Schede riassuntive di Geometria 1

Alcuni accenni alla geometria di \mathbb{R}^3

Si definisce prodotto scalare la forma bilineare simmetrica unicamente determinata da $\langle \underline{e_i}, \underline{e_j} \rangle = \delta_{ij}$. Vale la seguente identità: $\langle (x, y, z), (x', y', z') \rangle = xx' + yy' + zz'$.

Inoltre $\langle \underline{a},\underline{b}\rangle = |\underline{a}|\,|\underline{b}|\cos(\theta)$, dove θ è l'angolo compreso tra i due vettori. Due vettori $\underline{a},\underline{b}$ si dicono ortogonali se e solo se $\langle \underline{a},\underline{b}\rangle = 0$.

Si definisce prodotto vettoriale la forma bilineare alternante da $\mathbb{R}^3 \times \mathbb{R}^3$ in \mathbb{R}^3 tale che $\underline{e_1} \times \underline{e_2} = \underline{e_3}, \underline{e_2} \times \underline{e_3} = \underline{e_1}, \underline{e_3} \times \underline{e_1} = \underline{e_2}$ e $\underline{e_i} \times \underline{e_i} = \underline{0}$. Dati due vettori (x,y,z) e (x',y',z'), si può determinarne il prodotto vettoriale informalmente come:

$$\begin{vmatrix} \underline{e_1} & \underline{e_2} & \underline{e_3} \\ x' & y' & z' \end{vmatrix}.$$

Vale l'identità $|\underline{a} \times \underline{b}| = |\underline{a}| |\underline{b}| \sin(\theta)$, dove θ è l'angolo con cui, ruotando di θ in senso antiorario \underline{a} , si ricade su \underline{b} . Due vettori $\underline{a}, \underline{b}$ si dicono paralleli se $\exists k \mid \underline{a} = k\underline{b}$, o equivalentemente se $\underline{a} \times \underline{b} = \underline{0}$. Altrettanto si può dire se $\langle \underline{a}, \underline{b} \rangle = |\underline{a}| |\underline{b}|$ (i.e. $\cos(\theta) = 1 \implies \theta = 0$).

Una retta in \mathbb{R}^3 è un sottospazio affine della forma $\underline{v} + \operatorname{Span}(\underline{r})$ Analogamente un piano è della forma $\underline{v} + \operatorname{Span}(\underline{x}, y)$.

Nella forma cartesiana, un piano è della forma ax+by+cz=d, dove (a,b,c) è detta normale del piano. Una retta è l'intersezione di due piani, e dunque è un sistema lineare di due equazioni di un piano. Due piani sono perpendicolari fra loro se e solo se le loro normali sono ortogonali. Due piani sono paralleli se e solo se le loro normali sono parallele. Il vettore \underline{r} che genera lo Span di una retta che è intersezione di due piani può essere computato come prodotto vettoriale delle normali dei due piani.

Valgono le seguenti identità:

- $a \times (b \times c) = \langle a, c \rangle b \langle a, b \rangle c$ (identità di Lagrange),
- $\underline{a} \times (\underline{b} \times \underline{c}) + \underline{b} \times (\underline{c} \times \underline{a}) + \underline{c} \times (\underline{a} \times \underline{b}) = \underline{0}$ (identità di Jacobi).

Dati tre punti $\underline{a},\,\underline{b},\,\underline{c},$ il volume del parallelepipedo individuato da questi punti è:

$$\left| \det \left(\frac{\underline{a}}{\underline{b}} \right) \right| = \left| \left\langle \underline{a}, \underline{b} \times \underline{c} \right\rangle \right|.$$

Tre punti sono complanari se e solo se il volume di tale parallelpipedo è nullo (infatti questo è equivalente a dire che almeno uno dei tre punti si scrive come combinazione lineare degli altri due).

Proprietà generali di uno spazio vettoriale

Uno spazio vettoriale V su un campo $\mathbb K$ soddisfa i seguenti assiomi:

- (V, +) è un gruppo abeliano,
- il prodotto esterno da $\mathbb{K} \times V$ in V è associativo rispetto agli scalari (i.e. a(bv) = (ab)v),
- $1_{\mathbb{K}} \cdot \underline{v} = \underline{v}$,
- il prodotto esterno è distributivo da ambo i lati (i.e. $(a+b)\underline{v}=a\underline{v}+b\underline{v}$ e $a(\underline{v}+\underline{w})=a\underline{v}+a\underline{w}$.

Un insieme di vettori I si dice linearmente indipendente se una qualsiasi combinazione lineare di un suo sottinsieme finito è nulla se e solo se i coefficienti dei vettori sono tutti nulli. Si dice linearmente dipendente in caso contrario.

Un insieme di vettori G si dice generatore di V se ogni vettore di V si può scrivere come combinazione lineare di un numero finito di elementi di G, ossia se $V = \operatorname{Span}(G)$.

Una base è un insieme contemporaneamente linearmente indipendente e generatore di V. Equivalentemente una base è un insieme generatore minimale rispetto all'inclusione e un insieme linearmente indipendente massimale, sempre rispetto all'inclusione. Ogni spazio vettoriale, anche quelli non finitamente generati, ammettono una base. La dimensione della base è unica ed è il numero di elementi dell'insieme che è base.

Dato un insieme linearmente indipendente I in uno spazio di dimensione finita, tale insieme, data una base \mathcal{B} , può essere esteso a una base T che contiene I e che è completato da elementi di \mathcal{B} .

Analogamente, dato un insieme generatore finito G, da esso si può estrarre sempre una base dello spazio.

Uno spazio vettoriale fondato su un campo infinito con un insieme di vettori infinito non è mai unione finita di sottospazi propri. Un insieme linearmente indipendente di V con esattamente dim V elementi è una base di V. Analogamente, un insieme generatore di V con esattamente dim V elementi è una base di V.

Sia $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ una base ordinata dello spazio vettoriale V.

- {0} e V sono detti sottospazi banali,
- lo Span di n vettori è il più piccolo sottospazio di V contenenti tali vettori,
- Span(\mathcal{B}) = V,
- Span(\varnothing) = $\{\underline{0}\}$,
- dato X generatore di $V, X \setminus \{\underline{x_0}\}$ genera $V \iff x_0 \in \operatorname{Span}(X \setminus \{x_0\}),$
- $X \subseteq Y$ è un sottospazio di $Y \iff \operatorname{Span}(X) = X$.
- $\operatorname{Span}(X) \subseteq Y \iff X \subseteq Y$, se Y è uno spazio,
- $\operatorname{Span}(\operatorname{Span}(A)) = \operatorname{Span}(A)$,
- se I è un insieme linearmente indipendente di V, allora $|I| < \dim V$,

- se G è un insieme generatore di V, allora $|G| > \dim V$,
- [v]_B è la rappresentazione di v nella base ordinata B, ed
 è un vettore di Kⁿ che alla coordinata i-esima associa il
 coefficiente di vi nella combinazione lineare di v nella
 base B.
- la rappresentazione nella base B è sempre unica ed esiste sempre (è quindi un isomorfismo tra V e Kⁿ),
- si definisce base canonica di \mathbb{K}^n la base $e = \{\underline{e_1}, \dots, \underline{e_n}\}$, dove $\underline{e_i}$ è un vettore con tutte le coordinate nulle, eccetto per la *i*-esima, che è pari ad 1 (pertanto dim $\mathbb{K}^n = n$),
- una base naturale di $M(m, n, \mathbb{K})$ è data da $\mathcal{B} = \{E_{11}, E_{12}, \dots, E_{1n}, \dots, E_{mn}\}$, dove E_{ij} è una matrice con tutti gli elementi nulli, eccetto quello nel posto (i, j), che è pari ad 1 (dunque dim $M(m, n, \mathbb{K}) = mn$),
- le matrici A di taglia n tali che $A^{\top} = A$ formano il sottospazio $\operatorname{Sym}(n,\mathbb{K})$ di $M(n,\mathbb{K})$, detto sottospazio delle matrici simmetriche, la cui base naturale è data da $\mathcal{B}' = \{E_{ij} + E_{ji} \in \mathcal{B} \mid i < j\} \cup \{E_{ij} \in \mathcal{B} \mid i = j\}$, dove \mathcal{B} è la base naturale di $M(m,n,\mathbb{K})$ (dunque dim $\operatorname{Sym}(n,\mathbb{K}) = \frac{n(n+1)}{2}$),
- le matrici A di taglia n tali che $A^{\top} = -A$ formano il sottospazio $\Lambda(n, \mathbb{K})$ di $M(n, \mathbb{K})$, detto sottospazio delle matrici antisimmetriche, la cui base naturale è data da $\mathcal{B}' = \{E_{ij} E_{ji} \in \mathcal{B} \mid i < j\}$, dove \mathcal{B} è la base naturale di $M(m, n, \mathbb{K})$ (dunque dim $\Lambda(n, \mathbb{K}) = \frac{n(n-1)}{2}$),
- poiché $\operatorname{Sym}(n, \mathbb{K}) \cap \Lambda(n, \mathbb{K}) = \{\underline{0}\}\ e$ $\dim \operatorname{Sym}(n, \mathbb{K}) + \dim \Lambda(n, \mathbb{K}) = \dim M(n, \mathbb{K}), \text{ vale che}$ $M(n, \mathbb{K}) = \operatorname{Sym}(n, \mathbb{K}) \oplus \Lambda(n, \mathbb{K}).$
- una base naturale di $\mathbb{K}[x]$ è data da $\mathcal{B} = \{x^n \mid n \in \mathbb{N}\}$, mentre una di $\mathbb{K}_t[x]$ è data da $\mathcal{B} \cap \mathbb{K}_t[x] = \{x^n \mid n \in \mathbb{N} \land n \leq t\}$ (quindi dim $\mathbb{K}[x] = \infty$ e dim $\mathbb{K}_t[x] = t + 1$),
- una base naturale di \mathbb{K} è $1_{\mathbb{K}} = \{1_{\mathbb{K}}\}$ (quindi dim $\mathbb{K} = 1$),
- un sottospazio di dimensione 1 si definisce retta, uno di dimensione 2 piano, uno di dimensione 3 spazio, e, infine, uno di dimensione n-1 un iperpiano,
- un iperpiano Π è sempre rappresentabile da un'equazione cartesiana nelle coordinate della rappresentazione della base (infatti ogni iperpiano è il kernel di un funzionale $f \in V^*$, e $M_{1_{\mathbb{K}}}^{\mathcal{B}}(f)[\underline{v}]_{\mathcal{B}} = 0$ è l'equazione cartesiana; è sufficiente prendere una base di Π e completarla a base di V con un vettore \underline{t} , considerando infine $\operatorname{Ker} t^*$).

Applicazioni lineari, somme dirette, quozienti e prodotti diretti

Un'applicazione da V in W si dice applicazione lineare se:

- $f(\underline{v} + \underline{w}) = f(\underline{v}) + f(\underline{w}),$
- $f(\alpha \underline{v}) = \alpha f(\underline{v})$.

Si definisce $\mathcal{L}(V,W)\subseteq W^V$ come lo spazio delle applicazioni lineari da V a W. Si definisce $\operatorname{End}(V)$ come lo spazio degli endomorfismi di V, ossia delle applicazioni lineari da V in V, dette anche operatori. Un'applicazione lineare si dice isomorfismo se è bigettiva. La composizione di funzioni è associativa.

