Descriptive Statistics

Bivariate Relationships in Python

Contents

- 1. Interpreting Scatterplot
- 2. Describing Bivariate Relationship
- 3. Pearson's Coefficient of Correlation
- 4. Simple Linear Regression
- 5. Application Areas
- 6. Scatterplot in Python
- 7. Pearson's Coefficient of Correlation in Python
- 8. Simple Linear Regression in Python
- 9. Summarising Three Categorical Variables

Interpreting a Scatterplot

Positive Correlation Negative Correlation No Correlation

This is a positive sloping (upward) graph.
As the value of one variable increases, the value of other variable also increases.

This is a negative sloping (downward) graph.
As the value of one variable increases, the value of other variable tends to decrease.

This is a graph with random pattern.

There is no connection between the two variables. If value of one variable increases, other might increase/decrease.

Pearson's Coefficient of Correlation

The Pearson's correlation coefficient numerically measures the strength of a linear relation between two variables

$$r = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2} \sqrt{\sum (Y_i - \bar{Y})^2}} = \frac{cov(X, Y)}{sd(x)sd(y)}$$

RANGE	
Positive Correlation	r > 0
Negative Correlation	r < 0
No Correlation	r = 0

- The two variables can be measured in entirely different units.
- Example, you could correlate a person's age with their blood sugar levels. Here, the units are completely different.
- It is not affected by change of Origin and Scale

Simple Linear Regression

The equation of line of best fit is used to describe relationship between two variables

Mathematical form of simple linear regression : Y = aX + b + e

$$Y = aX + b + e$$

Where,

a: Intercept (The value at which the fitted line crosses the y-axis i.e. X=0)

b: Slope of the Line

e : error which is assumed to be a random variable

NOTE: a and b are population parameters which are estimated using sample

Here, variable Y is known as a 'Dependent' variable, that 'depends on' X which is known as the 'Independent' variable.

Application Areas

Scatter Plot

It is useful in visualising the relationship between any two variables as an initial step.

- Life expectancy and the number of cigarettes smoked per day
- Literacy rate and life expectancy in a particular region

Correlation Coefficient

It gives the exact numeric measure of the extent of bivariate relationship.

- Distance between home & office and the time taken to get there
- Size of car engine and cost of car insurance

Simple Linear Regression

It is very useful in predicting the value of one variable given the value of another in a bivariate scenario.

- Number of bedrooms and cost of home insurance
- Scores in the final exam given the scores in mock test

Case Study - 1

Background

 A company conducts different written tests before recruiting employees. The company wishes to see if the scores of these tests have any relation with post-recruitment performance of those employees.

Objective

- To study the correlation between Aptitude and Job Proficiency.
- Predict the Job proficiency for a given Aptitude score.

Available Information

- Sample size is 33
- Independent Variables: Scores of tests conducted before recruitment on the basis of four criteria Aptitude, Test of English, Technical Knowledge, General Knowledge
- Dependent Variable: Job Performance Index calculated after an employee finishes probationary period (6 months)

Data Snapshot

Job_Proficiency

J00_1 10110	i ci rey		Var	iables			
	empno	aptitude	testofen	tech_	g_k_	job_prof	
	1	86	110	100 87		88	
	2	62	62	99	100	80	
	3	110	107	103	103	96	
	4	101	117	93	95	76	
	5	100	101	95 88 95 84		80	
Observations	6	78	85 77			73 58	
	8	120 105	122	80 116	74 102	116	
	Columns	Description		Type	Measurement	Possible	
e Z	Empno	Employee Number		numeric	-	positive values	
SqO	aptitude	Aptitude Score of the Employee		numeric	-	positive values	
	Testofen	Test of English		numeric	-	positive values	
	tech_	Technical Score		numeric	-	positive values	
	g_k	General Knowledge Score		numeric	-	positive values	
	Job_prof	Job Proficiency Score		numeric	-	positive values	

Scatter Plot in Python

Importing Data and necessary libraries

```
import pandas as pd
import matplotlib.pyplot as plt
job= pd.read_csv("Job_Proficiency.csv")
```

Scatterplot

```
plt.scatter(job.aptitude,job.job_prof, color='red');
plt.xlabel('Aptitude'); plt.ylabel('Job Prof')
```


- plt.scatter() gives a scatterplot of the two variables mentioned.
- color= provides color to the points.

Pearson Correlation Coefficient in Python

There is positive relation between aptitude and job proficiency but the relation is of moderate degree.

