Practical Machine Learning

Ruben_Mkrtchyan 18/05/2021

Practical Machine Learning

Peer-Graded Assignment

Ruben Mkrtchyan

I.Overview

This report is the final assignment for Coursera's Practical Machine Learning course. This course is a part of the Data Science Specialization track which is organized by John Hopkins University. This report will be graded by peers of the same course.

The report will use data from accelerometers on forearm, arm, belt and dumbel of six participants. The data consists of a training data and a test data, which is for validating the selected model. The goal of the report is to predict the way that the participants performed the excercise. That is the "classe" variable in the training set. There will be three models trained in this report, those are:Decision Tree, Random Forest and Gradient Boosted Trees. The best model will be sellected based on the accuracy rate and out of sample error rate. By the use of the selected model, the twenty test cases available in the test data will be predicted.

II.Backgroung

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).

The training data for this project are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv

The test data are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

III.Data Loading, preprocessing and cleaning

a)Data Preprocessing and package instalation:

At first, we need to upload the necessary libraries.

```
#install.packages('caret', dependencies = TRUE)
#install.packages('gtable', dependencies = TRUE)
#install.packages('ggplot2', dependencies = TRUE)
#install.packages('gower', dependencies = TRUE)
#install.packages('jquerylib', dependencies = TRUE)
library(caret)
## Warning: package 'caret' was built under R version 4.0.5
## Loading required package: lattice
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.0.5
library(lattice)
library(ggplot2)
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.0.5
## corrplot 0.88 loaded
library(knitr)
library(rpart)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.0.5
library(rattle)
## Warning: package 'rattle' was built under R version 4.0.5
## Loading required package: tibble
## Loading required package: bitops
## Warning: package 'bitops' was built under R version 4.0.5
```

```
## Rattle: A free graphical interface for data science with R.
## Version 5.4.0 Copyright (c) 2006-2020 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.0.5
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:rattle':
##
##
       importance
## The following object is masked from 'package:ggplot2':
##
##
       margin
set.seed(404) #Setting the seed
```

b)Data Reading:

Now we read the data.

```
Url_train <- "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-
training.csv"
Url_test <- "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-
testing.csv"

train_data <- read.csv(url(Url_train))
test_data <- read.csv(url(Url_test))

inTrain <- createDataPartition(train_data$classe, p=0.7, list=FALSE)
Train_Set <- train_data[inTrain, ]
Test_Set <- train_data[-inTrain, ]</pre>
```

Let's check the number of variables of Train_Set and Test_Set.

```
dim(Train_Set)
## [1] 13737   160
dim(Test_Set)
## [1] 5885   160
```

As we see, we have got 160 initial variables, however after data cleaning the number will be reduced.

c)Data Cleaning:

We need to remove the near zero variance (NZV) variables.

```
NZV <- nearZeroVar(Train_Set)
Train_Set <- Train_Set[, -NZV]
Test_Set <- Test_Set[, -NZV]

dim(Train_Set)
## [1] 13737  105

dim(Test_Set)
## [1] 5885  105</pre>
```

As we see, the number of variables are reduced to 105 for both Test_Set and Train_Set.

Now, we need to clean the variables with mostly NA values.

```
NA_val <- sapply(Train_Set, function(x) mean(is.na(x))) > 0.8
Train_Set <- Train_Set[, NA_val==FALSE]
Test_Set <- Test_Set[, NA_val==FALSE]

dim(Train_Set)
## [1] 13737 59

dim(Test_Set)
## [1] 5885 59</pre>
```

