Partiel n°1 de Physique (Durée 1h 30)

Les calculatrices et les documents ne sont pas autorisés. **Réponses exclusivement sur le sujet**

Exercice 1 (Sur 3 points) Bonus!

1- Calculer le moment d'inertie I_{Oz} , d'un disque plein de rayon R, d'axe Oz, de masse M et de masse volumique constante p. (Donner le résultat en fonction de M et de R. $(d\tau_{cvl} = rdrd\theta dz)$

2- Calculer le moment d'inertie I_{Δ} d'une sphère creuse de rayon R, de masse M et de masse surfacique ρ_S constante. Donner le résultat en fonction de M et de R. (Calculer d'abord I_0).On donne : $dS_{sph} = R^2 \sin(\theta) d\theta . d\varphi$.

Exercice 2 Etude d'un système en équilibre (Sur 6 points)

Une poutre de 100 N et de 1 m de longueur supporte une charge de 200 N à son extrémité droite. Un câble relié à un mur maintient la poutre en équilibre. $\alpha=30^\circ$, $\cos(30^\circ)=\frac{\sqrt{3}}{2}$; $\sin(30^\circ)=\frac{1}{2}$

- 1-Représenter les forces extérieures exercées sur la poutre.
 - 2- Enoncer les deux conditions d'équilibre.

3- Calculer la tension T du câble.

4- Calculer les composantes horizontale : $R_{_{x}}$ et verticale : $R_{_{y}}$ de la réaction du mur sur la					
poutre.					

Exercice 3 Cinématique (Sur 7 points)

Le vecteur position en coordonnées polaires est donné par : $\vec{OM} = r.\vec{e}_r$

1- Exprimer le vecteur vitesse et le vecteur accélération dans la base $(\vec{e}_r,\vec{e}_\theta)$

On donne	:	$\frac{d\vec{e}_r}{dt} = \dot{\theta} \vec{e}_\theta$	et	$\frac{d\vec{e}_{\theta}}{dt} = 0$	$-\dot{ heta}ec{e}_{r}$
		dt		dt	,

2- Utiliser les résultats trouvés ci-dessus pour exprimer le vecteur vitesse et le vecteur accélération d'un mouvement en spirale, sachant que les équations horaires sont données par :

$$\begin{cases} r = b.\exp(-\frac{t}{\tau}) & b, \ \omega, \ \text{et } \tau \text{ sont des constantes.} \\ \theta = \omega.t \end{cases}$$

Exercice 4 Dynamique (Sur 7 points)

On étudie le système {skieur} de masse M, soumis aux deux forces extérieures: son poids \vec{P} et la réaction \vec{R} . La force \vec{R} se décompose en deux composantes:

• \vec{R}_N la réaction normale perpendiculaire à la piste.

• $\overline{\mathbf{f}}$ la force de frottement opposée au mouvement. Sachant que $f=0.2R_N$

1- a) Exprimer la réaction R_N en fonction du poids et de l'angle α .

c) Calculer l'intensité de la force de frottement f. Sachant que : $f = 0.2R_N$, M = 80kg, g = 10 et α = 25°. On prend $\cos(\alpha) \approx 0.9$ et $\sin(\alpha) \approx 0.4$	· 1113
- Utiliser le théorème d'énergie cinétique pour exprimer la vitesse du skieur au point B sa a vitesse au point A est nulle, $V_A = 0$ (Donner V_B en fonction de M, g, α , f et d). Faire numérique (Valeur approchée). On donne d = 400m.	chant qu e le calci
3- Calculer la nouvelle vitesse au point B (Valeur numérique approchée), si on tient coplus des frottements de contact f) de la résistance de l'air, représentée force $f' = 56N$: force colinéaire et de même sens que f.	ompte (e par ur