Introdução à classe de problemas NP- Completos

R. Rossetti, A.P. Rocha, A. Pereira, P.B. Silva, T. Fernandes FEUP, MIEIC, CAL, 2010/2011

FEUP Universidade do Porto

Classes P e NP - CAL, 2010/11

Introdução

- Considerações Práticas
 - Em alguns casos práticos, alguns algoritmos podem resolver problemas simples em tempo razoável (e.g. $n \le 20$); mas quando se trata de *inputs* maiores (e.g. $n \ge 100$) o desempenho degrada consideravelmente
 - Soluções desse género podem estar a executar em tempo exponencial, da ordem de $n^{\sqrt{n}}$, 2^n , $2^{(2^n)}$, n!, ou mesmo piores do que isso
 - Para algumas classes de problemas, é difícil determinar se há algum paradigma ou técnica que leve à solução do mesmo, ou se há formas de provar que o problema é intrinsecamente difícil, não sendo possível encontrar uma solução algorítmica cujo desempenho seja subexponencial
 - Para alguns problemas difíceis, é possível afirmar que, se um desses problemas se pode resolver em tempo polinomial, então todos podem ser resolvidos em tempo polinomial!

FEUP Universidade do Porto Faculdade de Engenharia

Classes P e NP - CAL, 2010/11

Tempo Polinomial como referência

- Tempo polinomial é a referência que define e separa a classe de problemas que podem ser resolvidos eficientemente. Assim, se um problema pode ser resolvido eficientemente, então significa que o seu tempo de execução é polinomial.
- Esta avaliação é geralmente medida em termos do tempo de execução do algoritmo, usando a complexidade no pior caso, como uma função de n, que é o tamanho do input do problema
- Um algoritmo de tempo polinomial tem tempo de execução da ordem de $O(n^k)$, onde k é uma constante independente de n
- Um problema é dito ser "resolúvel em tempo polinomial" se houver um algoritmo de tempo polinomial que o resolva
- Algumas funções parecem não ser polinomiais, mas podem ser tratadas como tal: e.g. $O(n \log n)$ tem delimitação superior da ordem de $O(n^2)$
- Algumas funções parecem ser polinomiais, mas podem não o ser na verdade: e.g. $O(n^k)$, se k variar em função de n, tamanho do input.

Classes P e NP - CAL, 2010/11

2

Problemas de Decisão

- Reformulação de problemas de optimização
 - Muitos dos problemas práticos que se pretende resolver são problemas de optimização (maximizar ou minimizar alguma métrica)
 - Um problema é dito ser um "problema de decisão" se o seu output ou resposta deve ser um simples "SIM" ou "NÃO" (ou derivativos do tipo "V/F", "0/1", "aceitar/rejeitar", etc.)
 - Muitos problemas de optimização podem ser expressos em termos de problemas de decisão.

Por exemplo: o problema "qual o menor número de cores que se pode utilizar para colorir um grafo?" pode ser expresso como "Dado um grafo G e um inteiro k, é possível colori G com K cores?"

A classe de problemas P é definida por todos os problemas de decisão que podem ser resolvidos em tempo polinomial!

FEUP Universidade do Porto Faculdade de Engenharia

Classes P e NP - CAL, 2010/11

Verificação do Tempo Polinomial

- Undirected Hamiltonian cycle problem (UHC)
 - Dado um grafo G, "é possível determinar se G possui um ciclo que visita todo vértice exactamente uma vez?"

FEUP Universidade do Porto

lasses P e NP - CAL, 2010/11

Verificação do Tempo Polinomial

- Caso se conheça um ciclo (e.g. $\langle v_3, v_7, v_1, ..., v_{13} \rangle$), é fácil verificá-lo, por inspecção. Ainda ñ sendo possível implementar algoritmo p/resolver o problema, seria fácil "verificar" se G é ou não "Hamiltoniano"
- O ciclo neste caso é dito ser um "certificado"; trata-se de uma informação que permite verificar se uma dada "string" está numa "linguagem" (em problemas de reconhecimento de linguagem)
- Caso seja possível verificar a precisão de um certificado para um problema em tempo polinomial, diz-se que o problema é "<u>verificável em</u> tempo polinomial"
- Nem todas as "linguagens" gozam da propriedade de serem facilmente verificáveis! Por exemplo: seja o problema definir se um grafo G tem exactamente um ciclo de Hamilton. É fácil verificar se existe pelo menos um ciclo, mas não é simples demonstrar que não há outro!
- A classe de problemas NP é definida por todos os problemas que podem ser verificados por um algoritmo de T polinomial

