D. Appendix: Formulas used in El Emam et al., "A Globally Optimal k-Anonymity Method for the De-identification of Health Data"

Derviation 1: Calculation of DM metric

 $DM = \sum_{f_i \ge k} (f_i)^2 + \sum_{f_i < k} (n \times f_i) \text{ where } f_i \text{ is the size of the equivalence class } i, i = 1 \dots Z, \text{ where } Z \text{ is}$

the total number of equivalence classes in the dataset, and n is the total number of records in the dataset.

Derivation 2: Calculation of DM* metric

 $DM^* = \sum_{i=1}^{Z} f_i^2$. The DM^* value for Figure 3, table (a) is 16 and for table (b), it is 28.

Derivation 3: Calculation of non-uniform entropy metric

Let V_j be a quasi-identifier, with $1 \le j \le J$ and J is the total number of quasi-identifiers, and $V_j = \left\{a_1, \ldots, a_m\right\}$ where m is the total number of possible values that V_j can take. For example, in table (a) in Figure 3, if V_j is the gender quasi-identifier, then m=2, and $a_1 = "Male"$ and $a_2 = "Female"$. When the dataset is generalized the quasi-identifiers are denoted by V_j' and $V_j' = \left\{b_1, \ldots, b_{m'}\right\}$ where $m' \le m$. For example, in the gender case m' = 1, and $a_1 \in b_1$ and $a_2 \in b_1$.

Let each cell in the original dataset be denoted by R_{ij} where $1 \le i \le n$ and the cells in the generalized dataset denoted by R'_{ij} . The conditional probability that the value on a randomly selected record in the original dataset is a_r given that the new generalized value is b_r (where $a_r \in b_r$) is given by:

$$\Pr\left(a_r \left| b_{r'} \right.\right) = \frac{\sum_{i=1}^{n} I\left(R_{ij} = a_r\right)}{\sum_{i=1}^{n} I\left(R'_{ij} = b_r\right)}$$
 (1)

Where $I(\cdot)$ is the indicator function. The non-uniform entropy information loss is then given by:

$$-\sum_{i=1}^{n}\sum_{j=1}^{J}\log_{2}\left(\operatorname{Pr}\left(R_{ij}\left|R_{ij}'\right.\right)\right) \qquad (2)$$

Derivation 4: Calculation of size of equivalence classes for generalized frequency set

The complexity of an efficient merge sort is given by $N'_{L,h,p} \times \log\left(N'_{L,h,p}\right)$ [81] and the additional pass through the generalized frequency set has computations proportional to $N'_{L,h,p}$.

Therefore, the total computation to determine whether a particular node is k-anonymous is given by:

$$(J'_{L,h,p} \times N_{L,h,p}) + (N'_{L,h,p} \times \log(N'_{L,h,p})) + N'_{L,h,p}$$
 (3)

Derivation 5: Calculation of weighted non-uniform entropy

Assuming entropy is used as the information loss metric, weighting of quasi-identifiers can be achieved by using a weighted non-uniform entropy as follows:

$$-\sum_{i=1}^{n}\sum_{j=1}^{J}\left(w_{j}\times\log_{2}\left(\Pr\left(R_{ij}\left|R'_{ij}\right.\right)\right)\right) \qquad (4)$$

where w_i is a weight between zero and one assigned by the data recipient to reflect variable importance.