Introduction of Storage Services, Hadoop & Mapreduce

Portions of this PPT draw from PPT authored by Professor Dijiang Huang at Arizona State University

Storage Services

ARIZONA STATE

File System Level

- Data and Files
 - · What is data?
 - Data is information that has been converted to a machine-readable, digital binary format.
 Control information indicates how data should be processed.

 - o Applications may embed control information in user data for formatting or
 - presentation.

 o Data and its associated control information is organized into discrete units as files or records.

 What is file?

 - Files are the common containers for user data, application code, and operating system executables and parameters.
 - Metadata
 - o The control information for file management is known as metadata.
 - File metadata includes file attributes and pointers to the location of file data content.

content.

o File metadata may be segregated from a file's data content.

o Metadata on file ownership and permissions is used in file access.

o File timestamp metadata facilitates automated processes such as backup and

Agenda

- Storage Services
- Concepts of Mapreduce/Hadoop
- Hadoop 2.0 and YARN
- References
 - "Data-Intensive Text Processing with MapReduce" by Jimmy Lin and Chris Dyer, University of Maryland, College Park
 - Internet

ARIZONA STATE

Introduction

- Common storage architecture :
 - DAS Direct Attached Storage
 - o Storage device was directly attached to a server or workstation, without a storage network in between.
 - NAS Network Attached Storage o File-level computer data storage
 - connected to a computer network providing data access to heterogeneous clients.
 - SAN Storage Area Network
 - o Attach remote storage devices to servers in such a way that the devices appear as locally attached to the operating system.

SAN

Application

DAS

Application

ARIZONA STATE

What To Be Virtualized

- Layers can be virtualized
 - · File system
 - o Provide compatible system call interface to user space applications.
 - Block device
 - o Provide compatible block device interface to file system. o Through the interface such as
 - SCSI (Small Computer System Interfaces)
 - SAS (Serial Attached SCSI) - ATA (a.k.a., IDE)
 - SATA (Serial ATA)

ARIZONA STATE

GFS: Assumptions

- Commodity hardware over "exotic" hardware
 - Scale "out", not "up"
- High component failure rates
 - · Inexpensive commodity components fail all the time
- "Modest" number of huge files
 - · Multi-gigabyte files are common, if not encouraged
- Files are write-once, mostly appended to
 - · Perhaps concurrently
- Large streaming reads over random access
 - High sustained throughput over low latency

ARIZONA STATE

GFS: Design Decisions

- Files stored as chunks
 - Fixed size (64MB)
- Reliability through replication
 - · Each chunk replicated across 3+ chunkservers
- · Single master to coordinate access, keep metadata
 - Simple centralized management
- No data caching
 - · Little benefit due to large datasets, streaming reads
- Simplify the API
 - Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

ARIZONA STATE

From GFS to HDFS

- Terminology differences:
 - GFS master = Hadoop namenode
 - GFS chunkservers = Hadoop datanodes
- Functional differences:
 - No file appends in HDFS (planned feature)
 - HDFS performance is (likely) slower

For the most part, we'll use the Hadoop terminology...

ARIZONA STATE UNIVERSITY

10

HDFS Architecture

Namenode Responsibilities

- Managing the file system namespace:
 - Holds file/directory structure, metadata, file-to-block mapping, access permissions, etc.
- Coordinating file operations:
 - Directs clients to datanodes for reads and writes
 - No data is moved through the namenode
- Maintaining overall health:
 - Periodic communication with the datanodes
 - · Block re-replication and rebalancing
 - Garbage collection

Putting everything together...

ARIZONA STATE UNIVERSITY

Ceph Design Goals

http://ceph.com/

- Ceph <u>replicates</u> data and makes it <u>fault-tolerant</u>, using <u>commodity hardware</u> and requiring no specific hardware support. As a result of its design, the system is both <u>self-healing</u> and <u>self-managing</u>, aiming to minimize administration time and other costs.
- Scalability
 - Storage capacity, throughput, client performance. Emphasis on HPC.
- Reliability
 - "...failures are the norm rather than the exception..."
- Performance
 - · Dynamic workloads

