

数

据

NY8B062D

14 I/O + 12-通道 ADC 8 位 EPROM-Based 单片机

手

册

Version 1.4

Aug. 29, 2019

本文内容是由英文规格书翻译,目的是为了使您的阅读更加方便。它无法跟随原稿的更新,敬请参考英文规格书以获得更准确的信息。

NYQUEST TECHNOLOGY CO. reserves the right to change this document without prior notice. Information provided by NYQUEST is believed to be accurate and reliable. However, NYQUEST makes no warranty for any errors which may appear in this document. Contact NYQUEST to obtain the latest version of device specifications before placing your orders. No responsibility is assumed by NYQUEST for any infringement of patent or other rights of third parties which may result from its use. In addition, NYQUEST products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of NYQUEST.

改版记录

版本	日期	内 容 描 述	修正页
1.0	2018/02/05	新发布。	-
1.1	2018/05/31	1. 修改灌电流输出功能叙述。 2. 修正以下叙述错误:Bank 1 数据存储器的地址。ADR 寄存器的 ADIF 读写属性。TM3RH 寄存器的 PWM3D9/PWM3D8 读写属性。电压比较器配置字节命名。 3. 新增 PA5 的上拉电阻直流电气特性。	7 14 22 26 65 99
1.2	2018/08/15	 新增 SOP14 封装相关信息。 修改 "图 2 程序存储器对映地址"。 修改 F-page PCON1 [4:2] 初始值。 修改配置字节引脚选项 "Analog"为 "Comparator Input"。 修改 RLR 指令的操作选项说明。 修改工作电压最大值。 	10, 109, 110 12 30 65 93 98
1.3	2019/04/23	Update the PA3 pin function.	10
1.4	2019/08/29	 修改 RETIA 指令。 以 LGOTO、LCALL 取代并移除 GOTO 与 CALL。 	92

2

目 录

1.	概过	<u> </u>		7
	1.1	功能		7
	1.2	系统框	图	9
	1.3	引脚图]	10
			· · · · ·	
2	山方	法结构		12
۷.			- 储器	
			- 個 位	
	2.2	 	- 佑 畚	13
3.	功能	と概述		16
	3.1	R-pag	e 特殊功能寄存器	16
		3.1.1	INDF (间接寻址寄存器)	16
		3.1.2	TMR0(定时器 0 寄存器)	16
		3.1.3	PCL (程序计数器低字节)	16
		3.1.4	STATUS(状态寄存器)	17
		3.1.5	FSR(数据指针寄存器)	17
		3.1.6	PortA(PortA数据寄存器)	18
		3.1.7	PortB(PortB数据寄存器)	18
		3.1.8	PCON(Power寄存器)	18
		3.1.9	BWUCON(PortB唤醒控制寄存器)	19
		3.1.10	PCHBUF(程序计数器高字节)	19
		3.1.11	ABPLCON(PortA/PortB下拉电阻控制寄存器)	19
		3.1.12	BPHCON(PortB上拉电阻控制寄存器)	20
		3.1.13	INTE(中断使能寄存器)	20
		3.1.14	INTF (中断标志寄存器)	21
		3.1.15	ADMD(ADC模式寄存器)	22
		3.1.16	ADR(ADC时钟,ADC中断标志位与ADC转换结果低四位数据寄存器)	22
			ADD(ADC转换结果高八位数据寄存器)	
			ADVREFH(ADC参考电压寄存器)	
			ADCR(ADC采样时间与ADC位数寄存器)	
			AWUCON(PortA唤醒控制寄存器)	
			PACON(ADC引脚数模控制寄存器)	
		3.1.22	INTEDG(外部中断控制寄存器)	24

	3.1.23	TMRH (定时器 1/2 高字节寄存器)	25
	3.1.24	ANAEN(比较器使能寄存器)	25
	3.1.25	RFC(电阻频率转换控制寄存器)	26
	3.1.26	TM3RH(定时器 3 高字节寄存器)	26
	3.1.27	INTE2(第2中断屏蔽寄存器)	27
3.2	T0MD	定时器 0 控制寄存器	27
3.3	F-page	特殊功能寄存器	28
	3.3.1	IOSTA (PortA I/O控制寄存器)	28
	3.3.2	IOSTB (PortB I/O控制寄存器)	28
	3.3.3	APHCON(PortA上拉电阻控制寄存器)	29
	3.3.4	PSOCV (预分频器 0 寄存器)	29
	3.3.5	BODCON(PortB开漏控制寄存器)	29
	3.3.6	CMPCR(比较器控制寄存器)	29
	3.3.7	PCON1 (Power控制寄存器 1)	30
3.4	S-page	2 特殊功能寄存器	31
	3.4.1	TMR1 (定时器 1 寄存器)	31
	3.4.2	T1CR1 (定时器 1 控制寄存器 1)	31
	3.4.3	T1CR2(定时器 1 控制寄存器 2)	32
	3.4.4	PWM1DUTY (PWM1 占空比寄存器)	33
	3.4.5	PS1CV (预分频器 1 寄存器)	33
	3.4.6	BZ1CR(蜂鸣器 1 控制寄存器)	33
	3.4.7	IRCR(IR控制寄存器)	34
	3.4.8	TBHP(表格指针高字节寄存器)	35
	3.4.9	TBHD(表格数据高字节寄存器)	35
	3.4.10	TMR2 (定时器 2 寄存器)	36
	3.4.11	T2CR1 (定时器 2 控制寄存器 1)	36
	3.4.12	T2CR2 (定时器 2 控制寄存器 2)	37
	3.4.13	PWM2DUTY(PWM2 占空比寄存器)	37
	3.4.14	PS2CV (预分频器 2 寄存器)	38
	3.4.15	BZ2CR (蜂鸣器 2 控制寄存器)	38
	3.4.16	OSCCR(振荡器控制寄存器)	39
	3.4.17	TMR3 (定时器 3 寄存器)	40
	3.4.18	T3CR1 (定时器 3 控制寄存器 1)	40
	3.4.19	T3CR2 (定时器 3 控制寄存器 2)	41
	3.4.20	PWM3DUTY (PWM3 占空比寄存器)	42

4

3.4.21 PS3CV (预分频器 3 寄存器)	42
3.4.22 BZ3CR(蜂鸣器 3 控制寄存器)	42
3.5 I/O Port	43
3.5.1 IO引脚结构框图	45
3.6 定时器 0	55
3.7 定时器 1/PWM1/Buzzer1	56
3.8 Timer2/PWM2/Buzzer2	58
3.9 定时器 3/PWM3/Buzzer3	61
3.10 电阻/频率转换器模式(RFC)	63
3.11 IR Carrier	64
3.12 低电压侦测(LVD)	
3.13 电压比较器	65
3.14 ADC模数转换器	67
3.14.1 ADC参考电压	68
3.14.2 ADC模拟输入通道	69
3.14.3 ADC时钟(ADCLK),采样时钟(SHCLK)与位数选择	69
3.14.4 ADC操作顺序	70
3.15 看门狗定时器(WDT)	71
3.16 中断	71
3.16.1 Timer0 上溢中断	72
3.16.2 Timer1 下溢中断	72
3.16.3 Timer2 下溢中断	72
3.16.4 Timer3 下溢中断	72
3.16.5 看门狗超时中断	72
3.16.6 PA/PB输入状态改变中断	72
	72
3.16.7 外部中断 0 输入	
3.16.7 <i>外部中断</i> 0 输入	72
3.16.8 外部中断 1 输入	73
3.16.8 外部中断 1 输入	
3.16.8 外部中断 1 输入 3.16.9 低电压侦测中断 3.16.10 比较器输出翻转中断	
3.16.8 外部中断 1 输入 3.16.9 低电压侦测中断 3.16.10 比较器输出翻转中断 3.16.11 ADC模数转换完成中断	
3.16.8 外部中断 1 输入 3.16.9 低电压侦测中断 3.16.10 比较器输出翻转中断 3.16.11 ADC模数转换完成中断 3.17 振荡器配置	

		3.18.3	待机模式	77
		3.18.4	睡眠模式	78
		3.18.5	唤醒稳定时间	78
		3.18.6	工作模式概述	78
	3.19	9 复位		79
4.	指令	〉设置		81
5.	配置	置字节表	<u>\$</u>	97
6.	电气	き特性		98
			对值	
	6.2	直流电	气特性	98
	6.3	比较器	/LVD电气特性	100
	6.4	ADC电	气特性	100
	6.5	特性图		101
		6.5.1	高速RC振荡频率与电源电压曲线图	101
		6.5.2	高速RC振荡频率与温度曲线图	
		6.5.3	低速RC振荡频率与电源电压曲线图	102
		6.5.4	低速RC振荡频率与温度曲线图	102
		6.5.5	内部线性稳压器与电源电压曲线图	
		6.5.6	内部线性稳压器与温度曲线图	103
		6.5.7	内部上拉电阻与电源电压曲线图	104
		6.5.8	内部上拉电阻与温度曲线图	104
		6.5.9	VIH/VIL与电源电压曲线图	105
		6.5.10	VIH/VIL 与温度曲线图	106
	6.6	建议工	作电压	107
	6.7	LVR电	压与温度曲线图	107
7.	芯片	计脚位 坐	益标图	108
8.	封装	支尺寸		109
	8.1	8 引脚:	SOP(150 毫寸)	109
	8.2	14 引脚	♥SOP(150 毫寸)	109
	8.3	16 引朋	♥SOP(150 毫寸)	110
9.	订则	勾信息		110

1. 概述

NY8B062D是以EPROM作为存储器的 8 位单片机,专为家电或量测等等的I/O应用设计。采用CMOS制程并同时提供客户低成本、高性能、及高性价比等显著优势。NY8B062D核心建立在RISC精简指令集架构可以很容易地做编程和控制,共有 55 条指令。除了少数指令需要两个指令时钟,大多数指令都是一个指令时钟能完成,可以让用户轻松地以过程控制完成不同的应用。因此非常适合各种中低记忆容量但又复杂的应用。NY8B062D内建高精度十一加一通道 12 位ADC模数转换器,与高精度电压比较器,足以应付各种模拟接口的侦测与量测。

在 I/O 的资源方面,NY8B062D 有 14 根弹性的双向 I/O 脚,每个 I/O 脚都有单独的寄存器控制为输入或输出脚。而且每一个 I/O 脚位都能通过控制相关的寄存器达成如上拉或下拉电阻或开漏(Open-Drain)输出。此外针对红外线摇控的产品方面,NY8B062D 内置了可选择频率的红外载波发射口。

NY8B062D 有四组定时器,可用系统时钟当作一般的计时应用或者从外部讯号触发来计数。另外 NY8B062D 提供 3 组 10 位的 PWM 输出, 3 组蜂鸣器输出,可用来驱动马达、LED、或蜂鸣器等等。

NY8B062D 采用双时钟机制,高速振荡时钟或者低速振荡时钟都由内部 RC 振荡或外部晶振输入。在双时钟机制下,NY8B062D 可选择多种工作模式如正常模式(Normal)、慢速模式(Slow mode)、待机模式(Standby mode)与睡眠模式(Halt mode),可节省电力消耗,延长电池寿命。并且单片机在使用内部 RC 高速振荡时,低速振荡可以同时使用外部精准的晶振计时。可以维持高速处理同时又能精准计算真实时间。

在省电的模式下,如待机模式(Standby mode)与睡眠模式(Halt mode)中,有多个中断源可以触发来唤醒 NY8B062D 进入正常操作模式(Normal mode)或慢速模式(Slow mode)来处理突发事件。

1.1 功能

- 宽广的工作电压: (指令时钟为 4 个CPU时钟, 亦即 4T模式)
 - ≥ 2.0V ~ 5.5V @系统时钟 ≤8MHz。
 - ▶ 2.2V ~ 5.5V @系统时钟 >8MHz。
- 宽广的工作温度: -40°C~85°C。
- 2Kx14 位的程序存储器空间。
- 128 字节的通用数据存储器空间。
- 14 根可分别单独控制输入输出方向的I/O脚(GPIO)、PA[7:0]、PB[5:0]。
- PA[5,3:0]及PB[3:0]可选择输入时使用内部下拉电阻。
- PA[7:0]及PB[5:0]可选择输入时使用内部上拉电阻。
- PB[5:0]可选择开漏输出(Open-Drain)。
- PA[5]可选择当作输入或开漏输出(Open-Drain)。
- 所有I/O脚输出可选择一般灌电流(Normal Sink Current)或大灌电流(Large Sink Current),除PA5 外。

7

- 8级深度硬件堆栈(Stack)。
- 存取数据有直接或间接寻址模式。

- 一组8位上数定时器(Timer0)包含可编程的预分频器。
- 三组 10 位下数定时器(Timer1、2、3)可选自动重载或连续下数计时。
- 三个 10 位的脉冲宽度调变输出(PWM1、2、3)。
- 三个蜂鸣器输出(BZ1、2、3)。
- 38/57KHz红外线载波(IR)频率可供选择,同时载波之极性也可以通过寄存器选择。
- 内置准确的低电压侦测电路(LVD)。
- 内置十一加一通道 12 位ADC模数转换器(Analog to Digital Converter)。
- 内置精准的电压比较器(Voltage Comparator)。
- 内置上电复位电路(POR)。
- 内置低压复位功能(LVR)。
- 内置看门狗计时(WDT),可由配置字节(Configuration Word)控制开/关。
- 内置电阻/频率转换器(RFC)功能。
- 双时钟机制,系统时钟可以随时切换高速振荡或者低速振荡。
 - ▶ 高速振荡时钟: E HXT (超过 6MHz外部高速晶振)

E XT (455K~6MHz外部晶振)

I_HRC(1~20MHz内部高速RC振荡)

▶ 低速振荡时钟: E_LXT (32KHz外部低速晶振)

I LRC (内部 32KHz 低速 RC 振荡)

● 四种工作模式可随系统需求调整电流消耗:正常模式(Normal mode)、慢速模式(Slow mode)、待机模式(Standby mode)与睡眠模式(Halt mode)。

8

- 十一种硬件中断:
 - > Timer0 上溢中断。
 - > Timer1 下溢中断。
 - > Timer2 下溢中断。
 - ➤ Timer3 下溢中断。
 - > WDT中断。
 - ▶ PA/PB输入状态改变中断。
 - > 两组外部中断。
 - ▶ 低电压侦测中断。
 - > 比较器输出翻转中断。
 - ▶ ADC模数转换完成中断。
- NY8B062D在待机模式(Standby mode)下的十一种唤醒中断:
 - > Timer0 上溢中断。
 - > Timer1 下溢中断。
 - > Timer2 下溢中断

- > Timer3 下溢中断。
- > WDT中断。
- ▶ PA/PB输入状态改变中断。
- > 两组外部中断。
- > 低电压侦测中断。
- ▶ 比较器输出翻转中断。
- > ADC模数转换完成中断。
- NY8B062D在睡眠模式(Halt mode)下的四种唤醒中断:
 - > WDT中断。
 - ▶ PA/PB输入状态改变中断。
 - > 两组外部中断。

1.2 系统框图

9

Ver. 1.4

2019/08/29

1.3 引脚图

NY8B062D提供三种封装类型: SOP16、SOP14 及SOP8。

图 1 封装引脚图

1.4 引脚说明

引脚名	I/O	描述
		PAO 是一个双向I/O引脚,也可当作比较器输入引脚。
PA0/ AIN0/ VREFH	I/O	AINO 为ADC的模拟输入引脚。
		可当作ADC外部参考电压输入引脚VREFH。
		PA1 是一个双向I/O引脚,也可当作比较器输入引脚。
PA1/ AIN1/ EX_CKI1	I/O	AIN1 为ADC的模拟输入引脚。
		可当作定时器 2/3 外部时钟来源EX_CKI1。
		PA2 是一个双向I/O引脚,也可当作比较器输入引脚。
PA2/ AIN2/ PWM3/	I/O	AIN2 为ADC的模拟输入引脚。
BZ3/ SDI		PA2 可输出PWM3 或BZ3。
		PA2 也是编程数据输入SDI。
D40/41N10/0D0		PA3 是一个双向I/O引脚,也可当作比较器输入引脚。
PA3/ AIN3/ SDO	I/O	AIN3 为ADC的模拟输入引脚。
		PA3 也是编程数据输出SDO。
		PA4 是一个双向I/O引脚。
PA4/ AIN4/ EX CKI0/ SCK	I/O	AIN4 为ADC的模拟输入引脚。
LX_CRIO/ SCR		可当作定时器 0 / 1 外部时钟来源EX_CKIO。
		PA4 也是编程时钟输入SCK。
		PA5 可选择当作输入脚或开漏输出脚。
PA5/ RSTb/ Vpp	I/O	PA5 可当作复位引脚RSTb。
		PA5 也是编程高压输入Vpp。
PA6/ Xin	I/O	PA6 是一个双向I/O引脚。
FAO/ AIII	1/0	PA6 可当作晶振输入引脚Xin。
		PA7 是一个双向I/O引脚。
PA7/ Xout	I/O	PA7 可当作晶振输出引脚Xout。
		PA7 也可以当成指令时钟输出。
		PB0 是一个双向I/O引脚。
PB0/ AIN5/ INT0	I/O	AIN5 为ADC的模拟输入引脚。
		PB0 也可以当成外部中断 0 的输入引脚INT0。

10

引脚名	I/O	描述
PB1/ AIN6/ IR/ INT1	I/O	PB1 是一个双向I/O引脚。 AIN6 为ADC的模拟输入引脚。 PB1 也可以当成外部中断 1 的输入引脚INT1。 如果启用红外模式,该引脚为红外载波输出。
PB2/ AIN7/ PWM2/ BZ2	I/O	PB2 是一个双向I/O引脚。 AIN7 为ADC的模拟输入引脚。 PB2 可输出PWM2 或BZ2。
PB3/ AIN8/ PWM1/ BZ1/ CMPO/ SDO	I/O	PB3 是一个双向I/O引脚。 AIN8 为ADC的模拟输入引脚。 PB3 可输出BZ1, PWM1 或当作比较器输出引脚CMPO。 PB3 也是编程数据输出SDO。
PB4/ AIN9	I/O	PB4 是一个双向I/O引脚。 AIN9 为ADC的模拟输入引脚。
PB5/ AIN10	I/O	PB5 是一个双向I/O引脚。 AIN10 为ADC的模拟输入引脚。
VDD	Р	电源正端。
VSS	Р	电源负端。

11

2. 内存结构

NY8B062D存储器分为两类:分别是程序存储器和数据存储器。

2.1 程序存储器

NY8B062D程序存储器空间是 2Kx14 位。因此,11 位宽的程序计数器(PC)可以访问程序存储器的任何地址。

复位地址位于 0x000,软件中断地址位于 0x001,内部和外部硬件中断地址位于 0x008。NY8B062D提供GOTOA和CALLA等指令去访问程序空间的 256 个地址。还提供LCALL和LGOTO指令访问程序空间的任何地址。

当发生子程序调用或中断情况时,下一个ROM地址写入堆栈的顶部。而当执行RET、RETIA或RETIE指令,堆栈 顶部的数据会被读取并加载到程序计数器。

NY8B062D程序存储器地址 0x7FE~0x7FF是保留地址。如果用户在这些地址写入程序可能会发生无法预期的程序执行错误。

NY8A062D程序存储器地址 0x00E~0x00F是Preset Rolling Code地址。如果用户在不设置滚码时可当作程序区使用。

图 2 程序存储器对应地址

12

2.2 数据存储器

根据用于存取数据存储器的指令,数据存储器可分为三类: R-page特殊功能寄存器(SFR)和通用寄存器(GPR)、F-page特殊功能寄存器、S-page特殊功能寄存器。GPR是由SRAM组成,用户可以使用它们来存储变量或计算结果。

R-page特殊功能寄存器和数据存储器分为四组Bank,可透过数据指针寄存器 (FSR) 来切换Bank。寄存器BK[1: 0]为STATUS[7:6],可从四个Bank中选择其中一个。

R-page特殊功能寄存器和数据存储器可用直接寻址方式和间接寻址方式来进行存取。

数据存储器使用间接寻址方式如下图所描述,这种间接寻址方式包含使用INDF寄存器。Bank选择是由STATUS[7:6]决定,地址选择则是由FSR[6:0]而定。

图 3 间接寻址方式存取数据存储器

下面描述了数据存储器使用的直接寻址方式。Bank选择是由寄存器STATUS[7:6]决定,而地址选择则是由指令码 OP-Code[6:0]直接决定。

图 4 直接寻址方式存取数据存储器

R-page特殊功能寄存器可以通过一般的指令存取,如算术指令和数据搬移指令。R-page特殊功能寄存器占用了从Bank 0 的 0x0 到 0x1F。然而,Bank 1、Bank 2 和Bank 3 的相同地址会映像到Bank 0。换句话说,R-page特殊

