

Norwegian University of Science and Technology

Department of Mathematical Sciences

TMA4145 Linear Methods Fall 2018

Exercise set 12: Solutions

Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

|1| Let

$$z_1 = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad z_2 = \sqrt{\frac{2}{3}} \begin{bmatrix} -1/2 \\ \sqrt{3}/2 \end{bmatrix}, \quad z_3 = \sqrt{\frac{2}{3}} \begin{bmatrix} -1/2 \\ -\sqrt{3}/2 \end{bmatrix}.$$

Show that for every $x \in \mathbb{R}^2$ we have

a)

$$||x||^2 = \sum_{i=1}^{3} |\langle x, z_i \rangle|^2$$

b)

$$x = \sum_{i=1}^{3} \langle x, z_i \rangle z_i$$

Remark. The vectors z_1, z_2, z_3 span \mathbb{R}^2 , but they are obviously not an orthonormal basis (they are not even linearly independent). Still, they satisfy a generalization of Parseval's identity and "act like" an orthonormal basis. Such systems appear very naturally in applications (e.g. in signal analysis), and are often called Parseval frames.

Solution. a) Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be an arbitrary element of \mathbb{R}^2 .

$$\sum_{i=1}^{3} |\langle x, z_i \rangle|^2 = \frac{2}{3} \left(x_1^2 + \left(-\frac{x_1}{2} + \frac{\sqrt{3}x_2}{2} \right)^2 + \left(-\frac{x_1}{2} - \frac{\sqrt{3}x_2}{2} \right)^2 \right)$$

$$= \frac{2}{3} \left(x_1^2 + \frac{x_1^2}{4} + \frac{3x_2^2}{4} - \frac{\sqrt{3}x_1x_2}{2} + \frac{x_1^2}{4} + \frac{3x_2^2}{4} + \frac{\sqrt{3}x_1x_2}{2} \right)$$

$$= \frac{2}{3} \left(\frac{3}{2}x_1^2 + \frac{3}{2}x_2^2 \right)$$

$$= x_1^2 + x_2^2 = ||x||^2.$$

b) We could show this by direct computation, but here we will use a different approach that is more "informative". It turns out that the Parseval identity in a) implies the representation in b). Indeed, for all $x, y \in \mathbb{R}^2$ we have, by a) and the polarization identity

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$$

$$= \frac{1}{4} \sum_{i=1}^{3} \left(\langle x + y, z_i \rangle^2 - \langle x - y, z_i \rangle^2 \right)$$

$$= \frac{1}{4} \sum_{i=1}^{3} \left(\left(\langle x, z_i \rangle + \langle y, z_i \rangle \right)^2 - \left(\langle x, z_i \rangle - \langle y, z_i \rangle \right)^2 \right).$$

After multiplying out and cancelling terms, we are left with

$$\langle x, y \rangle = \sum_{i=1}^{3} \langle x, z_i \rangle \langle y, z_i \rangle = \langle \sum_{i=1}^{3} \langle x, z_i \rangle z_i, y \rangle$$

for all $x, y \in \mathbb{R}^2$. In particular, this implies that

$$x = \sum_{i=1}^{3} \langle x, z_i \rangle z_i,$$

since the previous calculation shows that $\langle x - \sum_{i=1}^{3} \langle x, z_i \rangle z_i, y \rangle = 0$ for all y, meaning that $x - \sum_{i=1}^{3} \langle x, z_i \rangle z_i \in (\mathbb{R}^2)^{\perp} = \{0\}$ – hence $x - \sum_{i=1}^{3} \langle x, z_i \rangle z_i = 0$ and $x = \sum_{i=1}^{3} \langle x, z_i \rangle z_i$.

Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be equivalent norms on a vector space X. Show that any set $U \subset X$ is open in $(X, \|\cdot\|_a)$ if and only if it is open in $(X, \|\cdot\|_b)$.

Remark. This is in fact a two-way implication; if any set $U \subset X$ is open in $(X, \|\cdot\|_a)$ if and only if it is open in $(X, \|\cdot\|_b)$, then necessarily the norms $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent on X.