ARIZONA STATE

Object Based Storage: Separate the File

Object Based Storage: Create MetaData

System Overview

ASI ARIZONA STATE
UNIVERSITY
17

Key Features

- Decoupled data and metadata
 - CRUSH (Controlled Replication Under Scalable Hashing)
 - o It is an algorithm that determines how to store and retrieve data by computing data storage locations.
 - Files striped onto predictably named objects
 - CRUSH maps objects to storage devices
- Dynamic Distributed Metadata Management
 - Dynamic subtree partitioning
 - o Distributes metadata amongst MDSs
- Object-based storage
 - OSDs handle migration, replication, failure detection

ASSI ARREST TY

Client Operation

- Ceph interface
 - Nearly POSIX (Portable Operating System Interfaces)
 - · Decoupled data and metadata operation
- User space implementation
 - FUSE (File system in USErspace) or directly linked

ARIZONA STATE

Synchronization

- Adheres to POSIX
- Includes HPC oriented extensions
 - · Consistency / correctness by default
 - · Optionally relax constraints via extensions
 - · Extensions for both data and metadata
- Synchronous I/O used with multiple writers or mix of readers and writers

ARIZONA STATE

Distributed Object Storage

- Files are split across objects
- Objects are members of placement groups
- Placement groups are distributed across OSDs.

Client Access Example

- 1. Client sends open request to MDS
- 2. MDS returns capability, file inode, file size and stripe information
- 3. Client read/write directly from/to OSDs
- 4. MDS manages the capability
- 5. Client sends *close* request, relinquishes capability, provides details to MDS

ARIZONA STATE UNIVERSITY

Distributed Metadata

20

22

- "Metadata operations often make up as much as half of file system workloads..."
- MDSs use journaling
 - Repetitive metadata updates handled in memory
 - · Optimizes on-disk layout for read access
- Adaptively distributes cached metadata across a set of nodes

ARIZONA STATE UNIVERSITY

Separating Data and Metadata

- Data Distribution with CRUSH
 - In order to avoid imbalance (OSD idle, empty) or load asymmetries (hot data on new device).
 distributing new data randomly.
 - Use a simple hash function, Ceph maps objects to Placement groups (PGs). PGs are assigned to OSDs by CRUSH.

VASOL ORNORS SALE

CRUSH

- CRUSH(x) \rightarrow (osd_{n1}, osd_{n2}, osd_{n3})
 - Inputs
 - o x is the placement group
 - o Hierarchical cluster map
 - o Placement rules
 - Outputs a list of OSDs
- Advantages
 - · Anyone can calculate object location
 - · Cluster map infrequently updated

ARIZONA STATE

25

Dynamic Distributed Metadata Management

Dynamic Distributed Metadata Management

- Ceph utilizes a metadata cluster architecture based on Dynamic Subtree Partitioning. (workload balance)
- · Dynamic Subtree Partitioning
 - o Most FS ,use static subtree partitioning
 - →imbalance workloads.

 →simple hash function can get directory.
 - o Ceph's MDS cluster is based on a dynamic subtree partitioning. →balance

ARIZONA STATE

26

Replication

- Objects are replicated on OSDs within same PG
 - Client is oblivious to replication

ARIZONA STATE UNIVERSITY

Failure Detection and Recovery

- Down and Out
- Monitors check for intermittent problems
- New or recovered OSDs peer with other OSDs within PG

ARIZONA STATE

28

Related Links for Ceph

- OBFS: A File System for Object-based Storage Devices
 - ssrc.cse.ucsc.edu/Papers/wang-mss04b.pdf
- OSE
 - www.snia.org/tech_activities/workgroups/osd/
- Ceph Presentation
 - http://institutes.lanl.gov/science/institutes/current/ComputerScience/ISSDM-07-26-2006-Brandt-Talk.pdf

Acronyms of Ceph

- CRUSH: Controlled Replication Under Scalable Hashing
- EBOFS: Extent and B-tree based Object File System
- HPC: High Performance Computing
- MDS: MetaData server
- OSD: Object Storage Device
- PG: Placement Group
- POSIX: Portable Operating System Interface for uniX
- RADOS: Reliable Autonomic Distributed Object Store

ASSI ANY MARKETY 29 ASSI ANY MARKETY 30

Hadoop Terminology

Google calls it:	Hadoop equivalent:
MapReduce	Hadoop
GFS	HDFS
Bigtable	HBase
Chubby	Zookeeper

Mapreduce

ARIZONA STATE

ARIZONA STATE

What is MapReduce?

