Question	Hypothesis	Sampling plan (e.g. power analysis)	Analysis Plan	Interpretation given to different outcomes
1. Do objective and subjective measures of performance reflect an increase in task load with increasing n-back level?	1a) The signal detection measure d' declines with increasing n-back level.	F tests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input: Effect size $f = 0.8685540$ α err prob = 0.05 Power $(1-\beta$ err prob) = 0.95 Number of groups = 1 Number of measurements = 4 Corr among rep measures = 0.5 Nonsphericity correction ϵ = 1 Output: Noncentrality parameter λ = 30.1754420 Critical F = 3.4902948 Numerator df = 3.0000000 Denominator df = 12.0000000 Total sample size = 5 Actual power = 0.9824202	Repeated measures ANOVA with three linear contrasts, comparing the d' value of two n-back levels (2, 3, 4) at a time. The ANOVA is calculated using aov_ez() of the afex-package, estimated marginal means are calculated using emmeans() from the emmeans-package, and pairwise contrasts are calculated using pairs(). Bayes factors are computed for the ANOVA and each contrast using the BayesFactor-package.	ANOVA yields p < .05 is interpreted as d' changing significantly with n-back levels. Values of d' are interpreted as equal between n-back levels if p > .05. Each contrast yielding p < .05 is interpreted as d' being different between those levels, magnitude and direction are inferred from the respective estimate. Values of d' are interpreted as equal between n-back levels if p > .05. The Bayes factor BF10 is reported alongside every p-value to assess the strength of evidence.
	1b) Reaction time increases with increasing n-back level.	F tests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input: Effect size $f = 0.2041241$ α err prob = 0.05 Power $(1-\beta$ err prob) = 0.95 Number of groups = 1 Number of measurements = 4 Corr among rep measures = 0.5	Repeated measures ANOVA with three linear contrasts, comparing the median reaction time of two n-back levels (2, 3, 4) at a time. The ANOVA is calculated using aov_ez() of the afex-package, estimated marginal means are calculated using emmeans() from the emmeans-package, and	ANOVA yields p < .05 is interpreted as the median reaction time changing significantly with n-back levels. Median reaction times are interpreted as equal between n-back levels if p > .05. Each contrast yielding p < .05 is interpreted as the median reaction time being different

	Nonsphericity correction $\epsilon=1$ Output: Noncentrality parameter $\lambda=17.6666588$ Critical $F=2.6625685$ Numerator $df=3.0000000$ Denominator $df=156$ Total sample size = 53 Actual power = 0.9506921	pairwise contrasts are calculated using pairs(). Bayes factors are computed for the ANOVA and each contrast using the BayesFactor-package.	between those levels, magnitude and direction are inferred from the respective estimate. Median reaction times are interpreted as equal between n-back levels if p > .05. The Bayes factor BF10 is reported alongside every p-value to assess the strength of evidence.
1c) Ratings on all NTLX subscales increase with increasing n-back level.	From Kramer et al.: F tests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input: Effect size $f = 0.7071068$ α err prob = 0.05 Power $(1-\beta$ err prob) = 0.95 Number of groups = 1 Number of measurements = 4 Corr among rep measures = 0.5 Nonsphericity correction ϵ = 1 Output: Noncentrality parameter λ = 24.0000013 Critical F = 3.2873821 Numerator df = 3.0000000 Denominator df = 15.00000000 Total sample size = 6 Actual power = 0.9620526	A repeated measures ANOVA for each NASA-TLX subscale, with six linear contrasts comparing the subscale score of two n-back levels (1, 2, 3, 4) at a time. The ANOVA is calculated using aov_ez() of the afex-package, estimated marginal means are calculated using emmeans() from the emmeans-package, and pairwise contrasts are calculated using pairs(). Bayes factors are computed for the ANOVA and each contrast using the BayesFactor-package.	ANOVA yields p < .05 is interpreted as the subscale score changing significantly with n-back levels. The subscale scores are interpreted as equal between n-back levels if p > .05. Each contrast yielding p < .05 is interpreted as the subscale score being different between those levels, magnitude and direction are inferred from the respective estimate. The subscale scores are interpreted as equal between n-back levels if p > .05. The Bayes factor BF10 is reported alongside every p-value to assess the strength of evidence.

