| Название компании / логотип | «Система мониторинга сетей медицинского газоснабжения» |               | HLD_#### |
|-----------------------------|--------------------------------------------------------|---------------|----------|
| Дата                        | Страница                                               | Всего страниц | Версия   |
| ###                         | 1                                                      | 18            | 1.0      |

# «Система мониторинга сетей медицинского газоснабжения»

Service High Level Design (HLD)

HLD\_####

Версия: 1.0

| Название компании / логотип | «Система мониторинга сетей медицинского газоснабжения» |               | HLD_#### |
|-----------------------------|--------------------------------------------------------|---------------|----------|
| Дата                        | Страница                                               | Всего страниц | Версия   |
| ###                         | 2                                                      | 18            | 1.0      |

# СОДЕРЖАНИЕ

| 1 | BBE   | <b>ДЕНИЕ</b>                                                          | 3    |
|---|-------|-----------------------------------------------------------------------|------|
|   | 1.1   | Административная информация о документе                               | 3    |
|   | 1.2   | История изменений документа                                           | 3    |
|   | 1.3   | Термины, определения и сокращения                                     | 4    |
|   | 1.4   | Назначение документа                                                  | 4    |
|   | 1.5   | Связанные документы                                                   | 5    |
|   | 1.6   | Связанные услуги                                                      | 5    |
| 2 | TEX   | НИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ                                            | 6    |
| 3 | ОПІ   | ИСАНИЕ ТЕХНИЧЕСКОГО РЕШЕНИЯ                                           | 7    |
|   | 3.1   | Функциональность                                                      | 9    |
|   | 3.2   | Системные требования для установки                                    | . 10 |
|   | 3.3   | Схема решения и описание схемы                                        | . 10 |
|   | 3.4   | Описание системы резервного копирования                               | . 12 |
| 4 | 3AT   | РАТЫ НА РЕАЛИЗАЦИЮ                                                    | . 13 |
| 5 | PEA   | ЛИЗАЦИЯ РЕШЕНИЯ                                                       | . 14 |
|   | 5.1   | Стадии работ над проектом: instance – часть. Трудозатраты             | . 14 |
|   | 5.2   | Стадии работ над проектом: SaaS – часть. ТрудозатратыОшибка! Закладка | а не |
|   | опред | елена.                                                                |      |
|   | 5.3   | Ответственность заказчика                                             | . 16 |
| 6 | MOI   | НИТОРИНГ И SLA                                                        | 17   |

| Название компании / логотип | «Система мониторинга сетей медицинского газоснабжения» |               | HLD_#### |
|-----------------------------|--------------------------------------------------------|---------------|----------|
| Дата                        | Страница                                               | Всего страниц | Версия   |
| ###                         | 3                                                      | 18            | 1.0      |

# 1 ВВЕДЕНИЕ

# 1.1 Административная информация о документе

| Должность                                       | Подпись | Дата | ФИО |
|-------------------------------------------------|---------|------|-----|
| Разработано:                                    |         |      |     |
| Инженер – программист                           |         |      |     |
| Инженер – медтехник                             |         |      |     |
| Начальник производственно-технического отдела   |         |      |     |
| Начальник отдела эксплуатации                   |         |      |     |
|                                                 |         |      |     |
|                                                 |         |      |     |
|                                                 |         |      |     |
|                                                 |         |      |     |
|                                                 |         |      |     |
| Согласовано:                                    |         |      |     |
| Главный врач                                    |         |      |     |
| Заместитель главного врача по технической части |         |      |     |
| Начальник планово-экономического отдела         |         |      |     |
| Главный инженер                                 |         |      |     |
|                                                 |         |      |     |
|                                                 |         |      |     |
|                                                 |         |      |     |
|                                                 |         |      |     |
|                                                 |         |      |     |
| 14.06.2025                                      |         |      |     |

# 1.2 История изменений документа

| Дата       | Версия | Автор<br>замечания /<br>должность | Текст замечания | Исправлено (описание исправления, место в документе) |
|------------|--------|-----------------------------------|-----------------|------------------------------------------------------|
| 14.06.2025 | V1.0   | Зеленин Е.В.                      |                 | Первая редакция                                      |
|            |        |                                   |                 |                                                      |
|            |        |                                   |                 |                                                      |
|            |        |                                   |                 |                                                      |
|            |        |                                   |                 |                                                      |
|            |        |                                   |                 |                                                      |
|            |        |                                   |                 |                                                      |

| Название компании / логотип | «Система мониторинга сетей медицинского газоснабжения» |               | HLD_#### |
|-----------------------------|--------------------------------------------------------|---------------|----------|
| Дата                        | Страница                                               | Всего страниц | Версия   |
| ###                         | 4                                                      | 18            | 1.0      |

