Kernel-Based Multi-channel PolyCovNet

Al Hackathon Challenge I

Team Borides

Kastan Day, Ruijie Zhu, Aria Coraor, Seonghwan Kim, Jiahui Yang

Contents

- 1. Problem Restatement
- 2. Algorithm
- 3. Results
- 4. Discussion
- 5. Summary

Problem Restatement

Predicting the lamellar period from monomer sequences and interaction parameters

Algorithm

Sliding window - extract monomer sequence features

Algorithm Sliding Window [0, 0, 0, 0, 0] window size 5 [0, 0, 0, 0, 1] [0, 0, 0, 1, 0] [0, 0, 0, 1, 1] [0, 0, 1, 0, 0] 3 [0, 0, 1, 0, 1] [0, 0, 1, 1, 0] [0, 0, 1, 1, 1] [0, 1, 0, 0, 0] [0, 0, 0, 0][0,0][0, 1, 0, 0, 1] [0,0,0][0, 0, 0, 1] [0, 1, 0, 1, 0] [0,1][0,0,1][0, 1, 0, 1, 1] [0, 0, 1, 0] [1,0] [0, 1, 1, 0, 0] [0,0,0][0, 0, 1, 1] [0, 1, 1, 0, 1] [1,1] [0,0,0][0, 1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 1, 1, 1] [0,0,1][0, 1, 0, 1] [1, 0, 0, 0, 0] $2^2 = 4$ [0,0,0][1, 0, 0, 0, 1] [0, 1, 1, 0] [1, 0, 0, 1, 0] [0,0,0][0, 1, 1, 1] [1, 0, 0, 1, 1] [0,0,1][1, 0, 1, 0, 0] [1, 0, 0, 0] [1, 0, 1, 0, 1] [1, 0, 0, 1] [1, 0, 1, 1, 0] $2^3 = 8$ [1, 0, 1, 1, 1] [1, 0, 1, 0] [1, 1, 0, 0, 0] [1, 0, 1, 1] [1, 1, 0, 0, 1] [1, 1, 0, 0] [1, 1, 0, 1, 0] [1, 1, 0, 1, 1] [1, 1, 0, 1] [1, 1, 1, 0, 0] [1, 1, 1, 0] [1, 1, 1, 0, 1] [1, 1, 1, 1, 0] $2^4 = 16$ $2^5 = 32$ [1, 1, 1, 1] **[1, 1, 1, 1, 1]** 3

Algorithm

Non-linear kernel functions - preprocess monomer sequences

1. Exponential kernels $\exp(\frac{x^2}{2k^2})$

2. Cosine kernels $\cos(\frac{\pi x}{k})$

Applying the above kernels on monomer sequences

Non-linearity

Algorithm

Variational autoencoder - extract features from monomer sequences

Reduced feature vectors

DataSetA

500 epoch 0.01 learning rate

DataSetC

DataSetB

DataSetD

Discussion

Principal component analysis on the latent space

Principal component 1 dominates

Larger principal component 1Larger lamellar period

Discussion

Blockiness is important to result in a high lamellar period

Higher principal component 1

Blockiness

0.875000

0.874510

0.873016

0.870445

0.866667

Lower principal component 1

Blockiness

0.498039

0.740891

0.372549

0.000000

-0.036437

Computational Efficiency (500 epochs)

Feature Generation	Time (min)
2-channel Sliding Window Features	0.5
Exponential / Cosine Kernel Features	0.08
VAE Features	30

Model Training / Validation	Time (min)
Training	1
Validation	0.02

^{*} All runtimes are reported using ThetaGPU

Thank you!