

LSTTL to

TTL BUFFER
TTL INVERTER
CMOS BUFFER
CMOS INVERTER

74**0L**6000 74**0L**6001 74**0L**6010 74**0L**6011

ORDER INFORMATION

PART	LOGIC COMPATIBILITY		LOGIC	OUTPUT
NUMBER	INPUT	OUTPUT	FUNCTION	CONFIGURATION
74 0L 6000 74 0L 6001 74 0L 6010	LSTTL	TTL TTL CMOS	BUFFER INVERTER BUFFER	TOTEM POLE TOTEM POLE OPEN COLLECTOR
74 0L 6010	LSTTL	CMOS	INVERTER	OPEN COLLECTOR

SYMBOL

Buffer

APPLICATIONS

- Transmission line interface—receiver and driver
- Excellent as bridged receiver in fast LAN highways
- Bus interface
- Logic family interface with ground loop noise elimination
- High speed AC/DC voltage sensing
- Driver for power semiconductor devices
- Level shifting
- Replaces fast pulse transformers

FEATURES

- Industry first LSTTL to TTL and LSTTL to CMOS complete logic-to-logic optocoupler
- Incorporates LED drive circuitry—use as logic gate
- Very high speed
- Choice of buffer or inverter
- Choice of TTL or CMOS compatible output up to 15 volts
- Fan-out of 10 TTL loads, fan-in 1 LSTTL load
- Internal noise shield—very high CMR of ±15 kV/us
- Provides superior 5300 VRMS Withstand Test Voltage (WTV)—guarantees 480 VAC operation
- Compact 6-pin DIP
- UL recognized (File #E90700)
- Same noise immunity as LSTTL/TTL.

PIN CONFIGURATION

 $\begin{array}{lll} 1-V_{\rm ccr} \ (Input \ V_{\rm cc}) & 6-V_{\rm cco} \ (Output \ V_{\rm cc}) \\ 2-V_{\rm IN} \ (Data \ in) & 5-V_{\rm o} \ (Data \ out) \\ 3-GND_{\rm i} \ (Input \ GND) & 4-GND_{\rm o} \ (Output \ GND) \end{array}$

EQUIVALENT CIRCUITS

DESCRIPTION

OPTOLOGIC™ is the first family of truly logic compatible optically coupled logic interface gates.

The family consists of four device types offering LSTTL to TTL and LSTTL to CMOS interfacing. Each of these interfacing functions is available as a buffer (A=B), or as an inverter (A=B).

The LSTTL input compatibility is provided by an input integrated circuit, with industry standard logic levels. This input amplifier IC switches a temperature compensated current source driving a high speed GaAsP/GaAs 700 nm LED emitter.

This novel integration scheme eliminates CTR degradation over time and temperature.

The emitter is optically coupled to an integrated photodetector/high-gain, high-speed output amplifier IC. The superior 15 kV/ μ s common-mode noise rejection is ensured through the use of an optically transparent noise shield.

The TTL compatible output has a totem-pole with a fan-out of 10. The CMOS compatible output has an open collector Schottky-clamped transistor that interfaces to any CMOS logic between 4.5 and 15 volts.

The 74**OL**6010/11 may also be used to drive power MOS FETS or transistors up to 15 volts.

The Optologic coupler family typically offers propagation of delays of 60 ns and can support 15 MBaud data communication.

The two input chips and the output chip are assembled in a 6-pin DIP high insulation voltage plastic package. It provides a withstand test voltage of 5300 VRMS (1 minute), which is recognized as a working voltage of 480 VRMS.

