Zadanie 5. – Lista 1.

Jakub Kogut

24 października 2025

1 Wprowadzenie

Do rozwiązania zadania będę wykorzystywał następujące definicje i twierdzenia podane na wykładzie.

Niech L L_1 i L_2 będą językami nad alfabetem Σ . Wtedy:

$$L_1 L_2 = xy : x \in L_1, y \in L_2 \tag{1.1}$$

$$L^0 = \varepsilon \tag{1.2}$$

$$L^{i+1} = LL^i \quad \text{dla } i > 0 \tag{1.3}$$

$$L^* = \bigcup_{i=0}^{\infty} L^i \tag{1.4}$$

Jeżeli r i s są wyrażeniami regularnymi reoprezentującymi języki L(r) i L(s), to:

- r+s jest wyrażeniem regularnym reprezentującym język $L(r) \cup L(s)$,
- rs jest wyrażeniem regularnym reprezentującym język L(r)L(s),
- r^* jest wyrażeniem regularnym reprezentującym język $L(r)^*$.

2 Zadanie 5.

Należy udowodnić następujące tożsamości dla wyrażeń regularnych r, s i t, przy czym r=s oznacza, że L(r)=L(s).

1. Kożystając z łączności sumy zbiorów mamy:

$$(r+s) + t = (L(r) \cup L(s)) \cup L(t)$$

$$= L(r) \cup (L(s) \cup L(t))$$

$$= r + (s+t)$$

$$(2.1)$$

2. Z definicji konkatenacji oraz łączności konunkcji:

$$(rs)t = (L(r)L(s))L(t)$$

$$= \{xyz : xy \in L(r)L(s), z \in L(t)\}$$

$$= \{xyz : (x \in L(r), y \in L(s)) \land (z \in L(t))\}$$

$$= \{xyz : x \in L(r), (y \in L(s), z \in L(t))\}$$

$$= \{xyz : x \in L(r), yz \in L(s)L(t)\}$$

$$= L(r)(L(s)L(t))$$

$$= r(st)$$

$$(2.2)$$

3. Kożystając z rozdzielności konkatenacji względem alternatywy otrzymujemy:

$$(r+s)t = (L(r) \cup L(s)) L(t)$$

$$= \{xy : x \in L(r) \cup L(s), y \in L(t)\}$$

$$= \{xy : (x \in L(r), y \in L(t)) \land (x \in L(s), y \in L(t))\}$$

$$= \{xy : x \in L(r), y \in L(t)\} \cup \{xy : x \in L(s), y \in L(t)\}$$

$$= L(r)L(t) \cup L(s)L(t)$$

$$= rt + st$$

$$(2.3)$$

4. Analogicznie do poprzedniego:

$$r(s+t) = L(r)(L(s) \cup L(t))$$

$$= \{xy : x \in L(r), y \in L(s) \cup L(t)\}$$

$$= \{xy : (x \in L(r), y \in L(s)) \land (x \in L(r), y \in L(t))\}$$

$$= \{xy : x \in L(r), y \in L(s)\} \cup xy : x \in L(r), y \in L(t)\}$$

$$= L(r)L(s) \cup L(r)L(t)$$

$$= rs + rt$$

$$(2.4)$$

5. Kożystając z definicji otoczki Kleenego:

$$\emptyset^* = \bigcup_{i=0}^{\infty} \emptyset^i$$

$$= \emptyset^0 \cup \bigcup_{i=1}^{\infty} \emptyset^i$$

$$= \{\varepsilon\} \cup \emptyset$$

$$= \{\varepsilon\}$$

$$= \varepsilon$$

$$(2.5)$$

- 6. Można udowodnić tożsamość $(r^*)^* = r^*$, poprzez pokazanie inkluzji w obie strony. Przyjmuje, że L(r) = L.
 - (a) $L^* \subseteq (L^*)^*$

Wynika to wprost z definicji:

$$L^* = (L^*)^1 \subseteq (L^*)^1 \cup \bigcup_{i=1}^{\infty} (L^*)^i = \bigcup_{i=0} (L^*)^i = (L^*)^*$$

(b) $(L^*)^* \subseteq L^*$

Niech $w \in (L^*)^*$. Z definicji otoczki Kleenego istnieje takie $k \geq 0$ oraz $u_1, u_2, \ldots, u_k \in L^*$ takie, że

$$w = u_1 u_2 \dots u_k$$

Natomiast każde u_i można rozpisać jako

$$u_i = v_{i,1}v_{i,2}\dots v_{i,n_i}$$

gdzie $n_i \geq 0$ oraz $v_{i,j} \in L$ dla $1 \leq j \leq n_i$. Zatem w ma postać:

$$w = (v_{1,1}v_{1,2}\dots v_{1,n_1})(v_{2,1}v_{2,2}\dots v_{2,n_2})\dots(v_{k,1}v_{k,2}\dots v_{k,n_k})$$

Czyli w jest konkatenacją skończonej liczby słów należących do L, a więc $w \in L^*$. Stąd $(L^*)^* \subseteq L^*$.

A skoro obie inkluzje zachodzą, to $L^* = (L^*)^*$, czyli $(r^*)^* = r^*$.

- 7. Podobnie jak powyższą tożsamość, $(r^*s^*)^* = (r+s)^*$ też można udowodnić przez inkluzję:
 - (a) $(R^*S^*)^* \subseteq (R+S)^*$

Niech $w \in (R^*S^*)^*$. Z definicji otoczki Kleenego istnieje $k \geq 0$ oraz $u_1, \ldots, u_k \in R^*S^*$ takie, że

$$w = u_1 u_2 \dots u_k.$$

Każdy u_i ma postać x_iy_i z $x_i \in R^*$ oraz $y_i \in S^*$. Dalej, z definicji:

$$x_i = r_{i,1}r_{i,2}\dots r_{i,p_i} \quad (p_i \ge 0, \ r_{i,j} \in R),$$

$$y_i = s_{i,1} s_{i,2} \dots s_{i,q_i} \quad (q_i \ge 0, \ s_{i,j} \in S).$$

Zatem w jest skończoną konkatenacją słów, z których każde należy do R albo do S, czyli $w \in (R+S)^*$. Stąd $(R^*S^*)^* \subseteq (R+S)^*$.

(b) $(R+S)^* \subseteq (R^*S^*)^*$

Niech $w \in (R+S)^*$. Wówczas istnieje $m \ge 0$ oraz $t_1, \ldots, t_m \in R \cup S$ takie, że

$$w = t_1 t_2 \dots t_m$$
.

Zgrupujmy maksymalne kolejne bloki elementów z R oraz z S. Otrzymujemy rozkład

$$w = (R \cdots R)(S \cdots S)(R \cdots R) \cdots (S \cdots S),$$

gdzie każdy blok $R\cdots R$ należy do R^* , a każdy blok $S\cdots S$ do S^* . Zatem w jest konkatenacją skończonej liczby elementów z R^*S^* , czyli $w\in (R^*S^*)^*$. Stąd $(R+S)^*\subseteq (R^*S^*)^*$.

Z obu inkluzji otrzymujemy równość $(r^*s^*)^* = (r+s)^*$.