අධෳයන පොදු සහතික පතු (උ/පෙළ) විභාගය

සංයුක්ත ගණිතය - I

13 ශුේණිය

කාලය විනාඩි 45 යි.

${f A}$ කොටස

- ullet $oldsymbol{A}$ කොටසේ පුශ්න සියල්ලටම හා $oldsymbol{B}$ කොටසින් පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.
- (01) 7 + 77 + 777 + පද n හි ඓකා සොයන්න.
- (02) x + 4x + 7x + (3n 2) $x = \frac{1}{2}n(3n 1)$ x යන්න ගණිත අභාවුහනයෙන් සියළු ධන නිඛිල සඳහා පෙන්වන්න.
- (03) α , β යනු $ax^2+bx+c=0$ හි මූල නම්, $\alpha^2+\beta^2$, $\frac{1}{\alpha^2}+\frac{1}{\beta^2}$ මූල වන වර්ගජ සමීකරණය සොයන්න.
- (04) $\tan^2 \alpha + \sec \alpha 1 = 0, 0 < \alpha < 2\pi$ හි සාධාරණ විසඳුම් ලබාගන්න.
- (05) $\cos 36^0 = \frac{\sqrt{5} + 1}{4}$ බව සාධනය කරන්න.
- (06) $\frac{\cos A}{1 \sin A} = \tan \left(45^0 + \frac{A}{2}\right)$ බව පෙන්වන්න.
- (07) $\lim_{x \to 3} (x^2 9) \left(\frac{1}{x+3} + \frac{1}{x-3} \right)$ අගය සොයන්න.
- (08) $y=x+rac{1}{x}$ නම් එවිට x^2 $\frac{dy}{dx}=xy-2$ බව පෙන්වන්න.

(09) 2x-y-5=0, 3x-y-6=0 හා 4x-y-7=0 යන සරල රේඛා එකම ලක්ෂයක් හරහා යන බව පෙන්වන්න.

(10) $\log_3 x - 4\log_x 3 + 3 = 0$ විසඳන්න.

B කොටස

- 11. (a) $\mathbf{k} x^2 + (\mathbf{k} + 1) x (\mathbf{k} + 2) = \mathbf{0}$ සමීකරණයේ මූල α හා β වේ. $\alpha + \beta = \frac{-4}{3}$ බව දී ඇත්නම් \mathbf{k} , $\frac{1}{\alpha} + \frac{1}{\beta}$, $\alpha^2 + \beta^2$ යන්න සොයන්න.
 - (b) α^2 හා β^2 මූල ලෙස ඇති සමීකරණය ද සොයන්න.
 - (c) $x^2 3x > 3$ අසමානතාව විසඳන්න.
 - (d) |2x+1| < 2|x| + x අසමානතාව පුස්තාරිකව විසඳන්න.
- 12. (a) $\lim_{x \to 9} \frac{x^{3/2} 27}{x 9}$ මසායන්න.
 - (b) පුමුල ධර්ම ඇසුරෙන් $y=rac{1}{x^2}$ හි අවකලන සංගුණකය ලබා ගන්න.
 - (c) $y = \sqrt{2x^2 5}$ නම් $\frac{dy}{dx}$ හා $\frac{d^2y}{dx^2}$ සොයන්න.
 - (d) $x = 1 3t^3, y = 1 3t^2$ නම $\frac{dy}{dx}$ හා $\frac{d^2y}{dx^2}$ මසායන්න.

- 13. (a) $4^x = 25$ විසඳන්න.
 - (b) **tan 105**° හි අගය සොයන්න.
 - (c) $\sin 2x + \sin 4x \sin 6x = 0$ විසඳන්න.
 - (d) $3\cos x + 4\sin x$, r > 0 වන, $r\cos(x \alpha)$ ආකාරයට පුකාශකර එනයින් $3\cos x + 4\sin x = 2.5$ සමීකරණය විසඳන්න.
- 14. (a) $\frac{x^3 4x 5}{x^2 x 6}$ යන්න හින්න භාග ඇසුරෙන් දක්වන්න.
 - (b) $x^3 7x^2 + 7x + 15$ හි සාධක සොයන්න.
 - (c) g ශුිතය පහත සඳහන් ආකාරයට අර්ථ දැක්වේ.

 $g:x | o 2x+3; x \in |R,g(x+5),g(x^2+5)$ හා $g(\frac{1}{x})$ යන මේවා සොයන්න.

