VALORES DE SIMULACIÓN:

1) Característica de entrada de un transistor bipolar de unión (BJT):

Nos queda una gráfica de la siguiente forma, en la que hemos representado la variación de la corriente de base del transistor, I_B , frente a la tensión entre su base y su emisor, V_{BE} , la que coincide en este, caso con la tensión de su terminal de base, V_B por estar el emisor conectado directamente a tierra.

Obtenemos las curvas características reales del transistor de Silicio tipo npn, que la corriente es distinta de cero si la unión de la base y el emisor (BE) del transistor está polarizada en directa, por lo que el voltaje que hay entre la base y el emisor $V_{\rm BE}$ es aproximadamente 0,6-0,7V lo que implica que la corriente que pasa por la base, $I_{\rm B}$, es mayor que cero.

En la gráfica se aprecia que la curva de V_{BE} está en saturación, aumenta mucho, y la I_{B} está estable y a partir de que valga alrededor de 0,6V la I_{B} empieza a aumentar y V_{BE} empieza a estabilizarse.

A continuación sustituimos la resistencia de 100 por una de 0.01 Ω y por una de 0 Ω (eliminamos la resistencia) y obtenemos las siguientes gráficas:

Resistencia de 0.01Ω :

Resistencia 0Ω :

Como se puede apreciar el resultado no varía. Esto ocurre porque la ecuación con la que sacamos V_B es la siguiente: V_{BB} - R_BI_B - V_γ = 0, por lo que la rama del colector no afecta para nada, lo mismo ocurre con V_B .

2) Obtención de la característica de salida del BJT:

Variamos el circuito anterior cambiando la tensión de la fuente VCC entre 0 y 15V, manteniendo VBB constante a 5V.

Representamos la variación de la corriente de colector del transistor, $I_{\rm C}$, frente a la tensión entre colector y emisor, VCE, que coincide en este caso con la tensión de su terminal de colector, $V_{\rm C}$.

La tensión Vcc a la cual VCE comienza a incrementar y en la que I(C) deja de depender de Vcc es la tensión a la cual se produce el cambio de estado de saturación a activa . Este punto es el que señala el cursor en la imagen anterior, es decir, el (237,55 mV, 18,66 mA).

Fijando ahora Vcc a 15V y Vbb a 10V, sabiendo que el transistor se encuentra en la región activa, podemos calcular el valor de β , ya que en esta región se cumple $I_C = \beta I_B$.

<u>Calculamos</u> β :

Mediante el .op, se obtienen los datos de la imagen. A partir de ellos:

$$\frac{I_C}{I_B} = \beta = \frac{0.0188627}{0.000188627} = 100$$

--- Operating Point ---

V(n002):	5	voltage
V(n001):	15	voltage
V(b):	0.850202	voltage
V(c):	13.1137	voltage
Ic (Q1):	0.0188627	device current
Ib (Q1):	0.000188627	device current
Ie (Q1):	-0.0190514	device current
I (Rc) :	0.0188627	device current
I (Rb):	-0.000188627	device current
I (Vcc) :	-0.0188627	device current
T (Vbb) ·	-0 000188627	device current