FEUP Universidade do Porto Faculdade de Engenharia

Classes P e NP - CAL, 2010/11

Verificação do Tempo Polinomial

- Execução de tempo polinomial é diferente de verificação de tempo polinomial!
 - O circuito de Hamilton é verificável em tempo polinomial, mas acreditase não haver uma solução executável em tempo polinomial que encontre um circuito de Hamilton
- Por que NP e não VP?
 - O termo NP vem de "nondeterministic polynomial time," relacionado com um programa a executar num "computador não determinístico" capaz de realizar palpites; basicamente, tal arquitectura seria capaz de não deterministicamente conjecturar o valor do certificado e verificar, em tempo polinomial, se uma string está na linguagem ou não.

Classes P e NP - CAL, 2010/11

7

Classes P e NP

- $P \subseteq NP$.
 - Assim, se um problema é resolúvel em tempo polinomial, então pode-se certamente verificar se uma solução é correcta em tempo polinomial
- Não se sabe certamente se P = NP.
 - Ou seja, poder verificar se uma solução é correcta em tempo polinomial não garante ou ajuda encontrar um algoritmo que resolva o problema em tempo polinomial
 - P \neq NP? Muitos autores acreditam que sim, mas não há provas!
- A classe de problemas NP-Completos é a classe dos problemas mais difíceis de resolver em toda a classe NP.
- Pode haver problemas ainda mais difíceis de resolver que não estejam enquadrados na classe de problemas NP; neste caso, são chamados problemas NP-difíceis (NP-hard)

FEUP Universidade do Porto

Classes P e NP - CAL, 2010/11

- Suponha que há dois problemas, A e B. Sabe-se que A é impossível de ser resolvido em tempo polinomial
- Pretende-se provar que *B* não pode ser resolvido em tempo polinomial. Como provar ou demonstrar que:

$$(A \notin P) \Rightarrow (B \notin P)$$

■ Pode-se tentar provar o contraposto:

$$(B \in P) \Rightarrow (A \in P)$$

• Em outras palavras, para demonstrar que *B* não é resolúvel em tempo polinomial, supõem-se que há um algoritmo que resolve *B* em tempo polinomial, e então deriva-se uma contradição pela demonstração de que *A* pode ser resolvido em tempo polinomial

FEUP Universidade do Porto Faculdade de Engenharia

Classes P e NP - CAL, 2010/11

Premissa

- Suponha que há uma subrotina que pode resolver qualquer instância do problema B em tempo polinomial
- Tenta-se demonstrar que a mesma subrotina pode ser utilizada para resolver A em tempo polinomial
- Então tem-se "reduzido o problema A no problema B"!
- Como se sabe que A não se pode resolver em tempo polinomial, então está-se basicamente a tentar provar que a subrotina não pode existir, implicando que B não pode ser resolvido em tempo polinomial

Classes P e NP - CAL, 2010/11

11

Redução de Problemas NP

Exemplo

- Sabe-se que o problema UHC é um problema NP-completo! Não se conhece algoritmo de tempo polinomial que o resolva.
- <u>Problema</u>: suponha um director técnico pede a um dos seus engenheiros para encontrar uma solução polinomial para um problema diferente, nomeadamente o problema de encontrar um ciclo de Hamilton num grafo dirigido (DHC).
- Depois de pensar numa solução, por algum tempo, o engenheiro convence-se de que não se trata de uma solicitação sensata. Será que considerar arestas direccionais tornaria o problema de alguma forma mais fácil? Apesar de ambos (director e eng.) concordarem que UHC é NP-completo, o director está convencido de que DHC é viável e fácil. Como convencê-lo do contrário?

FEUP Universidade do Porto

Classes P e NP - CAL, 2010/11

Solução

- Pode-se tentar convencer o director de que "se houvesse uma solução eficiente para DHC, então se demonstraria que seria então possível resolver UHC em tempo polinomial."
- Em particular, usar-se-ia a mesma subrotina usada no DHC para resolver o UHC. Uma vez que ambos conhecem que UHC não é resolúvel, então tal rotina não pode existir. Portanto, DHC também não é resolúvel em tempo polinomial!