13

功能寄存器只存在于Bank 0。GPR占用了Bank 0数据存储器的 0x20 到 0x7F与Bank 1数据存储器的 0x20 到 0x3F 如表 1 所示。

NY8B062D寄存器名称和R-page特殊功能寄存器的映像地址说明如下表。

Status [7:6] 地址	00 (Bank 0)	01 (Bank 1)	10 (Bank 2)	11 (Bank 3)			
0x0	INDF						
0x1	TMR0						
0x2	PCL						
0x3	STATUS						
0x4	FSR						
0x5	PORTA						
0x6	PORTB						
0x7	-						
0x8	PCON						
0x9	BWUCON						
0xA	PCHBUF						
0xB	ABPLCON						
0xC	BPHCON						
0xD	-	映射至 <i>Bank 0</i>					
0xE	INTE						
0xF	INTF						
0x10	ADMD						
0x11	ADR						
0x12	ADD						
0x13	ADVREFH						
0x14	ADCR						
0x15	AWUCON						
0x16	PACON						
0x17	1						
0x18	INTEDG						
0x19	TMRH						
0x1A	ANAEN						
0x1B	RFC		映射至 <i>Bank 0</i>				
0x1C	TM3RH		吹剂 王 Dalik U				
0x1D ~ 0x1E	-		-				
0x1F	INTE2		映射至 <i>Bank 0</i>				
0x20 ~ 0x3F	通用寄存器	通用寄存器	映射至 bank 0	映射至 <i>bank 1</i>			
0x40 ~ 0x7F	通用寄存器	映射至 <i>bank 0</i>	映射至 <i>bank 0</i>	映射至 <i>bank 0</i>			

表 1 R-page特殊功能寄存器地址映像表

14

F-page特殊功能寄存器只能被指令IOST和IOSTR存取,S-page特殊功能寄存器只能被指令SFUN和SFUNR存取。 当F-page和S-page寄存器被存取时,STATUS[7:6]选择位会被忽略。寄存器名称和F-page、S-page的地址说明如下表。

特殊功能寄存器种类 地址	F-page SFR	S-page SFR
0x0	-	TMR1
0x1	-	T1CR1
0x2	-	T1CR2
0x3	-	PWM1DUTY
0x4	-	PS1CV
0x5	IOSTA	BZ1CR
0x6	IOSTB	IRCR
0x7	-	ТВНР
0x8	-	TBHD
0x9	APHCON	TMR2
0xA	PS0CV	T2CR1
0xB	-	T2CR2
0xC	BODCON	PWM2DUTY
0xD	-	PS2CV
0xE	CMPCR	BZ2CR
0xF	PCON1	OSCCR
0x10	-	TMR3
0x11	-	T3CR1
0x12	-	T3CR2
0x13	-	PWM3DUTY
0x14	-	PS3CV
0x15	-	BZ3CR

表 2 F-page特殊功能寄存器和S-page特殊功能寄存器地址表

15

3. 功能概述

本章节将详细描述NY8B062D的操作方式。

3.1 R-page特殊功能寄存器

3.1.1 INDF (间接寻址寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INDF	R	0x0	INDF[7:0]							
	读写属性		读/写							
	初始值		xxxxxxxx							

间接寻址寄存器并不是真的存在,而是以间接寻址模式来使用。任何指令访问间接寻址寄存器时,实际上是访问数据指针寄存器FSR所选择的寄存器。

3.1.2 TMR0 (定时器 0 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TMR0	R	0x1	TMR0[7:0]							
	读写属性		读/写							
	初始值		xxxxxxx							

当读取TMRO 寄存器时,会得到定时器 0 目前计数数值。

当写入TMR0 寄存器时,会更新定时器 0 目前计数数值。

藉由设置T0MD与配置字节(Configuration Word),定时器 0 时钟源可以从指令时钟F_{INST}、外部时钟EX_CKI0 或低频振荡器I LRC/E LXT中择一。

3.1.3 PCL (程序计数器低字节)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCL	R	0x2	PCL[7:0]							
	读写属性		读/写							
	初始值		0x00							

程序计数器(PC)是一个 11 位寄存器,分高 3 位和低 8 位。当程序执行了一个指令,同时PC数值会增加,除了某些指令会直接更改PC数值。PCL寄存器可存取PC低字节(PC[7:0]),PC高字节(PC[10:8])并不能直接存取,必须藉由PCHBUF寄存器完成存取。

LGOTO指令的PC[10:0]是从指令码取得。

LCALL指令的PC[10:0]是从指令码取得,下一个PC地址(PC+1),将被存到堆栈的顶部。

16

3.1.4 STATUS (状态寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
STATUS	R	0x3	BK[1]	BK[0]	GP5	/ТО	/PD	Z	DC	С
	读写属性		读/写	读/写	读/写	读/写(*2)	读/写(*1)	读/写	读/写	读/写
	初始值		0	0	0	1	1	Х	Х	Х

状态寄存器包含算术/逻辑指令的结果和是否发生看门狗超时复位。

C: 进位/借位标志位。

C=1 时,加法运算有进位或减法运算无借位。

C=0 时,加法运算无进位或减法运算有借位。

DC: 半进位/半借位标志位。

DC=1 时,加法运算低四位有进位或减法运算时没有向高四位借位。

DC=0 时,加法运算低四位无进位或减法运算时有向高四位借位。

Z: 零位。

Z=1 时,算术或逻辑运算的结果是零。

Z=0 时,算术或逻辑运算的结果不为零。

/PD: 睡眠模式标志位。

/PD=1 时,上电或执行CLRWDT指令后。

/PD=0 时,执行SLEEP指令后。

/TO: 看门狗超时标志位。

/TO=1 时,上电或执行CLRWDT或SLEEP指令后。

/TO=0 时,发生WDT上溢。

GP5: 通用寄存器数据位。

BK[1:0]: Bank 选择位,BK[1:0]=00b 选择Bank0,BK[1:0]=01b 选择Bank1,BK[1:0]=10b 选择Bank2。 BK[1:0]=11b,选择Bank3。

(*1) 可以被SLEEP指令清除。

(*2) 可以由CLRWDT指令设定。

3.1.5 FSR (数据指针寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FSR	R	0x4	GP7				FSR[6:0]			
	读写属性					读	/写			
	初始值		0	X X X X X X X						

17

FSR[6:0]: 从指定Bank数据存储器的 128 个寄存器中选择一个。

GP7: 通用寄存器数据位。

3.1.6 PortA (PortA 数据寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PortA	R	0x5	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
	读写属性					读	/写			
	初始值		数据	锁存器值点	€xxxxxxx	x,读取值	则是xxxx	xxxx端口化	直(PA7~PA	A0)

读取PortA时,若特定脚位被配置为输入脚,将得到该脚位输入状态。然而,若该脚位被配置为输出脚,依据 配置字节,得到该脚位的状态或相对应的输出数据锁存值。当写入PortA时,数据是被写入PortA的输出数据锁 存器中。

3.1.7 PortB (PortB 数据寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PortB	R	0x6	GP7	GP6	PB5	PB4	PB3	PB2	PB1	PB0
	读写属性					读	/写			
	初始值		数扫	居锁存器值	直是xxxxxx	,读取值	则是xxxxx	x端口值((PB5~PB0	0)

读取PortB时,若特定脚位被配置为输入脚,将得到该脚位输入状态。然而,若该脚位被配置为输出脚,依据 配置字节,得到该脚位的状态或相对应的输出数据锁存值。当写入PortB时,数据是被写入PortB的输出数据锁 存器中。

GP7~6: 通用寄存器数据位。

3.1.8 PCON (Power 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON	R	8x0	WDTEN	GP6	LVDEN	/PHPA5	LVREN	GP2	GP1	GP0
	读写属性					读/	写			
	初始值		1	0	0	1	1	0	0	0

18

GP6, GP2, GP1, GP0: 通用寄存器数据位。

LVREN: 开启/关闭 LVR。

LVREN=1 时,开启LVR。 LVREN=0 时,关闭LVR。

/PHPA5: 关闭/开启PA5 上拉电阻。

/PHPA5=1 时,关闭PA5 上拉电阻。 /PHPA5=0 时,开启PA5 上拉电阻。

LVDEN: 开启/关闭 LVD。

LVDEN=1 时,开启LVD。 LVDEN=0 时,关闭LVD。

WDTEN: 开启/关闭 WDT。

WDTEN=1 时,开启WDT。 WDTEN=0 时,关闭WDT。

3.1.9 BWUCON (PortB 唤醒控制寄存器)

名称	SFR类型	地址.	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BWUCON	R	0x9	-	-	WUPB5	WUPB4	WUPB3	WUPB2	WUPB1	WUPB0
ì	读写属性		-	-	读/写	读/写	读/写	读/写	读/写	读/写
	初始值		Х	Х	1	1	1	1	1	1

WUPBx: 开启/关闭PBx唤醒功能, $0 \le x \le 5$ 。

WUPBx=1时,开启PBx唤醒功能。 WUPBx=0时,关闭PBx唤醒功能。

3.1.10 PCHBUF (程序计数器高字节)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCHBUF	R	0xA	ı	XSPD_STP		-		PC	HBUF[2	::0]
	读写属性		-	写		-			读/写	
	初始值		X	0		Χ		0		

PCHBUF[2:0]:程序计数器PC的第十个位到第八个位。

XSPD_STP:写 1 停止外部晶振 32.768KHz起振强化功能。

3.1.11 ABPLCON (PortA/PortB 下拉电阻控制寄存器)

名称	SFR类 型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ABPLCON	R	0xB	/PLPB3	/PLPB2	/PLPB1	/PLPB0	/PLPA3	/PLPA2	/PLPA1	/PLPA0
读写						读/	写			
初	始值		1	1	1	1	1	1	1	1

19

/PLPAx: 关闭/开启PAx下拉电阻, $0 \le x \le 3$ 。

/PLPAx=1,关闭PAx下拉电阻。 /PLPAx=0,开启PAx下拉电阻。

/PLPBx: 关闭/开启PBx下拉电阻, $0 \le x \le 3$ 。

/PLPBx=1,关闭PBx下拉电阻。 /PLPBx=0,开启PBx下拉电阻。

3.1.12 BPHCON (PortB 上拉电阻控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BPHCON	R	0xC	-	-	/PHPB5	/PHPB4	/PHPB3	/PHPB2	/PHPB1	/PHPB0
ì	读写属性		-	-	读/写	读/写	读/写	读/写	读/写	读/写
	初始值		Х	Х	1	1	1	1	1	1

/PHPBx: 关闭/开启PBx上拉电阻, $0 \le x \le 5$ 。

/PHPBx=1 时,关闭PBx上拉电阻。 /PHPBx=0 时,开启PBx上拉电阻。

3.1.13 INTE (中断使能寄存器)

名称	SFR 类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTE	R	0xE	INT1IE	WDTIE	T2IE	LVDIE	T1IE	INT0IE	PABIE	TOIE
	读写属性		读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
	初始值		0	0	0	0	0	0	0	0

TOIE: 定时器 0 上溢(overflow)中断使能位。

T0IE=1 时,开启定时器 0 上溢中断。

T0IE=0时,关闭定时器 0上溢中断。

PABIE: PortA / PortB输入状态变化中断使能位。

PABIE=1 时,开启PortA/ PortB输入状态变化中断。

PABIE=0时,关闭PortA/PortB输入状态变化中断。

INTOIE:外部中断 0 使能位。

INTOIE=1时,开启外部中断 0。

INT0IE=0 时, 关闭外部中断 0。

T1IE: 定时器 1 下溢 (underflow) 中断使能位。

T1IE=1 时,开启定时器 1 下溢中断。

T1IE=0 时,关闭定时器 1 下溢中断。

LVDIE: 低电压侦测中断使能位。

LVDIE=1时,开启低电压侦测中断。

LVDIE=0时,关闭低电压侦测中断。

T2IE: 定时器 2 下溢 (underflow) 中断使能位。

T2IE=1 时,开启定时器 2 下溢中断。

T2IE=0时,关闭定时器 2下溢中断。

WDTIE: WDT上溢中断使能位。

WDTIE=1时,开启WDT上溢中断。

WDTIE=0时,关闭WDT上溢中断。

INT1IE:外部中断 1 使能位。

INT1IE=1 时,开启外部中断 1。 INT1IE=0 时,关闭外部中断 1。

3.1.14 INTF (中断标志寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTF	R	0xF	INT1IF	WDTIF	T2IF	LVDIF	T1IF	INT0IF	PABIF	T0IF
	读写属性		读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
初势	始值(Note))	0	0	0	0	0	0	0	0

TOIF: 定时器 0 上溢中断标志位。

T0IF=1 时,发生定时器 0 上溢中断。

T0IF必须由程序清零。

PABIF: PortA / PortB输入状态变化中断标志位。

PABIF=1 时,发生PortA / PortB输入状态变化中断。

PABIF必须由程序清零。

INTOIF:外部中断 0 标志位。

INT0IF=1 时,发生外部 0 中断。

INT0IF必须由程序清零。

T1IF: 定时器 1 下溢中断标志位。

T1IF=1时,发生定时器1下溢中断。

T1IF必须由程序清零。

LVDIF: 低电压侦测中断标志位。

LVDIF=1,发生低电压侦测中断。

LVDIF必须由程序清零。

T2IF: 定时器 2 下溢中断标志位。

T2IF=1 时,发生定时器 2 下溢中断。

T2IF必须由程序清零。

WDTIF: WDT超时上溢标志位。

WDTIF=1 时,发生WDT上溢中断。

WDTIF必须由程序清零。

INT1IF:外部中断 1 标志位。

INT1IF=1 时,发生外部 1 中断。

INT1IF必须由程序清零。

注意: 当对应的INTE寄存器控制位未使能,读取中断标志是0。

21

3.1.15 ADMD (ADC 模式寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADMD	R	0x10	ADEN	START	EOC	GCHS	CHS3	CHS2	CHS1	CHS0
	读写属性		读/写	写	读	读/写	读/写	读/写	读/写	读/写
	初始值		0	0	1	0	0	0	0	0

ADEN: 开启/关闭ADC功能。

ADEN=1时,开启ADC功能。

START: ADC转换启动位。

写 1 开始执行ADC转换。读取此位将得到 0。

EOC: ADC转换结束标志位。

EOC=1: ADC转换完成。可由ADR与ADD读取转换结果数据。

EOC=0: ADC转换中。

GCHS: 开启/关闭ADC总通道。

GCHS=0: 关闭所有ADC模拟输入通道。 GCHS=1: 开启所有ADC模拟输入通道。

CHS3~0: ADC模拟输入通道选择位。

0000: 选择PA0 引脚为模拟输入通道。

0001: 选择PA1 引脚为模拟输入通道。

0010: 选择PA2 引脚为模拟输入通道。

0011: 选择PA3 引脚为模拟输入通道。

0100: 选择PA4 引脚为模拟输入通道。

0101:选择PB0 引脚为模拟输入通道。

0110: 选择PB1 引脚为模拟输入通道。

0111:选择PB2 引脚为模拟输入通道。

1000:选择PB3 引脚为模拟输入通道。

1001: 选择PB4 引脚为模拟输入通道。

1010: 选择PB5 引脚为模拟输入通道。

1011: 选择内部 1/4 VDD为模拟输入通道。

3.1.16 ADR (ADC 时钟, ADC 中断标志位与 ADC 转换结果低四位数据寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADR	R	0x11	ADIF	ADIE	ADCK1	ADCK0	AD3	AD2	AD1	AD0
	读写属性			读/写	读/写	读/写	读	读	读	读
初始值		0	0	0	0	Х	Х	Х	Х	

ADIF: ADC中断标志位。

ADIF=1时,发生ADC转换完成中断。

ADIF必须由程序清零。

ADIE: ADC中断使能位。

ADIE=1时,开启ADC中断。 ADIE=0时,关闭ADC中断。

ADCK1~0: ADC时钟选择位。

00: ADC时钟=Fcpu/16,01: ADC时钟=Fcpu/8,10: ADC时钟=Fcpu/1,11: ADC时钟=Fcpu/2。

AD3~0: ADC转换结果低四位数据。

3.1.17 ADD (ADC 转换结果高八位数据寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADD R 0x12		AD11	AD10	AD9	AD8	AD7	AD6	AD5	AD4	
	读写属性		读	读	读	读	读	读	读	读
	初始值			0	0	0	0	0	0	0

AD11~4: ADC转换结果高八位数据。

3.1.18 ADVREFH (ADC 参考电压寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADVREFH	ADVREFH R 0x13		EVHENB	-	-	-	-	-	VHS1	VHS0
读	读写属性			-	-	-	-	-	读/写	读/写
礼	初始值			Х	Х	Х	Х	Χ	1	1

EVHENB: ADC参考电压(VREFH)选择控制位。

EVHENB=0: ADC参考电压由内部产生,参考电压水平由VHS1~0 决定。

EVHENB=1: ADC参考电压由引脚PA0 提供。

VHS1~0: ADC内部参考电压选择位。

11: VREFH=VDD, 10: VREFH=4V, 01: VREFH=3V, 00: VREFH=2V。

23

3.1.19 ADCR (ADC 采样时间与 ADC 位数寄存器)

名称	SFR 类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCR	R	0x14	ı	PBCON5	PBCON4	PBCON3	SHCK1	SHCK0	ADCR1	ADCR0
诗	读写属性		-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
初始值		Х	0	0	0	1	0	1	0	

SHCK1~0: ADC采样时间选择位。

00: 1 个ADC时钟, 01: 2 个ADC时钟, 10: 4 个ADC时钟, 11: 8 个ADC时钟。

ADCR1~0: ADC位数选择位。

00:8位,01:10位,1x:12位。

PBCONx: PB引脚选择位, $3 \le x \le 5$ 。

0=PBx 作为ADC模拟输入引脚或数字IO引脚。

1=PBx 仅作为ADC模拟输入引脚。

3.1.20 AWUCON (PortA 唤醒控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
AWUCON	R	0x15	WUPA7	WUPA6	WUPA5	WUPA4	WUPA3	WUPA2	WUPA1	WUPA0
诗	读写属性			读/写						
7	初始值		1	1	1	1	1	1	1	1

WUPAx: 开启/关闭PAx唤醒功能, $0 \le x \le 7$ 。

WUPAx=1 时,开启PAx唤醒功能。 WUPAx=0 时,关闭PAx唤醒功能。

3.1.21 PACON (ADC 引脚数模控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PACON	R	0x16	PBCO N2	PBCO N1	PBCO N0	PACO N4	PACO N3	PACO N2	PACO N1	PACO N0
	读写属性			读/写						
	初始值			0	0	0	0	0	0	0

PACONx: PA引脚选择位, $0 \le x \le 4$ 。

0=PAx 作为ADC模拟输入引脚或数字IO引脚。

1=PAx 仅作为ADC模拟输入引脚。

PBCONx: PA引脚选择位, $0 \le x \le 2$ 。

0=PBx 作为ADC模拟输入引脚或数字IO引脚。

1=PBx 仅作为ADC模拟输入引脚。

3.1.22 INTEDG(外部中断控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTEDG	INTEDG R		ı	ı	EIS1	EIS0	INT1G1	INT1G0	INT0G1	INT0G0
	读写属性				读/写	读/写	读/写	读/写	读/写	读/写
	初始值			Х	0	0	0	1	0	1

24

EIS1:外部中断 1 引脚选择位。

EIS1=1时,PB1选择为外部中断1引脚。

EIS1=0 时, PB1 选择为GPIO。

EIS0:外部中断 0 引脚选择位。

EIS0=1时,PB0选择为外部中断0引脚。

EIS0=0 时, PB0 选择为GPIO。

INT1G1~0: INT1 沿触发选择位。

00: 保留, 01: 上升沿触发, 10: 下降沿触发, 11: 上升/下降沿触发。

INT0G1~0: INT0 沿触发选择位。

00: 保留, 01: 上升沿触发, 10: 下降沿触发, 11: 上升/下降沿触发。

3.1.23 TMRH (定时器 1/2 高字节寄存器)

名称	SFR 类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TMRH	R	0x19	TMR29	TMR28	TMR19	TMR18	PWM2 DUTY9	PWM2 DUTY8	PWM1 DUTY9	PWM1 DUTY8
诗	写属性		读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
初始值		Х	Х	Х	Х	Х	Х	Х	Х	

TMR29~8: 定时器 2 高 2 位。写这 2 位将覆写定时器 2 第 9 位与第 8 位重载值。

读取这2位将得到定时器2第9位与第8位目前计数值。

TMR19~8: 定时器 1 高 2 位。写这 2 位将覆写定时器 1 第 9 位与第 8 位重载值。

读取这2位将得到定时器1第9位与第8位目前计数值。

PWM2DUTY9~8: PWM2 占空比高 2 位。

PWM1DUTY9~8: PWM1 占空比高 2 位。

3.1.24 ANAEN (比较器使能寄存器)

名称	SFR 类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ANAEN	R	0x1A	CMPEN	-	-	-	-	-	-	-
读	读写属性			-	-	-	-	-	-	-
Ž	初始值		0	Х	Х	Х	Х	Х	Х	Х

25

CMPEN: 开启/关闭 电压比较器。

CMPEN=1 时,开启电压比较器。 CMPEN=0 时,关闭电压比较器。

3.1.25 RFC(电阻频率转换控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
RFC	R	0x1B	RFCEN	-	-	-	PSEL[3:0]				
	读写属性		读/写	-	-	-	读/写				
	初始值		0	Х	Х	Х		()		

