7) Write a Python program which explains uses of customizing seaborn plots with Aesthetic functions.

from pathlib import Path
Path.cwd()

Output: WindowsPath('C:/Users/GANESH/Downloads/Python/DVUP')

import seaborn as sns
import pandas as pd
data=pd.read_table('C:/Users/GANESH/Downloads/Python/DVUP/file.txt')
#data=pd.read_excel('dataset.xlsx')
data

	name	marks	sex	age
0	А	45	М	20
1	В	23	F	19
2	С	46	F	20
3	D	35	М	19
4	Е	42	F	18
5	F	41	М	23
6	G	40	F	24
7	Н	25	М	35
8	1	30	F	29
9	J	39	М	30
	1 2 3 4 5 6 7	0 A 1 B 2 C 3 D 4 E 5 F 6 G 7 H 8 I	0 A 45 1 B 23 2 C 46 3 D 35 4 E 42 5 F 41 6 G 40 7 H 25 8 I 30	0 A 45 M 1 B 23 F 2 C 46 F 3 D 35 M 4 E 42 F 5 F 41 M 6 G 40 F 7 H 25 M 8 I 30 F

sns.scatterplot(data=data, x='age', y='marks') sns.relplot(data=data, x='age', y='marks', kind='scatter')

output: <seaborn.axisgrid.FacetGrid at 0x14af0736670>

Data Visualization with python (BCS358D) sns.relplot(kind='line', data=data, x='age', y='marks')

output: <seaborn.axisgrid.FacetGrid at 0x25b98a7be50>

sns.barplot(x='age', y='marks', data=data)
plt.show()

Data Visualization with python (BCS358D)

import numpy as np import seaborn as sns

sns.set(style="dark") # white, dark, ticks

Generate a random univariate dataset rs = np.random.RandomState(10) d = rs.normal(size=100)

Plot a simple histogram and kde sns.histplot(d, kde=True, color="m")

output: <AxesSubplot:ylabel='Count'>

Colormaps are used to visualize plots effectively and easily. One might use different sorts of colormaps for different kinds of plots. color_palette() method is used to give colors to the plot.

import seaborn as sns
import matplotlib.pyplot as plt
palette = sns.color_palette()
sns.palplot(palette)
plt.show()

import seaborn as sns
import matplotlib.pyplot as plt
palette = sns.color_palette('Greens', 5)
sns.palplot(palette)
plt.show()

