

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

Course Title	IMAGE P	IMAGE PROCESSING AND ANALYSIS			
Course Code	ACDC08				
Program	B.Tech				
Semester	V	V CSE(DS)			
Course Type	Professional	Professional Elective-I			
Regulation	IARE - UG2	0			
		Theory		Prac	tical
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3 - 3				
Course Coordinator	Dr. G.Ganap	oathi Rao, Asst. F	Professor		

COURSE OBJECTIVES:

The students will try to learn:

Ι	Image processing concepts, analysis and techniques.
II	The image analysis and its classifications.
III	Visualization of different kinds of images.

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Understand the principles of image processing and techniques for describing	Understand
	the Digital Imaging System (DIS).	
CO 2	Analyze various techniques for for image enhancement and develop image	Analyze
	restoration models.	
CO 3	Apply image segmentation methos for transforming the image and conduct	Apply
	Image Morphology.	
CO 4	Apply the image segmentation techniques for the classification of image	Apply
	registration.	
CO 5	Understand the different techniques for image registration.	Understand
CO 6	Analyze the visualization methods and apply them for 2D and 3D images.	Analyze

QUESTION BANK:

		MODULE I	[
	IMAGE PRO	OCESSING FU	NDAMENTALS	
PA	RT A-PROBLEM SOLVIN	G AND CRIT	ICAL THINKING QUESTI	IONS
Q.No	QUESTION	Taxonomy	How does this subsume the level	CO's
1	Explore the steps of specifications of Image Sensing and Acquisition for CT-scan image application	Understand	The learner to Recall the image processing and Understand components and understanding the image processing.	CO1
2	Determine the arithmetic by image operations between the following two images pixels functions f1 and f2 respectively. \[\begin{align*} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{align*} \]	Understand	The learner to Recall the representation of digital image and Apply the image operations and understand the convolution and correlation property on image.	CO 1
3	Obtaine the simple relation of sampling and quantization With necessary steps.	Understanding	The learner to Recall the sampling of the image, and Understand grey levels, quantization and apply for the calculation of time taken for the image.	CO 1
4	Compute the some of the frequently used image file formats with suitable examples.	Understand	The learner to Recall the image transforms frequently and Understand basis function and image file formats.	CO1

5	Obtain the intensity transformation matrix For 4x4 of f(M.N) with suitable examples.	Apply	The learner to Recall the representation of digital image and Understand basis function apply intensity transformation matrix 4x4 of f(m.n).	CO2
6	Compute the pixel relations of the 4×4 grayscale image $f(x, y)$ shown below. $f(x, y) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$	Apply	The learner to Recall the representation of digital image and Understand the properties of Pixel Relationships and apply it on image coefficients $f(x,y)$.	CO 2
7	$f(k,l) = \begin{bmatrix} 16 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	Apply	The learner to Recall the representation of digital image and Understand the properties of pixel relationships and apply it on transform coefficients F (k,l).	CO 2
8	Obtain the intensity transform basis for the following matrix of samples $f(m, n) = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$	Apply	The learner to Recall the representation of digital image and Understand the properties of Pixel Relationships and apply transform of the 2 x 2 image	CO2

9	$u = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 2 & 1 \\ 4 & 1 & 2 & 3 \end{bmatrix}$	Apply	The learner to Recall the representation of digital image and Understand the properties of Reverse transformation and apply hadamard forward and reverse transformation	CO2
10	Obtain the Noise model of matrix for $N=4$ and verify with suitable example.	Analyze	The learner to Recall the representation of digital image and Understand the properties of Noise model and analyze the matrix for N=4.	CO2
	PART B-LC	NG ANSWER	QUESTIONS	
1	Explain any four basic relationships between pixels.	Understand	The learner to Recall the relationship between pixels and Understand the Neighbor of a pixels	CO 1
2	Demonstrate the components of digital image processing system and explain each block.	Understand	The learner to Recall the image coordinates and Understand elements of image processing system.	CO 1
3	Define digital image and Discuss how digital images are represented with neat diagrams.	Understand	The learner to Recall the representation of digital image and Understand the processing of digital image.	CO 1
4	Discuss sampling and quantization With necessary diagrams.	Understand	The learner to Recall the sampling and quantization techniques and Understand the conversion of analog image in to digital image.	CO 1
5	Discuss the effect of increasing sampling frequency and quantization levels on image	Understand	The learner to Recall the sampling and quantization and Understand effect of increasing the sampling frequency and greylevels	CO 1
6	List and explain applications of image processing	Remember		CO 1

