第 12 章 d: 函数展开成幂级数

数学系 梁卓滨

2017.07 暑期班

Outline

$$f(x) \neq a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

$$f(x) \neq a_0 + a_1(x-x_0) + a_2(x-x_0)^2 + \cdots + a_n(x-x_0)^n + \cdots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f(x) \stackrel{?}{=} a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f^{(k)}(x) = \left[\sum_{n=0}^{\infty} a_n (x - x_0)^n\right]^{(k)}$$

$$f(x) \neq a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f^{(k)}(x) = \left[\sum_{n=0}^{\infty} a_n (x - x_0)^n\right]^{(k)} = \sum_{n=0}^{\infty} \left[a_n (x - x_0)^n\right]^{(k)}$$

$$f(x) \neq a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f^{(k)}(x) = \left[\sum_{n=0}^{\infty} a_n (x - x_0)^n\right]^{(k)} = \sum_{n=0}^{\infty} \left[a_n (x - x_0)^n\right]^{(k)}$$

$$n \cdot (n-1) \cdot \cdot \cdot (n-k+1) \cdot (x-x_0)^{n-k}$$

$$f(x) \neq a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f^{(k)}(x) = \left[\sum_{n=0}^{\infty} a_n (x - x_0)^n\right]^{(k)} = \sum_{n=0}^{\infty} \left[a_n (x - x_0)^n\right]^{(k)}$$
$$= \sum_{n=0}^{\infty} a_n \cdot n \cdot (n-1) \cdots (n-k+1) \cdot (x - x_0)^{n-k}$$

$$f(x) \stackrel{?}{=} a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f^{(k)}(x) = \left[\sum_{n=0}^{\infty} a_n (x - x_0)^n\right]^{(k)} = \sum_{n=0}^{\infty} \left[a_n (x - x_0)^n\right]^{(k)}$$
$$= \sum_{n=k}^{\infty} a_n \cdot n \cdot (n-1) \cdots (n-k+1) \cdot (x - x_0)^{n-k}$$
$$= a_k \cdot k!$$

$$f(x) \neq a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f^{(k)}(x) = \left[\sum_{n=0}^{\infty} a_n (x - x_0)^n\right]^{(k)} = \sum_{n=0}^{\infty} \left[a_n (x - x_0)^n\right]^{(k)}$$
$$= \sum_{n=k}^{\infty} a_n \cdot n \cdot (n-1) \cdots (n-k+1) \cdot (x - x_0)^{n-k}$$
$$= a_k \cdot k! + a_{k+1} \cdot (k+1) \cdots 2 \cdot (x - x_0)$$

$$f(x) \neq a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f^{(k)}(x) = \left[\sum_{n=0}^{\infty} a_n (x - x_0)^n\right]^{(k)} = \sum_{n=0}^{\infty} \left[a_n (x - x_0)^n\right]^{(k)}$$

$$= \sum_{n=k}^{\infty} a_n \cdot n \cdot (n-1) \cdots (n-k+1) \cdot (x - x_0)^{n-k}$$

$$= a_k \cdot k! + a_{k+1} \cdot (k+1) \cdots 2 \cdot (x - x_0)$$

$$+ a_{k+2} \cdot (k+2) \cdots 3 \cdot (x - x_0)^2 + \cdots$$

$$f(x) \stackrel{?}{=} a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

证明 逐项求 k 次导得:

$$f^{(k)}(x) = \left[\sum_{n=0}^{\infty} a_n (x - x_0)^n\right]^{(k)} = \sum_{n=0}^{\infty} \left[a_n (x - x_0)^n\right]^{(k)}$$

$$= \sum_{n=k}^{\infty} a_n \cdot n \cdot (n-1) \cdots (n-k+1) \cdot (x - x_0)^{n-k}$$

$$= a_k \cdot k! + a_{k+1} \cdot (k+1) \cdots 2 \cdot (x - x_0)$$

$$+ a_{k+2} \cdot (k+2) \cdots 3 \cdot (x - x_0)^2 + \cdots$$

取 $x = x_0$ 得 $a_k = \frac{1}{k!} f^{(k)}(x_0)$

$$f(x) \stackrel{?}{=} a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f(x) \stackrel{?}{=} a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

注 1

 $f(x_0)$

$$f(x) \neq a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f(x_0)$$
 $f'(x_0)$

$$f(x) \neq a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f(x_0) \ f'(x_0) \ \frac{1}{2!}f''(x_0)$$

$$f(x) \neq a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

$$f(x_0)$$
 $f'(x_0)$ $\frac{1}{2!}f''(x_0)$ \cdots $\frac{1}{n!}f^{(n)}(x_0)$

$$f(x) \neq a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

注 1 也就是, f(x) 至多能展成如下形式的幂级数:

$$f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\cdots$$

$$f(x) \stackrel{?}{=} a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

性质 若 f(x) 能展成上述幂级数,则

$$a_n = \frac{1}{n!} f^{(n)}(x_0).$$

注 1 也就是, f(x) 至多能展成如下形式的幂级数:

$$f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\cdots$$

- 此级数称为 f(x) 在 x_0 处的 泰勒级数。

$$\mathbf{H}$$
 取 $\mathbf{x}_0 = \mathbf{0}$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

$$\mathbf{H}$$
 取 $\mathbf{x}_0 = \mathbf{0}$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = e^x$$
 时,

$$f(x) = f'(x) = f''(x) = f'''(x) = \dots = f^{(n)}(x) = e^x$$

$$\mathbf{H}$$
 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = e^x$$
 时,

$$f(x) = f'(x) = f''(x) = f'''(x) = \dots = f^{(n)}(x) = e^x$$

$$\Rightarrow$$
 $f(0) = f'(0) = f''(0) = f'''(0) = \cdots = f^{(n)}(0) = 1$

$$\mathbf{H}$$
 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = e^x$$
 时,

$$f(x) = f'(x) = f''(x) = f'''(x) = \dots = f^{(n)}(x) = e^x$$

$$\Rightarrow f(0) = f'(0) = f''(0) = f'''(0) = \dots = f^{(n)}(0) = 1$$

⇒
$$\bar{x}$$
 \$\text{\$\pi\$}\$ \$\pi\$\$ \$\pi

解 取
$$x_0 = 0$$
 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = \sin x$$
 时,

