蒙特卡洛方法与 MCMC 采样

一、蒙特卡洛方法

- 1. 蒙特卡洛方法 Monte Carlo 可以通过采用随机投点法来求解不规则图形的面积。 求解结果并不是一个精确值,而是一个近似值。当投点的数量越来越大时,该近似值也越接近真实值。
- 2. 蒙特卡洛方法也可以用于根据概率分布来随机采样的任务。

1.1 布丰投针问题

- 1. 布丰投针问题是1777年法国科学家布丰提出的一种计算圆周率的方法: 随机投针法。其步骤为:
 - \circ 首先取一张白纸,在上面绘制许多条间距为 d 的平行线。
 - \circ 取一根长度为 l,l < d 的针,随机地向纸上投掷 n 次,观测针与直线相交的次数,记做 m 。
 - \circ 计算针与直线相交的概率 $p=\frac{m}{n}$ 。可以证明这个概率 $p=\frac{2l}{\pi\times d}$ 。 因此有:

$$\pi = 2rac{n imes l}{m imes d}$$

- 2. 由于向纸上投针是完全随机的,因此用二维随机变量 (X,Y) 来确定针在纸上的具体位置。其中:
 - $\circ X$ 表示针的中点到平行线的距离,它是 [0,d/2] 之间的均匀分布。
 - $\circ Y$ 表示针与平行线的夹角,它是 $[0,\frac{\pi}{2}]$ 之间的均匀分布。

当 $X < \frac{l}{2}\sin Y$ 时,针与直线相交。

由于 X, Y 相互独立,因此有概率密度函数:

$$p(X=x,Y=y) = \left\{ egin{array}{ll} rac{4}{\pi d}, & 0 \leq x \leq d/2, 0 \leq y \leq \pi/2 \ 0, & ext{else} \end{array}
ight.$$

因此, 针与直线相交的概率为:

$$P\{X < rac{l}{2} \sin Y\} = \int \int_{x < rac{l}{a} \sin y} p(x,y) dx dy = \int_{x=0}^{x = rac{l}{2} \sin y} \int_{y=0}^{y = \pi/2} rac{4}{\pi d} dx dy = rac{2l}{\pi d}$$

根据 $\frac{2l}{\pi d} = \frac{m}{n}$ 即可得证。

3. 布丰投针问题中,蒙特卡洛方法是利用随机投点法来求解面积 $\int \int_{x<\frac{l}{2}\sin y} p(x,y) dx dy$ 。 因为曲线的积分就是面积,这里的曲线就是概率密度函数 p(X,Y) 。

1.2 蒙特卡洛积分

- 1. 对于函数 f(x),其在区间 [a,b] 上的积分 $\int_a^b f(x)dx$ 可以采用两种方法来求解: 投点法、期望法。
- 2. 投点法求积分:对函数 f(x),对其求积分等价于求它的曲线下方的面积。

此时定义一个常数 M , 使得 $M>\max_{a\leq x\leq b}f(x)$, 该常数在区间 [a,b] 上的面积就是矩形面积 M(b-a)

随机向矩形框中随机的、均匀的投点,设落在函数 f(x) 下方的点为绿色,落在 f(x) 和 M 之间的点为红色。则有:**落在** f(x) **下方的点的概率等于** f(x) **的面积比上矩形框的面积** 。

具体做法是:从 [a,b] 之间的均匀分布中采样 x_0 ,从 [0,M] 之见的均匀分布中采样 y_0 , (x_0,y_0) 构成一个随机点。

- 若 $y_0 \leq f(x_0)$, 则说明该随机点在函数 f(x) 下方,染成绿色。
- \circ 若 $f(x_0) < y_0 \le M$,则说明该随机点在函数 f(x) 上方,染成红色。

假设绿色点有 n_1 个,红色点有 n_2 个,总的点数为 n_1+n_2 ,因此有: $\int_a^b f(x)dx=rac{n_1}{n_1+n_2} imes M(b-a)$

f(x)