Let's check the remaining variables in the reduced sets.

```
head(Test_Set)
##
       X user name raw timestamp part 1 raw timestamp part 2
                                                                  cvtd timestamp
## 5
          carlitos
                                                         196328 05/12/2011 11:23
       5
                              1323084232
       7
          carlitos
## 7
                              1323084232
                                                         368296 05/12/2011 11:23
          carlitos
                                                         440390 05/12/2011 11:23
## 8
       8
                              1323084232
## 13 13
          carlitos
                              1323084232
                                                         560359 05/12/2011 11:23
## 14 14
          carlitos
                              1323084232
                                                         576390 05/12/2011 11:23
## 22 22
          carlitos
                                                         892313 05/12/2011 11:23
                              1323084232
      num_window roll_belt pitch_belt yaw_belt total_accel_belt gyros_belt_x
##
## 5
               12
                       1.48
                                   8.07
                                           -94.4
                                                                            0.02
                                                                 3
## 7
              12
                       1.42
                                   8.09
                                           -94.4
                                                                 3
                                                                            0.02
## 8
              12
                       1.42
                                   8.13
                                           -94.4
                                                                 3
                                                                            0.02
                                                                 3
## 13
              12
                       1.42
                                   8.20
                                           -94.4
                                                                            0.02
## 14
              12
                       1.42
                                   8.21
                                           -94.4
                                                                 3
                                                                            0.02
                                                                 3
## 22
               12
                       1.57
                                   8.09
                                           -94.4
                                                                            0.02
##
      gyros belt y gyros belt z accel belt x accel belt y accel belt z
## 5
                                           -21
                                                           2
              0.02
                           -0.02
                                                                        24
                           -0.02
                                           -22
                                                           3
## 7
              0.00
                                                                        21
```

```
## 8
               0.00
                            -0.02
                                             -22
                                                             4
                                                                          21
## 13
                                             -22
                                                             4
                                                                          21
               0.00
                             0.00
## 14
               0.00
                            -0.02
                                             -22
                                                             4
                                                                          21
                                                             3
## 22
               0.02
                            -0.02
                                             -21
                                                                          21
##
      magnet belt x magnet belt y magnet belt z roll arm pitch arm yaw arm
## 5
                   -6
                                600
                                               -302
                                                         -128
                                                                    22.1
                                                                            -161
## 7
                  -4
                                599
                                               -311
                                                         -128
                                                                    21.9
                                                                            -161
## 8
                   -2
                                603
                                               -313
                                                         -128
                                                                    21.8
                                                                            -161
                  -3
## 13
                                606
                                               -309
                                                         -128
                                                                    21.4
                                                                            -161
## 14
                   -8
                                598
                                               -310
                                                         -128
                                                                    21.4
                                                                            -161
## 22
                  -2
                                604
                                               -313
                                                         -129
                                                                    20.8
                                                                            -161
##
      total_accel_arm gyros_arm_x gyros_arm_y gyros_arm_z accel_arm_x
accel arm y
                               0.00
## 5
                    34
                                            -0.03
                                                          0.00
                                                                       -289
111
                    34
                               0.00
                                            -0.03
                                                          0.00
                                                                       -289
## 7
111
## 8
                    34
                               0.02
                                           -0.02
                                                          0.00
                                                                       -289
111
## 13
                    34
                               0.02
                                           -0.02
                                                         -0.02
                                                                       -287
111
## 14
                    34
                               0.02
                                            0.00
                                                         -0.03
                                                                       -288
111
## 22
                     34
                               0.03
                                            -0.02
                                                         -0.02
                                                                       -289
111
##
      accel_arm_z magnet_arm_x magnet_arm_y magnet_arm_z roll_dumbbell
## 5
              -123
                            -374
                                                          506
                                           337
                                                                    13.37872
## 7
              -125
                            -373
                                           336
                                                          509
                                                                    13.12695
## 8
              -124
                            -372
                                           338
                                                          510
                                                                    12.75083
              -124
                            -372
                                           338
## 13
                                                          509
                                                                    13.38246
## 14
              -124
                            -371
                                           331
                                                          523
                                                                    13.41048
## 22
              -123
                            -372
                                           338
                                                          510
                                                                    13.37872
##
      pitch dumbbell yaw dumbbell total accel dumbbell gyros dumbbell x
## 5
            -70.42856
                          -84.85306
                                                         37
                                                                         0.00
## 7
            -70.24757
                                                         37
                                                                         0.00
                          -85.09961
                                                         37
## 8
            -70.34768
                          -85.09708
                                                                         0.00
            -70.81759
                                                         37
                                                                         0.00
## 13
                          -84.46500
## 14
            -70.99594
                          -84.28005
                                                         37
                                                                         0.02
## 22
            -70.42856
                          -84.85306
                                                         37
##
      gyros_dumbbell_y gyros_dumbbell_z accel_dumbbell_x accel_dumbbell_y
## 5
                                      0.00
                  -0.02
                                                         -233
                                                                             48
## 7
                                                         -232
                                                                             47
                   -0.02
                                      0.00
## 8
                                                         -234
                                                                             46
                  -0.02
                                      0.00
## 13
                   -0.02
                                                         -234
                                                                             48
                                     -0.02
## 14
                                                                             48
                  -0.02
                                     -0.02
                                                         -234
## 22
                   -0.02
                                      0.00
                                                         -233
                                                                             48
##
      accel_dumbbell_z magnet_dumbbell_x magnet_dumbbell_y magnet_dumbbell_z
## 5
                   -270
                                       -554
                                                            292
                                                                                -68
## 7
                    -270
                                       -551
                                                            295
                                                                                -70
                    -272
## 8
                                       -555
                                                            300
                                                                                -74
```

