

FIG. 1A

FIG. 1B

FIG. 1C

FIG. 1D

FIGURE 2

..867 ^{NCG}
CCATGGCTATAACCCAACTCGGTCTGGTCAACACAGGAACCTCTGGTAAGCTAGCTCCACTCCCCAGAAACAAACGGGGCCAAAATTG
.177 CGGAATTCGACTCTGAAAGGGAACATCATCGTCGGTCCCTGGCGATTCGGGGAGATCGGTCACTTGGGCTTGAGGACGAGAC
.687 CGGAATTCGAGCTGTTGAAAGGTGTTCAATTGGGATTGTTACGGAGATTGGCTCGAGAGGTTTGAGGAAAGGACAATGGGTTAG
R1
.597 GCTCTGGAGAAAGAGAGTGCGGCCATTAGAGAGAGATTGAGAGCTTAGAGAGAGATGCCGCCGATGACGGGAGGAGACGACGAGG
R2 R2
.507 ACCTGCATTATCAAGCAGTGACTGGTCAAATTGGAACTTAAAGGGCAGATAGATTATTATTGTTATCCATTTCATTTTCATTTTC
.417 TAGAATGTCGGGAAACAAATTAAACTAAATCTAAATTTCCTAAATTGTTGCGAAATAGCTGGATATGTCGGGCGTATAGAAGGAAT
.327 CTATTGAAGGCCAAACCCAAACTGAGGAGCCAAAGGTTGGTTGGCTTTATGTTGGTTCGATGCCAACGCCACATTCTGAGCTA
I
.237 GGCAAAAMACAAAGCTGCTTTGAATAGACTCCCTCGTAAACACATGCAAGGGCTGCACTGGCACCCATTAAACCTGCTACATTAAATT
.147 GCATGATGTCCTATTGACACGTGACTCTGCTCTCTTAAATATATCTAACAAACACTCTACCTCTCCAAATATATACACATC
H A D T A R G T H H D
.57 TTTTGATCAATCTCATTCAAATCTCATTTCTCTAGTAACAGAACAAAATGGGGATAACAGCTAGAGGAACCCATCACGAT
I I G R D O Y P M M G R D R D O Y O M S G R G S D Y S K S R
34 ATCATGGCCAGAGACCAGTACCGATGATGGGGAGACCGAGACCAGTACCGATGTCGAGCAGGATCTGACTACTCCAAGTCTAGG
O I A K A A T A V T A G G S L L V L S S L T L V G T V I A L
124 CACATGCTAAAGCTGCAACTGCTGACAGCTGGTGGTCCCTCTCTCCAGGCTTACCTCTGTTGAGACTGTCATAGCTTGG
T V A T P L L V I F S P I L V P A L I T V A L L I T G F L S
214 ACTGTTGCCACACCTCTGCTGTATCTTCAGCCAAATCTCTGTCGGCTCATCACAGTTCGACTCTCATCACGGGTTCTCTCC
S G G F G I A A I T V F S W I Y K
304 TCTGGAGGGTTTGGCATTGGCCCTATAACCGTTCTCTGGATTTCAgtaagcacacatttatcatcttacttcataatTTgtgc
394 atatgtgcattgtgcattgttgagccagtagctttggatcaatTTTggcataacaatgtaaacaataagaatgtcaatggatagg
484 gaacatTTggtaactaaatacgaatTTgacctagtagcttggatcaatTTTggcataacaatgtaaacaataagaatgtcaatggatagg
574 Y A T G E H P Q G S D K L D S A R M K L G S K
574 tacctattgtgatgtgaaatagGTACGCCAACGGGAGGCCACAGGGATCAGACAACTTGGACAGTCCAAAGGATGAAAGTTCGGAACAA
A O D L K D R A O Y Y G Q Q H T G G E H D R T R G G O H
664 GCTCAAGGATCTGAAAGACAGAGCTCAGTACTACCGACAGCAACATACTGTCGGGAACTGACGCTGACCGTACTGTTGTCGGGACAC
T T
754 ACTACTTAAGTTACCCACTGATGTCATGTCATAGTCCTAAACTCCAAATGTCGGGGAGTTAGTTATGAGGAATAAGTGTGTTAGAAT
KpnI
844 TTGATCAGGGGGAGATAATAAGCCGAGTTGAAATCTTTTGTATAACTAAATCTTATGTCGTTCTATATGTTGTCAAATGTCAC
TGTAC