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当 $f(x) = \sin x$ 时,

	$f^{(n)}(x)$	$f^{(n)}(0)$
n = 0, 4, 8	sin x	0
<i>n</i> = 1, 5, 9	cosx	1
n = 2, 6, 10	— sin <i>x</i>	0
n = 3, 7, 11	— cos x	-1

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当 $f(x) = \sin x$ 时,

	$f^{(n)}(x) = \sin(x + \frac{n}{2}\pi)$	$f^{(n)}(0)$
n = 0, 4, 8	sin x	0
<i>n</i> = 1, 5, 9	cosx	1
n = 2, 6, 10	— sin <i>x</i>	0
n = 3, 7, 11	— cos x	-1

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当 $f(x) = \sin x$ 时,

	$f^{(n)}(x) = \sin(x + \frac{n}{2}\pi)$	$f^{(n)}(0) = \sin(\frac{n}{2}\pi)$
n = 0, 4, 8	sin x	0
<i>n</i> = 1, 5, 9	cosx	1
n = 2, 6, 10	— sin <i>x</i>	0
n = 3, 7, 11	— cos x	-1

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当 $f(x) = \sin x$ 时,

	$f^{(n)}(x) = \sin(x + \frac{n}{2}\pi)$	$f^{(n)}(0) = \sin(\frac{n}{2}\pi)$
n = 0, 4, 8	sin x	0
<i>n</i> = 1, 5, 9	cosx	1
<i>n</i> = 2, 6, 10	— sin <i>x</i>	0
<i>n</i> = 3, 7, 11	— cos x	-1

所以泰勒级数是

$$x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \frac{1}{9!}x^9 - \frac{1}{11!}x^{11} + \cdots$$

 \mathbf{H} 取 $\mathbf{x}_0 = \mathbf{0}$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当 $f(x) = \sin x$ 时,

	$f^{(n)}(x) = \sin(x + \frac{n}{2}\pi)$	$f^{(n)}(0) = \sin(\frac{n}{2}\pi)$
n = 0, 4, 8	sin x	0
<i>n</i> = 1, 5, 9	cosx	1
<i>n</i> = 2, 6, 10	— sin <i>x</i>	0
<i>n</i> = 3, 7, 11	- cos x	-1

所以泰勒级数是

所以泰勒级数是
$$x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\frac{1}{9!}x^9-\frac{1}{11!}x^{11}+\cdots+(-1)^m\frac{1}{(2m+1)!}x^{2m+1}+\cdots$$

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

	$f^{(n)}(x)$	$f^{(n)}(0)$
n = 0, 4, 8	cosx	1
<i>n</i> = 1, 5, 9	— sin <i>x</i>	0
<i>n</i> = 2, 6, 10	— cos x	-1
n = 3, 7, 11	sin x	0

 \mathbf{H} 取 $\mathbf{x}_0 = \mathbf{0}$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

	$f^{(n)}(x) = \cos(x + \frac{n}{2}\pi)$	$f^{(n)}(0)$
n = 0, 4, 8	cosx	1
n = 1, 5, 9	— sin <i>x</i>	0
n = 2, 6, 10	— cos x	-1
n = 3, 7, 11	sin x	0

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

	$f^{(n)}(x) = \cos(x + \frac{n}{2}\pi)$	$f^{(n)}(0) = \cos(\frac{n}{2}\pi)$
n = 0, 4, 8	cosx	1
n = 1, 5, 9	— sin <i>x</i>	0
<i>n</i> = 2, 6, 10	— cos x	-1
n = 3, 7, 11	sin x	0

例 求 $f(x) = \cos x$ 在 x = 0 处的泰勒级数。

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当 $f(x) = \cos x$ 时,

	$f^{(n)}(x) = \cos(x + \frac{n}{2}\pi)$	$f^{(n)}(0) = \cos(\frac{n}{2}\pi)$
n = 0, 4, 8	cosx	1
n = 1, 5, 9	— sin <i>x</i>	0
n = 2, 6, 10	— cos x	-1
<i>n</i> = 3, 7, 11	sin x	0

所以泰勒级数是

$$1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \frac{1}{8!}x^8 - \frac{1}{10!}x^{10} + \cdots$$

例 求 $f(x) = \cos x$ 在 x = 0 处的泰勒级数。

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当 $f(x) = \cos x$ 时,

	$f^{(n)}(x) = \cos(x + \frac{n}{2}\pi)$	$f^{(n)}(0) = \cos(\frac{n}{2}\pi)$
n = 0, 4, 8	cosx	1
n = 1, 5, 9	— sin <i>x</i>	0
n = 2, 6, 10	— cos x	-1
<i>n</i> = 3, 7, 11	sin x	0

所以泰勒级数是

$$1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \frac{1}{8!}x^8 - \frac{1}{10!}x^{10} + \dots + (-1)^m \frac{1}{(2m)!}x^{2m} + \dots$$

$$\mathbf{H}$$
 取 $\mathbf{x}_0 = \mathbf{0}$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = \ln(1+x)$$
 时,

