Introduction to Pandas for Data Science

Rebecca Pitts

Course Outline

Day 1

- What is Pandas & how to load it
- Main object classes
- Basic input/output
- Selection, inspection, & cleaning
- Built-in Operations
- Rearranging data

Day 2

- GroupBy objects
- Complex &/or user-defined functions
- Built-in plotting methods
- Time series functionality (if time)
- Advanced topics (e.g. ML prep)

What is Pandas? Is it right for my data?

Pandas = **PAN**el **D**ata **A**nalysi**S**

Python data library for cleaning, organizing, & statistically analyzing large data sets

Pros and Cons of Pandas

Pros

- Powerful (100s of built-in functions, native multithreading)
- Flexible (dozens of I/O formats)
- Easy to use
- Interfaces with many other packages

Cons

- Sometimes inconsistent syntax
- Hard to handle >2D structures
- Parallelization usually requires other packages

Find, Load, & Import Pandas

Terminal or job script: modules depend on whether you use Anaconda or PyPi

Anaconda: ml Anaconda3 usually loads everything you need. If not...

- If the other packages you need are installed, try PyPi versions instead
- Or, create conda environment* & install what you need there

*On-Demand IDEs (Jupyter, Spyder, etc.) use Anaconda3 – need environments for incompatible or additional packages

PyPi: At most centers, Pandas is in SciPy-bundle (depends on GCC & MPI)

- Use ml spider <dependency> to check Python or other dependencies for which GCC &/or MPI you need, then load them
- Use ml avail SciPy-bundle to get version number(s), & load/add to script

Anaconda3 Spyder (CPU)

Jupyter Lab (CPU)

Run On-Demand (Jupyter Lab)

Pandas Object Classes & Data Types

Main Pandas object classes

```
pandas.Series(data, index=None, name=None, **kwargs)
```

1D array with customizable indices

```
pandas.DataFrame(data, columns=None, index=None,
**kwargs)
```

2D array of series aligned side-by-side

Similar attributes & methods for both classes

- https://pandas.pydata.org/docs/reference/series.html
- https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

Definitions to know before we get started

When you see a Python function described in documentation in the form:

```
module.fxn_name(*args,**kwargs)
```

You need to know what args & kwargs are:

- args = positional arguments; usually mandatory
- kwargs = keyword arguments; usually optional

You also need to know what classes, methods, & attributes are \rightarrow

Classes are templates to make Python objects, with methods & attributes

Methods associate functions with the class & allow quick evaluation for each class instance. **Syntax:** obj.method() or obj.method(*args, **kwargs)

Attributes let you automatically compute & store values that can be derived for any instance of the class.

Syntax: obj.attribute

Basic Series & DataFrame Attributes

- df.index—list of row labels or numbers
- df.columns—list of column labels
- df.values—returns df as NumPy array (can also call on .columns & .index)
- Many, MANY more—start at <u>https://pandas.pydata.org/docs/user_quide/10min.html</u>

```
dummy df = pd.DataFrame(np.linspace(0.5,10,20).reshape(5,4),
                       columns=['a','b','c','d'])
print(dummy df,'\n')
print(dummy df.ndim, dummy df.shape, dummy df.size,'\n')
dummy df.axes
0 0.5 1.0 1.5
                  2.0
1 2.5 3.0 3.5
                  4.0
3 6.5 7.0 7.5
4 8.5 9.0 9.5 10.0
2 (5, 4) 20
[RangeIndex(start=0, stop=5, step=1),
 Index(['a', 'b', 'c', 'd'], dtype='object')]
```

Here RangeIndex(...) stores row labels, & Index(...) stores the column labels

Code-Along: Create a DataFrame

- 1. Load Pandas & Numpy
- Make an array with 4 rows &
 3 columns, with data values
 of 1-12
- 3. Convert it to a DataFrame & label columns ['a', 'b', 'c']

```
import pandas as pd
import numpy as np

a = np.arange(1,13).reshape((4,3))
adf = pd.DataFrame(a, columns=['a', 'b', 'c'])
print(adf)

a b c
0 1 2 3
1 4 5 6
2 7 8 9
3 10 11 12
```

Index-class objects

Index-class objects, (like df.index & df.columns) are immutable, hashable sequences used to align data for easy access. They have...