FIGURE 3

FIGURE 4

1 ATG GCG GAT ACA GCT AGA ACC CAT CAC GAT GTC ACA AGT CGA GAT CAG TAT CCC CGA GAC 60
1: N A D T A R T H H D V T S R | D Q Y P R D 20

61 CGA GAC CAG TAT TCT ATG ATC GGT CGA GAC CGT GAC CAG TAC TCT ATG ATG GGC CGA GAC 120
6: R D Q Y S M I G R D R D Q Y S M M G R D 40

121 CGA GAC CAG TAC AAC ATG TAT GGT CGA GAC TAC TCC AAG TCT AGA CAG ATT GCT AAG GCT 180
12: R D Q Y N H Y G R D Y S K S R Q I A K A 60

181 GTT ACC GCA GTC ACG GCG GGT GGG TCC CTC CTT GTC CTC TCC AGT CTC ACC CTT GTT GGT 240
18: V T A V T A G G S L L V L S S L T L V G 80

241 ACT GTC ATT GCT TTG ACT GTT GCC ACT CCA CTC CTC GTT ATC TTT AGC CCA ATC CTC GTG 300
24: T V I A L T V A T P L L V I F S P I L V 100

301 CGG GCT CTC ATC ACC GIA GCA CTT CTC ATC ACT GGC TTT CTC TCC TCT GGT GGG TTT GCC 360
30: P A L I T V A L L I T G F L S S G G F A 120

361 ATT GCA GCT ATA ACC GTC TTC TCC TGG ATC TAT AAG TAC GCA ACG GGA GAG CAC CCA CAG 420
36: I A A I T V F S W I Y K Y A T G E H P Q 140

421 CGG TCA GAT AAG TTG GAC AGT GCA AGG ATG AAG CTG GGA ACC AAA GCT CAG GAT ATT AAA 480
42: G S D R L D S A R M K L G T K A Q D I K 160

481 GAC AGA GCT CAA TAC TAC GGA CAG CAA CAT ACA GGT GGT GAG CAT GAC OGT GAC CGT ACT 540
48: D R A Q Y Y G Q Q H T G G E H D R D R T 180

