Introduction to Algorithms 6.046J/18.401J/SMA5503

LECTURE 8

Amortized Analysis

- Dynamic tables
- Aggregate method
- Accounting method
 Potential method
 Chapter 17 in Text book

Based on slides by Prof. Charles E. Leiserson

How large should a hash table be?

Goal: Make the table as small as possible, but large enough so that it won't overflow (or otherwise become inefficient).

Problem: What if we don't know the proper size in advance?

Solution: Dynamic tables.

IDEA: Whenever the table overflows, "grow" it by allocating (via **malloc** or **new**) a new, larger table. Move all items from the old table into the new one, and free the storage for the old table.

- 1. Insert
- 2. Insert

- 1. Insert
- 2. Insert

- 1. Insert
- 2. Insert

1 2

- 1. Insert
- 2. Insert
- 3. Insert

- 1. Insert
- 2. Insert
- 3. Insert

- 1. Insert
- 2. Insert
- 3. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert
- 6. Insert
- 7. Insert

Worst-case analysis

Consider a sequence of n insertions. The worst-case time to execute one insertion is $\Theta(n)$. Therefore, the worst-case time for n insertions is $n \cdot \Theta(n) = \Theta(n^2)$.

WRONG! In fact, the worst-case cost for n insertions is only $\Theta(n) \ll \Theta(n^2)$.

Let's see why.

Tighter analysis

```
Let c_i = the cost of the ith insertion
= \begin{cases} i & \text{if } i-1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}
```


Tighter analysis

```
Let c_i = the cost of the ith insertion
= \begin{cases} i & \text{if } i-1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}
```

i	1	2	3	4	5	6	7	8	9	10
size _i	1	2	4	4	8	8	8	8	16	16
c_{i}	1	1	1	1	1	1	1	1	1	1
		1	2		4				8	

Tighter analysis (continued)

Cost of *n* insertions =
$$\sum_{i=1}^{n} c_{i}$$

$$\leq n + \sum_{j=0}^{\lfloor \lg(n-1) \rfloor} 2^{j}$$

$$\leq 3n$$

$$= \Theta(n).$$

Thus, the average cost of each dynamic-table operation is $\Theta(n)/n = \Theta(1)$.

Amortized analysis

An *amortized analysis* is any strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.

Even though we're taking averages, however, probability is not involved!

• An amortized analysis guarantees the average performance of each operation in the *worst case*.

Types of amortized analyses

Three common amortization arguments:

- the *aggregate* method,
- the *accounting* method,
- the *potential* method.

We've just seen an aggregate analysis.

The aggregate method, though simple, lacks the precision of the other two methods. In particular, the accounting and potential methods allow a specific *amortized cost* to be allocated to each operation.

Accounting method

- Charge *i* th operation a fictitious *amortized cost* \hat{c}_i , where \$1 pays for 1 unit of work (*i.e.*, time).
- This fee is consumed to perform the operation.
- Any amount not immediately consumed is stored in the *bank* for use by subsequent operations.
- The bank balance must not go negative! We must ensure that $\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i$

for all n.

• Thus, the total amortized costs provide an upper bound on the total true costs.

Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i*th insertion.

- insertion.
 \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i*th insertion.

- insertion.
 \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i*th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

Accounting analysis (continued)

Key invariant: Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.

i	1	2	3	4	5	6	7	8	9	10
i size _i	1	2	4	4	8	8	8	8	16	16
										1
\hat{c}_i	2	3	3	3	3	3	3	3	3	3

^{*}The first operation costs only \$2, not \$3

Potential method

IDEA: View the bank account as the potential energy (à *la* physics) of the dynamic set.

Framework:

- Start with an initial data structure D_0 .
- Operation *i* transforms D_{i-1} to D_i .
- The cost of operation i is c_i .
- Define a *potential function* $\Phi: \{D_i\} \to \mathbb{R}$, such that $\Phi(D_0) = 0$ and $\Phi(D_i) \ge 0$ for all i.

Understanding potentials

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

potential difference $\Delta\Phi_i$

- If $\Delta \Phi_i > 0$, then $\hat{c}_i > c_i$. Operation *i* stores work in the data structure for later use.
- If $\Delta \Phi_i < 0$, then $\hat{c}_i < c_i$. The data structure delivers up stored work to help pay for operation i.

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$

Summing both sides.