74**0L**6000/01 Output

CMOS OUTPUT CIRCUIT
C2026

740L6010/11 Output

ABSOLUTE MAXIMUM RATINGS 740L6000/01

Storage temperature range	-55°C to +125°C
Operating temperature range	0°C to +70°C
Input supply voltage	7 V
Input voltage	7 V
Output supply voltage	7 V
Output voltage	7 V
Output current	40 mA
Power dissipation	350 mW
Lead temperature (soldering, 10 sec)	260°C

ABSOLUTE MAXIMUM RATINGS 740L6010/11

Storage temperature range	-55°C to +125°C
Operating temperature range	0°C to +70°C
Input supply voltage	7 V
Input voltage	7 V
Output supply voltage	18 V
Output voltage	18 V
Output current	40 mA
Power dissipation	350 mW*
Lead temperature (soldering, 10 sec)	260°C

^{*}See Fig. 12 for maximum allowable output supply voltage.

PARAMETER	SYM	MIN	TYP*	MAX	UNITS _	TEST CONDITIONS				NOTES
						74 OL 6000	74 OL 6001	74OL6000/01	_ FIG.	MOTES
TTL OUTPUT 7 Input supply voltage	'40L60 V _{cci}	000/01 4.5	5.0	5.5	V					1
Output supply voltage	V _{cco}	4.5	5.0	5.5	٧					1
High-level input voltage	V _{IH}	2.0			٧					1
Low-level input voltage	$V_{\scriptscriptstyle IL}$			0.8	٧			-		1
Input clamp voltage	V _{IK}			-1.2	٧			V _{cci} =4.5 V, I _i =-18 mA		1
High-level input current	l _{iH}		1.0	40.0	μΑ			V _{CCI} =5.5 V, V _{IH} =4.5 V		1
Low-level input current	l _{IL}	_	-200.0	-400.0	μΑ			V _{CCI} =5.5 V, V _{IL} =0.4 V		1
Input supply current (high)	Iccim		10.0	14.0	mA			V_{CCI} =5.5 V, V_{IN} = V_{IH}		1
Input supply current (low)	I _{CCIL}		10.0	14.0	mA			V_{CCI} =5.5 V, V_{IN} = V_{IL}		1
High-level output voltage	V_{OH}	2.4	3.0		V	$V_{\scriptscriptstyle IN}{=}2.0~V$	V_{IN} =0.8 V	$V_{CG} = 4.5 \text{ V}, V_{CGO} = 4.5 \text{ V},$ $I_{OH} = -400 \mu \text{A}$		1
Low-level	Vol		0.3	0.6	٧	V 00V	V _{IN} =2.0 V	$V_{CCI} = 4.5 \text{ V}, V_{CCO} = 4.5 \text{ V},$ $I_{OL} = 16 \text{ mA}$		
output voltage	V OL		0.3	0.5	٧	V _{IN} =0.8 V	V _{IN} =2.0 V	V _{cci} =4.5 V, V _{cco} =4.5 V, I _{oL} =4 mA	-	1
High-level output current	I _{OH}		-8.0	-10.0	mA	$V_{IN} = V_{IH}$	V _{IN} =V _{IL}	V_{CCI} =4.5 V, V_{CCO} =4.5 V, V_{OH} =2.4 V		1
Low-level output current	l _{oL}	16.0			mA	V _{IN} =0.8 V	V _{IN} =2.0 V	V_{CCI} =4.5 V, V_{CCO} =4.5 V, V_{OL} =0.6 V		1
Short-circuit output current	Ios	-5.0	-25.0	-40.0	mA	V _{IN} =V _{IH}	V _{IN} -V _{IL}	V _{CG} =5.5 V, V _{CCO} =5.5 V		1
Output supply current (high)	I _{CCOH}		9.0	15.0	mA	V _{IN} =V _{IH}	V _{IN} =V _{IL}	$V_{cci} = 5.5 \text{ V}, V_o = V_{OH}, V_{CCO} = 5.5 \text{ V}$		1
Output supply current (low)	Iccol		8.0	12.0	mA	$V_{IN} = V_{IL}$	V _{IN} =V _{IH}	$V_{CG} = 5.5 \text{ V}, V_{O} = V_{OL}, V_{CGO} = 5.5 \text{ V}$		1

