pseudorandom sequences is also small, with high probability, except at a zero offset. This means that when one sequence is multiplied by a delayed copy of itself and summed, the result will be small, except when the delay is zero. (Intuitively, a delayed random sequence looks like a different random sequence, and we are back to the cross-correlation case.) This lets a receiver lock onto the beginning of the wanted transmission in the received signal.

The use of pseudorandom sequences lets the base station receive CDMA messages from unsynchronized mobiles. However, an implicit assumption in our discussion of CDMA is that the power levels of all mobiles are the same at the receiver. If they are not, a small cross-correlation with a powerful signal might overwhelm a large auto-correlation with a weak signal. Thus, the transmit power on mobiles must be controlled to minimize interference between competing signals. It is this interference that limits the capacity of CDMA systems.

The power levels received at a base station depend on how far away the transmitters are as well as how much power they transmit. There may be many mobile stations at varying distances from the base station. A good heuristic to equalize the received power is for each mobile station to transmit to the base station at the inverse of the power level it receives from the base station. In other words, a mobile station receiving a weak signal from the base station will use more power than one getting a strong signal. For more accuracy, the base station also gives each mobile feedback to increase, decrease, or hold steady its transmit power. The feedback is frequent (1500 times per second) because good power control is important to minimize interference.

Another improvement over the basic CDMA scheme we described earlier is to allow different users to send data at different rates. This trick is accomplished naturally in CDMA by fixing the rate at which chips are transmitted and assigning users chip sequences of different lengths. For example, in WCDMA, the chip rate is 3.84 Mchips/sec and the spreading codes vary from 4 to 256 chips. With a 256-chip code, around 12 kbps is left after error correction, and this capacity is sufficient for a voice call. With a 4-chip code, the user data rate is close to 1 Mbps. Intermediate-length codes give intermediate rates; to get to multiple Mbps, the mobile must use more than one 5-MHz channel at once.

Now let us describe the advantages of CDMA, given that we have dealt with the problems of getting it to work. It has three main advantages. First, CDMA can improve capacity by taking advantage of small periods when some transmitters are silent. In polite voice calls, one party is silent while the other talks. On average, the line is busy only 40% of the time. However, the pauses may be small and are difficult to predict. With TDM or FDM systems, it is not possible to reassign time slots or frequency channels quickly enough to benefit from these small silences. However, in CDMA, by simply not transmitting one user lowers the interference for other users, and it is likely that some fraction of users will not be transmitting in a busy cell at any given time. Thus CDMA takes advantage of expected silences to allow a larger number of simultaneous calls.

Second, with CDMA each cell uses the same frequencies. Unlike GSM and AMPS, FDM is not needed to separate the transmissions of different users. This eliminates complicated frequency planning tasks and improves capacity. It also makes it easy for a base station to use multiple directional antennas, or **sectored antennas**, instead of an omnidirectional antenna. Directional antennas concentrate a signal in the intended direction and reduce the signal, and hence interference, in other directions. This in turn increases capacity. Three sector designs are common. The base station must track the mobile as it moves from sector to sector. This tracking is easy with CDMA because all frequencies are used in all sectors.

Third, CDMA facilitates **soft handoff**, in which the mobile is acquired by the new base station before the previous one signs off. In this way there is no loss of continuity. Soft handoff is shown in Fig. 2-49. It is easy with CDMA because all frequencies are used in each cell. The alternative is a **hard handoff**, in which the old base station drops the call before the new one acquires it. If the new one is unable to acquire it (e.g., because there is no available frequency), the call is disconnected abruptly. Users tend to notice this, but it is inevitable occasionally with the current design. Hard handoff is the norm with FDM designs to avoid the cost of having the mobile transmit or receive on two frequencies simultaneously.

Figure 2-49. Soft handoff (a) before, (b) during, and (c) after.

Much has been written about 3G, most of it praising it as the greatest thing since sliced bread. Meanwhile, many operators have taken cautious steps in the direction of 3G by going to what is sometimes called **2.5G**, although 2.1G might be more accurate. One such system is **EDGE** (**Enhanced Data rates for GSM Evolution**), which is just GSM with more bits per symbol. The trouble is, more bits per symbol also means more errors per symbol, so EDGE has nine different schemes for modulation and error correction, differing in terms of how much of the bandwidth is devoted to fixing the errors introduced by the higher speed. EDGE is one step along an evolutionary path that is defined from GSM to WCDMA. Similarly, there is an evolutionary path defined for operators to upgrade from IS-95 to CDMA2000 networks.

Even though 3G networks are not fully deployed yet, some researchers regard 3G as a done deal. These people are already working on 4G systems under the

name of LTE (Long Term Evolution). Some of the proposed features of 4G include: high bandwidth; ubiquity (connectivity everywhere); seamless integration with other wired and wireless IP networks, including 802.11 access points; adaptive resource and spectrum management; and high quality of service for multimedia. For more information see Astely et al. (2009) and Larmo et al. (2009).

Meanwhile, wireless networks with 4G levels of performance are already available. The main example is **802.16**, also known as **WiMAX**. For an overview of mobile WiMAX see Ahmadi (2009). To say the industry is in a state of flux is a huge understatement. Check back in a few years to see what has happened.

2.8 CABLE TELEVISION

We have now studied both the fixed and wireless telephone systems in a fair amount of detail. Both will clearly play a major role in future networks. But there is another major player that has emerged over the past decade for Internet access: cable television networks. Many people nowadays get their telephone and Internet service over cable. In the following sections we will look at cable television as a network in more detail and contrast it with the telephone systems we have just studied. Some relevant references for more information are Donaldson and Jones (2001), Dutta-Roy (2001), and Fellows and Jones (2001).

2.8.1 Community Antenna Television

Cable television was conceived in the late 1940s as a way to provide better reception to people living in rural or mountainous areas. The system initially consisted of a big antenna on top of a hill to pluck the television signal out of the air, an amplifier, called the **headend**, to strengthen it, and a coaxial cable to deliver it to people's houses, as illustrated in Fig. 2-50.

Figure 2-50. An early cable television system.

In the early years, cable television was called **Community Antenna Televis**ion. It was very much a mom-and-pop operation; anyone handy with electronics could set up a service for his town, and the users would chip in to pay the costs. As the number of subscribers grew, additional cables were spliced onto the original cable and amplifiers were added as needed. Transmission was one way, from the headend to the users. By 1970, thousands of independent systems existed.

In 1974, Time Inc. started a new channel, Home Box Office, with new content (movies) distributed only on cable. Other cable-only channels followed, focusing on news, sports, cooking, and many other topics. This development gave rise to two changes in the industry. First, large corporations began buying up existing cable systems and laying new cable to acquire new subscribers. Second, there was now a need to connect multiple systems, often in distant cities, in order to distribute the new cable channels. The cable companies began to lay cable between the cities to connect them all into a single system. This pattern was analogous to what happened in the telephone industry 80 years earlier with the connection of previously isolated end offices to make long-distance calling possible.

2.8.2 Internet over Cable

Over the course of the years the cable system grew and the cables between the various cities were replaced by high-bandwidth fiber, similar to what happened in the telephone system. A system with fiber for the long-haul runs and coaxial cable to the houses is called an **HFC** (**Hybrid Fiber Coax**) system. The electro-optical converters that interface between the optical and electrical parts of the system are called **fiber nodes**. Because the bandwidth of fiber is so much greater than that of coax, a fiber node can feed multiple coaxial cables. Part of a modern HFC system is shown in Fig. 2-51(a).

Over the past decade, many cable operators decided to get into the Internet access business, and often the telephony business as well. Technical differences between the cable plant and telephone plant had an effect on what had to be done to achieve these goals. For one thing, all the one-way amplifiers in the system had to be replaced by two-way amplifiers to support upstream as well as downstream transmissions. While this was happening, early Internet over cable systems used the cable television network for downstream transmissions and a dial-up connection via the telephone network for upstream transmissions. It was a clever workaround, but not much of a network compared to what it could be.

However, there is another difference between the HFC system of Fig. 2-51(a) and the telephone system of Fig. 2-51(b) that is much harder to remove. Down in the neighborhoods, a single cable is shared by many houses, whereas in the telephone system, every house has its own private local loop. When used for television broadcasting, this sharing is a natural fit. All the programs are broadcast on the cable and it does not matter whether there are 10 viewers or 10,000 viewers. When the same cable is used for Internet access, however, it matters a lot if there are 10 users or 10,000. If one user decides to download a very large file, that bandwidth is potentially being taken away from other users. The more users there

Figure 2-51. (a) Cable television. (b) The fixed telephone system.

are, the more competition there is for bandwidth. The telephone system does not have this particular property: downloading a large file over an ADSL line does not reduce your neighbor's bandwidth. On the other hand, the bandwidth of coax is much higher than that of twisted pairs, so you can get lucky if your neighbors do not use the Internet much.

The way the cable industry has tackled this problem is to split up long cables and connect each one directly to a fiber node. The bandwidth from the headend to each fiber node is effectively infinite, so as long as there are not too many subscribers on each cable segment, the amount of traffic is manageable. Typical

cables nowadays have 500–2000 houses, but as more and more people subscribe to Internet over cable, the load may become too great, requiring more splitting and more fiber nodes.

2.8.3 Spectrum Allocation

Throwing off all the TV channels and using the cable infrastructure strictly for Internet access would probably generate a fair number of irate customers, so cable companies are hesitant to do this. Furthermore, most cities heavily regulate what is on the cable, so the cable operators would not be allowed to do this even if they really wanted to. As a consequence, they needed to find a way to have television and Internet peacefully coexist on the same cable.

The solution is to build on frequency division multiplexing. Cable television channels in North America occupy the 54–550 MHz region (except for FM radio, from 88 to 108 MHz). These channels are 6-MHz wide, including guard bands, and can carry one traditional analog television channel or several digital television channels. In Europe the low end is usually 65 MHz and the channels are 6–8 MHz wide for the higher resolution required by PAL and SECAM, but otherwise the allocation scheme is similar. The low part of the band is not used. Modern cables can also operate well above 550 MHz, often at up to 750 MHz or more. The solution chosen was to introduce upstream channels in the 5–42 MHz band (slightly higher in Europe) and use the frequencies at the high end for the downstream signals. The cable spectrum is illustrated in Fig. 2-52.

Figure 2-52. Frequency allocation in a typical cable TV system used for Internet access.

Note that since the television signals are all downstream, it is possible to use upstream amplifiers that work only in the 5–42 MHz region and downstream amplifiers that work only at 54 MHz and up, as shown in the figure. Thus, we get an asymmetry in the upstream and downstream bandwidths because more spectrum is available above television than below it. On the other hand, most users want more downstream traffic, so cable operators are not unhappy with this fact

of life. As we saw earlier, telephone companies usually offer an asymmetric DSL service, even though they have no technical reason for doing so.

In addition to upgrading the amplifiers, the operator has to upgrade the headend, too, from a dumb amplifier to an intelligent digital computer system with a high-bandwidth fiber interface to an ISP. Often the name gets upgraded as well, from "headend" to **CMTS** (**Cable Modem Termination System**). In the following text, we will refrain from doing a name upgrade and stick with the traditional "headend."

2.8.4 Cable Modems

Internet access requires a cable modem, a device that has two interfaces on it: one to the computer and one to the cable network. In the early years of cable Internet, each operator had a proprietary cable modem, which was installed by a cable company technician. However, it soon became apparent that an open standard would create a competitive cable modem market and drive down prices, thus encouraging use of the service. Furthermore, having the customers buy cable modems in stores and install them themselves (as they do with wireless access points) would eliminate the dreaded truck rolls.

Consequently, the larger cable operators teamed up with a company called CableLabs to produce a cable modem standard and to test products for compliance. This standard, called **DOCSIS** (**Data Over Cable Service Interface Specification**), has mostly replaced proprietary modems. DOCSIS version 1.0 came out in 1997, and was soon followed by DOCSIS 2.0 in 2001. It increased upstream rates to better support symmetric services such as IP telephony. The most recent version of the standard is DOCSIS 3.0, which came out in 2006. It uses more bandwidth to increase rates in both directions. The European version of these standards is called **EuroDOCSIS**. Not all cable operators like the idea of a standard, however, since many of them were making good money leasing their modems to their captive customers. An open standard with dozens of manufacturers selling cable modems in stores ends this lucrative practice.

The modem-to-computer interface is straightforward. It is normally Ethernet, or occasionally USB. The other end is more complicated as it uses all of FDM, TDM, and CDMA to share the bandwidth of the cable between subscribers.

When a cable modem is plugged in and powered up, it scans the downstream channels looking for a special packet periodically put out by the headend to provide system parameters to modems that have just come online. Upon finding this packet, the new modem announces its presence on one of the upstream channels. The headend responds by assigning the modem to its upstream and downstream channels. These assignments can be changed later if the headend deems it necessary to balance the load.

