Содержание

1. Введение	
2. Анализ реального графа	4
3. Теоретическая справка	6
3. 1. Рекомендательные системы	6
3. 2. Теория графов	7
3. 3. Случайное блуждание и векторизация	8
3.4. Некоторые проблемы и их решение	10
3. 5. Алгоритм	12
3.5.1. Алгоритм векторизации графа	12
3.5.2. Алгоритм построения рекомендаций	12
4. Проверка алгоритма на модельных данных	14
5. Проверка алгоритма на реальных данных	18
6. Заключение	20
7. Список литературы	21
8. Приложения	22
Приложение 1	22
Приложение 2	24
Приложение 3	26

1. Введение

С каждым годом рынок товаров и услуг растет, и становится все труднее и труднее найти в этом спектре разнообразий именно то, что подходит конкретному потребителю. Именно поэтому разработке рекомендательных систем уделяется столько времени и внимания: они влияют на то, какие новости мы читаем, какую музыку слушаем, что покупаем. Алгоритмы рекомендаций могут применяться не только для составления развлекательного контента или подсказок при онлайн-покупках, но и, например, для подбора акций в инвестиционный портфель или дисциплин по выбору в новом семестре.

Цель работы — построить рекомендательную систему, используя для этого векторное представление графа на основе методов случайного блуждания. Для этого были рассмотрены различные виды рекомендательных систем и проанализированы особенности реализации на графах, после чего был составлен и оценен алгоритм рекомендаций.

В работе реализован алгоритм случайного блуждания, используемый для векторизации графа. Были учтены недостатки рекомендательных систем, такие как проблема «холодного старта», и предложен вариант решения. Работа алгоритма протестирована на смоделированных и реальных данных, взятых из открытых источников.

Реализация алгоритма представлена на языке программирования Python с преимущественным использованием библиотеки Networkx.

2. Анализ реального графа

Для проверки работы алгоритма был взят граф internet-industry-partnerships [1]. Каждый узел представляет компанию, которая конкурировала в интернет-индустрии в период с 1998 по 2001 год. Две компании связаны ребром, если они объявили о создании совместного предприятия, стратегического альянса или другого партнерства [2].

Рассмотрим основные характеристики графа.

Таблица 1. Основные характеристики графа

Количество узлов	219.00000
Количество ребер	630.00000
Минимальный узел	1.00000
Максимальный узел	219.00000
Средняя степень узла	3.00000
Плотность	0.02639
Диаметр	6.00000

Как можно заметить, наименьший индекс узла в данном графе -1, а не 0, как обычно. Это требуется учесть для дальнейшей работы, чтобы избежать ошибок.

Рис 1. Визуализация графа

Так как в графе относительно много узлов и ребер, то визуализация не очень информативна. Посмотрим на распределение степеней узлов.

Рис 2. Распределение степеней узлов в графе

Большинство узлов имеют небольшую степень, но при этом есть и некоторое количество узлов, у которых количество связей с другими участниками огромно. Это согласуется со степенным законом распределения.

3. Теоретическая справка

3. 1. Рекомендательные системы

Рекомендательная система — это комбинация алгоритмов обучения, статистических инструментов и алгоритмов распознания. Как правило, выделяют три стратегии создания рекомендательных систем: на основе содержания (content-based или item-based), на основе коллаборативной функции (collaborative или user-based) и смешанная.

Рекомендательная система на основе содержания в качестве точки опоры использует online-историю потребителя. Это может быть история заказов, поставленные лайки, часто используемые тэги, ключевые слова поиска в браузере и даже переход по ссылкам.

Коллаборативная функция опирается на поиск пользователей с похожими паттернами и предлагает пользователю те же объекты рекомендации, что были у них.

