Models with long memory

Benchmarking for Efficient Transformers for transactions data

Skoltech

Dataset description

Transaction dataset

Task

Predict the probability of user default

Features

- ~10 categorical features (MCC code, type etc)
- ~10 numerical (amount, time etc)

Train test split

Train – 1 million users Validation – 250k users Out-of-time – 500k users

Length

700 - mean transaction count (*Typical transformer length 512*)

Metric

Gini coefficient

Skoltech

Hyperparameters search for Longformer

Quality

Longformer model shows better quality than baseline LSTM

Hyperparameters

- Very deep model required a huge amount of memory for training
- Sliding window size W does not change quality significant

Baseline metric

LSTM - 60.12 ± 0.17

№	Heads	Embedding	W	Layers	Hidden	OOT Gini	RAM (Mb)
		size			dropout		
1	8	512	128	1	0.1	59.59	7647
2	8	256	128	1	0.1	58.84	4929
3	8	64	128	1	0.1	60.11	4581
4	8	64	128	2	0.1	61.02	6039
5	8	64	256	2	0.1	61.03	10131
6	8	64	64	2	0.1	60.58	4500
7	4	64	128	8	0.3	62.21	13971
8	4	32	128	8	0.3	62.58	13505
9	4	64	128	8	0.5	62.39	13971
10	4	64	128	12	0.3	62.39	20255
11	2	64	128	8	0.5	62.47	12891
12	4	64	128	12	0.6	62.83	20255

(a) Full n^2 attention

(b) Sliding window attention

(c) Dilated sliding window

(d) Global+sliding window

Results of the experiment

Matrix projection Linformer

Quality

Linformer with projection matrix shows poor results in comparing with recurrent neural network models

Shift invariance of a projection matrix

The projection matrix not being shifting invariant

Shift invariance test

We train the model to prove this property, choose a subsample, and calculate the metric on it. Then we shift all transactions by one and calculate the metric again.

5

koltech

Results of the experiment

Matrix projection Linformer

Quality

Linformer with projection matrix shows poor results in comparing with recurrent neural network models

Shift invariance of a projection matrix

The projection matrix not being shifting invariant

Shift invariance test

We train the model to prove this property, choose a subsample, and calculate the metric on it. Then we shift all transactions by one and calculate the metric again.

Linformer projection matrix

Dataset	Gini
Original dataset	53.47
Shift by one transaction	47.31

Results of the experiment

Convolution Linformer

Quality

Convolution Linformer shows a better result using less memory and shorter training time.

Convolution modification

To make projection shift-invariant, we replace a projection matrix with a convolution layer.

Cycle-shift augmentation

The result of convolution with kernel and stride equals size could change after adding a new object in sequence. (+1 Gini)

Wang, Sinong, et al. "Linformer: Self-attention with linear complexity." *arXiv preprint arXiv:2006.04768* (2020).

skoltech

Results of the experiment

Convolution Linformer

Metric LSTM - 60.12±0.17 Longformer - 62.80

Quality

Convolution Linformer shows a better result using less memory and shorter training time.

Convolution modification

To make projection shift-invariant, we replace a projection matrix with a convolution layer.

Cycle-shift augmentation

The result of convolution with kernel and stride equals size could change after adding a new object in sequence. (+1 Gini)

№	Projection	Heads	Embedding	Layers	Hidden	dim ff	OOT gini	RAM
	size		size		dropout			(Mb)
1	128	8	64	4	0.2	2048	63.5	8757
2	32	8	64	4	0.2	2048	62.02	5124
3	64	8	64	4	0.2	2048	62.40	6789
4	128	4	64	4	0.2	2048	62.73	7159
5	128	8	64	2	0.2	2048	64.04	5333
6	128	8	64	4	0.2	2048	62.49	8715
7	128	8	32	4	0.2	2048	64.17	8179
8	128	8	64	4	0.2	2048	62.98	3635
9	128	8	64	3	0.2	2048	63.53	7051
10	128	8	64	2	0.2	512	$\textbf{64.3} \pm \textbf{0.19}$	5333
11	128	8	64	2	0.2	256	63.5	3395
12	128	8	128	2	0.2	512	63.26	3833

Results of the experiment

Convolution Linformer

Curriculum learning: Pre-trained weights

Training first on short sequences and the finetune on long show better quality and reduce training time

Non linear complexity

We need to increase the projection size: increasing length of sequence without increasing projection size leads to quality degradation.

