LOW LOSS SOFT MAGNETIC CORE PRODUCED FROM PERMALLOY POWDER

Publication number: KR20030028989 (A)

Publication date: 2003-04-11

Inventor(s): CHOI GWANG BO [KR]; JUNG IN BEOM [KR]; KIM GWANG YUN [KR]; LEE TAE

GYEONG [KR]

Applicant(s): CHANG SUNG CO [KR]

Classification:

- international: H01F41/02; H01F41/02; (IPC1-7): H01F41/02

- European:

Application number: KR20010061455 20011005 **Priority number(s):** KR20010061455 20011005

Abstract of KR 20030028989 (A)

PURPOSE: A low loss soft magnetic core is provided to achieve improved soft magnetic characteristics, while reducing core loss and manufacturing costs. CONSTITUTION: A low loss soft magnetic core contains nickel 38 to 48 weight% and ferrum. The ferrum, ferrum-nickel alloy or ferrum and nickel are dissolved, and gas mixture of N2, He, Ne, Ar, Kr, Xe and Rn gases or water is injected into the resultant structure so as to obtain permalloy powder. Mechanical processes including a ball mill, horizontal mill, attrition mill and rod mill are performed to the permalloy powder. Subsequently, heat treatment is performed to the permalloy powder at the temperature of 700 to 1000 Deg.C for 4 to 15 hours, and the powder is coated an insulating material. The powder is formed into a core shape through the use of a press, and the core is heat treated at the temperature of 500 to 800 Deg.C. Subsequently, the core is coated with a protective material including polyester or epoxy resin.

Data supplied from the esp@cenet database — Worldwide

11/10/2009 11:22 AM

View Details

Title of invention

저손실 퍼멀로이 분말 및 연자성코아의 제조방법 (METHOD FOR MANUFACTURING PERMALLOY POWDER AND SOFT MAGNETIC CORE WITH LOW CORE-LOSS)

Int. CI

H01F 41/02 (2006.01)

Application No.(Date)

10-2001-0061455 (2001.10.05)

Unex. Pub. No.(Date)

10-2003-0028989 (2003.04.11)

Publication No.(Date)

(2004.12.03)

Registration No.(Date)

10-0459642-0000 (2004.11.23)

Kind/Right of Org. Application

/ 신규출원

Right of Org. Application No.

(Date)

Family No.

Final disposal of an application

Registered

Registration Status

Registered

Int'l Application No.(Date)

Int'l Unex. Pub. No.(Date)

Request for an examination(Date) 있음(Y)(2001.10.05)

Number of claims

2

Drawing

Abstract

본 발명은 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아에 관한 것으로서, 보다 상세하 게는 중량비로 NI 38~48%, 잔여량이 FE로 이루어지는 퍼멀로이 분말로 제조되어 자심손실이 낮은 저손실 연자성 코아를 제조하기 위한 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아에 관한 것이다. 이를 위하여, 본 발명은 중량%로서, 니켈(NI) 38~48%이고 잔여량이 철 제공하게 된다. 이와 같이, 본 발명에 따른 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아를 제공하게 된다. 이와 같이, 본 발명에 따른 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아는 종래 조성의 퍼멀로이에 비해 코아손실이 감소하고, 제조원가를 절감할 수 있는 효과가 있다. (FE)로 이루어지는 것을 특징으로 하는 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아를

Claim(Representative)

No.		Content				
1	삭제					
View	All Claims Y					
Applica	ınt					
No.	Name	Address	Country			
1	(주)창성	충청북도 청원군 내수읍 풍정리 *-*	대한민국			
nvento	r					
No.	Name	Address	Country			
1	정인범	경기도부천시원미구중동중흥마을***-****	대한민국			
2	최광보	인천광역시연수구연수*동***번지대우아파트***동****호	대한민국			
3	이태경	인천광역시남구용현*동***-*유원아파트*동****호				
4	김광윤	서울특별시노원구중계동청구*차아파트***동***호	대한민국			
Agent			umperanorom and involved (1990) of 40000 of			
No.	Name	Address	Country			
1	홍성철	서울 강남구 역삼동 ***-* 뉴서울빌딩 ***호(홍익국제특허법률사 무소)	대한민국			
Priority	info. (Country/No./Dat	e)				
Country		No. Date				
Designa	ated States		annana and an artifoliometric and for a suite for a 1887 Profession			
electrical condition in the little ways	Kind	Country				

