WO 2005/011289 PCT/IB2004/051265

PHUS030249WO PCT/IB2004/051265

16

CLAIMS:

1. A horizontal deflection circuit for driving red, blue and green horizontal deflection coils (L_{HG} , L_{HB} , L_{HR}) of red, blue and green cathode ray tubes, respectively, in a projection television receiver, said horizontal deflection circuit comprising:

a high voltage (B+) supply;

a line inductance coil (T1) coupled on one side to receive the high voltage (B+) from the high voltage supply;

a switch (Q1) for selectively coupling another side of said line inductance coil (T1) to ground;

a parallel arrangement of a damping diode (D1) and a retrace capacitor (C_R) coupled across said switch (Q1);

said red, green and blue deflection coils (L_{HG} , L_{HB} , L_{HR}) each having a first end coupled to said another side of said line inductance coil (T1) and a second end; and

capacitance means (C_S , C_1 , C_2) for coupling said second ends of said red, green and blue deflection coils (L_{HG} , L_{HR}) to ground,

wherein said horizontal deflection circuit further comprises a circuit for effecting horizontal centering of display rasters generated by said red, green and blue cathode ray tubes, said horizontal centering circuit comprising:

an inductance coil (L4) having a first end and a second end;

means for coupling the first end of said inductance coil to said another side of said line inductance coil (T1);

a series arrangement of a first and second diode (D4, D5) interconnecting the second ends of said red and blue deflection coil (L_{HB}, L_{HR}) , a junction point between said first and second diodes (D4, D5) being connected to the second end of said inductance coil (L4); and

WO 2005/011289 PCT/IB2004/051265

PHUS030249WO PCT/IB2004/051265

17

said capacitance means having capacitor means $(C_1,\ C_2)$ for coupling the second ends of at least said red and blue deflection coils $(L_{HB},\ L_{HR})$ to a connection node, and S-shaping capacitor means (C_S) for coupling said deflection node to ground.

- 2. The horizontal deflection circuit as claimed in claim 1, wherein said capacitance means comprises a first capacitor (C_1) connecting the second end of said blue deflection coil (L_{HB}) to said connection node, a second capacitor (C_2) connecting the second end of said red deflection coil (L_{HR}) to said connection node, and an S-shaping capacitor (C_5) for connecting said connection node to ground.
- 3. The horizontal deflection circuit as claimed in claim 1, wherein said capacitance means comprises a first capacitor (C_{S2}) connecting the second end of said blue deflection coil (L_{HB}) to said connection node, a second capacitor (C_{S3}) connecting the second end of said red deflection coil (L_{HR}) to said connection node, and a third capacitor (C_{S1}) connecting the second end of said green deflection coil (L_{HG}) to said connection node, said connection node then being connected to ground, wherein said first, second and third capacitors (C_{S2} , C_{S3} , C_{S1}) include said S-shaping capacitor means (C_{S1}), have equal values and are each equal to one-third of a capacitance value of said S-shaping capacitor means (C_{S1}).
- 4. The line deflection circuit as claimed in claim 1, wherein said coupling means comprises:

said line inductance coil (T1') being formed with a center tapping, said first end of said inductance coil (L4) being connected to said center tapping.

WO 2005/011289 PCT/IB2004/051265

PHUS030249WO PCT/IB2004/051265

18

5. The line deflection circuit as claimed in claim 4, wherein said capacitance means comprises a first capacitor (C_1) connecting the second end of said blue deflection coil (L_{HB}) to said connection node, a second capacitor (C_2) connecting the second end of said red deflection coil (L_{HR}) to said connection node, and an S-shaping capacitor (C_S) for connecting said connection node to ground.

6. The horizontal deflection circuit as claimed in claim 4, wherein said capacitance means comprises a first capacitor (C_{S2}) connecting the second end of said blue deflection coil (L_{HB}) to said connection node, a second capacitor (C_{S3}) connecting the second end of said red deflection coil (L_{HR}) to said connection node, and a third capacitor (C_{S1}) connecting the second end of said green deflection coil (L_{HG}) to said connection node, said connection node then being connected to ground, wherein said first, second and third capacitors (C_{S2} , C_{S3} , C_{S1}) include said S-shaping capacitor means (C_{S1}), have equal values and are each equal to one-third of a capacitance value of said S-shaping capacitor means (C_{S1}).