Analysis - PMA 9 -

KYB

Thrn, it's a Fact mathrnfact@gmail.com

February 2, 2021

Overview

Differentiation

The Derivative of Real Function

Mean Value Theorems

The Continuity of Derivatives

L'Hospital's Rule

Taylor's Theorem

Vector-Valued Functions

Exercises

The Derivative of Real Function

Definition

▶ Let f be defined and real-valued on [a, b]. For $x \in [a, b]$, form the quotient

$$\phi(t) = \frac{f(t) - f(x)}{t - x}$$
 $(a < t < b, t \neq x),$

and define

$$f'(x) = \lim_{t \to x} \phi(t),$$

provided this limit exists.

- ightharpoonup f' whose domain is the set of points of x at which the limit $\lim_{t\to x} \phi(t)$ exists is called the derivative of f.
- ▶ If f' is defined at a point x, we say f is differentiable at x, and if f' is defined on at every point of a set $E \subset [a,b]$, we say f is differentiable on E.
- lt is possible to consider right-hand and left-hand derivatives.

The Derivative of Real Function

Theorem

Let f be defined on [a,b]. If f is differentiable at a point $x \in [a,b]$, then f is continuous at x.

Theorem

Suppose f and g are defined on [a,b] and are differentiable at a point $x \in [a,b]$. Then f+g, fg, and f/g are differentiable at x (for f/g, assume $g(x) \neq 0$), and

- (a) (f+g)'(x) = f'(x) + g'(x);
- (b) (fg)'(x) = f'(x)g(x) + f(x)g'(x);

(c)
$$\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}$$
.

The Derivative of Real Function

Theorem (The Chain Rule)

Suppose f is continuous on [a,b], f'(x) exists at some point $x \in [a,b]$, g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If

$$h(t) = g(f(t)) \quad (a \le t \le b),$$

then h is differentiable at x, and

$$h'(x) = g'(f(x))f'(x).$$

The Derivative of Real Function

Example

Let f be defined by

$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Then

$$f'(x) = \begin{cases} \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x} & x \neq 0\\ \text{does not exist} & x = 0. \end{cases}$$

The Derivative of Real Function

Example

Let f be defined by

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Then

$$f'(x) = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x} & x \neq 0\\ 0 & x = 0. \end{cases}$$

Differentiation

The Derivative of Real Function Mean Value Theorems The Continuity of Derivatives L'Hospital's Rule Taylor's Theorem Vector-Valued Functions Exercises

Mean Value Theorems

Definition

Let f be a real function defined on a metric space X. We say that f has a local maximum at a point $p \in X$ if there exists $\delta > 0$ such that $f(q) \le f(p)$ for all $q \in X$ with $d(p,q) < \delta$. Similarly, define a local minimum.

Differentiation

The Derivative of Real Function Mean Value Theorems The Continuity of Derivatives L'Hospital's Rule Taylor's Theorem Vector-Valued Functions Exercises

Mean Value Theorems

Theorem

Let f be defined on [a,b]; if f has a local maximum at a point $x \in (a,b)$, and f'(x) exists, then f'(x) = 0.

Mean Value Theorems

Theorem

If f and g are continuous real functions on [a,b] which are differentiable in (a,b), then there is a point $x \in (a,b)$ at which

$$[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x).$$

Theorem

If f is a real continuous function on [a,b] which is differentiable in (a,b), then there is a point $x \in (a,b)$ at which

$$f(b) - f(a) = (b - a)f'(x).$$

Mean Value Theorems

Theorem

Suppose f is differentiable in (a,b).

- (a) If $f'(x) \ge 0$ for all $x \in (a,b)$, then f is monotonically increasing.
- (b) If f'(x) = 0 for all $x \in (a, b)$, then f is constant.
- (c) If $f'(x) \leq 0$ for all $x \in (a,b)$, then f is monotonically decreasing.

Exercises

Ex 5.1

Let f be defined fro all real x, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real \boldsymbol{x} and $\boldsymbol{y}.$ Prove that f is constant.

