5. Obory integrity a dělitelnost (okruhy polynomů, pravidla dělitelnosti, Gaussovy a Eukleidovy okruhy)

Okruhy polynomů

Upralgfin-esf.pdf (str. 39)

budeme definovat **okruh polynomů** neurčité x nad R jako podokruh (R[x],+, 0,-, ·, 1) okruhu R[[x]] (Okruh R[[x]] se nazývá okruh formálních mocninných řad neurčité x nad R) takový, že R[x] := $\{a_0 + a_1x + ... + a_nx^n \mid n \in \mathbb{N}_0, a_i \in R\}$.

Prvky množiny R[x] se nazývají polynomy a zapisují se jako f(x), p(x), ... Každý polynom $p(x) \in R[x]$ má tvar $p(x) = \sum^{n_{k=0}} a_k x^k$, kde $n \in \mathbb{N}_0$. Buď dále $q(x) = \sum^{m_{k=0}} b_k x^k$, $m \le n$. Kdy platí p(x) = q(x)? Zřejmě platí $q(x) = \sum^{n_{k=0}} b_k x^k$, přičemž $b_k = 0$ pro $m < k \le n$. Máme tedy $p(x) = q(x) \Leftrightarrow a_k = b_k$ pro k = 0, ..., n.

S polynomy se počítá podle zákonů komutativního okruhu R[x] s jednotkovým prvkem. Je-li $p(x) = \sum_{k=0}^{n} a_k x^k$, kde $a_n \neq 0$, pak se n nazývá **stupeň** polynomu p(x) (píšeme n = grad p(x)).

Je-li $p(x) = \sum_{k=0}^{n} a_k x^k \in R[x]$, pak se prvky a_k nazývají **koeficienty** polynomu p(x). $0 \in R[x]$ je **nulový polynom**, $a \in R \subseteq R[x]$ se nazývá **konstantní** polynom. Platí-li grad p(x) = n a $a_n = 1$, pak se p(x) nazývá **normovaný** polynom. Polynomy tvaru ax + b, kde a $\neq 0$, se nazývají **lineární** polynomy.

Mocninné řady a polynomy n neurčitých x₁, ..., x_n

Indukcí se definuje:

$$R[[x_1]] := R[[x]], R[[x_1, ..., x_n]] := (R[[x_1, ..., x_{n-1}]])[[x_n]], n > 1$$

a podobně:

$$R[x_1] := R[x], R[x_1, ..., x_n] := (R[x_1, ..., x_{n-1}])[x_n], n > 1.$$

Potom platí (důkaz úplnou indukcí podle *n*):

$$R[x_1,\dots,x_n] = \{ \sum_{0 \leq i_1,\dots,i_n \leq m} a_{i_1\dots i_n} x_1^{i_1} \cdots x_n^{i_n} \mid m \in \mathbb{N}_0, \ a_{i_1\dots i_n} \in R \}.$$

Např. prvek z R[x₁, x₂] má obecný tvar: p(x₁, x₂) = $a_{00} + a_{10}x_1 + a_{01}x_2 + a_{20}x^2_1 + a_{11}x_1x_2 + a_{02}x^2_2 + ... + a_{jk}x^{j_1}x^{k_2}$.

Polynomy a funkce

Princip dosazování. Buď (R,+, 0,-, ·, 1) komutativní okruh s jednotkovým prvkem a p(x) = $a_nx^n + \cdots + a_1x + a_0 \in R[x]$. Pro $a \in R$ je potom p(a) := $a_na^n + \cdots + a_1a + a_0$ opět prvkem z R, který se nazývá **hodnota polynomu** v *a*. Funkce

$$\begin{cases}
R \to R \\
a \mapsto p(a)
\end{cases}$$

se nazývá polynomiálni funkce **indukovaná polynomem** p(x) a často se také označuje p.

Buď $p(x) \in R[x]$ (R komutativní okruh s jednotkovým prvkem). Potom se a \in R nazývá **kořen**

polynomu $p(x) :\Leftrightarrow p(a) = 0$. Polynom p(x) se nazývá **dělitelný** polynomem $q(x) \in R[x]$ (formálně: $q(x)|p(x)) :\Leftrightarrow p(x) = q(x)r(x)$, kde $r(x) \in R[x]$.

Je-li a kořen polynomu p(x), pak je p(x) dělitelný linearním polynomem x - a (a opačně).

