Grade received 100% To pass 100% or higher

Go to next item

1/1 point

1. The determinant of

he determine $\begin{pmatrix} -3 & 0 & -2 & 0 & 0 \\ 2 & -2 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 3 & 0 & -3 & 2 & -3 \\ 2 & 3 & 3 & 0 & -2 \end{pmatrix}$

is equal to

- 48
- O 42
- \bigcirc -42
- \bigcirc -48

⊘ Correct

2. The determinant of

1/1 point

$$\begin{pmatrix} a & e & 0 & 0 \\ b & f & g & 0 \\ c & 0 & h & i \\ d & 0 & 0 & j \end{pmatrix}$$

is equal to

- \bigcap afhj + behj cegj degi
- \odot afhj behj + cegj degi
- \bigcirc agij beij + cefj defh
- \bigcirc agij + beij cefj defh

⊘ Correct

3. Assume A and B are invertible n-by-n matrices. Which of the following identities is false?

1/1 point

- $\bigcirc \det A^{-1} = 1/\det A$
- \bigcap det $A^T = \det A$
- \bigcirc det $(A + B) = \det A + \det B$
- \bigcirc det (AB) = det A det B

⊘ Correct

Grade received 100% To pass 100% or higher

Go to next item

1. Which of the following are the eigenvalues of $\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$?

1/1 point

- $\bigcirc \frac{3}{2} \pm \frac{\sqrt{3}}{2}$ $\circledcirc \frac{3}{2} \pm \frac{\sqrt{5}}{2}$ $\bigcirc \frac{1}{2} \pm \frac{\sqrt{3}}{2}$ $\bigcirc \frac{1}{2} \pm \frac{\sqrt{5}}{2}$

⊘ Correct

2. Which of the following are the eigenvalues of $\begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix}$?

1/1 point

- \bigcirc 1 ± 3i
- $\bigcirc 1 \pm \sqrt{3}$
- \bigcirc $3\sqrt{3}\pm1$
- \bigcirc 3 $\pm i$
 - **⊘** Correct
- Which of the following is an eigenvector of $\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}?$

- **⊘** Correct

Grade received 100% To pass 100% or higher

Go to next item

1. Let λ_1 and λ_2 be distinct eigenvalues of a two-by-two matrix A. Which of the following cannot be the associated eigenvectors?

1/1 point

- \bigcirc $x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- $\bigcirc x_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- left $\mathbf{x}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\mathbf{x}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
- $\bigcirc x_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, x_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

⊘ Correct

2. Which matrix is equal to $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{100} ?$

1/1 point

- $\bigcirc \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

⊘ Correct

3. Which matrix is equal to $e^{\rm I}$, where ${\rm I}$ is the two-by-two identity matrix?

1/1 point

- $\bigcirc
 \begin{pmatrix}
 e & 0 \\
 0 & e
 \end{pmatrix}$
- $\bigcirc \ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 0 & e \\ e & 0 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

⊘ Correct

Grade received 100% Latest Submission Grade 100% To pass 60% or higher

Go to next item

The determinant of $\begin{pmatrix} 0 & 0 & 0 & 3 & 0 \\ 0 & 5 & 0 & 0 & 3 \\ 0 & 0 & -1 & 5 & 1 \\ 1 & 0 & 5 & -4 & 0 \\ 0 & 0 & 3 & -2 & -1 \end{pmatrix} \text{ is equal to}$

- O -30
- O -25
- O 25
- 30
- **⊘** Correct

The determinant of $\begin{pmatrix} a & b & 0 & 0 \\ 0 & c & 0 & 0 \\ 0 & e & f & g \\ 0 & 0 & h & 0 \end{pmatrix}$ is equal to

1/1 point

1/1 point

O acgh

- -acgh
- -acfh
- O acfh
- **⊘** Correct

3. Assume A and B are invertible n-by-n matrices. Which of the following identities is false?

1/1 point

- $\bigcirc \, \det A^T = \det A$
- $\bigcirc \det A^{-1} = 1/\det A$
- \bigcirc det $2A = 2 \det A$
- \bigcirc det (AB) = det (BA)
 - **⊘** Correct

4. Which of the following are the eigenvalues of $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$?

- 0 -1, -3
- 0 -1,3
- 0 1,-3
- 1,3
 - **⊘** Correct

5. Which of the following are the eigenvalues of $\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$?

1/1 point

- \bigcirc 1 ± 2i
- $\bigcirc 1 \pm \sqrt{2}i$
- 2 ± i
- $\bigcirc \sqrt{2} \pm i$
 - **⊘** Correct
- Which of the following is NOT an eigenvector of $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$?

- left $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- $\begin{pmatrix}
 1 \\
 0 \\
 -1
 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$
 - **⊘** Correct
- 7. Let λ_1, λ_2 and λ_3 be distinct real eigenvalues of a three-by-three matrix A. Which of the following cannot be the associated eigenvectors?
- 1/1 point

- $\bigcirc x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, x_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, x_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
- $\bigcirc x_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, x_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$
- $\mathbf{\bullet} \quad \mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$
- $\bigcirc x_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}, x_3 = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$
 - **⊘** Correct

8. Let A be an n-by-n matrix with distinct real eigenvalues, let S be the matrix whose columns are the eigenvectors of A, and let Λ be the diagonal matrix with eigenvalues down the diagonal. Which of the following identities is false?

1/1 point

- \bullet A = S⁻¹ Λ S
- $\bigcap A = S\Lambda S^{-1}$
- $\Lambda = S^{-1}AS$
- \bigcirc AS = S Λ
- 9. Identify the diagonalization of $\begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}$.

1/1 point

- $\bigcirc \begin{pmatrix} -3 & 0 \\ 0 & 4 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} -3 & 1 \\ 1 & 3 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} -3 & 0 \\ 0 & 4 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & -3 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} -5 & 0 \\ 0 & 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$
- ✓ Correct
- The matrix $\begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}^{10}$ is equal to

- $\bigcirc \begin{pmatrix} 5^9 & 0 \\ 0 & 5^9 \end{pmatrix}$
- $\left(\begin{array}{ccc}
 -3 \cdot 5^9 & 4 \cdot 5^9 \\
 4 \cdot 5^9 & 3 \cdot 5^9
 \end{array}\right)$
- $\bigcirc \begin{pmatrix} 5^{10} & 0 \\ 0 & 5^{10} \end{pmatrix}$
- $\bigcirc \begin{pmatrix}
 -3 \cdot 5^{10} & 4 \cdot 5^{10} \\
 4 \cdot 5^{10} & 3 \cdot 5^{10}
 \end{pmatrix}$
- ✓ Correct