7	Define spatial resolutions? Discuss the effect on the image by reducing it.	Understand	The learner to Recall the sampling and quantization Understand effect of increasing the sampling frequency.	CO 1
8	Interpret the concept of non-uniform sampling and quantization.	Understand	The learner to Recall quantization and Understand the non uniform quantization.	CO 1
9	Discuss the most commonly used distance measures in image processing	Understand	The learner to Recall digital image, neighbours and Understand various distance measures.	CO 1
10	The image refers to a two dimensional light intensity function. Discuss in detail.	Understand	The learner to Recall the Gray levels and Understand the Gray level to binary conversion.	CO 1
11	Discuss the image acquisition using a single sensor, sensor strips and sensor arrays.	Understand	The learner to Recall image acquisition and Understand various sensors	CO 1
12	What is restoration models? Explain in detail and Write its properties.	Understand	The learner to Recall nthe image transforms and Understand basis function of transform.	CO 2
13	Explain about intensity Transform and Write its properties.	Understand	The learner to Recall the image transforms and Understand basis function of intensity transformation	CO 2
14	Explain the following two image operations of i) spatial operations ii) stastical operations	Understand	The learner to Recall the discrete fourier transform and Understand the properties of 2D DFT	CO 2
15	Explain the following mathematical operations on digital images i) Array versus Matrix operations ii) Linear versus Nonlinear Operations	Understand	The learner to Recall the fundamental concept of images and Understand various mathematical operations on digital image.	CO 1
16	Describe the need of image transform? List out various transform used in image processing.	Understand	The learner to Recall the image transforms and Understand different transforms.	CO 2

17	Explain the following terms of conceptual arrangement: (i) Adjacency (ii) Connectivity (iii) Regions (iv) Boundaries	Understand	The learner to Recall the concept of pixels and Understand the relationship between pixels	CO 1
18	State the following two properties of image operations i) Translation ii) Rotation	Understand	The learner to Recall the discrete fourier transform and Understand the properties of image operations	CO 2
19	Derive the basis function for restoration model	Understand	The learner to Recall the image transform and Understand the basis function of restoration model.	CO2
20	Prepare the 4,8-,m-adjacancy based on the lengths of shortest 4,8,m-paths between pixels with suitable examples.	Understand	The learner to Recall the concept of pixels and Understand the relationship between pixels	CO 1
	PART C-SH	ORT ANSWE	R QUESTIONS	
1	Define digital image processing	Remember		CO 1
2	Write any two origins of image processing?	Remember	_	CO 1
3	Mention different types of digital images.	Remember		CO 1
4	Mention different bands in electromagnetic spectrum.	Remember		CO 1
5	Which step is the objective of digital image processing?	Remember		CO 1
6	Explain the hardware components of an image processing.	Understand	The learner to Recall the digital image and Understand the components of an image processing	CO 1
7	What is meant by Image Pixel?	Remember		CO 1
8	What are the different fields in which Digital Image Processing is used?	Remember	_	CO 1
9	What is the need of image processing?	Remember	_	CO 1

10	Explain connectivity and path in relationship between pixels.	Understand	The learner to Recall the digital image and Understand the relationship between pixels	CO 1
11	Discuss about 4,8,diagonal neighbours.	Understand	The learner to Recall the relationship between pixels and Understand the image connectivity	CO 1
12	Explain region and boundary in the image.	Understand	The learner to Recall the image connectivity and Understand the region and boundary of an image	CO 1
13	Write the changes in sizes of different resolution images?	Remember		CO 1
14	What is meant by illumination and reflectance in image function?	Remember		CO 1
15	What are the applications of image processing?	Remember		CO 1
16	List the different components in a simple Image formation model.	Remember		CO 1
17	Explain about sampling role in digitization process.	Understand	The learner to Recall the sampling theorem and Understand the digitization process	CO 1
18	Explain about quantization in digitization process.	Understand	The learner to Recall the sampling and quantization techniques and Understand the digitizing amplitude values	CO 1
19	List the basic steps involved in image processing?	Remember	_	CO 1
20	Define distance measure and Give the different distance measures.	Remember		CO 1

	MODULE II					
	IMAGE ENHA	NCEMENT A	ND RESTORATION			
PA	PART A-PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS					
1	Obtain histogram equalization characterstics, suppose that a 3-bit image (L = 8) of size 64 X 64 pixels (MN = 4096) has the intensity distributuon shown in Table	Understand	CO 3			
	\mathbf{r}_k	$n_k \mid P_r(rk)$	$= n_k/MN$			
	$r_0 = 0$		0.19			
	$r_1 = 1$	1023	0.25			
	$r_2 = 2$		0.21			
	$r_3 = 3$		0.16			
	$r_4 = 4$		0.08			
	$r_5 = 5$		0.06			
			$0.03 \\ 0.02$			
2	Apply the steps involved in histogram equalization on the image. [4	Apply	The learner to Recall the operation of pixels and gray levels and Understand the histogram equalization and apply image segment of size 5 X 5 and analyze the result with original image			
3	Obtain histogram equalization for the following image segment of size 5 X 5? Write the inference on image segment before and after equalization 200 200 200 180 240 180 180 180 180 190 190 190 190 190 180 190 200 220 220 240 230 180 190 210 230	Apply	The learner to Recall the operation of pixels and gray levels and Understand the histogram equalization and apply image segment of size 5 X 5			

