

LPDDR4 Memory Controller for Nexus Devices

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

	ts	
Acronyi	ms in This Document	7
1. Int	troduction	8
1.1.	Quick Facts	8
1.2.	Features	8
1.3.	Licensing and Ordering Information	10
1.4.	IP Validation Summary	11
1.5.	Minimum Device Requirements	11
1.6.	Naming Conventions	
1.6	6.1. Nomenclature	11
1.6	6.2. Signal Names	
2. Fu	unctional Description	
2.1.	·	
2.1	1.1. Soft Memory Controller	
	1.2. Soft PHY	
2.1	1.3. Soft Training Engine	
2.2.	Clocking and Reset	
2.3.	User Interfaces	
2.3	3.1. Data Interface Protocols	
	3.2. Configuration Interface Protocol	
2.4.	•	
	4.1. Initialization and Training Sequence	
	4.2. Initialization and Training without APB Interface	
2.5.	_	
_	5.1. Write and Read Data Access	
	5.2. Auto Refresh Support	
	5.3. Power Saving Feature	
	5.4. Periodic ZQ Calibration	
	5.5. Temperature Tracking and Extended Temperature Support	
	Parameter Description	
3.1.	General	
3.2.	Memory Device Timing	
3.3.	Training Settings	
	gnal Description	
4. 31g	Clock and Reset	
4.1.	Interrupts and Initialization/Training	
4.2.	AHB-Lite Data Interface	
_		
4.4.	AXI4 Data Interface	
4.5.	APB Register InterfaceLPDDR4 Memory Interface	
4.6.	egister Description	
5.1.	Feature Control Register (FEATURE_CTRL_REG) (0x00) Reset Register (RESET_REG) (0x04)	
5.2.	Settings Register (RESET_REG) (0x04)	
5.3.	5 5 (= /(/	
5.4.	Interrupt Status Register (INT_STATUS_REG) (0x10)	
5.5.	Interrupt Enable Register (INT_ENABLE_REG) (0x14)	
5.6.	Interrupt Set Register (INT_SET_REG) (0x18)	
5.7.	Training Operation Register (TRN_OP_REG) (0x20)	
5.8.	Status Register (STATUS_REG) (0x24)	
	PDDR4 Memory Controller Example Design	
6.1.	Overview	
6.2.	Synthesis Example Design	41

6.3. Simulation Example Design	43
7. Designing and Simulating the IP	44
7.1. Generating the IP	44
7.1.1. Creating a Radiant Project	44
7.1.2. Configuring and Generating the IP	46
7.2. Design Implementation	49
7.2.1. Pin Placement	49
7.2.2. Constraints	50
7.3. Example Design Hardware Evaluation	51
7.3.1. Preparing the Bitstream	52
7.3.2. Running on Hardware	53
7.4. Example Design Simulation	55
8. Debugging	59
8.1. Debug with the Example Design	59
8.2. Debug with Reveal Analyzer	59
8.2.1. Command Bus Training (CBT)	61
8.2.2. Write Leveling	61
8.2.3. Read Training	62
8.2.4. Write Training	63
Appendix A. Resource Utilization	64
References	65
Technical Support Assistance	66
Revision History	67

Figures

Figure 1.1. Enabling Bitstream for IP Evaluation	10
Figure 2.1. Memory Controller IP Core Functional Diagram	12
Figure 2.2. Lattice PHY	14
Figure 2.3. Training Engine	15
Figure 2.4. Shortened Initialization Sequence Simulation Waveform (TRN_OP_REG[0]=0)	18
Figure 2.5. Command Bus Training	19
Figure 2.6. Write Leveling	19
Figure 2.7. Read Training	20
Figure 2.8. Write Training	20
Figure 6.1. Memory Controller Example Design Functional Diagram	42
Figure 7.1. Creating a New Radiant Project	44
Figure 7.2. New Project Settings	45
Figure 7.3. Project Device Settings	45
Figure 7.4. Project Synthesis Tool Selection	46
Figure 7.5. IP Instance Settings	47
Figure 7.6. IP Generation Result	48
Figure 7.7. Add Existing File Dialog Box	52
Figure 7.8. Radiant Programmer	53
Figure 7.9. Serial Terminal Settings	54
Figure 7.10. Simulation Wizard	
Figure 7.11. Adding and Reordering Simulation Source Files	
Figure 7.12. Parsing Simulation HDL Files	57
Figure 7.13. Simulation Summary	
Figure 7.14. Simulation Result Waveform	58
Figure 8.1. Reveal Example: LPDDR4 Training Passes	61
Figure 8.2. Reveal Example: Command Bus Training Failure	61
Figure 8.3. Command Bus Training Simulation Waveform	61
Figure 8.4. Command Bus Training Reveal Capture	
Figure 8.5. Write Leveling Simulation Waveform	62
Figure 8.6. Write Leveling Reveal Capture	
Figure 8.7. Read Gate Training Simulation Waveform	62
Figure 8.8. Read Gate Training Reveal Capture	
Figure 8.9. Read Deskew Training Simulation Waveform	
Figure 8.10. Read Deskew Training Reveal Capture	
Figure 8.11. Write Training Simulation Waveform	
Figure 8.12. Write Training Reveal Capture	63

Tables

Table 1.1. Quick Facts	8
Table 1.2. Features Overview	9
Table 1.3. Ordering Part Number	10
Table 1.4. IP Validation Summary	11
Table 1.5. Minimum Device Requirements	11
Table 2.1. MCE Request Handling	13
Table 2.2. Supported AHB-Lite Transactions	16
Table 2.3. Supported AXI4 Transactions	17
Table 3.1. General Attributes	23
Table 3.2. Clock Settings Attributes	23
Table 3.3. Memory Configuration Attributes	24
Table 3.4. Local Data Bus Attributes	24
Table 3.5. General Definitions	24
Table 3.6. Memory Device Timing Setting Attributes	26
Table 3.7. Periodic Event Setting Attributes	26
Table 3.8. Memory Device Timing Definitions	26
Table 3.9. Training Settings Attributes	27
Table 3.10. Trained Values Attributes	28
Table 3.11. Training Settings Definitions	28
Table 4.1. Clock and Reset Port Definitions	30
Table 4.2. Interrupts and Initialization/Training Port Definitions	30
Table 4.3. AHB-Lite Interface Port Definitions	31
Table 4.4. AXI4 Interface Port Definitions	31
Table 4.5. APB Interface Port Definitions	32
Table 4.6. LPDDR4 Interface Port Definitions	
Table 5.1. Summary of LPDDR4 Memory Controller IP Registers	34
Table 5.2. Register Access Type Definitions	34
Table 5.3. Feature Control Register	
Table 5.4. Address Mapping for addr_translation=0	35
Table 5.5. Address Mapping Example	
Table 5.6. Reset Register	36
Table 5.7. Settings Register	36
Table 5.8. Interrupt Status Register	
Table 5.9. Interrupt Enable Register	37
Table 5.10. Interrupt Set Register	
Table 5.11. Training Operation Register	38
Table 5.12. Status Register	
Table 6.1. Supported Example Design Configurations	
Table 6.2. Simulation Runtime Summary	
Table 7.1. Memory Controller Attribute Guidelines	
Table 7.2. Generated File List	
Table 7.3. Project Constraints	
Table 7.4. Contents of eval/traffic_gen	
Table 8.1. Reveal Analyzer Signal Definitions	59

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition	
AHB-L	Advanced High-Performance Bus Lite	
APB	Advanced Peripheral Bus	
AXI4	Advanced eXtensible Interface 4	
BL	Burst Length	
CA	Command and Address	
CS	Chip Select	
CBT	Command Bus Training	
DBI	Data Bus Inversion	
DDR	Double Data Rate	
DFI	DDR PHY	
DM	Data Mask	
DQ	Data	
DQS	Data Strobe	
ECC	Error Correction Code	
ECLK	Edge Clock	
FPGA	Field Programmable Gate Array	
I/F	Interface	
JEDEC	Joint Electron Device Engineering Council	
JTAG	Joint Test Action Group	
LPDDR4	Low Power Double Data Rate Generation 4	
LVSTL	Low Voltage Swing Terminated Logic	
MC	Memory Controller	
MR	Mode Register	
MRS	Mode Register Set	
ODT	On-Die Termination	
PRBS	Pseudorandom Binary Sequence	
PVT	Process, Voltage, and Temperature	
RTL	Register Transfer Level	
SCLK	System Clock	
SDR	Single Data Rate	
SDRAM	Synchronous Dynamic Random Access Memory	
SSN	Simultaneous Switching Noise	
TCL	Tool Command Language	
VREF	Voltage Reference	

1. Introduction

The Lattice Semiconductor LPDDR4 Memory Controller for Nexus Devices provides a turnkey solution consisting of a controller, DDR PHY, and associated clocking and training logic to interface with LPDDR4 SDRAM. The IP Core is implemented in System Verilog HDL using the Lattice Radiant™ software integrated with the Lattice Synthesis Engine (LSE) and Synplify Pro® synthesis tools. The LPDDR4 Memory Controller simplifies the interfacing of CertusPro™-NX and MachXO5T™-NX devices with external LPDDR4 memory for user applications.

1.1. Quick Facts

The following table presents a summary of the LPDDR4 Memory Controller for Nexus Devices.

Table 1.1. Quick Facts

IP Requirements Supported FPGA Family LPDDR4 mode – CertusPro-NX LPDDR4 mode – MachXO5T-NX			
	Targeted Device	LFCPNX-100 and LFCPNX-50 (IP Core v1.x.x and v2.x.x) LFMXO5-55T and LFMXO5-100T (in IP Core v2.1.x)	
Resource Utilization	Supported User Interfaces	AHB-L for data access in IP Core v1.x.x only AXI4 for data access in IP Core v2.x.x only APB for configuration access in IP Core v1.x.x and v2.x.x	
	Resources	Refer to Table A.1 and Table A.2	
	Lattice Implementation	Lattice Radiant software 2023.1	
Design Tool Support	Synthesis	Lattice Synthesis Engine Synopsys® Synplify Pro for Lattice	
	Simulation	For a list of supported simulators, refer to the Lattice Radiant Software User Guide	

1.2. Features

The LPDDR4 Memory Controller for Nexus Devices supports the following key features:

- LPDDR4 SDRAM protocol, compliant to LPDDR4 JEDEC Standard
 - LPDDR4 SDRAM speeds of:
 - 300 MHz (600 Mbps)
 - 350 MHz (700 Mbps)
 - 400 MHz (800 Mbps)
 - 533 MHz (1066 Mbps)
- LPDDR4 Memory Controller features:
 - Component support for interface data widths of x16, x32, and x64
 - Up to 16 Gb per channel density support
 - x16 LPDDR4 device support (8:1 DQ:DQS ratio)
 - Burst length of BL16 and BL32, including On-The-Fly (OTF)
 - 8:1 gearing mode (LPDDR4:FPGA logic interface clock ratio)
 - Read DBI support only
 - Configurable CAS latencies for Reads and Writes based on target interface speed
 - Configurable Address widths to support various memory densities
- AHB-Lite data interface support (in IP Core v1.x.x only):
 - SINGLE, INCR1, and INCR8 for read/write operations
 - Aligned addressing only

- AXI4 data interface support (in IP Core v2.x.x only):
 - INCR with AxLEN = 0-63 for read/write operations (in IP Core v2.1.x)
 - Unaligned transfer using byte strobes (in IP Core v2.1.x)
 - Narrow transfers (in IP Core v2.1.x)
 - Narrow AXI widths of 32, 64, and 128
 - Aligned addressing to AxSIZE only
- APB configuration interface support (in IP Core v1.x.x and v2.x.x):
 - Automatic LPDDR4 SDRAM initialization
 - Dynamic valid window optimization for Read/Write paths
 - DQ-DQS skew optimization for Write training
- Periodic training support featuring:
 - Temperature tracking
 - Adaptive/Derate refresh rate for extended temperature support
 - ZQ calibration (ZQCAL START and LATCH only)
- Automatic detection of idle triggering Self-Refresh with Power-down entry
- Polling and Out-of-band interrupt support for error and extended temperature support

Table 1.2. Features Overview

Key Features	LPDDR4 Support Details	
Device Format	Component	
Data Widths	x16, x32, x64	
Data User Interface	AHB-L, AXI4	
Configuration Interface	APB	
Maximum Command Rate	533 Mbps	
Maximum Data Rate	1066 Mbps	
HW Managed Periodic Events		
Refresh	All bank auto refresh	
ZQ Calibration	Yes for ZQ start and latch, No for ZQ reset	
Low Power Features	Self-refresh with power-down	
Other Features ¹		
Error Correction Code (ECC)	Not yet supported	
Dual-rank	No	
Data Bus Inversion (DBI)	Yes for reads, No for writes	
Temperature Tracking	Yes	
Refresh Adaptation (derate) to Temperature Variation	Yes	
On-Die Termination (ODT)	Yes for DQ, No for CA	
Training ¹		
Initialization	Yes	
Command Training	Yes	
Write Leveling	Yes	
Read Training	Yes	
Write Training	Yes	
VREF Training	Not yet supported	

Notes:

Yes implies that a configurable option exists to enable or disable the feature. No implies that the feature is currently not supported
and will not be supported in the future.

1.3. Licensing and Ordering Information

The LPDDR4 Memory Controller for Nexus Devices supports Lattice's IP evaluation capability for supported FPGA families and target devices. A bitstream can be generated for evaluation purposes without the purchase of an IP license, allowing hardware operation for a limited period of time (maximum of four hours), before the device resets itself. The IP evaluation setting is disabled by default and can be enabled/disabled within the Lattice Radiant software by performing the following steps:

- 1. Launch the Lattice Radiant software and select Project > Active Strategy > Bitstream Settings. This will open the Strategies dialog box.
- 2. Enable bitstream generation for IP evaluation purposes by setting IP Evaluation to True (checked) or disable this feature by setting IP Evaluation to False (unchecked).

Figure 1.1. Enabling Bitstream for IP Evaluation

An IP specific license string is required to enable full use of the LPDDR4 Memory Controller for Nexus IP in a complete design. For more information about pricing and availability of the LPDDR4 Memory Controller for Nexus IP, contact your local Lattice Sales Office.

Table 1.3. Ordering Part Number

	Part I	Part Number	
Device Family	Single Machine Annual	Multi-site Perpetual	
CertusPro-NX	LPDDR4-MC-CPNX-US	LPDDR4-MC-CPNX-UT	
MachXO5-NX	LPDDR4-MC-XO5-US	LPDDR4-MC-XO5-UT	

1.4. IP Validation Summary

The LPDDR4 Memory Controller for Nexus Devices supports both CertusPro-NX and MachXO5T-NX devices. The following table summarizes the compilation, simulation, and hardware validation for the LPDDR4 Memory Controller IP.

Table 1.4. IP Validation Summary

Device/Mode	Compilation	Simulation	Hardware
CertusPro-NX (LPDDR4 mode)	Yes	Yes	Yes ¹
MachXO5T-NX (LPDDR4 mode)	Yes	Yes	No

Note:

1.5. Minimum Device Requirements

The LPDDR4 Memory Controller for Nexus Devices supports both CertusPro-NX and MachXO5T-NX devices. The following table summarizes the minimum device requirements for the Memory Controller IP Core.

Table 1.5. Minimum Device Requirements

LPDDR4 Interface Speed	LPDDR4 Data Width	Supported Speed Grades
300 MHz (600 Mbps)	x16, x32, x64	7, 8, 9
350 MHz (700 Mbps)	x16, x32, x64	7, 8, 9
400 MHz (800 Mbps)	x16, x32, x64	7, 8, 9
533 MHz (1066 Mbps)	x16, x32, x64	8, 9

1.6. Naming Conventions

This section provides information regarding terminology used within this document.

1.6.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.6.2. Signal Names

Signal Names that end with:

- _n are active low
- _i are input signals
- _o are output signals
- _io are bi-directional input/output signals

^{1.} For x16 and x32 data widths only. Data width of x64 is not HW validated.

2. Functional Description

This section provides a detailed functional description of the LPDDR4 Memory Controller for Nexus Devices. Including information regarding clock and reset handling, available user data and configuration interfaces, the LPDDR4 calibration sequence, and LPDDR4 operation descriptions.

2.1. IP Architecture

The LPDDR4 Memory Controller for Nexus Devices consists of three main blocks: the Memory Controller, PHY, and Training Engine. The following figure represents the LPDDR4 Memory Controller submodules and its connectivity.

Figure 2.1. Memory Controller IP Core Functional Diagram

The data interface allows users to initiate LPDDR4 command/address/control and read/write operations to the external LPDDR4 SDRAM. The configuration interface provides access to the Training Engine and the Configuration Set Registers (CSRs), which configure the Memory Controller and perform the LPDDR4 training sequences. The LPDDR4 interface allows the selected Lattice FPGA to communicate with the external LPDDR4 memory. For more information on the data and configuration interfaces, refer to the User Interfaces section of this User Guide.

