(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-51628 (P2004-51628A)

最終頁に続く

(43) 公開日 平成16年2月19日(2004.2.19)

(51) Int.C1. ⁷	F I	テーマコード(参考)
CO7D 213/30	CO7D 213/30	4 C O 5 5
AO1N 43/40	AO1N 43/40 1O1B	40063
AO1N 43/42	AO1N 43/42 1O1	4HO11
AO1N 47/12	AO1N 43/42 1O2	
AO1N 47/16	AO1N 47/12 1O2	
	審査請求 未請求 請求項の数 6	OL (全 52 頁) 最終頁に続く

(21) 出願番号 (22) 出願日	特願2003-149044 (P2003-149044) 平成15年5月27日 (2003.5.27)	(71) 出願人	000000354 石原産業株式会社	
(31) 優先権主張番号	特願2002-154605 (P2002-154605)		大阪府大阪市西区江戸堀一丁目3番	15号
(32) 優先日	平成14年5月28日 (2002.5.28)	(72) 発明者	菊川 弘司	
(33) 優先権主張国	日本国(JP)		滋賀県草津市西渋川二丁目3番1号	石原
			産業株式会社中央研究所内	
		(72) 発明者	中山 仁志	
			滋賀県草津市西渋川二丁目3番1号	石原
			産業株式会社中央研究所内	
		(72) 発明者	宮下 聖子	
			滋賀県草津市西渋川二丁目3番1号	石原
			産業株式会社中央研究所内	
		(72) 発明者	永山 宗一郎	
			滋賀県草津市西渋川二丁目3番1号	石原
			産業株式会社中央研究所内	

(54) 【発明の名称】ピリジン系化合物又はその塩、それらの製造方法及びそれらを含有する除草剤

(57)【要約】

【課題】除草剤の新規有効成分化合物を提供する。

【解決手段】式([);

【化1】

10

[式中、Aとは

【化2】

20

40

50

【特許請求の範囲】

【請求項1】

式(I);

【化1】

$$Z \xrightarrow{X} R^1$$

$$R^2 \qquad (I)$$

$$R^4 \qquad N \qquad R^3$$

[式中、Akは

【化2】

であり、A、B、D、E、A'、B'、D'及びE'は各々酸素原子、硫黄原子、-N(R^6) - 、 = N - 、 = C (R^6) - 又は - C (R^6) $_2$ - (c c c o R^6 は 同一で あって も異なっていてもよい)であり、但し、-A'-B'-D'-(E')_n -が環内の二重 結合と共役してベンゼン環を形成する場合を除き、Xは酸素原子又は硫黄原子であり、区 は水素原子、置換されてもよいアルキル、一CH^CN、置換されてもよいアルケニル、 置 換 さ れ て も よ い ア ル キ ニ ル 、 置 換 さ れ て も よ い シ ク ロ ア ル キ ル 、 一 C O R ^ 、 一 C S R 7 、- SOR 7 、- SO $_2$ R 7 、R 8 で置換されてもよいフェニル又はR 8 で置換されて もよいピリジルであり、R¹ はハロゲン、置換されてもよいアルキル、置換されてもよい アルケニル、置換されてもよいアルキニル、置換されてもよいシクロアルキル、シアノ、 $-OR^9$ 、 $-SR^9$ 、 $-SOR^9$ 又は $-SO_2R^9$ であり、 R^2 は水素原子、ハロゲン、 アルキル、ハロアルキル、シアノ、ホルミル、-CO〟R 9 、-OR 9 又は-SR 9 であ り、 R^{-3} 及 σ R^{-4} は各々水素原子、ハロゲン又はアルキルであり、 R^{-5} はハロゲン、アル キ ル 、 八 口 ア ル キ ル 、 置 換 さ れ て も よ い ア ル ケ ニ ル 、 置 換 さ れ て も よ い ア ル キ ニ ル 、 置 換 マれてもよいシクロアルキル、ニトロ、-OR 9 、-SR 9 、-SOR 9 、-SO $_2$ R 9 又は $-N(R^9)_2$ (ここでの R^9 は同一であっても異なっていてもよい)であり、 R^6 は水素原子、ハロゲン、アルキル又はハロアルキルであり、R『は置換されてもよいアル キル、置換されてもよいアルケニル、置換されてもよいアルキニル、置換されてもよいシ クロアルキル、 R ⁸ で置換されてもよいフェニル、 R ⁸ で置換されてもよいナフチル、 R 8 で置換されてもよい複素環基、-CO $_{2}$ R 9 、-OR 9 、-SR 9 又は-N(R 9) $_{2}$ (ここでの R⁹ は同一であっても異なっていてもよく、2つの R⁹ が一緒になって環を形 成することもでき、更には、環を形成する際に当該環中に酸素原子及び/又は硫黄原子を 含有していてもよい) であり、 R ⁸ はハロゲン、アルキル、ハロアルキル、ニトロ、シア ノマは一〇R⁹であり、R⁹は水素原子、置換されてもよいアルキル、置換されてもよい アルケニル、 置換されてもよいアルキニル、 置換されてもよいシクロアルキル、 R ⁸ で置 換されてもよいフェニル又は R^8 で置換されてもよいピリジルであり、Mは $O\sim S$ であり 、Nは0又は1であり、 Γ は0~4であり、 Π 又は Γ が2以上である場合、 Π あっても異なっていてもよい、但し、AFがAF1であり、A及びBが各々=C(R゚) - 又は - C (R ⁶) ₂ - であり、 D が 硫 黄 原 子 で あり、 X が 酸 素 原 子 で あり、 Z が 水 素 原 子であり、且つれが0である場合を除く〕で表されるピリジン系化合物又はその塩。

【請求項2】

区、R¹、R⁵、R⁷及ひR⁹に含まれる置換されてもよいアルキル、置換されてもよい

30

40

50

アルケニルヌは置換されてもよいアルキニルのその置換基が、八口ゲン、 C_{1-6} アルコキシ、 C_{1-6} アルキルチオ、置換されてもよいアミノ、トリメチルシリル、 C_{3-6} シクロアルキル、 R^8 で置換されてもよいフェニル、 R^8 で置換されてもよいナフチルであり、 前記置換されてもよいアミノのその置換基が、 C_{1-6} アルキル、 C_{2-6} アルケニル、 C_{1-6} アルキルカルボニル、 C_{1-6} アルキルカルボニル、 C_{1-6} アルコキシカルボニル、 C_{1-6} アルケニル、 C_{1-6} アルキルカルボニル、 C_{1-6} アルカルボニル、 C_{1-6} アルカルボニル、 C_{1-6} アルキルの C_{1-6} アルキルの C_{1-6} アルキルの C_{1-6} アルキル C_{1-6} アルカ C_{1-6} アルキル C_{1-6} アルカ C_{1-6} アルキル C_{1-6} アルカ C_{1-6} アルカ

【請求項3】

式(I);

【化3】

[式中、Aとは

【化4】

であり、A、B、D、E、A、、B、、D、及びE、は各々酸素原子、硫黄原子、-N(R^6) - 、= N - 、= C (R^6) - 又は- C (R^6) $_2$ - (ここでの R^6 は同一であって も異なっていてもよい)であり、但し、-A´-B´-D´-(E´) n - が環内の二重 結合と共役してペンゼン環を形成する場合を除き、Xは酸素原子又は硫黄原子であり、区 は水素原子、置換されてもよりアルキル、一CH2CN、置換されてもよりアルケニル、 置 換 さ れ て も よ い ア ル キ ニ ル 、 置 換 さ れ て も よ い シ ク ロ ア ル キ ル 、 一 C O R ^ 、 一 C S R 7 、- SOR 7 、- SO $_2$ R 7 、R 8 で置換されてもよいフェニル又はR 8 で置換されて もよいピリジルであり、 R ¹ はハロゲン、 置換されてもよいアルキル、 置換されてもよい アルケニル、置換されてもよいアルキニル、置換されてもよいシクロアルキル、シアノ、 - O R ⁹ 、 - S R ⁹ 、 - S O R ⁹ 又は - S O ₂ R ⁹ であり、 R ² は水素原子、ハロゲン、 アルキル、ハロアルキル、シアノ、ホルミル、-CO﹖R 9 、-OR 9 又は-SR 9 であ り、 R^{-3} 及び R^{-4} は各々水素原子、ハロゲン又はアルキルであり、 R^{-5} はハロゲン、アル キル、ハロアルキル、置換されてもよいアルケニル、置換されてもよいアルキニル、置換 又は $-N(R^9)_2$ (ここでの R^9 は同一であっても異なっていてもよい)であり、 R^6 は水素原子、ハロゲン、アルキルマはハロアルキルであり、R『は置換されてもよいアル キル、 置換されてもよいアルケニル、 置換されてもよいアルキニル、 置換されてもよいシ クロアルキル、 R ⁸ で置換されてもよいフェニル、 R ⁸ で置換されてもよいナフチル、 R 8 で置換されてもよい複素環基、一CO $_2$ R 9 、一OR 9 、一SR 9 又は一N(R 9) $_2$ (ここでの R⁹ は同一であっても異なっていてもよく、 2 つの R⁹ が一緒になって環を形 成することもでき、更には、環を形成する際に当該環中に酸素原子及び/又は硫黄原子を

含有していてもよい)であり、 R 8 は八口ゲン、 アルキル、 八口アルキル、 ニトロ、シアノ又は 8 であり、 R 9 は水素原子、 置換されてもよいアルキル、 置換されてもよいアルキル、 R 8 で置換されてもよいシクロアルキル、 R 8 で置換されてもよい 9 クロアルキル、 R 8 で置換されてもよい 9 り、 M は 9 であり、 N は 9 であり、 M は 9 であり、 M は 9 であり、 M は 9 であり、 C 9 に同一であっても異なっていてもよい、 但し、 A 9 が A 9 と 9 が A 9 であり、 A 9 び B が A 9 に 9 であり、 D が 硫 黄原子であり、 X が 酸素原子であり、 Z が 水素原子であり、 且 つ 9 のである場合を除く 9 で表される 9 リジン系 化 G 物 又は その 塩の 製造 方法であって、 (1)式(II):

【化5】

$$Ar \xrightarrow{\text{Hal}} R^1 \\ R^2 \\ R^3$$
 (II)

[式中、Ar、R 1 、R 2 、R 3 及びR 4 は前述の通りであり、Halはハロゲンである]で表される化合物と、式(III);

【化6】

Z—XH (III)

[式中、 X 及び区は前述の通りである] で表される化合物とを反応させるか、(2)式(I V);

【化7】

$$G \xrightarrow{R^1} R^2$$

$$R^4 \xrightarrow{N} R^3$$
 (IV)

[式中、 R^1 、 R^2 、 R^3 及び R^4 は前述の通りであり、Gは水素原子又はハロゲンである]で表される化合物と、リチオ化剤とを反応させて式(V);

【化8】

$$\begin{array}{c}
R^1 \\
R^2 \\
R^4
\end{array}$$

$$\begin{array}{c}
R^2 \\
R^3
\end{array}$$

$$\begin{array}{c}
(V) \\
\end{array}$$

[式中、 R ¹ 、 R ² 、 R ⁸ 及び R ⁴ は前述の通りである]で表される化合物を得、次りで このものと式(V I);

【化9】

Ar—CHO (VI)

[式中、Akは前述の通りである]で表される化合物とを反応させるか、(3)式(VII):

【化10】

G-Ar(VII)

[式中、AF及びGは前述の通りである]で表される化合物と、リチオ化剤とを反応させ

10

30

40

20

30

40

て式(VIII);

【化11】

Li—Ar (VIII)

[式中、Akは前述の通りである]で表される化合物を得、次いでこのものと式(IX);

【化12】

[式中、 R^1 、 R^2 、 R^3 及び R^4 は前述の通りである]で表される化合物と反応させるか、(4)式(II);

【化13】

$$Ar \xrightarrow{Hal} R^1$$

$$R^2$$

$$R^3$$
(II)

[式中、A r 、 R 1 、 R 2 、 R 3 、 R 4 \mathcal{B} \mathcal{O} H α I は前述の通りである]で表される化合物と、式(X);

【化14】

 $S=C(NH_2)_2$ (X)

で表される化合物とを反応させて式(XI);

【化15】

$$\begin{array}{c} \bullet \\ \text{HN} \\ \text{C} \\ \text{NH}_2 \\ \text{S} \\ \text{R}^1 \\ \text{R}^2 \\ \text{R}^3 \end{array} \tag{XI}$$

【化16】

$$Ar \xrightarrow{XH} R^1 R^2$$

$$R^3 \qquad (I-3)$$

[式中、Ar、X、R¹、R²、R⁸及びR⁴は前述の通りである]で表される化合物と 50

、式(XII);

【化17】

Z^{a} —Y(XII)

[式中、 \mathbf{Z}^{α} は置換されてもよりアルキル、 $-\mathbf{CH}_2$ \mathbf{CN} 、 置換されてもよりアルケニル、置換されてもよりアルキー、 $-\mathbf{COR}^7$ 、 $-\mathbf{COR}^7$ 、 $-\mathbf{COR}^7$ 、 $-\mathbf{COR}^7$ 、 $-\mathbf{COR}^7$ 、 $-\mathbf{COR}^7$ 、 $-\mathbf{COR}^7$ 、 $-\mathbf{COR}^7$ 、 $-\mathbf{COR}^7$ 、 $-\mathbf{COR}^7$ 、 $-\mathbf{COR}^8$ で置換されてもよりプェニル又は \mathbf{R}^8 で置換されてもよりプリジル(\mathbf{R}^7 及び \mathbf{R}^8 は前述の通り)であり、 Y はハロゲン又は有機スルホン酸残基である〕で表される化合物とを反応させるか、或は(6)式(\mathbf{I} $-\mathbf{S}$):

【化18】

$$Ar \xrightarrow{XH} R^1 R^2$$
 (I-3)

[式中、Ar、X、R¹、R²、R³及びR⁴は前述の通りである]で表される化合物と、式(XIII);

【化19】

$T = C = N - R^9$ (XIII)

[式中、 R ⁹ は前述の通りであり、 T は酸素原子又は硫黄原子である] で表される化合物とを反応させることを特徴とする、方法。

【請求項4】

請求項1又は2のピリジン系化合物又はその塩を有効成分として含有する除草剤。

【請求項5】

請求項1又は2のピリジン系化合物又はその塩の有効成分量を施用して有害雑草を防除する方法。

【請求項6】

請求項1又は2のピリジン系化合物又はその塩の少なくとも1種と、他の除草剤の有効成分化合物の少なくとも1種とを含有する混合除草性組成物。

【発明の詳細な説明】

 $[0 \ 0 \ 0 \ 1]$

【発明の属する技術分野】

本発明は、除草剤の有効成分として有用な新規ピリジン系化合物に関する。

[0002]

【従来の技術】

WO 95 / 29893には、3-置換ピリジン系化合物が開示されているが、後記式(I)中のA /で表される置換基などによって区別される。また、米国特許第4、611、059号明細書にはピリジルで置換されたペングチオフェン系化合物が開示されているが、当該特許に含まれる化合物は本願から除外されている。

