ANNOUNCEMENTS

- Homework 1 is out on Canvas:
 - Due date: April 17 (midnight) on Canvas
 - should be submitted as a pdf file
- Quiz 1: Last 10 minutes of the class on Thursday April 9
 - Topics:
 - "Overture" Chapter from Logicomix
 - A couple of conceptual questions about what we covered in Lectures 2 and 3.
- Discussion Session information posted on Canvas and Piazza
- Reading for today's class: ZyBook 1.2-1.7

Some slides courtesy of Tracy Larrabee and Rosen, Discrete Math and its Applications (Wiley)

SUBSETS

Definition: The set A is a *subset* of B, if and only if every element of A is also an element of B.

- The notation $A \subseteq B$ is used to indicate that A is a subset of the set B.
- $A \subseteq B$ holds if and only if is true. $\forall x (x \in A \rightarrow x \in B)$
- ZyBook Exercises 1.1

SHOWING A SET IS OR IS NOT A SUBSET OF ANOTHER SET

• Showing that A is a Subset of B: To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B:

$$\forall x (x \in A \to x \in B)$$

 $\forall x(x\in A\to x\in B)$ • Showing that A is not a Subset of B: $A\nsubseteq B$

$$\neg \forall x (x \in A \to x \in B)$$
$$\exists x \neg (x \in A \to x \in B)$$
$$\exists x (x \in A \land x \notin B)$$

• To show that A is not a subset of B, $A \nsubseteq B$, find an element $x \in A$ with x $\notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)

PROVING SETS ARE SUBSETS OF OTHERS

$$\forall x (x \in A \to x \in B)$$

- $\{1,5,5,5,3,3,1\} \subseteq \{1,3,5\}$?
- Definition of subset

$$\forall x (x \in A \to x \in B)$$

- for x in A:
 - Show x belongs to B

PROVING SETS ARE SUBSETS OF OTHERS

$$\forall x (x \in A \to x \in B)$$

- $S \subseteq S$, for every set S?
- Because $a \in S \rightarrow a \in S$,
- $\emptyset \subseteq S$

PROVING SETS ARE SUBSETS OF OTHERS

- Is the set of integers with squares less than 100 a subset of N?
- No! We are now going to prove the first set is not a subset of the 2 belongs to the first set, but not to N
- Proof:
 - -2 belongs to the set of integers with squares less than 100
 - -2 does not belong to $\mathbb N$
- The above proof is usually called a counterexample

$$\neg \forall x (x \in A \to x \in B)$$
 Is equivalent to

$$\exists x (x \in A \land x \notin B)$$

ANOTHER LOOK AT EQUALITY OF SETS

• Recall that two sets A and B are equal, denoted by A = B, iff

$$\forall x (x \in A \leftrightarrow x \in B)$$

• Using logical equivalences we have that A = B iff

$$\forall x [(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

This is equivalent to

$$A \subseteq B$$
 and $B \subseteq A$

PROPER SUBSETS

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$. i.e.,:

$$A \subset B$$
 iff

$$\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \not\in A)$$

Venn Diagram

TRUE OR FALSE?

$$\mathbb{N} \subset \mathbb{R}$$
 $\mathbb{Z} \subseteq \mathbb{N}$
 $-3 \subseteq \mathbb{R}$
 $\{1,2\} \notin \mathbb{Z}^+$
 $\emptyset \subseteq \emptyset$
 $\emptyset \subset \emptyset$
 $\{x\} \subseteq \{x\}$
 $\{x\} \in \{x,\{x\}\}$
 $\{x\} \subseteq \{x,\{x\}\}$
 $\{x\} \in \{x,\{x\}\}$

POWER SETS

Definition: The set of all subsets of a set A, denoted $\mathcal{P}(A)$, is called the *power set* of A.

Example: If $A = \{a,b\}$ then

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$$

• If a set has n elements, then the cardinality of the power set is 2^{n} .

ZyBook Exercises 1.2

TUPLES

- The *ordered n-tuple* $(a_1,a_2,....,a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.
- Two n-tuples are equal if and only if their corresponding elements are equal.
- 2-tuples are called ordered pairs.
- The ordered pairs (a,b) and (c,d) are equal if and only if a=c and b=d.
 - If a=c and b=d then (a,b) and (c,d)
 - And
 - If (a,b)=(c,d) then a=c and d=d

N-TUPLES

```
(11, 12)
                            ordered pair
( 🍎, 🌙, 🌼 )
                           a 3-tuple
( ĕ, ‡, , → , 11, Leo ) a 5-tuple
```

 As opposed to sets, repetition and ordering do matter with *n*-tuples.

```
• (11, 11, 11, 12, 13) \neq (11, 12, 13)
```


WHAT IS \mathbb{R}^2

• What about \mathbb{R}^3

René Descartes (1596-1650)

CARTESIAN PRODUCT

Definition: The *Cartesian Product* of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

Example:

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

$$A = \{a,b\}$$
 $B = \{1,2,3\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

• **Definition**: A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B. (Relations will be covered in depth in ZyBook Section 6.)

CARTESIAN PRODUCT

Definition: The cartesian products of the sets A_1, A_2, \dots, A_n , denoted by $A_1 \times A_2 \times \dots \times A_n$, is the set of ordered n-tuples (a_1, a_2, \dots, a_n) where a_i belongs to A_i for i = 1, ... n.

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example: What is $A \times B \times C$ where $A = \{0,1\}$, $B = \{1,2\}$ and $C = \{0,1,2\}$

Solution:
$$A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$$

ZyBook Exercise 1.3

WHAT IS \mathbb{R}^2

- What about R³
- $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$
- $\blacksquare \mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$
- In general, for an arbitrary set A,
 - $A^n = A \times A \times A \dots \times A = \{(x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n \in A\}$