TESIS DE MAESTRÍA

Ingeniería de Sistemas de Información

Título:

"Aplicación de Gestión de Conocimiento a la Fase de Pruebas de la Ingeniería de Software"

Autor: Mauricio Rozo Rodríguez

Director de Tesis: Inés Casanovas

Buenos Aires - 2021

RESUMEN

La fase de pruebas en la ingeniería de software es un proceso que genera gran volumen de conocimiento, considerándose como un factor crítico para la calidad de producto, por lo tanto, exige una creciente demanda en la mejora de su efectividad en el cumplimiento del conjunto de actividades que la conforman, es ahí donde el uso de métodos y principios de Gestión de Conocimiento se convierte en la base para gestionarla.

En este trabajo, se realiza una revisión sistemática para identificar el estado de situación de la Gestión de Conocimiento aplicado a la fase de pruebas de la Ingeniería de Software en los últimos cinco años. A su vez, se presenta un análisis de las publicaciones seleccionadas, fundamentadas en categorías de clasificación y finalmente se identifica qué técnicas existentes y adaptadas en otros ámbitos informáticos son aplicables y surgen como elementos para potencializar el desarrollo y expansión de la Gestión de Conocimiento en el contexto de la Ingeniería de Software.

Palabras Clave: Gestión de Conocimiento, Fase de Pruebas, Ingeniería de Software, Revisión Sistemática.

ABSTRACT

The testing phase in software engineering is a process that generates a great volume of knowledge, considered as a critical factor for the quality of the product, therefore, it demands an increasing demand in the improvement of its effectiveness in the compliance of the whole of activities that comprise it, that is where the use of methods and principles of Knowledge Management becomes the basis to manage it.

In this work, a systematic review is performed to identify the status of Knowledge Management applied to the testing phase of Software Engineering in the last five years. At the same time, an analysis of the selected publications is presented, based on classification categories and finally, it is identified what existing and adapted techniques in other IT fields

are applicable and emerge as elements to potentiate the development and expansion of Knowledge Management in the context of Software Engineering.

Keywords: Knowledge Management, Testing Phase, Software Engineering, Systematic Review.

AGRADECIMIENTOS

Este trabajo de investigación realizado en la Universidad Tecnológica Nacional de Buenos Aires es un gran esfuerzo en el que participaron varias personas en el proceso, en primer lugar, quiero agradecer a mi directora de tesis PhD Ing. Inés Casanovas por su paciencia y valiosa dirección, además del apoyo para seguir el camino correcto en todo el proceso, esa experiencia y dominio han sido mi motivación para culminar esta etapa de formación académica de manera asertiva.

Asimismo, agradezco a la Dra Florencia Pollo, por su constante acompañamiento en la gestión del proyecto de investigación, es indudable que es un soporte para fortalecer el accionar sobre el quehacer investigativo.

Especialmente agradezco a mi esposa Angélica y a mi hijo Brayand que siempre me acompañaron en cada una de las etapas de mi formación, brindándome el apoyo para no claudicar en el camino.

A mis padres y hermanos que desde la distancia apoyan los retos académicos que proyecto.

Todo lo que he logrado se consiguió gracias al esfuerzo de cada uno, y doy gracias por ello.

ÍNDICE

RESUMEN	2
ABSTRACT	2
AGRADECIMIENTOS	4
ÍNDICE	6
ÍNDICE DE TABLAS	10
ÍNDICE DE FIGURAS	12
NOMENCLATURAS	14
1. INTRODUCCIÓN	16
1.1. Contexto de la Tesis	16
1.2. Objetivos de la Tesis	17
1.2.1. Objetivo General	17
1.2.2. Objetivos Específicos	17
1.2.3. Alcance	18
1.3. Metodología desarrollada	18
1.4. Producción Científica Derivada como Resultados Parciales	21
1.5. Estructura general de la Tesis	21
2. ESTADO DEL ARTE	24
2.1. Conocimiento	24
2.1.1. El conocimiento en las organizaciones	26
2.2. Gestión de conocimiento	27
2.3. Consideraciones de la actualidad de la gestión de conocimiento	38
2.4. Pruebas de Software	42
2.5. Importancia de las PS en la ingeniería de software	47
2.5.1 Desafíos que afronta PS en la ingeniería de software	48

2.6.	Aportes en la gestión de conocimiento aplicado a la ingeniería de software en la fase de	
prueb	pas	50
	5.1. Estado de la gestión de conocimiento y de la ingeniería de software en la fase de pruebas los últimos cinco años	
2.6	5.2. Comparación de los modelos de GC basado en sus componentes57	
2.7.	Conceptualización de las Ontologías	64
2.8.	Tipos de ontologías	65
2.9.	Metodologías para la construcción de ontologías.	66
2.9	0.1. Comparación de los modelos Ontológicos basado en los pasos que proponen69	
2.10.	Herramientas para la construcción de ontologías.	71
2.11.	Gestión de Conocimiento basado en Ontologías	75
2.12.	Ontologías en las pruebas de software	76
2.1	2.1 Ontologías aplicadas a las Pruebas de software	
3. DE	ESCRIPCIÓN DEL PROBLEMA	.84
3.1	Identificación del Problema de Investigación	84
3.2	Preguntas de Investigación	85
4. SC	DLUCIÓN	.88
4.1.	Descripción General de la Propuesta	88
4.2.	Generalidades del modelo de GC	.88
4.2	2.1. Estructura del modelo de GC	
4	4.2.1.1. Instancia de Organización 90	
4	4.2.1.2. Instancia de Ejecución	
4	4.2.1.3. Instancia de Conservación o Mantenimiento	
4	4.2.1.4. Capa Ontológica del modelo	
5. VA	ALIDACIÓN1	08
5.1.	Componentes, Dimensiones e Indicadores de Validación	80
5.2.	Escala de valoración del Instrumento de Investigación	12

Gestión de Conocimiento y su Aplicación a la Fase de Pruebas 🛮 Índice de la Ingeniería de Software

5.3. Descripción del Instrumento de Investigación
5.4. Análisis de resultados de la Aplicación del Instrumento de Investigación a Juicio Experto115
6. CONCLUSIONES
7. REFERENCIAS 126
ANEXOS138
Anexo 1. Puntuación promedio de la escala Likert
Anexo 2. Fortalecimiento de la fase de pruebas dentro de la gestión del proyecto de software140
Anexo 3. Efectividad de operación al ejecutar las fases del modelo de GC aplicado a la fase de
pruebas de la ingeniería de software
Anexo 4. Estadística de las respuestas para los dos cuestionarios definidos para evaluar el modelo
de GC

Gestión de Conocimiento y su Aplicación a la Fase de Pruebas 🛮 Índice de la Ingeniería de Software

ÍNDICE DE TABLAS

Tabla 1. Cronologia de las definiciones de GC segun las categorias propuestas por Martinez	ı
(2014).	35
Tabla 2. Definiciones de GC según los enfoques propuestos por Avendaño y Flores (2016)	37
Tabla 3. Detalle de las entradas, herramientas / técnicas y salidas por fase en el proceso de	:
gestión de calidad propuesto por PMI.	46
Tabla 4. Cadena de búsqueda en el estudio gestión de conocimiento en pruebas de software	52
Tabla 5. Fuente de publicación vs Cantidad de artículos.	53
Tabla 6. Número de artículos por enfoque metodológico.	54
Tabla 7. Número de artículos por método de investigación.	55
Tabla 8. Términos más utilizados relacionados al objeto de investigación.	55
Tabla 9. Comparación de los modelos de GC según los descriptores propuestos por Avendaño	1
y Flores (2016)	59
Tabla 10. Procesos de los modelos de GC.	64
Tabla 11. Metodologías reconocidas y aplicadas en el diseño de ontologías.	70
Tabla 12. Cadena de búsqueda en el estudio ontologías aplicadas a las pruebas de software	78
Tabla 13. Investigaciones que proponen Ontologías aplicadas a las Pruebas de Software	80
Tabla 14. Matriz de Vacancia de las investigaciones analizadas en relación con Ontologías	
aplicadas a las PS.	82
Tabla 15. Valoración cuantitativa agrupadas por dimensión de las investigaciones analizadas	
en relación con las Ontologías aplicadas a las PS.	83
Tabla 16. Beneficios y Limitaciones del tipo de preguntas para el cuestionario.	110
Tabla 17. Componentes, Dimensiones e Indicadores de validación del modelo de GC	
aplicado a la fase de pruebas de la ingeniería de software	112
Tabla 18. Matriz de Consistencia para las dimensiones e indicadores de validación del	
modelo de GC aplicado a la fase de pruebas de la ingeniería de software	114
Tabla 19. Resultados para los indicadores valorados por los Expertos	117
Tabla 20. Resultados para las dimensiones producto de la valoración de los Expertos.	
	119
Tabla 21. Resultados para los componentes del modelo de GC producto de la valoración de	:
los Expertos	120

Gestión de Conocimiento y su Aplicación a la Fase de Pruebas 🛮 Índice de Tablas de la Ingeniería de Software

ÍNDICE DE FIGURAS

Figura 1. Factores Clave para la GC	59
Figura 2. Componentes de la GC	60
Figura 3. Ontología OIL	72
Figura 4. Ontología DAML+OIL	73
Figura 5. Modelo OPL.	74
Figura 6. Propuesta de un modelo de aplicación de Gestión de Conocimiento a la fase de	
pruebas de la ingeniería de software.	89
Figura 7. Representación de la etapa Gestor y Dominio de Conocimiento.	92
Figura 8. Representación de la etapa Identificación de Conocimiento.	93
Figura 9. Representación de la etapa Formalización de Conocimiento.	95
Figura 10. Representación de la etapa Distribución de Conocimiento.	96
Figura 11. Representación de la etapa Validación de Conocimiento	97
Figura 12. Representación de la instancia Conservación o mantenimiento.	98
Figura 13. Componente alcance y definición de términos de la Capa Ontológica del modelo	
de GC	.102
Figura 14. Componente adquisición de conocimiento, especificación de definiciones,	
integración, reutilización, evaluación y documentación de la Capa Ontológica del modelo de	
GC	.105
Figura 15. Componente identificación del software y sustentabilidad de la Capa Ontológica	
del modelo de GC	.106
Figura 16. Escala de valoración Likert.	.113

Gestión de Conocimiento y su Aplicación a la Fase de Pruebas 🏻 Índice de Figuras de la Ingeniería de Software

NOMENCLATURAS

GC: Gestión de Conocimiento

PS: Pruebas de Software

PMI: Project Management Institute (Instituto de Gestión de Proyectos)

OP: Patrón de Ontología

OPL: Lenguaje de Patrón de diseño de Ontologías

1. INTRODUCCIÓN

En este capítulo se define el contexto de la tesis (Sección 1.1), a su vez se identifica el objetivo general (Sección 1.2.1), además los objetivos específicos (Sección 1.2.2) y su alcance (Sección 1.2.3). Además, se describe la metodología desarrollada (Sección 1.3), la producción científica derivada como resultados parciales de la Tesis (Sección 1.4), finalizando con la descripción de la estructura general del presente trabajo de investigación (Sección 1.5).

1.1. Contexto de la Tesis

En la actualidad, la Gestión de Conocimiento es sin duda uno de los activos de las organizaciones, como lo afirman Avendaño y Flores (2016), debido a que provee de manera estructurada y sistemática las herramientas para facilitar que el conocimiento generado permita alcanzar los objetivos estratégicos de las organizaciones y optimizar las decisiones que se tomen para mejorar los procesos.

Es indudable que el conocimiento es el eje, que permite a las empresas permanecer en el mercado, siendo este muy específico para cada organización; el tratamiento de este activo a través de una gestión en el ámbito informático ofrece nuevas perspectivas de crecimiento a las organizaciones.

Ahora bien, entendiendo que, en la ingeniería de software, la gestión de conocimiento está desarrollándose en la medida de las necesidades que expresan las organizaciones de este rubro, es necesario expandir el uso de la gestión de conocimiento dentro de las diferentes fases de la ingeniería de software, debido a la especificidad que exige la evolución de los procesos de cada una.

Ahora bien, una de las fases en la ingeniería de software que genera una gran cantidad de conocimiento y que requiere de una gestión a través de las herramientas informáticas, es la fase de pruebas, la cual presenta un desarrollo sostenible en el tiempo, pero que va perdiendo interés en la comunidad científica, tema que se explora en la sección 2.5, a través de los aportes realizados en los últimos cinco años.

En consecuencia, surgen como interrogantes cuál es el estado de situación de la gestión de conocimiento aplicado a la fase de pruebas de software de la ingeniería de software en los últimos cinco años y qué técnicas existentes y adaptadas en otros ámbitos informáticos, son aplicables en la gestión de conocimiento en la fase de pruebas de software y surgen como elementos para potencializar el desarrollo y masificación en el contexto de la ingeniería de software.

En vista de lo anterior, es necesario resolver estos cuestionamientos para determinar qué técnica es viable utilizar para potencializar el desarrollo de la gestión de conocimiento aplicado a la fase de pruebas en la ingeniería de software.

1.2. Objetivos de la Tesis

Los objetivos de este trabajo de investigación se dividen en un objetivo general a alcanzar (sección 1.2.1), un conjunto de objetivos específicos que definen los pasos a seguir para alcanzar el objetivo general (sección 1.2.2), y el alcance previsto de dichos objetivos (1.2.3).

1.2.1. Objetivo General

Proponer un modelo de aplicación de Gestión de Conocimiento a la fase de pruebas de la ingeniería de software.

1.2.2. Objetivos Específicos

- Identificar qué modelos de gestión de conocimiento son aplicables en la ingeniería de software en el dominio de la fase de pruebas.
- Determinar qué modelos Ontológicos son aplicables en la ingeniería de software en el dominio de la fase de pruebas.

- Adaptar o desarrollar un modelo de GC, incorporando un modelo Ontológico aplicable en la ingeniería de software en el dominio de la fase de pruebas.
- Validar el modelo de GC a través de juicio experto.

1.2.3. Alcance

El presente trabajo de investigación se limita en proponer un modelo de aplicación de Gestión de Conocimiento a la fase de pruebas de la ingeniería de software basado en los desafíos que presenta la GC aplicado a la fase de pruebas de la ingeniería de software identificados y analizando qué técnicas adaptadas en otros ámbitos informáticos son aplicados en la gestión de conocimiento con la integración de la fase de pruebas de la ingeniería de software.

1.3. Metodología desarrollada

Este trabajo se basó metodológicamente en la visión del constructivismo, donde el interés se centra en cómo se crean las significaciones y cómo se construye la realidad. Desde un punto de vista metodológico, las construcciones individuales se escogen y refinan de manera hermenéutica, y luego comparadas y contrastadas de manera dialéctica (Creswell, 2014; Labra, 2016). Así mismo, Creswell (2014), afirma que el conocimiento es una construcción emergente durante el proceso de investigación. En otras palabras, no están simplemente impresos en individuos, sino que se forman a través de la interacción con otros (de ahí el constructivismo social) y a través de normas históricas y culturales que operan en las vidas de los individuos.

De acuerdo con lo anterior, el enfoque metodológico que sustentó el presente trabajo es el cualitativo, donde el investigador hace cuestionamientos basados principalmente en perspectivas constructivistas que demanda estrategias de investigación. El investigador recopila datos abiertos y emergentes con la intención principal de desarrollar conocimiento a partir de los datos (Creswell, 2014).

El diseño de la investigación utilizado fue el descriptivo, como lo fundamenta Hernández Sampieri, Fernández y Baptista (2010), cuando afirman que buscan especificar las propiedades importantes del objeto de estudio.

En relación a los métodos, se utilizó la revisión sistemática documental exploratoria (Souza et al., 2015a) del conocimiento existente en el dominio de la gestión de conocimiento, en el dominio de las pruebas de software y en el dominio de los modelos ontológicos para determinar el estado de la cuestión y fundamentación de la problemática descripto en el Capítulo 3. A su vez, se realizó un estudio analítico y comparativo de las metodologías existentes para determinar su aplicabilidad a la solución de la problemática, concluyendo en la elaboración de una propuesta metodológica que solucione o minimice la brecha de conocimiento detectada en la identificación de la problemática.

El alcance del presente trabajo se basó en los desafíos para gestionar el conocimiento en el dominio de las pruebas en la ingeniería de software. Como solución se desarrolló un modelo de aplicación de Gestión de Conocimiento a la fase de pruebas de la ingeniería de software.

Para validar la solución propuesta, el presente trabajo de investigación se fundamentó en el juicio de expertos seleccionados para recabar su opinión crítica sobre la metodología propuesta. Es una técnica muy utilizada como validación de resultados en investigación cualitativa (Cruz Ramírez et al., 2012; Escobar Pérez y Cuervo Martínez, 2008).

De acuerdo con la EU (European Union, en línea), puede definirse como un grupo de especialistas independientes y reputados en los campos disciplinares que se van a evaluar, que se constituye especialmente para evaluación siguiendo un método de trabajo para elaborar un juicio. Justifica además su utilización para estudiar y evaluar temas en los que otras herramientas son de difícil aplicación a un tiempo y costo razonable. Para Crespo (2007, p. 13) es un "grupo de personas u organizaciones capaces de ofrecer con un máximo de competencia, valoraciones conclusivas sobre un determinado problema, hacer pronósticos reales y objetivos sobre el efecto, aplicabilidad, viabilidad y relevancia que pueda tener en la práctica la solución que se propone, y brindar recomendaciones de qué hacer para perfeccionarla".

Los aspectos y criterios de selección y determinación del número adecuado de expertos son todavía confusos en el ámbito de la investigación (Scapolo y Miles, 2006). Escobar-Pérez y Cuervo-Martínez (2008) señalan que el número de expertos que se debe emplear en un juicio depende del nivel de experticia y de la diversidad/especificidad del conocimiento requerido.

La experiencia profesional en el campo disciplinar es un requisito indispensable (European Union, en línea); el experto debe estar muy calificado en el área objeto de evaluación, ser reconocido y respetado por sus pares, y ser independiente respecto a la propuesta a evaluar.

Es conveniente definir primero el perfil de los expertos de acuerdo con el tema que se vaya a abordar en la evaluación. Cabero Almenara y Llorente Cejudo (2013) recomiendan el uso de Biogramas, detalle de la formación, conocimiento del objeto de estudio y trayectoria de los expertos a partir del cual se infiere su adecuación y pertinencia para la evaluación.

Las ventajas de la validación por expertos radican fundamentalmente en el profundo conocimiento adquirido por los expertos sobre los temas objeto de evaluación que sustentan la credibilidad a las conclusiones, el ahorro de tiempo que conllevaría una implementación de la solución y su posterior evaluación y el costo reducido del procedimiento (European Union, en línea). No existe un método de trabajo único y formal y debe adaptarse a cada objeto de estudio. A los fines de esta investigación y para minimizar los sesgos y limitaciones, la evaluación se centró en la lectura de la documentación por cada evaluador y en la celebración de reuniones individuales del experto con el responsable de la propuesta metodológica. En la fase final del proceso se elaboraron las conclusiones de las opiniones que fueron utilizadas para la tesis en términos de validez y fiabilidad de la evaluación de la solución.

De acuerdo con los conceptos anteriormente descriptos, para el desarrollo de este trabajo de investigación se realizaron de una serie de pasos listados a continuación, que permitieron analizar la problemática planteada y generar una solución al problema objeto de estudio:

- Efectuar una revisión sistemática documental exploratoria: Se realizó una investigación documental consultando libros, artículos de revistas, papers, y/o sitios web reconocidos por la comunidad científica y especializados en el tema, con el objeto de identificar el estado del arte y antecedentes.
- Construir el estado del arte: A partir de la revisión sistemática documental realizada en el punto anterior se identificó el conocimiento existente en el dominio de la gestión de

conocimiento, en el dominio de las pruebas de software y en el dominio de los modelos ontológicos determinando el estado de la cuestión y fundamentando la problemática existente.

- Desarrollo del modelo metodológico de aplicación de GC a la fase de pruebas de la ingeniería de software: A partir del contexto definido en el estado del arte definido en el paso anterior, se define una serie de fases, actividades y tareas que conforman la solución propuesta para lograr el objetivo general del presente trabajo de investigación.
- Validación del modelo desarrollado por los expertos: Implica el juicio experto recabando su opinión crítica sobre el modelo propuesto.
- Exponer conclusiones y futuras líneas investigación: Se presentan las conclusiones a partir del punto anterior que puedan confirmar o no las preguntas de investigación planteadas, a su vez descubrir posibles limitaciones que puedan originar campos para futuras líneas de investigación.

1.4. Producción Científica Derivada como Resultados Parciales

Durante el desarrollo del presente trabajo de investigación se han realizado las siguientes comunicaciones como resultados parciales:

Rozo Rodríguez M., & Casanovas I. (2018). La Gestión de Conocimiento Aplicado a la Fase de Pruebas de la Ingeniería de Software - Revisión Sistemática. 6to Congreso Nacional de Ingeniería Informática / Sistemas de Información. CoNaIISI. Publicación online -**ISSN** 2347-0372. Disponible online desde noviembre de 2018: https://www.conaiisi2018mdp.org/memorias/memorias.html#

Estructura general de la Tesis 1.5.

El trabajo se estructura en siete capítulos, que se describen a continuación:

En el Capítulo 1, Introducción, se presenta el contexto del Trabajo de Maestría y se establecen las bases del Trabajo de Investigación. Se definen además el objetivo general y específicos, el alcance de la investigación, y la metodología de desarrollo a utilizar.

En el Capítulo 2, Estado del Arte, se realiza una investigación documental sobre la temática presentada, identificando qué modelos de gestión de conocimiento son aplicables en la ingeniería de software en el dominio de la fase de pruebas. Asimismo, se determina qué modelos Ontológicos son aplicables en la ingeniería de software en el dominio de la fase de pruebas.

En el Capítulo 3, Descripción del problema, se describe la problemática identificada y el motivo por el cual se realiza este Trabajo de Investigación.

En el Capítulo 4, Solución, se propone un modelo de Gestión de Conocimiento, incorporando un modelo Ontológico aplicable en la ingeniería de software en el dominio de la fase de pruebas.

En el Capítulo 5, Validación, se valida el modelo de Gestión de Conocimiento a través de juicio experto.

En el Capítulo 6, Conclusiones se presentan las conclusiones del estudio realizado, identificando las futuras líneas de investigación.

En el Capítulo 7, se listan y detallan las Referencias Bibliográficas que fundamentan los conceptos tratados en el presente trabajo de investigación.

Asimismo, se incluyen los Anexos que describen la puntuación propuesta al aplicar los instrumentos de investigación (Anexo 1), los cuestionarios utilizados para validar la solución propuesta (Anexo 2 y Anexo 3).

Gestión de Conocimiento y su Aplicación a la Fase de Pruebas | Introducción de la Ingeniería de Software

2. ESTADO DEL ARTE

En este apartado se presenta la definición del concepto de conocimiento y cuál es su importancia dentro de las organizaciones (Sección 2.1). Más adelante se contextualiza el concepto de gestión de conocimiento, refiriendo los diferentes enfoques en términos generales (Sección 2.2), seguidamente se exponen las consideraciones de la actualidad de la gestión de conocimiento (Sección 2.3).

A continuación, se define el concepto de pruebas de software basado en lo que propone el estándar PMI (Sección 2.4), para luego describir la importancia de las pruebas de software en la ingeniería de software (Sección 2.5), luego se muestran los aportes en la gestión de conocimiento aplicado en las pruebas de software (en adelante PS) (Sección 2.6).

En relación con las ontologías en este apartado se describen los aspectos teóricos conceptuales de las ontologías (Sección 2.7), más adelante se definen los tipos de ontologías existentes aplicables a la PS en el dominio de la GC (Sección 2.8), a su vez se refiere a las metodologías para la construcción (Sección 2.9), qué herramientas son útiles para la construcción (Sección 2.10). Luego se identifica como la GC se basa en ontologías (Sección 2.11), para terminar en definir por qué las ontologías se aplican en PS (Sección 2.12).

2.1. Conocimiento

El concepto de conocimiento es muy utilizado en diferentes ámbitos, sin embargo, su significado puede no ser exacto de acuerdo con su contexto, en ese sentido, Díaz y Millán (2013) hacen una aproximación de su definición donde lo describe como "las creencias cognitivas, confirmadas, experimentadas y contextuadas del conocedor sobre el objeto, las cuales estarán condicionadas por el entorno, y serán potenciadas y sistematizadas por las capacidades del conocedor, las cuales establecen las bases para la acción objetiva y la generación de valor". (p.87)

Para Durán, Gamboa y Builes (2017) el conocimiento es la "colección de información que pueden ser apropiadas o interiorizadas por las personas, que puede ser útil para ellas" (p

7). Complementando esta definición, Rincón (2017), expresa al conocimiento como "una combinación de valores, experiencia estructurada e información originada y aplicada en la mente de las personas que pueden arraigarse en las rutinas, procesos, prácticas y normas institucionales para la adquisición e incorporación de nuevas experiencias en las organizaciones" (p 55).

Rincón (2017), indica que el conocimiento puede ser interpretado como "el conjunto de información procesada que posee una persona sobre un área específica o la totalidad del universo, fundamentada en las leyes de la ciencia y las propias experiencias" (p 55). Esta definición la reafirma Marulanda, López, y Mejía (2017), cuando indica que el conocimiento es la capacidad del individuo para establecer distinciones dentro de un dominio de acción, con base en una apreciación del contexto.

Avendaño y Flores (2016), conciben la naturaleza del conocimiento, bajo dos perspectivas: una objetivista que entiende el conocimiento como un recurso físico y tangible; y otra, basada en que el conocimiento es personal e inmerso en prácticas inicialmente individuales para luego ser grupales.

En el contexto de las organizaciones, el conocimiento para Nonaka y Takeuchi (2000) es la capacidad de saber hacer, asociado a las habilidades de interpretación y empleo de conceptos; implica dos formas de conocimiento: uno en el que saber hacer está incorporado a la experiencia del trabajo diario, este tiene un carácter implícito o tácito que es difícil de coordinar y trasmitir; y un conocimiento ligado a la comprensión intelectual de los problemas, explícito y perfectamente codificable y trasmisible. Es por ello por lo que como lo afirma Straccia, et al. (2017) el conocimiento "se constituye en el recurso estratégico más importante; y la habilidad para generarlo, adquirirlo, codificarlo, transferirlo, aplicarlo y reutilizarlo, se ha convertido en la competencia sustancial para la obtención de una ventaja competitiva sostenible" (p 576).

Wang, Noe y Wang (2014), definen el conocimiento como la información procesada por individuos, que incluye ideas, hechos, experiencias y juicios relevantes para el desempeño individual, de equipo y organizacional, donde su intercambio, redunda en el logro de los objetivos organizacionales, a su vez colabora con otros para resolver problemas, desarrollar nuevas ideas o implementar políticas o procedimientos. Este intercambio, puede ocurrir a través de interacciones cara a cara o mejoradas por tecnología con otros a través de sistemas de gestión del conocimiento.

Por otra parte, para Park y Lee (2014) el intercambio de conocimiento es la actividad más valiosa, debido a que alienta a los participantes de los proyectos en la ingeniería de software a mantener el capital social, ser innovadores y creativos, requisito para ser exitosos. Chandrasegaran, et al. (2013) precisan que el conocimiento no está directamente disponible, sin embargo, se obtiene mediante la interpretación de la información a través del análisis de datos en una organización en forma de observaciones, resultados computacionales y cantidades fácticas. A partir de ahí, este conocimiento se comparte y se comunica, con el objetivo de solucionar problemas.

2.1.1. El conocimiento en las organizaciones

El conocimiento en los últimos años ha cobrado importancia dentro de las organizaciones, en ese sentido, Silva, Cerda y Altamirano (2017) lo consideran como "el elemento para generar valor y riqueza en las organizaciones y en la sociedad es el conocimiento, quien aporta ventaja competitiva a las nuevas economías mundiales" (p 642).

Coincidentemente, Alderete, Flores, y Mariño (2017) describen que una organización concibe al conocimiento como el "recurso, proceso, producto, medio y sistema, siendo éste un activo de las organizaciones que debe sobrevivir en un entorno complejo y competitivo. Por ello se requiere transformar el conocimiento personal para asegurar su permanencia y utilidad a nivel organizacional" (p 181). En ese sentido, Silva, et al. (2017) refieren que la nueva economía "se encuentra basada en el conocimiento teniendo como características a mercados dinámicos, competencia global, una estructura organizativa en redes, el manejo de industrias de una producción flexible, así el motor del crecimiento es la innovación y el conocimiento" (p 643).

Para Liberona y Ruiz (2013) "el conocimiento y la cultura organizacional de las empresas forman parte fundamental del llamado capital intelectual, el cual es sin duda un valor estratégico dentro de los activos intangibles de la organización" (p 152). Así mismo, estos autores establecen que "existe un amplio acuerdo entre investigadores, empresarios y gerentes de que el conocimiento constituye uno de los activos intangibles estratégicos para la organización" (p 152). Ponjuán (2015), enfatiza que el conocimiento está considerado como el activo más valioso que poseen las organizaciones y el factor más importante para el crecimiento económico en la actualidad.

Por otro lado, Marulanda, López y Castellanos (2016) explican que es posible consolidar una organización que tenga una cultura apropiada para "promover la creación, transferencia y reutilización del conocimiento. Esto se logra mediante el desarrollo de una cultura de apertura y de compartir, mediante la motivación, la participación de personas en el día a día de los procesos de negocio" (p 163).

