FLUJOS CANÓNICOS

Mecánica de fluidos

Adrián Navas Montilla (anavas@unizar.es)

CONTENIDOS

- Fluidostática
 - Ecuación fundamental de la fluidostática y ley de Pascal
 - Medidas de presión (barómetros)
 - Fuerzas y momentos sobre superficies
- Flujo ideal
- Flujo viscoso: flujo de Couette y de Hagen-Poiseuille

Motivación del flujo ideal... ¿qué es?

- El flujo ideal es una simplificación del flujo real en el que:
 - Despreciamos los fenómenos de difusión molecular \rightarrow consideraremos viscosidad nula, $\mu=0$
 - Consideramos densidad constante, $\rho = cte$
- Si en la realidad ningún flujo tiene $\mu = 0...$ ¿qué interés tienen?
 - Al quitar de las ecuaciones los términos de difusión (términos viscosos), es más sencillo trabajar con ellas y resolverlas numéricamente.
 - Muchos fenómenos de interés en ingeniería se pueden representar mediante flujo ideal

Alguna aplicación adicional...

Resumiendo... ¿de dónde venimos y a dónde vamos?

Ecuaciones de Navier-Stokes

 $\mu = 0 \label{eq:mu}$ (y sin fuentes de calor)

Las del tema 2 $\begin{cases}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \\
\rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} \right) = -\nabla p + \nabla \cdot \tilde{\tau}_v + \rho \vec{f}_m \\
\rho \left(\frac{\partial e}{\partial t} + \vec{v} \cdot \nabla e \right) = \nabla \cdot \vec{q} - p \nabla \cdot \vec{v} + \phi_v + \dot{q}_v
\end{cases}$

Ecuaciones de Euler

Flujo ideal $\rho = constante$

Ecuaciones de Euler flujo incompresible

$$\begin{cases}
\nabla \cdot \vec{\boldsymbol{v}} = 0 \\
\frac{\partial \vec{\boldsymbol{v}}}{\partial t} + \vec{\boldsymbol{v}} \cdot \nabla \vec{\boldsymbol{v}} = -\frac{\nabla p}{\rho} + \vec{\boldsymbol{f}}_{m} \\
\frac{\partial e}{\partial t} + \nabla \cdot (\vec{\boldsymbol{v}}e) = 0
\end{cases}$$

 ρ = variable

Ecuaciones de Euler flujo compresible

¿Y qué podemos hacer con estas ecuaciones?

Resumiendo... ¿de dónde venimos y a dónde vamos?

Las del tema 2

Ecuacid

(y sin fuente

¿Podemos simplificarlas aun más?

 $\begin{vmatrix} \vec{l} + \vec{v} \cdot \nabla \vec{v} \end{vmatrix} = -\nabla p + \nabla \cdot \tilde{\tau}_v + \rho \vec{f}_m$ $+ \vec{v} \cdot \nabla e \end{vmatrix} = \nabla \cdot \dot{q} - p \nabla \cdot \vec{v} + \phi_v + \dot{q}_v$

 $\nabla \cdot (\rho \vec{\boldsymbol{v}}) = 0$

Ecua

Flujo

ideal

 $\rho = constante$

Ecuaciones de Euler fluio incompresible

$$\begin{cases}
\nabla \cdot \vec{v} = 0 \\
\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\frac{\nabla p}{\rho} + \vec{f}_m \\
\frac{\partial e}{\partial t} + \nabla \cdot (\vec{v}e) = 0
\end{cases}$$

 ρ = variable

Ecuaciones de Euler flujo compresible

En el tema 2 vimos cómo obtener la ecuación de Bernoulli

Consideramos la ecuación de la energía total sin viscosidad (fricción), ni transferencia de calor:

$$\frac{d}{dt} \int_{VC(t)} \rho(e + \frac{1}{2} |\vec{v}|^2) dV + \int_{SC(t)} \rho(e + \frac{1}{2} |\vec{v}|^2) \left[(\vec{v} - \vec{v}_c) \cdot \hat{n} \right] dS$$

$$= \int_{SC(t)} (-p\vec{n} + \tilde{\tau}_v \cdot \vec{n}) \cdot \vec{v} dS + \int_{VC(t)} \rho \vec{f}_m \cdot \vec{v} dV + \int_{SC(t)} -q \cdot \vec{n} dS + \int_{VC(t)} \dot{q}_v dV$$

