

## 8. Máquinas de Turing

#### 8.1. Máquinas de Turing

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)



## Las Máquinas de Turing son...

 Máquinas (abstractas) muy potentes que puden simular cualquier ordenador de hoy en día.

Para cada input, responde SI o NO

- ¿Para qué diseñarlas?
  - Si se puede "<u>resolver</u>" un problema usando una MT, entonces el problema es <u>decidible</u>
- Computabilidad vs. decidibilidad



### Máquinas de Turing



#### También usaremos:

-> para R

<- para L



- Un movimiento (escrito |---) de una MT hace lo siguiente:
  - $\delta(q,X) = (p,Y,D)$ 
    - q es el estado actual
    - X es el símbolo de cinta apuntado por la cabeza lectora
    - El estado pasa de q a p
    - Actualización de la cinta/cabeza:
      - X se sustituye por Y
      - Si D="L", la cabeza se mueve una posición a la "izquierda".
         Si D="R" se mueve una posición a la "derecha"...



# Descripción Instantánea de una MT

- Descripción Instantánea o ID :
  - X<sub>1</sub>X<sub>2</sub>...X<sub>i-1</sub>qX<sub>i</sub>X<sub>i+1</sub>...X<sub>n</sub> quiere decir:
    - q es el estado actual
    - La cabeza apunta a X<sub>i</sub>
    - $X_1X_2...X_{i-1}X_iX_{i+1}...X_n$  son los símbolos de la cinta
- Si  $\delta(q, X_i) = (p, Y, R)$  entonces:

$$X_1...X_{i-1}qX_i...X_n$$
 |----  $X_1...X_{i-1}YpX_{i+1}...X_n$ 

• Si  $\delta(q, X_i) = (p, Y, L)$  entonces:

$$X_1...X_{i-1}qX_i...X_n$$
 |----  $X_1...pX_{i-1}YX_{i+1}...X_n$ 



## 8. Máquinas de Turing

#### 8.2. Lenguajes Recursivamente Enumerables

Fernando Rosa Velardo



## MT que aceptan lenguajes

¿Pertenece w al lenguaje de una MT?

#### Condición inicial:

 Se coloca w, el input, en la cinta, precedido y seguido de infinitos blancos, con la cabeza apuntando al primer símbolo de w

#### Aceptación:

- La MT acepta w si entra en un estado final (y para)
- Si la MT para en un estado no final, entonces rechaza w



## Ejemplo: L = {0<sup>n</sup>1<sup>n</sup> | n≥1}

Estrategia:

$$w = 000111$$





## MT para {0<sup>n</sup>1<sup>n</sup> | n≥1}



- Marcamos con X el siguiente0 no leido y pasamos a la derecha
- 2. Nos movemos a la derecha hasta el primer 1, y lo marcamos con Y
- Nos movemos a la izquierda hasta encontrar X, y nos movemos una posición a la derecha
- Si leemos un 0 pasamos a 1.
  Si no nos movemos a la
  derecha para comprobar que
  no hay 1s. Si no hay, nos
  movemos al siguiente blanco,
  paramos y aceptamos.

# 4

## MT para {0<sup>n</sup>1<sup>n</sup> | n≥1}

|  |                              | Siguiente símbolo de cinta |                       |                       |                       |                       |
|--|------------------------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|  | Estado<br>actual             | 0                          | 1                     | X                     | Y                     | В                     |
|  | $\rightarrow$ q <sub>0</sub> | (q <sub>1</sub> ,X,R)      | -                     | -                     | $(q_3,Y,R)$           | -                     |
|  | q <sub>1</sub>               | (q <sub>1</sub> ,0,R)      | (q <sub>2</sub> ,Y,L) | -                     | (q <sub>1</sub> ,Y,R) | -                     |
|  | $q_2$                        | (q <sub>2</sub> ,0,L)      | -                     | (q <sub>0</sub> ,X,R) | (q <sub>2</sub> ,Y,L) | -                     |
|  | $q_3$                        | -                          | -                     | -                     | $(q_3,Y,R)$           | (q <sub>4</sub> ,B,R) |
|  | *q <sub>4</sub>              | -                          |                       | -                     | -                     | -                     |



#### MTs para cálculos

- Las MT también se pueden usar para hacer operaciones
  - Cálculos aritméticos
  - Sumas, restas, productos

# Ejemplo 2: resta

"m - n" =  $max\{m-n,0\}$  $0^{m}10^{n}$  (entrada)  $0^{m-n}$  o ...BB...B.. (salida)

