

## Qxx25xx & Qxx25xHx Series







#### **Agency Approval**

| Agency    | Agency File Number |
|-----------|--------------------|
| <b>71</b> | E71639*            |

<sup>\* -</sup> Only Package Types TO-220L, TO-218K and TO-218J

#### **Main Features**

| Symbol              | Value    | Unit |
|---------------------|----------|------|
| I <sub>T(RMS)</sub> | 25       | А    |
| $V_{DRM}/V_{RRM}$   | 1000     | V    |
| l <sub>gT</sub>     | 50 or 80 | mA   |

#### **Schematic Symbol**



## **Description**

This 25 Amp bi-directional solid state switch series is designed for AC switching and phase control applications such as motor speed and temperature modulation controls, lighting controls, and static switching relays.

Standard alternistor triac components operate with inphase signals in Quadrants I or III and ONLY unipolar negative gate pulses for Quadrant II or III. The alternistor triac will not operate in Quadrant IV.

#### **Features & Benefits**

- RoHS compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 250A at 60 Hz half cycle

#### **Applications**

Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls.

Typical applications are AC solid-state switches, industrial power tools, exercise equipment, white goods and commercial appliances.

Alternistor Triacs (no snubber required) are used in applications with high inductive loads requiring the highest commutation performance.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

#### **Additional Information**







Resources



Samples



| Absolute Maximum Ratings – Standard Triac |                                           |                               |                                                          |       |      |  |  |
|-------------------------------------------|-------------------------------------------|-------------------------------|----------------------------------------------------------|-------|------|--|--|
| Symbol                                    | Parameter                                 | 1                             | Test Conditions                                          | Value | Unit |  |  |
| I <sub>T(RMS)</sub>                       | RMS on-state current                      | Qxx25R5<br>Qxx25N5<br>Qxx25L5 | Tc = 65°C<br>T <sub>c</sub> = 95°C                       | 25    | А    |  |  |
|                                           |                                           | Qxx25R5                       | full cycle; $f = 50Hz$ ;<br>$T_J$ (initial) = 25°C       | 167   |      |  |  |
| I <sub>TSM</sub>                          | Peak non-repetitive surge current         | Qxx25N5<br>Qxx25L5            | full cycle; f = 60Hz;<br>T <sub>J</sub> (initial) = 25°C | 200   | A    |  |  |
| l²t                                       | I <sup>2</sup> t Value for fusing         | Oxx25R5<br>Oxx25N5<br>Oxx25L5 | t <sub>p</sub> = 8.3ms                                   | 166   | A²s  |  |  |
| di/dt                                     | Critical rate-of-rise of on-state current | f =                           | = 60Hz; T <sub>J</sub> =125°C                            | 100   | A/µs |  |  |
| I <sub>GTM</sub>                          | Peak gate current                         | t <sub>p</sub> :              | =20µs, T <sub>J</sub> =125°C                             | 4     | А    |  |  |
| $P_{g(AV)}$                               | Average gate power dissipation            |                               | $T_J = 125$ °C                                           | 0.5   | W    |  |  |
| T <sub>stg</sub>                          | Storage tem                               | perature range                | -40 to 125                                               | °C    |      |  |  |
| T <sub>J</sub>                            | Operating junction temperature range      |                               | -40 to 125                                               | °C    |      |  |  |

| Absolute M          | aximum Ratings – Alternistor Triac        |                                             |                                                    |            |                  |
|---------------------|-------------------------------------------|---------------------------------------------|----------------------------------------------------|------------|------------------|
| Symbol              | Parameter                                 |                                             | Value                                              | Unit       |                  |
|                     |                                           | Qxx25LH5<br>Qxx25L6                         | T <sub>c</sub> = 65°C                              |            |                  |
| I <sub>T(RMS)</sub> | RMS on-state current                      | Qxx25K6<br>Qxx25J6                          | T <sub>C</sub> = 85°C                              | 25         | A                |
| T(HMS)              | T(RMS)                                    | Qxx25RH5<br>Qxx25NH5<br>Qxx25R6<br>Qxx25NH6 | T <sub>c</sub> = 95°C                              |            |                  |
|                     |                                           |                                             | full cycle; $f = 50Hz$ ;<br>$T_J$ (initial) = 25°C | 208        |                  |
| I <sub>TSM</sub>    | Peak non-repetitive surge current         |                                             | full cycle; $f = 60Hz$ ;<br>$T_J$ (initial) = 25°C | 250        | A                |
| l²t                 | I²t Value for fusing                      |                                             | $t_p = 8.3 ms$                                     | 260        | A <sup>2</sup> s |
| di/dt               | Critical rate-of-rise of on-state current | f                                           | = 60Hz; T <sub>J</sub> =125°C                      | 100        | A/µs             |
| I <sub>GTM</sub>    | Peak gate current                         | t                                           | t <sub>p</sub> =20μs, Τ <sub>J</sub> =125°C        | 4          | А                |
| $P_{G(AV)}$         | Average gate power dissipation            |                                             | $T_J = 125^{\circ}C$                               | 0.5        | W                |
| T <sub>stg</sub>    | Storage temperature range                 |                                             |                                                    | -40 to 125 | °C               |
| $T_{J}$             | Operating junction                        | n temperature range                         |                                                    | -40 to 125 | °C               |

