#### You all Did Fine



## Main Issues were Power & Confidence Intervals of Non-Normal Regression



### Observational Study Design

### Problem: What if An Observed Relationship Doesn't Make Sense?



### Problem: What if An Observed Relationship Doesn't Make Sense



#### Covariates can Change Results



#### Simpson's Paradox



# How will including k change $B_{xy}$ ?



$$y = a + B_{xy}x + e$$

k x **→>** y

B<sub>xy</sub> not changed by k

### **Full Explanation**





#### **Full Explanation**

 $\checkmark$   $\checkmark$ 

 $B_{xy}$  goes to 0 with k



 $B_{xy}$  goes to 0 with k

#### **Partial Explanation**



B<sub>xy</sub> not changed by k



B<sub>xy</sub> shrinks with k



B<sub>xy</sub> shrinks with k

#### **Full Explanation**



B<sub>xy</sub> goes to 0 with k



B<sub>xy</sub> goes to 0 with k

#### **Partial Explanation**



B<sub>xy</sub> not changed by k



B<sub>xy</sub> shrinks with k



B<sub>xy</sub> shrinks with k

#### **Suppression**



B<sub>xy</sub> increases with k



B<sub>xy</sub> increases with k



B<sub>xy</sub> increases with k



1) No node in our control set is a descendant of X.



1) No node in our control set is a descendant of X.



1) No node in our control set is a descendant of X.



1) No node in our control set is a descendant of X.



1) No node in our control set is a descendant of X.



1) No node in our control set is a descendant of X.



1) No node in our control set is a descendant of X.



1) No node in our control set is a descendant of X.



### How Do We Account for Covariates?

1. Include control variables, but be exercise care with interpretation



Z3 -> X Path is the covariance between them, accounted for in calculation of coefficients in multiple linear regression

### How Do We Account for Covariates?

1. Include control variables, but be exercise care with interpretation

2. Take residuals of predictor with respect to relevant variables in control set



Residuals with respect to Z2 may be helpful

# You Try...



# You Try...



Backdoor going through Z2 goes through Z1

# You Try...



Backdoor going through Z2 goes through Z1

# You Try...x3 -> x5





# ANOVA v. Regression for Experiments

### Regression Design and ANOVA Design have the Same Model

- ▶ Y = BX + e underlies both
- ► F-Test for both examines variation explained
- ▶ BUT Regression has fewer parameters to sample size

#### For Linear Relationships, More Power from Regression







#### A Simulation Approach to ANOVA and Regression Power

```
getY <- function(x) rnorm(length(x), x , 10)

#two approaches
x<-1:24
xAnova<-rep(seq(1,24,length.out=6),4)</pre>
```

#### A Simulation Approach to ANOVA and Regression Power

```
powFunc <- function(predictor, n.sims=500, a=F, fun=getY){</pre>
  pvec <- sapply(1:n.sims, function(i) {</pre>
    y <-fun(predictor)
    #run either a regression or categorical model
    if(a){
      alm <- lm(y~I(factor(predictor)))</pre>
    }else{
      alm <- lm(y~predictor)
    #get p from an f test
    anova(alm)[1,5]
  #power
  1 - sum(pvec > 0.05)/n.sims
```

#### Yes, Regression More Powerful

```
set.seed(100)
powFunc(x)

# [1] 0.914

powFunc(xAnova, a=T)

# [1] 0.712
```

#### What if the Relationship is Nonlinear

```
getYSat <- function(x) rnorm(length(x), -2/x, 0.7)
#
powFunc(x, fun=getYSat)
# [1] 0.39
powFunc(xAnova, a=T, fun=getYSat)
# [1] 0.918</pre>
```

#### Replicated Regression or Other Options



Nonlinear Least Squares an option, GLM if Hetereoskedasticity exists