Dato un sottospazio A di V, si definisce lo spazio quoziente V/A come l'insieme quoziente V/\sim della relazione di equivalenza $\underline{a} \sim \underline{b} \iff a-b \in A$ dotato dell'usuale somma e prodotto esterno. Si scrive $[\underline{v}]_A$ come $\underline{v}+A$ e vale che A=0+A. In particolare $v+A=A \iff v \in A$.

Siano $f:V\to W,\,h:V\to W,\,g:W\to Z$ tre applicazioni lineari. \mathcal{B}_V e \mathcal{B}_W sono due basi rispettivamente di V e W. In particolare sia $\mathcal{B}_V=\{\underline{v_1},\ldots,\underline{v_n}\}$. Si ricorda che $\operatorname{rg}(f)=\dim\operatorname{Im} f$. Siano e ed e' le basi canoniche rispettivamente di \mathbb{K}^n e \mathbb{K}^m .

- $\bullet \ \ f(\underline{0}_V)=\underline{0}_W,$
- Ker $f = f^{-1}(\underline{0}_W)$ è un sottospazio di V,
- Im f = f(V) è un sottospazio di W,
- Im $f = \operatorname{Span}(f(v_1), \dots, f(v_n)),$
- f è iniettiva \iff Ker $f = \{\underline{0}\},$
- $V/\operatorname{Ker} f \cong \operatorname{Im} f$ (primo teorema d'isomorfismo),
- dim Ker f + dim Im f = dim V (teorema del rango, o formula delle dimensioni, valido se la dimensione di V è finita),
- $g \circ f$ è un'applicazione lineare da V in Z,
- la composizione di funzioni è associativa e distributiva da ambo i lati,
- $g \circ (\alpha f) = \alpha (g \circ f) = (\alpha g) \circ f$, se $\alpha \in \mathbb{K}$,
- $\operatorname{Ker} f \subseteq \operatorname{Ker}(g \circ f)$,
- $\operatorname{Im}(q \circ f) \subset \operatorname{Im} q$.
- $\dim \operatorname{Im}(g \circ f) = \dim \operatorname{Im} g|_{\operatorname{Im} f} = \dim \operatorname{Im} f \dim \operatorname{Ker} g|_{\operatorname{Im} f} = \dim \operatorname{Im} f \dim (\operatorname{Ker} g \cap \operatorname{Im} f)$ (è sufficiente applicare la formula delle dimensioni sulla composizione),
- $\dim \operatorname{Im}(g \circ f) \leq \min \{\dim \operatorname{Im} g, \dim \operatorname{Im} f\},\$
- dim $\operatorname{Ker}(g \circ f) \leq \operatorname{dim} \operatorname{Ker} g + \operatorname{dim} \operatorname{Ker} f$ (è sufficiente applicare la formula delle dimensioni su $(g \circ f)|_{\operatorname{Ker}(g \circ f)}$),
- f iniettiva \implies $\dim V < \dim W$,
- f surgettiva \Longrightarrow dim $V > \dim W$,

- f isomorfismo \implies dim $V = \dim W$,
- $q \circ f$ iniettiva $\Longrightarrow f$ iniettiva,
- $g \circ f$ surgettiva $\Longrightarrow g$ surgettiva,
- f surgettiva $\Longrightarrow \operatorname{rg}(g \circ f) = \operatorname{rg}(g)$,
- g iniettiva $\Longrightarrow \operatorname{rg}(g \circ f) = \operatorname{rg}(f)$,
- $M_{\mathcal{B}_W}^{\mathcal{B}_V}(f) = ([f(\underline{v_1})]_{\mathcal{B}_W} \mid \cdots \mid [f(\underline{v_n})]_{\mathcal{B}_W})$ è la matrice associata a f sulle basi $\mathcal{B}_V, \mathcal{B}_W$,
- $M_W^V(f+h) = M_W^V(f) + M_W^V(h),$
- $\bullet \ \ M_Z^V(g\circ f)=M_Z^W(g)M_W^V(f),$
- data $A \in M(m, n, \mathbb{K})$, sia $f_A : \mathbb{K}^n \to \mathbb{K}^m$ tale che $f_A(\underline{x}) = A\underline{x}$, allora $M_{e'}^{e}(f_A) = A$,
- f è completamente determinata dai suoi valori in una qualsiasi base di V ($M_{\mathcal{B}_W}^{\mathcal{B}_V}$ è un isomorfismo tra $\mathcal{L}(V,W)$ e $M(\dim W,\dim V,\mathbb{K})$),
- $\dim \mathcal{L}(V, W) = \dim V \cdot \dim W$ (dall'isomorfismo di sopra),
- $\bullet \ []_{\mathcal{B}_W}^{-1} \circ M_{\mathcal{B}_W}^{\mathcal{B}_V}(f) \circ []_{\mathcal{B}_V} = f,$
- $\bullet \ [f(\underline{v})]_{\mathcal{B}_W} = M_{\mathcal{B}_W}^{\mathcal{B}_V}(f) \cdot [\underline{v}]_{\mathcal{B}_V},$
- $\operatorname{Im}(f) = []_{\mathcal{B}_W}^{-1} \left(\operatorname{Im} M_{\mathcal{B}_W}^{\mathcal{B}_V}(f) \right)$
- $\operatorname{rg}(f) = \operatorname{rg}\left(M_{\mathcal{B}_W}^{\mathcal{B}_V}(f)\right),$
- $\operatorname{Ker}(f) = []_{\mathcal{B}_V}^{-1} \left(\operatorname{Ker} M_{\mathcal{B}_W}^{\mathcal{B}_V}(f) \right),$
- $\dim \operatorname{Ker}(f) = \dim \operatorname{Ker} M_{\mathcal{B}_{W}}^{\mathcal{B}_{V}}(f)$.

Siano $\mathcal{B}'_V,\,\mathcal{B}'_W$ altre due basi rispettivamente di V e W. Allora vale il teorema del cambiamento di base:

$$M_{\mathcal{B}_{W}^{\prime}}^{\mathcal{B}_{V}^{\prime}}(f) = M_{\mathcal{B}_{W}^{\prime}}^{\mathcal{B}_{W}}(id_{W}) M_{\mathcal{B}_{W}}^{\mathcal{B}_{V}^{\prime}}(f) M_{\mathcal{B}_{V}}^{\mathcal{B}_{V}^{\prime}}(id_{V}).$$

Siano A e B due sottospazi di V. \mathcal{B}_A e \mathcal{B}_B sono due basi rispettivamente di A e B.

- $A + B = \{a + b \in V \mid a \in A, b \in B\}$ è un sottospazio,
- $\dim(A+B) = \dim A + \dim B \dim(A \cap B)$ (formula di Grassmann),
- $A \in B$ sono in somma diretta $\iff A \cap B = \{0\} \iff$ ogni elemento di A + B si scrive in modo unico come somma di $\underline{a} \in A$ e $\underline{b} \in B \iff \dim(A + B) = \dim A + \dim B$ (in tal caso si scrive $A + B = A \oplus B$),
- dim V/A = dim V dim A (è sufficiente applicare il teorema del rango alla proiezione al quoziente),
- $\dim V \times W = \dim V + \dim W$ $(\mathcal{B}_V \times \{\underline{0}_W\} \cup \{\underline{0}_V\} \times \mathcal{B}_W)$ è una base di $V \times W$).

Si definisce immersione da V in $V \times W$ l'applicazione lineare i_V tale che $i_V(\underline{v}) = (\underline{v},\underline{0})$. Si definisce proiezione da $V \times W$ in V l'applicazione lineare p_V tale che $p_V(\underline{v},\underline{w}) = \underline{v}$. Analogamente si può fare con gli altri spazi del prodotto cartesiano.

Si dice che B è un supplementare di A se $V = A \oplus B$ (ossia \iff dim $A + \dim B = \dim V \land A \cap B = \{\underline{0}\}$). Il supplementare non è per forza unico. Per trovare un supplementare di A è sufficiente completare \mathcal{B}_A ad una base \mathcal{B} di V e considerare $B := \operatorname{Span}(\mathcal{B} \setminus \mathcal{B}_A)$.

Somma diretta di più sottospazi

Si dice che i sottospazi $W_1, ..., W_k$ di V sono in somma diretta, e si scrive $W_1 + ... + W_k = W_1 \oplus ... \oplus W_k$, se la rappresentazione di un vettore della somma di questi sottospazi è unica, ossia se esistono unici $\underline{w_1} \in W_1, ..., \underline{w_k} \in W_k$ tali per cui $\underline{w} \in W_1 + ... + W_k$ si scrive come $\underline{w} = \underline{w_1} + ... + \underline{w_k}$. In generale, sono equivalenti i seguenti fatti:

- (i) $W_1, ..., W_k$ sono in somma diretta,
- (ii) Se esistono $\underline{w_1} \in W_1, ..., \underline{w_k} \in W_k$ tali per cui $\underline{w_1} + ... + \underline{w_k} = \underline{0}$, allora $\underline{w_1} = ... = \underline{w_k} = \underline{0}$ (è sufficiente considerare due scritture alternative e poi farne la differenza per dimostrare un'implicazione),
- (iii) Se \mathcal{B}_{W_1} , ..., \mathcal{B}_{W_k} sono basi di W_1 , ..., W_k , allora $\bigcup_{i=1}^k \mathcal{B}_{W_i}$ è base di $W_1 + \ldots + W_k$ (è sufficiente considerare l'indipendenza lineare per dimostrare un'implicazione),
- (iv) $\dim(W_1 + \ldots + W_k) = \dim W_1 + \ldots + \dim W_k$ (si dimostra facilmente che è equivalente a (iii), e quindi che lo è alle altre proposizioni),
- (v) $W_i \cap (W_1 + \ldots + W_{i-1}) = \{\underline{0}\} \ \forall 2 \leq i \leq k$ (è sufficiente spezzare la somma in $(W_1 + \ldots + W_{i-1}) + W_i$ e ricondursi al caso di due sottospazi, mostrando in particolare, per induzione, l'equivalenza con (iv), da cui seguono le altre equivalenze),
- (vi) $W_i \cap (W_1 + \ldots + W_{i-1} + \widehat{W_i} + W_{i+1} + W_k) = \{\underline{0}\}\$ $\forall 1 \leq i \leq k$, ossia W_i , intersecato con la somma dei restanti sottospazi, è di dimensione nulla (è facile ricondursi alla proposizione (v) per induzione).

Proprietà generali delle matrici

Si dice che una matrice $A \in M(n, \mathbb{K})$ è singolare se $\det(A) = 0$, o equivalentemente se non è invertibile. Compatibilmente, si dice che una matrice $A \in M(n, \mathbb{K})$ è non singolare se $\det(A) \neq 0$, ossia se A è invertibile.

Si definisce la matrice trasposta di $A \in M(m, n, \mathbb{K})$, detta A^{\top} , in modo tale che $A_{ij} = A_{ii}^{\top}$.