3. 期望法求积分:假设需要求解积分 $I=\int_a^b f(x)dx$,则任意选择一个概率密度函数 p(x) ,其中 p(x) 满足条件:

$$\int_a^b p(x)dx = 1$$
 if $f(x) \neq 0$ then $p(x) \neq 0$, $a \leq x \leq b$

令:

$$f^*(x) = \left\{ egin{array}{ll} rac{f(x)}{p(x)}, & p(x)
eq 0 \ 0, & p(x) = 0 \end{array}
ight.$$

则有: $I=\int_a^bf(x)dx=\int_a^bf^*(x)p(x)dx$,它刚好是一个期望: 设随机变量 X 服从分布 $X\sim p(x)$,则 $I=\mathbb{E}_{X\sim p}[f^*(X)]$ 。

则期望法求积分的步骤是:

- \circ 任选一个满足条件的概率分布 p(x) 。
- \circ 根据 p(x), 生成一组服从分布 p(x) 的随机数 x_1, x_2, \dots, x_N 。
- 。 计算均值 $ar{I}=rac{1}{N}\sum_{i=1}^{N}f^{*}(x_{i})$,并将 $ar{I}$ 作为 I 的近似。
- 4. 在期望法求积分中,如果 a, b 均为有限值,则 p(x) 可以取均匀分布的概率密度函数:

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{else} \end{cases}$$

此时
$$f^*(x)=(b-a)f(x)$$
, $ar{I}=rac{b-a}{N}\sum_{i=1}^N f(x_i)$ 。

其物理意义为: $\frac{\sum_{i=1}^N f(x_i)}{N}$ 为在区间 [a,b] 上函数的平均高度,乘以区间宽度 b-a 就是平均面积。

5. 对于期望 $\mathbb{E}_p[f(X)]$,如果 p(x) 或者 f(x) 的表达式比较复杂,则也可以转化为另一个期望的计算。 选择一个比较简单的概率密度函数 q(x),根据:

$$\mathbb{E}_p[f(X)] = \int f(x)p(x)dx = \int f(x)rac{p(x)}{q(x)}q(x)dx$$

令 $f^*(x)=f(x)rac{p(x)}{q(x)}$,则原始期望转换为求另一个期望 $\mathbb{E}_q[f^*(X)]$ 。此时可以使用期望法求积分的策略计算。

1.3 蒙特卡洛采样

- 1. 采样问题的主要任务是:根据概率分布 p(x) ,生成一组服从分布 p(x) 的随机数 x_1, x_2, \cdots 。
 - \circ 如果 p(x) 就是均匀分布,则均匀分布的采样非常简单。
 - \circ 如果 p(x) 是非均匀分布,则可以通过均匀分布的采样来实现。其步骤是:
 - 首先根据均匀分布 U(0,1) 随机生成一个样本 z_i 。
 - 设 $\tilde{P}(x)$ 为概率分布 p(x) 的累计分布函数: $\tilde{P}(x)=\int_{-\infty}^{x}p(z)dz$ 。 令 $z_i=\tilde{P}(x_i)$,计算得到 $x_i=\tilde{P}^{-1}(z_i)$,其中 \tilde{P}^{-1} 为反函数,则 x_i 为对 p(x) 的采样。

2. 通过均匀分布的采样的原理: 假设随机变量 Z, X 满足 $Z = \tilde{P}(X)$, 则 X 的概率分布为:

$$p_Z(z)\frac{d}{dx}\tilde{P}(x)$$

因为 Z 是 [0,1] 上面的均匀分布,因此 $p_Z(z)=1$; $\tilde{P}(x)$ 为概率分布 p(x) 的累计分布函数,因此 $\frac{d}{dx}\tilde{P}(x)=p_X(x)$ 。 因此上式刚好等于 p(x) ,即: x_i 服从概率分布 p(x) 。

这其中有两个关键计算:

- 。 根据 p(x),计算累计分布函数 $ilde{P}(x) = \int_{-\infty}^x p(z) dz$ 。
- \circ 根据 $z = \tilde{P}(x)$ 计算反函数 $x = \tilde{P}^{-1}(z)$ 。

