

Mtrx 4700: Experimental Robotics

Data Fusion and Estimation

Dr. Stefan B. Williams

Course Outline

Week	Date	Content	Labs	Due Dates
1	5 Mar	Introduction, history & philosophy of robotics		
2	12 Mar	Robot kinematics & dynamics	Kinematics/Dynamics Lab	
3	19 Mar	Sensors, measurements and perception	"	
4	26 Mar	Robot vision and vision processing.	No Tute (Good Friday)	Kinematics Lab
	2 Apr	BREAK		
5	9 Apr	Localization and navigation	Sensing with lasers	
6	16 Apr	Estimation and Data Fusion	Sensing with vision	
7	23 Apr	Extra tutorial session (sensing)	Robot Navigation	Sensing Lab
8	30 Apr	Obstacle avoidance and path planning	Robot Navigation	
9	7 May	Extra tutorial session (nav demo)	Major project	Navigation Lab
10	14 May	Robotic architectures, multiple robot systems	٠,	
11	21 May	Robot learning		
12	28 May	Case Study	"	
13	4 June	Extra tutorial session (Major Project)	66	Major Project
14		Spare		

Random Signal

- There are many applications in which we might like to identify some signal of interest
- In many cases, the signal we are able to acquire may be corrupted by noise, bias or other effects which distort our understanding of the signal
- Data fusion and estimation techniques provide us with a mechanism for identifying the signal of interest

Slide 3

Estimation

- If we knew something about the underlying signal, we could select a method for identifying it
- For example, if we knew the value was some random constant, we could simply compute the mean of the noisy measurements

Estimating the Mean

- We could store each measurement and recompute the mean when each new measurement, z_i, arrives
 - $m_1 = z_1$
 - $m_2 = (z_1 + z_2)/2$
 - $m_3 = (z_1 + z_2 + z_3)/3$ $m_n = \frac{\sum_{i=1}^{n} z_i}{\sum_{i=1}^{n} z_i}$
 - Over time the amount of memory needed and the complexity of recomputing the mean will increase as new samples are added

Recursively Estimating the Mean

- Alternatively, we could compute the mean recursively
 - $m_1 = Z_1$
 - $m_2 = \frac{1}{2}m_1 + \frac{1}{2}Z_1$
 - $m_3 = \frac{2}{3} m_2 + \frac{1}{3} Z_3$

$$m_n = \left(\frac{n-1}{n}\right) m_{n-1} + \left(\frac{1}{n}\right) z_n$$

- Now our mean depends only on the last value plus the current observation
- This procedure will work fine as long as the variable we are estimating is, in fact, a constant

Recursive Filtering

- What if we didn't know much about the underlying signal?
- Here we can see that the signal of interest appears to have significantly lower frequency than the noise
- A low pass filter will reduce the noise

$$\hat{x}_k = \hat{x}_{k-1} + \alpha \left(z_k - \hat{x}_{k-1} \right)$$
$$= (1 - \alpha)\hat{x}_{k-1} + \alpha z_k$$

Selecting the value of α will depend on the relative bandwidth of the signals Slide 7

Probability Distributions

- A random variable is a variable which can take on some value
- We can describe a random variable using a probability density function (pdf) f(x)
- This describes the probability that the random variable will take on a particular value

Gaussian Distribution

The Gaussian distribution occurs commonly in many applications

$$f(x) = \frac{1}{\sigma\sqrt{2}\pi}e^{-\frac{(x-\overline{x})^2}{2\sigma^2}}$$

- By the Central Limit Theorem, the sum of a number of independent variables has a Gaussian distribution regardless of their original distribution
- Furthermore, a Gaussian can be characterized by its first and second moments (mean and variance)

Probability Distributions

- PDFs are characterized by the following properties
 - f(x) is positive for all values of x $f(x) \ge 0 \quad \forall x \in \Re$
 - The area under the curve describes the probability that x falls within a particular range

$$p(a \le x \le b) = \int_a f(x) dx$$

The total probability mass assigned to the set of $X \underset{\infty}{is} 1$

$$\int_{-\infty}^{\infty} f(x)dx = 1 \qquad \text{or} \qquad \sum_{x \in \mathbb{R}} f(x) = 1$$