2.1.1. Soft Memory Controller

The Soft Memory Controller consists of the following submodules:

- Bus Interface Block
- Controller Engine
- Read Return Block

2.1.1.1. Bus Interface Block

The Bus Interface Block is responsible for accepting user-initiated operations on the selected data interface and translating them for processing within the Memory Controller. The data provided to the Controller Engine consists of:

- Address interface size: determined based on the selected LPDDR4 SDRAM device density and LPDDR4 data width
- Read and Write interface sizes: determined based on the selected LPDDR4 data width

The ordering queue is responsible for queuing the address, command, and control information coming from the Bus Interface Block. It prioritizes the execution of commands targeting an already opened bank and maintains correct order of execution when multiple requests target the same bank in LPDDR4 SDRAM. The write data buffer is responsible for buffering the incoming data for write commands.

2.1.1.2. Controller Engine

The Controller Engine accepts the received requests from the Bus Interface and is responsible for translating the address to row, column, and bank format. The Controller Engine supports outstanding writes and reads, which is a write/read request that is entered into a queue and arbitrated for processing. The following table describes the three different types of requests and how they are processed.

Table 2.1. MCE Request Handling

Request type	Prioritization and Definition	Comments
Read	Varies depending on selected data interface protocol. Refer to the Data Interface Protocols section of this User Guide for details.	The read request size is equal to the supported LPDDR4 burst length.
Write	Write requests are defined as a write, where the entire data needs to be written for the supported LPDDR4 burst length.	Example: For a 32-bit LPDDR4 data bus width, with burst length 16 (BL16), a full write would be 16×4B = 64B.
Partial write	Partial write requests are defined as a write, where the entire data is not written.	Example: For a 32-bit LPDDR4 data bus width, a partial write would be a write request that is less than 32B. This is equivalent to a masked write.

All write requests may be processed out of order if a data dependency is not present. For example, an incoming request tied to an already opened page in LPDDR4 SDRAM can be prioritized if it is not dependent on the requests already in the queue. Read requests may also be processed out of order if a data dependency is not present depending on the selected data interface protocol. Refer to the Data Interface Protocols section of this User Guide for information regarding outstanding write/read support.

The Controller Engine contains bank management logic to track all the opened and closed pages within each bank, along with timers for each bank and rank. This allows issued memory commands to meet the operational sequence and timing requirements of the LPDDR4 SDRAM. The last layer of logic within the Controller Engine handles handshaking between the PHY and external LPDDR4 memory. The Controller Engine is also responsible for supporting periodic events compliant with the LPDDR4 SDRAM requirements, such as temperature tracking, adaptive/derate refresh rates, and ZQ calibration. For more information on supported periodic features, refer to the LPDDR4 Operation Description section of this User Guide.

2.1.1.3. Read Return Block

The Read Return Block is responsible for responding to the Controller Engine issued read requests. Execution of commands can be out of order, so the Read Return Block handles the reordering to ensure that the read data is sent to the Bus Interface in order. The Read Return Block also handles Data Bus Inversion (DBI), which is an I/O signaling technique that reduces power consumption and improves signal integrity.

2.1.2. Soft PHY

The soft PHY is comprised of logic in the FPGA fabric to convert SDR to DDR, and vice-versa. The DFI interface operates in SDR mode, whereas the LPDDR4 interface operates in DDR mode. Figure 2.2 represents a high-level block diagram of the Soft PHY and its major submodules. The Training Engine and Memory Controller are able to access both the Command/Address path and Data Input/Output paths.

Figure 2.2. Lattice PHY

The PHY utilizes hardened logic, called I/O modules or hardware primitives, to implement clock synchronization logic and the command/address and data input/output paths. The clock synchronization logic handles Clock Domain Crossing (CDC) between the Edge Clock (ECLK) and System Clock (SCLK). ECLK is an internal clock used to clock the DDR primitives and SCLK is used to clock the Memory Controller IP Core. Without proper synchronization, the bit order on individual elements might become desynchronized, causing the data bus to become scrambled.

The LPDDR4 Memory Controller operates in 8:1 gearing mode, which means that ECLK operates at the same frequency as the LPDDR4 interface and that SCLK operates at a quarter of the LPDDR4 memory clock. In other words, for a 400 MHz LPDDR4 interface, ECLK operates at 400 MHz and SCLK operates at 100 MHz. This clocking ratio and DDR transfer relationship means that the user data bus is eight times the width of the LPDDR4 memory data bus. For example, a 32-bit LPDDR4 memory interface would require a 256-bit write and read data bus on the DDR PHY (DFI) side, which is an interface protocol between the Memory Controller and PHY. For more information on the soft PHY, hardware primitives, and clock synchronization logic, refer to the LPDDR4 Memory Interface Module User Guide.

2.1.3. Soft Training Engine

The Training Engine is responsible for initializing and training the external LPDDR4 memory. It provides a configuration interface from user logic to the Configuration Set Registers (CSR). Users can issue commands to the Training Engine to perform reads and writes to these registers, allowing users to set desired programmable options, handle interrupts, and obtain details during the LPDDR4 memory training sequence. It consists of command and data generators, a comparator, user-accessible registers, delay logic, a command sequencer, and a RISC-V CPU subsystem.

Figure 2.3. Training Engine

The command generator (cmd_gen) is responsible for generating LPDDR4 commands for all training procedures. The data generator (data_gen) is a pseudo-random (PRBS) number generator that generates the expected data for read training. During write training, it generates both the write data and expected read data. The compare (cmp) block is responsible for comparing the actual read data with the expected read data and sending the result to the registers within the CSR block. The command sequencer (cmd_seq) is responsible for dictating the command and data generation during the various training stages. The delay control (delay_ctrl) block adjusts the delay of the target LPDDR4 memory signals during training. The CSR block consists of various user-accessible registers outlined in the Register Description section of this User Guide.

The RISC-V subsystem writes to the CSRs and command sequencer block in order to initialize and train the LPDDR4 interface. It is also responsible for programming the pattern and seed in the command and data generator blocks prior to the execution of the training procedure.

2.2. Clocking and Reset

The LPDDR4 Memory Controller IP requires a 100 MHz LVSTL input reference clock: pll_rst_n_i. Users need to provide this clock via an external source and route it to an appropriate pin on the FPGA (externally sourced). The provided input clock is then routed through a dedicated PLL within the Memory Controller IP to generate the Edge Clock (ECLK) and System Clock (SCLK). The ECLK signal is used internally to the IP Core to clock the I/O modules and SCLK is used to clock the IP Core. The Primary Clock (PCLK) signal is used to implement clock synchronization logic to synchronize SCLK and ECLK. For additional details regarding clock synchronization, refer to the LPDDR4 Memory Interface Module User Guide.

The LPDDR4 Memory Controller IP contains an asynchronous active low reset: rst_n_i. When asserted, the Memory Controller and LPDDR4 SDRAM are reset to their default values. The IP Core contains internal logic to synchronously deassert the internal reset once rst_n_i is de-asserted, so users do not need to worry about implementing their own deassertion logic.

The configuration interface for the LPDDR4 Memory Controller operates off of the pclk_i signal and is reset via the preset_n_i signal. The clock for the configuration interface is the same one used to implement clock synchronization for SCLK and ECLK. The preset_n_i signal is an asynchronous active low reset, where users must ensure it is synchronously deasserted to pclk_i. Refer to the Data Interface Protocols section of this User Guide for information regarding the clocks and resets for the LPDDR4 Memory Controller supported data interfaces.

2.3. User Interfaces

This section describes the supported protocols for data and configuration interfaces available to the user and supported by the LPDDR4 Memory Controller.

2.3.1. Data Interface Protocols

The data interface allows users to initiate read and write operations to external LPDDR4 SDRAM. The LPDDR4 Memory Controller supports two protocols for data interfacing: AHB-Lite or AXI4.

2.3.1.1. AHB-Lite

The AHB-Lite I/F is available in IP Core v1.x.x and is a single channel bus intended for high-performance and high-frequency applications. The AHB-Lite I/F operates off of the sclk_o signal and is reset via the rst_n_i signal. Refer to the Clocking and Reset section of this User Guide for more details.

The Memory Controller IP supports the following AHB-Lite types of burst transfers:

- Burst Type (HBURST):
 - SINGLE: single burst (1 beat)
 - INCR: incrementing burst that does not wrap at address boundaries (4 or 8 beats)
- Burst Size (HSIZE):
 - [8, 16, 32, 64, 128, 256] Bytes
- Burst Address (HADDR):
 - Unaligned addressing is not supported so all transfers must be aligned to the address boundary
 - SINGLE: address should be aligned to HSIZE
 - INCR4: address should be aligned to (BUS_WIDTH / 8) × 16
 - INCR8: address should be aligned to (BUS_WIDTH / 8) × 32

The AHB-Lite protocol can only support a single outstanding transaction per bus master. As a result, when AHB-Lite is configured as the user data interface, the Memory Controller can support up to 4 outstanding writes and only 1 outstanding read, where the next request cannot be started until the current one completes. For AHB-Lite implementation, reads are prioritized over writes unless there is a dependent write to be serviced. For more information regarding the AHB-Lite protocol, refer to the AMBA AHB Protocol Specification.

Table 2.2. Supported AHB-Lite Transactions

Transaction Type	HBURST	HSIZE[2:0]	Comment
Write	SINGLE	[0, 1, 2, 3, 4, 5] ¹	[1-32] Byte write
Write	INCR4	[0, 1, 2, 3, 4, 5] ¹	[4-128] Byte write
Write	INCR8	[0, 1, 2, 3, 4, 5] ¹	[8-256] Byte write
Read	SINGLE	[0, 1, 2, 3, 4, 5] ¹	[1-32] Byte read
Read	INCR4	[3, 4, 5] ¹	[32-128] Byte read
Read	INCR8	[3, 4, 5] ¹	[64-256] Byte read

Notes:

1. For HSIZE=3, only BUS_WIDTH=16 is supported. For HSIZE=4, only BUS_WIDTH=32 is supported. For HSIZE=5, only BUS_WIDTH=64 is supported.

2.3.1.2. AXI4

The AXI4 I/F is available from IP Core v2.0.0 and is intended for high-bandwidth and low-latency operation. The AXI4 I/F is a multi-channel bus consisting of 5 independent channels: write address, read address, write data, read data, and write response channels (read response is sent along with the read data). The AXI4 I/F operates off of the aclk_i signal when the *Enable Local Bus Clock* attribute is checked. The AXI4 I/F is reset via the areset_n_i signal, which is an asynchronous active low reset, where users must ensure it is synchronously de-asserted to aclk_i.

The Memory Controller IP supports the following AXI4 types of burst transfers:

- Burst Type (AxBURST):
 - INCR: incrementing burst that does not wrap at address boundaries
- Burst Size (AxSIZE):
 - [1, 2, 3, 4, 8, 16, 32, 64] Bytes
- Burst Length (AxLEN):
 - 1-64 beat burst (65-256 is not yet supported)
- Burst Address (AxADDR):
 - Unaligned addressing is not supported so all transfers must be aligned to AxSIZE
 - Unaligned transfer is supported using byte strobes
 - For maximum burst length of 64, address is required to be aligned to (DDR_WIDTH / 8) x 32
- Write Strobes (WSTRB):
 - Only the first and last beats of a burst can have incomplete byte strobes (WSTRB cannot go low in middle of burst)

The AXI4 protocol supports out of order transaction completion and contains support for multiple outstanding transactions per bus master. As a result, when AXI4 is configured as the user data interface, the Memory Controller can support up to 8 outstanding writes and 8 outstanding reads, where both reads and writes are of the same priority. For more information regarding the AXI4 protocol, refer to the AMBA AXI Protocol Specification.

Table 2.3. Supported AXI4 Transactions

Transaction Type	AxBURST	AxLEN[3:0]	AxSIZE[2:0]	Comment
Write	INCR	[0-63]	$[0, 1, 2, 3, 4, 5, 6]^1$	[1-4096] Byte write
Read	INCR	[0-63]	$[0, 1, 2, 3, 4, 5, 6]^1$	[1-4096] Byte read

Notes:

2.3.2. Configuration Interface Protocol

The configuration interface allows users to initialize and train the LPDDR4 memory interface. The Memory Controller IP Core utilizes the APB protocol for its configuration interface.

2.3.2.1. APB

The APB I/F is available in both IP Core v1.x.x and v2.x.x and is a low-power protocol intended for accessing programmable control registers. It is not pipelined and is a synchronous protocol with a single address bus and two data busses: write and read. For more information regarding the APB protocol, please refer to the AMBA APB Protocol Specification.

The Memory Controller leverages this protocol to initialize and train the interface between FPGA logic and LPDDR4 SDRAM. The APB I/F operates off of the pclk_i signal and is reset via the preset_n_i signal. Refer to the Clocking and Reset section of this User Guide for more details.

The APB I/F is not available when the *Enable APB I/F* attribute is unchecked. For details on how to initialize and train LPDDR4 SDRAM without the APB I/F, refer to the <u>Initialization and Training without APB Interface</u> section of this User Guide.

For AxSIZE=4, only DDR_WIDTH=16 is supported. For AxSIZE=5, only DDR_WIDTH=32 is supported. For AxSIZE=6, only DDR_WIDTH=64 is supported.

2.4. LPDDR4 Calibration

To ensure proper device functionality, the external LPDDR4 memory must be initialized and trained before the Memory Controller can perform data accesses. A detailed explanation of the initialization and training sequence is outlined in the LPDDR4 JEDEC Standard.

Upon device power-up, the soft RISC-V CPU located inside the Training Engine is held in reset. To start the initialization and training sequence of the LPDDR4 SDRAM device, the user should execute the following steps via the configuration interface:

- Enable initialization and training by writing 8'h1F to the Training Operation Register (TRN_OP_REG). This will enable
 initialization, command bus training, write leveling, read training, and write training sequences to execute. For
 simulation purposes, it is recommended to shorten the initialization and training sequences by writing 8'h00 to
 TRN_OP_REG. For more information, refer to the Register Description section of this User Guide.
- Pull the CPU and Training Engine out of reset by writing 2'h3 to the Reset Register (RESET_REG). This begins the initialization and training sequence.
- Wait until initialization and training completes using one of the following methods:
 - Poll the Status Register (STATUS_REG) until the write_trn_done signal is asserted (STATUS_REG[4]=1). This indicates that write training has completed, which is the final stage in the initialization and training process.
 - Wait for the trn_done_int signal (INT_STATUS_REG[0]=1) or the trn_error_int signal (INT_STATUS_REG[1]=1) to
 assert in the Interrupt Status Register (INT_STATUS_REG). This method requires the trn_done_en signal
 (INT_ENABLE_REG[0]=1) and the trn_err_en signal (INT_ENABLE_REG[1]=1) to be asserted in the Interrupt Enable
 Register (INT_ENABLE_REG)

After the above steps complete, the control of the PHY is transferred to the Memory Controller and the user can now start accessing the LPDDR4 memory through the data interface. Once init_done_o asserts, the RISC-V CPU and Training Engine enter reset to save power. Refer to the Initialization and Training Sequence section of this User Guide for more details regarding the LPDDR4 calibration sequence.

2.4.1. Initialization and Training Sequence

The LPDDR4 Memory Controller IP performs initialization according to the LPDDR4 JEDEC Standard. This section describes the steps that occur during the LPDDR4 initialization and training sequence.

Once the CPU and Controller Engine is pulled out of reset, the ddr_reset_n_o signal is set low for a period of ~200 μ s. This is followed by the ddr_cke_o signal asserting high for ~2 ms before the LPDDR4 clock (ddr_ck_o) activates and begins toggling. These steps take a very long time to simulate, which is why it is recommended to set the init_en signal low (TRN_OP_REG[0]=0) to shorten the ddr_reset_n_o and ddr_cke_o assert times to a few clock cycles. Refer to the Simulation Example Design section of this User Guide for simulation runtimes of different LPDDR4 configurations.

Figure 2.4. Shortened Initialization Sequence Simulation Waveform (TRN_OP_REG[0]=0)

2.4.1.1. Command Bus Training (CBT)

The goal of Command and Address (CA) calibration is to delay the command and address signals as necessary to optimize the CA window. When setting the cbt_en signal high (TRN_OP_REG[1]=1), the Memory Controller performs Command Bus Training (CBT) according to the LPDDR4 JEDEC Standard. This centers the entire CA bus relative to ddr_ck_o by aligning the rising edge of CK to the middle of the CA valid window. The LPDDR4 memory then provides feedback to the user through the DQ line, which is used by the Memory Controller to determine if additional adjustment is required.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

During this time, the DDR clock, ddr_ck_o, will stop before and after CBT. This is expected as the clock is switching between low frequency (50 MHz) and high frequency (LPDDR4 interface speed) operation, as outlined in the LPDDR4 JEDEC Standard. Upon successful completion of CBT, ddr_ca_o should be centered to the eye of ddr_ck_o, ensuring correct behavior during high frequency operation. Refer to the Command Bus Training Debug section of this User Guide for additional details regarding how CBT is performed by the LPDDR4 Memory Controller.

