Chapitre 7: Limite en un point (pour une fonction réelle d'une variable réelle)

Dans tout ce chapitre, D désigne une partie non vide de \mathbb{R} .

I Généralités

A) Définition

Soit $f: D \to \mathbb{R}$, soit $a \in Adh_{\overline{\mathbb{R}}}(D)$.

Soit $l \in \overline{\mathbb{R}}$.

On dit que f tend vers l en a - ou que f(x) tend vers l lorsque x tend vers a - et on note $f \to l$ - ou $f(x) \xrightarrow[x \mapsto a]{} l$ - lorsque $\forall W \in V(l), \exists V \in V(a), f(V \cap D) \subset W$.

Variantes de définition dans des cas particuliers :

- Si $a \in \mathbb{R}, l \in \mathbb{R}$:

$$f \xrightarrow{a} l \Leftrightarrow \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, (|x - a| < \alpha \Rightarrow |f(x) - l| < \varepsilon).$$

Démonstration:

 \Rightarrow supposons que $f \rightarrow l$.

Soit $\varepsilon > 0$; on note $W = [l - \varepsilon, l + \varepsilon]$.

Alors W est un voisinage de l. Il existe donc $V \in V(a)$ tel que $f(V \cap D) \subset W$.

Mais V contient une boule ouverte de centre a.

Il existe donc $\alpha > 0$ tel que $|a - \alpha, a + \alpha| \subset V$.

Donc $\forall x \in D, |x-a| < \alpha \Rightarrow |f(x)-l| < \varepsilon$. D'où la première implication.

 \Leftarrow supposons que $\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, (|x - a| < \alpha \Rightarrow |f(x) - l| < \varepsilon)$.

Soit $W \in V(l)$. Soit alors $\varepsilon > 0$ tel que $[l - \varepsilon, l + \varepsilon] \subset W$.

Il existe donc $\alpha > 0$ tel que $\forall x \in D, (|x - a| < \alpha \Rightarrow |f(x) - l| < \varepsilon)$.

On pose $V = [a - \alpha, a + \alpha]$.

Alors $V \in V(a)$, et on a $f(V \cap D) \subset [l - \varepsilon, l + \varepsilon] \subset W$.

- Si $a \in \mathbb{R}, l = +\infty$:

 $\forall A \in \mathbb{R}, \exists \alpha > 0, \forall x \in D, (|x - \alpha| < \alpha \Rightarrow f(x) > A)$

(même démonstration, en utilisant des voisinages de $+\infty$)

Si $a = +\infty, l \in \mathbb{R}$:

 $f \to l \Leftrightarrow \forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \in D, (x > A \Rightarrow |f(x) - l| < \varepsilon)$

- $\text{Si } a = +\infty, l = +\infty$: $f \to l \Leftrightarrow \forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \in D, (x > B \Rightarrow f(x) > A)$

Cas particulier : $D = \mathbb{N}$. Soit $a \in \operatorname{Adh}_{\overline{\mathbb{R}}}(\mathbb{N})$, $l \in \mathbb{R}$: $f \underset{a}{\to} l \Leftrightarrow \forall W \in V(l), \exists U \in V(a), \forall n \in \mathbb{N}, (n \in U \Rightarrow f(n) \in W)$ Dans le cas $a = +\infty$, $U \in V(+\infty) \Leftrightarrow \exists N \in \mathbb{N},]N, +\infty[\subset U$ $f(n) \xrightarrow[n \to +\infty]{} l \Leftrightarrow \forall W \in V(l), \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow f(n) \in W)$ Le cas $a = n_0 \in \mathbb{N}$ est sans intérêt...

B) Théorème (unicité de la limite éventuelle)

Théorème:

Soit $f: D \to \mathbb{R}$, soit $a \in \operatorname{Adh}_{\overline{\mathbb{R}}}(D)$, soient $l, l' \in \overline{\mathbb{R}}$. Si $f \to l$ et $f \to l'$, alors l = l'.

Démonstration:

Supposons $l \neq l'$.

Il existe donc $W \in V(l)$ et $W' \in V(l')$ tels que $W \cap W' = \emptyset$.

Alors:

D'une part, il existe $U \in V(a)$ tel que $f(U \cap D) \subset W$.

D'autre part, il existe $U \in V(a)$ tel que $f(U \cap D) \subset W'$.

Alors $\forall x \in U \cap U' \cap D, f(x) \in W \cap W'$.

Contradiction car $U \cap U' \cap D \neq \emptyset$. En effet :

 $U \cap U' \in V(a)$, car $U \in V(a), U' \in V(a)$.