- Subclasses vary by data-type
- Many Series-like attributes (e.g. .dtype) & set methods, but Index methods only return copies.

Code-Along

print(adf.index)

Get indices of df in previous example & print the data-type. See https://pandas.pydata.org/docs/reference/api/pandas.Index.html#pandas.Index

```
print(adf.index.dtype)

RangeIndex(start=0, stop=4, step=1)
int64
```

Quick aside on row & column labels

Pandas documentation has multiple terms for row & column labels:

- "Indices" typically only refer to row numbers, but may refer to non-numeric row labels, or column indices if columns are accessed by position
- "Columns" may refer to labels & contents of columns collectively, or labels only
- "Keys" may refer to column labels, or occasionally both column & row labels, especially in SQL-like commands
- A column label may be called a "name", after the optional Series label

Input/Output

Basic I/O

Туре	Data Description	Reader	Writer
text	CSV (or any ASCII text with a standard delimiter)	read_csv(<i>path_or_url</i> , sep=',', **kwargs)	to_csv(<i>path</i> , sep=',', **kwargs
text	Fixed-Width Text File	read_fwf(<i>path</i> , **kwargs)	N/A
binary	MS Excel	read_excel(<i>path_or_url</i> , sheet_name=0, **kwargs)	<pre>to_excel(path, sheet_name=)</pre>

& many more. See: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

- Most readers assume top row contains column labels, but can override
- 0-based indexes assigned by default, but can set index_col
- Can also convert to/from NumPy arrays, structured arrays, or dictionaries.

Code-Along: Basic I/O

- 1. Load the file 'exoplanets_5250_EarthUnits.csv' into a dataframe
 - a. Extra: set the index to the leftmost column
- 2. Write the DataFrame to a tab-separated text file (.txt)

```
exos = pd.read_csv('exoplanets_5250_EarthUnits.csv', index_col=0)
exos.to_csv('exos_5250_EUnits.txt', sep='\t')
```

If you didn't figure out how to set the indices to the first column in the loading step, call .set_index('#name') on your DataFrame now. We will use this DataFrame in more examples later

Inspection & Cleaning

Data inspection convenience functions

- **df.head()** & **df.tail()** print 5 or n rows from start or end of df
- **df.info()** summarizes contents & data types in df
- **df.describe()** prints naive statistics for all numeric columns in df
- df.nunique() prints number of unique values in each column
- df.value_counts() prints unique values & number of occurrences per permutation of selected rows/columns (not typically useful for all of df)
- And so many more! See <u>pandas.DataFrame API reference</u>

Code-Along: Data Inspection

- 1. Call .info() off the exoplanets DataFrame from the previous example. Familiarize yourself with the specs that are included. Notice anything weird?
- 2. If nothing stuck out in #1, call .describe() on that DataFrame.

Solution:

At least 2 columns have labels suggesting their contents should be float64 type, but instead they are object type & are not evaluated by .describe(). More on this shortly.

The memory_usage() function

df.memory_usage() prints sizes of each column of df in memory, in bytes

- Numeric & boolean data are fixed size in bytes—stored within df in memory
- Object-type data (strings) are NOT fixed in size—only pointers stored with df;
 values are elsewhere & much larger in memory
- Must use memory_usage(deep=True) to estimate memory used by string values (values will be upper bounds)

Don't rely on df.info() to monitor memory use! Size reported by df.info() is sum of memory_usage(deep=False)

Compare:

<pre>df.memory_usage()#deep=True)</pre>		df.memory_usage(deep= True)	
Index	174136	Index	491638
distance	42000	distance	42000
star mag	42000	star mag	42000
planet_type	42000	planet_type	355545
discovery_yr	42000	discovery_yr	42000
mass ME	42000	mass ME	42000
radius RE	42000	radius RE	42000
orbital radius AU	42000	orbital radius AU	42000
orbital period yr	42000	orbital period yr	42000
eccentricity	42000	eccentricity	42000
detection method	42000	detection method	348608
dtype: int64		dtype: int64	

