Assignment -2

Assignment Date	17 September 2022
Team ID	PNT2022TMID38850
Project Name	EMERGING METHODS FOR EARLY
	DETECTION OF FOREST FIRES
Student Name	Aswathaman.J
Student Roll Number	421219104002
Maximum Marks	2 Marks

IMPORT LIBRARIES

import numpy as np import pandas as pd import matplotlib.pyplot as pltimport seaborn as sns

LOADING THE DATASET

 $df = pd.read_csv('Churn_Modelling.csv', encoding='latin-1')df$

	RowNumber	CustomerId	Surname	CreditScor	e Geography	Gender
Age 0	1	15634602	Hargrave	61	9 France	Female
42 1 41	2	15647311	Hill	60	8 Spain	Female
2 42	3	15619304	Onio	50	2 France	Female
3 39	4	15701354	Boni	69	9 France	Female
4	5	15737888	Mitchell	85	0 Spain	Female
43		•••				
 9995	9996	15606229	Obijiaku	77	1 France	Male
39 9996	9997	15569892	Johnstone	51	6 France	Male
35 9997	9998	15584532	Liu	70	9 France	Female
36 9998	9999	15682355	Sabbatini	77	2 Germany	Male
42 9999 28	10000	15628319	Walker	79	2 France	Female
	Tenure	Balance Nu	mOfProducts	HasCrCard	IsActiveMember	. \
0	2	0.00	1	1		1
1	1 8	33807.86	1	0		1
2	8 15	59660.80	3	1		0
3	1	0.00	2	0		0
4	2 12	25510.82	1	1		1
 9995	 5	0.00	2	1		0

9996 10 57369.61 1 1

9997	7	0.00	1	0	1
9998	3	75075.31	2	1	0
9999	4	130142.79	1	1	0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
	•••	
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

VISUALIZATIONS

#visualization of categorical features

```
fig, ax = plt.subplots(3, 2, figsize = (15, 12))plt.title("Visualization") sns.countplot('Geography', hue = 'Exited', data = df, ax = ax[0][0],palette='spring') sns.countplot('Gender', hue = 'Exited', data = df, ax = ax[0][1],palette='spring') sns.countplot('Tenure', hue = 'Exited', data = df, ax = ax[1][0],palette='spring') sns.countplot('NumOfProducts', hue = 'Exited', data = df, ax = ax[1][1],palette='spring') sns.countplot('HasCrCard', hue = 'Exited', data = df, ax = ax[2][0],palette='spring') sns.countplot('IsActiveMember', hue = 'Exited', data = df, ax = ax[2][1],palette='spring')
```

```
ax[0][0].set_title('Count Plot of Geography',color='red',fontsize=15)ax[0][1].set_title('Count Plot of Gender',color='red',fontsize=15) ax[1][0].set_title('Count Plot of Tenure',color='red',fontsize=15) ax[1][1].set_title('Count Plot of NumOfProducts',color='red',fontsize=15) ax[2][0].set_title('Count Plot of HasCrCard',color='red',fontsize=15)ax[2][1].set_title('Count Plot of IsActiveMember',color='red',fontsize=15)
```

plt.tight_layout()plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation.

FutureWarning

DESCRIPTIVE STATISTICS

df.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember int64F	EstimatedSalary
float64Exited	int64
dtype: object	

$$\label{eq:condition} \begin{split} df_num &= df[['RowNumber', 'Tenure', 'CustomerId', 'CreditScore', 'Age', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'Exited']] \end{split}$$

 $df_cat = df[['Surname', 'Geography', 'Gender']]df_num.head()$

	RowNumber Tenure C	ustom	erId CreditScore Age Num	OfProduct	tsHasCrCard \	
0	1	2	15634602	619	42	1
1						
1	2	1	15647311	608	41	1
0						
2	3	8	15619304	502	42	3
1						
3	4	1	15701354	699	39	2
0						
4	5	2	15737888	850	43	1
1						
	IsActiveMember	Exite	ed			
0	1		1			
1	1		0			
2	0		1			
3	0		0			
4	1		0			

df_cat.head()

Surname Geography Gender

0	Hargrave	France Female
1	Hill	Spain Female
2	Onio	France Female
3	Boni	France Female
4	Mitchell	Spain Female

df_num.describe()

	RowNumber	Tenure	CustomerId	CreditScore
$Age \setminus$				
count 100	000.00000 10000.000	0000 1.000000e+	-04 10000.000000	
10000.00	0000			
mean	5000.50000	5.012800	1.569094e+07	650.528800
38.92180	0			
std	2886.89568	2.892174	7.193619e+04	96.653299
10.48780	~			
min	1.00000	0.000000	1.556570e+07	350.000000
18.00000	0			
25%	2500.75000	3.000000	1.562853e+07	584.000000
32.00000	0			
50%	5000.50000	5.000000	1.569074e+07	652.000000
37.00000	0			
75%	7500.25000	7.000000	1.575323e+07	718.000000
44.00000	0			
max	10000.00000	10.000000	1.581569e+07	850.000000

