

PUBLISHED 10 / 537894
G 503/055070
INVESTOR IN PEOPLE

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office
Concept House
Cardiff Road
Newport
South Wales NP10 8QQ

07 JUN 2005

REC'D 26 JAN 2004
WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 14 January 2004

Best Available Copy

The Patent Office
Cardiff Road
Newport
South Wales
NP9 1RH

1. Your reference

XA1677

23 DEC 2002

2. Patent application number
(The Patent Office will fill in this part)

0230038.2

3. Full name, address and postcode of the or of
each applicant (*underline all surnames*)

BAE SYSTEMS plc

6 Carlton Gardens
London
SW1Y 5AD

07914674004 ✓

United Kingdom

4. Title of the invention

DEFORMABLE-MIRROR HOLDER

5. Name of your agent (*If you have one*)*"Address for service" in the United Kingdom
to which all correspondence should be sent
(including the postcode)*BAE SYSTEMS plc
Group IP Department
Lancaster House, P.O. Box 87
Farnborough Aerospace Centre
Farnborough, Hampshire, GU14 6YUPatents ADP number (*If you know it*)

07914674002 ✓

6. If you are declaring priority from one or more
earlier patent applications, give the country
and the date of filing of the or of each of these
earlier applications and (*If you know it*) the or
each application numberCountry Priority application number
(If you know it) Date of filing
*(day / month / year)*7. If this application is divided or otherwise
derived from an earlier UK application,
give the number and the filing date of
the earlier application

Number of earlier application

Date of filing
*(day / month / year)*8. Is a statement of inventorship and of right
to grant of a patent required in support of
this request? (*Answer 'Yes' if*

YES

- a) *any applicant named in part 3 is not an Inventor, or*
- b) *there is an Inventor who is not named as an applicant, or*
- c) *any named applicant is a corporate body.*
See note (d))

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description	08
Claim(s)	02
Abstract	01
Drawing(s)	03 + 3

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (*Patents Form 7/77*)

Request for preliminary examination and search (*Patents Form 9/77*)

1

Request for substantive examination
(*Patents Form 10/77*)

Any other documents
(please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature

Nigel Tucker

Date

23/12/2002

12. Name and daytime telephone number of person to contact in the United Kingdom

Maria Burkes 01252 383487

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

DUPLICATE

- 1 -

DEFORMABLE-MIRROR HOLDER

This invention relates to a deformable-mirror holder for holding a mirror in a desired position, to within accepted tolerances, even whilst the mirror is deforming or in a deformed state. In particular, this invention relates to a holder 5 for a bimorph mirror.

Deformable mirrors are often used in the field of adaptive optics. For example, phase distortions in a signal may be sensed by a wavefront sensor and these distortions may be corrected for by an adaptive mirror. Such adaptive mirrors may be employed in numerous fields, including:

- 10 • imaging, for example adaptive mirrors are used in astronomy to improve the resolution of earth-based telescopes that are otherwise affected by atmospheric distortions;
- laser sensing, where the amount of laser light that can be delivered onto a target is significantly increased by using an adaptive mirror to correct for atmospheric distortions - this enables either better information to be obtained or objects to be identified at a greater range; and
- 15 • laser generation, where an adaptive mirror can be used intracavity within a high power laser to counter the thermal blooming that can be otherwise induced by the high concentration of laser light inside the cavity.

20 Bimorph deformable mirrors have been proposed as low cost adaptive mirrors. The two main operational parameters of a bimorph mirror are its bandwidth and its stroke. Bandwidth determines how quickly the mirror can be deformed and hence, for example, how quickly the mirror can respond to the variations in atmospheric turbulence. Stroke corresponds to the maximum 25 displacement of the mirror when deformed and this determines, for example, the level of turbulence that can be corrected. Ideally, both bandwidth and stroke would be maximised. However, conventional designs mean that there is a reciprocal relationship between these two parameters, and one parameter can only be improved at the expense of the other. Therefore, to date, designers 30 have always looked for ways to improve either the resonant frequency or the stroke independently from each other.

Conventionally, deformable mirrors are supported rigidly around their edge, for example an annular ring overlapping the periphery of the mirror is used to hold the mirror firmly in position. Such an arrangement benefits from being simple yet rugged. However, it has an inherent disadvantage in that it creates a dead space around the mirror's edge. This corresponds both to the area of the mirror held firmly under the annular ring and also to the adjacent area. This is because the useable area of the deformable mirror (the active area) must bend to adopt a desired profile, for example either a concave or a convex shape. The annular area between the active area and the annular ring must bend in the opposite sense and so forms an area of inflexion that has undesirable optical properties. Hence the active area occupies only a central portion of the whole mirror. This is illustrated in Figures 1 to 3, albeit with the deformation of the mirror exaggerated for the sake of clarity.

