Study of Ultrafast Laser-Induced Acoustics with Plasmonic Gratings

MSc Physics and Astronomy Master thesis

By Jeffrey SUEN

Supervisors: Prof. dr. Paul Planken, ir. Thomas van den Hooven

25 Sept 2024

Introduction

- Nanolithography machine
- Alignment gratings buried
- Laser-induced acoustic waves
- Reflect grating shape
- Detect with probe laser

Fig: arcnl.nl/research-groups/light-matter-interaction

Introduction

- Challenge: Signal too weak for industrial use
- Enhance with plasmonic resonance

Research:

How does plasmonic resonance enhance signal?

Two-Temperature Model

- Electrons absorbs laser
- Heat transfer to the lattice
- Diffuse through electrons
- Determines the time-dependent temperature distribution

Photoacoustics

What happens after absorption?

- Lattice wants to expand
- Thermal stress
- Propagate into the layer
- Longitudinal wave
- Changes reflectance or diffraction efficiency

Surface Plasmon Polariton (SPP)

Electromagnetic wave bound to surface of a metal

$$k_{SPP} = \frac{\omega}{c} \sqrt{\frac{\epsilon_m \epsilon_d}{\epsilon_m + \epsilon_d}} > k_0 = \omega/c$$

Impossible in air!

Surface Plasmon Polariton (SPP)

- Grating adds extra k-component
- Absorbs more light when coupled -> minimum reflectance
- Longitudinal wave density oscillation -> change resonance wavelength
- LW induced reflectance change is enhanced near SPP resonance

Experiments: Setup

Pump-probe experiments

- 800 nm ultrafast Laser source
 - 35 fs, 1 kHz
- Variable pump-probe delay
- Pump 500 Hz
- Compare with and without pump

Sample

Experiment 1: Transient grating diffraction change

- Split into two 400 nm pump beams
- Cross on flat part of sample
- Interference pattern -> grating
- 750 nm probe pulses
- Diffraction only with pump
- High signal-to-noise

Experiment 1: Transient grating diffraction change

- Rapid absorption by electrons
- Longitudinal wave reflection round trip time: 2d/v_ℓ = 40.5 ps
- Increased diffraction for blocked
- Potential damage

- No clear LW reflection
- Control pump fluence

- ONE 400 nm pump beam
- 750 nm probe
- On etched grating
- At and around SPP resonance angle 37°

Compare SPP resonance with off-resonance

Surface Acoustic Waves

T= grating period transverse speed of sound

= 526ps

Maybe SAW? No LW (40.5ps)

Experiment 3: Etched grating reflection change White light probe, fixed angle

- Probe → white light continuum 600~900nm
- Detector → spectrometer
- Incidence at resonance angle for 750 nm ~37°

Experiment 3: Etched grating reflection change White light probe, fixed angle

Vary angle of incidence vs Vary probe wavelength

How are angle of incidence and probe wavelength related?

Vary angle of incidence vs Vary probe wavelength

SPP resonance condition

$$\left| \frac{\omega}{c} \sin \theta \pm N \frac{2\pi}{\Lambda} \right| = \frac{\omega}{c} \sqrt{\frac{\epsilon_m \epsilon_d}{\epsilon_m + \epsilon_d}}$$

No LW: Acoustic Impedance Mismatch

Acoustic impedance: resistance to acoustic waves

$$Z = \rho v$$

Material	Al	Si
Acoustic impedance Z ($10^6 \mathrm{kg}\mathrm{s}^{-1}\mathrm{m}^{-2}$)	17.4	19.6

Acoustic impedance mismatch small!

Reflection coefficient: fraction of amplitude reflected

$$r = \left| \frac{Z_1 - Z_2}{Z_1 + Z_2} \right| = 6\%$$

Very low LW reflection from substrate !!!

Conclusion

- Complex oscillations
- Unexplained origins

Expected enhanced LW signal No longitudinal waves reflections! Main reason:

Acoustic impedance mismatch too small for Al/Si

Reflectance for 750nm on grating

Reflectance for 750nm on grating

LW: f = 1/40.5 ps = 24.7 GHz

Material	Al	Si	SiO ₂
Density ρ (kg m ⁻³)	2710	2330	2650
Speed of sound $v~({ m ms^{-1}})$	6420	8430	5780
Acoustic impedance Z ($10^6~{\rm kgs^{-1}m^{-2}}$)	17.4	19.6	15.4
Reflection coefficient r with Al	0%	5.95%	6.10%