Legal Status

Prior Art Document(s)

No.	Receipt/Delivery No.	Receipt/Delivery Date	Document Title(Eng.)	Status	
1	1-1-2001- 0255663-80	2001.10.05	특허출원서 (Application of Patent)	Received	
2	4-1-2002- 0074532-44	2002.09.18	출원인정보변경(경정)신고서 (Notification of change of applicant's information)	Received	
3	9-5-2003- 0443491-59	2003.11.07	의견제출통지서 (Notice of Submission of Opinion)	Delivery Completed	
4	1-1-2004- 0003925-63	2004.01.06	지정기간연장신청서 (Request for Extension of Designated Period)	Received	
5	1-1-2004- 0051445-18	2004.02.07	지정기간연장신청서 (Request for Extension of Designated Period)	Received	
6	1-1-2004- 0091905-46	2004.03.05	명세서 등 보정서 (Amendment including Specification etc.)	Received	
7	1-1-2004- 0091906-92	2004.03.05	의견서 (Submission of opinion)	Received	
8	9-5-2004- 0342415-43	2004.08.24	등록결정서 (Written Decision on Registration)	Delivery Completed	

(19)대한민국특허청(KR) (12) 등록특허공보(B1)

(51) • Int CI.⁷ HO1F 41/O2

(45) 공고일자 200 (11) 등록번호 10-(24) 등록일자 200

2004년12월03일 10- 0459642 2004년11월23일

(21) 출원번호 (22) 출원일자 10- 2001- 0061455 2001년10월05일 (65) 공개번호 (43) 공개일자 10- 2003- 0028989 2003년04월11일

(73) 특허권자

(주)창성

충청북도 청원군 내수읍 풍정리 8-8

(72) 발명자

정인범

경기도부천시원미구중동중흥마을602-1401

최광보

인천광역시연수구연수3동579번지대우아파트101동1501호

이태경

인천광역시남구용현2동557-1유원아파트8동1004호

김광윤

서울특별시노원구중계동청구3차아파트109동601호

(74) 대리인

홍성철

심사관: 김준학

(54) 저손실 퍼멀로이 분말 및 연자성코아의 제조방법

35

본 발명은 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아에 관한 것으로서, 보다 상세하게는 중량비로 Ni 38~4 8%, 잔여량이 Fe로 이루어지는 퍼멀로이 분말로 제조되어 자심손실이 낮은 저손실 연자성 코아를 제조하기 위한 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아에 관한 것이다.

이를 위하여, 본 발명은 중량%로서, 니켈(Ni) 38~48%이고 잔여량이 철(Fe)로 이루어지는 것을 특징으로 하는 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아를 제공하게 된다.

이와 같이, 본 발명에 따른 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아는 종래 조성의 퍼멀로이에 비해 코아손실이 감소하고, 제조원가를 절감할 수 있는 효과가 있다.

대표도

도 1

책인어

자심손실, 연자성코아, 퍼멀로이분말, 절연코팅, 보호코팅

명세서

도면의 간단한 설명

도 1은 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아의 제조공정을 나타내는 공정흐름도이다.

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종래기술

본 발명은 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아에 관한 것으로서, 보다 상세하게는 중량비로 Ni 38~4 8%, 잔여량이 Fe로 이루어지는 퍼멀로이 분말로 제조되어 자심손실이 낮은 저손실 연자성 코아를 제조하기 위한 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아에 관한 것이다.

