Fonction réelle d'une variable reélle.

1 Introduction

1.1 Notations

Nous introduisons ici quelques notations qui seront utilisées par la suite pour l'écriture d'assertions mathématiques :

- le symbole «∀» veut dire «pour tout» ou bien «quel que soit»;
- le symbole «∃» veut dire «il existe»;
- le symbole «∃!» veut dire «il existe un unique»;
- le symbole « :» veut dire «tel que»;
- le symbole «⇒» veut dire «implique» ou encore «si...alors»;
- le symbole « \Leftrightarrow » veut dire « est équivalent à » ou encore « si et seulement si ».

Exemple.

- 1. « $\forall x \in \mathbb{R}, f(x) > 3$ » se lit «Pour tout réel x, f(x) est strictement supérieur à 3.»
- 2. « $\forall y \in \mathbb{R}, \exists x \in \mathbb{R} : y = f(x)$ » se lit «Pour tout réel y, il existe un réel x tel que y est égal à f(x).»

1.2 Ensembles usuels

L'ensemble des nombres réels $\mathbb{R}=]-\infty,+\infty[$ possède les sous-ensembles remarquables suivants :

- $\mathbb{R}^* = \mathbb{R} \setminus \{0\};$
- $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ l'ensemble des entiers naturels;
- $\mathbb{N}^* = \{1, 2, 3,\}$ l'ensemble des entiers naturels privé de 0;
- $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ l'ensemble des entiers relatifs;
- $\mathbb{Q} = \{\frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N}^*\}$ l'ensemble des rationnels;
- $-\mathbb{R}\setminus\mathbb{Q}$ l'ensemble des irrationnels;
- $\mathbb{R}_{+} = [0, +\infty[\text{ et } \mathbb{R}_{-} =] \infty, 0];$
- $\mathbb{R}_{+}^{*} = \mathbb{R}_{+} \setminus \{0\} =]0, +\infty[\text{ et } \mathbb{R}_{-}^{*} = \mathbb{R}_{-} \setminus \{0\} =] \infty, 0[.$

Remarque. Rappelons que l'on a les inclusions $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$ et que grande majorité des nombres réels sont des nombres irrationnels donc des éléments de $\mathbb{R} \setminus \mathbb{Q}$.

Définition. (Intervalle de \mathbb{R}) Un sous ensemble non vide I de \mathbb{R} est un intervalle s'il satisfait la condition suivante : A chaque fois que I contient deux réels x et y, il contient tous les réels se trouvant entre x et y.

Soient $a, b \in \mathbb{R}$, avec a < b. Un intervalle de \mathbb{R} est de l'une des 9 formes suivantes :

- 1. $[a,b] = \{x \in \mathbb{R} : a \leq x \leq b\}$; (les segments de \mathbb{R})
- 2. $|a,b| = \{x \in \mathbb{R} : a < x < b\}$; (les intervalles ouverts et bornés de \mathbb{R})
- 3. $[a, b] = \{x \in \mathbb{R} : a \le x < b\}$; (les intervalles semi-ouverts et bornés de \mathbb{R})
- 4. $|a,b| = \{x \in \mathbb{R} : a < x \leq b\}$; (les intervalles semi-ouverts et bornés de \mathbb{R})

- 5. $[a, +\infty[=\{x \in \mathbb{R} : x \geqslant a\}]$; (les demi-droites fermées et minorées de \mathbb{R})
- 6. $]a, +\infty[=\{x \in \mathbb{R}: x > a\};$ (les demi-droites ouvertes et minorées de \mathbb{R})
- 7. $]-\infty,b]=\{x\in\mathbb{R}:x\leqslant b\};$ (les demi-droites fermées et majorées de \mathbb{R})
- 8. $]-\infty, b[=\{x \in \mathbb{R}: x < b\};$ (les demi-droites ouvertes et majorées de \mathbb{R})
- 9. R, la droite réelle.

1.3 Règles de calcul dans $\mathbb R$

Pour tout $a, b, c, d \in \mathbb{R}$ on utilisera fréquemment les règles de calcul suivantes :

Proposition 1. Soient $a, b \in \mathbb{R}$.

$$a^2 = b^2 \iff (a = b) \lor (a = -b)$$

Démonstration. Exercice 1.

Proposition 2. Soient $a, b \in \mathbb{R}$. On a:

- 1. $si\ a, b \in \mathbb{R}_+$, $alors\ (a \leq b) \iff a^2 \leq b^2$;
- 2. $si\ a, b \in \mathbb{R}_-$, $alors\ (a \leq b) \iff a^2 \geq b^2$;
- 3. $si\ a \in \mathbb{R}_- \ et\ b \in \mathbb{R}_+ \ alors\ on\ a\ toujours\ a \leq \sqrt{b}$:
- 4. $si \ a \in \mathbb{R}_+ \ et \ b \in \mathbb{R}_+ \ alors \ a \leqslant \sqrt{b} \Longleftrightarrow a^2 \leqslant b$.

Exemple. Résolvons dans \mathbb{R} l'inéquation $x+1 \leqslant \sqrt{x^2+1}$ (*)

Si x+1<0, alors (\star) est toujours vérifiée et on trouve comme premier ensemble de solutions

$$S_1 = \{x \in \mathbb{R} : x + 1 < 0\} =]-\infty, -1[.$$

Si $x+1 \ge 0$, alors $(\star) \iff (x+1)^2 \le \left(\sqrt{x^2+1}\right)^2 \iff x^2+2x+1 \le x^2+1 \iff 2x \le 0 \iff x \le 0$. On trouve comme deuxième ensemble de solutions

$$S_2 =]-\infty, 0] \cap [-1, +\infty[=[-1, 0].$$

Conclusion : l'ensemble des solutions de (\star) est $S = S_1 \cup S_2 =]-\infty, -1[\cup [-1, 0] =]-\infty, 0]$.

2 Fonction réelle d'une variable réelle

Dans toute la suite, on considère E et F deux sous-ensembles de \mathbb{R} .

2.1 Définitions

Définition. (Fonction) Une fonction réelle d'une variable réelle est la donnée d':

- 1. un ensemble de départ $E \subset \mathbb{R}$;
- 2. un ensemble d'arrivée $F \subset \mathbb{R}$:
- 3. un procédé qui transforme un élément de E en un élément de F appelé expression de la fonction.

Remarque. Dans toute la suite on écrira « fonction » plutôt que « fonction réelle d'une variable réelle » par soucis de concision.

Notation. Une fonction f sera notée :

$$f: \left\{ \begin{array}{l} E \longrightarrow F \\ x \longmapsto f(x) \end{array} \right.$$

où pour $x \in E$, f(x) désigne l'image de x par la fonction f.

Figure 1.

