Círculo Mínimo

INF2604 - Geometria Computacional

Waldemar Celes

celes@inf.puc-rio.br

Departamento de Informática, PUC-Rio

Problema

- ▶ Dado um conjunto de pontos no plano $P = \{\mathbf{p}_1, ..., \mathbf{p}_n\}$, achar o **círculo mínimo** envolvente
 - ightharpoonup Determinar centro **c** e raio r do círculo

Problema

- ▶ Dado um conjunto de pontos no plano $P = \{\mathbf{p}_1, ..., \mathbf{p}_n\}$, achar o **círculo mínimo** envolvente
 - ightharpoonup Determinar centro **c** e raio r do círculo

Casos especiais:

▶
$$n = 1$$
: $\mathbf{c} = \mathbf{p}_1 \in r = 0$

Problema

- ▶ Dado um conjunto de pontos no plano $P = \{\mathbf{p}_1, ..., \mathbf{p}_n\}$, achar o **círculo mínimo** envolvente
 - ightharpoonup Determinar centro **c** e raio r do círculo

Casos especiais:

▶
$$n = 1$$
: $\mathbf{c} = \mathbf{p}_1 \in r = 0$

▶
$$n = 2$$
: $\mathbf{c} = \frac{\mathbf{p}_1 + \mathbf{p}_2}{2}$ e $r = \frac{\|\mathbf{p}_1 - \mathbf{p}_2\|}{2}$

Caso n = 3:

Caso n = 3:

- Pontos colineares
 - ightharpoonup Recai no caso n=2

Caso n = 3:

- Pontos colineares
 - Recai no caso n=2
- Pontos não colineares
 - ▶ Com ângulo obtuso: recai no caso n = 2

Caso n = 3:

- Pontos colineares
 - Recai no caso n=2
- Pontos não colineares
 - ► Com ângulo obtuso: recai no caso n = 2
 - ► Sem ângulo obtuso: circuncírculo de triângulo
 - Determinação de c: encontro das mediatrizes

$$\|\mathbf{p}_1 - \mathbf{c}\|^2 = \|\mathbf{p}_2 - \mathbf{c}\|^2 = \|\mathbf{p}_3 - \mathbf{c}\|^2$$

Determinação de r

$$r = \|\mathbf{c} - \mathbf{p}_i\|, \quad \text{com} \quad i = 1, 2, \text{ou } 3$$

Problema geral

- ▶ O círculo mínimo que envolve $P = \{\mathbf{p}_1, ..., \mathbf{p}_n\}$, com n > 1, tem, obrigatoriamente, 2 ou 3 pontos de contato com P
 - ▶ Dois pontos de *P* diametralmente opostos, ou
 - ► Três pontos de *P* formando um triângulo agudo

Algoritmo força bruta

- Considere todas os pares de pontos
 - ► Verifique se círculo diametral envolve todos os demais pontos
 - Guarde o menor círculo
- Considere todas as triplas de pontos
 - Verifique se circuncírculo do triângulo envolve todos os demais pontos
 - Guarde o menor círculo

Algoritmo força bruta

- Considere todas os pares de pontos
 - ► Verifique se círculo diametral envolve todos os demais pontos
 - Guarde o menor círculo
- Considere todas as triplas de pontos
 - Verifique se circuncírculo do triângulo envolve todos os demais pontos
 - ► Guarde o menor círculo

Tempo esperado

Algoritmo força bruta

- ► Considere todas os pares de pontos
 - ► Verifique se círculo diametral envolve todos os demais pontos
 - Guarde o menor círculo
- ► Considere todas as triplas de pontos
 - Verifique se circuncírculo do triângulo envolve todos os demais pontos
 - Guarde o menor círculo

Tempo esperado

$$n\left(\left(\begin{array}{c}n\\2\end{array}\right)+\left(\begin{array}{c}n\\3\end{array}\right)\right)=O(n^4)$$

Lembrando que:

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{(n-k)!k!}$$

Algoritmo baseado em heurística

- Não resulta no círculo mínimo
- ▶ Usado como forma simples de determinar círculo envolvente

Algoritmo baseado em heurística

- ► Não resulta no círculo mínimo
- ► Usado como forma simples de determinar círculo envolvente

Algoritmo

► Ache os dois pares de pontos: $\{\mathbf{p}_{x_{min}}, \mathbf{p}_{x_{max}}\}$, $\{\mathbf{p}_{y_{min}}, \mathbf{p}_{y_{max}}\}$

6

Algoritmo baseado em heurística

- ► Não resulta no círculo mínimo
- ▶ Usado como forma simples de determinar círculo envolvente