- (d) $\frac{3\sqrt{2} + 2\sqrt{3}}{3\sqrt{2} + -\sqrt{3}}$ හි හරය පරිමේය කරන්න.
- 15. (a) ${f 10}^{
 m h}$ + ${f 3.4}^{
 m n+2}$ + ${f 5};$ ${m n}$ \in $|{f N}|$ යන්න ${f 9}$ න් බෙදෙන බව සාධනය කරන්න.
 - (b) 1.7777 සමාවර්ත දශම සංඛ්යාව පරිමේය කරන්න.
 - (c) $\sqrt{x+8} \sqrt{x+3} = \sqrt{2x-1}$ විසඳන්න.
 - (d) $3x^4 4x^3 14x^2 4x + 3 = 0$ විසඳන්න.

- 16. (a) x+3y-2=0 සහ 2x-y+4=0 සරල රේඛාවල ඡේදන ලක්ෂාය හරහා $(-1\ ,\ 1)$ යටින් හරහා ද යන සරල රේඛාවේ සමීකරණය සොයන්න.
 - (b) ABCD රොම්බසයේ AB පාදය x-y+1=0 මත ද BC පාදය 2x+y-7=0 මත ද පිහිටා ඇති අතර විකර්ණ වල ඡේදන ලස්ෂා $E\left(\frac{1}{4},\frac{-1}{2}\right)$ වේ. රොම්බසයේ විකර්ණවල ද, ඉතිරි පාද වල ද සමීකරණය සොයන්න

- 17. \mathbf{P} නම් විචලා ලක්ෂයක සිට $\mathbf{S} = x^2 + y^2 + 2x + 4y + 1 = 0$ වෘත්තයට ඇඳි ස්පර්ශ ජාාය හැම විටම \mathbf{Q} (2, -3) ලක්ෂාය හරහා යයි නම්, හි පථය 3x y 3 = 0 සරල රේඛාව බව පෙන්වන්න.
 - (a) P හි පථය 3x y 3 = 0 සරල රේඛාව බව පෙන්වන්න.
 - (b) $S = x^2 + y^2 2x 2y + 2 = 0$ වෘත්තය හා l = x + y 1 = 0 සරල රේඛාවේ ඡේදන ලක්ෂාය හරහා යන අරය ඒකක $2 \int 2^2 x$ ක් වූ වෘත්ත වල සමීකරණ සොයන්න.

අධ¤යන පොදු සහතික පතු (උ/පෙළ) විභාගය

සංයුක්ත ගණිතය - II

13 ශුේණිය

කාලය පැය 03 යි.

• A කොටසින් සියලුම පුශ්නවලට සහ B කොටසින් පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

${f A}$ කොටස

- 01. \overrightarrow{ABCDEF} සවිධි ෂඩසුයේ \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{AF} පාද ඔස්සේ එම දෙශිකවලින් දක්වෙන දිශා ඔස්සේ 2N, $\sqrt{3}N$, 5N, $\sqrt{3}N$, 2N යන බල කිුයා කරයි. සම්පුයුක්ත බලයේ විශාලත්වය සහ දිශාව සොයන්න.
- 02. **ABC** සමපාද තිකෝණයක **AB**, **BC** සහ **CA** පාද ඔස්සේ පිළිවෙලින් **3P**, **7P** සහ **5P** බල කියා කරයි. සම්පුයුක්ත බලයේ කියාරේඛාව මඟින් **BC** පාදය හමුවන ලක්ෂාය සොයන්න.
- 03. (0,a)(a,0) සහ (a,a) ලක්ෂාවලදී පිළිවෙලින් p, -(1+b)p සහ bp යන සමාන්තර බල කුියා කරයි. එක් එක් බලය X අක්ෂයේ ධන දිශාව සමඟ θ කෝණයක් සාදයි. බල පද්ධතිය බල යුග්යකට තුලා වන බව පෙන්වා බල යුග්මයේ සූර්ණයේ විශාලත්වය p,a,b,θ මඟින් සොයන්න.
- 04. අංශුවක් $21 ms^{-1}$ පුවේගයෙන් සිරස් ලෙස ඉහළට ගුරුත්වය යටතේ පුක්ෂේප කරයි. පුක්ෂේප ලඤායේ සිට 280 m දුරක් පහළින් A ලඤායක් පසුකර ගමන් කිරීමට ගතවන කාලය සොයන්න. ($g=9.8 ms^{-2}$)
- 05. O ලක්ෂායක සිට 20ms⁻¹ පුවේගයෙන් පුක්ෂේප කරන ලද අංශුවක් O සිට 16m තිරස් දුරකින් ද 7m සිරස් උසකින් ද පිහිටි ලක්ෂායක් තුළින් යයි. පුකේෂ්පණ කෝණයට තිබිය හැකි tan අගයන් සොයන්න.
- 06. දිග 2a ද බර w ද වන AB ඒකාකාර ඉනිමඟක A කෙළවර රඑ තිරස් බිම් තලයක ද B කෙළවර රඑ සිරස් බිත්තියක ද ගැටෙමින් සීමාකාරී සමතුලිතතාවේ තිබෙන්නේ θ තිරසට කෝණයකින් ආනතවය. කෙළවර දෙකෙහිම ඝර්ෂණ සංගුණකය $\frac{1}{3}$ නම් $\tan \theta = \frac{4}{3}$ බව පෙන්වන්න.

