stock-price-movement-pred

GuangtingZhou

Required Libraries

```
library(fmlr)
library(lubridate)
library(quantmod)
library(TTR) # for various indicators
library(randomForest)
library(ROCR)
library(caret)
library(MLmetrics) # for logloss
```

Loading datasets

```
mydir = c("201804", '201805','201806')
################### load data
myfiles <- list.files(path=mydir, pattern=".zip", full.names=TRUE)
# myfiles</pre>
```

Data Preprocessing

```
1 d3 <- list()
for (i in myfiles) {1 d3[i] <- read algoseek equity tag(i, whichData</pre>
= 'NVDA.csv')}
# function to transfer loaded data into the fmlr-friendly format
redef <- function(dat){</pre>
  dat <- subset(dat, EventType %in% c("TRADE", "TRADE NB"))</pre>
  dat <- subset(dat, lubridate::hour(dat$Timestamp)*60+lubridate::mi</pre>
nute(dat$Timestamp) >= 9*60+30)
  dat <- subset(dat, lubridate::hour(dat$Timestamp)*60+lubridate::mi</pre>
nute(dat$Timestamp) <= 16*60)</pre>
  name <- names(dat)</pre>
  name[name=="Timestamp"] <- "tStamp"</pre>
  name[name=="Quantity"] <- "Size"</pre>
  names(dat) <- name</pre>
  dat$tStamp <- as.POSIXct( paste(dat$Date, dat$tStamp), format="%Y-</pre>
%m-%d %H:%M:%OS", tz="EST")
  return(dat)
}
# transfer the data
lr d3 <- list()</pre>
for (i in 1:length(1 d3)) {lr d3[[i]] <- redef(1 d3[[i]])}</pre>
```

Setting Bars

```
tick bar <- list()
for (i in 1:length(lr d3)) {
  tick bar[[i]] <- bar tick(lr d3[[i]], nTic=1000)</pre>
}
tick df <- data.frame()</pre>
for (i in 1:length(tick bar)) {
  tick bar[[i]] <- as.data.frame(tick bar[[i]])</pre>
  tick df <- rbind(tick df, tick bar[[i]])</pre>
}
# write tick data in file
write.csv(tick df, file = 'tick df.csv')
unit bar <- list()</pre>
for (i in 1:length(lr d3)) {
  unit_bar[[i]] <- bar_unit(lr_d3[[i]], unit = 1000000)
}
unit df <- data.frame()</pre>
for (i in 1:length(unit bar)) {
  unit bar[[i]] <- as.data.frame(unit bar[[i]])</pre>
  unit df <- rbind(unit_df, unit_bar[[i]])</pre>
}
write.csv(unit df, file = 'unit df.csv')
```

NVDA

Adding indicators

```
ADX=ADX(dat)[,4],
aroon=aroon(HL(dat))[,3],
ATR=ATR(dat)[,2],
BBands(HLC(dat)),
CCI=CCI(HLC(dat)),
chaikinAD=chaikinAD(HLC(dat), dat$Volume),
chaikinVolatility=chaikinVolatility(dat),
CLV=CLV(dat),
CMF=CMF(HLC(dat), dat$Volume),
CMOClose=CMO(dat$Close),
CMOVol=CMO(dat$Volume),
DonchianChannel(HL(dat)),
DPOClose=DPO(dat$Close),
DPOVol=DPO(dat$Volume),
DVI(dat$Close),
EMV=EMV(HLC(dat), dat$Volume)[,1],
GMMA(dat$Close),
GMMA(dat$Volume),
KST=KST(dat$Close)[,1],
MACDClose=MACD(dat$Close)[,1],
MACDVol=MACD(dat$Volume)[,1],
MFI=MFI(HLC(dat), dat$Volume),
OBV=OBV(dat$Close, dat$Volume),
PBands(dat$Close),
ROCClose=ROC(dat$Close),
ROCVol=ROC(dat$Volume),
momentum=momentum(dat$Close),
RSI=RSI(dat$Close),
runPerRankClose=runPercentRank(dat$Close),
runPerRankVolume=runPercentRank(dat$Volume),
SAR=SAR(HL(dat)),
VWAP=VWAP(dat$Close, volume=dat$Volume),
SNR=SNR(HLC(dat), n=30),
stoch(HLC(dat)),
SMI=SMI(HLC(dat))[,1],
TDI=TDI(dat$Close)[,1],
TRIX=TRIX(dat$Close)[,1],
ultimateOsc=ultimateOscillator(HLC(dat)),
VHF=VHF(dat$Close),
vola=volatility(dat),
williamsAD=williamsAD(HLC(dat)),
WPR=WPR(HLC(dat))
```

```
dim(dat_used)
```

```
## [1] 7423 80
```

CUSUM to Access Features and Labels

```
## plot for visualization, just part of the data included
hvec <- na.locf(c(NA,0.5*runSD(tick_df[1:100,'C'])), fromLast = T)
i_CUSUM <- fmlr::istar_CUSUM(tick_df[1:100,'C'], h=hvec)
n_Event <- length(i_CUSUM)

plot(tick_df[1:100,'C'], main="Sample features by the CUSUM filter")
abline(v=i_CUSUM+1, lty = 2)</pre>
```

Sample features by the CUSUM filter


```
##
## 0 1
## 306 4067
```

Combine Labels, Features and Indicators

```
######### Combine labels, features and indicators
fMat0 <- dat_used[out0$t1Fea,]
allSet <- data.frame(Y=as.factor(out0$label),fMat0, t1Fea=out0$t1Fea
, tLabel=out0$tLabel)

# exclude NA at the begining of the indicators
idx_NA <- apply(allSet,1,function(x){sum(is.na(x))>0})

# train-test-split
allSet <- subset(allSet, !idx_NA)
nx <- nrow(allSet)
trainSet <- allSet[1:floor(nx*2/3),]
testSet <- allSet[(floor(nx*2/3)+1):nx,]
dim(allSet)</pre>
```

```
## [1] 4166 83
```

```
dim(trainSet)
```

```
dim(testSet)
```

SMOTE

[1] 2777 83

[1] 1389 83

```
## 1
## 19.41912
```

```
if(ratio > 1) perc <- list("0"=ratio, "1"=1) else perc <- list("0"=1
, "1"= (1/ratio))

trainSet_balanced <- UBL::SmoteClassif(Y ~ . - Close - t1Fea - tLabe
l, dat = trainSet, C.perc = perc)
table(trainSet_balanced$Y)</pre>
```

```
##
## 0 1
## 2640 2641
```

Model Fitting and Feature Importance Analysis

Feature Importance

```
logistic <- glm(Y~., family = binomial(link='logit'), data=trainSet)</pre>
```

```
## Warning: glm.fit: algorithm did not converge
```

```
d
prob test <- predict(logistic, newdata = testSet, type='response')</pre>
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
if (type == :
## prediction from a rank-deficient fit may be misleading
test.res <- ifelse(prob test>=0.5, 1, 0)
table(testSet$Y, test.res)
##
     test.res
##
          0
                1
##
     0 19
              129
     1 2 1239
##
pred <- prediction(prob test, testSet$Y)</pre>
tb test <- table(testSet$Y)</pre>
acc perf <- performance(pred, measure = "acc")</pre>
acc vec <- acc perf@y.values[[1]]</pre>
acc <- acc vec[max(which(acc perf@x.values[[1]] >= 0.5))]
acc
## [1] 0.9056875
lucky score <- fmlr::acc lucky(train class = table(trainSet$Y),</pre>
                                 test class = tb test,
                                 my acc = acc)
lucky score
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurre

```
## $my accuracy
## [1] 0.9056875
##
## $p random guess
## [1] 0
##
## $p educated guess
## [1] 0
##
## $mean random guess
## [1] 0.5
##
## $mean_educated_guess
## [1] 0.8552268
##
## $acc majority guess
## [1] 0.8934485
```

summary(logistic)

```
##
## Call:
## glm(formula = Y ~ ., family = binomial(link = "logit"), data = tr
ainSet)
##
## Deviance Residuals:
##
         Min
                      10
                              Median
                                             30
                                                        Max
## -1.090e-04 2.100e-08 2.100e-08 2.100e-08 1.168e-04
##
## Coefficients: (5 not defined because of singularities)
##
                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    -4.660e+02 1.058e+06
                                           0.000
                                                    1.000
## High
                     2.991e+01 9.039e+04
                                           0.000
                                                    1.000
## Low
                                           0.001
                     3.363e+01 6.637e+04
                                                    1.000
                    -3.487e+01 1.037e+05 0.000
## Open
                                                    1.000
                    -2.131e+02 6.168e+05 0.000
## Close
                                                    1.000
## Volume
                    -1.752e+02 7.300e+05
                                           0.000
                                                    1.000
## ADX
                    -9.188e-01 1.464e+03 -0.001
                                                    0.999
                    -8.774e-02 2.696e+02 0.000
## aroon
                                                    1.000
## ATR
                    -4.242e+00 1.301e+05 0.000
                                                    1.000
```

##	dn	-3.645e+00	2.241e+04	0.000	1.000
##	mavg	-2.005e+02	4.924e+05	0.000	1.000
##	up	NA	NA	NA	NA
##	pctB	-2.213e+01	3.069e+05	0.000	1.000
##	CCI	2.016e-03	8.248e+02	0.000	1.000
##	chaikinAD	-2.991e+00	1.868e+04	0.000	1.000
##	chaikinVolatility	8.029e+00	5.957e+04	0.000	1.000
##	CLV	1.177e+01	3.453e+04	0.000	1.000
##	CMF	-6.180e-01	9.307e+04	0.000	1.000
##	CMOClose	-1.207e-01	8.200e+02	0.000	1.000
##	CMOVol	-7.132e-02	7.117e+02	0.000	1.000
##	high	7.476e+00	3.555e+04	0.000	1.000
##	mid	-6.156e+00	7.594e+04	0.000	1.000
##	low	NA	NA	NA	NA
##	DPOClose	7.531e+00	1.693e+04	0.000	1.000
##	DPOVol	1.674e+02	2.114e+05	0.001	0.999
##	dvi.mag	1.796e+01	8.833e+04	0.000	1.000
##	dvi.str	-1.648e+01	4.507e+04	0.000	1.000
##	dvi	NA	NA	NA	NA
##	EMV	-4.384e-05	4.148e-01	0.000	1.000
##	short.lag.3	1.589e+03	6.315e+06	0.000	1.000
##	short.lag.5	-1.068e+04	4.007e+07	0.000	1.000
##	short.lag.8	1.204e+05	3.991e+08	0.000	1.000
##	short.lag.10	-3.977e+05	1.272e+09	0.000	1.000
##	short.lag.12	4.972e+05	1.579e+09	0.000	1.000
##	short.lag.15	-2.619e+05	8.462e+08	0.000	1.000
##	long.lag.30	7.030e+05	2.975e+09	0.000	1.000
##	long.lag.35	-1.990e+06	9.490e+09	0.000	1.000
##	long.lag.40	2.593e+06	1.393e+10	0.000	1.000
##	long.lag.45	-1.774e+06	1.072e+10	0.000	1.000
##	long.lag.50	5.489e+05	3.708e+09	0.000	1.000
	long.lag.60	-2.845e+04	2.365e+08	0.000	1.000
##	short.lag.3.1	3.157e+03	3.275e+07	0.000	1.000
	short.lag.5.1	-6.443e+04	3.950e+08	0.000	1.000
	short.lag.8.1	1.628e+06	6.274e+09	0.000	1.000
	short.lag.10.1	-7.841e+06	2.468e+10	0.000	1.000
	short.lag.12.1	1.342e+07	3.632e+10	0.000	1.000
	short.lag.15.1	-1.042e+07	2.394e+10	0.000	1.000
##	long.lag.30.1	9.981e+07	1.571e+11	0.001	0.999
##	long.lag.35.1	-3.915e+08	5.742e+11	-0.001	0.999
##	long.lag.40.1	6.880e+08	9.482e+11	0.001	0.999
##	long.lag.45.1	-6.212e+08	8.087e+11	-0.001	0.999

