Homework Solutions Applied Logistic Regression

WEEK 6

Exercise 1

(d) Create design variables for RACE using the method typically employed in ANOVA. Perform the logistic regression of STA on RACE. Show by calculation that the estimated logit differences of RACE = 2 versus RACE = 1 and RACE = 3 versus RACE = 1 are equivalent to the values of the log-odds ratio obtained in problem 1(c). Use the results of the logistic regression to obtain the 95% CI for the odds ratios and verify that they are the same limits as obtained in Exercise 1(c). Note that the estimated covariance matrix for the estimated coefficients is needed to obtain the estimated variances of the logit differences.

Use the following codes to create ANOVA like design variables for RACE

```
. gen rdvm_1=-1
. replace rdvm_1=1 if RACE==2
(15 real changes made)
. replace rdvm_1=0 if RACE==3
(10 real changes made)
. gen rdvm_2=-1
. replace rdvm_2=0 if RACE==2
(15 real changes made)
. replace rdvm_2=1 if RACE==3
(10 real changes made)
```

RACE	Label	RDVM_1	RDVM_2
1	White	-1	-1
2	Black	1	0
3	Other	0	1

Perform the logistic regression of STA on RACE. (use the new design variables of RACE)

Type "logit STA rdvm_1 rdvm_2" in the command window to obtain the logistic regression output.

. logit STA rdvm_1 rdvm	_2				
Logit Estimates Log Likelihood = -98.95	0549			Number of ob chi2(2) Prob > chi2 Pseudo R2	= 2.26 = 0.3231
STA Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
rdvm_1 8584948 rdvm_2 .3942681 cons -1.780562	.7412439 .6329561 .4385203	-1.158 0.623 -4.060	0.247 0.533 0.000	-2.311306 846303 -2.640047	

Show by calculation that the estimated logit differences of RACE=2 vs. RACE=1 and RACE=3 vs. RACE=1 are equivalent to the values of the log-odds ratio obtained in problem 2.1.

$$\begin{split} &\ln\!\left[\widehat{\mathsf{OR}}\!\left(\mathsf{black},\!\mathsf{white}\right)\right] = \hat{g}\!\left(\mathsf{black}\right) - \hat{g}\!\left(\mathsf{white}\right) \\ &= \hat{\beta}_0 + \hat{\beta}_{11} * (\mathsf{D}_1 = 1) + \hat{\beta}_{12} * \left(\mathsf{D}_2 = 0\right) \\ &\quad - \left[\hat{\beta}_0 + \hat{\beta}_{11} * (\mathsf{D}_1 = -1) + \hat{\beta}_{12} * \left(\mathsf{D}_2 = -1\right)\right] \\ &= 2\hat{\beta}_{11} + \hat{\beta}_{12} \\ &= 2 * (-0.8584948) + 0.3942681 \\ &\ln\!\left[\widehat{\mathsf{OR}}\!\left(\mathsf{black},\!\mathsf{white}\right)\right] = -1.322722 \end{split}$$

For RACE 3 vs. RACE 1

$$\begin{split} &\text{In}\Big[\widehat{\text{OR}}\big(\text{other,white}\big)\Big] = \hat{g}\big(\text{other}\big) - \hat{g}\big(\text{white}\big) \\ &= \hat{\beta}_0 + \hat{\beta}_{11} * (D_1 = 0) + \hat{\beta}_{12} * \big(D_2 = 1\big) \\ &\qquad - \Big[\hat{\beta}_0 + \hat{\beta}_{11} * (D_1 = -1) + \hat{\beta}_{12} * \big(D_2 = -1\big)\Big] \\ &= \hat{\beta}_{11} + 2\hat{\beta}_{12} \\ &= (-0.8584948) + 2 * \big(0.3942681\big) \\ &= -0.0699586 \end{split}$$

Use the results of the logistic regression to obtain 95% confidence intervals for the ORs and verify that they are the same limits as obtained in problem 1(c).

Type "vce" in the command window to obtain the variance-covariance matrix.