RFCEN: 关闭/开启RFC。

RFCEN=1,开启RFC。 RFCEN=0,关闭RFC。

PSEL[3:0]: 选择RFC输入引脚。

PSEL[3:0]	RFC PAD
0000	PA0
0001	PA1
0010	PA2
0011	PA3
0100	PA4
0101	PA5
0110	PA6
0111	PA7
1000	PB0
1001	PB1
1010	PB2
1011	PB3
1100	PB4
1101	PB5

表 3 选择RFC输入引脚

3.1.26 TM3RH (定时器 3 高字节寄存器)

名称	SFR 类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TM3RH	R	0x1C	-	ı	TMR39	TMR38	ı	ı	PWM3 DUTY9	PWM3 DUTY8
读	读写属性		ı	1	读/写	读/写	ı	ı	读/写	读/写
初始值		X	Х	Х	X	Х	X	Х	X	

TMR39~8: 定时器 3 高 2 位。写这 2 位将覆写定时器 3 第 9 位与第 8 位重载值。

读取这2位将得到定时器3第9位与第8位目前计数值。

PWM3DUTY9~8: PWM3 占空比高 2 位。

3.1.27 INTE2 (第 2 中断屏蔽寄存器)

名称	SFR 类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTE2	R	0x1F	-	-	-	T3IF	-	-	-	T3IE
ij	卖写属性		-	-	-	读/写	-	-	-	读/写
	初始值		-	-	-	0	-	-	-	0

T3IF: 定时器 3 下溢中断标志位。

T3IF=1 时,发生定时器 3 下溢中断。

T3IF必须由程序清零。

T3IE: 定时器 3 下溢 (underflow) 中断使能位。

T3IE=1 时,开启定时器 3 下溢中断。 T3IE=0 时,关闭定时器 3 下溢中断。

3.2 TOMD定时器 0 控制寄存器

TOMD是可读写寄存器,但只能由指令TOMD/TOMDR存取。

名称	SFR 类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
T0MD	ı	ı	LCKTM0	GP6	T0CS	T0CE	PS0WDT	PS0SEL[2:0]		:0]	
ì	卖写属性					读/写		-			
初始值(Note)		0	0	1	1	1		111			

PS0SEL[2:0]: 选择预分频器 0 的预分频比 (Dividing Rate)。预分频器 0 根据PS0WDT控制位决定分配给定时器 0 或WDT。当预分频器 0 被分配给WDT,预分频比取决于选择哪种计数机制 (WDT复位或WDT 中断)。

	预分频比选项							
PS0SEL[2:0]	PS0WDT=0 (定时器 0)	PS0WDT=1 (WDT复位)	PS0WDT=1 (WDT中断)					
000	1:2	1:1	1:2					
001	1:4	1:2	1:4					
010	1:8	1:4	1:8					
011	1:16	1:8	1:16					
100	1:32	1:16	1:32					
101	1:64	1:32	1:64					
110	1:128	1:64	1:128					
111	1:256	1:128	1:256					

表 4 预分频器 0 的预分频比选项

27

2019/08/29

PS0WDT: 预分频器 0 分配选择。

PS0WDT=1时,预分频器0被分配到WDT。

PS0WDT=0 时, 预分频器 0 被分配到定时器 0。

注意:在使能看门狗或定时器中断前,要先设定PSOWDT和PSOSEL[2:0],否则复位或中断可能导致错误触发。

T0CE: 定时器 0 外部时钟源触发沿选择。

T0CE=1 时,上升沿时定时器 0 加一。

T0CE=0时,下降沿时定时器0加一。

注意: TOCE应用在外部 EX CKIO 脚作为定时器 0 时钟源。

T0CS: 定时器 0 时钟源选择。

TOCS=1 时,选择EX_CKIO 脚或低频振荡I_LRC/E_LXT。

TOCS=0时,选择指令时钟F_{INST}。

GP6: 通用读写器寄存器位。

LCKTM0: TOCS=0 时,指令时钟F_{INST}被选作定时器 0 时钟源。

T0CS=1 时,LCKTM0=0 时,外部EX_CKI0 脚被选择当作定时器 0 时钟源。

TOCS=1 时, LCKTM0=1 时, 低频振荡I LRC/E LXT为定时器 0 时钟源。

注意: 有关定时器 0 时钟源选择的详细说明,请参考定时器 0 章节。

3.3 F-page特殊功能寄存器

3.3.1 IOSTA (PortA I/O 控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IOSTA	F	0x5	IOPA7	IOPA6	IOPA5	IOPA4	IOPA3	IOPA2	IOPA1	IOPA0
	读写属性		读/写							
	初始值		1	1	1	1	1	1	1	1

IOPAx: PAx I/O模式选择, 0 ≤ x ≤ 7。

IOPAx=1 时,PAx设为输入口。 IOPAx=0 时,PAx设为输出口。

3.3.2 IOSTB (PortB I/O 控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IOSTB	F	0x6	-	-	IOPB5	IOPB4	IOPB3	IOPB2	IOPB1	IOPB 0
	读写属性		-	-	读/写	读/写	读/写	读/写	读/写	读/写
	初始值		Х	Х	1	1	1	1	1	1

28

IOPBx: PBx I/O模式选择, 0 ≤ x ≤ 5。

IOPBx=1 时,PBx设为输入口。IOPBx=0 时,PBx设为输出口。

3.3.3 APHCON (PortA 上拉电阻控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
APHCON	F	0x9	/PHPA7	/PHPA6	/PLPA5	/PHPA4	/PHPA3	/PHPA2	/PHPA1	/PHPA0
ì	卖写属性					读/	写			
初始值			1	1	1	1	1	1	1	1

/PHPAx: 关闭/开启 PAx上拉电阻, $0 \le x \le 7$ 。

/PHPAx=1 时,关闭 PAx上拉电阻。 /PHPAx=0 时,开启 PAx上拉电阻。

/PLPA5: 关闭/开启下拉电阻PA5。

/PLPA5=1 时, 关闭 PA5 下拉电阻。 /PLPA5=0 时, 开启 PA5 下拉电阻。

注意: PA6 与 PA7 作为晶振引脚时应关闭内置上拉电阻。

3.3.4 PS0CV (预分频器 0 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PS0CV	F	0xA		PS0CV[7:0]						
	读写属性					Ť	卖			
	初始值		1	1	1	1	1	1	1	1

读取PS0CV时,会得到预分频器 0 寄存器的目前计数值。

3.3.5 BODCON (PortB 开漏控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BODCON	F	0xC	-	-	ODPB5	ODPB4	ODPB3	ODPB2	ODPB1	ODPB0
	读写属性		-	-	读/写	读/写	读/写	读/写	读/写	读/写
初始值			Х	Х	0	0	0	0	0	0

ODPBx: 开启/关闭PBx的开漏, $0 \le x \le 5$ 。

ODPBx=1 时,开启PBx的开漏。 ODPBx=0 时,关闭PBx的开漏。

3.3.6 CMPCR(比较器控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CMPCR	F	0xE	PS3	PS2	PS1	PS0	VS3	VS2	VS1	VS0
	读写属性					读/	写			
初始值			0	0	0	0	0	0	0	0

29

VS[3:0], PS[3:0]: 当VS[3:0]=0 时,为P2P模式。VS[3:0]不为 0 时为P2V模式。

选择为P2V模式时,VS[3:0]选择其中内部参考电压输入比较器负输入源。PS[3:0]选择PA0~PA3 其中一引脚输入比较器正输入源。

VS[3:0]	比较器参考电压	PS[3:0]	比较器正输入源
0000	P2P mode	0000	PA0
0001	1 / 16 VDD	0001	PA1
0010	2 / 16 VDD	0010	PA2
0011	3 / 16 VDD	0011	PA3
0100	4 / 16 VDD	0100	ı
0101	5 / 16 VDD	0101	-
0110	6 / 16 VDD	0110	-
0111	7 / 16 VDD	0111	-
1000	8 / 16 VDD	1000	-
1001	9 / 16 VDD	1001	-
1010	10 / 16 VDD	1010	-
1011	11 / 16 VDD	1011	-
1100	12 / 16 VDD	1100	-
1101	13 / 16 VDD	1101	-
1110	14 / 16 VDD	1110	-
1111	15 / 16 VDD	1111	-

表 5 P2V模式

PS[3:0]	比较器正输入源	比较器负输入源
0000	PA0	PA1
0001	PA1	PA0
0010	PA2	PA3
0011	PA3	PA2

表 6 P2P模式 (VS[3:0] = 4'b0000)

3.3.7 PCON1 (Power 控制寄存器 1)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON1	F	0xF	GIE	LVDOUT	GP5	LVDS2	LVDS1	LVDS0	GP1	T0EN
	读写属性		读/写(1*)	读	读/写	读/写	读/写	读/写	读/写	读/写
	初始值		0	Х	0	1	1	1	0	1

T0EN: 开启/关闭定时器 0。

TOEN=1 时,开启定时器 0。 TOEN=0 时,关闭定时器 0。

LVDS2~0: 选择LVD电压。

LVDS[2:0]	电压
000	2.0V
001	2.2V
010	2.4V
011	2.7V
100	3.0V
101	3.3V
110	3.6V
111	4.3V

表 7 LVD电压选择

LVDOUT: LVD输出位。

GIE: 开启/关闭总中断屏蔽位。

GIE=1 时,开启总中断。 GIE=0 时,关闭总中断。

GP5, GP1: 通用寄存器数据位。

(1*): 由指令 ENI 设置 1、指令 DISI 清除、指令 IOSTR 所读取。

3.4 S-page特殊功能寄存器

3.4.1 TMR1(定时器 1 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TMR1	8	0x0	TMR1[7:0]							
	读写属性		读/写							
	初始值		XXXXXXXX							

当读取TMR1 寄存器时,会得到 10 位定时器 1 中的低字节目前计数值。写TMR1 时,会将TMRH[5:4]和TMR1[7:0]一起写到定时器 1 重载寄存器中。

3.4.2 T1CR1 (定时器 1 控制寄存器 1)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T1CR1	S	0x1	PWM10EN	PWM1OAL	-	-	-	T10S	T1RL	T1EN
	读写属性		读/写	读/写	-	-	-	读/写	读/写	读/写
	初始值		0	0	Х	Х	Х	0	0	0

31

此寄存器用于配置定时器 1 功能。

T1EN: 开启/关闭定时器 1。

T1EN=1 时,开启定时器 1。 T1EN=0 时,关闭定时器 1。

T1RL: 当连续模式被选择(T1OS=0),选择定时器 1 下数方式。

T1RL=1 时,当下溢发生,定时器 1 初始值从TMR1[9:0]寄存器被重新加载。

T1RL=0 时, 当下溢发生, 定时器 1 继续从 0x3FF下数。

T1OS: 当下溢发生,设置定时器 1 操作模式。

T1OS=1 时,单次计数模式(One-Shot mode)。定时器 1 会从初始值到 0x00 计数一次。

T1OS=0 时,连续计数模式(Non-Stop mode)。下溢后,定时器 1 会持续下数。

T10S	T1RL	定时器 1 计数选项					
0							
0	当下溢发生,0x3FF被重载至定时器 1 并继续下数。 定时器 1 从重载的数值下数到 0x00。 当下溢发生,定时器 1 从TMR1[9:0]重新载入数值并继续下数。						
1	Х	定时器 1 从初始值下数到 0x00。 当下溢发生,定时器 1 停止下数。					

表8 定时器1功能

PWM1OAL: 定义PWM1输出有效状态。

PWM1OAL=1 时,PWM1 为低电平有效位输出。 PWM1OAL=0 时,PWM1 为高电平有效位输出。

PWM1OEN: 开启/关闭PWM1 输出。

PWM1OEN=1, PB3 输出PWM1。 PWM1OEN=0, PB3 为GPIO。

3.4.3 T1CR2(定时器 1 控制寄存器 2)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T1CR2	S	0x2	1	-	T1CS	T1CE	/PS1EN	PS	S1SEL[2	:0]
	读写属性		-	-	读/写	读/写	读/写	读/写	读/写	读/写
	初始值		X	Х	1	1	1	1	1	1

32

该寄存器用于配置定时器 1 功能。

PS1SEL[2:0]: 预分频器 1 预分频比选项。

PS1SEL[2:0]	预分频比选项
000	1:2
001	1:4
010	1:8
011	1:16
100	1:32
101	1:64
110	1:128
111	1:256

表 9 预分频器 1 预分频比选项

注意: 在 PS1EN=1 前须先设定 PS1SEL[2:0],否则可能会误发生中断。

/PS1EN: 关闭/开启预除器 1。

/PS1EN=1 时,关闭预分频器 1。 /PS1EN=0 时,开启预分频器 1。

T1CE: 定时器 1 外部时钟触发沿选项。

T1CE=1 时,EX_CKI0 脚下降沿时定时器 1 减一。 T1CE=0 时,EX_CKI0 脚上升沿时定时器 1 减一。

T1CS: 定时器 1 时钟源选项。

T1CS=1时,选择EX_CKI0脚作为外部时钟输入。

T1CS=0 时,选择指令时钟F_{INST}。

3.4.4 PWM1DUTY (PWM1 占空比寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM1DUTY	S	0x3	PWM1DUTY[7:0]							
	读写属性				写					
初始值						XXXX	XXXX			

定时器 1 重新加载的数值储存在TMRH[5:4]与TMR1[7:0]寄存器,以用来定义PWM1 帧率,TMRH[1:0]与PWM1DUTY[7:0]寄存器用于定义PWM1 的占空比。

3.4.5 PS1CV (预分频器 1 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PS1CV	S	0x4	PS1CV[7:0]							
	读写属性			读						
	初始值		1 1 1 1 1 1				1	1		

读取PS1CV时,将会得到预分频器1的目前数值。

3.4.6 BZ1CR (蜂鸣器 1 控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BZ1CR	S	0x5	BZ1EN	-	-	-		BZ1FS	EL[3:0]	
	读写属性			-	-	-	写			
	初始值		0	Х	Х	Х	1	1	1	1

33

BZ1FSEL[3:0]: BZ1 输出频率选项。

D745051 [2:0]	BZ1 频	率选项
BZ1FSEL[3:0]	时钟源	预分频比
0000		1:2
0001		1:4
0010		1:8
0011	新八蜥蜴 1 绘山	1:16
0100	预分频器 1 输出	1:32
0101		1:64
0110		1:128
0111		1:256
1000		定时器 1 bit 0
1001		定时器 1 bit 1
1010		定时器 1 bit 2
1011	今时现 4 	定时器 1 bit 3
1100	定时器 1 输出	定时器 1 bit 4
1101		定时器 1 bit 5
1110		定时器 1 bit 6
1111		定时器 1 bit 7

表 10 蜂鸣器BZ1 输出频率选项

BZ1EN: 开启/关闭蜂鸣器 1 输出。

BZ1EN=1 时,开启蜂鸣器 1。 BZ1EN=0 时,关闭蜂鸣器 1。

3.4.7 IRCR (IR 控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IRCR	S	0x6	IROSC358M	1	-	-	-	IRCSEL	IRF57K	IREN
	读写属性		写	-	-	-	-	写	写	写
	初始值		0	Х	Х	Х	Х	0	0	0

34

IREN: 开启/关闭IR载波输出。

IREN=1 时,开启IR载波输出。 IREN=0 时,关闭IR载波输出。

IRF57K: IR载波频率选择。

IRF57K=1 时,IR载波频率是 57KHz。 IRF57K=0 时,IR载波频率是 38KHz。

IRCSEL: IR载波极性选择。

IRCSEL=0 且I/O脚数据是 1 时,IR载波会被产生。IRCSEL=1 且I/O脚数据是 0 时,IR载波会被产生。

IROSC358M: 选择使用的外部晶振频率类型。

若选择 I HRC此位将被忽略。

IROSC358M=1, 外部晶振频率请用 3.58MHz。 IROSC358M=0, 外部晶振频率请用 455KHz。

注意:

1.仅有高速振荡时钟 FHOSC (详见章节 3.17) 可以当作IR时钟源。

2.不同振荡类型的分频比。

OSC. Type	57KHz	38KHz	条件
High IRC	64	96	HIRC 模式(不论系统时钟频率是多少,IR 模块的输入时钟都设定为 4MHz)
Xtal 3.58MHz	64	96	E_XT 模式& IROSC358M=1
Xtal 455KHz	8	12	E_XT 模式& IROSC358M=0

表 11 不同振荡类型的分频比

3.4.8 TBHP(表格指针高字节寄存器)

名称	名称 SFR类型 地址		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TBHP	TBHP S 0x7		1	1	1	1	-	TBHP2	TBHP1	TBHP0
	读写属性	-	-	-	-	-	读/写	读/写	读/写	
初始值			Х	Х	X	Х	Х	Х	Х	Х

当指令CALLA、GOTOA或TABLEA被执行时,程序计数寄存器会指向欲寻址的 11 位ROM地址,此目标地址是由TBHP[2:0]与ACC组成。ACC是PC[10:0]的低字节,TBHP[2:0]是PC[10:0]的高字节。

3.4.9 TBHD (表格数据高字节寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TBHD	S	0x8	-	ı	TBHD5	TBHD4	TBHD3	TBHD2	TBHD1	TBHD0
读写属性			-	ı	读	读	读	读	读	读
初始值			Х	Х	Х	X	X	X	Х	Х

当指令TABLEA被执行后,会得到ROM表格的 14 位数据内容,其中ROM表格的数据高字节内容被加载到TBHD[5:0]寄存器,ROM表格的数据低字节内容则被加载到ACC。

35

3.4.10 TMR2 (定时器 2 寄存器)

名称	SFR类型	地址	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 I					Bit1	Bit0	
TMR2	S	0x9	TMR2				?[7:0]				
名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
读写属性			读/写								
	初始值	XXXXXXX									

当读取TMR2 寄存器时,会得到 10 位定时器 2 中的低字节目前计数值。写TMR2 时,会将TMRH[7:6]和TMR2[7:0]一起写到定时器 2 重载寄存器中。

3.4.11 T2CR1 (定时器 2 控制寄存器 1)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T2CR1	S	0xA	PWM2OEN	PWM2OAL	-	-	-	T2OS	T2RL	T2EN
读写属性		读/写	读/写	-	-	-	读/写	读/写	读/写	
初始值		0	0	Х	Х	Х	0	0	0	

此寄存器用于配置定时器 2 功能。

T2EN: 开启/关闭定时器 2。

T2EN=1 时,开启定时器 2。

T2EN=0 时,关闭定时器 2。

T2RL: 当连续模式被选择(T2OS=0),选择定时器2下数方式。

T2RL=1 时, 当下溢发生, 定时器 2 初始值从TMR2[9:0]寄存器被重新加载。

T2RL=0时,当下溢发生,定时器2继续从0x3FF下数。

T2OS: 当下溢发生,设置定时器 2 操作模式。

T2OS=1 时,单次计数模式(One-Shot mode)。定时器 2 会从初始值到 0x00 计数一次。

T2OS=0 时,连续计数模式 (Non-Stop mode)。下溢后,定时器 2 会持续下数。

T2OS	T2RL	定时器 2 计数选项
0	0	定时器 2 从 0x3FF下数到 0x00。 当下溢发生, 0x3FF被重载至定时器 2 并继续下数。
0	1	定时器 2 从重载的数值下数到 0x00。 当下溢发生,定时器 2 从TMR2[9:0]重新载入数值并继续下数。
1	Х	定时器 2 从初始值下数到 0x00。 当下溢发生,定时器 2 停止下数。

表 12 定时器 2 功能

PWM2OAL: 定义PWM2 输出有效状态。

PWM2OAL=1 时,PWM2 为低电平有效位输出。 PWM2OAL=0 时,PWM2 为高电平有效位输出。

PWM2OEN: 开启/关闭PWM2输出。

PWM2OEN=1, PB2 输出PWM2。 PWM2OEN=0, PB2 为GPIO。

3.4.12 T2CR2 (定时器 2 控制寄存器 2)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T2CR2	S	0xB	-	-	T2CS	T2CE	/PS2EN	PS2SEL[2:0]		
	读写属性		读/写 读/写 读/写 ;			读/写	读/写	读/写		
初始值			Х	Х	1	1	1	1	1	1

该寄存器用于配置定时器 2 功能。

PS2SEL[2:0]: 预分频器 2 预分频比选项。

PS2SEL[2:0]	预分频比选项
000	1:2
001	1:4
010	1:8
011	1:16
100	1:32
101	1:64
110	1:128
111	1:256

表 13 预分频器 2 预分频比选项

注意:在PS2EN=1 前须先设定PS2SEL[2:0],否则可能会误发生中断。

/PS2EN: 关闭/开启预除器 2。

/PS2EN=1 时,关闭预分频器 2。 /PS2EN=0 时,开启预分频器 2。

T2CE: 定时器 2 外部时钟触发沿选项。

T2CE=1 时,EX_CKI1 脚下降沿时定时器 2 减一。 T2CE=0 时,EX_CKI1 脚上升沿时定时器 2 减一。

T2CS: 定时器 2 时钟源选项。

T2CS=1时,选择EX_CKI1脚作为外部时钟输入。

T2CS=0 时,选择指令时钟F_{INST}。

3.4.13 PWM2DUTY (PWM2 占空比寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
PWM2DUTY	S	0xC	PWM2DUTY[7:0]								
	读写属性					E	Ī				
初始值 XXXXXXXX											