```
## long.lag.50.1
                       2.487e+08
                                  3.070e+11
                                               0.001
                                                        0.999
## long.lag.60.1
                      -2.054e+07
                                  2.302e+10
                                              -0.001
                                                        0.999
## KST
                      6.447e+00
                                  2.415e+04
                                               0.000
                                                        1.000
                       1.689e+02
## MACDClose
                                  2.125e+06
                                               0.000
                                                        1.000
## MACDVol
                      -1.396e+00
                                  5.307e+03
                                               0.000
                                                        1.000
## MFI
                      -3.172e-01
                                  8.887e+02
                                               0.000
                                                        1.000
## OBV
                       4.520e+00
                                  8.896e+03
                                               0.001
                                                         1.000
## dn.1
                       5.741e-01
                                  2.148e+04
                                               0.000
                                                         1.000
## center
                       1.337e+02
                                  5.256e+05
                                               0.000
                                                         1.000
## up.1
                              NA
                                          NA
                                                  NA
                                                            NA
## ROCClose
                      -1.690e+03
                                  6.369e+07
                                               0.000
                                                         1.000
## ROCVol
                                  2.967e+04
                                               0.000
                                                        1.000
                       9.643e-01
## momentum
                       4.161e+01
                                  2.754e+05
                                               0.000
                                                        1.000
## RSI
                       3.585e-01
                                  3.636e+03
                                               0.000
                                                        1.000
## runPerRankClose
                      -3.344e+01
                                  1.323e+05
                                               0.000
                                                        1.000
## runPerRankVolume
                                  3.689e+04
                                               0.000
                                                        1.000
                       6.660e+00
## sar
                                               0.000
                       2.304e+00
                                  9.771e+03
                                                        1.000
## VWAP
                       2.179e+01
                                  8.972e+04
                                               0.000
                                                        1.000
## SNR
                       8.577e-01
                                  7.036e+03
                                               0.000
                                                        1.000
## fastK
                       7.623e+01
                                  1.615e+05
                                               0.000
                                                        1.000
## fastD
                                               0.000
                      -6.485e+01
                                  2.843e+05
                                                        1.000
## slowD
                      -3.948e+00
                                  2.673e+05
                                               0.000
                                                        1.000
## SMI
                       3.700e-01
                                  9.265e+02
                                               0.000
                                                        1.000
## TDI
                                  5.462e+02
                                               0.000
                      -1.808e-02
                                                        1.000
## TRIX
                      -8.118e+03
                                  1.291e+07
                                              -0.001
                                                        0.999
## ultimateOsc
                                               0.000
                       1.584e-01
                                  1.870e+03
                                                        1.000
## VHF
                       1.867e+01
                                  1.768e+05
                                               0.000
                                                        1.000
## vola
                      -1.568e+02
                                  8.486e+05
                                               0.000
                                                        1.000
## williamsAD
                      -2.101e+00
                                  1.789e+03
                                              -0.001
                                                        0.999
## WPR
                              NA
                                          NA
                                                  NA
                                                            NA
## t1Fea
                       5.921e-01
                                  1.308e+02
                                               0.005
                                                        0.996
## tLabel
                      -5.873e-01
                                  1.367e+02
                                              -0.004
                                                        0.997
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1.0857e+03 on 2776
                                             degrees of freedom
## Residual deviance: 1.5916e-07 on 2699
                                             degrees of freedom
## AIC: 156
##
## Number of Fisher Scoring iterations: 25
```

varImp(logistic)

```
##
                            Overall
                      3.309225e-04
## High
## Low
                      5.067409e-04
## Open
                      3.362354e-04
## Close
                      3.455762e-04
## Volume
                      2.399767e-04
## ADX
                      6.277373e-04
## aroon
                      3.254997e-04
## ATR
                      3.260446e-05
## dn
                      1.626675e-04
                      4.072490e-04
## mavg
## pctB
                      7.210644e-05
## CCI
                      2.444625e-06
## chaikinAD
                      1.601068e-04
## chaikinVolatility 1.347897e-04
## CLV
                      3.408374e-04
## CMF
                      6.639887e-06
## CMOClose
                      1.471934e-04
## CMOVol
                      1.002060e-04
## high
                      2.102789e-04
## mid
                      8.106614e-05
## DPOClose
                      4.448986e-04
## DPOVol
                      7.921233e-04
## dvi.mag
                      2.033636e-04
## dvi.str
                      3.656828e-04
## EMV
                      1.056931e-04
## short.lag.3
                      2.515858e-04
## short.lag.5
                      2.665423e-04
## short.lag.8
                      3.016987e-04
## short.lag.10
                      3.125245e-04
## short.lag.12
                      3.149197e-04
## short.lag.15
                      3.095260e-04
## long.lag.30
                      2.362630e-04
## long.lag.35
                      2.097400e-04
## long.lag.40
                      1.860556e-04
## long.lag.45
                      1.655689e-04
## long.lag.50
                      1.480249e-04
## long.lag.60
                      1.202774e-04
## short.lag.3.1
                      9.639439e-05
```

```
## short.lag.5.1
                      1.631234e-04
## short.lag.8.1
                      2.595346e-04
## short.lag.10.1
                      3.177400e-04
## short.lag.12.1
                      3.694838e-04
## short.lag.15.1
                      4.351941e-04
## long.lag.30.1
                      6.353102e-04
## long.lag.35.1
                      6.818417e-04
## long.lag.40.1
                      7.256290e-04
## long.lag.45.1
                      7.681693e-04
## long.lag.50.1
                      8.100843e-04
## long.lag.60.1
                      8.923186e-04
## KST
                      2.669455e-04
## MACDClose
                      7.949669e-05
## MACDVol
                      2.630858e-04
## MFI
                      3.568721e-04
## OBV
                      5.081148e-04
## dn.1
                      2.672338e-05
## center
                      2.542857e-04
## ROCClose
                      2.653609e-05
## ROCVol
                      3.250327e-05
## momentum
                      1.510734e-04
## RSI
                      9.859506e-05
## runPerRankClose
                      2.526896e-04
## runPerRankVolume
                      1.805488e-04
## sar
                      2.358324e-04
## VWAP
                      2.428989e-04
## SNR
                      1.219082e-04
## fastK
                      4.719454e-04
## fastD
                      2.281244e-04
## slowD
                      1.476797e-05
## SMI
                      3.993673e-04
## TDI
                      3.310847e-05
## TRIX
                      6.290343e-04
## ultimateOsc
                      8.471317e-05
## VHF
                      1.055928e-04
## vola
                      1.848084e-04
## williamsAD
                      1.174451e-03
## t1Fea
                      4.526364e-03
## tLabel
                      4.295291e-03
```

```
# try random forest
# feature importance
mtry <- tuneRF(trainSet_balanced[,-1], trainSet_balanced$Y, plot=F)</pre>
```

```
mtry <- mtry[which.min(mtry[,2]),1]
mtry</pre>
```

```
## [1] 5
```

```
bag <- randomForest(Y ~ . - Close - t1Fea - tLabel, data = trainSet_
balanced, mtry = mtry, importance = TRUE, ntree = 400, SB=0)
plot(bag)
legend("topright", colnames(bag$err.rate),col=1:3,cex=0.8,lty=1:3)</pre>
```

bag

varImpPlot(bag)


```
# evaluating auc based on the test set
prob_test <- predict(bag, newdata=testSet, type="prob")
pred <- prediction(prob_test[,2], testSet$Y) # the 2nd column is whe
re the label "1" is
acc_perf <- performance(pred, measure = "acc")
acc_vec <- acc_perf@y.values[[1]]
acc <- acc_vec[max(which(acc_perf@x.values[[1]] >= 0.5))]
acc
```

```
## [1] 0.8920086
```

```
## $my accuracy
## [1] 0.8920086
##
## $p_random_guess
## [1] 0
##
## $p_educated_guess
## [1] 0
##
## $mean random guess
## [1] 0.5001353
##
## $mean_educated_guess
## [1] 0.8547437
##
## $acc_majority_guess
## [1] 0.8934485
```

PCA importance

```
# PCA importance
table(testSet$Y, prob_test[,2] >= 0.5)
```

```
##
## FALSE TRUE
## 0 1 147
## 1 3 1238
```

```
trainFea <- trainSet_balanced[, !(names(trainSet)%in%c('Y', 'Close',
't1Fea', 'tLabel'))]
pca <- prcomp(trainFea, center = TRUE, scale. = TRUE)
summary(pca)</pre>
```

```
## Importance of components:

