

Empowering Fast Incremental Computation Over Large Scale Dynamic Graphs

Charith Wickramaarachchi, Charalampos Chelmis and Viktor Prasanna

University of Southern California

Presented by: Shijie Zhou

University of Southern California

Large-Scale Graph Data

Online social networks

Protein interactions

WWW

Air traffic network

Neural network

Large-Scale Graph Data are "Evolving"

Large volume

- > 2 B internet users¹
- > 1 B active Facebook users¹
- > 2.5 M daily active Twitter users²

Twitter Interactions

High velocity

- >7.5 K Tweets/second¹
- >1.5 K Skype calls/second¹
- >2000k emails/second¹

¹http://www.internetlivestats.com ²http://www.statista.com/

Vertex-Centric Model(1)

- Program written thinking as a vertex
- Computation performed at vertex level
- Communication using message passing between vertices
- Computation happens in iterations
 - Super-steps
- Bulk synchronous parallel model

Example: Single source shortest path

```
Compute(Messages msgs) {
  int distance=IsSource(vertex_id()) ? 0 : INF;
  for each m in msgs {
    distance = (distance, m->value())
  }
  if( distance < getValue()) {
    setValue(disance)
    for each e in getOutEdges() {
      sendMessage(e.sink(), distance + e.value())
    }
    voteToHalt()
  }
}</pre>
```

Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." *Proceedings of the 2010 ACM SIGMOD International Conference on Management of data*. ACM, 2010.

Vertex-Centric Model(2)

Example: Single source shortest path

Vertex-Centric Model(3)

Incremental Computation On Large-Scale Graphs

Key idea:

Minimize number of re-computations

Approach(1)

Memorization

- Assumptions
 - Deterministic graph algorithm
 - Vertex state at end of any super-step depends only on
 - State at end of previous super-step
 - Incoming messages
- Memorize incoming messages and state at each super-step
- Avoid re-computation on updated graph by comparing with the memorized state

Cai, Zhuhua, Dionysios Logothetis, and Georgos Siganos. "Facilitating real-time graph mining." *Proceedings of the fourth international workshop on Cloud data management*. ACM, 2012.

Approach(2)

1. Mark affected vertices after graph update

Type of change	Affected vertices	
Vertex property change	Only the specific vertex	
Vertex addition	The specific vertex and any vertices it points to	
Vertex deletion	All neighbors of the vertex, connected with either	
	incoming or outgoing edges	
Edge addition/deletion	Directed: only the source vertex	
	Undirected: both ends of the edge	
Edge property change	Directed: only the source vertex	
Edge property change	Undirected: both ends of the edge	

Cai, Zhuhua, Dionysios Logothetis, and Georgos Siganos. "Facilitating real-time graph mining." *Proceedings of the fourth international workshop on Cloud data management*. ACM, 2012.

Approach(3)

- 2. Re-execute the vertex if any of following are true
 - Any of the in-coming messages are different from memorized messages at that super-step
 - State is different from memorized state at that super-step
 - Affected vertex
- Advantages
 - Framework takes care of incremental execution

Cai, Zhuhua, Dionysios Logothetis, and Georgos Siganos. "Facilitating real-time graph mining." *Proceedings of the fourth international workshop on Cloud data management*. ACM, 2012.

Challenges

- Vertex centric programming model
 - Little computation per vertex
 - Large number of global synchronization steps
 - High communication/computation ratio
- Vertex centric memorization
 - Per-vertex comparisons
 - High comparison cost/compute cost

Our Approach(1)

Approach

- Multilevel memorization to prune computation
 - Partition level: coarse grain pruning of re-computations
 - Vertex level: fine grain pruning of re-computations
- Partition centric hierarchical BSP
 - Partition the graph
 - Local barrier synchronization within each partition
 - Global barrier synchronization across partitions
- Resource allocation
 - 1 node \rightarrow 1 partition
 - 1 core → subset of vertices

Our Approach(2)

