# Introduction to Distributed Systems WT 20/21

# Assignment 4 – Part I

Submission Deadline: Monday, 25.01.2021, 10:00

- Submit the solution in PDF via Ilias (only one solution per group).
- Respect the submission guidelines (see Ilias).

1 Global State [8 points]

Figure 1 shows a distributed system consisting of two processes  $P_1$  and  $P_2$ .  $P_1$  has the events  $e_1^1$  through  $e_1^5$  and  $P_2$  has the events  $e_2^1$  through  $e_2^3$ . Each event in  $P_1$  and  $P_2$  changes the value of local variables  $x_1$  and  $x_2$ , respectively. Figure 2 depicts the corresponding lattice of global states for the distributed system shown in Figure 1.



Figure 1: Distributed System with Processes  $P_1$  and  $P_2$ 

- a) [2 points]  $C_1$  and  $C_2$  represent two cuts of the system history. Mention all events that belong to  $C_1$  and  $C_2$ . Are  $C_1$  and  $C_2$  consistent cuts? Justify your answer.
- b) [2 points] Complete Figure 2 by adding the values of local variables x1 and x2 for all states.
- c) Consider the following two predicates,

  - $\phi_1 = (x_1 x_2) = 10$   $\phi_2 = (x_2 + x_1) \ge 65$  and  $(x_1 x_2) < 50$
  - i. [2 points] Is the condition  $\neg$  possibly  $\phi_1$  fulfilled? Justify.
  - ii. [2 points] Is the condition definitely  $\phi_2$  fulfilled? Justify.



Figure 2: Lattice of global states

#### 2 Transaction Processing

## [7 points]

a) [3 points] Assume three transactions T1, T2 and T3 as shown in Figure 3. Find all pairs of conflicting operations between these transactions.

$$r_1[y] \longrightarrow r_1[z] \longrightarrow r_1[u] \longrightarrow c_1$$
  
 $r_2[x] \longrightarrow r_2[z] \longrightarrow w_2[y] \longrightarrow c_2$   
 $r_3[x] \longrightarrow w_3[x] \longrightarrow r_3[y] \longrightarrow w_3[u] \longrightarrow c_3$ 

Figure 3: Transactions T1, T2 and T3

b) [4 points] For each of the following histories (Figure 4 and Figure 5) construct a serialization graph and determine whether the history is serializeable.



Figure 4: History  $H_1$ 



Figure 5: History  $H_2$ 

## 3 Two-Phase Locking

[6 points]

Figures 6 to 8 show the total order of operations that occurred during a concurrent execution of three transactions. Determine whether each of these executions could have been generated by 2-phase-locking. Assume that locks are requested as late as possible, i.e. on the first use of the respective variable. Justify your answer.



Figure 6: Execution of History  $H_1$ 



Figure 7: Execution of History  $H_2$ 



Figure 8: Execution of History  $H_3$