Please note: New Problem starts from new page

Overview of project: (ABC Rejection Algorithm)

By passing the calculation of liklihood

ABC-Algorithm

- 1. Simulate the prior $\theta^* \sim \pi(\theta)$
- 2. Plug θ^* in the model and obtain y^* (It is equivalent to writing $y^* \sim p(y|\theta^*)$)
- 3. if $d(y^*, y) < \epsilon$, then store θ^* where $d(y^*, y)$ can be any distance function

Important result(s)

- When $\epsilon \to 0$ then $\pi_{\epsilon}(\theta|y) \to \pi(\epsilon|y)$
- When $\epsilon \to \infty$ then $\pi_{\epsilon}(\theta|y) \to \pi(\theta)$
- This means if we have $\epsilon \to 0$ then the information gain would be more i.e. β (as defined in the project paper)
- If we have $\epsilon \to \infty$ then we learn nothing which implies the information gain would be low

Bhattacharya distance, Bhattacharya coefficient and information gain

• B_d for two normal distributions is given by

$$B_d(f_1, f_2) = \frac{1}{4} ln \left(\frac{1}{4} \left(\frac{(\sigma_{f_1})^2}{(\sigma_{f_2})^2} + \frac{(\sigma_{f_2})^2}{(\sigma_{f_1})^2} \right) \right) + \frac{1}{4} \left(\frac{(\mu_{f_1} - \mu_{f_2})^2}{(\sigma_{f_1})^2 + (\sigma_{f_2})^2} \right)$$

- B_c is given by $B_c = e^{-B_d}$
- Information gain β is given by $\beta = 1 B_c$, β_{θ_i} is bounded between 0 and 1, lower and upper bounds represent the amount of new information contained in the data apart from the priors

Problem 1

Consider the model structure given as

$$y[k] - a_1 y[k-1] = b_1 u[k-1] - b_2 u[k-2] + e[k]$$

The priors of the parameters are given as (All the parameters have Gaussian priors a_1 : $\mathcal{N}(0.4, 0.2)$, b_1 : $\mathcal{N}(0.5, 0.2)$, b_1 : $\mathcal{N}(0.3, 0.3)$

Using the information and data set, do the following

- 1. Estimate the posterior distribution of the parameters of the difference equation model using the ABC rejection method. Calculate the reduction in uncertainty from prior to posterior?
- 2. Compute point estimates from the posterior distribution of parameters.
- 3. Compute the information gain with respect to each parameter using equation (4) [$B_c = e^{-B_d}$] where β_i is the information gain with respect to each parameter.

Solution:

1. Prior and Posterior distribution for various ϵ values are :

- A total of 3000 samples are taken , out of which for various values of ϵ different number of samples are taken(accepted) .
- Going from higher ϵ to lower ϵ , $\epsilon = [100, 10, 5, 1, 0.7]$
- The distance function utilized for simulation or in decision making step is 2-norm distance between ystar (generated from prior) and y (original data)
- Accepted values of paramters are stored in al_accepted, bl_accepted and bl_accepted for a_1, b_1, b_2 parameters respectively
- By performing adtest, it is clear that posterior distribution follows gaussian distribution
- fit1 corresponds to prior distribution, fit2 corresponds to posterior distribution is all figures

 $\epsilon = 100$

Figure 1: a_1

Figure 2: b_1

Figure 3: b_2

Figure 4: All three parameters prior (RED) (fit1) and posterior (BLUE) (fit2) distributions

Figure 8: All three parameters prior (RED) and posterior (BLUE) distributions

 $\epsilon = 5$

 $\epsilon = 1$

Figure 16: b_1

Figure 17: b_2

Figure 18:

Reduction in uncertainity from prior to posterior in all 5 cases is

(It calculated as the difference of variance of prior and variance of posterior)

Reduction is given as reduction [a_1 , b_1 , b_2] parameter respectively (also say as reduction is variability of a parameter)

- For $\epsilon = 100$ reduction is [0.0787 0.0215 0.0332]./[0.2 0.2 0.3] \implies [39.35% 10.75% 11.07 %] reduction. Sample accepted : 2395
- • For $\epsilon=10$ reduction is [0.3675 0.3645 0.5013] — [36.75% 36.45% 50.13%] reduction. Sample accepted : 532
- For $\epsilon = 5$ reduction is [0.3175 0.4750 0.5940] \implies [31.75% 47.50% 59.40%] reduction. Sample accepted : 263
- • For $\epsilon=1$ reduction is [0.7165 0.7055 0.8020] — \$\int(71.65\% 70.55\% 80.20\%]\$ reduction. Sample accepted : 21
- For $\epsilon = 0.7$ reduction is [0.8595 0.9195 1.0053] \implies [85.95% 91.95% 100.53%] reduction. Sample accepted : 8

Here we can see if we tighten the value of epsilon , the reduction in uncertainity increases which is beneficial for us and also the number of sample accepted reduces . Here in our case we can take optimal value of epsilon to be 1 as for epsilon value 0.7 some-times the sample accepted are very less which will not give fair idea .

