Capítulo 3 Álgebra de Tablas

Trabajo con Listas

¿Por qué trabajar con listas?

- Una forma de ver una **tabla** es como una **lista de tuplas** (con el mismo esquema).
- Veremos que dadas varias tablas de la base de datos, una consulta se puede expresar como composición de operaciones sobre tablas.
- Por lo tanto para hacer consultas necesitamos poder definir operaciones sobre listas.

¿Por qué trabajar con listas?

Ventajas de trabajar con listas:

- Permiten modelar tablas como en SQL en el sentido que podemos tener tuplas repetidas, podemos ordenar las tuplas.
- El álgebra relacional no permite esto porque usa tablas que son conjuntos de tuplas (entonces no se permiten tuplas repetidas, ni se pueden consultar los resultados de manera ordenada, etc.)

Un poco de notación

• Usaremos para definir listas y operaciones sobre listas un poco del conocimiento y la notación de programación funcional.

• Un poco de notación:

- La lista vacía se denota con: []
- o usamos el operador : que agrega un elemento a una lista.
- OPOR ejemplo: [a, b, c] = a : b: c : []
- [T] se usa para indicar el conjunto de las listas de tipo T.
- Por ejemplo: [int], [string], etc.

Recursiones sobre listas

- Muchas funciones sobre listas se pueden definir usando recursión.
- Ejemplo:
- 1. Suma :: [Int] -> Int
- 2. Suma [] = 0
- 3. Suma x: xs = x + suma xs
- Usando operaciones sobre listas definidas y operaciones básicas, podemos evaluar una expresión sobre listas.

Funciones sobre listas

• Ejemplo: Evaluar suma[1,2,3]

```
Suma 1:2:3:[]
= \{suma.3\} 1 + suma 2 : 3 : []
= \{ suma.3 \} 1 + 2 + suma 3:[]
= \{suma.3\} 1 + 2 + 3 + suma []
= \{ suma.2 \} 1 + 2 + 3 + 0 \}
= {+} 6
```

- 1. Suma :: [Int] -> Int
- 2. Suma [] = 0
- 3. Suma x: xs = x + suma xs

Recursiones sobre listas

- La operación Sum que hicimos es un ejemplo de definición por recursión estructural sobre listas.
- Gran parte de las operaciones sobre listas que veremos son recursiones de este tipo.
- Estas definiciones tienen la forma:

```
f[] = c
fx : xs = hx (fxs)
```

• Donde:

```
f:: [a] -> b
c:: b
h:: a -> b -> b
```

```
1. Suma :: [Int] -> Int
```

3. Suma x:
$$xs = x + suma xs$$

```
aquí
c = 0
h = +
```

Funciones de alto orden

- Una función de alto orden porque se define sobre funciones además de sobre listas.
 - Por ejemplo: map, foldr, etc.
- Una función de alto orden es map:
 - o map :: (a -> b) -> list a -> list b
 - o map f [] = []
 - \circ map f x: xs = (f x) : map(xs)

list [x, y, z] map [f(x), f(y), f(z)] modified list

Figure 2: Despliegue de la función map.

• Las funciones de alto orden son potentes en el sentido que permiten dar definiciones de funciones compactas.

Funciones sobre listas

• Ejercicio: Describir la función que chequea si un elemento pertenece a una lista.

- 1. $x \in [] = False$
- 2. $x \in y : xs = x == y || x \in xs$
- Ejercicio: Definir la concatenación de listas.

Principio de inducción sobre listas

• Esta forma de pensar es válida usando lo que se llama inducción.

Principio de inducción sobre listas

• **Definición** (**Principio de inducción sobre listas**). Sea *P* una propiedad sobre listas (notaremos P(l) para indicar que *P* se cumple para la lista l). El principio de inducción sobre listas se define como:

```
\forall l :: [a], P(l) \triangleq P([]) \land (\forall x :: a, \forall l' :: [a], P(l') \Longrightarrow P(x : l') ++: [a] \rightarrow [a] \rightarrow [a] P[]: \{++ \ def \ 1\} \ [] \ ++ \ [] = [] [] \ ++ \ [' = \ l'] (x : \ l) \ ++ \ [' = x : (\ l \ ++ \ l')]
```

Paso inductive: $(x:xs) ++ [] = \{++ \text{ def } 2\} x : (xs ++ []) = \{\text{por HI}\} x:xs\}$

Principio de inducción sobre listas

- Probar que ++ es asociativa. (| ++ |') ++ |" = | ++ (|' ++ |")
- Caso base: ([] ++ l') ++ l" = {++ def 1} l' ++ l" = {++ def 1} = [] ++ (l' ++ l")
- HI: (xs ++ l') ++ l'' = xs ++ (l' ++ l'')
- Paso inductivo.

```
((x:xs) ++ l') ++ l'' = \{++ def 2\} (x : (xs ++ l')) ++ l''
= \{++ def 2\} x : ((xs ++ l') ++ l'')
= \{por HI\} x: (xs ++ (l' ++ l''))
= \{++ def 2\} (x: xs) ++ (l' ++ l'')
```

Funciones sobre listas

• Ejercicio: Sea reverse sobre listas:

```
reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
```

• Probar por inducción: reverse (xs ++ ys) = reverse ys ++ reverse xs