Data Selection & Assignment Syntax

```
To Access...
                        Syntax
1 cell (scalar output)
                        df.at['row','col'] or df.iat[i,j]
column(s) by name
                        df['col'] or df[['col0', 'col1', ...]]
row(s) by index
                        df.iloc[i] or df.iloc[i:j]
rows & columns by name
                        df.loc[['rowA','rowB', ...], ['col0', 'col1', ...]]
rows & columns by index df.iloc[i:j, m:n]
columns by name & rows You can mix .loc[] & .iloc[] for selection, but NOT for
                        assignment!
by index
```

Use ":" to select all rows or all columns in .loc[] or .iloc[]

Conditional Selection

Binary comparison operators (>, <, ==, =>, =<, !=) & most logical operators can be used in [] of df[...], df.loc[...], or df.iloc[...] provided:

- Bitwise logical operators (&, |, ^, ~) must be used instead of plain-English versions (and, or, xor, not)
- When 2+ conditions are specified, each condition must be enclosed by ()
- Use .isna() or .notna() to check for invalid data, & .isin(), .notin(), or .str.contains() to look for substrings.

https://pandas.pydata.org/docs/user_guide/10min.html#boolean-indexing describes syntax

Code-Along: Selection Syntax

- Assign rows 25 through 35 of the exoplanets DataFrame to another DataFrame called df2.
- Print both the "planet_type" & "mass_ME" columns of df2.
- 3. Go back to the full exoplanets DataFrame, select rows where the "discovery_yr" is before 2007 and "planet_type" is not "Gas Giant", & print only the "planet_type" column of that selection.

Exercise time!

Finding & handling missing/invalid data

- Check for missing data with .isna() & .notna() methods
 - Pandas assumes all whitespace is intentional; numeric columns with white spaces are object type & .isna() ignores them
 - Must convert to NumPy to find +/-inf
- Use .dropna(axis=axis) to remove whole rows/columns containing invalid entries (usually not necessary)
- Use .fillna() to replace NaNs with fixed or interpolated values

Cleaning anomalous or duplicate data

- df.drop_duplicates() finds identical rows & removes all but 1
 - Use subset kwarg to remove duplicates by specific columns (more aggressive).
- df.drop(data, axis=axis) removes unneeded columns by name or index
- df.mask(condition, other=None), masks bad *numeric* data where other (default NaN) can pass replacement values/Series/DataFrames
- df.replace(to_replace=old, value=new) can replace almost anything (see docs for ways old & new can be used)

Most DataFrame/Series methods have **inplace** kwarg (default False) to toggle copy or overwrite

Code-Along: Bad Data Handling

- 1. The exoplanets DataFrame has space characters ('') for missing values in the 'mass_ME' & 'radius_RE' columns. Use the .replace() method to replace '' with np.NaN in-place.
 - Extra: use .astype() to convert the data types of these columns to 'float64' in-place (you'll have to reassign those columns). Check your results with .info()
- 2. Use the .mask() method to mask the 'eccentricity' column wherever the data are exactly 0 (these are assumed values). The "Non-Null Count" for that column in .info() should be smaller.

Basic Operations

Vectorized String Methods

Most built-in string methods can be applied column-wise to Pandas data structures using .str.<method>(). Scroll through methods of pandas.Series.str in left menu panel at https://pandas.pydata.org/docs/reference/series.html#accessors

- .str.replace() does not accept dict input where keys are existing substrings & values are replacements; use the general .replace() (without .str) instead
- .str.split()/rsplit() can make 1 column of lists or >1 column of substrings
- .str[...] accessor also allows indexing of lists or strings in DataFrame cells

Math & Statistics

Series & DataFrame objects have most <u>NumPy ufunc</u> (universal function) methods, a few SciPy methods, & cumulative-sum & -product methods. See https://pandas.pydata.org/docs/user_guide/basics.html#descriptive-statistics

- Methods require no args/kwargs for Series, but for DataFrame, you must set numeric_only=True & double-check axis
 - axis=0 or 'index': columns preserved, indices collapse (default)
 - axis=1 or 'columns': indices preserved, columns collapse
- .describe() computes many stats for all numeric columns automatically, but treats integers as floats