[00003]

【特許文献1】

国際公開公報 WO 95 / 29893

【特許文献1】

米国特許第4, 611.059号明細書

[0004]

【発明が解決しようとする課題とその手段】

本願発明者等は、より優れた除草剤を見出すべくピリジン系化合物につき種々検討した結果、本発明を完成した。すなわち本発明は、式(I);

10

20

30

50

$$\begin{bmatrix} 0 & 0 & 0 & 5 & J \\ I & k & 2 & 0 & J \end{bmatrix}$$

$$Z \longrightarrow X \qquad R^{1}$$

$$Ar \longrightarrow R^{2} \qquad (I)$$

又は

$$B'$$
 $(E')_n$
 $(R^5)_r$
 $Ar2$

[0008]

であり、A、B、D、E、A、、B、、D、及びE、は各々酸素原子、硫黄原子、一N(R^{6}) -、= N - 、= C (R^{6}) - 又は- C (R^{6}) $_{2}$ - (ここでの R^{6} は同一であって も異なっていてもよい)であり、但し、-A'-B'-D'-(E') n - が環内の二重 結合と共役してベンセン環を形成する場合を除き、Xは酸素原子又は硫黄原子であり、区 は水素原子、置換されてもよいアルキル、一CH。CN、置換されてもよいアルケニル、 置 換 さ れ て も よ い ア ル キ ニ ル 、 置 換 さ れ て も よ い シ ク ロ ア ル キ ル 、 一 C O R ^ 、 一 C S R 7 、-SOR 7 、-SO $_2$ R 7 、R 8 で置換されてもよいフェニル又はR 8 で置換されて もよいピリジルであり、R¹ はハロゲン、置換されてもよいアルキル、置換されてもよい アルケニル、置換されてもよいアルキニル、置換されてもよいシクロアルキル、シアノ、 $-OR^9$ 、 $-SR^9$ 、 $-SOR^9$ 又は $-SO_2R^9$ であり、 R^2 は水素原子、ハロゲン、 アルキル、ハロアルキル、シアノ、ホルミル、-CO $_2$ R 9 、-OR 9 又は-SR 9 であ り、 R^{-3} 及び R^{-4} は各々水素原子、ハロゲン又はアルキルであり、 R^{-5} はハロゲン、アル キル、ハロアルキル、置換されてもよいアルケニル、置換されてもよいアルキニル、置換 又は $-N(R^9)_{\rho}$ (ここでの R^9 は同一であっても異なっていてもよい)であり、 R^6 は 水 素 原 子 、 八 口 ゲ ン 、 ア ル キ ル 又 は 八 口 ア ル キ ル で あ り 、 R ⁷ は 置 換 さ れ て も よ い ア ル キル、置換されてもよいアルケニル、置換されてもよいアルキニル、置換されてもよいシ クロアルキル、 R ⁸ で置換されてもよいフェニル、 R ⁸ で置換されてもよいナフチル、 R 8 で置換されてもよい複素環基、一CO $_2$ R 9 、一OR 9 、一SR 9 又は一N(R 9) $_2$ (ここでのR⁹は同一であっても異なっていてもよく、2つのR⁹が一緒になって環を形 成することもでき、更には、環を形成する際に当該環中に酸素原子及び/又は硫黄原子を 含有していてもよい)であり、R⁸ はハロゲン、アルキル、ハロアルキル、ニトロ、シア ノマは一〇R~であり、R~は水素原子、置換されてもよいアルキル、置換されてもよい 換されてもよいフェニル又は R^8 で置換されてもよいピリジルであり、Mは $O\sim 3$ であり 、Nは0又は1であり、 Γ は0~4であり、 Γ の又は Γ が2以上である場合、 Γ のは Γ の あっても異なっていてもよい、但し、AFがAF1であり、A及びBが各々=C(R^) - 又は - C (R ⁶) ₂ - であり、 D が 硫 黄 原 子 で あり、 X が 酸 素 原 子 で あり、 区 が 水 素 原 子であり、且つnが0である場合を除く〕で表されるピリジン系化合物又はその塩、それ らの製造方法、 それらを含有する除草剤及びそれらの有効成分量を施用して有害雑草を防

10

20

30

40

30

40

50

除する方法等に関する。

[0009]

区、 R^1 、 R^5 、 R^7 及び R^9 に含まれる E 換されてもよいアルキル、 置換されてもよいアルキニルの さの E 換基としては、 例えばハロゲン、 C_{1-6} アルコキシ、 C_{1-6} アルキルチオ、 置換されてもよいアミノ、 E トリメチルシリル、 E で E が E が E で E が E が E で E が E で E が E が E で E が E が E が E が E が E が E で E が E が E が E が E が E で E が E E が E が E が E が E が E が E が E が E が E が E E が E が E が E が E が E が E が E が E が E が E

[0010]

区、 R^1 、 R^5 、 R^7 及び R^9 に含まれる置換されてもよいシクロアルキルのその置換基としては、例えばハロゲン、 C_{1-6} アルキル、 C_{1-6} ハロアルキル、 C_{1-6} アルコキシ、 C_{1-6} アルキルチオ、 R^8 で置換されてもよいフェニルなどが挙げられる(R^8 は前述の通り)。これら置換基の置換数は、1 又は 2 以上であってもよく、 2 以上の場合、 それらの置換基は同一でも相異なっていてもよい。

[0011]

区、 R^7 及び R^9 に含まれる R^8 で置換されてもよいフェニル、 R^8 で置換されてもよい ナフチル又は R^8 で置換されてもよい複素環基の R^8 の置換数は、 1 又は 2 以上であって もよく、 2 以上の場合、それらの置換基は同一でも相異なっていてもよい。

[0012]

区、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 及び R^9 に含まれるアルキル又はアルキル部分としては、各々炭素数 $1\sim 6$ の直鎖又は分枝状のもの、例えばメチル、エチル、プロピル、イソプロピル、ブチル、ターシャリーブチル、ペンチル、ヘキシルなどが挙げられる。

[0013]

区、 R^{-1} 、 R^{-5} 、 R^{-7} 及び R^{-9} に含まれるアルケニルヌはアルケニル部分としては、各々炭素数 $2 \sim 6$ の直鎖又は分枝状のもの、例えばピニル、プロペニル、イソプロペニル、ブラニル、ペンテニル、ヘキセニルなどが挙げられる。

[0014]

区、 R ¹ 、 R ⁵ 、 R ⁷ 及び R ⁹ に含まれるアルキニルヌはアルキニル部分としては、各々 炭素数 2 ~ 6 の直鎖又は分枝状のもの、例えばエチニル、プロピニル、プチニル、イソブ チニル、ペンチニル、ヘキシニルなどが挙げられる。

[0015]

区、 R^5 、 R^7 及び R^9 に含まれるシクロアルキル又はシクロアルキル部分としては、炭素数 $8\sim 6$ のもの、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシルなどが挙げられる。

[0016]

区、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 及び R^9 に含まれるハロゲンとしては、弗素、塩素、臭素又は沃素の各原子が挙げられる。置換基としてのハロゲンの数は1又は2以上であってよく、2以上の場合、各ハロゲンは同一でも相異なってもよい。また、ハロゲンの置換位置はいずれの位置でもよい。

[0017]

R⁷ に含まれる複素環基としては、例えば酸素、硫黄及び窒素の各原子からなる群より選ばれた少なくとも1種の原子を1~3含有する5又は6員複素環基が学げられる。複素環部分は、飽和又は不飽和のどちらでもよい。複素環基の具体例としては、例えばチエニル、フリル、ピロリル、チアゾリル、イソチアゾリル、オキサゾリル、イソキサゾリル、イ

20

30

ミダゾリル、ピラゾリル、チアジアゾリル、トリアゾリル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアジニル、ジチアゾリル、オキサジニル、チアジニル、モルホリニル、テトラヒドロフラニル、ピロリジニル、ジヒドロチアゾリル、ジヒドロオキサゾリル、ジヒドロイソオキサゾリル、ジヒドロイミダゾリル、ジヒドロピラゾリル、テトラヒドロピリジニル、ピペラジニルなどが挙げられる。

[0018]

 R^7 に含まれる-N (R^9) $_2$ の 2 つの R^9 が - 緒になって環を形成する場合、例えばアゼチジニル、ピロリジニル、イミダゾリジニル、ピラゾリジニル、ピペリジニル、ピペラジニル、モルホリニル、チオモルホリニルなどを形成する。

[0019]

前記式(I)で表されるピリジン系化合物は、塩を形成することが可能である。その塩としては、農業上許容されるものであればあらゆるものが含まれるが、例えばナトリウム塩、カリウム塩のようなアルカリ金属塩;マグネシウム塩、カルシウム塩のようなアルカリ土類金属塩;塩酸塩、過塩素酸塩、硫酸塩、硝酸塩のような無機酸塩;酢酸塩、メタンスルホン酸塩のような有機酸塩などが挙げられる。

[0020]

前記式(Ⅰ)で表されるピリジン系化合物には、下記式(Ⅰ);

[0021]

【化22】

[0022]

中の不育炭素(*)及び/又は式(I)中の各置換基の種類に応じて存在する不育炭素によって光学異性体が存在し得、また、式(I)中の各置換基の種類に応じて存在する炭炭素一炭素二重結合などによって幾何異性体が存在し得るが、本発明には各異性体及び異性体混合物の双方が含まれる。例えば、区、R¹、R⁵及び/又はR⁹が正式キシで置換されたシャルである場合、区、R¹、R⁷及び/又はR⁹がエボキシで置換されたルーにおいてR⁶が各々異なる置換基である場合などにおいて光学異性体が存在し、またる式においてR⁶が各々異なる置換基である場合などにおいて光学異性体が存在し、式の合などにおいて幾何異性体が存在する。尚、特に記載しない限り、後述する化合物は各異性体を分離する為の特別な操作を施していない化合物である。

[0023]

前記式(I)で表されるピリジン系化合物又はその塩(以下本発明化合物と略す)は、以 40下の反応 [A] ~ [F] 或りは通常の塩の製造方法に従って製造することができる。

[0024]

式(I)で表される化合物は、下記の反応〔A〕に従って、式(II)と式(III)とを反応させることにより製造することができる。

【化23】

[A] Hal
$$\mathbb{R}^1$$
 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^3 (II)

[0025]

反応〔A〕中、Ar、X、Z、R 1 、R 2 、R 3 及びR 4 は前述の通りであり、H α | は ハロゲンである。

[0026]

反応〔A〕は、通常、塩基及び溶媒の存在下で行う。

[0027]

反応〔A〕で使用する塩基は、例えば水素化ナトリウム、水素化カリウムのようなアルカリ金属水素化物:ノルマルブチルリチウム、ターシャリープチルリチウムのようなアルキルリチウム:トリエチルアミン、ピリジン、1、8ージアザビシクロ〔5、4、0〕-7-ウンデセンのような3級アミン:水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物:炭酸ナトリウム、炭酸カリウムのようなアルカリ金属炭酸塩:ナトリウムメトキシド、カリウムターシャリープトキシドのようなアルコール塩などから、1種又は2種以上を適宜選択する。

[0028]

反応〔A〕で使用する溶媒は、反応に不活性な溶媒であればいずれのものでもよく、例えばN、Nージメチルホルムアミド、ジメチルスルホキシドのような極性非プロトン性溶媒:ジエチルエーテル、テトラヒドロフランのようなエーテル類などから、1種又は2種以上を適宜選択する。

[0029]

反応〔A〕は、必要に応じ不活性ガスの存在下で行う。

[0030]

反応〔A〕で使用する不活性ガスは、例えば窒素、ヘリウム、アルゴンなどから適宜選択する。

[0081]

反応〔A〕の反応温度及び反応時間は、化合物の種類、反応条件の相違などによって異なり、一概に規定できないが、反応温度は通常-80~+120 ℃、望ましくは0~10 ℃であり、反応時間は通常1~24時間、望ましくは2~6時間である。

但し、最適な反応温度及び反応時間は、各種反応条件を勘案し、適宜予備試験を行うなど して個別に決定することができる。

[0032]

前述の式(I)で表される化合物のうち式(I-1)で表される化合物は、下記反応〔B〕に従って(1)式(IV)で表される化合物とリチオ化剤とを反応させて式(V)を得る第1工程及び(2)式(V)で表される化合物と式(VI)で表される化合物とを反応させて式(I-1)で表される化合物を得る第2工程により、製造することができる。

[0033]

【化24】

10

20

30

20

30

40

$$G$$
 R^{2}
 I
 R^{2}
 I
 R^{2}
 I
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{7}

[0034]

反応〔B〕中、Ar、R 1 、R 2 、R 3 及びR 4 は前述の通りであり、Gは水素原子又はハロゲンである。

[0035]

反応〔B〕の第1工程で用いるリチオ化剤としては、アルキルリチウム、フェニルリチウム、リチウムアミドなどが挙げられる。

[0036]

反応〔B〕の第1工程は、通常、溶媒及び不活性ガスの存在下で行う。

[0037]

反応〔B〕の第1工程で使用する溶媒は、反応に不活性な溶媒であればいずれのものでもよく、例えばジオキサン、テトラヒドロフラン、ジエチルエーテル、ジメトキシエタンのようなエーテル類:ペンタン、ヘキサンのような環状又は非環状脂肪族炭化水素類:ペンゼン、トルエンのような芳香族炭化水素類などから、1種又は2種以上を適宜選択する。

[0038]

反応〔B〕の第1工程で使用する不活性がスは、例えば窒素、ヘリウム、アルゴンなどか ら適宜選択する。

[0039]

反応 [B] の第1工程の反応温度及び反応時間は、化合物の種類、反応条件の相違などによって異なり、一概に規定できないが、反応温度は通常−120~+50 ℃、望ましくは−80~+30 ℃であり、反応時間は通常0.5~24時間、望ましくは1~16時間である。但し、最適な反応温度及び反応時間は、各種反応条件を勘案し、適宜予備試験を行うなどして個別に決定することができる。

[0040]

反応〔B〕の第2工程は、通常第1工程に引き続いて行い、その際第1工程で使用した溶媒又は不活性ガスをそのまま使用することができるが、場合によっては、前記第1工程で挙げた溶媒又は不活性ガスから適宜選択し、追加してもよい。

[0041]

反応〔B〕の第2工程の反応温度及び反応時間は、化合物の種類、反応条件の相違などによって異なり、一概に規定できないが、反応温度は通常-120~+50 ℃、望ましくは-80~+30 ℃であり、反応時間は通常0.5~24時間、望ましくは1~16時間である。但し、最適な反応温度及び反応時間は、各種反応条件を勘案し、適宜予備試験を行うなどして個別に決定することができる。

[0042]

また、前述の式(I-1)で表される化合物は、下記反応〔C〕に従って(1)式(VII)で表される化合物とリチオ化剤とを反応させて式(VIII)で表される化合物を得る第1工程及び(2)式(VIII)で表される化合物と式(IX)で表される化合物とを反応させて式(I-1)を得る第2工程によっても、製造することができる。