4	A 4 × 4, 4bits/pixel image f(m, n) is passed through point-wise intensity transformation $g(m,n) = \text{round}(10 \sqrt{f(m,n)})).$ Determine the output image g(m,n) if f (m,n) is given by $\begin{bmatrix} 12 & 8 & 4 & 9 \\ 10 & 5 & 3 & 6 \\ 8 & 12 & 9 & 13 \\ 4 & 12 & 9 & 10 \end{bmatrix}$	Apply	The learner to Recall point processing and Understand the round operation and apply on image.	CO 3
5	Given an image of size 3×3 as $f(x, y) = \begin{bmatrix} 128 & 212 & 255 \\ 54 & 62 & 124 \\ 140 & 152 & 156 \end{bmatrix}$ Determine the output image $g(m, n) = \begin{bmatrix} c \log_{10} (1 + f(m, n)) \end{bmatrix}$ using logarithmic transformation by choosing c as i. $c = 1$ and ii $c = \frac{L}{\log_{10} (1 + L)}$	Apply	The learner to Recall point processing and Understand the log transformation and apply on image.	CO 3
6	Obtain histogram equalization for the following image segment of size 5 X 5? Write the inference on image segment before and after equalization $\mathbf{g}(\mathbf{m},\mathbf{n}) = \mathrm{round}(10^{\sqrt{f(m,n)}})).$ Determine the output image $\mathbf{g}(\mathbf{m},\mathbf{n})$ if $\mathbf{f}(\mathbf{m},\mathbf{n})$ is given by $\begin{bmatrix} 12 & 8 & 4 & 9 \\ 10 & 5 & 3 & 6 \\ 8 & 12 & 9 & 13 \\ 4 & 12 & 9 & 10 \end{bmatrix}$	Analyze	The learner to Recall the operation of pixels and gray levels and Understand the histogram equalization and apply image segment of size 5 X 5 and analyze the result with original image	CO 3

7	Compute the bit planes of the given 8 bit image $f(x,y) = \begin{bmatrix} 255 & 138 & 30 \\ 65 & 12 & 201 \\ 183 & 111 & 85 \end{bmatrix}$	Apply	The learner to Recall point processing and Understand the round operation and apply on image .	CO 3
8	Compute the value of the marked pixels if it is smoothened by a 3×3 average filter. $ \begin{bmatrix} 0 & 1 & 2 & 3 & 2 \\ 5 & 6 & 7 & 8 & 4 \\ 4 & (3) & (2) & (1) & 2 \\ 8 & 7 & 6 & 5 & 3 \\ 1 & 5 & 3 & 7 & 8 \end{bmatrix} $	Apply	The learner to Recall low pass and high pass filters and Understand in image processing for image enhancement and apply on a segment of image.	CO 3
9	If a low pass filter is formed that averages the 4 neighbours of a point (x,y) but excludes point itself. Find the equivalent transfer function in frequency domain. Show that it is low pass filter	Apply	The learner to Recall low pass filter and Understand the kernel in image processing for image enhancement and apply fourier transform for spatial filter.	CO 3
10	Discuss on Image Morphology and basic algorithm of it.	Understand	The learner to Recall Image Morphology and prepare algorithms and Understand Image Morphology and basic algorithm.	CO 3
	PART B-LONG A	NSWER QUE	STIONS THINKING	
1	Explain in detail about histogram processing.	Understand	The learner to Recall the probability of occurrence of gray levels and Understand the histogram processing.	CO 3
2	With the help of block diagram explain homomorphic filtering approach for image enhancement.	Understand	The learner to Recall filtering techniques and Apply the homomorphic Filtering	CO 3

3	Describe various types of mean filters for image	Understand	The learner to Recall filter functions and Understand	CO 3
	enhancement.		the various types of mean filters.	
4	Demonstrate enhancement of monochrome image by histogram	Understand	The learner to Recall the monochrome technique and Understand the monochrome image by Histogram	CO 3
5	Discuss the procedure involved in Histogram matching.	Understand	The learner to Recall the operation of pixels and gray levels and Understand the histogram equalization and matching.	CO 3
6	Explain the steps in histogram equalization.	Understand	The learner to Recall the operation of pixels and gray levels and Understand the histogram equalization .	CO 3
7	Classify restoration models and list out its applications4)	Understand	The learner to Recall morphology and Binary morphology and Understand in image processing for image enhancement	CO 3
8	List out the various of gray level transformation used for image enhancement.	Understand	The learner to Recall the operation of pixels and gray levels Understand the gray level transformation for image enhancement	CO 3
9	Classify the Feature selection Techniques, along with texture and boundary representation	Understand	The learner to Recall Feature selection Techniques and Understand butterworth and aussian for image enhancement	CO 3
10	Describe Butterworth low pass and Butterworth high pass filters.	Understand	The learner to Recall low pass and high pass filters and Understand the Butterworth filter .	CO 3
11	List the salient features of image histogram.	Understand		CO 3
12	Discuss the following spatial enhancement techniques. iii) Spatial averaging. (ii) Median filtering.	Understand	The learner to Recall the spatial filters and Understand the enhancement techniques.	CO 3