如果累计分布函数无法计算,或者反函数难以求解,则该方法无法进行。

- 3. 对于复杂的概率分布 p(x) , 难以通过均匀分布来实现采样。此时可以使用 接受-拒绝采样 策略。
 - 。 首先选定一个容易采样的概率分布 q(x) ,选择一个常数 k ,使得在定义域的所有位置都满足 $p(x) \leq k \times q(x)$ 。
 - \circ 然后根据概率分布 q(x) 随机生成一个样本 x_i 。
 - \circ 计算 $lpha_i = rac{p(x_i)}{k a(x_i)}$,以概率 $lpha_i$ 接受该样本。

具体做法是:根据均匀分布 U(0,1) 随机生成一个点 u_i 。如果 $u_i \leq \alpha_i$,则接受该样本;否则拒绝该样本。

或者换一个做法:根据均匀分布 $U(0,kq(x_i))$ 生成一个随机点,如果该点落在灰色区间($(p(x_i),kq(x_i)]$)则拒绝该样本;如果该点落在白色区间($[0,p(x_i)]$)则接受该样本。

2022/4/27 4 monte carlo

- 4. 接受-拒绝采样 在高维的情况下会出现两个问题:
 - o 合适的 q 分布比较难以找到。
 - \circ 难以确定一个合理的 k 值。

这两个问题会导致拒绝率很高, 无效计算太多。

二、马尔可夫链

1. 马尔可夫链是满足马尔可夫性质的随机过程。

马尔可夫链 X_1, X_2, \cdots 描述了一个状态序列,其中每个状态值取决于前一个状态。 X_t 为随机变量,称为时刻 t 的状态,其取值范围称作状态空间。

马尔可夫链的数学定义为: $P(X_{t+1} \mid X_t, X_{t-1}, \dots, X_1) = P(X_{t+1} \mid X_t)$.

2.1 马尔可夫链示例

- 1. 社会学家把人按照经济状况分成三类:下层、中层、上层。用状态 1,2,3 代表着三个阶层。社会学家发现: 决定一个人的收入阶层的最重要因素就是其父母的收入阶层。
 - 。 如果一个人的收入属于下层,则他的孩子属于下层的概率是 0.65,属于中层的概率是 0.28,属于上层的概率是 0.07。
 - 。 如果一个人的收入属于中层,则他的孩子属于下层的概率是 0.15,属于中层的概率是 0.67,属于上层的 概率是 0.18。
 - 。 如果一个人的收入属于上层,则他的孩子属于下层的概率是 0.12,属于中层的概率是 0.36,属于上层的 概率是 0.52。

从父代到子代, 收入阶层的变化的转移概率如下:

	子代阶层1	子代阶层 2	子代阶层3
父代阶层1	0.65	0.28	0.07
父代阶层2	0.15	0.67	0.18
父代阶层3	0.12	0.36	0.52

2. 使用矩阵的表示方式, 转移概率矩阵记作:

$$\mathbf{P} = \begin{bmatrix} 0.65 & 0.28 & 0.07 \\ 0.15 & 0.67 & 0.18 \\ 0.12 & 0.36 & 0.52 \end{bmatrix}$$

假设当前这一代人在下层、中层、上层的人的比例是概率分布 $\vec{\pi}_0 = (\pi_0(1), \pi_0(2), \pi_0(3))$, 则:

- 他们的子女在下层、中层、上层的人的概率分布是 $\vec{\pi}_1 = (\pi_1(1), \pi_1(2), \pi_1(3)) = \vec{\pi}_0 \mathbf{P}$
- 他们的孙子代的分布比例将是 $\vec{\pi}_2 = (\pi_2(1), \pi_2(2), \pi_2(3)) = \vec{\pi}_1 \mathbf{P} = \vec{\pi}_0 \mathbf{P}^2$