解 取
$$x_0 = 0$$
 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = \ln(1+x)$$
 时,

$$f = \ln(1+x), \quad f' = \frac{1}{1+x},$$

解 取
$$x_0 = 0$$
 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = \ln(1+x)$$
 时,

$$f = \ln(1+x), \quad f' = \frac{1}{1+x}, \quad f'' = \frac{(-1)}{(1+x)^2},$$

解 取
$$x_0 = 0$$
 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = \ln(1+x)$$
 时,

$$f = \ln(1+x), \quad f' = \frac{1}{1+x}, \quad f'' = \frac{(-1)}{(1+x)^2}, \quad f''' = \frac{2}{(1+x)^3},$$

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

$$f = \ln(1+x), \quad f' = \frac{1}{1+x}, \quad f'' = \frac{(-1)}{(1+x)^2}, \quad f''' = \frac{2}{(1+x)^3},$$

$$f^{(4)} = \frac{-2 \cdot 3}{(1+x)^4},$$

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

$$f = \ln(1+x), \quad f' = \frac{1}{1+x}, \quad f'' = \frac{(-1)}{(1+x)^2}, \quad f''' = \frac{2}{(1+x)^3},$$

$$f^{(4)} = \frac{-2 \cdot 3}{(1+x)^4}, \quad f^{(5)} = \frac{2 \cdot 3 \cdot 4}{(1+x)^5}, \dots,$$

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

$$f = \ln(1+x), \quad f' = \frac{1}{1+x}, \quad f'' = \frac{(-1)}{(1+x)^2}, \quad f''' = \frac{2}{(1+x)^3},$$

$$f^{(4)} = \frac{-2 \cdot 3}{(1+x)^4}, \quad f^{(5)} = \frac{2 \cdot 3 \cdot 4}{(1+x)^5}, \dots, f^{(n)} = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}, \dots$$

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

$$f = \ln(1+x), \quad f' = \frac{1}{1+x}, \quad f'' = \frac{(-1)}{(1+x)^2}, \quad f''' = \frac{2}{(1+x)^3},$$

$$f^{(4)} = \frac{-2 \cdot 3}{(1+x)^4}, \quad f^{(5)} = \frac{2 \cdot 3 \cdot 4}{(1+x)^5}, \dots, f^{(n)} = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}, \dots$$

所以
$$\frac{1}{n!}f^{(n)}(0) = \frac{(-1)^{n-1}}{n}$$
,

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

$$f = \ln(1+x), \quad f' = \frac{1}{1+x}, \quad f'' = \frac{(-1)}{(1+x)^2}, \quad f''' = \frac{2}{(1+x)^3},$$

$$f^{(4)} = \frac{-2 \cdot 3}{(1+x)^4}, \quad f^{(5)} = \frac{2 \cdot 3 \cdot 4}{(1+x)^5}, \dots, f^{(n)} = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}, \dots$$

所以
$$\frac{1}{n!}f^{(n)}(0) = \frac{(-1)^{n-1}}{n}$$
,泰勒级数是
$$x - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{1}{4}x^4 + \cdots$$

解 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当 $f(x) = \ln(1+x)$ 时,

$$f = \ln(1+x), \quad f' = \frac{1}{1+x}, \quad f'' = \frac{(-1)}{(1+x)^2}, \quad f''' = \frac{2}{(1+x)^3},$$

$$f^{(4)} = \frac{-2 \cdot 3}{(1+x)^4}, \quad f^{(5)} = \frac{2 \cdot 3 \cdot 4}{(1+x)^5}, \dots, f^{(n)} = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}, \dots$$

所以 $\frac{1}{n!}f^{(n)}(0) = \frac{(-1)^{n-1}}{n}$, 泰勒级数是

$$x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots$$

例 求 $f(x) = (1+x)^{\alpha}$ 在 x = 0 处的泰勒级数。

例 求
$$f(x) = (1 + x)^{\alpha}$$
 在 $x = 0$ 处的泰勒级数。

解 取
$$x_0 = 0$$
 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = (1+x)^{\alpha}$$
 时,

例 求
$$f(x) = (1 + x)^{\alpha}$$
 在 $x = 0$ 处的泰勒级数。

解 取
$$x_0 = 0$$
 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = (1+x)^{\alpha}$$
 时,

$$f = (1+x)^{\alpha}, \quad f' = \alpha(1+x)^{\alpha-1},$$

例 求
$$f(x) = (1 + x)^{\alpha}$$
 在 $x = 0$ 处的泰勒级数。

解 取
$$x_0 = 0$$
 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = (1+x)^{\alpha}$$
 时,

$$f = (1+x)^{\alpha}$$
, $f' = \alpha(1+x)^{\alpha-1}$, $f'' = \alpha(\alpha-1)(1+x)^{\alpha-2}$,

例 求
$$f(x) = (1 + x)^{\alpha}$$
 在 $x = 0$ 处的泰勒级数。

$$\mathbf{H}$$
 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = (1+x)^{\alpha}$$
 时,

$$f = (1+x)^{\alpha}, \quad f' = \alpha(1+x)^{\alpha-1}, \quad f'' = \alpha(\alpha-1)(1+x)^{\alpha-2},$$

$$\ldots, f^{(n)} = \alpha(\alpha - 1) \cdots (\alpha - n + 1)(1 + x)^{\alpha - n}, \cdots$$

