TUGAS 3_OUTLIER

MATA KULIAH MANAJEMEN DAN ANALISIS DATA DENGAN R

Isni Nurul Aini

NPM. 131520220003

PROGRAM STUDI MAGISTER EPIDEMIOLOGI

FAKULTAS KEDOKTERAN

UNIVERSITAS PADJADJARAN

2023

#reading data

pef na pef

#1. Mengidentifikasi outlier berdasarkan kriteria dan visualisasi grafik boxplot

summary(pef_na_pef\$pef)

boxplot(pef na pef\$pef,col="aquamarine",main ="PEF Score")

#2. Menentukan cut off outlier (batas atas dan bawah) dari grafik boxplot tersebut

min(boxplot(pef na pef\$pef, plot = FALSE)\$out)

max(boxplot(pef na pef\$pef, plot = FALSE)\$out)

Min. 1	st Qu.	Median	Mean :	3rd Qu.	Max.
10.0	280.0	355.0	367.4	450.0	951.0

 $quartiles <-\ quantile(pef_na_pef\$pef,\ probs=c(.25,\ .75),\ na.rm=FALSE)$

quartiles

IQR <- IQR(pef_na_pef\$pef)

IQR

Lower <- quartiles[1] - 1.5*IQR

Lower

Upper <- quartiles[2] + 1.5*IQR

Upper

#3. Membuat dataset yang tidak berisi outlier sesuai cut off no 2

summary(pef_na_pef_no\$pef)

Min.	1st Qu.	Median	Mean :	3rd Qu.	Max.
30.0	280.0	350.0	366.2	450.0	700.0

boxplot(pef na pef no\$pef)

#4. Melakukan tes normalitas pada dataset dengan outlier dan tanpa outlier

#For Big Sample (Kolmogrov-Smirnov)

library(nortest)

lillie.test(pef na pef\$pef)

```
Lilliefors (Kolmogorov-Smirnov) normality test

data: pef_final$pef

D = 0.055561, p-value < 2.2e-16
```

lillie.test(pef_na_pef_no\$pef)

```
Lilliefors (Kolmogorov-Smirnov) normality test

data: pef_final_no$pef

D = 0.053763, p-value < 2.2e-16
```

#5. Membuat grafik QQ line untuk membandingkan visualisasi nilai pef pada dataset dengan outlier dan tanpa outlier

qqnorm(pef_na_pef\$pef); qqline(pef_na_pef\$pef)

(DENGAN OUTLIERS)

Normal Q-Q Plot

qqnorm(pef_na_pef_no\$pef); qqline(pef_na_pef_no\$pef)

(TANPA OUTLIERS)

Normal Q-Q Plot

#6. Membuat scatterplot yang memperlihatkan hubungan antara pef dengan height, dengan penambahan garis linear/regresi dan smoothed dengan loes (local regression smoothing)

plot(pef_na_pef_no\$pef~ pef_na_pef_no\$height, xlab = "Tinggi Badan(cm)",
ylab="Peak Expiratory Flow", main="Sebaran PEF berdasarkan Tinggi Badan")

Sebaran PEF berdasarkan Tinggi Badan

smoothScatter(pef_na_pef_no\$pef~ pef_na_pef_no\$height, xlab = "Tinggi Badan(cm)", ylab="Peak Expiratory Flow", main="Sebaran PEF berdasarkan Tinggi Badan")

Sebaran PEF berdasarkan Tinggi Badan

abline(lm(pef_na_pef_no\$pef~ pef_na_pef_no\$height, data = pef_na_pef_no), col = "blue") lines(lowess(pef_na_pef_no\$height, pef_na_pef_no\$pef), col = "red")

Sebaran PEF berdasarkan Tinggi Badan

#7. Membuat scatterplot yang memperlihatkan hubungan antara pef dengan umur, dengan penambahan garis linear/regresi dan smoothed dengan loes (local regression smoothing)

plot(pef_na_pef_no\$pef~ pef_na_pef_no\$age, xlab = "Usia(Tahun)",
ylab="Peak Expiratory Flow", main="Sebaran PEF berdasarkan Usia")

Sebaran PEF berdasarkan Usia

smoothScatter(pef_na_pef_no\$pef~ pef_na_pef_no\$height, xlab = "Usia(Tahun)", ylab="Peak Expiratory Flow", main="Sebaran PEF berdasarkan Usia")

Sebaran PEF berdasarkan Usia

abline(lm(pef_na_pef_no\$pef~ pef_na_pef_no\$age, data = pef_na_pef_no), col = "blue") lines(lowess(pef_na_pef_no\$age, pef_na_pef_no\$pef), col = "red")

Sebaran PEF berdasarkan Usia

