Quantum Service-oriented Computing: A Practical Introduction to Quantum Web Services and Quantum Workflows

Martin Beisel, Benjamin Weder

{beisel,weder}@iaas.uni-stuttgart.de

Tutorial Structure

- Session 1 (14:00 15:30): Quantum Service-oriented Computing
 - Opening & Quantum Computing Fundamentals
 - Quantum Web Services
 - Practical Session: Quantum Web Services
 - Quantum Workflows
- Session 2 (16:00 17:00): Orchestrating Hybrid Quantum Applications
 - Practical Session: Quantum Workflows
 - Evaluation & Q/A

Tutorial Structure

- Session 1 (14:00 15:30): Quantum Service-oriented Computing
 - Opening & Quantum Computing Fundamentals
 - Quantum Web Services
 - Practical Session: Quantum Web Services
 - Quantum Workflows
- Session 2 (16:00 17:00): Orchestrating Hybrid Quantum Applications
 - Practical Session: Quantum Workflows
 - Evaluation & Q/A

Quantum Workflows

Motivation

- Workflows enable orchestration and integration of heterogeneous applications
 - Definition of activities, control flow, and data flow

- Advantages:
 - Scalability
 - Robustness
 - Monitoring
 - Advanced Exception Handling
 - Portability via standardized languages (BPMN, BPEL)

Quantum Modeling Extension (QuantME)

Modeling extension for imperative workflow languages

- Facilitates the modeling of quantum applications
 - Quantum-specific modeling constructs

Quantum Circuit Loading Task

- Semantic:
 - Loading of a circuit of an executable quantum circuit
- Input and Output:
 - Input: Problem instance to solve
 - Output: Quantum Implementation as a Quantum Circuit Object
- Configuration attributes:
 - lacktriangle Quantum Circuit lacktriangle: Source code of the quantum circuit
 - URL for loading or generating the quantum circuit
 - [⊕] exclusive

Quantum Circuit Execution Task

- Semantic:
 - Execution of a given quantum circuit
- Input and Output:
 - Input: Quantum circuit to execute
 - Output: Probability distribution resulting from the execution
- Configuration attributes :
 - Provider: Quantum Provider to use
 - QPU: Quantum device to use
 - Shots*: Number of circuit executions on the quantum device

Exemplary Orchestration of a Variational Quantum Algorithm

Transformation

- Transformation to native workflow language, e.g., BPMN
 - Portability
 - Compatibilty with existing workflow engines
- Transformation based on reusable workflow fragments

QuantME Replacment Models (QRMs)

- Defining QuantME tasks to replace together with replacing workflow fragments
- Exemplary QRM:

Views on Quantum Workflows

Hybrid Service Deployments

- To run workflows the required services must be available
- While some services are always available...

 Evolving domains, such as the quantum domain, often require custom-built services

These services must be deployed by the user

Introduction & Motivation

- Monitoring of hybrid quantum applications is complicated by:
 - Complexity of quantum and classical tasks
 - Heterogeneity of multi-cloud deployments

Topology

99.824 ± 0.004

22.098

35.754

99.753 ± 0.005

99.950

96.900

Process Views

- Process views visualize workflows at different abstraction levels
- They reduce complexity by:
 - Hiding unnecessary details
 - Filtering or enriching data
 - Aggregating information
 - **.**..

Legend:

Deployment Artifact

Legend:

P Policy

Deployment Artifact

Deployment Model

Legend:

Deployment

Deployment

Legend:

P Policy

Deployment Artifact

Deployment Model

Legend:

Deployment Artifact

Legend:

P Policy

Deployment
Artifact

Deployment Model

Workflow, Views, & Always-on Service
Deployment
(4)

Legend:

Deployment Model

Process Views for Quantum Workflows

Workflow

Process Views for Quantum Workflows

Quantum View

Process Views for Quantum Workflows

Deployment View

Pattern-based Modeling of Quantum Applications

Pattern Language for Quantum Algorithms [1]

Pattern:

- Structured document
- Abstract description of a proven solution for a recurring problem

Pattern Language:

Interconnected patterns of the same domain

Pattern Language for Quantum Algorithms [1]

Program Flow

Quantum-Classic Split

VQA

Warm-Start

QAOA

State Preparation

Basis Encoding

Angle Encoding

Cutting

Circuit Cutting

Unitary Transformations

Phase Shift

Amplitude Amplification

Quantum States

Uniform Superposition

Creating Entanglement

Execution

Prioritized Execution

Orchestrated Execution

Error Handling

Error Correction

Gate Error Mitigation

Measurement

Post-selective Measurement

- [1] F. Leymann, "Towards a Pattern Language for Quantum Algorithms," QTOP, Springer, 2019.
- [2] M. Weigold et al., "Expanding Data Encoding Patterns For Quantum Algorithms," ICSA-C, IEEE, 2021. [6] M. Bechtold et al. "Patterns for Quantum Circuit Cutting," PLoP, Hillside, 2023.
- [3] M. Weigold et al., "Patterns for Hybrid Quantum Algorithms," SummerSoC, Springer, 2021.
- [4] M. Beisel et al., "Patterns for Quantum Error Handling," PATTERNS, XPS, 2022.

- [5] F. Bühler et al., "Patterns for Quantum Software Development," PATTERNS, XPS, 2023.
- [7] D. Georg et al. "Execution Patterns for Quantum Applications," ICSOFT, SciTePress, 2023. 21

÷

Pattern Languages

Issue

Quantum Computing Patterns

Cards

Filter

Patterns

Candidates

Circuit Cutting

Biased Initial State

:**■**Details

Pre-Trained Feature Extractor

Quantum Kernel

:**≡** Details :**≡** Details

Variational Parameter **Chained Optimization**

:**≡** Details

Matrix Encoding

:≡ Details

Schmidt Decomposition

Uncompute

:■Details

Basis Encoding

:**■**Details

Quantum-Classic Split

:**■**Details

:≡ Details

Error Correction

:■ Details

Creating Entanglement

Gate Error Mitigation

:■ Details

Readout Error

:≡ Details

Ad-hoc Hybrid Code Execution

:**■** Details

Alternating Operator

:■Details

:**■**Details

Amplitude Amplification

Amplitude Encoding

Angle Encoding

:**■**Details

Classical-Quantum

:≡ Details

:≡ Details

Hybrid Module

:≡ Details

Oracle

Orchestrated Execution

Phase Shift

Post-Selective

Measurement

Prioritized Execution

~~~

Quantum Approximate Optimization Algorithm (QADA)

Quantum Associative Memory (QuAM)

Quantum Circuit Translator



#### **Concrete Solutions**

- Facilitate the application of patterns by providing implementations of a pattern
- For example:
  - Code Snippets
  - Quantum Circuits
  - **.**..