13 1 1	Prepare the linear spatial sharpening filtering for image enhancement.	Understand	The learner to Recall the spatial filters and Understand the linear spatial sharpening filters.	CO 3
14	Explain linear spatial smoothing filtering.	Understand	The learner to Recall the spatial filters and Understand the linear spatial smoothing filters.	CO 3
15	Interpret image processing transforms using point processing method for iii) Negative image. ii)Thresholding iii)Log Transformation	Understand	The learner to Recall concept of point processing and Understand the various techniques for point processing.	CO 3
16	Interpret image processing transform nusing point processing method for power law transformation.	Understand	The learner to Recall concept of point processing and Understand the various techniques for point processing.	CO 3
17	Explain smoothing of images in frequency domain using region based segmentation.	Understand	The learner to Recall, region based segmentation. Understand in smoothing in frequency domain.	CO 3
18	What is meant by the Feature extraction and representation? Discuss their role in image enhancement.	Understand	The learner to Recall operation of pixels and gray level and Understand the concept of feature extraction and the representation.	CO 3
19	Sketch perspective plot of an histogram process by smoothing and sharpening function of filter cross section and explain its usefulness in Image enhancement.	Understand	The learner to Recall feature image classification and prepare algorithms and Understand transfer function for image enhancement.	CO 3
20	Explain the following operations: i) Binary morphology ii) Gray-level morphology	Understand	The learner to Recall point operations and Understand the concept of Gray-level morphology and Binary morphology.	CO 3
			R QUESTIONS	
1	Specify the objective of image enhancement technique.	Remember		CO 3

2	Explain the 2 categories of	Remember		CO 3
3	image enhancement. What are the edge operations?	Remember		CO 3
4	What is morphology processing?	Understand	The learner to Recall the mask and Understand how the mask is operating on image.	CO 3
5	What is contrast stretching?	Remember		CO 3
6	What is thresholding?	Remember		CO 3
7	What is Binary morphology?	Remember		CO 3
8	What is image averaging? Give its application?	Remember		CO 3
9	Explain the purpose of image averaging?	Understand	This would require the learner to Recall the averaging mask and Understand the effect of mask on image.	CO 3
10	Give the formula for negative and log transformation.	Remember		CO 3
11	What is meant by bit gray level morphology?	Remember		CO 3
12	Define histogram.	Remember		CO 3
13	Discuss image negatives?	Understand	This would require the learner to Recall the image segmentation and Understand image negative.	CO 3
14	State the first order derivative filter or gradient filter.	Remember		CO 3
15	What is a Component Labeling?	Remember		CO 3
16	Explain median filter?	Understand	The learner to Recall the image enhancement Understand median filter.	СО 3
17	What is a smoothing filter?	Remember		CO 3
18	What is a sharpening filter?	Remember		CO 3

19	Explain unsharp masking.	Understand	The learner to Recall the mask and Understand use of unsharp masking on image.	CO 3
20	What are the feature selection techniques?	Remember		CO 3
		MODULE II		
			ND MORPHOLOGY	
PA	RT A-PROBLEM SOLVIN	G AND CRIT		IONS
1	Apply order Binary and Gray level morphology operations on the selected pixels in the image with suitable example.	Apply	The learner to Recall filter and Understand the various Binary and Gray level morphology operations.	CO 4
2	Justify the discussion "Morphological algorithms is an effective tool to minimize the salt and pepper noise through simple illustration.	Apply	The learner to Recall salt and pepper noise and Understand median filter and apply on image segment.	CO 4
3	Compute the Erosion and Dilation, value of the prepared based pixels with illustrations.	Apply	The learner to Recall grey level image and Understand median filter and apply on - Erosion, Dilation,s.	CO 4
4	Compare image enhancement and image restoration .	Understand	The learner to Recall digital image and Understand image enhancement and restoration.	CO 4
5	Show effect of Closing Operations and Distance Transforms with example image.	Apply CIE-II	The learner to Recall grey level image and Understand Closing Operations Distance Transforms and apply .	CO 4

