Package 'wnl'

March 2, 2018

Version	0.3.3

Title Minimization Tool for Pharmacokinetic-Pharmacodynamic Data Analysis

Description This is a set of minimization tools (maximum likelihood estimation and least square fitting) to solve examples in the Johan Gabrielsson and Dan Weiner's book `Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications" 5th ed. (ISBN:9198299107). Examples include linear and nonlinear compartmental model, turn-over model, single or multiple dosing bolus/infusion/oral models, allometry, toxicokinetics, reversible metabolism, in-vitro/in-vivo extrapolation, enterohepatic circulation, metabolite modeling, Emax model, inhibitory model, tolerance model, oscillating response model, enantiomer interaction model, effect compartment model, drug-drug interaction model, receptor occupancy model, and rebound phenomena model.

Depends R (>= 3.0.0), numDeriv

Author Kyun-Seop Bae [aut]

Maintainer Kyun-Seop Bae <k@acr.kr>
Copyright 2017, Kyun-Seop Bae

License GPL-3

NeedsCompilation no

LazyLoad yes

URL https://cran.r-project.org/package=wnl

R topics documented:

Repository CRAN

Index

wnl-package.																					2
cmpChi																					3
nlr																					3
Secondary																					5
wn15																					6
																					•

2 wnl-package

wnl-package Minimization Tool for Pharmacokinetic-Pharmacodynamic Data Analysis

Description

This is a minimization tool to solve the examples in the book Gabrielsson J, Weiner D. 'Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications' 5th ed. 2016. (ISBN:9198299107).

Details

This is a set of minimization tools to solve all the examples in the book 'Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications' 5th ed. 2016..

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016.

```
tData = Theoph
colnames(tData) = c("ID", "BWT", "DOSE", "TIME", "DV")
fPK = function(THETA)
                             # Prediction function
{
  DOSE = 320000
                             # in microgram
  TIME = e$DATA[,"TIME"] # use data in e$DATA
  Κ
       = THETA[1]
      = THETA[2]
  Ka
       = THETA[3]
  Ср
      = DOSE/V*Ka/(Ka - K)*(exp(-K*TIME) - exp(-Ka*TIME))
  return(Cp)
IDs = unique(tData[,"ID"])
nID = length(IDs)
for (i in 1:nID) {
  Data = tData[tData$ID == IDs[i],]
  Res = nlr(fPK, Data, pNames=c("k", "ka", "V"), IE=c(0.1, 3, 500), \\ SecNames=c("CL", "Thalf", "MRT"), SecForms=c(~V*k, ~log(2)/k, ~1/k))
  print(paste("## ID =", i, "##"))
  print(Res)
```

cmpChi 3

cmpChi Compare model with Chi-square test	
---	--

Description

It performs chi-square test for two models comparison.

Usage

```
cmpChi(r1, r2)
```

Arguments

r1 A result from nlr r2 Another result from nlr

Details

One model should include the other model.

Value

Returns a p-value from pchisq

Author(s)

Kyun-Seop Bae <k@acr.kr>

nlr

Nonlinear Regression in R

Description

It performs nonlinear regression usually for pharmacokinetic and pharmacodynamic models.

Usage

Arguments

Fx	Function for structural model. It should return a vector of same length to observations.
Data	Data table which will be used in Fx. Fx should access this with e\$DATA.
pNames	Parameter names in the order of Fx arguments
IE	Initial estimates of parameters
LB	Lower bound for optim function. Default value is 0.

4 nlr

UB	Upper bound for optim function. Default value is 1e+06.
Error	Error model. One of "A" for additive error, "POIS" for poisson error, "P" for proportional error, and "C" for combined error model.
0bjFx	Objective function to be minimized. Default is maximum likelihood estimation function.
SecNames	Names of secondary parameter estimates
SecForms	Formula to calculate the secondary parameter estimates
Method	"L-BFGS-B" is default. See optim for more detail.

Details

This uses scaled transformed parameters and environment e internally.

Value

This returns point estimate, standard error, relative standard error, covariance matrix of estimates, run test results on residuals, Objective Function Value, AIC, AICc, Convergence code, and Message. More details are stored in the environment e.

