\bigcirc	The formula to compute the work W done on a body if the force F is
	parallel to the displacement d , as in figure 1 at the end of the text, is:

$$\boxed{\mathbf{A}} \ W = F \cdot d.$$

$$\boxed{\mathbf{B}} \ W = 2F.$$

$$\boxed{\mathbf{C}} W = m \cdot v.$$

$$\boxed{\mathbf{D}} \ W = 2d.$$

(2) The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.

(3) The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:

$$\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$$

$$\boxed{\mathbf{B}} \ W = F \cdot d \cdot \sin x.$$

$$\boxed{\mathbf{C}} \ W = F \cdot d.$$

D None of the other answers.

(4) The unit for work is J·m.

(5) When a weightlifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

- D None of the other answers.
- (6) If a force of 3 N is applied to an object that moves for 3 m, the work done is:
 - A 9 J.
 - B 3 J.
 - C 1 J.
 - D 0 J.

Figura 1

 $\fbox{1}$ When a weight lifter holds a 200 kg barbell above his head for 3 seconds

before dropping it, the done work is:

	A 600 J.
	B None of the other answers.
	C 200 J.
	D 0 J.
2	The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:
	$\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$
	$\boxed{\mathrm{B}} \ W = F \cdot d.$
	C None of the other answers.
	$\boxed{\mathbf{D}} \ W = F \cdot d \cdot \sin x.$
3	The unit for work is J·m.
	A True.
	B False.
\sim	If a force of 3 N is applied to an object that moves for 3 m, the work done is:
	A 9 J.
	B 3 J.
	C 1 J.
	D 0 J.
5	The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d .

A True.

- B False.
- \bigcirc The formula to compute the work W done on a body if the force F is parallel to the displacement d, as in figure 1 at the end of the text, is:
 - $\boxed{\mathbf{A}} \ W = F \cdot d.$
 - $\boxed{\mathrm{B}} W = 2d.$
 - $\boxed{\mathbf{C}} W = m \cdot v.$
 - $\boxed{\mathbf{D}} \ W = 2F.$

Figura 1

\bigcirc	The fo	rmula	to co	omput	e the	work	W	done	on	a bo	ody	when	the	force
	F mak	es an	angle	with	the d	isplac	eme	$\operatorname{ent} d$	is:					

 $\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$

 $\boxed{\mathbf{B}} \ W = F \cdot d \cdot \sin x.$

C None of the other answers.

 $\boxed{\mathbf{D}} \ W = F \cdot d.$

 \bigcirc The formula to compute the work W done on a body if the force F is parallel to the displacement d, as in figure 1 at the end of the text, is:

 $\boxed{\mathbf{A}} \ W = m \cdot v.$

 $\boxed{\mathbf{B}} \ W = F \cdot d.$

 $\boxed{\mathbf{C}} W = 2F.$

 $\boxed{\mathbf{D}} \ W = 2d.$

 \bigcirc The unit for work is J·m.

A True.

B False.

4 When a weightlifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

A 200 J.

B None of the other answers.

C 600 J.

D 0 J.

(5) If a force of 3 N is applied to an object that moves for 3 m, the work done is:

A 3 J.

- B 9 J.
- C 1 J.
- D 0 J.
- (6) The formula $W = F \cdot d$ can be used only if the force F is parallel to the displacement d.
 - A True.
 - B False.

Figura 1

1	The formula to compute the work W done on a body if the force F is parallel to the displacement d , as in figure 1 at the end of the text, is:
	$\boxed{\mathrm{A}} \ W = 2d.$
	$\boxed{\mathrm{B}} \ W = 2F.$
	$\boxed{\mathbf{C}} \ W = F \cdot d.$
	$\boxed{\mathbf{D}} \ W = m \cdot v.$
2	The formula $W=F\cdot d$ can be used only if the force F is parallel to the displacement $d.$
	A True.
	B False.
3	If a force of 3 N is applied to an object that moves for 3 m, the work done is:
	A 1 J.
	B 0 J.
	C 3 J.
	D 9 J.
4	The unit for work is $J \cdot m$.
	A True.
	B False.
5	When a weight lifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:
	A None of the other answers.

B 0 J.

C 200 J.

- D 600 J.
- $\overbrace{6}$ The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:
 - A None of the other answers.
 - $\boxed{\mathbf{B}} W = F \cdot d.$
 - $C W = F \cdot d \cdot \cos x.$
 - $\boxed{\mathbf{D}} \ W = F \cdot d \cdot \sin x.$

Figura 1