NAVI APP FÜR BOSTON

PRAKTIKUM

Prof. Dr. Thomas Abmayr, Wintersemester 2018

ALLGEMEINES

PRÜFUNGSZULASSUNG UND ABGABETERMIN DER PRAKTIKA

- Es wird wöchentlich ein Praktikum vergeben. Diese bauen aufeinander auf.
- Von jedem Praktikumsteilnehmer sind auf dem bereitgestellten Moodleserver zwei pdfs abzugeben, mit
 - o Ausarbeitung der in den Aufgaben geforderten FAQ Fragen,
 - o dem in das pdf kopierten Quellcode der Programmieraufgabe
- Gruppenarbeit in Zweiergruppen ist erwünscht!
- Abgabe Zeitpunkt ist jeweils am Tag vor dem nächsten Praktikum um 23:55 Uhr. Laden Sie bis dahin die Dateien auf den Moodle Kursserver. Hinweis: Der Moodle Kursserver ist nach dem Abgabetermin gesperrt, spätere Abgaben sind somit ungültig.
- Studierende
 - Geotelematik und Navigation (Pflichtfach)
 - Der Leistungsnachweis ist "mit Erfolgt abgelegt", wenn 10 von 13 Praktika mit "bestanden" bewertet wurden ==> (kurze) Demonstration der Ergebnisse am PC, live oder als Movie
 - Der Leistungsnachweis ist Zulassungsvoraussetzung für die Prüfung
 - o Bachelor Geoinformatik und Satellitenpositionierung (WPF):
 - Das Praktikum wird benotet (50 % der Gesamtnote). Die relative Anteil der Praktikumsnote ergibt sich wie folgt:
 - Präsentation 30%; Vorführung wahlweise
 - o als e Poster inkl live Demo oder Movie
 - o als Powerpoint inkl. live Demo oder Movie
 - o Dauer ca. 15 Minuten
 - Programmierung 70%,
 - o Abgabe Quellcode auf Moodle und in einem pdf als email
 - Bachelor Informatik (WPF):
 - Das Praktikum wird benotet (40 % der Gesamtnote). Die relative Anteil der Praktikumsnote ergibt sich wie folgt:
 - Präsentation 30%
 - Programmierung 70%

•

1. WOCHE (DIE MAPPING TOOLBOX UND SHAPEFILES - 1/13)

AUFGABE (DARSTELLEN VON SHAPEFILES)

Arbeiten Sie folgende Tutorials durch:

- https://de.mathworks.com/help/releases/R2018b/map/creating-maps-using-mapshow.html
- https://de.mathworks.com/help/releases/R2018b/map/creating-map-displays-with-data-in-projected-coordinate-reference-system.html

Legen Sie sich jetzt eine neue Matlab Funktion *getting_started.m* an und implementieren Sie die folgenden Teilaufgaben (siehe Abbildung):

- Verwenden Sie den von Matlab bereitgestellten Datensatz 'Boston_roads.shp' und stellen Sie diesen mit mapshow dar
- Modifizieren Sie die Anzeige, indem Sie die unterschiedlichen Straßenklassen in unterschiedlichen
 Farben darstellen! Verwenden Sie hierzu die Option und unter Verwendung der Option 'SymbolSpec'
- Extrahieren Sie die unterschiedlichen Straßenklassen und speichern Sie diese als .mat Files ab, um diese im weiteren Projektverlauf dann aus Performancegründen zu nutzen.

AUFGABE (VON PROJIZIERTEN NAD83 KOORDINATEN ZU GEOGRAPHISCHEN KOORDINATEN)

Sie wollen jetzt das in projizierten NAD83 Koordinaten bereitgestellte Shapefile mit *geoshow* darstellen. Daher ist eine Transformation in lon/lat notwendig. Gehen Sie hierbei wie folgt vor (siehe Abbildung):

- Das Geotiff boston.tif liegt ebenfalls in projizierten NAD83 Koordinaten vor. Laden Sie das Bild mit geotiffread und verwenden Sie *geotiffinfo*, um aus dem Bild die Projektionsparameter zu extrahieren
- verwenden Sie weiter *geotiff2mstruct,* um die Projektionsparameter in die im Folgenden benötigte Datenstruktur zu konvertieren
- verwenden Sie *projinv*, um die Transformation auf die Shapefile Koordinaten anzuwenden (*Achtung*: Hierzu ist zuvor eine Skalierung der Shapefile Koordinaten von 'survey feet' in 'meter' notwendig. Diese berechnet sich mit der Methode s = *unitsratio*("survey feet', 'meter'))
- verwenden Sie mapshow (bei richtiger Variablenbelegung auch geoshow), um die projizierten Koordinaten jetzt darzustellen

AUFGABE (PROGRAMM STRUKTURIEREN)

Strukturieren Sie jetzt Ihr Programm wie folgt (siehe Abbildung):

- Implementieren Sie eine Funktion init_shapefile, um Ihre Straßen
 - o in 3 Kategorien zu gruppiert (nämlich
 - Gruppe Highway: class 1,2,3
 - Gruppe *local*: class 4,5,6,7
 - Gruppe all: class 1,2,3,4,5,6,7
 - o und diese in geographische Koordinaten zu transformieren
 - o und diese als mat Files abzuspeichern
- Implementieren Sie ein Skript main, die
 - o die gespeicherten *mat* Files lädt
 - o und unter Verwendung von mapshow darstellt

AUFGABE (WORKFLOW)

Überlegen Sie sich einen groben workflow zur Generierung einer NaviApp! Welche Schritte finden in der Vorverarbeitung statt, welche im Hauptprogramm?

Vorverarbeitung

(..)

Hauptprogramm

(..)

AUFGABE (FAQS, VORBEREITUNG AUF DIE NÄCHSTE LEHRVERANSTALTUNG)

• Zur Vorbereitung auf die nächste Lehrveranstaltung: FAQs siehe Moodle