## PC1 PC2 PC3 PC4 PC5 P

C6 PC7

## Standard deviation 5.4268 3.8078 3.1972 1.92099 1.80539 1.669

35 1.46380

## Proportion of Variance 0.3728 0.1835 0.1294 0.04671 0.04126 0.035
```

```
27 0.02712
## Cumulative Proportion 0.3728 0.5563 0.6857 0.73243 0.77369 0.808
96 0.83609
##
                              PC8
                                      PC9
                                             PC10
                                                      PC11
                                                              PC12
PC13
        PC14
## Standard deviation
                          1.33568 1.01868 0.97902 0.91696 0.88199 0.
85417 0.84952
## Proportion of Variance 0.02258 0.01314 0.01213 0.01064 0.00985 0.
00924 0.00914
## Cumulative Proportion 0.85867 0.87181 0.88394 0.89458 0.90443 0.
91366 0.92280
##
                             PC15
                                    PC16
                                            PC17
                                                     PC18
                                                            PC19
                                                                    Ρ
C20
      PC21
## Standard deviation
                         0.80058 0.7382 0.72418 0.70712 0.6651 0.65
037 0.62406
## Proportion of Variance 0.00811 0.0069 0.00664 0.00633 0.0056 0.00
535 0.00493
## Cumulative Proportion 0.93091 0.9378 0.94445 0.95078 0.9564 0.96
173 0.96666
##
                             PC22
                                     PC23
                                             PC24
                                                      PC25
                                                              PC26
PC27
       PC28
## Standard deviation 0.61139 0.59447 0.57339 0.53401 0.49139 0.
45977 0.40419
## Proportion of Variance 0.00473 0.00447 0.00416 0.00361 0.00306 0.
00268 0.00207
## Cumulative Proportion 0.97139 0.97587 0.98003 0.98364 0.98669 0.
98937 0.99144
##
                             PC29
                                     PC30
                                              PC31
                                                      PC32
                                                              PC33
PC34
       PC35
## Standard deviation 0.36953 0.36295 0.32319 0.26779 0.23732 0.
22275 0.16314
## Proportion of Variance 0.00173 0.00167 0.00132 0.00091 0.00071 0.
00063 0.00034
## Cumulative Proportion 0.99317 0.99483 0.99616 0.99706 0.99778 0.
99841 0.99874
##
                             PC36
                                     PC37
                                              PC38
                                                      PC39
                                                              PC40
PC41
       PC42
## Standard deviation
                          0.14846 0.14206 0.11604 0.10193 0.09124 0.
06909 0.06546
## Proportion of Variance 0.00028 0.00026 0.00017 0.00013 0.00011 0.
00006 0.00005
## Cumulative Proportion 0.99902 0.99928 0.99945 0.99958 0.99968 0.
```

```
99974 0.99980
##
                           PC43
                                   PC44
                                          PC45
                                                  PC46
                                                         PC47
PC48
       PC49
                        0.05898 0.05789 0.05393 0.03829 0.03321 0.
## Standard deviation
03110 0.03090
## Proportion of Variance 0.00004 0.00004 0.00004 0.00002 0.00001 0.
00001 0.00001
## Cumulative Proportion 0.99984 0.99988 0.999992 0.999994 0.999995 0.
99997 0.99998
##
                                   PC51
                                          PC52
                                                           PC54
                           PC50
                                                  PC53
PC55
## Standard deviation
                        0.02741 0.01932 0.01259 0.01158 0.009928 0
.008402
## Proportion of Variance 0.00001 0.00000 0.00000 0.00000 0.000000 0
.000000
## Cumulative Proportion 0.99999 0.99999 1.00000 1.000000 1
.000000
##
                            PC56
                                     PC57
                                             PC58
                                                      PC59
                                                              PC
60
      PC61
## Standard deviation 0.006929 0.004753 0.003864 0.003239 0.0025
61 0.001692
## Proportion of Variance 0.000000 0.000000 0.000000 0.000000
00 0.000000
## Cumulative Proportion 1.000000 1.000000 1.000000 1.000000
00 1.000000
##
                             PC62
                                       PC63
                                                PC64
                                                         PC65
PC66
## Standard deviation
                        0.0006353 0.0005528 0.0003158 0.0001879 0.
0001325
000000
## Cumulative Proportion 1.0000000 1.0000000 1.0000000 1.
000000
##
                             PC67
                                       PC68
                                                PC69
                                                         PC70
PC71
## Standard deviation
                        3.302e-05 2.447e-05 1.389e-05 6.522e-06 1.
896e-06
## Proportion of Variance 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.
000e+00
## Cumulative Proportion 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.
000e+00
##
                             PC72
                                       PC73
                                                PC74
                                                         PC75
```

```
PC76
## Standard deviation
                          5.167e-07 4.026e-07 3.897e-08 3.429e-15 1.
151e-15
## Proportion of Variance 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.
000e+00
## Cumulative Proportion 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.
000e+00
##
                               PC77
                                         PC78
                                                   PC79
## Standard deviation
                          1.075e-15 5.319e-16 3.334e-16
## Proportion of Variance 0.000e+00 0.000e+00 0.000e+00
## Cumulative Proportion 1.000e+00 1.000e+00 1.000e+00
```

```
plot(pca)
```



```
trainPCA <- data.frame(Y=trainSet_balanced$Y, pca$x)
mtry_p <- tuneRF(trainPCA[,-1], trainPCA$Y, plot = F)</pre>
```

```
mtry_p <- mtry_p[which.min(mtry_p[,2]),1] #mtry=18
mtry_p</pre>
```

```
## [1] 4
```

```
bag_pca <- randomForest(Y ~ ., data = trainPCA, mtry = mtry_p, impor
tance = TRUE, ntree = 400, SB=0)
plot(bag_pca)
legend("topright", colnames(bag$err.rate),col=1:3,cex=0.8,lty=1:3)</pre>
```

bag_pca

varImpPlot(bag_pca)


```
testFea <- testSet[, !(names(testSet)%in%c('Y', 'Close', 't1Fea', 't
Label'))]
testPCA <- data.frame(Y=testSet$Y, (scale(testFea, center= pca$cente
r, scale = pca$scale) %*% pca$rotation))
prob_test <- predict(bag_pca, newdata=testPCA, type="prob")
table(testPCA$Y, prob_test[,2] >= 0.5)
```

```
##
## TRUE
## 0 148
## 1 1241
```

```
## $my accuracy
## [1] 0.8934485
##
## $p random guess
## [1] 0
##
## $p_educated_guess
## [1] 0
##
## $mean random guess
## [1] 0.5000266
##
## $mean educated guess
## [1] 0.4999006
##
## $acc majority guess
## [1] 0.8934485
```

```
logistic <- glm(Y~., family = binomial(link='logit'), data=trainPCA)</pre>
```

```
\ensuremath{\textit{\#\#}} Warning: glm.fit: fitted probabilities numerically 0 or 1 occurre d
```

```
prob_test <- predict(logistic, newdata = testPCA, type='response')
test.res <- ifelse(prob_test>=0.5, 1, 0)
table(testPCA$Y, test.res)
```

```
## test.res
## 0 1
## 0 7 141
## 1 53 1188
```

```
pred <- prediction(prob_test, testPCA$Y)

tb_test <- table(testSet$Y)

acc_perf <- performance(pred, measure = "acc")

acc_vec <- acc_perf@y.values[[1]]

acc <- acc_vec[max(which(acc_perf@x.values[[1]] >= 0.5))]

acc
```

```
## [1] 0.8603312
```

```
## $my accuracy
## [1] 0.8603312
##
## $p_random_guess
## [1] 0
##
## $p_educated_guess
## [1] 0.189
##
## $mean random guess
## [1] 0.4999806
##
## $mean educated guess
## [1] 0.8548387
##
## $acc_majority_guess
## [1] 0.8934485
```

```
##
## Call:
## glm(formula = Y ~ ., family = binomial(link = "logit"), data = tr
ainPCA)
##
## Deviance Residuals:
##
       Min
                      Median
                                   3Q
                 1Q
                                            Max
## -2.3268
            -0.4479
                      0.0000
                               0.2223
                                         5.6728
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.906e-01
                           8.697e-02 11.390 < 2e-16 ***
## PC1
               -2.107e-01
                           5.744e-02 -3.668 0.000245 ***
## PC2
               -4.061e-02
                           9.350e-02 -0.434 0.664036
## PC3
               -1.760e-01
                           9.284e-02 -1.896 0.057954 .
## PC4
               -5.826e-02
                           3.333e-02 -1.748 0.080460
## PC5
                                       7.718 1.18e-14 ***
                3.963e-01
                           5.134e-02
## PC6
               -3.067e-01
                           8.747e-02 -3.506 0.000455 ***
## PC7
                           5.222e-02 4.663 3.11e-06 ***
                2.435e-01
## PC8
                5.235e-01
                           7.921e-02
                                     6.609 3.87e-11 ***
## PC9
               -1.303e+00
                           8.358e-02 -15.587 < 2e-16 ***
## PC10
                5.046e-01
                           2.347e-01
                                      2.150 0.031547 *
## PC11
                2.104e+00
                           1.222e-01
                                      17.224 < 2e-16 ***
## PC12
               -4.164e-01
                           1.027e-01
                                      -4.053 5.06e-05 ***
## PC13
               -8.102e-01
                           1.111e-01
                                      -7.292 3.06e-13 ***
## PC14
                1.160e+00
                           1.143e-01
                                      10.150 < 2e-16 ***
## PC15
                           1.016e-01
                1.021e-01
                                      1.005 0.314749
## PC16
               -3.185e-03
                           1.730e-01
                                      -0.018 0.985316
## PC17
                1.273e+00
                           9.673e-02 13.161 < 2e-16 ***
## PC18
                2.137e-01
                           8.841e-02
                                       2.417 0.015650 *
## PC19
               -1.674e-01
                           1.555e-01
                                      -1.076 0.281776
## PC20
                3.701e-01
                           1.084e-01
                                       3.415 0.000638 ***
## PC21
                5.330e-01
                           1.460e-01
                                       3.650 0.000262 ***
## PC22
                7.131e-01
                           9.395e-02
                                       7.591 3.18e-14 ***
## PC23
                                       4.498 6.85e-06 ***
                7.788e-01
                           1.731e-01
## PC24
                                      -2.363 0.018117 *
               -2.707e-01
                           1.145e-01
## PC25
                2.199e-01
                           1.624e-01
                                       1.354 0.175776
## PC26
               -5.311e-01
                           1.176e-01
                                      -4.515 6.32e-06 ***
## PC27
                           1.398e-01
                                        8.017 1.09e-15 ***
                1.121e+00
```

