

深度分享

电池片行业投资逻辑分析

光伏虽然是一个被所有人看好的景气赛道,但是,经过这两年的充分竞争和发展,各个细分赛道的景气度有了明显的分化。今年上半年电池片这个细分赛道是光伏产业的一个重要增长点,各项技术大爆炸,而且暗潮汹涌。大家熟悉的有 HJT (异质结),有 topcon,有 IBC,甚至还听过钙钛矿电池。总而言之,电池片这个环节目前备受瞩目。

今天就来跟大家讲解一下电池片的几种主要技术路径以及未来的一 个发展方向。

01 电池片的重要性

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- ❷ 导师直播聊热点
- ❷ 产业链全景图
- 🗙 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图

一个光伏组件的制造流程是把硅这个最基础的元素,制造成硅料,再 把硅料拉制成硅棒,硅棒切成一张张硅片,硅片再通过一定的技术加 工成电池片,电池片起到把光能转换为电能的作用,十分关键,把多 个电池片组装在一起就叫组件。

电池片是光伏组件发电的核心部件,技术路线和工艺水平会直接影响 到发电效率和使用寿命。 作为电池片,核心使命就三点:转换效率、 制造成本和使用寿命,转换效率简单理解就是在同样的光照情况下, 能够发多少度电,肯定是转换效率越高越好。效率一样的情况下就得 考虑制造的成本了,肯定是哪种技术成本低就用哪种,这样才能保证 利益最大化。

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- ❷ 导师直播聊热点
- ❷ 产业链全景图
- 🗙 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图

而使用寿命也同样很重要,否则等于增加了成本,转换效率再高、制造成本再低,只能使用1年,而别的技术可以使用25年,那也白搭,相当于拉高了长期成本。

所以整个光伏电池片的发展史都是在考量三个问题:制作成本、发电效率、使用寿命,其中使用寿命目前来看各种不同技术之间没有明显差异,一般都是在 20 年以上,因此,成本和发电效率就成为了影响行业发展的关键因素。

02 电池片的技术更迭史

我们在谈光伏的电池片的时候,通常会接触到N型电池、P型电池这样的字眼。比如最近热炒的 topcon 电池又是什么呢?这就要从两种不同的硅片说起了。

在制作硅片的时候,可以选择掺杂硼这个元素,掺了硼元素的硅片就叫P型硅片,还可以掺杂磷这种元素,掺了磷元素的硅片就是N型硅片。基于P型硅片加工而成的电池片就是P型电池片,基于N型硅片加工而成的就是N型电池片。

- × 24+场线上直播
- × 20+张产业链结构图

N型电池和P型电池的区别

Datayes! 通联数据

- ■制作硅片时掺了硼元素形成的硅片叫P型硅片,这种硅片制成的电池片叫P型电池片。
 - ■掺了磷元素形成的硅片叫N型硅片,这种硅片制成的电池片叫N型电池片。

Al Empowers Investment

Copyright © 2020 DataYes. All Rights Reserve

目前市场上,主流的电池片是基于P型硅片制成的PERC电池片, 这种电池片采用的技术路径叫PERC,这个电池片因为工艺简单,量 产的成本比较低,所以是目前的主流技术。

P型电池的一代技术叫铝背场电池。

PERC 是二代技术,这个技术在 2016 年因为相关设备的国产化有了重大突破,成本得以大幅下降,才进入高速发展期,2016 年的时候 PERC 占到整个电池片份额的 9.56%,接近 10%这个萌芽期的线。 之后的几年正式进入爆发式成长周期,仅仅用了三年的时间,到了 2019 年 PERC 的市场份额就超过铝背场电池了,占比达到 65%,这 两年更是全面替代了铝背场电池。

通过简单的梳理我们可以知道 PERC 电池片的高速发展期也才六年的时间,全面替代第一代技术也就是这两年的时间。可是椅子还没有坐热呢,就迎来了新挑战,N型电池片技术变革也开始了。

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- ❷ 导师直播聊热点
- ❷ 产业链全景图
- 🗙 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图

03 第三代技术花落谁家?

