GCM Data Analysis Primer

July 14, 2017

```
In [1]: import netCDF4 as nc
    import numpy as np
    import matplotlib; import pylab as plt;
    plt.rc('text', usetex=True); plt.rc('font', family='serif');
    %matplotlib inline
```

Use the netCDF4 package to load NetCDF files (*.nc). You may have to install it separately. Usage is very simple, just point nc.Dataset to the data file and tell it to read the file rather than write to it.

```
In [2]: data = nc.Dataset("MOST.001.nc","r")
```

The structure of a NetCDF4 Dataset is essentially a dictionary, with a set of strings as keys, which when handed to Dataset.variables, returns array-like data.

```
In [3]: print "Code\tDimensions ([t],[z],[lat],[lon])"
        for i in data.variables:
             print i,'\t',data.variables[i][:].shape
             Dimensions ([t],[z],[lat],[lon])
Code
lon
             (64,)
             (32,)
lat
lev
             (10,)
              (12,)
time
            (12, 32, 64)
sg
            (12, 10, 32, 64)
ta
ua
            (12, 10, 32, 64)
            (12, 10, 32, 64)
va
             (12, 10, 32, 64)
hus
            (12, 32, 64)
ps
             (12, 10, 32, 64)
wap
            (12, 10, 32, 64)
              (12, 10, 32, 64)
zeta
            (12, 32, 64)
ts
              (12, 32, 64)
mrso
snd
             (12, 32, 64)
             (12, 32, 64)
prl
prc
             (12, 32, 64)
              (12, 32, 64)
prsn
              (12, 32, 64)
hfss
              (12, 32, 64)
hfls
             (12, 10, 32, 64)
stf
             (12, 10, 32, 64)
psi
psl
             (12, 32, 64)
            (12, 32, 64)
pl
```

```
d
           (12, 10, 32, 64)
            (12, 10, 32, 64)
zg
hur
             (12, 10, 32, 64)
              (12, 32, 64)
mrro
clw
             (12, 10, 32, 64)
            (12, 10, 32, 64)
cl
             (12, 32, 64)
clt
             (12, 32, 64)
tas
             (12, 32, 64)
tsa
lsm
             (12, 32, 64)
z0
            (12, 32, 64)
            (12, 32, 64)
as
             (12, 32, 64)
rss
             (12, 32, 64)
rls
             (12, 32, 64)
rst
              (12, 32, 64)
rlut
              (12, 32, 64)
evap
              (12, 32, 64)
rsut
              (12, 32, 64)
ssru
stru
              (12, 32, 64)
sic
             (12, 32, 64)
             (12, 32, 64)
sit
             (12, 32, 64)
{\tt snm}
              (12, 32, 64)
sndc
prw
             (12, 32, 64)
glac
              (12, 32, 64)
             (12, 10, 32, 64)
spd
            (12, 32, 64)
pr
             (12, 32, 64)
ntr
             (12, 32, 64)
nbr
hfns
              (12, 32, 64)
wfn
             (12, 32, 64)
dqo3
              (12, 10, 32, 64)
              (12, 32, 64)
lwth
              (12, 32, 64)
grnz
              (12, 32, 64)
icez
netz
              (12, 32, 64)
In [4]: lts = data.variables['lat'][:]
        lns = data.variables['lon'][:]
        lons, lats = np.meshgrid(lns,lts)
        t=plt.pcolormesh(lons,lats,data.variables['ts'][10,:],shading='Gouraud',cmap='coolwarm',vmin=25
        plt.xlabel('Degrees Longitude')
        plt.ylabel('Degrees Latitude')
        plt.title("Temperature")
        plt.ylim(np.amin(lts),np.amax(lts))
        plt.xlim(np.amin(lns),np.amax(lns))
        c=plt.colorbar(t,label='Kelvins')
```



```
In [6]: lvs = data.variables['lev'][:]
    lats2,levs = np.meshgrid(lts,lvs)
    w=plt.pcolormesh(lats2,levs,np.sum(data.variables['clw'][7,:],axis=2),shading='Gouraud',cmap='integrated line |
    plt.ylabel('Pressure (hPa)')
    plt.xlabel('Degrees Latitude')
    plt.title("Longitudinally-Integrated Water Content")
    plt.ylim(np.amin(lvs),np.amax(lvs))
    plt.xlim(np.amin(lts),np.amax(lts))
    c=plt.colorbar(w,label='Liquid Water Content [kg/kg]')
    plt.gca().invert_yaxis()
```