6	Analyse effect of max, min filter for the given image and interpret the results. $f(x,y) = \begin{bmatrix} 30 & 10 & 20 \\ 10 & 250 & 25 \\ 20 & 25 & 30 \end{bmatrix}$ image.	Analyze	The learner to Recall grey level image and Understand min, max filters and apply on image segment 3x3 and analyze the resulting images .	CO 4
7	Describe image segmentation technique for image restoration and write active contour models in details.	Understand	The learner to Recall the image segmentation and Understand transfer function of constrained least square function.	CO 4
8	Derive transfer function of regional descriptors approach for image restoration	Understand	The learner to Recall the filter and Understand transfer function of weiner filter	CO 4
9	Summarize the drawback image representation and analysis with suitable examples	Understand	The learner to Recall the filter and Understand image representation and analysis with suitable examples	CO 4
		NG ANSWER		
1	Illustrate the different causes of image degradation	Understand	The learner to Recall the noise sources and Understand the causes for image degradation.	CO6
2	Summarize the power density function of uniform noise, salt & pepper noise and Gaussian noise and sketch it.	Understand	The learner to Recall the noise sources and Understand the power density function of noise.	CO6
3	Explain mean and geometric mean filter for image restoration.	Understand	The learner to Recall filter and Understand the transfer function of mean and geometric mean filer.	CO4
4	Explain erosion and dilation for image restoration.	Understand	The learner to Recall filter and Understand the transfer function of statistical image.	CO6

5	Demonstrate the most commonly used noise probability density functions in image processing applications and explain with its plot.	Understand	The learner to Recall the noise sources and Understand the most commonly used noise sources .	CO6
6	Explain the process of restoration in the presence of noise only using spatial filters for various mean filters?	Understand	The learner to Recall filter, noise and Understand image restoration by elastic deformation.	CO6
7	Discuss the three principal ways to estimate the degradation function for use in image restoration and explain it.	Understand	The learner to Recall image restoration and Understand image degradation function.	CO6
8	Explain regid body visualization used for restoring images	Understand	The learner to Recall visualization, noise and Understand image restoration by order statistics filters.	CO6
9	Explain how degradation is estimated using i)observation ii)mathematical modeling	Understand	The learner to Recall image restoration and Understand estimation of image degradation function.	CO6
10	Summarize Image degradation and restoration process? Explain various Noise filters in detail.	Understand	The learner to Recall image restoration and Understand image degradation function.	CO6
		CIE-II		
11	Explain alpha trimmed filters for image restoration.	Understand	The learner to Recall image restoration and Understand image degradation function.	CO6
12	Discuss inverse filtering for image restoration.	Understand	The learner to Recall the filter and Understand transfer function of inverse filtering.	CO6
13	Demonstrate the model for image degradation.	Understand	The learner to Recall the image restoration and Understand image degradation model.	CO6

14	Discuss constrained least square filtering method for restoration in details	Understand	The learner to Recall the filter and Understand transfer function of constrained least square function.	CO 4
15	Discuss about exponential, ayleigh noise and how it can be removed.	Understand	The learner to Recall the noise models and Understand the removal of noise.	CO 4
16	Describe inverse filtering for removal of blur caused by any motion and describe how it restore the image	Understand	The learner to Recall concept of blur Understand the blur removal by inverse filtering.	CO 4
17	Explain the following filtering techniques (1) Noise models by mean of filter (2) Constrained models by mean of filter (3) Homomorphic filter	Understand	The learner to Recall spatial filter for restoration and Understand the concept of various filters.	CO 4
18	Summarize minimum mean square error filtering for image restoration.	Understand	The learner to Recall the filter and Understand transfer function of minimum mean square filter function.	CO 4
19	Discuss about erlang noise and how it can be removed.	Understand	The learner to Recall the noise sources and Understand the power density function of noise.	CO 4
20	What is Image restoration? Draw and explain the basic block diagram of the restoration process. Give two areas where restoration process can be applied	Understand	The learner to Recall image restoration and Understand image degradation function.	CO 4

	PART C- SH	ORT ANSWE	R QUESTIONS	
1	What is meant by Image Restoration?	Remember		CO 4
2	How a degradation process is modeled?	Remember		CO 4
3	Differentiate image enhancement and image restoration	Remember		CO 4
4	What are the two methods of algebraic image restoration approach?	Remember		CO 4
5	What is inverse filtering?	Remember		CO 4
6	What is pseudo inverse filter?	Remember	<u> </u>	CO 4
7	Explain the causes of degradation in an image.	Understand	The learner to Recall image restoration and Understand causes for image degradation.	CO 4
8	What are the two methods of algebraic image restoration approach?	Remember		CO 4
9	What is dynamic (or) Adaptive thresholding?	Remember		CO 4
10	Explore the restoration is called unconstrained restoration?	Remember		CO 4
		CIE-II		
11	Write notes on Least square error filter	Remember		CO 4
12	Describe constrained least square filtering for image restoration and derive its transfer function.	Remember		CO 4
13	What is inverse filtering?	Remember		CO 4
14	What is pseudo inverse filter?	Remember		CO 4
15	What is a adaptive median filter?	Remember		CO 4
16	Define arithmetic mean filter .	Remember		CO 4
17	Define geometric mean filter .	Remember		CO 4
18	Explain spatial filtering.	Remember	<u> </u>	CO 4

