Levi Bands and Toric Richardson Varieties

Mahir Bilen Can
This talk is based on joint works with Pinaki Saha and Fernando Nestor Diaz Morera
2025 Fall Central Sectional Meeting Saint Louis University
October 19, 2025

We use the standard notation G, B, B^-, T and W. Unless otherwise stated, G is simple and simply connected.

We use the standard notation G, B, B^-, T and W. Unless otherwise stated, G is simple and simply connected.

We set

We use the standard notation G, B, B^-, T and W. Unless otherwise stated, G is simple and simply connected.

We set

Note that $X_u^v = X_v \cap w_0 X_{w_0 u}$, where w_0 is the longest element of W.

We use the standard notation G, B, B^-, T and W. Unless otherwise stated, G is simple and simply connected.

We set

Note that $X_u^v = X_v \cap w_0 X_{w_0 u}$, where w_0 is the longest element of W.

Richardson varieties play a central role in the geometry of G/B. Their cohomology classes correspond to products in $H^*(G/B)$:

$$[X_u] \cdot [X^v] = [X_u^v].$$

A reference

COMMUNICATIONS IN ALGEBRA® 2025, VOL. 53, NO. 5, 1770–1790 https://doi.org/10.1080/00927872.2024.2422028

Toric Richardson varieties

Mahir Bilen Canab and Pinakinath Sahas

"Theoretical Sciences Visiting Program Okinawa Institute of Science and Technology Graduate University, Onna, Japan;
"Tulane University, New Orleans, Louisiana, USA; "Indian Institute of Science, Bangaluru, India

ABSTRACT

In this article, we provide characterizations of toric Richardson varieties across all types through three distinct approaches: 1) poset theory, 2) root theory, and 3) geometry.

ARTICLE HISTORY

Received 16 October 2023 Communicated by K. Misra

KEYWORDS

Richardson varieties; Schubert varieties; toric varieties

2020 MATHEMATICS SUBJECT CLASSIFICATION 14M15; 14M25

1. Introduction

Theorem A

Theorem (Can-Saha '23)

Let $u \le v$ in W. The Richardson variety X_v^u is toric for T if and only if the Bruhat interval [u,v] is a lattice. (Tenner'22: [u,v] is boolean iff distributive iff modular.)

Theorem A

Theorem (Can-Saha '23)

Let $u \le v$ in W. The Richardson variety X_v^u is toric for T if and only if the Bruhat interval [u,v] is a lattice. (Tenner'22: [u,v] is boolean iff distributive iff modular.)

Figure 1: Hasse diagram of the interval $[s_2, s_2s_1s_3s_2] = [1324, 3412].$

Theorem B

Theorem (Can-Saha '23)

Assume that G is of A-,D-, or E- type. Let $u \le v$ in W. The Richardson variety X_v^u is a smooth toric variety for T if and only if the Bruhat interval [u,v] is a boolean lattice.

Theorem B

Theorem (Can-Saha '23)

Assume that G is of A-,D-, or E- type. Let $u \le v$ in W. The Richardson variety X_v^u is a smooth toric variety for T if and only if the Bruhat interval [u, v] is a boolean lattice.

Figure 2: Hasse diagram of the interval $[s_3s_2, s_2s_3s_2s_1s_2] = [1342, 3421].$

5/25

Theorem C

Theorem (Can-Saha '23)

Assume that G/P is minuscule, or $G = G_2$. Let $u \le v$ in W^P . The Richardson variety X_{vP}^{uP} is a toric variety for T if and only if v = uc, where c is a boolean element.

Example

In type A, if $G = SL_n$ and P is the maximal parabolic subgroup stabilizing a k-plane, then G/P identifies with the Grassmannian $\operatorname{Gr}(k,n)$. A Schubert variety in $\operatorname{Gr}(k,n)$ can be described combinatorially by a monotone lattice path in a $k \times (n-k)$ grid running from (0,0) to (k,n-k), and a Richardson variety X_v^u corresponds to a pair of such lattice paths with the lower path determined by u and the upper path by v. Multiplying by a boolean element c raises the lower path by a sequence of ribbons.

Here is a toric Richardson variety in Gr(6, 10).

