Correlation Analysis

MISAB P.T

Ph.D Management

Definition of Correlation

- Correlation is the degree of association between two or more variables.
- If two or more quantities vary so that movements in one tend to be accompanied by movements in other, then they are said to be correlated.
- Coefficient of correlation is a numerical measure of the degree of association between two or more variables.

Meaning

- Correlation is the most popular statistical measure that indicates the relationship between two or more variables.
- It is concerned with finding:
 - Whether or not the relationship exist?
 - Degree of the correlation?
 - Direction of relationship within the variables (Direct or indirect)?
 - Relationship is strong or Weak?

Examples

- Relationship between income and years of experience
- Relationship between amount of rainfall and yield of rice
- Relationship between price and demand of a commodity
- Relationship between nature of work and motivation to work
- Relationship between height and weight

Scope of Correlation Analysis

- The existence of correlation between two (or more) variables only implies that these variables:
- 1. Either tend to increase or decreased together
- 2. An increase (or decrease) in one is accompanied by the corresponding decrease (or increase) in the other.
- Correlation analysis does not answer the questions like why there is cause and effect between two variables.
- It may be due to following reasons:

Scope of correlation analysis

- One of the variable may be affecting the other. A correlation calculated from the data on demand and price will only show that degree of association between demand and price is high. It will not show why it happens.
- The two variables may act upon each other. Cause and effect is here also, but it is difficult to find which variable is independent and which is dependent.
- The two variables may be acted upon by the outside influence. Such correlation is called spurious or nonsense correlation.
- A high value of the correlation may be due to sheet coincidence (or pure chance)

Types of correlation

On the basis of direction of change

- Positive correlation
- •Negative correlation
- Perfectly Positive
- Perfectly Negative
- Zero Correlation

On the basis of number of variables

- Simple correlation (only 2 variables)
- •Partial correlation (Effect of only two is studied while others are kept constant)
- Multiple correlation(More than 2 variables)

On the basis of proportion

- Linearcorrelation(amount of change in constant ratio)
- •Non linear correlation

Types of Correlation

Correlation on the basis of direction of change is as following:

- (1) Positive Correlation
- (2) Negative Correlation
- (3) Perfectly Positive Correlation
- (4) Perfectly Negative Correlation
- (5) Zero Correlation

Positive Correlation

- When two variables move in the same direction then the correlation between these two variables is said to be PositiveCorrelation.
- When the value of one variable increases, the value of other value also increases at the same rate.

For example:

Training (Rs.) : 350 360 370 380

performance(Kg.): 30 40 50 60

Positive Correlation

Scatter Plot Example - Positive Correlation Weight gained vs Calories Consumed

Negative Correlation

- In this type of correlation, the two variables move in the opposite direction.
- When the value of one variable increases, the value of the other variable decreases.

For example, the relationship between price and demand.

Negative Correlation

Perfect Positive Correlation

• When there is a change in one variable X, and if there is equal proportion of change in the other variable say Y in the same direction, then these two variables are said to have a Perfect Positive Correlation.

Perfect Positive Correlation

Perfect Positive Correlation

Perfectly Negative Correlation

• Between two variables X and Y, if the change in X causes the same amount of change in Y in equal proportion but in opposite direction, then this correlation is called as Perfectly Negative Correlation.

Perfectly Negative Correlation

Zero Correlation

• When the two variables are independent and the change in one variable has no effect in other variable,

then the correlation between these two variable is known as Zero Correlation.

Zero Correlation

A Zero Correlation

A zero correlation indicates that there is no relationship between the independent variable and the dependent variable.

Methods of studying correlation

Karl Pearson's Coefficient of Correlation

- It is the most widely used method of measuring linear relationship between two variables.
- Assumptions of Karl Pearson's Coefficient:
- 1. There is linear relationship between variables.
- 2. There is cause and effect relationship

Calculating the Co-efficient of Correlation by Karl Pearson Method

$$N\Sigma xy - (\Sigma x)(\Sigma y)$$

$$r = \sqrt{[N\Sigma x^2 - (\Sigma x)^2][N\Sigma y^2 - (\Sigma y)^2]}$$
Where:
$$N = \text{number of pairs of scores}$$

$$\Sigma xy = \text{sum of the products of paired scores}$$

$$\Sigma x = \text{sum of x scores}$$

$$\Sigma y = \text{sum of y scores}$$

$$\Sigma y^2 = \text{sum of squared x scores}$$

$$\Sigma y^2 = \text{sum of squared y scores}$$

Example

• From the following sets of observations, find the coefficients of correlation:

(a) X: 25 35

(b) X: 8 11

Y:40 41

Y: 190 100

Ans: (a) r = 1 (b) r = -1

So, in case (a) the variable X and Y are perfectly positive correlated to each other.