19	What is a median filter?	Remember		CO 4
20	What is harmonic mean filter?	Remember		CO 4
		MODULE IV	V	
			LASSIFICATION	
PA	ART A-PROBLEM SOLVIN	G AND CRIT	ICAL THINKING QUEST	IONS
1	Consider an image segment of size 5x5 and explain the magnitude and direction of the gradient of the pixel.	Understand	The learner to Recall the image into segments of its constituents and Understand the magnitude and direction of the gradient of the pixel.	CO 5
2	Explain image segmentation for detecting pixel- based ,edge- based ,region-based	Understand	The learner to Recall image segmentation and Understand the image segmentation	CO 5
3	Illustrate medical image segmentation for detecting pixel- based ,edge- based ,region-based	Understand	The learner to Recall gradient operator and Understand the medical image segmentation.	CO 5
4	Explain statistical image representation for detecting edges and its response	Understand	The learner to Recall gradient operator and Understand the statistical image representation.	CO 5
5	Apply pixel based and edge based procedural stepts to segment any image with suitable illustrations.	Apply	The learner to Recall the image into segments of its constituents and Understand the information contained and apply pixel based and edge based	CO 5
6	Show that a invariant feature transformation separable while the whole-image features object is need to be separable.	Understand	The learner to Recall separable property and Understand the invariant feature transformation.	CO 5
7	Prepare the active contour models and Level sets for medical image segmentation	Apply	The learner to Recall segment of an image and Understand Active contour model of an image and apply to c Level sets by structuring element B.	CO 5

8	Discuss the binary image	Apply	The learner to Recall the	CO 5
	statistical image		image into segments of its	
	classification are exstended		constituents and	
	with suitable industrial		Understand the	
	applications		structuring element and	
			apply tatistical image	
			classification	
9	The input picture and	Apply	The learner to Recall	CO 5
	structuring elements are		binary image representation	
	shown below. Perform the		and Understand the	
	erosion and dila-		structuring element and	
	tion of the given below table.		apply the input image is	
	1 1 1		eroded and dilation by structuring element B.	
10	The Feature extraction and	Apply	The learner to Recall	CO 5
	representation of an image.		binary image representation	
	Perform the industrial		and Understand the	
	applications.		structuring element and	
			apply the Feature	
			extraction and	
			representation.	

	PART B-LO	NG ANSWER	R QUESTIONS	
1	How do you perform edge detection? Give suitable algorithm and discuss how the edge points are linked.	Understand	The learner to Recall the image into segments of its constituents and Understand smaller entities for region based segmentation.	CO 5
2	Discuss how region Growing approach are used for image 3segmentation.	Understand	The learner to Recall the image into segments of its constituents and Understand smaller entities for Edge linking based segmentation.	CO 5
3	Discuss how region splitting and merging approach are used for image segmentation.	Understand	The learner to Recall the image into segments of its constituents and Understand smaller entities for global thresholding.	CO 5
4	What is edge detection? Describe in detail about the types of edge detection operations.	Understand	The learner to Recall the image into segments of its constituents and Understand smaller entities for region based segmentation.	CO5
5	Illustrate Image visualization on rigid body visualization.	Understand	The learner to Recall the Image visualization and Understand smaller entities for Image visualization.	CO5
6	Explain global processing using Hough transform	Understand	The learner to Recall the image into segments of its constituents and Understand the closing operation in image morphology segmentation.	CO 5
7	What do you Understand by dilation and erosion in morphological operation? Explain in detail.	Remember		CO 5
8	How do you link edge pixels through global processing?	Remember		CO 5

9	Explain region based segmentation and region growing with an example.	Remember		CO 5
10	Discuss image segmentation based on various thresholding techniques.	Understand	The learner to Recall the image into segments and Understand in to morphing for dilation and erosion.	CO 5
11	Describe gradient operators based edge detection method with necessary masks and equations.	Understand	The learner to Recall the image into segments and Understand the thresholding process.	CO 5
12	Explain gradient operators based edge detection method with necessary masks and equations.	Understand	The learner to Recall the image into segments and Understand the boundary characteristics.	CO 5
13	Explain edge linking using Hough transform.	Understand	The learner to Recall the image into segments and Understand the image segmentation.	CO 5
14	Explain the following morphological algorithms i) Boundary extraction ii) Hole filling.	Understand	The learner to Recall the image into segments and Understand the Hough transform for edge linking image segmentation.	CO 5
15	Explain the following morphological algorithms. i) Thinning ii) Thickening	Understand	The learner to Recall the image into segments and Understand the edge linking in image segmentation.	CO 5
16	With necessary figures, explain the opening and closing operations.	Understand	The learner to Recall the image into segments of its constituents and Understand smaller entities for region splitting and merging based on segmentation.	CO 5
17	How can you control Over segmentation problem? Explain it.	Understand	The learner to Recall the image into segments and Understand the of Hit-or-Miss morphological transformation	CO 5