^{*}All typical values are at T_A=25°C

SWITCHING CHAP	ACTE	RISTI	CS (T _A =	25°C Unle	ss Otherwise	Specified)		
PARAMETER	SYM	MIN	TYP	MAX	UNITS	TEST CONDITIONS	FIG.	NOTES
TTL OUTPUT 740L6000/01 Propagation delay time for output low level	t _{PHL}		60	100	ns	***	15, 17	1
Propagation delay time for output high level	t _{PLH}		70	100	ns	V. = 5 V V = 5 V	15, 17	1
Output rise time for output high level	t,		45		ns	$V_{cci}=5 V, V_{cco}=5 V$	15, 17	1
Output fall time for output low level	t,		5		ns		15, 17	1

PARAMETER	SYM	SYM	MIN	TYP*	MAX	UNITS .		TEST CO	NDITIONS	. FIG.	NOTES
						74 0L 6010	74 0L 6011	74 OL 6010/11			
CMOS OUTPU	T 740	L6010	/11								
Input supply voltage	V_{cci}	4.5	5.0	5.5	V					1	
Output supply voltage	V _{cco}	4.5		15.0	٧					1, 3	
High-level input voltage	V _{IH}	2.0			٧		-		.	1	
Low-level input voltage	V _{IL}			0.8	٧		¥.	_	1 10/2	1	
Input clamp voltage	Vıĸ			-1.2	٧		_	V _{cci} =4.5 V, I _i =-18 mA	48	1	
High-level input current	l _{iн}		1.0	40.0	μΑ			V _{CCI} =5.5 V, V _{IH} =4.5 V		1	
Low-level input current	l _{IL}		-200.0	-400.0	μΑ		_	$V_{ccl} = 5.5 \text{ V}, V_{lL} = 0.4 \text{ V}$	-	1	
Input supply current (high)	Іссін		10.0	14.0	mA			V_{CCI} =5.5 V, V_{IN} = V_{IH}		1	
Input supply current (low)	Iccil		10.0	14.0	mA			V _{CCI} =5.5 V, V _{IN} =V _{IL}		1	
Low-level	Low-level V _{ol}	0.4	0.6	. v	V _{IN} =0.8 V	V _{IN} =2.0 V	V_{CG} =4.5 V, V_{CCO} =4.5 V, I_{OL} =16 mA	-			
output voltage	▼ OL		0.4	0.5	•	V _{IN} -0.6 V	V _{IN} =2.0 V	V _{CCI} =4.5 V, V _{CCO} =4.5 V, I _{OL} =4 mA	-	1	
High-level output current	I _{OH}		1.0	100.0	μΑ	V _{IN} =V _{IH}	$V_{IN} = V_{IL}$	V_{cci} =4.5 V, V_{OH} =15 V, V_{CCO} =4.5 -15 V		1	
Low-level output current	l _{oL}	16.0			mA	V _{IN} =0.8 V	V _{IN} =2.0 V	V_{cci} =4.5 V, V_{oL} =0.6 V, V_{cco} =4.5 -15 V	_	1	
Output supply	Іссон		9.0	12.0	mA	V _{IN} =V _{IH}	V _{IN} =V _{II}	$V_{CCI} = 5.5 \text{ V}, V_O = V_{OH}, V_C = 4.5 \text{ V}$			
current (high)	ССОН		11.0	18.0	IIIA	v _{IN} = v _{IH}	V _{IN} =V _{IL} -	V _{cci} =5.5 V, V _o =V _{oH} , V _{cco} =15 V	-	1	
Output supply	1		8.0	12.0	^	V V		V _{cci} =5.5 V, V _o =V _{oL} , V _{cco} =4.5 V			
current (low)	Iccol		11.0	18.0	mA	$V_{IN} = V_{IL}$	$V_{IN} = V_{IH}$	V _{cci} =5.5 V, V _o =V _{oL} , V _{cco} =15 V	-	1	

