Campaign response model

```
print('min',df_transactions['trans_date'].min())
print('max',df_transactions['trans_date'].max())

min 2013-03-17 00:00:00
max 2015-03-16 00:00:00
Data cover 3 year period
```

11 features are used

- Recency days from last purchase
- Frequency_2y number of transaction over the last 2 years
- monetary_value_2y amount purchased over the last 2 years
- median_purchase_2y median purchase over the last 2 years
- std_amount_2y standard deviation of amount purchase over the last 2 years
- frequency_1y frequency of purchase over 1 year
- Freq_Q2 portion of frequency in Q2 over the last 2 years
- Freq_Q3 portion of frequency in Q3 over the last 2 years
- Freq_Q4 portion of frequency in Q4 over the last 2 years
- last_purchase last purchase amount
- days_between_trans average days between transactions

Data preparation & feature engineering

```
#Time between purchase (days)
df trans2 = df transactions.copv()
df trans2.sort values(['customer id','trans date'],inplace=True)
df trans2['previous trans date'] = df trans2.groupby(['customer id'])['trans date'].shift(1)
df trans2= df trans2[~(df trans2['previous trans date'].isna())]
df trans2['days between trans'] = df trans2['trans date']-df trans2['previous trans date']
df trans2['days between trans'].astype('timedelta64[D]')
df_trans2['days_between_trans']=df_trans2['days_between_trans'] / np.timedelta64(1, 'D')
df_tbp = df_trans2.groupby(['customer_id']).agg({'days_between_trans': lambda x: x.mean()}).reset_index()
df tbp.rename(columns={'days between trans':'days between trans'},inplace=True)
df trans3 = df transactions.copy()
df trans3.sort values(['customer_id', 'trans_date'], inplace=True)
df_trans3['rank']=df_trans3.groupby('customer_id')['trans_date'].rank(method='dense',ascending=False)
df trans3 = df trans3[df trans3['rank']==1]
df trans3.rename(columns={'tran amount':'last purchase'},inplace=True)
df trans3 = df trans3[['customer id','last purchase']]
df trans3 = df trans3.groupby('customer id').sum().reset index()
#Trans Quarter
df transq = df transactions.copy()
df transq['Quarter'] = df transq['trans date'].dt.quarter
df_transqt = df_transq.groupby(['customer_id','Quarter']).agg({'tran_amount':'sum','recent':'count'}).reset index()
df_transqt.rename(columns={'recent':'Freq'},inplace=True)
df transqt=df transqt.pivot(index='customer id',columns='Quarter',values=['Freq'])
df transqt.index.name = 'customer id'
df transqt.columns = ['%s%s' % (a, '0%s' % b if b else '') for a, b in df transqt.columns]
df transqt.reset index(inplace=True)
df transqt.drop(['Freq 01'],axis=1,inplace=True)
df transqt.fillna(0,inplace=True)
```

Data preparation & feature engineering

```
## create data set with RFM variables
df transactions = df transactions[df transactions['trans date']>=dt.datetime(2013,3,17)]
df rfm1 = df transactions.groupby('customer id').agg({'recent': lambda x:x.min(),
                                                                                                       # Recency
                                                      'customer id': lambda x: len(x),
                                                                                                      # Frequency
                                                     'tran amount': lambda x: x.sum()}) # Monetary Value
df rfm1.rename(columns={'recent': 'recency',
                         'customer id': 'frequency 2v'.
                         'tran amount': 'monetary value 2y'}, inplace=True)
df_rfm1.reset_index(inplace=True)
df rfm2 = df transactions.groupby('customer id').agg({'tran amount':lambda x: x.mean()}).reset index()
df rfm2.rename(columns={'tran amount':'median purchase 2y'}, inplace=True)
df rfm3 = df transactions.groupby('customer id').agg({'tran amount':lambda x: x.std()}).reset index()
df rfm3.rename(columns={'tran amount':'std amount 2y'}, inplace=True)
df rfm3.fillna(0,inplace=True)
```

```
## create data set with RFM variables 1yr
df_transaction_1y = df_transactions.copy()
df_transaction_1y = df_transaction_1y[df_transaction_1y['trans_date']>=dt.datetime(2014,3,17)]
df_rfm_1y = df_transaction_1y.groupby('customer_id').agg({'customer_id': lambda x: len(x)})
df_rfm_1y.rename(columns={'customer_id': 'frequency_1y'}, inplace=True)

#Merge data
df_rfm_1y.reset_index(inplace=True)

#Merge data
df_rfm = pd.merge(df_rfm1,df_rfm2)
df_rfm = pd.merge(df_rfm,df_rfm3)
df_rfm = pd.merge(df_rfm,df_rfm_1y)
df_rfm = pd.merge(df_rfm,df_transqt)
df_rfm = pd.merge(df_rfm,df_transqt)
df_rfm = pd.merge(df_rfm,df_trans3)
df_rfm.head()
```

