

Q制图课堂

工程制图 Engineering Drawing

授课:周 超

Email: zhouc@fzu.edu.cn

点线面投影的 基本知识

投影法

II 中心投影法

投影法:投射线经过物体,向选定的平面进行投射,

并在该面上得到图形的方法。

自光源S向物体上每一点(如A、B、C、D各点)所引出的直线,称为投射线。投射线与投影面的交点(如a、b、c、d各点),就是物体上该点在投影面上的投影。

中心投影法:立体感强、度量性差

II 平行投影法

当光源设定于无穷远处时,所有的投射线将 呈互相平行的状态。这时的投影法称为平行

投影法

它又可分为斜投影和正投影 两种。当投射线与投影面呈某一角度倾斜时,其投影称斜投影。

斜投影法:立体感强、度量

性差

Ⅲ正投影法

当光源设定于无穷远处时,所有的投射线将呈互相平行的状态。这时的投影法称为平行

投影法

当投射线垂直于投影面时,其 投影称为正投影。

正投影的成影将与物体之间存在着某种等价关系,或者说,形体与其投影之间存在着某种定量关系。

正投影法:立体感差、度量性强

1 单面正投影法的不足

点在一个投影面上的投影不能确定点的空间位置。

平面的单面投影不能确定平面的空间位置和真实形状。

▮单面正投影法的不足

立体的单面投影也不能确定立体的空间位置和真实形状。

历史上最终解决这一难题的,是法国的科学家*Gaspard Monge*(蒙日)(1746—1818)。他成功地采用了多面正投影的方法,解决了这一问题并创立了画法几何学。为人类的工业化进程,特别是工程设计及其图样制作提供了一种切实有效的科学方法。

▮多面正投影法

点的投影

1. 点的二面投影体系

投影面V垂直于投影面H, 并引进空间坐标系O-XYZ。

1. 点的二面投影体系

2. 点的二面投影

a'—正面投影

a —水平投影

 $A(x,y,z) \Leftrightarrow A(a,a')$

空间点用大写字母表示,点的投影用小写字母表示。

- 1. 点的二面投影体系
- 2. 点的二面投影

3. 体系打开摊平

- 1. 点的二面投影体系
- 2. 点的二面投影
- 3. 体系打开摊平
- 4. 投影图生成

- 1. 点的二面投影体系
- 2. 点的二面投影
- 3. 体系打开摊平
- 4. 投影图生成
- 5. 点的投影特性

5. 点的投影特性

点的投影的连线垂直于投影轴 ,即: $aa' \perp ox$

点到投影面的距离等于它在相 邻投影面的投影到投影轴的距 离,即:

$$a_x o = x$$

$$Aa' = a_x a = y$$

$$Aa = a_x a' = z$$

II 点的三面投影

1. 点的三面投影体系

V—正立投影面
H—水平投影面
W—侧立投影面
投影面W同时垂直V、H,
并引进空间坐标系O-XYZ;

II 点的三面投影

1. 点的三面投影体系

2. 点的三面投影

a'—正面投影

a —水平投影

a′′—侧面投影

III 点的三面投影

- 1. 点的三面投影体系
- 2. 点的三面投影

3. 体系打开摊平

II 点的三面投影

- 1. 点的三面投影体系
- 2. 点的三面投影
- 3. 体系打开摊平
- 4. 投影图生成

可分解为三个二面体系

II 点的三面投影

- 1. 点的三面投影体系
- 2. 点的三面投影
- 3. 体系打开摊平
- 4. 投影图生成
- 5. 点的三面投影特性(点的投影规律)

III 点的三面投影

点的投影规律

点的投影的连线垂直于

投影轴,即: $aa' \perp oX$

 $a'a'' \perp oZ$

点的投影到投影轴的距离, 等于点的坐标,即:

$$Aa''=a_ya=a_za'=x$$

$$Aa'=a_{\tau}a''=a_{x}a=y$$

$$Aa=a_ya''=a_xa'=z$$

▮婀题

作出点A(20,15,20)的投影。

如何由点的投 影想象出点的 坐标?

|| 例题

已知 A、B二点的正面及水平投影,求其侧面投影。

Ⅲ奶题

判断两点的相对位置

两点的相对位置指两点在空间的上下、前后、左右位置 关系。

判断方法:

- x 坐标大的在左
- y坐标大的在前
- z坐标大的在上

╽重影点

空间两点在某一投影面上的投影重合为一点时,则称此两点为该投影面的重影点。

被挡住的投影加()

Ⅲ奶题

已知点A(25,15,20)的三面投影,点B在A点之左15、A之前15、A之上12,试作出点B的三面投影。

直线的投影

L直线的投影

直线的投影一般情况下仍为直线;

直线的投影可由该线的二点或一点已知一方向作出;