У обеих стратегий есть недостатки, например, проблема «холодного старта»: как рекомендовать то, чем никто еще не пользовался и не приобретал, и что рекомендовать пользователю, который только появился в системе и не имеет истории? Решить эту проблему помогает использование смешанной стратегии и рекомендация самых популярных объектов (Тор-N). [11]

Для построения рекомендательных систем активно используют глубокое обучение, однако исследования, приведенные в статье [6], показали, что классические подходы для решения данной задачи подходят лучше. Авторы утверждают, что графовый алгоритм, основанный на методах случайного блуждания, значительно превосходит все существующие подходы. В 2020 году на Хабре была опубликована статья [11], в которой авторы предлагают свою версию улучшенного алгоритма, а в статье [9] автор рассказывает о построении рекомендательной системы на основе графов в сфере логистики. Помимо областей применения представленные в них системы рекомендации значительно отличаются своей реализацией: так, например, авторы [11] и [9] выбрали разные метрики оценивания, что позволяет ознакомиться с

преимуществами обеих. Подробнее об оценке схожести объектов говорится в [5], где рассказывается о коэффициенте сходства Джаккарда, косинусном расстоянии и центрированном косинусном расстоянии.

После анализа литературы было решено остановиться на рекомендательной системе на основе содержания. Во-первых, при работе с такой системой информацию о пользователях и товарах можно хранить отдельно, что снижает время работы алгоритма. Во-вторых, информация о пользователях (интересы, геолокация, возраст и т.д, на основе которых делается вывод о схожести между пользователями) может отсутствовать, в то время как информация о товарах есть всегда.

3. 2. Теория графов

Граф — это модель, состоящая из множества вершин (узлов) и множества соединяющих их ребер. Так как мы рассматриваем item-based систему, то в качестве узлов выступают объекты рекомендаций (книги, продукты, акции, online-курсы и т.д.), а ребро между узлами означает, что данные товары/услуги хотя бы раз приобретались вместе.

Важную роль имеют такие два показателя вершины, как ее степень и вес. Степень — это количество ребер, исходящих из вершины. Если степень вершины равна 1, то ее называют висячей, а если нулю — то изолированной. Вес — число, которое ставят в соответствие данной вершине. Это может быть как ее степень, так и любой другой показатель важности.

Различают ориентированные и неориентированные графы. Если граф ориентированный, значит, его ребрам присвоено направление, которое нужно учитывать при обходе графа. Поскольку в графе из товаров/услуг обычно не имеет значение, в каком порядке пользователь добавил их корзину, а важно, что он приобрел их вместе, то при построении системы будем иметь дело только с неориентированными графами (которые всегда можно получить из ориентированных путем игнорирования заданного направления).

Путь (иногда называют маршрутом) – это последовательность смежных ребер. Задается перечислением вершин, по которым он пролегает. Таким образом, длина пути – это количество ребер в пути.

3. 3. Случайное блуждание и векторизация

В случае рекомендательных систем удобнее всего работать не с самими графами, а с их векторными представлениями, в которых можно зафиксировать расположение узлов в графе и их расположение по отношению к другим вершинам. Наиболее распространенным является подход к векторизации (эмбеддингу) узлов на основе случайных блужданий, так как она учитывает предположение, что схожие узлы имеют тенденцию существовать при коротких случайных обходах по графу.

Случайное блуждание по графу — это случайный процесс перехода между вершинами, определяемый матрицей перехода P, где p_{ij} означает вероятность перехода из узла $node_i$ в узел $node_j$ [8]. Если мы для каждой вершины совершим k случайных блужданий длины l, то вершины в получившимся массиве блужданий можно будет интерпретировать как слова в некотором тексте и использовать любой инструмент, преобразующий текст в массив векторов [10].

Как правило, для получения матрицы перехода используют формулу $P = D^{-1}A$, где D — это матрица, на диагонали которой располагается вектор сумм степеней вершин соответствующей строки, а A — это матрица смежности. Однако, чем больше вершин и ребер в графе, тем больше времени занимает нахождение данных матриц. Вторая проблема в этой задаче — это память. В библиотеке Networkx реализована функция adjacency_matrix, которая возвращает матрицу смежности для графа. К сожалению, для записи результата уходит довольно много оперативной памяти, и для графа с 80~000~узлами уже невозможно найти матрицу смежности. После анализа возможных путей решения была выбрана стратегия не использовать всю матрицу переходов для построения случайного блуждания, а лишь отдельную ее часть.

Для дальнейших вычислений была использована библиотека sympy (код см. Приложение 3).

