Aleaciones mecánicas

Variables del proceso de molienda

Pablo E. Alanis

13 de agosto de 2023

Universidad Autónoma de Nuevo León, División de Posgrado Técnicas de preparación de materiales

Outline i

Variables del proceso de molienda

- Tipos de molinos
- Contenedor del molino
- Forma del contenedor
- Velocidad/intensidad de molienda
- Tiempo de molienda
- Medio de molienda
- Relación de bolas-polvo (BPR)
- Grado de llenado del vial

Outline ii

Atmósfera de molienda

Agentes de control del proceso (PCA)

Temperatura

Variables del proceso de molienda

Aleaciones mecánicas

 El proceso de aleación mecánica (AM) es complejo;

Figura 1: Esquema del proceso de molienda en un molino de bolas.

Aleaciones mecánicas

- El proceso de AM es complejo;
- para obtener el producto deseado, se tienen que optimizar las condiciones de reacción.

Figura 1: Esquema del proceso de molienda en un molino de bolas.

Entre algunas de las variables que afectan la fase del producto final obtenido, se encuentran:

· tipo de molino;

- · tipo de molino;
- · contenedor del molino;

- · tipo de molino;
- · contenedor del molino;
- velocidad de molienda;

- · tipo de molino;
- · contenedor del molino;
- · velocidad de molienda;
- · tiempo de molienda;

- · tipo de molino;
- · contenedor del molino;
- · velocidad de molienda;
- · tiempo de molienda;
- · tipo, tamaño y distribución del medio de molienda;

- · tipo de molino;
- · contenedor del molino;
- · velocidad de molienda;
- · tiempo de molienda;
- · tipo, tamaño y distribución del medio de molienda;
- · relación en masa de bolas-polvo;

- · tipo de molino;
- · contenedor del molino;
- · velocidad de molienda;
- · tiempo de molienda;
- · tipo, tamaño y distribución del medio de molienda;
- · relación en masa de bolas-polvo;
- · que tan lleno está el vial;

- · tipo de molino;
- · contenedor del molino;
- · velocidad de molienda;
- · tiempo de molienda;
- · tipo, tamaño y distribución del medio de molienda;
- · relación en masa de bolas-polvo;
- · que tan lleno está el vial;
- · atmósfera de molienda;

- · tipo de molino;
- · contenedor del molino;
- · velocidad de molienda;
- · tiempo de molienda;
- · tipo, tamaño y distribución del medio de molienda;
- relación en masa de bolas-polvo;
- · que tan lleno está el vial;
- · atmósfera de molienda;
- · agente de control del proceso;

- · tipo de molino;
- · contenedor del molino;
- · velocidad de molienda;
- · tiempo de molienda;
- · tipo, tamaño y distribución del medio de molienda;
- · relación en masa de bolas-polvo;
- · que tan lleno está el vial;
- · atmósfera de molienda;
- · agente de control del proceso;
- · temperatura de molienda.

 $\boldsymbol{\cdot}$ Estas variables no son necesariamente independientes;

Estas variables no son necesariamente independientes;
 por ejemplo: el tiempo de molienda óptimo puede depender de:

- Estas variables no son necesariamente independientes;
 por ejemplo: el tiempo de molienda óptimo puede depender de:
 - 1. tipo de molino;

- Estas variables no son necesariamente independientes;
 por ejemplo: el tiempo de molienda óptimo puede depender de:
 - 1. tipo de molino;
 - 2. tamaño del medio de molienda;

- Estas variables no son necesariamente independientes;
 por ejemplo: el tiempo de molienda óptimo puede depender de:
 - 1. tipo de molino;
 - 2. tamaño del medio de molienda;
 - 3. temperatura de molienda;

- Estas variables no son necesariamente independientes;
 por ejemplo: el tiempo de molienda óptimo puede depender de:
 - 1. tipo de molino;
 - 2. tamaño del medio de molienda;
 - 3. temperatura de molienda;
 - 4. relación bolas-polvo, etc.

