# Annotation and filtering



## Learning outcomes

At the end of this lecture, you should be able to:

- 1. Describe and evaluate available annotations
- 2. Justify filtering strategies using genetic knowledge
- 3. Contrast variant-led and phenotype-led approaches

# Analysis workflow



Raw reads **Processed BAM** Visualise data raw sequence data **FASTQ** Quality control of Assess quality and Call variants Variant calling process reads and QC **Processed reads** Variant and sample **FASTQ** quality control Map to reference **Annotate** Alignment> Public databases genome **Annotation** Post process overlaps **Annotate** and duplicates **Pathogenicity** Post alignment processing Post process Filter and prioritise and assessment InDel realignment variants strategies Filtering Post process Integrate with clinical Visualise data BaseQ recalibration information Assess depth and **Functional Shortlist of disease** breadth of coverage follow-up related variants



#### Data to annotate

- Variant functional effect
- Allele frequencies
- Conservation
- Functional effect prediction scores
- Disease databases for disease of interest
  - Genes
  - Variants



## Functional effect

- Is variant synonymous, stop-gain, frameshift...
  - Different transcripts may be affected differently
  - Worst affected transcript may not be clinically relevant
  - Strict guidelines (<a href="http://varnomen.hgvs.org/">http://varnomen.hgvs.org/</a>)
- Choice of transcript database (RefSeq or ensembl)
- Reduces complex biology to an absolute, sometimes imperfectly

NOD2:NM\_001293557:exon3:c.T953C:p.V318A

| Variant type | p. description                                         | Remarks                                                                                                       |
|--------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|              | p.(Arg490Ser)                                          | The protein change is predicted (no experimental proof)                                                       |
| Substitution | p.Arg490Ser/p.R490S<br>p.Trp87Ter /<br>p.Trp78*/p.W87* | Both three- (preferred) and one-letter amino acid code may be used; * accepted for one- and three-letter code |
| Deletion     | p.Asp388_Gln393del                                     | No specification of deleted amino acid(s)                                                                     |
| Duplication  | p.Asp388_Gln393dup                                     | No specification of duplicated amino acid(s)                                                                  |
| Insertion    | p.Ala228_Val229insTrpPro<br>p.Ala228_Val229insLys*     | Mandatory specification of inserted amino acids                                                               |
| Inversions   |                                                        | Not possible                                                                                                  |
| Frame shift  | p.(Arg97fs)<br>p.(Arg97Profs*23)                       | Short and long form accepted; long form contains "fsTer" or "fs*"                                             |



# Allele frequencies

- Require baseline of human variance
  - Rare/novel variant ≠ pathogenic
  - Massive collaborations (and infrastructure) required
- 1000 Genomes 2,504 WGS individuals globally ('healthy')
  - 843 authors; 168 affiliations
- Exome Sequencing Project 6,515 Americans (EA and AA)
  - 396 authors;
- ExAC 60,706 WES globally (common disease cohorts)
  - 74 authors + consortium; 52 affiliations



#### Conservation

- Measure how much a base varies
- Based on sequence data across taxa
- Requires genome alignments
  - Non-trivial
- PhyloP is common score
- GERP++ more complex



Highly conserved → more damaging if changed?



## Functional effect scores

- Based on the difference a mutation may make to protein function
- Amino acid changes Grantham scores
- Plus conservation information SIFT scores
- Structure based PolyPhen-2
  - Machine learning based on structural/biochemical features
- Consensus CADD

**Twenty-One Amino Acids** 

Negativ

Medicine







# Splicing

- Splicing mutations can have similar impact to frameshifts
- Complex process which is hard to predict
- Conservation of motifs at splice sites





## Disease databases

- Can use for gene and variant prioritisation
- Human Gene Mutation Database (HGMD)
  - Team of dedicated curators, industry funded

- Online Mendelian Inheritance in Man (OMIM)
  - Dedicated curators, public grant funded
- Leiden Open Variation Database (LOVD)
  - Infrastructure only, community implemented



## Phenotype-led interrogation

- Can use systematic phenotyping for prioritisation
- Human phenotype ontology (HPO) provides a platform
- Link phenotypes to known causal genotypes in a network
- Create gene lists (Phenomizer, Phenotips)
- Prioritise variants (Exomiser, PhenIX)





#### **MediciPhenomizer**





## MediciPhenotype defined target



Narrowing diagnostic scope to phenotype-defined target

#### Unmasking exome data using phenotypically compatible genes

#### **Advantages**

**Individually defined** for each patient, in accordance to presenting phenotype

Does not depend on the existence of diagnostic hypothesis

Is robust to diagnostic re-classification

Based on a **continuously updated** resource (HPO)

