Metodi multistep: BDF e sistemi stiff

Giacomo Tombolan Valerio Nappi Lorenzo Rossi arco Manganini Mirko Seghezzi

27/05/2020

Bibliografia

- Quarteroni A., Saleri F. and Gervasio P. Calcolo Scientifico: Esercizi e problemi risolti con MATLAB e Octave. UNITEXT. Springer Milan, 2012.
- [2] Ascher Uri M. and Petzold Linda R. Computer methods for ordinary differential equations and differential-algebraic equations. Siam, 1998.
- [3] Robertson H. H. "The Solution of a Set of Reaction Rate Equations" in: Walsh J. (ed.), Numerical Analysis. An Introduction based on a Symposium Organized by the Institute of Mathematics and its Applications. Academic Press, 1972. pp 178-182
- [4] Gear B. Backward Differentiation Formulas (Scholarpedia) http://www.scholarpedia.org/article/Backward_differentiation_formulas

Sommario

Introduzione a sistemi stiff e metodi BDF

Analisi del circuito RLC

Cosa sono i sistemi Stiff?

BDF

Problema del Priming

Zero stabilità e convergenza

Ordine e consistenza

Assoluta stabilità

Stiff decay

Circuito RLC: soluzioni con BDF

Introduzione a sistemi stiff e metodi BDF

- ▶ I sistemi stiff sono problemi molto comuni nel campo dell'elettronica.
- ► Analizzeremo dei metodi per risolverli efficacemente
- ► Ma prima di dare definizioni...

Circuito RLC

Si supponga di prendere in esame il seguente circuito, con l'obiettivo di calcolarne la tensione di uscita V_{out} considerando uno scalino ritardato in ingresso, di ampiezza V_{in}

Analisi del circuito RLC

Analizziamo il circuito attraverso la legge di Kirchhoff delle correnti e quella delle tensioni. Prendiamo in considerazione la maglia azzurra e il nodo arancione.

$$\begin{cases} \textit{KLV}: V_{in} = V_L + V_{R1} + V_{out} \\ \textit{KLC}: I_{in} = I_{R2} + I_C \end{cases}$$

$$V_{out} \begin{cases} x_1 = V_{out} \\ x_2 = I_{in} \end{cases}$$

Otteniamo il sistema:

$$\begin{cases} \dot{x_1} = -\frac{1}{L}x_1 - \frac{R_1}{L}x_2 + \frac{1}{L}V_{in} \\ \dot{x_2} = -\frac{1}{R_2C}x_1 + \frac{1}{C}x_2 \end{cases}$$

Analisi del circuito RLC: rappresentazione matriciale

Possiamo riscrivere il sistema ottenuto come matrice:

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{L} & -\frac{R_1}{L} \\ -\frac{1}{R_2C} & +\frac{1}{C} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac{1}{L} \end{bmatrix} \begin{bmatrix} 0 \\ V_{in} \end{bmatrix}$$

Prendiamo in considerazione la matrice dei coefficienti del sistema:

$$A = \begin{bmatrix} -\frac{1}{L} & -\frac{R_1}{L} \\ -\frac{1}{R_2C} & +\frac{1}{C} \end{bmatrix}$$

Analisi del circuito RLC: gli autovalori

▶ Dagli autovalori di questa matrice discendono importanti proprietà del sistema:

$$eig(A) \Rightarrow \begin{vmatrix} -\frac{1}{L} - \lambda & -\frac{R_1}{L} \\ -\frac{1}{R_2C} & +\frac{1}{C} - \lambda \end{vmatrix} = 0$$

$$\lambda_{1,2} = -\frac{L \pm \sqrt{(CR_1R_2 - L)^2 - 4CLR_2^2 + CR_1R_2}}{2CLR_2}$$

- \blacktriangleright La soluzione libera del sistema sarà una combinazione lineare dei modi del sistema: $e^{\lambda_n t}$
- Per λ positivi il sistema diverge per $t \to \infty$. Chiediamo quindi autovalori con $\mathbb{R}e(\lambda) < 0$
- ► La soluzione è dominata dall'autovalore più piccolo, che individua il polo dominante.
- ▶ Numericamente non possiamo permetterci di trascurare gli altri autovalori.