Además, Rincón (2017), expresa que, en este tipo de sociedad, el "capital y el trabajo son reemplazados para dar lugar a una nueva economía fundamentada en el conocimiento, dejando atrás la economía industrial a fin de alcanzar la optimización de los procesos organizacionales, herramientas, productos y servicios e incrementar la productividad" (p 56). Marulanda, et al. (2017), reafirma que el conocimiento organizacional es la capacidad que los miembros de una organización han desarrollado para hacer distinciones en el proceso de llevar a cabo su trabajo en contextos concretos.

Es indudable, que el conocimiento dentro de las organizaciones como lo explica López y Jiménez (2017) "se ha ido incrementando considerablemente en los últimos tiempos; en ese sentido, se ha vuelto una necesidad obtener evidencia empírica sobre cómo las organizaciones aplican herramientas para realizar esa gestión del conocimiento" (p 180).

Gestión de conocimiento 2.2.

El conocimiento está inmerso dentro del quehacer organizacional, y en ese sentido el concepto de gestión de conocimiento (GC de ahora en adelante), toma relevancia y es definido desde varios enfoques. Para Pérez-Montoro (2016) la GC es "la disciplina encargada de diseñar e implementar sistemas con el objetivo de identificar, capturar y compartir el conocimiento de una organización de forma que pueda ser convertido en valor para la misma" (p 527).

Ponjuán (2015), propone a la GC como la comprensión de los flujos de información de la organización implementado sobre prácticas de aprendizaje organizacional que explicita lo que yace en sus conocimientos de base. El objetivo de este enfoque es el empleo intensivo de la información organizacional, orientada hacia el conocimiento para lograr beneficios en la organización.

Marulanda, et al. (2017), postulan que la GC empieza con la creación, descubrimiento y recolección interna de conocimiento y de las mejores prácticas, seguido por compartir y entender las prácticas que la organización puede usar, y de esta manera ajustar y aplicar dichas prácticas a nuevas situaciones, en la búsqueda de la mejora en el desempeño organizacional.

Para Durán et al. (2017), la GC es el conjunto de principios, métodos, técnicas, herramientas, métricas y tecnologías que permiten obtener los conocimientos precisos para los que lo necesitan del modo adecuado, en el tiempo oportuno de forma eficiente y sencilla, con el fin de conseguir una actuación lo más inteligente posible. Así mismo, establecen que la GC comprende los siguientes elementos:

- Conceptualizar las diferencias y la relación existente en el trial de los conceptos: dato, información y conocimiento.
- La instanciación que realiza un individuo por medio del procesamiento cognitivo de los datos y la información, para ser usados en un contexto especifico.
- La concepción de conocimiento, la cual es propia del individuo, y su utilidad sujeta a los procesos de compartir, interpretar e interiorizar de otras personas.

En relación con el contexto fundacional, Pérez-Montoro (2016) considera que se cristalizaron dos escuelas que describen la manera de entender la disciplina de GC: la primera, definida como la escuela oriental, entiende la GC como un proceso que ve a la empresa como un organismo vivo que interacciona con el entorno, en donde el conocimiento se concibe más como un proceso psicológico, relacionándolo con la experiencia. Por otro lado, la otra escuela occidental entiende el conocimiento como un objeto a que identifica la empresa como un mecanismo de procesar información, donde el conocimiento se piensa como una producción obtenida a partir de la gestión adecuada de la información y el valor de este se consigue cuando se logra transformar en conocimiento explícito representado en documentos que puedan ser tratados y gestionados.

Sin embargo, desde la perspectiva de Martínez (2014), la GC se puede entender bajo la agrupación de tres categorías a saber:

- 1. La GC entendida como la explotación de un recurso a disposición de la organización, donde el conocimiento existe y está a disposición de la organización, que lo puede mover, almacenar y distribuir sin que exista ningún conflicto.
- 2. Definida desde una perspectiva humana productiva, donde el humano es el originador del conocimiento, el poseedor del recurso y el que lo utiliza.
- 3. Conceptualizada en base a una descripción del proceso de producción y aplicación del conocimiento.

La siguiente tabla (ver tabla 1), describe cronológicamente las definiciones que los autores han realizado sobre GC y a qué categoría pertenecen según Martínez (2014).

Año	Categoría	Autor(es)	Definición de GC
1995	Humano	Leonard-Barton	La construcción de conocimiento en una organización ocurre combinando las distintas individualidades de las personas con un determinado conjunto de actividades; es esta combinación lo que posibilita la innovación y es esta combinación lo que los gestores gestionan.
1996	Humano	Marshall, Prusak y Shpilberg	Supone la tarea de reconocer un activo personal (encerrado en la mente de un ser humano) y convertirlo en un activo empresarial al que se pueda acceder y que pueda ser utilizado por un amplio número de individuos para la toma de decisiones en la organización.
1996	Proceso	Marshall, Prusak y Shpilberg	El conocimiento en el nivel organizativo puede: "ser generado, ser accedido [] en fuentes internas o externas; ser transferido [] mediante la formación o informalmente mediante las relaciones con los

	I	1	T
			compañeros de trabajo; representarse en forma de
			comunicados, gráficos y presentaciones; Incorporarse a
			los procesos, sistemas []; ser facilitado mediante el
			constante desarrollo de una cultura basada en
			incentivos y liderazgo de gestión que valore, comparta
			y emplee el conocimiento".
		Essers y	La GC en una empresa se refiere a la gestión de la
1997	Humano	Schreinemakers	manera en que las personas manejan el conocimiento
		Schreihemakers	en situaciones prácticas concretas
			Es el proceso de identificación, captura y
		O'Dall	aprovechamiento del conocimiento para ayudar a la
1998	Explotación	O'Dell y	compañía a competir. El intercambio y la transferencia
		Grayson	son evidencias tangibles de una organización que
			aprende.
			Es más que la aplicación de TIC's para gestionar
	Explotación	Owen	aplicaciones intensivas en conocimiento. Es una nueva
			manera de pensar las modernas organizaciones. La GC
			ayuda a los directivos a poner en relación todos los
1999			aspectos de la organización con los temas relacionados
			con el conocimiento, facilitándoles responder
			cuestiones tales como cómo apoyar a los trabajadores
			del conocimiento o cómo transformar el conocimiento
			en productos y servicios.
			Se refiere a un proceso organizacional y sistémico para
		Alavi y Leidner	adquirir, organizar y comunicar el conocimiento de los
1999	Humano		empleados tanto explícito como tácito a fin de que
			otros empleados puedan utilizarlo para ser más
			efectivos y productivos en su trabajo.
1999	Humano	Abell y Oxbrow	Se trata de personas conectando con personas.

		1	
			No es un producto de software, ni tampoco una
			categoría de software. No es ni siquiera una cuestión
			de técnica. Es algo que empieza con los objetivos y los
1999	Humano	Gates	procesos de la empresa y con el reconocimiento de la
			necesidad de compartir información. La GC no es más
			que gestionar los flujos de la información y llevar la
			información correcta a las personas que la necesitan de
			manera que sea posible hacer algo con prontitud.
2000	Explotación	Srikantaiah	Es la suma del capital intelectual, el capital social y los
2000	Explotacion	Silkalitalali	sistemas.
			Se utiliza para describir el desarrollo de herramientas,
2000	Evalotoción	De Long y	procesos, sistemas, estructuras y culturas para mejorar
2000	Explotación	Seeman	la creación, compartición y uso del conocimiento
			crítico para la toma de decisiones.
			Es una disciplina que promueve una aproximación
	Humano	Kim	integrada de la identificación, gestión e intercambio de
			todos los activos de conocimiento de una organización
			incluida la experiencia que reside en cada trabajador.
2000			La GC implica tanto la identificación y análisis del
2000			conocimiento del que se dispone y del conocimiento
			que se necesita, como la planificación y control de las
			acciones encaminadas a desarrollar los activos de
			conocimiento precisos para alcanzar los objetivos de la
			organización.
			Significa gestionar los procesos por los que pasa el
2000	Proceso	Odriozola	conocimiento []. Básicamente se puede decir que el
			conocimiento se crea, se almacena y se transfiere.
			Definen la GC de una forma amplia, como aquella
	Proceso	Swan, Newell y	actividad que comprende cualquier proceso y práctica
2000		Robertson	relativa a la creación, adquisición, captura, intercambio
			y uso del conocimiento, habilidades y pericia.
			, , , ,

			El término GC se usa comúnmente para describir el
2000	Proceso	Duffy	proceso de localizar, organizar, transferir y usar
			información.
			Concierne el lado humano de la información, el saber
			humano que se encuentra en las mentes de las
			personas, el aspecto documental de la información, lo
2001	Humano	Todd	tangible, los artefactos informativos que han registrado
			las ideas de generaciones previas y los sistemas que
			permiten generar una estructura que facilite y potencie
			su usabilidad.
			Es solo una fracción del capital intelectual. La GC se
2001	Proceso	Crainer	ocupa del almacenaje, transferencia y migración del
			conocimiento.
2002	Evaletesián	Dantis	Hace referencia a cómo utiliza una organización su
2002	Explotación	Bontis	capital intelectual.
		Munera Torres	Es aquella nueva forma de optimizar los diferentes
	Explotación		procesos y procedimientos que se realizan en una
			empresa, teniendo como base no sólo el conocimiento
2002			que aparece contenido en los documentos impresos o
2002			digitales, electrónicos, etc., sino también aquel tipo de
			conocimiento que está en cada uno de los individuos y
			actividades que se desarrollan cotidianamente dentro
			de la empresa.
			Se puede entender como un proceso de creación,
			transferencia e integración (CTI) del conocimiento
			poseído por cada uno de los miembros de la empresa,
		ZárragaOberty	que da como resultado el conocimiento organizativo
2002	Proceso		que será la fuente para la obtención de ventajas
			competitivas. [la transferencia] se refiere al paso del
			conocimiento desde unos individuos a otros [] Con
			el término integración se quiere representar la
			instalación del nuevo conocimiento en dichos

			individuos mezclándose con el que, ya residía en los
			mismos y pasando a constituirse todo en uno
			Sería un método para cubrir una necesidad histórica de
2002	11	Pascual y	las empresas: "retener el conocimiento generado por su
2003	Humano	Sundardas	capital humano durante el periodo de permanencia de
			este en la empresa"
		G :	Incluye todas las actividades que utilizan conocimiento
2007	Evplotogión	Greiner, Böhmann y	para alcanzar los objetivos de la organización con el
2007	Explotación	Kremar	fin de afrontar los desafíos del medio y mantener una
		Kiciliai	posición competitiva en el mercado.
			Es el proceso de crear, capturar y usar el conocimiento
			para mejorar el rendimiento organizacional. Se refiere
	Proceso		a una serie de prácticas y técnicas utilizadas por las
2007		Landali v Zalla	organizaciones para identificar, representar y distribuir
2007		Landoli y Zollo	el conocimiento, el saber-como, la pericia, el capital
			intelectual y otras formas de conocimiento con el
			objetivo de potenciar, reutilizar y transferir el
			conocimiento y el aprendizaje en toda la organización.
			Se refiere a un esfuerzo deliberado y constante para
2007	Proceso	Saito	mejorar la utilización, transferencia y creación de
			conocimiento en las organizaciones
			Coordinación deliberada y sistemática de las
		Sutton	comunicaciones, personas, procesos, estructuras y
			tecnología de una organización con el fin de producir
			una ventaja competitiva sostenible o conseguir altos
			rendimientos a lo largo del tiempo [] El proceso de
2007	Proceso		coordinación se alcanza mediante la convergencia en
			un ciclo de vida del conocimiento de la acción de la
			persona, grupo y empresa. El ciclo de vida del
			conocimiento integra la identificación, creación,
			adquisición, captura, protección, producción,
			publicación, intercambio y, eventualmente, descarte de

	1		
			los recursos y activos de conocimiento en una memoria
			organizacional
			Persigue el claro objetivo de implementar programas
			que, mediante el correcto fomento y administración del
2008	Explotación	Pérez Montoro	conocimiento, permitan a las empresas conseguir ese
			valor añadido que las distingan frente a sus
			competidoras y sobrevivir en el entorno.
			Supone la gestión de las actividades de los trabajadores
			del conocimiento, gestión que se alcanza facilitando,
2008	Humano	Gao, Meng y	motivando, destacando y respaldando a estos
		Clarke	trabajadores del conocimiento y proporcionando o
			alimentando un entorno de trabajo adecuado
			Es el proceso de adquirir conocimiento de la
		Jones y Leonard	organización o de otra fuente y convertirlo en
			información explícita que los empleados pueden
2009	Humano		utilizar para transformarla en conocimiento propio que
			les permite crear y aumentar el conocimiento de la
			organización
			Es el proceso de crear, almacenar, compartir, aplicar y
	Proceso	Proceso IFLA	reutilizar el conocimiento organizacional para
2009			posibilitar que una organización alcance sus metas y
			objetivos.
			La palabra o acción de gestionar, cuando se aplica al
		Casas Domínguez, González García, González Espejo y Hernández Alvarado	conocimiento, implica un conjunto de actividades y
	Proceso		procesos que, en el caso del conocimiento expreso,
			persiguen identificarlo y organizarlo para poder
2009			recuperarlo cuando se necesite y explotarlo, y en el
2007			caso del conocimiento implícito se proponen
			transformar la mayor cantidad posible de conocimiento
			tácito en explícito o conectar quien tienen las preguntas
			con quien tiene las respuestas
			con quien nene las respuestas

2010	Explotación	Hislop	Sería cualquier intento por parte de una organización para gestionar el conocimiento, o los procesos de conocimiento, con el fin de mejorar en cualquier aspecto el rendimiento de dicha organización.
2010	Explotación	Kazemi y	Es el proceso mediante el cual las organizaciones
	_	Allahyari	extraen valor de sus activos intelectuales
			Trata, realmente, de la gestión del contexto y
2010	Proceso	Choo y	condiciones en las que el conocimiento puede ser
2010	11000	Alvarenga Neto	creado, compartido y puesto en uso con el fin de
			alcanzar las metas de la organización
			Se refiere al proceso global de actividades que afectan
2011	Proceso	Aharony	al conocimiento: su creación, captura, identificación,
2011		Anarony	organización, almacenaje, representación, transferencia
			y reuso.
			Identifica y explota, en el trabajo cotidiano, el
			conocimiento creado en la organización y el adquirido
		González-	del exterior, generaliza las mejores prácticas, propicia
2012	Explotación	García y Parés-	el incremento del capital intelectual de la organización
		Ferrer	y su valor de mercado, a la vez que facilita la
			generación de nuevos conocimientos y su
			materialización en productos y servicios

Tabla 1. Cronología de las definiciones de GC según las categorías propuestas por Martínez (2014) Fuente: Elaboración propia basada en la categorización propuesta por Martínez (2014).

Por otro lado, Avendaño y Flores (2016), plantean que las definiciones de GC pueden agruparse en dos enfoques: el organizacional y el económico.

El enfoque organizacional establece que el único recurso realmente competitivo de la empresa es el conocimiento; y considera que la primordial tarea de la empresa debe ser la sistematización de los procesos mediante los cuales sus empleados adquieren y generan los conocimientos necesarios para responder a los retos presentes, anticiparse a los retos futuros y adaptarse para enfrentar oportunidades o amenazas que definan sus escenarios de actuación. Este enfoque ayuda a comprender el propósito que busca la empresa con el dominio de ciertas disciplinas del conocimiento, facilitando, al mismo tiempo, adoptar los objetivos y las estrategias necesarios para estimular la creatividad en la gestión de las políticas de formación de recursos humanos.

El enfoque económico o rentable establece que la GC es un proceso mediante el cual las organizaciones generan riqueza a partir de sus activos intelectuales o de conocimientos para generar ventajas competitivas, y, a su vez, la habilidad para crear mayor valor a partir de pericias medulares de la organización. Este enfoque contribuye a identificar los recursos disponibles por la organización y ayuda a comprender la relación entre los conocimientos, las necesidades, los productos y el valor agregado. En él se destaca la importancia del potencial para generar recursos económicos a través de la GC. (Avendaño y Flores, 2016, p 210)

Avendaño y Flores (2016), presentan las definiciones de GC agrupadas por los enfoques propuestos, los cuales se describen en la siguiente tabla (ver tabla 2).

Autor	Año	Definición	Clasificación
Nonaka y	1995	Capacidad de la empresa para crear	Organizacional
Takeuchi		conocimiento nuevo, diseminarlo en la	- Económico
		organización e incorporarlo en productos,	
		servicios y sistemas.	
Sveiby	2000	Arte de crear valor con los activos	Económico
		intangibles de una organización.	
Bueno	2000	Función que planifica, coordina y controla	Organizacional
		los flujos de conocimiento que se producen	
		en la empresa en relación con sus	
		actividades y con su entorno, con el fin de	
		crear unas competencias esenciales.	
Rodríguez	2006	Conjunto de procesos sistemáticos	Organizacional
		(identificación y captación del capital	- Económico
		intelectual; tratamiento, desarrollo y	
		compartimiento del conocimiento; y su	
		utilización) orientados al desarrollo	

		organizacional o personal y, consecuentemente, a la generación de una ventaja competitiva para la organización o el individuo.	
Wiig	2007	Campo integrado que se alimenta de múltiples disciplinas que permiten desarrollar iniciativas en diversos ámbitos y en diferentes niveles dentro de la empresa.	Organizacional
Flores Urbáez y Peña-Cedillo	2008	Proceso organizacional dirigido a crear una cultura del compartir, generar, orientar, aplicar y evaluar el conocimiento con la finalidad de ser aplicado por los miembros de la organización para hacerla más productiva y competitiva a través de procesos, productos y servicios innovadores, permitiendo tomar decisiones exitosas en entornos dinámicos.	Organizacional - Económico
Daft	2010	Esfuerzo sistemático en encontrar, organizar y dar acceso al capital intelectual de la organización e introducir una cultura de aprendizaje continuo y de compartir conocimiento, de tal forma que las actividades de la organización puedan basarse en el conocimiento existente.	Organizacional
Geisler y Wickramasinghe (2015)	2015	Enfoque multidisciplinario orientado a una visión completa y sistemática de los activos de información de una organización, su identificación, captura, recolección, organización, indexación, almacenamiento, integración, recuperación y distribución.	Organizacional

Tabla 2. Definiciones de GC según los enfoques propuestos por Avendaño y Flores (2016). Fuente: Avendaño y Flores (2016).

2.3. Consideraciones de la actualidad de la gestión de conocimiento

En la tipificación del estado de la cuestión en la GC en el término de los últimos cinco años, se han identificado diferentes propuestas de investigación, entre estas, Park y Lee (2014) exponen que en la medida que una organización requiera de un sistema informático de mayor complejidad, es necesario compartir el conocimiento. En esta perspectiva, la capacidad que tengan los miembros de los proyectos para aprender y utilizar el conocimiento tanto de la tecnología como del dominio de la organización de manera eficiente es fundamental para la exitosa implementación de sistemas de información. Si bien, es un planteamiento basado en la identificación de las limitaciones del personal interviniente de los proyectos de sistemas, hallaron que la complejidad de un proyecto promueve que el intercambio de conocimiento entre los participantes sea más eficiente, debido a que este tipo de proyectos inducen al aumento de la tasa de fallas.

Lakhani, Lifshitz-Assaf y Tushman (2013), formulan para la resolución de problemas dentro de las organizaciones, la descomposición de tareas y la distribución del conocimiento. En ese sentido, sugieren que las tareas críticas se pueden modularizar y el conocimiento de resolución de problemas esté ampliamente distribuido y disponible a través de herramientas tecnológicas, así se llega a una innovación abierta y complementa las lógicas de innovación tradicionales.

Por su parte, Liberona y Ruiz (2013), a través de su investigación, buscaron explorar el estado general de la implantación de programas de gestión de conocimiento e identificaron que existe una brecha entre la teoría y la implementación de prácticas de GC. Las empresas cuentan con una base conceptual limitada sobre el conocimiento y su proceso de gestión, no tienen un enfoque sistemático sobre cómo apropiarse y compartir el conocimiento, a su vez, desconocen los beneficios de la GC concentrándose en resolver problemáticas puntuales a corto plazo en vez de mejorar la eficiencia del aprendizaje organizacional, su correcta utilización y su desarrollo. Para mitigar estas falencias, proponen que se deben acordar políticas claras en el uso de la información dentro de las organizaciones y establecer reglas en la medición de resultados, a su vez desarrollar diferentes programas de colaboración para compartir conocimiento, donde los empleados puedan aportar.

Cárdenas y Spinola (2013) formulan que en las organizaciones existen diferencias entre la perspectiva de búsqueda de información de un usuario experto respecto de un novato mediante el uso de sistemas de GC, fundamentado en los requisitos de los expertos y sus relaciones con las personas involucradas en el desarrollo de dichos sistemas, de esta manera proponen como solución que un modelo sigue siendo un enfoque teórico y sugiere una base para que la ingeniería de software desarrolle sistemas de GC personalizados.

Stapel y Schneider (2014), indican que, en el desarrollo de software las empresas requieren que se comparta el conocimiento sobre sus valores y procesos, enfatizando el permitir el flujo de información. En ese sentido, exponen el método Flow para gestionar el conocimiento sobre el flujo de información, capturándolo, visualizándolo y modelándolo, a través del modo de transferencia y la distinción de sus flujos.

Evans, Dalkir y Bidian (2015), en su investigación, argumentan que el objetivo empresarial es mejorar la forma en que las empresas conceptualizan, diseñan estrategias y administran el conocimiento organizacional, en ese sentido y basado en el análisis de los modelos existentes sobre GC, proponen un modelo que involucran siete fases no secuenciales (identificar, almacenar, compartir, usar, aprender, mejorar y crear), buscando una visión holística del ciclo de vida del conocimiento, de esta manera amplía los modelos anteriores al incluir diferentes formas de conocimiento, integrando la noción de aprendizaje de segundo orden o de doble ciclo, y asociando algunas iniciativas y tecnologías facilitadoras para cada una de sus fases.

Por otro lado, Yang, Huang y Hsu (2014), indican que la adopción del liderazgo del conocimiento está asociada con la GC del cliente. Además, sugieren que la implementación de la GC del cliente influye en el rendimiento de la organización a través del rendimiento del proyecto. También muestran que la relación positiva entre la GC del cliente y el rendimiento del proyecto depende de la complejidad de los datos.

Basado en un marco de evaluación, Dehghani y Ramsin (2015), definen los criterios para evaluar las metodologías de desarrollo del sistema de gestión del conocimiento, y detectar las fortalezas y debilidades de las metodologías de desarrollo de GC. Entre las fortalezas, identifican que la mayoría de las metodologías evaluadas han cubierto la identificación, evaluación y clasificación del conocimiento organizacional, y han considerado la importancia de lograr el éxito a corto plazo. En relación con las debilidades, las metodologías de desarrollo de sistemas de GC no son prácticas en el ámbito de aplicación, las fases de análisis y mantenimiento están mal cubiertas.

En relación con la falta de comprensión del papel de la colaboración del cliente en el proceso de innovación y la orientación de la innovación en el sistema de GC, Fidel y Cervera (2015), proponen un modelo para que las empresas mejoren la innovación, faciliten la detección de nuevas oportunidades de mercado y respalden la gestión de las relaciones con los clientes a largo plazo, explorando el efecto de la GC y la colaboración del cliente en los resultados de marketing.

Morales y Gutiérrez (2015) lograron extraer las implicaciones prácticas para la implementación de la GC en la empresa, como por ejemplo la pertinencia de establecer el proceso de GC como eje central de esta actividad y considerar los principales modelos como guías de aplicación que requieren tener en cuenta el contexto, los resultados empresariales y las particularidades de la organización.

García-Holgado, Cruz y García-Peñalvo (2015), realizaron un estudio de caso, en el cual, proporcionan un análisis del estado de la GC en las organizaciones con administración pública, desde el punto de vista de su arquitectura, con el fin de identificar factores que sean exitosos y puedan ser replicados en otros contextos. De acuerdo con lo anterior, presentan como se pueden afrontar los retos de la GC en relación con el modelo Suricata, comparando cómo esta arquitectura organiza los procesos de GC en este tipo de organizaciones.

En el ámbito del estudio de la relación entre confianza, cultura colaborativa e intercambio de conocimientos tácitos en la gestión de proyectos como una fuente de creatividad en el equipo dentro del contexto de la entrega de valor a través del conocimiento, Kucharska y Kowalczyk (2016), plantean que si bien, existen investigaciones relacionadas a la relación anteriormente descripta, no hay un trabajo que presente la relación anterior directamente en un modelo que también incluya el conocimiento tácito, demostrando que ofrecer valor a través del conocimiento no solo requiere un sistema de memoria transaccional sino, un enfoque diligente de la gestión de recursos humanos, con especial énfasis en la cultura de la colaboración, para garantizar el intercambio de conocimientos tácito, cuyo elemento clave es la confianza entre los equipos miembros.

Para el caso de las organizaciones más pequeñas como las pymes, Marulanda, López y Castellanos (2016), estudiaron la cultura organizacional, analizando como influye en las buenas prácticas para la GC, en ese sentido las organizaciones han avanzado poco en la definición de estrategias que permitan que se enfoquen en hacer realidad la GC desde los planteamientos y desde la aplicación, concluyendo que hay una falta de respuesta de las personas del ámbito empresarial, lo que hace pensar que existe la necesidad de generar espacios de reconocimiento de la GC en este tipo de organizaciones.

En relación con la identificación de evidencias de mejoras en la productividad a través de la innovación y la gestión del conocimiento, Vargas, Durán y Méndez (2016), buscan determinar si el factor residual (cambio tecnológico) como se le conoce al factor que es atribuible a la innovación en términos de mejoramiento de la productividad, es determinante en este sentido frente a los tradicionales factores de producción. Concluyen que la relación entre innovación, GC y productividad parece no ser estática; es muy dinámica y debe incorporar al análisis los elementos del entorno competitivo y de la institucionalidad que afectan esta relación.

Ahora bien, desde el ámbito educativo, Rodríguez-Ponce, Pedraja y Araneda (2013) afirman que, la creciente importancia del conocimiento, la investigación y la innovación están cambiando la función social de las universidades. En efecto, la GC se convierte en una herramienta estratégica para que las instituciones de educación superior puedan operar de manera eficiente en la sociedad del conocimiento. A través de su investigación, determinaron que la gestión académica de las universidades, expresada en sus actividades de docencia, postgrado e investigación, se ve influenciada positivamente por la gestión del conocimiento.

En el mismo ámbito educativo, Díaz, y Millán (2013), plantean que los modelos de la GC tienen elementos comunes como la transmisión, creación, uso y difusión del conocimiento, para ello requieren algunos elementos cruciales para poder llevarse a cabo, como las TIC y el recurso humano. De esta manera, los modelos universitarios de GC, que se basan en los procesos de investigación universitaria soportados en herramientas como el capital humano, el idioma extranjero, y los medios informáticos que permiten hacer transferencia y uso de motores de búsqueda propios de las Instituciones de Educación Superior, dando respuesta a la necesidad de generalizar el conocimiento.

Por otro lado, Fidalgo-Blanco, Sein-Echaluce, Lerís y García-Peñalvo (2013), indican que las experiencias de innovación educativa se pueden clasificar y medir a través de un sistema de GC. En ese sentido, proponen un modelo de GC basado en la obtención de indicadores de innovación educativa y al público objetivo, representado en un buscador de buenas prácticas como herramienta informática que utiliza parte de los indicadores obtenidos en la investigación como criterios de búsqueda y por otra parte como criterios de clasificación.

Para Gómez y Sallán (2015), las organizaciones educativas requieren de estrategias que les permitan responder a las continuas y cambiantes exigencias, además de las necesidades de su entorno, en ese sentido, analizan la promoción del aprendizaje organizativo en las instituciones educativas y su vinculación con los procesos de innovación que se generan en dichas organizaciones. Asimismo, concluyen que la adecuación de los procesos de GC, mediante comunidades de práctica, promueven el aprendizaje organizativo en cualquier tipo de organizaciones, especialmente, las educativas.

Suárez y Gallego (2015), enuncian la necesidad de diseñar una estrategia de GC, de tal manera que, a partir de bases conceptuales, procesos y herramientas disponibles se obtenga un espacio web para la actividad profesional y personal del docente. Se busca mejorar el desempeño del trabajador del conocimiento y particularmente del docente universitario, bajo la perspectiva de la utilización de tecnologías de la información y la comunicación, como medio para realizar su trabajo. Es por ello por lo que proponen un modelo de entorno web del trabajador del conocimiento que lo denomina el Dashboard Digital del Docente, como una alternativa emergente, para las comunidades que pretenden buscar mejores niveles en la GC personal y profesional, y, para el caso de los docentes, disponer de instrumentos para su quehacer diario.

2.4. Pruebas de Software

PMI (2017), define que la gestión de calidad del producto incluye los procesos para incorporar la política de calidad de la organización en cuanto a la planificación, gestión y control de los requisitos de calidad del proyecto y el producto, a fin de satisfacer las expectativas de los interesados.