## 13 ## 14	-269 -268		-552 -554	302 295	-69 -68
## 22	-270		-554	301	-65
## roll_fo gyros_forearm	•	torearm yaw <u></u>	_torearm to	tal_accel_forea	arm
## 5	1_X 28.0	-63.9	-152		36
0.02	20.0	-03.9	-152		50
## 7	27.9	-63.9	-152		36
0.02	27.5	03.3	152		50
## 8	27.8	-63.8	-152		36
0.02	27.10	03.0	-5-		30
## 13	27.2	-63.9	-151		36
0.00					
## 14	27.2	-63.9	-151		36
0.00					
## 22	27.0	-63.9	-151		36
0.02					
## gyros_f	orearm_y gyr	os_forearm_:	z accel_for	earm_x accel_fo	orearm_y
## 5	0.00	-0.0		189	206
## 7	0.00	-0.0	2	195	205
## 8	-0.02	0.00	9	193	205
## 13	0.00	-0.03	3	193	205
## 14	-0.02	-0.03	3	193	202
## 22	-0.03	-0.0	2	191	206
## accel_f	orearm_z mag	net_forearm_	_x magnet_f	orearm_y magnet	t_forearm_z
classe					
## 5	-214	-:	17	655	473
Α					
## 7	-215	-:	18	659	470
Α					
## 8	-213		-9	660	474
Α					
## 13	-215	-:	15	655	472
Α					
## 14	-214	-:	14	659	478
Α					
## 22	-213	-:	17	654	478
Α					

As we see, the first five variables are just identification variables, so we need to clean those too.

```
Train_Set <- Train_Set[, -(1:5)]
Test_Set <- Test_Set[, -(1:5)]
dim(Train_Set)
## [1] 13737 54
dim(Test_Set)</pre>
```

```
## [1] 5885 54
```

So, after removing mostly NA variables, NZV variables and the first five identification variables we are left to 54 final variables.

d)Correlation Analysis

Here, in the correlation matrix, the red and blue colors are associated with -1 and 1 correlation respectively. The bright colors show small amount of correlations between the remaining 54 variables.

IV.Buliding and Testing the Models

a)Model 1:Decision Tree

i) The Model

The first model that we will use is Decision Trees. At first we need to get the model, then we use fancyRpartPlot() function to plot the classification tree.

```
control_var <- trainControl(method="cv", number=3, verboseIter=F)
DT_Model <- train(classe~., data=Test_Set, method="rpart", trControl =
control_var, tuneLength = 3)
fancyRpartPlot(DT_Model$finalModel)</pre>
```


Rattle 2021-May-18 19:26:31 asus

ii) The

prediction

Now that we already have the model, we need to validate it on Train_Set.

```
TS Factored <- factor(Train Set$classe)
DT_Prediction <- predict(DT_Model, Train_Set)</pre>
cmtree <- confusionMatrix(DT_Prediction, TS_Factored)</pre>
cmtree
## Confusion Matrix and Statistics
##
              Reference
##
                             C
                                  D
                                        Ε
## Prediction
                  Α
                       В
##
             A 3571 1162 1164 1028
                                      358
##
             В
                 47
                     636
                            35
                                383
                                      137
             C
##
                280
                     860 1197
                                841
                                      878
             D
##
                  0
                       0
                             0
                                  0
                                        0
             Ε
                  8
                       0
                             0
                                  0 1152
##
##
## Overall Statistics
##
##
                   Accuracy : 0.4773
##
                     95% CI: (0.4689, 0.4856)
##
       No Information Rate: 0.2843
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.3165
##
```

```
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                      Class: A Class: B Class: C Class: D Class: E
##
                        0.9142 0.23928 0.49958
## Sensitivity
                                                 0.0000
                                                         0.45624
## Specificity
                        0.6224 0.94566 0.74791
                                                 1.0000 0.99929
                        0.4903 0.51373 0.29512
## Pos Pred Value
                                                    NaN 0.99310
## Neg Pred Value
                        0.9481 0.83823 0.87615
                                                 0.8361 0.89083
## Prevalence
                        0.2843 0.19349 0.17442
                                                 0.1639
                                                         0.18381
## Detection Rate
                        0.2600 0.04630 0.08714
                                                 0.0000 0.08386
## Detection Prevalence
                        0.5302 0.09012 0.29526
                                                 0.0000 0.08444
## Balanced Accuracy
                        0.7683 0.59247 0.62374 0.5000 0.72776
```