【化25】

20

50

[0043]

反応〔C〕中、Ar、R¹、R²、R³、R⁴及ひGは前述の通りである。

[0044]

反応〔C〕の第1工程は前記反応〔B〕の第1工程に準じて、反応〔C〕の第2工程は前記反応〔B〕の第2工程に準じて各々行う。

[0045]

前述の式(I)で表される化合物のうち式(I-2)で表される化合物は、下記反応〔D」に従って、(1)式(II)で表される化合物と式(X)で表される化合物とを反応させて式(XI)で表されるチウロニウム塩を得る第1工程及び(2)式(XI)で表されるチウロニウム塩を加水分解して式(I-2)で表される化合物を得る第2工程により、製造することができる。

【化26】

[D]
Hal—H

Hal—H

HN C NH2

$$R^2$$
 S=C(NH₂)₂ (X)

 R^4 NR³
 R^3 第1工程

 R^4 NR³
 R^4 NR⁴
 $R^$

[0046]

反応〔D〕中、Ar、R¹、R²、R³、R⁴ 及びHalは前述の通りである。

[0047]

反応〔D〕の第1 工程は、通常、溶媒の存在下で行う。

[0048]

反応〔D〕の第1工程で使用する溶媒は、反応に不活性な溶媒であればいずれのものでもよく、例えばペンゼン、トルエン、キシレン、クロロペンゼンのような芳香族炭化水素類

;へキサン、イソパラフィン、シクロヘキサン、塩化メチル、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタンのような脂肪族炭化水素類;ジオキサン、テトラヒドロフラン、ジエチルエーテルのようなエーテル類;酢酸メチル、酢酸エチルのようなエステル類;メタノール、エタノール、プロパノール、ターシャリーブタノールのようなアルコール類;水などから、1種又は2種以上を適宜選択する。

[0049]

反応 [D] の第1工程の反応温度及び反応時間は、化合物の種類、反応条件の相違などによって異なり、一概に規定できないが、反応温度は通常 0 ~ 1 2 0 ℃、望ましくは 2 0 ~ 1 0 0 ℃であり、反応時間は通常 0 . 0 5 ~ 2 4 時間、望ましくは 0 . 1 ~ 1 2 時間である。但し、最適な反応温度及び反応時間は、各種反応条件を勘案し、適宜予備試験を行うなどして個別に決定することができる。

[0050]

反応〔D〕の第2エ程は、通常、塩基及び溶媒の存在下で行う。

[0051]

反応〔D〕の第2工程で使用する塩基は、例えば水酸化カリウム、水酸化ナトリウムのような金属水酸化物:炭酸カリウム、炭酸ナトリウムのような炭酸塩などから、1種又は2種以上を適宜選択する。

[0052]

反応〔D〕の第2工程で使用する溶媒は、前記反応〔D〕の第1工程で例示したものから、1種又は2種以上を適宜選択する。

[0053]

反応〔D〕の第2工程は、必要に応じ、相間移動触媒の存在下で行う。

[0054]

反応〔D〕の第2エ程で使用する相間移動触媒は、テトラエチルアンモニウムプロミド、 テトラプチルアンモニウムプロミド、ベンジルトリエチルアンモニウムプロミド、ベンジ ルトリエチルアンモニウムクロリドなどから、1種又は2種以上を適宜選択する。

[0055]

反応〔D〕の第2工程は、第1工程に引き続いて、同一反応器内で塩基及び必要に応じて相間移動触媒を加え、連続的に行うことができ、その際第1工程で使用した溶媒をそのまま使用することができるが、場合によっては、前記第1工程で挙げた溶媒から適宜選択し、追加してもよい。また、反応〔D〕の第2工程で得られる式(I-2)の化合物は、反応系中では塩として存在する場合があるが、その際は通常の中和処理を行うことができる

[0056]

反応〔D〕の第2工程の反応温度及び反応時間は、化合物の種類、反応条件の相違などによって異なり、一概に規定できないが、反応温度は通常 - 5 ~ + 1 8 0 ℃、望ましくは5 ~ 1 8 0 ℃であり、反応時間は通常 0 . 1 ~ 2 4 時間、望ましくは 0 . 5 ~ 1 2 時間である。但し、最適な反応温度及び反応時間は、各種反応条件を勘案し、適宜予備試験を行うなどして個別に決定することができる。

[0057]

前述の式(Ⅰ)で表される化合物のうち式(Ⅰ-4)で表される化合物は、下記反応〔E〕に従って、前述の式(Ⅰ)で表される化合物に含まれる式(Ⅰ-8)で表される化合物と式(XⅠⅠ)で表される化合物とを反応させることにより、製造することができる。

【化27】

10

20

30

30

40

50

[0058]

反応〔E〕中、Ar、x、x0、x1、x2、x2、x3 及びx4 は前述の通りであり、x2 は置換されてもよいアルキル、x0 に x0 に x1 に x2 に x3 及びx4 は前述の通りであり、x3 に x4 に x5 に x5 に x6 に x6 に x7 に x7 に x8 に x9 に x9

反応〔E〕は、通常、塩基及び溶媒の存在下で行う。塩基及び溶媒は、前記反応〔A〕で各々例示したものから、1種又は2種以上を適宜選択する。

[0060]

反応〔E〕は、必要に応じ不活性ガスの存在下で行う。

[0061]

反応〔E〕で使用する不活性ガスは、例えば窒素、ヘリウム、アルゴンなどから適宜選択する。

[0062]

反応〔E〕の反応温度及び反応時間は、化合物の種類、反応条件の相違などによって異なり、一概に規定できないが、反応温度は通常-80~+100 ℃、望ましくは0~50℃であり、反応時間は通常0.1~48時間、望ましくは1~24時間である。但し、最適な反応温度及び反応時間は、各種反応条件を勘案し、適宜予備試験を行うなどして個別に決定することができる。

[0063]

前述の式(I)で表される化合物のうち式(I-5)で表される化合物は、下記反応〔F〕に従って前述の式(I-3)で表される化合物と式(XIII)で表される化合物とを反応させることにより、製造することができる。

【化28】

[F]

Ar
$$R^{1}$$
 R^{2} R^{3} R^{4} R^{3} R^{4} R^{3} R^{4} R^{3} R^{4} R^{3} R^{4} R^{3} R^{4} R^{3}

[0064]

反応〔F〕中、A F 、X 、R 1 、R 2 、R 3 、R 4 及び R 9 は前述の通りであり、T は酸素原子又は硫黄原子である。

[0065]

反応〔F〕は、必要に応じ溶媒及び触媒の存在下で行う。

20

30

40

50

[0066]

反応〔F〕で使用する溶媒は、反応に不活性な溶媒であればいずれのものでもよく、例えばペンゼン、トルエン、キシレン、クロロペンゼンのような芳香族炭化水素類;ヘキサン、イソパラフィン、シクロヘキサン、塩化メチル、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタンのような脂肪族炭化水素類;ジオキサン、テトラヒドロフラン、ジエチルエーテルのようなエーテル類;酢酸メチル、酢酸エチルのようなエステル類などから、1種又は2種以上を適宜選択する。

[0067]

反応〔F〕で使用する触媒は、例えばピリジン、4 - ジメチルアミノピリジンのようなピリジン類;トリメチルアミン、トリエチルアミンのようなアミン類;酢酸、トリフルオロ酢酸のような有機酸類;ジブチルスズラウレートのようなスズ化合物類;塩化銅(I)のような遷移金属塩類などがら、1種又は2種以上を適宜選択する。

[0068]

反応〔F〕の反応温度及び反応時間は、化合物の種類、反応条件の相違などによって異なり、一概に規定できないが、反応温度は通常-20~+150 ℃、望ましくは-5~+70 ℃であり、反応時間は通常0.5~72時間、望ましくは1~24時間である。但し、最適な反応温度及び反応時間は、各種反応条件を勘案し、適宜予備試験を行うなどして個別に決定することができる。

[0069]

前記反応〔A〕又は〔D〕で使用される式(II)で表される化合物は、新規化合物を含む。この化合物は、以下の反応〔G〕に従って、前述の式(I-1)で表される化合物と ハロゲン化剤とを反応させることにより、製造することができる。

[0070]

【化29】

$$[G]$$
 Ar \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3

[0071]

反応〔G〕中、Aケ、R¹、R²、R³、R⁴及びHalは前述の通りである。

[0072]

反応〔G〕で使用するハロゲン化剤としては、例えば塩化チオニル、オキシ塩化リン、 5 塩化リン、臭化チオニル、オキシ臭化リン、 5 臭化リンなどが挙げられる。

[0073]

反応〔G〕は、必要に応じ溶媒の存在下で行うが、一般には、溶媒を使用することが望ましい。

[0074]

反応〔G〕で使用する溶媒は、反応に不活性な溶媒であればいずれのものでもよく、例えばペンゼン、トルエンのような芳香族炭化水素類:塩化メチレン、クロロホルム、1、2 - ジクロロエタンのようなハロゲン化アルキル類などから、1種又は2種以上を適宜選択する。

[0075]

反応〔G〕の反応温度及び反応時間は、化合物の種類、反応条件の相違などによって異なり、一概に規定できないが、反応温度は通常一40~+150 ℃、望ましくは0~90 ℃であり、反応時間は通常1~24時間、望ましくは2~6時間である。

但し、最適な反応温度及び反応時間は、各種反応条件を勘案し、適宜予備試験を行うなど

20

40

50

して個別に決定することができる。

[0076]

本発明化合物には、前述した通り光学異性体が含まれるが、任意の異性体を製造するには、例えば以下のような方法に従って製造することができる。まず、下記反応〔H〕のように、式(I - 1)で表される化合物を常法に従い酸化して、式(X I V)で表される化合物を製造する。当該酸化の方法としては、例えば二酸化マンガン、クロム酸のような金属酸化剤を用いる方法、スワン酸化法などが挙げられる。

[0077]

【化30】

[0078]

次いで下記反応〔Ⅰ〕のように、式(XIV)で表される化合物を常法に従い不斉還元して、式(I-1a)又は(I-1b)で表される式(I)の光学異性体化合物を製造することができる。当該不斉還元の方法としては、例えばAn9ew.Chem.Int.Ed.1998年、37巻、1986~2012頁や、第4版実験化学講座26、有機合成VIII、23~68頁に記載された方法などが学げられる。

[0079]

【化31】

$$R^4$$
 R^3 R^3 R^4 R^3 R^4 R^4 R^3 R^4 R^4 R^3 R^4 R^4 R^3 R^3 R^3 R^4 R^3 R^4 R^4 R^3 R^3 R^3 R^3 R^4 R^4 R^3 R^3 R^3 R^4 R^4 R^4 R^3 R^3 R^4 R^4

[080]

その後、式(I-1a)又は(I-1b)で表される化合物を用い、前記反応〔E〕又は 〔F〕に準じて任意の式(I)の光学異性体化合物を製造することができる。

[0081]

本発明化合物は、除草剤の有効成分として使用した場合に優れた除草効果を示す。その適用範囲は、水田、畑地、果樹園、桑園などの農耕地、山林、農道、グランド、工場敷地などの非農耕地と多岐にわたり、適用方法も土壌処理、茎葉処理、湛水処理等を適宜選択できる。

[0082]

本発明化合物は、例えばイヌビエ、メヒシバ、エノコログサ、アキノエノコログサ、オヒシバ、カラスムギ、セイバンモロコシ、シバムギ、ビロードキビ、パラグラス、アゼガヤ、イトアゼガヤ、スズメノカタビラ、スズメノテッポウなどのイネ科雑草、コゴメガヤツリ、ハマスグ、キハマスグ、ホタルイ、ミズガヤツリ、タマガヤツリ、マツバイ、クログワイなどのカヤツリグサ科雑草、ウリカワ、オモダカ、ヘラオモダカなどのオモダカ科雑草、コナギ、ミズアオイなどのミズアオイ科雑草、アゼナ、アブノメなどのゴマノハグサ科雑草、キカシグサ、ヒメミソハギなどのミソハギ科雑草の他、イチビ、マルバアサガオ、シロザ、アメリカキンゴジカ、スペリヒュ、アオビュ、アオゲイトウ、エビスグサ、イ

20

30

40

50

スホウズキ、サナエタデ、ハコベ、オナモミ、タネッケバナ、ホトケノザ、ブタクサ、ヤエムグラ、セイョウヒルガオ、チョウセンアサガオ、エゾノキツネアザミ、エノキグサなどの広葉雑草などの有害雑草を防除することができる為、有用作物、例えばトウモロコシ、ダイズ、ワタ、コムギ、イネ、オオムギ、エンバク、ソルガム、アブラナ、ヒマワリ、テンサイ、サトウキビ、芝、ピーナッツ、タバコ、コーヒーなどの栽培において選択的に有害雑草を防除する場合において有効に使用される。特に本発明化合物は、トウモロコシ、ダイズ、ワタ、コムギ、イネ、アブラナ、ヒマワリ、テンサイ、サトウキビ、芝、ピーナッツ、アマ、タバコ、コーヒーなどの栽培、その中でもトウモロコシ、ダイズ、コムギ、イネなどの栽培において選択的に有害雑草を防除する場合において有効に使用される。

[0083]