Définition. (Domaine de définition) Soit $f: E \longrightarrow F$, $x \longmapsto f(x)$ une fonction. On appelle domaine de définition de f et on note \mathcal{D}_f , la collection des éléments x de E pour lesquels f(x) est défini (c'est à dire existe).

$$\mathcal{D}_f := \{ x \in E : f(x) \ existe \}.$$

Exemple. Soient f_1, f_2 et f_3 trois fonctions définies par :

$$f_1: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{x} \end{array} \right. ; \quad f_2: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \sqrt{x+1} \end{array} \right. ; \quad f_3: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{\sqrt{x-2}} \end{array} \right.$$

Soit $x \in \mathbb{R}$. $f_1(x)$ existe si et seulement si $x \neq 0$. Ainsi $\mathcal{D}_{f_1} = \mathbb{R}^*$. $f_2(x)$ existe si et seulement si $x + 1 \ge 0$. Ainsi $\mathcal{D}_{f_2} = [-1, +\infty[$. $f_3(x)$ existe si et seulement si $(x - 2 \ge 0) \land (\sqrt{x - 2} \ne 0)$. Ainsi $\mathcal{D}_{f_3} =]2, +\infty[$.

Définition. (Égalité fonctionnelle) Deux fonctions $f_1: E_1 \longrightarrow F_1, x \longmapsto f_1(x)$ et $f_2: E_2 \longrightarrow F_2, x \longmapsto f_2(x)$ sont égales si $E_1 = E_2, F_1 = F_2$ et $\forall x \in E_1 = E_2, f_1(x) = f_2(x)$.

Exemple. Les fonctions

$$f \colon \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto x+1 \end{array} \right. \text{ et } g \colon \left\{ \begin{array}{l} [0,1] \longrightarrow \mathbb{R} \\ x \longmapsto x+1 \end{array} \right.$$

ne sont pas égale car les ensembles de départ ne sont pas les mêmes.

2.2 Monotonie, parité et périodicité.

Définition. (Monotonie) Soit $f: E \longrightarrow \mathbb{R}$ une fonction définie sur un sous-ensemble E de \mathbb{R} . On dit que :

- f est croissante (resp. strictement croissante) sur E si $\forall x, y \in E, (x \leq y) \Rightarrow (f(x) \leq f(y))$ (resp. f(x) < f(y)).
- $\quad f \ est \ d\'{e}croissante \ (resp. \ strictement \ d\'{e}croissante) \ sur \ E \ si \ \forall x,y \in E, (x \leqslant y) \Rightarrow (f(x) \geqslant f(y)) \ (resp. \ f(x) > f(y)).$
- f est monotone (resp. strictement monotone) si elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante).

Figure 2. Une fonction strictement croissante

Définition. (Parité) Soit E un sous ensemble symétrique par rapport à 0 de \mathbb{R} (c'est à dire $\forall x \in E, -x \in E$) et $f: E \longrightarrow \mathbb{R}$ une fonction définie sur E. On dit que :

- f est paire $si \ \forall x \in E, f(-x) = f(x)$. Son graphe est alors symétrique par rapport à l'axe des ordonnées;

Figure 3. Une fonction paire

- f est impaire si $\forall x \in E$, f(-x) = -f(x). Son graphe est alors symétrique par rapport à l'origine (0,0).

Figure 4. Une fonction impaire

Remarque. L'étude d'une fonction paire (resp. impaire) peut être réduite à l'étude sur la partie positive ou négative de son domaine de définition puis complétée par symétrie axiale d'axe l'axe des ordonnées (resp. centrale de centre le point (0,0)).

Définition. (Périodicité) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction et un réel T > 0. La fonction f est dite périodique de période T ou T-périodique si $\forall x \in \mathbb{R}$, f(x+T) = f(x).

 ${\bf Figure~5.~Une~fonction~T\mbox{-}p\'eriodique}.$

2.3 Opérations sur les fonctions

Définition. (Addition, multiplication et rapport) Soient $f: E \longrightarrow \mathbb{R}, x \longmapsto f(x), g: E \longrightarrow \mathbb{R}, x \longmapsto g(x)$ et $\lambda \in \mathbb{R}$. On définit :

- a fonction λ . f par:

$$\lambda.f: \left\{ \begin{array}{l} E \longrightarrow \mathbb{R} \\ x \longmapsto \lambda.f(x) \end{array} \right.$$

- la fonction f + g par :

$$f+g: \left\{ \begin{array}{l} E \longrightarrow \mathbb{R} \\ x \longmapsto f(x) + g(x) \end{array} \right.$$

- la fonction $f \times g$ par

$$f \times g: \left\{ \begin{array}{l} E \longrightarrow \mathbb{R} \\ x \longmapsto f(x) \times g(x) \end{array} \right.$$

- la fonction $\frac{f}{g}$ par :

$$\frac{f}{g} : \begin{cases} E \longrightarrow \mathbb{R} \\ x \longmapsto \frac{f(x)}{g(x)} \end{cases}$$

Définition. (Composition) Soient E,F,G,H des sous-ensembles de \mathbb{R} et $f:E\to F$ et $g:G\to H$ deux fonctions. Si l'espace d'arrivée F de f est inclus dans l'espace de départ G de g alors on définit la fonction composée $g\circ f$ par :

$$g \circ f : \begin{cases} E \longrightarrow H \\ x \longmapsto g(f(x)) \end{cases}$$

Remarque.

- 1. La condition $F \subset G$ est essentielle pour que l'image par la fonction g de f(x) ait toujours un sens. De même, la condition $H \subset E$ est essentielle pour que l'image par la fonction f de g(x) ait toujours un sens.
- 2. Il faut faire attention à l'ordre dans lequel on écrit les fonctions car en général les fonctions $g \circ f$ et $f \circ g$ ne sont pas égales. La composition de fonctions est une opération non commutative.

Exemple. On considère les fonctions :

$$f: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow [-1,1] \\ x \longmapsto \sin(x) \end{array} \right., \quad g: \left\{ \begin{array}{l} \mathbb{R}_+ \longrightarrow \mathbb{R}_+ \\ x \longmapsto \sqrt{x} \end{array} \right., \quad f: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R}_+ \\ x \longmapsto x^2 \end{array} \right..$$

Peut-on définir les fonctions $f \circ g$, $g \circ f$, $g \circ h$?

- 1. La fonction $g \circ f : [-1,1]$ n'est pas inclus dans \mathbb{R}_+ donc $g \circ f$ n'a pas de sens.
- 2. La fonction $f\circ g$: on a $\mathbb{R}_+\!\subset\!\mathbb{R}$ donc $f\circ g$ a un sens et est définie par :

$$f \circ g: \begin{cases} \mathbb{R}_+ \longrightarrow [-1, 1] \\ x \longmapsto \sin(\sqrt{x}) \end{cases}$$

3. La fonction $g \circ h : \mathbb{R}_+ \subset \mathbb{R}_+$ donc $g \circ h$ a un sens et est définie par :

$$g \circ h : \begin{cases} \mathbb{R} \longrightarrow \mathbb{R}_+ \\ x \longmapsto \sqrt{x^2} \end{cases}$$

2.4 Antécédent, image, image directe et image réciproque

Définition. (Antécédent et image) Soit $f: E \longrightarrow F$ une fonction définie sur E.