```
## PC28
               -4.965e-01
                                       -2.569 0.010208 *
                            1.933e-01
## PC29
                1.061e+00
                            1.681e-01
                                       6.312 2.76e-10 ***
## PC30
                                       -2.903 0.003694 **
               -8.088e-01
                            2.786e-01
## PC31
               -1.903e+00
                            1.862e-01 -10.223 < 2e-16 ***
## PC32
               -1.789e+00
                            2.245e-01
                                      -7.968 1.61e-15 ***
## PC33
                3.575e-01
                            2.828e-01
                                        1.264 0.206139
                            3.017e-01
## PC34
                                      4.952 7.36e-07 ***
                1.494e+00
## PC35
                1.041e+00
                            3.310e-01
                                       3.146 0.001654 **
## PC36
               -2.093e+00
                            3.988e-01
                                       -5.247 1.55e-07 ***
## PC37
                4.983e+00
                            4.083e-01
                                       12.203 < 2e-16 ***
                2.751e+00
## PC38
                            4.971e-01
                                       5.534 3.13e-08 ***
## PC39
                1.498e+00
                            5.506e-01
                                       2.721 0.006510 **
## PC40
               -9.417e-01
                            5.924e-01
                                       -1.590 0.111920
## PC41
               -3.098e+00
                            9.496e-01
                                       -3.262 0.001105 **
                6.135e+00
## PC42
                            1.016e+00
                                      6.040 1.54e-09 ***
## PC43
               -3.057e+00
                            1.721e+00
                                       -1.776 0.075689 .
## PC44
                                        9.927 < 2e-16 ***
                1.193e+01
                            1.202e+00
## PC45
               -7.297e+00
                            2.455e+00
                                       -2.973 0.002949 **
               -2.096e+01
                            2.945e+00
## PC46
                                       -7.119 1.09e-12 ***
## PC47
                3.071e+00
                            2.662e+00
                                        1.154 0.248628
## PC48
                                       -4.539 5.65e-06 ***
               -1.140e+01
                            2.511e+00
## PC49
                1.627e+01
                            2.637e+00
                                        6.171 6.80e-10 ***
## PC50
                1.116e+01
                            2.194e+00
                                        5.088 3.62e-07 ***
                                         1.164 0.244408
## PC51
                3.659e+00
                            3.143e+00
## PC52
               -4.235e+00
                            5.930e+00
                                       -0.714 0.475142
## PC53
                3.849e+00
                            5.160e+00
                                      0.746 0.455783
                                       -2.226 0.026002 *
## PC54
               -1.283e+01
                            5.764e+00
## PC55
               -7.825e+01
                            7.196e+00 -10.875 < 2e-16 ***
## PC56
                4.380e+01
                            8.420e+00 5.201 1.98e-07 ***
## PC57
               -1.181e+00
                            1.308e+01
                                      -0.090 0.928055
## PC58
                8.699e+01
                            1.633e+01
                                        5.329 9.89e-08 ***
## PC59
                8.540e+01
                            1.619e+01
                                        5.274 1.34e-07 ***
## PC60
                4.123e+01
                            2.281e+01
                                         1.807 0.070710
               -1.952e+02
## PC61
                            3.273e+01
                                       -5.964 2.46e-09 ***
## PC62
                            9.139e+01 -12.990 < 2e-16 ***
               -1.187e+03
## PC63
                2.385e+02
                            1.118e+02
                                       2.133 0.032911 *
## PC64
                            1.937e+02
               -1.330e+02
                                       -0.687 0.492323
## PC65
                4.019e+03
                            3.065e+02
                                       13.112
                                               < 2e-16 ***
## PC66
                1.981e+02
                            4.332e+02
                                       0.457 0.647511
## PC67
               -7.602e+03
                            1.669e+03
                                       -4.555 5.24e-06 ***
## PC68
                            2.349e+03 -8.163 3.27e-16 ***
               -1.918e+04
## PC69
               -3.789e+03
                           4.108e+03 -0.922 0.356356
```

```
## PC70
               5.224e+04 9.070e+03 5.760 8.40e-09 ***
## PC71
              -4.575e+04 2.876e+04 -1.591 0.111609
## PC72
               4.647e+05 1.076e+05 4.319 1.57e-05 ***
## PC73
              -1.335e+06 1.438e+05 -9.284 < 2e-16 ***
## PC74
               8.038e+06 1.481e+06 5.428 5.68e-08 ***
## PC75
              -6.531e+13 8.727e+13 -0.748 0.454225
## PC76
               2.154e+14 9.709e+13 2.218 0.026543 *
## PC77
               5.082e+14 2.941e+14 1.728 0.083976 .
## PC78
              -3.492e+14 2.021e+14 -1.728 0.084001 .
## PC79
              -5.082e+12 3.419e+14 -0.015 0.988139
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 7321.0 on 5280 degrees of freedom
## Residual deviance: 2880.4 on 5201 degrees of freedom
## AIC: 3040.4
##
## Number of Fisher Scoring iterations: 7
```

varImp(logistic)

```
##
            Overall
## PC1
         3.66783128
## PC2
         0.43434722
## PC3
        1.89604801
## PC4
         1.74802113
## PC5
        7.71818271
## PC6
        3.50619755
## PC7
      4.66338921
## PC8
        6.60910971
## PC9
        15.58671928
## PC10
        2.15010089
## PC11 17.22364450
## PC12 4.05274382
## PC13 7.29186485
## PC14 10.14967671
## PC15 1.00530743
## PC16 0.01840491
## PC17 13.16056601
```

```
## PC18
         2.41698040
## PC19
         1.07633777
## PC20
         3.41483438
## PC21
         3.65007866
## PC22
         7.59066799
## PC23
         4.49827341
## PC24
         2.36321434
## PC25
         1.35387681
## PC26
         4.51525925
## PC27
         8.01658693
## PC28
         2.56870174
## PC29
         6.31150440
## PC30
         2.90316135
## PC31 10.22282582
## PC32
         7.96799845
## PC33
         1.26425338
## PC34
         4.95172278
## PC35
         3.14626721
## PC36
         5.24687627
## PC37 12.20348098
## PC38
         5.53383533
## PC39
         2.72090731
## PC40
         1.58962374
## PC41
         3.26229046
## PC42
         6.03991331
         1.77626667
## PC43
## PC44
         9.92691658
## PC45
         2.97304830
## PC46
         7.11924101
## PC47
         1.15368714
## PC48
         4.53892340
## PC49
         6.17073021
## PC50
         5.08795439
## PC51
         1.16403894
## PC52
         0.71413827
## PC53
         0.74580786
## PC54
         2.22618572
## PC55 10.87465972
## PC56
         5.20129645
## PC57
         0.09029194
## PC58
         5.32880014
## PC59
         5.27362494
```

```
## PC60 1.80733524
## PC61 5.96408217
## PC62 12.98990098
## PC63 2.13316886
## PC64 0.68661935
## PC65 13.11197617
## PC66 0.45722316
## PC67 4.55502543
## PC68 8.16309518
## PC69 0.92233172
## PC70 5.76026831
## PC71 1.59100370
## PC72 4.31873864
## PC73 9.28363559
## PC74 5.42844111
## PC75 0.74839037
## PC76 2.21817257
## PC77 1.72806880
## PC78 1.72792938
## PC79 0.01486598
```

Parameter Tuning

```
# vectors for two parameters to be tuned
hvec < seq(0.5, 2,length=5)
trgtvec < - seq(0.001, 0.01, length=4)
k <- 5 # k-fold CV
gam <- 0.01 # embargo parameter</pre>
run <- FALSE # whether run the grid search?
run <- TRUE
if(run==TRUE)
{
 rst <- NULL
 for(ih in 1:length(hvec))
 {
  for(jtrgt in 1:length(trgtvec))
   {
    i CUSUM <- fmlr::istar CUSUM(dat used$Close, h=hvec[ih]) # <-
```

```
----- tuning parameter 1
     n_Event <- length(i_CUSUM)</pre>
     events <- data.frame(t0=i CUSUM+1,
                          t1 = i CUSUM + 200,
                          trgt = rep(trgtvec[jtrgt], n Event), # <-</pre>
   ----- tuning parameter 2
                          side=rep(1,n Event))
     ptSl \leftarrow c(1,1)
     out0 <- fmlr::label meta(dat used$Close, events, ptSl)</pre>
     table(out0$label)
     # feature matrix
     fMat0 <- dat used[out0$t1Fea,]</pre>
     # t1Fea and tLabel have to be included in order to use purged
k-CV
     allSet <- data.frame(Y=as.factor(out0$label),fMat0, t1Fea=out0</pre>
$t1Fea, tLabel=out0$tLabel)
     # exclude NA at the begining of the indicators
     idx NA <- apply(allSet,1,function(x){sum(is.na(x))>0})
     allSet <- subset(allSet, !idx NA)</pre>
     nx <- nrow(allSet)</pre>
     # prepare data for purged k-fold CV #
     CVobj <- fmlr::purged k CV(allSet, k=k, gam=gam)</pre>
     ###################
     ## randomforest ##
     ###################
     set.seed(1)
     for(i in 1:k)
     {
       trainSet <- CVobj[[i]]$trainSet</pre>
       trainSet <- trainSet[,!names(trainSet)%in%c("Close", "t1Fea"
 "tLabel")]
       testSet <- CVobj[[i]]$testSet
```

```
testSet <- testSet[,!names(testSet)%in%c("Close", "t1Fea", "
tLabel")]
        # smote
        (tb <- table(trainSet$Y))</pre>
        (ratio <- tb[names(tb)=="1"] / tb[names(tb)=="0"])</pre>
        if(ratio > 1) perc <- list("0"=ratio, "1"=1) else perc <- li</pre>
st("0"=1, "1"=(1/ratio))
        trainSet balanced <- UBL::SmoteClassif(Y ~ ., dat = trainSet</pre>
, C.perc = perc)
        table(trainSet balanced$Y)
        # automatically choose mtry
        # mtry <- tuneRF(trainSet balanced[,-1], trainSet balanced$Y</pre>
, plot = F)
        # mtry <- mtry[which.min(mtry[,2]),1]</pre>
        fit <- randomForest(Y ~ ., data = trainSet balanced, importa</pre>
nce = FALSE, ntrees = 500) # use default mtry
        pre <- predict(fit, newdata = testSet) #predicted labels</pre>
        acc <- mean(testSet$Y==pre)</pre>
        # can also use R caret package to calculate F1 score
        # predictions <- predict(fit, newdata=testSet)</pre>
        precision <- posPredValue(pre, testSet$Y, positive="1")</pre>
        recall <- sensitivity(pre, testSet$Y, positive="1")</pre>
        F1 <- (2 * precision * recall) / (precision + recall)
        roc prob <- predict(fit, newdata=testSet, type="prob")</pre>
        pred <- prediction(roc prob[,2], testSet$Y)</pre>
        # the 2nd column is where the label "1" is
        # the default order of factors 0 and 1 is 0 < 1
        # so "1" is treated as positive, and a ligher prob.
        # means being closer to "1"
        auc <- tryCatch(performance(pred, measure = "auc")@y.values[</pre>
[1]],
                          error=function(e) NA, warning=function(w) NA
)
```

