KCS 47 10 70 : 2019

터널공사

2019년 4월 8일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 철도에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제 · 개정 연혁은 다음과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
철도건설공사 전문시방서(노반편)	• 일반철도와 고속철도로 분리된 노반분야의 전문 시방서를 통합하고, 기준체계를 명확히 하여 합리적 이고 효율적인 시방서(노반편)로 제정 • 노반·궤도·전기분야 인터페이스를 고려한 시방 서와 기술발전 등 기술적 환경변화 대응을 위한 기 준을 마련	제정 (2011.12.)
철도건설공사 전문시방서(노반편)	• 표층안전처리공에서 현행 인장강도 및 봉합강도 시험방법이 KS에 규정된 품질기준과 상이하여 올바르게 수정 • 설계기법 개선·최적화 및 신기술·신공법 적용을 통한 사업비 절감 방안과 그 동안 불합리한 사항 개선 • "건설공사 비탈면 설계기준"등 상위기준 개정내 용 반영	개정 (2013.11.)
철도건설공사 전문시방서(노반편)	• 최근 철도교량에 사용빈도 많아진 구체방수 기준을 신설하여 공사시방서 작성의 표준화 유도 • KS규격 개정내용 반영 및 안전사고 예방(싱크홀, 운행선 근접공사, 전기뇌관 취급, 시스템 동바리 등) 을 위한 안전기준 제시 • 관계법령 및 기관명 수정	개정 (2015.12.)
KCS 47 10 70 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제 정 (2016.6.)
KCS 47 10 70 : 2019	• 철도 건설기준 적합성평가에 의해 코드를 정비함	개정 (2019.04)

제 정: 2016년 6월 30일 개 정: 2019년 04월 08일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 한국철도시설공단 작성기관 : 한국철도기술연구원

목 차

1.	일반사항	· 1
	1.1 적용범위	· 1
	1.2 참고 기준	. 3
	1.3 용어의 정의	. 3
2.	자재	. 3
	2.1 개착터널 재료	. a
3.	시공	. 4
	3.1 개착터널 시공	
	3.1 개석디딜 시중	4

터널공사 KCS 47 10 70 : 2019

1. 일반사항

1.1 적용범위

1.1.1 터널공사 일반

- (1) 이 시방서는 지반을 개착하지 않고 시공하는 터널(Mined Tunnel)과 갱구부의 개착터 널을 포함하여 철도터널을 시공하는데 필요한 사항을 규정한다.
- (2) 이 시방서에 기재하지 않은 사항은 KCS 10 00 00, KCS 27 00 00을 따른다.

1.1.2 시공계획

KCS 27 10 10을 따른다.

1.1.3 조사 및 측량

KCS 27 10 15를 따른다.

1.1.4 터널 굴착

KCS 27 20 00을 따른다.

1.1.5 터널지보재

KCS 27 30 00을 따른다.

1.1.6 콘크리트라이닝

KCS 27 40 05를 따른다.

1.1.7 배수 및 방수

KCS 27 50 05를 따른다.

1.1.8 보조공법

KCS 27 50 15를 따른다.

1.1.9 터널계측

KCS 10 50 00, KCS 27 50 10을 따른다.

1.1.10 갱구부, 연직갱 및 경사갱

KCS 27 20 00을 따른다.

1.1.11 TBM 터널

1

KCS 27 25 00을 따른다.

1.1.12 개착터널

(1) 갱구부의 개착터널에서는 기초지반의 지지력, 되메우기 토사의 다짐정도, 상재하중, 편토압 등의 영향에 따른 구조적 특성을 설계조건과 면밀히 비교, 검토하여 시공해야 한다.

1.1.12.1 콘크리트

- (1) 굳지 않은 콘크리트를 사용하여 현장에서 타설하는 개착터널에 대하여는 본 시방서에 서 정하는 바를 따른다.
- (2) 이 시방서에 규정되지 않은 사항에 대해서는 콘크리트 표준시방서의 규정에서 정하는 바를 따른다.
- (3) 프리캐스트 콘크리트를 이용하는 개착터널에 대하여는 별도로 정하는 바에 따른다.