Slide 10

Expected Value

 The expected value is the weighted average where the pdf provides the weighting function

$$\overline{x} = E[x] \triangleq \int_{-\infty}^{\infty} x f(x) dx$$

- In general this is not the same as the most likely value
- We may also be interested in the variance of the variable

$$Var(x) \triangleq E[(x - \overline{x})(x - \overline{x})^T]$$
$$= \int_{-\infty}^{\infty} (x - \overline{x})(x - \overline{x})^T f(x) dx$$

Joint Probability Distributions

- The joint probability describes the likelihood of a pair of variables taking on particular values
 - f(x, y) is positive for all values of x

$$f(x,y) \ge 0 \quad \forall x \in \Re, y \in \Re$$

The total probability mass assigned to the set of X and Y is 1

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

For a discrete pdf we find

$$\sum_{y \in \mathbb{R}} \sum_{x \in \mathbb{R}} f(x, y) = 1$$

Covariance

The covariance describes the interdependence between two variables

$$Covar(x, y) \triangleq E[(x - \overline{x})(y - \overline{y})^{T}]$$

$$= \int_{-\infty}^{\infty} (x - \overline{x})(y - \overline{y})^{T} f(x, y) dx$$

Marginal Probability

The marginal probability describes the likelihood of one variable taking on a particular value over all values of the second

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

Conditional Probability

The conditional probability describes the likelihood of one variable taking on a particular value if the other is fixed

$$f(x | y) \triangleq \frac{f(x, y)}{f(y)}$$

 Two values are said to be conditionally independent if the value of one is independent of the other

 $f(x \mid y) = f(x)$

 In this case, the joint probability is simply the product of the two independent probabilities

Theorem of Total Probability

From the definition of conditional probability and the axioms of probability measures we can derive the total probability as

$$f(x) = \int f(x \mid y) f(y) dy$$

Bayes Rule

By combining the conditional probability rules, Bayes rule provides us with a method for estimating a quantity of interest

$$f(x|y) \triangleq \frac{f(x,y)}{f(y)}$$

$$f(y|x) \triangleq \frac{f(x,y)}{f(x)}$$

$$\therefore f(y|x) = \frac{f(x|y)f(y)}{f(x)}$$

Bayes Estimation

- What if we know something about the statistics of the process we are modelling?
- We can employ Bayes rule to help us in the estimation process

$$f(x|Z^n) = \frac{f(Z^n|x)f(x)}{f(Z^n)}$$
$$= \frac{f(z_1, z_2 \cdots z_n|x)f(x)}{f(z_1, z_2 \cdots z_n)}$$

If we assume that the observations are independent given the true state of the system

we find
$$f(x|Z^n) = \frac{f(x)}{f(Z^n)} \prod_{i=1}^n f(z_i \mid x)$$

Recursive Bayes Estimation

We can rearrange the previous equation to put it into a recursive form

$$f(x|Z^k) = \frac{f(z_k|x)f(x|Z^{k-1})}{f(z_k|Z^k)}$$

Estimation

In essence, estimation methods are designed to provide us with the best estimate of the our states of interest x_k given the information available to us

$$P(x_k | Z^k, U^{k-1}, x_0)$$

where

- x_k is the state at time k
- Z^k is a sequence of observations up to time k
- U^{k-1} is a sequence of actions up to time k-1
- x₀ is the initial state
- How best is defined depends on the situation. We also need to make decisions about how to model any potential errors in the sensors