Author(s)

Kyun-Seop Bae <k@acr.kr>

```
tData = Theoph
colnames(tData) = c("ID", "BWT", "DOSE", "TIME", "DV")
fPK = function(THETA) # Prediction function
{
 DOSE = 320000 # in microgram
 TIME = e$DATA[,"TIME"] # use data in e$DATA
 Κ
     = THETA[1]
    = THETA[2]
 Ka
     = THETA[3]
 P = DOSE/V*Ka/(Ka - K) * (exp(-K*TIME) - exp(-Ka*TIME))
 return(P)
}
IDs = unique(tData[,"ID"])
nID = length(IDs)
for (i in 1:nID) {
 Data = tData[tData$ID == IDs[i],]
 print(paste("## ID =", i, "##"))
 print(Res)
}
```

Secondary 5

_				
Se	~	กก	1	rv
JC	-	บเน	а	ΙV

Get Secondary Parameter Estimates

Description

Get standard error and relative standard error (cv) of secondary paramter estimate

Usage

```
Secondary(Formula, PE, COV)
```

Arguments

Formula	Formula to calculate the secondary parameter estimate
PE	Point estimates of primary estimates with names
COV	Variance-covariance matrix of primary estimates

Details

Variables within Formula should exist in the names of PE vector.

Value

This returns point estimate, standard error, relative standard error of the secondary parameter estimate.

Author(s)

Kyun-Seop Bae <k@acr.kr>

```
tData = Theoph
colnames(tData) = c("ID", "BWT", "DOSE", "TIME", "DV") # Table requires DV column

fPK = function(THETA) # Prediction function
{
    AMT = 320000 # in microgram
    TIME = e$DATA[,"TIME"]
    V = THETA[1]
    K = THETA[2]
    Ka = THETA[3]
    Cp = AMT/V*Ka/(Ka - K)*(exp(-K*TIME) - exp(-Ka*TIME))
    return(Cp)
}
Data = tData[tData$ID == 1,]
Res = nlr(fPK, Data, pNames=c("V", "K", "Ka"), IE=c(30000, 0.1, 2))
Secondary(~V*K, Res$Est["PE",1:e$nPara], Res$Cov)
```

6 wnl5

wn15

Old type WinNonlin - Least Square not MLE

Description

It performs old type Winnonlin regression.

Usage

```
wnl5(Fx, Data, pNames, IE, LB, UB, Error="A", ObjFx=ObjLS)
```

Arguments

Fx	Function for structural model. It should return a vector of same length to observations.
Data	Data table which will be used in Fx. Fx should access this with e\$DATA.
pNames	Parameter names in the order of Fx arguments
IE	Initial estimates of parameters
LB	Lower bound for optim function. Default value is 0.
UB	Upper bound for optim function. Default value is 1e+06.
Error	Error model. One of "POIS" for poisson error, "PROP" for proportional error, and others for additive error model.
ObjFx	Objective function to be minimized. Default is least square function.

Details

This uses scaled transformed parameters and environment e internally. Here we do not provide standard error. If you want standard error, use nlr.

Value

This returns point estimates, run test results on residuals, AIC, and SBC. Details are stored in the environment e.

Author(s)

Kyun-Seop Bae <k@acr.kr>

```
tData = Theoph
colnames(tData) = c("ID", "BWT", "DOSE", "TIME", "DV")

fPK = function(THETA) # Prediction function
{
    DOSE = 320000 # in microgram
    TIME = e$DATA[,"TIME"] # use data in e$DATA

    K = THETA[1]
    Ka = THETA[2]
```

wnl5

```
V = THETA[3]
Cp = DOSE/V*Ka/(Ka - K)*(exp(-K*TIME) - exp(-Ka*TIME))
return(Cp)
}

IDs = unique(tData[,"ID"])
nID = length(IDs)
for (i in 1:nID) {
   Data = tData[tData$ID == IDs[i],]
   Res = wnl5(fPK, Data, pNames=c("k", "ka", "V"), IE=c(0.1, 3, 500))
   print(paste("## ID =", i, "##"))
   print(Res)
}
```

Index

```
*Topic Model Comparison cmp_{-}^{Ch}i, 3
*Topic Pharmacodynamics
    wnl-package, 2
*Topic Pharmacokinetics
    wnl-package, 2
* Topic \ Secondary
    Secondary, 5
*Topic nlr
    nlr, 3
*Topic wnl5
    wn15, 6
cmpChi, 3
nlr, 3
Secondary, 5
wnl (wnl-package), 2
wnl-package, 2
wn15, 6
```