有机化学

蓝宇 (Dr. Prof.)

重庆大学化学化工学院

联系电话: 186 8080 5840

电子邮件: LanYu@cqu. edu. cn

第八章 芳烃

芳烃的类型、结构和命名

单环芳烃的化学性质

苯环上的取代基对亲电取代反应的影响

苯及其同系物的氧化还原反应

酰氯与苯炔

多环芳烃

非苯芳烃及性质简介

一. 芳烃的类型、结构和命名

■ 芳香族化合物类型

芳香族化合物:一些具有特殊稳定性和化学性质的环状化合物。

(Aromatic Compounds)

苯的结构

- 平面型分子
- C-C完全相等

• 苯的结构表达方式

表达的是同一分子

(苯的1,2-二溴代产物只有一个)

■苯的芳香性

▶ 苯的氢化热低 (稳定)

芳香性: 芳香族化合物 具有的特殊稳定性及特 殊的化学性质

芳香性的解释

1. Valence Bond Theory 价键理论观点

离域π-键

2. Molecular Orbital Theory 分子轨道理论观点

能量

反键 轨道

成键 轨道

3. Resonance Structure 共振论观点

■ 分类

根据芳环的个数 多环芳烃

根据芳环连接的方式

■ 异构

命名

1.以苯为母体

Ph-R

Ph-X

Ph-NO₂

简写

2. 苯环为取代基

3. 多取代苯的命名

• 多取代时母体选择次序:

$$-COOH \longrightarrow -COOH \longrightarrow -COO$$

• 二个基团相对位置表示方法

4-氯苯甲醛

对氯苯甲醛

p-氯苯甲醛 (para)

1,2-二溴苯

邻二溴苯

o-二溴苯 (ortho)

3-硝基苯甲酸

间硝基苯甲酸

m-硝基苯甲酸 (meta)

简写 p-CIC₆H₄CHO

 $o-Br_2C_6H_4$

 $m - NO_2C_6H_4COOH$

• 多个基团时用数字表示相对位置

4. 其它情况

2-苯基庚烷

苯基为取代基

■ 光谱数据和物理性质

1. 光谱数据

IR C-H 伸缩振动 3110-3010 cm⁻¹
C=C 伸缩振动 1600 cm⁻¹(m), 1580 cm⁻¹,
1500 cm⁻¹(s), 1450 cm⁻¹(w)
C-H 面外振动 900-690cm⁻¹
指纹区的特殊峰可用于判断苯环的取代情况

1. 物理性质

熔点(℃): 5.5

沸点(℃): 80.1

相对密度(水=1): 0.88

相对蒸气密度(空气=1): 2.77

饱和蒸气压(kPa): 13.33(26.1°C)

燃烧热(kJ/mol): 3264.4

临界温度(°C): 289.5

临界压力(MPa): 4.92

辛醇/水分配系数的对数值: 2.15

闪点(℃): -11

引燃温度(℃): 560

爆炸上限%(V/V): 8.0

爆炸下限%(V/V): 1.2

溶解性: 不溶于水,溶于醇、醚、丙酮等多数有机溶剂。

二、单环芳烃的化学性质

■ 苯的性质分析

有p电子,像烯烃

- •与亲电试剂反应(主要性质)
- •不饱和,可加成
- •被氧化剂氧化

1.亲电取代反应(Electrophilic Substitution)

> 苯环上的亲电取代机理通式

s-络合物

Nu

>苯环上的卤代反应

与自由基取代反应的区别

芳环上的卤代在合成上的重要性

- 是芳环引入卤素 (CI、Br) 的主要方法之一(其它引入方法: 重氮盐法)。
- Ar X是合成其它类型的化合物的重要中间体。

▶ 芳环的氟代和碘代方法

$$I_2$$
 I_2 I_2 I_2 I_3 I_4 I_4

(其它方法: 重氮盐法)

反应活性:

2. 苯环上的硝化反应

无 H₂SO₄时反应很慢

- ■硝化反应在合成上的重要性
- 制备硝基苯类化合物 (炸药)

• 转变为苯胺衍生物

2, 4, 6-三硝基甲苯

3.苯环上的磺化反应

■ 苯环的磺化机理(逆向为去磺酸基机理)

■磺化反应及苯磺酸衍生物的重要性

磺化反应可逆性在合成上的应用

4. 苯环上的烷基化反应 (Friedel-Crafts烷基化反应)

■苯环烷基化其它方法

问题: 碳正离子的产生途径还有那些?

