Abyssal

Big (Unlabeled) Data:

A quest to create a fish detection dataset

Pedro Costa

Agenda

- Abyssal
- How to annotate your dataset
- Creating a fish dataset

Founded in January 2012

Team of 25+ Software Engineers, 3D Artists, ...

Augmented Reality for subsea Remotely Operated Vehicles (ROVs)

Real

Real & Virtual

- Train ROV pilots
- Planning new operations
- Machine Learning!

Research Projects

SLAM

SLAM - Simultaneous Localization and Mapping

Anomaly Detection

Automatically detect anomalies in marine renewables' subsea structures.

- Biofouling
- Sacrificial anodes
- Leaks
- -

Problem Definition

Find anomalies fish in ROV videos!

Predict if a **fish** is visible in a given **frame**.

EMEPC gave us some of their videos:

- 3.9 TB!
- More than 250 videos from 2008-2012.
- Some with less than 10 min other more than 1 hour.
- ... Highly unbalanced!

Research Question

What data point (frame/video/segment) do we sample next to be labeled?

Typical approach

Is random sampling the best we can do?

Random Sampling problems

Unbalanced Datasets

Repeated/Similar/Correlated examples

Active Learning

Use the model to sample new examples to be annotated.

Intuition

Intuition

Intuition

Active Learning

What do we need?

- 1. Dataset
- 2. Sampling Method
- 3. Model

Dataset: VOC 2012

Solve the Cat vs No-Cat task.

Unbalanced: Only 7.53% training images contain cats.

Sampling: Predictive Entropy

Also known as Uncertainty Sampling.

Select the example x* that minimizes the predictive entropy:

$$y = model(x)$$

$$x^* = arg min y * log(y) + (1 - y) * log(1 - y)$$

Just select the example that is closer to the decision boundary!

Results: Pre-Trained

- ResNet50 pre-trained on ImageNet;
- Sampling 400 images at each iteration.

Percentage of Positive Images

Examples

"Difficult" images are added first!

First Iteration

Last Iteration

Results: Scratch

- SqueezeNet;
- Sampling 400 images at each iteration.

Percentage of Positive Images

Now to the fish dataset!

We created a tool to label one minute video segments at a time.

From images to videos

Dataset

- Assign different videos from 2012 to train, val and oracle.
- Assign videos from 2008 to test.
- Randomly sample video segments.
- Unbalanced. Only 2 video segments in the test and val sets depict fish.
- Large intra-class variability.

Results

- ResNet50 pre-trained on ImageNet;
- Sampling 50 segments at each iteration.

t-SNE on the features

train/val/test features are very different!
This coupled with high intra-class variability may explain low performance.

Caution!

Fish images are being wrongly classified with absolute certainty!

Deep Magic

Deep Learning methods can fit a dataset with random labels (even with regularization)!!!

Maybe Predictive Entropy is not the optimal sampling strategy.

Understanding deep learning REQUIRES RE-THINKING GENERALIZATION

Chivuan Zhang*

Massachusetts Institute of Technology chivuan@mit.edu

Benjamin Recht[†]

University of California, Berkeley brecht@berkelev.edu

Samy Bengio Google Brain

Google Brain bengio@google.com mrtz@google.com

Moritz Hardt

Oriol Vinyals

Google DeepMind vinyals@google.com

AL from the start

53236 labeled frames.

Sampled segments are divided into train/val, making sure that there are no segments from the same video on different sets.

Potential Problem: val set is biased.

	New Dataset	Old Dataset
Pos. Imgs. (%)	6.07%	1.0%
Val AP	70.6%	49.5%
Val AUC	90.1%	97.3%

Future Work

Move from heuristic-based sampling to learned sampling functions.

- Generative model on the feature space;
- Learn what regions of the feature space are more prone to error;
- Predict model improvements after adding the example to the training set.

Label more data.

