Serie 19 - Vettori nello spazio

"Se è verde o si muove, è biologia. Se puzza, è chimica. Se non funziona, è fisica. Se non si capisce, è matematica. Se non ha senso, è economia o psicologia."

ARTHUR BLOCH

1. Nel cubo rappresentato a destra, P è il centro della faccia BCGF e Q è il punto medio dello spigolo CG.

Esprimi come combinazione lineare dei vettori $\vec{x} = \overrightarrow{AB}$, $\vec{y} = \overrightarrow{AD}$ e $\vec{z} = \overrightarrow{AE}$ i vettori \overrightarrow{HB} , \overrightarrow{AP} , \overrightarrow{BP} , \overrightarrow{HP} , \overrightarrow{FQ} , \overrightarrow{EQ} , \overrightarrow{AQ} , \overrightarrow{HQ} .

I vettori $\overrightarrow{HP}, \overrightarrow{BP}$ e \overrightarrow{HB} sono complanari?

- $\textbf{2.} \quad \text{Sono dati i vettori } \vec{u} = \begin{pmatrix} 1 \\ 5 \\ -5 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} -2 \\ 4 \\ 0 \end{pmatrix}, \ \vec{w} = \begin{pmatrix} 0 \\ -3 \\ 7 \end{pmatrix} \text{ in } V_3. \quad \text{Scrivi in componenti i vettori } \vec{a} = 3\vec{u} 4\vec{v} + 3\vec{w} \quad \text{e} \quad \vec{b} = -\vec{u} + \frac{1}{2}\vec{v} 3\vec{w} \quad \text{. Trova inoltre il vettore unitario } \vec{c}, \text{ collineare al vettore } \vec{a} \vec{b} \text{ ma di verso opposto.}$
- 3. Stabilisci se i 2 risp. 3 vettori di V_3 dati sono linearmente dipendenti:

a)
$$\vec{v} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$
, $\vec{w} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{4} \end{pmatrix}$

b)
$$\vec{v} = \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix}, \ \vec{w} = \begin{pmatrix} \frac{1}{5} \\ \frac{1}{3} \\ \frac{1}{2} \end{pmatrix}$$

c)
$$\vec{u} = \begin{pmatrix} -1\\2\\1 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 2\\0\\3 \end{pmatrix}, \ \vec{w} = \begin{pmatrix} -3\\-2\\-7 \end{pmatrix}$$

d)
$$\vec{u} = \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}, \ \vec{c} = \begin{pmatrix} 2 \\ 6 \\ 0 \end{pmatrix}$$

e)
$$\vec{u} = \begin{pmatrix} -1\\2\\1 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} 3\\3\\3 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$

$$\mathbf{f}) \ \vec{u} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}, \ \vec{c} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix}$$

4. Scrivi il vettore \vec{d} come combinazione lineare di \vec{a} , \vec{b} e \vec{c} :

a)
$$\vec{a} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$, $\vec{d} = \begin{pmatrix} -8 \\ -13 \\ 12 \end{pmatrix}$

b)
$$\vec{a} = \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}, \vec{b} = \begin{pmatrix} -2 \\ 3 \\ 7 \end{pmatrix}, \vec{c} = \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix}, \vec{d} = \begin{pmatrix} 2 \\ -12 \\ -20 \end{pmatrix}$$

c)
$$\vec{a} = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}, \vec{b} = \begin{pmatrix} 5 \\ 0 \\ 4 \end{pmatrix}, \vec{c} = \begin{pmatrix} 5 \\ -6 \\ -7 \end{pmatrix}, \vec{d} = \begin{pmatrix} -8 \\ 9 \\ 2 \end{pmatrix}$$

5. Sia \overrightarrow{e}_1 , \overrightarrow{e}_2 , \overrightarrow{e}_3 una base ortonormata in V_3 . I vettori $\overrightarrow{a} = \overrightarrow{e}_1 + \overrightarrow{e}_2$, $\overrightarrow{b} = 2\overrightarrow{e}_1 + \overrightarrow{e}_2 + \overrightarrow{e}_3$ e $\overrightarrow{c} = \overrightarrow{e}_2 + \overrightarrow{e}_3$ formano una base di V_3 ? Se sì, come si esprime il vettore \overrightarrow{e}_1 rispetto a questa base?