37

定时器 2 重新加载的数值储存在TMRH[7:6]与TMR2[7:0]寄存器,以用来定义PWM2 帧率,TMRH[3:2]与PWM2DUTY[7:0]寄存器用于定义PWM2 的占空比。

3.4.14 PS2CV (预分频器 2 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
PS2CV	S	0xD		PS2CV[7:0]							
	读写属性		读								
初始值 1 1 1 1 1 1 1							1				

读取PS2CV时,将会得到预分频器2的目前数值。

3.4.15 BZ2CR (蜂鸣器 2 控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BZ2CR	S	0xE	BZ2EN	ı	-	-	BZ2FSEL[3:0]			
	读写属性		写	-	-	-	写			
	初始值		0	Х	Х	Х	1 1 1 1			

BZ2FSEL[3:0]: BZ2 输出频率选项。

B725651 [2.0]	BZ2 频	率选项
BZ2FSEL[3:0]	时钟源	预分频比
0000		1:2
0001		1:4
0010		1:8
0011	新八城 9. 6	1:16
0100	预分频器 2 输出	1:32
0101		1:64
0110		1:128
0111		1:256
1000		定时器 2 bit 0
1001		定时器 2 bit 1
1010		定时器 2 bit 2
1011	定时器 2 输出	定时器 2 bit 3
1100	处的命名制山	定时器 2 bit 4
1101		定时器 2 bit 5
1110		定时器 2 bit 6
1111		定时器 2 bit 7

表 14 蜂鸣器BZ2 输出频率选项

38

BZ2EN: 开启/关闭蜂鸣器 2 输出。

BZ2EN=1 时,开启蜂鸣器 2。 BZ2EN=0 时,关闭蜂鸣器 2。

3.4.16 OSCCR (振荡器控制寄存器)

名称	SFR 类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OSCCR	S	0xF	CMPOUT	CMPOE	CMPIF	CMPIE	OPMD[1:0]		STPHOSC	SELHOSC
读	读写属性		读	读/写	读/写	读/写	读	写	读/写	读/写
è	初始值		Х	0	0	0	0	0	0	1

SELHOSC: 系统振荡器选择(Fosc)。

SELHOSC=1 时,F_{OSC}是高频率振荡器(F_{HOSC})。 SELHOSC=0 时,F_{OSC}是低频率振荡器(F_{LOSC})。

STPHOSC: 关闭/开启高频率振荡器(F_{HOSC})。

STPHOSC=1时,F_{HOSC}会停止振荡并被关闭。

STPHOSC=0时,F_{HOSC}保持振荡。

OPMD[1:0]: 选择操作模式。

OPMD[1:0]	操作模式
00	正常模式
01	睡眠模式
10	待机模式
11	保留

表 15 选择OPMD[1:0]的操作模式

CMPIE: 比较器中断使能位。

CMPIE=1 时,开启比较器中断。 CMPIE=0 时,关闭比较器中断。

CMPIF: 比较器输出翻转中断标志位。

CMPIF=1,发生比较器输出翻转中断。

CMPIF必须由程序清零。

CMPOE: 开启/关闭比较器输出到PB3 引脚。

CMPOE=1 时,开启比较器输出到PB3 引脚。 CMPOE=0 时,关闭比较器输出到PB3 引脚。

注意:比较器输出到 PB3 引脚优先于 PWM1/BUZZER1。

CMPOUT: 比较器输出状态位。

注意: STPHOSC不能与SELHOSC或OPMD同时更改。在SELHOSC=1 时,STPHOSC不能与OPMD同时更改。

3.4.17 TMR3 (定时器 3 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TMR3	S	0x10				TMR	3[7:0]			
	读写属性					读	写			
	初始值					XXXX	XXXX			

当读取TMR3 寄存器时,会得到 10 位定时器 3 中的低字节目前计数值。写TMR3 时,会将TM3RH[5:4]和TMR3[7:0]一起写到定时器 3 重载寄存器中。

3.4.18 T3CR1 (定时器 3 控制寄存器 1)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T3CR1	T3CR1 S 0x11		PWM30EN	PWM3OAL	-	-	-	T3OS	T3RL	T3EN
	读写属性		读/写	读/写	-	-	-	读/写	读/写	读/写
初始值			0	0	Х	Х	Х	0	0	0

此寄存器用于配置定时器 3 功能。

T3EN: 开启/关闭定时器 3。

T3EN=1 时,开启定时器 3。

T3EN=0 时,关闭定时器 3。

T3RL: 当连续模式被选择(T3OS=0),选择定时器3下数方式。

T3RL=1 时, 当下溢发生, 定时器 3 初始值从TMR3[9:0]寄存器被重新加载。

T3RL=0 时, 当下溢发生, 定时器 3 继续从 0x3FF下数。

T3OS: 当下溢发生,设置定时器 3 操作模式。

T3OS=1 时,单次计数模式 (One-Shot mode)。定时器 3 会从初始值到 0x00 计数一次。

T3OS=0 时,连续计数模式 (Non-Stop mode)。下溢后,定时器 3 会持续下数。

40

T3OS	T3RL	定时器 3 计数选项
0	0	定时器 3 从 0x3FF下数到 0x00。 当下溢发生,0x3FF被重载至定时器 3 并继续下数。
0	1	定时器 3 从重载的数值下数到 0x00。 当下溢发生,定时器 3 从TMR3[9:0]重新载入数值并继续下数。
1	х	定时器 3 从初始值下数到 0x00。 当下溢发生,定时器 3 停止下数。

表 16 定时器 3 功能

PWM3OAL: 定义PWM3 输出有效状态。

PWM3OAL=1 时,PWM3 为低电平有效位输出。 PWM3OAL=0 时,PWM3 为高电平有效位输出。

PWM3OEN: 开启/关闭PWM3 输出。

PWM3OEN=1, PA2 输出PWM3。 PWM3OEN=0, PA2 为GPIO。

3.4.19 T3CR2 (定时器 3 控制寄存器 2)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit2 Bit1	
T3CR2	S	0x12	-	-	T3CS	T3CE	/PS3EN	PS	:0]	
读写属性			-	-	读/写	读/写	读/写	读/写	读/写	读/写
初始值			Х	Х	1	1	1	1	1	1

该寄存器用于配置定时器 3 功能。

PS3SEL[2:0]: 预分频器 3 预分频比选项。

PS3SEL[2:0]	预分频比选项
000	1:2
001	1:4
010	1:8
011	1:16
100	1:32
101	1:64
110	1:128
111	1:256

表 17 预分频器 3 预分频比选项

注意:在PS3EN=1 前须先设定PS3SEL[2:0],否则可能会误发生中断。

/PS3EN: 关闭/开启预除器 3。

/PS3EN=1 时,关闭预分频器 3。 /PS3EN=0 时,开启预分频器 3。

T3CE: 定时器 3 外部时钟触发沿选项。

T3CE=1 时,EX_CKI1 脚下降沿时定时器 3 减一。 T3CE=0 时,EX_CKI1 脚上升沿时定时器 3 减一。

T3CS: 定时器 3 时钟源选项。

T3CS=1 时,选择EX_CKI1 脚作为外部时钟输入。

41

T3CS=0 时,选择指令时钟F_{INST}。

3.4.20 PWM3DUTY (PWM3 占空比寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM3DUTY	S	0x13	PWM3DUTY[7:0]							
	读写属性			写属性 写						
初始值						XXXX	XXXX			

定时器 3 重新加载的数值储存在TM3RH[5:4]与TMR3[7:0]寄存器,以用来定义PWM3 帧率,TM3RH[1:0]与PWM3DUTY[7:0]寄存器用于定义PWM3 的占空比。

3.4.21 PS3CV (预分频器 3 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PS3CV	8	0x14	PS3CV[7:0]							
	读写属性		读							
	初始值		1	1	1	1	1	1	1	1

读取PS3CV时,将会得到预分频器3的目前数值。

3.4.22 BZ3CR (蜂鸣器 3 控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BZ3CR	S	0x15	BZ3EN	ı	-	ı		BZ3FS	EL[3:0]	
	读写属性		写	-	-	-		Ē	į	
	初始值		0	Х	Х	Х	1	1	1	1

BZ3FSEL[3:0]: BZ3 输出频率选项。

D72E9E1 [2:0]	BZ3 频率选项				
BZ3FSEL[3:0]	时钟源	预分频比			
0000		1:2			
0001		1:4			
0010		1:8			
0011	75 // N5 III 0 / 0 //	1:16			
0100	预分频器3输出	1:32			
0101		1:64			
0110		1:128			
0111		1:256			
1000	定时器3输出	定时器 3 bit 0			
1001	处的命3制币	定时器 3 bit 1			

D72ESEL [2.0]	BZ3 频率选项				
BZ3FSEL[3:0]	时钟源	预分频比			
1010		定时器 3 bit 2			
1011		定时器 3 bit 3			
1100		定时器 3 bit 4			
1101		定时器 3 bit 5			
1110		定时器 3 bit 6			
1111		定时器 3 bit 7			

表 18 蜂鸣器BZ3 输出频率选项

BZ3EN: 开启/关闭蜂鸣器 3 输出。

BZ3EN=1 时,开启蜂鸣器 3。 BZ3EN=0 时,关闭蜂鸣器 3。

3.5 I/O Port

NY8B062D提供 14 个I/O口(PA[7:0]和PB[5:0]),用户可以由寄存器PORTA和PORTB读写这些脚位。每个I/O脚位都有一个对应的寄存器控制位以定义该脚位是输入或输出口,寄存器IOSTA[7:0]定义PA[7:0]为输入口或输出口,寄存器IOSTB[5:0]定义PB[5:0]为输入口或输出口。

当一个I/O脚位被配置为输入口,它可以由寄存器开启或关闭内部上拉/下拉电阻。寄存器APHCON[7:6,4:0]用于开启或关闭PA[7:6,4:0]的内部上拉电阻。寄存器BPHCON[3:0]用于开启或关闭PB[3:0]的内部上拉电阻。寄存器ABPLCON[7:4]则是用于开启或关闭PB[3:0]的内部下拉电阻。ABPLCON[3:0]则是用于开启或关闭PA[3:0]的内部下拉电阻。APHCON[5]用于开启或关闭PA[5]的内部下拉电阻。PCON[4]用于开启或关闭PA[5]的内部上拉电阻。

当一个I/O脚位被配置为输出口,可由寄存器开启或关闭开漏。寄存器BODCON[5:0]决定PB[5:0]是否为开漏输出脚。

1/	\cap	7 TH	能捐	更	/ п-	下表:
1/	vı∟	コルル	ロレイド	1	u_{11}	1 A

	功能	PA[3:0]	PA[7:6] PA[4]	PA[5]	PB[3:0]	PB[5:4]
输入	上拉电阻	٧	V	٧	V	V
和八	下拉电阻	V	Х	V	V	Х
输出	开漏	Х	Х	总是	V	V

表 19 I/O端口功能摘要

在PA和PB的每个I/O脚都有输入状态改变产生中断功能。寄存器AWUCON[7:0]和BWUCON[5:0]会使能或禁能任一PA和PB脚位的唤醒功能。只要AWUCON和BWUCON对应到的任一PA和PB脚位被置为 1 时,且在此输入脚位有状态改变时,寄存器PABIF(INTF[1])就会被设为 1。如果寄存器PABIE(INTE[1])与GIE(PCON1[7])同时设定为 1,将发生中断要求并执行中断服务程序。

43

NY8B062D提供 2 个外部中断, 当寄存器EIS0 (INTEDG[4]) 设定为 1, PB0 则被当作外部中断 0 的输入脚。当寄存器EIS1 (INTEDG[5]) 设定为 1, PB1 则被当作外部中断 1 的输入脚。

注意: 当PB0 或PB1 同时设定成输入状态改变触发脚与外部中断脚,外部中断有较高的优先权,而PB0 或PB1 输入状态改变触发脚则会被关闭,但其它输入状态改变触发脚不会被影响。

NY8B062D提供红外线IR载波生成器。IR载波生成器是由寄存器IREN(IRCR[0])开启,PB1会输出红外线载波。由配置字节决定PA5可否当作外部复位输入RSTb。当PA5为低电平时将导致NY8B062D发生复位。

当配置字节设置外置晶振(E_HXT, E_XT or E_LXT)用于高速振荡时钟或低速振荡时钟时,PA6 晶振输入引脚(Xin), PA7 晶振输出引脚(Xout)。

当配置字节设置I_HRC 或 I_LRC用于高速振荡时钟或低速振荡时钟时,用户可以在PA7 输出指令时钟F_{INST}。

如果寄存器T0CS(T0MD[5])为 1 和LCK_TM0(T0MD[7])为 0,EX_CKI0 可以当作定时器 0 外部时钟源。如果寄存器T1CS(T1CR2[5])为 1,EX_CKI0 可以当作定时器 1 外部时钟源。EX_CKI1 可以当作定时器 2/3 外部时钟源。

如果寄存器CMPOE=1, PB3 也可以当作比较器输出引脚。如果寄存器PWM1OEN(T1CR1[7])为 1, PB3 也可以当作脉冲宽度调制PWM1输出。若寄存器BZ1EN(BZ1CR[7])为 1, PB3 也可以当作蜂鸣器 1输出。PB3 复用引脚输出优先级为比较器输出 > PWM1输出 > 蜂鸣器 1输出。

PB2 也可以当作脉冲宽度调制PWM2 输出。若寄存器BZ2EN(BZ2CR[7])为 1, PB2 也可以当作蜂鸣器 2 输出。 PB2 复用引脚输出优先级为PWM2 输出 > 蜂鸣器 2 输出。

当IO配置为输出口,每个引脚可在配置字节设置为一般灌电流(19mA@VDD=3V),大灌电流(28mA@VDD=3V)。 如下表 21 所示。

44

配置字节	一般灌电流	大灌电流	
PXcurrent	0	1	
PXcsc	0	0	

表 20 灌电流模式选择(X=A,B)

3.5.1 IO 引脚结构框图

IO_SEL:设定引脚为输入或输出口。

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

PULLUP_ENB: 开启内部上拉电阻。

PULLDOWN_EN: 开启内部下拉电阻。

VPEN: 开启为比较器正输入引脚。

VNEN: 开启为比较器负输入引脚。

CMPVP, CMPVN: 比较器正输入与负输入引脚。

RD_TYPE: 选择读取脚位或数据锁存器。

图 5 PA[3:2], PA0 引脚结构框图

45

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

PULLUP_ENB: 开启内部上拉电阻。 PULLDOWN_EN: 开启内部下拉电阻。

VPEN: 开启为比较器正输入引脚。 VNEN: 开启为比较器负输入引脚。

CMPVP, CMPVN: 比较器正输入与负输入引脚。

RD_TYPE: 选择读取脚位或数据锁存器。

EX_CKI1: Timer 2/3 外部时钟输入。

图 6 PA1 引脚结构框图

46

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

PULLUP_ENB: 开启内部上拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

EX_CKIO: Timer0,1 外部时钟输入。

图 7 PA4 引脚结构框图

47

RSTPAD_EN: 开启外部复位引脚。

RSTB_IN: 复位引脚输入。

IO_SEL:设定引脚为输入或输出口。

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

PULLUP_ENB: 开启内部上拉电阻。
PULLDOWN_EN: 开启内部下拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

图 8 PA5 引脚结构框图

48

XTL_EN: 开启外置晶振。

IO_SEL:设定引脚为输入或输出口。

WRITE_EN: 将数据写入引脚。

READ_EN: 读取引脚状态。

PULLUP_ENB: 开启内部上拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

图 9 PA6, PA7 引脚结构框图

49

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

OD_EN: 开启开漏。

PULLUP_ENB: 开启内部上拉电阻。
PULLDOWN_EN: 开启内部下拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

EIS0: 使能外部中断 0 功能。

INTEDG[1:0]: 选择外部中断 0 触发沿。

EX_INT0: 外部中断 0 信号。

WUB: 使能PB唤醒功能。

SET_PBIF: PB唤醒标志。

图 10 PB0 引脚结构框图

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

OD_EN: 开启开漏。

PULLUP_ENB: 开启内部上拉电阻。

PULLDOWN_EN: 开启内部下拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

EIS1: 使能外部中断 1 功能。

INTEDG[3:2]: 选择外部中断 1 触发沿。

EX INT1: 外部中断 1 信号。

WUB: 使能PB唤醒功能。

SET_PBIF: PB唤醒标志。

图 11 PB1 引脚结构框图

51

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

OD_EN: 开启开漏。

PULLUP_ENB: 开启内部上拉电阻。
PULLDOWN_EN: 开启内部下拉电阻。
RD_TYPE: 选择读取脚位或数据锁存器。

WUB: 使能PB唤醒功能。 SET_PBIF: PB唤醒标志。

52

Ver. 1.4 2019/08/29

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

OD_EN: 开启开漏。

PULLUP_ENB: 开启内部上拉电阻。
PULLDOWN_EN: 开启内部下拉电阻。
RD_TYPE: 选择读取脚位或数据锁存器。

WUB: 使能PB唤醒功能。

图 13 PB3 引脚结构框图

53

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

OD_EN: 开启开漏。

PULLUP_ENB: 开启内部上拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

WUB: 使能PB唤醒功能。 SET_PBIF: PB唤醒标志。

图 14 PB4,5 引脚结构框图

54

3.6 定时器 0

定时器 0 是 8 位上数定时器,由寄存器T0EN (PCON1[0]) 开启/关闭。写入定时器 0 将会设定其初始值,读取定时器 0 时则会显示目前的计数数值。

定时器 0 的时钟源可由寄存器TOCS(T0MD[5])与LCK_TM0(T0MD[7])所决定,可以从指令时钟F_{INST}、外部时钟输入脚EX_CKI0 或低频振荡I_LRC/E_LXT中择一。当T0CS为 0,指令时钟会被选择当作定时器 0 时钟源。当T0CS为 1 且LCK_TM0 为 0,EX_CKI0 会被当作定时器 0 时钟源。当T0CS是 1 且LCK_TM0 为 1,会选择低频振荡I_LRC/E_LXT当作定时器 0 时钟源。汇总成表格如下。(也请参考表 21)

定时器 0 时钟源	T0CS	LCKTM0	定时器 0 来源	低频振荡		
Instruction clock	0	Х	×	X		
EV CKIO	4	0	X	V		
EX_CKI0	1	1	1	Х	0	X
E_LXT	1	1	1	1		
I_LRC	1	1	1	0		

表 21 定时器 0 时钟源摘要

寄存器TOCE(TOMD[4])可决定EX_CKIO 或I_LRC/E_LXT的时钟触发沿选择。当TOCE是 1, EX_CKIO 或I_LRC/E_LXT的上升沿将让定时器 0 计数加一。当TOCE是 0, EX_CKIO 或I_LRC/E_LXT的下降沿将让定时器 0 计数加一。

如果寄存器PS0WDT(T0MD[3])为 0,定时器 0 时钟源可以由预分频器 0 所分频,预分频器 0 会被指定到定时器 0,且会在PS0WDT设为 0 时清除Timer0 与寄存器PS0CV。寄存器PS0SEL[2:0](T0MD[2:0])决定预分频器 0 的预分频比,其数值从 1:2 到 1:256。

定时器 0 时钟源默认为指令时钟。如果外部时钟脚EX_CKI0 或低频振荡I_LRC/E_LXT被用来当作定时器 0 时钟源,用户必须注意分频后的频率不能超过指令时钟,否则会导致错误计数。当I_LRC/E_LXT同时被当作定时器 0 时钟源与指令时钟,用户必须指定预分频器 0 到定时器 0,且须注意预分频器 0 的预分频比不得小于 4。当配置字节设定为异步(Async.),定时器 0 时外部钟源EX CKIO 频率就可高于指令时钟。

当定时器 0 上溢, 寄存器TOIF(INTF[0]) 将会设定为 1, 以标明定时器 0 发生上溢中断。如果寄存器TOIE(INTE[0]) 与GIE都设定为 1, 会发生中断的请求并执行中断服务程序。直到程序写入 0 到TOIF, TOIF才会被清除。

55

定时器 0 与WDT的结构框图如下图:

图 15 定时器 0与 WDT 结构框图

3.7 定时器 1/PWM1/Buzzer1

定时器 1 是具有预分频器 1 的 10 位下数定时器,其预分频比是可编程的。定时器 1 的输出可以被用于产生PWM1 输出与蜂鸣器 1 输出。写入定时器 1 高 2 位(TMRH[5:4])再写入TMR1[7:0]时,就可更新定时器 1 重载缓存寄存器。当T1EN=0 时,定时器 1 重载缓存寄存器会立即写入定时器 1。当T1EN=1 时,会等到定时器 1下溢后,定时器 1 重载缓存寄存器才会写入定时器 1。读取寄存器TMR1[9:0]会显示定时器 1 目前计数数值的内容。

定时器 1 的结构框图如下图所示:

图 16 定时器 1 结构框图

56

定时器 1 的操作可以由寄存器T1EN(T1CR1[0])开启或关闭。开启定时器 1 后,寄存器T1CS(T1CR2[5])可决定时钟源是指令时钟F_{INST}或外部时钟EX_CKIO。当T1CS为 0,指令时钟会被选择当做时钟源。当T1CS为 1,则是EX_CKIO 当做时钟源。当EX_CKIO 被选取,寄存器控制位T1CE(T1CR2[4])可决定EX_CKIO 的时钟触发沿。当T1CE是 1,EX_CKIO 的下降沿将让定时器 1 计数减一。当T1CE是 0,EX_CKIO 的上升沿将让定时器 1 计数减一。定时器 1 时钟源可以由预分频器 1 所分频。寄存器/PS1EN(T1CR2[3])为 0,可开启预分频器 1。寄存

器PS1SEL[2:0] (T1CR2[2:0]) 可以决定其预分频比从 1:2 到 1:256。预分频器 1 的目前数值可以由读取寄存器 PS1CV取得。

定时器 1 提供两种计数模式:单次计数与连续计数。当寄存器T1OS (T1CR1[2])为 1,即为单次计数模式。定时器 1 从储存在寄存器TMR1[9:0]的初始值下数到 0x00,当下溢发生时,定时器 1 停止计数。当寄存器T1OS (T1CR1[2])为 0,即为连续计数模式。当下溢发生,寄存器T1RL (T1CR1[1])会决定计数的初始值。当T1RL为 1,定时器 1 从寄存器TMR1[9:0]重新载入数值作为初始值并继续下数。当T1RL为 0,定时器 1 以 0x3FF作为初始值并继续下数。

当定时器 1 下溢, 寄存器T1IF(INTF[3])会被设定为 1, 标明定时器 1 发生下溢中断。如果寄存器T1IE(INTE[3])与GIE同时设定为 1, 会发生中断请求且执行中断服务程序。直到程序写入 0 到T1IF, T1IF才会被清除。

定时器 1 时序图如下图所示:

图 17 定时器 1 时序图

当寄存器PWM1OEN(T1CR1[7])设定为 1, PB3 为PWM1 输出。当PWM1OEN为 1, PB3 会自动成为输出脚。 PWM1 输出的有效状态是由寄存器PWM1OAL(T1CR1[6])决定。当PWM1OAL为 1, PWM1 为低电平有效输出; PWM1OAL为 0, PWM1 为高电平有效输出。

PWM1 的占空比与帧率皆可编程的。占空比是由寄存器TMRH[1:0]和PWM1DUTY[7:0]决定。当PWM1DUTY[9:0] 为 0, PWM1 无法输出占空比。当PWM1DUTY[9:0]为 0x3FF, PWM1 将输出 1023/1024 的占空比(当PWM1OAL 为 0)。帧率是由TMRH[5:4] +TMR1[7:0]初始值所决定。因此,PWM1DUTY[9:0]数值必须小于或等于TMR1[9:0]。 先写入PWM1 高 2 位(TMRH[1:0])再写入PWM1DUTY[7:0]时,就可更新PWM1DUTY[9:0]重载缓存寄存器。等到定时器 1 下溢后,PWM1DUTY[9:0]重载缓存寄存器才会写入PWM1DUTY[9:0]。

57

PWM1 的结构框图如下:

图 18 PWM1 结构框图

当寄存器BZ1EN (BZ1CR1[7]) 设定成 1 且使能配置字节,PB3 为蜂鸣器 1 输出。当BZ1EN设定为 1,PB3 会自动成为输出脚。BZ1 的频率是由寄存器BZ1FSEL[3:0] (BZ1CR[3:0]) 决定,可以选择从定时器 1 输出或预分频器 1 输出。当BZ1FSEL[3]为 0,预分频器 1 输出被选择来产生BZ1 输出。当BZ1FSEL[3]为 1,定时器 1 输出被选来产生BZ1 输出。预分频比的范围是 1:2 到 1:256。蜂鸣器 1 结构框图如下所示:

图 19 蜂鸣器 1 结构框图

注意: PB3 复用引脚输出优先级为 PWM1 输出 > 蜂鸣器 1 输出。

3.8 Timer2/PWM2/Buzzer2

定时器 2 是具有预分频器 2 的 10 位下数定时器,其预分频比是可编程的。定时器 2 的输出可以被用于产生PWM2 输出与蜂鸣器 2 输出。写入定时器 2 高 2 位(TMRH[7:6])再写入TMR2[7:0]时,就可更新定时器 2 重载缓存寄存器。当T2EN=0 时,定时器 2 重载缓存寄存器会立即写入定时器 2。当T2EN=1 时,会等到定时器 2 下溢后,定时器 2 重载缓存寄存器才会写入定时器 2。读取寄存器TMR2[9:0]会显示定时器 2 目前计数数值的内容。

58

定时器 2 的结构框图如下图所示:

图 20 定时器 2 结构框图

定时器 2 的操作可以由寄存器T2EN(T2CR1[0])开启或关闭。开启定时器 2 后,寄存器T2CS(T2CR2[5])可决定时钟源是指令时钟F_{INST}或外部时钟EX_CKI1。当T2CS为 0,指令时钟会被选择当做时钟源。当T2CS为 1,则是EX_CKI1 当做时钟源。当EX_CKI1 被选取,寄存器控制位T2CE(T2CR2[4])可决定EX_CKI1 的时钟触发沿。当T2CE是 1,EX_CKI1 的上升沿将让定时器 2 计数减一。当T2CE是 0,EX_CKI1 的下降沿将让定时器 2 计数减一。定时器 2 时钟源可以由预分频器 2 所分频。寄存器/PS2EN(T2CR2[3])为 0,可开启预分频器 2。寄存器PS2SEL[2:0](T2CR2[2:0])可以决定其预分频比从 1:2 到 1:256。预分频器 2 的目前数值可以由读取寄存器PS2CV取得。

定时器 2 提供两种计数模式:单次计数与连续计数。当寄存器T2OS(T2CR1[2])为 1,即为单次计数模式。定时器 2 从储存在寄存器TMR2[9:0]的初始值下数到 0x00,当下溢发生时,定时器 2 停止计数。当寄存器T2OS(T2CR1[2])为 0,即为连续计数模式。当下溢发生,寄存器T2RL(T2CR1[1])会决定计数的初始值。当T2RL为 1,定时器 2 从寄存器TMR2[9:0]重新载入数值作为初始值并继续下数。当T2RL为 0,定时器 2 以 0x3FF作为初始值并继续下数。

当定时器 2 下溢,寄存器T2IF (INTF[5]) 会被设定为 1,标明定时器 2 发生下溢中断。如果寄存器T2IE (INTE[5])与GIE同时设定为 1,会发生中断请求且执行中断服务程序。直到程序写入 0 到T2IF, T2IF才会被清除。

定时器2时序图如下图所示:

图 21 定时器 2 时序图

59

当寄存器PWM2OEN(T2CR1[7])设定为 1, PB2 为PWM2 输出。当PWM2OEN为 1, PB2 会自动成为输出脚。PWM2 输出的有效状态是由寄存器PWM2OAL(T2CR1[6])决定。当PWM2OAL为 1, PWM2 为低电平有效输出;PWM2OAL为 0, PWM2 为高电平有效输出。

PWM2 的占空比与帧率皆可编程的。占空比是由寄存器TMRH[3:2]和PWM2DUTY[7:0]决定。当PWM2DUTY[9:0]为 0, PWM2 无法输出占空比。当PWM2DUTY[9:0]为 0x3FF, PWM2 将输出 1023/1024 的占空比(当PWM2OAL为 0)。帧率是由TMRH[7:6] +TMR2[7:0]初始值所决定。因此,PWM2DUTY[9:0]数值必须小于或等于TMR2[9:0]。 先写入PWM2 高 2 位(TMRH[3:2])再写入PWM2DUTY[7:0]时,就可更新PWM2DUTY[9:0]重载缓存寄存器。等到定时器 2 下溢后,PWM2DUTY[9:0]重载缓存寄存器才会写入PWM2DUTY[9:0]。

PWM2 的结构框图如下:

图 22 PWM2 结构框图

当寄存器BZ2EN(BZ2CR1[7])设定成 1 且使能配置字节,PB2 为蜂鸣器 2 输出。当BZ2EN设定为 1,PB2 会自动成为输出脚。BZ2 的频率是由寄存器BZ2FSEL[3:0](BZ2CR[3:0])决定,可以选择从定时器 2 输出或预分频器 2 输出。当BZ2FSEL[3]为 0,预分频器 2 输出被选择来产生BZ2 输出。当BZ2FSEL[3]为 1,定时器 2 输出被选来产生BZ2 输出。预分频比的范围是 1:2 到 1:256。蜂鸣器 2 结构框图如下所示:

图 23 蜂鸣器 2 结构框图

60

注意: PB2 复用引脚输出优先级为 PWM2 输出 > 蜂鸣器 2 输出。

3.9 定时器 3/PWM3/Buzzer3

定时器 3 是具有预分频器 3 的 10 位下数定时器,其预分频比是可编程的。定时器 3 的输出可以被用于产生PWM3 输出。写入定时器 3 高 2 位(TM3RH[5:4])再写入TMR3[7:0]时,就可更新定时器 3 重载缓存寄存器。当T3EN=0 时,定时器 3 重载缓存寄存器会立即写入定时器 3。当T3EN=1 时,会等到定时器 3 下溢后,定时器 3 重载缓存寄存器才会写入定时器 3。读取寄存器TMR3[9:0]会显示定时器 3 目前计数数值的内容。

定时器 3 的结构框图如下图所示:

图 24 定时器 3 结构框图

定时器 3 的操作可以由寄存器T3EN(T3CR1[0])开启或关闭。开启定时器 3 后,寄存器T3CS(T3CR2[5])可决定时钟源是指令时钟F_{INST}或外部时钟EX_CKI1。当T3CS为 0,指令时钟会被选择当做时钟源。当T3CS为 1,则是EX_CKI1 当做时钟源。当EX_CKI1 被选取,寄存器控制位T3CE(T3CR2[4])可决定EX_CKI1 的时钟触发沿。当T3CE是 1,EX_CKI1 的上升沿将让定时器 3 计数减一。当T3CE是 0,EX_CKI1 的下降沿将让定时器 3 计数减一。定时器 3 时钟源可以由预分频器 3 所分频。寄存器 /PS3EN(T3CR2[3])为 0,可开启预分频器 3。寄存器 PS3SEL[2:0](T3CR2[2:0])可以决定其预分频比从 1:2 到 1:256。预分频器 3 的目前数值可以由读取寄存器PS3CV取得。

定时器 3 提供两种计数模式:单次计数与连续计数。当寄存器T3OS(T3CR1[2])为 1,即为单次计数模式。定时器 3 从储存在寄存器TMR3[9:0]的初始值下数到 0x00,当下溢发生时,定时器 3 停止计数。当寄存器T3OS(T3CR1[2])为 0,即为连续计数模式。当下溢发生,寄存器T3RL(T3CR1[1])会决定计数的初始值。当T3RL为 1,定时器 3 从寄存器TMR3[9:0]重新载入数值作为初始值并继续下数。当T3RL为 0,定时器 3 以 0x3FF作为初始值并继续下数。

当定时器 3 下溢, 寄存器T3IF(INTE2[4])会被设定为 1, 标明定时器 3 发生下溢中断。如果寄存器T3IE(INTE2[0])与GIE同时设定为 1, 会发生中断请求且执行中断服务程序。直到程序写入 0 到T3IF, T3IF才会被清除。

61

定时器 3 时序图如下图所示:

图 25 定时器 3 结构框图

当寄存器PWM3OEN(T3CR1[7])设定为 1, PA2 为PWM3 输出。当PWM3OEN为 1, PA2 会自动成为输出脚。PWM3 输出的有效状态是由寄存器PWM3OAL(T3CR1[6])决定。当PWM3OAL为 1, PWM3 为低电平有效输出;PWM3OAL为 0, PWM3 为高电平有效输出。

PWM3 的占空比与帧率皆可编程的。占空比是由寄存器 TM3RH[1:0]和 PWM3DUTY[7:0]决定。先写当 PWM3DUTY[9:0]为 0,PWM3 无法输出占空比。当PWM3DUTY[9:0]为 0x3FF,PWM3 将输出 1023/1024 的占空比(当PWM3OAL为 0)。帧率是由TM3RH[5:4] +TMR3[7:0]初始值所决定。因此,PWM3DUTY[9:0]数值必须小于或等于 TMR3[9:0]。先写入 PWM3 高 2 位(TM3RH[1:0])再写入 PWM3DUTY[7:0]时,就可更新 PWM3DUTY[9:0]重载缓存寄存器。等到定时器 3 下溢后,PWM3DUTY[9:0]重载缓存寄存器才会写入 PWM3DUTY[9:0]。

PWM3 的结构框图如下:

图 26 PWM3 结构框图

当寄存器BZ3EN(BZ3CR1[7])设定成 1 且使能配置字节,PA2 为蜂鸣器 3 输出。当BZ3EN设定为 1,PA2 会自动成为输出脚。BZ3 的频率是由寄存器BZ3FSEL[3:0](BZ3CR[3:0])决定,可以选择从定时器 3 输出或预分频器 3 输出。当BZ3FSEL[3]为 0,预分频器 3 输出被选择来产生BZ3 输出。当BZ3FSEL[3]为 1,定时器 3 输出被选来产生BZ3 输出。预分频比的范围是 1:2 到 1:256。蜂鸣器 3 结构框图如下所示:

图 27 蜂鸣器 3 结构框图

3.10 电阻/频率转换器模式 (RFC)

NY8B062D内置RFC功能,当开启RFC功能(RFCEN=1),选择的RFC输入引脚的电压位准将会控制定时器 1 的 计数行为。只要RFC输入引脚电压低于 V_{IL} ,定时器 1 将会持续计数,等到RFC输入引脚电压高于 V_{IH} ,定时器 1 才会停止计数。PSEL3~0 用来选择RFC输入引脚。

如下图,当PSEL3~0=0x01,PA1为RFC输入引脚。首先设置PA1输出 0(低于 V_{IL}),接着设置TMR1[9:0]初始值后将PA1设置为输入引脚,定时器 1会开始下数。这时RC电路开始对PA1引脚充电。当PA1引脚电压高于 V_{IH} 时,定时器 1会停止计数。定时器 1相当于记录RC电路充电时间。

图 28 RFC结构框图

63

3.11 IR Carrier

寄存器IREN(IRCR[0])被设定为 1 后,PB1 为红外线载波输出,而PB1 会自动成为输出脚。当IREN清零,PB1 将会成为一般I/O脚。

红外线载波频率是由寄存器IRF57K(IRCR[1])所选择。当IRF57K为 1,红外线载波频率是 57KHz。当IRF57K为 0,频率是 38KHz。红外线载波输出是以高速振荡时钟除频得来。如果使用外置晶振 3.58MHz当作高速振荡时钟来源,寄存器IROSC358M(IRCR[7])请设为 1。如果使用外置晶振 455KHz当作高速振荡时钟来源,寄存器IROSC358M(IRCR[7])请设为 0。若选择I_HRC当作高速振荡时钟来源,此时IR模块时钟永远是 4MHz,IROSC358M(IRCR[7])将被忽略。

红外线载波的极性会根据PB1输出数据所决定。当寄存器IRCSEL(IRCR[2])为 1 且PB1输出数据为 0, 红外线载波将由PB1输出。当寄存器IRCSEL(IRCR[2])为 0 且PB1输出数据为 1, 红外线载波将由PB1输出。红外线载波的极性如下图所示:

图 29 红外线载波的极性 vs. PB1 数据

3.12 低电压侦测(LVD)

NY8B062D内置准确的低电压侦测电路来侦测VDD电压水平。将LVDEN设为 1(寄存器PCON[5])后,当VDD电压低于下表LVDS[2:0]选择的电压值时,读取LVDOUT(寄存器PCON1[6])会得到 0。如果开启LVD中断使能位且GIE=1时,LVD中断标志位将会被设置为 1,程序将跳入中断子程序。

图 30 LVD结构框图

64

LVDS[2:0]	Voltage
000	2.0V
001	2.2V
010	2.4V
011	2.7V
100	3.0V
101	3.3V
110	3.6V
111	4.3V

表 22 选择LVD电压

3.13 电压比较器

NY8B062D内置一组电压比较器。比较器的正输入源与负输入源和GPIO口复用,内部参考电压只能在P2V模式下提供给比较器的负输入源使用。

CMPEN(寄存器ANAEN[7])用来开启或关闭比较器,在睡眠模式(Halt mode)中比较器将自动关闭。

NY8B062D的电压比较器有P2V或P2P两种模式,由VS[3:0](寄存器CMPCR[3:0])来选择。当VS[3:0]=0,比较器为P2P模式。当VS[3:0]=1~15,比较器为P2V模式。比较器正/负输入源如果为GPIO复用引脚,必须在配置字节(Configuration Word)中勾选为"Comparator input"。

P2V模式硬件图框入下图所示:

图 31 比较器P2V模式结构框图

65

在P2V模式中,比较器负输入源由VS[3:0]用来选择内部参考电压 1/16 VDD~15/16 VDD。

VS[3:0]	内部参考电压
0000	P2P mode
0001	1/16 V _{DD}
0010	2/16 V _{DD}
0011	3/16 V _{DD}
0100	4/16 V _{DD}
0101	5/16 V _{DD}
0110	6/16 V _{DD}
0111	7/16 V _{DD}
1000	8/16 V _{DD}
1001	9/16 V _{DD}
1010	10/16 V _{DD}
1011	11/16 V _{DD}
1100	12/16 V _{DD}
1101	13/16 V _{DD}
1110	14/16 V _{DD}
1111	15/16 V _{DD}

表 23 选择P2V模式中比较器负输入源的内部参考电压

在P2V模式中,比较器正输入源由PS[3:0](寄存器CMPCR[7:4])用来选择PA3~0中一根引脚。

PS[3:0]	引脚选择		
0000	PA0		
0001	PA1		
0010	PA2		
0011	PA3		
0100 ~ 1111	-		

表 24 P2V模式中比较器正输入源引脚选择

P2P模式中,比较器正/负输入源都为外部引脚。须设置VS[3:0]=0,由PS[3:0]来选择 4 种外部输入引脚组合。

66

图 32 比较器P2P模式结构框图

PS[3:0]	负输入源	正输入源	
0000	PA0	PA1	
0001	PA1	PA0	
0010	PA2	PA3	
0011	PA3	PA2	
0100~1111	-	-	

表 25 比较器P2P模式输入源引脚选择

有三种方式可以取得比较器的比较结果。一是通过硬件中断设置,二是查询 CMPOUT (寄存器 OSCCR[7]),是由 CMPO 引脚 (PB3) 输出。

使用比较器硬件中断功能时,须设置 CMPEN=1 与 CMPIE=1。先读取 CMPOUT (寄存器 OSCCR[7])来清除上一次比较器比较结果,再清除中断标志位 CMPIF=0。等到下一次比较器输出翻转时,CMPIF 中断标志位将会被设置为 1。

设置 CMPOE (寄存器 OSCCR[6]) 为 1, PB3 引脚将实时输出比较器结果,此时 PWM1 会自动关闭。

3.14 ADC模数转换器

NY8B062D提供 11+1 通道 12 位ADC模数转换器。可将模拟信号转换为 12 位数字值。ADC参考电压可选外部引脚PAO 输入或由内部VDD,4V,3V,2V提供。共有十一个外部模拟输入通道PAO~PA4 引脚与PBO~PB5,也可选择内部 1/4VDD为模拟输入通道。ADC时钟(ADCLK)能够选择 Fcpu/1,Fcpu/2,Fcpu/8 或Fcpu/16 四种。ADC 采样时间可选择为 1 个ADCLK,2 个ADCLK,4 个ADCLK或 8 个ADCLK四种。先设置ADEN=1(寄存器ADMD[7])后须等待 256us,再将START(寄存器ADMD[6])写 1 来启动ADC模数转换。读取寄存器EOC=0(寄存器ADMD[5])表示ADC还在转换中,EOC=1 表示ADC已完成一次模数转换。如果寄存器ADIE=1(寄存器ADR[6])与GIE设置

67

为 1,在EOC自动从 0→1 后,中断标志ADIF (寄存器ADR[7])位将被硬件设为 1 并处理此中断请求。结构框图如下:

图 33 ADC结构框图

68

3.14.1 ADC 参考电压

ADC可选 5 种参考电压,可由寄存器ADVREFH来设置。当EVHENB=1(寄存器ADVREFH[7]),ADC参考电压由引脚 PA0 提供。PA0 输入的参考电压水平必须在VDD~2V之间。当EVHENB=0,ADC参考电压由VHS[1:0](寄存器ADVREFH[1:0])决定。如果VHS[1:0] =11,ADC参考电压为VDD。如果VHS[1:0] =10,ADC参考电压为内部 4V。如果VHS[1:0] =01,ADC参考电压为内部 3V。如果VHS[1:0] =00,ADC参考电压为内部 2V。引脚VDD电压水平不得低于选择的ADC内部参考电压(4V / 3V / 2V)。ADC模拟输入电压水平不得低于引脚 VSS电压,且不得高于ADC的参考电压。

EVHENB	VHS[1:0]	参考电压	
1	хх	PA0	
0	11	VDD	
0	0 10 4V		
0	0 1	3V	
0	0 0	2V	

表 26 选择ADC参考电压

3.14.2 ADC 模拟输入通道

ADC依据CHS[2:0]与GCHS来选择模拟输入通道。GCHS为所有模拟输入通道的总开关,任何模拟输入通道在转换前必须将GCHS设置为 1。

GCHS	CHS[3:0] ADC模拟输入通道		
0	xxxx	Х	
1	0000	PA0	
1	0001 PA1		
1	1 0010 PA2		
1	0011 PA3		
1	0100	PA4	
1	0101	PB0	
1	0110	PB1	
1	0111	PB2	
1	1000 PB3		
1	1001	PB4	
1	1010	PB5	
1	1011	1 / 4 * VDD	
1	11xx	N.A.	

