Special Topics Assignment # 1 - Solution

It is decided to estimate the 60 Hz voltage phasors by using sampled and digitized values of voltage observed at a transmission line terminal and Rockefeller and Udren algorithm. The sampling rate used is 480 Hz.

(a) Determine the filters for obtaining the real and imaginary components of the voltage phasors.

Using the formulas for Rockefeller Udren algorithm as discussed in class and using a sampling frequency of 480Hz, the following coefficients for filters are obtained:

Real Part			
Filter	0.6366	0	-0.6366
Imag Part	-1.6211		
Filter	-1.0211	3.2423	-1.6211

(b) Plot the frequency response of the filters and discuss them in terms of their effectiveness for eliminating non-60Hz components.

See the plots below:

As discussed in class, the magnitude for real part and imaginary part filters at 60Hz is 0.9003 and 0.9496. Therefore, to get correct values for real part and imaginary parts, we have to divide the filter outputs by 0.9003 and 0.9496 respectively.

(c) Implement the filters designed in part (a) to estimate the successive peak values and phase angles of a voltage signal whose digitized samples taken at 480 Hz are given below. Plot the estimates.

Sample #	Digitized Voltage
1	714
2	2218
3	2314
4	1233
5	-99
6	-1195
7	-1699
8	-1029
9	714
10	2219
11	2314
12	1233
13	-99
14	-1195
15	-1699

Estimation of peak values and phase angles for successive data windows is given in the Table below:

Window				Imag Part	Corrected Imag Part	Real Part	Corrected Real Part	Peak Value	Phase
1	0	0	714	-1157	-1220	454	504	1320	-67.52183
2	0	714	2218	-1280	-1349	1411	1568	2069	-40.72089
3	714	2218	2314	2282	2406	1018	1131	2659	64.819722
4	2218	2314	1233	1908	2011	-627	-696	2128	109.09693
5	2314	1233	-99	407	429	-1536	-1706	1759	165.88384
6	1233	-99	-1195	-382	-403	-1545	-1716	1763	-166.7793
7	-99	-1195	-1699	-959	-1011	-1018	-1131	1517	-138.1921
8	-1195	-1699	-1029	-1903	-2006	105	117	2009	-86.65182
9	-1699	-1029	714	-1739	-1833	1536	1706	2504	-47.0638
10	-1029	714	2219	385	406	2067	2296	2332	10.044513
11	714	2219	2314	2285	2409	1018	1131	2662	64.85102
12	2219	2314	1233	1906	2009	-627	-697	2127	109.12999
13	2314	1233	-99	407	429	-1536	-1706	1759	165.88384
14	1233	-99	-1195	-382	-403	-1545	-1716	1763	-166.7793
15	-99	-1195	-1699	-959	-1011	-1018	-1131	1517	-138.1921