- Soit $y \in F$. On appelle antécédent de y par la fonction f tout élément $x \in E$ tel que f(x) = y.
- Soit $x \in E$. On appelle image de x par la fonction f l'unique élément $y \in F$ tel que y = f(x).

Remarque. Pour une fonction f, l'ensemble des antécédents d'un élément $y \in F$ peut être vide, peut contenir un élément, ou un nombre quelconque d'éléments. Par exemple considérons la fonction définie par :

$$f \colon \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \in [0, 1] \longmapsto x^2 \\ x \in \mathbb{R} \setminus [0, 1] \longmapsto 5 \end{cases}$$

Considérons respectivement les éléments $y_1 = -1$, $y_2 = 1$ et $y_3 = 5$. L'ensemble des antécédents de y_1 est vide, celui des antécédents de y_2 est égal au singelton $\{1\}$, alors que celui de y_3 est égal à $\mathbb{R}\setminus[0,1]$ donc infini.

Définition. (Image réciproque, image directe) Soit $f: E \longrightarrow F$ une fonction A un sous ensemble de E et B un sous-ensemble de F.

- On appelle image réciproque de B par f le sous-ensemble de l'espace de départ E, noté $f^{-1}(B)$ défini par

$$f^{-1}(B) := \{ x \in E \colon f(x) \in B \}.$$

 On appelle image directe de A par f le sous-ensemble de l'espace de d'arrivée F, noté f(A) défini par

$$f(A) := \{ y \in F : \exists x \in A : y = f(x) \} = \{ f(x), x \in A \}.$$

- On appelle image de la fonction f et on note $\operatorname{Im}(f)$, l'image directe de son ensemble de départ :

$$\operatorname{Im}(f) := f(E).$$

Remarque. L'image réciproque $f^{-1}(B)$, d'une partie B de l'espace d'arrivée, n'est rien d'autre que l'ensemble des antécédents des éléments de B. C'est une partie de l'ensemble de départ de la fonction.

L'image directe f(A), d'une partie A de l'espace de départ, n'est rien d'autre que l'ensemble des images des éléments de A. C'est une partie de l'ensemble d'arrivée de la fonction.

Il ne faut pas confondre l'image de f notée $\operatorname{Im}(f)$ et l'image de x par f notée f(x) car ce ne sont pas le même type d'objet. En effet, $\operatorname{Im}(f)$ est un sous-ensemble de l'espace d'arrivée F alors que f(x) est un élément de F. $\operatorname{Im}(f)$ est le sous-ensemble des éléments de l'espace d'arrivée F qui ont au moins un antécédent par f.

2.5 Injectivité, surjectivité, bijectivité et fonction réciproque

Définition. (Injectivité) Une fonction $f: E \longrightarrow F$ est dite injective si tout point y de l'espace d'arrivée F possède **au plus un** antécédent x dans l'espace de départ E par la fonction f.

Autrement dit:

$$\forall y \in F, \#f^{-1}(\{y\}) \leq 1.$$

Autrement dit encore:

$$\forall x_1, x_2 \in E, f(x_1) = f(x_2) \Longrightarrow x_1 = x_2.$$

Définition. (Surjectivité) Une fonction $f: E \longrightarrow F$ est dite surjective si tout point y de l'espace d'arrivée F possède au moins un antécédent x dans l'espace de départ E par la fonction f. Autrement dit :

$$\forall y \in F, \exists x \in E : f(x) = y.$$

Définition. (Bijectivité) Une fonction $f: E \longrightarrow F$ est dite bijective si tout point y de l'espace d'arrivée F possède **exactement un** antécédent x dans l'espace de départ E par la fonction f. Autrement dit :

$$\forall y \in F, \exists! x \in E \colon f(x) = y.$$

 $Cours \ assur\'e \ par : DR \ D. \ N. \ DIATTA(\texttt{dndiatta@univ-zig.sn})$

Proposition. Une fonction est bijective si et seulement si elle est injective et surjective.

Exemple.

- 1. La fonction $f: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R}_+ \\ x \longmapsto x^2 \end{cases}$ n'est pas injective car $1 \in \mathbb{R}_+$ admet deux antécédents -1 et 1 dans l'espace de départ \mathbb{R} . En effet f(1) = f(-1) = 1. Elle est surjective car tout $y \in \mathbb{R}_+$ admet au moins $x = \sqrt{y}$ comme antécédent. Ainsi elle n'est pas bijective.
- 2. La fonction $g: \begin{cases} [0,2] \longrightarrow [0,4] \\ x \longmapsto x^2 \end{cases}$ est bijective car tout $y \in [0,4]$ admet un unique antécédent $x = \sqrt{y}$ dans l'espace de départ [0,2].
- 3. La fonction $h: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow [-1,1] \\ x \longmapsto \cos(x) \end{array} \right.$ n'est pas injective car $0 \in [-1,1]$ admet au moins deux antécédents dans son espace de départ : $\frac{\pi}{2}$ et $-\frac{\pi}{2}$. Donc elle n'est pas bijective.

En pratique on utilise souvent le résultat suivant pour montrer qu'une fonction est bijective, bien souvent en dressant le tableau de variations de la fonction :

Théorème 3. (Théorème de la bijection) Si une fonction $f: E \to F$ est strictement monotone et est telle que $F = \operatorname{im}(f)$ alors elle est bijective.

Exemple. La fonction $g: \begin{cases} [0,2] \longrightarrow [0,4] \\ x \longmapsto x^2 \end{cases}$ est bijective car elle est strictement croissante et Im(g) := g([0,2]) = [0,4].

L'intérêt principal que nous apporte le caractère bijectif d'une fonction f est qu'il nous permet de définir une nouvelle fonction appelée fonction réciproque de f.

Définition. (Fonction réciproque) Si une fonction $f: E \longrightarrow F$ est bijective alors il existe une fonction appelée « fonction réciproque » de f, notée f^{-1} et définie par

$$f^{-1} \left\{ \begin{array}{l} F \longrightarrow E \\ y \longmapsto l'unique \ x \in E \ tel \ que \ y = f(x). \end{array} \right.$$

Remarque. On remarquera que la condition « f bijective » est essentielle si l'on veut que le x tel que y = f(x) soit défini de manière unique.

Exercice 2. On considère la fonction $f: \begin{cases}]-\infty, 2] \longrightarrow \operatorname{Im}(f) \\ x \longmapsto x^2 - 4x + 3 \end{cases}$. Déterminer $\operatorname{Im}(f)$, montrer que f est une bijection et calculer f^{-1} .

Proposition 4. Soient $f: E \longrightarrow F$ une fonction bijective et $f^{-1}: F \longrightarrow E$ sa réciproque. Alors

$$\forall x \in E, f^{-1}(f(x)) = x \text{ et } \forall y \in F, f(f^{-1}(y)) = y$$

2.6 Continuité et dérivabilité d'une fonction

On note dans la suite I et J des intervalles de \mathbb{R} .

Définition. (Continuité) Soient $f: I \longrightarrow \mathbb{R}$ et $a \in I$.

- On dit que f est continue au point a si $\lim_{x\to a} f(x) = f(a)$.
- On dit que f est continue sur I si f est continue en tout point de I.