表 27 ADC模拟输入通道选择

ADC模拟输入通道与数字I/O引脚共享。写"0"到寄存器PACON在待机或睡眠模式下,模拟信号会增加该引脚上的数字输入口的功耗。写 1 到寄存器PACON会关闭相应位引脚的数字输入口功能以节省待机或睡眠模式时的功耗。

使用者写 1 到寄存器PACON[0:4]为关闭PA[0:4]引脚的数字输入口功能,写 1 到寄存器PACON[5:7]为关闭 PB[0:2]引脚的数字输入口功能,写 1 到寄存器ADCR[4:6]为关闭PB[3:5]引脚的数字输入口功能。还必须确认该引脚内部上拉/下拉电阻是否关闭,开启内部上拉/下拉电阻会影响该引脚ADC模拟输入信号。

3.14.3 ADC 时钟(ADCLK),采样时钟(SHCLK)与位数选择

ADC转换时间是根据ADC时钟(ADCLK),采样时间(1/SHCLK)与ADC位数所计算出来的。较长的采样时间(1/SHCLK)能采样到更精确的模拟输入信号,但会增加ADC转换时间。寄存器ADCR[1:0]为选择ADC位数。选择较少的ADC位数能减少ADC转换时间,选择较多的ADC位数能增加模数转换的精准度。

69

寄存器ADCK[1:0]选择ADC时钟频率。

ADCK[1:0]	ADC时钟频率			
0 0	Fcpu/16			
0 1	Fcpu/8			
1 0	Fcpu/1			
1 1	Fcpu/2			

表 28 ADC时钟选择

寄存器SHCK[1:0]选择ADC采样时间。

SHCK[1:0]	ADC采样时间			
0 0	1 个ADC时钟周期			
0 1	2个ADC时钟周期			
1 0	4 个ADC时钟周期			
1 1	8 个ADC时钟周期			

表 29 ADC采样时间选择

寄存器ADCR[1:0]选择ADC位数。

ADCR[1:0]	ADC位数
0 0	8 位
0 1	10 位
1 x	12 位

表 30 ADC位数选择

ADC转换时间从START(寄存器ADMD[6])写 1 开始一直到EOC从 0→1 为止。

ADC 转换时间 ≈ ADC 采样时间 + (ADC 位数 +2) * ADC 时钟周期。

下表为ADC在不同条件下的转换时间与转换周期。

ADO Character	ADC时钟频率	率 ADC采样时间 AD	ADC转换时间	Fcpu=2MHz		Fcpu=250K	
ADC位数 (ADCLK) (SHCLK)	(ADC时钟数)	转换时间	转换率	转换时间	转换率		
12	Fcpu/16	8 个ADCLK	22	176us	5.68kHz	1408us	710Hz
12	Fcpu/1	1 个ADCLK	15	7.5us	133.3kHz	60us	16.7kHz
10	Fcpu/1	1 个ADCLK	13	6.5us	153.8kHz	52us	19.2kHz
8	Fcpu/1	1 个ADCLK	11	5.5us	181.8kHz	44us	22.7kHz

表 31 ADC转换时间与转换率

3.14.4 ADC 操作顺序

依序设定ADC时钟(ADCLK),ADC采样时间,ADC位数,ADC参考电压(寄存器ADVREFH),选择模拟输入通道并将寄存器PACON相应位设置为 1,再将GCHS位(寄存器ADMD[4])与ADEN位(寄存器ADMD[7])设置为 1。

在ADEN设置为 1 后必须等待 256us (ADC电路启动时间),再将START位(寄存器ADMD[6])写 1 来启动ADC模数转换。ADC转换尚未完成时,读取EOC位(寄存器ADMD[5])会得到 0。当ADC模数转换完成后会自动将EOC位设置为 1。

70

3.15 看门狗定时器 (WDT)

NY8B062D中有独立振荡器被WDT所使用。由于该振荡器与其它振荡电路无关,故在待机模式和睡眠模式中WDT 仍能继续工作。

WDT能被配置字节开启或关闭。当WDT被配置字节开启时,仍然可以通过WDTEN位(寄存器PCON[7])来开启 /关闭。此外,WDT上溢后可由配置字节决定的复位NY8B062D或发出的中断请求。同时,在WDT上溢后,寄存器/TO(STATUS[4])位将被清除为 0。

WDT上溢的时基由配置字节决定,可以是 3.5 毫秒、15 毫秒、60 毫秒或 250 毫秒。如果将预分频器 0 分配给WDT,则可以延长上溢周期。通过将 1 写入寄存器PS0WDT位,预分频器 0 将分配给WDT。预分频器 0 对WDT的分频比由寄存器PS0SEL[2:0]位决定。如果WDT上溢将复位NY8B062D,分频速率从 1:1 到 1:128。如果选为WDT中断时,则分频速率从 1:2 到 1:256。

当预分频器 0 分配给WDT时,执行CLRWDT指令将清除WDT、预分频器 0。并设置/ TO标志位为 1。

如果用户选择WDT中断机制,在WDT上溢后,寄存器WDTIF(INTF[6])位将设置为 1。如果寄存器WDTIE(INTE [6])位和GIE位都设置为 1,则可能产生中断请求。直到程序将 0 写入WDTIF, WDTIF才会被清除为 0。

3.16 中断

NY8B062D提供二种中断:一种是软件中断,另一种是硬件中断。软件中断由执行指令INT来产生。硬件中断则有以下十一种:

- Timer0 上溢中断。
- Timer1 下溢中断。
- Timer2 下溢中断。
- Timer3 下溢中断。
- WDT中断。
- PA/PB 输入状态改变中断。
- 外部中断 0 输入。
- 外部中断 1 输入。
- 低电压侦测中断。
- ADC模数转换完成中断。
- 比较器输出翻转中断。

GIE是总中断屏蔽位,必须为 1 才能使能硬件中断功能。GIE可以通过ENI指令设置 1,通过DISI指令清除为 0。

执行完指令INT后,无论GIE是置 1 还是清除为零,下一条指令都将从地址 0x001 读取。同时,GIE将由NY8B062D自动清除为零,这将防止嵌套中断的发生。软件中断的中断服务程序最后一条指令必须是RETIE。执行此指令将设置GIE为 1 并返回中断前程序执行序列。

当发生硬件中断时,相应的中断标志位将被设置为 1。该位在程序将 0 写入该位之前不会清除为零。因此,用户可以通过轮呼相应的中断标志位得知哪个硬件引发中断。需注意只有当相应的中断使能位设置为 1 时,才能正确地读取相应的中断标志。如果相应的中断使能位设置为 1,GIE也为 1,将发生硬件中断,下一条指令将从 0x008 执行。同时,NY8B062D将自动清除寄存器GIE位为零。如果用户想要实现嵌套中断,可以使用ENI指令作为中断

71

服务程序的第一条指令,将GIE设置为 1,并允许其他中断事件再次中断NY8B062D。指令RETIE必须是中断服务程序的最后一条指令,它将GIE设置为 1 并返回中断前程序执行序列。

用户应注意ENI指令不能放在RETIE指令之前,因为中断服务程序中的ENI指令将开启嵌套中断,但RETIE指令可能会误清除中断标志。

3.16.1 Timer0 上溢中断

Timer0 上溢(从 0x00 到 0xFF),如果T0IE和GIE设置为 1,寄存器T0IF位将被硬件设为 1 并处理此中断请求。

3.16.2 Timer1 下溢中断

Timer1 下溢(从 0x3FF到 0x00),如果T1IE和GIE设置为 1,寄存器T1IF位将被硬件设为 1 并处理此中断请求。

3.16.3 Timer2 下溢中断

Timer2 下溢(从 0x3FF到 0x00),如果T2IE和GIE设置为 1,寄存器T2IF位将被硬件设为 1 并处理此中断请求。

3.16.4 Timer3 下溢中断

Timer3 下溢(从 0x3FF到 0x00),如果T3IE和GIE设置为 1,寄存器T3IF位将被硬件设为 1 并处理此中断请求。

3.16.5 看门狗超时中断

当WDT上溢且配置字节选择WDT超时中断时,如果WDTIE和GIE设置为 1, 寄存器WDTIF位将被硬件设为 1 并将处理此中断请求。

3.16.6 PA/PB 输入状态改变中断

当PAx($0 \le x \le 7$),PBy($0 \le y \le 5$)设置为输入口且相应的寄存器WUPAx、WUPBx位设置为 1,且如果PABIE和GIE设置为 1,当这些选定输入口上的状态变化时,寄存器PABIF位将被硬件设为 1 并处理此中断请求。需注意当PB0、PB1 同时设置为状态变化中断和外部中断时,设置EIS0=1 或EIS1=1 将禁止PB0、PB1 状态变化中断。

3.16.7 外部中断 0 输入

根据EIS0=1 和寄存器INTEDG的配置,如果INT0IE和GIE设置为 1, PB0 引脚上的有效边沿触发会让寄存器INT0IF位将被硬件设为 1 并处理此中断请求。

3.16.8 外部中断 1 输入

根据EIS1=1 和寄存器INTEDG的配置,如果INT1IE和GIE设置为 1, PB1 引脚上的有效边沿沿触发会让寄存器INT1IF位将被硬件设为 1 并处理此中断请求。

72

3.16.9 低电压侦测中断

当VDD电压水平低于LVD电压,读取LVDOUT(寄存器PCON1[6])会得到 0。如果LVDIE和GIE设置为 1,寄存器LVDIF位将被硬件设为 1 并处理此中断请求。

3.16.10 比较器输出翻转中断

当比较器输出状态翻转时,如果CMPIE和GIE设置为 1,寄存器CMPIF位将被硬件设为 1 并处理此中断请求。请先读取CMPOUT(寄存器OSCCR[7])来清除上一次比较器比较结果。

3.16.11 ADC 模数转换完成中断

当ADC模数转换完成时,如果ADIE和GIE设置为 1,寄存器ADIF位将被硬件设为 1 并处理此中断请求。

3.17 振荡器配置

因为NY8B062D是双时钟IC,有高振荡时钟(F_{HOSC})和低振动时钟(F_{LOSC})可选择作为系统振荡时钟(F_{OSC})。可用作 F_{HOSC} 的振荡器有内部高速RC振荡器(I_{LRC})、外部高速晶体振荡器(E_{LXT})与外部晶体振荡器(E_{LXT})。可用作 F_{LOSC} 的振荡器是内部低速RC振荡器(I_{LRC})与外部低速晶体振荡器(E_{LXT})。

图 34 NY8B062D 振荡配置结构图

73

系统时钟频率可由配置字节设置为I_HRC,可以选择的频率为 1M、2M、4M、8M、16M或 20MHz。此时PA7 引脚也可以输出指令时钟。外部晶体振荡器连接引脚为PA6(Xin)与PA7(Xout)。如果外部晶体振荡器是 8MHz 到 20MHz,配置字节请选择E_HXT。如果外部晶体振荡器是 455KHz到 6MHz,配置字节请选择E_XT。

当配置字节选择I_LRC时, 其频率约为 32768Hz。如果需要使用低速晶体振荡器, 只能是 32768Hz晶体振荡器, 配置字节请选择E LXT。

No.	F _{HOSC}	F _{LOSC}
1	I_HRC	I_LRC
2	E_HXT 或 E_XT	I_LRC
3	I_HRC	E_LXT

表 32 双时钟组合

当使用外部晶体振荡器时,建议在Xin与Xout引脚各自接一颗电容器C1 和C2 到VSS, C1 和C2 数值请参考下表

振荡模式	振荡频率(Hz)	C1, C2 (pF)
	16M	5 ~ 10
E_HXT	10M	5 ~ 30
	8M	5 ~ 20
	4M	5 ~ 30
E_XT	1M	5 ~ 30
	455K	10 ~ 100
E_LXT	32768	5 ~ 30

表 33 不同外部晶体振荡器频率所推荐的C1 和C2 电容器数值

为得到精准且稳定的 32768Hz频率,选择正确的C1 和C2 电容器数值是相当重要的。每家晶振厂商数据手册中都有记载低速晶体振荡器的负载电容值(CL),外接C1 和C2 电容器数值的计算如下公式:

C1=C2=2*CL-Cbt

其中Cbt是NY8B062D内部电容值,大约为 5pF。假设低速晶体振荡器的负载电容值CL=12.5pF,依公式算出的C1=C2=20pF。

74

I_HRC在 25°C条件下的准确度为 ±1%。

图 35 外部晶体振荡器的硬件连接图

根据寄存器SELHOSC(OSCCR [0])位的值,可以选择 F_{HOSC} 或 F_{LOSC} 作为系统振荡时钟 F_{OSC} 。当SELHOSC为 1 时,选择 F_{HOSC} 作为 F_{OSC} 。当SELHOSC为 0 时,选择 F_{LOSC} 作为 F_{OSC} 。一旦确定 F_{OSC} ,根据配置字节设置,指令时钟可以选择为 F_{OSC} /2 或 F_{OSC} /4。

3.18 工作模式

NY8B062D提供了四种操作方式来定制各种应用和节省电力消耗,分别是正常模式、慢速模式、待机模式和睡眠模式。正常模式被指定为高速运行模式,慢速模式被指定为低速模式,以节省功耗。在待机模式下,NY8B062D将停止几乎所有的运作,可由定时器、ADC、比较器、LVD、看门狗与外部事件等来唤醒。在睡眠模式下,NY8B062D将睡眠直到外部事件或看门狗定时器来唤醒。

75

四种工作模式如下图所示。

图 36 四种工作模式

76

3.18.1 正常模式

发生任何复位事件并且复位过程完成后,NY8B062D将在正常模式或慢速模式下开始执行程序。重置过程后选择的模式由启动时钟配置字节决定。如果启动时钟为F_{HOSC},NY8B062D将进入正常模式,如果启动时钟为F_{LOSC},NY8B062D将进入慢速模式。在正常模式下,为提供最高性能而以F_{HOSC}作为系统振荡时钟,其功耗在四种操作模式中将是最大的。在上电或任何重置触发器被释放后,待复位程序完成NY8B062D将进入正常模式。

- 指令的执行是基于F_{HOSC}且所有硬件功能可以根据相应的硬件使能位来开启/关闭。
- F_{LOSC}仍运行。
- IC可由写 0 至寄存器SELHOSC(OSCCR[0])位切换为慢速模式。
- IC可通过寄存器OPMD[1:0](OSCCR[3:2])位切换为待机或睡眠模式。
- 关于实时时钟的应用,NY8B062D在运行正常模式时可同时将低频振荡时钟设为Timer0 的时钟源,这是通过设置LCKTM0 为 1 和配置字节中Timer0 时钟源来实现。

3.18.2 慢速模式

通过写 0 至寄存器SELHOSC位,NY8B062D将进入慢速模式。在低速模式下,为节省功耗, F_{LOSC} 被选为系统振荡时钟。然而, F_{HOSC} 将不会自动被NY8B062D关闭。因此在慢速模式下,用户可写 1 至寄存器STPHOSC(OSCCR[1])位来停止 F_{HOSC} 进一步降低功耗。但需注意的是,禁止进入慢速模式同时停止 F_{HOSC} ,必须先进入慢速模式,然后关闭 F_{HOSC} 。

- 指令执行是基于F_{Losc}且所有硬件功能可以根据相应的硬件使能位来开启/关闭。
- 通过写 1 至寄存器STPHOSC位,F_{HOSC}可以被停止。
- IC可通过寄存器OPMD[1:0]位切换为待机模式或睡眠模式。
- IC可通过写 1 至寄存器SELHOSC切换到正常模式。

3.18.3 待机模式

通过写入 10b至寄存器OPMD[1:0], NY8B062D将进入待机模式。然而,在待机模式下,F_{HOSC}不会自动被 NY8B062D关闭,用户必须进入先低速模式后写入 1 至寄存器STPHOSC位,以停止F_{HOSC}。部分NY8B062D的硬件功能会被关闭,如T0EN / T1EN / T2EN / T3EN位被设置为 1 则定时器仍可运作。因此Timer0 / Timer1 / Timer2 / Timer3 溢出后NY8B062D会被唤醒。

- 停止执行指令且一些硬件功能可以根据相应的硬件使能位来开启/关闭。
- 由写入 1 至寄存器STPHOSC位F_{HOSC}可以被关闭。
- FLOSC仍保持运作。
- 如遇以下任一状况IC便能从待机模式唤醒: (a)Timer0 上溢中断 / Timer1 下溢中断 / Timer2 下溢中断 / Timer3 下溢中断 (b)看门狗超时中断
 - (c)PA/PB输入状态改变中断 (d)外部中断 0/1 (e)LVD中断 (f)比较器输出翻转中断 (g)ADC模数转换中断。
- 在从待机模式唤醒后,如SELHOSC=1,IC将回到正常模式,如SELHOSC=0则IC将回到慢速模式。

77

● 不建议在同一时间进入待机模式并改变振荡模式(正常到慢速/慢速到正常)。

3.18.4 睡眠模式

通过执行SLEEP指令或写入 01b至寄存器OPMD[1:0]位,NY8B062D将进入睡眠模式。在进入睡眠模式后,寄存器/PD(STATUS[3])位将清除为 0,寄存器/TO(STATUS[4])位将设置为 1 且清除WDT并保持运作。

在睡眠模式下,所有硬件功能是被关闭的,停止指令执行且NY8B062D只能通过一些特殊事件唤醒。因此,睡眠模式是NY8B062D最省电的模式。

- 指令执行停止,所有硬件功能关闭。
- F_{HOSC}和F_{LOSC}两者都自动关闭。
- 如遇以下任一状况IC便能从睡眠模式中唤醒: (a)看门狗超时中断 (b)PA/PB输入状态改变中断 (c)INT0/1 外部中断。
- 从睡眠模式唤醒后,如SELHOSC=1,IC将回到正常模式,如SELHOSC=0则IC将回到慢速模式。 注意: 您可以在同一指令中更改STPHOSC并进入睡眠模式。
- 不建议改变振荡模式(正常到慢速/慢速到正常),并在同一时间进入待机模式。

3.18.5 唤醒稳定时间

若外部晶体振荡器为系统振荡时钟来源,其睡眠模式的唤醒等待时间为 512*Fosc, 若内部RC振荡器为系统振荡时钟来源,其睡眠模式的唤醒等待时间为 16*Fosc, 由于待机模式下F_{HOSC}或F_{LOSC}仍在运行, 因此无需为待机模式唤醒稳定时间。

在NY8B062D进入待机模式或睡眠模式之前,用户可以执行指令ENI。在唤醒后,NY8B062D将跳转到地址0x008,以便执行中断服务程序。如果在进入待机模式或睡眠模式之前执行DISI指令,则在唤醒后执行下一条指令。

3.18.6 工作模式概述

四种工作模式概述如下:

模式	正常模式	慢速模式	待机模式	睡眠模式
F _{HOSC}	使能	STPHOSC	STPHOSC	关闭
F _{LOSC}	使能	使能	使能	关闭
指令执行	执行	执行	停止	停止
计时器 0/1/2/3	TxEN	TxEN	TxEN	关闭
WDT	配置和WDTEN	配置和WDTEN	配置和WDTEN	配置和WDTEN
其它硬件	硬件使能位	硬件使能位	硬件使能位	全部关闭
唤醒源	-	-	- Timer0 上溢 - Timer1/2/3 下溢 - ADC中断 - WDT超时 - PA/PB输入状态改变 -外部中断 0/1 - LVD中断 - 比较器中断	- WDT超时 - PA/PB输入状态改变 -外部中断 0/1

表 34 工作模式概述

78

3.19 复位

当以下任一复位事件发生时, NY8B062D将会进入复位状态并开始复位动作:

- 当VDD检测到上升沿时为上电复位。
- 当VDD电压低于预设的LVR电压时,为LVR复位。
- RSTb引脚为低电平。
- WDT超时复位。

此外,所有寄存器如果初始值未知时,寄存器将会被初始化为初始值或保持不变。状态位/TO和/PD可以根据复位事件来初始化。/TO和/PD的值及其相关的事件概述如下。

事件	/ТО	/PD
POR, BOR, LVR	1	1
非睡眠模式时发生RSTb复位	不变	不变
睡眠模式时发生RSTb复位	1	1
非睡眠模式时发生WDT复位	0	1
睡眠模式时发生WDT复位	0	0
执行SLEEP指令	1	0
执行CLRWDT指令	1	1

