

# **Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem**

Revision: r0p1

## **Technical Reference Manual**

Non-Confidential

Issue 03

Copyright © 2020–2021 Arm Limited (or its affiliates).  $101773\_0001\_03\_en$  All rights reserved.



## Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem

### **Technical Reference Manual**

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.

### Release information

### **Document history**

| Issue                   | Date       | Confidentiality  | Change               |
|-------------------------|------------|------------------|----------------------|
| 0000-01                 | 8 May 2020 | Non-Confidential | Initial release      |
| 0000-02 22 October 2020 |            | Non-Confidential | EAC release for r0p0 |
| 0001-03 22 June 2021    |            | Non-Confidential | EAC release for rOp1 |

### **Proprietary Notice**

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

## **Confidentiality Status**

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

### **Product Status**

The information in this document is Final, that is for a developed product.

### Web address

developer.arm.com

## Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future issue of this document.

To report offensive language in this document, email terms@arm.com.

# **Contents**

| 1 Introduction                                       | 9  |
|------------------------------------------------------|----|
| 1.1 Product revision status                          | 9  |
| 1.2 Intended audience                                | 9  |
| 1.3 Conventions                                      | 9  |
| 1.4 Additional reading                               | 11 |
| 1.5 Feedback                                         | 13 |
| 2 Overview of SSE-300                                | 14 |
| 2.1 Document-specific conventions                    | 15 |
| 2.2 Compliance                                       | 17 |
| 2.3 Product documentation                            | 18 |
| 2.4 Product revisions                                | 19 |
| 2.5 Arm architecture                                 | 19 |
| 2.6 Trusted Base System Architecture for Armv8-M     | 19 |
| 2.7 Interrupt controller architecture                | 20 |
| 2.8 Power Policy Unit architecture                   | 21 |
| 2.9 Advanced Microcontroller Bus architecture        | 21 |
| 3 Topology                                           | 22 |
| 3.1 System Block Diagram                             | 22 |
| 4 Functional Description                             | 26 |
| 4.1 Clocking infrastructure                          | 26 |
| 4.1.1 Clock generation and control                   | 28 |
| 4.1.2 Clock Q-Channel control interface dependencies | 30 |
| 4.1.3 Clock configuration interface                  | 32 |
| 4.2 Reset infrastructure                             | 33 |
| 4.2.1 Warm reset generation and control              | 34 |
| 4.2.2 Power-on and Cold Reset Handling               | 34 |
| 4.2.3 CPU Reset Handling                             | 35 |
| 4.2.4 Boot after reset                               | 35 |
| 4.3 CPU                                              | 35 |
| 4.3.1 EVENT Interfaces                               | 40 |

| 4.3.2 Interrupts                                       | 40 |
|--------------------------------------------------------|----|
| 4.4 System Interconnect infrastructure                 | 42 |
| 4.4.1 ACC_WAIT Control                                 | 42 |
| 4.5 Volatile Memory                                    | 43 |
| 4.6 Timers and Watchdogs                               | 43 |
| 4.6.1 Timestamp based Timers                           | 44 |
| 4.6.2 SLOWCLK AON Timers                               | 45 |
| 4.7 Message Handling Unit                              | 45 |
| 4.8 Power Policy Units                                 | 46 |
| 4.9 Peripheral Protection Controllers                  | 46 |
| 4.10 Memory Protection Controllers                     | 47 |
| 4.11 CryptoCell                                        | 47 |
| 4.11.1 No-Crypto Configuration                         | 47 |
| 4.12 Debug Infrastructure                              | 47 |
| 4.12.1 Basic Debug Configuration                       | 48 |
| 4.13 System and Security Control                       | 50 |
| 4.14 Power integration                                 | 50 |
| 4.14.1 Power integration overview                      | 50 |
| 4.14.2 Power domain hierarchy and bounded regions      | 52 |
| 4.14.3 Power domains                                   | 54 |
| 4.14.4 Power Policy Units                              | 57 |
| 4.14.5 Bounded Region power modes                      | 59 |
| 4.14.6 Wake-up sources                                 | 67 |
| 4.14.7 Power Dependency Control                        | 67 |
| 4.14.8 System power states                             | 68 |
| 5 Interfaces                                           | 72 |
| 5.1 Input and output clocks                            | 73 |
| 5.2 Functional integration resets                      | 75 |
| 5.3 P-Channel and Q-Channel Device interfaces          | 78 |
| 5.3.1 Clock Control Q-Channel Device interfaces        | 79 |
| 5.3.2 Power Control P-Channel Device interfaces        | 80 |
| 5.3.3 Power Control Wakeup Q-Channel Device interfaces | 81 |
| 5.4 Clock Control Q-Channel Control interfaces         | 81 |
| 5.5 Expansion Power Control Dependency interface       | 82 |
| 5.6 Power Domain ON Status Signals                     | 82 |

| 5.7 System Timestamp interface                                            | 83  |
|---------------------------------------------------------------------------|-----|
| 5.8 Main Interconnect Expansion interfaces                                | 84  |
| 5.9 Peripheral Interconnect Expansion interfaces                          | 85  |
| 5.10 Interrupt interfaces                                                 | 86  |
| 5.11 CPU Co-Processor interface                                           | 86  |
| 5.12 CPU Custom Datapath Extension Interface                              | 87  |
| 5.13 TCM DMA Slave Interfaces                                             | 87  |
| 5.14 Debug and Trace Related Interfaces                                   | 88  |
| 5.14.1 Debug Access Interface                                             | 88  |
| 5.14.2 Serial Wire JTAG Interface                                         | 88  |
| 5.14.3 Debug Timestamp Interface                                          | 89  |
| 5.14.4 Cross Trigger Channel Interface                                    | 89  |
| 5.14.5 Cross Trigger Interface                                            | 90  |
| 5.14.6 Debug APB Expansion Interface                                      | 90  |
| 5.14.7 CPU <n> External Peripheral Interface EPPB</n>                     | 90  |
| 5.14.8 ATB Trace Interfaces                                               | 90  |
| 5.14.9 Trace port interface                                               | 91  |
| 5.14.10 Debug Authentication Interface                                    | 92  |
| 5.15 CryptoCell-Related expansion interfaces                              | 93  |
| 5.16 Security Control Expansion Signals                                   | 93  |
| 5.16.1 Memory Protection Controller Expansion                             | 94  |
| 5.16.2 Peripheral Interconnect Peripheral Protection Controller Expansion | 94  |
| 5.16.3 Main Interconnect Peripheral Protection Controller Expansion       | 95  |
| 5.16.4 Master Security Controller Expansion                               | 96  |
| 5.16.5 Bridge Buffer Error Expansion                                      | 97  |
| 5.16.6 Other Security Expansion Signals                                   | 97  |
| 5.17 Clock configuration interface                                        | 98  |
| 5.18 Miscellaneous Signals                                                | 99  |
| 6 Programmer Model                                                        | 102 |
| 6.1 System Memory Map Overview                                            | 102 |
| 6.1.1 High Level System Address Map                                       | 103 |
| 6.2 CPU TCM memories                                                      | 117 |
| 6.3 Volatile Memory Region                                                | 117 |
| 6.4 Peripheral Region                                                     | 118 |
| 6.4.1 Message Handling Unit registers                                     | 120 |

| 6.4.2 Secure Access Configuration Register Block                        | 121 |
|-------------------------------------------------------------------------|-----|
| 6.4.3 Non-secure Access Configuration Register Block                    | 135 |
| 6.4.4 Timestamp Timers                                                  | 139 |
| 6.4.5 Timestamp Watchdogs                                               | 140 |
| 6.5 Processor Private Region                                            | 141 |
| 6.5.1 CPU <n>_PWRCTRL Register Block</n>                                | 142 |
| 6.5.2 CPU <n>_IDENTITY Register Block</n>                               | 143 |
| 6.5.3 CPU <n>_SECCTRL Register Block</n>                                | 144 |
| 6.6 System Control Peripheral Region                                    | 145 |
| 6.6.1 SYSINFO Register Block                                            | 147 |
| 6.6.2 System Control Register Block                                     | 151 |
| 6.7 CPU Private Peripheral Bus region                                   | 167 |
| 6.7.1 EWIC                                                              | 169 |
| 6.7.2 Cortex-M55 TPIU registers                                         | 175 |
| 6.8 Debug System Access Region                                          | 175 |
| 6.8.1 HASCSS = 0                                                        | 175 |
| 6.8.2 HASCSS = 1                                                        | 175 |
| 6.9 Peripheral Expansion Region                                         | 175 |
| A Mapping of the user signals of the AXI and AHB expansion interfaces   | 177 |
| B Mapping of the HMASTER signals of the AHB expansion master interfaces | 179 |
| C Configurable render options                                           | 180 |
| D Revisions                                                             | 217 |

## 1 Introduction

### 1.1 Product revision status

The  $r \times p y$  identifier indicates the revision status of the product described in this manual, for example,  $r \cdot 1p \cdot 2$ , where:

rx Identifies the major revision of the product, for example, r1.

**py** Identifies the minor revision or modification status of the product, for example, p2.

## 1.2 Intended audience

This book is written for electronics engineers that are designing, configuring, laying out, validating, and verifying the Arm® Corstone™ SSE-300 Example Subsystem. It is assumed that the primary readers have high technical ability and have experience of Verilog. The documentation does not assume experience of Arm devices or implementation, but it is likely that the primary readers have some prior experience of Arm IP. It is assumed that they are familiar with all necessary implementation tools and compute resources. It is also assumed that the readers have access to all necessary tools.

## 1.3 Conventions

The following subsections describe conventions used in Arm documents.

### Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

### Typographic conventions

Arm documentation uses typographical conventions to convey specific meaning.

| Convention | Use                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|
| italic     | Introduces citations.                                                                                                                 |
| bold       | Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate. |
| monospace  | Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.                           |

| Convention                 | Use                                                                                                                                                                                                         |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| monospace bold             | Denotes language keywords when used outside example code.                                                                                                                                                   |
| monospace <u>underline</u> | Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.                                                                     |
| <and></and>                | Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:                                                                                                   |
|                            | MRC p15, 0, <rd>, <crn>, <cpcode_2></cpcode_2></crn></rd>                                                                                                                                                   |
| SMALL CAPITALS             | Used in body text for a few terms that have specific technical meanings, that are defined in the<br>Arm Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE. |
| Caution                    | This represents a recommendation which, if not followed, might lead to system failure or damage.                                                                                                            |
| Warning                    | This represents a requirement for the system that, if not followed, might result in system failure or damage.                                                                                               |
| Danger                     | This represents a requirement for the system that, if not followed, will result in system failure or damage.                                                                                                |
| Note                       | This represents an important piece of information that needs your attention.                                                                                                                                |
| - Tip                      | This represents a useful tip that might make it easier, better or faster to perform a task.                                                                                                                 |
| Remember                   | This is a reminder of something important that relates to the information you are reading.                                                                                                                  |

### **Timing diagrams**

The following figure explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

Figure 1-1: Key to timing diagram conventions



### **Signals**

The signal conventions are:

### Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- LOW for active-LOW signals.

#### Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

## 1.4 Additional reading

This document contains information that is specific to this product. See the following documents for other relevant information:

Table 1-2: Arm publications

| Document Name                                                             | Document ID | Licensee only |
|---------------------------------------------------------------------------|-------------|---------------|
| AMBA® 4 APB Protocol Specification                                        | IHI 0024C   | No            |
| AMBA® 4 ATB Protocol Specification                                        | IHI 0032    | No            |
| AMBA® AXI and ACE Protocol Specification                                  | IHI 0022    | No            |
| AMBA® Low Power Interface Specification                                   | IHI 0068C   | No            |
| Arm® AMBA® 5 AHB Protocol Specification                                   | IHI 0033    | No            |
| Arm® CoreLink™ NIC-400 Network<br>Interconnect Technical Reference Manual | DDI 0475    | No            |

| Document Name                                                                                                  | Document ID    | Licensee only |
|----------------------------------------------------------------------------------------------------------------|----------------|---------------|
| Arm® CoreLink™ PCK-600 Power Control Kit<br>Technical Reference Manual                                         | 101150         | No            |
| Arm® CoreLink™ SIE-200 System IP for<br>Embedded Technical Reference Manual                                    | DDI 0571       | No            |
| Arm® CoreLink™ SIE-300 AXI5 System IP for<br>Embedded Technical Reference Manual                               | 101526         | No            |
| Arm® CoreLink™ XHB-500 Bridge Technical<br>Reference Manual                                                    | 101375         | No            |
| Arm® CoreSight™ Architecture Specification<br>v3.0                                                             | IHI 0029       | No            |
| Arm® CoreSight™ DAP-Lite2 Technical<br>Reference Manual                                                        | 100572         | No            |
| Arm® CoreSight™ ETM-M55 Technical<br>Reference Manual                                                          | 101053         | No            |
| Arm® Corstone™ SSE-300 Example Subsystem<br>Configuration and Integration Manual                               | 101774         | Yes           |
| Arm® Corstone™ SSE-300 Example Subsystem<br>Release Note                                                       | CG067-DC-06003 | Yes           |
| Arm® Corstone™ SSE-300 Example Subsystem<br>Technical Reference Manual                                         | 101773         | No            |
| Arm® Cortex®-M55 Processor Integration and Implementation Manual                                               | 101052         | Yes           |
| Arm® Cortex®-M55 Processor User Guide<br>Reference Material                                                    | 101272         | No            |
| Arm® Cortex®-M55 Technical Reference<br>Manual                                                                 | 101051         | No            |
| Arm® Cortex®-M System Design Kit Technical<br>Reference Manual                                                 | DDI 0479       | No            |
| Arm® Debug Interface Architecture<br>Specification ADIv6.0                                                     | IHI 0074       | No            |
| Arm® Platform Security Architecture Trusted<br>Base System Architecture for Arm®v6-M,<br>Arm®v7-M and Arm®v8-M | DEN 0083       | No            |
| Arm® Power Policy Unit Architecture<br>Specification                                                           | DEN 0051       | No            |
| Arm® Power Policy Unit Architecture<br>Specification, version 1.1                                              | DEN 0051D      | No            |
| Arm® Server Base System Architecture 5.0<br>Platform Design Document                                           | DEN 0029       | No            |
| Arm® SSE-123 Example Subsystem Technical<br>Reference Manual                                                   | 101370         | No            |
| Arm® v8-M Architecture Reference Manual                                                                        | DDI 0553       | No            |

## 1.5 Feedback

Arm welcomes feedback on this product and its documentation.

### Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic
  procedures if appropriate.

### Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

- The title Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Technical Reference Manual.
- The number 101773\_0001\_03\_en.
- If applicable, the page number(s) to which your comments refer.
- A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.



Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.

## 2 Overview of SSE-300

The Arm® Corstone™ SSE-300 Example Subsystem Technical Reference Manual specifies the architecture of the Corstone prodnameInternetofThings(IoT)ExampleSubsystem(prodname).

SSE-300 integrates the following key components available from Arm that can be integrated into a larger system:

- Cortex-M processor core with optional MVE, FPU, DSP, and CDE extensions, caches, TCMs and ETM
- SSE-300 supports only one Arm® Cortex-M55 processor
- SSE-300 supports two volatile memory (VM) banks, for example SRAMs
- Memory Protection Controllers (MPC)
- Exclusive Access Monitor (EAM)
- System interconnect
- Implementation Defined Attribution Unit (IDAU)
- CMSDK timers and watchdog timers
- Timestamp based system timers and watchdog timers
- Subsystem controllers for security and general system control
- Power Policy Units, Clock Controller and Low Power Interface interconnect components (PCK-600)
- Optional Arm<sup>®</sup> Ethos<sup>™</sup>-U55 NPU as a testbench component



This specification does not include descriptions of other components that are not directly architecturally visible but are necessary to implement the system.

The above components are integrated to implement SSE-300 with the following features:

- TrustZone® aware system with the system segregated into Secure and Non-secure worlds
- Configurability to allow several features within the system to be included or removed
- Power Control infrastructure with several pre-defined voltage and power domains
- Each switchable power domain has a local power policy control, and coordinates with other power domains through a centralized dependency control or power interfaces. Switchable power domains provide the system with autonomous dynamic power control infrastructure that, while being software configurable, aiming to minimize software interaction.
- Clock control infrastructure that supports high level clock control including dynamic clock gating and provides clock request handshakes to clock generators
- Comprehensive reset generation and control

- A CoreSight SoC-based debug infrastructure that supports:
  - A shared Debug Access Port (without example expansion logic)
  - A JTAG/SW debug port (with example expansion logic)
  - Trace Port
  - Cross-triggering

## 2.1 Document-specific conventions

In addition to the Typographic Conventions section, the following document-specific conventions apply.

Text between < and > is a label to be replaced with the actual name or value of the item. For example, CPU<n> where "n" is an instance number of either 0 or 1.

Text between { and } indicates the legal values. The allowed values can be either:

- A range indicate by a start and end with a "-" or in-between. For example, {0-3} allows the any value between 0 and 3. One of the numbers can also be a variable. For example, {0-<NUMCPU>} where NUMCPU is a configuration value between 0 to 3.
- A list of discrete values indicated by a comma separate list. For example, {0,1,2,3} allows the value to be any one of those values. One of the discrete values can also be a range. For example, {0, 3-6, 9} is the same as writing {0, 3, 4, 5, 6, 9}.
- A variable which has constraints. For example, {x} where "x" is between 0 and 3. Allows "x" to take any value between 0 and 3.

#### Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.

For both binary and hexadecimal numbers, where a bit is represented by the letter "x", the value is irrelevant. For example, a value expressed as 0b1x can be either 0b11 or 0b10.

### **Signals**

The level of a single bit asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH
- LOW for active-LOW

A lowercase 'n' at the start or end of a signal name denotes an active-LOW signal.

The value of a multi-bit signal is defined using hexadecimal numbers.

When referring to bits within of a multi-bit signal, the following custom is used:

<SIGNAL\_NAME>[BIT\_RANGE]

#### Where:

- SIGNAL NAME is the name of the signal being referred to.
- BIT\_RANGE is the bit range being referred to. If BIT\_RANGE is omitted, then the text is referring to the whole signal.

For example, when referring to the bit range 31:2 of Debug Access Interface address signal, the text would read:

### DEBUGPADDR[31:2]

### Registers

When referring to registers and fields, the following convention is used:

<REGISTER\_NAME>.<FIELD\_NAME>[BIT\_RANGE]

#### Where:

- REGISTER\_NAME is the short name of the register being referred to.
- FIELD\_NAME is the name of the field within the register being referred to. If the FIELD\_NAME is omitted, then the text is referring to the whole register.
- BIT\_RANGE is the bit range, within the field, being referred to. If the BIT\_RANGE is omitted, then the text is referring to the whole field or to the whole register if FIELD\_NAME is omitted as well. When referring to the bit ranges of a field, the field starts at 0.

For example, when referring to the DESIGNER\_ID field of the SYSVERSION register, bits 1:0, the text would read:

• SYSVERSION.DESIGNER\_ID[1:0]

In register bit field description tables, the following abbreviations are used to describe the accessibility of each bit field:

Table 2-1: Register bit field abbreviations

| Abbreviation | Accessibility                 | Description                                                                                               |
|--------------|-------------------------------|-----------------------------------------------------------------------------------------------------------|
| RW           | Read and Write<br>Accessible  | Unless stated, these bit fields retain the value written to it until reset or powering down.              |
| RO           | Read only                     | These can only be read. Unless stated, any writes to these bit fields are ignored. This is similar to WI. |
| RAZ          | Read as Zero                  | These always returns Zeros for reads. Unless stated, writes proceeds as normal.                           |
| WI           | Write Ignore                  | These ignores writes. Unless stated, reads proceeds as normal. This is similar to RO.                     |
| RAZ/WI       | Read as Zero<br>Write Ignores | These always returns Zeros for read and ignores writes.                                                   |
| RAZ/WO       | Read as Zero<br>Write Only    | These can only be written. These always returns Zeros for reads.                                          |
| WO           | Write only                    | These can only be written. Unless stated, any read from these bit fields returns zeros.                   |
| W1S          | Write 1 to Set                | Each bit when written with one is set to one. Writing zeros to these are ignored.                         |
| W1C          | Write 1 to<br>Clear           | Each bit when written with one is cleared to zero. Writing zeros to these are ignored.                    |
| WOS          | Write 0 to Set                | Each bit when written with zero is set to one. Writing ones to these are ignored.                         |

| Abbreviation | Accessibility         | Description                                                                                                                                                                           |
|--------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WOC          | Write 0 to<br>Clear   | Each bit when written with zero is cleared to zero. Writing ones to these are ignored.                                                                                                |
| W1T          | Write 1 to<br>Trigger | Each bit when written with one triggers an action. Writing zeros to these are ignored. Unless stated, any read from these bit fields returns zeros. This is the same as W1S with RAZ. |
| WOT          | Write 0 to<br>Trigger | Each bit when written with zero triggers an action. Writing ones to these are ignored. Unless stated, any read from these bit fields returns zeros. This is like WOS with RAZ.        |

Unless stated otherwise, once a register bit field is modified by a register access, it retains its values until a reset is applied or power is lost.

In these specification areas of the design, register values or behaviors, are described as CONFIGURATION DEFINED (CFG\_DEF) if the value or behavior depends on the configuration of the component.

Register values are defined using actual values that are written in or read from the registers. They are expressed as numbers, either as binary numbers or hexadecimal numbers. Alternatively, for single-bit values, they can be expressed as either 1 or 0, representing 0b1 and 0b0 respectively.

## 2.2 Compliance

The Arm SSE-300 described in this document complies with, or includes components that comply with, the following specifications:

- Arm® v8-M Architecture Reference Manual
- Arm® Platform Security Architecture Trusted Base System Architecture for Arm®v6-M, Arm®v7-M and Arm®v8-M
- Arm® Power Policy Unit Architecture Specification
- AMBA® AXI and ACE Protocol Specification
- Arm® AMBA® 5 AHB Protocol Specification
- AMBA® 4 ATB Protocol Specification
- AMBA® 4 APB Protocol Specification
- AMBA® Low Power Interface Specification

This Technical Reference Manual complements the TRMs for included components, architecture reference manuals, architecture specifications, protocol specifications, and relevant external standards. It does not duplicate information from these sources.

## 2.3 Product documentation

Each SSE-300 document has an intended audience and is associated with specific tasks in the design flow.

These documents do not reproduce SSE-300 architecture and protocol information. For relevant protocol and architectural information that relates to this product, see Section 1.4 Additional reading.

The SSE-300 documentation is as follows:

#### **Technical Reference Manual**

The TRM describes the functionality and the effects of functional options on the behavior of the SSE-300. It is required at all stages of the design flow. The choices that are made in the design flow can mean that some behaviors that the TRM describes are not relevant.

If you are programming the SSE-300 contact:

- The implementer to determine:
  - The build configuration of the implementation
  - What integration, if any, was performed before implementing SSE-300
- The integrator to determine the signal configuration of the device that you use

The TRM complements architecture and protocol specifications and relevant external standards. It does not duplicate information from these sources.

### Configuration and Integration Manual

The CIM describes:

- The available build configuration options
- How to configure the Register Transfer Level (RTL) with the build configuration options
- How to integrate SSE-300 into an SoC
- How to implement SSE-300 into your design
- The processes to validate the configured design

Arm product deliverables include reference scripts and information about using them to implement your design.



The CIM is a confidential book that is only available to licensees.

## 2.4 Product revisions

There can be differences in functionality between different product revisions. Arm records these differences in this section.

#### 0q0r

First release

### r0p0-01eac0

Introduced the Arm® Ethos<sup>™</sup>-U55 NPU in the SSE-300 testbench

### r0p1

- Cortex-M55 upgraded to version r1p0-00eac0, as a result, ACI support has been introduced in SSF-300
- SIE-200 upgraded to version r3p2-00rel0
- SIE-300 upgraded to version r1p2-00rel0
- CoreLink XHB-500 Generic Global Bundle upgraded to r0p1-00rel0

### 2.5 Arm architecture

The Arm® Cortex M-55 Processor in SSE-300 implements the Armv8-M architecture which executes the Armv8-M T32 instruction set.

See Arm® v8-M Architecture Reference Manual for more information.

## 2.6 Trusted Base System Architecture for Armv8-M

The Arm® Platform Security Architecture Trusted Base System Architecture for Arm®v6-M, Arm®v7-M and Arm®v8-M (TBSA-M) is part of the Arm Platform Security Architecture (PSA).

TBSA-M contains best practice security principles when designing systems around Armv8-M processing elements (PEs). See Arm Platform Security Architecture, Trusted Base System Architecture for Armv8-M Beta version 1.1.

SSE-300 partly fulfils the requirements specified within the TBSA-M. However, it implements features that help to form the core of a system that complies to the TBSA-M:

- Implements a system architecture that partitions the memory areas into Secure and Non-secure areas
- Implements SIE-300 MPCs to allow mapping of system volatile memory regions to be shared between the Secure and Non-secure world. The Security configuration of MPCs can only be changed by Secure accesses.
- Implements SIE-200 PPCs to allow mapping of peripherals to be shared between Secure and Non-secure world. The Security configuration of PPCs can only be changed by Secure accesses.

- Implements system security control registers and providing expansion control and status interfaces to allow map external memory regions and external peripherals shared between both worlds
- Implements an always on Secure watchdog

For a system that integrates SSE-300 to comply with TBSA-M, when expanding the system the integrator must comply with TBSA-M requirements. For example:

- A protected keystore
- A Secure firmware update mechanism
- A lifecycle management mechanism, for Secure control of debug, test, and access to provisioned secrets
- A high-entropy random number generator, for reliable cryptography
- Cryptographic acceleration
- When adding more masters and slaves to the system, the memory space continues to obey Trusted and Non-trusted world partitioning

While the adherence to TBSA-M requirements will greatly help to create a secure system, it does not however create a system that mitigates Denial of Service (DoS) attacks. As such, DoS is out of scope of \$product. Countermeasures are not implemented at the Arm Soft-IP subcomponent level for the following events unless specifically stated in the specification:

- Physical and board-level attacks
- Physical side channels
- Fault injection attacks

## 2.7 Interrupt controller architecture

SSE-300 implements the following features:

- Arm Nested Vectored Interrupt Controller (NVIC)
- Arm External Wakeup Interrupt Controller (EWIC)

#### See also

- Arm® Cortex®-M55 Technical Reference Manual
- Arm® Cortex®-M55 Processor User Guide Reference Material

## 2.8 Power Policy Unit architecture

The power domains in SSE-300 are controlled by Power Policy Units (PPUs), which comply with the Arm PPU architecture.

See Arm® Power Policy Unit Architecture Specification, version 1.1 for more information.

## 2.9 Advanced Microcontroller Bus architecture

SSE-300 complies with the following protocols:

- Advanced Extensible Interface (AXI5) protocol
- Advanced High Performance Bus (AHB5) protocol
- Advanced Peripheral Bus (APB4) protocol

### See also

- AMBA® AXI and ACE Protocol Specification
- Arm® AMBA® 5 AHB Protocol Specification
- AMBA® 4 APB Protocol Specification

# 3 Topology

The following sections describe the topology of SSE-300.

The main system is primarily composed of the following components:

- The main interconnect and peripheral interconnect and other related functionality like expansion interfaces
- System and security control related registers and logic
- Power control logic that resides in the PD\_AON power domain that controls the power state of all switchable power domains
- All VM interfaces and peripherals in the PD\_SYS domain along with the interfaces to timers and watchdog timers

## 3.1 System Block Diagram

The system block diagrams show the topology of SSE-300 and the power domains of the subsystem.

The following figure shows a representative system block diagram of the top-level in \$product.

Expansion CPU IoT Elemen DEBUG IoT Element Expansion PCRG IoT Element PCRGEX Base IoT Elemen SYS HLPIK CPU IoT Eleme DEBUG PCSMS Expansion

Figure 3-1: SSE-300 logical (element) structured system topology

The subsystem is divided up into the following key groups of functionalities, which in this document is also referred to as *elements*.



Elements are used in this document simply to group functionalities that are closely related to each other or because of their common configurability.

#### **CPU** element

The CPU element contains an Armv8.1-M processor CPU and its associated private infrastructure to integrate the core into the system. SSE-300 supports one CPU element within the system.

#### Main interconnect element

Connects all parts of the system.

### Peripheral interconnect element

Provides access to lower performance and often device type peripherals within the system.

### Volatile memory bank element

Volatile memory banks collectively implement the main volatile storage within the subsystem and the functionality (MPC, EAM, SRAM control, ACG and RAM wrappers) to manage the volatile storage.

### Peripherals element

Defines all common sets of peripherals expected in the system.

### Security and system control element

Defines the infrastructure required to implement all configure, control, and monitor system states. These include security, clock, reset, and power control.

### Debug system element

Defines the debug infrastructures that allows each processor and the system to be debugged securely.

TOP SSE-300 PD\_CPU0CORE SSE-300 SYS HLPIK MGMT HLPIK DEBUG HLPIK

Figure 3-2: SSE-300 power domain structured system topology

SSE-300 provides several render configuration options. Configurable render options describes the detailed configuration options.

# 4 Functional Description

The following sections describe the functional description of the components of SSE-300.

## 4.1 Clocking infrastructure

The SSE-300 has multiple clock inputs in the PD\_AON power domain. AONCLK and SLOWCLK drive low speed logic in PD\_AON. CNTCLK drives low speed logic both in PD\_AON and PD\_SYS. CPUOCLK and SYSCLK target components with higher frequency requirements, and drive logic primarily in the switchable power domains. Clocks entering the switchable domains are gated within the subsystem. The subsystem provides clock outputs for the expansion logic in the switchable power domains, that are driven by the gated versions of SYSCLK and CPUOCLK.

The clocking infrastructure supports high-level clock gating, which helps dynamic power reduction. The configuration of clock source components that are outside of the subsystem is supported by clock configuration interfaces.

The following figure shows a high-level representation of the clock distribution structure of SSE-300. Ports that are relevant from the perspective of SoC integration are also represented.

#### In the diagram:

- The CC blocks are clock control components for high-level clock gating and clock gating in Warm reset
- The blue and red circles are clock gates
- The PPU blocks are Power Policy Units



The diagram does not show the complete internal Q/P-Channel infrastructure that is required for each clock controller. Clocks are often gated twice. Once in relation to the state of the power domain that the clock is driving (red clock gates), and gated again internally within a domain, depending on the activity in the domain (blue clock gates).

PD\_SYS PD AON SYSPPU CNTCLK AONCLK COSYSSYSCLK lcc AONCLK Q-Channel COSYSSYCLK Q-Channel SYSSYSCLK SLOWCLK SYSSYCLK Q-Channel MGMTPPU COMGMTSYSCLK SYSCLK COMGMTSYSCLK Q-Channel Q-Channel MGMTSYSCLK MGMTSYSCLK Q-Channel PD\_CPU0 CPU0PPU COCPUCPU0CLK l cc CPU0CLK COCPUCPU0CLK CPU0CLK Q-Channel Q-Channel CPUCPU0CLK CPUCPU0CLK Q-Channel PD\_DEBUG DEBUGPPL DEBUGCPU0CLK DEBUGCPU0CLK Q-Channel

Figure 4-1: SSE-300 clock distribution structure

The clock infrastructure in SSE-300 is described in the section Input and output clocks.

### 4.1.1 Clock generation and control

SSE-300 provides clock control Q-Channel control and device interfaces for managing the availability of the clock inputs and outputs.

SSE-300 provides a Q-Channel control interface for each of the input clocks for the following purposes:

- To allow the subsystem to request for the availability of a clock source
- To allow an external clock controller to handshake with the subsystem to safely turn OFF the clock source

Clock gating control strategies supported by the Q-Channel control interfaces are detailed in Clock gating control of input clocks.

Dependencies between the various Q-Channel control interfaces are detailed in Clock Q-Channel control interface dependencies.

The SSE-300 provides a Q-Channel device interface for each of the output clocks to allow expansion logic to control the availability of each clock output. These Q-Channel interfaces are used to support high-level clock gating in the switchable domains. All clock Q-Channel Device Interfaces are for clock control only and do not support waking the subsystem from HIBERNATIONO.

Between the acceptance of a request to WARM\_RST on the SYSPWR P-Channel and the assertion of **nWARMRESETSYS**, **SYSSYSCLK** can be gated irrespective of the state of the SYSSYSCLK Q-Channel Device Interface.

Between the acceptance of a request to **WARM\_RST** on the CPUOPWR P-Channel and the assertion of **nWARMRESETCPUO**, **CPUCPUOCLK** can be gated irrespective of the state of the CPUCPUOCLK Q-Channel Device Interface.

Between the acceptance of a request to **WARM\_RST** on the MGMTPWR P-Channel and the assertion of **nWARMRESETMGMT**, **MGMTSYSCLK** can be gated irrespective of the state of the MGMTSYSCLK Q-Channel Device Interface.

For more information regarding the P-Channels, refer to Power control P-Channel Device Interfaces.

SSE-300 provides clock force registers to request the subsystem to continue clock generation on the output clocks regardless of the QACTIVEs of the various clock control Q-Channel device interfaces, provided that the related switchable Power Domain is turned ON.

### 4.1.1.1 Clock gating control of input clocks

Clock inputs are associated with the clock control Q-Channel control interfaces. The exceptions are CNTCLK and SLOWCLK clocks. The granularity of the control of each clock input is specified in this section.

The clock control Q-Channel control interfaces support high-level clock gating in PD\_AON (clock gating at the root of the clock tree in a power domain) by clock management components that are external to SSE-300. These components can be clock sources. There might be a higher cycle cost in starting and stopping the external clock sources compared to the latency of clock controllers in the subsystem.

The various clock gating control strategies supported by the clock Q-Channel control interfaces are described by the following terms:

### SW Control Based High-Level Clock Gating Disable

SSE-300 provides clock source force registers to request the clock sources to continue clock generation regardless of the state of the subsystem. These clock source forces do not affect the power or high-level clock gating provided in the subsystem.

If a clock Q-Channel control IF is in the Q\_RUN state, and the related CLOCK\_FORCE bit is asserted, quiescence requests are denied on the Q-Channel until forcing is disabled.

### Power State Based High-Level Clock Gating

The clock can be gated if it is allowed by the states of the power domains that the clock is driving.

### **Activity Based High-Level Clock Gating**

If the logic driven by the gated clock is idle, the clock can be gated irrespective of the state of the power domain that the logic resides in. QACTIVE is kept asserted if the logic driven by the related clock is active. Quiescence requests that arrive when the logic is active are denied or delayed.

Clock gating strategies supported by the various clock control Q-Channel control interfaces are as follows.

### **AONCLK Q-Channel control interface**

Supports both Activity Based and SW Control Based High-Level Clock Gating Disable.

Activity Based gating is affected by the following components:

- External Wakeup Interrupt Controller (EWIC) that allows the processor to be woken by an interrupt
- PD MGMT PPU, which handles various wake-up requests
- All other logics in the PD AON domain that are not running on SLOWCLK and SYSCLK

### SYSCLK Q-Channel control interface

Supports Activity Based, Power State Based, and SW Control Based High-Level Clock Gating Disable.

#### Power State Based

In the following Power Modes, or when the SYSPPU is changing Power Mode, QACTIVE is kept asserted and quiescence requests are denied.

- SYSPPU Power Modes: ON, WARM\_RST (functional Power Modes, when the subsystem is outside of the HIBERNATIONO and SYS RET System Power States)
- Activity Based gating is affected by the following components:
  - Power Control logic that resides in PD\_MGMT power domain that controls the PD\_SYS, PD\_CPUO, and PD\_DEBUG power domains

### **CPU0CLK Q-Channel control interface**

Supports Power State Based and SW Control Based High-Level Clock Gating Disable.

• Power State Based

In the following Power Modes, or when the DEBUGPPU or the CPU0PPU is changing Power Mode, QACTIVE is kept asserted and quiescence requests are denied:

- DEBUGPPU Power Modes: ON, WARM\_RST (functional Power Modes)
- CPUOPPU Power Modes: ON, WARM\_RST, FUNC\_RET, MEM\_OFF (functional Power Modes)

## 4.1.2 Clock Q-Channel control interface dependencies

There is a dependency between the various clock control Q-Channel interfaces. Transitions on the CPUOCLK Q-Channel require SYSCLK and AONCLK to run, and transitions on the SYSCLK Q-Channel require AONCLK to run. If the clock inputs SYSCLK, CPUOCLK and AONCLK are driven by independent clock sources with independent clock control, the foregoing dependency does not impact the clock control network.

If some of the clock inputs are driven by the same clock source and the clock control logic is not independent, the foregoing dependency must be handled by the clock control network.

In the first example, the same clock source is connected to all three clocks.

SSE-300 PCK-600 CLK-CTRL ACTIVE\_DENY\_EN: 0 AONCLK Q-Channel CLK\_Q[0] CLK\_Q[1] PCK-600 CLK-CTRL ACTIVE\_DENY\_EN: 0 SYSCLK ΕN Q-Channel HC\_Q CLK\_Q[0] PCK-600 CLK-CTRL CLK\_Q[1] CPU0CLK ACTIVE\_DENY\_EN: 0 Q-Channel HC\_Q CLK\_Q[0] CPU0CLK **SYSCLK** AONCLK clock source

Figure 4-2: AONCLK, CPU0CLK, and SYSCLK driven by the same clock source

In the second example, the same clock source is connected to SYSCLK and CPUOCLK.



Figure 4-3: CPU0CLK and SYSCLK driven by the same clock source

In both examples, cascaded PCK-600 CLK-CTRL components make sure that the dependent Q-Channels can reach Q\_STOPPED. Active denial related functionality has to be turned off in the clock control logic of the dependent clocks. Failing to do so might result in livelock scenarios or excessive delays in accepting quiescence requests on the clock control Q-Channels. If the clock control networks in the examples are further expanded hierarchically, the usage of the clock enable output depicted is optional.



Only ports of PCK-600 CLK-CTRL components are depicted that are relevant from the perspective of the Q-Channel dependency.

### 4.1.3 Clock configuration interface

Description of the clock configuration interface.

SSE-300 provides control and status signals for the input clocks **AONCLK**, **CPU0CLK**, and **SYSCLK**. These signals support the configuration of generators or dividers that might exist in the expansion logic. No divider is implemented in the subsystem.

The reset value of the control signals is configurable.

Each reset value must allow the related input clock to run at a default clock rate that allows the subsystem to boot without software configuring the related registers.

All signals in this interface reside in the PD\_AON power domain, are synchronous to **AONCLK** and are in the **nCOLDRESETAON** reset domain.

Since **SYSCLK** and **CPUOCLK** must have the same frequency, the CPUOCLKCFG output must not be used in the expansion logic, and the CPUOCLKCFGSTATUS input must be tied to LOW.

The register fields CLK\_CFG0.CPU0CLKCFG and CLK\_CFG0.CPU0CLKCFGSTATUS should not be used either.

Table 4-1: Clock configuration interface signals

| Signal                | Direction | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPU0CLKCFG[3:0]       | Output    | These control signals provide a set of four-bit signals that allows the system to configure an external clock generation logic that drives CPUOCLK.  The CLK CFGO.CPUOCLKCFG register field drives this signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |           | The CENTER GOOD OF CHARLES OF THE STATE OF T |
| CPU0CLKCFGSTATUS[3:0] | Input     | Four-bit status signals, used to read the status of any external clock generation logic that they drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |           | Use the CLK_CFG0.CPU0CLKCFGSTATUS register field to read the values on this interface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SYSCLKCFG[3:0]        | Output    | This control signal provides a four-bit signal that allows the system to configure an external clock generation logic that drives SYSCLK clock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |           | The CLK_CFG1.SYSCLKCFG register field drives this signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SYSCLKCFGSTATUS[3:0]  | Input     | A four-bit status signal, used to read the status of any external clock generation logic that drives SYSCLK clock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |           | Use the CLK_CFG1.SYSCLKCFGSTATUS register field to read the values on this interface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Signal               | Direction | Description                                                                                                                                                                                                |  |
|----------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AONCLKCFG[3:0]       | Output    | This control signal provides a four-bit signal that allows the system to configure an external clock generation logic that drives AONCLK clock.  The CLK CFG1.AONCLKCFG register field drives this signal. |  |
| AONCLKCFGSTATUS[3:0] |           |                                                                                                                                                                                                            |  |

## 4.2 Reset infrastructure

The following figure shows the reset distribution in SSE-300. Reset distribution defines how the output resets are related to the input resets and reset requests, and which power domains the reset outputs primarily drive. **nPORESETAON** is also shown, which is not an output of the subsystem and only resets the RESET\_SYNDROME register.



The diagram does not show infrastructure for reset re-synchronisation and how the resets are used within each power domain.



Figure 4-4: Reset distribution in SSE-300

### Functional reset interfaces

For the functional reset interfaces of SSE-300, see Functional integration resets.

### 4.2.1 Warm reset generation and control

The system provides a warm reset signal for each power domain. This reset is generated by first merging system reset requests from all processor cores in the system after masking each request with the related value in the RESET\_MASK register. The merged and masked reset request is used to request all PPUs in the system to enter the WARM\_RST power mode. Once all PPUs entered WARM\_RST (which is the WARM\_RST system power state), each warm reset signal is asserted simultaneously. The PPUs are not reset by warm reset, they are only reset when **nCOLDRESETAON** is asserted.

The expansion logic can delay the assertion of Warm reset, so that it can complete some critical operations before the reset occurs. For this purpose, the Power control P-Channel device interfaces can be used, through which the WARM\_RST power mode is requested before the assertion of Warm reset.

Since each Warm reset is a superset of its counterpart Cold reset, if a Cold reset is asserted, the counterpart Warm reset is also asserted. In case of both resets being asserted, the related PPU that controls the power domain that the resets reside in is not requested to enter WARM\_RST in advance. An example for counterpart resets and related PPU is **nWARMRESETCPU0**, **nCOLDRESETCPU0**, and CPU0PPU.

### 4.2.2 Power-on and Cold Reset Handling

The input **nPORESET** is the power-on reset input that after being combined with the production MBIST reset input resets all registers in the design including the RESET\_SYNDROME register. The combined power-on reset is called **nPORESETAON** 

**nPORESETAON** is further combined with other reset requests from the following to generate the internal combined cold reset, which is available for use by expansion through the **nCOLDRESETAON** output:

- All watchdog timers' reset requests, through a relevant mask if it exists for each.
- Reset request input **RESETREQ**.
- Reset request through the SWRESET.SWRESETREQ register value.
- Reset request input HOSTRESETREQ.
- Reset generated from the **nSRST** request by using negative-edge detection first and then stretching the result.

**nCOLDRESETAON** resets almost all logic within the system except the RESET\_SYNDROME register.



In each power domain that is directly controlled by a PPU that resides in the PD\_AON power domain, the PPU is reset using **nCOLDRESETAON**. Each PPU then in turn generates the cold reset that is used in the power domain it controls. For example, the PPU for PD\_SYS is responsible for generating **nCOLDRESETSYS**.

### 4.2.3 CPU Reset Handling

The CPU's **nPORESET** reset input is driven by the CPU<n>PPU controlling the CPU core power domain, that is PD\_CPU<n>. This PPU itself is reset using **nCOLDRESETAON**. If the reset is the result of a cold reset request from the **nSRST** input, after a momentary cold reset, the CPUWAIT input of the CPU is forced high as long as **nSRST** is held LOW to stop the processor from starting execution until **nSRST** is released. This allows a debugger to hold the CPU core and delay execution after reset while it uses the debug access port to perform debug operations.

The warm reset is driven by a separate logic that resides in the PD\_AON domain. For more information, see Warm reset generation and control. This logic, along with all PPUs in the system is used to force the system to an idle (quiescent) state (WARM\_RST System Power State is entered) before warm reset assertion, which includes the CPU's **nSYSRESET** input.

### 4.2.4 Boot after reset

After resets, including power-on reset, all cores boot using the values defined in the Initial Secure Reset Vector Register (INITSVTORO) in the System Control Register Block as the boot address. The default address is configurable, but Arm recommends that the default is set to 0x01000000 which is mapped to code memory through the Master Code Main Expansion Interface. These addresses can be modified by software before subsequent warm re-boots of the processor.

The TrustZone for Armv8-M states that boot must start from a Secure memory space. At boot, all volatile memory is Secure only. Software must change or restore the settings in the MPC to release memory for Non-secure world use.

The CPU<n>WAIT input to the core can force the processor to wait before executing the instruction. The processor in the system has an associated CPUWAIT.CPU<n>\_WAIT register field that controls if it starts running its boot code when it wakes. There is also a CPU<n>WAITCLR input for each CPU<n> that allows an external entity to clear the associated CPU<n>\_WAIT register bit.

## 4.3 CPU

SSE-300 supports one to four ARMv8-M MVE processor cores. Each processor can support different static configurations. The following that must be adhered to:



NUMCPU value must be 0 for SSE-300.

Table 4-2: CPU Configurations that must be supported

| Configuration | Value for CPU <n></n>            | Related SSE-300 parameter  | Description                                                                                                                                                                     |
|---------------|----------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SECEXT        | 1                                | SECEXT                     | Specifies whether the Armv8-M Security Extension is included:                                                                                                                   |
|               |                                  |                            | 0 - Security Extension not included                                                                                                                                             |
|               |                                  |                            | 1 - Security Extension included                                                                                                                                                 |
| MPU_NS        | > 0                              | CPU <n>_MPU_NS</n>         | Specifies the number of Non-secure MPU regions included.                                                                                                                        |
| MPU_S         | > 0                              | CPU <n>_MPU_S</n>          | Specifies the number of Secure MPU regions included.                                                                                                                            |
| SAU           | > 0                              | CPU <n>_NUM_SAU_CONFIG</n> | Specifies the number of SAU Regions.                                                                                                                                            |
| NUMIRQ        | CPU <n>EXPNUMIRQ<br/>+ 32</n>    | CPU <n>EXPNUMIRQ</n>       | Specifies the number of external interrupts included for each CPU, where n is 0 to NUMCPU.                                                                                      |
| IWIC          | 0                                | HASCPU <n>IWIC</n>         | Specifies whether the Internal Wake-up Interrupt Controller (IWIC) is included for each CPU, where n is 0 to NUMCPU:                                                            |
|               |                                  |                            | 0 - IWIC not included                                                                                                                                                           |
|               |                                  |                            | 1 - IWIC included                                                                                                                                                               |
| WICLINES      | CPU <n>EXPNUMIRQ<br/>+ 35</n>    | CPU <n>EXPNUMIRQ</n>       | Specifies the number of IRQ lines supported by the IWIC and EWIC. The value always includes the three internal events NMI, RXEV, and Debug request event, and at least one IRQ. |
| СТІ           | If DEBUGLEVEL = 0 then 0, else 1 | CPU <n>_CTI_PRESENT</n>    | Specifies whether the Cross-Trigger Interface (CTI) unit is included:                                                                                                           |
|               |                                  |                            | 0 - CTI not included                                                                                                                                                            |
|               |                                  |                            | 1 - CTI included                                                                                                                                                                |
| BUSPROT       | 0                                | BUSPROT_PRESENT            | Specifies whether interface protection is supported on the M-AXI, P-AHB, EPPB, and S-AXI interfaces of the processor:                                                           |
|               |                                  |                            | O - Interface protection not included                                                                                                                                           |
|               |                                  |                            | 1 - Interface protection included                                                                                                                                               |
| ITGU          | 1                                | ITGU_PRESENT               | Specifies whether the processor is configured with ITCM Security gate unit:                                                                                                     |
|               |                                  |                            | 0 - TCM Gate Unit not included                                                                                                                                                  |
|               |                                  |                            | 1 - TCM Gate Unit included                                                                                                                                                      |
| DTGU          | 1                                | DTGU_PRESENT               | Specifies whether the processor is configured with DTCM Security gate unit:                                                                                                     |
|               |                                  |                            | 0 - TCM Gate Unit not included                                                                                                                                                  |
|               |                                  |                            | 1 - TCM Gate Unit included                                                                                                                                                      |

| Configuration | Value for CPU <n></n> | Related SSE-300 parameter | Description                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|-----------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECC           | 0                     | ECC_PRESENT               | Specifies whether the processor supports Error detection and correction in the L1 Data and Instruction cache (when configured) and the TCM.                                                                                                                                                                                                                                                                                           |
|               |                       |                           | 0 - ECC not included                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |                       |                           | 1 - ECC included                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LOCKSTEP      | 0                     | CPU <n>_LOCKSTEP</n>      | Specifies whether the processor is configured for dual-redundant lockstep operation. The options are:                                                                                                                                                                                                                                                                                                                                 |
|               |                       |                           | 0 - Regular processor operation                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |                       |                           | 1 - Dual-redundant lockstep operation                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                       |                           | Note: When LOCKSTEP is set to 1, Arm recommends that RAR is also set to 1. Otherwise, software must initialize all registers to prevent accidental triggering of Dual-Core Lock-Step (DCLS) mismatch when the UNKNOWN state gets propagated to the top level. However, such software requirements might not be practical in certain software system environments. Therefore, the RAR option is strongly recommended for DCLS designs. |
| PMC           | 0                     | CPU <n>_PMC_PRESENT</n>   | Specifies whether the MBIST Controller (PMC-100) is included.                                                                                                                                                                                                                                                                                                                                                                         |
|               |                       |                           | 0 - PMC-100 not included                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                       |                           | 1 - PMC-100 included                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |                       |                           | Note: PMC-100 is delivered as part of the optional licensable Safety package.                                                                                                                                                                                                                                                                                                                                                         |
| RAR           | 1                     | CPU <n>_RAR</n>           | Specifies if the synchronous states or the architectural required state is reset. The options are:                                                                                                                                                                                                                                                                                                                                    |
|               |                       |                           | 0 - Only reset the architectural required states                                                                                                                                                                                                                                                                                                                                                                                      |
|               |                       |                           | 1 - Reset all synchronous states                                                                                                                                                                                                                                                                                                                                                                                                      |
| DBGLVL        | > 0                   | CPU <n>_DBGLVL</n>        | Specifies the number of debug resources included. The options are:                                                                                                                                                                                                                                                                                                                                                                    |
|               |                       |                           | 0 - Minimal debug. No Halting debug or memory access.                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                       |                           | 1 - Reduced set. Two Data Watchpoint and Trace (DWT) and four Breakpoint Unit (BPU) comparators.                                                                                                                                                                                                                                                                                                                                      |
|               |                       |                           | 2: Full set. Four DWT and eight BPU comparators. Debug Monitoring mode and the Unpriviliged Debug Extension (UDE) is always supported. The Performance Monitoring Unit (PMU) is included when CPU <n>_DBGLVL is nonzero.</n>                                                                                                                                                                                                          |

| Configuration | Value for CPU <n></n>      | Related SSE-300 parameter    | Description                                                                                                                                                                                  |
|---------------|----------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICACHESZ[4:0] | ICACHESZ[0]=0b1            | CPU <n>_INSTR_CACHE_SIZE</n> | Specifies the inclusion of the instruction cache controller in the processor. If the instruction cache controller is included, CPU <n>_INSTR_CACHE_SIZE specifies the size of the cache.</n> |
|               |                            |                              | CPU <n>_INSTR_CACHE_ SIZE[0]=0 - Instruction cache is excluded</n>                                                                                                                           |
|               |                            |                              | CPU <n>_INSTR_CACHE_ SIZE[0]=1 - Instruction cache is included</n>                                                                                                                           |
|               |                            |                              | If CPU <n>_INSTR_CACHE _SIZE[0]=1, then the cache sizes are:</n>                                                                                                                             |
|               |                            |                              | CPU <n>_INSTR_CACHE_ SIZE[4:1]=0b0000 4 KB instruction cache</n>                                                                                                                             |
|               |                            |                              | CPU <n>_INSTR_CACHE_ SIZE[4:1]=0b0001 8 KB instruction cache</n>                                                                                                                             |
|               |                            |                              | CPU <n>_INSTR_CACHE_ SIZE[4:1]=0b0011 16 KB instruction cache</n>                                                                                                                            |
|               |                            |                              | CPU <n>_INSTR_CACHE_ SIZE[4:1]=0b0111 32 KB instruction cache</n>                                                                                                                            |
|               |                            |                              | CPU <n>_INSTR_CACHE_ SIZE[4:1]=0b1111 64 KB instruction cache</n>                                                                                                                            |
| DCACHESZ[4:0] | DCACHESZ[0]=0b1            | CPU <n>_DATA_CACHE_SIZE</n>  | Specifies the Master AXI (M-AXI) configuration and the inclusion and size of data cache controller.                                                                                          |
|               |                            |                              | CPU <n>_DATA_CACHE_SIZE[0]=0 - Area-optimized M-<br/>AXI data cache is excluded</n>                                                                                                          |
|               |                            |                              | CPU <n>_DATA_CACHE_SIZE[0]=1 - Performance-<br/>optimized M-AXI data cache is included. The cache sizes<br/>are:</n>                                                                         |
|               |                            |                              | CPU <n>_DATA_CACHE_SIZE[4:1]=0b0000 4 KB instruction cache</n>                                                                                                                               |
|               |                            |                              | CPU <n>_DATA_CACHE_SIZE[4:1]=0b0001 8 KB instruction cache</n>                                                                                                                               |
|               |                            |                              | CPU <n>_DATA_CACHE_SIZE[4:1]=0b0011 16 KB instruction cache</n>                                                                                                                              |
|               |                            |                              | CPU <n>_DATA_CACHE_SIZE[4:1]=0b0111 32 KB instruction cache</n>                                                                                                                              |
|               |                            |                              | CPU <n>_DATA_CACHE_SIZE[4:1]=0b1111 64 KB instruction cache</n>                                                                                                                              |
| MVE           | If FPU = 0 then MVE<br>= 1 | CPU <n>_MVE_CONFIG</n>       | M-profile Vector Extension (CPU <n>_MVE_CONFIG) parameter can have the following configuration options:</n>                                                                                  |
|               |                            |                              | 0 - MVE not included                                                                                                                                                                         |
|               |                            |                              | 1 - Integer subset of MVE included                                                                                                                                                           |
|               |                            |                              | 2 - Integer and half single-precision floating-point MVE included. This option is only valid if CPU <n>_FPU_PRESENT=1.</n>                                                                   |
|               |                            |                              | SSE-300 only supports the no M-profile Vector Extension when Floating Point Unit is configured.                                                                                              |



In the above table, the processor configurations ITGUBLKSZ, and DTGUBLKSZ are not defined. However, Arm recommends that ITGUBLKSZ and DTGUBLKSZ are equal to VMMPCBLKSIZE.

Each CPU also has several miscellaneous interface input signals that are tied as shown in the following table.

Table 4-3: CPU interface ties that are required

| Interface signals | Value for        | Related SSE-300        | Description                                                                                                   |
|-------------------|------------------|------------------------|---------------------------------------------------------------------------------------------------------------|
|                   | CPU <n></n>      | parameter              |                                                                                                               |
| CFGMEMALIAS[4:0]  | 0b10000          | CFGMEMALIAS            | Memory address alias bit for the ITCM, DTCM and P-AHB regions. The address bit used for the memory alias are: |
|                   |                  |                        | • 0b00001 - Alias bit = 24                                                                                    |
|                   |                  |                        | • 0b00010 - Alias bit = 25                                                                                    |
|                   |                  |                        | • 0b00100 - Alias bit = 26                                                                                    |
|                   |                  |                        | • 0b01000 - Alias bit = 27                                                                                    |
|                   |                  |                        | • 0b10000 - Alias bit = 28                                                                                    |
|                   |                  |                        | • 0b00000 - No alias. TCM Security gating disabled.                                                           |
| CFGBIGEND         | 0                | CFGBIGEND              | Data endian format:                                                                                           |
|                   |                  |                        | O - Little-endian (LE)                                                                                        |
|                   |                  |                        | 1 - Byte invariant big-endian (BE8)                                                                           |
| CFGITCMSZ[3:0]    | Must             | CPU <n>_CFGITCMSZ</n>  | Size of the instruction TCM region encoded as:                                                                |
|                   | not be<br>0b0000 |                        | 0b0000 - No ITCM implemented, which is not supported by this specification                                    |
|                   |                  |                        | • 0b0011 - 2 <sup>CFGITCMSZ-1</sup> KB                                                                        |
|                   |                  |                        | Others - Reserved                                                                                             |
| CFGDTCMSZ[3:0]    | Must             | CPU <n>_CFGDTCMSZ</n>  | Size of the data TCM region encoded as:                                                                       |
|                   | not be<br>0b0000 |                        | 0b0000 - No DTCM implemented, which is not supported by this specification                                    |
|                   |                  |                        | • 0b0011 - 2 <sup>CFGDTCMSZ-1</sup> KB                                                                        |
|                   |                  |                        | Others - Reserved                                                                                             |
| CFGPAHBSZ[2:0]    | 0b010            | CPU <n>_CFGPAHBSZ</n>  | Size of the P-AHB peripheral port memory region:                                                              |
|                   |                  |                        | • 0b000 - P-AHB disabled.                                                                                     |
|                   |                  |                        | • 0b001 - 64MB                                                                                                |
|                   |                  |                        | • 0b010 - 128MB                                                                                               |
|                   |                  |                        | • 0b011 - 256MB                                                                                               |
|                   |                  |                        | • 0b100 - 512MB                                                                                               |
|                   |                  |                        | Note:                                                                                                         |
|                   |                  |                        | Setting CFGPAHBSZ to any other value results in UNPREDICTABLE behavior.                                       |
| SAUDISABLE        | 0                | CPU <n>_SAUDISABLE</n> | If the Security Attribution Unit (SAU) is configured, disables support.                                       |
| INITTCMEN[1-0]    | 0b11             | INITTCMEN              | TCM enables initialization out of reset. Set to all ones to enable both TCMs.                                 |

| Interface signals | Value for CPU <n></n> | Related SSE-300 parameter | <b>Description</b>                                                                                                                                                                              |
|-------------------|-----------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WICCONTROL[0]     | 1                     | N/A                       | Setting to 1 causes the CPU to use WIC when in WFI DEEPSLEEP.                                                                                                                                   |
| INITPAHBEN        | 1                     | INITPAHBEN                | Setting to 1 to always enable P-AHB interface. This signal controls the reset value of PAHBCR.EN.                                                                                               |
| LOCKPAHB          | 1                     | CPU <n>_LOCKPAHB</n>      | Disable writes to the PAHBCR register from software or from a debug agent connected to the processor. Asserting this signal prevents changes to AHB peripheral port enable status in PAHBCR.EN. |

### 4.3.1 EVENT Interfaces

Each CPU also has event interfaces, which are RXEV and TXEV.

In SSE-300, all **TXEV**s are merged using logical OR and used to drive the **RXEV** of all CPUs.



In this system, events do not wake a CPU from its EWIC based low power state, or makes it wake the system from HiberationO state.

SSE-300 does not support the use of WFE for the CPU entering DeepSleep state.

### 4.3.2 Interrupts

SSE-300 provides the following events that can generate interrupts within the system:

- PPU interrupts
- Security based interrupts
- Timers and watchdogs
- Cross-Trigger interrupts

Depending on the configuration option values of CPU<n>EXPNUMIRQ and CPU<n>EXPIRQDIS, interrupts of each CPU<n> are made available to be driven through expansion logic. In this case, n is in 0 to NUMCPU.

The following table lists the interrupt map of each CPU < n >. Each CPU sees its own local CTIIRQ interrupts only. The software must ensure that all PPU interrupts are handled as Secure interrupts. If an interrupt source does not exist because of the chosen configuration of the system, the unused interrupt pin is disabled and reserved.

The following table indicates which interrupts also act as wakeup interrupts at each CPU<n>'s associated External Wakeup Interrupt Controller (EWIC). The EWIC acts primarily as an entity that takes over the masking and holding of an interrupt, on behalf of the CPU<n>'s NVIC, when the CPU<n> is in its OFF or low power state and is unable on its own to handle interrupts. With the EWIC, the system can enter a lower power state that switches off each CPU along with most of

the system, except the EWIC itself. Then the system can run the EWIC on a much lower clock frequency to lower power consumption to attain a very low standby operating power. An EWIC always exists with each CPU < n >.

Table 4-4: CPU <n> interrupt map, where n is 0 to NUMCPU

| Interrupt input for CPU <n></n>               | Interrupt source for CPU <n></n>                                                                                                                                                               | EWIC support |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| NMI                                           | Combined Secure watchdog, SLOWCLK watchdog and CPU <n>EXPNMI</n>                                                                                                                               | Yes          |
| IRQ[0]                                        | Non-secure watchdog reset request                                                                                                                                                              | Yes          |
| IRQ[1]                                        | Non-secure watchdog interrupt                                                                                                                                                                  | Yes          |
| IRQ[2]                                        | SLOWCLK Timer                                                                                                                                                                                  | Yes          |
| IRQ[3]                                        | Timer 0                                                                                                                                                                                        | Yes          |
| IRQ[4]                                        | Timer 1                                                                                                                                                                                        | Yes          |
| IRQ[5]                                        | Timer 2                                                                                                                                                                                        | Yes          |
| IRQ[6]                                        | MHU 0 CPU <n> interrupt. MHU interrupts are not shared, and each core only sees its own interrupt from the MHU. (Reserved if NUMCPU = 0). For more information, see Message Handling Unit.</n> | Yes          |
| IRQ[7]                                        | MHU 1 CPU <n> interrupt. MHU interrupts are not shared, and each core only sees its own interrupt from the MHU. (Reserved if NUMCPU = 0). For more information, see Message Handling Unit.</n> | Yes          |
| IRQ[8]                                        | CryptoCell™ interrupt. (Reserved if HASCRYPTO = 0)                                                                                                                                             | Yes          |
| IRQ[9]                                        | MPC Combined (Secure)                                                                                                                                                                          | Yes          |
| IRQ[10]                                       | PPC Combined (Secure)                                                                                                                                                                          | Yes          |
| IRQ[11]                                       | MSC Combined (Secure)                                                                                                                                                                          | Yes          |
| IRQ[12]                                       | Bridge Error Combined interrupt (Secure)                                                                                                                                                       | Yes          |
| IRQ[13]                                       | Reserved                                                                                                                                                                                       | -            |
| IRQ[14]                                       | MGMT_PPU (Secure)                                                                                                                                                                              | Yes          |
| IRQ[15]                                       | SYS_PPU (Secure)                                                                                                                                                                               | Yes          |
| IRQ[16]                                       | CPU0_PPU (Secure)                                                                                                                                                                              | Yes          |
| IRQ[25:17]                                    | Reserved                                                                                                                                                                                       | -            |
| IRQ[26]                                       | DEBUG_PPU (Secure)                                                                                                                                                                             | Yes          |
| IRQ[27]                                       | Timer 3 AON                                                                                                                                                                                    | Yes          |
| IRQ[28]                                       | CPU <n>CTIIRQ0 (local CPU CTI only)</n>                                                                                                                                                        | No           |
| IRQ[29]                                       | CPU <n>CTIIRQ1 (local CPU CTI only)</n>                                                                                                                                                        | No           |
| IRQ[31:30]                                    | Reserved                                                                                                                                                                                       | -            |
| IRQ[ <cpu<n>EXPNUMIRQ<br/>+31&gt;:32]</cpu<n> | CPU <n>EXPIRQ[CPU<n>EXPNUMIRQ-1:0]. See Interrupt Interfaces.</n></n>                                                                                                                          | Yes          |

# 4.4 System Interconnect infrastructure

The system interconnect infrastructure provides a bus infrastructure that transfers memory mapped access from bus masters to slaves in the system. SSE-300 defines two key interconnects that form the System Interconnect:

#### Main Interconnect

This interconnect is planned to provide the highest amount of bus throughput. It is primarily, but not exclusively, for code and data accesses that targets memories or high throughput interfaces. For example:

- In-subsystem volatile memories, that is VMO and VM1
- Flash, DRAM controllers or ROM that reside outside the system
- Other high throughput devices

#### Peripheral Interconnect

This interconnect provides access to lower performance peripherals. For example:

- System and Watchdog timers
- System and other security Configuration Registers
- Power control logic

Cortex-M MVE based processors have a direct interface to access this interconnect.

The System Interconnect is able to achieve the following:

- Transfers the following key properties of the access, from a master to a slave. The slave is required to ensure that any security related infrastructure can have all the following necessary information to make decisions on access rights:
  - Security attribute indicating an access is marked as Secure or Non-secure
  - The privilege level of the access, which is either Privileged or Unprivileged, or of a similar type
  - Bus access address, read and write attribute, and optionally, master identity
- Complete an access that has been issued. At completion of an access, minimally communicate as a response that the access is successful or has failed.
- Support the ability to atomically read and modify a memory location

The System Interconnect resides in PD\_SYS. The interconnect runs primarily on SYSSYSCLK. The power domain also has its local derived cold reset input and warm resets. For more information, see Clocking Infrastructure and Reset Infrastructure.

### 4.4.1 ACC\_WAIT Control

SSE-300 provides a set of controls to allow the following:

• Add access control gates, driven using the **ACCWAITn** signal

Block access to the system when the system leaves Hibernation state, is reset, at first powering
up, or when software wants to reconfigure security settings in the system. This prevents
access to the system until all security related features of the system has been set up correctly.
Once software is ready, it can release the gates by writing to the BUSWAIT.ACC\_WAITN
register. Then it can check the current status of all external gating units by reading the
ACCWAITNSTATUS signal value through the BUSWAIT.ACC\_WAITN\_STATUS register.

# 4.5 Volatile Memory

SSE-300 supports multiple volatile memory banks, that are VMO and VM1.

Each volatile memory can support a configurable amount of SRAM memory, but must obey the following:

- The size of each is powers of two
- The size of each bank is defined using the VMADDRWIDTH configuration point and is equal to  $2^{\text{VMADDRWIDTH}}$  bytes
- The combined total memory size of all volatile memory banks that exist within the system is less than 16 Mbytes
- All volatile memories form a contiguous area of memory. They are mapped to a starting address of 0x21000000, which is also aliased to a starting address of 0x31000000.

All VMs support Exclusive Accesses from the processors and external masters.

Each VM has a *Memory Protection Controller* (MPC) associated with it that provides the ability to map segments of each memory to Secure or Non-secure world. For more information about the MPC, refer to  $Arm^{\mathbb{R}}$  CoreLink<sup>M</sup> SIE-200 System IP for Embedded Technical Reference Manual and  $Arm^{\mathbb{R}}$  CoreLink<sup>M</sup> SIE-300 AXI5 System IP for Embedded Technical Reference Manual. In SSE-300, all VMs use the same MPC block size as defined by the configuration VMMPCBLKSIZE. Each MPC is implemented so that out of reset, all memory locations are mapped to the Secure world by default.

SSE-300 supports a power domain for each bank: PD\_VMR0, PD\_VMR1. Each power domain contains only the actual volatile memory of the memory bank with all other logics of the memory banks, including the MPC, residing in PD\_SYS. Hence, any power gating or retention refers only to the memory itself. For more information about related power control, see Power integration.

All VMs run on SYSSYSCLK.

# 4.6 Timers and Watchdogs

This section describes the two main classes of timers and watchdogs in SSE-300.

### 4.6.1 Timestamp based Timers

The first class of timers and watchdogs are timestamp based. They utilize the timestamp value provided on the System Timestamp Interface.

For more information about the System Timestamp Interface, see System Timestamp Interface.

The Timestamp-based Timer supports the following:

- Memory-mapped System Timer with register access through the Peripheral Interconnect
- Works with 64 bit timestamp input, generating events through comparison with a timer value
- An 'auto-increment' feature to support regular event generation
- Down counter emulation
- Maskable level interrupt generation

The Timestamp-based Watchdog timer is a simplified timer that supports the following:

- Memory-mapped System Timer with register access through the Peripheral Interconnect
- Works with 64 bit timestamp input, generating events through comparison with a timer value
- An 'auto-increment' feature to support refreshing the watchdog
- Watchdog reset request generation on double watchdog timeout
- Separate refresh register access frame to support refreshing from a different security or privilege level

See Timestamp Timers and Timestamp Watchdogs for more information about the timer registers.

Four Timestamp Timers are provided along with two Timestamp Watchdog timers. These are mapped to the following addresses:

- Timer 0 at address 0x48000000 and aliased to 0x58000000
- Timer 1 at address 0x48001000 and aliased to 0x58001000
- Timer 2 at address 0x48002000 and aliased to 0x58002000
- Timer 3 at address 0x48003000 and aliased to 0x58003000
- Secure Watchdog timer control frame at address 0x58040000 and refresh frame at 0x58041000
- Non-secure Watchdog timer control frame at address 0x48040000 and refresh frame at 0x48041000

Of these timers, Timer 0, Timer 1, Timer 2, and Timer 3 can be configured by software to be a Secure or a Non-secure timer through the Peripheral Protection Controller that are controlled through the Secure Access Configuration Register Block. For more information, see Secure Access Configuration Register Block. Both watchdogs are permanently assigned for security with is one Non-secure and another Secure. All timers and watchdog timers generate interrupts, and the Non-secure Watchdog can generate an additional interrupt on a second timeout event for notifying the Secure world to act. The Secure Watchdog can request a reset of the system if dual timeout

occurs. The Non-secure Watchdog can be configured by software to do the same if required, but by default this is not allowed.

Except for Timer 3, all other timestamp timers and watchdogs reside in the PD\_SYS power domain and are reset by **nWARMRESETSYS**. Timer 3 resides in the PD\_AON power domain and is reset by **nWARMRESETAON**. Hence, Timer 3 can generate interrupts to wake the system even if the system is in the Hibernation state where PD\_SYS is turned off, or when it is in retention.

### 4.6.2 SLOWCLK AON Timers

The second class of timers and watchdogs are simple CMSDK based 32 bit timers that run on SLOWCLK. They reside in the PD\_AON Power domain and are reset by **nWARMRESETAON**. A single timer and a single Secure Watchdog are provided. These components are expected to be used when the system is in the HIBERNATIONO System Power state when potentially only SLOWCLK is available and running, and all other clocks are off. These timers are mapped to the following addresses:

- SLOWCLK Timer at address 0x4802F000 and aliased to 0x5802F000
- SLOWCLK Secure Watchdog Timer at address 0x5802E000

The SLOWCLK Timer can be configured by software to be Secure or Non-secure access only, and privilege or unprivileged access through the Peripheral Protection Controllers that are controlled through registers in the Secure Access Configuration Register Block and the Non-secure Access Configuration Register Block. For more information, see Secure Access Configuration Register Block and Non-secure Access Configuration Register Block. The watchdog is Secure access only. All CMSDK timers and watchdog timers generate interrupts, and the SLOWCLK Secure Watchdog can request a Cold reset of the system if dual timeout occurs. For more information about CMSDK Timers, see Arm® Cortex®-M System Design Kit Technical Reference Manual.

# 4.7 Message Handling Unit

When NUMCPU > 0, SSE-300 implements two Message Handling Unit (MHU) to allow CPUs to interrupt each other to pass message. Two MHUs are provided so the software can place one MHU in the Secure world and one in the non-secure world. Both MHUs reside in the PD\_SYS power domain and are reset using the **nWARMRESETSYS**.

For information about the MHU registers, see Message Handling Unit registers.

When NUMCPU = 0, there are no MHUs in the system.

# 4.8 Power Policy Units

The PPUs are mapped to Secure address space as defined in System Control Peripheral Region.

See Power Policy Units for more information.

# 4.9 Peripheral Protection Controllers

Peripheral Protection Controllers in the system enable the software to control if a peripheral is accessible to the Secure or Non-secure world, and to the Privileged access or Unprivileged access.

For more information, see  $Arm^{\&}$  CoreLink<sup> $\minum$ </sup> SIE-200 System IP for Embedded Technical Reference Manual and  $Arm^{\&}$  CoreLink<sup> $\minum$ </sup> SIE-300 AXI5 System IP for Embedded Technical Reference Manual. In SSE-300, peripherals that are aliased to two memory areas, one Secure and one Non-secure, are protected by PPCs. And the PPC defines which region the peripheral resides in.

In SSE-300, Timers and other peripherals are protected using PPCs. These are controlled by the Secure Access Configuration Register Block and Non-secure Access Configuration Register Block. For more information on them, see Secure access configuration register block and Non-secure access configuration register block. These registers also control Security Control Expansion Signals to drive external PPCs.

Two groups of peripherals are defined in SSE-300, that are protected behind Peripheral Protection Controllers. These peripherals are:

- Peripheral Interconnect Peripheral Protection Controller Group 0. This group includes the following peripherals:
  - All Timestamp based Timers
  - Watchdog Refresh Frames



Secure or Non-secure mapping of Watchdog Refresh Frames is fixed, only their privilege levels are configurable.

- Peripheral Interconnect Peripheral Protection Controller Group 1. This group includes the following peripherals:
  - SLOWCLOCK CMSDK Timers



Care should be taken if non-privileged access to bus masters in the system is permitted, for example a DMA. If non-privileged access is permitted, then non privileged code has the potential to use these masters to access and modify privileged memory. Arm recommends that only privileged programming access is permitted to these masters.

For more information, see Secure Access Configuration Register Block.

# 4.10 Memory Protection Controllers

Memory Protection Controllers (MPC) in the system partitions memory modules into pages and allows the software to define if each region is Secure or Non-secure.

For more information, see Arm® CoreLink™ SIE-200 System IP for Embedded Technical Reference Manual and Arm® CoreLink™ SIE-300 AXI5 System IP for Embedded Technical Reference Manual. In SSE-300, each memory page that is protected by the MPC is aliased to two memory areas: a Secure and a Non-secure. Depending on the security attributed defined for that page in the MPC by the software, the page either only exists in the Secure region or the Non-secure region.

A single MPC is provided for each VM and each is in the main memory as defined in Peripheral Region.

# 4.11 CryptoCell

SSE-300 has the HASCRYPTO configuration option for cryptographic functions.

For supported CryptoCell configurations, see HASCRYPTO.

- HASCRYPTO = 0. In this no-crypto configuration, the CryptoCell-312 IP and its associated integration logic does not exist within the system.
- HASCRYPTO = 1. In this has-crypto configuration, the CryptoCell-312 IP and its associated integration logic exists within the system.

## 4.11.1 No-Crypto Configuration

When HASCRYPTO = 0, CryptoCell-312 does not exist in the system. No associated interfaces or configuration that are associated with CryptoCell-312 require to exist.

In a such a system, the root of trust can still be within the system. If TBSA-M compliance is still required, the system integrator must ensure that the integrated system contains all the necessary resources that a root of trust requires.

# 4.12 Debug Infrastructure

SSE-300 has the HASCSS configuration option for debug infrastructure configurations.

For supported debug infrastructure configurations, see HASCSS.

• HASCSS = 0. In this basic debug configuration, a CoreSight SoC-600 based common debug infrastructure is not defined and does not exist. When HASCSS = 0, NUMCPU must be 0.

• HASCSS = 1. In this full debug configuration, a CoreSight Soc-600 based common debug infrastructure exists.

### 4.12.1 Basic Debug Configuration

When HASCSS = 0 and EXPLOGIC\_PRESENT = 1, the subsystem expansion includes an example debug infrastructure that instances DAP-Lite2, debug timestamp generator, Cortex-M55 TPIU, and MCU debug ROM table. This infrastructure is the source and target of some debug related interfaces of each core. The remaining interfaces are made available as expansion interfaces. The following subsections describe the example debug infrastructure.

When HASCSS = 0 and EXPLOGIC\_PRESENT = 0, all debug related interfaces of each processor core are made available as expansion interfaces.

For more information, see Debug and trace related interfaces.

#### 4.12.1.1 DAP-Lite2

Arm<sup>®</sup> CoreSight<sup>™</sup> DAP-Lite2 enables an off-chip debugger to connect to a target system using a low pin-count JTAG or Serial Wire interface. The debugger can then control the target processor during a debug session. DAP-Lite2 provides *Debug Access Port* (DAP) that is compliant with *Arm*<sup>®</sup> *Debug Interface Architecture Specification ADIv6.0*. DAP-Lite2 supports AMBA AHB5 debug access interface.

For more information about DAP-Lite2, see Arm<sup>®</sup> CoreSight<sup>™</sup> DAP-Lite2 Technical Reference Manual.

SOC\_IDENTITY describes how the SoC identity register values are used to generate the TARGETID of the SoC debug port in the expansion system.

The debug power up handshake interface - including the cdbgpwrupreq and cdbgpwrupack signals - connect to PD\_DEBUG and PC\_CPU0 power control logic. cdbgpwrupreq is combined into the PWRDEBUGWAKEQACTIVE and PWRCPU0WAKEQACTIVE wake up power Q-channels as well, therefore, the debug power handshake interface is capable to keep up and wake up the PD\_DEBUG and PD\_CPU0 power domains.

The system power up and debug reset handshake interfaces of the DAP-Lite2 are unused.

The **DAPACCEN** and **DAPDSSACCEN** debug authentication signals control the access to the processor's D-AHB interface. **DAPACCEN** drives both ap\_en and ap\_secure\_en inputs of DAP-Lite2. When **DAPACCEN** is LOW, any memory access result in authentication failure as described in *Arm® CoreSight™ DAP-Lite2 Technical Reference Manual*. When **DAPDSSACCEN** is LOW, the SIE-200 AHB to AHB and APB bridge, residing between DAP-Lite2 and the D-AHB interface of the processor, responds with error.

Warm reset can always be applied safely when there are no active transactions on the D-AHB interface of Cortex-M55. Therefore, the SIE-200 AHB to AHB and APB bridge stalls the transactions when PD\_MGMT enters WARM\_RST power mode.

The DAP-Lite2 resides in the PD\_AON power domain.

The DAP-Lite2 has the following reset inputs:

- power up reset, driven by **nPORESET**
- JTAG TAP reset, driven by the logical AND of nTRST and nPORESET
- AHB master interface reset, driven by the synchronously deasserted version of nCOLDRESETAON

The DAP-Lite2 has the following clock inputs:

- Serial Wire and JTAG interface clock, driven by SWCLKTCK
- AHB master interface clock, driven by AONCLK

### 4.12.1.2 Debug timestamp generator

The debug timestamp generator is implemented as a 64 bit binary up counter enabled when CPUOTRCENA = 1.

The debug timestamp generator resides in the PD\_DEBUG power domain, runs on DEBUGCPUOCLK, and resides in the nCOLDRESETDEBUGCPUO reset domain.

### 4.12.1.3 Cortex-M55 TPIU

The Cortex-M55 Trace Port Interface Unit (TPIU) bridges between the on-chip trace data from the Embedded Trace Macrocell (ETM) and the Instrumentation Trace Macrocell (ITM), with separate IDs, to a data stream.

See Trace port interface for pin-level details of the data stream interface.

The Cortex-M55 TPIU is accessible through the Private Peripheral Bus Region at address 0xE0040000 to 0xE0040FFF.

See Arm® Cortex®-M55 Technical Reference Manual for more information about Cortex-M55 TPIU.

The Cortex-M55 TPIU resides in the PD\_DEBUG power domain, runs on DEBUGCPU0CLK, and resides in the nCOLDRESETDEBUGCPU0 reset domain.

### 4.12.1.4 MCU debug ROM table

The MCU debug ROM table is accessible through the Private Peripheral Bus Region at address {CPU0MCUROMADDR, 0x000} to {CPU0MCUROMADDR, 0xFFF}. The default base address is 0xE00FE000.

IIDR describes how the subsystem implementation identity register values are used to generate the PIDR values of the MCU debug ROM table in the expansion system.

The MCU debug ROM table resides in the PD\_DEBUG power domain, runs on DEBUGCPUOCLK, and resides in the nCOLDRESETDEBUGCPUO reset domain.

# 4.13 System and Security Control

SSE-300 provides several registers in the system to allow various features of the system to be discovered, configured, and controlled. These registers are grouped into four register blocks:

### **System Information Register Block**

The System Information Register Block provides information on the system configuration and identity.

#### **System Control Register Block**

The System Control Register Block implements registers for power, clocks, resets and other general system control.

### **Secure Access Configuration Register Block**

The Secure Access Configuration Register Block provides registers to configure Peripheral Protection Controllers (PPC) and Master Security Controllers (MSC) that reside in the system and in the expansion system through the Security Control Expansion interface. These are Secure access-only registers.

### Non-secure Access Configuration Register Block

The Non-secure Access Configuration Register Block provides registers to configure Peripheral Protection Controllers (PPC) that resides in the system and in the expansion system through the Security Control Expansion interface. These are Non-secure access-only registers.

#### Related information

SYSINFO Register Block on page 147
System Control Register Block on page 151
Secure Access Configuration Register Block on page 121
Non-secure Access Configuration Register Block on page 135

# 4.14 Power integration

The following sections describe power integration in SSE-300.

# 4.14.1 Power integration overview

Low-power operation is essential for IoT endpoint devices that might rely on a battery or on harvested energy. The implementation of multiple power-gated regions in the design reduces leakage power. The power control infrastructure specifies the power domains that the system logic and memories are partitioned into as well as the control mechanisms supporting the coordination of the operation of these different domains.

SSE-300 supports the Intermediate Level Power Control Infrastructure (PILEVEL = 1), which is detailed in this section.

Power domain hierarchy and bounded regions introduces terms that are used in the power related descriptions.

Power domains depicts the distribution of SSE-300 components across the power domains.

Power Policy Units describes the configuration and control of the PPUs that control the power domains of the subsystem.

Bounded region power modes describes the valid power state combinations and state transitions of power domains in each Bounded Region.

Wake-up sources defines the sources that can wake-up the subsystem.

Power Dependency Control defines the software configurable Power Dependency Control Matrix, which is responsible for keeping up power domains based on power domain states and external inputs.

System Power States describes the valid power state combinations of power domains in all Bounded Regions.

### 4.14.2 Power domain hierarchy and bounded regions

The following figure shows a simple power domain hierarchy diagram that is used to describe relationships between power and voltage domains.

Figure 4-5: Example power domain hierarchy



In the figure above, each rectangular block represents either a voltage domain or a power domain. Power Gated Domains are simply referred to as power domains in the descriptions. If a line connects two domains that are not at the same level in the same Bounded Region, there is a hierarchical relationship between the two domains. A block with dotted line indicates that the existence of the domain is configuration dependent.

A rounded dotted bounding box over one or several domains indicate that their power states are controlled collectively. These boxes are called *Bounded Regions* (BR). For example, PD\_C, PD\_D, and PD\_E power domains are in the Bounded Region BR\_X. Power state transitions of a Bounded Region are controlled by a single *Power Policy Unit* (PPU). PPUs are complemented by LPI infrastructure components to bring together the quiescence status and control of IP blocks primarily within the power domains that are controlled by each PPU. The complemented PPUs are referred to as *Power Integration Kits* (PIKs).

The following hierarchical relationship rules are applicable to power state transitions of power domains with hierarchical relationship:

- When a higher level power domain in the hierarchy has lower level power gated domains below
  it, before the higher level domain can enter a lower power state, the lower level power gated
  domains require to already be in a lower power state and remain in the same lower power state
  until the higher power gated domain completes its transition to a lower power state
- When a lower level power domain in the hierarchy has higher level power domains above it, before the lower level domain can enter a different power state, the higher level domains require to already be in their highest level power state

The hierarchical relationship rules eliminate the possibility that simultaneous power state transitions of power domains with hierarchical relationship results in unintended power state combinations of the power domains. Unintended power state combinations do not occur even during power state transitions.

The power modes of a Bounded Region are represented using a state transition diagram that shows the valid power state combinations and transitions of power domains in the Bounded Region.

For example, the following figure shows a simple, four power mode transition diagram, for a Bounded Region with three power domains: PD\_B, PD\_C, and PD\_D. Each power mode is represented by a box that represents the power state of the power domain that is the highest in the hierarchy within the Bounded Region. The boxes include further boxes internally that represent the power states of the other power domains in the Bounded Region. A name is given to each power mode in bold. The diagram below only has four BR power modes, OFF, ON, WARM\_RST, and FULL\_RET. The different colors indicate the power state of the power domains. Patterned filled boxes indicate that reset can be asserted in the related domain. A dashed lined box indicates that the mode is optional (FULL\_RET in the example).



PD\_E is never reset as it is a memory power domain.

Figure 4-6: Example power mode transition diagram of bounded power regions PD\_B, PD\_C, and PD\_D



These mode diagrams are very similar to PPU power mode transition diagrams. However, the diagrams here, and their modes do not indicate that a power mode in the PPU with the same name is used.

### 4.14.3 Power domains

SSE-300 is partitioned into multiple power domains.

These power domains are depicted in Figure 4-8: SSE-300 power domains in the logical integration layer on page 55 and Figure 4-9: SSE-300 power domains in the power aware integration layer on page 56.

Layers representing the logic power domains are defined in Figure 4-7: SSE-300 power domain layers on page 54.

Figure 4-7: SSE-300 power domain layers





The following diagrams represent the EXPLOGIC\_PRESENT = 1 configuration of the subsystem, where the expansion logic is present.

Figure 4-8: SSE-300 power domains in the logical integration layer



TOP SSE-300

PD\_CPU0CORE SSE-300 SYS HLPIK MGMT HLPIK DEBUG HLPIK

Figure 4-9: SSE-300 power domains in the power aware integration layer

These power domains are hierarchical and Figure 4-10: Voltage and power domain hierarchy of SSE-300 on page 57 shows the voltage and power domain hierarchy. For more information regarding how the power domains are controlled, see Power Policy Units.

**VSYS** PD AON BR\_SYS BR DEBUG PD SYS PD DEBUG PD VMR0 PD VMR1 PD CPU0 PD CPU0EPU PD CPU0RAM Voltage Domain Non-power Gated Region **Power Gated Region** PD CPU0TCM **Power Gated Memory Region** Bounded Region(s) BR CPU0

Figure 4-10: Voltage and power domain hierarchy of SSE-300

### 4.14.4 Power Policy Units

The SSE-300 leverages *Power Policy Units* (PPUs) with P-Channel device interfaces for power control for each *Bounded Region* (BR) in the system, except for the MGMTPPU. The MGMTPPU does not control the power state of any power domains, since PD\_AON is always on. It facilitates

Power on reset, Cold reset, and Warm reset related state transitions and reset generation in the subsystem.

Device interface handshake is performed by all PPUs when transitioning to WARM\_RST by default. All PPUs are Cold reset and reside in the power domain PD\_AON. The following table lists additional configuration of the PPUs along with the power domains and bounded regions that they control. For more information about Power Policy Units, see  $Arm^{\text{@}}$  Power Policy Unit Architecture Specification and  $Arm^{\text{@}}$  CoreLink PCK-600 Power Control Kit Technical Reference Manual.

Table 4-5: PPU associations and configurations

| Power domains         | PPU configuration |                                      |                                   |                                                |                                           |  |  |  |
|-----------------------|-------------------|--------------------------------------|-----------------------------------|------------------------------------------------|-------------------------------------------|--|--|--|
| controlled by the PPU | PPU ID            | OPMODE support                       | Default dynamic transition enable | Default power policy, default operation policy | Dynamic and static support of power modes |  |  |  |
|                       | (BR ID)           |                                      |                                   |                                                |                                           |  |  |  |
| PD_SYS,               | SYSPPU            | 4 OPMODEs with independent use model | ON                                | OFF, 0                                         | WARM_RST,                                 |  |  |  |
| PD_VMR0,              | (BR_SYS)          |                                      |                                   |                                                | ON,                                       |  |  |  |
| PD_VMR1               |                   |                                      |                                   |                                                | FULL_RET,                                 |  |  |  |
|                       |                   |                                      |                                   |                                                | MEM_RET,                                  |  |  |  |
|                       |                   |                                      |                                   |                                                | OFF                                       |  |  |  |
| PD_CPU0,              | CPU0PPU           | 4 OPMODEs with independent use model | ON                                | OFF, 0                                         | WARM_RST,                                 |  |  |  |
| PD_CPU0EPU,           | (BR_CPU0)         |                                      |                                   |                                                | ON,                                       |  |  |  |
| PD_CPUORAM,           |                   |                                      |                                   |                                                | FUNC_RET,                                 |  |  |  |
| PD_CPU0TCM            |                   |                                      |                                   |                                                | MEM_OFF,                                  |  |  |  |
|                       |                   |                                      |                                   |                                                | FULL_RET,                                 |  |  |  |
|                       |                   |                                      |                                   |                                                | LOGIC_RET,                                |  |  |  |
|                       |                   |                                      |                                   |                                                | MEM_RET,                                  |  |  |  |
|                       |                   |                                      |                                   |                                                | OFF                                       |  |  |  |
| PD_DEBUG              | DEBUGPPU          | Not supported                        | ON                                | OFF, 0                                         | WARM_RST,                                 |  |  |  |
|                       | (BR_DEBUG)        |                                      |                                   |                                                | ON,                                       |  |  |  |
|                       |                   |                                      |                                   |                                                | OFF                                       |  |  |  |
| PD_AON                | MGMTPPU           | Not supported                        | ON                                | ON, 0                                          | WARM_RST,                                 |  |  |  |
|                       | (NA)              |                                      |                                   |                                                | ON,                                       |  |  |  |
|                       |                   |                                      |                                   |                                                | OFF                                       |  |  |  |

The Default Perform Device Interface Handshake When Transition From ON to WARM\_RST Mode Enable configuration is 1 for all PPUs.

While the default power mode of most PPUs is OFF, a hardware autonomous power-up sequence is implemented by the subsystem. See Power-up after Cold reset for more information.

Write accessibility of PPU registers are controlled through the PWRCTRL.PPU\_ACCESS\_FILTER. When it is set to 0b1, the system blocks all write accesses to the PPUs by ignoring the writes, except for the following registers for each PPU:

- Interrupt Mask Register, at address offset 0x030
- Additional Interrupt Mask Register, at address offset 0x034
- Interrupt Status Register, at address 0x038
- Additional Interrupt Status Register, at address 0x03C

Access to the PPUs is not required for normal operation because SSE-300 is architected to use the PPUs primarily in their default dynamic mode, where the request to enter or leave a power state or mode is managed using only the PPU's Device interface, and does not require the programming of the PPUs. Hence the only time access to PPUs might be required is for Debug purposes.

When PWRCTRL.PPU\_ACCESS\_FILTER is set to '0', all PPU registers are freely accessible to the secure world. Turning off PPU access filtering and controlling the PPU registers other than the foregoing IRQ related registers can lead to system deadlock. It is for advanced users only and should be used only at your own risk.

### 4.14.5 Bounded Region power modes

The following subsections describe the valid power state combinations and state transitions of power domains in each Bounded Region.

### 4.14.5.1 BR\_DEBUG power modes

The following figure shows the the power modes supported by BR\_DEBUG. When a Warm reset is requested, the Bounded Region transitions to the WARM\_RST Power Mode. The transition makes sure that the debug logic enters a safe state so that the system can be warm reset cleanly.



The PD\_DEBUG itself is not warm reset in the WARM\_RST Power Mode.

Figure 4-11: BR\_DEBUG power mode transition diagram



### 4.14.5.2 BR\_SYS power modes

Power modes that BR\_SYS supports.

The following figure shows the power modes that BR\_SYS supports.

Figure 4-12: BR\_SYS power mode transition diagram





During pseudo power mode transitions, the (physical) power state of the power domains does not change. The power domains themselves (for example PD\_SYS) can observe pseudo transitions upon the CPUOPPU exiting the various MEM\_RET power modes.

Pseudo transitions are responsible for initializing logic that is turned on as part of leaving the various MEM\_RET power modes. Pseudo transitions are transient as they are followed by requests to the various ON power modes immediately. In the PPU and in the PCSM only such state changes are performed that are part of the transitions between the various MEM\_RET and ON power modes. The PPU and the PCSM do not enter the OFF power mode as part of the pseudo transition.

In SSE-300, logic retention power states are remapped to ON so that register values are persistent in power modes with logic retained even in an implementation without retention capable cells.

For more information, see Power mode remapping.

BR\_SYS has 2<sup>NUMVMBANK</sup> different OPMODEs (m is 3 in Figure 4-12: BR\_SYS power mode transition diagram on page 60). OPMODEs are encoded as binary 2-bit values with each bit representing the power state of a memory power domain, PD\_VMR<i>, where i is 0 to NUMVMBANK-1. Other than entering and exiting the OFF or WARM\_RST power modes, changing OPMODEs is possible only when transitioning between the different ON power modes.

For example, for with NUMVMBANK = 2, which is supported by SSE-300:

- OPMODE0: PD\_VMR0 and PD\_VMR1 are both OFF.
- OPMODE1: PD\_VMR0 is ON and PD\_VMR1 is OFF.
- OPMODE2: PD\_VMR0 is OFF and PD\_VMR1 is ON.
- OPMODE3: PD VMR0 and PD VMR1 are both ON.

When a warm reset is requested, the bounded region transitions to WARM\_RST through other power modes once the PD SYS power domain is idle and ready for being warm reset.

#### 4.14.5.2.1 Controlling the PD VMR<i> minimum power states

To configure the minimum power state of each PD\_VMR<i>, SW must configure the register fields PDCM\_PD\_VMR<i>\_SENSE.MIN\_PWR\_STATE as follows:

Set to 0b00 to set the minimum power state of the PD VMR<i> to OFF.

PD\_VMR<i> only ever transitions between ON and OFF state, and it is never in retention, meaning that in low power state, all states in PD\_VMR<i> are be lost.

With this setting, when PD\_SYS is ON and the BR\_SYS is in one of the ON\_OPMODE<i>power modes where PD\_VMR<i> is ON, BR\_SYS transitions to another ON\_OPMODE<i> where PD\_VMR<i> is OFF automatically once the PD\_VMR<i> domain is idle.

Hence, PD\_VMR<i> is expected to turn OFF quickly once PDCM\_PD\_VMR<i>\_SENSE.MIN\_PWR\_STATE is set to 0b00. Once PD\_VMR<i> is OFF, it can only be returned to ON by anaccess on the bus targeting PD\_VMR<i>.

However, following that, when PD\_VMR<i> is idle again, PD\_VMR<i> turns OFF again. To avoid this, configure PDCM\_PD\_VMR<i>\_SENSE.MIN\_PWR\_STATE to a non-zero value before accessing the PD\_VMR<i>.

• Set to 0b01 to set the minimum power state of the PD\_VMR<i> to RET. PD\_VMR<i> only ever transitions between ON and retention state, and never be OFF. Therefore, in the low power System Power States, all states in PD\_VMR<i> are retained. BR\_SYS never transitions to a power mode that has PD\_VMR<i> turned off.



To place the PD\_VMR<i> into Retention, the BR\_SYS has to enter one of the FULL\_RET\_OPMOE<i> power modes or MEM\_RET\_OPMODE<i> power modes where PD\_VMR<i> is in Retention. This means that it is not possible to place a PD\_VMR<i> into Retention while keeping PD\_SYS\_ON.

### 4.14.5.3 BR\_CPU0 power modes

The following figure shows the power modes supported by BR\_CPUO.

Figure 4-13: BR\_CPU0 power mode transition diagram





During pseudo power mode transitions, the (physical) power state of the power domains does not change. The power domains themselves (for example PD\_CPUO) can observe pseudo transitions upon the CPUOPPU exiting the various MEM\_RET power modes.

Pseudo transitions are responsible for initializing logic that is turned on as part of leaving the various MEM\_RET power modes. Pseudo transitions are transient as they are followed by requests to the various ON power modes immediately. In the PPU and in the PCSM only such state changes are performed that are part of the

transitions between the various MEM\_RET and ON power modes. The PPU and the PCSM do not enter the OFF power mode as part of the pseudo transition.

In SSE-300, logic retention power states are remapped to ON so that register values are persistent in power modes with logic retained even in an implementation without retention capable cells.

For more information, see Power mode remapping.

BR\_CPU0 uses a different name (EPU\_OFF) for the MEM\_OFF encoding in the SSE-300 PCSA as the corresponding Power Mode affects PD\_CPU0EPU, which is logic and not memory.

The PD\_CPU0TCM power state always matches that of PD\_CPU0, except for the power modes MEM\_RET\_and MEM\_RET\_NOCACHE where PD\_CPU0TCM is retained. The choice of transitioning from ON\_NOCACHE to either MEM\_RET\_NOCACHE or OFF is determined by the CPU's local TCM minimum power state register configuration CPU0PWRCFG.TCM MIN\_PWR\_STATE.

When a warm reset is requested, the bounded region transitions to the WARM\_RST through other power modes once the domains are idle and ready for reset.

#### 4.14.5.3.1 Controlling PD CPUORAM power state

The BR\_CPU0 bounded region uses operating modes to support the ability to turn on or off the cache RAMs in modes other than the OFF mode. Power modes with cache RAMs disabled, called the NOCACHE operating modes, are suffixed with NOCACHE. Power modes with cache RAMs enabled, called the CACHE operating modes, are modes without the NOCACHE suffix.

To select the use of the NONCACHE operating modes, the following registers must be configured:

- CPDLPSTATE.RLPSTATE register in the CPU set to OFF, which is 0b11
- MSCR.DCACTIVE register in the CPU set to 0b0 to disable Data Cache
- MSCR.ICACTIVE register in the CPU set to 0b0 to disable Instruction Cache

Transitions between the two operating modes can only occur between the ON and ON\_NOCACHE power modes. In the NOCACHE operating modes, the PD\_CPUORAM is turned off. When operating in the CACHE operating modes, PD\_CPUORAM is retained in the MEM\_RET, LOGIC RET, or FULL RET power modes.

#### 4.14.5.3.2 Controlling PD CPU0EPU power state

Other than WARM\_RST state, the BR\_CPU0 bounded region provides the ability for the PD\_CPU0EPU to enter a lower power state independently while the PD\_CPU0 is ON.

To control if the PD\_CPU0EPU can be allowed to enter the retention or off state, the software can set the register CPDLPSTATE.ELPSTATE in the CPU as follows:

• Set CPDLPSTATE.ELPSTATE to RET, 0b10 to allow the EPU to enter retention state only when in low power state. When set to RET, BR\_CPU0 never enters EPU\_OFF, EPU\_OFF\_NOCACHE, LOGIC RET NOCACHE, LOGIC RET, OFF, and MEM RET states.

- Set CPDLPSTATE.ELPSTATE to OFF, 0b11 to allow the EPU to enter OFF state only when in lower power state. When set to OFF, BR\_CPUO never enters FUNC\_RET, FUNC\_RET NOCACHE, FULL RET NOCACHE and FULL RET states.
- Set CPDLPSTATE.ELPSTATE to ON, which is 0b00 or 0b01, the EPU is never allowed to be turned off or retained when the PD\_CPU0 is ON. Hence BR\_CPU0 never enters any power modes to the right of the power modes ON\_NOCACHE or ON in the Figure "BR\_CPU0 power mode transition diagram" in BR\_CPU0 power modes except for FULL\_RET and FULL RET NOCACHE.

### 4.14.5.3.3 Entering lower PD\_CPU0 power states

For the PD\_CPU0 to enter a lower power state, the software on the CPU0 must first configure its CPDLPSTATE.CLPSTATE register to define what power state it can enter when in a lower power state as follows:

- Set CPDLPSTATE.CLPSTATE to RET, to allow the PD\_CPU0 to enter retention state only when in low power state. When set to RET, BR\_CPU0 never enters OFF, MEM\_RET\_NOCACHE or MEM\_RET.
- Set CPDLPSTATE.CLPSTATE to OFF, to allow the PD\_CPU0 to enter off state only when in low power state. When set to OFF, BR\_CPU0 never enters LOGIC\_RET\_NOCACHE, and LOGIC\_RET modes. Other modes like FULL\_RET and FULL\_RET\_NOCACHE can be entered depending on CPDLPSTATE.ELPSTATE and the current operating mode.
- Set CPDLPSTATE.CLPSTATE to ON, that is 0b00 or 0b01 to keep PD\_CPU0 on, which means that BR\_CPU0 never enters LOGIC\_RET\_NOCACHE, LOGIC\_RET, FULL\_RET\_NOCACHE, FULL\_RET\_NOCACHE, and MEM\_RET\_modes

For the PD\_CPU0 to then enter a lower power state, the CPU requires to enter WFI DeepSleep state. In SSE-300, DeepSleep always utilises a WIC. External WIC for the CPU always exists, and the External WIC resides in the PD\_AON domain. HASCPU0IWIC is 0b0 in SSE-300, so for CPU0, the Internal WIC does not exist, and the External WIC is always used.

The following list shows the types of power states that the CPU supports from a programmer's point of view, and how to enter each:

- The "OFF DeepSleep" state allows the CPU to turn off but utilizes interrupts through the external WIC to wake the CPU. To enter this state, the CPU must select to use the External WIC through the CPUOPWRCFG.USEIWIC register, set the CPUO's CPDLPSTATE.CLPSTATE to OFF and enable DeepSleep, before entering WFI.
- The "RET DeepSleep" state allows the CPU to enter retention state and utilizes interrupts through the external WIC to wake the CPU. To enter this state, the CPU must select to use the External WIC through the CPUOPWRCFG.USEIWIC register, set CPDLPSTATE.CLPSTATE to RET and enable DeepSleep, before entering WFI.
- The "ON DeepSleep" state allows the CPU to enter a low power state that only supports stopping the CPU clock internally, including to the NVIC. The External WIC is used to wake the CPU. To enter this state, the CPU must set CPDLPSTATE.CLPSTATE to ON, enable DeepSleep before entering WFI. The CPU must select to use the External WIC through the CPUOPWRCFG.USEIWIC register prior to entering WFI.

- The "ON Sleep" state allows the CPU to enter a low power state that still is ON keeping its NVIC clocking and running with the rest of the core clock turned off. To enter this state, the CPU must not enable DeepSleep before entering WFI or WFE. WFE can be used only in this CPU low power state if the intention is to wake using the event interface of the CPU.
- The "ON" state is the CPU normal running state. In this state, the EPU and the RAMs in the CPU have a degree of separate control as detailed in the sections Controlling PD\_CPUORAM power state and Controlling PD\_CPUOEPU power state respectively.

### 4.14.5.4 Power mode remapping

In SSE-300, the legal range is 0 for the render parameter LOGIC\_RETENTION\_PRESENT representing an implementation without retention-capable cells.

PPU power modes with logic being retained are re-mapped to power modes with logic being ON in the PCSMs so that register values are persistent in power modes with logic retained even in an implementation without retention capable cells. The programmers model and the software view of the subsystem is not altered due the remapping being applied in the PCSMs. The remapping does not alter the default behavior of the isolation control. This results in power states with the logic and the related isolation being ON and active respectively (for example see the columns PD\_CPU0EPU power state and PD\_CPU0EPU isolation in the row BR\_CPU0 power mode FUNC\_RET in the following table). The foregoing behavior of the isolation does not corrupt the functional behavior of the subsystem.

The remapping applied to the PPUs SYSPPU and CPUOPPU are defined in the following tables.

Table 4-6: BR\_CPU0 power mode remapping

| CPU0PPU power mode | BR_CPU0 power mode | PD_CPU0EPU power state | PD_CPU0EPU isolation | PD_CPU0 power state | PD_CPU0 isolation | PD_CPU0RAM power state | PD_CPU0TCM power state |
|--------------------|--------------------|------------------------|----------------------|---------------------|-------------------|------------------------|------------------------|
| WARM_RST           | WARM_RST           | ON                     | Inactive             | ON                  | Inactive          | ON                     | ON                     |
| ON                 | ON                 | ON                     | Inactive             | ON                  | Inactive          | ON                     | ON                     |
| ON                 | ON_NOCACHE         | ON                     | Inactive             | ON                  | Inactive          | OFF                    | ON                     |
| FUNC_RET           | FUNC_RET           | ON                     | Active               | ON                  | Inactive          | ON                     | ON                     |
| FUNC_RET           | FUNC_RET_NOCACHE   | ON                     | Active               | ON                  | Inactive          | OFF                    | ON                     |
| MEM_OFF            | EPU_OFF            | OFF                    | Active               | ON                  | Inactive          | ON                     | ON                     |
| MEM_OFF            | EPU_OFF_NOCACHE    | OFF                    | Active               | ON                  | Inactive          | OFF                    | ON                     |
| FULL_RET           | FULL_RET           | ON                     | Active               | ON                  | Active            | ON                     | ON                     |
| FULL_RET           | FULL_RET_NOCACHE   | ON                     | Active               | ON                  | Active            | OFF                    | ON                     |
| LOGIC_RET          | LOGIC_RET          | OFF                    | Active               | ON                  | Active            | ON                     | ON                     |
| LOGIC_RET          | LOGIC_RET_NOCACHE  | OFF                    | Active               | ON                  | Active            | OFF                    | ON                     |
| MEM_RET            | MEM_RET            | OFF                    | Active               | OFF                 | Active            | RET                    | RET                    |
| MEM_RET            | MEM_RET_NOCACHE    | OFF                    | Active               | OFF                 | Active            | OFF                    | RET                    |
| OFF                | OFF                | OFF                    | Active               | OFF                 | Active            | OFF                    | OFF                    |

The CPUOPPU operating mode is OPMODE 02 in the following power modes:

ON NOCACHE

- FUNC\_RET\_NOCACHE
- EPU\_OFF\_NOCACHE
- FULL\_RET\_NOCACHE
- LOGIC\_RET\_NOCACHE
- MEM\_RET\_NOCACHE

The CPUOPPU operating mode is OPMODE\_03 in the following power modes:

- ON
- FUNC\_RET
- EPU\_OFF
- FULL RET
- LOGIC\_RET
- MEM RET



The power modes OFF and WARM\_RST do not have operating mode context.

Table 4-7: BR\_SYS power mode remapping

| SYSPPU power mode | BR_SYS power mode | PD_SYS power state | PD_SYS isolation | PD_VMR1 power state | PD_VMR0 power state |
|-------------------|-------------------|--------------------|------------------|---------------------|---------------------|
| WARM_RST          | WARM_RST          | ON                 | Inactive         | ON                  | ON                  |
| ON                | ON_OPMODE3        | ON                 | Inactive         | ON                  | ON                  |
| ON                | ON_OPMODE2        | ON                 | Inactive         | ON                  | OFF                 |
| ON                | ON_OPMODE1        | ON                 | Inactive         | OFF                 | ON                  |
| ON                | ON_OPMODE0        | ON                 | Inactive         | OFF                 | OFF                 |
| FULL_RET          | FULL_RET_OPMODE3  | ON                 | Active           | ON                  | ON                  |
| FULL_RET          | FULL_RET_OPMODE2  | ON                 | Active           | ON                  | OFF                 |
| FULL_RET          | FULL_RET_OPMODE1  | ON                 | Active           | OFF                 | ON                  |
| FULL_RET          | FULL_RET_OPMODE0  | ON                 | Active           | OFF                 | OFF                 |
| MEM_RET           | MEM_RET_OPMODE3   | OFF                | Active           | RET                 | RET                 |
| MEM_RET           | MEM_RET_OPMODE2   | OFF                | Active           | RET                 | OFF                 |
| MEM_RET           | MEM_RET_OPMODE1   | OFF                | Active           | OFF                 | RET                 |
| MEM_RET           | MEM_RET_OPMODE0   | OFF                | Active           | OFF                 | OFF                 |
| OFF               | OFF               | OFF                | Active           | OFF                 | OFF                 |



The power modes OFF and WARM RST do not have operating mode context.

### 4.14.6 Wake-up sources

Contents of this section are to be provided in an upcoming release.

### 4.14.7 Power Dependency Control

The following table shows the Power Dependency Control Matrix (PDCM) table and how the PD SYS and PD VMR<i> are affected by the power dependency inputs.

Table 4-8: Power dependency control matrix

| Power domain | Power dependency input |            |                                                   |  |  |  |  |
|--------------|------------------------|------------|---------------------------------------------------|--|--|--|--|
|              | PD_SYS_ON              | PD_CPU0_ON | PDCMQREQn[{0- <pdcmqchwidth-1>}]</pdcmqchwidth-1> |  |  |  |  |
| PD_SYS       | Conf                   | Υ          | Conf                                              |  |  |  |  |
| PD_VMR0      | -                      | Conf       | Conf                                              |  |  |  |  |
| PD_VMR1      | -                      | Conf       | Conf                                              |  |  |  |  |

The left column of the table lists the power domains that are being controlled. The heading row lists the Power dependency inputs. Power dependency inputs are either:

- The "ON" state of power domains in the system. For example, PD\_SYS\_ON means PD\_SYS is ON when asserted
- The Power Dependency Control Matrix QREQn inputs, PDCMQREQn, that are driven by expansion logic from outside the subsystem indicating a keep-up request from external power domains

"Conf" indicates that it is software configurable, "Y" indicates that it is always sensitive to the respective dependency input. For example, PD\_SYS can be software configured to be sensitive to the ON state of PD\_SYS and all Expansion Power Control Dependency inputs, and it is always sensitive to the ON state of PD\_CPUO. If a power domain is sensitive to a dependency input, it means that once the power domain being controlled is already ON, if any of the dependency inputs is "ON" or true, then the power domain remains ON. Therefore, the PDCM is used primarily to define when a power domain should not enter a lower power state. PDCM supports keeping up power domains, it is not designed to support powering up of any power domain.

PD\_VMR<i> can also be configured to be sensitive to a power domain. For example, if PD\_VMRO sensitivity is configured by software to be sensitive to PD\_CPUO\_ON, if PD\_CPUO is ON, the memory also remains ON. However, PD\_VMRO is controlled using the same PPU as PD\_SYS and as a result of Figure 4-12: BR\_SYS power mode transition diagram on page 60 shown in BR\_SYS power modes, whenever PD\_VMRO is ON, PD\_SYS also remains in one of the ON\_OPMODE

states where PD\_VMR0 is ON. PD\_SYS can also be configured to be sensitive to itself. When the software configures a domain to be sensitive to self, the domain remains ON once it is ON.

The intention of the PDCM and all other sensitivity defined for each power domain is to allow, as much as possible for the power control of the System to be performed primarily using dynamic power transitions. This reduces the amount of software interactions needed for system management and therefore improves system responsiveness and contributes to further power reduction.

The SSE-300 provides programmable registers for the PD\_SYS and each PD\_VMR<i> power domains (PDCM\_PD\_SYS\_SENSE, PDCM\_PD\_VMR<i>\_SENSE), which define the lowest power state that each domain can enter when entering its lowest power state. The minimum power states of the power domains PD\_DEBUG and PD\_CPUO are not affected by the PDCM registers.

Table 4-9: Power domain minimum power state

| Power domain   | Supported MIN_PWR_STATE for each domain |
|----------------|-----------------------------------------|
| PD_SYS         | ON, OFF, Retention                      |
| PD_VMR <i></i> | ON, OFF, Retention                      |

The MIN\_PWR\_STATEs of both PD\_SYS and PD\_VMR<i> affect the SYSPPU. For example, if PD\_SYS is idle and all domains that PD\_SYS depends on are not ON, the SYSPPU tries to enter the bounded region collectively to a low power state. If MIN\_PWR\_STATE of PD\_SYS is set to "Retention", BR\_SYS is not allowed to enter the OFF mode nor any of the MEM\_RET\_OPMODE<m> modes because PD\_SYS is not allowed to turn off. SYSPPU tries to enter one of the associated FULL\_RET\_OPMODE<m> states.

In another example, if MIN\_PWR\_STATE of PD\_VMR0 is "ON" and MIN\_PWR\_STATE of all other PD\_VMR<i> is OFF, then if currently all other PD\_VMR<i> are ON, when SYSPPU is entering a low power state, it transitions to ON\_OPMODE1 state to turn off all other PD\_VMR<i>. It never enters FULL RET OPMODE1 or MEM RET OPMODE1.

### 4.14.8 System power states

By the relationships and minimum power states defined in the various Power Dependency Control Matrix Sensitivity registers and the low power control registers within the CPU, the following System Power States can be defined.

#### SYS\_OFF

All voltage and power domains are OFF.

#### **HIBERNATIONO**

The voltage domain is ON, and the system is in the lowest power state that can still be woken from sleep. At wake, the system has to reboot.

#### SYS\_RET

The system is in retention, and at wake, the system can continue to execute since no system state is lost.

### SYS\_ON

The system is ON.

In SSE-300, logic retention power states are re-mapped to ON so that register values are persistent in power modes with logic retained even in an implementation without retention capable cells. For more information see Power mode remapping.

The following table defines the following for each System Power State:

- Supported power states of the power domains
- Voltage supply state
- Input clock state (SYSCLK and CPU0CLK)

State combinations not tabulated are not supported by the subsystem. See Entering lower PD\_CPU0 power states for the definition of the states in the PD\_CPU0 column.

Table 4-10: System power states

| System power state | VSYS(PD_AON) | PD_SYS | PD_CPU0                      | PD_DEBUG | PD_VMR <i></i> | Clocks              |
|--------------------|--------------|--------|------------------------------|----------|----------------|---------------------|
| SYS_OFF            | OFF          | OFF    | OFF                          | OFF      | OFF            | OFF                 |
| HIBERNATION0       | ON           | OFF    | OFF - DeepSleep <sup>2</sup> | OFF/ON   | OFF/RET        | ON/OFF <sup>1</sup> |
| SYS_RET            | ON           | RET    | OFF - DeepSleep <sup>2</sup> | OFF/ON   | OFF/RET        | ON/OFF <sup>1</sup> |
|                    |              |        | RET - DeepSleep              |          |                |                     |
| SYS_ON             | ON           | ON     | OFF - DeepSleep <sup>2</sup> | OFF/ON   | OFF/RET/ON     | ON/OFF <sup>1</sup> |
|                    |              |        | RET - DeepSleep              |          |                |                     |
|                    |              |        | ON - DeepSleep               |          |                |                     |
|                    |              |        | ON - Sleep                   |          |                |                     |
|                    |              |        | ON                           |          |                |                     |

- 1. Clocks are requested by the subsystem based on the Clock Force register and the power states of PD\_DEBUG, PD\_SYS and PD\_CPU0. The relationship of the clocks and the power states is defined in the Power State Based High-Level Clock Gating related descriptions in the section Clock gating control of input clocks.
- 2. When PD\_CPU0 is in the state OFF-DeepSleep, PD\_CPU0TCM can be either OFF or retained as defined by CPU0PWRCFG.TCM\_MIN\_PWR\_STATE. In this state, PD\_CPU0EPU must be OFF. The PD\_CPU0RAM can be OFF permanently, which is defined by CPDLPSTATE.RLPSTATE.

From the above table the following points can be made:

- When waking up any of the PD\_CPU0 power domains, if the PD\_SYS is OFF or RET, the PD\_SYS domain is automatically woken to ON, since the PD\_CPU0 ON state is only supported in the SYS ON System Power State
- PD DEBUG can be woken independently, except in the SYS OFF state
- In HIBERNATIONO and SYS\_RET, PD\_VMR<i> cannot be woken independently from PD\_SYS, since they belong to the bounded region BR\_SYS

An additional transient WARM\_RST state also exists for the system when a warm reset is being performed. This state can only be entered from the SYS\_ON state with PD\_CPU0 being ON. In this state, all power domains, including PD\_AON, temporarily enter the WARM\_RST power mode and exit it when warm reset is completed.

### 4.14.8.1 Power-up after Cold reset

There is a power-up sequence implemented that wakes the subsystem upon each Cold reset and Power On reset.

Due to the hierarchical power management, SYSPPU and CPUOPPU wake up in turn, and DEBUGPPU simultaneously with SYSPPU. When the power-up sequence completes, the DEBUGPPU turns off if there is no request towards PD DEBUG.

Power modes entered during the power-up by SYSPPU, CPUOPPU, and DEBUGPPU are ON\_OPMODE3, EPU\_OFF\_NOCACHE, and ON in turn.

### 4.14.8.2 Entering HIBERNATIONO

To enter the HIBERNATIONO state, the following conditions must be met:

- The Minimum Power State in the registers PDCM\_PD\_VMR0\_SENSE and PDCM\_PD\_VMR1\_SENSE has to be set to OFF or RET
- The Minimum Power State in the register PDCM\_PD\_SYS\_SENSE has to be set to OFF
- Timestamp based System Timers 0, 1, and 2, along with all Timestamp based Watchdogs must be disabled (these reside in PD\_SYS). If timers, watchdogs, or both are needed, the PD\_AON modules can be used: System Timer-3, SLOWCLK Timer, SLOWCLK Watchdog, or both.
- Interrupt status of enabled interrupts has to be cleared in the following registers: SECPPCINTSTAT, SECMSCINTSTAT, and BRGINTSTAT
- Interrupt status of internal and Expansion Memory Protection Controllers has to be cleared. The interrupt status is visible through the SECMPCINTSTAT register and can be cleared by of accessing the respective Memory Protection Controller.
- If a VM is expected to be used immediately after exiting HIBERNATIONO, for example, to hold the stack, either of the following must be followed:
  - Sensitivity to the PD\_CPU0 ON state must be set in the related PDCM\_PD\_VMR<i>\_SENSE register prior to entering HIBERNATIONO. This ensures that upon first access to the VM after leaving HIBERNATIONO that is causing the VM to power up, VM stays powered until PD\_CPU0 turns OFF.
  - The minimum power state in the PDCM\_PD\_VMR<i>\_SENSE register must be set to RET, so that the VM content is always retained once it is turned ON
- If there is an Expansion logic in the PD\_SYS that is connected to the PD\_SYS Power P-channel Interface, the expansion logic must be idle and able to enter a quiescent state
- PD\_CPU0 must enter the "OFF-DeepSleep" (with EWIC enabled) if the intention is for the subsystem to be woken by EWIC. See Entering lower PD\_CPU0 power states for more information.

# 4.14.8.3 Wake from HIBERNATIONO using the PWRSYSWAKE Q-Channel Device Interface

Components in the Expansion can use the PWRSYSWAKE Q-Channel Device Interface, among others, to wake the subsystem from HIBERNATIONO. If this does not wake PD\_CPUO directly, accesses to the subsystem can result in a wake interrupt on the EWIC.



SYSCLK can not be running during HIBERNATIONO, and a wake request on the **PWRSYSWAKEQACTIVE** input automatically results in a request for SYSCLK to be active.

When the Base IoT Element in PD\_SYS is awakened from HIBERNATIONO, all registers in the power domain are in their reset state, and all peripherals that reside behind PPCs or MPCs defaults to Secure access only. In many cases, this necessitates to also wake and boot the CPU so that it can configure the subsystem before allowing accesses for Expansion masters into the subsystem. Consequently, using only **PWRSYSWAKEQACTIVE** as a means of waking the subsystem from HIBERNATIONO is limited and not recommended.

Contrarily, using interrupt signals on the EWIC provides a more robust approach. This allows a request to wake the CPU along with the subsystem (PD\_SYS), so the CPU can configure the subsystem before allowing access to it from Expansion masters. To delay access from Expansion masters, the system integrator must deploy access control gates at the slave expansion IFs, which is facilitated by the register BUSWAIT, the configuration ACCWAITNRST, and the signal **ACCWAITn**.

Provided that an Expansion master intends to wake and access peripherals or memories within SSE-300 without waking the CPU as well, it must be ensured that the Expansion master accessing the subsystem is a Secure master. Alternatively, a non-Secure master can be restricted externally to access a strictly controlled region of memory residing outside of the SSE-300, which is always non-Secure and hence does not pose a security risk. Mind that when the subsystem wakes without the CPU restoring the configuration of all MPCs and PPCs in the subsystem, Secure masters in the Expansion see all Non-secure memory spaces as Secure. Care must be taken to ensure that if any of these memories were retained before wake-up, these memory locations are not used for code execution.

# 5 Interfaces

The subsystem has several interfaces. This section provides the associated properties of each interface such as address and data width, along with the clock, power and reset domain that each belongs to.

In this section the following conventions are used:

#### **AMBA Master Interface**

An AMBA interface that is described as a master interface is one where the subsystem is the master and must be connected to a slave interface. For an AXI master interface the **ARVALID** signal is an output and **ARREADY** is an input. For an AHB master interface the **HADDR** signal is an output and **HRDATA** is an input. For an APB master interface, the **PADDR** signal is an output.

#### **AMBA Slave Interface**

An AMBA interface that is described as a slave interface is one where the subsystem is the slave and must be connected to a master interface. For an AXI slave interface the **ARVALID** signal is an input and **ARREADY** is an output. For an AHB slave interface the **HADDR** signal is an input and **HRDATA** is an output. For an APB slave interface, the **PADDR** signal is an input.

#### **Q-Channel Control Interface**

A Q-Channel interface described as a control interface, is one where the subsystem is the device and must be connected to a control interface. For a Q-Channel control interface the **QREQn** signal is an input and **QACCEPTn**, **QDENY** and **QACTIVE** are outputs.

#### **Q-Channel Device Interface**

A Q-Channel interface described as a device interface, is one where the subsystem is the controller and must be connected to a device interface. For a Q-Channel device interface the **QREQn** signal is an output and **QACCEPTn**, **QDENY** and **QACTIVE** are inputs.

#### P-Channel Control Interface

A P-Channel interface described as a control interface, is one where the subsystem is the device and must be connected to a control interface. For a P-Channel control interface, the **PREQ** signal is an input and **PACTIVE**, **PSTATE**, **PACCEPT** and **PDENY** are outputs.

#### P-Channel Device Interface

A P-Channel interface described as a device interface, is one where the subsystem is the controller and must be connected to a device interface. For a P-Channel device interface, the **PREQ** signal is an output and **PACTIVE**, **PSTATE**, **PACCEPT** and **PDENY** are inputs.

## 5.1 Input and output clocks

SSE-300 input clocks are defined in the following table.

Table 5-1: SSE-300 input clocks

| ID      | Power<br>domain | Description                                                                                                                                                                                                                                                                                                                                                                       | Connection information                                                                                                                                                                       |
|---------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SLOWCLK | PD_AON          | Slow Clock. An always active slow clock that is asynchronous to the other clocks in the subsystem. <b>SLOWCLK</b> is one of the two clocks expected to be active in the lowest power state of the subsystem: HIBERNATEO. <b>SLOWCLK</b> is used primarily by timers residing in the PD_AON power domain.  External gating of <b>SLOWCLK</b> is not supported by clock Q-Channels. | Connect <b>SLOWCLK</b> to a slow clock source that is always available.                                                                                                                      |
| AONCLK  | PD_AON          | Always ON Clock. This clock is used for the low frequency logic in the PD_AON power domain that is not running on the <b>SLOWCLK</b> clock, such                                                                                                                                                                                                                                  | Connect <b>AONCLK</b> to a slow clock source such as an output of a clock                                                                                                                    |
|         |                 | as the External Wakeup Interrupt Controller (EWIC) and the MGMTPPU. This allows a part of the PD_AON domain to run at a faster clock and yet be independent from the rest of the system. <b>AONCLK</b> is asynchronous to the other clocks in the system.                                                                                                                         | divider.                                                                                                                                                                                     |
|         |                 | <b>AONCLK</b> can be externally gated if the corresponding clock Q-channel is in Q_STOPPED state.                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                              |
| CNTCLK  | PD_AON          | System Counter Timestamp Clock associated with the CNTVALUEB System Counter Timestamp input. <b>CNTCLK</b> is asynchronous to the other clocks in the subsystem.                                                                                                                                                                                                                  | Connect <b>CNTCLK</b> to the clock source that drives the timestamp logic in the expansion logic.                                                                                            |
|         |                 | External gating of <b>CNTCLK</b> is not supported by clock Q-Channels.                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                              |
| SYSCLK  | PD_AON          | Main System Clock. This clock is the main clock to drive the main system that resides in PD_SYS. <b>SYSCLK</b> is also used for power management logic in PD_AON that is not running on <b>AONCLK</b> . <b>SYSCLK</b> is completely asynchronous to the other clocks in the subsystem except for <b>CPUOCLK</b> .                                                                 | Connect <b>SYSCLK</b> to a fast clock source, such as an output of a clock divider. In SSE-300, <b>SYSCLK</b> and <b>CPUOCLK</b> have the same frequency and are synchronous, so they can be |
|         |                 | The clock source is gated internally by PPUs before it is used by any logic.                                                                                                                                                                                                                                                                                                      | driven by the same source.                                                                                                                                                                   |
| CPU0CLK | PD_AON          | CPU0 clock. This is the main clock used to drive the logic residing in the PD_CPU0 and PD_DEBUG domains. <b>CPU0CLK</b> clock is asynchronous to the other clocks in the subsystem except for <b>SYSCLK</b> .                                                                                                                                                                     | Connect <b>CPUOCLK</b> to a fast clock source, such as an output of a clock divider. In SSE-300, <b>SYSCLK</b> and <b>CPUOCLK</b> have the same frequency                                    |
|         |                 | <b>CPUOCLK</b> might be externally gated if the corresponding clock Q-channel is in Q_STOPPED state.                                                                                                                                                                                                                                                                              | and are synchronous, so they can be driven by the same source.                                                                                                                               |
|         |                 | The clock source is gated internally by PPUs before it is used by any logic.                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                              |

In typical use, it is recommended to drive **SLOWCLK** using a 32kHz clock source. If reducing standby power is an important consideration for a product, **AONCLK** can be driven at a lower clock rate compared to **SYSCLK** (around 1MHz to 10MHz) to improve the transition time required to enter and leave the lowest power state of the subsystem, but still support the use of very low leakage implementation library cells. Alternatively, **AONCLK** can be driven using the same clock source as **SYSCLK**. If there is no requirement to run the System Timestamp Counter at a different speed to the subsystem, then the **CNTCLK** can also be driven using the same clock source as that of **SYSCLK**.

At minimum, two clock sources are needed. For example, one at 32kHz for **SLOWCLK** and another at 200MHz for the other clocks. Since **SYSCLK** and **CPU0CLK** must have the same frequency, if very large SRAMs with higher access time are needed in the subsystem, the frequency of both **SYSCLK** and **CPU0CLK** has to be reduced.

SSE-300 output clocks are defined in the following table. The clock outputs are synchronous to each other.

Table 5-2: SSE-300 output clocks

| ID           | Power<br>domain | Description                                                                                                                                                             | Connection information                                                                                                                                                 |
|--------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMGMTSYSCLK | PD_AON          | The gated version of <b>SYSCLK</b> . It is expected to be used to drive expansion logic that resides in the PD_AON power domain and is reset by <b>nCOLDRESETMGMT</b> . | Connect it to the PD_AON expansion logic that requires a clock that can be gated. The COMGMTSYSCLK Q-Channel device interface controls the gating of this clock.       |
| MGMTSYSCLK   | PD_AON          | The gated version of <b>SYSCLK</b> . It is expected to be used to drive expansion logic that resides in the PD_AON power domain and is reset by <b>nWARMRESETMGMT</b> . | Connect it to the PD_AON expansion logic that requires a clock that can be gated. The MGMTSYSCLK Q-Channel device interface controls the gating of this clock.         |
| COSYSSYSCLK  | PD_SYS          | The gated version of <b>SYSCLK</b> , expected to be used to drive expansion logic that resides in the PD_SYS power domain and is reset by <b>nCOLDRESETSYS</b> .        | Connect it to the PD_SYS Expansion logic that requires a system clock that can be gated. The COSYSSYSCLK Q-Channel device interface controls the gating of this clock. |
| SYSSYSCLK    | PD_SYS          | The gated version of <b>SYSCLK</b> , expected to be used to drive expansion logic that resides in the PD_SYS power domain and is reset by <b>nWARMRESETSYS</b> .        | Connect it to the PD_SYS Expansion logic that requires a system clock that can be gated. The SYSSYSCLK Q-Channel device interface controls the gating of this clock.   |
| COCPUCPU0CLK | PD_CPU0         | The gated version of <b>CPUOCLK</b> , expected to be used to drive expansion logic that resides in the PD_CPUO power domain and is reset by <b>nCOLDRESETCPUO</b> .     | Connect it to the PD_CPUO expansion logic that requires a fast clock that can be gated. The COCPUCPUOCLK Q-Channel device interface controls the gating of this clock. |
| CPUCPU0CLK   | PD_CPU0         | The gated version of <b>CPUOCLK</b> , expected to be used to drive expansion logic that resides in the PD_CPUO power domain and is reset by <b>nWARMRESETCPUO</b> .     | Connect it to the PD_CPUO expansion logic that requires a fast clock that can be gated. The CPUCPUOCLK Q-Channel device interface controls the gating of this clock.   |
| DEBUGCPU0CLK | PD_DEBUG        | The gated version of <b>CPUOCLK</b> , expected to be used to drive expansion logic that resides in the PD_DEBUG power domain.                                           | Connect it to the PD_DEBUG expansion logic that requires a clock that can be gated. The DEBUGCPUOCLK Q-Channel device interface controls the gating of this clock.     |

SSE-300 provides a Q-Channel interface for each of the output clocks to allow expansion logic to control the availability of each clock output.

For more information, see Clock Control Q-Channel Device interfaces.

# **5.2 Functional integration resets**

Connection information for the top-level reset inputs and reset outputs.

The following table shows the reset inputs and outputs at SSE-300 top level. For more information, see Reset infrastructure.

Table 5-3: Top-level reset inputs and outputs

| Signal      | Direction | Power domain | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Connection information                                                          |
|-------------|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| nPORESET    | Input     | PD_AON       | An active-LOW reset for power-on the system.  nPORESET resets all registers in the design. This includes resetting the Reset syndrome register.  There is no functional reset duration requirement for this reset input. However, SSE-300 recommends that the reset is at least one SLOWCLK cycle long.  This reset input performs reset asynchronously. The deassertion of the reset is synchronized to SLOWCLK in the subsystem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Connect it to the reset<br>Power-on generator.                                  |
| nMBISTRESET | Input     | PD_AON       | A reset input provided for production MBIST. This reset input has the same effect as <b>nPORESET</b> and the same description applies to it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Connect it to the MBIST controller.                                             |
| nSRST       | Input     | PD_AON       | An active-LOW system-wide cold reset request, typically originating from an external debugger.  When initially asserted, this signal results in a reset being applied to the subsystem and then subsequently removed. However, while nSRST is asserted, the CPUWAIT input of the CPU is held HIGH, preventing the core from booting until nSRST is deasserted. This is independent of the register setting in the CPUWAIT register.  It is recommended that the assertion of the nSRST input is at least three SLOWCLK cycles long. It can be held LOW for as long as it is required to hold off the CPU from execution while debug related tasks are being performed.  When deasserting nSRST, it must remain HIGH for at least five SLOWCLK cycles before asserting it again. This constraint is also applicable to the first assertion of nSRST that follows the deassertion of nPORESET.  This asynchronous reset request input is synchronized to SLOWCLK before it is used for system-wide cold reset generation. | Connect to an external signal on the SoC, so that a debugger can reset SSE-300. |

| Signal         | Direction | Power<br>domain | Description                                                                                                                                                           | Connection information                                                                                                           |
|----------------|-----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| HOSTRESETREQ   | Input     | PD_AON          | An active-HIGH system-wide cold reset request, typically originating from an external higher authority. The higher authority can be, for example, the hosting system. | Connect it to an external higher authority such as the hosting system.                                                           |
|                |           |                 | When initially asserted, this signal must be held HIGH until the reset occurs on <b>nCOLDRESETAON</b> . Holding this input HIGH keeps <b>nCOLDRESETAON</b> asserted.  |                                                                                                                                  |
|                |           |                 | This asynchronous reset request input is synchronized to <b>SLOWCLK</b> before it is used for system-wide cold reset generation.                                      |                                                                                                                                  |
| RESETREQ       | Input     | PD_AON          | An active-HIGH system-wide cold reset request.                                                                                                                        | Connect to the expansion logic.                                                                                                  |
|                |           |                 | When initially asserted, this signal must be held HIGH until the reset occurs on <b>nCOLDRESETAON</b> , and must be cleared as a result of the reset being asserted.  |                                                                                                                                  |
|                |           |                 | This asynchronous reset request input is synchronized to <b>SLOWCLK</b> before it is used for system-wide cold reset generation.                                      |                                                                                                                                  |
| nCOLDRESETAON  | Output    | PD_AON          | An active-LOW cold reset for the expansion system. This cold reset merges other reset sources in the system with <b>nPORESET</b> to generate this reset.              | Connect it to the expansion logic that resides in the PD_AON power domain and requires a cold reset such as debug related logic. |
|                |           |                 |                                                                                                                                                                       | This reset output is asynchronous and must be resynchronized before use.                                                         |
| nWARMRESETAON  | Output    | PD_AON          | An active-LOW Warm reset for the expansion system.                                                                                                                    | Connect it to the expansion logic that resides in the PD_AON power domain and                                                    |
|                |           |                 | This Warm reset is a superset of <b>nCOLDRESETAON</b> and is also asserted when the system is in n the system is in WARM_RST state.                                   | requires a Warm reset, such as non-debug related logic.                                                                          |
|                |           |                 | System is in Warim_r.s.r state.                                                                                                                                       | This reset output is asynchronous and must be synchronized before use.                                                           |
| nCOLDRESETMGMT | Output    | PD_AON          | An active-LOW cold reset for the expansion system.                                                                                                                    | Connect it to the expansion logic that was in the                                                                                |
|                |           |                 | This reset is a superset of <b>nCOLDRESETAON</b> and is also asserted when the PD_MGMT power domain is in a low-power state.                                          | PD_MGMT power domain that is merged into the PD_AON power domain and                                                             |
|                |           |                 | Since PD_MGMT is merged into PD_AON, the signal can be regarded as the COMGMTSYSCLK                                                                                   | requires a cold reset such as debug related logic.                                                                               |
|                |           |                 | synchronized version of <b>nCOLDRESETAON</b> .                                                                                                                        | This reset output is asynchronously asserted and is synchronously deasserted to COMGMTSYSCLK.                                    |

| Signal         | Direction | Power domain | Description                                                                                                                                                                                                                                                                                                                                                       | Connection information                                                                                                                                                                                                                                                     |
|----------------|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nWARMRESETMGMT | Output    | PD_AON       | An active-LOW Warm reset for the expansion system.  This reset is a superset of <b>nCOLDRESETMGMT</b> and is also asserted when the system is in the WARM_RST state.  Since PD_MGMT is merged into PD_AON, the signal can be regarded as the MGMTSYSCLK synchronized version of <b>nWARMRESETAON</b> .                                                            | Connect it to the expansion logic that was in the PD_MGMT power domain that is merged into the PD_AON power domain and requires a Warm reset such as non-debug related logic.  This reset output is asynchronously asserted and is synchronously deasserted to MGMTSYSCLK. |
| nCOLDRESETSYS  | Output    | PD_SYS       | An active-LOW cold reset for the expansion system.  This reset is a superset of <b>nCOLDRESETAON</b> and is also asserted when the PD_SYS power domain is in a low-power state with the logic being turned off. <b>nCOLDRESETSYS</b> supports logic retention and is not asserted if the PD_SYS power domain is in a power mode with the logic being retained.    | Connect it to the expansion logic that resides in the PD_SYS power domain and requires a cold reset, such as debug related logic.  This reset output is asynchronously asserted and is synchronously deasserted to COSYSSYSCLK.                                            |
| nWARMRESETSYS  | Output    | PD_SYS       | An active-LOW Warm reset for the expansion system.  This reset is a superset of <b>nCOLDRESETSYS</b> and is also asserted when the system is in the WARM_RST state.                                                                                                                                                                                               | Connect it to the expansion logic that resides in the PD_SYS power domain and requires a Warm reset.  This reset output is asynchronously asserted and is synchronously deasserted to SYSSYSCLK.                                                                           |
| nCOLDRESETCPU0 | Output    | PD_CPU0      | An active-LOW cold reset for the expansion system.  This reset is a superset of <b>nCOLDRESETAON</b> and is also asserted when the PD_CPU0 power domain is in a low-power state with the logic being turned off. <b>nCOLDRESETCPU0</b> supports logic retention and is not asserted if the PD_CPU0 power domain is in a power mode with the logic being retained. | Connect it to the expansion logic that resides in the PD_CPUO power domain and requires a cold reset, such as debug related logic.  This reset output is asynchronously asserted and is synchronously deasserted to COCPUCPUOCLK.                                          |
| nWARMRESETCPU0 | Output    | PD_CPU0      | An active-LOW Warm reset for the expansion system.  This reset is a superset of <b>nCOLDRESETCPU0</b> and is also asserted when the system is in the WARM_RST state.                                                                                                                                                                                              | Connect it to the expansion logic that resides in the PD_CPUO power domain and requires a Warm reset such as non-debug related logic.  This reset output is asynchronously asserted and is synchronously deasserted to CPUCPUOCLK.                                         |

| Signal              | Direction | Power<br>domain | Description                                                                                                                                                                                                       | Connection information                                                                                                                      |
|---------------------|-----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| nCOLDRESETDEBUGCPU0 | Output    | PD_DEBUG        | An active-LOW cold reset for the expansion system.  This reset is a superset of <b>nCOLDRESETAON</b> and is also asserted when the PD_DEBUG power domain is in a low-power state with the logic being turned off. | Connect it to the expansion logic that resides in the PD_DEBUG power domain and requires a reset, such as debug logic associated with CPUO. |
|                     |           |                 |                                                                                                                                                                                                                   | This reset output is asynchronously asserted and is synchronously deasserted to DEBUGCPUOCLK.                                               |

## 5.3 P-Channel and Q-Channel Device interfaces

Each P-Channel or Q-Channel Device interface in this section, independently, allows external expansion logic to handshake with the system to ensure that:

- For power control, all external masters and slave interfaces in a power domain are in quiescent state before entering a lower power state. It also allows external master to request for a power domain to wake.
- For clock control, all external dependent logic can prepare itself before the hierarchical gating of clocks
- For warm reset control to prevent potential reset domain crossing issues and protocol violations on reset domain boundary and loss of data, and for physical protection (for example, flash memory)

During system integration, expansion logic that resides within a power or clock domain associated with each P-Channel or Q-Channel will normally merge all P-Channel or Q-Channel interfaces within the expansion domain to drive each interface. When merging, the following rules must be obeyed to prevent system deadlocks:

- All bus masters in the expansion system must, either individually or collectively have a full Q-channel interface, or a P-Channel interface. Each Q-Channel interface must be able to deny a quiescent request if the logic that it controls has outstanding operations on the bus or is unable to enter quiescent state for any other reason. Similarly, each P-Channel interface must be able to deny a request to enter a different PSTATE if the logic is unable to enter the requested state. Each P-Channel interface for power control must be able to support all power modes that the Bounded Region implements.
- All bus slaves in the expansion system must either individually or collectively have a Q-channel or P-Channel interface that must be able to delay the acceptance of a quiescence request or a Power mode request if the current bus operation is about to complete. The LPI interface must also be able to deny a quiescent request or a power mode request if the logic that it controls has other outstanding operations that prevents it from entering quiescent state or the requested mode.
- You must sequence the Q-Channels associated with these external bus interfaces in such a way to ensure that all bus masters are in quiescent state before any bus slaves are requested

to enter quiescent state. Similarly, with P-Channels, you must ensure that all bus masters and slaves of these interfaces can enter the new requested state in the right order depending on their dependencies before the P-Channel accepts entering that state. The SSE-300 implements separate Q-Channel and P-Channel interfaces for each clock domain and power domain respectively. To separately handshake masters, slaves and even intermediate components in the expansion logic in sequence, additional external sequencing might be required in the expansion logic.

• It is not required to prevent data loss, protocol violation or CPU lock-up inside the reset domain if that has no affect outside the reset domain. Warm reset boundary typically does not match a Power domain boundary but includes logic from several Power domains. Therefore, it is not required to close all LPI channels of a Power domain before Warm reset assertion. The intention should be to close as few LPIs as possible so that deadlock/livelock/Warm reset denial scenarios are prevented.

If a Q-Channel Device interface is not used, then its associated **QACTIVE** and **QDENY** signals must be tied LOW and the QREQn output looped back into its QACCEPTn input. Similarly, if a P-Channel Device interface is not used, then its associated **PACTIVE** and **PDENY** signals must be tied LOW, and the PREQn output looped back into its PACCEPTn input.

When P-Channel Device interface is used, the P-Channel encoding replicates the Device P-Channel bit assignment of the PCK-600 PPU, with each DEVPACTIVE bit used to request entry to a Power mode and Operating mode, and DEVPSTATE vector representing the Power mode and Operating mode that is being requested. For more information, refer to Arm® CoreLink™ PCK-600 Power Control Kit Technical Reference Manual, and Arm® Power Policy Unit Architecture Specification.

For more information about the Q-Channel and P-Channel protocol, see AMBA® Low Power Interface Specification.

### 5.3.1 Clock Control Q-Channel Device interfaces

SSE-300 provides a Q-Channel Device interface for each of the output clocks to allow expansion logic to control the availability of each clock output. These are used to support high-level clock gating. The following Q-Channels are provided:

- MGMTSYSCLK Q-Channel Device interface for MGMTSYSCLK. This interface resides in the PD\_MGMT power domain when PILEVEL = 2, or in the PD\_AON domain when PILEVEL < 2.
- COMGMTSYSCLK Q-Channel Device interface for COMGMTSYSCLK. This interface resides in the PD\_AON power domain.
- SYSSYSCLK Q-Channel Device interface for SYSSYSCLK. This interface resides in the PD\_SYS Power domain.
- COSYSSYSCLK Q-Channel Device interface for COSYSSYSCLK. This interface resides in the PD\_SYS power domain.
- CPUCPU{0-<NUMCPU>}CLK Q-Channel Device interface for CPUCPU{0-<NUMCPU>}CLK. This interface resides in the PD\_CPU{0-<NUMCPU>} power domain when PILEVEL > 0, or in the PD\_SYS Power domain.

- COCPUCPU{0-<NUMCPU>}CLK Q-Channel Device interface for COCPUCPU{0 to <NUMCPU>}CLK. This interface resides in the PD CPU{0 to <NUMCPU>} Power domain.
- DEBUGCPU{0-<NUMCPU>}CLK Q-Channel Device interface for DEBUGCPU{0-<NUMCPU>}CLK. This interface resides in the PD\_DEBUG Power domain.

All clock Q-Channel device interfaces are for clock control only and do not support waking the system from HIBERNATION.

The clock Q-Channel device interfaces MGMTSYSCLK, SYSSYSCLK and CPUCPU0CLK are synchronous to the clock that each of the Q-Channel interface controls.

The clock Q-Channel device interfaces COMGMTSYSCLK, COSYSSYSCLK and DEBUGCPU0CLK are asynchronous.

### **5.3.2 Power Control P-Channel Device interfaces**

SSE-300 provides power control P-Channel Device interfaces to allow expansion logic to handshake and coordinate the expansion logic power state.

Each power domain that supports the expansion logic is provided with P-Channel interfaces as follows:

- MGMTPWR P-Channel Device interface for PD\_AON. Given that PD\_AON is always on, this P-Channel is responsible for Warm reset related sequencing.
- SYSPWR P-Channel Device interface for BR\_SYS.
- DEBUGPWR P-Channel Device interface for BR DEBUG.
- CPU{0-<NUMCPU>}PWR P-Channel Device interface for BR\_CPU{0-<NUMCPU>}.

Each of these P-Channel Device interfaces is driven by expansion logic that resides within their respective power domain that each of the P-Channels control and is used to do the following:

- Used by the expansion logic to indicate through the **PACTIVE** signal that the expansion logic is IDLE or hint that it wants to enter a different power mode.
- For a power controller to request the expansion logic to enter a different power mode.
- Allow the expansion logic to accept or deny the request to enter a different power mode.

These interfaces do not support waking of any power domains because they reside within the power domain that is being controlled.

These Power Control P-Channel Device interfaces are synchronous to the clock used in each Power domain that each of the P-Channel interfaces controls.

The following rules must be followed for the interfaces:

- If the interface is not used then:
  - \*PWRPACTIVE and \*PWRPDENY must be tied low
  - \*PWRPPREQ must be looped back to the corresponding \*PWRPACCEPT

- If the interface is used then:
  - Denying a lower to higher power mode change request is not allowed
  - Denying WARM\_RST to ON power mode change request is not allowed

Not following the above rules will lead to system deadlock

### 5.3.3 Power Control Wakeup Q-Channel Device interfaces

SSE-300 provides Power Control Wakeup Q-Channel Device interfaces to allow expansion logic to request for specific logic power domains to "wake up" or power up.

The Q-Channel interfaces and the domains they control are:

- PWRMGMTWAKE Q-Channel Device interface for PD\_AON. Given that PD\_AON is always on, this interface should be tied LOW.
- PWRSYSWAKE Q-Channel Device interface for PD SYS.
- PWRDEBUGWAKE Q-Channel Device interface for PD\_DEBUG.
- PWRCPU{0-<NUMCPU>}WAKE Q-Channel Device interface for PD\_CPU{0 to <NUMCPU>}.

These interfaces all reside in the PD\_AON power domain. Because they are "wake up" requests and only the **QACTIVE** signal of each interface is implemented. When using these to wake a domain, you must drive and hold the appropriate **QACTIVE** signal to request turning on the power domain until the power domain is ON.



Note that PD\_CPU{0-<NUMCPU>} is ON in all the ON, MEM\_OFF (EPU\_OFF) and FUNC\_RET power modes.

For example, to wake PD\_SYS, you must set **PWRSYSWAKEQACTIVE** Q-Channel signal to request it to turn ON until the the SYSPWR P-Channel Device interface for BR\_SYS indicates that the power domain is ON.

These Wakeup Device Q-Channel interfaces are asynchronous.

## 5.4 Clock Control Q-Channel Control interfaces

Each Q-Channel Control interface in this section allows the subsystem independently to request the availability of a clock source. Each Q-Channel Control interface allows an external clock controller to handshake with the subsystem to safely turn the clock source OFF.

SSE-300 has the following Clock Control Q-Channel Control interfaces:

AONCLK Q-Channel Control interface for AONCLK

- SYSCLK Q-Channel Control interface for SYSCLK
- CPU{0-<NUMCPU>}CLK Q-Channel Control interface for CPU{0-<NUMCPU>}CLK

If an input clock source is always running, and there is no clock controller associated with this clock input, then you can tie its associated Clock Control Q-Channel Control interface by tying the QREQn input to HIGH. These interfaces are in the PD AON power domain.

## 5.5 Expansion Power Control Dependency interface

SSE-300 provides a 4-bit width Q-Channel interface that allows external power domains to use the Power Dependency Control Matrix to keep power domains within the subsystem from entering a lower power state.

These signals are:

- Power Dependency Control Matrix QREQn Inputs, **PDCMQREQn[3:0**]. When each bit is set to 1, it indicates that the external domain that drives it is active.
- Power Dependency Control Matrix QACCEPTn Outputs, PDCMQACCEPTn[3:0]. Each bit
  acknowledges an associated bit on PDCMQREQn by returning the request input value. This
  acts as a four-phase handshake so that the driver of each request bit can determine that the
  request has been observed by receiving unit.

These signals are essential for an external domain which might want to ensure that a different power domain remain powered while the external domain is trying to work with it. For example, the external domain might want to access the Main interconnect in the PD\_SYS domain. It can raise an interrupt with the host CPU, request that a dependency is setup between the external system and PD\_SYS via a signal in PDCMQREQn, by setting the relevant bit in PDCM\_PD\_SYS\_SENSE register. Therefore, the external system can now keep PD\_SYS powered using one of the **PDCMQREQn** signals. The four-phase handshake must be used to ensure that there is no race condition between ending a bus access that wakes up the domain and activating the keeping up of the domain.

These are asynchronous signals that reside in the PD\_AON power domain. For more information about registers that uses these signals and description of related functionality, see System Control Register Block and Power Integration.

## 5.6 Power Domain ON Status Signals

SSE-300 provides a set of output signals that indicate whether the power domain they are associated with is in the ON Power Mode.

These signals are:

#### PDMGMTON

- HIGH indicates that the PD\_MGMT power domain's PPU considers that the domain is ON
- LOW indicates that the PPU acts as though the power domain is in a lower power state
- The signal is tied to '1', given that PD MGMT is merged into PD AON

#### PDSYSON

- HIGH indicates that the PD SYS power domain's PPU acts as though the domain is ON
- LOW indicates that the power domain's PPU acts as though the domain is in a lower power state

### PDCPU{0-<NUMCPU>}ON

- HIGH indicates that the PD\_CPU{0-<NUMCPU>} power domain's PPU acts as though the domain is ON
- LOW indicates that the power domain's PPU acts as though the domain is in a lower power state

### PDDEBUGON

- HIGH indicates that the PD\_DEBUG power domain's PPU considers that the domain is ON
- LOW indicates that the power domain's PPU acts as though the domain is in a lower power state



These are primarily status signals and are typically driven using the PPU **HWSTAT** signals. Arm recommends that these are not used as power control signals directly.

## 5.7 System Timestamp interface

When EXPLOGIC\_PRESENT = 0, SSE-300 provides a system timestamp input from an expansion timestamp counter. This timestamp is expected to be driven by a timestamp generator in the subsystem expansion. This resides in the PD\_AON power domain.

The system timestamp interface is the following:

### CNTVALUEB[63:0]

- Width 64 bit
- IN/OUT IN
- Clock domain CNTCLK
- Description Timestamp input value. This value is binary coded.

When HASCSS = 1, Arm recommends that the expansion system uses the CTI triggers to implement timestamp halting. For more information about the CTI interface, see Cross Trigger Interface.

When HASCSS = 0, a debug system does not exist to provide these control signals and hence, the **CPU{0-<NUMCPU>}HALTED** signals are used to halt the system timestamp generator.

When EXPLOGIC\_PRESENT = 1, a system timestamp generator is integrated in the PD\_AON power domain of the subsystem expansion and drives the system timestamp interface.

## 5.8 Main Interconnect Expansion interfaces

SSE-300 provides a pre-configured number of Master and Slave Expansion interfaces off the Main Interconnect. These interfaces allow the system integrator to add additional bus masters and bus slaves to the system.

The AXI5 AMBA protocol is used for this interface and supports the following properties:

- 32-bit address
- 64-bit data
- Synchronous to SYSSYSCLK
- On the **nWARMRESETSYS** reset
- TrustZone Support enabled

The types of master and slave Expansion interface on the Main Interconnect are as follows:

- Master Code Main Expansion interface (XMSTEXPCODE). This interface provides access to Code Memory and is mapped to the following address range:
  - 0x01000000 to 0x0DFFFFFF
  - 0x11000000 to 0x1DFFFFFF
- Master Main Expansion interfaces (XMSTEXPSRAM, XMSTEXPDEV). These interfaces provide access to other Slaves in the system and are mapped to the following address range:
  - 0x28000000 to 0x2FFFFFFF (on XMSTEXPSRAM)
  - 0x38000000 to 0x3FFFFFFF (on XMSTEXPSRAM)
  - 0x60000000 to 0x9FFFFFFF (on XMSTEXPSRAM)
  - 0xA0000000 to 0xDFFFFFFF (on XMSTEXPDEV)
- Slave Main Expansion interfaces (XSLVEXPMIO and XSLVEXPMI1 or HSLVEXPMI1). When EXPLOGIC\_PRESENT = 0, AXI slave interfaces are supported (XSLVEXPMIO, XSLVEXPMI1). When EXPLOGIC\_PRESENT = 1, an XHB-500 AHB to AXI bridge is instantiated in the SSE-300 expansion and AHB slave expansion interface (HSLVEXPMI1) is supported instead of XSLVEXPMI1. These interfaces provide access to the system from the expansion master interfaces. These interfaces can be used to access the majority of memory-mapped regions in the system except (but not limited) for regions that are private to the processor(s). See System Interconnect Infrastructure for more information.

## 5.9 Peripheral Interconnect Expansion interfaces

SSE-300 provides a pre-configured number of Master and Slave Expansion interfaces from the Peripheral Interconnect. These interfaces allow the system integrator to add additional bus masters and bus slaves to the system that is expected to require lower latency access to peripherals.

The AMBA protocol used for this interface is AHB5 and supports the following properties:

- 32 bit address
- 32 bit data
- Synchronous to SYSSYSCLK
- On the **nWARMRESETSYS** reset
- TrustZone Support enabled

The types of Master and Slave Expansion interface on the Peripheral Interconnect are as follows:

- Master Peripheral Expansion interfaces (HMSTEXPPILL, HMSTEXPPIHL). These interfaces provide access to other Slaves in the system and are mapped to the following address range:
  - 0x40100000 to 0x47FFFFFF (on HMSTEXPPILL)
  - 0x48100000 to 0x4FFFFFFF (on HMSTEXPPIHL)
  - 0x50100000 to 0x57FFFFFF (on HMSTEXPPILL)
  - 0x58100000 to 0x5FFFFFFF (on HMSTEXPPIHL)
  - 0xE0200000 to 0xEFFFFFFF (on HMSTEXPPILL)
  - 0xF0200000 to 0xFFFFFFFF (on HMSTEXPPILL)
- Slave Peripheral Expansion interfaces (HSLVEXPPILL, HSLVEXPPIHL). These interfaces provide access to the Peripheral bus from expansion master interfaces. These interfaces can be used to access all peripheral memory-mapped regions in the system except for regions that are private to the CPUs:
  - 0x40000000 to 0x47FFFFFF (except CPU private area, through HSLVEXPPILL)
  - 0x48000000 to 0x4FFFFFFF (through HSLVEXPPIHL)
  - 0x50000000 to 0x57FFFFFF (except CPU private area, through HSLVEXPPILL)
  - 0x58000000 to 0x5FFFFFFF (through HSLVEXPPIHL)
  - 0xE0100000 to 0xEFFFFFFF (through HSLVEXPPILL)
  - 0xF010000 to 0xFFFFFFFF (through HSLVEXPPILL)

## 5.10 Interrupt interfaces

This table lists the interrupt signals for use by the subsystem expansion. These connect to the interrupt controller of each processor within the system and to an External Wakeup Interrupt Controller (EWIC) associated with the processor.

**Table 5-4: Interrupt interfaces** 

| Signal name                                                                      | Width                                   | IN/<br>OUT | Description                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------|-----------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPU{0-<br><numcpu>}EXPIRQ[CPU{0 to<br/><numcpu>}EXPNUMIRQ-1:0]</numcpu></numcpu> | CPU{0 to<br><numcpu>}EXPNUMIRQ</numcpu> | IN         | These are Interrupt inputs from the subsystem expansion to the CPU{x} interrupt controller and the EWIC within the subsystem, where x is between 0 and NUMCPU.  Each core in the subsystem implements a configurable number of external interrupt lines and of these 32 are reserved for internal use and the rest are made available here. |
|                                                                                  |                                         |            | CPU{x}EXPNUMIRQ defines the number of interrupts made available as expansion interrupts for CPU{x} where x is between 0 to NUMCPU. Note that each bit CPU{x}EXPIRQ[n] is ultimately connected to IRQ[32+n] of the CPU{x}'s NVIC.                                                                                                            |
|                                                                                  |                                         |            | Note: When EXPLOGIC_PRESENT=1, the system timestamp generator (system counter) is integrated in SSE-300 expansion and its security violation interrupt is mapped to CPU0EXPIRQ[0]. See Arm® SSE-123 Example Subsystem Technical Reference Manual for more information about the system counter.                                             |
| CPU{0- <numcpu>}EXPNMI</numcpu>                                                  | 1                                       | IN         | This provides a non-maskable interrupt input from the subsystem expansion to the interrupt controller of CPU{x} and the EWIC within the subsystem, where x is between 0 and NUMCPU.  This input is merged with other non-maskable interrupt sources within the subsystem before it is seen by the NVIC of the processor core.               |

## 5.11 CPU Co-Processor interface

Each processor core of the subsystem can be configured to have a co-processor interface. If a CPU < n > co-processor interface exists, then HASCPU < n > CPIF = 1, for n in 0 to NUMCPU.

These interfaces reside in the PD\_CPU<n> power domain of their respective CPU, CPUCPU<n>CLK clock domain and nWARMRESETCPU<n> reset domain.



Because of the actual processor implementation, the reset output CPUOCPRESETOUTn is part of the co-processor interface that is dependent on **nWARMRESETCPU<n>**.

## 5.12 CPU Custom Datapath Extension Interface

If supported by the CPU Core, each CPU core of the subsystem can be configured to have a Custom Datapath Extension interface.

The method to determine if this interface is present is CPU dependent.

For the corresponding configurations, see Configurable render options.

If a CPU<n> Custom Datapath Extension interface exists, then the protocol of this interface is CPU dependent. These interfaces reside in the PD\_CPU<n> power domain of their respective CPU, the CPUCPU<n>CLK clock domain and the nWARMRESETCPU<n> reset domain.



Because of the actual CPU implementation, the reset can be a special output that is dependent at least on **nWARMRESETCPU<n>**.

For more details on the Custom Datapath Extensions and related interfaces, see Arm® Cortex®-M55 Technical Reference Manual.

### **5.13 TCM DMA Slave Interfaces**

A 64 bit Slave DMA interface per core provides system access only to Tightly Coupled Memories (TCM) internal to each core. Therefore, there are up to NUMCPU of these TCM DMA Slave Interfaces. The protocol of this interface is AMBA AXI-5.

These expansion interfaces are typically used together with DMA controllers to transfer data to and from the processor's TCM Interface.

This AXI interface supports the following properties:

- 32-bit address
- 64-bit data
- Normal Memory access only
- TrustZone Support enabled

The following table shows the TCM DMA slave interfaces memory map. Instruction TCM (ITCM) accesses are mapped into a single address space, while each 64 bit Data TCM (DTCM) access is mapped to two 32 bit wide DTCMs.

This interface resides in the PD\_SYS power domain, the interface is on **SYSSYSCLK** clock domain and **nWARMRESETSYS** reset domain.

Table 5-5: TCM DMA Interface Memory Map

| Start address | End address              | AxADDR[3:2] | TCM accessed |
|---------------|--------------------------|-------------|--------------|
| 0x00000000    | 0x00000000 + {ITCM size} | -           | ITCM         |
| 0x20000000    | 0x20000000 + {DTCM size} | 2b00        | DOTCM        |
| 0x20000000    | 0x20000000 + {DTCM size} | 2b01        | D1TCM        |
| 0x20000000    | 0x20000000 + {DTCM size} | 2b10        | D2TCM        |
| 0x20000000    | 0x20000000 + {DTCM size} | 2b11        | D3TCM        |



These addresses in the previous table are specific only for this interface. These TCMs will reside at address offsets in the main memory map and are private to each core. See CPU TCM memories. To make these TCMs visible to other cores and masters within the system, these interfaces must be mapped to expansion regions of the memory map. This is defined by the system integrator.

## 5.14 Debug and Trace Related Interfaces

The following sections describe the debug and trace related interfaces of SSE-300.

### 5.14.1 Debug Access Interface

When EXPLOGIC\_PRESENT = 0 and DEBUGLEVEL > 0, SSE-300 provides interfaces for debug access from an external debug access port or an external debug infrastructure. Depending on the HASCSS configuration, the interfaces provide the following:

• When HASCSS = 0, where there can only be one CPU, the CPU Debug D-AHB access interface is provided as an expansion interface. This allows you to drive the interface using a suitable CoreSight MEM-AP and provides debug access to the processor. For more information on the processor's D-AHB interface, see Arm® Cortex®-M55 Technical Reference Manual.

The interface is in the PD\_CPU0 power domain and resides in the COCPUCPU0CLK clock domain and nCOLDRESETCPU0 reset domain.

See HASCSS and DEBUGLEVEL for supported values.

### 5.14.2 Serial Wire JTAG Interface

When <EXPLOGIC\_PRESENT = 1> and <DEBUGLEVEL > 0>, the DAP-Lite2 is integrated in the subsystem expansion and SSE-300 provides a Serial Wire JTAG (SWJ) interface instead of the debug access interface to enable an off-chip debugger to connect.

The SWJ interface supports both Serial Wire Debug (SWD) and JTAG data link protocols on a single set of shared pins, with dynamic switching between the two protocols.

The interface is in PD\_AON power domain and resides in the **SWCLKTCK** clock domain and nPORESET and nTRST reset domains. SSE-300 does not support DEBUGLEVEL = 0.

See Trace port interface for more information about sharing JTAG-TDO with TRACESWO.

### 5.14.3 Debug Timestamp Interface

When EXPLOGIC\_PRESENT = 0 and DEBUGLEVEL = 2, SSE-300 provides 64-bit timestamp input. This timestamp is expected to be driven by a timestamp generator in the subsystem expansion.

Depending on the HASCSS configuration, the interfaces are as follows:

• When HASCSS = 0 where there can only be one processor core, the processor's debug global timestamp input, TSVALUEB[63:0], is provided as an expansion interface, CPUOTSVALUEB[63:0]. This is expected to be driven by a global timestamp generator. For more information about these interfaces, see Arm® Cortex®-M55 Technical Reference Manual.

This CPUOTSVALUEB[63:0] interface resides in the the following domains:

- PD DEBUG power domain
- DEBUGCPU0CLK clock domain
- nCOLDRESETDEBUGCPU0 reset domain

The **TSCLKCHANGE** input of the processor is provided as an expansion interface as **CPUOTSCLKCHANGE** to allow the processors to be notified of a change in timestamp clock ratio. This interface resides in the respective **DEBUGCPUOCLK** clock domain and **nCOLDRESETDEBUGCPU0** reset domain.

When EXPLOGIC\_PRESENT = 1 and DEBUGLEVEL = 2, a debug timestamp generator is integrated in the PD\_DEBUG power domain of the subsystem expansion and drives the **CPUOTSVALUEB[63:0]** input. The **CPUOTSCLKCHANGE** input is provided as an expansion interface when EXPLOGIC\_PRESENT = 1.

See HASCSS and DEBUGLEVEL for supported values.

### 5.14.4 Cross Trigger Channel Interface

When DEBUGLEVEL > 0, SSE-300 includes a set of cross-trigger channel inputs and cross-trigger channel outputs to allow you to expand the cross trigger infrastructure.

When HASCSS = 0 where there can only be one CPU, the cross-trigger channel interface of the CPU is provided as expansion interface, CPU{0-<NUMCPU>}CTICHIN[3:0] and CPU{0 to <NUMCPU>}CTICHOUT[3:0]. This interfaces resides in PD\_CPU{0 to <NUMCPU>} power domain and is synchronous to COCPUCPU{0 to <NUMCPU>}CLK, resides in the nCOLDRESETCPU{0 to <NUMCPU>} reset domain.

See HASCSS and DEBUGLEVEL for supported values.

### 5.14.5 Cross Trigger Interface

Since SSE-300 only supports HASCSS = 0, a cross trigger interface providing some trigger signals from an internal shared cross-trigger interface unit (CTI) does not exist.

### 5.14.6 Debug APB Expansion Interface

Since SSE-300 only supports HASCSS = 0, a debug APB expansion interface that could be used to add more debug functionality to a CoreSight SoC-600 based debug system does not exist.

### 5.14.7 CPU<n> External Peripheral Interface EPPB

Each CPU<n> in the system, where n is 0 to NUMCPU, provides an interface that allows you to add peripherals to the external PPB region that are private to each processor. This is a 32-bit AMBA4 APB interface for integration with additional CoreSight debug and trace components if required.

Data accesses are only allowed on each of these interfaces privately from each processor at address 0xE00040000 to 0xE00FFFFF. Some of these regions are already reserved and others are available for integration of additional debug components. For more information, see CPU Private Peripheral Bus region.

Each interface that is associated to CPU<n> resides in the PD\_CPU<n> power domain, the COCPUCPU<n> CLK clock domain and the nCOLDRESETCPU<n> reset domain.

### 5.14.8 ATB Trace Interfaces

When EXPLOGIC\_PRESENT = 0 and DEBUGLEVEL = 2 SSE-300 provides interfaces to output trace data to an expansion trace port interface unit (TPIU).

The number and types of interfaces varies depending on HASCSS configuration as follows:

- When HASCSS = 0 where there can only be one CPU, the processor provides its ITM ATB trace interface and ETM ATB trace interface directly for expansion
- The trace synchronisation and trigger interface of the processor is also provided to expansion

All Interfaces reside in the PD\_DEBUG power domain, the DEBUGCPU0CLK clock domain, and the nCOLDRESETDEBUGCPU0 reset domain.

- SSE-300 does not support HASCSS = 1
- SSE-300 does not support DEBUGLEVEL < 2</li>

### 5.14.9 Trace port interface

When EXPLOGIC\_PRESENT = 1 and DEBUGLEVEL = 2, the Cortex-M55 TPIU is integrated in the subsystem expansion and SSE-300 provides trace port interface instead of the ATB trace interfaces to enable a trace port analyzer to connect.

The Cortex-M55 TPIU can operate in clocked or asynchronous port mode depending on the SW configuration.

Table 5-6: Trace port interface

| Signal name        | Width | IN/<br>OUT | Description                                                                                                                            |
|--------------------|-------|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| TRACECLK           | 1     | OUT        | TRACECLK is used as a sampling clock for TRACEDATA[3:0] outside the system. Data changes in relation to both rising and falling edges. |
|                    |       |            | Note:                                                                                                                                  |
|                    |       |            | This clock must not be used anywhere in the system.                                                                                    |
| TRACEPORTSIZE[1:0] | 2     | OUT        | Indicates the enabled bits in TRACEDATA[3:0]:                                                                                          |
|                    |       |            | 2'b00 - TRACEDATA[0] enabled.                                                                                                          |
|                    |       |            | • 2'b01 - TRACEDATA[1:0] enabled.                                                                                                      |
|                    |       |            | • 2'b11 - TRACEDATA[3:0] enabled.                                                                                                      |
| TRACEDATA[3:0]     | 4     | OUT        | Output data for clocked port mode operation.                                                                                           |
| TRACESWO           | 1     | OUT        | Output data for asynchronous port mode operation.                                                                                      |
| SWOACTIVE          | 1     | OUT        | Indicates that TRACESWO is active.                                                                                                     |



For minimal pin count, the JTAG debug TDO output and the TPIU serial wire output, TRACESWO are overlaid on the same package pin. Because of this approach, the instrumentation trace is not accessible while the debug port is being used in a JTAG configuration. Serial wire debug and SWO can be used together at the same time. In order to implement TRACESWO shared with JTAG-TDO, the jtagactive output from the DAP-Lite2 is used to control the multiplexor. The following image shows the TRACESWO shared with JTAG-TDO implementation.

DAP-Lite2

Cortex-M55 TPIU

nTDOEN
(shared with SWOACTIVE)

TDO
(shared with TRACESWO)

Figure 5-1: TRACESWO shared with JTAG-TDO

### 5.14.10 Debug Authentication Interface

The following table lists the debug authentication signals of the subsystem. The input signals define the Debug Authentication signal values when they are not overridden by the internal secure debug configuration registers. The final debug authentication signals are then made available as outputs to the rest of the system.

These signals reside in the PD\_AON power domain.

Table 5-7: Debug authentication interface

SSE-300 subsystem expansion

| Name          | Width | IN/<br>OUT | Description                                              |
|---------------|-------|------------|----------------------------------------------------------|
| DBGENIN       | 1 bit | IN         | Debug Enable Input                                       |
| NIDENIN       | 1 bit | IN         | Non-Invasive Debug Enable Input                          |
| SPIDENIN      | 1 bit | IN         | Secure Privilege Invasive Debug Enable Input             |
| SPNIDENIN     | 1 bit | IN         | Secure Privilege Non-Invasive Debug Enable Input         |
| DAPACCENIN    | 1 bit | IN         | External Debug Access Enable Input                       |
| DAPDSSACCENIN | 1 bit | IN         | Debug Access Port to Debug System Access Enable Input    |
| DBGEN         | 1 bit | OUT        | Merged Debug Enable Output                               |
| NIDEN         | 1 bit | OUT        | Merged Non-Invasive Debug Enable Output                  |
| SPIDEN        | 1 bit | OUT        | Merged Secure Privilege Invasive Debug Enable Output     |
| SPNIDEN       | 1 bit | OUT        | Merged Secure Privilege Non-Invasive Debug Enable Output |

| Name        | Width | IN/<br>OUT | Description                                                                                                                                                                                                                                                                    |
|-------------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAPACCEN    | 1 bit | OUT        | Merged External Debug Access Enable Output                                                                                                                                                                                                                                     |
|             |       |            | Note: DAPACCEN is provided to allow the integrator to control a DAP interface directly to stop access even reaching the Debug Access Interface in the first place. This implementation allows disabling all debug access including the Armv8.1-M Unprivileged Debug Extension. |
| DAPDSSACCEN | 1 bit | OUT        | Merged Debug Access Port to Debug System Access Enable Output                                                                                                                                                                                                                  |

## 5.15 CryptoCell-Related expansion interfaces

SSE-300 does not support HASCRYPTO = 1. Therefore, no CryptoCell related interfaces are supported.

## 5.16 Security Control Expansion Signals

SSE-300 provides additional status and control signals to handle additional *Master Security Controllers* (MSC), *Memory Protection Controllers* (MPC), *Peripheral Protection Controllers* (PPC) and Bridges with write buffers in the expansion system. These signals allow all the components to be controlled using the same set of security control registers already implemented within the subsystem.

All signals in this section are synchronous to SYSSYSCLK. The SYSSYSCLK Q-Channel Device Interface is needed to control the availability of SYSSYSCLK. These signals reside in the PD\_SYS power domain and in the nWARMRESETSYS reset domain.



While SSE-300 defines a full set of signals in this document, many of these interfaces and some of their individual bits can be unimplemented (tied) or disabled. These are defined as configuration options in Configurable render options.

### 5.16.1 Memory Protection Controller Expansion

SSE-300 supports up to 16 MPCs to be added to the expansion system. The following signals allow the interrupts of the MPCs to be merged to the single MPC Combined interrupt internally.

Table 5-8: MPC Expansion Interrupt Status input.

| Name          | Width  | IN/<br>OUT | Description                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMPCEXPSTATUS | 16 bit |            | Interrupt Status inputs from all Expansion Memory Protection Controllers. These are associated to the SECMPCINTSTAT.SMPCEXP_STATUS register fields in the Secure Access Configuration Register Block and are used to raise an interrupt using the MPC Combined Interrupt.  Individual bits of this interface can be (tied) disabled, resulting in the associated register bit field being RAZ/WI. |

### 5.16.2 Peripheral Interconnect Peripheral Protection Controller Expansion

SSE-300 supports up to 4 additional PPCs to be added to the Peripheral Interconnect in the expansion system. The following signals are provided to control the PPCs.

Table 5-9: Peripheral Interconnect PPC Expansion Interface

| Name                | Width  | IN/<br>OUT | Description                                                                                                                                                                                                                                                                  |  |
|---------------------|--------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SPERIPHPPCEXPSTATUS | 4-bit  | IN         | Peripheral Interconnect PPC Interrupt Status Input. Each bit 'n' is to be connected to a single PPC <n> where n is 0 to 3.</n>                                                                                                                                               |  |
|                     |        |            | These are associated to the SECPPCINTSTAT.SPERIPHPPCEXP_STATUS register fields.                                                                                                                                                                                              |  |
|                     |        |            | Individual bit of this interface can be disabled if tied to 0, resulting in the associated register bit field being RAZ/WI.                                                                                                                                                  |  |
| SPERIPHPPCEXPCLEAR  | 4-bit  | OUT        | Peripheral Interconnect PPC Interrupt Clear Output. Each bit 'n' is to be connected to a single PPC <n> where n is 0 to 3.</n>                                                                                                                                               |  |
|                     |        |            | These are associated to the SECPPCINT CLR.SPERIPHPPCEXP_CLR register fields.                                                                                                                                                                                                 |  |
|                     |        |            | Individual bit of this interface can be disabled if the corresponding SPERIPHPPCEXPSTATUS bit is tied to 0, resulting in the the associated associated register bit field being RAZ/WI.                                                                                      |  |
| PERIPHNSPPCEXPO     | 16-bit | OUT        | Peripheral Interconnect PPC Non-secure Gating Control. This is a set of four 16-bit interfaces. Each interface connects to a PPC. When each bit 'm' of an interface is HIGH, it defines a specific <m> interface that the target PPC controls as Non-secure access only.</m> |  |
|                     |        |            | Each 16-bit signal <b>PERIPHNSPPCEXP<n></n></b> is driven by the PERIPHNSPPCEXP <n> register, where n is 0 to 3.</n>                                                                                                                                                         |  |
|                     |        |            | Individual bit of this interface can be (tied) disabled, resulting in the the associated register bit field being RAZ/WI.                                                                                                                                                    |  |
| PERIPHNSPPCEXP1     | 16-bit | OUT        | See description of <b>PERIPHNSPPCEXPO</b> .                                                                                                                                                                                                                                  |  |
| PERIPHNSPPCEXP2     | 16-bit | OUT        | See description of <b>PERIPHNSPPCEXPO</b> .                                                                                                                                                                                                                                  |  |
| PERIPHNSPPCEXP3     | 16-bit | OUT        | See description of <b>PERIPHNSPPCEXPO</b> .                                                                                                                                                                                                                                  |  |

| Name           | Width  | IN/<br>OUT | Description .                                                                                                                                                                                                                                                                                            |  |
|----------------|--------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PERIPHPPPCEXP0 | 16-bit | OUT        | Peripheral Interconnect PPC Privilege Gating Control. This is a set of four 16-bit interfaces. When each bit 'm' of an interface is HIGH it defines the <m> interface that the target PPC controls as both privilege and un-privilege access. Having a control bit LOW allows privilege access only.</m> |  |
|                |        |            | Each bit PERIPHPPPCEXP <n>[m] is selected from either PERIPHSPPPCEXP<n>[m] if PERIPHNSPPCEXP<n>[m] is '0' or PERIPHNSPPPCEXP<n>[m] otherwise, where n is 0 to 3</n></n></n></n>                                                                                                                          |  |
|                |        |            | Individual bit of this interface can be (tied) disabled, resulting in the the associated register bit field being RAZ/WI.                                                                                                                                                                                |  |
| PERIPHPPPCEXP1 | 16-bit | OUT        | See description of <b>PERIPHPPPCEXPO</b>                                                                                                                                                                                                                                                                 |  |
| PERIPHPPPCEXP2 | 16-bit | OUT        | See description of PERIPHPPPCEXPO                                                                                                                                                                                                                                                                        |  |
| PERIPHPPPCEXP3 | 16-bit | OUT        | See description of PERIPHPPPCEXPO                                                                                                                                                                                                                                                                        |  |

## 5.16.3 Main Interconnect Peripheral Protection Controller Expansion

SSE-300 can support up to four PPCs to be added to the Main Interconnect in the expansion system. The following signals are provided to control each PPC.

Table 5-10: Main Interconnect PPC Expansion Interface

| Name              | Width  | IN/<br>OUT | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|-------------------|--------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SMAINPPCEXPSTATUS | 4-bit  | IN         | Main Interconnect PPC Interrupt Status Input. Each bit 'n' is to be connected to a single PPC <n> where n is 0 to 3.  These are associated to the SECPPCINTST AT.SMAINPPCEXP_STATUS register field.  Individual bit of this interface can be disabled if tied to 0, resulting in the the associated register bit field being RAZ/WI.</n>                                                                                                                                                             |  |
| SMAINPPCEXPCLEAR  | 4-bit  | OUT        | Main Interconnect PPC Interrupt Clear Output. Each bit 'n' is to be connected to a single PPC <n> where n is 0 to 3.  These are associated to the SECPPCINTCLR SMAINPPCEXP_CLR register field.  Individual bit of this interface can be disabled if the corresponding SMAINPPCEXPSTATUS bit is tied to 0, resulting in the the associated register bit field being RAZ/WI.</n>                                                                                                                       |  |
| MAINNSPPCEXP0     | 16-bit | OUT        | Main Interconnect PPC Non-secure Gating Control. This is a set of four 16-bit interfaces. Each interface connects to a PPC. When each bit 'm' of an interface is HIGH, it defines the <m> interface that the target PPC controls as Non-secure access only.  Each 16-bit signal MAINNSPPCEXP<n> is driven by the MAINNSPPCEXP<n> register, where n is 0 to 3.  Individual bit of this interface can be (tied) disabled, resulting in the the associated register bit field being RAZ/WI.</n></n></m> |  |
| MAINNSPPCEXP1     | 16-bit | OUT        | See description of MAINNSPPCEXP0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| MAINNSPPCEXP2     | 16-bit | OUT        | See description of MAINNSPPCEXP0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| MAINNSPPCEXP3     | 16-bit | OUT        | See description of MAINNSPPCEXPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

| Name          | Width  | IN/<br>OUT | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAINPPPCEXP0  | 16-bit | OUT        | Main Interconnect PPC Privilege Gating Control. This is a set of four 16bit interfaces. When each bit 'm' of an interface is HIGH it defines the <m> interface that the target PPC controls as both Privileged and Unprivileged access. Having a control bit LOW allows privilige access only.  Each bit MAINPPPCEXP<n>[m] is selected from either MAINSPPPCEXP<n>[m] if MAINNSPPCEXP<n>[m] is '0' or MAINNSPPPCEXP<n>[m] otherwise, where n is 0 to 3.  Individual bits of this interface can be unimplemented or disabled resulting in the associated register bit fields that contributes to this control signal being RAZ/WI.</n></n></n></n></m> |
| MAINNPPPCEXP1 | 16-bit | OUT        | See description of MAINNPPPCEXPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MAINNPPPCEXP2 | 16-bit | OUT        | See description of MAINNPPPCEXPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MAINNPPPCEXP3 | 16-bit | OUT        | See description of MAINNPPPCEXPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## **5.16.4 Master Security Controller Expansion**

SSE-300 can support up to 16 additional *Master Security Controllers* (MSC) to be added to the expansion system. The following signals are provided to control each MSC.

**Table 5-11: MSC Expansion Interface** 

| Name          | Width  | IN/<br>OUT | Description                                                                                                                                                                                                                    |
|---------------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMSCEXPSTATUS | 16 bit | IN         | MSC Interrupt Status Input. Each bit 'n' is to be connected to a single MSC <n> where n is 0 to 15.</n>                                                                                                                        |
|               |        |            | These are associated with the SECMSCINTSTAT.SMSCEXP_STATUS register field.                                                                                                                                                     |
|               |        |            | Individual bits of this interface can be (tied) disabled, resulting in the associated register bit field being RAZ/WI.                                                                                                         |
| SMSCEXPCLEAR  | 16 bit | OUT        | MSC Interrupt Clear Output. Each bit 'n' is to be connected to a single MSC <n> where n is 0 to 15.</n>                                                                                                                        |
|               |        |            | These are associated with the SECMSCINTCLR.SMSCEXP_CLR register field.                                                                                                                                                         |
|               |        |            | Individual bits of this interface can be (tied) disabled, defined by the MSCEXPDIS parameter, resulting in the associated register bit field being RAZ/WI.                                                                     |
| NSMSCEXP      | 16 bit | OUT        | MSC Non-secure Configuration. Each bit 'n' is to be connected to a single MSC <n> where n is 0 to 15. Set HIGH to configure a master as Non-secure.</n>                                                                        |
|               |        |            | These are associated with the NSMSCEXP register.                                                                                                                                                                               |
|               |        |            | Individual bits of this interface can be (tied) disabled, defined by the MSCEXPDIS parameter. Any disabled bit of this interface are tied HIGH, resulting in the associated register bit field being read-asone/write-ignored. |

### 5.16.5 Bridge Buffer Error Expansion

SSE-300 supports up to 16 additional bridges with buffer error signalling to be added to the expansion system.

**Table 5-12: Bridge Error Interrupt Expansion Interface** 

| Name         | Width  | IN/<br>OUT | Description                                                                                                            |  |
|--------------|--------|------------|------------------------------------------------------------------------------------------------------------------------|--|
| BRGEXPSTATUS | 16 bit | IN         | Bridge Error Interrupt Status Input. Each bit 'n' is to be connected to a single bridge <n> where n is 0 to 15.</n>    |  |
|              |        |            | These are associated with the BRGINTCLR.BRGEXP_STATUS register field.                                                  |  |
|              |        |            | Individual bits of this interface can be (tied) disabled, resulting in the associated register bit field being RAZ/WI. |  |
| BRGEXPCLEAR  | 16 bit | OUT        | Bridge Error Interrupt Clear Output. Each bit 'n' is to be connected to a single bridge <n> where n is 0 to 15.</n>    |  |
|              |        |            | These are associated with the BRGINSTAT.BRGEXP_CLR register field.                                                     |  |
|              |        |            | Individual bits of this interface can be (tied) disabled, resulting in the associated register bit field being RAZ/WI. |  |

When EXPLOGIC\_PRESENT = 1, the XHB-500 AHB to AXI bridge is integrated in SSE-300 expansion and its interrupt output is mapped to BRGEXPSTATUS[0] and BRGEXPCLR[0]. The interrupt output goes HIGH for 1 clock cycle when the bridge receives an ERROR response for an early terminated write. A glue logic converts the pulse interrupt to level interrupt and handshakes with the expansion interface.

See Arm<sup>®</sup> CoreLink<sup>™</sup> XHB-500 Bridge Technical Reference Manual for more information about the XHB-500 AHB to AXI bridge.

### 5.16.6 Other Security Expansion Signals

The following table list other signals that are related to Security that is needed by PPCs and MSCs in the expansion system.

**Table 5-13: Other Security Expansion Signals** 

| Name       | Width |     | Description                                                                          |  |  |  |
|------------|-------|-----|--------------------------------------------------------------------------------------|--|--|--|
|            |       | OUT |                                                                                      |  |  |  |
| SECRESPCFG | 1 bit | OUT | This signal configures how to respond to an access when a security violation occurs. |  |  |  |
|            |       |     | • 0 - RAZ/WI                                                                         |  |  |  |
|            |       |     | • 1 - Bus error                                                                      |  |  |  |
|            |       |     | The SECRESPCFG register controls this signal.                                        |  |  |  |

| Name           | Width | IN/<br>OUT | Description                                                                                                                                                                                                                                                                             |
|----------------|-------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCWAITn       | 1 bit | OUT        | to the system through the Main and Peripheral Interconnect Expansion interfaces.  • 1 - No gating                                                                                                                                                                                       |
|                |       |            | 0 - Access gated  The BUSWAIT register controls this signal.                                                                                                                                                                                                                            |
| ACCWAITNSTATUS | 1 bit | IN         | This status signal is used to indicate the current state of any external gating unit that might be used to block access to the system through the Main and Peripheral Interconnect Expansion interfaces  1 - No gating  0 - Access gated  Use the BUSWAIT register to read this signal. |

## 5.17 Clock configuration interface

Description of the clock configuration interface.

SSE-300 provides control and status signals for the input clocks **AONCLK**, **CPU0CLK**, and **SYSCLK**. These signals support the configuration of generators or dividers that might exist in the expansion logic. No divider is implemented in the subsystem.

The reset value of the control signals is configurable.

Each reset value must allow the related input clock to run at a default clock rate that allows the subsystem to boot without software configuring the related registers.

All signals in this interface reside in the PD\_AON power domain, are synchronous to **AONCLK** and are in the **nCOLDRESETAON** reset domain.

Since **SYSCLK** and **CPUOCLK** must have the same frequency, the CPUOCLKCFG output must not be used in the expansion logic, and the CPUOCLKCFGSTATUS input must be tied to LOW.

The register fields CLK\_CFG0.CPU0CLKCFG and CLK\_CFG0.CPU0CLKCFGSTATUS should not be used either.

Table 5-14: Clock configuration interface signals

| Signal          | Direction | Description                                                                                                                                                                                                     |  |  |  |
|-----------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CPU0CLKCFG[3:0] | Output    | These control signals provide a set of four-bit signals that allows the system to configure an external clock generation logic that drives CPUOCLK.  The CLK_CFGO.CPUOCLKCFG register field drives this signal. |  |  |  |
| drive.          |           | Four-bit status signals, used to read the status of any external clock generation logic that they drive.  Use the CLK_CFGO.CPUOCLKCFGSTATUS register field to read the values on this interface.                |  |  |  |

| Signal               | Direction | Description                                                                                                                                     |
|----------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| SYSCLKCFG[3:0]       | Output    | This control signal provides a four-bit signal that allows the system to configure an external clock generation logic that drives SYSCLK clock. |
|                      |           | The CLK_CFG1.SYSCLKCFG register field drives this signal.                                                                                       |
| SYSCLKCFGSTATUS[3:0] | Input     | A four-bit status signal, used to read the status of any external clock generation logic that drives SYSCLK clock.                              |
|                      |           | Use the CLK_CFG1.SYSCLKCFGSTATUS register field to read the values on this interface.                                                           |
| AONCLKCFG[3:0]       | Output    | This control signal provides a four-bit signal that allows the system to configure an external clock generation logic that drives AONCLK clock. |
|                      |           | The CLK_CFG1.AONCLKCFG register field drives this signal.                                                                                       |
| AONCLKCFGSTATUS[3:0] | Input     | A four-bit status signal, used to read the status of any external clock generation logic that drives AONCLK clock.                              |
|                      |           | Use the CLK_CFG1.AONCLKCFGSTATUS register field to read the values on this interface.                                                           |

# 5.18 Miscellaneous Signals

The following table lists miscellaneous signals available for SSE-300.

Table 5-15: Other Miscellaneous Top-Level Signals

| Signal name        | Width | IN/<br>OUT | Sync to        | Power<br>domain | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|-------|------------|----------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCKNSVTOR <n></n> | 1     | IN         | CPU <n>CLK</n> | PD_CPU <n></n>  | Disables writes to the VTOR_NS register. For more information on this register, see Arm® v8-M Architecture Reference Manual. Asserting this signal prevents changes to the Non-secure vector table base address. This signal can be changed dynamically.  Note that when SECEXT=0, only VTOR_NS exists and this signal is used to disable writes to the register. When HIGH, disables writes to the CPU <n> Non-secure vector table base address register, VTOR_NS, where n is 0 to NUMCPU.  If not used, tie to LOW.  Tying this signal HIGH causes loss of vector table control.</n> |

| Signal name            | Width | IN/<br>OUT | Sync to        | Power<br>domain | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|-------|------------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCKNSMPU <n></n>      | 1     | IN         | CPU <n>CLK</n> | PD_CPU <n></n>  | This signal disables writes to registers that are associated with the Non-secure MPU region from software or from a debug agent connected to the CPU <n> (where n is 0 to NUMCPU).  MPU_CTRL_NS  MPU_RNR_NS  MPU_RBAR_NS  MPU_RBAR_NS  MPU_RBAR_A_NSn  MPU_RLAR_A_NSn  MPU_RLAR_A_NSn  For more information on these registers, see Arm® v8-M Architecture Reference Manual.  Asserting this signal prevents changes to the memory regions which have been programmed in the Non-secure MPU. All writes to the registers are ignored.  This signal has no effect if the processor has not been configured with support for Non-secure MPU regions.  This signal can be changed dynamically.  Note:  If you want the registers unlocked, tie all bits LOW, otherwise drive with external logic. Tying this signal HIGH causes loss of Non-secure memory protection control.</n> |
| CPU <n>WAITCLR</n>     | 1     | IN         | SYSCLK         | PD_AON          | When HIGH, clears the register fields CPUWAIT.CPU <n>WAIT, where n is 0 to NUMCPU. This allows an external entity to release a processor that is already waited by CPUWAIT to start execution.  Once set to 1 this signal must be held at 1 until CPU<n>WAITCLRRESP is 1.  Note: While this is clocked using SYSCLK, this input can optionally be implemented as an asynchronous input.</n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPU <n>WAITCLRRESP</n> | 1     | OUT        | SYSCLK         | PD_AON          | This signal provides a response to the CPU <n>WAITCLR request, where n is 0 to NUMCPU. When CPU<n>WAITCLR is 1 and CPUWAIT.CPU<n>WAIT is 0, this signal is set to 1 until CPU<n>WAITCLR request goes 0.</n></n></n></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NSWDRSTREQSTATUS       | 1     | OUT        | SYSCLK         | PD_AON          | Non-secure watchdog reset request status. This signal is 1 when the Non-secure Watchdog is raising a reset request and RESET_MASK.NSWDRSTREQ_EN is 1. Once set to high it will not return to low unless a reset clearing this status occurs.  This port is optional but must exist when COLDRESET_MODE = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SWDRSTREQSTATUS        | 1     | OUT        | SYSCLK         | PD_AON          | Secure watchdog reset request status. This signal is 1 when the Secure Watchdog is raising a reset request. Once set to high it will not return to low unless a reset clearing this status occurs.  This port is optional but must exist when COLDRESET_MODE = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Signal name             | Width | IN/<br>OUT | Sync to        | Power<br>domain | Description                                                                                                                                                                                                 |
|-------------------------|-------|------------|----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SSWDRSTREQSTATUS        | 1     | OUT        | SYSCLK         | PD_AON          | SLOWCLK Secure watchdog reset request status. This signal is 1 when the SLOWCLK Watchdog is raising a reset request. Once set to high it will not return to low unless a reset clearing this status occurs. |
|                         |       |            |                |                 | This port is optional but must exist when COLDRESET_MODE = 1.                                                                                                                                               |
| RESETREQSTATUS          | 1     | OUT        | SYSCLK         | PD_AON          | Hardware Reset Request status. This signal is set to 1 if RESETREQ input is 1. Once set to high, it must not be cleared unless the system is reset.                                                         |
| SWRSTREQSTATUS          | 1     | OUT        | SYSCLK         | PD_AON          | Software Reset Request Status. This signal is 1 when SWRESET.SWRESETREQ is set to 1. Once set to high, it must not be cleared unless the system is reset while restores the register field to 0.            |
|                         |       |            |                |                 | This port is optional but must exist when COLDRESET_MODE = 1.                                                                                                                                               |
| CPU <n>LOCKUP</n>       | 1     | OUT        | AONCLK         | PD_AON          | Processor Lockup Status. There is one bit per Processor. Each bit indicates if the associated CPU <n> has lockup where n is 0 to NUMCPU. This signal is an output directly from CPU<n>.</n></n>             |
| CPU <n>HALTED</n>       | 1     | OUT        | CPU <n>CLK</n> | PD_CPU <n></n>  | Processor Halted Status. There is one bit per Processor. Each bit indicates if the associated CPU <n> has halted where n is 0 to NUMCPU. This signal is an output directly from CPU<n>.</n></n>             |
| CPU <n>EDBGRQ</n>       | 1     | IN         | CPU <n>CLK</n> | PD_CPU <n></n>  | External request for CPU <n> to enter halt mode where n is 0 to to NUMCPU. This signal is an input directrly to CPU<n>.</n></n>                                                                             |
| CPU <n>DBGRESTART</n>   | 1     | IN         | CPU <n>CLK</n> | PD_CPU <n></n>  | Request for for CPU <n> to perform synchronized exit from halt mode where n is 0 to NUMCPU. This signal is an input directly to CPU<n>.</n></n>                                                             |
| CPU <n>DBGRESTARTED</n> | 1     | OUT        | CPU <n>CLK</n> | PD_CPU <n></n>  | Acknowledges <b>CPU<n>DBGRESTART</n></b> where n is 0 to NUMCPU. This signal is an output directly from CPU <n>.</n>                                                                                        |

# 6 Programmer Model

The following sections describe the programmer model of SSE-300.

## 6.1 System Memory Map Overview

High Level System Address Map shows the high-level view of the memory map defined by SSE-300. This memory map is divided into Secure and Non-secure regions. The memory alternates between Secure and Non-secure regions on 256Mbyte regions, with only a few address areas exempted from security mapping because they are related to debug functionality.

To provide memory blocks and peripherals that can be mapped either as Secure or Non-secure using software, several address regions are aliased as shown in High Level System Address Map. Software can then choose to allocate each memory block or peripheral as Secure or Non-secure using protection controllers. The *Implementation Defined Attribution Unit* (IDAU) Region Values specify each area's Security along with its ID and each region's *Non-secure Callable* (NSC) settings.

Except when specifically stated, the following will occur:

- All access to unmapped regions of the memory will result in bus-error response
- When accessing unmapped address space within a mapped region taken by a peripheral, the
  access will be result in Read-As-Zero and Write-Ignored (RAZ/WI) except when specifically stated
  otherwise
- Any accesses that result in security violations will either RAZ/WI or return a bus error response
  as defined by the SECRESPCFG register setting

Some regions of memory map are reserved to maintain compatibility with past and future subsystems. Other areas are mapped to Expansion interfaces.

All accesses targeting populated Volatile Memory regions within 0x21000000 to 0x21FFFFFF and 0x31000000 to 0x31FFFFFF support exclusive access since they implement exclusive access monitoring, provided the accesses are from:

- CPUs
- Expansion masters via the Slave Main Expansion Interfaces

Exclusive access is not supported for other regions implemented within the subsystem. For regions that reside in user expansion areas, exclusive access support is defined by the user expansion logic. If an exclusive access tries to access a region that does not support exclusive accesses, these accesses will not be monitored for exclusive access and might still update their target memory locations regardless of their associated exclusive responses.

### 6.1.1 High Level System Address Map

Security values do not define Privileged or Unprivileged accessibility. These are defined by the PPC, or by the register blocks that is mapped to each area. See lower level details of each area for details. The System Address Map defines the following values for accessibility:

#### S

Secure Access

#### NS

Non-Secure

The NSC values are defined through registers in the Secure Access Configuration registers.

If HASCRYPTO = 0, the CrytpoCell NVM Code region is reserved and will respond with bus error.

#### 0x00000000 - 0x00FFFFFF

- Size: 16MB
- Region Name: ITCM
- Description: CPU Instruction TCM. See CPU TCM memories.
- Alias with Row ID: 5
- IDAU Region Values
  - Security: NS
  - IDAUID: 0
  - NSC: 0

#### 0x01000000 - 0x0DFFFFFF

- Size: 208MB
- Region Name: Code Expansion
- Description: Master Code Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: 6
- IDAU Region Values
  - Security: NS
  - IDAUID: 0
  - NSC: 0

#### 0x0E000000 - 0x0E001FFF

- Size: 8KB
- Region Name: CrytpoCell NVM Code
- Description: CryptoCell Code Access to NVM<sup>3</sup>.

- Alias with Row ID: 7
- IDAU Region Values
  - Security: NS
  - IDAUID: 0
  - NSC: 0

#### 0x0E002000 - 0x0FFFFFFF

- Size: -
- Region Name: Reserved
- Description: Reserved
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 0
  - NSC: 0

#### 0x10000000 - 0x10FFFFFF

- Size: 16MB
- Region Name: ITCM
- Description: CPU Instruction TCM. See CPU TCM memories.
- Alias with Row ID: 1
- IDAU Region Values
  - Security: S
  - IDAUID: 1
  - NSC: CODENSC

#### 0x11000000 - 0x1DFFFFFF

- Size: 208MB
- Region Name: Code Expansion
- Description: Master Code Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: 2
- IDAU Region Values
  - Security: S
  - IDAUID: 1
  - NSC: CODENSC

#### 0x1E000000 - 0x1E001FFF

• Size: 8KB

Region Name: CrytpoCell NVM Code

Description: CryptoCell Code Access to NVM<sup>3</sup>.

• Alias with Row ID: 3

IDAU Region Values

Security: S

• IDAUID: 1

NSC: CODENSC

#### 0x1E002000 - 0x1FFFFFFF

• Size: -

Region Name: Reserved

• Description: Reserved

• Alias with Row ID: -

• IDAU Region Values

Security: S

• IDAUID: 1

NSC: CODENSC

### 0x20000000 - 0x20FFFFFF

Size: 16MB

Region Name: DTCM

• Description: CPU Data TCM. See CPU TCM memories.

• Alias with Row ID: 13

IDAU Region Values

Security: NS

• IDAUID: 2

NSC: 0

#### 0x21000000 - 0x21FFFFFF

Size: 16MB

Region Name: Volatile Memory

• Description: Internal Multi-bank Volatile Memory. See Volatile Memory Region.

Alias with Row ID: 14

- IDAU Region Values
  - Security: NS
  - IDAUID: 2
  - NSC: 0

#### 0x22000000 - 0x27FFFFFF

- Size: 96MB
- Region Name: Reserved
- Description: Reserved
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 2
  - NSC: 0

### 0x28000000 - 0x2FFFFFFF

- Size: 128MB
- Region Name: Main Expansion
- Description: Master Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 2
  - NSC: 0

### 0x30000000 - 0x30FFFFFF

- Size: 16MB
- Region Name: DTCM
- Description: CPU Data TCM. See CPU TCM memories.
- Alias with Row ID: 9
- IDAU Region Values
  - Security: S
  - IDAUID: 3
  - NSC: RAMNSC

### 0x31000000 - 0x31FFFFFF

• Size: 16MB

- Region Name: Volatile Memory
- Description: Internal Multi-bank Volatile Memory. See Volatile Memory Region.
- Alias with Row ID: 10
- IDAU Region Values
  - Security: S
  - IDAUID: 3
  - NSC: RAMNSC

#### 0x32000000 - 0x37FFFFFF

- Size: 96MB
- Region Name: Reserved
- Description: Reserved
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: 3
  - NSC: RAMNSC

#### 0x38000000 - 0x3FFFFFFF

- Size: 128MB
- Region Name: Main Expansion
- Description: Master Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: 3
  - NSC: RAMNSC

### 0x40000000 - 0x4000FFFF

- Size: 64KB
- Region Name: Peripherals
- Description: Peripheral Region. See Peripheral Region.
- Alias with Row ID: 27

- IDAU Region Values
  - Security: NS
  - IDAUID: 4
  - NSC: 0

#### 0x40010000 - 0x4001FFFF

- Size: 64KB
- Region Name: Private CPU
- Description: CPU Private Peripheral Region. See Processor Private Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 4
  - NSC: 0

#### 0x40020000 - 0x4003FFFF

- Size: 128KB
- Region Name: System Control
- Description: System Control Peripheral Region. See System Control Peripheral Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 4
  - NSC: 0

### 0x40040000 - 0x400FFFFF

- Size: 768KB
- Region Name: Peripherals
- Description: Peripheral Region. See Peripheral Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 4
  - NSC: 0

### 0x40100000 - 0x47FFFFF

• Size: 127MB

- Region Name: Peripheral Expansion
- Description: Master Peripheral Expansion Interface. See Peripheral Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 4
  - NSC: 0

### 0x48000000 - 0x4800FFFF

- Size: 64KB
- Region Name: Peripherals
- Description: Peripheral Region. See Peripheral Region.
- Alias with Row ID: 32
- IDAU Region Values
  - Security: NS
  - IDAUID: 4
  - NSC: 0

### 0x48010000 - 0x4801FFFF

- Size: 64KB
- Region Name: Private CPU
- Description: CPU Private Peripheral Region. See Processor Private Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 4
  - NSC: 0

### 0x48020000 - 0x4803FFFF

- Size: 128KB
- Region Name: System Control
- Description: System Control Peripheral Region. See System Control Peripheral Region.
- Alias with Row ID: -

- IDAU Region Values
  - Security: NS
  - IDAUID: 4
  - NSC: 0

### 0x48040000 - 0x480FFFFF

- Size: 768KB
- Region Name: Peripherals
- Description: Peripheral Region. See Peripheral Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 4
  - NSC: 0

### 0x48100000 - 0x4FFFFFF

- Size: 127MB
- Region Name: Peripheral Expansion
- Description: Master Peripheral Expansion Interface. See Peripheral Interconnect Expansion Interfaces and Peripheral Expansion Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 4
  - NSC: 0

# 0x50000000 - 0x5000FFFF

- Size: 64KB
- Region Name: Peripherals
- Description: Peripheral Region. See Peripheral Region.
- Alias with Row ID: 17
- IDAU Region Values
  - Security: S
  - IDAUID: 5
  - NSC: 0

#### 0x50010000 - 0x5001FFFF

- Size: 64KB
- Region Name: Private CPU
- Description: CPU Private Peripheral Region. See Processor Private Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: 5
  - NSC: 0

### 0x50020000 - 0x5003FFFF

- Size: 128KB
- Region Name: System Control
- Description: System Control Peripheral Region. See System Control Peripheral Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: 5
  - NSC: 0

### 0x50040000 - 0x500FFFFF

- Size: 768KB
- Region Name: Peripherals
- Description: Peripheral Region. See Peripheral Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: 5
  - NSC: 0

### 0x50100000 - 0x57FFFFFF

- Size: 127MB
- Region Name: Peripheral Expansion
- Description: Master Peripheral Expansion Interface. See Peripheral Interconnect Expansion Interfaces.
- Alias with Row ID: -

- IDAU Region Values
  - Security: S
  - IDAUID: 5
  - NSC: 0

### 0x58000000 - 0x5800FFFF

- Size: 64KB
- Region Name: Peripherals
- Description: Peripheral Region. See Peripheral Region.
- Alias with Row ID: 22
- IDAU Region Values
  - Security: S
  - IDAUID: 5
  - NSC: 0

### 0x58010000 - 0x5801FFFF

- Size: 64KB
- Region Name: Private CPU
- Description: Processor Private Peripheral Region. See Processor Private Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: 5
  - NSC: 0

### 0x58020000 - 0x5803FFFF

- Size: 128KB
- Region Name: System Control
- Description: System Control Peripheral Region. See System Control Peripheral Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: 5
  - NSC: 0

### 0x58040000 - 0x580FFFFF

• Size: 768KB

- Region Name: Peripherals
- Description: Peripheral Region. See Peripheral Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: 5
  - NSC: 0

#### 0x58100000 - 0x5FFFFFFF

- Size: 127MB
- Region Name: Peripheral Expansion
- Description: Master Peripheral Expansion Interface. See Peripheral Interconnect Expansion Interfaces and Peripheral Expansion Region.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: 5
  - NSC: 0

### $0 \times 600000000 - 0 \times 6 FFFFFFF$

- Size: 256MB
- Region Name: Main Expansion
- Description: Master Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 6
  - NSC: 0

### 0x70000000 - 0x7FFFFFF

- Size: 256MB
- Region Name: Main Expansion
- Description: Master Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: -

- IDAU Region Values
  - Security: S
  - IDAUID: 7
  - NSC: 0

### 0x80000000 - 0x8FFFFFFF

- Size: 256MB
- Region Name: Main Expansion
- Description: Master Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: 8
  - NSC: 0

### 0x90000000 - 0x9FFFFFF

- Size: 256MB
- Region Name: Main Expansion
- Description: Master Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: 9
  - NSC: 0

### 0xA0000000 - 0xAFFFFFFF

- Size: 256MB
- Region Name: Main Expansion
- Description: Master Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: A
  - NSC: 0

### 0xB0000000 - 0xBFFFFFF

Size: 256MB

- Region Name: Main Expansion
- Description: Master Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: B
  - NSC: 0

#### 0xC0000000 - 0xCFFFFFF

- Size: 256MB
- Region Name: Main Expansion
- Description: Master Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: NS
  - IDAUID: C
  - NSC: 0

### 0xD0000000 - 0xDFFFFFF

- Size: 256MB
- Region Name: Main Expansion
- Description: Master Main Expansion Interface. See Main Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: D
  - NSC: 0

#### 0xE0000000 - 0xE00FFFFF

- Size: 1MB
- Region Name: PPB
- Description: CPU Private Peripheral Bus Region. Local to Each CPU. See CPU Private Peripheral Bus Region.
- Alias with Row ID: -
- IDAU Region Values: Exempt

#### 0xE0100000 - 0xE01FFFFF

• Size: 1MB

Region Name: Debug System

• Description: Debug System Access Region. See Debug System Access Region.

Alias with Row ID: 49

IDAU Region Values

Security: NS

IDAUID: F

• NSC: 0

### 0xE0200000 - 0xEFFFFFF

• Size: 254MB

• Region Name: Peripheral Expansion

• Description: Master Peripheral Expansion Interface. See Peripheral Interconnect Expansion Interfaces.

• Alias with Row ID: -

IDAU Region Values

Security: NS

• IDAUID: E

• NSC: 0

### 0xF0000000 - 0xF00FFFFF

• Size: 1MB

• Region Name: Reserved

• Description: Reserved

Alias with Row ID: -

• IDAU Region Values: Exempt

### 0xF0100000 - 0xF01FFFFF

Size: 1MB

Region Name: Debug System

• Description: Debug System Access Region. See Debug System Access Region.

Alias with Row ID: 46

- IDAU Region Values
  - Security: S
  - IDAUID: F
  - NSC: 0

### 0xF0200000 - 0xFFFFFFF

- Size: 254MB
- Region Name: Peripheral Expansion
- Description: Master Peripheral Expansion Interface. See Peripheral Interconnect Expansion Interfaces.
- Alias with Row ID: -
- IDAU Region Values
  - Security: S
  - IDAUID: F
  - NSC: 0

# 6.2 CPU TCM memories

The CPUs in SSE-300 are configured to implement *Tightly Coupled Memories* (TCM) for Instruction and Data. These memories reside in the following location from the perspective of each CPU core:

- 0x0000000 to 0x00FFFFFF and 0x10000000 to 0x10FFFFFF for Instruction TCM. Both regions are aliased, and each will provide up to 16MB of TCM space.
- 0x20000000 to 0x20FFFFFF and 0x30000000 to 0x30FFFFFF for Data TCM. Both regions are aliased, and each will provide up to 16MB of TCM space.

Each CPU has access only to its own local TCMs and masters on the Main Interconnect and Peripheral Interconnect do not have access to these TCMs. However, each CPU provides TCM DMA Slave Interfaces to allow expansion masters to access the TCMs. Refer to TCM DMA slave interfaces.

All TCMs start at the base address of their respective regions. Unused memory areas in those regions are reserved, and they return a bus error response when accessed.

# 6.3 Volatile Memory Region

SSE-300 supports up to four internal *Volatile Memory* (VM) Banks but it is limited to two Volatile Memory Banks. These are implemented as SRAMs.

All VM banks in the system are of the same size. They form a contiguous memory area up to 16MB. This memory area is aliased onto both the Secure and Non-secure memory regions. A

memory protection controller per VM divides the VM into pages and determines where each page resides in either the Secure or Non-secure regions. Any unused areas within that 16MB region are reserved.

The following table shows an example where two memory banks are configured with 256Kbytes in size each.

Table 6-1: Example Volatile Memory region address map

| Row ID | Address - from | Address - to | Size  | Region name | Description                             | Alias with row ID | Security <sup>1 2</sup> |
|--------|----------------|--------------|-------|-------------|-----------------------------------------|-------------------|-------------------------|
| 1      | 0x21000000     | 0x2103FFFF   | 256KB | VM0         | Maps to Internal Volatile Memory Bank 0 | 5                 | NS-MPC                  |
| 2      | 0x21040000     | 0x2107FFFF   | 256KB | VM1         | Maps to Internal Volatile Memory Bank 1 | 6                 | NS-MPC                  |
| 3      | 0x21080000     | 0x210FFFFF   | 512KB | Reserved    | Reserved                                | -                 | -                       |
| 4      | 0x21100000     | 0x21FFFFFF   | 15MB  | Reserved    | Reserved                                | -                 | -                       |
| 5      | 0x31000000     | 0x3103FFFF   | 256KB | VM0         | Maps to Internal Volatile Memory Bank 0 | 1                 | S-MPC                   |
| 6      | 0x31040000     | 0x3107FFFF   | 256KB | VM1         | Maps to Internal Volatile Memory Bank 1 | 2                 | S-MPC                   |
| 7      | 0x31080000     | 0x310FFFFF   | 512KB | Reserved    | Reserved                                | -                 | -                       |
| 8      | 0x31100000     | 0x31FFFFFF   | 15MB  | Reserved    | Reserved                                | -                 | -                       |

- 1. NS-MPC: Non-secure access only, gated by a MPC. S-MPC: Secure access only, gated by a MPC.
- 2. Based on MPCs, where block size is determined by VMMPCBLKSIZE.

# 6.4 Peripheral Region

The Peripheral Regions are memory regions where peripherals of the system reside. There are eight regions in total as follows:

### 0x40000000 to 0x4000FFFF

Non-secure region for low-latency peripherals that are expected to be aliased in its associated Secure region, 0x50000000 to 0x5000FFFF.

#### 0x40040000 to 0x400FFFFF

Non-secure region for low-latency peripherals that are expected to be not aliased.

### 0x48000000 to 0x4800FFFF

Non-secure region for high-latency peripherals that are expected to be aliased in its associated Secure region, 0x58000000 to 0x5800FFFF.

#### 0x48040000 to 0x480FFFFF

Non-secure region for high-latency peripherals that are expected to be not aliased.

#### 0x50000000 to 0x5000FFFF

Secure region for low-latency peripherals that are expected to be aliased in its associated Non-secure region, 0x40000000 to 0x4000FFFF.

#### 0x50040000 to 0x500FFFFF

Secure region for low-latency peripherals that are expected to be not aliased.

### 0x58000000 to 0x5800FFFF

Secure region for high-latency peripherals that are expected to be aliased in its associated Non-secure region, 0x48000000 to 0x4800FFFF.

### 0x58040000 to 0x580FFFFF

Secure region for high-latency peripherals that are expected to be not aliased.

For regions that are aliased to both Secure and Non-secure region, the final mapping of a peripheral in these regions to either Secure or Non-secure region is determined by Peripheral Protection Controller (PPC) that are programmed using Secure Access Configuration registers. See Secure access configuration register block.



Peripherals implemented in these regions support 32 bit R/W accesses. Any Byte and Half word access will result in UNPREDICTABLE behavior, unless otherwise stated.

The following table shows the memory map of the Peripheral Regions.

Table 6-2: Peripheral Region Address Map

| Row | Address    |            | Size | Region name       | Description                                                                                            | Alias       | Security <sup>1</sup> |
|-----|------------|------------|------|-------------------|--------------------------------------------------------------------------------------------------------|-------------|-----------------------|
| ID  | From       | То         |      |                   |                                                                                                        | with row ID |                       |
| 1   | 0x40000000 | 0x40000FFF | 4KB  | MHU0 <sup>3</sup> | Message Handling Unit 0. See Message Handling Unit registers.                                          | 20          | NS-PPC                |
| 2   | 0x40001000 | 0x40001FFF | 4KB  | MHU1 <sup>3</sup> | Message Handling Unit 1. See Message Handling Unit registers.                                          | 21          |                       |
| 3   | 0x40002000 | 0x4000FFFF | -    | Reserved          | Reserved. (RAZ/WI)                                                                                     | -           | -                     |
| 4   | 0x40040000 | 0x4007FFFF | -    | Reserved          | Reserved                                                                                               | -           | -                     |
| 5   | 0x40080000 | 0x40080FFF | 4KB  | NSACFG            | Non-secure Access Configuration Register Block. See<br>Non-secure Access Configuration Register Block. | -           | NS                    |
| 8   | 0x40081000 | 0x4008FFFF | -    | Reserved          | Reserved (RAZ/WI)                                                                                      | -           | -                     |
| 9   | 0x40090000 | 0x40093FFF | 16KB | CryptoCell312     | CryptoCell 312                                                                                         | -           | NS                    |
| 10  | 0x40094000 | 0x400FFFFF | -    | Reserved          | Reserved                                                                                               | -           | -                     |
| 11  | 0x48000000 | 0x48000FFF | 4KB  | TIMERO            | Timer 0. See Timestamp Timers.                                                                         | 33          | NS_PPC                |
| 12  | 0x48001000 | 0x48001FFF | 4KB  | TIMER1            | Timer 1. See Timestamp Timers.                                                                         | 34          |                       |
| 13  | 0x48002000 | 0x48002FFF | 4KB  | TIMER2            | Timer 2. See Timestamp Timers.                                                                         | 35          |                       |
| 14  | 0x48003000 | 0x48003FFF | 4KB  | TIMER3            | Timer 3. See Timestamp Timers.                                                                         | 36          |                       |
| 15  | 0x48004000 | 0x4800FFFF | -    | Reserved          | Reserved (RAZ/WI)                                                                                      | -           | -                     |
| 16  | 0x48040000 | 0x48040FFF | 4KB  | NSWDCTRL          | Non-secure Watchdog Control Frame. See Timestamp Watchdogs.                                            | -           | NS                    |
| 17  | 0x48041000 | 0x48041FFF | 4KB  | NSWDREF           | Non-secure Watchdog Refresh Frame. See Timestamp Watchdogs.                                            | -           |                       |
| 18  | 0x48042000 | 0x4804FFFF | -    | Reserved          | Reserved (RAZ/WI)                                                                                      | -           | -                     |
| 19  | 0x48050000 | 0x480FFFFF | -    | Reserved          | Reserved                                                                                               | -           | -                     |
| 20  | 0x50000000 | 0x50000FFF | 4KB  | MHU0              | Message Handling Unit O. See Message Handling Unit.                                                    | 1           | S_PPC                 |

| Row | Address    |            | Size | Region name         | Description                                                                                 | Alias       | Security <sup>1</sup> |
|-----|------------|------------|------|---------------------|---------------------------------------------------------------------------------------------|-------------|-----------------------|
| ID  | From       | То         |      |                     |                                                                                             | with row ID |                       |
| 21  | 0x50001000 | 0x50001FFF | 4KB  | MHU1                | Message Handling Unit 1. See Message Handling Unit.                                         | 2           |                       |
| 22  | 0x50002000 | 0x5000FFFF | -    | Reserved            | Reserved (RAZ/WI)                                                                           | -           | -                     |
| 23  | 0x50040000 | 0x5007FFFF | -    | Reserved            | Reserved                                                                                    | -           | -                     |
| 24  | 0x50080000 | 0x50080FFF | 4KB  | SACFG               | Secure Access Configuration Register Block. See Secure Access Configuration Register Block. | -           | S                     |
| 25  | 0x50081000 | 0x50082FFF | -    | Reserved            | Reserved (RAZ/WI)                                                                           | -           | -                     |
| 26  | 0x50083000 | 0x50083FFF | 4KB  | VM0MPC <sup>2</sup> | VM0 Memory Protection Controller. See Volatile Memory.                                      | -           | S                     |
| 27  | 0x50084000 | 0x50084FFF | 4KB  | VM1MPC <sup>2</sup> | VM1 Memory Protection Controller. See Volatile Memory.                                      | -           |                       |
| 28  | 0x50085000 | 0x50085FFF | 4KB  | VM2MPC <sup>2</sup> | VM2 Memory Protection Controller. See Volatile Memory.                                      | -           |                       |
| 29  | 0x50086000 | 0x50086FFF | 4KB  | VM3MPC <sup>2</sup> | VM3 Memory Protection Controller. See Volatile Memory.                                      | -           |                       |
| 30  | 0x50087000 | 0x5008FFFF | -    | Reserved            | Reserved (RAZ/WI)                                                                           | -           | -                     |
| 31  | 0x50090000 | 0x50093FFF | 16KB | CryptoCell312       | CryptoCell 312                                                                              | -           | -                     |
| 32  | 0x50094000 | 0x500FFFFF | -    | Reserved            | Reserved                                                                                    | -           | -                     |
| 33  | 0x58000000 | 0x58000FFF | 4KB  | TIMERO              | Timer O. See Timestamp Timers.                                                              | 11          | S_PPC                 |
| 34  | 0x58001000 | 0x58001FFF | 4KB  | TIMER1              | Timer 1. See Timestamp Timers.                                                              | 12          |                       |
| 35  | 0x58002000 | 0x58002FFF | 4KB  | TIMER2              | Timer 2. See Timestamp Timers.                                                              | 13          |                       |
| 36  | 0x58003000 | 0x58003FFF | 4KB  | TIMER3              | Timer 3. See Timestamp Timers.                                                              | 14          |                       |
| 37  | 0x58004000 | 0x5800FFFF | -    | Reserved            | Reserved (RAZ/WI)                                                                           | -           | -                     |
| 38  | 0x58040000 | 0x58040FFF | 4KB  | SWDCTRL             | Secure Watchdog Control Frame. See Timestamp Watchdogs.                                     | -           | S                     |
| 39  | 0x58041000 | 0x58041FFF | 4KB  | SWDREF              | Secure Watchdog Refresh Frame. See Timestamp Watchdogs.                                     | -           |                       |
| 40  | 0x58042000 | 0x5804FFFF | -    | Reserved            | Reserved (RAZ/WI)                                                                           | -           | -                     |
| 41  | 0x58050000 | 0x580FFFFF | -    | Reserved            | Reserved                                                                                    | -           | -                     |

- 1. NS\_PPC: Non-secure access only, gated by a PPC. S\_PPC: Secure access only, Gated by a PPC. S: Secure access only. NS: Non-secure access only.
- 2. The number of VM<n>MPC regions depends on NUMVMBANK. If VM<n> does not exist, then the VM<n>MPC region is Reserved.
- 3. MHU0 and MHU1 will only exist if NUMCPU > 0.

# 6.4.1 Message Handling Unit registers

SSE-300 implements up to two Message Handling Units (MHU). These allow software to raise interrupts to the CPU cores. Both MHU are mapped twice into both Secure and non-Secure regions as follows, and a PPC then controls in which area each MHU will reside:

MHU0 in non-Secure region at 0x48000000 and Secure region at 0x58000000

MHU1 in non-Secure region at 0x48001000 and Secure region at 0x58001000

If there is only one CPU core in the system, both MHUs will not exist and the two regions will be reserved and any accesses to them will result in **RAZ/WI**. For write access to these registers, only 32 bit writes are supported. Any Byte and Half word writes will result in its write data ignored.



There are two MHU in the system so that software can map one for Secure use and another for non-Secure use. However, Software can choose to map both to Secure or non-Secure if needed.

Each MHU has the following register map shown in the table below, where *n* is 0 to NUMCPU. The security of each MHU register area is defined by PPCs drive by registers in Secure Access Configuration Register Block and Non-Secure Access Configuration Register Block. See PERIPHNSPPC0 and PERIPHNSPPC1, PERIPHSPPPC0 and PERIPHNSPPPC1, and PERIPHNSPPPC0 and PERIPHNSPPPC1. All registers reside in the PD\_SYS power domain and is reset by **nWARMRESETSYS**. The SSE-300 defines up to two MHUs.

Table 6-3: Message Handling Unit (MHU) Register Map

| Offset                    | Name                             | Access     | Reset Value | Description                           |
|---------------------------|----------------------------------|------------|-------------|---------------------------------------|
| 0x000 + n(0x010)          | CPU <n>INTR_STAT<sup>1</sup></n> | Read-only  | 0x0000000   | CPU <n> Interrupt Status Register</n> |
| 0x004 + n(0x010)          | CPU <n>INTR_SET<sup>1</sup></n>  | Write-only | 0x0000000   | CPU <n> Interrupt Set Register</n>    |
| 0x008 + n(0x010)          | CPU <n>INTR_CLR<sup>1</sup></n>  | Write-only | 0x0000000   | CPU <n> Interrupt Clear Register</n>  |
| 0x00C + n(0x010)          | Reserved                         | Read-only  | 0x0000000   | Reserved                              |
| (NUMCPU+1)(0x010) - 0xFC8 | Reserved                         | Read-only  | 0x0000000   | Reserved                              |
| 0xFD0                     | PIDR4                            | read-only  | 0x0000004   | Peripheral ID 4                       |
| 0xFD4 - 0xFDC             | Reserved                         | read-only  | 0x0000000   | Reserved                              |
| 0xFE0                     | PIDRO                            | read-only  | 0x0000056   | Peripheral ID 0                       |
| 0xFE4                     | PIDR1                            | read-only  | 0x000000B8  | Peripheral ID 1                       |
| 0xFE8                     | PIDR2                            | read-only  | 0x000001B   | Peripheral ID 2                       |
| 0xFEC                     | PIDR3                            | read-only  | 0x0000000   | Peripheral ID 3                       |
| 0xFF0                     | CIDRO                            | read-only  | 0x000000D   | Component ID 0                        |
| 0xFF4                     | CIDR1                            | read-only  | 0x00000F0   | Component ID 1                        |
| 0xFF8                     | CIDR2                            | read-only  | 0x0000005   | Component ID 2                        |
| 0xFFC                     | CIDR3                            | read-only  | 0x000000B1  | Component ID 3                        |

1. There is a set of these register per CPU that exist with n in 0 to NUMCPU.

# **6.4.2 Secure Access Configuration Register Block**

The Secure Access Configuration Register Block implements program-visible states that allow software to control security gating units within the design. This register block base address is 0x50080000. This register block is Secure Privileged access only and supports 32 bit R/W

accesses. The following table list the registers within this block. For write access to these registers, only 32-bit writes are supported. Any Byte and Half word writes will result in its write data ignored.

All registers reside in the PD\_SYS power domain and is reset by **nWARMRESETSYS**.

Details of each register in the table below are described in separate sections.