- **6.** Sono dati i punti A = (0, 2, 4), B = (1, 0, 5), C = (2, 2, 4), D = (1, 4, 3).
 - a) Trova le coordinate di un punto E in modo che A, B, E siano allineati.
 - b) Dimostra che A, B, C, D sono sullo stesso piano.
 - c) Dimostra che il quadrilatero ABCD è un rombo.
- 7. Siano $\vec{u}, \vec{v}, \vec{w}$ tre vettori di V_3 linearmente indipendenti. Quali delle seguenti affermazioni sono vere, quali false (motivare le risposte).
 - (i) Esistono $\lambda, \mu \in \mathbb{R}$ tali che $\vec{w} = \lambda \vec{v} + \mu \vec{u}$.
- (ii) Siano $\vec{a}=\vec{u}+\vec{v}-\vec{w},\ \vec{b}=-\vec{u}+2\vec{v}-\vec{w}$ e $\vec{c}=2\vec{u}+\vec{v}-\vec{w}$. Allora \vec{a},\vec{b},\vec{c} sono linearmente indipendenti.
- (iii) \vec{v}, \vec{w} sono linearmente indipendenti.
- (iv) $\vec{u}, \vec{v}, \vec{u} + \vec{v} + \vec{w}$ sono linearmente indipendenti.
- 8. Sono dati tre vettori $\vec{a}, \vec{b}, \vec{c} \in V_2$ così che $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Inoltre vale $||\vec{a}|| = 4, ||\vec{b}|| = 5$ e $\|\vec{c}\| = 7$. Calcola $\vec{a} \cdot \vec{b}$.
- 9. I vettori $\vec{a} = \begin{pmatrix} x \\ -2 \\ 6 \end{pmatrix}$ e $\vec{b} = \begin{pmatrix} 2 \\ 6 \\ z \end{pmatrix}$ possono essere rappresentati su 2 lati adiacenti di un quadrato. Determina x, z e l'area di tale quadrato.

Soluzioni

1. Soluzioni:

$$\bullet \ \overrightarrow{HB} = \vec{x} - \vec{y} - \vec{z}$$

$$\bullet \overrightarrow{HP} = \vec{x} - \frac{1}{2}\vec{y} - \frac{1}{2}\vec{z}$$

•
$$\overrightarrow{AQ} = \overrightarrow{x} + \overrightarrow{y} + \frac{1}{2}\overrightarrow{z}$$

• $\overrightarrow{AP} = \vec{x} + \frac{1}{2}\vec{y} + \frac{1}{2}\vec{z}$

• $\overrightarrow{FQ} = \overrightarrow{y} - \frac{1}{2}\overrightarrow{z}$

• $\overrightarrow{HQ} = \vec{x} - \frac{1}{2}\vec{z}$

 $\bullet \overrightarrow{BP} = \frac{1}{2}\vec{y} + \frac{1}{2}\vec{z}$

• $\overrightarrow{EQ} = \vec{x} + \vec{y} - \frac{1}{2}\vec{z}$

Geometricamente possiamo notare che:

$$\overrightarrow{HP} + \overrightarrow{PB} + \overrightarrow{BH} = \overrightarrow{o} \iff \overrightarrow{HP} - \overrightarrow{BP} - \overrightarrow{HB} = \overrightarrow{o}$$

Dunque (1; -1; -1) è una soluzione non triviale dell'equazione: i vettori sono complanari!

