Chapitre 4

Projection dans le plan

	Sommaire	
1	Projection sur une droite parallèlement à une autre	1
2	Projection orthogonale	1
3	Théorème de Thalès – Théorème de projection 3.1 Théorème de Thalès	1
	3.2 Traduction en terme de projection du théorème de Thalès	2
	3.3 Traduction vectorielle du théorème de Thalès	
4	Exercices	2

1 Projection sur une droite parallèlement à une autre

Définition

Soient (D) et (Δ) deux droites sécantes en un point O, et M un point quelconque du plan.

- La droite passant par M et parallèle à (Δ), coupe la droite (D) en un point M', appelé «projeté de M sur (D) parallèlement à (Δ)».
- La transformation qui associe à tout point M du plan, son projeté M' sur (D) parallèlement à (Δ), s'appelle «projection sur (D) parallèlement à (Δ)», et se note p.
- Pour tout point M du plan, si M' = p(M) alors $\begin{cases} M' \in (D) \\ (MM')//(\Delta) \end{cases}$.

Remarques

Soit (D) et (Δ) deux droites sécantes. On considère la projection p sur (D) parallèlement à (Δ) .

Pour tout point *M* du plan, on a :

- Si $M \in (D)$ alors p(M) = M (on dit que M est un point invariant).
- Si $M \in (\Delta)$ alors p(M) est le point d'intersection de (D) avec (Δ) .
- Si (Δ') est une parallèle à (Δ) et $M \in (\Delta')$ alors p(M) est le point d'intersection de (D) avec (Δ') .
- Si (Δ') est une parallèle à (Δ) alors p est également la projection sur (D) parallèlement à (Δ') .

2 Projection orthogonale

Définition

Soit (*D*) une droite et *M* un point quelconque du plan.

- La droite passant par M et perpendiculaire à (D), le coupe en un point M', appelé «**projeté orthogonale de** M **sur** (D)».
- La transformation qui associe à tout point M du plan, son projeté orthogonale M' sur (D), s'appelle «**projection orthogonale sur** (D)», et se note p_{\perp} .
- Pour tout point M du plan, si $M' = p_{\perp}(M)$ alors $\begin{cases} M' \in (D) \\ (MM') \perp (D) \end{cases}$.

Remarques

La projection orthogonale est une forme particulière de la projection sur une droite parallèlement à une autre. Toute perpendiculaire à (D) peut servir de seconde droite à cette projection.

3 Théorème de Thalès – Théorème de projection

3.1 Théorème de Thalès

Théorèmes

Soit ABB' un triangle.

Soit C un point de la droite (AB) et C' un autre de la droite (AB').

- Directe : Si la droite (CC') est parallèle à la droite (BB'), alors $\frac{AC}{AB} = \frac{AC'}{AB'} = \frac{CC'}{BB'}$.
- Réciproque : Si $\frac{AC}{AB} = \frac{AC'}{AB'}$, alors les droites (BB') et (CC') sont parallèles.

Généralisation

Soient (D_1) et (D_2) deux droites du plan.

Soient A, B et C trois points distincts de (D_1) .

- Directe: Si A', B' et C' sont des points de (D₂) tels que (AA')//(BB')//(CC'), alors AB/AC = A'B'/A'C'.
 Réciproque: Si A', B' et C' sont des points de (D₂) tels que
- Réciproque : Si A', B' et C' sont des points de (D_2) tels que (AA')//(BB') et $\frac{AB}{AC} = \frac{A'B'}{A'C'}$, alors la droite (CC') est parallèle aux deux précédentes.

3.2 Traduction en terme de projection du théorème de Thalès

Propriété

Soient (D) et (Δ) deux droites sécantes du plan. On considère la projection p sur (D) parallèlement à (Δ) .

Soient A, B et C trois points distincts, alignés du plan.

- Directe: Si A' = p(A), B' = p(B) et C' = p(C), alors $\frac{AB}{AC} = \frac{A'B'}{A'C'}$.
- Réciproque : Si A' = p(A), B' = p(B), et C' est un point vérifiant $\frac{AB}{AC} = \frac{A'B'}{A'C'}$, alors p(C) = C'.

3.3 Traduction vectorielle du théorème de Thalès

Propriété

Soient (D) et (Δ) deux droites sécantes du plan. On considère la projection p sur (D) parallèlement à (Δ) . Soient A, B et C trois points distincts du plan, tels que $\overrightarrow{AB} = k\overrightarrow{AC}$, avec $k \in \mathbb{R}^*$.

- Directe: Si A' = p(A), B' = p(B) et C' = p(C), alors $\overrightarrow{A'B'} = \overrightarrow{kA'C'}$.
- Réciproque : Si A' = p(A), B' = p(B), et C' est un point vérifiant $\overrightarrow{A'B'} = \overrightarrow{kA'C'}$, alors p(C) = C'.

