TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỚI MỰC 9-10 ĐIỂM

Dạng 1. Tính toán liên quan đến logarit dùng đẳng thức

• Đinh nghĩa logarit:

Cho hai số thực dương a,b với $a \ne 1$, $\alpha = \log_a b \Leftrightarrow a^\alpha = b$:

• Các tính chất logarit: Cho ba số thực dương a,b,c với $0 < a,b,c \ne 1$

$$\log_a b = \frac{\log_c b}{\log_a a}; \log_a b + \log_a c = \log_a bc; \log_a b - \log_a c = \frac{\log_a b}{\log_a c};$$

 $\log_a b \cdot \log_b c = \log_a c.$

- Phương trình mũ cơ bản nhất $a^x = b \Leftrightarrow x = \log_a b \quad (0 < a \neq 1; b > 0)$.
- Cách giải phương trình mũ có dạng $\alpha_1 a^{2x} + \alpha_2 (ab)^x + \alpha_3 b^{2x} = 0$ trong đó $\alpha_i (i = 1, 2, 3)$ là hệ số, $\cos \hat{s} = 0 < a, b \neq 1$

B1: Biến đổi phương trình về dạng: $2\alpha_1 \left(\frac{a}{b}\right)^{2x} + \alpha_2 \left(\frac{a}{b}\right)^x + \alpha_3 = 0$ (*).

B2: Đặt ẩn phụ $\left(\frac{a}{h}\right)^{x} = t, t > 0$, phương trình (*) trở thành $\alpha_1 t^2 + \alpha_2 t + \alpha_3 = 0$.

B3: Giải tìm t thỏa mãn t > 0.

B4: Giải phương trình mũ cơ bản $\left(\frac{a}{b}\right)^x = t$. Tìm được x.

(Đề Minh Họa 2020 Lần 1) Cho x, y là các số thực dương thỏa mãn Câu 1. $\log_9 x = \log_6 y = \log_4 (2x + y)$. Giá trị của $\frac{x}{y}$ bằng

A. 2.

- **B.** $\frac{1}{2}$.
- C. $\log_2(\frac{3}{2})$. D. $\log_{\frac{3}{2}} 2$.
- (Chuyên Lào Cai 2020) các số thực a, b, c thỏa mãn $(a-2)^2 + (b-2)^2 + (c-2)^2 = 8$ và Câu 2. $2^a = 3^b = 6^{-c}$. Khi đó a+b+c bằng

A. 2.

- **B.** 4.
- C. $2\sqrt{2}$
- (Chuyên Thái Nguyên 2020) Cho $4^x + 4^{-x} = 7$. Khi đó biểu thức $P = \frac{5 2^x 2^{-x}}{8 + 4 \cdot 2^x + 4 \cdot 2^{-x}} = \frac{a}{b}$ với Câu 3. $\frac{a}{b}$ là phân số tối giản và $a,b \in \mathbb{Z}$. Tích a.b có giá trị bằng

A. 10.

- **B.** -8.
- **D.** -10.
- (Sở Ninh Bình 2019) Cho a, b, c là các số thực khác 0 thỏa mãn $4^a = 9^b = 6^c$. Khi đó $\frac{c}{a} + \frac{c}{b}$ Câu 4. bằng

A. $\frac{1}{2}$.

- $\mathbf{B} \cdot \frac{1}{\epsilon}$.
- **C.** $\sqrt{6}$.
- **D.** 2.

NGUYĒN BAO VƯƠNG - 0946798489

Biết $a = \log_{30} 10$, $b = \log_{30} 150$ và $\log_{2000} 15000 = \frac{x_1 a + y_1 b + z_1}{x_2 a + y_2 b + z_2}$ với $x_1; y_1; z_1; x_2; y_2; z_2$ là các số nguyên, tính $S = \frac{x_1}{x_2}$.

A.
$$S = \frac{1}{2}$$

B.
$$S = 2$$

A.
$$S = \frac{1}{2}$$
. **B.** $S = 2$. **C.** $S = \frac{2}{3}$. **D.** $S = 1$.

D.
$$S = 1$$

 $\begin{cases} \log_x y = \log_y x \\ \log_x (x - y) = \log_y (x + y) \end{cases}$ Cho các số thực dương x, y khác 1 và thỏa mãn Câu 6.

Giá trị của $x^2 + xy - y^2$ bằng

Cho các số thực dương a, b thỏa mãn $\sqrt{\log a} + \sqrt{\log b} + \log \sqrt{a} + \log \sqrt{b} = 100$ và $\sqrt{\log a}$, Câu 7. $\sqrt{\log b}$, $\log \sqrt{a}$, $\log \sqrt{b}$ đều là các số nguyên dương. Tính P = ab.

A.
$$10^{164}$$
.

B.
$$10^{100}$$
.

$$\mathbf{C.}\ 10^{200}$$
.

D.
$$10^{144}$$
.

Cho $\log_9 5 = a$; $\log_4 7 = b$; $\log_2 3 = c$. Biết $\log_{24} 175 = \frac{mb + nac}{pc + q}$. Tính A = m + 2n + 3p + 4qCâu 8.

Cho x, y là các số thực lớn hơn 1 thoả mãn $x^2 - 6y^2 = xy$. Tính $M = \frac{1 + \log_{12} x + \log_{12} y}{2\log_{12}(x + 3y)}$. Câu 9.

A.
$$M = \frac{1}{4}$$
.

B.
$$M = 1$$

B.
$$M = 1$$
. **C.** $M = \frac{1}{2}$. **D.** $M = \frac{1}{3}$.

D.
$$M = \frac{1}{3}$$
.

Câu 10. Cho $f(x) = a \ln(x + \sqrt{x^2 + 1}) + b \sin x + 6$ với $a, b \in \mathbb{R}$. Biết $f(\log(\log e)) = 2$. Tính $f(\log(\ln 10))$.

Câu 11. Cho $9^x + 9^{-x} = 14$ và $\frac{6+3(3^x+3^{-x})}{2-3^{x+1}-3^{1-x}} = \frac{a}{b}$ với $\frac{a}{b}$ là phân số tối giản. Tính P = a.b.

A.
$$P = 10$$
.

B.
$$P = -45$$
. **C.** $P = -10$.

C.
$$P = -10$$
.

D.
$$P = 45$$
.

Câu 12. Cho hai số thực dương a,b thỏa $\log_4 a = \log_6 b = \log_9 (a+b)$. Tính $\frac{a}{b}$.

A.
$$\frac{1}{2}$$
.

B.
$$\frac{1+\sqrt{5}}{2}$$

C.
$$\frac{-1-\sqrt{5}}{2}$$

B.
$$\frac{1+\sqrt{5}}{2}$$
. **C.** $\frac{-1-\sqrt{5}}{2}$. **D.** $\frac{-1+\sqrt{5}}{2}$.

Câu 13. Cho các số thực dương x, y thỏa mãn $\log_6 x = \log_9 y = \log_4 (2x + 2y)$. Tính tỉ số $\frac{x}{y}$?

A.
$$\frac{x}{y} = \frac{2}{3}$$
.

B.
$$\frac{x}{y} = \frac{2}{\sqrt{3}-1}$$

B.
$$\frac{x}{y} = \frac{2}{\sqrt{3} - 1}$$
. **C.** $\frac{x}{y} = \frac{2}{\sqrt{3} + 1}$. **D.** $\frac{x}{y} = \frac{3}{2}$.