2.
$$\vec{a} = 3\vec{u} - 4\vec{v} + 3\vec{w} = 3\begin{pmatrix} 1 \\ 5 \\ -5 \end{pmatrix} - 4\begin{pmatrix} -2 \\ 4 \\ 0 \end{pmatrix} + 3\begin{pmatrix} 0 \\ -3 \\ 7 \end{pmatrix} = \begin{pmatrix} 11 \\ -10 \\ 6 \end{pmatrix}$$

$$\vec{b} = -\vec{u} + \frac{1}{2}\vec{v} - 3\vec{w} = -\begin{pmatrix} 1\\5\\-5 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} -2\\4\\0 \end{pmatrix} - 3\begin{pmatrix} 0\\-3\\7 \end{pmatrix} = \begin{pmatrix} -2\\6\\-16 \end{pmatrix}$$

$$\vec{c} = -\frac{\vec{a} - \vec{b}}{\|\vec{a} - \vec{b}\|} = -\frac{\begin{pmatrix} 13\\-16\\22 \end{pmatrix}}{\sqrt{13^2 + (-16)^2 + 22^2}} = \begin{pmatrix} -13/\sqrt{909}\\16/\sqrt{909}\\-22/\sqrt{909} \end{pmatrix}$$

- **3.** a) SI, dato che vale $\vec{w} = -\frac{1}{4}\vec{v}$.
 - **b) NO**: evidentemente, non esiste una costante $\lambda \in \mathbb{R}$ tale che $\lambda \cdot 5 = \frac{1}{5}$, $\lambda \cdot 3 = \frac{1}{3}$, $\lambda \cdot 2 = \frac{1}{2}$.
 - c) Tre vettori \vec{u} , \vec{v} , \vec{w} sono linearmente dipendenti (cioè complanari) se uno dei tre è esprimibile come combinazione lineare degli altri 2:

$$\vec{w} = \lambda \vec{u} + \mu \vec{v} \quad \Longleftrightarrow \quad \begin{pmatrix} -3 \\ -2 \\ -7 \end{pmatrix} = \lambda \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} \quad \Longleftrightarrow \quad \begin{cases} -\lambda + 2\mu = -3 \\ 2\lambda = -2 \\ \lambda + 3\mu = -7 \end{cases}$$

I tre vettori sono linearmente dipendenti se e soltanto se il sistema (3 equazioni in 2 incognite) possiede una soluzione (λ, μ) , cioè se esistono due numeri reali λ e μ che soddisfano tutte e tre le equazioni. Per deciderlo, possiamo ad esempio risolvere il sistema

$$\begin{cases} -\lambda + 2\mu = -3\\ 2\lambda = -2 \end{cases}$$

di 2 equazioni in 2 incognite formato dalle prime 2 equazioni, e verificare se la soluzione trovata soddisfa anche la terza equazione.

Da $2\lambda = -2$ otteniamo $\lambda = -1$ e $\mu = \frac{1}{2}(\lambda - 3) = \frac{1}{2}(-1 - 3) = -2$. Verifichiamo che la coppia $(\lambda, \mu) = (-1, -2)$ soddisfa anche la terza equazione:

$$\lambda + 3\mu = -1 + 3 \cdot (-2) = -7$$
.

Quindi, il sistema è risolvibile, con $S = \{(-1, -2)\}$, e i vettori \vec{u} , \vec{v} , \vec{w} sono linearmente dipendenti; possiamo anche esprimere esplicitamente la dipendenza lineare:

$$\vec{w} = \lambda \vec{u} + \mu \vec{v} = -\vec{u} - 2\vec{v}$$

(com'è facile verificare).

d) Come sopra:

$$\vec{c} = \lambda \vec{u} + \mu \vec{v} \quad \Longleftrightarrow \quad \begin{pmatrix} 2 \\ 6 \\ 0 \end{pmatrix} = \lambda \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} \quad \Longleftrightarrow \quad \begin{cases} 2\lambda + 3\mu = 2 \\ -4\lambda + \mu = 6 \\ 6\lambda + 3\mu = 0 \end{cases}$$