Redução de Problemas NP

Solução

- Dado um grafo G, criar um grafo dirigido G' pela substituição de cada aresta {u, v} por duas arestas dirigidas: (u, v) e (v, u)
- Cada caminho simples em G é um caminho simples em G', e vice-versa.
 Portanto, G terá um ciclo de Hamilton se, e somente se, G' também o tiver!

FEUP Universidade do Porto

Classes P e NP - CAL, 2010/11

- Solução
 - Redução UHC \rightarrow DHC

```
bool UHC (graph G) {
   create digraph G' with the same number of vertices as G
   foreach edge (u, v) in G
     Add edges (u, v) and (v, u) in G'
   return DHC (graph G')
}
```

 Note-se que nenhum dos problemas foi efectivamente resolvido. Apenas demonstrou-se como converter uma solução para o DHC numa solução para o UHC. Este procedimento é chamado "redução" e é crucial para a teoria dos problemas NP-completos.

Classes P e NP - CAL, 2010/11

15

Redução de Problemas NP

- Definição
 - Dados dois problemas, A e B, diz-se que A é polinomialmente redutível a B se, dada uma subrotina de tempo polinomial para B, pode-se utilizá-la para resolver A em tempo polinomial. Quando tal se verifica, expressase por

$$A \leq_{P} B$$

- Lema: Se $A \leq_p B$ e $B \in P$ então $A \in P$
- Lema: Se $A \leq_P B$ e $A \notin P$ então $B \notin P$
- Lema: Se $A \leq_p B$ e $B \leq_p C$ então $A \leq_p C$ (transitividade)

FEUP Universidade do Porto Faculdade de Engenharia

Classes P e NP - CAL, 2010/11

- Definição +formal da classe dos problemas NP- completos
 - Um problema de decisão $B \in NP$ é NP-completo se $A \leq_{\mathcal{D}} B \mid \forall A \in NP$
 - Assim, se B pode ser resolvido em tempo polinomial, então qualquer outro problema A em NP é resolúvel em tempo polinomial
 - Lema: B é NP-completo se
 - (1) $B \in NP$, e
 - (2) $A \leq_P B$ para algum problema A, se $A \in NP$ -Completo

FEUP Universidade do Porto

Classes P e NP - CAL, 2010/11

17

Redução de Problemas NP

- Procedimento:
 - Dado um problema X, prove que o mesmo é pertencente à classe dos problemas NP-completos.
 - Provar que X está em NP
 - Seleccionar um problema Y que se sabe ser NP-completo
 - Definir uma redução de tempo polinomial de Y para X
 - Provar que, dada uma instância de Y, Y tem uma solução se, e se somente, X tem uma solução

FEUP Universidade do Porto

Classes P e NP - CAL, 2010/11

Vertex Cover

■ Uma cobertura de vértices de um grafo G = (V, E) é um subconjunto $V_C \subseteq V$, tal que toda aresta $(a, b) \in E$ é incidente em pelo menos um vértice $u \in V_C$.

- Vértices em V_c "cobrem" todas as arestas em G.
- Reformulação de VC como um problema de decisão
 - O grafo G tem uma cobertura de vértices de tamanho k?

Classes P e NP - CAL, 2010/11

10

Independent Set

- Um conjunto independente de um grafo G = (V, E) é um subconjunto $V_i \subseteq V$, tal que não há dois vértices em V_i que partilham uma aresta de E
 - $u, v \in V_C$ não podem ser vizinhos em G.
- Reformulação de VI como um problema de decisão
 - O grafo **G** tem um conjunto independente de tamanho k?

FEUP Universidade do Porto Faculdade de Engenharia

Classes P e NP - CAL, 2010/11

Vertex Cover é NP-completo?

- Dado que o problema de decisão de Conjunto Independente (IS) é NP-completo, provar que o problema de Cobertura de Vértices também é NP-completo
- Solução: (1) Provar que VC pertence à classe NP.
 - Dado V_C , uma cobertura de vértices de G = (V, E), $|V_C| = k$ Pode-se verificar em O(|E| + |V|) que V_C é uma cobertura de vértices de G. Como?
 - Para cada vértice $\in V_C$, remover todas as arestas incidentes
 - Verificar se todas as arestas foram removidas de G.
 - Então, Vertex Cover ∈ NP!