Assoluta stabilità

Dagli autovalori dipende inoltre la stabilità della risoluzione numerica. Come visto a lezione, con il metodo di Eulero esplicito abbiamo assoluta stabilità se $|1+h\lambda|<1$, con h passo di discretizzazione della variabile indipendente Dovremo quindi scegliere un passo h tale che la relazone sia soddisfatta per tutti gli autovalori

Osserviamo poi che per autovalori reali, la relazione si riduce a:

$$-2 < h\lambda_n < 0 \quad \forall n$$

O in modulo, assunto $\lambda < 0$:

$$|h\lambda_n| < 2 \quad \forall n$$

Cosa sono i sistemi Stiff?

- ► Sono sistemi caratterizzati da modi (autovalori) distanti di molti ordini di grandezza tra di loro.
- ▶ Più è grande la differenza tra la componente più lenta e la più veloce, più il sistema è stiff.
- ► La stiffness è una proprietà associata al sistema sotto analisi

Esempio: circuito RLC non stiff

Si supponga di prendere in esame il seguente circuito, con l'obiettivo di calcolarne la tensione di uscita $V_{out}(t)$ considerando un generatore di tensione forzante V_{in}

$$\begin{cases} L = 67 \ mH \\ C = 760 \ \mu F \\ R_1 = 20 \ \Omega \\ R_2 = 1 \ k\Omega \\ V_{in} = \ Vu(t-0.02) \end{cases}$$

$$\begin{cases} \lambda_1 = -100 \\ \lambda_2 = -200 \end{cases}$$

Esempio: circuito RLC non stiff - soluzione

Il valore di $V_{out}(t)$ è facilmente calcolato usando, ad esempio, un metodo esplicito (Eulero in avanti).

È necessario scegliere un passo di discretizzazione h che soddisfi la relazione $|h\lambda_n|<2$

Dobbiamo soddisfare la condizione più stringente: $|h\lambda_2| < 2$

$$h<\frac{1}{100}$$

- ▶ Valutando il sistema per $t \in [0, 0.1]$ dovremo eseguire più di 10 passi.
- ► La condizione è facilmente soddisfatta, scegliamo infatti di eseguire 100 passi per avere un numero apprezzabile di punti.

Esempio: circuito RLC stiff

Cambiando il valore dei componenti, il sistema dà origine ad autovalori differenti tra di loro di parecchi ordini di grandezza

$$\begin{cases} L = 20 \ \mu H \\ C = 500 \ \mu F \\ R_1 = 20 \ \Omega \\ R_2 = 1 \ k\Omega \\ V_{in} = \ Vu(t-0.02) \end{cases}$$

$$\begin{cases} \lambda_1 = -100 \\ \lambda_2 = -1000000 \end{cases}$$

Circuito RLC con eulero in avanti

Se volessimo risolvere il nuovo sistema **stiff**, dovremmo considerare un passo h molto più piccolo

Considerando lo stesso h utilizzato prima, considerando solo l'autovalore dominante, la soluzione diverge molto velocemente

▶ Dovremo soddisfare la relazione $|h\lambda_2 < 2|$

$$h<\frac{1}{500000}$$

- Questa scelta di h implicherebbe una esecuzione di oltre 50000 passi
- ► Con 100000 passi, il tempo di simulazione da noi registrato è pari a circa 2.5 secondi
- ► Ci servono nuovi metodi: BDF

Backward Differentiation Formulas (BDF)

► Linear Multistep Methods (LMM): la valutazione n-esima dipende dalla storia passata delle valutazioni e dalla valutazione della f a passo n-esimo.

