

DW_cntr_gray

Gray Code Counter

Version, STAR and Download Information: IP Directory

Features and Benefits

- Gray encoded output
- Asynchronous and synchronous reset
- Count enable
- Provides minPower benefits with the DesignWare-LP license (Get the minPower version of this datasheet.)

data count cen load n init_n clk rst n

SolvNet

Description

DW_cntr_gray is a Gray code counter. The counter is width bits wide and has 2^{width} states. The counter is clocked on the positive edge of the clk input. Because the count sequence is Gray code, only one counter bit changes value between successive states. DW_cntr_gray also has optional low power benefits.

Table 1-1 **Pin Description**

Pin Name	Width	Direction	Function	
clk	1 bit	Input	Clock	
rst_n	1 bit	Input	Reset, asynchronous, active low	
init_n	1 bit	Input	Reset, synchronous, active low	
load_n	1 bit	Input	Enable data load to counter, active low	
data	width bit(s)	Input	Counter load input	
cen	1 bit	Input	Count enable, active high	
count	width bit(s)	Output	Gray coded counter output	

Table 1-2 **Parameter Description**

Parameter	Values	Description	
width	≥ 1	Word length of counter	

Table 1-3 Synthesis Implementations^a

Implementation Name	Function	License Feature Required
rpl	Ripple-carry synthesis model	DesignWare
cla	Carry-lookahead synthesis model	DesignWare

a. During synthesis, Design Compiler will select the appropriate architecture for your constraints. However, you may force Design Compiler to use any architectures described in this table. For more, see *DesignWare Building Block IP User Guide*

Table 1-4 Simulation Models

Model	Function	
DW03.DW_chtr_gray_cfg_sim	Design unit name for VHDL simulation	
dw/dw03/src/DW_cntr_gray_sim.vhd	VHDL simulation model source code	
dw_sim_ver/DW_cntr_gray.v	Verilog simulation model source code	

The active-low rst_n signal provides for an asynchronous reset of the counter to "000...0". The active-low init_n signal provides a synchronous reset of the counter to "000...0".

When the count enable pin cen is high, the counter is active. When cen is low, the counter is disabled and count remains unchanged.

The counter operates according to the following Truth Table:

rst_n	init_n	load_n	cen	Operation
0	Х	Х	Х	Reset (asynchronous)
1	0	Х	Х	Reset (synchronous)
1	1	0	Х	Load
1	1	1	0	Standby
1	1	1	1	Count

Timing Diagrams

Figure 1-1 Functional Operation with asynchronous reset

Figure 1-2 Functional Operation with synchronous reset

Related Topics

- Math Arithmetic Overview
- DesignWare Building Block Documentation Overview

June 2018

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DW_Foundation_comp_arith.all;
entity DW_cntr_gray_inst is
  generic (inst_width : positive := 8);
  port (inst_clk : in std_logic;
        inst_rst_n : in std_logic;
        inst_init_n : in std_logic;
        inst_load_n : in std_logic;
        inst_data : in std_logic_vector(inst_width-1 downto 0);
        inst_cen
                   : in std_logic;
        count_inst : out std_logic_vector(inst_width-1 downto 0));
end DW_cntr_gray_inst;
architecture inst of DW_cntr_gray_inst is
begin
  -- instance of DW_cntr_gray
  U1 : DW_cntr_gray
    generic map (width => inst_width)
    port map (clk
                  => inst_clk,
              rst_n => inst_rst_n,
              init_n => inst_init_n,
              load_n => inst_load_n,
              data => inst_data,
                    => inst cen,
              cen
              count => count_inst);
end inst;
-- pragma translate_off
configuration DW_cntr_gray_inst_cfg_inst of DW_cntr_gray_inst is
  for inst
  end for;
end DW_cntr_gray_inst_cfg_inst;
-- pragma translate_on
```

HDL Usage Through Component Instantiation - Verilog

```
module DW_cntr_gray_inst (inst_clk, inst_rst_n, inst_init_n, inst_load_n,
                          inst_data, inst_cen, count_inst);
  parameter inst_width = 8;
  input inst_clk;
  input inst_rst_n;
  input inst_init_n;
  input inst_load_n;
  input [inst_width-1 : 0] inst_data;
  input inst cen;
  output [inst_width-1 : 0] count_inst;
  // Please add +incdir+$SYNOPSYS/dw/sim_ver+ to your verilog simulator
  // command line (for simulation).
  // instance of DW cntr gray
  DW_cntr_gray #(inst_width)
    U1 (.clk(inst_clk),
        .rst_n(inst_rst_n),
        .init_n(inst_init_n),
        .load_n(inst_load_n),
        .data(inst_data),
        .cen(inst_cen),
        .count(count_inst));
endmodule
```

SolvNet DesignWare.com

Copyright Notice and Proprietary Information

© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. 690 E. Middlefield Road Mountain View, CA 94043

www.synopsys.com