小米品牌广告引擎与算法实践

宋强

MIUI商业产品部

[北京站]

促进软件开发领域知识与创新的传播

关注InfoQ官方微信 及时获取ArchSummit 大会演讲视频信息

2017年4月16-18日 北京·国家会议中心 咨询热线: 010-64738142

[深圳站]

2017年7月7-8日 深圳·华侨城洲际酒店

咨询热线: 010-89880682

个人简介

2014-现在

移动广告平台 系统架构 算法策略

数据平台

2011-2014

搜索广告 大数据分析 实时数据计算 反作弊

2005-2011

数据库查询优化

大纲

小米品牌广告业务简介 小米品牌广告系统架构 小米品牌广告引擎与算法实践

- 流量预估
- 库存分配
- 在线投放

小米品牌广告业务简介

投放媒体:小米手机和电视全系资源

浏览器

视频

音乐新闻资讯

天气

日历

电视/盒子

广告样式

- 开屏、锁屏、电视画报
- 信息流、横幅
- 贴片、换肤等

业务规模

■ 日曝光近百亿,年收入几十亿

小米品牌广告业务特点

售卖方式

- CPT/CPM,提前下单
- 合约式,如违约需补量赔偿

定向

■ 用户属性:地域,年龄,性别等

■ 设备型号: 手机, 电视, 盒子等

■ 人群包:包含,排除

频控

■ 小时,日,周,月

第三方监测

■ 秒针, AdMaster, DoubleClick

■ 时间:小时级

■ 内容:视频分类,剧集,CP等

■ 特殊定向:天气状况等

小米品牌广告系统架构

手机/电视

流量预估

问题描述

- 广告主希望购买 "2016/12/25 小米视频首页焦点图 北京 男性"的流量
 - ▶ "日期+广告位+定向条件"

技术挑战

■ 定向预估:定向条件多样,组合维度庞大

■ 总量预估:流量随时间和季节变化

衡量指标

- 流量预估的准确性
- 流量查询的效率

流量预估 - 系统架构

流量预估 - 算法描述

正交算法

总量预估

Holt-winters

■ 10万CPM

单维度分布

■ 地域:*北京5%,上海3%,...*

■ 性别:*男75%,女25%,...*

正交求解

预估量(北京,男)

=10\overline{T}*5\%*75\%=3750CPM

位图算法

X轴:请求

Y轴:

定向维度

	pv_1	pv_2	pv_3	pv_4	•••	pv_n
北京	0	1	0	1		1
上海	1	0	1	0		0
男	1	0	1	0		0
女	0	1	0	1		1
体育	1	1	0	1		1
财经	0	0	1	0		0

流量预估 - 算法评估

正交算法

■ 优点:简单,单维度定向预估准确

■ 缺点:组合维度定向预估不够精确

位图算法

■ 优点:计算简单(按位与或),组合维度定向预估准确

■ 缺点:内存占用较大(需进行数据采样)

库存分配

问题描述

库存 男 女 北京 1CPM 1CPM 1CPM 上海 1CPM 1CPM

订单

订单1:北京,2CPM

订单2:女,2CPM

北京

上海

分配万案		2无法满》 女	定
	订单1	订单1	

分配方案2:都可以满足

女

 订单1
 订单2

 订单2

男

技术挑战:定向维度多样,订单数据量大,库存分配的最优化求解复杂

衡量指标:库存的利用率,库存分配算法的求解速度

北京

上海

库存分配 - 问题建模

优化目标:播放的平滑程度和缺量损失

$$\min \frac{1}{2} \sum_{i \in \Gamma(j)} s_i \frac{V_j}{\theta_{ij}} (x_{ij} - \theta_{ij})^2 + \sum_j p_j u_j$$

 s_i 表示supply的量

 d_i 表示demand的量

 x_{ij} 表示第i个流量节点对第j个订单的分配比例

u_i是订单的未完成量

pj是订单的缺量损失系数

约束条件

需求约束
$$\forall_j \sum_{i \in \Gamma(j)} x_{ij} s_i + u_j \ge d_j$$

供给约束
$$\forall_i \sum_{j \in \Gamma(i)} x_{ij} \leq 1$$

非负约束
$$\forall_{(i,j)\in E} x_{ij}, u_j \geq 0$$

数学建模是库存分配的核心,问题的求解采用业界成熟的算法(HWM, SHALE)

库存分配 - 流程图

库存分配 - 合并定向条件

■ 目标:生成最小规模的supply节点,简化分配算法

■ 算法:为每个维度生成**最小互斥**散列集合,再进行维度组合

订单1:{北京,上海,深圳}

订单数据 订单2:{北京,广州,深圳},{女}

订单3:{女}

地域维度: {北京, 深圳}, {上海}, {广州}

最小互斥集合 性别维度:{男},{女}

(北京, 深圳, 男), (北京, 深圳, 女)

