MATHEMATICS METHODS

MAWA Semester 1 (Unit1) Examination 2015 Calculator-Assumed Marking Key

Page **1** © MAWA 2015

Section Two: Calculator-assumed

(90 Marks)

Question 8(a)

Solution
$m = \frac{-1 - (-3)}{1 - (-3)} = 2 \implies y = 2x + c$
$m = \frac{1}{4-3} = 2 \implies y = 2x + c$
using $(3, -3)$; $-3 = 2(3) + c \implies c = -9$

∴
$$y = 2x - 9$$

Mandring Law to ather a the law to a law to	NA - ulu-	
Marking key/mathematical behaviours	Marks	
calculates gradient	1	
 uses a point to calculate c and states equation 	1	

Question 8(b)

Solution

$$3x + 2y + 7 = 0 \text{ has gradient } -\frac{3}{2}$$

$$\therefore y = -\frac{3}{2}x + c$$

using (2,3);
$$3 = -3 + c \implies c = 6$$

$$\therefore y = -\frac{3}{2}x + 6$$

Marking key/mathematical behaviours	
calculates gradient	1
 uses the given point to calculate c and states equation 	1

Question 8(c)

Solution

$$5x - 3y = 1$$
 has $m = \frac{5}{3}$: $m \perp = -\frac{3}{5}$

$$\therefore y = -\frac{3}{5}x + c$$

using
$$(5, -4)$$
; $-4 = -\frac{3}{5}(5) + c \implies c = -1$

$$\therefore y = -\frac{3}{5}x - 1$$

Marking key/mathematical behaviours	
calculates gradient	1
determines perpendicular gradient	1
ullet uses the given point to calculate c and states equation	1

CALCULATOR-ASSUMED
MARKING KEY

Question 8(d)

Solution	
2y - 3x - 4 = 0	$\Rightarrow y = \frac{3}{2}x + 2$

∴ gradient of reflected line is $-\frac{3}{2}$ ⇒ line is $y = -\frac{3}{2}x + 2$

Marking key/mathematical behaviours Mark	
determines gradient of original line	1
determines gradient of reflected line and states equation	1

Question 9(a)

Solution

(i)
$$P(A) = 0.33$$

$$P(B) = 0.01 + 0.06 + 0.01 + 0.23$$
 read directly from the graph

(ii)
$$=0.41$$

(iii) $P(A \cup B) = 0.74$ (by the addition principle)

(111)	
Marking key/mathematical behaviours	Marks
P(A)reads correctly from the graph	1
	1
 provides the correct result for 	1
• states correct result for $P(A \cap B)$	1
• correctly states $P(A \cup B)$	

Question 9(b)

Solution	
The events are mutually exclusive, since $P(A \cap B) = 0$	
Marking key/mathematical behaviours	
states events are M.E.	1
provides a valid reason	1

Question 9(c)

Solution

Since we know (given) that the selected person takes at least 5 attempts ($^{P(B)}$ =0), this reduces the probability sample space to 0.59

Hence the probability that a selected person takes 5 attempts = $\frac{1}{0.59} = \frac{1}{59}$

Marking key/mathematical behaviours	Marks
uses the idea of a reduced sample space	1
states the correct response	1

CALCULATOR-ASSUMED MARKING KEY

Question 10(a)

Solution $\angle ACB = 6^{\circ}$

Using the sine rule:

$$\frac{BC}{\sin 21^{\circ}} = \frac{19}{\sin 6^{\circ}} \implies BC = 65.14 \text{ cm}$$

5M1 21 5M1 5		
Markin	Marking key/mathematical behaviours	
•	calculates angle ACB	1
•	uses the sine rule to calculate the length of BC	1

Question 10(b)

Solution

 $\angle ABC = 153^{\circ}$

Using the area rule:

Area =
$$\frac{1}{2}$$
(19)(65.14)sin 153° \Rightarrow Area = 280.94 cm²

Marking key/mathematical behaviours	
calculates angle ABC	1
uses the area formula to calculate the required area	1

Question 10(c)

Solution

 $\angle ABC = 153^{\circ}$

Let the mid-point of BC be D. BD = 32.57 cm

Using the cosine rule:

$$AD^2 = (32.57)^2 + (19)^2 - 2(19)(32.57)\cos 153^\circ \Rightarrow AD = 50.25 \text{ cm}$$

Marking key/mathematical behaviours	
calculates the length of BD	1
uses the cosine rule to calculate the length of AD	1

Page 4 © MAWA 2015

CALCULATOR-ASSUMED MARKING KEY

Question 11 (a)

$$\frac{4}{8} = \frac{1}{2}$$

 $\frac{4}{8} = \frac{1}{2}$ one mark (no need to simplify)

Question 11 (b)

2

one mark for denominator, one mark for numerator

Question 11 c

 $\frac{\dot{}}{8}$ one mark for denominator, one mark for numerator

© MAWA 2015 Page 5

CALCULATOR-ASSUMED MARKING KEY

Question 12(a)

Solution	
By substitution of $t = 0$ into $x = 5\cos\left(\pi t - \frac{\pi}{2}\right)$ we get $x = 5\cos\left(-\frac{\pi}{2}\right) = 0$. That weight is at the rest (or 0 position).	is, the
Marking key/mathematical behaviours	Marks
Determines that the weight is at the rest position	1

Question 12(b)

Solution

The period of the weights oscillation is 2 seconds. Hence it goes through the rest position twice every 2 seconds. That is once every second. Because it starts at the rest position and finishes at the rest position, we need to add one. Hence the answer is 6 times.

 $5\cos\bigg(\pi t - \frac{\pi}{2}\bigg) = 0$ for every whole number value of t .

i.e. when t = 0,1,2,3,4 and 5 . So 6 times.

Marking key/mathematical behaviours	
 Provides a reasonable explanation as to how arrived at the number of 	1
times the weight is at the rest position	
Determines the correct number of times (i.e. 6 times)	1

Question 12(c)

Solution

Negative values of χ represent the distance that the weight is below the rest position.

The negative represents 'below the rest position' the magnitude of the number represents the distance.

Marking key/mathematical behaviours	Marks
Indicates that the negative represents the distance 'below'	1

Page **6** © MAWA 2015

Marking key/mathematical behaviours	
graph is sinusoidal with correct amplitude and number of cycles	1
• graph passes through the t - axis at each of the whole number of seconds in the domain	1
graph has smooth TP's and is acceptably accurate	1

Question 12(e)

CALCULATOR-ASSUMED MARKING KEY

Marking key/mathematical behaviours	Marks
 Indicates (by use of colour or otherwise), the points of the curve when 	re
the magnitude of X is greater than 2	1
• Excludes when $x = 2$ or -2 .	1

Question 12(f)

Solution

From the graph, the values of t for which t > 2 is approximately t < 0.87 for the first second of motion. This is approx. 75% of the time. This is repeated during every second of

3

the motion. Hence the fraction requested is approximately $^{\mathbf{4}}\,$.

For a more accurate answer, use a CAS calculator as follows:

Solve $(5*\cos(\pi*t-\pi/2)=2, t, 0, 0, 1)$ {t=0.1309898804, t=0.8690101196} (0.8690101196-0.1309898804) 0.7380202392

This indicates that the weight is further than 2 cm from the rest position for approximately 73.8% of the time.

Marking key/mathematical behaviours	Marks
 Attempts to estimate the correct fraction of any of the cycles from the 	
graph	1
 Provides an reasonably accurate estimate (70-80%) 	1
Use a calculator to refine the result to 73.8%	1

Page **8** © MAWA 2015

CALCULATOR-ASSUMED MARKING KEY

Question 13(a)

Solution		_
(i)	$Q = \{(0,0),(1,0),(2,1),(3,2),(4,2),(5,3),(6,3),(7,4),(8,4),(9,4),(10,4)\}$	}
	Hence domain of $Q = K = \{0,1,2,,10\}$	
(ii)	Range of $Q = \{0,1,2,3,4\}$	
Marking k	key/mathematical behaviours	Marks
(i)		
• sta	ates the correct domain of Q	1
(ii)		
• pr	ovides a full listing of the elements of $^{ m Q}$	1
• sta	ates the correct range of Q	1

Question 13(b)

Question	· 10(b)	
Solution		
(i)	$Q' = \{(0,0),(0,1),(1,2),(2,3),(2,4),(3,5),(3,6),(4,7),(4,8$,9)(4,10)}
	Hence domain of $Q' = \{0,1,2,3,4\}$	
(ii)	Range of $Q' = K = \{0,1,2,,10\}$	
Marking ke	ey/mathematical behaviours	Marks
(i)		
• pro	ovides a listing of the elements of $Q^{'}$	1
• sta	tes the correct domain of $Q^{'}$	1
(ii)		
• sta	tes the correct range of $Q^{'}$	1

Question 13(c)

Solution	
Q is a function, Q is not as it does not satisfy the vertical line test when graphed	(or it has
multiple y^- vales for some x^- values i.e. ((2,3) and (2,4) etc.	
Marking key/mathematical behaviours	Marks
• indicates that Q is a function and that Q' is not	1
states a valid reason	1

Question 14(a)

(1)	
Solution	
$x^2 + (y - 1)^2 = 16$	
Marking key/mathematical behaviours	Marks
uses the correct centre	1
uses the correct radius	1

Page **9** © MAWA 2015

CALCULATOR-ASSUMED MARKING KEY

Question 14(b)

Solution

readable points from the graph are (0,1), (1,3) and (2,3)

 \Rightarrow axis of symmetry is at x = 1.5

$$y = a(x - 1.5)^2 + c$$

at
$$x = 0, y = 1 \Rightarrow 1 = \frac{9a}{4} + c$$

at
$$x = 2, y = 3 \Rightarrow 3 = \frac{a}{4} + c$$

Solving simultaneously we get that
$$a = -1$$
 and $c = \frac{13}{4}$

$$y = -(x-1.5)^2 + \frac{13}{4} = -x^2 + 3x + 1$$

Hence the equation is

Marking key/mathematical behaviours	Marks
uses known points off graph	1
determines axis of symmetry	1
substitutes two points into a general, appropriate equation of a parabola	1
• solves for a and c	1
states the equation in the required form	1

Question 14(c)

Solution

$$\Delta = b^2 - 4ac = 3^2 - 4(-1)(1)$$

$$=13$$

>0, but not a perfect square ⇒ irrational roots

Marking key/mathematical behaviours	
determines the discriminant (of the parabola function equated to 0)	1
• interprets $\Delta > 0$	1

Question 15 (a)

Solution

substitute x = 9 into upper curve and get

$$y = \frac{-2(9)^2}{27} + 8\frac{(9)}{3} - 9 = 9$$

therefore coordinates are (9, 9)

therefore coordinates are (3, 3)	
Marking key/mathematical behaviours	Marks
• substitutes <i>x</i> = 9 into upper curve	1
states coordinates	1

Page **10** © MAWA 2015

Question 15 (b)

Solution

using the coordinate (9, 9)

$$9 = a(9)^2 \implies a = \frac{1}{9}$$

∴ equation is
$$y = \frac{1}{9}x^2$$

М	larking key/mathematical behaviours	Marks
	• substitutes $x = 9$ into lower curve to obtain value of a	1
	states equation of lower curve	1

Question 15 (c)

new upper curve: $y = \frac{-2x^2}{27} + \frac{8x}{3} - 9 + 3$: $y = \frac{-2x^2}{27} + \frac{8x}{3} - 6$ new lower curve: $y = \frac{1}{9}x^2 + 3$ Marking key/math

Marking key/mathematical behaviours	Marks
states equation of new upper curve	1
states equation of new lower curve	1

Question 16 (a)

CALCULATOR-ASSUMED MARKING KEY

Question:

Solution

$$2(ax+b)(x$$

$$(ax + b)(x^{2} - x + c) = 2x^{3} - x^{2} - 13x + d$$

$$ax^{3} - ax^{2} + acx + bx^{2} - bx + bc = 2x^{3} - x^{2} - 13x + d$$

$$ax^{3} + (b - a)x^{2} + (ac - b)x + bc = 2x^{3} - x^{2} - 13x + d \text{ equating coefficients}$$

$$a = 2$$

$$b - 2 = -1 \implies b = 1$$

$$2c-1 = -13 \implies c = -6 \text{ and } d = -6$$

Hence $4x^3 - 2x^2 - 26x - 12 = 2(2x+1)(x-3)(x+2)$

-15

Marking key/mathematical behaviours	Marks
divides by 2	1
expands brackets	1
collects like terms	1
• equates coefficients to solve for a , b , c and d	1
factorises expression	1

Question 17(a)

Solution

Page **12** © MAWA 2015

CALCULATOR-ASSUMED MARKING KEY

Firstly we determine the proportional areas for each colour (gives the probability sample

1

space). Hence the Probability that the coin lands on Blue is $\overline{4}$

' '		
Marking key/mathematical behaviours	Marks	
represents sample space	1	
determines the correct probability	1	

Question 17(b)

Solution

$$\frac{1}{4} + \frac{3}{16} = \frac{7}{16}$$

. 20 20		
Marking key/mathematical behaviours	Marks	
identifies that needs to add the proportional areas	1	
adds the appropriate proportional areas correctly	1	

Question 17(c)

Solution

$$\frac{1}{2} \times \frac{3}{16} = \frac{3}{32}$$

Marking key/mathematical behaviours	Marks
identifies that two events need to occur simultaneously	1
multiplies the appropriate probabilities to get the correct result	1

Question 17(d)

Solution

The events are independent i.e. probability of a tail is not affected by the colour it lands on

1

Hence, answer is 2

Marking key/mathematical behaviours	Marks
identifies that events are independent	1
states the correct result	1

Question 17(e)

Solution

What we want is the probability of:

Blue and Blue or Red and Red or Green and Green or Orange and Orange or Pink and Pink

$$\frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} + \frac{3}{16} \times \frac{3}{16} + \frac{3}{16} \times \frac{3}{16} + \frac{1}{8} \times \frac{1}{8}$$

$$= \frac{1}{8} + \frac{18}{256} + \frac{1}{64}$$

$$= \frac{27}{128}$$

Marking key/mathematical behaviours	Marks
applies the multiplication principle for simultaneously occurring	
independent events	1
adds the mutually exclusive events	1
 identifies all the possibilities (by listing or other sample space 	
representation)	1
calculates correctly to give the correct result	1

Page **14** © MAWA 2015

Question 18(a)

Solution

If C = -B then sin(A+C) = sin(A+(-B))

 $\therefore \sin(A-B) = \sin A \cos(-B) + \cos A \sin(-B)$ $= \sin A \cos B - \cos A \sin B$

 $(\because \cos(-B) = \cos B \text{ and } \sin(-B) = -\sin B)$

Marking key/mathematical behaviours	Marks
Substituting - B for C into given identity	1
	1
• Indicating $\cos(-B) = \cos B$ and $\sin(-B) = -\sin B$ and simplifying	

Question 18(b)

Solution

 $\triangle AMB$ has a rt angle at $M \Rightarrow BM = \sqrt{30^2 - 10^2} = 20\sqrt{2} \approx 28.284$

 $\angle MAN = 2\left(inv\left(cos\left(\frac{1}{3}\right)\right)\right) = 2.462$

:.length of major arc $MN = (2\pi - 2.462) \times 10 = 38.213$

Hence the length of the rope $\approx\!\!2\times\!\!28.284$ + 38.2133 $\approx\!\!94.78$ $_{CM}$

Alternatively, using the geometry app on a CAS

Page **15** © MAWA 2015

Length of rope = 38.11417+2(28.28427) = 94.68 cm (which is within 1 mm of the above answer, due to rounding)

Marking key/mathematical behaviours	Marks
 Indicates length of AB and shows appropriate central angle on the 	
diagram	1
Calculates length of tangents	1
Calculates size of central angle	1
Calculates appropriate arc length	1
 Determines correct length of rope (including units) 	1
Or, calculates the length of belt using CAS	or
 Indicates length of the tangents (implies knowledge of length of AB) 	2
• Indicates length of major arc (MN)	2
 Provides the correct length of the rope (including units) 	1

Page **16** © MAWA 2015

CALCULATOR-ASSUMED MARKING KEY

Acknowledgements

© MAWA, 2015

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or the marking guide until the agreed release date stipulated in the purchasing