Proposition. Soient $f: I \longrightarrow \mathbb{R}$ et $g: I \longrightarrow \mathbb{R}$ deux fonctions continues sur I et $\lambda \in \mathbb{R}$. Alors :

- 1. la fonction λ . f est continue sur I
- 2. la fonction f + g est continue sur I,
- 3. la fonction $f \times g$ est continue sur I,

4. si g ne s'annule pas sur I, la fonction $\frac{f}{g}$ est continue sur I.

Définition. (Dérivabilité) Soient $f: I \longrightarrow \mathbb{R}$ et $a \in I$.

- On dit que f est dérivable au point a si la fonction $p_f: I \setminus \{a\} \longrightarrow \mathbb{R}$ définie par :

$$p_f(x) = \frac{f(x) - f(a)}{x - a}$$

admet une limite finie lorsque x tends vers a. Si elle existe, cette limite est notée f'(a) et appelée dérivée de f en a.

- On dit que f est dérivable sur I si f est dérivable en tout point de I.
- On appelle domaine de dérivabilité de f l'ensemble $\tilde{I} := \{x \in I : f \text{ est dérivable en } x\}$. On note la fonction dérivée de f par :

$$f'$$
: $\begin{cases} \tilde{I} \longrightarrow \mathbb{R} \\ x \longmapsto f'(x) \end{cases}$.

Exemple. La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$, définie par $f(x) = x^2$ est dérivable sur \mathbb{R} . En effet, pour tout $a \in \mathbb{R}$, on a :

$$p_f(x) = \frac{f(x) - f(a)}{x - a} = \frac{x^2 - a^2}{x - a} = \frac{(x - a)(x + a)}{x - a} = x + a.$$

Ainsi:

$$\lim_{x \to a} p_f(a) = \lim_{x \to a} (x+a) = 2a < \infty.$$

Par conséquent f est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, f'(x) = 2x.

Définition. (**Dérivée d'ordre supérieur**) Soient $f: I \longrightarrow \mathbb{R}$ une fonction dérivable et f' sa dérivée. Si la fonction $f': I \longrightarrow \mathbb{R}$ est aussi dérivable, on note $f^{(2)} = (f')'$ sa dérivée et on l'appelle la dérivée seconde de f. Plus généralement, on note :

$$f^{(0)} = f, \, f^{(1)} = f', \, f^{(2)} = (f')'..., \, f^{(n+1)} = (f^{(n)})'$$

si la dérivée n-ième $f^{(n)}$ existe, on dit que f est n fois dérivable.

Proposition. (Règles de dérivation) Soient $f, g: I \longrightarrow \mathbb{R}$ deux fonctions dérivables sur I. Alors, pour tout $x \in I$, on a:

- 1. la fonction f + g est dérivable sur I et $\forall x \in I$, (f + g)'(x) = f'(x) + g'(x);
- 2. la fonction λf est dérivable sur I et $\forall x \in I$, $(\lambda f)'(x) = \lambda f'(x)$;
- 3. la fonction $f \times g$ est dérivable sur I et $\forall x \in I$, $(f \times g)'(x) = f'(x)g(x) + g'(x)f(x)$;
- 4. la fonction $\frac{1}{f}$ est dérivable en tout point x où $f(x) \neq 0$ et :

$$\forall x \in I: f(x) \neq 0, \text{ on } a: \left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{(f(x))^2},$$

5. la fonction $\frac{f}{g}$ est dérivable en tout point x où $g(x) \neq 0$ et :

$$\forall x \in I \colon g(x) \neq 0, \ on \ a \ \colon \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2}$$

Proposition. (Dérivation de composée de fonctions) Soient $f: I \longrightarrow \mathbb{R}$ et $g: J \longrightarrow \mathbb{R}$ deux fonctions dérivables sur des intervalleqs I et J et telles que $\mathrm{Im}(f) \subset J$. Alors pour tout $x \in I$, g est dérivable en f(x) et $g \circ f: I \longrightarrow \mathbb{R}$ est dérivable sur I et on a pour tout $x \in I$

$$(g \circ f)'(x) = f'(x) \times g'(f(x)).$$

Exemple. La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \sin(2x+1)$ est définie et dérivable sur \mathbb{R} . On a $f = f_1 \circ f_2$ où $f_1(x) = \sin(x)$ et $f_2(x) = 2x+1$ sont définies et dérivables de \mathbb{R} dans \mathbb{R} . Pour tout $x \in \mathbb{R}$, on a :

$$f'(x) = (f_2)'(x) \times f'_1(f_2(x)) = 2\cos(2x+1).$$

Corollaire. (Dérivation de la fonction réciproque) Soient $f: I \longrightarrow J$ une fonction dérivable et bijective et $f^{-1}: J \longrightarrow I$ sa réciproque. Si f' ne s'annule pas sur I, alors f^{-1} est dérivable et on a pour tout $y \in J$

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Définition. (Tangente en un point) Soit $f: I \longrightarrow \mathbb{R}$ une fonction dérivable en un point $a \in I$. Une équation de la tangente à la courbe C_f au point (a, f(a)) est donné par :

$$y = f(a) + f'(a)(x - a).$$

2.7 Étude des variations d'une fonction

Proposition. (Sens de variation d'une fonction dérivable) Soient $f: I \longrightarrow \mathbb{R}$ une fonction dérivable sur I.

- 1. Si $\forall x \in I$, $f'(x) \ge 0$ alors f est croissante.
- 2. Si $\forall x \in I$, $f'(x) \leq 0$ alors f est décroissante.
- 3. Si $\forall x \in I$, f'(x) = 0 alors f est constante.
- 4. Si $\forall x \in I$, f'(x) > 0 alors f est strictement croissante.
- 5. Si $\forall x \in I$, f'(x) < 0 alors f est strictement décroissante.

Remarque. Les réciproques des points 1. 2. et 3. sont vraies et celles des points 4. et 5. sont fausses. Par exemple, la fonction $x \longmapsto x^3$ est strictement croissante sur \mathbb{R} et pourtant sa dérivée s'annule en 0.

3 Fonctions usuelles

3.1 La valeur absolue

Définition. La fonction valeur absolue, notée |.| est définie par :

$$|.|\begin{cases} \mathbb{R} \longrightarrow \mathbb{R}_+ \\ x \longmapsto \begin{cases} x & \text{si } x \geqslant 0 \\ -x & \text{si } x \leqslant 0 \end{cases}$$

Figure 6. Graphe de la fonction valeur absolue

Remarque. Sur la droite numérique \mathbb{R} , |x-y| représente la distance entre les réels x et y.