As we see, the accuracy rate is 0.4773 and the out of sample error rate is 1-accuracy = 0.5227

b)Model 2:Random Forest

i) The Model

Our second model is Random Forest.

```
control_RF <- trainControl(method="cv", number=3, verboseIter=FALSE)</pre>
RF_Model <- train(classe ~ ., data=Train_Set, method="rf",</pre>
trControl=control RF)
RF Model$finalModel
##
## Call:
## randomForest(x = x, y = y, mtry = param$mtry)
##
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 27
##
##
           OOB estimate of error rate: 0.26%
## Confusion matrix:
##
        Α
             В
                  C
                       D
                            E class.error
## A 3904
             1
                       0
                  0
                            1 0.0005120328
      10 2644
                 4
## B
                       0
                            0 0.0052671181
## C
        0
            5 2391
                       0
                            0 0.0020868114
                 7 2244
                            1 0.0035523979
## D
        0
            0
## E 0
          1 0 6 2518 0.0027722772
```

ii) The prediction

```
#RF <- train(classe~., data=Train_Set, method="rf", trControl = control_var)
RF_Prediction <- predict(RF_Model, Train_Set)
cmrf <- confusionMatrix(RF_Prediction, TS_Factored)
cmrf</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 Α
                            C
                                 D
                                      Ε
                       В
            A 3906
##
                       0
                            0
                                 0
                                      0
                 0 2658
##
            В
                            0
                                 0
                                      0
##
            C
                 0
                       0 2396
##
            D
                 0
                       0
                            0 2252
            Ε
##
                 0
                       0
                            0
                                 0 2525
##
## Overall Statistics
##
##
                  Accuracy: 1
##
                    95% CI: (0.9997, 1)
##
       No Information Rate: 0.2843
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 1
##
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           1.0000
                                    1.0000
                                              1.0000
                                                       1.0000
                                                                 1.0000
## Specificity
                           1.0000
                                    1.0000
                                              1.0000
                                                       1.0000
                                                                 1.0000
## Pos Pred Value
                           1.0000
                                    1.0000
                                              1.0000
                                                       1.0000
                                                                1.0000
## Neg Pred Value
                           1.0000
                                    1.0000
                                              1.0000
                                                       1.0000
                                                                1.0000
## Prevalence
                                    0.1935
                           0.2843
                                              0.1744
                                                       0.1639
                                                                 0.1838
## Detection Rate
                           0.2843
                                    0.1935
                                              0.1744
                                                       0.1639
                                                                 0.1838
## Detection Prevalence
                           0.2843
                                    0.1935
                                              0.1744
                                                                 0.1838
                                                       0.1639
## Balanced Accuracy
                           1.0000
                                    1.0000
                                              1.0000
                                                       1.0000
                                                                1.0000
```

The validation test shows that the accuracy rate is 1 and therefore the out of sample error rate will be 0 or something very close to it. Maybe the accuracy is 1 because of overfiting.

b)Model 3:Generalized Boosted Model (GBM)

i) The Model

We already have a model which has an accuracy rate of 1, however we still perform the training of the third model which is GBM, Generalized Boosted Model.

```
control GBM <- trainControl(method = "repeatedcv", number = 5, repeats = 1)</pre>
GBM_Model <- train(classe ~ ., data=Train_Set, method = "gbm", trControl =</pre>
control GBM)
                            ValidDeviance
## Iter
          TrainDeviance
                                             StepSize
                                                         Improve
##
        1
                  1.6094
                                       nan
                                               0.1000
                                                          0.1291
        2
##
                                               0.1000
                                                          0.0886
                  1.5252
                                       nan
##
        3
                  1.4658
                                               0.1000
                                                          0.0645
                                       nan
```