Bayesian Estimation

$$\begin{array}{ll} \textit{Bel}(x_t) = P(x_t \,|\, U^{t-1}, Z^t) & \text{z = observation} \\ \textit{u = action} \\ \textit{x = state} \\ \\ \textit{Bayes} &= \eta \; P(z_t \,|\, x_t, U^{t-1}, Z^{t-1}) \; P(x_t \,|\, U^{t-1}, Z^{t-1}) \\ \textit{Markov} &= \eta \; P(z_t \,|\, x_t) \; P(x_t \,|\, U^{t-1}, Z^{t-1}) \\ \textit{Total prob.} &= \eta \; P(z_t \,|\, x_t) \; \int P(x_t \,|\, U^{t-1}, Z^{t-1}, x_{t-1}) \\ & P(x_{t-1} \,|\, U^{t-1}, Z^{t-1}) \; dx_{t-1} \\ \textit{Markov} &= \eta \; P(z_t \,|\, x_t) \; \int P(x_t \,|\, u_{t-1}, x_{t-1}) \\ & P(x_{t-1} \,|\, U^{t-1}, Z^{t-1}) \; dx_{t-1} \\ &= \eta \; P(z_t \,|\, x_t) \; \int P(x_t \,|\, u_{t-1}, x_{t-1}) \; Bel(x_{t-1}) \; dx_{t-1} \\ \end{array}$$

Bayesian Estimation

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \ \int P(x_t \mid u_{t-1}, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

- We require the following:
 - State Representation x_i
 - $Bel(x_t)$ A belief Model
 - Process Model $P(x_t | u_{t-1}, x_{t-1})$ Observation Model $P(z_t | x_t)$

Bayesian Estimation

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \ \int P(x_t \mid u_{t-1}, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

- Kalman filters (linear, extended, unscented)
- Particle filters (Rao-Blackwellized)
- Hidden Markov models
- Dynamic Bayesian networks
- Estimator in Partially Observable Markov Decision Processes (POMDPs)

State Space Representations

For a mobile vehicle, we are usually interested in describing the state of the vehicle by its pose

$$\mathbf{x} = \begin{bmatrix} x_v \\ y_v \\ \psi_v \end{bmatrix}$$

Process Models

Process models describe the evolution of the state by a first order non-linear differential equation

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) + \mathbf{v}(t)$$

Vehicle Model

 If we can measure the vehicle velocity and sense heading changes we can write a differential equation describing the evolution of the vehicle pose

$$\dot{x}_{v} = V_{v} \cos(\psi_{v}) + v_{x}$$

$$\dot{y}_{v} = V_{v} \sin(\psi_{v}) + v_{y}$$

$$\dot{\psi}_{v} = (\dot{\psi}_{turnrate}) + v_{\psi}$$

Vehicle Model

To implement this on a digital controller, we discretize the process equations

$$x_{v}(k) = x_{v}(k-1) + \Delta t \cdot V_{v}(k-1)\cos(\psi_{v}(k-1)) + v_{x}$$

$$y_{v}(k) = y_{v}(k-1) + \Delta t \cdot V_{v}(k-1)\sin(\psi_{v}(k-1)) + v_{y}$$

$$\psi_{v}(k) = \psi_{v}(k-1) + \Delta t \cdot \dot{\psi}_{turnrate}(k-1) + v_{\psi}$$

Vehicle Model – Differential Drive

$$v_L = r_L \times \omega_L$$
$$v_R = r_R \times \omega_R$$

$$v = \frac{v_L + v_R}{2}$$

$$\omega = \frac{v_L - v_R}{L}$$

- A vehicle like our pioneers relies on differential drive (i.e. two powered wheels) velocity and turn rate is achieved by turning the two wheels
- If one wheel turns, the body centre will move at half the instantaneous velocity. The body will rotate about the stationary wheel

Vehicle Model – Differential Drive

- More complex vehicles, such as a car, are often modelled using the tricycle model
- Velocity and turn rate is measured about the centre of the rear axis
- The angle, γ , of the front steering wheel, determines the turn rate of the vehicle

Observation Models

An observation of the state is usually described by an observation model

$$\mathbf{z}(t) = \mathbf{h}(\mathbf{x}(t), t) + \mathbf{w}(t)$$

Observations may not observe all the states but we may be able to infer something about these states

Observation Models

- What if I take an observation to a feature in the world?
- Clearly, observations of the relative position between myself and this beacons would tell me something about my own state

$$\mathbf{z} = \begin{bmatrix} R_1 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} \sqrt{(x_v - x_1)^2 + (y_v - y_1)^2} \\ \tan^{-1} \frac{y_v - y_1}{x_v - x_1} - \psi_v \end{bmatrix} + \begin{bmatrix} w_R \\ w_\theta \end{bmatrix}$$