本発明化合物は通常各種農業上の補助剤と混合して粉剤、粒剤、 粒水和剤、水和剤、水 性懸濁剤、油性懸濁剤、水溶剤、乳剤、錠剤、カプセル剤などの形態に製剤し、除草剤と して使用されるが、本発明の目的に適合するかぎり、通常の当該分野で用いられているあ ちゅる製剤形態にすることができる。製剤に使用する補助剤としては、珪藻土、消石灰、 炭酸カルシウム、タルク、ホワイトカーボン、カオリン、ベントナイト、カオリナイト及 びセリサイトの混合物、クレー、炭酸ナトリウム、重曹、 硝、ゼオライト、澱粉などの 固型担体;水、トルエン、キシレン、ソルベントナフサ、ジオキサン、アセトン、イソホ ロン、メチルイソプチルケトン、クロロペンゼン、シクロヘキサン、ジメチルスルホキシ ド 、 ジ メ チ ル ホ ル ム ア ミ ド 、 N - メ チ ル - 2 - ピ ロ リ ド ン 、 ア ル コ ー ル な ピ の 溶 剤 : 脂 肪 酸 塩 、 安 息 香 酸 塩 、 ア ル キ ル ス ル ホ コ 八 ク 酸 塩 、 ジ ア ル キ ル ス ル ホ コ 八 ク 酸 塩 、 ポ リ カ ル ボン酸 塩、アルキル 硫 酸 エステル 塩、アルキル 硫 酸 塩、アルキルアリール 硫 酸 塩、アルキ ル ジ グ リ コ ー ル エ ー テ ル 硫 酸 塩 、 ア ル コ ー ル 硫 酸 エ ス テ ル 塩 、 ア ル キ ル ス ル ホ ン 酸 塩 、 ア ルキルアリールスルホン酸塩、アリールスルホン酸塩、リグニンスルホン酸塩、アルキル ジ フェ ニ ル エ ー テ ル ジ ス ル ホ ン 酸 塩 、 ポ リ ス チ レ ン ス ル ホ ン 酸 塩 、 ア ル キ ル リ ン 酸 エ ス テ ル 塩 、 ア ル キ ル ア リ ー ル リ ン 酸 塩 、 ス チ リ ル ア リ ー ル リ ン 酸 塩 、 ポ リ オ キ シ エ チ レ ン ア ル キルエーテル硫酸エステル塩、ポリオキシエチレンアルキルアリールエーテル硫酸塩、ポ リ オ キ シ エ チ レ ン ア ル キ ル ア リ ー ル エ ー テ ル 硫 酸 エ ス テ ル 塩 、 ポ リ オ キ シ エ チ レ ン ア ル キ ル エ ー テ ル リ ン 酸 塩 、 ポ リ オ キ シ エ チ レ ン ア ル キ ル ア リ ー ル リ ン 酸 エ ス テ ル 塩 、 ナ フ タ レ ン ス ル ホ ン 酸 ホ ル マ リ ン 縮 合 物 の 塩 の よ う な 陰 イ オ ン 系 の 界 面 活 性 剤 や 展 着 剤 ; ソ ル ピ タ ン 脂 肪 酸 エ ス テ ル 、 グ' リ セ リ ン 脂 肪 酸 エ ス テ ル 、 脂 肪 酸 ポ リ グ' リ セ ラ イ ド 、 脂 肪 酸 ア ル コ ールポリグリコールエーテル、アセチレングリコール、アセチレンアルコール、オキシア ルキレンプロックポリマー、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン ア ル キ ル ア リ ー ル エ ー テ ル 、 ポ リ オ キ シ エ チ レ ン ス チ リ ル ア リ ー ル エ ー テ ル 、 ポ リ オ キ シ エ チ レ ン グ リ コ ー ル ア ル キ ル エ ー テ ル 、 ポ リ オ キ シ エ チ レ ン 脂 肪 酸 エ ス テ ル 、 ポ リ オ キ シ エ チ レ ン ソ ル ビ タ ン 脂 肪 酸 エ ス テ ル 、 ポ リ オ キ シ エ チ レ ン グ リ セ リ ン 脂 肪 酸 エ ス テ ル 、 ポ リ オ キ シ エ チ レ ン 硬 化 ヒ マ シ 油 、 ポ リ オ キ シ プ ロ ピ レ ン 脂 肪 酸 エ ス テ ル の よ う な 非 イ オ ン 系 の 界 面 活 性 剤 や 展 着 剤 : オ リ ー プ 油 、 カ ポ ッ ク 油 、 ひ ま し 油 、 シ ュ 口 油 、 椿 油 、 ヤ シ 油 、ごま油、トウモロコシ油、米ぬか油、落花生油、綿実油、大豆油、菜種油、亞麻仁油、 き り 油 、 液 状 パ ラ フ ィ ン な ど の 植 物 油 や 鉱 物 油 な ど が 学 げ ち れ る 。 こ れ ら 補 助 剤 は 本 発 明 の目的から逸脱しないかぎり、当該分野で知られたものの中から選んで用いることができ る。また、増量剤、増粘剤、沈降防止剤、凍結防止剤、分散安定剤、薬害軽減剤、防 など通常使用される各種補助剤も使用することができる。本発明化合物と各種補助剤との 配合割合は0.1:99.9~95:5、望ましくは0.2:99.8~85:15であ **3**.

[0084]

本発明化合物を含有する除草剤の施用量は、気象条件、土壌条件、製剤形態、対象雑草の種類、施用時期などの相違により一概に規定できないが、一般に1へクタール当り本発明化合物が0.5~5000 分、望ましくは1~1000 分、更に望ましくは10~500 分となるように施用する。本発明には、このような除草剤の施用による有害雑草の

20

30

40

50

防除方法も含まれる。

[0085]

また、本発明化合物を含有する除草剤は、他の農薬、肥料、薬害軽減剤などと混用或は併用することができ、この場合に一層優れた効果、作用性を示すことがある。他の農薬としては、除草剤、殺菌剤、抗生物質、植物ホルモン、殺虫剤などが学げられる。特に、本発明化合物と他の除草剤の有効成分化合物の1種又は2種以上とを混用或は併用した混合除草性組成物は、適用草種の範囲、薬剤処理の時期、除草活性等を好ましい方向へ改良することが可能である。尚、本発明化合物と他の除草剤の有効成分化合物は各々別々に製剤したとかを散布時に混合して使用しても、両者を一緒に製剤して使用してもよい。本発明には、前記した混合除草性組成物も含まれる。

[0086]

[0087]

他の除草剤の有効成分化合物としては、下記するもの(一般名:一部ISO申請中を含む)が例示できるが、特に記載がない場合であってもこれら化合物に塩、アルキルエステル等が存在する場合は、当然それらも含まれる。

[0088]

(1) 2. 4 - D + D + C + D + P + C + D + P + D + P + D + D + P + D + P + D + P + D + P + D + P + D + P + D + P + D + P + D + P + D + P + D + P + D +

[0089]

(2)クロロトルロン(cklorotoluron)、ジウロン(diuron)、フ ルオメツロン(fluometuron)、リニュロン(linuron)、イソプロチ ュロン(i SoProturon)、メトベンズロン(metobenzuron)、テ プチウロン(tebuthiuron)のような尿素系、シャジン(Simazine) 、アトラデン(αせケαzine)、アトラトン(αせケαtone)、シメトリン(S imetryn)、プロメトリン(Prometryn)、デメタメトリン(dimet んametryn)、ヘキサジノン(hexazinone)、メトリブジン(metr ibuzin)、テルプチラジン(terbuthYlazine)、シアナジン(cY anazine), zz+yz (ametryn), zz+yz (cybutryne) 、トリアデフラム(triaziflam)、プロパデン(ProPazine)のよう なトリアデン系、ブロマシル(bromacil)、レナシル(lenacil)、ター バシル(tehbacil)、のようなウラシル系、プロパニル(PhoPanil)、 シプロミッド(cyPhomid)のようなアニリド系、スエップ(SweP)、デスメ ディファム (desmediPham)、フェンメディファム (PhenmediPha m)のようなカーバメート系、プロモキシニル(bromo×ynil)、プロモキシニ ル・オクタノエート(bromo×ynil-octanoate)、アイオキシニル(ioxynil)のようなヒドロキシベングニトリル系、その他ピリデート(Pyrid ate)、ベンタゲン(bentazon)、アミカルバゲン(amicarbazon

20

30

40

50

e) などのように植物の光合成を阻害することで除草効力を示すとされているもの。

[0090]

(3) せれ自身が植物体中でフリーラジカルとなり、活性酸素を生成させて速効的な除草効力を示すとされているパラコート(P & r & q u & t)、ジクワット(d i q u & t)のような4級アンモニウム塩系。

[0091]

(4) \exists L L メfen)、ピフェノックス(bifeno×)、アシフルオルフェンナトリウム塩(a cifluorfen-sodium), $\pi x y y z z z$ (fomesafen), z + zフルオルフェン(OXyfluOrfen)、ラクトフェン(lactofen)、エト キシフェンエチル(ethoxyfen-ethyl)のようなジフェニルエーテル系、 クロルフタリム(chlokPhthalim)、フルミオキサジン(flumio×a ヌin)、フルミクロラックペンチル(flumiclohac-Pentyl)、フル チアセットメチル(fIuthiacet-methyl)のような環状イミド系、その 他オキサジアルギル(OXadiar8Yl)、オキサジアゾン(OXadiazOn) 、スルフェントラゲン(Sulfentrazone)、カーフェントラゲンエチル(c 、ピラフルフェンエチル(Pyhaflufen-ethyl)、ペンズフェンジゾン(b e n z f e n d i z o n e) 、ブタフェナシル (b u t a f e n a c i l) 、メトペン ズロン(metobenzuron)、シニドンエチル(cinidon-ethyl) フルアゾール(Profluazol)、ピラクロニル(Pyracklonil)など のように植物のクロロフィル生合成を阻害し、光増感過酸化物質を植物体中に異常蓄積さ せることで除草効力を示すとされているもの。

[0092]

(5) ノルフルラゾン(norflurazon)、メトフルラゾン(metflurazon)のようなピリダジノン系、ピラグレート(Pyrazolate)、ピラグキシフェン(Pyrazoxyfen)、ペングフェナップ(benzofenaP)のようなピラグール系、その他アミトロール(amitrol)、フルリドン(flurtanone)、フルルタモン(flurtanone)、ジフルフェニカン(diflurtanone)、メトキシフェノン(methoxyPhenone)、クロマグン(clone)、スルコトリオン(sulcone)、メソトリオン(mesolone)、スルコトリオン(sulcone)、メソトリオン(mesolone)、イソキサフルトール(isoxaflutole)、ジフェングコート(diflone)、イソキサクロロトール(isoxaflutole)、ブフェングコート(aiflone)、イソキサクロン(benzolone)、ピコリノフェン(picolone)、ペングピシクロン(benzolone)、ピカルブタミド(beflusutanone)、ピカルでカロデノイドなどの植物の色素生合成を阻害し、白化作用を特徴とする除草効力を示すとされているもの。

[0093]

(6) ジクロホップメチル(diclofoP-methyl)、フラムプロップエムメチル(flamProP-M-methyl)、ピリフェノップナトリウム塩(PソriPhenoP-Sodium)、フルアジホップブチル(fluazifoP-butyl)、ハロキシホップメチル(fluazifoP-butyl)、ハロキシホップメチル(fluazifoP-butyl)、シハロホッププチル(fluazifoP-butyl)、カロオップブチル(fluazifoP-butyl)、カロオップブチル(fluazifoP-butyl)、カロオップブチル(fluazifoP-butyl)、カロキシブロピオン酸系、アロキシジムナトリウム塩(flay はflay はflay

20

30

40

50

caloxydim)、クレフォキシジム(clefoxydim)のようなシクロヘキサンジオン系などのようにイネ科植物に特異的に除草効力が強く認められるもの。

[0094]

(7)クロリムロンエチル(cklorimuron-ethyl)、スルホメツロンメ チル(Sulfometuron-methyl)、プリミスルフロンメチル(Prim -methyl)、クロルスルフロン(chlorsulfuron)、メトスルフロン XFN (metsulfuron-meth Y), Y / Z N D D Y (cinosulf アデムスルフロン(ゐZimSulfuhon)、フラザスルフロン(flゐzaSul furon)、リムスルフロン(rimsulfuron)、ニコスルフロン(nico Sulfuhon)、イマグスルフロン(imazoSulfuhon)、シクロスルフ ァムロン(cyclosulfamuron)、プロスルフロン(Prosulfuro n)、フルピルスルフロン(fIuPykSulfukon)、トリスルフロンメチル(t か i Sulfuhon-methyl)、ハロスルフロンメチル(haloSulfu ron-methyl)、チフェンスルフロンメチル(thifensulfuronmethyl)、エトキシスルフロン(ethoxysulfuron)、オキサスルフ n)、フルピルスルフロン(fIuPyhSulfuhon)、イオドスルフロン(io dosulfuron), ZhzzzhzDy (sulfosulfuron), FyF スルフロン(せかしせのSulfuかOn)、フォーラムスルフロン(fOかamSul furon)、トリフルオキシスルフロン(trifloxySulfuron)のよう なスルホニルウレア系、フルメツラム(fIumetSulam)、メトスラム(met osulam)、シックロスラム(diclosulam)、クロランスラムメチル(cl oransulam-methyl)、フロラスラム(florasulam)、メトス トリアゾロピリミジンスルホンアミド系、イマザピル(imazaPyr)、イマゼタピ ル(imazethaPソケ)、イマザキン(imaza9uin)、イマザモックス(imazamox) 、イマザメス(imazameth)、イマザメタベンズ(imazamethabenz)、イマザピック(imazaPic)のようなイミダゾリノン系 、ピリチオバックナトリウム塩(Pソトithiobac-Sodium)、ピスピリバ ックナトリウム塩(biSPYribac-Sodium)、ピリミノバックメチル(P メトiminobac-methy1)、ピリベングキシム(Pメトibenzo×im)、ピリフタリド(Pメトiftalid)のようなピリミジニルサリチル酸系、フルカ ーバゾン(fIucarbazone)、プロカーバゾンソディウム(Procarba zone-Sodium) のようなスルホニルアミノカルボニルトリアグリノン系、その 他グリホサートアンモニウム塩(31YPhoSate-ammonium)、グリホサ ートイソプロピルアミン塩(31YPhoSate-iSoProPylamine)、 グルホシネートアンモニウム塩(3lufOSinate-ammonium)、ピアラ ホス(b ialaPhos)などのように植物のアミノ酸生合成を阻害することで除草効 力を示すとされているもの。

[0095]

(8) トリフルラリン(trifluralin)、オリザリン(ロケンヌのlin)、ニトラリン(nitralin)、ペンディメタリン(Pendimethalin)、エタルフルラリン(ethalfluralin)のようなジニトロアニリン系、アミプロホスメチル(amiProfosーmethyl)、ブタミホス(butamifos)、アニロホス(anilofos)、ピペロホス(PiPeroPhos)のような有機リン系、クロルプロファム(chlorProPham)、パーパン(barban)のようなフェニルカーパメート系、ダイムロン(daimuron)、クミルロン(cumyluron)、プロモブチド(bromobutide)のようなクミルアミン系、

20

30

40

50

その他アシュラム(のSulのm)、ジチオピル(むしもん(OPYF)、チアゾピル(せんしのEOPYF)などのように植物の細胞有糸分裂を阻害することで除草効力を示す とされているもの。

[0096]

(9)EPTC、ブチレート(butylate)、モリネート(molinate)、)、エスプロカルブ(esprocarb)、チオペンカルブ(thiobencarb)、ピリブチカルブ(Pyributicarb)、トリアレート(triallate)のようなチオカーパメート系、アラクロール(αΙαικΙοκ)、ブタクロール(δ utachlor)、プレチラクロール(Pretilachlor)、メトラクロール (metolachlor)、S-メトラクロール(S-metolachlor)、テ ニルクロール(せんenylcklor)、ペトキサマイド(Pethoxamid)、 、プロパクロール(PPOPAchlOP)のようなクロロアセトアミド系、その他エト ベンザニド(etobenzanid)、メフェナセット(mefenacet)、フル フェナセット(fIufenacet)、トリディファン(tridiPhane)、カ フェンストロール(cafensthole)、フェントラザミド(fenthazam i d e)、オキサジクロメフォン(OXaziclomefone)、インダノファン(indanofan)などのように植物のタンパク質生合成あるいは脂質生合成を阻害す ることで除草効力を示すとされているもの。

[0097]