D.
$$\frac{x}{y} = \frac{3}{2}$$
.

Câu 14. Cho x, y là các số thực dương thỏa mãn $\log_{25} \frac{x}{2} = \log_{15} y = \log_9 \frac{x+y}{4}$ và $\frac{x}{v} = \frac{-a+\sqrt{b}}{2}$, với a, b là các số nguyên dương, tính a+b.

A.
$$a + b = 14$$
.

B.
$$a + b = 3$$
.

C.
$$a+b=21$$
.

D.
$$a+b=34$$
.

Câu 15. Cho dãy số (u_n) thỏa mãn $\log_3(2u_5-63)=2\log_4(u_n-8n+8)$, $\forall n \in \mathbb{N}^*$. Đặt

 $S_n = u_1 + u_2 + ... + u_n$. Tìm số nguyên dương lớn nhất n thỏa mãn $\frac{u_n \cdot S_{2n}}{u_n \cdot S} < \frac{148}{75}$.

C. 16.

D. 19.

Dạng 2. Bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất mũ – loagrit (sử dụng phương pháp bất đẳng thức – biến đối)

① Bất đẳng thức Cauchy (AM – GM)

- $\forall a, b \ge 0$, thì $|a+b \ge 2\sqrt{ab}|$. Dấu "=" xảy ra khi: a=b.
- $\forall a,b,c \ge 0$, thì $a+b+c \ge 3.\sqrt[3]{abc}$. Dấu "=" xảy ra khi a=b=c.

Nhiều trường hợp đánh giá dạng: $a.b \le \left(\frac{a+b}{2}\right)^2$ và $a.b.c \le \left(\frac{a+b+c}{3}\right)^3$.

2 Bất đẳng thức Cauchy – Schwarz (Bunhiaxcôpki)

- $\forall a,b,x,y$, thì: $(a.x+b.y)^2 \le (a^2+b^2)(x^2+y^2)$. Dấu "=" khi $\frac{a}{x} = \frac{b}{y}$
- $\forall a, b, c, x, y, z$ thi: $(a.x + b.y + c.z)^2 \le (a^2 + b^2 + c^2)(x^2 + y^2 + z^2)$

Dấu "=" xảy ra khi và chỉ khi: $\frac{a}{x} = \frac{b}{v} = \frac{c}{z}$

Nhiều trường hợp đánh giá dạng: $|a.x+b.y| \le \sqrt{(a^2+b^2)(x^2+y^2)}$.

Hệ quả. Nếu a,b,c là các số thực và x,y,z là các số dương thì:

$$\boxed{\frac{a^2}{x} + \frac{b^2}{y} \ge \frac{(a+b)^2}{x+y}} \quad \text{và} \quad \boxed{\frac{a^2}{x} + \frac{b^2}{y} + \frac{c^2}{z} \ge \frac{(a+b+c)^2}{x+y+z}} : \text{bất đẳng thức cộng mẫu số.}$$

(Đề Tham Khảo 2020 Lần 2) Xét các số thực dương a,b,x,y thoả mãn a>1,b>1 và Câu 1. $a^x = b^y = \sqrt{ab}$. Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập hợp nào dưới đây?

A. (1;2).

B. $\left[2; \frac{5}{2}\right]$. **C.** $\left[3; 4\right)$.

D. $\left| \frac{5}{2}; 3 \right|$.

(Đề Tham Khảo 2020 Lần 2) Có bao nhiều số nguyên x sao cho tồn tại số thực y thỏa mãn Câu 2. $\log_3(x+y) = \log_4(x^2+y^2)$?

A. 3.

C. 1.

D. Vô số.

(Mã 103 2018) Cho a > 0, b > 0 thỏa mãn $\log_{4a+5b+1} (16a^2 + b^2 + 1) + \log_{8ab+1} (4a+5b+1) = 2$. Giá Câu 3. trị của a + 2b bằng

A. 6

B. $\frac{27}{4}$

C. $\frac{20}{2}$

D. 9

(Mã 101 - 2020 Lần 1) Xét các số thực không âm x và y thỏa mãn $2x + y.4^{x+y-1} \ge 3$. Giá trị Câu 4. nhỏ nhất của biểu thức $P = x^2 + y^2 + 4x + 6y$ bằng

A. $\frac{33}{4}$.

B. $\frac{65}{8}$. **C.** $\frac{49}{8}$.

D. $\frac{57}{9}$.

Xét các số thực x, y thỏa mãn $2^{x^2+y^2+1} \le (x^2+y^2-2x+2)4^x$. Giá trị nhỏ nhất của biểu thức Câu 5. $P = \frac{4y}{2x + y + 1}$ gần nhất với số nào dưới đây?

A. -2.

B. -3.

 $C_{1} - 5$.

D. -4.

NGUYĚN <mark>BẢO</mark> VƯƠNG - 0946798489

Cho các số thực x, y thỏa mãn bất đẳng thức $\log_{4x^2+9y^2}(2x+3y) \ge 1$. Giá trị lớn nhất của biểu thức P = x + 3y là

A.
$$\frac{3}{2}$$
.

B.
$$\frac{2+\sqrt{10}}{4}$$
. **C.** $\frac{5+\sqrt{10}}{4}$. **D.** $\frac{3+\sqrt{10}}{4}$.

C.
$$\frac{5+\sqrt{10}}{4}$$

D.
$$\frac{3+\sqrt{10}}{4}$$

(Chuyên Lam Sơn Thanh Hóa 2019) Cho các số thực a,b thay đổi, thỏa mãn $a > \frac{1}{2}, b > 1$. Khi Câu 7. biểu thức $P = \log_{3a} b + \log_b (a^4 - 9a^2 + 81)$ đạt giá trị nhỏ nhất thì tổng a + b bằng

A.
$$3+9^{\sqrt{2}}$$

B.
$$9+2^{\sqrt{3}}$$

C.
$$2+9\sqrt{2}$$
 D. $3+3\sqrt{2}$

D.
$$3 + 3\sqrt{2}$$

(Chuyên Trần Phú Hải Phòng 2019) Cho các số thực a,b,cCâu 8. thỏa mãn $0 < a < 1; \frac{1}{8} < b < 1; \frac{3}{8} < c < 1$. Gọi M là giá trị nhỏ nhất của biểu thức $P = \frac{3}{16} \log_a \left(\frac{b}{2} - \frac{1}{16} \right) + \frac{1}{4} \log_b \left(\frac{c}{2} - \frac{3}{16} \right) + \frac{1}{3} \log_c a \text{ . Khẳng định nào sau đây đúng?}$

A.
$$\sqrt{3} \le M < 2$$
.

B.
$$M \ge 2$$
.

C.
$$\sqrt{2} \le M < \sqrt{3}$$
. **D.** $M < \sqrt{2}$.

D.
$$M < \sqrt{2}$$
.

Cho các số thực a,b,m,n sao cho 2m+n<0 và thoả mãn điều kiên: Câu 9.

$$\begin{cases} \log_2(a^2 + b^2 + 9) = 1 + \log_2(3a + 2b) \\ 9^{-m} \cdot 3^{-n} \cdot 3^{\frac{-4}{2m+n}} + \ln[(2m+n+2)^2 + 1] = 81 \end{cases}$$

Tìm giá trị nhỏ nhất của biểu thức $P = \sqrt{(a-m)^2 + (b-n)^2}$

A.
$$2\sqrt{5}-2$$
.

C.
$$\sqrt{5} - 2$$
.

D.
$$2\sqrt{5}$$

Câu 10. Cho các số thực a,b,c thỏa mãn $0 < a < 1; \frac{1}{8} < b < 1; \frac{3}{8} < c < 1$. Gọi M là giá trị nhỏ nhất của biểu thức $P = \frac{3}{16} \log_a \left(\frac{b}{2} - \frac{1}{16} \right) + \frac{1}{4} \log_b \left(\frac{c}{2} - \frac{3}{16} \right) + \frac{1}{3} \log_c a$. Khẳng định nào sau đây đúng?

A.
$$\sqrt{3} \le M < 2$$
. **B.** $M \ge 2$.

B.
$$M \ge 2$$

C.
$$\sqrt{2} \le M < \sqrt{3}$$
. **D.** $M < \sqrt{2}$

D.
$$M < \sqrt{2}$$
.

Câu 11. (Chuyên Lam Sơn - 2020) Xét các số thực dương a,b,c lớn hơn 1 (với a>b) thỏa mãn $4(\log_a c + \log_b c) = 25\log_{ab} c$. Giá trị nhỏ nhất của biểu thức $\log_b a + \log_a c + \log_c b$ bằng

C.
$$\frac{17}{4}$$
.

Câu 12. (Chuyên Lương Văn Ty - Ninh Bình - 2020) Xét các số thực dương a, b, x,y thỏa mãn a > 1, b > 1 và $a^{2x} = b^{3y} = a^6b^6$. Biết giá trị nhỏ nhất của biểu thức P = 4xy + 2x - y có dạng $m + n\sqrt{165}$ (với m, n là các số tự nhiên), tính S = m + n.

(Chuyên Lê Hồng Phong - Nam Định - 2020) Xét các số thực x, y thỏa mãn Câu 13. $\log_2(x-1) + \log_2(y-1) = 1$. Khi biểu thức P = 2x + 3y đạt giá trị nhỏ nhất thì $3x - 2y = a + b\sqrt{3}$ với $a, b \in \mathbb{Q}$. Tính T = ab?

A.
$$T = 9$$
.

B.
$$T = \frac{7}{3}$$
. **C.** $T = \frac{5}{3}$.

C.
$$T = \frac{5}{3}$$

D.
$$T = 7$$
.

	_	^				
TAI I	TÜTT	ON	THI	TUDT	C	202
IALL		UIN	1111	111111	VU	404

Câu 14.	(Chuyên Phan B	ội Châu - Nghệ		o $a > 0, b > 0$ thỏa mãn						
	$\log_{4a+5b+1} (16a^2 + b^2 + 1) + \log_{8ab+1} (4a+5b+1) = 2$. Giá trị của $a+2b$ bằng									
	A. $\frac{27}{4}$.	B. 6.	C. $\frac{20}{3}$.	D. 9.						
Câu 15.	(Chuyên Son La - 2	(020) Cho a,b,c là các	c số thực lớn hơn 1. C	Giá trị nhỏ nhất của biểu thức						
	$P = \frac{4040}{\log_{\sqrt{bc}} a} + \frac{1010}{\log_{ac} \sqrt{a}}$	$\frac{1}{b} + \frac{8080}{3\log_{ab}\sqrt[3]{c}} \text{ bằng}$								
	A. 2020.	B. 16160.	C. 20200.	D. 13130.						
Câu 16.	(Chuyên Vĩnh Ph	úc - 2020) Cho a,	b,c là các số thực	dương khác 1 thỏa mãn						
	$\log_a^2 b + \log_b^2 c = \log_a \frac{c}{b}$	$\frac{c}{b}$ $-2\log_b\frac{c}{b}$ -3 . Gọi M	,m lần lượt là giá trị	lớn nhất, giá trị nhỏ nhất của						
	$P = \log_a b - \log_b c \cdot G$	iá trị của biểu thức $S =$	3m-M bằng							
	A. -16.	B. 4.	C. -6.	D. 6.						
Câu 17.	(Sở Hưng Yên - 20	20) Cho các số thực	$x, y \ge 1$ và thỏa mãn	điều kiện $xy \le 4$. Biểu thức						
	$P = \log_{4x} 8x - \log_{2y^2}$	$\frac{y^2}{2}$ đạt giá trị nhỏ nhấ	t tại $x = x_0, y = y_0$. H	Đặt $T = x_0^4 + y_0^4$ mệnh đề nào						
	sau đây đúng A. <i>T</i> = 131.	B. $T = 132$.	C. $T = 129$.	D. $T = 130$.						
Câu 18.				=10. Biết giá trị lớn nhất của						
			1110°	m, n nguyên dương và $\frac{m}{n}$ tối						
	giản. Tổng $m+n$ bằng	O hours	,,	"						
	A. 13.	B. 16.	C. 7.	D. 10.						
Câu 19.	,	Thanh Hóa -		a > 0, b > 0 thỏa mãn						
	$\log_{10a+3b+1} \left(25a^2+b^2+b^2\right)$	$+1$) + $\log_{10ab+1} (10a + 3b + 1)$	_	a + 2b bang?						
	A. 6.	B. $\frac{11}{2}$.	C. $\frac{5}{2}$.	D. 22.						
Câu 20.	(Liên trường Ngh	ệ An - 2020) Cho	các số thực dương	g a;b;c khác 1 thỏa mãn						
	$\log_a^2 b + \log_b^2 c + 2\log_b \frac{c}{b} = \log_a \frac{c}{a^3 b}.$ Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất									
	$P = \log_a ab - \log_b bc.$	Tính giá trị biểu thức S	$S=2m^2+9M^2.$							
	A. $S = 28$.	B. $S = 25$.	C. $S = 26$.	D. $S = 27$.						
Câu 21.	(Lý Nhân Tôn	g - Bắc Ninh	- 2020) Cho	a > 0, b > 0 thỏa mãn						
	$\log_{4a+5b+1}(16a^2 + b^2 +$	$-1) + \log_{8ab+1}(4a + 5b +$	-1) = 2. Giá trị của $a + 1$	-2b bằng						
	A. 9.	B. 6.	C. $\frac{27}{4}$.	D. $\frac{20}{3}$.						
Câu 22.	(Nguyễn Huệ - Ph	nú Yên - 2020) Xét	các số thực a,b,x ,	y thỏa mãn $a > 1, b > 1$ và						

 $a^x = b^y = \sqrt{\frac{a}{b}}$. Giá trị lớn nhất của biểu thức P = x - 2y thuộc tập nào dưới đây?

