Implicit and inverse function theorem

05 May 2022

Th. 1 (Implicit function theorem). X, Y, Z — normed.

Basic example

$$\begin{cases} g_1(x_1 \dots x_m, y_1 \dots y_n) = 0 \\ \dots \\ g_n(x_1 \dots x_m, y_1 \dots y_n) = 0 \\ & \longleftrightarrow \\ \begin{cases} y_1 = f_1(x_1 \dots x_m) \\ \dots \\ y_n = f_1(x_1 \dots x_m) \end{cases} \end{cases}$$

It's a surface with dimension m (because every point is determined by it's x coordinates) in \mathbb{R}^{n+m} .

Th. 2.
$$Y$$
 — complete normed space, $U \in L(Y,Y)$, $||U|| < 1$, I — identity $\rightarrow \exists (I-U)^{-1} \in L(Y,Y)$

Proof. First proof.

Existence.

Want to prove that $\forall u \in Y \exists y \in Y : (I - U)y = u$.

$$y_{n+1} = u + Uy_n$$

$$y_{n+1} - y_n = Uy_n - Uy_{n-1}$$

$$||y_{n+1} - y_n|| = ||U(y_n - y_{n-1})|| \le ||U|| ||y_n - y_{n-1}||$$

If we iterate this squeeze mapping, we will get the unique solution y_0 . Continuity.

$$y_n \to y_0$$
$$(I - U)y_n = u_n \to u_0$$

???

Proof. Second proof.

$$(I-U)^{-1} = I + U + U^2 + \dots$$

This series converges absolutely, i.e. $\sum ||U^k|| \le \frac{1}{1-||U||}$ converges.

L(Y,Y) is complete (link?), so every Cauchy sequence converges. And absolutely converging series are Cauchy sequences.

Now, consider *S*:

$$S_n = I + U + \dots + U^n \rightarrow S \in L(Y, Y)$$

$$S_n(I - U) = (I - U)S_n = I - U^{n+1} \rightarrow I$$

$$S(I - U) = (I - U)S = I \rightarrow S = (I - U)^{-1}$$

Th. 3.

$$U \in L(Y,Z), \exists U^{-1} \in L(Z,Y) \forall V \in L(Y,Z)$$

Y — *complete*

$$||V|| < \frac{1}{||U^{-1}||} \to \exists (U \pm V)^{-1} \in L(Z, Y)$$

Proof.

$$U+V=U(I_{\gamma})$$

Th. 4. As Th. 1, but require continuity of G and dG not only in the point, but in a nenighborhood. Then f will be continuous in a nenighborhood of x_0 .

Proof. If
$$(x_1, y_1)$$
 is

Th. 5. As Th. 1, but $\exists dG$ then $\exists df$ and:

$$df(x_0) = -\left(\frac{\partial}{\partial y}G(x_0, y_0)\right)^{-1}\frac{\partial}{\partial x}G(x_0, y_0)$$

and all three parts are in L(X,Y), L(Z,Y), L(X,Z) correspondingly.

Proof.

$$G(x,y) = G(x_0, y_0) + \frac{\partial}{\partial x} G(x_0, y_0)(x - x_0) + \frac{\partial}{\partial y} G(y - y_0) + o(\|x - x_0\| + \|y - y_0\|)$$

$$y = f(x) : 0 = G(x, f(x)) = \frac{\partial}{\partial x} G(x_0, y_0)(x - x_0) + \frac{\partial}{\partial y} G(f(x) - f(x_0)) + o(\|x - x_0\| + \|f(x) - f(x_0)\| + \|f(x_0)\| + \|f(x) - f(x_0)\| + \|f(x_0)\| + \|f($$

Divide by $\frac{\partial}{\partial y}G(x_0, y_0)$:

$$f(x) - f(x_0) = -(\frac{\partial}{\partial y}G(x_0, y_0))^{-1}\frac{\partial}{\partial x}G(x_0, y_0)(x - x_0) + (\frac{\partial}{\partial y}G(x_0, y_0))^{-1}(o(\dots))$$

Let $C_1 = \left\| \left(\frac{\partial}{\partial y} G(x_0, y_0) \right)^{-1} \right\| \left\| \frac{\partial}{\partial x} G(x_0, y_0) \right\|, C_2 = \left\| \frac{\partial}{\partial y} \right\| \left\| \left(\frac{\partial}{\partial y} G(x_0, y_0) \right)^{-1} \right\|, \varepsilon \to 0$ from $o(\dots)$:

$$||y - y_0|| = C_1 ||x - x_0|| + C_2 \varepsilon (||x - x_0|| + ||y - y_0||)$$

Th. 6 (Corollary). *If G is k times differentiable in a nenighborhood, then f is* too.

Th. 7 (Inverse function theorem). Y — *complete*, $F: Y \to X$, $F(y_0) = x_0$, $\exists dF$ in a nenighborhood, $\exists (dF(y_0))^{-1} \in L(X,Y)$

then exist nenighborhoods $U,V:x_0\in U,y_0\in V$ such that $F:V\to U$ — bijective. tion and

$$(dF^{-1})(x_0) = (dF(y_0))^{-1}$$

Proof.

$$G: X \times Y \rightarrow X: G(x, y) = x - F(y)$$

It's suitable for Th. 1:

$$\frac{\partial}{\partial y}G(x_0, y_0) = -ddF, G(x_0, y_0) = 0$$

Then by using it we get f(x):

$$\exists U, V \, \forall x \in U, y \in V : x = F(y) \leftrightarrow G(x, y) = 0 \leftrightarrow y = f(x)$$

Now it's already a map and even an injection, but we want to make V = F(U) to make it a bijection. And we need y_0 to be internal in it.

$$df(x_0) = -(\frac{\partial}{\partial y}G(x_0, y_0))^{-1}\frac{\partial}{\partial x}G(x_0, y_0) = (dF(y_0))^{-1}$$

$$\exists (df(x_0))^{-1} = dF(y_0) \in L(Y, X)$$

So for any point close to y_0 its preimage is close to x_0 , and y_0 is internal in F(U). Now f and F are mutually inverse and V = F(U), U = f(V), so they are bijections.