

INTRODUCTION

SUMMAR Y

> **EXPLORING** THE DATASET ADDING NEW FEATURES **PREPROCESSING**

CHOOSING THE MODEL

TUNING THE PARAMETERS

ı

EXPLORING THE DATASET

SPOT THE CORRELATION

- Features significatively correlated with log_bike_count :
 - curfew
 - hour
 - temperature
 - humidity
- We denote a strong correlation between :
 - temperature / humidity

The *counter_name* feature is not on the heatmap but is also strongly correlated to the target value

SPOT THE MISSING VALUES

Observation:

Large number of zeros, might be suspicious

Mask:

To find the potential sequences of zero

Plot:

To visualize those sequences

- Those unusual values are possibly due to **public work or a** counter breakdown.
- Creating a mask to get rid of those unusual values

ADDING NEW FEATURES

COVID IMPACT?

Impact of lockdown measures

Impact of curfew measures

We encoded **new binary features** using a column transformer and adding it at the beginning of our pipeline to take into account these two external phenomenons.

OTHER IDEAS

External data file:

- > Permutation importance analysis on the variables of the external data file
- > Choice to keep u, tend24 and rr24.
- > u : humidité
- > tend24 : tendance atmosphérique 24 dernières heures
- > rr24 : précipitation dans les 24 dernières heures

Other binary features - failed for bad results

- > Public Holidays
- > Weekends

Ideas to explore

- > <u>opendata.paris.fr</u>
- > Other datas: construction sites? how to merge it? Geographically? with coordinates?

PREPROCESSING

ENCODING DATES

1st method

Code

```
def _encode_dates(X):
    X = X.copy()
    X.loc[:, 'year'] = X['date'].dt.year
    X.loc[:, 'month'] = X['date'].dt.month
    X.loc[:, 'day'] = X['date'].dt.day
    X.loc[:, 'weekday'] = X['date'].dt.weekday
    X.loc[:, 'hour'] = X['date'].dt.hour
```

Output

	year	month	day	weekday	hour
48321	2020	9	1	1	2
48324	2020	9	1	1	3
48327	2020	9	1	1	4
48330	2020	9	1	1	15
48333	2020	9	1	1	18

2nd method

Code

```
def _encode_dates_2(X):
    X = X.copy()
    X.loc[:, 'new_date'] = X['date'] - min(data['date'])
    X.loc[:, 'nb_of_seconds'] = X.loc[:, 'new_date'].dt.total_seconds()
    return X.drop(columns=["date", 'new_date'])
```

Output

	date	nb_of_seconds
48321	2020-09-01 02:00:00	3600.0
48324	2020-09-01 03:00:00	7200.0
48327	2020-09-01 04:00:00	10800.0
48330	2020-09-01 15:00:00	50400.0
48333	2020-09-01 18:00:00	61200.0

PREPROCESSING

After feature selection, merge of external and date encoding, we have the following dataset:

CHOOSING THE MODEL

TESTED MODELS

We have tested those **eight models** on the dataset :

Model with result

RIDGE

HIST GRAD BOOST

RANDOM FOREST

Model with result that we tuned

CatBoost

THE GRADIENT BOOSTING METHOD FOR REGRESSION

The Principle:

Mathematically:

Input:

- Training set (x_i, y_i)ⁿ_{i=1}, here x is the different features and y = log_bike_count
- · Differentiable loss function : Here XGBoost built-in parameters choose squared error : $L(y_i, F(x)) = (y_i - F(x_i))^2$
- The number of iteration $M=n_{iter}$

Step 1:

- 1. Initialize model with a constant value:
- 2. For m=1 to M:
 - · Compute pseudo residuals :

$$r_{im} = -[rac{\partial L(y_i, F_{m-1}(x_i))}{\partial F_{m-1}(x_i)}] = 2(y_i - F_{m-1}(x_i)) \quad i = 1,..,n$$

• Fit a tree $h_m(x)$ to pseudo-residuals with the training set :

$$(x_i,r_{im})_{i=1}^n$$

$$\circ$$
 Solve the following optimization problem : $\gamma_m = \operatorname*{argmin}_{\gamma} \sum_{i=1}^n L(y_i, F_{m-1}(x_i) + \gamma h_m(x_i))$

This is often solved using SGD (XGBoost)

- \circ Update the model : $F_m(x) = F_{m-1}(x) + \gamma_m h_m(x)$
- 3. Output $F_M(x)$

NEURAL NETWORK

Using **TensorFlow** and **Keras** we tried to implement a Neural Network :

TUNING THE PARAMETERS

PARAMETERS TUNING

To tune our parameters while dealing with the trade-off between time and precision of parameter tuning, we tried the two following methods:

1 By trial and error and by 'parameter category'

Extract from Notebook - Method 1

1ST PART CONTROL OVER TREE STRUCTURE params = { 'lgbmregressor__max_depth': [6,24], 'lgbmregressor__num_leaves': [2**6, 2**10], 'lgbmregressor__min_data_in_leaf':[40, 200], 'lgbmregressor__n_estimators': [130, 200], } grid_search = GridSearchCV(pipe, param_grid=params, n_jobs=-1, cv=5) result_gs = grid_search.fit(X_train, y_train) print(f"Best params : {result_gs.best_params_}") ...

2 Randomized Grid Search

Extract from Notebook – Method 1

#RANDOMIZE GRID SEARCH params = { 'lgbmregressor__learning_rate' : [0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4], 'lgbmregressor__n_estimators' : [100, 200, 300, 400, 500, 600, 800, 1000, 1500, 2000], ... 'lgbmregressor__reg_alpha': [0, 1e-1, 1, 2, 5, 7, 10, 50, 100], 'lgbmregressor__reg_lambda': [0, 1e-1, 1, 5, 10, 20, 50, 100] } grid_search = RandomizedSearchCV(pipe, param_distributions=params, n_jobs=4, cv=5, n_iter=200) result_gs = grid_search.fit(X_train, y_train) print(f"Best params : {result_gs.best_params_}")

RESULT S

MODELE	RMSE - RAMP	RMSE - LOCAL	TRAIN TIME	VALIDATION TIME
dmlc XGBoost	0.743	0.703	367	92
LightGBM	0.750	0.738	146	295
CatBoost	0.741	0.741	257	47

VISUALIZING THE RESULTS

