Statistical and Mathematical Methods for Data Analysis

Dr. Faisal Bukhari

Punjab University College of Information Technology (PUCIT)

Textbooks

- ☐ Probability & Statistics for Engineers & Scientists,
 Ninth Edition, Ronald E. Walpole, Raymond H.
 Myer
- ☐ Elementary Statistics: Picturing the World, 6th Edition, Ron Larson and Betsy Farber
- ☐ Elementary Statistics, 13th Edition, Mario F. Triola

Reference books

- ☐ Probability Demystified, Allan G. Bluman
- ☐ Schaum's Outline of Probability and Statistics
- ☐ MATLAB Primer, Seventh Edition
- ☐ MATLAB Demystified by McMahon, David

References

Readings for these lecture notes:

□ Probability & Statistics for Engineers & Scientists, Ninth edition, Ronald E. Walpole, Raymond H. Myer

These notes contain material from the above book.

The Multinomial Distribution [1]

□ Recall that for a probability experiment to be binomial, two outcomes are necessary. But if each trial of a probability experiment has more than two outcomes, a distribution that can be used to describe the experiment is called a multinomial distribution.

☐ In addition, there must be a **fixed number of independent** trials, and the probability for each success must remain the **same** for each trial.

The Multinomial Distribution [2]

A short version of the multinomial formula for **three outcomes** is given next. If X consists of events E_1 , E_2 , and E_3 , which have corresponding probabilities of p_1 , p_2 , and p_3 of occurring, where x_1 is the number of times E_1 will occur, x_2 is the number of times E_2 will occur, and x_3 is the number of times E_3 will occur, then the probability of X is

$$f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3; \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = \frac{n!}{\mathbf{x}_1! \times \mathbf{x}_2! \times \mathbf{x}_3!} \times \mathbf{p}_1^{X_1} \times \mathbf{p}_2^{X_2} \times \mathbf{p}_3^{X_3}$$

$$\sum_{i=1}^3 \mathbf{x}_i = n, \sum_{i=1}^3 \mathbf{p}_i = 1$$
 where $\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = n, \mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3 = 1$

The Multinomial Distribution [3]

Example: In a large city, **60%** of the workers drive to work, **30%** take the bus, and **10%** take the train. If **5** workers are selected at random, find the probability that **2** will drive, **2** will take the bus, and **1** will take the train.

Solution:

Let

```
x_1 = No of workers, who drive to work = 2

x_2 = No of workers, who take bus to work = 2

x_3 = No of workers, who take train to work = 1

p_1 = Probability of workers, who drive to work = 0.60

p_2 = Probability of workers, who take bus to work = 0.30
```

p₃ = Probability of workers, who take train to work =
0.10

Cont.

$$f(x_1, x_2, x_3; p_1, p_2, p_3) = \frac{n!}{x_1! \times x_2! \times x_3!} \times p_1^{X_1} \times p_2^{X_2} \times p_3^{X_3}$$

where
$$x_1 + x_2 + x_3 = n$$
, $p_1 + p_2 + p_3 = 1$

f(2, 2, 1; 0.60, 0.30, 0.1) =
$$\frac{5!}{2! \times 2! \times 1!}$$
 (0.6)² (0.3)² (0.1)¹ = 0.0972

The Multinomial Distribution [4]

Example: A box contains 5 red balls, 3 blue balls, and 2 white balls. If 4 balls are selected with replacement, find the probability of getting 2 red balls, one blue ball, and one white ball.

