## Support Vector Machines

#### Malte Schierholz

University of Mannheim, MZES Institute for Employment Research (IAB)

Malte.Schierholz@iab.de

February 6 and 7, 2018

#### Introduction

- Very successful in many prediction problems
- Essential tool in the machine learning toolbox
- Complex mathematical theory involved
  - Statistical learning theory
  - Function fitting in reproducing kernel Hilbert spaces

More intuitive (and historical) approach taken in the following:

- ullet Build classification model that predicts binary outcome  $y \in \{-1,1\}$
- Extensions exist for regression, ranking, anomaly detection, ... (not discussed here)

How would you build a model for binary prediction?



# Why not logistic regression?

#### Classical approach to predict binary y:

- Estimate probability model  $\log(\frac{Pr(y=+1|x)}{Pr(y=-1|x)}) = f_{\log i}(x) = \hat{\beta}_0 + x'\hat{\beta}$  (logistic regression)
- ② Predict y = 1 if Pr(y = +1|x) > 0.5

#### Issues with logistic regression

- ullet Logistic regression fails  $((eta_0,eta) o\infty)$  if data are linearly separable
- If our goal is binary prediction, why use obscure probabilities?

#### More direct SVM alternative:

- Find function that is optimized for prediction of categories  $f_{\text{SVM}}(x) = \hat{\beta}_0 + x'\hat{\beta}$  (Support Vector Classifier)
- 2 Predict y = 1 if  $f_{SVM}(x) > 0$



# Separating Hyperplanes

1. Separating Hyperplanes

2. Variable Transformations and the Kernel Trick

# Optimal separating hyperplanes



Key idea:

- Find *hyperplane* (= a linear decision boundary)
- that maximizes the *margin* (= distance between hyperplane and its closest points)

Three support vectors exist in 2-dimensional space

5 / 23

## Higher-dimensional spaces



A (hyper-)plane in 3-dimensional space

• If the data have more variables than observations (p > n), linear decision boundaries typically exist

# Intuition about f(x)



f(x) measures the scaled distance between the hyperplane and point x such that

- f(x) = 0 if x is on the hyperplane
- f(x) = +/-1 if x is on the margin
- Predict +1 if f(x) positive
- Predict -1 if f(x) negative

# Two issues with optimal separating hyperplanes



# Two issues with optimal separating hyperplanes



Optimal separating hyperplanes often do not exist. Solutions:

- Allow for misclassification in the presence of noise?
- Allow for non-linear decision boundaries?

# Soft-Margin Support Vector Classifier



#### Dealing with noise:

- Allow for margin violations and missclassification
- New constraint:  $\sum \xi_i < C$  must not exceed budget C
- Tuning parameter C controls margin width and overfitting

9 / 23

# Relationship to Logistic Regression

Support Vector Classifier minimizes

$$\min_{\beta_0,\beta} \{ \sum_{i=1}^{n} \underbrace{\max(0, 1 - y_i(\overbrace{\beta_0} + x_i'\beta))}_{\text{Hinge Loss}} + \lambda(C) \cdot \underbrace{\sum_{j=1}^{p} \beta_j^2}_{\text{Penalty}} \}$$
 (1)

Compare to logistic regression with ridge penalty, which minimizes

$$\min_{\beta_0,\beta} \{ \sum_{i=1}^{n} \underbrace{\log(1 + e^{-y_i(\beta_0 + x_i'\beta)})}_{\text{Binomial Loss}} + \lambda \cdot \underbrace{\sum_{j=1}^{p} \beta_j^2}_{\text{Penalty}} \}$$
 (2)

### Only the loss functions are different!

Notation requires  $y_i \in \{-1, 1\}$ 



SV Ms

## Relationship to Logistic Regression

- Similar loss functions
   → similar results
- Hinge loss (SVMs) mimics 0-1 loss
- Hinge loss often preferred if data are separated
- Binomial loss often preferred if classes overlap



Distance from decision boundary to x = y f(x)

### Variable Transformations and the Kernel Trick

1. Separating Hyperplanes

2. Variable Transformations and the Kernel Trick

From the Support Vector Classifier to Support Vector Machines

## Two issues with optimal separating hyperplanes



Optimal separating hyperplanes often do not exist. Solutions:

- Solved: Allow for misclassification in the presence of noise
- Now: Allow for non-linear decision boundaries?

### Variable transformations

Same problem as in linear regression with continuous outcome y.



How can we do regression modeling in these situations?