• Si las fuerzas másicas son conservativas (derivan de un potencial): $\vec{f}_m = -\nabla U$, podemos escribir:

$$\frac{d}{dt} \int_{VC(t)} \rho(e + \frac{1}{2} |\vec{\boldsymbol{v}}|^2 + U) dV + \int_{SC(t)} \rho(e + \frac{1}{2} |\vec{\boldsymbol{v}}|^2 + U) \left[(\vec{\boldsymbol{v}} - \vec{\boldsymbol{v}}_c) \cdot \hat{\boldsymbol{n}} \right] dS = \int_{SC(t)} (-p\vec{\boldsymbol{n}}) \cdot \vec{\boldsymbol{v}} dS$$

• Si consideramos flujo estacionario y escogemos un tubo de corriente como VC:

Recordatorio:

- Flujo estacionario
- No viscoso (sin fricción)
- Sin transferencia de calor
- A LO LARGO DE UNA LINEA DE CORRIENTE!

$$\left[\rho vS\left(e + \frac{1}{2}\left|\vec{\boldsymbol{v}}\right|^2 + U\right)\right]_2 - \left[\rho vS\left(e + \frac{1}{2}\left|\vec{\boldsymbol{v}}\right|^2 + U\right)\right]_1 = (pvS)_1 - (pvS)_2$$

ndo que al ser estacionario $(\rho vS)_1 = (\rho vS)_2 = \dot{M}$, obtenemos:

$$\left(e + \frac{p}{\rho} + \frac{1}{2} \left| \vec{\boldsymbol{v}} \right|^2 + U\right) = constante$$

En líquidos
$$\delta e = 0$$
:
$$\left(\frac{p}{\rho} + \frac{1}{2} |\vec{v}|^2 + U\right) = C$$

Ecuación de Bernoulli a partir de ec. Euler (cantidad movimiento)

Las ecuaciones de Euler (Navier Stokes con $\mu = 0$ y ρ constante) considerando $\vec{f}_m = -\nabla U$ son:

$$\frac{\partial \vec{v} \cdot \vec{v} - 0}{\partial t + \vec{v} \cdot \nabla \vec{v} = -\frac{\nabla p}{\rho} - \nabla U}$$

$$\frac{\partial e}{\partial t} + \nabla \cdot (\vec{v}e) = 0$$

Si cogemos la ecuación de cantidad de movimiento (rodeada en verde) y aplicamos la identidad vectorial:

$$\vec{v} \cdot \nabla \vec{v} = \nabla \left(\frac{|\vec{v}|^2}{2} \right) - \vec{v} \times \vec{\omega}$$
 A esta cantidad la llamamos vorticidad

llamamos vorticidad:

$$\overrightarrow{\boldsymbol{\omega}} = \nabla \times \overrightarrow{\boldsymbol{v}}$$

obtenemos:

$$\frac{\partial \vec{v}}{\partial t} + \nabla \left(\frac{\left| \vec{v} \right|^2}{2} \right) + \frac{\nabla p}{\rho} + \nabla U = \vec{v} \times \vec{\omega}$$

Si consideramos estado estacionario, $\frac{\partial \vec{v}}{\partial t} = 0$ obteniendo:

$$\nabla \left(\frac{\left| \overrightarrow{\boldsymbol{v}} \right|^2}{2} + \frac{p}{\rho} + U \right) = \overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\omega}}$$

Ecuación de Bernoulli a partir de ec. Euler (cantidad movimiento)

Ahora vamos a distinguir dos situaciones distintas:

$$\nabla \left(\frac{\left| \overrightarrow{\boldsymbol{v}} \right|^2}{2} + \frac{p}{\rho} + U \right) = \overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\omega}}$$

Flujo rotacional: $\vec{\omega} \neq 0$

Proyectamos sobre una línea de corriente:

Derivada $d\vec{r}$ direccional a lo largo de la línea de corriente: $d\vec{r} \cdot \nabla$

$$d\vec{r} \cdot \nabla \left(\frac{|\vec{v}|^2}{2} + \frac{p}{\rho} + U \right) = d\vec{r} \cdot (\vec{v} \times \vec{\omega})$$
ea
$$d\vec{r} \cdot \nabla \left(\frac{|\vec{v}|^2}{2} + \frac{p}{\rho} + U \right) = 0$$
perpendicular a
$$(\vec{v} \times \vec{\omega})$$

Integrando...

$$\frac{\left|\vec{v}\right|^2}{2} + \frac{p}{\rho} + U = \text{const}$$

VALIDO ENTRE 2 PUNTOS de LINEA DE CORRIENTE

Flujo irrotacional: $\vec{\omega} = 0$

Directamente obtenemos:

$$\nabla\left(\frac{\left|\overrightarrow{\boldsymbol{v}}\right|^2}{2} + \frac{p}{\rho} + U\right) = 0$$