Table 6-4: Secure Access Configuration Register Block Register Map

| Offset     | Name          | Access         | Reset value  | Description                                                       |
|------------|---------------|----------------|--------------|-------------------------------------------------------------------|
| 0x000      | SPCSECCTRL    | Read-<br>write | 0x00000000   | Secure Privilege Controller Secure Configuration Control register |
| 0x004      | BUSWAIT       | Read-<br>write | Configurable | Bus Access Wait control after reset                               |
| 0x008      | Reserved      |                | 0x00000000   | Reserved                                                          |
| 0x010      | SECRESPCFG    | Read-<br>write | 0x0000000    | Security Violation Response Configuration Register                |
| 0x014      | NSCCFG        | Read-<br>write | 0x00000000   | Non-secure Callable Configuration for IDAU                        |
| 0x018      | Reserved      |                | 0x00000000   | Reserved                                                          |
| 0x01C      | SECMPCINTSTAT | Read-<br>only  | 0x00000000   | Secure MPC Interrupt Status                                       |
| 0x020      | SECPPCINTSTAT | Read-<br>only  | 0x00000000   | Secure PPC Interrupt Status                                       |
| 0x024      | SECPPCINTCLR  | Read-<br>write | 0x00000000   | Secure PPC Interrupt Clear                                        |
| 0x028      | SECPPCINTEN   | Read-<br>write | 0x0000000    | Secure PPC Interrupt Enable                                       |
| 0x02C      | Reserved      |                | 0x00000000   | Reserved                                                          |
| 0x030      | SECMSCINTSTAT | Read-<br>only  | 0x00000000   | Secure MSC Interrupt Status                                       |
| 0x034      | SECMSCINTCLR  | Read-<br>write | 0x00000000   | Secure MSC Interrupt Clear                                        |
| 0x038      | SECMSCINTEN   | Read-<br>write | 0x00000000   | Secure MSC Interrupt Enable                                       |
| 0x03C      | Reserved      |                | 0x00000000   | Reserved                                                          |
| 0x040      | BRGINTSTAT    | Read-<br>only  | 0x00000000   | Bridge Buffer Error Interrupt Status                              |
| 0x044      | BRGINTCLR     | Read-<br>write | 0x00000000   | Bridge Buffer Error Interrupt Clear                               |
| 0x048      | BRGINTEN      | Read-<br>write | 0x00000000   | Bridge Buffer Error Interrupt Enable                              |
| 0x04C      | Reserved      |                | 0x00000000   | Reserved                                                          |
| 0x050      | MAINNSPPC0    |                | 0x00000000   | Reserved                                                          |
| 0x054      | Reserved      |                | 0x00000000   | Reserved                                                          |
| -<br>0x05C |               |                |              |                                                                   |

| Offset     | Name            | Access         | Reset value | Description                                                                                                                                                          |
|------------|-----------------|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x060      | MAINNSPPCEXP0   | Read-<br>write | 0x00000000  | Expansion O Non-secure Access Peripheral Protection Control on the Main<br>Interconnect                                                                              |
| 0x064      | MAINNSPPCEXP1   | Read-<br>write | 0x00000000  | Expansion 1 Non-secure Access Peripheral Protection Control on the Main Interconnect                                                                                 |
| 0x068      | MAINNSPPCEXP2   | Read-<br>write | 0x00000000  | Expansion 2 Non-secure Access Peripheral Protection Control on the Main Interconnect                                                                                 |
| 0x06C      | MAINNSPPCEXP3   | Read-<br>write | 0x00000000  | Expansion 3 Non-secure Access Peripheral Protection Control on the Main Interconnect                                                                                 |
| 0x070      | PERIPHNSPPC0    | Read-<br>write | 0x00000000  | Non-secure Access Peripheral Protection Control 0 on Peripheral Interconnect.<br>Each bit field defines the Non-secure access settings for an associated peripheral: |
|            |                 |                |             | 1 - Allow Non-secure access                                                                                                                                          |
|            |                 |                |             | 0 - Disallow Non-secure access                                                                                                                                       |
|            |                 |                |             | Resets to 0.                                                                                                                                                         |
| 0x074      | PERIPHNSPPC1    | Read-<br>write | 0x00000000  | Non-secure Access Peripheral Protection Control 1 on Peripheral Interconnect                                                                                         |
| 0x078      | Reserved        |                | 0x00000000  | Reserved                                                                                                                                                             |
| 0x07C      |                 |                |             |                                                                                                                                                                      |
| 0x080      | PERIPHNSPPCEXPO | Read-<br>write | 0x00000000  | Expansion O Non-secure Access Peripheral Protection Control on Peripheral Bus                                                                                        |
| 0x084      | PERIPHNSPPCEXP1 | Read-<br>write | 0x00000000  | Expansion 1 Non-secure Access Peripheral Protection Control on Peripheral Bus                                                                                        |
| 0x088      | PERIPHNSPPCEXP2 | Read-<br>write | 0x00000000  | Expansion 2 Non-secure Access Peripheral Protection Control on Peripheral Bus                                                                                        |
| 0x08C      | PERIPHNSPPCEXP3 | Read-<br>write | 0x00000000  | Expansion 3 Non-secure Access Peripheral Protection Control on Peripheral Bus                                                                                        |
| 0x090      | MAINSPPPC0      |                | 0x00000000  | Reserved                                                                                                                                                             |
| 0x094<br>- | Reserved        |                | 0x00000000  | Reserved                                                                                                                                                             |
| 0x09C      |                 |                |             |                                                                                                                                                                      |
| 0x0A0      | MAINSPPPCEXP0   | Read-<br>write | 0x00000000  | Expansion 0 Secure Unprivileged Access Peripheral Protection Control on Main<br>Interconnect                                                                         |
| 0x0A4      | MAINSPPPCEXP1   | Read-<br>write | 0x00000000  | Expansion 1 Secure Unprivileged Access Peripheral Protection Control on Main Interconnect                                                                            |
| 0x0A8      | MAINSPPPCEXP2   | Read-<br>write | 0x00000000  | Expansion 2 Secure Unprivileged Access Peripheral Protection Control on Main Interconnect                                                                            |
| 0x0AC      | MAINSPPPCEXP3   | Read-<br>write | 0x00000000  | Expansion 3 Secure Unprivileged Access Peripheral Protection Control on Main Interconnect                                                                            |
| 0x0B0      | PERIPHSPPPCO    | Read-<br>write | 0x00000000  | Secure Unprivileged Access Peripheral Protection Control 0 on Peripheral Interconnect                                                                                |
| 0x0B4      | PERIPHSPPPC1    | Read-<br>write | 0x00000000  | Secure Unprivileged Access Peripheral Protection Control 1 on Peripheral Interconnect                                                                                |
| 0x0B8      | Reserved        |                | 0x00000000  | Reserved                                                                                                                                                             |
| 0x0BC      |                 |                |             |                                                                                                                                                                      |
| 0x0C0      | PERIPHSPPPCEXPO | Read-<br>write | 0x0000000   | Expansion O Secure Unprivileged Access Peripheral Protection Control on Peripheral Interconnect                                                                      |

| Offset     | Name            | Access         | Reset value  | Description                                                                                     |
|------------|-----------------|----------------|--------------|-------------------------------------------------------------------------------------------------|
| 0x0C4      | PERIPHSPPPCEXP1 | Read-<br>write | 0x00000000   | Expansion 1 Secure Unprivileged Access Peripheral Protection Control on Peripheral Interconnect |
| 0x0C8      | PERIPHSPPPCEXP2 | Read-<br>write | 0x0000000    | Expansion 2 Secure Unprivileged Access Peripheral Protection Control on Peripheral Interconnect |
| 0x0CC      | PERIPHSPPPCEXP3 | Read-<br>write | 0x0000000    | Expansion 3 Secure Unprivileged Access Peripheral Protection Control on Peripheral Interconnect |
| 0x0D0      | NSMSCEXP        | Read-<br>write | Configurable | Expansion MSC Non-secure Configuration                                                          |
| 0x0D4      | Reserved        |                | 0x00000000   | Reserved                                                                                        |
| 0xFCC      |                 |                |              |                                                                                                 |
| 0xFD0      | PIDR4           | Read-<br>only  | 0x0000004    | Peripheral ID 4                                                                                 |
| 0xFD4      | Reserved        |                | 0x00000000   | Reserved                                                                                        |
| -<br>0xFDC |                 |                |              |                                                                                                 |
| 0xFE0      | PIDRO           | Read-<br>only  | 0x00000052   | Peripheral ID 0                                                                                 |
| 0xFE4      | PIDR1           | Read-<br>only  | 0x000000B8   | Peripheral ID 1                                                                                 |
| 0xFE8      | PIDR2           | Read-<br>only  | 0x0000002B   | Peripheral ID 2                                                                                 |
| 0xFEC      | PIDR3           | Read-<br>only  | 0x0000000    | Peripheral ID 3                                                                                 |
| 0xFF0      | CIDRO           | Read-<br>only  | 0x000000D    | Component ID 0                                                                                  |
| 0xFF4      | CIDR1           | Read-<br>only  | 0x00000F0    | Component ID 1                                                                                  |
| 0xFF8      | CIDR2           | Read-<br>only  | 0x0000005    | Component ID 2                                                                                  |
| 0xFFC      | CIDR3           | Read-<br>only  | 0x000000B1   | Component ID 3                                                                                  |

# 6.4.2.1 SPCSECCTRL

The Security Privilege Controller Security Configuration Control Register implements the security lock register.

# **Table 6-5: SPCSECCTRL Register**

| Bits | Туре | Default    | Name | Description |
|------|------|------------|------|-------------|
| 31:1 | RO   | 0x00000000 | -    | Reserved.   |

| Bits | Туре | Default | Name          | Description                                                                                                                                                                                                                                                                                                          |
|------|------|---------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | W1S  | 0x00    | SPCSECCFGLOCK | Active High Control to Disable writes to Security related control registers in the Secure Access Configuration Register Block. Once set to high, it can no longer be cleared to zero except through reset or the PD_SYS turning OFF. Registers that can no longer be modified when SPCSECCFGLOCK is set to HIGH are: |
|      |      |         |               | NSCCFG,                                                                                                                                                                                                                                                                                                              |
|      |      |         |               | • MAINNSPPCO,                                                                                                                                                                                                                                                                                                        |
|      |      |         |               | • MAINNSPPCEXP <n>,</n>                                                                                                                                                                                                                                                                                              |
|      |      |         |               | PERIPHNSPPCO,                                                                                                                                                                                                                                                                                                        |
|      |      |         |               | PERIPHNSPPC1,                                                                                                                                                                                                                                                                                                        |
|      |      |         |               | PERIPHNSPPCEXP <n>,</n>                                                                                                                                                                                                                                                                                              |
|      |      |         |               | • MAINSPPPCO,                                                                                                                                                                                                                                                                                                        |
|      |      |         |               | • MAINSPPPCEXP <n>,</n>                                                                                                                                                                                                                                                                                              |
|      |      |         |               | PERIPHSPPPCO,                                                                                                                                                                                                                                                                                                        |
|      |      |         |               | • PERIPHSPPPC1,                                                                                                                                                                                                                                                                                                      |
|      |      |         |               | • PERIPHSPPPCEXP <n>,</n>                                                                                                                                                                                                                                                                                            |
|      |      |         |               | NSMSCEXP.                                                                                                                                                                                                                                                                                                            |

# 6.4.2.2 BUSWAIT

The Bus Access Wait register allows software to gate access entering the interconnect from specific masters in the system, causing them to stall so that the processor can complete the configuration of the MPCs or other Security registers in the system prior to the stalled accesses commencing.

# Table 6-6: BUSWAIT Register

| Bits  | Туре | Default | Name             | Description                                                                                                                                                                                  |
|-------|------|---------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:17 | RO   | 0x0000  | -                | Reserved                                                                                                                                                                                     |
| 16    | RO   | 0x00    | ACC_WAITN_STATUS | This status register indicates the status of any gating units that are used to block bus access to the system:                                                                               |
|       |      |         |                  | 1 - Allow access                                                                                                                                                                             |
|       |      |         |                  | 0 - Block access                                                                                                                                                                             |
|       |      |         |                  | This register reflects the combined status of all gating units in the system, including status on the input signal <b>ACCWAITNSTATUS</b> , expected to be driven from external gating units. |
|       |      |         |                  | Both ACC_WAITN_STATUS and ACC_WAITN together, ensuring that software can determine that all gates have reached the state that is requested.                                                  |
| 15:1  | RO   | 0x0000  | -                | Reserved                                                                                                                                                                                     |

| Bits | Туре | Default     | Name      | Description                                                                                                                                                                                                   |
|------|------|-------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | RW   | ACCWAITNRST | ACC_WAITN | Request gating units to block bus access to system:                                                                                                                                                           |
|      |      |             |           | 1 - Allow access                                                                                                                                                                                              |
|      |      |             |           | 0 - Block access                                                                                                                                                                                              |
|      |      |             |           | This control only affects the Access Control Gates (ACG) in the system that feeds into the interconnect, and it excludes access from CPU cores. This register also drives the output signal <b>ACCWAITn</b> . |
|      |      |             |           | Both ACC_WAITN_STATUS and ACC_WAITN together, ensuring that software can determine that all gates have reached the state that is requested.                                                                   |

# 6.4.2.3 SECRESPCFG

The Security Violation Response Configuration register is used to define a response to an access that causes security violation on the bus fabric.

Table 6-7: SECRESPCFG Register

| Bits | Туре | Default    | Name       | Description                                                                                                                                               |  |
|------|------|------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31:1 | RO   | 0x00000000 | -          | Reserved                                                                                                                                                  |  |
| 0    | RW   | 0x00       | SECRESPCFG | This field configures the response in case of a security violation:                                                                                       |  |
|      |      |            |            | O - Read-Zero Write Ignore                                                                                                                                |  |
|      |      |            |            | • 1 - Bus error                                                                                                                                           |  |
|      |      |            |            | Note that some components, for example, the AHB Memory Protection Controllers (MPC), provide their own control registers to configure their own response. |  |

# 6.4.2.4 NSCCFG

The Non-secure Callable Configuration register allows software to define if the region  $0 \times 10000000$  to  $0 \times 1$  FFFFFFF that normally host Secure code, and the region  $0 \times 30000000$  to  $0 \times 3$  FFFFFFF that normally implements Secure VMs, are Non-secure Callable regions of memory.

Table 6-8: NSCCFG Register

| Bits | Туре | Default    | Name    | Description                                                                    |
|------|------|------------|---------|--------------------------------------------------------------------------------|
| 31:2 | RO   | 0x00000000 | -       | Reserved.                                                                      |
| 1    | RW   | 0x00       | RAMNSC  | Configures if the region 0x30000000 to 0x3FFFFFFF is Non-secure Callable:      |
|      |      |            |         | O - Not Non-secure Callable                                                    |
|      |      |            |         | 1 - Non-secure Callable                                                        |
| 0    | RW   | 0x00       | CODENSC | Configures if the CODE region 0x10000000 to 0x1FFFFFFF is Non-secure Callable: |
|      |      |            |         | O - Not Non-secure Callable                                                    |
|      |      |            |         | 1 - Non-secure Callable                                                        |

### 6.4.2.5 SECMPCINTSTAT

The interrupt signals from all Memory Protection Controllers (MPC), both within SSE-300 and in the expansion logic are merged and sent to the processors on a single interrupt signal. The Secure MPC Interrupt status register therefore provides Secure software with the ability to check which one of the MPC is causing the interrupt. Once the source of the interrupt is identified, you must use the MPC register interface to clear the interrupt.

Table 6-9: SECMPCINTSTAT register

| Bits  | Туре | Default    | Name           | Description                                                                                                                                                                                                                                                                                                                                                                    |
|-------|------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0000000  | SMPCEXP_STATUS | Interrupt Status for Expansion Memory Protection Controller. Each bit $n$ (0 to 15) local in this field shows the status of input signal <b>SMPCEXPSTATUS</b> [ $n$ ]. The MPCEXPDIS configuration point defines if each bit within this register is actually implement such that if MPCEXPDIS[ $i$ ] = 1'b1 then SMPCEXP_STATUS[ $i$ ] is disabled and always reads as zeros. |
| 15:4  | RO   | 0x00000000 | -              | Reserved                                                                                                                                                                                                                                                                                                                                                                       |
| 3     | RO   | 0x00       | -              | Reserved for SMPCVM3_STATUS. Interrupt Status for Memory Protection Controller of Volatile Memory Bank 3. This register is not used and reserved if NUMVMBANK < 4                                                                                                                                                                                                              |
| 2     | RO   | 0x00       | -              | Reserved for SMPCVM2_STATUS. Interrupt Status for Memory Protection Controller of Volatile Memory Bank 2. This register is not used and reserved if NUMVMBANK < 3                                                                                                                                                                                                              |
| 1     | RO   | 0x00       | SMPCVM1_STATUS | Interrupt Status for Memory Protection Controller of Volatile Memory Bank 1. This register is not used and reserved if NUMVMBANK < 2                                                                                                                                                                                                                                           |
| 0     | RO   | 0x00       | SMPCVM0_STATUS | Interrupt Status for Memory Protection Controller of Volatile Memory Bank O. This register is not used and reserved if NUMVMBANK < 1                                                                                                                                                                                                                                           |

# 6.4.2.6 SECPPCINTSTAT, SECPPCINTCLR and SECPPCINTEN

When access violations occur on any Peripheral Protection Controller (PPC), a level interrupt is raised through a combined interrupt that is then sent to the processors. The PPC Secure PPC Interrupt status, clear and enable registers allow software to determine source of the interrupt, clear the interrupt, and enable or disable (Mask) the interrupt.

Table 6-10: SECPPCINTSTAT Register

| Bits  | Туре | Default | Name                 | Description                                                                                                                                                                                                          |
|-------|------|---------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24 | RO   | 0x000   | -                    | Reserved                                                                                                                                                                                                             |
| 23:20 | RO   | 0x00    | SMAINPPCEXP_STATUS   | Interrupt status of Expansion Peripheral Protection Controller on the Main Interconnect. Each bit n (0 to 3) local in this field captures the active state of the input signal <b>SMAINPPCEXPSTATUS[n]</b> .         |
| 19:17 | RO   | 0x00    | -                    | Reserved                                                                                                                                                                                                             |
| 16    | RO   | 0x00    | SMAINPPC0_STATUS     | Reserved                                                                                                                                                                                                             |
| 15:8  | RO   | 0x000   | -                    | Reserved                                                                                                                                                                                                             |
| 7:4   | RO   | 0x00    | SPERIPHPPCEXP_STATUS | Interrupt status of Expansion Peripheral Protection Controller on the Peripheral Interconnect. Each bit n (0 to 3) local in this field captures the active state of the input signal <b>SPERIPHPPCEXPSTATUS[n]</b> . |
| 3:2   | RO   | 0x00    | -                    | Reserved                                                                                                                                                                                                             |
| 1     | RO   | 0x00    | SPERIPHPPC1_STATUS   | Interrupt status of Peripheral Protection Controller Group 1 on the Peripheral Interconnect within the System                                                                                                        |

| Bits | Туре | Default | Name | Description                                                                                                   |
|------|------|---------|------|---------------------------------------------------------------------------------------------------------------|
| 0    | RO   | 0x00    | _    | Interrupt status of Peripheral Protection Controller Group 0 on the Peripheral Interconnect within the System |

# Table 6-11: SECPPCINTCLR Register

| Bits  | Туре | Default | Name              | Description                                                                                                                                                                                                                     |
|-------|------|---------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24 | RO   | 0x000   | -                 | Reserved                                                                                                                                                                                                                        |
| 23:20 | W1T  | 0x00    | SMAINPPCEXP_CLR   | Interrupt clear of Expansion Peripheral Protection Controller on the Main Interconnect.  Each bit n, when set to HIGH clears the interrupt status of the PPC connected to  SMAINPPCEXPSTATUS[n] and SMAINPPCEXPCLEAR[n].        |
| 19:17 | RO   | 0x00    | -                 | Reserved                                                                                                                                                                                                                        |
| 16    | W1T  | 0x00    | SMAINPPCO_CLR     | Reserved                                                                                                                                                                                                                        |
| 15:8  | RO   | 0x000   | -                 | Reserved                                                                                                                                                                                                                        |
| 7:4   | W1T  | 0x00    | SPERIPHPPCEXP_CLR | Interrupt clear of Expansion Peripheral Protection Controller on the Peripheral Interconnect. Each bit n, when set to HIGH clears the interrupt status of the PPC connected to SPERIPHPPCEXPSTATUS[n] and SPERIHPPCEXPCLEAR[n]. |
| 3:2   | RO   | 0x00    | -                 | Reserved                                                                                                                                                                                                                        |
| 1     | W1T  | 0x00    | SPERIPHPPC1_CLR   | Interrupt clear of Peripheral Protection Controller 1 on the Peripheral Interconnect within the System                                                                                                                          |
| 0     | W1T  | 0x00    | SPERIPHPPCO_CLR   | Interrupt clear of Peripheral Protection Controller 0 on the Peripheral Interconnect within the System                                                                                                                          |

# **Table 6-12: SECPPCINTEN Register**

| Bits  | Туре | Default | Name             | Description                                                                                                                                                                                   |
|-------|------|---------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24 | RO   | 0x000   | -                | Reserved                                                                                                                                                                                      |
| 23:20 | RW   | 0x00    | SMAINPPCEXP_EN   | Interrupt enable of Expansion Peripheral Protection Controller on the Main Interconnect. Write 1 to bit n (0 to 3) local in this field to enable interrupt from SMAINPPCEXPSTATUS[n].         |
| 19:17 | RO   | 0x00    | -                | Reserved                                                                                                                                                                                      |
| 16    | RW   | 0x00    | SMAINPPCO_EN     | Reserved                                                                                                                                                                                      |
| 15:8  | RO   | 0x000   | -                | Reserved                                                                                                                                                                                      |
| 7:4   | RW   | 0x00    | SPERIPHPPCEXP_EN | Interrupt enable of Expansion Peripheral Protection Controller on the Peripheral Interconnect. Write 1 to bit n (0 to 3) local in this field to enable interrupt from SPERIPHPPCEXPSTATUS[n]. |
| 3:2   | RO   | 0x00    | -                | Reserved                                                                                                                                                                                      |
| 1     | RW   | 0x00    | SPERIPHPPC1_EN   | Interrupt enable of Peripheral Protection Controller Group 1 on the Peripheral Interconnect within the System. Write 1 to enable interrupt from them.                                         |
| 0     | RW   | 0x00    | SPERIPHPPCO_EN   | Interrupt enable of Peripheral Protection Controller Group 0 on the Peripheral Interconnect within the System. Write 1 to enable interrupt from them.                                         |

# 6.4.2.7 SECMSCINTSTAT, SECMSCINTCLR and SECMSCINTEN

When security violation occurs at any *Master Security Controller* (MSC) in the Subsystem and in the expansion logic, an interrupt is raised through a combined interrupt to the processors. The Secure

MSC Interrupt Status Clear register and Enable register allows software to determine source of the interrupt, clear the interrupt, and enable or disable (Mask) the interrupt.

### Table 6-13: SECMSCINTSTAT Register

| Bits  | Туре | Default | Name | Description                                                                                                                                                                                                                                                                                                                                            |
|-------|------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0000  | _    | Interrupt status for Expansion MSC. Each bit n (0 to 15) local in this field captures the active state of the input signal <b>SMSCEXPSTATUS[n]</b> . The configuration point MSCEXPDIS defines if each bit within this register is actually implemented such that if MSCEXPDIS[i] = 1'b1 then SMSCEXP_STATUS[i] is disabled and always reads as zeros. |
| 15:0  | RO   | 0x0000  | -    | Reserved                                                                                                                                                                                                                                                                                                                                               |

# Table 6-14: SECMSCINTCLR Register

| Bits  | Туре | Default | Name | Description                                                                                                                                                                                                                                                                                                                                                                      |
|-------|------|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | W1T  | 0x0000  |      | Interrupt clear for expansion MSC. Each bit n, when set to HIGH, clears the interrupt status of the MSC connected to <b>SMSCEXPSTATUS[n]</b> and <b>SMSCEXPCLEAR[n]</b> . The configuration point MSCEXPDIS defines if each bit within this register is actually implemented, such that if MSCEXPDIS[i] = 1'b1, then SMSCEXP_CLR[i] is disabled and any writes to it is ignored. |
| 15:0  | RO   | 0x0000  | -    | Reserved                                                                                                                                                                                                                                                                                                                                                                         |

# Table 6-15: SECMSCINTEN Register

| Bits  | Туре | Default | Name | Description                                                                                                                                                                                                                                                                                                               |
|-------|------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0x0000  | _    | Interrupt enable for Expansion MSC. Each bit n enables or disables the input interrupt signal <b>SMSCEXPSTATUS[n]</b> . The configuration point MSCEXPDIS defines if each bit within this register is actually implement such that if MSCEXPDIS[i] = 1'b1 then SMSCEXP_EN[i] is disabled and any writes to it is ignored. |
| 15:0  | RO   | 0x0000  | -    | Reserved                                                                                                                                                                                                                                                                                                                  |

# 6.4.2.8 BRGINTSTAT, BRGINTCLR and BRGINTEN

SSE-300 and its expansion logic can contain bus bridges, which are necessary to handle clock domain crossing. To improve system performance, some of these bridges can buffer write data and complete a write access on their slave interfaces before any potential error response is received for the write access on their master interfaces. When this occurs, these bridges can raise a combined interrupt. The Bridge Buffer Error interrupt status, clear and enable register allow software to determine source of the interrupt, clear the interrupt, and enable or disable (Mask) the interrupt.

# Table 6-16: BRGINTSTAT Register

| Bits  | Туре | Default | Name | Description                                                                                                                                                                                                                                                                                                                                                                     |
|-------|------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0000  | _    | Interrupt status for Expansion Bridge Buffer Error interrupts. Each bit n (0 to 15) local in this field captures the active state of the input signal <b>BRGEXPSTATUS[n]</b> . The configuration point BRGEXPDIS defines if each bit within this register is actually implemented such that if BRGEXPDIS[i] = 1'b1 then BRGEXP_STATUS[i] is disabled and always reads as zeros. |
| 15:0  | RO   | 0x0000  | -    | Reserved                                                                                                                                                                                                                                                                                                                                                                        |

### Table 6-17: BRGINTCLR Register

| Bits  | Туре | Default | Name | Description                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|------|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | W1T  | 0x0000  |      | Interrupt clear of Expansion Bridge Buffer Error interrupts. Each bit n when set to HIGH clears the interrupt status of the bridge connected to <b>BRGEXPSTATUS[n]</b> and <b>BRGEXPCLEAR[n]</b> . The configuration point BRGEXPDIS defines if each bit within this register is actually implement such that if BRGEXPDIS[i] = 1'b1 then BRGEXPCLR[i] is disabled and any writes to it is ignored. |
| 15:0  | RO   | 0x0000  | -    | Reserved                                                                                                                                                                                                                                                                                                                                                                                            |

### **Table 6-18: BRGINTEN Register**

| Bits  | Туре | Default | Name      | Description                                                                                                                                                                                                                                                                                                                                                     |
|-------|------|---------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | 0x0000  | BRGEXP_EN | Interrupt enable of Expansion Bridge Buffer Error interrupts. Each bit n (0 to 15) local in this field enables the input interrupt of <b>BRGEXPSTATUS[n]</b> . The configuration point BRGEXPDIS defines if each bit within this register is actually implement such that if BRGEXPDIS[i] = 1'b1 then BRGEXP_EN[i] is disabled and any writes to it is ignored. |
| 15:0  | RO   | 0x0000  | -         | Reserved                                                                                                                                                                                                                                                                                                                                                        |

# 6.4.2.9 MAINNSPPCO

The Main Interconnect Non-secure Access Peripheral Protection Controller register allows software to configure if each peripheral on the Main Interconnect that it controls through a PPC is Secure access only or is Non-secure access only. Each field defines the Secure or Non-secure access setting for an associated peripheral, as follows:

- 1 Allows Non-secure access only
- 0 Allows Secure access only

SSE-300 currently does not have any internal interfaces on the Main Interconnect that require security configuration support of the PPC. Therefore, this register is reserved.

### Table 6-19: MAINNSPPC0 Register

|   | Bits | Туре | Default   | Name | Description |
|---|------|------|-----------|------|-------------|
| ١ | 31:0 | RO   | 0x0000000 | -    | Reserved    |

### 6.4.2.10 MAINNSPPCEXP<0 to 3>

The Main Interconnect Non-secure Access Slave Peripheral Protection Controller Expansion register 0, 1, 2, and 3 allows software to configure each Main Interconnect peripheral that it controls through each PPC that resides in the subsystem expansion outside the subsystem. Each field defines the Secure or Non-secure access setting for an associated peripheral, as follows:

- 1 Allows Non-secure access only
- 0 Allows Secure access only

These controls directly control the expansion signals on the Security Control Expansion interface. All four registers are similar and each register, N where N is from 0 to 3 is as follows:

### Table 6-20: MAINNSPPCEXP<N> Register

| Bits  | Туре | Default | Name | Description                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|------|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0000  | -    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15:0  | RW   | 0x0000  |      | Expansion < <i>N</i> > Non-secure Access Main Interconnect Slave Peripheral Protection Control. Each bit n drives the output signal <b>MAINNSPPCEXP<n>[n]</n></b> . The configuration point MAINPPCEXP <n>DIS defines if each bit within this register is actually implement such that if MAINPPCEXP<n>DIS[i] = 1'b1 then MAINNSPPCEXP<n>[i] is disabled, reads as zeros and any writes to it is ignored.</n></n></n> |

### 6.4.2.11 PERIPHNSPPC0 and PERIPHNSPPC1

The Peripheral Interconnect Non-secure Access Peripheral Protection Controller registers allow software to configure if each peripheral on the Peripheral Interconnect that it controls through a PPC is Secure access only or is Non-secure access only. Each field defines the Secure or Non-secure access setting for an associated peripheral, as follows:

- 1 Allows Non-secure access only
- 0 Allows Secure access only

SSE-300 has two such group of registers, Peripheral Protection Controller Group 0 and Peripheral Protection Controller Group 1 as follows:

# Table 6-21: PERIPHNSPPC0 Register

| Bits | Туре | Default  | Name      | Description                                                                                                                              |
|------|------|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x000000 | -         | Reserved.                                                                                                                                |
| 7    | RO   | 0x00     | -         | Reserved for NS_SYSDSS. Access Non-Security for interconnect access to debug system. When HASCSS = 0, this field is reserved and RAZ/WI. |
| 6    | RO   | 0x00     | -         | Reserved                                                                                                                                 |
| 5    | RW   | 0x00     | NS_TIMER3 | Access Non-Security for TIMER3                                                                                                           |
| 4    | RO   | 0x00     | -         | Reserved for NS_MHU1. Access Non-Security for MHU 1. When NUMCPU = 0, this field is reserved and RAZ/WI.                                 |
| 3    | RO   | 0x00     | -         | Reserved for NS_MHU0. Access Non-Security for MHU 0. When NUMCPU = 0, this field is reserved and RAZ/WI.                                 |
| 2    | RW   | 0x00     | NS_TIMER2 | Access Non-Security for TIMER2                                                                                                           |
| 1    | RW   | 0x00     | NS_TIMER1 | Access Non-Security for TIMER1                                                                                                           |
| 0    | RW   | 0x00     | NS_TIMERO | Access Non-Security for TIMERO                                                                                                           |

### Table 6-22: PERIPHNSPPC1 Register

| Bits | Туре | Default   | Name             | Description                           |
|------|------|-----------|------------------|---------------------------------------|
| 31:1 | RO   | 0x0000000 | -                | Reserved.                             |
| 0    | RW   | 0x00      | NS_SLOWCLK_TIMER | Access Non-Security for SLOWCLK_TIMER |



Access to the control interfaces of the Memory Protection Controllers in the system are filtered by PPCO though its security settings are fixed and are not represented in the table above. This is the same with SLOWCLK Watchdog timer's control interface which is filtered by PPC group 1. Hence if accessed using the wrong security at their configuration interfaces, it will also result in interrupts being raised for PPCO or PPC1 registers respectively.

### 6.4.2.12 PERIPHNSPPCEXP<0 to 3>

The Peripheral Interconnect Non-secure Access Slave Peripheral Protection Controller Expansion register 0, 1, 2, and 3 allows software to configure each Peripheral Interconnect peripheral that it controls through each PPC that resides in the expansion logic outside the subsystem. Each field defines the Secure or Non-secure access setting for an associated peripheral, as follows:

- 1 Allows Non-secure access only
- 0 Allows Secure access only

These controls directly control the expansion signals on the Security Control Expansion interface. All four registers are similar and each register, N where N is from 0 to 3 is as follows:

### Table 6-23: PERIPHNSPPCEXP<N> Register

| Bits | Туре | Default | Name                   | Description                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|------|---------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:1 | 6 RO | 0x0000  | -                      | Reserved                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15:0 | RW   | 0x0000  | PERIPHNSPPCEXP <n></n> | Expansion $< N >$ Non-secure Access Peripheral Interconnect Slave Peripheral Protection Control. Each bit $n$ drives the output signal <b>PERIPHNSPPCEXP<n>[n]</n></b> . The configuration point PERIPHPPCEXP <n>DIS defines if each bit within this register is actually implement such that if PERIPHPPCEXP<n>PDIS[i] = 1'b1 then PERIPHPPCEXP<n>DIS[i] reads as zeros and any writes to it is ignored.</n></n></n> |

### 6.4.2.13 MAINSPPPCO

Secure Unprivileged Access Main Interconnect Slave Peripheral Protection Controller Register allows software to configure if each peripheral on the Main Interconnect that it controls through a PPC is only Secure Privileged Secure access only or is allowed Secure Unprivileged access as well. Each field defines this for an associated peripheral, by the following settings:

- 1: Allows Secure Unprivileged and Privileged access
- 0: Allows Secure Privileged access only

SSE-300 currently does not have any internal interfaces on the Main Interconnect that require Secure Unprivileged Access configuration support of the PPC. Therefore, this register is reserved.

### Table 6-24: MAINSPPPC0 Register

| Bits | Туре | Default   | Name | Description |
|------|------|-----------|------|-------------|
| 31:0 | RO   | 0x0000000 | -    | Reserved.   |

# 6.4.2.14 MAINSPPPCEXP<0 to 3>

The Expansion Secure Unprivileged Access Main Interconnect Slave Peripheral Protection Controller register 0, 1, 2 and 3 allows software to configure each Main Interconnect peripheral that it controls through each PPC, that resides in the expansion logic outside the subsystem, is only Secure Privileged access only or is allowed Secure Unprivileged access as well. Each field defines this for an associated peripheral, by the following settings:

- 1 Allows Secure Unprivileged and Privileged access
- 0 Allows Secure Privileged access only

These directly controls the expansion signals on the Security Control Expansion interface. All four register are similar and each register, N where N is from 0 to 3 is as follows:

Table 6-25: MAINSPPPCEXP<N> Register

| Bits  | Туре | Default | Name                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|------|---------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0000  | -                    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15:0  | RW   | 0x0000  | MAINSPPPCEXP <n></n> | Expansion < <i>N</i> > Secure Unprivileged Access Main Interconnect Slave Peripheral Protection Control. Each bit n will drive the output signal <b>MAINPPPCEXP<n>[n]</n></b> if MAINNSPPCEXP <n>[n] is also LOW, where N is 0 to 3. The configuration point MAINPPCEXP<n>DIS defines if each bit within this register is actually implement such that if MAINPPCEXP<n>DIS[i] = 1'b1 then MAINSPPPCEXP<n>[i] is disabled, reads as zeros and any writes to it is ignored.</n></n></n></n> |

# 6.4.2.15 PERIPHSPPPC0 and PERIPHSPPPC1

Secure Unprivileged Access Peripheral Interconnect Slave Peripheral Protection Controller register allows software to configure if each Peripheral Interconnect peripheral that it controls through a PPC is only Secure Privileged access only or is allowed Secure Unprivileged access as well. Each field defines this for an associated peripheral, by the following settings:

- 1 Allows Secure Unprivileged and Privileged access
- 0 Allows Secure Privileged access only

SSE-300 has two such registers as follows:

### Table 6-26: PERIPHSPPPC0 Register

| Bits | Туре | Default  | Name | Description                                                                                                                                      |
|------|------|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8 | RO   | 0x000000 | -    | Reserved                                                                                                                                         |
| 7    | RO   | 0x00     | -    | Reserved for SP_SYSDSS. Secure Unprivileged setting for interconnect access to Debug System. When HASCSS = 0, this field is reserved and RAZ/WI. |

| Bits | Туре | Default | Name            | Description                                                                                                      |
|------|------|---------|-----------------|------------------------------------------------------------------------------------------------------------------|
| 6    | RW   | 0x00    | SP_WATCHDOG_REF | Secure Unprivileged setting for Secure Watchdog Refresh Frame                                                    |
| 5    | RW   | 0x00    | SP_TIMER3       | Secure Unprivileged setting for TIMER3                                                                           |
| 4    | RO   | 0x00    | -               | Reserved for SP_MHU1. Secure Unprivileged setting for MHU 1. When NUMCPU = 0, this field is reserved and RAZ/WI. |
| 3    | RO   | 0x00    | -               | Reserved for SP_MHU0. Secure Unprivileged setting for MHU 0. When NUMCPU = 0, this field is reserved and RAZ/WI. |
| 2    | RW   | 0x00    | SP_TIMER2       | Secure Unprivileged setting for TIMER2                                                                           |
| 1    | RW   | 0x00    | SP_TIMER1       | Secure Unprivileged setting for TIMER1                                                                           |
| 0    | RW   | 0x00    | SP_TIMERO       | Secure Unprivileged setting for TIMERO                                                                           |

### Table 6-27: PERIPHSPPPC1 Register

| Bits | Туре | Default    | Name             | Description                                   |
|------|------|------------|------------------|-----------------------------------------------|
| 31:2 | RO   | 0x00000000 | -                | Reserved                                      |
| 0    | RW   | 0x00       | SP_SLOWCLK_TIMER | Secure Unprivileged setting for SLOWCLK_TIMER |

# 6.4.2.16 PERIPHSPPPCEXP<0 to 3>

The Expansion Secure Unprivileged Access Peripheral Interconnect Slave Peripheral Protection Controller register 0, 1, 2, and 3 allows software to configure each Peripheral Interconnect peripheral that it controls through each PPC, that resides in the expansion logic outside the subsystem, is only Secure Privileged access only or is allowed Secure Unprivileged access as well. Each field defines this for an associated peripheral, by the following settings:

- 1 Allows Secure Unprivileged and Privileged access
- 0 Allows Secure Privileged access only

These directly controls the expansion signals on the Security Control Expansion interface. All four register are similar and each register, N where N is from 0 to 3 is as follows:

### Table 6-28: PERIPHSPPPCEXP<N> Register

| Bits  | Туре | Default | Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0000  | -    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15:0  | RW   | 0x0000  |      | Expansion < <i>N</i> > Secure Unprivileged Access Peripheral Interconnect Slave Peripheral Protection Control. Each bit n drives the output signal <b>PERIPHPPPCEXP<n>[n]</n></b> if PERIPHNSPPCEXP <n>[n] is also LOW, where N is 0 to 3. The configuration point PERIPHPPCEXP<n>DIS defines if each bit within this register is actually implement such that if PERIPHPPCEXP<n>DIS[i] = 1'b1 then PERIPHSPPPCEXP<n>[i] is disabled, reads as zeros and any writes to it is ignored.</n></n></n></n> |

### 6.4.2.17 NSMSCEXP

The Non-secure Expansion Master Security Controller register allows software to configure if each master that is located behind each MSC in the subsystem expansion is a Secure or Non-secure device.

Table 6-29: NSMSCEXP Register

| Bits  | Туре | Default     | Name      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|------|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RW   | NSMSCEXPRST | NS_MSCEXP | Expansion MSC Non-secure configuration. Each bit n (0 to 15) local in this field controls the Non-secure configuration of each MSC and drives the signals <b>NSMSCEXP[n]</b> . Set HIGH to define a Master as Non-secure, or LOW for Secure. The parameter MSCEXPDIS defines if each bit within this register is actually implemented such that if MSCEXPDIS[i] = 1'b1 then NS_MSCEXP[i] is disabled, it reads as 0b1 and any writes to it is ignored. Resets to NSMSCEXPRST. |
| 15:0  | RO   | 0x0000      | -         | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# 6.4.3 Non-secure Access Configuration Register Block

The Non-secure Access Configuration Register Block implements program visible states that allows software to control various security gating units within the design.

This register block base address is 0x40080000. This register block is Non-secure Privileged access only and supports 32-bit R/W accesses. For write access to these registers, only 32-bit writes are supported. Any Byte and Half word writes will result in its write data ignored. The following table lists the registers within this unit. Details of each register are described in separate sections.

All registers reside in the PD\_SYS power domain and are reset by **nWARMRESETSYS**.

Table 6-30: Non-secure Access Configuration Register Block Register Map

| Offset           | Name           | Access         | Reset value | Description                                                                                    |
|------------------|----------------|----------------|-------------|------------------------------------------------------------------------------------------------|
| 0x000 -<br>0x08C | Reserved       | -              | 0x0000000   | Reserved                                                                                       |
| 0x090            | MAINNSPPPC0    |                | 0x00000000  | Reserved                                                                                       |
| 0x094 -<br>0x09C | Reserved       | -              | 0x00000000  | Reserved                                                                                       |
| 0x0A0            | MAINNSPPPCEXP0 | Read-<br>write | 0x0000000   | Expansion O Non-secure Unprivileged Access Peripheral Protection Control on Main Interconnect. |
| 0x0A4            | MAINNSPPPCEXP1 | Read-<br>write | 0x0000000   | Expansion 1 Non-secure Unprivileged Access Peripheral Protection Control on Main Interconnect. |
| 0x0A8            | MAINNSPPPCEXP2 | Read-<br>write | 0x0000000   | Expansion 2 Non-secure Unprivileged Access Peripheral Protection Control on Main Interconnect. |
| 0x0AC            | MAINNSPPPCEXP3 | Read-<br>write | 0x0000000   | Expansion 3 Non-secure Unprivileged Access Peripheral Protection Control on Main Interconnect. |
| 0x0B0            | PERIPHNSPPPC0  | Read-<br>write | 0x00000000  | Non-secure Unprivileged Access Peripheral Protection Control 0 on<br>Peripheral Interconnect.  |

| Offset           | Name             | Access         | Reset value | Description                                                                                          |
|------------------|------------------|----------------|-------------|------------------------------------------------------------------------------------------------------|
| 0x0B4            | PERIPHNSPPPC1    | Read-<br>write | 0x00000000  | Non-secure Unprivileged Access Peripheral Protection Control 1 on<br>Peripheral Interconnect.        |
| 0x0B8 -<br>0x0BC | Reserved         |                | 0x0000000   | Reserved                                                                                             |
| 0x0C0            | PERIPHNSPPPCEXPO | Read-<br>write | 0x0000000   | Expansion O Non-secure Unprivileged Access Peripheral Protection Control on Peripheral Interconnect. |
| 0x0C4            | PERIPHNSPPPCEXP1 | Read-<br>write | 0x0000000   | Expansion 1 Non-secure Unprivileged Access Peripheral Protection Control on Peripheral Interconnect. |
| 0x0C8            | PERIPHNSPPPCEXP2 | Read-<br>write | 0x0000000   | Expansion 2 Non-secure Unprivileged Access Peripheral Protection Control on Peripheral Interconnect. |
| 0x0CC            | PERIPHNSPPPCEXP3 | Read-<br>write | 0x0000000   | Expansion 3 Non-secure Unprivileged Access Peripheral Protection Control on Peripheral Interconnect. |
| 0x0D0<br>0xFCC   | Reserved         |                | 0x0000000   | Reserved                                                                                             |
| 0xFD0            | PIDR4            | Read-<br>only  | 0x0000004   | Peripheral ID 4                                                                                      |
| 0xFD4 -<br>0xFDC | Reserved         |                | 0x0000000   | Reserved                                                                                             |
| 0xFE0            | PIDRO            | Read-<br>only  | 0x00000053  | Peripheral ID 0                                                                                      |
| 0xFE4            | PIDR1            | Read-<br>only  | 0x000000B8  | Peripheral ID 1                                                                                      |
| 0xFE8            | PIDR2            | Read-<br>only  | 0x0000002B  | Peripheral ID 2                                                                                      |
| 0xFEC            | PIDR3            | Read-<br>only  | 0x0000000   | Peripheral ID 3                                                                                      |
| 0xFF0            | CIDRO            | Read-<br>only  | 0x000000D   | Component ID 0                                                                                       |
| 0xFF4            | CIDR1            | Read-<br>only  | 0x00000F0   | Component ID 1                                                                                       |
| 0xFF8            | CIDR2            | Read-<br>only  | 0x00000005  | Component ID 2                                                                                       |
| 0xFFC            | CIDR3            | Read-<br>only  | 0x000000B1  | Component ID 3                                                                                       |

# 6.4.3.1 MAINNSPPPCO

Non-secure Unprivileged Access Main Interconnect Slave Peripheral Protection Controller register allows software to configure if each peripheral on the Main Interconnect that it controls through a PPC is only Non-secure Privileged Access only or is allowed Non-secure Unprivileged access as well. Each field defines this for an associated peripheral, by the following settings:

- 1 Allows Non-secure Unprivileged and Privileged access
- 0 Allows Non-secure Privileged access only

SSE-300 does not have any internal interfaces on the Main Interconnect that require Non-secure Unprivileged Access configuration support of the PPC. Therefore, this register is reserved.

### Table 6-31: MAINNSPPPC0 register

| Bits | Туре | Default   | Name | Description |
|------|------|-----------|------|-------------|
| 31:0 | RO   | 0x0000000 | -    | Reserved    |

### 6.4.3.2 MAINNSPPPCEXP<0 to 3>

The Expansion Non-secure Unprivileged Access Main Interconnect Slave Peripheral Protection Controller register 0, 1, 2 and 3 allows software to configure each Main Interconnect peripheral that it controls through each PPC, that resides in the expansion logic outside the subsystem, is only Non-secure Privileged Access only or is allowed Non-secure Unprivileged access as well. Each field defines this for an associated peripheral, by the following settings:

- 1 Allows Non-secure Unprivileged and Privileged access
- 0 Allows Non-secure Privileged access only

These directly controls the expansion signals on the Security Control Expansion interface. All four register are similar and each register, N where N is from 0 to 3 is as follows:

### Table 6-32: MAINNSPPPCEXP<N> Register

| Bits  | Туре | Default | Name                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|------|---------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0000  | -                     | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15:0  | RW   | 0x0000  | MAINNSPPPCEXP <n></n> | Expansion < <i>N</i> > Non-secure Privilege Access Main Interconnect Slave Peripheral Protection Control. Each bit n drives the output signal <b>MAINPPPCEXP<n>[n]</n></b> if MAINNSPPCEXP <n>[n] is also HIGH, where N is 0 to 3. The configuration point MAINPPCEXP<n>DIS defines if each bit within this register is actually implement such that if MAINPPCEXP<n>DIS[i] = 1'b1 then MAINNSPPPCEXP<n>[i] is disabled, reads as zeros and any writes to it is ignored.</n></n></n></n> |

### 6.4.3.3 PERIPHNSPPPCO and PERIPHNSPPPC1

Non-secure Unprivileged Access Peripheral Interconnect Slave Peripheral Protection Controller register allows software to configure if each Peripheral Interconnect peripheral that it controls through a PPC is only Non-secure Privileged access only or is allowed Non-secure Unprivileged access as well. Each field defines this for an associated peripheral, by the following settings:

- 1 Allows Non-secure Unprivileged and Privileged access
- 0 Allows Non-secure Privileged access only

SSE-300 has two such registers as follows:

### Table 6-33: PERIPHNSPPPC0 Register

| Bits | Туре | Default   | Name             | Description                                                                                                                  |
|------|------|-----------|------------------|------------------------------------------------------------------------------------------------------------------------------|
| 31:6 | RO   | 0x0000000 | -                | Reserved                                                                                                                     |
| 7    | RO   | 0x00      | -                | Reserved for NSP_SYSDSS. Non-secure Privileged setting for Debug System. When HASCSS = 0, this field is reserved and RAZ/WI. |
| 6    | RW   | 0x00      | NSP_WATCHDOG_REF | Non-secure Unprivileged setting for Non-secure Watchdog Refresh Frame                                                        |
| 5    | RW   | 0x00      | NSP_TIMER3       | Non-secure Unprivileged setting for TIMER3                                                                                   |
| 4    | RO   | 0x00      | -                | Reserved for NSP_MHU1. Non-secure Unprivileged setting for MHU 1. When NUMCPU = 0, this field is reserved and RAZ/WI.        |
| 3    | RO   | 0x00      | -                | Reserved for NSP_MHU0. Non-secure Unprivileged setting for MHU 0. When NUMCPU = 0, this field is reserved and RAZ/WI.        |
| 2    | RW   | 0x00      | NSP_TIMER2       | Non-secure Unprivileged setting for TIMER2                                                                                   |
| 1    | RW   | 0x00      | NSP_TIMER1       | Non-secure Unprivileged setting for TIMER1                                                                                   |
| 0    | RW   | 0x00      | NSP_TIMERO       | Non-secure Unprivileged setting for TIMERO                                                                                   |

### Table 6-34: PERIPHNSPPPC1 Register

|   | Bits | Туре | Default    | Name              | Description                                       |
|---|------|------|------------|-------------------|---------------------------------------------------|
| ſ | 31:2 | RO   | 0x00000000 | -                 | Reserved                                          |
|   | 0    | RW   | 0x00       | NSP_SLOWCLK_TIMER | Non-secure Unprivileged setting for SLOWCLK_TIMER |

# 6.4.3.4 PERIPHNSPPPCEXP<0 to 3>

The Expansion Non-secure Unprivileged Access Peripheral Interconnect Slave Peripheral Protection Controller register 0, 1, 2, and 3 allows software to configure each Peripheral Interconnect peripheral that it controls through each PPC, that resides in the expansion logic outside the subsystem, is only Non-secure Privileged access only or is allowed Non-secure Unprivileged access as well. Each field defines this for an associated peripheral, by the following settings:

- 1 Allows Non-secure Unprivileged and Privileged access
- 0 Allows Non-secure Privileged access only

These directly controls the expansion signals on the Security Control Expansion interface. All four register are similar and each register, N where N is from 0 to 3 is as follows:

# Table 6-35: PERIPHNSPPPCEXP<N> Register

| Bits  | Туре | Default | Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0000  | -    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15:0  | RW   | 0x0000  |      | Expansion < <i>N</i> > Non-secure Unprivileged Access Peripheral Interconnect Slave Peripheral Protection Control. Each bit n drives the output signal <b>PERIPHPPCEXP<n>[n]</n></b> if PERIPHNSPPCEXP <n>[n] is also HIGH, where N is 0 to 3. The configuration point PERIPHPPCEXP<n>DIS defines if each bit within this register is actually implement such that if PERIPHPPCEXP<n>DIS[i] = 1'b1 then PERIPHNSPPPCEXP<n>[i] is disabled, reads as zeros and any writes to it is ignored.</n></n></n></n> |

# **6.4.4 Timestamp Timers**

SSE-300 implements four timestamp-based timers in the system, TIMER<*N*> where *N* is 0 to 3. All timers are mapped to the Secure or Non-secure world through PPCO, which also controls the accessibility of unprivileged accesses. See Secure access configuration register block.

All timestamp timers and watchdog, except for Timer3, resides in PD\_SYS power domain and is reset by **nWARMRESETSYS**, while the Timer 3 resides in the PD\_AON power domain and is reset by **nWARMRESETAON**.

The following table lists the registers implemented in a timestamp-based timer.

Table 6-36: Timestamp-based timer register map

| Offset        | Name              | Access     | Reset Value | Description                              |
|---------------|-------------------|------------|-------------|------------------------------------------|
| 0x000         | CNTPCT[31:0]      | Read-only  | 0xXXXXXXXX  | Physical Count Register Lower Word       |
| 0x004         | CNTPCT[63:32]     | Read-only  | 0xXXXXXXX   | Physical Count Register Higher Word      |
| 0x008 - 0x00C | Reserved          | Read-only  | 0x00000000  | Reserved                                 |
| 0x010         | CNTFRQ            | Read-write | 0x00000000  | Counter Frequency Register               |
| 0x014 - 0x01C | Reserved          | Read-only  | 0x00000000  | Reserved                                 |
| 0x020         | CNTP_CVAL[31:0]   | Read-write | 0x00000000  | Timer Compare Value Lower Word Register  |
| 0x024         | CNTP_CVAL[63:32]  | Read-write | 0x00000000  | Timer Compare Value Higher Word Register |
| 0x028         | CNTP_TVAL         | Read-write | 0xXXXXXXX   | Timer Value register                     |
| 0x02C         | CNTP_CTL          | Read-write | 0xXXXXXXX   | Timer Control register                   |
| 0x030 - 0x3C  | Reserved          | Read-only  | 0x00000000  | Reserved                                 |
| 0x040         | CNTP_AIVAL[31:0]  | Read-only  | 0xXXXXXXX   | AutoIncrValue Lower Word Register        |
| 0×044         | CNTP_AIVAL[63:32] | Read-only  | 0xXXXXXXX   | AutoIncrValue Higher Word Register       |
| 0x048         | CNTP_AIVAL_RELOAD | Read-write | 0xXXXXXXX   | AutoIncrValue Reload register            |
| 0x04C         | CNTP_AIVAL_CTL    | Read-write | 0xXXXXXXX   | AutoIncrValue Control register           |
| 0x050         | CNTP_CFG          | Read-only  | 0x0000001   | Timer Configuration register             |
| 0x054 - 0xFCC | Reserved          | Read-only  | 0x00000000  | Reserved                                 |
| 0xFD0         | PIDR4             | Read-only  | 0x0000004   | Peripheral ID 4                          |
| 0xFD4 - 0xFDC | Reserved          | Read-only  | 0x00000000  | Reserved                                 |
| 0xFE0         | PIDRO             | Read-only  | 0x000000B7  | Peripheral ID 0                          |
| 0xFE4         | PIDR1             | Read-only  | 0x000000B0  | Peripheral ID 1                          |
| 0xFE8         | PIDR2             | Read-only  | 0x0000000B  | Peripheral ID 2                          |
| 0xFEC         | PIDR3             | Read-only  | 0x00000000  | Peripheral ID 3                          |
| 0xFF0         | CIDRO             | Read-only  | 0x0000000D  | Component ID 0                           |
| 0xFF4         | CIDR1             | Read-only  | 0x00000F0   | Component ID 1                           |
| 0xFF8         | CIDR2             | Read-only  | 0x0000005   | Component ID 2                           |
| 0xFFC         | CIDR3             | Read-only  | 0x000000B1  | Component ID 3                           |

For more information of the ARMv8M System Counter Timer registers, see Arm® SSE-123 Example Subsystem Technical Reference Manual.

# 6.4.5 Timestamp Watchdogs

SSE-300 implements two timestamp-based timer watchdogs in the system. Both reside in PD\_SYS power domain and are reset by **nWARMRESETSYS**. One watchdog timer is Secure access only, while another is Non-secure. Each watchdog accessibility to unprivileged access is also controlled by through PPC0. See PERIPHSPPPC0 and PERIPHSPPPC1 and PERIPHNSPPPC1.

Each Watchdog timer implements two register frames, a Control Frame and a Refresh Frame. The following tables list the registers implemented in a timestamp-based watchdog.

Table 6-37: Timestamp-based generic watchdog control frame register map

| Offset        | Name       | Access     | Reset value | Description                                |
|---------------|------------|------------|-------------|--------------------------------------------|
| 0x000         | WCS        | Read-write | 0x00000000  | Watchdog Control and Status                |
| 0x004         | Reserved   | Read-only  | 0x00000000  | Reserved                                   |
| 0x008         | WOR        | Read-write | 0x00000000  | Watchdog Offset Register                   |
| 0x00C         | Reserved   | Read-only  | 0x00000000  | Reserved                                   |
| 0x010         | WCV[31:0]  | Read-write | 0x00000000  | Watchdog Compare Value Lower Word          |
| 0x014         | WCV[63:32] | Read-write | 0x00000000  | Watchdog Compare Value Higher Word         |
| 0x018 - 0xFCB | Reserved   | Read-only  | 0x00000000  | Reserved                                   |
| 0xFCC         | W_IIDR     | Read-only  | 0x0000143B  | Watchdog Interface Identification Register |
| 0xFD0         | PIDR4      | Read-only  | 0x00000004  | Peripheral ID 4                            |
| 0xFD4 - 0xFDC | Reserved   | Read-only  | 0x00000000  | Reserved                                   |
| 0xFE0         | PIDRO      | Read-only  | 0x000000B1  | Peripheral ID 0                            |
| 0xFE4         | PIDR1      | Read-only  | 0x000000B0  | Peripheral ID 1                            |
| 0xFE8         | PIDR2      | Read-only  | 0x0000002B  | Peripheral ID 2                            |
| 0xFEC         | PIDR3      | Read-only  | 0x00000000  | Peripheral ID 3                            |
| 0xFF0         | CIDRO      | Read-only  | 0x0000000D  | Component ID 0                             |
| 0xFF4         | CIDR1      | Read-only  | 0x00000F0   | Component ID 1                             |
| 0xFF8         | CIDR2      | Read-only  | 0x00000005  | Component ID 2                             |
| 0xFFC         | CIDR3      | Read-only  | 0x000000B1  | Component ID 3                             |

Table 6-38: Timestamp-based generic watchdog refresh frame register map

| Offset        | Name     | Access     | Reset Value | Description                                |
|---------------|----------|------------|-------------|--------------------------------------------|
| 0x000         | WRR      | write-only | 0x00000000  | Watchdog Refresh Register                  |
| 0x004 - 0xFCB | Reserved | Read-only  | 0x00000000  | Reserved                                   |
| 0xFCC         | W_IIDR   | Read-only  | 0x0000143B  | Watchdog Interface Identification Register |
| 0xFD0         | PIDR4    | Read-only  | 0x00000004  | Peripheral ID 4                            |
| 0xFD4 - 0xFDC | Reserved | Read-only  | 0x00000000  | Reserved                                   |
| 0xFE0         | PIDRO    | Read-only  | 0x000000B0  | Peripheral ID 0                            |
| 0xFE4         | PIDR1    | Read-only  | 0x000000B0  | Peripheral ID 1                            |
| 0xFE8         | PIDR2    | Read-only  | 0x0000002B  | Peripheral ID 2                            |

| Offset | Name  | Access    | Reset Value | Description     |
|--------|-------|-----------|-------------|-----------------|
| 0xFEC  | PIDR3 | Read-only | 0x00000000  | Peripheral ID 3 |
| 0xFF0  | CIDRO | Read-only | 0x0000000D  | Component ID 0  |
| 0xFF4  | CIDR1 | Read-only | 0x000000F0  | Component ID 1  |
| 0xFF8  | CIDR2 | Read-only | 0x0000005   | Component ID 2  |
| 0xFFC  | CIDR3 | Read-only | 0x000000B1  | Component ID 3  |

For more information of the ARMv8M Timestamp Watchdog registers, see Arm® SSE-123 Example Subsystem Technical Reference Manual.

# 6.5 Processor Private Region

Each processor in the system has its own copy of the Processor Private Region which is only assessable to itself. Each Processor Private Region consists of four subregions as follows:

- 0x40010000 to 0x4001FFFF implements a Non-secure Low Access Latency Region
- 0x48010000 to 0x4801FFFF implements a Non-secure High Access Latency Region
- 0x50010000 to 0x5001FFFF implements a Secure Low Access Latency Region
- 0x58010000 to 0x5801FFFF implements a Secure High Access Latency Region

Each of these regions are not accessible from any other master in the system, including from the expansion slave interfaces on the Main and Peripheral Interconnect, except through the external debugger through the local CPUs. Of the four regions above only 0x40010000 to 0x4001FFFF and 0x50010000 to 0x5001FFFF implements any registers.

The memory map of the Processor Private Region is as follows:



In this section and the following subsections CPU<N> always refers to CPU0.

