Alexa!What do you see?

Padmavati Sridhar Shaji Kunjumohamed Shwetha Chitta Nagaraj

W251 Final Project Presentation - August 4th 2020

"Alexa! What do you see?"

Dataset - VizWiz Captions

some basil leaves in a container on a counter

a bottle of spices in a plastic container laving on a surface.

a green and white plastic condiment bottle containing basil leaves.

its is a basil leaves container its contains the net weight too.

black counter with canisters, kettle and can of soda.

a black tin of coca cola placed on a black surface

a kitchen counter the various items on top including a can of coca-cola, metal containers, and a teapot.

a black can of coca cola zero calorie soda is on the counter near the coffee maker.

a can of coca cola on a counter is shown for when one can use a nice, cold drink.

image is a can of crushed tomatoes in view.

a price chopper branded can of crushed tomatoes

a can of crushed tomatoes in puree from price chopper.

a can of crushed tomatoes sitting on a beige colored counter.

a can of crushed tomatoes are on a brown surface, the tomatoes read crushed tomatoes on the brand.

- Curated by University of Texas, Austin
- 1st publicly available dataset images taken by the visually impaired
 - To meet their daily needs about things around them
 - Presents a real-use case for our project -Captioning for the visually impaired!
- Crowdsourced captions through Amazon Mech. Turk
- 31, 161 Train+Val and 8000 Test Images
- 157, 905 Train+Val and 40,000 Test Captions
- An image annotated with 1 to 5 captions
 - Images with more complex scenes
- Average caption length: 13
 - Greater than that of MS COCO, Flickr etc.
 - Larger vocabulary
 - More nouns, verbs and adjectives
- VizWiz Image Captioning Challenge
 - Evaluated on Test images
 - Using CIDEr-D score

Image Captioning Architectures

Show and Tell: A Neural Image Caption Generator

Oriol Vinvals Google vinyals@google.com

Alexander Toshev Google toshev@google.com

Samy Bengio Google bengio@google.com Dumitru Erhan Google

dumitru@google.com

Multimodal Neural Language Models

Ryan Kiros Ruslan Salakhutdinov Richard Zemel

Department of Computer Science, University of Toronto Canadian Institute for Advanced Research

PRIPOS@CS TOPONTO EDIL RSALAKHU@CS.TORONTO.EDU ZEMEL@CS.TORONTO.EDU

From Captions to Visual Concepts and Back

Microsoft Research

Hao Fang* Li Deng Margaret Mitchell

2

Saurabh Gupta' Piotr Dollár† John C. Platt[‡]

Forrest Iandola* Jianfeng Gao C. Lawrence Zitnick Rupesh K. Srivastava* Xiaodong He Geoffrey Zweig

Show, Attend and Tell: Neural Image Caption **Generation with Visual Attention**

Kelvin Xu Jimmy Lei Ba **Rvan Kiros** Kyunghyun Cho **Aaron Courville** Ruslan Salakhutdinov Richard S. Zemel Yoshua Bengio

KELVIN.XU@UMONTREAL.C JIMMY@PSI.UTORONTO.C RKIROS@CS.TORONTO.EE KYUNGHYUN.CHO@UMONTREAL.C AARON.COURVILLE@UMONTREAL.CA RSALAKHU@CS.TORONTO.EDU ZEMEL@CS.TORONTO.EDU FIND-ME@THE WER

Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning

Jiasen Lu2*, Caiming Xiong1, Devi Parikh3, Richard Socher1 ¹Salesforce Research, ²Virginia Tech, ³Georgia Institute of Technology jiasenlu@vt.edu, parikh@gatech.edu, {cxiong, rsocher}@salesforce.com

Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering

Peter Anderson¹* Xiaodong He² Chris Buehler³ Damien Tenev⁴ Mark Johnson⁵ Stephen Gould1 Lei Zhang³ ¹Australian National University ²JD AI Research ³Microsoft Research ⁴University of Adelaide ⁵Macquarie University 1firstname.lastname@anu.edu.au, 2xiaodong.he@jd.com, 3{chris.buehler,leizhang}@microsoft.com 4damien.teney@adelaide.edu.au, 5mark.johnson@mg.edu.au

SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning

Long Chen¹ Hanwang Zhang² Jun Xiao¹* Liqiang Nie³ Jian Shao¹ Wei Liu⁴ Tat-Seng Chua¹ ¹Zhejiang University ²Columbia University ³Shandong University ⁴Tencent AI Lab ⁵National University of Singapore

DenseCap: Fully Convolutional Localization Networks for Dense Captioning

Justin Johnson* Andrej Karpathy* Li Fei-Fei Department of Computer Science, Stanford University {jcjohns, karpathy, feifeili}@cs.stanford.edu

