15

20

CLAIMS

1. A compound of formula (1a):

$$R^{1}(Alk^{1})_{r}(L^{1})_{s_{-}} \longrightarrow (Alk^{2})_{m}$$

$$C(R^{2})X^{1}R^{4}$$

$$R$$

$$(1a)$$

wherein

R is a carboxylid acid (-CO₂H) or a derivative thereof;

R¹ is an optionally substituted cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocyclialiphatic, aromatic or heteroaromatic group;

Alk¹ is an optionally substituted aliphatic or heteroaliphatic chain;

L¹ is a linker atom or group;

r and s, which may be the same or different, is each zero or an integer 1;

Alk² is a straight of branched alkylene chain;

m is zero or an integer 1;

R² is a hydrogen atom or a methyl group;

X¹ is a group selected from -N(R³)CO- (where R³ is a hydrogen atom or a straight or branched alkyl group); -N(R³)SO₂-, -N(R³)C(O)O- or -N(R³)CON(R^{3a})- (where R^{3a} is a hydrogen atom or a straight or branched alkyl group);

R⁴ is an optionally substituted aliphatic, cycloaliphatic or polycycloaliphatic group;

and the salts, solvates, hydrates and N-oxides thereof.

2. A compound according to claim 1 wherein R is a carboxylic acid (-CO₂H) group.

30 3. A compound according to Claim 1 wherein R¹ is an optionally substituted aromatic or neteroaromatic group.

- 4. A compound according to Claim 3 wherein R¹ is an optionally substituted phenyl, pyridyl or pyrimidinyl group.
- 5. A compound according to Claim 1 wherein -(Alk¹)_r(L¹)_s- is a -CH₂O- or -CON(R⁵)- group where R⁵ is a hydrogen atom or a straight or branched alkyl group.
 - 6. A compound according to claim 5 wherein - $(Alk^1)_r(L^1)_{s^-}$ is a -CONH-group.

10

- A compound according to Claim 1 wherein Alk^2 is $-CH_2$ -, m is an integer 1, and R^2 is a/hydrogen atom.
- A compound according to Claim 1 wherein X¹ is a -NHCO-, -NHSO₂-,
 -NHC(O)O- or -NHCONH- group.
- 9. A compound according to Claim 8 wherein X¹ is a -NHCO- group.
- 10. A compound according to Claim 1 wherein R⁴ is an optionally substituted straight or branched C₁₋₆alkyl group or an optionally substituted C₃₋₇cycloalkyl or C₇₋₁₀tricycloalkyl group.
- 11. A compound according to Claim 10 wherein R⁴ is an optionally substituted straight or branched C₁₋₄alkyl, cyclopropyl, cyclobutyl, cyclopentyl or adamantyl group.

25

20

12. A compound which is:

N-Isopropaloyl W-(3,5-dichloroisonicotinoyl)-L-4-aminophenylalanine.;

30 N-Cyclopropaloyl-N-(3,5-dichloroisonicotinoyl)-L-4aminophenylalanine;
N-Acetyl-N'-(3,5-dichloroisonicotinoyl)-L-4-aminophenylalanine;

N-(Trimethylacetyl)-N'-(2,6-difluorobenzoyl)-L-4-aminophenylalanine; N-(1-Adamantylcarbonyl)-N'-(2,6-dichlorobenzoyl)-L-4-aminophenyl

alanine; and the salts, solvates, hydrates and N-oxides thereof.

1:

13. A pharmaceutical composition comprising a compound according to Claim 1 together with one or more pharmaceutically acceptable carriers, excipients or diluents.

Sub 5 R3 10

30

14. A method for the prophylaxis or treatment of a disease or disorder involving inflammation in which the extravasation of leukocytes plays a role in a mammal, which comprises administering to a mammal suffering from such as disease or disorder a therapeutically effective amount of a compound of formula (1):

$$\begin{array}{c|c}
R^{1}(Alk^{1})_{r}(L^{1})_{s} & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

wherein

R is a carboxylic acid (CO₂H) or a derivative thereof;

15 R¹ is a hydrogen atom or a hydroxyl, straight or branched alkoxy or optionally substituted cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;

Alk¹ is an optionally substituted aliphatic or heteroaliphatic chain;

20 L¹ is a linker atom or group,

r and s, which may be the same or different, is each zero or an integer 1 provided that when his zero R¹ is an optionally substituted cycloaliphatic, polycycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;

25 Alk² is a straight or branched alkylene chain;

m is zero or an integer 1;

R² is a hydrogen atom or a methyl group;

 X^1 is a group selected from -N(R³)CQ- (where R³ is a hydrogen atom or a straight or branched alkyl group), -N(R³)SO₂-, -N(R³)C(O)O- or -N(R³)CON(R³a)- (where R^{3a} is a hydrogen atom or a straight or branched alkyl group);

R⁴ is an optionally substituted aliphatic, cycloaliphatic or polycycloaliphatic group; and the salts, solvates, hydrates and N-oxides thereof.