Particule chargée dans un champ électromagnétique

Coppex Aurélie Hélène, Ventura Vincent

aurelie.coppex@epfl.ch, vincent.ventura@epfl.ch

26 octobre 2020

Table des matières

1	Introduction Calculs analytiques 2.1 Équations du mouvement			1
2				2 2 2 3
3	Sim 3.1 3.2	Cas sa 3.1.1 3.1.2	ns et Analyses en champ électrique mais avec un champ magnétque	3 3 4 4 5 5
4	Cor	ıclusioı	as	5

1 Introduction

Dans le domaine de la physique, il est possible de décrire de nombreux phénomènes du monde. Pour cela, il est souvent nécessaire de recourir au calcul numérique pour résoudre des équations qui ne peuvent pas être calculées analytiquement. Il existe plusieurs méthodes pour les résoudre, dont les intégrateurs. Il faut cependant savoir les choisir en fonction du problèmes traités et pour cela, il faut les connaître.

Dans cet exercice, il est question d'une particule chargée dans un champ électromagnétique subissant une force de Lorentz.

Le but est d'en étudier la trajectoire afin de pouvoir analyser les propriétés de stabilité et de convergence des cinq schémas suivants : Euler explicite, Euler implicite, Euler-Cromer, Runge-Kutta d'ordre 2 et Boris Buneman [1].

2 Calculs analytiques

Dans cette partie, tous les calculs sont faits avec les valeurs suivantes :

la masse de la particule : $m = 1.6726 \cdot 10^{-27} \text{ kg}$,

la charge de la particule : $q = 1.6022 \cdot 10^{-19} \text{ C}$,

sa position initiale : $\vec{v_0} = (v_{x0}, v_{y0})$.

La particule est plongée dans un champ électrique uniforme $\vec{E} = E_0 \hat{z}$ et un champ magnétique uniforme $\vec{B} = B_0 \hat{y}$.

2.1 Équations du mouvement

On cherche tout d'abord à établir les équations différencielles du mouvement sous la forme $\frac{d\mathbf{y}}{dt} = \mathbf{f}(\mathbf{y})$ avec $\mathbf{y} = (x, z, v_x, v_z)$. Pour cela, on applique la 2^{eme} loi de Newton ($\sum \mathbf{F} = m\mathbf{a}$) et on la projette sur les axes x, y et z.

Il en résulte :

$$\mathbf{F_p} + \mathbf{F_L} = m\mathbf{a} \tag{1}$$

Avec $\mathbf{F}_{\mathbf{p}}$, la force de pesanteur et $\mathbf{F}_{\mathbf{L}}$, la force de Lorentz.

La force de pesanteur est négligeable pour une particule élémentaire. Il ne reste donc que la force de Lorentz qui est donnée par : $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$.

Les projections sur les axes donnent :

$$(\mathbf{O}\mathbf{x}): -qB_0\dot{z} = m\ddot{x} \iff \ddot{x} = -\frac{qB_0}{m}\dot{z} \tag{2}$$

$$(\mathbf{O}\mathbf{y}):0 = m\ddot{y} \iff \ddot{y} = 0 \tag{3}$$

$$(\mathbf{Oz}): q(E_0 + B_0 \dot{x}) = m \ddot{z} \iff \ddot{z} = \frac{q}{m} (E_0 + B_0 \dot{x})$$

$$\tag{4}$$

L'équation du mouvement s'écrit donc :

$$\frac{d\mathbf{y}}{dt} = \begin{pmatrix} \dot{x} \\ \dot{z} \\ -\frac{qB_0}{m} \dot{z} \\ \frac{q}{m} (E_0 + B_0 \dot{x}) \end{pmatrix}$$
(5)

2.2 Énergie mécanique et sa conservation

L'énergie mécanique est définie comme : $E_{mec} = E_{cin} + E_{pot}$. Or, l'énergie cinétique est connue et vaut $E_{cin} = \frac{1}{2}m\vec{v}^2$. Il ne reste donc plus qu'à calculer l'énergie potentielle. Pour cela, la formule $E_{pot} = \int_P^O \vec{F} \, \mathrm{d}\vec{l}$ [3]. Ce qui donne :

$$E_{pot} = qE_0(z_0 - z) \tag{6}$$

Ainsi, l'équation suivante est obtenue :

$$E_{mec} = \frac{1}{2}m(v_x^2 + v_z^2) + qE_0(z_0 - z)$$
(7)

