4.4: Operations with Series

Alex L.

October 9, 2024

$$\sum k u_n = k(\sum u_n)$$

If
$$\sum u_n = S$$
 and $\sum v_n = T$ then $\sum (u_n + v_n) = S + T$

If $\sum u_n = S$ then $a + \sum u_n = a + S$. This indicates that the insertion of a finite number of terms anywhere in the series doesn't affect its convergence.

If infinite series $\sum u_n$ and $\sum v_n$ are both convergent, then the series $w_n = u_1v_n + u_2v_{n-1} + u_3v_{n-2} + ... + u_nv_1$ is also convergent. This operation is called the **Cauchy product** of the two series.

In general, term by term integration or differentiation will not always preserve convergence or divergence.