习 题

- 2.1 假定题图 2.1 所示电路中的运放是理想的,求:
- (1) 如果 $V_a = 0.05V$, $V_b = 0.25V$, 电路中的 V_o 是多大?
- (2) 如果 $V_a = 0.05$ V,在运放饱和之前, V_b 可以到多大?
- (3) 如果 $V_b = 0.25V$,在运放饱和之前, V_a 可以到多大?
- 2.2 假定题图 2.2 所示电路中的运放是理想的,求:
- (1) 当可变电阻 R_x 调到 60kΩ时的输出电压 V_0 。
- (2) 如使放大器不饱和, R, 可以到多大?
- 2.3 如题图 2.3 所示差分放大器, V_b=4V, 求:
- (1) Va在什么范围内变化使电路工作在线性区?
- (2) 将 $25k\Omega$ 电阻减小到 $10k\Omega$, 重复 (1)。

- 2.4 题图 2.4 所示运放,利用实际的运放电路模型,输入电阻是 $500k\Omega$,输出电阻是 $5k\Omega$,运放开环增益是 $300\,000$,假定运放工作在线性区,求:
 - (1) 放大器的电压增益 V_0/V_0 ;
 - (2) 如果 $V_g=1V$, 求电压 V_n (用 μV 表示);
 - (3) 计算从信号源 (V_g) 看进去的电阻;
 - (4) 运放在理想模式下, 重复(1)~(3)。

2.5 试证明题图 2.5 所示含有 T 形网络反相放大器的闭环增益

$$A_{\rm f} = \frac{V_{\rm o}}{V_{\rm i}} = -\frac{R_2}{R_1} \left(1 + \frac{R_3}{R_4} + \frac{R_3}{R_2} \right)$$

2.6 设计一个如题图 2.5 所示含有 T 形网络的反相放大器,用作麦克风的前置放大器。麦克风的最大输出电压为 12mV,即题图 2.5 中输入电压 V_i 最大为 12mV。麦克风的输出电阻 R_s 为 $1k\Omega$,此电阻必须包含在题图 2.5 的电阻 R_1 中。要求所设计的反相放大器最大输出电压为

1.2V,即电压增益为 1.2/0.012=100,但电路中每个电阻的阻值必须 小于 $500k\Omega$ 。

提示: 此题的解决方案不是唯一的。根据经验,建议选择 $R_2=R_3$, $R_1=51$ k Ω (包含 R_s 值在内)。

2.8 题图 2.8 所示电压-电流转换器电路,设运放是理想的, 试证明当 $\frac{R_{\rm f}}{R_{\rm 1}R_{\rm 3}}=\frac{1}{R_{\rm 2}}$ 时, $I_{\rm RL}=-\frac{V_{\rm s}}{R_{\rm 2}}$,即流过负载 $R_{\rm L}$ 的电流与负载 $R_{\rm L}$ 无关,而与输入电压信号 $V_{\rm s}$ 成正比。

提示: 围绕同相端、反相端列写 KCL 方程,同时利用"虚短"条件: $V_n=V_p=I_{RL}R_L$,联立求解以上三式,即可得出问题的解。

2.9 基于题 2.8 结果,设 R_L =100k Ω , R_1 =100 Ω , R_2 =1k Ω , R_3 =1k Ω , R_i =10k Ω 。若 V_s =-10V,求负载电流 I_{RL} 与输出电压 V_o 。

提示: 先验证是否满足条件 $\frac{R_{\rm f}}{R_{\rm l}R_{\rm 3}}=\frac{1}{R_{\rm 2}}$, 如此就好利用题 2.8 的结果。

2.10 题图 2.10 是通用加法器电路,试利用叠加原理证明其输出可表示为

$$\begin{split} V_{\text{o}} &= -\frac{R_{\text{f}}}{R_{\text{l}}} V_{\text{II}} - \frac{R_{\text{f}}}{R_{\text{2}}} V_{\text{I2}} + \left(1 + \frac{R_{\text{f}}}{R_{\text{n}}}\right) \left(\frac{R_{\text{p}}}{R_{\text{A}}} V_{\text{I3}} + \frac{R_{\text{p}}}{R_{\text{B}}} V_{\text{I4}}\right) \\ & \implies R_{\text{p}} = R_{\text{l}} \parallel R_{\text{2}}, \quad R_{\text{p}} = R_{\text{A}} \parallel R_{\text{R}} \parallel R_{\text{C}} \circ \end{split}$$