- Programming model for expressing distributed computations at a massive scale
- Execution framework for organizing and performing such computations
- Open-source implementation called Hadoop

Utility Computing

- What?
 - Computing resources as a metered service ("pay as you go")
- · Ability to dynamically provision virtual machines
- Why?
 - Cost: capital vs. operating expenses
 - Scalability: "infinite" capacity
 - Elasticity: scale up or down on demand
- Does it make sense?
 - Benefits to cloud users
 - · Business case for cloud providers

ARIZONA STATE

ARIZONA STATE

34

Cloud Resources

- Hadoop on your local machine
- Hadoop in a virtual machine on your local machine
- Hadoop in the Virtual Laboratory at CIDSE

ARIZONA STATI

(IBM Roadminer)

ARIZONA STATE UNIVERSITY

Divide and Conquer

ASSI MIZONA STATE

Common Theme?

- Parallelization problems arise from:
 - Communication between workers (e.g., to exchange state)
 - Access to shared resources (e.g., data)
- Thus, we need a synchronization mechanism

ARIZONA STATE

Programming models
Shared memory (pthreads)
Message passing (MPI)

- Design Patterns
 - Master-slaves
 - Producer-consumer flows

ASI ARIZONA STATE UNIVERSITY

Parallelization Challenges

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?

What is the common theme of all of these problems?

ARIZONA STATE

ASS. UNIVERSITY

Managing Multiple Workers

- Difficult because
 - · We don't know the order in which workers run
 - · We don't know when workers interrupt each other
 - · We don't know the order in which workers access shared data
- Thus, we need:
 - Semaphores (lock, unlock)
 - Conditional variables (wait, notify, broadcast)
 - Barriers
- Still, lots of problems:
 - Deadlock, livelock, race conditions...
 - Dining philosophers, sleeping barbers, cigarette smokers...
- Moral of the story: be careful!

ARIZONA STATI UNIVERSITY 40

Where the rubber meets the road

- Concurrency is difficult to reason about
- Concurrency is even more difficult to reason about
 - · At the scale of datacenters (even across datacenters)
 - · In the presence of failures
 - In terms of multiple interacting services
- Not to mention debugging...
- The reality:
 - · Lots of one-off solutions, custom code
 - · Write you own dedicated library, then program with it
 - $\bullet\;$ Burden on the programmer to explicitly manage everything

ARIZONA STATE UNIVERSITY 42

What's the point?

- It's all about the right level of abstraction
 - The von Neumann architecture has served us well, but is no longer appropriate for the multi-core/cluster environment
- Hide system-level details from the developers
 - · No more race conditions, lock contention, etc.
- Separating the what from how
 - · Developer specifies the computation that needs to be performed
 - · Execution framework ("runtime") handles actual execution

The datacenter is the computer!

ARIZONA STATE

MapReduce

ARIZONA STATE

AND UNIVERSITY

MapReduce

"Big Ideas"

- Scale "out", not "up"
 - · Limits of Symmetric Multiprocessing (SMP) and large shared-memory machines
- Move processing to the data
 - · Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

ARIZONA STATE

Typical Large-Data Problem

- Iterate over a large number of records
- Extract something of interest from each
- Shuffle and sort intermediate results

Map Aggregate intermediate results

- Generate final output

Reduce

44

Key idea: provide a functional abstraction for these two

ARIZONA STATI

MapReduce

- Programmers specify two functions:
 - $map (k_1, v_1) \rightarrow [(k_2, v_2)]$ **reduce** $(k_2, [v_2]) \rightarrow [(k_3, v_3)]$
 - All values with the same key are sent to the same
- The execution framework handles everything else...

ARIZONA STATE

MapReduce

ASI ARIZONA STATE

MapReduce

- Programmers specify two functions:
 - map $(k_1, v_1) \rightarrow [(k_2, v_2)]$ reduce $(k_2, [v_2]) \rightarrow [(k_3, v_3)]$
 - All values with the same key are sent to the same reducer
- The execution framework handles everything else...

What's "everything else"?