№	Length	K	Training type	OOT gini	RAM	Train time
					(Mb)	(hours)
1	350	128	From scratch	64.37	9787	3
2	1500	128	From scratch	63.75	12451	4.5
3	1500	256	From scratch	64.81	16047	11.61
4	1500	256	Pre-trained weights	65.2	16081	9.15
5	1500	400	From scratch	65.39	23481	17.3
6	1500	400	Pre-trained/train only conv layer	64.05	2299	7.1
7	1500	400	Pre-trained weights	$\textbf{66.00} \pm \textbf{0.21}$	23489	8.5

Results of the experiment Comparison LSTM and Transformer

Transaction LSTM		Longformer	Linformer	Convolution	
count				Linformer	
350	60.12 ± 0.17	62.80	53.47	64.37 ± 0.19	
1500	63.01 ± 0.14	None	None	66.00 ± 0.21	

Performer: making transformers faster

Overall results

Speed (x axis), Performance (y axis) and Memory (size of the circles) for different models

BigBird is better than the vanilla transformer

Performer is more efficient

Performer

 $\exp(q_i^T k_j) = \phi(q_i)^T \phi(k_j) = E(\phi(q_i)^T \phi(k_j))$

Vanilla attention formula:

$$\operatorname{Att}_{\leftrightarrow}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \mathbf{D}^{-1} \mathbf{A} \mathbf{V}, \quad \mathbf{A} = \exp(\mathbf{Q} \mathbf{K}^{\top} / \sqrt{d}), \quad \mathbf{D} = \operatorname{diag}(\mathbf{A} \mathbf{1}_L).$$

Efficient bidirectional attention:

$$\widehat{\operatorname{Att}}_{\leftrightarrow}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \widehat{\mathbf{D}}^{-1}(\mathbf{Q}'((\mathbf{K}')^{\top}\mathbf{V})), \qquad \widehat{\mathbf{D}} = \operatorname{diag}(\mathbf{Q}'((\mathbf{K}')^{\top}\mathbf{1}_{L})).$$

It uses low-rank approximation to query and key matrices: $Q' \in \mathbb{R}^{T \times r}$, $K' \in \mathbb{R}^{r \times T}$

Skoltech

Choromanski, Krzysztof Marcin, et al. *Rethinking Attention with Performers*. ICLR. 2020.

Kernel representation

$$\exp(q_i^T k_j) = \phi(q_i)^T \phi(k_j) = E(\phi(q_i)^T \phi(k_j))$$

Feature vector

$$\phi(\mathbf{x}) = \frac{h(\mathbf{x})}{\sqrt{m}} (f_1(\omega_1^\top \mathbf{x}), ..., f_1(\omega_m^\top \mathbf{x}), ..., f_l(\omega_1^\top \mathbf{x}), ..., f_l(\omega_m^\top \mathbf{x}))$$