Proposition. Pour tout $x, y \in \mathbb{R}$, la valeur absolue vérifie les propriétés suivantes :

- 1. $|x| \geqslant 0$ et $|x| > 0 \iff x \neq 0$;
- 2. la fonction valeur absolue est paire : |-x| = |x|;
- 3. $\sqrt{x^2} = |x|$;
- 4. |x.y| = |x|.|y|;
- 5. $\forall r \in \mathbb{R}_+, |x| \leqslant r \iff -r \leqslant x \leqslant r;$
- $6. \ \forall b \in \mathbb{R}, \ |x| \geqslant b \Longleftrightarrow \left\{ \begin{array}{ll} x \geqslant b \ ou \ x \leqslant -b & si & b \geqslant 0 \\ x \in \mathbb{R} & si & b < 0 \end{array} \right.;$
- 7. L'inégalité triangulaire : $|x+y| \le |x| + |y|$;
- 8. Seconde inégalité triangulaire : $||x| |y|| \le |x y|$

Démonstration. Exercice 3.

3.2 Fonctions trigonométriques

Définition. (cosinus et sinus) Considérons la figure suivante :

Figure 7. Cercle trigonométrique.

 $On\ d\acute{e}finit$:

1. la fonction cosinus comme la fonction de $\mathbb{R} \longrightarrow [-1, 1]$ qui à l'angle $x \in \mathbb{R}$ (exprimé en radian) associe la mesure algébrique du segment OB:

$$\cos : \left\{ \begin{array}{l} \mathbb{R} \longrightarrow [-1,1] \\ x \longmapsto \overline{OB} \end{array} \right..$$

2. la fonction sinus comme la fonction de $\mathbb{R} \longrightarrow [-1,1]$ qui à l'angle $x \in \mathbb{R}$ (exprimé en radian) associe la mesure algébrique du segment OC:

$$\sin : \left\{ \begin{array}{l} \mathbb{R} \longrightarrow [-1,1] \\ x \longmapsto \overline{\text{OC}} \end{array} \right.$$

Proposition. Pour tout $x \in \mathbb{R}$, on $a : \cos^2(x) + \sin^2(x) = 1$.

Démonstration. Exercice 4.

Proposition. (Continuité, parité et périodicité) Les fonctions cosinus et sinus sont continues et 2π -périodiques. De plus cosinus est paire et sinus impaire.

Démonstration. Exercice 5.

Remarque. (Importante) nous rappelons que la longueur L d'un arc de cercle de rayon R et d'angle α exprimé en radian est :

$$L = \alpha R$$
.

Figure 8.

Proposition. Les fonctions cosinus et sinus vérifie les propriétés suivantes :

- 1. $\forall x, y \in \mathbb{R}$, $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$;
- 2. $\forall x, y \in \mathbb{R}$, $\sin(x y) = \sin(x)\cos(y) \cos(x)\sin(y)$
- 3. $\forall x, y \in \mathbb{R}$, $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$
- 4. $\forall x, y \in \mathbb{R}$, $\cos(x y) = \cos(x)\cos(y) + \sin(x)\sin(y)$

Démonstration. Exercice 6.

Proposition. On a:

1.
$$\lim_{x\to 0} \frac{\sin(x)}{x} = 1$$

2.
$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$$

Proposition. (dérivabilité) Les fonctions cosinus et sinus sont dérivables et :

- 1. $\forall x \in \mathbb{R}, \sin'(x) = \cos(x);$
- 2. $\forall x \in \mathbb{R}, \cos'(x) = -\sin(x)$.

Proposition. La fonction sinus restreinte à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ à valeurs dans [-1, 1] est bijective.

Démonstration. Exercice 7.

Définition. (arcsinus) On appelle arcsininus, notée arcsin : $[-1, 1] \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ la fonction réciproque de la fonction sin : $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow [-1, 1]$.

Remarque. Par définition, pour tout $y \in [-1, 1]$, $\arcsin(y)$ est l'unique angle compris entre $-\frac{\pi}{2}$ dont le sinus est égal à y. Ceci nous donne la relation suivante :

$$\operatorname{si} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \sin(x) = y \Longleftrightarrow x = \arcsin(y).$$

Exemple. Que vaut $\arcsin(\frac{1}{2})$?

Par définition,

$$\theta = \arcsin\left(\frac{1}{2}\right) \Longleftrightarrow \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text{ et } \sin(\theta) = \frac{1}{2}.$$

Par identification, $\theta = \frac{\pi}{6}$.

Proposition. La fonction arcsinus est continue et bijective de [-1,1] dans $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, dérivable sur [-1,1] et vérifie les propriétés suivantes :

- 1. $\arcsin(\sin(x)) = x, \ \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- 2. $\sin(\arcsin(y)) = y$, $\forall y \in [-1, 1]$,
- 3. la fonction arcsinus est impaire
- 4. $\forall y \in]-1, 1[, \arcsin'(y) = \frac{1}{\sqrt{1-y^2}}$

Proposition. La fonction cosinus restreinte à $[0,\pi]$ à valeurs dans [-1,1] est bijective.

Démonstration. Exercice 8.

Définition. (arccosinus) On appelle arccosinus, notée arccos : $[-1, 1] \longrightarrow [0, \pi]$ la fonction réciproque de la fonction $\cos[0, \pi] \longrightarrow [-1, 1]$.

Remarque. Par définition, pour tout $y \in [-1, 1]$, $\arccos(y)$ est l'unique angle compris entre 0 et π dont le cosinus est égal à y. Ceci nous donne la relation suivante :

$$\operatorname{si} x \in [0, \pi], \cos(x) = y \iff x = \arccos(y).$$

Exemple. Que vaut $\arccos(\frac{1}{2})$?

Par définition,

$$\theta = \arccos \left(\frac{1}{2}\right) \Longleftrightarrow \theta \in [0,\pi] \ \text{et} \ \cos(\theta) = \frac{1}{2}.$$

Par identification, $\theta = \frac{\pi}{3}$.

Proposition. La fonction arccosinus est continue et bijective de [-1,1] dans $[0,\pi]$, dérivable sur]-1,1[et vérifie les propriétés suivantes :

- 1. $\arccos(\cos(x)) = x, \forall x \in [0, \pi],$
- 2. $\cos(\arccos(y)) = y$, $\forall y \in [-1, 1]$,
- 3. $\forall y \in]-1, 1[, \arccos'(y) = -\frac{1}{\sqrt{1-y^2}}]$

Démonstration. Exercice 9.

Définition. (tangente) La fonction tangente tan: $D_{tan} \longrightarrow \mathbb{R}$ est définie par :

$$\tan(x) := \frac{\sin(x)}{\cos(x)} \text{ avec } D_{\tan} = \left\{ x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$$

Proposition. La fonction tangente est continue et dérivable sur D_{tan} et vérifie les propriétés suivantes :

1.
$$\forall x \in D_{\tan}$$
, $\tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$;

- 2. La fonction tangente est impaire : $\forall x \in D_{tan}, \tan(-x) = -\tan(x);$
- 3. La fonction tangente est π -périodique : $\forall x \in D_{tan}, \tan(x+\pi) = \tan(x)$.

Démonstration. Exercice 10. □

Proposition. La fonction tangente restreinte à $]-\frac{\pi}{2},\frac{\pi}{2}[$ à valeurs dans \mathbb{R} est bijective.

Démonstration. Exercice 11.