Variables del proceso de molienda

Tipos de molinos

· Existen varios tipos de molinos que pueden usarse según el propósito;

- · Existen varios tipos de molinos que pueden usarse según el propósito;
- · Estos varían en:

- · Existen varios tipos de molinos que pueden usarse según el propósito;
- · Estos varían en:
 - 1. capacidad;

- · Existen varios tipos de molinos que pueden usarse según el propósito;
- · Estos varían en:
 - 1. capacidad;
 - 2. velocidad de operación;

- · Existen varios tipos de molinos que pueden usarse según el propósito;
- · Estos varían en:
 - 1. capacidad;
 - 2. velocidad de operación;
 - 3. capacidad para controlar la temperatura.

Capacidades de los molinos

Según la cantidad de polvo que se requiera sintetizar, se pueden utilizar diferentes molinos:

 Para propositos de screening se puede utilizar un molino tipo SPEX.

Capacidades de los molinos

Según la cantidad de polvo que se requiera sintetizar, se pueden utilizar diferentes molinos:

- Para propositos de screening se puede utilizar un molino tipo SPEX.
- Para producir grandes cantidades de polvo se puede utilizar un molino tipo Fristsch Pulverisette planetario.

Comparación de capacidades

Cuadro 1: Comparación de tipos de molinos convencionales en función a cantidades de material que pueden procesar.

Tipo de molino	Tamaño de muestra
Molino mezclador	Hasta dos de 20 g
Molino planetario	Hasta cuatro de 250 g
Molino de atrición	0,5 kg a 100 kg
Molino de bolas	Hasta cuatro de 2000 g

Contenedor del molino

Variables del proceso de molienda

Importa el material del contenedor

• El material del contenedor del molino es un factor muy importante a considerar.

Importa el material del contenedor

- El material del contenedor del molino es un factor muy importante a considerar.
 - 1. Puede influir en *que tan contaminada* pueda estar nuestra fase metaestable.

Importa el material del contenedor

- El material del contenedor del molino es un factor muy importante a considerar.
 - 1. Puede influir en que tan contaminada pueda estar nuestra fase metaestable.
 - 2. Si ambos tienen el mismo material, puede alterar la composición química del polvo.

Materiales convencionales

Entre los materiales más comunes para contenedores con aplicaciones en molinos se encuentran:

acero reforzado;

- · acero reforzado;
- · acero cromado reforzado;

- · acero reforzado;
- · acero cromado reforzado;
- acero templado;

- · acero reforzado;
- · acero cromado reforzado;
- acero templado;
- · acero inoxidable;

- · acero reforzado;
- · acero cromado reforzado;
- acero templado;
- · acero inoxidable;
- · WC-Co

- · acero reforzado;
- · acero cromado reforzado;
- · acero templado;
- · acero inoxidable;
- WC-Co
- · acero recubierto de WC.

Contenedores de materiales para propósitos especializados:

· cobre;

- · cobre;
- · titanio;

- · cobre;
- · titanio;
- · safíro;

- · cobre;
- · titanio;
- · safíro;
- · agata;

- · cobre;
- titanio;
- safíro;
- · agata;
- · porcelana dura;

- · cobre;
- titanio;
- · safíro;
- · agata;
- · porcelana dura;
- Si_3N_4

- · cobre;
- · titanio;
- · safíro;
- · agata;
- · porcelana dura;
- Si₃N₄
- Cu−Be

Variables del proceso de molienda

• La forma del contenedor puede afectar en los tiempos de molienda drasticamente.

- La forma del contenedor puede afectar en los tiempos de molienda drasticamente.
- para los molinos SPEX existen contenedores de fondo plano y contenedores de fondo redondo

- La forma del contenedor puede afectar en los tiempos de molienda drasticamente.
- para los molinos SPEX existen contenedores de fondo plano y contenedores de fondo redondo
- El tiempo requerido para que se llegara a la misma intensidad en un pico en XRD en (111) fue de:
 - 1. 9 h en el contenedor de fondo plano;
 - 2. 15 h en el contenedor de fondo redondo.