It can be instructive to view the data with the proper scaling, noting that we're talking about a spherical planet. The additional Matplotlib Basemap package allows us to plot the data as a Mollweide projection. This package needs to be installed separately, on top of the existing matplotlib installation.

In [7]: from mpl_toolkits.basemap import Basemap

We also need to wrap the data—our data doesn't include both 360 degrees longitude and 0 degrees longitude, but we need it for a full Mollweide projection. So we define two functions for wrapping 2D and 3D data.

```
In [8]: def wrap2d(datd, vals):
            modf=np.zeros(datd.ndim,dtype=int)
            modf[-1]=1
            dd=np.zeros(datd.shape+modf)
            dd[:,0:datd.shape[-1]]=datd
            dd[:,datd.shape[-1]]=vals
            return dd
        def wrap3d(datd, vals):
            modf=np.zeros(datd.ndim,dtype=int)
            modf[-1]=1
            dd=np.zeros(datd.shape+modf)
            dd[:,:,0:datd.shape[-1]]=datd
            dd[:,:,datd.shape[-1]]=vals
            return dd
In [9]: latsw=wrap2d(lats,lats[:,0])
        lonsw=wrap2d(lons,360.0)
        dataw=wrap2d(data.variables['ts'][6,:],data.variables['ts'][6,:,0])
        print np.amax(dataw-273.15)
```

43.416619873

Out[11]: <matplotlib.text.Text at 0x7f8a53b36290>

November Mean Surface Temperature


```
#pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1])
#mr=m.drawmeridians(np.arange(-180,180.,90.))
cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Sea Ice Fraction")
plt.title(names[month]+" Mean Sea Ice Coverage")
```

Out[12]: <matplotlib.text.Text at 0x7f8a5145d290>


```
In [15]: dataw=wrap2d(data.variables['evap'][month,:],data.variables['evap'][month,:,0])

m = Basemap(projection='moll',lon_0=0,resolution='c')

tm = m.pcolormesh(lonsw,latsw,-dataw*8.64e7,shading='Gouraud',cmap='plasma_r',latlon=True)

#continent = m.contour(lonsw,latsw,lsm,[0.5,],colors='lightgray',latlon=True,zorder=3)

m.drawcoastlines()

#pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1])

#mr=m.drawmeridians(np.arange(-180,180.,90.))

cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Evaporation (mm day$^{-1}$)")

plt.title(names[month]+" Average Evaporation")
Out[15]: <matplotlib.text.Text at 0x7f8a51189c50>
```



```
In [16]: dataw=wrap2d(data.variables['lwth'][month,:],data.variables['lwth'][month,:,0])

m = Basemap(projection='moll',lon_0=0,resolution='c')

tm = m.pcolormesh(lonsw,latsw,dataw,shading='Gouraud',cmap='inferno',latlon=True)

#continent = m.contour(lonsw,latsw,lsm,[0.5,],colors='lightgray',latlon=True,zorder=3)

m.drawcoastlines(color='gray')

#pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1])

#mr=m.drawmeridians(np.arange(-180,180.,90.))

cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Weathering (W$_\oplus$)")

plt.title(names[month]+" Average Weathering Rate")
```

