Inferencia Estadística: Tarea 2

Estadísticas y distribuciones muestrales

Fecha de entrega: 19 de marzo

- 1. (2 puntos) Sea X una variable aleatoria con distribución $t_{(n)}$.
 - (a) Mostrar que la distribución de X, se puede obtener cuando se asume que $X|\lambda \sim N(0, \lambda^{-1})$ con $\lambda \sim Ga(n/2, n/2)$. (Hint: $f(x) = \int f(x \mid \lambda) f(\lambda) d\lambda$).
 - (b) Con el resultado del inciso anterior, encuentre la media y varianza de X. (Hint: Utilizar la propiedad de torre de la esperanza condicional, esto es, $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X \mid \lambda))$.)
 - (c) Demuestre que X^2 tiene una distribución $F_{(1,n)}$.
 - (d) Utilizando la fórmula de Stirling, demuestre que

$$\lim_{n \to \infty} f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

 $\stackrel{.}{\iota}$ Qué puedes decir de la convergencia de X cuando los grados de libertad tienden a infinito?

- 2. (1 punto) Sea X una variable aleatoria con distribución $F_{(m,n)}$
 - (a) Demuestre que 1/X tiene distribución $F_{(n,m)}$.
 - (b) Demuestre que W=(m/n)X/[1+(m/n)X] tiene distribución Be(m/2,n/2).
 - (c) Utilizando el inciso anterior, encuentre la media y varianza de X. (Hint: Encuentre los primeros dos momentos de mX/n = W/(1-W) = g(W) como $\mathbb{E}(g(W)) = \int_0^1 g(w)f(w)dw$.).
- 3. (1 punto) La distribución Pareto, es una distribución de probabilidad continua nombrada a partir del economista italiano Vilfredo Pareto, el cual introdujo un principio matemático conocido como la regla 80/20 para medir la desigualdad de la distribución de la riqueza. La función de densidad está dada por:

$$f(x \mid \theta) = \frac{\theta \alpha^{\theta}}{r^{\theta+1}}, \quad 0 < \alpha \le x < \infty, \quad 0 < \theta < \infty$$

donde α es un parámetro de escala y θ es un parámetro de forma. Exhiba las estadísticas suficientes para α y θ .

- 4. (1 punto) Sea X_1, \ldots, X_n una muestra aleatoria de la población con distribución uniforme $U(\theta, \theta + 1)$. Demuestre que $S = (Y_1, Y_n)$, donde $Y_1 = \min\{X_i\}$ y $Y_n = \max\{X_i\}$ es una estadística suficiente minimal pero no es completa.
- 5. (1 punto) Sea X_1, \ldots, X_n una muestra aleatoria de la población cuya función de densidad es

$$f(x \mid \theta) = \frac{\theta^2}{\theta + 1}(x + 1) \exp(-\theta x), \quad 0 < x < \infty, \quad 0 < \theta < \infty.$$

Obtenga una estadística suficiente minimal y completa.

- 6. (1 punto) Considere el caso de una distribución $N(\theta, \theta^2)$ de la cual se observa una muestra aleatoria de tamaño n, siendo θ el parámetro desconocido.
 - (a) Muestre que se está frente a un caso de una familia exponencial en el que la dimensión de la estadística suficiente minimal T, es 2; siendo la dimensión original igual a 1.
 - (b) Demuestra que T no es completa. (Hint: Observe las distribuciones de las componentes de T y note por ejemplo que $\mathbb{E}(\bar{X}^2) = \frac{\theta^2(n+1)}{n}$.)
- 7. (1 punto) Sea X_1, \ldots, X_n una muestra aleatoria de la distribución gamma de parámetros (α, β) , esto es, con densidad

$$f(x \mid \alpha, \beta) = \frac{\beta^{\alpha} x^{\alpha - 1} \exp(-\beta x)}{\Gamma(\alpha)}$$

- (a) Encuentre una estadística suficiente para β cuando α se asume conocida.
- (b) Encuentra una estadística suficiente para α cuando β se asume conocida.
- (c) Encuentra una estadística conjuntamente suficiente para α y β .
- 8. (1 punto) Sea X_1, \ldots, X_n una muestra aleatoria de la distribución beta de parámetros (α, β) , esto es, con densidad

$$f(x \mid \alpha, \beta) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}.$$

Encuentre una estadística suficiente y minimal para (α, β) .

9. (1 punto) Sea X_1,\ldots,X_n una muestra aleatoria con función de densidad común dada por

$$f(x \mid \theta) = \frac{\theta^2}{\theta + 1}(x+1)\exp(-\theta x), \quad x, \theta > 0.$$

- (a) Demuestra que la densidad pertenece a la familia exponencial.
- (b) Obtenga una estadística suficiente, minimal y completa.