- $\bullet \ (AB)^{\top} = B^{\top}A^{\top},$
- $(A+B)^{\top} = A^{\top} + B^{\top}$,
- $\bullet \ (\lambda A)^{\top} = \lambda A^{\top},$
- $\bullet \ (A^\top)^\top = A,$

• se A è invertibile, $(A^{\top})^{-1} = (A^{-1})^{\top}$,

$$\bullet \quad \frac{\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right) \left(\begin{array}{c|c} E & F \\ \hline G & H \end{array} \right) = \left(\begin{array}{c|c} AE + BG & AF + BH \\ \hline CE + DG & CF + DH \end{array} \right).$$

Siano $A \in M(m, n, \mathbb{K})$ e $B \in M(n, m, \mathbb{K})$.

Si definisce $\mathrm{GL}(n,\mathbb{K})$ come il gruppo delle matrici di taglia n invertibili sulla moltiplicazione matriciale. Si definisce triangolare superiore una matrice i cui elementi al di sotto della diagonale sono nulli, mentre si definisce triangolare inferiore una matrice i cui elementi nulli sono quelli al di sopra della diagonale.

Si definiscono

$$Z(M(n,\mathbb{K})) = \{ A \in M(n,\mathbb{K}) \mid AB = BA \ \forall B \in M(n,\mathbb{K}) \},\$$

ossia l'insieme delle matrici che commutano con tutte le altre matrici, e

$$Z_{\mathrm{GL}}(M(n,\mathbb{K})) = \{ A \in M(n,\mathbb{K}) \mid AB = BA \ \forall B \in \mathrm{GL}(n,\mathbb{K}) \},$$

ovvero l'insieme delle matrici che commutano con tutte le matrici di $\mathrm{GL}(n,\mathbb{K}).$

Si definisce ${\rm tr}\in M(m,\mathbb{K})^*$ come il funzionale che associa ad ogni matrice la somma degli elementi sulla sua diagonale.

- $\operatorname{tr}(A^{\top}) = \operatorname{tr}(A)$,
- $\operatorname{tr}(AB) = \operatorname{tr}(BA)$,
- $Z(M(n, \mathbb{K})) = \operatorname{Span}(I_n)$,
- $Z_{\mathrm{GL}}(M(n,\mathbb{K})) = \mathrm{Span}(I_n)$.

Sia $A \in M(n, \mathbb{K})$. Sia $C_A \in \text{End}(M(n, \mathbb{K}))$ definito in modo tale che $C_A(B) = AB - BA$. Allora

 $\operatorname{Ker} C_A = M(n, \mathbb{K}) \iff A \in \operatorname{Span}(I_n)$. Siano I un insieme di n^2 indici distinti, allora l'insieme

$$T = \left\{ A^i \mid i \in I \right\}$$

è linearmente dipendente (è sufficiente notare che se così non fosse, se $A \notin \operatorname{Span}(I_n)$, tale T sarebbe base di $M(n,\mathbb{K})$, ma così $\operatorname{Ker} C_A = M(n,\mathbb{K}) \implies A \in \operatorname{Span}(I_n)$, f, e che se $A \in \operatorname{Span}(I_n)$, T è chiaramente linearmente dipendente).

In generale esiste sempre un polinomio $p(X) \in \mathbb{K}[x]$ di grado n tale per cui p(A) = 0, dove un tale polinomio è per esempio il polinomio caratteristico di p, ossia $p(\lambda) = \det(\lambda I_n - A)$ (teorema di Hamilton-Cayley).

Rango di una matrice

Si definisce rango di una matrice A il numero di colonne linearmente indipendenti di A. Siano A, $B \in M(m, n, \mathbb{K})$.

- rg(A) = rg(A[⊤]) (i.e. il rango è lo stesso se calcolato sulle righe invece che sulle colonne),
- $\operatorname{rg}(A) \leq \min\{m, n\}$ (come conseguenza dell'affermazione precedente).
- $\operatorname{rg}(A+B) \le \operatorname{rg}(A) + \operatorname{rg}(B) \iff \operatorname{Im}(A+B) \subseteq \operatorname{Im}(A) + \operatorname{Im}(B),$

- $\operatorname{rg}(A+B) = \operatorname{rg}(A) + \operatorname{rg}(B) \Longrightarrow \operatorname{Im}(A+B) = \operatorname{Im}(A) \oplus \operatorname{Im}(B)$ (è sufficiente applicare la formula di Grassmann),
- rg(A) è il minimo numero di matrici di rango uno che sommate restituiscono A (è sufficiente usare la proposizione precedente per dimostrare che devono essere almeno rg(A)),
- $\operatorname{rg}(A) = 1 \implies \exists B \in M(m, 1, \mathbb{K}),$ $C \in M(1, n, \mathbb{K}) \mid A = BC \text{ (infatti } A \text{ può scriversi come}$ $([c|c|c]\alpha_1A^i \cdots \alpha_nA^i) \text{ per un certo } i \leq n \text{ tale che}$ $A^i \neq 0$).

Siano $A \in M(m, n, \mathbb{K}), B \in M(n, k, \mathbb{K}) \in C \in M(k, t, \mathbb{K}).$

- rg(AB) ≥ rg(A) + rg(B) n (disuguaglianza di Sylvester - è sufficiente usare la formula delle dimensioni ristretta alla composizione f_A ∘ f_B),
- $\operatorname{rg}(ABC) \ge \operatorname{rg}(AB) + \operatorname{rg}(BC) \operatorname{rg}(B)$ (disuguaglianza di Frobenius, di cui la proposizione precedente è un caso particolare con $B = I_n$ e k = n),
- rg(AB) = rg(B) ← Ker A = {0} (è sufficiente usare la formula delle dimensioni ristretta alla composizione f_A ∘ f_B),
- $\operatorname{rg}(AB) = \operatorname{rg}(A) \iff f_B \text{ surgettiva (come sopra)}.$

Sia $A \in M(n, \mathbb{K})$.

- se A è antisimmetrica e il campo su cui si fonda lo spazio vettoriale non ha caratteristica 2, allora rg(A) è pari,
- $\operatorname{rg}(A) = n \iff \dim \operatorname{Ker} A = 0 \iff \det(A) \neq 0 \iff A$ è invertibile,

Sistemi lineari, algoritmo di eliminazione di Gauss ed SD-equivalenza

Un sistema lineare di m equazioni in n variabili può essere rappresentato nella forma $A\underline{x}=B$, dove $A\in M(m,n,\mathbb{K})$, $\underline{x}\in\mathbb{K}^n$ e $B\in\mathbb{K}^m$. Un sistema lineare si dice omogeneo se $B=\underline{0}$. In tal caso l'insieme delle soluzioni del sistema coincide con $\operatorname{Ker} A=\operatorname{Ker} f_A$, dove $f_A:\mathbb{K}^n\to\mathbb{K}^m$ è l'applicazione lineare indotta dalla matrice A. Le soluzioni di un sistema lineare sono raccolte nel sottospazio affine $\underline{s}+\operatorname{Ker} A$, dove \underline{s} è una qualsiasi soluzione del sistema completo.

- $A\underline{x} = B$ ammette soluzione se e solo se $B \in \operatorname{Span}(A^1, \dots, A^n) \iff \operatorname{Span}(A^1, \dots, A^n, B) = \operatorname{Span}(A^1, \dots, A^n) \iff \dim \operatorname{Span}(A^1, \dots, A^n, B) = \dim \operatorname{Span}(A^1, \dots, A^n) \iff \dim \operatorname{Im}(A \mid B) = \dim \operatorname{Im} A \iff \operatorname{rg}(A \mid B) = \operatorname{rg}(A) \text{ (teorema di Rouché-Capelli)},$
- $A\underline{x} = B$, se la ammette, ha un'unica soluzione se e solo se $\operatorname{Ker} A = \{0\} \iff \operatorname{rg} A = n$.

Si definiscono tre operazioni sulle righe di una matrice A:

- 1. l'operazione di scambio di riga,
- 2. l'operazione di moltiplicazione di una riga per uno scalare non nullo,
- la somma di un multiplo non nullo di una riga ad un'altra riga distinta.

Queste operazioni non variano né $\operatorname{Ker} A$ né $\operatorname{rg}(A)$. Si possono effettuare le stesse medesime operazioni sulle colonne (variando tuttavia $\operatorname{Ker} A$, ma lasciando invariato $\operatorname{Im} A$ – e quindi $\operatorname{rg}(A)$). L'algoritmo di eliminazione di Gauss procede nel seguente modo:

- 1. se A ha una riga, l'algoritmo termina;
- altrimenti si prenda la prima riga di A con il primo elemento non nullo e la si scambi con la prima riga di A (in caso non esista, si proceda all'ultimo passo),
- 3. per ogni riga di A con primo elemento non nullo, esclusa la prima, si sottragga un multiplo della prima riga in modo tale che la riga risultante abbia il primo elemento nullo.
- si ripeta l'algoritmo considerando come matrice A la matrice risultante dall'algoritmo senza la prima riga e la prima colonna (in caso tale matrice non possa esistere, l'algoritmo termina).

Si definiscono pivot di una matrice l'insieme dei primi elementi non nulli di ogni riga della matrice. Il rango della matrice iniziale A è pari al numero di pivot della matrice risultante dall'algoritmo di eliminazione di Gauss. Una matrice che processata dall'algoritmo di eliminazione di Gauss restituisce sé stessa è detta matrice a scala.

Agendo solo attraverso operazioni per riga, l'algoritmo di eliminazione di Gauss non modifica $\operatorname{Ker} A$ (si può tuttavia integrare l'algoritmo con le operazioni per colonna, perdendo quest'ultimo beneficio).

Agendo su una matrice a scala con operazioni per riga considerando la matrice riflessa (ossia dove l'elemento (1,1) e (m,n) sono scambiati), si può ottenere una matrice a scala ridotta, ossia un matrice dove tutti i pivot sono 1 e dove tutti gli elementi sulle colonne dei pivot, eccetto i pivot stessi, sono nulli.

Si definisce:

$$I_r^{m \times n} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \in M(m, n, \mathbb{K}).$$

Per ogni applicazione lineare $f: V \to W$, con dim V = n e dim W = m esistono due basi \mathcal{B}_V , \mathcal{B}_W rispettivamente di V e W tale che $M_{\mathcal{B}_W}^{\mathcal{B}_V}(f) = I_r^{m \times n}$, dove $r = \operatorname{rg}(f)$ (è sufficiente completare con I a base di V una base di V una base di V una base di V.)

Si definisce SD-equivalenza la relazione d'equivalenza su $M(m, n, \mathbb{K})$ indotta dalla relazione

 $A \sim_{SD} B \iff \exists P \in GL(m, \mathbb{K}), Q \in GL(n, \mathbb{K}) \mid A = PBQ.$

L'invariante completo della SD-equivalenza è il rango: $\operatorname{rg}(A) = \operatorname{rg}(B) \iff A \sim_{SD} B$ (infatti $\operatorname{rg}(A) = r \iff A \sim_{SD} I_r^{m \times n}$ – è sufficiente applicare il cambio di base e sfruttare il fatto che esistono sicuramente due basi per cui f_A ha $I_r^{m \times n}$ come matrice associata).

Poiché $I_r^{m\times n}$ ha sempre rango r, l'insieme quoziente della SD-equivalenza su $M(m,n,\mathbb{K})$ è il seguente:

$$M(m,n,\mathbb{K})/{\sim_{SD}} = \left\{ [\underline{0}], \left\lceil I_1^{m \times n} \right\rceil, \ldots, \left\lceil I_{\min\{m,n\}}^{m \times n} \right\rceil \right\},$$

contenente esattamente $\min\{m,n\}$ elementi. L'unico elemento di $[\underline{0}]$ è $\underline{0}$ stesso.