Figure 2.5. Command Bus Training

2.4.1.2. Write Leveling

The purpose of write leveling is to delay each Data Strobe (DQS) relative to the DDR clock during write operations so they are edge-aligned. This addresses the CK to DQS timing skew that is introduced with the adoption of Fly-By Topology, which reduces Simultaneous Switching Noise (SSN) by allowing different memory components to receive write commands at different times. Setting the write_lvl_en signal high (TRN_OP_REG[2]=1), enables the Memory Controller to perform write leveling on all available ranks. During this process, the Memory Controller delays the ddr_dqs_o signal until a 0-to-1 transition on ddr_ck_o is captured by the dqs rising edge of the LPDDR4 SDRAM device. The LPDDR4 memory then provides feedback of the captured clock signal value through the DQ line, which is used by the Memory Controller to determine if additional adjustment is required. Refer to the Write Leveling Debug section of this User Guide for additional details regarding how write leveling is performed by the LPDDR4 Memory Controller.

Figure 2.6. Write Leveling

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

2.4.1.3. Read Training

The purpose of read training is to delay each DQS relative to the DDR clock during read operations to ensure a full burst can be captured correctly. Read Training also center-aligns DQS relative to the DQ window. Setting the read_trn_en signal high (TRN_OP_REG[3]=1), enables the Memory Controller to perform read training. During this process, the Memory Controller issues burst reads and delays the ddr_dqs_o signal until a full burst is captured correctly. In other words, the Memory Controller delays its read gate to ensure all data sent by the external LPDDR4 SDRAM is received optimally. Once the DQS is captured properly for the entire read burst, read per-byte deskew is performed to optimize the read DQ window to its associated DQS. Refer to the Read Training Debug section of this User Guide for additional details regarding how read training is performed by the LPDDR4 Memory Controller.

Figure 2.7. Read Training

2.4.1.4. Write Training

The purpose of write training is to delay each DQS relative to DQ during write operations to optimize the data window. Setting the write_trn_en signal high (TRN_OP_REG[4]=1), enables the Memory Controller to perform write training. This entails aligning the rising-edge of DQS to the center of the DQ valid window per byte on the LPDDR4 memory side. Refer to the Write Training Debug section of this User Guide for additional details regarding how write training is performed by the LPDDR4 Memory Controller.

Figure 2.8. Write Training

2.4.2. Initialization and Training without APB Interface

The APB I/F will not be available when the *Enable APB I/F* attribute is unchecked. In this case, the init_start_i and trn_opr_i signals will be available for starting and configuring the LPDDR4 initialization and training. The trn_opr_i sets the value of the Training Operation Register (TRN_OP_REG), thus controlling which specific training steps to perform based on the asserted bits. For hardware implementation, it is recommended to set trn_opr_i=0x1F to perform: command bus training, write leveling, read training, and write training procedures. For simulation purposes, it is recommended to shorten the initialization and training sequences by setting trn_opr_i=0x00. Refer to the Register Description section of this User Guide for more details.

The user should execute the following steps to start the initialization and training sequence of the LPDDR4 SDRAM:

- Set init start i=0 while the Memory Controller IP is in reset or while pll lock o=0
- 2. Set init_start_i=1 and maintain this value until init_done_o asserts
- 3. Once init_done_o=1, set init_start_i=0 to hold the training CPU in reset to save power

2.5. LPDDR4 Operation Description

This section provides details on various operations and features supported by the LPDDR4 Memory Controller IP.

2.5.1. Write and Read Data Access

Once the init_done_o signal asserts, users can initiate write and read accesses. The types of data accesses supported by the Memory Controller IP depends on the selected data interface protocol. Refer to Table 2.2 and Table 2.3 for a list of all supported AHB-Lite and AXI4 data accesses.

The Memory Controller decodes the memory-mapped address to check if the row and bank addresses are already opened in the memory device. When a WRITE/READ command is issued to LPDDR4 memory the following commands are issued:

- If the target row and bank are not open, an ACTIVATE command is issued by the Memory Controller to the LPDDR4 SDRAM to open the row. This is followed by the WRITE/READ command.
- If there is an opened row in the current bank, and the target row address is different from the opened row, a
 PRECHARGE command is issued by the Memory Controller to close the opened row. This is followed by an ACTIVATE
 command to open the target row and then the WRITE/READ command.
- If the target row is already opened, only a WRITE/READ command is issued.

The Memory Controller does not immediately close a row after a WRITE/READ command, it issues a separate PRECHARGE command as needed.

2.5.2. Auto Refresh Support

Ideally, REFRESH commands should be issued every refresh interval, specified by the *Refresh Period* attribute. To improve efficiency in scheduling and switching between tasks, the LPDDR4 memory allows a maximum of 8 REFRESH commands to be postponed throughout the LPDDR4 operation. The Memory Controller has an internal auto refresh generator that sends out a set of consecutive AUTO REFRESH commands to the memory once when it reaches the time specified in the following calculation: *Refresh Period* × *No. of Outstanding Refresh*.

For high performance applications, it is recommended to set *No. of Outstanding Refresh* to the maximum value. This increases the LPDDR4 bus throughput by minimizing Memory Controller intervention.

2.5.3. Power Saving Feature

The Memory Controller supports power-saving when the *Enable Power Down* attribute is set. The Memory Controller IP tracks the period of inactivity on the local data bus by monitoring the System Clock (SCLK), which is the main clock used by the Memory Controller IP. When the period of inactivity on the bus reaches the value set in the *Number of SCLK to enter Self-Refresh from no traffic* attribute, the Memory Controller will issue SELF REFRESH and Power-Down Entry commands. This will put the memory into Power-Down mode to save power until a new request is received on the local data bus, at which the Memory Controller will issue SELF REFRESH and Power-Down Exit commands, followed by an additional REFRESH command.

2.5.4. Periodic ZQ Calibration

ZQ Calibration calibrates the output driver impedance across PVT. There are two ZQ Calibration modes initiated with the Multi-Purpose Command (MPC): ZQCAL START and ZQCAL LATCH. The ZQCAL START command initiates the SDRAM's calibration procedure, and the ZQCAL LATCH command captures the result and loads it into the SDRAM's drivers.

The Memory Controller IP periodically performs ZQ Calibration as the voltage and temperature may fluctuate during operation. The user can configure the frequency at which ZQ Calibration is performed and its duration via the ZQ Calibration Period and ZQ Calibration Start to Latch attributes. When SETTINGS_REG[16]=0, ZQ Calibration is set to Short, whereas when SETTINGS_REG[16]=1, ZQ Calibration is set to Long. Refer to the Register Description section of this User Guide for more details.

2.5.5. Temperature Tracking and Extended Temperature Support

LPDDR4 SDRAM devices support temperature tracking, where the device's refresh rate can change based on the operational temperature. When the memory device's temperature is within normal operating conditions, the rate is set to 1x refresh, which is the default case. As the temperature fluctuates below or above the default case, the Memory Controller will decrease or increase the frequency of refreshes respectively. The required refresh rate according to temperature is specified in MR4 within LPDDR4 SDRAM. When the Temperature Update Flag (TUF) is set in MR4, it indicates that the refresh rate has changed from the last read issued to MR4.

LPDDR4 SDRAM devices also support operation for extended temperature. When the operational temperature increases beyond normal operation conditions, the refresh frequency begins to increase. When the refresh rate in MR4 is set to 3'b110, timing derating is required for certain commands, slowing performance. For more information regarding temperature derating timing requirements, refer to the LPDDR4 JEDEC Standard.

The Memory Controller IP reads MR4 periodically to track the temperature of the LPDDR4 memory device. Based on the refresh rate set in MR4, the Memory Controller IP issues REFRESH commands at the required frequency. Note that when the refresh rate in MR4 is set to either 3'b000 or 3' b111, the LPDDR4 memory may not work as expected due to exceeding of low/high temperature operating limits.

When the refresh rate is set to 3'b110 in MR4, the Memory Controller accommodates the temperature derating timing requirements when issuing commands to the memory. The user can change the frequency at which the memory's MR4 register is read through the *Temperature Check Period* attribute. When reading MR4, the Memory Controller IP sets STATUS_REG[18:16] to the read refresh rate value, and INT_STATUS_REG[4]=1 when TUF is set in MR4. Refer to the Register Description section of this User Guide for more details.

3. IP Parameter Description

The configurable attributes of the LPDDR4 Memory Controller for Nexus Devices are shown and described in the following tables. These attributes can be configured through the IP Catalog's Module/IP Block Wizard of the Lattice Radiant software. Refer to the Designing and Simulating the IP section of this User Guide for information on how to configure and generate the Memory Controller IP.

3.1. General

The following section describes the parameters available in the General tab of the IP parameter editor.

Table 3.1. General Attributes

Attribute	Selectable Values	Default	Dependency on Other Attributes
DDR Interface Type	LPDDR4	LPDDR4	Display only
I/O Buffer Type	LVSTL_I, LVSTL_II	LVSTL_I	_
DDR Command Frequency (MHz) ¹	300, 350, 400, 533	533	_
Gearing Ratio	8:1	8:1	Display only
Enable ECC	Checked, Unchecked	Unchecked	Display only (ECC is not yet supported)
Enable Power Down	Checked, Unchecked	Unchecked	_
Enable DBI	Checked, Unchecked	Unchecked	_
Read Latency	Calculated	N/A	Display only Calculated based off selection for DDR Command Frequency
Write Latency	Calculated	N/A	Display only Calculated based off selection for DDR Command Frequency
Enable Internal RISC-V CPU	Checked, Unchecked	Checked	Display only (Disabling of Internal RISC-V CPU is not yet supported)

Notes:

Table 3.2. Clock Settings Attributes

Attribute	Selectable Values	Default	Dependency on Other Attributes
Enable PLL	Checked	Checked	Display only
PLL Reference Clock from Pin	Checked, Unchecked	Checked	_
I/O Standard for Reference Clock	LVSTL_I, LVSTL_II	LVSTL_I	Display only Equal to selection for I/O Buffer Type
RefClock (MHz)	_	100	Display only
DDR Command Actual Frequency (MHz)	Calculated	N/A	Display only Based off selection for DDR Command Frequency

^{1.} Only device speed grades of 8 and 9 can support DDR command frequencies up to 533MHz.

Table 3.3. Memory Configuration Attributes

, ,			
Attribute	Selectable Values	Default	Dependency on Other Attributes
DDR Density (per Channel)	2 Gb, 4 Gb, 8 Gb, 16 Gb	4 Gb	_
DDR Bus Width(BUS_WIDTH)	16, 32, 64	32	_
Number of Ranks	1	1	Display only (Only single rank is supported)
Number of DDR Clocks (CK_WIDTH)	1	1	Display only
Number of Chip Selects (CS_WIDTH)	1	1	Display only

Table 3.4. Local Data Bus Attributes

Attribute	Selectable Values	Default	Dependency on Other Attributes
Local Data Rus Tuna	AHBL	AHB-Lite	For IP Core v1.x.x
Local Data Bus Type	AXI4	AXI4	For IP Core v2.x.x
Address Width	Calculated	N/A	Display only Calculated based off selection for <i>DDR</i> Density
Data Width (AHBL_DATA_WIDTH or AXI_DATA_WIDTH)	Calculated	N/A	Display only Calculated based off selection for <i>Local Data</i> Bus Type
ID Width	2, 3, 4, 5, 6, 7, 8	4	For IP Core v2.x.x
Number of Outstanding Writes	1, 2, 3, 4	4	For IP Core v1.x.x
Write Ordering Queues	1, 2, 3, 4, 5, 6, 7, 8	4	For IP Core v2.x.x
Number of Outstanding Reads	1	1	Display only For IP Core v1.x.x
Read Ordering Queues	1, 2, 3, 4, 5, 6, 7, 8	4	For IP Core v2.x.x
Enable Local Bus Clock	Checked/Unchecked	Unchecked	Display only For IP Core v1.x.x
		Checked	For IP Core v2.x.x
Enable APB I/F	Checked/Unchecked	Checked	For IP Core v2.x.x

Table 3.5. General Definitions

Attribute	Description		
General Group			
DDR Interface Type	Specifies the SDRAM Memory interface: LPDDR4		
I/O Buffer Type	I/O Standard for the memory interface signals		
DDR Command Frequency (MHz)	Speed at which the memory controller will issue commands to the memory device		
Gearing Ratio	Specifies the ratio relationship between the DDR data speed and the memory controller speed		
Enable ECC	Enables error-correction code (ECC) for single-bit error correct and double-bit error detection (not yet supported)		
Enable Power Down	Enables memory controller automatically placing the memory device into power-down mode after a specified number of idle controller clock cycles		
Enable DBI	Enables data bus inversion (DBI) for better signal integrity and read/write margins		
Read Latency	Specifies the delay from issuing of a read command to receiving of read data from SDRAM		
Write Latency	Specifies the delay from issuing of a write command to providing of write data to SDRAM		
Enable Internal RISC-V CPU	Enables RISC-V subsystem to support initialization and training of the memory device (disabling is not yet supported)		

Attribute	Description	
Clock Settings Group		
Enable PLL	Enables PLL	
PLL Reference Clock from Pin	Indicates if provided PLL reference clock originates from a pin	
I/O Standard for Reference Clock	Specifies the I/O standard for the PLL reference clock	
RefClock (MHz)	Indicates the PLL reference clock speed (100 MHz)	
DDR Command Actual Frequency (MHz)	Specifies the actual operating frequency of the memory interface (calculated by the PLL – includes tolerance)	
Memory Configuration Group		
DDR Density (per Channel)	Density of SDRAM (# of chips on memory module). Only DDR Density with power of 2 is supported.	
DDR Bus Width	Total number of data pins in memory interface	
Number of Ranks	Specifies number of ranks in memory interface (only single rank is supported)	
Number of DDR Clocks	Specifies the number of CK/CK# clock pairs to be driven to SDRAM (multiple clocks is not yet supported)	
Number of Chip Selects	Specifies the number of chip select (CS) signals to be driven to SDRAM (multiple chip selects is not yet supported)	
Local Data Bus Group		
Local Data Bus Type	Indicates bus for local data interface: IP Core v1.x.x: AHB-Lite IP Core v2.x.x: AXI4	
Address Width	Specifies number of address pins in memory interface, dependent on the SDRAM density.	
Data Width	Indicates data width for local data bus: BUS_WIDTH × 4 if using AHB-Lite BUS_WIDTH × 8 if using AXI4	
ID Width	Indicates bit width of AXI4 ID Only for IP Core v2.x.x	
Number of Outstanding Writes / Write Ordering Queues	The number of outstanding writes/reads and the write/read ordering queues process write and	
Number of Outstanding Reads / Read Ordering Queues	read data requests. The higher the value, the better bandwidth on the interface since gaps between accesses is lessened at the cost of consuming more LUTs.	
Enable Local Bus Clock	Enables clock domain crossing logic for the local data bus. IP Core v1.x.x: disabled by default (fixed) IP Core v2.x.x: enabled by default (configurable)	
Enable APB I/F	Enables APB interface. Should be enabled if target application includes a CPU. When disable initialization and training of SDRAM should be handled via init_start_i and trn_opr_i signals. Please refer to the Initialization and Training without APB Interface section of this User Guid for more information.	

3.2. Memory Device Timing

The following section describes the parameters available in the Memory Device Timing tab of the IP parameter editor. The default value for the attributes listed under Memory Device Timing Setting Group is different for each DDR Command Frequency value, and is based off what is specified in the JESD209-4C SDRAM standard. These values may need to be manually adjusted based on the selected LPDDR4 device.

