Intelligent Agents

Dr. Steven Bethard

Computer and Information Sciences University of Alabama at Birmingham

12 Jan 2016

Outline

- Intelligent Agents
 - Agents and Environments
 - Example: Vacuum Cleaner World
 - Rational Agents
- Environment Types
 - Specifying the Task
 - Describing Environments
 - Example Environments
- 3 Agent Types
 - Reflex Agents
 - Goal-based Agents
 - Utility-based Agents
 - Learning Agents

Outline

- Intelligent Agents
 - Agents and Environments
 - Example: Vacuum Cleaner World
 - Rational Agents
- 2 Environment Types
 - Specifying the Task
 - Describing Environments
 - Example Environments
- 3 Agent Types
 - Reflex Agents
 - Goal-based Agents
 - Utility-based Agents
 - Learning Agents

Agents and Environments

Vacuum Cleaner World

Percepts: Location and status, e.g. [A, Dirty]

Actions: Left, Right, Suck, NoOp

A Vacuum Cleaner Agent

```
class ReflexVacuumAgent(object):
def act(self, percept):
    location, status = percept
    if status == "Dirty":
        return "Suck"
    elif location == "A":
        return "Right"
    elif location == "B":
        return "Left"
```

Rational Agents

Performance Measure

How successful was the agent?

E.g. the vacuum cleaner agent:

- Maximized clean squares
- Minimized electricity consumed

Rational Agent

Selects the action that is expected to maximize the performance measure

Rational Agents

Performance Measure

How successful was the agent?

E.g. the vacuum cleaner agent:

- Maximized clean squares
- Minimized electricity consumed

Rational Agent

Selects the action that is expected to maximize the performance measure

Rational Agents

Performance Measure

How successful was the agent?

E.g. the vacuum cleaner agent:

- Maximized clean squares
- Minimized electricity consumed

Rational Agent

Selects the action that is expected to maximize the performance measure

Rational vs. Omniscient

Rational?

- Left turn arrow was red. Didn't check for oncoming traffic. Turned left. Hit by a bus.
- Left turn arrow was green. Didn't check for oncoming traffic. Turned left. Hit by a bus.
- Left turn arrow was green. Checked for oncoming traffic, saw none. Turned left. Hit by bus.

Rational vs. Omniscient

Rational?

- Left turn arrow was red. Didn't check for oncoming traffic. Turned left. Hit by a bus.
- Left turn arrow was green. Didn't check for oncoming traffic. Turned left. Hit by a bus.
- Left turn arrow was green. Checked for oncoming traffic, saw none. Turned left. Hit by bus.

Rational vs. Omniscient

Rational?

- Left turn arrow was red. Didn't check for oncoming traffic. Turned left. Hit by a bus.
- Left turn arrow was green. Didn't check for oncoming traffic. Turned left. Hit by a bus.
- Left turn arrow was green. Checked for oncoming traffic, saw none. Turned left. Hit by bus.

Outline

- Intelligent Agents
 - Agents and Environments
 - Example: Vacuum Cleaner World
 - Rational Agents
- Environment Types
 - Specifying the Task
 - Describing Environments
 - Example Environments
- 3 Agent Types
 - Reflex Agents
 - Goal-based Agents
 - Utility-based Agents
 - Learning Agents

Performance measure Environment Actuators Sensors

Performance measure safety, destination, speed, legality, comfort. . .

Environment

Actuators

Sensors

Performance measure

safety, destination, speed, legality, comfort...

Environment

streets/freeways, traffic, pedestrians, weather...

Actuators

Sensors

Performance measure

safety, destination, speed, legality, comfort...

Environment

streets/freeways, traffic, pedestrians, weather...

Actuators

steering, accelerator, brake, speaker/display...

Sensors

Performance measure

safety, destination, speed, legality, comfort...

Environment

streets/freeways, traffic, pedestrians, weather...

Actuators

steering, accelerator, brake, speaker/display...

Sensors

video, accelerometer, microphone, GPS...