Can be used a **standardized approach** for panel generation

#### Disadvantages

Depend on the completeness of genephenotype mappings

Depend on the completeness of describing patient phenotype presentation

Generally result in larger gene target for analysis

Moderate increase in the possibility of finding pertinent findings

## Variant shortlist



- Use Phenotype to restrict the candidates
- However, different resources give different phenotype to gene interactions

| Renal Agenesis                                                     |                                                                                                        |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| OMIM                                                               | RET, ITGA8, PAX2                                                                                       |
| Orphanet                                                           | FGF20, ITGA8                                                                                           |
| Congenital anomalies of the kidney and urinary tract (CAKUT) panel | BICC1, BMP4, CHD1L, EYA1, FOXC1, GATA3, GDNF, RET, ROBO2, SIX1, SIX5, SOX17, TFAP2A, TRAP1, UPK3A, WT1 |
| Phenomizer                                                         | PROKR2, RET, PAX2, TBC1D24, LRP4,                                                                      |

|         |                                                                                                           |        |            |                    |            | Rank                      |                       |
|---------|-----------------------------------------------------------------------------------------------------------|--------|------------|--------------------|------------|---------------------------|-----------------------|
| Gene    | Diagnosis                                                                                                 | PhenIX | Exomiser   | Exomiser with CADD | OVA        | eXtasy (order statistics) | eXtasy (combined max) |
| ARID1B  | COFFIN-SIRIS SYNDROME; CSS;;FIFTH DIGIT SYNDROME                                                          | 2      | 95         | 132                | 1037       | 6013                      | 6184                  |
| KCNQ2   | EPILEPTIC ENCEPHALOPATHY, EARLY INFANTILE, 7; EIEE7                                                       | 1      | 85         | 104                | Not listed | 1458                      | 8508                  |
| SGCE    | MYOCLONIC DYSTONIA                                                                                        | 7      | Not listed | Not listed         | Not listed | 239                       | 9304                  |
| MED13L  | MENTAL RETARDATION, AUTOSOMAL RECESSIVE 15; MRT15                                                         | 106    | 14         | 10                 | 1004       | 2230                      | 4511                  |
| RYR1    | CONGENITAL FIBER-TYPE DISPROPORTION MYOPATHY                                                              | 1      | 68         | 85                 | 74         | 422                       | 8624                  |
| SACS    | SPASTIC ATAXIA, CHARLEVOIX-SAGUENAY TYPE                                                                  | 3      | 89         | 77                 | 308        | 3264                      | 5032                  |
| UBE3A   | ANGELMAN SYNDROME                                                                                         | 12     | 74         | 77                 | Not listed | 178                       | 8728                  |
| PTEN    | PTEN HAMARTOMA TUMOR SYNDROME                                                                             | 1      | 1          | 1                  | Not listed | 126                       | 8822                  |
| DYNC1H1 | SPINAL MUSCULAR ATROPHY, LOWER EXTREMITY, AUTOSOMAL DOMINANT; SMALED                                      | 10     | 85         | 86                 | 20         | 1759                      | 4687                  |
| SCN1A   | DRAVET SYNDROME                                                                                           | 2      | 27         | 53                 | 72         | 250                       | 8188                  |
| TCOF1   | TREACHER COLLINS SYNDROME 3; TCS3;;MANDIBULOFACIAL DYSOSTOSIS, TREACHER COLLINS TYPE, AUTOSOMAL RECESSIVE | 9      | 99         | 92                 | 45         | 259                       | 8858                  |
| OTX2    | MICROPHTHALMIA, ISOLATED 1                                                                                | 5      | 60         | 70                 | 73         | Not listed                | Not listed            |
| EHMT1   | KLEEFSTRA SYNDROME                                                                                        | 10     | 88         | 95                 | Not listed | Not listed                | Not listed            |
| EFNB1   | CRANIOFRONTONASAL SYNDROME; CFNS;;CRANIOFRONTONASAL DYSPLASIA;<br>CFND;;CRANIOFRONTONASAL DYSOSTOSIS      | 1      | 1          | 1                  | Not listed | 254                       | 8997                  |
| HRAS    | COSTELLO SYNDROME                                                                                         | 7      | 1          | 1                  | 52         | 1                         | 9328                  |
| PTPN11  | NOONAN SYNDROME 6; NS6                                                                                    | 1      | 82         | 83                 | Not listed | 1                         | 9328                  |
| EIF2B1  | LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER; VWM                                                      | 11     | Not listed | 144                | Not listed | 30                        | 9216                  |
| FGFR3   | MUENKE SYNDROME; MNKES                                                                                    | 1      | 1          | 1                  | 50         | 7                         | 9281                  |
| POLG    | ALPERS SYNDROME                                                                                           | 1      | 89         | 98                 | 402        | 14                        | 8876                  |
| СОМР    | PSEUDOACHONDROPLASIA                                                                                      | 1      | 78         | 90                 | 53         | 10                        | 9310                  |



