Reinforcement Learning

Asmaa Elbadrawy PhD, Lecturer IFT Program, ASU

Supervised Learning simulates passive learning from a teacher.

Reinforcement Learning (RL) simulates active learning from experience.

In RL, the agent interacts with the world and periodically receives reward or punishment.

Source: https://nixustechnologies.com/reinforcement-learning-in-machine-learning/

Designer of an RL learning agent must provide a reward function.

Source: https://nixustechnologies.com/reinforcement-learning-in-machine-learning/

RL works very good in simulated environments (games) as there is abundance of opportunities to gain experience.

Source: https://nixustechnologies.com/reinforcement-learning-in-machine-learning/

Preliminaries

A Transition Model

It is a model that describes the result of taking a certain action in a certain state. Usually, the result is reaching another state.

T(s, a, s') denotes the transition when agent in state s, executes action a, and reaches state s'.

A Reward Function

R(s, a, s') denotes the reward the agent receives when it reaches state s' from state s by executing action a.

A Solution Policy

T denotes a solution policy that specifies, for each state s, what is the best action to take.

T(s) denotes the action recommended by the policy π for state s.

A Utility (Value) Function

U denotes the performance of the agent measured as the sum of all rewards earned from current state onwards until reaching the goal state.

Reinforcement Learning Methods

Model-based

- Knows Transition Model
- Estimates Utility Function

Model-based

- Knows Transition Model
- Estimates Utility Function

Chess-Playing Agent:

- Knows result of each action at each state (Transition Model)
- Estimate utility of each state (sum over future expected reward)

Asmaa Elbadrawy - Applications III Accordance 2022

Model-free

- Unknown Transition Model
- Estimates either Policy or Utility Function

Rover Explorer Agent

- Being in a certain state, agent does not know what next state a certain action would take it to.
- Estimates either policy(best action to take for each state), or utility (future reward of being in a current state).

Model-free

- Unknown Transition Model
- Estimates either Policy or Utility Function

Model-based

Model-free

- Knows Transition Model
- Estimates Utility Function

- Unknown Transition Model
- Estimates either Policy or Utility Function

RL Applications

Gaming Applications: Chess Playing Agent

Exploration
Tasks: Robo-Vac
exploring a room
for the first time

Minimizing Energy Costs

Personalized Recommendations

RL Agents can make use of domain knowledge to speed up the learning process.

Exploration Tasks: Robo-Vac

Detect room boundaries first.

Minimizing Energy Costs

Season? Location?

Personalized Recommendations

Exclude certain categories?