Possiamo ad esempio risolvere il sistema formato dalla prima e dalla terza equazione:

$$\begin{cases} 2\lambda + 3\mu = 2\\ 6\lambda + 3\mu = 0 \end{cases}$$

ha soluzione $(\lambda,\mu)=(-\frac{1}{2},1);$ sostituendo tali valori nella seconda equazione otteniamo

$$-4\lambda + \mu = -4 \cdot (-\frac{1}{2}) + 1 = 3 \neq 2$$
 ;

quindi, il sistema non ha soluzioni: $S = \emptyset$, e i vettori \vec{u} , \vec{v} , \vec{c} sono linearmente indipendenti.

e) I vettori \vec{u} , \vec{v} , \vec{w} sono linearmente indipendenti: ad esempio, risolvendo il sistema

$$\begin{cases} -\lambda + 3\mu = 0 \\ 2\lambda + 3\mu = 1 \end{cases}$$

si ottiene $(\lambda, \mu) = (\frac{1}{3}, \frac{1}{9})$; tale soluzione non soddisfa la terza equazione.

- f) Anche in questo caso i vettori dati sono linearmente indipendenti: il sistema formato dalle prime 2 componenti ha per soluzione $(\lambda, \mu) = (1, -1)$, e tale soluzione non soddisfa la terza equazione.
- **4.** a) Occorre ricavare tre numeri reali λ , μ e ν tali che

$$\lambda \vec{a} + \mu \vec{b} + \nu \vec{c} = \vec{d} \quad ,$$

cioè

$$\lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + \nu \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -8 \\ -13 \\ 12 \end{pmatrix} .$$

Ciò conduce al sistema di equazioni

$$\begin{cases} \lambda + 2\mu + 2\nu = -8 \\ -\lambda + \mu - 2\nu = -13 \\ \lambda - \mu + \nu = 12 \end{cases}$$

che può essere risolto in svariati modi (ad esempio: sommando le prime 2 equazioni si ottiene immediatamente $3\mu = -21$, e quindi $\mu = -7$). La soluzione è $(\lambda, \mu, \nu) = (4, -7, 1)$, e quindi

$$\vec{d} = 4\vec{a} - 7\vec{b} + \vec{c} \quad .$$

b) Il sistema di equazioni

$$\begin{cases} 4\lambda - 2\mu + \nu = 2 \\ -2\lambda + 3\mu + \nu = -12 \\ 7\mu - 4\nu = -20 \end{cases}$$

(nota l'omissione del termine 0λ nella terza equazione) ha soluzione $(\lambda, \mu, \nu) = (-1, -4, -2)$, e quindi

$$\vec{d} = -\vec{a} - 4\vec{b} - 2\vec{c} \quad .$$

c) Analogo; il sistema ha soluzione $(\lambda, \mu, \nu) = (3, -1, 0)$, e quindi

$$\vec{d} = 3\vec{a} - \vec{b}$$

(nota l'omissione della componente $0 \cdot \vec{c} = \vec{o}$).

5. Ricaviamo:

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}; \qquad \vec{b} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}; \qquad \vec{c} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix};$$

con il sistema abituale (v. esercizi precedenti) possiamo stabilire che essi sono indipendenti: essi formano dunque una base di \mathbb{R}^3 . Per determinare la combinazione lineare che genera \vec{e}_1 è necessario risolvere:

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \nu \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

ottenendo: $\lambda=0, \mu=\frac{1}{2}, \nu=-\frac{1}{2}.$

- **6.** a) Il punto E può essere allineato ai punti A e B in modo che $\overrightarrow{O}E = \overrightarrow{O}B + \overrightarrow{A}B = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 6 \end{pmatrix}$. Quindi E(2, -2, 6).
 - b) I punti sono sullo stesso piano se i vettori $\overrightarrow{AB}, \overrightarrow{AC}$ e \overrightarrow{AD} sono complanari (cioè linearmente dipendenti). Con il sistema abituale (o con il sistema del determinante che vedremo in seguito) questo è facilmente verificabile.
 - c) Dobbiamo solamente verificare che i lati opposti siano paralleli e della stessa lunghezza: ciò viene verificato da:

$$\overrightarrow{AB} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \overrightarrow{DC} \checkmark \qquad \qquad \overrightarrow{AD} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \overrightarrow{BC} \checkmark$$

