NI USB-621x Specifications

Specifications listed below are typical at 25 °C unless otherwise noted. Refer to the NI USB-621x User Manual for more information about USB-621x devices.

Caution The input/output ports of this device are not protected for electromagnetic interference due to functional reasons. As a result, this device may experience reduced measurement accuracy or other temporary performance degradation when connected cables are routed in an environment with radiated or conducted radio frequency electromagnetic interference.

To ensure that this device functions within specifications in its operational electromagnetic environment and to limit radiated emissions, care should be taken in the selection, design, and installation of measurement probes and cables.

Français	Deutsch	日本語	한국어	简体中文			
	ni.com/manuals						

Analog Input

Number of channels		Input range	±10 V, ±5 V,
USB-6210/6211/6212/			± 1 V, ± 0.2 V
6215/6216	16 single ended	Maximum working voltage for ana (signal + common mode)	
USB-6218	16 differential or 32 single ended	CMRR (DC to 60 Hz)	100 dB
ADC resolution	16 bits	Input impedance	
DNL	No missing andes	Device on	
DNL	guaranteed	AI+ to AI GND	>10 GΩ in parallel with 100 pF
INL	Refer to the AI Absolute Accuracy Tables	AI- to AI GND	>10 GΩ in parallel with 100 pF
Sampling rate		Device off	
Maximum		AI+ to AI GND	1200 Ω
USB-6210/6211/6215/6218.	250 kS/s single channel,	AI- to AI GND	1200 Ω
	250 kS/s multichannel (aggregate)	Input bias current	±100 pA
USB-6212/6216	400 kS/s single channel,	Crosstalk (at 100 kHz)	
	400 kS/s multichannel	Adjacent channels	75 dB
	(aggregate)	Non-adjacent channels	–90 dB
Minimum		Small signal bandwidth (-3 dB)	
Timing accuracy		USB-6210/6211/6215/6218	450 kHz
Timing resolution	50 ns	USB-6212/6216	1.5 MHz
Input coupling	DC		

Input FIFO size	4,095 samples
Scan list memory	4,095 entries
Data transfers	USB Signal Stream, programmed I/O
Overvoltage protection (AI < 031)	>, AI SENSE)
Device on	±30 V for up to two AI pins
Device off	±20 V for up to two AI pins
Input current during overvoltage condition	±20 mA max/AI pin

Settling Time for Multichannel Measurements

Accuracy, full scale step, all ranges

USB-6210/6211/6215/6218

 ± 90 ppm of step (±6 LSB)......4 μs convert interval ± 30 ppm of step (±2 LSB)......5 μs convert interval ± 15 ppm of step (±1 LSB)......7 μs convert interval USB-6212/6216

±90 ppm of step (±6 LSB)......2.5 μs convert interval ±30 ppm of step (±2 LSB)......3.5 μs convert interval ±15 ppm of step (±1 LSB)......5.5 μs convert interval

Typical Performance Graphs

Analog Output

Allalog Output
Number of channels
USB-6210
USB-6211/6212/6215/ 6216/62182
DAC resolution16 bits
DNL±1 LSB
Monotonicity16 bit guaranteed
Maximum update rate
1 channel
2 channels
Timing accuracy 50 ppm of sample rate
Timing resolution50 ns
Output range±10 V
Output couplingDC
Output impedance 0.2Ω
Output current drive±2 mA
Overdrive protection±30 V
Overdrive current
Power-on state±20 mV
Power-on glitch±1 V for 200 ms
Output FIFO size
Data transfers
AO waveform modes:
Non-periodic waveform
Periodic waveform regeneration mode from onboard FIFO
Periodic waveform regeneration from host buffer including dynamic update
Settling time, full scale step 15 ppm (1 LSB)32 µs
Slew rate 5 V/μs
Glitch energy
Magnitude100 mV
Duration2.6 μs
Calibration (Al and AO) Recommended warm-up time 15 minutes

Calibration interval 1 year

4

Al Absolute Accuracy Table (USB-6210/6211/6215/6218)