Pour montrer que cette énergie est conservée, il faut en calculer la dérivée :

$$\frac{dE_{mec}}{dt} = \frac{1}{2}m(2\dot{x}\ddot{x} + 2\dot{z}\ddot{z}) - qE_0\dot{z} \tag{8}$$

En appliquant les équations (2) et (4), on trouve :

$$\frac{dE_{mec}}{dt} = -qB_0\dot{z}\dot{x} + qE_0\dot{z} + qB_0\dot{x}\dot{z} - qE_0\dot{z} = 0$$
(9)

Ce qui prouve que l'énergie mécanique est conservée.

2.3 Solution analytique

Les conditions initiales sont les suivantes : $\vec{x}(0) = 0$ et $\vec{v}(0) = v_0 \hat{z}$. En intégrant les équations (2) et (4), il est possible de trouver \dot{x} et \dot{z} :

$$\begin{cases} \dot{x} = -\frac{qB_0}{m}z + C_1\\ \dot{z} = \frac{q}{m}(E_0t + B_0x) + C_2 \end{cases}$$
 (10)

En appliquant la condition initiale $\vec{v}(0) = v_0 \hat{z}$ à (10), on obtient $C_1 = \frac{qB_0}{m} z_0$ et $C_2 = v_0 - \frac{q}{m} B_0 x_0$.

En les appliqant dans les équations de la vitesse, il en ressort :

$$\begin{cases}
v_x(t) &= \frac{qB_0}{m}(z_0 - z) \\
v_z(t) &= v_0 + \frac{qB_0}{m}(x - x_0) + \frac{qE_0}{m}t
\end{cases}$$
(11)

À partir desquelles (11) il est possible de trouver les équations de l'accéleration :

$$\begin{cases}
\ddot{x} - \frac{q^2 B_0^2}{m^2} x &= \frac{q^2 B_0 E_0}{m^2} t - \frac{q B_0}{m} v_0 - \frac{q^2 B_0^2}{m^2} x_0 \\
\ddot{z} - \frac{q^2 B_0 E_0}{m^2} z &= \frac{q E_0}{m} - \frac{q^2 B_0 E_0}{m^2} z_0
\end{cases}$$
(12)

En résolvant les équations différentielles du 2ème ordre (12), on trouve la solution analytique suivante :

$$\begin{cases} x(t) &= \frac{qB_0v_0}{m}\cos(\frac{m}{qB_0}t) + \frac{E_0m}{qB_0^2}\sin(\frac{qB_0}{m}t) - \frac{E_0}{B_0}t - \frac{mv_0}{qB_0} \\ v_x(t) &= -v_0\sin(\frac{qB_0}{m}t) + \frac{E_0}{B_0}\cos(\frac{qB_0}{m}t) - \frac{E_0}{B_0} \\ z(t) &= -\frac{mE_0}{qB_0^2}\cos(\frac{qB_0}{m}t) + \frac{mv_0}{qB_0}\sin(\frac{qB_0}{m}t) + \frac{mE_0}{qB_0^2} \\ v_z(t) &= \frac{E_0}{B_0}\sin(\frac{qB_0}{m}t) + v_0\cos(\frac{qB_0}{m}t) \end{cases}$$
(13)

3 Simulations et Analyses

3.1 Cas sans champ électrique mais avec un champ magnétque

Dans cette partie, les simulations se font avec les valeurs suivantes :

L'intensité du champ électrique $E_0 = 0$,

l'intensité du champ magnétique $B_0 = 5$ T,

les conditions initiales $\vec{x}(0) = 0$ et $\vec{v}(0) = v_0 \vec{e_z}$,

la vitesse initiale $v_0 = 4 \cdot 10^5$ m/s et

le temps final $t_{fin}=10^{-8}$ s, le temps nécessaire pour que le proton effectue 5 périodes de rotation.

