# ANSWER Do NOT PRINT

#### **NATIONAL UNIVERSITY OF SINGAPORE**

## **CS2106 – INTRODUCTION TO OPERATING SYSTEMS**

(Semester 1: AY2016/17)

## **ANSWER BOOKLET**

Time Allowed: 2 Hours

#### **INSTRUCTIONS TO CANDIDATES**

- 1. This answer booklet consists of SIX (6) printed pages.
- 2. Fill in your Student Number <u>clearly</u> on all odd-numbered pages.

| STU   | DE | :NT | NU  | MB  | ER  |
|-------|----|-----|-----|-----|-----|
| (fill | in | wit | h a | pen | 1): |

| For examiner's use only |       |       |  |  |  |
|-------------------------|-------|-------|--|--|--|
| Question                | Total | Marks |  |  |  |
| Q1-8                    | 16    |       |  |  |  |
| Q9                      | 9     |       |  |  |  |
| Q10                     | 14    |       |  |  |  |
| Q11                     | 16    |       |  |  |  |
| Q12                     | 14    |       |  |  |  |
| Q13                     | 9     |       |  |  |  |
| Q14                     | 22    |       |  |  |  |
| TOTAL                   | 100   |       |  |  |  |

Write your answers for the MCQs in the boxes below.

1. **B** 

2. **A** 

3. **D** 

4. **E** 

5. **C** 

6. **A** 

7. **E** 

8. **E** 

Write your answers in the box/space provided.

- 9. **Process Management**
- [9] Abstraction: illusion that process executes on CPU all the time.

Protection: Execution context of each process is isolated from each other.

**Memory Management** 

Abstraction: illusion that process owns the entire memory space.

Protection: Memory space of each process are mapped to different physical address, isolating them from each other.

**File Management** 

Abstraction: Files is a single contiguous logical entity.

Protection: Files can only be opened through system call, OS can prevent files from being opened for incompatible operations.





| 12a.<br>[2] | Criterion 1 Requests are in the same or nearby sector (can consider cluster size).  Criterion 2 Requests are of the same type, read / write.                                                                                                                                                              |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|             |                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 12b.<br>[2] | Advantage: Seeking latency is reduced.                                                                                                                                                                                                                                                                    |  |  |  |  |
| 12c.<br>[4] | Disadvantage: Potential starvation for user process if the request is not near to existing requests.                                                                                                                                                                                                      |  |  |  |  |
|             | Mitigate: Take the request time into account and set certain deadline. Once the deadline is near, issue request regardless of whether it can be merged.                                                                                                                                                   |  |  |  |  |
| 12d.<br>[3] | Reason to delay: Disk I/O request has very high latency. Delaying the user request will not increase the time very much. However, with more user requests pending, OS can optimize the I/O better. For example, if we do not have enough I/O requests to choose from, merging will not be very effective. |  |  |  |  |
| 12e.<br>[3] | Potential conflict: It may turn out that the harddisk controller schedule the requests differently. In the worst case, the scheduling decision by OS may be undone by the controller time used for sorting / merging are wasted.                                                                          |  |  |  |  |

| 13a.<br>[2] | Swap should / should not be handled as a normal file.                                                                                                                         |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|             | Reason: Normal file may be spread across different locations on the secondary storage. Paging performance will be affected.                                                   |  |  |  |  |
| 13b.<br>[4] | Relationship: Page size should be the same or multiple of cluster size.                                                                                                       |  |  |  |  |
|             | Reason: Pages can be efficiently swapped out.                                                                                                                                 |  |  |  |  |
| 13c.<br>[3] | Reason: As in (a), OS can preallocate a continuous stretch in secondary storage for the system wide swap file. It is also hard to predict the memory usage of a user program. |  |  |  |  |

| 14a.<br>[4] | Directory Content:                                            |      |            |   |       |   |    |  |
|-------------|---------------------------------------------------------------|------|------------|---|-------|---|----|--|
|             | Files = FF.txt, GG.txt, N.txt.                                |      |            |   |       |   |    |  |
|             | Subdirectory = P.txt                                          |      |            |   |       |   |    |  |
| 14b.<br>[4] | Absolute file path for "N.txt" = Root / Q.txt / N.txt         |      |            |   |       |   |    |  |
|             | Absolute file path for "V.txt" = Root / Q.txt / P.txt / V.txt |      |            |   |       |   |    |  |
| 14c.<br>[4] | Disk blocks for "N.txt" = <b>15</b> , <b>3</b> , <b>12</b>    |      |            |   |       |   |    |  |
|             | Disk blocks for "V.txt" = 0                                   |      |            |   |       |   |    |  |
| 14d.        | Affected entries:                                             |      |            |   |       |   |    |  |
| [3]         | FAT                                                           |      | Disk Block |   |       |   |    |  |
|             | 4                                                             | FREE |            | 7 |       |   |    |  |
|             |                                                               |      |            |   | R.txt | 0 | 15 |  |
| 14e.<br>[3] | Starting disk block number = 11                               |      |            |   |       |   |    |  |
| 14f.<br>[4] | Affected entries:                                             |      |            |   |       |   |    |  |
|             | FAT                                                           |      | Disk Block |   |       |   |    |  |
|             | 5                                                             | 15   |            | 6 | N.txt | 0 | 5  |  |
|             |                                                               |      |            |   |       |   |    |  |