例 求
$$f(x) = (1 + x)^{\alpha}$$
 在 $x = 0$ 处的泰勒级数。

解 取
$$x_0 = 0$$
 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = (1+x)^{\alpha}$$
 时,

$$f = (1+x)^{\alpha}$$
, $f' = \alpha(1+x)^{\alpha-1}$, $f'' = \alpha(\alpha-1)(1+x)^{\alpha-2}$,

$$\ldots, f^{(n)} = \alpha(\alpha - 1) \cdots (\alpha - n + 1)(1 + x)^{\alpha - n}, \cdots$$

所以
$$\frac{1}{n!}f^{(n)}(0) = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$$
,

例 求
$$f(x) = (1 + x)^{\alpha}$$
 在 $x = 0$ 处的泰勒级数。

解 取
$$x_0 = 0$$
 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = (1+x)^{\alpha}$$
 时,

$$f = (1+x)^{\alpha}$$
, $f' = \alpha(1+x)^{\alpha-1}$, $f'' = \alpha(\alpha-1)(1+x)^{\alpha-2}$,

$$\ldots, f^{(n)} = \alpha(\alpha - 1) \cdots (\alpha - n + 1)(1 + x)^{\alpha - n}, \cdots$$

所以
$$\frac{1}{n!}f^{(n)}(0) = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$$
,泰勒级数是

$$1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!}x^2 + \cdots$$

例 求
$$f(x) = (1 + x)^{\alpha}$$
 在 $x = 0$ 处的泰勒级数。

$$\mathbf{H}$$
 取 $x_0 = 0$ 时,泰勒级数是

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

当
$$f(x) = (1+x)^{\alpha}$$
 时,

$$f = (1+x)^{\alpha}, \quad f' = \alpha(1+x)^{\alpha-1}, \quad f'' = \alpha(\alpha-1)(1+x)^{\alpha-2},$$

$$\ldots, f^{(n)} = \alpha(\alpha - 1) \cdots (\alpha - n + 1)(1 + x)^{\alpha - n}, \cdots$$

所以
$$\frac{1}{n!}f^{(n)}(0) = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$$
,泰勒级数是

$$1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!}x^2 + \dots + \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!}x^n + \dots$$

• 可以证明 e^x , $\sin x$, $\cos x$ 以及 $\frac{1}{1+x}$, 等于其泰勒级数,即

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots, \quad x \in (-\infty, \infty)$$

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots + (-1)^n \frac{1}{(2n+1)!}x^{2n+1} + \dots, x \in (-\infty, \infty)$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots + (-1)^n \frac{1}{(2n)!}x^{2n} + \dots, \quad x \in (-\infty, \infty)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots, \quad x \in (-1, 1)$$

• 可以证明 e^x , $\sin x$, $\cos x$ 以及 $\frac{1}{1+x}$, 等于其泰勒级数,即 $\frac{1}{1+x}$ $\frac{1}{1+x}$

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots, \quad x \in (-\infty, \infty)$$

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots + (-1)^n \frac{1}{(2n+1)!}x^{2n+1} + \dots, x \in (-\infty, \infty)$$

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{2}x^4 - \frac{1}{2}x^6 + \dots + (-1)^n \frac{1}{(2n+1)!}x^{2n} + \dots \qquad x \in (-\infty, \infty)$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots + (-1)^n \frac{1}{(2n)!}x^{2n} + \dots, \quad x \in (-\infty, \infty)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots, x \in (-1, 1)$$

• 利用上述结果,及逐项积分公式,可进一步求出

• 利用上述结果,及逐项积分公式,可进一步来出ln(1+x), arctan x

的幂级数展开。

性质 成立
$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

 $\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$

证明 1. 幂级数的收敛域是 (-1, 1], 故上式至多对 $x \in (-1, 1]$ 成立。

 $\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$

证明 1. 幂级数的收敛域是 (-1, 1], 故上式至多对 $x \in (-1, 1]$ 成立。 2.

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt$$

2.

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1], 故上式至多对 $x \in (-1, 1]$ 成立。

$$\ln(1+x) = \int_{0}^{x} \frac{1}{1+t} dt = \int_{0}^{x} \sum_{n=0}^{\infty} (-1)^{n} t^{n} dt$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1], 故上式至多对 $x \in (-1, 1]$ 成立。

2.

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1], 故上式至多对 $x \in (-1, 1]$ 成立。

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$
$$= \sum_{n=0}^\infty (-1)^n \frac{1}{n+1} x^{n+1}$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1], 故上式至多对 $x \in (-1, 1]$ 成立。

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$

$$\ln(1+x) = \int_0^\infty \frac{1}{1+t} dt = \int_0^\infty \sum_{n=0}^n (-1)^n t^n dt = \sum_{n=0}^n (-1)^n \int_0^n t^n dt$$
$$= \sum_{n=0}^\infty (-1)^n \frac{1}{n+1} x^{n+1} = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n} x^n$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1} \frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1], 故上式至多对 $x \in (-1, 1]$ 成立。

2. 当 $x \in (-1, 1)$ 时,利用逐项积分可得

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$
$$= \sum_{n=0}^\infty (-1)^n \frac{1}{1+t} x^{n+1} = \sum_{n=0}^\infty \frac{(-1)^{n-1}}{1+t} x^n$$

$$=\sum_{n=0}^{\infty}(-1)^n\frac{1}{n+1}x^{n+1}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}x^n$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1], 故上式至多对 $x \in (-1, 1]$ 成立。

证明 1. 春级数的收敛现定 (-1, 1],放工式主多对 X ∈ (-1, 1] 成立。

2. 当
$$x \in (-1, 1)$$
 时,利用逐项积分可得
$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$

