Similarity and Neighbors: K-NN

Source: Provost and Fawcett (2013)

Similarity and Distance

 If two objects can be represented as feature vectors, then we can compute the distance between them

Attribute	Person A	Person B
Age	23	40
Years at current address	2	10
Residential status (1=Owner, 2=Renter, 3=Other)	2	1

Example: OCR for digits

- Classify images of handwritten digits by the (actual) digits they depict.
- Classification problem: y =discrete set

Nearest neighbor (NN) classifier

• **Given**: labeled examples $D := \{(x_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}$

- Predictor $\hat{f}_D: \mathcal{X} \to \mathcal{Y}$: On input $x \in \mathcal{X}$:
 - 1. Find the point x_i among $\{x_i\}_{i=1}^n$ "closest" to x (nearest neighbor)
 - 2. Return y_i

How to measure distance?

• For points in \mathbb{R}^d , a default choice for distance is the *Euclidean distance* (also called ℓ_2 distance).

$$||u - v||_2 = \sqrt{\sum_{j=1}^d (u_j - v_j)^2}$$

Grayscale 28×28 pixel images.

Treat as *vectors* (of 784 features) that live in \mathbb{R}^{784} .

Other Distance Functions

- $d_{Manhattan}(X, Y) = ||X Y||_1 = |x_1 y_1| + |x_2 y_2| + \cdots$
- $d_{Jaccard}(X,Y) = 1 \frac{|X \cap Y|}{|X \cup Y|}$
- $d_{Cosine}(X, Y) = 1 \frac{X \cdot Y}{\|X\|_2 \cdot \|Y\|_2}$
- d(X,Y) = # insertions/deletions/mutations needed to change x to y (Strings: edit distance)
- d(X,Y) = how much "warping" is required to change x to y (Images: shape context distance)

Example: "Whiskey Analytics"

1.	Color: yellow, very pale, pale, pale gold, gold, old gold, full gold, amber, etc.	(14 values)
2.	Nose: aromatic, peaty, sweet, light, fresh, dry, grassy, etc.	(12 values)
3.	Body: soft, medium, full, round, smooth, light, firm, oily.	(8 values)
4.	Palate: full, dry, sherry, big, fruity, grassy, smoky, salty, etc.	(15 values)
5.	Finish: full, dry, warm, light, smooth, clean, fruity, grassy, smoky, etc.	(19 values)

Whiskey	Distance	Descriptors
Bunnahabhain	_	gold; firm,med,light; sweet,fruit,clean; fresh,sea; full
Glenglassaugh	0.643	gold; firm,light,smooth; sweet,grass; fresh,grass
Tullibardine	0.647	gold; firm, med, smooth; sweet, fruit, full, grass, clean; sweet; big, arome, sweet
Ardbeg	0.667	sherry; firm,med,full,light; sweet; dry,peat,sea;salt
Bruichladdich	0.667	pale; firm,light,smooth; dry,sweet,smoke,clean; light; full
Glenmorangie	orangie 0.667 p.gold; med,oily,light; sweet,grass,spice; sweet,spicy,grass,sea,fresh; fu	

Nearest Neighbors for Predictive Modeling

Nearest Neighbors for Predictive Modeling

Customer	Age	Income (1000s)	Cards	Response (target)	Distance from David
David	37	50	2	?	0
John	35	35	3	Yes	$\sqrt{(35-37)^2+(35-50)^2+(3-2)^2}=15.16$
Rachael	22	50	2	No	$\sqrt{(22-37)^2+(50-50)^2+(2-2)^2}=15$
Ruth	63	200	1	No	$\sqrt{(63-37)^2+(200-50)^2+(1-2)^2}=152.23$
Jefferson	59	170	1	No	$\sqrt{(59-37)^2+(170-50)^2+(1-2)^2}=122$
Norah	25	40	4	Yes	$\sqrt{(25-37)^2+(40-50)^2+(4-2)^2}=15.74$

Example: OCR for digits with NN classifier

· Classify images of handwritten digits by they digits they depict.

- $\mathcal{X} = \mathbb{R}^{768}, \ \mathcal{Y} = \{0,1,2,3,4,5,6,7,8,9\}$
- **Given**: labeled examples $D := \{(x_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}$.
- Construct NN classifier \hat{f}_D using D.
- Question: How good is this classifier?

Error rate

• *Error rate* of classifier *f* on a set of labeled examples *D*:

$$\operatorname{err}_{D}(f) \coloneqq \frac{|\{(x,y) \in D : f(x) \neq y\}|}{|D|}$$

(on what fraction of D does f disagree with the paired label?)

Diagnostics

 Some examples of NN classifier mistakes (test point in T, nearest neighbor in S)

• First mistake (correct label is "2") could've been avoided by looking at the three nearest neighbors (whose labels are "8", "2", and "2"):

Test point Three nearest neighbors

k-nearest neighbors (k-NN) classifier

- **Given**: labeled examples $D := \{(x_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}$
- Predictor $\hat{f}_{D,k}$: $\mathcal{X} \to \mathcal{Y}$:
 On input $x \in \mathcal{X}$:
 - 1. Find the k points $x_{i_1}, x_{i_2}, ..., x_{i_k}$ among $\{x_i\}_{i=1}^n$ "closest" to x (the k nearest neighbors)
 - 2. Return plurality of $y_{i_1}, y_{i_2}, ..., y_{i_k}$ (Break ties arbitrarily in both steps.)

How Many Neighbors and How Much Influence?

• k Nearest Neighbors

- k = ?
- k = 1?
- k = n?

Geometric Interpretation, Over-fitting, and Complexity

1-Nearest Neighbor

30-Nearest Neighbors

Effect of *k*

- Smaller k: smaller training error.
- Larger k: higher training error, but predictions are more "stable" due to voting.

OCR digits classification:

k	1	3	5	7	9
Test error rate	3.09%	2.95%	3.12%	3.06%	3.41%

Picking *k*

- Simplest approach: use a hold-out set:
 - 1. Pick a subset $V \subset S$ (hold-out set, or validation set).
 - 2. For each $k \in \{1,3,5,...\}$:
 - Construct k-NN classifier $\hat{f}_{S \setminus V,k}$ using $S \setminus V$
 - Compute error rate of $\hat{f}_{S \setminus V,k}$ on V ("hold-out error rate")
 - 3. Pick the k that gives the smallest hold-out error rate.

Noisy features

Caution: nearest neighbors can be broken by noisy features!

Issues with Nearest-Neighbor Models

- Dimensionality and domain knowledge
- Computational efficiency