15-150 Assigment 8 Jonathan Li jlli Section S June 12, 2016

Task 4.1

Theorem 1:

- (i.) $\mathcal{R}(LQ.emp, LLQ.emp)$
- (ii.) $\forall x : int, 1 : int list, f : int list, b : int list: If <math>\mathcal{R}(1, (f, b))$, then $\mathcal{R}(LQ.ins(x, 1), LLQ.ins(x, (f, b)))$
- (iii.) \forall 1 : int list, f : int list, b : int list, if $\mathcal{R}(1, (f, b))$, then one of the following is true:
 - (a) LQ.rem 1 \cong NONE and LLQ.rem (f,b) \cong NONE
 - (b) $\exists x : int, y : int, l' : int list, f' : int list, b' : int list such that:$
 - i. LQ.rem 1 \cong SOME(x, 1')
 - ii. LLQ.rem (f, b) \cong SOME(y, (f',b'))
 - iii. $x \cong y$
 - iv. $\mathcal{R}(1', (f', b'))$

Here,

$$\mathcal{R}(1: \text{ int list}, (f: \text{ int list}, b: \text{ int list})) \iff 1 \cong f@(LLQ.rev b)$$

Using this definition for \mathcal{R} , I will write this proof sequentially, starting with Theorem 1 (i.).

Theorem 1 (i.): $\mathcal{R}(LQ.emp, LLQ.emp)$

Upon inspection of the code for the LLQ structure, we find this line:

By Referential Transparency, what we really want to show for this section of the proof, then, is $\mathcal{R}(LQ.emp, ([], []))$. By our definition of \mathcal{R} :

$$\underline{\text{To Show:}} \text{ LQ.emp} \cong [] @ (LLQ.rev [])$$

Let's begin with the right hand side of this equivalence, and work from there. *Proof:*

[] @ (LLQ.rev [])
$$\cong$$
 [] @ [] $\operatorname{[step]}$ \cong [] Lemma 2/3] \cong LQ.emp $\operatorname{[defn\ of\ LQ.emp]}$

Thus, by extensional equivalence, [] @ (LLQ.rev []) \cong LQ.emp. Considering that LLQ.emp \cong ([], []) and our definition of \mathcal{R} , we have shown:

 $\mathcal{R}(\texttt{LQ.emp}, \texttt{LLQ.emp})$

Thus, Theorem 1 (i.) holds.

Task 4.1 (cont.)

Theorem 1 (ii.):

 \forall x : int, 1 : int list, f : int list, b: inst list: If $\mathcal{R}(1, (f, b))$, then $\mathcal{R}(LQ.ins(x, 1), LLQ.ins(x, (f, b))$.

Assumption (ii.): $\mathcal{R}(1, (f, b)) \implies 1 \cong f@(LLQ.rev b)$

Inspecting the code for LLQ.ins in the LLQ structure, we find that:

LLQ.ins(x,(f,b)) \cong (f, x::b) [step]

This step is valid if we assume that LLQ.ins is total, and x: int is a value. Now, considering our definition for \mathcal{R} , by Referential Transparency:

 $\frac{\text{To Show:}}{Proof:} \ \texttt{LQ.ins(x,l)} \cong \texttt{f@(LLQ.rev (x::b))}$

 $\texttt{LQ.ins}(\texttt{x,1}) \qquad \cong \qquad \texttt{l@[x]} \qquad [\text{step}]$

Similarly to above, this step is valid if we consider that LQ.ins is total, and that x is a value.

