```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
         tips=sns.load dataset('tips')
In [2]:
In [3]:
         tips.head()
Out[3]:
            total_bill tip
                           sex smoker day
                                            time size
               16.99 1.01 Female
                                                    2
         0
                                   No Sun Dinner
              10.34 1.66
                                   No Sun Dinner
                                                    3
                           Male
              21.01 3.50
                           Male
                                   No Sun Dinner
```

```
In [4]: sns.distplot(tips['total_bill'])
```

24.59 3.61 Female

Male

23.68 3.31

Out[4]: <matplotlib.axes. subplots.AxesSubplot at 0x29d18045a88>

No Sun Dinner

No Sun Dinner


```
0.00 0 10 20 30 40 50 60 total bill
```

```
In [5]: tips.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):

Data	COLUMNIS (CO	Lal	/ COLUMNIS):					
#	Column	Non-	-Null Count	Dtype				
0	total_bill	244	non-null	float64				
1	tip	244	non-null	float64				
2	sex	244	non-null	category				
3	smoker	244	non-null	category				
4	day	244	non-null	category				
5	time	244	non-null	category				
6	size	244	non-null	int64				
dtype	es: category	(4),	float64(2),	int64(1)				
memory usage: 7.3 KB								

In [6]: plt.scatter(tips['total_bill'], tips ['tip'])

Out[6]: <matplotlib.collections.PathCollection at 0x29d181a1f48>

In [7]: plt.scatter(tips['total_bill'], tips ['size'])

Out[7]: <matplotlib.collections.PathCollection at 0x29d182176c8>

6-


```
In [8]: plt.scatter(tips['size'], tips ['total_bill'])
```

Out[8]: <matplotlib.collections.PathCollection at 0x29d1827a408>


```
In [9]: plt.scatter(tips['tip'], tips ['size'])
```

Out[9]: <matplotlib.collections.PathCollection at 0x29d182d6c08>


```
2 4 6 8 10
```

In [10]: sns.pairplot(tips)

Out[10]: <seaborn.axisgrid.PairGrid at 0x29d18315ac8>

In [11]: sns.pairplot(tips, hue='sex') # hue is a legend used for splitting categorical data

Out[11]: <seaborn.axisgrid.PairGrid at 0x29d188554c8>

In [14]: sns.pairplot(tips,hue='smoker')

Out[14]: <seaborn.axisgrid.PairGrid at 0x29d19083bc8>

Bar Plot

```
In [15]: sns.barplot(x='sex', y='total_bill', data=tips) # black line is average
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x29d1b25afc8>


```
In [17]: sns.countplot(x='sex', data=tips) # count of categorical variables is done by countplot
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x29d1b68d308>

In [22]: sns.boxplot(x='day', y='total_bill', data=tips, hue = 'sex')

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x29d1b8d5bc8>

In [20]: sns.violinplot(x='day', y='total_bill', data=tips) #violin plot gives distribution along with boxplot

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x29d1b79ae08>


```
Thur Fri Sat Sun
```

```
In [21]: sns.violinplot(x='day', y='total_bill', data=tips, hue = 'sex')
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x29d1b167c88>


```
In [23]: sns.violinplot(x='day', y='total_bill', data=tips, hue = 'sex', split = True)
```

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x29d1b9e42c8>


```
In [26]: h=tips.corr()
In [28]: sns.heatmap(h,annot=True) ##Heat map Works for data which is in metrics format;
Out[28]: <matplotlib.axes. subplots.AxesSubplot at 0x29d19412f08>
                                                      -1.0
           total bill
                   1
                               0.68
                                           0.6
                                                       -0.9
                                                      -0.8
                  0.68
                                1
                                           0.49
           tip
                                                       -0.7
                                                       -0.6
                               0.49
            Size
                   0.6
                                            1
```

```
In [33]: sns.heatmap(h,annot=True, cmap='Pastel2')
```


size

tip

total_bill


```
In [34]: plt.figure(figsize=(15,6))
sns.heatmap(data=tips.corr(),annot=True)
```

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x29d18e67288>

In [37]: sns.FacetGrid(data=tips, row='smoker', col='time')

Out[37]: <seaborn.axisgrid.FacetGrid at 0x29d197009c8>


```
0.0 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
```

```
In [38]: sns.FacetGrid(data=tips, row='smoker', col='time').map(plt.scatter,'total_bill','tip')
```

Out[38]: <seaborn.axisgrid.FacetGrid at 0x29d1bbb2888>

In [39]: sns.FacetGrid(data=tips, row='day', col='time').map(plt.scatter,'total_bill','tip')

Out[39]: <seaborn.axisgrid.FacetGrid at 0x29d1bd34988>

smoker = Yes | time = Lunch

In [42]: sns.FacetGrid(data=tips, row='smoker', col='time').map(sns.distplot,'total_bill')
Out[42]: <seaborn.axisgrid.FacetGrid at 0x29d19ab4788>

smoker = Yes | time = Dinner

EDS - Exploratory Data Analysis

- 1. Variable Identification
- 2. Univariate Analysis
- 3. Biovariate Analysis
- 4. Missing Value/Data Treatment
- 5. Outlier Treatment
- 6. Variable Creation/Creation of dummy variables
- 7. Variable Transformation

