

Licence 1ère année, MATHÉMATIQUES ET CALCUL 1 (MC1)

Interrogation 3: Complexes et Polynômes

Exercice 1. (≈ 4 pts)

- 1. Déterminer les racines carrées de 5 12i
- 2. Donner le module et un argument de $1 + e^{i\theta}$

Correction.

1. Soit $\delta = a + ib$ une racine carré de 5 - 12i, c'est à dire $(a + ib)^2 = 5 - 12i$. On développe :

$$(a+ib)^2 = 5-12i \iff a^2-b^2+2aib=5-12i$$

Par identification, on obtient $a^2 - b^2 = 5$ et 2ab = -12.

De plus, on a l'égalité des modules $|\delta|^2 = |5 - 12i| \iff a^2 + b^2 = \sqrt{25 + 144} = \sqrt{169} = 13$.

En additionnant les équations $a^2 - b^2 = 5$ et $a^2 + b^2 = 13$, on obtient $2a^2 = 18$ d'où a = 3 ou a = -3.

Puisque 2ab = -12, a et b sont de signes contraires, on a $b = -\frac{6}{a}$ et on en déduit que les solutions sont a = 3 et b = -2 ou a = -3 et b = 2.

Conclusion : Les racines carrées de 5 - 12i sont 3 - 2i et -3 + 2i.

2. On utilise la technique de l'angle moitié :

$$\begin{array}{rcl} 1 + e^{i\theta} & = & e^{i\frac{\theta}{2}}(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}}) \\ & = & e^{i\frac{\theta}{2}}2\cos(\frac{\theta}{2}) \end{array}$$

Donc le module est $2\cos(\frac{\theta}{2})$ et un argument est $\frac{\theta}{2}$

Exercice 2. (≈ 4 pts)

- 1. Factoriser dans \mathbb{C} , $X^2 2iX 1 + 2i$
- 2. Calculer le quotient et le reste de la division euclidienne de $X^5 X^2 + 2$ par $X^2 + 1$

Correction.

1. Le discriminant est $\Delta = (-2i)^2 - 4(-1+2i) = -4+4-8i = -8i$.

Puisque $-i=e^{-i\frac{\pi}{2}}$, on en déduit que $\Delta=8e^{-i\frac{\pi}{2}}$. Donc les racines de Δ sont $-\sqrt{8}e^{-i\frac{\pi}{4}}=-2\sqrt{2}e^{-i\frac{\pi}{4}}$ et $2\sqrt{2}e^{-i\frac{\pi}{4}}=\sqrt{8}e^{-i\frac{\pi}{4}}$.

D'où

$$X^{2} - 2iX - 1 + 2i = (X - 2\sqrt{2}e^{-i\frac{\pi}{4}})(X + 2\sqrt{2}e^{-i\frac{\pi}{4}})$$

ou sous forme algébrique

$$X^{2}-2iX-1+2i=(X-2(1-i))(X+2(1-i))$$

2.

$$\begin{array}{c|ccccc} X^5 & -X^2 & +2 & X^2 & +1 \\ \hline -(X^5 & +X^3 &) & X^3 & -X & -1 \\ \hline -X^3 & -X^2 & +2 & +2 \\ \hline -(-X^3 & -X &) & & \\ \hline -X^2 & +X & +2 & \\ \hline -(-X^2 & -1) & & & \\ \hline X & +3 & & & \end{array}$$

D'où
$$X^5 - X^2 + 2 = (X^2 + 1)(X^3 - X - 1) + X + 3$$

Exercice 3. (\approx 2 pts)

Soit $P \in \mathbb{R}[X]$, α une racine de P de multiplicité $k \in \mathbb{N} \setminus \{0\}$. Donner deux caractérisations équivalentes du fait que α soit une racine de P de multiplicité k.

Correction.

- Il existe $Q \in \mathbb{R}[X]$ tel que $P = (X \alpha)^k Q$ avec $Q(\alpha) \neq 0$
- $P(\alpha) = P'(\alpha) = \dots = P^{(k-1)}(\alpha) = 0$ et $P^{(k)}(\alpha) \neq 0$.