

An Introduction to High-Throughput Computing Monday morning, 9:15am

Alain Roy <roy@cs.wisc.edu>
OSG Software Coordinator
University of Wisconsin-Madison

Who Am I?

- With Condor since 2001
- Open Science Grid Software Coordinator
- Taught at six previous summer schools
- I have the two cutest kids in the whole world:

A dinner follow-up: Snow in Wisconsin

OSG Summer School 2011

Overview of day

- Lectures alternating with exercises
 - Emphasis on lots of exercises
 - Hopefully overcome PowerPoint fatigue & help you understand better

"I need someone well versed in the art of torture—do you know PowerPoint?"

4

Some thoughts on the exercises

- It's okay to move ahead on exercises if you have time
- It's okay to take longer on them if you need to
- If you move along quickly, try the "On Your Own" sections and "Challenges"
- We'll have an optional evening session if you want more time, and I'll be there to give help

OSG Summer School 2011 5

Most important!

- Please ask me questions!
 - ...during the lectures
 - ...during the exercises
 - ...during the breaks
 - ...during the meals
 - ...over dinner
 - ...the rest of the week
- If I don't know, I'll find the right person to answer your question.

Before we start

- Sometime today, do the exercise on getting a certificate.
 - It is required for all exercises Tuesday-Thursday
 - It will be easiest if you do it today

OSG Summer School 2011 7

Goals for this session

- Understand basics of high-throughput computing
- Understand the basics of Condor
- Run a basic Condor job

OSG Summer School 2011

What is high-throughput computing? (HTC)

- An approach to distributed computing that focuses on long-term throughput, not instantaneous computing power.
 - We don't care about operations per second
 - We care about operations per year
- Implications:
 - Focus on reliability
 - Use all available resources (not just highend supercomputers)
 - That slow four-year old cluster down the hall? Include it!

Good uses of HTC

- "I need as many simulation results as possible before my deadline..."
- "I have lots of small-ish independent tasks that can be run indepdently"

OSG Summer School 2011

What's not HTC?

- The need for "real-time" results:
 - (Ignore fact that "real-time" is hard to define.)
 - HTC is less worried about latency (delay to answer) than total throughput
- The need to maximize FLOPS
 - "I must use the a supercomputer, because I need the fastest computer/network/storage/

. . .

An example problem: BLAST

- A scientist has:
 - Question: Does a protein sequence occur in other organisms?
 - Data: lots of protein sequences from various organisms
 - Parameters: how to search the database.
- More throughput means
 - More protein sequences queried
 - Larger/more protein data bases examined
 - More parameter variation
- We'll try out BLAST later today

OSG Summer School 2011 12

Why is HTC hard?

- The HTC system has to keep track of:
 - Individual tasks (a.k.a. jobs) & their inputs
 - Computers that are available
- The system has to recover from failures
 - There will be failures! Distributed computers means more chances for failures.
- You have to share computers
 - Sharing can be within an organization, or between orgs
 - So you have to worry about security.
 - And you have to worry about policies on how you share.
- If you use a lot of computers, you have to deal variety:
 - Different kinds of computers (arch, OS, speed, etc..)
 - Different kinds of storage (access methodology, size, speed, etc...)
 - Different networks interacting (network problems are hard to debug!)

OSG Summer School 2011

Let's take one step at a time

- Can you run one job on one computer?
- Can you run one job on another local computer?
- Can you run 10 jobs on a set of local computers?
- Can you run 1 job on a remote computer?
- Can you run 10 jobs at a remote site?
- Can you run a mix of jobs here and remotely?

This is the (rough) path we'll take in the school this week

OSG Summer School 2011 14

Discussion

- For 5 minutes, talk to a neighbor: If you want to run one job in a local cluster of computers:
 - 1) What do you (the user) need to provide so a single job can be run?
 - 2) What does the system need to provide so your single job can be run?
 - Think of this as a set of processes: what needs
 happen when the job is given? A "process" could be
 a computer process, or just an abstract task.

