

前言

连续系统频域分析中的 信号的频谱与傅里叶变换

信号的频谱:信号的某种特征量与信号频率变化的关系。

频谱图:将幅度和相位分量用一定高度的直线表示。

周期信号的频谱

1、周期信号频谱的相关概念

周期信号频谱: 周期信号中各次谐波幅值、相位随频率变化关系。

 $A_u \sim \omega$: 振幅频谱图

 $\varphi_u \sim \omega$: 相位频谱图

三角函数形式分解: $f(t) = rac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega t + arphi_n)$

虚指数函数形式分解: $f(t)=\sum_{n=-\infty}^{\infty}F_ne^{jn\Omega t}$ $F_n=rac{1}{T}\int_{-rac{T}{2}}^{rac{T}{2}}f(t)e^{jn\Omega t}$

频谱为:

$$F_n=rac{ au}{T}Sa(rac{n\Omega au}{2}), n=0,\pm 1,\cdots$$

其中谱线间隔: $\Omega = \frac{2\pi}{T}$ 为基波频率,在 $\omega = n\Omega$ 有值,称为谱线;

 $Sa(rac{\omega au}{2})$ 为包络线, $\omega=rac{2m\pi}{ au}$ 时为零。

结论:

- au由大变小, F_n 的第一个过零点频率增大,即 $\omega=rac{2\pi}{ au}$,au确定了带宽。
- τ 由大变小,频谱的幅度变小。
- 由于T不变,谱线间隔不变,即 $\Omega = \frac{2\pi}{T}$ 不变。
- T由小变大, 谐波频率丰富, 且频率幅度变小。
- $T \to \infty$, 谱线间隔 $\to 0$, 这时周期信号 \to 非周期信号;离散频谱 \to 连续频谱。

频谱分类	直流分量	幅度	相位	n
单边谱	$\frac{A_0}{2}$	A_n	$arphi_n$	n=0,1,2,
双边谱	F_0	$ F_n $	$arphi_n$	$n=0,\pm 1,\pm 2,$

单边谱和双边谱的关系:

$$egin{aligned} \cos(n\Omega t) &= rac{1}{2}(e^{jn\Omega t} + e^{-jn\Omega t}) \ F_n &= |F_n|e^{jarphi_n} &= rac{1}{2}A_ne^{jarphi_n} \ |F_n| &= rac{1}{2}A_n, arphi_n &= -\arctanrac{b_n}{a_n} \end{aligned}$$

例: 周期信号 $f(t)=1-rac{1}{2}\cos(rac{\pi}{4}t-rac{2\pi}{3})+rac{1}{4}\sin(rac{\pi}{3}t-rac{\pi}{6})$

求该周期信号的基波周期 T ,基波角频率 Ω ,平均功率 P ,并画出它的频谱图。

解:

改写
$$f(t)$$
表达式: $f(t) = 1 + \frac{1}{2}\cos(\frac{\pi}{4}t + \frac{\pi}{3}) + \frac{1}{4}\cos(\frac{\pi}{3}t - \frac{2\pi}{3})$

$$\frac{1}{2}\cos(\frac{\pi}{4}t+\frac{\pi}{3})$$
周期 $T_1=8$

$$\frac{1}{4}\cos(\frac{\pi}{3}t-\frac{2\pi}{3})$$
周期 $T_2=6$

$$\therefore f(t)$$
周期 $T=24$,基波角频率 $\Omega=rac{\pi}{T}=rac{\pi}{12}$

由帕斯瓦尔等式,
$$P = 1 + \frac{1}{2} \cdot (\frac{1}{2})^2 + \frac{1}{2} \cdot (\frac{1}{4})^2 = \frac{37}{32}$$

频谱图:

$$rac{1}{2}\cos(rac{\pi}{4}t+rac{\pi}{3})$$
 是 $f(t)$ 的 $[\pi/4]/[\pi/12]=3$ 次谐波分量;

$$rac{1}{4}\cos(rac{\pi}{3}t-rac{2\pi}{3})$$
 是 $f(t)$ 的 $[\pi/3]/[\pi/12]=4$ 次谐波分量;