N. C. W. Č.		44,500,400			
NGUYEN	A. $\left(0; \frac{1}{2}\right)$.	B. $\left(-1; -\frac{1}{2}\right)$.	$\mathbf{C.}\left[1;\frac{3}{2}\right).$	$\mathbf{D.}\left[\frac{3}{2};\frac{5}{2}\right).$	
Câu 23.	$Q = \log_{y-3-2x} 3y.$ Khẳng định nào s	Giá trị nhỏ nhất của y để au đây là đúng ? ữu tỷ. B. y _o là số vô tỷ.		$(1+4^{2x-y-1})-2^{2x-y-1}$ và biểu hỏa mãn $P \ge 1$ và $Q \ge 1$ là s tự nhiên chẵn.	
Câu 24.		$(7u_1) = \log_2^2 5 + \log_2^2 7$ và		số hạng đầu $u_1 \neq 1$ thỏa $n \geq 1$. Giá trị nhỏ nhất của D. 10.	
Câu 25.	(Chuyên Lê H	Iồng Phong - Nam $(y-1)=1. \text{ Khi biểu thức}$ $T=ab.$	Định - 2020) Xét $P = 2x + 3y$ đạt giá	các số thực x, y thỏa trị nhỏ nhất thì $3x-2y=a+$ $\mathbf{D.} \ T=7.$	_
Câu 26.	$P = a^2 + b^2 + c^2 - \frac{1}{2}$	$a, b, c \neq 0$ thỏa m a -4 $(a+b+c)$ thuộc tập hợ B. $[-5;-1)$.	p nào dưới đây?	Giá trị nhỏ nhất của biểu D. [4;6).	thức

để

Câu 27. Xét các số thực dương a, b, c, x, y, z thỏa mãn a > 1, b > 1, c > 1 và $a^x = b^y = c^z = \sqrt{abc}$. Giá trị nhỏ nhất của biểu thức $P = x + y + z + \frac{1}{2}$ thuộc tập hợp nào dưới đây?

A. [10;13).

B. [7;10).

C. [3;5).

D. [5;7).

Câu 28. Xét các số thực dương a,b,x,y thỏa mãn a>1,b>1 và $a^{x^2}=b^{y^2}=\sqrt{a.b}$. Giá trị nhỏ nhất của biểu thức P = x.y là

A. $P = \frac{9}{4}$. **B.** $P = \frac{\sqrt{6}}{2}$. **C.** $P = \frac{3}{2}$.

Câu 29. Xét các số thực dương a,b,x,y thỏa mãn a>1,b>1 và $a^{\frac{x^2}{y}}=b^{\frac{y^2}{x}}=ab$. Giá trị nhỏ nhất của biểu thức P = x.y là

A. P = 2.

B. P = 4.

C. P = 3.

D. P = 1.

Câu 30. Xét các số thực dương a, b, c, x, y, z thỏa mãn a > 1, b > 1, c > 1, y > 2 và $a^{x+1} = b^{y-2} = c^{z+1} = abc$. Giá trị nhỏ nhất của biểu thức P = x + y + z là

A. P = 13.

B. P = 3.

C. P = 9

D. P = 1.

Dạng 3. Sử dụng phương pháp hàm số (hàm đặc trưng) giải các bài toán logarit

1. Định lý: Nếu hàm số y = f(x) đồng biến (hoặc luôn nghịch biến) và liên tục trên (a;b) thì

* $\forall u; v \in (a;b): f(u) = f(v) \Leftrightarrow u = v$.

- * Phương trình f(x) = k (k = const) có nhiều nhất 1 nghiệm trên khoảng (a;b).
- **2.** Định lý: Nếu hàm số y = f(x) đồng biến (hoặc nghịch biến) và liên tục trên (a;b), đồng thời $\lim_{x \to a^+} f(x) \cdot \lim_{x \to b^-} f(x) < 0 \text{ thì phương trình } f(x) = k(k = const) \text{ có duy nhất nghiệm trên } (a;b).$
- 3. Tính chất của logarit:

e. Time char can rogarite	
1.1. So sánh hai logarit cũng cơ số:	1.2. Hệ quả:
Cho số dương $a \neq 1$ và các số dương b, c .	Cho số dương $a \neq 1$ và các số dương b,c .
• Khi $a > 1$ thì $\log_a b > \log_a c \Leftrightarrow b > c$.	∘ Khi $a > 1$ thì $\log_a b > 0 \Leftrightarrow b > 1$.
• Khi $0 < a < 1$ thì $\log_a b > \log_a c \Leftrightarrow b < c$.	• Khi $0 < a < 1$ thì $\log_a b > 0 \Leftrightarrow b < 1$.
	$\circ \log_a b = \log_a c \Leftrightarrow b = c.$
2. Logarit của một tích:	3. Logarit của một thương:

Cho 3 số dương a, b_1, b_2 với $a \ne 1$, ta $c\acute{o}\log_a(b_1.b_2) = \log_a b_1 + \log_a b_2$

Cho 3 số dương a, b_1, b_2 với $a \ne 1$, ta

$$\operatorname{c\acute{o}} \log_a \frac{b_1}{b_2} = \log_a b_1 - \log_a b_2$$

Đặc biệt: với $a, b > 0, a \ne 1 \log_a \frac{1}{b} = -\log_a b$.

4. Logarit của lũy thừa:

Cho $a, b > 0, a \ne 1$, với mọi α , ta có $\log_a b^{\alpha} = \alpha \log_a b$.

Đặc biệt: $\log_a \sqrt[n]{b} = \frac{1}{n} \log_a b$ (*n* nguyên dương).

5. Công thức đổi cơ số:

Cho 3 số dương a, b, c với $a \ne 1, c \ne 1$, ta có

$$\log_a b = \frac{\log_c b}{\log_c a}.$$

Đặc biệt: $\log_a c = \frac{1}{\log_a a}$ và $\log_{a^a} b = \frac{1}{\alpha} \log_a b$ với $\alpha \neq 0$.

(Mã 102 - 2020 Lần 1) Có bao nhiều số nguyên x sao cho ứng với mỗi x có không quá 242 số Câu 1. nguyên y thỏa mãn $\log_4(x^2 + y) \ge \log_3(x + y)$?

A. 55.

- **B.** 28.
- **C.** 29.
- **D.** 56.
- (Mã 101 2020 Lần 1) Có bao nhiều số nguyên x sao cho ứng với mỗi x có không quá 728 số Câu 2. nguyên y thỏa mãn $\log_4(x^2 + y) \ge \log_3(x + y)$?

A. 59.

- **B.** 58.
- **C.** 116.
- **D.** 115.
- (Mã 103 2020 Lần 1) Có bao nhiều số nguyên x sao cho ứng với mỗi x có không quá 127 số Câu 3. nguyên y thỏa mãn $\log_3(x^2 + y) \ge \log_2(x + y)$?

A. 89.

- **B.** 46.
- C. 45.
- **D.** 90.
- (Mã 102 2020 Lần 1) Xét các số thực không âm x và y thỏa mãn $2x + y \cdot 4^{x+y-1} \ge 3$. Giá trị nhỏ Câu 4. nhất của biểu thức $P = x^2 + y^2 + 6x + 4y$ bằng

A. $\frac{65}{9}$.

- **B.** $\frac{33}{4}$.
- C. $\frac{49}{8}$.
- **D.** $\frac{57}{9}$.
- (Đề Minh Họa 2020 Lần 1) Có bao nhiều cặp số nguyên (x; y) thỏa mãn $0 \le x \le 2020$ và Câu 5. $\log_3(3x+3) + x = 2y + 9^y$?