Note: xx = voltage/10



## Electrical Characteristics ( $T_1 = 25$ °C, unless otherwise specified) — Standard Triac

| Symbol          | Test Conditions                                                                            | Quadrant                      |              | Value                    | Unit |
|-----------------|--------------------------------------------------------------------------------------------|-------------------------------|--------------|--------------------------|------|
| I <sub>GT</sub> | $V_D = 12V; R_L = 60 \Omega$                                                               | I – II – III<br>IV            | MAX.<br>TYP. | 50<br>120                | mA   |
| V <sub>GT</sub> | $V_D = 12V$ ; $R_L = 60 \Omega$                                                            | I – II – III<br>IV            | MAX.<br>TYP. | 1.3                      | V    |
| $V_{GD}$        | $V_D = V_{DRM}$ ; $R_L = 3.3 \text{ k}\Omega$ ; $T_J = 125$ °C                             | ALL                           | MIN.         | 0.2                      | V    |
| I <sub>H</sub>  | $I_{T} = 400 \text{mA} \text{ (initial)}$                                                  |                               | MAX.         | 100                      | mA   |
| dv/dt           | $V_D = V_{DRM}$ ; Gate Open; $T_J = 125$ °C<br>$V_D = V_{DRM}$ ; Gate Open; $T_J = 100$ °C | 400V<br>600V<br>800V<br>1000V | MIN.         | 275<br>225<br>200<br>200 | V/µs |
| (dv/dt)c        | $(di/dt)c = 13.3 \text{ A/ms}; T_J = 125^{\circ}C$                                         |                               | MIN.         | 5                        | V/µs |
| t <sub>gt</sub> | $I_{G} = 2 \times I_{GT}$ ; PW = 15 $\mu$ s; $I_{T} = 35.4 \text{ A}$                      |                               | TYP.         | 4                        | μs   |

## Electrical Characteristics ( $T_j = 25$ °C, unless otherwise specified) — Alternistor Triac

|                 |                                                                                                                 |              |         | Val                              | ue                                                   |      |
|-----------------|-----------------------------------------------------------------------------------------------------------------|--------------|---------|----------------------------------|------------------------------------------------------|------|
| Symbol          | Test Conditions                                                                                                 | Quadrant     |         | Qxx25RH5<br>Qxx25LH5<br>Qxx25NH5 | Qxx25R6<br>Qxx25L6<br>Qxx25NH6<br>Qxx25K6<br>Qxx25J6 | Unit |
| I <sub>GT</sub> | $V_D = 12V; R_L = 60 \Omega$                                                                                    | 1 – 11 – 111 | MAX.    | 50                               | 80                                                   | mA   |
| $V_{\rm GT}$    | $V_D = 12V; R_L = 60 \Omega$ $I - II - III$                                                                     |              | MAX.    | 1.3                              | 3                                                    | V    |
| $V_{gD}$        | $V_{_{\rm D}} = V_{_{\rm DRM}}$ ; $R_{_{\rm L}} = 3.3 \; {\rm k\Omega}$ ; $T_{_{\rm J}} = 125 ^{\circ} {\rm C}$ | I – II – III | MIN.    | 0.2                              |                                                      | V    |
| I <sub>H</sub>  | $I_{T} = 400 \text{mA} \text{ (initial)}$                                                                       |              | MAX.    | 50                               | 100                                                  | mA   |
|                 |                                                                                                                 | 400V         |         | 575                              | 600                                                  |      |
| dv/dt           | $V_D = V_{DRM}$ ; Gate Open; $T_J = 125$ °C                                                                     | 600V         | MIN.    | 500                              | 600                                                  | 1/// |
| uv/ut           |                                                                                                                 | 800V         | IVIIIV. | 400                              | 475                                                  | V/µs |
|                 | $V_D = V_{DRM}$ ; Gate Open; $T_J = 100$ °C                                                                     | 1000V        |         | -                                | 400                                                  |      |
| (dv/dt)c        | $(di/dt)c = 13.3 \text{ A/ms}; T_J = 125^{\circ}C$                                                              |              | MIN.    | 20                               | 30                                                   | V/µs |
| t <sub>gt</sub> | $I_{G} = 2 \times I_{GT}$ ; PW = 15 $\mu$ s; $I_{T} = 35.4 \text{ A}$                                           |              | TYP.    | 3                                | 5                                                    | μs   |

