ACP: Tarea voluntaria

David Cabezas Berrido

Justificar que a_3 (el vector de pesos de la tercera componente principal) es el vector de vector propio asociado al tercer valor propio de mayor módulo de la matriz R.

 a_3 debe maximizar la expresión $Var[U_3] = Var[a_3^tX]$, siendo un vector unitario. Y U_3 debe ser incorrelada con U_1 y con U_2 . Esto se traduce en:

$$\max \ Var[U_3]$$

s.a. $||a_3|| = a_3^t a_3 = 1$
 $\cot(U_1, U_3) = 0$
 $\cot(U_2, U_3) = 0$

Como X es centrado, tenemos $E[U_3] = E[a_3^t X] = a_3^t E[X] = 0$. Por tanto, $Var[U_3] = E[U_3^2] = E[a_3^t X a_3^t X] = E[a_3^t X X^t a_3] = a_3^t E[X X^t] a_3 = a_3^t R a_3$.

Por otra parte, para i=1,2 tenemos: $\operatorname{cov}(U_i,U_3)=E[U_iU_3]-E[U_i]E[U_3]=E[U_iU_3]=E[a_i^tXa_3^tX]=a_i^tE[XX^t]a_3=a_i^tRa_3$. Llamando $\lambda_i\neq 0$ al valor propio asociado al vector propio a_i y utilizando que R es simétrica, tenemos $0=\operatorname{cov}(U_i,U_3)=a_i^tRa_3=\lambda_ia_i^ta_3$. Por tanto el problema queda:

$$\max_{a_3} a_3^t R a_3$$
 s.a. $\|a_3\| = a_3^t a_3 = 1$
$$a_1^t R a_3 = 0$$

$$a_2^t R a_3 = 0$$

$$a_1^t a_3 = 0$$

$$a_2^t a_3 = 0$$

Donde las últimas dos condiciones se deducen de las dos anteriores.

Aplicando el Teorema de los multiplicadores Lagrange para la obtención de extremos condicionados, el problema se reduce a

$$\max_{a_3} \{ a_3^t R a_3 - \lambda (a_3^t a_3 - 1) - \mu_1 a_1^t R a_3 - \mu_2 a_2^t R a_3 \}$$

Derivando la expresión respecto de a_3 (matricialmente y teniendo en cuenta que R es simétrica) e igualando a cero, obtenemos:

$$2Ra_3 - 2\lambda a_3 - \mu_1 Ra_1 - \mu_2 Ra_2 = 0 \tag{1}$$

Multiplicando a la izquierda por a_i^t (i = 1, 2, llamamos j al otro), tenemos:

$$2a_i^t R a_3 - 2\lambda a_i^t a_3 - \mu_1 a_i^t R a_1 - \mu_2 a_i^t R a_2 = 0$$

Ahora utilizamos que $a_i^t a_3 = a_i^t R a_3 = a_i^t R a_j = 0$, también que $a_i^t R a_i = \lambda_i \neq 0$. Nos queda $-\mu_i \lambda_i = 0$, por lo que $\mu_i = 0$ para i = 1, 2. Por tanto 1 queda:

$$2Ra_3 - 2\lambda a_3 = 0$$

Equivalentemente $Ra_3 = \lambda a_3$, por lo que a_3 es un vector propio de R asociado al valor propio λ .

Además, $Var[U_3] = a_3^t Ra_3 = a_3^t \lambda a_3 = \lambda$, ya que a_3 es unitario.

Por tanto, la tercera componente principal es $U_3 = a_3^t X$, siendo a_3 el vector propio asociado al tercer valor propio de mayor módulo de R.