

Computer Vision Edge Detection

WS 2019/2020 Prof. Dr. Simone Frintrop

Computer Vision Group, Department of Informatics University of Hamburg, Germany

Content

- High-pass filtering and edges
- Derivatives, partial derivatives, gradient
- Edge filters: Derivatives of Gaussians, Sobel, Prewitt, Laplacian of Gaussian, Difference of Gaussian
- Filters as templates

Edge Detection

- Why are we interested in edges?
- They often define the boundaries of objects and are important for object recognition

Figure from J. Shotton et al., PAMI 2007

High-pass Filtering

- High-pass filtering lets the high frequencies pass
- → Edge detection corresponds to high-pass filtering

Original image

High-pass filtered

Recall: Images as Functions

Edges look like steep cliffs

[Image: Steve Seitz]

Edge filters

- Remember: the image is a signal or function f(x, y)
- Edges are regions with a high slope
- What does the intensity profile of a slice through the below image at the red line look like?

Intensity profile at red line

- High slopes in signals are found by derivatives
- Two approaches
 - Find maxima/minima in 1st derivative
 - Find zero-crossings in 2nd derivative

[Image: Bastian Leibe]

Question

What do the 1st and 2nd derivative of this function look like?

Intensity profile at red line

[Image: Bastian Leibe]

Derivatives and Edges...

- Derivatives are defined in terms of differences
- Approximation of 1st order derivative with finite differences:

- Forward difference: f'(x) = f(x+1) - f(x)

-1 1

- Backward difference: f'(x) = f(x) f(x-1)
- -1 1
- Central difference: f'(x) = f(x+1) f(x-1)
- -1 0 1
- or: f'(x) = f(x + 0.5) f(x 0.5)

Image row	0	0	0	0	0	255	255	255	255	255
1 st derivative, forward difference	0	0	0	0	255	0	0	0	0	0
1 st derivative, backward difference:	0	0	0	0	0	255	0	0	0	0
1 st derivative, central difference:	0	0	0	0	255	255	0	0	0	0

• 1st order derivative (central difference):

$$f'(x) = f(x + 0.5) - f(x - 0.5)$$

2nd order derivative:

$$f''(x) = (f(x+0.5) - f(x-0.5))'$$

$$= f'(x+0.5) - f'(x-0.5)$$

$$= (f(x+1) - f(x)) - (f(x) - f(x-1))$$

$$= f(x+1) - f(x) - f(x) + f(x-1)$$

$$= f(x+1) - 2f(x) + f(x-1)$$

- What does the kernel look like?
- Kernel:

1 -2 1

Derivatives of a Gaussian (1D)

Notation:

First order derivative:

$$f'(x) = \frac{d}{dx}f(x) = \frac{df}{dx} = \frac{\partial}{\partial x}f(x) = D_x f(x) = D_x$$

Second order derivative:

$$f''(x) = \frac{d^2}{dx^2}f(x) = \frac{d^2f}{dx^2} = \frac{\partial^2}{\partial x^2}f(x) = D_x^2f(x) = D_{xx}$$

Edge Detection

First ideas for edge detection with 1st derivative for a 1D signal without noise:

- Take the derivative of each point (apply central difference filter)
- 2. Search for local extrema of the derivative value

[Image: Bastian Leibe]

From 1D to 2D

Derivatives in images

Partial derivatives of function f(x, y):

• In x-direction:
$$\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)$$

• In y-direction: $\frac{\partial f}{\partial y} = f(x,y+1) - f(x,y)$

What do the corresponding filter kernels look like?

Derivatives in images

Partial derivatives of function f(x, y):

• In x-direction:
$$\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)$$

• In y-direction:
$$\frac{\partial f}{\partial y} = f(x,y+1) - f(x,y)$$

What do the corresponding filter kernels look like?

Partial Derivatives of an Image

Derivatives in images

Partial derivatives of function f(x, y):

• In x-direction:
$$\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)$$

• In y-direction:
$$\frac{\partial f}{\partial y} = f(x, y+1) - f(x, y)$$

Together, the partial derivatives form the gradient:

$$\nabla f = \operatorname{grad}(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points into the direction of strongest increase of f

Image Gradient

Gradients in images:
$$\nabla f = grad(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}^T$$

The gradient points in the direction of most rapid intensity change

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]^T$$

Simone Frintrop Slide credit: Steve Seitz 24

Image Gradient

Gradients in images:
$$\nabla f = grad(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}^T$$

• The gradient direction (orientation) is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Edge Detection

First ideas for edge detection with 1st derivative for a 2D signal without noise:

- 1. Take the partial derivatives in x and y direction
- 2. Compute the gradient magnitude $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$
- 3. Threshold on the gradient magnitude

Effect of Noise

Noise affects the derivatives strongly: Intensity function of a row of a noisy image:

Where is the edge?