## **Static Characteristics**

| Symbol                    | Test Conditions                                                       |                        |            |      | Value | Unit |
|---------------------------|-----------------------------------------------------------------------|------------------------|------------|------|-------|------|
| $V_{TM}$                  | $I_{T} = 35.4A; t_{p} = 38$                                           | 30 µs                  |            | MAX. | 1.8   | V    |
|                           |                                                                       | T, = 25°C              | 400 - 800V |      | 10    |      |
|                           | I <sub>DRM</sub> /I <sub>RRM</sub> V <sub>DRM</sub> /V <sub>RRM</sub> | 1 <sub>3</sub> = 25 C  | 1000V      |      | 20    |      |
| $I_{\rm DRM}/I_{\rm RRM}$ |                                                                       | T <sub>J</sub> = 100°C | 400 - 800V | MAX. | 500   | μΑ   |
|                           |                                                                       | 1 <sub>J</sub> = 100 C | 1000V      |      | 1000  |      |
|                           |                                                                       | T <sub>J</sub> = 125°C | 400 - 800V |      | 2000  |      |

Note: xx = voltage/10, x = package



| Thermal Resistances |                       |                                                                |       |      |  |  |  |
|---------------------|-----------------------|----------------------------------------------------------------|-------|------|--|--|--|
| Symbol              | Para                  | ameter                                                         | Value | Unit |  |  |  |
| $R_{\Theta(J-C)}$   | Junction to case (AC) | Qxx25R5 / Qxx25N5<br>Qxx25R6 / Qxx25NH6<br>Qxx25RH5 / Qxx25NH5 | 0.89  | °C/W |  |  |  |
|                     |                       | Qxx25L6 / Qxx25LH5 /Qxx25L5                                    | 2.0   |      |  |  |  |
|                     |                       | Qxx25K6 / Qxx25J6                                              | 1.32  |      |  |  |  |
| D                   | Junction to ambient   | Qxx25Ry                                                        | 45    | °C/W |  |  |  |
| R <sub>e(J-A)</sub> | Sunction to ambient   | Qxx25L6 / Qxx25LH5 /Qxx25L5                                    | 50    | C/VV |  |  |  |

Note: xx = voltage/10, y = sensitivity

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature



Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature



Figure 3: Normalized DC Holding Current vs. Junction Temperature



Figure 4: On-State Current vs. On-State Voltage (Typical)





Figure 5: Power Dissipation (Typical) vs. RMS
On-State Current



Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current



Figure 7: Maximum Allowable Ambient Temperature vs. RMS On-State Current (TO-220 packages only)



Figure 8: Surge Peak On-State Current vs. Number of Cycles





#### **Soldering Parameters**

| Reflow Cor                                      | ndition                                       | Pb – Free assembly |
|-------------------------------------------------|-----------------------------------------------|--------------------|
|                                                 | - Temperature Min (T <sub>s(min)</sub> )      | 150°C              |
| Pre Heat                                        | -Temperature Max (T <sub>s(max)</sub> )       | 200°C              |
|                                                 | -Time (min to max) (t <sub>s</sub> )          | 60 – 180 secs      |
| Average ra (T <sub>L</sub> ) to peal            | mp up rate (Liquidus Temp)<br>k               | 5°C/second max     |
| $T_{S(max)}$ to $T_{L}$                         | - Ramp-up Rate                                | 5°C/second max     |
| Reflow                                          | - Temperature (T <sub>L</sub> ) (Liquidus)    | 217°C              |
| nellow                                          | - Temperature (t <sub>L</sub> )               | 60 – 150 seconds   |
| Peak Temp                                       | erature (T <sub>P</sub> )                     | 260+0/-5 °C        |
| Time withi<br>Temperatu                         | in 5°C of actual peak<br>re (t <sub>p</sub> ) | 20 – 40 seconds    |
| Ramp-down Rate                                  |                                               | 5°C/second max     |
| Time 25°C to peak Temperature (T <sub>P</sub> ) |                                               | 8 minutes Max.     |
| Do not exc                                      | eed                                           | 280°C              |