Solution:

Let

$$x_1$$
 = No of red balls = 2
 x_2 = No of blue balls = 1
 x_3 = No of white balls = 1
 p_1 = Probability of red balls = 5/10 = 0.50
 p_2 = Probability of blue balls = 3/10 = 0.30
 p_3 = Probability of white balls = 2/10 = 0.20

f(x₁, x₂, x₃; p₁, p₂, p₃) =
$$\frac{n!}{x_1! \times x_2! \times x_3!} \times p_1^{X_1} \times p_2^{X_2} \times p_3^{X_3}$$

 $\times p_3^{X_3}$
 where $x_1 + x_2 + x_3 = n$, $p_1 + p_2 + p_3 = 1$

Cont.

$$f(2, 1, 1; 0.50, 0.30, 0.20) = \frac{4!}{2! \times 1! \times 1!} (0.5)^2 (0.3)^1$$
$$(0.2)^1$$
$$= 0.18$$

Multinomial Experiments and the Multinomial Distribution [1]

The binomial experiment becomes a multinomial experiment if we let each trial have more than two possible outcomes.

☐ The classification of a manufactured product as being light, heavy, or acceptable and the recording of accidents at a certain intersection according to the day of the week constitute multinomial experiments.

Multinomial Experiments and the Multinomial Distribution [2]

☐ The drawing of a card from a deck with replacement is also a multinomial experiment if the 4 suits are the outcomes of interest.

Multinomial Experiments and the Multinomial Distribution [3]

In general, if a given trial can result in any one of \mathbf{k} possible outcomes E_1, E_2, \ldots, E_k with probabilities p_1, p_2, \ldots, p_k , then the **multinomial distribution** will give the probability that E_1 occurs x_1 times, E_2 occurs x_2 times, . . ., and E_k occurs x_k times in n independent trials,

Multinomial Experiments and the Multinomial Distribution [4]

 \square where $\mathbf{x_1} + \mathbf{x_2} + \cdots + \mathbf{x_k} = \mathbf{n}$.

We shall denote this joint probability distribution by

$$f(x_1, x_2, ..., x_k; p_1, p_2, ..., p_k, n).$$

Clearly, $p_1 + p_2 + \cdots + p_k = 1$, since the result of each trial must be one of the k possible outcomes

Multinomial Distribution

If a given trial can result in the k outcomes E_1 , E_2 , ..., E_k with probabilities p_1 , p_2 , ..., p_k then the probability distribution of the random variables X_1 , X_2 , ..., X_k representing the number of occurrences for E_1 , E_2 , ..., E_k in n independent trials, is,

$$f(x_1, x_2, ... xk; p_1, p_2, ..., pk, n) = \frac{m!}{x_1! \times x_2! ... \times x_k!} \times p_1^{X_1} \times p_2^{X_2} \times ... \times p_k^{X_k}$$

$$\sum_{i=1}^{k} x_i = n$$
, $\sum_{i=1}^{k} p_i = 1$

Example: The complexity of arrivals and departures of planes at an airport is such that computer simulation is often used to model the "ideal" conditions. For a certain airport with **three runways**, it is known that in the ideal setting the following are the probabilities that the individual runways are accessed by a randomly arriving commercial jet:

Runway 1: $p_1 = 2/9 = 0.2222$ (or 22.22%)

Runway 2: $p_2 = 1/6 = 0.1667$ (or 16.6667%)

Runway 3: $p_3 = 11/18 = 0.6111$ (or 61.1111%)

What is the probability that 6 randomly arriving airplanes are distributed in the following fashion?

Runway 1: 2 airplanes

Runway 2: 1 airplane

Runway 3: 3 airplanes

Solution: Using the multinomial distribution, we have

$$f(x_1, x_2, ... xk; p_1, p_2, ..., pk, n) = \frac{11:}{x_1! \times x_2! ... \times x_k!} \times p_1^{X_1} \times p_2^{X_2} \times ... \times p_k^{X_k}$$

f(2, 1, 3;
$$\frac{2}{9}$$
, $\frac{1}{6}$, $\frac{11}{18}$, **6)** = $\frac{6!}{2! \times 1! \times 3!}$ ($\frac{2}{9}$)² ($\frac{1}{6}$)¹ ($\frac{11}{18}$)³

$$= 0.1127.$$