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

The series telescopes (each term added and subtracted once, except first and last terms)

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

$$\geq \sum_{i=1}^{n} c_{i} \quad \text{since } \Phi(D_{n}) \geq 0 \text{ and }$$

$$\Phi(D_{0}) = 0.$$

Potential analysis of table doubling

Define the potential of the table after the ith

insertion by
$$\Phi(D_i) = 2i - 2^{\lceil \lg i \rceil}$$
.

(Assume that $2^{\lceil \lg 0 \rceil} = 0$.)

•
$$\Phi(D_0) = 0$$
,

 $\Phi(D_i) \ge 0$ for all i.

The second term is just the current table size!

$$\Phi = 2 \cdot 6 - 2^3 = 4$$

accounting method)

Calculation of amortized costs

The amortized cost of the *i*th insertion is

$$\hat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

$$= \begin{cases} i + (2i - 2^{\lceil \lg i \rceil}) - (2(i-1) - 2^{\lceil \lg (i-1) \rceil}) \\ \text{if } i - 1 \text{ is an exact power of 2,} \\ 1 + (2i - 2^{\lceil \lg i \rceil}) - (2(i-1) - 2^{\lceil \lg (i-1) \rceil}) \\ \text{otherwise.} \end{cases}$$

Calculation (Case 1)

Case 1: i-1 is an exact power of 2.

$$\hat{c}_{i} = i + (2i - 2^{\lceil \lg i \rceil}) - (2(i - 1) - 2^{\lceil \lg (i - 1) \rceil})$$

$$= i + 2 - (2^{\lceil \lg i \rceil} - 2^{\lceil \lg (i - 1) \rceil})$$

$$= i + 2 - (2(i - 1) - (i - 1))$$

$$= i + 2 - (2(i - 1) - (i - 1))$$

$$= i + 2 - (2(i - 1) - (i - 1))$$

$$= i + 2 - (2(i - 1) - (i - 1))$$

$$= i + 2 - (2(i - 1) - (i - 1))$$

$$= i + 2 - (2(i - 1) - (i - 1))$$

$$= i + 2 - (2(i - 1) - (i - 1))$$

$$= i + 2 - (2(i - 1) - (i - 1))$$

$$= i + 2 - (2(i - 1) - (i - 1))$$

$$= i + 2 - (2(i - 1) - (i - 1))$$

$$= i + 2 - 2i + 2 + i - 1$$

= 3

If $\lg(i-1)$ is integer, then $\lceil \lg i \rceil$ is the next integer up, hence $2^{\lceil \lg i \rceil} = 2 \cdot 2^{\lceil \lg (i-1) \rceil}$

Calculation (Case 2)

Case 2: i-1 is not an exact power of 2.

$$\hat{c}_{i} = 1 + \left(2i - 2^{\lceil \lg i \rceil}\right) - \left(2(i-1) - 2^{\lceil \lg (i-1) \rceil}\right)$$

$$= 1 + 2 - \left(2^{\lceil \lg i \rceil} - 2^{\lceil \lg (i-1) \rceil}\right)$$

$$= 3$$

$$If (i-1) \text{ is not exact power of } 2, \text{ then } 2^{\lceil \lg i \rceil} = 2^{\lceil \lg (i-1) \rceil}$$

Therefore, *n* insertions cost $\Theta(n)$ in the worst case.

Exercise: Fix the bug in this analysis to show that the amortized cost of the first insertion is only 2.

Deletion

Suppose we allow deletions.

IDEA: Whenever the table becomes less than halffull, shrink it to half its current size by allocating (via **malloc** or **new**) a new, smaller table. Move all items from the old table into the new one, and free the storage for the old table.

Does this work?

Bad example:

 $\Theta(n^2)$

- •As sequence of n/2 insertions
- •insert, delete, delete, insert, insert, delete, delete, insert, insert,....

Deletion

Suppose we allow deletions.

Solution: allow for some operations to be done before rebuilding the table; this way we will have done enough work to pay for the cost of rebuilding.

Method that works:

- •If the load factor α becomes 1, double the table size
- •If the load factor α drops below 1/4 shrink the table to half its current size

Potential analysis of table doubling/shrinking

Recall: We defined the potential of the table after the ith insertion by

$$\Phi(D_i) = 2i - 2^{\lceil \lg i \rceil} = 2*\operatorname{num}(D_i) - \operatorname{size}(D_i).$$

New potential function: We define the potential of the table after the ith operation by

$$\Phi(D_i) = 2*\operatorname{num}(D_i) - \operatorname{size}(D_i)$$
 if $\alpha(D_i) \ge 1/2$

$$\Phi(D_i) = \operatorname{size}(D_i)/2 - \operatorname{num}(D_i) \text{ if } \alpha(D_i) < 1/2.$$