5. 苯环上的酰基化反应 (Friedel-Crafts酰基化反应)

AICI₃用量:

- 用酰氯时,用量 > 1 eqv.
- •用酸酐时,用量 > 2 eqv.

eqv. = equivalent

比较:

•烷基化AICI3用量为催化量

反应机理

• 酰氯为酰基化试剂

■羧酸为酰基化试剂

- Friedel-Crafts酰基化反应在合成中的应用
- ●制备芳香酮
- 间接制备烷基苯

直接法不足之处: (1) 有重排。 (2) 易进一步取代

比第一步快

6. 芳环的氯甲基化反应和Gattermann-Koch反应

■ Gattermann-Koch反应

+ CO + HCI
$$\frac{\text{AlCl}_3, \text{CuCl}}{\Delta}$$
 \downarrow CHO 与Friedel – Crafts酰基化类似

苯环上的亲电取代反应小结

三. 苯环上的取代基对亲电取代反应的影响

问题:苯环上已有取代基时,取代在何处?

- 一些实验结果

R	反应温度	邻位取代	对位取代	间位取代	反应速度
Н	55~60°C				1
CH ₃	30°C	58%	38%	4%	25
CI	60~70°C	30%	70%	微量	0.03
NO ₂	95°C	6%	1%	93%	10-4

1. 取代基的分类

致活基团和致钝基团(考虑对反应活性及速度的影响)
 (activating groups and deactivating groups)

• 邻对位定位基和间位定位基 (考虑对反应取向的影响)

• 取代基对反应的影响的其它例子

2. 取代基作用的解释

- 1) 取代基电子效应对亲电取代活性的影响
 - 诱导效应的影响

■共轭效应的影响

例: 一NH₂的致活作用

共轭给电子效应 (使苯环邻、对位活化)

例: $-NO_2$ 的致钝作用

共轭吸电子效应 (使苯环邻、对位钝化)

2) 取代基的电子效应对反应取向的影响

- ■诱导给电子效应的影响
- ■共轭给电子效应的影响
- ■共轭吸电子效应的影响
- 卤素的双重作用:邻对位致钝基

3) 两个取代基时反应取向,位阻对取向的影响

■ 两个同类定位基时服从定位能力强者, 差别不大时, 得混合物

■ 两个有不同类定位基时,服从邻对位基定位

■ 位阻对反应取向有影响

4) 芳环上取代基的定位作用在合成上的应用

例2:

存在问题:

- (1)苯胺易被硝酸氧化
- (2)苯环钝化,反应难, 生成少量间位产物

•直接硝化

保护氨基

NH-C-CH₃

H₂O

H⁺ or OH

NO₂

主要产物

优点: (1)氨基保护后不易被氧化

(2)N的碱性减弱,不与H+反应

(3)保护后为弱致活基,反应易控制

合成方法: 保护氨基和对位

四、苯及其同系物的氧化还原反应

▶ 芳环侧链氧化在合成上的应用——制备苯甲酸衍生物

合成

2. 苯环的还原

1) 催化氢化:

如果结构中有C=C或C≡C,则先还原C=C、C≡C

2) Birch还原

注意: 1、若取代基有与苯环共轭的双键, Birch还原先发生于双键 2、不与苯环共轭的双键不能发生Birch还原。

反应过程:

Na + NH₃

Na⁺ + e'(NH₃)

H

H

H

H

H

H

H

H

H

H

$$e'(NH_3)$$
 $e'(NH_3)$

H

H

H

H

H

 $e'(NH_3)$

1. 加成反应

五、氯苯与苯炔

 $p-\pi$ 共轭

- 偶极矩减小
- C-CI离解能增大,具有 部分双键性质
- 反应活性低

1、与金属反应

2、芳环上的亲核取代反应

$$\longrightarrow$$
 Br + NaOH $\xrightarrow{\text{H}_2\text{O}}$ no substitution

$$CH_2$$
=CHCl + NaOH $\frac{H_2O}{reflux}$ no substitution

$$O_2N$$

$$Br + NaOH \xrightarrow{H_2O} O_2N$$

$$-OH$$

Nucleophilic substitution reaction of aryl halides *do* occur readily when an electronic factor makes the aryl carbon bonded to the halogen susceptible to nucleophilic attack.