Figure 3: The lower path is u (solid blue) and the upper path is v = uc (dashed red). The three shaded squares correspond to c.

Levi Bands

Relative position

Orbits of the diagonal action of G on $G/B \times G/B$ are parametrized by W. For $w \in W$, we denote by \mathcal{O}_w the following orbit:

$$\mathcal{O}_w := G \cdot (B, wB) = \{(gB, gwB) \mid g \in G\}.$$

Hence, for $(xB, yB) \in X \times X$, there is a unique $w \in W$ such that $(xB, yB) \in \mathcal{O}_w$. This element is called the **relative position of** (x, y),

$$\operatorname{relpos}(x,y) := w.$$

Then

$$\overline{\mathcal{O}_w} = \{(gB, hB) \mid \text{relpos}(g, h) \leq w\}.$$

Levi bands

We fix a Levi subgroup $L \supset T$. The L-orbit of eB in G/B is a flag variety itself:

$$Y_L := L \cdot (eB) \cong L/B_L.$$

Definition

Let $u, v \in W$. We define the **Levi band associated with** (L, u, v) as follows:

$$Z_L(u,v) := egin{cases} \{(x,y) \in G/B imes Y_L \mid u \leq \operatorname{relpos}(x,y) \leq v\} & \text{if } u \leq v \\ \emptyset & \text{otherwise.} \end{cases}$$

- For L = T and $u \le v$, Y_L is a point, and $Z_L(u, v) \cong X_u^v$.
- For L = G and $u \le v$, $Y_L = G/B$ and $Z_L(u, v)$ is the union of diagonal G-orbits with $w \in [u, v]$ (the "G-band of [u, v]").

Normality

Theorem

Let $u \leq v$. Then $Z_L(u, v)$ is irreducible and normal.

Normality

Theorem

Let $u \leq v$. Then $Z_L(u, v)$ is irreducible and normal.

Lemma

 $Z_L(u,v)$ is a locally closed, irreducible subvariety, stable for the diagonal action of L. The projection $\pi_2: Z_L(u,v) \to Y_L$ is surjective and L-equivariant.

Normality

Theorem

Let $u \leq v$. Then $Z_L(u, v)$ is irreducible and normal.

Lemma

 $Z_L(u,v)$ is a locally closed, irreducible subvariety, stable for the diagonal action of L. The projection $\pi_2: Z_L(u,v) \to Y_L$ is surjective and L-equivariant.

Lemma

Let $U_L:=B_L^-B_L/B_L\subset Y_L$ be the big B_L -cell. Then the restriction of the projection

$$\pi_2: Z_L(u,v) \longrightarrow Y_L$$

is Zariski-locally trivial over U_L , with fiber X_u^v :

$$\Phi: U_L \times X_u^{\vee} \stackrel{\sim}{\longrightarrow} Z_L(u, v) \cap \pi_2^{-1}(U_L), \qquad (I, xB) \mapsto (I \times B, IB_L).$$

Positivity

Using $H^*(G/B) \otimes H^*(G/B)$ with basis $[X_a] \otimes [X_b]$, we write

$$[\overline{Z_L(u,v)}] = \sum_{a,b\in W} c_{a,b} ([X_a] \otimes [X_b]), \quad c_{a,b} \in \mathbb{Z}.$$

Positivity

Using $H^*(G/B) \otimes H^*(G/B)$ with basis $[X_a] \otimes [X_b]$, we write

$$[\overline{Z_L(u,v)}] = \sum_{a,b \in W} c_{a,b} ([X_a] \otimes [X_b]), \quad c_{a,b} \in \mathbb{Z}.$$

Theorem

All coefficients satisfy $c_{a,b} \geq 0$.

Proof. For $a \in W$, let's write $a' := w_0 a$. Then, by using Poincaré duality and Kleiman transversality on $G/B \times G/B$, we calculate $c_{a,b}$ as follows:

$$c_{a,b} = \int_{G/B \times G/B} [\overline{Z_L(u,v)}] \smile (\pi_1^*[X^{a'}] \smile \pi_2^*[X^{b'}])$$
$$= \deg([\overline{Z_L(u,v)}] \cdot [(gX^{a'}) \times (hX^{b'})])$$

for some $(g, h) \in G \times G$. This is a nonnegative integer.