For RACE 2 vs. RACE 1
$$\widehat{Var} \Big\{ \ln \Big[\widehat{OR} \Big(\text{black, white} \Big) \Big] \Big\} = 4 \widehat{Var} \Big(\hat{\beta}_{11} \Big) + \widehat{Var} \Big(\hat{\beta}_{12} \Big) + 4 \widehat{\text{cov}} \Big(\hat{\beta}_{11}, \hat{\beta}_{12} \Big) \\ = 4 \Big(0.549443 \Big) + \Big(0.400633 \Big) + 4 \Big(-0.373176 \Big) \\ = 1.105701$$
$$\widehat{SE} = \sqrt{1.105701} = 1.0515$$
$$95\%\text{CI} = \exp[2\hat{\beta}_{11} + \hat{\beta}_{12} \pm Z_{1-\alpha/2}^{ 2} * \widehat{SE} \Big(2\hat{\beta}_{11} + \hat{\beta}_{12} \Big)] \\ = \exp[-1.3227 \pm 1.96 * \Big(1.051523 \Big)] \\ 0.03392 \le OR \le 2.0923$$

For RACE 3 vs. RACE 1

$$\widehat{Var} \left\{ \ln \left[\widehat{OR} \left(\text{other, white} \right) \right] \right\} = \widehat{\text{var}} \left(\hat{\beta}_{11} \right) + 4 \widehat{\text{var}} \left(\hat{\beta}_{12} \right) + 4 \widehat{\text{cov}} \left(\hat{\beta}_{11}, \hat{\beta}_{12} \right) \\ = \left(0.549443 \right) + 4 \left(0.400633 \right) + 4 \left(-0.373176 \right) \\ = 0.659271$$

$$\widehat{SE} = \sqrt{0.659271} = 0.811955048$$

$$95\%\text{CI} = \exp[\hat{\beta}_{11} + 2\hat{\beta}_{12} \pm \mathbf{Z}_{1-\frac{9}{2}} * \widehat{SE} \left(\hat{\beta}_{11} + 2\hat{\beta}_{12} \right)]$$

$$= \exp[-0.0699586 \pm 1.96 * \left(0.811956 \right)]$$

$$0.18987 \le OR \le 4.578979$$

These are the same confidence intervals as the ones obtained in Exercise 1-c.

(e) Consider the logistic regression of STA on CRN and AGE. Consider CRN to be the risk factor and show that AGE is a confounder of the association of CRN with STA. Addition of the interaction of AGE by CRN presents an interesting modeling dilemma. Examine the main effects only and interaction models graphically. Using the graphical results and any significance tests you feel are needed, select the best model (main effects or interaction) and justify your choice. Estimate relevant odds ratios. Repeat this analysis of confounding and interaction for a model that includes CPR as the risk factor and AGE as the potential confounding variable.

. logit STA CRN					
Logit Estimates 200				Number of obs =	
5.42				chi2(1) =	
				Prob > chi2 =	
0.0199 Log Likelihood = -97.3 0.0271	68374			Pseudo R2 =	
					-
STA Coef. Interval]		z		[95% Conf.	
 CRN 1.219757	.5038556	2.421	0.015	.2322178	
2.207296 _cons -1.53821 1.156337	.1948369	-7.895	0.000	-1.920084 -	
. logit STA CRN AGE					
Logit Estimates 200				Number of obs =	
				chi2(2) =	
11.56				Prob > chi2 =	
0.0031 Log Likelihood = -94.30 0.0577	02294			Pseudo R2 =	
STA Coef. Interval]			P> z	[95% Conf.	
 CRN 1.019856			0.048	.0106262	
2.029087 AGE .0249915	.0107232	2.331	0.020	.0039744	
.0460085 _cons -3.029875 1.657881					
. predict xbtest, xb					

There is a 16.4% decrease in the value for the coefficient for CRN when AGE is adjusted for in the model. A decrease of this magnitude indicates that AGE confounds the relationship between CRN and STA.

Addition of the interaction of AGE by CRN presents an interesting modeling dilemma.

```
. gen crnage=CRN*AGE
. logit STA CRN AGE crnage
Iteration 0: Log Likelihood =-100.08048
Iteration 1: Log Likelihood =-94.160869
Iteration 2: Log Likelihood =-93.683315
Iteration 3: Log Likelihood =-93.681076
Iteration 4: Log Likelihood =-93.681076
Logit Estimates
                                                                                            Number of obs =
                                                                                                                        200
                                                                                            chi2(3) = 12.80
Prob > chi2 = 0.0051
Log Likelihood = -93.681076
                                                                                            Pseudo R2 = 0.0639
      STA | Coef. Std. Err. z P>|z| [95% Conf. Interval]

      CRN |
      3.573101
      2.322261
      1.539
      0.124
      -.9784469
      8.124649

      AGE |
      .029242
      .011725
      2.494
      0.013
      .0062613
      .0522226

      crnage |
      -.0380925
      .0340579
      -1.118
      0.263
      -.1048447
      .0286598

      _cons |
      -3.297927
      .7705345
      -4.280
      0.000
      -4.808147
      -1.787707

. predict xbtest1, xb
```

Examine the main effects only and interaction models graphically.