Définition. (arctangente) On appelle fonction arctangente, notée $\operatorname{arctan}: \mathbb{R} \longrightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, la fonction réciproque de la fonction $\operatorname{tan:} \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R}.$

Remarque. Par définition, pour tout $y \in \mathbb{R}$, $\arctan(y)$ est l'unique angle compris entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$ dont la tangente est égal à y. Ceci nous donne la relation suivante :

$$\operatorname{si} x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \tan(x) = y \Longleftrightarrow x = \arctan(y).$$

Proposition. La fonction arctangente est continue, bijective et dérivable de \mathbb{R} dans $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ et vérifie :

- 1. $\arctan(\tan(x)) = x, \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[;$
- 2. $tan(arctan(y)) = y, \forall y \in \mathbb{R};$
- 3. la fonction arctangente est impaire : $\forall y \in \mathbb{R}$, $\arctan(-y) = -\arctan(y)$;
- 4. $\arctan'(y) = \frac{1}{1+u^2}, \forall y \in \mathbb{R}.$

Exercice 12. En posant $t = \tan(\frac{x}{2})$, montrer que pour tout $x \in \mathbb{R} \setminus \{y \in \mathbb{R} : y = \pi + 2k\pi, k \in \mathbb{Z}\}$, $\cos(x) = \frac{1-t^2}{1+t^2}$.

3.3 Fonction polynomiale

Définition. Soient $n \in \mathbb{N}$, $a_0, a_1, ..., a_{n-1} \in \mathbb{R}$ et $a_n \in \mathbb{R}^*$. Alors la fonction

$$P: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \sum_{k=0}^{n} a_k x^k = a_0 + a_1 x + \dots + a_n x^n \end{array} \right.$$

est appelée fonction polynôme de degré n. Elle est continue et dérivable sur $\mathbb R$ et sa dérivée P' est une fonction polynôme de degré inférieur ou égal à n-1 donné par

$$P': \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \sum_{k=0}^{n} k a_k x^{k-1} = a_1 + 2a_2 x + \dots + n a_n x^{n-1} \end{cases}$$

Remarque. La dérivée de $P: x \longmapsto x^k$ est donc $P': x \longmapsto kx^{k-1}$.

Définition. Soit $P: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction polynomiale de degré n. On dit que $\alpha \in \mathbb{R}$ est une racine ou un zéro de P si $P(\alpha) = 0$.

Exemple. La fonction polynomiale P définie pour tout $x \in \mathbb{R}$ par $P(x) = x^2 + x - 2$ admet - il des racines? Pour répondre à cette question, on calcule le discriminant $\Delta = b^2 - 4ac = 9$ et on trouve deux racines $x_1 = 1$ et $x_2 = -2$.

Théorème. Soit $P: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction polynomiale de degré n. Alors :

- 1. P possède au plus n racines;
- 2. $\alpha \in \mathbb{R}$ est racine de P si et seulement si pour tout $x \in \mathbb{R}$, il existe une fonction polynomiale de degré n-1 telle que $P(x)=(x-\alpha)Q(x)$.

Remarque. Lorsque n = 2, si $P(x) = ax^2 + bx + c$ admet deux racines x_1 et x_2 alors une factorisation de P est $P(x) = a(x - x_1)(x - x_2)$.

3.4 Fonction logarithme

Définition. (logarithme népérien) On appelle logarithme népérien et on le note \ln , l'unique fonction de $\mathbb{R}_+^* \longrightarrow \mathbb{R}$ dérivable dont la dérivée vaut $x \longmapsto \frac{1}{x}$ et qui prend la valeur 0 en 1, autrement dit :

$$\ln : \begin{cases}
\mathbb{R}_+^* \longrightarrow \mathbb{R} \\
x \longmapsto \int_1^x \frac{\mathrm{d}t}{t}
\end{cases}$$

Proposition. Pour tout $a, b \in \mathbb{R}_+^*$, $n \in \mathbb{Z}$, on a:

- 1. $\ln(ab) = \ln(a) + \ln(b)$;
- 2. $\ln\left(\frac{1}{a}\right) = -\ln(a)$;
- 3. $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$;
- 4. $\ln(a^n) = n\ln(a).$

Démonstration. Exercice 13.

Proposition. (Limites usuelles)

- 1. $\lim_{x\to 0^+} \ln(x) = -\infty$;
- 2. $\lim_{x \to +\infty} \ln(x) = +\infty$;
- 3. $\lim_{x \to 0^+} \frac{\ln(1+x)}{x} = 1$

Démonstration. Exercice 14.

Théorème. La fonction logarithme est une bijection continue, dérivable et strictement croissante de \mathbb{R}_+^* dans \mathbb{R} .

Démonstration. Exercice 15.

3.5 Fonction exponentielle

Définition. La fonction exponentielle notée exp: $\mathbb{R} \longrightarrow \mathbb{R}_+^*$ est définie comme la bijection réciproque de la fonction logarithme $\ln: \mathbb{R}_+^* \longrightarrow \mathbb{R}$.

Remarque. On utilise la notation $\exp(x) = e^x$. Comme elle est la réciproque de la fonction logarithme, on en déduit que la fonction exponentielle vérifie

$$\forall x > 0, e^{\ln(x)} = x \text{ et } \forall y \in \mathbb{R}, \ln(e^y) = y.$$

Proposition. Pour tout $a, b \in \mathbb{R}$ et pour tout $n \in \mathbb{Z}$, on a:

- 1. $e^0 = 1$;
- 2. $e^{a+b} = e^a \cdot e^b$:
- 3. $e^{-a} = \frac{1}{e^a}$;
- 4. $e^{na} = (e^a)^n$;
- 5. $e^{-na} = (e^a)^{-n} = \frac{1}{(e^a)^n}$.

Démonstration. Exercice 16.

Proposition. (Limites usuelles)

- 1. $\lim_{x \to -\infty} e^x = 0$;
- 2. $\lim_{x\to+\infty} e^x = +\infty$.

Démonstration. Exercice 17.

Théorème. La fonction exponentielle est une bijection continue, dérivable et strictement croissante de \mathbb{R} dans \mathbb{R}_+^* . $\forall x \in \mathbb{R}$, $(e^x)' = e^x$.

Définition. Soit a > 0. On définit la fonction exponentielle de base a de la manière suivante :

$$\exp_a: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R}_+^* \\ x \longmapsto a^x = e^{x \ln(a)} \end{array} \right.$$

3.6 Fonctions puissances et leurs réciproques

Définition. *Soit* $\alpha \in \mathbb{R}$. *La fonction*

$$u_{\alpha}$$
:
$$\begin{cases} \mathbb{R}_{+}^{*} \longrightarrow \mathbb{R}_{+}^{*} \\ x \longmapsto x^{\alpha} = e^{\alpha \ln(x)} \end{cases}$$

s'appelle la fonction puissance. Elle est dérivable et admet pour dérivée la fonction $u'_{\alpha}: \mathbb{R}^*_+ \longrightarrow \mathbb{R}$ définie par $u'_{\alpha}(x) = \alpha x^{\alpha-1}$.