Table 3.6. Memory Device Timing Setting Attributes

Attribute	Selectable Values	Default	Dependency on Other Attributes
Manual Timing Adjust Enable	Checked/Unchecked	Unchecked	_
TRCD (tCLK)	4–65536	Calculated	Enabled when Manually Adjust is Checked
TRAS (tCLK)	4–65536	Calculated	Enabled when Manually Adjust is Checked
TRPPB (tCLK)	4–65536	Calculated	Enabled when Manually Adjust is Checked
TWR (tCLK)	4–65536	Calculated	Enabled when Manually Adjust is Checked
TRTP (tCLK)	8–65536	Calculated	Enabled when Manually Adjust is Checked
TCCD (tCLK)	8–65536	Calculated	Enabled when Manually Adjust is Checked
MWR2MWR (tCLK)	32-65536	Calculated	Enabled when Manually Adjust is Checked
TRRD (tCLK)	6–65536	Calculated	Enabled when Manually Adjust is Checked
TRFC (tCLK)	24–28080	Calculated	Enabled when Manually Adjust is Checked
TFAW (tCLK)	40–65536	Calculated	Enabled when Manually Adjust is Checked
TZQCAL (tCLK)	4–65536	Calculated	Enabled when Manually Adjust is Checked
TMRR (tCLK)	8–65536	Calculated	Enabled when Manually Adjust is Checked
TMRD (tCLK)	10-65536	Calculated	Enabled when Manually Adjust is Checked
TRPAB (tCLK)	4–65536	Calculated	Enabled when Manually Adjust is Checked
TRTW (tCLK)	21–65536	Calculated	Enabled when Manually Adjust is Checked
TDQSS (tCLK)	Integer	1	Enabled when Manually Adjust is Checked
TRD2PRE (tCLK)	4–65536	Calculated	Enabled when Manually Adjust is Checked
TWR2PRE (tCLK)	4–65536	Calculated	Enabled when Manually Adjust is Checked
TXP (tCLK)	4–65536	Calculated	Enabled when Manually Adjust is Checked
TXPSR (tCLK)	4–65536	Calculated	Enabled when Manually Adjust is Checked

Table 3.7. Periodic Event Setting Attributes

Attribute	Selectable Values	Default	Dependency on Other Attributes
No of SCLK to enter Self-Refresh from no traffic	Integer	1000	Enabled when <i>Enable Power Down</i> is Checked
Refresh Period (tSCLK)	Calculated	Calculated	Default value is calculated based off selection for DDR Command Frequency
No. of Outstanding Refresh	1	1	Display only For IP Core v1.x.x
	1, 2, 3, 4, 5, 6, 7, 8	8	For IP Core v2.x.x
ZQ Calibration Period (sec)	Integer	32	_
ZQ Calibration Start to Latch (usec)	Integer	1	-
Temperature Check Period (sec)	Integer	32	_

Table 3.8. Memory Device Timing Definitions

Attribute	Description	
Memory Device Timing Setting Group ¹		
Manual Timing Adjust Enable	Enables user to manually set any of the memory timing parameters	
TRCD	Indicates the delay between the ACTIVATE command (RAS) and the internal access to data (CAS)	
TRAS	Indicates how long memory must wait after an ACTIVATE command before a PRECHARGE command can be issued to close the row	
TRPPB	Row PRECHARGE time for a single bank	

Attribute	Description	
TWR	Specifies the amount of clock cycles needed to complete a WRITE before a PRECHARGE command can be issued	
TRTP	Internal READ to PRECHARGE delay	
TCCD	Minimum time between two READ/WRITE (CAS) commands (burst length / 2)	
MWR2MWR	Masked WRITE to masked WRITE	
TRRD	Minimum time interval between two ACTIVATE commands to different banks	
TRFC	Indicates how long memory must wait after a REFRESH command before an ACTIVATE command can be accepted by memory	
TFAW	Specifies the period duration during which only four banks can be active	
TZQCAL	ZQ calibration time from START to LATCH command	
TMRR	Mode register READ command period	
TMRD	Minimum time between two MRS commands	
TRPAB	Row PRECHARGE time for all banks	
TRTW	READ to WRITE command delay	
TDQSS	Describes skew between the output data strobe with respect to the memory clock for writes (DQS to CK)	
TRD2PRE	READ to PRECHARGE time	
TWR2PRE	WRITE to PRECHARGE time	
TXP	Power-down exit latency to next valid command	
TXPSR	Power-down exit latency to next self-refresh	
Periodic Event Setting Group		
Number of SCLK to enter Self- Refresh from no traffic	The memory controller puts the memory in self-refresh when there is no traffic for the specified number of SCLK cycles	
Refresh Period	Specifies the number of SCLK cycles between refresh commands	
Number of Outstanding Refresh	Specifies the maximum number of outstanding refresh commands. Refer to the Auto Refresh Support section of this User Guide for more information.	
ZQ Calibration Period	Indicates period for performing ZQ Calibration in seconds	
ZQ Calibration Start to Latch	Indicates time from start to latch during ZQ Calibration in microseconds	
Temperature Check Period	Indicates period for reading the temperature register (MR4) in LPDDR4 memory in seconds	

1. The memory device timing parameters listed under the Memory Device Timing tab are defined according to the JESD209-4C SDRAM standard. Refer to the memory device data sheet for detailed descriptions and allowed values for these parameters.

3.3. Training Settings

The following section describes the parameters available in the Training Settings tab of the IP parameter editor, which is only applicable for IP Core v2.x.x.

Table 3.9. Training Settings Attributes

Attribute	Selectable Values	Default	Dependency on Other Attributes	
DDR Clock Delay Value	0-127	64	_	
Initial MC DQ_VREF Value	0-127	70	_	
Initial Memory CA_VREF Value	0-127	80	_	
Initial Memory DQ_VREF Value	0-127	80	_	
DQ_ODT Value	Disable, RZQ/1, RZQ/2, RZQ/3, RZQ/4, RZQ/5, RZQ/6	Disable	_	

Table 3.10. Trained Values Attributes

Attributes	Selectable Values	Default	Dependency on Other Attributes
DQS0 Trained Write Leveling Delay	0-127	68	_
DQS1 Trained Write Leveling Delay	0-127	68	_
DQS2 Trained Write Leveling Delay	0-127	68	Visible only when DDR Bus Width >= 32
DQS3 Trained Write Leveling Delay	0-127	68	Visible only when DDR Bus Width >= 32
DQS<4,5,6,7> Trained Write Leveling Delay	0-127	68	Visible only when <i>DDR Bus Width</i> == 64
DQS0 Trained RDCLKSEL ¹	0-15	Calculated	_
DQS1 Trained RDCLKSEL ¹	0-15	Calculated	_
DQS2 Trained RDCLKSEL ¹	0-15	Calculated	Visible only when DDR Bus Width >= 32
DQS3 Trained RDCLKSEL ¹	0-15	Calculated	Visible only when <i>DDR Bus Width</i> >= 32
DQS<4,5,6,7> Trained RDCLKSEL ¹	0-15	Calculated	Visible only when DDR Bus Width == 64
Trained CS Delay	0-127	64	_
Trained CA Delay	0-127	64	_
Trained DQSBUF Read Delay	0-127	24	_
Trained DQSBUF Read Sign	0, 1	0	_
Trained Write DQ/DBI delay	0-127	56	_
Trained Write Latency	0-18	7	_
Trained Read Latency	0-40	12	_

Table 3.11. Training Settings Definitions

Attribute	Description
Training Settings Group ¹	
DDR Clock Delay Value	Specifies the DDR clock delay.so that the first DQS toggle is at CK = 0 during write leveling. It is recommended to increase this value if write leveling fails
Initial MC DQ_VREF Value	Initial DQ VREF value for the FPGA I/O. This value is translated to an internal reference voltage where the input DQ/DBI signal will be compared to determine a 0 and 1 value
Initial Memory CA_VREF Value	Initial CA VREF value that is written to MR12 in LPDDR4 memory
Initial Memory DQ_VREF Value	Initial DQ VREF value that is written to MR14 in LPDDR4 memory
DQ_ODT Value	Specifies the DQ ODT value that is written to MR11 in LPDDR4 memory
Trained Values Group ²	
DQS<0,1,2,3,4,5,6,7> Trained Write Leveling Delay	Specifies delay value to be programmed to the PHY when TRN_OP_REG[2] = 0. Each step adjusts the write DQS delay by ~12.5 ps.
DQS<0,1,2,3,4,5,6,7> Trained RDCLKSEL	Specifies the delay value to be programmed to the PHY when TRN_OP_REG[3] = 0. Each step adjusts the internal read DQS delay by a 45° phase shift from the incoming DQS.
Trained CS Delay	Specifies the CS delay. It is recommended to use the default value and to only adjust when CBT fails after already adjusting the <i>Initial MC DQ_VREF Value</i> . Each step adjusts the CS delay by ~12.5 ps.
Trained CA Delay	Specifies the delay value to be programmed to the PHY when TRN_OP_REG[1] = 0. Each step adjusts the CA delay by \sim 12.5 ps.
Trained DQSBUF Read Delay	Specifies the delay value to be programmed to the PHY when TRN_OP_REG[3] = 0. Each step adjusts the internal read DQS delay by a small delay based on the DDR clock frequency.
Trained Write DQ/DBI Delay	Specifies the delay value to be programmed to the PHY when TRN_OP_REG[4] = 0. Each step adjusts the write DQ/DBI delay by ~12.5 ps.

^{1.} The default value of *DQS*<0,1,2,3,4,5,6,7> *Trained RDCLKSEL* is different for each *DDR Command Frequency* value. Each step adjusts the internally generated read DQS by a ~45° phase shift from the incoming DQS.

Attribute	Description	
Trained Write Latency	Specifies the write latency setting of the PHY that passes write training. Ideally, this is equal to Write Latency + 1.	
Trained Read Latency	Specifies the read latency setting of the PHY that passes read training. Ideally, this is equal to Read Latency + 1.	

- 1. These attributes should only be modified when an error is encountered during LPDDR4 memory training.
- These attributes are used only when skipping LPDDR4 training during simulation. It is also possible to skip training on hardware
 when set correctly, but this is not recommended as the delays/VREFs will not be adjusted according to environmental temperature
 variations.

4. Signal Description

The input and output signals of the LPDDR4 Memory Controller for Nexus Devices are covered in the following section. The signals available are based off the selected configuration of the LPDDR4 Memory Controller IP.

4.1. Clock and Reset

The following section describes the interface ports for clock and reset in the LPDDR4 Memory Controller IP.

Table 4.1. Clock and Reset Port Definitions

Port Name	1/0	Width	Description	
pll_refclk_i	In	1	PLL reference clock input	
pll_rst_n_i	In	1	PLL reset active low	
pclk_i	In	1	Clock for APB interface, training CPU and control logic of the internal PLL. This clock is independent of sclk_o, since sclk_o stops during clock frequency changes.	
preset_n_i	In	1	Asynchronous active low reset for APB interface. This reset must be deasserted synchronous to pclk_i.	
pll_lock_o	Out	1	PLL lock output indicating when PLL is locked	
sclk_o	Out	1	System clock. This is ¼ of the DDR clock frequency and is the main clock of the LPDDR4 Memory Controller IP.	
rst_n_i	In	1	Asynchronous active low reset. When asserted, output ports and register are forced to their reset values. The LPDDR4 Memory Controller IP implements logic to de-assert the internal reset synchronous to the interclocks after rst_n_i de-asserts.	
aclk_i	In	1	AXI4 I/F clock. Available in IP Core v2.x.x This is only available when <i>Enable Local Bus Clock</i> attribute is checked	
areset_n_i	In	1	Asynchronous active low reset for AXI4 I/F. Available in IP Core v2.x.x This reset must be de-asserted synchronous to aclk_i. This is only available when <i>Enable Local Bus Clock</i> attribute is checked.	

4.2. Interrupts and Initialization/Training

The following section describes the interface ports for interrupts and initialization/training control in the LPDDR4 Memory Controller IP.

Table 4.2. Interrupts and Initialization/Training Port Definitions

Port Name	1/0	Width	Description
irq_o	Out	1	Interrupt signal
init start i	In	1	Reset value is 1'b0 Starts the memory initialization and training according to trn opr i.
			This signal is available when <i>Enable APB I/F</i> attribute is unchecked.
init_done_o	Out	1	Indicates completion of initialization and training and the memory is available for access through the data interface.
trn_opr_i	In	8	Sets the TRN_OP_REG, which specifies the training steps to perform. Refer to the Training Operation Register (TRN_OP_REG) (0x20) section of this User Guide for more information. This signal is available when Enable APB I/F attribute is unchecked.
trn_err_o	Out	1	Indicates failure in training

4.3. AHB-Lite Data Interface

The following section describes the data interface port when the *Local Data Bus Type* attribute is set to AHB-Lite in the LPDDR4 Memory Controller IP. These ports are available only when using IP Core v1.x.x.

Refer to the AMBA AHB Protocol Specification for a description of these signals. The transactions allowed on the AHB-Lite interface to the Memory Controller are described in Table 2.2.

Table 4.3. AHB-Lite Interface Port Definitions

Port Name	1/0	Width	Description
ahbl_hsel_i	In	1	Start transaction
ahbl_hready_i	In	1	Ready signal from AHB-Lite interconnect. When connecting to an AHB-Lite manager directly, connect this to ahbl_hreadyout_o or set to 1.
ahbl_haddr_i ¹	In	AHBL_ADDR_WIDTH	Request address
ahbl_hburst_i	In	3	Burst type
ahbl_hsize_i	In	3	Indicates the size of the transfer
ahbl_hmastlock_i	In	1	AHB-Lite HMASTLOCK signal – not used for this IP
ahbl_hprot_i	In	4	AHB-Lite HPROT signal – not used for this IP
ahbl_htrans_i	In	1	Transfer type IDLE, BUSY, NONSEQ, SEQ
ahbl_hwrite_i	In	1	1 = Write, 0 = Read
ahbl_hwdata_i¹	In	AHBL_DATA_WIDTH	The write data for write transactions
ahbl_hreadyout_o	Out	1	Read response valid
ahbl_hrdata_o¹	Out	AHBL_DATA_WIDTH	Read data response
ahbl_hresp_o	Out	1	Read response state

Notes:

4.4. AXI4 Data Interface

The following section describes the data interface port when the *Local Data Bus Type* attribute is set to AXI4 in the LPDDR4 Memory Controller IP. These ports are available only when using IP Core v2.x.x.

Refer to the AMBA AXI Protocol Specification for a description of these signals. The transactions allowed on the AXI4 interface to the Memory Controller are described in Table 2.3.

Table 4.4. AXI4 Interface Port Definitions

Port Name	1/0	Width	Description
axi_arid_i	In	AXI_ID_WIDTH	AXI4 read address channel: Read address ID signal
axi_araddr_i ¹	In	AXI_ADDR_WIDTH	AXI4 read address channel: Read address signal
avi arlan i	In	8	AXI4 read address channel: Burst length signal
axi_arlen_i	111	0	Supports up to burst length 64 only, it is prohibited to issue more than this
axi_arsize_i	In	3	AXI4 read address channel: Burst size signal
axi arburst i	In	2	AXI4 read address channel: Burst type signal
axi_arburst_r	111	2	Only INCR is supported
axi arqos i	In	4	AXI4 read address channel: Quality of service signal
axi_aiqos_i	""	4	This signal is currently unused
axi_arvalid_i	In	1	AXI4 read address channel: Read address valid signal
axi_arready_o	Out	1	AXI4 read address channel: Read address ready signal
axi_rid_o	Out	AXI_ID_WIDTH	AXI4 read data channel: Read ID tag signal
axi_rdata_o¹	Out	AXI_DATA_WIDTH	AXI4 read data channel: Read data signal
axi_rresp_o	Out	2	AXI4 read data channel: Read response signal

^{1.} The bit width of ahbl_haddr_i/ahbl_hwdata_i/ahbl_hrdata_o is calculated based on the *DDR density* and *DDR Bus Width* attributes in Table 3.3. Refer to Table 5.4 for the address mapping.

Port Name	I/O	Width	Description
axi_rlast_o	Out	1	AXI4 read data channel: Read last signal
axi_rvalid_o	Out	1	AXI4 read data channel: Read valid signal
axi_rready_i	In	1	AXI4 read data channel: Read ready signal
axi_awid_i	In	AXI_ID_WIDTH	AXI4 write address channel: Write address ID signal
axi_awaddr_i¹	In	AXI_ADDR_WIDTH	AXI4 write address channel: Write address signal
axi_awlen_i	In	8	AXI4 write address channel: Burst length signal
axi_awsize_i	In	3	AXI4 write address channel: Burst size signal
axi_awburst_i	In	2	AXI4 write address channel: Burst type signal
axi_awqos_i	In	4	AXI4 write address channel: Quality of service signal
axi_awvalid_i	In	1	AXI4 write address channel: Write address valid signal
axi_awready_o	Out	1	AXI4 write address channel: Write address ready signal
axi_wdata_i¹	In	AXI_DATA_WIDTH	AXI4 write data channel: Write data signal
axi_wstrb_i	In	AXI_STRB_WIDTH	AXI4 write data channel: Write strobe signal
axi_wlast_i	In	1	AXI4 write data channel: Write last signal
axi_wvalid_i	In	1	AXI4 write data channel: Write valid signal
axi_wready_o	Out	1	AXI4 write data channel: Write ready signal
axi_bid_o	Out	AXI_ID_WIDTH	AXI4 write response channel: Response ID tag signal
axi_bresp_o	Out	2	AXI4 write response channel: Write response signal
axi_bvalid_o	Out	1	AXI4 write response channel: Write response valid signal
axi_bready_i	In	1	AXI4 write response channel: Response ready signal

4.5. APB Register Interface

The following section describes the configuration interface port when the *Enable APB I/F* attribute is checked in the LPDDR4 Memory Controller IP. Refer to the AMBA APB Protocol Specification for a description of these signals.