在这几年发展过程中,P型电池转换效率达到了它的天花板,理论上极限转换效率是 24.5%,目前量产的转换效率是 23.1%左右, 想要再提升的难度比较大了,所以市场就开始布局 N 型电池片。因为 N 型电池片的转换效率天生是要比 P 型来得高,理论上极限转换转率可以达到 28%,而目前量产的情况来看基本上都能做到 24%以上,好一些的能做到 25%,况且还有提高的空间,不像 P 型电池基本到头了。

- ❷ 社群深度交流
- ❷ 导师直播聊热点
- ❷ 产业链全景图
- ※ 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图

有些同学可能觉得有点难以理解哈,因为 N 型电池片的理论效率比 P 型就高了 4%,目前量产的情况就高了 1%,最多 2%,这不是太夸张了,就高这么一点也值得大家去研究去布局?下面简单给大家算一笔账哈。

把效率从 23.5%提升到 24.5%, 看起来只提升了一个百分点, 但实际上转换效率的增速是 4%啊, **24.5%/23.5%-1=4%**。

不要小看这个 4%,这意味着在相同投资额的情况下,电站的收益率能提升 4%,要知道目前投资大型电站的收益率也就 7%左右,所以提升 4%是非常可观的收益了。所以,转换效率的提升对于光伏行业的发展是至关重要的。

综上,<mark>只要解决了成本的问题 N 型电池片对 P 型电池片的替代是没有悬念的。</mark>

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- ❷ 导师直播聊热点
- ❷ 产业链全景图
- ※ 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图

今天就跟大家重点分析一下目前市场上 N 型电池片的三个技术路径,

分别是: HJT (异质结), TOPCON和IBC。

表 10. 不同	引光伏电池技术路	线对比			-22
	PERC	TOPCon	HJT	钙钛矿	IBC 9
光电效率	23.50%	24%	24.20%	25.60%	25%
优势	性价比高	改造现有产线即 可	工序少	制造成本和原材 料门槛低	兼容性高
量产	非常成熟	可量产	量产难度中等	量产难度高	未投入
技术难度	容易	高	高	低	极高
工序	少	多	最少	少	多
兼容性	_	可兼容	不兼容	可兼容	兼容多种技术
问题	技改降本瓶颈	难度高,提升效 率不够	设备投资成本高	污染大	工艺复杂
数据来源:能源	東團,财通证券研究所	1.1. 1.30			

TOPCON 电池目前已经可以量产。优势是什么呢?优势是现阶段性价比很高,因为 topcon 的生产工序和所需的设备跟 PERC 差不多,

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- ❷ 导师直播聊热点
- ❷ 产业链全景图
- 🗙 2000+条研究速递
- × 240+场社群深度交流
- ※ 24+场线上直播
- ★ 24+均线工量描 ★ 20+张产业链结构图
- (赠送价值1960元导师投资秘籍课程)

把现在的生产线稍微改一下就能生产 topcon 电池了,从这个角度出发节约了大量成本。

缺点是什么?缺点是工序很多,工序一多,产品的良率,也就是合格率就会受到影响。假设你生产一个产品只需要2个工序,生产的时候不出差错的概率还是很大的,但是如果有十几道工序,其中任何一个工序出问题,生产出来的产品就会有瑕疵,每个产品在生产的时候都会有一个预估,瑕疵率是多少,这个瑕疵率也是成本的一部分,因为不合格的产品等于报废了。肯定是瑕疵率越低越好嘛,对不对。

TOPCON电池

Datayes! 通联数据

■优势:可以兼容PERC的生产线,只要稍微改一下就

能用 (降低了成本)

■劣势: 工序多、良率偏低

■综合: 短期来看, 性价比更高

Al Empowers Investment

Copyright @ 2020 DataYes. All Rights Reserved

HJT 也就是异质结电池呢也已经少量量产了,产能目前还很少,它的 优势是工序很少,只要 4 个步骤,所以整体效率要高很多,但是设备 投资成本很高,现有的 P 型电池的生产线不符合 HJT 的要求,而新

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- ❷ 导师直播聊热点
- ❷ 产业链全景图
- 🗙 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图

买设备的话,设备价格是P型电池的2倍。所以,成本太高。不把成本打下来很难有占领市场的优势。

不过,HJT 有个巨大优势就是它可以跟钙钛矿形成叠层电池,这种电池转换效率目前是理论上最高的一种了,可以说是天花板了。所以,从这个角度出发的话,未来可能还是会往这个方向走,除非有什么更新的技术出来。

HJT异质结电池

Datayes! 通联数据

■优势: 工序少、效率高

■劣势:设备投资成本大,是PERC的一倍,对银浆的 消耗量也大(成本较高)

■综合:中长期看,降本是关键,如果叠加钙钛矿,

转换效率无敌

Copyright © 2020 DataYes. All Rights Reserved

最后一种技术是 IBC 电池技术,这种目前来说很难实现,不但成本高、技术难度也大,但是这种技术转换效率高,比前面两种都高,还有一点是,IBC 有望与 TOPCon 和 HJT 结合成下一代 TBC 及 HBC 技术,所以,IBC 延展性很强,这是它特有的优势。

