Articulation Points

Biconnectedness

A graph is <u>biconnected</u> if every pair of vertices is connected by two vertex-disjoint paths

A graph is biconnected if it has no articulation points

An <u>articulation point</u> (or cut vertex) in a connected graph is a vertex that would disconnect the graph if it (and its incident edges) were removed.

Can be thought of as a single point of failure

Testing for Articulation Points

Brute Force

- Temporarily remove each vertex v from the graph
- DFS/BFS traversal to determine if graph is still connected

Finding Articulation Points

- Variation of DFS
- Build spanning tree
 - Directed with back edges

High Level Idea

- Compute Num(v)
- 2. Compute Low(v)
- 3. Determine Articulation Points

Finding Articulation Points

- Num(V) is the visit number
- Low(v) = lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge
 - \circ Low(v) = minimum of
 - Num(v) □
 - Lowest Num(w) among all back edges (v,w)
 - Lowest Low(w) among all tree edges (v,w)

Finding Articulation Points

- Root is articulation point iff it has more than one child
- Any other vertex v is an articulation point iff v has some child w such that Low(w) ≥ Num(v) □
 - Is there a child w of v that cannot reach a vertex visited before v?
 - If yes, then removing v will disconnect w (and v is an articulation point)