541 CGT GGT GGC CAG CAC ACT ACT TAA 564
54: R G C Q H T T * 188

FIGURE 5

FIGURE 6

S100111

1	ATAAGCTTGCATGCCCTGGAACTCTCTGGTAAGCTAGCTCCACTCCCCAGAAAACAACCG	60
61	GCGCCAAATTGCGGAAATTGCTGACCTGAAGACGGAAACATCATCGCGGGTCTTGGCG	120
121	ATTGGGGCGGAAGATGGGTCACTGGGTTGAGGACGAGACCCGAATCGAGTCGTTGA	180
181	AAGGTTGTTCAATTGGGATTGGTATACGGAGATTGGTCGTCGAGAGGTTTGAGGGAAAGGA	240
241	CAAAATGGGTTTGGCTCTGGAGAAAGAGAGTGGCCTTAGAGAGAGAATTGAGAGGTTA	300
301	GAGAGAGATGGGGCGGCATGACGGGAGGAGACGACGAGGACCTGCATTATCAAAGCA	360
361	GTGACGTGGTGAATTGGAACTTTAACGGAGATAGATTATTATGGTATCCATT	420
421	TCTTCATTGTTCTAGAATGTGGCGGAACAAATTAAACTAAATCCTAAATTCTAA	480
481	TTTTGTTCCAATAGTGGATATGTGGGCCGTATAGAAGGAATCTATTGAAGGCCAAACC	540
541	CATACTGAGGCCAAAGGTTGCGTTTATGTTCGGTTGATGCCAACGCCA	600
601	CATTCTGAGCTAGCAAAAAACAAACGTGCTTTGAATAGACTCCTCTCGTTAACACATG	660
661	CAGCGGCTGCATGGTACGCCATTAAACACGTGGCCTACAATTGCAATGATGTCCTCATTGA	720
721	CACGTGACTTCTCGCTCCTTCTTAATATATCTAACAAACACTCCTACCTCTTCCAAA	780
781	TATATACACATCTTTTGATCAATCTCTCATTCAAAATCTCATTCTCTAGTAACAAAG	840
	M A D T A R G T H D I I G R D Q	
841	AACAAAAAAATGGCGGATACAGCTAGAGGAACCCATCACGATATCATCGGCAGAGACCAG	900
	Y P M M G R D R D Q Y Q M S G R G S D Y	
901	TACCCGATGATGGGGCGAGACCGAGACCACTACAGATGTCGGACGAGGATCTGACTAC	960
	S K S R Q I A K A A T A V T A G G S L L	
961	TCCAAGTCTAGGCAGATTGCTAAAGCTGCAACTGCTGTCACAGCTGGTGGTCCCTCCTT	1020
	V L S S L T L V G T V I A L T V A T P L	
1021	GTTCCTCCAGCCTTACCCCTTGGAACTGTCATAGCTTGACTGTCACAGCTGGTGGTCCCTCCTG	1080
	L V I F S P I L V P A L I T V A L L I T	
1081	CTCGTTATCTCAGCCCATTCCCTGTCGGCTCATCACAGTGGCACTCCCTCATCACC	1140
	G F L S S G G F G I A A A I T V F S W I Y	
1141	GGTTTTCTTCCTCTGGAGGGTTGGCATTGGCGTATAACCGTTTCTTGGATTAC	1200
	K	
1201	AACTAAGCACACATTTATCATCTTACTTCTACAATTGGCAATATGTCATGCAATGTC	1260
1261	TGAGCCAGTAGCTTGGATCAATTGGTCAAAATGTAACAATAAGAAATT	1320
1321	CCAAATTCTAGGGAACATTGGTAACTAAATACGAAATTGACCTAGCTAGCTTGAATG	1380
1381	TGTCTGTGTATATCATCTATAGTAAATGCTTGGTATGATACCTATTGATTGTGAAT	1440
	Y A T G E H P Q G S D K L D S A R M K	
1441	AGGTACGCAACGGGAGGACCCACAGGGATCAGACAAGTGGACAGTGCAGGATGAAG	1500
	L G S K A Q D L K D R A Q Y Y G Q Q Q H T	
1501	TTGGGAAGCAAAGCTCAGGATCTGAAAGACAGAGCTCACTACGGACAGCAACATACT	1560