##	4	1.4219	nan	0.1000	0.0552
##	5	1.3860	nan	0.1000	0.0440
##	6	1.3571	nan	0.1000	0.0447
##	7	1.3289	nan	0.1000	0.0376
##	8	1.3049	nan	0.1000	0.0340
##	9	1.2804	nan	0.1000	0.0302
##	10	1.2589	nan	0.1000	0.0311
##	20	1.0955	nan	0.1000	0.0186
##	40	0.9117	nan	0.1000	0.0092
##	60	0.8003	nan	0.1000	0.0049
##	80	0.7212	nan	0.1000	0.0047
##	100	0.6581	nan	0.1000	0.0042
##	120	0.6034	nan	0.1000	0.0024
##	140	0.5571	nan	0.1000	0.0022
##	150	0.5340	nan	0.1000	0.0025
##		3.33.0		2.2000	0.3023
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1799
##	2	1.4877	nan	0.1000	0.1733
##	3	1.3997	nan	0.1000	0.0990
##	4	1.3351	nan	0.1000	0.0336
##	5	1.2780	nan	0.1000	0.0686
##	6	1.2336		0.1000	0.0000
##	7	1.2336	nan	0.1000	0.0639
	8		nan		
##		1.1476	nan	0.1000	0.0565
##	9	1.1113	nan	0.1000	0.0457
##	10	1.0822	nan	0.1000	0.0468
##	20	0.8509	nan	0.1000	0.0280
##	40	0.6255	nan	0.1000	0.0200
##	60	0.4855	nan	0.1000	0.0050
##	80	0.3972	nan	0.1000	0.0097
##	100	0.3239	nan	0.1000	0.0020
##	120	0.2710	nan	0.1000	0.0059
##	140	0.2327	nan	0.1000	0.0035
##	150	0.2125	nan	0.1000	0.0028
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2362
##	2	1.4603	nan	0.1000	0.1673
##	3	1.3567	nan	0.1000	0.1282
##	4	1.2761	nan	0.1000	0.1166
##	5	1.2033	nan	0.1000	0.0870
##	6	1.1467	nan	0.1000	0.0762
##	7	1.0974	nan	0.1000	0.0626
##	8	1.0569	nan	0.1000	0.0816
##	9	1.0068	nan	0.1000	0.0614
##	10	0.9672	nan	0.1000	0.0558
##	20	0.7006	nan	0.1000	0.0273
##	40	0.4631	nan	0.1000	0.0121
##	60	0.3337	nan	0.1000	0.0059

##	80	0.2564	nan	0.1000	0.0041	
##	100	0.1995	nan	0.1000	0.0032	
##	120	0.1537	nan	0.1000	0.0016	
##	140	0.1249	nan	0.1000	0.0013	
##	150	0.1125	nan	0.1000	0.0008	
##						
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1286	
##	2	1.5224	nan	0.1000	0.0833	
##	3	1.4651	nan	0.1000	0.0714	
##	4	1.4188	nan	0.1000	0.0533	
##	5	1.3830	nan	0.1000	0.0481	
##	6	1.3503	nan	0.1000	0.0414	
##	7	1.3238	nan	0.1000	0.0388	
##	8	1.2978	nan	0.1000	0.0316	
##	9	1.2769	nan	0.1000	0.0400	
##	10	1.2507	nan	0.1000	0.0322	
##	20	1.0874	nan	0.1000	0.0186	
##	40	0.9072	nan	0.1000	0.0098	
##	60	0.7977	nan	0.1000	0.0072	
##	80	0.7157	nan	0.1000	0.0060	
##	100	0.6506	nan	0.1000	0.0051	
##	120	0.5975	nan	0.1000	0.0033	
##	140	0.5503	nan	0.1000	0.0032	
##	150	0.5297	nan	0.1000	0.0024	
##						
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1936	
##	2	1.4853	nan	0.1000	0.1362	
##	3	1.3986	nan	0.1000	0.1047	
##	4	1.3303	nan	0.1000	0.0872	
##	5	1.2744	nan	0.1000	0.0704	
##	6	1.2283	nan	0.1000	0.0728	
##	7	1.1805	nan	0.1000	0.0588	
##	8	1.1422	nan	0.1000	0.0517	
##	9	1.1091	nan	0.1000	0.0437	
##	10	1.0813	nan	0.1000	0.0542	
##	20	0.8660	nan	0.1000	0.0273	
##	40	0.6266	nan	0.1000	0.0151	
##	60	0.4854	nan	0.1000	0.0063	
##	80	0.3922	nan	0.1000	0.0037	
##	100	0.3264	nan	0.1000	0.0028	
##	120	0.2706	nan	0.1000	0.0046	
##	140	0.2309	nan	0.1000	0.0045	
##	150	0.2121	nan	0.1000	0.0025	
##						
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.2457	
##	2	1.4560	nan	0.1000	0.1669	
##	3	1.3527	nan	0.1000	0.1256	