Figura 2: Efecto del uso de un contenedor de fondo plano vs uno de fondo redondo. (-.-) 3 h y (\cdots) 6 h en vial redondo; (-) 3 h (---) 6 h en vial con fondo plano. (Obtenido de Harringa, Cook y Beaudry

Variables del proceso de molienda

Velocidad/intensidad de molienda

Velocidad de molienda

Velocidad crítica, C_s:

En un molino de bolas, la *velocidad crítica* (C_s) es la velocidad en la que el medio de molienda se adhiere, a causa de la fuerza centrífuga, a las paredes del contenedor. La fórmula de la velocidad crítica es:

$$C_{\rm s} = \frac{\pi}{2} \sqrt{\frac{g}{R - r}} \tag{1}$$

Donde g es la constante gravitacional, R es el diámetro interno del molino y r el diámetro de un trozo de medio de molienda.

Velocidad crítica del molino

• A velocidades mayores que la *velocidad crítica* las bolas estarían sujetas al contenedor y no causarían ningún impacto;

Velocidad crítica del molino

- A velocidades mayores que la *velocidad crítica* las bolas estarían sujetas al contenedor y no causarían ningún impacto;
- · la velocidad debe ser ajustada para que sea menor que la velocidad crítica.

 \cdot Los molinos de bolas secos operan en un rango de 50 % a 70 % de la $\textit{C}_{\textrm{s}};$

- · Los molinos de bolas secos operan en un rango de 50 % a 70 % de la Cs;
- · normalmente se operan de 60 % a 65 %;

- · Los molinos de bolas secos operan en un rango de 50 % a 70 % de la C_s;
- · normalmente se operan de 60 % a 65 %;
 - 1. $a \le 50 \% C_s$ la enrgía es muy poca para fracturar el polvo;

- \cdot Los molinos de bolas secos operan en un rango de 50 % a 70 % de la C_s ;
- normalmente se operan de 60 % a 65 %;
 - 1. a \leq 50 % C_s la enrgía es muy poca para fracturar el polvo;
 - 2. a \geq 70 % $C_{\rm s}$ el medio comienza a caer en *catarata*, golpeando una sola zona del contenedor.

Temperatura del medio

Una de las consecuencias de moler a altas velocidades es que la temperatura del medio aumenta.

Ventajas de una mayor velocidad

· Puede promover la homogeneidad y/o aleaciones de polvos.

Desventajas de una mayor velocidad

 acelera la transformación del proceso, resultando en descomposición de la fase deseada;

Desventajas de una mayor velocidad

- acelera la transformación del proceso, resultando en descomposición de la fase deseada;
- · se pueden formar otras fases metaestables indeseadas;

Desventajas de una mayor velocidad

- acelera la transformación del proceso, resultando en descomposición de la fase deseada;
- se pueden formar otras fases metaestables indeseadas;
- · incrementa el riesgo de contaminación de polvos.

Obtención de fases en función de la velocidad

En algunas investigaciones, se han reportado *cambios en la morfología* en función de la *velocidad*:¹

Cuadro 2: Relación de la velocidad con las fases obtenidas

Fase obtenida	Velocidad de molienda
Ni-Zr (amorfo)	Alta velocidad
Ni—Zr (cristalino)	Velocidad media y baja

¹Calka y Radlinski 1991.

Variables del proceso de molienda

Tiempo de molienda

Factores que influyen en el tiempo de molienda

- · Es el factor más importante;
- el tiempo de molienda depende de:
 - 1. tipo de molino;
 - 2. intensidad de molienda;
 - 3. relación bolas-polvo (BPR);
 - 4. temperatura de molienda.

Desventajas de un mayor tiempo de molienda

· Se debe de limitar el tiempo de molienda solo al necesario²

²Suryanarayana 1995.