The use of 6-MHz or 8-MHz channels is the FDM part. Each cable modem sends data on one upstream and one downstream channel, or multiple channels

under DOCSIS 3.0. The usual scheme is to take each 6 (or 8) MHz downstream channel and modulate it with QAM-64 or, if the cable quality is exceptionally good, QAM-256. With a 6-MHz channel and QAM-64, we get about 36 Mbps. When the overhead is subtracted, the net payload is about 27 Mbps. With QAM-256, the net payload is about 39 Mbps. The European values are 1/3 larger.

For upstream, there is more RF noise because the system was not originally designed for data, and noise from multiple subscribers is funneled to the headend, so a more conservative scheme is used. This ranges from QPSK to QAM-128, where some of the symbols are used for error protection with Trellis Coded Modulation. With fewer bits per symbol on the upstream, the asymmetry between upstream and downstream rates is much more than suggested by Fig. 2-52.

TDM is then used to share bandwidth on the upstream across multiple subscribers. Otherwise their transmissions would collide at the headend. Time is divided into **minislots** and different subscribers send in different minislots. To make this work, the modern determines its distance from the headend by sending it a special packet and seeing how long it takes to get the response. This process is called **ranging**. It is important for the modern to know its distance to get the timing right. Each upstream packet must fit in one or more consecutive minislots at the headend when it is received. The headend announces the start of a new round of minislots periodically, but the starting gun is not heard at all moderns simultaneously due to the propagation time down the cable. By knowing how far it is from the headend, each modern can compute how long ago the first minislot really started. Minislot length is network dependent. A typical payload is 8 bytes.

During initialization, the headend assigns each modem to a minislot to use for requesting upstream bandwidth. When a computer wants to send a packet, it transfers the packet to the modem, which then requests the necessary number of minislots for it. If the request is accepted, the headend puts an acknowledgement on the downstream channel telling the modem which minislots have been reserved for its packet. The packet is then sent, starting in the minislot allocated to it. Additional packets can be requested using a field in the header.

As a rule, multiple modems will be assigned the same minislot, which leads to contention. Two different possibilities exist for dealing with it. The first is that CDMA is used to share the minislot between subscribers. This solves the contention problem because all subscribers with a CDMA code sequence can send at the same time, albeit at a reduced rate. The second option is that CDMA is not used, in which case there may be no acknowledgement to the request because of a collision. In this case, the modem just waits a random time and tries again. After each successive failure, the randomization time is doubled. (For readers already somewhat familiar with networking, this algorithm is just slotted ALOHA with binary exponential backoff. Ethernet cannot be used on cable because stations cannot sense the medium. We will come back to these issues in Chap. 4.)

The downstream channels are managed differently from the upstream channels. For starters, there is only one sender (the headend), so there is no contention

and no need for minislots, which is actually just statistical time division multiplexing. For another, the amount of traffic downstream is usually much larger than upstream, so a fixed packet size of 204 bytes is used. Part of that is a Reed-Solomon error-correcting code and some other overhead, leaving a user payload of 184 bytes. These numbers were chosen for compatibility with digital television using MPEG-2, so the TV and downstream data channels are formatted the same way. Logically, the connections are as depicted in Fig. 2-53.

Figure 2-53. Typical details of the upstream and downstream channels in North America.

2.8.5 ADSL Versus Cable

Which is better, ADSL or cable? That is like asking which operating system is better. Or which language is better. Or which religion. Which answer you get depends on whom you ask. Let us compare ADSL and cable on a few points. Both use fiber in the backbone, but they differ on the edge. Cable uses coax; ADSL uses twisted pair. The theoretical carrying capacity of coax is hundreds of times more than twisted pair. However, the full capacity of the cable is not available for data users because much of the cable's bandwidth is wasted on useless stuff such as television programs.

In practice, it is hard to generalize about effective capacity. ADSL providers give specific statements about the bandwidth (e.g., 1 Mbps downstream, 256 kbps upstream) and generally achieve about 80% of it consistently. Cable providers may artificially cap the bandwidth to each user to help them make performance predictions, but they cannot really give guarantees because the effective capacity depends on how many people are currently active on the user's cable segment. Sometimes it may be better than ADSL and sometimes it may be worse. What can be annoying, though, is the unpredictability. Having great service one minute does not guarantee great service the next minute since the biggest bandwidth hog in town may have just turned on his computer.

As an ADSL system acquires more users, their increasing numbers have little effect on existing users, since each user has a dedicated connection. With cable, as more subscribers sign up for Internet service, performance for existing users will drop. The only cure is for the cable operator to split busy cables and connect each one to a fiber node directly. Doing so costs time and money, so there are business pressures to avoid it.

As an aside, we have already studied another system with a shared channel like cable: the mobile telephone system. Here, too, a group of users—we could call them cellmates—share a fixed amount of bandwidth. For voice traffic, which is fairly smooth, the bandwidth is rigidly divided in fixed chunks among the active users using FDM and TDM. But for data traffic, this rigid division is very inefficient because data users are frequently idle, in which case their reserved bandwidth is wasted. As with cable, a more dynamic means is used to allocate the shared bandwidth.

Availability is an issue on which ADSL and cable differ. Everyone has a telephone, but not all users are close enough to their end offices to get ADSL. On the other hand, not everyone has cable, but if you do have cable and the company provides Internet access, you can get it. Distance to the fiber node or headend is not an issue. It is also worth noting that since cable started out as a television distribution medium, few businesses have it.

Being a point-to-point medium, ADSL is inherently more secure than cable. Any cable user can easily read all the packets going down the cable. For this reason, any decent cable provider will encrypt all traffic in both directions. Nevertheless, having your neighbor get your encrypted messages is still less secure than having him not get anything at all.

The telephone system is generally more reliable than cable. For example, it has backup power and continues to work normally even during a power outage. With cable, if the power to any amplifier along the chain fails, all downstream users are cut off instantly.

Finally, most ADSL providers offer a choice of ISPs. Sometimes they are even required to do so by law. Such is not always the case with cable operators.

The conclusion is that ADSL and cable are much more alike than they are different. They offer comparable service and, as competition between them heats up, probably comparable prices.

2.9 SUMMARY

The physical layer is the basis of all networks. Nature imposes two fundamental limits on all channels, and these determine their bandwidth. These limits are the Nyquist limit, which deals with noiseless channels, and the Shannon limit, which deals with noisy channels.

Transmission media can be guided or unguided. The principal guided media are twisted pair, coaxial cable, and fiber optics. Unguided media include terrestrial radio, microwaves, infrared, lasers through the air, and satellites.

Digital modulation methods send bits over guided and unguided media as analog signals. Line codes operate at baseband, and signals can be placed in a passband by modulating the amplitude, frequency, and phase of a carrier. Channels can be shared between users with time, frequency and code division multiplexing.

A key element in most wide area networks is the telephone system. Its main components are the local loops, trunks, and switches. ADSL offers speeds up to 40 Mbps over the local loop by dividing it into many subcarriers that run in parallel. This far exceeds the rates of telephone modems. PONs bring fiber to the home for even greater access rates than ADSL.

Trunks carry digital information. They are multiplexed with WDM to provision many high capacity links over individual fibers, as well as with TDM to share each high rate link between users. Both circuit switching and packet switching are important.

For mobile applications, the fixed telephone system is not suitable. Mobile phones are currently in widespread use for voice, and increasingly for data. They have gone through three generations. The first generation, 1G, was analog and dominated by AMPS. 2G was digital, with GSM presently the most widely deployed mobile phone system in the world. 3G is digital and based on broadband CDMA, with WCDMA and also CDMA2000 now being deployed.

An alternative system for network access is the cable television system. It has gradually evolved from coaxial cable to hybrid fiber coax, and from television to television and Internet. Potentially, it offers very high bandwidth, but the bandwidth in practice depends heavily on the other users because it is shared.

PROBLEMS

- **1.** Compute the Fourier coefficients for the function $f(t) = t \quad (0 \le t \le 1)$.
- **2.** A noiseless 4-kHz channel is sampled every 1 msec. What is the maximum data rate? How does the maximum data rate change if the channel is noisy, with a signal-to-noise ratio of 30 dB?
- 3. Television channels are 6 MHz wide. How many bits/sec can be sent if four-level digital signals are used? Assume a noiseless channel.
- 4. If a binary signal is sent over a 3-kHz channel whose signal-to-noise ratio is 20 dB, what is the maximum achievable data rate?
- 5. What signal-to-noise ratio is needed to put a T1 carrier on a 50-kHz line?
- **6.** What are the advantages of fiber optics over copper as a transmission medium? Is there any downside of using fiber optics over copper?

- 7. How much bandwidth is there in 0.1 microns of spectrum at a wavelength of 1 micron?
- **8.** It is desired to send a sequence of computer screen images over an optical fiber. The screen is 2560 × 1600 pixels, each pixel being 24 bits. There are 60 screen images per second. How much bandwidth is needed, and how many microns of wavelength are needed for this band at 1.30 microns?
- **9.** Is the Nyquist theorem true for high-quality single-mode optical fiber or only for copper wire?
- 10. Radio antennas often work best when the diameter of the antenna is equal to the wavelength of the radio wave. Reasonable antennas range from 1 cm to 5 meters in diameter. What frequency range does this cover?
- 11. A laser beam 1 mm wide is aimed at a detector 1 mm wide 100 m away on the roof of a building. How much of an angular diversion (in degrees) does the laser have to have before it misses the detector?
- 12. The 66 low-orbit satellites in the Iridium project are divided into six necklaces around the earth. At the altitude they are using, the period is 90 minutes. What is the average interval for handoffs for a stationary transmitter?
- **13.** Calculate the end-to-end transit time for a packet for both GEO (altitude: 35,800 km), MEO (altitude: 18,000 km) and LEO (altitude: 750 km) satellites.
- 14. What is the latency of a call originating at the North Pole to reach the South Pole if the call is routed via Iridium satellites? Assume that the switching time at the satellites is 10 microseconds and earth's radius is 6371 km.
- **15.** What is the minimum bandwidth needed to achieve a data rate of *B* bits/sec if the signal is transmitted using NRZ, MLT-3, and Manchester encoding? Explain your answer.
- **16.** Prove that in 4B/5B encoding, a signal transition will occur at least every four bit times.
- 17. How many end office codes were there pre-1984, when each end office was named by its three-digit area code and the first three digits of the local number? Area codes started with a digit in the range 2–9, had a 0 or 1 as the second digit, and ended with any digit. The first two digits of a local number were always in the range 2–9. The third digit could be any digit.
- 18. A simple telephone system consists of two end offices and a single toll office to which each end office is connected by a 1-MHz full-duplex trunk. The average telephone is used to make four calls per 8-hour workday. The mean call duration is 6 min. Ten percent of the calls are long distance (i.e., pass through the toll office). What is the maximum number of telephones an end office can support? (Assume 4 kHz per circuit.) Explain why a telephone company may decide to support a lesser number of telephones than this maximum number at the end office.
- 19. A regional telephone company has 10 million subscribers. Each of their telephones is connected to a central office by a copper twisted pair. The average length of these twisted pairs is 10 km. How much is the copper in the local loops worth? Assume

- that the cross section of each strand is a circle 1 mm in diameter, the density of copper is 9.0 grams/cm³, and that copper sells for \$6 per kilogram.
- **20.** Is an oil pipeline a simplex system, a half-duplex system, a full-duplex system, or none of the above? What about a river or a walkie-talkie-style communication?
- 21. The cost of a fast microprocessor has dropped to the point where it is now possible to put one in each modem. How does that affect the handling of telephone line errors? Does it negate the need for error checking/correction in layer 2?
- 22. A modem constellation diagram similar to Fig. 2-23 has data points at the following coordinates: (1, 1), (1, -1), (-1, 1), and (-1, -1). How many bps can a modem with these parameters achieve at 1200 symbols/second?
- **23.** What is the maximum bit rate achievable in a V.32 standard modem if the baud rate is 1200 and no error correction is used?
- 24. How many frequencies does a full-duplex QAM-64 modem use?
- **25.** Ten signals, each requiring 4000 Hz, are multiplexed onto a single channel using FDM. What is the minimum bandwidth required for the multiplexed channel? Assume that the guard bands are 400 Hz wide.
- **26.** Why has the PCM sampling time been set at 125 μsec?
- 27. What is the percent overhead on a T1 carrier? That is, what percent of the 1.544 Mbps are not delivered to the end user? How does it relate to the percent overhead in OC-1 or OC-768 lines?
- 28. Compare the maximum data rate of a noiseless 4-kHz channel using
 - (a) Analog encoding (e.g., QPSK) with 2 bits per sample.
 - (b) The T1 PCM system.
- **29.** If a T1 carrier system slips and loses track of where it is, it tries to resynchronize using the first bit in each frame. How many frames will have to be inspected on average to resynchronize with a probability of 0.001 of being wrong?
- **30.** What is the difference, if any, between the demodulator part of a modem and the coder part of a codec? (After all, both convert analog signals to digital ones.)
- 31. SONET clocks have a drift rate of about 1 part in 10⁹. How long does it take for the drift to equal the width of 1 bit? Do you see any practical implications of this calculation? If so, what?
- 32. How long will it take to transmit a 1-GB file from one VSAT to another using a hub as shown in Figure 2-17? Assume that the uplink is 1 Mbps, the downlink is 7 Mbps, and circuit switching is used with 1.2 sec circuit setup time.
- 33. Calculate the transmit time in the previous problem if packet switching is used instead. Assume that the packet size is 64 KB, the switching delay in the satellite and hub is 10 microseconds, and the packet header size is 32 bytes.
- **34.** In Fig. 2-40, the user data rate for OC-3 is stated to be 148.608 Mbps. Show how this number can be derived from the SONET OC-3 parameters. What will be the gross, SPE, and user data rates of an OC-3072 line?