# 1.3 Термины, определения и сокращения

| Название                 | Расшифровка                                                                                                                                                                      |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| IoT                      | Internet of Things                                                                                                                                                               |  |  |
| Газификатор              | Установка, включающая в себя криоцилиндр с сжиженным газом (О2), испаритель для преобразования в газообразную форму и система трубопроводов с запорной и регулирующей арматурой. |  |  |
| Кислородный концентратор | Установка для генерации медицинского кислорода из воздуха                                                                                                                        |  |  |
| Кислородный баллон       | Баллон для системы резервного снабжения кислородом                                                                                                                               |  |  |
| Рампа                    | Консоль для подключения большого количества кислородных баллонов                                                                                                                 |  |  |
| ЛПУ                      | Лечебно-профилактическое учреждение                                                                                                                                              |  |  |
| СМГ                      | Система медицинского газоснабжения                                                                                                                                               |  |  |
|                          |                                                                                                                                                                                  |  |  |
|                          |                                                                                                                                                                                  |  |  |
|                          |                                                                                                                                                                                  |  |  |
|                          |                                                                                                                                                                                  |  |  |
|                          |                                                                                                                                                                                  |  |  |
|                          |                                                                                                                                                                                  |  |  |
|                          |                                                                                                                                                                                  |  |  |

# 1.4 Назначение документа

В HLD описывается высокоуровневое представление системы мониторинга медицинского газоснабжения.

В текущей версии документа описывается сервис диспетчерской службы по контролю за газоснабжением.

Назначение Сервиса – поддержание качества снабжения кислорода в ЛПУ на стабильно высоком уровне.

Сервис предлагает функционал, позволяющий:

- 1. Производить мониторинг текущего состояния сети газоснабжения в реальном времени
- 2. Прогнозировать сроки дозаправки газификатора жидким кислородом
- 3. Выявлять аварийные состояния на различных магистралях сети газоснабжения
- 4. Осуществлять настраиваемые уведомления ответственных работников
- 5. Прогнозировать возможные аварийные состояния на основании комплексного сбора данных с сети датчиков
- 6. Переключать источники снабжения ЛПУ кислородом в автоматическом и ручном режиме

| Название компании / логотип | «Система мониторинга сетей медицинского газоснабжения» |               | HLD_#### |
|-----------------------------|--------------------------------------------------------|---------------|----------|
| Дата                        | Страница                                               | Всего страниц | Версия   |
| ###                         | 5                                                      | 18            | 1.0      |

# 1.5 Связанные документы

| Номер документа | Название документа                                          |
|-----------------|-------------------------------------------------------------|
| 2025-O01        | Инструкция по работе с диспетчерской системой оператора     |
| 2025-И01        | Инструкция дежурного инженера                               |
| 2025-P01        | Руководство по монтажу                                      |
| 2025-P02        | Руководство по настройке сетевой и серверной инфраструктуры |
| 2025-C01        | Руководство по сервисному обслуживанию                      |

# 1.6 Связанные услуги

| № | Код услуги | Наименование услуги                                             |
|---|------------|-----------------------------------------------------------------|
| 1 | 2025УПМКО  | Услуги по монтажу исполнительных устройств в сеть газоснабжения |

| Название компании / логотип | «Система мониторинга сетей медицинского газоснабжения» |               | HLD_#### |
|-----------------------------|--------------------------------------------------------|---------------|----------|
| Дата                        | Страница                                               | Всего страниц | Версия   |
| ###                         | 6                                                      | 18            | 1.0      |

# 2 ТЕХНИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

В целях предотвращения аварийных ситуаций и обеспечения бесперебойного снабжения медицинским кислородом отделений ЛПУ требуется реализовать следующий функционал:

#### 1. Функции:

- Мониторинг давления сети медицинского газоснабжения на различных участках сети
- Мониторинг остатков кислорода в газификаторе
- Выявление предаварийных состояний на основе анализа показаний с сети датчиков
- Мониторинг состояния кислородного концентратора (наличие питания на вводах, температура в помещении, наличие утечки кислорода)
- Мониторинг давления кислородных баллонов в рампе для резервного снабжения
- Управление запорной и регулирующей арматурой, переключение источников снабжения
- 2. Спецификации и лицензирование;
- 3. Техническая схема реализации;
- 4. Трудозатраты участвующих в реализации подразделений;
- 5. Условия оказания технической поддержки

| Название компании / логотип |          | иторинга сетей<br>газоснабжения» | HLD_#### |
|-----------------------------|----------|----------------------------------|----------|
| Дата                        | Страница | Всего страниц                    | Версия   |
| ###                         | 7        | 18                               | 1.0      |

### 3 ОПИСАНИЕ ТЕХНИЧЕСКОГО РЕШЕНИЯ



Система медицинского газоснабжения (СМГ) — это протяженная сеть трубопроводов, пронизывающая большое количество помещений ЛПУ и включающая в себя как простейшую арматуру (краны, регуляторы давления), так и сложные установки (газификатор, кислородный концентратор).

Для анализа состояния СМГ предлагается использовать сеть из датчиков различного рода (датчики давления, температуры, расходометры, датчики концентрации кислорода, токовые датчики, умные IP-камеры) с последующей агрегацией и анализом полученного среза данных.

По результатам обработки показаний сети сенсоров система принимает решения:

- 1. Уведомить оператора о событии (авария, предаварийное состояние, переключение источника снабжения, необходимость дозаправки, требуется вмешательство в ручном режиме)
- 2. Автоматически переключить источник снабжения (с уведомлением ответственного персонала о событии и причине переключения)
- 3. Произвести регулировку давления (с уведомлением персонала о причине регулировки)

Техническое решение обладает гибкостью и адаптируется к различным вариантам исполнения конечных устройств и архитектуры. Предполагается использование различных технологий для реализации функционала. Сбор данных и взаимодействие с исполнительными устройствами осуществляется с помощью шлюзов: LoraWAN, ModBUS (rs485), Ethernet, Wi-Fi. Шлюзы взаимодействуют с основным сервером по протоколу MQTT.

Вся обработка данных производиться на стороне ЛПУ и не зависит от наличия сети интернет.

| Название компании / логотип |          | иторинга сетей<br>газоснабжения» | HLD_#### |
|-----------------------------|----------|----------------------------------|----------|
| Дата                        | Страница | Всего страниц                    | Версия   |
| ###                         | 8        | 18                               | 1.0      |

Центральным устройством, отвечающим за сбор и анализ данных, является виртуальный сервер на стороне ЛПУ.

В качестве системы мониторинга и уведомлений предлагается использовать систему Grafana с подключенным GSM шлюзом и Telegram ботом.

Первичная обработка данных производится с помощью NodeRED, обработанные данные записываются в базу данных временных рядов InfluxDB.

Для анализа, прогностических рекомендаций и вынесении решений предлагается использовать обученную нейро сеть и связку TensorFLOW + InfluxDB.

Все исполнительные устройства и сенсоры должны быть сертифицированы для использования в сетях медицинского газоснабжения (запорная и регулирующая арматура, датчики давления, концентрации кислорода и температуры).

| Название компании / логотип |          | иторинга сетей<br>газоснабжения» | HLD_#### |
|-----------------------------|----------|----------------------------------|----------|
| Дата                        | Страница | Всего страниц                    | Версия   |
| ###                         | 9        | 18                               | 1.0      |

## 3.1 Функциональность

Функциональные возможности системы (списком):

- Измерение давления на различных участках кислородной сети (выход газификатора, кислородная рампа, выход кислородного концентратора, входе в здание, по этажные измерения, давление в палатах, операционных, на магистральных участках)
- Распознавание показаний аналоговых манометров с помощью ІР САМ
- Измерение температуры в помещении генератора кислорода
- Мониторинг питания генератора кислорода (потребление тока, наличие питания на вводах, стабильность питания)
- Измерение концентрации кислорода на выходе генератора
- Измерение остатка кислорода в газификаторе (обработка показаний манометров с помощью камер и распознавания)
- Анализ показаний сети датчиков с целью выявления нештатных ситуаций и прогноза аварий на участках
- Автоматическое переключение источника газоснабжения
- Автоматическая регулировка давления на различных участках кислородной сети
- Уведомления ответственного персонала о нештатных и предаварийных ситуациях
- Возможность организации рабочего места диспетчера
- Наглядное графическое отображение состояний ключевых участков кислородной сети через WEB-интерфейс