(10) <u>Xanthomonas</u> <u>camPestris</u>、<u>EPicoccosurus</u> <u>nematosurus</u>、<u>Exserohilum</u> <u>monoseras</u>、<u>Drechsrela</u> <u>monoceras</u>などのように植物に寄生することで除草効力を示すとされているもの。

[0098]

[0099]

また本発明化合物は後記試験例に見られるとおり、トウモロコシ、ダイズ、コムギ、イネなどの作物に対し安全性を有し、且つ、雑草を良好に防除できる選択性を示すものを含むが、本発明化合物を前記作物栽培において使用する際、前記他の除草剤の有効成分化合物中、例えば次のごとき化合物の1種または2種以上と混用或は併用すれば相乗効果が得られることがある。

[0100]

イネの栽培: 2 、 4 - D 、 M C P A 、 M C P B 、 トリクロピル、ナプロアニリド、ジクロスニル、キンクロラック、シメトリン、プロメトリン、ジメタメトリン、プロパニルスエップ、ペンタゾン、ニトロフェン、クロメトキシフェン、ピフェントラゾン、カーフェン、クロメトキサジアゾン、スルフェントラゾン、カーフェントラゾンエチル、ペントキサゾン、プラゾレート、ピラグエチル、ペントキサゾン、フェノキサプロップエチル、ペンフェン、フロンメチル、シノスルフロン、ピラグスルフロンエチル、アジムスフロン、イリスルフロン、カクロスルファムロン、エトキシスルフロン、アニロホス、ピペロト、ファーロン、クミルロン、プロモブチド、ジチオピル、モリネート、ジメピペートルスプロカルブ、チオペンカルブ、ピリブチカルブ、テニルクロール、プレテランスエーファクロール、エトペンザニド、メフェナセット、フルフェナセット、カフェンクロン、ファントラザミド、オキサジクロメフォキシジム、ピラクロニル、ピリフタリド

[0101]

ゲイズの栽培; 2. 4 - D、リニュロン、メトリブジン、シアナジン、ベンタゾン、パラコート、アシフルオルフェンナトリウム塩、ホメサフェン、ラクトフェン、エトキシフェ

30

40

50

ンエチル、フルミクロラックペンチル、フルミオキサジン、フルチアセットメチル、スルフェントラグン、ノルフルラグン、クロマグン、フルアジホップブチル、キザロホップエチル、フェノキサプロップエチル、ハロキシホップメチル、クレソジム、セトキシジム、プトロキシジム、テプラロキシジム、クロリムロンエチル、チフェンスルフロンメチル、オキサスルフロン、フルメツラム、クロランスラムメチル、ジクロスラム、イマザピル、イマゼタピル、イマザキン、イマザモックス、イマザピック、トリフルラリン、ペンディメタリン、エタルフルラリン、アラクロール、ペトキサマイド、メトラクロール、S-メトラクロール、アセトクロール、ジメテナミド、フルフェナセット

【 0 1 0 2 】
トウモロコシの栽培: 2 . 4 - D、MCPA、ジカンバ、クロピラリド、ペナ外リン、ダイフルフェングピル、ジウロン、リニュロン、メトベンズロン、シアジン、アトラジン、アトラテン、メトリブジン、テルプチラジン、シアナジン、アメトリン、シプロミッドで、ファート、ピリデート、ペンタグン、バート、オキシフルオルフェン、フルミクロラックペンチル、フルチアセットメチルンにアリン、スルコトリオン、メソトリオン、イソキサフルトール、カーフェントラツン、ドン、スルコトリオン、メソトリオン、インキサフルトール、カーフェントラルン、バフロンメチル、リムスルフロン、ニコスルフロン、ガースルフロン、カーフン、イヤゼートイソプロピルアミン塩、グルホシラム、イマゼートイソプロピルアミンは、アフル、フリホナート・ファート、アラロール、アフロール、アフロール、アフロール、アフロール、アフロン、ストマンズロン、メトスルファン、オキサスルフロン、テプラロキシジム

[0103]

コムギの栽培:MCPB、ジクロペニル、キンメラック、クロロトルロン、リニュロン、イソプロチュロン、プロメトリン、プロモキシニル、プロモキシニル・オクタノエート、ピリデート、ピフェノックス、カーフェントラゲンエチル、チジアジミン、ピラフルフェンエチル、フルルタモン、ジフルフェニカン、スルコトリオン、ジクロホップメチル、フラムプロップエムエチル、トラルコキジム、クロルスルフロン、メトスルフロンメチル、プロスルフロン、ハロスルフロンメチル、フルメツラム、メトスラム、ペンディメタリン、バーバン、イマザメタベンズ、シニドンエチル、エトキシフェンエチル、フロラスラム、フルアゾレート、フルポキサム、イオドスルフロン、メトスルファム、ピリペンゾキシム、スルフォスルフロン、トラルコキシジム、フルカルバゾンソディウム、ピコリノフェン、シクロスルファムロン、エトキシスルフロン、イマザモックス

[0104]

【実施例】

次に本発明の実施例を記載するが、本発明はこれらに限定されるものではない。まず本発明化合物の合成例を記載する。

[0105]

合成例 1 : 1 - (ナフタレン-1-イル)-1-(4-トリフルオロメチルピリデン-8-イル)メタノール(後記化合物No.6)の合成

(1) ジイソプロピルアミン18.2 多と、テトラヒドロフラン240 mlとの混合溶液を一20 ℃に冷却し、窒素雰囲気下でノルマルプチルリチウムのヘキサン溶液80 ml(濃度1.59 mol/l)を徐々に滴下した後、同温度で30分間反応させた。この溶液を一50 ℃に冷却し、2-クロロー4-トリフルオロメチルピリジン22.0 多と、テトラヒドロフラン80 mlとの混合溶液を、窒素雰囲気下で滴下した後、同温度で1時間反応させた。得られた溶液を一78 ℃まで冷却し、1-ナフタレンカルバルデヒド18.8 多と、テトラヒドロフラン80 mlとの混合溶液を徐々に適力した後、14時間反応させ、液温を5 ℃付近まで戻した。反応終了後、減圧下溶媒を留去し、酢酸エチル200 mlおよび5%塩化アンモニウム水溶液100 mlを室温で加え、 した後、分液した。有機層を水、次いで飽和食塩水で洗浄し、無水硫酸ナトリ

20

30

40

50

ウムを加えて乾燥した後、溶媒を減圧下留去し、粗製の1-(ナフタレン-1-イル)-1-(2-クロロ-4-トリフルオロメチルピリジン-3-イル)メタノールを得た。 【0106】

(2) 前記工程(1)で得た粗製の1-(ナフタレン-1-イル)-1-(2-クロロー4-トリフルオロメチルピリジン-3-イル)メタノールを無水メタノール300 mlに溶解させ、トリエチルアミン14.5 多を加えた後、5%パラジウム-炭素3.0多を0℃ 下で徐々に添加した。反応容器を減圧した後、水素がスを導入しながら室温で3日間 して接触還元反応を行った。反応終了後、セライト 過し、メタノール洗浄して得た 液を減圧下濃縮し、酢酸エチル200 mlで抽出し、水洗した後、無水硫酸ナトリウムを加えて乾燥した。溶媒を減圧下留去し、残 をシリカゲルカラムクロマトプラフィー(溶離液:ノルマルヘキサン/酢酸エチル=3/1)で精製して、融点123~125 ℃の目的物31.5 多を得た。このもののNMRスペクトルデータは以下の通りである。

[0107]

合成例 2 : 1 -(ナフタレン- 1 - イル)- 1 -(4-トリフルオロメチルピリジン- 8 - イル)メタンチオール(後記化合物 N O . 8)の合成

(1) 1-(ナフタレン-1-イル)-1-(4-トリフルオロメチルピリジン-8-イル)メチルクロリド1.45 分と、99 %エタノール10 mlとの混合溶液に、40 ℃下でチオウレア0.35 分を投入し、2時間加熱環流下で反応させた。反応終了後、放冷し、溶媒をエバポレーターで減圧下留去して、粗製のチウロニウム塩を得た。【0108】

(2) 前記工程(1)で得た粗製のチウロニウム塩に、2N-苛性ソーダ水溶液 3.5 m | を加え、約50 ℃で0.5時間反応させ、さらに酢酸エチル10 m | を加えた後、約1時間加熱還流下で反応させた。反応終了後、室温まで放冷し、酢酸エチル70 m | で抽出して水洗した。無水硫酸ナトリウムを加えて乾燥した後、溶媒を減圧下留去し、残 をシリカゲルカラムクロマトグラフィー(溶離液:ノルマルヘキサン/酢酸エチル=4/1)で精製して、目的物 0.2 分を得た。このもののNMRスペクトルデータは以下の通りである。

¹ H-NMR [400MHz, CDC | 3, TMS, 8 (PPm)] 2. 52 (d, 1H: J=6Hz), 6. 52 (d, 1H: J=6Hz), 7. 3-7. 5 (m, 5H), 7. 79 (d, 1H: J=8Hz), 7. 86 (d, 1H: J=7Hz), 8. 07 (d, 1H: J=8Hz), 8. 68 (d, 1H: J=6Hz), 9. 12 (S, 1H)

[0109]

合成例 8 : 1 - (5 - クロロー1、8 - ベングジオキソラン-4 - イル)-1 - (2 - クロロ-4 - トリフルオロメチルピリジン-8 - イル)メタノール(後記化合物No.16)の合成

20

30

40

50

した後、分液した。有機層を水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した後、溶媒を減圧下留去し、残 をシリカゲルカラムクロマトグラフィー(溶離液:ノルマルヘキサン/酢酸エチル=2/1)で精製して、融点116~117 ℃の目的物3.8 分を得た。

[0110]

1 H-NMR [400MHz, CDC | 3, TMS, 8 (PPm)] 8.4 (S, 1H), 5.9-6.0 (m, 2H), 6.6 (S, 1H), 6.8 -6.9 (m, 2H), 7.5 (d, 1H; J=6Hz), 8.7 (d, 1H; J= 6Hz), 9.0 (S, 1H)

[0111]

(2−1) (18、2R)−(−)−ciS−1−アミノ−2−インダノール0. 15 **多 と 、 無 水 テ ト ラ ヒ ド ロ フ ラ ン 1 0 m l と の 退 合 溶 液 を 0 ℃ に 冷 却 し 、 窒 素 雰 囲 気 下** でトリメトキシボラン0. 13 9を徐々に添加し、5~10 ℃で1時間 した。そ に 滴下 し 、 1 0 分 間 反 応 さ せ た 後 、 液 温 を 0 ℃ に 冷 却 し 、 前 記 工 程 (1) で 得 た ナ フ タ レ ン — 1 — イル(4ートリフルオロメチルピリジン — 3 — イル)ケトン 3. 0 9 と、無水 テトラヒドロフラン10 mlとの混合溶液をシリンジを用いて徐々に滴下した。滴下終 了後10~15 ℃で1時間反応させた。反応終了後、0℃まで冷却し、塩化メチレン1 00 mlを加えて し、抽出した。有機層を水、次りで飽和食塩水で洗浄し、無水硫 酸ナトリウムを加えて乾燥した。溶媒を減圧下留去して、残 をシリカゲルカラムクロマ トグラフィー(溶離液:ノルマルヘキサン/酢酸エチル=3/2)で精製して、一方の目 的物(化合物 No. 21)を主成分とする反応混合物 0. 48 9(光学純度91%e. 0 μ | 及び 2 - プロパノール 2 0 μ | の混合溶媒に溶解させ、ダイセル社製キラルカラム (CHIRALCEL. OJ-H; 4.6mm φ×150mm)を用い、溶離液ノルマ ル ヘ キ サ ン / 2 - プ 口 パ ノ ー ル = 5 / 1 (1 m l / m i n.) で 精 製 し て 、 ー 方 の 目 的 物 〔カラム保持時間16. 0分の化合物No. 21)約7.5 m分を得た。このものの比

20

30

40

50

[0 1 1 3]

(2-2) 前記工程(2-1)と同様にして、(1 S、2 R)-(+)-ciS-1-アミノー2ーインゲノールを用い、他方の目的物である化合物NO.21の対掌化合物(化合物NO.22)を主成分とする反応混合物 O.50 分(光学純度 8 8 % e.e.)を得、前記工程(2-1)と同様に精製して、他方の目的物(カラム保持時間 7.3分の化合物 NO.22)5 m分を得た。このものの比旋光度 $[\alpha]_{D}^{26\cdot 2}$ は -41.0 であり、融点は $137\sim141$ ℃であった。

[0114]

 1 H-NMR [400MHz, CDC| $_{8}$, TM8, δ (PPm)]

2. 91 (S. 8H). 2. 98 (S. 8H). 7. 07 (d. 1H; J = 7Hz). 7. 88 (t. 1H; J = 8Hz). 7. 48-7. 55 (m. 2H). 7. 59 (d. 1H; J = 5Hz). 7. 84 (d. 1H; J = 8Hz). 7. 88 (dd. 1H; J = 8 & 2Hz). 7. 94 (S. 1H). 8. 00 (d. 1H; J = 8Hz). 2. 8. 78 (d. 1H; J = 5Hz). 8. 85 (S. 1H)

[0115]

合成例7:1-(5-700-1,8-ペングジオキソラン-4-イル)-1-(4-トリフルオロメチルピリジン-8-イル)メチル N、N-ジメチルカーパメート(後記化合物<math>No.71)の合成

1 H-NMR [400MHz.CDC]3.TMS.8(PPm)]
2.94(S.8H). 2.97(S.8H). 5.84(d.1H;J=1Hz)
. 5.90(d.1H;J=1Hz). 6.74(d.1H;J=8Hz). 6.
90(d.1H;J=8Hz). 7.47(S.1H). 7.58(d.1H;J=5Hz). 8.88(S.1H)

[0116]

合成例8:1-(ナフタレン-1-イル)-1-(4-トリフルオロメチルピリジン-8-イル)メチル N-エチルカーパメート(後記化合物No.87)の合成1-(ナフタレン-1-イル)-1-(4-トリフルオロメチルピリジン-8-イル)メ

[0117]

¹ H-NMR [400MHz, CDC|₃, TMS, 8(PPm)] 4. 60 (d, 1H; J=11Hz), 4. 73 (d, 1H; J=11Hz), 6. 63 (s, 1H), 6. 97 (t, 1H; J=9Hz), 7. 05 (m, 1H), 7. 21 (m, 1H), 7. 34-7. 44 (m, 5H), 7. 54 (d, 1H; J=5Hz), 8. 72 (s, 1H)

[0118]

