JAMES K. PRINGLE 140.751 Dr. Brian Caffo Assignment 2 23 October 2012, Tuesday

Problems 2.1, 2.11, 3.7

(2.1) Let X be a multivariate vector with mean μ . Show that $E[AX + b] = A\mu + b$.

Proof: Let X and b be vectors of length n. Let A be a matrix with dimensions $m \times n$. Thus AX + b is a vector of length n. The i-th element of AX + b is

$$\left(\sum_{j=1}^{n} a_{ij} x_j\right) + b_i$$

where a_{ij} is the element in the *i*-th row and *j*-th column of A and the indexed elements of X and b, x_j and b_j , respectively, are the corresponding components of those vectors. The expected value of an array is just the componentwise expected value. Hence, the expected value of the *i*-th element of AX + b is

$$E[AX + b]_i = E[(\sum_{j=1}^n a_{ij}x_j) + b_i]$$

$$= (\sum_{j=1}^n a_{ij}E[x_j]) + b_i \text{ by the linearity of expected value}$$

$$= (\sum_{j=1}^n a_{ij}\mu_i) + b_i.$$

This is precisely the same as the *i*-th element of $A\mu + b$. Thus, $E[AX + b] = A\mu + b$.

(2.11) Let $X \sim N(0, I)$. Argue that if AA' = I, then $AX \sim N(0, I)$. Argue geometrically why this occurs. *Proof:* From page 6 of Brian's scanned notes, we have the following.

Let
$$y = a + \omega X$$
 when $X \sim (\mu, \Sigma)$. Then $var(y) = \omega \Sigma \omega'$.

Thus $\operatorname{var}(AX) = AIA' = AA' = I$. From (2.1), we have $E[AX] = A\mu = 0$. Thus $AX \sim N(0, I)$. This occurs because A is an orthogonal matrix by definition. Thus AX is merely a rotation of X that does not scale X. Therefore we would expect AX to have the same multi-variate distribution as X.

(3.7) Consider a linear model with iid $N(0, \sigma^2)$ errors. Show that $\frac{1}{n-p}e'e$, where e is the vector of residuals, is the ML estimate of σ^2 . Further show that this estimate is unbiased.

Proof: Assume e is a vector of n errors and p is the rank and number of columns of X with n > p. Since the errors are iid, their joint density function is $\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2}\frac{x^2}{\sigma^2}\}$. The log of this density is

$$\log(\prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2}\frac{x^2}{\sigma^2}\}) = -\frac{n}{2}\log(2\pi\sigma^2) + \sum_{i=1}^n -\frac{1}{2}\frac{x_i^2}{\sigma^2}$$

Now we take the derivative with respect to σ^2 because we want to maximize this expression with respect to σ^2 . Setting the derivative equal to zero, we have

$$0 = \frac{\partial}{\partial \sigma^2} \left(-\frac{n}{2} \log(2\pi\sigma^2) + \sum_{i=1}^n -\frac{1}{2} \frac{x_i^2}{\sigma^2} \right)$$
$$= -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2} \sum_{i=1}^n \frac{x_i^2}{\sigma^4}$$

Now multiply by σ^4 and solve for σ^2 . We have

$$0 = -\frac{n}{2}\sigma^2 + \frac{1}{2}\sum_{i=1}^n x_i^2$$

$$n\sigma^2 = \sum_{i=1}^n x_i^2$$

$$\sigma^2 = \frac{1}{n}\sum_{i=1}^n x_i^2$$

$$\sigma^2 = \frac{1}{n}e'e.$$

This value of σ^2 maximizes the log of the joint density function because the second derivative evaluated at this value is negative.

