

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC AACCCTAACCCTAACCCTAACCCTA ACCCTAACCCCAACCCCAACCCCAAC CTACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAA

Transcriptome Analysis with noncoding RNAs

北京大学生物信息学中心 高歌 Ge Gao, Ph.D.

Center for Bioinformatics, Peking University

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC AACCCTAACCCTAACCCTAACCCTA ACCCTAACCCCAACCCCAACCCCAAC CTACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAA

Unit 3:

Data Mining: Differential Expression and Clustering

北京大学生物信息学中心 高歌 Ge Gao, Ph.D.

Center for Bioinformatics, Peking University

Additional Information

How many non-coding transcripts?

What are the functional roles of those ncRNAs?

microRNA (miRNA)

single-stranded RNAs of 21-23 (or some say 20-25) bp RNAs with regulatory

Name of the software	URL or availability	Supported organism(s)	Reference(s)
TargetScan, TargetScanS	http://genes.mit.edu/targetscan/	Vertebrates	Lewis et al., 2003, 2005
miRanda	http://www.microrna.org/	Flies, vertebrates	Enright et al., 2003, John et al., 2004
DIANA-microT	http://diana.pcbi.upenn.edu/ DIANA-microT/	Vertebrates	Kiriakidou et al., 2004
RNAhybrid	http://bibiserv.techfak.uni-bielefeld. de/rnahybrid/	Flies	Rehmsmeier et al., 2004
GUUGle	http://bibiserv.techfak.uni-bielefeld. de/guugle/	Flies	Gerlach et al., 2006
PicTar	http://pictar.bio.nyu.edu/	Nematodes, flies, vertebrates	Grun et al., 2005, Krek et al., 2005, Lall et al., 2006
MicroInspector	http://mirna.imbb.forth.gr/ microinspector/	Any	Rusinov et al., 2005
MovingTargets	Available by request on DVD	Flies	Burgler et al., 2005
FastCompare	http://tavazoielab.princeton.edu/ mirnas/	Nematodes, flies	Chan et al., 2005
miRU	http://bioinfo3.noble.org/miRNA/ miRU.htm	Plants	Zhang 2005
TargetBoost	https://demo1.interagon.com/ demo/	Nematodes, flies	Saetrom et al., 2006
rna22	http://cbcsrv.watson.ibm.com/ rna22.html	Nematodes, flies, vertebrates	Miranda et al., 2006 (Source: Methods Enzymol. 427:65)
miTarget	http://cbit.snu.ac.kr/~miTarget/	Any	Kim et al., 2006

the transcriptome

- Differentially expressed genes
- Co-expressed genes

Data Mining: Differentially Expression Calling

 Identify the genes with biological-significant difference in expression levels across samples

- Differences in expression values can result from many non-biological sources (e.g. experiment error/bias)
 - The 'real' differences are the differences that can NOT be explained by the various errors introduced during the experimental phase

- Random errors arise from random fluctuations in the measurements
- It could be reduced by repeating experiment many times (and get a mean value)
- Random errors could be modeled statistically by variance.

Distribution of differential expression statistic Copyright © Peking University

Expression of gene g

Expression of gene g

Statistical calling

- Select a statistic which takes the variance into account, and will rank the genes in order of supporting strength for "differential expression".
- Derive the p-value for each gene, based on the NULL distribution of the statistic.
- Choose a critical-value for the gene with p-value less than which being called as "being statistically significant".

- The t-test assesses whether the means of two groups are statistically different from each other
 - Take the variance into account through Standard Error (SE)
- Need to estimate the SE correctly
 - But the correct estimation depends on prior distribution (Normal) as well as the number of replicates (>10)

Model the data in RNA-Seq

Copyright © Peking University

METHOD Open Access

Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data

Franck Rapaport¹, Raya Khanin¹, Yupu Liang¹, Mono Pirun¹, Azra Krek¹, Paul Zumbo^{2,3}, Christopher E Mason^{2,3}, Nicholas D Socci¹ and Doron Betel^{3,4*}