Пусть мы имеем граф с пятью вершинами и некоторым количеством ребер. Тогда в матрице смежности A_{5x5} на позиции (ij) будет стоять 1, если между вершинами і и ј есть ребро, и 0 в противном случае. Обозначим через Sum_i сумму элементов і-й строчки матрицы А. Матрица переходов Р будет иметь вид:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ Sum_1 & Sum_1 & Sum_1 & Sum_1 & Sum_1 \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ Sum_2 & Sum_2 & Sum_2 & Sum_2 & Sum_2 \\ \hline a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ Sum_3 & Sum_3 & Sum_3 & Sum_3 & Sum_3 \\ \hline a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ Sum_4 & Sum_4 & Sum_4 & Sum_4 & Sum_4 \\ \hline a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \\ \hline Sum_5 & Sum_5 & Sum_5 & Sum_5 & Sum_5 \end{bmatrix}$$

Рис 2. Матрица переходов для графа с пятью узлами

Вектор начальных состояний имеет вид: $p^0 = [p_1, p_2, p_3, p_4, p_5]^T$. Тогда матрица перехода в момент времени t=1 можно найти так: $P^1 = P^T \cdot p^0 =$

$$\begin{bmatrix} \frac{a_{51}p_{5}}{Sum_{5}} + \frac{a_{41}p_{4}}{Sum_{4}} + \frac{a_{31}p_{3}}{Sum_{3}} + \frac{a_{21}p_{2}}{Sum_{2}} + \frac{a_{11}p_{1}}{Sum_{1}} \\ \frac{a_{52}p_{5}}{Sum_{5}} + \frac{a_{42}p_{4}}{Sum_{4}} + \frac{a_{32}p_{3}}{Sum_{3}} + \frac{a_{22}p_{2}}{Sum_{2}} + \frac{a_{12}p_{1}}{Sum_{1}} \\ \frac{a_{53}p_{5}}{Sum_{5}} + \frac{a_{43}p_{4}}{Sum_{4}} + \frac{a_{33}p_{3}}{Sum_{3}} + \frac{a_{23}p_{2}}{Sum_{2}} + \frac{a_{13}p_{1}}{Sum_{1}} \\ \frac{a_{54}p_{5}}{Sum_{5}} + \frac{a_{44}p_{4}}{Sum_{4}} + \frac{a_{34}p_{3}}{Sum_{3}} + \frac{a_{24}p_{2}}{Sum_{2}} + \frac{a_{14}p_{1}}{Sum_{1}} \\ \frac{a_{55}p_{5}}{Sum_{5}} + \frac{a_{45}p_{4}}{Sum_{4}} + \frac{a_{35}p_{3}}{Sum_{3}} + \frac{a_{25}p_{2}}{Sum_{2}} + \frac{a_{15}p_{1}}{Sum_{1}} \end{bmatrix}$$

Рис. 3. Матрица перехода на шаге t=1

Так как вектор начальных состояний содержит только одну единицу (соответствует вершине, в который мф находимся в момент времени t=0) и четыре нуля, то очевидно, что нет необходимости вычислять всю матрицу смежности для того, чтобы найти распределение вероятностей перехода на шаге t=1. Если $p_i^0=1$,

то
$$p^1 = \left[\frac{a_{i1}}{\sum_{j=1}^n a_{ij}}; \dots; \frac{a_{in}}{\sum_{j=1}^n a_{ij}}\right]^T$$
, $i = 1, \dots n; n = 5$.

Легко заметить, что формула будет справедлива для любого n, a значит, вместо всей матрицы смежности достаточно сделать рассчеты для i-ого узла.

Таким образом, мы упростили задачу построения случайного блуждания для некоторого начального узла. Поскольку для векторизации граф будет представлен в виде некоторого текста, где каждое случайное блуждание — это отдельное предложение, то в качестве длины каждого блуждания возьмем 15 узлов (как средняя длина предложения в тексте).

В качестве векторизации используется Word2Vec, метода широко распространенный в рекомендательных механизмах. Это алгоритм машинного обучения, основанный на контекстной близости: мы считаем, что слова, входящие в одно предложение, имеют схожий смысл, следовательно, ИХ векторные представления будут похожи. Здесь в качестве метрики близости используется косинусное расстояние: $cos(\theta) = \frac{A \cdot B}{||A|| \cdot ||B||}$. [4].