Solution. Assume that $\|.\|_a$ and $\|.\|_b$ are equivalent norms. This means that we have constants $C_1, C_2 > 0$ such that

$$C_1 ||x||_a \le ||x||_b \le C_2 ||x||_a$$

for all $x \in X$. Then assume that U is open in $(X, \|.\|_a)$, and pick any $x \in U$. To show that U is open in $(X, \|.\|_b)$, we need to find some open ball

$$B_{\epsilon}^b(x) = \{ y \in X : ||y - x||_b < \epsilon \}$$

such that $B_{\epsilon}^b(x) \subset U$. Since U is open in $(X, \|.\|_a)$, there exists some r > 0 such that

$$B_r^a(x) = \{ y \in X : ||y - x||_a < r \} \subset U.$$

Since $B_r^a(x) \subset U$ and we want $B_{\epsilon}^b(x) \subset U$, it will clearly be enough to find $\epsilon > 0$ such that

$$B_{\epsilon}^b(x) \subset B_r^a(x)$$
.

The key to finding this ϵ is the inequality

$$||x||_a \le \frac{1}{C_1} ||x||_b.$$

I claim that if we pick $\epsilon = C_1 r$, then $B_{\epsilon}^b(x) \subset B_r^a(x) \subset U$. To prove this, assume that $y \in B_{\epsilon}^b(x)$. We then find that

$$||x - y||_a \le \frac{1}{C_1} ||x - y||_b$$

 $< \frac{1}{C_1} \epsilon = r,$

hence $y \in B_r^a(x)$. The proof that any set U that is open in $(X, \|.\|_a)$ whenever U is open in $(X, \|.\|_b)$ is proved the same way, just using the inequality

$$||x||_b \le C_2 ||x||_a$$
.

3 Suppose that v_1, \ldots, v_k are non-zero eigenvectors of an operator T corresponding to distinct eigenvectors $\lambda_1, \ldots, \lambda_k$. Show that $\{v_1, \ldots, v_k\}$ is a linearly independent set.

Solution. We will prove the statement by induction. If k = 1 we only have one vector v_1 , and since we assume that v_1 is an eigenvector, we know that v_1 is non-zero. Hence the set $\{v_1\}$ is linearly independent; if

$$c_1 v_1 = 0$$
 for some scalar c_1 ,

then $c_1 = 0$, since if $c_1 \neq 0$ we would have

$$v_1 = \frac{1}{c_1}(c_1v_1) = 0.$$

Then assume that the statement is true for k-1 eigenvalues, and assume that

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0 \tag{1}$$

where c_j are scalars v_j and non-zero eigenvectors of an operator T corresponding to distinct eigenvectors λ_j . We need to show that $0 = c_1 = c_2 \cdots = c_k$. Since $Tv_k = \lambda_k v_k$, we have that $(T - \lambda_k I)v_k = 0$, where I is the identity operator. We can therefore get rid of v_k in equation (1) by applying $T - \lambda_k I$ to the equation. We then get

$$0 = (T - \lambda_k I)(c_1 v_1 + c_2 v_2 + \dots + c_k v_k) = c_1(\lambda_1 - \lambda_k)v_1 + c_2(\lambda_2 - \lambda_k)v_2 + \dots + c_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1},$$

where we have used that the v_j are eigenvectors. By the induction assumption, $\{v_1, v_2, ..., v_{k-1}\}$ is a linearly independent set. Therefore

$$0 = c_1(\lambda_1 - \lambda_k) = c_2(\lambda_2 - \lambda_k) = \dots = c_{k-1}(\lambda_{k-1} - \lambda_k),$$

and since we assume that the eigenvalues are distinct this implies that

$$0 = c_1 = c_2 = \dots = c_{k-1}.$$

Therefore equation (1) reads

$$c_k v_k = 0,$$

and as before this implies that also $c_k = 0$, hence $\{v_1, v_2, \dots, v_k\}$ is a linearly independent set.

- 4 Let T be the shift operator on ℓ^2 defined by $T(x_1, x_2, ...) = (0, x_1, x_2, ...)$.
 - 1. Show that T has no eigenvalues.
 - 2. Does T^* have any eigenvalues?
- 1. Assume that λ is an eigenvalue of T with eigenvector $y = (y_1, y_2, ...)$. Then $Ty = \lambda y$, and writing out both sides we find

$$(0, y_1, y_2, \dots) = (\lambda y_1, \lambda y_2, \lambda y_3 \dots). \tag{2}$$