❷ 产业链全景图

- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图

IBC电池 Datayes!通联数据

■优势:转换效率高

■劣势:设备投资成本高、技术难度大

■综合: 长远来看, IBC可以跟topcon和HJT结合成

下一代TBC和HBC技术,延展性很强

Al Empowers Investmen

Copyright @ 2020 DataYes. All Rights Reserve

目前,往N型电池转的话,肯定首选 TOPCON,因为短期来看性价比最高,释放产能的周期也短,毕竟原来的生产线改改就能用了,再然后呢,有可能跳过 HJT 直接发展 IBC 了,或者说 HJT 和 IBC 同时发展,就看谁的突破性更大,这两种技术各有各的缺陷,HJT 的成本如果下不来,那就没办法大规模量产。至于钙钛矿叠层电池,目前也是美好的设想,毕竟稳定性还没有一个确切数字。总而言之,科技日新月异,未来发展方向肯定是奔着"降本增效"去的,如果达不到这两点,那就没什么竞争力。

04 哪些企业在布局 N 型电池技术?

最后,我们来看一下主流企业都布局了哪些技术。首先是大厂,比如 **隆基、晶科**等老牌龙头企业都率先进行了大规模扩产,**通威、天合、** 中来股份、钧达股份也加入了战圈。不过隆基去年规划的 topcon 产

萝卜读书会 **圈子+社群模式** 原价6000/年 特惠价**2998**/年

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- ❷ 导师直播聊热点
- ❷ 产业链全景图
- 🗙 2000+条研究速递
- × 240+场社群深度交流
- ※ 24+场线上直播
- × 20+张产业链结构图

(赠送价值1960元导师投资秘籍课程)

能中途改计划了,没有如期进行,说有更好的选择。目前来看,这个最好的选择就是基于 P 型硅片发展的新技术 HPBC,转换效率突破了 P 型电池的极限。量产宣布转换效率是 25%-25.3%,隆基还是很厉害的。

B	图表21 TOPC	on 电池组件主要厂	商扩产布局情况	eaves:	
	主要厂商	基地	现有产能	规划产能	电池效率
83	晶科能源	浙江海宁尖山 安徽合肥	中试 800MW 海宁+合肥 16GW 满产	合肥二期 8GW 在建 尖山二期 11GW 电池及 15GW 组件开工,电 池量产平均效率目标 25%以上 22 年 TOPCon 电池产能或达 35GW, 出货目 标 10GW; 23 年 N 型出货占比 50%	24.6%+
	中来股份	江苏泰州 山西	2.1 GW-166 尺寸 1.5 GW-182 尺寸 山西一期首批 4GW 部分 产线开机分步爬坡	山西一期后续 4GW 在建,年底达 11.6GW 山西二期 8GW 规划建设中	24.5%
	天合光能	江苏宿迁 西宁产业园	常州 500MW 新中试 210 尺寸	宿迁 8GW-尺寸 210 下半年投产 西宁一期 5GW 电池组件 (西宁二期 5GW 路线待定)	24.5%
	晶澳科技	义乌、曲靖、合 肥、扬州	宁晋 100MW 中试线	义乌 10GW 电池组件或为 Topcon, 曲靖 10GW 电池 5GW 组件、扬州 10GW 电 池组件规划产能或为 Topcon	24.4%+

V				
一道新能	浙江衢州	6GW	2022 年或达 20GW 2023 年或达 30GW	24.6%
钧达股份	安徽滁州	一期 8GW 年内达产	二期 N 型 8GW 待定	24.5%
协鑫集成	乐山		10GW, 一期 5GW	
通威股份	眉山、金堂	中试 1GW	金堂 7.5GW 及眉山 7.5GW 已预留可升级	试生产
阿特斯			GW 级别,三季度试生产,四季度正式量产	组件效率 22.2%
无锡尚德	无锡	2GW 尺寸 182&210		
润阳			10GW 下半年建成	
正泰电器	浙江海宁		2022 年 3GW, 2023 年 6GW 2025 年达到 20GW 以上 十四五 N 型产能占比 68%	24.6%
中清智慧光伏 (国电投参股)	湖北当阳	一期 2GW 组件	二期 3GW 电池+组件待建 10GW 玻璃、背板、EVA 胶膜等材料	
料来源: PV InfoLin	k, 公司公告, 北极星	电力,Wind,平安证券研究所		::4