18	Explain the detection of isolated points in an image.	Understand	The learner to Recall the image into segments and Understand in to morphing image processing	CO 5
19	Explain about morphological hit-or-miss transform.	Understand	The learner to Recall the image into segments and Understand in to morphing for dilation and erosion of image processing.	CO 5
20	Explain watershed transformation and discuss about its advantages and disadvantages.	Understand	The learner to Recall the image into segments and Understand the of Hit-or-Miss morphological transformation.	CO 5
	PART C-SH	ORT ANSWE	R QUESTIONS	
1	What is segmentation?	Remember		CO 5
2	Write the applications of segmentation	Remember		CO 5
3	What are the three types of discontinuity in digital image?	Remember		CO 5
4	How the derivatives are obtained in edge detection during formulation?	Remember		CO 5
5	What are the two properties used for establishing similarity of edge pixels?	Remember		CO 5
6	Give the properties of the second derivative around an edge?	Remember		CO 5
7	Define Gradient Operator.	Remember		CO 5
8	What is meant by zero crossing property of second order derivative?	Remember		CO 5
9	What are the disadvantages of Laplacian operator?	Remember		CO 5
10	What are the various techniques that can be used for edge linking?	Remember		CO 5
11	What is object point and background point?	Remember		CO 5
12	What is thresholding? What are its types?	Remember		CO 5

13	What is Global Thresholding?	Remember		CO 5
14	What is variable Thresholding?	Remember		CO 5
15	What are the disadvantages of thresholding?	Remember		CO 5
16	What are the disadvantages of thresholding?	Remember		CO 5
17	Define region growing?.	Remember		CO 5
18	Specify the steps involved in splitting and merging.	Understand	The learner to Recall the image into segments and Understand in to smaller entities for image segmentation	CO 5
19	Define morphological operations.	Remember		CO 5
20	Define statistical image classification.	Remember		CO 5
		MODULE V	J	
	IMAGE REGIST	RATION ANI	D VISUALIZATION	
PA	ART A-PROBLEM SOLVIN	G AND CRIT	ICAL THINKING QUEST	IONS
1	Determine the interactive principle access registration with suitable example.	Analyze	The learner to Recall the interactive principle access registration Understand the encoding process then apply Huffman code for given source and analyze average length of the code and its	CO 6
2	Explore A source rigid body visualization from any method of 2D or 3D display with any examples.	Analyze	The learner to Recall average method of 2D and 3D display Understand the encoding process then apply method of 2D or 3D display for given source and analyze method of 2D or 3D display	CO 6

3	For the image shown below compute the elastic deformation- based registration that can be Interactive principal axis registration in digital image analytical.	Apply	The learner to Recall Understand the principal axis registration apply elastic deformation for given image.	CO 6
4	Explore the feature based registration which source from rigid body visualization with examples,	Apply	The learner to Recall Rigid body visualization, Understand s the feature based registration then apply.	CO 6
5	Encode the word a1,a2,a3,a4 using arithmetic coding and find tag for the given probabilities.a1=0.2, a2= 0.2,a3=0.4, a4=0.2	Apply	The learner to Recall the codeword and Understand the procedure for arithmetic coding and apply it to find the word length and code length	CO 6
6	Perform steps of algorithm for the following Descriptors, Whole-image Features object and Scale for the industrial applications	Analyze	The learner to Recall the alogrithm efficiency and Understand the intensity distribution and apply algorithm and compare with that of uniform length code.	CO 6
7	List out the steps of algorithm of Invariant Feature Transform (SIFT) and its importance with suitable example.	Apply	The learner to Recall the codeword and Understand the procedure for uffman coding and apply it to find the average length of the code and its redundancy.	CO 6
8	Compute from S={S0 ,S1, S2, S3,S4} with corresponding probabilities P= {0.4 ,0.2,0.2,0.1,0.1} of principal axis registration.	Understand	The learner to Recall the encoding techniques and Understand the uffman coding for source symbols and probabilities.	CO 6
9	Outline about principal axis registration.	Understand	The learner to Recall the principal axis registration and Understand the principal axis registration and probabilities.	CO 6

