Chap I - Rappels : Les lois usuelles

1 Variables aléatoires discrètes finies

Une v.a. est dite finie si elle ne prend qu'un nombre fini de valeurs.

1.1 Loi uniforme discrète

Définition 1 On dit qu'une variable aléatoire discrète X suit une loi uniforme si X ne prend qu'un nombre fini de valeurs, chacune des valeurs étant équiprobable.

Soit E, l'ensemble des valeurs de X. Si X suit la loi uniforme sur E (on note $X \sim \mathcal{U}(E)$), $\mathbb{P}(X = x) = \frac{1}{\operatorname{card}(E)} \ \forall \ x \in E$.

1.2 Loi de Bernoulli

Définition 2 On dit que X suit la loi de Bernoulli de paramètre p, 0 , si <math>X ne prend que deux valeurs, 0 ou 1, avec $\mathbb{P}(X = 1) = p$ et $\mathbb{P}(X = 0) = 1 - p$.

On a alors $\mathbb{E}(X) = p$ et $\mathbb{V}(X) = p(1-p)$.

1.3 Loi binomiale

Définition 3 On dit que X suit la loi binomiale de paramètres (n,p), $n \in \mathbb{N}^*$, $0 , et on note <math>X \sim \mathcal{B}(n,p)$, si X prend les valeurs $\{0,...,n\}$ avec $\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$ pour tout $k \in \{0,...,n\}$.

Soit \mathcal{E} une expérience aléatoire à deux issues (succès avec probabilité p et échec avec probabilité 1-p). On répète cette expérience n fois de façons indépendantes et identiques. La v.a. X égale au nombre de succès parmi les n expériences suit la loi binomiale $\mathcal{B}(n,p)$.

Proposition 1 Toute v.a. de loi binomiale $\mathcal{B}(n,p)$ est la somme de n v.a. mutuellement indépendantes de loi de Bernoulli $\mathcal{B}(p)$.

On a
$$\mathbb{E}(X) = np$$
 et $\mathbb{V}(X) = np(1-p)$.

Proposition 2 Soient X et Y deux v.a. indépendantes qui suivent respectivement les lois binomiales $\mathcal{B}(n,p)$ et $\mathcal{B}(m,p)$. Leur somme X+Y suit la loi binomiale $\mathcal{B}(n+m,p)$.

2 Variables aléatoires discrètes infinies

2.1 Loi géométrique (ou loi de Pascal)

Définition 4 On dit que X suit la loi géométrique de paramètre p, $0 , et on note <math>X \sim \mathcal{G}(p)$, si X prend toutes les valeurs entières positives et $\mathbb{P}(X = k) = (1 - p)^{k-1}p$ pour tout $k \in \mathbb{N}^*$.

C'est la loi du rang d'apparition du premier succès dans une suite illimitée d'expériences identiques et indépendantes où, à chaque expérience, se réalise soit un succès (avec probabilité p), soit un échec (avec probabilité 1-p).

Si
$$X \sim \mathcal{G}(p)$$
, on a $\mathbb{E}(X) = \frac{1}{p}$ et $\mathbb{V}(X) = \frac{1-p}{p^2}$

2.2 Loi de Poisson

Définition 5 On dit que X suit la loi de Poisson de paramètre $\lambda > 0$, et on note $X \sim \mathcal{P}(\lambda)$, si X est à valeurs dans \mathbb{N} et $\mathbb{P}(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$.

On a alors $\mathbb{E}(X) = \mathbb{V}(X) = \lambda$.

Proposition 3 La loi de Poisson $\mathcal{P}(\lambda)$ s'obtient comme limite de la loi binomiale $\mathcal{B}(n, p_n)$ lorsque $n \to \infty$, $p_n \to 0$ avec $np_n \to \lambda$. C'est-à-dire si $X \sim \mathcal{B}(n, p_n)$, alors $\mathbb{P}(X = k) \to \frac{e^{-\lambda} \lambda^k}{k!}$ lorsque $n \to \infty$ et $np_n \to \lambda$.