일반적으로, 현재 사용되고 있는 대표적인 연자성 금속 자심재료로서는 퍼멀로이(Ni-Fe합금), 센더스트(Fe-Si-Al합금), 규소강(Fe-Si합금) 등이 있으며, 퍼멀로이는 센더스트나 규소강에 비해 상대적으로 고가이나 우수한 연자성 특성으로 인해 소형가전제품, 노트PC, 휴대용 통신기기 등의 전원공급장치(Switching Mode Power Supply; SMPS)에 많이 사용되고 있다.

상용화된 퍼멀로이는 크게 Fe- Ni계 퍼멀로이, Fe- Ni- Mo계 퍼멀로이(Moly Permalloy;이하 'MP'라 한다)로 나눌수 있다. MP는 투자율이 아주 높고, 자심손실이 적은 장점을 가지고 있고, Fe- Ni계 퍼멀로이는 큰 포화자속 밀도값을 가지므로 직류중첩특성이 우수한 장점을 가지고 있다. 종래에 사용된 Fe- Ni계 퍼멀로이로는 Ni 조성이 48~52%인 50퍼멀로이와, Ni 조성이 78~80%인 78퍼멀로이는 거의 쓰이지 않고, MP로 대체된 실정이며, 주로 50퍼멀로이가 Fe- Ni계 퍼멀로이로서 주로 사용되고 있다.

Fe-Ni계 퍼멀로이로 위의 두 가지 조성이 사용된 것은 Ni 48~52%, 78~80% 부근의 조성에서 결정자기이방성상수와 자기변형상수가 거의 최소가 되어 높은 투자율을 나타내기 때문이다. 그러나 종래에 사용된 이러한 조성들은 판재와 벌크에 적용되었던 것이며, 현재 금속분말자심재료로 사용되는 Fe-Ni계 퍼멀로이는 Ni 조성이 48~52%이고, Fe-Ni계 퍼멀로이의 경우 Ni 조성이 40~50% 범위에서 Ni 함량이 더 낮아질수록 결정자기이방성상수는 증가하나 자기변형상수는 오히려 감소하여 0에 가까워지며, 또한 자심손실을 감소시킬 수 있는 비저항도 Ni 조성이 48% 이상에서는 감소하는 문제점이 있다.

발명이 이루고자 하는 기술적 과제

상기와 같은 문제점을 해결하기 위하여, 본 발명은 중량%로서, 니켈(Ni) 38~48%이고 잔여량이 철(Fe)로 이루어지는 것을 특징으로 하는 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아를 제조하여 낮은 자심손실을 얻음으로써 (리액턴스/총손실)로 표현되는 자심재료의 품질계수(Q)값을 증가시키고, Fe에 비해 고가인 Ni의 함량이 감소함으로써 제조원가를 절감할 수 있는 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아를 제공하는데 그 목적이 있다.

발명의 구성 및 작용

상기와 같은 목적을 달성하기 위하여, 본 발명은 중량%로서, 니켈(Ni) 38~48%이고 잔여량이 철(Fe)로 이루어지는 것을 특징으로 하는 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아를 제공하게 된다.

이하, 본 발명을 보다 구체적으로 상세하게 설명한다.

도 1은 본 발명에 따른 저손실 연자성 코아를 제조하기 위한 퍼멀로이 합금분말의 제조방법 및 이를 이용한 연자성 코어의 제조공정을 나타내는 공정흐름도이다.

도 1에 도시된 바와 같이, 본 발명의 퍼멀로이 분말의 제조에서는 중량%로서 Ni 38~48%, 잔여량이 Fe인 조성이 되도록 Fe와 Fe-Ni 합금 또는 Fe와 Ni을 용융하고, N2, He, Ne, Ar, Kr, Xe 및 Rn 가스 중에서 한 가지 또는 두 가지이상을 혼합한 가스 또는 물을 분사하여 퍼멀로이 분말을 제조한다.