	G G E H D R D R T R G G Q H T T L V P R	
1561	GGTGGGAAACATGACCGTGACCGTACTCGTGGTGGCCAGCACACTACTCTCGTCCACGA	1620
	G S M A E I T R I P L Y R G K S L R K A	
1621	GGATCCATGGCTGAGATCACCAGGATCCCTCTGTACAAAGGCAAGTCTGAGGAAGGCG	1680
	L K E H G L L E D F L Q R Q Q Y G I S S	
1681	CTGAAGGAGCATGGCTCTGGAGGACTTCTGCAGAAACAGCAGTATGGCATCAGCAGC	1740
	K Y S G F G E V A S V P L T N Y L D S Q	
1741	AACTACTCCGGCTTGGGGAGGTGGCCAGCGTGCCTGACCAACTACCTGGATAGTCAG	1800

FIGURE 6 cont'd

Y F G K I Y L G T P P Q E F T V L F D T	
1801 TACCTGGGAAGATCTACCTCGGACCCGCCAGGAGTTCACCGTGTGTTGACACT	1860
G S S D F W V P S I Y C K S N A C K N H	
1861 CGCTCCCTGACTTCTGGTACCCCTATCTACTGCAAGAGCAATGCCTGCAAAACCAC	1920
Q R P D P R K S S T F Q N L G K P L S I	
1881 CAGCGCTTCGACCCGAGAAAAGTCGTCCACCTCCAGAACCTGGCAAGCCCCGTCTATC	1980
H Y G T G S M Q G I L G Y D T V T V S N	
1981 CACTACGGGACAGGCAGCATGCAGGGCATCCTGGGCTATGACACCGTCACTGTCTCCAAC	2040
I V D I Q Q T V G L S T Q E P G D V F T	
2041 ATTGTGGACATCCAGCAGACAGTAGGCCTGAGCACCCAGGAGCCCCGGACGTCTTCACC	2100
Y A E F D G I L G M A Y P S L A S E Y S	
2101 TATGCCGAATTGACGGGATCCTGGGATGGCCTACCCCTCGCTGCCCTCAGAGTACTCG	2160
I P V F D N M M M N R H L V A Q D L F S V	
2161 ATACCCGTGTTGACAACATGATGAAACAGGCACCTGGTGGCCCAAGACCTGTTCTCGGTT	2220
Y H D R N G Q E S M L T L G A I D P S Y	
2221 TACATGGACAGGAATGGCCAGGAGAGCAGTCACGCTGGGGCCATCGACCCGTCTAC	2280
Y T G S L H W V P V T V Q Q Y W Q F T V	
2281 TACACAGGGTCCCTGCACTGGTGCCCCGTGACAGTCAGCAGTACTGGCAGTTCACTGTG	2340
D S V T I S G V V V A C E G G G C Q A I L	
2341 GACAGTGTCAACCATCAGCGGTGTGGTGTGGCCTGTGAGGGTGGCTGTCAAGGCCATCTTG	2400
D T G T S K L V G P S S D I L N I Q Q A	
2401 GACACGGGCACCTCCAAGCTGGTCGGGCCAGCAGCGACATCCTCAACATCCAGCAGGCC	2460
I G A T Q N Q Y G E F D I D C D N L S Y	
2461 ATGGAGCCACACAGAACCACTGACGGTGAGTTGACATCGACTGCGACAACCTGAGCTAC	2520
K P T V V P E I N G K M Y P L T P S A Y	
2521 ATGCCCACTGTTGAGATCAATGGCAAAATGTACCCACTGACCCCCCTCCGCCTAT	2580
T S Q D Q G F C T S G F Q S E N H S Q K	
2581 ACCAGCCAAGACCAGGGCTCTGTACCACTGGCTTCCAGAGTGAAAATCATTCCAGAAA	2640
W I L G D V F I R E Y Y S V F D R A N N	
2641 TGGATCTGGGGATGTTTCATCCGAGAGTATTACAGCGTCTTGACAGGGCCAACAAAC	2700
L V G L A K A I *	
2701 CTGGTGGGGCTGCCAAGCCATCTGAAAGCTT	2733