表 35 /TO和/PD值和相关事件概述

复位事件发生后,NY8B062D将会开始复位进程。无论采用什么样的振荡器,它将等待一定的周期使振荡稳定。这个周期被称为上电复位时间,它由三位配置字节决定,这个时间可能是 140us,4.5ms,18ms,72ms或 288 ms。振荡器稳定后,NY8B062D将等待 Fosc 的 16 个时钟周期(OST,振荡器启动时间)后完成复位。若上电复位时间设为 140us时,将等待 Fosc 的 1 个时钟周期后完成复位。

图 37 芯片复位电路框图

79

如果VDD缓慢上升,建议使用RSTb复位功能,如下图。

- 建议R阻值不大于 40KΩ。
- R1 值= 100Ω ~ $1K\Omega$ 时,将阻止过大电流,ESD或电气过载信号进入复位引脚。
- 二极管D使电容C能在VDD下电时快速放电。

图 38 外部上电复位硬件连接图

80

4. 指令设置

NY8B062D为各种应用程序提供了 55 个强大的指令。

# A	助记符		7½ HD	田中中本	影响
指令	1	2	说明	周期数	标志
算术指令					
ANDAR	R	d	dest = ACC & R	1	Z
IORAR	R	d	dest = ACC R	1	Z
XORAR	R	d	dest = ACC ⊕ R	1	Z
ANDIA	i		ACC = ACC & i	1	Z
IORIA	i		ACC = ACC i	1	Z
XORIA	i		ACC = ACC ⊕ i	1	Z
RRR	R	d	Rotate right R	1	С
RLR	R	d	Rotate left R	1	С
BSR	R	bit	Set bit in R	1	-
BCR	R	bit	Clear bit in R	1	-
INCR	R	d	Increase R	1	Z
DECR	R	d	Decrease R	1	Z
COMR	R	d	dest = ~R	1	Z
条件指令					
BTRSC	R	bit	Test bit in R, skip if clear	1 or 2	i
BTRSS	R	bit	Test bit in R, skip if set	1 or 2	i
INCRSZ	R	d	Increase R, skip if 0	1 or 2	
DECRSZ	R	d	Decrease R, skip if 0	1 or 2	-
数据传送指	74				
MOVAR	R		Move ACC to R	1	-
MOVR	R	d	Move R	1	Z
MOVIA	i		Move immediate to ACC	1	-
SWAPR	R	d	Swap halves R	1	-
IOST	F		Load ACC to F-page SFR	1	-
IOSTR	F		Move F-page SFR to ACC	1	-
SFUN	S		Load ACC to S-page SFR	1	-
SFUNR	S		Move S-page SFR to ACC	1	-
TOMD			Load ACC to T0MD	1	-
T0MDR			Move T0MD to ACC	1	-
TABLEA			Read ROM	2	-

A A4.	助ü	己符	符		BANGE I	
指令	1	2	说明	周期数	影响标志	
算术指令						
ADDAR	R	d	dest = R + ACC	1	Z, DC, C	
SUBAR	R	d	dest = R + (~ACC)	1	z, DC, C	
ADCAR	R	d	dest = R + ACC + C	1	z, dc, c	
SBCAR	R	d	dest = R + (~ACC) + C	1	Z, DC, C	
ADDIA	i		ACC = I + ACC	1	Z, DC, C	
SUBIA	i		ACC = i + (~ACC)	1	Z, DC, C	
ADCIA	i		ACC = i + ACC + C	1	Z, DC, C	
SBCIA	i		ACC = i + (~ACC) + C	1	z, dc, c	
DAA			Decimal adjust for ACC	1	С	
CMPAR	R		Compare R with ACC	1	Z, C	
CLRA			Clear ACC	1	Z	
CLRR			Clear R	1	Z	
其它指令						
NOP			No operation	1	-	
SLEEP			Go into Halt mode	1	/TO, /PD	
CLRWDT			Clear Watch-Dog Timer	1	/TO, /PD	
ENI			Enable interrupt	1	-	
DISI			Disable interrupt	1	-	
INT			Software Interrupt	3	-	
RET			Return from subroutine	2	-	
DETIE	DETIE		Return from interrupt and	2		
RETIE			enable interrupt	2	-	
RETIA		i	Return, place immediate in	2		
KETIA		l	ACC		-	
CALLA			Call subroutine by ACC	2	-	
GOTOA			unconditional branch by	2	-	
LCALL	a	dr	Call subroutine	ine 2 -		
LGOTO	a	dr	unconditional branch	2	-	

表 36 指令设置

81

ACC: 累加器。

adr: 地址。

bit: R-page中 8 位寄存器的位地址。

C: 进位/借位。

C=1,加法指令有进位,减法指令无借位。

C=0,加法指令无进位,减法指令有借位。

d: 目标。

若d="0",结果存入ACC。

若d="1",结果存入R寄存器。

DC: 半字节进位/借位标记。

dest: 目标。

F: F页面特殊功能寄存器, F值为 0x5~0xF。

i: 8位立即数。

PC:程序计数器。

PCHBUF:程序计数器的高字节。

/PD:睡眠标志位。

/PD=1, 上电或CLRWDT指令执行后。

/PD=0, SLEEP指令执行后。

Prescaler: 预分频器。

R: R页面特殊功能寄存器, R值为 0x00~0x7F。

S: S页面特殊功能寄存器, S值为 0x0 ~ 0x15。

TOMD: TOMD寄存器。

TBHP: 表格指针高字节寄存器。

TBHD: 表格数据高字节寄存器。

/TO: 看门狗超时标志位。

/TO=1, 上电或执行 CLRWDT 或 SLEEP 指令后。

/TO=0,看门狗超时。

WDT: 看门狗计时器。

Z: 清零标志。

ADCAR	Add ACC and R with Carry	ADDAR	Add ACC and R
语法	ADCAR R, d	语法	ADDAR R, d
操作数	$0 \le R \le 127$ d = 0, 1	操作数	$0 \le R \le 127$ d = 0, 1
操作	$R + ACC + C \rightarrow dest$	操作	ACC + R → dest
状态影响	Z, DC, C	状态影响	Z, DC, C
说明	ACC和R带进位加法:若d="0",结果 存入ACC;若d="1",结果存入"R"。	说明	ACC和R加法: 若d="0", 结果存入 ACC; 若d="1", 结果存入"R"。
周期	1	周期	1
举例	ADCAR R, d 执行指令前: ACC=0x12, R=0x34, C=1, d=1。 执行指令后 R=0x47, ACC=0x12, C=0。	举例	ADDAR R, d 执行指令前: ACC=0x12, R=0x34, C=1, d=1 执行指令后: R=0x46, ACC=0x12, C=0。

ADCIA	Add ACC and Immediate with Carry
语法	ADCIA i
操作数	$0 \leq i < 255$
操作	$ACC + i + C \rightarrow ACC$
状态影响	Z, DC, C
说明	ACC和 8 位立即数带进位加法,结果存入ACC。
周期	1
举例	ADCIA i 执行指令前: ACC=0x12, i=0x34, C=1。 执行指令后: ACC=0x47, C=0。

ADDIA	Add ACC and Immediate
语法	ADDIA i
操作数	$0 \leq i < 255$
操作	$ACC + i \rightarrow ACC$
状态影响	Z, DC, C
说明	ACC和 8 位立即数加法,结果存入ACC。
周期	1
举例	ADDIA i 执行指令前: ACC=0x12, i=0x34, C=1。 执行指令后:
	ACC=0x46, C=0 _°

ANDAR	AND ACC and R	BCR	Clear Bit in R
语法	ANDAR R, d	语法	BCR R, bit
操作数	$0 \le R \le 127$ d = 0, 1	操作数	$\begin{array}{ll} 0 \leq R \leq 127 \\ 0 \leq \text{bit} \leq 7 \end{array}$
操作	ACC & R → dest	操作	$0 \rightarrow R[bit]$
状态影响	Z	状态影响	
说明	ACC和R做"AND"运算; 若d="0", 结	说明	将R寄存器的bit位(0~7) 清 0。
	果存入ACC; 若d="1", 结果存入"R"。	周期	1
周期	1	举例	BCR R, B2
举例	ANDAR R, d 执行指令前: ACC=0x5A, R=0xAF, d=1。 执行指令后:		执行指令前: R=0x5A, B2=0x3。 执行指令后: R=0x52。
	R=0x0A, ACC=0x5A, Z=0。		

ANDIA	AND Immediate with ACC	BSR	Set Bit in R
语法	ANDIA i	语法	BSR R, bit
操作数	$0 \leq i < 255$	操作数	$0 \le R \le 127$ $0 \le \text{bit} \le 7$
操作	ACC & i→ACC		
状态影响	Z	操作	$1 \rightarrow R[bit]$
	_	状态影响	
说明	ACC和 8 位立即数做"AND"运算。	说明	设置R寄存器的bit位为 1。
周期	1	周期	1
举例	ANDIA i	举例	BSR R, B2
	执行指令前:		执行指令前:
	ACC=0x5A, i=0xAF。		R=0x5A, B2=0x2。
	执行指令后:		执行指令后:
	ACC=0x0A, Z=0 _o		R=0x5E。

BTRSC	Test Bit in R and Skip if Clear	CALLA	Call Subroutine
语法 操作数	BTRSC R, bit $0 \le R \le 127$ $0 \le \text{bit} \le 7$	语法 操作数 操作	CALLA PC + 1 → Top of Stack
操作	Skip next instruction, if R[bit] = 0	17K I I	$\{TBHP, ACC\} \rightarrow PC$
状态影响		状态影响	
说明	位判断指令,为"0"则跳过下一条指 令。	说明	子程序调用。首先将返回地址PC+1 压入栈顶,然后将TBHP[2:0]赋值给
周期	1 or 2(跳过)		PC[10:8],将ACC赋值给PC[7:0]。
举例	BTRSC R, B2	周期	2
	指令 1 指令 2 执行指令前: R=0x5A, B2=0x2。 执行指令后: 由于R[B2]=0,则指令 1 不执行,程序直接从指令 2 开始执行。	举例	CALLA 执行指令前 TBHP =0x02, ACC =0x34, PC =A0。 Stack pointer=1。 执行指令后: PC=0x234, Stack[1]=A0+1, Stack pointer=2。

BTRSS	Test Bit in R and Skip if Set
语法	BTRSS R, bit
操作数	$0 \le R \le 127$ $0 \le bit \le 7$
操作	Skip next instruction, if R[bit] = 1
状态影响	
说明	位判断指令,为"1"则跳过下一条指 令。
周期	1 or 2(跳过)
举例	BTRSS R, B2 指令 2 指令 3
	执行指令前:
	R=0x5A, B2=0x3。
	执行指令后:
	由于R[B2]=1,则指令 2 不执行,
	直接从指令3开始执行。

CLRA	Clear ACC
语法	CLRA
操作数	
操作	00h → ACC
	1→ Z
状态影响	Z
说明	ACC清零,Z标志位置"1"。
周期	1
举例	CLRA
	执行指令前:
	ACC=0x55, Z=0。
	执行指令后:
	ACC=0x00, Z=1.

CLRR	Clear R	COMR	Complement R
语法	CLRR R	 语法	COMR R, d
操作数	$0 \le R \le 127$	操作数	$0 \le R \le 127$
操作	00h → R		d = 0, 1
IN L. Et	1→Z	操作	~R → dest
状态影响	Z	状态影响	Z
说明 周期	寄存器R清零,Z标志位置"1"。 1 CLRR R	说明	R寄存器取反,结果存入d; d="0",结果存入ACC;
举例	执行指令前: R=0x55, Z=0。 执行指令后:	周期 举例	d="1",结果存入R。 1 COMR, d
	R=0x00, Z=1。		执行指令前: R=0xA6, d=1, Z=0。 执行指令后: R=0x59, Z=0。

CLRWDT	Clear Watch-Dog Timer	CMPAR	Compare ACC and R
语法	CLRWDT	 语法	CMPAR R
操作数		操作数	$0 \le R \le 127$
操作	00h → WDT	操作	R - ACC → (No restore)
	00h→WDT预分频器(若开启)	状态影响	Z, C
	1 → /TO 1 → /PD	说明	ACC和R比较: 执行R-ACC,不改变ACC和R的值,只改变Z和C标志位。
状态影响	/TO, /PD		A00/mK的值,八区文Z和0标心应。
说明	清WDT计数器和预分频器;/TO和	周期	1
	/PD标志位置"1"。	举例	CMPAR R
周期	1	, , , ,	执行指令前:
举例	CLRWDT		R=0x34, ACC=12, Z=0, C=0.
	执行指令前:		执行指令后:
	/TO=0		R=0x34, ACC=12, Z=0, C=1。
	执行指令后:		
	/TO=1		

DAA	Convert ACC Data Format from	DECRSZ	Decrease R, Skip if 0
 语法	Hexadecimal to Decimal DAA	语法	DECRSZ R, d
操作数		操作数	0 ≤ R ≤ 127
操作状态影响	$ACC(hex) \rightarrow ACC(dec)$	操作	d = 0, 1 R - 1 \rightarrow dest, Skip if result = 0
说明	将累加器中的 16 进制数调整为十进制数,该指令必须紧跟在加法指令后。	状态影响 说明	 R 先- 1,若d="0",结果存入ACC; 若d="1",结果存入R,若结果为"0"
周期 举例	口。 1 ADDAR R, d DAA 执行指令前: ACC=0x28, R=0x25, d=0。 执行指令后: ACC=0x53, C=0。	周期 举例	后 1 , 结果存入R, 看结果为 0 则跳过下一条指令, 改为执行NOP 指令, 因此结果为"0"时要执行两个 周期。 1 or 2 (跳过) DECRSZ R, d 指令 2 指令 3 执行指令前: R=0x1, d=1, Z=0。 执行指令后: R=0x0,Z=1,操作结果为 0,指令 2 被跳过。

DECR	Decrease R	DISI	Disable Interrupt Globally
语法	DECR R, d	语法	DISI
操作数	$0 \le R \le 127$	操作数	
	d = 0, 1	操作	Disable Interrupt, $0 \rightarrow GIE$
操作	R - 1 → dest	状态影响	
状态影响	Z	说明	GIE设置为 0, 关闭总中断。
说明	R - 1,若d="0",结果存入ACC;	周期	1
	若d="1",结果存入R。	举例	DISI
周期	1		执行指令前:
举例	DECR R, d		GIE=1。 地海地岛巨
	执行指令前:		执行指令后: GIE=0。
	R=0x01, d=1, Z=0。		GIL-0°
	执行指令后:		
	R=0x00, Z=1。		

ENI	Enable Interrupt Globally	INCR	Increase R
语法	ENI	语法	INCR R, d
操作数		操作数	$0 \le R \le 127$
操作	Enable Interrupt, 1 → GIE		d = 0, 1
状态影响		操作	R + 1 → dest
说明	GIE设置为 1,开启总中断。	状态影响	Z
周期	1	说明	R+ 1,若d="0",结果存入ACC; 若d="1",结果存入R。
举例	共行指令前:	周期	1
	GIE=0。 执行指令后: GIE=1。	举例	INCR R, d 执行指令前: R=0xFF, d=1, Z=0。 执行指令后: R=0x00, Z=1。

GOTOA	Unconditional Branch	INCRSZ	Increase R, Skip if 0
语法	GOTOA	语法	INCRSZ R, d
操作数		操作数	$0 \le R \le 127$
操作	$\{TBHP, ACC\} \rightarrow PC$		d = 0, 1
状态影响		操作	R + 1 \rightarrow dest, Skip if result = 0
说明	无条件跳转指令,ACC值写入 PC[7:0] ; TBHP[2:0] 值 写 入 PC[10:8]。	状态影响 说明	 R先+ 1,若d="0",结果存入ACC;若
周期 举例	2 GOTOA		d="1",结果存入R。若结果为"0"则跳 过下一条指令(执行NOP指令)。
年7月	执行指令前:	周期	1 or 2(skip)
	PC=A0, TBHP=0x02, ACC=0x34 执行指令后: PC=0x234。	举例	INCRSZ R, d 指令 2 指令 3 执行指令前: R=0xFF, d=1, Z=0。 执行指令后: R=0x00, Z=1, 因结果为 0, 程序 跳过指令 2。

INT	Software Interrupt	IORIA	OR Immediate with ACC
语法	INT	语法	IORIA i
操作数		操作数	0 ≤ i < 255
操作	PC + 1 → Top of Stack, □001h → PC	操作 状态影响	ACC i → ACC Z
状态影响 说明	 软中断指令。首先将返回地址	说明	ACC和 8 位立即数做"OR"运算,结 果存入ACC。
	(PC+1)压入栈顶,然后将 001H 的地址装入PC[10:0]。	周期	1
周期 举例	3 INT 执行指令前: PC=address of INT code。 执行指令后: PC=0x01。	举例	IORIA i 执行指令前: i=0x50, ACC=0xAA, Z=0。 执行指令后: ACC=0xFA, Z=0。

IORAR	OR ACC with R
语法	IORAR R, d
操作数	$0 \le R \le 127$ d = 0, 1
操作	ACC R → dest
状态影响	Z
说明	ACC和R做"OR"运算,若d="0",结 果存入ACC; 若d="1",结果存入R。
周期	1
举例	IORAR R, d 执行指令前: R=0x50, ACC=0xAA, d=1, Z=0。
	执行指令后:
	R=0xFA, ACC=0xAA, Z=0。

IOST	Load F-page SFR from ACC
语法	IOST F
操作数	5 ≤ F≤ 15
操作	ACC → F-page SFR
状态影响	
说明	将ACC的值赋给F-page特殊寄存器
周期	1
举例	IOST F 执行指令前:
	F=0x55, ACC=0xAA。
	执行指令后:
	F=0xAA, ACC=0xAA。

IOSTR	Move F-page SFR to ACC	LGOTO	Unconditional Branch
语法	IOSTR F	语法	LGOTO adr
操作数	5 ≤ F ≤ 15	操作数	$0 \le adr \le 2047$
操作	F-page SFR → ACC	操作	$adr \rightarrow PC[10:0]$
状态影响		状态影响	
说明 周期 举例	将F-page特殊寄存器数值给ACC。 1 IOSTR F 执行指令前:	说明 周期	无条件长跳转,11位立即数写入 PC[10:0]。 2
	F=0x55, ACC=0xAA。 执行指令后: F=0x55, ACC=0x55。	举例	LGOTO Level 执行指令前: PC=A0。 执行指令后: PC=address of Level。

LCALL	Call Subroutine	MOVAR	Move ACC to R
语法	LCALL adr	语法	MOVAR R
操作数	$0 \le adr \le 2047$	操作数	$0 \le R \le 127$
操作	PC + 1 \rightarrow Top of Stack,	操作	$ACC \rightarrow R$
	\Box adr \rightarrow PC[10:0]	状态影响	
状态影响		说明	ACC赋值给R-page寄存器。
说明	长调用子程序。首先将PC+1 压入栈	周期	1
	顶,然后将 11 位立即数载入	举例	MOVAR R
EEI ###	PC[10:0]。		执行指令前:
周期	2		R=0x55, ACC=0xAA。
举例	LCALL SUB		执行指令后:
	执行指令前:		R=0xAA, ACC=0xAA。
	PC=A0, Stack level=1。		
	执行指令后:		
	PC=address of SUB, Stack[1]=		
	A0+1, Stack pointer =2.		
	, 1		

MOVIA	Move Immediate to ACC	NOP	No Operation
语法	MOVIA i	语法	NOP
操作数	$0 \leq i < 255$	操作数	
操作	$i \rightarrow ACC$	操作	No operation.
状态影响		状态影响	
说明	8 位立即数赋值给ACC。	说明	空操作。
周期	1	周期	1
举例	MOVIA i 执行指令前: i=0x55, ACC=0xAA。 执行指令后: ACC=0x55。	举例	NOP 执行指令前: PC=A0 执行指令后: PC=A0+1

MOVR	Move to ACC or R
语法	MOVR R, d
操作数	$0 \le R \le 127$ d = 0, 1
操作	R→dest
状态影响	Z
说明	R-page寄存器赋值给d,若d="0", 结果存入ACC;若d="1",结果存入 寄存器R。指令执行后,通过状态标 位Z检查R是否为 0。
周期	1
举例	MOVR R, d 执行指令前: R=0x0, ACC=0xAA, Z=0, d=0。
	执行指令后:
	R=0x0, ACC=0x00, Z=1。

RETIE	Return from Interrupt and Enable Interrupt Globally
语法	RETIE
操作数	
操作	Top of Stack → PC 1 → GIE
状态影响	
说明	中断返回,栈顶地址载入PC同时使 能中断。
周期	2
举例	RETIE 执行指令前: GIE=0, Stack level=2。 执行指令后: GIE=1, PC=Stack[2], Stack level =1。