Exercises

Ex 5.2

Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b), and let g be its inverse function. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)}$$
 $(a < x < b).$

Differentiation

The Derivative of Real Function Mean Value Theorems The Continuity of Derivatives L'Hospital's Rule Taylor's Theorem Vector-Valued Functions Exercises

Exercises

Ex 5.3

Suppose g is a real function on $\mathbb R$ with bounded derivative, sat $|g'| \leq M$. Fix $\epsilon > 0$, and define $f(x) = x + \epsilon g(x)$. Prove that f is one-to-one if ϵ is small enough.

Exercises

Ex 5.5

Suppose f is defined and differentiable for every x>0, and $f'(x)\to 0$ as $x\to +\infty$. Put g(x)=f(x+1)-f(x). Prove that $g(x)\to 0$ as $x\to +\infty$

Exercises

Exercises

Ex 5.6

Suppose

- (a) f is continuous for $x \ge 0$,
- (b) f'(x) exists for x > 0,
- (c) f(0) = 0,
- (d) f' is monotonically increasing.

Put

$$g(x) = \frac{f(x)}{x} \quad (x > 0)$$

and prove that g is monotonically increasing.

Exercises

Ex 5.7

Suppose f'(x), g'(x) exist, $g'(x) \neq 0$, and f(x) = g(x) = 0. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}$$

Exercises

Ex 5.8

Suppose f' is continuous on [a,b] and $\epsilon>0$. Prove that there exists $\delta>0$ such that

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \epsilon$$

whenever $0 < |t - x| < \delta$, $a \le x, t \le b$.

Exercises

The Continuity of Derivatives

Theorem

Suppose f is a real differentiable function on [a,b] and suppose $f'(a) < \lambda < f'(b)$. Then there is a point $x \in (a,b)$ such that $f'(x) = \lambda$.

Corollary

If f is differentiable on [a, b], then f' cannot have any simple discontinuities on [a, b].

Exercises

L'Hospital's Rule

Theorem

Suppose f and g are real and differentiable in (a,b), and $g'(x) \neq 0$ for all $x \in (a,b)$, where $-\infty \leq a < b \leq +\infty$. Suppose

$$\frac{f'(x)}{g'(x)} \to A \text{ as } x \to a.$$

lf

$$f(x) \to 0$$
 and $g(x) \to 0$ as $x \to a$,

of if

$$g(x) \to +\infty$$
 as $x \to a$,

then

$$\frac{f(x)}{g(x)} o A$$
 as $x o a$.

Exercises

Exercises

Ex 5.11

Suppose f is defined in a neighborhood of x, and suppose f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

Show by an example that the limit may exist even if f''(x) does not.

Derivatives of Higher Order

Definition

- f'' = (f')'.
- $f^{(n)} = (f^{(n-1)})'.$

Taylor's Theorem

Theorem

Suppose f is a real function on [a,b], n is a positive integer, $f^{(n-1)}$ is continuous on [a,b], $f^{(n)}(t)$ exists for every $t \in (a,b)$. Let α,β be distinct points of [a,b], and define

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k.$$

Then there exists a point x between α and β such that

$$f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n.$$

Exercises

Ex 5.15

Suppose $a \in \mathbb{R}$, f is a twice-differentiable real function on (a, ∞) , and M_0, M_1, M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively, on (a, ∞) . Prove that

$$M_1^2 \le 4M_0M_2.$$

Exercises

Ex 5.16

Suppose f is twice-differentiable on $(0,\infty)$, f'' is bounded on $(0,\infty)$, and $f(x)\to 0$ as $x\to\infty$. Prove that $f'(x)\to 0$ as $x\to\infty$.

Exercises

Ex 5.17

Suppose f is real, three times differentiable function on [-1,1], such that

$$f(-1) = 0, f(0) = 0, f(1) = 1, f'(0) = 0.$$

Prove that $f^{(3)}(x) \ge 3$ for some $x \in (-1,1)$.

Exercises

Vector-Valued Functions

Remark

We can define the derivative of complex functions defined on [a,b]. If $f_1 = \text{Re } f$ and $f_2 = \text{Im } f$, that is, $f(t) = f_1(t) + i f_2(t)$ for $a \le t \le b$, then we clearly have

$$f'(x) = f_1'(x) + if_2'(x);$$

also, f is differentiable at x if and only if both f_1 and f_2 are differentiable at x.

Exercises

Vector-Valued Functions

Definition

Let $\mathbf{f}:[a,b]\to\mathbb{R}^k$ be a function. Let $x\in[a,b].$ If $\mathbf{q}\in\mathbb{R}^k$ exists such that

$$\lim_{t \to x} \left| \frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x} - \mathbf{q} \right| = 0,$$

define $\mathbf{f}'(x) = \mathbf{q}$. Then \mathbf{f}' is a function with values in \mathbb{R}^k .

Remark

If f_1, \dots, f_k are the components of f, then

$$\mathbf{f}'=(f_1',\cdots,f_k'),$$

and f is differentiable at a point x if and only if each of the functions f_1, \dots, f_k is differentiable at x.

Exercises

Vector-Valued Functions

Remark

Suppose $\mathbf f$ and $\mathbf g$ are functions from [a,b] to $\mathbb R^k$ with $\mathbf f=(f_1,\cdots,f_k)$ and $\mathbf g=(g_1,\cdots,g_k)$. If $\mathbf f$ and $\mathbf g$ are differentiable at x, $\mathbf f\cdot\mathbf g$ is also differentiable at x because

$$\mathbf{f} \cdot \mathbf{g} = f_1 g_1 + \dots + f_k g_k$$

and

$$(\mathbf{f} \cdot \mathbf{g})'(x) = (\mathbf{f}' \cdot \mathbf{g})(x) + (\mathbf{f} \cdot \mathbf{g}')(x)$$

Vector-Valued Functions

The mean value theorem and L'Hospital's rule fail for complex valued functions.

Example

ightharpoonup Define, for real x,

$$f(x) = e^{ix} = \cos x + i\sin x.$$

Exercises

ightharpoonup On (0,1), define f(x)=x and

$$g(x) = x + x^2 e^{i/x^2}.$$

Exercises

Vector-Valued Functions

Remark

However, there is a consequence of the mean value theorem.

$$|f(b) - f(a)| \le (b - a) \sup_{a < x < b} |f'(x)|.$$

Theorem

Suppose f is a continuous mapping of [a,b] into \mathbb{R}^k and f is differentiable in (a,b). Then there exists $x \in (a,b)$ such that

$$|\mathbf{f}(b) - \mathbf{f}(a)| \le (b - a)|\mathbf{f}'(x)|.$$

Exercises

Ex 5.13

Suppose a and c are real numbers, c > 0, and f is defined on [-1,1] by

$$f(x) = \begin{cases} x^{a} \sin(|x|^{-c}) & x \neq 0 \\ 0 & x = 0. \end{cases}$$

- (1) f is continuous if and only if a > 0.
- (2) f'(0) exists if and only if a > 1.
- (3) f' is bounded if and only if $a \ge 1 + c$.
- (4) f' is continuous if and only if a > 1 + c.
- (5) f''(0) exists if and only if a > 2 + c.
- (6) f'' is bounded if and only if $a \ge 2 + 2c$
- (7) f'' is continuous if and only if a > 2 + 2c.

Differentiation

The Derivative of Real Function Mean Value Theorems The Continuity of Derivatives L'Hospital's Rule Taylor's Theorem Vector-Valued Functions Exercises

Exercises

Ex 5.14

Let f be a differential real function defined in (a,b). Prove that f is convex if and only if f' is monotonically increasing. Assume next that f''(x) exists for every $x \in (a,b)$, and prove that f is convex if and only if $f''(x) \ge 0$ for all $x \in (a,b)$.

Differentiation

The Derivative of Real Function Mean Value Theorems The Continuity of Derivatives L'Hospital's Rule Taylor's Theorem Vector-Valued Functions Exercises

The End