Projet 5 OC:

Segmentez des clients d'un site e-commerce

- Problématique
- EDA
- Classification non supervisée
- Conclusion

Problématique

Mission de consultant pour Olist, solution de vente sur les marketplaces en ligne

Objectifs

- Fournir aux équipes d'e-commerce une segmentation des clients pour les campagnes de communication
- Comprendre les différents types d'utilisateurs
- Fournir une description actionable de la segmentation
- Faire une proposition de contrat de maintenance

Olist : une plateforme d'e-commerce

- Plateforme d'e-commerce
- Créée au Brésil en 2016
- Propose une vitrine en ligne pour les vendeurs
- Met en lien acheteurs et vendeurs
- Suivi du paiement et de la livraison
- Notation des vendeurs et des produits

Données du dataset brute

- Données réparties en 9 fichiers .csv de 120 Mo, globalement bien complétées.
- des données variées (textuelles, chiffrées, catégorielles, géographiques)
- 96096 clients unique, 99441 commandes distinctes, 118310 produits vendus
- Enregistrements sur 2 ans, 38 variables, environs 120 000 lignes

Feuille de route

- Extraire les données de la base de donnée Olist permettant de caractériser les clients
- Utiliser des outils de machine learning non supervisés pour réaliser un partitionnement des clients en fonction de ces caractéristiques
- Interpréter les segments obtenus d'un point de vue métier
- Analyser la stabilité temporelle du processus de partitionnement pour évaluer une fréquence de maintenance

Nettoyage et merge du dataset

- Suppression des lignes 100% "NaN" et dupliqué
- Suppression des colonnes avec 100% et >80% de valeurs manquantes
- Imputation des informations manquantes par médiane (entre 0,1 % et 3% NaN)
- Transtypage de données en "datetime" et "category"
- Suppression de features non pertinentes "review_comment_message", "customer_zip_code_prefix"
- Création de nouvelles features "volume", "estimated_delivery_time", "delivery_time" et RFM
- Transformation log de "F", "M", "price", "freight", "delivery_time" (car biaisées)
- Assemblage dans une table unique avec pour index l'id client unique

EDA

RFM (pour établir des segments de clients homogènes et de cibler les offres)

Recency nombre de jouer depuis la dernière commande

Frequency — nombre de commande sur toute la période

Monetary — total valeur des commandes sur toute la période

Conclusion exploratoire

- Un jeu de donnée de clients principalement à commande unique (97% d'article unique par commande)
- Clients globalement satisfait
- Les articles les plus vendus sont "ameublement, multimédia, équipement de sport, décoration"
- Les articles les plus chère "produits électroniques"
- Les notes de reviews sont un peu meilleurs sur les produits peu chers
- Les délais estimés sont plus longs que les délais de livraison
- Pas de forte corrélation entre les variables

Classification non supervisée

- Récupération de l'identifiant, de la date et de la valeur de chaque commande.
- Après jointure sur l'identifiant client on peut calculer les variables RFM
- Le dataset est agrégé par clients unique. Les variables catégorielles ne peuvent pas être agrégés, elle seront supprimés
- Approche retenue : le Kmeans

Clustering Kmeans et métrique

- Un pipeline : avec SimpleImputer(médiane) et normalisation avec StandardScaler()
- Itération sur un nombre borné K
- Méthode du coude (inflexion nette a K= 4)
- Score de silhouette (clusters correctement séparés)
- Score de Davies-Bouldin (score minimisé)

Réduction dimensionnelle (T-SNE)

TSNE for KMeans clusteringwith n clusters = 4

TSNE for DBSCAN

Importance des variables latentes

Interprétation des résultats

Cluster 1: les commandes sont moins fréquentes, moins onéreuses mais très récentes

Cluster 2 : les commandes sont très fréquentes, plus onéreuse mais moins récentes

Cluster 3 : les commandes sont moins fréquentes, moins onéreuses et pas du tout récentes

Cluster 4 : les commandes sont moins fréquentes, moins onéreuses et moyennement récentes

Métriques ARI (refit périodique)

Pour établir un contrat de maintenance de l'algorithme de segmentation client, nous testerons sa stabilité sur 23 mois, avec un K-Means itéré tous les mois comparé au dataset global.

Suivi de la prédiction du numéro de cluster des mêmes clients d'une période à l'autre Changement de l'attribution des clusters à partir de 9 mois

Conclusion

- Mise en application des algorithmes de classification non supervisée adaptée à notre problème métier
- Opportunités d'amélioration du clustering en ajoutant de nouvelles features ("volume", "delivery_time", etc
- Mise en relation avec les catégories de produits dominants pour chaque clusters (mais commande unique)
- Analyse des clients ayant acheté plusieurs articles
- Données plus précises sur les clients (à anonymiser) : âge, sexe
- Proposition de maintenance à 9 mois