Spherical Varieties

Spherical varieties

For a normal irreducible G-variety X, define the complexity of an G-action by

$$c_G(X) := tr. \deg_k k(X)^G.$$

Spherical varieties

For a normal irreducible G-variety X, define the complexity of an G-action by

$$c_G(X) := \operatorname{tr.deg}_k k(X)^G.$$

Definition

Let X be a normal G-variety.

• X is G-spherical iff $c_B(X) = 0$ iff \exists open B-orbit in X.

Spherical varieties

For a normal irreducible G-variety X, define the complexity of an G-action by

$$c_G(X) := \operatorname{tr.deg}_k k(X)^G.$$

Definition

Let X be a normal G-variety.

• X is G-spherical iff $c_B(X) = 0$ iff \exists open B-orbit in X.

Theorem (Brion, Vinberg)

X is G-spherical $\iff X$ contains only finitely many B-orbits.

Representation theory characterization of spherical varieties

۸	T (or, of B)
Λ^+	\ldots the monoid of dominant weights relative to B
$V(\lambda)$, the simple <i>G</i> -module with highest weight $\lambda \in \Lambda^+$
$\mathcal{M}_{\lambda}^{(B)}$	the <i>B</i> -eigenspace with weight $\lambda \in \Lambda$
$M_{(\lambda)}$	the G -submodule generated by $M_{\lambda}^{(B)}$ in M

Representation theory characterization of spherical varieties

```
\begin{array}{llll} \Lambda & & & & \text{the character group of } T \text{ (or, of } B) \\ \Lambda^+ & & & \text{the monoid of dominant weights relative to } B \\ V(\lambda) & & \text{the simple } G\text{-module with highest weight } \lambda \in \Lambda^+ \\ M_{\lambda}^{(B)} & & \text{the $B$-eigenspace with weight } \lambda \in \Lambda \\ M_{(\lambda)} & & \text{the $G$-submodule generated by } M_{\lambda}^{(B)} \text{ in } M \\ \end{array}
```

A normal quasiaffine G-variety X is G-spherical iff

- 1. k[X] is multiplicity-free: $k[X] = \bigoplus_{\lambda \in \Lambda^+(X)} k[X]_{(\lambda)}$ and dim $\operatorname{Hom}_G(V(\lambda), k[X]) = 1$,
- 2. $\Lambda^+(X)$ is saturated: the weight monoid $\Lambda^+(X) := \{\lambda \in \Lambda \mid k[X]_{\lambda}^{(B)} \neq 0\}$ is saturated.

Stabilizers of Schubert and opposite Schubert varieties

• Schubert variety: $X_u = \overline{B u B/B}$ is stabilized by the **standard parabolic**

$$P_u := \operatorname{Stab}_G(X_u).$$

• Opposite Schubert: $X^{v} = \overline{B^{-} v B/B} = w_0 X_{w_0 v}$ is stabilized by the **opposite parabolic**

$$\operatorname{Stab}_{G}(X^{v}) = w_{0}P_{v}w_{0}^{-1}, \qquad P_{v} := \operatorname{Stab}_{G}(X_{w_{0}v}).$$

Their intersection

$$Q:=P_u\cap w_0P_vw_0^{-1}$$

need not be parabolic, but it contains the canonical Levi

$$L:=L_{I_u\cap I_v}\subset Q.$$

Lemma

L fixes both X_u and X^v , hence acts on the Richardson variety $X_u^v := X_u \cap X^v$.

Band as a homogeneous fiber bundle $L \times^{B_L} X_{\cdot}^{v}$

Theorem

There is an L-equivariant isomorphism

$$\Theta: L \times^{B_L} X_u^{\vee} \xrightarrow{\sim} Z_L(u, v), \qquad [I, x] \longmapsto (I \cdot x, I \cdot B_L).$$

Sketch of a proof.

The map $L \times X_{l}^{v} \to Z_{l}(u,v)$, $(l,x) \mapsto (l \cdot x, l \cdot B_{l})$, is right B_{l} -equivariant for $(I,x) \cdot b = (Ib, b^{-1} \cdot x)$, so it factors through $L \times^{B_L} X_u^v$. The fiber over eB_L is X_u^v , and L acts transitively on Y_L , giving surjectivity. The quotient relation ensures injectivity. Glueing on Bruhat "charts." we conclude it is an isomorphism.

