Predictive Modeling for Smartphone Purchase Behavior

Prepared by:

Name: Mandar Kajbaje

Domain: Machine Learning – Classification

Tools Used: Python, Scikit-learn, Pandas, Matplotlib, Seaborn

*Abstract

This project focuses on building a predictive model to forecast whether a customer will purchase a smartphone based on their behavior and financial indicators. Using a synthetic dataset and machine learning models, we analyze key factors and apply classification techniques to predict purchase likelihood.

★ Problem Statement

Goal: Predict if a customer will buy a smartphone (1) or not (0) using demographic and behavior-based features.

Use Case: Businesses can target marketing campaigns more effectively and increase conversion rates.

Dataset Description

Feature Name	Description
age	Age of the customer in years
income	Monthly income (₹)
time_on_website	Time spent browsing smartphone-related content (min)
previous_purchases	No. of past purchases (phones or accessories)
marketing_engaged	Whether the user engaged with ads (1 = yes, 0 = no)
search_frequency	How often the user searched phone terms
device_age	Age of current device (years)
will_purchase	Target variable $(1 = yes, 0 = no)$

Dataset: **synthetic**, generated using Python.

Step-by-Step Machine Learning Workflow

Step 1: Import Libraries & Load Dataset

- Imported essential libraries: pandas, numpy, matplotlib, seaborn
- Loaded dataset into a DataFrame

Step 2: Initial Exploration

- Checked data types and missing values
- Used df.describe() to understand feature distributions

Step 3: Exploratory Data Analysis (EDA)

- Visualized age distribution, income spread, and class balance
- Heatmap used to explore feature correlations
- Found that features like income, device_age, and marketing_engaged have impact

Step 4: Data Preprocessing

- Split data into features (X) and target (y)
- Performed 80-20 train-test split
- Scaled features using StandardScaler for normalization

Step 5: Model Training

- Trained multiple models:
 Logistic Regression, Random Forest, and SVM
- Evaluated each using accuracy_score and classification_report

Step 6: Model Evaluation

- Used confusion matrix and ROC curve
- Random Forest showed best performance (accuracy ~75–80%)

Step 7: Hyperparameter Tuning

- Applied GridSearchCV on Random Forest
- Tuned n_estimators and max_depth
- Found optimal hyperparameters for better generalization

Step 8: Model Interpretation

- Used SHAP to explain feature contributions
- Most important features:
 income, time_on_website, device_age, marketing_engaged

Results Summary

Model	Accuracy (Approx.)
Logistic Regression	80.00%
Random Forest	77.50%
Support Vector Machine (SVM)	77.50%

★ Final selected model: **Logistic Regression** (Best Score: 78.50%)

Conclusion

This project demonstrated how machine learning can predict smartphone purchasing behavior using behavioral and demographic data. Random Forest provided the best trade-off between performance and explainability. This can help businesses target high-potential customers effectively.