Kalman Filter

Ruting Wang

IRTG 1792
High Dimensional Nonstationary Time Series
Humboldt-Universität zu Berlin
IRTG1792.HU-Berlin.de

Not all variables (features) are observable!

- Variable of interest measured indirectly
 - Position

- Measurements might be subjected to noise
 - Acceleration
 - Angular velocity
 - Relative position

Inertial Measurement Unit (IMU)

Odometer

Motivation 1-2

Applications

Navigation

Satellite receiver information

Location

Image Identification

Past photo information

Facial centre in the next frame

Motivation 1-3

APOLLO and Kalman

"[...] not because [it is] easy, but because [it is] hard; because that goal will serve to organise and measure the best of our energies and skills, because that change is one that we are willing to accept, one we are unwilling to postpone, and one we intend to win [...]."

How about the Temperature inside APOLLO?

- Approximate what we not observe
 - ightharpoonup Temperature inside the spaceship: T_{in}
 - ► Temperature in extreme situation
- Observable features
 - ightharpoonup Amount of fuel: W_{fuel}
 - ightharpoonup Temperature outside the spaceship: T_{ext}
 - ▶ Mathematical model:

$$\hat{T}_{in} = B \ W_{fuel}$$

$$\hat{T}_{ext} = C \ \hat{T}_{in}$$

Motivation 1-5

How to Measure the Temperature inside the Spaceship?

Motivation

Kalman Filter Evolution

Rudolf Emil Kálmán on BBI

Outline

- 1. Motivation ✓
- 2. Algorithm Introduction
- 3. Application in Finance
- 4. References

A Simple Kalman Filter Case

- \square How to estimate a coin's real diameter x_t
 - ► The ruler's measurement results:

$$y_1 = 51 mm$$

$$y_2 = 48 mm$$

$$y_3 = 49 mm$$

ightharpoonup Taking the average of y_t to get the estimation \hat{x}_t

$$\hat{x}_{t} = \frac{1}{t}(y_{1} + y_{2} + \dots y_{t})$$

$$= \frac{1}{t}(y_{1} + y_{2} + \dots y_{t-1}) + \frac{1}{t}y_{t}$$

$$= \frac{1}{t}\frac{t-1}{t-1}(y_{1} + y_{2} + \dots y_{t-1}) + \frac{1}{t}y_{t}$$

$$= \frac{t-1}{t}\hat{x}_{t-1} + \frac{1}{t}y_{t} = \hat{x}_{t-1} + \frac{1}{t}(y_{t} - \hat{x}_{t-1})$$

Recursive idea!

A Simple Kalman Filter Case

□ Kalman filter: also based on "Recursive"

$$\hat{x}_{t} = \hat{x}_{t-1} + K_{t}(y_{t} - \hat{x}_{t-1})$$

Kalman gain

- \blacksquare Estimation error: $e_t^E = x \hat{x}_t$
- oxdot Measurement error: $e_t^M = y_t x$

$$K_{t} = \frac{e_{t-1}^{E}}{e_{t-1}^{E} + e_{t}^{M}}$$

$$e_{t-1}^E \gg e_t^M > K_t = 1 \text{ and } \hat{x}_t = y_t$$

$$e_{t-1}^{E} \ll e_{t}^{M} > K_{t} = 0 \text{ and } \hat{x}_{t} = \hat{x}_{t-1}$$

A Simple Kalman Filter Case

□ Step 1: calculate Kalman gain $K_t = \frac{e_{t-1}^E}{e_{t-1}^E + e_t^M}$

□ Step 2: calculate $\hat{x}_t = \hat{x}_{t-1} + K_t(y_t - \hat{x}_{t-1})$

Initial input: \hat{x}_0 e_0^E Real value: $x = 50 \ mm$

t	у	e^{M}	\hat{x}_t	K	e^E
0			40.000		5.000
1	51.0	3	46.875	0.625	1.875
2	48.0	3	47.308	0.385	1.154
3	49.0	3	47.778	0.278	0.833
4	51.5	3	48.587	0.217	0.652
5	47.0	3	48.304	0.179	0.536
6	52.0	3	48.864	0.152	0.455
7	49.5	3	48.947	0.132	0.395
8	48.6	3	48.907	0.116	0.349
9	47.1	3	48.719	0.104	0.313
10	49.2	3	48.764	0.094	0.283
11	53.0	3	49.129	0.086	0.259
12	52.5	3	49.397	0.079	0.238
13	51.6	3	49.559	0.074	0.221
14	50.1	3	49.596	0.068	0.205