Buď $p(x) \in R[x] \setminus \{0\}$ a nechť $a \in R$ je kořenem p(x). Potom největší číslo $k \in N$ takové, že $(x - a)^k | p(x)$, se nazývá násobnost kořene a. $(k \le n)$

Nechť a1,..., ar jsou po dvou různé kořeny polynomu $p(x) \in R[x]$ s násobnostmi k_1 , ..., k_r . Potom platí:

$$(x-a_1)^{k_1} \dots (x-a_r)^{k_r} | p(x).$$

Důsledek: Nechť $a_1, ..., a_r$ jsou po dvou různé kořeny polynomu $p(x) \in R[x]$ s násobnostmi $k_1, ..., k_r$. Potom platí: $k_1 + ... + k_r \le \operatorname{grad} p(x)$.

Polynom nemusí mít žádné kořeny.

Pole K se nazývá **algebraicky uzavřené**, jestliže každý polynom $p(x) \in K[x] \setminus K$ má aspoň jeden kořen.

(Gaussova základní věta algebry) Množina C je algebraicky uzavřená.

Vypočet kořenů polynomů nad poli

- 1. grad p(x) = 1: trivialni.
- 2. grad p(x) = 2: $p(x) = ax^2 + bx + c$ ($a \ne 0$) ma kořeny ($-b \pm \sqrt{(b^2 4ac)}$)/2a ("2" resp. "4" zde označuje 1 + 1 resp. 1 + 1 + 1 + 1; vyjádření kořenů musí existovat a musí být 1 + 1 $\ne 0$).
- 3. grad p(x) = 3, 4: Cardanovy vzorce (Cardano Tartaglia).
- 4. grad p(x) > 4: zde už neexistují obecné "vzorce" (vyžadující pouze základní početní postupy a odmocňování).

Interpolace pomocí polynomů

Bud' K pole a $f: K \rightarrow K$ funkce.

Zadáno: $b_i = f(a_i)$ pro po dvou různá $a_i \in K$, $1 \le i \le n$ (např.: výsledek řady měření).

Hledá se: $p(x) \in K[x]$, kde $p(a_i) = b_i = f(a_i)$, $1 \le i \le n$, a grad p(x) < n. (Existuje nejvýše jeden takový polynom p(x): $z p(a_i) = q(a_i)$, $1 \le i \le n$, kde grad p(x), grad q(x) < n totiž plyne p = q.)

Lagrangeovy interpolačni vzorce:

Buď:

$$q_i(x) := \prod_{\substack{1 \le j \le n, \\ j \ne i}} (x - a_j) = (x - a_1) \cdots (x - a_{i-1})(x - a_{i+1}) \cdots (x - a_n).$$

Potom platí:

$$q_i(a_k) = \begin{cases} 0 & \text{pro } i \neq k, \\ \prod_{1 \leq j \leq n, j \neq i} (a_k - a_j) \neq 0 & \text{pro } i = k. \end{cases}$$

pro:

$$p(x) := \sum_{i=1}^{n} b_i \frac{q_i(x)}{q_i(a_i)}$$

platí potom $p(a_j) = b_j$, $1 \le j \le n$.

Důsledek: Je-li K konečné pole (např. $K = \mathbb{Z}_p$, p prvočíslo), $f : K \to K$, potom existuje polynom $p(x) \in K[x]$ takový, že f(a) = p(a) pro všechna $a \in K$.

Newtonovy interpolační vzorce

Obor integrity

Upralgfin-esf.pdf (str. 45)

Komutativní okruh s jednotkovým prvkem (R,+, 0,−, \cdot , 1) se nazývá **obor integrity** : \Leftrightarrow

- 1. $R \setminus \{0\} \neq \emptyset$ (tj. $0 \neq 1$),
- 2. $\forall x, y \in R : x \neq 0 \land y \neq 0 \Rightarrow xy \neq 0$ (tj. neexistují dělitelé nuly).

Jednoduchá pravidla dělitelnosti

Buď (I,+, 0,-, ·, 1) obor integrity. Jsou-li $a, b \in I$, potom říkáme, že prvek a je **dělitelný** prvkem b a b se nazývá **dělitel** prvku a (b "dělí" a, formálně: b|a) : $\Leftrightarrow \exists c \in I : a = bc$.

Elementární pravidla dělitelnosti:

- 1. $\forall a \in I : a|0$,
- 2. $\forall a \in I : 1 | a$,
- 3. $\forall a \in I : a | a$,
- 4. $\forall a, b, c \in I : a|b \land b|c \Rightarrow a|c,$
- 5. $\forall a, b, c \in I : a|b \Rightarrow a|bc$
- 6. $\forall a, b, c \in I : a|b \land a|c \Rightarrow a|b + c$,
- 7. $\forall a, b, c \in I, c \neq 0 : a|b \Leftrightarrow ac|bc$
- 8. $\forall a, b, c, d \in I : a|b \land c|d \Rightarrow ac|bd$,
- 9. $\forall a, b \in I, n \in \mathbb{N} : a|b \Rightarrow a^n|b^n$.