1.1.12.2 철근조립

(1) 철근조립은 「제6장 콘크리트공사」관련 시방조건을 따른다.

1.1.12.3 거푸집

- (1) 이 시방서에 규정된 거푸집은 콘크리트라이닝 타설을 위한 거푸집으로 제한하며 시방서에 규정되지 않은 사항에 대해서는 콘크리트 표준시방서의 거푸집에 대한 규정을 따른다.
- (2) 거푸집의 구조는 매회 타설량, 타설길이, 타설속도 등을 고려하여, 타설된 콘크리트의 압력에 견딜 수 있는 것이라야 한다.
- (3) 1회 타설 거푸집의 길이는 시공성, 안전성 및 콘크리트 품질에 미치는 영향 등을 감 안하여 결정해야 한다.
- (4) 거푸집은 조립과 해체가 용이하며 이동성이 좋고, 견고한 구조가 되도록 제작해야 하며 콘크리트 투입 및 타설상태 확인 등을 위한 크기와 수의 작업구를 두어야 한다.
- (5) 콘크리트의 투입구는 콘크리트가 넓게 퍼지도록 배치해야 한다.
- (6) 측면판은 콘크리트의 압력에 견딜 수 있는 구조로 하고 콘크리트가 누출되지 않도록 설치해야 한다.
- (7) 측면판에 지수판을 붙이는 경우에는 지수판의 기능이 발휘되도록 해야 한다.

1.1.12.4 배수

- (1) 배수형 방수형식 터널에서는 유입지하수를 원활히 배수할 수 있는 배수시설을 설치하여 콘크리트라이닝에 수압이 작용하지 않도록 해야 한다.
- (2) 배수형 방수형식 터널에서 터널내부로의 유입수가 과다할 경우에는 차수 그라우팅 등을 실시하여 유입수를 최소화해야 한다.

(3) 배수형 방수형식 터널 시공구간의 지반이 세립토사를 다량 함유하고 있을 경우에는 배수재 두께 및 재질 변경 또는 드레인보드 병용 등을 통하여 배수시설이 장기간 동안 기능을 유지할 수 있도록 조치해야 한다.

1.1.12.5 방수

(1) 콘크리트라이닝의 시공이음부에 지수판 또는 지수재를 설치해야 한다.

1.1.13 공동 또는 싱크홀 복구공사

- (1) 석회암층 등 지질특성에 따라 자연적으로 발생한 터널 주변 공동에 대한 복구공사 시에는 공동의 규모, 위치 및 상태 등 공동의 특성과 현장여건 등을 감안하고 전문가 의 검토를 통해 적합한 대책공법을 선정하여야 하며, 감독원의 승인을 득한 후 적용하여야 한다.
- (2) 터널 등 지중구조물 주변의 굴착공사 중 확인된 공동에 대한 복구공사 시에는 규모 나 형태 등을 고려하여 충전방법과 재료선정 등에 대해 전문가의 검토를 거쳐 현장여 건에 적합한 공법을 선정하고 감독원의 승인을 득한 후 적용하여야 한다.

1.2 참고 기준

(1) KCS 27 10 05 (1.3)을 따른다.

1.3 용어의 정의

(1) KCS 27 10 05 (1.5)를 따른다.

2. 자재

2.1 개착터널 재료

2.1.1 콘크리트

- (1) 콘크리트라이닝에 사용하는 골재는 내구성이 우수해야 하며 골재에 포함된 염분 및 유기물 등은 콘크리트 표준시방서에서 제시하는 허용기준치 이하로 한다.
- (2) 섬유보강 콘크리트와 혼합시멘트계 콘크리트에 사용하는 혼화재는 균열억제, 내구성 및 내화성 증진을 달성할 수 있는 재료로 한다.
- (3) 이 시방서에 규정하지 아니한 콘크리트 관련재료는 KCS 14 20 00의 규정에서 정하는 바를 따른다.
- (4) 콘크리트 배합 시 단위수량은 소요강도, 내구성, 수밀성 및 작업성에 영향을 주지 않은 범위 내에서 가능한 한 적게 해야 한다.
- (5) 콘크리트의 현장배합은 시방배합을 기준으로 사용재료, 타설방법 등을 고려하여 결정 해야 한다.

