Welcome To Math 34A! Differential Calculus

Instructor:

Trevor Klar, trevorklar@math.ucsb.edu South Hall 6431X (Grad Tower, 6th floor, blue side, first door on the right)

Office Hours:

MTWR after class 2:00-3:00, and by appointment. Details on Gauchospace.

© 2017-22 Daryl Cooper, Peter Garfield, Ebrahim Ebrahim, Nathan Schley, and Trevor Klar Please do not distribute outside of this course.

$\mathop{\mathrm{Review}}_{\bullet \circ}$

$\mathop{\mathrm{Review}}_{\bullet \circ}$

Point:

$$f''(x) > 0 \iff f'(x) \text{ is increasing}$$
 $\iff f(x) \text{ is concave up}$
 $f''(x) < 0 \iff f'(x) \text{ is decreasing}$
 $\iff f(x) \text{ is concave down}$

$$f''(x) > 0 \iff f(x)$$
 is concave up $f''(x) < 0 \iff f(x)$ is concave down

(1) For which values of x is $f(x) = x^3 - 6x^2 + 3x + 2$ concave up? A when x = 0 B when x < 6 C when x > 6

D when x < 2 E when x > 2

$$f''(x) > 0 \iff f(x)$$
 is concave up $f''(x) < 0 \iff f(x)$ is concave down

D when x < 2 E when x > 2 E

(1) For which values of x is $f(x) = x^3 - 6x^2 + 3x + 2$ concave up? A when x = 0 B when x < 6 C when x > 6

July 25, 2022: Calculus Intro

$$f''(x) > 0 \iff f(x)$$
 is concave up $f''(x) < 0 \iff f(x)$ is concave down

(1) For which values of x is $f(x) = x^3 - 6x^2 + 3x + 2$ concave up?

A when x = 0 B when x < 6 C when x > 6D when x < 2 E when x > 2 E

(2) Where is f''(x) > 0?

A when x < 2 B when x > 2 C when x < 1D when x > 1 E when -0.7 < x < 1

$$f''(x) > 0 \iff f(x)$$
 is concave up $f''(x) < 0 \iff f(x)$ is concave down

(1) For which values of x is $f(x) = x^3 - 6x^2 + 3x + 2$ concave up?

A when x = 0 B when x < 6 C when x > 6D when x < 2 E when x > 2 E

(2) Where is f''(x) > 0?

§8.13: Max/Min problems

Often want to find the biggest, smallest, most, least, maximum, minimum of something.

Here's the graph of
$$y = f(x) = -x^2 + 4x + 3$$

§8.13: Max/Min problems

Often want to find the biggest, smallest, most, least, maximum, minimum of something.

Here's the graph of
$$y = f(x) = -x^2 + 4x + 3$$

The <u>maximum value</u> or just maximum of the function is 7.

Often want to find the biggest, smallest, most, least, maximum, minimum of something.

Here's the graph of
$$y = f(x) = -x^2 + 4x + 3$$

The $\underline{\text{maximum}}$ value or just $\underline{\text{maximum}}$ of the function is 7.

The value of x which gives the maximum of f(x) is x = 2

Often want to find the biggest, smallest, most, least, maximum, minimum of something.

Here's the graph of
$$y = f(x) = -x^2 + 4x + 3$$

The maximum value or just maximum of the function is 7.

The value of x which gives the maximum of f(x) is x=2

We write f(2) = 7.

Often want to find the biggest, smallest, most, least, maximum, minimum of something.

Here's the graph of
$$y = f(x) = -x^2 + 4x + 3$$

The $\underline{\text{maximum}}$ value or just $\underline{\text{maximum}}$ of the function is 7.

The value of x which gives the maximum of f(x) is x = 2

We write f(2) = 7.

For this example you can see this is the maximum because

$$f(x) = -x^2 + 4x + 3 = -(x - 2)^2 + 7$$

 $(x-2)^2$ is always positive except when x=2

so the maximum must be at x = 2.

How To Find A Max / Min

(1) Find f'(x)

Max / Min Review

- (2) Solve f'(x) = 0. This is the x value that gives the max
- (3) To find the maximum / minimum plug the value of xfound in (2) back into f(x).

