Разработка математической модели для обеспечения безопасности автономного расхождения судов в водах с повышенной интенсивностью движения

Ключевые слова: безопасное расхождение судов, автономное расхождение судов, предотвращение столкновений

Аннотация

Проблема обеспечения безопасности мореплавания в условиях увеличивающейся плотности движения судов приобретает особую актуальность с внедрением автономных судов. Несмотря на снижение человеческих ошибок благодаря автоматизации, остаются нерешенными задачи координации судов в сложных условиях, таких как высокая интенсивность движения, неблагоприятные погодные условия и наличие опасных зон. В статье представлена математическая модель, описывающая поведение группы судов для избежания столкновений с учетом правил МППСС-72 [1]. Исследованы существующие подходы к решению задачи, определены критерии для сравнения методов, проведена оценка их эффективности с целью выбора метода решения.

Введение

На фоне роста мирового судоходного трафика и увеличения плотности движения судов в водных пространствах проблема обеспечения безопасности мореплавания приобретает особую актуальность, поскольку усложняется предотвращение аварийных ситуаций и минимизация рисков столкновений. Многие страны [1] внедряют автономные суда. Несмотря на технические достижения, проблема предотвращения столкновения остается актуальной. Автономные суда способны уменьшить человеческие ошибки, но сталкиваются с проблемой координации в сложных условиях (повышенная плотность движения судов, погодные условия, наличие опасных зон для движения - отмели, подводные скалы). Создание и совершенствование методов, учитывающих правила безопасности движения судов [2] и внешние факторы, способно уменьшить риски возникновения аварийных ситуаций.

Целью данной статьи является разработка математической модели, описывающей поведение группы судов для избежания столкновения. Объектом исследования выступает система управления автономными судами и её взаимодействие с окружающей средой при выполнении маневров расхождения в водных пространствах, а предметом исследования — методы и алгоритмы обеспечения безопасности автономного расхождения судов в условиях плотного морского трафика и изменяющихся внешних факторов.

В ходе проведения исследования были решены задачи, перечисленные ниже.

- 1. Выполнить обзор существующих методов и алгоритмов автономного расхождения судов в водных пространствах.
- 2. Определение критериев сравнения методов автономного расхождения судов в водных пространствах.
- 3. Сравнение выбранных методов по выбранным критериям.

4. Разработка математической модели, описывающей взаимодействие судна с другими объектами в водном пространстве.

Обзор предметной области

Принцип отбора аналогов

В роли сравнительных аналогов были рассмотрены алгоритмы и методы, используемые для решения задач, связанных с безопасным автономным расхождением группы судов в водном пространстве. Основным критерием при выборе аналогов служили пределы применимости соответствующих алгоритмов. Поиск аналогов проводился с использованием таких ресурсов, как Google Scholar, электронная библиотека eLibrary и поисковая система Google. При поиске использовались следующие ключевые запросы: "безопасное расхождение судов", "автономное расхождение судов", "multi-ship anti-collision", "automatic collision avoidance of multiple ships".

Кооперативное маневрирование

В статье [3] рассматривается проблема безопасного расхождения безэкипажных судов в зонах интенсивного судоходства. Суда классифицируются на четыре группы: привилегированные, опасно идущие, обязанные маневрировать и ограничивающие решение. Для каждой единицы анализируется навигационная ситуация, включая прогнозы маршрутов, риски столкновений, выхода на мель и попадания в запретные зоны. Оценка рисков производится по шкале RYG («красный» – «желтый» – «зеленый»). На основе этих данных формируется множество опасных сближений, где суда распределяются на классы А (привилегированные) и В (обязанные маневрировать). Затем ищется наиболее благоприятное решение для изменения их траекторий. Если решения нет, применяются смягчения ограничений путем перераспределения судов между группами. Алгоритм требует обмена данными между судами.

Учет намерений судов

В статье [4] рассматривается проблема безопасного расхождения судов в условиях плотного морского трафика. Используются геометрические модели движения, где каждое судно имеет свои параметры: положение, скорость и время наблюдения. Рассчитываются относительные скорости и дистанции максимального сближения (СРА), а также время этого сближения (ТСРА). Маневры включают изменение курса (четыре варианта) и/или скорости (два варианта). Предложен алгоритм для совместного маневрирования, который последовательно определяет опасные пары судов и рассчитывает необходимые маневры. Если маневры невозможны, процесс начинается заново с другой парой. Метод подходит для автономных и традиционных судов. Проведены многочисленные эксперименты с различными сценариями, включая группу из семи судов.

Linear exstension algorithms

В статье [5] представлена распределённая система предотвращения столкновений судов согласно правилам МППСС-72. Каждое судно самостоятельно принимает решения на основе своих наблюдений и информации от соседних судов. Эффективность маневров оценивается через расчёт СРА для планируемых траекторий. Используется модель Номото для описания манёвренности судна. Проводились симуляции в MATLAB с участием четырёх судов, проверяя соблюдение правил МППСС-72 в различных сценариях.

Deep Reinforced Learning

В статье [6] представлен новый метод автоматического предотвращения столкновений судов на основе глубокого обучения с подкреплением (DLR), особенно актуальный для ограниченных водных пространств. Подход включает два режима управления: обычный и предотвращения столкновений. Для создания модели DLR использован алгоритм глубокого Q-обучения и формализация задачи через марковский процесс принятия решений (MDP). В работе учтён человеческий опыт предотвращения столкновений, включая использование зон безопасности, прогнозируемых областей опасности и навигационных ограничений. Переключение режимов происходит с помощью бортовых датчиков. Экспериментальные испытания трёх самоходных судов подтвердили эффективность предложенной методики.

Evolutionary Sets of Safe Ship Trajectories

В статье [7] представлен обновленный метод нахождения безопасных траекторий судов с использованием эволюционных алгоритмов и элементов теории игр. Метод обеспечивает наиболее благоприятное решение для всех участников маневра в соответствии с МППСС-72 в режиме реального времени, выдавая результат менее чем за минуту. Подход успешно прошел тестирование в симуляции, показав превосходство над аналогичными методами. Дополнительно описан механизм предотвращения столкновений с неподвижными объектами. Для применения в реальных условиях авторы рекомендуют улучшить гидродинамическую модель судна и расширить соответствие алгоритма правилам МППСС-72, включая схемы разделения движения.

Критерии сравнения аналогов

Адаптивность к внешним факторам

Данный критерий отражает способность алгоритма учитывать и адаптироваться к меняющимся внешним условиям, таким как погода, состояние моря, наличие запрещенных зон для движения и статических объектов. Оценка происходит через моделирование различных сценариев с изменением этих факторов и проверку того, насколько эффективно алгоритм реагирует на новые вводные данные.

Соответствие нормативам

Методы оцениваются по тому, насколько их решения соответствуют действующим международным нормам и правилам навигации, таким как МППСС-72. Несоответствие этим правилам может сделать предложенное решение небезопасным или незаконным, поэтому этот критерий крайне важен для оценки практической применимости алгоритма.

Масштабируемость

Данный критерий измеряет способность системы поддерживать свою эффективность при увеличении количества судов в зоне ответственности Оценка осуществляется путём сравнения результатов работы алгоритма в условиях различной загруженности водного пространства с ожидаемыми результатами, соответствующими безопасным и эффективным маршрутам для всех судов.

Таблица сравнения аналогов

Таблица 1 -- Сравнение аналогов по критериям.

Аналог	Адаптивность к внешним факторам	Соответствие нормативам	Масштабируемость
Кооперативное маневрирование	учет наличия опасных зон (мелководье)	соответствует	неизвестно (в статье метод не проверялся в компьютерной среде или в реальных условиях)
Учет намерений судов	не учитываются внешние факторы	соответствует	безопасное расхождение достигалось при 7 судах
Linear exstension algorithms	учет наличия статических объектов, опасных зон	соответствует	безопасное расхождение достигалось при 4 судах
Deep Reinforced Learning	учет наличия статических объектов, опасных зон	соответствует	безопасное расхождение достигалось при трех моделей судов
Evolutionary Sets of Safe Ship Trajectories	учет наличия опасных зон, статических объектов	соответствует	безопасное расхождение достигалось при 6 судах

Выводы по итогам сравнения

погодные условия и состояние моря.

Анализируя результаты таблицы 1, можно сделать несколько выводов:

- Адаптивность к внешним факторам:
 Deep Reinforced Learning, Linear extension algorithms и Evolutionary Sets of Safe Ship
 Trajectories учитывают наличие опасных зон и статических объектов. Это важный фактор
 для обеспечения безопасности в реальных условиях. Но данные аналоги не учитываю
- Соответствие нормативам:
 Все представленные аналоги соответствуют нормативам, что является необходимым условием для их практического применения.
- Масштабируемость:
 - Наибольшей масштабируемостью обладает Учет намерений судов, демонстрируя успешное расхождение при 7 судах.
 - Evolutionary Sets of Safe Ship Trajectories также показывают неплохую масштабируемость, работая с 6 судами.
 - o Linear extension algorithms и Deep Reinforced Learning имеют меньшую масштабируемость, достигающую 4 и 3 судов соответственно.
 - Кооперативное маневрирование не предоставляет данных о масштабируемости, что оставляет вопросы об его применении в реальных условиях.

Исходя из этих выводов, наиболее перспективным аналогом для безопасного автономного расхождения судов являются Evolutionary Sets of Safe Ship Trajectories. Этот метод демонстрирует баланс между выбранными критериями сравнения.

Выбор метода решения

На основе проведенного анализа, разрабатываемое решение должно включать следующие характеристики:

- учет внешних факторов, таких как погодные условия (скорость и направление ветра, условия видисмости), состояние моря.
- способность безопасного расхождения при увеличение судоходного трафика.

Описание метода решения

Важным аспектом современного судоходства является предотвращение столкновений судов, особенно в условиях интенсивного морского трафика. Данная математическая модель описывает поведение группы судов с целью избежания аварийных ситуаций, учитывая различные факторы, такие как характеристики самих судов, окружающее пространство, погодные условия и международные правила предотвращения столкновений (МППСС-72).

При построении модели будем использовать следующие принципы:

- 1. Соблюдение международных правил предотвращения столкновений судов (МППСС-72) [1]. Основными правилами будут выступать правила уступки дороги при пересечении курсов (Когда два судна с механическими двигателями идут пересекающимися курсами так, что возникает опасность столкновения, то судно, которое имеет другое на своей правой стороне, должно уступить дорогу другому судну и при этом оно должно, если позволяют обстоятельства, избегать пересечения курса другого судна у него по носу); алгоритм действий при встречном движении (Когда два судна с механическими двигателями сближаются на противоположных так, что возникает опасность столкновения, каждое из них должно изменить свой курс вправо, с тем чтобы каждое судно прошло у другого по левому борту).
- 2. Минимизация рисков столкновения:
 - Оценивается вероятность столкновения на основе анализа взаимного положения судов.
 - о Осуществляется изменение курса и/или скорости для снижения риска.
- 3. Учет внешних факторов. Учитываются погодные условия (видимость, скорость и направление ветра), морские волнения и течение, опасные зоны (отмель, подводные скалы). В сложных условиях видимости предполагается, что судна будут двигаться с меньшей скоростью и находится в больших расстояниях друг от друга.
- 4. Ограниченность маневренных возможностей крупных судов. Большие суда из-за своих больших габаритов ограничены в маневренных возможностях, поэтому они будут придерживаться своего курса и скорости.
- 5. Постоянный мониторинг текущей ситуации при совершении маневра для корректировки или изменения принятого решения.

- P(t) =(x, y) позиция судна в момент времени t;
- V(t) скорость судна в момент времени t;
- T(t) курс судна в момент времени t;
- (w, l) Габариты судна (ширина, длина).
 E = <{z}, W, U>- внешние факторы:
- {z} множество зон, запрещенных для движения. Каждый элемент такого множества представляет собой набор (x, y) координат, образующих область запрещенную для движения. Например, отмели, подводные скалы;
- W погодные условия, включающие в себя такие факторы, как видимость (v), ветер (скорость ветра v_w, направление ветра d_w);
- U морские волнения, течение (скорость течения v_c, направление течения d_c).
- {s} = {s_1, s_i, ...} i =1...n ∈ N множество других судов, где каждое судно имеет набор своих характеристик (P_i(t), V_i(t), T_i(t), (w, l));
 D = d(t, S, E, {s})- функция принятия решения. Данная функция в течение времени t на основе других компонентов принимает решение об изменение курса и/или скорости для избежания столкновения. Алгоритм принятия решения основывается на нескольких этапах: мониторинг текущей ситуации, анализ рисков, выбор маневра, контроль выполнения маневра и повторный анализ.

В каждый момент времени производится мониторинг текущей ситуации в водных пространствах и анализ рисков столкновения судов. При появлении угрозы столкновения должны приниматься решения по корректировке или изменению курса/скорости.