3 KCS 47 10 70 터널공사

2.1.2 철근

KCS 14 20 11을 따른다.

2.1.3 거푸집

KCS 14 20 12를 따른다.

2.1.4 배수관

(1) 콘크리트라이닝에 가해지는 수압을 감소시키고 라이닝배면 용출수를 배수하기 위하여 바닥부근에 Φ 300mm의 유공관을 매설하고 유공관이 막히지 않도록 시공해야 한다.

2.1.5 방수막의 재질

- (1) 방수막은 상호 접착이 좋은 재질로 하며 한국산업규격(KS)을 만족하는 제품을 사용해야 한다.
- (2) 방수막은 내구성, 인성 및 유연성이 기준을 만족하고 콘크리트라이닝 시공에 의해 파손되지 않는 재질로 한다.

2.1.6 되메우기

(1) 개착터널 되메우기 재료기준은 표 2.6-1 에 따른다. (그림 3.1-1 참조)

표 2.6-1 개착터널 되메우기 재료

시공 순서	시공 재료
1)	○ 투수성이 좋은 자갈(입경 Φ=5∼63mm) ○ 유기물 함유량: ≤ 2%
2	○ 입경 ○ 최대치수: ≤ 75mm ○ 0.08mm체 통과량: ≤ 35% ○ 액성한계: ≤ 40% ○ 소성지수: ≤ 10%
3	○ 일반토사

(2) 갱구부 되메우기 시공의 각 재료별 기준에 따라 검사한 후 사용해야 한다.

3. 시공

3.1 개착터널 시공

3.1.1 시공계획

(1) 개착터널 시공은 현장을 조사하여 설계서를 검토하고 현장조건에 알맞은 개착터널 시공계획서를 작성하여 종합 검토 후 시공해야 한다.

(2) 개착터널 시공계획을 변경할 경우에는 변경계획서를 작성하여 감독자/감리원의 승인을 얻은 후 변경해야 한다.

3.1.2 콘크리트 시공관리

- (1) 배치 플랜트 배합 콘크리트는 재료의 분리, 손실, 이물질의 혼입이 생기지 않는 방법 으로 운반해야 한다. 운반 시에는 교반기가 부착된 운반차를 사용해야 하며, 기타의 운반방법에 의할 때는 운반방법의 적정성을 검증해야 한다.
- (2) 배합된 콘크리트는 비빈 후 가능한 한 빨리 타설해야 한다. 비빈 후 타설을 완료할 때까지의 시간은 외기 온도가 25℃ 이상인 경우에는 1.5시간, 25℃ 미만일 때에는 2시간을 넘어서는 안 된다. 다만, 지연제 등을 사용하여 응결시간을 지연시키는 경우에는 콘크리트의 품질변동이 없는 범위 내에서 감독/감리자의 승인을 얻어 상기의 시간제한을 조절할 수 있다.
- (3) 콘크리트 타설 시에는 재료분리가 발생하지 않도록 해야 하며, 타설된 콘크리트에 간 극이 형성되지 않도록 해야 한다.
- (4) 계획된 분량의 콘크리트는 연속하여 타설해야 하며, 재료분리가 일어나지 않는 타설속도를 유지해야 한다.
- (5) 콘크리트는 좌우 대칭이 되도록 타설하여 거푸집에 편압이 발생하지 않도록 해야 하며 진동기 등을 이용하여 다짐을 시행해야 한다.
- (6) 콘크리트라이닝은 건조수축 등으로 인한 균열을 방지하기 위해 적합한 간격으로 시공이음부를 두어야 한다.
- (7) 터널 내부와 외부의 온도차이 또는 단면변화에 의한 영향으로 균열발생이 예상되는 경우에는 신축이음을 둘 수 있다.
- (8) 콘크리트라이닝에는 균열발생이 최소가 되도록 해야 하며 균열발생이 예상되는 구간 에는 필요한 대책을 강구해야 한다.
- (9) 콘크리트라이닝의 품질관리는 표 3.1-1과 같이 해야 한다.