Alain's answer: What does the user provide?

- A "headless job".
 - Not interactive/no GUI: how could you interact with 1000 simultaneous jobs?
- A set of input files
- A set of output files.
- A set of parameters (command-line arguments).
- Requirements:
 - Ex: My job requires at least 2GB of RAM.
 - Ex: My job requires Linux.
- Control/Policy:
 - Ex: Send me email when the job is done.
 - Ex: Job 2 is more important than Job 1.
 - Ex: Kill my job if it's run for more than 6 hours.

OSG Summer School 2011

Alain's answer: What does the system provide?

Methods to:

- Submit/Cancel job.
- Check on state of job.
- Check on state of available computers.

Processes to:

- Reliably track set of submitted jobs.
- Reliably track set of available computers.
- Decide which job runs on which computer.
- Manage a single computer.
- Start up a single job.

17

Surprise! Condor does this (and more)

Methods to:

- Submit/Cancel job. condor_submit/condor_rm
- Check on state of job. condor_q
- Check on state of avail. computers. condor_status

Processes to:

- Reliably track set of submitted jobs. schedd
- Reliably track set of avail. computers. collector
- Decide which job runs on where. negotiator
- Manage a single computer startd
- Start up a single job starter

OSG Summer School 2011

But not only Condor

- You can use other systems:
 - PBS/Torque
 - Oracle Grid Engine (né Sun Grid Engine)
 - LSF
 - ...
- But we won't cover them.
 - Our expertise is with Condor
 - Our bias is with Condor
- What should you learn?
 - How do you think about HTC?
 - How can you do your science with HTC?
 - For now, learn it with Condor, but you can apply it to other systems.

OSG Summer School 2011 19

A brief introduction to Condor

- Please note, we will only scratch the surface of Condor:
 - We won't cover MPI, Master-Worker, advanced policies, site administration, security mechanisms, Condor-C, submission to other batch systems, virtual machines, cron, high-availability, computing on demand, ...
- Why?
 - The goal is to introduce you to HTC by using Condor, not to make you Condor experts.

Open acience And fertaler Fakes (Computers...

I need a Mac!

Quick Terminology

- Cluster: A dedicated set of computers not for interactive use
- Pool: A collection of computers used by Condor
 - May be dedicated
 - May be interactive

Matchmaking

- Matchmaking is fundamental to Condor
- Matchmaking is two-way
 - Job describes what it requires:
 - I need Linux && 8 GB of RAM
 - Machine describes what it requires:
 - I will only run jobs from the Physics department
- Matchmaking allows preferences
 - I need Linux, and I prefer machines with more memory but will run on any machine you provide me

Why Two-way Matching?

- Condor conceptually divides people into three groups:
 - Job submitters
 - Machine owners
 - Pool (cluster) administrator
- All three of these groups have preferences

May or may not be the same people

ClassAds

- ClassAds state facts
 - My job's executable is analysis.exe
 - My machine's load average is 5.6
- ClassAds state preferences
 - I require a computerwith Linux

ClassAds

ClassAds are:

- semi-structured
- user-extensible
- schema-free
- Attribute =Expression

Example:

```
= "Job" ←—String
МуТуре
             = "Machine"
TargetType
             = 1377 ← Number
ClusterId
             = "roy"
Owner
             = "analysis.exe"
Cmd
Requirements =
   (Arch == "INTEL") ← Boolean
&& (OpSys == "LINUX")
&& (Disk >= DiskUsage)
&& ((Memory * 1024)>=ImageSize)
```

Schema-free ClassAds

- Condor imposes some schema
 - Owner is a string, ClusterID is a number...
- But users can extend it however they like, for jobs or machines
 - AnalysisJobType = "simulation"
 - HasJava 1 4 = TRUE
 - ShoeLength = 7
- Matchmaking can use these attributes

```
- Requirements = OpSys == "LINUX" && HasJava_1_4 == TRUE
```

