Algebra 2R

a voyage into the unknown

koteczek

 \sim

SYLABUS:

I. Podstawy teorii równań algebraicznych

- 1. Rozszerzenia ciał. Rozszerzenia o pierwiastek wielomianu nierozkładalnego. Ciało rozkładu wielomianu: istnieje, jedyność.
- 2. Ciało algebraicznie domknięte: definicja. Każde ciało zawiera się w ciele algebraicznie domkniętym (konstrukcja). Podciało proste: istnienie, jedyność. Ciała proste.
- 3. Pierwiastki z jedności, pierwiastki pierwotne. Grupa pierwiastków z jedności w ciele: każda jej skończona podgrupa jest cykliczna. Wielomiany podziału koła. Funkcja Frobeniusa. Ciała skończone: własności.

II. Teoria Galois

- 1. Rozszerzenia [elementy] algebraiczne, przestępne: definicja. Stopień rozszerzenia. Warunki równoważne algebraiczności. Wielomian minimalny elementu ciała nad podciałem, własności.
- 2. Algebraiczne domknięcie ciała: definicja, istnienie, jedyność, własności (jednorodność). Istnienie rzeczywistych liczb przestępnych, liczby Liouville'a.
- 3. Rozszerzenia normalne: definicja, własności. Rozszerzenia [elementy, wielomiany] rozdzielcze. Twierdzenie Abela o elemencie pierwotnym. Rozszerzenia czysto nierozdzielcze (radykalne): definicja, własności. Stopień rozdzielczy [radykalny] rozszerzenia: definicja, własności.

Contents

1	Teori	ria równań algebraicznych	
	1.1	Ciała	

1. Teoria równań algebraicznych

1.1. Ciała

Dla K \subseteq L ciał i $a_1,...,a_n$ = $\overline{a} \in$ L definiujemy ideał $I(\overline{a}/L)$ w K[X₁,...,X_n] jako:

$$I(\overline{a}/L) \coloneqq \{f(X_1,...,X_n) \in K[\overline{X}] : f(\overline{a}) = 0\},\$$

to znaczy generujemy ideał w wielomianach nad K zawierający wszystkie wielomiany (niekoniecznie tylko jednej zmiennej) zerujące się w \bar{a} .

Przykład:

Dla K = \mathbb{Q} , L = \mathbb{R} , n = 1, $a_1 = \sqrt{2}$ mamy

$$I(\sqrt{2}/\mathbb{Q}) = \{f(x^2 - 2) : f \in \mathbb{Q}[X]\} = (x^2 - 2) \triangleleft \mathbb{Q}[X]$$

Dalej, definiujemy

$$K[\overline{a}] := \{f(\overline{a}) : f \in K[X]\}$$

czyli podpierścień L generowany przez K \cup { \overline{a} } oraz K(\overline{a}), czyli podciało L generowane przez K \cup { \overline{a} }:

$$K(\overline{a}) := \{f(\overline{a}) : f \in K(X_1, ..., X_n) | f(\overline{a}) \text{ dobrze określone} \}.$$

Tutaj $K(X_1,...,X_n)$ to ciało ułamków pierścienia $K[\overline{X}]$ (czyli najmniejsze ciało, że pierścień może być w nim zanurzony).

Przykład:

Dla K = \mathbb{Q} , L = \mathbb{R} zachodzi:

$$\begin{split} \mathsf{K}[\sqrt{2}] &= \mathbb{Q}[\sqrt{2}] = \{\mathsf{q} + \mathsf{p}\sqrt{2} \ : \ \mathsf{q}, \mathsf{p} \in \mathbb{Q}\} \\ &\quad \mathsf{K}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\sqrt{2}, \sqrt{3}] \\ &\quad \mathsf{K}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}] \end{split}$$

to ostatnie to usuwanie niewymierności z mianownika.

Twierdzenie: Niech $K \subseteq L_1, K \subseteq L_2$ będą ciałami. Wybieramy $\{a_1, ..., a_n\} \in L_1$ i $\{b_1, ..., b_n\} \in L_2$. Wtedy następujące warunki są równoważne:

- \hookrightarrow istnieje izomorfizm ϕ : $K[a_1,...,a_n] \to K[b_1,...,b_n]$ taki, że $\phi \upharpoonright K = id_K$ oraz $\phi(a_i) = b_i$.
- $\hookrightarrow I(\overline{a}/K) = I(\overline{b}/K)$.

Dowodzik:

$$K[\overline{a}] \cong K[\overline{b}] \implies I(\overline{a}/K) = I(\overline{b}/K)$$

Niech $\omega \in K[\overline{X}]$. Wtedy $\omega \in I(\overline{a}/K)$ wtedy i tylko wtedy, gdy $\omega(\overline{a}) = 0$, to mamy z definicji $I(\overline{a}/K)$. Wiemy też, że $\phi(a) \in K[\overline{X}]$ wtedy, gdy $\omega(\phi(\overline{a})) = 0$, a ponieważ $\phi(\overline{a}) = \overline{b}$, to również $\omega(\overline{b}) = 0$ i mamy, że $\omega \in I(\overline{b}/K)$. Czyli izomorfizm między $K[\overline{a}] = K[\overline{b}]$ implikuje, że $I(\overline{a}/K) = I(\overline{b}/K)$.

$$K[\overline{a}] \cong K[\overline{b}] \iff I(\overline{a}/K) = I(\overline{b}/K)$$

Spróbujmy zdefiniować izomorfizm ϕ tak, że dla $\omega \in K[\overline{X}]$ mamy $\phi(\omega(\overline{a})) = \omega(\overline{b})$

1. ϕ jest homomorfizmem:

$$\phi(\omega(\overline{a}) \cdot v(\overline{b})) = f((\omega \cdot v)(\overline{b})) = (\omega \cdot v)(\overline{b}) = \omega(\overline{b}) \cdot v(\overline{b}) = \phi(\omega(\overline{a})) \cdot \phi(v(\overline{a}))$$

2. ϕ jest różnowartościowe:

$$\phi(\omega(\overline{a})) = \phi(v(\overline{a})) \iff \omega(\overline{b}) = v(\overline{b}) \iff (\omega - v)(\overline{b}) = 0 \iff \omega - v \in I(\overline{b}/K) = I(\overline{a}/K) \iff (\omega - v)(\overline{a}) = 0 \iff \omega(\overline{a}) = v(\overline{a})$$

3. ϕ jest dobrze zdefiniowane (czyli przyjmuje tylko jedną wartość dla jednego argumentu):

$$\omega(\overline{a}) - v(\overline{a}) = 0 \iff (\omega - v)(\overline{a}) = 0 \iff \omega - v \in I(\overline{a}/K) \iff \omega - v \in I(\overline{b}/K) \iff (\omega - v)(\overline{b}) = 0 \iff \omega(\overline{b}) - v(\overline{b}) = 0$$

Możemy teraz zapytać, czy każdy ideał w pierścieniu wielomianów K[X] jest postaci I(\overline{a} /K) dla pewnego $\overline{a} \in L \supset K$? Albo ogólniej, czy dla pierścienia przemiennego R z $1_R \neq 0_R$ oraz ideału I = $(f_1,...,f_m) = I(\overline{a}/R) \triangleleft R[X]$, czy istnieje nadpierścień S taki, że $1_S = 1_R$ i $0_S = 0_R$ oraz układ

$$f_1(\bar{x}) = ... = f_m(\bar{m}) = 0$$

ma rozwiązanie w S? Takie rozwiązanie spełniałoby $\overline{a} \in S \iff (\forall g \in (f_1,...,f_m)) g(\overline{a}) = 0.$