92.000000

	NumOfProducts	HasCrCard	IsActiveMember	Exited
count	10000.000000	10000.00000	10000.000000	10000.000000
mean	1.530200	0.70550	0.515100	0.203700
std	0.581654	0.45584	0.499797	0.402769
min	1.000000	0.00000	0.000000	0.000000
25%	1.000000	0.00000	0.000000	0.000000
50%	1.000000	1.00000	1.000000	0.000000
75%	2.000000	1.00000	1.000000	0.000000
max	4.000000	1.00000	1.000000	1.000000

df_cat.describe(exclude = ['int64','float64'])Surname Geography Gender

count 10000 10000 10000
unique 2932 3 2
top Smith France Male
###NDLE THE MASS ING VALU S 5457

Column Missing values

RowNumber 0
CustomerId 0

Surname 0 CreditScore 0 Geography 0 Gender 0 Age 0 Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited 0

dtype: int64

print(f"Our target variable is Exited. We can observe that it has onlytwo possible variables: {df['Exited'].unique().tolist()}")

Our target variable is Exited. We can observe that it has only twopossible variables: [1, 0] df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=True)

df.rename(columns=new_names, inplace=True)df.head()

	credit_score		country	gender	age	tenure	balance
	nber_products		\				
0		619	France	Female	42	2	0.00
1							
1		608	Spain	Female	41	1	83807.86
1			•				
2		502	France	Female	42	8	159660.80
3							
3		699	France	Female	39	1	0.00
2		0))	Trance	1 Ciliaic	3)	1	0.00
_		050	C :	F1-	12	2	125510.02
4		850	Spain	Female	43	2	125510.82
1							

	owns_credit_card	is_active_member	estimated_salary exite	d0	1
		1	101348.88	1	
1		0	1	112542.58	0
2		1	0	113931.57	1
3		0	0	93826.63	0
4		1	1	79084.10	0

REPLACE OUTLIERS

```
def detect_outlier(df):
    outlier = [] threshold =
    3 mean = np.mean(df)std =
    np.std(df) for i in df:
        z_score = (i - mean)/std
    if np.abs(z_score)>threshold:
        outlier.append(i)
    return outlier
    CreditScore_list = df['CreditScore'].tolist()Balance_list =
    df['Balance'].tolist()
```

```
EstimatedSalary_list = df_cat['EstimatedSalary'].tolist()CreditScore_outlier =
 detect_outlier(CreditScore_list) CreditScore_outlier
 Output-[359, 350, 350, 358, 351, 350, 350, 350]
 Balance_outlier = detect_outlier(Balance_list)Balance_outlier
 EstimatedSalary_outlier = detect_outlier(EstimatedSalary_list)
 EstimatedSalary_outlier
print("Shape of Data before removing outliers: { }".format(df.shape))Shape of Data before removing
outliers: (10000, 11)
ENCODING
# Encoding Categorical variables into numerical variables# One Hot Encoding
x = pd.get\_dummies(x)x.head()
x.shape
(10000, 13)
SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES
# splitting the dataset into x(independent variables) and y(dependent variables)
x = df.iloc[:,0:10]
y = df.iloc[:,10]
print(x.shape)
```

print(x.columns) #print(y)

print(y.shape)

(10000, 10) (10000,)

Index(['credit_score', 'country', 'gender', 'age', 'tenure', 'balance',

'number_products', 'owns_credit_card', 'is_active_member','estimated_salary'], dtype='object')

SCALE THE INDEPENDENT VARIABLES

from sklearn.preprocessing import StandardScalersc = StandardScaler()

$x_{train} = pd.DataFrame(x_{train})$ $x_{train.head}()$

	-	count	ry gender	age tenure		balance
2967 3	_products \	579	Germany	Female	39	5 117833.30
3 700 2		750	France	Female	32	5 0.00
3481 2		729	Spain	Female	34	9 53299.96
1621		689	Spain	Male	38	5 75075.14
1 800		605	France	Male	52	7 0.00
2						
	owns_credit_	_card	is_ac	ctive_member		estimated_salary
2967			0		0	5831.00
700			1		0	95611.47
3481			1		1	42855.97
1621			1		1	8651.92
800			1		1	173952.50

SPLIT THE DATA INTO TRAINING AND TESTING

splitting the data into training and testing set

(2500, 10) (2500,)

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =0.25, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)

(7500, 10)
(7500,)
```