Las PS, están inmersas en el proceso de gestión de calidad, a su vez, este proceso como lo indica PMI (2017), lo conforma la fase de planificación en la cual se identifica los estándares para las PS y como documentarlas, para demostrar el cumplimiento del proceso; la gestión propiamente dicha, que convierte el plan en actividades ejecutables para cumplir con las PS en el dominio del proyecto; y la fase de control, en la cual se monitorea y registra los resultados de la ejecución de las PS y se evalúa el desempeño, asegurando que las salidas del proyecto sean las correctas y cumplan con las necesidades o expectativas.

Para PMI (2017), es importante entender que la actualidad la calidad de las PS, proponen tendencias en el proyecto de software, como la satisfacción del cliente cuyo objetivo es comprender, evaluar, definir y gestionar los requisitos para que cumplan con las expectativas del cliente; la mejora continua asociado al ciclo planificar – hacer – verificar – actuar de manera proactiva mejora tanto la calidad del proyecto como del producto o resultado final; responsabilidad en la participación del proceso de gestión de calidad.

De acuerdo con lo anterior, PMI (2017), indica que la adaptación de la gestión de calidad incluye responder ¿Qué políticas y procedimientos de calidad existen en la organización?, ¿Qué herramientas, técnicas y plantillas relacionadas con la calidad se utilizan en la organización?, ¿Existen estándares específicos de calidad en la industria que deban ser aplicados?, ¿Existen restricciones gubernamentales, legales o regulatorias específicas que deben tenerse en cuenta?, ¿Cómo va a ser gestionada la mejora de la calidad en el proyecto?, ¿Es manejada a nivel de organización o al nivel de cada proyecto?, ¿Existe un entorno de colaboración entre interesados y proveedores?

Ahora bien, las fases que componen el proceso de gestión de la calidad del software, PMI (2017) lo divide en tres etapas que son: entradas que componen los inputs que requiere cada fase para que se active la ejecución de la misma, herramientas y técnicas que son actividades y/o artefactos necesarios para cumplir con su ejecución y las salidas que es el producto final de la fase, la tabla 3 describe las etapas para cada fase en las PS o gestión de calidad.

Fago	Entrodos	Herramientas y	Salidas	
Fase	Entradas	Técnicas	Salidas	
	.1 Acta de constitución	.1 Juicio de expertos	1 Plan de gestión de	
	del proyecto	.2 Recopilación de datos	la calidad	
	.2 Plan para la dirección	Estudios comparativos	.2 Métricas de calidad	
	del proyecto	Tormenta de ideas	.3 Actualizaciones al	
	• Plan de gestión de los	• Entrevistas	plan para la dirección	
	requisitos	.3 Análisis de datos	del proyecto	
	• Plan de gestión de los	Análisis costo-beneficio	• Plan de gestión de	
	riesgos	Costo de la calidad	los riesgos	
	• Plan de involucramiento	.4 Toma de decisiones	• Línea base del	
	de los interesados	Análisis de decisiones	alcance	
	Línea base del alcance	con múltiples criterios	.4 Actualizaciones a	
Planificación	.3 Documentos del	.5 Representación de	los documentos del	
Fiammeacion	proyecto	datos	proyecto	
	• Registro de supuestos	Diagramas de flujo	• Registro de	
	• Documentación de	Modelo lógico de datos	lecciones aprendidas	
	requisitos	Diagramas matriciales	Matriz de	
	Matriz de trazabilidad	Mapeo mental	trazabilidad de	
	de requisitos	.6 Planificación de	requisitos	
	• Registro de riesgos	pruebas e inspección	• Registro de riesgos	
	• Registro de interesados	.7 Reuniones	Registro de	
	.4 Factores ambientales		interesados	
	de la empresa			
	.5 Activos de los procesos			
	de la organización			
	.1 Plan para la dirección	.1 Recopilación de datos	.1 Informes de	
	del proyecto	.2 Análisis de datos	calidad	
Gestión	• Plan de gestión de la	Análisis de alternativas	.2 Documentos de	
Gestion	calidad	Análisis de documentos	prueba y evaluación	
	.2 Documentos del	Análisis de procesos	.3 Solicitudes de	
	proyecto	Análisis de causa raíz	cambio	

	• Registro de lecciones	.3 Toma de decisiones	.4 Actualizaciones al
	aprendidas	Análisis de decisiones	plan para la dirección
	Mediciones de control	con múltiples criterios	del proyecto
	de calidad	.4 Representación de	• Plan de gestión de
	Métricas de calidad	datos	la calidad
	• Informe de riesgos	Diagramas de afinidad	• Línea base del
	.3 Activos de los procesos	• Diagramas de causa y	alcance
	de la organización	efecto	• Línea base del
		Diagramas de flujo	cronograma
		Histogramas	• Línea base de costos
		Diagramas matriciales	.5 Actualizaciones a
		• Diagramas de dispersión	los documentos del
		.5 Auditorías	proyecto
		.6 Diseñar para X	• Registro de
		.7 Resolución de	incidentes
		problemas	• Registro de
		.8 Métodos de mejora de	lecciones aprendidas
		la calidad	• Registro de riesgos
	.1 Plan para la dirección	.1 Recopilación de datos	.1 Mediciones de
	del proyecto	• Listas de verificación	control de calidad
	• Plan de gestión de la	• Hojas de verificación	.2 Entregables
	calidad	Muestreo estadístico	verificados
	.2 Documentos del	• Cuestionarios y	.3 Información de
	proyecto	encuestas	desempeño del
Control	• Registro de lecciones	.2 Análisis de datos	trabajo
Control	aprendidas	• Revisiones del	.4 Solicitudes de
	Métricas de calidad	desempeño	cambio
	Documentos de prueba	Análisis de causa raíz	.5 Actualizaciones al
	y evaluación	.3 Inspección	plan para la dirección
	.3 Solicitudes de cambio	.4 Pruebas/evaluaciones	del proyecto
	aprobadas	de productos	• Plan de gestión de
	.4 Entregables	.5 Representación de	la calidad

.5 Datos de desempeño	datos	.6 Actualizaciones a
del trabajo	• Diagramas de causa y	los documentos del
.6 Factores ambientales	efecto	proyecto
de la empresa	• Diagramas de control	• Registro de
.7 Activos de los procesos	• Histograma	incidentes
de la organización	• Diagramas de dispersión	• Registro de
	.6 Reuniones	lecciones aprendidas
		• Registro de riesgos
		• Documentos de
		prueba y evaluación

Tabla 3. Detalle de las entradas, herramientas / técnicas y salidas por fase en el proceso de gestión de calidad propuesto por PMI. Fuente: Elaboración propia, basado en PMI (2017).

Souza y otros (2017) indican que, para lograr productos de software de calidad, es primordial la ejecución de actividades de verificación y validación a lo largo del proceso de desarrollo de software, etapa reconocida por la mayoría de los estándares internacionales de calidad de procesos de software. Las actividades de prueba están soportadas por un proceso de prueba bien definido.

Así mismo, Souza et al. (2017) enuncian que el proceso de prueba consta de varias actividades, a saber: planificación de pruebas, incluyen aspectos como la coordinación del personal, la administración de las instalaciones y equipos de prueba disponibles, la programación de actividades de prueba y la planificación de posibles resultados no deseados; diseño de casos de prueba, diseña los casos de prueba a ser ejecutados; ejecución de pruebas, los casos de prueba se ejecutan, produciendo resultados reales y análisis de resultados de pruebas, los resultados de la prueba se evalúan para determinar si las pruebas han tenido éxito o no en la identificación de defectos.

Por otro lado, Bourque y Fairly (2014), indican que las actividades de prueba guían a los equipos de prueba en el logro de los objetivos de la prueba, a su vez, enuncian que las técnicas, los niveles, los artefactos y el entorno también se integran en el proceso de prueba. A continuación, estos conceptos se descriptos:

Las técnicas de prueba pueden ser por un lado de caja negra la cual generan casos de prueba que se basan sólo en el comportamiento de las entradas y salidas; por otro lado, de caja blanca que utilizan la estructura del código bajo prueba para generar los casos a probar.

Los niveles de prueba distinguen tres niveles de prueba importantes, que son: pruebas unitarias, la atención se centra en la unidad o en los componentes individuales que se han desarrollado, su objetivo es garantizar que la unidad funcione correctamente de forma aislada; pruebas de integración, el objetivo es garantizar que una colección de componentes funcione como se desea; pruebas del sistema, están relacionadas con el comportamiento de todo el sistema y pruebas de regresión, que verifican la carencia de funcionalidad causados por la realización de un cambio en el software.

La prueba de artefactos se produce y se utilizan durante todo el proceso de prueba, aquí la documentación es una parte integral de la formalización del proceso de prueba.

El entorno de prueba abarca toda la estructura donde se realiza la prueba y considera el hardware y el software, así como los recursos humanos involucrados en la prueba.

2.5. Importancia de las PS en la ingeniería de software

De acuerdo con las definiciones y perspectivas descriptas, la GC se ha convertido en una clave fundamental para las organizaciones. El conocimiento cobra importancia dentro de las organizaciones para ser más eficientes en el contexto donde se desempeñan, sin embargo, surgen limitantes como el desconocimiento de la existencia de soluciones a través de modelos informáticos enmarcados dentro de la GC para la transmisión eficiente de la información dentro de las mismas.

Enfocando en el campo disciplinar de los Sistemas de Información, es necesario analizar la GC desde la perspectiva de los procesos de la ingeniería de software.

En relación con la adopción de prácticas de GC en la ingeniería de software, De Vasconcelos, Kimble, Carreteiro y Rocha (2017), sugieren que mejoraría tanto la construcción del software como más particularmente el mantenimiento del software. En ese sentido, en el trabajo de investigación propuesto, presentan un modelo de orientación para

ambas áreas: GC e ingeniería de software, combinando conocimientos en proyectos de software corporativo como medio para evaluar los efectos en las personas y la organización, la tecnología, los flujos de trabajo y los procesos.

Blanquicett, Bonfante, y Acosta (2018), consideran qué a través, de la historia de la ingeniería del software y la industria, las PS (pruebas de software) se han convertido en una importante herramienta para el aseguramiento de la calidad del producto final, lo cual permite identificar si satisface con los requisitos iniciales del cliente. Además, Mera Paz (2016), define que la PS "es la verificación dinámica del comportamiento de un programa contra el comportamiento esperado, usando un conjunto finito de casos de prueba, seleccionados de manera adecuada" (p 168).

Las PS tienen gran importancia en la ingeniería de software como lo afirman Jústiz, Gómez y Delgado (2014), indicando que "permiten evaluar las soluciones y determinar el nivel de calidad que poseen" (p 133).

A su vez, Fernández (2015), lo reafirma cuando define que "la calidad de los sistemas software depende en gran medida de las PS que hayan sido realizadas durante su desarrollo.

Las PS son, por tanto, una de las actividades más importantes en el desarrollo de software. Sin ellas, el software contendría multitud de defectos que causarían fallos que únicamente podrían ser detectados cuando el producto se instale y se use en un entorno de producción real, provocando, por tanto, que el impacto de dichos fallos sea grave y el coste de solucionar los defectos que los causan sea grande". (p 1)

Por otro lado, Souza et al. (2013), entienden que las pruebas de software son un proceso intensivo en conocimiento, y se hace necesario proporcionar soporte computarizado para las tareas de adquisición, procesamiento, análisis y diseminación de conocimiento para su reutilización.

2.5.1. Desafíos que afronta PS en la ingeniería de software

Es indudable que la PS es uno de los aspectos que hacen que la ingeniería de software trascienda en los proyectos con calidad de producto, sin embargo, las dificultades que atraviesan para ser efectivas tienen diferentes ámbitos, en ese sentido, Souza, Falbo y Vijaykumar (2015b), afirman que "el principal problema en las organizaciones de software relacionadas con las pruebas de software es la baja tasa de reutilización del conocimiento y las barreras en la transferencia de conocimiento" (p 210).

Para Fernández (2015), a pesar de la importancia de las PS, "en muchas organizaciones no se les presta la suficiente atención o son, simplemente, omitidas en la planificación del desarrollo de productos software". (p 1), a su vez Fernández (2015), menciona que "la presión por tener un producto terminado en una fecha establecida provoca que haya actividades, consideradas erróneamente como prescindibles, que son eliminadas o reducidas en la planificación" (p 1) afectando la calidad de software.

Dávila, García y Cóndor (2017) argumentan que las PS "se realizan de manera inadecuada; por lo que las actividades de pruebas resultan desordenadas, no se logra una adecuada cobertura del producto y el producto final presenta errores en la operación". (p 2)

Por otra parte, Wnuk y Garrepalli (2018) identificaron varios desafíos para las PS entre los que destacan, selección inadecuada y aplicación de técnicas más adecuadas, baja tasa de reutilización del conocimiento de pruebas de software, barreras en la transferencia de conocimientos de pruebas de software, baja posibilidad de lograr rápidamente la distribución más eficiente de recursos humanos durante las pruebas.

Además, enuncian que las debilidades en las PS se deben a que existe una pérdida significativa de capital intelectual debido a la rotación del personal, conocimiento limitado. Al mismo tiempo, la gestión de los recursos de prueba o el conocimiento sobre los casos de prueba o el código de prueba ha sido muy poco representada. La obtención, difusión, adquisición, evolución y empaquetamiento del conocimiento reciben poca atención debido a que el conocimiento se maneja principalmente durante las PS dentro de un proyecto u organización y se dedica menos atención al intercambio de conocimientos.

Al respecto, Durán et al. (2017) y Souza et al. (2017), listan algunos desafíos de la PS:

- Baja tasa de reutilización del conocimiento de PS.
- Barreras de transferencia de conocimiento de PS.
- Falta de un entorno adecuado para el intercambio de conocimiento del proceso de PS.

- Alto nivel de rotación de personal, generando una pérdida permanente del proceso de PS.
- El recurso humano muchas veces, no conocen conceptos básicos sobre las PS.
- El recurso probador no conoce las técnicas de prueba para aplicarlas adecuadamente, así como las lecciones aprendidas con respecto a las PS.
- Se requieren diferentes herramientas para admitir el proceso de prueba del software, como las herramientas que respaldan el diseño de casos de prueba, los entornos para ejecutar casos de prueba, los sistemas de seguimiento de problemas y los sistemas de versión de control.

De acuerdo con lo anterior, los desafíos más frecuentemente mencionados están asociados con la baja reutilización del conocimiento en las PS y su deficiente transferencia e intercambio de conocimiento. Además, el riesgo de perder el conocimiento de las PS es uno de los principales desafíos.

2.6. Aportes en la gestión de conocimiento aplicado a la ingeniería de software en la fase de pruebas.

Havlice, Szabóová v Vízi, (2013) definen los principios para las PS basadas en modelos integrados como el descendente utilizando el conocimiento crítico del sistema y su entorno. El modelo propuesto tiene dos vértices, conocido como "V", donde cada tipo de prueba en el lado derecho del modelo "V" está vinculado con una fase específica del ciclo de vida del software en el lado izquierdo del modelo. Deducen de su investigación que, en los sistemas integrados, los requisitos pueden estar relacionados con la seguridad, la fiabilidad o la facilidad de uso, dando origen a nuevo conocimiento, siendo crucial para generar procedimientos de prueba.

Para Abdou y Kamthan (2014), las PS deben estar alineadas según el estándar ISO / IEC / IEEE 29119. Indican que para comprender el conocimiento de la prueba es necesario que al hacer preguntas básicas y al utilizar criterios de comprensión y contexto, el contenido de la prueba se puede organizar en diferentes niveles, pero relacionados entre sí. En ese sentido, el proceso de prueba se basa en la comprensión y la preservación de la dinámica del conocimiento de prueba misma. Además, una gestión eficaz del conocimiento de las PS depende de la selección y el uso de tecnologías y herramientas apropiadas.

Wnuk y Garrepalli (2018), listan los siguientes beneficios de aplicar GC a las PS:

- Aumenta la eficacia de la prueba.
- Los costos, el tiempo y esfuerzo tienden a ser decrecientes.
- La determinación y aplicación de técnicas de prueba son más adecuadas
- Mejora la calidad de los resultados.
- Apoya el proceso de toma de decisiones.

2.6.1. Estado de la gestión de conocimiento y de la ingeniería de software en la fase de pruebas en los últimos cinco años.

Souza, Almeida y Vijaykumar (2015a), indican que un estudio de mapeo sistemático tiene como objetivo identificar y categorizar la investigación sobre un contexto amplio en la ingeniería de software. En base a este concepto, se realizó una exploración en un período comprendido entre 2013 y 2017. Se consultaron las siguientes bases de datos y metabuscadores: IEEE Xplore, Science Direct, ACM Digital Library, SAGE Journals, Sringerlink, Emeraldinsight, GREDOS, Dialnet, Google Académico. Sobre estas bases de datos, se utilizó la cadena de búsqueda que se muestra en la siguiente tabla (ver tabla 4), aplicada en tres campos de metadatos (título, resumen y palabras clave), encontrando 47 artículos de investigación publicados.

Área	Términos de búsqueda
Ingeniería de Software	"Pruebas de software", "Software testing"
Gestión de Conocimiento	"Gestión de conocimiento", "Knowledge management"

Cadena de búsqueda: ("Pruebas de software" OR "Software testing") AND ("knowledge management" OR "Gestión de conocimiento")

Tabla 4. Cadena de búsqueda en el estudio gestión de conocimiento en pruebas de software. Fuente: Elaboración propia.

De los 47 artículos identificados, se eliminaron 7 duplicados, y 7 artículos dejan de considerarse por tener un contexto geográfico específico no aplicable al argentino. De los 33 artículos analizados, se aplicaron las siguientes categorías de agrupación: por fuente de publicación, año de publicación, enfoque metodológico, método de investigación y palabras clave.

La siguiente tabla (ver tabla 5) describe la fuente de publicación utilizada por los investigadores, para dar a conocer sus propuestas de investigación. Las cifras indican que el número de artículos publicados, no se concentran en una revista o conferencia, si bien existen fuentes con más de un artículo publicado, no es representativa la concentración, indicando que los investigadores, no tienen definida una predilección a la hora de realizar las publicaciones de sus investigaciones.

	Núm.
Revista/Conferencia	de
	Art.
Congreso Internacional de Aprendizaje, Innovación y Competitividad	3
Revista Internacional de Gestión de Proyectos	3
Encuentros Virtual Educa	2
Información y tecnología de software (Journal)	2
Revista de ingeniería Usbmed	2

Simposio Internacional de Inteligencia Artificial Aplicada e Informática	2
Calidad de Software, Confiabilidad y Seguridad de Software (Journal)	1
Ciencia de la Computación e Ingeniería Informática (Journal)	1
Conferencia de computación y comunicaciones de rendimiento	1
Conferencia Internacional de Ingeniería de Software	1
Conferencia Internacional sobre Capital Intelectual, Gestión del Conocimiento y	1
Aprendizaje Organizacional	1
DigitalaVetenskapligaArkivet (Journal)	1
Ediciones Universidad Cooperativa de Colombia	1
Estudios Gerenciales (Journal)	1
Grupo Emerald	1
Ingeniería de Software y Aplicaciones Avanzadas (Journal)	1
Manual de Organización Económica	1
Principales problemas en la gestión del conocimiento	1
Repositorio Digital Universidad De Las Américas	1
Revista Ciencia Administrativa Universidad Veracruz	1
Revista de investigación empresarial	1
Revista de investigación en ciencias estratégicas	1
Revistas Académicas Universidad EAFIT	1
Revistas Económicas CUC	1
Sistemas expertos (Journal)	1
	1

Tabla 5. Fuente de publicación vs Cantidad de artículos. Fuente: Elaboración propia.

En cuanto al enfoque metodológico, Medina y otros (2013) proponen que un trabajo de investigación se sustenta de dos enfoques principales: el cualitativo y cuantitativo, que al combinarse forman un tercer enfoque denominado mixto.

En efecto, Hernández Sampieri et al. (2010), afirman que las bondades del enfoque cuantitativo están en marcado en la posibilidad de generalizar los resultados ampliamente, así como otorga control sobre los fenómenos y un punto de vista basado en magnitudes; mientras que el enfoque cualitativo, proporciona profundidad a los datos, que con llevan a una riqueza interpretativa, favoreciendo la contextualización del ambiente, aportando una visión holística y de flexibilidad sobre los fenómenos.

De acuerdo con lo anterior, la siguiente la tabla (ver tabla 6) describe como se agrupa el enfoque metodológico utilizado en las investigaciones publicadas en los últimos cinco años, indicando que el 36% de las investigaciones utilizan el mixto, mientras que el 33% el cualitativo y un 30% utiliza el cuantitativo.

Enfoque Metodológico	Número de Artículos	Porcentaje de participación
Mixto	12	37
Cualitativo	11	33
Cuantitativo	10	30

Tabla 6. Número de artículos por enfoque metodológico. Fuente: Elaboración propia.

Basado en el método de investigación, Rodríguez (2014), enuncia que los métodos de investigación son estrategias adoptadas por el investigador con el objetivo de dar respuesta a las preguntas que definen la investigación y alcanzar los objetivos que se ha planteado. Es así como la elección de algún método depende de las características del fenómeno que se pretende investigar y el tipo de conocimiento que se procura a alcanzar. Hernández Sampieri et al. (2010), proponen que los cuestionarios o entrevistas y observacionales como los estudios de casos son ejemplos asociados al enfoque cualitativo.

En consecuencia, en la siguiente tabla (ver tabla 7), se sintetizan los métodos de investigación utilizados en los artículos publicados en el período 2013 y 2017 objeto de análisis en este trabajo.

Tous y Mattar (2012, p.2955), establecen que las "palabras clave son términos o frases cortas (lexemas) que permiten clasificar y direccionarlas entradas en los sistemas de indexación y de recuperación de la información en las bases de datos de un manuscrito o área temática en particular". Además, afirman que "las palabras clave no solo son útiles para la realización de una búsqueda bibliográfica, sino que van más allá y pueden servir para estudiar y analizar trabajos por materia, evidenciando corrientes investigadoras y aspectos de interés de los investigadores".

Método de Investigación	Número de Artículos	Porcentaje de participación
Discusión Teórica	8	24
Lectura de documentos	7	21
Entrevista	6	18
Caso de Estudio	4	12
Cuestionario	3	9
Encuesta	3	9
Simulación	2	6

Tabla 7. Número de artículos por método de investigación. Fuente: Elaboración propia.

Por tanto, en relación con palabras clave, la siguiente tabla (ver tabla 8) describe la frecuencia de su uso, en los artículos objeto de análisis en esta revisión, denotando que en 24 artículos aparece el término gestión de conocimiento, en 5 utilizan PS y tan solo 4 artículos utilizan ambos términos.

Términos	Frecuencia
Gestión de conocimiento	24
Pruebas de software	5
Pruebas de software y Gestión de conocimiento	4

Tabla 8. Términos más utilizados relacionados al objeto de investigación. Fuente: Elaboración propia.

En base a la interpretación que se realiza de la tabla 6 que describe la cantidad de artículos publicados agrupados por enfoque metodológico, se deduce que existe una equidad en la cantidad de trabajos realizados, lo cual indica que las investigaciones se han distribuido en forma pareja entre los diferentes enfoques metodológicos. En donde se refleja un área de

vacancia, es en la tabla 8, que refiere a los términos o palabras clave relacionados al objeto de investigación, denotando que hay pocos trabajos de GC aplicando en la ingeniería de software en la fase de pruebas.

A modo de sostén de esta conclusión, en el ámbito de la aplicación de la GC a la ingeniería de software, específicamente en la fase de PS, un estudio de mapeo (Souza et al., 2015b) propone identificar la distribución de los estudios seleccionados a lo largo de los años, el foco de investigación desde la perspectiva de la PS, el foco desde la perspectiva de la GC y el tipo de investigación, permitió identificar que la utilización de la GC en PS es un tema de investigación reciente, donde el principal problema en las organizaciones es la baja tasa de reutilización del conocimiento y las barreras en su transferencia; además, la reutilización del conocimiento de las PS es el objetivo principal de la aplicación de GC en las PS.

De acuerdo con lo anterior, existe gran preocupación con el conocimiento explícito, en particular, artefactos de casos de prueba, aunque el conocimiento tácito también se ha reconocido como un elemento de conocimiento muy útil y las tecnologías avanzadas utilizadas para proporcionar sistemas de GC en PS incluyen sistemas de recomendación y mapas de conocimiento.

Por otro lado, Garrepalli (2015), enuncia que existe la necesidad de adaptar la GC en el proceso central de PS y obtener los beneficios que proporciona en términos de costo y calidad. A su vez, argumenta que no está claro la importancia de la GC con respecto a las técnicas de prueba, así como los aspectos de prueba, es decir, cada actividad que toma parte durante la prueba y los resultados que resultan, como artefactos de prueba, se consideran como aspectos de prueba. Producto de su investigación, Garrepalli (2015), determina que las percepciones varían entre la literatura y los resultados obtenidos por los profesionales con respecto a los aspectos de prueba y técnicas de prueba, ya que pocos aspectos y técnicas que se categorizan como los más importantes en la literatura no reciben la misma prioridad en la realidad de la prueba.

Para, Durán et al. (2017), el propósito de la GC es aprovechar el conocimiento para generar valor a nivel organizacional, basado en los procesos, herramientas y actividades; desde la ingeniería de software, las PS, garantizan la calidad del producto. En esta perspectiva, en la articulación de la GC a las PS identifica como problemáticas, la falta de reutilización del conocimiento, la alta rotación de personal, modelos con enfoque corporativo y compleja implementación. Para mitigar lo anteriormente descripto, proponen un modelo de implementación para gestionar el conocimiento en las PS, permitiendo obtener una mejora en el desempeño del equipo de PS.

Souza et al. (2013), en su investigación, se proponen identificar los problemas relacionados con el conocimiento en las PS, los propósitos de las organizaciones de aplicar GC en PS, los tipos de elementos de conocimiento típicamente manejados en el contexto de PS, los beneficios y problemas informados sobre la implementación de iniciativas de GC en PS, y los mecanismos o tecnologías utilizados para proporcionar GC en PS.

Las contribuciones luego de aplicar el mapeo sistemático identifican que el principal problema en las organizaciones es: las barreras en la transferencia de conocimiento con mayor representatividad, la reutilización del conocimiento de las pruebas como objetivo principal de la aplicación de la GC en las PS, y el conocimiento tácito.

Sin embargo, Souza et al. (2013) indican que, aunque reconocida como un instrumento importante por la comunidad GC, las ontologías no se utilizan ampliamente en las iniciativas de GC en PS. Para Flores y Hadfeg (2017), como González, Sánchez y Montejano (2017) una ontología es una especificación explícita de una conceptualización, en esta se modela el vocabulario del dominio, básicamente usando los conceptos, características y sus relaciones.

A la vista de la revisión sistemática realizada (Rozo et al. 2018), propone estudiar cómo las ontologías se pueden utilizar para gestionar el conocimiento en el dominio de PS en la ingeniería de software mediante un modelo de aplicación de Gestión de Conocimiento.

2.6.2. Comparación de los modelos de GC basado en sus componentes.

Para Avendaño y Flores (2016), el análisis comparativo de los modelos de GC incluye como descriptores: a. Motor de la GC, que responde cuáles son los factores que para los respectivos autores impulsan la GC; b. Uso de TIC, que da respuesta a cuáles tecnologías de información y comunicación proponen para una adecuada GC; c. Contexto, indica si se refieren al contexto empresarial en particular o al contexto organizacional en general; d. Actores, responde a qué actores individuales o colectivos son protagonistas en la GC; e. Tipo de conocimiento, y cómo identifican el conocimiento que se gestiona; f. Clima organizacional, define cuál es el clima organizacional que para los autores debe prevalecer para una adecuada GC. Descripto en la tabla 9.

Medina y otros (2017), plantean como elemento clave de GC la necesidad de asumir los aspectos relacionados a las personas, los procesos y la tecnología como un todo, ver Gráfico 1 y Gráfico 2.

	Descriptores					
Modelo	Motor de la GC	Uso de TIC	Contexto	Actores	Tipo de conocimiento	Cultura organizacional
Wiig (1993) Nonaka y Takeuchi	TIC Procesos	Uso en el proceso de distribución de conocimiento Un medio, sin inclusión	Organizaciones Empresarial	Miembros de la organización Expertos Individuos Equipos de	Factual, conceptual, explicativo y metodológico Tácito	Abierta al aprendizaje Abierta al aprendizaje
(1995)	Personas	indispensable Sistemas de		trabajo Miembros de	Explícito	colaborativo
Sveiby (1997)	Procesos Personas	información, páginas web, intranet, bases de datos	Empresarial	la organización Clientes Proveedores	Formal	Participativo
Bustelo y Amarilla (2001)	TIC Procesos Personas	Bases de datos corporativas Aplicaciones informáticas	Empresarial	Miembros de la organización Expertos en informática	Formal	Participativo
Kerschberg (2001)	TIC	Páginas web Correos – e Bases de datos Portal corporativo Dominios Mensajería electrónica Video conferencias	Empresarial	Ingenieros de conocimiento Expertos Usuarios de las TIC Grupos de discusión	Tácito Explícito	Comunicativo Colaborativo

		Data mining				
Riesco (2004)	TIC Procesos Personas	Redes	Empresarial	Comunidades de práctica Equipos de gestión de conocimiento	Formal Experiencias	Colaborativo
Paniagua y López (2007)	TIC Procesos Personas	Apoyo de las TIC (entornos colaborativos o entornos de acceso y transferencia del conocimiento)	Empresarial	Miembros de la organización Expertos Líder de la organización	Tácito Explícito	Colaborativo
Angulo y Negrón (2008)	TIC Procesos Personas	Páginas web Software libre Internet	Académico	Individuos Grupos	Tácito Explícito	Comunicativo Colaborativo
ISECO (2014)	TIC Procesos Personas	Páginas web Aplicaciones informáticas (WEKA)	Empresarial	Integrantes del Equipo del proyecto	Tácito Explícito	Colaborativo

Tabla 9. Comparación de los modelos de GC según los descriptores propuestos por Avendaño y Flores (2016) Fuente: Elaboración propia basada en la comparación propuesta por Avendaño y Flores (2016).

