CHRISTOPHER R. COLLINS

chris@crcollins.com
 http://github.com/crcollins
 http://crcollins.com

EDUCATION

• Carnegie Mellon University *Ph.D. in Chemistry*

Pittsburgh, PA 2014 – 2019 Expected

University of North Georgia

B.S. in Chemistry with Chemical Physics Concentration

Dahlonega, GA 2010 – 2014

Research

• Carnegie Mellon University

Graduate Student; Advisor: David Yaron

Pittsburgh, PA

2014 - Present

- Developed parallel and distributed computing code for optimizing INDO parameters
- Examined coupling effects in polymeric systems of thiophene and phenyl
- Predicted optoelectronic properties of various polymeric systems using Deep Learning
- Developed new molecular descriptors for machine learning in chemistry
- Advised undergraduate students in machine learning and Python
- University of North Georgia

Undergraduate Researcher; Advisor: Aimée Tomlinson

Dahlonega, GA

2011 - 2014

- Researched Benzobisazole Cruciform structures using DFT for use as efficient organic solar cells
- Designed and wrote set of tools to automate research process (Chemtools/Chemtools-webapp)
- Instructed other group members about Unix usage methods
- Led group members in structure studies (multicore systems, donor-acceptor systems, increased rings systems)
- Developed machine learning model for predicting Benzobisazole properties
- Carnegie Mellon University

Undergraduate Researcher; Advisor: David Yaron

Pittsburgh, PA

Summer 2013

- Researched decomposition of Thiaphospholes using quantum computational methods
- Wrote MATLAB code to automate running Gaussian/AMPAC calculations and parsing results
- Wrote code to calculate molecular overlaps and generate molecular orbital diagrams
- Created routines to draw structures with molecular orbital overlaps indicated on each atom

Work Experience

• Tripwire, Inc.

Engineering Intern

Alpharetta, GA

2012 - 2014

- Rewrote entire test suite for Benchmark product using Selenium and PyTest (Python)
- Aided in migration of critical IP360 product and wrote automated test suite for API
- Maintained and expanded installation automation for CCM product
- Wrote automated script to test for CSRF and XSS vulnerabilities in IP360 web application

TEACHING

- Teaching Assistant
 - 09-221 Laboratory I: Introduction to Chemical Analysis
 - 09-214 Physical Chemistry
 - 09-101 Introduction to Experimental Chemistry (2 times)
 - 09-103 Atoms, Molecules, and Chemical Change
- Weekly Lecture Series in Theory Suite (Organizer)
 - Intro to Python
 - Intro to Bash Scripting (2 lectures)
 - Intro to Object Oriented Programming
 - Intro to NumPy (2 lectures)

Side Projects

- Chemtools/Chemtools-Webapp (http://gauss.crcollins.com)
 - Implemented a set of tools for use in Benzobisazole research
 - * Gaussian log output parser to collect molecular properties
 - * Machine learning model to predict polymer properties from oligomers
 - * Benzobisazole structure generator and machine learning predictor for optoelectronic properties
 - * Supercomputer job submitter and curator
 - Full automated testing suite (over 95% code coverage)
 - Python/Django Application with a Bootstrap front end
 - Vagrant VM build system

pyOS

- Implementation of a *nix like operating system using Python
- Created shell similar to Bash Shell
- Reimplemented standard unix programs (cp, mv, rm, ls, etc)
- Included permissions, pipes, multiple users, and a virtual file system

Other

- 8 bit CPU (Logisim)
- Mandelbrot/Buddhabrot Generator (Python, Javascript, C/C++, CUDA C, TI-BASIC)
- Various Quadtree Visualizations (Python, C/C++, Javascript)
- Cellular Automata Based Electronic Simulation (Javascript)
- Object Relation Management Library (Python/SQL)
- University Course Scraper (Python)
- Cryptography Library (Python, Logisim)
- Automated Peer Review System Web Application (Python/Django)
- Virtual Cluster and Server Architecture Vagrant Builds

Courses

- Linear Algebra (UNG)
- Intro to MATLAB (UNG)
- Intro to Cryptography (UNG)
- Differential Equations (UNG)

- Computational Methods in Physics (UNG)
- Into to Parallel Programming (Udacity)
- Convex Optimization (Stanford Online)
- Introduction to Machine Learning (CMU)

- Statistical Machine Learning (CMU)
- Graduate Artificial Intelligence (CMU)
- Quantum Chemistry (CMU)

