Exame de qualificação de Mestrado - Análise no \mathbb{R}^n - 08/03/2021

- **1.** Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 tal que $|f'(t)| \le k < 1$ para todo $t \in \mathbb{R}$. Defina $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ por $\varphi(x,y) = (x+f(y),y+f(x))$. Mostre que φ é um difeomorfismo.
- **2.** Dado R > 0 considere $S_R = \{x \in \mathbb{R}^n; ||x|| = R\}$ a esfera de centrada na origem de raio R. Seja $f : \mathbb{R}^n \to \mathbb{R}$ uma função de classe C^1 . Mostre que f restrita a S_R é constante para todo R > 0 se, e somente se, existe $g : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ contínua, tal que grad $f(x) = g(x) \cdot x$.
- 3. Seja $f:U\subset\mathbb{R}^n\to\mathbb{R}^{n+1}$ uma função de classe C^k com $k\geq 1$ e U aberto. Mostre que se para todo $x\in U$ vale que

$$\det\left(\frac{\partial f_i}{\partial x_j}\right) \neq 0$$
, onde $1 \leq i, j \leq n$,

então para todo $x \in U$ admite vizinhança $W \subset U$ tal que f(W) é o gráfico de uma função $y_{n+1} = \varphi(y_1, \dots, y_n)$ de classe C^k .

- **4.** Seja $f: U \to U$ de classe C^k , $k \ge 1$, onde $U \subset \mathbb{R}^n$ é um aberto conexo. Se $f \circ f = f$ prove que f tem posto constante numa vizinhança de M = f(U). Conclua que M é uma superfície de classe C^k .
- **5.** Seja $f: U \to \mathbb{R}^n$ de classe C^2 no aberto $U \subset \mathbb{R}^n$ e $D \subset U$ uma superfície m-dimensional, compacta, orientável e de classe C^3 . Prove que se $f|_{\partial D} \equiv 0$ então $\int_D \det f'(x) = 0$.

Boa Prova!

1.	2.	3.	4.	5.	6.	\sum

Prova de Topologia Geral – MM-453

10 de março de 2021

NOME:	D A .	
NOME:	R.A:	

Responda a quatro das questões abaixo e marque com × no quadro acima aquelas que excluir.

- 1. Seja $l_{\infty} = \{(x_j)_{j=1}^{\infty}, x_j \in \mathbb{R}, \sup ||x_j|| < \infty\}, \text{ com a norma } ||(x_j)_{j=1}^{\infty}|| = \sup_{j} ||x_j||.$
 - (a) (10 pontos) l_{∞} é um espaço de Banach? Justifique.
 - (b) (15 pontos) Mostre que l_{∞} não é separável.
- 2. Essa questão é sobre espaços de Hausdorff.
 - (a) (05 pontos) Defina espaço topológico de Hausdorff.
 - (b) (10 pontos) Elabore um exemplo justificado de espaço topológico que não seja de Hausdorff.
 - (c) (10 pontos) Sejam X um espaço topológico e Y um espaço de Hausdorff compacto. Mostre que uma função $f:X\to Y$ é contínua se, e só se, $G=\{(x,f(x)),\ x\in X\}$ é um subconjunto fechado de $X\times Y$.
- 3. Essa questão é sobre conjuntos compactos.
 - (a) (05 pontos) Mostre que se $f: X \to Y$ é contínua e $K \subset X$ é compacto, então f(K) é compacto.
 - (b) (10 pontos) Mostre que em \mathbb{R}^n , um conjunto K é compacto se, e só se, é limitado e fechado.
 - (c) (10 pontos) Elabore um exemplo justificado de conjunto compacto K que não é fechado.
- 4. A topologia quociente é uma importante ferramenta para estudar quocientes de espaços topológicos.
 - (a) (05 pontos) Defina a topologia quociente.
 - (b) (10 pontos) Mostre que \mathbb{R}/\mathbb{Z} é homeomorfo a S^1 .
 - (c) (10 pontos) Considere em \mathbb{R}^2 a relação de equivalência

$$(x_0, y_0) \sim (x_1, y_1) \Leftrightarrow x_0 + y_0^2 = x_1 + y_1^2$$
.