3.4 Théorème de projection

Théorème

Soient (D) et (Δ) deux droites sécantes du plan.

Soient A, B et C des points distincts, et A', B', et C' leurs projetés respectifs sur (D) parallèlement à (Δ).

Si $\overrightarrow{AB} = k\overrightarrow{AC}$, alors $\overrightarrow{A'B'} = k\overrightarrow{A'C'}$

Remarques

Les propriétés et théorème précédents reste valable pour une projection orthogonale.

4 Exercices

Exercice 1

ABC est un triangle.

- 1. Soit *E* le point vérifiant $\overrightarrow{EA} + \overrightarrow{EB} = \vec{0}$. Exprimer \overrightarrow{AE} en fonction de \overrightarrow{AB} .
- 2. Soit F le projeté de E sur (AC) parallèlement à (BC). Montrer que F est le milieu de [AC].

Exercice 2

ABC est un triangle et I le point défini par $\overrightarrow{AI} = \frac{3}{4}\overrightarrow{AB}$.

Soit J le projeté de I sur (BC) parallèlement à (AC), K le projeté de J sur (AC) parallèlement à (AB), et H le projeté de K sur (AB) parallèlement à (BC).

1. Montrer que : $\overrightarrow{CK} = \frac{3}{4}\overrightarrow{CA}$.

2. Montrer que BH = AI.

Exercice 3

ABC est un triangle, *I* le milieu de [*AB*] et *J* un point de (*AB*) tel que $3\overrightarrow{AJ} - 2\overrightarrow{JB} = \vec{0}$.

La droite (D), passant par J et parallèle à la droite (AC), coupe (BC) en K.

- 1. Calculer $\frac{KC}{KB}$.
- 2. Exprimer le vecteur \overrightarrow{AK} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 3. Soit *L* le point défini par $\overrightarrow{AL} = 3\overrightarrow{AC}$. Montrer que les points *I*, *K* et *L* sont alignés.

Exercice 4

ABCD est un parallélogramme de centre O, et A' est le projeté de A sur la droite (DC) parallèlement à (BD).

- 1. Montrer que $A'D = \overrightarrow{DC}$.
- 2. Soit *E* le point de (*BC*), dont le projeté sur (*DC*) parallèlement à (*BD*) est *A'*.
 (a) Construire le point *E*.
 (b) Montrer que *A* est le milieu de [*EA'*].
- 3. Soit *R* le point d'intersection de (*EO*) avec (*DC*). Montrer que : $\overrightarrow{EO} = \frac{3}{4}\overrightarrow{ER}$.

Exercice 5

ABC un triangle. Soient E, F et D trois points tels que $\overrightarrow{AE} = 2\overrightarrow{AB}$, $\overrightarrow{AF} = 3\overrightarrow{AC}$ et $\overrightarrow{AD} = \overrightarrow{AE} + \overrightarrow{AF}$.

La droite passant par E et parallèle à (BC), coupe (AD) en I.

La droite passant par F et parallèle à (BC), coupe (AD) en J.

- 1. Montrer que : $\overrightarrow{AD} = \overrightarrow{AI} + \overrightarrow{AJ}$.
- 2. Soit *K* le point d'intersection de (*BC*) avec (*AD*). Montrer que : $\overrightarrow{AK} = \frac{1}{5}\overrightarrow{AD}$.

Exercice 6

ABC est un triangle, D est un point de la droite (BC) n'appartenant pas au segment [BC].

Soit O le point défini par $\overrightarrow{AO} = \frac{3}{4}\overrightarrow{AD}$, E le projeté de D sur (AC) parallèlement à (OC) et F le projeté de D sur (AB) parallèlement à (OB).

- 1. Montrer que $\overrightarrow{AC} = \frac{3}{4}\overrightarrow{AE}$ et $\overrightarrow{AB} = \frac{3}{4}\overrightarrow{AF}$.
- 2. Montrer que (EF) et (BC) sont parallèles.

Exercice 7

ABC est un triangle, I milieu de [BC], D et J sont deux points tels que $\overrightarrow{AD} = \overrightarrow{BC}$ et $\overrightarrow{AJ} = \frac{2}{3}\overrightarrow{AC}$. Soit E le projeté de J sur (BC) parallèlement à (AB).

- 1. Montrer que $\overrightarrow{JE} = \frac{1}{3}\overrightarrow{AB}$ et $\overrightarrow{IE} = \frac{1}{6}\overrightarrow{BC}$.
- 2. La droite (*BD*) coupe les droites (*EJ*) et (*AC*) respectivement en F et K. Montrer que $\overrightarrow{BD} = 6\overrightarrow{KF}$.