Table 6-39: Processor Private Region address map

|   | Address - from |                                       |     | Region name          | Description                                                                | Alias with row ID | Security <sup>1</sup> |
|---|----------------|---------------------------------------|-----|----------------------|----------------------------------------------------------------------------|-------------------|-----------------------|
| 0 | 0x40010000     | 0x40011FFF - Reserved                 |     | Reserved             | Reserved                                                                   | -                 | -                     |
| 1 | 0x40012000     | 0x40012FFF                            | 4KB | CPU <n>_PWRCTRL</n>  | CPU <n> Power Control Block. See<br/>CPU<n>_PWRCTRL Register Block</n></n> | 7                 | NS, P                 |
| 2 | 0x40013000     | 0x4001EFFF                            | -   | Reserved             | Reserved                                                                   | -                 | -                     |
| 3 | 0x4001F000     | 0 0x4001FFFF 4KB CPU <n>_IDENTITY</n> |     | CPU <n>_IDENTITY</n> | CPU <n> Identity Block, See CPU<n>_IDENTITY Register Block</n></n>         | 9                 | NS, UP                |
| 4 | 0x48010000     | 0x4801FFFF                            | -   | Reserved             | Reserved                                                                   | -                 | -                     |
| 5 | 0x50010000     | 0x50010FFF                            | -   | Reserved             | Reserved                                                                   | -                 | -                     |

| Row<br>ID | Address - from | Address - to | Size | Region name          | Description                                                                         | Alias with row ID | Security <sup>1</sup> |
|-----------|----------------|--------------|------|----------------------|-------------------------------------------------------------------------------------|-------------------|-----------------------|
| 6         | 0x50011000     | 0x50011FFF   | 4KB  | CPU <n>_SECCRTL</n>  | CPU <n> Local Security Control Block, See<br/>CPU<n>_SECCTRL Register Block</n></n> | -                 | S, P                  |
| 7         | 0x50012000     | 0x50012FFF   | 4KB  | CPU <n>_PWRCTRL</n>  | CPU <n> Power Control Block. See<br/>CPU<n>_PWRCTRL Register Block</n></n>          | 1                 | S, P                  |
| 8         | 0x50013000     | 0x5001EFFF   | -    | Reserved             | Reserved                                                                            | -                 | -                     |
| 9         | 0x5001F000     | 0x5001FFFF   | 4KB  | CPU <n>_IDENTITY</n> | CPU <n> Identity Block, See CPU<n>_IDENTITY Register Block</n></n>                  | 3                 | S, UP                 |
| 10        | 0x58010000     | 0x5801FFFF   | -    | Reserved             | Reserved                                                                            | -                 | -                     |

- 1. S: Secure access only. NS: Non-secure access only
  - P: Privilege access only. UP: Unprivileged and privilege access allowed

# 6.5.1 CPU<N>\_PWRCTRL Register Block

SSE-300 implements a CPU<N>\_PWRCTRL register block for each CPU <N> in the subsystem, where N is 0 to NUMCPU. All blocks reside at address 0x40012000 in a Non-secure region and is also alias to 0x50012000 in the Secure region. Each CPU<N> can only see its own CPU<N>\_PWRCTRL registers. These are read only registers when accessed from the Non-secure region starting at address 0x40012000 and any writes access to it in that region will be ignored.

The following table lists the registers in each CPU<N>\_PWRCTRL register block.

Table 6-40: CPU<n>\_PWRCTRL register map

| Offset        | Name      | Access     | Reset value | Description                                                    |
|---------------|-----------|------------|-------------|----------------------------------------------------------------|
| 0x000         | CPUPWRCFG | Read-write | 0x00000000  | CPU <n> Local Power Configuration register. See CPUPWRCFG.</n> |
| 0x004 - 0xFCC | Reserved  | Read-only  | 0x0000000   | Reserved                                                       |
| 0xFD0         | PIDR4     | Read-only  | 0x0000004   | Peripheral ID 4                                                |
| 0xFD4 - 0xFDC | Reserved  | Read-only  | 0x0000000   | Reserved                                                       |
| 0xFE0         | PIDRO     | Read-only  | 0x000005A   | Peripheral ID 0                                                |
| 0xFE4         | PIDR1     | Read-only  | 0x000000B8  | Peripheral ID 1                                                |
| 0xFE8         | PIDR2     | Read-only  | 0x0000000B  | Peripheral ID 2                                                |
| 0xFEC         | PIDR3     | Read-only  | 0x00000000  | Peripheral ID 3                                                |
| 0xFF0         | CIDRO     | Read-only  | 0x000000D   | Component ID 0                                                 |
| 0xFF4         | CIDR1     | Read-only  | 0x00000F0   | Component ID 1                                                 |
| 0xFF8         | CIDR2     | Read-only  | 0x0000005   | Component ID 2                                                 |
| 0xFFC         | CIDR3     | Read-only  | 0x000000B1  | Component ID 3                                                 |

# 6.5.1.1 CPUPWRCFG

The CPUPWRCFG register, provide the local CPU software control registers for power control. This register is read only if accessed from the Non-secure world. This register resides in the same

reset domain, nWARMRESETCPU<N> and power domain, PD\_CPU<N> as its associated CPU core so that when the CPU is powered down, the register is also powered down and are cleared when powered back up.

Table 6-41: CPU<N>PWRCFG Register

| Bits | Туре | Default   | Name              | Description                                                                                                         |
|------|------|-----------|-------------------|---------------------------------------------------------------------------------------------------------------------|
| 31:5 | RO   | 0x0000000 | -                 | Reserved.                                                                                                           |
| 4    | RW   | 0x00      | TCM_MIN_PWR_STATE | Defines the minimum power state of the TCM for CPU <n>.</n>                                                         |
|      |      |           |                   | • '0' - OFF                                                                                                         |
|      |      |           |                   | • '1' - Retention.                                                                                                  |
|      |      |           |                   | This bit is read access only from the Non-secure world.                                                             |
|      |      |           |                   | When PD_CPU <n> returns from MEM_RET or MEM_RET_NOCACHE state to one of the ON states, this bit is set to 1'b1.</n> |
| 3:1  | RO   | 0x00      | -                 | Reserved                                                                                                            |
| 0    | RW   | 0x00      | USEIWIC           | When HIGH, Select the use of IWIC for CPU <n> when in DeepSleep. Else select the use of EWIC.</n>                   |
|      |      |           |                   | If CPU <n>HASIWIC for this CPU<n> is 0, this field is reserved and is RAZ/WI.</n></n>                               |
|      |      |           |                   | This bit is read access only from the Non-secure world.                                                             |

# 6.5.2 CPU<N>\_IDENTITY Register Block

SSE-300 implements a CPU<N>\_IDENTITY register block for each CPU<N> in the subsystem, where N is 0 to NUMCPU. All blocks reside at address 0x4001F000 in a Non-secure region and is also alias to 0x5001F000 in the Secure region. Each CPU<N> can only see its own CPU<N>\_IDENTITY registers. These are read only registers and any writes access to it will be ignored.

The following table lists the registers in each CPU<N>\_IDENTITY block.

Table 6-42: CPU<N>\_IDENTITY register map

| Offset           | Name     | Access        | Reset value         | Description                                                                                      |
|------------------|----------|---------------|---------------------|--------------------------------------------------------------------------------------------------|
| 0x000            | CPUID    | Read-<br>only | CPU <n>CPUIDRST</n> | Unique CPU Identity Number, where <n> is used for the view that CPU <n> sees. See CPUID.</n></n> |
| 0x004 -<br>0xFCC | Reserved | Read-<br>only | 0x0000000           | Reserved                                                                                         |
| 0xFD0            | PIDR4    | Read-<br>only | 0x0000004           | Peripheral ID 4                                                                                  |
| 0xFD4 -<br>0xFDC | Reserved | Read-<br>only | 0x0000000           | Reserved                                                                                         |
| 0xFE0            | PIDRO    | Read-<br>only | 0x00000055          | Peripheral ID 0                                                                                  |
| 0xFE4            | PIDR1    | Read-<br>only | 0x000000B8          | Peripheral ID 1                                                                                  |

| Offset | Name  | Access        | Reset value | Description     |
|--------|-------|---------------|-------------|-----------------|
| 0xFE8  | PIDR2 | Read-<br>only | 0x0000000B  | Peripheral ID 2 |
| 0xFEC  | PIDR3 | Read-<br>only | 0x0000000   | Peripheral ID 3 |
| 0xFF0  | CIDRO | Read-<br>only | 0x000000D   | Component ID 0  |
| 0xFF4  | CIDR1 | Read-<br>only | 0x00000F0   | Component ID 1  |
| 0xFF8  | CIDR2 | Read-<br>only | 0x0000005   | Component ID 2  |
| 0xFFC  | CIDR3 | Read-<br>only | 0x000000B1  | Component ID 3  |

# 6.5.2.1 CPUID

The CPUID register, is a read only register that when read by CPU <N>, provides an identity code to the CPU that is unique to that CPU.

Table 6-43: CPUID Register

| Bits | Туре | Default             | Name                                                              | Description                                             |  |
|------|------|---------------------|-------------------------------------------------------------------|---------------------------------------------------------|--|
| 31:4 | RO   | 0x0000000           | -                                                                 | Reserved.                                               |  |
| 3:0  | RO   | CPU <n>CPUIDRST</n> | CPUID CPU Identity. Defined by configuration CPU <n>CPUIDRST.</n> |                                                         |  |
|      |      |                     |                                                                   | The identity value for each CPU <n> must be unique.</n> |  |

# 6.5.3 CPU<N>\_SECCTRL Register Block

Each CPU <N> in the system, where N is 0 to NUMCPU, has associated with it a CPU<N>\_SECCTRL register block that allow the security locks of each CPU to be configured. Each register block resides in the same reset domain, **nWARMRESETCPU<N>** and power domain as its associated processor core so that when a core is powered down, they are also powered down and are cleared when powered back up. These registers are Secure access only and resides at address 0×50011000.

The following table lists the registers in each CPU<N>\_SECCTRL Register block.

Table 6-44: CPU<N>\_SECCTRL register map

| Offset        | Name      | Access     | Reset value | Description                                     |
|---------------|-----------|------------|-------------|-------------------------------------------------|
| 0x000         | CPUSECCFG | Read-write | 0x00000000  | CPU Local Security Configuration. See CPUSECCFG |
| 0x004 - 0xFCC | Reserved  | Read-only  | 0x0000000   | Reserved                                        |
| 0xFD0         | PIDR4     | Read-only  | 0x0000004   | Peripheral ID 4                                 |
| 0xFD4 - 0xFDC | Reserved  | Read-only  | 0x0000000   | Reserved                                        |
| 0xFE0         | PIDRO     | Read-only  | 0x00000059  | Peripheral ID 0                                 |

| Offset | Name  | Access    | Reset value | Description     |
|--------|-------|-----------|-------------|-----------------|
| 0xFE4  | PIDR1 | Read-only | 0x000000B8  | Peripheral ID 1 |
| 0xFE8  | PIDR2 | Read-only | 0x000001B   | Peripheral ID 2 |
| 0xFEC  | PIDR3 | Read-only | 0x0000000   | Peripheral ID 3 |
| 0xFF0  | CIDRO | Read-only | 0x000000D   | Component ID 0  |
| 0xFF4  | CIDR1 | Read-only | 0x00000F0   | Component ID 1  |
| 0xFF8  | CIDR2 | Read-only | 0x0000005   | Component ID 2  |
| 0xFFC  | CIDR3 | Read-only | 0x000000B1  | Component ID 3  |

#### 6.5.3.1 CPUSECCFG

The CPU Local Security Configuration Register allows software to set security lock bits at the CPU interface.

Table 6-45: CPUSECCFG Register.

| Bits | Туре | Default    | Name         | Description                                                                                                                                                                                                                                                               |
|------|------|------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:6 | RO   | 0x00000000 | -            | Reserved.                                                                                                                                                                                                                                                                 |
| 5    | W1S  | 0x00       | LOCKDTGU     | When HIGH, disables writes to the CPU <n> DTGU_CTRL and DTGU_LUTn registers from software or from a debug agent connected to the processor. Once set to high, it cannot be cleared until Reset.</n>                                                                       |
| 4    | W1S  | 0x00       | LOCKITGU     | When HIGH, disables writes to the CPU <n> ITGU_CTRL and ITGU_LUTn from software or from a debug agent connected to the processor. Once set to high, it cannot be cleared until Reset.</n>                                                                                 |
| 3    | W1S  | 0x00       | LOCKTCM      | When HIGH, disables writes to the CPU <n> ITCMCR, DTCMCR from software or from a debug agent connected to the processor. Once set to high, it cannot be cleared until Reset.</n>                                                                                          |
| 2    | W1S  | 0x00       | LOCKSMPU     | When HIGH, disables write to the CPU <n> MPU_CTRL, MPU_RNR, MPU_RBAR, MPU_RLAR, MPU_RBAR_An, MPU_RLAR_An registers associated with the Secure MPU from software or from a debug agent connected to the processor. Once set to high, it cannot be cleared until Reset.</n> |
| 1    | W1S  | 0x00       | LOCKSAU      | When HIGH, disables writes to the CPU <n> SAU_CTRL, SAU_RNR, SAU_RBAR and SAU_RLAR registers from software or from a debug agent connected to the processor. Once set to high, it cannot be cleared until Reset.</n>                                                      |
| 0    | W1S  | 0x00       | LOCKSVTAIRCR | When HIGH, disables writes to the CPU <n> VTOR_S, AIRCR.PRIS, and AIRCR.BFHFNMINS registers. Once set to high, it cannot be cleared until Reset.</n>                                                                                                                      |

# 6.6 System Control Peripheral Region

The System Control Peripheral Region is a collection of memory regions where system control related peripherals are mapped. These peripherals reside in the PD\_AON power domain. There are four regions in total as follows:

• 0x40020000 to 0x4003FFFF, which is a Non-secure region for low latency system control peripherals. Some peripherals might be expected to be aliased in its associated Secure region, 0x50020000 to 0x5003FFFF.

- 0x48020000 to 0x4803FFFF, which is a Non-secure region for high latency system control peripherals. Some peripherals are expected to be aliased in its associated Secure region, 0x58020000 to 0x5803FFFF.
- 0x50020000 to 0x5003FFFF, which is a Secure region for low latency system control peripherals. Some peripherals might be expected to be aliased in its associated Non-secure region, 0x40020000 to 0x4003FFFF.
- 0x58020000 to 0x5803FFFF, which is a Secure region for low latency system control peripherals. Some peripherals are expected to be aliased in its associated Non-secure region, 0x48020000 to 0x4803FFFF.

For an aliased peripheral in these regions, mapping of each to either Secure or Non-secure region is determined by Peripheral Protection Controllers (PPC) that are controlled using the Secure Access Configuration Register Block. These PPCs also define Privileged or Unprivileged accessibility. For more information about the Secure Access Configuration Register Block, see Secure access configuration register block.

Table 6-46: System Control Peripheral Region address map

| Row<br>ID | Address - from | Address - to | Size  | Region Name         | Description                                                       | Alias with row ID | Security <sup>1</sup> |
|-----------|----------------|--------------|-------|---------------------|-------------------------------------------------------------------|-------------------|-----------------------|
| 1         | 0x40020000     | 0x4003FFFF   | 128KB | Reserved            | Reserved. When accessed, results in bus error.                    |                   |                       |
| 2         | 0x48020000     | 0x48020FFF   | 4KB   | SYSINFO             | System Information Register Block. See SYSINFO Register Block.    |                   | NS, UP                |
| 3         | 0x48021000     | 0x4802EFFF   | 56KB  | Reserved            | Reserved. When accessed, results in RAZ/WI.                       |                   | NS, UP                |
| 4         | 0x4802F000     | 0x4802FFFF   | 4KB   | SLOWCLK<br>Timer    | Timer running on SLOWCLK. See SLOWCLK AON Timers.                 | 28                | NS-PPC,<br>P-PPC      |
| 5         | 0x48030000     | 0x4803FFFF   | 64KB  | Reserved            | Reserved. When accessed, results in bus error.                    |                   |                       |
| 6         | 0x50020000     | 0x5003FFFF   | 128KB | Reserved            | Reserved. When accessed, results in bus error.                    |                   |                       |
| 7         | 0x58020000     | 0x58020FFF   | 4KB   | SYSINFO             | System Information Register Block. See SYSINFO Register Block.    |                   | S, UP                 |
| 8         | 0x58021000     | 0x58021FFF   | 4KB   | SYSCONTROL          | System Control Register Block. See SOC_IDENTITY.                  |                   | S, P                  |
| 18        | 0x58022000     | 0x58022FFF   | 4KB   | SYS_PPU             | PPU for BR_SYS. See Power Policy Units.                           |                   | S, P                  |
| 19        | 0x58023000     | 0x58023FFF   | 4KB   | CPU0_PPU            | PPU for BR_CPU0. See Power Policy Units.                          |                   | S, P                  |
| 20        | 0x58024000     | 0x58024FFF   | 4KB   | Reserved            | Reserved for CPU1_PPU. PPU for BR_CPU1. RAZ/ WI when accessed.    |                   |                       |
| 21        | 0x58025000     | 0x58025FFF   | 4KB   | Reserved            | Reserved for CPU2_PPU. PPU for BR_CPU2. RAZ/ WI when accessed.    |                   |                       |
| 22        | 0x58026000     | 0x58026FFF   | 4KB   | Reserved            | Reserved for CPU3_PPU. PPU for BR_CPU3. RAZ/ WI when accessed.    |                   |                       |
| 23        | 0x58027000     | 0x58027FFF   | 4KB   | Reserved            | Reserved for CRYPTO_PPU. PPU for BR_CRYPTO. RAZ/WI when accessed. |                   |                       |
| 24        | 0x58028000     | 0x58028FFF   | 4KB   | MGMT_PPU            | PPU for BR_MGMT. See Power Policy Units.                          |                   | S, P                  |
| 25        | 0x58029000     | 0x58029FFF   | 4KB   | DEBUG_PPU           | PPU for BR_DEBUG. See Power Policy Units.                         |                   | S, P                  |
| 26        | 0x5802A000     | 0x5802DFFF   | 16KB  | Reserved            | Reserved. When accessed, results in RAZ/WI.                       |                   |                       |
| 27        | 0x5802E000     | 0x5802EFFF   | 4KB   | SLOWCLK<br>Watchdog | Watchdog Timer running on SLOWCLK. See SLOWCLK AON Timers.        |                   | S, P                  |

| Row<br>ID | Address -<br>from | Address - to | Size | Region Name      | Description                                       | Alias with row ID | Security <sup>1</sup> |
|-----------|-------------------|--------------|------|------------------|---------------------------------------------------|-------------------|-----------------------|
| 28        | 0x5802F000        | 0x5802FFFF   | 4KB  | SLOWCLK<br>Timer | Timer running on SLOWCLK. See SLOWCLK AON Timers. | 4                 | S-PPC, P-<br>PPC      |
| 29        | 0x58030000        | 0x5803FFFF   | 64KB | Reserved         | Reserved. When accessed, results in bus error.    |                   |                       |

- 1. Use the following list for the meaning of the abbreviations in this column:
  - NS-PPC: Non-secure access only, gated by a PPC
  - S-PPC: Secure access only, gated by a PPC
  - S: Secure access only
  - NS: Non-secure access only
  - P: Privilege access only
  - UP: Unprivileged and privilege access allowed
  - P-PPC: Unprivileged access controlled by a PPC

# 6.6.1 SYSINFO Register Block

The System Information Register Block provides information on the system configuration and identity. This register block is read-only and is accessible by accesses of any security attributes. This module resides at base address 0x58020000 in the Secure region, and 0x48020000 in the Non-secure region.

Details of each register are described in separate sections.

Table 6-47: System Information register map

| Offset           | Name         | Access        | Reset value  | Description                                                                |
|------------------|--------------|---------------|--------------|----------------------------------------------------------------------------|
| 0x000            | SOC_IDENTITY | Read-<br>only | Configurable | SoC Identity Register. See SOC_IDENTITY.                                   |
| 0x004            | SYS_CONFIG0  | Read-<br>only | Configurable | System Hardware Configuration 0 Register. See SYS_CONFIG0 and SYS_CONFIG1. |
| 0x008            | SYS_CONFIG1  | Read-<br>only | Configurable | System Hardware Configuration 1 Register. See SYS_CONFIG0 and SYS_CONFIG1. |
| 0x010 -<br>0xFC4 | Reserved     |               | 0x0000000    | Reserved.                                                                  |
| 0xFC8            | IIDR         | Read-<br>only | Configurable | Subsystem Implementation Identity Register. See IIDR.                      |
| 0xFCC            | Reserved     |               | 0x00000000   | Reserved.                                                                  |
| 0xFD0            | PIDR4        | Read-<br>only | 0x0000004    | Peripheral ID 4.                                                           |
| 0xFD4 -<br>0xFDC | Reserved     |               | 0x0000000    | Reserved.                                                                  |
| 0xFE0            | PIDRO        | Read-<br>only | 0x00000058   | Peripheral ID 0.                                                           |

| Offset | Name  | Access        | Reset value | Description      |
|--------|-------|---------------|-------------|------------------|
| 0xFE4  | PIDR1 | Read-<br>only | 0x000000B8  | Peripheral ID 1. |
| 0xFE8  | PIDR2 | Read-<br>only | 0x000001B   | Peripheral ID 2. |
| 0xFEC  | PIDR3 | Read-<br>only | 0x0000000   | Peripheral ID 3. |
| 0xFF0  | CIDRO | Read-<br>only | 0x000000D   | Component ID 0.  |
| 0xFF4  | CIDR1 | Read-<br>only | 0x00000F0   | Component ID 1.  |
| 0xFF8  | CIDR2 | Read-<br>only | 0x0000005   | Component ID 2.  |
| 0xFFC  | CIDR3 | Read-<br>only | 0x000000B1  | Component ID 3.  |

# 6.6.1.1 SOC\_IDENTITY

The System-On-Chip (SoC) Identity register provide an area where software can find out about the SoC's part number, its implementor and revision number. These are defined by configuration parameters.

#### Table 6-48: SOC\_IDENTITY Register

| Bits  | Туре | Default   | Name              | Description                                                        |
|-------|------|-----------|-------------------|--------------------------------------------------------------------|
| 31:20 | RO   | SOCPRTID  | SOC_PRODUCT_ID    | Configurable value identifying the SoC.                            |
| 19:16 | RO   | SOCVAR    | SOC_VARIANT       | Configurable value indicating major revision of the SoC.           |
| 15:12 | RO   | SOCREV    | SOC_REVISION      | Configurable value used to distinguish minor revisions of the SoC. |
| 11:0  | RO   | SOCIMPLID | SOC_IMPLEMENTATOR | Contains the JEP106 code of the company that implemented the SoC:  |
|       |      |           |                   | [11:8] JEP106 continuation code of implementer                     |
|       |      |           |                   | • [7] Always 0                                                     |
|       |      |           |                   | [6:0] JEP106 identity code of implementer                          |

When EXPLOGIC\_PRESENT = 1, the SoC identity register fields are used to define the TARGETID of the SoC debug port in the subsystem expansion as follows:

- TARGETID[31:28] uses SOCVAR
- TARGETID[27:16] uses SOCPRTID
- TARGETID[15:12] tied to 0x0
- TARGETID[11:1] uses {SOCIMPLID[11:8], SOCIMPLID[6:0]}
- TARGETID[0] tied to 0b1

For more information about TARGETID, see Arm® Debug Interface Architecture Specification ADIv6.0.

## 6.6.1.2 SYS\_CONFIG0 and SYS\_CONFIG1

The System Hardware Configuration registers provides several registers to allow software to find out about the configuration of the SSE-300 based system.



In these tables, the fields CPUO\_TCM\_BANK\_NUM and CPUO\_HAS\_SYSTCM refers to TCM that are implemented on the system interconnect close to each associated core, rather than the TCMs that are implemented within the processor core. SSE-300 does not support TCM being implemented on the system interconnect.

#### Table 6-49: SYS\_CONFIG0 register

| Bits  | Туре | Default  | Name              | Description                                                                                           |
|-------|------|----------|-------------------|-------------------------------------------------------------------------------------------------------|
| 31:28 | RO   | 0x0      | CPU1_TCM_BANK_NUM | The VM Bank TCM memory for CPU 1. This field is RAZ/WI.                                               |
| 27    | RO   | 0x0      | CPU1_HAS_SYSTCM   | CPU 1 has System TCM.                                                                                 |
|       |      |          |                   | • 0 = No                                                                                              |
|       |      |          |                   | • O = Yes                                                                                             |
|       |      |          |                   | Note that this is not the CPU's local ITCM or DTCM, but instead are TCMs implemented at system level. |
| 26:24 | RO   | CPU1TYPE | CPU1_TYPE         | CPU 1 Core Type:                                                                                      |
|       |      |          |                   | 000 - Does not exist                                                                                  |
|       |      |          |                   | 011 - Cortex-M55 processor                                                                            |
|       |      |          |                   | Others - Reserved                                                                                     |
| 23:20 | RO   | 0x0      | CPU0_TCM_BANK_NUM | The VM Bank that is the TCM memory for CPU 0.                                                         |
| 19    | RO   | 0x0      | CPU0_HAS_SYSTCM   | CPU 0 has System TCM.                                                                                 |
|       |      |          |                   | • O = No                                                                                              |
|       |      |          |                   | • O = Yes                                                                                             |
|       |      |          |                   | Note that this is not the CPU's local ITCM or DTCM, but instead are TCMs implemented at system level. |
| 18:16 | RO   | CPUOTYPE | CPU0_TYPE         | CPU 0 Core Type:                                                                                      |
|       |      |          |                   | 000 - Does not exist                                                                                  |
|       |      |          |                   | O11 - Cortex-M55 processor                                                                            |
|       |      |          |                   | Others - Reserved                                                                                     |
| 15:13 | RO   | 0x0      | Reserved          | Reserved                                                                                              |
| 12:11 | RO   | PILEVEL  | PI_LEVEL          | Power Infrastructure Level:                                                                           |
|       |      |          |                   | 00 - Basic Level                                                                                      |
|       |      |          |                   | O1 - Intermediate Level                                                                               |
|       |      |          |                   | • 10 - Advance Level                                                                                  |
|       |      |          |                   | Others - Reserved                                                                                     |
| 10    | RO   | HASCSS   | HAS_CSS           | It reflects whether the CoreSight SoC-600-based common debug infrastructure is included.              |
|       |      |          |                   | • 0 = No                                                                                              |
|       |      |          |                   | • 0 = Yes                                                                                             |

| Bits | Туре | Default     | Name          | Description                                                                                                     |
|------|------|-------------|---------------|-----------------------------------------------------------------------------------------------------------------|
| 9    | RO   | HASCRYPTO   | HAS_CRYPTO    | It reflects whether CryptoCell-312 is included.                                                                 |
|      |      |             |               | O = No                                                                                                          |
|      |      |             |               | 0 = Yes                                                                                                         |
| 8:4  | RO   | VMADDRWIDTH | VM_ADDR_WIDTH | Volatile Memory Bank Address Width, where the size of each bank is equal to $2^{\text{VM\_ADDR\_WIDTH}}$ bytes. |
| 3:0  | RO   | NUMVMBANK   | NUM_VM_BANK   | Number of Volatile Memory Banks.                                                                                |

#### Table 6-50: SYS\_CONFIG1 register

| Bits  | Туре | Default  | Name              | Description                                                                                           |
|-------|------|----------|-------------------|-------------------------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x0000 - | Reserved          | Reserved                                                                                              |
| 15:12 | RO   | 0x0      | CPU3_TCM_BANK_NUM | The VM Bank that is the TCM memory for CPU 3.                                                         |
| 11    | RO   | 0x0      | CPU3_HAS_SYSTCM   | CPU 3 has System TCM.                                                                                 |
|       |      |          |                   | • O = No                                                                                              |
|       |      |          |                   | • 0 = Yes                                                                                             |
|       |      |          |                   | Note that this is not the CPU's local ITCM or DTCM, but instead are TCMs implemented at system level. |
| 10:8  | RO   | CPU3TYPE | CPU3_TYPE         | CPU 3 Core Type:                                                                                      |
|       |      |          |                   | 000 - Does not exist                                                                                  |
|       |      |          |                   | 011 - Cortex-M55 processor                                                                            |
|       |      |          |                   | Others - Reserved                                                                                     |
| 7:4   | RO   | 0x0      | CPU2_TCM_BANK_NUM | The VM Bank that is the TCM memory for CPU 2. This field is RAZ/WI.                                   |
| 3     | RO   | 0x0      | CPU2_HAS_SYSTCM   | CPU 2 has System TCM.                                                                                 |
|       |      |          |                   | • 0 = No                                                                                              |
|       |      |          |                   | • 0 = Yes                                                                                             |
|       |      |          |                   | Note that this is not the CPU's local ITCM or DTCM, but instead are TCMs implemented at system level. |
| 2:0   | RO   | CPU2TYPE | CPU2_TYPE         | CPU 2 Core Type:                                                                                      |
|       |      |          |                   | 000 - Does not exist                                                                                  |
|       |      |          |                   | 011 - Cortex-M55 processor                                                                            |
|       |      |          |                   | Others - Reserved                                                                                     |

#### 6.6.1.3 IIDR

The Subsystem Implementation Identity register provides an area where software can find out about the Subsystem Implementation part number, its implementor, and revision number. These are defined by configuration parameters.

#### Table 6-51: IIDR Register

| Bits  | Туре | Default   | Name           | Description                                                  |
|-------|------|-----------|----------------|--------------------------------------------------------------|
| 31:20 | RO   | IMPLPRTID | IMP_PRODUCT_ID | Configurable value identifying the subsystem implementation. |

| Bits  | Type | Default | Name              | Description                                                                              |
|-------|------|---------|-------------------|------------------------------------------------------------------------------------------|
| 19:16 | RO   | IMPLVAR | IMP_VARIANT       | Configurable value indicating variant or major revision of the subsystem implementation. |
| 15:12 | RO   | IMPLREV | IMP_REVISION      | Configurable value used to distinguish minor revisions of the subsystem implementation.  |
| 11:0  | RO   | IMPLID  | IMP_IMPLEMENTATOR | Contains the JEP106 code of the company that implemented the subsystem:                  |
|       |      |         |                   | [11:8] JEP106 continuation code of implementer.                                          |
|       |      |         |                   | • [7] Always O.                                                                          |
|       |      |         |                   | [6:0] JEP106 identity code of implementer.                                               |

When EXPLOGIC\_PRESENT = 1, the subsystem implementation identity register fields are used to define the PIDR values of the MCU debug ROM table - that is the first debug ROM table in the system - in the subsystem expansion, as follows:

- REVISION uses IMPLVAR
- {PART 1, PART 0} uses IMPLPRTID
- {DES\_2, DES\_1, DES\_0} uses IMPLID
- REVAND uses IMPLREV

For more information about PIDR registers of debug ROM table, see Arm® CoreSight™ Architecture Specification v3.0.

# 6.6.2 System Control Register Block

The System Control Register Block implements registers for power, clocks, resets and other general system control. This module resides at base address 0x58021000 in the Secure region. The System Control Register Block is Secure privilege access only. For write access to these registers, only 32-bit writes are supported. Any Byte and Half-word writes will result in its write data ignored. The following table shows the details of this register block.

This System Control Registers Block resides in the PD AON power domain.

Table 6-52: System Control register map

| Offset | Name       | Access         | Reset value | Description                                |
|--------|------------|----------------|-------------|--------------------------------------------|
| 0x000  | SECDBGSTAT | Read-only      | CFG_DEF     | Secure Debug Configuration Status Register |
|        |            |                |             | See SECDBGSTAT, SECDBGSET and SECDBGCLR    |
| 0x004  | SECDBGSET  | Read-<br>write | 0x00000000  | Secure Debug Configuration Set Register    |
|        |            |                |             | See SECDBGSTAT, SECDBGSET and SECDBGCLR    |
| 0x008  | SECDBGCLR  | Write-<br>only | 0x00000000  | Secure Debug Configuration Clear Register  |
|        |            |                |             | See SECDBGSTAT, SECDBGSET and SECDBGCLR    |
| 0x00C  | SCSECCTRL  | Read-<br>write | 0x00000000  | System Control Security Controls Register  |
|        |            |                |             | See SCSECCTRL                              |

| Offset  | Name            | Access         | Reset value | Description                                                          |
|---------|-----------------|----------------|-------------|----------------------------------------------------------------------|
| 0x010   | CLK_CFG0        | Read-          | CFG_DEF     | Clock Configuration Register 0                                       |
|         |                 | write          |             | See CLK_CFG0 and CLK_CFG1                                            |
| 0x014   | CLK_CFG1        | Read-          | CFG_DEF     | Clock Configuration Register 1                                       |
|         |                 | write          |             | See CLK_CFG0 and CLK_CFG1                                            |
| 0x018   | CLOCK_FORCE     | Read-          | CFG_DEF     | Clock forces                                                         |
|         |                 | write          |             | See CLOCK_FORCE                                                      |
| 0x01C - | Reserved        | Read-only      | 0x00000000  | Reserved                                                             |
| 0x0FF   | DECET CYNIDDOME | Dood           | 000000001   | Deset a undrama                                                      |
| 0x100   | RESET_SYNDROME  | Read-<br>write | 0x00000001  | Reset syndrome                                                       |
|         |                 |                |             | See RESET_SYNDROME                                                   |
| 0x104   | RESET_MASK      | Read-<br>write | CFG_DEF     | Reset mask                                                           |
|         |                 |                |             | See RESET_MASK                                                       |
| 0x108   | SWRESET         | Write-         | 0x00000000  | Software reset                                                       |
|         |                 | only           |             | See SWRESET                                                          |
| 0x10C   | GRETREG         | Read-          | 0x00000000  | General Purpose Retention Register                                   |
|         |                 | write          |             | See GRETREG                                                          |
| 0x110   | INITSVTORO      | Read-          | CFG_DEF     | CPU 0 Initial Secure Reset Vector Register                           |
|         |                 | write          |             | See INITSVTORO                                                       |
| 0x114   | Reserved        | Read-only      | 0x00000000  | CPU 1 Initial Secure Reset Vector Register. Reserved for             |
|         |                 |                |             | INITSVTOR1.                                                          |
|         |                 |                |             | See INITSVTOR0                                                       |
| 0x118   | Reserved        | Read-only      | 0x00000000  | CPU 2 Initial Secure Reset Vector Register. Reserved for INITSVTOR2. |
|         |                 |                |             | See INITSVTORO                                                       |
| 0x11C   | Reserved        | Read-only      | 0x00000000  | CPU 3 Initial Secure Reset Vector Register. Reserved for             |
|         |                 |                |             | INITSVTOR3.                                                          |
|         |                 |                |             | See INITSVTOR0                                                       |
| 0x120   | CPUWAIT         | Read-          | CFG_DEF     | CPU Boot Wait Control                                                |
|         |                 | write          |             | See CPUWAIT                                                          |
| 0x124   | NMI_ENABLE      | Read-          | CFG_DEF     | Enabling and Disabling Non Maskable Interrupts                       |
|         |                 | write          |             | See NMI_ENABLE                                                       |
| 0x128 - | Reserved        | Read-only      | 0x00000000  | Reserved                                                             |
| 0x1F8   |                 | ·              |             |                                                                      |
| 0x1FC   | PWRCTRL         | Read-<br>write | 0x0000003   | Power Configuration and Control                                      |
|         |                 | VVIIC          |             | See PWRCTRL                                                          |

| Offset           | Name                            | Access         | Reset value | Description                                               |
|------------------|---------------------------------|----------------|-------------|-----------------------------------------------------------|
| 0x200            | PDCM_PD_SYS_SENSE               | Read-          | CFG_DEF     | PDCM PD_SYS sensitivity                                   |
|                  |                                 | write          |             |                                                           |
|                  |                                 |                |             | See PDCM_PD_SYS_SENSE                                     |
| 0x204            | PDCM_PD_CPU0_SENSE              | Read-only      | 0x00000000  | PDCM PD_CPU0 sensitivity                                  |
|                  |                                 |                |             | See PDCM_PD_CPU0_SENSE                                    |
| 0x208            | Reserved                        | Read-only      | 0x00000000  | Reserved for PDCM_PD_CPU1_SENSE. PDCM PD_CPU1             |
|                  |                                 |                |             | sensitivity                                               |
| 0x20C            | Reserved                        | Read-only      | 0x00000000  | Reserved for PDCM_PD_CPU2_SENSE. PDCM PD_CPU2 sensitivity |
| 0x210            | Reserved                        | Read-only      | 0x00000000  | Reserved for PDCM_PD_CPU3_SENSE. PDCM PD_CPU3 sensitivity |
| 0x214            | PDCM_PD_VMR0_SENSE <sup>1</sup> | Read-          | 0x40000000  | PDCM PD_VMR0 sensitivity                                  |
|                  |                                 | write          |             |                                                           |
|                  |                                 |                |             | See PDCM_PD_VMR <m>_SENSE</m>                             |
| 0x218            | PDCM_PD_VMR1_SENSE <sup>2</sup> | Read-<br>write | 0x40000000  | PDCM PD_VMR1 sensitivity                                  |
|                  |                                 | Wille          |             | See PDCM_PD_VMR <m>_SENSE</m>                             |
| 0x21C            | Reserved                        | Read-only      | 0x00000000  | Reserved for PDCM_PD_VMR2_SENSE. PDCM PD_VMR2             |
|                  |                                 | ,              |             | sensitivity                                               |
|                  |                                 |                |             | See PDCM_PD_VMR <m>_SENSE</m>                             |
| 0x220            | Reserved                        | Read-only      | 0x00000000  | Reserved for PDCM_PD_VMR3_SENSE. PDCM PD_VMR3             |
| UNZZU            | Reserved                        | ricad Offiy    | ONOCCOCC    | sensitivity                                               |
|                  |                                 |                |             | C DDCM DD VMD (M) CENICE                                  |
| 0004             | Decembed                        | Dood only      | 000000000   | See PDCM_PD_VMR <m>_SENSE</m>                             |
| 0x224 -<br>0x248 | Reserved                        | Read-only      | 0x00000000  | Reserved                                                  |
| 0x24C            | Reserved                        | Read-only      | 0x00000000  | Reserved for PDCM_PD_MGMT_SENSE. PDCM PD_MGMT             |
|                  |                                 | ,              |             | sensitivity                                               |
|                  |                                 |                |             | See PDCM PD MGMT SENSE                                    |
| 0x250 -          | Reserved                        | Read-only      | 0x00000000  |                                                           |
| 0xFCC            | The served                      | Tread offiny   | 01100000000 | Tieser ved                                                |
| 0xFD0            | PIDR4                           | Read-only      | 0x0000004   | Peripheral ID 4                                           |
| 0xFD4 -          | Reserved                        | Read-only      | 0x00000000  | Reserved                                                  |
| 0xFDC            |                                 |                |             |                                                           |
| 0xFE0            | PIDRO                           | Read-only      | 0x00000054  | Peripheral ID 0                                           |
| 0xFE4            | PIDR1                           | Read-only      | 0x000000B8  | Peripheral ID 1                                           |
| 0xFE8            | PIDR2                           | Read-only      |             | Peripheral ID 2                                           |
| 0xFEC            | PIDR3                           | Read-only      | 0x00000000  | Peripheral ID 3                                           |
| 0xFF0            | CIDRO                           | Read-only      | 0x000000D   | Component ID 0                                            |
| 0xFF4            | CIDR1                           | Read-only      | 0x00000F0   | Component ID 1                                            |
| 0xFF8            | CIDR2                           | Read-only      | 0x0000005   | Component ID 2                                            |
| 0xFFC            | CIDR3                           | Read-only      | 0x000000B1  | Component ID 3                                            |

1. These registers do not exist and are reserved if NUMVMBANK < 1  $\,$ 

2. These registers do not exist and are reserved if NUMVMBANK < 2

#### 6.6.2.1 SECDBGSTAT, SECDBGSET and SECDBGCLR

The Secure Debug Configuration registers are used to select the source value for the Secure Debug Authentication, **DBGEN**, **NIDEN**, **SPIDEN**, **SPNIDEN**, **DAPACCEN**, and Debug Access Controls, **DAPDSSACCEN**, **SYSDSSACCENX** and SYSDSSACCEN<N> where N is 0 to NUMCPU. For each signal and just one for all SYSDSSACCEN<N> and SYSDSSACCENX, a selector is provided to select between an internal register value and the value on the boundary of the Subsystem.

Secure software can set or clear the internal register and selector values by setting the associated bit in the SECDBGSET register or in the SECDBGCLR register, respectively. Secure software can read the output values used system wide by reading the associated SECDBGSTAT register bit. Secure software can read internal register values by reading SECDBGSET.

For example, the source of DBGEN value used in the system is selected by the DBGEN\_SEL where:

- If DBGEN\_SEL is LOW, the input **DBGENIN** signal is used to define the system wide **DBGEN** value
- If DBGEN\_SEL is HIGH the internal register value DBGEN\_I is used to define the system wide DBGEN value

To set the DBGEN\_I or DBGEN\_SEL values to HIGH, write to the SECDBGSET register with DBGEN I SET or DBGEN SEL SET set to HIGH respectively.

To set DBGEN\_I or DBGEN\_SEL values to LOW, write to the SECDBGCLR register with DBGEN\_I\_CLR or DBGEN\_SEL\_CLR set to HIGH respectively.

To read the output value of **DBGEN**, read the SECDBGSTAT register for the DBGEN STATUS field.

To read the internal register value DBGEN I, read SECDBGSET for the DBGEN I SET field.

To read the selector value DBGEN SEL, read the SECDBGSET for the DBGEN SEL SET field.

The **DBGEN** value is also made available to external expansion logic through the **DBGEN** output signal of the subsystem.

Selector Disable Configuration options are provided to allow each of the selector to be forced to zero, forcing the associated SEL\_STATUS field to LOW, forcing each respective debug control output to use its external value:

- DBGENSELDIS for disabling DBGEN SEL
- NIDENSELDIS for disabling NIDEN SEL
- SPIDENSELDIS for disabling SPIDEN\_SEL
- SPNIDENSELDIS for disabling SPNIDEN SEL

- DAPACCENSELDIS for disabling DAPACCEN\_SEL
- DAPDSSACCENSELDIS for disabling DAPDSSACCEN\_SEL
- SYSDSSACCENSELDIS for disabling SYSDSSACCEN\_SEL

These can be used to disable the ability for Secure firmware to modify or override the Secure Debug Authentication and the Debug Access Controls values, especially when CryptoCell exists (HASCRYPTO = '1') in the system and the intention is to use signals derived from CRYPTODCUEN to control debug instead.

These registers are reset by **nCOLDRESETAON**.

These registers reside in the PD\_AON power domain.

#### **Table 6-53: SECDBGSTAT Register**

| Bits  | Туре | Default           | Name                     | Description                                                                                                                                             |
|-------|------|-------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31    | RO   | 0x00              | -                        | Reserved.                                                                                                                                               |
| 30    | RO   | 0x00              | -                        | Reserved for SYSDSSACCE NSELDIS_STATUS that reports SY SDSSACCENSELDIS configuration value when read.                                                   |
| 29    | RO   | DAPDSSACCENSELDIS | DAPDSSACCENSELDIS_STATUS | Returns the DA PDSSACCENSELDIS configuration value when read.                                                                                           |
| 28    | RO   | DAPACCENSELDIS    | DAPACCENSELDIS_STATUS    | Returns the DAPACCENSELDIS configuration value when read.                                                                                               |
| 27    | RO   | SPNIDENSELDIS     | SPNIDENSELDIS_STATUS     | Returns the SPNIDENSELDIS configuration value when read.                                                                                                |
| 26    | RO   | SPIDENSELDIS      | SPIDENSELDIS_STATUS      | Returns the SPIDENSELDIS configuration value when read.                                                                                                 |
| 25    | RO   | NIDENSELDIS       | NIDENSELDIS_STATUS       | Returns the NIDENSELDIS configuration value when read.                                                                                                  |
| 24    | RO   | DBGENSELDIS       | DBGENSELDIS_STATUS       | Returns the DBGENSELDIS configuration value when read.                                                                                                  |
| 23:18 | RO   | 0x0000            | -                        | Reserved.                                                                                                                                               |
| 17    | RO   | 0x00              | -                        | Reserved for SYSDSSACCEN <n>_SEL_STATUS, Active High<br/>System Mapped Debug Access Enable Selector Value.</n>                                          |
| 16    | RO   | 0x00              | -                        | Reserved for SYSDSSACCENX_STATUS, Active High System Mapped Debug Access for Implementation Defined Master(s).                                          |
| 15    | RO   | 0x00              | -                        | Reserved for SYSDSSACCEN3_STATUS, Active High System Mapped Debug Access for CPU 3 Enable Value.                                                        |
| 14    | RO   | 0x00              | -                        | Reserved for SYSDSSACCEN2_STATUS, Active High System Mapped Debug Access for CPU 2 Enable Value.                                                        |
| 13    | RO   | 0x00              | -                        | Reserved for SYSDSSACCEN1_STATUS, Active High System Mapped Debug Access for CPU 1 Enable Value.                                                        |
| 12    | RO   | 0x00              | -                        | Reserved for SYSDSSACCENO_STATUS, Active High System Mapped Debug Access for CPU 0 Enable Value.                                                        |
| 11    | RO   | 0x00              | DAPDSSACCEN_SEL_STATUS   | Active High DAP to Debug Subsystem Access Enable Selector Value. This bit returns the D APDSSACCEN_SEL value. Forced to Zero if DA PDSSACCENSELDIS = 1. |
| 10    | RO   | DAPDSSACCENIN     | DAPDSSACCEN_STATUS       | Active High DAP to Debug Subsystem Access Enable Value.<br>This bit reflects the value on the DAPDSSACCEN pin.                                          |
| 9     | RO   | 0x00              | DAPACCEN_SEL_STATUS      | Active High DAP Access Enable Selector Value. This bit returns the DAPACCEN_SEL value.                                                                  |
|       |      |                   |                          | Forced to Zero if DAPACCENSELDIS = 1.                                                                                                                   |

| Bits | Туре | Default    | Name               | Description                                                                                                      |
|------|------|------------|--------------------|------------------------------------------------------------------------------------------------------------------|
| 8    | RO   | DAPACCENIN | DAPACCEN_STATUS    | Active High DAP Access Enable Value. This bit reflects the value on the DAPACCEN pin.                            |
| 7    | RO   | 0x00       | SPNIDEN_SEL_STATUS | Active High Secure Privilege Non-Invasive Debug Enable Selector Value. This bit returns the SPNIDEN_SEL value.   |
|      |      |            |                    | Forced to Zero if SPNIDENSELDIS = 1.                                                                             |
| 6    | RO   | SPNIDENIN  | SPNIDEN_STATUS     | Active High Secure Privilege Non-Invasive Debug Enable Value.<br>This bit reflects the value on the SPNIDEN pin. |
| 5    | RO   | 0x00       | SPIDEN_SEL_STATUS  | Active High Secure Privilege Invasive Debug Enable Selector Value. This bit returns the SPIDEN_SEL value.        |
|      |      |            |                    | Forced to Zero if SPIDENSELDIS = 1.                                                                              |
| 4    | RO   | SPIDENIN   | SPIDEN_STATUS      | Active High Secure Privilege Invasive Debug Enable Value. This bit reflects the value on the SPIDEN pin.         |
| 3    | RO   | 0x00       | NIDEN_SEL_STATUS   | Active High Non-Invasive Debug Enable Selector Value. This bit returns the NIDEN_SEL value.                      |
|      |      |            |                    | Forced to Zero if NIDENSELDIS = 1.                                                                               |
| 2    | RO   | NIDENIN    | NIDEN_STATUS       | Active High Non-Invasive Debug Enable Value. This bit reflects the value on the NIDEN pin.                       |
| 1    | RO   | 0x00       | DBGEN_SEL_STATUS   | Active High Debug Enable Selector Value. This bit returns the DBGEN_SEL value.                                   |
|      |      |            |                    | Forced to Zero if DBGENSELDIS = 1.                                                                               |
| 0    | RO   | DBGENIN    | DBGEN_STATUS       | Active High Debug Enable Value. This bit reflects the value on the DBGEN pin.                                    |

## **Table 6-54: SECDBGSET Register**

| Bits  | Туре | Default | Name                | Description                                                                                                                                                                  |
|-------|------|---------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:18 | RO   | 0x0000  | -                   | Reserved                                                                                                                                                                     |
| 17    | RO   | 0x00    | -                   | Reserved for SYSDSSACCEN_SEL_SET, Active High System Mapped Debug Access<br>Enable Selector Value Set Register                                                               |
| 16    | RO   | 0x00    | -                   | Reserved for SYSDSSACCENX_I_SET, Internal Version Active High System Mapped Debug Access for Implementation Defined Master(s) Enable Set Control                             |
| 15    | RO   | 0x00    | -                   | Reserved for SYSDSSACCEN3_I_SET, Internal Version Active High System Mapped Debug Access for CPU 3 Enable Set Register                                                       |
| 14    | RO   | 0x00    | -                   | Reserved for SYSDSSACCEN2_I_SET, Internal Version Active High System Mapped Debug Access for CPU 2 Enable Set Register                                                       |
| 13    | RO   | 0x00    | -                   | Reserved for SYSDSSACCEN1_I _SET, Internal Version Active High System Mapped Debug Access for CPU 3 Enable Set Register                                                      |
| 12    | RO   | 0x00    | -                   | Reserved for SYSDSSACCENO_I_SET, Active High System Mapped Debug Access for CPU 3 Enable Set Register                                                                        |
| 11    | W1T  | 0x00    | DAPDSSACCEN_SEL_SET | Set Active High DAP to Debug Subsystem Access Enable Selector. Write HIGH to set DAPDSSACCEN_SEL. RAZ/WI if DAPDSSACCENSELDIS = 1.                                           |
| 10    | W1S  | 0x00    | DAPDSSACCEN_I_SET   | Set internal version of Active High DAP to Debug Subsystem Access Enable. Write HIGH to set DAPDSSACCEN_I. When read returns DAPDSSACCEN_I. RAZ/WI if DAPDSSACCENSELDIS = 1. |

| Bits | Туре | Default | Name             | Description                                                                                                                                                            |
|------|------|---------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9    | W1T  | 0x00    | DAPACCEN_SEL_SET | Set Active High DAP Access Enable Selector. Write HIGH to set DAPACCEN_SEL.  RAZ/WI if DAPACCENSELDIS = 1.                                                             |
| 8    | W1S  | 0x00    | DAPACCEN_I_SET   | Set internal version of Active High DAP Access Enable. Write HIGH to set DAPACCEN_I. When read returns DAPACCEN_I. RAZ/WI if DAPACCENSELDIS = 1.                       |
| 7    | W1T  | 0x00    | SPNIDEN_SEL_SET  | Set Active High Secure Privilege Non-Invasive Debug Enable Selector. Write HIGH to set SPNIDEN_SEL. RAZ/WI if SPNIDENSELDIS = 1.                                       |
| 6    | W1S  | 0x00    | SPNIDEN_I_SET    | Set internal version of Active High Secure Privilege Non-Invasive Debug Enable. Write HIGH to set SPNIDEN_I. When read returns SPNIDEN_I. RAZ/WI if SPNIDENSELDIS = 1. |
| 5    | W1T  | 0x00    | SPIDEN_SEL_SET   | Set Active High Secure Privilege Invasive Debug Enable Selector. Write HIGH to set SPIDEN_SEL. RAZ/WI if SPIDENSELDIS = 1.                                             |
| 4    | W1S  | 0x00    | SPIDEN_I_SET     | Set internal version of Active High Secure Privilege Invasive Debug Enable. Write HIGH to set SPIDEN_I. When read returns SPIDEN_I. RAZ/WI if SPIDENSELDIS = 1.        |
| 3    | W1T  | 0x00    | NIDEN_SEL_SET    | Set Active High Non-Invasive Debug Enable Selector. Write HIGH to set NIDEN_SEL. RAZ/WI if NIDENSELDIS = 1.                                                            |
| 2    | W1S  | 0x00    | NIDEN_I_SET      | Set internal version of Active High Non-Invasive Debug Enable. Write HIGH to set NIDEN_I. When read returns NIDEN_I. RAZ/WI if NIDENSELDIS = 1.                        |
| 1    | W1T  | 0x00    | DBGEN_SEL_SET    | Set Active High Debug Enable Selector. Write HIGH to set DBGEN_SEL. RAZ/WI if DBGENSELDIS = 1.                                                                         |
| 0    | W1S  | 0x00    | DBGEN_I_SET      | Set internal version of Active High Debug Enable. Write HIGH to set DBGEN_I. When read returns DBGEN_I. RAZ/WI if DBGENSELDIS = 1.                                     |

## Table 6-55: SECDBGCLR Register

| Bits  | Туре | Default | Name                | Description                                                                                                                                              |
|-------|------|---------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:18 | RO   | 0x0000  | -                   | Reserved.                                                                                                                                                |
| 17    | RO   | 0x00    | -                   | Reserved for SYSDSSACCEN_SEL_CLR, Active High System Mapped Debug Access Enable Selector Value Clear Register.                                           |
| 16    | RO   | 0x00    | -                   | Reserved for SYSDSSACCENX_I_CLR, Internal Version Active High System Mapped Debug Access for for Implementation Defined Master(s) Enable Clear Control.  |
| 15    | RO   | 0x00    | -                   | Reserved for SYSDSSACCEN3_I_CLR, Internal Version Active High System Mapped Debug Access for CPU 3 Enable Clear Register.                                |
| 14    | RO   | 0x00    | -                   | Reserved for SYSDSSACCEN2_I_CLR, Internal Version Active High System Mapped Debug Access for CPU 2 Enable Clear Register.                                |
| 13    | RO   | 0x00    | -                   | Reserved for SYSDSSACCEN1_I_CLR, Internal Version Active High System Mapped Debug Access for CPU 3 Enable Clear Register.                                |
| 12    | RO   | 0x00    | -                   | Reserved for SYSDSSACCENO_I_CLR, Internal Version Active High System Mapped Debug Access for CPU 3 Enable Clear Register.                                |
| 11    | W1T  | 0x00    | DAPDSSACCEN_SEL_CLR | Clears Active High DAP to Debug Subsystem Access Enable Selector. Write HIGH to clear DAPDSSACCEN_SEL. Always RAZ. WI if DAPDSSACCENSELDIS = 1.          |
| 10    | W1T  | 0x00    | DAPDSSACCEN_I_CLR   | Clears internal version of Active High DAP to Debug Subsystem Access Enable. Write HIGH to clear DAPDSSACCEN_I. Always RAZ. WI if DAPDSSACCENSELDIS = 1. |
| 9     | W1T  | 0x00    | DAPACCEN_SEL_CLR    | Clears Active High DAP Access Enable Selector. Write HIGH to clear DAPACCEN_SEL. Always RAZ. WI if DAPACCENSELDIS = 1.                                   |
| 8     | W1T  | 0x00    | DAPACCEN_I_CLR      | Clears internal version of Active High DAP Access Enable. Write HIGH to clear DAPACCEN_I. Always RAZ. WI if DAPACCENSELDIS = 1.                          |
| 7     | W1T  | 0x00    | SPNIDEN_SEL_CLR     | Clears Active High Secure Privilege Non-Invasive Debug Enable Selector. Write HIGH to clear SPNIDEN_SEL. Always RAZ. WI if SPNIDENSELDIS = 1.            |

| Bits | Туре | Default | Name           | Description                                                                                                                                               |
|------|------|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6    | W1T  | 0x00    | SPNIDEN_I_CLR  | Clears internal version of Active High Secure Privilege Non-Invasive Debug Enable.<br>Write HIGH to clear SPNIDEN_I. Always RAZ. WI if SPNIDENSELDIS = 1. |
| 5    | W1T  | 0x00    | SPIDEN_SEL_CLR | Clears Active High Secure Privilege Invasive Debug Enable Selector. Write HIGH to clear SPIDEN_SEL. Always RAZ. WI if SPIDENSELDIS = 1.                   |
| 4    | W1T  | 0x00    | SPIDEN_I_CLR   | Clears internal version of Active High Secure Privilege Invasive Debug Enable. Write HIGH to clear SPIDEN_I. Always RAZ. WI if SPIDENSELDIS = 1.          |
| 3    | W1T  | 0x00    | NIDEN_SEL_CLR  | Clears Active High Non-Invasive Debug Enable Selector. Write HIGH to clear NIDEN_SEL. Always RAZ. WI if NIDENSELDIS = 1.                                  |
| 2    | W1T  | 0x00    | NIDEN_I_CLR    | Clears internal version of Active High Non-Invasive Debug Enable. Write HIGH to clear NIDEN_I. Always RAZ. WI if NIDENSELDIS = 1.                         |
| 1    | W1T  | 0x00    | DBGEN_SEL_CLR  | Clears Active High Debug Enable Selector. Write HIGH to clear DBGEN_SEL. Always RAZ. WI if DBGENSELDIS = 1.                                               |
| 0    | W1T  | 0x00    | DBGEN_I_CLR    | Clears internal version of Active High Debug Enable. Write HIGH to clear DBGEN_I.<br>Always RAZ. WI if DBGENSELDIS = 1.                                   |

#### 6.6.2.2 SCSECCTRL

The System Control Security Controls provide register bits to set the Secure Configuration lock of this register block.

