Работа 3.2.6

Исследование гальванометра

Цель работы: изучение работы высокочувствительного магнитозеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

Оборудование: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключ, линейка.

1. Теоретическая справка

Устройство. Баллистический гальванометр - электроизмериткльный прибор магнитоэлектроической системы, отличающийся высокой чувствительностью и сравнительно большим периодом колебвний подвижной части. Он представляет собой скрепленную с полым цилиндром проводящую рамку, подвешенную на нити в радиально направленном постоянном магнитном поле (см. рис. 1). На рамке закреплено зеркало, служащее для измерения угла поворота.

Уравнение движения. Введем следующие обозначения: φ - угол поворота рамки, D - модуль кручения, S - площадь рамки, N - число витков, I - сила тока в рамке при отсутствии ЭДС индукции, B - индукция магниного поля, R_{Σ} - общее сопротивление цепи, J - момент

Рис. 1: Рамка с током в магнитном поле

инерции подвижной системы. Если пренебречь сопротивлением воздуха, то уравнение движения записывается в виде

$$J\ddot{\varphi} + \frac{(BSN)^2}{R_{\Sigma}}\dot{\varphi} + D\varphi = BSNI. \tag{1}$$

Введем обозначения

$$\begin{cases}
2\gamma = \frac{(BSN)^2}{JR_{\Sigma}}, \\
\omega_0^2 = \frac{D}{J}, \\
K = \frac{BSN}{J}.
\end{cases} \tag{2}$$

Таким образом, уравнение (1) примет вид

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = KI. \tag{3}$$

Заметим, что данное уравнения является уравнением затухающих колебаний с коэффициентом затухания γ и собственной частотой ω_0 .

Режим измерения постоянного тока. Если I=const, то по прошествии некоторого времени колебания затухнут, и можно принять $\varphi=const$. Тогда из уравнения (3) легко получить

$$\varphi = \frac{K}{\omega_0^2} I = \frac{BSN}{D} I = \frac{I}{C_I}.$$
 (4)

 C_I называется ∂u намической постоянной гальванометра и определяется выражением

$$C_I = \frac{I}{\varphi} = \frac{D}{BSN}. (5)$$

Свободные колебания рамки. Пусть I=0 и выполнены следующие начальные условия:

$$\begin{cases} \varphi(t=0) = 0, \\ \dot{\varphi}(t=0) = \dot{\varphi}_0. \end{cases}$$
 (6)

Тогда в зависимости от γ и ω_0 решение уравнения (3) имеет вид

$$\begin{cases} \varphi = \frac{\dot{\varphi}_0}{\omega} e^{-\gamma t} \sin \omega t, & \gamma < \omega_0 \text{ (колебательный режим);} \\ \varphi = \frac{\dot{\varphi}_0}{\omega_0} \sin \omega_0 t, & \gamma = \omega_0 \text{ (критический режим);} \\ \varphi = \frac{\dot{\varphi}_0}{\varkappa} e^{-\gamma t} \text{ sh } \varkappa t, & \gamma > \omega_0 \text{ (апериодический режим).} \end{cases}$$
 (7)

Здесь \varkappa и ω определяются соотношениями

$$\begin{cases}
\omega^2 = \omega_0^2 - \gamma^2, \\
\varkappa^2 = \gamma^2 - \omega_0^2.
\end{cases}$$
(8)

В случае колебательного режима можно ввести логарифмический декремент затухания Θ :

$$\Theta = \ln \frac{\varphi_n}{\varphi_{n+1}},\tag{9}$$

где φ_n и φ_{n+1} - углы последовательных отклонений в одну сторону с номерами n и n+1. Из (7) в случае малого затухания ($\gamma \ll \omega$) легко получить выражение для Θ :

$$\Theta = \gamma T, \tag{10}$$

где T - период колебаний:

$$T = \frac{2\pi}{\omega}. (11)$$

Заметим, что при приближении к критическому режиму $\Theta \to \infty$.