 $\text{LQ.ins(x,1)} \qquad \cong \qquad \text{(f@(LLQ.rev b))@[x]} \qquad \text{[Assumption (ii.),} \\ \qquad \qquad \text{Referential Transparency]}$

 \cong f@((LLQ.rev b)@[x]) [Lemma 1]

Now, let us consider the right hand side of the congruence in our 'To Show' statement:

 $f@(LLQ.rev (x::b)) \cong f@((LLQ.rev b)@[x])$ [step]

By extensional equivalence, we have shown that LQ.ins(x,1) \cong f@(LLQ.rev (x::b)). Considering that LLQ.ins(x,(f,b)) \cong (f, x::b) and our definition for \mathcal{R} , we have shown that:

 $\mathcal{R}(LQ.ins(x,1), LLQ.ins(x,(f,b))$

Thus, Theorem 1 (ii.) holds.

Task 4.1 (cont.)

Theorem 1 (iii.): $\forall 1$: int list, f: int list, b: int list, if $\mathcal{R}(1, (f, b))$, then one of the following is true:

- (a) LQ.rem 1 \cong NONE and LLQ.rem (f,b) \cong NONE
- (b) $\exists x : int, y : int, 1' : int list, f' : int list, b' : int list such that:$
 - i. LQ.rem $1 \cong SOME(x, 1')$
 - ii. LLQ.rem (f, b) \cong SOME(y, (f',b'))
 - iii. $x \cong y$
 - iv. $\mathcal{R}(1', (f', b'))$

Assumption (iii.): For some 1: int list, f: int list, b: int list, $\mathcal{R}(1, (f, b))$ Upon inspection of the code for LQ.rem in the LQ structure, we find that when LQ.rem is applied to some 1: int list, there can only be two cases:

LQ.rem(1)
$$\cong$$
 NONE OR LQ.rem(1) \cong SOME(x, 1')

...where x is some value of type int, and l' is some value of type int list. Let us approach this section of the proof be separating out these cases.

Case 1: LQ.rem(1) \cong NONE

This case only results when $1 \cong []$. We can say then that:

LQ.rem(1)	\cong	NONE	[Case Assumption]
1	\cong	[]	[stepping through LQ.rem, symmetry]
1	\cong	LQ.emp	[defn of LQ.emp]

Now, if we consider Assumption (iii.) $(\mathcal{R}(1, (f, b)))$ together with Theorem 1 (i.) $(\mathcal{R}(LQ.emp, LLQ.emp))$, we can see that in this case,

$$(f,b) \cong LLQ.emp \qquad [Assumption (iii.), Theorem 1 (i.)]$$

$$\cong \qquad ([],[]) \qquad [defn of LLQ.emp]$$

Now, if we apply LLQ.rem to (f,b),

Thus, we have shown that assuming $\mathcal{R}(1, (f, b))$ for some values 1 : int list, f : int list, b : int list, LQ.rem(1) \cong NONE necessitates that LLQ.rem(f,b) \cong NONE as well. Theorem 1 (iii.) (a) holds.

Task 4.1 (this is getting long...)

Case 2: LQ.rem(1) \cong SOME(x, 1'), where x : int and 1' : int list are values.

For this section of the proof, let's examine the code for LQ.rem in the LQ structure:

From the above, we can reason that:

We can now restate Assumption (iii.) with this congruence. Now, $\mathcal{R}(1,(f,b))$ tells us:

1
$$\cong$$
 f@(LLQ.rev b) [defn of \mathcal{R}]
x::1' \cong f@(LLQ.rev b) [Referential Transparency]

From this congruence, we can reason that the int list f@(LLQ.rev b) contains at least one element at the head, x. Since f: int list and, since b: int list, according to the implementation (LLQ. rev b): int list, we again have two situations that we can case on:

$$\begin{array}{ccc} \mathtt{f} & & \cong & & \texttt{[]} \\ & & \mathrm{OR} \\ \mathtt{f} & & \cong & \mathtt{y::ys} \end{array}$$

...where y is some value of type int and ys is some value of type int list.

