego, wierszami) odpowiadajÂą wartoÂściom 1, 2, 3 i 4 parametru r (porĂłwnaj wzĂłr (1)).

Dodatek

Przedstawione na rysunku 1 przedzia³y zbie¿noœci doœæ czytelnie pokazujÂą, jak dla wybranej funkcji f zmiany parametru r wp³ywaj¹ na zbie¿noœæ zmodyfikowanej metody Newtona. Jednak od strony wizualnej moÂżna uznaæ te rysunki za maÂło ciekawe.

O wiele ciekawsze (wizualnie) obrazy otrzyma \mathring{A}_i' mo \mathring{A} żna, gdy zastosuje si \mathring{A} Ş metod \mathring{A} Ş Newtona do wyznaczania pierwiastk \mathring{A} łw funkcji zespolonej i odpowiednio pokoloruje obszary zbie \mathring{A} żno \mathring{A} ści metody. W dziedzinie zespolonej metoda Newtona nadal opisywana jest wzorem (1).

Na rysunku 2 przedstawiono obszary zbie \hat{A} żno \hat{A} ści zmodyfikowanej metody Newtona (z parametrem r=2) dla funkcji zespolonej

$$f(z) = \left(1 + \frac{1}{4}\sin(2z) - \frac{1}{4}\cos(2z)\right)(z+1)^2(z-1)^2(z-2)^2(z-4)^2.$$
 (3)

Pierwiastkami tej funkcji s \hat{A} ą liczby -1, 1, 2, 4 i — $by\check{A}'_l$ mo \hat{A} że — pewne inne liczby zespolone. Na rysunku 2 pokolorowano $wy\hat{A}t\hat{A}$ ącznie te punkty z wybranego prostok \hat{A} ąta $p\hat{A}t$ aszczyzny zespolonej, dla $kt\check{A}t$ rych metoda zbiega $\hat{A}t$ a do jednego z czterech podanych pierwiastk $\check{A}t$ w rzeczywistych (istotne s \hat{A} ą jedynie aspekty wizualne obrazk $\check{A}t$ w), pozosta $\hat{A}t$ e punkty zaznaczono ciemno-szarym kolorem $t\hat{A}t$ a.

Rysunek 2: Obszary zbieÂżnoÂści zmodyfikowanej (r=2) metody Newtona dla funkcji (3). Kolorami czerwonym, zielonym, niebieskim oraz ¿óÂłtym oznaczono przybliÂżenia poczÂątkowe, ktĂłre "prowadzÂą" – odpowiednio – do pierwiastkĂłw -1, 1, 2 i 4. Ciemny kolor oznacza brak zbieÂżnoÂści lub zbieÂżnoÂśÄ| do innego pierwiastka. Kolejne rysunki odpowiadajÂą ró¿nym rozwaÂżanym obszarom.

Uzasadnienia kilku faktĂłw teoretycznych

Na poczÂątek pokaÂżemy, Âże dla funkcji $f(x) = \sin(x)^2$ zmodyfikowana metoda Newtona (1) z r=2 jest zbieÂżna szeÂściennie do pierwiastka $\alpha=0$, dla przybliÂżenia poczÂątkowego odpowiednio bliskiego α . ÂŁatwo zauwaÂżyĂ', iÂż speÂłnione sÂą rĂłwnoÂści

$$e_{k+1} = e_k - 2\frac{f(x_k)}{f'(x_k)} = \frac{e_k f'(x_k) - 2f(x_k)}{f'(x_k)}.$$

RozwijajÂąc $f(x_k)$ oraz $f'(x_k)$ w szereg Taylora oraz zauwaÂżajÂąc, Âże w rozwaÂżanym przy-kÂładzie $x_k = e_k$ i f(0) = f'(0) = 0, otrzymujemy

$$e_{k+1} = \frac{e_k \left(e_k f''(0) + \frac{1}{2} e_k^2 f'''(0) + \frac{1}{6} e_k^3 f^{(4)}(\xi_0) \right) - 2 \left(\frac{1}{2} e_k^2 f''(0) + \frac{1}{6} e_k^3 f'''(0) + \frac{1}{24} e_k^4 f^{(4)}(\xi_1) \right)}{e_k f''(\xi_2)}.$$

dla pewnych wartoÂści ξ_0 , ξ_1 i ξ_2 le¿¹cych pomiĂŞdzy zerem a x_k . PoniewaÂż dla $f(x) = \sin(x)^2$ mamy f'''(0) = 0, f''(0) = 2 oraz $f^{(4)}(0) = -8$, to jeÂśli przybliÂżenie x_k jest dostatecznie bliskie 0, otrzymamy

$$|e_{k+1}| = \left| \frac{\frac{1}{6} e_k^4 f^{(4)}(\xi_0) - \frac{1}{12} e_k^4 f^{(4)}(\xi_1)}{e_k f''(\xi_2)} \right| \simeq \frac{1}{3} |e_k|^3.$$

W wypadku funkcji $f(x) = \cos(x) - 1$ dow $\check{A}ld$, $\hat{A}\dot{z}e$ zmodyfikowana metoda Newtona zbiega do pierwiastka $\alpha = 0$ z wyk $\hat{A}ladnikiem$ zbie $\hat{A}\dot{z}no\hat{A}\dot{s}ci$ r $\check{A}lwnym$ 3 jest analogiczny.

Na koniec uzasadnimy, Âże w pewnym otoczeniu wielokrotnego zera α odpowiednio wiele razy ró¿niczkowalnej funkcji f zachodzi warunek |f(x)| < |f'(x)|. W dowodzie za³o¿ymy dla uproszczenia, ¿e krotnoœæ zera wynosi 2. Dodatkowo wymagamy, aby $|f''(\alpha)| < \infty$. W takim wypadku dla x bliskich α , pamiĂŞtajÂąc Âże $f(\alpha) = f'(\alpha) = 0$, otrzymujemy

$$f(x) = f(\alpha) + (x - \alpha)f'(\alpha) + \frac{(x - \alpha)^2}{2}f''(\xi_0) = \frac{(x - \alpha)^2}{2}f''(\xi_0)$$

oraz

$$f'(x) = f'(\alpha) + (x - \alpha)f''(\xi_1) = (x - \alpha)f''(\xi_1)$$

dla pewnych ξ_0 oraz ξ_1 le \hat{A} ż \hat{A} ących pomi \check{A} Şdzy α i x. Poniewa \hat{A} ż $0<|f''(\alpha)|<\infty$, to dla x odpowiednio bliskich α zachodzi

$$\frac{1}{2}\big|(x-\alpha)^2f''(\xi_0)\big| < \big|(x-\alpha)f''(\xi_1)\big|,$$

 $co\ ko \breve{A} \pm czydowd.$

Uwaga ko $\check{\mathsf{A}}\pm cowa(bardzowana)$

 $Absolutnie\ zabronione\ jest\ kopiowanie\ zda \ \ \dot{A}\pm (sformuowa\pm)ztegoraportu. Niezastosowanie sitopowys. u.$