3.4. Некоторые проблемы и их решение

При построении рекомендательных систем с помощью векторного представления графа на основе случайных блужданий можно встретить несколько проблем. В этом разделе описаны сами проблемы и решения, которые будут использованы в дальнейшем.

Как уже упоминалось, для item-based рекомендательной системы характерны проблемы «холодного старта» для пользователя и объекта. Пусть новому пользователю, у которого еще нет «истории», на основе которой мы можем строить рекомендацию, будет предложено top-5, то есть пять самых популярных объектов. В нашем случае «популярные» вершины определим как вершины с наибольшей степенью. Что касается проблемы «холодного старта» для нового объекта, то предлагается «подкидывать» пользователю в список рекомендаций один новый или наименее популярный объект: то есть вершину с нулевой или наименьшей степенью. Такой способ может негативно повлиять на качество рекомендаций, однако он

активно используется в онлайн-магазинах, которым важнее продать как можно больше.

Следующая проблема, это выбор момента векторизации графа. Если представлять граф в численном виде каждый раз при создании новой рекомендации, то может возникнуть ситуация, что для одного и того же набора исходных вершин алгоритм выдает совершенно другие рекомендации. Это связано с использованием случайного блуждания, из-за чего каждый раз граф будет представлен по-другому. Поэтому процесс эмбеддинга вынесем перед непосредственным построением рекомендаций и будем считать, что он меняется только при добавлении новых связей в граф.

Число рекомендаций на одну вершину должно иметь обратную зависимость от числа исходных вершин. Пусть у нас имеется пользователь, который в прошлом сделал только две покупки. Сколько рекомендаций мы должны ему дать? С одной стороны, чем больше у пользователя покупок, тем проще нам будет найти похожие товары и порекомендовать их. С другой стороны, нам нужно простимулировать пользователя сделать много новых покупок, и чем больше мы ему покажет, тем больше он может купить. Возьмем фиксированное число рекомендаций на одну вершину, например, пять. Тогда пользователь с двумя покупками в прошлом получит десять рекомендаций, а пользователь с двадцатью покупками — сто рекомендаций, но просмотрит он значительно меньше. Число рекомендаций на одну вершину можно найти по следующей формуле:

$$k = \left[\frac{5}{n} + 1\right],$$

где n- количество вершин в «истории», а [] — означает целую часть числа. Тогда при n=2 получим k=3, следовательно, шесть рекомендаций, а при n=20, k=1, что дает 20 рекомендаций. Указанная формула была получена произвольно и может быть заменена любой другой.

3. 5. Алгоритм

Пусть имеется *пользователь* (например, покупатель в online-магазине или компания, которая хочет создать стратегический альянс) и список объектов (*base*), с которыми этот пользователь связан (его предыдущие покупки или компании, с которыми раньше сотрудничали).

3.5.1. Алгоритм векторизации графа

- 1. Для всех узлов графа G строится случайное блуждание:
- 1.1. Рассчитывается вектор переходных состояний для і-ого узла по формуле:

$$P = A/D$$
,

где вектор A – i-ая строчка матрицы смежности, на позиции (ij) которой стоит 1, если между вершинами i и j есть ребро, и 0 в противном случае;

$$D = \sum_{i=0}^{n} a_i.$$

- 1.2. Если вершина изолирована, то случайное блуждание представляет собой путь длины 15, состоящий только из начальной вершины.
- 1.3. Если вершина не изолирована, то с учетом вектора переходных вероятностей из списка соседей случайно выбирается следующая вершина, для которой повторяются пункты 1.1-1.3, пока не будет получен путь длины 15.
 - 2. ассив со случайными блужданиями векторизуется с помощью Word2Vec.

3.5.2. Алгоритм построения рекомендаций

- 1. На вход рекомендательной системе подается список base. Если это новый пользователь, то на вход подается список из одного элемента 'None'.
- 2. Если base == 'None', то возвращается top-5 и алгоритм заканчивает свою работу. Иначе переход к пункту 3.
- 3. Рассчитывается $k=\left[\frac{5}{n}+1\right]$, где n- количество вершин в base, $[\]$ целая часть числа.

- 4. Вершины проверяются на изолированность. Изолированные вершины убираются из списка base. Если все вершины из списка base изолированные, то возвращается top-5 и алгоритм заканчивает свою работу.
- 5. Для каждой вершины b из списка base и каждой вершины графа (за исключением тех, что входили в base) рассчитывается косинусное расстояние.
 - 6. Выбирается к вершин, чье косинусное расстояние наибольшее.
- 7. В окончательную подборку добавляется одна вершина с наименьшей степенью во всем графе.

4. Проверка алгоритма на модельных данных

Проверка качества алгоритма рекомендательной системы имеет некоторые трудности. Во-первых, в отличие от задач регрессии и классификации, где возвращается одно значение, мы имеем дело с целым списком объектов без однозначного отображения один-ко-одному. Во-вторых, для одного и того же набора исходных вершин могут (и скорее всего будут) возвращаться разные рекомендации; кроме того, возвращаемый набор содержит одну «подкинутую» вершину, которая не связана с «историей» пользователя.

Тем не менее, чтобы протестировать алгоритм и получить некоторое представление о его работе, был реализован следующий метод проверки:

- 1. Создается случайный граф G_test с n узлами и с e ребрами. Считаем, что это граф связи объектов в момент времени t=2.
- 2. Случайным образом выбирается 20% от всех ребер. Создаётся список x_nodes из первых вершин в каждой пара ребер, причем первый элемент списка это список из одной вершины, второй элемент список из двух вершин, и так далее. Последний элемент это список из всех вершин. Аналогичным образом создается список y_nodes из вторых вершин в паре ребер.
- 3. Создается граф G: копия графа G_test, из которой удаляются использованные ребра. Считаем, что это граф связей в момент времени t = 1, а удаленные ребра это будущие покупки пользователя.
 - 4. Граф G векторизуется.
 - 5. Для каждого списка вершин из x_nodes создаются рекомендации rec_4_user .
 - 6. Рассчитываются precision и recall по следующим формулам [7]:

$$precision = \frac{\# (rec_4_user \cap y_nodes[i])}{\# rec_4_user}$$

$$recall = \frac{\# (rec_4_user \cap y_nodes[i])}{\# y_nodes[i]}$$

где # - количество уникальных элементов, ∩ - пересечение множеств.

7. Подсчитывается среднее значение каждой метрики.

С помощью метода dense_gnm_random_graph из библиотеки Networkx создадим небольшой граф G_test с n = 150 и e = 4*n.

Рис. 4. Визуализация графа G_test

Изолированных вершин в исходном графе нет. Посмотрим на распределение степеней.

Рис 5. Распределение степеней вершин графа G_test

Поскольку граф создан случайным образом, он не попадает под закон распределения стеней узлов.

Проверим качество по указанному выше алгоритму.

Таблица 2. Качество алгоритма на первых пяти элементах списка x_nodes

	precision	recall	y_nodes	recommendation
0	0.00	0.00	[107]	{96, 4, 5, 73, 110, 54, 119}
1	0.00	0.00	[107, 36]	{96, 5, 73, 10, 50, 19, 119}
2	0.00	0.00	[107, 36, 101]	{5, 73, 10, 50, 19, 119}
3	0.12	0.25	[107, 36, 101, 19]	{5, 73, 10, 105, 108, 50, 19, 119}
4	0.11	0.20	[107, 36, 101, 19, 140]	{5, 73, 10, 105, 108, 50, 19, 116, 119}

Среднее значение Precision: 0.38

Среднее значение Recall: 0.21

Хотя числа далеки от единицы, результаты в целом неплохие. Precision отражает количество релевантных рекомендаций среди всех сделанных рекомендаций. Так как число рекомендаций должно было превышать число исходных вершин, то получить единицу по этому показателю мы бы и не смогли. Результат, близкий к 0.5, вполне хороший.

Recall — это количество релевантных рекомендаций по отношению к y_nodes, и наше значение 0.21 означает, что 79% объектов, которые пользователь «приобрел» в будущем, не были нами порекомендованы.