Table 4.5. APB Interface Port Definitions

Port Name	1/0	Width	Description	
apb_psel_i	In	1	APB Select signal Indicates that the subordinate device is selected and a data transfer is required	
apb_paddr_i	In	12	APB Address signal	
apb_pwdata_i	In	32	APB Write data signal Bits [31:8] are not used	
apb_pwrite_i	In	1	APB Direction signal 1 = Write, 0 = Read	
apb_penable_i	In	1	APB Enable signal Indicates the second and subsequent cycles of an APB transfer	
apb_pready_o	Out	1	APB Ready signal Indicates transfer completion. Subordinate uses this signal to extend ar APB transfer. Reset value is 1'b0.	
apb_pslverr_o	Out	1	APB Error signal Indicates a transfer failure. This signal is tied to 1'b0.	
apb_prdata_o	Out	32	APB Read data signal	

^{1.} The bit width of axi_araddr_i/axi_rdata_o/axi_awaddr_i/axi_wdata_i is calculated based on the *DDR density* and *DDR Bus Width* attributes in Table 3.3. Refer to Table 5.4 for the address mapping.

4.6. LPDDR4 Memory Interface

The following section describes the interface ports for LPDDR4 SDRAM.

Table 4.6. LPDDR4 Interface Port Definitions

Port Name	1/0	Width	Description	
ddr_ck_o¹	Out	CK_WIDTH	LPDDR4 CK signal	
ddr_cke_o¹	Out	CK_WIDTH	LPDDR4 CKE signal	
ddr_cs_o¹	Out	CS_WIDTH	LPDDR4 CS signal	
ddr_ca_o	Out	6	LPDDR4 CA signal	
ddr_reset_n_o	Out	1	Memory reset signal	
ddr_dq_io¹	In/Out	BUS_WIDTH	LPDDR4 DQ signal	
ddr_dqs_io1	In/Out	DQS_WIDTH	LPDDR4 DQS signal	
ddr_dmi_io1	In/Out	DQS_WIDTH	LPDDR4 DMI signal	

Notes:

1. The bit width of SDRAM Memory Interface signals is defined based on the attributes listed in Table 3.3.

5. Register Description

This section describes the user accessible registers in the LPDDR4 Memory Controller IP. Some registers are marked reserved for internal CPU usage and should not be written to. Writing to these registers may cause failures during the initialization and training operations.

Table 5.1. Summary of LPDDR4 Memory Controller IP Registers

Offset	Register Name	Access Type	Description
0x00	FEATURE_CTRL_REG	RW	Feature Control Register
0x04	RESET_REG	RW	Reset Register
0x08	SETTINGS_REG	RW	Settings Register
0x0C	Reserved	_	Reserved
0x10	INT_STATUS_REG	RW1C	Interrupt Status Register
0x14	INT_ENABLE_REG	RW	Interrupt Enable Register
0x18	INT_SET_REG	wo	Interrupt Set Register
0x1C	For internal use	_	Reserved for use by the internal CPU
0x20	TRN_OP_REG	RW	Training Operation Register
0x24	STATUS_REG	RW	Status Register
0x28 to 0xA4	For internal use	_	Reserved for use by the internal CPU
0xA8 onwards	Reserved	_	Reserved

Table 5.2. Register Access Type Definitions

Access Type	Behavior on Read Access	Behavior on Write Access
RO	Returns register value	Ignores write access
WO	Returns 0	Updates register value
RW	Returns register value	Updates register value
RW1C	Returns register value	Writing 1'b1 on register bit clears the bit to 1'b0 Writing 1'b0 on register bit is ignored
RSVD	Returns 0	Ignores write access

5.1. Feature Control Register (FEATURE_CTRL_REG) (0x00)

The Feature Control Register reflects the modes of operation specified according to the attributes selected during IP configuration. These attributes are set during IP configuration and cannot be modified during run-time. The CPU reads this register to identify the modes of operation.

Table 5.3. Feature Control Register

Field	Name	Access	Width	Reset
[31:17]	reserved	RSVD	15	_
[16]	num_ranks	RO	1	Number of Ranks
[15:12]	ddr_width	RO	4	DDR Bus Width
[11:8]	ddr_type	RO	4	DDR Interface Type
[7:4]	addr_translation	RO	4	0
[3]	gear_ratio	RO	1	Gearing Ratio
[2]	pwr_down_en	RO	1	Enable Power Down
[1]	dbi_en	RO	1	Enable DBI
[0]	reserved	RSVD	1	_

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

num_ranks

The num_ranks is fixed at value 0, which corresponds to single rank.

ddr_width

- The ddr width specifies the bit width of the DDR data bus as follows:
 - 0 DDR Bus Width = 8 bits
 - 1 DDR Bus Width = 16 bits
 - 2 reserved
 - 3 *DDR Bus Width* = 32 bits
 - 4 reserved
 - 5 reserved
 - 6 reserved
 - 7 DDR Bus Width = 64 bits

ddr_type

• The ddr_type is fixed at value 1, which corresponds to LPDDR4 as the standard implemented by the Memory Controller IP Core.

addr_translation

• The address translation specifies the mapping of the address bits of the local memory-mapped address and the memory address in terms of row, column, bank, and rank. Only 1 address translation scheme (addr_translation=0) is currently supported; refer to Table 5.4 and Table 5.5 for details.

gear_ratio

• The gear_ratio is fixed at value 1, which corresponds to 8:1 gearing and specifies the ratio of the DDR clock domain and system clock domain as ddr ck o frequency = 4 × sclk o frequency.

pwr_down_en

• The pwr_down_en enables the power saving mode by putting the memory in self-refresh when there is no traffic for sclk_o cycles as specified in the *No. of SCLK to enter Self-Refresh from no traffic* attribute.

dbi_en

• The dbi_en enables the Data Bus Inversion function to reduce the toggling of DDR data signals, thus improving the signal integrity and reducing dynamic power consumption as specified in the *Enable DBI* attribute.

Table 5.4. Address Mapping for addr translation=0

Memory Address	Size	Local Address Map	
Row	ROWW = refer to memory device data sheet	ROW_H = ROW_L + ROWW-1 ROW_L = BANK_H + 1	Addr[ROW_H: ROW_L]
Bank	BANKW = 3	BANK_H = COL_H +BANKW -1 BANK_L = COL_H + 1	Addr[BANK_H: BANK _L]
Column	COLW = 10	COL_H = COL_L + COLW - 1 COL_L = OFFSETW	Addr[COL_H: COL_L]
Offset	If DDR Bus Width == 64: OFFSETW = 3 If DDR Bus Width == 32: OFFSETW = 2 If DDR Bus Width == 16: OFFSETW = 1 If DDR Bus Width == 8: OFFSETW = 0	N/A	

Table 5.5. Address Mapping Example

Memory Address	Example User Value	Actual Line Size	Local Address Map
Offset	DDR Bus Width = 32	2	*addr_i[1:0]
Column Width (COLW)	10 (Fixed for LPDDR4)	10	*addr_i[11:2]
Bank Width (BANKW)	3 (Fixed for LPDDR4)	3	*addr_i[14:12]
Row Width (ROWW)	DDR Density = 4	15	*addr_i[29:15]
Rank Width (RANKW)	Number of Ranks = 1	0	
Total Local Address Line Size		30	*addr_i[29:0]

5.2. Reset Register (RESET_REG) (0x04)

The Reset Register controls the reset of the internal CPU and Training Engine, where both are reset at power-on. The host should de-assert the reset to the internal CPU and Training Engine to begin memory initialization and training. Upon training completion, the internal CPU sets the trn_eng_rst_n signal low (RESET_REG[0]=0), to place the Training Engine in reset to save power. When the Enable APB I/F attribute is unchecked, the init_start_i signal controls the internal CPU reset (RESET_REG[1]). This register does not reset the Configuration Set Registers (CSRs).

Table 5.6. Reset Register

Field	Name	Access	Width	Reset
[31:2]	reserved	RSVD	30	ı
[1]	cpu_rst_n	RW	1	0
[0]	trn_eng_rst_n	RW	1	0

5.3. Settings Register (SETTINGS_REG) (0x08)

The Settings Register controls the DDR write and read latencies according to the attributes selected during IP configuration.

Table 5.7. Settings Register

Field	Name	Access	Width	Reset
[31:17]	reserved	RSVD	16	1
[16]	zq_cal_sel	RW	1	1
[15:12]	reserved	RSVD	4	1
[11:8]	read_latency	RW	4	Read Latency
[7:4]	reserved	RSVD	4	_
[3:0]	write_latency	RW	4	Write Latency

zq_cal_sel

- The zq_cal_sel specifies the ZQ calibration operation for periodic ZQ calibration:
 - 0 ZQ Calibration Short
 - 1 ZQ Calibration Long

read_latency

• The read latency specifies the number of DDR clock cycles from read command to the first read data.

write_latency

The write_latency specifies the number of DDR clock cycles from write command to the first write data.

5.4. Interrupt Status Register (INT_STATUS_REG) (0x10)

The following table lists all the pending interrupts supported in the Memory Controller IP. When an interrupt bit asserts, it remains asserted until it is cleared by the host writing 1'b1 to the corresponding bit.

The interrupt status bits are independent of the interrupt enable bits. In other words, status bits may indicate pending interrupts, even though those interrupts are disabled in the Interrupt Enable Register. User logic that handles interrupts should mask (bitwise and logic) the contents of INT_STATUS_REG and INT_ENABLE_REG to determine which interrupts to service. The irq_o interrupt signal is asserted whenever both an interrupt status bit and the corresponding interrupt enable bits are set.

Table 5.8. Interrupt Status Register

Field	Name	Access	Width	Reset
[31:5]	reserved	RSVD	27	
[4]	temp_change_int	RW1C	1	0
[3:2]	reserved	RSVD	2	_
[1]	trn_err_int	RW1C	1	0
[0]	trn_done_int	RW1C	1	0

temp_change_int

- Temperature Change Interrupt. The Memory Controller periodically reads MR4 of the LPDDR4 memory device according to the *Temperature Check Period* attribute. This interrupt bit asserts when MR4 indicates a temperature change, and the refresh rate is not equal to 1x refresh.
 - 0 No interrupt
 - 1 Interrupt pending

trn err int

- Training Error Interrupt. This Interrupt bit asserts when the Training Engine encounters an error during training. The user should read STATUS REG to determine the specific error.
 - 0 No interrupt
 - 1 Interrupt pending

trn_done_int

- Training Done Interrupt. This Interrupt bit asserts when initialization and training is completed successfully.
 - 0 No interrupt
 - 1 Interrupt pending

5.5. Interrupt Enable Register (INT_ENABLE_REG) (0x14)

The Interrupt Enable Register lists all configurable interrupts within the Memory Controller IP.

Table 5.9. Interrupt Enable Register

Field	Name	Access	Width	Reset
[31:5]	reserved	RSVD	27	_
[4]	temp_change_en	RW	1	0
[3:2]	reserved	RSVD	1	_
[1]	trn_err_en	RW	1	0
[0]	trn_done_en	RW	1	0

temp_change_en

- Temperature Change Interrupt Enable.
 - 0 Interrupt disabled
 - 1 Interrupt enabled

trn_err_en

- Training Error Interrupt Enable.
 - 0 Interrupt disabled
 - 1 Interrupt enabled

trn_done_en

- Training Done Interrupt Enable.
 - 0 Interrupt disabled
 - 1 Interrupt enabled

5.6. Interrupt Set Register (INT_SET_REG) (0x18)

The following table shows a summary of the Interrupt Set Register. Writing 1'b1 to a register bit in this register asserts the corresponding interrupt status bits in INT_STATUS_REG. Writing 1'b0 is ignored.

Table 5.10. Interrupt Set Register

1 0				
Field	Name	Access	Width	Reset
[31:5]	reserved	RSVD	27	_
[4]	temp_change_set	WO	1	0
[3:2]	reserved	RSVD	2	_
[1]	trn_err_set	wo	1	0
[0]	trn_done_set	WO	1	0

temp_change_set

- Temperature Change Interrupt Set.
 - 0 No Action
 - 1 Assert the temp_change_int signal (INT_STATUS_REG[4]=1)

trn_err_set

- Training Error Interrupt Set.
 - 0 No Action
 - 1 Assert the trn_err_int signal (INT_STATUS_REG[1]=1)

trn_done_set

- Training Done Interrupt Set.
 - 0 No Action
 - 1 Assert the trn_done_int signal (INT_STATUS_REG[0]=1)

5.7. Training Operation Register (TRN_OP_REG) (0x20)

The following table shows a summary of the Training Operation Register. This register controls the memory initialization and training. It is recommended to set these register bits to 1'b0 during simulation to shorten the initialization and training procedure. When *Enable APB I/F* is unchecked, TRN_OP_REG[7:0] is set to the value of the trn_opr_i input signal.

Table 5.11. Training Operation Register

Field	Name	Access	Width	Reset
[31:8]	reserved	RSVD	24	1
[7:5]	reserved	RSVD	3	_
[4]	write_trn_en	RW	1	1
[3]	read_trn_en	RW	1	1
[2]	write_lvl_en	RW	1	1
[1]	cbt_en	RW	1	1
[0]	init_en	RW	1	1

write_trn_en

- Enables write training during initialization and training. Write training optimizes the write DQ delay with respect to
 the write DQS to improve the data valid window for write operations. If write training fails for a certain latency, the
 Training Engine will increase the latency setting by 1 and retry write training.
 - 0 The Training Engine programs the Trained Write DQ/DBI delay and Trained Write Latency to PHY
 attributes, and checks that write and read FIFO access is equal.
 - 1 The Training Engine performs write training.

read_trn_en

- Enables read training during initialization and training. Read training tunes the PHY to capture the incoming read
 DQS burst according to the read latency setting. If read training fails for a certain latency setting, the Training
 Engine will increase the latency setting by 1 and retry read training. Once the read DQS burst is captured properly,
 the read DQS-DQ timing is trained to improve the read data valid window.
 - 0 The Training Engine programs the *DQS<0,1,2,3,4,5,6,7> Trained RDCLKSEL, Trained DQSBUF Read Delay/Sign*, and *Trained Read Latency* attributes to the PHY and checks that read access will be successful.
 - 1 The Training Engine performs read training.

write Ivl en

- Enables write leveling during initialization and training. Write leveling compensates for CK-DQS timing skews. The Training Engine performs write leveling according to the JEDEC standard.
 - 0 The Training Engine programs the *DQS*<0,1,2,3,4,5,6,7> Trained Write Leveling Delay attributes to the PHY and checks that the DQ feedback after DQS pulse is high.
 - 1 The Training Engine performs write leveling.

cbt_en

- Enables Command Bus Training (CBT) during initialization and training. CBT performs CA_VREF programming and aligns the CS/CA and CK for high frequency operation.
 - 0 The Training Engine will shorten the command bus training. Instead of iterating through the different CA delays to find the optimal delay value, it will only program the *Trained CA Delay* attribute to PHY.
 - 1 The Training Engine performs command bus training to find the optimal CA delay value.

init_en

- Provides ability to shorten initialization for simulation purposes.
 - 0 Initialization is greatly reduced. For example, reset time and CKE low time is greatly shortened.
 - 1 Initialization is performed according to the LPDDR4 JEDEC Standard.

5.8. Status Register (STATUS_REG) (0x24)

The following table shows a summary of the Status Register. The internal CPU writes to this register to communicate the status to the host CPU.