o

- \circ 第 n 代子孙在下层、中层、上层的人的比例是 $ec{\pi}_n=(\pi_n(1),\pi_n(2),\pi_n(3))=ec{\pi}_{n-1}\mathbf{P}=ec{\pi}_0\mathbf{P}^n$
- 3. 假设初始概率分布为 $\pi_0 = (0.72, 0.19, 0.09)$, 给出前 14 代人的分布状况:

```
0 0.72 0.19 0.09
1 0.5073 0.3613 0.1314
2 0.399708 0.431419 0.168873
3 0.34478781 0.46176325 0.19344894
4 0.3165904368 0.4755635827 0.2078459805
5 0.302059838985 0.482097475693 0.215842685322
6 0.294554638933 0.485285430346 0.220159930721
7 0.290672521545 0.486874112293 0.222453366163
8 0.288662659788 0.487677173087 0.223660167125
9 0.28762152488 0.488086910874 0.224291564246
10 0.287082015513 0.488297220381 0.224620764107
11 0.286802384833 0.488405577077 0.22479203809
12 0.286657431274 0.488461538107 0.224881030619
13 0.286582284718 0.488490482311 0.22492723297
14 0.28654332537 0.488505466739 0.224951207891
```

可以看到从第9代开始,阶层分布就趋向于稳定不变。

4. 如果换一个初始概率分布为 $\vec{\pi}_0 = (0.51, 0.34, 0.15)$, 给出前 14 代人的分布状况:

```
0 0.51 0.34 0.15

1 0.4005 0.4246 0.1749

2 0.345003 0.459586 0.195411

3 0.31663917 0.47487142 0.20848941

4 0.3020649027 0.4818790066 0.2160560907

5 0.294550768629 0.48521729983 0.220231931541

6 0.290668426368 0.486853301457 0.222478272175

7 0.288659865019 0.487671049342 0.223669085639

8 0.28761985994 0.488085236095 0.224294903965

9 0.287081082851 0.488296834394 0.224622082755

10 0.286801878943 0.488405532034 0.224792589023

11 0.286657161801 0.488461564615 0.224881273584

12 0.286582142693 0.488490512087 0.224927345221

13 0.286554325099 0.488505487331 0.224951261679

14 0.2865523087645 0.488513240994 0.224963671362
```

可以发现到第8代又收敛了。

5. 两次不同的初始概率分布,最终都收敛到概率分布 $\vec{\pi} = (0.286, 0.489, 0.225)$ 。 这说明收敛的行为和初始概率分布 $\vec{\pi}_0$ 无关,而是由概率转移矩阵 **P** 决定的。

计算 \mathbf{P}^n :

```
0 [[ 0.65 0.28 0.07]
  [ 0.15 0.67 0.18]
  [ 0.12 0.36 0.52]]
1 [ 0.4729 0.3948 0.1323]
   [ 0.2196  0.5557  0.2247]
   [ 0.1944 0.462 0.3436]]
18 [[ 0.28650397  0.48852059  0.22497545]
    [ 0.28650052  0.48852191  0.22497757]
    [ 0.28649994  0.48852213  0.22497793]]
19 [[ 0.28650272  0.48852106  0.22497622]
   [ 0.28650093  0.48852175  0.22497732]
    [ 0.28650063  0.48852187  0.2249775 ]]
20 [[ 0.28650207  0.48852131  0.22497661]
    [ 0.28650115  0.48852167  0.22497719]
    [ 0.28650099  0.48852173  0.22497728]]
21 [[ 0.28650174  0.48852144  0.22497682]
    [ 0.28650126  0.48852163  0.22497712]
    [ 0.28650118  0.48852166  0.22497717]]
```

可以看到:

$$\mathbf{P}^{18} = \mathbf{P}^{19} = \dots = \begin{bmatrix} 0.286 & 0.489 & 0.225 \\ 0.286 & 0.489 & 0.225 \\ 0.286 & 0.489 & 0.225 \end{bmatrix}$$

