

Lastenheft

Smarte Gartenbewässerung über LoRaWAN

Mitarbeiter und Autoren:

- Rami Hammouda
- Khac Hoa Le
- Jaro Machnow

Versionshistorie

Version	Datum	Verantwortlich	Änderung
1.0	17.04.2021	Jaro Machnow	Dokumenterstellung
1.1	20.04.2021	Alle	Erstentwurf aller Inhalte
1.2	22.04.2021	Alle	Vervollständigung aller Inhalte
1.3	28.04.2021	Jaro Machnow	Fertigstellung

Inhaltsverzeichnis

1. E	intertung	5
2. /	Ausgangssituation	3
3. Z	Zielsetzung	3
	3.1 Ziele	4
	3.2 Grobe Zeitplanung	4
4. /	Anforderungen	4
	4.1 Funktionale Anforderungen	4
	4.2 Technische Anforderungen	5
	4.3 Nicht-Funktionale Anforderungen	6
	4.4 Konstruktive Anforderungen	7
	4.5 Angestrebte Lösungsskizze	7
5. 4	Abnahmeszenario	8
6. <i>A</i>	Ansprechpartner für Rückfragen	8

28.04.2021 Seite 2 von 8

1. Einleitung

Der seit 2016 bestehende Urban Garden an der HTW-Berlin auf dem Campus Wilhelminenhofstraße ist ein stetig wachsendes Projekt mit einer immer größer werdenden Anhängerschaft. Die durchgehende Weiterentwicklung, Optimierung und Vergrößerung des Gartens führte zu einer Technisierung, wie z. B. die Installation einer Solaranlage und die Anbindung über das sogenannte *The Things Network* (TTN). Nun soll der Urban Garden um ein System zur automatischen bzw. SmartHome-gesteuerten Bewässerung erweitert werden. Ziel ist es, smarte Bewässerungstechnik möglichst günstig für zu Hause erlebbar zu machen, den technisierten Urban Garden Gästen vorzuführen und Langzeiterfahrungen zu sammeln.

2. Ausgangssituation

Im Urban Garden stehen zwei Beete mit jeweils 4 m² (siehe Abbildung 1) für die Umsetzung und Experimente mit der Bewässerungsanlage zur Verfügung. Das Wasser zur Bewässerung ist in einem 500 l Tank gelagert. Aufgrund seiner leicht höheren Lage im Bezug auf die Beete ist teilweise eine Schwerkraftbewässerung möglich. Der Anschluss des Wassertanks ist in Abbildung 2 zu sehen. Zur Stromversorgung ist eine Solaranlage mit einer Spannung von 12 V und einer Leistung von maximal 8 A vorgesehen. Die Übertragung von Daten ist über das bestehende LoRaWAN- bzw. TTN-Netzwerk über die MQTT-Schnittstelle möglich.

Abbildung 1: Beet und Wassertank

Abbildung 2: Anschluss am Wassertank

28.04.2021 Seite 3 von 8

3. Zielsetzung

3.1 Ziele

Hauptziel des Projektes ist das Senden und Empfangen von Daten vom Urban Garden über das LoRaWAN-Netzwerk. Damit soll eine smarte und möglichst preisgünstige und überwachte Bewässerung von Beeten per Netzwerksteuerung umgesetzt werden. Das heißt, Sensordaten sollen über eine Schnittstelle auslesbar sein und Aktoren gezielt gesteuert werden können.

Dadurch sollen Erfahrungen für zukünftige weiterführende Projekte gesammelt werden. Die langfristige Vision ist, dass ein Großteil des Urban Gardens in Zukunft vernetzt ist und smart gesteuert werden kann. Dieses Projekt dient dafür als Grundlage.

3.2 Grobe Zeitplanung

Nr.	Anforderung	Datum Abgabe
1	Pflichtenheft und Backlog	19.05.2021
2	Sprint 1 + Qualitätssicherung	09.06.2021
3	Sprint 2 + Qualitätssicherung	30.06.2021
4	Sprint 3 + Qualitätssicherung / Gesamtabgabe	21.07.2021

28.04.2021 Seite 4 von 8

4. Anforderungen

4.1 Funktionale Anforderungen

Nr.	Beschreibung	Priorität
FA-01	Daten können vom Urban Garden aus über das TTN-Netzwerk gesendet werden.	hoch
FA-02	Daten können im Urban Garden über das TTN-Netzwerk empfangen werden.	hoch
FA-03	Daten aus dem Urban Garden können mit Hilfe eines MQTT-Clients empfangen und angezeigt werden werden.	hoch
FA-04	Daten können mit Hilfe eines MQTT-Clients an den Urban Garden gesendet werden.	hoch
FA-05	Sensordaten aus dem Urban Garden können ausgelesen werden.	hoch
FA-06	Wasserdrucksensor und Wasserdurchflusssensor müssen unterstützt werden.	hoch
FA-07	Ein Wasserstandssensor, der den Wassertank-Stand messen kann, muss unterstützt werden.	mittel
FA-08	Bodenfeuchtesensoren müssen unterstützt werden.	niedrig
FA-09	Folgende Aktoren müssen unterstützt werden: Pumpe, Magnetventil.	hoch
FA-10	Die Pumpe muss mittels eines Relais gesteuert werden	mittel
FA-11	System muss im Fehlerfall Fehlermeldungen ausgeben.	mittel
FA-12	Bei Fehlermeldungen müssen Korrekturen ausgeführt werden oder das System gestoppt werden.	niedrig
FA-13	Das Aktivieren des Aktors soll bei Vorliegen einer definierten Bodenfeuchtigkeit automatisiert erfolgen.	niedrig
FA-14	Die Dauer/Stärke der Bewässerung soll automatisch je nach Bodenfeuchte geregelt werden.	niedrig
FA-15	Es müssen Schnittstellen bereitgestellt werden, um weitere Sensoren und Aktoren anschließen zu können und den Urban Garden dadurch modular erweitern zu können.	niedrig