Table 5.12. Status Register

Field	Name	Access	Width	Reset
[31:19]	reserved	RSVD	13	_
[18:16]	refresh_rate	RO	3	_
[15:14]	reserved	RSVD	2	_
[13:12]	error_on_rank	RW	2	0
[11]	write_trn_err	RW	1	0
[10]	read_trn_err	RW	1	0
[9]	write_lvl_err	RW	1	0
[8]	cbt_err	RW	1	0
[7:6]	reserved	RSVD	2	_
[5]	in_self_refresh	RO	1	0
[4]	write_trn_done	RW	1	0

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Field	Name	Access	Width	Reset
[3]	read_trn_done	RW	1	0
[2]	write_lvl_done	RW	1	0
[1]	cbt_done	RW	1	0
[0]	phy_ready	RO	1	0

refresh_rate

- Reflects the value of the refresh rate set in MR4 within LPDDR4 memory. It specifies the required refresh period based on the temperature of the LPDDR4 device.
 - 3'b000: SDRAM Low temperature operating limit exceeded
 - 3'b001: 4x refresh
 - 3'b010: 2x refresh
 - 3'b011: 1x refresh (default)
 - 3'b100: 0.5x refresh
 - 3'b101: 0.25x refresh, no de-rating
 - 3'b110: 0.25x refresh, with de-rating
 - 3'b111: SDRAM High temperature operating limit exceeded

error_on_rank

• When error_on_rank is set to 2'bx1, it indicates a training error has occurred on rank 0.

write_trn_err

Asserts when a failure occurs during write training.

read_trn_err

• Asserts when a failure occurs during read training. If the read_trn_done signal is low (STATUS_REG[3]=0), the training failed to find a setting that properly captures the read DQS burst. If the read_trn_done signal is high (STATUS_REG[3]=1), the training failed to find an optimal read DQS-DQ delay for capturing the read data.

write_lvl_err

• Asserts when a failure occurs during write leveling.

cbt_err

Asserts when a failure occurs during Command Bus Training.

in_self_refresh

• Asserts when the memory is in self-refresh.

write_trn_done

• Asserts when write training has completed.

read_trn_done

Asserts when read training has completed.

write_lvl_done

Asserts when write leveling has completed.

cbt done

Asserts when Command Bus Training has completed.

phy_ready

Asserts when PHY initialization of the PHY is complete and ready for operation.

6. LPDDR4 Memory Controller Example Design

This section describes the LPDDR4 Memory Controller Example Design that is available to users for synthesis and simulation after successful IP generation.

6.1. Overview

The following table summarizes the IP parameter configurations that are reflected in the LPDDR4 Memory Controller Example Design. For steps on how to generate the Memory Controller IP Core, refer to the Designing and Simulating the IP section of this User Guide.

Table 6.1. Supported Example Design Configurations

Attribute ¹	Supported Setting
I/O Buffer Type	LVSTL_I, LVSTL_II
DDR Command Frequency	300, 350, 400, 533
Enable Power Down	Checked, Unchecked
Enable DBI	Checked, Unchecked
PLL Reference Clock from Pin	Checked, Unchecked
DDR Bus Width	16, 32, 64
Local Data Bus Type	AHBL, AXI
ID Width	All
Number of Outstanding Writes/Reads	All
Write/Read Ordering Queues	All
Enable Local Bus Clock	Checked, Unchecked
Enable APB I/F	Checked, Unchecked
Memory Device Timing Tab	All
Training Settings Tab	All

Notes:

6.2. Synthesis Example Design

After successful generation of the LPDDR4 Memory Controller for Nexus Devices, a synthesizable example design becomes available to users. This design contains a test program that allows users to evaluate the Memory Controller IP on hardware. Figure 6.1 represents a block diagram of the LPDDR4 Memory Controller Example Design.

All configurable attributes are supported in the LPDDR4 Memory Controller Example Design.

Figure 6.1. Memory Controller Example Design Functional Diagram

The main blocks that make up the synthesizable example design include the following:

- RISC-V CPU subsystem handles initialization and training of the LPDDR4 interface and performs data access checks.
- System Memory (SYS MEM) stores the instruction code for the example design test program.
- AHBL2APB bridge converts the CPU data interface (AHB-Lite) to the configuration interface (APB).
- UART block allows users to interface with the test program and prints out results via a serial terminal connection.
- GPIO block allows users to verify the result of LPDDR4 training sequences and the functionality of pclk_i and aclk_i clock signals.
- Traffic generator block implements a series of pseudo-random (PRBS) writes and reads, and compares the read data to the expected data, displaying the result over a UART connection.
- LPDDR4 Memory Controller IP provides an interface to external LPDDR4 memory to issue reads and writes.
- Oscillator (OSC) generates a 90 MHz clock for the configuration interface (pclk_i).
- PLL included only in IP Core v2.x.x, and takes the oscillator output as an input reference clock to the PLL. The PLL generates both the configuration interface clock (pclk_i) and the user data interface AXI clock (aclk_i).

The synthesizable example design consists of a test program that is stored in system memory and is fetched by the CPU instruction port. The CPU data port accesses system memory and connects to the following: Configuration Set Registers (CSRs), UART, GPIO, traffic generator and LPDDR4 Memory Controller. The test program associated with the example design performs the following:

- Waits for user input over a serial terminal connection upon the assertion of the reset signal: rstn i
- Configures the Memory Controller to perform complete reset, initialization, and training (TRN_OP_REG=0x1F) of the LPDDR4 interface.
- Performs a series of loop-back data access checks
- Allows users to change their VREF settings
- Calculates performance of the LPDDR4 interface

The top-level example design wrapper file, eval_top.sv, provides ports for a PLL reference clock, LPDDR4 interface, UART interface, and a 10-bit LED output. LED[7:0] corresponds to bits STATUS_REG[8:1], whereas toggling on LED[8] signifies aclk_i is functioning and toggling on LED[9] signifies pclk_i is functioning. For information on the example design test program and instructions on how to generate and perform hardware evaluation of the LPDDR4 Memory Controller Example Design, refer to the Designing and Simulating the IP section of this User Guide.

6.3. Simulation Example Design

The simulation example design is similar to the synthesizable example design, apart from the following changes:

- Disables UART connection
- External LPDDR4 memory is replaced with LPDDR4 memory model

The UART connection is disabled in simulation since it takes a long time to simulate and the LPDDR4 memory model allows simulation of user-initiated operations to LPDDR4 SDRAM. For instructions on how to simulate the LPDDR4 Memory Controller, including the example design, refer to the Designing and Simulating the IP section of this User Guide.

The following table summarizes the simulation runtime of the LPDDR4 Memory Controller for various configurations.

Table 6.2. Simulation Runtime Summary

LPDDR4 Configuration	Typical Initialization Time	Typical Training Time
x16, 533 MHz	2251 μs	328 μs
x32, 533 MHz	2251 μs	439 μs
x64, 533 MHz	2251 μs	543 μs
x16, 400 MHz	2251 μs	430 μs
x32, 350 MHz	2251 μs	536 μs
x64, 300 MHz	2251 μs	753 μs

The initialization time is measured from the moment the CPU and Controller Engine is pulled out of reset (RESET_REG) to the assertion of the LPDDR4 Clock Enable signal (ddr_cke_o). The training time is measured from ddr_cke_o assertion to the assertion of init_done_o, which signifies the completion of the initialization and training sequence. For more details on the initialization and training sequences, refer to the LPDDR4 Calibration section of this User Guide.

7. Designing and Simulating the IP

This section describes the steps required within Lattice Radiant software to configure and generate the LPDDR4 Memory Controller for Nexus Devices. This section also provides information regarding design implementation and hardware evaluation of the synthesizable example design.

7.1. Generating the IP

This section describes the steps required to create, configure, and generate an instance of the LPDDR4 Memory Controller for Nexus Devices.

7.1.1. Creating a Radiant Project

In order to generate an instance of the Memory Controller IP, a Lattice Radiant project must first be created.

 Launch the Lattice Radiant software and select File > New > Project. This will open the New Project dialog box. Click Next.

Figure 7.1. Creating a New Radiant Project

2. Specify a name (<project_name>) for the Lattice Radiant project, a directory (<project_directory>) to store the project files, and a top-level design implementation name (<top_level_instance_name>). Click **Next** two times.

Figure 7.2. New Project Settings

3. Under Family, select CertusPro-NX or MachXO5T-NX. Under Device, Package, Operating Condition, and Performance Grade, make the appropriate selections representative of the selected device part number. Click Next.

Figure 7.3. Project Device Settings

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4. Specify the desired synthesis tool for implementation of the Lattice Radiant project. Click Next and Finish.

Figure 7.4. Project Synthesis Tool Selection

7.1.2. Configuring and Generating the IP

The following steps illustrate how to generate the Memory Controller IP Core in Lattice Radiant software.

- Under the IP Catalog (Tools > IP Catalog), locate and double-click on the desired Memory Controller IP listed under IP >
 Processors_Controllers_and_Peripherals.
 - a. If no Memory Controller IPs are installed on the system, select the IP on Server tab within the IP Catalog.
 - b. Click on **Download from Lattice IP Server** icon next to the desired Memory Controller IP for installation. This will open an **IP License Agreement** dialog box.
 - c. Click **Accept** and then click on the **Refresh IP Catalog** icon.
 - d. Locate the installed Memory Controller IP under the IP on Local tab within the IP Catalog and double-click.
 - IP Core v1.x.x = Memory Controller
 - IP Core v2.0.1 = Memory Controller for CertusPro-NX
 - IP Core v2.0.x = LPDDR4 Memory Controller for Nexus
- The Module/IP Block Wizard dialog box will open. Provide a name (<instance_name>) and directory (<instance_directory>) for the Memory Controller IP, where the default directory is set to cproject_directory>//cproject_name>. Click Next.

Figure 7.5. IP Instance Settings

3. The Memory Controller IP editor contains multiple tabs that needs to be configured according to the desired LPDDR4 memory interface implementation. The following table provides high-level guidance for configuring the tabs in the Memory Controller IP editor. For detailed information on the individual attributes, refer to the IP Parameter Description section of this User Guide.

Table 7.1. Memory Controller Attribute Guidelines

Memory Controller IP Attribute Tab	Guidelines ¹
General	- Ensure that the Memory clock frequency (<i>DDR Command Frequency</i>) is entered correctly
Memory Device Timing	- Refer to the datasheet for the selected LPDDR4 memory device to modify the default timing parameters as needed
	- MC DQS VREF should only be modified if an error has occurred during read training and/or data access
Training Settings (IP Core v2.x.x)	- Memory CA VREF should only be modified if an error has occurred during command bus training
	- Memory DQ VREF should only be modified if an error has occurred during write training and/or data access

4. Click **Generate**. The **Check Generating Result** dialog box opens, showing design block messages and results as shown in Figure 7.6. Click **Finish**.

Figure 7.6. IP Generation Result

5. All the generated files are placed under the <instance_directory>/<instance_name> directory path. The generated files under the <instance_directory>/<instance_name> directory are listed in the following table.

Table 7.2. Generated File List

File Name	Description
component.xml	Contains the ipxact:component information of the IP
design.xml	Lists the set parameters of the IP in IP-XACT 2014 format
<instance_name>.cfg</instance_name>	Lists only the configured/changed parameter values set during IP configuration
<instance_name>.ipx</instance_name>	Lists the files associated with IP generation
constraints/ <instance_name>.ldc</instance_name>	Defines the I/O standard for LPDDR4 memory interface signals
eval/apb2init.sv	Implements handshaking between APB accesses and internal RISC-V CPU for initialization of LPDDR4 memory in LPDDR4 Memory Controller Example Design
eval/clock_constraint.sdc	Pre-synthesis constraint for setting the PLL reference clock frequency of the LPDDR4 Memory Controller Example Design
eval/constraint.pdc	Post-synthesis constraints for the LPDDR4 Memory Controller Example Design
eval/dut_inst.v	Instantiation of generated IP core in eval_top.sv for LPDDR4 Memory Controller Example Design
eval/dut_params.v	Defines local parameters for eval_top based on parameter values set during IP configuration for LPDDR4 Memory Controller Example Design
eval/eval_top.sv	Top-level RTL file for the LPDDR4 Memory Controller Example Design
eval/kitcar.v	Counter that drives LEDs to indicate that internal clocks (pclk and aclk) are active in LPDDR4 Memory Controller Example Design
eval/pll_aclk_pclk.v	PLL responsible for generating APB clock (pclk) and AXI4 (aclk) in LPDDR4 Memory Controller Example Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

File Name	Description
eval/select_protocol.py	Script that defines LPDDR4 protocol for eval_top and tb_top files in LPDDR4 Memory Controller Example Design
eval/axi_bridge/	Contains RTL for AXI bus interface to Native I/F
eval/traffic_gen/	Contains RTL files for the LPDDR4 Memory Controller Example Design
misc/ <instance_name>_tmpl.v misc/<instance_name>_tmpl.vhd</instance_name></instance_name>	These files provide instance templates for the IP core
rtl/ <instance_name>.sv</instance_name>	Example RTL top-level file that instantiates the IP core
rtl/ <instance_name>_bb.v</instance_name>	Example synthesizable RTL black box file that instantiates the IP core
testbench/debug_c_code.sv	For internal use only
testbench/dut_inst.v	Template instance files
testbench/dut_params.v	List of parameters based on user IP configurations
testbench/tb_top.sv	Top level testbench file
testbench/lpddr4/	Contains LPDDR4 memory model and instances for simulation

7.2. Design Implementation

This section describes the steps required to properly run a LPDDR4 Memory Controller for Nexus IP design on hardware.

7.2.1. Pin Placement

Typically, all external memory interfaces require the following FPGA resources:

- Data, data mask, and data strobe signals
- Command, address, and control signals
- PLL and clock network signals
- RZQ and VREF signals
- Other FPGA resources

In Lattice CertusPro-NX and MachXO5T-NX FPGA devices, external memory interfaces are supported in the High Performance I/O (HPIO) banks located at the bottom of the device (banks 3, 4, 5). These banks are labeled as HIGHSPEED in the device pinout tables. Each of these banks consists of 3-4 HPIO DQS groups, but depending on the device package, the number of HPIO DQS groups within each bank could be fewer. These HPIO DQS groups are labeled as DQx and DQSx/DQSNx in the device pinout tables, where 'x' represents the assigned HPIO DQS group number. Dedicated clock routing within HPIO banks is represented as GPLL or PCLK, and dedicated reference voltage pins are represented as VREF, in the device pinout tables. Refer to the High-Speed I/O User Guide and Pinout files located on the CertusPro-NX and MachXO5T-NX web pages on www.latticesemi.com for more information.

Observe the following guidelines when placing pins for external memory interfaces:

- Ensure that pins for external memory interfaces reside within HPIO banks at the bottom of the device.
- An external memory interface can occupy one or more banks. When an interface occupies multiple banks, it is recommended to occupy banks that are adjacent to one other in order to minimize timing and routing. Banks 5 and 3 are adjacent to bank 4, but bank 5 is not adjacent to bank 3.
- The DQS signals are fixed to specific locations (DQS/DQSN) within each HPIO bank. The DQS_P signal is required to
 be placed at these locations within the HPIO DQS group. The DQS_N signal will be auto placed and should not be
 manually assigned.
- All associated Data (DQ) and Data Mask (DM) signals belonging to a Data Strobe (DQS), must be placed in the same HPIO DQS group. Typically, a LPDDR4 DQS group consists of 8 DQ signals, 1 DM signal, and 1 DQS/DQSN pair. This means a HPIO DQS group needs 11 pins to support an LPDDR4 DQS group.

- The input reference clock to the PLL must be assigned to use dedicated clock routing (GPLL or PCLK). It is
 recommended to place the input reference clock on a dedicated PLL pin (GPLL) within the HPIO bank for better
 performance and to minimize jitter and routing.
- At least one VREF pin per HPIO bank that is used to implement an external memory interface, must be available and used as a reference voltage input.

Proposed pinouts should always be tested in Lattice Radiant software with correct I/O standards before finalizing.

7.2.2. Constraints

To ensure proper design coverage and hardware functionality, users must include the following necessary constraints in their LPDDR4 Memory Controller for Nexus IP project.

Table 7.3. Project Constraints

File Name	Description	Action Required
Memory Controller IP LDC file: constraints/ <instance_name>.ldc</instance_name>	Sets the I/O type for each of the ports necessary to interface with LPDDR4 SDRAM	No
Clock Constraint SDC file: eval/clock_constraint.sdc	Contains an example constraint for the input PLL reference clock	Yes – user needs to include a create_clock constraint based on the frequency for the input PLL reference clock. This can be placed in a user-created SDC or PDC file.
Memory Controller IP PDC file: eval/constraint.pdc	Contains generated constraints based on IP configuration	Yes – user needs to copy the constraints listed in this file directly into their top-level PDC file. An explanation for each group of constraints to be copied is included within the eval/constraint.pdc file.

7.2.2.1. Clock

The provided clock_constraint.sdc file contains a single create_clock constraint for the PLL reference clock (pll_refclk_i). It is recommended that users copy this constraint into their own SDC or PDC file since the provided clock_constraint.sdc file will be overwritten every time the Memory Controller IP Core is regenerated.

For clocks that are generated from the user's design, external to the IP, create_generated_clock constraints may be needed. In some cases, clocks or generated clocks don't need to be defined/constrained since they are automatically-generated (i.e. for output of PLL or OSC). For additional information on how to implement constraints, refer to the Lattice Radiant Timing Constraints Methodology User Guide.