Figura 1. Factores Clave para la GC

Figura 2. Componentes de la GC

De acuerdo con lo anterior, el descriptor motor de la GC de la tabla 9, define los modelos que cumplen con esta premisa, los cuales son: Bustelo y Amarilla, Riesco, Paniagua y López, Angulo y Negrón y el modelo ISECO. Ahora bien, analizando los procesos que estos modelos proponen y se describen en la tabla 10, se tiene que el modelo propuesto por Bustelo y Amarilla, si bien cumple con lo descripto anteriormente para la dimensión motor de la GC, en relación a sus procesos, son de un carácter genérico en el ámbito de las organizaciones, perdiendo el foco del objetivo del presente trabajo de investigación, en el cuál las PS de la ingeniería de software es la base para aplicar un modelo de GC, es por ello que deja de considerarse.

Modelos	Procesos	Descripción
Bustelo y Amarilla (2001)	Gestión de la información	Sistemas gráficos y Sistemas documentales Gestión de la documentación interna: Documentación que genera la organización en sus actividades
		rutinarias. Gestión de la documentación externa: Toda la documentación de interés para la organización que proviene del entorno de la organización (libros, revistas, internet, etc.). Gestión de la documentación pública: Documentación que la organización produce
	Gestión de la documentación	para ofrecer a proveedores, clientes y a la comunidad interesada.

		Políticas que incentiven al personal a compartir sus
		conocimientos. Talleres dirigidos a facilitar el
		intercambio. Charlas técnicas que estimulen nuevas
		ideas. Charlas técnicas que estimulen nuevas maneras
	Gestión de	de hacer las cosas. Jornadas de intercambio con el
	recursos humanos	entorno organizativo.
	Medición de	
	activos	Establecer metas. Controlar los resultados de la
	intangibles	evolución del capital intelectual
		Se identifica el conocimiento requerido para la
		organización. Se establece cuál se tiene disponible,
		cuál no, y sus fuentes. En este proceso se selecciona la
		estrategia apropiada de adquisición. La adquisición
		del conocimiento y su utilización se dinamizará de
		acuerdo con la estructura administrativa de la
		organización, la cual influirá en un mejor desempeño
	Adquisición	en el logro de los objetivos.
		Antes de almacenar se clasifica y filtra el
		conocimiento valioso adquirido. Para esto es
Riesco (2004)		necesario establecer criterios que permitan priorizar y
		esquematizar el conocimiento. Se pretende conformar
		la memoria corporativa, donde se integra la tecnología
	Almacenamiento	con la estructura organizativa.
		El conocimiento adquirido y almacenado es dinámico
		y cambiante en el tiempo de acuerdo a las necesidades
		de la organización. Por esto es importante su
		transferencia entre los miembros de la empresa para
		enriquecerlo y convertirlo en nuevo conocimiento.
		Esta transferencia puede realizarse de forma magistral
	Transformación	o mediante la experiencia práctica diaria.

		Es el proceso que establecerá cómo el conocimiento
		llegará a los miembros de la organización. Para ello,
		existen estrategias que deben conducir al éxito de la
		difusión con los elementos tecnológicos necesarios.
		Estas estrategias son: Push (selección automática y
		programada sin preguntas explícitas) y Pull (selección
		provocada por la acción o pregunta intencionada y
		concreta del buscador de conocimiento). Su
		utilización será de acuerdo con el tipo de
	Distribución	organización, ubicación y formato del conocimiento.
		El conocimiento tendrá un valor apreciado cuando su
		utilización direccione a la organización a mejoras en
		sus procesos, toma de decisiones, innovación,
		resolución de problemas y cualquier otra circunstancia
	Utilización	que beneficie la misión y visión de la empresa.
		Identificación del conocimiento. Selección de
	Creación	estrategia de adquisición.
		Clasificación del Actividades que conocimiento
	Estructuración	tomando en cuenta el factor humano y el tecnológico.
		Actividades que generan gestión del conocimiento.
Paniagua y López (2007)	Transformación	Esquema de transformación de Nonaka y Takeuchi
1 , , ,	Transferencia	Compartir con la organización el conocimiento
		Memoria corporativa y sistemas basados en
	Almacenamiento	conocimiento
		Registrar el conocimiento como parte de la
	Incorporación	organización.
Angulo y		Refiere al individuo como una integración de factores
Negrón (2008)	Cociolización	biológicos, psicológicos y sociales; la personalidad
(=====)	Socialización	del individuo es la resultante del proceso de
L	L	1

		socialización. Esto es de gran importancia en la GC,
		ya que, de sus interrelaciones, los individuos
		establecen sus valores, principios y motivaciones para
		el logro de sus objetivos.
		Para la creación del conocimiento, existen factores
		comunes entre los cuales se resaltan innovación,
	Creación	capacidad de respuesta, productividad y competencia.
		En la GC se debe tener en cuenta el nivel de
		innovación que él representa, por lo que el modelo
	Modelado o	holístico se crea luego de analizar los modelos de GC
	adaptación	que le han antecedido.
		Se enfatizan aquí los mecanismos que deben estar
		disponibles en la organización para transmitir la
		información adecuada que permitirá crear y aplicar el
	Difusión	conocimiento.
		El conocimiento se establece como activo de la
	Aplicación	organización y se pone en operación.
		se basa en convertir el conocimiento explícito en
		conocimiento implícito y agregarle experiencia.
		Propone como actividades: capturar, procesar y
		presentar el conocimiento implícito, y como
		herramientas de soporte: seminarios, talleres y mapas
ISECO (2014)		conceptuales. No explica detalladamente cómo se
	Interiorización	debe presentar el conocimiento tácito.
		se trata de compartir el conocimiento entre miembros
		del equipo, como herramientas propone actividades
		grupales como: planes de capacitación y talleres de
		discusión. También propone la tenencia de un sitio
	Socialización	web de la organización.
L		1

T	T
	consiste en convertir el conocimiento de implícito a
	explícito. Propone exteriorizar conocimiento a partir
	del intercambio o debate que se genera con la
	realización de técnicas como talleres, elaboración de
	guías para el auto aprendizaje y manuales de
	capacitación. Se sugiere como herramienta la
Exteriorización	utilización de mapas conceptuales.
	consiste en generar conocimiento explícito a partir de
	experiencias dentro del proyecto. Propone como
	herramientas: reuniones, mesas redondas, entrevistas
Combinación	y reuniones con expertos.
Seguimiento y	es revisar el estado de aplicación del modelo para
control	corregir lo que sea necesario.

Tabla 10. Procesos de los modelos de GC. Fuente: Elaboración propia basada en la comparación propuesta por Avendaño y Flores (2016).

Conceptualización de las Ontologías 2.7.

El concepto de ontología Fernández (2016), lo define como el diseño de una estructura funcional, que contiene entidades o elementos que se relacionan entre sí, para llevar a cabo determinados propósitos o para cumplir con ciertos objetivos, en el entorno donde fue diseñado.

Barber y otros (2018), expresan que el término es incorporado al campo de la inteligencia artificial para enunciar modelos computacionales capaces de soportar razonamiento automático y capturar conocimiento, con lo cual, la definen como una especificación explícita de una conceptualización y a su vez es considerado un artefacto de ingeniería, constituido por un vocabulario específico usado para describir una realidad determinada.

Para Pulido y otros (2009), una ontología representa la conceptualización formal de cierto dominio, una colección ordenada de conceptos, su uso está orientado a la construcción de estructuras que representen conocimiento.

Saraguro-Silva y otros (2016), enuncian que la definición declarativa más consolidada es la que describe a la ontología como una especificación explícita y formal sobre una conceptualización compartida, la interpretación de esta definición indica que las ontologías precisan conceptos y relaciones de un dominio de forma compartida y a su vez estas conceptualizaciones deben ser representadas de manera formal, legible y utilizable en los equipos computarizados.

Una ontología como herramienta de representación del conocimiento, se soporta de algunos elementos básicos, los cuales guardan cierta relación entre sí, lo que permite la especificación de un dominio determinado, Saraguro-Silva y otros (2016), afirman que la ontología tiene cinco componentes: 1) Conceptos, son las ideas básicas que se intentan formalizar. 2) Relaciones, representa la interacción y el enlace entre los conceptos del dominio. 3) Funciones, tipo específico de relación donde se identifica un elemento dentro de un conjunto. 4) Instancias, se utilizan para representar objetos determinados de un concepto. 5) Axiomas, son teoremas que se declaran sobre relaciones que deben cumplir los elementos de la ontología.

Tipos de ontologías 2.8.

Pulido y otros (2009), enuncian que las ontologías pueden ser clasificadas utilizando los siguientes criterios: por tipo de contenido, por motivación y por el grado de formalidad. Ahora bien, las ontologías que el presente trabajo de investigación utiliza están basadas en la clasificación por motivación que describen Fernández (2016) y Lancheros (2014):

Ontología de Representación de conocimiento. Son las que especifican la conceptualización del conocimiento, contienen una rica estructura interna y suelen estar ajustadas al conocimiento que describe.

Ontología genérica. Esta incluye la clasificación y conceptualización del negocio, aquellos conceptos que hacen parte de la información propia de la organización como tal, que sin ser información generada a partir de los procesos influyen de manera significativa en la toma de decisiones.

Ontología de dominio. Estas se encargan de tomar un área específica del negocio, con el fin de realizar un análisis detallado del vocabulario generado en los procesos y procedimientos que se llevan a cabo a fin de lograr hallazgos importantes a través del análisis y el modelado o representación

Ontología de aplicación. Son las ontologías diseñadas para un proceso específico del negocio, es una ontología en la que se van a detallar cada una de las actividades que se ejecutan para gestionar y administrar la información que se genera del proceso.

Metodologías para la construcción de ontologías. 2.9.

Para Saraguro-Silva y otros (2016) y Barber y otros (2018), el diseño de una ontología requiere una metodología y son muchas las propuestas existentes, dentro de ellas se destacan:

La metodología de Uschold y King, describe una serie de pasos que permiten plasmar y especificar los conocimientos que se tienen sobre un dominio específico, centrando sus esfuerzos en la forma en la cual representa los conocimientos, así lo especifica Fernández (2016), Saraguro-Silva y otros (2016) y Lancheros (2014). Los pasos que propone son: identificar el propósito; capturar los conceptos y relaciones entre estos conceptos y los términos utilizados para referirse a estos conceptos y relaciones; codificar la ontología, evaluarla y documentarla.

La metodología de Grüninger y Fox, utilizada para construir las ontologías del proyecto TOVE (Toronto Virtual Enterprise), así lo indica Barber y otros (2018), cuyo primer paso consiste en identificar intuitivamente las aplicaciones posibles de uso, luego se utilizan una serie de preguntas de lenguaje natural, llamadas cuestiones de competencia para determinar su ámbito, se usan estas preguntas para extraer los conceptos principales, sus propiedades, relaciones y axiomas.

La metodología de Fernández-López, Gómez-Pérez y Juristo, toma la creación de ontologías como un proyecto informático, así además de las actividades propias de creación, esta metodología abarca actividades para la planificación, la calidad del resultado la documentación del proyecto. Permite construir ontologías totalmente nuevas o reutilizar otras ontologías. Para Fernández (2016) y Barber y otros (2018), los pasos que propone son: especificación, adquisición de conocimiento, conceptualización, integración, implementación, evaluación y documentación.

La metodología de Noy y McGuinness, Barber y otros (2018), listan los siguientes pasos para la creación de ontologías: 1) determinar el dominio y alcance de la ontología; 2) considerar la reutilización de ontologías existentes; 3) enumerar términos importantes en la ontología; 4) definir las clases y las jerarquías; 5) definir las propiedades de las clases; 6) definir las facetas; 7) crear instancias.

La metodología de Stuart, para Stuart (2016) y Barber y otros (2018), enriqueció el modelo al combinar las cuatro metodologías más destacadas y que han servido como antecedente e incorporando dos pasos más. Propone, así, un método constituido por doce pasos que incorpora la identificación del software apropiado y la sustentabilidad de la ontología. Los pasos que integran la propuesta de Stuart como lo indica Barber y otros (2018), son:

- Alcance de la ontología. En el cual se define el tipo de ontología aplicada, el propósito y 1. el contenido de esta.
- 2. Reutilización de la ontología. Que incluye información relacionada con otras ontologías existentes.
- 3. Identificación del software apropiado. Adopta el software en función de su popularidad y del algoritmo destinado a inferir consecuencias de las afirmaciones de la ontología.
- Adquisición de conocimiento. Dada la naturaleza de la ontología, el grupo de investigación constituye una fuente de conocimiento encargado de seleccionar los términos que la conforman.
- Identificación de términos importantes. Solo se representan aquellas clases para las que existen instancias, que cuenten con evidencia de que se poseen miembros y se seleccionan los nombres y frases comunes preferidos en el dominio, usándose para los tipos de entidades más importantes. Se asegura el significado unívoco de los términos adoptados.

- 6. Identificación de términos adicionales, atributos y relaciones. Con relación a la estructuración de los datos se adopta el RDF Schema (RDFS) para definir un primer nivel de restricciones. RDFS permite la representación de dominios y rangos. Introduce, además, un número de predicados que aumentan la expresividad de la ontología, asimismo, admite declarar propiedades para establecer relaciones, se garantiza, de esta manera, la unicidad de las expresiones relacionales.
- 7. Especificación de las definiciones. Se proveen definiciones para todos los términos; es decir, una mención del conjunto de condiciones necesarias y suficientes para describir el término. Al mencionar las condiciones se usan términos más fáciles de comprender y más simples desde el punto de vista lógico que el término a definir.
- Integración con ontologías existentes. Se recurre a una ontología de nivel superior que tiene en cuenta las clases (universales) vs. Las instancias (particulares), las jerarquías (es un, es parte de, tiene una parte), los solapamientos y las dependencias (es inherente a, es portador de).
- 9. Implementación. Es el estadío donde se integran las distintas partes que se han desarrollado, recién entonces es posible iniciar un proceso de evaluación continua.
- 10. Evaluación. Para evaluar la ontología se adoptan tanto los siguientes criterios: exactitud de la representación del dominio; adaptabilidad y grado de escalabilidad; claridad, en términos de facilidad de comprensión para los usuarios; completitud, con referencia a cobertura y granularidad; eficiencia computacional, con respecto a rapidez y facilidad de razonamiento automático; concisión, como la capacidad para excluir axiomas e instancias irrelevantes; consistencia/coherencia, desde el punto de vista lógico; y aptitud organizacional, que indica con qué facilidad una ontología puede desplegarse en una organización.
- 11. Documentación. Proporcionar la documentación es fundamental para garantizar el uso y la reutilización de la ontología. Ella misma es el núcleo para documentar, por lo tanto, aunque hay distintas maneras de cumplir con este requisito, la publicación en el sitio Web de un archivo de texto que la contenga en RDF/XML lo resuelve.
- 12. Sustentabilidad. Exige contar con los recursos necesarios para actualizar la ontología a fin de asegurar a través del tiempo la vigencia de su funcionalidad, así como su significación y utilidad dentro del dominio.

2.9.1. Comparación de los modelos Ontológicos basado en los pasos que proponen.

Barber y otros (2018), exponen que las cuestiones metodológicas constituyen un aspecto crítico en el proceso de construcción de las ontologías y adquieren especial relevancia a partir del paradigma de los datos abiertos enlazados que promueve la recuperación de información y se orienta a visibilizar todas aquellas relaciones que contribuyan a la creación de conocimiento.

De acuerdo con lo anterior, Saraguro-Silva y otros (2016), así como Fernández (2016), indican que, para la construcción de una ontología, es necesario contar con una metodología específica. Para Barber y otros (2018), existen diversas metodologías que han sido reconocidas y aplicadas en el ámbito del diseño de las ontologías. En la tabla 11, se describen las metodologías más reconocidas con los pasos que proponen.

Metodología Pasos		
Uschold y King	1. Identificar el propósito	
(1995)	2. Construir la ontología	
	a. Capturar la ontología	
	b. Codificar la ontología	
	c. Integrarla con ontologías existentes	
	3. Evaluar	
	4. Documentar	
Grüninger y Fox	1. Determinar la competencia de la ontología	
(1995)	2. Definir la terminología de la ontología	
Metodología	3. Especificar las definiciones y restricciones de la terminología	
TOVE	4. Probar la competencia de la ontología para demostrar la integridad	
	de las teorías	
Fernández-López,	1. Especificación	
Gómez-Pérez y	2. Adquisición de conocimiento	
Juristo (1997)	3. Conceptualización	

Methontology	4. Integración	
	5. Implementación	
	6. Evaluación	
	7. Documentación	
Noy y	1. Determinar el dominio y alcance de la ontología	
McGuinness	2. Considerar la reutilización de ontologías existentes	
(2001)	3. Enumerar términos importantes en la ontología	
Simple	4. Definir las clases y las jerarquías	
knowledge-	5. Definir las propiedades de las clases	
engineering	6. Definir las facetas	
methodology	7. Crear instancias	
Stuart (2016)	1. Alcance de la ontología	
	2. Reutilización de la ontología	
	3. Identificación del software apropiado	
	4. Adquisición de conocimiento	
	5. Identificación de términos importantes	
	6. Identificación de términos adicionales, atributos y relaciones	
	7. Especificación de las definiciones	
	8. Integración con ontologías existentes	
	9. Implementación	
	10. Evaluación	
	11. Documentación	
	12. Sustentabilidad	

Tabla 11. Metodologías reconocidas y aplicadas en el diseño de ontologías. Fuente: Elaboración propia basada en lo que propone Barber y otros (2018).

Si bien, las metodologías expuestas en la tabla 11 desde 1995 al 2001, expresan en sus pasos mayor importancia a la fase de construcción de la ontología, así como lo afirma Barber y otros (2018), se destaca en la metodología propuesta por Stuart, la combinación de las metodologías expuestas, más la incorporación de la identificación del software apropiado y la sustentabilidad de la ontología, lo cual destaca la construcción de un proceso básicamente iterativo.

Para Stuart (2016), una vez diseñadas e implementadas, las ontologías pueden ser interrogadas, hecho que responde a la necesidad de reutilizarlas, de consultar una base de conocimiento o de comprender su uso. Este aspecto descripto anteriormente, lo hace muy útil en la fase de pruebas de la ingeniería de software.

Descriptas las opciones metodológicas para la creación de ontologías y teniendo en cuenta su completitud, en la presente investigación se decide aplicar la metodología expuesta por Stuart.

2.10. Herramientas para la construcción de ontologías.

Con respecto a las herramientas para el desarrollo de ontologías, Fernández (2016) las divide en dos grupos, teniendo en cuenta su evolución: por un lado, herramientas en el que el modelo de conocimiento se corresponde directamente con el de un lenguaje de ontologías, fueron desarrolladas como editores de ontologías en un determinado lenguaje, se mencionan OIL, DAML+OIL y OWL. Por otro lado, herramientas de plataformas integradas, cuya característica es tener una arquitectura flexible y extensible, además el modelo de conocimiento es independiente de lenguajes ontológicos existentes. En este grupo se incluyen Protegé, web ODE, Onto Edit.

Para Pulido y otros (2009), OIL (Ontology Interchange Language) representa ontologías y está basado en sistemas de estructura, descripción de lógica y estándares web. Pretende conseguir la interoperabilidad semántica entre recursos web. Su sintaxis se basa en lenguajes existentes tales como XOL o RDF(S). En Gráfico 3 se describe la definición de una ontología.

A continuación mostramos un trozo de ontología OIL.

ontology-definitions slot-def eats slot-def has-part inverse is-part-of
properties transitive class-def animal class-def plant subclass-of NOT animal class-def tree subclass-of plant class-def branch slot-constraint is-part-of class-def leaf slot-constraint is-part-of has-value branch class-def defined carnivore subclass-of animal slot-constraint eats value-type animal class-def defined herbivore slot-constraint eats value-type plant OR (slot-constraint is-part-of has-value class-def giraffe subclass-of anima slot-constraint eats value-type leaf class-def lion subclass-of animal slot-constraint eats value-type herbivore slot-constraint eaten-by has-value herbivore, carnivore has-value tree

Figura 3. Ontología OIL. Fuente: Saeed y Dănciulescu (2018).

El lenguaje DAML+OIL fue desarrollado por un comité formado por miembros de la Unión Europea y los Estados Unidos en el contexto de DARPA Agent Markup Language (DAML), divide el universo en dos partes disjuntas. Una parte consiste en los valores que pertenecen a los tipos de datos del esquema XML. Esta parte se llama dominio de tipos de datos. La otra parte consiste en objetos que son considerados miembros de clases descriptas en DAML+OIL (o RDF). Esta parte se llama dominio de objetos, Saeed y Dănciulescu (2018) (ver Gráfico 4).

```
<daml:Class rdf:ID="Animal">
         <rdfs:label>Animal</rdfs:label>
         <rdfs:comment>
      This class of animals is illustrative of a numbe of ontological idioms.
         </rdfs:comment>
       </daml:Class>
      <daml:Class rdf:ID="Male">
         <rdfs:subClassOf rdf:resource="#Animal"/>
      </daml:Class>
      <daml:Class rdf:ID="Female">
         <rdfs:subClassOf rdf:resource="#Animal"/>
         <daml:disjointWith rdf:resource="#Male"/>
       </daml:Class>
      <daml:Class rdf:ID="Man">
        <rdfs:subClassOf rdf:resource="#Person"/>
         <rdfs:subClassOf rdf:resource="#Male"/>
       </daml:Class>
       <daml:Class rdf:ID="Woman">
         <rdfs:subClassOf rdf:resource="#Person"/>
<rdfs:subClassOf rdf:resource="#Female"/>
      <daml:ObjectProperty rdf:ID="hasParent">
         <rdfs:domain rdf:resource="#Animal"
         <rdfs:range rdf:resource="#Animal"/>
      </daml:ObjectProperty>
      <daml:ObjectProperty rdf:ID="hasFather">
        <rdfs:subPropertyOf rdf:resource="#hasParent"/>
<rdfs:range rdf:resource="#Male"/>
       </daml:ObjectProperty>
      <daml:DatatypeProperty rdf:ID="shoesize">
```

Figura 4. Ontología DAML+OIL. Fuente: Saeed y Dănciulescu (2018).

OWL Fernández (2016), lo define como un lenguaje de especificación de ontologías que sirve como estándar y deriva del lenguaje DAML+OIL y se construye sobre la sintaxis RDF/XML.

Por otro lado, Quirino y otros (2017), afirman que un enfoque que ha ganado cada vez más atención en los últimos años es la aplicación sistemática de patrones de ontología, el cual favorece la reutilización de experiencias codificadas y promueve la aplicación de soluciones de calidad ya aplicadas para resolver problemas de modelación similares. En principio refieren que un patrón de ontología describe un problema de modelado recurrente que surge en contextos específicos de desarrollo de ontología y presenta una solución bien probada para este problema.

Para Quirino y otros (2017), en un enfoque basado en patrones para la ingeniería ontológica, se pueden combinar varios patrones para derivar una nueva ontología. Dicho enfoque requiere la existencia de un conjunto de patrones adecuados que puedan reutilizarse en el desarrollo de nuevas ontologías, en este contexto, se debe registrar cómo se relacionan los diferentes patrones entre sí en un nivel más abstracto, y para ellos surge un lenguaje de representación de patrones de ontología. Un lenguaje de patrones de ontología (OPL) es una red de patrones ontológicos interconectados que proporciona soporte integral para resolver problemas de desarrollo de ontología.

Quirino y otros (2017), definen que un OPL comprende tanto un modelo estructural como un proceso. El modelo estructural de OPL se centra en patrones y grupos de patrones y está compuesto por elementos estructurales, que pueden ser de dos tipos: patrón y grupo de patrón. A su vez, un patrón representa un OP. Por lo tanto, un grupo de patrones se compone de elementos estructurales OPL. Los patrones pueden estar compuestos de otros patrones y pueden especializarse en otros patrones. Los patrones también pueden depender de otros patrones, es decir, para aplicar un patrón, primero se debe aplicar otro. Una OPL representará dependencias entre patrones o entre un grupo de patrones y un patrón. La relación requiere capta esta dependencia. Finalmente, un Patrón puede requerir la aplicación de un patrón de un Grupo de Patrones Variantes. Ver Gráfico 5.

Figura 5. Modelo OPL. Fuente Quirino y otros (2017). Traducción de la imagen Quirino y otros P 6 (2017)

2.11. Gestión de Conocimiento basado en Ontologías.

Para lograr GC de un proyecto y la reutilización del conocimiento, Fitsilis y otros (2014), afirman que se deben considerar varias actividades habilitadoras y enfoques alternativos. Uno de estos enfoques considera a la ingeniería ontológica, argumentando la necesidad de convergencia de las áreas temáticas de gestión de proyectos y GC, ya que la GC se está convirtiendo en un elemento muy importante para el éxito de los proyectos de software y el desempeño organizacional.

Para Vasanthapriyan y otros (2017), las ontologías emergen como una de las herramientas de GC más adecuadas para respaldar la representación, el procesamiento, el almacenamiento y la recuperación del conocimiento. Según Fernández (2016), las propuestas para representar y organizar conocimiento desde una perspectiva universal como desde una aproximación contextual, destacan la creación de ontologías como lo más destacado, dado que presenta a la vez estructura que involucra entramado de conceptos y la representación por sus respectivos términos.

Ahora bien, Fitsilis y otros (2014), expresan que el desarrollo de ontologías en el campo de la gestión de proyectos podría beneficiar sustancialmente el proceso de desarrollo del proyecto mediante la mejora del proceso de GC, el aumento de la reutilización de los artefactos del proyecto, el establecimiento de coherencia interna dentro de los procesos de gestión del proyecto, que se utilizará para fines especializados en diversas fases del ciclo de vida del proyecto.

Souza y otros (2013b), afirman que las ontologías se pueden utilizar para establecer una conceptualización común que se utilizará en la GC para facilitar la comunicación, integración, búsqueda, almacenamiento y representación del conocimiento.

Un sistema GC debe admitir la integración de información de fuentes dispares para que un decisor maneje información que alguien más conceptualizó y representó, como lo afirma Souza y otros (2017). Por lo tanto, el sistema GC debe minimizar la ambigüedad y la imprecisión en la interpretación de la información compartida, esto se logra representando la información compartida utilizando ontologías.

Según Souza y otros (2013b), las ontologías son una tecnología clave para la GC porque proporcionan una comprensión compartida y común de un dominio necesario para comunicar a las personas y a los sistemas de aplicación. Su uso ofrece una oportunidad para mejorar las capacidades de GC y estas se utilizan como: (i) apoyo a la búsqueda, recuperación y personalización de conocimiento; (ii) base para la recopilación de conocimientos, la integración y la organización; y (iii) apoyo a la visualización del conocimiento

2.12. Ontologías en las pruebas de software

Los procesos de prueba de software generan un gran volumen de información, Souza y otros (2013b), consideran que es importante proporcionar soporte computarizado para las tareas de adquisición, procesamiento, análisis y diseminación del conocimiento de las pruebas para su reutilización. En este contexto, el conocimiento de las pruebas debe ser capturado y representado de forma asequible y manejable.

Souza y otros (2017), expresan que las actividades de verificación y validación de software pretenden garantizar, que un producto de software se está construyendo de conformidad con sus especificaciones, y que cumple con el uso previsto y las necesidades del usuario, por lo que, durante las actividades de PS, se está produciendo y consumiendo una gran cantidad de conocimiento continuamente. Sin embargo, para Vasanthapriyan y otros (2017), los enfoques son limitados y menos empleados para capturar este conocimiento y administrarlo dentro de la organización para facilitar las tareas a los tester de software.

Teniendo en cuenta este contexto, Souza y otros (2017), enuncian que se necesita una ontología de PS que se construya con el objetivo principal de hacer la mejor descripción posible del dominio, proporcionando los siguientes propósitos en el dominio de la GC en las PS: definir un vocabulario común para los trabajadores del conocimiento con respecto al dominio de prueba, estructurar repositorios de conocimiento, anotar elementos de conocimiento y facilitar la búsqueda de información relevante.

Por otro lado, Vasanthapriyan y otros (2017), definen que una ontología proporciona una vista estructurada del conocimiento del dominio de las PS y actúa como un repositorio de conceptos, por lo que, las ontologías y las tecnologías de la web semántica han recibido más atención y se han utilizado gradualmente en la representación del conocimiento.

Zapata y otros (2010), afirman que las ontologías son necesarias para verificar la coherencia de una base de conocimientos, proveer un medio para estructurar las PS y sugerir respuestas apropiadas cuando las PS indican que existen fallas; la literatura reporta pocos casos de aplicación de ontologías en las PS.