Vantaggi:

- ▶ Migliore accuratezza rispetto ad altri metodi (es. RK) a parità di numero di valutazioni della funzione
- ▶ Metodi costruiti più semplici e performanti in fatto di ordine e stima dell'errore
- ► Proprietà di stiff decay

Svantaggi:

- ▶ Necessità di condizioni iniziali accurate: alto costo computazionale di partenza
- ► Flessibilità minore per avere adattività di ordine e di passo di integrazione
- ► Per metodi multistep: zero stabilità da determinare (gli one step hanno la zero stabilità garantita dalla consistenza)

Costruiamo BDF

Dato il problema di Cauchy y' = f(t, y)

ightharpoonup costruiamo l'interpolante $\varphi(t)$ della soluzione y

$$y(t) \approx \varphi(t) = y(t_n) + (t - t_n) \frac{y(t_n) - y(t_{n-1})}{t_n - t_{n-1}}$$

la deriviamo e la poniamo uguale a f(t, y)

$$y'(t) \approx \varphi'(t) = \frac{y(t_n) - y(t_{n-1})}{t_n - t_{n-1}} = \frac{y(t_n) - y(t_{n-1})}{h} = f(t_n, y_n)$$

▶ Più in generale, per ordini superiori al primo, possiamo scrivere:

$$f(t_n, y_n) = \frac{1}{\beta_0} \frac{\sum_{j=0}^k \alpha_j y_{n-j}}{h} \sum_{j=0}^k \alpha_j y_{n-j} = h \beta_0 f(t_n, y_n)$$

► Espandiamo ora coefficienti ed equazioni

BDF (II)

► Caso più semplice di BDF : Eulero implicito (BDF1)

BDF	β_0	α_0	$lpha_1$	α_2	$lpha_3$	α_{4}	$lpha_{5}$	α_{6}
BDF1	1	1	-1					
BDF2	2/3	1	4/3	1/3				
BDF3	6/11	1	$-\ 18/\!\!/_{11}$	$^{9}/_{1}$	$-2/_{11}$			
BDF4	12/25	1	- 48/ ₂₅	36/25	$-16/_{25}$	3/25		
BDF5	60/137	1	300/137	300/137	-200/137	75/137	-12/137	
BDF6	60/147	1	- 360/ ₁₄₇	450/147	$-400/_{137}$	225/147	72/147	10/147

BDF (III)

▶ La tabella può essere meglio visualizzata scrivendo le equazioni α_j e β_0 :

BDF1
$$y_n = y_{n-1} + hf(t_n, y_n) \rightarrow y_n = -\alpha_1 y_{n-1} + \beta_0 hf(t_n, y_n)$$

BDF2 $y_n = \frac{4}{3} y_{n-1} - \frac{1}{3} y_{n-2} + \frac{2}{3} hf(t_n, y_n) \rightarrow y_n = -\alpha_1 y_{n-1} - \alpha_2 y_{n-2} + \beta_0 hf(t_n, y_n)$
BDF3 ...
BDF4 ...
BDF5 ...
BDF6 $y_n = \frac{360}{147} y_{n-1} - \frac{450}{147} y_{n-2} + \frac{400}{147} y_{n-3} - \frac{225}{147} y_{n-4} + \frac{72}{147} y_{n-5} - \frac{10}{147} y_{n-6} + \frac{60}{147} hf(t_n, y_n)$

Problema del priming: ricerca dei valori iniziali

- ► Stabilire i valori iniziali di una risoluzione per BDF non è banale.
- ▶ Se i valori non sono di accuratezza adeguata $O(h^p)$, il metodo non converge a ordine massimo.
- ► Esempio: BDF3. Non è possibile partire subito, mancano gli step precedenti. È d'obbligo fornire (calcolare) i valori precedenti con altri metodi.
- ▶ Metodi usati per i valori iniziali: RK, uso ricorsivo di metodi a passi precedenti
- ► Il passo di integrazione non può essere costante, ma deve essere esponenzialmente più piccolo nei passi precedenti per non perdere l'accuratezza

Zero stabilità e convergenza

► La zero stabilità per BDF (ed in generale metodi LM) deve essere analizzata per ogni ordine del metodo.

Proviamo a dare qualche definizione.