De plus, $\forall V \in V(a), V \cap D \neq \emptyset$, puisque $a \in Adh_{\overline{n}}(D)$.

Donc en particulier $U \cap U' \cap D \neq \emptyset$.

D'où l'unicité de la limite.

Notation:

Si $f \xrightarrow{a} l$, on note $l = \lim_{a} f$

Et si $f(x) \xrightarrow[x \mapsto a]{} l$, on note $l = \lim_{x \mapsto a} f(x)$.

C) Remarque

Si
$$f: D \to \mathbb{R}$$
, $a \in Adh_{\overline{\mathbb{R}}}(D)$ et si $f \xrightarrow{a} l$, alors $l \in Adh_{\overline{\mathbb{R}}}(f(D))$.

En effet, tout voisinage de l rencontre f(D), puisque si $W \in V(l)$, on peut trouver $U \in V(a)$ tel que $f(U \cap D) \subset W$, et comme $U \cap D \neq \emptyset$, pour $x \in U \cap D$, on a bien $f(x) \in W$.

D) Continuité en un point

Théorème:

Soit $f: D \to \mathbb{R}$, et soit $a \in D$.

Si f admet une limite en a, alors cette limite est f(a)

Démonstration:

Supposons que $f \rightarrow l$, avec $l \neq f(a)$.

On peut alors trouver $W \in V(l)$ tel que $f(a) \notin W$.

Or, il existe $U \in V(a)$ tel que $f(U \cap D) \subset W$ (car $f \xrightarrow{a} l$ et $W \in V(l)$), ce qui est contradictoire, car $a \in U \cap D$. Donc f(a) = l.

On dit alors que f est continue en a.

E) Exemples

1) Fonction constante

Soit $K \in \mathbb{R}$. Soit $f: D \to \mathbb{R}$.

Alors $\forall a \in Adh_{\overline{\mathbb{R}}}(D), f \xrightarrow{a} K$

Démonstration:

Soit $W \in V(K)$, prenons $U = \mathbb{R}$.

Alors $U \in V(a)$ et on a bien $f(U \cap D) \subset W$.

2) Identité

Soit $f: D \to \mathbb{R}$. Alors $\forall a \in Adh_{\mathbb{R}}(D), f \to a$.

Démonstration :

Soit $W \in V(a)$. Prenons alors U = W.

Alors $U \in V(a)$ et $f(U \cap D) \subset W$.

II Théorème de « composition » de limites

A) Théorème

Soit $f: D \to \mathbb{R}$, $g: E \to \mathbb{R}$ où E est une partie de \mathbb{R} telle que $f(D) \in E$.

Soit $a \in Adh_{\overline{\mathbb{R}}}(D)$, $b \in \overline{\mathbb{R}}, l \in \overline{\mathbb{R}}$

Si f tend vers b en a et si g tend vers l en b, alors $g \circ f$ tend vers l en a.

Démonstration:

Déjà, si $f \xrightarrow{a} b$, alors $b \in Adh_{\overline{\mathbb{R}}}(f(D))$, donc $b \in Adh_{\overline{\mathbb{R}}}(E)$.

Montrons que $g \circ f \xrightarrow{a} l$. Soit $W \in V(l)$.

Comme $g \xrightarrow[b]{} l$, il existe $V \in V(b)$ tel que $g(V \cap E) \subset W$.

Comme $f \rightarrow b$, il existe $U \in V(a)$ tel que $f(U \cap D) \subset V$.

Alors $g \circ f(U \cap D) \subset W$:

Si $x \in U \cap D$, alors $f(x) \in V$. De plus, $f(x) \in f(D) \subset E$.

Donc $f(x) \in V \cap E$. Donc $g \circ f(x) \in W$.

Donc $\forall W \in V(l), \exists U \in V(a), g \circ f(U \cap D) \subset W$.

B) Cas particulier (suites)

Soient
$$f: D \to \mathbb{R}$$
, $(u_n)_{n \in \mathbb{N}^*} \in D^{\mathbb{N}}$, $a \in Adh_{\overline{\mathbb{R}}}(D)$
Si $u_n \xrightarrow[n \to +\infty]{} a$, et si $f(x) \xrightarrow[x \mapsto a]{} l$, alors $f(u_n) \xrightarrow[n \to +\infty]{} l$.

C) Réciproque

Soit $f: D \to \mathbb{R}$, $a \in Adh_{\overline{\mathbb{R}}}(D)$, $l \in \overline{\mathbb{R}}$.

Si, pour toute suite $(u_n)_{n \in \mathbb{N}^*} \in D^{\mathbb{N}}$ qui tend vers a, $f(u_n)$ tend vers l, alors f tend vers l en a.

