$A.\$ Регуляторы в форме вход-выход. $Acmanus_M.$

Задание А-1

Объект управления

$$\ddot{y} + y = u$$

замкнут регулятором

$$\dot{u} = e + 2\dot{e} + 3\ddot{e}, \quad e = g - y.$$

Определить степень астатизма замкнутой системы.

Задание А-2

Для объекта управления

$$\dot{y} = u$$

синтезировать регулятор общего вида, способный проследить за задающим воздействием

$$g = \cos(2t)$$

с нулевой установившейся ошибкой.

В. Типовые звенья.

Частотные характеристики систем.

Задание В-1

Найти установившееся движение $y_{\text{уст}}(t)$ системы

$$\ddot{y} + 4\dot{y} + 4y = 4u$$
 при $u(t) = 6\sin(\omega t + 30^{\circ})$ и $\omega = 2, \ \omega \to 0, \ \omega \to \infty$.

Задание В-2

Построить асимптотическую ЛАЧХ для системы

$$\ddot{y} + 101\dot{y} + 100y = 10u.$$

Задание В-3

Придумать передаточную функцию минимально фазовой системы, амплитудно-частотная характеристика $A(\omega)$ и фазо-частотная характеристика $\varphi(\omega)$ которой подчиняются соотношениям

$$A(0)=7,\quad \lim_{\omega\to+\infty}A(\omega)=0,\quad \varphi(0)=0,\quad \lim_{\omega\to+\infty}\varphi(\omega)=-360^\circ.$$

С. Системы с запаздыванием. Запасы устойчивости.

Задание С-1

Система состоит из объекта

$$\dot{y}(t) + 4y(t) = u(t),$$

датчика

$$\widehat{y}(t) = y(t - \tau)$$

и регулятора

$$u(t) = 8e(t), \ e(t) = g(t) - \hat{y}(t).$$

Найти критическое запаздывание au_{\max} такое, что система асимптотически устойчива при $0 \le au < au_{\max}$ и неустойчива при $au > au_{\max}$.

Задание С-2

Система состоит из объекта

$$\dot{y}(t) = 2u(t),$$

датчика

$$\widehat{y}(t) = y(t - 6)$$

и регулятора

$$u(t) = ke(t), \quad e(t) = g(t) - \widehat{y}(t).$$

Найти критический коэффициент k_{\max} такой, что система асимптотически устойчива при $0 < k < k_{\max}$ и неустойчива при $k > k_{\max}$.