Integrando...

$$\frac{\left|\vec{\boldsymbol{v}}\right|^2}{2} + \frac{p}{\rho} + U = \text{const}$$

VALIDO ENTRE 2 PUNTOS CUALESQUIERA

Ecuación de Bernoulli a partir de ec. Euler (cantidad movimiento)

Ahora vamos a distinguir dos situaciones distintas:

Flujo rotacional

$$\left(\frac{\left|\overrightarrow{\boldsymbol{v}}\right|^{2}}{2} + \frac{p}{\rho} + U\right)_{1} = \left(\frac{\left|\overrightarrow{\boldsymbol{v}}\right|^{2}}{2} + \frac{p}{\rho} + U\right)_{2}$$

Resumen ecuación de Bernoulli

$$\left(\frac{1}{2}V^2 + \frac{p}{\rho} + U\right) = constante$$
 Consideraremos $U = gz$ El módulo de la velocidad lo escribiremos como V

escribiremos como V

Bajo las siguientes hipótesis:

- Flujo estacionario
- No viscoso (sin fricción)
 - Incompresible
- Sin transferencia de calor
- Las fuerzas másicas son conservativas

En la práctica consideraremos **flujo irrotacional**, así que <u>la podremos aplicar entre dos</u> puntos cualesquiera (no hace falta que estén en la misma línea de corriente):

Relación entre velocidad, presión y potencial gravitatorio

Observemos la ecuación de Bernoulli:

$$\frac{1}{2}V^2 + \frac{p}{\rho} + U = \text{constante}$$

• Si V=0 y U=gz, recuperamos la ecuación de la fluidostática: $p+\rho gz={\rm constante}$

que nos dice que "cuando la profundidad aumenta, la presión aumenta"

• Si U=0 (en aire por ejemplo, donde la densidad es baja), obtenemos:

$$\frac{1}{2}V^2 + \frac{p}{\rho} = \text{constante}$$

que nos dice que "cuando la velocidad aumenta, la presión disminuye"

Si
$$V \uparrow \Rightarrow p \downarrow$$

La presión en un punto de remanso es alta

Si aplicamos la ecuación de Bernoulli tomando como referencia el ciclista (velocidades relativas al ciclista), entre un punto lejano y el casco:

$$\left(\frac{1}{2}V^2 + \frac{p}{\rho} + U\right)_{\infty} = \left(\frac{1}{2}V^2 + \frac{p}{\rho} + U\right)_{casco}$$

- Consideramos $U_{\infty} = U_{casco} = 0$
- El punto "∞" representa un punto lejos del ciclista:
 - $p_{\infty}=p_{atm}$, presión en el aire lejos del ciclista
 - V_{∞} = velocidad del aire, lejos del ciclista, relativa a éste
- Como en el casco hay un <u>punto de remanso</u> (muere la línea de corriente) $\rightarrow V_{casco} = 0$

$$\frac{1}{2}V_{\infty}^{2} + \frac{p_{\infty}}{\rho} = \frac{p_{casco}}{\rho}$$

$$p_{casco} = \frac{1}{2}\rho V_{\infty}^2 + p_{atm}$$

La presión en un punto de remanso es alta

Si aplicamos la ecuación de Bernoulli tomando como un punto lejano y el casco:

Pcasco, Vcasco p_{∞}, V_{∞} Nomenclatura de los términos de presión en la expresión anterior:

Consider

Consider

• p_{∞}

V_∞ =

Como

 p_{remanso}

Presión dinámica: sobrepresión, respecto de la p. estática, debido a que el flujo se frena. La energía cinética se convierte en aumento de presión

Presión estática: en este caso es la atmosférica

Presión de remanso, presión dinámica, presión estática y presión total

Ecuación de Bernoulli se puede escribir como una presión total $p_T = constante$.

Presión estática Presión hidrostática

• Presión total:

Presión dinámica $p_T = \frac{1}{2}\rho V^2 + p + \rho gz = \text{const}$

se conserva entre 2 puntos cualesquiera del espacio.

• <u>Presión de remanso</u>: Sobrepresión en (2) debida a que el flujo se frena:

(Bernoulli 1 – 2):
$$(\frac{1}{2}\rho V^2) + p_1 = p_2$$

• <u>Presión estática</u>: Es la presión termodinámica, es aquella que veríamos si nos moviéramos con el fluido y lo viéramos estático. Se mide mediante un orificio paralelo al flujo (3).

