STAMFORD

S7L1D-G4 Wdg.312 - Technical Data Sheet

Standards

STAMFORD industrial alternators meet the requirements of the relevant parts of the IEC EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100 and AS1359. Other standards and certifications can be considered on request.

Quality Assurance

Alternators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

Excitation and Voltage Regulators

Excitation System												
AVR Type	MX341	MX322	DECS150									
Voltage Regulation	± 1%	± 0.5%	± 0.25%		with 4% Engine Governing							
AVR Power	PMG	PMG	PMG									

No Load Excitation Voltage (V)	15.4 - 14.7
No Load Excitation Current (A)	0.67 - 0.62
Full Load Excitation Voltage (V)	73
Full Load Excitation Current (A)	2.9
Exciter Time Constant (seconds)	0.125

STAMFORD

S7L1D-G4 Wdg.312

Electrical Data													
Insulation System		Н											
Stator Winding		Double Layer Concentric											
Winding Pitch				2	/3								
Winding Leads				(6								
Winding Number				3	12								
Number of Poles					4								
IP Rating				IP	23								
RFI Suppression		BS EN 6			00-6-4,VDE ory for other		0875N.						
Waveform Distortion	N	IO LOAD <	1.5% NON-	DISTORTIN	G BALANCE	ED LINEAR	LOAD < 5.0	%					
Short Circuit Ratio				1/	Xd								
Steady State X/R Ratio				33	.26								
		50	Hz			60	Hz						
Telephone Interference		THF	<2%			TIF	<50						
Cooling Air Flow		2.39 r	n³/sec			2.87 r	m³/sec						
Voltage Star (V)	380	400	415	440	416	440	460	480					
Voltage Parallel Star (V)	-	-	-	-	-	-	-	-					
Voltage Delta (V)	-	-	-	-	-	-	-	-					
kVA Base Rating (Class H) for Reactance Values (kVA)	2020	2080	2080	2040	2350	2500	2550	2600					
Saturated Values in Per Unit	at Base F	Ratings a	nd Voltag	es									
Xd Dir. Axis Synchronous	2.56	2.38	2.21	1.93	2.98	2.84	2.65	2.48					
X'd Dir. Axis Transient	0.18	0.17	0.16	0.14	0.21	0.20	0.19	0.18					
X"d Dir. Axis Subtransient	0.13	0.12	0.11	0.09	0.15	0.14	0.13	0.12					
Xq Quad. Axis Reactance	1.93	1.79	1.66	1.45	2.24	2.13	1.99	1.86					
X"q Quad. Axis Subtransient	0.22	0.20	0.19	0.16	0.25	0.24	0.23	0.21					
XL Stator Leakage Reactance	0.08	0.07	0.07	0.06	0.09	0.09	0.08	0.08					
X2 Negative Sequence Reactance	0.16	0.15	0.14	0.12	0.19	0.18	0.16	0.15					
X0 Zero Sequence Reactance	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.03					
Unsaturated Values in Per Un	nit at Bas	e Ratings	and Vol	tages									
Xd Dir. Axis Synchronous	3.07	2.86	2.65	2.31	3.58	3.40	3.18	2.98					
X'd Dir. Axis Transient	0.21	0.19	0.18	0.16	0.24	0.23	0.22	0.20					
X"d Dir. Axis Subtransient	0.15	0.14	0.13	0.11	0.17	0.16	0.15	0.14					
Xq Quad. Axis Reactance	1.98	1.84	1.71	1.49	2.31	2.20	2.05	1.92					
X"q Quad. Axis Subtransient	0.26	0.24	0.23	0.20	0.31	0.29	0.27	0.25					
XL Stator Leakage Reactance	0.09	0.08	0.08	0.07	0.10	0.10	0.09	0.09					
XIr Rotor Leakage Reactance	0.20	0.19	0.17	0.15	0.24	0.22	0.21	0.20					
X2 Negative Sequence Reactance	0.19	0.18	0.16	0.14	0.22	0.21	0.20	0.18					
X0 Zero Sequence Reactance	0.04	0.04	0.03	0.03	0.05	0.04	0.04	0.04					