Type the following in the command window to obtain the scatter plot.

. scatter xbtest AGE if CRN==0, msymbol(circle) || scatter xbtest AGE if CRN==1,
msymbol(triangle)

Scatterplot of the main effects model for STA on CRN AGE logit vs. AGE by CRN diamond for logit when CRN=0 triangle for logit when CRN

. scatter xbtest1 AGE if CRN==0, msymbol(circle) || scatter xbtest1 AGE if CRN==1, msymbol(triangle)

Scatterplot of the interaction model for STA on CRN AGE CRN*AGE logit vs. AGE by CRN diamond for logit when CRN=0 triangle logit when CRN=1

Using the graphical results and any significance tests you feel are needed, select the best model (main effects or interaction) and justify your choice. Estimate the relevant odds ratios.

Model	Constant	CRN	AGE	CRN*AGE	log- likelihood	G	p-value
1	-1.53821	1.219757	-		-97.34		
2	-3.029875	1.019856	0.0249915	-	-94.30	6.08	0.014
3	-3.297927	3.573101	0.029242	-0.038093	-93.68	1.24	0.265

Based on the impression gained from looking at the graph of the logits from the model containing no interaction term, as well as the Wald statistic for the interaction term (crnage) and the results of the likelihood ratio test, it does not appear justified to include the interaction term in the model. There is no effect modification by AGE.

The relevant odds ratio (adjusted for AGE) can be obtained by exponentiating the coefficient for CRN from the model that includes AGE as a covariate:

$$\widehat{OR} = \exp(1.019856) = 2.77$$

The 95% CI for this odds ratio can be obtained by exponentiating the endpoints of the 95% confidence interval for the coefficient for CRN from the model that includes AGE as a covariate:

$$\exp(0.0106262) \le OR \le \exp(2.029087)$$

1.01 \le OR \le 7.61

Repeat this analysis of confounding and interaction for a model which includes CPR as the risk factor and AGE as the potential confounding variable.

. logit STA	CPR				
Logit Estim		Number of obs = 200 chi2(1) = 7.93 Prob > chi2 = 0.0049 Pseudo R2 = 0.0396			
STA	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
					.5411793 2.848012 -1.916414 -1.164476
. logit STA Logit Estim Log Likelih	ates	97634			Number of obs = 200 chi2(2) = 16.21 Prob > chi2 = 0.0003 Pseudo R2 = 0.0810
STA	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
		.6072971 .0111489			.5938116 2.974373 .0077559 .0514589

_cons -3.351956	.7454995	-4.496	0.000	-4.813108	-1.890803
. predict xbtest3, xb					

There is a 5.0% increase in the value for the coefficient for CPR when AGE is adjusted for in the model. An increase of this magnitude indicates that AGE probably does not confound the relationship between CPR and STA.

Addition of the interaction of AGE by CPR

. gen cprac	ge=CPR*AGE							
. logit STA	A CPR AGE cpi	rage						
Logit Estimates Number of obs = 200 chi2(3) = 19.05 Prob > chi2 = 0.0003 Log Likelihood = -90.554825 Pseudo R2 = 0.0952								
STA		Std. Err.	Z	P> z	[95% Conf. Interval]			
CPR AGE cprage _cons	-3.722935 .0247665 .0941877 -3.041958	.0111663		0.377 0.027 0.183 0.000	.0028809 .0466521 0445852 .2329606			

Examine the main effects only and interaction models graphically.

. scatter xbtest3 AGE if CPR==0, msymbol(circle) || scatter xbtest3 AGE if CPR==1, msymbol(triangle)

Scatterplot of the main effects model for STA on CPR AGE logit vs. AGE by CPR diamond for logit when CRN=0 triangle logit when CRN=1

. scatter xbtest4 AGE if CPR==0, msymbol(circle) || scatter xbtest4 AGE if CPR==1, msymbol(triangle)

Scatterplot of the interaction model for STA on CPR AGE CPR*AGE logit vs. AGE by CPR diamond for logit when CRN=0 triangle logit when CRN=1

Using the graphical results and any significance tests you feel are needed, select the best model (main effects or interaction) and justify your choice. Estimate the relevant odds ratios.

Model	Constant	CPR	AGE		log-	G	p-value
				CPR*AGE	likelihood		
1	-1.540445	1.694596	-	-	-96.11		
2	-3.351956	1.784092	0.0296074	-	-91.98	8.27	0.004
3	-3.041958	-3.722935	0.0247665	0.0941877	-90.55	2.84	0.091

Based on the impression gained from looking at the graph of the logits from the model containing no interaction term, as well as the Wald statistic for the interaction term (cprage) and the results of the likelihood ratio test, it does not appear justified to include the interaction term in the model. There is no effect modification by AGE.