- 7. (i) Falso: il terzo vettore non è esprimibile come combinazione lineare degli altri due.
 - (ii) Vero. Possiamo "tradurre" i vettori utilizzando $\vec{u}, \vec{v}, \vec{w}$ come base e otteniamo:

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}; \quad \vec{b} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}; \quad \vec{c} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

con le solite tecniche possiamo determinare che essi sono indipendenti.

(iii) Vero: se fossero dipendenti allora avremmo che $\vec{v}=k\vec{w}$ e dunque

$$\lambda \vec{u} + \mu \vec{v} + \nu \vec{w} = \vec{o}$$

avrebbe come soluzione (non triviale): $\lambda=0, \mu=1, \nu=-k$ e questo contraddice il fatto che $\vec{u}, \vec{v}, \vec{w}$ sono indipendenti.

(iv) Vero. Come nel punto (ii) traduciamo i vettori in vettori aritmetici (con $\vec{u}, \vec{v}, \vec{w}$ come base) ottenendo:

$$\vec{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \quad \vec{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \quad \vec{u} + \vec{v} + \vec{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Facilmente si verifica che essi sono indipendenti.

8. Ricorda che $\vec{a}^2 = \vec{a} \cdot \vec{a} = ||\vec{a}||^2$ e in particolare che $\vec{o}^2 = 0$. Possiamo ora calcolare:

$$(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = \vec{o}^2 \iff \underbrace{\vec{a}^2}_{=4^2} + \underbrace{\vec{b}^2}_{=5^2} + \underbrace{\vec{c}^2}_{=7^2} + 2\vec{a}\vec{b} + 2\vec{a}\vec{c} + 2\vec{b}\vec{c} = 0 \iff \vec{a}\vec{b} + \vec{a}\vec{c} + \vec{b}\vec{c} = -45$$

Utilizzando $\vec{c} = -\vec{a} - \vec{b}$ nell'ultima relazione trovata otteniamo:

$$\vec{a}\vec{b} + \vec{a}(-\vec{a} - \vec{b}) + \vec{b}(-\vec{a} - \vec{b}) = -45 \iff -\vec{a}\vec{b} = -45 + \vec{a}^2 + \vec{b}^2 = -45 + 16 + 25 = -4$$

Dunque $\vec{a} \cdot \vec{b} = 4$.

9. Deve valere innanzitutto $\|\vec{a}\| = \|\vec{b}\|$, equivalente a $\vec{a}^2 = \vec{b}^2$. quindi

$$x^2 + 4 + 36 = 4 + 36 + z^2 \iff x^2 = z^2$$

e inoltre $\vec{a}\cdot\vec{b}=0,$ quindi

$$2x - 12 + 6z = 0 \quad \iff \quad x = -3z + 6 \quad .$$

Sostituendo quest'ultima uguaglianza in $z^2=x^2$ ricaviamo

$$z^{2} = (-3z+6)^{2} \iff 8z^{2} - 36z + 36 = 0 \iff 2z^{2} - 9z + 9 = 0 \iff z = \frac{9 \pm \sqrt{9}}{4}$$

e quindi z = 3 (e x = -3) oppure $z = \frac{3}{2}$ (e $x = \frac{3}{2}$).

Nel primo caso vale
$$\|\vec{a}\| = \sqrt{3^2 + (-2)^2 + 6^2} = \sqrt{49} = 7$$
, e per l'area $\boxed{\mathcal{A} = \|\vec{a}\|^2 = 49}$, nel secondo $\|\vec{a}\| = \sqrt{\left(\frac{3}{2}\right)^2 + (-2)^2 + 6^2} = \frac{13}{2}$, e $\boxed{\mathcal{A} = \frac{169}{4} = 42, 25}$.