표 3.1-1 콘크리트라이닝 품질관리 내용

5 KCS 47 10 70 터널공사

관리항목	관리내용 및시험	시험빈도	비고
시공 성확도 두께 균열, 변형	○소정의 위치에 철근 및 거푸집 설치 상태 ○콘크리트라이닝 두께 관리 ○콘크리트라이닝 타설 후 균열, 변형 상태	○시공 전 ○시공 전 및 시공 직후 ○시공 후 수시	
슬럼프 시험	콘크리트 슬럼프 값	압축강도시험용 공시체 채취 시 및 타설 중에 품질변화가 인정될 때	KS F 2402
압축 강도 시험	콘크리트 압축강도	1회/일, 또는 구조물의 중요도와 공사의 규모에 따라 150㎡ ³ 마다 1회, 배합이 변경될 때마다	KS F 2405

3.1.3 철근

- (1) 콘크리트라이닝을 철근으로 보강해야 할 경우에는 보강 목적에 부합하도록 시공해야 하며 이의 가공 및 관리는 콘크리트 표준시방서의 철근 세목에 따른다.
- (2) 가공된 철근은 콘크리트가 타설되기 직전까지 철근 콘크리트의 기능 발휘에 유해한 요인이 개입되지 않도록 관리해야 한다.
- (3) 철근이 아치형으로 조립될 경우에는 철근망의 처짐이 발생되지 않도록 조립해야 하며 소요 피복두께가 확보될 수 있도록 조치를 취해야 한다.

3.1.4 거푸집

- (1) 거푸집의 설치는 측량을 실시하여 정확한 위치에 설치해야 한다.
- (2) 거푸집의 조립 시에는 볼트, 너트 등이 이완되지 않도록 조여야 하며, 유압식 장치의 경우 정상작동 상태를 점검해야 한다.
- (3) 거푸집을 이동할 경우에는 거푸집을 콘크리트면으로 부터 이격시켜 거푸집과 콘크리트 벽면이 손상되지 않도록 해야 하며, 콘크리트라이닝에 손상을 주는 충격은 가하지 않도록 해야 한다.
- (4) 이동용 궤도는 거푸집을 안정되게 이동할 수 있는 구조가 되어야 하며 콘크리트 타설 시나 이동 시 침하가 생기지 않도록 견고하게 설치해야 한다.
- (5) 거푸집을 떼어낼 때 거푸집면에 콘크리트가 부착되지 않도록 조치를 해야 한다. 이를 위해 박리제를 사용할 경우에는 환경을 오염시키지 않는 것을 사용해야 한다.
- (6) 제작이 완료된 거푸집은 작업투입 전에 반드시 감독자/감리원의 검사를 받아야 하며 터널 내에 설치가 완료된 거푸집 상태도 콘크리트의 타설에 앞서 감독자/감리원의 검사를 받아야 한다.
- (7) 콘크리트라이닝의 거푸집은 부어넣은 콘크리트의 강도가 3MPa 이상 발현된 후, 또는 콘크리트라이닝의 자중을 견딜 수 있는 강도가 발현된 후에 제거해야 한다. 거푸집 제거시기에 대한 별도의 검증을 실시하는 경우에는 제거시기를 조절할 수 있다.

