Your Name:				
Your lab partner(s):				

Lab 10: Quantum States and Tunneling

(Instructions partially adopted from

http://phet.colorado.edu/en/simulations/keyword/quantumMechanics)

Purpose:

- To visualize plane waves and wave packets and study how they relate to each other
- To investigate the real and imaginary parts and magnitude of a wave function
- To visualize wave functions for constant, step and barrier potentials
- To study how the reflection and transmission probabilities are related to the energy of the wave, the energy of the step or barrier and the width of the barrier
- To visualize wave functions, probability densities, and energy levels for bound states in Square and Harmonic Oscillator potentials
- To investigate what is and is not time-dependent for an energy eigenstate
- To predict how the spacing of energy levels depends on the potential and the particle's mass.

Theory: Consult your class notes and textbook for theoretical explanations of relevant quantum mechanical phenomena. Keep in mind that a wave packet consists of individual waves of different frequencies. Each wave moves with its own phase velocity, v_{ph} . A wave packet moves at the group velocity, v_g . In general, $v_g \neq v_{ph}$.

Procedure: Access the program at http://phet.colorado.edu/en/simulation/quantum-tunneling. Click on the **Run Now!** button.

- I. <u>Introduction to the Program</u> (the bold text denotes clickable choices)
 - 1. Click through the pull-down menu called **Potential**, in the right upper corner of the screen, to become familiar with various potentials used in the program.
 - 2. Click on **Reset All**, then click **Yes**. Select the default **barrier/well** potential. Select the first two boxes to show the values for energy and reflection and transmission probabilities. Uncheck the boxes.
 - 3. Select the **plane wave** box. Then, select each box in the **Electron Wave Function form** to observe the displays of the magnitude and real and imaginary parts of the wave function.
 - 4. Click the **Start** button (▶) to observe the time dependence of the wave function and probability density. Click the (▮◀◀) button to rewind to t = 0. You can step through a simulation by repeatedly clicking the (▮▶) button.
 - 5. The values of the total energy, potential energy and the barrier parameters can be changed by dragging the arrows in the top-most window. These values can be adjusted more precisely within the **Configure Energy** window. Change each of these values and observe how it affects the magnitude of the wave function, as well as the probability density.

Remember : Click the ($\blacksquare \blacktriangleleft$) button to rewind to $t = 0$ before each	ı run.
---	--------

II. A Free Particle

(Unless already opened, access the program at http://phet.colorado.edu/en/simulation/quantum-tunneling. Click on the **Run Now!** button.)

6.	Select a posit		ential for a free particle and select the plane wave . by the magnitude . Vary initial widths of the packet and Answer the following:		
	The initially	narrower wave packet sp	reads than the initially wider one. (faster/slower)		
	Explain (hint	the initially narrow and	wide packets have different distributions of momenta.)		
			m at http://phet.colorado.edu/en/simulation/quantum-		
	V ₂ , respective b) The tot a) The tot	ely). We will investigate tal energy $E > V_2$ and the	the potential energy can be set for $x < 0$ and $x > 0$ (V_1 and the step potentials in two different situations: e particle is free to move into the region $x > 0$ and the wave function penetrates a limited distance into $x > 0$.		
a)	Step-Up Pote	ntial			
7.	7. Reset All . Select the step potential , wave packet , and show reflection & transmission probabilities . Set the step so that $V_2 > V_1$ (step up). Vary the value of total energy E and explain what happens to the transmission, T, and reflection, R, probabilities.				
		Value	Explanation		
	T				
•	R				
8.		•	- 0.80. Calculate the wave numbers k_1 (in region $x < 0$) y , use that $m_e = \hbar = c = 1$.		
	$\mathbf{k}_1 = \underline{}$		$k_2 = \underline{\hspace{1cm}}$		
9.	Using your values of the wave numbers, calculate the transmission and reflection probabilities and compare them to the values displayed on the screen. Show your calculations in the table below.				
		Show your c	alculations for R and T		

$T_{calculated} = \underline{\hspace{1cm}}$	Rcalculated	=
$T_{displayed} = \underline{\hspace{1cm}}$	Rdisplayed	=
	nd separate for the Incoming/Reflecte tion run. The real part of ψ is:	ed waves. Display the real
(exponential/osci	$\frac{1}{\text{llatory}} \text{ for } x < 0 \text{ and } \frac{1}{\text{(exponential)}}$	$\frac{1}{\text{l/oscillatory}} \text{ for } x > 0$
1. Reset the time to t = 0 an simulation. Answer the fo	d let the simulation run. After a few "following:	femtoseconds", pause the
The wave amplitudes for	x < 0 are than the w (greater/smaller)	ave amplitude for $x > 0$.
The wavelength in region	$1 \times 0 \text{ is}$ than the w	vavelength in region $x > 0$.
	(greater/smaller)	
	een 0.80 and -0.80. Describe what hap ad R in both regions. Record your obse	
When:	Describe what happens in both regions	Explain
0.20 < E	in com regions	
E = 0.20		
- 0.80 < E < 0.20		
E = - 0.80		
E < - 0.80		
3. Create a "step down" pot the previous steps to answ	ential by setting $V_1 = +0.20$ and $V_2 =$ wer the following:	- 0.80. Set E = 0.80. Repeat
• The wave amplitudes for	or $x < 0$ are than the w (greater/smaller)	vave amplitude for $x > 0$.
The wavelength in regi	on $x < 0$ is than the w (greater/smaller)	vavelength in region $x > 0$.
• The transmission and r	eflection probabilities are:	
T =	R =	
	T and R compare to those for the "step	