Démonstration:

Montrons la contraposée :

Supposons que $non(f \rightarrow l)$,

C'est-à-dire que $\operatorname{non}(\forall W \in V(l), \exists U \in V(a), f(U \cap D) \subset W)$

Ou: $\exists W \in V(l), \forall U \in V(a), \exists x \in U \cap D, f(x) \notin W$

Soit W un tel voisinage.

Pour chaque $n \in \mathbb{N}$, posons :

$$\begin{cases} U_n = \left] a - \frac{1}{n+1}, a + \frac{1}{n+1} \right[\text{ si } a \in \mathbb{R} \\ U_n = \left] n, +\infty \right[\text{ si } a = +\infty \\ U_n = \left] -\infty, -n \right[\text{ si } a = -\infty \end{cases}$$

Alors $\forall n \in \mathbb{N}, U_n \in V(a)$

Il existe donc, pour tout $n \in \mathbb{N}$, $x_n \in U_n \cap D$ tel que $f(x_n) \notin W$

Donc $(x_n)_{n\in\mathbb{N}}\in D^{\mathbb{N}}$, tend vers a et $(f(x_n))_{n\in\mathbb{N}}$ ne tend pas vers l.

En effet:

- $\forall n \in \mathbb{N}, x_n \in D$ par construction.
- Si $a \in \mathbb{R}$: $\forall n \in \mathbb{N}, a \frac{1}{n+1} < x_n < a + \frac{1}{n+1}$ Si $a = +\infty$: $\forall n \in \mathbb{N}, x_n > n$

Si $a = -\infty$: $\forall n \in \mathbb{N}, x_n < -n$

Ainsi, dans les trois cas, $(x_n)_{n \in \mathbb{N}} \to a$

• $\forall n \in \mathbb{N}, x_n \notin W$

Donc $(f(x_n))_{n\in\mathbb{N}}$ ne tend pas vers l. On a donc trouvé une suite $(x_n)_{n\in\mathbb{N}}\in D^\mathbb{N}$ qui tend vers a et telle que $(f(x_n))_{n\in\mathbb{N}}$ ne tende pas vers l, d'où la démonstration de la contraposée.

III Limite selon une partie

A) Généralités

Soit $f: D \to \mathbb{R}$, soit $a \in Adh_{\overline{\mathbb{R}}}(D)$, $l \in \overline{\mathbb{R}}$.

Soit *X* une partie non vide de *D*. Si $a \in Adh_{\overline{\mathbb{R}}}(X)$, et si $f_{/X}$ tend vers l en a, on dit que f(x) tend vers l quand x tend vers a selon X, et on note : $f(x) \xrightarrow{x \mapsto a} l$.

Proposition:

Si
$$f \xrightarrow{a} l$$
, alors $f_{/X} \xrightarrow{a} l$ (si $a \in Adh_{\overline{\mathbb{R}}}(X)$)

Démonstration:

Supposons que $f \xrightarrow{a} l$.

Soit $W \in V(l)$. Il existe donc $U \in V(a)$ tel que $f(U \cap D) \subset W$. Comme $X \subset D$, on a bien alors $f(U \cap X) \subset f(U \cap D) \subset W$, soit $f_{/X}(U \cap X) \subset W$, d'où le résultat.

B) Cas particulier

Lorsque $X = U \cap V$:

Soient $f: D \to \mathbb{R}$, $a \in Adh_{\overline{\mathbb{R}}}(D)$, $V \in V(a)$, $l \in \overline{\mathbb{R}}$.

Alors $a \in Adh_{\overline{\mathbb{R}}}(D \cap V)$, et: $f \xrightarrow{a} l \Leftrightarrow f_{V \cap D} \xrightarrow{a} l$.

On dit que la notion de limite est locale.

Démonstration:

 \Rightarrow : vu en \underline{A}).

 \Leftarrow : supposons que $f_{V \cap D} \rightarrow l$.

Soit $W \in V(l)$. Il existe $U \in V(a)$ tel que $f(U \cap (V \cap D)) \subset W$.

Si on prend $U' = V \cap U$, alors $U' \in V(a)$ et $f(U' \cap D) \subset W$.

C) Autre cas particulier

Soient $f: D \to \mathbb{R}$, $a \in Adh_{\mathbb{R}}(D)$ (Attention! ici, $a \in \mathbb{R}$)

- Si a est adhérent à $D \cap a,+\infty[$, et si $f_{/D\cap a,+\infty[}$ a une limite l en a, on dit que f a une limite à droite en a, notée $\lim_{\substack{x\mapsto a\\x>a}} f(x)$, ou $\lim_{a^+} f$.
- On adapte pour la limite à gauche.