2、周期信号频谱的特点

1、离散型:以基频 Ω 为间隔的若干离散谱线组成

2、谐波性: 谱线仅含有基频 Ω 的整数倍分量

3、收敛性:整体趋势减小

周期信号频谱的特点简要的概括了一下

3、谱线的结构与波形参数的关系

1、T一定,au变小,此时 Ω (谱线间隔)不变。两零点之间的谱线数:

$$\frac{\omega}{\Omega} = \frac{2\pi}{\tau} / \frac{2\pi}{T}$$
,增多

2、 τ 一定,T 增大,间隔 Ω 减小,频谱变密,幅度减小。

如果周期 T 无限增长($T \to \infty$),周期信号就变成了非周期信号,那么,谱线间隔将趋于零,周期信号的离散频谱就过渡到非周期信号的连续频谱。各频率分量的幅度也趋近于无穷小。

二、非周期信号的频谱

1、周期信号 → 非周期信号

频谱函数:

$$F_n = rac{1}{T} \int_{-rac{2}{T}}^{rac{2}{T}} f(t) e^{-jn\Omega t} dt$$

 $T o \infty$ 时:

f(t)周期信号 → 非周期信号

$$F_n o 0$$

谱线间隔 $\Omega o 0$
离散频谱 o 连续频谱,频谱幅度 $o 0$

2、频谱密度函数

频谱函数:

$$F_n = rac{1}{T} \int_{-rac{2}{T}}^{rac{2}{T}} f(t) e^{-jn\Omega t} dt$$

 $T
ightarrow \infty$ 时:

$$\Omega
ightarrow d\omega (无穷小量) \ n\Omega
ightarrow \omega (离散
ightarrow 连续) \ F(j\omega) = \lim_{T
ightarrow \infty} rac{F_n}{1/T} = \lim_{T
ightarrow \infty} F_n T \ = \lim_{T
ightarrow \infty} \int_{-rac{2}{T}}^{rac{2}{T}} f(t) e^{-jn\Omega t} dt \ = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

3、傅里叶变换与反变换

3.1傅里叶变换

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

 $F(i\omega)$ 称为 f(t) 的傅里叶变换

$$F(j\omega)$$
 一般为复数,写成 $F(j\omega)=|F(j\omega)|e^{j\varphi(\omega)}$

 $F(j\omega) \sim \omega$: 幅频度谱图,频率 ω 的偶函数

 $arphi_u \sim \omega$: 相位频谱图,频率 ω 的奇函数

3.2傅里叶反变换

$$f(t)=rac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)e^{j\omega t}d\omega$$

符号差别:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

傅里叶变换式 "-"

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega$$

傅里叶反变换式"+"

4、常用函数的傅里叶变换

单边指数函数:
$$e^{-\alpha t}\epsilon(t)\longleftrightarrow rac{1}{lpha+j\omega}$$

$$e^{-\alpha|t|}\longleftrightarrow rac{2lpha}{lpha^2+\omega^2}$$

门函数:
$$g_{\tau}(t) \longleftrightarrow \tau Sa(\frac{\omega \tau}{2})$$

冲激函数:
$$\delta(t) \longleftrightarrow 1$$

冲激函数导数:
$$\delta'(t) \longleftrightarrow j\omega$$

$$1 \longleftrightarrow 2\pi\delta(\omega)$$

符号函数:
$$sgn(t) \longleftrightarrow \frac{2}{j\omega}$$

$$\epsilon(t) \longleftrightarrow \pi\delta(\omega) + rac{1}{i\omega}$$

三角波函数:
$$Q_{\tau}(t) \longleftrightarrow \tau Sa^2(\frac{w\tau}{2})$$

$$cos(\omega_c t) \longleftrightarrow \pi[\delta(\omega + \omega_c) + \delta(\omega - \omega_c)]$$

$$sin(\omega_c t) \longleftrightarrow j\pi[\delta(\omega+\omega_c)-\delta(\omega-\omega_c)]$$

2023/4/18 10:16 3-2周期信号的频谱

总结

时域里面原函数 \longrightarrow 频域里面相函数 频域里面相函数 \longrightarrow 时域里面原函数

周期信号 → 傅里叶级数 → 频谱

非周期信号 → 傅里叶变换 → 频谱