生成候选节点 {上海, 男}, {上海, 女}

{广州, 男}, {广州, 女}

库存分配 - 构造二分图

- 遍历每一个候选supply节点,检查是否被某demand节点包含
 - 若不被任何demand包含,则丢弃
 - 若被某demand包含,记录该supply与demand的关系

候选节点

二分图的密度=9(边的总数)/15(流量节点数*订单节点数)

库存分配 - 维度正交

	pv_1	pv_2	pv_3	pv_4	•••	pv_n
北京	0	1	0	1		1
上海	1	0	1	0		0
男	1	0	1	0		0
女	0	1	0	1		1
体育	1	1	0	1		1
财经	0	0	1	1		1

兴趣属性的取值不唯一

错误的拆分:维度不正交

*S*₁: {体育} 4CPM

*d*₁: 订单1 {体育}

*s*₂: {财经}

3CPM

*d*₂: 订单2 {财经}

*s*₁: {体育 & 财经}

2CPM

*s*₂: {体育 & 非财经}

2CPM

*s*₂: {非体育 & 财经} 1CPM

正确的拆分:维度正交

*d*₁: 订单1 {体育}

*d*₂: 订单2 {财经}

库存分配 - 频控

问题建模

关键算法

- 按照频次对supply节点进行拆分
- 在问题建模中引入频控约束

需求约束
$$\forall_j \sum_{i \in \Gamma(j)} x_{ij} s_i + u_j \ge d_j$$
 供给约束 $\forall_i \sum_{j \in \Gamma(i)} x_{ij} \le 1$

频控约束 $\forall i, j \ s_i x_{ij} \leq f_j u v_i$

非负约束 $\forall_{(i,j)\in E} x_{ij}, u_j \geq 0$

 s_i 表示supply的量, d_j 表示demand的量 x_{ij} 表示第i个流量节点对第j个订单的分配比例 f_j 表示第j个广告限制的频次 uv_i 表示第i个流量节点的UV量

频控约束的含义:每个流量节点可以提供的量,不能超过广告主限制的频次乘以这个流量节点的UV

库存分配 - 算法描述

- 离线分配算法的优化目标是库存的利用率,分配算法依赖于订单优先级
- **多队列优先级:**订单可用流量,订单时间等

订单优先级:订单可用流量 $(S_j = \sum_{i \in \Gamma(j)} s_i)$

- 订单2优先级高于订单1 (S_2 =100 , S_1 =150)
- 订单2可以满足,订单1无法满足

订单优先级:订单时间

- 订单1优先级高于订单2
- 订单1和2都可以满足

在线投放

目标:提高订单的完成率和投放的平滑程度

挑战:实际流量和订单完成率偏离预期时,如何快速修正

实时反馈是在线投放的核心

- 实时流量预估修正
- 实时订单完成率反馈

小时级模型训练更新

在线投放 - 实时反馈

Druid

- 实时多维数据分析(OLAP)工具
- 交互式查询,低延迟高可用

在线投放 - A/B实验

品牌广告A/B实验的特点

- 在线分配按照 "订单_X_实验"进行保量控制
- 离线分配算法训练全流量进行,不需要分流量
- **局限**:实验需要按天进行,无法动态调整流量

在线投放 – 分析平台

订单投放量未完成,如何快速定位问题

- 流量预估问题
- 分配算法问题
- 其他问题

排期广告分析平台

- 支持实时和历史问题排查
- 模拟广告请求,获取广告投放关键步骤信息
- 分阶段详细的counting数据

历史问题诊断									
Adld:	99792		Tagld:	Tagld: 1.3.c.1		日期: 2016-11-22			
adld	tagld	hour	request	in_index	in_candidates	in_resultAdList	filterBy- Selection	filterBy- Smoothing	filterBy- Freq
99792	1.3.c.1	0	690377	690377	159372	2813	4083	152476	0
99792	1.3.c.1	1	347000	347000	81549	0	0	81549	0
99792	1.3.c.1	2	240516	240516	58452	0	0	58452	0
99792	1.3.c.1	3	213578	213578	54457	405	382	53670	0
99792	1.3.c.1	4	270789	270789	71825	2498	3391	65936	0
99792	1.3.c.1	5	642714	642714	179935	4039	5627	170269	0
99792	1.3.c.1	6	1527407	1527407	419498	3308	4514	411676	0
99792	1.3.c.1	7	2269092	2269092	601417	1747	2608	597062	0
99792	1.3.c.1	8	2218341	2218341	578908	2611	2996	573301	0

THANKS

[北京站]

