

Signal-Width Enhancement

Counterexample for Original RTL

126

136·

Result

124

Fig. 3

Bitvector Operator	Syntax	Example
bitvector variables bitvector constants	$x_{[n]}$	$x_{[8]}, y_{[1]}, z_{[4]}, \dots$ 10011[5], 0011111[8], 0[1], 1[1], \dots
concatenation	8	$x_{[16]} \otimes y_{[4]}$
extraction	[j, i]	$x_{[8]}[5, 2]$
bitwise negation (inversion)		$(^{[8]}x)$ ɓau
bitwise Boolean operations	and, or, xor nand, nor, xnor	$x_{[12]}$ and $y_{[12]}^{\prime}$, $x_{[12]}^{\prime}$ or $y_{[12]}^{\prime}$, $x_{[12]}^{\prime}$ xor $y_{[12]}^{\prime}$ $x_{[12]}^{\prime}$ nor $y_{[12]}^{\prime}$ xnor $y_{[12]}^{\prime}$
if-then-else	ite	$ite(a_{[4]} = b_{[4]}, x_{[8]}, y_{[8]})$ $ite(a_{[4]} < b_{[4]}, x_{[8]}, y_{[8]})$
arithmetic	! + *	$x_{[32]} + y_{[32]}, x_{[32]} - y_{[32]} \ x_{[16]} * y_{[16]}$
memory read memory write	$mem_{[m.n]}^{[i_{[l]}]}$	$x_{[10]} := mem_{[128.10]} [i_{[7]}]$ $mem_{[32.8]} [i_{[5]}] := x_{[8]}$

Fig.6a

NS.
<u>.</u>
quations
ب
Щ
弁
õ
₹
s of Bitvect
0
Sis
$\stackrel{\sim}{=}$
Analysis (
•
ranularity
<u>a</u>
anule
ā
_
S
rocess
ဝ
ď

```
\text{gran}(\ '\alpha_{[m]} = b_{[m]}\ ')\ ; \ \text{gran}(\ 's_{[n]} = t_{t[n]}\ ')\ ; \ \text{gran}(\ 's_{[n]} = t_{e[n]}\ ')\ ; \\ \text{gran}(\ 's_{[n]} = t_{1[n]}\ ')\ ; \ \text{gran}(\ 's_{[n]} = t_{2[n]}\ ')\ ;
                                                                                                          gran( 's_{[n]}[n-1,m_2]=t_{1[m_1]} ); gran( 's_{[n]} [m_2-1,0] =t_{2[m_2]} );
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     slice(x_{[n]},j,i)\;;\;slice(y_{[m]},l,k)\;;\;join(x_{[n]}\langle j,i\rangle,\,y_{[m]}\langle l,k\rangle)\;;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       gran( ^{'}s_{[n]} = t_{^{1}[m_{^{\prime}}]}[j-m_2, \, 0] \otimes t_{^{2}[m_2]}[m_2-1, \, i] ' );
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \begin{aligned} &\text{gran(} \ 's_{[n]} = t_{[m]}[k+j,k+i] \ ') \ ; \\ &\text{gran(} \ 's_{[n]} = \text{ite}(a_{[m]} = b_{[m]}, \ t_{[n]}[j,i], \ t_{e[n]}[j,i]) \ ') \ ; \end{aligned}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  gran( ^{'}s_{[n]} = t_{1[m]}[j,i] and t_{2[m]}[j,i] );
                                                                                                                                                                                                                                                                                                                                                  \label{eq:gran('s_{[n]} = t_{[lm_1]}[j-m_2,i-m_2]');} \\ \text{else } \{
                                                                                                                                                                                                                     gran('s_{[n]} = t_{2[m_2]}[j,i]'); } else if (i \ge m_2) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             gran('s_{[n]} = t_{[n]}');
                                                                                                                                                               if (j < m_2) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        case e \equiv {}^{'}s_{[n]} = \mathrm{ite}(a_{[m]} = b_{[m]}, \, t_{t[n]}, \, te_{[n]})[j,i] ':
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     case e \equiv {}^{\shortmid}s_{[n]} = \mathrm{ite}(a_{[m]} = b_{[m]}, \, t_{t[n]}, \, t_{e[n]}) ':
                                                                                                                case e \equiv 's_{[n]} = t_{1[m_1]} \otimes t_{2[m_2]}':
case e \equiv 's_{[n]} = (t_{1[m_1]} \otimes t_{2[m_2]})[j,i]':
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               case e \equiv {}^{'}s_{[n]} = (t_{1[m]} \text{ and } t_{2[m]})[j,i] .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            case e \equiv {}^{'}s_{[n]} = (t_{[m]}[l,k])[j,i]':
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                case e \equiv s_{[n]} = t_{[n]} and t_{2[n]}:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       case e \equiv {}^{'}x_{[n]}[j,i] = y_{[m]}[l,k]':
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         cas e \equiv 's_{[n]} = \operatorname{neg}(\mathfrak{t}_{[n]})':
                                                     switch (e);
gran(e) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   20
```