Режим измерения заряда. Теперь рассмотрим ситуацию, когда через гальванометр проходит короткий импульс тока. Будем считать, что продолжительность импульса τ достаточно мала ($\tau \ll T$), и отклонением рамки можно пренебречь. Пусть через рамку протекал ток с момента времени t=0 до момента времени $t=\tau$. Проинтегрировав уравнение (3) с учетом приближения $\varphi \approx 0$, получим

$$\dot{\varphi}(\tau) = K \int_{0}^{\tau} I dt. \tag{12}$$

Заряд, прошедший через гальванометр выражается формулой

$$q = \int_{0}^{\tau} I dt + \int_{0}^{\tau} I_{\text{инд}} dt, \tag{13}$$

где $I_{\text{инд}}$ - индукционный ток. Заметим, что $I_{\text{инд}} \sim \dot{\varphi}$, а значит

$$\int_{0}^{\tau} I_{\text{инд}} dt \sim \int_{0}^{\tau} \dot{\varphi} dt = \varphi(\tau) \approx 0.$$
 (14)

Поэтому зарядом, протекшим в результате индукционного тока, можно пренебречь, и выражение (13) примет вид

$$q = \int_{0}^{\tau} I dt. \tag{15}$$

$$\dot{\varphi}(\tau) = Kq. \tag{16}$$

Из выражения (7) легко видеть, что при любом режиме максимальное отклонение от положения равновесия $\varphi_{\text{max}} \sim \dot{\varphi}_0 \stackrel{(16)}{\sim} q$. Таким образом, величина

$$C_q = \frac{q}{\varphi_{\text{max}}},\tag{17}$$

называемая баллистической постоянной, зависит только от параметров цепи.

Можно показать, что при неизменном q максимальное отклонение достигается при отсутствии затухания и определяется выражением

$$\varphi_{\text{max cB}} = \frac{\dot{\varphi}(\tau)}{\omega_0} = \frac{Kq}{\omega_0}.$$
 (18)

В критическом режиме, когда система быстрее всего приходит в равновесие, максимальное отклонение в e раз меньше:

$$\varphi_{\text{max } \kappa p} = \frac{Kq}{\omega_0 e}.$$
 (19)

Отсюда следует выражение для баллистических констант:

$$\frac{C_{Q \text{ KP}}}{C_{Q \text{ CB}}} = e. \tag{20}$$

2. Определение динамической постоянной

Экспериментальная установка. Схема для измерений в стационарном режиме приведена на рис. 2. Значение входного напряжения $U=1,32\pm0,02$ В, сопротивления гальванометра $R_0=475\pm1$ Ом. Сопротивление R можно изменять.

Угол отклонения рамки от пложения равновесия измеряется с помощью осветителя, зеркала, закрепленного на рамке, и шкалы, на которую отражается свет. Если обозначить координату светового пятна за x и считать

Рис. 2: Схема установки для работы в стационарном режиме

 $x \ll a$, то выражение для угла отклонения примет вид

$$\varphi = \frac{x}{2a},\tag{21}$$

где $a=128\pm1$ см - расстояние от шкалы до зеркала. Таким образом, из выражения (5) легко получить формулу для динамической постоянной:

$$C_I = \frac{2aI}{x} \tag{22}$$

Отсюда следует выражение для зависимости I(x):

$$I = x \frac{C_I}{2a}. (23)$$

При $R_1 \ll R + R_0$ сила тока, протекающего через гальванометр, выражается формулой

$$I = U \frac{R_1}{R_2} \frac{1}{R + R_0}. (24)$$

По этой формуле мы можем рассчитать токи по значениям сопротивления R, и, таким образом, получить экспериментальную зависимость I(x). Согласно (23), она должна быть линейной, и по ее коэффициенту наклона k мы сможем вычислить C_I :

$$C_I = 2ka. (25)$$