Band as a homogeneous fiber bundle $L \times^{B_L} X_u^v$

Theorem

There is an L-equivariant isomorphism

$$\Theta: L \times^{B_L} X_u^{\vee} \xrightarrow{\sim} Z_L(u, v), \qquad [I, x] \longmapsto (I \cdot x, I \cdot B_L).$$

Sketch of a proof.

The map $L \times X_u^v \to Z_L(u,v)$, $(I,x) \mapsto (I \cdot x, I \cdot B_L)$, is right B_L -equivariant for $(I,x) \cdot b = (Ib,b^{-1} \cdot x)$, so it factors through $L \times^{B_L} X_u^v$. The fiber over eB_L is X_u^v , and L acts transitively on Y_L , giving surjectivity. The quotient relation ensures injectivity. Glueing on Bruhat "charts," we conclude it is an isomorphism.

This result allows us to port-over our earlier results from [Can-Saha'23].

Orbit-closure posets

Let $Z := Z_L(u, v)$ and $X := X_u^v$.

Let $\mathcal{P}_L(Z)$ be the inclusion poset of L-orbit closures in Z, and $\mathcal{P}_{B_L}(X)$ the inclusion poset of B_L -orbit closures in X.

Theorem

Suppose L has an open orbit in Z. Then the map

$$\begin{array}{cccc} \Phi: \ \mathcal{P}_L(Z) & \longrightarrow \ \mathcal{P}_{B_L}(X), \\ \overline{\mathcal{O}} & \longmapsto & \overline{\mathcal{O}} \cap \pi_2^{-1}(eB_L) \end{array}$$

is a well-defined poset isomorphism.

Note:
$$\overline{\mathcal{O}} \cap \pi_2^{-1}(eB_L) = \overline{\mathcal{O}} \cap X$$
.

Induction and sphericity

Theorem

Let $Z := Z_L(u, v)$ and $X := X_u^v$. Then the following are equivalent:

- 1. Z is a spherical L-variety.
- 2. The fiber $X = X_u^v$ has an open B_L -toric variety.

In particular, if X is T_L -toric, then Z is L-spherical.

Proof idea. Sphericity is preserved under parabolic induction: $L \times^{B_L} (-)$.

Induction and sphericity

Theorem

Let $Z := Z_L(u, v)$ and $X := X_u^v$. Then the following are equivalent:

- 1. Z is a spherical L-variety.
- 2. The fiber $X = X_u^v$ has an open B_L -toric variety.

In particular, if X is T_L -toric, then Z is L-spherical.

Proof idea. Sphericity is preserved under parabolic induction: $L \times^{B_L} (-)$.

Question

Is there a clean combinatorial characterization of the intervals [u,v] where X_u^v is L-spherical.

Wonderful varieties from Richardson varieties

Definition

A G-variety is said to be **wonderful** if it is smooth, complete, simple (unique closed G-orbit) and toroidal (no colors).

Wonderful varieties from Richardson varieties

Definition

A G-variety is said to be **wonderful** if it is smooth, complete, simple (unique closed G-orbit) and toroidal (no colors).

Corollary

Let $Z := Z_L(u, v)$ and $X := X_u^v$. Then the following are equivalent:

- 1. Z is a wonderful L-variety.
- 2. The fiber $X = X_u^v$ is a smooth T_L -toric variety.

Nearly Toric Varieties

Nearly-toric varieties

Recall that a toric variety if a normal T-variety X such that $c_T(X) = 0$.

Definition

We call a normal G-variety X a **nearly-toric** G-variety if it satisfies

- 1. $c_T(X) = 1$, 2. $c_G(X) = 0$.

Nearly-toric varieties

Recall that a toric variety if a normal T-variety X such that $c_T(X) = 0$.

Definition

We call a normal G-variety X a **nearly-toric** G-variety if it satisfies

- 1. $c_T(X) = 1$,
- 2. $c_G(X) = 0$.

