Matchings Recap

A matching M saturates the vertices that are in the matching. A matching of maximum size is a maximum matching and a matching where every vertex is saturated by it is a perfect matching.

Note: a graph needs to have an even number of vertices for a perfect matching to exist.

Definition Let M be a matching in G. An alternating path with respect to M is a path in G which has every second edge in M

Definition An augmenting path is an alternating path that begins and ends with an edge not in M.

Note that switching along an augmenting path makes the matching larger. For augmenting path P and matching M, "switching" means $\{E(M) \setminus \{E(M) \cap E(P)\}\} \cup \{E(P) \setminus E(M)\}$.

If our augmenting path starts and ends at unsaturated vertices, this switching produces a new, larger matching.

Note that augmenting paths always have odd length.

Theorem Let G be a graph and M a matching in G. If G has an augmenting path with respect to M, then M is not a maximum matching.

Proof Suppose G has an augmenting path P. Then P contains more edges not in M than in M.

Let M' be the set removing the edges in $E(M) \cap E(P)$ from M and adding the edges of $E(P) \setminus E(M)$ to M.

Since the endpoints of P are unsaturated, no vertex in V(M') is incident to more than one edge in M'. Hence M' is a matching

Since $|E(P) \setminus E(M)| > |E(M) \cap E(P)|$, |M'| > |M|. Thus M is not a maximum matching \square

Definition A *cover* in a graph G is a set of vertices C such that every edge in G is incident to at least one vertex in C.

A cover in a bipartite graph is either the characteristic set A or B.

Lemma Let G be agraph, M a matching and C a cover. Then

$$|M| \le |C|$$

Proof Every edge in M is incident to at least one vertex in C.

Also, no two edges are incident to the same vertex in C. Thus $|M| \leq |C|$, \Box .

Lemma Let G be a graph, M a matching, and C a cover. If |M| = |C| then M is a maximum matching and C is a minimum cover.

Proof Let M' be a maximum matching. Then $|M'| \le |C|$ by previous lemma. As |C| = |M|, $|M'| \le |C| = |M|$, so M is a maximum matching.

Let C' be a minimum cover. Then $|C'| \ge |M|$ by previous lemma. Since |M| = |C|, $|C'| \ge |M| = |C|$, so C is a minimum cover. \square .

However, not there are graphs with |C| > |M| - more common when a perfect matching doesn't exist.

Setting up definitions for next class

For a bipartite graph (A, B).

Let $X_0 = \{v \in A : v \text{ is not saturated by M}\}.$

Let $X = \{v \in A : \text{there is an alternating path from } v \text{ to a vertex in } X_0\}$

Let $Y = \{v \in B : \text{there is an alternating path from } v \text{ to a vertex in } X_0\}$