Compléments sur la méthode de relaxation

Système Ax = b de matrice A inversible

$$(L + \frac{1}{\omega}D) x_{k+1} = (\frac{1-\omega}{\omega}D - U) x_k + b$$

$$A = L + D + U$$

$$D = \text{diag}(a_{11}, a_{22}, ..., a_{NN}), a_{ii} \neq 0 \forall i$$

$$L = \begin{bmatrix} a_{ij} & 0 \\ (i > j) \end{bmatrix} \quad U = \begin{bmatrix} a_{ij} & (j > i) \\ 0 & 0 \end{bmatrix}$$

converge si
$$\rho(Q_{\omega}) < 1$$
, $Q_{\omega} = (L + \frac{1}{\omega}D)^{-1}(\frac{1-\omega}{\omega}D - U)$

Implémentation avec stockage d'un seul vecteur:

à partir de
$$(x_1^{(k+1)},...,x_{i-1}^{(k+1)},x_i^{(k)},...,x_n^{(k)})$$
 on calcule $(x_1^{(k+1)},...,x_i^{(k+1)},x_{i+1}^{(k)},...,x_n^{(k)})$

En multipliant la relation de récurrence par ωD^{-1} , on obtient

l'écriture par composantes:
$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(k+1)} - \sum_{j \ge i} a_{ij} x_j^{(k)} \right)$$

Théorème:

Pour toute matrice A symétrique définie positive, la méthode de relaxation converge si et seulement si $\omega \in]0,2[$

Démonstration:

Produit scalaire sur IRⁿ:
$$(x,y)_A = x^T A y$$
, norme associée: $||x||_A = \sqrt{x^T A x}$

Norme subordonnée:
$$\forall B \in M_n(IR)$$
: $||B|| = \sup_{x \in IR^n, x \neq 0} \frac{||Bx||_A}{||x||_A} = \sup_{x \in IR^n, ||x||_A = 1} ||Bx||_A$

- 1) Montrons que si $\omega \in]0,2[$ alors $||Q_{\omega}|| < 1$
- Cela implique $\rho(Q_{\omega})$ < 1 et la CV de la méthode

On a
$$Q_{\omega} = M^{-1}N = M^{-1}(M - A) = I - M^{-1}A$$

Pour tout
$$x \in \mathbb{R}^n$$
, $\|Q_{\omega}x\|_A^2 = \|x - y\|_A^2$ avec $y = M^{-1}Ax$

$$= (x - y, x - y)_A = \|x\|_A^2 + \|y\|_A^2 - 2(Ax)^T y$$

$$= \|x\|_A^2 + \|y\|_A^2 - 2(My)^T y$$

(suite démonstration)

Pour tout
$$x \in \mathbb{R}^n$$
, $\|Q_{\omega}x\|_A^2 = \|x\|_A^2 + \|y\|_A^2 - 2(My)^T y$

$$= \|x\|_A^2 + \|y\|_A^2 - y^T (M^T + M)y$$

$$= \|x\|_A^2 - y^T ((M^T + M) - A)y$$

$$-A+M+M^{T}=-A+L+\frac{1}{\omega}D+L^{T}+\frac{1}{\omega}D=-A+L+U+\frac{2}{\omega}D=\left(\frac{2}{\omega}-1\right)D$$

Comme A est symétrique définie positive, $a_{ii} = e_i^T A e_i > 0$

 $(e_i$ désigne le ième vecteur de la base canonique) donc la matrice diagonale

D est définie positive, ainsi que
$$M + M^T - A = \left(\frac{2 - \omega}{\omega}\right)D$$

$$|||Q_{\omega}||| = \sup_{u \in \mathbb{R}^n, ||u||_A = 1} ||Q_{\omega}u||_A = ||Q_{\omega}x||_A \text{ pour un certain } x \in \mathbb{R}^n, ||x||_A = 1$$

donc
$$\|Q_{\omega}\|^2 = \|Q_{\omega}x\|_A^2 = \|x\|_A^2 - y^T ((M^T + M) - A)y < 1 \text{ d'où } \|Q_{\omega}\| < 1$$

(suite démonstration)

2) Montrons que si $\omega \notin]0,2[$ alors $\rho(Q_{\omega}) \ge 1$ et donc la méthode diverge Soit x vecteur propre de Q_{ω} associé à une valeur propre λ

$$\|\lambda\|^2 \|x\|_A^2 = \|Q_\omega x\|_A^2 = \|x\|_A^2 + y^T (A - (M^T + M))y$$
 avec $y = M^{-1}Ax \neq 0$

Si
$$\omega > 2$$
 ou $\omega < 0$, $A - M - M^T = \left(1 - \frac{2}{\omega}\right)D$ est définie positive

d'où
$$\|\lambda\|^2 \|x\|_A^2 > \|x\|_A^2$$
.

Donc toutes les valeurs propres λ de Q_{ω} sont de module >1.

Si
$$\omega = 2$$
, $A - M - M^T = 0$ donc $|\lambda|^2 ||x||_A^2 = ||x||_A^2$, d'où $|\lambda| = 1$

Si
$$\omega = 0$$
: $Q_{\omega} = (\omega L + D)^{-1}((1 - \omega)D - \omega U) = I \text{ d'où } \lambda = 1$