Estimation

- At this point we have a model of how we believe the state will evolve over time
- We also have a model of the observations we are likely to take of the environment
- How do we combine this information to yield the best estimate of the state of the vehicle in the world?
- Estimation is the process of generating an estimate of the state of our system

$$\hat{\mathbf{x}} = \begin{bmatrix} \hat{x}_v \\ \hat{y}_v \\ \hat{\psi}_v \end{bmatrix}$$

Estimation

Least squares estimation produces an estimate that minimizes the sum of the squared error between the observation and the model

$$\hat{\mathbf{x}}^{LS}(k) = \arg\min_{x \in X} \sum_{j=1}^{k} [z(j) - h(j, x)]^{T} [z(j) - h(j, x)]$$

Minimum Mean Squared Error estimation produces an estimate that minimizes the mean squared error

$$\hat{\mathbf{x}}^{MMSE}(k) = \arg\min_{\mathbf{x} \in X} E[(\hat{\mathbf{x}} - \mathbf{x})^T (\hat{\mathbf{x}} - \mathbf{x}) | Z^k]$$

Particle Filter

- The Particle filter represents the uncertainty using a discrete set of samples
- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Particle filter
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Particle Filters

$$Bel(x_0)$$

The following slides are courtesy of Dieter Fox

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

$$p(s)$$

$$P(o|s)$$

Robot Motion

Sensor Information: Importance Sampling

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , U_{t-1} Z_t):
- $S_t = \emptyset, \quad \eta = 0$
- 3. For i = 1...n

Generate new samples

- Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_{t}^{i} from $p(x_{t} | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- $w_t^i = p(z_t \mid x_t^i)$

Compute importance weight

 $\eta = \eta + w_t^i$

Update normalization factor

$$S_t = S_t \cup \{ < x_t^i, w_t^i > \}$$

Insert

9. **For** i = 1...n

$$10. w_t^i = w_t^i / \eta$$

Normalize weights

Slide 40

Particle Filter Algorithm

$$Bel (x_{t}) = \eta \ p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, u_{t-1}) \ Bel (x_{t-1}) \ dx_{t-1}$$

$$\rightarrow \text{draw } x^{i}_{t-1} \text{ from } Bel(x_{t-1})$$

$$\rightarrow \text{draw } x^{i}_{t} \text{ from } p(x_{t} \mid x^{i}_{t-1}, u_{t-1})$$

$$\downarrow \text{Importance factor for } x^{i}_{t}:$$

$$w^{i}_{t} = \frac{\text{target distribution}}{\text{proposal distribution}}$$

$$= \frac{\eta \ p(z_{t} \mid x_{t}) \ p(x_{t} \mid x_{t-1}, u_{t-1}) \ Bel (x_{t-1})}{p(x_{t} \mid x_{t-1}, u_{t-1}) \ Bel (x_{t-1})}$$

$$\propto p(z_{t} \mid x_{t})$$

The Kalman Filter

- The Kalman Filter is a minimum mean-squared error estimator
- It makes the assumption that noise in the process and observation models are white, zero-mean Gaussian
- With this assumption, we can recursively estimate the mean and covariance of a Gaussian describing the most likely state of the system

Prediction

During the prediction step, we take the current estimate of the state of the system and apply the process model

$$\hat{\mathbf{x}}_{k}^{-} = \mathbf{F}\hat{\mathbf{x}}_{k-1}^{+} + \mathbf{G}\mathbf{u}_{k-1}$$
$$\mathbf{P}_{k}^{-} = \mathbf{F}\mathbf{P}_{k-1}^{+}\mathbf{F}^{T} + \mathbf{Q}$$

- where F is the model
 - u is the control input
 - Q is the model of the uncertainty in the process
- This results in an update to the mean and variance of our estimate of the state of the world

