Deep Reinforcement Learning

Deep Reinforcement Learning

- 1. Background: From actor-critic & Q-learning to DQN
 - 1.1. Main problem of Q-learning
 - 1.2. DON

Loss function

Experience Replay

Target Network

2. Improvement on DQN

- 2.1. Prioritized Experience Replay
- 2.2. DDPG

Policy Gradient

DDPG

- 2.3. Dueling DQN
- 2.4. Sim2Real

Problem

Solution

2.5. Curriculum Learning

1. Background: From actor-critic & Q-learning to DQN

1.1. Main problem of Q-learning

https://zhuanlan.zhihu.com/p/46852675

- 1. Q-Learning可以很好的解决迷宫问题,但这终究是个小问题,它的状态空间和动作空间都很小。而在实际的情况下,大部分问题都有巨大的状态空间或动作空间,建立Q表,内存是不允许的,而且数据量和时间开销也是个问题。
- 2. 如果一个状态从未出现过,Q-learning是无法处理的。也就是说**Q-learning**压根没有预测能力,也就是没有泛化能力。

1.2. DQN

DQN tries to use a deep learning neural network to represent the **critic** of a problem, i.e. Q-table. It will solve the above two problems:

1. neural network can approximate arbitrary function theoretically. It saves memory and helps the generalization capability.

The network architecture of DQN is shown in the right part of following picture

Loss function

$$J = \mathbb{E}\left\{ \left\| \underbrace{r + \gamma \max_{u'} Q\left(x', u'\right)}_{\text{target}} - \underbrace{Q(x, u)}_{\text{prediction}} \right\| \right\}$$
(1)

Experience Replay

DeepLearning取得重大进展的监督学习中,样本间都是独立同分布的。而RL中的样本是有关联的,非静态的(highly correlated and non-stationary),训练的结果很容易难以收敛

Data $\{x, u, x', r\}$ is **collected on-line** by following the exploration policy and stored in a buffer.

Target Network

Introduce a target network with parameters θ^- that slowly track θ for stability, updated only occasionally.

$$J = \mathbb{E}\left\{\left(r + \gamma \max_{u'} Q\left(x', u', \theta^{-}\right) - Q(x, u, \theta)\right)^{2}
ight\}$$
 (2)

2. Improvement on DQN

2.1. Prioritized Experience Replay

Different sample has different weight(priority):

Sample according to:

$$P(i) = \frac{p_i^a}{\sum_k p_k^a} \tag{3}$$

with priority $p_j = |\Delta_j| + \text{const}$

It can be used to compensate for bias with importance sampling

2.2. **DDPG**

Although DQN give deep learning method to find Q-table, it still meet trouble when facing to choose action. It is because:

- It still use $\max_a Q(s,a)$ to find the corresponding best action, cannot handle large action space.
- DQN的第二个问题是只**能给出一个确定性的action**,无法给出概率值。而有些场景,比如围棋的开局,只有一种走法显然太死板了

So we try to directly learn policy(action)

Policy Gradient

策略梯度方法中,参数化策略 π 为 $\pi(\theta)$,然后计算得到动作上策略梯度,沿着梯度方法,一点点的调整动作,逐渐得到最优策略。

- Let $J(\theta)$ be any policy objective function
- Policy gradient algorithms search for a local maximum in $J(\theta)$ by ascending the gradient of the policy, w.r.t. parameters θ

$$\Delta\theta = \alpha\nabla_{\theta}J(\theta)$$

• Where $\nabla_{\theta} J(\theta)$ is the policy gradient

$$abla_{ heta} J(heta) = egin{pmatrix} rac{\partial J(heta)}{\partial heta_1} \ dots \ rac{\partial J(heta)}{\partial heta_n} \end{pmatrix}$$

lacksquare and lpha is a step-size parameter

From: https://zhuanlan.zhihu.com/p/337976595

Stochastic Policy Gradient

用一个参数化的概率分布 $\pi_{\theta}(a|s) = P[a|s;\theta]$ 来表示policy,并且由于policy是一个概率分布,那么action \boldsymbol{a} 就是随机选取的.

Deterministic Policy Gradient

摒弃了用概率分布表示policy的方法,转而用一个确定性的函数 $a = \mu_{\theta}(s)$ 表示policy。

但缺点也很明显,对于每个state,下一步的action是确定的。这就导致只能做exploitation 而不能做exploration。这可能也是为什么policy gradient一开始就采用stochastic算法的原 因。

为了解决不能做exploration的问题,DPG采用了off-policy的方法。也就是说,采样的policy和待优化的policy是不同的: 其中采样的policy是stochastic的,而待优化的policy是deterministic的。采样policy的随机性保证了充分的exploration。

DDPG

将DQN中将神经网络用于拟合Q函数的两个trick用到了DPG中,也就是将DPG中的Q函数也变成了一个神经网络。

2.3. Dueling DQN

A(s, a)与动作相关,是a相对s平均回报的相对好坏,是优势,解决reward-bias问题。RL中真正关心的还是策略的好坏,更关系的是优势,另外在某些情况下,任何策略都不影响回报,显然需要剔除

By using **Advantage** A(x,u):

$$Q(x,u) = V(x) + A(x,u) \tag{4}$$

Here, we give an one more step explanation of each part:

V(s): value function, but we can understand it as "评价状态s的好坏,记为baseline"

Q(s,a) Q-table, it is used to "评价在状态s下,执行动作a的好坏"

A(s,a) Advantage, it is used to "衡量动作a相对于baseline的优势,a越好,优势就越大"

red part: get A(s, a)

blue part: get V(s)

2.4. Sim2Real

Train in simulation, apply on real system

Problem

Overfitting to simulation, resulting policy performing poorly

Solution

Make learned policy more robust, e.g. via domain randomization

2.5. Curriculum Learning

Start with learning simple tasks, once mastered learn more complex tasks