Potential analysis of table doubling/shrinking

Case analysis: ith operation is

INSERT	DELETE
$\alpha(D_i) \ge 1/2, \ \alpha(D_{i-1}) \ge 1/2$	$\alpha(D_{i-1}) = 1/4$
$\alpha(D_i) < 1/2, \alpha(D_{i-1}) < 1/2$	$1/4 < \alpha(D_{i-l}) < 1/2$
$\alpha(D_i) \ge 1/2, \ \alpha(D_{i-1}) < 1/2$	$\alpha(D_{i-l}) \ge 1/2$

Case: INSERT, $\alpha(D_i) < 1/2$, $\alpha(D_{i-1}) < 1/2$

$$\begin{split} &\Phi(D_i) = \operatorname{size}(D_i)/2 - \operatorname{num}(D_i) \\ &\Phi(D_{i-l}) = \operatorname{size}(D_{i-l})/2 - \operatorname{num}(D_{i-l}) \\ &\operatorname{size}(D_{i-l}) = \operatorname{size}(D_i) \\ &\operatorname{num}(D_{i-l}) = \operatorname{num}(D_i) - 1, \qquad c_i = 1 \end{split}$$

no expansion

$$\begin{split} \hat{c}_i = &1 + \Phi(D_i) - \Phi(D_{i-1}) \\ = &1 + (\text{size}(D_i)/2 - \text{num}(D_i)) - (\text{size}(D_{i-1})/2 - \text{num}(D_{i-1})) \\ = &0. \end{split}$$

Potential analysis of table doubling/shrinking

Case analysis: ith operation is

INSERT	DELETE
$\alpha(D_i) \ge 1/2, \ \alpha(D_{i-1}) \ge 1/2$	$\alpha(D_{i-1}) = 1/4$
$\alpha(D_i) < 1/2, \ \alpha(D_{i-1}) < 1/2$	$1/4 < \alpha(D_{i-l}) < 1/2$
$\alpha(D_i) \ge 1/2, \ \alpha(D_{i-1}) < 1/2$	$\alpha(D_{i-l}) \ge 1/2$

Case: INSERT, $\alpha(D_i) \ge 1/2$, $\alpha(D_{i-1}) < 1/2$

$$\begin{split} &\Phi(D_i) = 2*\text{num}(D_i) - \text{size}(D_i) \\ &\Phi(D_{i-l}) = \text{size}(D_{i-l})/2 - \text{num}(D_{i-l}) \\ &\text{size}(D_{i-l}) = \text{size}(D_i) \\ &\text{num}(D_{i-l}) = \text{num}(D_i) - 1, \qquad c_i = l \end{split}$$

no expansion

$$\begin{split} \hat{c}_i = & 1 + \Phi(D_i) - \Phi(D_{i-l}) \\ = & 1 + (2*\text{num}(D_i) - \text{size}(D_i)) - (\text{size}(D_{i-l})/2 - \text{num}(D_{i-l})) \\ = & 1 + (2*(\text{num}(D_{i-l}) + 1) - \text{size}(D_i)) \\ = & 1 + (2*(\text{num}(D_{i-l}) + 1) - \text{size}(D_i)) \end{split}$$

Case: INSERT, $\alpha(D_i) \ge 1/2$, $\alpha(D_{i-1}) < 1/2$

$$\begin{split} \hat{c}_i = & 1 + \Phi(D_i) - \Phi(D_{i-l}) \\ = & 1 + (2*\operatorname{num}(D_i) - \operatorname{size}(D_i)) - (\operatorname{size}(D_{i-l})/2 - \operatorname{num}(D_{i-l})) \\ = & 1 + (2*(\operatorname{num}(D_{i-l}) + 1) - \operatorname{size}(D_i)) \\ & - (\operatorname{size}(D_{i-l})/2 - \operatorname{num}(D_{i-l})) \\ = & 3 + 3*\operatorname{num}(D_{i-l}) - 3 \operatorname{size}(D_{i-l})/2 \\ = & 3 + 3 \operatorname{\alpha}(D_{i-l}) \operatorname{size}(D_{i-l}) - 3 \operatorname{size}(D_{i-l})/2 \\ < & 3 + \operatorname{size}(D_{i-l})/2 - 3 \operatorname{size}(D_{i-l})/2 \\ & (\operatorname{since} \operatorname{\alpha}(D_{i-l}) < 1/2) \end{split}$$

