近世代数 (抽象代数) 笔记

管清文

2020年3月4日

目录

1	基本概念	1
	1.1 代数运算	1
	1.2 同态	2
2	群论	3
3	环	4
4	地	4

1 基本概念

1.1 代数运算

注意 1 近世代数 (或抽象代数) 的主要内容就是研究所谓代数系统,即带有运算的集合。

定义 2 (映射)

$$A_1 \times A_2 \times \cdots \times A_n \to D$$

 $(a_1, a_2, \cdots, a_n) \mapsto d = \phi(a_1, a_2, \cdots, a_n) = \overline{(a_1, a_2, \cdots, a_n)}$

注意 3 判断一个法则 ϕ 是映射的充要条件: (i) 都有象 (ii) 象唯一.

定义 4 (代数运算)

$$A \times B \to D$$

 $(a,b) \mapsto d = \phi(a,b) = \circ(a,b) = a \circ b$

注意 5 A = B 时, 对于代数运算 $A \times A \rightarrow D$, $a \circ b$ 和 $b \circ a$ 都有意义, 但不一定相等.

定义 6 (A 的代数运算,二元运算) 假如 \circ 是一个 $A \times A \to A$ 的代数运算 (即 A = B = D), 我们说集合 A 对于代数运算 \circ 来说是闭的, 也说, \circ 是 A 的代数运算或二元运算.

定义 7 (结合率) 我们说,一个集合 A 的代数运算。满足结合律,假如对于 A 的任何三个元素 a,b,c 来 说都有

$$(a \circ b) \circ c = a \circ (b \circ c)$$

定义 8 假如对于 A 的 n ($n \ge 2$) 个固定的元素 a_1, a_2, \dots, a_n 来说,所有的加括号方式 $\pi(a_1 \circ a_2 \circ \dots \circ a_n)$ 都相等,我们就把这些步骤可以得到的唯一的结果,用 $a_1 \circ a_2 \circ \dots \circ a_n$ 来表示.

定理 9 若 A 的代数运算。满足结合律,则对于 A 的任意 $n(n \ge 2)$ 个元素 a_1, a_2, \dots, a_n 来说,对于任意的加括号的方法 $\pi, \pi(a_1 \circ a_2 \circ \dots \circ a_n)$ 都相等, $a_1 \circ a_2 \circ \dots \circ a_n$ 也就总有意义.

1 基本概念 2

定义 10 A 上的二元运算 \circ , $a \circ b = b \circ a$ (a 与 b 可交换) $\forall a, b \in A$ 成立,则称 \circ 满足交换律.

定理 11 若 A 上的二元运算。满足结合律与交换律,则 $a_1 \circ a_2 \circ \cdots \circ a_n$ 可以任意交换顺序.

定义 12 (分配率) \odot 和 \oplus 都是 A 上的二元运算,

- i) 若 $b\odot(a_1\oplus a_2)=(b\odot a_1)\oplus(b\odot a_2), \forall b, a_1, a_2,$ 则称 \odot 和 \oplus 满足第一分配率.
- ii) 若 $(a_1 \oplus a_2) \odot b = (a_1 \odot b) \oplus (a_2 \odot b), \forall a_1, a_2, b, 则称 \odot 和 \oplus 满足第二分配率.$

定理 13 若 A 上的二元运算 \oplus 满足结合律, \odot 和 \oplus 满足第一分配率, 则

$$b\odot(a_1\oplus a_2\oplus\cdots\oplus a_n)=(b\odot a_1)\oplus(b\odot a_2)\oplus\cdots\oplus(b\odot a_n)$$

1.2 同态

定义 14 (满射) 映射 $\phi: A \to \bar{A}$ 被称为满射, 如果 $\forall \hat{a} \in \bar{A}, \exists a \in A \text{ s.t. } \bar{a} = \hat{a}. \ (\phi^{-1} \text{ 都有象})$

定义 15 (单射) 映射 $\phi: A \to \bar{A}$ 被称为**单射**, 如果 $\forall a, b \in A, a \neq b \Rightarrow \bar{a} \neq \bar{b}$. $(\phi^{-1}$ 象唯一)

定义 16 (一一映射) 既是满射又是单射.

注意 17 (一一映射判别) (i) 是映射 (都有象、象唯一) (ii) 满的 (iii) 单的.

定义 18 (变换) 从 A 到 A 的映射 $\phi: A \rightarrow A$ 叫 A 上的变换.

- 如果 ϕ 是满的,则称为**满变换**.
- 如果 ϕ 是单的,则称为**单变换**.
- 如果 ϕ 是一一的,则称为一一**变换**.

定义 19 (同态映射) 对于 $\phi: A \to \bar{A}, A$ 上有二元运算 \circ , \bar{A} 上有二元运算 $\bar{\circ}$. 如果 $\overline{a \circ b} = \bar{a} \bar{\circ} \bar{b}$, 则称 ϕ 是 A 到 \bar{A} 的同态映射.

注意 20 (同态映射判别) (i) 是映射 (都有象、象唯一) (ii) $\overline{a \circ b} = \bar{a} \bar{\circ} \bar{b}$

定义 21 (同态满射、同态) 如果 A 到 \bar{A} 存在 一个同态映射 ϕ , 且它是满的, 则称 A 与 \bar{A} (关于 \circ 与 $\bar{\circ}$ 来说) **同态**. 称这个映射是一个**同态满射**.