#### **Physical Specifications**

| Terminal Finish 100% Matte Tin-plated |                                                        |  |  |  |  |
|---------------------------------------|--------------------------------------------------------|--|--|--|--|
| Body Material                         | UL Recognized compound meeting flammability rating V-0 |  |  |  |  |
| Lead Material                         | Copper Alloy                                           |  |  |  |  |

## **Design Considerations**

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

## **Environmental Specifications**

| Test                | Specifications and Conditions              |
|---------------------|--------------------------------------------|
| High Temperature    | MIL-STD-750: Method 1040, Condition A      |
| Voltage Blocking    | Rated V <sub>RRM</sub> , 125°C, 1008 hours |
|                     | MIL-STD-750: Method 1051                   |
| Temperature Cycling | -40°C to 125°C, 15-minute dwell,           |
|                     | 100 cycles                                 |
| Biased Temp &       | EIA/JEDEC: JESD22-A101                     |
| Humidity            | 320VDC, 85°C, 85%RH, 1008 hours            |
| Himb Town Changes   | MIL-STD-750: Method 1031                   |
| High Temp. Storage  | 150°C, 1008 hours                          |
| Low-Temp Storage    | -40°C, 1008 hours                          |
| Resistance to       | MIL-STD-750: Method 2031                   |
| Solder Heat         | 260°C, 10 seconds                          |
| Solderability       | ANSI/J-STD-002, Category 3, Test A         |
| Lead Bend           | MIL-STD-750: Method 2036, Condition E      |



## Dimensions — TO-220AB (R Package) — Non-isolated Mounting Tab



| Discouries. | Incl  | hes   | Millin | neters |
|-------------|-------|-------|--------|--------|
| Dimension   | Min   | Max   | Min    | Max    |
| Α           | 0.380 | 0.420 | 9.65   | 10.67  |
| В           | 0.105 | 0.115 | 2.67   | 2.92   |
| С           | 0.230 | 0.250 | 5.84   | 6.35   |
| D           | 0.590 | 0.620 | 14.99  | 15.75  |
| E           | 0.142 | 0.147 | 3.61   | 3.73   |
| F           | 0.110 | 0.130 | 2.79   | 3.30   |
| G           | 0.540 | 0.575 | 13.72  | 14.61  |
| Н           | 0.025 | 0.035 | 0.64   | 0.89   |
| J           | 0.195 | 0.205 | 4.95   | 5.21   |
| K           | 0.095 | 0.105 | 2.41   | 2.67   |
| L           | 0.060 | 0.075 | 1.52   | 1.91   |
| M           | 0.085 | 0.095 | 2.16   | 2.41   |
| N           | 0.018 | 0.024 | 0.46   | 0.61   |
| 0           | 0.178 | 0.188 | 4.52   | 4.78   |
| P           | 0.045 | 0.060 | 1.14   | 1.52   |
| R           | 0.038 | 0.048 | 0.97   | 1.22   |

## Dimensions — TO-220AB (L Package) — Isolated Mounting Tab



| Dimension | inches |       | Millimeters |       |
|-----------|--------|-------|-------------|-------|
|           | Min    | Max   | Min         | Max   |
| Α         | 0.380  | 0.420 | 9.65        | 10.67 |
| В         | 0.105  | 0.115 | 2.66        | 2.92  |
| С         | 0.230  | 0.250 | 5.85        | 6.35  |
| D         | 0.590  | 0.620 | 14.98       | 15.75 |
| E         | 0.142  | 0.147 | 3.61        | 3.73  |
| F         | 0.110  | 0.130 | 2.80        | 3.30  |
| G         | 0.540  | 0.575 | 13.71       | 14.60 |
| Н         | 0.025  | 0.035 | 0.63        | 0.89  |
| J         | 0.195  | 0.205 | 4.95        | 5.21  |
| K         | 0.095  | 0.105 | 2.41        | 2.67  |
| L         | 0.060  | 0.075 | 1.52        | 1.91  |
| М         | 0.085  | 0.095 | 1.78        | 2.16  |
| N         | 0.018  | 0.024 | 0.45        | 0.61  |
| 0         | 0.178  | 0.188 | 4.52        | 4.78  |
| P         | 0.045  | 0.060 | 1.14        | 1.53  |
| R         | 0.038  | 0.048 | 0.97        | 1.22  |