Подробная информация по работе с функционалом системы приведена в документах «Руководство администратора v1.0 Admin Manual» и «Руководство пользователя v1.0 User Manual».

| Название компании / логотип |          | иторинга сетей<br>газоснабжения» | HLD_#### |
|-----------------------------|----------|----------------------------------|----------|
| Дата                        | Страница | Всего страниц                    | Версия   |
| ###                         | 10       | 18                               | 1.0      |

## 3.2 Системные требования для развертывания системы

Системные требования к серверной части:

- Процессор четырёхъядерный с тактовой частотой: 2.2 ГГц
- Оперативная память не менее: 16 Гб
- Твердотельный накопитель не менее 512Гб
- Наличие резервного сервера
- Установка с использованием Гипервизора

Требования к ПО:

Использование свободного ПО с открытым исходным кодом.

Требования к оборудованию:

Не менее 70% отечественных компонентов.

## 3.3 Схема решения и описание схемы



IP CAM, распознавание показаний манометров

Сбор показаний с датчиков осуществляется по нескольким стандартам и протоколам. На удаленных участках (Газификатор, кислородная станция, генератор кислорода) предполагается использование LoraWAN датчиков давления и температуры. В случае использования оборудования не допускающего вмешательства в систему, предлагается использовать IP-камеры с последующим распознаванием показаний манометров (WiFi, Ethernet).

На участках сети внутри здания предлагается установка датчиков давления работающих через RS485 шлюз по протоколу токовая петля.

| Название компании / логотип |          | иторинга сетей<br>газоснабжения» | HLD_#### |
|-----------------------------|----------|----------------------------------|----------|
| Дата                        | Страница | Всего страниц                    | Версия   |
| ###                         | 11       | 18                               | 1.0      |

Шлюзы (LoraWAN, RS485 и т.д.) передают данные по MQTT на MQTT Broker. Логика работы реализуется с помощью NodeRED, принимающий данные с MQTT Broker, Tensorflow.

Tensorflow осуществляет обработку потока изображений с камер, а так же анализирует поступающий поток данных из InfluxDB, после чего передает в NodeRED результаты распознавания и прогнозирования.

После обработки входного потока данных, NodeRED осуществляет запись информации в InfluxDB, к которой подключен сервис Grafana. Это позволяет отображать данные наглядно через Web-интерфейс.

Так же, Grafana осуществляет уведомления пользователей о нештатных ситуациях: к ней подключен GSM шлюз и Telegram Bot.

Мониторинг аварийных состояний и доступности компонентов осуществляется с помощью системы Zabbix.

При желании, возможно подключение отдельно рабочего места диспетчера для контроля состояния сети в режиме реального времени.



Помимо уведомлений и мониторинга предлагается функционал автоматического реагирования на нештатные ситуации. Предполагаются следующие сценарии:

#### 1. Регулировка давления.

В случае изменения объема потребления кислорода возможны ситуации при которых текущий уровень давления не достаточен для обеспечения работы оконечного оборудования на удаленных участках кислородной сети. В таких случаях в ручном режиме поднимается давление на основной магистрали. Система автоматического реагирования должна своевременно подстраивать уровень давления таким образом, чтобы давления на различных участках сети находилось в разрешенных для эксплуатации оборудования диапазонах.

#### 2. Переключение источника снабжения.

В случае аварии на одном из источников снабжения, система должна автоматически переключаться на альтернативный источник.

3. Использование нескольких источников снабжения в случае недостаточной мощности.

| Название компании / логотип |          | иторинга сетей<br>газоснабжения» | HLD_#### |
|-----------------------------|----------|----------------------------------|----------|
| Дата                        | Страница | Всего страниц                    | Версия   |
| ###                         | 12       | 18                               | 1.0      |

4. Переключение исполнительных устройств оператором в ручном режиме

## 3.4 Описание системы резервного копирования

Отказоустойчивость виртуальной машины осуществляется с помощью создания полной резервной копии рабочей системы раз в месяц, репликации на резервный виртуальный сервер, а также регулярных снапшотов.

Создание резервных копий для виртуальной машины настраивается по расписанию:

- 1. Полный бэкап 1 раз в месяц
- 2. Репликация 1 раз в неделю
- 3. Снапшоты 1 раз в день

Прерывание работы сервиса во время создания бэкапа не допускается.