7.2.2.2. Memory Controller IP

The provided constraint.pdc file contains two sets of constraints:

- IP constraints specific to the Memory Controller IP Core
- Eval constraints specific to the Memory Controller Example Design

For implementation of the generated Memory Controller Example Design, users need to copy the IP and Eval constraints into their top-level user PDC file. However, if users are implementing their own Memory Controller design, only the IP constraints need to be copied into the top-level user PDC file. It is recommended that users copy these constraints into their own PDC file since the provided constraint.pdc file will be overwritten everytime the Memory Controller IP Core is regenerated.

The IP constraints are composed of create_generated_clock, set_false_path, ldc_create_group, and set_max_delay constraints. The eval constraints are composed of set_false_path, set_max_delay, and ldc_create_group constraints and should only be copied if running the provided Memory Controller Example Design. Eval constraints are located below the following comment in the provided constraint.pdc file:

Below are the constraints for eval design, you dont need these if you are not using the eval

Refer to the Lattice Radiant Timing Constraints Methodology User Guide for details regarding the implementation of constraints.

7.3. Example Design Hardware Evaluation

After successfully configuring and generating the Memory Controller IP Core, the included synthesis example design can be used for hardware evaluation of the LPDDR4 Memory Controller. For a detailed description of the LPDDR4 Memory Controller Example Design, refer to the Synthesis Example Design section of this User Guide. The traffic generator fileset is located under the eval/traffic_gen directory and are described in the following table.

Table 7.4. Contents of eval/traffic_gen

File List	Description
ahbl0.v	AHBL_1x2. It routes CPU data access to SYS_MEM or AHBL2APB
ahbl2apb0.v	AHBL to APB bridge
apb0.v	APB_1x4. It routes CPU data access via AHBL2APB going to each module's CSR
cpu0.v	RISC-V CPU
gpio0.v	GPIO module
ahbl_tragen.v	
lscc_ahbl_traffic_gen.sv,	
lscc_ahb_master.sv	RTL files for AHB-Lite traffic generator (IP Core v1.x.x)
lscc_traffic_gen_csr.sv	RTE files for Anti-Lite traffic generator (IP Core VI.X.X)
lscc_lfsr.v	
memc_traffic_gen.v	
ctrl_fifo.v	
lscc_axi4_traffic_gen.sv	
lscc_axi4_m_csr.sv	
lscc_axi4_m_rd.sv	RTL files for AXI4 traffic generator (IP Core v2.x.x)
lscc_axi4_m_wr.sv	
lscc_axi4_perf_calc.sv	
mc_axi4_traffic_gen.v	
lscc_osc.v	RTL files for OSC module
osc0.v	ATE files for OSC filodule
lscc_ram_dp_true.v	Copy of Lattice Radiant RAM_DP_True Foundational IP (needed by SYS_MEM)
memc_apb.v	RTL file for APB configuration interface
sysmem0.v	The SYS_MEM for hardware validation, enabled when eval_top.SIM=0 (Implementation)
sysmem0_sim.v	The SYS_MEM for RTL simulation, enabled when eval_top.SIM=1 (Simulation)
uart0.v	The UART module

7.3.1. Preparing the Bitstream

After configuring and generating the Memory Controller IP Core, all associated example design files would have been created under the eval directory. Refer to Table 7.2 for more details. The following steps illustrate how to prepare the Memory Controller Example Design project and generate the associated bitstream.

- After generating the Memory Controller IP Core, the Radiant project should contain the <instance_name>.ipx under the
 project's input files. If not, right-click on Input Files and select Add > Existing File under the File List tab in the lower-left
 corner of the Radiant window. This will open an Add Existing File dialog box. Navigate to the
 <instance directory>/<instance name> directory and select the <instance name>.ipx file. Click Add.
- To add the top-level example design file to the project, right-click on Input Files and select Add > Existing File. This will
 open an Add Existing File dialog box. Navigate to the eval directory and select the eval top.sv file. Click Add.

Figure 7.7. Add Existing File Dialog Box

- 3. To add the pre-synthesis constraint file to the project, right-click on Pre-Synthesis Constraint Files and select Add > Existing File. In the Add Existing File dialog box, check the Copy file to directory option. This ensures any user modifications is not overwritten when the Memory Controller IP Core is regenerated. Navigate to the eval directory and select the clock_constraint.sdc file. Click Add.
- 4. To add the post-synthesis constraint file to the project, right-click on Post-Synthesis Constraint Files and select Add > Existing File. In the Add Existing File dialog box, check the Copy file to directory option. Navigate to the eval directory and select the constraint.pdc file. Click Add.
- 5. Modify the constraint.pdc to add the pin assignment for the CertusPro-NX or MachXO5T-NX board. Users can accomplish this by either modifying the constraint.pdc file directly or first synthesizing the Radiant project by clicking on the synthesize Design button, and then adding pinouts via the Device Constraint Editor under Tools > Device Constraint Editor. Note that when assigning the UART pins, the UART TX signal is connected to the UART RX on the FPGA side and that the UART RX signal is connected to the UART TX signal on the FPGA side.

Users may sometimes encounter timing failures during Place & Route due to unconstrained paths specific to their design. For details on implementing constraints, refer to the Constraints section of this User Guide.

7.3.2. Running on Hardware

To perform hardware evaluation of the LPDDR4 Memory Controller Example Design, the following are needed:

- CertusPro-NX or MachXO5T-NX FPGA board with UART connection
- Associated power supply and programming cable
- Personal computer running Lattice Radiant software 2023.1 or later
- Lattice Propel™ software 1.0 or later, or any terminal that supports serial communication

To run the example design on hardware, a bitstream file is required. To generate the .bit file, refer to the Preparing the Bitstream section of this User Guide. The following steps illustrate how to program the FPGA board with the example design.

- 1. Connect the FPGA board to the computer and power on the board.
- 2. Run the Lattice Radiant Programmer by clicking on the button. This will launch the Lattice Radiant Programmer which will scan for devices and configure the programmer automatically.

Figure 7.8. Radiant Programmer

- 3. Click under the **File Name** field and then click on ... to the right of the field in order to launch the **Open File** dialog box. Navigate to the bitstream file generated in Step 15 and click **Open**.
- 4. Program the Lattice FPGA device by clicking on the button. Upon successful programming, the **Output** pane at the bottom of the Programmer window will display the following message:
 - After programming the Lattice FPGA with the example design bitstream, a serial terminal needs to be launched. For
 users wishing to use their own serial communication terminal, skip to Step 25. For users wishing to use the Lattice
 Propel terminal, continue with Step 23.
- 5. Launch the Lattice Propel software and select Launch. This will open the default workspace.
- 6. To open a terminal, click on the 🖳 button.
- 7. Configure the terminal settings to be a **Serial Terminal** with the appropriate **Baud rate**, **Data size**, **Parity**, **Stop bits**, **and Encoding**. Click **OK** to launch the **Terminal** pane at the bottom of the Propel window. Note that the **Serial port** will vary depending on the computer setup.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Figure 7.9. Serial Terminal Settings

To run the example design, assert the rstn_i signal. This will prompt the following message to appear in the terminal. If no message is received, close the current serial terminal and open a new one with a different **Serial port**.

```
Press 1 to enter initial Vref values or press any key to proceed Training
```

Pressing 1 allows users to try different VREF values for their board/design since VREF training is not yet supported in the Memory Controller IP Core. This feature is available to users to help debug and test various VREF settings. For more information on how to debug a VREF-related failure, refer to the Debug with the Example Design section of this User Guide.

The VREF values set here directly correlate to the VREF attributes defined in Table 3.9. Pressing any other key results in the default VREF values being set for these attributes as depicted below.

```
Enter MC DQS Grp Vref (3'd): 70

Enter Memory CA Vref (3'd): 80

Enter Memory DQ Vref (3'd): 80

MC DQS Grp Vref = 70, Memory CA Vref = 80, Memory DQ Vref = 80
```

After the user provides input over the serial terminal, training of the LPDDR4 SDRAM will begin followed by 7 different data access checks:

- Test 0: single write followed by single read
- Test 1: 2-beat incrementing burst write followed by burst read
- Test 2: 4-beat incrementing burst write followed by burst read
- Test 3: 8-beat incrementing burst write followed by burst read
- Test 4: 8-beat incrementing burst write followed by a delay before issuing burst read
- Test 5: 64-beat incrementing burst write followed by burst read
- Test 6: 64-beat incrementing parallel burst write and burst read to measure performance

The results from the data access checks and performance measurement are then printed over the serial connection.

Training Passed.

Starting Data Access Check.

0 1 2 3 4 5 6

Performance Values :

Bus_efficiency : 80 Perf_MBps : 27261

Data Access Check Pass.

The Bus_efficiency value represents the efficiency percentage of the LPDDR4 bus utilization, whereas the Perf_MBps value represents the bandwidth of the LPDDR4 interface. The following formulas are used to calculate the efficiency and bandwidth:

Efficiency = (Total number of bytes transferred) / (# of DDR clock cycles \times (DDR_WIDTH / 8) \times gearing ratio) Bandwidth = (Total number of bytes transferred) / (# of DDR clock cycles \times DDR clock period)

The bandwidth can also be calculated using the following equation: LPDDR4 Data Width × LPDDR4 Data Rate × (LPDDR4 Bus Efficiency / 100), where the LPDDR4 Data Rate is in Mbps.

In the case that a failure is encountered during training, a message will be sent over the serial connection notifying the user of the particular stage that has failed. This will also abort the loop-back data access checks.

Write Training Failed!

Aborting Data Access Check...

7.4. Example Design Simulation

After successfully configuring and generating the Memory Controller IP Core, the included example design can be used to simulate the LPDDR4 Memory Controller. All associated simulation files are located under the testbench directory. Refer to Table 7.2 for more details. The following steps illustrate how to prepare the Memory Controller Example Design project for simulation.

- Before simulating the example design, steps 13-14 under the Preparing the Bitstream section of this User Guide must be completed. To add the top-level testbench file to the project, select File > Add > Existing Simulation File. This will open an Add Existing Simulation File dialog box. Navigate to the testbench directory and select the tb_top.sv file. Click Add.
- 2. Before creating the simulation environment, it is recommended to set the SIM parameter in eval_top.sv to 1. This parameter shortens the initialization sequence of the LPDDR4 interface and disables the UART interface for simulation. Users should not modify the SIM parameter for hardware implementation.

When SIM is set to 1, it programs 0x1E to the Training Operation Register (TRN_OP_REG) to speed up the simulation runtime by reducing the reset and CKE initialization time. Users can configure the simulation of reset and the initialization and training sequences by forcing the value of TRN_OP_REG by locating the following comment in tb_top.sv:

```
// This force shortens the initialization, vref trainings are also skipped
// force tb_top.u_eval_top.u_lp4mc_0.lscc_lpddr4_mc_inst.u_trn_eng.i_csr.trn_operation_reg
= 8'h1E;
```

It is also recommended to skip the training sequences by writing 8'h00 to TRN_OP_REG/trn_opr_i. This will reduce simulation time by programming the verified trained values to the PHY. Refer to the Simulation Example Design section of this User Guide for more details.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

To create the simulation environment to simulate the LPDDR4 Memory Controller Example Design, the following steps should be taken:

Figure 7.10. Simulation Wizard

2. Under the **Add and Reorder Source** window, notice that the **Source Files** only contains the top-level evaluation (eval top.sv) and top-level testbench (tb top.sv) files. Click **Next**.

Figure 7.11. Adding and Reordering Simulation Source Files

56

3. Under the Parse HDL files for simulation window, notice that the Simulation Top Module is set to eval top. Click Next.

Figure 7.12. Parsing Simulation HDL Files

4. This opens the **Summary** window. By default the simulation will run for 100 μs, which allows users to configure the waveform to log signals of interest in the Modelsim simulator before continuing. Users can then enter the following TCL command in Modelsim to run the simulation until completion: **run -all**. Alternatively, if users wish to run the simulation with the default top-level signals, users can change the 100 μs value to 0 μs in order to execute the simulation completely.

Figure 7.13. Simulation Summary

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

The results of the Memory Controller IP simulation design are shown in the following figure.

Figure 7.14. Simulation Result Waveform

The following error messages are expected in the Modelsim simulation log and should be disregarded. These messages are due to the violation of timing requirements regarding the LPDDR4 simulation model as a consequence of shortening the reset and CKE initialization:

```
# tb_top.LP4MEM_00.mem_x16_00.ins_1ch.cted> 26083125000 : ### lpddr4_debug
RESET_n high input
# tb top.LP4MEM 01.mem x16 01.ins 1ch.cted> 26083125000 : ###
                                                              lpddr4 debug
RESET_n high input
# Error: tb_top.LP4MEM_01.mem_x16_01.ins_1ch.cted>...cted>
                                                                           tINIT1
Error.
# Error: tb top.LP4MEM 00.mem x16 00.ins 1ch.<protected>.<protected> 26083125000 tINIT1
# tb_top.LP4MEM_00.mem_x16_00.ins_1ch.cted> 32804075000 : ###
                                                              lpddr4 debug CKE
high input
# tb top.LP4MEM 01.mem x16 01.ins 1ch.cted> 32804075000 : ### lpddr4 debug CKE
high input
# Error: tb_top.LP4MEM_01.mem_x16_01.ins_1ch.ofcted>...cted> 32804075000
                                                                          tINIT3
# Error: tb top.LP4MEM 00.mem x16 00.ins 1ch.cted>...cted> 32804075000
                                                                           tINIT3
Error.
```


8. Debugging

This section discusses tools and strategies available to users to assist with debugging their LPDDR4 memory interface.

8.1. Debug with the Example Design

The provided LPDDR4 example design can serve to help debug functional issues regarding the training of external LPDDR4 memory or data accesses issued by the Memory Controller. For a description of the example design and instructions on how to run the test program for hardware evaluation, refer to the Synthesis Example Design and Running on Hardware sections of this User Guide.

Currently, VREF training is not yet supported in the LPDDR4 Memory Controller for Nexus Devices. As a result, it is possible that the default values could lead to training and data access failures due to board and PVT variations. In the case that a failure is encountered, users may rerun the test program included in the example design for different VREF values. This can be achieved by asserting the rstn_i signal and running the test program for different values until the example design reliably passes on the board. Once optimal VREF settings are found, it is suggested that users regenerate the Memory Controller IP Core with the new settings in order to make them the new defaults. For guidance on the correlation between the different VREF attributes and functional issue, refer to the following:

- MC DQS Grp Vref setting: can help to resolve read training and data access failures
- Memory DQ Vref setting: can help to resolve write training and data access failures
- Memory CA Vref setting: can help to resolve command bus training failures, although highly unlikely since the max command bus does not operate at a high frequency

8.2. Debug with Reveal Analyzer

The LPDDR4 Memory Controller for Nexus Devices introduced reveal signals to assist users in debugging issues regarding the training sequence of the LPDDR4 memory interface using Reveal Analyzer. This feature was introduced in IP Core v2.1.x and exists within the rtl/<instance_name>.sv file following successful IP generation. When the user data interface is set to the AHB-Lite protocol, the reveal signals can be located under the following comment in the generated IP RTL file:

// For reveal debugging

When the user data interface is set to the AXI4 protocol, the reveal signals can be located under the following comment in the generated IP RTL file:

// Reveal tap points for AXI INTERFACE

Refer to the Debugging with Reveal Usage Guidelines and Tips Application Note, for information regarding the setup and usage of Reveal Analyzer. The following table covers the list of reveal signals available to users for debug.