 \square x is a Matrix

$$x = \begin{bmatrix} x^1 \\ x^2 \end{bmatrix}$$

State function

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + B\mathbf{u}_{t-1} + w_{t-1}$$
 Process noise $w_{t-1} \sim N(0, Q)$

$$\mathbf{y}_t = C\mathbf{x}_t + v_t$$
 Measurement noise $v_t \sim N(0, R)$

Priori estimation

$$\hat{x}_{t}^{-} = A\hat{x}_{t-1} + Bu_{t-1}$$

$$\hat{x}_{t}^{mea} = C^{-1}y_{t}$$

Posteriori estimation

$$\hat{x}_t = \hat{x}_t^- + K_t(y_k - C\hat{x}_t^-)$$

- \Box Aim of Kalman filter: find a $K_t > min \left| x_t \hat{x}_t \right|$
- □ Properties of e_t^E $e^E \sim N(0,P)$

$$P = E[e^{E}e^{ET}] = \begin{bmatrix} \sigma^{2}e^{E1} & \sigma e^{E1}\sigma e^{E2} \\ \sigma e^{E1}\sigma e^{E2} & \sigma^{2}e^{E2} \end{bmatrix}$$

 \Box Find a $K_t > \min\{tr(P)\}$

Process of K's determination

$$e_{t}^{E} = x_{t} - \hat{x}_{t} = x_{t} - \hat{x}_{t}^{-} + K_{t}(y_{t} - C\hat{x}_{t}^{-})$$

$$y_{t} = Cx_{t} + v_{t}$$

$$= (I - K_{t}C)(x_{t} - \hat{x}_{t}^{-}) - K_{t}v_{t}$$

$$P_{t} = E[e^{E}e^{ET}]$$

$$= (I - K_{t}C) E\{e_{t}^{E} - (e_{t}^{E})^{T}\}(I - K_{t}C)^{T} + K_{t} E(v_{t}v_{t}^{T})K_{t}^{T}$$

$$P_{t}^{-}$$

$$= P_{t}^{-} - K_{t}CP_{t}^{-} - P_{t}^{-}C^{T}K_{t}^{T} + K_{t}CP_{t}^{-}C^{T}K_{t}^{T} + K_{t}RK_{t}^{T}$$

lacksquare Minimise the trace of P_t

$$tr(P_t) = tr(P_t^-) - 2tr(K_tCP_t^-) + tr(K_tCP_t^-C^\top K_t^\top) + tr(K_tRK_t^\top)$$

□ Calculate Kalman Gain

$$\frac{\partial tr(P_t)}{\partial K_t} = 0 \qquad > \qquad K_t = \frac{\hat{P}_t^- C^\top}{C\hat{P}_t^- C^\top + R}$$

Kalman Gain!

 \Box Calculate Priori P_t^-

$$x_{t} = Ax_{t-1} + Bu_{t-1} + w_{t-1}$$

 $\hat{x}_{t}^{-} = A\hat{x}_{t-1} + Bu_{t-1}$ >

$$e_{t}^{E-} = x_{t} - \hat{x}_{t}^{-}$$

$$= Ax_{t-1} + Bu_{t-1} + w_{t-1} - A\hat{x}_{t-1} - Bu_{t-1}$$

$$= Ae_{t-1}^{E} + w_{t-1}$$

$$\begin{aligned} P_{t}^{-} &= \mathbb{E}[e^{E-}e^{E-\top}] \\ &= A \, \mathbb{E}[e_{t-1}^{E}e_{t-1}^{E\top}]A^{\top} + \mathbb{E}[w_{t_{1}}w_{t-1}^{\top}] \\ &= A P_{t-1}A^{\top} + Q \end{aligned}$$

