

MLR

B Banerje

MLR

Least square

A NOVA

Regression Analysis Multiple Linear Regression

Buddhananda Banerjee

Department of Mathematics Centre for Excellence in Artificial Intelligence Indian Institute of Technology Kharagpur

bbanerjee@maths.iitkgp.ac.in

B Banerjee MLR HT Kharagpur 1/11

Multiple linear regression

MLR

B Banerje

MLR

Least square Best estimato

A NOVA

- Consider a data set $D = \{(\mathbf{x}_i, y_i) | \mathbf{x}_i \in \mathbb{R}^{k+1}, y_i \in \mathbb{R}, \forall i = 1, 2, \dots, n\}$
- \mathbf{x}_i s are non stochastic
- y_i s are stochastic and realized values of random variable Y_i s
- \bullet ϵ_i s are iid $N(0, \sigma^2)$ random variables
- Regression parameter $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \cdots, \beta_k)^T$ is unknown
- Error parameter σ^2 is unknown

Problem statement

Considering the linear model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \epsilon_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i, \ \forall \ i = 1, 2, \dots n$$

we want to estimate β which will minimize least squared condition.

IIT Kharagpur

Matrix representation

MLR

B Banerje

MLR

Least square

ANOVA

For *n* such observation we use matrix notation to represent it as follows,

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{1}$$

where, $\mathbf{Y} = (y_1, y_2, \dots, y_n)^T$, $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \dots, \beta_k)^T$,

 $\mathbf{X} = (\mathbf{1}, \mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_k) = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n)^T$ and $\boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2, \cdots, \epsilon_n)^T$.

Hence, there are k+2 unknown model parameters, β and $\sigma^2>0$

$$\mathbf{Y} \sim N(\mathbf{X}\beta, \sigma^2 \mathbf{I}_n) \text{ as } \boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$$
 (2)

Problem statement

The least square condition to be minimized to estimate β , σ^2 is

$$S(\boldsymbol{\beta}) = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{Y}^T \mathbf{Y} - 2\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{Y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X}\boldsymbol{\beta}$$
(3)

Least square

MLR

MLR

Estimation

If $\hat{\beta}$ minimizes the least square condition then it satisfies the normal equations

$$\frac{\partial S(\beta)}{\partial \beta}|_{\beta=\hat{\beta}} = \mathbf{0}$$

$$\implies -2\mathbf{X}^T\mathbf{Y} + 2\mathbf{X}^T\mathbf{X}\hat{\beta} = \mathbf{0}$$

$$\implies \hat{\beta} = (\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T\mathbf{y}$$
(4)

Least square

MLR

B Banerje

MLR

Least square

Rest estimato

Prediction

Fitted regression for the used data is

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T\mathbf{y} = P_{\mathbf{X}}\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 P_{\mathbf{X}})$$

where $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T$ is the orthogonal projection matrix of the column space of \mathbf{X} i.e. $\mathcal{C}(\mathbf{X})$. It means $\hat{\mathbf{y}} \in \mathcal{C}(\mathbf{X}) = \mathcal{C}(\mathbf{X}^T\mathbf{X})$.

Least square

MLR

B Banerje

MLR

Least square

Best estimator

Estimated Error

Hence the estimated error in prediction

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I}_n - P_{\mathbf{X}})\mathbf{y} \sim N(\mathbf{0}, \sigma^2(\mathbf{I}_n - P_{\mathbf{X}}))$$

where
$$\mathbf{e} \in \mathcal{C}(\mathbf{X})^{\perp} = \mathcal{C}(\mathbf{X}^T\mathbf{X})^{\perp}$$
.

Note: Hence $\hat{\mathbf{y}}$ and \mathbf{e} are uncorrelated and they are independently distributed when $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$.

Definition

MLR

B Banerje

ML

Deast square

Best estimator

Linear unbiased estimator (LUE)

A linear estimator $\mathbf{l}^T \mathbf{y} = \sum_i l_i y_i$ is said to be linear unbiased estimator (LUE) of $\mathbf{p}^T \boldsymbol{\beta}$ if $E(\mathbf{l}^T \mathbf{y}) = \mathbf{p}^T \boldsymbol{\beta}$ for all $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$.

Linear zero function (LZF)

A linear estimator $\mathbf{l}^T \mathbf{y} = \sum_i l_i y_i$ is said to be linear zero function (LZF) if $E(\mathbf{l}^T \mathbf{y}) = 0$ for all $\beta \in \mathbb{R}^{k+1}$

Definition

MLR

B Banerje

мы

Least square

Best estimator

Estimablity

A linear parametric function $\mathbf{p}^T \boldsymbol{\beta}$ is said to be **estimable** if it has a LUE i.e. there exists $\mathbf{l}^T \mathbf{y}$ such that $E(\mathbf{l}^T \mathbf{y}) = \mathbf{p}^T \boldsymbol{\beta}$ for all $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$.

BLUE

The best linear unbiased estimator (BLUE) of a linear parametric function $p^T \beta$ is a LUE with minimum variance.

Best estimator

MLR

B Banerj

MLI

Least square

Best estimator

A NIOWA

Theorem

A linear function is BLUE of its expectation iff it is uncorrelated with all linear zero functions (LZF).

Corollary

If $\mathbf{l}^T \mathbf{y}$ is an LUE of $\mathbf{p}^T \boldsymbol{\beta}$ then $\mathbf{l}^T P_{\mathbf{X}} \mathbf{y}$ is the BLUE of $\mathbf{p}^T \boldsymbol{\beta}$

Note: If you know a LUE of a parametric function then you can get the BLUE out of it.

ANOVA

MLR

B Banerje

MLI

Least square

ANOVA

To test $H_0: \beta_R = (\beta_1, \dots, \beta_k) = \mathbf{0}$ vs $H_1: (\beta_1, \dots, \beta_k) \neq \mathbf{0}$ we perform the ANOVA as

$$SST = SSModel + SSRes$$

$$SST = \mathbf{Y}^T (\mathbf{I}_n - \frac{1}{n} \mathbf{1} \mathbf{1}^T) \mathbf{Y} \sim \sigma^2 \chi^2 (df = n - 1, ncp = \lambda / \sigma^2)$$

■
$$SSModel = \mathbf{Y}^T (P_X - \frac{1}{n} \mathbf{1} \mathbf{1}^T) \mathbf{Y} \sim \sigma^2 \chi^2 (df = k, ncp = \lambda / \sigma^2)$$

■
$$SSRes = \mathbf{Y}^T(\mathbf{I}_n - P_X)\mathbf{Y} \sim \sigma^2 \chi^2(df = n - k - 1, ncp = 0)$$

Under $H_0: \lambda = 0$, otherwise $\lambda = \beta_R^T \mathbf{X}_c^T \mathbf{X}_c \beta_R$ where \mathbf{X}_c is the centred regressor variables for β_R . Hence, by Cochran's theorem we have

$$\frac{SSModel/k}{SSRes/(n-k-1)} \sim F_{k,(n-k-1),ncp=\lambda}$$

It is a right tailed test because $\lambda = 0$ under H_0 .

MLR

R Ranerie

Least square

ANOVA

B Banerjee MLR IIT Kharagpur 11/11