CSE 3302/5307 Programming Language Concepts

Homework 3 - Fall 2025

Due Date: Sep. 8, 2025, 8:00PM Central Time

Name:	UTA ID:

Instructions

Please follow the proof structure introduced in the lecture slides, or points may be deducted even though your proof ideas are generally correct.

Problem 1 - 40%

$$\frac{n \ nat}{Z \ nat} \qquad \frac{n \ nat}{S(n) \ nat} \qquad \frac{n \ nat}{add \ Z \ n \ n} \qquad \frac{add \ n_1 \ n_2 \ n_3}{add \ S(n_1) \ n_2 \ S(n_3)}$$

- (a) Define $max\ a\ b\ c\iff c=\max(a,b)$
- (b) Define $com \ n \ m \ k \iff k = \binom{n}{m}$
- (c) (10 points) Prove that for all n such that n nat, add n Z n holds
- (d) (10 points) Prove that for all n_1, n_2, n_3, add n_1 n_2 $n_3 \rightarrow add$ n_1 $S(n_2)$ $S(n_3)$ holds
- (e) (10 points) Prove that for all $n_1, n_2, n_3, add n_1 n_2 n_3 \rightarrow add n_2 n_1 n_3$ (addition is commutative)

Problem2 - 30%

$$\frac{t_1 \; tree \quad t_2 \; tree}{t_1 \oplus t_2 \; tree}$$

- (a) Define height $a \ h \iff a \ tree$ and h is the height of a
- (b) Define $size \ a \ n \iff a \ tree \ and \ n$ is the number of nodes contained in a
- (c) Define $bst\ a\iff a$ is a binary search tree where each node contains a natural number defined in Problem 1. Hint: First define an order on natural numbers.
- (d) (15 points) Prove: If a tree, height a h, and size a n, then $\max n (2^h 1) (2^h 1)$.

Problem3 - 30%

$$\frac{n \ nat \quad l \ list}{\epsilon \ list} \qquad \frac{n \ nat \quad l \ list}{n :: l \ list}$$

- (a) Define append $n\ l\ l'\iff l'$ is l appended with natural number n
- (b) Define reverse $l\ l'\iff l'$ is the reverse of list l
- (c) Define $sum\ l\ n\iff$ the sum of all elements in list l is n
- (d) (15 points) Prove: If $sum\ l\ n$, and $reverse\ l\ l'$, then $sum\ l'\ n$.