Álgebra II. Hoja de ejercicios 11: Cuerpos finitos II Universidad de El Salvador, ciclo par 2018

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2@googlegroups.com.

Ejercicio 2. Encuentre isomorfismos explícitos entre los cuerpos

$$\mathbb{F}_3[X]/(X^2+1)$$
, $\mathbb{F}_3[X]/(X^2+X+2)$, $\mathbb{F}_3[X]/(X^2+2X+2)$.

Ejercicio 3. Encuentre los polinomios mónicos irreducibles de grado 3 en $\mathbb{F}_2[X]$ factorizando $X^8 - X$.

Ejercicio 4. Sean p q dos diferentes primos impares. Demuestre que el número de polinomios mónicos irreducibles de grado q en $\mathbb{F}_p[X]$ es igual a $\frac{1}{q}(p^q - p)$.

Ejercicio 5. *Sea k un cuerpo.*

1) Demuestre que los cuadrados en el grupo multiplicativo k^{\times} forman un subgrupo

$$(k^{\times})^2 := \{ \alpha \in k^{\times} \mid \alpha = x^2 \text{ para algún } x \in k^{\times} \} \subseteq k^{\times}.$$

- 2) Enumere los cuadrados en el grupo \mathbb{F}_9^{\times} para el cuerpo \mathbb{F}_9 construido en la guía anterior.
- 3) Calcule el grupo cociente $k^{\times}/(k^{\times})^2$ para $k = \mathbb{R}$ y $k = \mathbb{F}_q$, donde $q = p^k$ (considere por separado el caso de p = 2 y p impar).

Ejercicio 6. Sea $q = p^k$ donde p es un primo impar $y \ k = 1, 2, 3, ...$ Demuestre que -1 es un cuadrado en \mathbb{F}_q si y solamente si -1 tiene orden 4 en el grupo cíclico \mathbb{F}_q^{\times} . Concluya que -1 es un cuadrado en \mathbb{F}_q si y solamente si $q \equiv 1 \pmod{4}$.

Ejercicio 7 (generalización de 5). *Sea q* = p^k *donde p es primo y k* = 1,2,3,... *Asumamos que q* \equiv 1 (mód n).

- 1) Demuestre que para todo $\alpha \in \mathbb{F}_q^{\times}$ la ecuación $x^n = \alpha$ o no tiene soluciones, o tiene n soluciones.
- 2) Demuestre que el subconjunto

$$\{\alpha \in \mathbb{F}_q^{\times} \mid \alpha = x^n \text{ para algún } x \in \mathbb{F}_q^{\times}\}$$

es un subgrupo de \mathbb{F}_q^{\times} de orden $\frac{q-1}{n}$.

3) Por ejemplo, encuentre el subgrupo de cubos en \mathbb{F}_{13}^{\times} .

Ejercicio 8. Supongamos que p es un primo tal que $p \equiv 3 \pmod{4}$. Demuestre que el anillo cociente $\mathbb{Z}[\sqrt{-1}]/(p)$ es un cuerpo de p^2 elementos.