이어서, 제조한 분말을 볼밀(Ball Mill) 공정인 수평식 밀(Horizontal Mill), 어트리션 밀(Attrition Mill), 로드 밀(Rod Mill) 등으로 기계적인 가공을 실시한다. 이러한 기계적 가공공정을 거침으로써 합금분말을 분쇄하거나 또는 합금분말에 응력을 가하여 열처리시 재결정이 용이하게 하여 기계적 가공을 거치지 않은 분 말에 비해 상대적으로 낮은 열처리 온도에서 우수한 연자기적 특성의 분말을 얻을 수 있다. 또한 이러한 기계적 가공공정을 거침으로써 합금분말을 사용한 코아의 성형시 성형성이 좋지 않은 구형분말을 불규칙 형상의 분말로 만들어 성형성을 향상시킬 수 있다. 다음에, 상기와 같이 기계적 가공을 거친 퍼멀로이 분말을 700~1000℃의 온도에서 4~15시간 수소 또는 질소, 수소와 질소의 혼합가스 분위기에서 열처리를 실시한다. 이러한 분말 열처리는 기계적 가공을 거친 합금분말의 내부응력을 제거하여 재결정시키고, 이 합금분말을 사용한 연자성 코아의 압축성형 중에 기계적 가공에 의해 가공경화된 분말과 절연층 사이에 전단(Shearing)이 발생하는 것을 줄이기 위한 목적이다.

상기와 같은 분사법에 의한 분말의 제조, 기계적인 가공, 열처리의 과정을 통하여 얻어진 퍼멀로이 분말을 사용함으

로써 자심손실이 적은 퍼멀로이 분말코아를 제조할 수 있다.

본 발명의 퍼멀로이 분말코아의 제조에서는 중량비로 Ni 38~48%, 잔여량이 Fe로 이루어진 퍼멀로이 분말을 준비하고, 준비한 분말에 0.1~4.0중량%의 혼합 세라믹을 가하여 1회 또는 2~4회로 나누어 절연코팅을 실시한다. 혼합 세라믹은 활석(Talc)과 고령토(Kaolin)를 기본으로 하여 물유리(Sodium Silicate)와 수용액 중에서 혼합한 혼합물이다. 절연코팅이 이루어진 혼합분말을 성형 다이(Die)에서 프레스(Press)를 사용하여 원하는 형상의 코아로 성형하게 되는데, 이 때 성형 다이와 밀집된 성형체 사이의 마찰력 및 분말입자 사이의 마찰을 감소시키기 위하여 Zn, ZnS 또는 아연-스테아란산(Zn-Stearate)과 같은 윤활제를 1% 이하 첨가하게 된다.

다음에, 성형된 코아에서 잔류응력과 변형(Strain)을 제거하기 위하여 500~800℃의 온도범위에서 20~120분 정도수소 또는 질소, 수소와 질소의 혼합가스 분위기에서 열처리를 실시하여 연자성 코아를 제조한다. 열처리 온도 및 시간을 상기와 같이 한정하는 것은 잔류응력을 완전히 제거하고 합금분말의 절연층이 파괴됨이 없이 양호한 연자성 특성을 얻기 위함이다.

다음에, 상기와 같이 성형한 코아를 열처리한 후, 습기 및 대기로부터 코아특성 보호를 위하여 코아 표면에 폴리에스 테르 또는 에폭시 수지 등을 보호 코팅함으로써 퍼멀로이 분말코아가 제조된다.

이하, 본 발명을 바람직한 실시예와 관련하여 보다 상세하게 설명한다.

[실시예 1]

중량%로서, 각각 Ni 38%(발명재 1), 41%(발명재 2), 45%(발명재 3), 47%(발명재 4), 49%(비교재 1), 52%(비교재 2), 잔여량 Fe로 이루어진 6종의 퍼멀로이 분말을 질소 분사법으로 - 140mesh(106μm 이하) 크기로 제조한 후, 볼밀(Ball Mill)을 8시간 실시하고, 860℃에서 질소분위기 하에 5시간 동안 열처리하였다.