##	4	1.2720	nan	0.1000	0.0983
##	5	1.2075	nan	0.1000	0.0999
##	6	1.1454	nan	0.1000	0.0800
##	7	1.0934	nan	0.1000	0.0676
##	8	1.0504	nan	0.1000	0.0747
##	9	1.0043	nan	0.1000	0.0657
##	10	0.9636	nan	0.1000	0.0475
##	20	0.6860	nan	0.1000	0.0252
##	40	0.4497	nan	0.1000	0.0147
##	60	0.3260	nan	0.1000	0.0098
##	80	0.2463	nan	0.1000	0.0056
##	100	0.1930	nan	0.1000	0.0033
##	120	0.1540	nan	0.1000	0.0016
##	140	0.1261	nan	0.1000	0.0014
##	150	0.1139	nan	0.1000	0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1268
##	2	1.5241	nan	0.1000	0.0830
##	3	1.4664	nan	0.1000	0.0662
##	4	1.4222	nan	0.1000	0.0534
##	5	1.3868	nan	0.1000	0.0497
##	6	1.3545	nan	0.1000	0.0401
##	7	1.3271	nan	0.1000	0.0435
##	8	1.3007	nan	0.1000	0.0373
##	9	1.2757	nan	0.1000	0.0302
##	10	1.2562	nan	0.1000	0.0328
##	20	1.0953	nan	0.1000	0.0189
##	40	0.9100	nan	0.1000	0.0094
##	60	0.7993	nan	0.1000	0.0045
##	80	0.7179	nan	0.1000	0.0052
##	100	0.6519	nan	0.1000	0.0033
##	120	0.5980	nan	0.1000	0.0033
##	140	0.5541	nan	0.1000	0.0030
##	150	0.5330	nan	0.1000	0.0019
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1910
##	2	1.4865	nan	0.1000	0.1290
##	3	1.4002	nan	0.1000	0.1052
##	4	1.3310	nan	0.1000	0.0939
##	5	1.2717	nan	0.1000	0.0719
##	6	1.2241	nan	0.1000	0.0715
##	7	1.1793	nan	0.1000	0.0636
##	8	1.1385	nan	0.1000	0.0446
##	9	1.1094	nan	0.1000	0.0536
##	10	1.0762	nan	0.1000	0.0379
##	20	0.8563	nan	0.1000	0.0212
##	40	0.6240	nan	0.1000	0.0100
##	60	0.4882	nan	0.1000	0.0088

##	80	0.3946	nan	0.1000	0.0035	
##	100	0.3339	nan	0.1000	0.0035	
##	120	0.2793	nan	0.1000	0.0025	
##	140	0.2381	nan	0.1000	0.0024	
##	150	0.2204	nan	0.1000	0.0024	
##						
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.2478	
##	2	1.4547	nan	0.1000	0.1568	
##	3	1.3538	nan	0.1000	0.1317	
##	4	1.2687	nan	0.1000	0.0960	
##	5	1.2071	nan	0.1000	0.0877	
##	6	1.1504	nan	0.1000	0.0768	
##	7	1.1015	nan	0.1000	0.0791	
##	8	1.0538	nan	0.1000	0.0881	
##	9	1.0005	nan	0.1000	0.0602	
##	10	0.9627	nan	0.1000	0.0585	
##	20	0.6934	nan	0.1000	0.0219	
##	40	0.4552	nan	0.1000	0.0140	
##	60	0.3322	nan	0.1000	0.0070	
##	80	0.2524	nan	0.1000	0.0043	
##	100	0.1974	nan	0.1000	0.0019	
##	120	0.1574	nan	0.1000	0.0035	
##	140	0.1277	nan	0.1000	0.0026	
##	150	0.1146	nan	0.1000	0.0015	
##						
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1257	
##	2	1.5223	nan	0.1000	0.0827	
##	3	1.4649	nan	0.1000	0.0698	
##	4	1.4183	nan	0.1000	0.0548	
##	5	1.3821	nan	0.1000	0.0435	
##	6	1.3529	nan	0.1000	0.0463	
##	7	1.3243	nan	0.1000	0.0411	
##	8	1.2974	nan	0.1000	0.0367	
##	9	1.2741	nan	0.1000	0.0352	
##	10	1.2491	nan	0.1000	0.0298	
##	20	1.0859	nan	0.1000	0.0189	
##	40	0.9054	nan	0.1000	0.0113	
##	60	0.7902	nan	0.1000	0.0072	
##	80	0.7106	nan	0.1000	0.0039	
##	100	0.6455	nan	0.1000	0.0034	
##	120	0.5920	nan	0.1000	0.0027	
##	140	0.5454	nan	0.1000	0.0017	
##	150	0.5251	nan	0.1000	0.0028	
##						
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1956	
##	2	1.4819	nan	0.1000	0.1316	
##	3	1.3960	nan	0.1000	0.1100	

