FUNDAÇÃO GETÚLIO VARGAS

Escola de Pós-Graduação em Economia Teoria Macroeconômica III - Lista 02

Professor: Ricardo de Oliveira Cavalcanti Monitora: Kátia Aiko Nishiyama Alves Alunos: Samuel Barbosa e Gustavo Bulhões

Exercício 01

Considere a função $f(x) = x^3 \exp(-x^2)$. Vamos encontrar o máximo global desta função aplicando o método da biseção (i) e o método de Newton-Rhapson (ii) para econtrar as raízes da primeira derivada de f, dada por

$$f'(x) = x^2(3 - 2x^2)e^{-x^2}.$$

Item (i)

Neste método iniciamos com um intervalo [a,b] tal que f(a)f(b) < 0 Se f é contínua, pelo Teorema do Valor Intermediário existe um $x^* \in (a,b)$ tal que $f(x^*) = 0$.

Para encontrá-lo, dividimos o intervalo no ponto médio do intervalo

$$c = \frac{a+b}{2}$$

e avaliamos f(a)f(c). Se f(a)f(c) é negativo, então o Teorema do Valor Intermediário garante a existência de uma raiz no intervalo (a,c). Se por outro lado f(a)f(c) é positivo, então a raiz pertence ao intervalo [c,b). Iteramos este procedimento até obter um intervalo suficientemente pequeno.

Antes de aplicar o método, vamos delimitar o intervalo inicial a partir do gráfico de f:

Observe que f tem vários pontos críticos. É fácil identificar graficamente que o ponto de máximo da função está entre 0 e 5. Como 0 é ponto de inflexão, contudo, vamos retirá-lo do intervalo inicial, que delimitaremos em [0.1, 5].

Aplicando o método no intervalo especificado, obtemos o ponto de máximo global da função f em x=1.2247.

Item (ii)

No método de Newton-Rhapson, definimos um valor inicial de x_0 dentro de um intervalo [a,b] e calculamos a reta tangente a f neste ponto. Temos então uma aproximação linear de f em torno do ponto x_0 . Escolhemos a raiz desta função linear como uma melhor estimativa da raiz da função original f. Iteramos este procedimento até obter convergência da estimativa. Se em uma dada iteração a estimativa da raiz assumir valor fora do intervalo [a,b], sorteamos um novo x_0 dentro do intervalo e reiniciamos o algoritmo.

Aplicando este método no intervalo $\left[0.1,5\right]$ obtemos a mesma solução do item anterior.

Item (iii)

A tabela a seguir traz uma comparação dos métodos em termos de número de iterações e tempo decorrido. Como o método de Newton-Rhapson incorpora

um componente aleatório (eventual necessidade de sortear novos valores iniciais), reportamos a média de iterações e do tempo decorrido em 10.000 aplicações do algoritmo.

Método	Iterações	Tempo decorrido (s)
Bisseção	54	0.0050
Newton-Rhapson	57	0.0046

Portanto, dada a função objetivo e o intervalo utilizado, concluimos que os métodos têm desempenho equivalente.

Exercício 02

Neste exercício aplicamos a generalização do método de Newton-Rhapson para o caso multivariado. Em particular vamos encontrar o ponto de máximo da função

$$f(x,y) = \frac{4}{(x-1)^2 + 4y^2 + 1}.$$

Observando o gráfico de f vemos que podemos restringir nossa busca a $[-5,5] \times [-5,5]$, com (0,0) sendo um bom chute inicial.

Aplicando o algoritmo, obtemos:

Iteração	X	у	f(x,y)
1	0.00000	0	2.00000
2	-1.00000	0	0.80000
3	-1.90909	0	0.42271
4	-3.03783	0	0.23116
5	-4.49614	0	0.12817
6	1.34663	0	3.57093
7	0.73950	0	3.74581
8	1.08879	0	3.96872
9	0.99713	0	3.99997
10	1.00000	0	4.00000
11	1.00000	0	4.00000

com $x^* = 1$, $y^* = 0$, e $f(x^*, y^*) = 4$.