	A. 2019.	B. 6.	C. 2020.	D. 4.					
Câu 6.	(Mã 103 - 2020 Lần 1) Xét các số thực không âm x và y thỏa mãn $2x + y \cdot 4^{x+y-1} \ge 3$. Giá trị								
	nhỏ nhất của biểu thức $P = x^2 + y^2 + 2x + 4y$ bằng								
	A. $\frac{33}{8}$.	B. $\frac{9}{8}$.	C. $\frac{21}{4}$.	D. $\frac{41}{8}$.					
Câu 7.	(Mã 104 - 2020 Lần 1) Có bao nhiêu số nguy	ên x sao cho ứng với n	nỗi x có không quá 255 số					
	nguyên y thỏa mãn lo	$g_3(x^2+y) \ge \log_2(x+y)$							
	A. 80.	B. 79.	C. 157.	D. 158					
Câu 8.				$\tilde{a}n \ 2x + y.4^{x+y-1} \ge 3. \text{ Giá tri}$					
	nhỏ nhất của biểu thức			41					
	A. $\frac{33}{8}$.	B. $\frac{9}{8}$.	C. $\frac{21}{4}$.	D. $\frac{41}{8}$.					
Câu 9.	(Mã 102 - 2020 Lần 2) Có bao nhiêu cặp số n	guyên dương (m,n) sa	o cho $m+n \le 16$ và ứng với					
	mỗi cặp (m,n) tồn tại c	đúng 3 số thực a ∈ $(-1;$	1) thỏa mãn $2a^m - n \ln $	$\left(a+\sqrt{a^2+1}\right)$?					
	A. 16.	B. 14.	C. 15.	D. 13.					
Câu 10.	(Mã 102 - 2020 Lần 2	2) Xét các số thực thỏa	$m\tilde{a}n \ 2^{x^2+y^2+1} \le (x^2+y^2-1)^2$	$-2x+2$) 4^x . Giá trị lớn nhất					
	của biểu thức $P = \frac{8x}{2x - 1}$								
	A. 9	B. 6.	C. 7.	D. 8.					
Câu 11.	(Mã 103 - 2020 Lần 2) Có bao nhiêu cặp số n	guyên dương $(m;n)$ sac	o cho $m+n \le 10$ và ứng với					
	mỗi cặp $(m;n)$ tồn tại α	thúng 3 số thực a ∈ $(-1;$	1) thỏa mãn $2a^m = n \ln$	$\left(a+\sqrt{a^2+1}\right)?$					
	A. 7.	B. 8.	C. 10.	D. 9.					
Câu 12.	(Mã 103 - 2020 Lần 2) Xét các số thực x, y th	hỏa mãn $2^{x^2+y^2+1} \le (x^2 + x^2)$	$y^2 - 2x + 2$). 4^x . Giá trị nhỏ					
	nhất của biểu thức $P =$	$\frac{8x+4}{2x-y+1}$ gần nhất với	i số nào dưới đây						
	A. 1.	B. 2.	C. 3.	D. 4.					
Câu 13.	Có bao nhiều cắp số ng	guyên dương (m,n) sac	o cho $m+n \le 14$ và ứng	g với mỗi cặp (m,n) tồn tại					
	đúng ba số thực $a \in (-1)$	1;1) thỏa mãn $2a^m = n \ln \frac{1}{n}$	$a\left(a+\sqrt{a^2+1}\right)$?						
	A. 14.	B. 12.	C. 11.	D. 13.					
Câu 14.	(Mã 104 - 2020 Lần 2) Có bao nhiêu cặp số 1	nguyên dương (m,n) sa	o cho $m+n \le 12$ và ứng với					
	mỗi cặp (m,n) tồn tại đ	túng 3 số thực $a \in (-1,1]$) thỏa mãn $2a^m = n \ln(a^m)$	$a+\sqrt{a^2+1}$)?					
	A. 12.	B. 10.	C. 11.	D. 9.					
Câu 15.	(Mã 104 - 2020 Lần 2	Xét các số thực x và	<i>y</i> thỏa mãn $2^{x^2+y^2+1} \le 0$	$(x^2 + y^2 - 2x + 2)4^x$. Giá trị					
	lớn nhất của biểu thức	$P = \frac{4y}{2x + y + 1} $ gần nhấ	t với số nào dưới đây?						
	A. 1.	B. 0.	C. 3.	D. 2.					

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

Câu 16. (**Mã 123 2017**) Xét các số thực dương x, y thỏa mãn $\log_3 \frac{1 - xy}{x + 2y} = 3xy + x + 2y - 4$. Tìm giá trị nhỏ nhất P_{\min} của P = x + y

A. $P_{\min} = \frac{2\sqrt{11} - 3}{2}$ **B.** $P_{\min} = \frac{9\sqrt{11} - 19}{9}$

C. $P_{\min} = \frac{18\sqrt{11} - 29}{21}$ D. $P_{\min} = \frac{9\sqrt{11} + 19}{9}$

- Câu 17. (Mã 110 2017) Xét các số thực dương a, b thỏa mãn $\log_2 \frac{1-ab}{a+b} = 2ab+a+b-3$. Tìm giá trị nhỏ nhất P_{\min} của P = a + 2b.

- **A.** $P_{\min} = \frac{3\sqrt{10} 7}{2}$ **B.** $P_{\min} = \frac{2\sqrt{10} 1}{2}$ **C.** $P_{\min} = \frac{2\sqrt{10} 3}{2}$ **D.** $P_{\min} = \frac{2\sqrt{10} 5}{2}$
- (Chuyên Lê Thánh Tông 2019) Cho hai số thực dương x, y thỏa mãn $2^{\ln\left(\frac{x+y}{2}\right)}.5^{\ln(x+y)} = 2^{\ln 5}$. Tìm Câu 18. giá trị lớn nhất của biểu thức $P = (x+1) \ln x + (y+1) \ln y$.

A. $P_{\text{max}} = 10$.

- **B.** $P_{\text{max}} = 0$.
- **C.** $P_{\text{max}} = 1$.
- **D.** $P_{\text{max}} = \ln 2$.
- Câu 19. (THPT Bạch Đằng Quảng Ninh 2019) Cho các số thực x, y thỏa mãn $0 \le x, y \le 1$ và $\log_3 \frac{x+y}{1-xy} + (x+1)(y+1) - 2 = 0$. Tìm giá trị nhỏ nhất của P = 2x + y.

A. 2.

- **B.** 1.
- $\hat{\mathbf{C}} \cdot \frac{1}{2}$.
- **D.** 0.
- **Câu 20.** (Chuyên Hạ Long 2019) Cho các số thực a,b thỏa mãn $a \ge b > 1$. Biết rằng biểu thức $P = \frac{1}{\log_a a} + \sqrt{\log_a \frac{a}{b}}$ đạt giá trị lớn nhất khi $b = a^k$. Khẳng định nào sau đây là sai

A. $k \in [2;3]$.

- **B.** $k \in (0;1)$. **C.** $k \in [0;1]$.
- **Câu 21.** Cho hai số thực a, b thỏa mãn $\log_{a^2+4b^2+1}(2a-8b)=1$. Tính $P=\frac{a}{b}$ khi biểu thức S=4a+6b-5đạt giá trị lớn nhất.

- B. $\frac{-13}{2}$ C. $\frac{-13}{4}$
- **D.** $\frac{17}{44}$
- (Chuyên Vĩnh Phúc 2019) Cho a, b là các số dương thỏa mãn b > 1 và $\sqrt{a} \le b < a$. Tìm giá trị nhỏ nhất của biểu thức $P = \log_{\frac{a}{b}} a + 2\log_{\sqrt{b}} \left(\frac{a}{b}\right)$.