Nomina	l Range				Residual					
Positive Full Scale	Negative Full Scale	Residual Gain Error (ppm of Reading)	Gain Tempco (ppm/°C)	Reference Tempco	Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	INLError (ppm of Range)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale ¹ (µV)	Sensitivity ² (µV)
10	-10	75	7.3	5	20	34	76	229	2,690	91.6
5	-5	85	7.3	5	20	36	76	118	1,410	47.2
1	-1	95	7.3	5	25	49	76	26	310	10.4
0.2	-0.2	135	7.3	5	40	116	76	12	88	4.8

AbsoluteAccuracy = Reading \cdot (GainError) + Range \cdot (OffsetError) + NoiseUncertainty

 $GainError = Residual AIGainError + GainTempco \cdot (TempChangeFromLastInternalCal) + ReferenceTempco \cdot (TempChangeFromLastExternalCal) + ReferenceTempco \cdot (TempChangeFromLastE$

 $Offset Error = Residual AIOffset Error + Offset Tempco \cdot (TempChange From Last Internal Cal) + INL_Error$

NoiseUncertainty =
$$\frac{\text{RandomNoise} \cdot 3}{\sqrt{100}}$$

For a coverage factor of 3 $\,\sigma$ and averaging 100 points.

¹ Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

TempChangeFromLastExternalCal = 10 °C

TempChangeFromLastInternalCal = 1 $^{\circ}$ C

number_of_readings = 100

CoverageFactor = 3σ

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

GainError = 75 ppm + 7.3 ppm \cdot 1 + 5 ppm \cdot 10

GainError = 132 ppm

OffsetError = $20 \text{ ppm} + 34 \text{ ppm} \cdot 1 + 76 \text{ ppm}$

OffsetError = 130 ppm

NoiseUncertainty = $\frac{229 \,\mu\text{V} \cdot 3}{\sqrt{100}}$

NoiseUncertainty = $68.7 \mu V$

 $Absolute Accuracy = 10~V \cdot (GainError) + 10~V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,690~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,600~\mu V \cdot (OffsetError) + Noise Uncertainty \\ Absolute Accuracy = 2,6000~\mu V \cdot (OffsetError) + Noise U$

Accuracies listed are valid for up to one year from the device external calibration.

² Sensitivity is the smallest voltage change that can be detected. It is a function of noise.

Al Absolute Accuracy Table (USB-6212/6216)

Nomina	l Range				Residual					
Positive Full Scale	Negative Full Scale	Residual Gain Error (ppm of Reading)	Gain Tempco (ppm/°C)	Reference Tempco	Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	INLError (ppm of Range)	Random Noise, σ (μVrms)	Absolute Accuracy at Full Scale ¹ (µV)	Sensitivity ² (µV)
10	-10	75	7.3	5	20	34	76	295	2,710	118.0
5	-5	85	7.3	5	20	36	76	149	1,420	59.6
1	-1	95	7.3	5	25	49	76	32	310	12.8
0.2	-0.2	135	7.3	5	40	116	76	13	89	5.2

AbsoluteAccuracy = Reading \cdot (GainError) + Range \cdot (OffsetError) + NoiseUncertainty

 $GainError = Residual AIGainError + GainTempco \cdot (TempChangeFromLastInternalCal) + ReferenceTempco \cdot (TempChangeFromLastExternalCal) + ReferenceTempco \cdot (TempChangeFromLastE$

 $OffsetError = Residual AIOffsetError + OffsetTempco \cdot (TempChangeFromLastInternalCal) + INL_Error$

NoiseUncertainty =
$$\frac{\text{RandomNoise} \cdot 3}{\sqrt{100}}$$

For a coverage factor of 3 $\,\sigma$ and averaging 100 points.

