

## Electronic Circuits Design

#### Lecture – 11

- Delay-Based CMOS Gates
- How to Add / Use Standard Gate Symbols in LTSpice
- Lab Design

# Yeonbae Chung School of Electronics Engineering Kyungpook National University



# **Delay-Based CMOS Gates**



- ☐ CMOS gate utilizing a kind of delay circuit
  - Pulse Generator
  - Delayed Signal Generator
- ☐ Used for Sequential Circuits
  - Clock
  - Sequencing Circuit Element



#### **Pulse Generator**



$$\begin{aligned} \mathbf{t}_{\text{pT}} &\simeq \sum_{i=1}^{n} \mathbf{t}_{\text{pi}} \\ \text{where } \mathbf{t}_{\text{pi}} &= (\mathbf{t}_{\text{pHLi}} + \mathbf{t}_{\text{pLHi}})/2 \\ &= 0.8(1/\beta_{\text{Ni}} + 1/\beta_{\text{Pi}})C_{\text{Li}}/V_{\text{DD}} \end{aligned}$$

| Α | В | OUT |
|---|---|-----|
| 0 | 0 | 1   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 0   |



#### Pulse Generator





| Α | В | OUT |
|---|---|-----|
| 0 | 0 | 1   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 0   |



# Delayed Signal Generator





#### Delayed Signal Generator





## How to Add / Use Standard Gate Symbols



# How to Add / Use Standard Gate Symbol?

- **❖ Standard CMOS Gates:** inv, nand2, nand3, nand4, nor2, nor3, nor4, trans
- Step 1: Copy the "standard\_gate" subcircuit file to LTSpice user directory (D:\(\mathbb{W}\)ybchung).
- Step 2: In LTSpice, insert "standard gate (inv, nand2, ... or trans)" component.
  Right click on the symbol and add the values of transistor size in PARAMS
  (Ex: wp=5u lp=0.18u wn=2u ln=0.18u).
- Step 3: Add SPICE directive to the schematic.
   ".inc C:\(\forall \text{Program Files}\(\text{W}\)LTSpiceIV\(\text{W}\)cmos\_model\(\text{W}\)cmos180\_level49"

EECS324 9 Lecture-11





#### Lab-1: Pulse Generator





#### Lab-1: Pulse Generator

#### Simulation Condition

- CMOS model parameter: MOSIS/TSMC\_0.18 $\mu$ m  $(0.3\mu m \le W \le 50\mu m, 0.18\mu m \le L \le 20\mu m)$
- VDD = 1.8 V, CL = 200 fF
- 2-input NAND (X4):  $W_P/L_P = 7.5 \mu m/0.18 \mu m$ ,  $W_N/L_N = 6 \mu m/0.18 \mu m$
- VIN = PULSE(0 1.8V 9.5ns 0.5ns 0.5ns 9.5ns 20ns)
- Transient analysis from 0 to 45 ns
- 1) Create the LTSpice schematic of the pulse generator.
- 2) Determine transistor sizes of the inverter chain (X1, X2, X3) to provide a pulse width of 2 ns.
- 3) Obtain a plot of VIN, VN1, VN2, VN3 and VOUT versus time.
- 4) Change the supply voltage into 1.2 V, then obtain a plot of VIN, VN1, VN2, VN3 and VOUT versus time. What is value of the pulse width?
- 5) Make comments if you need.



#### Lab-2: Delayed Signal Generator





#### Lab-2: Delayed Signal Generator

#### Simulation Condition

- CMOS model parameter: MOSIS/TSMC\_0.18 $\mu$ m (0.3 $\mu$ m  $\leq$  W  $\leq$  50 $\mu$ m, 0.18 $\mu$ m  $\leq$  L  $\leq$  20 $\mu$ m)
- VDD = 1.8 V, CL = 200 fF
- 2-input NOR (X5):  $W_P/L_P = 5\mu m/0.18\mu m$ ,  $W_N/L_N = 1\mu m/0.18\mu m$
- Driving INV (X6):  $W_P/L_P = 5\mu m/0.18\mu m$ ,  $W_N/L_N = 2\mu m/0.18\mu m$
- VIN = PULSE(0 1.8V 9.5ns 0.5ns 0.5ns 9.5ns 20ns)
- Transient analysis from 0 to 45 ns
- 1) Create the LTSpice schematic of the delayed signal generator.
- 2) Determine transistor sizes of the inverter chain (X1, X2, X3, X4) to provide a delayed signal width of 2 ns.
- 3) Obtain a plot of VIN, VN1, VN2, VN3, VN4 and VOUT versus time.
- 4) Measure the standby power consumed by the circuit when VIN = 0 V (DC) and 1.8 V (DC) respectively.
- 5) Make comments if you need.