- 07. $8ms^{-1}$ වේගයෙන් උතුරු දෙසට යන සයිකල් කරුවෙකුට $4ms^{-1}$ වේගයෙන් උතුරින් 60° ක් නැගෙනහිරින් වූ දිශාවෙන් සුළං හමන්නාසේ දුනේ. සුළගේ සතා පුවේගය සොයන්න.
- 08. ස්කන්ධය $800 {
 m kg}$ වන මෝටර් රථයක් සම බිමේ ගමන් කරන විට යෙදෙන පුතිරෝධය කිලෝගුෑම් එකකට නිවුටන් 0.5 කි. එන්ජිමේ ජවය $4 {
 m kw}$ නම්,
 - (i) වේගය $8ms^{-1}$ විට රථයේ ත්වරණය.
 - (ii) රථයේ උපරිම වේගය සොයන්න.
- 09. සෘජු මගක් දිගේ $12ms^{-1}$ වේගයෙන් චලනය වන A පාපැදිකරුවෙක් X ලක්ෂායකදී $8ms^{-1}$ වේගයෙන් චලනය වන B පාපැදි කරුවෙක් පසුකර යයි. ඉක්බිති B පාපැදි කරුවා ඔහුගේ වේගය ඒකාකාර ත්වරණයකින් වැඩිකර තත්පර 10 කට පසු Y ලක්ෂායකදී A පසු කරයි. පුවේග කාල පුස්තාරය ඇඳ මේවා සොයන්න.
 - (i) Yහිදී B ගේ පුවේගය
 - (ii) XY දුර
 - (iii) **B** ගේ ත්වරණය
- 10. ස්කන්ධ පිළිවෙලින් 3kg හා 2kg වන A හා B අංශු දෙකක් සැහැල්ලු අවිතනා තන්තුවකින් සම්බන්ධ කර තන්තුව නොඇදී තිබෙන සේ සුමට තිරස් තලයක් මත තබා තිබේ. B අංශුව දැන් A ගෙන් ඈත් වන සේ 5ms $^{-1}$ පුවේගයෙන් පුක්ෂේප කරනු ලැබේ. තන්තුව තද වූ පසු එක් එක් අංශුවේ පුවේගය ද තන්තුවේ ආවේගී ආතතියද සොයන්න.

<u>B</u> කොටස

- 11. (i) ලක්ෂයක් මත කිුයා කරන $\sqrt{3}P$, 4P, $2\sqrt{3}P$, $3\sqrt{3}P$ හා 6P වූ ඒකතල බල පද්ධතියක් PQRSTU සමාකාර ෂඩසුයේ පිළිවෙලින් \overrightarrow{QP} , \overrightarrow{PR} , \overrightarrow{SP} , \overrightarrow{PT} හා \overrightarrow{UP} පාද ඔස්සේ කිුයා කෙරේ. මෙම බල පද්ධතියේ සම්පුයුක්තයේ විශාලත්වය, දිශාව හා කිුයා රේඛාවේ සමීකරණය සොයන්න.
 - (ii) \mathbf{W} බර ඒකාකාර දණ්ඩක් එක් කෙළවරක් අසව් කර අනෙක් කෙළවර ලුහු අවිතනා තන්තුවකින් දරා සිටී. දණ්ඩ ද තන්තුව ද තිරසට $\mathbf{30}^{0}$ එකම කෝණයකින් ආනතය. අසව්වේ පුතිකිුයාව සොයන්න.

12. සරල මාර්ගයක චලිත X වන මෝටර් රථයක් A ලක්ෂායක් නියත ත්වරණයකින් චලිත වෙමින් 15kmh¹ පුවේගයෙන් පසු කරයි. 500m ක් චලිත වූ පසු V kmh¹ පුවේගයට පත්වේ. ඉන්පසු එම නියත පුවේගයෙන් චලිතවේ. තත්පර 10 කට පසු Y මෝටර් රථයක් එම මාර්ගයේ පළමු දිශාණු නියත ms² නියත ත්වරණයකින් චලිත වෙමින් 30kmh¹ පුවේගයෙන් A ලක්ෂාය පසු කරයි. Y රථය 90kmh¹ පුවේගයට පැමිණි පසු එම නියත පුවේගයෙන් චලිත වේ. A සිට 1 km දුරක් දුරකදී Y විසින් X පසු කරයි. Y විසින් X පසු කිරීමට A ලක්ෂාය, Y විසින් පසු කළ මොහොතේ සිට තත්පර 80 ක් ගන්නා බව පෙන්වන්න.

