Lesson 8

José M. Corcuera. University of Barcelona.

Continuous-time models for stock markets

The evolutions of the stocks and claims (shares, commodities, options...) will be stochastic processes $(S_t)_{t\geq 0}$ defined in a filter probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$. Where $\mathbb{F} = \{\mathcal{F}_t, 0 \leq t \leq T\}$ is a filtration and T the horizon of the market.

We shall assume, $\mathcal{F}_0 = \{\emptyset, \Omega, \mathcal{N}\}$, where \mathcal{N} is the collection of the-null sets.

In this sense if we have two versions of a process X and Y, that is $\mathbb{P}\left(X_t=Y_t\right)=1, 0\leq t\leq \mathcal{T}$, and X is \mathbb{F} -adapted then Y is also \mathbb{F} -adapted.

Let $\phi_t = (\phi_t^0, ..., \phi_t^d)$ be an adapted processes indicating the number of units invested in the stocks $S = (S^0, ..., S^d)$ at t, then the portfolio value at t is

$$V_t(\phi) = \phi_t \cdot S_t$$

and at time $t + \Delta t$, if we keep the investment,

$$V_{t+\Delta t}\left(\phi\right) = \phi_t \cdot S_{t+\Delta t}$$

so,

$$\Delta V_t \left(\phi \right) = \phi_t \cdot \Delta S_t.$$

To freeze ϕ over the period $[t,t+\Delta t)$ is equivalent to the predictability condition. Then we will have, starting at zero, and if the strategy is self-financing $(\phi_t \cdot S_{t+\Delta t} = \phi_{t+\Delta t} \cdot S_{t+\Delta t})$, that

$$V_{t}\left(\phi\right)=V_{0}\left(\phi\right)+\sum_{s\in\mathcal{T}}\phi_{s}\Delta S_{s}$$

where $\mathcal{T}=\{0,\Delta t,2\Delta t,..,t\}$. If we trade in a continuous form we will have, passing to the limit when $\Delta t\to 0$, that

$$V_t(\phi) = V_0(\phi) + \int_0^t \phi_s \cdot \mathrm{d}S_s.$$

Assume that S^0 is the money account that evolves as:

$$\mathrm{d}S_t^0 = rS_t^0\mathrm{d}t, \quad 0 \leq t \leq T, \quad S_0^0 = 1$$

where r is a non-negative constant, then

$$\left(\int_0^t \phi_t^0 dS_t^0\right)(\omega) = \int_0^t \phi_t^0(\omega) r S_t^0 dt$$

so provided that $\int_0^1 |\phi_t^0| \mathrm{d}t < \infty$ a.s. $\mathbb P$, this integral (as a Lebesgue one) is well defined.

As for the risky assets we need to know how to calculate limits of the form

$$\lim_{n \to \infty} \sum_{i=1}^{n} \phi_{t_{i-1,n}}^{j} (S_{t_{in}}^{j} - S_{t_{i-1,n}}^{j})$$

where $0 = t_{0n} < t_{1n} < ... < t_{m(n)n} = T$ is a sequence of partitions of [0, T] whose mesh goes to zero. Then

$$V_t = V_0 + \int_0^t \phi_t^0 \mathrm{d}S_t^0 + \sum_{j=1}^d \lim_{n \to \infty} \sum_{i=1}^n \phi_{t_{i-1,n}}^j (S_{t_{in}}^j - S_{t_{i-1,n}}^t),$$

We shall consider processes S for which, roughly speaking, $\Delta S_t^j \sim h \Delta W_t^j$ where W^j are Brownian motions and h an adapted process, so we have to construct integrals

$$\int_0^t \varphi_s dW_s$$

where $(W_t)_{0 \leq t \leq T}$ is a Brownian motion and $(\varphi_t)_{0 \leq t \leq T}$ is an adapted process. At first glance we can think in a definition ω to ω (path-wise) but though $W_s(\omega)$ is continuous in s, it is not a function with bounded variation and we cannot associate a measure with the increments along the path to see the above limits as Lebesgue-Stieltjes integrals.

Brownian motion

Definition

A (standard) Brownian motion is a stochastic process, say X, that satisfies the following properties:

$$s \longmapsto X_s(\omega)$$
 is continuous \mathbb{P} -a.s

$$X_0=0$$
 a.s.

$$X_t - X_s$$
 is independent of $\mathcal{F}_s = \sigma(X_u, 0 \le u \le s)$ for all $s \le t$.

$$X_t - X_s \sim N(0, t - s)$$
 for all $0 \le s < t$.

