Math 260 HW # 5

Mario L. Gutierrez Abed

Section 2.3

(11) Let V be a VS, and let $T: V \longrightarrow V$ be linear. Prove that $T^2 = T_0$ iff $R(T) \subseteq \mathcal{N}(T)$.

Proof:

 (\Rightarrow)

Assume that T is linear and $T^2 = T_0$, then we need to prove that $R(T) \subseteq \mathcal{N}(T)$.

Let's pick an element $w \in R(T)$ so that w = T(x) for some $x \in V$. But then since $T^2 = T_0$, we have $T^2(x) = T(T(x)) = T$ $w = T_0(x) = 0$. Hence $w \in \mathcal{N}(T)$, proving that any element contained in R(T) is also contained in $\mathcal{N}(T)$.

 (\Leftarrow)

We assume that $R(T) \subseteq \mathcal{N}(T)$, then we need to prove that $T^2 = T_0$.

We pick an element $w \in R(T)$ so that w = T(x) for some $x \in V$. But then since $R(T) \subseteq \mathcal{N}(T)$, we know that $w \in \mathcal{N}(T)$. Hence $T^2(x) = T(T(x)) = T$ $w = 0 = T_0(x)$.

Section 2.4

- (2) For the following linear transformation T, determine whether T is invertible and justify your answer.
- b) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ defined by $T(a_1, a_2) = (3 a_1 a_2, a_2, 4 a_1)$

Solution:

T cannot possibly be invertible because in order to be invertible both the domain and codomain must have the same dimension and we have $\dim(\mathbb{R}^2) = 2 \neq 3 = \dim(\mathbb{R}^3)$.

- (17) Let V and W be finite dimensional VS's and $T: V \longrightarrow W$ be an isomorphism. Let V_0 be a subspace of V. Then
- a) Prove that $T(V_0)$ is a subspace of W.

Proof:

 $\bullet \to$ Since V_0 is a subspace of V, we know that $0_V \in V_0$. Since T is an isomorphism it is also injective,

thus we have $T(0_V) = 0_W \in T(V_0) \subseteq W$.

- \rightarrow Pick two elements $T v_1, T v_2 \in T(V_0)$, with $v_1, v_2 \in V_0$. Since T is an isomorphism it is also linear, thus we have $T v_1 + T v_2 = T(v_1 + v_2) \in T(V_0) \subseteq W$.
- \rightarrow Pick a scalar c and an element $T v_1 \in T(V_0)$, with $v_1 \in V_0$, $c \in \mathbb{F}$.

Since T is linear we have $c T v_1 = T(c v_1) \in T(V_0) \subseteq W$

Hence since $T(V_0)$ is closed under addition and scalar multiplication, and also contains the zero vector in W, we conclude that $T(V_0)$ is a subspace of W.

b) Prove that $\dim(V_0) = \dim(T(V_0))$.

Proof:

We are given that T is an isomorphism that maps elements from V to W. Since V_0 is a subspace of V and we just proved that $T(V_0)$ is a subspace of W, we may consider a linear map T' that maps elements from V_0 to $T(V_0)$, i.e. $T' \in \mathcal{L}(V_0, T(V_0))$. This T' is also an isomorphism, since T is just an extension of this linear map applied to the ambient vector spaces V and W. Hence, since T' is also an isomorphism, the dimension of the domain and the codomain have to be the same, i.e. $\dim(V_0) = \dim(T(V_0)).$

(Extra Problem) Prove that $\mathbb{C} \cong \mathbb{R}^2$ as vector spaces over \mathbb{R} and use this to show that $\dim(\mathbb{C}) = 2$. Furthermore, show that $\mathbb{C}^n \cong \mathbb{R}^{2n}$, and $\dim(\mathbb{C}^n) = 2n$.

(Hint: Construct a map from \mathbb{C} to \mathbb{R}^2 and prove that this map is linear and an isomorphism. Modify this isomorphism into a map between \mathbb{C}^n and \mathbb{R}^{2n} and prove that this map is also linear and an isomorphism.)

Note This isomorphism is the reason why we can graph complex numbers using the standard x y plane.

