Conservation et non conservation de l'énergie mécanique Premier exercice (10 points): Une glissière est schématisée dans un plan vertical par les rails AB, BC, CD et DE tel que :

-AB fait un angle $\beta = 30^{\circ}$ avec la verticale et il est tangent à BC en B.

-BC est circulaire de rayon R=2m et de centre O tel que $B\hat{O}C = 60^{\circ}$ et OC vertical.

-CD horizontal et tangente à BC en C.

-DE fait un angle α = 30° avec l'horizontal. (Figure ci-dessous)

Les frottements sont négligeables le long de AD.

Prendre le niveau horizontal DC comme niveau de référence de l'énergie potentielle de pesanteur.

On donne g=10m/s².

Une boule S₁ de masse m₁=200g est lâchée sans vitesse initiale du point A à 5m du sol.

A-1- Sur AB: Déterminer l'expression de l'énergie mécanique du système (S1, rails, terre) en fonction de m1, g, x, v et β où v désigne la vitesse de S₁ et x la distance parcourue par S₁ mesurée à partir de A.

2- Sur BC : Déterminer l'expression de l'énergie mécanique du système (S1, rails, terre) en fonction de m1, g, R, θ et θ ' où $\theta = S_1 \hat{O}C$ et θ ' la vitesse angulaire de S_1 .

3- Déterminer V₁ la valeur de la vitesse de S₁ au point C le plus bas.

B-La boule S₁, arrivant en C, entre en choc parfaitement élastique avec une boule S₂ de masse m₂= 300g initialement au repos en C.

1-Déterminer les vitesses V'1 et V'2 respectivement des boules S1 et S2 juste après le choc, sachant que les vitesses

2- Déterminer la valeur de θ m= $M\hat{O}C$ où M est le point le plus haut que S_1 peut atteindre en remontant sur la glissière, sachant que $|\vec{V}_1| = 2\text{m/s}$

3-S1 redescend : Déterminer la quantité de mouvement de S1 lorsque $\theta = S_1 \hat{O}C = 20^{\circ}$ dans le repère de la figure. C-Après le choc, S2 aborde en D, à la vitesse VD= 8m/s, le rail DE et elle arrive au point le plus haut E situé à 2m du

1-Déterminer la variation de l'énergie interne ΔU du système (S2, rails, terre) entre D et E. Interpréter.

2-Démontrer que la variation de l'énergie mécanique du système ΔEm = W , avec W , est le travail de la force de frottement f. En déduire la valeur de f supposée constante.

3-Déterminer la somme des forces extérieures $\sum \vec{F}_{EXT}$ qui s'exercent sur S_2 .

4-En appliquant l'expression générale de la deuxième loi de Newton, trouver l'expression de la quantité de mouvement de S₂ en fonction de temps.

5-Déduire et Calculer At la durée du parcours de S2 sur DE.

Deuxième exercice (5 points) Choc élastique

Une piste constituée d'une partie OCA horizontale ; la piste est parfaitement lisse sauf la zone entre A et C rugueuse. Un ressort R à spires non jointives de constante de raideur K = 20 N/m est utilisé pour lancer une petite sphère (S₁) de masse m₁ = 200 g. Le ressort est comprimé de X_m = 10 cm, pendant que (S₁) est placée au repos en O.

I-Calculer la vitesse V1 de (S1) juste au moment où la sphère se sépare du ressort.

2-Au cours de son mouvement sur OC, (S_1) entre en choc parfaitement élastique avec la deuxième sphère (S_2) de masse $m_2 = 100$ g, initialement au repos. prendre V_2' de (S_2) juste après le choc $V_2' = 1.33 m/s$.

Déterminer les caractéristiques de la force moyenne $\overline{F_{1/2}}$ exercée par (S_1) sur (S_2) sachant que le contact entre ces deux sphères dure 0.1 s.

3-Déterminer v' la valeur de la vitesse de S₁ juste après le choc sachant qu'avant le choc V1=1 m/s

4-La sphère (S_2) arrive en C avec la vitesse V_2 . Trouver sa vitesse lorsqu'elle passe par A e appliquant le théorème de l'énergie cinétique sur S_2 , sachant que la force de frottement entre C et A est f = 0.05 N et que la distance CA = d = 1m.

Bon travail