Broadcasting basic arithmetic

- Can do vectorized arithmetic with normal operators (+, -, *, /, **, and %)
 between a Series/DataFrame & a scalar, or 2 Series/ DataFrames of the same
 shape (e.g.: df/100., df**-1.5, dfA+dfB,...)
- To broadcast arithmetic between Series & DataFrame, use functions in https://pandas.pydata.org/docs/user_guide/basics.html#matching-broadcas-ting-behavior
- Performance tip: install & import numexpr, & wrap expression expr with pd.eval(expr, engine='numexpr') to automatically multi-thread
 - Only for scalar/element-wise functions on pure <u>float64/int64</u>
 Series/DataFrames

Comparative methods

- Regular operators work to compare Series/DataFrames to scalars, but elementwise comparison requires special operators. See https://pandas.pydata.org/docs/user_guide/basics.html#flexible-comparisons
 - Also recommend reading <u>https://pandas.pydata.org/docs/user_guide/basics.html#boolean-reductions</u>
- Use df1.compare(df2) to find & print differences between 2 identically indexed Series or DataFrames (same row/column labels in same order)
 - .compare() does not check type; use pd.testing.assert_frame_equal(df1, df2)
 or pd.testing.assert_series_equal(df1, df2) & see if it raises AssertionError
 for differently-typed identical values

Code Along: Basic Operations

- 1. Calculate the median of all numeric columns in the exoplanets DataFrame
- Divide the "mass_ME" column by 317.8 & assign the result to "mass_MJ" (planet mass in Jupiter masses)

You'll use the string & comparative methods in the exercises.

(Re)organizing & Merging Data

Sorting & Reindexing

- Can sort Series & DataFrames by 1 or more indices, values, or both. See https://pandas.pydata.org/docs/user_guide/basics.html#sorting
- If indices or columns are missing, .reindex() can add & sort them simultaneously, or change indices by assignment (not in-place)
 - Can also select data where labels may not all exist, without raising errors
 - https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.reindex.html# pandas.DataFrame.reindex
- df1.reindex_like(df2) makes empty DataFrame with same row & column labels as df2 & inserts values from df1 where labels are shared with df2

Combining data structures

Pandas functions:

- .concat(): concatenate ≥2 Series
 or DataFrames on shared axis
- .merge(left, right, how= 'inner'): join 2 DataFrames or Series on columns with SQL logic

More options here:

https://pandas.pydata.org/docs/user_ quide/merging.html

DataFrame (& Series) methods:

- df1.combine_first(df2): insert values from df2 where df1 is missing data
- 2. df1.combine(df2, func): merge 2 DataFrames columnwise based on function func
- 3. df1.join(df2) wrapper for column-wise .merge()

SQL logic of pd.merge() & df1.join(df2)

In left join, left is preserved & missing values in intersection are filled from right. Obverse for right join. In full, intersection is expanded to fit values from left & right.

SQL joining styles used by .merge() & .join()

The .merge(), .join(), & derivatives of merge have a how kwarg to toggle different SQL-like set logics, & an on kwarg to select subsets of columns to preserve.

- 1. 'inner' (default): take intersection of 2 DataFrames in terms of row *positions*, like SQL inner join, while preserving all columns unless otherwise specified with left_on, right_on, left_index=True, or right_index=True
- 2. 'outer': align on shared data but keep all rows & columns, like SQL full outer join, with NaNs where row-column-pairs are not associated with any existing data
- 3. 'left': keep all contents of left (1st) DataFrame, plus any data from right (2nd) that share row & column indices with left DataFrame, like SQL left outer join.
- 4. 'right': keep all contents of right (2nd) DataFrame, plus any data from left (1st) that share row & column indices with right DataFrame, like SQL right outer join.
- 5. 'cross': take Cartesian product of 2 DataFrames (take every non-redundant pairing of every cell in one with every cell in the other), like SQL cross join.

Code Along: Reorganizing Data

- 1. Sort df1 by index, by index with axis=1, & by the values of column 'C'.
- 2. Concatenate df1 and df2. What happens where the indices aren't shared? Merging is more complicated. You'll get to play with it during the exercises.