- 35. To accommodate lower data rates than STS-1, SONET has a system of virtual tributaries (VTs). A VT is a partial payload that can be inserted into an STS-1 frame and combined with other partial payloads to fill the data frame. VT1.5 uses 3 columns, VT2 uses 4 columns, VT3 uses 6 columns, and VT6 uses 12 columns of an STS-1 frame. Which VT can accommodate
 - (a) A DS-1 service (1.544 Mbps)?
 - (b) European CEPT-1 service (2.048 Mbps)?
 - (c) A DS-2 service (6.312 Mbps)?
- 36. What is the available user bandwidth in an OC-12c connection?
- 37. Three packet-switching networks each contain n nodes. The first network has a star topology with a central switch, the second is a (bidirectional) ring, and the third is fully interconnected, with a wire from every node to every other node. What are the best-, average-, and worst-case transmission paths in hops?
- **38.** Compare the delay in sending an *x*-bit message over a *k*-hop path in a circuit-switched network and in a (lightly loaded) packet-switched network. The circuit setup time is *s* sec, the propagation delay is *d* sec per hop, the packet size is *p* bits, and the data rate is *b* bps. Under what conditions does the packet network have a lower delay? Also, explain the conditions under which a packet-switched network is preferable to a circuit-switched network.
- **39.** Suppose that x bits of user data are to be transmitted over a k-hop path in a packet-switched network as a series of packets, each containing p data bits and k header bits, with $x \gg p + k$. The bit rate of the lines is k bps and the propagation delay is negligible. What value of k minimizes the total delay?
- **40.** In a typical mobile phone system with hexagonal cells, it is forbidden to reuse a frequency band in an adjacent cell. If 840 frequencies are available, how many can be used in a given cell?
- 41. The actual layout of cells is seldom as regular that as shown in Fig. 2-45. Even the shapes of individual cells are typically irregular. Give a possible reason why this might be. How do these irregular shapes affect frequency assignment to each cell?
- **42.** Make a rough estimate of the number of PCS microcells 100 m in diameter it would take to cover San Francisco (120 square km).
- **43.** Sometimes when a mobile user crosses the boundary from one cell to another, the current call is abruptly terminated, even though all transmitters and receivers are functioning perfectly. Why?
- 44. Suppose that A, B, and C are simultaneously transmitting 0 bits, using a CDMA system with the chip sequences of Fig. 2-28(a). What is the resulting chip sequence?
- **45.** Consider a different way of looking at the orthogonality property of CDMA chip sequences. Each bit in a pair of sequences can match or not match. Express the orthogonality property in terms of matches and mismatches.
- **46.** A CDMA receiver gets the following chips: (-1 + 1 3 + 1 1 3 + 1 + 1). Assuming the chip sequences defined in Fig. 2-28(a), which stations transmitted, and which bits did each one send?

- 47. In Figure 2-28, there are four stations that can transmit. Suppose four more stations are added. Provide the chip sequences of these stations.
- **48.** At the low end, the telephone system is star shaped, with all the local loops in a neighborhood converging on an end office. In contrast, cable television consists of a single long cable snaking its way past all the houses in the same neighborhood. Suppose that a future TV cable were 10-Gbps fiber instead of copper. Could it be used to simulate the telephone model of everybody having their own private line to the end office? If so, how many one-telephone houses could be hooked up to a single fiber?
- **49.** A cable company decides to provide Internet access over cable in a neighborhood consisting of 5000 houses. The company uses a coaxial cable and spectrum allocation allowing 100 Mbps downstream bandwidth per cable. To attract customers, the company decides to guarantee at least 2 Mbps downstream bandwidth to each house at any time. Describe what the cable company needs to do to provide this guarantee.
- **50.** Using the spectral allocation shown in Fig. 2-52 and the information given in the text, how many Mbps does a cable system allocate to upstream and how many to downstream?
- **51.** How fast can a cable user receive data if the network is otherwise idle? Assume that the user interface is
 - (a) 10-Mbps Ethernet
 - (b) 100-Mbps Ethernet
 - (c) 54-Mbps Wireless.
- 52. Multiplexing STS-1 multiple data streams, called tributaries, plays an important role in SONET. A 3:1 multiplexer multiplexes three input STS-1 tributaries onto one output STS-3 stream. This multiplexing is done byte for byte. That is, the first three output bytes are the first bytes of tributaries 1, 2, and 3, respectively. the next three output bytes are the second bytes of tributaries 1, 2, and 3, respectively, and so on. Write a program that simulates this 3:1 multiplexer. Your program should consist of five processes. The main process creates four processes, one each for the three STS-1 tributaries and one for the multiplexer. Each tributary process reads in an STS-1 frame from an input file as a sequence of 810 bytes. They send their frames (byte by byte) to the multiplexer process. The multiplexer process receives these bytes and outputs an STS-3 frame (byte by byte) by writing it to standard output. Use pipes for communication among processes.
- 53. Write a program to implement CDMA. Assume that the length of a chip sequence is eight and the number of stations transmitting is four. Your program consists of three sets of processes: four transmitter processes (t0, t1, t2, and t3), one joiner process, and four receiver processes (r0, r1, r2, and r3). The main program, which also acts as the joiner process first reads four chip sequences (bipolar notation) from the standard input and a sequence of 4 bits (1 bit per transmitter process to be transmitted), and forks off four pairs of transmitter and receiver processes. Each pair of transmitter/receiver processes (t0,r0; t1,r1; t2,r2; t3,r3) is assigned one chip sequence and each transmitter process is assigned 1 bit (first bit to t0, second bit to t1, and so on). Next, each transmitter process computes the signal to be transmitted (a sequence of 8 bits) and sends it to the joiner process. After receiving signals from all four transmitter processes, the joiner process combines the signals and sends the combined signal to

the four receiver processes. Each receiver process then computes the bit it has received and prints it to standard output. Use pipes for communication between processes.

3

THE DATA LINK LAYER

In this chapter we will study the design principles for the second layer in our model, the data link layer. This study deals with algorithms for achieving reliable, efficient communication of whole units of information called frames (rather than individual bits, as in the physical layer) between two adjacent machines. By adjacent, we mean that the two machines are connected by a communication channel that acts conceptually like a wire (e.g., a coaxial cable, telephone line, or wireless channel). The essential property of a channel that makes it "wire-like" is that the bits are delivered in exactly the same order in which they are sent.

At first you might think this problem is so trivial that there is nothing to study—machine A just puts the bits on the wire, and machine B just takes them off. Unfortunately, communication channels make errors occasionally. Furthermore, they have only a finite data rate, and there is a nonzero propagation delay between the time a bit is sent and the time it is received. These limitations have important implications for the efficiency of the data transfer. The protocols used for communications must take all these factors into consideration. These protocols are the subject of this chapter.

After an introduction to the key design issues present in the data link layer, we will start our study of its protocols by looking at the nature of errors and how they can be detected and corrected. Then we will study a series of increasingly complex protocols, each one solving more and more of the problems present in this layer. Finally, we will conclude with some examples of data link protocols.

3.1 DATA LINK LAYER DESIGN ISSUES

The data link layer uses the services of the physical layer to send and receive bits over communication channels. It has a number of functions, including:

- 1. Providing a well-defined service interface to the network layer.
- 2. Dealing with transmission errors.
- 3. Regulating the flow of data so that slow receivers are not swamped by fast senders.

To accomplish these goals, the data link layer takes the packets it gets from the network layer and encapsulates them into **frames** for transmission. Each frame contains a frame header, a payload field for holding the packet, and a frame trailer, as illustrated in Fig. 3-1. Frame management forms the heart of what the data link layer does. In the following sections we will examine all the abovementioned issues in detail.

Figure 3-1. Relationship between packets and frames.

Although this chapter is explicitly about the data link layer and its protocols, many of the principles we will study here, such as error control and flow control, are found in transport and other protocols as well. That is because reliability is an overall goal, and it is achieved when all the layers work together. In fact, in many networks, these functions are found mostly in the upper layers, with the data link layer doing the minimal job that is "good enough." However, no matter where they are found, the principles are pretty much the same. They often show up in their simplest and purest forms in the data link layer, making this a good place to examine them in detail.

3.1.1 Services Provided to the Network Layer

The function of the data link layer is to provide services to the network layer. The principal service is transferring data from the network layer on the source machine to the network layer on the destination machine. On the source machine is

an entity, call it a process, in the network layer that hands some bits to the data link layer for transmission to the destination. The job of the data link layer is to transmit the bits to the destination machine so they can be handed over to the network layer there, as shown in Fig. 3-2(a). The actual transmission follows the path of Fig. 3-2(b), but it is easier to think in terms of two data link layer processes communicating using a data link protocol. For this reason, we will implicitly use the model of Fig. 3-2(a) throughout this chapter.

Figure 3-2. (a) Virtual communication. (b) Actual communication.

The data link layer can be designed to offer various services. The actual services that are offered vary from protocol to protocol. Three reasonable possibilities that we will consider in turn are:

- 1. Unacknowledged connectionless service.
- 2. Acknowledged connectionless service.
- 3. Acknowledged connection-oriented service.

Unacknowledged connectionless service consists of having the source machine send independent frames to the destination machine without having the destination machine acknowledge them. Ethernet is a good example of a data link layer that provides this class of service. No logical connection is established beforehand or released afterward. If a frame is lost due to noise on the line, no

attempt is made to detect the loss or recover from it in the data link layer. This class of service is appropriate when the error rate is very low, so recovery is left to higher layers. It is also appropriate for real-time traffic, such as voice, in which late data are worse than bad data.

The next step up in terms of reliability is acknowledged connectionless service. When this service is offered, there are still no logical connections used, but each frame sent is individually acknowledged. In this way, the sender knows whether a frame has arrived correctly or been lost. If it has not arrived within a specified time interval, it can be sent again. This service is useful over unreliable channels, such as wireless systems. 802.11 (WiFi) is a good example of this class of service.

It is perhaps worth emphasizing that providing acknowledgements in the data link layer is just an optimization, never a requirement. The network layer can always send a packet and wait for it to be acknowledged by its peer on the remote machine. If the acknowledgement is not forthcoming before the timer expires, the sender can just send the entire message again. The trouble with this strategy is that it can be inefficient. Links usually have a strict maximum frame length imposed by the hardware, and known propagation delays. The network layer does not know these parameters. It might send a large packet that is broken up into, say, 10 frames, of which 2 are lost on average. It would then take a very long time for the packet to get through. Instead, if individual frames are acknowledged and retransmitted, then errors can be corrected more directly and more quickly. On reliable channels, such as fiber, the overhead of a heavyweight data link protocol may be unnecessary, but on (inherently unreliable) wireless channels it is well worth the cost.

Getting back to our services, the most sophisticated service the data link layer can provide to the network layer is connection-oriented service. With this service, the source and destination machines establish a connection before any data are transferred. Each frame sent over the connection is numbered, and the data link layer guarantees that each frame sent is indeed received. Furthermore, it guarantees that each frame is received exactly once and that all frames are received in the right order. Connection-oriented service thus provides the network layer processes with the equivalent of a reliable bit stream. It is appropriate over long, unreliable links such as a satellite channel or a long-distance telephone circuit. If acknowledged connectionless service were used, it is conceivable that lost acknowledgements could cause a frame to be sent and received several times, wasting bandwidth.

When connection-oriented service is used, transfers go through three distinct phases. In the first phase, the connection is established by having both sides initialize variables and counters needed to keep track of which frames have been received and which ones have not. In the second phase, one or more frames are actually transmitted. In the third and final phase, the connection is released, freeing up the variables, buffers, and other resources used to maintain the connection.