Variants in unaffected tissue

Variants in affected tissue

# Southampton

# Autozygosity mapping

- Useful in consanguineous scenarios
- Looking for regions of genome from the same recent ancestor (i.e. autozygous)
- Does not require trios
  - Identify tracts of homozygosity in proband





#### Medicine



please enter your focused disease/phenotype terms

# Southampton



#### Disease/Phenotype

Enter Disease or

Phenotype Terms

|                     | Please use semicolon or enter as so<br>Try to use multiple terms instead of<br>OMIM IDs are also accepted, like 11-<br>Better Combined with wANNOVAR's | a super long term<br>4480 for 'Breast cancer' |             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|
| Parameter Settin    | gs                                                                                                                                                     |                                               |             |
| Result duration     | 1 day                                                                                                                                                  | · Q                                           |             |
| Reference Genome    | hg19                                                                                                                                                   | • Q                                           | <del></del> |
| Input Fomat         | VCF                                                                                                                                                    | <b>a</b>                                      |             |
| Gene Definition     | RefSeq Gene                                                                                                                                            | • Q                                           | <del></del> |
| Individual analysis | Individual analysis                                                                                                                                    | <b>→</b>                                      |             |
| Disease Model       | none                                                                                                                                                   | <b>Q</b>                                      |             |
|                     |                                                                                                                                                        |                                               |             |

http://wannovar.usc.edu/



WANNOVAR Home Tutorial Example Related projects → WŁob

#### Submission ID: 71432

Sample identifier = test

File\_name=HYF3NBGXX\_Filtered\_Annotated.vcf

File\_format=vcf4

Reference\_genome=hg19

Disease\_model=no filtering

Processed variants=170

#### Basic Information

| exome summary results  | view | CSV file | TXT file |
|------------------------|------|----------|----------|
| genome summary results | view | CSV file | TXT file |