## Dimensions — TO-263 (N Package) — D<sup>2</sup>Pak Surface Mount



| Dimension | Inches |       | Millimeters |       |
|-----------|--------|-------|-------------|-------|
|           | Min    | Max   | Min         | Max   |
| Α         | 0.360  | 0.370 | 9.14        | 9.40  |
| В         | 0.380  | 0.420 | 9.65        | 10.67 |
| С         | 0.178  | 0.188 | 4.52        | 4.78  |
| D         | 0.025  | 0.035 | 0.64        | 0.89  |
| E         | 0.045  | 0.060 | 1.14        | 1.52  |
| F         | 0.060  | 0.075 | 1.52        | 1.91  |
| G         | 0.095  | 0.105 | 2.41        | 2.67  |
| Н         | 0.092  | 0.102 | 2.34        | 2.59  |
| J         | 0.018  | 0.024 | 0.46        | 0.61  |
| K         | 0.090  | 0.110 | 2.29        | 2.79  |
| s         | 0.590  | 0.625 | 14.99       | 15.88 |
| V         | 0.035  | 0.045 | 0.89        | 1.14  |
| U         | 0.002  | 0.010 | 0.05        | 0.25  |
| w         | 0.040  | 0.070 | 1.02        | 1.78  |

# Dimensions — TO-218AC (K Package) — Isolated Mounting Tab

\_ [2.03]

\_\_ [6.60] \_\_



| Dimension | Inches |       | Millimeters |       |
|-----------|--------|-------|-------------|-------|
|           | Min    | Max   | Min         | Max   |
| Α         | 0.810  | 0.835 | 20.57       | 21.21 |
| В         | 0.610  | 0.630 | 15.49       | 16.00 |
| С         | 0.178  | 0.188 | 4.52        | 4.78  |
| D         | 0.055  | 0.070 | 1.40        | 1.78  |
| E         | 0.487  | 0.497 | 12.37       | 12.62 |
| F         | 0.635  | 0.655 | 16.13       | 16.64 |
| G         | 0.022  | 0.029 | 0.56        | 0.74  |
| Н         | 0.075  | 0.095 | 1.91        | 2.41  |
| J         | 0.575  | 0.625 | 14.61       | 15.88 |
| K         | 0.211  | 0.219 | 5.36        | 5.56  |
| L         | 0.422  | 0.437 | 10.72       | 11.10 |
| M         | 0.058  | 0.068 | 1.47        | 1.73  |
| N         | 0.045  | 0.055 | 1.14        | 1.40  |
| P         | 0.095  | 0.115 | 2.41        | 2.92  |
| Q         | 0.008  | 0.016 | 0.20        | 0.41  |
| R         | 0.008  | 0.016 | 0.20        | 0.41  |
| U         | 0.164  | 0.165 | 4.10        | 4.20  |
| w         | 0.085  | 0.095 | 2.17        | 2.42  |