В начальный момент времени передаются данные о состоянии судна и об окружение (внешние факторы и другие суда).

Для компонента S позиция судна в следующий момент времени рассчитывается на основе текущего положения P(t), скорости V(t) и курса T(t) по заданному маршруту. Скорость судна изменяется в зависимости от текущих условий (погода, риски столкновения и др). Если необходимо избежать столкновение скорость может быть увеличена или уменьшена вплоть до полной остановки судна. Курс судна меняется, когда нужно совершить маневр уклонения. Изменения курса меняются в соответствие с правилами МППСС-72.

Для компонента {s} информация об окружающих судах обновляется на каждом временном шаге. Данные вычисление для каждого судна из множества происходят аналогично вычислениям для компонента S.

Для компонента Е учитываются влияние погоды и течений на скорость и траекторию судов. Запретные зоны проверяются на пересечение траектории судна с ними. Если зона пересечения обнаруживается, принимается решение о коррекции маршрута и в дальнейшем о совершении необходимого маневра.

Если вероятность столкновения высока, то требуется коррекция курсов и/или скорости для избежания столкновения. Принятие решения о совершении маневров для избежания

столкновения осуществляется таким образом, чтобы минимизировать риски столкновения между всеми судами, исключить попадание в опасные зоны для движения и учитывать правила МППСС-72.

По окончанию принятие решения о совершаемых действиях, судна начинают совершать необходимые маневры. В процессе маневрирования судов, осуществляется контроль выполнения действий и также анализ рисков столкновений для дальнейшего хода судов. На данном этапе возможна корректировка курсов и/или скоростей.

После совершения маневра вновь производится мониторинг текущей ситуации в водных пространствах и анализ рисков столкновений. Если все суда находятся в безопасном положение, то движение дальше осуществляется по заданному маршруту. Иначе цикл действий повторяется.

Заключение

В рамках данного исследования была разработана математическая модель, описывающая поведение группы судов для безопасного автономного расхождения в условиях высокой плотности морского трафика и изменяющихся внешних факторов. Обзор существующих методов показал разнообразие подходов к решению задачи безопасного расхождения, однако большинство из них не учитывают весь спектр внешних факторов, таких как погодные условия и опасные зоны.

Критерии сравнения позволили оценить различные методы и выбрать наиболее перспективные для дальнейшей разработки. Созданная математическая модель учитывает динамику движения судов, влияние внешних факторов и правила безопасности, установленные международными стандартами. Направлением дальнейших исследований будет являться разработка архитектуры решения на основе разработанной модели.

Список использованных источников

- 1. Шесть стран запустили инициативу по развитию автономного судоходства, 06.08.2020 URL: https://portnews.ru/news/299804
- 2. Конвенция о Международных правилах предупреждения столкновения судов в море (МППСС-72)
- 3. Смоленцев С. В. Кооперативное маневрирование безэкипажных судов для безопасного расхождения в море / С. В. Смоленцев, А. Е. Сазонов Ю. М. Искандеров // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. 2018. Т. 10. № 4. С. 687–695. DOI: 10.21821/2309-5180-2018-10-4-687-695
- 4. Артемьев А.В., Петров В.А., Гриняк В.М. Численное исследование задачи безопасного расхождения групп морских автономных надводных судов // Территория новых возможностей. Вестник Владивостокского государственного университета. 2023. Т. 15, № 3. С. 104—119. DOI: https://doi.org/10.24866/VVSU/2949-1258/2023-3/104-119.
- 5. Zhang, J., Zhang, D., Yan, X., Haugen, S., & Guedes Soares, C. (2015). A distributed anti-collision decision support formulation in multi-ship encounter situations under COLREGs. Ocean Engineering, 105, 336–348. doi:10.1016/j.oceaneng.2015.06.054

- 6. Shen, H., Hashimoto, H., Matsuda, A., Taniguchi, Y., Terada, D., & Guo, C. (2019). Automatic collision avoidance of multiple ships based on deep Q-learning. Applied Ocean Research, 86, 268–288. doi:10.1016/j.apor.2019.02.020
- 7. Szlapczynski R. On evolutionary computing in multi-ship trajectory planning / R. Szlapczynski, J. Szlapczynska // Applied Intelligence. 2012. Vol. 37. Is. 2. Pp. 155–174. DOI: 10.1007/s10489-011-0319-7.