Ruy y otros (2016), consideran que la falta de una base de conocimientos adecuada en su propio contexto por parte de los entornos de PS hace que los evaluadores de software consulten los limitados conocimientos disponibles o consulten a sus pares, lo que tendría un gran impacto en su proceso de toma de decisiones, es por ello que, dada una gran importancia al conocimiento para las PS, y los beneficios potenciales de administrar el conocimiento de PS, utilizando tecnologías web semánticas basadas en ontologías, proponen una solución a estos desafíos.

2.12.1 Ontologías aplicadas a las Pruebas de software

Las ontologías proporcionan una vista estructurada del conocimiento del dominio y actúa como un repositorio de conceptos en el dominio. Es de gran importancia el conocimiento para las PS, y los beneficios potenciales de administrar el conocimiento de PS, utilizando tecnologías de web semántica basado en ontologías, Vasanthapriyan y otros (2017).

Ahora bien, las PS es un proceso complejo y de conocimiento intensivo. La eficiencia del proceso de prueba se puede mejorar al reutilizar el conocimiento relacionado con la prueba. En este contexto, Souza y otros (2013c), exponen que una ontología de dominio de referencia en las PS define el vocabulario compartido que puede ser utilizado en un sistema GC, lo cual redunda en facilitar la comunicación, integración, búsqueda y representación del conocimiento de pruebas.

A través del tiempo se han propuesto ontologías aplicables a las PS, para identificarlas, se realizó una revisión sistemática de literatura buscando investigaciones que propongan ontologías en el dominio de las PS. Se consultaron las siguientes bases de datos y metabuscadores: IEEE Xplore, Science Direct, ACM Digital Library, SAGE Journals,

Sringerlink, Emeraldinsight, GREDOS, Dialnet, Google Académico. Sobre estas bases de datos, se utilizó la cadena de búsqueda que se muestra en la siguiente tabla (ver tabla 12), aplicada en tres campos de metadatos (título, resumen y palabras clave), encontrando 14 artículos de investigación publicados (ver tabla 13).

Área	Términos de búsqueda						
Ingeniería de Software	"Pruebas de software", "Software testing"						
Ingeniería Ontológica	"Ontología", "Ontology"						
Cadena de búsqueda: ("Pruebas de software" or "Software testing") and ("Ontology" or "							
Ontología ")							

Tabla 12. Cadena de búsqueda en el estudio ontologías aplicadas a las pruebas de software. Fuente: Elaboración propia.

Investigación	Ontología	Autor	Año
	Propuesta		
Developing software testing ontology in	STOWS	Zhu Hong,	2005
UML for a software growth environment of	(Software	Qingning Huo	
web-based applications	Testing		
	Ontology for		
	Web Service)		
Towards the establishment of an ontology of	OntoTest	Barbosa Ellen	2006
software testing		Francine, Elisa	
		Yumi	
		Nakagawa, José	
		Carlos	
		Maldonado	
Performing Unit Testing Based on Testing	TaaS	Yu Lian,	2008
as a Service (TaaS) Approach		Shuang Su, Jing	
		Zhao	

Ontology-Based Test Modeling and Partition	modelo de	Xiaoying Bai,	2008
Testing of Web Services	ontología de	Shufang Lee,	
	prueba (TOM)	Wei-Tek Tsai,	
		Yinong Chen	
A Strategic Test Process Improvement	MTO (ontología	Hoyeon Ryu,	2008
Approach Using an Ontological Description	MND-TMM)	Dong-Kuk Ryu,	
for MND-TMM		Jongmoon Baik	
Knowledge-based software test generation	Arquitectura de	Nasser Valeh	2009
	ontología	H., Weichang	
	basada en Test	Du, Dawn	
	Generador	MacIsaac	
Test Case Reuse Based on Ontology	Testing	Lizhi Cai,	2009
	ontology based	Weiqin Tong,	
	SWEBOK and	Zhenyu Liu,	
	software quality	Juan Zhang	
	model		
An application of ontology to test case reuse	Test case	Shaojie Guo,	2011
	ontology	Juan Zhang,	
		Weiqin Tong,	
		Zongheng Liu	
An Ontology Based Approach for Test	ontology for test	Sapna P. G.,	2011
Scenario Management	management.	Hrushikesha	
		Mohanty	
Semi-automatic Generation of a Software	Lightweight	Arnicans	2012
Testing Lightweight Ontology from a	ontology of a	Guntis, Dainis	
Glossary Based on the ONTO6	domain	Romans, Uldis	
Methodology		Straujums	
Ontology-based Testing Platform for	knowledge	Li Xuexiang,	2012
Reusing	reuse based on	Wenning Zhang.	
	the ontology		
	representation		
Development of Ontology-Based Intelligent	framework of	Anandaraj A.,	2013

System For Software Testing	an ontology	Kalaivani P.,	
	construction for	Rameshkumar,	
	integrated	V.	
	teaching of		
	programming		
	foundations		
	with testing		
ROoST: Ontología de referencia en pruebas	ROoST	Souza, É. F. D.,	2017
de software		Falbo, R. D. A.,	
		Vijaykumar, N.	
		L.	
Ontology support software testing at the	ontology for	Aliuska	2018
University of Computer Sciences	Software testing	Castañeda	
		Martínez, Carlos	
		Parker Leyva,	
		Yamilis	
		Fernández	
		Pérez, Yoan	
		Antonio López	
		Rodríguez	

Tabla 13. Investigaciones que proponen Ontologías aplicadas a las Pruebas de Software Fuente: Elaboración propia.

Souza y otros (2013c), establecen que la calidad de una ontología está basada en las dimensiones de estructura y cobertura conceptual, por ser características medibles y con posibilidades de ser evaluadas objetivamente. En relación con la estructura, se estableció en la presente investigación considerar si cumple con las siguientes características: es formalmente rigurosa, implementa relaciones no taxonómicas, posee un método de evaluación. Con respecto a la cobertura conceptual, se consideran las siguientes características: posee una cobertura de dominio en la PS, está basado en una norma internacional y considera la reutilización de las ontologías.

De acuerdo con lo anteriormente descripto, las características de cada dimensión fueron utilizadas como categorías de agrupación, por lo que, de los 14 artículos analizados, se aplicaron las siguientes categorías de aplicación: es formalmente rigurosa, implementa relaciones no taxonómicas, posee un método de evaluación, posee una cobertura de dominio en la PS, está basado en una norma internacional y si considera la reutilización de las ontologías.

La tabla 14 resume la completitud de cada una de las características para las dos dimensiones analizadas, evaluando cada una de las investigaciones bajo tres criterios: cumple con la característica, parcialmente cumple con la característica y no cumple con la característica, de la cual surge una matriz de vacancia para las ontologías aplicadas a las PS.

De acuerdo con la matriz de vacancia, expuesta en la tabla 14, se puede observar que ninguna de las ontologías propuestas en las investigaciones analizadas cumple con la totalidad de las características para las dimensiones objeto de estudio.

Analizando cuantitativamente las investigaciones por dimensión, asignando los siguientes valores para cada uno de los criterios: 2 para cuando cumple con las características, 1 para cuando cumple parcialmente y 0 para cuando no cumpla, la tabla 15 describe las valoraciones cuantitativas agrupadas por dimensión de las investigaciones analizadas en relación con ontologías aplicadas a las PS, denotando que la ontología ROoST obtiene mayor puntuación total aun cuando denota una debilidad en la dimensión de estructura, debido a que no implementa relaciones. Le sigue en la puntuación OntoTest, expresando debilidades en las características de evaluación y reutilización de las ontologías.

Ahora bien, cabe destacar que la ontología ROoST, siendo una ontología propuesta recientemente, deja abierto el camino para que se fortalezca la reutilización con ontologías en la dimensión de cobertura conceptual, así mismo fortalecer su evaluación aplicando un método reconocido e incorporando la implementación de relaciones no taxonómicas en la dimensión de estructura. Es aquí donde el presente trabajo de investigación avanza en fortalecer e incorporar los aspectos anteriormente descriptos, ver sección 4.2.1.4.

No cumple
Cumple Parcialmente
Si Cumple

		tructu	ıra		Cobertura Conceptual			
Investigaciones Analizadas	Formalment e Rigurosa	Implementa Relaciones	Método	Cobertura de Dominio	Dasatto Norma Internaciona	Reutiliza Ontologías		
Developing software testing ontology in UML								
for a software growth environment of web-based applications								
Towards the establishment of an ontology of								
software testing								
Performing Unit Testing Based on Testing as a Service (TaaS) Approach								
Ontology-Based Test Modeling and Partition Testing of Web Services								
A Strategic Test Process Improvement Approach Using an Ontological Description for MND- TMM								
Knowledge-based software test generation								
Test Case Reuse Based on Ontology								
An application of ontology to test case reuse								
An Ontology Based Approach for Test Scenario Management								
Semi-automatic Generation of a Software Testing Lightweight Ontology from a Glossary Based on the ONTO6 Methodology								
Ontology-based Testing Platform for Reusing								
Development of Ontology-Based Intelligent								
System for Software Testing								
ROoST: Ontología de referencia en pruebas de								
software								
Ontology support software testing at the								
University of Computer Sciences								

Tabla 14. Matriz de Vacancia de las investigaciones analizadas en relación con Ontologías aplicadas a las PS. Fuente: Elaboración propia.

	Estructura				Cobertura Conceptual				NO
Investigaciones Analizadas	Formalmente Rigurosa	Implementa Relaciones	Método Evaluación	TOTAL	Cobertura de Dominio	Basado Norma Internacional	Reutiliza Ontologías	TOTAL	TOTAL, PUNTUACION
ROoST: Ontología de referencia en pruebas de software	2	0	1	3	2	2	1	5	8
OntoTest: Towards the establishment of an ontology of software testing	2	1	0	3	2	2	0	4	7
Ontology-Based Test Modeling and Partition Testing of Web Services	2	2	0	4	1	2	0	3	7
An Ontology Based Approach for Test Scenario Management	1	2	0	3	1	2	0	3	6
Developing software testing ontology in UML for a software growth environment of web-based applications	2	2	0	4	2	0	0	2	6
Knowledge-based software test generation	2	2	0	4	1	0	0	1	5
Semi-automatic Generation of a Software Testing Lightweight Ontology from a Glossary Based on the ONTO6 Methodology	0	0	0	0	2	2	0	4	4
Ontology-based Testing Platform for Reusing	1	2	0	3	1	0	0	1	4
Ontology support software testing at the University of Computer Sciences	0	0	1	1	1	2	0	3	4
A Strategic Test Process Improvement Approach Using an Ontological Description for MND- TMM	0	0	0	0	1	2	0	3	3
Test Case Reuse Based on Ontology	0	0	0	0	1	2	0	3	3
An application of ontology to test case reuse	0	2	0	2	1	0	0	1	3
Development of Ontology-Based Intelligent System for Software Testing	0	2	0	2	1	0	0	1	3
Performing Unit Testing Based on Testing as a Service (TaaS) Approach	0	0	0	0	2	0	0	2	2

Tabla 15. Valoración cuantitativa agrupadas por dimensión de las investigaciones analizadas en relación con las Ontologías aplicadas a las PS. Fuente: Elaboración propia.

3. DESCRIPCIÓN DEL PROBLEMA

En el presente capítulo se presenta la problemática identificada a partir de la descripción del estado del arte (Sección 3.1), a su vez se especifican las preguntas de investigación que guían del desarrollo del presente trabajo de investigación (Sección 3.2).

3.1 Identificación del Problema de Investigación

Para Marulanda, López y Castellanos (2016) la GC es entendida como la creación, descubrimiento y recolección interna de conocimiento y de las mejores prácticas, para compartir y entender las prácticas que la organización puede usar, y de esta manera ajustarlas y aplicarlas a nuevas situaciones, en la búsqueda de la mejora en el desempeño organizacional.

Entre tanto, para Durán, Gamboa y Builes (2017) la GC es el conjunto de principios, métodos, técnicas, herramientas, métricas y tecnologías que permiten obtener los conocimientos precisos para los que lo necesitan del modo adecuado, en el tiempo oportuno de forma eficiente y sencilla, con el fin de conseguir una actuación lo más inteligente posible.

Las PS tienen gran importancia en la ingeniería de software como lo afirman Jústiz, Gómez y Delgado (2014), indicando que "permiten evaluar las soluciones y determinar el nivel de calidad que poseen" (p 133).

A su vez, Fernández (2015), lo reafirma cuando define que "la calidad de los sistemas software depende en gran medida de las PS que hayan sido realizadas durante su desarrollo. Las PS son, por tanto, una de las actividades más importantes en el desarrollo de software. Sin ellas, el software contendría multitud de defectos que causarían fallos que únicamente podrían ser detectados cuando el producto se instale y se use en un entorno de producción real, provocando, por tanto, que el impacto de dichos fallos sea grave y el coste de solucionar los defectos que los causan sea grande". (p 1)

Por otro lado, Souza et al. (2013), entienden que las pruebas de software son un proceso intensivo en conocimiento, y se hace necesario proporcionar soporte computarizado

para las tareas de adquisición, procesamiento, análisis y diseminación de conocimiento para su reutilización.

Wnuk y Garrepalli (2018) identificaron varios desafíos para las PS entre los que destacan, selección inadecuada y aplicación de técnicas más adecuadas, baja tasa de reutilización del conocimiento de pruebas de software, barreras en la transferencia de conocimientos de pruebas de software, baja posibilidad de lograr rápidamente la distribución más eficiente de recursos humanos durante las pruebas. Además, enuncian que las debilidades en las PS se deben a que existe una pérdida significativa de capital intelectual debido a la rotación del personal, conocimiento limitado. Al mismo tiempo, la gestión de los recursos de prueba o el conocimiento sobre los casos de prueba o el código de prueba ha sido muy poco representada. La obtención, difusión, adquisición, evolución y empaquetamiento del conocimiento reciben poca atención debido a que el conocimiento se maneja principalmente durante las PS dentro de un proyecto u organización y se dedica menos atención al intercambio de conocimientos.

Al respecto, Durán et al. (2017), listan algunos desafíos de la PS:

- Baja tasa de reutilización del conocimiento de PS.
- Barreras de transferencia de conocimiento de PS.
- Falta de un entorno adecuado para el intercambio de conocimiento del proceso.
- Alto nivel de rotación de personal.

En la sección 2.6.1 por un lado, se detalla la fundamentación del estado de la GC y de la ingeniería de software en la fase de pruebas en los últimos cinco años y por otro lado, en la sección 2.12.1, se analiza el estado de las ontologías aplicadas a la fase de pruebas que dan sostén a la problemática objeto de estudio.

3.2 Preguntas de Investigación

De acuerdo con la problemática identificada, se proponen las siguientes preguntas de investigación que son respondidas en el desarrollo del presente trabajo de investigación.

¿Qué modelos de gestión de conocimiento son aplicables en la ingeniería de software en el dominio de la fase de pruebas?

¿Qué modelos Ontológicos son aplicables en la ingeniería de software en el dominio de la fase de pruebas?

¿Es posible adaptar o desarrollar un modelo de GC, incorporando un modelo Ontológico aplicable en la ingeniería de software en el dominio de la fase de pruebas?

Gestión de Conocimiento y su Aplicación a la Fase de Pruebas Descripción del Problema de la Ingeniería de Software

4. SOLUCIÓN

En este capítulo se presenta la propuesta de solución de acuerdo con la problemática planteada (Sección 4.1), siguiendo con la descripción de la propuesta de un modelo de aplicación de Gestión de Conocimiento a la fase de pruebas de la ingeniería de software en el cual se describen sus generalidades, estructura, fases, actividades y el detalle del proceso de cada una, así como los aspectos que inicializan o mantienen el modelo vigente (Sección 4.2).

4.1. Descripción General de la Propuesta

De acuerdo con la problemática identificada en el capítulo anterior, el presente trabajo de investigación propone un modelo de GC de acuerdo con las premisas identificadas en el análisis comparativo de los modelos de GC que incluye como descriptores: motor de la GC, uso de TIC, contexto, actores, tipo de conocimiento y clima organizacional (para más detalles remitirse a la sección 2.6.2), incorporando en su estructura una propuesta ontológica que adopta el método propuesto por Stuart como pasos para su construcción y definiendo el uso de patrones de diseño, basado en los desafíos de las identificados y aplicable a la fase de pruebas de la ingeniería de software.

4.2. Generalidades del modelo de GC

El modelo está basado en los procesos propuestos por los modelos Riesco, Paniagua y López, Angulo y Negrón y el Modelo ISECO, teniendo en cuenta que cumple con lo que Medina y otros (2017), plantean como elemento clave de GC en la necesidad de asumir los aspectos relacionados a las personas, los procesos y la tecnología como un todo; además sus procesos son aplicables a las PS de la ingeniería de software. Ver Gráfico 6.

Como lo propone Linares y otros (2014), los procesos de GC ocurren cíclicamente. El modelo propuesto tiene una estructura cíclica que acompaña la evolución de las PS, el cual

maximiza la tasa de reutilización y transferencia de conocimiento, y a su vez minimiza dos de los desafíos que tiene la fase de pruebas en la ingeniería de software.

El modelo propuesto incorpora una capa ontológica, que adopta mejoras en la formalización y distribución del conocimiento, a través de la propuesta de una ontología de dominio en el contexto de las PS.

Figura 6. Propuesta de un modelo de aplicación de Gestión de Conocimiento a la fase de pruebas de la ingeniería de software. Fuente: Elaboración propia.

4.2.1. Estructura del modelo de GC

El modelo propuesto está dividido en instancias, entendiendo que una instancia como lo propone Fernández (2016), es una entidad que pertenece a un determinado contexto.

Las instancias que componen el modelo son: organización, ejecución y conservación o mantenimiento. A su vez cada instancia posee una serie de fases que permiten el desarrollo de las PS en el dominio de GC.

4.2.1.1. Instancia de Organización

Linares y otros (2014) indican que en el proyecto de software independiente de la fase en que se encuentre, lo más importante es tener una estructura organizativa para el proyecto, lo que traduce en la asignación de roles específicos.

PMI (2017), define que la GC desde la perspectiva de la organización garantiza que las habilidades, experiencia y pericia del equipo del proyecto, además de otros interesados se utilicen antes, durante y después del proyecto.

Desde las perspectivas antes descriptas, para el modelo propuesto en el presente proyecto de investigación, cobra importancia estas definiciones, es por ello por lo que, en la instancia de organización del modelo, se busca definir en el equipo de pruebas, el rol de gestor de conocimiento y a su vez definir el dominio de conocimiento bajo el enfoque de las PS que va a ser incorporado en la GC.

4.2.1.1.1. Gestor y Dominio de Conocimiento

Esta etapa previa busca definir en el equipo de pruebas el rol de gestor de conocimiento como actor principal, cuya tarea es direccionar las acciones del comité de GC dentro del ciclo de pruebas en el proyecto de software. Además, se identifica el dominio de las PS que se va a utilizar en la GC.

Como entradas se tiene el expertise de los integrantes del equipo de pruebas, que está asociado a lo que propone PMI (2017), por un lado en la asignación del equipo del proyecto, es ahí donde se proporciona información sobre competencias y experiencias disponibles y por otro lado, a la estructura de desglose de los recursos que ayuda a comprender qué conocimiento está o no disponible; a su vez, PMI (2017), también indica que se requiere la documentación del proyecto como el registro de lecciones aprendidas, documentación de requisitos; otra entrada está basada en la planificación de la gestión de calidad, que PMI (2017), informa que se requiere el plan de gestión de requisitos, es decir el enfoque para identificar, analizar y gestionar los requisitos, necesarios para la gestión de calidad y sus métricas; por otro lado, se requiere la información y conocimiento explícito del dominio de PS que se van aplicar en la GC.

Las actividades principales consisten en seleccionar el gestor de GC, determinar qué tipos de PS se van a utilizar en el proyecto, basado en lo que indica PMI (2017), cuando afirma que es necesario en esta fase determinar cómo probar o inspeccionar el producto, a través de la planificación de pruebas y su inspección; además se define como adquirir elementos de conocimiento básico que exista en el proyecto.

Como salida se tiene el gestor y dominio de conocimiento seleccionado que involucra la validación del plan de gestión de calidad y sus métricas. (ver Gráfico 7)

4.2.1.2. Instancia de Ejecución

En la instancia de ejecución, se busca cumplir las etapas cíclicas del modelo propiamente dicho para que las PS queden inmersas dentro del contexto de GC. Como lo exponen Medina y otros (2017), estas acciones disminuyen la redundancia de tareas y el número de errores en su ejecución, al aprovechar la experiencia existente.

Figura 7. Representación de la etapa Gestor y Dominio de Conocimiento. Fuente: Elaboración propia.

PMI (2017), establece que la gestión de la calidad del proyecto incluye las etapas para incorporar una política de calidad en la organización en cuanto a la gestión de los requisitos de calidad del proyecto y producto, así satisfacer los objetivos de los interesados.

Las etapas estarían a su vez conformadas por actividades que permiten su completitud. Hay etapas que incorporan una capa ontológica para potencializar el uso y dinamismo en la ejecución de estas.

El modelo propuesto posee cuatro etapas que involucran: Identificación del conocimiento, Formalización del Conocimiento, Distribución del Conocimiento y Validación e Incorporación del Conocimiento.

4.2.1.2.1. Identificación del Conocimiento

Esta etapa inicia cuando el gestor de conocimiento identifica el conocimiento requerido para que el equipo de PS del proyecto realice las pruebas de acuerdo con el control

de gestión de calidad seleccionado. Según Avendaño y otros (2016), establece que información se tiene disponible, cuál no, y sus fuentes. Como lo propone Linares y otros (2014), se basa en convertir el conocimiento explícito en conocimiento implícito y agregarle experiencia.

Para PMI (2017), es necesario identificar los requisitos y/o estándares de calidad para el proyecto, lo cual proporciona guía y direccionamiento sobre cómo se gestiona y verifica la calidad en el proyecto.

Como entradas se identifica la necesidad de datos, de información y de conocimiento explícito de las PS, no formalizado en el dominio del proyecto, a su vez, como lo indica PMI (2017), se requiere la documentación del proyecto como el registro de lecciones aprendidas y documentación de requisitos.

Se propone como actividades basado en lo que PMI (2017) define, la recopilación de datos, el juicio de expertos y el análisis de datos, para identificar y capturar la necesidad de conocimiento en el ámbito de la calidad del proyecto.

Como salida se tiene la información y el conocimiento identificado para ser formalizado en el dominio de GC. (Ver Gráfico 8).

Figura 8. Representación de la etapa Identificación de Conocimiento. Fuente: Elaboración propia.

4.2.1.2.2. Formalización del Conocimiento

Avendaño y otros (2016) definen que la influencia en la GC está compuesta por los recursos de conocimiento y las actividades de transformación, con base en esta conceptualización, esta etapa busca tomar la salida de la fase previa, es decir la información y el conocimiento identificado para ser formalizado, y aplicarle a través de la capa ontológica, la identificación de las características y/o atributos para categorizar, evaluar, seleccionar y formalizar la información que ingresa en la GC. Esta etapa del modelo está basada en la dimensión de actividades de transformación del conocimiento, específicamente en las actividades de estructuración y transformación del modelo de Paniagua y López.

Como entradas se tiene la información y/o conocimiento no formalizado. Como actividades se propone utilizar la metodología ontológica del modelo Stuart, es decir seguir sus procesos para definir las características y/o atributos para categorizar, evaluar, seleccionar y formalizar la información que ingresa en la GC a través de la creación de la ontología; Barber y otros (2018), indican que la practicidad de este modelo es, ser iterativo y permite la reutilización de las ontologías, lo cual reduce costos y facilita la interoperabilidad de los datos.

La ontología de dominio que el modelo de GC aplicado a la fase de PS en la ingeniería de software propone está inmersa en la capa ontológica. Se busca que esta ontología permita ser más eficiente en resolver la identificación de un concepto o conjuntos de conceptos. Como última actividad se tiene el almacenamiento, dando crecimiento a la memoria corporativa y los sistemas basados en conocimiento, tal como lo afirma Medina y otros (2017).

Como salida se tiene el conocimiento implícito formalizado y almacenado, disponible para ser presentado. Ver Gráfico 9.

Figura 9. Representación de la etapa Formalización de Conocimiento. Fuente: Elaboración propia.

4.2.1.2.3. Distribución del Conocimiento

En esta etapa se busca compartir el conocimiento entre los miembros del equipo de PS, con lo cual el conocimiento implícito es convertido a explícito y combinar este conocimiento a partir de las experiencias adquiridas en la fase de PS del proyecto, como lo propone Avendaño y otros (2016), el énfasis es adquirir los mecanismos necesarios para dejar disponible la transmisión de la información adecuada para aplicar y crear conocimiento; esta etapa del modelo, está basada en lo que propone el modelo Angulo y Negrón en relación al proceso de difusión.

Como entradas se tiene el conocimiento implícito formalizado. Dentro de las actividades se propone compartir el conocimiento entre los miembros del equipo, exteriorización del conocimiento a través del intercambio de experiencias, generar conocimiento explícito a través de las experiencias adquiridas en las PS realizadas en el proyecto, transmitir la información para crear conocimiento, aquí cobra participación de la capa ontológica, para mejorar la eficiencia en la identificación y procesamiento en la GC para las PS que se estén realizando. Como salida se tiene el conocimiento explícito. Ver Gráfico 10.

Figura 10. Representación de la etapa Distribución de Conocimiento. Fuente: Elaboración propia.

4.2.1.2.4. Validación e Incorporación del Conocimiento

Esta etapa busca que el conocimiento explicito desarrollado en la fase de pruebas sea validado e incorporado como activo de conocimiento en el dominio de GC para el proyecto de software. Como lo indica Linares y otros (2014), los integrantes del equipo generan conocimientos explícitos al reunir experiencias provenientes de sus aportes y de otras fuentes, es aquí donde se valida y combina el conocimiento, dando como resultado una fácil comprensión del conocimiento para ser utilizado en la generación de nuevas experiencias.

Es importante que en la validación participe los miembros del equipo de PS, que junto al gestor de GC le dan el valor de aceptación o no del conocimiento. En el caso de una validación no aprobada, se reinicia el proceso de GC. Para Avendaño y otros (2016), el conocimiento tendrá un valor apreciado cuando su utilización sea direccionada a mejoras en los procesos, toma de decisiones, innovación, resolución de problemas o cualquier otro aspecto que beneficie la fase de pruebas del proyecto.

PMI (2017), propone que se debe realizar el proceso de control de la calidad, en este caso en la fase de pruebas del proyecto de software, en el cual se monitorea y registra los resultados de la ejecución del plan de pruebas, de esta manera se evalúa el desempeño y se asegura que la fase PS del proyecto este completa, sea correcta y satisfaga las necesidades la calidad de producto del proyecto de software.

Esta etapa está basada en el proceso de utilización del modelo Riesco, así como la etapa de combinación en el modelo ISECO.

Como entrada se tiene el conocimiento explícito. Como actividades se define la realización de reuniones de validación. Como salida se tiene Conocimiento explícito incorporado como activo dentro de la PS para el proyecto de ingeniería de software. Ver Gráfico 11.

Figura 11. Representación de la etapa Validación de Conocimiento. Fuente: Elaboración propia.

4.2.1.3. Instancia de Conservación o Mantenimiento

La instancia de conservación o mantenimiento busca extender el ciclo de vida del modelo realizando los ajustes en los aspectos que lo requiera, buscando la evolución de este según las necesidades. Linares y otros (2014), afirman que es necesario revisar el estado de aplicación del modelo, de esta manera se sigue y controla los resultados, para adelantar en el proyecto la implantación o no de mejoras en determinadas etapas.

Para PMI (2017), este proceso se lleva a cabo a lo largo del proyecto y se realiza a través del control de la calidad, el beneficio es verificar que el trabajo del proyecto cumpla con los requisitos especificados.

En esta instancia como entrada se identifican los procesos del modelo de GC propuesto. Como actividades se verifica la aplicabilidad del modelo y se realiza el seguimiento a los procesos, corrección a posibles desvíos en la gestión de los procesos. Como salida se toman las lecciones aprendidas y se incorpora estas en la evolución del modelo de GC. Ver Gráfico 12.

Figura 12. Representación de la instancia Conservación o mantenimiento. Fuente: Elaboración propia.

4.2.1.4. Capa Ontológica del modelo

Para el desarrollo de la ontología de dominio que da sustento a la capa ontológica del modelo de GC, se adoptó el método propuesto por Stuart, constituido por doce pasos que incorpora la identificación del software apropiado y la sustentabilidad de la ontología, como lo afirman Barber y otros (2018). Además, se complementa la ontología propuesta, con el fortalecimiento de la reutilización con ontologías en la dimensión de cobertura conceptual, fortaleciendo su evaluación e incorporando la implementación de relaciones no taxonómicas en la dimensión de estructura no propuesta en la ontología ROoST. Es aquí donde el presente trabajo de investigación avanza en fortalecer e incorporar mejoras en la identificación y procesamiento en la GC para las PS que se estén realizando.