The relevant odds ratio (crude) can be obtained by exponentiating the coefficient for CPR from the original model

$$\widehat{OR} = \exp(1.694596) = 5.44$$

The 95% CI for this odds ratio can be obtained by exponentiating the endpoints of the 95% confidence interval for the coefficient for CPR from the model that does not include AGE:

$$\exp(0.5411793) \le OR \le \exp(2.848012)$$

 $1.72 \le OR \le 17.25$

(f) Consider an analysis for confounding and interaction for the model with STA as the outcome, CAN as the risk factor, and TYP as the potential confounding variable. Perform this analysis using logistic regression modeling and Mantel-Haenszel analysis. Compare the results of the two approaches.

CONFOUNDING

Using logistic regression modeling:

. logit STA CAN				
Logit Estimates				Number of obs = 200 chi2(1) = 0.00
Log Likelihood = -100.08	048			Prob > chi2 = 1.0000 Pseudo R2 = 0.0000
•	Std. Err.			[95% Conf. Interval]
CAN 1.16e-15	.5892557	0.000	1.000	-1.15492 1.15492 -1.751512 -1.021077
. logit STA CAN TYP				Number of obs = 200 chi2(2) = 18.14
Log Likelihood = -91.011	956			Prob > chi2 = 0.0001 Pseudo R2 = 0.0906

STA	Coef.	Std. Err.	z 	P> z	[95% Conf.	Interval]
CAN 1	.709722	.7817449 .8598235 .8563559	3.151	0.002	168188 1.024499 -5.498636	4.394946
logistic STA	CAN TYP					
ogit Estimate	5				Number of obs	
og Likelihood	= -91.01	1956			Prob > chi2 Pseudo R2	
STA Odd		Std. Err.	Z	P> z	[95% Conf.	Interval]
CAN 3		3.058049 12.91894	1.745 3.151	0.081	.8451949 2.7857	

Using M-H analysis:

$$\widehat{OR}_{MH} = \frac{\sum_{i=1}^{2} \frac{a_i d_i}{N_i}}{\sum_{i=1}^{2} \frac{b_i c_i}{N}}$$

Evaluating the expression to obtain the M-H estimate of the odds ratio:

i	a _i	b _i	Ci	d _i	Ni	a _i d _i /N _i	b _i c _i /N _i
1	1	1	14	37	53	0.698	0.264
2	3	35	2	107	147	2.184	0.476
Total						2.882	0.740

$$\widehat{OR}_{MH} = \frac{2.882}{0.740} = 3.895$$

The results of these two approaches are quite similar. After controlling for TYP, the odds of dying prior to discharge from the ICU are nearly four times greater in patients with cancer than in patients without cancer.

INTERACTION

Using logistic regression modeling:

The Wald statistic for the interaction term CANTYP indicates that there is no effect modification of the association between CAN and STA by the variable TYP.

Using M-H analysis to test for heterogeneity across strata:

$$\chi_{H}^{2} = \sum_{i=1}^{2} \left\{ w_{i} \left[\ln \left(\widehat{OR}_{i} \right) - \ln \left(\widehat{OR}_{L} \right) \right]^{2} \right\} \qquad \text{where} \quad \widehat{OR}_{L} = \exp \left[\frac{\sum w_{i} \ln \left(\widehat{OR}_{i} \right)}{\sum w_{i}} \right]$$

$$\frac{\text{TYP=0} \qquad \text{TYP=1}}{\widehat{OR}} \qquad 2.643 \qquad 4.586$$

$$\widehat{I}_{[In(\widehat{OR}]} \qquad 0.972 \qquad 1.523$$

$$\widehat{Var}_{[In(\widehat{OR}]} \qquad 2.098 \qquad 0.871$$

$$w \qquad 0.477 \qquad 1.148$$

$$\widehat{OR}_{L} = exp \left[\frac{0.477 (0.972) + 1.148 (1.523)}{0.477 + 1.148} \right] = exp(1.361) = 3.901$$

therefore.

$$\chi_{H}^{2} = \left[(0.477)(0.972 - 1.361)^{2} + (1.148)(1.523 - 1.361)^{2} \right] = 0.102$$

$$\chi_{H}^{2} \sim \chi^{2}(1)$$

$$p = 0.749$$

The results of these two approaches are quite similar. There is no indication that TYP is an effect modifier.