La regola di Cramer

Qualora m=n e A fosse invertibile (i.e. $\det(A)\neq 0$), per calcolare il valore di \underline{x} si può applicare la regola di Cramer. Si definisce:

$$A_i^* = (A^1 \quad \cdots \quad A^i \to B \quad \cdots \quad A^n),$$

dove si sostituisce alla i-esima colonna di A il vettore B. Allora vale la seguente relazione:

$$\underline{x} = \frac{1}{\det(A)} \begin{pmatrix} \det(A_1^*) \\ \vdots \\ \det(A_n^*) \end{pmatrix}.$$

L'inverso (generalizzato e non) di una matrice

Si definisce matrice dei cofattori di una matrice $A\in M(n,\mathbb{K})$ la seguente matrice:

$$\operatorname{Cof} A = \begin{pmatrix} \operatorname{Cof}_{1,1}(A) & \dots & \operatorname{Cof}_{1,n}(A) \\ \vdots & \ddots & \vdots \\ \operatorname{Cof}_{n,1}(A) & \dots & \operatorname{Cof}_{n,n}(A), \end{pmatrix},$$

dove, detta $A_{i,j}$ il minore di A ottenuto eliminando la i-esima riga e la j-esima colonna, si definisce il cofattore (o complemento algebrico) nel seguente modo:

$$Cof_{i,j}(A) = (-1)^{i+j} \det(A_{i,j}).$$

Si definisce inoltre l'aggiunta classica:

$$\operatorname{adj}(A) = (\operatorname{Cof} A)^{\top}.$$

Allora, se A ammette un inverso (i.e. se $\det(A) \neq 0$), vale la seguente relazione:

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

Quindi, per esempio, A^{-1} è a coefficienti interi $\iff \det(A) = \pm 1$.

Siano $A, B \in M(n, \mathbb{K})$.

- adj(AB) = adj(B) adj(A),
- $\operatorname{adj}(A^{\top}) = \operatorname{adj}(A)^{\top}$.

Si definisce inverso generalizzato di una matrice $A \in M(m,n,\mathbb{K})$ una matrice $X \in M(n,m,\mathbb{K}) \mid AXA = A$. Ogni matrice ammette un inverso generalizzato (è sufficiente considerare gli inversi generalizzati di $I_r^{m \times n}$ e la SD-equivalenza di A con $I_r^{m \times n}$, dove $\operatorname{rg}(A) = r$). Se m = n ed A è invertibile, allora A^{-1} è l'unico inverso generalizzato di A. Gli inversi generalizzati di $I_r^{m \times n}$ sono della forma:

$$X = \frac{\begin{pmatrix} I_r & B \\ C & D \end{pmatrix}}{\begin{pmatrix} C & D \end{pmatrix}} \in M(m, n, \mathbb{K}).$$

Endomorfismi e similitudine

Si definisce la similitudine tra matrici su $M(n, \mathbb{K})$ come la relazione di equivalenza determinata da

 $A \sim B \iff \exists P \in \mathrm{GL}(n, \mathbb{K}) \mid A = PBP^{-1}$

 $A \sim B \implies \operatorname{rg}(A) = \operatorname{rg}(B), \operatorname{tr}(A) = \operatorname{tr}(B), \det(A) = \det(B),$ $P_{\lambda}(A) = P_{\lambda}(B)$ (invarianti non completi della similitudine). Vale inoltre che $A \sim B \iff A \in B$ hanno la stessa forma canonica di Jordan, a meno di permutazioni dei blocchi di Jordan (invariante completo della similitudine). La matrice identità è l'unica matrice identica a sé stessa.

Sia $p \in \operatorname{End}(V)$. Si dice che un endomorfismo è un automorfismo se è un isomorfismo. Gli automorfismi formano un sottospazio vettoriale di $\operatorname{End}(V)$ denotato con $\operatorname{Aut}(V)$ o $\operatorname{GL}(V)$. Siano $\mathcal{B}, \mathcal{B}'$ due qualsiasi basi di V.

- p automorfismo \iff p iniettivo \iff p surgettivo (è sufficiente applicare la formula delle dimensioni),
- $M_{\mathcal{B}'}^{\mathcal{B}}(id_V)M_{\mathcal{B}}^{\mathcal{B}'}(id_V) = I_n$ (dunque entrambe le matrici sono invertibili e sono l'una l'inverso dell'altra),
- se p è un automorfismo, $M_{\mathcal{B}'}^{\mathcal{B}}(p^{-1}) = M_{\mathcal{B}}^{\mathcal{B}'}(p)^{-1}$,
- $M_{\mathcal{B}}^{\mathcal{B}}(p) = \underbrace{M_{\mathcal{B}}^{\mathcal{B}'}(id_{V})}_{P} M_{\mathcal{B}'}^{\mathcal{B}'}(p) \underbrace{M_{\mathcal{B}'}^{\mathcal{B}}(id_{V})}_{P^{-1}}$ (ossia $M_{\mathcal{B}}^{\mathcal{B}}(p) \sim M_{\mathcal{B}'}^{\mathcal{B}'}(p)$).

 $M_{\mathcal{B}'}^{\mathcal{B}}(id_V)M_{\mathcal{B}}^{\mathcal{B}'}(id_V) = I_n$. Dunque entrambe le matrici sono invertibili. Inoltre $M_{\mathcal{B}}^{\mathcal{B}}(id_V) = I_n$.

Si definisce un analogo della similitudine anche per gli endomorfismi: due endomorfismi $f,g\in \operatorname{End}(V)$ si dicono coniugati se e solo se $\exists\, h\in\operatorname{GL}(V)\mid f=h\,g\,h^{-1}.$ Il coniugio induce in particolare un'altra relazione di equivalenza. Due endomorfismi $f\in g$ sono coniugati se e solo se le loro matrici associate nella stessa base $\mathcal B$ sono simili.

Duale, biduale e annullatore

Si definisce duale di uno spazio vettoriale V lo spazio $V^* = \mathcal{L}(V, \mathbb{K})$, i cui elementi sono detti funzionali. Analogamente il biduale è il duale del duale di V: $V^{**} = (V^*)^* = \mathcal{L}(V^*, \mathbb{K})$.

Sia data una base $\mathcal{B} = \{\underline{v_1}, \dots, \underline{v_n}\}$ di uno spazio vettoriale V di dimensione n. Allora

 $\dim V^* = \dim \mathcal{L}(V, \mathbb{K}) = \dim V \cdot \dim \mathbb{K} = \dim V$. Si definisce il funzionale $\underline{v_i}^*$ come l'applicazione lineare univocamente determinata dalla relazione:

$$\underline{v_i}^*(\underline{v_j}) = \delta_{ij}.$$

Sia $\mathcal{B}^* = \{\underline{v_1}^*, \dots, \underline{v_n}^*\}$. Allora \mathcal{B}^* è una base di V^* . Poiché V e V^* hanno la stesso dimensione, tali spazi sono isomorfi, sebbene non canonicamente. Ciononostante, V e V^{**} sono canonicamente isomorfi tramite l'isomorfismo:

$$\varphi^{**}: V \to V^{**}, \ \underline{v} \mapsto \operatorname{val}|_{V^*},$$

che associa ad ogni vettore \underline{v} la funzione di valutazione in una funzionale in v, ossia:

$$\operatorname{val}|_{V^*}: V^* \to \mathbb{K}, \ f \mapsto f(v).$$

Sia $U\subseteq V$ un sottospazio di V. Si definisce il sottospazio di $\mathcal{L}(V,W)\colon$

$$\operatorname{Ann}_{\mathcal{L}(V|W)}(U) = \{ f \in \mathcal{L}(V,W) \mid f(U) = \{0\} \}.$$

Se V è a dimensione finita, la dimensione di $\mathrm{Ann}(U)$ è pari a $(\dim V - \dim U) \cdot \dim W$ (è sufficiente prendere una base di U, completarla a base di V e notare che $f(U) = \{\underline{0}\} \iff$ ogni valutazione in f degli elementi della base di U è nullo \iff la matrice associata di f ha tutte colonne nulle in corrispondenza degli elementi della base di U).

Si scrive semplicemente $\mathrm{Ann}(U)$ quando $W=\mathbb{K}$ (ossia quando le funzioni sono funzionali di V). In tal caso $\dim \mathrm{Ann}(U)=\dim V-\dim U$.

- $\varphi^{**}(U) \subseteq \operatorname{Ann}(\operatorname{Ann}(U))$
- se V è a dimensione finita, $\varphi^{**}(U) = U^{**} = \operatorname{Ann}(\operatorname{Ann}(U))$ (è sufficiente applicare la formula delle dimensioni $\varphi^{**}|_U$ e notare l'uguaglianza tra le due dimensioni).
- se V è a dimensione finita e W è un altro sottospazio di V, $U = W \iff \operatorname{Ann}(U) = \operatorname{Ann}(W)$ (è sufficiente considerare $\operatorname{Ann}(\operatorname{Ann}(U)) = \operatorname{Ann}(\operatorname{Ann}(W))$ e applicare la proposizione precedente, ricordandosi che φ^{**} è un isomorfismo, ed è dunque iniettivo).

Si definisce l'applicazione trasposta $^{\top}$ da $\mathcal{L}(V,W)$ a $\mathcal{L}(W^*,V^*)$ in modo tale che $f^{\top}(g)=g\circ f\in V^*$. Siano $f,g\in\mathcal{L}(V,W)$ e sia $h\in\mathcal{L}(W,Z)$.

- $(f+g)^{\top} = f^{\top} + g^{\top},$
- $\bullet \ (\lambda f)^{\top} = \lambda f^{\top},$
- se f è invertibile, $(f^{-1})^{\top} = (f^{\top})^{-1}$,
- $(h \circ f)^{\top} = f^{\top} \circ h^{\top}$.

