

알기쉬운코딩

05 빅데이터/인공지능과 함께하는 직업

쿠팡이니까 가능한 인공지능 혁신

- 미래선도 기술
- 빅데이터/인공지능 기술 및 직업군
- 빅데이터/인공지능 사례
- 빅데이터/인공지능 데모
- 모델링 종류

- 미래선도 기술에 대해 설명할 수 있다.
- 빅데이터/인공지능 기술 및 직업군에 대해 설명할 수 있다.
- 빅데이터/인공지능 사례에 대해 설명할 수 있다.
- 빅데이터/인공지능 데모를 만들 수 있다.
- 모델링 종류에 대해 설명 할 수 있다.

01 미래선도 기술

1 회신기술

미래선도 기술!

가트너 주식회사 (Gartner, Inc.)

Top Strategic Technology Trends for 2023

■ 미국의 정보 기술 연구 및 자문 회사

- Gartner
- 매년 동향을 발표하며 IT계에서는 리서치를 통해 다양한 방향성을 제시

2 | 최신기술(Optimize)

Trend No. 1: Digital Immune System

운영에 대한 데이터 기반의 인사이트, 자동화된 테스트, 애플리케이션 공급망의 보안

■ 기술: 빅데이터, 인공지능, 보안

• 예: 2025년까지 기업이 투자 시 시스템

다운타임 80%감축 → 수익증가

2 | 최신기술(Optimize)

Trend No. 2: Applied Observability (*)

관찰 가능한 데이터 로그, 파일 다운로드 등 유저가 특정 행동을 취할 경우 나타나는 내용을 반영

■ 기술 : AI, ML, 빅데이터

예: 조직데이터를 활용한 미래 수요예측

2 | 최신기술(Optimize)

3

Trend No. 3: Al 신뢰, 리스크 및 보안관리

조직이 모델의 안정성, 신뢰성, 데이터 보호를 보장 시 높은 수준의 비즈니스 서비스를 구축할 수 있음

■ 기술: 리스크 및 보안관리

예: 조직의 41%가 AI관련 개인정보 침해 또는 보안사고 경험

3 | 최신기술(Scale)

Trend No. 1: Industry Cloud Platform

SAAS, PAAS, IAAS를 통합하여 서비스 제공

■ 기술: SAAS, PAAS, IAAS

 예: 2027년까지 기업의 50% 이상이 산업 클라우드 플랫폼을 사용하여 비즈니스 가속화

3 | 최신기술(Scale)

Trend No. 2: Platform Engineering

소프트웨어를 제공하고 수명 주기를 관리하기 위해 셀프 서비스 내부 개발자 플랫폼 구축

- 기술: 플랫폼 엔지니어, 웹개발 기술
- 예:배달의 민족 플랫폼 자동으로 고객이 사용 (개발/사용자 중간에 위치한 기술 지워팀)

3 | 최신기술(Scale)

3

Trend No. 3: Wireless Value Realization

기업들은 사무실 내의 와이파이, 모바일 디바이스 서비스, 저전력 서비스 등 다양한 무선 솔루션을 사용

- 기술: 단순 연결이 아닌 데이터를 통한 인사이트 제공
- 예 : 네트워크가 직접 비즈니스 가치의 원천

4 | 최신기술(Pioneer)

Trend No. 1: Super Apps

앱, 플랫폼 및 생태계의 기능을 하나의 애플리케이션에 결합

- 기술: 모바일 앱, 슬랙/팀즈와 같은 앱 개발 기술
- 예:고객 또는 직원의 사용을 위해 여러 앱을 통합

4 | 최신기술(Pioneer)

Trend No. 2: Adaptive Al

새로운 데이터를 기반으로 런타임 및 개발 환경 내에서 모델을 지속적으로 재교육하고 학습해 초기 개발 단계 당시 존재하지 않았거나 예측 불가능한 실제 상황의 변화에 신속하게 적응

■ 기술: AI, ML 기술

4 | 최신기술(Pioneer)

3

Trend No. 3: Metaverse

메타버스는 지속적이며 향상된 몰입 경험을 제공

■ 기술: 가상환경에서 디지털화폐, NFT

• 예:메타버스 환경에서 아바타 구매

5|최신기술

Trend No. 1: Sustainable Technology

최근 전략기술을 모두 포함

- 기술: 지속 가능한 기술 프레임워크
- 예: 지속적인 IT프레임워크를 통해 데이터 분석, AI와 같은 기술들을 통해 기업의 지속 가능성 실현

리눅스 운영체제 (데이터: 데이터베이스)

데이터 (SQL)

02

빅데이터/인공지능 기술 및 직업군

|빅데이터 기술

빅데이터 기술

왜 필요 할까요?