```
logloss <- MLmetrics::LogLoss(roc prob[,2], as.numeric(testS</pre>
et$Y==1))
        rst <- rbind(rst, c(ih, jtrgt, i, hvec[ih], trgtvec[jtrgt],</pre>
                             acc, auc, F1, logloss, table(trainSet$Y)
, table(testSet$Y), table(trainSet balanced$Y)))
        cat(ih, jtrgt, i, hvec[ih], trgtvec[jtrgt], acc, auc, F1, lo
gloss,
            table(trainSet$Y), table(testSet$Y), table(trainSet bala
nced$Y), "\n")
      }
    } # end of jtrgt loop
  } # end of ih loop
  rst <- data.frame(rst)
 names(rst) <- c("ih", "jtrgt", "iCV", "hCUSUM", "trgt", "acc", "au</pre>
c", "F1", "logloss",
                  "train0", "train1", "test0", "test1", "train_bal0"
, "train bal1")
  write.csv(rst, "tuning purgedCV logloss-2021.csv", row.names = F)
}
## 1 1 1 0.5 0.001 0.9465479 0.7274786 0.97254 0.1863251 120 1625 19
430 1624 1625
## 1 1 2 0.5 0.001 0.922049 0.7043099 0.9594438 0.2440575 108 1642 2
6 423 1642 1642
## 1 1 3 0.5 0.001 0.8641425 0.835009 0.9257004 0.4002259 113 1657 1
8 431 1656 1657
## 1 1 4 0.5 0.001 0.7861915 0.6973068 0.8769231 0.5276717 114 1646
22 427 1646 1646
## 1 1 5 0.5 0.001 0.8802661 0.7018612 0.9363208 0.3408185 85 1706 5
4 397 1705 1706
```

1 2 1 0.5 0.004 0.8797327 0.5918451 0.9349398 0.4042885 319 1412

1 2 2 0.5 0.004 0.7550111 0.6601283 0.8578811 0.4469143 290 1435

1 2 3 0.5 0.004 0.5657016 0.6392221 0.6869984 0.7127793 268 1459

1 2 4 0.5 0.004 0.3340757 0.64375 0.3809524 1.064399 288 1465 65

42 407 1411 1412

63 386 1434 1435

56 393 1458 1459

logloss / cross entropy loss

```
384 1464 1465
## 1 2 5 0.5 0.004 0.7206208 0.557255 0.8333333 0.6041613 226 1557 1
35 316 1556 1557
## 1 3 1 0.5 0.007 0.8285078 0.6095482 0.9006452 0.571814 484 1246 6
2 387 1246 1246
## 1 3 2 0.5 0.007 0.7282851 0.6833156 0.8267045 0.5536874 437 1261
103 346 1261 1261
## 1 3 3 0.5 0.007 0.4565702 0.6267858 0.5378788 0.7990909 414 1303
83 366 1303 1303
## 1 3 4 0.5 0.007 0.3429844 0.6597233 0.256927 1.134714 414 1329 11
1 338 1329 1329
## 1 3 5 0.5 0.007 0.6563193 0.6416011 0.762634 0.6697295 359 1420 1
90 261 1419 1420
## 1 4 1 0.5 0.01 0.7349666 0.6802646 0.832158 0.6183699 637 1088 86
363 1088 1088
## 1 4 2 0.5 0.01 0.7126949 0.718498 0.8006182 0.5615654 566 1117 14
7 302 1117 1117
## 1 4 3 0.5 0.01 0.4476615 0.6034068 0.4655172 0.792238 549 1161 12
0 329 1160 1161
## 1 4 4 0.5 0.01 0.3853007 0.6770886 0.2290503 1.245097 553 1186 14
2 307 1186 1186
## 1 4 5 0.5 0.01 0.616408 0.6750394 0.7042735 0.7280787 495 1283 23
5 216 1283 1283
## 2 1 1 0.875 0.001 0.9495798 0.7328795 0.974026 0.182735 64 857 11
227 857 857
## 2 1 2 0.875 0.001 0.9327731 0.6732827 0.9652174 0.2461342 55 858
16 222 857 858
## 2 1 3 0.875 0.001 0.8739496 0.6729915 0.9315068 0.3863093 61 871
13 225 871 871
## 2 1 4 0.875 0.001 0.7731092 0.742491 0.868932 0.4909453 64 878 11
227 878 878
## 2 1 5 0.875 0.001 0.9004149 0.6950845 0.9475983 0.3063902 51 901
24 217 901 901
## 2 2 1 0.875 0.004 0.8823529 0.6069899 0.9369369 0.3902035 163 750
24 214 750 750
## 2 2 2 0.875 0.004 0.7941176 0.675895 0.8841608 0.4169666 149 743
32 206 742 743
## 2 2 3 0.875 0.004 0.6344538 0.6625 0.7535411 0.6439493 150 774 30
208 774 774
## 2 2 4 0.875 0.004 0.2436975 0.6472284 0.25 1.094655 151 784 33 20
5 783 784
## 2 2 5 0.875 0.004 0.7261411 0.6623172 0.8390244 0.567105 119 831
```

```
68 173 831 831
## 2 3 1 0.875 0.007 0.8529412 0.6801548 0.9148418 0.4476398 248 665
35 203 665 665
## 2 3 2 0.875 0.007 0.6806723 0.6795412 0.8 0.5365182 219 670 60 17
8 669 670
## 2 3 3 0.875 0.007 0.5882353 0.6730904 0.6918239 0.6812455 221 690
44 194 690 690
## 2 3 4 0.875 0.007 0.2647059 0.622182 0.1116751 1.074351 225 707 5
4 184 707 707
## 2 3 5 0.875 0.007 0.6514523 0.632295 0.76666667 0.6481227 193 755
92 149 755 755
## 2 4 1 0.875 0.01 0.7731092 0.6807447 0.856383 0.6027973 335 576 5
0 188 576 576
## 2 4 2 0.875 0.01 0.6638655 0.7284007 0.7727273 0.5884457 290 594
87 151 593 594
## 2 4 3 0.875 0.01 0.4663866 0.5604869 0.5448029 0.7345251 299 605
60 178 605 605
## 2 4 4 0.875 0.01 0.3403361 0.6782965 0.122905 1.079182 305 625 72
166 624 625
## 2 4 5 0.875 0.01 0.5311203 0.5865702 0.6686217 0.7399103 268 678
120 121 678 678
## 3 1 1 1.25 0.001 0.9605263 0.6495434 0.9798658 0.180556 39 553 6
146 552 553
## 3 1 2 1.25 0.001 0.9605263 0.6101598 0.9798658 0.2023527 37 547 6
146 547 547
## 3 1 3 1.25 0.001 0.8552632 0.5709459 0.9214286 0.3978358 41 558 4
148 557 558
## 3 1 4 1.25 0.001 0.7105263 0.7272727 0.8225806 0.5694272 36 568 9
143 568 568
## 3 1 5 1.25 0.001 0.869281 0.5902256 0.9300699 0.449675 25 583 20
133 583 583
## 3 2 1 1.25 0.004 0.8881579 0.6333702 0.9407666 0.3133227 106 480
13 139 479 480
## 3 2 2 1.25 0.004 0.8355263 0.6880682 0.906367 0.3980836 96 474 20
132 474 474
## 3 2 3 1.25 0.004 0.625 0.5930607 0.7574468 0.632831 96 496 16 136
496 496
## 3 2 4 1.25 0.004 0.2697368 0.5982517 0.283871 1.006761 93 503 22
130 502 503
## 3 2 5 1.25 0.004 0.6928105 0.7043651 0.8065844 0.6261458 71 536 4
8 105 535 536
## 3 3 1 1.25 0.007 0.8618421 0.7332168 0.9201521 0.3931838 163 422
```

```
22 130 422 422
## 3 3 2 1.25 0.007 0.7434211 0.747433 0.8340426 0.5000326 142 423 4
0 112 422 423
## 3 3 3 1.25 0.007 0.5592105 0.5961481 0.6731707 0.6952202 145 437
27 125 437 437
## 3 3 4 1.25 0.007 0.2894737 0.6677468 0.1940299 0.9778991 146 446
34 118 446 446
## 3 3 5 1.25 0.007 0.620915 0.658642 0.7478261 0.6618651 123 483 63
90 482 483
## 3 4 1 1.25 0.01 0.7828947 0.6714326 0.8653061 0.5378806 214 370 2
9 123 370 370
## 3 4 2 1.25 0.01 0.6578947 0.7479539 0.7636364 0.56553 182 378 56
96 378 378
## 3 4 3 1.25 0.01 0.4802632 0.519536 0.5635359 0.7499483 190 387 35
117 386 387
## 3 4 4 1.25 0.01 0.4013158 0.6544073 0.2834646 0.9853298 188 403 4
7 105 403 403
## 3 4 5 1.25 0.01 0.5620915 0.7033333 0.685446 0.6984709 166 438 78
75 437 438
## 4 1 1 1.625 0.001 0.9417476 0.7214286 0.97 0.2153325 21 380 5 98
379 380
## 4 1 2 1.625 0.001 0.9126214 0.6636905 0.9543147 0.2580052 17 373
7 96 373 373
## 4 1 3 1.625 0.001 0.9514563 0.5148515 0.9751244 0.3143214 22 369
2 101 369 369
## 4 1 4 1.625 0.001 0.9126214 0.5833333 0.9543147 0.2965675 22 384
3 100 383 384
## 4 1 5 1.625 0.001 0.9038462 0.5549708 0.9494949 0.3043294 17 394
9 95 393 394
## 4 2 1 1.625 0.004 0.8932039 0.6215054 0.9435897 0.342518 65 332 1
0 93 331 332
## 4 2 2 1.625 0.004 0.8543689 0.649679 0.9197861 0.4124518 59 328 1
4 89 328 328
## 4 2 3 1.625 0.004 0.6796117 0.6089744 0.797546 0.6151803 56 330 1
2 91 330 330
## 4 2 4 1.625 0.004 0.5339806 0.628663 0.6619718 0.710452 58 335 12
91 334 335
## 4 2 5 1.625 0.004 0.7403846 0.7243867 0.8508287 0.5409816 46 364
27 77 363 364
## 4 3 1 1.625 0.007 0.8737864 0.6868132 0.9273743 0.3991779 107 289
12 91 289 289
## 4 3 2 1.625 0.007 0.7087379 0.7271429 0.8192771 0.5070449 90 294
```

