LAB 7 RANDOM FOREST:

```
In [1]: #iris
          import pandas as pd
          from sklearn.model_selection import train_test_split
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.metrics import accuracy_score
          import matplotlib.pyplot as plt
          from google.colab import files
          # Upload the CSV file
          uploaded = files.upload()
          # Read the CSV file into a pandas DataFrame
          df = pd.read_csv(next(iter(uploaded))) # Load the first uploaded file
          print(df.head())
          # Split data into features and target
          X = df.drop("species", axis=1)
          y = df["species"]
          # Split into train and test sets
          X\_train,\ X\_test,\ y\_train,\ y\_test\ =\ train\_test\_split(X,\ y,\ test\_size=0.2,\ random\_state=42)
          \# 1. Train model with default n_estimators = 10
          \verb|rf_default = RandomForestClassifier(random_state=42)|\\
          rf_default.fit(X_train, y_train)
          y_pred_default = rf_default.predict(X_test)
          default_score = accuracy_score(y_test, y_pred_default)
print(f"Accuracy with default n_estimators=10: {default_score: .4f}")
          # 2. Fine-tuning: test different values for n_estimators
          scores = {}
          for n in range(5, 105, 5): # from 5 to 100 in steps of 5
              rf = RandomForestClassifier(n_estimators=n, random_state=42)
              {\tt rf.fit}({\tt X\_train},\ {\tt y\_train})
              y_pred = rf.predict(X_test)
              acc = accuracy_score(y_test, y_pred)
              scores[n] = acc
```

```
\# Find best score and corresponding n_estimators
best_n = max(scores, key=scores.get)
best_score = scores[best_n]
print(f"Best accuracy: {best_score:.4f} with n_estimators={best_n}")
# Optional: plot accuracy vs. number of trees
plt.plot(list(scores.keys()), list(scores.values()), marker='o')
plt.xlabel("Number of Trees (n_estimators)")
plt.ylabel("Accuracy")
plt.title("Random Forest Accuracy vs. Number of Trees")
plt.grid(True)
plt.show()
```

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving iris (2) csv to iris (2) csv

3aving 1115 (2).csv to 1115 (2).csv					
	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Accuracy with default n_estimators=10: 1.0000 Best accuracy: 1.0000 with n_estimators=10

Random Forest Accuracy vs. Number of Trees

(Root Nade : CEPA) casA >= 9 anteractivenese NO Communication Communication skille. grille moderate. e 000- 1 Job offen = Yes Good Average Job offer = xel Job offer = No · 9 5d, 4 16 de