合成例10:1-(ナフタレン-1-イル)-1-(4-トリフルオロメチルピリジン-3-イル)メチル N、Nージエチルカーバメート(後記化合物NO・94)の合成 1 -(ナフタレン-1-イル)-1-(4-トリフルオロメチルピリジン-3-イル)タノール0・61 分と、テトラヒドロフラン20 m -との混合溶液を0℃に冷却し、変素雰囲気下で60%水素化ナトリウム0・24 分を徐々に添加し、5分間 した後、その後、同温度で塩化N・Nージエチルカルバモイル0・54 分を徐々に適下した後、1時間反応させ、液温を室温に戻しながら、さらに12時間反応させた。反応終了後、0℃まで冷却し、酢酸エチルおよび塩化アンモニウム水溶液を加えて した後、抽出した。有機層を水、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した、溶媒を減圧下留去し、残 をシリカゲルカラムクロマトグラフィー(溶離液:ノルマルへキサン/酢酸エチル=2/1)で精製して、無定形固体状の目的物0・65 分を得た。このもののNMRスペクトルデータは以下の通りである。

8. 72(d.1H; J=5Hz). 8. 80 (S. 1H)

[0119]

10

20

30

40

次に、前記式(I)で表される本発明化合物の代表例を第1表に挙げるが、これら化合物は前記合成例或は前記した本発明化合物の種々の製造方法に基づいて製造することができる。尚、第1表中でMeはメチル基を、Etはエチル基を、c-Prはシクロプロピル基を、Phはフェニル基を各々表す。また、第1表中で6-CI-1.8-ペングジオキソラン-5-イルとあるのは、6位にCI(塩素原子)が置換した1.3-ペングジオキソラン-5-イル基を表し、2-Me-1-ナフチルとあるのは、2位にMe(メチル基)が置換した1-ナフチル基を表し、2-F-ペンジルとあるのは、2位にF(弗素原子)が置換したペンジル基を表し、2-F-Phとあるのは、2位にF(弗素原子)が置換したフェニル基を表す(他の同様の記載もこれらに準じる)。

第1表中、アモルファスは無定形固体を表す。また、化合物NO.21822、同NO. 190と191は各々互いに光学異性体であり、化合物NO.192と193は互いにジアステレオマーである。

[0 1 2 0]

【表 1 】

20

30

40

第1表

化合物 No.	A r	X	Z	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	物性 (融点℃)
1	1,3-^```\')``	0	Н	CF_3	Н	Н	Cl	
	シ゛オキソラン-5-イル							
2	1,3-ベンゾ	О	Н	CF_3	Н	Н	Н	162-167
	シ゛オキソラン-5-イル							
3	6-Cl-1,3-ベング	0	Н	CF_{S}	Н	Н	Cl	
	シ゛オキソラン-5-イル							
4	6-Cl-1,3-ベンゾ	0	Н	CF_{S}	Н	Н	Н	
	シ゛オキソラン-5-イル							
5	1-ナフチル	0	Н	CF_3	Н	Н	Cl	アモルファス
6	1-ナフチル	0	Н	CF _s	Н	Н	Н	123-125
7	1-ナフチル	0	Н	CF ₃	Н	Cl	Cl	95-100
8	1-ナフチル	s	Н	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	
9	2-Me-1-ナフチル	0	Н	CF_{S}	Н	Н	Н	
10	4-Me-1-ナフチル	0	Н	CF_{S}	Н	Н	Н	
11	2-Cl-1-ナフチル	0	Н	CF ₃	Н	Н	Н	
12	4-Cl-1-ナフチル	0	Н	CF ₃	Н	Н	Н	
13	6-Cl-1-ナフチル	0	Н	CF ₃	Н	Н	Н	
14	2-OMe-1-ナフチル	0	Н	CF _S	Н	Н	Н	
15	1-ナフチル	0	Н	c-Pr	Н	Н	Н	

【 0 1 2 1 】 【表 2 】

20

30

40

第1表(つづき)

化合物 No.	A r	X	Z	R ¹	\mathbb{R}^2	R ³	\mathbb{R}^4	物性 (融点℃)
16	5-Cl-1,3-ベング	0	Н	CF_3	Н	Н	Cl	116-117
	シ゛オキソラン-4-イル							
17	5-Cl-1,3-ベンゾ	0	Н	CF3	Н	Н	Н	125-130
	シ゛オキソラン・4・イル							
18	1-ナフチル	0	Н	SMe	Н	Н	Н	190-210
19	1-ナフチル	0	Н	OMe	Н	Н	Н	207-220
20	1-ナフチル	0	Н	SEt	Н	Н	Н	
21	1-ナフチル	0	Н	$\mathrm{CF_{s}}$	Н	Н	Н	143-151
22	1-ナフチル	0	Н	CF_3	Н	Н	Н	137-141
23	1-ナフチル	0	Н	CF_{s}	Me	Н	Н	
24	1-ナフチル	0	Н	CF_3	SMe	Н	Н	
25	1-ナフチル	0	Н	CF_3	Cl	Н	Н	
26	3-Br-キノリン-4-イル	0	Н	CF_3	Н	Н	Н	アモルファス
27	3-C1-キノリン-4-イル	0	Н	CF_3	Н	Н	Н	
28	3-F-キノリン-4-イル	0	Н	CF_3	Н	Н	Н	
29	キノリン-4-イル	0	Н	$\mathrm{CF_3}$	Н	Н	Н	174-177
30	キノリン-4-イル	0	Н	$\mathrm{CF_3}$	Н	Н	Cl	
31	6-Me-1,3-ベンゾ	0	Н	CF_3	Н	Н	Н	76-81
	シ゛オキソラン-5-イル							
32	インタ゛ン-4-イル	0	Н	CF ₃	Н	Н	Н	118
33	インタ゛ン-4-イル	0	Н	c-Pr	Н	Н	Н	

[0 1 2 2]

【表3】

20

30

40

第1表(つづき)

化合物 No.	A r	Х	Z	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	物性 (融点℃)
34	インタ`ン-4-イル	0	Н	SMe	Н	Н	Н	
35	6-Me-1,3-^`\')\'	0	Н	CF_3	Н	Н	C1	アモルファス
36	シ゛オキソラン-5-イル 5-Br-1,3-ベンゾ	0	Н	CF_3	Н	Н	Н	100-103
37	ジ オキソラン-4-イル 5-Me-1,8-ベンゾ	0	Н	CF_3	Н	Н	H	アモルファス
38	ジオキソラン-4-イル 5-Me-1,3-ベンゾ ジオキソラン-4-イル	0	Н	SMe	Н	Н	Н	
39	1,3-^ ンソ ** シ゛オキソラン-4-イル	0	Н	CF _s	Н	Н	Н	126-128
40	1,3-ベンゾ ジオキソラン-4-イル	0	Н	CF_3	Н	Н	Cl	
41	4-Me-1,3-^*ンゾ ジオキソラン-5-イル	0	II	CF_8	II	II	II	130-138
42	2,2-F ₂ -1,3-ベンゾ ジ゙オキソラン-4-イル	0	Н	CF_3	Н	Н	Н	125-127
43	2,2-F ₂ -1,3-ベンゾ ジオキソラン-4-イル	0	Н	CF_3	Н	Н	Cl	アモルファス
44	へ、ンソ、チオフェン-3-イル	0	Н	CF_3	Н	Н	Н	
45	ヘ゛ンゾ゛チオフェン・3・イル	0	Н	CF ₃	Н	Н	Cl	アモルファス

[0123]

【表4】

20

30

40

第1表(つづき)

化合物 No.	A r	X	Z	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	物性 (融点℃)
46	1,2,3,4-テトラヒド¤	0	Н	CF_3	Н	Н	Н	
	ナフタレン-5-イル							
47	イント゛ール-1-イル	0	Н	CF_3	Н	Н	Н	
48	1-Me-インド <i>ール-</i> 3-イ <i>ル</i>	0	Н	$\mathrm{CF_3}$	Н	Н	Н	
49	1-Me-インド <i>ール-</i> 3-イ <i>ル</i>	0	Н	CF_3	Н	Н	Cl	アモルファス
50	イソキノリン-4-イル	0	Н	CF_3	Н	Н	Н	
51	1,3-ベンゾ	0	CONMe_2	CF_3	Н	Н	Cl	アモルファス
	シ゛オキソラン-5-イル							
52	1,3-ベンゾ	0	$CONMe_2$	CF_{s}	Н	Н	Н	油状
	シ゛オキソラン-5-イル							
53	6 - Cl-1,3-ベンゾ	0	$CONMe_2$	CF_3	Н	Н	Cl	136-140
	シ゛オキソラン-5-イル							
54	6-C1-1,3-ベンゾ	0	$CONMe_2$	CF_3	Н	Н	Н	163-184
	シ゛オキソラン-5-イル							
55	1-ナフチル	0	${ m CONMe}_2$	CF_3	Н	Н	Cl	135-140
56	1-ナフチル	0	CONMe_2	CF_3	Н	Н	Н	133-134
57	1-ナフチル	0	CONMe ₂	CF ₃	Н	Н	F	
58	2-Me-1-+75h	0	$CONMe_2$	CF_3	Н	Н	Н	
59	3-Me-1-+75h	0	CONMe ₂	CF_{s}	Н	Н	Н	
60	4-Me-1-ナフチル	0	CONMe ₂	CF_3	Н	Н	Н	
61	2-Cl-1-ナフチル	0	${ m CONMe}_2$	$\mathrm{CF_3}$	Н	Н	Н	

[0124]

【表5】

第1表(つづき)

化合物 No.	A r	X	Z	\mathbb{R}^1	\mathbb{R}^2	R³	R ⁴	物性
62	4-Cl-1-ナプチル	0	${ m CONMe}_2$	CF ₃	Н	Н	Н	
63	5-Cl-1-ナフチル	0	CONMe ₂	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	
64	4-OMe-1-ナフチル	0	CONMe ₂	CF_3	Н	Н	Н	
65	1-ナフチル	0	CONMe_2	CF_{s}	Н	Cl	Cl	
66	1-ナプチル	0	CONMe ₂	CF_3	Me	Н	Н	
67	1-ナフチル	0	CONMe_2	e-Pr	Н	Н	Н	
68	1-ナアチル	s	CONMe_2	CF_3	Н	Н	Н	151.5-153
69	1-ナフチル	s	CSNMe_2	CF ₃	Н	Н	Н	136-143
70	5-Cl-1,3-ベンゾ	0	$CONMe_2$	CF_3	Н	Н	Cl	123-125
	シ゛オキソラン-4-イル							
71	5-Cl-1,3-ベンゾ	0	$CONMe_2$	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	124-127
	シ゛オキソラン-4-イル							
72	5-Cl-1,3-ベンゾ	0	CO-(1-テオ	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	
	シ゛オキソラン・4・イル		モルホリニル)					
73	5-Cl-1,3-ベンゾ	0	ベンジル	CF ₃	Н	Н	Н	
	シ゛オキソラン-1-イル							
74	1-ナフチル	0	${ m CONMe}_2$	SMe	Н	Н	Н	55-59
75	1-ナフチル	0	$CONMe_2$	OMe	Н	Н	Н	156-165
76	1-ナフチル	0	$CONMe_2$	SEt	Н	Н	Н	
77	3-Br-キノリン-4-イル	0	CONMe ₂	CF _s	Н	Н	Н	153-154

【 0 1 2 5 】 【表 6 】 10

20

30

20

30

40

第1表(つづき)

化合物 No.	Ar	X	Z	\mathbb{R}^1	\mathbb{R}^2	R³	\mathbb{R}^4	物性 (融点℃)
78	3-C1-キノリン-4-イル	0	$CONMe_2$	CF_3	Н	Н	Н	
79	3-F-キノリン-4-イル	0	${ m CONMe}_2$	CF ₃	Н	Н	Н	
80	3-Br-キノリン-4-イル	0	CONEt ₂	CF_s	Н	Н	Н	
81	3-Br-キノリン-4-イル	0	ベンジル	CF ₃	Н	Н	Н	
82	キノリン-4-イル	0	CONMe ₂	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	アモルファス
83	キノリン-4-イル	0	CO-イソプ¤ピル	CF_{s}	Н	Н	Н	
84	キノリン-4-イル	0	CONHEt	CF ₃	Н	Н	Н	
85	キノリン-4-イル	0	ベンジル	CF_3	Н	Н	Н	
86	キノリン-4-イル	0	CSNMe_2	CF_3	Н	Н	Н	
87	1-ナフチル	0	CONHEt	$\mathrm{CF}_{\mathtt{s}}$	Н	Н	Н	125-128
88	1-ナフチル	0	CO-ph	CF _s	Н	Н	Н	アモルファス
89	1-ナフチル	0	CH ₂ -シクロプ ロピ ル	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	アモルファス
90	1-ナフチル	0	CONHMe	CF_3	Н	Н	Н	アモルファス
91	1-ナフチル	0	2-F-ベンジル	CF_3	Н	Н	Н	油状
92	1-ナフチル	0	ベンシェル	CF ₃	Н	Н	Н	油状
93	1-ナフチル	0	COSMe	CF ₃	Н	Н	Н	
94	1-ナフチル	0	CONEt ₂	CF ₃	Н	Н	Н	アモルファス
95	1-ナフチル	0	2-Me-2-プ ¤ペ <i>ニル</i>	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	油状
96	6- <i>メチル</i> -1,3-	0	$CONMe_2$	CF3	Н	Н	Н	アモルファス
	ヘ゛ング゛シ゛オキグラン							
	-5-1n							

[0 1 2 6]

【表7】

第1表(つづき)

化合物 No.	Ar	X	Z	\mathbb{R}^1	\mathbb{R}^2	R³	\mathbb{R}^4	物性 (融点℃)
97	1-ナフチル	0	CH ₂ -(2-ピリジル)	$\mathrm{CF}_{\scriptscriptstyle{3}}$	Н	Н	Н	48-53
98	1-ナフチル	0	3,3-Me ₂ -7クリ¤イル	$\mathrm{CF}_{\mathtt{s}}$	Н	Н	Н	油状
99	1- ナフチル	0	2- エホ゜キシフ゜ロピ゜ル	$\mathrm{CF}_{\mathtt{s}}$	Н	Н	Н	アモルファス
100	1-ナフチル	0	CO-(2-Cl-3-ピリジル)	CF_{s}	Н	Н	Н	175-190
101	1-ナフチル	0	2-7° pt° =/\	CF_3	Н	Н	Н	51-55
102	1-ナフチル	0	$\mathrm{CH_{2}SMe}$	CF_3	Н	Н	Н	油状
103	1-ナフチル	0	S(O)Et	CF_3	Н	Н	Н	105-111
104	1-ナフチル	0	2,2-Me ₂ -ブ チロイル	CF_3	Н	Н	Н	アモルファス
105	1-ナプチル	0	CH ₂ CO ₂ Me	CF_3	Н	Н	Н	アモルファス
106	1-ナフチル	0	3-C1-ベンジル	$\mathrm{CF_s}$	Н	Н	Н	115-120
107	1-ナフチル	0	4-C1-ベンジル	$\mathrm{CF_s}$	Н	Н	Н	116-118
108	1-ナフチル	0	2- Br-ベンジル	CF_3	Н	Н	Н	135-140
109	1-ナフチル	0	2-Br-2-Me-プロピオニル	CF_3	Н	Н	Н	油状
110	1-ナフチル	0	4-CN-^```\\``\	$\mathrm{CF_{s}}$	Н	Н	Н	161-164
111	1-ナフチル	0	CONH(p-\")")	CF_3	Н	Н	Н	169-185

