Decision Trees

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

March 20, 2017

Selayang Pandang

- 1 Pendahuluan
- 2 Menghitung Ketakmurnian
- 3 Evaluasi
- 4 Evaluasi (Lanjutan) Validasi dan Pengujian Di Luar Akurasi

Bahan Bacaan

- Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann. (Chapter 6. Trees and rules)
- Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press. (Chapter 16. Adaptive basis function models)
- 3 Tan, P. N. (2006). Introduction to data mining. Pearson Education India. (Chapter 4. Classification)
- Besbes, A. (2016, August 10). How to score 0.8134 in Titanic Kaggle Challenge [Blog post]. Retrieved from http://ahmedbesbes.com/ how-to-score-08134-in-titanic-kaggle-challenge. html

Pendahuluan

Data Cuaca

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Prediksi apakah John akan bermain tenis

Divide & Conquer

- 1 Bagi menjadi subsets
- 2 Apakah pembagiannya murni (semua "ya" atau semua "tidak")?
- 3 Jika ya, berhenti
- 4 Jika tidak, bagi lagi (rekursif)

Data Cuaca

Temp	Humidity	Windy	Play
Hot	High	False	No
Hot	High	True	No
Hot	High	False	Yes
Mild	High	False	Yes
Cool	Normal	False	Yes
Cool	Normal	True	No
Cool	Normal	True	Yes
Mild	High	False	No
Cool	Normal	False	Yes
Mild	Normal	False	Yes
Mild	Normal	True	Yes
Mild	High	True	Yes
Hot	Normal	False	Yes
Mild	High	True	No
	Hot Hot Hot Cool Cool Mild Cool Mild Mild Mild Mild Hot	Hot High Hot High Hot High Mild High Cool Normal Cool Normal Mild High Cool Normal Mild High Mild High Mormal Mild Normal Mild Normal Mild Normal Mild Normal Mild Normal Mild Normal	Hot High False Hot High True Hot High False Mild High False Cool Normal False Cool Normal True Cool Normal True Mild High False Cool Normal True Mild High False Mild Normal False Mild Normal False Mild Normal True Mild High True Mild High True Mild High True Hot Normal False

Pohon Keputusan

Data Cuaca

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Pohon Keputusan

Data Cuaca

Outlook	Temp	Humidity	Windy	Play
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

Pohon Keputusan

Atribut Pembagi

- Bagaimana menghitung "kemurnian" dari hasil pembagian?
- Bagaimana kalau tidak ada hasil yang langsung murni?
- Atribut mana yang harus didahulukan?

Menghitung Ketakmurnian

Entropy

Formula

$$H(S) = -p_{(+)}log_2p_{(+)} - p_{(-)}log_2p_{(-)}$$

dengan S adalah subset dan $p_{(+)}$ dan $p_{(-)}$ adalah persentase (probabilitas) contoh positif atau negatif di subset S

Generalisasi

$$H(S) = -\sum_{c} p_{c} log_{2} p_{c}$$

Interpretasi

Asumsikan $X \in S$. Berapa bits yang dibutuhkan untuk menentukan X bernilai positif atau negatif?

Entropy

Dua contoh kasus:

- Impure (3 yes / 3 no) $H(S) = -\frac{3}{6}log_2\frac{3}{6} - \frac{3}{6}log_2\frac{3}{6} = 1$
- Pure (4 yes / 0 no) $H(S) = -\frac{4}{4}log_2\frac{4}{4} - \frac{0}{4}log_2\frac{0}{4} = 0$

Catatan: $0log_20 = 0$ pada perhitungan entropy

Gini Impurity

Formula

$$\mathit{Gini}(S) = 1 - \sum_{c} p_{c}^{2}$$

- Digunakan dalam algoritma classification and regression tree (CART)
- Interpretasi: Seberapa sering suatu objek akan salah diklasifikasikan jika dilakukan klasifikasi acak

Information Gain

- Kita ingin sebanyak-banyaknya objek dalam pure sets
- Melihat perbedaan entropy sebelum dan sesudah dilakukan pemisahan

$$Gain(S, A) = H(S) - \sum_{V \in Values(A)} \frac{|S_V|}{|S|} H(S_V)$$

dengan V adalah nilai yang mungkin dari A dan S_V adalah subset di mana $X_A = V$

Contoh Information Gain

$$H(S) = 0.94, H(S_{False}) = 0.81, H(S_{True}) = 1.0$$
 $Gain(S, Windy) = 0.94 - \frac{8}{14}0.81 - \frac{6}{14}1.0 = 0.049$