How To Find A Max / Min

- (1) Find f'(x)
 (2) Solve f'(x) = 0. This is the x value that gives the max / min.
- (3) To find the maximum / minimum plug the value of x found in (2) back into f(x).

Example: Use this method to find the x-value where maximum of the function $f(x) = 5x - e^{2x}$ occurs.

$$A = 0$$
 $B = ln(5)$ $C = 2 ln(5)$ $D = 2 ln(5/2)$ $E = ln(5/2)/2$

How To Find A Max / Min

Max / Min Review

- (1) Find f'(x)
 (2) Solve f'(x) = 0. This is the x value that gives the max / min.
- (3) To find the maximum / minimum plug the value of x found in (2) back into f(x).

Example: Use this method to find the x-value where maximum of the function $f(x) = 5x - e^{2x}$ occurs.

$$A = 0$$
 $B = \ln(5)$ $C = 2\ln(5)$ $D = 2\ln(5/2)$ $E = \ln(5/2)/2$

Answer: E

A ball is thrown into the air. After t seconds the height in meters above the ground of the ball is $h(t) = 40t - 10t^2$. How many meters high did the ball go?

$$A = 2$$
 $B = 40 - 20t$ $C = 20$ $D = 40$

A ball is thrown into the air. After t seconds the height in meters above the ground of the ball is $h(t) = 40t - 10t^2$. How many meters high did the ball go?

$$A = 2$$
 $B = 40 - 20t$ $C = 20$ $D = 40$ D

If an airline sells tickets at a price of \$200 + 5x each the number of tickets it sells is 1000 - 20x. What price should the tickets be if the airline wants to get the most money?

$$A = 5$$
 $B = 25$ $C = 175$ $D = 200$ $E = 225$

If an airline sells tickets at a price of \$200 + 5x each the number of tickets it sells is 1000 - 20x. What price should the tickets be if the airline wants to get the most money?

$$A = 5$$
 $B = 25$ $C = 175$ $D = 200$ $E = 225$ E

A fenced garden with an area of 100 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. What length and width should be used so the least amount of fence is needed?

A fenced garden with an area of 100 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. What length and width should be used so the least amount of fence is needed?

Approach:

(1) Express the total length of fence in terms of only one variable, either L = length of field, or W = width of field. This gives a formula for P = (total length of fence) involving, say, W.

A fenced garden with an area of 100 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. What length and width should be used so the least amount of fence is needed?

Approach:

- (1) Express the total length of fence in terms of only one variable, either L = length of field, or W = width of field. This gives a formula for P = (total length of fence) involving, say, W.
- (2) Find minimum by solving $\frac{dP}{dW} = 0$.

A fenced garden with an area of 100 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. What length and width should be used so the least amount of fence is needed?

Approach:

- (1) Express the total length of fence in terms of <u>only</u> one variable, either L = length of field, or W = width of field. This gives a formula for P = (total length) of fence) involving, say, W.
- (2) Find minimum by solving $\frac{dP}{dW} = 0$.

Students always find (1) the hardest part.

You have been prepared for this by word problems from chapter 3!

A fenced garden with an area of 1000 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. Three sides are wood fence, and the remaining side is a brick wall.

- The wood fence costs \$5 per meter length.
- The brick wall costs \$20 per meter length.

A fenced garden with an area of 1000 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. Three sides are wood fence, and the remaining side is a brick wall.

- The wood fence costs \$5 per meter length.
- The brick wall costs \$20 per meter length.
- C = total cost of the fence and brick wall
- L = length of the brick wall
- W =width of the other side
- Find a formula for C in terms of only L.

$$A = 2W + 2L$$
 $B = 2000L^{-1} + 2L$ $C = 25L + 10000L^{-1}$
 $D = 20L + 10000WL^{-1}$ $E = 5L + 3000$

A fenced garden with an area of 1000 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. Three sides are wood fence, and the remaining side is a brick wall.