Si $a \notin D$, mais est adhérent à $D \cap a,+\infty[$ et à $D \cap a,+\infty[$ et à $D \cap a,-\infty[$ a une limite en a si et seulement si a une limite à droite et à gauche en a et si elles sont égales.

Remarque:

Si $D = a, +\infty[$, la notion de $\lim_{a^+} f$ et $\lim_{a} f$ se confond.

Si $D = [a, +\infty[$, f a une limite en a si et seulement si f a une limite à droite égale à f(a).

On fait de même pour $]-\infty,a$:.

Définition:

Soit $f: D \to \mathbb{R}$, soit $a \in D$.

Alors f est continue à droite en $a \Leftrightarrow f_{D \cap [a,+\infty[}$ est continue en a.

 \Leftrightarrow f a une limite à droite en a égale à f(a).

De même à gauche.

D) Autre cas particulier utile

Soit $f: D \to \mathbb{R}$, soit $a \in D$ adhérent à $D \setminus \{a\}$ (c'est-à-dire que tout voisinage de a contient au moins un point autre que a, soit que a n'est pas un point isolé).

Si $f_{|D\setminus\{a\}}$ a une limite en a, on la note $\lim_{x\mapsto a} f(x)$.

Sur le dessin:

$$\lim_{x \mapsto a} f(x) = l \neq f(a)$$

Mais $\lim_{x \to a} f(x)$ n'existe pas.

Proposition:

Si a est adhérent à $D \setminus \{a\}$, alors :

f a une limite en $a \Leftrightarrow \lim_{\substack{x \mapsto a \\ }} f(x)$ existe et vaut f(a).

E) Prolongement par continuité en un point

Définition:

Soit $f: D \to \mathbb{R}$. On suppose que a est adhérent à D (dans \mathbb{R}), mais que $a \notin D$.

Soit $g:D\cup\{a\}\to\mathbb{R}$. On dit que g est un prolongement par continuité de f en a lorsque :

- $\forall x \in D, g(x) = f(x)$
- g est continue en a.

Proposition:

f admet un prolongement par continuité en a si et seulement si f admet une limite finie en a. Dans ce cas, l'unique prolongement par continuité de f en a est la fonction :

$$g: D \cup \{a\} \to \mathbb{R}$$

$$x \mapsto \begin{cases} f(x) & \text{si } x \in D \\ \lim_{x \to a} f(x) & \text{si } x = a \end{cases}$$

IV Limites et inégalités

Proposition:

Soient $f: D \to \mathbb{R}$, $a \in Adh_{\overline{\mathbb{R}}}(D)$.

Si f a une limite finie en a, alors f est bornée au voisinage de a.

Si f tend vers $+\infty$ en a, alors f est non(majorée au voisinage de a).

Si f tend vers $-\infty$ en a, alors f est non(minorée au voisinage de a).

(Rappel : f a la propriété P au voisinage de a s'il existe un voisinage U de a tel que $f_{|U\cap D|}$ ait la propriété P)

En effet:

- Si $\lim_{a} f$ existe, vaut $l \in \mathbb{R}$ alors, selon la définition de limite, il existe $U \in V(a)$ tel que $\forall x \in D \cap U, f(x) \in [l-1, l+1[$. Donc f est bornée sur $D \cap U$.
- Si $f \to +\infty$. Montrons que $\forall U \in V(a), f_{/D \cap U}$ n'est pas majorée.

Soit $U \in V(a)$. Supposons qu'il existe $M \in \mathbb{R}$ tel que $\forall x \in D \cap U, f(x) \leq M$.

Mais, selon la définition de limite, il existe $V \in V(a)$ tel que $\forall x \in V \cap U, f(x) > M$,

ce qui est contradictoire, puisque $D \cap U \cap V$ n'est pas vide (car a est adhérent à D, donc tout voisinage de a rencontre D, et de plus U et V sont des voisinages de a)

• Adapter si $f \rightarrow -\infty$.

Proposition:

Soient $f: D \to \mathbb{R}$, $a \in Adh_{\overline{\mathbb{R}}}(D)$.

Si f tend vers $l \in \mathbb{R}_+^* \cup \{+\infty\}$ en a, alors f > 0 au voisinage de a.

Si f tend vers $l \in \mathbb{R}^*_- \cup \{-\infty\}$ en a, alors f < 0 au voisinage de a.

Démonstration :

Dans le premier cas, et $l \in \mathbb{R}_+^*$

On pose $W = B(l, \frac{l}{2})$ (ainsi, $\forall x \in W, x > 0$).