13. එක එකෙහි අරය a හා බර W වූ ඒකාකාර සුමට ගෝල 2 ක් එකිනෙක ස්පර්ශ කරමින් අරය b (>2a) වූ අචල සුමට අර්ධ ගෝලාකාර පාතුයක ඇතුලත නිශ්චලව තිබේ. එක් ගෝලයක් මත කිුියා කරන බල නිරූපණය කරමින් වෙනම රූප සටහනක බල තිකෝණයක් ඇඳ ගෝල දෙක අතර පුතිකිුිිිිියාව $\frac{Wa}{\sqrt{b(b-2a)}}$ බව පෙන්වන්න.

- 14. AB, BC, CD, DA සමාන ඒකාකාර දඬු හතරක් නිදහස් ලෙස සන්ධි කර ඇත්තේ ABCD සමචතුරසුයක් සෑදෙන පරිදිය. පද්ධතිය A ලක්ෂායෙන් එල්ලා සමචතුරසු හැඩය පවත්වා ගන්නේ AB හිත් BC හිත් මධා ලක්ෂා යා කරන අවිතනා තන්තුවකිනි. එක් එක් දණ්ඩේ බර වේ.
 - (i) \mathbf{C} හිදී පුතිකිුයාව $\mathbf{5W}$ බවත්,
 - (ii) \mathbf{D} හිදී පුතිකිුයාව තිරස් දිශාවකට $\underline{\mathbf{w}}$ බවත්,
 - (iii) යා කරන තන්තුවේ ආතතිය 4w බවත්,
 - (iv) \mathbf{B} හිදී පුතිකිුයාව $\sqrt{\frac{17}{2}w}$ වූ සිරසට an^{-1} ආනත බලයක් බවත් පෙන්වන්න. $\left(\frac{1}{4} \right)$

15. තිරස් මේසයකට C හිදී සුවල ලෙස අසව් කරන ලද දිග 2a වන සැහැල්ලු BC දණ්ඩකට B හිදී බර w ද දිග 2a ද වන ඒකාකාර AB දණ්ඩක් සුවල ලෙස අසව් කර තිබේ. AB සිරස සමඟ θ කෝණයක් සාදමින් ද A කෙළවර මේසය ස්පර්ශ කරමින් ද දඬු දෙක සිරස් තලයක ද පිහිටා තිබේ. A කෙළවර හා මේසය අතර සර්ෂණ සංගුණකය μ ය. සමතුලිතතාව සඳහා $\tan\theta \le 3\mu$ විය යුතු බව පෙන්වන්න.

16. ${f O}$ ලක්ෂායෙන් ති්රසට ආනතව ${f V}$ වේගයෙන් පුක්ෂේප කළ වස්තුවක උපරිම උස ${f h}$ වේ. ${f O}$ තුළින් සිරස් තලය මත පරාසය ${f R}$ වේ. $16{f h}^2$ - $8{f V}^2{f h}$ + ${f g}{f R}^2$ = ${f 0}$ බව පෙන්වන්න. උපරිම උස සඳහා තාත්වික අගය වීමට අවශාතාවය සොයා එම අවස්ථා රූපයකින් පෙන්වන්න. එමඟින් ති්රස් තලය හා උපරිම පරාසය ද අපෝහනය කරන්න.

- 17. (a) දෛශිකයක් සමාන කෝණ සාදන දිශා දෙකකට විභේදනය කළ විට විභේදන කොටස් වල විශාලත්වය සමාන බව පෙන්වන්න.
 - (b) $a\,\underline{i}\,+\,j\,,\;2\,b\,\underline{i}\,+\,3\,a\,\underline{j}\,$ සහ $\underline{i}\,+\,b\,\underline{j}$ බලයන්ගේ සම්පුයුක්ත බලය $-6\,\underline{i}$ වේ. a හා b අගයන් සොයන්න.
 - $(2\,,3)$ ලක්ෂායේ දී කිුයා කරන $4\,i$ බලයත් $(6\,,1)$ හි කිුයා කරන F බලයත් සහ $(3\,,7)$ හි $3\,i+2\,i$ බලයක් වේ. බල පද්ධතිය යුග්මයකට තුලා නම්,
 - (i) **F** සොයන්න.
 - (ii) යුග්මයේ විශාලත්වය සොයන්න.