Proposition. La fonction puissance u_{α} : $\begin{cases} \mathbb{R}_{+}^{*} \longrightarrow \mathbb{R}_{+}^{*} \\ x \longmapsto x^{\alpha} = e^{\alpha \ln(x)} \end{cases}$ est une bijection continue et dérivable. Elle est strictement croissante si $\alpha > 0$ et strictement décroissante si $\alpha < 0$. Elle admet pour réciproque :

$$u_{\alpha}^{-1}: \left\{ \begin{array}{c} \mathbb{R}_{+}^{*} \longrightarrow \mathbb{R}_{+}^{*} \\ x \longmapsto x^{\frac{1}{\alpha}} \end{array} \right.$$

Corollaire. Lorsque $n \in \mathbb{N}$ et $n \ge 2$, la réciproque de la fonction $x \longmapsto x^n$ est la fonction $x \mapsto x^{\frac{1}{n}}$, appelée racine n-ième. Lorsque n est pair, elle est définie de \mathbb{R}_+ dans \mathbb{R}_+ , et lorsque n est impair elle est définie de \mathbb{R} dans \mathbb{R} .

4 Techniques de calcul de limites.

Il existe 6 cas où l'on ne peut rien dire sur les limites que l'on appelle formes indéterminées :

$$+\infty-\infty, 0\times\infty, \frac{\infty}{\infty}, \frac{0}{0}, 1^{\infty}, \text{et } \infty^0$$

Nous allons voir dans cette section plusieurs techniques pour lever ces indéterminations.

4.1 Fractions rationnelles

Règle 1: La limite en $+\infty$ ou $-\infty$ d'une fraction rationnelle est égale à la limite du quotient des termes de plus hauts degrés respectifs du numérateur et du dénominateur. On a 3 cas possibles :

1. le degré du numérateur est plus élevé que celui du dénominateur :

$$\lim_{x\longrightarrow +\infty}\frac{x^4+3x^3-5}{x^3+2x+1}=\lim_{x\longrightarrow +\infty}\frac{x^4}{x^3}=\lim_{x\longrightarrow +\infty}x=+\infty.$$

2. le degré du numérateur est égal à celui du dénominateur :

$$\lim_{x \longrightarrow +\infty} \frac{3x^4 + 3x^3 - 5}{5x^4 + 2x + 1} = \lim_{x \longrightarrow +\infty} \frac{3x^4}{5x^4} = \lim_{x \longrightarrow +\infty} \frac{3}{5} = \frac{3}{5}.$$

3. le degré du numérateur est plus petit que celui du dénominateur :

$$\lim_{x \to +\infty} \frac{-x^2 + 3x - 5}{x^3 + 2x + 1} = \lim_{x \to +\infty} \frac{-x^2}{x^3} = \lim_{x \to +\infty} \frac{-1}{x} = 0.$$

Règle 2 : La limite en 0 d'une fraction rationnelle est égale à la limite du quotient des termes de plus bas degrés respectifs du numérateur et du dénominateur :

$$\lim_{x \to 0} \frac{x^4 + 3x^3}{x^3 + 2x} = \lim_{x \to 0} \frac{3x^3}{2x} = \lim_{x \to 0} \frac{3}{2}x^2 = 0.$$

4.2 Limites de fonctions composées

- $\text{1. On veut calculer } \lim_{x \to 0^+} \sqrt{\frac{5x+1}{x^2+3x}}. \text{ On a : } \lim_{x \to 0^+} \frac{5x+1}{x^2+3x} = \lim_{x \to 0^+} \frac{1}{3x} = +\infty. \text{ Comme } \\ \lim_{y \to +\infty} \sqrt{y} = +\infty, \text{ on en déduit que } \lim_{x \to 0^+} \sqrt{\frac{5x+1}{x^2+3x}} = +\infty.$
- 2. On veut calculer $\lim_{x\to-\infty}\ln\left(\frac{-3x^4+2x+1}{5x^3+x^2}\right)$. On a $\lim_{x\to-\infty}\frac{-3x^4+2x+1}{5x^3+x^2}=\lim_{x\to-\infty}\frac{-3x^4}{5x^3}=\lim_{x\to-\infty}\frac{-3x}{5}=+\infty$. Comme $\lim_{x\to+\infty}\ln(y)=+\infty$, on en déduit que $\lim_{x\to-\infty}\ln\left(\frac{-3x^4+2x+1}{5x^3+x^2}\right)=+\infty$.

4.3 Astuces récurrentes

Ici sont listés des exemples d'astuces pour lever des indéterminations du type $(0, \infty)$ et $(\infty - \infty)$.

1. On veut calculer $\lim_{x\to 1} \frac{2x^2-x-1}{3x^2-7x+4}$. On a là une forme indéterminée du type $\frac{0}{0}$. Comme 1 annule $2x^2-x-1$ et $3x^2-7x+4$ on peut mettre (x-1) en facteur puis simplifier. Ainsi on a :

$$\frac{2x^2 - x - 1}{3x^2 - 7x + 4} = \frac{(x - 1)(2x + 1)}{(x - 1)(3x - 4)} = \frac{2x + 1}{3x - 4}$$

Ainsi
$$\lim_{x \to 1} \frac{2x^2 - x - 1}{3x^2 - 7x + 4} = \lim_{x \to 1} \frac{2x + 1}{3x - 4} = -3.$$

2. On veut calculer $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$. On a là une forme indéterminée du type $\langle 0 \rangle$. On voit que 0 annule le dénominateur et le numérateur, on voudrait factoriser par x-0 mais à ce stade on ne peut pas. En présence d'une différence de radicaux $\sqrt{a}-\sqrt{b}$ le réflexe à avoir est de multiplier et diviser notre expression par la quantité conjuguée $\sqrt{a}+\sqrt{b}$:

$$\frac{\sqrt{1+x} - \sqrt{1+x^2}}{x} = \frac{\left(\sqrt{1+x} - \sqrt{1+x^2}\right)\left(\sqrt{1+x} + \sqrt{1+x^2}\right)}{x\left(\sqrt{1+x} + \sqrt{1+x^2}\right)}$$

$$\frac{\sqrt{1+x} - \sqrt{1+x^2}}{x} = \frac{\left(\sqrt{1+x}\right)^2 - \left(\sqrt{1+x^2}\right)^2}{x\left(\sqrt{1+x} + \sqrt{1+x^2}\right)}$$

$$\frac{\sqrt{1+x} - \sqrt{1+x^2}}{x} = \frac{\left(1+x\right) - \left(1+x^2\right)}{x\left(\sqrt{1+x} + \sqrt{1+x^2}\right)}$$

$$\frac{\sqrt{1+x} - \sqrt{1+x^2}}{x} = \frac{\left(x-x^2\right)}{x\left(\sqrt{1+x} + \sqrt{1+x^2}\right)}$$

$$\frac{\sqrt{1+x} - \sqrt{1+x^2}}{x} = \frac{1-x}{\left(\sqrt{1+x} + \sqrt{1+x^2}\right)}$$