Describing Environments

Fully vs. Partially Observable

Fully All relevant to action is visible, e.g. chess

Partially Part of environment unavailable, e.g. poker

Deterministic vs. Strategic vs. Stochastic

Determin. State + action determines next state, e.g. *crossword*

Strategic State + action + other agent actions determines next state, e.g. *chess*

Stochastic Next state not fully determined, e.g. poker

Describing Environments

Episodic vs. Sequential

Episodic Old actions irrelevant, e.g. *face detection*Sequential Old actions affect current state, e.g. *chess*

Static vs. Semidynamic vs. Dynamic

Static Environment does not change while deciding, e.g. *chess, poker*

Semi Performance score changes while deciding, e.g. face detection

Dynamic Environment changes while deciding, e.g. *driving*

Describing Environments

Discrete vs. Continuous

Discrete States, percepts and actions are countable, e.g. *chess, poker*

Continuous States, percepts or actions are real-valued, e.g. *driving*

Single vs. Multiple Agents

Single Single agent, e.g. crossword, face detection

Multiple More than one agent, e.g. poker, driving

	Solitaire	Chess	Internet Shopping	Taxi
Observable				
Deterministic				
Episodic				
Static				
Discrete				
Single-agent				

			Internet	
	Solitaire	Chess	Shopping	Taxi
Observable	No	Yes	No	No
Deterministic				
Episodic				
Static				
Discrete				
Single-agent				

			Internet	
	Solitaire	Chess	Shopping	Taxi
Observable	No	Yes	No	No
Deterministic	No	Strategic	Partly	No
Episodic				
Static				
Discrete				
Single-agent				

			Internet	
	Solitaire	Chess	Shopping	Taxi
Observable	No	Yes	No	No
Deterministic	No	Strategic	Partly	No
Episodic	No	No	No	No
Static				
Discrete				
Single-agent				

			Internet	
	Solitaire	Chess	Shopping	Taxi
Observable	No	Yes	No	No
Deterministic	No	Strategic	Partly	No
Episodic	No	No	No	No
Static	Yes	Yes	Semi	No
Discrete				
Single-agent				

			Internet	
	Solitaire	Chess	Shopping	Taxi
Observable	No	Yes	No	No
Deterministic	No	Strategic	Partly	No
Episodic	No	No	No	No
Static	Yes	Yes	Semi	No
Discrete	Yes	Yes	Yes	No
Single-agent				

			Internet	
	Solitaire	Chess	Shopping	Taxi
Observable	No	Yes	No	No
Deterministic	No	Strategic	Partly	No
Episodic	No	No	No	No
Static	Yes	Yes	Semi	No
Discrete	Yes	Yes	Yes	No
Single-agent	Yes	No	Maybe	No

Outline

- Intelligent Agents
 - Agents and Environments
 - Example: Vacuum Cleaner World
 - Rational Agents
- 2 Environment Types
 - Specifying the Task
 - Describing Environments
 - Example Environments
- 3 Agent Types
 - Reflex Agents
 - Goal-based Agents
 - Utility-based Agents
 - Learning Agents

Simple Reflex Agents

Simple Reflex Agent Example

```
class ReflexVacuumAgent(object):
def act(self, percept):
    location, status = percept
    if status == "Dirty":
        return "Suck"
    elif location == "A":
        return "Right"
    elif location == "B":
        return "Left"
```

Stateful Reflex Agents

Stateful Reflex Agent Example

```
class StatefulReflexVacuumAgent(object):
def __init__(self):
    self.time_at_location = 3
    self.directions = {"A": "Right", "B": "Left"}
def act(self, percept):
    self.time_at_location += 1
    location, status = percept
    if status == "Dirty":
        return "Suck"
    elif self.time_at_location > 3:
        self.time_at_location = 0
        return self.directions[location]
    else:
        return "NoOp"
```

Goal-based Agents

Utility-based Agents

Learning Agents

- Agents take actions based on percepts
- Rational agents maximize a performance measure
- Features of task environments:
 - Observable? Deterministic? Episodic? Static? Discrete? Single-agent?
- Agent architectures:
 - Reflex, Stateful reflex, Goal-based, Utility-based

- Agents take actions based on percepts
- Rational agents maximize a performance measure
- Features of task environments:
 - Observable? Deterministic? Episodic? Static? Discrete? Single-agent?
- Agent architectures:
 - Reflex, Stateful reflex, Goal-based, Utility-based

- Agents take actions based on percepts
- Rational agents maximize a performance measure
- Features of task environments:
 - Observable? Deterministic? Episodic? Static? Discrete? Single-agent?
- Agent architectures:
 - Reflex, Stateful reflex, Goal-based, Utility-based

- Agents take actions based on percepts
- Rational agents maximize a performance measure
- Features of task environments:
 - Observable? Deterministic? Episodic? Static? Discrete? Single-agent?
- Agent architectures:
 - Reflex, Stateful reflex, Goal-based, Utility-based

- Agents take actions based on percepts
- Rational agents maximize a performance measure
- Features of task environments:
 - Observable? Deterministic? Episodic? Static? Discrete? Single-agent?
- Agent architectures:
 - Reflex, Stateful reflex, Goal-based, Utility-based