HindIII

FIGURE 7

FIGURE 8

FIGURE 9

Sequence alignment of the isolated caleosin (this application) with the coding sequence of the reported caleosin gene (accession number AF067857). Indicated are the primers GVR979 and GVR980 used for the polymerase Chain Reaction and the one nucleotide change (position 69).

ClustalW Formatted Alignments

		GVR979														
PCR 979/980 ArClo1 coding	T A C C	10	30 →	30	40	50										
PCR 979/980 ArClo1 coding	T G G C T C . C C T A T G C . G C C G G T C A C T T A C C A T	60	70	80	90	100										
PCR 979/980 ArClo1 coding	G A T G A T A G A C T T C C T A A A C C T T A T A T G C C A A G A G C A I T G C A A G C A C C A G A	110	120	130	140	150										
PCR 979/980 ArClo1 coding	C A G A G A A C A C C C G T A C G G A A C T C G A G G G C G A T A A G A A T T A C G G A C T T A G T G	160	170	180	190	200										
PCR 979/980 ArClo1 coding	T I C T T C A A C A G C A T G T C T C C T T C T G A T A T C G A T G A T A A T G G C A L C A I T	210	220	230	240	250										
PCR 979/980 ArClo1 coding	T A C C C T T G G G A G A C C T A C T T C T G G A C T T G C G A A T G C T T G G T T T C A A T A T C A T	260	270	280	290	300										
PCR 979/980 ArClo1 coding	T G G G T C G C T T A T A A T A G C C G C T G T T A T C A A C C T G A C C C C T T A G C T A T G C C A	310	320	330	340	350										
PCR 979/980 ArClo1 coding	C T C T T C C G G G G T G G G T T A C C T T C A C C T T T C C C T A T A T A C A T A C A C A A C	360	370	380	390	400										
PCR 979/980 ArClo1 coding	A T A C A C A A G T C A A A G C A T T G G A A G T G A T T C A A A A A C A T A T G A C A A T G A A G G	410	420	430	440	450										
PCR 979/980 ArClo1 coding	A A G G T T T A T G C C G G T G A A T C T T G A G T T G A T A T T A G C A A A T A T G C G A A A A	460	470	480	490	500										
PCR 979/980 ArClo1 coding	C C T T G C C A G A C A A G T T G A G T C T T G G A G A A C T A T T G G G A G A T G A C A G A A G G A	510	520	530	540	550										
PCR 979/980 ArClo1 coding	A A C C G T G A C G C T T G G G A C A T T T T G G A T G C G A G G C A A A A T A G A G T G	560	570	580	590	600										
PCR 979/980 ArClo1 coding	G G G A C T G T T G T A C T T G C T A G C A A G G G A T G A A G A A G G G T T T T G C A A A A G	610	620	630	640	650										
PCR 979/980 ArClo1 coding	A A G C T A T T A G G C G G T G T T T C G A T G G A A G C T T T G T T C G A G T A C T G T G C C A A A	660	670	680	690	700										
PCR 979/980 ArClo1 coding	A T C T A C G C T G G T A T C A G T G A A G A C A A G C A G C A T A C T A C G C C A T T G G A T	710	720	730	740	750										

FIGURE 10

Nucleotide sequence of insert of pSBS2098 containing the phaseolin promoter- β Glucuronidase (GUS)-phaseolin terminator sequence. The GUS sequence and its deduced amino acid sequence is indicated in uppercase. The phaseolin promoter corresponds to nucleotide 1-1547, and the phaseolin terminator corresponds to nucleotide sequence 3426-4646. The terminator was furnished with a KpnI site (nt 4647-4652) to facilitate cloning.

