

קונפיגורציה עבור פרויקט

FPGA מערכי פילטרים על גבי

22-1-1-2538 'פרויקט מס

:מבצעים

ליעד פנקר 315991109

זורית בס 320471410

מנחים:

מאיר אלון

מקום ביצוע הפרויקט:

אוניברסיטת תל אביב

<u>קונפיגורציה וזיכרונות</u>

על גבי הכרטיס יש מעבד מסוג zync שמריץ מערכת הפעלה מסוג linux. לאחר חיבור הכרטיס למתח יש לחברו למחשב דרך מחבר .ethernet

בירוק ETH ומחבר הRed Pitaya איור 1- כרטיס

מומלץ להשתמש בתוכנת putty.

החיבור נעשה בעזרת פרוטוקול ssh בקונפיגורציה הבאה:

Basic options for your PuTTY se	ssion
Specify the destination you want to connect	t to
Host Name (or IP address)	<u>P</u> ort
169.254.12.108	22
Connection type: ○ Raw ○ Telnet ○ Rlogin ● SSH	H OSe <u>r</u> ial
Load, save or delete a stored session	
Saved Sessions	
red_pitaya	

Putty איור 2-קונפיגורצית תוכנת

לאחר שצרבנו את הכרטיס, ניתן לקרוא ולכתוב בעזרת הפקודות הבאות: מתיבה: monitor [Address] [value], דוגמה: monitor (Address] (palue) קריאה: monitor (Address), דוגמה: monitor (monitor (mo

יש לנו ארבעה מרחבי כתובות:

Slaves

איור 3-כתובות לצורת קריאה וכתיבה מהכרטיס

• כל המספרים כתובים בhex.

. read/write:סטר – ,0x42000000. :(hex) כתובת, gpio_0_cfg

Name	offset	bits	Reset	description
			value	
Reconstruction level 1 mux out	0	1	1	Set DAC to display the reconstruction level 1 (original signal)
lowpass level 1 mux out	1	1	0	Set DAC to display to lowpass level 1 output
Highpass level 1 mux out	2	1	0	Set DAC to display to lowpass level 1 output
Reconstruction level 2 mux out	3	1	0	Set DAC to display the reconstruction level 2 (lowpass level 2 reconstructed)
lowpass level 2 mux out	4	1	0	Set DAC to display to lowpass level 2 output
Highpass level2 mux out	5	1	0	Set DAC to display to lowpass level 2 output
FT mux out	6	1	0	Set DAC to display FT output
STFT mux out	7	1	0	Set DAC to display STFT output
Resereved_bits	8	6	0	Reserved bits
Denoise level_1 enable	14	1	0	Enable denoising using wavelet detail level 1
Denoise level_1 enable	15	1	0	Enable denoising using wavelet detail level 2 can only be used if Denoise level_1 is enabled and if reconsruct_lvl_2 is enabled
reconsruct_lvl_2	16	1	0	The reconstruction will be perform using level2 and not only level 1
one_time_lock	17	1	0	When locked the median value will not change unless released.
release_median	18	1	0	Release the median and new calculation will be performed.
Universal threshold	19	6	0x03	The constant we will multiply the median of level 1, is

constant lvl 2				fixed point [4,2].
Universal threshold	25	6	0x06	The constant we will multiply the median of level 2, is
constant lvl 1				fixed point [4,2].
Soft_or_hard	31	1	0	Select if perform hard thresholding or soft thresholding

טבלה 1 – מפרט רגיסטרים עבור כתובת 0x42000000

. read/write:סטר – ,0x42000008. (hex) מסוג, gpio_1_cfg – רגיסטר

Name	offset	bits	Reset	description
			value	
Window_size_cfg	0	32	0x2000	The window size we will check the median candidates

טבלה 2 - מפרט רגיסטרים עבור כתובת 2000008

. read/write:סטר – ,0x42001000. :(hex) כתובת, gpio_2_cfg – רגיסטר

Name	offset	bits	Reset value	description
Debug_mux_selection	0	4	0	Debug mux address, the output data can be read from address 0x42001008
debug_data_en	4	1	0	Enable debug data injection
debug_data_noise_en	5	1	0	Enable debug data noise injection
record_en	6	1	0	Record enable or read_enable
noise_sigma	7	9	0	Set the sigma noise value, possible values: $\{2^n - 1 \mid n \in [1 - 9], n \in \mathbb{N}\}$
read_address/freq_Sample	16	16	0	If record_en this value will represent the clk division value of the recording, Else is the address of the memory we want to read

טבלה 3 - מפרט רגיסטרים עבור כתובת 2001000 - 3

:Debug_mux_selection האפשרויות של

. read only:סתובת, ox42001008. :(hex), כתובת, debug_data – Memory

Name	offset	bits	Reset	description
			value	
read_data	0	32	X – read	Debug mux data
			only	_