直线有特殊位置直线(投影面平行线、投影面垂直线) 和一般位置直线之分;

直线对投影面H、V、W的 倾角分别为 α 、 β 、 γ 。

L直线的投影

直线对一个投影面的投影特性

直线垂直于投影面 投影积聚为一点 积聚性 →垂直必积聚

直线平行于投影面 投影反映线段实长 ab=AB 真实性 ⇒平行有等标

直线倾斜于投影面 投影比空间线段短

ab=AB.cosα 类似性 ⇒倾斜定类似

L直线的投影特性

直线的三面投影特性

其投影特性取决于直线与三个投影面间的相对位置。

平行于某一投影面而 与其余两投影面倾斜

投影面平行线

统称特殊位置直线

正平线(平行于 V面)

侧平线(平行于W面)

水平线(平行于H面)

垂直于某一投影面

投影面垂直线

正垂线(垂直于V面)

侧垂线(垂直于W面)

铅垂线(垂直于H面)

与三个投影面都倾斜的直线

一般位置直线

III 投影面平行线

水平线的投影

- 1)水平投影显实长;
- 2)其他两投影与相应的轴线平行;
- 3)水平投影现倾角。

平行有等标

III 投影面平行线

正平线的投影

- 1)正面投影显实长;
- 2) 其他两投影与相应的轴线平行;
- 3)正面投影现倾角。

III 投影面平行线

侧平线的投影

平行有等标

- 1)侧面投影显实长;
- 2)其他两投影与相应的轴线平行;
- 3)側面投影现倾角。

III 投影面垂直线

铅垂线的投影

垂直必积聚

- 1)水平投影积聚成点;
- 2)其他两投影与相应的轴线平行,且反映实长。

III 投影面垂直线

正垂线的投影

垂直必积聚

- 1)正面投影积聚成点;
- 2)其他两投影与相应的轴线平行,且反映实长。

III 投影面垂直线

侧垂线的投影

- 1)侧面投影积聚成点;
- 2)其他两投影与相应的轴线平行,且反映实长。

II 投影面特殊位置直线

投影面平行线

投影面垂直线

一般位置直线的投影

倾斜定类似

- 1)各投影均不与轴线平行,呈类似状;
- 2)投影图上没有反映真实倾角的投影存在;
 - 3)各投影均不反映实长。

一般位置直线的实长与倾角

由于直线的线段长与其投影长度之间存在着余弦关系,故可利用直角三角形来进行求解。

一般位置直线的实长与倾角

利用直角三角形法求直线AB的实长及其对V、H的倾角

这一方法除求实 长外,还可用来 求解坐标差、投 影长以及倾角的 大小。

L直线的迹点

空间直线与投影面的交点称为迹点。

作图求解时,只要将投影延长,使之与轴线相交,此交点即是坐标 距离为零的投影。求出与之对应的另一投影。则此投影就是迹点所 在的投影。

平面的投影

II 平面的投影

平面可由不在一直线上的三点、一点一线、二平行线、相交两线、及三角形乃至各种平面图形给定;

平面与投影面的位置关系,仍然有特殊和一般之分。

III 平面的投影特性

平面对一个投影面的投影特性

II 平面的投影特性

平面在三投影面体系中的投影特性

垂直于某一投影面,倾 斜于另两个投影面

平行于某一投影面, 垂直于另两个投影面

与三个投影面都倾斜

投影面垂直面

特殊位置平面

投影面平行面

一般位置平面

正垂面 侧垂面 铅垂面

正平面 侧平面 水平面

III 投影面的平行面

水平面的投影

平行有等标

- 1)水平投影反映实形;
- 2)其他两投影积聚成线,且平行于相应的轴线。

III 投影面的平行面

正平面的投影

平行有等标

- 1)正面投影反映实形;
- 2)其他两投影积聚成线,且平行于相应的轴线。

III 投影面的平行面

侧平面的投影

平行有等标

- 1)侧面投影反映实形;
- 2)其他两投影积聚成线,且平行于相应的轴线。

ll 投影面的垂直面

铅垂面的投影

- 1)水平投影积聚成线;
- 2)其他两投影出现类似形状且不反映实形。

ll₁投影面的垂直面

正垂面的投影

- 1)正面投影积聚成线;
- 2)其他两投影出现类 似形状且不反映实 形。

ll 投影面的垂直面

侧垂面的投影

- 1)侧面投影积聚成线;
- 2)其他两投影出现类 似形状且不反映实 形。

III 一般位置平面

倾斜定类似

各个投影的图形之间以及与空间平面图形之间,均保持着一种既不全等、又不相似的类似形状。

Ⅲ奶题

正垂面ABC与H面的夹角为45°,已知其水平投影及顶点B的正面投影,求△ABC的正面投影及侧面投影。

思考:此题有几个解?

▋∕例题

