In [1]: import pandas as pd
 import numpy as np
 from sklearn.preprocessing import StandardScaler
 from sklearn.linear_model import LogisticRegression
 from sklearn.model_selection import train_test_split

In [3]: df=pd.read_csv("C3_bot_detection_data.csv")
df

	User ID	Username	Tweet	Retweet Count	Mention Count	Follower Count	Verified	Bot Label	Location	Creat
0	132131	flong	Station activity person against natural majori	85	1	2353	False	1	Adkinston	202 05- 15:29:
1	289683	hinesstephanie	Authority research natural life material staff	55	5	9617	True	0	Sanderston	202 11- 05:18:
2	779715	roberttran	Manage whose quickly especially foot none to g	6	2	4363	True	0	Harrisonfurt	202 08- 03:16:
3	696168	pmason	Just cover eight opportunity strong policy which.	54	5	2242	True	1	Martinezberg	202 08- 22:27:
4	704441	noah87	Animal sign six data good or.	26	3	8438	False	1	Camachoville	202 04- 21:24:
49995	491196	uberg	Want but put card direction know miss former h	64	0	9911	True	1	Lake Kimberlyburgh	202 04- 11:06:
49996	739297	jessicamunoz	Provide whole maybe agree church respond most	18	5	9900	False	1	Greenbury	202 10- 03:57:
49997	674475	lynncunningham	Bring different everyone international capital	43	3	6313	True	1	Deborahfort	202 07- 03:54:
49998	167081	richardthompson	Than about single generation itself seek sell	45	1	6343	False	0	Stephenside	202 03- 12:13:
49999	311204	daniel29	Here morning class various room human true bec	91	4	4006	False	0	Novakberg	202 12- 06:11:

```
In [5]: df1=df.iloc[:,3:8]
df1
```

Out[5]:

	Retweet Count	Mention Count	Follower Count	Verified	Bot Label
0	85	1	2353	False	1
1	55	5	9617	True	0
2	6	2	4363	True	0
3	54	5	2242	True	1
4	26	3	8438	False	1
49995	64	0	9911	True	1
49996	18	5	9900	False	1
49997	43	3	6313	True	1
49998	45	1	6343	False	0
49999	91	4	4006	False	0

50000 rows × 5 columns

```
In [6]: df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 5 columns):
```

```
#
   Column
                  Non-Null Count Dtype
                  -----
   Retweet Count
0
                  50000 non-null int64
1
   Mention Count
                  50000 non-null int64
2
   Follower Count 50000 non-null int64
   Verified
3
                  50000 non-null bool
   Bot Label
                  50000 non-null int64
```

dtypes: bool(1), int64(4)
memory usage: 1.6 MB

```
In [8]: y=df1["Verified"]
x=df1.drop(["Verified"],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [9]: lr=LogisticRegression()
lr.fit(x_train,y_train)
```