Table 8.1. Reveal Analyzer Signal Definitions

Signal Name	Description
rvl_cs_r	Chip select
rvl_cbt_en_r	Asserted high during Command Bus Training (CBT)
rvl_ca_adj_cout_r	CA delay per bit adjustment cout signal
rvl_ca_adj_dir_r	CA delay per bit adjustment direction signal
rvl_ca_adj_load_n_r	CA delay per bit adjustment load signal
rvl_ca_adj_move_r	CA delay per bit adjustment signal
rvl_cbt_dq_fbak_r	DQ[13:8] output pins to feedback captured value to the Memory Controller during CBT
rvl_wrlvl_en_r	Asserted high during Write Leveling
rvl_wrlvl_load_en_r	Asynchronously resets the delay code to the default value for CK-DQS skew compensation during Write Leveling

Signal Name	Description
rvl_wrlvl_move_r	At rising edge, it changes the delay code (±1) according to the direction set by wrlvl_dir_i for CK-DQS skew compensation during Write Leveling
rvl_wrlvl_dir_r	Controls the direction of delay code change for CK-DQS skew compensation during Write Leveling (0 = increase delay, 1 = decrease delay)
rvl_wrlvl_cout_r	Margin test output flag to indicate the under-flow or over-flow for CK-DQS skew compensation during Write Leveling
rvl_burst_det_sclk_r	Clock generated using burst_det_o
rvl_rd_clksel_r	Used to select read clock source and polarity control: [1:0]: sets phase shift from DQS write delay cell to 0, 45, 90, or 135 degrees (2'b00 to 2'b11) [2] = 0: use inverted clock [2] = 1: use non-inverted clock (adds 180 degree phase shift) [3] = 0: bypasses the register in the read enable path [3] = 1: selects the register in the read enable path
rvl_read_dqs_ie_r	Read enable signal for capturing the incoming read BL16. Each bit captures the DQ/DMI for the corresponding ddr_ck_o cycle.
rvl_pause_r	Set to 1 to stop the DQSBUF-generated internal clocks when updating rvl_rd_clksel_r and the delay codes. This is to avoid metastability.
rvl_dqwl_r2	Data output of Write Leveling
rvl_dqdmi_i_load_n_r	DMI input delay per bit adjustment load signal
rvl_dqdmi_i_move_r	DMI input delay per bit adjustment move signal
rvl_dqdmi_i_dir_r	DMI input delay per bit adjustment direction signal
rvl_dqdmi_i_cout_r	DMI input delay per bit adjustment cout signal
rvl_dqdmi_o_load_n_r	DMI output delay per bit adjustment load signal
rvl_dqdmi_o_move_r	DMI output delay per bit adjustment move signal
rvl_dqdmi_o_dir_r	DMI output delay per bit adjustment direction signal
rvl_dqdmi_o_cout_r	DMI output delay per bit adjustment cout signal
rvl_rd_comp_result_r	Results of compared data for each DQS group: [0] = 1: DQS group 0 comparison passes [1] = 1: DQS group 1 comparison passes [2:7] = 1: DQS group 2/3/4/5/6/7 comparison passes This is only valid when rvl_rd_comp_done_r is asserted.
rvl_rd_comp_done_r	Asserted high when compared data is done.
rvl_trn_stat_done	{write_trn_done, read_trn_done, write_lvl_done, cbt_done, phy_ready}
rvl_trn_stat_err	{write_trn_err, read_trn_err, write_lvl_err, cbt_err}
rvl_scratch_0_r	Registers used by the training CPU to write debug information
rvl_scratch_1_r	Registers used by the training CPU to write debug information

For general purpose debug, the rvl_trn_stat_done and rvl_trn_stat_err signals can be used to determine if the training of the LPDDR4 interface has passed or failed. The rvl_trn_stat_done signal contains multiple status signals that are concatenated, to indicate that a particular stage of training has completed. The rvl_trn_stat_err signal contains multiple status signals that are concatenated, to indicate whether an error has occurred during a particular stage of training. Examples are included in Figure 8.1 and Figure 8.2.

Figure 8.1. Reveal Example: LPDDR4 Training Passes

Figure 8.2. Reveal Example: Command Bus Training Failure

8.2.1. Command Bus Training (CBT)

The Memory Controller begins Command Bus Training (CBT) by sending CA pattern 0x19 to the LPDDR4 memory device, delaying the CA bus, and using DQ[13:8] to provide feedback on the captured value. CBT is performed when the rvl_cbt_en_r signal is asserted high. The upper byte of the rvl_dqwl_r2 signal acts as the feedback mechanism, and the lower byte correlates to the CA VREF level and range setting. DQ[13:8] is mapped to the rvl_cbt_dq_fbak_r signal, which notifies the Memory Controller whether CBT has passed for the current delay setting. Once 0x19 is read on the rvl_cbt_dq_fbak_r signal, it indicates CBT has passed. This sequence is repeated until the optimal setting, providing the best margin, is found. For more information on CBT, refer to the Command Bus Training (CBT) Description section of this User Guide.

Figure 8.3. Command Bus Training Simulation Waveform

Figure 8.4. Command Bus Training Reveal Capture

8.2.2. Write Leveling

Write leveling begins with the LPDDR4 memory device sampling the DDR clock with the rising edge of DQS, and asynchronously providing feedback to the Memory Controller via the DQ pins. Write leveling is performed when rvl_wrlvl_en_r is asserted high. The rvl_dqwl_r2 signal acts as the feedback mechanism to indicate whether write leveling has passed for the current delay setting. Write leveling starts with a coarse delay adjustment for all DQS groups, followed by a fine delay adjustment for each of DQS group. When all bits in the rvl_dqwl_r2 signal are set high, it indicates write leveling has passed. Note that if the first sample of the rvl_dqwl_r2 signal has all bits set high, the user should increase the setting for the DDR Clock Delay Value attribute. For more information on write leveling, refer to the Write Leveling Description section of this User Guide.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02127-1.5 61

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal

Figure 8.5. Write Leveling Simulation Waveform

Figure 8.6. Write Leveling Reveal Capture

8.2.3. Read Training

Read training consists of two stages: read gate training (DQS) and read deskew (DQ).

Read gate training sweeps all the read DQS signals relative to the DDR clock until a full burst is able to be captured. The read_dqs_ie_i signal corresponds to the DQS signals and the rd_clksel_i signal corresponds to the DDR clock. Once the read preamble and eight DQS pulses are captured, it indicates read gate training was successful. This is indicated when the burst_det_sclk signal is set high for four occurrences in a row. The final setting for the rd_clksel_i signal is calculated as the average of the burst_det_sclk assertion window.

Figure 8.7. Read Gate Training Simulation Waveform

Figure 8.8. Read Gate Training Reveal Capture

Read deskew training begins with Multi-Purpose Command: MPC[READ DQ CALIBRATION]. It issues Mode Register Write (MRW) commands to MR32 and MR40 and then issues READ commands to see if the content read back on DQ is correct. If the DQ signal does not capture the correct data, it is delayed and the process is repeated. Once the read data is correct, the rvl_rd_comp_result_r signal is asserted high. The final DQ delay value is calculated after a passing window is achieved. For more information on read training, refer to the Read Training Description section of this User Guide.

Figure 8.9. Read Deskew Training Simulation Waveform

Figure 8.10. Read Deskew Training Reveal Capture

8.2.4. Write Training

Write training begins with Multi-Purpose Command: MPC[WRITE-FIFO]. It issues a set of 5 MPC[WRITE-FIFO] commands and 5 MPC[READ-FIFO] commands. Once data is written to the external LPDDR4 SDRAM, the data is read back on the DQ signal and compared with the "expected" data to determine if the read data is correct. If the DQ signal does not capture the correct data, it is delayed and the process is repeated. Once the read data is correct, the rvl_rd_comp_result_r signal is asserted high. The final DQ delay value is calculated after a passing window is achieved. For more information on write training, refer to the Write Training Description section of this User Guide.

Figure 8.11. Write Training Simulation Waveform

Figure 8.12. Write Training Reveal Capture

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Appendix A. Resource Utilization

The following table shows the configuration and resource utilization for IP Core v1.3.0 implemented for LFCPNX-100-9FFG672I using LSE of Lattice Radiant software 2022.1.

Table A.1 Resource Utilization for IP Core v1.3.0

Configuration	sclk_o Fmax¹ (MHz)	Registers	LUTs	EBR	IDDR/ODDR/TDDR
Interface Type = AHBL Others = Default	143.761	6935	10396	18	121 (32+49+40)
Interface Type = AHBL, Enable DBI = Checked, Enable Power Down = Checked, Others = Default	141.423	7023	10969	18	125 (36+49+50)
Interface Type = AHBL, Enable Internal RISC-V CPU = Unchecked, Others = Default	140.905	6234	8987	8	121 (32+49+40)
Interface Type = AHBL, DDR Bus Width = 16, Others = Default	134.246	5296	8061	14	65 (16+29+20)
Interface Type = AHBL, DDR Bus Width = 64, Others = Default	124.719	10228	15526	26	233 (64+89+80)

Note:

The following table shows the configuration and resource utilization for IP Core v2.1.0 implemented for LFCPNX-100-9FFG672C using Synplify Pro of Lattice Radiant software 2023.1.

Table A.2. Resource Utilization for IP Core v2.1.0

Configuration	aclk_i Fmax (MHz)	sclk_o Fmax¹ (MHz)	Registers	LUTs	EBR	IDDR/ODDR/TDDR
DDR Bus Width = 16, Others = Default	219.202	154.273	7465	9725	25	65 (16+29+20)
Default	186.359	154.631	8927	10515	33	121 (32+49+40)
DDR Bus Width = 64, Others = Default	164.123	157.332	11894	12345	50	233 (64+89+80)
DDR Bus Width = 64, Enable Power Down = Checked, Enable DBI = Checked, Others = Default	159.591	169.693	12017	12864	50	241 (72+89+80)

Note:

The sclk_o Fmax is generated using the top-level example design wrapper file, eval_top.sv, that is described in the Synthesis Example
 Design section of this User Guide. These values may increase when the IP Core is used with the user logic.

^{1.} The sclk_o Fmax is generated using the top-level example design wrapper file, eval_top.sv, that is described in the Synthesis Example Design section of this User Guide. These values may increase when the IP Core is used with the user logic.

References

For more information refer to:

- Lattice Radiant FPGA design software
- Lattice Insights for Lattice Semiconductor training courses and learning plans
- Lattice Sales Office for more information about pricing and availability of the LPDDR4 Memory Controller for Nexus
 Devices
- CertusPro-NX web page
- MachXO5-NX web page
- AMBA AHB Protocol Specification
- AMBA AXI Protocol Specification
- AMBA APB Protocol Specification
- LPDDR4 JEDEC Standard
- Lattice Radiant Timing Constraints Methodology User Guide (FPGA-AN-02059)
- Debugging with Reveal Usage Guidelines and Tips Application Note (FPGA-AN-02060)
- LPDDR4 Memory Interface Module User Guide (FPGA-IPUG-02154)

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, please refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

Revision History

Revision 1.5, September 2023

Change Summary				
 Changed the document title from Memory Controller IP Core - Lattice Radiant Software to LPDDR4 Memory Controller for Nexus Devices. Reworked document content and structure for clarity. 				
Reworked section contents.				
 Reworked section contents. Reworked section 4 Ordering Part Number and renamed to subsection 1.3 Licensing and Ordering Information. Added IP Validation Summary and Minimum Device Requirements subsection. Reworked subsection 1.3 Conventions and renamed to subsection 1.6 Naming Conventions. 				
 Reworked subsection 2.5. Submodules description and renamed to subsection 2.1 IP Architecture. Added subsection 2.2 Clocking and Reset. 				
 Reworked subsection 2.2.1 AHB-Lite Interface and moved under subsection 2.3 User Interfaces. Reworked subsection 2.2.4 AXI4 Interface and moved under added subsection 2.3 User Interfaces. Reworked subsection 2.6. Initialization and Training and renamed to subsection 2.4 LPDDR4 Calibration. Reworked subsection 2.7. Operations Details and renamed to subsection 2.5 LPDDR4 				
Operation Description. Reworked <i>subsection 2.3 Attributes Summary</i> and moved this under IP Parameter				
Description section.				
Reworked <i>subsection 2.2 Signal Description</i> and converted it to Signal Description section.				
Reworked <i>subsection 2.4 Register Description</i> and converted it to Register Description section.				
Added this section.				
Reworked <i>section 3 IP Generation, Simulation, and Verification</i> and renamed to this main section.				
Added this section.				
Reworked section contents.				
Reworked section contents.				

Revision 1.4, December 2022

Section	Change Summary		
Acronyms in This Document	Added AXI4 and revised CBI.		
Introduction	Added AXI4 interface.		
	In Table 1.1:		
	Removed Performance Grade		
	 Updated Supported User Interfaces and Resources in 		
	• In Features section:		
	 Updated Supported Transactions and Command Frequency. 		
	Indicated future enhancements.		
	 Removed Dynamic On-Die Termination (ODT) controls. 		
	Added AXI4 I/F in Table 1.2.		

Section	Change Summary	
Functional Description	 In Overview section: Removed ODT for generating ODT. Added AXI4 I/F. In Table 2.1: Added AXI4 I/F. Updated Clock and Reset group and Other Signals group. Corrected ahbl_htrans_i I/O. Updated AHB-Lite Interface and Native Interface sections to indicate availability in IP Core v1.x.x. Added AXI4 Interface section. Added new attributes for IP Core v2.x.x in Table 2.6 and Table 2.7. Removed RefClock (MHz) Selectable Values from Table 2.6. In Register Description section: Improve description of addr_translation field in FEATURE_CTRL_REG. Also indicated that num_ranks 1-Dual Rank is not supported. Updated COLW Local Address map in Table 2.12. Updated description of RESET_REG and TRN_OP_REG due to Enable APB I/F attribute. Updated subsection headings. Indicated future enhancements in the Training Operation Register (TRN_OP_REG) (0x20) section. Removed the On-Die Termination Control section. Added Initialization and Training without APB I/F section. Updated interface in the Write and Read Data Access section. Also added reference to 	
IP Generation, Simulation, and Validation	 Table 2.5. Updated the outline of this section. Updated Figure 3.1, Figure 3.2, Figure 3.3, Figure 3.4, and Figure 3.5 for IP Core v 2.0.0. Added Constraining the IP section. Updated Hardware Validation section for IP Core v 2.0.0. Updated step 8 in the procedure for running hardware evaluation and added information on VREF training support. 	
Appendix A. Resource Utilization	Added Resource Utilization for IP Core v 2.0.0.	
References	Added link to Lattice Radiant Software User Guide.	
Technical Support Assistance	Added reference to the Lattice Answer Database on the Lattice website.	
All	 Replaced slave with subordinate and master with manager when appropriate. Minor adjustments in formatting and style. 	

Revision 1.3, January 2022

Section	Change Summary		
All	Removed DDR3 features across the document.		
Introduction	 Updated Lattice Radiant software version in Table 1.1. Updated Features to add Native I/F, Memory DQ_VREF Training, Memory Controller DQ_VREF training, and updated Command frequency. 		
Functional Description	 Updated Table 2.1 to remove hclk_i and hreset_n_i, add Native Interface, and update table note. Added Native Interface and Native Interface to AXI4 Bridge sections. Updated Error Log Register (ERROR_LOG_REG), Training Operation Register (TRN_OP_REG), and Status Register (STATUS_REG) section. Updated the following in Table 2.5: DDR Command Frequency (MHz) Local Data Bus Type 		

Section	Change Summary			
	Data Width			
	Periodic Event Setting Group			
	Updated Local Interface group in Table 2.6.			
	Separated Initialization and Training section from Operation Details section.			
	Split REFRESH Support section into Auto Refresh Support and Power Saving Feature.			
	 Added Periodic ZQ Calibration and Temperature Tracking and Extended Temperature Support sections. 			
Core Generation, Simulation, and	Updated Figure 3.1, Figure 3.2, and Figure 3.3.			
Validation	Updated Table 3.1.			
	Updated Running Functional Simulation section to add the simulation support.			
	Replaced Hardware Evaluation section with Hardware Validation.			
Ordering Part Number	Updated content to add DDR4 part number with one year subscription license and remove part numbers for DDR3.			
Appendix A. Resource Utilization	Updated Lattice Radiant software version to 3.1.			
	Updated values in Table A.1.			

Revision 1.2, June 2021

nevision file, same loll	
Section	Change Summary
All	Minor adjustments in formatting.
Introduction	Updated Features section content to correct acronym from INC4 and INC8 to INCR4 and INCR8.
Functional Description	Improved description of rst_n_i in Table 2.1.
Core Generation, Simulation, and Validation	Updated Figure 3.1, Figure 3.2, and Figure 3.3.
Ordering Part Number	Added this section.
Appendix A. Resource Utilization	Updated Lattice Radiant software version to 3.0.
References	Updates section content to add CertusPro-NX webpage.

Revision 1.1, March 2021

Section	Change Summary
Introduction	Updated Features section content to correct acronym from INC4 and INC8 to INCR4 and INCR8.
Functional Description	 Updated Table 2.1 to add hreset and preset port name. Updated Table 2.2 to correct acronym from INC4 and INC8 to INCR4 and INCR8. Updated Table 2.3 to correct Selectable Values, Default, and Dependency on Other Attributes. Updated Feature Control Register (FEATURE_CTRL_REG) section to correct num_rank bullet and [31:7] and [16] in Table 2.7. Updated Interrupt Status Register (INT_STATUS_REG) section to correct temp_change_int bullet and [4] in Table 2.12. Updated Interrupt Enable Register (INT_ENABLE_REG) section to correct temp_change_en bullet and [4] in Table 2.13. Updated Interrupt Set Register (INT_SET_REG) section to correct temp_change_set bullet and [4] in Table 2.14.
Core Generation, Simulation, and Validation	Updated Figure 3.1 and Figure 3.2.
Appendix A. Resource Utilization	Updated values in Table A.1.

Revision 1.0, February 2021

Section	Change Summary
All	Initial release

www.latticesemi.com