FIGURE 10 (cont'd)

FIGURE 10 (cont'd)

```

4195 ctatacataatcgtttagccttgctggacgactctcaattatTTaaacgagagataaacatattttgttatttaa 4274
4275 caaattattatTTaaacactatATgaaatttttttttatcgcaaggaaaataaaattaaatttaggagggacaatggtg 4354
4355 tgtcccaatCttatacaaccaacttccacaggaaggtcaggtcggggacaacaaaaacaggcaaggaaattttta 4434
4435 atttgggttgcTTgttgcataatttatgcagtaaaacactacacataacccttttagcagttagagcaatggtga 4514
4515 ccgtgtgcTTtagcttCTTtatttttttatcagcaaagaataaaataaaatgagacacttcagggatgtt 4594
4595 caacccttataaaaacccaaaaacaagttcctagcacccctaccaactaaGGTACC 4652

```

FIGURE 11

Nucleotide sequence of the phaseolin promoter-oleosinGUS-phaseolin terminator sequence. The oleosinGUS coding sequence and its deduced aminoacid sequence is indicated. The phaseolin promoter corresponds to nucleotide 6-1554. The sequence encoding oleosin corresponds to nt 1555-2313, the intron in this sequence (nt 1908-2147) is indicated in italics. The GUS sequence corresponds to nt 2314-4191. The phaseolin terminator corresponds to nucleotide sequence 4192-5412.

FIGURE 11 (cont'd)