3.1.1 Convergence numérique de l'erreur sur la position et la vitesse

FIGURE 1 – Convergence de l'erreur sur la position en δt

FIGURE 2 – Convergence de l'erreur sur la vitesse en δt

Dans les figures 1 et 2, des simulations de l'erreur maximale locale sur la position et la vitesse ont été faites. C'est donc l'erreur numérique qui est observée. Il est visible que l'ordre de convergence de toutes les courbes, que ce soit pour la position ou la vitesse, sont du premier ordre, car ils forment une droite en se rapprochant des petits δt .

3.1.2 Non-conservation de l'Energie mécanique

Les figures 3 et 4 montrent que l'intégrateur d'Euler explicite et celui de Runge-Kutta d'ordre 2 sont instables car, pour des petits pas de temps, on voit clairement que δE_{mec} croît exponentiellement.

Dans la figure 5, il est observable qu'avec un pas de temps de 3 l'énergie est conservée, alors que si il est plus petit que 3, l'énérgie mécanique n'est pas conservée. Cela est dû au fait qu'Euler-Cromer n'est stable que si $w_c \delta t < 2$. Avec $w_c = \frac{qB_0}{m}$, la vitesse de rotation du proton. Ce qui donne le nombre de pas limite n > 2.3948, ce qui corespond à la figure 5. Dans le graphique 6, on voit que plus le pas de temps est grand, plus l'énergie est bien conservée, la courbe oscille autour de 0 et montre donc que c'est un schéma stable quand le pas de temps minimum est respecté.

La figure 7 montre que l'intégrateur de Boris Buneman conserve exactement l'énergie mécanique pour tous les pas de temps et, par conséquent, pour toute valeur de Δt . Et la figure 8 est faite de afin de pouvoir comparer les deux intégrateurs d'Euler. On voit nettement que le schéma implicite est bien plus stable que l'explicite et qu'il dissipe de l'énergie, ce qui est ce à quoi on s'attend ([1], p.34).

FIGURE 3 – Variation de l'Energie mécanique selon Euler explicite en δt

FIGURE 4 – Variation de l'Energie mécanique selon Runge-Kutta 2 en δt

3.2 Cas avec un champ électrique et un champ magnétique : dérive $\vec{E} \times \vec{B}$

Dans cette section nous regardons le cas où $E_0 \neq 0$, et comme dans l'exemple d'avant, $B_0 \neq 0$. Les schémas qui seront utilisées sont le Runge-Kutta d'ordre 2 et le Boris-Buneman.

3.2.1 Etude de convergence en Δt

Pour notre étude nous trouvons les schémas de convergence selon Δt sur la figure 9, où les droites se superposent pour Boris-Buneman et Runge-Kutta d'ordre 2. Pour le cas de la vitesse, comme on peut voir sur la figure 10, l'erreure converge pour le schéma de Runge-Kutta d'ordre 2, comme pour Boris-Buneman, avec des valeurs legerement differentes, mais la meme pente.

4 Conclusions

Références

- [1] L. Villard avec la contribution de A. Läuchli Notes de cours Physique numérique I-II, version 20.1 (2020)
- [2] L. Villard, Dr C. Sommariva Énoncé de l'exercice 2 (2020) https://moodle.epfl.ch/pluginfile.php/2839539/mod_resource/content/1/Exercice2_2020.pdf
- [3] VEREIN SCHWEIZERISCHER MATHEMATIK- UND PHYSIKLEHRER et al. Formulaires et tables : mathématiques, physique, chimie Editions G d'Encre, 2015. ISBN 978-2-940501-41-0

FIGURE 5 – Variation de l'Energie mécanique selon Euler-Cromer en δt pour des petits nombres de pas

FIGURE 6 – Variation de l'Energie mécanique selon Euler-Cromer en δt pour des plus grands nombres de pas

Figure 7 – Variation de l'Energie mécanique selon Boris Buneman en δt

FIGURE 8 – Variation de l'Energie mécanique selon Euler impliciteet Euler explicite en δt

Figure 9 – Etude de la convergence de l'erreure sur la position selon Δt

FIGURE 10 – Etude de la convergence de l'erreure sur la vitesse selon Δt