Посмотрим на графики. Чем больше было вершин в base, тем точнее была рекомендация.

Рис. 6. Зависимость значения precision от объема base

Рис. 7. Зависимость значения recall от объема base

Теперь проверим алгоритм на частных случаях.

Случай 1. Изолированная вершина в base. Согласно алгоритму рекомендательной системы, если base состоит только из изолированных вершин, то возвращается top-5 вершин. Сгенерируем случайный граф с n = 30, e = n*2. Для удобства восприятия размер и цвет вершины зависит от ее степени: чем больше степень, тем больше размер и темнее цвет.

Рис. 8. Граф с изолированной вершиной

Запустим алгоритм с base = [25]. Результат: $\{0, 9, 15, 18, 29\}$. Это соответствует раскраске графа.

Случай 2. Новый пользователь. Оставив тот же граф, но запустим его c base = ['None']. Результат: {0, 9, 15, 18, 29}, что соответствует выводу для изолированной вершины. В этих местах алгоритм работает правильно.

5. Проверка алгоритма на реальных данных

Протестируем алгоритм на реальных данных. При анализе графа мы уже выяснили, что нумерация узлов в нем начинается с единицы. Перенумеруем вершины, просто вычтя из нынешнего номера единицу. После этого можно строить рекомендации. Результаты и графики представлены ниже.

Таблица 3. *Качество алгоритма на первых пяти элементах списка x_nodes*

	precision	recall	y_nodes	recommendation
0	0.0	0.0	[91]	{1, 2, 99, 5, 7, 139, 44}
1	0.0	0.0	[91, 165]	{0, 1, 5, 7, 139, 44}
2	0.0	0.0	[91, 165, 113]	{1, 5, 7, 139, 48}
3	0.0	0.0	[91, 165, 113, 67]	{1, 5, 7, 139, 48}
4	0.0	0.0	[91, 165, 113, 67, 177]	{1, 193, 5, 7, 139, 48}

Precision: 0.21

Recall: 0.05

Рис. 9. Зависимость значения precision от объема base

Рис. 10. Зависимость значения recall от объема base

К сожалению, качество на реальных данных упало еще ниже. Почему так вышло?

Вспомним, как выглядело распределение степеней вершин для смоделированного графа и реального. В модельном графе распределение походило на нормальное, и большинство узлов имели степень 7-10. Здесь же большинство узлов имеют небольшую степень, а это имеет большое влияние на результат.

Во-первых, при отборе ребер мы могли взять узлы с единичной степенью, и после удаления соответствующих ребер в качестве base брались уже изолированные узлы, рекомендации для которых, как уже неоднократно говорилось, берутся не из правила схожести узлов.

Во-вторых, чем меньше соседей у узла, тем глубже мы можем уйти при составлении случайного блуждания: мы просто-напросто будем удаляться от начальной вершины, в то время как для графа с нормальным распределением степеней мы бы оставались вблизи вершины начала пути.

6. Заключение

Целью данной работы было построить рекомендательную систему с использованием векторного представления графа на основе методов случайного блуждания.

В ходе разработки алгоритма была выведена формула для подсчета переходных вероятностей на шаге t=1, позволяющая хранить в памяти не массив n на n, а вектор n на 1, что значительно упростило генерацию случайного блуждания. Также было предложено решение проблемы «холодного старта» как для пользователя, так и для объекта.

Из-за сложностей оценки качества алгоритмов рекомендаций трудно дать точный ответ о релевантности рекомендаций, а метрики, предложенные для более сложных систем рекомендаций, дали невысокие результаты. Это также связано с тем, что построение данной рекомендательной системы не использовалось машинное обучение (за исключением метода Word2Vec), и делался акцент на работу с графами, которым посвящена дисциплина. В дальнейшем систему можно доработать с помощью нейронных сетей. Также имеет смысл повысить скорость работы, распараллелив вычисления, необходимые для векторизации графа.

Алгоритм реализовывался для общего случая, когда фактически нет данных, кроме информации о связах между объектами, однако при использовании алгоритма на реальных данных в конкретной сфере стоит также учитывать описание объектов, и искать похожие не только на основе наибольшего значения косинусного расстояния, но использование одинаковых слов и слов-синонимов.