3.1.5 배수처리

- (1) 배수시설은 터널의 내구연한 동안 유지관리가 편리하도록 시공해야 한다.
- (2) 배수관의 시공이음부 시공 시 모르타르 등 이물질이 들어가 배수의 원활한 흐름을 방해하는 경우가 발생하지 않도록 세심한 시공을 해야 한다.
- (3) 유공관 내부로 토사가 지하수와 함께 들어가지 않도록 유공관 주위에 자갈이나 배수 재 등을 설치해야 한다.
- (4) 시공 중 또는 시공 후 <표 10-12-3>과 같은 사항을 관리해야 한다.

₩	3 1-2	배수작언	시의	품질관리	내용

관리 항목	관리내용 및 시험	시험빈도
시공 정확도	○배수구조물의 위치, 기울기, 크기 등 확인	○시공 전 및 시공 직후
부직포	○ 부직포 부착상태 ○ 측벽 유공관 주변의 부직포 ○ 인버트 부직포위에 비닐막 포설상태	○시공 직후
관	○집수관, 유공관 연결관 등의 변형상태와 내부 이물질 유무 확인	○시공 직후
구조물	○배수구 등의 시공상태와 균열발생 등 확인	○시공 후 수시

3.1.6 되메우기 시공관리

(1) 되메우기 시공은 그림 3.1-1과 같이 순서대로 시공해야 한다.

그림 3.1-1 개착터널 되메우기 시공

- (2) 굴착 저면폭(B)이 2 m 이하일 경우 1 m 두께로 배수층을 전폭에 설치해야 한다.
- (3) 되메우기한 층의 두께는 300 mm 이내가 되도록 시공하고 소정의 다짐도가 얻어질 때까지 다짐을 관리해야 한다.
- (4) 되메우기는 구조물에 편압이 작용하지 않도록 시공해야 한다.

(5) 개착터널의 콘크리트 강도가 재령 28일 이상 일 때까지 되메우기 작업을 금지해야 한다.

- (6) 다짐장비와 다짐방법 및 되메우기 장비는 콘크리트라이닝 등의 구조물에 나쁜 영향이 미치지 않는 장비를 선정하여 이에 알맞은 공법으로 시공해야 한다.
- (7) 개착터널 시공관리는 터널 단면크기, 지반조건, 주변환경 조건 등에 따라 다르므로 현 장조건에 적합한 시공 품질관리 기준을 정해야 한다.

터널공사 KCS 47 10 70 : 2019

집필위원

성 명	소 속	성 명	소 속
황선근	한국철도기술연구원	신지훈	한국철도기술연구원

자문위원

성 명	소 속	성 명	소 속
구웅회	㈜서영엔지니어링	안태봉	우송대학교
정혁상	동양대학교	조성호	중앙대학교

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	정혁상	동양대학교
구재동	한국건설기술연구원	구자안	한국철도공사
김기현	한국건설기술연구원	김석수	㈜수성엔지니어링
김태송	한국건설기술연구원	김재복	㈜태조엔지니어링
김희석	한국건설기술연구원	소민섭	회명정보통신㈜
류상훈	한국건설기술연구원	여인호	한국철도기술연구원
원훈일	한국건설기술연구원	이성혁	한국철도기술연구원
주영경	한국건설기술연구원	이승찬	㈜평화엔지니어링
최봉혁	한국건설기술연구원	이진욱	한국철도기술연구원
허원호	한국건설기술연구원	이찬우	한국철도기술연구원
		최상철	㈜한국건설관리공사
		최찬용	한국철도기술연구원

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김현기	한국철도기술연구원	최상현	한국교통대학교
이광명	성균관대학교	정광섭	포스코건설
신수봉	인하대학교	손성연	씨앤씨종합건설(주)
이용재	삼부토건(주)		

9 KCS 47 10 70 터널공사

궆	투	ᆔ	톳	부

성 명	소 속	성 명	소 속
임종일	철도건설과	홍석표	철도건설과
문재웅	철도건설과		

KCS 47 10 70: 2019

터널공사

2019년 04월 08일 개정

소관부서 국토교통부 철도건설과

관련단체 한국철도시설공단

34618 대전광역시 동구 중앙로 242 한국철도시설공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 02-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

Tel: 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr