REVERSE ENGINEERING

deti universidade de aveiro departamento de eletrónica, telecomunicações e informática

Resumo

- A interface SPI (Serial Peripheral Interface)
- Sinalização
- Sequência de operação
- Arquiteturas de ligação
- Tipos de transferências
- Passos de configuração de um master SPI
- Exemplo: Sensor Digital de Temperatura com interface SPI

Introdução

- SPI sigla para "Serial Peripheral Interface"
- Interface definida inicialmente pela Motorola (Microwire da National Semiconductor é um *subset* do protocolo SPI)
- O SPI é utilizado para comunicar com uma grande variedade de dispositivos:
 - Sensores de diverso tipo: temperatura, pressão, etc.
 - Cartões de memória (MMC / SD)
 - Circuitos: memórias, ADCs, DACs, Displays LCD (e.g. telemóveis), comunicação entre corpo de máquinas fotográficas e as lentes, ...
 - Comunicação entre microcontroladores
- Ligação a muito curtas distâncias

Descrição geral

- Arquitetura "Master-Slave" com ligação ponto a ponto
- Comunicação bidirecional "full-duplex"
- Comunicação síncrona (relógio explícito do *master*)
 - Relógio é gerado pelo master que o disponibiliza para todos os slaves
 - Não é exigida precisão ao relógio os bits vão sendo transferidos a cada transição de relógio. Isto permite utilizar um oscilador de baixo custo no master (não é necessário um cristal de quartzo)
- Fácil de implementar por hardware ou por software
- Não são necessários "line drivers" (ou "transceivers") circuitos de adaptação ao meio de transmissão

Descrição geral

- Arquitetura "Master-Slave"
 - O sistema só pode ter um master
 - O master é o único dispositivo no sistema que pode controlar o relógio
- Um *master* pode estar ligado a vários *slaves*: para cada comunicação, apenas 1 *slave* é selecionado pelo *master*
- O master inicia e controla a transferência de dados

Descrição geral

- Sinalização:
 - SCK clock
 - Relógio gerado pelo *master* que sincroniza a transmissão/receção de dados
 - MOSI Master Output Slave Input (SDO no master)
 - Linha do *master* para envio de dados para o *slave*
 - MISO Master Input Slave Output (SDI no master)
 - Linha do *slave* para enviar dados para o *master*
 - SS Slave select
 - Linha do *master* que seleciona o *slave* com quem vai comunicar

Descrição geral – esquema de princípio

- Transmissão "full-duplex" baseada em dois shift-registers (um no master e outro no slave)
- Em cada ciclo de relógio:
 - O master coloca 1 bit na linha MOSI e o slave recebe-o
 - O slave coloca 1 bit na linha MISO e o master recebe-o

Descrição geral – esquema de princípio

- Ao fim de N ciclos de relógio o master enviou uma palavra de N bits e recebeu do slave uma palavra com a mesma dimensão – "Data Exchange"
- Esta sequência é realizada mesmo quando é pretendida uma comunicação unidirecional

Sinalização

• Dados:

- MOSI Master Output Slave Input (SDO serial data out no master)
- MISO Master Input Slave Output (SDI serial data in no master)

• Controlo:

- SS\ Slave select (sinal ativado pelo master para selecionar o slave com quem vai comunicar)
- SCK serial clock

Sinalização

- O sinal de relógio tem um "duty-cycle" de 50%
- No exemplo da figura:
 - master e slave usam a transição negativa do relógio para colocarem 1 bit na linha (master na linha MOSI, slave na linha MISO)
 - Na transição positiva seguinte, o master armazena o valor presente na linha MISO e o slave armazena o valor que se encontra na linha MOSI

Operação - exemplo

- A transição negativa do relógio é usada pelo master e pelo slave para colocar na respetiva linha de saída um bit de informação
- A transição positiva seguinte é usada pelo master e pelo slave para armazenar o bit presente na respetiva linha de entrada
- Ao fim de oito ciclos de relógio:
 - o valor inicialmente armazenado no *shift-register* do *master* foi transferido para o *shift-register* do *slave*
 - o valor inicialmente armazenado no shift-register do slave foi transferido para o shift-register do master