2185	TTG	GAC	AGT	GCA	AGG	ATG	AAG	TTG	GGA	AGC	AAA	GCT	CAG	GAT	CTG	AAA	GAC	AGA	GCT	CAG	2244
131	L	D	S	A	R	M	K	L	G	S	K	A	Q	D	L	K	D	R	A	Q	150
2245	TAC	TAC	GGA	CAG	CAA	CAT	ACT	GGT	GGG	GAA	CAT	GAC	CGT	GAC	CGT	ACT	CGT	GGT	GGC	CAG	2304
151	Y	Y	G	Q	Q	H	T	G	G	E	H	D	R	D	R	T	R	G	G	Q	170
2305	CAC	ACT	ACC	ATG	GTC	TTA	CGT	CCT	GTA	GAA	ACC	CCA	ACC	CGT	GAA	ATC	AAA	AAA	CTC	GAC	2364
171	H	T	T	M	V	L	R	P	V	E	T	P	T	R	E	I	K	K	L	D	190
2365	GGC	CTG	TGG	GCA	TTC	AGT	CTG	GAT	CGC	GAA	AAC	TGT	GGG	ATT	GAT	CAG	CGT	TGG	TGG	GAA	2424
191	G	L	W	A	F	S	L	D	R	E	N	C	G	I	D	Q	R	W	W	E	210
2425	AGC	GCG	TTA	CAA	GAA	AGC	CGG	GCA	ATT	GCT	GTG	CCA	GGC	AGT	TTT	AAC	GAT	CAG	TTC	GCC	2484
211	S	A	L	Q	E	S	R	A	I	A	V	P	G	S	F	N	D	Q	F	A	230
2485	GAT	GCA	GAT	ATT	CGT	AAT	TAT	GCG	GGC	AAC	GTC	TGG	TAT	CAG	CGC	GAA	GTC	TTT	ATA	CCG	2544
231	D	A	D	I	R	N	Y	A	G	N	V	W	Y	Q	R	E	V	F	I	P	250
2545	AAA	GGT	TGG	GCA	GGC	CAG	CGT	ATC	GTG	CTG	CGT	TTC	GAT	GCG	GTC	ACT	CAT	TAC	GGC	AAA	2604
251	K	G	W	A	G	Q	R	I	V	L	R	F	D	A	V	T	H	Y	G	K	270
2605	G TG	TGG	GTC	AAT	AAT	CAG	GAA	G TG	ATG	GAG	CAT	CAG	GGC	GGC	TAT	ACG	CCA	TTT	GAA	GCC	2664
271	V	W	V	N	N	Q	E	V	M	E	H	Q	G	G	Y	T	P	F	E	A	290
2665	GAT	GTC	ACG	CCG	TAT	GTT	ATT	GCC	GGG	AAA	AGT	GTA	CGT	ATC	ACC	GTT	TGT	G TG	AAC	AAC	2724
291	D	V	T	P	Y	V	I	A	G	K	S	V	R	I	T	V	C	V	N	N	310
2725	GAA	CTG	AAC	TGG	CAG	ACT	ATC	CCG	CCG	GGA	ATG	G TG	ATT	ACC	GAC	GAA	AAC	GGC	AAG	AAA	2784
311	E	L	N	W	Q	T	I	P	P	G	M	V	I	T	D	E	N	G	K	K	330
2785	AAG	CAG	TCT	TAC	TTC	CAT	GAT	TTC	TTT	AAC	TAT	GCC	GGA	ATC	CAT	CGC	AGC	GTA	ATG	CTC	2844
331	K	Q	S	Y	F	H	D	F	F	N	Y	A	G	I	H	R	S	V	M	L	350
2845	TAC	ACC	ACG	CCG	AAC	ACC	TGG	G TG	GAC	GAT	ATC	ACC	GTG	GTG	ACG	CAT	GTC	GGC	CAA	GAC	2904
351	Y	T	T	P	N	T	W	V	D	D	I	I	T	V	V	T	H	V	A	Q	370
2905	TGT	AAC	CAC	GCG	TCT	GTT	GAC	TGG	CAG	GTG	GTG	GCC	AAT	GGT	GAT	GTC	AGC	GTC	GAA	CTG	2964
371	C	N	H	A	S	V	D	W	Q	V	V	A	N	G	D	V	S	V	E	L	390
2965	CGT	GAT	GCG	GAT	CAA	CAG	GTG	G TT	GCA	ACT	GGA	CAA	GGC	ACT	AGC	GGG	ACT	TTG	CAA	G TG	3024
391	R	D	A	D	Q	Q	V	V	A	T	G	Q	G	T	S	G	T	L	Q	V	410
3025	GTG	AAT	CCG	CAC	CTC	TGG	CAA	CCG	GGT	GAA	GGT	TAT	CTC	TAT	GAA	CTG	TGC	GTC	ACA	GCC	3084
411	V	N	P	H	L	W	Q	P	G	E	G	Y	L	Y	E	L	C	V	T	A	430
3085	AAA	AGC	CAG	ACA	GAG	TGT	GAT	ATC	TAC	CCG	CTT	CCG	GTC	GGC	ATC	CGG	TCA	GTG	GCA	GTG	3144
431	K	S	Q	T	E	C	D	I	Y	P	L	R	V	G	I	R	S	V	A	V	450
3145	AAG	GGC	CAA	CAG	TTC	CTG	ATT	AAC	CAC	AAA	CCG	TTC	TAC	TTT	ACT	GGC	TTT	GGT	CGT	CAT	3204
451	K	G	Q	Q	F	L	I	N	H	K	P	F	Y	F	T	G	F	G	R	H	470
3205	GAA	GAT	GCG	GAC	TTA	CGT	GGC	AAA	GGA	TTC	GAT	AAC	GTG	CTG	ATG	GTG	CAC	GAC	CAC	GCA	3264
471	E	D	A	D	L	R	G	K	G	F	D	N	V	L	M	V	H	D	H	A	490
3265	TTA	ATG	GAC	TGG	ATT	GGG	GCC	AAC	TCC	TAC	CGT	ACC	TCG	CAT	TAC	CCT	TAC	GCT	GAA	GAG	3324
491	L	M	D	W	I	G	A	N	S	Y	R	T	S	H	Y	P	Y	A	E	E	510
3325	ATG	CTC	GAC	TGG	GCA	GAT	GAA	CAT	GGC	ATC	GTG	GTG	ATT	GAT	GAA	ACT	GCT	GCT	GTC	GGC	3384
511	M	L	D	W	A	D	E	H	G	I	V	V	I	D	E	T	A	A	V	G	530
3385	TTT	TCG	CTC	TCT	TTA	GGC	ATT	GGT	TTC	GAA	GGC	GCG	AAC	AAG	CCG	AAA	GAA	CTG	TAC	AGC	3444
531	F	S	L	S	L	G	I	G	F	E	A	G	N	K	P	K	E	L	Y	S	550
3445	GAA	GAG	GCA	GTC	AAC	GGG	GAA	ACT	CAG	CAA	GCG	CAC	TTA	CAG	GCG	ATT	AAA	GAG	CTG	ATA	3504
551	E	E	A	V	N	G	E	T	Q	Q	A	H	L	Q	A	I	K	E	L	I	570
3505	GCG	CGT	GAC	AAA	AAC	CAC	CCA	AGC	GTG	GTG	ATG	TGG	AGT	ATT	GCC	AAC	GAA	CCG	GAT	ACC	3564
571	A	R	D	K	N	H	P	S	V	V	M	W	S	I	A	N	E	P	D	T	590

