

International **IR** Rectifier

83CNQ...A SERIES

SCHOTTKY RECTIFIER
New GenIII D-61 Package

80 Amp

Major Ratings and Characteristics

Characteristics	83CNQ...A	Units
$I_{F(AV)}$ Rectangular waveform	80	A
V_{RRM} range	80 to 100	V
I_{FSM} @ $t_p = 5\mu s$ sine	7000	A
V_F @ $40\text{Apk}, T_J = 125^\circ\text{C}$ (perleg)	0.67	V
T_J range	-55 to 175	°C

Description/Features

The 83CNQ...A center tap Schottky rectifier module series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175°C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- $175^\circ\text{C} T_J$ operation
- Center tap module
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- *New fully transfer-mold low profile, small footprint, high current package*

Case Styles

83CNQ...A	83CNQ...ASM	83CNQ...ASL
 D61-8	 D61-8-SM	 D61-8-SL

83CNQ...A Series

Bulletin PD-20042 rev. C 09/01

International
IR Rectifier

Voltage Ratings

Partnumber	83CNQ080A	83CNQ100A
V_R Max. DC Reverse Voltage (V)	80	
V_{RWM} Max. Working Peak Reverse Voltage (V)		100

Absolute Maximum Ratings

Parameters	83CNQ	Units	Conditions
$I_{F(AV)}$ Max.AverageForwardCurrent * See Fig. 5	80	A	50%dutycycle@ $T_C = 132^\circ\text{C}$,rectangularwaveform
I_{FSM} Max.PeakOneCycleNon-Repetitive Surge Current (Per Leg) * See Fig. 7	7000	A	5μs Sine or 3μs Rect. pulse Following any rated load condition and with 10ms Sine or 6ms Rect. pulse applied
	720		
E_{AS} Non-RepetitiveAvalancheEnergy (Per Leg)	15	mJ	$T_J = 25^\circ\text{C}$, $I_{AS} = 1$ Amps, L = 30 mH
I_{AR} RepetitiveAvalancheCurrent (Per Leg)	1	A	Currentdecaying linearlytozero in 1 μsec Frequency limited by T_J max. $V_A = 1.5 \times V_R$ typical

Electrical Specifications

Parameters	83CNQ	Units	Conditions	
V_{FM} Max. Forward Voltage Drop (Per Leg) * See Fig. 1 (1)	0.81	V	@ 40A	$T_J = 25^\circ\text{C}$
	1.00	V	@ 80A	
	0.67	V	@ 40A	$T_J = 125^\circ\text{C}$
	0.82	V	@ 80A	
I_{RM} Max. Reverse Leakage Current (Per Leg) * See Fig. 2 (1)	1.5	mA	$T_J = 25^\circ\text{C}$	$V_R = \text{rated } V_R$
	35	mA	$T_J = 125^\circ\text{C}$	
C_T Max. Junction Capacitance (Per Leg)	1400	pF	$V_R = 5V_{DC}$, (test signal range 100Khz to 1Mhz) 25°C	
L_S Typical Series Inductance (Per Leg)	5.5	nH	Measured lead to lead 5mm from package body	
dv/dt Max. Voltage Rate of Change (Rated V_R)	10000	V/ μs		

(1) Pulse Width < 300μs, Duty Cycle <2%

Thermal-Mechanical Specifications

Parameters	83CNQ	Units	Conditions	
T_J Max.JunctionTemperatureRange	-55to175	°C		
T_{stg} Max.StorageTemperatureRange	-55to175	°C		
R_{thJC} Max.ThermalResistanceJunction to Case (Per Leg)	0.85	°C/W	DCoperation	* See Fig. 4
R_{thJC} Max.ThermalResistanceJunction to Case(Per Package)	0.42	°C/W	DCoperation	
R_{thCS} Typical ThermalResistance, Case to Heatsink (D61-8 Only)	0.30	°C/W	Mountingsurface,smoothandgreased Deviceflatness<5mils	
wt ApproximateWeight	7.8(0.28)	g(oz.)		
T MountingTorque (D61-8 Only)	Min.	12(10)	Kg-cm	(*)
	Max.	24(20)	(lbf-in)	

(*) Recommended hardware 3M stainless screw

Fig.1 - Max. Forward Voltage Drop Characteristics
 (Per Leg)

Fig.2-Typical Values Of Reverse Current
 Vs. Reverse Voltage (Per Leg)

Fig.3-Typical Junction Capacitance
 Vs. Reverse Voltage (Per Leg)

Fig.4-Max. Thermal Impedance Z_{thJC} Characteristics (Per Leg)

83CNQ...A Series

Bulletin PD-20042 rev. C 09/01

International
IR Rectifier

Fig.5-Max. Allowable Case Temperature Vs. Average Forward Current (Per Leg)

Fig.6-Forward Power Loss Characteristics (Per Leg)

Fig.7-Max. Non-Repetitive Surge Current (Per Leg)

Fig.8-Unclamped Inductive Test Circuit

Outline Table

Outline Table

Part Marking Information

EXAMPLE: THIS IS A 83CNQ100A WITH
 LOT CODE 89 09
 ASSEMBLED ON WW 45, 2000
 IN THE ASSEMBLY LINE "A"

D61-8

EXAMPLE: THIS IS A 83CNQ100ASM WITH
 LOT CODE 89 09
 ASSEMBLED ON WW 45, 2000
 IN THE ASSEMBLY LINE "A"

D61-8-SM

EXAMPLE: THIS IS A 83CNQ100ASL WITH
 LOT CODE 89 09
 ASSEMBLED ON WW 45, 2000
 IN THE ASSEMBLY LINE "A"

D61-8-SL

83CNQ...A Series

Bulletin PD-20042 rev. C 09/01

International
IR Rectifier

```
83CNQ100A
*****
* This model has been developed by      *
* Wizard SPICE MODEL GENERATOR (1999)  *
* (International Rectifier Corporation)   *
* contains Proprietary Information      *
*****
* SPICE Model Diode is composed by a    *
* simple diode plus paralleled VCG2T    *
*****
.SUBCKT 83CNQ100A ANO CAT
D1 ANO 1 DMOD (0.20831)
*Define diode model
.MODEL DMOD D(IS=3.91765102575707E-04A,N=1.6412007115037,BV=110V,
+IBV=1.66611874283115A,RS=0.001083212,CJO=1.31909764291715E-08,
+VJ=1.04145964983498,XTI=2,EG=0.757359996913038)
*****
*Implementation of VCG2T
VX 1 2 DC 0V
R1 2 CAT TRES 1E-6
.MODEL TRES RES(R=1,TC1=-5.06642501757023)
GP1ANO.CATVALUE={-ABS(I(VX))*(EXP(((2.558893E-02/-5.066425)*((V(2,CAT)*1E6)/(I(VX)+1E-6)-1))+1)*3.120336E-03*ABS(V(ANO,CAT))-1})
*****
.ENDS 83CNQ100A

Thermal Model Subcircuit
.SUBCKT 83CNQ100A 5 1
CTHERM1      5      4      8.75E-04
CTHERM2      4      3      1.99E+00
CTHERM3      3      2      2.04E+01
CTHERM4      2      1      2.41E+02
RTHERM1      5      4      1.00E-07
RTHERM2      4      3      4.51E-01
RTHERM1      3      2      3.08E-01
RTHERM1      2      1      7.27E-02
.ENDS 83CNQ100A
```

Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level.
Qualification Standards can be found on IR's Web site.

International
IR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 09/01