Se listan a continuación los propósitos de la ontología de dominio propuesta, que se basa en la proposición que Souza y otros (2017) indican e incorporando aspectos establecidos en lo que PMI (2017) recomienda para la gestión de calidad en las PS y que ayuda a solventar los desafíos de las PS:

1. Servir de apoyo al aprendizaje humano en el proceso de PS.

- 2. Servir como base para estructurar y representar el conocimiento relacionado con las PS.
- 3. Servir como modelo de referencia para integrar herramientas que soportan las PS.
- 4. Servir de referencia para incorporar recursos de prueba en el enfoque de documentación semántica.
- 5. Servir de apoyo para la fase de ejecución en la gestión de calidad en relación con el análisis de datos, toma de decisiones y representación de datos.
- 6. Proveer un entorno adecuado para que el logro de los objetivos de calidad en las PS sea superador.

De acuerdo con la metodología Stuart (2016), se proponen para cada uno de los pasos, una serie de preguntas de competencia (PC) para cumplir con los propósitos de la capa ontológica del modelo GC, a su vez, como lo indica Contreras y otros (2018), equivale a la elicitación de términos, que la ontología debe ser capaz de contestar con todos los conceptos, propiedades entre conceptos y datos, los axiomas y reglas definidas en la ontología.

- 1. Alcance de la ontología
 - **PC01.1** ¿En qué proyecto se demanda la gestión de calidad?
 - **PC01.2** ¿Cuándo comienza y finaliza la gestión de calidad?
 - **PC01.3** ¿Qué procesos de gestión de calidad del proyecto se va a utilizar?
 - PC01.4 ¿Cuándo inicia y finaliza cada proceso de gestión de calidad del proyecto se va a utilizar?
 - **PC01.5** ¿Cuándo inicia y finaliza cada actividad de PS?
 - **PC01.6** ¿Qué entornos de pruebas son los utilizados en la PS?
- 2. Reutilización de la ontología
 - PC02.1 ¿Qué relación tiene los artefactos entre sí en la PS?
 - PC02.2 ¿Qué actividades tienen relación con otros procesos de gestión de calidad del proyecto?
- 3. Identificación del software apropiado
 - **PC03.1** ¿Qué recursos software se utilizan en la PS?

- 4. Adquisición de conocimiento
 - **PC04.1** ¿Qué tipos de artefactos se producen en la actividad de PS?
- 5. Identificación de términos importantes
 - **PC05.1** ¿Qué actividades se desarrolla en la ejecución de PS?
 - **PC05.2** ¿Qué técnicas se van a utilizar en la PS?
 - **PC05.3** ¿Qué niveles de prueba son que se utilizan en la PS?
- 6. Identificación de términos adicionales, atributos y relaciones
 - **PC06.1** ¿Qué actividades son dependientes de otras en la ejecución de PS?
 - PC06.2 ¿Qué actividades son dependientes de otros procesos de gestión de calidad del proyecto?
- 7. Especificación de las definiciones
 - **PC07.1** ¿Qué relaciones existen entre las actividades y los artefactos en las PS?
 - PC07.2 ¿Qué relaciones no taxonómicas se utilizan en la identificación de relaciones entre actividades y artefactos?
- 8. Integración con ontologías existentes
 - **PC08.1** ¿Qué artefactos se utilizan en la PS?
 - **PC08.2** ¿Qué actividades son reutilizables en la PS?
- 9. Implementación
 - **PC09.1** ¿Qué etapas se requiere para implantar la ontología en el modelo GC?
 - PC09.2 ¿Qué técnicas se requieren para implementar la ontología en el modelo GC?
- 10. Evaluación
 - **PC010.1** ¿Qué actividades de verificación se realizan en la PS?
 - **PC010.2** ¿Qué actividades de evaluación se realizan en la PS?
- 11. Documentación
 - **PC011.1** ¿Qué artefactos se producen en la de PS?
- 12. Sustentabilidad
 - **PC012.1** ¿Qué recursos humanos se utilizan en la PS?
 - **PC012.2** ¿Qué recursos hardware se utilizan en la PS?

Tal como lo indica Contreras y otros (2018), las preguntas de competencia componen los requisitos funcionales, que debe cumplir la ontología propuesta, ahora bien, para

representarlos se utiliza el enfoque OPL anteriormente descripto, como lo fundamenta Quirino y otros (2017).

De acuerdo con lo anterior, se procede a especificar como está conformada la capa ontológica que hace parte de la GC.

Las PS constituyen una de las etapas del proyecto, en ese sentido, se considera como un proceso particular dentro del contexto general de gestión del proyecto. El proceso de gestión de calidad como denomina PMI (2017) a las PS, está compuesto por las etapas de planificación, gestión y control, a su vez cada una de estas, compone el proceso dentro de la prueba, con sus actividades propias, para ser ejecutadas y culminando el proceso, con la realización de cada actividad.

Para efectos del presente trabajo de investigación, la etapa que considera debe incorporarse en la ontología propuesta es la gestión de calidad, debido a que es la que aborda la calidad tanto de la gestión del proyecto como la de sus entregables, tal como lo indica PIM (2017), a su vez es la que abarca los desafíos propuestos por Durán et al. (2017) y Souza et al. (2017), para la PS.

Las actividades que se consideran a realizar en la capa ontológica del modelo GC, son la planificación de pruebas, diseño de pruebas, ejecución de pruebas, finalización de pruebas y análisis de los casos de pruebas.

Es necesario tener presente que las actividades de PS dependen de los niveles de prueba a ejecutar, para este caso se consideran las pruebas unitarias, pruebas de integración, pruebas de sistema y pruebas de regresión. De acuerdo con los anteriores conceptos, se estarían respondiendo las preguntas relacionadas a PC01, PC05 y PC06. Ver Gráfico 13.

Figura 13. Componente alcance y definición de términos de la Capa Ontológica del modelo de GC. Fuente: Elaboración propia basado en Quirino y otros (2017) y PMI (2017)

Como lo afirman Souza y otros (2017), una actividad realizada puede tener como componentes una participación de artefactos, estos pueden ser, de creación que se generan durante la ocurrencia de la actividad; de uso, lo que significa que el artefacto solo se usa durante la actividad; y de cambio, es decir que se va modificando el artefacto durante la actividad.

Ahora bien, los artefactos pueden ser clasificados de acuerdo con el tipo de participación y/o uso dentro de la ejecución de una actividad en la PS, se pueden identificar los documentos que son generados en los diferentes procesos de gestión de la calidad que propone PMI (2017), entre los que se mencionan el plan de gestión de la calidad, documentos de prueba y documentos de evaluación (reportes de casos de pruebas exitosos y fallidos), información de desempeño del trabajo, actualizaciones al plan para la dirección del proyecto y actualizaciones a los documentos del proyecto; otro tipo de artefacto es el elemento de software, que se refiere a una pieza de software, producido durante la ejecución de una actividad en la PS, pero que no se considera un producto de software completo, es un resultado intermedio; y por último el elemento de información, que son los datos utilizados o producidos durante el proceso, aspectos propuestos por Souza y otros (2017).

A su vez se incorpora como role, la obtención de relaciones no taxonómicas entre las actividades y artefactos, entendiendo que este tipo de relaciones representan cualquier asociación entre conceptos diferentes como lo propone De la Villa Moreno (2016), en ese sentido, el role a considerar son las reglas de asociación, el cual vincula las actividades y artefactos cuando no son explícitas estas. Basado en lo anterior, se responden las preguntas PC02, PC04, PC07 y PC08.

La secuencialidad de las actividades se inicia con el plan de prueba que incorpora el diseño de los casos de prueba basado en la documentación del proyecto (documentos funcionales, especificación de requisitos, modelos conceptuales, etc.), en ese sentido, los artefactos requieren estas entradas de información y su producto es el caso de prueba propiamente dicho, a su vez la ejecución de este obtiene un resultado que para efectos de su efectividad es el esperado.

El diseño de los casos de prueba requiere que se aplique una técnica de prueba, concepto de tipo procedimental incorporado en la ontología propuesta. Para efectos del presente trabajo se consideran las técnicas de caja negra y caja blanca. Es importante entender que la aplicabilidad de las técnicas de pruebas depende del nivel de prueba, como ejemplo se tiene que para pruebas unitarias se utiliza la técnica de caja blanca, mientras que la técnica de caja negra aplica a todos los niveles de prueba, según indican Souza y otros (2017)

El caso de prueba tiene en esencia un fragmento de sistema a probar, que dependiendo del nivel puede ser abarcativo o no, generando posibles propiedades de especialidad. Para la ejecución de los casos de prueba en principio se realiza la secuencia de acciones necesarias para completar el escenario de prueba, por otro lado, también puede utilizarse el llamado de otros módulos objetos de prueba u otros componentes dependientes, denominándose código de prueba.

La ejecución del caso de prueba requiere como entrada el código de prueba y los casos de prueba. En términos de efectividad, si un caso de prueba es ejecutado, requiere el código de prueba y como resultado es la finalización de la actividad y por consiguiente se produce el resultado de la prueba.

El resultado de la prueba puede tener dos valoraciones, cuando finaliza correctamente dando el cierre de la prueba o cuando falla se generan los incidentes que pueden ser defectos, fallas o problemas identificados. Hay que tener claro que en el incidente se documenta la información de la falla o sobre el defecto que lo ocasiona. Es necesario tener presente que el incidente puede estar disponible para futuros análisis, sin embargo, sale del alcance de las PS en el dominio de GC. Al finalizar las pruebas, el siguiente paso es analizar los resultados, generando un informe del estado de las pruebas, en ese sentido se responde las preguntas PC010, PC011, para ello ver el Gráfico 14, a su vez este gráfico evidencia la incorporación de los conceptos anteriormente descriptos, sobre el avance indicado en el Gráfico 13, en ese sentido es incremental la definición esquemática de la ontología propuesta, para entender cómo se articula cada una de las preguntas de competencia.

Para la ejecución de las actividades de prueba, se requiere de recursos tanto de hardware como de software, para ello dentro de la ontología propuesta se identifica el concepto de entorno de prueba el cual permite administrar el rol que cumple un recurso tecnológico en una actividad de prueba, es necesario entender que las PS son realizadas por recursos humanos que pueden tener a su vez un grado de participación diferente, como es el líder del equipo de pruebas, el diseñador de pruebas y el ejecutor o "tester" y estos están vinculados a una ejecución de prueba de un proyecto, de esta manera se responde las preguntas PC03, PC012, ver Gráfico 15, de acuerdo con lo anteriormente señalado, este gráfico evidencia la incorporación de los conceptos anteriormente descriptos, sobre el avance indicado en el Gráfico 14, en ese sentido es incremental la definición esquemática de la ontología propuesta.

Para contestar las preguntas de competencia PC09, se propone en principio incorporar el modelo conceptual propuesto en términos de un lenguaje de ontología operacional, que para efectos de cómo lo propone OPL, recomienda el lenguaje OWL y aplicados como base de los pasos 1 al 3 de la instancia de ejecución modelo de GC detallado en este capítulo.

Figura 14. Componente adquisición de conocimiento, especificación de definiciones, integración, reutilización, evaluación y documentación de la Capa Ontológica del modelo de GC. Fuente: Elaboración propia basado en Souza y Otros (2017) y PMI (2017).

Figura 15. Componente identificación del software y sustentabilidad de la Capa Ontológica del modelo de GC. Fuente: Elaboración propia basado en Souza y Otros (2017) y PMI (2017).

5. VALIDACIÓN

En este capítulo se presenta la validación utilizada de la solución planteada en el anterior capítulo, delimitando los componentes, dimensiones e indicadores que la componen (Sección 5.1), siguiendo con la definición de la escala de valoración utilizada (Sección 5.2), continuando con la descripción del documento de investigación (Sección 5.3) y finalizando con el análisis de resultados obtenidos con la aplicación de los instrumentos de investigación (Sección 5.4).

5.1. Componentes, Dimensiones e Indicadores de Validación

Este trabajo de investigación opta por la aplicación del cuestionario como instrumento para recopilar información respecto al modelo de GC aplicado a la fase de pruebas de la ingeniería de software propuesto.

Para Creswell (2014), Hernandez Sampieri y otros (2010), Pozzo, Borgobello, y Pierella (2018), el cuestionario como instrumento de investigación, se diseña en el marco de un proyecto de investigación elaborado a partir de sus objetivos específicos y radica en una serie de preguntas, que pueden ser del tipo abiertas y/o cerradas respecto de una o más variables a medir y son probablemente el instrumento más utilizado para recolectar datos. Es ineludible que este instrumento de investigación describe beneficios y limitaciones en su aplicación para la producción de conocimiento científico, en ese sentido a continuación se refieren tales aspectos:

Beneficios

- Tiene un costo relativamente bajo.
- Posee la capacidad de proporcionar información sobre un amplio número de personas en un tiempo corto.
- Proporciona la facilidad para obtener, cuantificar, analizar e interpretar los datos.
- Facilità el respeto al ritmo individual al contestar.

- Suministra la posibilidad de mantener el anonimato de los encuestados y eliminar ciertos sesgos que introducen los encuestadores.
- Provee inmediatez en el procesamiento de los datos, el cual redundan en la reducción del trabajo de campo.
- El cuestionario del tipo online incorpora la posibilidad de introducir elementos audiovisuales que contribuyan a la comprensión y menor coste de la investigación. Asimismo, al no existir encuestador, se reduce la intimidación que puede provocar su presencia, lo que implica una mayor garantía de anonimato que ayudaría a que se expresen respuestas más críticas, menos aceptadas socialmente o más sensibles.

Limitaciones

- Poseen escasa flexibilidad y dificultad para profundizar en la información obtenida.
- Incorpora riesgos de que no llegue a los destinatarios esperados o que no se obtenga respuesta;
- Imposibilidad de aclarar dudas sobre las preguntas.
- Dificultad para obtener una tasa alta de cuestionarios completos en sus respuestas.
- Específicamente para cuestionarios en online, se encuentran errores de cobertura, escaso control sobre quienes responden.

Con respecto al tipo de preguntas que componen el cuestionario, Creswell (2014), Hernandez Sampieri y otros (2010), Pozzo, Borgobello, y Pierella (2018), consideran los tipos cerradas y abiertas; en principio las cerradas incorporan categorías de respuestas previamente delimitadas y las abiertas no delimitan de antemano alternativas de respuesta. Cada tipo de preguntas asume sus beneficios y limitaciones, los cuales se mencionan en la siguiente tabla.

Tipo de		
Pregunta	Beneficios	Limitaciones
	- Proporcionan una información más	- Son más difíciles de codificar,
Abierta	amplia	clasificar y preparar para el análisis.
Autoria	- Son particularmente útiles cuando no	- Inducen a presentarse sesgos
	se cuenta con información sobre las	derivados de distintas fuentes; por

	posibles respuestas de las personas o	ejemplo, quienes enfrentan dificultades				
	cuando ésta es insuficiente.	para expresarse en forma oral y por				
	- Sirven en situaciones donde se desea	escrito quizá no respondan con				
	profundizar una opinión o los motivos	precisión a lo que en realidad desean, o				
	de un comportamiento.	generen confusión en sus respuestas.				
		Requiere de un mayor esfuerzo y de				
		más tiempo para responder las				
		preguntas.				
	- Son más fáciles de codificar y	- Limitan las respuestas de la muestra				
	preparar para su análisis.	y, en ocasiones, ninguna de las				
	- Requieren un menor esfuerzo por	categorías describe con exactitud lo				
	parte de los encuestados, que no tienen	que las personas tienen en mente;				
	que escribir o verbalizar pensamientos,	- No siempre se captura lo que pasa por				
	sino únicamente seleccionar la	la cabeza de los participantes.				
	alternativa que sintetice mejor su	- Su redacción exige mayor				
Cerrada	respuesta.	laboriosidad y un profundo				
Cerraua	- Toma menos tiempo que contestar	conocimiento del planteamiento por				
	uno con preguntas abiertas.	parte del investigador o investigadora.				
	- Se tiene un mayor grado de respuesta					
	cuando es fácil de contestar y					
	completarlo requiere menos tiempo.					
	- Reduce la ambigüedad de las					
	respuestas y se favorecen las					
	comparaciones entre las respuestas.					
	<u>.</u>					

Tabla 16. Beneficios y Limitaciones del tipo de preguntas para el cuestionario. Fuente: Elaboración propia basado en lo que propone Creswell (2014), Hernandez Sampieri y otros (2010), Pozzo, Borgobello, y Pierella (2018)

La aplicabilidad en la validación de este modelo, basado en la utilización del cuestionario como instrumento de investigación, se estratifica en dos componentes, el primero está basado en el fortalecimiento de la PS dentro de la gestión del proyecto de software en el cual se definen las siguientes dimensiones, apoyado en lo que proponen Arias (2015) y Marulanda (2013): gestión de la información y la documentación, gestión de la comunicación, gestión de la innovación y el cambio, gestión del aprendizaje organizacional.

El segundo componente define la efectividad de operación al aplicar las fases del modelo de GC en el dominio de PS, basado en lo que proponen Arias (2015), Marulanda (2013) y Romero Rodríguez (2017): identificación de conocimiento, formalización de conocimiento, distribución del conocimiento, retención de conocimiento.

A partir de las dimensiones identificadas, se definen los indicadores para cada una, lo que permite establecer los ítems que componen el instrumento de investigación.

De acuerdo con lo anterior, se delimitan los componentes y las dimensiones junto con sus indicadores a fines de determinar la estructura de validación de la propuesta de solución del modelo de aplicación de Gestión de Conocimiento a la fase de pruebas de la ingeniería de software. La tabla 17 resume los componentes, las dimensiones e indicadores para evaluar el modelo de GC propuesto.

Componente	Dimensión	Indicadores
	Gestión de la	Análisis de requerimientos de información
	información y la documentación	Gestión documental
Fortalecimiento	Gestión de la	Estructura de entorno adecuado para comunicar la información
de la fase de	comunicación	Facilidad de comunicar a través de materiales
pruebas dentro		digitales documentación de casos de pruebas
de la gestión del		funcionales, de regresión, de aceptación.
proyecto de	Gestión de la	Sistemas de evaluación del desempeño
software.	innovación y el	Gestión del cambio de cultura en la mejora de las
	cambio	actividades en las pruebas
	Gestión del	Incorporación de mejores prácticas en el desarrollo
	aprendizaje	de las actividades de pruebas
	organizacional	Mejora de gestión de calidad en la fase de pruebas

	Identificación de conocimiento	Espacio para el fortalecimiento de lecciones aprendidas Incorporación de mapas de conocimiento
Efectividad de operación al	Formalización de	Sistematizar las tareas de las pruebas
aplicar las fases	conocimiento	Sistema de gestión de la formación
del modelo de	Distribución del conocimiento	Facilidad al acceso a los escenarios de pruebas
GC		Efectividad al acceso a los escenarios de pruebas
	Retención de	Incorpora centros digitales de información
	conocimiento	Incorpora cuadernos digitales explicativos sobre las actividades de la fase de pruebas

Tabla 17. Componentes, Dimensiones e Indicadores de validación del modelo de GC aplicado a la fase de pruebas de la ingeniería de software. Fuente: Elaboración propia.

Escala de valoración del Instrumento de Investigación **5.2.**

El presente trabajo de investigación utiliza la escala de valoración Likert basado en lo que propone Hernández Sampieri et al. (2010), Llontop (2018), Morales (2018), Romero Rodríguez (2017), incorporando los siguientes niveles:

- 1- Totalmente en desacuerdo
- 2- En desacuerdo
- 3- Ni de acuerdo ni en desacuerdo
- 4- De acuerdo
- 5- Totalmente de acuerdo

De acuerdo con lo que propone Hernández Sampieri et al. (2010), las puntuaciones se obtienen a partir del promedio resultante en la escala, mediante la aplicación de la siguiente ecuación:

$$Promedio \ Resultante = \frac{Puntuación}{Número \ de \ afirmaciones}$$

El siguiente gráfico, describe la tendencia de valoración de la escala de acuerdo con la puntuación que el Experto aplica sobre las preguntas del tipo afirmaciones definidas en el instrumento de investigación, para las dimensiones definidas.

Figura 16. Escala de valoración Likert. Fuente: Hernandez Sampieri y otros (2010)

En el anexo 1, se describe un ejemplo de puntuación, basado en la descripto anteriormente, reflejando el valor resultante de la aplicación del instrumento de investigación.

La tabla 18, muestra la matriz de consistencia identificando los ítems que evalúan las dimensiones e indicadores de validación del modelo de GC.

Componente	Dimensión	Indicadores	Item
	Gestión de la información y la	Mejoramiento en el análisis de requerimientos de información	Del 1 -6
Fortalecimiento	documentación	Mejoramiento en la gestión documental	
de la fase de		Efectividad en proporcionar una estructura de	
pruebas dentro		entorno adecuado para comunicar la	
de la gestión del	Gestión de la	información	Del
proyecto de	comunicación	Facilidad de comunicar a través de materiales	7-12
software.		digitales documentación de casos de pruebas	
		funcionales, de regresión, de aceptación.	
	Gestión de la	Eficacia en los sistemas de evaluación del	Del

	innovación y el	desempeño	13-18
	cambio	Mejoramiento en la gestión del cambio de	
		cultura en la mejora de las actividades en las	
		pruebas	
	Gestión del	Incorporación de mejores prácticas en el	
		desarrollo de las actividades de pruebas	Del
	aprendizaje	Mejora de gestión de calidad en la fase de	19-24
	organizacional	pruebas	
	Identificación de	Espacio para el fortalecimiento de lecciones	Del
	conocimiento	aprendidas	25-30
	Conocimiento	Incorporación de mapas de conocimiento	23-30
	Formalización de	Sistematizar las tareas de las pruebas	Del
Efectividad de	conocimiento	Mejoramiento en el sistema de gestión de la	31-36
operación al	Conocimiento	formación	31-30
aplicar las fases		Facilidad al acceso a los escenarios de	
del modelo de	Distribución del	pruebas	Del
GC	conocimiento	Efectividad al acceso a los escenarios de	37-42
		pruebas	
	Retención de	Incorpora centros digitales de información	Del
	conocimiento	Incorpora cuadernos digitales explicativos	44-48
	conocimiento	sobre las actividades de la fase de pruebas	77-70

Tabla 18. Matriz de Consistencia para las dimensiones e indicadores de validación del modelo de GC aplicado a la fase de pruebas de la ingeniería de software. Fuente: Elaboración propia.

Descripción del Instrumento de Investigación **5.3.**

El presente proyecto de investigación define la aplicación de dos instrumentos de investigación del tipo cuestionario, los cuales se aplicaron a través de juicio experto a tres referentes del área de la ingeniería de software con un perfil de Magister con más de 15 años de experiencia profesional en las áreas de sistemas de gestión de calidad, gerencia de

informática, seguridad la información proyectos, auditoría de estructuras organizacionales.

El primer cuestionario pretende identificar la validación del componente "Fortalecimiento de la fase de pruebas dentro de la gestión del proyecto de software", el cual se compone de 24 preguntas de tipo afirmaciones y 3 preguntas abiertas.

El segundo cuestionario identifica la validación del componente "Efectividad de operación al ejecutar las fases del modelo de GC aplicado a la fase de pruebas de la ingeniería de software", el cual se compone de 24 preguntas de tipo afirmaciones y una pregunta abierta.

El Anexo 2 y Anexo 3, refiere los instrumentos de investigación.

5.4. Análisis de resultados de la Aplicación del Instrumento de Investigación a Juicio Experto

A continuación, se presentan los resultados obtenidos luego de validar el modelo de GC propuesto con su respectivo análisis, basado en el método inductivo como lo propone Hernandez Sampieri y otros (2010), en este caso se inicia el análisis de los resultados para los indicadores, basados en estos, se continua con el análisis de las dimensiones y se finaliza a nivel global con el análisis de los componentes que hacen al modelo de GC aplicado a las PS. Lo anteriormente expresado se basa en la matriz de consistencia definida en la sección 5.2 de este capítulo (Ver tabla 18).

En relación con los indicadores, la tabla 19 resume el resultado obtenido para cada uno, representando si los Expertos estuvieron de acuerdo o en desacuerdo con lo que presenta el modelo de GC.

El cálculo del valor promedio para cada indicador se describe en el Anexo 1, puntuación promedio de la escala Likert, el valor referencial, refiere la tendencia de valoración de la escala de acuerdo con la puntuación que el Experto aplica sobre las preguntas del tipo afirmaciones definidas en el instrumento de investigación, en este caso para valores menores de 2,5 representa que el Experto está en desacuerdo con lo que propone el indicador, para valores mayores a 3,5 indica que el Experto está de acuerdo con lo que propone el modelo de GC para ese indicador. Para los valores que sean mayores de 2,5 y menores de 3,5 el Experto valora que no está ni de acuerdo ni en desacuerdo para el indicador valorado.

Indicadores	Valor Promedio Indicador	Valor Referencial	En Desacuerdo / De Acuerdo
Mejoramiento en el análisis de	4,11	2,5<>3,5	
requerimientos de información			De Acuerdo
Mejoramiento en la gestión documental	3,78	2,5<>3,5	De Acuerdo
Efectividad en proporcionar una estructura			
de entorno adecuado para comunicar la	4,00		
información		2,5<>3,5	De Acuerdo
Facilidad de comunicar a través de			
materiales digitales documentación de	2.79		
casos de pruebas funcionales, de regresión,	3,78		
de aceptación.		2,5<>3,5	De Acuerdo
Eficacia en los sistemas de evaluación del	4,22		
desempeño	4,22	2,5<>3,5	De Acuerdo
Mejoramiento en la gestión del cambio de			
cultura en la mejora de las actividades en	4,11		
las pruebas		2,5<>3,5	De Acuerdo
Incorporación de mejores prácticas en el	4,22		
desarrollo de las actividades de pruebas	4,22	2,5<>3,5	De Acuerdo
Mejora de gestión de calidad en la fase de	4,89		
pruebas	4,03	2,5<>3,5	De Acuerdo
Espacio para el fortalecimiento de lecciones	4,67		
aprendidas	4,07	2,5<>3,5	De Acuerdo
Incorporación de mapas de conocimiento	3,89	2,5<>3,5	De Acuerdo
Sistematizar las tareas de las pruebas	4,33	2,5<>3,5	De Acuerdo
Mejoramiento en el sistema de gestión de la	4,44	2,5<>3,5	De Acuerdo

formación			
Facilidad al acceso a los escenarios de	4,22		
pruebas	7,22	2,5<>3,5	De Acuerdo
Efectividad al acceso a los escenarios de	4,33		
pruebas	4,33	2,5<>3,5	De Acuerdo
Incorpora centros digitales de información	3,89	2,5<>3,5	De Acuerdo
Incorpora cuadernos digitales explicativos	3.67		
sobre las actividades de la fase de pruebas	3.07	2,5<>3,5	De Acuerdo

Tabla 19. Resultados para los indicadores valorados por los Expertos. Fuente: Elaboración propia.

De acuerdo con la tabla anterior, el indicador "Mejora de gestión de calidad en la fase de pruebas" obtuvo la mayor valoración con 4,89 puntos, de esta manera los Expertos consideran que el modelo de GC propuesto fortalece la gestión de la calidad para las PS. Adicionalmente, los Expertos colocan en segundo lugar el indicador "Espacio para el fortalecimiento de lecciones aprendidas" con una valoración de 4,67 puntos con lo cual ven que el modelo de GC permite la generación y fortalecimiento de lecciones aprendidas en la gestión de las PS.

Por otro lado, el indicador "Incorpora cuadernos digitales explicativos sobre las actividades de la fase de pruebas" obtuvo la menor valoración, con 3,67 puntos, aunque está dentro del rango de lo de acuerdo, es necesario redefinir en el modelo GC, la gestión de los aspectos relacionados con este indicador para que se fortalezca aún más la propuesta, es necesario dejar claro que está fuera del alcance de la presente investigación esta iniciativa y queda como propuesta para futuros trabajos de investigación.

Ahora bien, analizando los resultados en un nivel mayor, teniendo en cuenta la matriz de consistencia presentada en la sección 5.2, se tiene para las dimensiones las siguientes valoraciones presentadas en la tabla 20. El valor promedio por dimensión surge de la ponderación del valor de los indicadores, el valor referencial tiene las mismas características relacionadas con los indicadores anteriormente expuestos, lo mismo ocurre con el valor referencial y el resultado de desacuerdo o de acuerdo.

Dimensión	Indicadores	Valor Promedio Indicador	Valor Promedio Dimensión	Valor Referencial	En Desacuerdo / De Acuerdo
Gestión de la información y la documentación	Mejoramiento en el análisis de requerimientos de información Mejoramiento en la gestión documental	4,11 3,78	3,95	2,5<>3,5	De Acuerdo
Gestión de la	Efectividad en proporcionar una estructura de entorno adecuado para comunicar la información	4,00			
comunicación	Facilidad de comunicar a través de materiales digitales documentación de casos de pruebas funcionales, de regresión, de aceptación.	3,78	3,89	2,5<>3,5	De Acuerdo
Gestión de la innovación y el cambio	Eficacia en los sistemas de evaluación del desempeño Mejoramiento en la gestión del cambio de cultura en la mejora de las actividades en las pruebas	4,22	4,17	2,5<>3,5	De Acuerdo
Gestión del aprendizaje organizacional	Incorporación de mejores prácticas en el desarrollo de las actividades de pruebas Mejora de gestión de calidad en la fase de	4,22	4,56	2,5<>3,5	De Acuerdo

	pruebas					
	1					
	Espacio para el					
Identificación de	fortalecimiento de	4,67				
conocimiento	lecciones aprendidas		4,28	2,5<>3,5	De Acuerdo	
Conocimiento	Incorporación de mapas	3,89				
	de conocimiento	3,69				
	Sistematizar las tareas de	4,33				
Formalización de	las pruebas	4,33				
conocimiento	Mejoramiento en el		4,39	2,5<>3,5	De Acuerdo	
	sistema de gestión de la	4,44				
	formación					
	Facilidad al acceso a los	4.22				
Distribución del	escenarios de pruebas	4,22	4,28	2,5<>3,5	De Acuerdo	
conocimiento	Efectividad al acceso a los	4.22	4,20	2,3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	De Acueldo	
	escenarios de pruebas	4,33				
	Incorpora centros digitales	3,89				
	de información	3,89			De Acuerdo	
Retención de	Incorpora cuadernos		3,78	25 \ 25		
conocimiento	digitales explicativos	2.67	3,70	2,5<>3,5		
	sobre las actividades de la	3,67				
	fase de pruebas					
			•			

Tabla 20. Resultados para las dimensiones producto de la valoración de los Expertos. Fuente: Elaboración propia.