A2 121 2

提示: 用叠加原理确定电路输出电压, 先研究

单独一个输入电压源作用,将其他3个输入电压源置零(即短路),求输出电压,如此重复4次,然后将4次结果相加,即得4个输入源共同作用时的输出电压。

2.11 在题 2.10 基础上,设计一个加法器,使其输出为 $V_0 = -10V_{11} - 4V_{12} + 5V_{13} + 2V_{14}$

允许使用电阻最小值为 20kΩ。

提示: 按题 2.10 结果, 可知 $R_{\rm f}$ / $R_{\rm l}$ =10 , $R_{\rm f}$ / $R_{\rm s}$ = 4 , 最小电阻为 20k Ω , 先确定 $R_{\rm l}$ 、

 R_2 与 $R_{\rm f}$, 然后由关系 $\left(1 + \frac{R_{\rm f}}{R_{\rm n}}\right) \frac{R_{\rm p}}{R_{\rm A}} = 5$, $\left(1 + \frac{R_{\rm f}}{R_{\rm n}}\right) \frac{R_{\rm p}}{R_{\rm B}} = 2$ 确定同相端各项。

- 2.12 设计如题图 2.12 所示的差分放大器电路,使其输入电阻 R_i =5k Ω ,差模电压增益 A_d =100,共模增益 A_{cm} =0。
- 2.13 题图 2.13 与图 2.1.10 的差别,用三运放代替反相放大器电路以提高测量灵敏度。传感器的输出

信号用桥式电路来测量。在压力作用下引起电阻 R 的值变化,这一偏差用参数 ΔR 表示。图中 $R=200k\Omega$ 。电桥输出电压(V_{11} – V_{12})反映 ΔR 的大小。此输出信号又经三运放测量放大器放大后作为后继电路 ADC 的输入。题图 2.13 所示电路设计目标是,当 $\Delta R/R$ 的偏差为±0.2%时,放大器能输出接近±5V 的电压。试计算:

- (1) 当 $\Delta R/R$ =±0.001 时,电桥电路输出(V_{I1} - V_{I2});
- (2) 当 $\Delta R/R=\pm0.001$ 时,三运放测量放大器输出 V_0 ;
- (3) 如果 V。偏离设计目标 5V, 如何调整电路设计?
- 2.14 如设题图 2.13 中电桥电阻 R=100kΩ,桥式电路的偏置电压 $V_{ref}=5$ V,设计一个三运放测量放大器,使得 $\Delta R/R$ 在 $-0.005\sim0.005$ 之间变化时,输出电压在 $-5\sim5$ V 之间变化,使用合适的电阻。

题图 2.13

2.15 题图 2.15 所示三运放测量放大器电路,与图 2.1.19 所示三运放测量放大器相比较,运放 A₄实现输出共模电压反馈至电源公共端,从而提高共模抑制比,试说明其原因。

题图 2.15

2.16 如题图 2.16 所示的低音信号控制电路, R_2 是可调电位器,触点左边电阻的阻值为 $(1-\alpha)R_2$,右边电阻的阻值为 αR_2 ,试导出输出响应 V_0 / V_1 与 ω 的关系

$$\frac{V_{o}}{V_{i}} = \frac{-(R_{1} + \alpha R_{2} + j\omega R_{1}R_{2}C_{1}s)}{R_{1} + (1 - \alpha)R_{2} + j\omega R_{1}R_{2}C_{1}s}$$

并由此说明改变α即可控制电路的增益。

2.17 如题图 2.17 所示电路,运放为理想运放,求: 系统函数 $H(s) = V_o / V_i$ 的数学表达式。

2.18 电路如题图 2.18 所示,输入信号时域中 $v_s(t)=5\delta(t)$ V,频域中 $V_s(s)=5$ V,求节点 ④的输出响应 $V_4(s)=V_o(s)$ 的频率特性。

题图 2.18