Fig. 7a

```
Process 2 Reduced Model Generation
```

```
1 for each bitvector variable x_{[n]} {
2 m := 0;
3 for each chink m \neq i in the commuted granularity of m \neq i
```

m:=0; for each chunk $x_{[n]}\langle j,i\rangle$ of the computed granularity of $x_{[n]}$ C:=find $(x_{[n]}\langle j,i\rangle)$; // equivalence class containing $x_{[n]}\langle j,i\rangle$

 $m := m + \varphi(C)$;

 $\text{if } (m \ge n) \text{ then } m := n;$

replace all occurrences of $x_{[n]}$ in the bitvector equations by $x_{[m]}$;

9 and adjust all extraction expressions affected by $x_{[n]}$;

	Property	Original design	Reduced model
Computation times of the prototype for analysis and reduced model generation	nop read write		2.96 secs 6.53 secs 3.24 secs
FIFO sizes on RTL	nop	160 cells x 10 bit	160 cells x 2 bit
	read	160 cells x 10 bit	160 cells x 3 bit
	write	160 cells x 10 bit	160 cells x 3 bit
Overall number of bits in all relevant signals (cones of influence of the property)	nop	20925	5034 (24.0 %)
	read	31452	10592 (33.6 %)
	write	14622	5163 (35.3%)
Overall number of gates in synthesized netlist	nop	23801	5661 (27.9 %)
	read	23801	7929 (33.3 %)
	write	23801	7929 (33.3 %)
Number of state bits	nop	1658	362 (21.8 %)
	read	1658	524 (31.6 %)
	write	1658	524 (31.6 %)
Property checker runtimes	nop	23:33 min	37.96 secs (2.7 %)
	read	42:23 min	3:27 min (8.1 %)
	write_fail	2:08 min	25.66 secs (19.5 %)
	write_hold	27:08 min	1:08 min (4.2 %)

11/19

$$x_{[8]} = \text{ite}(a_{[4]} = b_{[4]}, y_{[8]}, z_{[8]})$$

$$x_{[8]} = ite(a_{[4]} = b_{[4]}, y_{[8]}, z_{[8]})$$

$$\begin{split} x_{[8]}[7,0] &= \mathrm{ite}(a_{[4]}[3,0] = \\ b_{[4]}[3,0], \, y_{[8]}[7,0], \, z_{[4]}[7,0]) \end{split}$$

$$\begin{array}{c} a_{[4]}[3,0] \Longleftrightarrow b_{[4]}[3,0] \\ x_{[8]}[7,0] \Longleftrightarrow y_{[8]}[7,0] \\ x_{[4]}[7,0] \Longleftrightarrow z_{[8]}[7,0] \end{array}$$

Fig.11

Fig. 12

15/19

16/19

LOOSMB70.OLOMOR