Los Expertos coinciden como mayor aporte del modelo de GC a la dimensión "Gestión del aprendizaje organizacional", el cual obtuvo una valoración de 4,56 puntos, de esta manera, la propuesta del presente trabajo de investigación aporta crecimiento en términos de aprendizaje dentro de las organizaciones. A su vez, los Expertos concuerdan que la dimensión "Formalización de conocimiento" es la segunda en importancia para el modelo propuesto, debido que obtuvo una valoración de 4,39 puntos. Mientras que para la dimensión "Retención de conocimiento", determinan que es el que menor aporte realiza, debido que obtuvo una valoración de 3,78 puntos, aunque está dentro del rango de lo de acuerdo, para este aspecto es necesario continuar incorporando aspectos que fortalezcan el desempeño del modelo GC desde el enfoque de la gestión del recurso humano, iniciativa que sale del alcance de la presente investigación y que surge como futuros trabajos de investigación.

Para efectos de la valoración de los componentes definidos en la matriz de consistencia, la tabla 21 describe el resultado obtenido.

Componente	Dimensión	Valor Promedio Dimensión	Valor Promedio Component e	Valor Referencia l	En Desacuerdo / De Acuerdo
Fortalecimiento	Gestión de la información y la documentación	3,94			
de la fase de pruebas dentro	Gestión de la comunicación	3,89			
de la gestión del proyecto de software.	Gestión de la innovación y el cambio	4,17	4,14	2,5<>3,5	De Acuerdo
	Gestión del aprendizaje organizacional	4,56			
Efectividad de	Identificación de conocimiento	4,28			
operación al	Formalización de conocimiento	4,39	4,18	2,5<>3,5	De Acuerdo
aplicar las fases del modelo de GC	Distribución del conocimiento	4,28	7,10	2,3~>3,3	De Acueluo
	Retención de conocimiento	3,78			

Tabla 21. Resultados para los componentes del modelo de GC producto de la valoración de los Expertos. Fuente: Elaboración propia.

Los resultados para los componentes evaluados que hacen a la utilización del modelo de GC aplicado a las PS, indican que para los Expertos se expresa efectividad de operación al aplicar las fases del modelo y a su vez están de acuerdo que advierten el fortalecimiento de la fase de pruebas dentro de la gestión del proyecto de software.

En relación con la pegunta ¿Qué comentarios tiene sobre la propuesta, basado en el fortalecimiento de la fase de pruebas dentro de la gestión del proyecto de software, con la utilización de este modelo de Gestión de Conocimiento?

El Experto 1 indica que "Dada la coyuntura actual y la tendencia negativa respecto a la rotación de personal y bajo skill, la utilización de este modelo creo que realiza un aporte en reducir el impacto en las PS mejorando el resultado final y la performance"

El Experto 2 expresa que "sería muy interesante bajarlo a la práctica concreta y observar los resultados, a fin de poder evaluar correctamente el modelo".

El Experto 3 responde que "el modelo aporta una estructura que hace que el equipo de pruebas pueda gestionar a través de herramientas tecnológicas esta fase dentro de la ingeniería de software, fortaleciendo el accionar de estas, a su vez resguardando el conocimiento generado en las versiones del software que se prueba".

Con respecto a la pregunta ¿Qué aspectos incorporaría a este modelo de Gestión de Conocimiento para mejorar el desempeño de la fase de pruebas dentro de la gestión del proyecto de software?

El Experto 1, enuncia que "Como adicional al modelo incorporaría, ya que requiere recursos adicionales no siempre disponibles, la ingesta de las lecciones aprendidas (salida del proceso de GC) como entrada para un nuevo proceso de I+D que puede reformular y reforzar el modelo."

El Experto 2, manifiesta que "Ninguno, está muy completo".

El Experto 3, declara que "Ninguno. Esperaría que este modelo se utilizara en proyectos reales".

Para la pregunta ¿Qué aspectos suprimiría a este modelo de Gestión de Conocimiento para mejorar el desempeño de la fase de pruebas dentro de la gestión del proyecto de software?

El Experto 1, expone "No considero prudente eliminar del modelo ningún aspecto, está claro que si adaptaría el esfuerzo asignado a cada uno dependiendo de la dimensión de cada proyecto."

El Experto 2 y Experto 3, exteriorizan que "Ninguno".

De acuerdo con las anteriores apreciaciones de los Expertos y a su vez basado en las respuestas del primer cuestionario, el modelo de GC aplicado a las PS fortalece la fase de pruebas dentro de la gestión del proyecto de software.

Ahora bien, en relación con la pregunta ¿Qué comentarios tiene sobre la propuesta, basado en la efectividad de operación al ejecutar las fases del modelo de Gestión de Conocimiento en la fase de pruebas de la ingeniería de software?

El Experto 1, manifiesta "la única interrogante que se me presenta respecto a la efectividad de la operación, no es respecto a si es más o menos efectiva, sino, respecto a los esfuerzos requeridos para su implementación debido a la curva de aprendizaje que puede requerir y cómo esta pueda repercutir en la efectividad en el corto plazo (hasta que se afiance el nuevo modelo implementado)."

El Experto 2, expresa "propuesta muy interesante, es necesario llevarla a la práctica, medir y contrastar sus resultados con otras metodologías para poder evaluar este método."

El Experto 3, indica "el modelo debería ser probado en proyectos reales, para ratificar su funcionalidad".

De acuerdo con las anteriores valoraciones y a su vez basado en las respuestas del segundo cuestionario, se expresa efectividad de operación al ejecutar las fases del modelo de Gestión de Conocimiento aplicado a la fase de pruebas de la ingeniería de software propuesto.

El anexo 4, describe la estadística de las respuestas para los dos cuestionarios definidos para evaluar el modelo.

Gestión de Conocimiento y su Aplicación a la Fase de Pruebas Validación de la Ingeniería de Software

6. CONCLUSIONES

El presente trabajo de investigación abordó el principal problema que poseen las organizaciones dedicadas a la gestión de proyectos informáticos, relacionado con las barreras existentes en la transferencia de conocimiento en el desarrollo de las pruebas de software. Las PS es un proceso que genera un gran volumen de conocimiento, consolidándose como factor crítico para la calidad de producto, en ese sentido, exige una creciente demanda sobre cómo mejorar la efectividad en el cumplimiento del objetivo de esta fase, es ahí donde el uso de métodos y principios de Gestión de Conocimiento se convierte en la base para gestionarla eficientemente. Es por ello por lo que se propuso un modelo de aplicación de gestión de conocimiento a la fase de pruebas de la ingeniería de software.

En primera instancia se identificaron qué modelos de gestión de conocimiento son aplicables en la ingeniería de software en el dominio de la fase de pruebas, denotando que a través de la utilización de procesos propuestos por los modelos Riesco, Paniagua y López, Angulo y Negrón y el Modelo ISECO se pudo desarrollar una estructura que fundamentó la propuesta del modelo desarrollado en esta investigación. En ese sentido se dio respuesta a la primera pregunta de investigación.

Al modelo de GC propuesto se le incorporó una capa ontológica, para ello se determinó desarrollar una ontología aplicable en la ingeniería de software en el dominio de la fase de pruebas. Con lo cual se identificó que la metodología Stuart es la más adecuada para su desarrollo y a partir de esta, se definió que a través de patrones de diseño se podía estandarizar el desarrollo de la propuesta ontológica. De acuerdo con lo anterior se dio respuesta a la segunda pregunta de investigación.

Con el modelo de aplicación de GC a la fase de pruebas de la ingeniería de software propuesto, se validó a través de Juicio Experto, basado en la definición de una matriz de consistencia estratificada a través de tres niveles y mediante el uso de cuestionarios como instrumento de investigación se pudo capturar el pensamiento y valoración de cada uno de los Expertos. Los resultados denotan que en el primer nivel que refiere a los indicadores tuvieron una puntuación que hacen que los Expertos estuvieran de acuerdo con lo propuesto en el modelo de GC, destacando la mejora de gestión de calidad en la fase de pruebas. Para el segundo nivel que define a las dimensiones evaluadas destacaron a la gestión del aprendizaje

organizacional como el que más se enfatizó en el modelo de GC propuesto. En relación con el tercer nivel, los resultados para los componentes evaluados que hacen a la utilización del modelo de GC aplicado a las PS, indicaron que para los Expertos se expresa efectividad de operación al aplicar las fases del modelo y a su vez están de acuerdo que advierten el fortalecimiento de la fase de pruebas dentro de la gestión del proyecto de software.

A su vez, los Expertos manifestaron en las preguntas abiertas una buena apreciación al modelo de aplicación de gestión de conocimiento a la fase de pruebas de la ingeniería de software. De acuerdo con lo anteriormente enunciado se dio respuesta a la tercera pregunta de investigación.

Como trabajo futuro a partir de las consideraciones presentadas, se continuará en mejorar los aspectos relacionados a la incorporación de cuadernos ("Guías") digitales explicativos sobre las actividades de la fase de pruebas, el cual fue uno de los indicadores con menor valoración. A su vez, se fortalecerá la dimensión "Retención de conocimiento", para este aspecto es necesario continuar incorporando aspectos que fortalezcan el desempeño del modelo GC desde el enfoque de la gestión del recurso humano.

Por otro lado, a pedido de uno de los Expertos, también se considera como futuro trabajo llevar a la práctica el modelo de GC desarrollado en esta investigación, para medir y contrastar sus resultados con otras metodologías en proyectos de Software reales.

7. REFERENCIAS

- Abdou, T., & Kamthan, P. (2014). A knowledge management approach for testing open source software systems. In Performance Computing and Communications Conference (IPCCC), 2014 IEEE International (pp. 1-2). IEEE. Recuperado de https://doi.org/10.1109/PCCC.2014.7017022
- Alderete, R. Y., Flores, L. E., & Mariño, S. I. (2017). Diagnóstico de Gestión del Conocimiento en una organización pública. In XI Simposio Argentino de Informática en el Estado (SIE)-JAIIO 46 (Córdoba, 2017). Recuperado de http://hdl.handle.net/10915/65818
- Arias, I. M. (2015). Diseño y validación de un cuestionario de escala formativa para valorar las competencias transversales de los estudiantes universitarios. Una propuesta para dispositivos móviles basada en Android. Universitas Tarraconensis. Revista de Ciències de l'Educació, 1(1), 84-87. Recuperado de https://revistes.urv.cat/index.php/ute/article/view/661
- Avendaño Pérez, V., & Flores Urbáez, M. (2016). *Modelos teóricos de gestión del conocimiento: descriptores, conceptualizaciones y enfoques*. Entreciencias: diálogos en la Sociedad del Conocimiento, 4(10). Recuperado de http://www.redalyc.org/articulo.oa?id=457646537004
- Barber, E., Pisano, S., Romagnoli, S., de Pedro, G., Gregui, C., Blanco, N., & Mostaccio, M. (2018). *Metodologías para el diseño de ontologías Web*. Información, Cultura Y Sociedad, 0(39), 13-36. Recuperado de http://ppct.caicyt.gov.ar/index.php/ics/article/view/14453/454575759139
- Blanquicett, Luis A., Bonfante, María C., & Acosta-Solano, Jairo. (2018). *Prácticas de Pruebas desde la Industria de Software*. La Plataforma ASISTO como Caso de Estudio. Información tecnológica, 29(1), 11-18. https://dx.doi.org/10.4067/S0718-07642018000100011
- Bourque, P., & Fairley, R. E. (2014). *Guide to the software engineering body of knowledge* (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

- Cabero Almenara, J. & Llorente Cejudo, M. (2013). La aplicación del juicio de experto como técnica de evaluación de las tecnologías de la información (TIC). Eduweb. Revista de Tecnología de Información y Comunicación en Educación, 7 (2, 11-22).
- Cárdenas, J. M., & Spinola, M. (2013, July). *Role of knowledge management systems within the expertise transfer*. In Technology Management in the IT-Driven Services (PICMET), 2013 Proceedings of PICMET'13: (pp. 1302-1308). IEEE. Recuperado de http://ieeexplore.ieee.org/abstract/document/6641733/
- Chandrasegaran, S. K., Ramani, K., Sriram, R. D., Horváth, I., Bernard, A., Harik, R. F., & Gao, W. (2013). *The evolution, challenges, and future of knowledge representation in product design systems*. Computer-aideddesign, 45(2), 204-228. Recuperado de https://doi.org/10.1016/j.cad.2012.08.006
- Contreras, M. C. B., Gutiérrez, F. P., Ortiz, J. A. R., & Ramírez, R. A. A. (2018). *Ingeniería Ontológica Aplicada en el Diseño de un Sistema de Ontologías para la Gestión de Horarios*. Pistas Educativas, 39(128). Recuperado de http://www.itcelaya.edu.mx/ojs/index.php/pistas/article/viewFile/1173/949
- Crespo, T. (2007). Respuestas a 16 preguntas sobre el empleo de expertos en la investigación pedagógica. Lima, Perú: San Marcos.
- Creswell, J. W. (2014). *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches*. University of Nebraska, Lincoln. 4a. ed. Sage Publications, Inc.
- Cruz Ramírez, M. (2012). Perfeccionamiento de un instrumento para la selección de expertos en las investigaciones educativas. REDIE (Revista Electrónica de Investigación Educativa), 14(2).
- Dávila, Abraham, García, Cecilia, & Cóndor, Sandra. (2017). *Análisis exploratorio en la adopción de prácticas de pruebas de software de la ISO/IEC 29119-2 en organizaciones de Lima, Perú*. RISTI Revista Ibérica de Sistemas e Tecnologías de Información, (21), 1-17. https://dx.doi.org/10.17013/risti.21.1-17

- Díaz, M. T. R., & Millán, J. J. G. (2013). Gestión del Conocimiento y Capital Intelectual, a través de modelos universitarios. Económicas CUC, 34(1), 85-116. Recuperado de http://hdl.handle.net/11323/332
- Dehghani, R., & Ramsin, R. (2015). Methodologies for developing knowledge management systems: an evaluation framework. Journal of Knowledge Management, 19(4), 682-710. Recuperado de https://doi.org/10.1108/JKM-10-2014-0438
- De la Villa Moreno, M. Á. (2016). Método para la construcción automática de ontologías basado en patrones lingüísticos. (Doctoral dissertation, Ph. D. thesis, ETSI Informática). Recuperado de https://core.ac.uk/download/pdf/33178839.pdf
- De Vasconcelos, J. B., Kimble, C., Carreteiro, P., & Rocha, Á. (2017). The application of knowledge management to software evolution. International Journal of Information Management, 37(1), 1499-1506. Recuperado de https://doi.org/10.1016/j.ijinfomgt.2016.05.005
- Durán, D. E. S., Gamboa, A. X. R., & Builes, J. J. (2017). Aplicación de la Gestión de Conocimiento al proceso de pruebas de software. Ingenierías Revistas USBMed, 8(2), 6-13. Recuperado de http://dx.doi.org/10.21500/20275846.2836
- Escobar-Pérez, J. & Cuervo-Martínez, A. (2008). Validez de contenido y juicio de expertos: una aproximación a su utilización. Avances en Medición, 6, 27-36.
- European Union (en línea) https://europa.eu/capacity4dev/evaluation_guidelines/minisite/esbases-metodológicas-y-enfoque/herramientas-de-evaluación
- Evans, M., Dalkir, K., & Bidian, C. (2015). A holistic view of the knowledge life cycle: the knowledge management cycle (KMC) model. The Electronic Journal of Knowledge Management, 12(1), 47.
- Fernández, F., & Ángel, M. (2015). Aplicación de técnicas de pruebas automáticas basadas en propiedades a los diferentes niveles de prueba del software. Recuperado de http://hdl.handle.net/2183/14814
- Fernández Hernández, A. (2016). Modelo ontológico de recuperación de información para la de decisiones Recuperado toma engestión de proyectos. de http://hdl.handle.net/10481/43409

- Fidalgo-Blanco, Á., Sein-Echaluce, M. L., Lerís, D., & García-Peñalvo, F. J. (2013). Sistema de Gestión de Conocimiento para la aplicación de experiencias de innovación educativa en la formación. Recuperado de http://hdl.handle.net/10366/122586
- Fidel, P., Schlesinger, W., & Cervera, A. (2015). Collaborating to innovate: Effects on customer knowledge management and performance. Journal of business research, 68(7), 1426-1428. Recuperado de https://doi.org/10.1016/j.jbusres.2015.01.026
- Fitsilis, Panos & Gerogiannis, Vassilis & Anthopoulos, Leonidas. (2014). Ontologies for Project Management: Survey. International Journal of Information Processing and 5. 1-7. Recuperado Management. de https://www.researchgate.net/publication/270281571_Ontologies_for_Project_Manage ment_Survey
- Flores, V., & Hadfeg, Y. (2017). Un método para generar explicaciones de resultados de un Sistema Experto, usando Patrones de discurso y Ontología. RISTI-Revista Ibérica de Sistemas e Tecnologias de Informação, (21),99-114. Recuperado de http://www.scielo.mec.pt/scielo.php?script=sci_arttext&pid=S1646-98952017000100008&lng=pt&nrm=iso
- García-Holgado, A., Cruz-Benito, J., & García-Peñalvo, F. J. (2015). Análisis comparativo de la gestión del conocimiento en la administración pública española. Recuperado de http://hdl.handle.net/10366/126689
- Garrepalli, T. (2015). Knowledge Management in Software Testing. Recuperado de http://bth.diva-portal.org/smash/record.jsf?pid=diva2%3A869051&dswid=252
- Gómez, D. R., & Sallán, J. G. (2015). Innovación, aprendizaje organizativo y gestión del conocimiento en las instituciones educativas. Educación, 24(46), 73-90. Recuperado de https://dialnet.unirioja.es/servlet/articulo?codigo=5061324
- González Gola, F., Sánchez, A., & Montejano, G. A. (2017). Asistencia dirigida por ontologías al diseño arquitectónico de videojuegos. In XIX Workshop de Investigadores en Ciencias de la Computación (WICC 2017, ITBA, Buenos Aires). Recuperado de http://sedici.unlp.edu.ar/handle/10915/61343
- Havlice, Z., Szabóová, V., & Vízi, J. (2013). Critical knowledge representation for modelbased testing of embedded systems. In Applied Machine Intelligence and Informatics

- (SAMI), 2013 IEEE 11th International Symposium on (pp. 169-174). IEEE. Recuperado de https://ieeexplore.ieee.org/document/6480969/
- Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación. México: Editorial Mc Graw Hill, 15-40. ISBN 978-92-75-32913-9.
- Jústiz-Núñez, Dalila, Gómez-Suárez, Darlene, & Delgado-Dapena, Marta Dunia. (2014). Proceso de pruebas para productos de software en un laboratorio de calidad. Ingeniería Industrial, 35(2), 131-145. Recuperado de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59362014000200003&lng=es&tlng=pt
- Kucharska, W., & Kowalczyk, R. (2016). "Trust, Collaborative Culture and Tacit Knowledge Sharing in Project Management – a Relationship Model", In: Proceedings of the 13th International Conference on Intellectual Capital, Knowledge Management & 159-166). DOI: Organisational Learning: ICICKM 2016 (p. https://doi.org/10.13140/rg.2.2.25908.04486
- Labra, O. (2016). Positivismo y Constructivismo: Un análisis para la investigación social. Rumbos TS. Un espacio crítico para la reflexión en Ciencias Sociales, 0(7), 12-21. Recuperado de http://revistafacso.ucentral.cl/index.php/rumbos/article/view/55
- Lakhani, K. R., Lifshitz-Assaf, H., & Tushman, M. (2013). Open innovation and organizational boundaries: task decomposition, knowledge distribution and the locus of innovation. Handbook of economic organization: Integrating economic and organizational theory, 355-382.
- Lancheros, M. L. P (2014). Las Ontologías en la Gestión del Conocimiento Organizacional. Fray Ismael Leonardo Ballesteros Guerrero, OP-Decano de División de Arquitectura e Tunja. Ingenierías, Universidad Santo Tomás Seccional Recuperado https://www.researchgate.net/profile/Leonardo_Bernal_Zamora/publication/27558147 3 Memorias CIIIS 2014 Investigacion en Ingenieria de Sistemas/links/553fa10f0c f2736761c04033.pdf#page=144
- Liberona, D., & Ruiz, M. (2013). Análisis de la implementación de programas de gestión del conocimiento en las empresas chilenas. Estudios gerenciales, 29(127), 151-160. Recuperado de https://doi.org/10.1016/j.estger.2013.05.003

- Linares Pons, N., Piñero Pérez, Y., Rodríguez Stiven, E., & Pérez Quintero, L. (2014). Diseño de un modelo de Gestión del Conocimiento para mejorar el desarrollo de equipos de proyectos informáticos. Revista española de Documentación Científica, 37(2), e044. Recuperado de http://dx.doi.org/10.3989/redc.2014.2.1036
- Llontop Díaz, G. C. (2018). Gestión de riesgos de Tecnologías de Información de las Recuperado empresas de Nephila Networks. de http://repositorio.ucv.edu.pe/handle/UCV/17596
- López, J. G. F., & Jiménez, S. O. (2017). Los modelos de gestión del conocimiento y su relación con la cultura organizacional: Una revisión teórica. Ciencia Administrativa, 179-189. (2),Recuperado de http://revistas.uv.mx/index.php/cadmiva/article/view/2634
- Martínez, M. I. R. (2014). La gestión del conocimiento y la ciencia de la información: relaciones disciplinares y profesionales (Doctoral dissertation, Universidad Carlos III de Madrid). Recuperado de https://core.ac.uk/download/pdf/29406085.pdf
- Marulanda Echeverry, C. E., López Trujillo, M., & Castellanos Galeano, J. F. (2016). La cultura organizacional y su influencia en las buenas prácticas para la gestión del conocimiento en las Pymes de Colombia. AD-minister, (29), 163-176. Recuperado de https://doi.org/10.17230/ad-minister.29.8
- Marulanda Echeverry, C. E., López Trujillo, M., & Mejía Salazar, M. H. (2017). Minería de datos en gestión del conocimiento de pymes de Colombia. Revista Virtual Universidad Católica del Norte, (50).Recuperado de http://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/821/1339
- Marulanda, Carlos E, Giraldo, Jaime A, & López, Marcelo. (2013). Evaluación de la Gestión del Conocimiento en las Organizaciones de la Red de Tecnologías de Información y Comunicaciones del Eje Cafetero en Colombia. Información tecnológica, 24(4), 105-116. https://dx.doi.org/10.4067/S0718-07642013000400012
- Medina, M. I. R., Quintero, M. D. S. B., & Valdez, J. C. R. (2013). El enfoque mixto de investigación en los estudios fiscales. Tlatemoani, (13). Recuperado http://www.eumed.net/rev/tlatemoani/13/estudios-fiscales.pdf

- Medina Nogueira, Daylin, Medina León, Alberto, & Nogueira Rivera, Dianelys. (2017). Procesos y Factores claves de la Gestión del Conocimiento. Revista Universidad y 9(3),16-23. Sociedad, Recuperado de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202017000300002&lng=es&tlng=es
- Mera Paz, J. A. (2016). Análisis del proceso de pruebas de calidad de software. Ingeniería 12, 163-176, Solidaria, vol. no. 20, pp. oct. 2016. doi: http://dx.doi.org/10.16925/in.v12i20.1482
- Morales, F. J. L., & Gutiérrez, H. A. (2015). La gestión del conocimiento: Modelos de comprensión y definiciones. Revista de investigación en ciencias estratégicas, 2(2), 84-111. Recuperado de http://revistas.upb.edu.co/index.php/RICE/article/view/5703
- Morales Quispe, E. A. (2018). Validación metodología Pmbok en gestión de riesgos del proceso de desarrollo de software empresa sector educación. Recuperado de http://repositorio.ucv.edu.pe/handle/UCV/14502
- Nonaka, I., & Takeuchi, H. (2000). La empresa creadora de conocimiento. Gestion del conocimiento, 1-9.
- Park, J. G., & Lee, J. (2014). Knowledge sharing in information systems development projects: Explicating the role of dependence and trust. International Journal of Project 32(1), 153-165. Recuperado Management, de https://doi.org/10.1016/j.ijproman.2013.02.004
- Pérez-Montoro, M. (2016). Gestión del conocimiento: orígenes y evolución. El profesional de la información, 25(4), 526-534. Recuperado de https://doi.org/10.3145/epi.2016.jul.02
- PMI. (2017). Guía de los Fundamentos para la dirección de Proyectos (Guía del PMBOX[®]). Sexta Edición. Pennsylvania, EEUU.:PEARSON.
- Ponjuán Dante, G. (2015). La gestión del conocimiento desde las ciencias de la información: responsabilidades y oportunidades. Revista Cubana de Información en Ciencias de la 206-216. Salud, 26(3), Recuperado de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2307-21132015000300002&lng=es&tlng=es

- Pozzo, M. I., Borgobello, A., & Pierella, M. P. (2018). Uso de cuestionarios en investigaciones sobre universidad; análisis de experiencias desde una perspectiva situada. Revista Latinoamericana de Metodología de las Ciencias Sociales, 8(2), e046e046. Recuperado de https://doi.org/10.24215/18537863e046
- Pulido, J R G & Contreras Castillo, Juan & Gallardo, Armando Roman & Andrade-Arechiga, Maria & Gilberto, L & López-Morteo, Gabriel. (2009). Tópicos selectos de tecnologías de información con aplicaciones prácticas, 107. Recuperado de https://www.researchgate.net/publication/235354675_Topicos_selectos_de_tecnologia s_de_informacion_con_aplicaciones_practicas
- Quirino, G. K., Barcellos, M. P., & Falbo, R. A. (2017). OPL-ML: A Modeling Language for Representing Ontology Pattern Languages. In International Conference on Conceptual 187-201). Modeling (pp. Springer, Cham. Recuperado de https://link.springer.com/chapter/10.1007/978-3-319-70625-2_18
- Rincón, R. A. (2017). Gestión del conocimiento y aprendizaje organizacional: una visión 53-70. Recuperado integral. Informes Psicológicos, 17(1), de http://dx.doi.org/10.18566/infpsic.v17n1a03
- Rodríguez-Ponce, E., Pedraja-Rejas, L., Araneda-Guirriman, C., & Rodríguez-Ponce, J. (2013). La relación entre la gestión del conocimiento y la gestión académica: un estudio exploratorio en universidades chilenas. Interciencia, 38(2). Recuperado de http://www.redalyc.org/articulo.oa?id=33926950006
- Rodríguez Sosa, J. (2014). Paradigmas, enfoques y métodos en la investigación educativa. Investigación Educativa, 7(12),23 40. Recuperado de http://revistasinvestigacion.unmsm.edu.pe/index.php/educa/article/view/8177/7130
- Romero Rodríguez, J. M. (2017). Representación del conocimiento experto de un tutor elearning a través del mapa conceptual: Un modelo de buenas prácticas docentes. Recuperado de http://digibug.ugr.es/handle/10481/46413
- Rozo Rodríguez M., & Casanovas I. (2018). La Gestión de Conocimiento Aplicado a la Fase de Pruebas de la Ingeniería de Software - Revisión Sistemática. 6to Congreso Nacional de Ingeniería Informática / Sistemas de Información. CoNaIISI. Publicación

- online ISSN 2347-0372. Disponible online desde noviembre de 2018: https://www.conaiisi2018mdp.org/memorias/memorias.html#
- Ruy, F. B., de Almeida Falbo, R., Barcellos, M. P., Costa, S. D., & Guizzardi, G. (2016). SEON: A software engineering ontology network. In European Knowledge Acquisition Workshop 527-542). Springer, Cham. Recuperado (pp. de https://ksiresearchorg.ipage.com/seke/seke17paper/seke17paper_20.pdf
- Saeed, A. A., & Dănciulescu, D. (2018). Modern Interfaces for Knowledge Representation and Processing Systems Based on Markup Technologies. International Journal of Communications & Control, 13(1). Recuperado Computers, de http://www.univagora.ro/jour/index.php/ijccc/article/view/3149
- Saraguro-Silva, G., Guamán-Quinche, R., & Torres-Carrión, H. (2016). Revisión Sistemática de Ontologías **Aplicaciones** WEB. Recuperado en de https://www.researchgate.net/publication/305721384_REVISION_SISTEMATICA_D E_ONTOLOGIAS_EN_APLICACIONES_WEB
- Scapolo, F. & Miles, I. (2006). Eliciting experts' knowledge: A comparison of two methods. Technological Forecasting & Social Change, 73, 679–704.
- Silva, E. E. J., Cerda, L. A. L., & Altamirano, J. F. L. (2017). La gestión del conocimiento organizacional basado en las perspectivas del BalancedScorecard como factor clave para la innovación de las PYMES. Revista Publicando, 4(12 (2)), 640-657. Recuperado de https://www.rmlconsultores.com/revista/index.php/crv/article/view/746
- Souza, E. F., Falbo, R. A., & Vijaykumar, N. L. (2013). Knowledge management applied to software testing: A systematic mapping. In The 25th International Conference on Software Engineering and Knowledge Engineering (SEKE 2013), Boston, USA (pp. 562-567). Recuperado de https://www.researchgate.net/publication/289638583
- Souza, É. F., Falbo, R. A., & Vijaykumar, N. L. (2013b). Ontologies in software testing: a systematic. In VI Seminar on Ontology Research in Brazil (p. 71). Recuperado dehttps://www.researchgate.net/profile/Mauricio Almeida/publication/299435953 VI _Seminar_on_Ontology_Research_in_Brazil/links/59b6c355aca2722453a4c66f/VI-Seminar-on-Ontology-Research-in-Brazil.pdf#page=71

- Souza, E. F., Falbo, R. A., & Vijaykumar, N. L. (2013c). Using ontology patterns for building a reference software testing ontology. In 2013 17th IEEE International Enterprise Distributed Object Computing Conference Workshops (pp. 21-30). IEEE. Recuperado de https://ieeexplore.ieee.org/abstract/document/6690530
- Souza, E. F., de Almeida Falbo, R., & Vijaykumar, N. L. (2015a). Knowledge management initiatives in software testing: A mapping study. Information and Software Technology, 57, 378-391. Recuperado de https://doi.org/10.1016/j.infsof.2014.05.016
- Souza, É. F., Falbo, R. A., & Vijaykumar, N. L. (2015b). Using the findings of a mapping study to conduct a research project: a case in knowledge management in software testing. In Software Engineering and Advanced Applications (SEAA), 2015 41st Euromicro Conference 208-215). IEEE. Recuperado de on (pp. http://dx.doi.org/10.1109/SEAA.2015.10
- Souza, É. F. D., Falbo, R. D. A., & Vijaykumar, N. L. (2017). ROoST: reference ontology on software testing. Applied Ontology, 12(1), 59-90. Recuperado de https://www.researchgate.net/publication/314268288_ROoST_Reference_Ontology_o n_Software_Testing
- Stapel, K., & Schneider, K. (2014). Managing knowledge on communication and information flow in global software projects. Expert Systems, 31(3), 234-252. Recuperado de http://dx.doi.org/10.1111/exsy.649
- Straccia, L., Maulini, A., Pytel, P., Masci, M., Vegega, C., & Pollo Cattaneo, M. F. (2017). La gestión del conocimiento en pequeñas y medianas fábricas de software en el Área Metropolitana de Buenos Aires. In XIX Workshop de Investigadores en Ciencias de la Computación (WICC 2017, ITBA, Aires). Recuperado **Buenos** de http://hdl.handle.net/10915/62080
- Stuart, D. (2016).Practical Ontologies for Information Professionals. Facet. https://doi.org/10.29085/9781783301522
- Suárez Carmona, E. J., & Gallego Berrío, L. (2015). Una estrategia de gestión del conocimiento para el docente en la sociedad actual. Recuperado http://hdl.handle.net/123456789/3739

- Tous, M. G., & Mattar, S. (2012). Las claves de las palabras clave en los artículos científicos.