Evaluation	Cuffdiff	DESeq	edgeR	limmaVoom	PoissonSeq	baySeq
ormalization and clustering All methods performed equally well						
DE detection accuracy measured by AUC at increasing aRT-PCR cutoff	Decreasing	Consistent	Consistent	Decreasing	Increases up to log expression change ≤ 2.0	Consistent
ull model type I error	High number of FPs	Low number of FPs	Low number of FPs	Low Number of FPs	Low number of FPs	Low number of FPs
nal-to-noise vs <i>P</i> value correlation for genes ected in one condition	Poor	Poor	Poor	Good	Moderate	Good
port for multi-factored experiments	No	Yes	Yes	Yes	No	No
pport DE detection without replicated samples	Yes	Yes	Yes	No	Yes	No
Detection of differential isoforms	Yes	No	No	No	No	No
untime for experiments with three to five replicates n a 12 dual-core 3.33 GHz, 100 G RAM server	Hours	Minutes	Minutes	Minutes	Seconds	Hours

FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 12.2 @ 2004 Sinauer Associates, Inc.

- Type I Error (False Positive): rejecting the null hypothesis when it is true
- Type II Error (False Negative): accepting the null hypothesis when it is false

Statistic

Multiple Testing Issue

- If more than one test is made, then the collective FP value is greater than in the single-test
 - That is, overall Type I error increases
- E.g: you checked your RNA-Seq data and found 20 significantly different genes with a 0.05 threshold on each gene, then what is the chance that you making at least one error in overall?

- Pr(making a mistake) = 0.05
- Pr(not making a mistake) = 1 0.05 = 0.95
- Pr(not making any mistake) = $0.95^{20} = 0.358$
- Pr(making at least one mistake) = 1 0.358 = 0.642

→ There is a 64.2% chance of making at least one mistake

Multiple Testing Issue

Bonferroni Correction

- Most straightforward and plain
- For n hypothesis tests, only call p-values less than α/n as "being significant".
 - Or, adjust the raw p-value as min(n*p, 1)
- For example, if we want to have an experiment wide Type I error rate of 0.05 when we comparing 30000 genes, we'd need p-values less than $0.05/30000 = 1.67 \times 10^{-6}$ so that the gene(s) could be called as "being significant"

Additional Information

Type I (false positive) error rates

Family-wise Error Rate

$$FWER = p(V \ge 1)$$

Per-family Error Rate

$$PFER = E(V)$$

Per-comparison Error Rate

$$PCER = E(V)/m$$

• False Discovery Rate FDR = E(V/R)

False Positive te

	# not rejected	# rejected	totals
# true H	U	V (False Positive)	m_0
# non-true H	T (False Negative)	S	m ₁
totals	m - R	R	m

Proportion of false positives among the genes that are flagged as differentially expressed.

q-value

- q-value is an measure of False Discovery Rate (FDR)
 - Proposed by Storey et al. in 2002 and tuned for microarray analysis
- The q-value for a particular gene g is the expected proportion of false positives incurred when calling that gene g "significant".
- In contrast, the p-value for a particular gene g is the probability that a randomly generated expression profile would be as or more extremely differentially expressed.

- Differentially expressed genes
- Co-expressed genes

<u>Clustering</u>: Group cases (genes/samples) with similar expression pattern/levels (Unsupervised learning)

- Hierarchical Cluster, k-mean Cluster, Self-Organizing Maps (SOM), etc

Copyright © Peking University

<u>Distance measurement</u>: how "similar" between two genes' profile

Euclidean distance (Absolution distance)

$$S(x_1, x_2) = \sqrt{\sum (x_{1k}^2 - x_{2k}^2)}$$

Pearson distance (Correlation distance)

$$s(x_1, x_2) = \frac{\sum_{k=1}^{K} (x_{1k} - \overline{x}_1)(x_{2k} - \overline{x}_2)}{\sqrt{\sum_{k=1}^{K} (x_{1k} - \overline{x}_1)^2 \sum_{k=1}^{K} (x_{2k} - \overline{x}_2)^2}}$$

Pearson Distance:

• red-blue: .006

• red-gray: .768

• blue-gray: .7101

Eucl. Distance:

• red-blue: 9.45

• red-gray: 10.26

• blue-gray: 3.29

Summary Question

 Do you think the classical t-test could be used in differential expression calling? Explain.

 Spearman coefficient is a more robust correlation measurement than Pearson coefficient. Could you write the distance formula with Spearman coefficient?

生物信息学:导论与方法 Bioinformatics: Introduction and Methods