- The wood fence costs \$5 per meter length.
- The brick wall costs \$20 per meter length.
- C = total cost of the fence and brick wall
- L = length of the brick wall
- W =width of the other side
- (a) Find a formula for C in terms of only L.

$$A = 2W + 2L$$
 $B = 2000L^{-1} + 2L$ $C = 25L + 10000L^{-1}$
 $D = 20L + 10000WL^{-1}$ $E = 5L + 3000$ C

What length of brick wall gives lowest cost?

$$A = 20$$
 $B = 40$ $C = 50$ $D = 100$ $E = 25$

A fenced garden with an area of 1000 m² will be made in the shape of a rectangle. It will be surrounded on all four sides by a fence. Three sides are wood fence, and the remaining side is a brick wall.

- The wood fence costs \$5 per meter length.
- The brick wall costs \$20 per meter length.
- C = total cost of the fence and brick wall
- L = length of the brick wall
- W =width of the other side
- (a) Find a formula for C in terms of only L.

$$A = 2W + 2L$$
 $B = 2000L^{-1} + 2L$ $C = 25L + 10000L^{-1}$
 $D = 20L + 10000WL^{-1}$ $E = 5L + 3000$ C

(b) What length of brick wall gives lowest cost?

$$A = 20$$
 $B = 40$ $C = 50$ $D = 100$ $E = 25$ A

A rectangular field is surrounded by fence. It is divided into 4 equal

parts by 3 more dividing fences all parallel to one side of the field.

What is the total length of all the fence needed? (a)

$$A = 2L + 2W$$
 $B = LW$ $C = 5LW$
 $D = L + W$ $E = 5L + 2W$

A rectangular field is surrounded by fence. It is divided into 4 equal

parts by 3 more dividing fences all parallel to one side of the field.

(a) What is the total length of all the fence needed?

$$A = 2L + 2W$$
 $B = LW$ $C = 5LW$
 $D = L + W$ $E = 5L + 2W$ E

(b) The field must have an area of 1000 m². Express W in terms of L.

A 1000 - L B 1000L C 1000/L D 1000 + L

A rectangular field is surrounded by fence. It is divided into 4 equal

parts by 3 more dividing fences all parallel to one side of the field.

(a) What is the total length of all the fence needed?

$$A = 2L + 2W$$
 $B = LW$ $C = 5LW$
 $D = L + W$ $E = 5L + 2W$ E

(b) The field must have an area of 1000 m^2 . Express W in terms of L.

A 1000 - L B 1000L C 1000/L D 1000 + L C

Word Problem #5 (cont'd)

A rectangular field is surrounded by fence. It is divided into 4 equal

parts by 3 more dividing fences all parallel to one side of the field.

Express the total length of all the fence needed in terms of L. (\mathbf{c})

$$A = 5L + 1000$$
 $B = 5L + 2000/L$ $C = 5L + 2/L$

Word Problem #5 (cont'd)

A rectangular field is surrounded by fence. It is divided into 4 equal

parts by 3 more dividing fences all parallel to one side of the field.

(c) Express the total length of all the fence needed in terms of L.

$$A = 5L + 1000$$
 $B = 5L + 2000/L$ $C = 5L + 2/L$ B

(d) What should L be so that the total length of fence used is a minimum?

$$A = 10$$
 $B = 20$ $C = 40$ $D = 50$

Word Problem #5 (cont'd)

A rectangular field is surrounded by fence. It is divided into 4 equal

parts by 3 more dividing fences all parallel to one side of the field.

(c) Express the total length of all the fence needed in terms of L.

$$A = 5L + 1000$$
 $B = 5L + 2000/L$ $C = 5L + 2/L$ B

(d) What should L be so that the total length of fence used is a minimum?

$$A = 10$$
 $B = 20$ $C = 40$ $D = 50$ E

A rectangular field is surrounded on three sides by a fence and the fourth side runs along a perfectly straight river. What is the largest area field which can be so enclosed with 120 meters of fence?

$$A = 1200 \text{ m}^2$$
 $B = 1500 \text{ m}^2$ $C = 1800 \text{ m}^2$ $D = 1000 \text{ m}^2$