【 0 1 2 7】 【表 8】

20

10

第1表(つづき)

化合物 No.	Ar	X	Z	\mathbb{R}^1	\mathbb{R}^2	R ³	$ m R^4$	物性 (融点℃)
112	1-ナフチル	0	CONH(イソプ¤ピル)	CF_3	Н	Н	Н	159-167
113	1-ナフチル	0	CONMe(Et)	CF_3	Н	Н	Н	アモルファス
114	1-ナフチル	0	4-F-ベンジ <i>ル</i>	CF ₂	Н	Н	Н	63-71
115	1-ナフチル	0	3-F-ベンジ <i>ル</i>	CF _s	Н	Н	Н	96-98
116	1- ナフチル	0	CONEt(シクロヘキシル)	CF ₃	Н	Н	Н	128-133
117	1-ナフチル	0	CO-(1-アマ゛チシ゛ニル)	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	114-117
118	1-ナフチル	0	CO-(1-ピロリジニル)	CF ₃	Н	Н	Н	アモルファス
119	1-ナフチル	0	CO-(1-モルホリニル)	CF_3	Н	Н	Н	
120	1-ナフチル	0	CO-(1-チオモルホリニル)	CF_8	Н	Н	Н	アモルファス
121	1-ナフチル	0	CONMe(ph)	CF_3	Н	Н	Н	アモルファス
122	1-ナフチル	0	CONMe(2-F-ph)	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	
123	1-ナフチル	0	CONMe(4-Cl-ph)	CF ₂	Н	Н	Н	
124	1-ナフチル	0	CONMe(4-I-ph)	CF ₃	Н	Н	Н	
125	1-ナフチル	0	${ m CSNMe}_2$	CF ₃	Н	Н	Н	121-129

【 0 1 2 8 】 【表 9 】 30

20

第1表(つづき)

化合物 No.	Ar	X	Z	R1	\mathbb{R}^2	R⁵	\mathbb{R}^4	物性 (融点℃)
126	インタ゛ン-4-イル	0	$CONMe_2$	CF_3	Н	Н	Н	115.7
127	インタ゛ン-4-イル	0	CONMe ₂	c-Pr	Н	Н	Н	
128	インタ゛ン-4-イル	0	CONMe ₂	SMe	Н	Н	Н	
129	インタ゛ン-4-イル	0	CSNMe_2	CF ₃	Н	Н	Н	
130	インタ゛ン-4-イル	0	CONEt_2	CF ₃	Н	Н	Н	
131	インタ゛ン-4-イル	0	ペンジル	CF _s	Н	Н	Н	
132	インタ゛ン-4-イル	0	4-C1-ベンジル	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	
133	インタ゛ン-4-イル	0	CO-(1-モルホリニル)	CF_3	Н	Н	Н	
134	1-ナプチル	0	CO-(2-7リル)	CF_3	Н	Н	Н	105-120
135	1-ナプチル	0	CO-(1-+77+n)	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	122-126
136	1-ナフチル	0	2-ブ ロモアリル	CF_3	Н	Н	Н	油状
137	6-Me-1,3-ベンゾ	O	CONEt_2	CF _s	Н	Н	Н	油状
	シ゛オキソラン-5-イル							
138	6-Me-1,3-ベンゾ	0	CONHEt	CF_3	Н	Н	Н	アモルファス
	シ゛オキソラン-5-イル							
139	5-Br-1,3-ベンゾ	0	$CONMe_2$	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	120-124
	シ゛オキソラン-4-イル							
140	6-Me-1,3-ベンゾ	0	$CSNMe_2$	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	147-151
	シ゛オキソラン-5-イル							

【0129】 【表10】

40

10

20

第1表(つづき)

化合物	Ar	X	Z	\mathbb{R}^1	\mathbb{R}^2	R ³	$ m R^4$	物性
No.		+						(配点℃)
141	6-Me-1,3-ベンゾ		CONHMe	CF_3	Н	Н	Н	120.5-122
	シ゛オキソラン-5-イル							
142	5-Me-1,3-ベンゾ		$CONMe_2$	CF_8	Н	Н	Н	油状
	シ゛オキソラン-4-イル							
143	5-Me-1,3-ベンゾ		CONHMe	CF_8	H	Н	Н	
	ン゛オキソラン-4-イル							
144	5-Me-1,3-ベンゾ	0	CONEt_2	CF_8	Н	Н	Н	
	シ゛オキソラン-4-イル		2					
145	5-Me-1,3-ベンゾ	0	CONMe ₂	SMe	Н	Н	Н	
110	シ゛オキソラン-4-イル		5 6 2 12126 2	10111 5				
146	1,3-^`\')'	0	CONMe ₂	CF_3	Н	Н	Н	油状
140	シ゛オキソラン・4・イル		COLVIVIE	Org	11	11	11	1447
1.477			CO	QE.	T.T.	тт	тт	
147	1,3-^`\')'		CO-	CF_3	Н	Н	Н	
	シ゛オキソラン-4-イル	_	(1-ピロリジニル)					
148	1,3-ベンゾ 		CO-	CF_3	H	H	Н	
	シ゛オキソラン-4-イル	+	(1-モルホリニル)					
149	6-Me-1,3-ベンゾ		CO-	CF_3	Н	Н	Н	アモルファス
	シ゛オキソラン-5-イル		(1-ピロリジニル)					
150	4-Me-1,3-ベンゾ	0	$CONMe_2$	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	アモルファス
	シ゛オキソラン-5-イル							
151	1-ナフチル	0	COCH ₂ Cl	CF_{S}	Н	Н	Н	アモルファス
152	1-ナフチル	0	$\mathrm{COCO}_{2}\mathrm{Et}$	CF_3	Н	Н	Н	アモルファス

【 0 1 3 0 】 【表 1 1 】

第1表(つづき)

化合物 No.	Ar	Х	Z	\mathbb{R}^1	\mathbb{R}^2	R^s	R ⁴	物性 (融点℃)
153	2,2-F ₂ -1,3-ベンゾ	0	${ m CONMe}_2$	CF_3	Н	Н	Н	アモルファス
	シ゛オキソラン-4-イル							
154	2,2-F ₂ -1,3-ベンゾ	0	$CONEt_2$	CF ₃	Н	Н	Н	
	シ゛オキソラン・4・イル							
155	2,2-F ₂ -1,3-ベンゾ	0	CONHMe	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	
	シ゛オキソラン-4-イル							
156	2,2-F ₂ -1,3-ベンゾ	0	$CSNMe_2$	CF ₃	Н	Н	Н	
	シ゛オキソラン-4-イル							
157	2,2-F ₂ -1,3-ベンゾ	0	4-F-ベンジル	CF_3	Н	Н	Н	
	ジ゛オキソラン-4-イル							
158	ヘ ング チオフェン-3-イル	0	CONMe ₂	CF ₃	Н	Н	Cl	112-115
159	ヘ゛ンゾ゛チオフェン・3・イル	0	CONMe ₂	CF_{3}	Н	Н	Н	
160	1,2,3,4-テトラヒドロ	0	$CONMe_2$	CF_3	Н	Н	Н	
	ナフタレン-5-イル							
161	1,2,3,4-テトラヒドロ	0	$CONEt_2$	CF_3	Н	Н	Н	
	ナフタレン-5-イル							
162	イント゛ール-1-イル	0	CONMe ₂	CF ₃	Н	Н	Н	
163	イント゛ール-1-イル	0	CONEt ₂	CF_3	Н	Н	Н	
164	イント゛ール-1-イル	0	ベンジール	CF ₃	Н	Н	Н	
165	イント゛ール-1-イル	0	CSNMe_2	CF ₃	Н	Н	Н	
166	1-Me-インドール-3-イル	0	CONMe_2	CF_3	Н	Н	Н	

【 0 1 3 1 】 【表 1 2 】 10

20

30

第1表(つづき)

化合 物 No.	A r	X	Z	\mathbb{R}^1	\mathbb{R}^2	R³	\mathbb{R}^4	物性 (融点℃)
167	1-Me-イント ール-3-イル	0	CONEt_2	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	
168	イソキノリン-4-イル	0	$CONMe_2$	CF ₃	Н	H	Н	
169	イソキノリン・4・イル	0	CO-イソプロピル	CF ₃	Н	Н	Н	
170	1-ナフチル	0	CO-(1-アミノエチル)	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	
171	1-ナフチル	0	CO-(1-7३)	CF_3	Н	Н	Н	
			-2-Me-7° ¤ピル)					
172	1-ナフチル	s	Me	CF ₃	Н	Н	Н	
173	1-ナフチル	s	CO-シクロプロピル	$\mathrm{CF_{s}}$	Н	Н	Н	
174	1-ナフチル	s	СО-Ме	CF ₃	Н	Н	Н	67-80
175	1-ナフチル	s	ベンジル	CF ₃	Н	Н	Н	
176	1-ナフチル	s	CONHEt	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	
177	1-ナフチル	0	Et	$\mathrm{CF}_{\mathtt{S}}$	Н	Н	Н	油状
178	1-ナフチル	s	CONHMe	CF ₃	Н	Н	Н	
179	1-ナフチル	0	CSNHEt	CF_3	Н	Н	Н	
180	1-ナフチル	0	CSNHMe	CF_3	Н	Н	Н	
181	1-ナフチル	s	CSNHEt	CF ₃	Н	Н	Н	
182	1-ナフチル	s	CSNHMe	CF ₃	Н	Н	Н	
183	1-ナフチル	0	Н	Et	Н	Н	Н	244-248
184	1-ナフチル	O	$CONMe_2$	Et	Н	Н	Н	アモルファス

[0182] 【表 1 3】

10

20

30

第1表(つづき)

化合物 No.	A r	X	Z	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	物性 (融点℃)
185	1-ナフチル	0	CO-(c-Pr)	CF_{g}	Н	Н	Н	アモルファス
186	1-ナフチル	0	Н	Me	Н	Н	Н	178-183
187	1- ナフチル	О	$CONMe_2$	Me	Н	Н	Н	アモルファス
188	1-ナフチル	0	CONHEt	Me	Н	Н	Н	129.5-131
189	1-ナフチル	0	ベンジル	Me	Н	Н	Н	
190	1-ナフチル	0	CONH-(s) - α - メチルベンジル	CF ₃	Н	Н	Н	57-67
191	1-ナフチル	0	CONH-(s) - α -メチルベンジル	CF_3	Н	Н	Н	55-65
192	1-ナフチル	0	CO-(1-Cl-エチル)	CF_3	Н	Н	Н	アモルファス
193	1-ナフチル	0	CO-(1-Cl- <i>x</i> f <i>h</i>)	CF_{s}	Н	Н	Н	アモルファス
194	6-Br-ベンゾ ジオキサニル-5-イル	0	CONMe_2	Me	Н	Н	Н	
195	6-C1-ベンゾ ジオキサニル-5-イル	0	CONMe ₂	Me	Н	Н	Н	
196	ベング ジ オキサニル -5-イル	0	CONMe_2	Me	Н	Н	Н	

【 0 1 3 3 】 【表 1 4 】 10

20

第1表 (つづき)

化合物 No.	Ar	X	Z	\mathbb{R}^1	\mathbb{R}^2	R³	\mathbb{R}^4	物性 (融点℃)
197	1-ナフチル	0	Н	-CH=CH ₂	Н	Н	Cl	143-150
198	1-ナフチル	0	Н	I	Н	Н	F	116-120
199	1-ナフチル	0	CONMe_2	I	Н	Н	F	123-127
200	1-ナフチル	0	CO-(1-Me-2-ะ^ ฅปฺ <i>ル</i>)	CF ₃	Н	Н	Н	アモルファス
201	1-ナフチル	0	CO-(1-イミダゾリル)	CF ₃	Н	Н	Н	128-132
202	1-ナフチル	0	Н	SOMe	Н	Н	Н	
203	1-ナフチル	0	CONMe ₂	SOMe	Н	Н	Н	アモルファス
204	1 -ナフチル	0	H	Br	Н	Н	Н	155-160
205	1-ナフチル	0	CONMe_2	Br	Н	Н	Н	115-123
206	1-ナフチル	0	CONHEt	Br	Н	Н	Н	120-128
207	1-ナフチル	0	${ m CONEt}_2$	Br	Н	Н	Н	アモルファス
208	1-ナフチル	0	CONHMe	Br	Н	Н	Н	134-136
209	1- ナフチル	0	4-C1-^`ンジル	Br	Н	Н	Н	
210	1- ナフチル	0	ベンジル	Br	Н	Н	Н	
211	1-ナフチル	0	CO-イソプロピル	Br	Н	Н	Н	
212	1- ナフチル	0	CONEt_2	Cl	Н	Н	Н	122-127
213	1-ナフチル	0	Н	Cl	Н	Н	Н	188-190

【 0 1 3 4 】 【表 1 5 】 10

20

第1表(つづき)

化合物 No.	A r	X	Z	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	物性 (融点℃)
214	1-ナフチル	0	CONHEt	Cl	Н	Н	Н	
215	1-ナフチル	0	CONHMe	Cl	Н	Н	Н	
216	1-ナフチル	0	ペンジル	Cl	Н	Н	Н	
217	1-ナフチル	0	$CONMe_2$	Cl	Н	Н	Н	115-116
218	1-ナプチル	0	CONMe ₂	CN	Н	Н	Н	アモルファス
219	1-ナフチル	0	Н	CN	Н	Н	Cl	133-141
220	1-ナフチル	0	CONEt ₂	CN	Н	Н	Н	アモルファス
221	1-ナフチル	0	CO-(c-Pr)	CN	Н	Н	Н	
222	1-ナフチル	0	4-F-ベンジル	CN	Н	Н	Н	
223	1-ナフチル	0	ヘ"ンシ"ル	CN	Н	Н	Н	
224	1-ナフチル	0	CO-2-5x=n	CF ₃	Н	Н	Н	
225	1-ナフチル	0	CO-2-ピリジ <i>ル</i>	CF ₃	Н	Н	Н	
226	1-ナフチル	0	CO-3-7JN	CFs	Н	Н	Н	
227	1- ナフチル	0	CO-(2-Me	CF ₈	Н	Н	Н	
			-4-チアソ゛リル)					
228	1-ナフチル	0	CO-3-ピリジル	CFs	ΙΙ	II	II	
229	1-ナフチル	0	CO-(4-CF ₃	CF ₃	Н	Н	Н	
			-3-ピリジル)					
230	1-ナフチル	0	CO-(5-CF ₃	CF _s	Н	Н	Н	
			-2-ピリジル)					

[0135]