3.1.2 Framing

To provide service to the network layer, the data link layer must use the service provided to it by the physical layer. What the physical layer does is accept a raw bit stream and attempt to deliver it to the destination. If the channel is noisy, as it is for most wireless and some wired links, the physical layer will add some redundancy to its signals to reduce the bit error rate to a tolerable level. However, the bit stream received by the data link layer is not guaranteed to be error free. Some bits may have different values and the number of bits received may be less than, equal to, or more than the number of bits transmitted. It is up to the data link layer to detect and, if necessary, correct errors.

The usual approach is for the data link layer to break up the bit stream into discrete frames, compute a short token called a checksum for each frame, and include the checksum in the frame when it is transmitted. (Checksum algorithms will be discussed later in this chapter.) When a frame arrives at the destination, the checksum is recomputed. If the newly computed checksum is different from the one contained in the frame, the data link layer knows that an error has occurred and takes steps to deal with it (e.g., discarding the bad frame and possibly also sending back an error report).

Breaking up the bit stream into frames is more difficult than it at first appears. A good design must make it easy for a receiver to find the start of new frames while using little of the channel bandwidth. We will look at four methods:

- 1. Byte count.
- 2. Flag bytes with byte stuffing.
- 3. Flag bits with bit stuffing.
- 4. Physical layer coding violations.

The first framing method uses a field in the header to specify the number of bytes in the frame. When the data link layer at the destination sees the byte count, it knows how many bytes follow and hence where the end of the frame is. This technique is shown in Fig. 3-3(a) for four small example frames of sizes 5, 5, 8, and 8 bytes, respectively.

The trouble with this algorithm is that the count can be garbled by a transmission error. For example, if the byte count of 5 in the second frame of Fig. 3-3(b) becomes a 7 due to a single bit flip, the destination will get out of synchronization. It will then be unable to locate the correct start of the next frame. Even if the checksum is incorrect so the destination knows that the frame is bad, it still has no way of telling where the next frame starts. Sending a frame back to the source asking for a retransmission does not help either, since the destination does not know how many bytes to skip over to get to the start of the retransmission. For this reason, the byte count method is rarely used by itself.

Figure 3-3. A byte stream. (a) Without errors. (b) With one error.

The second framing method gets around the problem of resynchronization after an error by having each frame start and end with special bytes. Often the same byte, called a **flag byte**, is used as both the starting and ending delimiter. This byte is shown in Fig. 3-4(a) as FLAG. Two consecutive flag bytes indicate the end of one frame and the start of the next. Thus, if the receiver ever loses synchronization it can just search for two flag bytes to find the end of the current frame and the start of the next frame.

However, there is a still a problem we have to solve. It may happen that the flag byte occurs in the data, especially when binary data such as photographs or songs are being transmitted. This situation would interfere with the framing. One way to solve this problem is to have the sender's data link layer insert a special escape byte (ESC) just before each "accidental" flag byte in the data. Thus, a framing flag byte can be distinguished from one in the data by the absence or presence of an escape byte before it. The data link layer on the receiving end removes the escape bytes before giving the data to the network layer. This technique is called **byte stuffing**.

Of course, the next question is: what happens if an escape byte occurs in the middle of the data? The answer is that it, too, is stuffed with an escape byte. At the receiver, the first escape byte is removed, leaving the data byte that follows it (which might be another escape byte or the flag byte). Some examples are shown in Fig. 3-4(b). In all cases, the byte sequence delivered after destuffing is exactly the same as the original byte sequence. We can still search for a frame boundary by looking for two flag bytes in a row, without bothering to undo escapes.

The byte-stuffing scheme depicted in Fig. 3-4 is a slight simplification of the one used in **PPP** (**Point-to-Point Protocol**), which is used to carry packets over communications links. We will discuss PPP near the end of this chapter.

Figure 3-4. (a) A frame delimited by flag bytes. (b) Four examples of byte sequences before and after byte stuffing.

The third method of delimiting the bit stream gets around a disadvantage of byte stuffing, which is that it is tied to the use of 8-bit bytes. Framing can be also be done at the bit level, so frames can contain an arbitrary number of bits made up of units of any size. It was developed for the once very popular **HDLC** (**High-level Data Link Control**) protocol. Each frame begins and ends with a special bit pattern, 01111110 or 0x7E in hexadecimal. This pattern is a flag byte. Whenever the sender's data link layer encounters five consecutive 1s in the data, it automatically stuffs a 0 bit into the outgoing bit stream. This **bit stuffing** is analogous to byte stuffing, in which an escape byte is stuffed into the outgoing character stream before a flag byte in the data. It also ensures a minimum density of transitions that help the physical layer maintain synchronization. USB (Universal Serial Bus) uses bit stuffing for this reason.

When the receiver sees five consecutive incoming 1 bits, followed by a 0 bit, it automatically destuffs (i.e., deletes) the 0 bit. Just as byte stuffing is completely transparent to the network layer in both computers, so is bit stuffing. If the user data contain the flag pattern, 01111110, this flag is transmitted as 011111010 but stored in the receiver's memory as 01111110. Figure 3-5 gives an example of bit stuffing.

With bit stuffing, the boundary between two frames can be unambiguously recognized by the flag pattern. Thus, if the receiver loses track of where it is, all it has to do is scan the input for flag sequences, since they can only occur at frame boundaries and never within the data.

Figure 3-5. Bit stuffing. (a) The original data. (b) The data as they appear on the line. (c) The data as they are stored in the receiver's memory after destuffing.

With both bit and byte stuffing, a side effect is that the length of a frame now depends on the contents of the data it carries. For instance, if there are no flag bytes in the data, 100 bytes might be carried in a frame of roughly 100 bytes. If, however, the data consists solely of flag bytes, each flag byte will be escaped and the frame will become roughly 200 bytes long. With bit stuffing, the increase would be roughly 12.5% as 1 bit is added to every byte.

The last method of framing is to use a shortcut from the physical layer. We saw in Chap. 2 that the encoding of bits as signals often includes redundancy to help the receiver. This redundancy means that some signals will not occur in regular data. For example, in the 4B/5B line code 4 data bits are mapped to 5 signal bits to ensure sufficient bit transitions. This means that 16 out of the 32 signal possibilities are not used. We can use some reserved signals to indicate the start and end of frames. In effect, we are using "coding violations" to delimit frames. The beauty of this scheme is that, because they are reserved signals, it is easy to find the start and end of frames and there is no need to stuff the data.

Many data link protocols use a combination of these methods for safety. A common pattern used for Ethernet and 802.11 is to have a frame begin with a well-defined pattern called a **preamble**. This pattern might be quite long (72 bits is typical for 802.11) to allow the receiver to prepare for an incoming packet. The preamble is then followed by a length (i.e., count) field in the header that is used to locate the end of the frame.

3.1.3 Error Control

Having solved the problem of marking the start and end of each frame, we come to the next problem: how to make sure all frames are eventually delivered to the network layer at the destination and in the proper order. Assume for the moment that the receiver can tell whether a frame that it receives contains correct or faulty information (we will look at the codes that are used to detect and correct transmission errors in Sec. 3.2). For unacknowledged connectionless service it might be fine if the sender just kept outputting frames without regard to whether

they were arriving properly. But for reliable, connection-oriented service it would not be fine at all.

The usual way to ensure reliable delivery is to provide the sender with some feedback about what is happening at the other end of the line. Typically, the protocol calls for the receiver to send back special control frames bearing positive or negative acknowledgements about the incoming frames. If the sender receives a positive acknowledgement about a frame, it knows the frame has arrived safely. On the other hand, a negative acknowledgement means that something has gone wrong and the frame must be transmitted again.

An additional complication comes from the possibility that hardware troubles may cause a frame to vanish completely (e.g., in a noise burst). In this case, the receiver will not react at all, since it has no reason to react. Similarly, if the acknowledgement frame is lost, the sender will not know how to proceed. It should be clear that a protocol in which the sender transmits a frame and then waits for an acknowledgement, positive or negative, will hang forever if a frame is ever lost due to, for example, malfunctioning hardware or a faulty communication channel.

This possibility is dealt with by introducing timers into the data link layer. When the sender transmits a frame, it generally also starts a timer. The timer is set to expire after an interval long enough for the frame to reach the destination, be processed there, and have the acknowledgement propagate back to the sender. Normally, the frame will be correctly received and the acknowledgement will get back before the timer runs out, in which case the timer will be canceled.

However, if either the frame or the acknowledgement is lost, the timer will go off, alerting the sender to a potential problem. The obvious solution is to just transmit the frame again. However, when frames may be transmitted multiple times there is a danger that the receiver will accept the same frame two or more times and pass it to the network layer more than once. To prevent this from happening, it is generally necessary to assign sequence numbers to outgoing frames, so that the receiver can distinguish retransmissions from originals.

The whole issue of managing the timers and sequence numbers so as to ensure that each frame is ultimately passed to the network layer at the destination exactly once, no more and no less, is an important part of the duties of the data link layer (and higher layers). Later in this chapter, we will look at a series of increasingly sophisticated examples to see how this management is done.

3.1.4 Flow Control

Another important design issue that occurs in the data link layer (and higher layers as well) is what to do with a sender that systematically wants to transmit frames faster than the receiver can accept them. This situation can occur when the sender is running on a fast, powerful computer and the receiver is running on a slow, low-end machine. A common situation is when a smart phone requests a Web page from a far more powerful server, which then turns on the fire hose and

blasts the data at the poor helpless phone until it is completely swamped. Even if the transmission is error free, the receiver may be unable to handle the frames as fast as they arrive and will lose some.

Clearly, something has to be done to prevent this situation. Two approaches are commonly used. In the first one, **feedback-based flow control**, the receiver sends back information to the sender giving it permission to send more data, or at least telling the sender how the receiver is doing. In the second one, **rate-based flow control**, the protocol has a built-in mechanism that limits the rate at which senders may transmit data, without using feedback from the receiver.

In this chapter we will study feedback-based flow control schemes, primarily because rate-based schemes are only seen as part of the transport layer (Chap. 5). Feedback-based schemes are seen at both the link layer and higher layers. The latter is more common these days, in which case the link layer hardware is designed to run fast enough that it does not cause loss. For example, hardware implementations of the link layer as NICs (Network Interface Cards) are sometimes said to run at "wire speed," meaning that they can handle frames as fast as they can arrive on the link. Any overruns are then not a link problem, so they are handled by higher layers.

Various feedback-based flow control schemes are known, but most of them use the same basic principle. The protocol contains well-defined rules about when a sender may transmit the next frame. These rules often prohibit frames from being sent until the receiver has granted permission, either implicitly or explicitly. For example, when a connection is set up the receiver might say: "You may send me *n* frames now, but after they have been sent, do not send any more until I have told you to continue." We will examine the details shortly.

3.2 ERROR DETECTION AND CORRECTION

We saw in Chap. 2 that communication channels have a range of characteristics. Some channels, like optical fiber in telecommunications networks, have tiny error rates so that transmission errors are a rare occurrence. But other channels, especially wireless links and aging local loops, have error rates that are orders of magnitude larger. For these links, transmission errors are the norm. They cannot be avoided at a reasonable expense or cost in terms of performance. The conclusion is that transmission errors are here to stay. We have to learn how to deal with them.

Network designers have developed two basic strategies for dealing with errors. Both add redundant information to the data that is sent. One strategy is to include enough redundant information to enable the receiver to deduce what the transmitted data must have been. The other is to include only enough redundancy to allow the receiver to deduce that an error has occurred (but not which error)

and have it request a retransmission. The former strategy uses **error-correcting codes** and the latter uses **error-detecting codes**. The use of error-correcting codes is often referred to as **FEC** (**Forward Error Correction**).

Each of these techniques occupies a different ecological niche. On channels that are highly reliable, such as fiber, it is cheaper to use an error-detecting code and just retransmit the occasional block found to be faulty. However, on channels such as wireless links that make many errors, it is better to add redundancy to each block so that the receiver is able to figure out what the originally transmitted block was. FEC is used on noisy channels because retransmissions are just as likely to be in error as the first transmission.

A key consideration for these codes is the type of errors that are likely to occur. Neither error-correcting codes nor error-detecting codes can handle all possible errors since the redundant bits that offer protection are as likely to be received in error as the data bits (which can compromise their protection). It would be nice if the channel treated redundant bits differently than data bits, but it does not. They are all just bits to the channel. This means that to avoid undetected errors the code must be strong enough to handle the expected errors.