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1+x^2}}{x} = \lim_{x \to 0} \frac{1-x}{\left(\sqrt{1+x} + \sqrt{1+x^2}\right)} = \frac{1}{2}.$$

3. On veut calculer $\lim_{x\to+\infty}\sqrt{2x+1}-\sqrt{2x-1}$. On a là une forme indéterminée du type $\ll+\infty-\infty$ » :

$$\begin{split} \sqrt{2x+1} - \sqrt{2x-1} &= \frac{(\sqrt{2x+1} - \sqrt{2x-1})(\sqrt{2x+1} + \sqrt{2x-1})}{(\sqrt{2x+1} + \sqrt{2x-1})} \\ \sqrt{2x+1} - \sqrt{2x-1} &= \frac{(\sqrt{2x+1})^2 - (\sqrt{2x-1})^2}{(\sqrt{2x+1} + \sqrt{2x-1})} \\ \sqrt{2x+1} - \sqrt{2x-1} &= \frac{2}{(\sqrt{2x+1} + \sqrt{2x-1})} \\ \lim_{x \to +\infty} \sqrt{2x+1} - \sqrt{2x-1} &= \lim_{x \to +\infty} \frac{2}{(\sqrt{2x+1} + \sqrt{2x-1})} = 0 \end{split}$$

4.4 Théorème des gendarmes ou théorème d'encadrement.

Théorème. Soient $x_0, \ell \in \mathbb{R}$ et f, g, h trois fonctions définies sur \mathbb{R} telles que $f \leq g \leq h$.

$$\mathrm{Si} \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell \ \ \mathrm{alors} \ \ \lim_{x \to x_0} g(x) = \ell.$$

Corollaire. Soient $x_0 \in \mathbb{R}$ et f, g deux fonctions définies sur $\mathbb{R} \setminus \{x_0\}$ telles que $f \leq g$.

- 1. $Si \lim_{x \to x_0} f(x) = +\infty \ alors \lim_{x \to x_0} g(x) = +\infty.$
- 2. $Si \lim_{x \to x_0} g(x) = -\infty \ alors \lim_{x \to x_0} f(x) = -\infty$

4.5 Croissances comparées

Proposition. $\lim_{x\to+\infty} \frac{\ln(x)}{x} = 0^+ \ et \ \lim_{x\to+\infty} \frac{e^x}{x} = +\infty.$

Démonstration. Exercice 18.

Proposition. Si b > 0 alors $\lim_{x \to +\infty} \frac{\ln(x)}{x^b} = 0^+$, $\lim_{x \to +\infty} \frac{e^x}{x^b} = +\infty$ et $\lim_{x \to 0^+} x^b \ln(x) = 0$.

Proposition. (Règle de l'Hospital) Soient $f, g: I \longrightarrow \mathbb{R}$ deux fonctions dérivables sur l'intervalle I et $x_0 \in I$. On suppose que :

- $f(x_0) = g(x_0) = 0$;
- $\forall x \in I \setminus \{x_0\}, g'(x_0) \neq 0.$

Si
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell \in \overline{\mathbb{R}}$$
 alors $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell$.

Remarque. Ce résultat s'applique également pour lever des indéterminations du type « $\frac{\infty}{\infty}$ », c'est à dire lorsque $\lim_{x\to x_0} f(x) = \pm \infty$ et $\lim_{x\to x_0} g(x) = \pm \infty$.

5 Théorèmes fondamentaux

Nous présentons ici des résultats fondamentaux liés à la continuité et la dérivabilité d'une fonction.

Théorème 5. (Théorème des valeurs intermédiaires) Soient $a, b \in \mathbb{R}$ et $f: [a, b] \longrightarrow \mathbb{R}$ une fonction continue. Alors pour tout y compris entre f(a) et f(b), il existe $c \in [a, b]$ tel que f(c) = y.

Exemple.

Corollaire. Soient $a, b \in \mathbb{R}$ et $f: [a, b] \longrightarrow \mathbb{R}$ une fonction continue. Si $f(a) \times f(b) < 0$ alors il existe $c \in]a, b[$ tel que f(c) = 0.

Exemple. Montrer que l'équation $x^3 + 5x + 2 = 0$ admet au moins une solution dans [-1, 0]. La fonction $f: x \longmapsto x^3 + 5x + 2$ est continue sur [-2, 2]. De plus f(0) = 2 > 0 et f(-1) = -4 < 0, alors $f(0) \times f(-1) < 0$ et d'après le TVI il existe $c \in]a, b[$ tel que f(c) = 0. Ainsi l'équation $x^3 + 5x + 2 = 0$ admet bien au moins une solution dans [-1, 0].

Théorème 6. Soient I un intervalle de \mathbb{R} , $x_0 \in I$ et $f: I \longrightarrow \mathbb{R}$ une fonction.

- 1. Si f est dérivable en x_0 alors f est continue en x_0 .
- 2. Si f est dérivable sur I alors f est continue sur I.

Démonstration. Exercice 20.

Remarque. Attention la réciproque de ce théorème est fausse. Une fonction peut être continue en un point sans y être dérivable. Par exemple, la fonction :

$$f \colon \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto |x| \end{array} \right.$$

est continue en 0 mais n'est pas dérivable en 0.

Théorème 7. (Théorème des accroissements finis) Soient $a, b \in \mathbb{R}$ et $f: [a, b] \longrightarrow \mathbb{R}$ une fonction continue sur [a, b] et dérivable sur [a, b]. Alors il existe $c \in [a, b]$ tel que :

$$f(b) - f(a) = f'(c)(b - a).$$

Remarque. Géométriquement, ce théorème assure qu'il existe au moins un point du graphe de f où la tangente est parallèle à la droite passant par les points A = (a, f(a)) et B = (b, f(b)).

Figure 9.

Exemple. Montrons que pour tout $x \in \mathbb{R}_+$, $e^x \geqslant x + 1$.

Pour x = 0, l'inégalité est trivialement vérifiée. Fixons $x \in \mathbb{R}_+^*$. La fonction exponentielle est continue sur [0, x] et dérivable sur]0, x[donc d'après le théorème des accroissements finis, il existe $c_x \in]0, x[$ tel que :

$$e^x - e^0 = e^{c_x}(x - 0).$$

Or par croissance de la fonction exponentielle, comme $c_x > 0$, on a $e^{c_x} > e^0$ et donc

$$e^x - e^0 \geqslant e^0(x - 0),$$

ce qui donne bien $e^x \ge x + 1$.

Le théorème suivant est un cas particulier du théorème des accroissements finis.

Théorème 8. (Théorème de Rolle) Soient $a, b \in \mathbb{R}$ et $f: [a, b] \longrightarrow \mathbb{R}$ une fonction telle que :

1. f continue sur [a,b];

- 2. f dérivable sur]a,b[;
- 3. f(a) = f(b).

Alors il existe $c \in]a,b[$ tel que f'(c) = 0.

Démonstration. Exercice 21.

Remarque. Géométriquement, le théorème de Rolle assure qu'il existe au moins un point du graphe de f où la tangente est horizontale.