Siano \mathcal{B}_V , \mathcal{B}_W due basi rispettivamente di V e di W. Allora vale la seguente relazione:

$$M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}^{*}}(f^{\top}) = M_{\mathcal{B}_{W}}^{\mathcal{B}_{V}}(f)^{\top}.$$

Applicazioni multilineari

Sia $f: V_1 \times \ldots \times V_n \to W$ un'applicazione, dove V_i è uno spazio vettoriale $\forall i \leq n$, così come W. Tale applicazione si dice n-lineare ed appartiene allo spazio $\operatorname{Mult}(V_1 \times \ldots \times V_n, W)$, se è lineare in ogni sua coordinata, ossia se:

•
$$f(x_1, ..., x_i + y_i, ..., x_n) = f(x_1, ..., x_i, ..., x_n) + f(x_1, ..., y_i, ..., x_n),$$

•
$$f(x_1,\ldots,\alpha x_i,\ldots,x_n)=\alpha f(x_1,\ldots,x_i,\ldots,x_n).$$

Sia $W = \mathbb{K}$, e siano tutti gli spazi V_i fondati su tale campo: allora $\operatorname{Mult}(V_1 \times \ldots \times V_n, \mathbb{K})$ si scrive anche come $V_1^* \otimes \ldots \otimes V_n^*$, e tale spazio è detto prodotto tensoriale tra V_1 , ..., V_n . Sia V_i di dimensione finita $\forall i \leq n$. Siano $\mathcal{B}_{V_i} = \left\{ \underbrace{v_1^{(i)}, \ldots, v_{k_i}^{(i)}}_{j_1} \right\}$ base di V_i , dove $k_i = \dim V_i$. Si definisce l'applicazione n-lineare $\underbrace{v_{j_n}^{(1)*} \otimes \cdots \otimes v_{j_n}^{(n)*}}_{j_1} \in \operatorname{Mult}(V_1 \times \ldots \times V_n, \mathbb{K})$ univocamente determinata dalla relazione:

$$\underline{v_{j_1}^{(1)}}^* \otimes \cdots \otimes \underline{v_{j_n}^{(n)}}^* (\underline{w_1}, \dots, \underline{w_n}) = \underline{v_{j_1}^{(1)}}^* (\underline{w_1}) \cdots \underline{v_{j_n}^{(n)}}^* (\underline{w_n})$$

Si definisce l'insieme \mathcal{B}_{\otimes} nel seguente modo:

$$\mathcal{B}_{\otimes} = \left\{ \underline{v_{j_1}^{(1)}}^* \otimes \cdots \otimes \underline{v_{j_n}^{(n)}}^* \mid 1 \leq j_1 \leq k_1, \dots, 1 \leq j_n \leq k_n \right\}.$$

Poiché ogni applicazione n-lineare è univocamente determinata dai valori che assume ogni combinazione degli elementi delle basi degli spazi V_i , vi è un isomorfismo tra $\operatorname{Mult}(V_1 \times \ldots \times V_n, \mathbb{K})$ e $\mathbb{K}^{\mathcal{B}_{V_1} \times \ldots \times \mathcal{B}_{V_n}}$, che ha dimensione $\prod_{i=1}^n k_i = k$. Pertanto anche dim $\operatorname{Mult}(V_1 \times \ldots \times V_n, \mathbb{K}) = k$. Poiché \mathcal{B}_{\otimes} genera $\operatorname{Mult}(V_1 \times \ldots \times V_n, \mathbb{K})$ e i suoi elementi sono tanti quanto è la dimensione dello spazio, tale insieme è una base di $\operatorname{Mult}(V_1 \times \ldots \times V_n, \mathbb{K})$.

Se $V_i = V_1 = V \ \forall i \leq n$, si dice che $\mathrm{Mult}(V^n,\mathbb{K})$ è lo spazio delle forme n-lineari di V.

Applicazioni multilineari simmetriche

Sia V uno spazio di dimensione n. Una forma k-lineare f si dice simmetrica ed appartiene allo spazio $\mathrm{Sym}^k(V)$ se:

$$f(\underline{x_1}, \dots, \underline{x_k}) = f(\underline{x_{\sigma(1)}}, \dots, \underline{x_{\sigma(k)}}), \quad \forall \, \sigma \in S_k.$$

Poiché ogni applicazione n-lineare simmetrica è univocamente determinata dai valori che assume negli elementi della base disposti in modo non decrescente, dim $\mathrm{Sym}^k(V) = \binom{n+k-1}{k}$.

Sia $\mathcal{B}=\{\underline{v_1},\ldots,\underline{v_n}\}$ una base di V. Dato un insieme di indici non decrescente \overline{I} , si definisce il prodotto simmetrico (o

prodotto vee) $\underline{v_{i_1}}^* \vee \cdots \vee \underline{v_{i_k}}^*$ tra elementi della base come la forma k-lineare simmetrica determinata dalla relazione:

$$\underline{v_{i_1}}^* \vee \cdots \vee \underline{v_{i_k}}^* = \sum_{\sigma \in S_k} \underline{v_{i_{\sigma(1)}}}^* \otimes \cdots \otimes \underline{v_{i_{\sigma(k)}}}^*.$$

Si definisce l'insieme:

$$\mathcal{B}_{\mathrm{Sym}} = \left\{ \underline{v_{i_1}}^* \vee \dots \vee \underline{v_{i_k}}^* \mid 1 \leq i_1 \leq \dots \leq i_k \leq n \right\}$$

L'insieme \mathcal{B}_{Sym} è sia generatore che linearmente indipendente su $\text{Sym}^k(V)$, ed è dunque base. Allora $\dim \text{Sym}^k(V) = \binom{n+k-1}{k}$.

Applicazioni multilineari alternanti

Sia V uno spazio di dimensione n. Una forma k-lineare f si dice alternante (o antisimmetrica) ed appartiene allo spazio $\Lambda^k(V)$ (talvolta scritto come $\mathrm{Alt}^k(V)$) se:

$$f(x_1,\ldots,x_k)=0 \iff \exists i,j\leq k \mid x_i=x_j.$$

Questo implica che:

$$f(x_1, \dots, x_k) = \operatorname{sgn}(\sigma) f(x_{\sigma(1)}, \dots, x_{\sigma(n)}), \quad \forall \sigma \in S_k$$

Se k > n, un argomento della base di V si ripete sempre nel computo f negli elementi della base, e quindi ogni alternante è pari a $\underline{0}$, ossia dim $\Lambda^k(V) = 0$.

Sia $\mathcal{B} = \{\underline{v_1, \dots, v_n}\}$ una base di V. Dato un insieme di indici crescente \overline{I} , si definisce il prodotto esterno (o $prodotto \ wedge$) $\underline{v_{i_1}}^* \wedge \dots \wedge \underline{v_{i_k}}^*$ tra elementi della base come la forma \overline{k} -lineare alternante determinata dalla relazione:

$$\underline{v_{i_1}}^* \wedge \dots \wedge \underline{v_{i_k}}^* = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \underline{v_{i_{\sigma(1)}}}^* \otimes \dots \otimes \underline{v_{i_{\sigma(k)}}}^*.$$

Si definisce l'insieme:

$$\mathcal{B}_{\Lambda} = \left\{ \underline{v_{i_1}}^* \wedge \dots \wedge \underline{v_{i_k}}^* \mid 1 \leq i_1 < \dots < i_k \leq n \right\}.$$

L'insieme \mathcal{B}_{Λ} è sia generatore che linearmente indipendente su $\Lambda^k(V)$, ed è dunque base. Allora $\dim \Lambda^k(V) = \binom{n}{k}$. Riassumendo si può scrivere:

$$\dim \Lambda^k(V) = \begin{cases} 0 & \text{se } k > n, \\ \binom{n}{k} & \text{altrimenti.} \end{cases}$$

Quindi è quasi sempre vero che:

$$\underline{\dim \operatorname{Sym}^{k}(V)}_{=\binom{n+k-1}{k}} + \underline{\dim \Lambda^{k}(V)}_{\leq \binom{n}{k}} < \underline{\dim \operatorname{Mult}(V^{k}, \mathbb{K})}_{=n^{k}},$$

e dunque che $\operatorname{Sym}^k(V) + \Lambda^k(V) \neq \operatorname{Mult}(V^k, \mathbb{K})$.

Determinante di una matrice

Si definisce il determinante det di una matrice di taglia $n \times n$ come l'unica forma n-lineare alternante di $(\mathbb{K}^n)^n$ tale che $\det(\underline{e_1},\ldots,\underline{e_n})=1$ (infatti $\dim\Lambda^n(V)=\binom{n}{n}=1$, e quindi ogni forma alternante è multipla delle altre, eccetto per lo zero).

Equivalentemente det = $e_1^* \wedge \cdots \wedge e_n^*$.

Siano $A, B \in M(n, \mathbb{K})$. Si scrive $\det(A)$ per indicare $\det(A_1, \ldots, A_n)$. Vale pertanto la seguente relazione:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \, a_{1\sigma(1)} \cdots a_{n\sigma(n)}.$$

- $\det(I_n) = 1$,
- $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad bc,$
- $\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a(ei fh) b(di fg) + c(dh eg),$
- $\det(A) \neq 0 \iff A$ invertibile (ossia non singolare).
- $\det(\lambda A) = \lambda^n A$,
- det(A) = det(A^T) (è sufficiente applicare la definizione di det e manipolare algebricamente il risultato per evidenziare l'uguaglianza),
- se A è antisimmetrica, n è dispari e char K ≠ 2, det(A) = det(-A^T) = (-1)ⁿ det(A^T) = (-1)ⁿ det(A) = - det(A) ⇒ det(A) = 0 (quindi ogni matrice antisimmetrica di taglia dispari non è invertibile).
- $\det(AB) = \det(A) \det(B)$ (teorema di Binet è sufficiente considerare la forma $\frac{\det(AB)}{\det(B)}$ in funzione delle righe di A e determinare che tale forma è alternante e che vale 1 nell'identità, e che, per l'unicità del determinante, deve obbligatoriamente essere pari a $\det(A)$),
- se A è invertibile, $det(A^{-1}) = det(A)^{-1}$,
- $\det \begin{pmatrix} \lambda_1 \\ & \ddots \\ & & \lambda_n \end{pmatrix} = \det(\lambda_1 \underline{e_1}, \dots, \lambda_n \underline{e_n}) = \prod_{i=1}^n \lambda_i,$
- se A è triangolare superiore (o inferiore), allora det(A) è il prodotto degli elementi sulla sua diagonale principale,
- $\det(A_1, \dots, A_n) = \operatorname{sgn}(\sigma) \det(A_{\sigma(1)}, \dots, A_{\sigma(n)}),$ $\forall \sigma \in S_n \text{ (infatti det è alternante)},$
- $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD BC)$, se C e D commutano e D è invertibile.
- $\det \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array} \right) = \det(A) \det(C),$
- se A è nilpotente (ossia se $\exists k \mid A^k = 0$), $\det(A) = 0$,
- se A è idempotente (ossia se $A^2 = A$), allora $\det(A) = 1$ o $\det(A) = 0$,

- se A è ortogonale (ossia se $AA^{\top} = I_n$), allora $\det(A) = \pm 1$,
- se A è un'involuzione (ossia se $A^2 = I_n$), allora $\det(A) = \pm 1$,
- se ogni minore di taglia k di A ha determinante nullo, allora tutti i minori di A taglia maggiore o uguale a k hanno determinante nullo (è una diretta applicazione dello sviluppo di Laplace).

Le operazioni del terzo tipo dell'algoritmo di eliminazione di Gauss (ossia l'aggiunta a una riga di un multiplo di un'altra riga – a patto che le due righe siano distinte) non alterano il determinante della matrice iniziale, mentre lo scambio di righe ne inverte il segno (corrisponde a una trasposizione di S_n). L'operazione del secondo tipo (la moltiplicazione di una riga per uno scalare) altera il determinante moltiplicandolo per tale scalare.