¹ Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:

TempChangeFromLastExternalCal = 10 °C

TempChangeFromLastInternalCal = 1 °C

number_of_readings = 100

CoverageFactor = 3σ

For example, on the 10 V range, the absolute accuracy at full scale is as follows:

GainError = 75 ppm + 7.3 ppm \cdot 1 + 5 ppm \cdot 10 GainError = 132 ppm OffsetError = 20 ppm + 34 ppm \cdot 1 + 76 ppm OffsetError = 130 ppm

NoiseUncertainty = $\frac{295 \mu V \cdot 3}{\sqrt{100}}$ NoiseUncertainty = 88.5 μV

AbsoluteAccuracy = $10 \text{ V} \cdot (GainError) + 10 \text{ V} \cdot (OffsetError) + NoiseUncertainty}$ AbsoluteAccuracy = $2,710 \, \mu\text{V}$

Accuracies listed are valid for up to one year from the device external calibration.

² Sensitivity is the smallest voltage change that can be detected. It is a function of noise.

AO Absolute Accuracy Table

Nomina	l Range	D 11 10 1			Residual	0.00		Absolute
Positive Full Scale	Negative Full Scale	Residual Gain Error (ppm of Reading)	Gain Tempco (ppm/°C)	Reference Tempco	Offset Error (ppm of Range)	Offset Tempco (ppm of Range/°C)	INLError (ppm of Range)	Accuracy at Full Scale ¹ (μV)
10	-10	90	11	5	60	12	128	3,512

 $^{^1}$ Absolute Accuracy at full scale numbers is valid immediately following internal calibration and assumes the device is operating within $10\,^{\circ}\text{C}$ of the last external calibration. Accuracies listed are valid for up to one year from the device external calibration.

AbsoluteAccuracy = OutputValue \cdot (GainError) + Range \cdot (OffsetError)

 $GainError = ResidualGainError + GainTempco \cdot (TempChangeFromLastInternalCal) + ReferenceTempco \cdot (TempChangeFromLastExternalCal) + ReferenceTempco \cdot (TempChangeFromLastExte$

 $Offset Error = Residual Offset Error + AOOffset Tempco \cdot (TempChange From Last Internal Cal) + INL_Error$

Digital I/O/PFI

Static Characteristics

Static Unaracteristics	
Number of channels	
Digital input	
USB-6210/6211/6215	.4 (PFI <03>/P0.<03>)
USB-6218	.8 (PFI <03>/P0.<03>, PFI <811>/P0.<47>)
Digital output	
USB-6210/6211/6215	.4 (PFI <47>/P1.<03>)
USB-6218	.8 (PFI <47>/P1.<03>, PFI <1215>/P1.<47>)
Digital input or output	
USB-6212/6216	
Screw Terminal	32 total, 16 (P0.<015>), 16 (PFI <07>/P1.<07>, PFI <815>/P2.<07>)
USB-6212/6216	
Mass Termination/BNC	.24 total, 8 (P0.<07>), 16 (PFI <07>/P1.<07>, PFI <815>/P2.<07>)
Ground reference	. D GND
Pull-down resistor	
USB-6210/6211/6215/6218	. 47 kΩ ±1%
USB-6212/6216	. 50 kΩ typical, 20 kΩ minimum
Input voltage protection ¹	±20 V on up to 8 pins
PFI Functionality	
USB-6210/6211/6215/6218	
PFI <03>, PFI <811>/Port 0	
Functionality	Static digital input, timing input
Debounce filter settings	. 125 ns, 6.425 μs,

Timing output sources	Many AI, AO,
	counter timing signals
Debounce filter settings	125 ns, 6.425 µs,
	2.56 ms, disable;
	high and low transitions;
	selectable per input

Maximum Operation Conditions

Level	Min	Max
I _{OL} output low current	_	16 mA
I _{OH} output high current	_	-16 mA

Digital Input Characteristics (USB-6210/6211/6215/6218)

Level	Min	Max
V _{IL} input low voltage	0 V	0.8 V
V _{IH} input high voltage	2 V	5.25 V
I_{IL} input low current ($V_{in} = 0 \text{ V}$)	_	-10 μA
I_{IH} input high current ($V_{in} = 5 \text{ V}$)	_	120 μΑ

Digital Input Characteristics (USB-6212/6216)

Level	Min	Max
V _{IL} input low voltage	0 V	0.8 V
V _{IH} input high voltage	2.2 V	5.25 V
I_{IL} input low current ($V_{in} = 0 \text{ V}$)	_	-10 μA
I_{IH} input high current ($V_{in} = 5 \text{ V}$)	_	250 μΑ
Positive-going threshold (VT+)	_	2.2 V
Negative-going threshold (VT-)	0.8 V	_
Delta VT hysteresis (VT+ – VT–)	0.2 V	_

Digital Output Characteristics (USB-6210/6211/6215/6218)

Parameter	Voltage Level	Current Level
V _{OL}	0.6 V	6 mA
V_{OH}	2.7 V	-16 mA
	3.8 V	–6 mA

¹ Stresses beyond those listed under *Input voltage protection* may cause permanent damage to the device.