Potential analysis of table doubling/shrinking

Case analysis: ith operation is

INSERT

$\alpha(D_i) \ge 1/2, \ \alpha(D_{i-1}) \ge 1/2$

$$\alpha(D_i) < 1/2, \alpha(D_{i-1}) < 1/2$$

$$\alpha(D_i) \ge 1/2, \ \alpha(D_{i-1}) < 1/2$$

DELETE

$$\alpha(D_{i-1}) = 1/4$$

$$1/4 < \alpha(D_{i-1}) < 1/2$$

$$\alpha(D_{i-1}) \ge 1/2$$

Case: DELETE, $\alpha(D_{i-1}) = 1/4$

$$\begin{split} &\Phi(D_i) = \operatorname{size}(D_i)/2 - \operatorname{num}(D_i) & contract \\ &\Phi(D_{i-l}) = \operatorname{size}(D_{i-l})/2 - \operatorname{num}(D_{i-l}) \\ &\operatorname{size}(D_{i-l}) = 2*\operatorname{size}(D_i) \\ &\operatorname{num}(D_{i-l}) = \operatorname{num}(D_i) + 1, \qquad c_i = \operatorname{num}(D_i) + 1 \end{split}$$

$$\begin{split} \hat{c}_i = & (\text{num}(D_i) + 1) + \Phi(D_i) - \Phi(D_{i-l}) \\ = & (\text{num}(D_i) + 1) + (\text{size}(D_i) / 2 - \text{num}(D_i)) \\ - & (\text{size}(D_{i-l}) / 2 - \text{num}(D_{i-l})) \\ = & 1 + \underset{\text{@ 2001 by Charles Ex Enserson}}{\text{Elses Son}} / 2 - \underset{\text{Enserson}}{\text{size}(D_{i-l}) / 2 + \underset{\text{elses Fron}}{\text{size}}(D_{i-l}) / 4 \\ = & 1 + \underset{\text{@ 2001 by Charles Ex Enserson}}{\text{Elses Fron}} / 2 - \underset{\text{Enserson}}{\text{size}}(D_{i-l}) / 2 + \underset{\text{elses Fron}}{\text{size}}(D_{i-l}) / 4 \\ = & 1 + \underset{\text{@ 2001 by Charles Ex Enserson}}{\text{Enserson}} / 2 - \underset{\text{Enserson}}{\text{size}}(D_{i-l}) / 2 + \underset{\text{elses Fron}}{\text{size}}(D_{i-l}) / 4 \\ = & 1 + \underset{\text{elses Fron}}{\text{size}}(D_{i-l}) / 2 - \underset{\text{elses Fron}}{\text{size}}(D_{i-l}) / 2 + \underset{\text{elses Fron}}{\text{elses Fron}}(D_{i-l}) / 2 + \underset{\text{elses Fron}}{\text$$

Potential analysis of table doubling/shrinking

Case analysis: ith operation is

INSERT	DELETE	
$\alpha(D_i) \ge 1/2, \ \alpha(D_{i-1}) \ge 1/2$	$\alpha(D_{i-1}) = 1/4$	
$\alpha(D_i) < 1/2, \ \alpha(D_{i-1}) < 1/2$	$1/4 < \alpha(D_{i-1}) < 1/2$	
$\alpha(D_i) \ge 1/2, \ \alpha(D_{i-1}) < 1/2$	$\alpha(D_{i-l}) \ge 1/2$	

Case: DELETE, $1/4 < \alpha(D_{i-1}) < 1/2$

$$\begin{split} &\Phi(D_i) = \text{size}(D_i)/2 - \text{num}(D_i) & no \ contraction \\ &\Phi(D_{i-l}) = \text{size}(D_{i-l})/2 - \text{num}(D_{i-l}) \\ &\text{size}(D_{i-l}) = \text{size}(D_i) \\ &\text{num}(D_{i-l}) = \text{num}(D_i) + 1, \quad c_i = 1 \end{split}$$

$$\begin{split} \hat{c}_i = &1 + \Phi(D_i) - \Phi(D_{i-l}) \\ = &1 + (\text{size}(D_i)/2 - \text{num}(D_i)) - (\text{size}(D_{i-l})/2 - \text{num}(D_{i-l})) \\ = &1 + \text{num}(D_{i-l}) - \text{num}(D_i) \end{split}$$

Conclusions

- Amortized costs can provide a clean abstraction of data-structure performance.
- Any of the analysis methods can be used when an amortized analysis is called for, but each method has some situations where it is arguably the simplest.
- Different schemes may work for assigning amortized costs in the accounting method, or potentials in the potential method, sometimes yielding radically different bounds.