Neuroscience Approach (Cognitive Neuroscience)

Examine how brain is physical implementation of cognitive functions:

Object Recognition

Attention

Memory

Problem Solving

Can structure of brain illuminate function?

Higher-level Function -> Not so much (yet)

Low-level Perceptual Functions -> Yes

Edge detection

Color vision

Neuroscience Approach Methodology

```
Imaging
```

Functional Magnetic Resonance Imaging

Electrical Encephalography (EEG)

Brain Stimulation

Neuropsychology

Damage to Brains -> Impaired functions

Humans: Wait for damage

Animals: Create damage

Functional Magnetic Resonance Imaging (fmri)

- Use to take a picture of your brain as it "thinks"
- MRI is a technique that takes one picture of your brain a to one time
- fMRI looks at multiple pictures over time while brain does a task

fMRI Example: Motion After-Effect in MT

- MT is cortical area that has been associated with motion processing (part of dorsal stream)
- Alternating blocks:
 - Had subjects look at the swirly motion thing (outward motion)
 - Look at stationary stimulus
- Same task was done outside the magnet to measure behavioral effects

Results of fMRI study:

Results of fMRI study:

- This pattern of activation was specific to MT
- For example, pattern of activation in V1 was not like this
- Percent signal change compared to looking at blank field

MRI: Subtraction Method

- Assumes that nothing is going on in control condition
- This may be incorrect sometimes
 - Looking at blank field still a whole lot of thinking goin on.
 - E.g. Getting hippocampus activation might be tough because we are often using it even when we don't realize it
- Bottom line: subtraction method is OK, but we must be careful

MRI: Parametric studies

- Vary degree of activation in task and look at fMRI signal
- E.g. working memory task where you have to remember 2,4 or 6 digits
- Look at areas correlated with behavioral difficulty (I.e. areas that are twice as active in the 4 as in the 2, and 3 times as active in 6)
- These are great but sometimes it is difficult to parametrically vary the behavior

MRI: What's Measured

- MRI usually measures changes in blood flow
- More active parts of your brain get more blood for fuel
- Correspondence between blood flow and neural activity is OK, but not perfect
- Some analyses try to factor out some info based on our knowledge of the circulatory system

MRI: How Does it See Increase In Blood Flowing?

- When part of brain becomes more active, more blood flows
- Although blood flow increases a lot, oxygen uptake only increases marginally
- Net result is that the overall level of Oxygen becomes greater when flow increases

MRI Blood Flow: A picture

Nomal Flow

High Flow

- Oxyhemoglobin
- Deoxyhemoglobin

Getting Stuck on a Giant Refrigerator

- MRI machine magnetizes your whole head by placing you in a very powerful magnetic field
- Increased Oxygen has higher the magnetic signal (oxygen is more magnetic than other stuff)
- The magnetic signal of each part of the brain (voxel) is then measured
- The magnetic signals for each part of the brain become parts of a "picture" of the brain

MRI Strengths

- Great spatial resolution (a few millimeters)
- Non-obtrusive (no harmful effects)

MRI Weaknesses

- Temporal resolution is not great
 - Hemodynamic lag -- time between brain activation and blood flow increase about 2 seconds
- Very expensive
- Problems with indirect measure of blood flow
- Some behaviors can't be done inside a giant magnet

Positron Emission Tomography (PET)

- Uses radioactive isotopes (e.g. Oxygen-15) created by a cyclotron which emit a positron (that's a positive electron)
- When that positron hits an electron somewhere in the brain, it creates gamma rays that are measured by the detectors

PET strengths and weaknesses

- Strengths
 - Spatial resolution OK
 - Can radioactively "tag" other isotopes besides Oxygen (e.g. glucose)
- Weaknesses
 - Use of radioactive materials limits subject exposure
 - Need a cyclotron nearby to produce isotopes (they decay quickly)

Electroencephalogram (EEG)

- Attach electrodes to scalp (a few or as many as several hundred
- Measure electrical activity on scalp while a task is performed
- A single neuron does not generate enough activity for an EEG, but large assemblies of neurons firing together can
- Event-Related Potential is average of EEGs over hundreds of trials

EEG Strengths and Weaknesses

- Strengths
 - Great temporal resolution (on the order of milliseconds)
- Weaknesses
 - Crummy spatial resolution

Problems with any imaging techniques

- See which areas are correlated with particular task
- But you don't know if these areas are necessary
- A silly analogy
 - Every day the sun rises and a rooster crows
 - Is the rooster necessary for a sunny day?

Brain Stimulation

- Electrode Stimulation
 - Activate a particular region
 - May overactivate neurons resulting in atypical behavior
- Transcranial Magnetic Stimulation
 - Strong magnetic field activates neurons under a coil
 - Over motor area causes body parts to move
 - Can be used repeatedly to treat depression
 - Inexact science
- Optogenetics
 - Opsins embedded in cell membranes make neurons light sensitive
 - Allows for very precise control of neurons in space and time
 - Fiver optics can deliver light to different parts of animals brains
 - Possible treatments for Parkinson's, autism and schizophrenia

Vision

- Photoreceptor cells
 - Rod & Cone cells
- Bipolar Cells
 - Connect in petween
- Ganglion Cells
 - Go to the brain

Vision

The Eye

rod cells:

cone cells:

- periphery
- movement
- black and white
- fovea (center)
- detail
- color

(broad tuning)

rod cells:

cone cells:

- periphery
- movement
- black and white
- fovea (center)
- detail
- color

(broad tuning)

cone firing

rod cells:

cone cells:

- periphery
- movement
- black and white
- fovea (center)
- detail
- color

bipolar & horizontal cells

• lateral inhibition

cone cells:

- periphery
- movement
- black and white
- fovea (center)
- detail
 - color

bipolar & horizontal cells

- lateral inhibition
- edge detection

Bipolar cells

front view

rod cells:

cone cells:

- periphery
- movement
- black and white
- fovea (center)
- detail
- color

bipolar & horizontal cells

- lateral inhibition
- edge detection

receptive field

rod cells:

- movement
- black and white

cone cells:

- fovea (center)
- detail
- color

bipolar & horizontal cells

- lateral inhibition
- edge detection

• center/surround

receptive field

time

Center-Surround How's it done?

Difference of Gaussians (Mexican hat)

light position