Proposition

The trajectories of a Brownian motion has not bounded variation with probability one.

Proof.

Given the partition $0=t_{0n}\leq t_{1n}\leq ...\leq t_{m(n)n}\leq t$ of [0,t] with $\lim_{n\to\infty}\sup|t_{in}-t_{i-1,n}|=0$, we have:

$$\Delta_n = \sum_{i=1}^{m(n)} (W_{t_{in}} - W_{t_{i-1,n}})^2 \stackrel{L^2}{\to} t.$$

In fact:

$$\mathbb{E}((\Delta_n - t)^2) = \mathbb{E}(\Delta_n^2 - 2t\Delta_n + t^2)$$
$$= \mathbb{E}(\Delta_n^2) - 2t^2 + t^2,$$

Proof.

but

$$\mathbb{E}(\Delta_n^2)$$

$$= E\left(\sum_{i=1}^{m(n)}\sum_{j=1}^{m(n)}(W_{t_{in}} - W_{t_{i-1,n}})^2(W_{t_{jn}} - W_{t_{j-1,n}})^2\right)$$

$$= \sum_{i=1}^{m(n)} \mathbb{E}((W_{t_{in}} - W_{t_{i-1,n}})^4) + 2\sum_{i=1}^n \sum_{j < i} \mathbb{E}((W_{t_{in}} - W_{t_{i-1,n}})^2(W_{t_{jn}} - W_{t_{j-1,n}})^2)$$

$$=3\sum_{i=1}^{m(n)}(t_{in}-t_{i-1,n})^2+2\sum_{i=1}^{m(n)}\sum_{j< i}(t_{in}-t_{i-1,j})(t_{jn}-t_{j-1,n})$$

$$=t^2+2\sum_{i=1}^{m(n)}(t_{in}-t_{i-1,n})^2$$

so

$$\mathbb{E}((\Delta_n - t)^2) = 2\sum_{i=1}^{m(n)} (t_{in} - t_{i-1,n})^2 \le 2t \sup|t_{in} - t_{i-1,n}| \to 0.$$

Then

$$\mathbb{P}\{|\Delta_n - t| > \varepsilon\} \le \frac{2t \sup|t_{in} - t_{i-1,n}|}{\varepsilon^2},$$

and if the sequence of partitions is such that $\sum_{n=1}^{\infty}\sup|t_{in}-t_{i-1,n}|<\infty$, by applying the Borel-Cantelli Lemma, we have

$$\Delta_n \stackrel{\mathsf{a.s.}}{\longrightarrow} t$$
,

and for these partitions

$$\sum_{i=1}^{m(n)} |W_{t_{in}} - W_{t_{i-1n}}| \geq \frac{\sum_{i=1}^{m(n)} |W_{t_{in}} - W_{t_{i-1,n}}|^2}{\sup_i |W_{t_{i,n}} - W_{t_{i-1,n}}|} = \frac{\Delta_n}{\sup_i |W_{t_{in}} - W_{t_{i-1,n}}|} \overset{\text{a.s.}}{\to} \frac{t}{0}.$$

Integral with respect to a Brownian motion

Let (W_t) be a Brownian motion, and (τ_n) a sequence of partitions: $0=t_{0n}\leq t_{1n}\leq ...\leq t_{m(n)n}=t$, with $d_n:=\lim_{n\to\infty}\sup|t_{in}-t_{i-1,n}|=0$, such that for all $0\leq s\leq t$

$$\lim_{n\to\infty} \sum_{\substack{t_{i,n}\in\tau_n\\t_{i,n}\leq s}} |W_{t_{in}} - W_{t_{i-1,n}}|^2 \stackrel{c.s.}{=} s. \tag{1}$$

Let f a C^2 map in \mathbb{R} . Then, fixed ω ,

$$\begin{split} &f(W_{t_{in}}) - f(W_{t_{i-1,n}}) \\ &= f'(W_{t_{i-1,n}})(W_{t_{in}} - W_{t_{i-1,n}}) + \frac{1}{2}f''(W_{\tilde{t}_{i-1,n}})(W_{t_{in}} - W_{t_{i-1,n}})^2, \end{split}$$

where $\tilde{t}_{i-1,n} \in (t_{i-1,n}, t_{in})$.