2.56 ms, disable; high and low transitions; selectable per input

timing output

counter timing signals

static digital output, timing input, timing output

PFI <4..7>, PFI <12..15>/Port 1

USB-6212/6216 PFI <0..15>

Functionality Static digital output,

Timing output sources Many AI, AO,

Functionality......Static digital input,

Digital Output Characteristics (USB-6212/6216)

General-Purpose Counter/Timers

Number of counter/timers	2
Resolution	32 bits
Counter measurements	Edge counting, pulse, semi-period, period, two-edge separation
Position measurements	X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding
Output applications	Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling
Internal base clocks	80 MHz, 20 MHz, 0.1 MHz
External base clock frequency	0 MHz to 20 MHz
Base clock accuracy	50 ppm
Inputs	Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down
Routing options for inputs	
USB-6210/6211/6215/6218	PFI <03>, PFI <811>, many internal signals
USB-6212/6216	PFI <015>, many internal signals
FIFO	1,023 samples
Data transfers	USB Signal Stream, programmed I/O

Frequency Generator

Number of channels	1
Base clocks	. 10 MHz, 100 kHz
Divisors	1 to 16
Base clock accuracy	50 ppm
Output can be available on any out	nut PFI terminal

External Digital Triggers Power Requirements Source Input voltage on USB-621x USB port......4.5 to 5.25 V in USB-6210/6211/6215/6218...... PFI <0..3>. PFI <8..11> configured state USB-6212/6216......PFI <0..15> Maximum inrush current......500 mA Polarity.....Software-selectable for most signals Analog input function Start Trigger, Maximum load Reference Trigger, Typical current......400 mA at 4.5 V Pause Trigger, Suspend current......260 µA, typical Sample Clock, Convert Clock, **Physical Characteristics** Sample Clock Timebase Enclosure dimensions (includes connectors) Analog output function Start Trigger, USB-621x Screw Terminal.......16.9 \times 9.4 \times 3.1 cm Pause Trigger, $(6.65 \times 3.70 \times 1.20 \text{ in.})$ Sample Clock, Sample Clock Timebase USB-621x Mass Termination 19.3 \times 9.4 \times 3.1 cm $(7.61 \times 3.68 \times 1.20 \text{ in.})$ USB-621x BNC23.5 × 11.2 × 6.4 cm Aux, A, B, Z, Up_Down, $(9.25 \times 4.40 \times 2.50 \text{ in.})$ **Bus Interface** Weight USB-621x Screw Terminal......206 g (7.2 oz) USB......USB 2.0 Hi-Speed or USB-6212 Mass Termination227 g (8.0 oz) Full-Speed1 USB-6216 Mass Termination231 g (8.1 oz) USB Signal Stream (USB)......4, can be used for analog USB-6212/6216/6218 BNC.......950 g (33.5 oz) input, analog output, counter/timer 0, USB-6210 OEM73 g (2.5 oz) counter/timer 1 USB-6212/6216/6218 OEM76 g (2.6 oz) I/O connectors **Power Limits** USB-6210/6211/6215Two 16-position +5 V terminal as output2 combicon Voltage 4.6 to 5.2 V USB-6212/6216/6218 Current (internally limited) 50 mA max, shared Screw Terminal.....Four 16-position with digital outputs combicon USB-6212/6216 +5 V terminal as input² Mass TerminationOne 68-pin SCSI USB-6212/6216/6218 BNC......19 BNCs and

Voltage	4.75 to 5.35 V
Current	350 mA max,
	self-resetting fuse

Caution Do not exceed 16 mA per DIO pin.