Observation

 At some time an observation is received and we will compare the actual observation against what we would expect to observe if our current estimate were correct

$$\hat{\mathbf{z}}_k = \mathbf{H}\hat{\mathbf{x}}_k^-$$

$$\mathbf{v} = \mathbf{z}_k - \hat{\mathbf{z}}_k$$

$$\mathbf{S} = \mathbf{H}\mathbf{P}_k^{-}\mathbf{H}^T + \mathbf{R}$$

where h is the observation model

v is the innovation

S is the innovation Covariance

R is the observation Covariance

Update

We then compute an optimal weighting factor W that is used to update our estimate of the mean and covariance based on the information at hand

$$\mathbf{W} = \mathbf{P}_{k}^{-} \mathbf{H}^{T} \mathbf{S}^{-1}$$

$$\hat{\mathbf{X}}_{k}^{+} = \hat{\mathbf{X}}_{k}^{-} + \mathbf{W} \mathbf{v}$$

$$\mathbf{P}_{k}^{+} = \mathbf{P}_{k}^{-} - \mathbf{W} \mathbf{S} \mathbf{W}^{T}$$

where W is the Kalman Gain

Deriving the Posterior Estimate Covariance

By definition

$$\mathbf{P}_k^+ = \operatorname{cov}(\mathbf{x}_k - \hat{\mathbf{x}}_k^+)$$

Substituting values

$$\mathbf{P}_{k}^{+} = \operatorname{cov}(\mathbf{x}_{k} - (\hat{\mathbf{x}}_{k}^{-} + \mathbf{W}_{k}(\mathbf{z}_{k} - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}^{-}))$$
$$= \operatorname{cov}(\mathbf{x}_{k} - (\hat{\mathbf{x}}_{k}^{-} + \mathbf{W}_{k}(\mathbf{H}\mathbf{x}_{k} + \mathbf{v}_{k} - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}^{-}))$$

Collecting terms

$$\mathbf{P}_{k}^{+} = \operatorname{cov}((I - \mathbf{W}_{k}\mathbf{H})(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{-})) + \operatorname{cov}(\mathbf{W}_{k}\mathbf{v}_{k})$$

$$= (I - \mathbf{W}_{k}\mathbf{H})\operatorname{cov}(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{-})(I - \mathbf{W}_{k}\mathbf{H})^{T} + \mathbf{W}_{k}\operatorname{cov}(\mathbf{v}_{k})\mathbf{W}_{k}^{T}$$

$$= (I - \mathbf{W}_{k}\mathbf{H})\mathbf{P}_{k}^{-}(I - \mathbf{W}_{k}\mathbf{H})^{T} + \mathbf{W}_{k}\mathbf{R}_{k}\mathbf{W}_{k}^{T}$$

$$= \mathbf{P}_{k}^{-} - \mathbf{W}_{k}(\mathbf{H}\mathbf{P}_{k}^{-}\mathbf{H}^{T} + \mathbf{R}_{k})\mathbf{W}_{k}^{T}$$

Example

Imagine that we wish to estimate the one dimensional position and speed of a particle

$$\mathbf{x}_{\dot{k}} = \left[\begin{array}{c} x \\ \dot{x} \end{array} \right]$$

Assuming the particle moves under constant acceleration, the process model can be written

$$\mathbf{x}_k = \mathbf{F}\mathbf{x}_{k-1} + \mathbf{G}a_k$$

$$\mathbf{F} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} and \mathbf{G} = \begin{bmatrix} \frac{\Delta t^2}{2} \\ \frac{\Delta t}{2} \end{bmatrix}$$

Example

 If we receive some noisy observation of the position of the particle, we have

$$\mathbf{z}_{k} = \mathbf{H}\mathbf{x}_{k-1} + \mathbf{v}_{k}$$
$$\mathbf{H} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Estimation for Navigation

- Recursive three stage update procedure
- ① Prediction

Use vehicle model to predict vehicle position

Observation

Take feature observation(s)

③ Update

Validated observations used to generate optimal estimate

$$\hat{\mathbf{x}} = \begin{bmatrix} \hat{x}_v \\ \hat{y}_v \\ \hat{\psi}_v \end{bmatrix} \quad \mathbf{P} = \begin{bmatrix} P_{xx} & P_{xy} & P_{x\psi} \\ P_{xy}^T & P_{yy} & P_{y\psi} \\ P_{x\psi}^T & P_{y\psi}^T & P_{\psi\psi} \end{bmatrix}$$