28.04.2021 Seite 5 von 8

4.2 Technische Anforderungen

Nr.	Beschreibung	Priorität
TA-01	Kommunikation/Datenübertragung über das LoRaWAN bzw. TTN-Netzwerk mit der MQTT-Schnittstelle.	hoch
TA-02	Komplettes System muss mit 12 V und maximal 8 A auskommen.	hoch
TA-03	Visualisierung der Daten soll mit OpenSenseMap.org erfolgen	mittel
TA-04	Der Client MQTT.fx soll als Frontend zur Steuerung und Überwachung des Urban Garden genutzt werden.	hoch
TA-05	Die Steuerung und Überwachung soll durch eine Website oder Handy App erfolgen.	niedrig
TA-06	Zur Datenübermittlung müssen verschiedene Datentypen, wie Float und Integer genutzt werden.	hoch
TA-07	Zusätzliche Funktionen sollen in der Software zur späteren modularen Verwendung mit weiteren Sensoren oder Aktoren vordefiniert sein.	mittel

4.3 Nicht-Funktionale Anforderungen

Nr.	Beschreibung	Priorität
NF-01	Die Datenpakete der Messung und zur Steuerung der Aktoren sollen möglichst klein sein (maximale 51 Byte).	hoch
NF-02	Bei Fehler/Zustand muss ein E Mail zur Benachrichtigung geschickt werden.	niedrig
NF-03	Kabel zur Verbindung der Sensoren und Aktoren mit dem System müssen sicher vor Wasser sein.	mittel
NF-04	Sensoren und Aktoren müssen im System korrekt und sicher verbunden sein.	hoch
NF-05	Die Sendungsrate der Daten der Sensoren muss einstellbar sein.	mittel
NF-06	Alle Komponenten des Systems müssen einzeln austauschbar sein.	mittel

28.04.2021 Seite 6 von 8

4.4 Konstruktive Anforderungen

Nr.	Beschreibung	Priorität
KA-01	Verbindungsstücken zwischen den Komponenten sollen falls nötig konstruiert und 3D-gedruckt werden.	mittel
KA-02	Halter für die Komponenten sollen falls nötig konstruiert und 3D-gedruckt werden.	mittel
KA-03	Ein Gehäuse für den Mikrocontroller und weitere Komponenten wie Relais soll gebaut werden.	niedrig
KA-04	Die Wasserleitung vom Tank zu den Beeten muss einen Wasserdrucksensor haben.	hoch
KA-05	Die Wasserleitung vom Tank zu den Beeten muss einen Wasserdurchflusssensor haben.	hoch
KA-06	Der Wassertank muss einen Wasserstandssensor haben.	mittel
KA-07	Im Beet müssen Bodenfeuchtesensoren verbaut sein.	niedrig
KA-08	Eine Pumpe muss zur Beförderung des Wassers vom Wassertank zu den Beeten verbaut sein.	hoch
KA-09	Schläuche und andere weitere notwendige Teile des Bewässerungssystems (z.B. Regner oder Tropfer) sollen entsprechend der selbst zu wählenden Bewässerungsart verbaut werden.	hoch
KA-10	Ein Magnetventil zum Sperren des Wasserdurchflusses zwischen Tank und den Beeten muss verbaut werden.	hoch

4.5 Angestrebte Lösungsskizze

Ein sehr wichtiger Bestandteil der automatischen Bewässerung ist das Erkennen von Fehlern und die Fehlerbehandlung. Um die Funktionsfähigkeit der automatischen Bewässerung beurteilen zu können wird folgender Aufbau vorgeschlagen:

Am Anschluss des Wassertanks wird die Wasserpumpe verbaut. Direkt dahinter folgen erst der Durchflusssensor, dann der Wasserdrucksensor und anschließend ein Magnetventil. Dieser Aufbau erlaubt die Funktionsfähigkeit der Pumpe zu beurteilen, Lecks aufzuzeigen und zugesetzte Düsen, Regner oder Tropfer (je nachdem was verwendet wird) zu erkennen.

In nachfolgender Abbildung ist dieser Aufbau skizziert.

28.04.2021 Seite 7 von 8

Abbildung 3: Vorgeschlagener Aufbau der Komponenten

5. Abnahmeszenario

Der Nutzer öffnet den den MQTT-Client MQTT.fx auf seinem Computer. In dem Programm kann er die zuletzt gesendeten Sensordaten abrufen und die Aktoren im Urban Garden steuern. Der Nutzer will nun mit der Bewässerung starten. Um zu überprüfen, ob die Pumpe korrekt funktioniert, lässt er zunächst das das Magnetventil schließen und startet die Pumpe. Bei Abfrage der Daten des Drucksensors sollte nun der entsprechende Druckwert stehen, den die Pumpe erzeugen kann. Anschließend lässt er das Magnetventil wieder öffnen. Nun sollte er konstante Werte bei der Abfrage des Wasserdrucksensors und des Durchflusssensor angezeigt bekommen. Das Wasser fließt nun im Urban Garden und die Pflanzen werden bewässert. Nach einiger Zeit schaltet der Nutzer die Pumpe im MQTT-Client wieder aus. Kurze Zeit später (weniger als 90 s) sollte die Pumpe im Urban Garden aufhören Wasser zu befördern.

6. Ansprechpartner für Rückfragen

Name: Herr Holger Martin

E-mail: Holger.Martin@htw-berlin.de

28.04.2021 Seite 8 von 8