2. Compute point estimates from the posterior distribution of parameters:

Here in all cases posterior follows gaussian distribution , Estimate of true value would be mode of data (MAP: Maximum a posteriori probability estimate) but since it is gaussian distribution mean equal to mode and median , Hence point esimate (MAP estimate would be the mean of posterior distribution)

- ullet For $\epsilon=100$ al_est = 0.2519 , bl_est =0.4714 , b2_est = 0.3239
- \bullet For $\epsilon=10$ a1_est = 0.1113 , b1_est =0.4138 , b2_est = 0.4254
- \bullet For $\epsilon=5$ al_est = 0.1194 , bl_est =0.4177 , b2_est = 0.4348
- \bullet For $\epsilon = 1$ a1_est = 0.2920 , b1_est = 0.4760 , b2_est = 0.4882
- \bullet For $\epsilon=0.7$ al_est = 0.4439 , bl_est =0.3555 , b2_est = 0.3674

3. Information Gain w.r.t. each parameter:

Information gain is stored in matrix beta (Matlab variable) So, beta(1) gives information gain in parameter a_1 beta(2) gives information gain in parameter b_1 beta(3) gives information gain in parameter b_2

Information gain for various values of ϵ are given below: Note: Read $\begin{bmatrix} a_1 \\ b_1 \\ b_2 \end{bmatrix}$ as Information Gain

in a_1 , Information Gain in b_1

• For
$$\epsilon = 100$$
, $\begin{bmatrix} a_1 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0.0285 \\ 0.0010 \\ 0.0011 \end{bmatrix} = \begin{bmatrix} 2.85\% \\ 0.10\% \\ 0.11\% \end{bmatrix}$

• For
$$\epsilon = 10$$
, $\begin{bmatrix} a_1 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0.0715 \\ 0.0180 \\ 0.0372 \end{bmatrix} = \begin{bmatrix} 7.15\% \\ 1.80\% \\ 3.72\% \end{bmatrix}$

• For
$$\epsilon = 5$$
, $\begin{bmatrix} a_1 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0.0663 \\ 0.0294 \\ 0.0611 \end{bmatrix} = \begin{bmatrix} 6.63\% \\ 2.94\% \\ 6.11\% \end{bmatrix}$

• For
$$\epsilon = 1$$
 $\begin{bmatrix} a_1 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0.0983 \\ 0.0839 \\ 0.1572 \end{bmatrix} = \begin{bmatrix} 9.83\% \\ 8.39\% \\ 15.72\% \end{bmatrix}$

• For
$$\epsilon = 0.7$$
 $\begin{bmatrix} a_1 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0.2076 \\ 0.2834 \\ 0.3310 \end{bmatrix} = \begin{bmatrix} 20.76\% \\ 28.34\% \\ 33.10\% \end{bmatrix}$

Problem 2

The information gain β is known to be used for model order estimation. Consider the structured state-space model in (1). The given state-space model is of observable canonical form.

$$\mathbf{x}[k+1] = \begin{bmatrix} -a_1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n-1} & \vdots & \vdots & \vdots & 1 \\ -a_n & 0 & 0 & \dots & 0 \end{bmatrix} \mathbf{x}[k] + \begin{bmatrix} b_1 - a_1 * b_0 \\ \vdots \\ b_{n-1} - a_{n-1} * b_0 \\ b_n - a_n * b_0 \end{bmatrix} \mathbf{u}[k]$$
(1)

$$y = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} \mathbf{x}[k] + b_0 \mathbf{u}[k] + e[k]$$

Using the given dataset, do the following

- 1. Using the data set given fit first-order and second-order state-space models.
- 2. Compare the improvement in the fit with the information loss in parameters when the order is increased
- 3. Can you suggest a method for the order estimation based on your observation in step 1 and step 2

Note: Take the prior for all parameters to follow, $\theta_i \sim \mathcal{N}(0.5, 1)$

Solution:

1. Using the data set given fit first-order and second-order models:

• Parameters required to fit first-order model is 3 parameters , 1 for y and 2 for u First order model

$$x_1[k+1] = -a_1x_1[k] + (b_1 - a_1b_0)\mathbf{u}[k]$$
(2)

$$x_1[k] = -a_1 x_1[k-1] + (b_1 - a_1 b_0) \mathbf{u}[k-1]$$
(3)

$$y[k] = x_1[k] + b_0 \mathbf{u}[k] \tag{4}$$

$$y[k-1] = x_1[k-1] + b_0 \mathbf{u}[k-1] \tag{5}$$

Using eq. (4), (3), Equation (4) can be re-written as

$$y[k] = -a_1 x_1 [k-1] + (b_1 - a_1 b_0) \mathbf{u}[k-1] + b_0 \mathbf{u}[k]$$
(6)

From eq(5) , Putting the value of $x_1[k-1]$, we get

$$\begin{aligned} y[k] &= -a_1(y[k-1] - b_0\mathbf{u}[k-1]) + (b_1 - a_1b_0)\mathbf{u}[k-1] + b_0\mathbf{u}[k] \\ y[k] &= -a_1 * y[k-1] + a_1 * b_0\mathbf{u}[k-1] + b_1 * \mathbf{u}[k-1] - a_1 * b_0 * \mathbf{u}[k-1] + b_0\mathbf{u}[k] \\ y[k] &= -a_1 * y[k-1] + \underline{a_1 * b_0\mathbf{u}[k-1]} + b_1 * \mathbf{u}[k-1] - \underline{a_1 * b_0 * \mathbf{u}[k-1]} + b_0\mathbf{u}[k] \\ y[k] &= -a_1 * y[k-1] + a_1 * b_0\mathbf{u}[k-1] + b_1 * \mathbf{u}[k-1] - a_1 * b_0 * \mathbf{u}[k-1] + b_0\mathbf{u}[k] \\ y[k] &= -a_1 * y[k-1] + b_1 * \mathbf{u}[k-1] + b_0\mathbf{u}[k] \end{aligned}$$

Hence, the first model is

$$y[k] = -a_1 * y[k-1] + b_1 * \mathbf{u}[k-1] + b_0 * \mathbf{u}[k] + e[k]$$
(7)

with three parameters a_1, b_1, b_0

• Parameters required to fit second-order model is 5 parameters , 2 for y and 3 for u For second order model $x \in R^2, y \in R^1, u \in R^1$ and state space matrices are $A \in R^{2 \times 2}, B \in R^{2 \times 1}, C \in R^{1 \times 2}, D \in R^{1times1}$

State space model will look like (given below) $\,$

$$\begin{bmatrix} x_1[k+1] \\ x_2[k+1] \end{bmatrix} = \begin{bmatrix} -a_1 & 1 \\ -a_2 & 0 \end{bmatrix} \begin{bmatrix} x_1[k] \\ x_2[k] \end{bmatrix} + \begin{bmatrix} b_1 - a_1 * b_0 \\ b_2 - a_2 * b_0 \end{bmatrix} \mathbf{u}[k]$$
 (8)

From state space model we can obtain below two equations

$$x_1[k+1] = -a_1 * x_1[k] + x_2[k] + (b_1 - a_1 * b_0)\mathbf{u}[k]$$
(9)

$$x_2[k+1] = -a_2 * x_1[k] + (b_2 - a_2 * b_0)\mathbf{u}[k]$$
(10)

and

$$y[k] = x_1[k] + b_0 \mathbf{u}[k] + e[k] \tag{11}$$

Substituting $x_1[k]$ by using equation 9, we get

$$y[k] = -a_1 * x_1[k-1] + x_2[k-1] + (b_1 - a_1 * b_0)\mathbf{u}[k-1] + b_0\mathbf{u}[k]$$
(12)

Now, Substituting $x_2[k-1]$ by using equation 10, we get

$$y[k] = -a_1 * x_1[k-1] + -a_2 * x_1[k-2] + (b_2 - a_2 * b_0)\mathbf{u}[k-2] + (b_1 - a_1 * b_0)\mathbf{u}[k-1] + b_0\mathbf{u}[k]$$
(13)

Solving the above equation

$$y[k] = -a_1 * x_1[k-1] + -a_2 * x_1[k-2] + b_2 * \mathbf{u}[k-2] - a_2 * b_0 * \mathbf{u}[k-2] + b_1 * \mathbf{u}[k-1] - a_1 * b_0 * \mathbf{u}[k-1] + b_0 * \mathbf{u}[k]$$

Substituting $x_1[k-1], x_1[k-2]$ From equation 11, we get

$$y[k] = -a_1 * (y[k-1] - b_0 * \mathbf{u}[\mathbf{k} - \mathbf{1}]) + -a_2 * (y[k-2] - b_0 * \mathbf{u}[\mathbf{k} - \mathbf{2}]) + b_2 * \mathbf{u}[k-2] - a_2 * b_0 * \mathbf{u}[k-2] + b_1 * \mathbf{u}[k-1] - a_1 * b_0 * \mathbf{u}[k-1] + b_0 * \mathbf{u}[k]$$
(14)