Operação

- O master configura o relógio para uma frequência igual ou inferior à suportada pelo slave com quem vai comunicar
- O master ativa a linha SS\ do slave com que vai comunicar
- Em cada ciclo do relógio, por exemplo na transição positiva
 - O master coloca na linha MOSI um bit de informação que é lido pelo slave na transição de relógio oposta seguinte
 - O slave coloca na linha MISO um bit de informação que é lido pelo master na transição de relógio oposta seguinte
- O master desativa a linha SS\ e desativa o relógio (que fica estável, por exemplo, no nível lógico 1)
 - Só há relógio durante o tempo em que se processa a transferência
- No final, o master e o slave trocaram o conteúdo dos seus shift-registers

Simulação do master SPI

- Normalmente, o master pode ser configurado para usar, em alternativa, o nível lógico '1' ou o nível lógico '0' como nível inativo do sinal de relógio.
- Dessa forma é possível adaptar o controlador a caraterísticas específicas dos módulos slave.

Clock SPI só está ativo

Arquiteturas de ligação – *slaves* independentes

- Sinais de seleção ("slave select") independentes
- Em cada instante apenas um SSx\ está ativo, isto é, apenas 1 slave está selecionado
- Os sinais SDO dos slaves (MISO) não selecionados estão em alta impedância
- O número máximo de *slaves* está limitado pelo número de linhas de seleção disponibilizadas pelo *master*
- Alternativamente, o microcontrolador poderá gerar, através de portos digitais, todos os sinais SSx\ necessários para comunicar com os slaves, ultrapassando a limitação anterior

Tipos de transferências

- O SPI funciona sempre em modo "data exchange", isto é, o processo de comunicação envolve sempre a troca do conteúdo dos shift-registers do master e do slave
- Cabe aos dispositivos envolvidos na comunicação usar ou descartar a informação recebida
- Podem considerar-se os seguintes cenários de transferência:
 - Bidirecional: são transferidos dados válidos em ambos os sentidos (master → slave e slave → master)
 - Master → slave (operação de escrita): master transfere dados para o slave, e ignora/descarta os dados recebidos
 - Slave → master (operação de leitura): master pretende ler dados do slave; para isso transfere para o slave uma palavra com informação irrelevante (por exemplo 0); o slave ignora/descarta os dados recebidos

Configuração de um *master* SPI

- Antes de iniciar a transferência há algumas configurações que são efetuadas no master para adequar os parâmetros que definem a comunicação às características do slave com que vai comunicar:
 - 1. Configurar a frequência de relógio
 - 2. Especificar qual o flanco do relógio usado para a transmissão (a receção é efetuada no flanco oposto). Esta configuração é feita em função das características do *slave* com o qual o *master* vai comunicar:
 - Transmissão no flanco ascendente (consequentemente, a receção é feita no flanco descendente)
 - Transmissão no flanco descendente (consequentemente, a receção é feita no flanco ascendente)

Procedimento para identificação dos sinais

- Caso não exista informação prévia sobre quais são os sinais que estamos a observar:
 - 1. Identificar o sinal de seleção (CS, CE...). Deve ser o que se encontra estável quando simultaneamente os outros sinais alternam o seu valor. Identificar se é ativo a '1' (lógica positiva) ou '0' (lógica negativa)
 - 2. Identificar o sinal de relógio e verificar se o estado não ativo (quando não há comunicação) é '0' ou '1'
 - 3. Identificar o sinal MOSI. Tipicamente o master envia a primeira palavra enquanto o slave devolve uma palavra sem significado (todos os bits a '0' ou a '1' ou sinal em alta impedância)
 - 4. O sinal que sobra deverá ser o MISO.
 - 5. Medir, no sinal de relógio, qual o seu período e calcular a respetiva frequência (taxa de comunicação)
 - 6. Identificar os valores de cada byte transferido em ambos os sentidos e interpretar o seu significado de acordo com o manual do dispositivo.