Il existe alors $V \in V(a)$ tel que $f(V \cap D) \subset W$.

Donc $\forall x \in V \cap D, f(x) \in W$, soit $\forall x \in V \cap D, f(x) > 0$.

Si $l = +\infty$: il suffit de prendre $W = [1; +\infty[$, et on aura le même résultat.

On fait de la même façon dans le deuxième cas.

Proposition:

Soient $f: D \to \mathbb{R}$, $g: D \to \mathbb{R}$. Soit $a \in Adh_{\overline{\mathbb{R}}}(D)$.

Si $f \le g$ et si f et g on des limites en a, alors $\lim_{a} f \le \lim_{a} g$.

On peut se contenter d'un voisinage de a pour la propriété $f \le g$.

Démonstrations:

Notons $l = \lim_{a} f$ et $l' = \lim_{a} g$, supposons que l > l'.

Cas où $l, l \in \mathbb{R}$.

Prenons $\varepsilon \in \mathbb{R}_+^*$ tel que $0 < \varepsilon < \frac{l-l'}{2}$

Il existe alors $U \in V(a)$ tel que $\forall x \in U \cap D, f(x) \in [l - \varepsilon, l + \varepsilon]$

Et $U' \in V(a)$ tel que $\forall x \in U' \cap D, g(x) \in [l' - \varepsilon, l' + \varepsilon[$.

Alors $U \cap U' \cap D \neq \emptyset$, et pour $x \in U \cap U' \cap D$, $g(x) < l' + \varepsilon < l - \varepsilon < f(x)$, ce qui est contradictoire.

Autre démonstration :

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de points de D qui tend vers a.

(Il en existe puisque $a \in Adh_{\overline{R}}(D)$).

On a alors, pour tout $n \in \mathbb{N}$, $f(u_n) \le g(u_n)$.

Mais, comme f a une limite en a, on sait que $f(u_n) \xrightarrow[n \to +\infty]{} \lim_{a \to +\infty} f$,

Et, comme g a une limite en a, $g(u_n) \xrightarrow[n \to +\infty]{} \lim_{a} g$.

Donc, selon le théorème de passage à la limite pour les suites, $\lim_{a} f \leq \lim_{a} g$.

Théorème « des gendarmes »:

Soient $f, g, h: D \to \mathbb{R}$, soit $a \in Adh_{\overline{\mathbb{R}}}(D)$.

On suppose que $\forall x \in D, f(x) \le g(x) \le h(x)$.

Si f et h admettent une même limite l en a, alors g tend aussi vers l en a.

Démonstration:

Soit $(u_n)_{n\in\mathbb{N}}\in D^{\mathbb{N}}$ qui tend vers a.

Alors, selon le théorème de composition de limite, $(f(u_n))_{n\in\mathbb{N}} \to l$ et $(h(u_n))_{n\in\mathbb{N}} \to l$.

Or, $\forall n \in \mathbb{N}, f(u_n) \le g(u_n) \le h(u_n)$.

Donc $(g(u_n))_{n\in\mathbb{N}}$ tend vers l en a, d'après le théorème des gendarmes pour les suites.

C'est valable pour toute suite $(u_n)_{n\in\mathbb{N}}\in D^\mathbb{N}$ qui tend vers a, donc g tend vers l en a.

V Limites et opérations sur les fonctions

A) Cas des limites finies

Proposition:

Soient $f, g: D \to \mathbb{R}$, $a \in Adh_{\overline{\mathbb{R}}}(D)$, $\lambda \in \mathbb{R}$.

Si
$$\begin{cases} f \to l \in \mathbb{R} \\ g \to l' \in \mathbb{R} \end{cases}$$
, alors $\begin{cases} f + g \to l + l' \\ \lambda f \to \lambda l \\ f \times g \to l \times l' \end{cases}$

Démonstration :

Soit $(u_n)_{n\in\mathbb{N}}\in D^{\mathbb{N}}$ qui tend vers a. Alors $(f(u_n))_{n\in\mathbb{N}}\to l$, $(g(u_n))_{n\in\mathbb{N}}\to l$.

Donc par théorème de composition de limites pour les suites, $(f(u_n) + g(u_n))_{n \in \mathbb{N}} \to l + l'$, c'est-à-dire $((f+g)(u_n))_{n \in \mathbb{N}} \to l + l'$.

Ce résultat est valable pour toute suite qui tend vers a. Donc $f + g \rightarrow l + l'$.

On procède de même avec λf , $f \times g$.

Proposition:

Soit $f: D \to \mathbb{R}$, $a \in Adh_{\overline{\mathbb{R}}}(D)$.

