Bayesian Time Series Methods: Introductory

Computer Tutorial 3: Fat Data Regression Methods

Exercise 1: BMA in Cross Country Growth Regressions Rule of Probability

• Bayesian model averaging (BMA) is motivated from the laws of probability. From the rules of probability, we obtain

$$p(\beta | y) = \sum_{r=1}^{R} p(\beta_r | y, M_r) p(M_r | y),$$

- which implies that the posterior for β is the average of the posterior in each individual model with weights proportional to $p(M_r | y)$.
- In order to have a solution, we need to derive the posterior distribution for $p(\beta_r \mid y, M_r)$ and the posterior distribution for the model $p(M_r \mid y)$.

Exercise 1: BMA in Cross Country Growth Regressions Model Setup

• How BMA is used in regression models with fat data? Let's first write the model space as

$$y = \alpha i_N + X_r \beta_r + \varepsilon$$
.

- where ι_N is a $N \times 1$ vector of ones, X_r is a $N \times k_r$ matrix, r = 1, ..., R denotes different models, and ε is assumed to be $N(0_N, h^{-1}I_T)$.
- The data includes N = 72 countries and k 1 = 41 explanatory variables and average per capita GDP growth being the dependent variable.
- We have $2^{k-1} = 2^{41}$ possible choices for X_r and for total number of models.

Exercise 1: BMA in Cross Country Growth Regressions The Marginal Likelihood

```
% Making the matrix for data
y=rawdat(:,1);
xraw=rawdat(:,2:42);
bigk=size(xraw,2);
         % bigk is the number of potential explanatory variables
         % subtract mean from all regressors as in FLS
mxraw=mean(xraw);
sdxraw=std(xraw);
for i=1:bigk
  xraw(:,i)=(xraw(:,i) - mxraw(1,i))/sdxraw(1,i);
end
```

Exercise 1: BMA in Cross Country Growth Regressions Priors

• The *g*-prior is a special case of the natural conjugate prior, as emphasized by Koop et al. (2007). A common prior set by Fernandez et al. (2001) is

$$p(h) \propto 1/h$$
,

• for the intercept

$$p(\alpha) \propto 1$$
.

• and for the regression coefficients

$$\beta_r \mid h \sim N(\underline{\beta}_r, h^{-1}\underline{V}_r).$$

The prior shrinks coefficients towards zero

$$\underline{\beta}_r = 0_{k_r},$$

and

$$\underline{V}_r = [g_r X_r' X_r]^{-1}.$$

Exercise 1: BMA in Cross Country Growth Regressions Posteriors

• We obtain the posterior for β_r as follows

$$\overline{\beta}_r = \overline{V}_r X_r' y,$$

for the covariance matrix

$$\operatorname{var}(\beta_r \mid y, M_r) = \frac{\overline{v}\overline{s}_r^2}{\overline{v} - 2} \overline{V}_r,$$

where

$$\overline{v} = N$$
,

$$\overline{V_r} = \left[(1 + g_r) X_r' X_r \right]^{-1},$$

$$\bar{s}_r^2 = \frac{\frac{1}{g_r+1} y' P_{X_r} y + \frac{g_r}{g_r+1} (y - \bar{y} \iota_N)' (y - \bar{y} \iota_N)}{\bar{v}},$$

and

$$P_{X_r} = I_N - X_r (X_r' X_r)^{-1} X_r'.$$

Exercise 1: BMA in Cross Country Growth Regressions The Marginal Likelihood

• The marginal likelihood is

$$p(y|M_r) \propto \left(\frac{g_r}{g_r+1}\right)^{\frac{k_r}{2}} \left[\frac{1}{g_r+1} y' P_{X_r} y + \frac{g_r}{g_r+1} (y - \bar{y} \iota_N)' (y - \bar{y} \iota_N)\right]^{-\frac{N-1}{2}},$$
and $p(M_r|y) = cp(y|M_r)p(M_r).$

Exercise 1: BMA in Cross Country Growth Regressions
Priors for *g*

• Use g = 1/N if $N > K^2$ or $g = 1/K^2$ if $N \le K^2$

```
% Specifying g-prior
if n<=(bigk^2)
g0=1/(bigk^2);
else
g0=1/n;
end
```