Notice $e = Y - X(X'X)^{-1}X'Y = (I_n - P)Y$. To show the above value, $\frac{1}{n-p}e'e$, is unbiased, we take the expected value of it.

$$E\left[\frac{1}{n-p}e'e\right] = E\left[\frac{1}{n-p}Y'(I_n - P)'(I_n - P)Y\right]$$

$$= \frac{1}{n-p}E\left[Y'(I_n - P)Y\right] \text{ since } I_n - P \text{ is idempotent and symmetric}$$

$$= \frac{1}{n-p}\operatorname{tr}((I_n - P)\operatorname{Var}(Y)) + E\left[Y\right]'(I_n - P)E\left[Y\right] \text{ by expected value of quadratic forms}$$

$$= \frac{1}{n-p}\operatorname{tr}((I_n - P)\sigma^2I) \text{ since } E(Y) = 0$$

$$= \frac{1}{n-p}\sigma^2(n-p)$$

$$= \sigma^2$$

since $\operatorname{tr}(P) = \operatorname{tr}(X(X'X)^{-1}X') = \operatorname{tr}(X'X(X'X)^{-1}) = \operatorname{tr}(I_p) = p$. Hence we have that $\frac{1}{n-p}e'e$ is an unbiased estimator of the variance of the errors.

For the rest of this problem, we use the following result from Seber and Lee.

If $y \sim N(0, \Sigma)$ then $y'Ay \sim \chi^2$ with rank $(A\Sigma)$ degrees of freedom if $A\Sigma$ is idempotent.

- (a) Argue that $\frac{1}{\sigma^2}(y-X\beta)'(y-X\beta)$ is χ_n^2 . Proof: Rewrite the expression as $(y-X\beta)'\frac{1}{\sigma^2}I_n(y-X\beta)$. From the discussion above, $y-X\beta\sim N(0,\sigma^2I_n)$. Notice that $\frac{1}{\sigma^2}I_n\sigma^2I_n=I_n$ is idempotent and has rank n. Thus, $(y-X\beta)'\frac{1}{\sigma^2}I_n(y-X\beta)\sim \chi_n^2$.
- (b) Argue that $\frac{1}{\sigma^2}e'e$ is χ^2_{n-p} . Proof: This is the start of an incorrect proof. As above, notice that $\frac{1}{\sigma^2}e'e = Y'\frac{1}{\sigma^2}(I_n - P)Y$. The random vector Y has variance σ^2I_n . The matrix $\frac{1}{\sigma^2}(I_n - P)\sigma^2I_n = I_n - P$ is idempotent and has rank equal to $\operatorname{rank}(I_n - P) = \operatorname{tr}(I_n - P) = \operatorname{tr}(I_n) - \operatorname{tr}(P) = n - p$ (see Seber and Lee, page 28).

Therefore $\frac{1}{\sigma^2}e'e$ is χ^2_{n-p} . I think Brian might have been going for something like that. But that is incorrect because $Y \nsim N(0, \Sigma)$ since E[Y] is not necessarily 0.

On the other hand, $e = y - X\beta$. Therefore $\frac{1}{\sigma^2}e'e = \frac{1}{\sigma^2}(y - X\beta)'(y - X\beta)$. So problem (b) is the exact same as (a).

- (c) Argue that $\frac{1}{\sigma^2}(y-X\beta)'X(X'X)^{-1}X'(y-X\beta)$ is χ_p^2 . Proof: As in (a), $y-X\beta\sim N(0,\sigma^2I_n)$. Calculating, we see, $\frac{1}{\sigma^2}X(X'X)^{-1}X'\sigma^2I_n=P$, which is idempotent. The rank of P is p since each of X, $(X'X)^{-1}$, and X' has rank p. Therefore, $\frac{1}{\sigma^2}(y-X\beta)'X(X'X)^{-1}X'(y-X\beta)$ is χ_p^2 .
- (d) The expected value of a quadratic form is

$$E[Y'AY] = \operatorname{tr}(A\Sigma) + \mu'A\mu$$

where μ and Σ are the expected value and covariance matrix, respectively of Y. In the three problems above, taking the corrected form of (b), $\mu = 0$. Hence we are left with $E[Y'AY] = \operatorname{tr}(A\Sigma)$. It is clear that in (a), (b), and (c), $\operatorname{tr}(A\Sigma)$ is the same as the rank of $A\Sigma$, which is the degrees of freedom of the χ^2 distribution according to the theorem. In (a) and (b), $A\Sigma = I_n$, and it is obvious that $\operatorname{tr}(I_n) = \operatorname{rank}(I_n) = n$. In (c), $A\Sigma = P$. An argument is given above in two different spots why $\operatorname{tr}(P) = \operatorname{rank}(P) = p$.