טבלה 4 - מפרט רגיסטרים עבור כתובת 0x42001008

. read/write:סטר – ,0x42002000. :(hex) כתובת , gpio_4_cfg – רגיסטר

Name	offset	bits	Reset	description
			value	

NFFT	0	5	01101	NFFT [4:0] Transform size (N) 00101 32 00110 64 00111 128 01000 256 01001 512 01010 1024 01011 2048 01100 4096
FWD_INV	5	1	0	1 - FT or 0 - IFT
Adc_or_dac	6	1	0	1 – adc, 0-dac, select between adc or dac
Read address	7	13	0	The read address for the FFT data, the fft data will be
				at 0x42002008, address range:0-4095
FT_EN	20	1	0	Enable feature
STFT_WINDOW_SIZE	21	3	0	STFT window size-
				STFT[2:0] Transform size (N)
				000 4096
				001 2048
				010 1024
				011 512
				100 256
				101 128
				110 64
				111 32
CAMPLE EDECLIENCY	24	0	0	The complete grant of the input fits
SAMPLE_FREQUENCY	24	8	0	The sample frequency for input fifo

טבלה 5 - מפרט רגיסטרים עבור כתובת 0x42002000

. read only:מסוג:,0x42002008 (hex), כתובת,fft_data – Memory

Name	offset	bits	Reset	description
			value	
read_fft_data	0	32	X – read only	Will contain the FFT data of read address from 0x42002000

טבלה 6 - מפרט רגיסטרים עבור כתובת 0x42002008

. read/write:מסוג, ox42003000. :(hex), cתובת, injection_address – register

Name	offset	bits	Reset value	description
			value	D ()) ()
address data	0	14	0	Data injection address
Write/read enable	14	1	0	1 – read-play data, 0-write

טבלה 7 - מפרט רגיסטרים עבור כתובת 2003000

. read/write:סמוג, debug_data – Memory, cתובת, debug_data – Memory

Name	offset	bits	Reset value	description
Write data	0	14	0	Data injection value

טבלה 8 - מפרט רגיסטרים עבור כתובת 2003008

זיכרונות - בכרטיס יש לנו 3 זיכרונות

<u>Debug_data</u> – מקליט את המידע שיוצא מה-output mux, העומק של הזיכרון הוא 16384 והרוחב הוא 14 ביט כמו של ADC.

בכדי להתחיל להקליט יש להפעיל את ה-ביט של הrecord_en, ביט 6, בכתובת 0x42001000.

.0x42002000 ביט 20 בכתובת fft_en המידע נכתב גם כאשר מפעילים את

בכדי לקרוא את כל המידע יש לבצע 16384*2 פקודות קריאה וכתיבה. כתיבה ל-read address שרוצים לקרוא ואז קריאה של המידע בכתובת 0x42001008.

.32 הרוחב הוא FFT, העומק של הזיכרון הוא 4096 והרוחב הוא FFT

בכדי להתחיל להקליט יש להפעיל את ה-ביט של הfft_en, ביט 20 בכתובת 0x42002000, זאת לאחר שקינפגנו את הFFT שאנחנו רוצים לבצע, גם כן באותה כתובת.

בכדי לקרוא את כל המידע יש לבצע 4096*2 פקודות קריאה וכתיבה. כתיבה ל-read address שרוצים לקרוא ואז קריאה של המידע בכתובת 0x42002008.

.debug_data בתחום הזמן שביצענו עליו את מה-data בתחום הזמן שביצענו לקרוא גם את

<u>Data injection</u> מזריק מידע מהמחשב, העומק של הזיכרון הוא 8192 והרוחב הוא 14 ביט כמו של ADC. בכדי לכתוב מידע יש לבצע 8192*2 פקודות כתיבת כתובת וכתיבת המידע. כתיבה ל-write address שרוצים לכתוב בכתובת 00x4200_3000 ואז כתיבה של המידע בכתובת 0x42003008.

בכדי להתחיל לשדר את מה שכתבנו יש להפעיל את ה-ביט של ה-read en, ביט 14, בכתובת 0x42003000.

לכל הזיכרונות מצורפים סקריפטים אוטומטים שמבצעים את הקריאות והכתיבות אוטומטים.

-ADC data acquisition - 4.2.2

Vivado-מתוך תוכנת ה-data acquisition איור 4-בלוק

הבלוק הראשון axis_red_pitaya_adc_v1_0 יש 2 תפקידים עיקריים, הוא ממיר שעון דיפרנציאלי חיצוני בתדר 125 מגה adc מגה בלוק הראשון 125 פנימי של 125 מגה הרץ adc_clk בנוסף הוא קורא את 2 הערוצים של ה125 מגה הרץ adc_clk הרץ לשעון 125 פנימי של

:בצורה הזאת interface

M_AXIS_tdata[31:0] = 31[{16-bit ADC2 value} {16-bit ADC1 value}]0.

המודל השני signal split מפצל את 2 ה-channels ל-2 ערוצים נפרדים, אנחנו משתמשים רק בערוץ הראשון לקריאת המידע.