- Special Topics in Computational Quantum Chemistry (CMU)
- Computational Chemistry (CMU)

Publications

- Collins, C. R.; Li, H.; Gordon, G. J.; Yaron, D. J. Continuous Bag of Bonds: A Size-Consistent Way of Representing Molecules. *Submitted*.
- Collins, C. R.; Gordon, G. J.; Yaron, D. J. Constant Size Molecular Descriptors For Use With Machine Learning. *In Progress*.
- Collins, C. R.; Tomlinson, A. L. Application of Machine Learning to Predict the Optoelectronic Properties of Benzobisazoles. *In Progress*.
- Collins, C. R.; Yaron, D. J. Developing Coarse-Grained Site Models for Excited Electronic States of Conjugated Polymers. *SPIE* 2015.
- Qiu, Y.; Worch, J. C.; Chirdon, D. N.; Kaur, A.; Maurer, A. B.; Amsterdam, S.; Collins, C. R.; Pintauer, T.; Yaron, D.; Bernhard, S.; Noonan, K. J. T. Tuning Thiophene with Phosphorus: Synthesis and Electronic Properties of Benzobisthiaphospholes. *Chem. Eur. J.* 2014.
- Tlach, B. C.; Tomlinson, A. L.; Morgan, K. D.; **Collins, C. R.**; Jeffries-EL, M. Evaluation of the Impact of Extended Conjugation on the Optoelectronic Properties Benzo[1,2-d:4,5-d']bisoxazole Polymers. *Aust. J. Chem.* **2013**.

Presentations and Posters

Constant Size Molecular Descriptors For Use With Machine Learning Midwest Theoretical Chemistry Conference	Pittsburgh, PA 2016
• Constant Size Molecular Descriptors For Use With Machine Learning CECAM Chemical Space Workshop	Zürich, Switzerland 2016
• Using Data to Accelerate Quantum Chemical Calculations by Getting Better at Guessing	Pittsburgh, PA
CMU 15-780 Graduate Artificial Intelligence Term Project	2016
 Using Machine Learning and Molecular Similarity to Predict Chemical Properties 	Pittsburgh, PA
CMU Progress Report	2016
• Using Machine Learning and Molecular Similarity to Predict Chemical Properties	Pittsburgh, PA
CMU Chemistry Department Poster Session	2016
• Predicting Chemical Properties Using Machine Learning Methods CMU Chemistry Department Retreat Poster Session	Farmington, PA 2015
• The Influence of Chemical Representations on the Efficiency of Molecular Screening	Pittsburgh, PA
CMU Graduate Seminar	2015
A Mission to Multivariate Adaptive Regression Splines (MARS) and Its Otherworldly Neighbors	Pittsburgh, PA
CMU 10-702 Statistical Machine Learning Term Project	2015
 Predicting Chemical Properties Using Machine Learning Methods CMU 10-701 Intro to Machine Learning Term Project 	Pittsburgh, PA 2014

Application of Machine Learning to Predict the Optoelectronic Properties of Dahlonega, GA

Benzobisazoles

UNG Senior Seminar 2014

Machine Learning in Chemical Compound Space
 Dahlonega, GA

UNG Junior Seminar 2013

Donor-Acceptor Behavior of Benzobisazole Cruciformic Polymers
 American Chemical Society Southeastern Regional Meeting
 Atlanta, GA
 2013

• The Impact of Conjugation Length on Benzobisazole Cruciforms Raleigh, NC

American Chemical Society Southeastern Regional Meeting 2012

- Runner-up Undergraduate Poster in Organic Chemistry

TECHNICAL SKILLS

Languages: Python, Javascript, C, C++, MATLAB, Octave, Bash, Maple, CUDA C, Mathematica, TI-BASIC, SQL, Go, HTML/HTML5, CSS, LATEX, Java, Haskell, Ruby

Software: *nix (Linux, Centos, FreeBSD, AIX, Solaris), Gaussian/AMPAC, LabVIEW, Git, SVN, SSH, rsync, coreutils, Make, Logisim, ab, Vagrant, PostgreSQL, Varnish, nginx, Apache, Torque

Libraries: Django, NumPy, SciPy, Matplotlib, Scikit-Learn, PyBrain, Selenium, Paramiko, PyTest, Twitter Bootstrap, jQuery, jQueryUI, SDL, Caffe, OpenMP, OpenMPI