 $\mathbf{x}, \mathbf{v} \in \mathbb{R}^d, \mathbf{z} = \mathbf{x} + \mathbf{y}$

Our kernel

$$\Lambda = \exp(-\frac{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2}{2})$$

$$\mathrm{SM}(\mathbf{x},\mathbf{y}) = \exp(\frac{\|\mathbf{x}\|^2}{2})\mathrm{K}_{\mathrm{gauss}}(\mathbf{x},\mathbf{y})\exp(\frac{\|\mathbf{y}\|^2}{2})$$

$$SM(\mathbf{x}, \mathbf{y}) = \mathbb{E}_{\omega \sim \mathcal{N}(0, \mathbf{I}_d)} \left[\exp \left(\omega^\top \mathbf{x} - \frac{\|\mathbf{x}\|^2}{2} \right) \exp \left(\omega^\top \mathbf{y} - \frac{\|\mathbf{y}\|^2}{2} \right) \right] = \Lambda \mathbb{E}_{\omega \sim \mathcal{N}(0, \mathbf{I}_d)} \cosh(\omega^\top \mathbf{z})$$

koltech

Pathfinder problem

For an image reshaped to the image find out, if two points are connected by a dashed line or not.

- Pathfinder: image 32x32 -> sequence 1024
- Pathfinder-X: images128x128 -> sequence 16K, extreme length (c.t. 1K limit for GPT-3)

Positive example

Negative example

Tay, Yi, et al. "Long range arena: A benchmark for efficient transformers." *arXiv preprint arXiv:2011.04006* (2020).

All transformers fail for Path-X problem

Model	ListOps	Text	Retrieval	Image	Pathfinder	Path-X	Avg
Transformer	36.37	64.27	57.46	42.44	71.40	FAIL	54.39
Local Attention	15.82	52.98	53.39	41.46	66.63	FAIL	46.06
Sparse Trans.	17.07	63.58	59.59	44.24	71.71	FAIL	51.24
Longformer	35.63	62.85	56.89	42.22	69.71	FAIL	53.46
Linformer	35.70	53.94	52.27	38.56	76.34	FAIL	51.36
Reformer	37.27	56.10	53.40	38.07	68.50	FAIL	50.67
Sinkhorn Trans.	33.67	61.20	53.83	41.23	67.45	FAIL	51.39
Synthesizer	36.99	61.68	54.67	41.61	69.45	FAIL	52.88
BigBird	36.05	64.02	59.29	40.83	74.87	FAIL	55.01
Linear Trans.	16.13	65.90	53.09	42.34	75.30	FAIL	50.55
Performer	18.01	65.40	53.82	42.77	77.05	FAIL	51.41
Task Avg (Std)	29 (9.7)	61 (4.6)	55 (2.6)	41 (1.8)	72 (3.7)	FAIL	52 (2.4)

Experimental results for Long-Range Arena Benchmark

Efficiently Modeling Long Sequences with Structured State Spaces

Paradigms for sequence modelling

Pros and cons for each paradigm

Existing model families have clear tradeoffs
All struggle with long-range dependencies (LRD)

Structured state-space models

They are all similar! And you will soon know how...

Long-range arena benchmark

Benchmark spanning text, images, symbolic reasoning (length 1K-16K)

	•	9	, , ,		J (9	,
Model	LISTOPS	Техт	Retrieval	Image	Pathfinder	Ратн-Х	Avg
Random	10.00	50.00	50.00	10.00	50.00	50.00	36.67
Transformer	36.37	64.27	57.46	42.44	71.40	Х	53.66
Local Attention	15.82	52.98	53.39	41.46	66.63	X	46.71
Sparse Trans.	17.07	63.58	59.59	44.24	71.71	X	51.03
Longformer	35.63	62.85	56.89	42.22	69.71	X	52.88
Linformer	35.70	53.94	52.27	38.56	76.34	X	51.14
Reformer	37.27	56.10	53.40	38.07	68.50	X	50.56
Sinkhorn Trans.	33.67	61.20	53.83	41.23	67.45	X	51.23
Synthesizer	36.99	61.68	54.67	41.61	69.45	X	52.40
BigBird	36.05	64.02	59.29	40.83	74.87	X	54.17
Linear Trans.	16.13	65.90	53.09	42.34	75.30	X	50.46
Performer	18.01	65.40	53.82	42.77	77.05	X	51.18
FNet	35.33	65.11	59.61	38.67	77.80	Х	54.42
Nyströmformer	37.15	65.52	79.56	41.58	70.94	X	57.46
Luna-256	37.25	64.57	79.29	47.38	77.72	X	59.37
S4	58.35	$\boldsymbol{76.02}$	87.09	87.26	86.05	88.10	80.48

Path-X

(a) A positive example.