发现当 n 足够大的时候, 矩阵 \mathbf{P}^n 收敛且每一行都稳定收敛到 $\vec{\pi} = (0.286, 0.489, 0.225)$ 。

2.2 平稳分布

1. 马尔可夫链定理:如果一个非周期马尔可夫链具有转移概率矩阵 P,且它的任何两个状态是联通的,则有:

$$\lim_{n o\infty}\mathbf{P}^n = egin{bmatrix} \pi(1) & \pi(2) & \cdots & \pi(j) & \cdots \ \pi(1) & \pi(2) & \cdots & \pi(j) & \cdots \ dots & dots & \ddots & dots & dots \ \pi(1) & \pi(2) & \cdots & \pi(j) & \cdots \ dots & dots & \ddots & dots & dots \ \end{bmatrix} \ \pi(j) = \sum_{i=0}^\infty \pi(i) P_{i,j}$$

其中:

 \circ 1, 2, \cdots , j, \cdots 为所有可能的状态。

- \circ $P_{i,j}$ 是转移概率矩阵 **P** 的第 i 行第 j 列的元素,表示状态 i 转移到状态 j 的概率。
- 。 概率分布 $\vec{\pi}$ 是方程 $\vec{\pi}$ **P** = $\vec{\pi}$ 的唯一解,其中 $\vec{\pi} = (\pi(1), \pi(2), \cdots, \pi(j), \cdots), \sum_{j=0}^{\infty} \pi(j) = 1$ 。 称概率分布 $\vec{\pi}$ 为马尔可夫链的平稳分布。
- 2. 注意, 在马尔可夫链定理中:
 - 。 马尔可夫链的状态不要求有限,可以是无穷多个。
 - 非周期性在实际任务中都是满足的。
 - 。 两个状态的连通指的是:状态 i 可以通过有限的 n 步转移到达 j (并不要求从状态 i 可以直接一步转移到 状态 j) 。

马尔可夫链的任何两个状态是联通的含义是:存在一个 n ,使得矩阵 \mathbf{P}^n 中的任何一个元素的数值都大于零。

3. 从初始概率分布 $\vec{\pi}_0$ 出发,在马尔可夫链上做状态转移,记时刻 i 的状态 X_i 服从的概率分布为 $\vec{\pi}_i$,记作 $X_i \sim \vec{\pi}_i$,则有:

$$X_0 \sim ec{\pi}_0 \ X_1 \sim ec{\pi}_1 \ \dots \ X_n \sim ec{\pi}_n \ X_{n+1} \sim ec{\pi}_{n+1}$$

假设到达第 n 步时, 马尔可夫链收敛, 则有:

$$X_n \sim ec{\pi} \ X_{n+1} \sim ec{\pi} \ \ldots$$

所以 $X_n, X_{n+1}, X_{n+2}, \cdots$ 都是同分布的随机变量 (当然它们并不独立)。

如果从一个具体的初始状态 x_0 开始,然后沿着马尔可夫链按照概率转移矩阵做调整,则得到一个转移序列 $x_0,x_1,\cdots,x_n,x_{n+1},\cdots$ 。

根据马尔可夫链的收敛行为, 当 n 较大时, x_n, x_{n+1}, \cdots 将是平稳分布 $\vec{\pi}$ 的样本。

4. 定理:如果非周期马尔可夫链的转移矩阵 ${\bf P}$ 和某个分布 $\vec{\pi}$ 满足: $\pi(i)P_{i,j}=\pi(j)P_{j,i}$,则 $\vec{\pi}$ 是马尔可夫链的平稳分布。

这被称作马尔可夫链的细致平稳条件 detailed balance condition , 其证明如下:

$$\pi(i)P_{i,j} = \pi(j)P_{j,i} o \sum_{i=1}^{\infty} \pi(i)P_{i,j} = \sum_{i=1}^{\infty} \pi(j)P_{j,i} = \pi(j)\sum_{i=1}^{\infty} P_{j,i} = \pi(j) o ec{\pi}\mathbf{P} = ec{\pi}$$