Exercise time!

GroupBy objects

Intro to GroupBy Objects

Grouping lets you organize (& sort) data hierarchically & run statistical analyses on different subsets of data simultaneously. Full API documentation at https://pandas.pydata.org/docs/user_guide/groupby.html#groupby

- Syntax: grouped = df.groupby(['col1', 'col2', ...]) or grouped = df.groupby(by='col') (Take df.T to group by rows)
- Aggregate methods evaluate each group separately (same syntax as DataFrames)
- Can broadcast a different method/function to every group
- Groups are selected by category name with .get_group(('cat',)) or .get_group(('cat1', 'cat2', ...)) (single group selection shown in docs is deprecated: inner parentheses & comma required)

GroupBy example

grouped1=df.groupby(['planet_type']) grouped1.nth(-1) □ ↑ ↓ ±								± 🗜 🗎	
	distance	star_mag	planet_type	discovery_yr	mass_ME	radius_RE	orbital_radius_AU	orbital_period_yr	eccentricity
#name									
LkCa 15 c	516.0	12.025	Unknown	2015	NaN	NaN	18.60000	0.999316	0.00
Wolf 503 b	145.0	10.270	Neptune- like	2018	6.26	2.043	0.05706	0.016427	0.41
YSES 2 b	357.0	10.885	Gas Giant	2021	2003.40	12.768	115.00000	1176.500000	0.00
YZ Ceti b	12.0	12.074	Terrestrial	2017	0.70	0.913	0.01634	0.005476	0.06
YZ Ceti d	12.0	12.074	Super Earth	2017	1.09	1.030	0.02851	0.012868	0.07

The .filter() method

Conditional selection is hard for GroupBy objects. .filter() method helps. See https://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.filter

- Syntax: GroupBy_obj.filter(func)
- Only groups that collectively return True are included in output
- Typical use case: removing groups with too few members
- Group structure not preserved in output (so you can add results back to original DataFrame)

Code Along: GroupBy Objects

- 1. Group the exoplanets DataFrame by "planet_type" & assign the result to grouped_pt.
- Print the mean "mass_ME" for each group in grouped_pt.
- 3. Challenge*: call the filter method on grouped_pt to remove the planet_type group with 5 or fewer members. (*I don't expect most people to get this in the time available)

Advanced Operations

Applying complex &/or user-defined functions

.map()

Apply 1 function that accepts & returns scalars element-wise

.apply()

Apply ≥1 functions column- or row-wise to ≥1 Series in df

.agg()*

Apply ≥1 reducing (aggregating) functions (e.g median())

.transform()*

Apply ≥1 broadcasting functions
*Usable on GroupBy objects

Need to chain functions that take & return whole Series/DataFrames/GroupBy objects? Use .pipe(). See also

https://pandas.pydata.org/docs/user_guide/basics.html#function-application

Element-wise functions with .map()

Method .map(func) takes a scalar function & broadcasts it to every element of Series/DataFrame

- Function func may be passed by name or lambda function, but both input & output must be scalars (no arrays)
- Note: usually faster to apply vectorized functions if possible

```
def my func(T):
    if T<=0 or np.isnan(T) is True:</pre>
        pass
    elif T<300:
        return 0.2*(T**0.5)*np.exp(-616/T)
    elif T>=300:
        return 0.9*np.exp(-616/T)
junk = pd.DataFrame(np.random.randint(173,high=675,size=(4,3)),
                    columns = ['A', 'B', 'C'])
print(junk,'\n')
print(junk.map(my func))
   231
        426
             572
   497
        628
             410
        600
   375
             577
   408
        206
             616
             0.211957
   0.260593
             0.337479
   0.174117
             0.322379
                       0.309452
   0.198858
             0.144310
                       0.331091
```

Aggregating (reducing) functions with .agg()