(b) A negative example.

Parameters

Input → State

$$x'(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$$
$$y(t) = \mathbf{C}x(t) + \mathbf{D}u(t)$$

 $\mathbf{A} \in \mathbb{R}^{N \times N}$ $\mathbf{B} \in \mathbb{R}^{N \times 1}$

 $oldsymbol{C} \in \mathbb{R}^{1 imes N}$

 $D \in \mathbb{R}^{1 \times 1}$

Function-to-function map

 $u(t) \mapsto y(t)$

1D output **y(t)**

Skoltech

State Space Models (SSM)

Parameters

 $\mathbf{A} \in \mathbb{R}^{N \times N}$

 $\boldsymbol{B} \in \mathbb{R}^{N \times 1}$

 $C \in \mathbb{R}^{1 \times N}$

 $\mathbf{D} \in \mathbb{R}^{1 \times 1}$

 $x'(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$

State → Output

 $y(t) = \boldsymbol{C}x(t) + \boldsymbol{D}u(t)$

Function-to-function map

 $u(t) \mapsto y(t)$

1D output **y(t)**

Computing with SSMs: Recurrent View

$$x'(t)=m{A}x(t)+m{B}u(t)$$
 $m{A}\in\mathbb{R}^{N imes N}$ $y(t)=m{C}x(t)+m{D}u(t)$ $m{B}\in\mathbb{R}^{N imes 1}$ $m{C}\in\mathbb{R}^{1 imes N}$ 1. Discretize $m{ar{A}}=m{I}+\Deltam{A}$ $m{D}\in\mathbb{R}^{1 imes 1}$ $\Delta\in\mathbb{R}$

3. Out projection

1. Discretize

$$y_k = \overline{C}x_k + \overline{D}u_k$$

Can be computed with linear recurrence, similar to RNNs

Computing with SSMs: Convolution View

$$x_k = \overline{A}x_{k-1} + \overline{B}u_k$$
$$y_k = \overline{C}x_k$$

Can explicitly unroll the linear recurrence in closed form

$$x_0 = \overline{B}u_0 \qquad x_1 = \overline{AB}u_0 + \overline{B}u_1 \qquad x_2 = \overline{A}^2\overline{B}u_0 + \overline{AB}u_1 + \overline{B}u_2 \qquad \dots$$
$$y_0 = \overline{CB}u_0 \quad y_1 = \overline{CAB}u_0 + \overline{CB}u_1 \quad y_2 = \overline{CA}^2\overline{B}u_0 + \overline{CAB}u_1 + \overline{CB}u_2 \quad \dots$$

Computing with SSMs: Convolution View

$$y_k = \overline{C}\overline{A}^k \overline{B}u_0 + \overline{C}\overline{A}^{k-1} \overline{B}u_1 + \dots + \overline{C}\overline{A}\overline{B}u_{k-1} + \overline{C}\overline{B}u_k$$

$$\overline{m{K}} \in \mathbb{R}^L := (\overline{m{CB}}, \overline{m{CAB}}, \dots, \overline{m{CA}}^{L-1}\overline{m{B}})$$

$$y = \overline{K} * u$$

Can be computed with convolutions, similar to CNNs

Summary: Properties of SSMs

Skoltech

Conclusions

- We can <u>improve Transformers memory and</u> <u>computational requirements</u> with some heuristics and different types of attention
- The main ideas are:
 - combine different sparse attention mechanisms
 - bucket processing
- But there are some limitations in terms of reducing number of parameters and memory as we have large window sizes and large number of global attention nodes