Exercise 1: BMA in Cross Country Growth Regressions Posteriors

% calculating posterior properties of coefficients means

```
Q1inv = (1+g0)*xold'*xold;

Q0inv=g0*xold'*xold;

Q1=inv(Q1inv);

b1= Q1*xold'*y;

vs2 = (y-xold*b1)'*(y-xold*b1) + b1'*Q0inv*b1;

bcov = (vs2/(n-2))*Q1;
```

Exercise 1: BMA in Cross Country Growth Regressions Computations MC³

- Computations can be carried out using Markov chain Monte Carlo model compositions (MC³) algorithm.
- Use draws and burn-in replications 110,000 and 10,000, respectively.
- Are results sensitive to the number of draws?
- How to select values of *g*?

Exercise 2: Stochastic Search Variable Selection (SSVS)

• Let's write the linear regression model as

$$y_i = \beta_0 + \sum_{j=1}^K x_{ji} \beta_j + \varepsilon_i, \ \varepsilon_i \sim_{i.i.d.} N(0, \sigma^2).$$

- where y is $N \times 1$ vector and X is a $N \times K$ matrix of explanatory variables, and ε is a $N \times 1$ vector of errors.
- To extract information relevant to variable selection, above equation can be considered as part of a larger hierarchical model.

> Exercise 2: SSVS

- Each component of β is modelled as having come from a mixture of two normal distributions with different variances.
- For each coefficient β_i with j = 1, ..., K, the prior is

$$\beta_j \mid \gamma_j \sim (1 - \gamma_j) N(0, \tau_{0j}^2) + \gamma_j N(0, c_j^2 \tau_{1j}^2),$$

- c_i and τ_i are known hyperparameters.
- $\tau_{0i}^2 = \text{small}$.
- $c_i^2 \tau_{1i}^2 = \text{large}.$
- $P(\gamma_j = 1) = p_j \text{ or } P(\gamma_j = 0) = 1 p_j.$
- If $\gamma_i = 0$, the variable x_i can be excluded from the model.
- If $\gamma_i = 1$, the variable x_i can be retained in the model.

> Exercise 2: SSVS

Semi-automatic Choice of Small and Large Prior Variances

• Use OLS

$$b = (X'X)^{-1}X'y,$$

 $s^2 = e'e/(n-k),$
 $var(b|X) = \sigma^2(X'X)^{-1}.$

%Make the semi-automatic choices of "small" and "large" prior variances %This uses OLS so will not work if bigk>nobs

```
xtxinv = inv(xmat'*xmat);
b_ols = xtxinv*xmat'*y;
s2_ols = (y-xmat*b_ols)'*(y-xmat*b_ols)/(nobs - bigk-1);
b_cov = s2_ols*xtxinv;
b_sd = sqrt(diag(b_cov));
```

Exercise 2: SSVS

Prior Hyperparameters

• With $\beta_0 \sim N(0, \underline{V})$, where $\underline{V} = DD$, and $D = diag(h_1, ..., h_K)$.

$$h_j = \begin{cases} \tau_{0j}, & \text{if } \gamma_j = 0, \\ \tau_{1j}, & \text{if } \gamma_j = 1. \end{cases}$$

• Set $\tau_{0j} = c_1 \hat{\sigma}_{\beta}$ and $\tau_{1j} = c_2 \hat{\sigma}_{\beta}$, where $c_1 < c_2$, such as % prior hyperparameters

```
V0= 10^2;

c1 = 0.1;

c2=10;

tau1 = c1*b_sd(2:bigk+1,1);

tau2 = c2*b_sd(2:bigk+1,1);
```

And for the error precision h ~ G(s⁻², v).
 %prior hyperparameters for error precision
 s_bar_2 = 0.01;
 prior_dof = 0;
 post_dof = prior_dof + nobs;

Exercise 3: The Least Absolute Shrinkage and Selection Operator (LASSO)

• The purpose of LASSO is to minimize

$$(y - X\beta)'(y - X\beta) + \lambda \sum_{j=1}^{k} |\beta_j|,$$

- where λ is a shrinkage parameter.
- Laplace prior for β that is a mixture of Normal distributions with different variances can be written as

$$\beta_j \sim N(0, h^{-1}\tau_j^2),$$

$$\tau_j^2 \sim Exp\left(\frac{\lambda^2}{2}\right).$$

• We can obtain posterior conditionals for $p(\beta | y, h, \tau)$ and $p(h | y, \beta, \tau)$ for $\tau = (\tau_1, \dots, \tau_K)'$ using standard results for Normal linear regression.