3. 注意到 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$ 收敛域是 (-1, 1], 由连续性, 当 x = 1 时也

成立
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n.$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1],故上式至多对 $x \in (-1, 1]$ 成立。

2. 当 $x \in (-1, 1)$ 时,利用逐项积分可得

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$

3. 注意到
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$
 收敛域是 $(-1, 1]$,由连续性,当 $x = 1$ 时也

成立

成立
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n.$$

(这是f(1) == S(1)

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1],故上式至多对 $x \in (-1, 1]$ 成立。

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$

3. 注意到
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$
 收敛域是 $(-1,1]$,由连续性,当 $x=1$ 时也

 $\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}.$ 成立

3. 注意到
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$
 收敛域是 $(-1, 1]$,由连续性,当 $x = 1$ 时也

第 12 章 d: 函数展开成幂级数

(这是 $f(1) = \lim_{x \to 1^-} \ln(1+x)$

= S(1)

性质 成立
$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1} \frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1],故上式至多对 $x \in (-1, 1]$ 成立。

2. 当 $x \in (-1, 1)$ 时,利用逐项积分可得

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$

$$=\sum_{n=0}^{\infty}(-1)^n\frac{1}{n+1}x^{n+1}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}x^n$$

3. 注意到 $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n} x^n$ 收敛域是 (-1, 1], 由连续性, 当 x=1 时也

 $\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}.$ 成立

(这是
$$f(1) = \lim_{x \to 1^{-}} \ln(1+x)$$

$$\lim_{x \to 1^{-}} S(x) = S(1)$$

第 12 章 d: 函数展开成幂级数

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1], 故上式至多对 $x \in (-1, 1]$ 成立。

2. 当 *x* ∈ (−1, 1) 时,利用逐项积分可得

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$

$$=\sum_{n=0}^{\infty}(-1)^n\frac{1}{n+1}x^{n+1}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}x^n$$

3. 注意到
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$
 收敛域是 (-1, 1], 由连续性, 当 $x=1$ 时也

成立 $\frac{1}{n-1}$ 权 数 域 走 (-1,1] ,由 注 续 性 , 自 x=1 的 记 $\frac{1}{n-1}$ 成 立

成立
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n.$$

(这是 $f(1) = \lim_{x \to 1^{-}} \ln(1+x)$ $\lim_{x \to 1^{-}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n} = \lim_{x \to 1^{-}} S(x) = S(1)$

性质 成立
$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1} \frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

证明 1. 幂级数的收敛域是 (-1, 1], 故上式至多对 $x \in (-1, 1]$ 成立。

2. 当 $x \in (-1, 1)$ 时,利用逐项积分可得

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{n+1} x^{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$

3. 注意到 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$ 收敛域是 (-1, 1], 由连续性, 当 x=1 时也

成立
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{x^n}.$$

(这是 $f(1) = \lim_{x \to 1^{-}} \ln(1+x) = \lim_{x \to 1^{-}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n} = \lim_{x \to 1^{-}} S(x) = S(1)$)

成立
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}.$$

性质 成立 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$

性质 成立 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$ 证明 1. 幂级数的收敛域是 [-1, 1], 故上式至多对 $x \in [-1, 1]$ 成立。

证明 1. 幂级数的收敛域是 [-1, 1], 故上式至多对 $x \in [-1, 1]$ 成立。 2.

性质 成立 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$

 $\arctan x = \int_{0}^{x} \frac{1}{1+t^2} dt$

证明 1. 幂级数的收敛域是 [-1, 1], 故上式至多对 $x \in [-1, 1]$ 成立。

 $\arctan x = \int_{0}^{x} \frac{1}{1+t^2} dt = \int_{0}^{x} \sum_{n=0}^{\infty} (-1)^n t^{2n} dt$

 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$

性质 成立
$$\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$$
 证明 1. 幂级数的收敛域是 $[-1,1]$,故上式至多对 $x \in [-1,1]$ 成立。

 $\arctan x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt$

第 12 章 d: 函数展开成幂级数

性质 成立 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$

证明 1. 幂级数的收敛域是 [-1, 1], 故上式至多对 $x \in [-1, 1]$ 成立。 2.

arctan
$$x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt$$

 $=\sum_{n=0}^{\infty}(-1)^n\frac{1}{2n+1}x^{2n+1}$

性质 成立 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$

证明 1. 幂级数的收敛域是 [-1, 1], 故上式至多对
$$x \in [-1, 1]$$
 成立。

2. 当 $x \in (-1, 1)$ 时,利用逐项积分可得

$$\arctan x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt$$
$$= \sum_{n=0}^\infty (-1)^n \frac{1}{2n+1} x^{2n+1}$$

$$\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$$
 证明 1. 幂级数的收敛域是 [-1, 1], 故上式至多对 $x \in [-1,1]$ 成立。

证明 1. 希级数的收敛规定 [一1, 1],似工式至多对 X ∈ [一1, 1] 成立。

2. 当
$$x \in (-1, 1)$$
 时,利用逐项积分可得 f^{x} 0 f^{x} 0 f^{x} 0 f^{x} 0 f^{x} 0 f^{x}

$$\arctan x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt$$
$$= \sum_{n=0}^\infty (-1)^n \frac{1}{2n+1} x^{2n+1}$$

3. 注意到 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ 收敛域是 [-1, 1], 由连续性, 当 $x = \pm 1$ 时也有 $x = \pm 1$ 可以 $x = \pm 1$ 可以 x = 1 可以 x = 1

也有 $\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}$.