Inoltre, se D è invertibile, vale la decomposizione di Schur:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I_k & BD^{-1} \\ 0 & I_k \end{pmatrix} \begin{pmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{pmatrix}$$
$$\begin{pmatrix} I_k & 0 \\ D^{-1}C & I_k \end{pmatrix},$$

dove $k \times k$ è la taglia di A. Pertanto vale la seguente relazione, sempre se D è invertibile:

$$\det \left(\frac{A \mid B}{C \mid D} \right) = \det(A - BD^{-1}C) \det(D).$$

È possibile computare il determinante di A, scelta la riga i, mediante lo sviluppo di Laplace:

$$\det(A) = \sum_{i=1}^{n} a_{ij} \operatorname{Cof}_{i,j}(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{i,j}).$$

Si definisce matrice di Vandermonde una matrice $A \in M(n, \mathbb{K})$ della forma:

$$A = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

Vale allora che:

$$\det(A) = \prod_{1 \le i < j \le n} (x_j - x_i),$$

verificabile notando che $\det(A)$ è di grado $\frac{n(n-1)}{2}$ e che ponendo $x_i = x_j$ per una coppia (i,j), tale matrice ha due righe uguali, e quindi determinante nullo

$$\implies (x_j - x_i) \mid \det(A) \xrightarrow{\text{UFD}} \det(A) = \prod_{1 \le i \le j \le n} (x_j - x_i).$$

Pertanto una matrice di Vandermonde è invertibile se e solo se la sua seconda colonna contiene tutti scalari distinti nelle coordinate. Tale matrice risulta utile nello studio dell'interpolazione di Lagrange (ossia nella dimostrazione dell'unicità del polinomio di n-1 grado tale che $p(\alpha_i)=\beta_i$ per i coppie $(\alpha_i,\,\beta_i)$ con α_i tutti distinti).

Rango tramite il determinante degli orlati

Si dicono sottomatrici della matrice $A \in M(m,n,\mathbb{K})$ tutte le matrici contenute in A, ossia le matrici B che sono ottenibili da A mantenendo solo alcune sue righe e colonne. In generale, si scrive $A^{j_1,\dots,j_s}_{i_1,\dots,i_t}$ per indicare la sottomatrice ottenuta da A mantenendo le colonne di indice j_1,\dots,j_s e le righe di indice i_1,\dots,i_t . Quando è omesso l'indice delle colonne o l'indice delle righe, si sottintende di aver mantenuto o tutte le colonne o tutte le righe (e.g. $A_{1,2}$ è la sottomatrice di A ottenuta mantenendo tutte le colonne e le prime due righe). Si dice che M è minore di A una sua sottomatrice quadrata. Si chiamano orlati di un minore M di taglia k i minori di taglia k+1 di A aventi M come minore.

- se B è una sottomatrice di A, allora rg(B) ≤ rg(A) (è sufficiente prendere un numero massimo di colonne linearmente indipendenti di B e mostrare che le relative colonne in A sono ancora linearmente indipendenti),
- rg(A) = max{rg(B) | B sottomatrice di A} (è sufficiente utilizzare il precedente risultato; infatti A è una sottomatrice di A),
- rg(A) = max{rg(B) | B minore invertibile di A} = max{n | esiste un minore di A di taglia n invertibile} (è sufficiente utilizzare la prima disuguaglianza e considerare un minore di A composto dalle righe e le colonne linearmente indipendenti di A, che sono dello stesso numero, dal momento che il rango per righe è uguale al rango per colonne),
- rg(A) è il più piccolo naturale n tale per cui, per ogni minore M di A di taglia maggiore di n, det(M) = 0 (ossia M è singolare; segue direttamente dal precedente risultato),
- rg(A) è il più piccolo naturale n tale per cui, per ogni minore M di A di taglia n + 1, det(M) = 0 (ossia M è singolare; segue dal precedente risultato a cui si combina lo sviluppo di Laplace del determinante – se ogni minore di taglia k ha determinante nullo, anche tutti i minori di taglia maggiore di k hanno determinante nullo).
- esiste un minore M di taglia k di A con det(M) ≠ 0
 ⇒ rg(A) ≥ k (deriva direttamente dall'ultimo risultato sul rango),
- per ogni minore M di taglia k di A vale che det(M) = 0
 ⇒ rg(A) < k (come sopra).

Si può facilitare lo studio del rango tramite il teorema di Kronecker (o degli orlati): $\operatorname{rg}(A)$ è il più piccolo naturale n tale per cui esista un minore M di taglia k con $\det(M) \neq 0$ e per cui ogni suo orlato O è tale per cui $\det(O) = 0$.

Sia infatti, senza perdità di generalità, $M = A_{1,...,k}^{1}$ tale minore (altrimenti è sufficiente considerare una permutazione delle righe e delle colonne per ricadere in questo caso; tale permutazione è ammessa dall'algoritmo di Gauss). Si mostra che $A^{j} \in \operatorname{Span}(A^{1}, \ldots, A^{k}) \ \forall j > k$. Si consideri ogni orlato M_{j} di M ottenuto scegliendo la j-esima colonna di A: per ipotesi $\det(M_{j}) = 0$, ed il rango è almeno k. Quindi $\operatorname{rg}(M_{j}) = k$; poiché le prime k righe sono linearmente indipendenti, l'ultima riga aggiunta deve certamente appartenere al loro sottospazio generato. Quindi ogni riga di $A^{1,...,k,j}$ appartiene al sottospazio $\operatorname{Span}(A_{1},\ldots,A_{k})$, da cui si deduce che $\operatorname{rg}(A^{1,...,k,j}) = k$, e quindi che $\operatorname{rg}(A^{1,...,k,j}) = k \Longrightarrow A^{j} \in \operatorname{Span}(A^{1},\ldots,A^{k}) \Longrightarrow \operatorname{rg}(A) = k$.

Autovalori e diagonalizzabilità

Sia $f \in \operatorname{End}(V)$. Si dice che $\lambda \in \mathbb{K}$ è un autovalore di f se e solo se $\exists \, \underline{v} \neq \underline{0}, \, \underline{v} \in V$ tale che $f(\underline{v}) = \lambda \underline{v}$, e in tal caso si dice che \underline{v} è un autovettore relativo a λ . Un autovalore è tale se esiste una soluzione non nulla a $(f - \lambda \operatorname{Id}_V)\underline{v} = \underline{0}$, ossia se e solo se:

$$\det(f - \lambda \operatorname{Id}_V) = 0.$$

Questa relazione è ben definita dacché il determinante è invariante per qualsiasi cambio di base applicato ad una matrice associata di f. Si definisce allora $p_f(\lambda) = \det(f - \lambda \operatorname{Id}_V),$ detto polinomio caratteristico di f, ancora invariante per matrici associate a f. Si denota inoltre con spettro di f l'insieme $\operatorname{sp}(f)$ degli autovalori di f e con $V_\lambda = \operatorname{Ker}(f - \lambda \operatorname{Id}_V)$ lo spazio degli autovettori relativo a $\lambda,$ detto autospazio di $\lambda.$

Si definisce la molteplicità algebrica $\mu_{a,f}(\lambda)$ di un autovalore λ come la molteplicità che assume come radice del polinomio $p_f(\lambda)$. Si definisce la molteplicità geometrica $\mu_{g,f}(\lambda)$ di un autovalore λ come la dimensione del suo autospazio V_{λ} . Quando è noto l'endomorfismo che si sta considerando si omette la dicitura f nel pedice delle molteplicità.

- $p_f(\lambda)$ ha sempre grado $n = \dim V$,
- $p_f(\lambda)$ è sempre monico a meno del segno,
- il coefficiente di λ^n è sempre $(-1)^n$,
- il coefficiente di λ^{n-1} è $(-1)^{n+1}$ tr(f),
- il termine noto di $p_f(\lambda)$ è $\det(f 0 \cdot \operatorname{Id}_V) = \det(f)$,
- poiché p_f(λ) appartiene all'anello euclideo K[λ], che è dunque un UFD, esso ammette al più n radici,
- sp(f) ha al più n elementi, ossia esistono al massimo n autovalori (dalla precedente considerazione),
- se K = C e p_f ∈ R[λ], λ ∈ sp(f) ⇔ λ̄ ∈ sp(f) (infatti λ è soluzione di p_f, e quindi anche λ̄ deve esserne radice, dacché i coefficienti di p_f sono in R),
- se \mathbb{K} è un campo algebricamente chiuso, $p_f(\lambda)$ ammette sempre almeno un autovalore distinto (o esattamente n se contati con molteplicità),
- $0 \in \operatorname{sp}(f) \iff \dim \operatorname{Ker} f > 0 \iff \operatorname{rg} f < 0 \iff \det(f) = 0,$

- autovettori relativi ad autovalori distinti sono sempre linearmente indipendenti,
- dati $\lambda_1, ..., \lambda_k$ autovalori di f, gli spazi $V_{\lambda_1}, ..., V_{\lambda_k}$ sono sempre in somma diretta,
- $\sum_{i=1}^{k} \mu_a(\lambda_i)$ corrisponde al numero di fattori lineari di $p_f(\lambda)$,
- $\sum_{i=1}^k \mu_a(\lambda_i) = n \iff p_f(\lambda)$ è completamente fattorizzabile in $\mathbb{K}[\lambda]$,
- vale sempre la disuguaglianza $n \ge \mu_a(\lambda) \ge \mu_g(\lambda) \ge 1$ (è sufficiente considerare una base di V_λ estesa a base di V e calcolarne il polinomio caratteristico sfruttando i blocchi della matrice associata, notando che $\mu_g(\lambda)$ deve forzatamente essere minore di $\mu_a(\lambda)$),
- vale sempre la disuguaglianza $n \ge \sum_{i=1}^k \mu_a(\lambda_i) \ge \sum_{i=1}^k \mu_g(\lambda_i),$
- se $W \subseteq V$ è un sottospazio f-invariante, allora $p_{f|_W}(\lambda) \mid p_f(\lambda)^1$ (è sufficiente prendere una base di W ed estenderla a base di V, considerando poi la matrice associata in tale base, che è a blocchi),
- se $W \subseteq V$ è un sottospazio f-invariante, ed estesa una base \mathcal{B}_W di W ad una \mathcal{B} di V, detto $U = \operatorname{Span}(\mathcal{B} \setminus \mathcal{B}_W)$ il supplementare di W che si ottiene da tale base \mathcal{B} , vale che $p_f = p_{f|_W}(\lambda) \cdot p_{\hat{f}}$, dove $\hat{f}: V/W \to V/W$ è tale che $\hat{f}(\underline{u} + W) = f(\underline{u}) + W$ (come prima, è sufficiente considerare una matrice a blocchi),
- se $V = W \oplus U$, dove sia W che U sono f-invarianti, allora $p_f = p_{f|_W}(\lambda) \cdot p_{f|_U}(\lambda)$ (la matrice associata in un'unione di basi di W e U è infatti diagonale a blocchi),
- se sia W che U sono f-invarianti, allora f è diagonalizzabile se e solo se sia $f|_W$ che $f|_U$ lo sono.

Si dice che f è diagonalizzabile se V ammette una base per cui la matrice associata di f è diagonale, o equivalentemente se, dati $\lambda_1, ..., \lambda_k$ autovalori di f, si verifica che:

$$V = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k}$$
.

Ancora in modo equivalente si può dire che f è diagonalizzabile se e solo se:

$$\begin{cases} \sum_{i=1}^{k} \mu_a(\lambda_i) = n, \\ \mu_g(\lambda_i) = \mu_a(\lambda_i) \ \forall \ 1 \le i \le k, \end{cases}$$

ossia se il polinomio caratteristico è completamente fattorizzabile in $\mathbb{K}[\lambda]$ (se non lo fosse, la somma diretta $V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k}$ avrebbe forzatamente dimensione minore di V, ed esisterebbero altri autovalori in un qualsiasi campo di spezzamento di $p_f(\lambda)$) e se $\sum_{i=1}^k \mu_g(\lambda_i) = n$. Tale condizione, in un campo algebricamente chiuso, si riduce a $\mu_g(\lambda_i) = \mu_a(\lambda_i), \, \forall \, 1 \leq i \leq k$.

