Trustless Attestation Verification in Distributed Confidential Computing

Donghang Lu Research Scientist @TikTok

Our Scenario: TEE in a cloud service

Relying Party has no visibility inside the cloud

TEE Cluster needs to prove that the relying party is interacting with a legit and secure TEE

Attestation enables TEEs to self-prove

FIGURE 10: SEV-SNP ATTESTATION

Figure Source: AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and Mo

Attestation enables TEEs to prove their identity

Attestation Procedure

- Whether the certificate of TEE is signed by legit hardware vendor?
- Whether the report is properly signed?
- The firmware version / Microcode version
- Guest image/ Software stack
- •

Attestation in Cloud Setting

- Option 1: Relying parties can verify the attestation reports by themselves
 - Relying parties may have to track latest reference values.
 - Relying parties may have to do additional computation.
 - The trust boundary remains the same.

Attestation in Cloud: Attestation Verification Service (AVS)

- The cloud Service provides remote attestation verification service (AVS)
 - Easier for the cloud provider to manage reference values.
 - The remote attestation service can be easier to integrate with other cloud functionalities (authentication, issuing tokens, etc.)
 - However, the attestation verification service has to be trusted!

Why current attestation verification services are not perfect: Trust boundary is expanded.

Although the cloud service provider are trustworthy most of the time...

- What if the attestation verification service is malfunctioning or buggy?
- What if the attacker launches attack on the remote attestation itself instead of TEE?
- Larger trust boundary means larger risks.

Can we make AVS trustless?

- Attestation verification service can prove to relying parties that it is following the correct attestation logic.
- Cryptographic Proof.
- Instead of trusting attestation service, you can trust math.

Zero Knowledge Proofs (ZKP) provides proof of computation without trusting third parties

 ZKP allows one party (the prover) to prove to another party (the verifier) that a statement is true without revealing any additional information.

Examples:

- prove that you're a citizen of a country, without giving your name or passport number.
- Prove that your age is over 18, without disclosing your age or your ID card.

Image Source: Wikipidia

ZKP is efficient for large scale computation

- ZKP becomes efficient enough now to prove large circuits.
- In Blockchain, ZKP is widely used to prove the correctness of computation.
 - E.g., Ethereum uses ZKP to verify off-chain computations.
- ZK-SNARK (Succinct Non-interactive Argument of Knowledge)
 - Fast verification
 - Constant proof size

Our solution: embed ZKP into attestation verification

 Ask attestation verification service to generate a ZKP proof, so that anyone can verify that the attestation service honestly executed expected attestation logic.

Work Flow: setup

- Attestation verification implementation should be open-sourced and public to everyone.
- Any party can audit, endorse, or challenge it.
- Finally, we have an attestation verification logic that is publicly endorsed.

Work Flow: proof of attestation verification

 During attestation verification, AVS proves that the code it runs is consistent with the open-sourced version.

Work Flow: verifying Zero-knowledge Proof

 Relying parties can quickly verify whether the ZKP is valid.

Challenges introduced by distributed confidential computing

- Multiple TEE nodes collaboratively provide services.
- Relying party needs to ensure all of them are legit.
- TEEs require mutual attestation.

Minimizing the efforts of relying party

Relying party still only verifies one proof and ensures that the entire cloud is attested properly.

Proof Aggregation for ZKP: verify everything in one shot

The final proof is valid only if all single proofs and aggregated proofs are valid.

Image Source:

https://scryptplatform.medium.com/recursive-zero-knowledge-proofs-27f2d934f9 53

Proof aggregation in distributed TEE system

Mutual attestation becomes easier

Alternative Setup: Using trustless attestation to bootstrap a TEE-based attestation verification service

Open Source Status

- Implementation with various ZKP backends.
 - Circom
 - Circuit-based ZKP backend supporting Groth16.
 - Pros: Transparent trusted setup, clear security model.
 - Cons: Slow.
 - RiscZero
 - VM-based ZKP backend supporting Rust as high level language.
 - Pros: (1) easy to implement and audit. (2) Fast.
 - Cons: More complicated security model.

We have already open-sourced two repositories.

https://github.com/tiktok-privacy-innovation/trustless-attestation-verification

We have already open-sourced two repositories.

https://github.com/tiktok-privacy-innovation/trustless-attestation-verification-circom

We have already open-sourced two repositories.

Circom Implementation

- Groth16 proof (zk-SNARK) for AMD-SEV-SNP attestation verification.
- Ilser-friendly (II hased on Makefile.

We got support from the community!

- Connected with multiple ZKP companies.
- Independent community contributors have opened 20+ issues and submitted 6 pull requests.
- We are also testing the deployment in the internal use cases.
- It's still early, but the momentum is solid.

Timeline

Thank You!