- agg() only takes functions with array input & scalar output (e.g. mean)
- Can pass >1
 function by list of
 names, or dict with
 row/column names
 as keys & functions
 to apply as values

grouped2=df.groupby(['detection_method']) grouped2[['mass_ME','radius_RE', 'orbital_radius_AU', 'orbital_period_yr']].ag						
	mass_ME	radius_RE	orbital_radius_AU	orbital_period_yr		
detection_method						
Astrometry	4890.840000	12.600000	0.499825	0.726626		
Direct Imaging	7929.949333	15.835680	514.123769	40445.285440		
Disk Kinematics	795.000000	13.216000	130.000000	957.300000		
Eclipse Timing Variations	2154.773529	12.880000	3.962357	9.628240		
Gravitational Microlensing	746.775584	10.241521	2.541477	7.065273		
Orbital Brightness Modulation	350.513333	9.623000	0.013667	0.003164		
Pulsar Timing	205.652857	5.395333	4.897800	17.617327		
Pulsation Timing Variations	2385.000000	12.712000	1.700000	2.750000		
Radial Velocity	1041.315930	10.031391	2.112706	5.167191		
Transit	172.593293	4.111279	0.128524	0.069854		
Transit Timing Variations	461.589167	5.698096	0.501715	0.532655		

Broadcasting functions with .transform()

- .transform() broadcasts functions to
 every cell of Series/DataFrame
- Passing >1 function works like in .agg()
- Transforming DataFrame of x columns by list of y functions yields hierarchical DataFrame with x×y columns
- Do NOT modify data in-place!

```
print(df1)
def funcA(x):
    return x**2+2*x+1
def funcB(x):
    return x**0.5-1
df2 = df1.transform([funcA, funcB])
print(df2)
print(df2.columns)
  funcA
            funcB funcA
                             funcB funcA
                                             funcB
      1 -1.000000
                         0.000000
                                          0.414214
                     25 1.000000
                                          1.236068
         0.732051
         1.449490
                         1.645751
                                          1.828427
         2.000000
                    121 2.162278
                                          2.316625
MultiIndex([('a', 'funcA'),
            ('a', 'funcB'),
            ('b', 'funcA'),
            ('b', 'funcB'),
            ('c', 'funcA'),
            ('c', 'funcB')],
```

When all else fails, use .apply()

- .apply() allows aggregating, broadcasting, & expanding* functions
 (*list-like output for every cell), but is **slower** than .agg() or .transform()
- Accepts GroupBy objects, but may fail to preserve structure &/or raise misleading error messages
- apply() may be better (more intuitive) if you have a broadcasting function that varies by group
 - transform() receives GroupBy objects in 2 parts—columns split into Series, &
 then groups as DataFrames—but .apply() only receives groups (like .agg())

Windowing Operations

4 methods for evaluating other methods over moving/expanding windows, with similar API to GroupBy objects (most allow similar aggregating methods): https://pandas.pydata.org/docs/user_guide/window.html

- All evaluate from current position back/up to window size or start of Series.
- All have min_periods kwarg to set minimum number of valid data points in window for consideration.
- All but expanding() can be used on GroupBy objects (applied per group).

Code-Along: Use the .agg() function

- Call the .agg() function on grouped_pt (the exoplanets DataFrame grouped by planet_type) to calculate
 - the mean of mass_ME,
 - the median of radius_RE, &
 - the 0.5 quantile (50th percentile) of orbital_period_yr

in 1 line of code. Consult

https://pandas.pydata.org/docs/user_guide/basics.html#aggregating-with-multiple-functions (Hint: .agg() doesn't care if the input DataFrame is grouped)

Built-in Plotting Methods

The .plot() wrapper method

- .plot(kind='<kind>') or
 .plot.<kind>() method lets you
 visualize Series/DataFrames/Groups
 without importing Matplotlib or
 converting to NumPy
- Default plot kind is 'line'. Most other pairwise functions are also available. See https://pandas.pydata.org/docs/user-quide/visualization.html

```
df.plot(kind='scatter', y='mass ME', x='orbital radius AU', loglog=True,
         ylabel='Mass [M$ \mathrm{E}$]', xlabel='Orbital Radius [AU]',
         marker='.', color='b', alpha=0.2,
          figsize=[6,6])
<Axes: xlabel='Orbital Radius [AU]', ylabel='Mass [M$ \\mathrm{E}$]'>
     105
     10^{4}
     10^{3}
Mass [M<sub>E</sub>]
     10^{2}
     101
     100
    10^{-1}
    10^{-2}
                                               10<sup>1</sup>
                                                         10^{2}
                                                                    10^{3}
                                                                               10^{4}
                                    Orbital Radius [AU]
```