One model is that errors are caused by extreme values of thermal noise that overwhelm the signal briefly and occasionally, giving rise to isolated single-bit errors. Another model is that errors tend to come in bursts rather than singly. This model follows from the physical processes that generate them—such as a deep fade on a wireless channel or transient electrical interference on a wired channel/

Both models matter in practice, and they have different trade-offs. Having the errors come in bursts has both advantages and disadvantages over isolated single-bit errors. On the advantage side, computer data are always sent in blocks of bits. Suppose that the block size was 1000 bits and the error rate was 0.001 per bit. If errors were independent, most blocks would contain an error. If the errors came in bursts of 100, however, only one block in 100 would be affected, on average. The disadvantage of burst errors is that when they do occur they are much harder to correct than isolated errors.

Other types of errors also exist. Sometimes, the location of an error will be known, perhaps because the physical layer received an analog signal that was far from the expected value for a 0 or 1 and declared the bit to be lost. This situation is called an **erasure channel**. It is easier to correct errors in erasure channels than in channels that flip bits because even if the value of the bit has been lost, at least we know which bit is in error. However, we often do not have the benefit of erasures.

We will examine both error-correcting codes and error-detecting codes next. Please keep two points in mind, though. First, we cover these codes in the link layer because this is the first place that we have run up against the problem of reliably transmitting groups of bits. However, the codes are widely used because reliability is an overall concern. Error-correcting codes are also seen in the physical layer, particularly for noisy channels, and in higher layers, particularly for

real-time media and content distribution. Error-detecting codes are commonly used in link, network, and transport layers.

The second point to bear in mind is that error codes are applied mathematics. Unless you are particularly adept at Galois fields or the properties of sparse matrices, you should get codes with good properties from a reliable source rather than making up your own. In fact, this is what many protocol standards do, with the same codes coming up again and again. In the material below, we will study a simple code in detail and then briefly describe advanced codes. In this way, we can understand the trade-offs from the simple code and talk about the codes that are used in practice via the advanced codes.

3.2.1 Error-Correcting Codes

We will examine four different error-correcting codes:

- 1. Hamming codes.
- 2. Binary convolutional codes.
- Reed-Solomon codes.
- 4. Low-Density Parity Check codes.

All of these codes add redundancy to the information that is sent. A frame consists of m data (i.e., message) bits and r redundant (i.e. check) bits. In a **block code**, the r check bits are computed solely as a function of the m data bits with which they are associated, as though the m bits were looked up in a large table to find their corresponding r check bits. In a **systematic code**, the m data bits are sent directly, along with the check bits, rather than being encoded themselves before they are sent. In a **linear code**, the r check bits are computed as a linear function of the m data bits. Exclusive OR (XOR) or modulo 2 addition is a popular choice. This means that encoding can be done with operations such as matrix multiplications or simple logic circuits. The codes we will look at in this section are linear, systematic block codes unless otherwise noted.

Let the total length of a block be n (i.e., n = m + r). We will describe this as an (n,m) code. An n-bit unit containing data and check bits is referred to as an n-bit **codeword**. The **code rate**, or simply rate, is the fraction of the codeword that carries information that is not redundant, or m/n. The rates used in practice vary widely. They might be 1/2 for a noisy channel, in which case half of the received information is redundant, or close to 1 for a high-quality channel, with only a small number of check bits added to a large message.

To understand how errors can be handled, it is necessary to first look closely at what an error really is. Given any two codewords that may be transmitted or received—say, 10001001 and 10110001—it is possible to determine how many

corresponding bits differ. In this case, 3 bits differ. To determine how many bits differ, just XOR the two codewords and count the number of 1 bits in the result. For example:

10001001 10110001 00111000

The number of bit positions in which two codewords differ is called the **Ham-ming distance** (Hamming, 1950). Its significance is that if two codewords are a Hamming distance d apart, it will require d single-bit errors to convert one into the other.

Given the algorithm for computing the check bits, it is possible to construct a complete list of the legal codewords, and from this list to find the two codewords with the smallest Hamming distance. This distance is the Hamming distance of the complete code.

In most data transmission applications, all 2^m possible data messages are legal, but due to the way the check bits are computed, not all of the 2^n possible codewords are used. In fact, when there are r check bits, only the small fraction of $2^m/2^n$ or $1/2^r$ of the possible messages will be legal codewords. It is the sparseness with which the message is embedded in the space of codewords that allows the receiver to detect and correct errors.

The error-detecting and error-correcting properties of a block code depend on its Hamming distance. To reliably detect d errors, you need a distance d+1 code because with such a code there is no way that d single-bit errors can change a valid codeword into another valid codeword. When the receiver sees an illegal codeword, it can tell that a transmission error has occurred. Similarly, to correct d errors, you need a distance 2d+1 code because that way the legal codewords are so far apart that even with d changes the original codeword is still closer than any other codeword. This means the original codeword can be uniquely determined based on the assumption that a larger number of errors are less likely.

As a simple example of an error-correcting code, consider a code with only four valid codewords:

000000000, 0000011111, 1111100000, and 1111111111

This code has a distance of 5, which means that it can correct double errors or detect quadruple errors. If the codeword 0000000111 arrives and we expect only single- or double-bit errors, the receiver will know that the original must have been 000001111. If, however, a triple error changes 000000000 into 0000000111, the error will not be corrected properly. Alternatively, if we expect all of these errors, we can detect them. None of the received codewords are legal codewords so an error must have occurred. It should be apparent that in this example we cannot both correct double errors and detect quadruple errors because this would require us to interpret a received codeword in two different ways.

In our example, the task of decoding by finding the legal codeword that is closest to the received codeword can be done by inspection. Unfortunately, in the most general case where all codewords need to be evaluated as candidates, this task can be a time-consuming search. Instead, practical codes are designed so that they admit shortcuts to find what was likely the original codeword.

Imagine that we want to design a code with m message bits and r check bits that will allow all single errors to be corrected. Each of the 2^m legal messages has n illegal codewords at a distance of 1 from it. These are formed by systematically inverting each of the n bits in the n-bit codeword formed from it. Thus, each of the 2^m legal messages requires n+1 bit patterns dedicated to it. Since the total number of bit patterns is 2^n , we must have $(n+1)2^m \le 2^n$. Using n=m+r, this requirement becomes

$$(m+r+1) \le 2^r \tag{3-1}$$

Given m, this puts a lower limit on the number of check bits needed to correct single errors.

This theoretical lower limit can, in fact, be achieved using a method due to Hamming (1950). In **Hamming codes** the bits of the codeword are numbered consecutively, starting with bit 1 at the left end, bit 2 to its immediate right, and so on. The bits that are powers of 2 (1, 2, 4, 8, 16, etc.) are check bits. The rest (3, 5, 6, 7, 9, etc.) are filled up with the m data bits. This pattern is shown for an (11,7) Hamming code with 7 data bits and 4 check bits in Fig. 3-6. Each check bit forces the modulo 2 sum, or parity, of some collection of bits, including itself, to be even (or odd). A bit may be included in several check bit computations. To see which check bits the data bit in position k contributes to, rewrite k as a sum of powers of 2. For example, 11 = 1 + 2 + 8 and 29 = 1 + 4 + 8 + 16. A bit is checked by just those check bits occurring in its expansion (e.g., bit 11 is checked by bits 1, 2, and 8). In the example, the check bits are computed for even parity sums for a message that is the ASCII letter "A."

Figure 3-6. Example of an (11, 7) Hamming code correcting a single-bit error.

This construction gives a code with a Hamming distance of 3, which means that it can correct single errors (or detect double errors). The reason for the very careful numbering of message and check bits becomes apparent in the decoding

process. When a codeword arrives, the receiver redoes the check bit computations including the values of the received check bits. We call these the check results. If the check bits are correct then, for even parity sums, each check result should be zero. In this case the codeword is accepted as valid.

If the check results are not all zero, however, an error has been detected. The set of check results forms the **error syndrome** that is used to pinpoint and correct the error. In Fig. 3-6, a single-bit error occurred on the channel so the check results are 0, 1, 0, and 1 for k = 8, 4, 2, and 1, respectively. This gives a syndrome of 0101 or 4 + 1 = 5. By the design of the scheme, this means that the fifth bit is in error. Flipping the incorrect bit (which might be a check bit or a data bit) and discarding the check bits gives the correct message of an ASCII "A."

Hamming distances are valuable for understanding block codes, and Hamming codes are used in error-correcting memory. However, most networks use stronger codes. The second code we will look at is a **convolutional code**. This code is the only one we will cover that is not a block code. In a convolutional code, an encoder processes a sequence of input bits and generates a sequence of output bits. There is no natural message size or encoding boundary as in a block code. The output depends on the current and previous input bits. That is, the encoder has memory. The number of previous bits on which the output depends is called the **constraint length** of the code. Convolutional codes are specified in terms of their rate and constraint length.

Convolutional codes are widely used in deployed networks, for example, as part of the GSM mobile phone system, in satellite communications, and in 802.11. As an example, a popular convolutional code is shown in Fig. 3-7. This code is known as the NASA convolutional code of r = 1/2 and k = 7, since it was first used for the Voyager space missions starting in 1977. Since then it has been liberally reused, for example, as part of 802.11.

Figure 3-7. The NASA binary convolutional code used in 802.11.

In Fig. 3-7, each input bit on the left-hand side produces two output bits on the right-hand side that are XOR sums of the input and internal state. Since it deals with bits and performs linear operations, this is a binary, linear convolutional code. Since 1 input bit produces 2 output bits, the code rate is 1/2. It is not systematic since none of the output bits is simply the input bit.

The internal state is kept in six memory registers. Each time another bit is input the values in the registers are shifted to the right. For example, if 111 is input and the initial state is all zeros, the internal state, written left to right, will become 100000, 110000, and 111000 after the first, second, and third bits have been input. The output bits will be 11, followed by 10, and then 01. It takes seven shifts to flush an input completely so that it does not affect the output. The constraint length of this code is thus k = 7.

A convolutional code is decoded by finding the sequence of input bits that is most likely to have produced the observed sequence of output bits (which includes any errors). For small values of k, this is done with a widely used algorithm developed by Viterbi (Forney, 1973). The algorithm walks the observed sequence, keeping for each step and for each possible internal state the input sequence that would have produced the observed sequence with the fewest errors. The input sequence requiring the fewest errors at the end is the most likely message.

Convolutional codes have been popular in practice because it is easy to factor the uncertainty of a bit being a 0 or a 1 into the decoding. For example, suppose –1V is the logical 0 level and +1V is the logical 1 level, we might receive 0.9V and –0.1V for 2 bits. Instead of mapping these signals to 1 and 0 right away, we would like to treat 0.9V as "very likely a 1" and –0.1V as "maybe a 0" and correct the sequence as a whole. Extensions of the Viterbi algorithm can work with these uncertainties to provide stronger error correction. This approach of working with the uncertainty of a bit is called **soft-decision decoding**. Conversely, deciding whether each bit is a 0 or a 1 before subsequent error correction is called **hard-decision decoding**.

The third kind of error-correcting code we will describe is the **Reed-Solomon code**. Like Hamming codes, Reed-Solomon codes are linear block codes, and they are often systematic too. Unlike Hamming codes, which operate on individual bits, Reed-Solomon codes operate on *m* bit symbols. Naturally, the mathematics are more involved, so we will describe their operation by analogy.

Reed-Solomon codes are based on the fact that every n degree polynomial is uniquely determined by n+1 points. For example, a line having the form ax+b is determined by two points. Extra points on the same line are redundant, which is helpful for error correction. Imagine that we have two data points that represent a line and we send those two data points plus two check points chosen to lie on the same line. If one of the points is received in error, we can still recover the data points by fitting a line to the received points. Three of the points will lie on the line, and one point, the one in error, will not. By finding the line we have corrected the error.

Reed-Solomon codes are actually defined as polynomials that operate over finite fields, but they work in a similar manner. For m bit symbols, the codewords are 2^m-1 symbols long. A popular choice is to make m=8 so that symbols are bytes. A codeword is then 255 bytes long. The (255, 233) code is widely used; it adds 32 redundant symbols to 233 data symbols. Decoding with error correction

is done with an algorithm developed by Berlekamp and Massey that can efficiently perform the fitting task for moderate-length codes (Massey, 1969).

Reed-Solomon codes are widely used in practice because of their strong error-correction properties, particularly for burst errors. They are used for DSL, data over cable, satellite communications, and perhaps most ubiquitously on CDs, DVDs, and Blu-ray discs. Because they are based on m bit symbols, a single-bit error and an m-bit burst error are both treated simply as one symbol error. When 2t redundant symbols are added, a Reed-Solomon code is able to correct up to t errors in any of the transmitted symbols. This means, for example, that the (255, 233) code, which has 32 redundant symbols, can correct up to 16 symbol errors. Since the symbols may be consecutive and they are each 8 bits, an error burst of up to 128 bits can be corrected. The situation is even better if the error model is one of erasures (e.g., a scratch on a CD that obliterates some symbols). In this case, up to 2t errors can be corrected.