证明 1. 幂级数的收敛域是 [-1, 1], 故上式至多对 $x \in [-1, 1]$ 成立。

 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$

2. 当
$$x \in (-1, 1)$$
 时,利用逐项积分可得

$$\arctan x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}$$

3. 注意到
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$
 收敛域是 $[-1, 1]$, 由连续性也有 $\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}$.

3. 注意到 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ 收敛域是 [-1, 1], 由连续性, 当 $x = \pm 1$ 时

(如f(1) =

第 12 章 d: 函数展开成幂级数

= S(1)

 $\arctan x = \int_0^{\infty} \frac{1}{1+t^2} dt = \int_0^{\infty} \sum_{n=0}^{\infty} (-1)^n t^{2n} dt = \sum_{n=0}^{\infty} (-1)^n \int_0^{\infty} t^{2n} dt$ $=\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}$

性质 成立

也有

第 12 章 d: 函数展开成幂级数

2. 当 $x \in (-1, 1)$ 时,利用逐项积分可得

 $(\inf(1) = \lim_{x \to 1^{-}} \operatorname{arctan} x$

 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$

证明 1. 幂级数的收敛域是 [-1, 1], 故上式至多对 $x \in [-1, 1]$ 成立。

3. 注意到 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ 收敛域是 [-1, 1], 由连续性, 当 $x = \pm 1$ 时

 $\arctan x = \sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}.$

= S(1)

 $12/17 \triangleleft \triangleright \triangle \nabla$

3. 注意到 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ 收敛域是 [-1, 1], 由连续性, 当 $x = \pm 1$ 时 也有

 $\arctan x = \sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}.$ $(\inf(1) = \lim_{x \to 1^{-}} \operatorname{arctan} x$

 $=\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}$

 $\arctan x = x - \frac{1}{2}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$

 $\lim_{x\to 1^-} S(x) = S(1)$

 $\arctan x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt$

证明 1. 幂级数的收敛域是 [-1, 1],故上式至多对 $x \in [-1, 1]$ 成立。 2. 当 $x \in (-1, 1)$ 时,利用逐项积分可得

第 12 章 d: 函数展开成幂级数

证明 1. 幂级数的收敛域是 [-1, 1], 故上式至多对 $x \in [-1, 1]$ 成立。 2. 当 $x \in (-1, 1)$ 时,利用逐项积分可得

 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$

 $\arctan x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt$

 $=\sum_{n=1}^{\infty}(-1)^{n}\frac{1}{2n+1}x^{2n+1}$

3. 注意到 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ 收敛域是 [-1, 1], 由连续性, 当 $x = \pm 1$ 时

 $\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}.$ 也有

 $(\inf(1) = \lim_{x \to 1^{-}} \arctan x \quad \lim_{x \to 1^{-}} \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = \lim_{x \to 1^{-}} S(x) = S(1))$

证明 1. 幂级数的收敛域是 [-1, 1], 故上式至多对 $x \in [-1, 1]$ 成立。 2. 当 $x \in (-1, 1)$ 时,利用逐项积分可得

 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1].$

 $\arctan x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt$

$$=\sum_{n=0}^{\infty}(-1)^{n}\frac{1}{2n+1}x^{2n+1}$$

3. 注意到 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ 收敛域是 [-1, 1], 由连续性, 当 $x = \pm 1$ 时 也有

也有
$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}.$$

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{2n+1}{2n+1} x^{-n-1}$$

$$(\inf(1) = \lim_{x \to 1^{-}} \arctan x = \lim_{x \to 1^{-}} \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = \lim_{x \to 1^{-}} S(x) = S(1))$$

$$\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, \quad x \in [-1,1]$$

注 取 x=1,则得到

$$\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, \quad x \in [-1, 1]$$

$$\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, \quad x \in [-1, 1]$$

注 取
$$x=1$$
,则得到

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$$

 $\cos x = 1 - \tfrac{1}{2!} x^2 + \tfrac{1}{4!} x^4 - \tfrac{1}{6!} x^6 + \dots + (-1)^n \tfrac{1}{(2n)!} x^{2n} + \dots \,, \ x \in (-\infty, \infty)$

 $\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots, x \in (-1, 1)$

 $\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1]$

 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1]$

• 至此, 得出如下常用函数的幂级数展开式:

 $e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots, \quad x \in (-\infty, \infty)$

 $\sin x = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots + (-1)^n \frac{1}{(2n+1)!} x^{2n+1} + \dots, \ x \in (-\infty, \infty)$

 $\sin x = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots + (-1)^n \frac{1}{(2n+1)!} x^{2n+1} + \dots, \ x \in (-\infty, \infty)$ $\cos x = 1 - \tfrac{1}{2!} x^2 + \tfrac{1}{4!} x^4 - \tfrac{1}{6!} x^6 + \dots + (-1)^n \tfrac{1}{(2n)!} x^{2n} + \dots \,, \; x \in (-\infty, \infty)$

 $e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots, \quad x \in (-\infty, \infty)$

• 至此, 得出如下常用函数的幂级数展开式:

 $\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots, x \in (-1, 1)$

 $\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1]$

 $\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots, x \in [-1,1]$ • 用上述结果, 及逐项求导、积分公式, 可求更多函数的泰勒级数展开

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

所以当
$$x \in (-1, 1]$$
 时,

$$(1-x)\ln(1+x) = (1-x)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

所以当
$$x \in (-1, 1]$$
 时,

$$(1-x)\ln(1+x) = (1-x)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{n+1}$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