叶岩子 TV 似化结合 몇 H 인가요?

빅 데이터를 빠르게 분석하여 적시에 정확한 정보를 제공

공급/수요 판단 오류

일반 플랫폼 (늦은 정보제공)

공급/수요 밸런스 유지

빅 데이터 분석 플랫폼 (빠른 정보제공)

분석 알고리즘

수요 예측

패턴 생성

이상치 제거

분석 데이터

과거 판매실적

연휴 일정

판매가격

빅데이터 기술

왜 필요 할까요?

叶岩子 TV 似化结合 몇 대 UTHE?

빅 데이터를 빠르게 분석하여 적시에 정확한 정보를 제공

공급/수요 판단 오류

일반 플랫폼 (늦은 정보제공)

공급/수요 밸런스 유지

빅 데이터 분석 플랫폼 (빠른 정보제공)

데이터 분석가

빅데이터

플랫폼

엔지니어

분석 알고리즘

수요 예측

패턴 생성

이상치 제거

분석 데이터

과거 판매실적

연휴 일정

판매가격

GIOIE 엔지니어

1 | 빅데이터 기술

|빅데이터 기술

개발코드

1. Extract Name of Item

```
invalue = "DV50F9A6EVW/A2"
modelAfter2017 = True
```

2. Extract 3rd-character

```
if ((charData == "E") |\
   (charData == "G")):
   modelAfter2017 = True
else:
   modelAfter2017 = False
```

charData = invalue[2]

3. Define Model

```
modelDefine = ""
if modelAfter2017 == True:
    if charData == "G":
       modelDefine = "GAS"
       modelDefine = "ELEC"
else:
    if invalue[12] == "GAS":
       modelDefine = "GAS"
    else:
       modelDefine = "ELEC"
print( "해당 모델은 {} 입니다.".format(modelDefine) )
해당모델은 ELEC 입니다.
```


빅데이터 기술

사례

가격결정 회의 이슈확인 회의

시뮬레이션	가격할인 비율	이익률
Α	20%	17%
В	30%	23%
С	40%	21%

"혁신적인 경영관리 환경 구축가능"

03 빅데이터/인공지능 사례

1 | 판매/마케팅 분야

가치

- 수요판매 예측을 통해 판매 극대화 및
 선제적 시장 대응
- 정확한 판매량 예측을 통한 프로모션 효과분석

활용기술

- 이벤트(프로모션/날씨/휴일 등)기반 예측
- 최신 판매 트랜드 학습 기반 예측

과거 실적 & 프로모션 등의 자료

프로모션 정보

머신러닝/ 딥러닝

예측

금융분야

가치

- 부정거래 추적을 통한 사기예방 (금융결제원)
- 부정거래 자동감지

활용기술

- 사기유형 패턴 기반 예측
- 강화학습을 통한 사기패턴 참조데이터 강화

타은행간 거래 실적정보

외부정보

통계적 분석 / 머신러닝

예측

3 | 매장별 방문고객 예측

가치

- 방문객 수 예측결과 및 인건비, 구매전환율 예측
- 고객 방문패턴에 맞춘 직원 업무투입 최적화

활용기술

- 방문객수 예측 알고리즘
- 직원업무 투입 최적화 알고리즘

고객 방문 패턴 분석

직원 스케쥴 정보

번잡할 때

고객 응대 중심으로 최대 인력 투입

한가할 때

유휴 인력 재배치 및 직원 역량 강화

time

time

4 | 인프라 이상징후 감지

가치

빅데이터 분석에 기반한 장애 분석 및 예방 체계구축

활용기술

- 로그분석 기반 이상징후 감지 : 단어 및 패턴 출현회수 측정 및 정상범위 산출
- 상관분석기반 이상징후 감지(시계열 분석)

구분	매트릭
DB	mem_usage
WEB-WAS	평균 응답 시간
WEB-WAS	메시지 서비스 개수
로그	Denied 출현 회수
Application 특화	결재 승인 요청 건수

5 | 자동화 기술(초자동화)

가치

사람이 수동으로 작업하는 부분을 컴퓨터가 담당

활용기술

■ 브라우저 자동화 기술

04 빅데이터/인공지능 데모

- 1 구글 이미지 웹에 접속한다.
- ② 키워드를 입력한다.
- 3 검색된 이미지를 다운로드 받는다.