```
211
## 5 3 4 2 0.007 0.5066667 0.6049696 0.5747126 0.7359551 66 218 17 5
8 218 218
## 5 3 5 2 0.007 0.6266667 0.6068216 0.7666667 0.6791999 60 238 29 4
6 238 238
## 5 4 1 2 0.01 0.76 0.7133333 0.8474576 0.4832997 101 185 15 60 185
185
## 5 4 2 2 0.01 0.64 0.802 0.7804878 0.5424208 88 196 25 50 195 196
## 5 4 3 2 0.01 0.5466667 0.5074956 0.6666667 0.6827297 84 191 21 54
190 191
## 5 4 4 2 0.01 0.44 0.5969125 0.4166667 0.8137944 83 199 22 53 199
199
## 5 4 5 2 0.01 0.6 0.6649928 0.7272727 0.6709207 80 217 34 41 216 2
```

Summarizing Performance From Tuning

perfCV <- read.csv("tuning_purgedCV_logloss-2021.csv", header = T)
perfCV</pre>

```
##
       ih jtrgt iCV hCUSUM trgt
                                                    auc
                                                               F1
                                                                     log
                                         acc
loss train0
## 1
                      0.500 0.001 0.9465479 0.7274786 0.9725400 0.186
        1
              1
3251
        120
                      0.500 0.001 0.9220490 0.7043099 0.9594438 0.244
## 2
        1
              1
                   2
0575
        108
## 3
        1
              1
                      0.500 0.001 0.8641425 0.8350090 0.9257004 0.400
2259
        113
## 4
        1
              1
                      0.500 0.001 0.7861915 0.6973068 0.8769231 0.527
6717
        114
## 5
        1
                      0.500 0.001 0.8802661 0.7018612 0.9363208 0.340
              1
8185
        85
## 6
              2
        1
                      0.500 0.004 0.8797327 0.5918451 0.9349398 0.404
        319
2885
## 7
        1
              2
                      0.500 0.004 0.7550111 0.6601283 0.8578811 0.446
9143
        290
## 8
        1
              2
                      0.500 0.004 0.5657016 0.6392221 0.6869984 0.712
        268
7793
## 9
        1
                      0.500 0.004 0.3340757 0.6437500 0.3809524 1.064
        288
3986
```

## 10	1	2	5	0.500	0.004	0.7206208	0.5572550	0.8333333	0.604
1613	226								
## 11	1	3	1	0.500	0.007	0.8285078	0.6095482	0.9006452	0.571
8140	484								
## 12	1	3	2	0.500	0.007	0.7282851	0.6833156	0.8267045	0.553
6874	437								
## 13	1	3	3	0.500	0.007	0.4565702	0.6267858	0.5378788	0.799
0909	414								
## 14	1	3	4	0.500	0.007	0.3429844	0.6597233	0.2569270	1.134
7143	414								
## 15	1	3	5	0.500	0.007	0.6563193	0.6416011	0.7626340	0.669
7295	359								
## 16	1	4	1	0.500	0.010	0.7349666	0.6802646	0.8321580	0.618
3699	637								
## 17	1	4	2	0.500	0.010	0.7126949	0.7184980	0.8006182	0.561
5654	566	_	_						
## 18	1	4	3	0.500	0.010	0.4476615	0.6034068	0.4655172	0.792
2380	549	_							
## 19	1	4	4	0.500	0.010	0.3853007	0.6770886	0.2290503	1.245
0972	553		_			0 (1 (1 0 0 0			
## 20	1	4	5	0.500	0.010	0.6164080	0.6750394	0.7042735	0.728
0787	495	1	1	0 075	0 001	0.0405700	0 7220705	0.0740060	0 100
## 21	2	1	1	0.875	0.001	0.9495/98	0./328/95	0.9740260	0.182
7350	64 2	1	2	0 075	0 001	0 0227721	0 6722027	0.0652174	0 246
## 22 1342	2 55	1	2	0.675	0.001	0.9327731	0.0/3282/	0.9652174	0.240
## 23	2	1	2	0 075	0 001	0 9739496	0 6720015	0.9315068	0 306
	61	1	3	0.073	0.001	0.0739490	0.0729913	0.9313008	0.300
## 24	2	1	4	0 875	0 001	0 7731092	0 7424910	0.8689320	0 490
9453	64		4	0.075	0.001	0.7751052	0.7424710	0.0009320	0.470
## 25	2	1	5	0.875	0.001	0.9004149	0.6950845	0.9475983	0.306
3902	- 51	_	J	0.075	0.001	013001113		0131,3300	
## 26	2	2	1	0.875	0.004	0.8823529	0.6069899	0.9369369	0.390
2035	163								
## 27	2	2	2	0.875	0.004	0.7941176	0.6758950	0.8841608	0.416
9666	149								
## 28	2	2	3	0.875	0.004	0.6344538	0.6625000	0.7535411	0.643
9493	150								
## 29	2	2	4	0.875	0.004	0.2436975	0.6472284	0.2500000	1.094
6551	151								
## 30	2	2	5	0.875	0.004	0.7261411	0.6623172	0.8390244	0.567
1050	119								

## 31	2	3	1	0.875	0.007	0.8529412	0.6801548	0.9148418	0.447
6398	248								
## 32	2	3	2	0.875	0.007	0.6806723	0.6795412	0.8000000	0.536
5182	219								
## 33	2	3	3	0.875	0.007	0.5882353	0.6730904	0.6918239	0.681
2455	221								
## 34	2	3	4	0.875	0.007	0.2647059	0.6221820	0.1116751	1.074
3505	225								
## 35	2	3	5	0.875	0.007	0.6514523	0.6322950	0.7666667	0.648
1227	193								
## 36	2	4	1	0.875	0.010	0.7731092	0.6807447	0.8563830	0.602
7973	335								
## 37	2	4	2	0.875	0.010	0.6638655	0.7284007	0.7727273	0.588
4457	290								
## 38	2	4	3	0.875	0.010	0.4663866	0.5604869	0.5448029	0.734
5251	299								
## 39	2	4	4	0.875	0.010	0.3403361	0.6782965	0.1229050	1.079
1820	305								
## 40	2	4	5	0.875	0.010	0.5311203	0.5865702	0.6686217	0.739
9103	268								
## 41	3	1	1	1.250	0.001	0.9605263	0.6495434	0.9798658	0.180
5560	39								
## 42	3	1	2	1.250	0.001	0.9605263	0.6101598	0.9798658	0.202
3527	37								
## 43	3	1	3	1.250	0.001	0.8552632	0.5709459	0.9214286	0.397
	41								
		1	4	1.250	0.001	0.7105263	0.7272727	0.8225806	0.569
	36								
		1	5	1.250	0.001	0.8692810	0.5902256	0.9300699	0.449
	25								
## 46	3	2	1	1.250	0.004	0.8881579	0.6333702	0.9407666	0.313
3227	106								
	3	2	2	1.250	0.004	0.8355263	0.6880682	0.9063670	0.398
	96								
	3	2	3	1.250	0.004	0.6250000	0.5930607	0.7574468	0.632
	96	_							
	3	2	4	1.250	0.004	0.2697368	0.5982517	0.2838710	1.006
	93	_	_						
	3	2	5	1.250	0.004	0.6928105	0.7043651	0.8065844	0.626
	71	_	_			0.000			
## 51	3	3	1	1.250	0.007	0.8618421	0.7332168	0.9201521	0.393
1838	163								

## 52	3	3	2	1.250	0.007	0.7434211	0.7474330	0.8340426	0.500
0326	142								
## 53	3	3	3	1.250	0.007	0.5592105	0.5961481	0.6731707	0.695
2202	145								
## 54	3	3	4	1.250	0.007	0.2894737	0.6677468	0.1940299	0.977
8991	146								
## 55	3	3	5	1.250	0.007	0.6209150	0.6586420	0.7478261	0.661
8651	123								
## 56	3	4	1	1.250	0.010	0.7828947	0.6714326	0.8653061	0.537
8806	214								
## 57	3	4	2	1.250	0.010	0.6578947	0.7479539	0.7636364	0.565
5300	182								
## 58	3	4	3	1.250	0.010	0.4802632	0.5195360	0.5635359	0.749
9483	190								
## 59	3	4	4	1.250	0.010	0.4013158	0.6544073	0.2834646	0.985
3298	188								
## 60	3	4	5	1.250	0.010	0.5620915	0.7033333	0.6854460	0.698
4709	166	_	_	1 605		0 0445456	0 5014006		
## 61	4	1	1	1.625	0.001	0.9417476	0.7214286	0.9700000	0.215
3325	21	1	2	1 625	0 001	0.0106014	0.6626005	0 0542147	0 250
## 62	4	1	2	1.625	0.001	0.9126214	0.6636905	0.9543147	0.258
0052 ## 63	17 4	1	3	1 625	0 001	0 0514562	0 51/0515	0.9751244	0 21/
3214	22	1	3	1.025	0.001	0.9314303	0.5146515	0.9/51244	0.314
## 64	4	1	1	1 625	0 001	0 9126214	0 5833333	0.9543147	0 296
5675	22	т	-	1.025	0.001	0.7120214	0.3033333	0.7343147	0.230
	4	1	5	1.625	0.001	0.9038462	0.5549708	0.9494949	0.304
3294	17	_	,	1.023	0.001	0.7000102	0.3313700	0 0 1 1 1 1 1 1 1 1	0.001
## 66	4	2	1	1.625	0.004	0.8932039	0.6215054	0.9435897	0.342
	65								
## 67	4	2	2	1.625	0.004	0.8543689	0.6496790	0.9197861	0.412
4518	59								
## 68	4	2	3	1.625	0.004	0.6796117	0.6089744	0.7975460	0.615
1803	56								
## 69	4	2	4	1.625	0.004	0.5339806	0.6286630	0.6619718	0.710
4520	58								
## 70	4	2	5	1.625	0.004	0.7403846	0.7243867	0.8508287	0.540
9816	46								
## 71	4	3	1	1.625	0.007	0.8737864	0.6868132	0.9273743	0.399
1779	107								
## 72	4	3	2	1.625	0.007	0.7087379	0.7271429	0.8192771	0.507
0449	90								

## 73	4	3	3	1.625	0.007	0.6407767	0.5846405	0.7516779	0.645
4488	87								
## 74	4	3	4	1.625	0.007	0.4077670	0.6214927	0.4403670	0.870
7899	88								
## 75	4	3	5	1.625	0.007	0.6153846	0.6853516	0.7619048	0.657
4453	77								
## 76	4	4	1	1.625	0.010	0.7864078	0.6691729	0.8658537	0.517
1232	148								
## 77	4	4	2	1.625	0.010	0.6407767	0.7121457	0.7730061	0.619
5288	125								
## 78	4	4	3	1.625	0.010	0.5728155	0.5791910	0.6666667	0.691
9464	123								
## 79	4	4	4	1.625	0.010	0.4174757	0.5530303	0.3181818	0.893
9490	120								
## 80	4	4	5	1.625	0.010	0.5384615	0.6678994	0.6800000	0.712
8237	112								
## 81	5	1	1	2.000	0.001	0.9600000	0.7986111	0.9795918	0.175
4521	17								
## 82	5	1	2	2.000	0.001	0.9600000	0.7685185	0.9795918	0.150
7117	15								
## 83	5	1	3	2.000	0.001	0.9466667	0.1609589	0.9726027	0.252
5171	16 -	_							
## 84	5	1	4	2.000	0.001	0.9066667	0.5014286	0.9510490	0.352
4320	14		_	0 000	0 001	0.0066667	0.6060004	0.0500546	0 001
## 85	5	1	5	2.000	0.001	0.906666/	0.6060924	0.9503546	0.321
4022	12	2	-1	2 000	0 004	0 002222	0.6040000	0.0426620	0 224
## 86	5	2	Т	2.000	0.004	0.8933333	0.6940299	0.9436620	0.324
1498	51	2	2	2 000	0 004	0 0666667	0 6104615	0 0205714	0 400
## 87 5463	5 47	2	2	2.000	0.004	0.8666667	0.0184013	0.9285714	0.409
## 88	5 5	2	3	2 000	0 004	0 760000	0 4639462	0.8615385	0 567
0327	43	2	3	2.000	0.004	0.700000	0.4030402	0.0013303	0.307
## 89	5	2	4	2 000	0 004	0 5466667	0 5561538	0.6730769	0 696
2343	42	2	-	2.000	0.004	0.5400007	0.3301330	0.0730703	0.000
## 90	5	2	5	2.000	0.004	0.7200000	0.5074956	0.8372093	0.624
2655	37	_	J		0.001	00720000	0000,1000	0.00,200	0.021
## 91	5	3	1	2.000	0.007	0.8400000	0.6335227	0.9076923	0.448
1415	80	-	•				·	-	