## Dimensions — TO-218X (J Package) — Isolated Mounting Tab



| Dimension | Inches |       | Millimeters |       |
|-----------|--------|-------|-------------|-------|
|           | Min    | Max   | Min         | Max   |
| Α         | 0.810  | 0.835 | 20.57       | 21.21 |
| В         | 0.610  | 0.630 | 15.49       | 16.00 |
| С         | 0.178  | 0.188 | 4.52        | 4.78  |
| D         | 0.055  | 0.070 | 1.40        | 1.78  |
| E         | 0.487  | 0.497 | 12.37       | 12.62 |
| F         | 0.635  | 0.655 | 16.13       | 16.64 |
| G         | 0.022  | 0.029 | 0.56        | 0.74  |
| Н         | 0.075  | 0.095 | 1.91        | 2.41  |
| J         | 0.575  | 0.625 | 14.61       | 15.88 |
| K         | 0.256  | 0.264 | 6.50        | 6.71  |
| L         | 0.220  | 0.228 | 5.58        | 5.79  |
| M         | 0.080  | 0.088 | 2.03        | 2.24  |
| N         | 0.169  | 0.177 | 4.29        | 4.49  |
| P         | 0.034  | 0.042 | 0.86        | 1.07  |
| R         | 0.113  | 0.121 | 2.87        | 3.07  |
| S         | 0.086  | 0.096 | 2.18        | 2.44  |
| Т         | 0.156  | 0.166 | 3.96        | 4.22  |
| U         | 0.164  | 0.165 | 0.410       | 0.420 |
| V         | 0.603  | 0.618 | 15.31       | 15.70 |
| w         | 0.000  | 0.005 | 0.00        | 0.13  |
| X         | 0.003  | 0.012 | 0.07        | 0.30  |
| Υ         | 0.028  | 0.032 | 0.71        | 0.81  |
| Z         | 0.085  | 0.095 | 2.17        | 2.42  |



Qxx25K6

Χ

Χ

Χ

Χ

#### **Product Selector** Voltage Gate Sensitivity Quadrants Part Number Package 400V 600V 800V 1000V Qxx25R5 Χ Χ Χ Χ 50 mA 120 mA (TYP) TO-220R Qxx25N5 Χ Χ Χ Χ 50 mA 120 mA (TYP) TO-263 D2-Pak 50 mA Qxx25L5 Χ Χ Χ Χ 120 mA (YTP) TO-220L Qxx25RH5<sup>1</sup> TO-220R Χ Χ Χ 50 mA Qxx25LH5 Χ Χ Χ 50 mA TO-220L Qxx25NH5 TO-263 D<sup>2</sup>-Pak Χ Χ Χ 50 mA Qxx25R6 Χ Χ Χ TO-220R Χ 80 mA Qxx25L6 Χ Χ Χ Χ 80 mA TO-220L Qxx25NH6 Χ Χ TO-263 D2-Pak Χ Χ 80 mA Qxx25J6 Χ Χ Χ 80 mA TO-218X

80 mA

| Packing Options |          |        |                  |                    |
|-----------------|----------|--------|------------------|--------------------|
| Part Number     | Marking  | Weight | Packing Mode     | Base Quantity      |
| Qxx25R5TP       | Qxx25R5  | 2.20g  | Tube             | 1000 (50 per tube) |
| Qxx25N5TP       | Qxx25N5  | 1.60g  | Tube             | 1000 (50 per tube) |
| Qxx25N5RP       | Qxx25N5  | 1.60g  | Embossed Carrier | 500                |
| Qxx25RH5TP      | Qxx25RH5 | 2.20g  | Tube             | 1000 (50 per tube) |
| Qxx25LH5TP      | Qxx25LH5 | 2.20g  | Tube             | 1000 (50 per tube) |
| Qxx25NH5TP      | Qxx25NH5 | 1.60g  | Tube             | 1000 (50 per tube) |
| Qxx25NH5RP      | Qxx25NH5 | 1.60g  | Embossed Carrier | 500                |
| Qxx25R6TP       | Qxx25R6  | 2.20g  | Tube             | 1000 (50 per tube) |
| Qxx25L6TP       | Qxx25L6  | 2.20g  | Tube             | 1000 (50 per tube) |
| Qxx25NH6TP      | Qxx25NH6 | 1.60g  | Tube             | 1000 (50 per tube) |
| Qxx25NH6RP      | Qxx25NH6 | 1.60g  | Embossed Carrier | 500                |
| Qxx25J6TP       | Qxx25J6  | 5.23g  | Tube             | 250 (25 per tube)  |
| Qxx25K6TP       | Qxx25K6  | 4.40g  | Tube             | 250 (25 per tube)  |
| Qxx25L5TP       | Qxx25L5  | 2.20g  | Tube             | 1000 (50 per tube) |

TO-218AC



## TO-263 Embossed Carrier Reel Pack (RP) Specifications

#### Meets all EIA-481-2 Standards



#### **Part Numbering System**



## **Part Marking System**

TO-220 AB - (L and R Package)



XXX: Lot Trace Code

TO-218AC - (K Package) TO-218X - (J Package)



**Disclaimer Notice** - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <a href="http://www.littelfuse.com/disclaimer-electronics">http://www.littelfuse.com/disclaimer-electronics</a>.