Wiktor Kuchta

Zadanie 1.

Lemat 1 (Monotoniczność). *Jeśli* $(k, v) \in \mathcal{V}[\![\tau]\!]\delta$, to $\forall j \leq k. (j, v) \in \mathcal{V}[\![\tau]\!]\delta$. *Jeśli* $(k, e) \in \mathcal{E}[\![\tau]\!]\delta$, to $\forall j \leq k. (j, e) \in \mathcal{E}[\![\tau]\!]\delta$.

Dowód. Indukcja względem struktury typu τ .

Pierwsza część: załóżmy, że $(k, v) \in \mathcal{V}[\![\tau]\!]\delta$.

Przypadek $\tau = \alpha$. Mamy $\mathcal{V}[\![\alpha]\!]\delta = \delta(\alpha) \in Sem Type$. Teza wynika z definicji:

$$SemType = \{ S \in \mathcal{P}(\mathbb{N} \times CVal) \mid \forall (k, v) \in S. \, \forall j < k. \, (j, v) \in S \}.$$

Przypadek $\tau = \text{bool}$. Mamy $\mathcal{V}[[\text{bool}]]\delta = \{(k, b) \mid k \in \mathbb{N} \land b \in \{\text{true}, \text{false}\}\}$. Zatem teza też wynika z definicji.

Przypadek $\tau = \forall \alpha. \tau$. Mamy

$$\mathcal{V}[\![\forall \alpha. \, \tau]\!] \delta = \{(k, \Lambda. \, e) \mid (\Lambda. \, e) \in \text{CVal} \land \forall S \in \textit{Sem Type.} \, (k, e) \in \mathcal{E}[\![\tau]\!] (\delta, \alpha \mapsto S) \}.$$

Zatem v ma postać $\Lambda.e$. Weźmy $j \leq k$. Chcemy pokazać, że $(j, \Lambda.e) \in \mathcal{V}[\![\forall \alpha.\tau]\!] \delta$. Z założenia indukcyjnego lemat zachodzi dla $(k,e) \in \mathcal{E}[\![\tau]\!] (\delta,\alpha \mapsto S)$ dla dowolnego $S \in SemType$. Zatem $(j,e) \in \mathcal{E}[\![\tau]\!] (\delta,\alpha \mapsto S)$ dla dowolnego $S \in SemType$, a więc tezę mamy z definicji.

Przypadek $\tau = \exists \alpha. \tau$. Mamy

$$\mathcal{V}[\![\exists \alpha.\,\tau]\!]\delta = \{(k,\mathsf{pack}\;v)\mid \exists S\in \mathit{SemType}.\,(k,v)\in\mathcal{V}[\![\tau]\!](\delta,\alpha\mapsto S)\}.$$

Zatem v ma postać pack v'. Weźmy $S \in SemType$ świadczące o $(k, pack \ v') \in \mathcal{V}[\![\exists \alpha. \tau]\!]\delta$ i $j \leq k$. Chcemy pokazać, że $(j, pack \ v') \in \mathcal{V}[\![\exists \alpha. \tau]\!]\delta$. Z założenia indukcyjnego lemat zachodzi dla $(k, v') \in \mathcal{V}[\![\tau]\!](\delta, \alpha \mapsto S)$, zatem $(j, v') \in \mathcal{V}[\![\tau]\!](\delta, \alpha \mapsto S)$ i teza zachodzi z definicji.

Przypadek $\tau = \mu \alpha. \tau$. Mamy

$$\mathcal{V}\llbracket \mu\alpha.\,\tau \rrbracket \delta = \{(k, \mathtt{fold}\,v) \mid v \in \mathrm{CVal} \wedge \forall j < k.\,(j,v) \in \mathcal{V}\llbracket \tau [\mu\alpha.\,\tau/\alpha] \rrbracket \delta \}.$$

Weźmy $j \leq k$, wtedy $(j, v) \in \mathcal{V}[\![\mu\alpha, \tau]\!]\delta$ wynika łatwo z definicji.