Exemplo real: Sensor Digital de Temperatura com interface SPI

 No exemplo dos slides seguintes podemos observar algumas características funcionais da ligação entre um micro-controlador Master e um dispositivo TC72 da Microchip

Exemplo real: Sensor Digital de Temperatura com interface SPI

Typical Application

Main characteristics:

- Temperature-to-Digital Converter
- SPI compatible interface
- 10-Bit Resolution (0.25°C/Bit)
- ±2°C (max.) Accuracy from -40°C to +85°C
- ±3°C (max.) Accuracy from -55°C to +125°C
- 2.65V to 5.5V Operating Range
- Low Power Consumption:
 - 250 μA (typ.) Continuous Temperature Conversion Mode
 - 1 μA (max.) Shutdown Mode

Exemplo real: Sensor Digital de Temperatura com interface SPI

FIGURE 3-2: Operation.

Serial Clock Polarity (CP)

Deteção automática do estado não ativo do relógio. Esta deteção é feita na transição ascendente do sinal CE

Se o estado não ativo do relógio for 0 (i.e., CP=0), a transição ascendente do relógio é usada para fazer o shift-out do próximo bit. A transição descendente é usada para validar e armazenar o próximo bit.

Se o estado não ativo do relógio for 1 (i.e., CP=1), a operação é simétrica. A transição descendente do relógio é usada para fazer o shift-out do próximo bit. A transição ascendente é usada para validar e armazenar o próximo bit.

Exemplo real: Sensor Digital de Temperatura com interface SPI

Frequência **máxima** do relógio: ≈7.5MHz

Exemplo real: Sensor Digital de Temperatura com interface SPI

Exemplo real: Sensor Digital de Temperatura com interface SPI

FIGURE 3-3: Serial Interface Timing Diagrams (CP=0).

Exemplo real: Sensor Digital de Temperatura com interface SPI

TABLE 4-1: REGISTERS FOR TC72

			6	5	4	3	Bit 2	Bit 1	Bit 0	Value on POR/BOR
00hex	80hex	0	0	0	One-Shot (OS)	0	1	0	Shutdown (SHDN)	05hex
01hex	N/A	T1	TO	0	0	0	0	0	0	00hex
02hex	N/A	T9	T8	T7	T6	T5	T4	T3	T2	00hex
03hex	N/A	0	1	0	1	0	1	0	0	54hex
	02hex	02hex N/A	02hex N/A T9	02hex N/A T9 T8	02hex N/A T9 T8 T7	02hex N/A T9 T8 T7 T6	02hex N/A T9 T8 T7 T6 T5	02hex N/A T9 T8 T7 T6 T5 T4	02hex N/A T9 T8 T7 T6 T5 T4 T3	02hex N/A T9 T8 T7 T6 T5 T4 T3 T2

TABLE 4-2: CONTROL REGISTER TEMPERATURE CONVERSION MODE SELECTION

Operational Mode	One-Shot (OS) Bit 4	Shutdown (SHDN) Bit 0		
Continuous Temperature Conversion	0	0		
Shutdown	0	1		
Continuous Temperature Conversion (One-Shot Command is ignored if SHDN = '0')	1	0		
One-Shot	1	1		

Tempo aproximado de conversão: ≈150ms

Exemplo real: Sensor Digital de Temperatura com interface SPI

TABLE 3-1: TC72 TEMPERATURE OUTPUT DATA

Temperature		Hex		
+125°C	0111	1101/0000	0000	7D00
+25°C	0001	1001/0000	0000	1900
+0.5°C	0000	0000/1000	0000	0080
+0.25°C	0000	0000/0100	0000	0040
0°C	0000	0000/0000	0000	0000
-0.25°C	1111	1111/1100	0000	FFC0
-25°C	1110	0111/0000	0000	E700
-55°C	1100	1001/0000	0000	C900

Resultado da conversão é apresentado em complemento para 2 (com duas casas fracionárias)

TABLE 3-2: TEMPERATURE REGISTER

D7	D6	D5	D4	D3	D2	D1	D0	Address/ Register	
Sign 2 ⁶		2 ⁵ 2 ⁴	2 ⁴	2 ³	2 ³	21	2 ⁰	02H Temp. MSB	
2-1	2-2	0	0	0	0	0	0	01H Temp. LSB	