One way of alleviating this problem is to clamp the mirror at only three positions, such that the mirror edge can twist. However, this arrangement is to the detriment of ruggedness and the twisting introduces unwanted distortions leading to an optically inferior performance.

Against this background, the present invention resides in a deformable-mirror holder comprising a body with a central aperture for receiving a deformable mirror, the central aperture being defined by a plurality of flexible beams, with each flexible beam having an end shaped to provide a supporting surface and a flexible portion that connects the beam's end to the holder's body. The supporting surface is provided for supporting a peripheral edge of the mirror.

Accordingly, we have devised a deformable-mirror holder that simply supports the mirror uniformly around the edge and where the beams deflect with the mirror as it deforms, thereby allowing the deformable mirror to move like a simply-supported diaphragm. In this way, the holder maintains the resonant frequency of the mirror without sacrificing stroke. Advantageously, the deformable mirror is supported such that the ratio of the total diameter to active diameter is minimised. In addition, the above holder allows the mirror to be as small as possible.

Preferably, the beams' ends lie in the plane of the mount's body such that, in use, the mirror is positioned within the mount's body. This simple arrangement ensures that the holder's body affords the mirror an element of protection. Alternatively, the beam's ends may lie outside of the plane of the body such that the mirror is held clear of the holder's body.

5 Optionally, at least one beam is generally L-shaped such that one leg of the L-shape provides the flexible portion and the other leg of the L-shape provides the supporting surface of the beam's end. In a currently preferred embodiment, the internal corner of the L-shaped beam has a shoulder that 10 extends part of the way along both legs of the L-shape. This adds rigidity to the part of the beam that supports the mirror in use and a flexible neck is created that allows the supporting end to bend with the mirror.

Preferably, the plurality of flexible beams are arranged around the entire aperture. Alternatively, a small number of beams may be provided around the 15 aperture, for example three or four equispaced around the aperture. Where the beams are arranged around the entire aperture, the width of the beams may optionally be larger than the separation between beams. Preferably, the width of the beams is greater than four times the separation between beams. This arrangement means that the holder is flexible in the radial direction, but exhibits 20 stiffness in all other directions.

The present invention also extends to a deformable mirror and a deformable-mirror holder as described above.

In order that the invention can be more readily understood, reference will now be made, by way of example only, to the accompanying drawings in which:

25 Figure 1 is a plan view of a deformable mirror and a mount according to the prior art;

Figure 2 is a cross-section through line II-II of Figure 1 showing the mirror in a relaxed state;

Figure 3 corresponds to Figure 2 but with the mirror in a state of exaggerated deformation thereby illustrating the problem of dead space and the relatively small active area;

5 Figure 4 is a plan view of a deformable mirror and a mount according to
a first embodiment the present invention;

Figure 5 is a cross-section through line V-V of Figure 4 showing the mirror in a relaxed state;

Figure 6 corresponds to Figure 2 but with the mirror in a state of deformation;

10 Figure 7 is a detail from Figure 5;

Figure 8 is a perspective view of part of the mount of Figure 5;

Figure 9 corresponds to Figure 7 but for a second embodiment of the present invention; and

15 Figure 10 corresponds to Figure 7 but for a third embodiment of the present invention.

A deformable bimorph mirror 10 and its mount 12 according to the prior art are shown in Figures 1 to 3. As can be seen, the mirror 10 is disc-shaped and is supported by the mount body 12. The mirror 10 is held firmly in position by an annular ring 14 that urges the mirror 10 against the mount body 12 via 20 four screws 16. Figure 3 shows the mirror 10 in a deformed state such that, in this example, it adopts a convex profile for light approaching from above. Ideally, the desired convex profile should extend across all the mirror 10, such that all the mirror 10 is available for reflecting light in the desired manner. However, the peripheral edge 18 of the mirror 10 is held firmly between the 25 annular ring 14 and the mount body 12 and so cannot bend. Moreover there is a region 20 of the mirror 10 that adopts an area of inflexion to bridge the peripheral edge 18 of the mirror 10 and the convex portion 22 at the centre of the mirror 10. It is of course this convex-shaped part 22 of the mirror 10 that forms the active (i.e. useable) part 22 of the mirror 10. This active part 22 of the 30 mirror 10 is shown in Figure 3.

- 5 -

A deformable bimorph mirror 50 and a mount 52 according to a first embodiment of the present invention are shown in Figures 4 to 8. The mount 52 in this case is simpler when compared to the prior art in that the mount 52 is a unitary structure made from stainless steel. The mount 52 comprises a round body 54 that defines a central circular aperture 56. The aperture 56 is shaped and sized to receive the disc-shaped deformable bimorph mirror 50 therein. Hence, the mirror 50 is held in a protected position within the mount 52.

