

Phystech@DataScience Бутстреп

19 марта 2024 г.

Постановка задачи

$$X = (X_1, ..., X_n)$$
 — выборка

$$T(X_1,...,X_n)$$
 — статистика

Задача: оценить распределение T(X) или функционал V(T(X)).

Пример: оценка дисперсии статистики

$$V(T(X_1,...,X_n)) = DT(X_1,...,X_n) = ET^2(X) - (ET(X))^2$$

Какую сделать оценку? Не знаем распределения $\mathsf{E} T^2(X) \dots$

Бутстреп

Метод бутстрепа

Этап 1.

Генерация индексов из равномерного распределения:

$$i_1, ..., i_n \sim U\{1, ..., n\}$$

Генерация выборки $X^* = (X_1^*, ..., X_n^*) = (X_{i_1}, ..., X_{i_n})$: упорядоченный выбор **с возвращением** n элементов из мн-ва $\{X_1,...,X_n\}$.

Например:

- 1. X = (100, 11, -5, 91, 32) реализация выборки
- 2. $(4,5,5,1,2) = (i_1,...,i_5) \sim U\{1,...,5\}.$
- 3. $X^* = (X_{i_1}, ..., X_{i_n}) = (91, 32, 32, 100, 11)$ бутстрепная выборка.

Важно: размер выборки равен исходному

Метод бутстрепа

Этап 2.

Процедуру генерации выборок повторить B раз:

$$X_b^* = (X_{b1}^*, ..., X_{bn}^*)$$
, где $1 \leqslant b \leqslant B$.

Далее по каждой выборке посчитаем значение статистики T, получив выборку значений: $T_1^* = T(X_1^*),....,T_B^* = T(X_B^*)$.

Этап 3.

Полученную выборку использовать для аппроксимации значения оценки, которая называется бутстрепной оценкой.

Например, бутстрепная оценка дисперсии T имеет вид

$$\hat{v}_{boot} = \frac{1}{B} \sum_{b=1}^{B} T_b^{*2} - \left(\frac{1}{B} \sum_{b=1}^{B} T_b^{*}\right)^2$$

Схема метода бутстрепа

$$X = (X_1, ..., X_n)$$
 — выборка $T(X_1, ..., X_n)$ — статистика

Задача: оценить распределение T(X) или функционал V(T(X)).

$$X_{11}^*, \ ..., \ X_{1n}^* \ \longrightarrow \ T(X_1^*)$$
 ... $X_{b1}^*, \ ..., \ X_{bn}^* \ \longrightarrow \ T(X_b^*)$ $X_{b1}^*, \ ..., \ X_{Bn}^* \ \longrightarrow \ T(X_B^*)$ $X_{B1}^*, \ ..., \ X_{Bn}^* \ \longrightarrow \ T(X_B^*)$

Выборка:

Задача: Для каждого пикселя и каждого цветового канала оценить дисперсию выборочного среднего.

Дисперсия по бутстрепной выборке средних:

При большем количестве бутстрепных выборок:

Особенности

- Число В стоит брать как можно больше.
- Размер бутстрепной выборки всегда тот же, что и у исходной.
 При генерации выборок иного размера распределение статистики T, вообще говоря, может быть другим.
 Например, дисперсия выборочного среднего зависит от размера выборки.
- Генерация бутстрепной выборки проводится независимо с повторами.

Иначе полученный набор даже не является выборкой.

Бутстрепные доверительные интервалы

1. Нормальный интервал

Пусть $\widehat{\theta}$ — а.н.о. θ с ас. дисп. $\sigma^2(\theta)$.

 \widehat{v}_{boot} — бутстрепная оценка дисперсии.

Бутстрепный дов. интервал для параметра θ имеет вид

$$\left(\widehat{\theta} - z_{(1+\alpha)/2}\sqrt{\widehat{v}_{boot}}, \quad \widehat{\theta} + z_{(1+\alpha)/2}\sqrt{\widehat{v}_{boot}}\right)$$

2. Центральный интервал

 $heta = G(\mathsf{P})$ и $\widehat{ heta} = G(\widehat{\mathsf{P}}_n)$ — оценка методом подстановки.

 $heta_1^*,..., heta_B^*$ — оценки по бутстрепным выборкам.

Бутстрепный доверительный интервал имеет вид

$$\mathbf{C}^* = \left(2\widehat{\theta} - \theta^*_{(\lceil B(1+\alpha)/2 \rceil)}, \quad 2\widehat{\theta} - \theta^*_{(\lfloor B(1-\alpha)/2 \rfloor)}\right).$$

Бутстрепные доверительные интервалы

3. Квантильный интервал

 $\widehat{\theta}$ — некоторая оценка θ .

 $heta_1^*,..., heta_B^*$ — оценки по бутстрепным выборкам.

Бутстрепный доверительный интервал имеет вид

$$C^* = \left(\theta^*_{(\lfloor B(1-\alpha)/2 \rfloor)}, \quad \theta^*_{(\lceil B(1+\alpha)/2 \rceil)}\right).$$

Утверждение. Если существует монотонное преобразование φ , для которого $\varphi(\widehat{\theta}) \sim \mathcal{N}(\varphi(\theta), \sigma^2)$, то $\mathsf{P}\left(\theta \in C^*\right) = \alpha$.

На практике такое преобразование существует редко, но при этом часто может существовать приближенное преобразование.

Пример: построение дов. интервалов для θ

$$x = (5, 1, 3, 6, 4)$$
 — реализация выборки

$$heta=\mathsf{E} X_1$$
 — параметр, $\widehat{ heta}=\overline{X}$ — оценка, $\widehat{ heta}=3.8$ — реализация оценки

Реализации оценки параметра по бутстрепным выборкам (B=100):

$$3.8,\ 4.4,\ 3.6,\ 3.2,\ 4.6,\ 4.2,\ 3.0,\ 3.2,\ 4.0,\ 3.0,$$

1. Нормальный интервал

$$\widehat{\theta} = 3.8, v_{boot} = 0.394, z_{0.975} = 1.96$$

 $(3.8 \pm 1.96 \cdot \sqrt{0.394}) = (2.57, 5.03)$

2. Центральный интервал

$$B(1+\alpha)/2 = 100 \cdot 0.975 = 97.5, B(1-\alpha)/2 = 100 \cdot 0.025 = 2.5$$

 $\theta^*_{(\lceil 97.5 \rceil)} = 5, \quad \theta^*_{(\lfloor 2.5 \rfloor)} = 2.4$
 $(2 \cdot 3.8 - 5, 2 \cdot 3.8 - 2.4) = (2.6, 5.2)$

3. Квантильный интервал

(2.4, 5)

Оценка доли покрытия интервалом

Задача:

Оценить
$$P\left(X \in \left(T_1(X), T_2(X)\right)\right) = \mathsf{EI}\{X \in \left(T_1(X), T_2(X)\right)\}$$

Решение:

- 1. Генерируем n случайных индексов из U(1, ..., n) В раз: $(X_{b1}, ..., X_{bn}), b \in (1, B)$
- 2. Считаем $T_1(X_b)$, $T_2(X_b)$ и I $\{X_b \in (T_1(X_b), T_2(X_b))\} = I_b \in \{0, 1\}$
- 3. $\widehat{P}(\cdot) = \overline{I_b} = \frac{1}{B} \sum_{b=1}^{B} I_b$