Przypadek $\tau = \tau_1 \rightarrow \tau_2$. Mamy

$$\mathcal{V}[\![\tau_1 \to \tau_2]\!] \delta = \{(k, \lambda x. e) \mid (\lambda x. e) \in \text{CVal } \land \\ \forall j \leqslant k. \forall v. (j, v) \in \mathcal{V}[\![\tau_1]\!] \delta \implies (j, e[v/x]) \in \mathcal{E}[\![\tau_2]\!] \delta \}.$$

Weźmy $j \leq k$, wtedy $(j, v) \in \mathcal{V}[\![\tau_1 \to \tau_2]\!]\delta$ wynika łatwo z definicji.

Druga część: teraz załóżmy, że $(k, e) \in \mathcal{E}[\![\tau]\!]\delta$. Mamy

$$\mathcal{E}[\![\tau]\!]\delta = \{(k,e) \mid \forall j < k, e'. e \searrow^j e' \implies (k-j,e') \in \mathcal{V}[\![\tau]\!]\delta\}.$$

Weźmy $j \leq k$. Chcemy pokazać, że $(j,e) \in \mathcal{E}[\![\tau]\!]\delta$. Weźmy j' < j. Wiemy, że $e \searrow^{j'} e'$ implikuje $(k-j',e') \in \mathcal{V}[\![\tau]\!]\delta$, a chcemy pokazać, że implikuje $(j-j',e') \in \mathcal{V}[\![\tau]\!]\delta$. Ale to wynika z monotoniczności dla $\mathcal{V}[\![\tau]\!]\delta$, którą przed chwilą udowodniliśmy.

Zadanie 2.

Lemat 2 (Kompatybilność aplikacji).

$$\frac{\Delta; \Gamma \models e_1 : \tau_1 \to \tau_2 \qquad \Delta; \Gamma \models e_2 : \tau_1}{\Delta; \Gamma \models e_1 e_2 : \tau_2}$$

Dowód. Weźmy $\delta \in \mathcal{D}[\![\Delta]\!]$ i $(k, \gamma) \in \mathcal{G}[\![\Gamma]\!]\delta$. Chcemy pokazać $(k, \gamma(e_1 e_2)) \in \mathcal{E}[\![\tau_2]\!]\delta$.

Wiemy, że $(k, \gamma(e_1)) \in \mathcal{E}[\![\tau_1 \to \tau_2]\!]\delta$, więc pokażemy $(k, \gamma(e_1 e_2)) \in \mathcal{E}[\![\tau_2]\!]$ korzystając z lematu Bind. Musimy pokazać, że $\forall j \leqslant k. \forall v. (j, v) \in \mathcal{V}[\![\tau_1 \to \tau_2]\!]\delta \implies (j, v \gamma(e_2)) \in \mathcal{E}[\![\tau_2]\!]\delta$.

Zatem weźmy takie j i v. Wiemy (z definicji \models i monotoniczności), że $(j, \gamma(e_2)) \in \mathcal{E}[\![\tau_1]\!]\delta$, więc pokażemy $(j, v \gamma(e_2)) \in \mathcal{E}[\![\tau_2]\!]\delta$ korzystając z lematu Bind. Musimy pokazać, że $\forall l \leq j$. $\forall u$. $(l, u) \in \mathcal{V}[\![\tau_1]\!]\delta \implies (l, v u) \in \mathcal{E}[\![\tau_2]\!]\delta$.

Zatem weźmy takie l i u. Z definicji relacji dla typu funkcyjnego wiemy, że v ma postać $\lambda x. e$ i $(l, e[u/x]) \in \mathcal{E}[\![\tau_2]\!]\delta$. Z Closure under expansion mamy $(l+1, vu) \in \mathcal{E}[\![\tau_2]\!]\delta$, więc z monotoniczności $(l, vu) \in \mathcal{E}[\![\tau_2]\!]\delta$ tak, jak chcieliśmy.