Reed-Solomon codes are often used in combination with other codes such as a convolutional code. The thinking is as follows. Convolutional codes are effective at handling isolated bit errors, but they will fail, likely with a burst of errors, if there are too many errors in the received bit stream. By adding a Reed-Solomon code within the convolutional code, the Reed-Solomon decoding can mop up the error bursts, a task at which it is very good. The overall code then provides good protection against both single and burst errors.

The final error-correcting code we will cover is the LDPC (Low-Density Parity Check) code. LDPC codes are linear block codes that were invented by Robert Gallagher in his doctoral thesis (Gallagher, 1962). Like most theses, they were promptly forgotten, only to be reinvented in 1995 when advances in computing power had made them practical.

In an LDPC code, each output bit is formed from only a fraction of the input bits. This leads to a matrix representation of the code that has a low density of 1s, hence the name for the code. The received codewords are decoded with an approximation algorithm that iteratively improves on a best fit of the received data to a legal codeword. This corrects errors.

LDPC codes are practical for large block sizes and have excellent error-correction abilities that outperform many other codes (including the ones we have looked at) in practice. For this reason they are rapidly being included in new protocols. They are part of the standard for digital video broadcasting, 10 Gbps Ethernet, power-line networks, and the latest version of 802.11. Expect to see more of them in future networks.

3.2.2 Error-Detecting Codes

Error-correcting codes are widely used on wireless links, which are notoriously noisy and error prone when compared to optical fibers. Without error-correcting codes, it would be hard to get anything through. However, over fiber or

high-quality copper, the error rate is much lower, so error detection and retransmission is usually more efficient there for dealing with the occasional error.

We will examine three different error-detecting codes. They are all linear, systematic block codes:

- 1. Parity.
- 2. Checksums.
- 3. Cyclic Redundancy Checks (CRCs).

To see how they can be more efficient than error-correcting codes, consider the first error-detecting code, in which a single **parity bit** is appended to the data. The parity bit is chosen so that the number of 1 bits in the codeword is even (or odd). Doing this is equivalent to computing the (even) parity bit as the modulo 2 sum or XOR of the data bits. For example, when 1011010 is sent in even parity, a bit is added to the end to make it 10110100. With odd parity 1011010 becomes 10110101. A code with a single parity bit has a distance of 2, since any single-bit error produces a codeword with the wrong parity. This means that it can detect single-bit errors.

Consider a channel on which errors are isolated and the error rate is 10^{-6} per bit. This may seem a tiny error rate, but it is at best a fair rate for a long wired cable that is challenging for error detection. Typical LAN links provide bit error rates of 10^{-10} . Let the block size be 1000 bits. To provide error correction for 1000-bit blocks, we know from Eq. (3-1) that 10 check bits are needed. Thus, a megabit of data would require 10,000 check bits. To merely detect a block with a single 1-bit error, one parity bit per block will suffice. Once every 1000 blocks, a block will be found to be in error and an extra block (1001 bits) will have to be transmitted to repair the error. The total overhead for the error detection and retransmission method is only 2001 bits per megabit of data, versus 10,000 bits for a Hamming code.

One difficulty with this scheme is that a single parity bit can only reliably detect a single-bit error in the block. If the block is badly garbled by a long burst error, the probability that the error will be detected is only 0.5, which is hardly acceptable. The odds can be improved considerably if each block to be sent is regarded as a rectangular matrix n bits wide and k bits high. Now, if we compute and send one parity bit for each row, up to k bit errors will be reliably detected as long as there is at most one error per row.

However, there is something else we can do that provides better protection against burst errors: we can compute the parity bits over the data in a different order than the order in which the data bits are transmitted. Doing so is called **interleaving**. In this case, we will compute a parity bit for each of the n columns and send all the data bits as k rows, sending the rows from top to bottom and the bits in each row from left to right in the usual manner. At the last row, we send the n parity bits. This transmission order is shown in Fig. 3-8 for n = 7 and k = 7.

Figure 3-8. Interleaving of parity bits to detect a burst error.

Interleaving is a general technique to convert a code that detects (or corrects) isolated errors into a code that detects (or corrects) burst errors. In Fig. 3-8, when a burst error of length n = 7 occurs, the bits that are in error are spread across different columns. (A burst error does not imply that all the bits are wrong; it just implies that at least the first and last are wrong. In Fig. 3-8, 4 bits were flipped over a range of 7 bits.) At most 1 bit in each of the n columns will be affected, so the parity bits on those columns will detect the error. This method uses n parity bits on blocks of kn data bits to detect a single burst error of length n or less.

A burst of length n + 1 will pass undetected, however, if the first bit is inverted, the last bit is inverted, and all the other bits are correct. If the block is badly garbled by a long burst or by multiple shorter bursts, the probability that any of the n columns will have the correct parity by accident is 0.5, so the probability of a bad block being accepted when it should not be is 2^{-n} .

The second kind of error-detecting code, the **checksum**, is closely related to groups of parity bits. The word "checksum" is often used to mean a group of check bits associated with a message, regardless of how are calculated. A group of parity bits is one example of a checksum. However, there are other, stronger checksums based on a running sum of the data bits of the message. The checksum is usually placed at the end of the message, as the complement of the sum function. This way, errors may be detected by summing the entire received codeword, both data bits and checksum. If the result comes out to be zero, no error has been detected.

One example of a checksum is the 16-bit Internet checksum used on all Internet packets as part of the IP protocol (Braden et al., 1988). This checksum is a sum of the message bits divided into 16-bit words. Because this method operates on words rather than on bits, as in parity, errors that leave the parity unchanged can still alter the sum and be detected. For example, if the lowest order bit in two different words is flipped from a 0 to a 1, a parity check across these bits would fail to detect an error. However, two 1s will be added to the 16-bit checksum to produce a different result. The error can then be detected.

The Internet checksum is computed in one's complement arithmetic instead of as the modulo 2^{16} sum. In one's complement arithmetic, a negative number is the bitwise complement of its positive counterpart. Modern computers run two's complement arithmetic, in which a negative number is the one's complement plus one. On a two's complement computer, the one's complement sum is equivalent to taking the sum modulo 2^{16} and adding any overflow of the high order bits back into the low-order bits. This algorithm gives a more uniform coverage of the data by the checksum bits. Otherwise, two high-order bits can be added, overflow, and be lost without changing the sum. There is another benefit, too. One's complement has two representations of zero, all 0s and all 1s. This allows one value (e.g., all 0s) to indicate that there is no checksum, without the need for another field.

For decades, it has always been assumed that frames to be checksummed contain random bits. All analyses of checksum algorithms have been made under this assumption. Inspection of real data by Partridge et al. (1995) has shown this assumption to be quite wrong. As a consequence, undetected errors are in some cases much more common than had been previously thought.

The Internet checksum in particular is efficient and simple but provides weak protection in some cases precisely because it is a simple sum. It does not detect the deletion or addition of zero data, nor swapping parts of the message, and it provides weak protection against message splices in which parts of two packets are put together. These errors may seem very unlikely to occur by random processes, but they are just the sort of errors that can occur with buggy hardware.

A better choice is **Fletcher's checksum** (Fletcher, 1982). It includes a positional component, adding the product of the data and its position to the running sum. This provides stronger detection of changes in the position of data.

Although the two preceding schemes may sometimes be adequate at higher layers, in practice, a third and stronger kind of error-detecting code is in widespread use at the link layer: the **CRC** (**Cyclic Redundancy Check**), also known as a **polynomial code**. Polynomial codes are based upon treating bit strings as representations of polynomials with coefficients of 0 and 1 only. A k-bit frame is regarded as the coefficient list for a polynomial with k terms, ranging from x^{k-1} to x^0 . Such a polynomial is said to be of degree k-1. The high-order (leftmost) bit is the coefficient of x^{k-1} , the next bit is the coefficient of x^{k-2} , and so on. For example, 110001 has 6 bits and thus represents a six-term polynomial with coefficients 1, 1, 0, 0, 0, and 1: $1x^5 + 1x^4 + 0x^3 + 0x^2 + 0x^1 + 1x^0$.

Polynomial arithmetic is done modulo 2, according to the rules of algebraic field theory. It does not have carries for addition or borrows for subtraction. Both addition and subtraction are identical to exclusive OR. For example:

Long division is carried out in exactly the same way as it is in binary except that

the subtraction is again done modulo 2. A divisor is said "to go into" a dividend if the dividend has as many bits as the divisor.

When the polynomial code method is employed, the sender and receiver must agree upon a **generator polynomial**, G(x), in advance. Both the high- and low-order bits of the generator must be 1. To compute the CRC for some frame with m bits corresponding to the polynomial M(x), the frame must be longer than the generator polynomial. The idea is to append a CRC to the end of the frame in such a way that the polynomial represented by the checksummed frame is divisible by G(x). When the receiver gets the checksummed frame, it tries dividing it by G(x). If there is a remainder, there has been a transmission error.

The algorithm for computing the CRC is as follows:

- 1. Let r be the degree of G(x). Append r zero bits to the low-order end of the frame so it now contains m + r bits and corresponds to the polynomial $x^rM(x)$.
- 2. Divide the bit string corresponding to G(x) into the bit string corresponding to x'M(x), using modulo 2 division.
- 3. Subtract the remainder (which is always r or fewer bits) from the bit string corresponding to x'M(x) using modulo 2 subtraction. The result is the checksummed frame to be transmitted. Call its polynomial T(x).

Figure 3-9 illustrates the calculation for a frame 1101011111 using the generator $G(x) = x^4 + x + 1$.

It should be clear that T(x) is divisible (modulo 2) by G(x). In any division problem, if you diminish the dividend by the remainder, what is left over is divisible by the divisor. For example, in base 10, if you divide 210,278 by 10,941, the remainder is 2399. If you then subtract 2399 from 210,278, what is left over (207,879) is divisible by 10,941.

Now let us analyze the power of this method. What kinds of errors will be detected? Imagine that a transmission error occurs, so that instead of the bit string for T(x) arriving, T(x) + E(x) arrives. Each 1 bit in E(x) corresponds to a bit that has been inverted. If there are k 1 bits in E(x), k single-bit errors have occurred. A single burst error is characterized by an initial 1, a mixture of 0s and 1s, and a final 1, with all other bits being 0.

Upon receiving the checksummed frame, the receiver divides it by G(x); that is, it computes [T(x) + E(x)]/G(x). T(x)/G(x) is 0, so the result of the computation is simply E(x)/G(x). Those errors that happen to correspond to polynomials containing G(x) as a factor will slip by; all other errors will be caught.

If there has been a single-bit error, $E(x) = x^i$, where *i* determines which bit is in error. If G(x) contains two or more terms, it will never divide into E(x), so all single-bit errors will be detected.

Figure 3-9. Example calculation of the CRC.

If there have been two isolated single-bit errors, $E(x) = x^i + x^j$, where i > j. Alternatively, this can be written as $E(x) = x^j(x^{i-j} + 1)$. If we assume that G(x) is not divisible by x, a sufficient condition for all double errors to be detected is that G(x) does not divide $x^k + 1$ for any k up to the maximum value of i - j (i.e., up to the maximum frame length). Simple, low-degree polynomials that give protection to long frames are known. For example, $x^{15} + x^{14} + 1$ will not divide $x^k + 1$ for any value of k below 32,768.

If there are an odd number of bits in error, E(X) contains an odd number of terms (e.g., $x^5 + x^2 + 1$, but not $x^2 + 1$). Interestingly, no polynomial with an odd number of terms has x + 1 as a factor in the modulo 2 system. By making x + 1 a factor of G(x), we can catch all errors with an odd number of inverted bits.

Finally, and importantly, a polynomial code with r check bits will detect all burst errors of length $\leq r$. A burst error of length k can be represented by $x^i(x^{k-1}+\ldots+1)$, where i determines how far from the right-hand end of the received frame the burst is located. If G(x) contains an x^0 term, it will not have x^i as a factor, so if the degree of the parenthesized expression is less than the degree of G(x), the remainder can never be zero.

If the burst length is r + 1, the remainder of the division by G(x) will be zero if and only if the burst is identical to G(x). By definition of a burst, the first and last bits must be 1, so whether it matches depends on the r - 1 intermediate bits. If all combinations are regarded as equally likely, the probability of such an incorrect frame being accepted as valid is $\frac{1}{2}r^{-1}$.

It can also be shown that when an error burst longer than r + 1 bits occurs or when several shorter bursts occur, the probability of a bad frame getting through unnoticed is $\frac{1}{2}r$, assuming that all bit patterns are equally likely.