- Para cada 0 de la izquierda (marcamos B), buscamos el primer 0 de la derecha (y marcamos 1)
- 2. Repetir hasta que:
  - // No quedan 0s a la izquierda del 1 El resultado es 0: escribir B en los 0s y 1s sobrantes y parar
  - 2. //No quedan 0s a la derecha del 1 El resultado es m-n: parar tras borrar los 1s y escribir 0 en el último B



## Ejemplo 3: Producto

0<sup>m</sup>10<sup>n</sup>1 (entrada) 0<sup>mn</sup> (salida)

#### Pseudocódigo:

- Mover la cabeza de modo que para cada 0 visto en 0<sup>m</sup> se escriban n 0s a la derecha del último 1
- Una vez hecho lo anterior, se borra el 0 considerado (se sobreescribe B)
- Tras completar lo anterior para cada 0, borramos los n 0s y los 1s



## Lenguajes de las MT

 Lenguajes Recursivamente Enumerables (RE)





### 8. Máquinas de Turing

#### 8.3. Programación con Máquinas de Turing

Fernando Rosa Velardo

# Almacenamiento en el estado

Descripción genérica Vale para a=0 (a=1) y a=1 (a=0)







• 
$$\delta([q_1,a],\overline{a}) = ([q_1,a],\overline{a},R)$$

• 
$$\delta([q_1,a],B) = ([q_2,B], B, R)$$

[q,a]: q es el estado actual, a es el símbolo almacenado ¿Son las MT estándar equivalentes a las MT con almacenamiento?



# Equivalencia entre las MT estándar y las MT con almacenamiento

- Las MT con almacenamiento son MT estándar:
  - Basta pensar en cada par [estado,símbolo] como un estado de una MT estándar
    - Número finito de estados
- En realidad, se puede guardar en el estado cualquier información de un conjunto finito.



### MT con varias pistas

 MT con varias pistas, pero con una sóla cabeza lectora





## MT con varias pistas

MT con varias "pistas" pero sólo una cabeza MT para {wcw | w∈ {0,1}\* }

MT para  $\{wcw \mid w \in \{0,1\}^*\}$ sin modificar el input







## MT con varias cintas equivalentes a las MT estándar

- Para cada M con k pistas existe M' estándar tal que L(M')=L(M).
  - Basta considerar que el alfabeto es de la forma:

#### $\sum' = \sum x \dots x \sum (k \text{ veces})$

#### Idea:

Una MT con k pistas es en realidad una MT estándar que opera con símbolos que son tuplas con k componentes



## 8. Máquinas de Turing

#### 8.3. Extensiones de las Máquinas de Turing

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)



#### MT con varias cintas

- MT con varias cintas, cada una con su cabeza lectora
  - Cada cabeza se mueve independientemente





#### Inicialmente:

- La entrada está en la cinta #1, rodeada de blancos
- Las demás cintas están vacías
- La cabeza de la cinta #1 apunta al primer símbolo del input
- El resto de las cabezas apuntan a cualquier sitio (no importa dónde, ya que todos los símbolos son B)

#### Movimiento:

- Depende del estado actual y el símbolo apuntado por todas las cabezas
- Cada cabeza se puede mover independientemente de las demás (unas a la izquierda y otras a la derecha)



#### MTs con varias cintas ≡ MTs

 Teorema: Todo lenguaje aceptado por una MT con k cintas es aceptado por una MT con una sóla cinta.

#### Construcción:

- Construimos una MT con una cinta, pero con 2k pistas, donde cada cinta de la MT con varias cintas se simula por 2 pistas de la MT estándar
- k de las 2k pistas simulan las k cintas
- Las otras k de las 2k pistas almacenan las posiciones de las k cabezas



#### MTs con varias cintas ≡ MTs

- Simulación de un movimiento de la MT con k cintas:
  - Movemos la cabeza de la posición más a la izquierda a la más a la derecha, almacenando por el camino los símbolos de cada pista en el estado
  - Entonces, ejecutamos la misma acción que la MT con varias cintas (reescribiendo los símbolos y moviendo los marcadores)



5

#### MT no deterministas ≡ MT estándar



#### MT no deterministas

MT con movimientos no deterministas

Control

- $\delta(q,X) = \{ (q_1,Y_1,D_1), (q_2,Y_2,D_2), \dots \}$
- Simulación usando una MT determinista con varias cintas:

Cinta de entrada

ID<sub>1</sub> \* ID<sub>2</sub> \* ID<sub>3</sub> \* ID<sub>4</sub>

X

Cinta con marcadores

Cinta para el trabajo en sucio