STAMFORD

S7L1D-G4 Wdg.312

Time Constants (Seconds)									
T'd Transient Time Const.	0.	15							
T"d Sub-Transient Time Const.	0.0150								
T'do O.C. Field Time Const.	4.49								
Ta Armature Time Const.	0.0	284							
T"q Sub-Transient Time Const.	0.0	104							
Resistances in Ohms (Ω) at 2	22°C								
Stator Winding Resistance (Ra), per phase for series connected		007							
Rotor Winding Resistance (Rf)	2.	15							
Exciter Stator Winding Resistance	22	2.3							
Exciter Rotor Winding Resistance per phase	0.0	065							
PMG Phase Resistance (Rpmg) per phase	1.	91							
Positive Sequence Resistance (R1)	0.0	009							
Negative Sequence Resistance (R2)	0.0010								
Zero Sequence Resistance (R0)	0.0009								
Saturation Factors	400V	480V							
SG1.0	0.283	0.275							
SG1.2	1.366	1.201							
Mechanical Data									
Shaft and Keys	All alternator rotors are dynamically balanced to minimum vibration in operation. Two bearing ge								
	1 Bearing	2 Bearing							
SAE Adaptor	SAE 0, 00	SAE 0, 00							
Moment of Inertia	45.47 kgm²	44.44 kgm²							
Weight Wound Stator	1725kg	1725kg							
Weight Wound Rotor	1488kg	1445kg							
Weight Complete Alternator	3637kg	3604kg							
Shipping weight in a Crate	3689kg	3656kg							
Packing Crate Size	220 x 105 x 155 (cm)	220 x 105 x 155 (cm)							
	2250 RPM for two minutes								
Maximum Over Speed	2250 RPM to	T TWO THINGEO							
Maximum Over Speed Bearing Drive End	- 2250 RPM to	BALL. 6232							

THREE PHASE EFFICIENCY CURVES

S7L1D-G4 Wdg.312

Locked Rotor Motor Starting Curves - Separately Excited

60Hz

Transient Voltag	e Dip Scaling Factor	Transient Voltage Rise Scaling Factor
PF	Factor	
< 0.5	1	For voltage rise multiply voltage dip by 1.25
0.5	0.97	
0.6	0.93	
0.7	0.9	
0.8	0.85	
0.9	0.83	

Three-phase Short Circuit Decrement Curve - Separately Excited

Sustained Short Circuit = 8495 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380V	X 1.00	416V	X 1.00					
400V	X 1.05	440V	X 1.06					
415V	X 1.09	460V	X 1.10					
440V	X 1.16	480V	X 1.15					

The sustained current value is constant irrespective of voltage level

Note 2

The sustained current values are for MX341 AVR. For MX322 and Digital AVR 1.2 factor to be applied to the sustained short circuit

lote 3

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

Note 4 All other times are unchanged

Curves are drawn for Star connected machines under no-load excitation at rated speeds. For other connection (where applicable) the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

S7L1D-G4 Wdg.312

Typical Alternator Operating Charts

400V/50Hz

480V/60Hz

S7L1D-G4 Wdg.312

RATINGS AT 0.8 POWER FACTOR

	Class - Temp Rise Standby - 163/27°C					St	Standby - 150/40°C			Cont. H - 125/40°C				Cont. F - 105/40°C			
	Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
50	Parallel Star (V)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hz	Delta (V)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		2165	2250	2250	2185	2105	2170	2170	2125	2020	2080	2080	2040	1880	1935	1935	1900
	kW	1732	1800	1800	1748	1684	1736	1736	1700	1616	1664	1664	1632	1504	1548	1548	1520
	Efficiency (%)	95.8	95.8	95.9	96.1	95.9	95.9	96.0	96.1	96.0	96.0	96.1	96.2	96.1	96.1	96.2	96.2
	kW Input	1808	1878	1877	1820	1757	1810	1809	1769	1684	1733	1732	1697	1565	1610	1610	1579

	Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
60	Parallel Star (V)	N/A															
Hz	Delta (V)	N/A															
	kVA	2506	2675	2731	2787	2437	2600	2650	2706	2350	2500	2550	2600	2194	2325	2375	2425
	kW	2005	2140	2185	2230	1950	2080	2120	2165	1880	2000	2040	2080	1755	1860	1900	1940
	Efficiency (%)	95.8	95.8	95.9	96.0	95.9	95.9	96.0	96.0	96.0	96.0	96.1	96.1	96.1	96.1	96.2	96.2
	kW Input	2092	2233	2278	2323	2033	2169	2209	2254	1959	2084	2124	2164	1827	1936	1976	2017

De-Rates

All values tabulated above are subject to the following reductions:

- 5% when air inlet filters are fitted
- 3% for every 500 meters by which the operating altitude exceeds 1000 meters above mean sea level
- 3% for every 5°C by which the operational ambient temperature exceeds 40°C @ Class H temperature rise (please refer to applications for ambient temperature de-rates at other temperature rise classes)
- For any other operating conditions impacting the cooling circuit please refer to applications

Note: Requirement for operating in an ambient exceeding 60°C and altitude exceeding 4000 meters (for <690V) or 1500 meters (for >690V) must be referred to applications.

Dimensional and Torsional Drawing

For dimensional and torsional information please refer to the alternator General Arrangement and rotor drawings available on our website (http://stamford-avk.com/)

Note: Continuous development of our products means that the information contained in our data sheets can change without notice, and specifications should always be confirmed with Cummins Generator Technologies prior to purchase.

Follow us @stamfordavk

View our videos at youtube.com/stamfordavk

news.stamford-avk.com

For Applications Support: applications@cummins.com

For Customer Service: emea.service@cummins.com

For General Enquiries: Stamford-avk@cummins.com

Copyright 2016. Cummins Generator Technologies Ltd. All rights reserved.

Cummins and the Cummins logo are registered trade marks of Cummins Inc.

STAMFORD is a registered trade mark of Cummins Generator Technologies Ltd.