Buď (I,+, 0,-, ·, 1) obor integrity. Dělitel prvku 1 se nazývá jednotka oboru integrity I. Buď E(I) množina všech jednotek I. Prvky a, $b \in I$ se nazývají **asociované**.

(formálně: $a \sim b$) : $\Leftrightarrow \exists e \in E(I)$: a = be

Příklady:

- 1. $I = \mathbb{Z}$: $E(I) = \{\pm 1\}$, tedy $a \sim b \Leftrightarrow a = \pm b$.
- 2. I = K (K pole): $E(I) = K \setminus \{0\}$, tedy $a \sim b \Leftrightarrow a, b \neq 0 \lor a = b = 0$.
- 3. I = K[x] (K pole): $E(I) = K \setminus \{0\}$ (jelikož grad p(x)q(x) = grad p(x) + grad q(x)), platí $p(x) \sim q(x) \Leftrightarrow \exists a \in K \setminus \{0\} : p(x) = aq(x)$.
- \Box e ∈ I je jednotka oboru integrity I $\Leftrightarrow \exists f \in I : ef = 1$.
- \Box (E(I), ·) je abelovska grupa, ktera se nazyva **grupa jednotek** oboru integrity I.
- \sim je relace kongruence na (I, ·).
- \Box $\forall a, b \in I : a \sim b \Leftrightarrow a|b \land b|a.$

Příklad: Třidy ekvivalence vzhledem k ~:

- 1. $I = \mathbb{Z}: \{0\}, \{\pm 1\}, \{\pm 2\}, \dots, \{\pm n\}, \dots, n \in \mathbb{N}.$
- 2. $I = K: \{0\}, K \setminus \{0\}.$
- 3. $I = K[x]: \{0\}, \{ap(x) \mid a \in K \setminus \{0\}, p(x) \text{ normovan} \}$.

Bud' (I,+, 0,-, \cdot , 1) obor integrity, $a \in I$.

Triviální dělitelé prvku a: jsou všechna $e \in E(I)$ a všechna b taková, že b \sim a.

Vlastní dělitel prvku a: všechna b taková, že bla, b \notin E(I) a b $\not\sim$ a.

Prvek $a \in I \setminus E(I)$, $a \ne 0$, se nazývá **ireducibilní** prvek : \Leftrightarrow a má pouze triviální dělitele.

Přiklady:

- 1. $I = \mathbb{Z}$: $a \in I$ je ireducibilní prvek $\Leftrightarrow a = \pm p$, p prvočíslo.
- 2. I = K[x] (K Pole): Ireducibilní prvky se nazývají ireducibilní polynomy. Např. Lineární polynom ax + b, a ≠ 0 je vždy ireducibilní prvek. V algebraicky uzavřeném poli je každý ireducibilní polynom take lineární.
- 3. I = $\mathbb{R}[x]$: ireducibilní prvky jsou zde všechny lineárni polynomy a polynomy ax²+bx+c, kde a \neq 0 a b² 4ac < 0. (Ze základní věty algebry plyne, že žádné jiné neexistují.)
- 4. I = K[x], K konečné pole: ke každému $n \in N$ existuje polynom $p(x) \in K[x]$ takový, že grad p(x) = n a p(x) je ireducibilní prvek.

 $p \in I \setminus E(I)$, $p \neq 0$, se nazývá **prvočinitel** : $\Leftrightarrow p|ab \Rightarrow p|a \lor p|b$.

Gaussovy okruhy

Obor integrity I se nazýva Gaussův okruh : \Leftrightarrow Ke každému prvku $a \in I \setminus E(I)$, $a \neq 0$, existují prvočinitelé $p_1, ..., p_r$ tak, že platí že $a = p_1 ... p_r$.

Jednoznačnost rozkladu na prvočinitele: Buď I Gaussův okruh, $a \in I \setminus E(I)$, $a \neq 0$, $a = p^{(1)}_1 \dots p^{(1)}_{r1} = p^{(2)}_1 \dots p^{(2)}_{r2}$, kde $p^{(1)}_i$, $p^{(2)}_j$ jsou prvočinitele. Potom je $r_1 = r_2 =: r$ a existuje permutace π množiny $\{1, \dots, r\}$ takova, že $p^{(1)}_i \sim p^{(2)}_{\pi(i)}$, $i = 1, \dots, r$.

Příklad: Z a K[x] (K pole) jsou Gaussovy okruhy

Bud' I obor integrity, $a_1, ..., a_n \in I$.

- 1. $d \in I$ se nazývá největší společný dělitel (NSD) prvků $a_1, ..., a_n \in I :\Leftrightarrow$ (i) $d|a_i, i = 1, ..., n$ a (ii) $\forall t \in I : t|a_i, i = 1, ..., n \Rightarrow t|d$.
- 2. $v \in I$ se nazývá nejmenší společný násobek (NSN) prvků $a_1, ..., a_n \in I :\Leftrightarrow (i) \ a_i | v, i = 1, ..., n \ a (ii) \ \forall w \in I : a_i | w, i = 1, ..., n \Rightarrow v | w.$

V Gaussově okruhu I je každý ireducibilní prvek prvočinitelem.