Certain polynomials have become international standards. The one used in IEEE 802 followed the example of Ethernet and is

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$$

Among other desirable properties, it has the property that it detects all bursts of length 32 or less and all bursts affecting an odd number of bits. It has been used widely since the 1980s. However, this does not mean it is the best choice. Using an exhaustive computational search, Castagnoli et al. (1993) and Koopman (2002) found the best CRCs. These CRCs have a Hamming distance of 6 for typical message sizes, while the IEEE standard CRC-32 has a Hamming distance of only 4.

Although the calculation required to compute the CRC may seem complicated, it is easy to compute and verify CRCs in hardware with simple shift register circuits (Peterson and Brown, 1961). In practice, this hardware is nearly always used. Dozens of networking standards include various CRCs, including virtually all LANs (e.g., Ethernet, 802.11) and point-to-point links (e.g., packets over SONET).

3.3 ELEMENTARY DATA LINK PROTOCOLS

To introduce the subject of protocols, we will begin by looking at three protocols of increasing complexity. For interested readers, a simulator for these and subsequent protocols is available via the Web (see the preface). Before we look at the protocols, it is useful to make explicit some of the assumptions underlying the model of communication.

To start with, we assume that the physical layer, data link layer, and network layer are independent processes that communicate by passing messages back and forth. A common implementation is shown in Fig. 3-10. The physical layer process and some of the data link layer process run on dedicate hardware called a NIC (Network Interface Card). The rest of the link layer process and the network layer process run on the main CPU as part of the operating system, with the software for the link layer process often taking the form of a device driver. However, other implementations are also possible (e.g., three processes offloaded to dedicated hardware called a network accelerator, or three processes running on the

main CPU on a software-defined ratio). Actually, the preferred implementation changes from decade to decade with technology trade-offs. In any event, treating the three layers as separate processes makes the discussion conceptually cleaner and also serves to emphasize the independence of the layers.

Figure 3-10. Implementation of the physical, data link, and network layers.

Another key assumption is that machine A wants to send a long stream of data to machine B, using a reliable, connection-oriented service. Later, we will consider the case where B also wants to send data to A simultaneously. A is assumed to have an infinite supply of data ready to send and never has to wait for data to be produced. Instead, when A's data link layer asks for data, the network layer is always able to comply immediately. (This restriction, too, will be dropped later.)

We also assume that machines do not crash. That is, these protocols deal with communication errors, but not the problems caused by computers crashing and rebooting.

As far as the data link layer is concerned, the packet passed across the interface to it from the network layer is pure data, whose every bit is to be delivered to the destination's network layer. The fact that the destination's network layer may interpret part of the packet as a header is of no concern to the data link layer.

When the data link layer accepts a packet, it encapsulates the packet in a frame by adding a data link header and trailer to it (see Fig. 3-1). Thus, a frame consists of an embedded packet, some control information (in the header), and a checksum (in the trailer). The frame is then transmitted to the data link layer on the other machine. We will assume that there exist suitable library procedures to_physical_layer to send a frame and from_physical_layer to receive a frame. These procedures compute and append or check the checksum (which is usually done in hardware) so that we do not need to worry about it as part of the protocols we develop in this section. They might use the CRC algorithm discussed in the previous section, for example.

Initially, the receiver has nothing to do. It just sits around waiting for something to happen. In the example protocols throughout this chapter we will indicate that the data link layer is waiting for something to happen by the procedure call

```
#define MAX_PKT 1024
                                                          /* determines packet size in bytes */
typedef enum {false, true} boolean;
                                                          /* boolean type */
typedef unsigned int seq_nr;
                                                          /* sequence or ack numbers */
typedef struct {unsigned char data[MAX_PKT];} packet;
                                                         /* packet definition */
typedef enum {data, ack, nak} frame_kind;
                                                          /* frame_kind definition */
typedef struct {
                                                          /* frames are transported in this layer */
 frame_kind kind;
                                                          /* what kind of frame is it? */
                                                          /* sequence number */
 seq_nr seq;
 seq_nr ack;
                                                          /* acknowledgement number */
 packet info;
                                                          /* the network layer packet */
} frame;
/* Wait for an event to happen; return its type in event. */
void wait_for_event(event_type *event);
/* Fetch a packet from the network layer for transmission on the channel. */
void from_network_layer(packet *p);
/* Deliver information from an inbound frame to the network layer. */
void to_network_layer(packet *p);
/* Go get an inbound frame from the physical layer and copy it to r. */
void from_physical_layer(frame *r);
/* Pass the frame to the physical layer for transmission. */
void to_physical_layer(frame *s);
/* Start the clock running and enable the timeout event. */
void start_timer(seq_nr k);
/* Stop the clock and disable the timeout event. */
void stop_timer(seq_nr k);
/* Start an auxiliary timer and enable the ack_timeout event. */
void start_ack_timer(void);
/* Stop the auxiliary timer and disable the ack_timeout event. */
void stop_ack_timer(void);
/* Allow the network layer to cause a network_layer_ready event. */
void enable_network_layer(void);
/* Forbid the network layer from causing a network_layer_ready event. */
void disable_network_layer(void);
/* Macro inc is expanded in-line: increment k circularly. */
#define inc(k) if (k < MAX\_SEQ) k = k + 1; else k = 0
```

Figure 3-11. Some definitions needed in the protocols to follow. These definitions are located in the file *protocol.h.*

wait_for_event(&event). This procedure only returns when something has happened (e.g., a frame has arrived). Upon return, the variable event tells what happened. The set of possible events differs for the various protocols to be described and will be defined separately for each protocol. Note that in a more realistic situation, the data link layer will not sit in a tight loop waiting for an event, as we have suggested, but will receive an interrupt, which will cause it to stop whatever it was doing and go handle the incoming frame. Nevertheless, for simplicity we will ignore all the details of parallel activity within the data link layer and assume that it is dedicated full time to handling just our one channel.

When a frame arrives at the receiver, the checksum is recomputed. If the checksum in the frame is incorrect (i.e., there was a transmission error), the data link layer is so informed (event = cksum_err). If the inbound frame arrived undamaged, the data link layer is also informed (event = frame_arrival) so that it can acquire the frame for inspection using from_physical_layer. As soon as the receiving data link layer has acquired an undamaged frame, it checks the control information in the header, and, if everything is all right, passes the packet portion to the network layer. Under no circumstances is a frame header ever given to a network layer.

There is a good reason why the network layer must never be given any part of the frame header: to keep the network and data link protocols completely separate. As long as the network layer knows nothing at all about the data link protocol or the frame format, these things can be changed without requiring changes to the network layer's software. This happens whenever a new NIC is installed in a computer. Providing a rigid interface between the network and data link layers greatly simplifies the design task because communication protocols in different layers can evolve independently.

Figure 3-11 shows some declarations (in C) common to many of the protocols to be discussed later. Five data structures are defined there: boolean, seq_nr, packet, frame_kind, and frame. A boolean is an enumerated type and can take on the values true and false. A seq_nr is a small integer used to number the frames so that we can tell them apart. These sequence numbers run from 0 up to and including MAX_SEQ, which is defined in each protocol needing it. A packet is the unit of information exchanged between the network layer and the data link layer on the same machine, or between network layer peers. In our model it always contains MAX_PKT bytes, but more realistically it would be of variable length.

A *frame* is composed of four fields: *kind*, *seq*, *ack*, and *info*, the first three of which contain control information and the last of which may contain actual data to be transferred. These control fields are collectively called the **frame header**.

The *kind* field tells whether there are any data in the frame, because some of the protocols distinguish frames containing only control information from those containing data as well. The *seq* and *ack* fields are used for sequence numbers and acknowledgements, respectively; their use will be described in more detail later. The *info* field of a data frame contains a single packet; the *info* field of a

control frame is not used. A more realistic implementation would use a variable-length *info* field, omitting it altogether for control frames.

Again, it is important to understand the relationship between a packet and a frame. The network layer builds a packet by taking a message from the transport layer and adding the network layer header to it. This packet is passed to the data link layer for inclusion in the *info* field of an outgoing frame. When the frame arrives at the destination, the data link layer extracts the packet from the frame and passes the packet to the network layer. In this manner, the network layer can act as though machines can exchange packets directly.

A number of procedures are also listed in Fig. 3-11. These are library routines whose details are implementation dependent and whose inner workings will not concern us further in the following discussions. The procedure <code>wait_for_event</code> sits in a tight loop waiting for something to happen, as mentioned earlier. The procedures <code>to_network_layer</code> and <code>from_network_layer</code> are used by the data link layer to pass packets to the network layer and accept packets from the network layer, respectively. Note that <code>from_physical_layer</code> and <code>to_physical_layer</code> pass frames between the data link layer and the physical layer. In other words, <code>to_network_layer</code> and <code>from_network_layer</code> deal with the interface between layers 2 and 3, whereas <code>from_physical_layer</code> and <code>to_physical_layer</code> deal with the interface between layers 1 and 2.

In most of the protocols, we assume that the channel is unreliable and loses entire frames upon occasion. To be able to recover from such calamities, the sending data link layer must start an internal timer or clock whenever it sends a frame. If no reply has been received within a certain predetermined time interval, the clock times out and the data link layer receives an interrupt signal.

In our protocols this is handled by allowing the procedure wait_for_event to return event = timeout. The procedures start_timer and stop_timer turn the timer on and off, respectively. Timeout events are possible only when the timer is running and before stop_timer is called. It is explicitly permitted to call start_timer while the timer is running; such a call simply resets the clock to cause the next timeout after a full timer interval has elapsed (unless it is reset or turned off).

The procedures *start_ack_timer* and *stop_ack_timer* control an auxiliary timer used to generate acknowledgements under certain conditions.

The procedures <code>enable_network_layer</code> and <code>disable_network_layer</code> are used in the more sophisticated protocols, where we no longer assume that the network layer always has packets to send. When the data link layer enables the network layer, the network layer is then permitted to interrupt when it has a packet to be sent. We indicate this with <code>event = network_layer_ready</code>. When the network layer is disabled, it may not cause such events. By being careful about when it enables and disables its network layer, the data link layer can prevent the network layer from swamping it with packets for which it has no buffer space.

Frame sequence numbers are always in the range 0 to MAX_SEQ (inclusive), where MAX_SEQ is different for the different protocols. It is frequently necessary

to advance a sequence number by 1 circularly (i.e., MAX_SEQ is followed by 0). The macro *inc* performs this incrementing. It has been defined as a macro because it is used in-line within the critical path. As we will see later, the factor limiting network performance is often protocol processing, so defining simple operations like this as macros does not affect the readability of the code but does improve performance.

The declarations of Fig. 3-11 are part of each of the protocols we will discuss shortly. To save space and to provide a convenient reference, they have been extracted and listed together, but conceptually they should be merged with the protocols themselves. In C, this merging is done by putting the definitions in a special header file, in this case *protocol.h*, and using the #include facility of the C preprocessor to include them in the protocol files.

3.3.1 A Utopian Simplex Protocol

As an initial example we will consider a protocol that is as simple as it can be because it does not worry about the possibility of anything going wrong. Data are transmitted in one direction only. Both the transmitting and receiving network layers are always ready. Processing time can be ignored. Infinite buffer space is available. And best of all, the communication channel between the data link layers never damages or loses frames. This thoroughly unrealistic protocol, which we will nickname "Utopia," is simply to show the basic structure on which we will build. It's implementation is shown in Fig. 3-12.

The protocol consists of two distinct procedures, a sender and a receiver. The sender runs in the data link layer of the source machine, and the receiver runs in the data link layer of the destination machine. No sequence numbers or acknowledgements are used here, so *MAX_SEQ* is not needed. The only event type possible is *frame_arrival* (i.e., the arrival of an undamaged frame).

The sender is in an infinite while loop just pumping data out onto the line as fast as it can. The body of the loop consists of three actions: go fetch a packet from the (always obliging) network layer, construct an outbound frame using the variable s, and send the frame on its way. Only the *info* field of the frame is used by this protocol, because the other fields have to do with error and flow control and there are no errors or flow control restrictions here.

