Generative AI Consortium (Ltd)

AI/ML Internship: Assignment 1 (Simple Machine Learning Problem)

Name: ARUNA A

Email: arunaananthagiri04@gmail.com

Age	BMI	Blood Pressure	Glucose Level	Insulin Level	Has Diabetes
45	25	120	85	130	Yes
50	30	140	90	150	Yes
30	20	110	70	100	No
40	27	130	80	140	Yes
35	22	115	75	110	No
55	35	150	95	160	Yes
28	18	105	65	95	No

Feature:

- Individual attributes or columns in the dataset used for making predictions.
- Example: Age, BMI, Blood Pressure, Glucose Level, Insulin Level.

Label:

- The target variable or the output you want to predict.
- **Example**: Has Diabetes (Yes/No).

Prediction:

- The output generated by the model based on input features.
- Example: The model predicts "Yes" or "No" for "Has Diabetes".

Outlier:

- A data point that differs significantly from other observations.
- **Example**: If a patient has a Glucose Level of 200 in this dataset, it might be considered an outlier.

Test Data:

- A subset of the dataset used to evaluate the performance of the model.
- **Example**: A few rows from the dataset (e.g., 2 rows) separated for testing.

Training Data:

- A subset of the dataset used to train the model.
- **Example**: The remaining rows of the dataset after separating the test data.

Model:

- An algorithm or a mathematical representation trained on the dataset to make predictions.
- **Example**: A decision tree classifier predicting diabetes.

Validation Data:

- A subset of the dataset used to tune the hyperparameters of the model.
- **Example**: Another separate subset of data used during training.

Hyperparameter:

- Parameters that are set before the training process begins and control the training process.
- **Example**: The learning rate, the depth of a decision tree.

Epoch:

- One complete pass through the entire training dataset.
- **Example**: If the model trains on the entire dataset once, it completes one epoch.

Loss Function:

- A function that measures how well the model's predictions match the actual labels.
- **Example**: Mean Squared Error (MSE) for regression, Cross-Entropy Loss for classification.

Learning Rate:

- A hyperparameter that controls how much to change the model in response to the estimated error each time the model weights are updated.
- **Example**: A learning rate of 0.01.

Overfitting:

- When a model performs well on training data but poorly on test data.
- **Example**: A model that memorizes the training data instead of learning general patterns.

Underfitting:

- When a model performs poorly on both training and test data.
- **Example**: A model that is too simple to capture the underlying patterns in the data.

Regularization:

- Techniques used to prevent overfitting by adding a penalty to the loss function.
- **Example**: L1 and L2 regularization.

Cross-Validation:

- A technique for evaluating the model by partitioning the data into multiple subsets and training/testing the model multiple times.
- **Example**: 5-fold cross-validation.

Feature Engineering:

- The process of creating new features or modifying existing features to improve model performance.
- **Example**: Creating a new feature like "BMI x Glucose Level".

Dimensionality Reduction:

- Techniques for reducing the number of features while retaining important information.
- **Example**: Principal Component Analysis (PCA).

Bias:

- The error introduced by approximating a real-world problem by a simplified model.
- **Example**: A linear model might have high bias if the true relationship is non-linear.

Variance:

- The error introduced by the model's sensitivity to small fluctuations in the training data.
- **Example**: A model with high variance might perform well on training data but poorly on test data due to overfitting.