三、MCMC 采样

1. 概率图模型中最常用的采样技术是马尔可夫链蒙特卡罗方法 Markov Chain Monte Carlo:MCMC。

给定连续随机变量 $X \in \mathcal{X}$ 的概率密度函数 $\tilde{p}(x)$,则 X 在区间 \mathbb{A} 中的概率可以计算为:

$$P(\mathbb{A}) = \int_{\mathbb{A}} \tilde{p}(x) dx$$

如果函数 $f:\mathcal{X}\longmapsto\mathbb{R}$,则可以计算 f(X) 的期望: $\mathbb{E}_{X\sim \tilde{p}(x)}[f(X)]=\int f(x)\tilde{p}(x)dx$ 。

o 如果 X 不是一个单变量,而是一个高维的多元变量 \vec{X} ,且服从一个非常复杂的分布,则对于上式的求积分非常困难。为此, MCMC 先构造出服从 \tilde{p} 分布的独立同分布随机变量 $\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2, \cdots, \vec{\mathbf{x}}_N$, 再得到 $\mathbb{E}_{\vec{X} \sim \tilde{p}(\vec{\mathbf{x}})}[f(\vec{X})]$ 的无偏估计:

$$\mathbb{E}_{ec{X} \sim ilde{p}(ec{\mathbf{x}})}[f(ec{X})] = rac{1}{N} \sum_{i=1}^N f(ec{\mathbf{x}}_i)$$

• 如果概率密度函数 $\tilde{p}(\vec{x})$ 也很复杂,则构造服从 \tilde{p} 分布的独立同分布随机变量也很困难。 MCMC 方法就是通过构造平稳分布为 $\tilde{p}(\vec{x})$ 的马尔可夫链来产生样本。

3.1 MCMC **算法**

1. MCMC 算法的基本思想是:先设法构造一条马尔可夫链,使其收敛到平稳分布恰好为 \tilde{p} 。然后通过这条马尔可夫链来产生符合 \tilde{p} 分布的样本。最后通过这些样本来进行估计。

这里马尔可夫链的构造至关重要,不同的构造方法将产生不同的 MCMC 算法。 Metropolis-Hastings:MH 算法 是 MCMC 的重要代表。

2. 假设已经提供了一条马尔可夫链,其转移矩阵为 ${f Q}$ 。目标是另一个马尔科夫链,使转移矩阵为 ${f P}$ 、平稳分布 是 \tilde{p} 。

通常 $\tilde{p}(i)Q_{i,j}\neq \tilde{p}(j)Q_{j,i}$,即 \tilde{p} 并不满足细致平稳条件不成立。但是可以改造已有的马尔可夫链,使得细致平稳条件成立。

引入一个函数 $\alpha(i,j)$,使其满足: $\tilde{p}(i)Q_{i,j}\alpha(i,j)=\tilde{p}(j)Q_{j,i}\alpha(j,i)$ 。如:取 $\alpha(i,j)=\tilde{p}(j)Q_{j,i}$,则 有:

$$\tilde{p}(i)Q_{i,j}\alpha(i,j) = \tilde{p}(i)Q_{i,j}\tilde{p}(j)Q_{j,i} = \tilde{p}(j)Q_{j,i}\tilde{p}(i)Q_{i,j} = \tilde{p}(j)Q_{j,i}\alpha(j,i)$$

令: $Q'_{i,j}=Q_{i,j}\alpha(i,j), Q'_{j,i}=Q_{j,i}\alpha(j,i)$,则有 $\tilde{p}(i)Q'_{i,j}=\tilde{p}(j)Q'_{j,i}$ 。 其中 $Q'_{i,j}$ 构成了转移矩阵 \mathbf{Q}' 。 而 \mathbf{Q}' 恰好满足细致平稳条件,因此它对应的马尔可夫链的平稳分布就是 \tilde{p} 。

- 3. 在改造 ${\bf Q}$ 的过程中引入的 $\alpha(i,j)$ 称作接受率。其物理意义为:在原来的马尔可夫链上,从状态 i 以 $Q_{i,j}$ 的概率跳转到状态 j 的时候,以 $\alpha(i,j)$ 的概率接受这个转移。
 - 。 如果接受率 $\alpha(i,j)$ 太小,则改造马尔可夫链过程中非常容易原地踏步,拒绝大量的跳转。这样使得马尔可夫链遍历所有的状态空间需要花费太长的时间,收敛到平稳分布 \tilde{p} 的速度太慢。
 - 根据推导 $\alpha(i,j) = \tilde{p}(j)Q_{i,i}$, 如果将系数从 1 提高到 K , 则有:

$$lpha^*(i,j) = K\tilde{p}(j)Q_{j,i} = K\alpha(i,j)$$

 $lpha^*(j,i) = K\tilde{p}(i)Q_{i,j} = K\alpha(j,i)$

于是: $\tilde{p}(i)Q_{i,j}\alpha^*(i,j) = K\tilde{p}(i)Q_{i,j}\alpha(i,j) = K\tilde{p}(j)Q_{j,i}\alpha(j,i) = \tilde{p}(j)Q_{j,i}\alpha^*(j,i)$ 。因此,即使提高了接受率,细致平稳条件仍然成立。

- 4. 将 lpha(i,j),lpha(j,i) 同比例放大,取: $lpha(i,j)=\min\{rac{ ilde{p}(j)Q_{j,i}}{ ilde{p}(i)Q_{i,j}},1\}$ 。
 - \circ 当 $\tilde{p}(j)Q_{j,i}=\tilde{p}(i)Q_{i,j}$ 时: $\alpha(i,j)=\alpha(j,i)=1$,此时满足细致平稳条件。
 - 。 当 $ilde{p}(j)Q_{j,i} > ilde{p}(i)Q_{i,j}$ 时: $lpha(i,j) = 1, lpha(j,i) = rac{ ilde{p}(i)Q_{i,j}}{ ilde{p}(j)Q_{j,i}}$,此时满足细致平稳条件。
 - 。 当 $ilde{p}(j)Q_{j,i}< ilde{p}(i)Q_{i,j}$ 时: $lpha(i,j)=rac{ ilde{p}(j)Q_{j,i}}{ ilde{p}(i)Q_{j,i}},lpha(j,i)=1$,此时满足细致平稳条件。
- 5. MH 算法:
 - 输入:

2022/4/27 4 monte carlo

- 先验转移概率矩阵 Q
- 目标分布 ñ
- 输出: 采样出的一个状态序列 $\{x_0, x_1, \dots, x_n, x_{n+1}, \dots\}$
- 。 算法:
 - 初始化 x₀
 - 对 $t=1,2,\cdots$ 执行迭代。迭代步骤如下:
 - 根据 $Q(x^* \mid x_{t-1})$ 采样出候选样本 x^* , 其中 Q 为转移概率函数。
 - 计算 $\alpha(x^* \mid x_{t-1})$:

$$lpha(x^* \mid x_{t-1}) = \min\left(1, rac{ ilde{p}(x^*)Q(x_{t-1} \mid x^*)}{ ilde{p}(x_{t-1})Q(x^* \mid x_{t-1})}
ight)$$

- 根据均匀分布从 (0,1) 内采样出阈值 u,如果 $u \le \alpha(x^* \mid x_{t-1})$,则接受 x^* ,即 $x_t = x^*$ 。 否则拒绝 x^* ,即 $x_t = x_{t-1}$ 。
- 返回采样得到的序列 $\{x_0, x_1, \dots, x_n, x_{n+1}, \dots\}$

注意:返回的序列中,只有充分大的 n 之后的序列 $\{x_n, x_{n+1}, \cdots\}$ 才是服从 \tilde{p} 分布的采样序列。

3.2 Gibbs **算法**

1. MH 算法不仅可以应用于一维空间的采样,也适合高维空间的采样。

对于高维的情况,由于接受率 α 的存在(通常 $\alpha < 1$),MH 算法的效率通常不够高,此时一般使用 Gibbs 采样算法。

2. 考虑二维的情形: 假设有概率分布 $\tilde{p}(x,y)$, 考察状态空间上 x 坐标相同的两个点 $A(x_1,y_1), B(x_1,y_2)$, 可以证明有:

$$egin{aligned} ilde{p}(x_1,y_1) ilde{p}(y_2\mid x_1) &= ilde{p}(x_1) ilde{p}(y_1\mid x_1) ilde{p}(y_2\mid x_1) \ ilde{p}(x_1,y_2) ilde{p}(y_1\mid x_1) &= ilde{p}(x_1) ilde{p}(y_2\mid x_1) ilde{p}(y_1\mid x_1) \end{aligned}$$

于是 $\tilde{p}(x_1,y_1)\tilde{p}(y_2\mid x_1)=\tilde{p}(x_1,y_2)\tilde{p}(y_1\mid x_1)$ 。则在 $x=x_1$ 这条平行于 y 轴的直线上,如果使用条件分布 $\tilde{p}(y\mid x_1)$ 作为直线上任意两点之间的转移概率,则这两点之间的转移满足细致平稳条件。

同理:考察 y 坐标相同的两个点 $A(x_1,y_1)$, $C(x_2,y_1)$,有 $\tilde{p}(x_1,y_1)\tilde{p}(x_2\mid y_1)=\tilde{p}(x_2,y_1)\tilde{p}(x_1\mid y_1)$ 。在 $y=y_1$ 这条平行于 x 轴的直线上,如果使用条件分布 $\tilde{p}(x\mid y_1)$ 作为直线上任意两点之间的转移概率,则这两点之间的转移满足细致平稳条件。

可以构造状态空间上任意两点之间的转移概率矩阵 **Q**: 对于任意两点 $A=(x_A,y_A), B=(x_B,y_B)$, 令从 A 转移到 B 的概率为 $Q(A \to B)$:

- \circ 如果 $x_A=x_B=x^*$,则 $Q(A o B)= ilde{p}(y_B\mid x^*)$ 。
- \circ 如果 $y_A=y_B=y^*$,则 $Q(A o B)= ilde{p}(x_B\mid y^*)$ 。
- \circ 否则 $Q(A \rightarrow B) = 0$.

采用该转移矩阵 \mathbf{Q} ,可以证明:对于状态空间中任意两点 A, B ,都满足细致平稳条件:

$$\tilde{p}(A)Q(A \to B) = \tilde{p}(B)Q(B \to A)$$

于是这个二维状态空间上的马尔可夫链将收敛到平稳分布 $\tilde{p}(x,y)$, 这就是吉布斯采样的原理。

- 3. Gibbs 算法:
 - o 输入:目标分布 $\tilde{p}(\vec{\mathbf{x}})$,其中 $\vec{\mathbf{x}} \in \mathbb{R}^n$

- \circ 输出: 采样出的一个状态序列 $\{\vec{\mathbf{x}}_0, \vec{\mathbf{x}}_1, \cdots\}$
- 。 算法步骤:
 - 初始化: 随机初始化 $\vec{\mathbf{x}}_0, t=0$ 。
 - 执行迭代, 迭代步骤如下:
 - 随机或者以一定次序遍历索引 $1, 2, \dots, n$ 。遍历过程为(设当前索引为 i):
 - 将 $x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n$ 保持不变,计算条件概率: $\tilde{p}(x_i \mid x_1 = x_{t,1}, \dots, x_{i-1} = x_{t,i-1}, x_{i+1} = x_{t,i+1}, \dots, x_n = x_{t,n})$ 。

该条件概率就是状态转移概率 $Q(A \rightarrow B)$

- 根据条件概率 $\tilde{p}(x_i \mid x_1 = x_{t,1}, \cdots, x_{i-1} = x_{t,i-1}, x_{i+1} = x_{t,i+1}, \cdots, x_n = x_{t,n})$ 对 分量 x_i 进行采样,假设采样结果为 $x_{t,i}^*$,则获得新样本 $\vec{\mathbf{x}}_{t+1} = (x_{t,1}, \cdots, x_{t,i-1}, x_{t,i}^*, x_{t,i+1}, \cdots, x_{t,n})^T$ 。
- 令 t ← t + 1, 继续遍历。
- 最终返回一个状态序列 $\{\vec{\mathbf{x}}_0, \vec{\mathbf{x}}_1, \cdots\}$ 。
- 4. 吉布斯采样 Gibbs sampling 有时被视作 MH 算法的特例,它也使用马尔可夫链获取样本。