Algoritmo

- ► Ache os dois pares de pontos: $\{\mathbf{p}_{x_{min}}, \mathbf{p}_{x_{max}}\}$, $\{\mathbf{p}_{y_{min}}, \mathbf{p}_{y_{max}}\}$
- **E**scolha par mais distante: $\mathbf{p}_i, \mathbf{p}_j$
- ► Considere o círculo diametral: $\mathbf{c} = \frac{\mathbf{p}_i + \mathbf{p}_j}{2}$ e $r = \frac{\|\mathbf{p}_i \mathbf{p}_j\|}{2}$
- ▶ Para cada ponto \mathbf{p}_k , faz $\vec{d} = \mathbf{p}_k \mathbf{c}$; se ||d|| > r:

•
$$\mathbf{c} = \mathbf{c} + \frac{\|d\| - r}{2} \hat{d} \in r = \frac{\|d\| + r}{2}$$

6

Algoritmo baseado em heurística

- ► Não resulta no círculo mínimo
- ► Usado como forma simples de determinar círculo envolvente

Algoritmo

- Ache os dois pares de pontos: $\{\mathbf{p}_{x_{min}}, \mathbf{p}_{x_{max}}\}$, $\{\mathbf{p}_{y_{min}}, \mathbf{p}_{y_{max}}\}$
- ightharpoonup Escolha par mais distante: $\mathbf{p}_i, \mathbf{p}_j$
- ► Considere o círculo diametral: $\mathbf{c} = \frac{\mathbf{p}_i + \mathbf{p}_j}{2}$ e $r = \frac{\|\mathbf{p}_i \mathbf{p}_j\|}{2}$
- ▶ Para cada ponto \mathbf{p}_k , faz $\vec{d} = \mathbf{p}_k \mathbf{c}$; se ||d|| > r:

•
$$\mathbf{c} = \mathbf{c} + \frac{\|d\| - r}{2}\hat{d} \text{ e } r = \frac{\|d\| + r}{2}$$

Tempo Esperado:

Algoritmo baseado em heurística

- ► Não resulta no círculo mínimo
- ► Usado como forma simples de determinar círculo envolvente

Algoritmo

- Ache os dois pares de pontos: $\{\mathbf{p}_{x_{min}}, \mathbf{p}_{x_{max}}\}$, $\{\mathbf{p}_{y_{min}}, \mathbf{p}_{y_{max}}\}$
- **E**scolha par mais distante: $\mathbf{p}_i, \mathbf{p}_j$
- ► Considere o círculo diametral: $\mathbf{c} = \frac{\mathbf{p}_i + \mathbf{p}_j}{2}$ e $r = \frac{\|\mathbf{p}_i \mathbf{p}_j\|}{2}$
- ▶ Para cada ponto \mathbf{p}_k , faz $\vec{d} = \mathbf{p}_k \mathbf{c}$; se ||d|| > r:

c = **c** +
$$\frac{\|d\|-r}{2}\hat{d}$$
 e $r = \frac{\|d\|+r}{2}$

6

Tempo Esperado: O(n)

Algoritmo incremental randômico

- ightharpoonup Permutação randômica de $\mathbf{p}_1,...,\mathbf{p}_n$
- ightharpoonup Considere $P_i = \{\mathbf{p}_1, ..., \mathbf{p}_i\}$
- ► Considere *C_i* como o círculo mínimo de *P_i*

Algoritmo incremental randômico

- ightharpoonup Permutação randômica de $\mathbf{p}_1,...,\mathbf{p}_n$
- ightharpoonup Considere $P_i = \{\mathbf{p}_1, ..., \mathbf{p}_i\}$
- ► Considere *C_i* como o círculo mínimo de *P_i*

Lema: para 2 < i < n, temos:

- ightharpoonup Se $\mathbf{p}_i \in C_{i-1}$, então $C_i = C_{i-1}$
- ▶ Se $\mathbf{p}_i \notin C_{i-1}$, então \mathbf{p}_i está em contato com C_i

Algoritmo: MinCircle $(\{p_1, ..., p_n\})$

- 1. Faça uma permutação em $\mathbf{p}_1,...,\mathbf{p}_n$ de P
- 2. Inicialize C_2 considerando $\{\mathbf{p}_1, \mathbf{p}_2\}$
- 3. Para i = 3, ..., n faça:
 - ▶ Se $p_i \in C_{i-1}$ então: $C_i = C_{i-1}$
 - ightharpoonup Senão: $C_i = MinCircleWithPoint <math>(\{\mathbf{p}_1,...,\mathbf{p}_{i-1}\},\mathbf{p}_i)$
- 4. Retorna C_n

Algoritmo: MinCircleWithPoint $(\{p_1, ..., p_n\}, q)$

- 1. Inicialize C_1 considerando $\{\mathbf{p}_1, \mathbf{q}\}$
- 2. Para j = 2, ..., n faça:
 - ▶ Se $p_j \in C_{j-1}$ então: $C_j = C_{j-1}$
 - ▶ Senão: C_j = MinCircleWith2Points $(\{\mathbf{p}_1,...,\mathbf{p}_{j-1}\},\mathbf{p}_j,\mathbf{q})$
- 3. Retorna C_n

