

Machine Learning

Term Project Specification

Ok-Ran Jeong and Woong-Kee Loh 2021

Term Project Requirements (1/2)

- The term project is a team project.
- Prepare a proposal and submit it next week.
 - Your proposal must include a statistical description of the dataset, objective, and algorithms to use.
 - There will be no presentation of proposals.
 - I will give you my comments next week, and, if needed, your modified proposal must be re-submitted in the next week.
- Final presentation will be made in the last week before Final Exam.
 - For each presentation I will give you my comments, and you should reflect them in your final reports.
 - Write the manual of your entire program framework in a scikitlearn style (especially, auto machine learning in p.10-12)

Term Project Requirements (2/2)

- You must apply every step of end-to-end Big Data process.
 - ≥3 classification and ≥3 clustering algorithms you studied in this lecture
 - ≥1 clustering algorithms that you studied for active learning (should be mentioned in your proposal and final report)
- You should find a suitable dataset.
 - For educational purposes, the dataset must include a reasonable number of records and features (attributes) and also a reasonable amount of dirty data and categorical data.
 - Use the same dataset for both classification and clustering as in PHW #1 and #2. See p.9 for more explanation.

Term Project Proposal

- Your proposal should include the following:
 - Project title
 - Dataset one paragraph description and source
 - The dataset should include categorical attribute(s)
 - ** (for classification) Provide a list of features that you think will most influence the classification accuracy and your explanation on why.
 - Project idea, including a clear description on the problem and your approach to solving it
 - Your estimated schedule and collaboration plan
 - Due: 9PM on Oct. 19 (Wed. class) and Oct. 20 (Thur. class)

Dataset (1/2)

- You may select a dataset from the provided list or find a suitable dataset on your own
- Requirements
 - Columns (number of attributes): 15+
 - Rows (number of data instances/records): 10,000+

-

Dataset (2/2)

- Google dataset search
 (https://toolbox.google.com/datasetsearch)
- Kaggle (https://www.kaggle.com/datasets)
- UCI Machine Learning Repository (http://mlr.cs.umass.edu/ml/)
- VisualData (https://www.visualdata.io)
- CMU Libraries (https://guides.library.cmu.edu/machine-learning/datasets)
- data.gov (https://www.data.gov)
- The US National Center for Education Statistics (https://nces.ed.gov)
- The UK Data Service (https://www.ukdataservice.ac.uk)
- Data USA (https://datausa.io)
- Others

Classification

- What to consider in this project
 - Attribute information analysis
 - Categorical-to-numerical encoding
 - Machine learning algorithms
 - Logistic regression, KNN, SVM, decision tree, random forest, gradientboostingclassifier, xgbclassifier, gaussiannb, votingclassifier, etc.
 - Confusion matrix, ROC curve
 - Precision, recall, F1, avg_total analysis

C

Clustering

- What to consider in this project
 - Merging related attributes (based on your objective)
 - Attribute information Analysis
 - Data preprocessing
 - Avoid removing NaN value as much as possible
 - Categorical-to-numeric encoding
 - Machine learning algorithms
 - k-Means, EM, DBSCAN, etc.
 - Similarity measures
 - Visualization if needed, you may use PCA
 - Evaluation
 - Silhouette
 - Purity

Dataset Application

- Apply the same dataset for classification and clustering
 - Use the same set of features; exclude the target attribute in clustering
 - In clustering, you must not use any information that could be obtained from the target attribute
 - Perform and evaluate classification and clustering independently according to their own points of pursuit
 - Compute silhouette and purity for clustering results;
 evaluate the clustering quality based on the measures

Auto Machine Learning (1/3)

- Parameter tuning
 - You find the parameter combination as best as you can (local optima).
 - Cases for obtaining best performance
 - With a larger/lesser parameter value
 - With a parameter value in the middle of previous ones

Parameter value

4

Auto Machine Learning (2/3)

- Simple pseudocode
 - Set randomly a default value v_i for each parameter p_i .
 - Measure accuracy.
 - Repeat
 - Repeat for each parameter p_i
 - For a few values v_i , measure accuracy. Use default values for the remaining parameters.
 - Set the value with the best performance as default.
 - Find the case of performance trend.
 - Until only a trivial improvement in accuracy
 - Until only a trivial improvement in accuracy
 - Print all default parameter values and the accuracy.

Auto Machine Learning (3/3)

- Rationale of outer repeat
 - Since the 'best' values for parameters are obtained in a certain order of parameters, the values obtained in the front might not be the best.
 - For every iteration of outer repeat, the accuracies before and after the inner repeat are compared.
 - If the difference is trivial, e.g., for a pre-specified small ϵ , (acc_{after} acc_{before})/acc_{before} $\leq \epsilon$, then exit the outer repeat.
 - You should be careful when deciding ε, or you might fall into an infinite loop. At start, try using a rather large value for ε, and keep monitoring intermediate results.

Wise Prophet

- http://prophet.wise.co.kr
- TBA negotiating with WISEiTECH

Team Members

- Announced in a separate pdf file
- Different from those for the previous homework

End of Specification