Для обеспечения непрерывности работы сервиса будет использоваться стратегия резервирования.

| Название компании / логотип |          | иторинга сетей<br>газоснабжения» | HLD_#### |
|-----------------------------|----------|----------------------------------|----------|
| Дата                        | Страница | Всего страниц                    | Версия   |
| ###                         | 13       | 18                               | 1.0      |

# 4 ЗАТРАТЫ НА РЕАЛИЗАЦИЮ

# Затраты на реализацию:

| Описание                                                               | Стоимость (Курс: 82руб; Дата формирования цен: 15.06.2025) |
|------------------------------------------------------------------------|------------------------------------------------------------|
| Виртуальный сервер (основной + резервный)                              | 100 000 руб                                                |
| Датчик давления 3шт                                                    | 3 x 12 960 = 38 880 руб                                    |
| ESP 32 CAM + UART                                                      | 20 x 1100 = 22 000 руб                                     |
| Разработка платы управления исполнительными устройствами на базе stm32 | 450 000 руб                                                |
| Изготовление платы управления                                          | 7 x 15 000 = 105 000 руб                                   |
| Электромагнитный клапан<br>Camozzi                                     | 5 x 8 900 = 54 000 руб                                     |
| Электромагнитный клапан<br>Camozzi трехходовой                         | 2 x 18700 = 37 400 руб                                     |
| Привод регулятора давления моторизированный                            | 8 x 32 0000 = 256 000 руб                                  |
| Lora Ebyte E22-900M30S                                                 | 25 x 670 = 13 400 руб                                      |
| LoraWAN Gateway XM1302                                                 | 32 610 руб                                                 |
| Сетевой шлюз Modbus MQTT                                               | 2 840 руб                                                  |
| WiFi router Huawei AX3 WS7100                                          | 6 x 3096 = 18576 руб                                       |
| Рабочее место диспетчера                                               | 1 x 45 000                                                 |
| Монтаж и пусконаладка системы                                          | 200 000 руб                                                |
| Обучение персонала ЛПУ (опционально)                                   | 10 000 руб / человек                                       |
| Обслуживание системы (ежемесячно)                                      | 10 000руб                                                  |
|                                                                        | Разово: 1 676 266 ₽                                        |
|                                                                        | Ежемесячно: 10 000 ₽ (В год: 120 000 ₽)                    |

| Название компании / логотип |          | иторинга сетей<br>газоснабжения» | HLD_#### |
|-----------------------------|----------|----------------------------------|----------|
| Дата                        | Страница | Всего страниц                    | Версия   |
| ###                         | 14       | 18                               | 1.0      |

# 5 РЕАЛИЗАЦИЯ РЕШЕНИЯ

Данная система разворачивается в ЛПУ в г.Киров.

Исходя из чего, ниже описаны две категории работ:

- 1) Разовое разворачивание инстанса в ЛПУ, где описаны работы по установке и настройке системы (подробнее в стадиях работ П5.1)
- 2) Типовое разворачивание проекта

# 5.1 Стадии работ над проектом: instance – часть. Трудозатраты

Перечисленные ниже работы относятся к разворачиванию инстанса в облаке.

| № | Выполняемая работа                                                       | Ответственное подразделение       | Трудозат<br>раты,<br>человеко<br>-часы |  |  |  |  |
|---|--------------------------------------------------------------------------|-----------------------------------|----------------------------------------|--|--|--|--|
| 1 | Проектно-изыскательская работа                                           |                                   |                                        |  |  |  |  |
|   | 1.1. Формирование требований к ресурсам ВМ                               | Производственно-технический отдел | 16                                     |  |  |  |  |
|   | 1.2. Формирование требований к сетевой инфраструктуре                    | Отдел эксплуатации                | 16                                     |  |  |  |  |
|   | 1.3. Выделение ресурсов под размещаемую систему                          | Планово-экономический отдел       | 16                                     |  |  |  |  |
| 2 | Инсталляционные работы                                                   |                                   |                                        |  |  |  |  |
|   | 2.1. Организация удаленного доступа к выделенным вычислительным ресурсам | Производственно-технический отдел | 2                                      |  |  |  |  |
|   | 2.3. Установка ОС                                                        |                                   | 3                                      |  |  |  |  |
|   | 2.4. Установка Docker-окружения                                          | Производственно-технический отдел | 2                                      |  |  |  |  |
|   | 2.5. Разворачивание компонентов системы (внутри докер-окружения)         | Производственно-технический отдел | 2                                      |  |  |  |  |
| 3 | Пусконаладочные работы                                                   |                                   | ·                                      |  |  |  |  |
|   | 3.1. Организация доступа к системе мониторинга Zabbix.                   | Производственно-технический отдел | 4                                      |  |  |  |  |
|   | 3.2. Настройка генерации Zabbix                                          | Производственно-технический отдел | 10                                     |  |  |  |  |
|   | 3.3. Настройка шаблонов мониторинга Zabbix триггеров, узлов связи        | Производственно-технический отдел | 4                                      |  |  |  |  |