7. Список литературы

- [1] URL: https://networkrepository.com/internet-industry-partnerships.php
- [2] URL: http://orgnet.com/netindustry.html
- [3]URL:https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D0%B5%D0%BA%D1%81_%D1%83%D0%B4%D0%BE%D0%B1%D0%BE%D1%87%D0%B8%D1%82%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D0%B8
 - [4] URL: https://ru.wikipedia.org/wiki/Word2vec
- [5] Bharti R., Gupta D. (2019) Recommending Top *N* Movies Using Content-Based Filtering and Collaborative Filtering with Hadoop and Hive Framework. In: Kalita J., Balas V., Borah S., Pradhan R. (eds) Recent Developments in Machine Learning and Data Analytics. Advances in Intelligent Systems and Computing, vol 740. Springer, Singapore.
- [6] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches. In Thirteenth ACM Conference on Recommender Systems (RecSys '19), September 16–20, 2019, Copenhagen, Denmark.ACM, New York, NY, USA, 10 pages.
- [7] Neerja Doshi, Recommendation Systems Models and Evaluation. 2018, Jun 19, Towards Data Science. URL: https://towardsdatascience.com/recommendation-systems-models-and-evaluation-84944a84fb8e
- [8] Гасников, А.В. Лекции по случайным процессам: учебное пособие / А. В. Гасников, Э. А. Горбунов, С. А. Гуз и др.; под ред. А. В. Гасникова. Москва: МФТИ, 2019. 285 с. ISBN 978-5-7417-0710-4
- [9] Зенченко, А. Рекомендательные системы, основанные на графах. // Хабр 2020. 6 ноября [Электронный ресурс]. URL: https://habr.com/ru/company/epam_systems/blog/526748/
- [10] Козловский, В.Е. Теоретический обзор методов кодирования графов / В.Е. Козловский, Е.Е. Лунева. URL: http://earchive.tpu.ru/handle/11683/52654
- [11] Кузнецов, А. Графовые рекомендации групп в Одноклассниках. // Хабр 2020. 14 мая [Электронный ресурс] URL: https://habr.com/ru/company/odnoklassniki/blog/499192/

