CPE301 – SPRING 2019

Design Assignment 4B

Student Name: Saul Alejandro Mendoza Guzman

Student #: 2000540481

Student Email: mendos1@unlv.nevada.edu

Primary Github address: https://github.com/mendos1/subnission_da

Directory: DA4B

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- Atmega328p Xplained MINI
- Usb cable
- External power supply
- Jumper wires
- Potentiometer
- Servo motor
- Sepper mtor
- Atmel studio 7

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/B

```
#define F CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
void adc_int(void);
void timer init(void);
volatile unsigned int speed; // Value of delay AKA speed
volatile int stop = 0;
                                       // Variable used to stop operation
int main(void)
       DDRB = 0x0F;
                            // Set PDO - PD3 as outputs for stepper motor
       adc_int();
                               // Initialize ADC
       TCCR1B = 0x0D;
                            // Set CTC mode and 1024 prescaler
       while(1) {
               while((ADCSRA&(1<<ADIF))==0); // wait for ADC conversion
               if (ADC <= 4)
                                 \{\text{stop} = 0; \text{ speed} = 1;\}
               if (ADC <= 85)
                                 \{\text{stop} = 0; \text{ speed} = 2;\}
               if (ADC \le 170) {stop = 0; speed = 3;}
               if (ADC \le 255) \{stop = 0; speed = 4;\}
               if (ADC \le 340) \{stop = 0; speed = 5;\}
               if (ADC \le 425) {stop = 0; speed = 6;}
               if (ADC \le 510) {stop = 0; speed = 7;}
               if (ADC \le 595) \{stop = 0; speed = 8;\}
               if (ADC \le 680) \{stop = 0; speed = 9;\}
               if (ADC \le 765) {stop = 0; speed = 10;}
               if (ADC \le 850) {stop = 0; speed = 11;}
               if (ADC \le 935) {stop = 0; speed = 12;}
               if (ADC \le 1015) \{ stop = 0; speed = 13; \}
               if (ADC >= 1016) {stop = 1;}
               OCR1A = speed; // set OCR1A to the determined speed
               TCNT1 = 0x00; // reset the clock
                if(stop == 0)
                       // If the ADC value is not at its MAX value then step with desired delay
```

```
while ((TIFR1 & 0x2) != 0x2);
                       PORTB = 0x09;
                       TIFR1 = (1<<0CF1A);
                       while ((TIFR1 & 0x2) != 0x2);
                       PORTB = 0x08;
                       TIFR1 = (1 << OCF1A);
                       while ((TIFR1 & 0x2) != 0x2);
                       PORTB = OXOC;
                       TIFR1 = (1 << OCF1A);
                       while ((TIFR1 & 0x2) != 0x2);
                       PORTB = OXO4;
                       TIFR1 \mid= (1<<0CF1A);
                       while ((TIFR1 & 0x2) != 0x2);
                       PORTB = 0x06;
                       TIFR1 = (1 << OCF1A);
                       while ((TIFR1 & 0x2) != 0x2);
                       PORTB = 0x02;
                       TIFR1 = (1 << OCF1A);
                       while ((TIFR1 & 0x2) != 0x2);
                       PORTB = OXO3;
                       TIFR1 \mid= (1<<0CF1A);
                       while ((TIFR1 & 0x2) != 0x2);
                       PORTB = OXO1;
                       TIFR1 = (1 << OCF1A);
       }
void adc_int(void) {
       ADMUX = (0 << REFS1) | //
                                      Reference Selection Bits
                       (1<<REFS0)
                                              AVcc-external cap at AREF
                                      //
                       (0 \le ADLAR)
                                      //
                                              ADC Left Adjust
                                                                     Result
                       (0<<MUX3)
                                      //
                       (0<<MUX2)
                                              ANalogChannel Selection
                                                                             Bits
                       (0<<MUX1)
                                              ADCO (PCO)
                                      //
                       (0 << MUXO);
       ADCSRA = (1 << ADEN) | //
                                      ADC
                                              ENable
                       (1<<ADSC)
                                      //
                                              ADC
                                                      Start Conversion
                       (1<<ADATE)
                                      //
                                              ADC
                                                      Auto Trigger Enable
                       (0<<ADIF)
                                                      Interrupt Flag
                                      //
                                              ADC
                       (1<<ADIE)
                                      //
                                              ADC
                                                      Interrupt Enable
                                      //
                                              ADC
                                                      PrescalerSelectBits
                       (1<<ADPS2)
                       (1<<ADPS1)
                       (1<<ADPS0);
```

3. DEVELOPED CODE OF TASK 2/B

```
Insert only the modified sections here
#define F_CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
```

```
#include <avr/interrupt.h>
int check = 0;
int main (void)
{
   DDRB = 0xFF; //DDRB as an output
       DDRD = 0xFF;
       TCCR1B |= (1<<WGM13) | (1<<WGM12) | (1<<CS11) | (1<<CS10);
       TCCR1A |= (1<<COM1A1) | (1<<COM1B1) | (1<<WGM11);
       ICR1=4999;
       ADMUX = 0x60;
       ADCSRA = OxA6;
   while (1)
               ADCSRA |= (1 << ADSC); //start conversion
               while((ADCSRA & (1 << ADIF)) == 0);
               check = ADCH;
                                            //temp value
               if(check == 0) // minimum value
                      OCR1A = 0; //turn 0 deg
                      _delay_ms(500);
               if(check == 255) // maximum pot value
                      //PORTB = (1 << PORTB2);
                      OCR1A = 535; //turn 180
                      _delay_ms(500);
```

4. SCHEMATICS

Use fritzing.org

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

None for this assignment

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

7. VIDEO LINKS OF EACH DEMO

STEPPER: https://www.youtube.com/watch?v=uRQB7bCZkSw SERVO: https://www.youtube.com/watch?v=eugV6I61uaw

8. GITHUB LINK OF THIS DA

https://github.com/mendos1/subnission_da/tree/master/DA4B

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

NAME OF THE STUDENT