All Rights Reserved @Wang Genomics Lab 2010-2014

# Southampton

| Func            | Gene       | ExonicFunc        | AAChange                      | Conserved | SegDup | ESP5400<br>ALL | 1000g2012feb<br>ALL | dbSNP135    | AVSIFT | LJB<br>PhyloP | LJB<br>PhyloP<br>Pred | LJB<br>SIFT | LJ<br>SI<br>Pr |
|-----------------|------------|-------------------|-------------------------------|-----------|--------|----------------|---------------------|-------------|--------|---------------|-----------------------|-------------|----------------|
| exonic          | SLC16A1    | nonsynonymous SNV | NM_001166496:c.T1470A:p.D490E | 13        |        | 0.666          | 0.66                | rs1049434   | 1      | 0.862         | N                     | 0.22        | Т              |
| exonic          | LMNA       | synonymous SNV    | NM_005572:c.C51T:p.S17S       | 1075      |        | 0.00939        | 0.01                | rs11549668  |        |               |                       |             |                |
| exonic          | LMNA       | synonymous SNV    | NM_001257374:c.G276A:p.L92L   | 369       |        | 0.00595        | 0.0037              | rs12117552  |        |               |                       |             |                |
| exonic          | LMNA       | synonymous SNV    | NM_001257374:c.T525C:p.A175A  |           |        | 0.203          | 0.16                | rs538089    |        |               |                       |             |                |
| exonic          | LMNA       | synonymous SNV    | NM_001257374:c.C631T:p.L211L  | 124       |        |                |                     |             |        |               |                       |             |                |
| exonic          | LMNA       | synonymous SNV    | NM_001257374:c.T1002C:p.D334D | 344       |        | 0.263          | 0.21                | rs505058    |        |               |                       |             |                |
| exonic          | LMNA       | synonymous SNV    | NM_001257374:c.C1230T:p.C410C | 142       |        | 0.00149        | 0.0014              | rs149339264 |        |               |                       |             |                |
| exonic;splicing | LMNA; LMNA | synonymous SNV    | NM_001257374:c.C1362T:p.H454H | 216       |        | 0.194          | 0.21                | rs4641      |        |               |                       |             |                |
| exonic          | SLC19A2    | synonymous SNV    | NM_006996:c.G639A:p.K213K     | 260       |        | 0.00093        | 0.0023              | rs137970656 |        |               |                       |             |                |
| exonic          | ENAH       | synonymous SNV    | NM_001008493:c.T1062C:p.P354P | 55        |        |                |                     |             |        |               |                       |             |                |
| exonic          | ENAH       | synonymous SNV    | NM_001008493:c.G759A:p.R253R  | 218       |        | 0.0354         | 0.03                | rs1340868   |        |               |                       |             |                |
| exonic          | ENAH       | nonsynonymous SNV | NM_001008493:c.G651T:p.E217D  | 82        |        |                |                     |             |        | 0.5           | N                     | 0.89        | Т              |
| exonic          | ENAH       | synonymous SNV    | NM_001008493:c.G615A:p.E205E  | 82        |        |                |                     |             |        |               |                       |             |                |
| exonic          | KLF11      | nonsynonymous SNV | NM_001177716:c.A134G:p.Q45R   | 209       |        | 0.0941         | 0.06                | rs35927125  | 0.11   | 0.245         | N                     | 0.64        | Т              |
| exonic          | KLF11      | synonymous SNV    | NM_001177716:c.A1134T:p.V378V | 426       |        | 0.808          | 0.84                | rs11687357  |        |               |                       |             |                |
| exonic          | ALMS1      | synonymous SNV    | NM 015120:c.G57A:p.E19E       |           |        |                |                     |             |        |               |                       |             |                |
| exonic          | ALMS1      | synonymous SNV    | NM 015120:c.G60A:p.E20E       |           |        | 0.000892       | 0.01                | rs183407241 |        |               |                       |             |                |
| exonic          | ALMS1      | synonymous SNV    | NM_015120:c.A75G:p.E25E       |           |        |                |                     | rs13009043  |        |               |                       |             |                |
| exonic          | ALMS1      | synonymous SNV    | NM_015120:c.G975A:p.S325S     |           |        | 0.000103       |                     |             |        |               |                       |             |                |
| exonic          | ALMS1      | nonsynonymous SNV | NM_015120:c.C1174T:p.R392C    |           |        | 0.389          | 0.34                | rs3813227   | 0.18   | 0.143         | N                     | 1.0         | D              |
| exonic          | ALMS1      | nonsynonymous SNV | NM_015120:c.G1267A:p.V423I    |           |        | 0.00385        | 0.0005              | rs45630557  | 0.98   | 0.805         | N                     | 1.0         | D              |
| exonic          | ALMS1      | nonsynonymous SNV | NM_015120:c.A1868G:p.H623R    |           |        | 0.0194         | 0.01                | rs41291187  | 0.12   | 0.138         | N                     | 0.96        | D              |
| exonic          | ALMS1      | nonsynonymous SNV | NM 015120:c.T2012G:p.V671G    |           |        | 0.881          | 0.86                | rs2037814   | 0.14   | 0.772         | N                     | 1.0         | D              |
| exonic          | ALMS1      | synonymous SNV    | NM 015120:c.C2187T:p.F729F    |           |        | 0.51           | 0.54                | rs7598901   |        |               |                       |             |                |
| exonic          | ALMS1      | synonymous SNV    | NM 015120:c.C2532T:p.D844D    |           |        | 0.0331         | 0.04                | rs77517267  |        |               |                       |             |                |
| exonic          | ALMS1      | nonsynonymous SNV | NM_015120:c.C3304G:p.P1102A   |           |        | 0.000519       |                     |             | 0.1    | 0.853         | N                     | 0.94        | Т              |
| exonic          | ALMS1      | synonymous SNV    | NM 015120:c.A3891G:p.Q1297Q   |           |        | 0.0592         | 0.05                | rs112034360 |        |               |                       |             |                |
| exonic          | ALMS1      | synonymous SNV    | NM_015120:c.A4176G:p.Q1392Q   |           |        | 0.365          | 0.32                | rs6546836   |        |               |                       |             |                |
| exonic          | ALMS1      | nonsynonymous SNV | NM_015120:c.G4241C:p.G1414A   |           |        | 0.389          | 0.34                | rs6546837   | 1      | 0.036         | N                     | 0.92        | Т              |
| exonic          | ALMS1      | synonymous SNV    | NM 015120:c.G4956A:p.Q1652Q   |           |        |                |                     |             |        |               |                       |             |                |
| exonic          | ALMS1      | nonsynonymous SNV | NM_015120:c.A5356G:p.N1786D   |           |        | 0.0115         | 0.01                | rs45608038  | 0.35   | 0.000859      | N                     | 0.94        | Т              |
| exonic          | ALMS1      | nonsynonymous SNV | NM 015120:c.A5623G:p.I1875V   |           |        | 0.386          | 0.33                | rs6546838   | 1      | 0.0262        | N                     | 0.76        | Т              |
| exonic          | ALMS1      | nonsynonymous SNV | NM_015120:c.C6122T:p.T2041I   |           |        |                |                     |             | 0      | 0.984         | С                     | 0.99        | D              |
| exonic          | ALMS1      | nonsynonymous SNV | NM_015120:c.T6209C:p.I2070T   |           |        | 0.137          | 0.10                | rs10496192  | 0      | 0.0271        | N                     | 0.9         | Т              |
| exonic          | ALMS1      | nonsynonymous SNV | NM 015120:c.C6299T:p.S2100L   |           |        | 0.0232         | 0.02                | rs28730854  | 0.02   | 0.981         | С                     | 0.99        | D              |
| exonic          | ALMS1      | nonsynonymous SNV | NM 015120:c.T6333A:p.S2111R   |           |        | 0.39           | 0.34                | rs6724782   | 1      | 0.0136        | N                     | 0.99        | D              |

