Conteúdo

- Autômatos finitos não-determinísticos
 - Introdução
 - Formalização
 - Transição vazia e movimento vazio
- Exemplos
 - Exemplo 1
 - Exemplo 2
 - Exemplo 3
- Exercícios

AFN

AFN: Visão macro

O não-determinismo nos autômatos é expresso por uma função tal que, para $p \in Q$, o estado corrente, e um símbolo lido, esta função determina aleatoriamente um novo estado de um conjunto de estados alternativos.

Um possível recorte de um diagrama para um AFN¹

¹Menezes, PB.

Definição formal de um AFN

Definição

Um autômato finito não-determinístico (AFN) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, em que

- Q é um conjunto finito de estados;
- Σ é um conjunto finito chamado alfabeto;
- **3** $\delta: Q \times \Sigma \to 2^Q$ é a função programa a qual é uma função total. Assim, para um estado p e um símbolo a $\delta(p,a) = \{q_1, q_2, \dots, q_n\}$ é a transição do autômato;
- $q_0 \in Q$ é o estado inicial; e
- **5** $F \subseteq Q$ é o conjunto de estados de aceitação.

Observem a definição de função programa acima.

Recordando função total

Função total

Considerando dois conjuntos, X chamado de domínio e Y de contradomínio e, dado:

$$f: X \to Y$$

dizemos que:

• f é total: para todos $x \in X$, $\exists y \in Y$ tal que y = f(x).

Um possível recorte de um diagrama para um AFN^2

²Menezes, PB.

Função programa estendida ou COMPUTAÇÃO

Definição

Seja $N = (Q, \Sigma, \delta, q_0, F)$ um AFN.

A função programa estendida ou computação de M, denotada por

$$\delta^*: 2^Q \times \Sigma^* \to 2^Q$$

é a função programa $\delta: Q \times \Sigma \to 2^Q$ estendida para palavras e conjunto de estados (P) como:

$$\delta^*(P, \epsilon) = P$$

 $\delta^*(P, aw) = \delta^*(\cup_{(q \in P)} \delta(q, a), w)$

ou seja, é a sucessiva aplicação da função programa para cada símbolo da palavra.

Função programa: mais detalhes

continuação...

Ou ainda, dados os estados $\{q_1,q_2,\ldots,q_n\}$ e um símbolo a, vale que

$$\delta^*(\{q_1,q_2,\ldots,q_n\},a) = \delta(q_1,a) \cup \delta(q_2,a) \cup \ldots \cup \delta(q_n,a)$$

ou seja, é a união de todas as possibilidades de aplicação da função de transição sobre o símbolo lido.

Transição vazia

$$\delta(p,a)=\varnothing$$

Se $\delta(p, a) = \emptyset$ afirma-se que a transição é indefinida para (p, a) e, portanto, o autômato para rejeitando a entrada.

Transição vazia

$$\delta(p, a) = \emptyset$$

Se $\delta(p, a) = \emptyset$ afirma-se que a transição é indefinida para (p, a) e, portanto, o autômato para rejeitando a entrada.

Exemplo de transição vazia

$$\Sigma = \{0, 1\}, w = 001.$$

A função programa $\delta(q_1,0)=\varnothing$, ou seja, não está definida.

Movimento vazio

$$\delta(p,\epsilon)=p'$$

Se $\delta(p,\epsilon)=p'$ afirma-se que o movimento do estado p para o estado p' é vazio, ou seja, acontece mesmo sem haver um símbolo lido.

Movimento vazio

$$\delta(p,\epsilon)=p'$$

Se $\delta(p,\epsilon)=p'$ afirma-se que o movimento do estado p para o estado p' é vazio, ou seja, acontece mesmo sem haver um símbolo lido.

Exemplo de movimento vazio

$$\Sigma = \{0, 1\}, w = 001.$$

Qualquer símbolo 0 antecede o símbolo 1.