이어서, 혼합 세라믹 0.25중량%로 1회 절연코팅을 실시하고, 성형 윤활제로 아연-스테아린산 0.3중량%를 첨가하여 외경 27㎜, 내경 14.7㎜, 높이 11.2㎜의 환형 코아를 성형하고, 질소분위기 하에서 660℃에서 1시간 동안 열처리하여 제조하였다.

제조된 코아에 대해 에나멜 동선을 36회 권선 후, 주파수 100版, 전압 1V의 교류전압을 인가하여 정밀 L CR 미터를 사용하여 인덕터스(L)와 품질계수(Q)값을 측정하였다. 또한, 직류전류를 변화시키며 투자율의 변화를 측정하여 직류 중첩특성을 검사하였다. 코아 손실은 B- H Analyzer에서 측정하며, 1차와 2차 권선을 15회 하여 주파수 50版, 자속 밀도 1000Gauss에서 측정하였다.

제조된 연자성 코아의 인덕턴스(L), 품질계수(Q), 직류중첩특성 및 코아손실을 측정하여 그 결과를 표 1에 나타내었다.

[班1]

	시험재	조성	인덕턴스(L)	투자율	품질계수	직류중첩특성	코아손실
	N S VI	(중량%)	(µH)	(µ)	(Q)	(%µ)	(mW/cc)
	비교재 1	Ni 49%	165	101	38	94	253
	비교재 2	Ni 52%	169	104	36	94	271
	발명재 1	Ni 38%	183	114	52	94	225
	발명재 2	Ni 41%	182	112	51	94	230
	발명재 3	Ni 45%	180	110	54	95	188
	발명재 4	Ni 47%	170	104	43	95	208

※ 측정직류전류 : 2.8A

자심재료로서 요구되는 연자성특성은 높은 품질계수, 우수한 직류중첩특성, 낮은 코아손실이다. 표 1로부터 알 수 있는 바와 같이 발명재 1 내지 4의 경우 비교재에 비해 코아손실이 적고 높은 품질계수를 얻을 수 있다. 동일한 연자성 재료에 대해 투자율이 높을수록 품질계수가 낮고, 코아손실이 높은 것이 일반적이나, 발명재의 경우 비교재에 비해 높은 투자율임에도 불구하고 품질계수가 더 높고, 코아손실은 더 낮다. 따라서, 본 발명재가 기존의 비교재에 비해 더 우수한 연자성특성을 나타냄을 확인할 수 있다.

[실시예 2]

중량%로서, 각각 Ni 43%(발명재 5), Ni 46%(발명재 6), Ni 50%(비교재 3), 잔여량 Fe로 이루어진 합금분말을 질소분사법으로 - 325mesh(45/m 이하) 크기로 제조 후, 볼밀을 8시간 실시하고, 900℃에서 질소분위기 하에 5시간 열처리하였다. 이어서 혼합 세라믹 0.2중량%로 2회 절연코팅을 실시하고, 성형윤활제로 아연-스테아린산 0.3중량%를 첨가하여 외경 27㎜, 내경 14.7㎜, 높이 11.2㎜의 환형 코아를 성형하고, 질소분위기 하에서 600℃에서 1시간 동안 열처리하여 제조하였다. 코아의 검사는 실시예 1과 동일한 방법으로 실시하였고, 그 결과를 표 2에 나타내었다.