8. Приложения

return walk

Приложение 1

Тип процессора: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx Объем кэш-памяти второго уровня: 512 Кб Тактовая частота: 2.10 ГГц В Приложении 1 представлен код, реализующий рекомендательную систему. def generate_walk(G, node): # генерация случайного блуждания nodes = list(range(len(G))) walk len = 15neighbors = list(G.neighbors(node)) A = np.zeros(len(G))np.put(A, neighbors, 1) D = sum(A)if D!=0: walk = [node]cur_state = node for t in range(1, walk_len): pk = np.divide(A, D)cur_state = random.choices(nodes, weights=pk)[0] walk.append(cur_state) neighbors = list(G.neighbors(cur_state)) A = np.zeros(len(G))np.put(A, neighbors, 1) D = sum(A)else: walk = [node]*walk_len

```
def cold_start(who):
  degr = {i:G.degree[i] for i in range(len(G.nodes()))}
  if who == 'user':
     # проблема "холодного старта" для пользователя
    top_k = dict(sorted(degr.items(), key=lambda x: x[1], reverse= True))
     return list(top_k.keys())[:5]
  else:
    # проблема "холодного старта" для узла
    top_k = dict(sorted(degr.items(), key=lambda x: x[1]))
     return list(top_k.keys())[0]
def recommendation(base):
  rec = []
  n = len(base)
  k = int(n^{**}(-1)^{*}5 + 1)
  cold = (base == ['None'])
  if cold == False:
    isolated = [b for b in base if nx.is_isolate(G, b)]
     base = [b for b in base if b not in isolated]
  if cold == False and len(isolated)!=n:
    nodes = np.array(G.nodes())
     nodes = np.delete(nodes, base)
     for b in base:
       topn = [t[0] for t in model.wv.most_similar(b, topn=k)]
       rec.extend(topn)
     cold_node = cold_start('node')
     if cold_node not in isolated:
       rec.append(cold_node)
```

```
else:
     rec = cold_start('user')
  return set(rec)
                                     Приложение 2
# Основные характеристики графа
description = {'Количество узлов': len(G_real),
         'Количество ребер': len(G real.edges()),
         'Минимальный узел': min(G real.nodes()),
         'Максимальный узел': max(G real.nodes()),
         'Средняя степень узла': round(len(G_real.edges())/len(G_real)),
         'Плотность': round(nx.density(G real),5),
         'Диаметр': nx.diameter(G_real)}
df_description = pd.DataFrame.from_dict(description, orient='index')
nx.draw(G_real, node_color='lightblue', node_size=50)
# распределение узлов реального графа
n = len(G_real.nodes())+1
degree = np.array([G\_real.degree[i] for i in range(1,n)])
count = np.unique(degree, return_counts=True)
plt.bar(count[0], count[1], width=1.5, color='lightblue')
plt.xlabel('Степень')
plt.ylabel('Количество узлов');
# создание обучающей выборки
n = 150 \# узлы
е = n*4 # ребра
G_{test} = nx.dense_{gnm_random_{graph}(n, e)}
G = G_{test.copy}()
df = pd.DataFrame(None)
df['x'] = [edge[0] \text{ for edge in list}(G_{test.edges}())]
df['y'] = [edge[1] \text{ for edge in list}(G_{test.edges}())]
```

```
df['egde'] = list(G_test.edges())
X_train, X_test, y_train, y_test = train_test_split(df['x'], df['y'], test_size=0.2,
shuffle=True)
for index in X_test.index:
  G.remove edge(*df.iloc[index, 2])
x_nodes = [list(X_test[:i]) for i in range(1, len(X_test))]
y_nodes = [list(y_test[:i]) for i in range(1, len(y_test))]
# распределение степеней узлов
n = len(G test.nodes())
degree = np.array([G_test.degree[i] for i in range(n)])
count = np.unique(degree, return counts=True)
plt.bar(count[0], count[1], width=1.5, color='lightblue')
plt.xlabel('Степень')
plt.ylabel('Количество узлов');
# проверка качества
all_nodes = [generate_walk(G, node) for node in G.nodes()]
words = [" ".join(map(str, node)) for node in all_nodes]
model = gensim.models.Word2Vec(all nodes, min count=0)
# проверка качества
quality_total = pd.DataFrame(None,
                  columns=['precision', 'recall', 'y_nodes', 'recommendation'])
for i in range(len(x_nodes)):
  rec_4_user = recommendation(x_nodes[i])
  guessed = rec 4 user&set(y nodes[i])
  precision = len(guessed) / len(rec_4_user)
  recall = len(guessed) / len(y_nodes[i])
  quality_total = quality_total.append({'precision':round(precision,2),
                          'recall':round(recall,2),
                          'y_nodes':y_nodes[i],
```

```
'recommendation':rec_4_user},
ignore_index=True)
```

Приложение 3

Приложение 3 содержит вывод формулы для получения вектора переходных вероятностей для шага t=1.

```
from sympy import *
a11, a12, a13, a14, a15 = symbols('a11 a12 a13 a14 a15')
a21, a22, a23, a24, a25 = symbols('a21 a22 a23 a24 a25')
a31, a32, a33, a34, a35 = symbols('a31 a32 a33 a34 a35')
a41, a42, a43, a44, a45 = symbols('a41 a42 a43 a44 a45')
a51, a52, a53, a54, a55 = symbols('a51 a52 a53 a54 a55')
A = Matrix([[a11, a12, a13, a14, a15],
            [a21, a22, a23, a24, a25],
            [a31, a32, a33, a34, a35],
            [a41, a42, a43, a44, a45],
           [a51, a52, a53, a54, a55]])
Sum1, Sum2, Sum3, Sum4, Sum5 = symbols('Sum1 Sum2 Sum3 Sum4 Sum5')
D = diag(Sum1, Sum2, Sum3, Sum4, Sum5)
P = D.inv() @ A
p1, p2, p3, p4, p5 = symbols('p1 p2 p3 p4 p5')
p0 = Matrix([[p1], [p2], [p3], [p4], [p5]])
P1 = P.T @ p0
```