

Digital Logic

Lecture 9

2nd Stage
Computer Science Department
Faculty of Science
Soran University

Topics covered

DeMultiplexers

- Applications of Demultiplexer
- 1:N DeMultiplexers
 - 1:2 DEMUX
 - 1:4 DEMUX
 - 1:8 DEMUX
 - 1:16 DEMUX

What is a Demultiplexer (DEMUX)?

 A DEMUX is a digital switch with a single input (source) and a multiple outputs (destinations).

 The select lines determine which output the input is connected to.

What is a Demultiplexer (DEMUX)?

- ♦ Demultiplexer is exactly reverse of multiplexer.
- ♦ Relationship between m & n is given by

$$2^{m} = n$$

where m = no. of control lines, n = no. of output lines

♦ So we can have

1:2 DEMUX; with 1 Select line

1:4 DEMUX; with 2 Select lines

1:8 DEMUX; with 3 Select lines

1:16 DEMUX; with 4 Select lines

Relation between a Multiplexer and a Demultiplexer

Applications of Demultiplexer

- Communication Systems
- Arithmetic Logic Unit
- Serial to Parallel Converter

Typical Application of a DEMUX

1 to 2 Demultiplexer

1:2 Demultiplexer Truthtable

S	Do	Dı		
О	X	O		
1	О	X		

1:2 Demultiplexer Graphical Symbol

1:2 Demultiplexer Logic Expressions

$$D0 = S'.X$$

$$D1 = S.X$$

1:2 Demultiplexer Logic Diagram

1 to 4 Demultiplexer

В	A	Do	D1	D ₂	D ₃	
O	O	X	О	o	О	
O	1	O	X	o	O	
1	O	О	О	X	О	
1	1	О	O	O	X	

1 to 8 Demultiplexer

Data Input D	Select Inputs			Outputs							
	S ₂	S ₁	So	Y,	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Yo
D	0	0	0	0	0	0	0	0	0	0	D
D	0	0	1	0	0	0	0	0	0	D	0
D	0	1	0	0	0	0	0	0	D	0	0
D	0	1	1	0	0	0	0	D	0	0	0
D	1	0	0	0	0	0	D	0	0	0	0
D	1	0	1	0	0	D	0	0	0	0	0
D	1	1	0	0	D	0	0	0	0	0	0
D	1	1	1	D	0	0	0	0	0	0	0

1 to 8 De-Multiplexer Truth Table

1 to 8 Demultiplexer

$$Y0 = D \overline{S2} \overline{S1} \overline{S0}$$

$$Y1 = D \overline{S2} \overline{S1} S0$$

$$Y2 = D \overline{S2} S1 \overline{S0}$$

$$Y3 = D \overline{S2} S1 S0$$

$$Y4 = D S2 \overline{S1} \overline{S0}$$

$$Y5 = D S2 \overline{S1} S0$$

$$Y6 = D S2 S1 \overline{S0}$$

$$Y7 = D S2 S1 S0$$

1 to 8 Demultiplexer Logic Expression

1 to 8 Demultiplexer

A 1 to 8 demultiplexer consists of one input line, 8 output lines

and 3 select lines.

1 to 16 Demultiplexer

1 to 16 de-multiplexer has one input data, four select lines S0, S1, S2 and S3 and 16 output lines Y0 to Y15.

2:1 MUX and 1:2 DEMUX Communication

4:1 MUX and 1:4 DEMUX Communication

4:1 MUX

1:4 DEMUX

Try

- Q1) Construct a 16:1 multiplexer with 2:1 multiplexers only. Use block diagrams, and logic diagrams
- Q2) Construct a 1:16 demultiplexer with 1:2 demultiplexers only. Use block diagrams, and logic diagrams