Out[9]: LogisticRegression()

```
In [13]: | lr.predict(x_test)
```

Out[13]: array([True, True, True, ..., False, True, True])

```
In [14]: lr.score(x_test,y_test)
Out[14]: 0.494
In [15]:
          df2=pd.read csv("C4 framingham.csv")
Out[15]:
                 education currentSmoker cigsPerDay BPMeds
            age
                                                              prevalentStroke prevalentHyp diabetes totChol sysBl
                                       0
                                                 0.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                 0
                                                                                                              106.
             39
                       4.0
                                                                                                      195.0
                                       0
             46
                       2.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                 0
         )
                                                 0.0
                                                                                                      250.0
                                                                                                              121.
             48
                       1.0
                                       1
                                                20.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                  0
                                                                                                      245.0
                                                                                                              127.
         )
             61
                       3.0
                                       1
                                                30.0
                                                          0.0
                                                                           0
                                                                                        1
                                                                                                 0
                                                                                                      225.0
                                                                                                              150.
         )
             46
                       3.0
                                       1
                                                23.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                 0
                                                                                                      285.0
                                                                                                              130.
                                                           ...
             50
                       1.0
                                       1
                                                 1.0
                                                          0.0
                                                                           0
                                                                                        1
                                                                                                 0
                                                                                                      313.0
                                                                                                              179.
             51
                       3.0
                                       1
                                                43.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                 0
                                                                                                      207.0
                                                                                                              126.
         )
             48
                       2.0
                                       1
                                                20.0
                                                         NaN
                                                                           0
                                                                                        0
                                                                                                 0
                                                                                                      248.0
                                                                                                              131.
                                                15.0
                                                          0.0
                                                                                        0
                                                                                                 0
                                                                                                              126.
             44
                       1.0
                                       1
                                                                           0
                                                                                                      210.0
         )
             52
                       2.0
                                       0
                                                 0.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                  0
                                                                                                      269.0
                                                                                                              133.
         × 16 columns
In [16]: | df2=df2.dropna()
In [17]: | df2.info()
           <class 'pandas.core.frame.DataFrame'>
           Int64Index: 3656 entries, 0 to 4237
           Data columns (total 16 columns):
            #
                Column
                                    Non-Null Count
                                                      Dtype
                ----
            0
                male
                                    3656 non-null
                                                       int64
            1
                age
                                    3656 non-null
                                                       int64
            2
                education
                                                      float64
                                    3656 non-null
            3
                currentSmoker
                                    3656 non-null
                                                       int64
            4
                cigsPerDay
                                                      float64
                                    3656 non-null
            5
                BPMeds
                                    3656 non-null
                                                      float64
            6
                                    3656 non-null
                                                      int64
                prevalentStroke
            7
                                                      int64
                prevalentHyp
                                    3656 non-null
            8
                diabetes
                                    3656 non-null
                                                       int64
            9
                totChol
                                    3656 non-null
                                                      float64
            10
                sysBP
                                    3656 non-null
                                                      float64
            11
                diaBP
                                    3656 non-null
                                                      float64
            12
                                                      float64
                BMI
                                    3656 non-null
            13
                                                      float64
                heartRate
                                    3656 non-null
            14
                glucose
                                    3656 non-null
                                                      float64
            15
                TenYearCHD
                                    3656 non-null
                                                       int64
           dtypes: float64(9), int64(7)
           memory usage: 485.6 KB
```

```
In [26]: |y=df2["diabetes"]
         x=df2.drop(["diabetes"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: | 1r=LogisticRegression()
         lr.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:763: Conve
         rgenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.or
         g/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (http
         s://scikit-learn.org/stable/modules/linear model.html#logistic-regression)
           n iter i = check optimize result(
Out[27]: LogisticRegression()
In [29]: val=[[1,34,5,1,4,1,0,1,123,108,89,29,84,70,1]]
         lr.predict(val)
Out[29]: array([0], dtype=int64)
In [31]: |lr.score(x_test,y_test)
Out[31]: 0.9817684594348223
In [30]: df3=pd.read_csv("C5_health care diabetes.csv")
         df3
```

Out[30]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Out
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	
763	10	101	76	48	180	32.9	0.171	63	
764	2	122	70	27	0	36.8	0.340	27	
765	5	121	72	23	112	26.2	0.245	30	
766	1	126	60	0	0	30.1	0.349	47	
767	1	93	70	31	0	30.4	0.315	23	

768 rows × 9 columns

(

```
In [32]: |df3.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 768 entries, 0 to 767
         Data columns (total 9 columns):
          #
              Column
                                        Non-Null Count Dtype
              _____
          0
              Pregnancies
                                         768 non-null
                                                         int64
                                        768 non-null
          1
              Glucose
                                                         int64
          2
              BloodPressure
                                        768 non-null
                                                         int64
          3
              SkinThickness
                                        768 non-null
                                                         int64
          4
              Insulin
                                        768 non-null
                                                         int64
          5
              BMI
                                        768 non-null
                                                         float64
          6
              DiabetesPedigreeFunction
                                        768 non-null
                                                         float64
          7
              Age
                                         768 non-null
                                                         int64
              Outcome
                                        768 non-null
                                                         int64
          8
         dtypes: float64(2), int64(7)
         memory usage: 54.1 KB
In [34]: y=df3["Outcome"]
         x=df3.drop(["Outcome"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [35]: | lr=LogisticRegression()
         lr.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:763: Conve
         rgenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.or
         g/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (http
         s://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)
           n iter i = check optimize result(
Out[35]: LogisticRegression()
In [36]: |lr.predict(x test)
Out[36]: array([0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,
                0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0,
                0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
                0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
                0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
                0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0,
                1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], dtype=int64)
```

```
In [37]: val1=[[1,34,5,1,4,1,123,10]]
lr.predict(val1)
Out[37]: array([1], dtype=int64)
In [ ]:
```