> Exercise 3: MCMC Algorithm

Obtain the LASSO prior covariance as

$$\underline{V} = h^{-1}DD,$$

- where $D = diag(\tau_1, \ldots, \tau_K)'$. We get
- With $\beta \mid y, h, \tau \sim N(\overline{\beta}, \overline{V})$.

$$\overline{\beta} = (XX + (DD)^{-1})^{-1}XY,$$

$$\overline{V} = h^{-1} (X'X + (DD)^{-1})^{-1}.$$

• And $h \mid y, \beta, \tau \sim G(\overline{s}^{-2}, \overline{v})$.

$$\bar{v} = N + K \text{ and } \bar{s}^2 = \frac{(y - X\beta)'(y - X\beta) + \beta'(DD)^{-1}\beta}{\bar{v}}.$$

Exercise 3: MCMC Algorithm Drawing β

% Update beta from Normal

```
A = inv(x'*x + inv(V_L));

post_mean_beta = A*x'*y;

post_var_beta = sigma2*A;

beta = Draw_Normal(post_mean_beta,post_var_beta);
```

Exercise 3: MCMC Algorithm Priors for τ , λ and h

$$1/\tau_j^2 \mid y, \beta, h, \lambda \sim IG(\overline{c}_j, \overline{d}_j)$$

• with $\overline{d} = \lambda^2$,

$$\overline{c}_j = \sqrt{\frac{\lambda^2}{h\beta_j^2}}.$$

And

$$\lambda^{2} \sim G(\underline{\mu}_{\lambda}, \underline{v}_{\lambda}).$$

$$\overline{v}_{\lambda} = \underline{v}_{\lambda} + 2K,$$

$$\overline{\lambda} = \frac{\underline{v}_{\lambda} + 2K}{2\sum_{i=1}^{K} \tau_{j}^{2} + \frac{\underline{v}_{\lambda}}{\mu_{i}}}.$$

• We may assume a noninformative prior for h as

$$p(h) \propto 1/h$$
.

Exercise 3: MCMC Algorithm Drawing τ and λ

```
% Update tau2_j from Inverse Gaussian
  for j = 1:p
    a1 = (lambda2*sigma2)./(beta(j,1)^2);
    a2 = lambda2;
    tau2_inverse = Draw_IG(sqrt(a1),a2);
%note: often need to add a very small constant to avoid matrix singularity
    tau2(j,1) = 1/tau2\_inverse + 1e-15;
  end
 % Update lambda2 from Gamma
  b1 = p + r;
  b2 = 0.5*sum(tau2) + delta;
  lambda2=gamrnd(b1,1/b2);
```

Exercise 3: MCMC Algorithm Drawing σ^2

%Update sigma2 from Inverse Gamma

```
c1 = (T-1+p)/2;

PSI = (y-x*beta)'*(y-x*beta);

c2 = 0.5*PSI + 0.5*(beta'/V_L)*beta;

sigma2 = Draw_iGamma(c1,c2);
```

> References

- Fernandez, C. Ley, E. and Steel, M. F. J. (2001), Model uncertainty in cross country growth regressions, Journal of Applied Econometrics, 16, 563–576.
- George, E. and McCulloch, R. (1993), Variable selection via Gibbs sampling, Journal of the American Statistical Association, 88, 881–889.
- George, E., Sun, D. and Ni, S. (2008). Bayesian stochastic search for VAR model restrictions, Journal of Econometrics, 142, 553–580.
- Koop, G. (2003), Bayesian econometrics, Wiley.
- Koop, G., Poirier, D. and Tobias, J. (2007), Bayesian econometric methods. Cambridge: Cambridge University Press.