| Название компании / логотип |          | иторинга сетей<br>газоснабжения» | HLD_#### |
|-----------------------------|----------|----------------------------------|----------|
| Дата                        | Страница | Всего страниц                    | Версия   |
| ###                         | 15       | 18                               | 1.0      |

|   | 3.4. Настойка в ИС карточки объекта                                                                     | Производственно-технический отдел | 4  |
|---|---------------------------------------------------------------------------------------------------------|-----------------------------------|----|
| İ | 3.5. Настройка схемы БД                                                                                 |                                   | 5  |
|   | 3.6. Первоначальная настройка компонентов системы (загрузка справочников и т.д.)                        |                                   | 12 |
|   | 3.7. Создание учётной записи <b>мастер</b> -<br>администратора                                          | Производственно-технический отдел | 1  |
|   | 3.8. Реализация интеграционных взаимодействий (по запросу клиента)                                      |                                   | 12 |
|   | 3.9. Проверка работы инсталлированной системы                                                           |                                   | 24 |
| İ | 3.10. Настройка правил на FW                                                                            |                                   | 6  |
| 4 | Проведение приемосдаточных испытаний                                                                    |                                   |    |
|   | 4.1. Проверка доступности (аккаунта, созданного мастер-администратора, функциональности администратора) | _                                 | 2  |
|   | 4.2. Проверка прохождения сценариев тестирования                                                        | Производственно-технический отдел | 2  |
|   | 4.3. Проверка успешности интеграционных взаимодействий                                                  |                                   | 4  |
| 5 | Завершение работы по построению системы                                                                 |                                   |    |
|   | 5.1. Подписание акта приёмки услуги (о завершении работы и сдачи системы в эксплуатацию)                | Главный врач                      | 1  |
| 6 | Эксплуатация системы                                                                                    |                                   |    |
|   | 6.1. Обновление ОС                                                                                      | Отдел эксплуатации                | 24 |
|   | 6.2. Обновление компонентов системы                                                                     | Отдел эксплуатации                | 24 |
| İ | 6.3. Мониторинг работоспособности ОС                                                                    | Отдел эксплуатации                | 24 |
|   | 6.4. Мониторинг работоспособности компонентов системы                                                   | Отдел эксплуатации                | 24 |
|   | 6.5. Продление лицензии на поддержку RHEL Server                                                        | Отдел эксплуатации                | 4  |
| İ | 6.6. Продление SSL сертификатов для домена                                                              | Отдел эксплуатации                | 4  |
|   | 6.7. Поддержка платформы виртуализации и системы бэкапирования с процессом бэкапирования VM             | Отдел эксплуатации                | 24 |
|   | 6.8 Решение проблем с сетевым доступом на FW                                                            | Отдел эксплуатации                | 24 |
|   | 6.9. Реагирование на события от данного сервера в соответствии с применяемыми use case                  | Отдел эксплуатации                | 24 |
|   | 6.10. Выделение и обновление виртуальных ресурсов                                                       | Отдел эксплуатации                | 24 |
|   |                                                                                                         | 1                                 |    |

| Название компании / логотип | «Система мониторинга сетей медицинского газоснабжения» |               | HLD_#### |
|-----------------------------|--------------------------------------------------------|---------------|----------|
| Дата                        | Страница                                               | Всего страниц | Версия   |
| ###                         | 16                                                     | 18            | 1.0      |

## 5.2 Ответственность сторон

Разработчик системы мониторинга обязуется:

- 1. Выполнить проектные работы в срок, установленный договором (6 мес)
- 2. Выполнить монтаж и опытную эксплуатацию системы мониторинга в оговоренные сроки (6 мес)
- 3. В ходе опытной эксплуатации вносить изменения в техническое задание и проектную документацию по мере выявления потребностей заказчика
- 4. После завершения опытной эксплуатации провести пуско-наладочные работы и передать заказчику полный комплект документации на систему мониторинга
- 5. Входе выявления нештатных ситуаций немедленно уведомить заказчика о событиях (в течение 1 рабочего дня)
- 6. Обучить ответственный медперсонал приемам работы с системой