Desventajas de un mayor tiempo de molienda

- · Se debe de limitar el tiempo de molienda solo al necesario²
- · A mayor tiempo de molienda, más posibilidad de contaminación.

²Suryanarayana 1995.

Desventajas de un mayor tiempo de molienda

- · Se debe de limitar el tiempo de molienda solo al necesario²
- · A mayor tiempo de molienda, más posibilidad de contaminación.
- · Mayor posibilidad de degradar el polvo.

²Suryanarayana 1995.

Precauciones adicionales

- · Hay mayor contaminación a mayor tiempo de molienda;
- esto es especialmente aplicable a contenedores/medios de molienda reactivos, como:³
 - · Ti;
 - ZrO_2 .

³Suryanarayana 2004, pág. 64.

Variables del proceso de molienda

Medio de molienda

Selección del medio de molienda

- · Una correcta selección del medio de molienda es crucial;
 - tamaño;
 - · distribución de tamaños.

Medios de molienda convencionales

Entre los materiales más comunes para su uso en medios de molienda, se encuentran:

- · acero reforzado;
- · acero;
- · acero cromado reforzado;
- · acero templado;
- · acero inoxidable;
- WC-Co;
- · acero para rodamientos.

Así como con los contenedores, también se pueden usar medios de molienda para usos especializados:

· cobre;

- · cobre;
- titano;

- · cobre;
- · titano;
- niobio;

- · cobre;
- · titano;
- · niobio;
- · zirconia (ZrO₂)

- · cobre;
- titano;
- · niobio;
- · zirconia (ZrO₂)
- ágata;

- · cobre;
- titano;
- · niobio;
- · zirconia (ZrO₂)
- · ágata;
- · YSZ;

- · cobre;
- titano;
- · niobio;
- · zirconia (ZrO₂)
- · ágata;
- · YSZ;
- · zafiro;

- · cobre;
- titano;
- · niobio;
- · zirconia (ZrO₂)
- · ágata;
- · YSZ;
- · zafiro;
- nitruro de silicio (Si₃N₄);

- · cobre;
- · titano;
- · niobio;
- · zirconia (ZrO₂)
- · ágata;
- · YSZ;
- · zafiro;
- nitruro de silicio (Si₃N₄);
- Cu−Be;

 Se ha determinado que en condiciones suaves de molienda (bolas más pequeñas, menor energía y menor BPR) favorece la formación de fases metaestables.⁴

⁴Suryanarayana et al. 1999.

⁵Gerasimov et al. 1991.

- Se ha determinado que en condiciones suaves de molienda (bolas más pequeñas, menor energía y menor BPR) favorece la formación de fases metaestables.⁴
- por el contrario, al usar condiciones más duras, se favorece la formación de fases menos metaestables o de fases en equilibrio.⁵

⁴Suryanarayana et al. 1999.

⁵Gerasimov et al. 1991.

Se ha determinado que en condiciones suaves de molienda (bolas más pequeñas, menor energía y menor BPR) favorece la formación de fases metaestables.⁴

 por el contrario, al usar condiciones más duras, se favorece la formación de fases menos metaestables o de fases en equilibrio.⁵

⁴Suryanarayana et al. 1999.

⁵Gerasimov et al. 1991.

Relación de bolas-polvo (BPR)

Variables del proceso de molienda

BPR en función del tamaño de muestra

- Se ha estudiado de 1:16 hasta 220:17
- normalmente se usa una BPR de 10:1 para molimos de poca capacidad como un SPEX;
- · para attritores se puede usar desde 50:1 hasta 100:1

⁶Chin y Perng 1996.

⁷Kis-Varga y Beke 1996.

BPR en función del tiempo

· A mayor BPR, menor tiempo de molienda

Cuadro 3: Variación de BPR y el tiempo necesario para sintetizar Ti-33 %Al amorfo.