A. 6.

- **B.** 7.
- C. 5.
- **D.** 4.
- (THPT Đoàn Thượng Hải Dương 2019) Cho a, b là hai số thực dương thỏa mãn $\log_5\left(\frac{4a+2b+5}{a+b}\right) = a+3b-4$. Tìm giá trị nhỏ nhất của biểu thức $T = a^2 + b^2$

A. $\frac{1}{2}$.

- **B.** 1.
- C. $\frac{3}{2}$.
- **D.** $\frac{3}{2}$.

NGUYĒN BẢO VƯƠNG - 0946798489

(THPT Lê Quý Đôn Đà Nẵng 2019) Với hai số thực a,b bất kì, ta kí Câu 24. hiệu $f_{(a,b)}(x) = |x-a| + |x-b| + |x-2| + |x-3|$. Biết rằng luôn tồn tại duy nhất số thực x_0 để $\min_{\mathbf{x} \in \mathcal{R}} f_{(a,b)}(\mathbf{x}) = f_{(a,b)}(\mathbf{x}_0)$ với mọi số thực a,b thỏa mãn $a^b = b^a$ và 0 < a < b. Số \mathbf{x}_0 bằng

A. 2e-1

B. 2,5

C. *e*

(Chuyên Lê Hồng Phong Nam Định 2019) Cho hai số thực a > 1, b > 1. Biết phương trình Câu 25. $a^x b^{x^2-1} = 1$ có hai nghiệm phân biệt x_1, x_2 . Tìm giá trị nhỏ nhất của biểu thức $S = \left(\frac{x_1 x_2}{x_1 + x_2}\right)^2 - 4(x_1 + x_2).$

A. $3\sqrt[3]{4}$.

B. 4

C. $3\sqrt[3]{2}$.

Câu 26. (Chuyên Quốc Học Huế 2019) Cho x, y là các số thực lớn hơn 1 sao cho $y^x (e^x)^{e^y} \ge x^y (e^y)^{e^x}$. Tìm giá trị nhỏ nhất của biểu thức: $P = \log_x \sqrt{xy} + \log_y x$.

A. $\frac{\sqrt{2}}{2}$

B. $2\sqrt{2}$ **C.** $\frac{1+2\sqrt{2}}{2}$ **D.** $\frac{1+\sqrt{2}}{2}$

Câu 27. Xét các số thực dương x, y thỏa mãn $\log_3 \frac{1-y}{x+3xy} = 3xy + x + 3y - 4$. Tìm giá trị nhỏ nhất P_{\min} của P = x + y.

A. $P_{\min} = \frac{4\sqrt{3} - 4}{3}$. **B.** $P_{\min} = \frac{4\sqrt{3} + 4}{3}$. **C.** $P_{\min} = \frac{4\sqrt{3} + 4}{9}$. **D.** $P_{\min} = \frac{4\sqrt{3} - 4}{9}$.

2019) Xét các số thực Câu 28. (Chuyên Vĩnh Phúc duong x, ymãn $\log_{\frac{1}{2}} x + \log_{\frac{1}{2}} y \le \log_{\frac{1}{2}} (x + y^2)$. Tìm giá trị nhỏ nhất P_{\min} của biểu thức P = x + 3y.

A. $P_{\min} = 9$

B. $P_{\min} = 8$

C. $P_{\min} = \frac{25\sqrt{2}}{4}$ **D.** $P_{\min} = \frac{17}{2}$

Câu 29. **Phúc 2019)** Cho x, y là các số thực dương $\log_{2019} x + \log_{2019} y \geq \log_{2019} \left(x^2 + y \right). \text{ Gọi } T_{\min} \text{ là giá trị nhỏ nhất của biểu thức } T = 2x + y \text{ . Mệnh nhát của biểu thức } T = 2x + y \text{ .}$ đề nào dưới đây đúng?

A. $T_{\min} \in (7;8)$

B. $T_{\min} \in (6;7)$ **C.** $T_{\min} \in (5;6)$ **D.** $T_{\min} \in (8;9)$

(**Mã 105 2017**) Xét hàm số $f(t) = \frac{9^t}{9^t + m^2}$ với m là tham số thực. Gọi S là tập hợp tất cả các Câu 30. giá trị của m sao cho f(x)+f(y)=1 với mọi số thực x,y thỏa mãn $e^{x+y} \le e(x+y)$. Tìm số phần tử của S.

A. 0

B. Vô số

C. 1

D. 2

(THCS - THPT Nguyễn Khuyến 2019) Cho hàm số y = f(x) liên tục trên \mathbb{R} , có bảng biến Câu 31. thiên như hình vẽ và có đạo hàm cấp hai $f''(x) > 0, \forall x \in \mathbb{R}$.

x	-∞	m		+∞
f'(x)	-	0	+	
f(x)	+∞	n ²		≠ +∞

Gọi a,b,c,n là các số thực và biểu thức: $P = -\left(e^{f(a)} + e^{f(b)} + e^{f(c)}\right) + \frac{3}{2} \left| f\left(\frac{a+b+c}{3}\right) + 1 \right|^2$. Khẳng định đúng với mọi $a,b,c,n \in \mathbb{R}$ là

A.
$$0 < P < 3$$
.

B.
$$7-3e \le P \le 0$$
.

C.
$$P \ge 3$$
.

D.
$$P < 7 - 3e$$
.

(Chuyên Đại Học Vinh 2019) Cho hàm số $f(x) = 2^x - 2^{-x}$. Gọi m_0 là số lớn nhất trong các số Câu 32. nguyên m thỏa mãn $f(m) + f(2m-2^{12}) < 0$. Mệnh đề nào sau đây đúng?

A.
$$m_0 \in [1513; 2019)$$
 B. $m_0 \in [1009; 1513)$ **C.** $m_0 \in [505; 1009)$ **D.** $m_0 \in [1; 505)$

B.
$$m_0 \in [1009;1513]$$

C.
$$m_0 \in [505;1009)$$

D.
$$m_0 \in [1;505]$$

(Việt Đức Hà Nội 2019) Tìm tất cả các giá trị của tham số m đề đồ thị hàm số Câu 33. $y = m \log_2^2 x - 2 \log_2 x + 2m + 1$ cắt trục hoành tại một điểm duy nhất có hoành độ thuộc khoảng

A.
$$m \in \left(-\infty; -\frac{1}{2}\right) \cup \left\{\frac{1}{2}\right\}.$$

$$\mathbf{B.} \ m \in \left(-\frac{1}{2}; 0\right) \cup \left\{\frac{1}{2}\right\}.$$

$$\mathbf{D.} \ m \in \left[-\frac{1}{2}; 0\right] \cup \left\{\frac{1}{2}\right\}.$$

C.
$$m \in \left(-\infty; -\frac{1}{2}\right] \cup \left\{\frac{1}{2}\right\}$$
.

$$\mathbf{D.} \ m \in \left[-\frac{1}{2}; 0 \right] \cup \left\{ \frac{1}{2} \right\}.$$

Câu 34. (Chuyên Biên Hòa - Hà Nam - 2020) Cho x; y là hai số thực dương thỏa mãn $x \neq y$ và $\left(2^x + \frac{1}{2^x}\right)^y < \left(2^y + \frac{1}{2^y}\right)^x$. Giá trị nhỏ nhất của biểu thức $P = \frac{x^2 + 3y^2}{xy - y^2}$ bằng

A.
$$\frac{13}{2}$$
.

B.
$$\frac{9}{2}$$
.

$$C. -2.$$

- (Chuyên $\overline{\mathbf{DH}}$ Vinh $\overline{\mathbf{Nghệ}}$ An -2020) Xét các số thực dương x, y thỏa mãn $2\left(x^2+y^2+4\right)+\log_2\left(\frac{2}{x}+\frac{2}{y}\right)=\frac{1}{2}\left(xy-4\right)^2.$ Khi x+4y đạt giá trị nhỏ nhất, $\frac{x}{y}$ bằng
 - **A.** 2.