Protection.....±10 V

Screw terminal wiring16 to 28 AWG

Torque for screw terminals0.22–0.25 N \cdot m

 $(2.0-2.2 \text{ lb} \cdot \text{in.})$

²⁶ screw terminals

USB connectorSeries B receptacle

¹ If you are using a USB M Series device in Full-Speed mode, device performance will be lower and you will not be able to achieve maximum sampling/update rates.

² USB-621x Screw Terminal/BNC devices have a self-resetting fuse that opens when current exceeds this specification. USB-621x Mass Termination devices have a user-replaceable socketed fuse that opens when current exceeds this specification. Refer to the NI USB-621x User Manual for information about fuse replacement.

Environmental

Maximum Working Voltage¹ USB-6210/6211/6212 Rated Voltage

Channel-to-earth ground......11 V,

Measurement Category I

Caution Do *not* use for measurements within Categories II, III, or IV.

USB-6215/6216/6218 Rated Voltage

Channel-to-earth ground²

Analog channel to AI GND/AO GND (in Figure 1, $|V_a - V_c|$)..... \leq 11 V,

Measurement Category I3

Digital channel to D GND (in Figure 1, $V_b - V_c$)≤5.25 V,

Measurement Category I³

Caution This device is rated for Measurement Category I and the voltage across the isolation barrier is limited to no greater than 30 Vrms/ 60 VDC/42.4 V_{pk} continuous. Do *not* use for measurements within Categories II, III, or IV.

Figure 1 illustrates the maximum working voltage specifications.

Figure 1. USB-6215/6216/6218 Maximum Working Voltage

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326 (IEC 61326): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

¹ Maximum working voltage refers to the signal voltage plus the common-mode voltage.

² In Figure 1, $|V_a - V_d|$, $|V_b - V_d|$, and $|V_c - V_d|$.

³ Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Note For the standards applied to assess the EMC of this product, refer to the *Online Product Certification* section.

Note For EMC compliance, operate this product according to the documentation.

Note For EMC compliance, operate this device with shielded cables.

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the NI and the Environment Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of their life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.

电子信息产品污染控制管理办法 (中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Figure 2. USB-6210 Pinout

Figure 3. USB-6211/6215 Pinout

AI 8 34 68 AI 0 AI GND AI 1 33 67 AI GND AI 9 32 66 AI 10 31 65 Al 2 AI 3 30 64 AI GND AI GND 29 63 AI 11 Al 4 28 62 AI SENSE AI GND 27 61 AI 12 AI 13 26 60 AI 5 25 59 AI GND AI 6 AI GND 24 58 AI 14 AI 15 23 57 AI 7 22 56 AI GND AO 0 21 55 AO GND AO 1 20 54 AO GND NC P0.4 19 D GND 53 D GND 18 52 P0.0 P0.1 17 51 P0.5 P0.6 16 50 D GND D GND 15 49 P0.2 +5 V 14 48 P0.7 D GND 13 47 P0.3 PFI 11/P2.3 D GND 12 46 PFI 0/P1.0 11 45 PFI 10/P2.2 PFI 1/P1.1 10 44 D GND D GND 9 43 PFI 2/P1.2 +5 V 8 42 PFI 3/P1.3 D GND 7 41 PFI 4/P1.4 PFI 5/P1.5 6 40 PFI 13/P2.5 PFI 6/P1.6 PFI 15/P2.7 5 | 39 D GND 38 PFI 7/P1.7 4 PFI 9/P2.1 3 37 PFI 8/P2.0 PFI 12/P2.4 2 36 D GND PFI 14/P2.6 1 35 D GND NC = No Connect **TERMINAL 34 TERMINAL 68 TERMINAL 1 TERMINAL 35**

Figure 4. USB-6212/6216 Screw Terminal Pinout

Figure 5. USB-6212/6216 Mass Termination Pinout

Figure 6. USB-6212/6216 BNC Pinout

Figure 7. USB-6218 Screw Terminal Pinout

Figure 8. USB-6218 BNC Pinout

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section on ni.com/legal for more information about National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.