Discrete Mathematics

Function

Shin Hong

Functions

- Let A and B be nonempty sets.
- A function f from A to B, denoted $f: A \rightarrow B$ is an assignment of each element of A to exactly one element of B.
- We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.
- Functions are sometimes called mappings or transformations.

Function (Chapter 2)

Discrete Math.

Functions

- A function $f: A \to B$ can also be defined as a subset of $A \times B$ (a relation). This subset is restricted to be a relation where no two elements of the relation have the same first element.
- Specifically, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

$$\forall x[x \in A \to \exists y[y \in B \land (x,y) \in f]]$$

$$\forall x, y_1, y_2[[(x, y_1) \in f \land (x, y_2)] \rightarrow y_1 = y_2]$$

Function (Chapter 2)

Functions

Given a function $f: A \rightarrow B$:

- We say f maps A to B or
 f is a mapping from A to B.
- A is called the domain of f.
- B is called the *codomain* of f.
- If f(a) = b,
 - then b is called the *image* of a under f.
 - a is called the preimage of b.

Function (Chapter 2)

Questions

$$f(a) = ?$$

The image of d is?

The domain of f is? A

The codomain of f is?

The preimage of y is? b

Function (Chapter 2)

Discrete Math.

Question on Functions and Sets

• If $f:A \to B$ and S is a subset of A, then

$$f(S) = \{f(s) | s \in S\}$$

$$f$$
 {a,b,c,} is ? {y,z}

$$f \{c,d\} \text{ is } ? \{z\}$$

Function (Chapter 2)

Discrete Math.

Injections

Definition: A function f is said to be one-to-one, or injective, iff f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an injection if it is one-to-one.

Function (Chapter 2)

Discrete Math.

Surjections

A function $f:A\to B$ is called *onto* or *surjective* iff for every element $b\in B$ there is an element $a\in A$ such that f(a)=b .

A function f is called a *surjection* if it is **onto**.

Function (Chapter 2)

Discrete Math.

Example

Example 1: for $f : \{a,b,c,d\} \rightarrow \{1,2,3\}, f(a) = 3, f(b) = 2, f(c) = 1, and <math>f(d) = 3$. Is f an onto function?

Solution: Yes, *f* is onto since all three elements of the codomain are images of elements in the domain.

Example 2: Is the function $f(x) = x^2$ from the set of integers onto? **Solution**: No, f is not onto since there is no integer x with $x^2 = -1$, for example.

Function (Chapter 2)

Bijections

A function f is a **one-to-one correspondence**, or a bijection, if it is b oth one-to-one and onto (surjective and injective).

Function (Chapter 2)

Discrete Math.

Inverse Functions

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted, is the function from B to A defined as

No inverse exists unless f is a bijection. Why?

$$f^{-1}(y) = x \text{ iff } f(x) = y$$

Function (Chapter 2)

Discrete Math.

Inverse Functions

Function (Chapter 2)

Discrete Math.

Questions

Example 2: Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence so $f^{-1}(y) = y - 1$.

Example 3: Let $f: \mathbf{R} \to \mathbf{R}$ be such that $f(x) = x^2$. Is f invertible, and if so, what is its inverse?

Solution: The function f is not invertible because it is not one-to-one.

Function (Chapter 2)

Discrete Math.

Composition

• **Definition**: Let $f: B \to C$, $g: A \to B$. The *composition of f with g*, denoted $f \circ g$ is the function from A to C defined by $f \circ g(x) = f(g(x))$

Function (Chapter 2)

Discrete Math.

Composition

Function (Chapter 2)

Discrete Math.

Composition

Example 1: If
$$f(x) = x^2$$
 and $g(x) = 2x + 1$, then

and
$$f(g(x)) = (2x+1)^2$$

$$g(f(x)) = 2x^2 + 1$$

Function (Chapter 2)

Composition Questions

Example 2: Let g be a function from $\{a,b,c\}$ to itself s.t.

$$g(a) = b$$
, $g(b) = c$, and $g(c) = a$.

Let f be a function from $\{a,b,c\}$ to $\{1,2,3\}$ s.t.

$$f(a) = 3$$
, $f(b) = 2$, and $f(c) = 1$.

What is the composition of f and g, and what is the composition of g and f.

Solution: The composition $f \circ g$ is defined by

$$f \circ g (a) = f(g(a)) = f(b) = 2.$$

 $f \circ g (b) = f(g(b)) = f(c) = 1.$
 $f \circ g (c) = f(g(c)) = f(a) = 3.$

Note that $g \circ f$ is not defined, because the range of f is not a subset of the domain of g.

Function (Chapter 2)

Discrete Math.

Graphs of Functions

• Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Function (Chapter 2)

Discrete Math.

Partial Functions

A partial function f from a set A to a set B, denoted $f: A \longrightarrow B$ is an assignment to each element a in a subset of A on a unique element b in B.

- The subset of A is called the domain of definition of f
- f is undefined for elements in A that are not in the domain of definition of f.
- When the domain of definition of f equals A, we say that f is a total function.

Example: $f: \mathbb{N} \to \mathbb{R}$ where $f(n) = \sqrt{n}$ is a partial function from \mathbb{Z} to \mathbb{R} where the domain of definition is the set of nonnegative integers. Note that f is undefined for negative integers.

Function (Chapter 2)

Discrete Math.