0.5144

Pearson Correlation Coefficient

Simple Linear Regression in Python

Simple Linear Regression

```
import statsmodels.formula.api as smf
model1= smf.ols("job_prof ~ aptitude", data = job).fit()
model1.summary()
```

OLS Regression Results								
Dep. Variable: Model: Method: Date: Time: No. Observations:		job_prof	R-squared:			0.265		
		OLS	Adj. R	Adj. R-squared:				
		Least Squares	F-stat					
		ri, 18 Oct 2019						
		10:46:39	20,700,000,000	Log-Likelihood:				
		25	AIC:			214.6		
Df Residuals	5:	23	BIC:			217.0		
Df Model:		1						
Covariance Type:		nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
Intercept	41.3216	18.010	2.294	0.031	4.065	78.578		
aptitude	0.4922	0.171	2.877	0.009	0.138	0.846		
======= Omnibus:		1.110	Durbin	-Watson:	=======	2.409		
Prob(Omnibus	s):	0.574	Jarque	-Bera (JB):		0.746		
Skew:	360	-0.416	1000000			0.689		
Kurtosis:		2.845	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5		557.		

ols() gives us the linear regressio n model. summar y() gives us the summary statistics

Inferences: Simple Linear Regression

Dependent Variable : Job Proficiency

Independent Variable : Aptitude

Intercept	Aptitude
41. 3216	0.4922

Equation: Job Proficiency = 41. 3216 + 0.4922 * Aptitude

Here Job Proficiency changes by 0.4992 units with a unit change in aptitude.

Case Study - 2

To learn more Descriptive Statistics in Python, we shall consider the below case as an example.

Background

Data of 100 retailers in platinum segment of an FMCG company.

Objective

To describe the variables present in the data

Sample Size

Sample size: 100

Variables: Retailer, Zone, Retailer_Age, Perindex, Growth,

NPS_Category

Data Snapshot

Retail Data Variables Retailer Zone Retailer_Age Perindex Growth NPS_Category 1 North <=2 81.84 3.04 Promoter Possible Columns Description Measurement Type values Retailer Retailer ID numeric Location of the North, East, Zone character 4 retailer West, South Observations Number of years Retailer Age doing business with character <=2, 2 to 5, >5 3 the company Index of performance based positive values Perindex on sales, buying numeric frequency and buying recency Annual sales positive values Growth numeric growth Category indicating Detractor, loyalty with the NPS_Category character 3 Passive,

Summarizing Two Categorical Variables

Using Frequency/Cross Tables describing the counts, percentages, etc. is a very basic and most useful way in summarizing two categorical variables.

```
#Importing Data
```

```
retail_data = pd.read_csv('Retail_Data.csv')
```

Frequency Tables

Detractor	Passive	Promoter
5	9	1
5	13	7
7	9	16
6	10	12
	5	5 13 7 9

crosstab() in Python, gives the frequency of counts of the two variables mentioned.

Summarizing Two Categorical Variables

Percentage Frequency Tables

NPS_Category	Detractor	Passive	Promoter
Zone			
East	0.05	0.09	0.01
North	0.05	0.13	0.07
South	0.07	0.09	0.16
West	0.06	0.10	0.12

By specifying **normalize=True** we can get percentage frequency

```
Freq = pd.crosstab(index=retail_data["Zone"],
columns=retail_data["NPS_Category"], normalize='index')
Freq
```

NPS_Category	Detractor	Passive	Promoter
Zone			
East	0.333333	0.600000	0.066667
North	0.200000	0.520000	0.280000
South	0.218750	0.281250	0.500000
West	0.214286	0.357143	0.428571

- By using normalize = 'index' we can get row wise distribution.
- Similarly for columns use normalize= 'columns'

Summarizing Three Categorical Variables

Three Way Frequency Table

Retai	ler_Age	2	to	5	<=2	>5
Zone	NPS_Category					
East	Detractor			2	2	1
	Passive			3	3	3
	Promoter			0	0	1
North	Detractor			2	2	1
111	Passive			6	1	6
	Promoter			0	1	6
South	Detractor			2	1	4
	Passive			4	2	3
	Promoter			3	3	10
West	Detractor			3	1	2
	Passive			1	1	8
	Promoter			1	0	11

crosstab() in Python, gives the frequency of counts of the three variables in one table itself.

Quick Recap

In this session, we covered bivariate data analysis using Python.

Scatter Plot

• Each dot on the scatterplot is one observation from a data set representing the corresponding variable value on X and Y axis respectively. Here X & Y are continuous variables.

Pearson's Correlation Coefficient

 Numerically measures the strength of a linear relation between two variables

Simple Linear Regression • The equation of the line of best fit used to describe relationship between two variables