- **B.** 4.
- $C. \frac{1}{2}$.
- (Chuyên Hưng Yên 2020) Biết phương trình $x^4 + ax^3 + bx^2 + cx + 1 = 0$ có nghiệm. Tìm giá trị Câu 36. nhỏ nhất của biểu thức $T = a^2 + b^2 + c^2$

A.
$$T_{\min} = \frac{4}{3}$$
.

B.
$$T_{\min} = 4$$
.

C.
$$T_{\min} = 2$$
.

B.
$$T_{\min} = 4$$
. **C.** $T_{\min} = 2$. **D.** $T_{\min} = \frac{8}{3}$.

NGUYỄN BẢO VƯƠNG - 0946798489

Câu 37.	(Chuyên	KHTN	-	2020)	Cho	x, y	là	các	số	thự	c du	rong	thỏa	mãn
	$\log_2 \frac{3x+3}{x^2+1}$	$\frac{y+4}{y^2} = \left(x + \frac{y+4}{y^2}\right)$	- y -	-1)(2x+2	2 <i>y</i> –1) –	-4(xy+	1).	Giá	trị	lớn	nhất	của	biểu	thức
	$P = \frac{5x + 3y}{2x + y}$	$\frac{v-2}{v+1}$.												

Câu 38. (Chuyên Bến Tre - 2020) Cho các số thực x,y thỏa mãn $0 \le x,y \le 1$ và $\log_3 \left(\frac{x+y}{1-xy}\right) + \left(x+1\right)\left(y+1\right) - 2 = 0$. Tìm giá trị nhỏ nhất của P với P = 2x+y

C. 2.

D. 4.

A. 2. **B.** 1. **C.** 0. **D.** $\frac{1}{2}$.

B. 1.

- **Câu 39.** (**Chuyên Chu Văn An 2020**) Cho x, y là các số thực dương thỏa mãn $\log_3 \frac{x+4y}{x+y} = 2x-y+1$. Tìm giá trị nhỏ nhất của biểu thức $P = \frac{3x^4y + 2xy + 2y^2}{x(x+y)^2}$.
 - **A.** $\frac{1}{4}$. **B.** $\frac{1}{2}$. **C.** $\frac{3}{2}$. **D.** 2.
- **Câu 40.** (**Chuyên Hùng Vương Gia Lai 2020**) Xét các số thực dương a,b,x,y thỏa mãn a > 1,b > 1 và $a^{x^2} = b^{y^2} = (ab)^2$. Giá trị nhỏ nhất của biểu thức $P = 2\sqrt{2}x + y$ thuộc tập hợp nào dưới đây? **A.** [10;15). **B.** [6;10). **C.** (1;4). **D.** [4;6).
- **Câu 41.** (Chuyên Lào Cai 2020) Xét các số thực dương x, y thỏa mãn $\log_{\pi} x + \log_{\pi} y \ge \log_{\pi} (x + y^2)$. Biểu thức P = x + 8y đạt giá trị nhỏ nhất của bằng:
 - **A.** $P_{\min} = 16$. **B.** $P_{\min} = \frac{33}{2}$. **C.** $P_{\min} = 11\sqrt{2}$. **D.** $P_{\min} = \frac{31}{2}$.
- **Câu 42.** (Chuyên Lê Hồng Phong Nam Định 2020) Xét các số thực x, y thỏa mãn $\log_2(x-1) + \log_2(y-1) = 1$. Khi biểu thức P = 2x + 3y đạt giá trị nhỏ nhất thì $3x 2y = a + b\sqrt{3}$ với $a, b \in \mathbb{Q}$. Tính T = ab?
 - **A.** T = 9. **B.** $T = \frac{7}{3}$. **C.** $T = \frac{5}{3}$. **D.** T = 7.
- **Câu 43.** (Chuyên Phan Bội Châu Nghệ An 2020) Cho các số thực a, b, c, d thỏa mãn $\log_{a^2+b^2+2} (4a+6b-7)=1$ và $27^c.81^d=6c+8d+1$. Tìm giá trị nhỏ nhất của biểu thức $P=(a-c)^2+(b-d)^2$.
 - **A.** $\frac{49}{25}$. **B.** $\frac{64}{25}$. **C.** $\frac{7}{5}$. **D.** $\frac{8}{5}$.
- **Câu 44. (Chuyên Thái Bình 2020)** Cho hai số thực dương x, y thỏa mãn $\log_2 x + x(x+y) = \log_2(6-y) + 6x$. Giá trị nhỏ nhất của biểu thức $T = x^3 + 3y$ là **A.** 16. **B.** 18. **C.** 12. **D.** 20.

Câu 45. (Chuyên Thái Nguyên - 2020) Xét các số thực dương $\log_2 \frac{1-ab}{a+b} = 2ab+a+b-3$. Tìm giá trị nhỏ nhất P_{\min} của P = a+b.

A.
$$P_{\min} = -1 + 2\sqrt{5}$$

B.
$$P_{\min} = 2 + \sqrt{5}$$

A.
$$P_{\min} = -1 + 2\sqrt{5}$$
. **B.** $P_{\min} = 2 + \sqrt{5}$. **C.** $P_{\min} = -1 + \sqrt{5}$. **D.** $P_{\min} = 1 + 2\sqrt{5}$.

D.
$$P_{\min} = 1 + 2\sqrt{5}$$
.

Câu 46. (**ĐHQG Hà Nội - 2020**) Cho các số thực x, y thỏa mãn $\log_2\left(\frac{2-x}{2+x}\right) - \log_2 y = 2x + 2y + xy - 5$. Hỏi giá trị nhỏ nhất của $P = x^2 + y^2 + xy$ là bao nhiều?

A.
$$30-20\sqrt{2}$$
.

B.
$$33 - 22\sqrt{2}$$
.

C.
$$24-16\sqrt{2}$$
.

D.
$$36-24\sqrt{2}$$
.

(Sở Bình Phước - 2020) Cho x, y là các số thực dương Câu 47. $\log_2 x + \log_2 y + 1 \ge \log_2 (x^2 + 2y)$. Giá trị nhỏ nhất của biểu thức x + 2y bằng

A.
$$2\sqrt{2} + 3$$
.

B.
$$2+3\sqrt{2}$$
. **C.** $3+\sqrt{3}$.

C.
$$3 + \sqrt{3}$$

(Sở Yên Bái - 2020) Cho các số thực x, y thuộc đoạn [0;1] thỏa mãn $2020^{1-x-y} = \frac{x^2 + 2021}{v^2 - 2v + 2022}$. Câu 48. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $2x^3 + 6y^3 + 3x^2 - 9xy$. Tính M.m.