^{*}All typical values are at T_A=25°C

PARAMETER	SYM	MIN	TYP	MAX	UNITS	TEST CONDITIONS	FIG.	NOTES
TTL OUTPUT 740L6010/11 Propagation delay time for output low level	t _{PHL}		60	120	ns	<u> </u>	15, 18	1
Propagation delay time for output high level	t _{PLH}		100	180	ns	V -5V	15, 18	1
Output rise time for output high level	t,		50		ns	$ V_{cco} = 5 \text{ V}, $ $ V_{cco} = 5 \text{ V}, R_L = 470 \Omega $	15, 18	1
Output fall time for output low level	t,		5		ns		15, 18	1

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS	FIG.	NOTES
740L6000/01/10/11 Common mode transient immunity at logic high level output	СМн	5000	15000		V/μs	V _{cci} =5 V, V _{cco} =5 V,	16, 19	
Common mode transient immunity at logic low level output	CM _⊾	-5000	-15000		V/μs	- V _{cм} =50 V _{p-p}	16, 19	
Common mode coupling capacitance	Ссм		0.005		pF			
Capacitance (input-output)	C _{I-O}		0.7		pF	V _{i-0} =0, f=1 MHz		2
Withstand insulation test voltage	V _{iso}	5300			VRMS	$T_A=25^{\circ}C$, t=1 min, $I_{IO} \le 1 \mu A$		2
Insulation resistance	R _{iso}		1011		Ω	V ₁₀ =500 VDC		2

NOTES

- The V_{cco} and V_{cci} supply voltages to the device must each be bypassed by a 0.1 μf capacitor or larger. This can be either a ceramic
 or solid tantalum capacitor with good high frequency characteristics. Its purpose is to stabilize the operation of the high-gain
 amplifiers. Failure to provide the bypass will impair the DC and switching properties. The total lead length between capacitor and
 optocoupler should not exceed 1.5mm. See Fig. 20.
- 2. Device considered a two-terminal device: Pins 1, 2 and 3 shorted together, and Pins 4, 5 and 6 shorted together.
- 3. For example, assuming a V_{cc} of 5.0 V, and an ambient temperature of 70°C, the maximum allowable V_{cc} is 12.1 V.

APPLICATION

The Optologic input amplifier offers the feature of very high input impedance that permits their use as bridged line receivers. The system shown above illustrates an optically isolated transmitter and multidrop receiver system. The network uses a 740L6000 and buffer (Figure D) to isolate the transmitter and drive the 75 Ω coax cable. This application uses a 1000 ft. aerial suspension 75 Ω CATV coax cable with data taps at 250 ft. intervals. The 74**OL**6001s function as bridged receivers, and as many as 30 receivers could be placed along the line with minimal

signal degradation. The communication cable is terminated with a single 75Ω load at the far end of the line.

Signal quality "Eye Pattern" is shown in Figures A, B and C with a 10MBaud NRZ Psuedo-Random Sequence (PRS). Traces 1-3 in Figure A describes the transmitter section. Traces 4-7 in Figure B show the output of the four Optologic bridged terminations. Traces 8-11 in Figure C illustrate "Eye Pattern" as seen at the output of a 74LS04 logic gate. The data quality is well preserved in that only a 30% Eye closure is seen at the receiver located 1000 ft. from the transmitter.

C2048

The data communication system is completely optically isolated from all of the terminal equipments. Power for the transmitter ($V_{\rm cc}$) and receiver ($V_{\rm cc}$) is taken from an isolated power supply and distributed through a drain or messenger wire.

Figure A

HORIZONTAL=20 ns/DIV 42-12,02 VERTICAL=2 V/DIV

Figure B

Fiaure C

NOTES

- All Optologic Gate Input and Output Amplifiers Bypassed With 0.1 μF Capacitors
- PRSG=Pseudo Random Sequence Generator
- 1 to 11 Refer To Testpoints; See Waveforms on Figs. A, B and C