| Sort by:              | •                    |        |               |    |
|-----------------------|----------------------|--------|---------------|----|
| Filter by:            |                      |        |               |    |
| 1000G_ALL: ▼          | 1000G_AFR:           | ▼      | 1000G_EUR:    | ▼. |
| ExAC_Freq:            | ExAC_AMR:            | ▼      | ExAC_NFE:     | ▼  |
| ESP6500si_ALL:        | CG46:                | ▼      | COSMIC_ID:    | ▼  |
| ClinVar_DIS:          | ClinVar_ID:          | ▼      | ClinVar_DBID: | •  |
| GWAS_DIS:             | GWAS_OR:             | •      |               |    |
| Chr:                  |                      |        |               |    |
| Ctarte                |                      |        |               |    |
| Start: 🔻              |                      |        |               |    |
| End: ▼                |                      |        |               |    |
| Gene:                 |                      |        |               |    |
| 1000G_ALL:            |                      |        |               |    |
| 1000G_EAS: ▼          |                      |        |               |    |
| 1000G_AFR: ▼          |                      |        |               |    |
| Func:                 | ExonicFunc:          |        |               |    |
| exonic                | frameshift insertion | on     |               |    |
| exonic;splicing       | frameshift deletion  | n      |               |    |
| splicing              | nonframeshift dele   | etion  |               |    |
| UTR3                  | nonframeshift inse   | ertion |               |    |
| UTR5                  | nonsynonymous SN     | IV     |               |    |
| intronic intronic     | synonymous SNV       |        |               |    |
| intergenic intergenic | stopgain SNV         |        |               |    |
| upstream              | stoploss SNV         |        |               |    |
| downstream            | unknown              |        |               |    |
| upstream;downstream   | ı                    |        |               |    |
| ncRNA_exonic          |                      |        |               |    |
| ncRNA_intronic        |                      |        |               |    |
| ncRNA_UTR3            |                      |        |               |    |
| ncRNA_UTR5            |                      |        |               |    |
|                       |                      |        |               |    |

# Filtering

# Southampton





## Variant assessment

- Does variant look real?
- Is variant in gene associated with phenotype?
  - Predictive phenotyping
- Is it a known pathogenic variant?
- Does it alter the protein in a way reported to be damaging?
- Is the variant rare (not just in patient's population)?
- Is the variant predicted to be deleterious (multiple scores)?
- Is the variant being pathogenic biologically plausible?

# Analysis workflow



Raw reads **Processed BAM** Visualise data raw sequence data **FASTQ** Quality control of Assess quality and Call variants Variant calling process reads and QC Processed reads Variant and sample **FASTQ** quality control Map to reference **Annotate** Alignment> Public databases genome **Annotation** Post process overlaps **Annotate** and duplicates **Pathogenicity** Post alignment processing Post process Filter and prioritise and assessment InDel realignment variants strategies Filtering Post process Integrate with clinical Visualise data BaseQ recalibration information Assess depth and **Functional Shortlist of disease** breadth of coverage follow-up related variants

# Southampton

## Follow up

Literature review Animal models

Biochemical assays

Cell based assays

Patient cohorts

In silico modelling



## Summary

- Filtering is required to produce usable variant shortlist
- Allele frequencies are an effective filter
- Predictive scores are informative for prioritisation
- Segregation is a powerful tool
- Phenotype led approaches can be helpful, but a work in progress

# Southampton