Whilst the outer edges of the mount's body 54 are regular, the internal edges 58 are stepped to form a series of three interconnected and concentric circular apertures 56a-c that increase in size from top to bottom. The stepped inner profile 58 of the mount 52 produces a series of three shoulders 60a-c. Twenty generally L-shaped flexible beams 62 extend downwardly in cantilever fashion from the topmost 60a of these shoulders 60a-c. The twenty beams 62 are of identical size and shape and are equispaced around the circular topmost shoulder 60a. The beams 62 are L-shaped such that they extend downwardly from the topmost shoulder 60a before turning through 90° to extend inwardly towards the centre of the middle aperture 56b. Rather than having a pure L-shape, a square-shaped support shoulder 64 extends from the internal corner of each beam 62 as best seen in Figure 7. The support shoulder 64 only extends partially up the height of the upright portion 66 of the beam 62, thereby leaving a narrow neck 68 in the portion of the beam 62 that bridges the topmost shoulder 60a of the mount body 54 and the support shoulder 64 of the beam 62. It is this neck 68 that gives the beam 62 its flexibility, i.e. this neck 68 can be deformed to allow the beam 62 to deflect and bend. The length and thickness of the neck 68 of the beams 62 are chosen to achieve the desired flexing properties. Figure 8 shows four of the beams 62 in perspective and indicates the width W of the beams 62 relative to their separation. It is the relative width of the beams 62 that gives the required degree of stiffness in the plane of the mirror 10.

The inwardly-extending portion 70 of the beam 62 extends beyond the support shoulder 64 to provide an upwardly-facing support surface 72 for receiving the mirror 50. The mount 52 and the beams 62 are sized such that

the mirror 10 may be received within the beams 62 to be supported from below by the support surfaces 72 and so that the mirror's edge 74 fits snugly against the upright face 76 of the support shoulders 64. Hence, the mirror 50 is held firmly in place.

5 The mirror 50 is best seen in Figure 5. The mirror 50 comprises a copper substrate 78 whose outer face provides a reflecting surface by virtue of a series of thin dielectric coatings provided on the outer surface (not shown). An active piezoelectric element 80 is bonded to the non-reflective side copper substrate 78 using epoxy resin 82. An array of forty-five electrodes 84 are used
10 to activate the piezoelectric element 80. Applying a potential to the electrodes 84 causes the piezoelectric element 80 to deform so that, in turn, the copper substrate 78 deforms, as shown in Figure 6. This creates a convex-shaped mirror 50.

As the mirror 50 deforms, it remains firmly held in place against the
15 support surface 72 and support shoulder 64 because the beam 62 deflects with the mirror 10 by flexing about its neck 68, as shown in Figure 6. Moreover, the beams 72 offer minimal resistance to the mirror 50 as its peripheral edge 74 rotates towards the mirror axis. This is because they have minimal stiffness radially and so require little force to deform radially towards the mirror centre.
20 The mass and stiffness of the beams 62 are very small in comparison to that of the mirror 50 and therefore the beams 62 have minimal impact upon the mirror 50 deformation. In addition, the relatively large width W of the beams 62 provides stiffness in all directions in the plane of the mirror and torsionally about the mirror axis. The short length of the beams 62 provides stiffness in the axial
25 direction.

Figure 6 shows that convex deformation of the mirror 50 extends to the very edge 74 of the mirror 50 and hence eliminates virtually all dead space from the mirror 50. Hence, the active area of the mirror 50 covers virtually the whole of the mirror 50. This is highly beneficial because a mirror mount 52 that
30 prevents rotation of the mirror's peripheral edge 74 would need to be twice the diameter to obtain a similar convex active area and would have a first mode resonant frequency of half that of the simply supported mirror 50 of the present

invention. Thus, the present invention allows for a mirror 50 of much smaller size to be used to obtain the same stroke/bandwidth product.

The person skilled in the art will appreciate that modifications can be made to the embodiments described hereinabove without departing from the scope of the invention.

Details of the mirror 50 and how it is arranged to deform are given as useful background in which to set the context of the present invention, but are not essential to the invention. Other mirror configurations can be equally well accommodated by the present invention.

Whilst the above embodiment uses L-shaped beams 62, strict compliance with this shape is not necessary. For example, the support shoulders 64 may be omitted and the peripheral edge of the mirror 74 may abut against the upright face of the beam 62. This arrangement would lead to a longer neck 68 that could flex along its entire height. In addition, the beam 62 could be J-shaped rather than being L-shaped. This may be advantageous where the mirror 50 has rounded edges rather than square edges. In fact, the beam 62 may be shaped to conform to any profile the mirror 10 may have, e.g. to conform to chamfered edges.