These registers are reset by **nCOLDRESETAON**.

These registers reside in the PD\_AON power domain.

Table 6-56: SCSECCTRL Register

| Bits | Туре | Default    | Name | Description                                                                                                                                                                           |
|------|------|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:3 | RO   | 0x00000000 | -    | Reserved                                                                                                                                                                              |
| 2    | W1S  | 0x00       |      | Active High control to disable writes to Security related control registers SECDBGSET and SECDBGCLR. Once set to HIGH, it can no longer be cleared to zero except through Cold Reset. |
| 1:0  | RO   | 0x00       | -    | Reserved                                                                                                                                                                              |

#### 6.6.2.3 CLK CFG0 and CLK CFG1

The CLK\_CFG0 and CLK\_CFG1 registers provide control register fields to drive expansion clock generation logic that drives clock for this subsystem.

Each clock control handshake comprises of a configuration request register, that is CLKCFG, and a status register, that is CLKCFGSTATUS that acts as an acknowledgment. After writing to each CLKCFG field, the software has to poll the associated CLKCFGSTATUS field until the CLKCFGSTATUS is the same as the CLKCFG before doing any other operations.

In addition, if it is the first write to the register after Cold Reset, software has to poll that the targeted CLKCFG field value (default value set by the related configuration input) matches its

associated CLKCFGSTATUS field value before the write occurs. The actual number of bits being implemented in the related CLKCFG and CLKCFGSTATUS signals is defined below.

Since SYSCLK and CPU0CLK must have the same frequency, the **CPU0CLKCFG** output must not be used in the expansion logic, and the **CPU0CLKCFGSTATUS** input must be tied to LOW. The register fields CLK\_CFG0.CPU0CLKCFG and CLK\_CFG0.CPU0CLKCFGSTATUS should not be used either.

These registers are reset by **nCOLDRESETAON**.

These registers reside in the PD AON power domain.

#### Table 6-57: CLK\_CFG0 Register

| Bits  | Туре | Default | Name             | Description                                                                                                           |
|-------|------|---------|------------------|-----------------------------------------------------------------------------------------------------------------------|
| 31:28 | RO   | 0x00    | -                | Reserved for CPU3CLKCFGSTATUS. Clock Configuration Status value that reports the status of clock control for CPU3CLK. |
| 27:24 | RO   | 0x00    | -                | Reserved for CPU2CLKCFGSTATUS. Clock Configuration Status value that reports the status of clock control for CPU2CLK. |
| 23:20 | RO   | 0x00    | -                | Reserved for CPU1CLKCFGSTATUS. Clock Configuration Status value that reports the status of clock control for CPU1CLK. |
| 19:16 | RO   | 0x00    | CPU0CLKCFGSTATUS | Clock Configuration Status value that reports the status of clock control for CPUOCLK.                                |
| 15:12 | RO   | 0x00    | -                | Reserved for CPU3CLKCFG. Clock Configuration value that drives CPU3CLKCFG signals.                                    |
| 11:8  | RO   | 0x00    | -                | Reserved for CPU2CLKCFG. Clock Configuration value that drives CPU2CLKCFG signals.                                    |
| 7:4   | RO   | 0x00    | -                | Reserved for CPU1CLKCFG. Clock Configuration value that drives CPU1CLKCFG signals.                                    |
| 3:0   | RW   | 0x00    | CPU0CLKCFG       | Clock Configuration value that drives CPUOCLKCFG signals.                                                             |

#### Table 6-58: CLK\_CFG1 Register

| Bits  | Туре | Default      | Name            | Description                                                                           |
|-------|------|--------------|-----------------|---------------------------------------------------------------------------------------|
| 31:24 | RO   | 0x000        | -               | Reserved                                                                              |
| 23:20 | RO   | 0x00         | AONCLKCFGSTATUS | Clock Configuration Status value that reports the status of clock control for AONCLK. |
| 19:16 | RO   | 0x00         | SYSCLKCFGSTATUS | Clock Configuration Status value that reports the status of clock control for SYSCLK. |
| 15:8  | RO   | 0x000        | -               | Reserved                                                                              |
| 7:4   | RW   | AONCLKCFGRST | AONCLKCFG       | Clock Configuration value that drives AONCLKCFG signals.                              |
| 3:0   | RW   | SYSCLKCFGRST | SYSCLKCFG       | Clock Configuration value that drives SYSCLKCFG signals.                              |

#### 6.6.2.4 CLOCK FORCE

The Clock Force register allows software to override dynamic clock gating that might be implemented in the system and keep each clock running.

Bits 0 to 7 are clock forces that do not apply to clock gates within the design that are responsible for the gating of clocks when gating power to a power gated region. Instead, it is applied to hierarchical dynamic clock gating within the system, with one bit for each power domain. Forcing a

clock ON can reduce the latency that is incurred as a result of dynamic clock control but generally has a reverse side effect of increasing the dynamic power consumption of the system.



All clock force default values of these bits are set to HIGH at reset. This allows the system to boot in case any hierarchical dynamic clock control implementation is non-functional. The associated clock force register bit must be cleared to enable hierarchical dynamic clock control for each power domain.

Bits 16 to 22 are clock forces used to force the external clock generator to continue to generate its clock. This can be used to avoid clock generators like PLLs from turning off, which can result in a long turn on time.

These registers are reset by **nCOLDRESETAON**.

This register resides in the PD AON power domain.

Table 6-59: CLOCK\_FORCE Register

| Bits  | Туре | Default    | Name           | Description                                              |
|-------|------|------------|----------------|----------------------------------------------------------|
| 31:23 | RO   | 0x0000     | -              | Reserved                                                 |
| 22    | RW   | 0x0        | -              | Reserved for CPU3CLK_FORCE.                              |
| 21    | RW   | 0x0        | -              | Reserved for CPU2CLK_FORCE.                              |
| 20    | RW   | 0x0        | -              | Reserved for CPU1CLK_FORCE.                              |
| 19    | RW   | 0x0        | CPU0CLK_FORCE  | Set HIGH to request the input CPU0CLK source to stay ON. |
| 18    | RW   | 0x0        | -              | Reserved for DEBUGCLK_FORCE.                             |
| 17    | RW   | 0x0        | SYSCLK_FORCE   | Set HIGH to request the input SYSCLK source to stay ON.  |
| 16    | RW   | 0x0        | AONCLK_FORCE   | Set HIGH to request the input AONCLK source to stay ON.  |
| 15:8  | RO   | 0x00000000 | -              | Reserved.                                                |
| 7     | RO   | 0x00       | -              | Reserved for CPU3_CLKFORCE.                              |
| 6     | RO   | 0x00       | -              | Reserved for CPU2_CLKFORCE.                              |
| 5     | RO   | 0x00       | -              | Reserved for CPU1_CLKFORCE.                              |
| 4     | RW   | 0x01       | CPU0_CLKFORCE  | Set HIGH to force all clocks in PD_CPU0 to run.          |
| 3     | RO   | 0x00       | -              | Reserved for CRYPTO_CLKFORCE.                            |
| 2     | RW   | 0x01       | DEBUG_CLKFORCE | Set HIGH to force all clocks in PD_DEBUG to run.         |
| 1     | RW   | 0x01       | SYS_CLKFORCE   | Set HIGH to force all clocks in PD_SYS to run.           |
| 0     | RW   | 0x01       | MGMT_CLKFORCE  | Set HIGH to force all clocks in PD_MGMT domain to run.   |

#### 6.6.2.5 RESET SYNDROME

This register stores the reason for the last Reset event. All fields of this register except for PoR are cleared by the **nPORESETAON** input. Each field can be cleared by the software writing zero to the related bit. Writing HIGH to a bit results in that bit write value to be ignored and the bit

maintaining its previous value. If this register is not cleared after starting from a reset event, on another reset event the RESET\_SYNDROME might no longer accurately reflect the last reset event.



CPUOLOCKUP does not actually generate reset, but when HIGH, it indicates that a CPU has locked-up and can be a precursor to another reset event. For example, watchdog timer reset request.

CPUOLOCKUP events are always stored, and only reset requests that are not masked by their respective mask bits will be stored in the register.

This register resides in the PD AON power domain.

Table 6-60: RESET\_SYNDROME Register

| Bits  | Туре | Default | Name            | Description                                              |
|-------|------|---------|-----------------|----------------------------------------------------------|
| 31:16 | RO   | 0x00000 | -               | Reserved                                                 |
| 15    | RO   | 0x00    | -               | Reserved for CPU3LOCKUP                                  |
| 14    | RO   | 0x00    | -               | Reserved for CPU2LOCKUP                                  |
| 13    | RO   | 0x00    | -               | Reserved for CPU1LOCKUP                                  |
| 12    | WOC  | 0x00    | CPU0LOCKUP      | CPU 0 Lockup Status                                      |
| 11    | RO   | 0x00    | -               | Reserved for CPU3RSTREQ                                  |
| 10    | RO   | 0x00    | -               | Reserved for CPU2RSTREQ                                  |
| 9     | RO   | 0x00    | -               | Reserved for CPU1RSTREQ                                  |
| 8     | WOC  | 0x00    | CPUORSTREQ      | CPU 0 Warm Reset Request                                 |
| 7     | WOC  | 0x00    | HOSTRESETREQ    | Host Level Cold Reset Request Input                      |
| 6     | RO   | 0x00    | -               | Reserved for CRYPTORSTREQ, CryptoCell Warm Reset Request |
| 5     | WOC  | 0x00    | SWRESETREQ      | Software Cold Reset Request                              |
| 4     | WOC  | 0x00    | RESETREQ        | Subsystem Hardware Cold Reset Request Input              |
| 3     | WOC  | 0x00    | SLOWCLKWDRSTREQ | SLOWCLK Watchdog Cold Reset Request                      |
| 2     | WOC  | 0x00    | SWDRSTREQ       | Secure Watchdog Cold Reset Request                       |
| 1     | WOC  | 0x00    | NSWDRSTREQ      | Non-secure Watchdog Cold Reset Request                   |
| 0     | WOC  | 0x01    | PoR             | Power-On-Reset                                           |

#### 6.6.2.6 RESET MASK

The RESET\_MASK register allows the software to control which reset sources are merged to generate the system wide warm reset, **nWARMRESETAON** or the **nCOLDRESETAON** signal. Set each bit to HIGH to enable each source. This register is reset by the **nWARMRESETAON**.



If cleared, each of these mask bits prevents the reset source being used to generate the reset, and also prevents the associated RESET\_SYNDROME register bit from recording the event.

This register resides in the PD\_AON power domain.

This register is reset by the **nWARMRESETAON**.

Table 6-61: RESET\_MASK Register

| Bits  | Туре | Default         | Name         | Description                                                    |
|-------|------|-----------------|--------------|----------------------------------------------------------------|
| 31:12 | RO   | 0x000000        | -            | Reserved                                                       |
| 11    | RO   | 0x00            | -            | Reserved for CPU3RSTREQENRST, CPU 3 Warm Reset Request Enable. |
| 10    | RO   | 0x00            | -            | Reserved for CPU2RSTREQENRST, CPU 2 Warm Reset Request Enable. |
| 9     | RO   | 0x00            | -            | Reserved for CPU1RSTREQENRST, CPU 1 Warm Reset Request Enable. |
| 8     | RW   | CPUORSTREQENRST | CPUORSTREQEN | CPU 0 Warm Reset Request Enable                                |
| 7:2   | RO   | 0x000           | -            | Reserved                                                       |
| 1     | RW   | 0x00            | NSWDRSTREQEN | Non-secure Watchdog Reset Enable                               |
| 0     | RO   | 0x00            | -            | Reserved                                                       |

#### 6.6.2.7 SWRESET

The SWRESET register allows the software to request for a Cold Reset. To request for a Cold Reset, write '1' to the register. The register always returns zeros.

This register resides in the PD\_AON power domain.

Table 6-62: SWRESET Register

| Bits | Туре | Default   | Name       | Description                                                |
|------|------|-----------|------------|------------------------------------------------------------|
| 31:2 | RO   | 0x0000000 | -          | Reserved.                                                  |
| 9    | W1T  | 0x00      | SWRESETREQ | Software Reset Request. Write '1' to request a Cold Reset. |
| 8:0  | RO   | 0x000     | -          | Reserved                                                   |

#### 6.6.2.8 GRETREG

The General Purpose Retention Register provides 16 bits of retention register for general storage through the HIBERANTIONO System Power States. This register is reset by **nCOLDRESETAON**.

This register resides in the PD\_AON power domain.

Table 6-63: GRETREG Register

| Bits  | Туре | Default | Name    | Description                        |
|-------|------|---------|---------|------------------------------------|
| 31:16 | RO   | 0x00000 | -       | Reserved                           |
| 15:0  | RW   | 0x00000 | GRETREG | General Purpose Retention Register |

#### 6.6.2.9 INITSVTORO

This register is used to define the CPU 0 Initial Secure Vector table offset (VTOR\_S.TBLOFF[31:7]) out of reset.

This register is reset by **nWARMRESETAON**.

This register resides in the PD\_AON power domain.

#### Table 6-64: INITSVTOR0 Register

| Bits | Туре | Default             | Name       | Description                                                                                                                         |
|------|------|---------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 31:7 | RW   | INITSVTORORST[31:7] | INITSVTOR0 | Default Secure Vector table offset at reset for CPU 0.                                                                              |
| 6:1  | RO   | 0x000               | -          | Reserved                                                                                                                            |
| 0    | W1S  | 0x00                |            | Lock INITSVTORO. When set to '1', will stop any further writes to INITSVTORO and INITSVTOROLOCK fields. Cleared only by warm reset. |

#### 6.6.2.10 CPUWAIT

This Register provides controls to force each CPU to wait after reset rather than boot immediately. This allows another entity in the expansion system or the debugger to access the system prior to the CPU booting.

This register is reset by **nCOLDRESETAON** only.

This register resides in the PD\_AON power domain.

Table 6-65: CPUWAIT Register

| Bits | Туре | Default     | Name     | Description            |
|------|------|-------------|----------|------------------------|
| 31:4 | RO   | 0x0000000   | -        | Reserved               |
| 3    | RO   | 0x00        | -        | Reserved for CPU3WAIT. |
| 2    | RO   | 0x00        | -        | Reserved for CPU2WAIT. |
| 1    | RO   | 0x00        | -        | Reserved for CPU1WAIT. |
| 0    | RW   | CPU0WAITRST | CPU0WAIT | CPU 0 waits at boot.   |
|      |      |             |          | '0': boot normally.    |
|      |      |             |          | • '1': wait at boot.   |

#### 6.6.2.11 NMI\_ENABLE

This register provides controls to enable or disable the internally or externally generated Non-Maskable Interrupt sources from generating an NMI interrupt on each CPU core. This allows a CPU to take control of all internal NMI interrupt sources or allow all CPUs to see the same NMI interrupts. This register is reset by **nWARMRESETAON** and its reset value is defined by the configuration options.

This register resides in the PD AON power domain.

#### Table 6-66: NMI\_ENABLE Register

| Bits  | Туре | Default             | Name               | Description                                                                                                                                        |
|-------|------|---------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:20 | RO   | 0x0000              | -                  | Reserved.                                                                                                                                          |
| 19    | RO   | 0x00                | -                  | Reserved for CPU3_EXPNMI_ENABLE                                                                                                                    |
| 18    | RO   | 0x00                | -                  | Reserved for CPU2_EXPNMI_ENABLE                                                                                                                    |
| 17    | RO   | 0x00                | -                  | Reserved for CPU1_EXPNMI_ENABLE                                                                                                                    |
| 16    | RW   | CPU0EXPNMIENABLERST | CPU0_EXPNMI_ENABLE | CPU 0 Externally Sourced NMI Enable. This determines if the input, CPU0EXPNMI, can raise NMI interrupt on CPU 0:                                   |
|       |      |                     |                    | HIGH, allowed.                                                                                                                                     |
|       |      |                     |                    | LOW, is masked and not allowed.                                                                                                                    |
| 15:4  | RO   | 0x0000              | -                  | Reserved.                                                                                                                                          |
| 3     | RO   | 0x00                | -                  | Reserved for CPU3_INTNMI_ENABLE                                                                                                                    |
| 2     | RO   | 0x00                | -                  | Reserved for CPU2_INTNMI_ENABLE                                                                                                                    |
| 1     | RO   | 0x00                | -                  | Reserved for CPU1_INTNMI_ENABLE                                                                                                                    |
| 0     | RW   | CPUOINTNMIENABLERST | CPU0_INTNMI_ENABLE | CPU 0 Internally Sourced NMI Enable. This determines if the subsystem internally generated NMI interrupt sources can raise NMI interrupt on CPU 0: |
|       |      |                     |                    | HIGH, allowed.                                                                                                                                     |
|       |      |                     |                    | LOW, is masked and not allowed.                                                                                                                    |

#### 6.6.2.12 PWRCTRL

The Power Control register configures the power control features in SSE-300 System. This register is reset by **nWARMRESETAON**.

This register resides in the PD\_AON power domain.

#### Table 6-67: PWRCTRL Register

| Bits | Туре | Default    | Name              | Description                                                                                                                                                                                                                                                                                                |
|------|------|------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:2 | RO   | 0x00000000 | -                 | Reserved.                                                                                                                                                                                                                                                                                                  |
| 1    | WOC  | 0x01       | PPU_ACCESS_UNLOCK | PPU_ACCESS_FILTER write unlock. When set to '1', both PPU_ACCESS_FILTER and this register bits can be written. When set to '0', the PPU_ACCESS_FILTER and this register bit is no longer writable, and PPU_ACCESS_UNLOCK stays '0'.                                                                        |
| 0    | RW   | 0x01       | PPU_ACCESS_FILTER | Filter Access to PPU Registers. When set to '1', only key PPU interrupt handling registers are open to write access, and all other PPU registers are read only. When set to '0', it releases all PPU register to full access. For more information in PPU registers accessibility, see Power Policy Units. |

# 6.6.2.13 PDCM\_PD\_SYS\_SENSE

The Power Dependency Control Matrix System power domain (PD\_SYS) Sensitivity register is used to define what keeps awake the PD\_SYS power domain and the minimum power state to use when the domain is in its low power state. This register is reset by **nWARMRESETAON**.

This register resides in the PD\_AON power domain.

#### Table 6-68: PDCM\_PD\_SYS\_SENSE register

| Bits  | Туре | Default | Name              | Description                                                                                                              |
|-------|------|---------|-------------------|--------------------------------------------------------------------------------------------------------------------------|
| 31:30 | RW   | 0x00    | MIN_PWR_STATE     | Defines the Minimum Power State when PD_SYS is trying to enter a lower power state:                                      |
|       |      |         |                   | 00 - Minimum power state is OFF                                                                                          |
|       |      |         |                   | 01 - Minimum power state is Retention                                                                                    |
|       |      |         |                   | • 10 - Minimum power state is ON                                                                                         |
|       |      |         |                   | Others - Reserved                                                                                                        |
| 29:24 | RO   | 0x00    | -                 | Reserved                                                                                                                 |
| 23    | RO   | 0x00    | -                 | Reserved for PDCMQREQn[7]                                                                                                |
| 22    | RO   | 0x00    | -                 | Reserved for PDCMQREQn[6]                                                                                                |
| 21    | RO   | 0x00    | -                 | Reserved for PDCMQREQn[5]                                                                                                |
| 20    | RO   | 0x00    | -                 | Reserved for PDCMQREQn[4]                                                                                                |
| 19    | RW   | 0x00    | S_PDCMQREQ3       | Enables sensitivity to <b>PDCMQREQn[3]</b> signal. If set to '1', PD_SYS stays ON if <b>PDCMQREQn[3]</b> signal is HIGH. |
| 18    | RW   | 0x00    | S_PDCMQREQ2       | Enables sensitivity to <b>PDCMQREQn[2]</b> signal. If set to '1', PD_SYS stays ON if <b>PDCMQREQn[2]</b> signal is HIGH. |
| 17    | RW   | 0x00    | S_PDCMQREQ1       | Enables sensitivity to <b>PDCMQREQn[1]</b> signal. If set to '1', PD_SYS stays ON if <b>PDCMQREQn[1]</b> signal is HIGH. |
| 16    | RW   | 0x00    | S_PDCMQREQ0       | Enables sensitivity to <b>PDCMQREQn[0]</b> signal. If set to '1', PD_SYS stays ON if <b>PDCMQREQn[0]</b> signal is HIGH. |
| 15    | RO   | 0x00    | -                 | Reserved for S_PD_MGMT_ON.                                                                                               |
| 14    | RO   | 0x00    | -                 | Reserved                                                                                                                 |
| 13    | RO   | 0x00    | S_PD_DEBUG<br>_ON | Tied to LOW. Ignores PD_DEBUG power state.                                                                               |
| 12    | RO   | 0x00    | -                 | Reserved for S_PD_CRYPTO_ON                                                                                              |
| 11:5  | RO   | 0x000   | -                 | Reserved.                                                                                                                |
| 4     | RO   | 0x00    | -                 | Reserved for S_PD_CPU3_ON                                                                                                |
| 3     | RO   | 0x00    | -                 | Reserved for S_PD_CPU2_ON                                                                                                |
| 2     | RO   | 0x00    | -                 | Reserved for S_PD_CPU1_ON                                                                                                |
| 1     | RO   | 0x01    | S_PD_CPU0_ON      | Enable PD_CPU0 sensitivity. If set to 1 PD_SYS will stay on if PD_CPU0 is on.                                            |
| 0     | RW   | 0x00    | S_PD_SYS_ON       | Tied to LOW. Ignores PD_SYS power state.                                                                                 |

# 6.6.2.14 PDCM\_PD\_CPU0\_SENSE

The Power Dependency Control Matrix System Power domain (PD\_CPU0) Sensitivity register is used to define what keeps awake the PD\_CPU0 domain and the minimum power state to use when the domain is in its low power state. This register is reset by **nWARMRESETAON**.

Currently the PD\_CPU0 is not sensitive to any incoming dependencies.

This register resides in the PD AON power domain.

Table 6-69: PDCM\_PD\_CPU0\_SENSE Register

| Bits  | Туре | Default | Name          | Description                                |
|-------|------|---------|---------------|--------------------------------------------|
| 31:24 | RO   | 0x000   | -             | Reserved.                                  |
| 23    | RO   | 0x00    | -             | Reserved for S_PDCMQREQ7.                  |
| 22    | RO   | 0x00    | -             | Reserved for S_PDCMQREQ6.                  |
| 21    | RO   | 0x00    | -             | Reserved for S_PDCMQREQ5.                  |
| 20    | RO   | 0x00    | -             | Reserved for S_PDCMQREQ4.                  |
| 19    | RO   | 0x00    | S_PDCMQREQ3   | Tied to LOW. Ignores PDCMQREQn[3].         |
| 18    | RO   | 0x00    | S_PDCMQREQ2   | Tied to LOW. Ignores PDCMQREQn[2].         |
| 17    | RO   | 0x00    | S_PDCMQREQ1   | Tied to LOW. Ignores PDCMQREQn[1].         |
| 16    | RO   | 0x00    | S_PDCMQREQ0   | Tied to LOW. Ignores PDCMQREQn[0].         |
| 15    | RO   | 0x00    | -             | Reserved for S_PD_MGMT_ON.                 |
| 14    | RO   | 0x00    | -             | Reserved                                   |
| 13    | RO   | 0x00    | S_PD_DEBUG_ON | Tied to LOW. Ignores PD_DEBUG power state. |
| 12    | RO   | 0x00    | -             | Reserved for S_PD_CRYPTO_ON.               |
| 11:5  | RO   | 0x000   | -             | Reserved                                   |
| 4     | RO   | 0x00    | -             | Reserved for S_PD_CPU3_ON.                 |
| 3     | RO   | 0x00    | -             | Reserved for S_PD_CPU2_ON.                 |
| 2     | RO   | 0x00    | -             | Reserved for S_PD_CPU1_ON.                 |
| 1     | RO   | 0x00    | S_PD_CPU0_ON  | Tied to LOW. Ignores PD_CPU0 power state.  |
| 0     | RO   | 0x00    | S_PD_SYS_ON   | Tied to LOW. Ignores PD_SYS power state.   |

#### 6.6.2.15 PDCM\_PD\_VMR<M>\_SENSE

The Power Dependency Control Matrix Volatile Memory Region <*M*> power domain (PD\_VMR<*M*>) sensitivity register is used to define what keeps awake the PD\_VMR<*M*> domain and the minimum power state to use when the domain is in its low power state, where *M* is 0 to NUMVMBANK-1. This register is reset by **nWARMRESETAON**.

This register resides in the PD AON power domain.

#### Table 6-70: PDCM\_PD\_VMR<N>\_SENSE register

| Bits  | Туре | Default | Name              | Description                                                                                                                      |
|-------|------|---------|-------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 31:30 | RW   | 0x01    | MIN_PWR_STATE     | Defines the Minimum Power State when PD_VMR <m> is trying to enter a lower power state:</m>                                      |
|       |      |         |                   | 00 - Minimum power state is OFF                                                                                                  |
|       |      |         |                   | O1 - Minimum power state is Retention                                                                                            |
|       |      |         |                   | • 10 - Minimum power state is ON.                                                                                                |
|       |      |         |                   | Others - Reserved                                                                                                                |
| 29:24 | RO   | 0x00    | -                 | Reserved                                                                                                                         |
| 23    | RO   | 0x00    | -                 | Reserved for PDCMQREQn[7]                                                                                                        |
| 22    | RO   | 0x00    | -                 | Reserved for PDCMQREQn[6]                                                                                                        |
| 21    | RO   | 0x00    | -                 | Reserved for PDCMQREQn[5]                                                                                                        |
| 20    | RO   | 0x00    | -                 | Reserved for PDCMQREQn[4]                                                                                                        |
| 19    | RW   | 0x00    | S_PDCMQREQ3       | Enables sensitivity to <b>PDCMQREQn[3]</b> signal. If set to '1', PD_VMR <m> stays ON if <b>PDCMQREQn[3]</b> signal is HIGH.</m> |
| 18    | RW   | 0x00    | S_PDCMQREQ2       | Enables sensitivity to <b>PDCMQREQn[2]</b> signal. If set to '1', PD_VMR <m> stays ON if <b>PDCMQREQn[2]</b> signal is HIGH.</m> |
| 17    | RW   | 0x00    | S_PDCMQREQ1       | Enables sensitivity to <b>PDCMQREQn[1]</b> signal. If set to '1', PD_VMR <m> stays ON if <b>PDCMQREQn[1]</b> signal is HIGH.</m> |
| 16    | RW   | 0x00    | S_PDCMQREQ0       | Enables sensitivity to <b>PDCMQREQn[0]</b> signal. If set to '1', PD_VMR <m> stays ON if <b>PDCMQREQn[0]</b> signal is HIGH.</m> |
| 15    | RO   | 0x00    | -                 | Reserved for S_PD_MGMT_ON                                                                                                        |
| 14    | RO   | 0x00    | -                 | Reserved                                                                                                                         |
| 13    | RO   | 0x00    | S_PD_DEBUG<br>_ON | Tied to LOW. Ignores PD_DEBUG power state.                                                                                       |
| 12    | RO   | 0x00    | -                 | Reserved for S_PD_CRYPTO_ON                                                                                                      |
| 11:5  | RO   | 0x000   | -                 | Reserved                                                                                                                         |
| 4     | RO   | 0x00    | -                 | Reserved for S_PD_CPU3_ON.                                                                                                       |
| 3     | RO   | 0x00    | -                 | Reserved for S_PD_CPU2_ON                                                                                                        |
| 2     | RO   | 0x00    | -                 | Reserved for S_PD_CPU1_ON                                                                                                        |
| 1     | RW   | 0x00    | S_PD_CPU0_ON      | Enable PD_CPU0 sensitivity. If set to 1 PD_VMR <m> will stay on if PD_CPU0 is on.</m>                                            |
| 0     | RO   | 0x00    | S_PD_SYS_ON       | Tied to LOW. Ignores PD_SYS power state.                                                                                         |

#### 6.6.2.16 PDCM\_PD\_MGMT\_SENSE

The Power Dependency Control Matrix PD\_MGMT Power Domain Sensitivity register is used to define what keeps awake the PD\_MGMT domains. This register does not exist and the register area it occupies is Reserved and **RAZ/WI**.

# 6.7 CPU Private Peripheral Bus region

As defined by the ARMv8-M architecture specification, each processor hosts a local Private Peripheral Bus (PPB) region at address 0xE0000000 to 0xE00FFFFF. This region is for integration

with the CoreSight debug and trace components that are normally local to each CPU and is not intended for general peripheral usage.

In SSE-300, this region has the memory map as shown in the table below.



Other than the EWIC, CPUO ROM Table, and the peripherals on the External PPB Expansion that are added in the subsystem expansion, the existence of all other components depends on the CPU implementation and configuration. Refer to Arm® Cortex®-M55 Technical Reference Manual.

#### Depending on HASCSS and EXPLOGIC\_PRESENT:

- If HASCSS = 0 and EXPLOGIC\_PRESENT = 1, the Cortex-M55 TPIU and the MCU debug ROM table are integrated on the CPU0 EPPB interface in the subsystem expansion and the address range reserved for ETB is RAZ/WI. The MCU debug ROM table is pointing to the TPIU and the CPU's internal ROM table. These are integrated at the following addresses:
  - TPIU at 0xE0040000
  - ETB at 0xE0045000
  - MCU debug ROM table at {CPU0MCUROMADDR, 0x000} to where the DAP-Lite2 is pointing. Default address for MCU debug ROM table is 0xE00FE000.
- When HASCSS = 0 and EXPLOGIC\_PRESENT = 0, the TPIU, ETB, and MCU debug ROM table are not integrated and the these regions are provided as a PPB expansion

See HASCSS and DEBUGLEVEL for supported values.

Table 6-71: CPU0 Private Peripheral Bus Region

| Row<br>ID | Address from | Address to | Size | Region Name                       | Description                                                                                                     |
|-----------|--------------|------------|------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1         | 0xE0040000   | 0xE0040FFF | 4KB  | Cortex-M55 TPIU/<br>PPB Expansion | Cortex-M55 TPIU when EXPLOGIC_PRESENT = 1                                                                       |
|           |              |            |      |                                   | CPU0 Expansion PPB Interface when EXPLOGIC_PRESENT = 0                                                          |
| 2         | 0xE0041000   | 0xE0041FFF | 4KB  | ETM <sup>1</sup>                  | Embedded Trace Module                                                                                           |
| 3         | 0xE0042000   | 0xE0042FFF | 4KB  | CTI <sup>1</sup>                  | Cross Trigger Interface                                                                                         |
| 4         | 0xE0043000   | 0xE0044FFF | 8KB  | Reserved                          | Reserved                                                                                                        |
| 5         | 0xE0045000   | 0xE0045FFF | 4KB  | ETB/PPB Expansion                 | Reserved for ETB (RAZ/WI) when EXPLOGIC_PRESENT = 1                                                             |
|           |              |            |      |                                   | CPU0 Expansion PPB Interface when EXPLOGIC_PRESENT = 0                                                          |
| 6         | 0xE0046000   | 0xE0046FFF | 4KB  | PMC <sup>1</sup>                  | Programmable MBIST Controller                                                                                   |
| 7         | 0xE0047000   | 0xE0047FFF | 4KB  | EWIC                              | External Wakeup Interrupt Controller. For more information, see EWIC.                                           |
| 8         | 0xE0048000   | 0xE0048FFF | 4KB  | PPB Expansion                     | CPU0 Expansion PPB Interface. Reserved for Software Based Build In Self Test                                    |
| 9         | 0xE0049000   | 0xE00FEFFF | 24KB | MCU debug ROM table/PPB Expansion | CPU0 Expansion PPB Interface. Includes MCU debug ROM table at {CPU0MCUROMADDR, 0x000} when EXPLOGIC_PRESENT = 1 |
| 10        | 0xE00FF000   | 0xE00FFFFF | 4KB  | ROM Table                         | CPU0 ROM Table                                                                                                  |

1. The existence of these components depends on the configuration and the supported features of the integrated processor. If they do not exist, these regions are reserved, and return an error response when accessed.

#### 6.7.1 EWIC

SSE-300 is designed to always support an External Wakeup Interrupt Controller (EWIC) for each core in the system. This allows the system to support each processor being switched off independently, and for the EWIC to run at a lower clock rate to help reduce PD\_AON dynamic and leakage power consumption.

All EWICs reside in the PD\_AON power domain, run on AONCLK, and reside in the nWARMRESETAON reset domain.

Each EWIC <N> is only accessible through the Private Peripheral Bus Region that is associated with CPU <N> at address 0xE0047000 to 0xE0047FFF, where N is 0 to NUMCPU. The register map of the EWIC is as follows:

Table 6-72: EWIC register map

| Offset           | Name              | Access         | Reset value          | Description                                                         |
|------------------|-------------------|----------------|----------------------|---------------------------------------------------------------------|
| 0x000            | EWIC_CR           | Read-<br>write | 0x00000000           | EWIC Control Register.                                              |
|                  |                   |                |                      | For more information, see EWIC_CR.                                  |
| 0x004            | EWIC _ASCR        | Read-<br>write | 0x00000003           | Automatic Sequence Control Register.                                |
|                  |                   |                |                      | For more information, see EWIC_ASCR.                                |
| 0x008            | EWIC_CLRMASK      | Write-<br>only | 0x00000000           | Clear All Mask Register.                                            |
|                  |                   |                |                      | For more information, see EWIC_CLRMASK.                             |
| 0x00C            | EWIC_NUMID        | Read-<br>only  | CPU0EXPNUMIRQ<br>+35 | ID Register for the number of events supported.                     |
|                  |                   |                |                      | For more information, see EWIC_NUMID.                               |
| 0x010 -<br>0x1FC | Reserved          | Read-<br>only  | 0x00000000           | Reserved                                                            |
| 0x200            | EWIC_MASKA        | Read-<br>write | 0x00000000           | Set which internal events cause wakeup.                             |
|                  |                   |                |                      | For more information, see EWIC_MASKA and EWIC_MASK <n>.</n>         |
| 0x204 -          | EWIC_MASK <n></n> | Read-<br>write | 0x00000000           | Set which interrupts cause wakeup.                                  |
|                  |                   |                |                      | For more information, see EWIC_MASKA and EWIC_MASK <n>.</n>         |
| 0x240 -<br>0x3FC | Reserved          | Read-<br>only  | 0x0000000            | Reserved                                                            |
| 0x400            | EWIC_PENDA        | Read-<br>only  | 0x0000000            | Shows which internal events were pended while the EWIC was enabled. |
|                  |                   |                |                      | For more information, see EWIC_PENDA and EWIC_PEND <n>.</n>         |

| Offset  | Name               | Access         | Reset value | Description                                                 |
|---------|--------------------|----------------|-------------|-------------------------------------------------------------|
| 0x404 - | EWIC_PENDn <n></n> | 1              | 0x00000000  | Shows which interrupts were pended while EWIC was enabled.  |
| 0x43C   |                    | write          |             | For more information, see EWIC_PENDA and EWIC_PEND <n>.</n> |
| 0x440 - | Reserved           | Read-          | 0x00000000  | Reserved                                                    |
| 0x5FC   | Reserved           | only           | 020000000   | Neserved                                                    |
| 0x600   | EWIC_PSR           | Read-          | 0x00000000  | Pending Summary Register                                    |
|         |                    | only           |             | For more information, see EWIC_PSR.                         |
| 0x604 - | Reserved           | Read-          | 0x00000000  | Reserved                                                    |
| 0xEFC   |                    | only           |             |                                                             |
| 0xF00   | ITCTRL             | Read-          | 0x0000000   | Integration Mode Control Register                           |
|         |                    | only           |             | For more information, see CoreSight Registers.              |
| 0xF04 - | Reserved           | Read-          | 0x00000000  | Reserved                                                    |
| 0xF9C   |                    | only           |             |                                                             |
| 0xFA0   | CLAIMSET           | Read-<br>write | 0x000000F   | Claim Tag Set Register                                      |
|         |                    | WITE           |             | For more information, see CoreSight Registers.              |
| 0xFA4   | CLAIMCLR           | Read-          | 0x00000000  | Claim Tag Clear Register                                    |
|         |                    | write          |             | For more information, see CoreSight Registers.              |
| 0xFA8   | DEVAFFO            | Read-          | 0x80000000  | Device Affinity Register 0                                  |
| UALAU   | DEVATO             | only           | 020000000   | Device / Hillity Register 0                                 |
|         |                    |                |             | For more information, see CoreSight Registers.              |
| 0xFAC   | DEFAFF1            | Read-<br>only  | 0x0000000   | Device Affinity Register 1                                  |
|         |                    | Office         |             | For more information, see CoreSight Registers.              |
| 0xFB0   | LAR                | Write-         | UNKNOWN     | Lock Access Register                                        |
|         |                    | only           |             | For more information, see CoreSight Registers.              |
| 0xFB4   | LSR                | Read-          | 0x0000000   | Lock Status Register                                        |
| OXID4   | LSIX               | only           | 020000000   | Eoch Status Negister                                        |
|         |                    |                |             | For more information, see CoreSight Registers.              |
| 0xFB8   | AUTHSTATUS         | Read-<br>only  | 0x0000000   | Authentication Status Register                              |
|         |                    | Only           |             | For more information, see CoreSight Registers.              |
| 0xFBC   | DEVARCH            | Read-          | 0x47700A07  | Device Architecture Register                                |
|         |                    | only           |             | For more information, see CoreSight Registers.              |
| 0xFC0   | DEVID2             | Read-          | 0x0000000   | Device Configuration Register 2                             |
| 3211    |                    | only           | 021000000   |                                                             |
|         |                    |                |             | For more information, see CoreSight Registers.              |
| 0xFC4   | DEVID1             | Read-<br>only  | 0x00000000  | Device Configuration Register 1                             |
|         |                    | ,              |             | For more information, see CoreSight Registers.              |
| 0xFC8   | DEVID              | Read-          | 0x00000000  | Device Configuration Register                               |
|         |                    | only           |             | For more information, see CoreSight Registers.              |
| l       |                    |                |             | To more information, see Corcolaire registers.              |

| Offset           | Name     | Access        | Reset value | Description                                    |
|------------------|----------|---------------|-------------|------------------------------------------------|
| 0xFCC            | DEVTYPE  | Read-<br>only | 0x0000000   | Device Type Register                           |
|                  |          |               |             | For more information, see CoreSight Registers. |
| 0xFD0            | PIDR4    | Read-<br>only | 0x0000004   | Peripheral ID 4                                |
| 0xFD4 -<br>0xFDC | Reserved | Read-<br>only | 0x0000000   | Reserved                                       |
| 0xFE0            | PIDRO    | Read-<br>only | 0x00000022  | Peripheral ID 0                                |
| 0xFE4            | PIDR1    | Read-<br>only | 0x000000BD  | Peripheral ID 1                                |
| 0xFE8            | PIDR2    | Read-<br>only | 0x0000000B  | Peripheral ID 2                                |
| 0xFEC            | PIDR3    | Read-<br>only | 0x00000000  | Peripheral ID 3                                |
| 0xFF0            | CIDRO    | Read-<br>only | 0x000000D   | Component ID 0                                 |
| 0xFF4            | CIDR1    | Read-<br>only | 0x00000090  | Component ID 1                                 |
| 0xFF8            | CIDR2    | Read-<br>only | 0x0000005   | Component ID 2                                 |
| 0xFFC            | CIDR3    | Read-<br>only | 0x000000B1  | Component ID 3                                 |

# 6.7.1.1 EWIC\_CR

The EWIC Control Register allows software to enable or disable the EWIC.

Table 6-73: EWIC\_CR register

| Bits | Туре | Default   | Name | Description                                                                |
|------|------|-----------|------|----------------------------------------------------------------------------|
| 31:1 | RO   | 0x0000000 | -    | Reserved                                                                   |
| 0    | RW   | 0x00      | EN   | EWIC Enable:                                                               |
|      |      |           |      | 0 = EWIC is disabled, events<br>are not pended, WAKEUP is not<br>signalled |
|      |      |           |      | 1 = EWIC is enabled, events are<br>pended, WAKEUP can be signalled         |

# 6.7.1.2 EWIC\_ASCR

External Wakeup Interrupt Controller Automatic Sequence Control Register (EWIC\_ASCR) determines whether the processor generates APB transactions on entry and exit from Wakeup

Interrupt Controller (WIC) sleep to set up the wakeup state in the External Wakeup Interrupt Controller (EWIC). The fields of the EWIC ASCR are listed in the table below.



Disabling ASPU and ASPD only stops the processor performing automatic updates of the EWIC. It does not affect the operation of the EWIC itself. Instead, a user can use the software to perform the same operation as that performed by the automatic sequence. For more information on the sequence performed, see the Arm® Cortex®-M55 Technical Reference Manual.

#### Table 6-74: EWIC\_ASCR Register

| Bits | Туре | Default    | Name | Description                                                                                                                                                                               |  |
|------|------|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31:2 | RO   | 0x00000000 | -    | Reserved                                                                                                                                                                                  |  |
| 1    | RW   | 0x01       | ASPU | Automatic Sequence on Power Up Control. This field is sent to the associated CPU and is used to decide if the CPU performs automatic EWIC access on transitioning from a low power state. |  |
|      |      |            |      | O: No automatic sequence on power up                                                                                                                                                      |  |
|      |      |            |      | 1: Automatic sequence on power up                                                                                                                                                         |  |
| 0    | RW   | 0x01       | ASPD | Automatic Sequence on Power Down Control. This field is sent to the associated CPU and is used to decide if the CPU performs automatic EWIC access on transitioning to a low power state. |  |
|      |      |            |      | O: No automatic sequence on entry to a low-power state                                                                                                                                    |  |
|      |      |            |      | 1: Automatic sequence on entry to a low-power state                                                                                                                                       |  |

## 6.7.1.3 EWIC\_CLRMASK

When written, the EWIC clear mask register, causes all EWIC\_MASKA and EWIC\_MASK <N> registers to be cleared. The actual write data is irrelevant and ignored. Read access always returns zeros.

# 6.7.1.4 EWIC\_NUMID

When read, this read-only register returns the number of supported events on the EWIC.

#### Table 6-75: EWIC\_NUMID Register

| Bits  | Туре | Default                   | Name     | Description                |
|-------|------|---------------------------|----------|----------------------------|
| 31:16 | RO   | 0x00000                   | -        | Reserved                   |
| 15:0  | RO   | CPU <n>EXPNUMIRQ + 35</n> | NUMEVENT | Number of supported events |

#### 6.7.1.5 EWIC MASKA and EWIC MASK<N>

These EWIC mask registers define which events can cause the WAKEUP signal to be asserted. The EWIC\_MASKA register defines the mask for special events and the EWIC\_MASK<N> registers for interrupt (IRQ) events, both internal and external to SSE-300. There is one EWIC\_MASK<N>

register implemented for every set of 32 interrupt events the EWIC supports. The EWIC\_MASKA register is always implemented.

EWIC\_MASKA is at address offset 0x200. EWIC\_MASK<N> is at address offset 0x204 + (Nx4).

The format of EWIC MASKA and EWIC MASKn is described in the following tables.

| Bits | Туре | Default   | Name    | Description                     |
|------|------|-----------|---------|---------------------------------|
| 31:3 | RO   | 0x0000000 | -       | Reserved                        |
| 2    | RW   | 0x00      | EDBGREQ | Mask for external debug request |
| 1    | RW   | 0x00      | NMI     | Mask for NMI                    |
| 0    | RW   | 0x00      | EVENT   | Mask for WFE wakeup event       |



EVENTS[0] input of the EWIC is not connected in SSE-300 but tied LOW. WFE wakeup events are not supported to wake-up SSE-300.

Table 6-77: EWIC\_MASKA Register

| Bits | Туре | Default    | Name | Description                                        |
|------|------|------------|------|----------------------------------------------------|
| 31:0 | RW   | 0x00000000 | IRQ  | Masks for interrupts (N x 32) to ((N+1) x 32) - 1. |
|      |      |            |      | Any unused bit fields are reserved, and RAZ/WI.    |

Table: EWIC MASK<N> Register

# 6.7.1.6 EWIC PENDA and EWIC PEND<N>

These EWIC Pending Registers indicate which events have been pended. The EWIC\_PENDA register is used for special events and the EWIC\_PEND<N> registers for interrupt (IRQ) events, both internal and external to SSE-300. There is one EWIC\_PEND<N> register implemented for every set of 32 interrupt events the EWIC supports. EWIC\_PENDA and at least one EWIC\_PEND<N> register is always implemented.

EWIC\_PENDA is at address offset 0x400. EWIC\_PEND<N> is at address offset 0x404 + (Mx4).

The format of EWIC PENDA and EWIC PEND<N> is described in the following tables.

Table 6-78: EWIC\_PENDA Register

| Bits | Туре | Default    | Name    | Description                      |
|------|------|------------|---------|----------------------------------|
| 31:3 | RO   | 0x00000000 | -       | Reserved                         |
| 2    | RO   | 0x00       | EDBGREQ | External debug request is pended |
| 1    | RO   | 0x00       | NMI     | NMI is pended                    |
| 0    | RO   | 0x00       | EVENT   | WFE wakeup event is pended       |



EVENTS[0] input of the EWIC is not connected in SSE-300 but tied LOW. WFE wakeup events are not supported to wake-up SSE-300.

#### Table 6-79: EWIC\_PEND<N> Register

| Bits | Туре | Default   | Name | Description                                         |
|------|------|-----------|------|-----------------------------------------------------|
| 31:0 | RW   | 0x0000000 | IRQ  | Interrupts (M x 32) to ((M+1) x 32) - 1 are pended. |
|      |      |           |      | Any unused bit fields are reserved, and RAZ/WI.     |

For every Event and IRQ bit that is implemented in the EWIC\_PENDA and EWIC\_PEND<N> register, the following apply:

- If an event occurs when EWIC\_CR.EN is set, then the matching bit in EWIC\_PENDA or EWIC PEND<N> is set.
- EWIC\_PENDA and all EWIC\_PEND<N> registers are cleared if the EWIC is disabled when EWIC CR.EN is cleared.

In addition, for EWIC\_PEND<N>:

• EWIC\_PEND<N> can be updated to 0b1 by writes to the register. Attempts to clear a bit by writing 0b0 are ignored. This allows the transfer for pending interrupts from the NVIC in the CPU to the EWIC before the CPU enters low power state, and the restoration of pending interrupts to the NVIC on power-up.

### 6.7.1.7 EWIC\_PSR

The EWIC Pending Summary Register indicates which EWIC\_PEND<N> registers are non-zero. This allows a processor to efficiently determine which EWIC\_PEND<N> registers require to be read and can be used to speed up the power-on sequence. The format of EWIC\_PSR is described in the following table.

#### Table 6-80: EWIC\_PSR Register

| Bits  | Туре | Default | Name | Description                                                                          |
|-------|------|---------|------|--------------------------------------------------------------------------------------|
| 31:16 | RO   | 0x00000 | -    | Reserved                                                                             |
| 15:1  | RO   | 0x00    | NZ   | Non-Zero Indication. If EWIC_PSR.NZ[N+1] is set, then EWIC_PEND <n> is non-zero.</n> |
| 0     | RO   | 0x00    | NZA  | EWIC_PENDA Non-Zero Indication. This is set when EWIC_PENDA is non-zero.             |

#### 6.7.1.8 CoreSight Registers

All other register from offset 0xF00 onwards are standard CoreSight registers.

For more information about CoreSight registers fields, see Arm® CoreSight™ Architecture Specification v3.0.

For more information about Cortex-M55 EWIC registers, see Arm® Cortex®-M55 Technical Reference Manual.

# 6.7.2 Cortex-M55 TPIU registers

For information about Cortex-M55 TPIU registers, see Arm® Cortex®-M55 Technical Reference Manual.

# 6.8 Debug System Access Region

SSE-300 supports two key configuration for the debug system:

- HASCSS = 0. CoreSight SoC-600-based common debug infrastructure does not exist.
- HASCSS = 1. CoreSight SoC-600-based common debug infrastructure exists.

#### 6.8.1 HASCSS = 0

When the CoreSight SoC-600 based common debug infrastructure does not exist, the debug system access region is not used and therefore the following regions are reserved:

- 0xE0100000 to 0xE01FFFFF
- 0xF0100000 to 0xF01FFFFF

When accessed, these regions return bus error response.

#### 6.8.2 HASCSS = 1

SSE-300 does not support HASCSS = 1.

# 6.9 Peripheral Expansion Region

When EXPLOGIC\_PRESENT = 1, a system timestamp generator (System Counter) is integrated in SSE-300 expansion and drives the system timestamp interface see System Timestamp Interface.

The System Counter resides in the PD\_AON Power domain, is clocked by CNTCLK and is reset by **nWARMRESETAON**.

Table 6-81: Peripheral Expansion Region address map when EXPLOGIC\_PRESENT = 1

| Row<br>ID | Address from | Address to |     | Region<br>name |                   | Alias with row ID | Security <sup>1</sup> |
|-----------|--------------|------------|-----|----------------|-------------------|-------------------|-----------------------|
| -         | 0x48100000   | 0x48100FFF | 4KB | Reserved       | Reserved (RAZ/WI) |                   |                       |

| Row<br>ID | Address from | Address to | Size | Region<br>name | Description                                                                                                       | Alias with row ID | Security <sup>1</sup> |
|-----------|--------------|------------|------|----------------|-------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|
| 1         | 0x48101000   | 0x48101FFF | 4KB  |                | System Counter (System Timestamp Generator) Status Frame register <sup>3</sup> . See System Timestamp Interface.  | 3                 | NS                    |
| 2         | 0x58100000   | 0x58100FFF | 4KB  |                | System Counter (System Timestamp Generator) Control Frame register <sup>3</sup> . See System Timestamp Interface. |                   | S                     |
| 3         | 0x58101000   | 0x58101FFF | 4KB  |                | System Counter (System Timestamp Generator) Status Frame register <sup>3</sup> . See System Timestamp Interface.  | 1                 | S                     |

## 1. S: Secure access only.

NS: Non-secure access only.

For details of the ARMv8M System Counter registers, see Arm® SSE-123 Example Subsystem Technical Reference Manual.

# Appendix Mapping of the user signals of the AXI and AHB expansion interfaces

The section defines the mapping (MSB to LSB) of the user signals of the AXI and AHB expansion interfaces.

User signals transfer side band signals of the processor and the master ID to identify the master that started the transaction. Users can use these signals for expanding the system, for example, add additional firewalls to filter transactions based on the master ID, so specific memory ranges are only visible to specific masters.

#### AxUSER mapping of the XSLVTCM TCM DMA slave interface

- MID: user-defined value to identify the master or master group targeting this interface
- DAI: Debug Access Identification

#### AxUSER mapping of the XSLVEXPMIO Main interconnect expansion slave interface

- AxINNER: See Arm® Cortex®-M55 Technical Reference Manual
- AxDOMAIN: See Arm® Cortex®-M55 Technical Reference Manual



AxDOMAIN value is used to calculate HPROT[6] value for transactions targeting Peripheral interconnect. See Arm® CoreLink™ XHB-500 Bridge Technical Reference Manual

- MID: user-defined value to identify the master or master group targeting this interface
- DAI: Debug Access Identification

#### HAUSER mapping of the HSLVEXPMI1 Main interconnect expansion slave interface

- AxINNER: See Arm® Cortex®-M55 Technical Reference Manual
- MID: user-defined value to identify the master or master group targeting this interface
- DAI: Debug Access Identification

# HAUSER mapping of the HSLVEXPPILL and HSLVEXPPIHL Peripheral interconnect expansion slave interfaces

- MID: user-defined value to identify the master or master group targeting this interface
- DAI: Debug Access Identification

# AxUSER mapping of the XMSTEXPCODE, XMSTEXPSRAM and XMSTEXPDEV Main interconnect expansion master interfaces

- AxINNER: See Arm® Cortex®-M55 Technical Reference Manual
- AxDOMAIN: See Arm® Cortex®-M55 Technical Reference Manual
- MID:
  - ASIB\_ID of the slave interface of the Main interconnect targeting the master interface
  - user-defined MID value from the targeting slave interface to identify the master or master group targeting this interface
- DAI: Debug Access Identification

# HAUSER mapping of the HMSTEXPPILL and HMSTEXPPIHL Peripheral interconnect expansion master interfaces

- MID:
  - HSIF ID of the slave interface of the Peripheral interconnect targeting the master interface

HSIF ID is the predefined ID of the slave interfaces of the Peripheral interconnect

- 3 'b000: connected to CPU0 P-AHB interface
- 3 'b100: connected to Main interconnect interface
- 3 'b101: connected to HSLVEXPPILL Peripheral interconnect expansion slave interfaces
- 3 'b110: connected to HSLVEXPPIHL Peripheral interconnect expansion slave interfaces
- ASIB\_ID of the slave interface of the Main interconnect targeting the master interface or padded zeros

ASIB ID is the predefined ID of the slave interfaces of the Main interconnect

- 3 'b000: connected to CPU0 M-AXI interface
- 3'b101: connected to XSLVEXPMIO Main interconnect expansion slave interface
- 3'b110: connected to HSLVEXPMI1 Main interconnect expansion slave interface
- user-defined MID value from the targeting slave interface to identify the master or master group targeting this interface
- DAI: Debug Access Identification

Document ID: 101773 0001 03 en Mapping of the HMASTER signals of the AHB expansion master

# Appendix Mapping of the HMASTER signals of the AHB expansion master interfaces

This section defines the mapping (MSB to LSB) of the HMASTER signals of the AHB expansion master interfaces.

The following list shows how the HMASTER signals are generated in SSE-300. For more information on HMASTER signaling, see Arm® AMBA® 5 AHB Protocol Specification.

#### HMASTER mapping of the HMSTEXPPILL and HMSTEXPPIHL master interfaces

• HSIF ID:

Reference Manual

- See HAUSER mapping of the HMSTEXPPILL and HMSTEXPPIHL Peripheral interconnect expansion master interfaces for details
- HMASTER:
  - From NIC400 via XHB: AxID from NIC400
  - From CPU P-AHB: CPUID
  - From HSLVEXPPILL and HSLVEXPPIHL:

HSLVEXPPILLHMASTER/HSLVEXPPIHLHMASTER user-defined value to identify the master targeting this interface

# Appendix C Configurable render options

SSE-300 provides several render configuration options.

#### About verification

SSE-300 is presented as an example of a Arm Cortex-M55-based IoT solution. As an example system, this has not been verified to the same level of quality when compared to other components delivered from Arm that are intended to be directly used in partner solutions.

If you want to reuse any part of SSE-300 for your own application, you must perform your own verification and validation scenarios that are specific to your use-cases to ensure the system operates as intended.

The delivered subsystem can be used without modification if this fits your given use-case. Alternatively, you can choose to update the design files provided as part of the example system to better fit your specific IoT application. In any of these cases, you must verify and validate your subsystem to ensure that the design is of suitable quality.

When using the Proven range, you are compliant with the Allowed Standard Modifications that [Modification rules] describes.

The configuration options are provided in the following format:

#### CONFIGURATION OPTION FORMAT

Legal range:

The legal range represents the Arm-recommended ranges of the render configuration. Setting these configuration options out of the legal range might lead to the failure of the rendering, compilation, elaboration, or the Out of Box test.

