6.3 - Ionization of Water

pages 608-609 in Matter and Change pages 572-573 in Health

Ionization of Water

In this reaction, the vast majority of the water remains as H₂O.

Only about 1 water molecule in 500 million is ionized.

$$H_2O+H_2O=H_3O+OH$$

Water is considered a non-electrolyte (will not conduct electricity)

However, a few water molecules will dissociate to form ions as represented by:

$$2H_2O_{(l)} \implies H_3O^+_{(aq)} + OH^-_{(aq)}$$

Because this system is in equilibrium, the equilibrium constant for water can be determined.

$$K_{eq} = \frac{\left[H_3O^+\right]\left[OH^-\right]}{\left[H_2O\right]\left[H_2O\right]} = \left[H_3O^+\right]\left[OH^-\right] H_2O \text{ is not included}$$

because it is liquid and therefore constant

This is called the ion product constant for water or K_w -At 25°C, K_w has been experimentally determined to be 1.0×10^{-14}

Water has many hydronium and hydroxide ions; therefore:

$$1.00 \times 10^{-14} = \left[H_3 O^+ \right] \left[O H^- \right] = x^2$$
$$\sqrt{1.00 \times 10^{-14}} = \sqrt{x^2}$$
$$1.00 \times 10^{-7} = x = \left[H_3 O^+ \right] = \left[O H^- \right]$$

Solutions can be classified as acidic, basic or neutral according to:

$$\begin{bmatrix} \mathbf{H}_3 O^+ \end{bmatrix} > \begin{bmatrix} OH^- \end{bmatrix} \text{ acidic}$$

$$\begin{bmatrix} \mathbf{H}_3 O^+ \end{bmatrix} = \begin{bmatrix} OH^- \end{bmatrix} \text{ neutral}$$

$$\begin{bmatrix} \mathbf{H}_3 O^+ \end{bmatrix} < \begin{bmatrix} OH^- \end{bmatrix} \text{ basic}$$

Calculating [H₃O⁺] in STRONG Acids and [OH-] in STRONG Bases

We will consider strong acids as those that have a K $_a$ > 1. -You can use Table 14 to determine if you are working with a strong acid or weak acid. Recall that a strong acid is one that completely ionizes.

When working with a strong acid or a strong base we will calculate the concentration of hydrogen ions or hydroxide ions in the same fashion we have in the past.

Ex) Calculate [H₃O⁺] for a 0.050 M solution of Perchloric acid.

Ex) NaOH is a strong base. Calculate [OH -] for a 0.010 M solution of sodium hydroxide.

Calculating [OH-] in STRONG Acids and [H₃O+] in STRONG Bases

When we are determining the ion concentrations for an acid, we are generally concerned with $[H_3O^+]$.

Likewise, when determining the ion concentrations for a base, we are concerned about [OH-].

However, we may be asked to find [OH-] in an **acid** or the [H+] in a **base**.

Remember that we are calculating the ion concentrations for acid/base **solutions**, which means they are mixed with water.

If we mix an acid with water, we are adding OH⁻ to the acid because water does ionize a bit. Therefore, we can use K_w to calculate [OH⁻].

ex: What are the hydronium ion and hydroxide ion concentrations in a 0.050 mol/L aqueous solution of hydrochloric acid at 25°C? Is the solution acidic or basic?

6.3 - Ionization of water and Kw

6.3 Ionization of Water Assignment

- **1.** The concentration of either the H⁺ ion of OH⁻ ion is given for 3 aqueous solutions at 298K. For each solution, calculate [H⁺] or [OH⁻]. State whether solution is acidic, basic or neutral.
- a) $[H^+] = 1.0 \times 10^{-13} M$

b) $[OH^{-}] = 1.0 \times 10^{-7} M$

c) $[OH-] = 1.0 \times 10^{-3} M$

2. What is the $[H_3O^+]$ in a 0.025M solution of NaOH. Is this solution acidic, basic or neutral?

6.3 - Ionization of water and Kw

6.3 Ionization of Water Assignment 3. A 2.5L solution contains 5.6 g of hydroiodic acid. What is the concentration of hydroxide ions in this solution? Is this solution acidic, basic or neutral? 4. Postassium hydroxide is a very strong base. If 6 mols are found in an 8L solution, what is the hydronium ion concentration in this solution? Is this solution acidic, basic or neutral? 5. 10.4 g of nitric acid are found in 750 mL of water. What is the hydronium concentration of this solution? 6. A 500mL (0.50M) solution of sodium hydroxide is diluted with 250mL of water. What are the final concentrations of [H⁺] and [OH⁻] in this

solution? Is this solution acidic, basic or neutral?