BPR	Tiempo
10:1	7 h
50:1	2 h

Condiciones de molienda y su influencia en las fases obtenidas

Condiciones de molienda Cuadro 4: Condicones de molienda y fases obtenidas. Condiciones de Fase obtenida molienda fases metaestables Suaves fases en equilibrio Duras

Figura 3: Influencia del BPR en el tamaño del polvo a diferentes tiempos. (*Adaptado de Suryanarayana* (2004, pág. 68)).

Figura 4: Influencia del BPR y la forma del medio de molienda en el tamaño del polvo a diferentes tiempos. (*Adaptado de Suryanarayana* (2004, pág. 68)).

Variables del proceso de molienda

Grado de llenado del vial

Consideraciones generales

- Ya que la molienda depende del impacto de las bolas con el polvo, no puede llenarse por completo el vial;
- · se recomienda llenarlo ≤50 %.

Atmósfera de molienda

Variables del proceso de molienda

La influencia de la atmosfera de molienda

- · Es de los principales contribuyentes a la contaminación;
- · se evita llenando con gas inerte el contenedor;
- · comúnmente se usa argón para evitar la oxidación.

Uso de otros gases

- · No es común que se use nitrógeno;
 - 1. se puede utilizar nitrógeno o amoníaco para producir nitruros;8
 - 2. se puede uitlizar hidrógeno para producir hidruros.9

⁸Andrzej Calka y J. Williams 1992.

⁹Chen y J. R. Williams 1996.

Morfología de la fase obtenida

- · La atmósfera puede influir en la morfología obtenida:
- · Ogino et al. (1990) determinó que para la preparación de Cr—Fe:
 - 1. en atmósfera de argón se presentaban picos de XRD correspondientes a Cr;
 - 2. en aire-Ar y en nitrógeno se formaba una fase amorfa.

Figura 5: Efecto de la atmosfera en la cristalinidad del polvo.

Variables del proceso de molienda

Agentes de control del proceso (PCA)

Prevención de soldadura en frío

 Solo se puede obtener una aleación adecuada si se mantiene una relación adecuada entre fracturas de partículas y soldadura en frío;

Uso de PCA

- · Se usan agentes de control del proceso (PCA) para reducir la soldadura en frío;
 - · estos pueden ser sólidos, líquidos o gases;
 - · el PCA se absorbe en la superficie del polvo
 - · inhibe la aglomeración
- en práctica, se usa 1% a 5%m.

Variables del proceso de molienda

Temperatura

· La difusión es un proceso involucrado en la formación de las fases;

¹⁰Hong, Bansal y Fultz 1994.

¹¹H. Kimura y M. Kimura 1989.

- · La difusión es un proceso involucrado en la formación de las fases;
 - a mayor temperaturas:10

¹⁰Hong, Bansal y Fultz 1994.

¹¹H. Kimura y M. Kimura 1989.

- · La difusión es un proceso involucrado en la formación de las fases;
 - · a mayor temperaturas:10
 - · se obtienen menor RMS del estrés de las nanopartículas;

¹⁰Hong, Bansal y Fultz 1994.

¹¹H. Kimura y M. Kimura 1989.

- · La difusión es un proceso involucrado en la formación de las fases;
 - a mayor temperaturas:10
 - · se obtienen menor RMS del estrés de las nanopartículas;
 - · menor tamaño de grano.

¹⁰Hong, Bansal y Fultz 1994.

¹¹H. Kimura y M. Kimura 1989.

- · La difusión es un proceso involucrado en la formación de las fases;
 - a mayor temperaturas:10
 - · se obtienen menor RMS del estrés de las nanopartículas;
 - · menor tamaño de grano.
 - · a menor temperatura: 11

¹⁰Hong, Bansal y Fultz 1994.

¹¹H. Kimura y M. Kimura 1989.

- · La difusión es un proceso involucrado en la formación de las fases;
 - a mayor temperaturas:10
 - · se obtienen menor RMS del estrés de las nanopartículas;
 - · menor tamaño de grano.
 - · a menor temperatura: 11
 - · hay evidencia contradictoria, pero en teoría se favorece la *amorficidad*.