Considerando la forma canonica di Jordan di f, si osserva anche che f è diagonalizzabile se e solo se per ogni autovalore la massima taglia di un blocco di Jordan è esattamente 1, ossia se il polinomio minimo di f è un prodotto di fattori lineari distinti. Si può fare la stessa considerazione guardando al teorema di decomposizione primaria (gli indici di Fitting del sottospazio generalizzato sono esattamente le moltiplicità algebriche degli autovalori nel polinomio minimo).

Data f diagonalizzabile, la matrice diagonale J a cui f è associata è, dati gli autovalori $\lambda_1, ..., \lambda_k$, una matrice diagonale dove λ_i compare sulla diagonale esattamente $\mu_g(\lambda_i)$ volte.

Data $A \in M(n, \mathbb{K})$, A è diagonalizzabile se e solo se f_A , l'applicazione indotta dalla matrice A, è diagonalizzabile, ossia se A è simile ad una matrice diagonale J, computabile come prima. Si scrive in particolare $p_A(\lambda)$ per indicare $p_{f_A}(\lambda)$. Una matrice $P \in \operatorname{GL}(M(n, \mathbb{K}))$ tale che $A = PJP^{-1}$, è tale che AP = PJ: presa la i-esima colonna, allora, $AP^{(i)} = PJ^{(i)} = P^{(i)}$; ossia è sufficiente costruire una matrice P dove l'i-esima colonna è un autovettore relativo all'autovalore presente in J_{ii} linearmente indipendente con gli altri autovettori presenti in P relativi allo stesso autovalore (esattamente nello stesso modo in cui si costruisce in generale tale P con la forma canonica di Jordan).

Se A e B sono diagonalizzabili, allora $A \sim B \iff p_A(\lambda) = p_B(\lambda)$ (infatti due matrici diagonali hanno lo stesso polinomio caratteristico se e solo se compaiono gli stessi identici autovalori).

Se f è diagonalizzabile, allora ogni spazio W f-invariante di V è tale che:

$$W = (W \cap V_{\lambda_1}) \oplus \cdots \oplus (W \cap V_{\lambda_k}),$$

dove $\lambda_1,\,...,\,\lambda_k$ sono gli autovalori distinti di f,e dunque $f|_W$ è sempre diagonalizzabile, se f lo è.

Se f è diagonalizzabile, anche f^k lo è, per ogni $k \in \mathbb{N}$. Se ogni vettore di V è un autovettore di f, allora $f = \lambda \mathrm{Id}$, con $\lambda \in \mathbb{K}$ (è sufficiente considerare l'eventuale esistenza di più autospazi e due vettori \underline{v} e \underline{w} di due autospazi distinti e considerare le due scritture possibili di $f(\underline{v} + \underline{w})$).

Si dice infine che f è triangolabile (o triangolarizzabile) se V ammette una base per cui la matrice associata di f è triangolare superiore (o inferiore, dal momento che è sufficiente riordinare dal basso la base per ottenere una matrice associata triangolare superiore). Vale in particolare che f è triangolabile se e soltanto se $p_f(\lambda)$ è completamente riducibile in fattori lineari in \mathbb{K} (dunque, nel caso di \mathbb{K} algebricamente chiuso, f è sempre triangolabile). Infatti, se f è triangolabile, il polinomio caratteristico ha come radici esattamente gli elementi sulla diagonale della matrice associata di f nella base \mathcal{B} in cui tale matrice è triangolare superiore (e dunque $p_f(\lambda)$) è riducibile in fattori lineari). Se invece $p_f(\lambda)$ è riducibile in fattori lineari, si può applicare il seguente algoritmo [...]

Diagonalizzabilità e triangolabilità simultanea

Due endomorfismi $f,\,g\in \operatorname{End}(V)$ diagonalizzabili si dicono simultaneamente diagonalizzabili se esiste una base $\mathcal B$ di V tale per cui sia la matrice associata di f in $\mathcal B$ che quella di g sono diagonali. Vale in particolare che f e g sono simultaneamente diagonalizzabili se e solo se $f\circ g=g\circ f.$ Per trovare tale base è sufficiente, dati $\lambda_1,...,\lambda_k$ autovalori di f, considerare $g|_{V_{\lambda_i}}$ $\forall\, 1\leq i\leq k\; (V_{\lambda_i}$ è infatti g-invariante, dacché, per $\underline{v}\in V_{\lambda_i},$ $f(g(\underline{v}))=g(f(\underline{v}))=g(\lambda_i\underline{v})=\lambda_ig(\underline{v})\Longrightarrow g(\underline{v})\in V_{\lambda_i}),$ che, essendo una restrizione di un endomorfismo diagonalizzabile su un sottospazio invariante, è diagonalizzabile: presa allora una base di autovettori di $g|_{V_{\lambda_i}},$ questi sono anche base di autovettori di V_{λ_i} ; unendo tutti questi autovettori in un'unica base $\mathcal B$ di V, si otterrà dunque che una base in cui le matrici associate di f e g sono diagonali.

Analogamente due endomorfismi $f, g \in \text{End}(V)$ triangolabili si dicono simultaneamente triangolabili se [...]

Prodotto scalare e congruenza

Si consideri una mappa $\varphi: V \times V \to \mathbb{K}$. Si dice che φ è un prodotto scalare (e quindi che $\varphi \in \mathrm{PS}(V)$, lo spazio dei prodotti scalari) se è una forma bilineare simmetrica. In particolare vale la seguente identità:

$$\varphi\left(\sum_{i=1}^s a_i \underline{v_i}, \sum_{j=1}^t b_j \underline{w_j}\right) = \sum_{i=1}^s \sum_{j=1}^t a_i b_j \varphi(\underline{v_i}, \underline{w_j}).$$

Se $\mathcal{B} = \{\underline{v_1},\dots,\underline{v_n}\}$ è una base di V, si definisce $M_{\mathcal{B}}(\varphi) = (\varphi(\underline{v_i},\underline{v_j}))_{i,j=1-n}$ come la matrice associata al prodotto scalare φ . In particolare, se $a_{\varphi}: V \to V^*$ è la mappa lineare che associa a \underline{v} il funzionale $\varphi(\underline{v},\cdot) \in V^*$ tale che $\varphi(\underline{v},\cdot)(\underline{w}) = \varphi(\underline{v},\underline{w})$. Si scrive (V,φ) per indicare uno spazio vettoriale V dotato del prodotto scalare φ .

Si definisce prodotto scalare standard il prodotto φ tale che $\varphi(\underline{v},\underline{w}) = [\underline{v}]_{\mathcal{B}}^{\top}[\underline{w}]_{\mathcal{B}}.$

Si dice che due vettori \underline{v} , $\underline{w} \in V$ sono ortogonali tra loro, scritto come $\underline{v} \perp \underline{w}$, se $\varphi(\underline{v},\underline{w}) = 0$. Dato W sottospazio di V, si definisce W^{\perp} come il sottospazio di V dei vettori ortogonali a tutti i vettori di W. Si dice che φ è non degenere se $V^{\perp} = \{\underline{0}\}$. Si scrive in particolare che $V^{\perp} = \mathrm{Rad}(\varphi)$.

Si dice che $V = U \oplus^{\perp} W$ (ossia che $U \in W$ sono in somma diretta ortogonale) se $V = U \oplus W \in U \subseteq W^{\perp}$. Sia $i : W \to V$ tale che $\underline{w} \mapsto \underline{w}$. Si scrive $\varphi|_W$ intendendo $\varphi|_{W \times W}$.

Ad ogni prodotto scalare si può associare una forma quadratica (e viceversa) $q:V\to\mathbb{K}$ tale che $q(\underline{v})=\varphi(\underline{v},\underline{v})$. Un vettore $\underline{v}\in V$ si dice isotropo se $q(\underline{v})=0$ (altrimenti si dice anisotropo). Si definisce il cono isotropo $\mathrm{CI}(\varphi)$ come l'insieme dei vettori isotropi di V.

Se $\mathbb{K} = \mathbb{R}$, si dice che φ è semidefinito positivo $(\varphi \geq 0)$ se $q(\underline{v}) \geq 0 \ \forall \underline{v} \in V$, e che è semidefinito negativo $(\varphi \leq 0)$ se $q(\underline{v}) \leq 0 \ \forall \underline{v} \in V$. Si dice che φ è definito positivo $(\varphi > 0)$ se

 $^{^{1}}$ Quando si lavora su degli endomorfismi, la notazione $f|_{W}$ è impiegata per considerare f ristretta a W sia sul dominio che sul codominio.

 $\varphi \ge 0$ e se $q(\underline{v}) = 0 \iff \underline{v} = \underline{0}$, e che è definito negativo $(\varphi < 0)$ se $\varphi \le 0$ e se $q(\underline{v}) = 0 \iff v = 0$.

Si dice che φ è definito se è definito positivo o definito negativo. Analogamente φ è semidefinito se è semidefinito positivo o semidefinito negativo.

- M_B(φ) è simmetrica,
- $\varphi(\underline{v},\underline{w}) = [\underline{v}]_{\mathcal{B}}^{\top} M_{\mathcal{B}}(\varphi) [\underline{w}]_{\mathcal{B}},$
- $M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}^*}^{\mathcal{B}}(a_{\varphi}),$
- Ker $a_{\varphi} = V^{\perp}$,
- φ è non degenere se e solo se $M_{\mathcal{B}}(\varphi)$ è invertibile,
- $W^{\perp} = \operatorname{Ker} i^{\top} \circ a_{\varphi}$,
- $a_{\varphi}(W^{\perp}) = \operatorname{Ann}(W) \cap \operatorname{Imm} a_{\varphi},$
- $\dim W + \dim W^{\perp} = \dim V + \dim(W \cap V^{\perp})$ (da sopra),
- $V = W \oplus^{\perp} W^{\perp}$ se $\varphi|_W$ è non degenere ($\iff W \cap W^{\perp} = \text{Rad}(\varphi|_W) = \{\underline{0}\}$),
- $(W^{\perp})^{\perp} = W^{\perp \perp} = W + \operatorname{Rad}(\varphi) = W + V^{\perp},$
- $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$,
- $(U \cap W)^{\perp} \supseteq U^{\perp} + W^{\perp}$,
- $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$, se φ è non degenere,
- φ è definito \iff $CI(\varphi) = \{\underline{0}\},$
- φ è semidefinito \iff $\operatorname{CI}(\varphi) = V^{\perp} = \operatorname{Rad}(\varphi)$ (considera l'esistenza di due vettori $\underline{v}, \underline{w} \in V$ con forme quadratiche discordi, osserva che sono linearmente indipendenti e trova un $\lambda \in \mathbb{K}$ tale per cui $\underline{v} + \lambda \underline{w}$ crea un assurdo).