10	Why elastic deformation-based registration is better than a interactive principal axis registration? Summarize the merits and de-merits.	Understand	The learner to Recall the cinteractive principal axis registration and Understand the elastic deformation-based registration better than a interactive principal axis registration.	CO 6
	PART B-LO	NG ANSWER	QUESTIONS	
1	Differentiate elastic deformation-based registration and interactive principal axis registration.	Understand	The learner to Recall the techniques and Understand the redundancies in a digital image	CO 6
2	Demonstrate feature based registration with example.	Understand	The learner to Recall the techniques and Understand the feature based registration in digital image	CO 6
3	Explain the need for image visualization and image visualization encoding approach is used for virtual reality based image visualization.	Understand	The learner to Recall the need for image visualization and Understand the image visualization	CO 6
4	Demonstrate arithmetic coding with example.	Understand	The learner to Recall the need for image compression and Understand the arithmetic Coding.	CO 6
5	Explain the average length of the code. Is Huffman code uniquely decodable? If so, Justify your answer.	Understand	The learner to Recall average length of the code and Understand uffman code.	CO 6
6	How an image is pixel based JPEG in image segmentation?	Understand	the learner to Recall the compression standard and Understand the JPEG image.	CO 6
7	Explain in detail about the arithmetic coding	Understand	the learner to Recall the compression techniques and Understand the arithmetic coding in a digital image	CO 6

8	Describe run length encoding with examples	Understand	the learner to Recall the compression techniques and Understand the run length encoding in a digital image	CO 6
9	What is mean by Virtual reality interactive visualization and write the applications of it	Understand	the learner to Recall the image to take number of bits and Understand bVirtual reality interactive visualization	CO 6
10	List out and explain in detail about the Virtual reality interactive visualization	Understand		CO 6
11	Relate the statistical shape standard and the steps involved in statistical image classification.	Understand		CO 6
12	Which type of method to generating variable length codes with an example.	Understand	the learner to Recall the compression techniques and Understand the variable length encoding in a digital image	CO 6
13	Show whole-image features object along with an examples.	Understand	the learner to Recall the whole-image features and prepare algorithms and Understand the arithmetic encoding	CO 6
14	Why whole-image features and prepare the need for image relates with an example.	Understand	The learner to Recall the compression techniques and Understand the whole-image features in a digital image	CO 6
15	Relate the medical image segmentation and the steps involved in image representation.	Understand	The learner to Recall the image segmentation techniques and Understand the medical image segmentation in a digital image	CO 6
16	Select and match the image visualization and their display methods with examples	Understand	The learner to Recall the image visualization methods and Understand the removal methods in a digital image	CO 6

17	Demonstrate with example level sets for medical image segmentation	Understand	The learner to Recall the prepare algorithms and Understand the coding for binary arithmetic process for medical image segmentation.	CO 6
18	Compare Feature and Elastic deformation based registration	Understand	The learner to Recall the Elastic deformation based registration and Understand to active contour models	CO 6
19	Relate Image Visualization with merits and demerits	Understand	The learner to Recall the compression techniques and Understand the JPEG compression in a digital image	CO 6
20	Draw the suitable diagrams of registration of system and relate with image compression.	Understand	The learner to Recall the compression techniques and Understand the transform coding compression in a digital image	CO 6
	PART C-SH	ORT ANSWE	R QUESTIONS	
1	What is image classification and its importance?	Remember		CO 6
2	Which is the need for Compression?	Remember		CO 6
3	What are the types of redundancy?	Remember		CO 6
4	Define coding redundancy.	Remember		CO 6
5	What are the pixel and edge of images.	Remember		CO 6
6	Define Psychovisual redundancy.	Remember		CO 6
7	What is Image representation and analysis?	Remember		CO 6
8	Construct the rigid body visualization.	Remember		CO 6
9	State the feature based registration.	Remember		CO 6
10	Prepare the statistical Text.	Remember		CO 6
11	What are the operations performed by descriptors?	Remember		CO 6

12	What is Variable image visualization?	Remember		CO 6
13	List out the advantages of image registration?	Remember		CO 6
14	What are the coding systems in JPEG?	Remember		CO 6
15	What are the basic steps in image registration?	Remember		CO 6
16	State whether the following image visualization methods: 2D and 3D display methods	Remember		CO 6
17	Match the feature based registration with example.	Remember		CO 6
18	Explain the Image visualization and Data Redundancy.	Understand	The learner to Recall the Virtual Reality and prepare the relative algorithms and Understand to image intensity levels for feature based registration.	CO 6
19	Draw and relate diagram of Interactive principal axis registration.	Remember		CO 6
20	Prepare the importance of Virtual Reality based interactive visualization	Remember		CO 6

Course Coordinator: CSE(DS)

Dr. G. Ganapathi Rao, Asst. Professor

HOD