TD 11 - Points fixes

Exercice 1. *McCarthy*

Soit c∈ **Com** la commande **IMP** suivante :

if
$$(101 \le X)$$
 then $(X := X - 10; B := B - 1;)$ else $(X := X + 11; B := B + 1;)$.

Soit $\omega \in \mathbf{Com}$ la commande : **while** $(1 \leq \mathbb{B})$ **do** \mathbb{C} .

Soit σ :**Loc** \rightarrow **N** un état tel que $\sigma(B) = 1$ et $\sigma(X) = n$ et soit σ' l'état (s'il existe) tel que $\langle \omega, \sigma \rangle \rightarrow \sigma'$.

- **1.** Dans le cas où n = 101, donner la dérivation de $\langle \omega, \sigma \rangle \to \sigma'$ (et déterminer σ').
- **2.** Donner, en fonction de n, la suite des états $(\sigma_i)_{i < m}$ définie par :

$$\sigma_0 = \sigma$$
, $\sigma_m = \sigma'$, $\forall i < m, \ \sigma_i(B) > 0$, et $\forall i < m, \ \langle c, \sigma_i \rangle \to \sigma_{i+1}$

Soit (E, \leq) et un ensemble partiellement ordonné (ou *ordre partiel* ou *poset*).

- ightharpoonup Une fonction $f: E \to E$ est dite **monotone** si $\forall x, y \in E, x \leq y \implies f(x) \leq f(y)$.
- \triangleright Un **point fixe** de f est un élement $a \in E$ tel que f(a) = a.
- ightharpoonup Un **pré-point fixe** (resp. **post-point fixe**) d'une fonction $f: E \to E$ est un élément $x \in E$, tel que $f(x) \le x$ (resp. $f(x) \ge x$).
- \triangleright Pour une partie $X \subseteq E$, on note $\bigvee X$ (resp. $\bigwedge X$) la borne supérieure (resp. la borne inférieure) si elle existe. On note $a \lor b = \bigvee \{a,b\}$ (resp. $a \land b = \bigwedge \{a,b\}$).
- \triangleright (E, \leq) est un **treillis** si $\forall x, y \in E, \exists z, z' \in E, z = x \lor y$ et $z' = x \land y$.
- $\triangleright (E, \leq)$ est un **treillis borné** si c'est un treillis qui possède un minimum et un maximum.

Exercice 2. Knaster-Tarski

- **1.** On suppose que $\forall x,y \in E, \exists z \in E, z = x \lor y$. Pour une partie $X \subseteq E$ quelconque, que peut-on dire de $\bigvee X$?
- **2.** Montrer qu'un ordre partiel (E, \leq) est un treillis borné ssi tout partie finie de E a une borne supérieure et une borne inférieure.
- **3.** Montrer que si toute partie d'un ordre partiel E a une borne supérieure alors toute partie de E a une borne inférieure.
- ▷ Un treillis complet est un treillis dont toute partie a une borne supérieure (et donc une borne inférieure par la question précédente).

On suppose que (E, \leq) est un treillis complet. On note \bot le minimum de E et \top son maximum. Soit $f: E \to E$ une fonction monotone et soit P_f l'ensemble des points fixes de f.

- **4.** Montrer que la borne inférieure de l'ensemble X des pré-points fixes de f est le plus petit point fixe de f.
- **5.** Vérifier que $P_f \neq \emptyset$ et montrer que (P_f, \leq) est un treillis complet.
- ightharpoonup Une **chaine** dans E est une partie $X\subseteq E$ totalement ordonnée pour la restriction de l'ordre $\leq (\forall x,y\in E,x\leq y\vee y\leq x).$
- $\triangleright (E, \leq)$ est un **ordre partiel complet** si toute chaine X a une borne supérieure $\bigvee X$.
- \triangleright (E, \leq) est un ω -cpo si c'est un ordre partiel complet pointé, *i.e.*, avec un minimum \perp_E .

Soient (D, \leq_D) et (E, \leq_E) deux ω -cpo, et $f: D \to E$.

 \triangleright f est **continue** si elle commute avec les sups : pour toute chaine X dans D, $f(\bigvee X) = \bigvee (f(X))$ (où $f(X) = \{f(x), x \in X\}$).

Exercice 3.

Points fixes dans les ω -cpos

Dans un ω -cpo E:

- 1. Montrer que toute fonction continue est monotone.
- 2. Donner un exemple de fonction monotone mais pas continue.
- 3. Soit X un ensemble. Construire un ω -cpo X_{\perp} contenant X et tel que pour toute fonction partielle $f:X\to D$ vers un ordre partiel D il existe une unique fonction continue $h:X_{\perp}\to D$ qui étend f.

Soit $f: E \to E$ une fonction continue.

- **4.** Vérifier que pour tout $x \in E$, post-point fixe pour f, $X_x \equiv \{f^n(x) \mid n \in \mathbb{N}\}$ est une chaine de D. Que peut-on dire de $\bigvee X_x$?
- **5.** En déduire que f admet un plus petit point fixe.

Exercice 4.

1. Soit D et E deux ω -cpos. Montrer que l'ensemble $[D \to E]$ des fonctions continues entre D et E est un ω -cpo.

Soit la fonctionnelle $\tau: (\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N})$ telle que $\forall f: \mathbb{N} \to \mathbb{N}$

$$\tau(f): \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ x & \mapsto & \begin{cases} x-10 & \text{si } x > 100 \\ f^2(x+11) & \text{sinon.} \end{array} \right.$$

Considérons les extensions continues des fonctions sur $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ (*cf* question 3, Exercice 3).

2

- **2.** Vérifier que τ est continue sur $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$.
- **3.** En déduire que τ a un plus petit point fixe.