Attention on Attention for Image Captioning

Lun Huang¹ Wenmin Wang^{1,3*} Jie Chen^{1,2} Xiao-Yong Wei² ¹School of Electronic and Computer Engineering, Peking University ²Peng Cheng Laboratory 3Macau University of Science and Technology

huanglun@pku.edu.cn, {wangwm@ece.pku.edu.cn, wmwang@must.edu.mo}, {chenj, weixy}@pcl.ac.cn

Encoder-Decoder

Source: https://www.themtank.org/multi-modal-methods

Encoder:

- Pre-trained Deep CNN like VGG16, Inception V3, ResNet variants on image classification tasks
- Takes an input image -> Generate feature representations (fixed length vectors): objects, attributes, regions
- Last hidden layer used as input to decoder

Decoder:

- Language model to generate captions
- Could be LSTM, GRU, Bidirectional LSTM etc.
- Next words are generated based on current time step and previous hidden state till end of sequence

Attention on Attention(AoA)

Attention Mechanism

Attention-on-Attention (AoA)

Source: https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning

Source: https://arxiv.org/pdf/1908.06954.pdf

AoA Net

- Image features are extracted using a pre-trained Faster R-CNN(ResNet-101) model on ImageNet and Visual Genome datasets using Bottom-up mechanism
 - Each image feature encodes a spatial region of the image
 - The spatial regions consist of identifying instances of objects belonging to certain classes and localize them with bounding boxes(pic. on top-right).
 - Each bounding box is labeled with an attribute class and an object class.
 - Built with an older version of **Caffe**(on Ubuntu 14.4) which could not be compiled due to various dependencies with newer versions of python libraries.
 - Partially extract features vectors using Facebook's AI Research called **Detectron2**(previously called Pythia).
 - This <u>does not</u> extract the attribute classes(pic. on bottom-right).

O PyTorch

- Used the provided pre-extracted image vectors from bottom-up for VizWiz to train the model.
- Decoder:
 - LSTM with 2 layers
 - 1024 hidden nodes each
- Model parameters:
 - Loss function: Cross-entropy
 - Optimizer: Adam with a learning rate(LR) of 2e-4
 - LR decay after 0.5 every 3 epochs
 - o Batch Size: 20, Epochs: 25
- Self-Critical Sequence Training(**SCST**) optimization to optimize CIDEr-D score
 - Epochs: 40, LR=2e-5,
- Evaluation:
 - Beam Search: 3, Batch Size: 100
 - Trained from scratch on VizWiz and also fine-tuned model with MS COCO dataset.

Features from Bottom-up(Caffe model)

Features from Detectron2

Show Attend and Tell

Extractor

over feature map

word generation

Training and Inference - Overview

- Pytorch based Model
- Final model
 - For encoder Used resnet34 as pre-trained model.
 - Decoder Used GRU.
 - Used teacher forcing, Beam search to generate reasonably accurate prediction
- Mixed COCO 2014 image caption dataset and Vizwiz dataset for getting better results.
- Inference is done in Jetson.
 - Model selection depended on training time@cloud, Jetson RAM utilization and GPU activity
- Fast.ai framework is used in model development.
 - Leveraged pre-defined machinery to build efficient training structure.

Training highlights

- Each image had multiple captions randomly selected a caption per image epoch (Resulted in low BLEU metric, but yielded less overfitting)
- Made use of one cycle policy to figure out learning rate.
- Multiple techniques were used to improve training time.
 - Image stored as pickle files, (Local storage of picke in SSD)
 - number of workers.
 - To save time, store processed training data and setup files in a nfs mount.
- Dask framework worked best for large scaled parallel processing/wrangling.
- Batch size adjusted for max GPU utilization, had to re-adjust for different instances of same type of machine to avoid CUDA errors.

Generated Captions(test sample)

AoA(Scratch): a bottle of lotion is on top of a table

AoA(FT): a bottle of lotion is on top of a table

SAT: a white bottle with a white label on it

AoA(Scratch): a hand holding a white bottle with a white cap

AoA(FT): a white bottle is on top of a wooden table

SAT: a person is holding a bottle of lotion in their hand

AoA(Scratch): a computer screen with white text on a black background

AoA(FT): a green screen with the words signal on it

SAT: a computer screen with a black background and white text.

AoA(Scratch): a jar of something is on top of a table

AoA(FT): a mug with a blue cap on top of a table

SAT: the top side of a red and white food container with a red and white label

AoA(Scratch): a can of pepsi sitting on a desk with a desk

AoA(FT): a can of coke is on top of a table

SAT: a can of coca cola sitting on a table next to a computer keyboard .

