Phase 3 Project

Author: Tommy Phung

Overview

Client: Providence and Medical Centers

Source: CDC

Target Variable: Seasonal Vaccines

Goal: Create a model to predict whether a patient will take the seasonal vaccine.

Business Problem

Vaccines are wasted due to:

- **→** Expire date
- → Supply Chain Issue

Real Life Example:

> **1.1 billion** Covid Vaccines were estimated to be **wasted** due to expired vaccines and supply chain issues.

Data Understanding

Number of observation: 26,000 participants

- → **36** → **105** Columns (after preprocessing)
- → 24 numeric columns
- → **12** object columns

Target Variable: Seasonal Flu Vaccine

Method

Preprocessing Steps

- > Split Dataset to **Training** and **Testing** Sets
- > Prepare Datasets
 - (Missing values, Scalar, Dummy Variables)
- Fit Model with Training Dataset
- > Make Predictions

Models

- > Simple Baseline Model
 - Decision Tree
- Complex Model
 - Random Forest
- > Tuned Model
 - Random Forest with Tuned Hyperparameters

Simple Decision Tree

Decision Tree Classification:

> Split dataset based on features in order to reduce entropy.

Parameters: Default, criterion = entropy

Decision Tree - Analysis

Perfect Training
Accuracy
+ Accuracy
- Accuracy
- Accuracy
- 68.21%

Overfitting with Training
Dataset
(Greedy Algorithm)

Overfitting results in larger difference in accuracy

Decision Tree → Random Forest

Decision Tree

Pro:

→ Easy to Interpret

Con:

→ Prone to overfitting

Random Forest

Pro:

- → Resilient to overfitting
- → Resistance to noise

Con:

→ Long Computational Time

Random Forests

Random Forest Classification:

Create multiple Decision Trees with different set of features.

Parameters:

Max Depth = 10, Max Features = None, criterion = entropy

Training Accuracy: 83.45%

Testing Accuracy: 77.89%

Random Forest with Tuned Hyperparameters

Tuning with Grid Search

- Compares models with different parameters
- > Over **7,000** combinations

8	Training Accuracy: 92.59% Testing Accuracy: 78.36%
	resumg Accuracy. 18.36%

	Default	Tuned
n_estimators	100	300
criterion	Entropy	Entropy
max_depth	None	15
min_samples_splits	2	1
min_sample_leaf	1	1
max_features	Sqrt (7)	15

Model Comparison

Model	Training Accuracy	Testing Accuracy	Recall Score
Decision Tree	100%	68.21%	65.33%
Random Forest	83.45%	77.89%	75.55%
Random Forest with hypertuning	92.59%	78.36%	75.55%

Real Life Application (Example)

Data Taken from Testing Dataset

Number of Patients	Predicted Taken	Patients Actually Taken	Number of Vaccines + 5% *	Vaccines Wasted
5342	2416	2466	2416 + 121 = 2537	71

^{*} Supply should be <u>slightly more</u> in case of faulty or new patients Subject to change based on location. (Major Cities, Small Towns)

Conclusion

- > Random Forest Performs **Better** Than Decision Trees
- > 92.59% Training Accuracy
- > 78.36% Testing Accuracy

- Use Model to obtain rough estimate number of vaccines
- > 71 wasted vaccines vs 2,876 *

* Assuming everyone needs a vaccines

Next Steps

- 1. More Tuning
- 2. Different Classification Models
 - a. KNN
 - b. XGBoost
- 3. Better Survey Questions
 - a. Demographic
 - b. Religion

Questions?

Number of	Predicted	Patients	Number of	Vaccines
Patients	Taken	Actually Taken	Vaccines + 5% *	Wasted
5342	2416	2466	2537	71

Model	Training Accuracy	Testing Accuracy	Recall Score
Decision Tree	100%	68.21%	65.33%
Random Forest	83.45%	77.89%	75.55%
Random Forest with hypertuning	92.59%	78.36%	75.55%