Esercitazione 5 Probabilità e Statistica 2015-2016

Claudio Agostinelli Michele Filosi

2 maggio 2016

1

Sia X una variabile aleatoria con funzione di distribuzione continua F. Trovare l'espressione delle distribuzioni delle seguenti variabili aleatorie:

- 1. X^2
- $2. \sin(X)$
- 3. \sqrt{X}
- 4. $G^{-1}(X)$

Dove G é una funzione continua strettamente crescente.

Soluzione

Definiamo Y = g(X) con $g(\cdot)$ definito come segue:

1.
$$Y = X^2$$

$$Pr(Y \le y) = Pr(X^{2} \le y)$$

$$= Pr(-\sqrt{y} \le X \le \sqrt{y})$$

$$= Pr(-\sqrt{y} < X \le \sqrt{y}) + Pr(X = -\sqrt{y})$$

$$= Pr(X \le \sqrt{y}) - Pr(X \le -\sqrt{y}) + 0$$

$$= F_{X}(\sqrt{y}) - F_{X}(-\sqrt{y})$$

2.
$$Y = \sin X$$

Se $-1 < y < 1$

$$\Pr(Y \le y) = \Pr(\sin X \le y)$$

$$= \sum_{n=-\infty}^{\infty} \Pr((2n+1)\pi - \sin^{-1} y \le X \le (2n+2)\pi + \sin^{-1} y)$$

$$= \sum_{n=-\infty}^{\infty} F_X((2n+2)\pi + \sin^{-1} y) - F_X((2n+1)\pi - \sin^{-1} y)$$

3.
$$Y = \sqrt{X}$$

Assumendo $X > 0$

$$Pr(Y \le y) = Pr(\sqrt{X} \le y)$$
$$= Pr(0 \le X \le y^2)$$
$$= F_X(y^2)$$

4.
$$Y = G^{-1}(X)$$

$$Pr(Y \le y) = Pr(G^{-1}(X) \le y)$$
$$= Pr(X \le G(y))$$
$$= F_X(G(y))$$

2

Data la funzione $p(x) = c2^{-x}$ (Geometrica) per gli interi positivi $x = 1, 2, 3, \cdots$

1. Trovare la costante c in modo che p(x) sia una funzione di probabilità sugli interi positivi;

- 2. Sia X una v.a. con funzione di probabilità p(x) trovare:
 - (a) Pr(X > 1);
 - (b) il valore modale di X;
 - (c) la probabilità che X sia pari;

Soluzione

1. L'insieme $\Omega = \{1, 2, 3, \dots, \}$ di interi positivi è un insieme numerabile, per cui p(x) è una probabilità se:

$$\Pr(\{x\}) = p(x) \ge 0 \forall x \text{ and } \sum_{x \in \Omega} p(x) = 1$$

Quindi,

$$c2^{-x} \ge 0 \Rightarrow c \ge 0$$

Consideriamo la somma della serie geometrica:

$$\sum_{x=1}^{\infty} c \left(\frac{1}{2}\right)^x = c \left(\frac{1}{1 - \frac{1}{2}} - 1\right) = 1 \Rightarrow c = 1$$

- 2. La variabile X può assumere solo valori interi positivi, quindi:
 - (a) $\Pr(X > 1) = 1 \Pr(X = 1) = 1 p(1) = 1 2^{-1} = \frac{1}{2}$
 - (b) Moda = $\{\tilde{x}: \Pr(X=\tilde{x})=p(\tilde{x})\geq p(x) \ \forall x\}=\operatorname{argmax}_{x\in\Omega}p(x)$ Dato che p(x) è una funzione decrescente:

$$\operatorname{argmax}_{x \in \Omega} p(x) = \min_{x \in \Omega} x = 1$$

3. Pr(Xpari) = Pr(X = 2n), n intero.

$$\Pr(X = 2n) = \sum_{n=1}^{\infty} 2^{-2n} = \frac{1}{1 - \left(\frac{1}{2}\right)^2} - 1 = \frac{1}{3}$$

Sia $X \sim \mathcal{N}(0,1)$. Dimostrare che:

- 1. $F_X(x) = 1 F_X(-x)$;
- 2. $q_{\alpha} = -q_{1-\alpha}$;
- 3. $\Pr\{|X| \le q_{1-\frac{\alpha}{2}}\} = 1 \alpha;$
- 4. Dimostrare infine che se z_{α} è un quantile di ordine α di una v.a. con legge $\mathcal{N}(0,1)$, allora il quantile di ordine α di una v.a. con legge $\mathcal{N}(\mu, \sigma^2)$ è uguale a

$$q_{\alpha} = \sigma \cdot z_{\alpha} + \mu$$

Soluzione

Se $X \sim \mathcal{N}(0,1)$ sappiamo che anche $-X \sim \mathcal{N}(0,1)$ grazie alla simmetria di $\mathcal{N}(0,1)$. Utilizzando ciò dimostriamo quanto richiesto:

1.

$$F_X(x) = \Pr(X \le x) = \Pr(-X \le x)$$

= $\Pr(X \ge -x) = 1 - \Pr(X \le -x)$
= $1 - F_X(-x)$

2.

$$q_{\alpha} = \arg_{x}(F_{X}(x) = \alpha)$$

$$= \arg_{x}(1 - F_{X}(-x) = \alpha)$$

$$= \arg_{x}(F_{X}(-x) = 1 - \alpha)$$

$$= -\arg_{x}(F_{X}(x) = 1 - \alpha)$$

$$= 1 - q_{1-\alpha}$$

3.

$$\Pr(|X| \le q_{1-\frac{\alpha}{2}}) = \Pr(-q_{1-\frac{\alpha}{2}} \le X \le q_{1-\frac{\alpha}{2}})$$

$$= \Pr(X \le q_{1-\frac{\alpha}{2}}) - \Pr(X \le -q_{1-\frac{\alpha}{2}})$$

$$= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha$$

4. Sia $Y = \sigma \cdot Z + \mu$ una v.a. di legge $\mathcal{N}(\mu, \sigma^2)$, dove $Z \sim \mathcal{N}(0, 1)$.

$$\begin{aligned} q_{\alpha} &= \arg_{y}(\Pr(Y \leq y) = \alpha) \\ &= \arg_{y}(\Pr(\sigma \cdot Z + \mu \leq y) = \alpha) \\ &= \arg_{y}\left(\Pr\left(Z \leq \frac{y - \mu}{\sigma}\right) = \alpha\right) \\ &= \mu + \sigma \cdot \arg_{z}(\Pr(Z \leq z) = \alpha) \\ &= \mu + \sigma \cdot z_{\alpha} \end{aligned}$$

4

Sia $X \sim \mathcal{U}(0,1)$. Trovare la densità di $Y = -\ln X$, sia con la formula di trasformazione, sia con il metodo della funzione di ripartizione.

Soluzione

1. Per risolvere col primo metodo la trasformazione consideriamo la proprietà della densità su X.

$$\int_0^1 1 dx = 1$$

Effettuiamo un cambio di variabile

$$y = -ln(x)$$

$$x = e^{-y}$$

Ora calcoliamo il differenziale dx:

$$dx = -e^{-y}dy$$

Trasformiamo ora l'intervallo dell'integrale:

$$0 \to -ln(0) = \infty$$

$$1 \rightarrow -ln(1) = 0$$

Quindi l'integrale diventa:

$$\int_{\infty}^{0} -e^{-y} dy = \int_{0}^{\infty} e^{-y} dy$$

A questo punto abbiamo che la funzione di densità di Y è $f(y) = e^{-y}$ definita nell'intervallo $[0, +\infty)$.

2. Con il metodo della funzione di ripartizione: dobbiamo prima passare alla funzione di ripartizione di X:

$$F_X(x) = \Pr(X \le x) = x, \qquad 0 \le x \le 1$$

A questo punto consideriamo la funzione di ripartizione di Y e facciamo i seguenti passaggi:

$$F_Y(y) = \Pr(Y \le y) = \Pr(-\ln X \le y) = \Pr(X \ge -e^{-y}) = 1 - \Pr(X \le -e^{-y}) = 1 - e^{-y}$$

Quindi in conclusione

$$F_Y(y) = \begin{cases} 0 & y < 0 \\ 1 - e^{-y} & y \ge 0 \end{cases}$$

Possiamo ottenere la densità di Y derivando F_Y :

$$f_Y(y) = F'_Y(y) = \begin{cases} 0 & y < 0 \\ e^{-y} & y \ge 0 \end{cases}$$

5

Sia X una v.a. con distribuzione uniforme nell'intervallo [2,6] e sia Y una v.a. esponenziale di media $\frac{1}{\lambda}$.

Si determini il valore λ per cui $\Pr(X \le 4) = \Pr(Y \le 4)$

Soluzione

$$\Pr(X \le 4) = \frac{\mu(4)}{\mu(S)} = \frac{4-2}{6-2} = \frac{1}{2}$$

$$\Pr(Y \le 4) = 1 - e^{-4 \cdot \lambda} = \frac{1}{2}$$

$$e^{-4 \cdot \lambda} = \frac{1}{2}$$

$$-4 \cdot \lambda = \ln \frac{1}{2}$$

$$\lambda = -\frac{\ln 0.5}{4} = 0.17329$$