## 92	5	3	2	2.000	0.007	0.6933333	0.6315789	0.8188976	0.541
3576	70								
## 93	5	3	3	2.000	0.007	0.6800000	0.5927778	0.7931034	0.608
5855	67								

## 94	5	3 4	2.000	0.007 0.5066667	0.6049696	0.5747126	0.735
9551	66						
## 95	5	3 5	2.000	0.007 0.6266667	0.6068216	0.7666667	0.679
1999	60						
## 96	5	4 1	2.000	0.010 0.7600000	0.7133333	0.8474576	0.483
2997	101						
## 97	5	4 2	2.000	0.010 0.6400000	0.8020000	0.7804878	0.542
4208	88						
## 98	5	4 3	2.000	0.010 0.5466667	0.5074956	0.6666667	0.682
7297	84						
## 99	5	4 4	2.000	0.010 0.4400000	0.5969125	0.4166667	0.813
7944	83						
## 100	5	4 5	2.000	0.010 0.6000000	0.6649928	0.7272727	0.670
9207	80						
##	train1	test0	test1	train_bal0 train __	_bal1		
## 1	1625	19	430	1624	1625		
## 2	1642	26	423	1642	1642		
## 3	1657	18	431	1656	1657		
## 4	1646	22	427	1646	1646		
## 5	1706	54	397	1705	1706		
## 6	1412	42	407	1411	1412		
## 7	1435	63	386	1434	1435		
## 8	1459	56	393	1458	1459		
## 9	1465	65	384	1464	1465		
## 10	1557	135	316	1556	1557		
	1246			1246	1246		
## 12			346	1261	1261		
## 13	1303	83		1303	1303		
## 14	1329			1329	1329		
## 15	1420	190	261	1419	1420		
## 16	1088	86		1088	1088		
## 17	1117	147		1117	1117		
## 18	1161	120	329	1160	1161		
## 19	1186	142	307	1186	1186		
## 20	1283	235		1283	1283		
## 21	857	11	227	857	857		
## 22	858	16		857	858		
## 23	871	13	225	871	871		
## 24	878	11		878	878		
## 25	901	24	217	901	901		
## 26	750	24		750 - 10	750 - 10		
## 27	743	32	206	742	743		

## 29	##	28	774	30	208	774	774
## 31 665 35 203 665 665 ## 32 670 60 178 669 670 ## 33 690 44 194 690 690 ## 34 707 54 184 707 707 ## 35 755 92 149 755 755 ## 37 594 87 151 593 594 ## 39 605 72 166 624 625 ## 40 678 120 121 678 668 ## 41 553 6 146 552 553 ## 42 547 6 146 547 547 ## 43 558 4 148 557 558 ## 44 568 9 143 568 568 ## 45 583 20 133 583 583 ## 46 480 13 139 479 480 ## 48 496 16 136 496 496 ## 49 503 22 130 502 503 ## 50 36 48 105 535 536 ## 51 422 22 130 422 422 ## 53 437 27 125 437 437 ## 54 446 34 118 446 446 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 58 387 35 117 386 387 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 58 387 35 117 386 387 ## 58 387 35 117 386 387 ## 58 387 35 117 386 387 ## 58 387 35 117 386 387 ## 58 387 35 117 386 387 ## 58 387 35 117 386 387 ## 58 387 35 117 386 387 ## 61 380 5 98 379 380 ## 62 373 7 96 373 370 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 67 328 14 89 328 328	##	29	784	33	205	783	784
## 32 670 60 178 669 670 ## 33 690 44 194 690 690 ## 34 707 54 184 707 707 ## 35 755 92 149 755 755 ## 36 576 50 188 576 576 ## 37 594 87 151 593 594 ## 38 605 60 178 605 605 ## 40 678 120 121 678 678 ## 41 553 6 146 552 553 ## 44 558 9 143 568 568 ## 45 583 20 133 583 583 ## 46 480 13 139 479 480 ## 49 503 22 130 502 503 ## 50 536 48 105 535 536 ## 49 503 22 130 422 422 ## 49 503 22 130 422 422 ## 52 423 40 112 422 422 ## 53 437 27 125 437 437 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 59 403 47 105 403 403 ## 56 330 12 91 330 331 ## 66 332 10 93 331 332 ## 66 332 10 93 331 332 ## 66 332 10 93 331 332 ## 66 332 10 93 331 332 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328	##	30	831	68	173	831	831
## 33 690 44 194 690 690 ## 34 707 54 184 707 707 ## 35 755 92 149 755 755 ## 36 576 50 188 576 576 ## 37 594 87 151 593 594 ## 38 605 60 178 605 605 ## 40 678 120 121 678 678 ## 41 553 6 146 552 553 ## 42 547 6 146 547 547 ## 43 558 4 148 557 558 ## 45 583 20 133 583 583 ## 46 480 13 139 479 480 ## 49 503 22 130 502 503 ## 49 503 22 130 502 503 ## 50 536 48 105 535 536 ## 49 503 22 130 422 422 ## 49 503 22 130 422 422 ## 52 423 40 112 422 423 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 59 403 47 105 403 403 ## 60 438 78 75 437 437 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 ## 65 394 9 95 393 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 66 332 10 93 331 ## 67 328 14 89 328 328	##	31	665	35	203	665	665
## 34	##	32	670	60	178	669	670
## 35	##	33	690	44	194	690	690
## 36	##	34	707	54	184	707	707
## 37	##	35	755	92	149	755	755
## 38 605 60 178 605 605 ## 39 625 72 166 624 625 ## 40 678 120 121 678 678 ## 41 553 6 146 552 553 ## 42 547 6 146 547 547 ## 43 558 4 148 557 558 ## 45 583 20 133 583 583 ## 46 480 13 139 479 480 ## 47 474 20 132 474 474 ## 48 496 16 136 496 496 ## 49 503 22 130 502 503 ## 50 536 48 105 535 536 ## 51 422 22 130 422 422 ## 52 423 40 112 422 422 ## 53 437 27 125 437 437 ## 54 446 34 118 446 446 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 67 328 14 89 328 328 ## 67 328 14 89 328 328	##	36	576	50	188	576	576
## 39 625 72 166 624 625 ## 40 678 120 121 678 678 ## 41 553 6 146 552 553 ## 42 547 6 146 547 547 ## 43 558 4 148 557 558 ## 44 568 9 143 568 568 ## 45 583 20 133 583 583 ## 46 480 13 139 479 480 ## 47 474 20 132 474 474 ## 48 496 16 136 496 496 ## 49 503 22 130 502 503 ## 50 536 48 105 535 536 ## 51 422 22 130 422 422 ## 52 423 40 112 422 422 ## 53 437 27 125 437 437 ## 54 446 34 118 446 446 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 67 328 14 89 328 328	##	37	594	87	151	593	594
## 40 678 120 121 678 678 ## 41 553 6 146 552 553 ## 42 547 6 146 547 547 ## 43 558 4 148 557 558 ## 44 568 9 143 568 568 ## 45 583 20 133 583 583 ## 46 480 13 139 479 480 ## 47 474 20 132 474 474 ## 48 496 16 136 496 496 ## 49 503 22 130 502 503 ## 50 536 48 105 535 536 ## 51 422 22 130 422 422 ## 52 423 40 112 422 422 ## 53 437 27 125 437 437 ## 54 446 34 118 446 446 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 67 328 14 89 328 328 ## 67 328 14 89 328 328	##	38	605	60	178	605	605
## 41 553 6 146 552 553 ## 42 547 6 146 547 547 ## 43 558 4 148 557 558 ## 44 568 9 143 568 568 ## 45 583 20 133 583 583 ## 46 480 13 139 479 480 ## 47 474 20 132 474 474 ## 48 496 16 136 496 496 ## 49 503 22 130 502 503 ## 50 536 48 105 535 536 ## 51 422 22 130 422 422 ## 52 423 40 112 422 423 ## 53 437 27 125 437 437 ## 54 446 34 118 446 446 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	39	625	72	166	624	625
## 42 547 6 146 547 547 ## 43 558 4 148 557 558 ## 44 568 9 143 568 568 ## 45 583 20 133 583 583 ## 46 480 13 139 479 480 ## 47 474 20 132 474 474 ## 48 496 16 136 496 496 ## 49 503 22 130 502 503 ## 50 536 48 105 535 536 ## 51 422 22 130 422 422 ## 52 423 40 112 422 422 ## 53 437 27 125 437 437 ## 54 446 34 118 446 446 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 67 328 14 89 328 328 ## 67 328 14 89 328 328	##	40	678	120	121	678	678
## 43	##	41	553	6	146	552	553
## 44 568 9 143 568 568 ## 45 583 20 133 583 583 ## 46 480 13 139 479 480 ## 47 474 20 132 474 474 ## 48 496 16 136 496 496 ## 50 536 48 105 535 536 ## 51 422 22 130 422 422 ## 52 423 40 112 422 423 ## 53 437 27 125 437 437 ## 54 446 34 118 446 446 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	42	547	6	146	547	547
## 45	##	43	558	4	148	557	558
## 46	##	44	568	9	143	568	568
## 47	##	45	583	20	133	583	583
## 48	##	46	480	13	139	479	480
## 49 503 22 130 502 503 ## 50 536 48 105 535 536 ## 51 422 22 130 422 422 ## 52 423 40 112 422 423 ## 53 437 27 125 437 437 ## 54 446 34 118 446 446 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 67 328 14 89 328	##	47	474	20	132	474	474
## 50	##	48	496	16	136	496	496
## 51	##	49	503	22	130	502	503
## 52	##	50	536	48	105	535	536
## 53	##	51	422	22	130	422	422
## 54 446 34 118 446 446 ## 55 483 63 90 482 483 ## 56 370 29 123 370 370 ## 57 378 56 96 378 378 47 105 403 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	52	423	40	112	422	423
## 55	##	53	437	27	125	437	437
## 56 370 29 123 370 370 ## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 403 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	54	446	34	118	446	446
## 57 378 56 96 378 378 ## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	55	483	63	90	482	483
## 58 387 35 117 386 387 ## 59 403 47 105 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	56	370	29	123	370	370
## 59 403 47 105 403 403 403 ## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	57	378	56	96	378	378
## 60 438 78 75 437 438 ## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	58	387	35	117	386	387
## 61 380 5 98 379 380 ## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	59	403	47	105	403	403
## 62 373 7 96 373 373 ## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	60	438	78	75	437	438
## 63 369 2 101 369 369 ## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	61	380	5	98	379	380
## 64 384 3 100 383 384 ## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	62	373	7	96	373	373
## 65 394 9 95 393 394 ## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	63	369	2	101	369	369
## 66 332 10 93 331 332 ## 67 328 14 89 328 328 ## 68 330 12 91 330 330	##	64	384	3	100	383	384
## 67 328 14 89 328 328 ## 68 330 12 91 330 330			394				
## 68 330 12 91 330 330	##	66	332	10	93	331	332
			328	14	89	328	328
## 69 335 12 91 334 335			330	12			
	##	69	335	12	91	334	335