Out[16]: <matplotlib.text.Text at 0x7f8a51003390>


```
In [17]: dataw=wrap2d(data.variables['sit'][month,:],data.variables['sit'][month,:,0])

m = Basemap(projection='moll',lon_0=0,resolution='c')

tm = m.pcolormesh(lonsw,latsw,dataw,shading='Gouraud',cmap='Blues_r',latlon=True)

m.drawcoastlines()

#pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1])

#mr=m.drawmeridians(np.arange(-180,180.,90.))

cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Sea Ice Thickness (m)")

plt.title("Sea Ice Thickness")
```

Out[17]: <matplotlib.text.Text at 0x7f8a50c9b2d0>


```
In [18]: dataw=wrap2d(data.variables['as'][month,:],data.variables['as'][month,:,0])

m = Basemap(projection='moll',lon_0=0,resolution='c')

tm = m.pcolormesh(lonsw,latsw,dataw,shading='Gouraud',cmap='gist_earth',latlon=True,vmin=0,vmatecontinent = m.contour(lonsw,latsw,lsm,[0.5,],colors='lightgray',latlon=True,zorder=3)

m.drawcoastlines()

#pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1])

#mr=m.drawmeridians(np.arange(-180,180.,90.))

cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Albedo")

plt.title(names[month]+" Albedo")
```

Out[18]: <matplotlib.text.Text at 0x7f8a50fe8110>


```
In [19]: f,axarr = plt.subplots(1,2,figsize=(14,4.5))
    f.suptitle(names[month]+" Sea Ice Averages at 0.83 F$_\oplus$ and 0.61 bars CO$_2$",fontsize=1

datac=wrap2d(data.variables['sic'][month,:],data.variables['sic'][month,:,0])

m = Basemap(projection='moll',lon_0=0,resolution='c',ax=axarr[0])
    tm = m.pcolormesh(lonsw,latsw,datac,shading='Gouraud',cmap='Blues_r',latlon=True)
    m.drawcoastlines()
    #pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1])
    #mr=m.drawmeridians(np.arange(-180,180.,90.))
    cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Sea Ice Coverage Fraction")
    axarr[0].set_title("Sea Ice Fraction")

dataw=wrap2d(data.variables['sit'][month,:],data.variables['sit'][month,:,0])
```

```
m2 = Basemap(projection='moll',lon_0=0,resolution='c',ax=axarr[1])
tm2 = m2.pcolormesh(lonsw,latsw,dataw,shading='Gouraud',cmap='bone',latlon=True)
m2.drawcoastlines(color='gray')
#pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1])
#mr=m.drawmeridians(np.arange(-180,180.,90.))
cb2 = m2.colorbar(tm2,"bottom", size="5%", pad="2%",label="Sea Ice Thickness (m)")
axarr[1].set_title("Sea Ice Thickness")
```

Out[19]: <matplotlib.text.Text at 0x7f8a509f64d0>

July Sea Ice Averages at $0.83 F_{\oplus}$ and $0.61 bars CO_2$


```
In [20]: dataw=wrap2d(data.variables['sg'][month,:],data.variables['sg'][month,:,0])

m = Basemap(projection='moll',lon_0=0,resolution='c')

tm = m.pcolormesh(lonsw,latsw,dataw,shading='Gouraud',cmap='gist_earth',latlon=True)

#continent = m.contour(lonsw,latsw,lsm,[0.5,],colors='lightgray',latlon=True,zorder=3)

m.drawcoastlines(color='gray')

pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1])

mr=m.drawmeridians(np.arange(-180,180.,60.))

cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Geopotential [m$^2$/s$^2$]")

plt.title("Surface Geopotential")
```