ASI ARIZONA STATE

MapReduce "Runtime"

- Handles scheduling
 - · Assigns workers to map and reduce tasks
- Handles "data distribution"
 - · Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed FS (later)

MapReduce

Programmers specify two functions:
 map (k₁, v₁) → [(k₂, v₂)]

reduce $(k_2, [v_2]) \rightarrow [(k_3, v_3)]$

- All values with the same key are reduced together
- The execution framework handles everything else...
- Not quite...usually, programmers also specify: partition (k₂, number of partitions) → partition for k₂
 - Often a simple hash of the key, e.g., hash(k₂) mod n
 - Divides up key space for parallel reduce operations combine (k₂, [v₂]) → [(k₃, v₃)]
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic

ARIZONA STATE

ARIZONA STATE

52

50

map map map 1 2 3 6 5 2 7 8 1 2 9 5 2 7 8 partition partition partition Shuffle and Sort: aggregate values by keys 1 5 2 7 2 8 8 8 reduce reduce reduce s₁ s₂ s₃

Two more details...

- Barrier between map and reduce phases
 - But we can begin copying intermediate data earlier
- Keys arrive at each reducer in sorted order
 - No enforced ordering across reducers

ASSI ARIZONA STATE

"Hello World": Word Count

Map(String docid, String text): for each word w in text: Emit(w, 1):

Reduce(String term, Iterator<Int> values): int sum = 0; for each v in values: sum += v; Emit(term, value);

MapReduce can refer to...

- The programming model
- The execution framework (aka "runtime")
- The specific implementation

ARIZONA STATE

55

ARIZONA STATE

MapReduce Implementations

- Google has a proprietary implementation in C++
 - Bindings in Java, Python
- Hadoop is an open-source implementation in Java
 - Development led by Yahoo, used in production
 - · Now an Apache project
 - Rapidly expanding software ecosystem
- Lots of custom research implementations
 - For GPUs, cell processors, etc.

| Californ | Californ

ARIZONA STATE

ARIZONA STATE

Atherica from (D. U.S. IVERNA)

How do we get data to the workers?

ARIZONA STATE

Distributed File System

- Don't move data to workers... move workers to the data!
 - Store data on the local disks of nodes in the cluster
 - Start up the workers on the node that has the data local
- Why?
 - Not enough RAM to hold all the data in memory
 - · Disk access is slow, but disk throughput is reasonable
- A distributed file system is the answer
 - GFS (Google File System) for Google's MapReduce
 - HDFS (Hadoop Distributed File System) for Hadoop

ASI ARIZONA STATE
UNIVERSITY

60

Recap

- Why large data?
- Cloud computing and MapReduce
- Large-data processing: "big ideas"
- What is MapReduce?
- Importance of the underlying distributed file system

Hadoop 2.0 and YARN

ARIZONA STATE

YARN

- Yet Another Resource Negotiator
- YARN Application Resource Negotiator (Recursive Acronym)
- Remedies the scalability shortcomings of "classic" MapReduce
- Is more of a general purpose framework of which classic mapreduce is one application.

ARIZONA STATE
UNIVERSITY
63

Hadoop MapReduce Classic JobTracker - Manages cluster resources and job scheduling TaskTracker - Per-node agent - Manage tasks

ASI ARIZONA STATE
UNIVERSITY
6

MapReduce Limitations

- Scalability
 - Maximum Cluster Size 4000 Nodes
 - ❖Maximum Concurrent Tasks 40000
 - *Coarse synchronization in Job Tracker
- ❖Single point of failure
 - Failure kills all queued and running jobs
 - Jobs need to be resubmitted by users
- Restart is very tricky due to complex state

YARN

- Splits up the two major functions of JobTracker
 - $\ \, {}^{\mbox{$\star$}}$ Global Resource Manager Cluster resource management
 - Application Master Job scheduling and monitoring (one per application). The Application Master negotiates resource containers from the Scheduler, tracking their status and monitoring for progress. Application Master itself runs as a normal container.
- * Tasktracker
 - NodeManager (NM) A new per-node slave is responsible for launching the applications' containers, monitoring their resource usage (cpu, memory, disk, network) and reporting to the Resource Manager.
- YARN maintains compatibility with existing MapReduce applications and users.