In particular $\lambda y_1 = 0$, which implies that either $y_1 = 0$ or $\lambda = 0$. If $\lambda = 0$, then equality (2) becomes

$$(0, y_1, y_2, \dots) = (0, 0, \dots)$$

which shows that y = 0, hence not an eigenvector since eigenvectors are non-zero by definition. We may therefore assume that $y_1 = 0$ and $\lambda \neq 0$. In this case the equality (2) becomes

$$(0, 0, y_2, \dots) = (0, \lambda y_2, \lambda y_3, \dots),$$
 (3)

which implies that $y_2 = 0$. Inserting this back into the equation, we find

$$(0,0,0,\dots) = (0,0,\lambda y_3\dots),$$
 (4)

hence $y_3 = 0$. We may clearly continue like this to show that y is 0 in all coordinates, hence y = 0 and y is not an eigenvector.

2. We know from the lectures (and it is not difficult to show) that $T^*(x_1, x_2, ...) = (x_2, x_3, ...)$. This operator has eigenvalues. For instance, let $y = (1, \frac{1}{2}, \frac{1}{2^2}, ..., \frac{1}{2^{p-1}}, ...)$. Then

$$T^*y = (\frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^p}, \dots) = \frac{1}{2}y,$$

hence y is an eigenvector with eigenvalue $\frac{1}{2}$. Note that $y \in \ell^2$, which we needed since we defined T on ℓ^2 .

- $\boxed{5}$ Let U be a $n \times n$ matrix with columns $u_1, ..., u_n$. Show that the following statements are equivalent:
 - 1. U is unitary.
 - 2. $\{u_1, ..., u_n\}$ is an orthonormal basis of \mathbb{C}^n .

Solution. Note that the column u_i is of the form $u_i = (u_{1,i}, u_{2,i}, \dots, u_{n,i})^T$, and the inner product between two columns is given by

$$\langle u_i, u_j \rangle = \sum_{k=1}^n u_{k,i} \overline{u_{k,j}}$$
$$= u_i \cdot u_j^*,$$

where $u_i \cdot u_j^*$ is the usual dot product for vectors in \mathbb{C}^n and

$$u_j^* = \begin{pmatrix} \overline{u_{1,j}} \\ \overline{u_{2,j}} \\ \vdots \\ \overline{u_{n,j}} \end{pmatrix}.$$

$1 \Rightarrow 2$

Assume that $U^*U=I$. Recall that element (i,j) of the matrix product U^*U is the dot product of row i of U^* with column j of U. Since row i of U^* is u_i^* , this means that element (i,j) of U^*U is $u_i^* \cdot u_j$. Furthermore $U^*U=I$, which implies that $u_i^*u_j=\delta_{i,j}$ for $i,j=1,\ldots,n$. Then we have

$$\langle u_i, u_i \rangle = u_i^* \cdot u_i = \delta_{i,i},$$

hence (u_1, u_2, \ldots, u_n) is an orthonormal system of vectors in \mathbb{C}^n . To show that it is a basis for \mathbb{C}^n it is enough to note that \mathbb{C}^n has dimension n, and the system consists of n vectors. Hence the columns form a linearly independent subset of n vectors in an n-dimensional space, and it follows that the columns form a basis.

$2 \Rightarrow 1$

Assume that the columns u_1, u_2, \ldots, u_n of U are an orthonormal basis of \mathbb{C}^n , i.e.

$$\langle u_i, u_j \rangle = \delta_{i,j},$$

for $i, j = 1, \ldots, n$. Then we have

$$u_i \cdot u_j^* = \langle u_i, u_j \rangle = \delta_{i,j},$$

hence we have $U^*U = I$. One gets that $U^*U = I$ from exactly the same argument, or by knowing that a left inverse of matrix is also a two-sided inverse.

6 Given the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 2 \\ 2 & 1 \end{pmatrix}.$$

- a) Compute the singular value decomposition of A.
- **b)** Use the result of a) to find:
 - 1. The pseudo-inverse of A.
 - 2. Find the minimal norm solution of Ax = b for $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

Solution. a) We need to find matrices U, V, Σ with certain properties such that $A = U\Sigma V^*$. If we look back to the proof of the SVD in the lecture notes (theorem 7.20), we can deduce how we construct U, V and Σ . Note that since A is a 3×2 -matrix with rank 2, we will find that V is a 2×2 matrix, Σ a 3×2 -matrix and U a 3×3 -matrix.