Algoritmo: MinCircleWithPoint $(\{p_1, ..., p_n\}, q)$

- 1. Inicialize C_1 considerando $\{\mathbf{p}_1, \mathbf{q}\}$
- 2. Para j = 2, ..., n faça:
 - ▶ Se $p_j \in C_{j-1}$ então: $C_j = C_{j-1}$
 - ▶ Senão: C_j = MinCircleWith2Points $(\{\mathbf{p}_1,...,\mathbf{p}_{j-1}\},\mathbf{p}_j,\mathbf{q})$
- 3. Retorna C_n

Algoritmo: MinCircleWith2Points $(\{\mathbf{p}_1,...,\mathbf{p}_n\},\mathbf{q}_1,\mathbf{q}_2)$

- 1. Inicialize C_0 considerando $\{\mathbf{q}_1, \mathbf{q}_2\}$
- 2. Para k = 1, ..., n faça:
 - ▶ Se $p_k \in C_{k-1}$ então: $C_k = C_{k-1}$
 - ► Senão: C_k = circuncírculo de \mathbf{p}_k , \mathbf{q}_1 , \mathbf{q}_2
- 3. Retorna C_n

Tempo esperado

Tempo esperado

ightharpoonup MinCircleWith2Points $\longrightarrow O(n)$

Tempo esperado

- ightharpoonup MinCircleWith2Points $\longrightarrow O(n)$
- ▶ MinCircleWithPoint $\longrightarrow O(n) + \sum_{i=2}^{n} O(i)p$
 - ightharpoonup Onde p é a propabilidade da cláusula senão ser executada

Tempo esperado

- ightharpoonup MinCircleWith2Points $\longrightarrow O(n)$
- ▶ MinCircleWithPoint $\longrightarrow O(n) + \sum_{i=2}^{n} O(i)p$
 - ▶ Onde *p* é a propabilidade da cláusula *senão* ser executada

Determinação de p

- ► Considere o problema inverso:
 - ightharpoonup Ao remover um ponto de P_i , qual a probabilidade de remover do contorno?

Tempo esperado

- ightharpoonup MinCircleWith2Points $\longrightarrow O(n)$
- ▶ MinCircleWithPoint $\longrightarrow O(n) + \sum_{i=2}^{n} O(i)p$
 - ▶ Onde *p* é a propabilidade da cláusula *senão* ser executada

Determinação de p

- ► Considere o problema inverso:
 - ightharpoonup Ao remover um ponto de P_i , qual a probabilidade de remover do contorno?
 - ▶ Logo: $p = \frac{2}{i}$

Tempo esperado

- ightharpoonup MinCircleWith2Points $\longrightarrow O(n)$
- ▶ MinCircleWithPoint $\longrightarrow O(n) + \sum_{i=2}^{n} O(i)p$
 - ► Onde *p* é a propabilidade da cláusula *senão* ser executada

Determinação de p

- Considere o problema inverso:
 - ightharpoonup Ao remover um ponto de P_i , qual a probabilidade de remover do contorno?
 - ▶ Logo: $p = \frac{2}{i}$

Então:

• MinCircleWithPoint $\longrightarrow O(n) + \sum_{i=1}^{n} O(i)^{\frac{2}{i}} = O(n)$

Tempo esperado

- ightharpoonup MinCircleWith2Points $\longrightarrow O(n)$
- ▶ MinCircleWithPoint $\longrightarrow O(n) + \sum_{i=2}^{n} O(i)p$
 - ▶ Onde *p* é a propabilidade da cláusula *senão* ser executada

Determinação de p

- Considere o problema inverso:
 - \triangleright Ao remover um ponto de P_i , qual a probabilidade de remover do contorno?
 - ▶ Logo: $p = \frac{2}{i}$

Então:

• MinCircleWithPoint $\longrightarrow O(n) + \sum_{i=1}^{n} O(i)^{\frac{2}{i}} = O(n)$

De forma similar, chegamos a:

ightharpoonup MinCircle $\longrightarrow O(n)$

Permutação de um conjunto

Como fazer a permutação dos pontos?

Permutação de um conjunto

Como fazer a permutação dos pontos?

Algoritmo: RandomPermutation (A[1...n])

- 1. Para k = n,...,2 faça:
 - ightharpoonup r = random (1, k)
 - $\blacktriangleright A[k] \leftrightarrow A[r]$

Permutação de um conjunto

Como fazer a permutação dos pontos?

Algoritmo: RandomPermutation (A[1...n])

- 1. Para k = n,...,2 faça:
 - ightharpoonup r = random(1, k)
 - $\blacktriangleright A[k] \leftrightarrow A[r]$

Tempo esperado: O(n)