```
## 70
            364
                     27
                            77
                                        363
                                                      364
## 71
            289
                     12
                            91
                                        289
                                                      289
                                        293
## 72
            294
                    28
                            75
                                                      294
## 73
            295
                            85
                                        295
                                                      295
                     18
## 74
            303
                    22
                            81
                                        303
                                                      303
## 75
            332
                     40
                            64
                                        332
                                                      332
## 76
                     19
            247
                            84
                                        246
                                                      247
                    38
                                        255
## 77
            255
                            65
                                                      255
## 78
            256
                     27
                            76
                                        256
                                                      256
## 79
                            70
            269
                     33
                                        269
                                                      269
## 80
            295
                    52
                            52
                                        295
                                                      295
## 81
            272
                      3
                            72
                                        272
                                                      272
## 82
            277
                      3
                            72
                                        276
                                                      277
## 83
            278
                      2
                            73
                                        278
                                                      278
## 84
            272
                      5
                            70
                                        271
                                                      272
## 85
            287
                      7
                                        287
                                                      287
                            68
## 86
            238
                            67
                                                      238
                      8
                                        238
## 87
            240
                     10
                            65
                                        240
                                                      240
## 88
            237
                     10
                            65
                                        237
                                                      237
                            65
## 89
            242
                     10
                                        242
                                                      242
            262
                    21
                            54
                                        261
                                                      262
## 90
## 91
            206
                     11
                            64
                                        206
                                                      206
## 92
            214
                     19
                            56
                                        213
                                                      214
## 93
            211
                                        211
                                                      211
                     15
                            60
                                        218
                                                      218
## 94
            218
                     17
                            58
## 95
            238
                     29
                            46
                                        238
                                                      238
## 96
            185
                     15
                            60
                                        185
                                                      185
## 97
            196
                    25
                            50
                                        195
                                                      196
## 98
            191
                    21
                            54
                                        190
                                                      191
## 99
            199
                    22
                            53
                                        199
                                                      199
## 100
                     34
                            41
                                        216
            217
                                                      217
```

```
perfCV <- subset(perfCV, (!is.na(acc))&(!is.na(auc))&(!is.na(F1))&(!
is.na(logloss)))
dim(perfCV)</pre>
```

```
cnt <- aggregate(perfCV$acc, by=list(perfCV$hCUSUM, perfCV$trgt), FU</pre>
N=length)
acc <- aggregate(perfCV$acc, by=list(perfCV$hCUSUM, perfCV$trgt), FU</pre>
N=mean)
auc <- aggregate(perfCV$auc, by=list(perfCV$hCUSUM, perfCV$trgt), FU</pre>
N=mean)
f1 <- aggregate(perfCV$F1, by=list(perfCV$hCUSUM, perfCV$trgt), FUN=
mean)
logloss <- aggregate(perfCV$logloss, by=list(perfCV$hCUSUM, perfCV$t</pre>
rgt), FUN=mean)
train1 <- aggregate(perfCV$train1, by=list(perfCV$hCUSUM, perfCV$trg</pre>
t), FUN=mean)
train0 <- aggregate(perfCV$train0, by=list(perfCV$hCUSUM, perfCV$trg</pre>
t), FUN=mean)
test1 <- aggregate(perfCV$test1, by=list(perfCV$hCUSUM, perfCV$trgt)</pre>
, FUN=mean)
test0 <- aggregate(perfCV$test0, by=list(perfCV$hCUSUM, perfCV$trgt)</pre>
, FUN=mean)
# disable warning
options(warn=-1)
# combine results by merging multiple data.frame together
mer <- Reduce(function(...) merge(..., by=c("Group.1", "Group.2")),</pre>
               list(cnt, acc, auc, f1, logloss, train1, train0, test1, te
st0))
names(mer) <- c("hCUSUM", "trgt", "kCV", "acc", "auc", "f1", "loglos</pre>
s",
                 "train1", "train0", "test1", "test0")
tail(mer)
```

```
##
                                                      logloss train
     hCUSUM trgt kCV
                                                 f1
                            acc
                                      auc
1 train0 test1
## 15 1.625 0.007
                    5 0.6492905 0.6610882 0.7401202 0.6159814
                                                               302.
   89.8 79.2
6
      1.625 0.010
                    5 0.5911875 0.6362879 0.6607417 0.6870742
## 16
                                                               264.
   125.6 69.4
4
## 17 2.000 0.001
                    5 0.9360000 0.5671219 0.9666380 0.2505030
                                                               277.
   14.8 71.0
2
     2.000 0.004
## 18
                    5 0.7573333 0.5679974 0.8488116 0.5242457
                                                               243.
   44.0 63.2
8
## 19 2.000 0.007
                    5 0.6693333 0.6139341 0.7722145 0.6026479
                                                               217.
4
   68.6 56.8
     2.000 0.010
## 20
                    5 0.5973333 0.6569469 0.6877103 0.6386331
                                                               197.
   87.2 51.6
6
     test0
##
## 15
     24.0
      33.8
## 16
## 17
      4.0
## 18
      11.8
## 19 18.2
## 20 23.4
```

```
dim(mer)
```

```
## [1] 20 11
```

```
# rstF1 <- mer[order(mer$f1, decreasing=T),]
# rstF1
rstlogloss <- mer[order(mer$logloss, decreasing=F),]
head(rstlogloss)</pre>
```

```
##
                                              f1
                                                  logloss train
     hCUSUM trgt kCV acc
                                    auc
1 train0 test1
## 17 2.000 0.001 5 0.9360000 0.5671219 0.9666380 0.2505030
                                                           277.
   14.8 71.0
2
## 13
     1.625 0.001 5 0.9244586 0.6076549 0.9606498 0.2777112
                                                           380.
   19.8 98.0
0
## 5
      0.875 0.001 5 0.8859653 0.7033458 0.9374561 0.3225028 873.
0 59.0 223.6
## 1 0.500 0.001 5 0.8798394 0.7331931 0.9341856 0.3398198 1655.
  108.0 421.6
2
      1.250 0.001 5 0.8712246 0.6296295 0.9267621 0.3599693
## 9
                                                           561.
8
  35.6 143.2
## 18 2.000 0.004 5 0.7573333 0.5679974 0.8488116 0.5242457 243.
   44.0 63.2
8
##
     test0
## 17
     4.0
## 13
      5.2
## 5
      15.0
## 1 27.8
## 9 9.0
## 18 11.8
```