Si $f \to l \in \mathbb{R}$, alors $|f| \to |l|$, et, si $l \neq 0$, $\frac{1}{f}$ est définie au voisinage de a et $\frac{1}{f} \to \frac{1}{a}$

Démonstration:

Utiliser les suites comme précédemment (pour dire que $\frac{1}{f}$ est défini au voisinage de a lorsque $l \neq 0$, il suffit d'utiliser la deuxième proposition vue en \mathbf{IV})

Remarque:

Soit $f: D \to \mathbb{R}$, $a \in Adh_{\overline{\mathbb{R}}}(D)$.

Soit $l \in \mathbb{R}$.

On a les équivalences :

$$f \xrightarrow{a} l \Leftrightarrow \hat{f} - l \xrightarrow{a} 0 \Leftrightarrow |f - l| \xrightarrow{a} 0$$

Démonstration :

$$f \underset{a}{\rightarrow} l \iff \forall \varepsilon > 0, \exists U \in V(a), \forall x \in D \cap U, |f(x) - l| < \varepsilon$$

$$= |f(x) - l - 0|$$

$$= |f(x) - l - 0|$$

$$= |f(x) - l| - 0|$$

En particulier,

$$f \underset{a}{\longrightarrow} 0 \Leftrightarrow |f| \underset{a}{\longrightarrow} 0$$

Proposition:

Soient $f, g: D \to \mathbb{R}$, $a \in Adh_{\overline{\mathbb{R}}}(D)$.

Si $f \to 0$, et si g est bornée au voisinage de a, alors $fg \to 0$

B) Cas où certaines limites sont infinies

Soient $f, g: D \to \mathbb{R}$, $a \in Adh_{\overline{\mathbb{R}}}(D)$.

• Si $f \to +\infty$, alors, pour tout $\lambda \in \mathbb{R}$:

$$\lambda f \xrightarrow{a} \begin{cases} +\infty \operatorname{si} \lambda > 0 \\ 0 \operatorname{si} \lambda = 0 \\ -\infty \operatorname{si} \lambda < 0 \end{cases}$$

- Si $f \to +\infty$, et si g est minorée, alors $f + g \to +\infty$
- Si $f \to +\infty$, et si g est minorée par $\alpha > 0$, alors $fg \to +\infty$
- Si $f \to +\infty$, alors $\frac{1}{f}$ est définie au voisinage de a et $\frac{1}{f} \to 0$

• Si $f \to 0$, et si f > 0 au voisinage de a (c'est-à-dire $f \to 0^+$), alors $\frac{1}{f} \to +\infty$.

C) Les indéterminations

Ce sont les cas où le cours ne permet pas de conclure, car il y a différentes possibilités.

$$\bullet << +\infty -\infty >>$$

Exemples:

$$x^2 - x \xrightarrow[+\infty]{} + \infty$$
, $x - x^2 \xrightarrow[+\infty]{} - \infty$, $x - x \xrightarrow[+\infty]{} 0$, $x + 3 - x \xrightarrow[+\infty]{} 3$, $x + \sin x - x$ pas de limite.

• << 0×∞ >>

Exemples:

$$\frac{1}{x}x^2 \xrightarrow[+\infty]{} + \infty$$
, $\frac{1}{x^2}x \xrightarrow[+\infty]{} 0$, $\frac{1}{x}x \xrightarrow[+\infty]{} 1$, $\frac{\sin x}{x}$ pas de limite en $+\infty$.

si
$$f(x) \xrightarrow{a} 1$$
, $g(x) \xrightarrow{a} + \infty$:

On s'intéresse à $F(x) = f(x)^{g(x)}$

Mais
$$F(x) = \exp(\underbrace{g(x)\ln(f(x))}_{\rightarrow +\infty})$$

On est ainsi ramené à une indétermination du type $<< 0 \times \infty >>$

Si
$$f(x) \rightarrow 0$$
 et $f(x) > 0$

Et
$$g(x) \rightarrow 0$$

$$F(x) = f(x)^{g(x)} = \exp(\underbrace{g(x)}_{\to 0} \underbrace{\ln(f(x))}_{\to -\infty})$$

D) Limites et fonctions usuelles

- On a vu que $x \mapsto 1$ et $x \mapsto x$ sont continues en tout point de \mathbb{R} . Donc toute fonction polynomiale est continue sur \mathbb{R} . Il en est de même des fractions rationnelles (sur leur domaine de définition).
- La fonction cos est continue sur \mathbb{R} .