 \square Update P_t^- with $K_t >$ Posteriori P_t

$$P_{t} = P_{t}^{-} - K_{t}CP_{t}^{-} - P_{t}^{-}C^{\mathsf{T}}K_{t}^{\mathsf{T}} + K_{t}CP_{t}^{-}C^{\mathsf{T}}K_{t}^{\mathsf{T}} + K_{t}RK_{t}^{\mathsf{T}}$$
$$= (I - K_{t}C)P_{t}^{-}$$

Estimation Process

Prediction based on math model:

$$\hat{x}_{t}^{-} = A\hat{x}_{t-1} + Bu_{t}$$

$$\hat{P}_{t}^{-} = A\hat{P}_{t-1}A^{\top} + Q$$

$$\hat{y}_{t}^{-} = C\hat{x}_{t}^{-}$$

Without adjustment of y_t and Kalman gain K_t

Estimation Process

Update process:

$$K_{t} = \frac{\hat{P}_{t}^{-}C^{\top}}{C\hat{P}_{t}^{-}C^{\top} + R}$$

$$\hat{x}_{t} = \hat{x}_{t}^{-} + K_{t}v_{t} = \hat{x}_{t}^{-} + K_{t}(y_{t} - C\hat{x}_{t}^{-})$$

$$\hat{P}_{t} = (I - K_{t}C)\hat{P}_{t}^{-}$$

 \square Back to prediction process to estimate the state at t+1:

$$\hat{x}_{t+1}^{-} = A\hat{x}_{t} + Bu_{t}$$

$$\hat{P}_{t+1}^{-} = A\hat{P}_{t}A^{\top} + Q$$

$$\hat{y}_{t+1}^{-} = C\hat{x}_{t+1}^{-}$$

It is an application of Bayes
http://ais.informatik.uni-freiburg.de/teaching/ss10/robotics/slides/
10-kalman-filter.pdf

Extreme Cases of Kalman Filter

No measurement error

$$\lim_{R \to 0} K_t = \lim_{R \to 0} \frac{P_t^- C^\top}{C P_t^- C^\top + R} = \lim_{R \to 0} \frac{P_t^- C^\top}{C P_t^- C^\top + 0} = \frac{1}{C}$$

$$\hat{\mathbf{x}}_t = \frac{1}{C} \mathbf{y}_t$$

No estimation error

$$\lim_{P_{t}^{-} \to 0} K_{t} = \lim_{P_{t}^{-} \to 0} \frac{P_{t}^{-} C^{\top}}{CP_{t}^{-} C^{\top} + R} = 0$$

$$\hat{x}_t = \hat{x}_t^-$$

Dynamic Calculation Process

Estimation Process

Combine error distributions to get precise estimations

Dynamic Changes of Error Distribution

CRIX Return Prediction QKF_modelres

- □ Kalman filter ➤ Return prediction
 - ► CRIX: A Laspeyre weighted index of market capitalisation.
 - > Span: 2017-01-02 to 2021-02-09

CRIX cluster

Estimation Process

Prediction based on math model:

$$\hat{r}_{x,t}^{-} = A\hat{r}_{x,t-1}$$

$$\hat{P}_{t}^{-} = A\hat{P}_{t-1}A^{\top} + Q$$

$$\hat{r}_{y,t}^{-} = C\hat{r}_{x,t}^{-}$$

 $\hat{r}_{x,t}^-$: Predicted return of next day without adjustment

 $\hat{r}_{y,t}^-$: return of today calculated by model

$$Q: w_t \sim N(0,0.03)$$

$$A = 1 C = 1$$

 $\hat{r}_{x,0}$: The observable return on 2017-01-02

$$\hat{P}_0 = 1$$

Estimation Process

Update Process:

$$K_{t} = \frac{\hat{P}_{t}^{-}}{\hat{P}_{t}^{-} + R}$$

$$\hat{r}_{x,t} = \hat{r}_{x,t}^{-} + K_{t}(r_{y,t} - \hat{r}_{x,t}^{-})$$

$$\hat{P}_{t} = (I - K_{t})\hat{P}_{t}^{-}$$

 $\hat{r}_{x,t}$: Predicted return after adjustment $\hat{r}_{y,t}$: return on day t that we observe $R: v_t \sim N(0,0.03)$,

