非线性方程的数值解第三次作业

一、问题(方程组):

设映射 $F: R^n \to R^n$ 定义为

$$\begin{split} F_1(x) &= x_1 - e^{\cos{(\frac{1}{n+1}(x_1 + x_2))}} \\ F_i(x) &= x_i - e^{\cos{(\frac{1}{n+1}(x_{i-1} + x_i + x_{i+1}))}} \\ F_n(x) &= x_n - e^{\cos{(\frac{1}{n+1}(x_{n-1} + x_n))}} \end{split}$$

二、数值实验

实验:用 Newton-SOR 迭代法和 SOR-Newton 迭代法,求解上述非线性方程组的解。

用 Matlab2018b 进行 Newton-SOR 迭代法和 SOR-Newton 迭代法的编程,方程的维数为 100,初始值为 $x0=[0,\cdots,0]$ [1,···,1] [20,···,20]三种,精度 $\epsilon=^{10^{-6}}$,内迭代次数均为 2,松弛因子 w 均为 1。

停止准则为: **||F(x^k)||** < ε

三、实验程序(fun.m)(dfun.m)(newton1.m)

```
File: newtonsor.m(Newton-SOR迭代法)
   function [x,iter] = newtonsor(f,df,x0,err,w,iterin)
   x=x0;
   itermax=100; %迭代次数
   for iter=1:itermax
       A=df(x);
       b=df(x)*x-f(x);
       D=diag(diag(A));
       L=D-tril(A);
       U=D-triu(A);
       B=(D-w*L)/w;
       C = ((1-w) * D + w*U) / w;
       H=B\setminus C;
       for i=1:iterin
          x=H*x+B\b;
       end
       if(norm(f(x),2) \le err)
          break
       end
   end
```

```
File: sornewton.m(SOR-Newton 迭代法)
   function [x,iter]=sornewton(f,df,x0,err,w,iterin)
   x=x0;
itermax=100; %迭代次数
   dim=length(x0);
   for iter=1:itermax
      for i=1:dim
          dfx=df(x);
          xp=x;
          for it=1:iterin
             fx=f(xp);
             xp(i) = xp(i) - fx(i) / dfx(i,i);
          x(i) = x(i) + w*(xp(i) - x(i));
      end
      if(norm(f(x),2)) \le err
         break
      end
   end
```

```
File:sess run3.m(主程序)
   clc;clear;
   dim=100; %维度
   A=eye(dim);
   P=diag(ones(1,dim))+diag(ones(1,dim-1),1)+diag(ones(1,dim-1),-1);
   B=P/(dim+1); %三对角矩阵
   f=@(x)A*x-exp(cos(B*x)); %定义函数
   df=@(x)A+exp(cos(B*x)).*sin(B*x).*B;%定义Jacobi矩阵
   x0=10*ones(dim,1);
   err=1e-6;
   format rat
   w=1;
   iterin=2;
   tic
   [x,iter]=sornewton(f,df,x0,err,w,iterin);
   %[x,iter]=newtonsor(f,df,x0,err,w,iterin);
   toc
   x=x'
   iter
```

四、数值实验结果

寻找最好的松弛因子: (初始值: [20,…,20])

松弛因子w	Newton-SOR 迭代法的迭代次数	SOR-Newton 迭代法的迭代次数			
0.1	90	100(不收敛)			
0.2	43	85			
0.3	27	53			
0.4	19	37			
0.5	14	28			
0.6	11	21			
0.7	8	16			
0.8	6	12			
0.9	5	9			
1.0*	3 (最少迭代步数)	4(最少迭代步数)			
1.1	5	9			
1.2	7	12			
1.3	9	16			
1.4	11	21			
1.5	14	28			
1.6	19	38			
1.7	27	54			
1.8	43	86			
1.9	91	100(不收敛)			

所以,w=1.0(保留一位小数)是最佳松弛因子。

数值实验结果:

松弛因子 w=1	Newton-SC	R 迭代法	SOR-Newton 迭代法						
初始值	迭代次数	$\ F\left(x^k\right)\ $	迭代次数	$\ F \left(x^k \right) \ $					
[0,, 0]	1	8. 7700e-02	1	4.8520e-02					
	2	1. 3012e-06	2	1.0374e-04					
	3	5. 9591e-12	3	2. 2162e-07					
[1, …, 1]	1	3.4731e-02	1	3. 2851e-02					
	2	2.9977e-07	2	7. 0219e-05					
			3	1.5001e-07					
[20, …, 20]	1	2.3296e+00	1	7. 4433e-01					
	2	6.4473e-04	2	1.5811e-03					
	3	3. 0037e-09	3	3.3778e-06					
			4	7. 2159e-09					

附录: 方程组的数值值

x1	2. 714366	x21	2.709498	x41	2. 709498	x61	2. 709498	x81	2. 709498
x2	2. 709487	x22	2.709498	x42	2. 709498	x62	2. 709498	x82	2. 709498
х3	2. 709498	x23	2. 709498	x43	2. 709498	x63	2. 709498	x83	2. 709498
x4	2. 709498	x24	2.709498	x44	2. 709498	x64	2. 709498	x84	2. 709498
x5	2. 709498	x25	2. 709498	x45	2. 709498	x65	2. 709498	x85	2. 709498
х6	2. 709498	x26	2. 709498	x46	2. 709498	x66	2. 709498	x86	2. 709498
x7	2. 709498	x27	2. 709498	x47	2. 709498	x67	2. 709498	x87	2. 709498
x8	2. 709498	x28	2.709498	x48	2. 709498	x68	2. 709498	x88	2. 709498
x9	2. 709498	x29	2.709498	x49	2. 709498	x69	2. 709498	x89	2. 709498
x10	2. 709498	x30	2.709498	x50	2. 709498	x70	2. 709498	x90	2. 709498
x11	2. 709498	x31	2.709498	x51	2. 709498	x71	2. 709498	x91	2. 709498
x12	2. 709498	x32	2.709498	x52	2. 709498	x72	2. 709498	x92	2. 709498
x13	2. 709498	x33	2.709498	x53	2. 709498	x73	2. 709498	x93	2. 709498
x14	2. 709498	x34	2. 709498	x54	2. 709498	x74	2. 709498	x94	2. 709498
x15	2. 709498	x35	2. 709498	x55	2. 709498	x75	2. 709498	x95	2. 709498
x16	2. 709498	x36	2. 709498	x56	2. 709498	x76	2. 709498	x96	2. 709498
x17	2. 709498	x37	2.709498	x57	2. 709498	x77	2. 709498	x97	2. 709498
x18	2. 709498	x38	2.709498	x58	2. 709498	x78	2. 709498	x98	2. 709498
x19	2. 709498	x39	2.709498	x59	2. 709498	x79	2. 709498	x99	2.709487
x20	2. 709498	x40	2.709498	x60	2. 709498	x80	2. 709498	x100	2.714366