Furthermore, the beams 62 need not necessarily extend downwardly from the mount body 54 to house the mirror 50 within the mount body 54. An alternative arrangement is shown in Figure 9, that broadly corresponds to the view shown in Figure 7 and so like reference numerals have been used for like parts but with the addition of a prime. In this embodiment, the flexible neck 68' is L-shaped such that, in addition to the flexible upright portion 86' that allows deflection as the mirror 50 deforms, there is a horizontal portion 88' that connects the upright portion 86' to the mount body 54. The horizontal portion 88' of the beam 62' allows vertical movement of the edges of the mirror 50, as indicated by the arrows in Figure 9. This is beneficial because the mirror 50 may be deformed to adopt shapes that require relative movement around the edge 74 of the mirror 50, e.g. to adopt radially-extending ridges and troughs thereby creating an undulating mirror edge 74.

A further alternative arrangement of the beams 62 is shown in Figure 10 where beams 62'' extend upwardly from the mount body 54'' (like reference numerals are used for like parts, the double prime denoting the parts that belong to the embodiment of Figure 10). Most importantly they retain the 5 flexible neck 68'' that allows the beam 62'' to bend with the mirror (not shown) as it adopts a convex shape.

As will be appreciated by the skilled person, other arrangements of the beams 62 are possible. For example, the flexible beams 62 could extend inwardly to meet a supporting end of the beam 62. Essentially, any 10 arrangement could be used where the supporting end of the beam 62 is connected to the mount body 54 by a flexible neck 68 that allows the supporting end to bend as the mirror 10 deforms.

Whilst the mount 52 of the above embodiments is made from stainless steel, many other materials such as other metals, plastics, glasses or ceramics 15 could be used instead.

The present invention is perfectly well suited for use in supporting both uncooled and cooled bimorph mirrors. For example, the bimorph mirror may be water-cooled in order to dissipate heat absorbed from incident radiation.

CLAIMS

1. A deformable-mirror holder comprising a body with a central aperture for receiving a deformable mirror, the central aperture being defined by a plurality of flexible beams, with each flexible beam having an end shaped to provide a supporting surface and a flexible portion that connects the beam's end to the holder's body.
5
2. A deformable-mirror holder according to claim 1, wherein the beams' ends lie in the plane of the holder's body such that, in use, the mirror is received within the holder's body.
10
3. A deformable-mirror holder according to claim 1 or claim 2, wherein at least one beam is generally L-shaped such that one leg of the L-shape provides the flexible portion and the other leg of the L-shape provides the supporting surface of the beam's end.
15
4. A deformable-mirror holder according to claim 3, wherein the internal corner of the L-shaped beam has a shoulder that extends part of the way along both legs of the L-shape.
20
5. A deformable-mirror holder according to any preceding claim, wherein the plurality of flexible beams are arranged around the entire aperture.
- 25 6. A deformable-mirror holder according to claim 5, wherein the width of the beams is larger than the separation between beams.
7. A deformable-mirror holder according to claim 6, wherein the width of the beams is greater than four times the separation between beams.

8. A deformable mirror and a deformable-mirror holder according to any preceding claim.
- 5 9. A deformable mirror and a deformable-mirror holder according to claim 3, wherein the peripheral edge of the mirror is supported from below by one leg of the L-shaped beam and is supported from the side by the other leg of the L-shaped beam.
- 10 10. A deformable mirror and a deformable-mirror holder according to claim 4, wherein the peripheral edge of the mirror is supported from below by one leg of the L-shaped beam and is supported from the side by an inwardly-facing side of the shoulder.
- 15 11. A deformable-mirror holder as substantially described hereinbefore with reference to any of Figures 3 to 9 of the accompanying drawings.
- 20 12. A deformable mirror and a deformable-mirror holder as substantially described hereinbefore with reference to any of Figures 3 to 9 of the accompanying drawings.

- 11 -

ABSTRACT
DEFORMABLE-MIRROR HOLDER

This invention relates to a deformable-mirror holder for holding a mirror in
5 a desired position, to within accepted tolerances, even whilst the mirror is
deforming or in a deformed state. In particular, this invention relates to a holder
for a bimorph mirror. A deformable-mirror holder is provided comprising a body
with a central aperture for receiving a deformable mirror, the central aperture
being defined by a plurality of flexible beams, with each flexible beam having an
10 end shaped to provide a supporting surface and a flexible portion that connects
the beam's end to the holder's body.

Fig. 5

Figure 1

Figure 2

Figure 3

Figure 4**Figure 5****Figure 6**

Figure 8Figure 9Figure 10

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.