¹⁰Hong, Bansal y Fultz 1994.

¹¹H. Kimura y M. Kimura 1989.

Referencias i

Referencias

- Calka, A y A.P Radlinski (mar. de 1991). "Universal High Performance Ball-Milling Device and Its Application for Mechanical Alloying". En: Materials Science and Engineering: A 134, págs. 1350-1353. ISSN: 09215093. DOI: 10/dkwp9q.
- Calka, Andrzej y J.S. Williams (ene. de 1992). "Synthesis of Nitrides by Mechanical Alloying". En: Materials Science Forum 88–90, págs. 787-794. ISSN: 1662-9752. DOI: 10/b45vb6.

Referencias ii

- Chen, Yi y John R. Williams (jul. de 1996). "Hydriding Reactions Induced by Ball Milling". En: Materials Science Forum 225–227, págs. 881-888. ISSN: 1662-9752. DOI: 10/cnt47h.
- Chin, Z.-H. y T.P. Perng (oct. de 1996). "Amorphization of Ni-Si-C Ternary Alloy Powder by Mechanical Alloying". En: Materials Science Forum 235–238, págs. 121-126. ISSN: 1662-9752. DOI: 10/d44hkv.
- Gerasimov, K. B. et al. (1991). "Tribochemical Equilibrium in Mechanical Alloying of Metals". En: Journal of Materials Science 26.9, págs. 2495-2500. ISSN: 0022-2461, 1573-4803. DOI: 10/bbd7xv.

Referencias iii

- Harringa, J. L., B. A. Cook y B. J. Beaudry (feb. de 1992). "Effects of Vial Shape on the Rate of Mechanical Alloying in Si₈₀Ge₂₀". En: Journal of Materials Science 27.3, págs. 801-804. ISSN: 0022-2461, 1573-4803. DOI: 10/dx2s3p.
- Hong, L.B., C. Bansal y B. Fultz (dic. de 1994). "Steady State Grain Size and Thermal Stability of Nanophase Ni3Fe and Fe3X (X = Si, Zn, Sn) Synthesized by Ball Milling at Elevated Temperatures". En: Nanostructured Materials 4.8, págs. 949-956. ISSN: 09659773. DOI: 10/bfzw9m.
- Kimura, Hiroshi y Masayoshi Kimura (1989). "Processing Control for Solid State Amorphization of CoZr by Reaction Ball Milling.". En: Journal of the Japan Society of Powder and Powder Metallurgy 36.6, págs. 662-667. ISSN: 0532-8799, 1880-9014. DOI: 10/fcxb7n.

Referencias iv

- Kis-Varga, Miklos y Dezső L. Beke (jul. de 1996). "Phase Transitions in Cu-Sb Systems Induced by Ball Milling". En: Materials Science Forum 225–227, págs. 465-470. ISSN: 1662-9752, DOI: 10/fd6cx6.
- Ogino, Yoshikiyo et al. (feb. de 1990). "Non-Equilibrium Phases Formed by Mechanical Alloying of Cr–Cu Alloys". En: Journal of Non-Crystalline Solids 117–118, págs. 737-740. ISSN: 00223093. DOI: 10/d92mbn.
- Suryanarayana, C. (ene. de 1995). "Does a Disordered γ-TiAl Phase Exist in Mechanically Alloyed TiAl Powders?" En: Intermetallics 3.2, págs. 153-160. ISSN: 09669795. DOI: 10/c7z4dp.
- (2004). *Mechanical Alloying and Milling*. Materials Engineering 22. New York: Marcel Dekker. 466 págs. ISBN: 978-0-8247-4103-7.

Referencias v

Suryanarayana, C. et al. (feb. de 1999). "Phase Selection in a Mechanically Alloyed Cu2013;In–Ga–Se Powder Mixture". En: Journal of Materials Research 14.2, págs. 377-383. ISSN: 0884-2914, 2044-5326. DOI: 10/c7wjcq.