Slide 49

EKF Prediction

During the prediction step, we take the current estimate of the state of the system and apply the process model

$$\hat{\mathbf{x}}_{k}^{-} = \mathbf{f}(\hat{\mathbf{x}}_{k-1}^{+}, \mathbf{u}_{k-1}^{-})$$

$$\mathbf{P}_{k}^{-} = \nabla \mathbf{f} \mathbf{P}_{k-1}^{+} \nabla \mathbf{f}^{T} + \mathbf{Q}$$

- where f is the model
 - u is the control input
 - Q is the model of the uncertainty in the process
- This results in an update to the mean and variance of our estimate of the state of the world

EKF Observation

 At some time an observation is received and we will compare the actual observation against what we would expect to observe if our current estimate were correct

$$\hat{\mathbf{z}}_{k} = \mathbf{h}(\hat{\mathbf{x}}_{k}^{-})$$

$$\mathbf{v} = \mathbf{z}_{k} - \hat{\mathbf{z}}_{k}$$

$$\mathbf{S} = \nabla \mathbf{h}_{k} \mathbf{P}_{k}^{-} \nabla \mathbf{h}^{T}_{k} + \mathbf{R}$$

where h is the observation model

v is the innovation

S is the innovation Covariance

R is the observation Covariance

EKF Update

We then compute an optimal weighting factor W that is used to update our estimate of the mean and covariance based on the information at hand

$$\mathbf{W} = \mathbf{P}_{k}^{-} \nabla \mathbf{h}_{k}^{T} \mathbf{S}^{-1}$$

$$\hat{\mathbf{X}}_{k}^{+} = \hat{\mathbf{X}}_{k}^{-} + \mathbf{W} \boldsymbol{\nu}$$

$$\mathbf{P}_{k}^{+} = \mathbf{P}_{k}^{-} - \mathbf{W} \mathbf{S} \mathbf{W}^{T}$$

where W is the Kalman Gain

Data Fusion

Triangulation path Dead Reckoning path Update stage Fused path estimate

Fused estimate

Triangulation observation
Dead Reckoning prediction

Dead Reckoning prediction at Observation

The SLAM Problem

- Simultaneous Localisation and Map **Building (SLAM)**
- Start at an unknown location with no a priori knowledge of landmark locations
- From relative observations of landmarks, compute estimate of vehicle location and estimate of landmark locations
- While continuing in motion, build complete map of landmarks and use these to provide continuous estimates of vehicle location

The Estimation Process

Recursive three stage update procedure

① Prediction

Use vehicle model to predict vehicle position

② Observation

Take feature observation(s)

③ Update

Validated observations used to generate optimal estimate

Initialise new target

Conclusions

- Data fusion is an important mechanism for combining noisy or uncertain data
- Many methods for data fusion rely on Bayesian techniques for consistently fusing data
- Have a look at

http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_08.pdf

which contains a good description of the Kalman Filter and its applications

References

- Y. Bar-Shalom and T.E. Fortmann. *Tracking and Data* Association. Academic Press, 1988.
- R.G. Brown and P.Y.C. Hwang. Introduction to Applied Kalman Filtering. John Wiley,
- 1992.
- D.E. Catlin. Estimation, Control and the Discrete Kalman Filter. Springer Verlag, 1984.
- H.F. Durrant-Whyte. An autonomous guided vehicle for cargo handling applications. Int. J. Robotics Research, 15(5):407-440, 1996.
- M. Gelb. Applied Optimal Estimation. MIT press, 1974.
- M.S. Grewal and A.P. Andrews. Kalman Filtering Theory and Practise. Prentice Hall, 1993.
- P.S. Maybeck. Stochastic Models, Estimaton and Control, Vol. I. Academic Press, 1979.
- Sebastian Thrun, Dieter Fox and Wolfram Burgard, Probabilistic Robotics, The MIT Press, 2005

Slide 57