Masalah dengan Information Gain

- Bias terhadap atribut dengan nilai yang banyak
- Tidak dapat berfungsi untuk nilai atribut yang baru
- Solusi: Paksa binary splits (CART), atau
- Gunakan GainRatio (C4.5)

$$SplitEntropy(S, A) = -\sum_{V \in Values(A)} \frac{|S_V|}{|S|} log_2 \frac{|S_V|}{|S|}$$

$$GainRatio(S, A) = \frac{Gain(S, A)}{SplitEntropy(S, A)}$$

untuk memberikan penalti untuk atribut dengan nilai yang banyak

Atribut Kontinu

• Intinya, hanya perlu menentukan threshold

Atribut Kontinu

- Intinya, hanya perlu menentukan threshold
- Masalahnya, perbandingan tiap elemen dengan tiap elemen lainnya akan menghasilkan kompleksitas $O(n^2)$

Atribut Kontinu

- Intinya, hanya perlu menentukan threshold
- Masalahnya, perbandingan tiap elemen dengan tiap elemen lainnya akan menghasilkan kompleksitas $O(n^2)$
- Solusi: Urutkan (kompleksitas $O(n \log n)$), lalu ambil titik tengah antara tiap dua nilai

Evaluasi

Error & Akurasi

Setiap hasil klasifikasi akan menghasilkan suatu confusion matrix

	Ya	Tidak
Ya	TP	FN
Tidak	FP	TN

$$\begin{aligned} \textit{Error} &= \frac{\textit{FP+FN}}{\textit{TP+TN+FP+FN}} \\ \textit{Akurasi} &= \left(1 - \textit{error}\right) = \frac{\textit{TP+TN}}{\textit{TP+TN+FP+FN}} \end{aligned}$$

Bagaimana cara meminimalkan error (memaksimalkan akurasi)?

Overfitting

Gambar: Overfitting pada decision trees (Mitchell, 1997)

Menghindari Overfitting

 Hentikan pemisahan saat perubahannya tidak signifikan (pre-pruning)

Menghindari Overfitting

- Hentikan pemisahan saat perubahannya tidak signifikan (pre-pruning)
- Pisahkan sampai akhir, lalu potong pohonnya (post-pruning)
- Sub-tree replacement pruning (Witten, et al., 2016; 6.1)

Occam's Razor

Definisi

Given two models with the same generalization errors, the simpler model is preferred over the more complex model.

Random Forest

- Membuat K pohon keputusan yang berbeda:
 - memilih subset acak S_r
 - membuat pohon keputusan penuh T_r (tanpa pruning)
 - repetisi untuk r = 1...K
- Jika diberikan data baru X:
 - klasifikasi dengan setiap pohon $T_1...T_K$
 - Gunakan majority vote
 - Alternatif: weighted average
- Salah satu metode yang paling efektif (state-of-the-art)

XGBoost (non-examinable)

Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). ACM.

Pros & Cons

Pros

- mudah diinterpretasi
- dapat menangani missing value
- sangat cepat saat klasifikasi data baru

Cons

- pembagian hanya sejajar sumbu
- greedy, mungkin tidak mencapai solusi optimal global

Evaluasi (Lanjutan)

Training, Validation, Testing sets

- Data latih: konstruksi classifier
- Data validasi: memilih algoritma dan parameter tuning
- Data uji: mengestimasi error rate secara umum
- Catatan: Bagi datanya secara acak!

Cross-validation

- Datanya kadang tidak cukup banyak untuk dibagi!
- Ide: latih dan uji secara bergantian
- Umumnya: 10-fold cross-validation

Leave-one-out

n-fold cross-validation

Pros

Menghasilkan classifier terbaik

Cons

- Ongkos komputasi tinggi
- ullet Kelas tidak seimbang o stratification

Unbalanced Dataset

• e.g. Prediksi apakah akan terjadi gempa atau tidak!

Unbalanced Dataset

- e.g. Prediksi apakah akan terjadi gempa atau tidak!
- Jika selalu diklasifikan sebagai "tidak", akurasi akan maksimal, error akan minimal.

Unbalanced Dataset

- e.g. Prediksi apakah akan terjadi gempa atau tidak!
- Jika selalu diklasifikan sebagai "tidak", akurasi akan maksimal, error akan minimal.
- Solusi: Gunakan metrik lain

Misses & False Alarms

- False Alarm rate = False Positive rate = FP/(FP + TN)
- Miss rate = False Negative rate = FN/(TP + FN)
- Recall = True Positive rate = Sensitivity = TP/(TP + FN)
- Precision = TP/(TP + FP)
- Specificity = 1 FPR = TN/(TN + FP)
- Harus dilaporkan berpasangan!

Utility & Cost

- Terkadang perlu satu angka untuk pembanding antarmodel
- **Detection cost**: $cost = c_{FP} \times FP + c_{FN} \times FN$
- **F-measure**: $F_1 = 2 \times \frac{precision \times recall}{precision + recall}$

ROC Curves

Receiver Operating Characteristic: TPR vs FPR dengan perubahan threshold

Menghitung Area Under the Curve (AUC) sebagai pengganti akurasi

Terima kasih