#### Заказчик обязуется

- 1. Предоставить все необходимые данные о работе сети медицинского газоснабжения ЛПУ (схемы, чертежи, поэтажные планы и прочую необходимую информацию)
- 2. Передавать разработчику регулярные отчеты о ходе эксплуатации системы мониторинга
- 3. Своевременно оплачивать счета за проектные работы в срок не позднее 7 рабочих дней после выставления счета
- 4. Подписать акт приемо-передачи после завершения пуско-наладочных работ.
- 5. Произвести полную оплату проекта

| Название компании / логотип | «Система мониторинга сетей медицинского газоснабжения» |               | HLD_#### |
|-----------------------------|--------------------------------------------------------|---------------|----------|
| Дата                        | Страница                                               | Всего страниц | Версия   |
| ###                         | 17                                                     | 18            | 1.0      |

# **6** МОНИТОРИНГ И SLA

Мониторинг доступности системы производится с помощью сервиса zabbix

Шаблон мониторинга: тестирование доступности сервисов инфраструктуры Перечень тестов:

| Тест                           | Тип теста             | Условие fail          | Период проверки |
|--------------------------------|-----------------------|-----------------------|-----------------|
| Доступность сервиса NodeRED    | Отправка MQTT запроса | Нет ответа от системы | 5 мин           |
| Доступность сервиса MQTT       | Отправка MQTT запроса | Нет ответа от системы | 5 мин           |
| Доступность сервиса Grafana    | Доступ по порту       | Система не отвечает   | 5 мин           |
| Доступность сервиса Tensorflow | Доступ по порту       | Система не отвечает   | 5 мин           |
| Доступность сервиса InfluxDB   | Доступ по порту       | Система не отвечает   | 5 мин           |

Шаблон мониторинга: тестирование доступности оборудования Перечень тестов:

| Тест                                 | Тип теста                     | Условие fail                                             | Период проверки |
|--------------------------------------|-------------------------------|----------------------------------------------------------|-----------------|
| Тест доступности Сервера             | ping                          | Более 10 потерянных пакетов потряд                       | 5 мин           |
| Тест доступности резервного Сервера  | ping                          | Более 10 потерянных пакетов потряд                       | 5 мин           |
| Тест доступности шлюза Modbus        | ping                          | Более 10 потерянных пакетов потряд                       | 1 мин           |
| Тест доступности шлюза LoraWAN       | ping                          | Более 10 потерянных пакетов потряд                       | 1 мин           |
| Тест доступности Wi-Fi точек доступа | ping                          | Более 10 потерянных пакетов потряд                       | 1 мин           |
| Тест доступности IP-камер            | ping                          | Более 10 потерянных пакетов потряд                       | 1 мин           |
| Тест датчиков давления               | Наличие показаний             | Отсутствие показаний с датчиков на протяжении 5 минут    | 5 мин           |
| Тест датчиков температуры            | Наличие показаний             | Отсутствие показаний с датчиков на протяжении 5 минут    | 5 мин           |
| Тест датчиков тока и напряжения      | Наличие показаний             | Отсутствие показаний с датчиков на протяжении 5 минут    | 5 мин           |
| Тест запорной арматуры               | Открыть/Закрыть               | Не изменения показаний датчиков давления в течение 1 мин | 24ч             |
| Тест регулирующей арматуры           | Изменение параметра<br>на 10% | Не изменения показаний датчиков давления в течение 1 мин | 24ч             |

| Название компании / логотип | «Система мониторинга сетей медицинского газоснабжения» |               | HLD_#### |
|-----------------------------|--------------------------------------------------------|---------------|----------|
| Дата                        | Страница                                               | Всего страниц | Версия   |
| ###                         | 18                                                     | 18            | 1.0      |

## Соглашение об уровне обслуживания (SLA)

## Доступность системы:

1. Гарантируется доступность системы в 24/7 в 99.8% времени

## Время реакции на инциденты:

1. Время перехода на ручное управление в случае отказа не более 5 минут.

## Уведомления об инцидентах:

- 1. На телефоны ответственных сотрудников по каналу связи GSM
- 2. Бот в Telegram