(Bernoulli 1 – 3):
$$p_1 = p_3 + \rho g h_{3-1}$$

(L. Pascal 3 – 4): $p_3 = p_4 + \rho g h_{4-3}$
 $p_1 = p_4 + \rho g h$
(L. Pascal 2 – 5): $p_2 = p_5 + \rho g H$
Presión dinámica: $p_2 - p_1 = \rho g (H - h)$

Combinando:

$$\frac{1}{2}\rho V^2 = p_2 - p_1 \Rightarrow V = \sqrt{\frac{2(p_2 - p_1)}{\rho}} \Rightarrow V = \sqrt{\frac{2g(H - h)}{\rho}}$$

Medición de velocidad aerodinámica: tubo de Pitot

Si aplicamos la ecuación de Bernoulli entre (∞) y (2):

$$\left(\frac{1}{2}V^2 + \frac{p}{\rho} + U\right)_{\infty} = \left(\frac{1}{2}V^2 + \frac{p}{\rho} + U\right)_2$$

- Consideramos aire $U_{\infty} = U_2 = U_3 = 0$
- Consideramos
 - $p_{\infty} = p_{atm}$
 - V_{∞} = velocidad del aire relativa al tubo de Pitot (lejos)
- Como en (2) hay un punto de remanso $\to V_2=0$ $p_2=\frac{1}{2}\rho {V_\infty}^2+p_\infty$

Si ahora aplicamos la ec. de Bernoulli entre (∞) y (3) $p_3 = p_\infty$

Combinando ambas:

$$V = \sqrt{\frac{2(p_2 - p_3)}{\rho}}$$

Sistema Pitot-estático en aeronaves

Sistema Pitot-estático en aeronaves

Sistema Pitot-estático en aeronaves - Altímetro

Sistema Pitot-estático en aeronaves — Indicador velocidad vertical

Sistema Pitot-estático en aeronaves — Indicador velocidad aerodinámica

¿Por qué vuelan los aviones?: la sustentación aerodinámica

¿Por qué vuelan los aviones?: la sustentación aerodinámica

¿A qué se deben estas fuerzas? La fuerza total es la resultante de la integral de fuerzas de superficie:

$$\int_{SC(t)} -p\widehat{\boldsymbol{n}}dS + \int_{SC(t)} \widetilde{\boldsymbol{\tau}}_{v} \cdot \widehat{\boldsymbol{n}}dS$$

¿Por qué vuelan los aviones?: la sustentación aerodinámica

Aplicamos la ecuación de Bernoulli entre (∞) y arriba (1):

$$\left(\frac{1}{2}V^2 + \frac{p}{\rho}\right)_{\infty} = \left(\frac{1}{2}V^2 + \frac{p}{\rho}\right)_{1}$$

Aplicamos la ecuación de Bernoulli entre (∞) y abajo (2):

$$\left(\frac{1}{2}V^2 + \frac{p}{\rho}\right)_{\infty} = \left(\frac{1}{2}V^2 + \frac{p}{\rho}\right)_2$$

Igualando ambas:

$$\frac{1}{2}V_1^2 + \frac{p_1}{\rho} = \frac{1}{2}V_2^2 + \frac{p_2}{\rho}$$

Como $V_1 > V_2$ entonces $p_2 > p_1$ lo cual genera una fuerza hacia arriba (fuerza de sustentación, o *lift* en inglés)

Ver video

Efecto Magnus

Debido a la rotación del balón, el aire se acelera en la zona en la que el giro es favorable al flujo (arriba) y se decelera en la zona contraria (abajo).

Aplicamos la ecuación de Bernoulli entre (∞) y arriba (1):

$$\left(\frac{1}{2}V^2 + \frac{p}{\rho}\right)_{\infty} = \left(\frac{1}{2}V^2 + \frac{p}{\rho}\right)_{1}$$

Aplicamos la ecuación de Bernoulli entre (∞) y abajo (2):

$$\left(\frac{1}{2}V^2 + \frac{p}{\rho}\right)_{\infty} = \left(\frac{1}{2}V^2 + \frac{p}{\rho}\right)_2$$

Igualando ambas:

$$\frac{1}{2}V_1^2 + \frac{p_1}{\rho} = \frac{1}{2}V_2^2 + \frac{p_2}{\rho}$$

Como $V_1 > V_2$ entonces $p_2 > p_1$ lo cual genera una fuerza en dirección (2)->(1) que modifica la trayectoria del balón

Mecánica de fluidos | Tema 1. Fluidos y fluir

[&]quot;Impossible free-kick, Brazil, 1997"