$Medvedsky PV \ 19022025\text{--}160502$

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq s_1		11	s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.236	-75.3
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Найти точку (см. рисунок 1), соответствующую s_{11} на частоте 3 $\Gamma\Gamma$ ц.

Рисунок 1 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.9	0.474	-169.7	9.714	73.8	0.045	51.9	0.274	-88.7
3.0	0.476	-171.3	9.374	72.5	0.046	51.9	0.271	-90.3
3.1	0.476	-172.8	9.096	71.5	0.047	51.9	0.268	-91.4
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
3.3	0.477	-175.9	8.549	69.3	0.049	52.0	0.263	-93.8
3.4	0.478	-177.4	8.281	68.1	0.050	52.1	0.261	-95.0
3.5	0.480	-178.9	8.017	66.8	0.051	52.1	0.259	-96.2
3.6	0.480	179.8	7.814	65.8	0.053	52.0	0.257	-97.0
3.7	0.481	178.5	7.614	64.8	0.054	52.0	0.255	-97.8
3.8	0.481	177.2	7.416	63.7	0.055	51.9	0.253	-98.7
3.9	0.482	175.9	7.221	62.5	0.056	51.9	0.251	-99.5

и частоты $f_{\scriptscriptstyle \rm H}=3$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=3.8$ $\Gamma\Gamma$ ц. **Найти** модуль s_{11} в д ${\rm B}$ на частоте $f_{\scriptscriptstyle \rm B}$.

- 1) 17.4 дБ
- 2) -25.2 дБ
- 3) -6.4 дБ
- 4) -11.9 дБ

Задан двухполюсник на рисунке 2, причём R1 = 15.54 Om.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок3 – Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
4.0	0.371	152.2	3.283	53.0	0.125	55.3	0.157	-109.8
4.5	0.379	147.5	2.921	48.2	0.140	52.2	0.148	-115.5
5.0	0.383	143.2	2.635	43.5	0.154	49.0	0.137	-121.4
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
6.0	0.396	133.6	2.210	33.9	0.181	42.4	0.105	-136.2
6.5	0.409	128.1	2.044	29.2	0.194	39.0	0.089	-150.0
7.0	0.424	122.5	1.897	24.3	0.207	35.6	0.075	-168.1
7.5	0.446	118.4	1.769	19.8	0.219	32.2	0.072	166.7
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9
8.5	0.503	111.4	1.543	10.6	0.240	24.6	0.127	116.9
9.0	0.534	108.4	1.443	6.5	0.248	21.2	0.179	103.5

и частоты $f_{\mbox{\tiny H}}=4.5$ ГГц, $f_{\mbox{\tiny B}}=7.5$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}}$, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

- 1) 2.2 дБ
- 2) 4.4 дБ
- 3) 7.1 дБ
- 4) 1 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.491	-125.3	20.783	102.4	0.028	50.6	0.455	-60.3
2.0	0.473	-149.7	14.054	87.3	0.035	51.0	0.338	-72.9
2.7	0.472	-166.0	10.453	76.4	0.042	51.8	0.282	-85.3
3.4	0.478	-177.4	8.281	68.1	0.050	52.1	0.261	-95.0
4.1	0.485	173.4	6.866	60.3	0.059	51.6	0.247	-101.5
4.8	0.499	165.6	5.831	52.8	0.067	49.9	0.229	-109.7
5.5	0.496	159.2	5.028	46.1	0.077	48.7	0.216	-114.6
6.2	0.507	151.1	4.495	39.1	0.086	44.8	0.198	-124.4
7.2	0.530	139.6	3.824	29.0	0.098	40.9	0.158	-139.2

и частоты $f_{\scriptscriptstyle \rm H}=2$ ГГц, $f_{\scriptscriptstyle \rm B}=6.2$ ГГц.

Найти усиление на $f_{\scriptscriptstyle \mathrm{B}}$.

- 1) 11.5 дБ
- 2) 13.1 дБ
- 3) 23 дБ
- 4) 6.5 дБ

Найти точку (см. рисунок 5), соответствующую коэффициенту отражения от нормированного импеданса $z=2.33\text{-}2.34\mathrm{i}$.

Рисунок 5 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.