Simone Frintrop Slide credit: Steve Seitz 27

Solution: Smooth First

Simone Frintrop Slide credit: Steve Seitz 28

Derivative Theorem of Convolution

Slide credit: Steve Seitz Simone Frintrop 29

Derivative of Gaussian Filters

The Gaussian derivative in 2D:

f: image

h: Gaussian,

 $\frac{\partial}{\partial x}$ derivative in x direction

Gaussian derivative in x-direction

Derivative of Gaussian Filters

[Image: Svetlana Lazebnik]

Derivative of Gaussian Filters

Approximation of 1st derivative of Gaussian with the Sobel filter:

-1	0	1
-2	0	2
-1	0	1

1	2	1
0	0	0
-1	-2	-1

or even simpler with the Prewitt operator:

-1	0	1
-1	0	1
-1	0	1

1	1	1
0	0	0
-1	-1	-1

Edge Detection

So, to summarize the 1st derivative approach for edge detection for a 2D signal with noise:

- 1. Smooth the image
- 2. Take the partial derivatives in x and y direction
- 3. Compute the gradient magnitude
- 4. Threshold on the gradient magnitude
- 1. and 2. can be combined into directly smoothing with derivatives of smoothing kernels, e.g., with the Sobel filters

Derivatives and Edges...

Simone Frintrop Slide credit: Bastian Leibe 36

2nd order derivatives

Remember the 1D case, 2nd order derivative:

$$\frac{\partial^2}{\partial x^2} f(x) = f(x+1) - 2f(x) + f(x-1)$$

1 -2 1

Extended to a 2nd order partial derivative (2D case):

$$\frac{\partial^2}{\partial x^2} f(x,y) = f(x+1,y) - 2f(x,y) + f(x-1,y)$$

The Laplacian is a 2nd order differential operator

$$\Delta f(x,y) = \nabla^2 f(x,y) = \nabla \cdot \nabla f(x,y) = \frac{\partial^2}{\partial x^2} f(x,y) + \frac{\partial^2}{\partial y^2} f(x,y)$$

$$= f(x+1,y) - 2f(x,y) + f(x-1,y) + f(x,y+1) - 2f(x,y) + f(x,y-1)$$

$$= f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

2nd order derivatives

The Laplacian

$$\nabla^2 f(x,y) = f(x,y+1) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

What does the corresponding filter mask look like?

2nd order derivatives

The Laplacian

$$\nabla^2 f(x,y) = f(x,y+1) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

What does the corresponding filter mask look like?

0	1	0
1	-4	1
0	1	0

Note that this results from

$$\nabla^2 f(x,y) = \frac{\partial^2}{\partial x^2} f(x,y) + \frac{\partial^2}{\partial y^2} f(x,y)$$

Laplacian of Gaussian (LoG)

- Edge detection with 2nd order derivatives.
- Again problem with noisy signals.

• Solution: smooth first: $\frac{\partial^2}{\partial x^2}(h\star f)$ or smooth derivative: $(\frac{\partial^2}{\partial x^2}h)\star f$

Edge is at zero-crossings of bottom graph

Simone Frintrop Slide credit: Steve Seitz 40

Laplacian of Gaussian (LoG)

2D Laplacian of Gaussian filter:

[Image: http://suinotes.wordpress.com/2010/05/27/generic-multivariate-gaussian-kernel-in-any-derivative-order/]

DoG versus LoG

- The Laplacian (Mexican hat filter) can be approximated by the Difference of Gaussian filter (DoG)
- DoG is much cheaper, since it is separable
- This operator corresponds
 well to cells in the human visual
 system, e.g. retinal ganglion cells
 (See Lecture "Computer Vision 2)

Laplacian of Gaussian (LoG)

A (very) simple approximation to the LoG:

- The DoB filter (Difference of Boxes) (or just centersurround filter):
- Computes difference between two mean filters of different sizes

Edge Detection

The 2nd derivative approach for edge detection for a 2D signal with noise:

- 1. Smooth the image
- 2. Apply the Laplacian operator
- Search for zero crossings
 (zero crossing at x: at least two opposing neighbors have different signs)
- 1. and 2. can be combined into directly smoothing with a 2nd derivative of a smoothing kernel, e.g., a Laplacian of Gaussian

Filters as Templates

Filters can be used as templates:
They look like the effects they are intended to find

positive values: white

negative values: black

zero values: gray

Where's Waldo?

Scene

Simone Frintrop Slide credit: Kristen Grauman 46

Where's Waldo?

Detected template

Correlation map

In practical applications this usually does not work well, since the template never fits perfectly to the test data

Summary

Edge detection with

1st order derivatives: smooth image

compute partial derivatives D_X and D_V

compute gradient magnitude

threshold on gradient magnitude

2nd order derivatives: smooth image

apply Laplacian operator

search for zero crossings

Derivatives of Gaussian filters

- Laplacian of Gaussian filters
- Filters as templates

Primary Literature

- Szeliski: parts from chapter 3 and 4
- Gonzalez/Woods, 4th edition: parts from chapter 3

Secondary Literature

 Shotton, Blake, Cipolla: "Multi-scale categorial object recognition using contour fragments", PAMI 2007