

Arquitetura Computacional

Tópicos de Arquitetura Computacional

Celia Taniwaki

celia.taniwaki@sptech.school

Matheus Matos

matheus.matos@sptech.school

TÓPICOS

1. Introdução à Arquitetura de Computadores

2. Microcontrolador x Microprocessador

3. Arquitetura de Processadores

4. Hierarquia de Memória

5. Fluxo de Instrução

Introdução à Arquitetura de Computadores

Um computador é uma máquina eletrônica capaz de processar dados e realizar cálculos.

- Processador (ou CPU), é o "cérebro" do computador.
- Memória, onde os dados e as instruções são armazenados temporariamente.
- Dispositivos de Entrada e Saída (I/O), permitem interação com o computador.

Microcontrolador vs. Microprocessador

É um **sistema completo em um único chip**, contendo a CPU, memória (ROM e RAM), e portas de entrada/saída. Ele é ideal para controlar dispositivos específicos, como eletrodomésticos ou brinquedos. Imagine um microcontrolador como um chef que não só cozinha, mas também faz as compras e cuida da cozinha, tudo sozinho!

É a "mente" de um computador, essencialmente uma CPU em um **chip**. Ele depende de outros componentes (como memória externa) para funcionar. Usado em computadores, ele se destaca em tarefas complexas e rápidas. Nesse caso, ele é o chef principal de um restaurante, coordenando vários ajudantes para diferentes tarefas.

ARDUINO É...

MICROCONTROLADOR OU MICROPROCESSADOR?

Blocos identificados de uma placa Arduino Uno

Placa Arduino Mega

Arquitetura de Hardware do Arduino

- Fonte de Alimentação: Transforma a energia recebida em 5V ou 3.3V, necessários para o funcionamento dos componentes.
- Núcleo CPU: o "cérebro" do Arduino, responsável por processar e executar instruções.
- Entradas e Saídas: os "sentidos" e "respostas" do Arduino, para captar sinais externos e interagir com outros dispositivos.
- Pinos Especiais: alguns pinos têm funções adicionais, como controlar comunicação serial.
- **Firmware**: o conjunto de instruções que carregamos na CPU para controlar o comportamento do Arduino.

CPU - Unidade Central de Processamento

A CPU é a parte do processador que **realiza cálculos e processa instruções**. Ela tem duas partes principais:

- ULA (Unidade Lógica e Aritmética): Executa operações de cálculos matemáticos e lógicos.
- UC (Unidade de Controle): Coordena todas as operações dentro do processador e "manda" quando cada instrução deve ser executada.

Além dessas, a CPU possui registradores, que são pequenas memórias internas para armazenar dados temporários. Os registradores principais incluem:

- Acumulador: Armazena resultados de operações.
- Contador de Programa
 (PC): Aponta para o próximo endereço de instrução a ser executada.

- 16 MB SmartCache Cache
- 8 Núcleos
- 16 Segmentos
- 5.00 GHz Frequência turbo max
- K Unlocked
- 9th Generation

Figure 1: Architecture components layout for an Intel® Core™ I7 processor 6700K for desktop systems. This SoC contains 4 CPU cores, outlined in blue dashed boxes. Outlined in the red dashed box, is an Intel® HD Graphics 530. It is a one-slice instantiation of Intel processor graphics gen9 architecture.

Barramentos

"Estradas" por onde dados, endereços e sinais de controle trafegam entre CPU e memória.

Existem três tipos principais:

- Barramento de Dados: transporta os dados.
- <u>Barramento de Endereços</u>: identifica onde o dado deve ser lido ou gravado.
- Barramento de Controle: gerencia o fluxo de informações.

Tipos de Memória

- Memória RAM: Memória temporária onde dados são armazenados enquanto o computador está ligado.
- Memória ROM: Memória permanente que guarda dados essenciais para o funcionamento do sistema, como o BIOS.
- Cache: Memória rápida localizada dentro ou próxima da CPU para armazenar dados acessados frequentemente, aumentando a velocidade de processamento.

Hierarquia das Memórias

A hierarquia de memória ajuda a otimizar a velocidade do sistema:

- Registradores: Localizados dentro da CPU, são os mais rápidos e mais limitados em capacidade.
- Cache: Rápida e usada para dados acessados com frequência.
- RAM: Memória principal para programas em execução.
- Memória Secundária: Armazenamento mais lento e com maior capacidade, como discos rígidos e SSDs.

Ciclo de Busca e Ciclo de Execução

Fluxo da Instrução

DMA (Acesso Direto à Memória)

 O DMA permite que componentes de hardware, como placas de vídeo ou som, acessem diretamente a memória, sem precisar da CPU para cada passo, liberando-a para outras tarefas. É como um caminho prioritário para dados mais importantes, economizando tempo e recursos.

Blocos básico de um Microcomputador

Ligação dos Blocos através dos Barramentos externos

Conclusão

Característica	Microprocessador	Microcontrolador
Componentes	Apenas CPU	CPU, memória e portas I/O integradas
Aplicação	Computação intensiva	Controle de dispositivos específicos
Custo	Mais alto	Mais baixo
Exemplo de Uso	Computadores, servidores	Eletrodomésticos, brinquedos

Agradeço a sua atenção!

Celia Taniwaki Matheus Matos

Material elaborado por: Marise Miranda | 2017.2

Atualizado e adaptado por: Matheus Matos | 2024.1

SÃO PAULO TECH SCHOOL