 \square Back to prediction process to estimate the state at t+1:

$$\hat{r}_{x,t+1}^{-} = \hat{r}_{x,t}$$

$$\hat{P}_{t+1}^{-} = \hat{P}_t + Q$$

$$\hat{r}_{y,t+1}^{-} = \hat{r}_{x,t+1}^{-}$$

Estimation Process QKF_modelres

$$Q = 0.03 R = 0.03$$

Return of CRIX: observable return, predicted return

Estimation Process QKF_modelres

$$Q = 0.03 R = 0.03$$

Estimation Process QKF_modelres

oxdots MSE of Different Q and R

Other applications

□ The common feature of inflation expectations (IE)

```
Bond Yield { France | Germany | Common feature ? | Italy | Sweden | Risk Premiums
```


Other applications

□ The common factor of inflation expectations (IE) Q MTS

$$\begin{split} &\Pi_{t,\tau} = q_{\tau} \Pi_{t-1,\tau} + p_{\tau} + v_{t,\tau} \\ &\hat{\pi}_{it,\tau} = n_{i,\tau} \Pi_{t,\tau} + m_{i,\tau} + u_{it,\tau} \end{split}$$

 $\Pi_{t,\tau}$: Common feature of τ year IE at time t

 $\hat{\pi}_{it, au}$: i country's au year IE at time t

 $m_{i, au},\,n_{i, au},\,p_{ au},\,$ and $q_{ au}$ are unknown

 $v_{it,\tau}$ and $u_{it,\tau}$ are i.i.d

3 year IE of five European countries, Common feature (Kalman Filter)

Reference 1-1

Reference

- Kalman RE (1960)
 A New Approach to Linear Filtering and Prediction Problems
- Journal of Basic Engineering, 82: 34–45.
- Kalman RE, Bucy RS (1961)
 New Results in Linear Filtering and Prediction Theory
 Journal of Basic Engineering, 83: 95–108.
- Nkomo R, Kabundi A (2013)
 Kalman Filtering and Online Learning Algorithms for Portfolio Selection
 - Working paper 394, Economic Research Southern Africa

Reference 1-1

Reference

- Chen S, Härdle WK, Wang W (2021) The common and specific components of inflation expectations across European countries. Empir Econ (2021). https://doi.org/10.1007/s00181-021-02027-1
- https://www.zhihu.com/question/23971601
- https://www.bilibili.com/video/BV1ez4y1X7eR/?
 spm_id_from=333.788&vd_source=0f130fea32a288e2130afc13c
 0c051f8

Reference

Reference

1960	Filter in discrete time	Kalman, R. E.(1960). A new approach to linear filtering and prediction problems. <i>Journal of Basic Engineering Transactions</i> , 82, 35-45.
1961	Filter in continuous time	Kalman, R. E., & Bucy, R. S. (1961). New Results in Linear Filtering and Prediction Theory. <i>Trans. ASME, Ser. D, J. Basic Eng</i> (Vol.83, pp.109).
1960s	Use in air and space navigation (Schmidt- Kalman filter)	Schmidt, S. (1966). "Applications of State-space Methods to Navigation Problems". In Leondes, C. (ed.). <i>Advances in Control Systems</i> . 3 . New York, NY: Academic Press. pp. 293–340.
1960s	Use in non-linear field(Extended Kalman Filter, EKF)	Sunahara, Y. (1969). "An approximate method of state estimation for nonlinear dynamical systems," in Proceedings of the Joint Automatic Control Conference, University of Colorado, Boulder, Colo, USA, Bucy, R. S. and Senne, K. D. (1971) "Digital synthesis of non-linear filters," <i>Automatica</i> , vol. 7, no. 3, pp. 287–298, 1971
1989	Use in Neural Network	Singhal, S., & Wu, L. (1989). Training Multilayer Perceptrons with the Extended Kalman Algorithm. <i>neural information processing systems</i> .