Since $f''(W_s(\omega))$ is uniformly continuous in a the compact set [0,t], we have

$$\begin{split} &\sum_{i=1}^{m(n)} |f^{"}(W_{\tilde{t}_{i-1,n}}) - f^{"}(W_{t_{i-1,n}})|(W_{t_{in}} - W_{t_{i-1,n}})^{2} \\ &\leq & \epsilon_{n} \sum_{i=1}^{m(n)} (W_{t_{in}} - W_{t_{i-1,n}})^{2} \underset{n \to \infty}{\to} 0, \end{split}$$

For each n, $\mu_n(A)(\omega) := \sum_{i=1}^{m(n)} |W_{t_{in}}(\omega) - W_{t_{i-1,n}}(\omega)|^2 \mathbf{1}_A(t_{i-1,n})$ defines a measure in [0,t] that converges, by (1), to the Lebesgue measure in [0,t]. So

$$\sum_{i=1}^{m(n)} f''(W_{t_{i-1,n}})(W_{t_{in}} - W_{t_{i-1,n}})^2 = \int_0^t f''(W_s) \mu_n(\mathrm{d}s)$$

$$\to \int_0^t f''(W_s) \mathrm{d}s.$$

Therefore,

$$\begin{split} f(W_t) - f(0) &= \lim_{n \to \infty} \sum (f(W_{t_{in}}) - f(W_{t_{i-1,n}})) \\ &= \lim_{n \to \infty} \sum f'(W_{t_{i-1,n}}) (W_{t_{in}} - W_{t_{i-1,n}}) + \frac{1}{2} \int_0^t f''(W_s) ds \;. \end{split}$$

Consequently

$$\lim_{n \to \infty} \sum f'(W_{t_{i-1,n}})(W_{t_{in}} - W_{t_{i-1,n}})$$

is well defined since it coincides with $f(W_t) - f(0) - \frac{1}{2} \int_0^t f''(W_s) ds$ and then we can define

$$\int_0^t f'(W_s) dW_s := \lim_{n \to \infty} \sum f'(W_{t_{i-1,n}}) (W_{t_{in}} - W_{t_{i-1,n}}).$$

The drawback of this construction is that this integral depends on the sequences of partitions.

In this way we have established that

$$\int_{0}^{t} f'(W_{s}) dW_{s} = f(W_{t}) - f(0) - \frac{1}{2} \int_{0}^{t} f''(W_{s}) ds$$

and this result modifies chain rule of the classical analysis:

$$\mathrm{d}f(W_t) \neq f'(W_s)\mathrm{d}W_s$$

The knew integral is known as Itô's integral.

Example

$$\begin{split} \int_0^t W_s \mathrm{d} W_s &= \frac{1}{2} W_t^2 - \frac{1}{2} t, \\ \int_0^t \exp\{W_s\} \mathrm{d} W_s &= \exp\{W_t\} - 1 - \frac{1}{2} \int_0^t \exp\{W_s\} ds \end{split}$$

It is straightforward to see that we can extend the previous result to integrands that are $C^{1,2}$ -functions $f:[0,t]\times R\to R$ in such a way that

$$f(t, W_t) = f(0,0) + \int_0^t f_t(s, W_s) ds + \int_0^t f_x(s, W_s) dW_s + \frac{1}{2} \int_0^t f_{xx}(s, W_s) ds,$$

where

$$f_t(s,x) = \frac{\partial}{\partial t} f(t,x) \bigg|_{t=s}, \quad f_x(s,x) = \frac{\partial}{\partial x} f(t,x) \bigg|_{t=s},$$
 $f_{xx}(s,x) = \frac{\partial^2}{\partial x^2} f(t,x) \bigg|_{t=s}.$

Example

If we take $f(t,x)=\exp(\sigma x-\frac{1}{2}\sigma^2 t)$, $\sigma\in\mathbb{R}_+$, we have

$$\begin{split} \exp(\sigma W_t - \frac{1}{2}\sigma^2 t) &= 1 - \frac{\sigma^2}{2} \int_0^t \exp(\sigma W_s - \frac{1}{2}\sigma^2 s) \mathrm{d}s \\ &+ \sigma \int_0^t \exp(\sigma W_s - \frac{1}{2}\sigma^2 s) \mathrm{d}W_s \\ &+ \frac{\sigma^2}{2} \int_0^t \exp(\sigma W_s - \frac{1}{2}\sigma^2 s) \mathrm{d}s. \end{split}$$

That is,

$$\exp(\sigma W_t - \frac{1}{2}\sigma^2 t) = 1 + \sigma \int_0^t \exp(\sigma W_s - \frac{1}{2}\sigma^2 s) dW_s.$$

so, if we define $S_t := \exp(\sigma W_t - \frac{1}{2}\sigma^2 t)$, we can write

$$\mathrm{d}S_t = \sigma S_t \mathrm{d}W_t.$$