Серия 2. Нормальное завтра.

Whenever groups disclose themselves, or could be introduced, simplicity crystallized out of comparative chaos.

E. T. Bell

- **0.** а) Верно ли, что $C_2 \times C_4 \cong C_8$? б) Опишите условия, при которых $\mathbb{Z}/m \times \mathbb{Z}/n \cong \mathbb{Z}/nm$ (и докажите изоморфность в этом случае).
 - **1.** Пусть G конечная группа, в которой в точности один элемент f порядка 2. Докажите, что

$$\prod_{g \in G} g = f.$$

- **2.** Пусть G группа чётного порядка. Докажите, что в ней есть элемент порядка 2.
- 3. Пусть $g \in G$ элемент нечётного порядка. Что можно сказать о порядке g^2 ?
- **4.** Пусть N подгруппа группы G, будем говорить, что она удовлетворяет свойству (\mathcal{H}) , если $\forall g \in G \ \forall n \in N$ существует такой $n' \in N$, что gn = n'g.

Для подгруппы H и элемента g будем обозначать $gH = \{gh \mid h \in H\}$, а для $R \subset G$ будем обозначать $RH = \{rh \mid r \in R, h \in H\}$.

- а) Докажите, что если N это подгруппа, то
- 1. NN = N.
- 2. $N^{-1} = N$.
- 3. Если $\forall g \in G \ \forall n \in N : gng^{-1} \in N$, то N удовлетворяет свойству (\mathcal{H}) .
- б) Докажите, что если N удовлетворяет свойству (\mathcal{H}) , то
- 1. $\forall g \ gN = Ng$.
- 2. (gN)(hN) = (gh)N и приведите пример, когда это не так если N не удовлетворяет условию (\mathcal{H}) .
- в) Пусть $\varphi \colon G \to H$ гомоморфизм групп, $N = \operatorname{Ker} \varphi$. Докажите, что N удовлетворяет свойству (\mathcal{H}) .
- **5.** Неряшливый преподаватель выписал на доску список из девяти целых чисел, образующих группу по умножению по модулю 91. К сожалению, он забыл выписать одно из чисел и на доске были выписаны лишь числа 1, 9, 16, 22, 53, 74, 79, 81. Какое число он забыл написать?

Определение. *Моноидом* называется множество M с ассоциативной бинарной операцией и нейтральным элементом.

- **6.** Пусть M_1, M_2 моноиды. Отображение $\varphi \colon M_1 \to M_2$ назовём *хорошим*, если $\forall a, b \in M_1 \ \varphi(ab) = \varphi(a)\varphi(b)$ Верно ли, что если φ хорошее отображение, то $\varphi(e_{M_1}) = e_{M_2}$?
- 7. Пусть G, H группы, $G \cong H \times G$. Можно ли из этого заключиь, что H тривиальная группа. (Подсказска. Heт! Попробуйте построить контрпример.)
 - **8.** Докажите, что $(\mathbb{Q}, +)$ не может быть представлена в виде произведения двух нетривиальных групп.

1