

Recursive Partitioning

Practical Machine Learning (with R)

UC Berkeley

LOGISTIC METHODS

Advantages

- ∍...
- €...

Disadvantages

- ∍...
- Э.,
- ⇒ ...

LINEAR METHODS: LIMITATIONS

Advantages

- Interpretable
- Easy to train

Disadvantages

- Logistic regression: multiclass problems
- Highly sensitive to inputs
- Linear functions → inflexible: do not model real data well

Partition Goal:

PARTITION INPUT SO THAT THE RESULTING SMALLER GROUPS ARE MORE HOMOGENEOUS THAN THE PARENT.

PROCEDURE

parallel) to split the data into two subsets, such that the subsets are more alike than there parents

- 1. In each resulting subset ("node", "leaf") find the best univariate split, but only split the best one of these.
- 2. Repeat until stopping condition is met.

A Simple Example

Partitioning Requirements

- Restricted Class of Functions:
 - First order propositional logic (for partitions)
 - Aggregation (for outcomes)
- Error Methods
 - Normal error calculations
- Search Methods
 - Recursive Partitioning

A Simple Example

Partitioning Requirements

- Restricted Class of Functions
 - First Order Propositional Logic (for partitions)
 - Aggregation (for outcomes)
- Error Methods
 - Standard Error Methods
 - Regression: SSE, etc.
 - Class.: Misclassification Rate, etc
- Search Methods
 - Recursion and Exhaustive

SOME NOTES

Splitting by planes is the same as a tree

Partitions define a rule*

Rules can be associated with outcomes -> aggregation method

Trees always partition "all of of space"

Splitting on Categorical Variable

- Select "metric"
- For each categorical variable
 - Find $argmin_{s \in S}(\sum_{S_i} err_i)$, i = 1...2
- \circ Calculate: $\sum_{S_i} err_i$

- Information Gain
- Gini index (Class)

TREATMENT OF CATEGORICAL VARIABLES

- Grouped Categories
 - Value treated as related

- Independent Categories
 - Values Treated as Independent

Entropy (Two-Class Classification)

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2(p_i)$$

$$p_1 + p_2 = 1$$

Entropy for node:

$$-p_1 \log_2(p_1) - p_2 \log_2(p_2)$$

Information Gain / Criteria

Change in Entropy of the System:

$$InfoGain = Entropy(S_1) - Entropy(S_2)$$

Change in system must consider all existing states. Splitting introduces an additional node.

$$Entropy(S) = \sum_{i=1}^{n} \omega_i Entropy(P_i)$$

 $\omega_i := node \ weight$ (proportion of observations in node)

Gini Index (Two-Class Classification)

Measure node purity:

$$p_1(1-p_1) + p_2(1-p_2)$$

For two class:

$$p_1 + p_2 = 1$$

$$2p_{1}p_{2}$$

Minimize:

$$Gini(S) = \sum_{i=1}^{n} \omega_i 2p_1 p_2$$

SPLITTING ON CONTINUOUS VARIABLE

- Determine Metric
- Order data
 - If metric is a "cumulative" function calculate as cumulative function:

e.g.
$$FPR = cumsum(FP)/cumsum(TN + FP)$$

 Otherwise calculate at all possible split points or subset of split points

$$argmin_{x=n}(\sum_{i=1...2}err_i)$$

data

Choose the split that minimizes the error $argmin_S(Error)$

Ordinal							
Categorical			Continuous				
K1	K2	К3	V1	V2	V3	V4	V5
E _{K1}	E _{K2}	E _{K3}	E _{V1}	E _{V2}	E _{V3}	E _{V4}	E _{V5}

Choose the split that minimizes the error $argmin_S(Error)$

REPEAT WITH S1 AND S2

* Very often predictor will be used again.

MISSING DATA

- Missing values in predictors are common
- A split determines which observations go to the LHS and RHS. How to Handle Nas?

- ⇒ NA_Categorical
 - Treat as separate category

- NA (in general)
 - Use Surrogate Splits

SURROGATE SPLITS

- Tree is built ignoring missing data
 - Any record with incomplete data (response or predictor) is rejected -or-
 - Missing data is rejected from determined the split
- > Variables are often collinear → splits are similar and send variables down the same path.
 - Choose a surrogate split that best approximates the chosen split (accuracy)
 - Very often this is also a good split.

Tree Method Advantages I

- Highly interpretable
- Predict easy to implement (even in SQL)
- Handle many predictors (sparse, skewed, continuous, categorical) --> little need to pre-process them
- Non-parametric: do not require specification of predictor-response relationship

Tree Method Advantages I

- Inherent method for handling missing data
- Trees insensitive to monotonic (orderpreserving) transformation of inputs
 - 2*x
 - No use in scaling and centering
- Intrinsic feature selection
- Computational simple and quick

TREE DISADVANTAGES

- High Model Variance(sensitive to data)
 - Derives from each subsequent split is dependent on prior splits
- Less than optimal predictive performance
 - Rectangular regions!!!
- Limited number of outcome values
- Selection bias toward predictors with higher number of distinct values

Tuning parameter, C_n

TREE VARIANTS

There are many tree variants

• Tweaks

- change how splits are determined? How many splits?
- when to stop growing the tree
- how the node value is determined

Now Adapt to Regression

APPENDIX

Linear Models