次に本発明の試験例を記載する。

試験例1

1 / 1 7 0 . 0 0 0 へクタールポットに畑作土壌をつめ、各種植物の種子を播種した。その後、植物が一定の葉令((1)ノビエ1 . 3 ~ 2 . 2 葉期、(2)メヒシバ1 . 1 ~ 2 . 0 葉期、(3)アオゲイトウ 0 . 1 ~ 0 . 2 葉期、(4)アメリカキンゴジカ 0 . 1 ~ 0 . 3 葉期、(5)イチビ 0 . 2 ~ 0 . 3 葉期、(6)オナモミ 0 . 2 ~ 0 . 3 葉期、(7)イネ 1 . 2 ~ 1 . 8 葉期、(8)コムギ 1 . 4 ~ 2 . 3 葉期、(9)トウモロコシ 2 . 1 ~ 2 . 6 葉期、(10)ゲイズ 0 . 1 ~ 0 . 2 葉期)に達したとき、本発明化合物を通常の製剤方法に準じて調製した水和剤又は乳剤を所定有効成分量となるように秤量し、

10

20

30

1 ヘクタール当り500リットルの水に希釈した。更にその希釈液に対して農業用展着削を0.1 容量%加え、小型スプレーで茎葉処理した。

[0 1 3 6]

薬剤処理後18~23日目に各種植物の生育状態を肉眼観察し、0(無処理区と同等)~ 100(完全枯殺)の抑草率(%)で除草効果を評価し、第2表の結果を得た。第2表中 、各種植物は以下のように略記する。

[0 1 3 7]

(1) / \forall L : E C (2) × \forall S \forall N : D I (3) P \forall T \forall T + D : A M (4) P × \forall D + D \forall D : S I (5) A F \forall : A B (6) A \forall E \forall S : X A (7) A \forall : R C (8) D A \forall : W H (9) F D E D D D : C R (10) F A \forall S : S Y

[0138]

【表 1 6】

第2表

化合物	有効成				抑:	草 率		(%)				調査日
No.	分量 (g/ha)	EC	DI	AM	SI	AB	XA	RC	WH	CR	SY	日
56	1000	90	70	80	80	80	30	0	0	0	0	21
82	1000	50	80	80	80	90	60	10	50	40	-	21
88	1000	40	10	70	50	100	0	0	0	0	0	21
89	1000	60	60	80	80	100	0	0	0	0	0	21
90	1000	90	80	80	80	90	90	20	0	0	0	21
91	1000	60	70	80	80	40	20	0	0	0	0	21
92	1000	90	70	80	80	80	0	0	10	20	0	21
95	1000	80	0	80	60	100	0	0	0	0	0	21
98	1000	60	60	80	70	90	0	0	0	0	0	21
102	1000	40	0	80	60	0	60	0	0	0	10	21
104	1000	0	70	80	60	90	0	0	-	0	0	21
109	1000	0	70	60	60	70	0	0	0	0	0	21
113	1000	50	60	50	60	70	0	0	0	0	10	21
117	1000	80	0	70	60	90	0	0	0	0	70	21
125	1000	60	0	40	60	70	70	0	0	0	0	21
126	1000	60	60	80	60	80	70	0	0	20	0	21
153	1000	50	95	80	80	90	-	10	30	30	70	23
218	500	50	70	20	80	70	80	20	20	10	40	18
220	500	60	80	50	70	50	70	40	20	10	50	22

[0139]

試験例2

1 / 1 7 0 、 0 0 0 へクタールポットに畑作土壌をつめ、各種植物の種子(ノビエ、メヒシバ、アオゲイトウ、アメリカキンゴジカ、イチビ、オナモミ、イネ、コムギ、トウモロコシ及びダイズ)を播種した。播種翌日、本発明化合物を通常の製剤方法に準じて調製した水和剤又は乳剤を所定有効成分量となるように秤量し、1 へクタール当り 1 、 5 0 0 リ

10

20

30

ットルの水に希釈し、小型スプレーで土壌処理した。

薬剤処理後20~23日目に各種植物の生育状態を肉眼観察し、0(無処理区と同等)~100(完全枯殺)の抑草率(%)で除草効果を評価し、第3表の結果を得た。第3表中、各種植物は前記試験例1と同様に略記する。

[0140]

【表17】

第3表

化合物	有 効 成				抑 :	草率		(%)				調査日
No.	分量 (g/ha)	EC	DI	AM	SI	AB	XA	RC	WH	CR	SY	日日
52	2000	80	90	90	90	-	0	80	-	0	0	21
54	2000	70	100	70	0	80	0	0	1	0	0	21
56	1000	60	90	80	90	90	0	10	1	0	0	20
71	1000	50	80	70	10	100	0	0	1	20	0	20
82	1000	60	90	80	80	0	0	20	0	20	0	20
87	1000	90	80	30	50	0	0	0	0	40	0	21
90	1000	90	100	80	100	90	0	0	10	40	0	21
91	1000	30	60	60	80	0	0	0	0	10	0	21
92	1000	80	70	80	80	-	0	0	0	10	0	21

30

10

20

[0141]

【表18】

第3表(つづき)

化合物有效成 抑 草 率 (%)										調査日		
No.	分量 (g/ha)	EC	DI	AM	SI	AB	XA	m RC	WH	CR	SY	日
94	1000	100	100	60	80	0	0	0	20	10	0	21
96	1000	100	100	90	70	50	0	40	10	20	0	21
98	1000	70	80	-	70	0	0	10	0	0	0	21
102	1000	90	90		60	-	0	20	10	10	0	21
109	1000	60	80	70	60	0	0	10	0	0	0	21
112	1000	20	80	60	30	0	0	10	0	0	0	21
117	1000	100	90	70	40	60	0	10	0	20	0	23
118	1000	90	90	50	50	0	0	0	0	0	0	23
125	1000	-	90	20	50	30	0	10	10	0	0	21
126	1000	-	90	50	60	80	60	80	70	60	0	21
137	1000	80	90	40	40	0	0	0	0	0	0	21
139	1000	80	90	60	80	10	0	10	0	40	0	21
140	1000	50	70	60	60	0	0	0	0	0	0	21
142	1000	90	90	40	80	0	0	50	0	10	0	21
146	1000	90	90	90	80	40	0	50	0	20	0	21
149	1000	60	80	50	50	0	0	0	0	0	0	21
150	1000	90	90	70	30	0	0	50	0	0	0	21
153	1000	100	100	60	90	100	-	10	20	10	10	20
218	500	80	90	30	40	30	10	60	20	30	10	21

[0142]

試験例3

1 / 1 . 0 0 0 . 0 0 0 へクタールポットに水田土壌を詰め、ノビ工及びホタルイの種子を播種し、その上に軽く覆土した。その後湛水深 0 . 5 ~ 1 c m の状態で温室内に静置し、翌日又は 2 日後にウリカワの塊茎を植え込んだ。その後湛水深を 3 ~ 4 c m に保ち、ノビ工及びホタルイが 0 . 5 葉期、ウリカワが初生葉期に達した時点で、本発明化合物を通

10

20

30

常の製剤方法に準じて調製した水和剤又は乳剤の水希釈液を、所定有効成分量になるようにピペットで均一に滴下処理した。また1/1、000、000へクタールポットに水田土壌を詰め、代かきを行い、湛水深を3~4cmとし、翌日に2葉期のイネ(品種:日本晴)を移植深3cmに移植した。移植後4日目に本発明化合物を前述と同様に処理した。薬剤処理後14日目にノビエ、ホタルイ及びウリカワの生育状態を、薬剤処理後21日目にイネの生育状態を各々肉眼観察し、0(無処理区と同等)~100(完全枯殺)の抑草率(%)で評価し、第4表の結果を得た。第4表中、各種植物は以下のように略記する。(1)ノビエ:EC、(2)ホタルイ:SC、(3)ウリカワ:SA、(4)イネ:OS【0143】

【表19】

第4表

化合物 No.	 有効成分量		抑 草	率 (%)	
16日初 100.	有列成万里 (g/ha)	EC	SC	SA	os
6	2000	70	90	30	0
17	2000	40	95	0	-
18	2000	60	30	40	-
32	2000	90	95	70	-
39	2000	50	90	95	-
54	500	95	95	0	20
56	500	100	90	40	0
69	250	98	20	-	0
71	500	100	90	80	0
74	500	60	70	20	0
82	500	-	95	60	5
87	500	-	70	0	10
88	250	98	30	0	-
90	250	100	60	0	-
96	250	100	50	20	-
97	250	100	0	20	-
102	250	95	30	-	-
113	250	100	8 5	0	-
114	250	100	20	0	-
117	500	100	95	98	10
118	500	100	95	90	0

[0144]

【表20】

10

20

30

第4表 (つづき)

化合物 No.	士从此八具		抑 草	率 (%)	
16/百物 190.	有効成分量 (g/ha)	EC	SC	SA	os
120	500	100	85	-	20
121	500	100	-	50	0
125	500	100	85	0	0
126	500	100	95	90	30
135	500	100	30	0	0
136	500	100	10	0	0
137	500	100	90	50	10
138	500	50	85	0	0
139	500	-	90	50	30
140	500	100	90	90	0
142	500	100	8 5	90	35
146	500	100	85	90	20
149	500	98	30	0	20
150	500	100	50	0	10
153	500	100	90	30	10
185	250	100	50	0	0
187	500	90	70	100	0
188	500	70	70	95	0
190	2000	70	20	0	-
204	2000	60	80	-	-
205	250	98	80	-	0

[0145]

【表 2 1 】

10

20

30

第4表(つづき)

 化合物 No.	 有効成分量 -		抑 草	率 (%)	
	何 <i>知</i> 成万重 (g/ha)	EC	SC	SA	os
206	250	100	60	-	20
207	250	100	40	-	0
208	250	100	60	-	0
212	250	100	-	-	10
213	2000	30	95	0	-
217	250	100	100	10	0
218	250	98	80	-	10
220	250	100	70	-	0

20

10

[0146]

次に、本発明の製剤例を記載する。

[0147]

製剤例1

(1) 本発明化合物

7 5 重量部

(2) ゲロポンT-77(商品名;ローヌ·プーラン社製)

1 4 . 5 重量部

(3) Nacl

(4) デキストリン

10 重量部0.5 重量部

以上の各成分を高速混合細粒機に入れ、すらにそこへ20%の水を加え造粒、乾燥して 粒水和剤が得られる。

30

[0148]

製剤例2

(1)カオリン

78 重量部

(2) ラペリンFAN(商品名;第一工業製薬(株)製)

2 重量部

(3) ソルポール5039 (商品名:東邦化学工業 (株) 製)

5 重量部 5 重量部

(4) カープレックス(商品名; 塩野義製薬(株)製) 15

以上、(1)~(4)の成分の混合物と本発明化合物とを9:1の重量割合で混合して水

和削が得られる。

[0149]

製剤例3

- (1) ハイフィラーNo. 10(商品名:松村産業(株)製)
- 3 3 重量部
- (2) ソルポール5050(商品名:東邦化学工業(株)製)
- 3 重量部
- (3) ソルポール5073 (商品名:東邦化学工業(株)製)
- 4 重量部

(4) 本発明化合物

6

0 重量部

以上の(1)~(4)の各成分を混合して水和削が得られる。

[0150]

製剤例4

(1)本発明化合物

4 里東部

(2) ベントナイト

3 0 重量部

50

(3)炭酸カルシウム

- 6 1 . 5 重量部
- (4)トキサノンGR-31A(商品名;三洋化成工業(株)製) 3 重量部
- 1.5 重量部 (5) リグニンスルホン酸カルシウム塩

予め粉砕した(1)と、(2)及び(3)とを混合し、そこへ(4)、(5)及び水を加 えて混合し、押出し造粒する。その後、乾燥、整粒して粒剤が得られる。

[0151]

製剤例5

(1)本発明化合物

30 重量部

- (2) ジークライト(商品名:ジークライト(株)製)
- 60 重量部

10

20

- (3)ニューカルゲン WG-1(商品名:竹本油脂(株)製) 5 重量部
- (4)ニューカルゲン FS-7(商品名;竹本油脂(株)製)
- (1)、(2)及び(3)を混合し、粉砕機を通した後、(4)を加えて混練後、押出し

[0152]

製剤例6

(1) 本発明化合物

28 重量部

- (2) ソプロポールFL(商品名;ローヌ・プーラン社製) 2 重量部
- (3) ソルポール355 (商品名:東邦化学工業(株)製) 1 重量部
- (4) I P ソルペント1620 (商品名; 出光石油化学(株) 製) 32 重量部
- (5) エチレングリコール

6 重量部

(6)水 3 1 軍量部

以上の(1)~(6)の成分を混合し、湿式粉砕機(ダイノーミル)を用いて粉砕して水 性懸濁剤が得られる。

フロントページの続き

(51) Int. Cl. ⁷	F I		テーマコード(参考)
A01N 47/20	A01N 47/16	Α	
C 0 7 D 213/32	A01N 47/16	区	
C 0 7 D 213/61	A01N 47/20	В	
C 0 7 D 213/68	C 0 7 D 213/32		
C 0 7 D 213/70	C 0 7 D 213/61		
C 0 7 D 213/79	C 0 7 D 213/68		
C07D401/06	C 0 7 D 213/70		
C 0 7 D 401/12	C 0 7 D 213/79		
C07D405/06	C 0 7 D 401/06		
C 0 7 D 405/12	C 0 7 D 401/12		
C07D409/06	C 0 7 D 405/06		
C 0 7 D 417/12	C 0 7 D 405/12		
	C 0 7 D 409/06		
	C 0 7 D 417/12		

(72)発明者 佐野 真喜子

滋賀県草津市西渋川二丁目3番1号 石原産業株式会社中央研究所内

(72)発明者 大野 研

滋賀県草津市西渋川二丁目3番1号 石原産業株式会社中央研究所内

F ターム(参考) 4C055 AA01 BA01 BA02 BA16 BA89 BB14 CA01 CA02 CA03 CA16 CA21 CA39 CA47 CA57 CB04 CB14 DA01 DA13 DA39 DB13 DB14 EA01 FA03 FA11 4C063 AA01 BB04 BB08 CC12 CC14 CC15 CC62 CC71 CC75 CC76 CC82 CC94 DD03 DD06 DD12 4H011 AB01 AB02 BA01 BA06 BB09 BB13 BC01 BC03 BC07 BC18 BC19 DA02 DA15 DC01 DC04 DC06 DC07 DC08 DH03 DH10

【要約の続き】

であり、A、B、D、E、A'、B'、D'及びE'は各々酸素原子、硫黄原子、-N(R6) - 、=N-、=C(R6) - 又は-C(R6) $_2$ -であり、Xは酸素原子又は硫黄原子であり、Xは酸素原子であり、Xは酸素原子であり、X0 は水素原子、置換されてもよいアルキルなどであり、X1 は八口ゲン、置換されてもよいアルキルなどであり、X2 は水素原子、八口ゲン、アルキルなどであり、X3 及びX4 は各々水素原子、八口ゲン又はアルキルであり、X5 は八口ゲン、アルキルなどであり、X6 は水素原子、八口ゲン、アルキル又は八口アルキルである]で表されるピリジン系化合物又はその塩。

【選択図】 なし