Benzyne

苯炔

非等边六边形

类C≡C

键长较短

sp²(?)杂化

侧面重叠

非常活泼

消去

消去哪一个H?

CF₃
Ha

加成

加在哪个C上?

六、多环芳烃

1. 多环芳烃的类型

多苯代脂烃

苯甲烷

苯甲烷

联苯

> 稠环芳烃

2. 多苯代脂烃类

1) 制备

Friedel-Crafts烷基化反应

- 2) 多苯代脂烃的性质
- 化学性质: 类似烷基取代苯

3. 联苯类多环芳烃

2) 联苯的构象

邻位H之间有位阻 旋转受阻

邻位四取代联苯有手性

•思考题:写出下列两个化合物的一溴代产物

4. 稠环芳烃 I —— 萘

(1) 萘的结构和芳香性

芳香性:

- 符合Hückel规则
- 共振能: 255 kJ/mol
- 主要反应: 亲电取代

最稳定共振式

▶ 萘的共振式分析:

- •只有一个环始终保持芳香性(说明另一环较为活泼)
- •有四种不等性C-C键,其中C1-C2双键性质最明显(键最短)

(2) 萘环上的亲电取代反应

- 规律: 一般为α-取代 (动力学控制产物)
 - E 体积较大时为β-取代(热力学控制产物)

(3) 萘环上的各类亲电取代反应

1) 卤代反应和硝化反应 (α-取代)

2) 磺化反应 (取向受反应温度影响)

3) Friedel-Crafts 酰基化反应(取向受试剂影响)

•萘的 Friedel-Crafts 烷基化用处不大---易生成多取代副产物

4) 取代基对反应取向的影响

α 位有给电子基 \bigcirc

β位有给电子基 2

③ α位有吸电子基

④ β位有吸电子基

5) 萘环的氧化

• 存在其它基团时的氧化选择性

 NO_2 NO_2 **HOOC** 强氧化剂

氧化负电荷密

度较大的环

6) 萘环的还原

4. 稠环芳烃 Ⅱ —— 蒽和菲

- 1) 蒽的化学反应
- 亲电取代 (芳香性)

• 加成和氧化(共轭双烯性质)

2) 菲的化学反应

七、非苯芳烃及性质简介

1. Hueckel Rule (4n+2 rule)

含有4n+2 (n=0,1,2,3.....) 个π电子的单环

闭合平面共轭多烯烃具有芳香性。

- 单环平面共轭多烯
- m电子闭合
- \Box 4n + 2

2. 各环状化合物

3. 几个非苯系芳环

(A) 环丙烯正离子: 最小的具有芳香性的环系

(B) 环戊二烯负离子

结构:

制备:

 $(CH_3)_3CONa$ / $(CH_3)_3COH$

or PhLi

二茂铁

"夹心面包式"结构

与亲电试剂反应, 生成物易二聚

(C) 环庚三烯负离子

pKa = 36

(D) 次多甲基(轮烯, Annulene)

通式为(CH)n的单、双键相间隔的环状化合物被称为[n]轮烯。

本章要求:

- 掌握芳香族化合物的芳香性概念, 会用Hückel规则判断化合物芳香性
- 掌握苯环的亲电取代反应
- 掌握苯环上取代基的分类(致活基和致钝基,邻对位定位基和间位定位基)
- 初步了解并掌握各类亲电取代反应在合成中的应用
- 掌握常见苯环的氧化和还原反应
- 了解萘环上的亲电取代反应