Trees

Updated: 20th July, 2023

Aims

- To implement a binary tree.
- To traverse a tree.

Before the Practical

- Read this practical sheet fully before starting.
- Ensure you have completed either Practical 3 or Practical 4.

Activities

1. Binary Search Tree Implementation

Following the lecture slides as a guide, implement a Binary Search Tree using a DSATreeNode and DSABinarySearchTree class.

Note:

- DSATreeNode has already been written for you, but you'll need to understand and test it.
- The code for find() was already implemented for you insert() and delete() are very similar. The methods must all use the recursive approaches and pseudocode from the lecture slides.
- You may want to leave delete() until you finish the rest of the practical and then come back to it.

2. Implement Additional Methods

The lecture slides described the approach for doing min(), max() and height(). Implement each of these operations in DSABinarySearchTree.

Now consider how you would give a percentage score for how balanced the tree is. Implement this approach as a new method called balance().

Note: Approaches can include comparing left and right heights or comparing potential and actual leaf nodes.

3. Implement Traversal Methods

The lecture slides described the approach for doing <code>inorder()</code>, <code>preorder()</code> and <code>postorder()</code> traversals of a tree. Add recursive implementations of these algorithms inside <code>DSABinarySearchTree</code> to output the traversed tree.

Note: You may want to export the output of each traversal method as a queue or linked list, which can then be iterated over to display the contents.

4. Interactive Menu for DSABinarySearchTree

Setup an interactive menu system to explore building a binary tree from scratch. Include <u>at least</u> the following options:

- (a) Add node
- (b) Delete node
- (c) Display the tree ask the user if they want inorder, preorder or postorder traversal

Submission Deliverable

- Your code are due 2 weeks from your current tutorial session.
 - You will demonstrate your work to your tutors during that session
 - If you have completed the practical earlier, you can demonstrate your work during the next session
- You must **submit** your code and any test data that you have been using **electronically via Blackboard** under the *Assessments* section before your demonstration.
 - Java students, please do not submit the *.class files

Marking Guide

Your submission will be marked as follows:

- [6] Your DSABinarySearchTree and DSATreeNode are implemented correctly.
- [4] You have implemented and tested your methods for min(), max(), height() and balance().
- [6] You have implemented and can demonstrate your methods for inorder(), preorder() and postorder().
- [4] You have an interactive menu for the tree operations.

End of Worksheet