IMPLEMENTATION OF DIFFIE HELLMAN KEY EXCHANGE ALGORITHM

AIM:

To implement the Diffie-Hellman Key Exchange algorithm

DESCRIPTION:

Diffie—Hellman Key Exchange establishes a shared secret between two parties that can be used for secret communication for exchanging data over a public network. It is primarily used as a method of exchanging cryptography keys for use in symmetric encryption algorithms like AES. The algorithm in itself is very simple. The process begins by having the two parties, Alice and Bob. Let's assume that Alice wants to establish a shared secret with Bob.

EXAMPLE:

ALGORITHM:

STEP-1: Both Alice and Bob shares the same public keys g and p.

STEP-2: Alice selects a random public key a.

STEP-3: Alice computes his secret key A as $g^a \mod p$.

STEP-4: Then Alice sends A to Bob.

- **STEP-5:** Similarly Bob also selects a public key b and computes his secret key as B and sends the same back to Alice.
- **STEP-6:** Now both of them compute their common secret key as the other one's secret key power of a mod p.

PROGRAM: (Diffie Hellman Key Exchange)

```
#include<stdio.h>
#include<conio.h>
long long int power(int a, int b, int mod)
{
     long long int t;
     if(b==1)
     return a;
     t=power(a,b/2,mod);
     if(b%2==0)
     return (t*t)%mod;
     else
     return (((t*t)%mod)*a)%mod;
}
long int calculateKey(int a, int x, int n)
{
     return power(a,x,n);
}
void main()
     int n,g,x,a,y,b;
     clrscr();
     printf("Enter the value of n and g : ");
     scanf ("%d%d", &n, &g);
     printf("Enter the value of x for the first person : ");
     scanf("%d",&x);
     a=power(g,x,n);
     printf("Enter the value of y for the second person : ");
     scanf("%d",&y);
     b=power(g,y,n);
     printf("key for the first person is :
     ld\n'',power(b,x,n));
     printf("key for the second person is :
     %lld\n",power(a,y,n));
     getch();
}
```

OUTPUT:

```
Enter the value of n and g : 7

Enter the value of x for the first person : 6

Enter the value of y for the second person : 15

key for the first person is : 1

key for the second person is : 1

-
```

VIVA OUESTIONS

- 1. What's the difference between Diffie-Hellman and RSA?
- 2. Does Diffie Hellman guarantee secrecy?
- 3. Why is RSA preferred over Diffie-Hellman if they are both used to establish shared key?
- 4. Are there any one way operations that could be used for Diffie-Hellman post quantum?
- 5. Why is Diffie-Hellman required when RSA is already used for key exchange in TLS?
- 6. What is Authenticated Diffie-Hellman Key Agreement?
- 7. How secure is ECDH if the public keys are never shared?
- 8. Which is better when the secret is leaked, RSA or Diffie-Hellman?
- 9. What role does RSA play in DH-RSA cipher suite?
- 10. Why is Diffie-Hellman used alongside public keys?
- 11. Is Diffie-Hellman key exchange based on one-way function or trapdoor function?

RESULT:

Thus the Diffie-Hellman key exchange algorithm had been successfully implemented.