Prove que \mathbb{R}^2/\sim é homeomorfo a \mathbb{R} .

- 5. Seja X um espaço topológico.
 - (a) (10 pontos) Mostre que se X é conexo por caminhos, então o grupo fundamental de X não depende do ponto base. Para $n \ge 1$, determine $\pi_1(\mathbb{R}^n)$.
 - (b) (10 pontos) Se $n \ge 2$, mostre que todo laço $f: [0,1] \to S^n$ em x_0 é homotópico a um laço em x_0 que não é sobrejetor.
 - (c) (05 pontos) Mostre que $\pi_1(S^2)$ é trivial.
- 6. Seja $p: \widetilde{X} \to X$ uma aplicação de recobrimento.
 - (a) (15 pontos) Mostre que se X é compacto e $p^{-1}(x)$ é finito para todo $x \in X$, então \widetilde{X} é compacto.
 - (b) (10 pontos) Ilustre o resultado anterior com um exemplo.

1	2	3	4	5	\sum

MM719 - Exame de Qualificação - 12/03/2021

Nome: Turma: RA:

Atenção: Respostas que não estejam acompanhadas de argumentos que as justifiquem serão desconsideradas!

1) (15 pt.) Dada a seguinte matriz

$$A = \left(\begin{array}{cccc} 2 & 0 & 1 & -3 \\ 0 & 2 & 10 & 6 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right)$$

Encontre a forma de Jordan de A e uma base de Jordan para a mesma.

- 2) (20 pt.) Seja V um espaço vetorial sobre $\mathbb Q$ com $\dim_{\mathbb Q}(V)<\infty$ e seja $T:V\to V$ uma transformação linear tal que $T^2=-Id$. Suponha que V contenha um subespaço T-invariante W que seja próprio e não nula.
 - (a) Ache o polinômio mínimo de T
 - (b) Demonstre que a menor possível dimensão tal espaço tem der ser 4.
- 3) (15 pt.) Seja $T:V\to V$ um operador \mathbb{Q} -linear injetor, $\dim_{\mathbb{Q}}(V)<\infty,\ \varphi\in B_{as}(V)$ não degenerada tal que $\mathrm{Im}(T)$ seja não degenerado. Demonstre que $T^{\varphi}_{\varphi}\circ T:V\to V$ é isomorfismo.
- 4) (20 pt.) Sejam W_1 e W_2 \mathbb{Q} -subespaços vetoriais de V com bases $\alpha = \{v_1, \cdots, v_k\} \subseteq W_1$ e $\beta = \{w_1, \cdots, w_k\} \subseteq W_2$. Demonstre que $W_1 = W_2$ se e somente se existe $c \in \mathbb{Q}$ não nulo tal que

$$v_1 \wedge v_2 \wedge \cdots \wedge v_k = c(w_1 \wedge w_2 \wedge \cdots \wedge w_k).$$

- 5) (30 pt.) Determine se cada uma das afirmações abaixo é verdadeira ou falsa.
 - (a) Se (φ, U) é um produto tensorial dos espços vetoriais V_1, \dots, V_k , então φ é um mapa sobrejetor.
 - (b) Se v_1, \dots, v_k vetores linearmente independentes de V e w_1, \dots, w_k vetores de W são tais que posto $(v_1 \otimes w_1 + \dots + v_k \otimes w_k) = 0$, então $w_i = 0$ para todo $i = 1, \dots, k$.
 - (c) Se V_1, V_2, W_1, W_2 são \mathbb{F} -espaços com dimensão finita e $T_i \in \text{Hom}(V_i, W_i)$, então $\text{posto}(T_1 \otimes T_2) = \text{posto}(T_1) + \text{posto}(T_2)$.

Boa Prova!