The .plot() method continued

Limitations:

- Number of kwargs can quickly make code illegible
- Log bin scaling fails for 'hexbin'
- Only 1 plot style for all subplots per use of .plot()
- Passing 2-tuples of columns as subplots disables use of 'scatter' & 'hexbin'

Most of what you can do with the .plot() wrapper, & much more, can be done better using <u>Seaborn</u>.

Code-Along: Plotting

1. Make a KDE plot of the radius_RE column of the exoplanets DataFrame. Set the x-axis limits to 0 and 30.

Consult https://pandas.pydata.org/docs/user_guide/visualization.html for how to choose a plot kind & pass in typical Matplotlib kwargs.

Exercise time!

Time Series

Scalar Class	Array Class	Pandas Data Type	Pandas Conversion/Creation Methods (results are Indices)	
Timestamp (date only or date & time)	DatetimeIndex	<pre>datetime64[ns(,tz)] (may or may not include time zone)</pre>	<pre>.to_datetime(dates) or .date_range(start, end=None, periods=None, freq=None) (need 2 of 3 kwargs)</pre>	
Timedelta	TimedeltaIndex	timedelta64[ns]	<pre>.to_timedelta(tdelts) or .timedelta_range(start=None, end=None, periods=None, freq=None) (need 3 of 4)</pre>	
Period	Period PeriodIndex period[freq]		<pre>.Period(t_init, freq=None) or .period_range(start=None, end=None, periods=None) (need 2 of</pre>	

More info at https://pandas.pydata.org/docs/user_guide/timeseries.html

Caveats about precision & date ranges

- Functions like .date_range() that take timestamps assume integer/float inputs are Unix times (time since 00:00:00 01-01-1970), in ns
- Timedelta-creating functions assume time resolution of weeks or better.
- Datetimes are natively stored in ns as 64-bit floats, limiting their range
 - Out-of-range datetimes must be converted to coarser units with pd.Timestamp(<datetime>, unit='s'), or pd.Timestamp(np.datetime64(<datetime>), unit='s') for BCE dates.
- pd.to_datetime() can't handle Series of out-of-range datetimes, so must use .apply(lambda x: pd.Timestamp(x))

Resampling

Resampling = interpolating data from one (time) series to another with different spacing

- **Upsampling** = resampling to more closely spaced (time) steps
- Downsampling = resampling to more widely spaced (time) steps

Method is .resample('<unit>') to *shift* or *downsample* Series & DataFrames.

 resample() is a time-based GroupBy, so most aggregate GroupBy methods (e.g. sum(), mean(), ...) can be called on the result

What's up with upsampling

Upsampling requires interpolation. Data at new timesteps will be NaN everywhere except where they are integer multiples of the old timesteps.

- .resample('<unit>').asfreq() leaves NaNs at intervening timesteps
- .resample('<unit>').ffill(limit=None) fills intervening timesteps (up to limit) with most recent non-NaN value
- .resample('<unit>').interpolate(method='linear') can fill intervening time steps with any SciPy interpolation method if output timesteps align with input (see demo)
 - Otherwise need to interpolate data separately from times

Code-along: Time Series

1. Initialize a datetime index with 10 timestamps, 1 second apart, ending on midnight 1/1/2025. Use the pd.date_range() function.

```
ts = pd.date range(end='01/01/2025', freq='1s', periods=10)
print(ts)
DatetimeIndex(['2024-12-31 23:59:51', '2024-12-31 23:59:52',
               '2024-12-31 23:59:53', '2024-12-31 23:59:54',
               '2024-12-31 23:59:55', '2024-12-31 23:59:56',
               '2024-12-31 23:59:57', '2024-12-31 23:59:58',
               '2024-12-31 23:59:59', '2025-01-01 00:00:00'],
              dtype='datetime64[ns]', freq='S')
```


(More) Advanced Topics

Preparing data as machine learning input

ML Programs like TensorFlow & PyTorch take Series & DataFrames, but need categorical variables coded as boolean or numeric.

```
Use pd.get_dummies(df, dtype=bool, columns=['col1', 'col2', ...]).
```

For DataFrame df (no Series!), given categorical variable V with n unique values $c_1, c_2, \ldots, pd.get_dummies(df[['V', \ldots]])$ returns n columns (or n-1 with drop_first=True) titled e.g. V_c1, V_c2, \ldots with True where $V=c_n$ in that row, False otherwise.