Proposition 4 Soient X et Y deux v.a. indépendantes de loi de Poisson de paramètres respectifs λ et μ . Leur somme X+Y suit la loi de Poisson de paramètre $\lambda + \mu$.

3 Variables aléatoires continues

3.1 La loi uniforme

Définition 6 Soit [a,b] un intervalle borné de \mathbb{R} . On dit que X suit la loi uniforme sur [a,b], et on note $X \sim \mathcal{U}([a,b])$, si sa densité est donnée par

$$f(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x).$$

X admet alors pour fonction de répartition

$$F(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } a \le x \le b \\ 1 & \text{si } x > b. \end{cases}$$

On montre que

$$\mathbb{E}(X) = \frac{a+b}{2} \quad \text{et} \quad \mathbb{V}(X) = \frac{(b-a)^2}{12}.$$

3.2 La loi exponentielle

Définition 7 Soit $\lambda > 0$. On dit que X suit la loi exponentielle de paramètre λ , et on note $X \sim \mathcal{E}(\lambda)$, si X admet pour densité

$$f(x) = \lambda e^{-\lambda x} \mathbb{1}_{x>0}.$$

X admet alors pour fonction de répartition

$$F(x) = \begin{cases} 0 & \text{si } x < 0\\ 1 - e^{-\lambda x} & \text{si } x \ge 0. \end{cases}$$

On a

$$\mathbb{E}(X) = \frac{1}{\lambda}$$
 et $\mathbb{V}(X) = \frac{1}{\lambda^2}$.

3.3 La loi gaussienne centrée réduite

Définition 8 On dit que X suit la loi gausienne centrée réduite, et on note $X \sim \mathcal{N}(0,1)$, si sa densité est donnée par

$$\forall x \in \mathbb{R}, \quad \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

La loi gaussienne centrée réduite s'appelle aussi loi normale centrée réduite ou loi normale standard ou loi de Laplace-Gauss.

La fonction de répartition est donnée par

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

On n'a pas d'expression analytique de Φ . Par contre la fonction est tabulée. Si $X \sim \mathcal{N}(0,1)$, on a par symétrie

$$\mathbb{P}(X \le 0) = \mathbb{P}(X > 0) = 1/2$$
 et $\mathbb{P}(X \le -u) = \mathbb{P}(X > u)$

puisque φ est une fonction paire.

X admet des moments de tous les ordres et on a

$$\mathbb{E}(X) = 0, \quad \mathbb{V}(X) = \mathbb{E}(X^2) = 1.$$

D'où le nom de loi gaussienne centrée réduite ou loi normale centrée réduite et la notation $\mathcal{N}(0,1)$.

3.4 La loi gaussienne d'espérance m et de variance σ^2

Définition 9 Soit $m \in \mathbb{R}$ et $\sigma^2 > 0$. On dit que X suit la loi gaussienne (ou loi normale ou loi de Laplace-Gauss) d'espérance m et de variance σ^2 , et on note $X \sim \mathcal{N}(m, \sigma^2)$, si sa densité est donnée par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-m)^2}.$$

On a la propriété suivante :

Proposition 5

$$X \sim \mathcal{N}(m, \sigma^2)$$
 ssi $\frac{X - m}{\sigma} \sim \mathcal{N}(0, 1)$.

On en déduit que

$$\mathbb{E}(X) = m$$
 et $\mathbb{V}(X) = \sigma^2$.

La définition est donc bien cohérente.

On peut montrer que la loi gaussienne satisfait les propriétés suivantes :

Soit X une variable aléatoire de loi gaussienne $\mathcal{N}(m, \sigma^2)$ et a et b deux réels, alors aX + b suit la loi gaussienne $\mathcal{N}(am + b, a^2\sigma^2)$.

Soient deux variables aléatoires indépendantes X et Y avec X de loi $\mathcal{N}(m_1, \sigma_1^2)$ et Y de loi $\mathcal{N}(m_2, \sigma_2^2)$. La variable aléatoire X + Y suit alors la loi gaussienne $\mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$.

Plus généralement, toute combinaison linéaire de variables aléatoires gaussiennes indépendantes suit une loi gaussienne.