En effet,
$$\forall x, x' \in \mathbb{R}, \cos x - \cos x' = -2\sin\left(\frac{x+x'}{2}\right)\sin\left(\frac{x-x'}{2}\right)$$

Donc
$$\forall x, x' \in \mathbb{R}, \left|\cos x - \cos x'\right| \le 2 \left| \underbrace{\sin\left(\frac{x+x'}{2}\right)}_{\le 1} \left\| \underbrace{\sin\left(\frac{x-x'}{2}\right)}_{\le \frac{|x-x'|}{2}} \right\| \le |x-x'|$$

Donc cos est 1-lipschitzienne sur R, donc continue.

Montrons que si une fonction $f: D \to \mathbb{R}$ est lipschitzienne, alors f est continue sur D.

Soit
$$k \in \mathbb{R}_+$$
 tel que $\forall x, x' \in D, |f(x) - f(x')| \le k|x - x'|$.

Soit
$$a \in D$$
. Alors $\forall x \in D, |f(x) - f(a)| \le \underbrace{k|x - a|}_{\rightarrow 0 \text{ en } a}$

Donc $f(x) \xrightarrow{x \mapsto a} f(a)$. Donc f est continue en a, donc en tout point de D.

• $\forall x \in \mathbb{R}, \sin(x) = \cos(\frac{\pi}{2} - x)$

Donc, par composition, la fonction sin est continue.

•
$$\forall x \in \mathbb{R}, \tan(x) = \frac{\sin(x)}{\cos(x)}$$

Donc la fonction tan est continue sur son domaine de définition.

- exp, ln sont continues sur leur domaine de définition.
- Soit $\alpha \in \mathbb{R}$.

La fonction $x \mapsto x^{\alpha}$ est définie et continue sur \mathbb{R}_{+}^{*} .

De plus, si $\alpha > 0$, la fonction est prolongeable par continuité en 0 par 0.

- $x \mapsto \sqrt[n]{x}$, où $n \in \mathbb{N}^*$ sont définies et continues sur \mathbb{R}_+
- Les fonctions $x \mapsto x^n$ pour $n \in \mathbb{Z} \setminus \mathbb{N}$ sont définies et continues sur \mathbb{R}^* .

E) Remarque technique : « le retour à 0 »

• Pour la limite :

Soit
$$f: D \to \mathbb{R}$$
, $a \in Adh_{\overline{\mathbb{R}}}(D)$.

Soit
$$l \in \mathbb{R}$$
.

$$f \underset{a}{\rightarrow} l \Leftrightarrow f - l \underset{a}{\rightarrow} 0$$

• Pour la variable :

Soit
$$f: D \to \mathbb{R}$$
, $a \in Adh_{\overline{\mathbb{R}}}(D)$.

Soit
$$l \in \mathbb{R}$$
.

$$f(x) \xrightarrow{x \mapsto a} l \iff f(a+u) \xrightarrow{u \mapsto 0} l$$

Démonstration:

$$\Rightarrow$$
: supposons que $f(x) \xrightarrow[x \mapsto a]{} l$.

Alors
$$a + u \xrightarrow[u \to 0]{} a$$
, et $f(x) \xrightarrow[x \to a]{} l$.

Donc, par composition,
$$f(a+u) \xrightarrow{u \to 0} l$$

$$\Leftarrow$$
: supposons que $f(a+u) \xrightarrow{u\mapsto 0} l$.

Alors
$$x - a \xrightarrow[x \mapsto a]{} 0$$
 et $f(a + u) \xrightarrow[u \mapsto 0]{} l$.

Donc, par composition,
$$f(a+(x-a)) \xrightarrow[x\mapsto a]{} l$$
, soit $f(x) \xrightarrow[x\mapsto a]{} l$.

Exemple:

Etude de l'éventuelle limite en 3 de
$$f(x) = \frac{x^4 - 3^4}{\sin(x) - \sin(3)}$$

Domaine de définition :
$$\mathbb{R} \setminus (\{3+2k\pi, k \in \mathbb{Z}\} \cup \{\pi-3+2k\pi, k \in \mathbb{Z}\}) = D$$

Donc $3 \in Adh_{\mathbb{R}}(D)$

Page 11 sur 13

Pour $u \neq 0$ et suffisamment proche de 0, on a :

$$f(3+u) = \frac{(3+u)^4 - 3^4}{\sin(3+u) - \sin(3)} = \frac{4 \times 3^3 u + 6 \times 3^2 u^2 + 4 \times 3 \times u^3 + u^4}{2\cos\left(\frac{6+u}{2}\right)\sin\left(\frac{u}{2}\right)} \sim \frac{4 \times 3^3 u}{2\cos(3)\frac{u}{2}}$$

Donc $f(3+u) \sim \frac{4\times3^3}{\cos(3)}$, d'où la limite en 3...