所以当
$$x \in (-1, 1]$$
 时,
$$(1-x)\ln(1+x) = (1-x)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n$$
$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{n+1}$$
$$\sum_{n=1}^{\infty} (-1)^{n-2} \frac{1}{n-1} x^n$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

所以当
$$x \in (-1, 1]$$
 时,

$$(1-x)\ln(1+x) = (1-x)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{n+1}$$
$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=2}^{\infty} (-1)^{n-2} \frac{1}{n-1} x^n$$

解 利用

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

所以当 $x \in (-1, 1]$ 时,

所以当
$$x \in (-1, 1]$$
 时,
$$(1-x)\ln(1+x) = (1-x)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n$$
$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{n+1}$$
$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=2}^{\infty} (-1)^{n-2} \frac{1}{n-1} x^n$$
$$= x + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n$$

$$= x + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n$$

解 利用

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$$

所以当 $x \in (-1, 1]$ 时, $(1-x)\ln(1+x) = (1-x)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{n+1}$$
$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=2}^{\infty} (-1)^{n-2} \frac{1}{n-1} x^n$$

 $= x + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=2}^{\infty} (-1)^{n-2} \frac{1}{n-1} x^n$

解利用 $\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + (-1)^{n-1}\frac{1}{n}x^n + \dots, \quad x \in (-1, 1].$ 所以当 $x \in (-1, 1]$ 时,

例 把函数 $f(x) = (1-x) \ln(1+x)$ 展开成 x 的幂级数。

 $(1-x)\ln(1+x) = (1-x)\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n$

 $=\sum_{n=0}^{\infty}(-1)^{n-1}\frac{1}{n}x^{n}-\sum_{n=0}^{\infty}(-1)^{n-1}\frac{1}{n}x^{n+1}$

 $=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n}x^n-\sum_{n=2}^{\infty}(-1)^{n-2}\frac{1}{n-1}x^n$

 $= x + \sum_{n=2}^{\infty} (-1)^{n-1} \frac{1}{n} x^n - \sum_{n=2}^{\infty} (-1)^{n-2} \frac{1}{n-1} x^n$

 $=x+\sum_{n=0}^{\infty}\left(\frac{(-1)^{n-1}}{n}-\frac{(-1)^n}{n-1}\right)x^n$

$$\cos t = 1 - \frac{1}{2!}t^2 + \frac{1}{4!}t^4 - \frac{1}{6!}t^6 + \dots + (-1)^n \frac{1}{(2n)!}t^{2n} + \dots, \ t \in (-\infty, \infty)$$

$$\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x$$

$$\cos t = 1 - \frac{1}{2!}t^2 + \frac{1}{4!}t^4 - \frac{1}{6!}t^6 + \dots + (-1)^n \frac{1}{(2n)!}t^{2n} + \dots, \ t \in (-\infty, \infty)$$

所以当
$$x \in (-\infty, \infty)$$
 时,

$$\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x$$
$$= \frac{1}{2} + \frac{1}{2}\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} (2x)^{2n}$$

$$\cos t = 1 - \frac{1}{2!}t^2 + \frac{1}{4!}t^4 - \frac{1}{6!}t^6 + \dots + (-1)^n \frac{1}{(2n)!}t^{2n} + \dots, \ t \in (-\infty, \infty)$$

所以当
$$x \in (-\infty, \infty)$$
 时,

$$\cos^{2} x = \frac{1}{2} + \frac{1}{2} \cos 2x$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{(2n)!} (2x)^{2n}$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2n}}{(2n)!} x^{2n}$$

$$\frac{1}{n!} x^{2n}$$

解 利用

 $\cos t = 1 - \frac{1}{2!}t^2 + \frac{1}{4!}t^4 - \frac{1}{6!}t^6 + \dots + (-1)^n \frac{1}{(2n)!}t^{2n} + \dots, \ t \in (-\infty, \infty)$

 $16/17 \triangleleft \triangleright \triangle \nabla$

所以当 $x \in (-\infty, \infty)$ 时,

第 12 章 d: 函数展开成幂级数

 $\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x$

 $= \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} (-1)^n \frac{1}{(2n)!} (2x)^{2n}$

 $= \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n}}{(2n)!} x^{2n}$

 $=1+\frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^n2^{2n}}{(2n)!}x^{2n}$

例 把函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成 (x + 4) 的幂级数。

例 把函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成 (x + 4) 的幂级数。

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

例 把函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成 (x + 4) 的幂级数。

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

将 $\frac{1}{\sqrt{11}}$, $\frac{1}{\sqrt{12}}$ 分别展开成 (x + 4) 的幂级数:

2. 利用 $\frac{1}{1-t} = 1 + t + t^2 + t^3 + \dots + t^n + \dots$, $t \in (-1, 1)$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

2. 利用
$$\frac{1}{1-t} = 1 + t + t^2 + t^3 + \dots + t^n + \dots, t \in (-1, 1)$$

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

*
$$\frac{1}{x+1} = \frac{1}{t-3}$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

2. 利用
$$\frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots + t^n + \cdots$$
, $t \in (-1, 1)$

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}}$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

2. 利用
$$\frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots + t^n + \cdots$$
, $t \in (-1, 1)$

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n}$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

2. 利用
$$\frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots + t^n + \cdots, t \in (-1, 1)$$

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

2. 利用
$$\frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots + t^n + \cdots, t \in (-1, 1)$$

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$$

其中
$$|\frac{t}{2}| < 1$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

* $\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$

其中
$$\left|\frac{x+4}{3}\right| = \left|\frac{t}{3}\right| < 1$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

2. 利用 $\frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots + t^n + \cdots, t \in (-1, 1)$