Expanding we get

$$y[k] = -a_1 * y[k-1] + a_1 * b_0 * u[k-1] + -a_2 * y[k-2] + a_2 * b_0 * \mathbf{u}[\mathbf{k} - \mathbf{2}] + b_2 * \mathbf{u}[k-2] - a_2 * b_0 * \mathbf{u}[k-2] + b_1 * \mathbf{u}[k-1] - a_1 * b_0 * \mathbf{u}[k-1] + b_0 * \mathbf{u}[k]$$

Cancelling terms

$$y[k] = -a_1 * y[k-1] + \underline{a_1 * b_0 * u[k-1]} - a_2 * y[k-2] + \underline{a_2 * b_0 * u[k-2]} + b_2 * \underline{u[k-2]} - \underline{a_2 * b_0 * u[k-2]} + b_1 * \underline{u[k-1]} - \underline{a_1 * b_0 * u[k-1]} + b_0 * \underline{u[k]}$$
(15)

Hence, we get second order model as given below

$$y[k] = -a_1 * y[k-1] - a_2 * y[k-2] + b_2 * \mathbf{u}[k-2] + b_1 * \mathbf{u}[k-1] + b_0 * \mathbf{u}[k] + e[k]$$
(16)

Hence, the model consists of 5 parameters a_1, a_2, b_2, b_1, b_0 .

Now we have obtained the difference equation models for both order = 1 and order = 2

Order = 1

- A total of 3000 samples are taken , with the value of $\epsilon = 50$
- Model is $y[k] = -a_1 * y[k-1] + b_1 * \mathbf{u}[k-1] + b_0 * \mathbf{u}[k] + e[k]$
- Three parameters a_1, b_1, b_0 need to be estimated using ABC algorithm
- Samples accepted were 122
- prior and posterior distribution of a_1 and b_1 parameters (RED prior, BLUE posterior)

Figure 19: a_1

Figure 20: b_1

- \bullet Reduction in uncertainity is [0.9209 0.9174 0.9884]*100 % $\|(\mathbf{a}_1,b_1,b_0$) respectively
- All the posterior distribution of parameters follows the ad-test and follows gaussian (normal) distribution , so the point estimate is the mean of distribution which is
 est =

 $0.0952\ 0.7242\ 0.0284\ \|(\mathbf{a}_1,b_1,b_0)$ respectively

• Information gain parameter is beta =

 $0.2991\ 0.2899\ 0.3472\ \|(\mathbf{a}_1,b_1,b_0)\|$ respectively

Order = 2

- A total of 3000 samples are taken , with the value of $\epsilon = 50$
- Model is $y[k] = -a_1 * y[k-1] a_2 * y[k-2] + b_2 * \mathbf{u}[k-2] + b_1 * \mathbf{u}[k-1] + b_0 * \mathbf{u}[k] + e[k]$
- Three parameters a_1, a_2, b_2, b_1, b_0 need to be estimated using ABC algorithm
- Samples accepted were 12
- prior and posterior distribution of a_1 and b_1 parameters (RED prior, BLUE posterior)

Figure 21: a_1

Figure 22: b_1

- Reduction in uncertainty is [0.9491 0.9590 0.9034 0.9775 0.9239]*100 % $\|(\mathbf{a}_1, b_1, b_0)\|$ respectively
- All the posterior distribution of parameters follows the ad-test and follows gaussian (normal) distribution , so the point estimate is the mean of distribution which is
 est =

 $[0.1923\ 0.1923\ -0.0443\ 0.2137\ -0.0443\]\ \|(a_1, a_2, b_1, b_2, b_0)$ respectively

 Information gain parameter is beta =

 $[0.2638\ 0.4541\ 0.2581\ 0.2979\ 0.3190\]\ \|(\mathbf{a}_1,a_2,b_1,b_2,b_0)$ respectively

Observations

- Diagramitically fit seems to be better for order 2 than order 1 (more peakish in nature)
- Information gain parameter is more or less similar for both order for this particular case
- Variance of parameters for particular simulation is on the higher side for order-2 that is var(a1) (order2) > var(a1) (order1), for example.
- From above point we can say the point estimates for parameter(s) is better in order 1 than in order 2 due to less variability
- Other information criteria that we can make use for order estimation can be BIC index (Bayesian information Criteria), For the two models if we have Δ BIC greater than 2 and less than 6 that is Δ BIC \in [2,6] in favour of model which has higher BIC value.