Movimento vazio: como entender

- Toda vez que o autômato estiver numa transição ϵ significa que ele está em *ambos* os estados
- Se a cadeia é ϵ o estado atual do autômato é duplo $\{q_0,q_1\}$
- Se o símbolo lido for '0' o estado atual do autômato é novamente {q₀, q₁}

Exemplo de um autômato finito não-determinístico (AFN).³

³Sipser, M.

Formalizando o autômato

Formalizando o autômato $N_1 = (Q, \Sigma, \delta, q_0, F)$ temos:

- $Q = \{q_1, q_2, q_3, q_4\};$
- **2** $\Sigma = \{0, 1\};$

- **5** $F = \{q_4\}.$

Como entender o AFN em execução: modo alternativo

- A cada estado alternativo do AFN, ocorre a divisão da máquina em múltiplas cópias
- Cada cópia segue o processamento de acordo com seu estado, o símbolo lido e a função programa
- O símbolo ϵ , como símbolo lido, permite o avanço para o próximo estado do autômato

Vejamos agora uma representação da execução do AFN N_1 para a palavra ${\bf 010110}$

Árvore de execução do AFN N_1 para 010110

Aceita ou rejeita

Definição

Seja $N = (Q, \Sigma, \delta, q_0, F)$ um AFN.

A linguagem aceita ou linguagem reconhecida por N, denotada por

$$L(N)$$
 ou Aceita(N)

é o conjunto de todas as palavras $\in \Sigma^*$ t.q. existe pelo menos um caminho alternativo que aceita a palavra a partir de $\{q_0\}$, ou seja,

$$L(N) = \{ w \mid \delta^*(\{q_0\}, w) \cap F \neq \emptyset \}$$

Explicando...

Ou seja, dada uma palavra w, um AFN para por um dos dois motivos:

- Aceita w Após processar o último símbolo lido existe pelo menos um estado final pertencente ao conjunto dos estados alternativos (nas execuções alternativas) que foi atingido
- Rejeita w
 - Após processar o último símbolo lido os estados alternativos não são finais
 - Em algum momento do processamento de w o conjunto de estados alternativos atingido é vazio. O AFN para por indefinição.

Exemplo 2⁴

Projetar um AFN N_2 sobre $\Sigma = \{a, b\}$ que considere

 $L_2 = \{w \mid w \text{ possui } aa \text{ ou } bb \text{ como subpalavra}\}$

tal que $N_2 = (\{q_0, q_1, q_2, q_f\}, \Sigma, \delta_f, q_0, \{q_f\}).$

⁴Menezes, PB

Exemplo 2: uma solução

Detalhes de N_2

Notem que em N_2 temos como função de transição:

δ_2	а	b
q_0	$\{q_0,q_1\}$	$\{q_0,q_2\}$
q_1	q_f	Ø
q_2	Ø	q_f
q_f	q_f	q_f

Exemplo 3⁵

Projetar um AFN N_3 sobre $\Sigma = \{a, b\}$ que considere

$$L_2 = \{ w \mid w \text{ possui } aaa \text{ como sufixo} \}$$

tal que
$$N_2 = (\{q_0, q_1, q_2, q_f\}, \Sigma, \delta_f, q_0, \{q_f\}).$$

Exemplo 3: uma solução

Exercício em sala (1): 5 minutos

Determine a linguagem do AFN N₄ abaixo:

Exercício em sala (1): 5 minutos

Determine a linguagem do AFN N_4 abaixo:

Resposta: $L(N_4) = \{a \cup ab\}$

Exercício em sala (2): 5 minutos

Determine a linguagem do AFN abaixo:

Exercício em sala (3): 5 minutos

Determine a linguagem do AFN abaixo:

Observação

Parece mas...

A inclusão do não-determinismo é, aparentemente, um acréscimo à capacidade de resolução aos AFD mas na realidade o não-determinismo não aumenta seu poder computacional.

AFD equivalente

Assim, para cada AFN é possível construir um AFD equivalente que realiza as mesmas computações.

O contrário também é verdadeiro.