$y = 2x + 3 + \frac{8}{x^2}, x > 0$	
	(6)

2.	A curve has equation	
	$y = 2x^3 - 4x + 5$	
	Find the equation of the tangent to the curve at the point $P(2, 13)$.	
	Write your answer in the form $y = mx + c$, where m and c are integers to be found.	
	Solutions relying on calculator technology are not acceptable.	(-)
		(5)

3	A curve has equation	
	$y = 3x^2 + \frac{24}{x} + 2 \qquad x > 0$	
	(a) Find, in simplest form, $\frac{dy}{dx}$	(3)
	(b) Hence find the exact range of values of x for which the curve is increasing.	
		(2)

4.	The curve C has equation $y = 6 - 3x - \frac{4}{x^3}$, $x \ne 0$	
	(a) Use calculus to show that the curve has a turning point P when $x = \sqrt{2}$	(4)
	(b) Find the x -coordinate of the other turning point Q on the curve.	(1)
	(c) Find $\frac{d^2y}{dx^2}$.	(1)
	(d) Hence or otherwise, state with justification, the nature of each of these turning P and Q .	
		(3)

5. The curve with equation	
$y = x^2 - 32\sqrt{(x)} + 20, x > 0$	
has a stationary point P .	
Use calculus	
(a) to find the coordinates of <i>P</i> ,	
	(6)
(b) to determine the nature of the stationary point P .	(3)
	(3)

6					
	A curve has equation $y = g(x)$.				
	Given that				
	• $g(x)$ is a cubic expression in which the coefficient of x^3 is equal to the coefficient	ent of x			
	• the curve with equation $y = g(x)$ passes through the origin				
	• the curve with equation $y = g(x)$ has a stationary point at $(2, 9)$				
	(a) find $g(x)$,				
	(a) find $g(x)$,	(7)			
	(b) prove that the stationary point at (2, 9) is a maximum.				
	(-) p	(2)			

The curve C has equation $y = f(x)$ where $f(x) = xx^3 + 15x^2 - 20x + b$	
$f(x) = ax^3 + 15x^2 - 39x + b$	
and a and b are constants.	
Given	
 the point (2, 10) lies on C the gradient of the curve at (2, 10) is -3 	
(a) (i) show that the value of a is -2	
(ii) find the value of b.	
(ii) This the value of b .	(4)
(b) Hence show that C has no stationary points.	
	(3)
(c) Write $f(x)$ in the form $(x - 4)Q(x)$ where $Q(x)$ is a quadratic expression to be found.	(2)
(d) Hence deduce the coordinates of the points of intersection of the curve with equation	l
y = f(0.2x)	
and the coordinate axes.	
	(2)