- Programming model
 - Vertex centric
 - Very similar to Pregel model
 - Two levels of iterations
 - Sub-super-steps: intra partition
 - Super-step: inter partition
 - Messaging
 - Intra partition messages sent within sub-super-steps
 - Inter partition messages are aggregated and send at start of each new super-step
 - Reduce operation to limit communication
 - Enable users to minimize communication between partitions

Our Approach(3)

- Advantages
 - Framework takes care of incremental execution
 - Less global barrier synchronization overhead
 - Partition/Sub-graph level pruning of re-computations
 - Less comparison cost / computation cost

Example(1)

Algorithm 1 Max Vertex Using HBSP

```
1: procedure COMPUTE(Vertex v, Iterator<Messages> msgs)
       if super-step == 0 and sub-super-step == 0 then
2:
          BROADCASTGREATESTNEIGHBOR(v)
3:
                                                       ▶ Find the
   greatest vertex id m from the neighborhood set (including self),
   set m as the current value, and sent it to all neighbors
4:
          return
5:
       end if
       changed ← false
       maxId ← v.value
       while msgs.hasNext do
          m = msgs.next
          if maxId < m.value then
10:
              maxId \leftarrow m.value
11:
12:
              change \leftarrow true
          end if
13:
       end while
14:
15:
       if changed then
          v.value ← maxId
16:
17:
          BROADCASTUPDATE(v)
                                    Send the vertex value to all
   neighbors of v
18:
       end if
19: end procedure
```


Example(2)

- Reduce Operation
 - Max vertex id

```
reduce(I neighborId, List<Messages> msgs) {
  int max = 0
  for each msg in msgs {
    max = max(max, msg.value)
  }
  sendMessage(neighbour, new Message(max));
}
```

Per each remote vertex with outgoing messages

Implementation

- Implemented vertex centric and hierarchical BSP model on Apache Giraph (1.1.0)
- Local barriers using in-memory data structures. (Semaphores)
- Communication within partition each using in-memory data structures.
- Number of threads = number of cores
- Work stealing to reduce imbalance computation within each worker.
- Vertex to partition mapping is provided by user
- Memorized state was stored at partition level in local memory

Experimental Setup(1)

- Cluster of 15 nodes
 - 8-Core Intel Xeon CPU
 - 16GB RAM
- Workers
 - Number of workers: 12
 - Memory per worker: 14GB
- Datasets

Dataset	# Vertices	# Edges
SlashDot (SD)	82,168	948,464
Road Network - CA (RN)	1,965,206	2,766,607

https://snap.stanford.edu/data/

Experimental Setup(2)

- Algorithms
 - Connected component (CC)
 - Single source shortest path (SSSP)
- Generating random graphs for each dataset
 - 100 new edges added randomly
 - 30 random edges deleted
- Partitioning algorithms
 - Random
 - Metis
- Fraction of computations saved
 - Logged number vertices executed
 - Without memorization (r_e)
 - With memorization (m_e)
 - $(r_e m_e)/(r_e)$

Fraction of Computations Saved

RN: Road network

SD: SlashDot

Reduction in Super-Steps(1)

• SlashDot dataset

On static graphs

On updated graphs using memorization

Reduction in Super-Steps(2)

Road network dataset

On static graphs

On updated graphs using memorization

Conclusion

- Hierarchical BSP Model
 - Huge reduction on number of super-steps for sparse graphs
 - Simple programming abstraction
- Memorization with HBSP
 - No/Minimal impact on number of saved computations
 - Takes the burden of developing incremental graph algorithms
- Future Work
 - Reduce memorization overhead
 - Memory
 - Computation (Due to comparisons)
 - Combine with existing distributed time series graph processing models
 - Ex: Simmhan, Yogesh, et al. "Scalable analytics over distributed timeseries graphs using goffish." *arXiv preprint arXiv:1406.5975* (2014).

Questions

http://www.infertility.org/wp-content/uploads/2013/10/5-Questions-to-Ask-Before-1st-Round-of-IVF.jpg