##	4	1.3251	nan	0.1000	0.0877	
##	5	1.2671	nan	0.1000	0.0754	
##	6	1.2192	nan	0.1000	0.0724	
##	7	1.1738	nan	0.1000	0.0674	
##	8	1.1309	nan	0.1000	0.0587	
##	9	1.0941	nan	0.1000	0.0438	
##	10	1.0663	nan	0.1000	0.0364	
##	20	0.8434	nan	0.1000	0.0272	
##	40	0.6160	nan	0.1000	0.0229	
##	60	0.4831	nan	0.1000	0.0103	
##	80	0.3869	nan	0.1000	0.0136	
##	100	0.3167	nan	0.1000	0.0047	
##	120	0.2681	nan	0.1000	0.0043	
##	140	0.2285	nan	0.1000	0.0043	
##	150	0.2101	nan	0.1000	0.0013	
##						
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.2455	
##	2	1.4529	nan	0.1000	0.1672	
##	3	1.3482	nan	0.1000	0.1283	
##	4	1.2648	nan	0.1000	0.1065	
##	5	1.1967	nan	0.1000	0.0982	
##	6	1.1361	nan	0.1000	0.0796	
##	7	1.0854	nan	0.1000	0.0640	
##	8	1.0444	nan	0.1000	0.0797	
##	9	0.9973	nan	0.1000	0.0504	
##	10	0.9656	nan	0.1000	0.0645	
##	20	0.6857	nan	0.1000	0.0304	
##	40	0.4465	nan	0.1000	0.0121	
##	60	0.3238	nan	0.1000	0.0099	
##	80	0.2483	nan	0.1000	0.0070	
##	100	0.1916	nan	0.1000	0.0034	
##	120	0.1515	nan	0.1000	0.0026	
##	140	0.1228	nan	0.1000	0.0020	
##	150	0.1113	nan	0.1000	0.0021	
##						
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1259	
##	2	1.5227	nan	0.1000	0.0896	
##	3	1.4631	nan	0.1000	0.0684	
##	4	1.4183	nan	0.1000	0.0542	
##	5	1.3832	nan	0.1000	0.0474	
##	6	1.3521	nan	0.1000	0.0425	
##	7	1.3243	nan	0.1000	0.0405	
##	8	1.2980	nan	0.1000	0.0308	
##	9	1.2776	nan	0.1000	0.0370	
##	10	1.2520	nan	0.1000	0.0322	
##	20	1.0878	nan	0.1000	0.0193	
##	40	0.9067	nan	0.1000	0.0133	
##	60	0.7983	nan	0.1000	0.0070	
	00	0.7505	Hall	0.1000	0.0070	