 Revista MVZ Córdoba, 17(2), 2955-2956. Recuperado de http://www.redalyc.org/pdf/693/69323751001.pdf
- Vargas, L. H. P., Durán, C. A. V., & Méndez, J. G. C. (2016). *Innovación y Gestión del Conocimiento para el Incremento de la Productividad Empresarial*. Memorias, 14(26). Recuperado de https://doi.org/10.16925/me.v14i26.1571
- Vasanthapriyan, S., Tian, J., Zhao, D., Xiong, S., & Xiang, J. (2017). *An Ontology-based Knowledge Management System for Software Testing*. In SEKE (pp. 230-235).

 Recuperado,

 de https://ksiresearchorg.ipage.com/seke/seke17paper/seke17paper_20.pdf
- Wang, S., Noe, R. A., & Wang, Z. M. (2014). *Motivating knowledge sharing in knowledge management systems: A quasi–field experiment*. Journal of Management, 40(4), 978-1009. Recuperado de https://doi.org/10.1177/0149206311412192
- Wnuk, K., & Garrepalli, T. (2018). *Knowledge Management in Software Testing: A Systematic Snowball Literature Review*. e-Informatica Software Engineering Journal, 12(1), 51-78. Recuperado de http://io.pwr.edu.pl/eprints/id/eprint/81
- Yang, L. R., Huang, C. F., & Hsu, T. J. (2014). Knowledge leadership to improve project and organizational performance. International Journal of Project Management, 32(1), 40-53. Recuperado de https://doi.org/10.1016/j.ijproman.2013.01.011
- Zapata Jaramillo, C. M., Giraldo, G. L., & Urrego Giraldo, G. A. (2010). Las ontologías en la ingeniería de software: un acercamiento de dos grandes áreas del conocimiento.
 Revista Ingenierías Universidad de Medellín, 9(16). Recuperado de https://www.redalyc.org/pdf/750/75018737007.pdf

Gestión de Conocimiento y su Aplicación a la Fase de Pruebas Referencias de la Ingeniería de Software

ANEXOS

Anexo 1. Puntuación promedio de la escala Likert

Aplicando el instrumento de investigación se obtiene el siguiente resultado para una dimensión:

No	Item	1	2	3	4	5	TOTAL
Pregunta	2002						101112
	El modelo de gestión de conocimiento propone						
P01	identificar el tipo de rol que cumple el actor de						
	ejecución de pruebas						
P02	El modelo de gestión de conocimiento propone						11
P02	definir el tipo de pruebas de software a utilizar						
P03	El modelo de gestión de conocimiento propone						
103	planificar el plan de pruebas						
	El modelo de gestión de conocimiento propone						
P04	la incorporación de nuevos escenarios de						
	pruebas						
P05	El modelo de gestión de conocimiento propone						12
103	modificar un escenario de prueba						12
P06	El modelo de gestión de conocimiento propone						
	actualizar documentos asociados a un escenario						
	de prueba existente						

Utilizando la ecuación de promedio resultante se tiene:

Promedio Resultante=
$$\frac{\text{Puntuación}}{\text{Número de afirmaciones}}$$

Puntuación es la sumatoria total del puntaje, para el ejemplo valor de 23, para el número de afirmaciones tiene valor de 6, desarrollando el ejercicio:

$$Pr = \frac{23}{6} = 3.8$$

Ubicando el valor dentro de la escala se tiene:

Para el ejemplo la puntuación de la dimensión se ubica en la escala De acuerdo.

Anexo 2. Fortalecimiento de la fase de pruebas dentro de la gestión del proyecto de software

CUESTIONARIO

En primera instancia quiero agradecerle por la participación en esta investigación sobre la aplicación de la GC a la fase de pruebas de la ingeniería de software.

El siguiente cuestionario tiene por finalidad validar el fortalecimiento de la fase de pruebas dentro de la gestión del proyecto de software, con la utilización del modelo de GC aplicado a la fase de pruebas propuesto.

Quisiera pedir su ayuda para que conteste algunas preguntas que no llevarán mucho tiempo. Sus respuestas serán confidenciales y anónimas. No hay preguntas delicadas.

Sus opiniones serán sumadas e incluidas en la tesis, pero nunca se comunicarán datos individuales.

Pedimos que conteste este cuestionario con la mayor sinceridad posible. No hay respuestas correctas ni incorrectas.

Lea las instrucciones cuidadosamente, ya que existen preguntas en las que sólo se puede responder a una opción; también se incluyen preguntas abiertas.

Muchas gracias por su colaboración.

Instrucciones:

No hay respuestas correctas o incorrectas. Éstas simplemente reflejan su opinión. Existen preguntas donde puedes expresar su opinión y preguntas que tienen cinco opciones de respuesta, en la que puedes elegir la que mejor describa lo que piensas. Solamente una opción marcando con una X el recuadro correspondiente según:

- 1- Totalmente en desacuerdo
- 2- En desacuerdo
- 3- Ni de acuerdo ni en desacuerdo
- 4- De acuerdo
- 5- Totalmente de acuerdo

El tiempo estimado de realización comprende entre 12 – 15 minutos aproximadamente.

No	Itom	1	2	3	1	_
Pregunta	Item	1	4	3	4	5
P01	El modelo de gestión de conocimiento propone					
	identificar el tipo de rol que cumple el actor de ejecución					
	de pruebas					
P02	El modelo de gestión de conocimiento propone definir el					
	tipo de pruebas de software a utilizar					
P03	El modelo de gestión de conocimiento propone planificar					
	el plan de pruebas					
P04	El modelo de gestión de conocimiento propone la					
	incorporación de nuevos escenarios de pruebas					
P05	El modelo de gestión de conocimiento propone					
	modificar un escenario de prueba					
P06	El modelo de gestión de conocimiento propone					
	actualizar documentos asociados a un escenario de					
	prueba existente					
P07	El modelo de gestión de conocimiento propone					
	identificar que acciones se ha realizado en las pruebas de					
	Software					
P08	El modelo de gestión de conocimiento propone					
	identificar el estado final de las pruebas de Software					
P09	El modelo de gestión de conocimiento propone					
	actividades para comunicar el estado de las pruebas de					
	software					
P10	El modelo de gestión de conocimiento propone					
	identificar la documentación de un escenario de pruebas					

P11	El modelo de gestión de conocimiento propone la	_	_	_	
	comunicación del estado de la prueba de software				
P12	El modelo de gestión de conocimiento propone la				
	gestión de material digital para fundamentar el estado de				
	la prueba de software				
P13	El modelo de gestión de conocimiento propone				
	identificar medidas de evaluación de la efectividad del				
	plan de pruebas de software				
P14	El modelo de gestión de conocimiento propone				
	identificar medidas de evaluación del actor - ejecutor de				
	los escenarios de pruebas de software				
P15	El modelo de gestión de conocimiento propone				
	identificar medidas de evaluación de la gestión en la fase				
	de pruebas para cada proyecto de software				
P16	El modelo de gestión de conocimiento propone a través				
	de su uso un cambio de cultura sobre la gestión de las				
	pruebas de software				
P17	El modelo de gestión de conocimiento propone una				
	mejora en el desarrollo de las actividades de las pruebas				
	de software				
P18	El modelo de gestión de conocimiento propone cambios				
	en las actividades para el actor - ejecutor de pruebas de				
	software				
P19	El modelo de gestión de conocimiento propone				
	incorporar actividades en la ejecución del plan de				
	pruebas de software				
P20	El modelo de gestión de conocimiento propone				
	incorporar tareas en el desarrollo del escenario de				
	pruebas				
P21	El modelo de gestión de conocimiento propone mejoras				
	en la búsqueda de información relacionada con los				
	escenarios de pruebas.				

	El modelo de gestión de conocimiento propone una					
P22	mejora en la gestión de la calidad del proyecto de					
	software					
	El modelo de gestión de conocimiento propone una					
P23	mejora en la gestión de la calidad de las pruebas de					
	software					
	El modelo de gestión de conocimiento propone una					
P24	mejora en la gestión de la calidad de las acciones sobre					
	los escenarios de pruebas de software					
¿Qué coment	arios tiene sobre la propuesta, basado en el fortalecimiento	de l	la fa	se de	prue	ebas
dentro de la	gestión del proyecto de software, con la utilización de este	mod	elo d	le G	estió	n de
Conocimient	0?					
					-	
					1	
_	es incorporaría a este modelo de Gestión de Conocimiento p		_	rar e	1	
desempeno d	e la fase de pruebas dentro de la gestión del proyecto de so	itwai	re?			
					_	
¿Qué aspecto	s suprimiría a este modelo de Gestión de Conocimiento par	ra me	ejora	r el		
desempeño d	e la fase de pruebas dentro de la gestión del proyecto de so	ftwa	re?			

Anexo 3. Efectividad de operación al ejecutar las fases del modelo de GC aplicado a la fase de pruebas de la ingeniería de software

CUESTIONARIO

En primera instancia quiero agradecerle por la participación en esta investigación sobre la aplicación de la GC a la fase de pruebas de la ingeniería de software.

El siguiente cuestionario tiene por finalidad validar la efectividad de operación al ejecutar las fases del modelo de GC aplicado a la fase de pruebas de la ingeniería de software propuesto.

Quisiera pedir su ayuda para que conteste algunas preguntas que no llevarán mucho tiempo. Sus respuestas serán confidenciales y anónimas. No hay preguntas delicadas.

Sus opiniones serán sumadas e incluidas en la tesis, pero nunca se comunicarán datos individuales.

Pedimos que conteste este cuestionario con la mayor sinceridad posible. No hay respuestas correctas ni incorrectas.

Lee las instrucciones cuidadosamente, ya que existen preguntas en las que sólo se puede responder a una opción; también se incluyen preguntas abiertas.

Muchas gracias por su colaboración.

Instrucciones:

No hay respuestas correctas o incorrectas. Éstas simplemente reflejan su opinión. Existen preguntas donde puedes expresar su opinión y preguntas que tienen cinco opciones de respuesta, en la que puedes elegir la que mejor describa lo que piensas. Solamente una opción marcando con una X el recuadro correspondiente según:

- 1- Totalmente en desacuerdo
- 2- En desacuerdo

- 3- Ni de acuerdo ni en desacuerdo
- 4- De acuerdo
- 5- Totalmente de acuerdo

El tiempo estimado de realización comprende entre 12-15 minutos aproximadamente.

No	Itaan	1	2	3	4	_
Pregunta	Item	1	4	3	4	5
	El modelo de gestión de conocimiento propone					
P25	espacio para generar lecciones aprendidas sobre la					
	gestión de la fase de pruebas de software					
	El modelo de gestión de conocimiento propone					
P26	identificar puntos de atención y mejoras a lo largo del					
	proceso de pruebas de software					
	El modelo de gestión de conocimiento propone					
P27	incorporar informe de lecciones aprendidas de la					
	ejecución fase de pruebas de software					
	El modelo de gestión de conocimiento propone					
P28	identificar la localización del conocimiento de					
	pruebas de un proyecto de software					
	El modelo de gestión de conocimiento propone					
P29	identificar los recursos de conocimiento vinculados a					
	cada tarea dentro del proceso de pruebas de software					
	El modelo de gestión de conocimiento se propone					
P30	como instrumento dinámico que se modula en función					
F30	de las acciones que se tomen alrededor de cada tarea					
	en las pruebas de software					
	El modelo de gestión de conocimiento propone la					
P31	automatización de la documentación de las pruebas de					
	software					
	El modelo de gestión de conocimiento propone una					
P32	mejora en la automatización de la búsqueda de					
	información relacionada con las pruebas de software					
P33	El modelo de gestión de conocimiento propone una					

	mejora en el proceso general de gestión de pruebas de			
	software			
	El modelo de gestión de conocimiento propone un			
P34	esquema general de tratamiento de la información de			
	las pruebas de software			
	El modelo de gestión de conocimiento propone			
P35	formalizar la información de las tareas que componen			
	las pruebas de software			
	El modelo de gestión de conocimiento propone			
P36	formalizar la información de la calidad en las pruebas			
	de software			
	El modelo de gestión de conocimiento propone el			
P37	entorno para acceder a la información de los			
	escenarios de pruebas			
	El modelo de gestión de conocimiento propone			
P38	mejoras en la accesibilidad de la información de las			
	pruebas de software			
	El modelo de gestión de conocimiento propone un			
P39	proceso formalizado para acceder a la información de			
	pruebas de software más eficiente			
	El modelo de gestión de conocimiento propone una			
P40	mejora en la identificación de los escenarios de			
	pruebas de software			
	El modelo de gestión de conocimiento propone una			
P41	mejora en la gestión de documentación de los			
	escenarios de pruebas de software			
	El modelo de gestión de conocimiento propone una			
P42	mejora en la identificación de planes de pruebas de			
	software			
	El modelo de gestión de conocimiento propone una			
P43	estructura para la búsqueda de información de pruebas			
	de software			

	El modelo de gestión de conocimiento propone una			1
P44	herramienta para la autogestión de información			
	relacionada con las pruebas de software			
	El modelo de gestión de conocimiento propone			
D45	espacios para el recurso humano pueda autogestionar			
P45	la información relacionada con las pruebas de			
	software			
	El modelo de gestión de conocimiento propone			
P46	espacio para autogestionar las actividades relacionas			
	con las pruebas de software			
	El modelo de gestión de conocimiento propone			
P47	espacio para autogestionar las tareas relacionadas con			
	las pruebas de software			
	El modelo de gestión de conocimiento propone			
P48	incorporar espacio para autogestionar actividades de			
F40	búsqueda de información validada relacionada con las			
	pruebas de software			

¿Qué comentarios tiene sobre la propuesta, basado en la efectividad de operación al ejecutar
las fases del modelo de Gestión de Conocimiento en la fase de pruebas de la ingeniería de
software?

Anexo 4. Estadística de las respuestas para los dos cuestionarios definidos para evaluar el modelo de GC.

Cuestionario 1

Componente	Dimensión	Indicadores	No Pregunta	Item		lora Expe	ción rto	Valor - Promedio	Sumatoria Indicador	Valor promedio	Sumatoria Dimensión	Valor Promedio	Sumatoria Componente	Valor Promedio
			rregunta		1	2	3	Tromedio	mulcador	indicador	Dimension	Dimensión	Componente	Componente
Fortalecimiento de la fase de pruebas dentro de la gestión del proyecto de software.	Gestión de la información y la documentaci ón	Mejoramiento en el análisis de requerimientos de información	P01 P02 P03	El modelo de gestión de conocimiento propone identificar el tipo de rol que cumple el actor de ejecución de pruebas El modelo de gestión de conocimiento propone definir el tipo de pruebas de software a utilizar El modelo de gestión de conocimiento propone planificar el plan de pruebas El modelo de gestión de conocimiento propone planificar el plan de pruebas	5 5	3 4 4	3 4	4,00	12,33	4,11	7,89	Dimensión 3,94	16,56	Componente 4,14
		Mejoramiento en la gestión	ejoramiento P04 in la gestión es	incorporación de nuevos escenarios de pruebas	4	4	4	4,00	11,33	3,78				
		documental	P05	El modelo de gestión de conocimiento propone modificar un escenario	4	4	4	4,00						

			de prueba								
			El modelo de gestión de								
			conocimiento propone								
		P06	actualizar documentos				3,33				
			asociados a un escenario								
			de prueba existente	5	2	3					
			El modelo de gestión de								
			conocimiento propone								
		P07	identificar que acciones				4,67				
			se ha realizado en las								
	Efectividad er	n	pruebas de Software	5	4	5					
	proporcionar		El modelo de gestión de								
	una estructura	ı	conocimiento propone								
	de entorno	P08	identificar el estado final				4,00	12,00	4,00		
	adecuado para	a	de las pruebas de								
Gestión	n de la comunicar la		Software	5	4	3					
comuni	icació información		El modelo de gestión de							7,78	3,89
n			conocimiento propone								
		P09	actividades para				3,33				
			comunicar el estado de								
			las pruebas de software	4	2	4					
	Facilidad de		El modelo de gestión de								
	comunicar a		conocimiento propone								
	través de	P10	identificar la				3,33	11,33	3,78		
	materiales		documentación de un					11,55	3,70		
	digitales		escenario de pruebas	4	2	4					
	documentació	n P11	El modelo de gestión de	4	4	5	4,33				

	1						1	1		-		T	T
	de casos de		conocimiento propone la										
	pruebas		comunicación del estado										
	funcionales, de		de la prueba de software										
	regresión, de		El modelo de gestión de										
	aceptación.		conocimiento propone la										
		P12	gestión de material				3,67						
		112	digital para fundamentar				3,07						
			el estado de la prueba de										
			software	5	2	4							
			El modelo de gestión de										
			conocimiento propone										
		P13	identificar medidas de				4,33						
		P13	evaluación de la				4,33						
			efectividad del plan de										
			pruebas de software	5	4	4							
			El modelo de gestión de										
	Eficacia en los		conocimiento propone										
Gestión de la	sistemas de	P14	identificar medidas de				4,33						
innovación y	evaluación del	Г14	evaluación del actor -				4,33	12,67	4,22	8,33	4,17		
el cambio			ejecutor de los escenarios										
	desempeño		de pruebas de software	4	4	5							
			El modelo de gestión de										
			conocimiento propone										
			identificar medidas de										
		P15	evaluación de la gestión				4,00						
			en la fase de pruebas										
			para cada proyecto de										
			software	4	4	4							

	Mejoramiento .	P16	El modelo de gestión de conocimiento propone a través de su uso un cambio de cultura sobre la gestión de las pruebas de software	5	3	3	3,67					
	en la gestión del cambio de cultura en la mejora de las actividades en las pruebas	P17	El modelo de gestión de conocimiento propone una mejora en el desarrollo de las actividades de las pruebas de software	5	4	4	4,33	12,33	4,11			
	ias prucbas	P18	El modelo de gestión de conocimiento propone cambios en las actividades para el actor - ejecutor de pruebas de software	5	4	4	4,33					
Gestión del aprendizaje organizacion	Incorporación de mejores prácticas en el desarrollo de	P19	El modelo de gestión de conocimiento propone incorporar actividades en la ejecución del plan de pruebas de software El modelo de gestión de	4	3	4	3,67	12,67	4,22	9,11	4,56	
al	las actividades de pruebas	P20	conocimiento propone incorporar tareas en el desarrollo del escenario de pruebas	5	4	4	4,33					

		P21	El modelo de gestión de conocimiento propone mejoras en la búsqueda de información relacionada con los				4,67				
			escenarios de pruebas.	5	4	5					
		P22	El modelo de gestión de conocimiento propone una mejora en la gestión de la calidad del proyecto de software	5	5	5	5,00				
ge cal	Iejora de estión de alidad en la use de pruebas	P23	El modelo de gestión de conocimiento propone una mejora en la gestión de la calidad de las pruebas de software	4	5	5	4,67	14,67	4,89		
	se de pruebus	P24	El modelo de gestión de conocimiento propone una mejora en la gestión de la calidad de las acciones sobre los escenarios de pruebas de software	5	5	5	5,00				

¿Qué comentarios tiene sobre la propuesta, basado en el fortalecimiento de la fase de pruebas dentro de la gestión del proyecto de software, con la utilización de este modelo de Gestión de Conocimiento?

"Dada la coyuntura actual y la tendencia negativa respecto a la rotación de personal y bajo skill, la utilización de este modelo creo que realiza un aporte en reducir el impacto en las PS mejorando el resultado final y la performance"

"sería muy interesante bajarlo a la práctica concreta y observar los resultados, a fin de poder evaluar correctamente el modelo".

"el modelo aporta una estructura que hace que el equipo de pruebas pueda gestionar a través de herramientas tecnológicas esta fase dentro de la ingeniería de software, fortaleciendo el accionar de estas, a su vez resguardando el conocimiento generado en las versiones del software que se prueba"

¿Qué aspectos incorporaría a este modelo de Gestión de Conocimiento para mejorar el desempeño de la fase de pruebas dentro de la gestión del proyecto de software?

"Como adicional al modelo incorporaría, ya que requiere recursos adicionales no siempre disponibles, la ingesta de las lecciones aprendidas (salida del proceso de GC) como entrada para un nuevo proceso de I+D que puede reformular y reforzar el modelo."

"Ninguno, está muy completo".

"Ninguno. Esperaría que este modelo se utilizara en proyectos reales".

¿Qué aspectos suprimiría a este modelo de Gestión de Conocimiento para mejorar el desempeño de la fase de pruebas dentro de la gestión del proyecto de software?

"No considero prudente eliminar del modelo ningún aspecto, está claro que si adaptaría el esfuerzo asignado a cada uno dependiendo de la dimensión de cada proyecto."

"Ninguno".

"Ninguno".

Cuestionario 2

Componente	Dimensión	Indicadores	No Pregunta	Item		lora xpe	rto 3	Valor Promedio	Sumatoria Indicador	Valor promedio indicador	Sumatoria Dimensión	Valor Promedio Dimensión	Sumatoria Componente	Valor Promedio Componente
Efectividad de operación al aplicar las fases del modelo de GC	Identificación de conocimiento	Espacio para el fortalecimiento de lecciones aprendidas	P25	El modelo de gestión de conocimiento propone espacio para generar lecciones aprendidas sobre la gestión de la fase de pruebas de software El modelo de gestión de conocimiento propone identificar puntos de atención y mejoras a lo largo del proceso de pruebas de software El modelo de gestión de	5 5 5	5 3	5 4	5,00	14,00	4,67	8,56	4,28	16,72	4,18

			conocimiento propone incorporar informe de lecciones aprendidas de la ejecución fase de pruebas de software El modelo de gestión de										
		P28	conocimiento propone identificar la localización del conocimiento de pruebas de un proyecto de software	4	4	4	4,00						
	Incorporación de mapas de conocimiento	P29	El modelo de gestión de conocimiento propone identificar los recursos de conocimiento vinculados a cada tarea dentro del proceso de pruebas de software	4	4	4	4,00	11,67	3,89				
		P30	El modelo de gestión de conocimiento se propone como instrumento dinámico que se modula en función de las acciones que se tomen alrededor de cada tarea en las pruebas de software	5	2		3,67						
Formalización	Sistematizar las	P31	El modelo de gestión de	4	4	5	4,33	13,00	4,33	8,78	4,39		

de	tareas de las		conocimiento propone la									
conocimiento	pruebas		automatización de la									
Concennento	prucous		documentación de las									
			pruebas de software									
			1									
			El modelo de gestión de									
			conocimiento propone									
			una mejora en la									
		P32	automatización de la				4,00					
			búsqueda de información									
			relacionada con las									
			pruebas de software	4	4	4						
			El modelo de gestión de									
			conocimiento propone									
		P33	una mejora en el proceso				4,67					
			general de gestión de									
			pruebas de software	5	4	5						
			El modelo de gestión de									
			conocimiento propone un									
			esquema general de									
		P34	tratamiento de la				4,67					
	Mejoramiento		información de las									
	en el sistema		pruebas de software	5	4	5		12.22	4 4 4			
	de gestión de la		El modelo de gestión de					13,33	4,44			
	formación		conocimiento propone									
			formalizar la									
		P35	información de las tareas				4,67					
1			1								l	
			que componen las									

			P36	El modelo de gestión de conocimiento propone formalizar la información de la calidad en las pruebas de				4,00						
				software	5	3	4							
	Distribución del conocimiento	Facilidad al acceso a los escenarios de pruebas	P37	El modelo de gestión de conocimiento propone el entorno para acceder a la información de los escenarios de pruebas	5	4	4	4,33						
			P38	El modelo de gestión de conocimiento propone mejoras en la accesibilidad de la información de las pruebas de software	4	4	5	4,33	12,67	4,22	8,56	4,28		
			P39	El modelo de gestión de conocimiento propone un proceso formalizado para acceder a la información de pruebas de software más eficiente	4	4	4	4,00			0,50	4,20		
		Efectividad al acceso a los escenarios de pruebas	P40	El modelo de gestión de conocimiento propone una mejora en la identificación de los escenarios de pruebas de	5	4	5	4,67	13,00	4,33				

			software									
		P41	El modelo de gestión de conocimiento propone una mejora en la gestión de documentación de los escenarios de pruebas de software	5	3	4	4,00					
		P42	El modelo de gestión de conocimiento propone una mejora en la identificación de planes de pruebas de software	5	4	4	4,33					
		P43	El modelo de gestión de conocimiento propone una estructura para la búsqueda de información de pruebas de software	5	4	5	4,67					
Retención de conocimiento		P44	El modelo de gestión de conocimiento propone una herramienta para la autogestión de información relacionada con las pruebas de software	4	3	4	3,67	11,67	3,89	7,56	3,78	
		P45	El modelo de gestión de conocimiento propone espacios para el recurso humano pueda	4	3	3	3,33					

Incorpora cuadernos digitales explicativos sobre las actividades la fase de pruebas	P46	autogestionar la información relacionada con las pruebas de software El modelo de gestión de conocimiento propone espacio para autogestionar las actividades relacionas con las pruebas de software El modelo de gestión de conocimiento propone espacio para autogestionar las tareas relacionadas con las pruebas de software El modelo de gestión de conocimiento propone	4	3	4	3,67	11,00	3,67			
la fase de		El modelo de gestión de	4	3	4	3,67					

¿Qué comentarios tiene sobre la propuesta, basado en la efectividad de operación al ejecutar las fases del modelo de Gestión de Conocimiento en la fase de pruebas de la ingeniería de software?

"la única interrogante que se me presenta respecto a la efectividad de la operación no es respecto a si es más o menos efectiva, sino, respecto a los esfuerzos requeridos para su implementación debido a la curva de aprendizaje que puede requerir y cómo esta pueda repercutir en la efectividad en el corto plazo (hasta que se afiance el nuevo modelo implementado)."

"propuesta muy interesante, es necesario llevarla a la práctica, medir y contrastar sus resultados con otras metodologías para poder evaluar este método."

"el modelo debería ser probado en proyectos reales, para ratificar su funcionalidad".