Proof:

We pick an arbitrary element $a_1 + i b_1 \in \mathbb{C}$ and we map it to an image $(a_1, b_1) \in \mathbb{R}^2$. We call this map T and we must first show that it is a linear transformation, i.e. $T \in \mathcal{L}(\mathbb{C}, \mathbb{R}^2)$, and furthermore we must prove that this map is also bijective. By proving this we are showing that T is an isomorphism and thus $\mathbb{C} \cong \mathbb{R}^2$.

→ Check for linearity:

Given a scalar $c \in \mathbb{R}$ and two elements $v_1, v_2 \in \mathbb{C}$ such that $v_1 = a_1 + i b_1$ and $v_2 = a_2 + i b_2$, we must show that $T(c v_1 + v_2) = c T v_1 + T v_2$. Thus we have

$$T(c v_1 + v_2) = T(c(a_1 + i b_1) + a_2 + i b_2) = T(c a_1 + i c b_1 + a_2 + i b_2)$$

$$= T(c a_1 + a_2 + i (c b_1 + b_2) = (c a_1 + a_2, c b_1 + b_2)$$

$$= (c a_1, c b_1) + (a_2, b_2) = c(a_1, b_1) + (a_2, b_2)$$

$$= c T(a_1 + i b_1) + T(a_2 + i b_2) = c T v_1 + T v_2$$

Thus we have proven that T is linear.

→ Check for injectivity:

We know that injectivity implies that $\mathcal{N}(T) = \{0\}$. We have that $T(a_1 + i b_1) = (a_1, b_1)$. Thus,

$$T(a_1 + i b_1) = (0, 0) \Longrightarrow a_1, b_1 = 0$$

 $\Longrightarrow T(0 + i 0) = (0, 0) \Longrightarrow T(0) = (0, 0)$
 $\Longrightarrow \text{nullity}(T) = 0 \Longrightarrow \mathcal{N}(T) = \{0\}$

Hence T is injective. \checkmark

→ Check for surjectivity:

Surjectivity implies that $R(T) = \mathbb{R}^2$. Clearly by construction the map T is surjective, since T maps all $a_i + i$ $b_i \in \mathbb{C}$ to $(a_i, b_i) \in \mathbb{R}^2 \ \forall i$. In other words, we can express $(a_i, b_i) = a_i(1, 0) + b_i(0, 1) \ \forall i$. Hence $\{(1, 0), (0, 1)\}$ is a spanning set for R(T) which is also linearly independent, hence it's a basis (standard basis for \mathbb{R}^2). Thus, the range of this linear map T is simply the entire codomain \mathbb{R}^2 . Hence T is surjective. \checkmark

We have proven that T is linear and furthermore that it's bijective. Hence T is an isomorphism and thus $\mathbb{C} \cong \mathbb{R}^2$.

By the Rank-Nullity theorem we know that $\dim(\mathbb{C}) = \operatorname{rank} T + \operatorname{nullity} T$. Hence in this case we have $\dim(\mathbb{C}) = \dim(\mathbb{R}^2) + 0 = 2 + 0 = 2$.

Now we only need to show that $\mathbb{C}^n \cong \mathbb{R}^{2n}$ and that $\dim(\mathbb{C}^n) = 2n$.

We have an n – tuple in \mathbb{C}^n , and we want to map it to \mathbb{R}^{2n} . Let's call this map T'. So we have $T'(a_1 + i b_1, a_2 + i b_2, ..., a_n + i b_n) = (a_1, b_1, a_2, b_2, ..., a_n, b_n)$.

It is immediately obvious that T' is also an isomorphism. We prove that it's linear by a similar argument as we used for T. The nullspace is also trivial (thus T' is injective) since

 $T'(a_1 + i \ b_1, \ a_2 + i \ b_2, \ ..., \ a_n + i \ b_n) = (0, \ 0, \ ..., \ 0) \Longrightarrow a_i, \ b_i = 0 \ \forall \ i \Longrightarrow \mathcal{N}(T') = \{0\}$. Also by construction T' is surjective since the range is simply the entire codomain \mathbb{R}^{2n} , i.e. $R(T') = \mathbb{R}^{2n}$. Thus, since T' is an isomorphism we have that $\mathbb{C}^n \cong \mathbb{R}^{2n}$.

Lastly, by the Rank-Nullity theorem we have

$$\dim(\mathbb{C}^n) = \operatorname{nullity}(T') + \operatorname{rank}(T') = 0 + \dim(\mathbb{R}^{2n}) = 0 + 2n = 2n. \quad \checkmark$$