- 1. V is picked as the matrix that diagonalizes A^*A , and therefore the columns of U are the normalized eigenvectors of A^*A .
- 2. Σ is the 3×2 matrix with the positive singular values of A (= the square roots of the positive eigenvalues of A^*A) along the diagonal, and zero elsewhere. ¹
- 3. The first 2 columns of the 3×3 U will be the vectors Av_1 and Av_2 , where v_1, v_2 are the columns of V. Since we need U to be a 3×3 matrix, we need one more column v_3 , which we find by picking a normalized vector v_3 that is orthogonal to v_1 and v_2 .

Let us now find these matrices.

1. $A^*A = \begin{pmatrix} 9 & 8 \\ 8 & 9 \end{pmatrix}$ has as characteristic polynomial $x^2 - 18x + 17 = (x - 17)(x - 1)$. Hence the eigenvalues of A^*A are $\lambda_1 = 17$ and $\lambda_2 = 1$. The corresponding normalized eigenvectors are $v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Consequently, we have

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

¹If we did not have enough singular values to fill the diagonal of Σ , we would just put zeros in the rest of the diagonal of Σ . This will not be an issue in this example.

2. The singular values of A are $\sigma_1 = \sqrt{17}$ and $\sigma_2 = 1$. Thus

$$\Sigma = \begin{pmatrix} \sqrt{17} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

3. The first two columns of U are given by

$$u_1 = \frac{1}{\sqrt{17}} \frac{1}{\sqrt{2}} A v_1 = \frac{1}{\sqrt{34}} \begin{pmatrix} 1 & 2 \\ 2 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{34}} \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}$$

and by

$$u_2 = \frac{1}{1}Av_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 2\\ 2 & 2\\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1\\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}.$$

Consequently, U has the form

$$\begin{pmatrix} \frac{3}{\sqrt{34}} & \frac{-1}{\sqrt{2}} & x_1 \\ \frac{4}{\sqrt{34}} & 0 & x_2 \\ \frac{3}{\sqrt{34}} & \frac{1}{\sqrt{2}} & x_3 \end{pmatrix}$$

The last column is determined by the assumption that it has to be orthogonal to the first two columns. The choice

$$u_3 = \frac{1}{\sqrt{17}} \begin{pmatrix} 2\\ -3\\ 2 \end{pmatrix}$$

satisfies these conditions, but there are many other ways to complete the first two columns to become an orthonormal basis for \mathbb{C}^3 ,

$$\begin{pmatrix} \frac{3}{\sqrt{34}} & \frac{-1}{\sqrt{2}} & \frac{2}{\sqrt{17}} \\ \frac{4}{\sqrt{34}} & 0 & \frac{-3}{\sqrt{17}} \\ \frac{3}{\sqrt{34}} & \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{17}} \end{pmatrix}.$$

4. The SVD of A is

$$\begin{pmatrix} \frac{3}{\sqrt{34}} & \frac{-1}{\sqrt{2}} & \frac{2}{\sqrt{17}} \\ \frac{4}{\sqrt{34}} & 0 & \frac{-3}{\sqrt{17}} \\ \frac{3}{\sqrt{34}} & \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{17}} \end{pmatrix} \begin{pmatrix} \sqrt{17} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

b)

1. By theorem 7.23 in the notes, $A^{\dagger} = V \Sigma^{+} U^{*}$ where Σ^{+} is the matrix obtained from Σ by replacing the singular values σ_{i} with σ_{i}^{-1} and taking the transpose. Hence

$$A^{\dagger} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{17}} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{3}{\sqrt{34}} & \frac{4}{\sqrt{34}} & \frac{3}{\sqrt{34}} \\ \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{17}} & \frac{-3}{\sqrt{17}} & \frac{2}{\sqrt{17}} \end{pmatrix} = \begin{pmatrix} \frac{-7}{17} & \frac{2}{17} & \frac{10}{17} \\ \frac{10}{17} & \frac{2}{17} & \frac{-7}{17} \end{pmatrix}.$$

2. By theorem 7.25 the notes, the least squares solution is given by

$$A^{\dagger}b = \begin{pmatrix} \frac{-7}{17} & \frac{2}{17} & \frac{10}{17} \\ \frac{10}{17} & \frac{2}{17} & \frac{7}{17} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{27}{17} \\ \frac{-7}{17} \end{pmatrix}.$$