RETIA	Return with Data in ACC	RLR	Rotate Left R Through Carry
语法	RETIA i	语法	RLR R, d
操作数	$0 \leq i < 255$	操作数	0 ≤ R ≤ 127 d = 0, 1
操作	i → ACC Top of Stack → PC	操作	C → dest[0], R[7] → C, R[6:0] → dest[7:1]
状态影响			
说明	带参数返回:8 位立即数赋值给ACC,栈顶地址载入PC。	C	R 07 b6 b5 b4 b3 b2 b1 b0
周期	2	状态影响	С
举例	RETIA i 执行指令前: Stack pointer =2, i=0x55,	说明	带进位R循环左移:若d="0",结果存入ACC;若d="1",结果存入R。
	ACC=0xAA。	周期	1
	执行指令后: PC=Stack[2], Stack pointer =1, ACC=0x55。	举例	RLR R, d 执行指令前: R=0xA5, d=1, C=0。 执行指令后: R=0x4A, C=1。

RRR

RET	Return from Subroutine
语法	RET
操作数	
操作	Top of Stack \rightarrow PC
状态影响	
说明	子程序返回,栈顶载入PC。
周期	2
举例	RET 执行指令前: Stack level=2。 执行指令后: PC=Stack[2], Stack level=1。

语法	RRR R, d
操作数	$0 \le R \le 127$ d = 0, 1
操作	$C \rightarrow dest[7], R[7:1] \rightarrow dest[6:0], R[0] \rightarrow C_{\circ}$
C b7	R
状态影响	С
说明	带进位R循环右移:若d="0",结果存入ACC;若d="1",结果存入R。
周期	1
举例	RRR R, d 执行指令前: R=0xA5, d=1, C=0。 执行指令后: R=0x52, C=1。

Rotate Right R Through Carry

SBCAR	Subtract ACC and Carry from R	SBCIA	Subtract ACC and Carry from Immediate
语法	SBCAR R, d	 语法	SBCIA i
操作数	0 ≤ R ≤ 127 d = 0, 1	操作数	0 ≤ i < 255
操作	R + (\sim ACC) + C \rightarrow dest	操作	i + (~ACC) + C→dest
状态影响	Z, DC, C	状态影响	Z, DC, C
说明	R和ACC带借位减法,若d="0",结 果存入ACC; 若d="1",结果存入R。	说明	常数和ACC带借位减法,结果存入ACC。
周期	1	周期	1
举例	SBCAR R, d (a) 执行指令前: R=0x05, ACC=0x06, d=1, C=0。 执行指令后: R=0xFE, C=0。(-2) (b) 执行指令前: R=0x05, ACC=0x06, d=1, C=1。 执行指令后: R=0xFF, C=0。(-1) (c) 执行指令前: R=0x06, ACC=0x05, d=1, C=0。 执行指令后: R=0x00, C=1(-0), Z=1。 (d) 执行指令前: R=0x06, ACC=0x05, d=1, C=1。	举例	SBCIA i (a) 执行指令前: i=0x05, ACC=0x06, C=0。 执行指令后: ACC=0xFE, C=0。(-2) (b) 执行指令前: i=0x05, ACC=0x06, C=1。 执行指令后: ACC=0xFF, C=0。(-1) (c) 执行指令前: i=0x06, ACC=0x05, C=0。 执行指令后: ACC=0x00, C=1。(-0), Z=1。 (d) 执行指令前: i=0x06, ACC=0x05, C=1。 执行指令后: ACC=0x1, C=1。(+1)
	执行指令后:	SFUN	Load S-page SFR from ACC
	R=0x1, C=1。(+1)	 语法	SFUN S
		操作数	$0 \le S \le 21$
		操作	ACC → S-page SFR
		状态影响	
		说明	ACC写到S-page特殊寄存器。
		周期	1
			0511110

举例

SFUN S 执行指令前:

执行指令后:

S=0x55, ACC=0xAA.

S=0xAA, ACC=0xAA。

Move S-page SFR from ACC	SUBAR	Subtract ACC from R
SFUNR S $0 \le S \le 21$	语法 操作数	SUBAR R, d $0 \le R \le 127$ d = 0, 1
S-page SFR → ACC	操作 状态影响	R – ACC → dest Z, DC, C
读S-page特殊寄存器到ACC 1 SFUNR S 执行指令前	说明 周期	R 减去ACC,若d="0",结果存入 ACC。 若d="1",结果存入R。 1
S=0x55, ACC=0xAA。 执行指令后: S=0x55, ACC=0x55。	举例	SBCAR R, d (a) 执行指令前: R=0x05, ACC=0x06, d=1。 执行指令后: R=0xFF, C=0。(-1) (b) 执行指令前: R=0x06, ACC=0x05, d=1。 执行指令后:
	0 ≤ S ≤ 21 S-page SFR→ACC 读S-page特殊寄存器到ACC 1 SFUNR S 执行指令前: S=0x55, ACC=0xAA。 执行指令后:	SFUNR S 0 ≤ S ≤ 21 操作 S-page SFR→ACC 操作 状态影响 读S-page特殊寄存器到ACC 说明 1 SFUNR S 执行指令前: 周期 S=0x55, ACC=0xAA。 举例 执行指令后:

SLEEP	Enter Halt Mode	SUBIA	Subtract ACC from Immediate
语法	SLEEP	语法	SUBIA i
操作数		操作数	$0 \leq i < 255$
操作	$00h \rightarrow WDT$ $00h \rightarrow WDT$ prescaler $1 \rightarrow /TO$ $0 \rightarrow /PD$	操作 状态影响 说明	i – ACC → ACC Z, DC, C 8 位立即数减ACC,结果存入ACC。
状态影响 说明	/TO, /PD WDT和分频器 0 清零。/TO标志为 0, /PD清零,IC进入睡眠。	周期 举例	1 SUBIA i (a) 执行指令前: i=0x05_ACC=0x06
周期 举例	1 SLEEP 执行指令前: /PD=1, /TO=0。 执行指令后: /PD=0, /TO=1。		i=0x05, ACC=0x06。 执行指令后: ACC=0xFF, C=0。(-1) (b) 执行指令前: i=0x06, ACC=0x05, d=1. 执行指令后: ACC=0x01, C=1。(+1)

SWAPR	Swap High/Low Nibble in R
语法	SWAPR R, d
操作数	$0 \le R \le 127$ d = 0, 1
操作	R[3:0] \rightarrow dest[7:4], R[7:4] \rightarrow dest[3:0]
状态影响	
说明	寄存器半字节交换,若d="0",结果存入ACC;若d="1",结果存入R。
周期	1
举例	SWAPR R, d 执行指令前: R=0xA5, d=1。 执行指令后:
	R=0x5A。

T0MD	Load ACC to T0MD
语法	TOMD
操作数	
操作	ACC→ T0MD
状态影响	
说明	ACC写入T0MD寄存器。
周期	1
举例	TOMD 执行指令前: TOMD=0x55, ACC=0xAA。 执行指令后: TOMD=0xAA。

TABLEA	Read ROM data					
语法	TABLEA					
操作数						
操作	ROM data{ TBHP, ACC } [7:0] \rightarrow ACC. ROM data{TBHP, ACC} [13:8]					
	\rightarrow TBHD $_{\circ}$					
状态影响						
说明	ROM查表指令,高字节存入TBHD, 低字节存入ACC。					
周期	2					
举例	TABLEA 执行指令前:					
	TBHP=0x02, ACC=0x34。					
	TBHD=0x01。					
	ROM data[0x234]= 0x35AA。					
	执行指令后:					

TBHD=0x35, ACC=0xAA.

T0MDR	Move T0MD to ACC
语法	T0MDR
操作数	
操作	$TOMD \rightarrow ACC$
状态影响	
说明	读T0MD寄存器到ACC。
周期	1
举例	T0MDR 执行指令前: T0MD=0x55, ACC=0xAA。 执行指令后: ACC=0x55。

XORAR	Exclusive-OR ACC with R
语法	XORAR R, d
操作数	$0 \le R \le 127$ d = 0, 1
操作	$ACC \oplus R \rightarrow dest$
状态影响	Z
说明	ACC和R做"XOR"运算,若d="0", 结果存入ACC;若d="1",结果存入 R。
周期	1
举例	XORAR R, d 执行指令前: R=0xA5, ACC=0xF0, d=1。 执行指令后:
	R=0x55。

XORIA	Exclusive-OR Immediate with ACC					
语法	XORIA i					
操作数	$0 \leq i < 255$					
操作	$ACC \oplus i \rightarrow ACC$					
状态影响	Z					
说明	ACC和8位立即数做"XOR"运算。					
周期	1					
举例	XORIA i					
	执行指令前:					
	i=0xA5, ACC=0xF0。					
	执行指令后:					
	ACC=0x55。					

5. 配置字节表

项目	名称	选项
1	高频振荡模式	1. I_HRC 2. E_HXT 3. E_XT
2	低频振荡模式	1. I_LRC 2. E_LXT
3	内部高速 RC 频率	1. 1MHz 2. 2MHz 3. 4MHz 4. 8MHz 5. 16MHz 6. 20MHz
4	外部高频振荡器	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
5	指令时钟	1. 2个振荡周期 2. 4个振荡周期
6	看门狗定时器	 看门狗开启(寄存器控制) 看门狗关闭(永远关闭)
7	看门狗定时器事件	1. 看门狗复位 2. 看门狗中断
8	定时器 0 时钟源	1. EX_CKI0 2. 低频振荡器(I_LRC/E_LXT)
9	PA.5	1. PA.5 为 I/O 口 2. PA.5 为复位脚
10	PA.7	1. PA.7 为 I/O 口 2. PA.7 输出指令时钟
11	上电复位时间	1. 140us 2. 4.5ms 3. 18ms 4. 72ms 5. 288ms
12	看门狗定时器时基	1. 3.5ms 2. 15ms 3. 60ms 4. 250ms
13	LVR 开关设定	1. 寄存器控制 2. LVR 永远开启
14	LVR 电压	1. 1.6V 2. 1.8V 3. 2.0V 4. 2.2V 5. 2.4V 6. 2.7V 7. 3.0V 8. 3.3V 9. 3.6V 10. 4.2V
15	VDD 电压	1. 3.0V 2. 4.5V 3. 5.0V
16	I/O 口灌电流类型(PA5 除外)	1. 一般灌电流 2. 大灌电流
17	比较器输入引脚选择	1. 开启 2. 关闭
18	读取输出口数据	1. I/O 口 2. 寄存器
19	E_LXT 强化起振开关设定	1. 自动关闭 2. 寄存器关闭
20	EX_CKI0 to Inst. Clock	1. 同步 2. 不同步
21	上电时钟源	1. 高速(I_HRC/E_HXT/E_XT) 2. 低速(I_LRC/E_LXT)
22	输入高电压(VIH)	1. CMOS (0.7VDD) 2. TTL (0.5VDD)
23	输入低电压(VIL)	1. CMOS (0.3VDD) 2. TTL (0.2VDD)

表 37 配置字节

6. 电气特性

6.1 最大绝对值

符号	参数	额定值	单位
V _{DD} - V _{SS}	工作电压	-0.5 ~ +6.0	V
V_{IN}	输入电压	V_{SS} -0.3V ~ V_{DD} +0.3	V
T _{OP}	工作温度	-40 ~ +85	°C
T _{ST}	储存温度	-40 ~ +125	°C

6.2 直流电气特性

 $(F_{INST}$ = F_{HOSC} /4, F_{HOSC} =16MHz@ $I_{L}HRC$,WDT开启,环境温度 T_{A} =25°C)

符号	参数	V _{DD}	最小值	典型值	最大值	单位	条件
			3.3				F _{INST} =20MHz @ I_HRC/2
			2.2				F _{INST} =20MHz @ I_HRC/4
			2.7				F _{INST} =16MHz @ E_HXT/2
			2.0				F _{INST} =16MHz @ E_HXT/4
.,			2.0			.,	F _{INST} =8MHz @ I_HRC/4 & I_HRC/2
V_{DD}	工作电压		2.0		5.5	V	F _{INST} =8MHz @ E_HXT/4 & E_HXT/2
			4.0				F _{INST} =4MHz @ I_HRC/4 & I_HRC/2
			1.8				F _{INST} =4MHz @ E_XT/4 & E_XT/2
			4.0				F _{INST} =32KHz @ I_LRC/4 & I_LRC/2
			1.6				F _{INST} =32KHz @ E_LXT/4 & E_LXT/2
		5V	4.0			V	RSTb (0.8 V _{DD})
		3V	2.4			, v	
V_{IH}	V _{IH} 输入高电平	5V 3V	3.5 2.1			V	所有I/O引脚,EX_CKI0/1,INT0/1
		5V	2.1				CMOS (0.7 V _{DD}) 所有I/O引脚,EX CKIO/1
		3V	1.5			V	TTL (0.5 V _{DD})
		5V			1.0		DOTH (O.O.V.)
		3V			0.6	V	RSTb (0.2 V _{DD})
.,	松)佐山亚	5V			1.5	.,	所有I/O引脚,EX_CKI0/1,INT0/1
V _{IL}	输入低电平	3V			0.9	V	CMOS option (0.3 V _{DD})
		5V			1.0	V	所有I/O引脚,EX_CKI0/1
		3V			0.6	V	TTL option (0.2 V _{DD})
	松山顶岩中冰	5V		18		A	V _{OH} =4.0V
I _{OH}	输出驱动电流	3V		10		mA	V _{OH} =2.0V
		5V		43		A	V -4.0V
I _{OL}	输出大灌电流	3V		28		mA	V _{OL} =1.0V
	松山。加满山沙	5V		29		A	V -4.0V
I _{OL}	输出一般灌电流	3V		19		mA	V _{OL} =1.0V
	<i>佐</i>	5V		43		m ^	\/ =1 0\/
I _{IR}	红外输出灌电流	3V		28		mA	V _{OL} =1.0V

98

符号	参数	V _{DD}	最小值	典型值	最大值	单位	条件		
						正常植			
		5V		3.2		m A	F -20MU-@1 UDC/2 % F UVT/2		
		3V		1.4		mA	F _{HOSC} =20MHz @ I_HRC/2 & E_HXT/2		
		5V		2.2		m A	F =20MU=@1 UDC// % F UVT//		
		3V		0.9		mA	F _{HOSC} =20MHz @ I_HRC/4 & E_HXT/4		
		5V		2.7		m A	F -16MU- @ L UDC/2 % F UVT/2		
		3V		1.1		mA	F _{HOSC} =16MHz @ I_HRC/2 & E_HXT/2		
		5V		1.8		mΛ	E -16MU-2 @ L UDC/4 % E UVT/4		
		3V		0.8		mA	F _{HOSC} =16MHz @ I_HRC/4 & E_HXT/4		
		5V		1.7		m A	F -0MU- @ L UDC/2 % F UVT/2		
		3V		0.7		mA	F _{HOSC} =8MHz @ I_HRC/2 & E_HXT/2		
		5V		1.2		m A	F -0MU- @ L UDC/4 % F UVT/4		
		3V		0.5		mA	F _{HOSC} =8MHz @ I_HRC/4 & E_HXT/4		
		5V		1.1		A	F -4MU- @ LUDC/2 % F VT/2		
١.	ナル トマ	3V		0.4		mA	F _{HOSC} =4MHz @ I_HRC/2 & E_XT/2		
I _{OP}	工作电流	5V		0.9		A	F -4MU- @ LUDO/4 % F VT/4		
		3V		0.3		mA	F _{HOSC} =4MHz @ I_HRC/4 & E_XT/4		
		5V		0.9		^	F -4MU- @ L UDO/0 0 F VT/0		
		3V		0.4		mA	F _{HOSC} =1MHz @ I_HRC/2 & E_XT/2		
		5V		0.8		А	F -4MU- @ LUDC/4 % F VT/4		
		3V		0.4		mA	F _{HOSC} =1MHz @ I_HRC/4 & E_XT/4		
			慢速模式						
		5V		7.6			F _{HOSC} 关闭,		
		3V		3.0		uA	F _{LOSC} =32KHz @ I_LRC/2		
		5V		8.3			F _{HOSC} 关闭,		
		3V		3.4		uA	F _{LOSC} =32KHz @ E_LXT/2		
		5V		5.5			F _{HOSC} 关闭,		
		3V		2.1		uA	F _{LOSC} =32KHz @ I_LRC/4		
		5V		6.1			F _{HOSC} 关闭,		
		3V		2.4		uA	F _{LOSC} =32KHz @ E_LXT/4		
	注扣 由	5V		3.5			待机模式,F _{HOSC} 关闭,		
I _{STB}	待机电流	3V		1.3		uA	F _{LOSC} =32KHz @ I_LRC/4		
		5V			0.5		医阳梯子 子宫MDT		
١.		3V			0.2	uA	睡眠模式,关闭WDT		
I _{HALT}	睡眠电流	5V			5.0		睡眼構士 T. 自MDT		
		3V			2.0	uA	睡眠模式,开启WDT		
		5V		50		1/0	L拉由四/不包含DAE)		
	L +> ++ 170	上拉电阻	100		ΚΩ	上拉电阻(不包含PA5)			
R _{PH}	<u> </u>		85		VO.	L + \(+ \)			
		3V		85		ΚΩ	上拉电阻(PA5)		
	T+2+100	5V		50		1/0	T + +		
R_{PL}	下拉电阻	3V		100		ΚΩ	下拉电阻		

99

6.3 比较器/LVD电气特性

(V_{DD}=5V, V_{SS}=0V, 环境温度 T_A=25°C)

符号	参数	最小值	典型值	最大值	单位	条件
V_{IVR}	比较器输入电压范围	0		5	٧	F _{HOSC} =1MHz
T _{ENO}	比较器启动等待时间		20		ms	F _{HOSC} =1MHz
I _{CO}	比较器电流消耗		250		uA	F _{HOSC} =1MHz,P2V模式
I _{LVD}	LVD电流消耗		300		uA	F _{HOSC} =1MHz, LVD=4.3V
E _{LVD}	LVD电压误差			3	%	F _{HOSC} =1MHz, LVD=4.3V

6.4 ADC电气特性

(V_{DD}=5V, V_{SS}=0V, 环境温度T_A=25°C)

符号	参数	最小值	典型值	最大 值	单位	条件
V_{REFH}	模拟参考电压范围	2V	1	V_{DD}	V	由引脚PA0输入
V_{REF4}	内部 4V ADC V _{DD} =5V	3.96	4	4.04	V	1
V_{REF3}	内部 3V,V _{DD} =5V	2.97	3	3.03	V	
V_{REF2}	内部 2V,V _{DD} =5V	1.98	2	2.02	V	
V_{REF}	内部 V _{DD} , V _{DD} =5V		V_{DD}		V	
	ADC选择内部参考电压时,V _{DD} 最低 电压水平	V _{REF} +0.5			V	
	模拟通道输入电压	0		V_{REFH}	V	
	ADC启动等待时间	256			us	设置ADEN=1后
I _{OP(ADC)}	ADC工作电流		0.3		mA	
ADCLK	ADC时钟			2M	Hz	
ADC _{CYCLE}	ADC转换时间周期	16			1/ADCLK	SHCLK=2 个ADC时钟
ADC _{sample}	ADC转换率		-	125	K/sec	V _{DD} =5V
DNL	非线性微分误差	±1	-		LSB	
INL	非线性积分误差	±2	-		LSB	V _{DD} =5.0V, AVREFH=5V, ADC转换率=62.5K
NMC	无缺码分辨率	10	11	12	位	

6.5 特性图

6.5.1 高速 RC 振荡频率与电源电压曲线图

6.5.2 高速 RC 振荡频率与温度曲线图

6.5.3 低速 RC 振荡频率与电源电压曲线图

6.5.4 低速 RC 振荡频率与温度曲线图

6.5.5 内部线性稳压器与电源电压曲线图

6.5.6 内部线性稳压器与温度曲线图

6.5.7 内部上拉电阻与电源电压曲线图

6.5.8 内部上拉电阻与温度曲线图

6.5.9 VIH/VIL 与电源电压曲线图

6.5.10 VIH/VIL 与温度曲线图

6.6 建议工作电压

建议工作电压(温度范围: -40°C~+85°C)

频率	最小电压	最大电压	LVR:默认值 (25°C)	LVR:建议值 (-40 °C~+85 °C)
20M/2T	3.3V	5.5V	3.6V	4.2V
16M/2T	2.7V	5.5V	3.0V	3.3V
20M/4T	2.2V	5.5V	2.4V	2.7V
16M/4T	2.0V	5.5V	2.2V	2.4V
8M(2T or 4T)	2.0V	5.5V	2.2V	2.4V
≤6M(2T or 4T)	1.8V	5.5V	2.0V	2.2V

6.7 LVR电压与温度曲线图

7. 芯片脚位坐标图

8. 封装尺寸

8.1 8 引脚SOP (150 毫寸)

8.2 14 引脚SOP (150 毫寸)

8.3 16 引脚SOP (150 毫寸)

9. 订购信息

产品名称	封装类型	引脚数	封装尺寸	配送方式
NY8B062D	Die			-
NY8B062DS8	SOP	8	150 mil	<u>卷装</u> : 每卷 2.5K颗 <u>管装</u> : 每管 100 颗
NY8B062DS14	SOP	14	150 mil	<u>卷装:每卷 2.5K颗</u> 管装:每管 100 颗
NY8B062DS16	SOP	16	150 mil	<u>卷装</u> : 每卷 2.5K颗 <u>管装</u> : 每管 50 颗

110