Submitting jobs: condor_schedd

- Users submit jobs from a computer
 - Jobs described as ClassAds
 - Each submission computer has a queue
 - Queues are not centralized
 - Submission computer watches over queue
 - Can have multiple submission computers
 - Submission handled by condor_schedd

Advertising computers

- Machine owners describe computers
 - Configuration file extends ClassAd
 - ClassAd has dynamic features
 - Load Average
 - Free Memory
 - ...
 - ClassAds are sent to Matchmaker

ClassAd

Type = "Machine"

Requirements = "..."

Matchmaker (Collector)

Matchmaking

- Negotiator collects list of computers
- Negotiator contacts each schedd
 - What jobs do you have to run?
- Negotiator compares each job to each computer
 - Evaluate requirements of job & machine
 - Evaluate in context of both ClassAds
 - If both evaluate to true, there is a match
- Upon match, schedd contacts execution computer

Matchmaking diagram

Condor processes

Proceess	Function
Master	Takes care of other processes
Collector	Stores ClassAds
Negotiator	Performs Matchmaking
Schedd	Manages job queue
Shadow	Manages job (submit side)
Startd	Manages computer
Starter	Manages job (executtion side)

If you forget most of these remember two (for other lectures)

Proceess	Function					
Master	Takes care of other processes					
Collector	Stores ClassAds					
Negotiator	Performs Matchmaking					
Schedd	Manages job queue					
Shadow	Manages job (submit side)					
Startd	Manages computer					
Starter	Manages job (executtion side)					

Some notes

- One negotiator/collector per pool
- Can have many schedds (submitters)
- Can have many startds (computers)
- A machine can have any combination of:
 - Just a startd (typical for a dedicated cluster)
 - schedd + startd (perhaps a desktop)
 - Personal Condor: everything

Example Pool 1

Example Pool 1a

Example Pool 2

Our Condor Pools

- One submit computer
 - One schedd/queue for everyone
 - vdt-itb.cs.wisc.edu
- One local set of dedicated Condor execute nodes:
 - About 8 computers, about 45 available "batch slots"
- Remote resources at UNL
 - For Tuesday, not today.

Our Condor Pool

Open Science Grid Name Op	Sys	Arch St	ate Activit	ty LoadAv	Mem	ActvtyTime
slot1@miniosg-c0 slot2@miniosg-c0 slot3@miniosg-c0 slot4@miniosg-c0 slot5@miniosg-c0 slot6@miniosg-c0 slot7@miniosg-c0 slot8@miniosg-c0 slot1@miniosg-c0	1. LINUX	INTEL INTEL INTEL INTEL INTEL INTEL INTEL INTEL INTEL	Unclaimed Idle	e 0.000 e 0.000 e 0.000 e 0.020 e 0.000 e 0.000	2030	0+00:00:04 0+00:00:05 0+00:29:46 0+00:29:47 0+00:07:45 13+01:43:11 13+01:43:12 13+01:43:05 0+05:35:22
slot2@miniosg-c0 slot3@miniosg-c0	2. LINUX	INTEL INTEL	Unclaimed Idle	e 0.000	2030	0+05:45:29 0+01:35:06
•••	Tota	l Owner Cl	aimed Unclaimed	Matched E	?reemp	ting Backfill
INTEL/LINUX	4	4 0	44	0	0	0
Т	otal 4	4 0	44	0	0	0

That was a whirlwind tour!

- Let's get some hands-on experience with Condor, to solidify this knowledge.
- Goal: Check out our installation, run some basic jobs.

Open Science Grid

Questions?

- Questions? Comments?
 - Feel free to ask me questions later:Alain Roy <roy@cs.wisc.edu>
- Upcoming sessions
 - -9:45-10:30
 - Hands-on exercises
 - -10:30 10:45
 - Break
 - -10:45 12:15
 - More!