Data preparation & feature engineering

```
## merging two data sets

df_modeling1 = pd.merge(df_response,df_rfm)

df_modeling = pd.merge(df_modeling1,df_tbp)

df_modeling['Freq_Q2'] = df_modeling['Freq_Q2']/df_modeling['frequency_2y']

df_modeling['Freq_Q3'] = df_modeling['Freq_Q3']/df_modeling['frequency_2y']

df_modeling['Freq_Q4'] = df_modeling['Freq_Q4']/df_modeling['frequency_2y']

df_modeling['last_purchase'] = df_modeling['last_purchase']/df_modeling['monetary_value_2y']

df_modeling.head()
```

recenc	frequency_2y	monetary_value_2y	median_purchase_2y	etd_amount_2y	frequency_1y	Freq_Q2	Freq_Q3	Freq_Q4	last_purchase	days_between_trans
62.	6	358	59.666667	20.235283	4	0.666667	0.833333	0.666667	0.108939	93.500000
36.0	11	775	70.454545	23.888757	6	0.454545	0.454545	0.363636	0.227097	71.263158
33.0	11	804	73.090909	24.010225	5	0.181818	0.818182	0.363636	0.098259	72.722222
12.	11	831	75.545455	15.577956	3	0.545455	0.454545	0.272727	0.066185	62.047619
204.0	5	333	66.600000	25.234896	4	0.800000	1.000000	0.000000	0.270270	96.250000

Correlation heatmap

^{**}There might be a problem in monetary_2y & frequency_2y where correlation=0.93 (multi collinearity) but both are important feature so I will keep it in the model

Result using logistic regression

Undersampled

test set				
	precision	recall	f1-score	support
0	0.97	0.68	0.80	1844
1	0.20	0.79	0.32	191
accuracy			0.69	2035
macro avg	0.59	0.73	0.56	2035
weighted avg	0.90	0.69	0.75	2035

Oversampled

test set				
	precision	recall	f1-score	support
0	0.97	0.67	0.79	1844
1	0.20	0.80	0.32	191
			0.60	2025
accuracy	0.50	0.73	0.68	2035
macro avg	0.58	0.73	0.55	2035
weighted avg	0.90	0.68	0.75	2035

Smote

test set	precision	recall	f1-score	support
0 1	0.95 0.19	0.71 0.66	0.82 0.30	1844 191
accuracy macro avg weighted avg	0.57 0.88	0.69 0.71	0.71 0.56 0.77	2035 2035 2035

Result using XGBoost - logistic regression

Undersampled

test set	precision	recall	f1-score	support
0 1	0.97 0.20	0.67 0.79	0.79 0.32	1844 191
accuracy macro avg weighted avg	0.58 0.90	0.73 0.68	0.68 0.56 0.75	2035 2035 2035

Oversampled

Smote

test set				
	precision	recall	f1-score	support
0	0.97	0.64	0.77	1844
1	0.19	0.83	0.31	191
accuracy			0.66	2035
macro avg	0.58	0.73	0.54	2035
weighted avg	0.90	0.66	0.73	2035
L				,

Improvement from original result

F1-score increase from 0.69 to 0.74 AUC for test set increase from 0.74 to 0.81

Original-XGBoost Smote

test set				
	precision	recall	f1-score	support
0	0.95	0.60	0.74	1848
1	0.18	0.74	0.29	218
accuracy			0.62	2066
macro avg	0.57	0.67	0.51	2066
weighted avg	0.87	0.62	0.69	2066

Best result- XGBoost Oversampling