A rectangular field is surrounded on three sides by a fence and the fourth side runs along a perfectly straight river. What is the largest area field which can be so enclosed with 120 meters of fence?

$$A = 1200 \text{ m}^2$$
 $B = 1500 \text{ m}^2$ $C = 1800 \text{ m}^2$ $D = 1000 \text{ m}^2$

A rectangular field is surrounded on three sides by a fence and the fourth side runs along a perfectly straight river. What is the largest area field which can be so enclosed with 120 meters of fence?

$$A = 1200 \text{ m}^2$$
 $B = 1500 \text{ m}^2$ $C = 1800 \text{ m}^2$ $D = 1000 \text{ m}^2$ $C = 1800 \text{ m}^2$

Tickets are going to be sold for a concert.

- If the price of each ticket is \$40, then 2,000 tickets will be sold.
- For every \$1 the price is decreased, 100 more tickets will be sold.
- (a) If the tickets are sold for x each, how many will be sold?

$$A = 2000 - x$$
 $B = 2000 - 100x$ $C = 2000 + 100x$

$$D = 6000 - 100x \quad E = 6000 + 100x$$

Tickets are going to be sold for a concert.

- If the price of each ticket is \$40, then 2,000 tickets will be sold.
- For every \$1 the price is decreased, 100 more tickets will be sold.
- (a) If the tickets are sold for x each, how many will be sold?

$$A = 2000 - x$$
 $B = 2000 - 100x$ $C = 2000 + 100x$
 $D = 6000 - 100x$ $E = 6000 + 100x$ D

(b) What is the total amount of money generated from selling tickets for x each?

$$A = 6000x - 100x^2$$
 $B = 2000x$
 $C = 2000 - 40x^2$ $D = 6000 - 100x$

Tickets are going to be sold for a concert.

- If the price of each ticket is \$40, then 2,000 tickets will be sold.
- For every \$1 the price is decreased, 100 more tickets will be sold.
- (a) If the tickets are sold for x each, how many will be sold?

$$A = 2000 - x$$
 $B = 2000 - 100x$ $C = 2000 + 100x$
 $D = 6000 - 100x$ $E = 6000 + 100x$ D

(b) What is the total amount of money generated from selling tickets for x each?

$$A = 6000x - 100x^2$$
 $B = 2000x$
 $C = 2000 - 40x^2$ $D = 6000 - 100x$ A

(c) What price should the tickets be to generate the most money from sales?

$$A = \$20$$
 $B = \$22$ $C = \$24$ $D = \$30$ $E = \$40$

Tickets are going to be sold for a concert.

- If the price of each ticket is \$40, then 2,000 tickets will be sold.
- For every \$1 the price is decreased, 100 more tickets will be sold.
- (a) If the tickets are sold for x each, how many will be sold?

$$A = 2000 - x$$
 $B = 2000 - 100x$ $C = 2000 + 100x$
 $D = 6000 - 100x$ $E = 6000 + 100x$ D

(b) What is the total amount of money generated from selling tickets for x each?

$$A = 6000x - 100x^2$$
 $B = 2000x$
 $C = 2000 - 40x^2$ $D = 6000 - 100x$ A

(c) What price should the tickets be to generate the most money from sales?

$$A = \$20$$
 $B = \$22$ $C = \$24$ $D = \$30$ $E = \$40$ D

A farmer is growing wheat.

- On July 1, she has 1,000 bushels and this increases by 50 bushels per day.
- The price of a bushel on July 1 is \$10 and is dropping at a rate of 20 cents per day.
- She will harvest and sell on the same day.

How many days should she wait, assuming these trends continue?

$$A = 5$$
 $B = 10$ $C = 15$ $D = 20$ $E = other$

A farmer is growing wheat.

- On July 1, she has 1,000 bushels and this increases by 50 bushels per day.
- The price of a bushel on July 1 is \$10 and is dropping at a rate of 20 cents per day.
- She will harvest and sell on the same day.

How many days should she wait, assuming these trends continue?

$$A = 5$$
 $B = 10$ $C = 15$ $D = 20$ $E = other$