AoA(Scratch): a children 's book with colorful and blue and yellow and blue

AoA(FT): a children 's book with a colorful butterfly on it

SAT: a birthday card with a cartoon character on it

AoA(Scratch): AoA Net with VizWiz only

AoA(FT): AoA Net with VizWiz+COCO

SAT: Show, Attend and Tell with VizWiz+COCO

Evaluation Scores

Rank	Team	Bleu1	Bleu-2	Bleu-3	Bleu-4	ROUGE-L	METEOR	CIDEr	SPICE
1	IBM Research Al	-	-	-	-	-	-	81.13	-
2	SRC-B-VCLab	-	-	-	-	-	-	72.89	-
3	ABurns(Boston Univ.)	-	-	-	-	-	-	64.27	-
-	Baseline(AoANet)	65.91	47.77	33.68	23.41	46.56	20.00	59.77	15.11
-	Team SSP (AoA Net Scratch)*	65.70	47.15	32.97	22.80	46.38	19.79	59.56	14.88
-	Team SSP (AoA Net Fine-tuned)*	65.68	46.94	32.85	22.83	46.46	19.82	58.50	14.91
-	Team SSP (Show, Attend And Tell)*	58.58	39.57	26.49	17.71	40.75	16.57	37.18	11.06

For Inference on Jetson

^{* -} Post Competition Scores. Scores for other evaluation metrics not available. Post Competition Ranks not available.

Inference highlights

- Inference on the Jetson TX2 → leveraged edge architecture for POC end-to-end system
- Inference using CPU yielded less accurate captions vs GPU.
- Fast.ai learner worked on Jetson flawlessly.
- Used nvidia pytorch docker image for inference. Precompiled wheels to speed up Docker build.
- Tried on demand inference in Jetson Vs continuous inference.
 - On demand is currently implemented in final demo
 - Continuous inference (5 fps) was an overkill and not practical for use case

Edge Architecture

- User invokes Alexa custom skill, Echo dot processes audio and sends it to Alexa Cloud
- 2. Alexa Cloud sends message to ngrok endpoint (setup to be www.251final.com)
- ngrok forwards JSON to Flask-Ask (processes skill intents)
- 4. OpenCV takes a picture on-demand and encodes it as a JPG into memory buffer
- 5. Buffer saved in base64 encoding in redis
- 6. Request sent to prediction container via Flask endpoint to make a prediction
- Image retrieved from redis and decoded, prediction model invoked, image is captioned
- 8. Caption sent back to ngrok container
- 9. Caption sent back via Flask-Ask to ngrok
- 10. ngrok sends caption back to Alexa Cloud
- 11. Alexa Cloud sends caption back to Echo Dot

Demo

Kitchen: refrigerator, stove

Other: vitamins, can of water

Future Improvements

- Productionalize edge architecture
 - Nginx, Kubernetes, security
 - Multiple users
 - Latency
 - Connectivity
 - Use-case can determine CPU vs. GPU for inference
- Pre-processing of Images for text processing (~63% contain text):
 - So it would be ideal to use an OCR mechanism like scene text detection model.
 - Image augmentation techniques like rotation coupled with scoring the captions generated at different image angles.
 - Apply blurring filters to only in-focus images for better object detection
- Try a different pre-trained model for image feature extraction which is trained on pictures similar to VizWiz(like Instagram photos)
- Refine AoA Net
 - Use a different RNN like Transformer in the Decoder.
 - Use <u>Bayesian-SCST</u> for fine tuning.

Scene text detection

Thank you!

References

- VizWiz Captions: https://vizwiz.org/tasks-and-datasets/image-captioning/
- A Comprehensive Survey of Deep Learning for Image Captioning: https://arxiv.org/abs/1810.04020
- Multi-Modal Methods: Recent Intersections Between Computer Vision and Natural Language Processing https://www.themtank.org/multi-modal-methods
- Show and Tell: A Neural Image Caption Generator: https://arxiv.org/abs/1411.4555
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention: https://arxiv.org/abs/1502.03044
- Attention on Attention(AoA) for Image Captioning: https://arxiv.org/pdf/1908.06954.pdf
- Bottom-up and Top-Down Attention for Image Captioning: https://arxiv.org/pdf/1707.07998.pdf
- Detectron2: https://github.com/facebookresearch/detectron2
- Self-Critical Sequence Training for Image Captioning: https://arxiv.org/abs/1612.00563
- CIDEr: Consensus-based Image Description Evaluation: https://arxiv.org/abs/1411.5726