2. Is the effort required for higher n-back levels less attractive, regardless of how well a person performs?	2a) Subjective values decline with increasing n-back level.	F tests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input: Effect size $f = 0.9229582$ α err prob = 0.05 Power $(1-\beta$ err prob) = 0.95 Number of groups = 1 Number of measurements = 4 Corr among rep measures = 0.5 Nonsphericity correction $\epsilon = 1$ Output: Noncentrality parameter $\lambda = 27.2592588$ Critical $F = 3.8625484$ Numerator $df = 3.0000000$ Denominator $df = 9.00000000$ Total sample size = 4 Actual power = 0.9506771	Repeated measures ANOVA with six linear contrasts, comparing the subjective values of two n-back levels (1, 2, 3, 4) at a time. The ANOVA is calculated using aov_ez() of the afex-package, estimated marginal means are calculated using emmeans() from the emmeans-package, and pairwise contrasts are calculated using pairs(). Bayes factors are computed for the ANOVA and each contrast using the BayesFactor-package.	ANOVA yields p < .05 is interpreted as subjective values changing significantly with n-back levels. Subjective values are interpreted as equal between n-back levels if p > .05. Each contrast yielding p < .05 is interpreted as subjective values being different between those levels, magnitude and direction are inferred from the respective estimate. Subjective values are interpreted as equal between n-back levels if p > .05. The Bayes factor BF10 is reported alongside every p-value to assess the strength of evidence.
	2b) Subjective values decline with increasing n-back level, even after controlling for declining task performance measured by signal detection d' and reaction time.	t tests - Linear multiple regression: Fixed model, single regression coefficient Analysis: A priori: Compute required sample size Input: Tail(s) = One Effect size $f^2 = 0.34$ α err prob = 0.05 Power $(1-\beta$ err prob) = 0.95 Number of predictors = 3 Output: Noncentrality parameter $\delta = 3.4000000$ Critical $t = 1.6955188$	[Cursive refers to 2c] Multilevel model of SVs with n-back load level as level-1- predictor and NFC as level-2- predictor controlling for d', reaction time, correct and post- correct trials using subject- specific intercepts and allowing random slopes for n-back level. The null model and the random slopes model are calculated using lmer() of the lmerTest-	[Cursive refers to 2c] Fixed effects yield p < .05 are interpreted as subjective values changing significantly with n-back levels and NFC-score, respectively. Subjective values are interpreted as equal between n-back levels if p > .05. Simple slopes of level for values of NFC yield p < .05 are interpreted as subjective values changing significantly with n-

	2c) SVs decline stronger with increasing task load for individuals with low compared to high NFC scores.	Df = 31 Total sample size = 34 Actual power = 0.9534767	package. Simple slopes analysis and Johnson-Neyman intervals are performed using the functions sim_slopes() and johnson_neyman() of the interactions-package. Bayes factors are computed for the MLM using the BayesFactor-package.	back levels for the specific value of NFC. Subjective values are interpreted as equal between n-back levels for specific values of NFC if $p > .05$. The Bayes factor BF10 is reported alongside every p-value to assess the strength of evidence.
3. Is there a discrepancy between perceived task load and subjective value of effort depending on a person's Need for Cognition?	3a) Subjective values positively predict individual NFC scores.	t tests - Linear multiple regression: Fixed model, single regression coefficient Analysis: A priori: Compute required sample size Input: Tail(s) = One Effect size $f^2 = 0.33$ α err prob = 0.05 Power $(1-\beta$ err prob) = 0.95 Number of predictors = 1 Output: Noncentrality parameter $\delta = 3.3985291$ Critical $t = 1.6923603$ Df = 33 Total sample size = 35 Actual power = 0.9537894	Subjective values are regressed on NFC scores using the lm() function from the stats-package. Bayes factors are computed for the regression using the BayesFactor-package.	Subjective values are interpreted as predicting NFC scores if the slope yields p < .05. Direction and magnitude are inferred from the slope estimate. The Bayes factor BF10 is reported alongside every p-value to assess the strength of evidence.
	3b) NASA-TLX scores negatively predict individual NFC scores.	Westbrook et al. have only reported the p-value here, so we used the regression results of our pilot study, which included NASA-TLX scores and subjective values as predictors of NFC scores.	Subjective values and the area under the curve of each subject's NASA-TLX scores are regressed on NFC scores using	Subjective values and NASA- TLX scores are interpreted as predicting NFC scores if their slope yields p < .05. Direction

<u></u>	,		T
	t tests - Linear multiple regression: Fixed	the lm() function from the stats-	and magnitude are inferred from
	model, single regression coefficient	package.	the slope estimate.
	Analysis: A priori: Compute required		_
	sample size	Bayes factors are computed for	The Bayes factor BF10 is
	Input:	each predictor using the	reported alongside every p-
	Tail(s) = One	BayesFactor-package.	value to assess the strength of
	Effect size $f^2 = 1.10$		evidence.
	$\alpha \text{ err prob} = 0.05$		
	Power $(1-\beta \text{ err prob}) = 0.95$		
	Number of predictors = 2		
	Output:		
	Noncentrality parameter $\delta = 3.6331804$		
	Critical t = 1.8331129		
	Df = 9		
	Total sample size = 12		
	Actual power = 0.9552071		