Efficient storage with the Categorical type

Categorical type reduces memory usage by mapping unique values to integer codes & storing codes at column's location in memory with smallest bit size

- ser = pd.Series(data, dtype='category')—make Categorical Series
- df['cat_col'] = df['cat_col'].astype('category')—convert column to Categorical
- pd.Categorical(data, categories=['your','cats','here'],
 ordered=False) Create raw Categorical data (e.g., as Index)
- Categorical variables only support string vectorized functions

Cuts & Intervals

Two functions to discretize (bin) numerical Series data (e.g. for age brackets, to allow Categorical conversion):

- pd.cut(data, bins, right=True, Labels=None): provide either n equal bins or array of variable bins & optionally labels for each; right=True indicates bins are half-open on right (False excludes both bin edges)
- pd.qcut(data, q, **kwargs): same as cut but for q quantiles (q can be int or list of right or left edges)

More here: https://pandas.pydata.org/docs/user_guide/reshaping.html#cut

Code-Along: the Categorical data type

Print the memory usage of the exoplanets DataFrame with deep=True. Then convert the planet_type and detection_method columns to 'category' type & print the memory usage again.

Each column should be <2% of its original size in memory.

Sparse Arrays

DataFrames with many mostly-NaN rows or columns can be stored in Sparse form to save memory

- Initialize Series or DataFrames as SparseDtype with kwarg dtype=
 SparseDtype(dtype=np.float64, fill_value=None)
 - Or call method .astype(pd.SparseDtype("float", np.nan))
- See https://pandas.pydata.org/docs/user-guide/sparse.html

.pivot() & Hierarchical DataFrames

Lots of categorical variables? Can be efficient to reshape DataFrame with .pivot(index=indices, columns=columns) method on columns &/or rows with repetitive data.

- Result will be <u>Hierarchical DataFrame</u>
- Can also use .pivot_table(*args,
 aggfunc=functions) method if DataFrame has
 duplicate rows &/or to apply 1+ aggregating
 functions to data during pivot

```
more junk
  foo bar baz qux
  one
  one
  two
  two
more junk.pivot(index='foo',
                columns='bar')
        baz
                 qux
bar A B C A B C
foo
```

Notes on parallelization & (new) HPC features

- Built-in functions allow parallelization of column*-wise operations via Numba, with engine='numba' & engine_kwargs={"parallel": True} in kwargs.
 - When possible use same number of threads as columns. Do not use more threads than there are columns.
 - More advanced users can write their own JIT-compiled or Cython functions as detailed in Pandas documentation on <u>Enhancing Performance</u>
- Support for chunking (loading & working on subsets of data) with
 Apache Parquet input files, JSON input files, & PyArrow ChunkedArrays

Code-along: Numba demo

Run numba_demo.py & compare the outputs of timeit for the serial & numba accelerated calculations.

If you are on a HPC cluster:

The submission script is numba_demo.sh. Edit the -A parameter (& -p, if applicable) so that it runs on your cluster. You will probably also need to load a Numba module, which may require changing your toolchain.

If you are on a personal computer:

Make sure you have Numba installed. Either run the code from the command line or copy it into your notebook to run there. If in Jupyter, use the 2 lines starting with **%timeit** instead of the lines below those.

Summary

Day 1

- What is Pandas? Why use it?
- Main object classes
- Basic input/output
- Inspection & cleaning
- Built-in Operations
- Rearranging data

Day 2

- GroupBy objects
- Complex &/or user-defined functions
- Built-in plotting methods
- Time series functionality
- Advanced topics (e.g. ML prep)

(Final) Exercise time!