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$$

其中 $\left|\frac{x+4}{3}\right| = \left|\frac{t}{3}\right| < 1$,即 -7 < x < -1。

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$$

其中
$$\left|\frac{x+4}{3}\right| = \left|\frac{t}{3}\right| < 1$$
,即 $-7 < x < -1$ 。

*
$$\frac{1}{x+2} = \frac{1}{t-2}$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$$

其中
$$\left|\frac{x+4}{3}\right| = \left|\frac{t}{3}\right| < 1$$
,即 $-7 < x < -1$ 。

*
$$\frac{1}{x+2} = \frac{1}{t-2} = \frac{1}{-2} \cdot \frac{1}{1-\frac{t}{2}}$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

2. 利用
$$\frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots + t^n + \cdots, t \in (-1, 1)$$

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$$

其中
$$\left|\frac{x+4}{3}\right| = \left|\frac{t}{3}\right| < 1$$
,即 $-7 < x < -1$ 。

*
$$\frac{1}{x+2} = \frac{1}{t-2} = \frac{1}{-2} \cdot \frac{1}{1-\frac{t}{2}} = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{t^n}{2^n}$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$$

其中
$$\left|\frac{x+4}{3}\right| = \left|\frac{t}{3}\right| < 1$$
,即 $-7 < x < -1$ 。

*
$$\frac{1}{x+2} = \frac{1}{t-2} = \frac{1}{-2} \cdot \frac{1}{1-\frac{t}{2}} = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{t^n}{2^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{2^{n+1}}$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

* $\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$

其中
$$|\frac{x+4}{t}| = |\frac{t}{t}| < 1$$
 即 $-7 < x < -1$

其中
$$\left| \frac{x+4}{3} \right| = \left| \frac{t}{3} \right| < 1$$
,即 $-7 < x < -1$ 。

* $\frac{1}{x+2} = \frac{1}{t-2} = \frac{1}{-2} \cdot \frac{1}{1-\frac{t}{2}} = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{t^n}{2^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{2^{n+1}}$

其中
$$|\frac{t}{2}| < 1$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$$

其中
$$\left|\frac{x+4}{3}\right| = \left|\frac{t}{3}\right| < 1$$
,即 $-7 < x < -1$ 。

*
$$\frac{1}{x+2} = \frac{1}{t-2} = \frac{1}{-2} \cdot \frac{1}{1-\frac{t}{2}} = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{t^n}{2^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{2^{n+1}}$$

其中
$$\left|\frac{x+4}{2}\right| = \left|\frac{t}{2}\right| < 1$$

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

2. 利用 $\frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots + t^n + \cdots$, $t \in (-1, 1)$

*
$$\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$$

其中
$$\left|\frac{x+4}{3}\right| = \left|\frac{t}{3}\right| < 1$$
,即 $-7 < x < -1$ 。

*
$$\frac{1}{x+2} = \frac{1}{t-2} = \frac{1}{-2} \cdot \frac{1}{1-\frac{t}{2}} = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{t^n}{2^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{2^{n+1}}$$

其中 $\left|\frac{x+4}{2}\right| = \left|\frac{t}{2}\right| < 1$,即 -6 < x < -2。

解 1. 注意到
$$\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$
.

2. 利用 $\frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots + t^n + \cdots, t \in (-1, 1)$

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则

* $\frac{1}{x+1} = \frac{1}{t-3} = \frac{1}{-3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{t^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{3^{n+1}}$

其中 $\left|\frac{x+4}{3}\right| = \left|\frac{t}{3}\right| < 1$,即 -7 < x < -1。

*
$$\frac{1}{x+2} = \frac{1}{t-2} = \frac{1}{-2} \cdot \frac{1}{1-\frac{t}{2}} = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{t^n}{2^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{2^{n+1}}$$

其中
$$\left|\frac{x+4}{2}\right| = \left|\frac{t}{2}\right| < 1$$
,即 $-6 < x < -2$ 。

3. 所以-6 < x < -2时

解 1. 注意到 $\frac{1}{x^2+3x+2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$.

例 把函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成 (x + 4) 的幂级数。

2. 利用
$$\frac{1}{1-t} = 1 + t + t^2 + t^3 + \dots + t^n + \dots$$
, $t \in (-1, 1)$

将
$$\frac{1}{x+1}$$
, $\frac{1}{x+2}$ 分别展开成 $(x+4)$ 的幂级数: 令 $t=x+4$, 则 1 1 1 1 $\sum_{n=0}^{\infty} t^n$ $\sum_{n=0}^{\infty} (x+4)$

其中
$$\left|\frac{x+4}{3}\right| = \left|\frac{t}{3}\right| < 1$$
,即 $-7 < x < -1$ 。

* $\frac{1}{x+2} = \frac{1}{t-2} = \frac{1}{-2} \cdot \frac{1}{1-\frac{t}{2}} = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{t^n}{2^n} = -\sum_{n=0}^{\infty} \frac{(x+4)^n}{2^{n+1}}$
其中 $\left|\frac{x+4}{2}\right| = \left|\frac{t}{2}\right| < 1$,即 $-6 < x < -2$ 。

其中
$$\left|\frac{x+4}{2}\right| = \left|\frac{1}{2}\right| < 1$$
,即

 $\frac{1}{x^2 + 3x + 2} = \frac{1}{x + 1} - \frac{1}{x + 2} = \sum_{n=0}^{\infty} \left(\frac{1}{2^{n+1}} - \frac{1}{3^{n+1}} \right) (x + 4)_{0}^{n}$