Uporabne formule

$$H_n = \sum_{k=1}^n \frac{1}{k} \le 1 + O(\log n)$$

Verjetnostni algoritmi za odločitvene probleme

Odgovarjamo na vprašanje $\omega \in \Pi$?

Las Vegas algoritmi vedno vrnejo pravilen odgovor Monte Carlo algoritmi lahko vrnejo napačen odgovor

- tip 1: $P(\text{yes} \mid \omega \in \Pi) \ge \frac{1}{2} P(\text{yes} \mid \omega \notin \Pi) = 0$
- tip 2: $P(\text{yes} \mid \omega \in \Pi) = 1 \ P(\text{yes} \mid \omega \notin \Pi) \le \frac{1}{2}$
- tip 3: $P(\text{yes} \mid \omega \in \Pi) \ge \frac{3}{4} P(\text{yes} \mid \omega \notin \Pi) \le \frac{1}{4}$

Razredi kompleksnosti odločitvenih problemov

- RP (randomized polynomial time): ∃ Monte Carlo tipa 1, ki v najslabšem primeru deluje v polinomskem času.
- \bullet co-RP:
- ∃ Monte Carlo tipa 2, ki v najslabšem primeru deluje v polinomskem času.
- BPP (bounded-error probabilistic polynomial time): ∃ Monte Carlo tipa 3, ki v najslabšem primeru deluje v polinomskem času.
- ◆ ZPP (zero-error probabilistic polynomial time):
 ∃ Las Vegas algoritem, ki deluje v pričakovanem polinomskem času.
- Ali (ekvivalentna definicija): \exists alg, ki v najslabšem primeru deluje v polinomskem času in vedno vrne pravilen odgovor ali "ne vem" in P("ne vem") $< \frac{1}{2}$.

 $ZPP = RP \cap co-RP, P \subset ZPP, RP \cup co-RP \subset BPP$

Chernoff bound

 X_1,\ldots,X_n neodvisne slučajne spremenljivke, $X_i\in\{0,1\},\,X=\sum_{i=1}^nX_i,\,\mu=E(X).$ Potem za vsak $\delta\in(0,1)$ velja:

$$P(X - \mu \ge \delta\mu) \le e^{-\frac{\delta^2 \mu}{3}}$$
$$P(\mu - X \ge \delta\mu) \le e^{-\frac{\delta^2 \mu}{2}}$$
$$P(|X - \mu| \ge \delta\mu) \le 2e^{-\frac{\delta^2 \mu}{3}}$$

Verjetnostni algoritmi za aproksimacijo

Verjetnostni algoritem izračuna (ϵ,δ) -aproksimacijo za V,če vrne Xtako, da velja:

$$P(|X - V| \le \epsilon V) \ge 1 - \delta$$

Naj bodo $X_1,\dots X_m$ slučajne spremenljivke, $\mu=E(X_i),\,Y=\frac{\sum X_i}{m}$. Če je $m\geq \frac{3\ln(2/\delta)}{\epsilon^2\mu}$, potem velja:

$$P(|X - \mu| \ge \epsilon \mu) \le \delta$$

in Y je (ϵ, δ) -aproksimacija za μ .

Polinomi

Naj bo \mathbb{F} polje. Stopnja polinoma $p \in \mathbb{F}[x_1,\ldots,x_n]$ je $\deg(p(x_1,\ldots,x_n)) = \deg(p(x,\ldots,x))$

Schwartz-Zippelov izrek

Naj bo $p \in \mathbb{F}[x_1,\ldots,x_n]$ in $\deg(p)=d\geq 0$. Naj bo $S\subseteq \mathbb{F}^n$ poljubna končna podmnožica. Za naključno izbiro (enakomerno) $r\in S$ velja:

$$P(p(r) = 0) \le \frac{d}{|S|}$$

Verjetnost

Verjetnost na (Ω, \mathcal{F}) je preslikava $P : \mathcal{F} \to \mathbb{R}$ z lastnostmi:

•
$$P(A) \ge 0$$
 za $\forall A \in \mathcal{F}$

- $P(\Omega) = 1$
- Za paroma nezdružljive (disjunktne) dogodke $\{A_i\}_{i=1}^{\infty}$ velja *števna aditivnost*

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- $P(\emptyset) = 0$
- P je končno aditivna.
- P je monotona: $A \subseteq B \implies P(A) \le P(B)$
- $P(A^{\complement}) = 1 P(A)$
- P je zvezna:

$$A_1 \subseteq A_2 \subseteq \cdots \implies P(\bigcup_{i=1}^{\infty}) = \lim_{i \to \infty} P(A_i)$$

$$B_1 \supseteq B_2 \supseteq \cdots \implies P(\bigcap_{i=1}^{\infty}) = \lim_{i \to \infty} P(B_i)$$

Matematično upanje

Za slučajno spremenljivko $X:\Omega\to\mathbb{Z}$

$$E(X) = \sum_{c \in \mathbb{Z}} cP(X = c)$$

Lastnosti

$$E(f(X)) = \sum_{c \in \mathbb{Z}} f(c)P(X = c)$$

Linearnost: za poljubne sl. sprem X_1, \ldots, X_n velja:

$$E(a_1X_1 + \dots a_nX_n) = a_1E(X_1) + \dots + a_nE(X_n)$$

Če ima |X| mat. up., ga ima tudi X in velja

$$|E(X)| \le E(|X|)$$

Če obstaja $E(X^2)$ in $E(Y^2)$, obstaja tudi E(XY) in velja:

$$|E(XY)| \le E(|XY|) \le \sqrt{E(X^2)E(Y^2)}$$

Disperzija (varianca)

$$D(X) = E((X - E(X))^{2}) = E(X^{2}) - (E(X))^{2}$$

Lastnosti:

- $D(X) \ge 0$
- $D(X) = 0 \iff P(X = E(X)) = 1$
- $D(aX) = a^2D(X)$

Standardna diviacija/odklon:

$$\sigma(X) = \sqrt{D(X)}$$

zanjo velja $\sigma(aX) = |a|\sigma(X)$.

Neodvisnost

Diskretno porazdeljeni sl. sprem. X in Y sta noedvisni, če velja:

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

za vse i, j.

Nekoreliranost

Sl. sprem. X in Y sta nekorelirani, če velja:

$$E(XY) = E(X)E(Y)$$

$$X, Y$$
 neodvisni $\implies X, Y$ nekorelirani

Če imata X in Y, je nekoreliranost ekvivalentna zvezi:

$$D(X + Y) = D(X) + D(Y)$$

Neenakost Markova

Če je X sl. sprem. z mat. up., potem je

$$P(|X| \ge a) \le \frac{E(|X|)}{a} \quad \forall a > 0$$