Step 1 - Variable Identification

0	Tony	25	М	Grad	50	700.0	GlenCove	0.2297	2448	8.0	3.5	2
1	Harret	52	F	PostGrad	95	364.0	GlenCove	0.2192	1942	7.0	2.5	1
2	Jane	26	F	PostGrad	65	600.0	GlenCove	0.1630	2073	7.0	3.0	2
3	Rose	45	F	Grad	99	548.4	LongBeach	0.4608	2707	8.0	2.5	1
4	John	42	М	Grad	77	405.9	LongBeach	0.2549	2042	NaN	1.5	1
5	Mark	62	М	PostGrad	118	374.1	GlenCove	0.2290	2089	7.0	2.0	0
6	Bruce	51	М	Grad	101	600.0	GlenCove	0.1714	1344	8.0	1.0	0
7	Steve	43	М	Grad	108	299.0	Roslyn	0.1750	1120	5.0	1.5	0
8	Carol	24	F	PostGrad	51	471.0	Roslyn	0.2130	1817	6.0	2.0	0
9	Henry	25	М	PostGrad	68	510.7	Roslyn	0.1377	2496	NaN	2.0	1
10	Donald	41	М	Grad	86	517.7	LongBeach	0.2497	1615	7.0	2.0	1
11	Maria	51	F	Grad	122	1200.0	LongBeach	0.4116	4067	9.0	4.0	1
12	Janet	49	F	PostGrad	112	700.0	Roslyn	0.3372	3130	8.0	3.0	1
13	Sophia	32	F	Grad	85	374.8	Roslyn	0.1503	1423	NaN	2.0	0
14	Jeffery	37	М	Grad	90	543.0	LongBeach	0.2348	1799	6.0	2.5	1

In [47]: eda.head()

Out[47]:

	Name	Age	Gender	Education	Salary	AppraisedValue	Location	Landacres	HouseSizesqrft	Rooms	Baths	Garage
0	Tony	25	М	Grad	50	700.0	GlenCove	0.2297	2448	8.0	3.5	2
1	Harret	52	F	PostGrad	95	364.0	GlenCove	0.2192	1942	7.0	2.5	1
2	Jane	26	F	PostGrad	65	600.0	GlenCove	0.1630	2073	7.0	3.0	2
3	Rose	45	F	Grad	99	548.4	LongBeach	0.4608	2707	8.0	2.5	1
4	John	42	М	Grad	77	405.9	LongBeach	0.2549	2042	NaN	1.5	1

In [48]: eda.tail()

Out[48]:

	Name	Age	Gender	Education	Salary	AppraisedValue	Location	Landacres	HouseSizesqrft	Rooms	Baths	Garage
10	Donald	41	М	Grad	86	517.7	LongBeach	0.2497	1615	7.0	2.0	1
11	Maria	51	F	Grad	122	1200.0	LongBeach	0.4116	4067	9.0	4.0	1
12	Janet	49	F	PostGrad	112	700.0	Roslyn	0.3372	3130	8.0	3.0	1
13	Sophia	32	F	Grad	85	374.8	Roslyn	0.1503	1423	NaN	2.0	0

```
In [49]: eda.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 15 entries, 0 to 14
         Data columns (total 12 columns):
              Column
                               Non-Null Count
                                               Dtype
          0
                               15 non-null
              Name
                                               object
              Age
                               15 non-null
                                               int64
              Gender
                               15 non-null
                                               object
              Education
                               15 non-null
                                               object
              Salary
                               15 non-null
                                               int64
                                               float64
              AppraisedValue 15 non-null
              Location
                               15 non-null
                                               object
                                               float64
              Landacres
                               15 non-null
              HouseSizesqrft 15 non-null
                                               int64
          9
              Rooms
                               12 non-null
                                               float64
          10
              Baths
                                               float64
                               15 non-null
          11 Garage
                               15 non-null
                                               int64
         dtypes: float64(4), int64(4), object(4)
         memory usage: 1.5+ KB
In [51]:
         eda.describe()
```

543.0 LongBeach

0.2348

1799

6.0

2.5

Out[51]:

	Age	Salary	AppraisedValue	Landacres	HouseSizesqrft	Rooms	Baths	Garage
count	15.000000	15.000000	15.000000	15.000000	15.000000	12.000000	15.000000	15.000000
mean	40.333333	88.466667	547.240000	0.242487	2140.800000	7.166667	2.333333	0.800000
std	11.842217	22.752917	217.331829	0.093602	754.829517	1.114641	0.794325	0.676123
min	24.000000	50.000000	299.000000	0.137700	1120.000000	5.000000	1.000000	0.000000
25%	29.000000	72.500000	390.350000	0.173200	1707.000000	6.750000	2.000000	0.000000
50%	42.000000	90.000000	517.700000	0.229000	2042.000000	7.000000	2.000000	1.000000
75%	50.000000	104.500000	600.000000	0.252300	2472.000000	8.000000	2.750000	1.000000
max	62.000000	122.000000	1200.000000	0.460800	4067.000000	9.000000	4.000000	2.000000

3 steps

14 Jeffery

37

Μ

Grad

90

- 1. Identify variable (dependent (apprised value) & independent (rest all))
- 2. Broader data types (numeric & categorical) Name, Gender, Education, Location are categorical and rest all are numberic

Step - 2: Univariate Analysis - Pick each individual variable and study it and identify the insights from it

```
In [52]: eda.boxplot('Age')
```

Out[52]: <matplotlib.axes._subplots.AxesSubplot at 0x29d1dadde88>

Observation - No outliers in variable 'age'

```
In [57]: eda.hist('Age', bins=[10,20,30,40,50,60,70])
Out[57]: array([[<matplotlib.axes. subplots.AxesSubplot object at 0x0000029D1DD1FA88>]],
```

57]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000029D1DD1FA88>]], dtype=object)

Observation - Most of the people are in between age 40 & 50

```
In [58]: eda.boxplot('Salary')
Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x29d1dd9cb48>

120
110
100
90
80
70
60
50
```

Observation - No outliers

Salary

Observation - Highest salary in the range of 90 & 100

Observation - 1 outlier

AppraisedValue