Para para

1|데모(초자동화)

키워드 기반 이미지 다운로드 실습

- _ 2 | 데모(인공지능)
- 1 흑백 컬러 이미지 쌍을 준비한다.
- ② 기계를 학습 시킨다.
- ③ 아무 흑백이미지나 던지면 컬러로 변경해준다.

2 | 데모(인공지능)

이미지 색상 입히기 실습

실 세종사이버대학교

(보) 05 모델링 종류

1 | 분석 프로세스

데이터 레이크 환경

대량의 데이터 (장기 저장용)

데이터 탐색 및 준비

데이터 웨어하우스 환경

대량의 데이터 (장기 저장용)

장기 저장용 테이블 형태

데이터 분석/시각화

2 | 분석 방법의 종류

데이터 분석

통계적 접근 (Statistics)

A

통계방식 활용

- Time-Series
- Clustering using quantile
- Moving average

통계 기법을 활용하여 문제를 풀어내는 방법 (머신러닝) 지도 학습 (Supervised Learning)

В

회귀 (Regression)

분류 (Classification)

- Linear Regression
 SVM
- Decision Tree

- (Support Vector Machine)
- Logistic Regression

답에 영향을 주는 특성을 기계에 학습시킨 후 미래에 특성만을 활용하여 답을 예측하는 방법 (머신러닝) 비지도 학습 (Unsupervised Learning)

D

클러스터링 (Clustering)

- K-means
- Gaussian Mixture Model

답이 없는 상황에서 주어진 데이터를 특성에 맞게 가장 잘 설명하는 방법

컴퓨터가 이해하는 코드는 어느 바보나 다 짤 수 있다. 훌륭한 프로그래머는 사람이 이해할 수 있는 코드를 짠다

- 마틴 파울러 (Martin Fowler)

3|엔지니어의 역할

순서	대상	엔지니어의 역할
1	데이터 탐색	분석 작업을 위한 필요 데이터를 정의하고 유/무 확인
2	연동 데이터 정의	저장된 데이터의 시스템이름, 저장타입(RDB/FILE), 용량, 획 득주 기 등을 문서화한다.
3	데이터 정제	비정상 데이터를 정제한다. (또는 유효데이터라 하더라도 데이터를 사용할 수 있도록 가공한다.)
4	분석모델 적용	문제를 해결하기 위한 최적의 분석모델을 적용한다 . (데이터 사이언티스트)
5	검증 및 테스트	분석모델의 정확도를 검증한다.
6	분석모델 튜닝	개선점을 모델에 반영한다.
7	배포	프로그래머 없이 주기적으로 작동하도록 시스템화 한다.
8	유지보수	VOC를 접수 받아 모델을 보완/개선 한다.

4-1 | 데모(통계적 접근)

[개념] - 통계함수 활용 🗛

<u>기본예측모델</u>

FCST QTY =

판매량 지수 계절성 지수

<u>추가모델</u>

PRICE · 제품 AGE . 지역 EVENT . 비용효과

할인행사 기간, 날씨, Cannibalization,

계절성 지수 (주차별 효과)

판매량 예측

[4-1 | 데모(통계적 접근)

PRODUCT GROUP	PRODUCT	ITEM	YEARWEEK	SALES
REF	2DOOR	REF56A01	201801	50
REF	2DOOR	REF56A01	201802	100
REF	1DOOR	REF56B02	201801	30
REF	1DOOR	REF56B02	201802	60

4-1 | 데모(통계적 접근)

[세부내용] - 통계함수 활용

이동평균법을 활용한 계절성 지수 산출방법

	주차	1	2	3	4	5	6	7	8	9		45	46	47	48	49	50	51	52
1	실제 거래량	513589	438251	420290	458431	482381	570412	620392	571781	569545		621592	644949	681873	110366 5	835398	752613	863189	119717 0
2	추세 거래량	500536	509442	516120	-	-	-	-	-			에 대한 (13)	-	-	-	-	_	831470	866666
3	변 동 률	7818	7275	6858	_	_	_	_	_		세량(·편차	에 대한 (5)	-	-	-	-	-	36844	30520
4	정상 범위	~	~	522978 ~ 509262	-	-	-	-	_			량 + 변 동 률 냥 - 변 동률	-	-	-	-	-	~	897187 ~ 836146
5	정제된 거래량	508355	502167	509262	-		실제거래량 〉 상한가 → 상한가 실제거래량 〈 하한가 → 하한가 실제거래량							-	868315	836146			
6	스무딩 처리	506955	508139	509330	-		이동평균 (3)							-	811030	830280			
7	계절성 지수	1.013/ 1.003	0.86/ 0.99	0.83/ 1	-		계절성 지수 = 실제 거래량 / 스무딩 처리 계절성 지수 = 정제된 거래량 / 스무딩 처리							-	1.45/ 1.07	0.98/ 1.007			

