Problem Sheet #3:

Problem 3.1:

(x,y) \in ((A \cap B) \times (C \cap D)) \Leftrightarrow x \in (A \cap B) and y \in (C \cap D) \Leftrightarrow (x \in A and x \in B) and (y \in C and y \in D) \Leftrightarrow (x \in A and y \in C) and (x \in B and y \in D) \Leftrightarrow (x,y) \in (A \times C) and (x,y) \in (B \times D) \Leftrightarrow (x,y) \in (A \times C) \cap (B \times D) (A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D)

b)

let's give a Counterexample to prove that

$$(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D)$$

 $A = \{a\}, B = \{b\}, C = \{c\}, D = \{d\}$
 $A \cup C = \{a, c\}$
 $B \cup D = \{b, d\}$
 $(A \cup C) \times (B \cup D) = \{(a, b), (a, d), (c, b), (c, d)\}$
 $A \times B = \{(a, b)\}$
 $C \times D = \{(c, d)\}$
 $(A \times B) \cup (C \times D) = \{(a, b), (c, d)\}$

Problem 3.2:

$$R = \{(a, b)|a, b \in Z \land |a - b| \le 3\}$$

a)

Reflexive:

For \forall (a,b) \in Z \land |a - b| \leq 3 let's see if {(a,a),(b,b)} \in R:

$$|a-a| = 0 \Leftrightarrow |a-a| \le 3$$

 $|b-b| = 0 \Leftrightarrow |b-b| \le 3$

Thus

 $\{(a,a),(b,b)\} \in R$ and R is reflexive.

Symmetric:

 \forall (a,b) \in Z \land |a - b| \leq 3 we suppose that (a,b) \in R let's see if (b,a) \in R:

$$(a,b) \in \mathbb{R} \Rightarrow |a-b| \le 3$$

 $\Rightarrow |-(-a+b)| \le 3$
 $\Rightarrow |-(b-a)| \le 3$
 $\Rightarrow |b-a| \le 3$

Thus,

 $(a,b) \in R \Rightarrow (b,a) \in R$ and R is symmetric

Transitive:

 \forall a, b, c \in Z we suppose that (a,b) \in R \land (b,c) \in R let's see if (a,c) \in R

for:

a=5

b=4

c=1

$$|a - b| = |5 - 4| = 1 \le 3$$

$$|b-c| = |4 - 1| = 3 \le 3$$

$$|a - c| = |5-1| > 3$$

We found a counterexample so R is not transitive.

b)

$$R = \{(a, b)|a, b \in Z \land (a \mod 10) = (b \mod 10)\}$$

Reflexive:

For \forall (a,b) \in Z we suppose that (a,b) \in R let's see if {(a,a),(b,b)} \in R

$$(a \mod 10) = (a \mod 10)$$

$$(b \mod 10) = (b \mod 10)$$

Thus

$$\{(a,a),(b,b)\} \in R$$
 and R is reflexive.

Symmetric:

 \forall (a,b) \in Z we suppose that (a,b) \in R let's see if (b,a) \in R:

$$(a,b) \in R \Rightarrow (a \mod 10) = (b \mod 10)$$

 $\Rightarrow (b \mod 10) = (a \mod 10)$

Thus,

$$(a,b) \in R \Rightarrow (b,a) \in R$$
 and R is symmetric

Transitive:

$$\forall$$
 a, b, c \in Z we suppose that (a,b) \in R \land (b,c) \in R let's see if (a,c) \in R

$$(a,b) \in R \Rightarrow (a \mod 10) = (b \mod 10)$$

$$(b,c) \in R \Rightarrow (b \mod 10) = (c \mod 10)$$

$$\Rightarrow$$
 (a mod 10) = (c mod 10) \Rightarrow (a,c) $\in R$

R is transitive.