##	80	0.7153	nan	0.1000	0.0038	
##	100	0.6496	nan	0.1000	0.0040	
##	120	0.5976	nan	0.1000	0.0035	
##	140	0.5503	nan	0.1000	0.0025	
##	150	0.5288	nan	0.1000	0.0029	
##						
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1921	
##	2	1.4854	nan	0.1000	0.1342	
##	3	1.3993	nan	0.1000	0.1052	
##	4	1.3304	nan	0.1000	0.0819	
##	5	1.2775	nan	0.1000	0.0792	
##	6	1.2268	nan	0.1000	0.0670	
##	7	1.1833	nan	0.1000	0.0565	
##	8	1.1462	nan	0.1000	0.0555	
##	9	1.1118	nan	0.1000	0.0537	
##	10	1.0788	nan	0.1000	0.0379	
##	20	0.8522	nan	0.1000	0.0272	
##	40	0.6177	nan	0.1000	0.0096	
##	60	0.4829	nan	0.1000	0.0113	
##	80	0.3922	nan	0.1000	0.0049	
##	100	0.3264	nan	0.1000	0.0030	
##	120	0.2767	nan	0.1000	0.0030	
##	140	0.2324	nan	0.1000	0.0020	
##	150	0.2169	nan	0.1000	0.0013	
##						
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.2384	
##	2	1.4552	nan	0.1000	0.1675	
##	3	1.3481	nan	0.1000	0.1224	
##	4	1.2702	nan	0.1000	0.1031	
##	5	1.2051	nan	0.1000	0.0818	
##	6	1.1523	nan	0.1000	0.0731	
##	7	1.1052	nan	0.1000	0.0924	
##	8	1.0496	nan	0.1000	0.0738	
##	9	1.0031	nan	0.1000	0.0558	
##	10	0.9669	nan	0.1000	0.0591	
##	20	0.7078	nan	0.1000	0.0486	
##	40	0.4526	nan	0.1000	0.0169	
##	60	0.3280	nan	0.1000	0.0062	
##	80	0.2451	nan	0.1000	0.0051	
##	100	0.1937	nan	0.1000	0.0029	
##	120	0.1528	nan	0.1000	0.0036	
##	140	0.1219	nan	0.1000	0.0010	
##	150	0.1104	nan	0.1000	0.0014	
##						
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.2435	
##	2	1.4555	nan	0.1000	0.1621	
##	3	1.3515	nan	0.1000	0.1331	

```
##
        4
                                               0.1000
                                                          0.1048
                  1.2678
                                       nan
        5
##
                  1.2021
                                       nan
                                                0.1000
                                                          0.0968
##
        6
                  1.1410
                                                0.1000
                                                          0.0887
                                       nan
        7
##
                                                          0.0785
                  1.0872
                                               0.1000
                                       nan
        8
##
                  1.0385
                                       nan
                                                0.1000
                                                          0.0599
##
        9
                  1.0014
                                               0.1000
                                                          0.0530
                                       nan
##
       10
                  0.9675
                                               0.1000
                                                          0.0468
                                       nan
##
       20
                  0.6883
                                       nan
                                               0.1000
                                                          0.0251
##
       40
                  0.4565
                                               0.1000
                                                          0.0099
                                       nan
##
       60
                  0.3321
                                               0.1000
                                                          0.0041
                                       nan
##
       80
                  0.2558
                                               0.1000
                                                          0.0046
                                       nan
##
      100
                  0.2016
                                               0.1000
                                                          0.0031
                                       nan
##
      120
                                               0.1000
                                                          0.0038
                  0.1576
                                       nan
##
      140
                  0.1264
                                                0.1000
                                                          0.0019
                                       nan
##
      150
                  0.1126
                                                0.1000
                                                          0.0020
                                       nan
GBM Model$finalModel
## A gradient boosted model with multinomial loss function.
## 150 iterations were performed.
## There were 53 predictors of which 53 had non-zero influence.
ii) The prediction
```

```
GBM_Prediction <- predict(GBM_Model, newdata=Test_Set)</pre>
GBM Conf Matrix <- confusionMatrix(factor(GBM Prediction),</pre>
factor(Test_Set$classe))
GBM_Conf_Matrix
## Confusion Matrix and Statistics
##
              Reference
##
## Prediction
                             C
                                  D
                                        Ε
                  Α
                        В
##
             A 1672
                      10
                                  0
                                        0
             В
                  1 1119
                             9
                                        1
##
                                  4
             C
##
                  0
                      10 1014
                                  8
                                        0
             D
                  1
                        0
                             3
##
                                950
                                        6
             Е
                             0
                                  2 1075
##
                  0
                       0
##
## Overall Statistics
##
##
                   Accuracy : 0.9907
##
                     95% CI: (0.9879, 0.993)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9882
##
    Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
```

```
##
##
                        Class: A Class: B Class: C Class: D Class: E
                                   0.9824
                                            0.9883
## Sensitivity
                          0.9988
                                                     0.9855
                                                              0.9935
## Specificity
                          0.9976
                                   0.9968
                                            0.9963
                                                     0.9980
                                                              0.9996
## Pos Pred Value
                                   0.9868
                                                              0.9981
                          0.9941
                                            0.9826
                                                     0.9896
## Neg Pred Value
                          0.9995
                                   0.9958
                                            0.9975
                                                     0.9972
                                                              0.9985
## Prevalence
                          0.2845
                                   0.1935
                                            0.1743
                                                     0.1638
                                                              0.1839
## Detection Rate
                          0.2841
                                   0.1901
                                            0.1723
                                                     0.1614
                                                              0.1827
## Detection Prevalence
                          0.2858
                                   0.1927
                                            0.1754
                                                     0.1631
                                                              0.1830
## Balanced Accuracy
                          0.9982
                                   0.9896
                                            0.9923
                                                     0.9917
                                                              0.9966
```

And, as predicted, the accuracy rate of GBM is less than the same of Random Forest model. Here, the out of sample error rate is very little, 0.0084.

V. Best Model Selection and its Validation on test_data

The three models used gave us the following accuracy rates: Decision Tree - 0.4773 Random Forest - 1 Generalized Boosted Model - 0.9891

So, we choose the model with highest accuracy rate which is Random Forest. And now we will validate and get results of the 20 observations of test_data via applying Random Forest Model.

```
Predict_Results <- predict(RF_Model, test_data)
Predict_Results
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E</pre>
```