ASI ARIZONA STATE
UNIMERSITY
66

ASS ARIZONA STATE

YARN - Architectural Overview

Scalability - Clusters of 6,000-10,000 machines

- Each machine with 16 cores, 48G/96G RAM, 24TB/36TB disks
- 100,000+ concurrent tasks
- 10,000 concurrent jobs

ARIZONA STATE

Rolling upgrades

ARIZONA STATE

Classic MapReduce vs. YARN

- Support for programming paradigms other than MapReduce (Multi tenancy)
 - Tez Generic framework to run a complex DAG
 - HBase on YARN(HOYA)
 - ❖Machine Learning: Spark
 - Graph processing: Giraph
 - ❖Real-time processing: Storm
 - Enabled by allowing the use of paradigmspecific application master
- Run all on the same Hadoop cluster!

Storm on YARN

Classic MapReduce vs. YARN

No single point of failure – state saved in ZooKeeper

Optional failover via application-specific checkpoint

 MapReduce applications pick up where they left off via state saved in HDFS

Application Masters are restarted automatically on RM

Fault Tolerance and Availability

Protocols are wire-compatibleOld clients can talk to new servers

❖Resource Manager

Application Master

❖Wire Compatibility

- Motivations
 - Collocating real-time processing with batch processing
 - Provides a huge potential for elasticity.
 - Reduces network transfer rates by moving storm closer to Mapreduce.

ARIZONA STATE

70

Storm on YARN @Yahoo

ARIZONA STATE

Storm on YARN @Yahoo

- Yahoo enhanced Storm to support Hadoop style security mechanisms
- Storm is being integrated into Hadoop YARN for resource management.
- Storm-on-YARN enables Storm applications to utilize the computational resources in our tens of thousands of Hadoop computation nodes.
- YARN is used to launch the Storm application master (Nimbus) on demand, and enables Nimbus to request resources for Storm application slaves (Supervisors).

ARIZONA STATE

Tez on YARN

- * Hindi for speed
- Currently in development
- Provides a general-purpose, highly customizable framework that creates simplifies data-processing tasks across both small scale (low-latency) and large-scale (high throughput) workloads in Hadoop.
- Generalizes the MapReduce paradigm to a more powerful framework by providing the ability to execute a complex DAG
- Enables Apache Hive, Apache Pig and Cascading can meet requirements for human-interactive response times and extreme throughput at petabyte

S A A S CON A STATE UNIVERSITY 73

Tez on YARN

74

ARIZONA STATE

Tez on YARN

- ❖Performance gains over Mapreduce
 - Eliminates replicated write barrier between successive computations
 - Eliminates job launch overhead of workflow jobs
 - Eliminates extra stage of map reads in every workflow job
 - Eliminates queue and resource contention suffered by workflow jobs that are started after a predecessor job completes

ARIZONA STATE

Tez on YARN

- **❖**Is part of the Stinger Initiative
- Should be deployed as part of Phase2

ASI VARIZONA STATE UNIVERSITY

HBase on YARN(HOYA)

- Currently in prototype
- Be able to create on-demand HBase clusters easily by and or in apps
 - With different versions of HBase potentially (for testing etc.)
- Be able to configure different HBase instances differently
 - For example, different configs for read/write workload instances
- * Better isolation
 - Run arbitrary co-processors in user's private cluster
 - User will own the data that the HBase daemons create

HBase on YARN(HOYA)

- MR jobs should find it simple to create (transient) HBase clusters
 - For Map-side joins where table data is all in HBase, for example
- Elasticity of clusters for analytic / batch workload processing
 - Stop / Suspend / Resume clusters as needed
 - Expand / shrink clusters as needed
- Be able to utilize cluster resources better
 - Run MR jobs while maintaining HBase's low latency SLAs

7ASI MINORENTA 77 /ASI MINORENTA 78

Classic MapReduce vs. YARN

Multi-tenancy, being able to run multiple paradigms simultaneously is a big plus.

Hadoop 2.0

- So Hadoop 2.0 includes YARN, High Availability and Federation
- High Availability takes away the Single Point of failure from namenode and introduces the concept of the QuorumJournalNodes to sync edit logs between active and standby namenodes
- Federation allows multiple independent namespaces(private namespaces, or hadoop as a service)

7.5.1 GINTORIAN 79 /AS-1 GINTORIAN 80