FIGURE 11 (cont'd)

KpnI

FIGURE 12

Nucleotide sequence of the phaseolin promoter-caleosinGUS-phaseolin terminator sequence. The caleosinGUS coding sequence and its deduced aminoacid sequence is indicated. The phaseolin promoter corresponds to nucleotide 1-1545. The sequence encoding caleosin corresponds to nt 1548-2282, the NcoI restriction, which was used for the in-frame cloning and which separates the caleosin and GUS sequence (nt 2284-2289) is underlined. The GUS sequence corresponds to nt 2286-4163. The phaseolin terminator corresponds to nucleotide sequence 4164-5384.

FIGURE 12 (cont'd)

2067	GGA	GAA	CTA	TGG	GAG	ATG	ACA	GAA	GGA	AAC	CGT	GAC	GCT	TGG	GAC	ATT	TTT	GGA	TGG	ATC	2126
174	G	E	L	W	E	M	T	E	G	N	R	D	A	W	D	I	F	G	W	I	193
2127	GCA	GGC	AAA	ATA	GAG	TGG	GGG	CTG	TTG	TAC	TTG	CTA	GCA	AGG	GAT	GAA	GAA	GGG	TTT	TTG	2186
194	A	G	K	I	E	W	G	L	L	Y	L	L	A	R	D	E	E	G	F	L	213
2187	TCA	AAA	GAA	GCT	ATT	AGG	CGG	TGT	TTC	GAT	GGA	AGC	TTG	TTC	GAG	TAC	TGT	GCC	AAA	ATC	2246
214	S	K	E	A	I	R	R	C	F	D	G	S	L	F	E	Y	C	A	K	I	233
2247	TAC	GCT	GGT	ATC	AGT	GAA	GAC	AAG	ACA	GCA	TAC	TAC	<u>GCC</u>	<u>ATG</u>	<u>GTC</u>	TTA	CGT	CCT	GTA	GAA	2306
234	Y	A	G	I	S	E	D	K	T	A	Y	Y	A	M	V	L	R	P	V	E	253
2307	ACC	CCA	ACC	CGT	GAA	ATC	AAA	AAA	CTC	GAC	GGC	CTG	TGG	GCA	TTC	AGT	CTG	GAT	CGC	GAA	2366
254	T	P	T	R	E	I	K	K	L	D	G	L	W	A	F	S	L	D	R	E	273
2367	AAC	TGT	GGG	ATT	GAT	CAG	CGT	TGG	TGG	GAA	AGC	GCG	TTA	CAA	GAA	AGC	CGG	GCA	ATT	GCT	2426
274	N	C	G	I	D	Q	R	W	W	E	S	A	L	Q	E	S	R	A	I	A	293
2427	GTG	CCA	GGC	AGT	TTT	AAC	GAT	CAG	TTC	GCC	GAT	GCA	GAT	ATT	CGT	AAT	TAT	GCG	GGC	AAC	2486
294	V	P	G	S	F	N	D	Q	F	A	D	A	D	I	R	N	Y	A	G	N	313
2487	GTC	TGG	TAT	CAG	CGC	GAA	GTC	TTT	ATA	CCG	AAA	GGT	TGG	GCA	GGC	CAG	CGT	ATC	GTG	CTG	2546
314	V	W	Y	Q	R	E	V	F	I	P	K	G	W	A	G	Q	R	I	V	L	333
2547	CGT	TTC	GAT	GCG	GTC	ACT	CAT	TAC	GGC	AAA	GTG	TGG	GTC	AAT	AAT	CAG	GAA	GTG	ATG	GAG	2606
334	R	F	D	A	V	T	H	Y	G	K	V	W	V	N	N	Q	E	V	M	E	353
2607	CAT	CAG	GGC	GGC	TAT	ACG	CCA	TTT	GAA	GCC	GAT	GTC	ACG	CCG	TAT	GTT	ATT	GCC	GGG	AAA	2666
354	H	Q	G	Y	T	P	F	E	A	D	V	T	P	Y	V	I	A	G	K	373	
2667	AGT	GTA	CGT	ATC	ACC	GTT	TGT	GTG	AAC	AAC	GAA	CTG	AAC	TGG	CAG	ACT	ATC	CCG	CCG	GGA	2726
374	S	V	R	I	T	V	C	V	N	N	E	L	N	W	Q	T	I	P	P	G	393
2727	ATG	GTG	ATT	ACC	GAC	GAA	AAC	GGC	AAG	AAA	AAG	CAG	TCT	TAC	TTC	CAT	GAT	TTC	TTT	AAC	2786
394	M	V	I	T	D	E	N	G	K	K	K	Q	S	Y	F	H	D	F	F	N	413
2787	TAT	GCC	GGA	ATC	CAT	CGC	AGC	GTA	ATG	CTC	TAC	ACC	ACG	CCG	AAC	ACC	TGG	GTG	GAC	GAT	2846
414	Y	A	G	I	H	R	S	V	M	L	Y	T	T	P	N	T	W	V	D	D	433
2847	ATC	ACC	GTG	GTG	ACG	CAT	GTC	GCG	CAA	GAC	TGT	AAC	CAC	GCG	TCT	GTT	GAC	TGG	CAG	GTG	2906
434	I	T	V	V	T	H	V	A	Q	D	C	N	H	A	S	V	D	W	Q	V	453
2907	GTG	GCC	AAT	GGT	GAT	GTC	AGC	GTT	GAA	CTG	CGT	GAT	GCG	GAT	CAA	CAG	GTG	GTT	GCA	ACT	2966
454	V	A	N	G	D	V	S	V	E	L	R	D	A	D	Q	Q	V	V	A	T	473
2967	GGA	CAA	GGC	ACT	AGC	GGG	ACT	TTG	CAA	GTG	GTG	AAT	CCG	CAC	CTC	TGG	CAA	CCG	GGT	GAA	3026
474	G	Q	G	T	S	G	T	L	Q	V	V	N	P	H	L	W	Q	P	G	E	493
3027	GGT	TAT	CTC	TAT	GAA	CTG	TGC	GTC	ACA	GCC	AAA	AGC	CAG	ACA	GAG	TGT	GAT	ATC	TAC	CCG	3086
494	G	Y	L	Y	E	L	C	V	T	A	K	S	Q	T	E	C	D	I	Y	P	513
3087	CTT	CGC	GTC	GGC	ATC	CGG	TCA	GTG	GCA	GTG	AAG	GGC	CAA	CAG	TTC	CTG	ATT	AAC	CAC	AAA	3146
514	L	R	V	G	I	R	S	V	A	V	K	G	Q	Q	F	L	I	N	H	K	533
3147	CCG	TTC	TAC	TTT	ACT	GGC	TTT	GGT	CGT	CAT	GAA	GAT	GCG	GAC	TTA	CGT	GGC	AAA	GGA	TTC	3206
534	P	F	Y	F	T	G	F	G	R	H	E	D	A	D	L	R	G	K	G	F	553
3207	GAT	AAC	GTG	CTG	ATG	GTG	CAC	GAC	CAC	GCA	TTA	ATG	GAC	TGG	ATT	GGG	GCC	AAC	TCC	TAC	3266
554	D	N	V	L	M	V	H	D	H	A	L	M	D	W	I	G	A	N	S	Y	573
3267	CGT	ACC	TCG	CAT	TAC	CCT	TAC	GCT	GAA	GAG	ATG	CTC	GAC	TGG	GCA	GAT	GAA	CAT	GGC	ATC	3326
574	R	T	S	H	Y	P	Y	A	E	E	M	L	D	W	A	D	E	H	G	I	593
3327	GTG	GTG	ATT	GAT	GAA	ACT	GCT	GTC	GGC	TTT	TCG	CTC	TCT	TTA	GGC	ATT	GGT	TTC	GAA	3386	
594	V	V	I	D	E	T	A	A	V	G	F	S	L	S	L	G	I	G	F	E	613

FIGURE 12 (cont'd)

FIGURE 13

Histochemical staining of β -Glucuronidase (GUS) activity in flax embryos bombarded with vectors pBluescriptIIKS+ (negative control), pSBS2098 (GUS) pSBS2037 (oleosinGUS), and pSBS2601 (caleosinGUS).

Shot with no vector