Example

Let $X := \operatorname{Skew}_4$, and X_{sing} denote the divisor defined by $X_{sing} := \{\det x = 0\} \cap X$. Then $\dim X = 6$ and $\dim X_{sing} = 5$. We have an action of $G := \mathbf{GL}_4$ on X and X_{sing} :

$$g \cdot A = gAg^{\top}$$
 $(g \in G, A \in X).$

Nearly-toric varieties

Recall that a toric variety if a normal T-variety X such that $c_T(X) = 0$.

Definition

We call a normal G-variety X a **nearly-toric** G-variety if it satisfies

- 1. $c_T(X) = 1$,
- 2. $c_G(X) = 0$.

Example

Let $X := \text{Skew}_4$, and X_{sing} denote the divisor defined by $X_{sing} := \{ \det x = 0 \} \cap X$. Then $\dim X = 6$ and $\dim X_{sing} = 5$. We have an action of $G := \mathbf{GL}_4$ on X and X_{sing} :

$$g \cdot A = gAg^{\top}$$
 $(g \in G, A \in X).$

There is a four dimensional **T**-orbits in X_{sing} and dim $X_{sing} = 5$. Hence, $c_{\mathsf{T}}(X_{sing}) = 1$. Since X_{sing} is spherical, it is a nearly-toric **GL**₄-variety.

19/25

This is a non-example

Example

Let

 $G := \mathbf{SL}(3, \mathbb{C})$

B := upper triangular Borel in G

T :=the diagonal torus

 $X := \mathbf{SL}(3,\mathbb{C})/\mathbf{SO}(3,\mathbb{C})$

We consider the natural left multiplication action of ${\it G}$ on ${\it X}$.

This is a non-example

Example

Let

$$G:=\mathbf{SL}(3,\mathbb{C})$$

B := upper triangular Borel in G

T :=the diagonal torus

$$X := \mathbf{SL}(3,\mathbb{C})/\mathbf{SO}(3,\mathbb{C})$$

We consider the natural left multiplication action of G on X.

Since dim X = 6 and dim T = 2, X is not a nearly-toric G-variety.

Conjecture on Nearly Toric Richardson Varieties in G/B

Huntch:

Let $X_u^v \subseteq G/B$ be a Richardson variety whose stabilizing Levi properly contains T. Then X_u^v is nearly toric for the L-action if and only if the Bruhat interval factors as

$$[u,v] \cong \mathcal{D} \times \mathcal{H},$$

where

- \mathcal{D} is a lattice (toric part),
- $\mathcal{H} \cong S_3$.

Conjecture on Nearly Toric Richardson Varieties in Grassmannians

Huntch #1:

Assume that G/P is minuscule, or $G = G_2$. Let $u \le v$ in W^P . The Richardson variety X_{vP}^{uP} is a toric variety for T if and only if v = ud, where d is a T-complexity 1 element (product of distinct simple reflections and a single braid relation).

Conjecture on Nearly Toric Richardson Varieties in Grassmannians

Huntch #1:

Assume that G/P is minuscule, or $G = G_2$. Let $u \le v$ in W^P . The Richardson variety X_{vP}^{uP} is a toric variety for T if and only if v = ud, where d is a T-complexity 1 element (product of distinct simple reflections and a single braid relation).

In type A, the following holds:

Huntch #2:

Let $X_{uP}^{vP} \subseteq \operatorname{Gr}(k,n)$ is nearly toric for the *L*-action if and only if there is a skew-shape region between the lattice paths u and v that contains one 2×2 square and all other skew-shapes between u and v are either a ribbon or contains one 2×2 square.

A nearly toric Richardson variety in $\mathrm{Gr}(6,10)$.

one 2×2 block \Rightarrow nearly toric

If Time Permits: Horospherical RVs

Horospherical Levi bands

Call Z L-horospherical if a maximal unipotent $U_L \leq L$ fixes a generic point of Z. Then with $Z \cong L \times^{B_L} X$ we have the following equivalent conditions:

- Z is horospherical
- U_L acts trivially on a dense open in X
- B_L -action on X factors through T_L generically.

In particular, if X is T_L -toric and its generic U_L -stabilizer is trivial, then Z is L-horospherical.

Question

Is there a clean description of the horospherical Richardson varieties.

THIS IS THE END, UNTIL NEXT TIME.

THANK YOU!