Il metodo del simplesso

- condizione sufficiente di ottimalità
- spostamento su una base adiacente

rif. Fi 3.2;

Ricapitolando

Sin qui abbiamo un algoritmo enumerativo applicabile quando P è un politopo, che calcola una soluzione ottima in al più $\binom{n!}{n!(n-m)!}$ passi enumerando le sba.

Vogliamo migliorarlo mediante:

- un criterio di arresto che riconosca una sba ottima
- uno spostamento da una sba ad un'altra migliorativa
- l'estensione al caso generale

Valore di una soluzione

Rappresentiamo il sistema Ax = b rispetto ad una base ammissibile B:

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{F}\mathbf{x}_F$$

ricaviamo l'espressione del costo:

$$\mathbf{c}^T \mathbf{x} = [\mathbf{c}_B^T, \mathbf{c}_F^T] \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_F \end{bmatrix} = [\mathbf{c}_B^T, \mathbf{c}_F^T] \begin{bmatrix} \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{F} \mathbf{x}_F \\ \mathbf{x}_F \end{bmatrix}$$

cioè

$$\mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} + (\mathbf{c}_F^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{F}) \mathbf{x}_F = \cos t + \bar{\mathbf{c}} \mathbf{x}$$

Costi ridotti

Definizione

II vettore

$$\begin{split} \bar{\mathbf{c}}^T &= \mathbf{c}^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A} = [\mathbf{c}_B^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{B}, \mathbf{c}_F^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{F}] = \\ &= [\mathbf{0}, \mathbf{c}_F^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{F}] \end{split}$$

si dice vettore dei costi ridotti rispetto alla base B

Possiamo dimostrare un risultato che ci permette di stabilire l'ottimalità di una base: Dato un problema in forma standard $\{\min \mathbf{c}^T \mathbf{x} : \mathbf{x} \in P\}$, con $P = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ vale il seguente

Condizione di ottimalità

Teorema

Sia \mathbf{x}^* una sba associata alla base \mathbf{B} . Se $\bar{\mathbf{c}}^T = \mathbf{c}^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A} \geq 0$ allora \mathbf{x}^* è una soluzione ottima

Dimostrazione

Il costo di una soluzione $\mathbf{x} \in P$ è $\mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} + \bar{\mathbf{c}}^T \mathbf{x}$ essendo per ipotesi $\bar{\mathbf{c}} \geq \mathbf{0}$ risulta

$$\mathbf{c}^T\mathbf{x} \geq \mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$$
 per ogni $\mathbf{x} \geq \mathbf{0}$, cioè per ogni $\mathbf{x} \in P$

ma

$$\mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} = [\mathbf{c}_B^T, \mathbf{c}_F^T] \begin{bmatrix} \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{0} \end{bmatrix} = \mathbf{c}^T \mathbf{x}^*$$

Ottimalità e degenerazione

la condizione diventa anche necessaria nel caso non degenere:

Teorema

Sia x^* una sba associata alla base B, con B non degenere. Allora:

- se $\bar{\mathbf{c}} \geq 0$ allora \mathbf{x}^* è ottima
- lacktriangle se ${f x}^*$ è ottima allora $ar{f c} \geq {f 0}$

Al contrario, nel caso degenere esiste la possibilità che una sba sia ottima ma qualche variabile (fuori base) abbia costo ridotto negativo

Esempio (cont.)

$$-\min -5x_1 - 4x_2$$

$$x_1 + 3x_2 + x_3 = 4$$

$$4x_1 + x_2 + x_4 = 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$\begin{split} \mathbf{B} &= [\mathbf{A}_1, \mathbf{A}_3] = \begin{pmatrix} 1 & 1 \\ 4 & 0 \end{pmatrix}, \quad \mathbf{B}^{-1} = \begin{pmatrix} 0 & 1/4 \\ 1 & -1/4 \end{pmatrix} \\ \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{F} &= \begin{bmatrix} -5 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1/4 \\ 1 & -1/4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -5/4, -5/4 \end{bmatrix} \\ \mathbf{c}_F^T - \mathbf{c}_{\text{fix}}^T \mathbf{B}^{-1} \mathbf{F} &= \begin{bmatrix} -4, 0 \end{bmatrix} - \begin{bmatrix} -5/4, -5/4 \end{bmatrix} \implies \mathbf{c} = \begin{bmatrix} 0, -11/4, 0, 5/4 \end{bmatrix} \\ \implies \mathbf{x} &= (3/4, 0, 13/4, 0) \text{ è sba NON ottima (vertice C)} \end{split}$$

Per il calcolo di x, vedi Lezione #7 Pagina #4.

Esempio (cont.)

$$\mathbf{B} = [\mathbf{A}_{1}, \mathbf{A}_{2}] = \begin{pmatrix} 1 & 3 \\ 4 & 1 \end{pmatrix}, \quad \mathbf{B}^{-1} = \begin{pmatrix} -1/11 & 3/11 \\ 4/11 & -1/11 \end{pmatrix}$$

$$\mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{F} = \begin{bmatrix} -5 \\ -4 \end{bmatrix} \begin{bmatrix} -1/11 & 3/11 \\ 4/11 & -1/11 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [-1, -1]$$

$$\mathbf{c}_{F}^{T} - \mathbf{c}^{T} \mathbf{B}^{-1} \mathbf{F} = [0, 0] - [-1, -1] \implies \bar{\mathbf{c}} = [0, 0, 1, 1]$$

$$\implies \mathbf{x} = (5/11, 13/11, 0, 0) \text{ è sba ottima (vertice B)}$$

Passando dal vertice C al vertice B la variabile x_2 entra in base e passa da 0 a 13/11; ciò fa diminuire il valore della f.o. in quanto $\bar{c}_2 = -11/4 < 0$ (ricordate che $\mathbf{c}^T \mathbf{x} = \cos t + \bar{\mathbf{c}} \mathbf{x}$).

Quindi, i costi ridotti individuano le variabili candidate ad entrare in base, cioè quelle che riducono il valore della f.o.

Spostamento su una base adiacente

Sia $\mathbf{B} = [A_{B(1),\dots,A_{B(m)}}]$ una base ammissibile di \mathbf{A} , $\mathbf{x} = (\mathbf{B}^{-1}\mathbf{b}, \mathbf{0})$ la corrispondente sba e $\mathbf{c}^T\mathbf{x} = \mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b} + \bar{\mathbf{c}}\mathbf{x}$ il suo valore.

Data una variabile x_h , $h \notin B(1), \ldots, B(m)$, per cui $\bar{c}_h < 0$, vogliamo individuare una base adiacente a $\mathbf B$ che includa la colonna $\mathbf A_h$ (in modo che x_h entri in base)

Quindi rilasciamo la variabile x_h e teniamo fissate a zero tutte le altre fuori base.

Spostamento su una base adiacente

il sistema

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{F}\mathbf{x}_F$$

diventa:

$$\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{F} \begin{bmatrix} 0 \\ \vdots \\ x_{h} \\ \vdots \\ 0 \end{bmatrix} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{A}_{h}x_{h} = \bar{\mathbf{b}} - \bar{\mathbf{A}}_{h}x_{h}$$

NB. essendo B una base ammissibile risulta $\bar{\mathbf{b}} \geq \mathbf{0}$

Spostamento su una base adiacente

$$\begin{cases} x_{B(1)} = \bar{b}_1 - \bar{a}_{1h} x_h \ge 0 \\ x_{B(2)} = \bar{b}_2 - \bar{a}_{2h} x_h \ge 0 \\ \vdots \\ x_{B(m)} = \bar{b}_m - \bar{a}_{mh} x_h \ge 0 \end{cases} \implies \begin{cases} \bar{a}_{1h} x_h \le \bar{b}_1 \\ \bar{a}_{2h} x_h \le \bar{b}_2 \\ \vdots \\ \bar{a}_{mh} x_h \le \bar{b}_m \end{cases}$$

Per ciascuna condizione i si hanno due possibilità:

- $lacktriangledown ar{a}_{ih} \leq 0 \implies$ nessun vincolo per $x_h \geq 0$
- $\bar{a}_{ih} > 0 \implies x_h \le \bar{b}_i/\bar{a}_{ih}$

quindi, il valore massimo che può assumere x_h è

$$\theta = \min \{\bar{b}_i/\bar{a}_{ih}: 1 = 1, \dots, m, \bar{a}_{ih} > 0\}$$

Conseguenze

- ightharpoonup quando x_h assume il valore limite θ la f.o. diminuisce della quantità $|\bar{c}_h|\theta$
- se esiste un qualche i per cui $\bar{b}_i=0$ (caso degenere) e $\bar{a}_{ih}>0$, allora $\theta=0$ e non si ha miglioramento della f.o. (si rimane sullo stesso vertice!)
- ▶ se $\bar{a}_{ih} \leq 0$ per $i=1,\ldots,m$ allora x_h può assumere un valore grande a piacere ed il problema è illimitato

Nuova base

sia t una riga per cui $\bar{a}_{th}>0$ tale che $\theta=b_t/a_{th}$. Aumentando x_h in modo che $x_h=\theta$ si ottiene:

$$x_{B(t)} = \bar{b} - \theta \bar{a}_{th} = 0$$

cioè x_h "esce dalla base": la colonna ${\bf A}_{B(t)}$ è stata scambiata con la colonna "migliorativa" ${\bf A}_h$

$$\mathbf{B} = [A_{B(1)}, \dots, A_{B(t)}, \dots, A_{B(m)}]$$

$$\downarrow$$

$$\tilde{\mathbf{B}} = [A_{B(1)}, \dots, A_{B(t-1)}, A_{B(h)}, A_{B(t+1)}, \dots, A_{B(m)}]$$

Nuova base

È facile dimostrare che $\tilde{\mathbf{B}}$ è ancora una base:

$$\mathbf{B}^{-1}\tilde{\mathbf{B}} = \begin{bmatrix} 1 & 0 & \dots & \bar{a}_{1h} & \dots & 0 & 0 \\ 0 & 1 & \dots & \bar{a}_{2h} & \dots & 0 & 0 \\ & & & \vdots & & & \\ 0 & 0 & \dots & \bar{a}_{th} & \dots & 0 & 0 \\ & & & \vdots & & & \\ 0 & 0 & \dots & \bar{a}_{m-1,h} & \dots & 1 & 0 \\ 0 & 0 & \dots & \bar{a}_{mh} & \dots & 0 & 1 \end{bmatrix}$$

quindi,
$$det(\mathbf{B}^{-1}\tilde{\mathbf{B}}) = (-1)^{t-h}\bar{a}_{th} \neq 0 \implies det(\tilde{\mathbf{B}}) \neq 0$$