

Robotics

OVERVIEW OF TINY ROBOT LEARNING

Dennis A. N. Gookyi

Overview of Tiny Robot Learning

WHAT IS TINY ROBOT LEARNING (TINYRL)?

- TinyRL is a field that focuses on deploying machine learning (ML) algorithms on resource-constrained robots
- These robots are typically small, lightweight, and have limited processing power and battery life

WHY TINY ROBOT LEARNING?

- Tiny robots offer several advantages:
 - Low cost: They are relatively inexpensive to manufacture
 - Size and maneuverability: They can operate in confined spaces inaccessible to larger robots
 - Versatility: They can be used for various applications, from search and rescue to infrastructure inspection

APPLICATIONS OF TINYRL

- Search and rescue: Tiny robots can navigate collapsed buildings or disaster zones to locate survivors
- Precision agriculture: They can monitor crops, detect pests, and deliver targeted pesticides
- Industrial inspection: They can inspect pipes, pipelines, and other hard-to-reach areas for damage

CHALLENGES OF TINYRL

- Limited resources: Tiny robots have limited processing power, memory, and battery life
- Sensor limitations: Their sensors may have lower resolution and range compared to larger robots
- Complex environments: They need to operate in dynamic and unpredictable environments

BASIC ROBOT ARCHITECTURE

- Sensors: These gather information about the robot's surroundings (e.g., cameras, LiDAR)
- Actuators: These allow the robot to interact with its environment (e.g., motors, wheels)
- Controller: This processes sensor data and controls the actuators to achieve desired behaviors
- Power supply: This provides energy for the robot's operation.

MACHINE LEARNING FOR ROBOTS

- ML algorithms enable robots to learn and adapt to their environment
- Common ML techniques for robots include:
 - Reinforcement learning: The robot learns through trial and error by receiving rewards for desired actions
 - Supervised learning: The robot learns from labeled data to perform specific tasks

TINYML VS. TINYRL

- TinyML refers to deploying any ML model on resourceconstrained devices
- TinyRL is a subfield of TinyML specifically focused on ML for robots, with additional challenges related to real-time decision-making and interaction with the environment

APPROACHES TO TINYRL

- Traditional RL algorithms can be too complex for TinyRL applications
- Common approaches for TinyRL include:
 - Model-based RL: The robot learns a simplified model of its environment to make decisions
 - □ Lightweight RL algorithms: These algorithms are designed to be efficient and require less memory and processing power

HARDWARE PLATFORMS FOR TINYRL

- Microcontrollers (MCUs) are popular platforms for TinyRL due to their low cost and power efficiency
- Examples of MCUs for TinyRL include Arduino Nano and Raspberry Pi Pico

DEVELOPMENT TOOLS FOR TINYRL

- Several tools and libraries can simplify TinyRL development:
 - TensorFlow Lite Micro: A framework for deploying machine learning models on microcontrollers
 - MicroPython: A Python implementation designed for microcontrollers
 - ☐ TinyML libraries: Specialized libraries provide pre-built functions for common TinyRL tasks

SIMULATION ENVIRONMENTS FOR TINYRL

- Simulating robot behavior is crucial for TinyRL development
- Popular simulation environments include:
 - Gym: A toolkit with various simulated environments for robot learning
 - Maze environments: Specialized environments for testing navigation and exploration tasks
 - Robotics simulators: More complex simulators that model robot physics and dynamics

EVALUATION METRICS FOR TINYRL

- Evaluating the performance of TinyRL algorithms is essential
- Common metrics include:
 - Reward: The measure of success for the robot's actions
 - Success rate: The percentage of times the robot completes the desired task
 - Episode length: The average number of steps the robot takes to complete a task
 - Energy consumption: The amount of energy the robot uses during an episode

APPLICATIONS OF TINYRL RESEARCH

- TinyRL research is advancing the capabilities of small robots
- Potential applications include:
 - Swarm robotics: Coordinating the behavior of multiple robots to achieve a collective goal
 - Autonomous exploration: Enabling robots to navigate and explore unknown environments
 - Adaptive control: Allowing robots to adjust their behavior based on changing environmental conditions