▶ Si dice **zero stabile** se è in grado di risolvere correttamente y' = 0, cioè per una perturbazione del calcolo all'interno del metodo, la soluzione non diverge

Facciamo un semplice esempio (non zero stabile):

$$u_{n+1} = 5u_n + u_{n-1} \text{ con } f = 0$$

$$\binom{u_{n+1}}{u_n} = \begin{bmatrix} 5 & 1 \\ 1 & 0 \end{bmatrix} \binom{u_n}{u_{n-1}}$$

$$\vec{u_n} = Au_{n-1}^{-1} = AAu_{n-2}^{-2} = A^{n+1}\vec{u_0}$$

$$A = U^{-1}\Lambda U \text{ con } \Lambda \text{ matrice contenente gli autovalori associati al metodo}$$

$$AA = (U^{-1}\Lambda U)(U^{-1}\Lambda U) = U^{-1}\Lambda(UU^{-1})\Lambda U = U^{-1}\Lambda\Lambda U$$

$$A^{n+1} = U^{-1}\Lambda^{n+1}U$$

$$u_0 \longrightarrow A \longrightarrow A \longrightarrow A$$

Zero stabilità e convergenza (II)

- ▶ Se gli autovalori hanno modulo > 1, al passo n-esimo A^{n+1} avrà coefficienti enormi. Nel nostro caso, gli autovalori sono 0.19258 e 5.19258
- ► Al ventesimo passo, la A^{n+1} sarà:

$$\begin{bmatrix} 1.958 * 10^{14} & 0.377 * 10^{14} \\ 0.377 * 10^{14} & 0.0726 * 10^{14} \end{bmatrix}$$

Qualsiasi perturbazione introdotta (anche nei valori iniziali) farà divergere il metodo per qualsiasi sistema sotto analisi.

► Autovalori di BDF2 (zero stabile): 1 e 1/3

Zero stabilità e convergenza (III)

Concludendo: il metodo è **zero stabile** se tutte le radici ξ_i (autovalori associati al metodo) del polinomio caratteristico $\rho(\xi)$ soddisfano $|\xi_i| \leq 1$, in cui

$$\rho(\xi) = \sum_{i=0}^{k} \alpha_{i} \xi^{k-i}$$

Ordine e consistenza

- ▶ Per i metodi LM questa operazione risulta particolarmente semplice.
- ightharpoonup Come visto a lezione per il caso Eulero all'indietro, analizziamo l'errore di troncamento e vediamo se è trascurabile rispetto a h^p .
- ▶ Si dice che il metodo ha ordine p se l'errore di troncamento locale $d_n = O(h^p)$.
- ▶ Si dice che un metodo è consistente se $\rho(1) = 0$ e $\rho'(1) = \sigma(1)$ in cui:

$$\rho(\xi) = \sum_{j=0}^{k} \alpha_j \xi^{k-j}$$
$$\sigma(\xi) = \beta_0 \xi$$

diamo un'infarinatura intuitiva sull'ordine di convergenza:

Ordine e consistenza (II)

Assoluta stabilità

Figure 5.6: BDF absolute stability regions. The stability regions are outside the shaded area for each method.

Per i multistep si analizza la regione di NON stabilità

- ► Siamo già familiari con la zona di non stabilità di BDF1
- ightharpoonup Da BDF3 la risoluzione può eccitare dei modi instabili in \mathbb{R} e < 0 che faranno **divergere** la soluzione
- ▶ Da BDF7 si perde la zero-stabilità

Stiff Decay

- ▶ È un indice che rivela quanto un metodo di risoluzione sia veloce nell'assestarsi alla soluzione di un sistema stiff.
- ▶ I metodi con *stiff decay* **trascurano la parte della soluzione che varia velocemente** senza perdere dettagli nella parte a bassa velocità.
- ► I metodi BDF hanno proprietà di stiff decay

 ${\sf Linea\ tratteggiata} \to {\sf Crank\text{-}Nicholson} \quad {\sf Linea\ continua} \to {\sf BDF1}$

Circuito RLC: soluzioni con BDF

- **Eulero esplicito** $\rightarrow 50 * 10^3$ passi necessari
- ▶ BDF3 $\rightarrow 1*10^3$ passi necessari (tempo di risoluzione <1s)