To aid you in avoiding illegal configurations, an RTL elaboration or Render configuration error occurs when a configuration or parameter value is set outside the Legal range. If you intentionally set a value outside the Legal range, then you can disable this error checking mechanism by setting the following option:

PERFORM CONFIGCHECK: 0

Description:

This section contains the detailed description and the value enumerations of the render configuration.

#### CPU0\_INITNSVTOR\_ADDR\_INIT

Legal range:

- IDAU NS regions:
  - CPU0\_INITNSVTOR\_ADDR\_INIT[28] = 1'b0
  - CPU0\_INITNSVTOR\_ADDR\_INIT[6:0] = 0x0
- It indicates the Non-secure vector table offset address out of reset, VTOR\_NS.TBLOFF[31:7]. For more information on VTOR\_NS, see the Arm® v8-M Architecture Reference Manual.

## **CPU0CPUIDRST**

- Legal range: 0-15
- A unique Identity value defined for each CPU in the system. It defines the values read at CPU 0
  local's CPU0CPUID register. Legal values are within 0 to 15, inclusive.

#### **CPU0EXPNUMIRQ**

- Legal range: 2-448
- It specifies the number of expansion interrupt for each CPU.

# CPU0\_INT\_IRQTIER[31:0]

- Legal range: all values
- Specifies the interrupts that:
  - Support the lowest interrupt latency
  - Incur extra latency

#### The options are:

- CPU0 INT IRQTIER[n] = 0 This option indicates the lowest latency for IRQn.
- CPU0 INT IRQTIER[n] = 1 This option indicates the highest latency for IRQn.

If many interrupts are included, CPU0\_INT\_IRQTIER improves implemented frequency at the expense of interrupt latency CPU0\_INT\_IRQTIER[i] = 1'b0 enables lowest latency on CPU0's IRQ[i].

## CPU0\_EXP\_IRQTIER [CPU0EXPNUMIRQ-1:0]

• Legal range: all values

- Specifies the interrupts that:
  - Support the lowest interrupt latency
  - Incur extra latency

## The options are:

- CPUO EXP IRQTIER[n] = 0 This option indicates the lowest latency for IRQn.
- CPUO EXP IRQTIER[n] = 1 This option indicates the highest latency for IRQn.

If many interrupts are included, CPU0\_EXP\_IRQTIER improves implemented frequency at the expense of interrupt latency CPU0\_EXP\_IRQTIER[i] = 1'b0 enables lowest latency on CPU0's IRQ[i+32].

# CPU0\_EXP\_IRQ\_PULSE\_SPT\_PRESENT[CPU0EXPNUMIRQ-1:0]

- Legal range: {(CPU0EXPNUMIRQ){1'b0}}
- Enables support for Pulse type of interrupts on individual expansion interrupts that are used for CPU0. CPU0\_EXP\_IRQ\_PULSE\_SPT\_PRESENT[i] = 1'b1 enables pulse interrupt capture on CPU0 IRQ[i+32].

# CPU0EXPIRQDIS [CPU0EXPNUMIRQ-1:0]

- Legal range: CPU0EXPNUMIRQ{1'b0} CPU0EXPNUMIRQ{1'b1}
- It specifies for each CPU whether each expansion interrupt bit is implemented or disabled. CPU0EXPIRQDIS[i] = 1'b1 indicates that IRQ[i+32] is not present on CPU0

# CPU0\_EXP\_IRQ\_SYNC\_TO\_CPU\_PRESENT[CPU0EXPNUMIRQ-1:0]

- Legal range: {(CPU0EXPNUMIRQ){1'b1}}
- Enables IRQ synchronization for individual expansion interrupts that are used for CPU0. CPU0\_EXP\_IRQ\_SYNC\_TO\_CPU\_PRESENT[i] = 1'b1 enables synchronizer on CPU0 IRQ[i+32] to CPU interrupt input.

## CPU0 EXP IRQ SYNC TO EWIC PRESENT[CPU0EXPNUMIRQ-1:0]

- Legal range: {(CPU0EXPNUMIRQ){1'b1}}
- Enables IRQ synchronization for individual expansion interrupts that are used for CPU0 EWIC. CPU0\_EXP\_IRQ\_SYNC\_TO\_EWIC\_PRESENT[i] = 1'b1 enables synchronizer on CPU0 IRQ[i+32] to EWIC interrupt input.

#### CPU0\_EXP\_NMI\_SYNC\_TO\_EWIC\_PRESENT

- Legal range: 1
- Enables IRQ synchronization for NMI expansion interrupt that is used for CPU0.
   CPU0\_EXP\_NMI\_SYNC\_TO\_EWIC\_PRESENT = 1'b1 enables synchronizer on NMI to EWIC expansion interrupt input

# CPU0\_EXP\_NMI\_SYNC\_TO\_CPU\_PRESENT

- Legal range: 1
- Enables IRQ synchronization for NMI expansion interrupt that is used for CPU0.
   CPU0\_EXP\_NMI\_SYNC\_TO\_CPU\_PRESENT = 1'b1 enables synchronizer on NMI to CPU expansion interrupt input

# CPU0\_EXP\_NMI\_PULSE\_SPT\_PRESENT

- Legal range: 0
- Enables support for Pulse type of interrupts on expansion NMI interrupt that are used for CPU. CPU0\_EXP\_NMI\_PULSE\_SPT\_PRESENT = 1'b1 enables pulse interrupt capture on CPU expansion NMI input

# CPU0\_FPU\_PRESENT

- Legal range: 0,1
- The CPU0\_FPU\_PRESENT parameter determines the floating-point functionality of the processor.
  - O No floating-point functionality is included.
  - 1 Scalar half, single and double-precision floating-point included. Scalar floating point CDE instruction support included.



The floating-point functionality is separately licensable. See Arm® Corstone™ SSE-300 Example Subsystem Release Note for more information about the Floating Point Unit bundle name and availability.

## CPU0 MPU NS

- Legal range: 4,8,12,16
- Specifies the number of Non-secure Memory Protection Unit (MPU) regions included. The options are:
  - 0 No MPU regions
  - 4 4 MPU regions
  - 8 8 MPU regions
  - 12 12 MPU regions
  - 16 16 MPU regions



If SECEXT is set to 0, then CPU0\_MPU\_NS indicates the total number of MPU regions included. CPU0MPUNSDISABLE disables all Non-secure MPU regions.

# CPU0\_MPU\_S

- Legal range: 4,8,12,16
- Specifies the number of Secure MPU regions included. The options are:
  - 0 No MPU regions
  - 4 4 MPU regions
  - 8 8 MPU regions
  - 12 12 MPU regions
  - 16 16 MPU regions



- If SECEXT is set to 0, CPU0 MPU S is ignored.
- If SECEXT is set to 1, then all Secure MPU regions can be disabled using the CPUOMPUSDISABLE signal.

## CPU0 NUM SAU CONFIG

- Legal range: 4,8
- Specifies the number of Security Attribution Unit (SAU) regions included. The options are:
  - 0 No SAU regions
  - 4 4 SAU regions
  - 8 8 SAU regions



- If SECEXT is set to 0, SAU is ignored.
- If SAU is set to 0, an external component uses the Implementation Defined Attribution Unit (IDAU) interface to specify memory regions. If SECEXT is set to 1, use CPU0\_SAUDISABLE to disable all SAU regions. The Security Extension is still implemented when CPU0\_SAUDISABLE is asserted.

## **ECC\_PRESENT**

- Legal range: 0
- Specifies whether the processor supports Error detection and correction in the L1 Data and Instruction cache (when configured) and the TCM.
  - 0 ECC not included
  - 1 ECC included

## CPU0\_DBGLVL

Legal range: 1,2,3

- Specifies the number of debug resources included. The options are:
  - 0 Minimal debug. No Halting debug or memory access.
  - 1 Reduced set. Two Data Watchpoint and Trace (DWT) and four Breakpoint Unit (BPU) comparators.
  - 2 Mid set. Four DWT and eight BPU comparators.
  - 3 Full set. Eight DWT and eight BPU comparators.
  - Debug Monitoring mode and the Unprivileged Debug Extension (UDE) is always supported.
     The Performance Monitoring Unit (PMU) is included when CPU0\_DBGLVL is nonzero.

# CPU0\_IRQLVL

- Legal range: 3-8
- Specifies the number of exception priority bits.

## **MPCEXPDIS**

- Legal range: 0xFFFF 0x0000
- It disables support for individual bits on the SMPCEXPSTATUS bus. If MPCEXPDIS[n] = 1'b1, then either SMPCEXPSTATUS[n] does not exist, or if it does exist, is not used.

#### **MSCEXPDIS**

- Legal range: 0xFFFF 0x0000
- It disables support for individual bits on the SMSCEXPSTATUS, SMSCEXPCLEAR and NSMSCEXP buses.

If MSCEXPDIS[n] = 1'b1, then either SMSCEXPSTATUS[n], SMSCEXPCLEAR[n] and NSMSCEXP[n] does not exist, or if they do exist, SMSCEXPSTATUS[n] is not used, SMSCEXPCLEAR[n] are tied LOW and NSMSCEXP[n] are tied HIGH.

#### **BRGEXPDIS**

- Legal range: 0xFFFF 0x0000
- It disables support for individual bits on the BRGEXPSTATUS and BRGEXPCLEAR buses.

If BRGEXPDIS[n] = 1'b1, then either BRGEXPSTATUS[n] and BRGEXPCLEAR[n] does not exist, or if they do exist, BRGEXPSTATUS[n] is not used and BRGEXPCLEAR[n] are tied LOW.

#### **PERIPHPPCEXPODIS**

• Legal range: 0xFFFF - 0x0000

• It disables support for individual bits on the PERIPHNSPPCEXP{0-3} and PERIPHPPPCEXP{0-3} buses.

If PERIPHPPCEXP{0-3}DIS[n] = 1'b1, then either PERIPHNSPPCEXP{0-3}[n] and PERIPHPPPCEXP{0 to 3}[n] does not exist, or if they do exist, PERIPHNSPPCEXP{0-3}[n] and PERIPHPPPCEXP{0-3}[n] are not used and tied LOW.

#### PERIPHPPCEXP1DIS

- Legal range: 0xFFFF 0x0000
- It disables support for individual bits on the PERIPHNSPPCEXP(0-255) and PERIPHPPPCEXP(0-3) buses.

If PERIPHPPCEXP{0-3}DIS[n] = 1'b1, then either PERIPHNSPPCEXP{0-3}[n] and PERIPHPPPCEXP{0 to 3}[n] does not exist, or if they do exist, PERIPHNSPPCEXP{0-3}[n] and PERIPHPPPCEXP{0-3}[n] are not used and tied LOW.

#### PERIPHPPCEXP2DIS

- Legal range: 0xFFFF 0x0000
- It disables support for individual bits on the PERIPHNSPPCEXP{0-3} and PERIPHPPPCEXP{0-3} buses.

If PERIPHPPCEXP{0-3}DIS[n] = 1'b1, then either PERIPHNSPPCEXP{0-3}[n] and PERIPHPPCEXP{0 to 3}[n] does not exist, or if they do exist, PERIPHNSPPCEXP{0-3}[n] and PERIPHPPPCEXP{0-3}[n] are not used and tied LOW.

#### PERIPHPPCEXP3DIS

- Legal range: 0xFFFF 0x0000
- It disables support for individual bits on the PERIPHNSPPCEXP{0-3} and PERIPHPPPCEXP{0-3} buses.

If PERIPHPPCEXP{0-3}DIS[n] = 1'b1, then either PERIPHNSPPCEXP{0-3}[n] and PERIPHPPPCEXP{0 to 3}[n] does not exist, or if they do exist, PERIPHNSPPCEXP{0-3}[n] and PERIPHPPPCEXP{0-3}[n] are not used and tied LOW.

#### MAINPPCEXPODIS

- Legal range: 0xffff 0x0000
- It disables support for individual bits on the MAINNSPPCEXP{0-3} and MAINPPPCEXP{0-3} buses.

If MAINPPCEXP{0-3}DIS[n] = 1'b1, then either MAINNSPPCEXP{0-3}[n] and MAINPPPCEXP{0 to 3}[n] does not exist, or if they do, MAINNSPPCEXP{0-3}[n] and MAINPPPCEXP{0 to 3}[n] are not used and tied LOW.

#### **MAINPPCEXP1DIS**

- Legal range: 0xFFFF 0x0000
- It disables support for individual bits on the MAINNSPPCEXP{0-3} and MAINPPPCEXP{0-3} buses.

If MAINPPCEXP{0-3}DIS[n] = 1'b1, then either MAINNSPPCEXP{0-3}[n] and MAINPPPCEXP{0 to 3}[n] does not exist, or if they do, MAINNSPPCEXP{0-3}[n] and MAINPPPCEXP{0 to 3}[n] are not used and tied LOW.

## **MAINPPCEXP2DIS**

- Legal range: 0xFFFF 0x0000
- It disables support for individual bits on the MAINNSPPCEXP{0-3} and MAINPPPCEXP{0-3} buses.

If MAINPPCEXP{0-3}DIS[n] = 1'b1, then either MAINNSPPCEXP{0-3}[n] and MAINPPPCEXP{0 to 3}[n] does not exist, or if they do, MAINNSPPCEXP{0-3}[n] and MAINPPPCEXP{0 to 3}[n] are not used and tied LOW.

#### MAINPPCEXP3DIS

- Legal range: 0xFFFF 0x0000
- It disables support for individual bits on the MAINNSPPCEXP{0-3} and MAINPPPCEXP{0-3} buses.

If MAINPPCEXP{0-3}DIS[n] = 1'b1, then either MAINNSPPCEXP{0-3}[n] and MAINPPPCEXP{0 to 3}[n] does not exist, or if they do, MAINNSPPCEXP{0-3}[n] and MAINPPPCEXP{0 to 3}[n] are not used and tied LOW.

#### **NSMSCEXPRST**

- Legal range: 0x0000 0xffff
- The reset value for NSMSCEXP.NS\_MSCEXP[15:0]. This value defines the security world of each expansion MSC when the PD\_SYS power domain is powered up or is reset. It defines up to 16 MSCs, where each bit is:
  - O Secure
  - 1 Non-secure

## **SECEXT**

• Legal range: 1

- Specifies the inclusion of the Security Extension. The options are:
  - 0 Security Extension is excluded
  - 1 Security Extension is included

Security Extensions are always included.

#### **HASCPU0CPIF**

- Legal range: 0,1
- Specifies the inclusion of the external coprocessor interface. The options are:
  - 0 Coprocessor interface is excluded
  - 1 Coprocessor interface is included

#### DEBUGLEVEL

- Legal range: 2
- It selects the debug level of the subsystem:
  - O Debug System does not exist. There is no Debug Access and no Trace support.
  - 1 Debug system exists without Trace support. Debug Access Interface(s) exists, but Trace is not supported.
  - 2 Debug system exists with Trace support. Both Debug Access Interface(s) and Trace Interface exist.

## CPU0 ITM PRESENT

- Legal range: 0,1
- Specifies the level of instrumentation trace supported. The options are:
  - 0 Instrumentation Trace Macrocell (ITM) and DWT trace excluded
  - 1 ITM and DWT trace included. If CPU0\_DBGLVL is set to 0, no trace is included in the processor.

This parameter is not passed directly to expansion element but through the Cortex-M55 configuration file. The TPIU logic is optimized in case no ITM trace present. No optimization when CoreSight SoC-600 TPIU is used.

# CPU0\_ETM\_PRESENT

• Legal range: 0,1

- Specifies support for Embedded Trace Macrocell (ETM) trace. The options are:
  - 0 ETM trace is excluded
  - 1 ETM is included



The ETM unit must be licensed before you can set it to 1. If CPU0\_DBGLVL is set to 0, no trace is included in the processor The Cortex-M55 TPIU logic is optimized in case no ETM trace present. No optimization when CoreSight SoC-600 TPIU is used.

#### **HASCPUOIWIC**

- Legal range: 0
- Specifies whether the Internal Wake-up Interrupt Controller (IWIC) is included
  - 0 IWIC not included
  - 1 IWIC included

## CPU0 CTI PRESENT

- Legal range: 1
- Specifies whether the Cross Trigger Interface (CTI) unit is included

# CPU0\_CDERTLID

- Legal range: 0-255
- Specifies the RTL ID for the code that is present in the customizable CDE module. For systems that include several processors with different CDE customizations, this parameter must have a different value for each processor.
- For more details about the effect of this parameter value on CDE, see Arm® Cortex®-M55 Processor Integration and Implementation Manual

#### CPU0 CDEMAPPEDONCP0

- Legal range: 0,1
- Specify whether the instruction for a given coprocessor is redirected to the CDE module:
  - 0 CPn instructions mapped to coprocessor n
  - 1 CPn instructions mapped to CDE

The instruction classes supported will depend on MVE and FPU parameters

For more details about the effect of this parameter value on CDE, see Arm® Cortex®-M55
 Processor Integration and Implementation Manual

# CPU0\_CDEMAPPEDONCP1

Legal range: 0,1

- Specify whether the instruction for a given coprocessor is redirected to the CDE module:
  - 0 CPn instructions mapped to coprocessor n
  - 1 CPn instructions mapped to CDE

The instruction classes supported will depend on MVE and FPU parameters

• For more details about the effect of this parameter value on CDE, see Arm® Cortex®-M55 Processor Integration and Implementation Manual

# CPU0\_CDEMAPPEDONCP2

- Legal range: 0,1
- Specify whether the instruction for a given coprocessor is redirected to the CDE module:
  - O CPn instructions mapped to coprocessor n
  - 1 CPn instructions mapped to CDE

The instruction classes supported will depend on MVE and FPU parameters

• For more details about the effect of this parameter value on CDE, see Arm® Cortex®-M55 Processor Integration and Implementation Manual

## CPU0 CDEMAPPEDONCP3

- Legal range: 0,1
- Specify whether the instruction for a given coprocessor is redirected to the CDE module:
  - O CPn instructions mapped to coprocessor n
  - 1 CPn instructions mapped to CDE

The instruction classes supported will depend on MVE and FPU parameters

• For more details about the effect of this parameter value on CDE, see Arm® Cortex®-M55 Processor Integration and Implementation Manual

# CPU0\_CDEMAPPEDONCP4

- Legal range: 0,1
- Specify whether the instruction for a given coprocessor is redirected to the CDE module:
  - 0 CPn instructions mapped to coprocessor n
  - 1 CPn instructions mapped to CDE

The instruction classes supported will depend on MVE and FPU parameters

For more details about the effect of this parameter value on CDE, see Arm® Cortex®-M55
Processor Integration and Implementation Manual

## CPU0 CDEMAPPEDONCP5

• Legal range: 0,1

- Specify whether the instruction for a given coprocessor is redirected to the CDE module:
  - 0 CPn instructions mapped to coprocessor n
  - 1 CPn instructions mapped to CDE

The instruction classes supported will depend on MVE and FPU parameters

• For more details about the effect of this parameter value on CDE, see Arm® Cortex®-M55 Processor Integration and Implementation Manual

# CPU0 CDEMAPPEDONCP6

- Legal range: 0,1
- Specify whether the instruction for a given coprocessor is redirected to the CDE module:
  - 0 CPn instructions mapped to coprocessor n
  - 1 CPn instructions mapped to CDE

The instruction classes supported will depend on MVE and FPU parameters

• For more details about the effect of this parameter value on CDE, see Arm® Cortex®-M55 Processor Integration and Implementation Manual

## CPU0 CDEMAPPEDONCP7

- Legal range: 0,1
- Specify whether the instruction for a given coprocessor is redirected to the CDE module:
  - O CPn instructions mapped to coprocessor n
  - 1 CPn instructions mapped to CDE

The instruction classes supported will depend on MVE and FPU parameters

• For more details about the effect of this parameter value on CDE, see Arm® Cortex®-M55 Processor Integration and Implementation Manual

## **BUSPROT\_PRESENT**

- Legal range: 0
- Specifies whether interface protection is supported on the M-AXI, P-AHB, EPPB, and S-AXI interfaces on the processor.
  - 0 Interface protection not included
  - 1 Interface protection included

RAS is not supported by SSE-300.

## **CPUO LOCKSTEP**

• Legal range: 0

- Specifies whether the processor is configured for dual-redundant lockstep operation. The options are:
  - 0 Regular processor operation
  - 1 Dual-redundant lockstep operation



When CPUO\_LOCKSTEP is set to 1, Arm recommends that CPUO\_RAR must also be set to 1. Otherwise, software must initialize all registers to prevent accidental triggering of Dual-Core Lock-Step (DCLS) mismatch when the **UNKNOWN** state gets propagated to the top level. However, such software requirements might not be practical in certain software system environments. Therefore, the CPUO RAR option is strongly recommended for DCLS designs.

# CPU0\_ITGUBLKSZ

- Legal range: 3-15
- ITCM gate unit block size
  - Size in bytes =  $2^{(CPU0\_ITGUBLKSZ+5)}$
  - Minimum block size is 32 bytes
  - Maximum block size is 1MB
  - Arm recommends that CPU0\_ITGUBLKSZ and CPU0\_DTGUBLKSZ are equal to VMMPCBLKSIZE

# CPU0\_DTGUBLKSZ

- Legal range: 3-15
- DTCM gate unit block size.
  - Size in bytes = 2<sup>(CPU0\_DTGUBLKSZ+5)</sup>
  - Minimum block size is 32 bytes
  - Maximum block size is 1MB
  - Arm recommends that CPU0\_ITGUBLKSZ and CPU0\_DTGUBLKSZ are equal to VMMPCBLKSIZE

# CPU0\_PMC\_PRESENT

• Legal range: 0

- Specifies whether the Programmable MBIST Controller (PMC-100) is included
  - 0 PMC-100 is excluded
  - 1 PMC-100 is included



The PMC-100 is delivered with the other processor deliverables.

## CPU0 RAR

- Legal range: 1
- Specifies if the synchronous states or the architecturally required state are reset. The options are:
  - 0 Only reset the architecturally required state
  - 1 Reset all synchronous states
    - Setting CPUO\_RAR increases the size of the registers that are not reset by default. Setting CPUO\_RAR also increases the overall area of the implementation.



When CPUO\_LOCKSTEP is set to 1, Arm recommends that CPUO\_RAR must also be set to 1. Otherwise, software must initialize all registers to prevent accidental triggering of Dual-Core Lock-Step (DCLS) mismatch when the **UNKNOWN** state gets propagated to the top level. However, such software requirements might not be practical in certain software system environments. Therefore, the CPUO\_RAR option is strongly recommended for DCLS designs.

# CPU0\_IDCACHEID

- Legal range: 0-255
- Instruction and Data cache ID. Unique identifier for instruction and data cache RAM implementation. This parameter allows multiple instances of the Cortex-M55 processor to use different library cells for the embedded cache RAM.

## CPU0\_INSTR\_CACHE\_SIZE

• Legal range: CPU0 INSTR CACHE SIZE[0] = 0b1

• Specifies the inclusion of the instruction cache controller in the processor.

If the instruction cache controller is included:

- CPUO INSTR CACHE SIZE Specifies the size of the cache
- CPU0 INSTR CACHE SIZE[0] = 0 Instruction cache is excluded
- CPU0\_INSTR\_CACHE\_SIZE[0] = 1 Instruction cache is included

If CPUO INSTR CACHE SIZE[0]=1, then the cache sizes are:

- CPU0\_INSTR\_CACHE\_SIZE[4:1] = 0b0000 4 KB instruction cache
- CPU0\_INSTR\_CACHE\_SIZE[4:1] = 0b0001 8 KB instruction cache
- CPU0 INSTR CACHE SIZE[4:1] = 0b0011 16 KB instruction cache
- CPU0 INSTR CACHE SIZE[4:1] = 0b0111 32 KB instruction cache
- CPU0\_INSTR\_CACHE\_SIZE[4:1] = 0b1111 64 KB instruction cache



Setting CPUO\_INSTR\_CACHE\_SIZE to any other value causes UNPREDICTABLE behavior.

## CPU0 DATA CACHE SIZE

- Legal range: CPU0 DATA CACHE SIZE[0] = 0b1
- Specifies the Master AXI (M-AXI) configuration and the inclusion and size of the data cache controller.
  - CPUO DATA CACHE SIZE[0] = 0 Area-optimized M-AXI data cache is excluded
  - CPU0 DATA CACHE SIZE[0] = 1 Performance-optimized M-AXI data cache is included

#### The cache sizes are:

- CPUO DATA CACHE SIZE[4:1] = 0b0000 4KB data cache
- CPU0\_DATA\_CACHE\_SIZE[4:1] = 0b0001 8KB data cache
- CPUO DATA CACHE SIZE[4:1] = 0b0011 16KB data cache
- CPU0 DATA CACHE SIZE[4:1] = 0b0111 32 KB data cache
- CPUO DATA CACHE SIZE[4:1] = 0b1111 64 KB data cache



Setting CPU0\_DATA\_CACHE\_SIZE to any other value causes UNPREDICTABLE behavior.

## XOM\_USER\_SIGNAL\_PRESENT

Legal range: 0

 Enable the transfer of XOM attribute via (H)RUSER signaling in Main Interconnect and Peripheral interconnect

When set to 1: LOCKDCAIC configuration must be 1, The RUSER[0] signal on the XMSTEXPCODE, XMSTEXPSRAM and from CryptoCell™ (if HASCRYPTO==1) transferred to XSLVEXPMI {0-<NUM AXI SLAVES EXP MI-1>}.

When set to 0, RUSER[0] is not present.

 If the PMC-100 is included in the processor configuration, the internal cache RAMs can always be accessed by on-line MBIST



- The RUSER[0] = 1 indicates the current data being returned is Execute Only. If data type access targets a cached XOM location, and there is an external unified cache to SSE-300 then the foregoing cache might store the XOM attribute in TAG memory and might use it to check access type upon cache hit in order to return or mask the read data.
- For correct XOM operation the validity requirements of RUSER might be stricter than AMBA definition. Please see this in the corresponding product manuals.

#### **SOCIMPLID**

- Legal range: NA
- The SoC integrator JEP106 code. Connected to Debug Port targetid port TDESIGNER field
  - SOCIMPLID[11:8] indicates the JEP106 continuation code
  - SOCIMPLID[7] is always 0
  - SOCIMPLID[6:0] indicates the JEP106 identification code. SoC integrator is expected to change it to it's own JEP106 code. To obtain a number, or to see the assignment of these codes, contact JEDEC.

#### **SOCREV**

- Legal range: NA
- SoC minor revision code. SoC integrator is expected to change it

#### **SOCVAR**

- Legal range: NA
- The SoC variant or major revision code. Connected to Debug Port targetid port TREVISION field SoC integrator is expected to change it.
  - 0x0 corresponds to SSE-300 r0p0
  - 0x1 corresponds to SSE-300 r0p1

## **SOCPRTID**

Legal range: NA

• SoC product identity code. Connected to Debug Port targetid port TPARTNO fields SoC integrator is expected to change it to it's own ID code.

#### **IMPLID**

- Legal range: NA
- Subsystem implementor JEP106 code. Connected to MCU ROM table's DES\_2,DES\_1,DES\_0 fields ( JEPID and JEPCONTINUATION parameter values).
  - IMPLID[11:8] indicates the JEP106 continuation code
  - IMPLID[7] is always 0
  - IMPLID[6:0] indicates the JEP106 identification code. SoC integrator must change it.

#### **IMPLREV**

- Legal range: NA
- Subsystem minor revision code. Connected to MCU ROM table's REVAND field (ECOREVNUM input) SoC integrator must use this to indicate metal fixes on their customized subsystem.

#### **IMPLVAR**

- Legal range: NA
- Subsystem variant or major revision code. Connected to MCU ROM table's REVISION field (REVISION Parameter) SoC integrator must use this to track the revision of their customized subsystem.

## **IMPLPRTID**

- Legal range: NA
- Subsystem product identity code. Connected to MCU ROM table's PART\_0,PART\_1 fields (PARTNUMBER Parameter) SoC integrator must modify product identity code to identify the their customized subsystem.

## TCM MID WIDTH

- Legal range: 1-30
- MasterID (MID) width of the TCM interface, Expansion AXI slave (XSLVTCM). Master Identification (MID) support: MID information must be transferred on AxUSER and HAUSER signals. MID must be a unique ID might be used by the expansion logic to identify the master (not the thread) or group of masters initiating the access. Refer to TCM\_AXUSER\_WIDTH for more information about the signal encoding

# TCM\_ID\_WIDTH

- Legal range: 2-32
- TCM interface channel ID width of XSLVTCM Expansion AXI slave interface

# XS\_ID\_WIDTH

- Legal range: (NUMNPU > 0 ? 6 : 4) 9
- Channel ID width for Expansion Slave Main Interconnect interfaces, CPU M-AXI interface, slave interfaces of the Main Interconnect, ACGs implemented in the Main Interconnect and slave interfaces of the NIC-400, same width for all channels



When NPU is present, the legal range is different.

# **S\_MID\_WIDTH**

- Legal range: 4-24
- Master ID width for Expansion Slave AXI, Expansion Slave AHB, CPU M-AXI and CPU P-AHB interfaces. MID is propagated on AxUSER and HAUSER signals. It is used for exclusivity monitoring and might be used for Master ID based access control. NPU<0 NUMNPU-1>\_ID is provided as MID value when NPU is present.

## **S\_HMASTER\_WIDTH**

- Legal range: 4-12
- S HMASTER WIDTH defines the HMASTER width for HSLVEXPPI\* interfaces

## CPU0 SAUDISABLE

- Legal range: 0
- If the Security Attribution Unit (SAU) is configured, disables support

## CPU0 LOCKPAHB

- Legal range: 1
- Disable writes to the PAHBCR register from software or from a debug agent connected to the processor. Asserting this signal prevents changes to AHB peripheral port enable status in PAHBCR.EN Fixed to 1 in SSE-300

#### **COLDRESET MODE**

• Legal range: 0

- Cold Reset Mode. It defines if the watchdogs, RESETREQ signal, and the SWRESETREQ register value can cause a Cold Reset and therefore drive nCOLDRESETAON:
  - 0 Watchdogs, RESETREQ signal, and the SWRESETREQ register value contributes to Cold Reset.
  - 1- Watchdogs, RESETREQ signal, and the SWRESETREQ register value does not contribute to Cold Reset.

When set to 1, an entity outside the subsystem is expected to observe the following signals to decide when to drive HOSTRESETREQ:

- NSWDRSTREQSTATUS
- SWDRSTREQSTATUS
- SSWDRSTREQSTATUS
- RESETREQSTATUS
- SWRSTREQSTATUS



NSWDRSTREQSTATUS, SWDRSTREQSTATUS, SSWDRSTREQSTATUS, RESETREQSTATUS, and SWRSTREQSTATUS ports do not exist when COLDRESET\_MODE = 0.

#### **CFGBIGEND**

- Legal range: 0
- Data endian format
  - O Little-endian (LE)
  - 1 Byte invariant big-endian (BE8) Global Configuration for all processors

## CPU0 CFGDTCMSZ

- Legal range: CPU0 CFGDTCMSZ > 0b0010
- Size of the data TCM region encoded as:
  - CPU0 CFGDTCMSZ = 0b0000 No DTCM implemented
  - CPU0 CFGDTCMSZ > 0b0010 2<sup>(CPU0\_CFGDTCMSZ-1)</sup> KB



- The minimum size TCM is 4KB, the maximum is 16MB. Setting CPU0\_CFGDTCMSZ to 0b0001 or 0b0010 results in UNPREDICTABLE behavior
- CPU0\_CPU0\_CFGDTCMSZ= 0b0000: No DTCM implemented, is not supported by SSE-300

# CPU0\_CFGITCMSZ

- Legal range: CPU0 CFGITCMSZ > 0b0010
- Size of the Instruction Tightly Coupled Memory (ITCM) region encoded as:
  - CPUO\_CFGITCMSZ = 0b0000 ITCM is not implemented
  - CPUO\_CFGITCMSZ > 0b0010 2<sup>(CPUO\_CFGITCMSZ-1)</sup> KB

The minimum size of Tightly Coupled Memory (TCM) is 4KB and the maximum size is 16MB. Setting CPU0 CFGITCMSZ to 0b0001 or 0b0010 results in UNPREDICTABLE behavior.



CPUO\_CPUO\_CFGITCMSZ = 0b0000 - No ITCM implemented status is not supported by SSE-300.

# CPU0 CFGPAHBSZ

- Legal range: 0b010
- Size of the P-AHB peripheral port memory region:
  - 0b000 P-AHB disabled
  - 0b001 64MB
  - o 0b010 128MB
  - 0b011 256MB
  - ob100 512MB



Setting CFGPAHBSZ to any other value results in UNPREDICTABLE behavior.

## **CFGMEMALIAS**

• Legal range: 0b10000

- Memory address alias bit for the ITCM, DTCM and P-AHB regions. The address bit used for the memory alias is determined by:
  - 0b00000 No Alias
  - 0b00001 Alias bit = 24
  - 0b00010 Alias bit = 25
  - 0b00100 Alias bit = 26
  - 0b01000 Alias bit = 27
  - 0b10000 Alias bit = 28

Setting CFGMEMALIAS to an invalid value results in UNPREDICTABLE behavior Global configuration for all processors and the system.

#### INITTCMEN

- Legal range: 0b11
- TCM enable initialisation out of reset. Set to all ones to enable both TCMs Tightly Coupled Memory (TCM) enable initialization out of reset:
  - Bit[0] is HIGH: Instruction Tightly Coupled Memory (ITCM) is enabled
  - Bit[1] is HIGH: Data Tightly Coupled Memory (DTCM) is enabled

This signal controls the reset value of ITCMCR.EN and DTCMCR.EN bits. For more information on ITCMCR and DTCMCR, see the Arm Cortex-M55 Processor Technical Reference Manual Global configuration for all processors.

In SSE-300, the NIC in the TCM address range responds with error on M-AXI of the CPU thus after disabling the TCM any further accesses to this memory region results in error.

## **INITPAHBEN**

- Legal range: 1
- P-AHB enable initialization out of reset:
  - HIGH P-AHB is enabled
  - LOW P-AHB is disabled

For more information on PAHBCR, see ???.

Global Configuration for all processors.

## CPU0\_INITECCEN

• Legal range: 0

- TCM and L1 cache FCC enable out of reset:
  - 1 FCC enabled
  - 0 ECC disabled

This signal has no effect if ECC support is not configured in the processor.

ECC must not be enabled dynamically when the processor is in the MEM\_RET Power Mode as the L1 cache will not be automatically invalidated when the Power Mode is switched to ON. This results in inconsistent ECC information relative to the data retained in the cache and will cause an ECC error to occur

#### CPU0MCUROMADDR

- Legal range: 0xE0049000 0xE00FE000
- The address pointer to MCU ROM table private to each CPU core. Only the 20 most significant bits are configurable. All lower address bits are zeros. This configuration point must exist when HASCSS = 1.

The CPUOMCUROMADDR represents the [31:12] address range. The remainder range is zero  $[11:0] = 0 \times 000$ 

#### **CPU0MCUROMVALID**

- Legal range: 1
- The address pointer to MCU ROM table private to each CPU core is valid. This configuration point must exist when HASCSS = 1.

#### **CONFIG NAME**

• Any string limited to 16 characters that obeys the following regular expression:

• Default value: Name of the subsystem configuration, it is expected to match the following regular expression and provided inside double quotes

$$^{[a-zA-Z0-9]}{1,16}$$
\$

The render process appends \_\${CONFIG\_NAME}\$ to the top-level Verilog file, folder, and each uniquified element. This option ensures that differently configured SSE-300 subsystems can be present in the same design without any naming conflicts when compiled to the same logical library. The CONFIG\_NAME is also feed in to the configuration of the configurable IPs instantiated in the subsystem.

# SSE\_CONFIG

• Legal range:

PART:

CG067-BU-50000

**VERSION:** 

r0p1-00eac0

• This parameter defines the part and the version of SSE-300 that is used for the rendering of the subsystem. Do not change the pre-configured value it is provided for information.

# **EXPLOGIC\_PRESENT**

- Legal range: 0,1
- Defines whether the integration layer inside expansion element is present.
  - 0 Expansion logic absent
  - 1 Expansion logic present

If present it instantiates the following:

- Debug Access Port
- Trace Port Interface Unit
- System Counter
- XHB-500 AHB2AXI bridge
- Interface blocks



The OOB testbench is instantiated inside the Interface blocks, in order to run any of the OOB tests you must enable the expansion logic.

# **NUMCPU**

- Legal range: 0
- It describes the number of Arm Cortex-M CPU cores in the subsystem. The number of cores is equal to NUMCPU + 1.
  - When PILEVEL = 0, NUMCPU must be set to 0.
  - When HASCSS = 0, there can only be one CPU

#### **PILEVEL**

• Legal range: 1

- Power Infrastructure Level. It defines the implemented power structure of the system:
  - 0 Basic Power Structure
  - 1 Intermediate Power Structure
  - 2 Advance Power infrastructure
  - Others Reserved

#### **VMMPCBLKSIZE**

- Legal range: 3-15
- It defines the Block size of the MPC associated with all Volatile Memory Banks. Volatile Memory Block size =  $2^{\text{(VMMPCBLKSIZE+5)}}$  bytes.

TCM's block sizes are defaulted to VM block sizes.

Arm recommends that ITGUBLKSZ and DTGUBLKSZ are equal to VMMPCBLKSIZE

#### **VMADDRWIDTH**

- Legal range: if NUMVMBANK!= 0 then 14 . (24-ceil(log<sub>2</sub>(NUMVMBANK)))
- It defines the address width for all Volatile Memory Banks. This then defines the size of each bank as 2<sup>VMADDRWIDTH</sup> bytes.

#### **NUMVMBANK**

- Legal range: 2
- It selects the number of Volatile Memory Banks

#### **HASCRYPTO**

- Legal range: 0
- It defines whether CryptoCell-312 is included:
  - O No
  - 1 Yes

#### **HASCSS**

- Legal range: 0
- It defines whether the CoreSight SoC-600 based Debug infrastructure is included.
  - 0 No
  - 1 Yes

HASCSS must be 1 when NUMCPU > 0. If DEBUGLEVEL=0 then HASCSS must be set to 0.

## **CPUOTYPE**

- Legal range: 3
- It describes if each CPU exists, and the type of CPU that is integrated:
  - 0 Not implemented
  - 3 Cortex-M55
  - Others Reserved



CPUOTYPE must not be 0 and sparse CPU are not supported. Hence CPUOTYPE to CPU<NUMCPU>TYPE must not be 0s.

#### **CPU1TYPE**

- Legal range: 0
- It describes if each CPU exists, and the type of CPU that is integrated:
  - 0 Not implemented
  - 3 Cortex-M55
  - Others Reserved



CPU1TYPE must not be 0 and sparse CPU are not supported. Hence CPU1TYPE to CPU<NUMCPU>TYPE must not be 0s.

#### **CPU2TYPE**

- Legal range: 0
- It describes if each CPU exists, and the type of CPU that is integrated:
  - 0 Not implemented
  - 3 Cortex-M55
  - Others Reserved



CPU2TYPE must not be 0 and sparse CPU are not supported. Hence CPU2TYPE to CPU<NUMCPU>TYPE must not be 0s.

## **CPU3TYPE**

Legal range: 0

- It describes if each CPU exists, and the type of CPU that is integrated:
  - O Not implemented
  - 3 Cortex-M55
  - Others Reserved



CPU3TYPE must not be 0 and sparse CPU are not supported. Hence CPU3TYPE to CPU<NUMCPU>TYPE must not be 0s.

## NUM\_AHB\_SLAVES\_EXP\_PIHL

- Legal range: 1
- Number of High Latency Slave Peripheral Expansion Interface interfaces on Peripheral interconnect

## NUM AHB SLAVES EXP PILL

- Legal range: 1
- Number of Low Latency Slave Peripheral Expansion Interface interfaces on Peripheral interconnect

## NUM AXI SLAVES EXP MI

- Legal range: 2
- Number of Main interconnect expansion AXI slave interfaces XSLVEXPMI { 0 NUM AXI SLAVES EXP MI-1> }.

## **LOCKDCAIC**

- Legal range: 0,1
- Disable access to the instruction cache direct cache access registers DCAICLR and DCAICRR.
   Asserting this signal prevents direct access to the instruction cache Tag or Data RAM content.
   This is required when using eXecutable Only Memory (XOM) on the M-AXI interface. When LOCKDCAIC is asserted:
  - DCAICLR is RAZ/WI
  - DCAICRR is RAZ

Global configuration for all processors.

TCM XOM is not supported. If PMC-100 included in the CPU then M-AXI is not suitable for XOM Secure Privileged input.

## LOGIC\_RETENTION\_PRESENT

Legal range: 0

- Defines if the power domains PD\_CPU{0-<NUMCPU>}, PD\_CPU{0-<NUMCPU>}EPU and PD\_SYS supports logic retention.
  - 0 No
  - 1 Yes

If 0 then the retention requests targeting the corresponding PCSMs are mapped to ON requests

#### NUMNPU

- Legal range: 0,1
- It describes the number of NPU cores in the subsystem. The number of cores is equal to NUMNPU.

# NPU0\_NUM\_MACS

- Legal range: 32,64,128,256
- The number of 8x8 MACs that are performed per cycle

# NPU1\_NUM\_MACS

- Legal range: 32,64,128,256
- The number of 8x8 MACs that are performed per cycle

# NPU2 NUM MACS

- Legal range: 32,64,128,256
- The number of 8x8 MACs that are performed per cycle

## NPU3 NUM MACS

- Legal range: 32,64,128,256
- The number of 8x8 MACs that are performed per cycle

#### **NPUOTYPE**

- Legal range: 0,1
- It describes the integrated NPU type for NPU0 if NPU0 exists:
  - 0 Not present
  - 1 Ethos-U55
  - · Others Reserved



Sparse NPUs are not supported. Hence, when NUMNPU>0, any NPU{0:<NUMNPU-1>}TYPE must not be 0

## **NPU1TYPE**

- Legal range: 0
- It describes the integrated NPU type for NPU1 if NPU1 exists:
  - 0 Not present
  - 1 Ethos-U55
  - Others Reserved



Sparse NPUs are not supported. Hence, when NUMNPU>0, any NPU{0:<NUMNPU-1>}TYPE must not be 0

#### NPU2TYPE

- Legal range: 0
- It describes the integrated NPU type for NPU2 if NPU2 exists:
  - 0 Not present
  - 1 Ethos-U55
  - · Others Reserved



Sparse NPUs are not supported. Hence, when NUMNPU>0, any NPU{0:<NUMNPU-1>}TYPE must not be 0

#### **NPU3TYPE**

- Legal range: 0
- It describes the integrated NPU type for NPU3 if NPU3 exists:
  - 0 Not present
  - 1 Ethos-U55
  - Others Reserved



Sparse NPUs are not supported. Hence, when NUMNPU>0, any NPU{0:<NUMNPU-1>}TYPE must not be 0

# NPU0\_CUSTOM\_DMA\_PRESENT

- Legal range: 0
- To instantiate a custom DMA, set this parameter to true. Instantiating a custom DMA also requires manual changes to the RTL.



This parameter cannot be combined with NPU0\_NUM\_MACS=32

## NPU1\_CUSTOM\_DMA\_PRESENT

- Legal range: 0
- To instantiate a custom DMA, set this parameter to true. Instantiating a custom DMA also requires manual changes to the RTL.



This parameter cannot be combined with NPU0\_NUM\_MACS=32

## NPU2\_CUSTOM\_DMA\_PRESENT

- Legal range: 0
- To instantiate a custom DMA, set this parameter to true. Instantiating a custom DMA also requires manual changes to the RTL.



This parameter cannot be combined with NPUO NUM MACS=32

## NPU3\_CUSTOM\_DMA\_PRESENT

- Legal range: 0
- To instantiate a custom DMA, set this parameter to true. Instantiating a custom DMA also requires manual changes to the RTL.



This parameter cannot be combined with NPUO\_NUM\_MACS=32

# **PDCMQCHWIDTH**

- Legal range: 4
- It selects the width of Power Dependency Control Matrix Q-Channel interface that the system supports. When set to 0, the Power Dependency Control Matrix Q-Channel interface does not exist.

## PERIPHERAL INTERCONNECT ARBITRATION SCHEME

- Legal range: round, round\_nolat
- When a downstream port selects a different upstream port to service, this parameter can add latency:
  - round: Inserts one extra clock cycle of latency
  - round\_nolat: Zero additional clock latency added. With this setting, after a locked transaction, the bus matrix does not insert an IDLE transfer.



The Arm® AMBA® 5 AHB Protocol Specification recommends that a bus master inserts an IDLE transfer after a locked transfer.

#### **DEBUGLEVEL**

- Legal range: 2
- Selects the debug level of the subsystem:
  - O Debug System does not exist. There are no Debug Access nor Trace support.
  - 1 Debug system exist without Trace support. Debug Access Interface(s) exist, but Trace is not supported.
  - 2 Debug system exist with Trace support. Both Debug Access Interface(s) and Trace Interface exist.

# CPU0 MVE CONFIG

• Legal range: CPUO FPU PRESENT ? (2|1|0) : 1

- M-profile Vector Extension (CPU0\_MVE\_CONFIG) parameter can have the following configuration options:
  - 0 MVE not included
  - 1 Integer subset of MVE included, Scalar floating point CDE instruction support included.
  - 2 Integer and half and single-precision floating-point MVE included. Scalar floating point, and vector CDE instruction support included. This option is only valid if CPUO FPU PRESENT=1.

SSE-300 only supports the no M-profile Vector Extension when Floating Point Unit is configured.

• For more details about the effect of this parameter value on MVE, see Arm® Cortex®-M55 Processor Integration and Implementation Manual

## **CMSDK CONFIG**

• Legal range:

#### PART:

BP200-BU-00000 | BP210-BU-00000

#### **VERSION:**

r1p1-00rel0

• This parameter defines the part and the version of the CMSDK product that is used for the rendering of the subsystem. The specified CMSDK product version has to be present in the <download folder> prior to subsystem rendering.

## PART:

- BP200-BU-00000 = The subsystem uses the Cortex-M0\_M0+ System Design Kit components.
- BP210-BU-00000 = The subsystem uses the Cortex-M System Design Kit components

## **VERSION:**

r1p1-00rel0 = The subsystem uses the selected version of the PART



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the CMSDK part and version names.

# CORTEX\_M55\_CONFIG

Legal range:

#### PART:

AT633-BU-50000

#### **VERSION:**

r1p0-00eac0

• This parameter defines the part and the version of the Cortex-M55 product that is used for the rendering of the subsystem. The specified Cortex-M55 product version has to be present in the <download folder> prior to subsystem rendering.

## PART:

AT633-BU-50000 = The subsystem uses the selected part

#### **VERSION:**

r1p0-00eac0 = The subsystem uses the selected version of the PART



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the Cortex-M55 part and version names.

# CORTEX\_M55\_FPU\_CONFIG

Legal range:

#### PART:

AT634-MN-22110

## **VERSION:**

r1p0-00eac0

• This parameter defines the part and the version of the Cortex-M55 FPU product that is used for the rendering of the subsystem. The specified Cortex-M55 FPU product version has to be present in the <download\_folder> prior to subsystem rendering.

#### PART:

AT634-MN-22110 = The subsystem uses the selected part

## **VERSION:**

r1p0-00eac0 = The subsystem uses the selected version of the PART



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the Cortex-M55 FPU part and version names.

## CORTEX\_M55\_ETM\_CONFIG

Legal range:

# PART:

TM981-BU-50000

#### **VERSION:**

r1p0-00eac0

• This parameter defines the part and the version of the Cortex-M55 ETM product that is used for the rendering of the subsystem. The specified Cortex-M55 ETM product version has to be present in the <download folder> prior to subsystem rendering.

#### PART:

TM981-BU-50000 - The subsystem uses the selected part.

#### **VERSION:**

r1p0-00eac0 - The subsystem uses the selected version of the PART.



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the Cortex-M55 ETM part and version names.

# SIE200\_CONFIG

Legal range:

#### PART:

BP300-BU-50000

#### **VERSION:**

r3p2-00rel0

• This parameter defines the part and the version of the SIE-200 product that is used for the rendering of the subsystem. The specified SIE-200 product version has to be present in the <download\_folder> prior to subsystem rendering.

#### PART:

BP300-BU-50000 - The subsystem uses the selected part.

## **VERSION:**

r3p2-00rel0 - The subsystem uses the selected version of the PART.



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the SIE-200 part and version names.

## SIE300\_CONFIG

Legal range:

# PART:

BP301-BU-50000

#### **VERSION:**

r1p2-00rel0

• This parameter defines the part and the version of the SIE-300 product that is used for the rendering of the subsystem. The specified SIE-300 product version has to be present in the <download folder> prior to subsystem rendering.

#### PART:

BP301-BU-50000 - The subsystem uses the selected part.

#### **VERSION:**

r1p2-00rel0 - The subsystem uses the selected version of the PART.



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the SIE-300 part and version names.

# PCK600\_CONFIG

Legal range:

#### PART:

PL608-BU-50000

#### **VERSION:**

r0p4-00eac0

• This parameter defines the part and the version of the PCK-600 product that is used for the rendering of the subsystem. The specified PCK-600 product version has to be present in the <download\_folder> prior to subsystem rendering.

#### PART:

PL608-BU-50000 - The subsystem uses the selected part.

## **VERSION:**

rOp4-00eac0 - The subsystem uses the selected version of the PART.



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the PCK-600 part and version names.

## XHB500\_CONFIG

Legal range:

# PART:

PL417-BU-50000

#### **VERSION:**

r0p1-00rel0

• This parameter defines the part and the version of the XHB-500 product that is used for the rendering of the subsystem. The specified XHB-500 product version has to be present in the <download folder> prior to subsystem rendering.

## PART:

PL417-BU-50000 - The subsystem uses the selected part.

#### **VERSION:**

rOp1-O0relO - The subsystem uses the selected version of the PART.



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the XHB-500 part and version names.

# DAPLITE2\_CONFIG

• Legal range:

#### PART:

TM840-BU-50000

#### **VERSION:**

r2p0-00rel0

• This parameter defines the part and the version of the CoreSight product that is used for the rendering of the subsystem. The specified CoreSight product version has to be present in the <download\_folder> prior to subsystem rendering.

#### PART:

TM840-BU-50000 - The subsystem uses the selected part.

## **VERSION:**

r2p0-00rel0 - The subsystem uses the selected version of the PART.



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the CoreSight part and version names.

## ETHOS\_U55\_CONFIG

Legal range:

# PART:

ML004-BU-50000

#### **VERSION:**

r1p0-00eac0

• This parameter defines the part and the version of the Ethos-U55 product that is used for the rendering of the subsystem. The specified Ethos-U55 product version has to be present in the <download folder> prior to subsystem rendering.

#### PART:

ML004-BU-50000 - The subsystem uses the selected part.

## **VERSION:**

r1p0-00eac0 - The subsystem uses the selected version of the PART.



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the Ethos-U55 part and version names.

# NIC400\_CONFIG

• Legal range:

#### PART:

PL410-BU-50000| PL401-BU-50000

#### **VERSION:**

r1p1-00rel0| r1p2-00rel1

• This parameter defines the part and the version of the NIC-400 product that is used for the rendering of the subsystem. The specified NIC-400 product version has to be present in the <download\_folder> prior to subsystem rendering.

#### PART:

- PL410-BU-50000 The subsystem uses the NIC-400 Lite part.
- PL401-BU-50000 The subsystem uses the NIC-400 part.

#### **VERSION:**

- r1p1-00rel0 The subsystem uses the NIC-400 Lite version of the PART.
- r1p2-00rel0 The subsystem uses the NIC-400 version of the PART.



See Arm<sup>®</sup> Corstone<sup>™</sup> SSE-300 Example Subsystem Release Note for more information about the NIC-400 part and version names.

# **UARCH\_CONFIG**

Legal range: 0,2

- Defines the micro architecture of the design to be:
  - 0 Gate count optimized, includes lower latency paths
  - 1 Reserved
  - 2 Frequency optimized, includes pipelined path

## PERFORM CONFIGCHECK

- Legal range: 0,1
- Defines whether to check the actual values of the Configurable render options against legal range
  - 1 If the values are outside of the Legal range or contradict other configuration values then RTL rendering prevented
  - 0 No legal range checks are performed

# SOCRATES\_CONFIG

- Legal range: any
- Passes additional switches to Socrates CLI call when NIC is configured. You may use this to configure your license type for Socrates, for example, to use Arm Flexible Access license you need to specify: "--license socrates flexibleaccess ms"

# Appendix D Revisions

This appendix describes the technical changes between released issues of this book.

## **Revisions**

## Table D-1: Issue 01

| Change                        | Location |
|-------------------------------|----------|
| Initial issue of the document | -        |

#### Table D-2: Differences between Issue 01 and Issue 02

| Change                                                    | Location   |
|-----------------------------------------------------------|------------|
| Updated Configurable render options and moved to Appendix | Appendix D |
| Introduced the Ethos-U55 NPU in SSE-300                   | -          |

#### Table D-3: Differences between Issue 02 and Issue 03

| Change                                                                                                                                                                                  | Location                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Added CPU Custom Datapath Extension Interface section                                                                                                                                   | -                                                                                   |
| Note added about the memory access of non-privileged masters                                                                                                                            | Peripheral Protection Controllers section                                           |
| Description of CPU0_LOCKSTEP configuration updated, Note added                                                                                                                          | CPU section                                                                         |
| NPU0_CUSTOM_DMA_PRESENT, NPU1_CUSTOM_DMA_PRESENT, NPU2_CUSTOM_DMA_PRESENT and NPU3_CUSTOM_DMA_PRESENT configuration options have been added for documentation purposes not configurable | Configurable render options section                                                 |
| Fixed PERIPHPPCEXP2DIS typo                                                                                                                                                             | Configurable render options section                                                 |
| UARCH_CONFIG configuration option has been added                                                                                                                                        | Configurable render options section                                                 |
| SOCRATES_CONFIG configuration option has been added                                                                                                                                     | Configurable render options section                                                 |
| SOCVAR configuration option has been updated                                                                                                                                            | Configurable render options section                                                 |
| SSE_CONFIG configuration option has been added                                                                                                                                          | Configurable render options section                                                 |
| HMASTER mapping for AHB expansion master interfaces has been added                                                                                                                      | New appendix Mapping of the HMASTER signals of the AHB expansion master interfaces. |
| Bit order of register fields of PWRCTRL register in System Control Register Block swapped                                                                                               | PWRCTRL section                                                                     |
| SIE200_CONFIG configuration option has been updated to support r3p2-00rel0 version                                                                                                      | Configurable render options section                                                 |
| CPU0_DBGLVL configuration option has been added with the new value 3 to legal range                                                                                                     | Configurable render options section                                                 |
| Description of XOM_USER_SIGNAL_PRESENT updated with a note of online MBIST                                                                                                              | Configurable render options section                                                 |
| CPU0_IDCACHEID configuration option has been added                                                                                                                                      | Configurable render options section                                                 |
| CPU0_CDERTLID configuration option has been added                                                                                                                                       | Configurable render options section                                                 |
| Added interface usage rules for expansion power P-channel device interfaces                                                                                                             | Power Control P-Channel Device Interfaces chapter.                                  |
| Updated product versions of CORTEX_M55_CONFIG, CORTEX_M55_FPU_CONFIG, CORTEX_M55_ETM_CONFIG and SIE300_CONFIG configurations.                                                           | Configurable render options section                                                 |
| Description of CPU0_PMC_PRESENT updated with more details                                                                                                                               | Configurable render options section                                                 |
| XHB500_CONFIG configuration option has been updated to support r0p1-00rel0 version                                                                                                      | Configurable render options section                                                 |

| Change                                                                                | Location                                          |
|---------------------------------------------------------------------------------------|---------------------------------------------------|
| CPU0_CDEMAPPEDONCPO CPU0_CDEMAPPEDONCP7 configuration options have been added         | Configurable render options section               |
| Corrected typo in interface name, XMSTEXPMI* replaced with XMSTEXP*                   | Main Interconnect Expansion<br>Interfaces section |
| CPU0_FPU_PRESENT and CPU0_MVE_CONFIG configuration options have been amended with CDE | Configurable render options section               |
| Updated description of figure in System Block Diagram                                 | System Block Diagram section                      |