4-1 | 데모(통계적 접근)

[시연] - 통계함수 활용 🛕

구분	대상
개발언어	Python
개발 플랫폼	Anaconda
개발환경	Jupyter notebook
파일명	Minimal Forecasting

예측 모델 데모 (통계적 접근)

[4-2 | 데모(지도학습-Regression)]

[개념] - 회귀방식 (Decision Tree)

과거 거래량에 영향을 주는 특성(프로모션, 흘리데이)과의 관계를 학습한 후 미래의 특성 값만을 활용하여 거래량 예측

4-2 | 데모(지도학습-Regression)

[개념] - 회귀방식 (Decision Tree)

과거 거래량에 영향을 주는 특성(프로모션, 홀리데이)과의 관계를 학습한 후 미래의 특성 값만을 활용하여 거래량 예측

데이터 탐색

	주차 정보	대상	홀리데이 여부	프로모션 여부	프로모 션 비율	거래량
미래	38	Α	NO	NO	-	?
 	37	Α	NO	YES	10	32
	36	Α	YES	YES	30	52
	35	Α	NO	NO	_	12
거닉	34	Α	YES	NO	_	14
	33	Α	YES	YES	50	24
	32	Α	YES	NO	-	12
 	31	Α	YES	NO	-	16

모델 설계 ^홈리데이 프로모션 31,32,33,34,36 프로모션 비율 35

38주 Holiday 아니면서 프로모션 없음 → 12

4-2 | 데모(지도학습-Regression)

[시연] - 회귀방식 (Decision Tree) B

구분	대상
개발언어	Python
개발 플랫폼	Anaconda
개발환경	Jupyter notebook
파일명	4-0. DecisionTree

예측 모델 데모 (지도학습)

4-2 | 데모(지도학습-Classification)

[개념/시연] - 분류방식 (SVM)

데이터의 집단을 분류 시 최적의 분류 선을 생성 한 후 미래 데이터에 대해서 기존에 학습한 내용을 바탕으로 예측

4-3 | 데모(비 지도 학습)

[개념] - 비지도 학습 (K-Means Clustering)

데이터를 내부 집단간의 유사성이 높고 외부 진단과는 유사성이 낮도록 분류하는 방법

STEP 1

- 클러스터의 개수를 정함
- K개의 초기 centroid (중심)를 random하게 선택

STEP 2

- 각각의 객체를 자기자신에서 가장 가까운 centrold에 할당
- 같은 centrold에 할당된 객체의 평균을 구함

STEP 3

■ 각 centroid의 평균을 중심으로 다시 Step2를 반복 (클러스터의 멤버가 변하지 않은 경우 멈춘다.)

4-3 | 데모(비 지도 학습)

[시연]- 분류 (K-Means Clustering) D

구분	대상
개발언어	Python
개발환경	Jupyter notebook
시각화	Jupyter notebook
파일명	학생분류

고객분류 데모 (비지도 학습)

학생분류 데모 (비지도 학습)

- 1 2023년도 미래선도 기술
 - 초자동화 및 AI 중심 내용에 집중
- 2 빅데이터/인공지능 기술 및 직업군
 - 빅데이터플랫폼엔지니어 / 데이터엔지니어 / 분석가 차이 이해

③ 빅데이터/인공지능 사례

■ 플랫폼엔지니어 / 데이터엔지니어 / 분석가 차이 이해

순번	구분	활용	가치	비고
1	판매/마케팅	수요예측	선제적 시장대응	
2	금융	부정거래 탐지	원활한 금융시장 형성	
3	인사	투입인력 분배	원활한 인력운영 가능	
4	IT 인프라	장애분석 / 애방체계	안정적 인프라 운영	
5	자동화	브라우저 자동화기술	수동작업 자동화	

4 빅데이터/인공지능 데모

■ 실 구현 가능한 모델에 대한 이해