注意 22 (同态满射判别) (i) 是映射 (都有象、象唯一) (ii) 同态 (iii) 满

定义 23 (同构映射、同构) 如果 A 到 \bar{A} 存在 一个同态映射 ϕ , 且它是既是满的又是单的 (一一的), 则称 A 与 \bar{A} (关于。与 $\bar{\circ}$) **同构**, 记为 $A \cong \bar{A}$. 称这个映射是一个 (关于。与 $\bar{\circ}$ 的) **同构映射** (简称同构).

注意 24 (同构映射判别) (i) 是映射 (都有象、象唯一) (ii) 同态 (iii) 满 (iv) 单

定理 25 假定对于代数运算 \circ 和 $\bar{\circ}$ 来说, A 与 \bar{A} 同态, 那么

- i) 若。满足结合律, ō 也满足结合律;
- ii) 若。满足交换律, ō 也满足交换律.

定理 26 ① 和 \oplus 是 A 的两个代数运算, ① 和 \oplus 是 \bar{A} 的两个代数运算, 有 ϕ 既是 A 与 \bar{A} 的关于 ① 和 \odot 的同态满射, ϕ 也是 A 与 \bar{A} 的关于 \oplus 和 \oplus 的同态满射,则

- i) 若 ⊙ 和 ⊕ 满足第一分配率, 则 ⊙ 和 ⊕ 也满足第一分配率.
- ii) 若 ⊙ 和 ⊕ 满足第二分配率, 则 ⊙ 和 ⊕ 也满足第二分配率.

注意 27 总结下来, 如果 A 与 \bar{A} 同态,则若前者有什么算律 (结合、交换、分配),后者就也有什么算律 (结合、交换、分配).

定义 28 (自同构) 对于 \circ 和 \circ 来说的一个 A 与 A 之间的 同构映射 叫做一个对于 \circ 来说的 A 的**自同构**.

定义 30 (等价关系) 如果 \sim 是 A 的元素间的关系,满足

- i) 自反性, $\forall a \in A, a \sim a$.
- ii) 对称性, $\forall a, b \in A$, 若 $a \sim b$, 则 $b \sim a$.
- iii) 传递性, $\forall a, b, c \in A$, 若 $a \sim b$, $b \sim c$, 则 $a \sim c$.

则称 ~ 为等价关系.

定义 31 (集合分类、划分) 集合 A 分成若干子集,满足 (i) 每个元素属于都某子集 (ii) 每个元素只属于某子集. 这些类的全体叫做**集合** A 的一个分类.

$$A = A_1 \cup A_2 \cup \cdots \cup A_n, A_i \cap A_j = \emptyset, i \neq j$$

定理 32 集合上的一个分类,确定一个集合的元素之间的等价关系.

定理 33 集合上的一个等价关系,确定一个集合的分类.

定义 34 (模 n 的剩余类) $\{[0],[1],\cdots,[n-1]\},[i]=\{kn+i\mid k\in\mathbb{Z}\}$

2 群论

注意 35 群是一个代数系统 (定义代数运算的代数系统), 其中群里只有一个代数运算. 便利起见 $\phi(a,b)=a\circ b$ 写成 ab

定义 36 (群[Group]的第一定义) 在集合 $G \neq \emptyset$ 上规定一个叫做乘法的代数运算. 这个代数系统被称为群, 如果

- I 乘法封闭, $\forall a, b \in G, ab \in G$ (由代数运算要求)
- II 乘法结合, $\forall a, b, c \in G$, (ab)c = a(bc)
- III $\forall a, b \in G, ax = b, ya = b$ 在 G 中都有解.

定理 37 (IV[左单位元]) 对于群 G 中至少有一个元 e, 叫做 G 的一个左单位元, 使得 $\forall a \in G$ 都有 ea = a.

定理 38 (V[**左逆元**]) 对于群 G 中的任何一个元素 a, 在 G 中存在一个元 a^{-1} , 叫做 a 的**左逆元**, 能让 $a^{-1}a = e$.

定义 39 (群[Group]的二定义) 在集合 $G \neq \emptyset$ 上规定乘法. 这个代数系统被称为群, 如果

- I 乘法封闭
- II 乘法结合
- IV $\exists e \in G$ 使 ea = a 对 $\forall a \in G$ 都成立.
- $V \ \forall a \in G, \exists a^{-1} \notin a^{-1}a = e.$

定义 40 (群的阶) 如果 |G| 有限, 称其为有限群, 称他的阶是 G 的元素个数.

如果 G 中有无穷多个元素, 称其为**无限群**, 称他的**阶**无限.

定义 41 (交换群、Abel 群) 群中交换律不一定成立,如果乘法满足交换律 ($\forall a,b \in G,ab=ba$),则称之为**交换群 (Abel 群)**

定理 42 (单位元) 在一个群 G 里存在且只存在一个元 e, 使得 ea = ae = a 对于 $\forall a \in G$ 成立. 这个元素 被称为群 G 的**单位元**.

定理 43 (逆元) 对于群 G 的任意一个元素 a 来说,有且只有一个元素 a^{-1} ,使 $a^{-1}a=aa^{-1}=e$. 这个元素被称为 a 的**逆元**,或者简称**逆**.

定义 44 规定
$$a^n=\underbrace{aa\cdots a}_{n\uparrow}, a^0=e, a^{-n}=(a^{-1})^n, n\in\mathbb{Z}^+$$

定理 45 $a^n a^m = a^{n+m}, (a^n)^m, n, m \in \mathbb{Z}$

定义 46 (元素的阶) 在一个群 G 中,使得 $a^n=e$ 的最小正整数,叫做 a 的**阶**. 若这样的 n 不存在,称 a 是无穷阶的,或者叫 a 的阶是无穷.

- 3 环
- 4 域