VI Le théorème de la limite monotone pour les fonctions

Théorème:

Soient $a, b \in \overline{\mathbb{R}}$, avec a < b

Soit $f: a, b \to \mathbb{R}$, monotone. Alors f a une limite dans $\overline{\mathbb{R}}$ en a et en b.

Plus précisément :

- Si f est croissante :
- Si f est majorée, elle a une limite réelle en b (qui est $\sup(f)$)

Sinon, $f \xrightarrow{b} + \infty$

- Si f est minorée, elle a une limite réelle en a (qui est $\inf(f)$)

Sinon, $f \rightarrow -\infty$

• Si f est décroissante : à adapter.

Démonstration :

- Cas où f est croissante, étude en b :
- Si f est majorée, on peut introduire $l = \sup_{x \in]a,b[} (f(x))$.

Montrons qu'alors $f \rightarrow l$

Soit $\varepsilon > 0$. $l - \varepsilon$ ne majore pas f. Il existe donc $x_0 \in]a,b[$ tel que $f(x_0) > l - \varepsilon$. Comme f est croissante, on a : $\forall x \in [x_0,b[,l-\varepsilon < f(x) \le l$.

Or, $[x_0, b[$ est l'intersection d'un voisinage de b et de]a, b[.

Il existe donc $U \in V(b)$ tel que $\forall x \in D \cap U, f(x) \in [l - \varepsilon, l + \varepsilon]$, d'où la limite.

- Si f n'est pas majorée :

Montrons que $f \xrightarrow{b} + \infty$

Soit $A \in \mathbb{R}$. A ne majore pas f il existe donc $x_0 \in \left]a,b\right[$ tel que $f(x_0) > A$

Comme f est croissante, on a : $\forall x \in [x_0, b[, f(x) \ge f(x_0) > A]$.

Or, $[x_0, b[$ est l'intersection d'un voisinage de b et de]a, b[.

Il existe donc $U \in V(b)$ tel que $\forall x \in D \cap U, f(x) > A$

Pour l'étude en a :

On peut refaire la démonstration, ou considérer $g:]-b, -a[\to \mathbb{R} \\ x \mapsto -f(-x)]$, qui est croissante

• Cas où f est décroissante :

Démonstration analogue, ou considérer la fonction $g: a, b \mapsto \mathbb{R}$, qui est croissante.

Théorème:

Soit I un intervalle infini (c'est-à-dire ni vide ni un singleton) de \mathbb{R} , soit $f: I \to \mathbb{R}$,

monotone. Alors, en tout point $x_0 \in \mathring{I}$, f admet une limite finie à droite et une limite finie à gauche, avec de plus :

$$\lim_{x \mapsto x_0^-} f(x) \le f(x_0) \le \lim_{x \mapsto x_0^+} f(x) \text{ si } f \text{ est croissante,}$$

$$\lim_{x \mapsto x_0^+} f(x) \le f(x_0) \le \lim_{x \mapsto x_0^-} f(x) \text{ si } f \text{ est décroissante.}$$

De plus, si a et b désignent les extrémités (dans $\overline{\mathbb{R}}$) de I avec a < b, alors :

Si $b \in I$, f a une limite finie à gauche en b et $\lim_{x \to b^-} f(x) \le f(b)$ si f est croissante,

 $\lim_{x \to b^{-}} f(x) \ge f(b)$ si f est décroissante.

Si $b \notin I$, f a une limite (à gauche) en b dans $\overline{\mathbb{R}}$.

De même en *a* (à droite)

Démonstration:

Soit $x_0 \in \mathring{I}$. On peut trouver $x_1, x_2 \in I$ tels que $x_1 < x_0 < x_2$ (car $x_0 \in \mathring{I}$)

On applique le théorème de la limite monotone à $f_{/]x_1,x_0[}$, qui est monotone et minorée/majorée par $f(x_0)$ (si f est décroissante/croissante)

Donc $\lim_{x \to x_0^-} f(x)$ existe, et est supérieur/inférieur à $f(x_0)$.

De même, on applique le théorème pour $f_{|x_0,x_2|}$, monotone et majorée/minorée par $f(x_0)$ (si f est décroissante/croissante)

Donc $\lim_{x\mapsto x_0^+} f(x)$ existe et est inférieur/supérieur à $f(x_0)$.

Pour les extrémités :

Si $b \in I$ on applique le théorème à $f_{/[a,b[}$, croissante/décroissante, majorée/minorée par f(b). Sinon, on applique le théorème à $f_{/[a,b[}$, croissante/décroissante.

De même en a.