### Variable transformations



Transform p-dim. input space  $X=(x_1,...,x_p)$  into Q-dim. feature space

$$\phi(X) = (\phi_1(X), \phi_2(X), \phi_3(X), ..., \phi_Q(X))$$

 $\phi$  can have many possible forms, for example:

$$\phi_j(X) = x_j \qquad \phi_j(X) = \log x_k \qquad \phi_j(X) = \sqrt{x_k} 
\phi_j(X) = x_k^2 \qquad \phi_j(X) = x_k \cdot x_l \qquad \phi_j(X) = I(L_m \le x_k \le U_m)$$

(see Hastie et al. (2009), Chapter 5, for an overview on variable transformations)

### Variable transformations



- The perfect transformation  $\phi^*$  achieves linear separability in the transformed feature space (see example)
- ullet Problem:  $\phi^*$  is unknown and depends on geometric considerations
- How to find a good transformation  $\phi$ ?

#### The Kernel Trick

The function f(x) has two equivalent representations

$$\hat{f}(x) = \hat{\beta}_0 + \sum_{p=1}^{P} x_p \hat{\beta}_p \tag{3}$$

$$= \hat{\beta}_0 + \sum_{i=1}^n \hat{\alpha}_i y_i \langle \phi(x), \phi(x_i) \rangle$$
 (4)

The second line suggests to calculate  $\langle \phi(x), \phi(x_i) \rangle$  separately,

$$K(x,x_i) := \langle \phi(x), \phi(x_i) \rangle = \sum_{q=1}^{Q} \phi_q(x) \phi_q(x_i)$$
 (5)

x enters only through  $K(\cdot,x)$ 

ightarrow No need to specify transformation  $\phi$  if one knows kernel K!!

## Popular Kernels

$$\begin{split} & \mathcal{K}_d(x,x') = (1+\sum_{p=1}^P x_p x_p')^d \qquad \qquad (d\text{th degree polynomial}) \\ & \mathcal{K}_\gamma(x,x') = \exp(-\gamma \sum_{p=1}^P (x_p-x_p')^2) \qquad \text{(radial basis, distance based!)} \\ & \mathcal{K}_\kappa(x,x') = \tanh(\kappa_1 + \kappa_2 \sum_{p=1}^P x_p x_p') \qquad \text{(neural network)} \end{split}$$

For example, for 2 predictors  $(x_1, x_2)$ , mapped into a 6-dimensional feature space with  $\phi$ ,

$$\phi_1(x_1, x_2) = 1 
\phi_2(x_1, x_2) = \sqrt{2}x_1 
\phi_3(x_1, x_2) = \sqrt{2}x_2$$

$$\phi_4(x_1, x_2) = x_1^2 
\phi_5(x_1, x_2) = x_2^2 
\phi_6(x_1, x_2) = \sqrt{2}x_1x_2$$

the inner product and the 2-degree polynomial kernel are identical,

$$\langle \phi(x_1, x_2), \phi(x_1', x_2') \rangle = K_2((x_1, x_2), (x_1', x_2')) \tag{6}$$

### Illustration



- SVM classifier with radial kernel (most popular choice)
- ullet Tuning parameters C differ o overfitting in the right panel

(Source: Efron and Hastie, 2016, p. 383)

## Kernel Summary

#### Things to know:

- ullet Think about kernels as a similarity measure between points x and x'
- Kernels are useful beyond binary outcomes and SVMs
  - Requires a model with linear term x'eta and ridge penalty  $\sum eta_j^2$

#### Key advantages of kernel methods:

- Alternative way to specify variable transformations
- May speed up computation
  - Matters if we have 1,000s or 1,000,000s of predictors
- Input objects x can be different than numbers (e.g. text)
  - Requires a definition of similarity between objects

## Summary

- Binary classification is approached with geometric arguments only and without reference to probability models
- Kernels can be used for a wide range of prediction problems (not only binary classification)
  - Provides an alternative to transform variables into a feature space
- Most successful if the prediction problem
  - has few observations relative to the number of input variables (e.g., genetics, engineering, document classification) and
  - all input variables are believed to be relevant for prediction (no variable selection)
- Application requires
  - appropriate preprocessing,
  - parameter tuning, and
  - (in the most difficult situations) the development and programming of new kernels

### Software Resources

#### Resources for R

- Interface to libsvm: Package e1071
- Support for additional kernels: Package kernlab

#### Other

• http://www.kernel-machines.org/software

### References



Efron, Bradley and Hastie, Trevor (2016)

Support-Vector Machines and Kernel Methods. In: Computer Age Statistical Inference. Cambridge University Press, p. 375–393



Hastie, Trevor, Tibshirani, Robert & Friedman, Jerome (2009)

The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer. Chapter 9.



James, Gareth, Witten, Daniela, Hastie, Trevor & Tibshirani, Robert (2013) An Introduction to Statistical Learning. Springer. Chapter 9.



Moguerza, Javier and Muñoz, Alberto (2006)

Support Vector Machines with Applications. Statistical Science 21(3), p. 322-336.



Steinwart, Ingo and Christmann, Andreas (2008)

Support Vector Machines, Springer.