FEUP Universidade do Porto

Classes P e NP - CAL, 2010/11

21

Vertex Cover é NP-completo?

- (2) Seleccionar um problema que se conhece ser NPcompleto
 - O problema do Conjunto Independente (IS), em grafos, é reconhecidamente um problema NP-completo!
 - Usar IS para provar que VC é NP-completo

FEUP Universidade do Porto Faculdade de Engenharia

Classes P e NP - CAL, 2010/11

Vertex Cover é NP-completo?

- (3) Definir uma redução de tempo polinomial de IS para VC:
 - Dada uma instância geral de IS: G' = (V', E'), k'
 - Construir uma instância específica de VC: G = (V, E), k
 - **V** = **V**'
 - E = E'
 - (G = G')
 - k = |V'| k'
 - Esta transformação é polinomial:
 - Tempo constante para contruir **G** = (**V**, **E**)
 - O(|V|) para contar o número de vértices
 - Provar que há um $V_I(|V_I| = k')$ para G' se, e se somente, há um $V_C(|V_C| = k)$ para G.

Classes P e NP - CAL, 2010/11

23

Vertex Cover é NP-completo?

- (3) Definir uma redução de tempo polinomial de IS para VC:
 - Dada uma instância geral de IS: G' = (V', E'), k'
 - Construir uma instância específica de VC: G = (V, E), k
 - **V** = **V**'
 - E = E'
 - (G = G')
 - k = |V'| k'
 - Esta transformação é polinomial:
 - Tempo constante para contruir **G** = (**V**, **E**)
 - O(|V|) para contar o número de vértices
 - Provar que há um $V_I(|V_I| = k')$ para G' se, e se somente, há um $V_C(|V_C| = k)$ para G.

FEUP Universidade do Porto

Classes P e NP - CAL, 2010/11

Vertex Cover é NP-completo?

- (4) Provar que G' tem um conjunto idependente VI de tamanho k' se, e se somente, VC tem uma cobertura Vc de teamanho k.
 - Considere dois conjuntos $I \in J \mid I \cap J = \emptyset, I \cup J = V = V'$
 - Dada qualquer aresta (u, v), um dos seguintes casos se verifica:
 - 1. $u, v \in I$
 - 2. $u \in I \in V \in J$
 - 3. $u \in J \in V \in I$
 - 4. $u, v \in J$

Classes P e NP - CAL, 2010/11

25

Vertex Cover é NP-completo?

- (4) Continuação...
 - Assumindo-se que I é um conjunto independente de G', então:
 - O caso 1 não pode ser (vértices em I não podem ser adjacentes
 - Nos casos 2 e 3, (u, v) tem exactamente um ponto terminal em J
 - No caso 4, (u, v) tem ambos os pontos terminais em J
 - Nos casos 2, 3 e 4, (u, v) tem *pelo menos um* ponto terminal em J
 - Então, vértices em J cobrem todas as arestas de G'
 - Também: |I| = |V| |J| uma vez que $I \cap J = \emptyset$, $I \cup J = V = V'$
 - Assim, se I é um conjunto independente de G', então J é uma cobertura dos vértices de G' (= G)
 - Similarmente, pode-se provar que se J é uma cobertura dos vértices de G', então I é um conjunto independente de G'

FEUP Universidade do Porto Faculdade de Engenharia

Classes P e NP - CAL, 2010/11

Exemplos de problemas NP-completo

- Alguns exemplos são
 - · Ciclos de Hamilton
 - · Coloração em grafos
 - · Cliques em grafos
 - Subgrafos e supergrafos
 - · Árvores de expansão
 - · Cortes e conectividade
 - · Problemas de fluxo
 - Outros...

Classes P e NP - CAL, 2010/11

27

Referências e mais informação

- T. Cormen *et al.* (2009) "Introduction to Algorithms." Cambridge, MA: MIT press.
- R. Johnsonbaugh & M. Schaefer (2004) "Algorithms." Upper Saddle River, NJ: Prentice Hall.
- C.A. Shaffer (2001) "A Practical Introduction to Data Structures and Algorithm Analysis." Upper Saddle River, NJ: Prentice Hall.

FEUP Universidade do Porto Faculdade de Engenharia

Classes P e NP - CAL, 2010/11