C3 linearization properties

Miguel Cid Flor

April 22, 2025

Ingredients

Let C be a set of symbols, $C = \{C_0, C_1, \dots, C_n\}$, which we refer to as classes. Assume that $|\mathcal{C}| < |\mathbb{N}|$, meaning that \mathcal{C} is finite and countable. Let $(\mathcal{C}, <_c)$ be an ordered set of classes.

Let $\mathcal{D} \subseteq \mathcal{C} \times (\mathcal{C}, <_c)$. MRO : $\mathcal{C} \Rightarrow (\mathcal{C}, <_c)$.

Properties

Consistency with the hierarchy of classes

Let $D = \langle C, \{P_0, P_1, \dots, P_n\} \rangle \in \mathcal{D}$, with $n \in \mathbb{N}_0$. Let the MRO of C be $MRO(C) = \{M_0, M_1, M_2, \dots, M_m\}$, with $m \in \mathbb{N}_0$ and $\mathcal{M}_0 = \mathcal{C}.$

$${P_0, P_1, \ldots, P_n} \subseteq {\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_m}$$

Consistency with the local precedence order

Let $a \cdot s_1$ be $SbStr(a \cdot s_1, \pi_2(D))$ and $s_2 \cdot a \cdot s_3$ be $SbStr(s_2 \cdot a \cdot s_3, MRO(C))$. Let chars $(s) = \{c \in \Sigma \mid \exists i \in [1, |s|] \text{ such that } s_i = c\}$.

$$SbStr(\varepsilon, \varepsilon)$$

$$SbStr(a \cdot s_1, s_2 \cdot a \cdot s_3)$$
 if $a \notin s_1 \cdot s_2 \cdot s_3$
 $\land \operatorname{chars}(s_1) \subseteq \operatorname{char}(s_3)$

$$SbStr: \mathcal{S} \times \mathcal{S} \Rightarrow \{\top, \bot\}$$
$$\mathcal{S} = \Sigma^*$$

Consistency with the local precedence graph

Let $X \in \mathcal{C}$ and $P(X) = [PX_0, \dots, PX_r]$, where $r \in \mathbb{N}_0$ is a list of superclasses. Let D, B and A be a class.

If $D \in P(B) \setminus P(A)$, then $\exists p, q, 0 , where <math>\mathcal{M}_p = D$, $\mathcal{M}_q = A$.

Functions

Remove

Let $(\mathcal{C}, <_c)^*$ be a sequence of ordered sets of classes.

remove : $(\mathcal{C}, <_c)^* \times C \Rightarrow (\mathcal{C}, <_c)^*$

Let $L = [L_1; ...; L_n], L \in (\mathcal{C}, <_c)^*$

Let $C \in \mathcal{C}$

$$remove(L, C) = [l/C \mid l \in L]$$

Merge

merge :
$$(\mathcal{C}, <_c)^* \Rightarrow (\mathcal{C}, <_c)$$

Let $L = [L_1; \dots; L_n], L \in (\mathcal{C}, <_c)^*$

$$merge(L) = \begin{cases} \{C\} \cup merge(remove(L,C)), & \text{if } (\exists k \in [\![1,n]\!], L_k \neq \emptyset \land C = head(L_k)) \land \\ & (\forall j < k, C \neq head(L_j)) \land \\ & (\forall i \in [\![1,n]\!], C \notin tail(L_i)) \end{cases}$$
 fail otherwise

C3 Linearization

c3linearization :
$$\mathcal{D} \Rightarrow (\mathcal{C}, <_c)$$

Let $D = \langle C, P \rangle$ where $D \in \mathcal{D}$
 $\forall P_i \in P, \exists \mathrm{DP}_i \in \mathcal{D} \text{ such that } \mathrm{DP}_i = \langle P_i, \mathrm{PP}_i \rangle$
Let $DP = [DP_i \mid i \in [\![1, |P|]\!]]$

$$\operatorname{c3linearization}(D) = \begin{cases} \{C\} & \text{if } P = \emptyset \\ \{C\} \cup \operatorname{merge}([\operatorname{c3linearization}(dp) \mid dp \in DP] \cdot [P]) & \text{otherwise} \end{cases}$$