Out[20]: <matplotlib.text.Text at 0x7f8a5040be50>


```
In [21]: dataw=wrap2d(data.variables['netz'][month,:],data.variables['netz'][month,:,0])

m = Basemap(projection='moll',lon_0=0,resolution='c')

tm = m.pcolormesh(lonsw,latsw,dataw,shading='Gouraud',cmap='gist_earth',latlon=True)

#continent = m.contour(lonsw,latsw,lsm,[0.5,],colors='lightgray',latlon=True,zorder=3)

m.drawcoastlines(color='gray')

pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1],color='r')

mr=m.drawmeridians(np.arange(-180,180.,60.),color='r')

cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Geopotential [m$^2$/s$^2$]")

plt.title(names[month]+" Net Geopotential")
```

Out[21]: <matplotlib.text.Text at 0x7f8a50541150>


```
In [22]: dataw=wrap2d(data.variables['grnz'][month,:],data.variables['grnz'][month,:,0])

m = Basemap(projection='moll',lon_0=0,resolution='c')

tm = m.pcolormesh(lonsw,latsw,dataw,shading='Gouraud',cmap='gist_earth',latlon=True)

#continent = m.contour(lonsw,latsw,lsm,[0.5,],colors='lightgray',latlon=True,zorder=3)

m.drawcoastlines(color='gray')

pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1],color='r')

mr=m.drawmeridians(np.arange(-180,180.,60.),color='r')

cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Geopotential [m$^2$/s$^2$]")

plt.title("Ground Geopotential")
```

Out[22]: <matplotlib.text.Text at 0x7f8a4a0bbdd0>


```
In [24]: data2 = nc.Dataset("MOST.002.nc","r")
In [25]: dataw=wrap2d(data2.variables['netz'][month,:],data2.variables['netz'][month,:,0])

m = Basemap(projection='moll',lon_0=0,resolution='c')
tm = m.pcolormesh(lonsw,latsw,dataw,shading='Gouraud',cmap='gist_earth',latlon=True)
#continent = m.contour(lonsw,latsw,lsm,[0.5,],colors='lightgray',latlon=True,zorder=3)
m.drawcoastlines(color='gray')
pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1],color='r')
mr=m.drawmeridians(np.arange(-180,180.,60.),color='r')
cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Geopotential [m$^2$/s$^2$]")
plt.title("Year 2 "+names[month]+" Net Geopotential")
```

Out[25]: <matplotlib.text.Text at 0x7f8a500974d0>


```
In [26]: dataw=wrap2d(data2.variables['icez'][month,:],data2.variables['icez'][month,:,0])

m = Basemap(projection='moll',lon_0=0,resolution='c')

tm = m.pcolormesh(lonsw,latsw,np.log10(np.maximum(dataw,0.1)),shading='Gouraud',cmap='gist_ear'
#continent = m.contour(lonsw,latsw,lsm,[0.5,],colors='lightgray',latlon=True,zorder=3)

m.drawcoastlines(color='gray')

pr=m.drawparallels(np.arange(-90.,120.,30.),labels=[1,0,0,1],color='r')

mr=m.drawmeridians(np.arange(-180,180.,60.),color='r')

cb = m.colorbar(tm,"bottom", size="5%", pad="2%",label="Log Geopotential [m$^2$/s$^2$]")

plt.title("Year 2 "+names[month]+" Ice Geopotential")
Out[26]: <matplotlib.text.Text at 0x7f8a50225dd0>
```



```
In [27]: data.variables['lev'][:]
Out[27]: array([ 100.,
                         200.,
                                 300.,
                                         400., 500.,
                                                         600.,
                                                               700.,
                                                                         800.,
                 900., 1000.])
In [28]: pressure = data.variables['lev'][:]
        meantemp = np.mean(data.variables['ta'][month,:],axis=(1,2))
In [29]: plt.plot(meantemp,pressure)
        plt.xlabel('Temperature [K]')
        plt.ylabel('Pressure [hPa]')
        plt.gca().invert_yaxis()
        plt.title(names[month]+' Mean Temperature Profile')
Out[29]: <matplotlib.text.Text at 0x7f8a4beeb4d0>
```


In []: