Al₂O₃-ZnO수감소자의 선택적인 CH₄수감

리준혁, 리춘국

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《새 재료부문의 과학자, 기술자들은 전자공업에 절실히 필요한 화합물반도체와 정밀 사기재료를 개발하고 그 생산을 공업화하기 위한 연구사업을 다그치며 초전도재료와 금 속수지복합재료를 비롯한 새 재료들과 우리 나라에 없는것을 대신할수 있는 재료를 개발 하기 위한 연구사업도 전망성있게 밀고나가야 합니다.》(《김정일선집》 중보판 제15권 487폐지)

선행연구[1-3]들에서는 CH_4 수감소자들에 대한 연구가 많이 진행되였지만 대다수가 선택성이 낮거나 동작온도가 높은 결함이 있다.

우리는 화학침전기술로 도자기기판우에 Pd-ZnO박막을 침전시키고 Pd- Al_2O_3 촉매후막을 스크린인쇄하여 선택성이 높고 동작온도가 낮은 수감소자를 제작하고 그 특성을 고찰하였다.

1. 시 편 제 조

메탄을 검출하기 위한 ZnO에 기초한 저항형소자를 만들기 위하여 비첨가된 나노결 정성n-ZnO박막을 화학침전기술에 의하여 도자기기판우에 침전시켰다.

방온도에서 0.15mol의 아연산나트리움욕조와 90 °C 에서 유지되는 탈이온수에 련속잠 그기(100~200번) 하여 기판우에 나노결정성ZnO침상모양구조를 성장하였다.

아연산나트리움은 류산아연 $(ZnSO_4 \cdot 7H_2O)$ 과 수산화나트리움을 수용액속에서 반응시켜 준비하고 방온도에서 교반하였다.[4] 이때 반응식은 다음과 같다.

$$ZnSO_4 + 2NaOH = Zn(OH)_2 + Na_2SO_4$$
 (1)

$$Zn(OH)_2 + 2NaOH = Na_2ZnO_2 + 2H_2O$$
 (2)

$$ZnSO_4 + 4NaOH = Na_2ZnO_2 + Na_2SO_4 + 2H_2O$$
 (3)

투명하고 균일한 용액을 얻은 후 적심공정을 거쳤다.

침전하기 전에 2개의 은전극을 설치한 도자기관을 아세톤, 알콜에서 세척하고 방온 도에서 건조시켰다.

도자기관을 처음 아연산나트리움욕조에 잠그고 다음 얇은충의 아연산나트리움이 있는 기판을 뜨거운 수욕조에 잠그었다. 이때 다음의 방정식이 성립한다.

$$Na_{2}ZnO_{2} + H_{2}O = ZnO + 2NaOH$$
 (4)

적심간격을 1s로 하고 100번 적심을 진행하여 두께가 약 2μm 인 막을 얻었다. 다음 ZnO박막을 110°C 의 온도에서 1h동안 건조시키고 400°C 에서 열처리하였다. 그리고 0.01mol/L PdCl₂의 수용액속에서 5s동안 Pd의 간단한 적심을 진행하였다. 적심을 진행한 후 시편을 용액에서 꺼내고 110°C 에서 30min동안 소둔하였다.

Pd는 메탄이 해리되는데 요구되는 활성화에네르기를 감소시켜 동작온도를 낮추는데 기여할수 있다.[5]

다음 ZnO수감층우에 Pd-Al₂O₃촉매후막을 스크린인쇄하고 건조, 열처리하였다.

2. 실험결과와 고찰

성장시편과 열처리시편의 SEM사진은 그림 1과 같다.

그림 1. 성장시편(기))과 열처리시편(L))의 SEM사진

그림 1의 ㄴ)에서 보는바와 같이 높은 온도열처리에 의해 막은 립상구조를 가진다.

1) 동작온도에 따르는 감도변화

 CH_4 에 대한 감도(S)는 $R_{\mathrm{B}}/R_{\mathrm{P}}$ 로 정의한다. 여기서 R_{B} 은 공기속에서 수감요소의 저항, R_{P} 는 가스분위기에서 수감요소의 저항이다.

 Al_2O_3 으로 활성화된 ZnO막의 동작온도에 따르는 CH_4 (5 000ppm)의 응답변화는 표와 같다.

표에서 보는바와 같이 동작온도가 높아 짐에 따라 감도가 증가하다가 473K에서 최 대가 된 다음 감소한다. 이로부터 최적동작 온도를 473K으로 정하고 실험을 진행하였다.

표. Al_2O_3 으로 활성화된 ZnO막의 동작온도에 따르는 CH_4 의 응답변화

온도/K	403	423	473	523
감도	10.2	16	120	30

2) 가스농도에 따르는 여러가지 기체에 대한 감도변화

금속산화물의 겉면에 산소분자가 흡착되였을 때 전도띠로부터 전자를 끌어당길것이

그림 2. 가스수감선택성 1-CH₄, 2-CO, 3-H₂, 4-C₂H₅OH

며 겉면에서 이온의 형태로 전자를 포획할것이다. 메탄가스속에 시편을 로출시키면 동작온도에서 메란이 해리되여 H^+ 들이 생기며 O^- 과 반응하여 물분자를 만든다. 따라서 공간전하층의 두께가 감소한다.

결국 두 알갱이들사이의 쇼트끼장벽이 낮아 지고 수감층에서 서로 다른 알갱이들을 통하여 전자들이 쉽게 이동할것이다. 이것은 메탄가스속 에 시편을 로출시키면 저항이 감소한다는것을 의미한다. 가스를 차단하면 저항이 증가한다.

CH₄농도가 증가함에 따라 감도가 련속적으로 커지며 5 000ppm에서 약 120으로 된다.(그림 2)

Pd- Al_2O_3 촉매산화막을 입힌 소자에 대한 선택성을 측정한 결과 473K의 동작온도에서 일산화탄소, 수소, 에타놀과 같은 다른 기체들에 대하여 일정한 감도를 가지지만 CH_4 에

대한 감도보다 훨씬 작다. 이것은 다공성Pd- Al_2O_3 촉매산화막에서 CO의 확산속도가 CH_4 보다 상당히 느리며 CH_4 기체가 안정하게 존재하는 온도(473K이하)에서 CO가 산화되기때문이다.

맺 는 말

 CH_4 수감소자의 최적동작온도는 473K이며 5 000ppm의 농도에서 감도는 약 120이다. 473K의 동작온도에서 일산화탄소, 수소, 에타놀과 같은 다른 기체들에 대하여 일정한 감도를 가지지만 CH_4 에 대한 감도보다 훨씬 작다.

참 고 문 헌

- [1] Z. K. Horastani; Materials Science in Semiconductor Processing, 35, 38, 2015.
- [2] A. P. Rambu et al.; Superlattices and Microstructures, 78, 61, 2015.
- [3] A. Khodadadi et. al.; Sensors and Actuators, B 80, 26, 2001.
- [4] P. Mitra et. al.; J. of Mat. Science, 9, 441, 1998.
- [5] P. Mitra et. al.; Sens. Actuators, B 97, 49, 2003.

주체109(2020)년 3월 5일 원고접수

Selective CH₄-Detection of Al₂O₃-ZnO Sensor

Ri Jun Hyok, Ri Chun Guk

We fabricated the methane sensor, by chemically depositing Pb-ZnO film on ceramic base and then by screen printing Pd-Al₂O₃ catalytic thick film, and considered characteristics.

Keywords: CH₄, gas sensor