And in case (b) the variable X and Y are perfectly negative correlated to each other.

Features of coefficient of correlation

- Ranges between -1 and 1.
- Closer to -1, stronger the negative relationship
- Closer to 1, stronger the positive relationship
- Closer to 0, weaker the relationship
- If r=0 there is no relationship between variable
- If $+0.75 \le r \le +1$ there exist high positive relationship.
- If $-0.75 \ge r \ge -1$ there exist high negative relationship.

Scatter Diagram

- The first step in determining whether there is a relationship between two variable is to examine the graph of observed data.
- The graph or chart is called scatter diagram.
- A scatter diagram gives us information about patterns that indicates that variables are related.

Scatter Plot (Scatter diagram or dot diagram)

- In this method the values of the two variables are plotted on a graph paper. One is taken along the horizontal (x-axis) and the other along the vertical (y-axis).
- By plotting the data, we get points (dots) on the graph which are generally scattered and hence the name 'Scatter Plot'.
- The points plotted on graph may cluster around a straight line or a curve or may not show any tendency of association.

- i) If all points lie on a rising straight line the correlation is perfectly positive and r = +1 (see fig.1)
- ii) If all points lie on a falling straight line the correlation is perfectly negative and r=-1 (see fig.2)
- iii) If the points lie in narrow strip, ri②
 correlation is high degree of positive (see
- iv) If the points lie in a narrow strip, for the correlation is high degree of negative $\underbrace{ r = + \uparrow_{High} }_{r = \downarrow_{High}}$
- v) If the points are spread widely over a upwards, the correlation is low degree $p^{(5)}$
- vi) If the points are spread widely over falling downward, the correlation is low resulting (see fig.6)
- vii) If the points are spread (scatte specific pattern, the correlation is absent. i.e. r=0. (see fig.7)

Scatter diagram continue...

- A scatter diagram of the data helps in having a visual idea about the nature of association between two variables.
- If the point cluster along the straight line the association between variable is linear.
- If the points cluster along the a curve, the association is nonlinear or curvilinear.
- If the points neither cluster along a straight line nor along a curve, there is absence of any association between the variables.
- When the low/high value of one variable is associated with low/high value of other variable respectively, the association is called positive.
- In contrast if low/high value of one variable is associated with high/low value of other variable respectively, the association is called negative.

Example

• Draw a scatter diagram from following data and indicate whether the correlation between the variable is positive or negative.

Height (inch)	62	72	70	60	67	70	64	65	60	70
Weight (kgs.)	50	65	63	52	56	60	59	58	54	65

Standard Error

- Standard error of coefficient of correlation is used to find out probable error of coefficient of correlation.
- Where r = coefficient of correlation
- N = Number of observed pairs

• So S.E. =
$$1-r^2 / \sqrt{N}$$

Probable Error

- The probable error of coefficient of correlation is an amount which if added to or subtracted from values of r gives upper limit and lower limit within which this coefficient is expected to be.
- Probable error is 0.6745 time of Standard Error
- That means Probable error = 0.6745 (S.E.)

Use of probable error

- It is used to determine the reliability of coefficient of correlation.
- For ex. If ratio of r and P.E. is greater than 6 then coefficient is reliable, i.e. there is relationship between variable.
- If ratio of r and PE is less than 6 then coefficient is not reliable, i.e. there is no relationship between variable.

Example

- If r = 0.8 and N = 36, find
- (a) Standard Error
- (b) Probable Error
- (c) Check reliability

Ans. (a) 0.06

(b) 0.04

(c) ratio of r to PE is 20 so coefficient is reliable