A.
$$-\frac{5}{2}$$
.

(Bim Son - Thanh Hóa - 2020) Xét các số thực dương x.y Câu 49. $\log_{\frac{1}{2}} x + \log_{\frac{1}{2}} y \le \log_{\frac{1}{2}} (x + y^2)$. Tìm giá trị nhỏ nhất P_{\min} của biểu thức P = x + 3y.

A.
$$P_{\min} = \frac{17}{2}$$
.

B.
$$P_{\min} = 8$$
.

C.
$$P_{\min} = 9$$

A.
$$P_{\min} = \frac{17}{2}$$
. **B.** $P_{\min} = 8$. **C.** $P_{\min} = 9$. **D.** $P_{\min} = \frac{25\sqrt{2}}{4}$.

Câu 50. (**Nguyễn Trãi - Thái Bình - 2020**) Cho các số thực x, y thay đổi thỏa mãn $x^2 + y^2 - xy = 1$ và hàm số $f(t) = 2t^3 - 3t^2 - 1$. Gọi M và m tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của $Q = f\left(\frac{5x - y + 2}{x + y + 4}\right)$. Tổng M + m bằng

A.
$$-4-3\sqrt{2}$$
.

B.
$$-4-5\sqrt{2}$$
. **C.** $-4-2\sqrt{2}$.

C.
$$-4 - 2\sqrt{2}$$

D.
$$-4-4\sqrt{2}$$
.

Câu 51. (Yên Lạc 2 - Vĩnh Phúc - 2020) Cho hai số thực a, b lớn hơn 1. Tìm giá trị nhỏ nhất của biểu thức $S = \log_a \left(\frac{a^2 + 4b^2}{4} \right) + \frac{1}{4 \log_a b}$.

A.
$$\frac{5}{4}$$

B.
$$\frac{11}{4}$$
.

C.
$$\frac{9}{4}$$
.

D.
$$\frac{7}{4}$$
.

(Hải Hậu - Nam Định - 2020) Với các số thực dương x, y, z thay đổi sao cho $\log_2\left(\frac{x+2y+2z}{x^2+y^2+z^2}\right) = x(x-4) + y(y-8) + z(z-8) - 2$, gọi giá trị lớn nhất và giá trị nhỏ nhất của

biểu thức $T = \frac{x^2 + y^2 + z^2 - 4x - 7y - 11z + 8}{6x + 5y - 86}$ thứ tự là M và m. Khi đó M + m bằng:

A.
$$-\frac{3}{2}$$
.

C.
$$-\frac{5}{2}$$
. D. $-\frac{1}{2}$.

D.
$$-\frac{1}{2}$$
.

NGUYĒN BẢO VƯƠNG - 0946798489

Câu 53.	3. (Lương Thế Vinh - Hà Nội - 2020) Cho các số thực x, y thỏa mãn $\ln y \ge \ln(x^3 + 2) - \ln 3$. Tìm							
	giá trị nhỏ nhất của biểu thức $H = e^{4y-x^3-x-2} - \frac{x^2 + y^2}{2} + x(y+1) - y$.							
	A. 1.	B. 0.	C. e.	D. $\frac{1}{e}$.				
Câu 54.	(Thanh Chương 1 - N	Nghệ An - 2020) Cho <i>x</i>	y,y là các số thực dương	g thỏa mãn $2^{2xy+x+y} = \frac{8-8xy}{x+y}$.				
	Khi $P = 2xy^2 + xy$ đạt giá	á trị lớn nhất, giá trị của	biểu thức $3x + 2y$ bằng					
	A. 4.	B. 2.	C. 3.	D. 5.				
Câu 55.			Cho x, y là các					
	$\log(x+2y) = \log(x) +$	$\log(y)$. Khi đó, giá trị	nhỏ nhất của biểu thức	$P = \frac{x^2}{1+2y} + \frac{4y^2}{1+x}$ là:				
	A. $\frac{31}{5}$.	B. 6.	C. $\frac{29}{5}$.	D. $\frac{32}{5}$.				
Câu 56.	(Chuyên Sư Phạm H	I à Nội - 2020) Cho cá	c số thực x, y thay để	$\dot{\delta}$ i, thỏa mãn $x > y > 0$ và				
	$\ln(x-y) + \frac{1}{2}\ln(xy) =$	= $\ln(x+y)$. Giá trị nhỏ	nhất của $M = x + y$ là					
	A. $2\sqrt{2}$.	B. 2.	C. 4.	D. 16.				
Câu 57.	trị nhỏ nhất của biểu th	íre 🔻	số thực lớn hơn 1 thỏa	mãn điều kiện $xyz = 2$. Giá				
	$S = \log_2^3 x + \log_2^3 y + \frac{1}{4} \log_2^3 y + \frac{1}$	$\log_2^3 z$ bằng						
	A. $\frac{1}{32}$.	B. $\frac{1}{4}$.	C. $\frac{1}{16}$.	D. $\frac{1}{8}$.				
Câu 58.	Có bao nhiêu số nguyên	x sao cho tồn tại số th	nực y thỏa mãn $\log_3(x+$	$(y) = \log_4(x^2 + 2y^2)$?				
	A. 1	B. 3	C. 2	D. Vô số				
Câu 59.	Có bao nhiêu cặp số	nguyên dương $(x; y)$	thỏa mãn đồng thời ha	i điều kiện: $1 \le x \le 10^6$ và				
	$\log(10x^2 - 20x + 20) =$	$10^{y^2} + y^2 - x^2 + 2x - 1?$						
	A. 4.	B. 2.	C. 3.	D. 1.				
Câu 60.	Có bao nhiều số $5^{\sqrt{2}^{y}+x-2} + \sqrt{2}^{y} = 5^{x^{2}-x-1}$		o cho tồn tại số	nguyên x thỏa mãn				
	A. 10	B. 1	C. 5	D. Vô số				
Câu 61.	Có bao nhiêu cặp số ng	uyên dương $(x; y)$ thoa	á mãn $1 \le x \le 2020$ và 2	$y + y = 2x + \log_2(x + 2^{y-1})$				
	A. 2021.	B. 10.	C. 2020.	D. 11.				
Câu 62.	Có bao nhiêu s	ố nguyên x sac	o cho tồn tại	số thực y thỏa mãn				
	$2\log_2(x+y) - \log_2(1+y)$	$-\sqrt{3} = \log_{\sqrt{3}} \left(x^2 + y^2 - 1 \right)$	1)					
	A. 1	B. 3	C. 2	D. 5				

TÀI LIÊU ÔN THI THPTOG 2021

Câu 63. Có bao nhiều cặp số nguyên (x; y) thỏa mãn $0 \le y \le 2020$ và $\log_3 \left(\frac{2^x - 1}{y}\right) = y + 1 - 2^x$?

A. 2019.

B. 11.

C. 2020.

Câu 64. (Chuyên Lương Văn Chánh - Phú Yên - 2020) Xét các số thực a,b,x thoả mãn $a > 1, b > 1, 0 < x \ne 1$ và $a^{\log_b x} = b^{\log_a(x^2)}$. Tìm giá tri nhỏ nhất của biểu thức $P = \ln^2 a + \ln^2 b - \ln(ab)$.

A.
$$\frac{1-3\sqrt{3}}{4}$$
.

B. $\frac{e}{2}$. **C.** $\frac{1}{4}$. **D.** $-\frac{3+2\sqrt{2}}{12}$.

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

Thttps://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-70pKlG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương * https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương Fhttps://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) # https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!