

BC-0005

Bases Computacionais da Ciência

- A idéia de um dispositivo de computação universal foi descrita, pela primeira vez, por Alan Turing, em 1937
- Turing propôs que toda a computação poderia ser realizada por um tipo especial de máquina, denominada

Máquina de Turing

Computador Baseado no Modelo de Turing

O modelo de Turing representa um computador de propósito geral, porque acrescenta um elemento extra de computação específica: o PROGRAMA

Nesse modelo, os dados de saída dependem da combinação de dois fatores:

os dados de entrada o programa

MESMO PROGRAMA, DIFERENTES DADOS DE ENTRADA

Com o mesmo programa, podemos gerar diferentes resultados, se modificarmos os dados de entrada

MESMOS DADOS DE ENTRADA, DIFERENTES PROGRAMAS

Com os mesmos dados de entrada podemos gerar diferentes resultados, se modificarmos o programa

MÁQUINA DE TURING

Na Máquina de Turing, o operador da máquina só precisaria escrever claramente as instruções a serem seguidas, pois a Máquina não teria de entender o significado daquelas instruções, mas apenas executá-las

Assim, Turing demonstrou que praticamente qualquer ação imaginada, seja somar números ou desenhar figuras, poderia ser traduzida em passos lógicos simples que a máquina seria capaz de seguir

MODELO DE VON NEUMANN

Por volta de 1944-1945, John Von Neumann propôs uma arquitetura para computadores cujo hardware fosse dividido em quatro subsistemas:

- 1) Unidade Central de Processamento: É o cérebro do computador
- 2) Unidade de Lógica e Aritmética: onde ocorrem as operações de lógica e de cálculos.
- 3) Memória principal
- 4) Unidades de entrada e saída

Arquitetura Geral de um Computador

John Von Neumann (1946)

Noções de Computação

- Um sistema de computação é
 - Uma coleção de componentes que realizam operações lógicas e aritméticas (transformação) sobre um conjunto de dados (entrada) e fornecem uma saída (os dados transformados)
 - Um computador é uma máquina capaz de executar automaticamente alguma transformação no conjunto de dados de entrada

Noções de Computação

- · Um programa de computador é
 - Um conjunto de instruções (uma descrição das tranformações a serem realizadas) reunidas em determinada ordem
 - O computador executa estas instruções
- Um computador pode desempenhar diferentes funções, dependendo do programa e dos dados carregados num sistema de memória

Noções de Computador

• Hardware:

 Componentes mecânicos e eletroeletrônicos

Software:

- Seqüência de instruções e comandos que fazem o computador realizar determinada tarefa
- Programas de computador

Noções de Computador

Um computador é composto por:

- Unidades de entrada de dados
 - Ex.: teclado, mouse, câmera de vídeo
- Unidades de saída de dados
 - Ex.: monitor, impressora
- Unidades de armazenamento
 - Ex.: memória RAM, discos rígidos, cache
- Unidade Central de Processamento CPU

Dispositivos de Entrada e Saída

O subsistema de entrada e saída (E/S):

 transfere dados entre o computador e o ambiente externo, e vice-versa

Unidades de Entrada

Unidades de Saída

Memória Secundária - Disco (HD)

Os dados armazenados no Disco são persistentes, isto é, não se perdem quando o Computador é desligado

Placa-Mãe

Função da placa mãe:

- Criar meios para que o processador (CPU) possa comunicar-se com componentes do computador
- Ex.: periféricos, memórias, placas de vídeo etc.

Sistema Operacional	Sistema Computacional	
Windows	Computadores de mesa e portáteis	
Linux	Computadores de mesa e portáteis	
Mac OS	Computadores de mesa e portáteis	
Windows Tablet Edition	Tablets	
Google Andorid	Tablets, celulares	
iOS	Tablets, celulares	
Windows Embedded	dded Sistemas embarcados (GPS, eletrodomésticos, celulares, etc)	

Tabela 2.1: Exemplos de Sistemas Operacionais

	Aplicativo	Funcionalidade	Exemplos	
	Navegadores	Acessar sites na Internet	Internet Explorer,	
			FireFox, Google Crome, O	
Г	Editores de Texto	Editar documentos	Br Office Writer, Word P	
			Bloco de Notas, Microsoft	
Г	Planilhas eletrônicas	Realizar cálculos, plotar gráficos,	Br Office Calc,	
		analisar dados	Microsoft Excel	
	Processadores de imagens	Criar e editar imagens	Microsoft Paint, Adob Phot	
	·	·		

Tabela 2.2: Exemplos de Aplicativos

Computação Científica

- Simulações de fenômenos sobre os quais temos modelos quantitativos. Representação virtual daquele sistema
 - Exemplos: sistema solar, comportamento neural, variáveis econômicas, ecologia.
- Apesar de não serem o sistema em si, pode realizar "experimentos" (in silico) que não são possíveis no laboratório, bem como gerar novas hipóteses testáveis.

Gestão e Administração da Informação

- Exemplo de aplicações:
- Um supermercado pode analisar os dados de consumo de seus clientes para identificar quais novos produtos devem oferecer a cada um deles.

Interface Gráfica

 Software para leituras em voz de sites web:

http://webanywhere.cs.washington.e du/

Processamento de Imagens na área médica

Projeto VisECO3D do Incor

Visualização das artérias coronárias epicárdicas em contraste de microbolhas 3D imagens ecográficas.

Objetivo: Auxiliar no diagnóstico não invasivo

Imagem: Tsutsui et. Al. - J. Am. Soc. Echo., Vol. 18, N° 2, fevereiro 2005, pp. 188-191)

Fonte: http://www.incor.usp.br/spdweb/frame_projetos_eng.htm

Inteligência Artificial (Sistemas Inteligentes)

- Software que joga xadrez
- Futebol de robôs
- Busca inteligente na Web (Google)
- Tomada de decisões
 - Ao ponto de haver problemas éticos com machine-learning, deep-learning.

https://www.ted.com/talks/zeynep_tufekci_machine_intelligence_make s_human_morals_more_important

Hardware

- Suporte de equipamentos
- Redes de computadores (sem o, internet, etc)
- Automação industrial

Desenvolvimento de Sistema

- JMOL Química (estruturas moleculares): http://jmol.sourceforge.net/
- Aplicações de Cognição (neuroimagens, neurosiologia)
- . Aplicações em Física (dinâmica de fluidos):
- Aplicações para celulares
- Aplicações para GPS
- Aplicações para TV Digital
- Aplicações Internet

Atividades Práticas

- Fazer item 1.6 da página 28 do livro didático (Repositório do Tidia)
- BCC_B1_D_SBC_17.1 ou
- BCC_A1_D_SBC_17.1

Atividades Para Casa

- Como material complementar à estrutura de computadores, assistir ao seguinte vídeo:
 - → Vídeo "a_saga_de_um_processador_completa.flv", disponível no Tidia na área geral BC0005-2Q-2012. Mais especificamente em
 - "Repositório/4.MaterialDeApoioAulas /
 - 1.FundamentosDaComputacao"

Atividades Para Casa

Leitura do Capítulo2: "Representação gráfica de funções"

- →Instalar o Scilab no computador de vocês
- → Tentar reproduzir os gráficos mostrados ao longo do capítulo

Referência Bibliográficas

 Livro de Bases Computacionais da Ciência. Versão digital disponível em:

prograd.ufabc.edu.br/images/pdf/bases_computacionais_livro.pdf