The receiver is equally simple. Initially, it waits for something to happen, the only possibility being the arrival of an undamaged frame. Eventually, the frame arrives and the procedure wait_for_event returns, with event set to frame_arrival (which is ignored anyway). The call to from_physical_layer removes the newly arrived frame from the hardware buffer and puts it in the variable r, where the receiver code can get at it. Finally, the data portion is passed on to the network layer, and the data link layer settles back to wait for the next frame, effectively suspending itself until the frame arrives.

```
/* Protocol 1 (Utopia) provides for data transmission in one direction only, from
 sender to receiver. The communication channel is assumed to be error free
 and the receiver is assumed to be able to process all the input infinitely quickly.
 Consequently, the sender just sits in a loop pumping data out onto the line as
 fast as it can. */
typedef enum {frame_arrival} event_type;
#include "protocol.h"
void sender1(void)
                                        /* buffer for an outbound frame */
 frame s;
 packet buffer;
                                        /* buffer for an outbound packet */
 while (true) {
     from_network_layer(&buffer);
                                        /* go get something to send */
                                        /* copy it into s for transmission */
     s.info = buffer;
     to_physical_layer(&s);
                                        /* send it on its way */
                                        /* Tomorrow, and tomorrow, and tomorrow,
 }
                                          Creeps in this petty pace from day to day
                                          To the last syllable of recorded time.
                                              – Macbeth, V, v */
}
void receiver1(void)
 frame r:
                                        /* filled in by wait, but not used here */
 event_type event;
 while (true) {
     wait_for_event(&event);
                                        /* only possibility is frame_arrival */
                                        /* go get the inbound frame */
     from_physical_layer(&r);
     to_network_layer(&r.info);
                                        /* pass the data to the network layer */
}
```

Figure 3-12. A utopian simplex protocol.

The utopia protocol is unrealistic because it does not handle either flow control or error correction. Its processing is close to that of an unacknowledged connectionless service that relies on higher layers to solve these problems, though even an unacknowledged connectionless service would do some error detection.

3.3.2 A Simplex Stop-and-Wait Protocol for an Error-Free Channel

Now we will tackle the problem of preventing the sender from flooding the receiver with frames faster than the latter is able to process them. This situation can easily happen in practice so being able to prevent it is of great importance.

The communication channel is still assumed to be error free, however, and the data traffic is still simplex.

One solution is to build the receiver to be powerful enough to process a continuous stream of back-to-back frames (or, equivalently, define the link layer to be slow enough that the receiver can keep up). It must have sufficient buffering and processing abilities to run at the line rate and must be able to pass the frames that are received to the network layer quickly enough. However, this is a worst-case solution. It requires dedicated hardware and can be wasteful of resources if the utilization of the link is mostly low. Moreover, it just shifts the problem of dealing with a sender that is too fast elsewhere; in this case to the network layer.

A more general solution to this problem is to have the receiver provide feed-back to the sender. After having passed a packet to its network layer, the receiver sends a little dummy frame back to the sender which, in effect, gives the sender permission to transmit the next frame. After having sent a frame, the sender is required by the protocol to bide its time until the little dummy (i.e., acknowledgement) frame arrives. This delay is a simple example of a flow control protocol.

Protocols in which the sender sends one frame and then waits for an acknowledgement before proceeding are called **stop-and-wait**. Figure 3-13 gives an example of a simplex stop-and-wait protocol.

Although data traffic in this example is simplex, going only from the sender to the receiver, frames do travel in both directions. Consequently, the communication channel between the two data link layers needs to be capable of bidirectional information transfer. However, this protocol entails a strict alternation of flow: first the sender sends a frame, then the receiver sends a frame, then the sender sends another frame, then the receiver sends another one, and so on. A half-duplex physical channel would suffice here.

As in protocol 1, the sender starts out by fetching a packet from the network layer, using it to construct a frame, and sending it on its way. But now, unlike in protocol 1, the sender must wait until an acknowledgement frame arrives before looping back and fetching the next packet from the network layer. The sending data link layer need not even inspect the incoming frame as there is only one possibility. The incoming frame is always an acknowledgement.

The only difference between receiver1 and receiver2 is that after delivering a packet to the network layer, receiver2 sends an acknowledgement frame back to the sender before entering the wait loop again. Because only the arrival of the frame back at the sender is important, not its contents, the receiver need not put any particular information in it.

3.3.3 A Simplex Stop-and-Wait Protocol for a Noisy Channel

Now let us consider the normal situation of a communication channel that makes errors. Frames may be either damaged or lost completely. However, we assume that if a frame is damaged in transit, the receiver hardware will detect this /* Protocol 2 (Stop-and-wait) also provides for a one-directional flow of data from sender to receiver. The communication channel is once again assumed to be error free, as in protocol 1. However, this time the receiver has only a finite buffer capacity and a finite processing speed, so the protocol must explicitly prevent the sender from flooding the receiver with data faster than it can be handled. */

```
typedef enum {frame_arrival} event_type;
#include "protocol.h"
void sender2(void)
                                          /* buffer for an outbound frame */
 frame s;
 packet buffer;
                                          /* buffer for an outbound packet */
                                          /* frame_arrival is the only possibility */
 event_type event;
 while (true) {
     from_network_layer(&buffer);
                                          /* go get something to send */
                                          /* copy it into s for transmission */
     s.info = buffer;
     to_physical_layer(&s);
                                          /* bye-bye little frame */
     wait_for_event(&event);
                                          /* do not proceed until given the go ahead */
}
void receiver2(void)
                                          /* buffers for frames */
 frame r, s;
                                          /* frame_arrival is the only possibility */
 event_type event;
 while (true) {
     wait_for_event(&event);
                                          /* only possibility is frame_arrival */
     from_physical_layer(&r);
                                          /* go get the inbound frame */
                                          /* pass the data to the network layer */
     to_network_layer(&r.info);
     to_physical_layer(&s);
                                          /* send a dummy frame to awaken sender */
 }
}
```

Figure 3-13. A simplex stop-and-wait protocol.

when it computes the checksum. If the frame is damaged in such a way that the checksum is nevertheless correct—an unlikely occurrence—this protocol (and all other protocols) can fail (i.e., deliver an incorrect packet to the network layer).

At first glance it might seem that a variation of protocol 2 would work: adding a timer. The sender could send a frame, but the receiver would only send an acknowledgement frame if the data were correctly received. If a damaged frame arrived at the receiver, it would be discarded. After a while the sender would time out and send the frame again. This process would be repeated until the frame finally arrived intact.

This scheme has a fatal flaw in it though. Think about the problem and try to discover what might go wrong before reading further.

To see what might go wrong, remember that the goal of the data link layer is to provide error-free, transparent communication between network layer processes. The network layer on machine A gives a series of packets to its data link layer, which must ensure that an identical series of packets is delivered to the network layer on machine B by its data link layer. In particular, the network layer on B has no way of knowing that a packet has been lost or duplicated, so the data link layer must guarantee that no combination of transmission errors, however unlikely, can cause a duplicate packet to be delivered to a network layer.

Consider the following scenario:

- 1. The network layer on A gives packet 1 to its data link layer. The packet is correctly received at B and passed to the network layer on B. B sends an acknowledgement frame back to A.
- The acknowledgement frame gets lost completely. It just never arrives at all. Life would be a great deal simpler if the channel mangled and lost only data frames and not control frames, but sad to say, the channel is not very discriminating.
- 3. The data link layer on A eventually times out. Not having received an acknowledgement, it (incorrectly) assumes that its data frame was lost or damaged and sends the frame containing packet 1 again.
- 4. The duplicate frame also arrives intact at the data link layer on *B* and is unwittingly passed to the network layer there. If *A* is sending a file to *B*, part of the file will be duplicated (i.e., the copy of the file made by *B* will be incorrect and the error will not have been detected). In other words, the protocol will fail.

Clearly, what is needed is some way for the receiver to be able to distinguish a frame that it is seeing for the first time from a retransmission. The obvious way to achieve this is to have the sender put a sequence number in the header of each frame it sends. Then the receiver can check the sequence number of each arriving frame to see if it is a new frame or a duplicate to be discarded.

Since the protocol must be correct and the sequence number field in the header is likely to be small to use the link efficiently, the question arises: what is the minimum number of bits needed for the sequence number? The header might provide 1 bit, a few bits, 1 byte, or multiple bytes for a sequence number depending on the protocol. The important point is that it must carry sequence numbers that are large enough for the protocol to work correctly, or it is not much of a protocol.

The only ambiguity in this protocol is between a frame, m, and its direct successor, m + 1. If frame m is lost or damaged, the receiver will not acknowledge it, so the sender will keep trying to send it. Once it has been correctly received, the receiver will send an acknowledgement to the sender. It is here that the potential

trouble crops up. Depending upon whether the acknowledgement frame gets back to the sender correctly or not, the sender may try to send m or m + 1.

At the sender, the event that triggers the transmission of frame m+1 is the arrival of an acknowledgement for frame m. But this situation implies that m-1 has been correctly received, and furthermore that its acknowledgement has also been correctly received by the sender. Otherwise, the sender would not have begun with m, let alone have been considering m+1. As a consequence, the only ambiguity is between a frame and its immediate predecessor or successor, not between the predecessor and successor themselves.

A 1-bit sequence number (0 or 1) is therefore sufficient. At each instant of time, the receiver expects a particular sequence number next. When a frame containing the correct sequence number arrives, it is accepted and passed to the network layer, then acknowledged. Then the expected sequence number is incremented modulo 2 (i.e., 0 becomes 1 and 1 becomes 0). Any arriving frame containing the wrong sequence number is rejected as a duplicate. However, the last valid acknowledgement is repeated so that the sender can eventually discover that the frame has been received.

An example of this kind of protocol is shown in Fig. 3-14. Protocols in which the sender waits for a positive acknowledgement before advancing to the next data item are often called **ARQ** (**Automatic Repeat reQuest**) or **PAR** (**Positive Acknowledgement with Retransmission**). Like protocol 2, this one also transmits data only in one direction.

Protocol 3 differs from its predecessors in that both sender and receiver have a variable whose value is remembered while the data link layer is in the wait state. The sender remembers the sequence number of the next frame to send in <code>next_frame_to_send</code>; the receiver remembers the sequence number of the next frame expected in <code>frame_expected</code>. Each protocol has a short initialization phase before entering the infinite loop.

After transmitting a frame, the sender starts the timer running. If it was already running, it will be reset to allow another full timer interval. The interval should be chosen to allow enough time for the frame to get to the receiver, for the receiver to process it in the worst case, and for the acknowledgement frame to propagate back to the sender. Only when that interval has elapsed is it safe to assume that either the transmitted frame or its acknowledgement has been lost, and to send a duplicate. If the timeout interval is set too short, the sender will transmit unnecessary frames. While these extra frames will not affect the correctness of the protocol, they will hurt performance.

After transmitting a frame and starting the timer, the sender waits for something exciting to happen. Only three possibilities exist: an acknowledgement frame arrives undamaged, a damaged acknowledgement frame staggers in, or the timer expires. If a valid acknowledgement comes in, the sender fetches the next packet from its network layer and puts it in the buffer, overwriting the previous packet. It also advances the sequence number. If a damaged frame arrives or the

timer expires, neither the buffer nor the sequence number is changed so that a duplicate can be sent. In all cases, the contents of the buffer (either the next packet or a duplicate) are then sent.

When a valid frame arrives at the receiver, its sequence number is checked to see if it is a duplicate. If not, it is accepted, passed to the network layer, and an acknowledgement is generated. Duplicates and damaged frames are not passed to the network layer, but they do cause the last correctly received frame to be acknowledged to signal the sender to advance to the next frame or retransmit a damaged frame.

3.4 SLIDING WINDOW PROTOCOLS

In the previous protocols, data frames were transmitted in one direction only. In most practical situations, there is a need to transmit data in both directions. One way of achieving full-duplex data transmission is to run two instances of one of the previous protocols, each using a separate link for simplex data traffic (in different directions). Each link is then comprised of a "forward" channel (for data) and a "reverse" channel (for acknowledgements). In both cases the capacity of the reverse channel is almost entirely wasted.

A better idea is to use the same link for data in both directions. After all, in protocols 2 and 3 it was already being used to transmit frames both ways, and the reverse channel normally has the same capacity as the forward channel. In this model the data frames from A to B are intermixed with the acknowledgement frames from A to B. By looking at the *kind* field in the header of an incoming frame, the receiver can tell whether the frame is data or an acknowledgement.

Although interleaving data and control frames on the same link is a big improvement over having two separate physical links, yet another improvement is possible. When a data frame arrives, instead of immediately sending a separate control frame, the receiver restrains itself and waits until the network layer passes it the next packet. The acknowledgement is attached to the outgoing data frame (using the *ack* field in the frame header). In effect, the acknowledgement gets a free ride on the next outgoing data frame. The technique of temporarily delaying outgoing acknowledgements so that they can be hooked onto the next outgoing data frame is known as **piggybacking**.

The principal advantage of using piggybacking over having distinct acknowledgement frames is a better use of the available channel bandwidth. The *ack* field in the frame header costs only a few bits, whereas a separate frame would need a header, the acknowledgement, and a checksum. In addition, fewer frames sent generally means a lighter processing load at the receiver. In the next protocol to be examined, the piggyback field costs only 1 bit in the frame header. It rarely costs more than a few bits.

However, piggybacking introduces a complication not present with separate acknowledgements. How long should the data link layer wait for a packet onto