Se \mathcal{B}' è un'altra base di V, vale il seguente $teorema\ di$ $cambiamento\ di\ base$:

$$M_{\mathcal{B}'}(\varphi) = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)^{\top} M_{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V).$$

Si definisce relazione di congruenza la relazione di equivalenza \cong (o \equiv) definita su Sym (n, \mathbb{K}) nel seguente modo:

$$A \cong B \iff \exists P \in \operatorname{GL}(n, \mathbb{K}) \mid A = P^{\top}BP.$$

- A ≅ B ⇒ rg(A) = rg(B) (il rango è invariante per congruenza; e dunque si può definire rg(φ) come il rango di una qualsiasi matrice associata a φ).
- A ≅ B ⇒ det(A) det(B) ≥ 0 (in K = R il segno del determinante è invariante per congruenza),
- Due matrici associate a φ in basi diverse sono congruenti per la formula di cambiamento di base.

Si definiscono i seguenti tre indici per $\mathbb{K} = \mathbb{R}$:

- $\iota_+ = \max\{\dim W \mid W \subseteq V \in \varphi|_W > 0\},$
- $\iota_- = \max\{\dim W \mid W \subseteq V \in \varphi|_W < 0\},\$
- $\iota_0 = \dim V^{\perp}$,

e si definisce segnatura di φ la terna $\sigma = (\iota_+, \iota_-, \iota_0)$.

Si dice che una base $\mathcal B$ di V è ortogonale se i suoi vettori sono a due a due ortogonali (e quindi la matrice associata in tale base è diagonale). Se char $\mathbb K \neq 2$, valgono i seguenti risultati:

- $\varphi(\underline{v},\underline{w}) = \frac{q(\underline{v}+\underline{w}) q(\underline{v}) q(\underline{w})}{2}$ (formula di polarizzazione; φ è completamente determinata dalla sua forma quadratica),
- Esiste sempre una base ortogonale \mathcal{B} di V (teorema di Lagrange; è sufficiente considerare l'esistenza di un vettore anisotropo $\underline{w} \in V$ ed osservare che $V = W \oplus^{\perp} W^{\perp}$, dove $W = \operatorname{Span}(V)$, concludendo per induzione; o in caso di non esistenza di tale \underline{w} , concludere per il risultato precedente),
- (se K = C) Esiste sempre una base ortogonale B di V tale che:

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix},$$

dove $r = rg(\varphi)$ (teorema di Sylvester, caso complesso; si consideri una base ortogonale e se ne normalizzino i vettori anisotropi),

- Due matrici simmetriche con stesso rango allora non solo sono SD-equivalenti, ma sono anche congruenti,
- (se $\mathbb{K} = \mathbb{R}$) Esiste sempre una base ortogonale \mathcal{B} di V tale che:

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} I_{L_{+}} & 0 & 0\\ 0 & -I_{L_{-}} & 0\\ 0 & 0 & 0 \cdot I_{t_{0}} \end{pmatrix}.$$

Inoltre σ è un invariante completo per la congruenza, e vale che, su una qualsiasi base ortogonale \mathcal{B}' di V, ι_+ è esattamente il numero di vettori anisotropi di base con forma quadratica positiva, che ι_- è il numero di vettori con forma negativa e che ι_0 è il numero di vettori isotropi (teorema di Sylvester, caso reale; si consideri una base ortogonale e se ne normalizzino i vettori anisotropi, facendo infine eventuali considerazioni dimensionali per dimostrare la seconda parte dell'enunciato),

- $\varphi > 0 \iff \sigma = (n, 0, 0) \in \varphi < 0 \iff \sigma = (0, n, 0),$
- $\varphi \ge 0 \iff \sigma = (n-k,0,k)$ e $\varphi \le 0 \iff \sigma = (0,n-k,k)$, con $0 \le k \le n$ tale che $k = \dim V^{\perp}$.
- I vettori isotropi di una base ortogonale sono una base di V^{\perp} ,
- $\operatorname{rg}(\varphi) = \iota_+ + \iota_-,$
- $\bullet \quad n=\iota_++\iota_-+\iota_0,$
- Se W è un sottospazio di V, $\iota_+(\varphi) \ge \iota_+(\varphi|_W)$ e $\iota_-(\varphi) \ge \iota_-(\varphi|_W)$,

- Se $V = U \oplus^{\perp} W$, $\sigma(\varphi) = \sigma(\varphi|_{U}) + \sigma(\varphi|_{W})$,
- Se $\mathbb{K} = \mathbb{R}$ e $A = M_{\mathcal{B}}(\varphi)$, allora:

$$\sigma = \left(\sum_{\substack{\lambda \in \operatorname{sp}(\varphi) \\ \lambda > 0}} \mu_a(\lambda), \ \sum_{\substack{\lambda \in \operatorname{sp}(A) \\ \lambda < 0}} \mu_a(\lambda), \ \mu_0(\lambda) \right),$$

come conseguenza del teorema spettrale reale.

Si chiama matrice di Sylvester una matrice della forma vista nell'enunciato del teorema di Sylvester reale, e si dice che una base $\mathcal B$ è una base di Sylvester se la matrice ad essa associata è di Sylvester. Per il teorema di Sylvester, tale base esiste sempre, e la matrice di Sylvester è unica per ogni prodotto scalare φ .

Algoritmo di ortogonalizzazione di Gram-Schmidt

Data una base \mathcal{B} di V, se $|\operatorname{CI}(\varphi) \cap \mathcal{B}| \leq 1$ (ossia se ogni vettore di \mathcal{B} è anisotropo o al più vi è un vettore isotropo, posto in fondo come $\underline{v_n}$), si può trovare una base ortogonale $\mathcal{B}' = \{\underline{v_1}', \ldots, \underline{v_n}'\}$ a partire da \mathcal{B} tale che ne mantenga la stessa bandiera, ossia tale che:

$$\operatorname{Span}(v_1', \dots, v_i') = \operatorname{Span}(v_1, \dots, v_i) \,\forall \, 1 \leq i \leq n.$$

Si definisce $C(\underline{w},\underline{v}) = \frac{\varphi(\underline{v},\underline{w})}{\varphi(\underline{w},\underline{w})}$ come il coefficiente di Fourier di v rispetto a w. L'algoritmo allora funziona nel seguente modo:

- 1. Si prenda in considerazione $\underline{v_1}$ e si sottragga ad ogni altro vettore v_i della base il vettore $C(v_1, v_i) \, v_1$,
- 2. Si ripeta il processo considerando come \mathcal{B} tutti i vettori di \mathcal{B} con $\underline{v_1}$ escluso, o si termini l'algoritmo una volta che è rimasto un solo vettore.

Metodo di Jacobi per il calcolo della segnatura

Sia $A=M_{\mathcal{B}}(\varphi)$ una matrice associata a φ nella base \mathcal{B} . Sia $d_0:=1$. Se $d_i=\det(A^1_{1,\dots,i}^1)$ (è possibile anche prendere un'altra sequenza di minori, a patto che essi siano principali e che siano crescenti per inclusione) è diverso da zero per ogni $1 \leq i \leq n-1$, allora ι_+ è il numero di permanenze di segno di d_i (zero escluso), ι_- è il numero di variazioni di segno (zero escluso), e ι_0 è 1 se $d_n=0$ o 0 altrimenti.

In generale, se W è un sottospazio di W', W ha codimensione 1 rispetto a W' e $\det(M_{\mathcal{B}_W}(\varphi|_W)) \neq 0$ per una base \mathcal{B}_W di W, allora la segnatura di $\varphi|_{W'}$ è la stessa di $\varphi|_W$, dove si aggiunge 1 a ι_+ , se i determinanti $\det(M_{\mathcal{B}_W}(\varphi|_W))$ e $\det(M_{\mathcal{B}_{W'}}(\varphi|_W))$ (dove $\mathcal{B}_{W'}$ è una base di W') concordano di segno, 1 a ι_- , se sono discordi, o 1 a ι_0 se l'ultimo di questi due determinanti è nullo.

Dal metodo di Jacobi si deduce il criterio di definitezza di Sylvester: A è definita positiva se e solo se $d_i > 0 \ \forall \ 1 \le i \le n$; A è definita negativa se e solo se $(-1)^i d_i > 0 \ \forall \ 1 \le i \le n$.

Sottospazi isotropi e indice di Witt

Si dice che un sottospazio W di V è isotropo se $\varphi|_W=0$, o equivalentemente se $W\subseteq W^\perp$ (i.e. se $W\cap W^\perp=W$, e quindi se $\mathrm{Rad}(\varphi|_W)=W$). Si definisce allora l'indice di Witt $W(\varphi)$ come la dimensione massima di un sottospazio isotropo di V.

- V^{\perp} è un sottospazio isotropo,
- Se W è isotropo, allora $\dim W \leq \frac{\dim V + \dim \mathrm{Rad}(\varphi)}{2},$
- Se W è isotropo e φ è non degenere, allora $\dim W \leq \frac{1}{2} \dim V$,
- Se $\mathbb{K} = \mathbb{R}$, allora $W(\varphi) = \min\{i_+, i_-\} + i_0$ (è sufficiente considerare una base di Sylvester e creare una nuova base i cui i vettori sono o isotropi o della forma $\underline{v_i} \underline{w_i}$, dove $q(\underline{v_i}) = 1$ e $q(\underline{w_i}) = 1$, concludendo con discussioni dimensionali),

- Se φ è definito, allora $W(\varphi) = 0$,
- Se φ è semidefinito, allora $W(\varphi) = i_0$ (e $W = V^{\perp}$ è un sottospazio isotropo di tale dimensione).

Isometrie tra spazi vettoriali

Due spazi vettoriali (V, φ) e (W, ψ) su \mathbb{K} si dicono isometrici tra loro se esiste un isomorfismo $f: V \to W$ tale che $\varphi(v_1, v_2) = \psi(f(v_1), f(v_2))$.

Se f è un isomorfismo tra V e W, sono equivalenti le seguenti affermazioni:

- (i) (V, φ) e (W, ψ) sono isometrici tra loro tramite f,
- (ii) $\forall \mathcal{B}$ base di $V, M_{\mathcal{B}}(\varphi) = M_{f(\mathcal{B})}(\psi),$
- (iii) $\exists \mathcal{B}$ base di V, $M_{\mathcal{B}}(\varphi) = M_{f(\mathcal{B})}(\psi)$.

Inoltre, V e W sono isometrici se e solo se hanno la stessa dimensione e le matrici associate a φ e ψ in due basi di V e di W sono congruenti (infatti, in tal caso, esistono due basi di V e di W che condividono la stessa matrice associata, ed è possibile associare ad uno ad uno gli elementi di queste basi).

Pertanto, se \mathcal{B}_V e \mathcal{B}_W sono due basi di V e di W, $\mathbb{K} = \mathbb{R}$ e $M_{\mathcal{B}_V}(\varphi)$ e $M_{\mathcal{B}_W}(\psi)$ condividono la stessa segnatura, allora V e W sono isometrici tra loro (come conseguenza del teorema di Sylvester reale).

Analogamente, se $\mathbb{K}=\mathbb{C}$ e $M_{\mathcal{B}_V}(\varphi)$ e $M_{\mathcal{B}_W}(\psi)$ condividono lo stesso rango, allora V e W sono isometrici tra loro (come conseguenza stavolta del teorema di Sylvester complesso).

Gabriel Antonio Videtta,

https://poisson.phc.dm.unipi.it/~videtta/