TT 7	TD1	ъ.	D	1
IV.	I ne	Barrier	Potentia	ıı

(Unless already opened, access the program at http://phet.colorado.edu/en/simulation/quantum-tunneling. Click on the **Run Now!** button.)

14. Select the **barrier potential** with the width of 5.0. Display the **real part** of the **plane wave**. Choose **separate** for the **Incoming/reflected waves**. Set $V_1 = -0.80$, $V_2 = +0.50$ and $V_3 = -0.40$. Vary the value of E and describe what happens to the probability density, T and R in each of the three regions. Record your observations in the table below.

When:	Describe what happens in all three regions	Explain
0.50 < E		
- 0.40 < E < 0.50		
E = - 0.40		
- 0.80 < E < - 0.40		

15. Set E = +0.80. Vary V_1 , V_2 and V_3 . Describe what happens to the probability density, T and R in all three regions. Record in the table below.

When:	Describe what happens in all three regions	Explain
V ₁ increases		
V ₂ increases		
V ₃ increases		

V. The Square Well Potential

(Unless already opened, access the program at http://phet.colorado.edu/en/simulation/bound-states. Click on the **Run Now!** button.)

Energy values for the square well are discrete. They are determined by the boundary conditions on the wave functions. At the edges of the well the decaying wave functions of the classically forbidden regions are smoothly joined to the oscillating solutions in the well. Simpler boundary conditions (i.e., the solutions go to zero at the boundary) are exact for an infinitely deep well and are an approximation for the finite well.

16.	Select the Square well potential and click on the Configure Potential button to change the
	well parameters. The parameters can also be changed by sliding the three arrows on the
	screen. Set the parameters as follows: offset 0, height 9 eV and width 1 nm. Select $1.00\ m_e$
	for the particle's mass. Display the real part of the Wave Function .

a)	How many energy levels exist within the well?
	Does the distance between adjacent energy levels increase or decrease as n increases

b) Quantized total energy levels can be selected by clicking on the level (the green line will turn red and the energy value will be displayed). Click on each of the quantized levels and record energy values in the table below. Using the <u>infinite</u> well formula, calculate and record energies for each value of n.

value of n	E_n (eV) calculated for the <u>infinite</u> well	E _n (eV) for the finite well, read off the screen
1	0.373	0.30

	For a given value of n, E_n for the infinite well is than E_n for the finite well (greater/smaller)
	Explain why this is the case:
c)	What are the <u>approximate</u> boundary conditions for a particle in a finite square well (that is, how much is ψ at the boundaries)? (Hint: keep in mind the exact boundary conditions for an infinite well.)
17. Ch	tange the offset of the well to -5.0 eV. Change the energy height. Does the number of energy levels increase or decrease with the increased well depth?
18. Re	The lowest energy, E ₁ , becomes negative, as the well depth increases. (more/less) peat the previous step, this time changing the well width. Write your answers below. Does the number of energy levels increase or decrease with the increased well width?
	The lowest energy, E_1 , becomes negative, as the well width increases (more/less)
	Explain both observations (Hint: how does E _n depend on L?):

VI. The Harmonic Oscillator

(Unless already opened, access the program at http://phet.colorado.edu/en/simulation/bound-states. Click on the **Run Now!** button.)

The simplicity of the harmonic oscillator makes it useful in understanding more complex

systems, often found in nature, in which a system in a state of stable equilibrium is displaced slightly and subsequently oscillates about that equilibrium.

19.	Set the of			splay the real part of the V As n increases, the distance	
		(increa	ses/decreases/stays the sa	nme)	
	Explain v	why:			
20.	Vary the	angular freque	ency ω and answer the fol	lowing.	
	As ω	increases, the	spacing between adjacen	t energy levels(increases/c	
	Expla	ain why:			ecteases)
21.	table as n		the formula for the energy	ergy values in the table bely of the harmonic oscillator	
		value of n	$E_n = h \cdot f (eV)$	$E_{n}\left(eV\right)$	
		0	(calculated) 1.64	(read off the screen) 1.64	-
		0	1.04	1.04	_
					-
					_
					4
22.	For the g	round state, pr	robability density is the g	greatest	
	-	(near equilibr	ium/at classical turning po	oints)	
	As n incr	reases, the pro l	bability density becomes	greater	
	-	(near equilibri	ium/at classical turning p	oints)	
	This mea	ns that for grea	ater energies, the particle	spends more time	
	_	(near equilibri	ium/at classical turning po	oints)	