Case 2.1: $f \cong []$

In this case, let us consider LLQ.rem(f,b):

```
LLQ.rem(f,b) ≅ LLQ.rem([],b) [Case Assumption]

≅ case ([],b) of ([],[]) => ...

|(y::ys,_) => ...

|([],_) => LLQ.rem(LLQ.rev b, []) [step]

≅ LLQ.rev(LLQ.rev b, []) [step]

≅ case (LLQ.rev b, []) of ... [step]
```

Here, remember our restated Assumption (iii.):

Essentially, we learn that (LLQ.rev b) is not the empty list. Let us now consider variables y : int and ys : int list, such that $y \cong x$ and $ys \cong 1$, and that:

LLQ.rev b
$$\cong$$
 y::ys [Referential Transparency]

Task 4.1 (Almost there!)

Case 2.1 (cont.)

Returning to our analysis of LLQ.rem(f,b),

Let the variables in the problem statement f': int list, b': int list be defined

f'
$$\cong$$
ys \cong 1'b' \cong []

Then, from the above analysis, we have that LLQ.rem(f,b) \cong SOME(y, (f',b')), fulfilling part (ii.) of Theoem (iii.) (b). Part (i.) is fulfilled by our Case Assumption (LQ.rem(1) \cong SOME(x,1')), and by construction we fulfill part (iii.) (x \cong y). All that is left is part (iv.) of this case in the theorem. If we consider f'@(LLQ.rev b'),

f'@(LLQ.rev b')
$$\cong$$
 1'@(LLQ.rev []) [Referential Transparency] \cong 1'@[] [stepping through LLQ.rev] \cong 1' [Lemma 3]

Thus, by extensional equivalence, $f'@(LLQ.rev\ b') \cong 1'$, or $\mathcal{R}(1',(f',b'))$, fulfilling part (iv.). Thus, in this case, with all four parts fulfilled, Theorem 1 (iii.) (b) holds.

<u>Case 2.2:</u> $f \cong y$::ys for some values y: int, ys: int list Now is a good time to look at our restated Assumption (iii.) from page 4:

```
x::1' \cong f@(LLQ.rev b) [Case 2 restated Assumption (iii.)] \cong (y::ys)@(LLQ.rev b) [Case Assumption, Referential Transparency]
```

We know the following from stepping through the definition of @:

$$(x::xs)@1 \cong x::(xs@1)!$$
 [step through @]

Using this congruence, we can move forward.

$$x::1'$$
 \cong $y::(ys@(LLQ.rev b))$ [step through @]
 x \cong y [Lemma 4]
 $1'$ \cong $ys@(LLQ.rev b)$ [Lemma 4]

Task 4.1 (Last page!)

Case 2.2 (cont.)

With this information, let us again consider LLQ.rem(f,b):

LLQ.rem(f,b)
$$\cong$$
 LLQ.rem((y::ys),b) [Case Assumption] \cong case (y::ys,b) of ... [step] \cong SOME(y,(ys,b)) [step]

As before, let the variables in our problem statement f' and b' be defined:

$$\begin{array}{l} \mathtt{f'} \cong \mathtt{ys} \\ \mathtt{b'} \cong \mathtt{b} \end{array}$$

Then, from our earlier congruences:

```
1' \cong ys@(LLQ.rev b) [Lemma 4]
1' \cong f'@(LLQ.rev b') [Referential Transparency]
```

Which proves part (iv.) of this case in the theorem: $\mathcal{R}(1',(f',b'))$.

...

Well, we're done! For this case at least, part (i.) is the larger case assumption in Case 2. If we look at how we just defined f' and b', we can see that:

LLQ.rem(f,b)
$$\cong$$
 SOME(y,(ys,b)) [stepping through LLQ.rem] \cong SOME(y,(f',b')) [Referential Transparency]

...which is exactly what is asked of us in part (ii.). Early, we also showed that, by Lemma 4, $x \cong y$, covering part (iii.), so we have shown all four parts of this case to be true. Thus, Theorem 1 (iii.) (b) holds.

We have exhaustively (lol I'm exhausted) shown that parts (i), (ii), and (iii) hold \forall 1 : int list, f : int list, b : int list.

... Theorem 1, as a whole, must be true.