[班 2]

시험재	조성 (중량%)	인덕턴스(L) (µH)	투자율 (µ)	품질계수 (Q)	직류중첩특성 (%μ)	코아손실 (mW/cc)
비교재 3	Ni 50%	125	76	85	95	114
발명재 5	Ni 43%	129	79	100	95	95
발명재 6	Ni 46%	126	77	92	95	98

※ 측정직류전류 : 7A

실시예 2의 경우 실시예 1에 비해 분말의 입도가 작고 절연 코팅량이 많으므로 전반적으로 투자율이 낮고, 품질계수가 높으며, 코아손실이 낮다. 표2에서 알 수 있듯이 실시예 1과 동일하게 본 발명재가 비교재에 비해 품질계수가 더 크고, 코아 손실이 더 낮다.

[실시예 3]

중량 %로서, 각각 Ni 40%(발명재 7), Ni 42%(발명재 8), Ni 47.5%(발명재 9), Ni 50%(비교재 3), 잔여량 Fe로 이루어진 합금분말을 수분사법으로 - 140~+ 325mesh(45~106μm) 크기로 제조한 다음, 볼밀을 5시간 실시하고, 750℃에서 질소분위기 하에 12시간 열처리하였다. 이어서 혼합 세라믹 0.15중량%로 2회 절연코팅을 실시하고, 성형윤활제로 아연-스테아린산 0.3중량%를 첨가하여 외경 27㎜, 내경 14.7㎜, 높이 11.2㎜의 환형 코아를 성형하고, 질소분위기에서 700℃에서 30분 동안 열처리하여 제조하였다. 코아의 검사는 실시예 1과 동일한 방법으로 실시하였고, 그결과를 표 3에 나타내었다.

[표 3]

시험재	조성 (중량%)	인덕턴스(L) (µH)	투자율 (µ)	품질계수 (Q)	직류중첩특성 (%μ)	코아손실 (mW/cc)
비교재 3	Ni 50%	215	132	17	90	318
발명재 7	Ni 40%	210	129	20	91	302
발명재 8	Ni 42%	217	133	25	90	287
발명재 9	Ni 47.5%	218	134	24	90	295

※ 측정직류전류: 2.8A

실시예 3의 결과는 실시예 1,2에 비해 투자율이 높으므로 품질계수가 낮고 코아손실이 높지만, 본 발명재가 비교재에 비해 더 높은 품질계수, 더 낮은 코아손실을 나타냄을 알 수 있었다.

발명의 효과

상술한 바와 같이, 본 발명에 따른 니켈(Ni) $38 \sim 48\%$ 이고 잔여량이 철(Fe)로 이루어지는 퍼멀로이 합금분말로 제조되는 저손실 연자성 코아에 의하면, 종래 조성의 퍼멀로이에 비해 코아손실이 감소하고, 제조원가를 절감할 수 있는 효과가 있다.

(57) 청구의 범위

청구항 1.

삭제

청구항 2.

중량비로 니켈(Ni) 38~ 48%, 잔여량이 철(Fe)인 조성이 되도록 순철(Fe)과 Fe- Ni합금 또는 순철과 니켈을 용융하여 용융물을 제조하고, 상기 용융물에 N₂, He, Ne, Ar, Kr 및 Rn 가스 중의 한가지 또는 두가지 이상을 혼합한 가스 또는 물을 분사하여 분말을 제조하고, 상기 얻어진 분말을 볼밀(Ball Mill), 어트리션밀(Attrition Mill), 로드밀(Rod Mill) 중 한가지에서 기계적인 가공을 한 후, 700~1000℃의 온도범위에서 4~15시간 수소(H₂), 질소(N₂)중 한가지 또는 두 가지의 혼합가스분위기에서 열처리하여 퍼멀로이분말을 제조하는 것을 특징으로 하는 저손실 퍼멀로이 분말

의 제조방법.

청구항 3.

청구항 2에 있어서, 상기 저손실 퍼멀로이분말을 혼합세라믹을 가하여 절연코팅하고, 윤활제를 첨가하여 고압성형한 후, 500~800℃의 온도범위의 불활성 분위기에서 20~120분 열처리하는 공정을 더욱 포함하는 것을 특징으로 하는 저손실 퍼멀로이 연자성코아의 제조방법.

도련

