WINNING SPACE RACE WITH DATA SCIENCE

Razan Albeladi

Introduction

Overview:

Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.

Goal:

- determine if the first stage will land
- determine the cost of a launch

the link to repository

GitHub

Data Collection

Data collection- web scraping → GitHub

- Extract a Falcon 9 launch records HTML table from Wikipedia
- Parse the table and convert it into a Pandas data frame

Data Collection API -> GitHub

- Request to the SpaceX API
- Clean the requested data

Data Wrangling

GitHub

In this lab I performed exploratory Data Analysis and determine Training Labels

Exploratory Data Analysis

- **■** Exploratory Data Analysis using Pandas and Matplotlib
- **Exploratory Data Analysis using SQL**

Exploratory Data Analysis using Pandas and Matplotlib

Relationship between flight number and launch site.

Relationship between payload and launch site.

Exploratory Data Analysis using Pandas and

Matplotlib

■ Relationship between orbit and flight number.

Relationship between orbit and payload.

Exploratory Data Analysis using Pandas and

Matplotlib

Relationship between success rate of each orbit type.

launch success yearly trend.

- The code → GitHub
- the names of the unique launch sites in the space mission.

Launch_Site
CCAFS LC-40
VAFB SLC-4E
KSC LC-39A
CCAFS SLC-40

■ 5 records where launch sites begin with the string 'CCA'.

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

■ the total payload mass carried by boosters launched by NASA (CRS)

```
SUM(PAYLOAD_MASS__KG_)
45596
```

average payload mass carried by booster version F9 v1.1¶

```
AVG(PAYLOAD_MASS__KG_)
2928.4
```

■ the date when the first succesful landing outcome in ground pad was acheived.

min(DATE) 2015-12-22

■ the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

F9 FT B1022
F9 FT B1026
F9 FT B1021.2
F9 FT B1031.2

■ the total number of successful and failure mission outcomes

```
[21]: COUNT(*)
101
```

the names of the booster_versions which have carried the maximum payload mass.

Use a subquery [22]:

■ the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015

[45]:	Month	Landing_Outcome	Booster_Version
	01	Failure (drone ship)	F9 v1.1 B1012
	04	Failure (drone ship)	F9 v1.1 B1015

■ Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

[47]:	Date	COUNT
	2017-02-19	1
	2017-01-14	1
	2016-08-14	1
	2016-07-18	1
	2016-05-27	1
	2016-05-06	1
	2016-04-08	1
	2015-12-22	1

Plotly Dash dashboard results

Interactive Map with Folium

<u>GitHub</u>

Machine learning Predictive Analysis

conclusion

- KSC LC-39A the most successful launch see slide 15 –
- In terms of accuracy prediction, it is recommended to use SVM,KNN,
- HEO, GEO,SSO AND ES-L1 → the top success rate see slide 9 -