Uvažujme faktorovou množinu I/ \sim = {[a] \sim | a \in I} a nechť z každe třidy rozkladu [a] \sim = {b \in I | b \sim a} je vybran pevny prvek n([a] \sim) (to je možne dle tzv. axiomu vyběru, ktery uživame), tj.

$$n: \left\{ \begin{array}{l} I/\sim \to I \\ [a]_{\sim} \mapsto n([a]_{\sim}) \in [a]_{\sim}. \end{array} \right.$$

Prvky množiny $n(I/\sim)$ se nazývají **normované prvky** (vzhledem k n). Každá třída [a] \sim , kde a je prvočinitel, se skládá pouze z prvočinitelů. Prvky $n([a]\sim)$, kde a je prvočinitel, se nazývají **normovaní prvočinitelé**.

Přiklad:

1. $I = \mathbb{Z}$, $n([a]_{\sim}) = n(\{\pm a\}) = |a|$. 2. I = K[x], $n(\{0\}) = 0$, $n([p(x)]_{\sim}) = q(x)$, přičemž $p(x) = a_n x^n + ... + a_1 x + a_0$, $a_n \neq 0$, $q(x) = (1/a_n)p(x)$.

Buď I Gaussův okruh, a_1 , ..., $a_n \in I$, $a_i \neq 0$, $a_i = e_i p_1^{e_{1i}}$... $p_r^{e_{ri}}$, $e_i \in E(I)$, p_j navzájem různí normovaní prvočinitelé, $e_{ji} \in \mathbb{N}_0$. Potom platí:

a
$$NSD(a_1, ..., a_n) = p_1^{\min_{1 \le i \le n}(e_{1i})} \cdots p_r^{\min_{1 \le i \le n}(e_{ri})}$$
$$NSN(a_1, ..., a_n) = p_1^{\max_{1 \le i \le n}(e_{1i})} \cdots p_r^{\max_{1 \le i \le n}(e_{ri})}.$$

Jsou-li některá $a_i = 0$, potom je $NSD(a_1, ..., a_n) = NSD(a_i \mid a_i \neq 0)$; jsou-li všechna $a_i = 0$, potom je $NSD(a_1, ..., a_n) = 0$. Jsou-li některá $a_i = 0$, pak je $NSN(a_1, ..., a_n) = 0$.

Eukleidovy okruhy

Obor integrity I se nazývá **Eukleidův okruh** : \Leftrightarrow existuje zobrazeni H : I \ $\{0\} \to \mathbb{N}_0$ (eukleidovské ohodnocení) s následující vlastností: pro všechna a \in I \ $\{0\}$, b \in I existují q, r \in I tak, že b = aq + r, kde r = 0 \vee H(r) < H(a) (dělení se zbytkem).

Příklad:

- 1. \mathbb{Z} je Eukleidův okruh, kde H(a) := |a|.
- 2. Každé pole je Eukleidův okruh ($q = a^{-1}b$, r = 0).

Každý Eukleidův okruh je Gaussův okruh.

Eukleidův algoritmus pro výpočet NSD v Eukleidových okruzích:

Buď I Eukleidův okruh a a, $b \in I$. Pro a = b = 0 je NSD(a, b) = 0. Nechť bez újmy na obecnosti a $\neq 0$.

```
Pak \exists q_1, r_1 \in I : b = aq_1 + r_1, \ r_1 = 0 \lor H(r_1) < H(a),

pro r_1 \neq 0 \Rightarrow \exists q_2, r_2 \in I : a = r_1q_2 + r_2, \ r_2 = 0 \lor H(r_2) < H(r_1),

pro r_2 \neq 0 \Rightarrow \exists q_3, r_3 \in I : r_1 = r_2q_3 + r_3, \ r_3 = 0 \lor H(r_3) < H(r_2),

:

obecně:

pro r_i \neq 0 \Rightarrow \exists q_{i+1}, r_{i+1} \in I : r_{i-1} = r_iq_{i+1} + r_{i+1}, \ r_{i+1} = 0 \lor H(r_{i+1}) < H(r_i).

(Přitom je třeba dosadit a = r_0 a b = r_{-1}.)
```

konečném počtu kroků (vzhledem k tomu, že $H(a) = H(r_0) > H(r_1) > H(r_2) > ...$) obdržíme k takové, že $r_k = 0$ a $r_{k-1} \neq 0$. $r_{k-1} = NSD(a, b)$.