而 HJT 呢,布局的都是新玩家,比如<mark>华晟、爱康、金刚玻璃、东方</mark> 日升 这几家。不过产能不高,都在 5GW 这个级别。缺乏主流厂商的

萝卜读书会 <mark>圈子+社群模式</mark> 原价6000/年 特惠价**2998**/年

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- ❷ 导师直播聊热点
- ❷ 产业链全景图
- 🗙 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图

(赠送价值1960元导师投资秘籍课程)

推动,行业发展速度可能会受限,这也是市场不大看好 HJT 的一个 原因。异质结的产量比较低,而且核心技术在于设备,因此,如果想 深入研究异质结,不如看看设备企业。像捷佳伟创和迈为股份本来就 是P型电池里的设备龙头,他们在布局 HJT 电池的时候,也都抢跑 了,还有一个半路杀出来的金辰股份也参与了进来。目前 HJT 电池 设备主要就是这三家。

い一般心土	要厂商布局情况		Datayes! A
- + 20FV	- N. 60 (L.)	51-6	
图表29 HJT电	2.池组件主要厂商扩产布局情		
主要厂商	基地	现有产能	规划产能
东方日升	常州金坛、宁海基地	常州 500MW 中试线	宁海总规划 15GW, 一期 5GW 预计 2023 年 4 月投产, 其中 2GW 或年底投产
002		一期 500MW 满产	2023 年宣城三期 4.8GW 投产-双面微晶
华晟新能源	宣城 1-3 期、大理	二期 2GW 单面微晶投产	大理规划 5GW
183 L		三季度达 2.7GW 产能	850MW 异质结硅片切片项目调试爬坡
通威股份	合肥、金堂	400MW 试验线 1GW 中试线	
爱康科技	江苏泰州、江西赣州、浙 江湖州		五年内 22GW 异质结产能
明阳智能	盐城、信阳		规划布局 5GW 电池组件产线
金刚玻璃	苏州吴江	1.2GW 半片 210 尺寸 微晶 PECVD, 年目标效率 25.5%+, 功率 700w+	4.8GW 双面微晶 2023 年底前形成 6GW 产能
隆基绿能		HJT 研发与中试线	10)
华润电力	舟山		12GW 分 4 期建设, 2025 年达产
山煤国际			10GW, 一期 3GW
阿特斯	嘉兴	200MW	
晶澳科技	-69	200MW 中试线	

图表26 HJT电池工	艺流程及重点设备	5	-02
工艺流程	工艺核心	主要设备	主流设备企业
硅片吸杂、背面抛光		·	30,
清洗制绒	硅片衬底双面制绒	制绒清洗机	迈为股份、捷佳伟创
制结	制备双面非晶硅薄膜	PECVD / HWCVD 设备	迈为股份、捷佳伟创、理想万里晖、 钧石能源、金辰股份
镀膜	制备双面 TCO 导电膜	PVD / RPD 设备	捷佳伟创、迈为股份、钧石能源
印刷电极	丝印前后电极 固化不超 250 度	丝网印刷机 烧结固化炉	迈为股份、捷佳伟创、金辰股份
电/光注入退火增效、	测试分选	Dar	
资料来源: SOLARZOOI	M,公司公告,平安证券研究所		

萝卜读书会 圈子+社群模式 原价6000/年 特惠价2998 /年

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- 😐 导师直播聊热点
- ❷ 产业链全景图
- ※ 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图 (赠送价值1960元导师投资秘籍课程)

IBC 电池目前在玩的主要是爱旭股份, 隆基也在研究 HPBC 技术, 是他们自主研发的,应该是基于 P 型电池和 IBC 电池的一种结合, 并且到 2022 年底有望在西咸和泰州形成 19GW 的产能。在 IBC 电 池领域,目前有产能的就是爱旭和降基,这也是今年爱旭被热炒的原 因,因为爱旭算是领头羊了。

		.05	
图表32 N型电	池主要设备厂商	梳理	
产业链环节	设备企业	产品特性	
	晶盛机电	单晶炉龙头, 受益于 N 型硅片扩产	
	高测股份	布局切割设备及金刚线,HJT 半棒、薄片切割技术领先	
硅片环节	上机数控	异质结 N 型硅片切片机,制备异质结薄片化 N 型硅片	
1000	金博股份	高纯度热场	
0	京山轻机	HJT 清洗制绒设备, 钙钛矿电池设备	
电池环节	迈为股份	HJT 整线设备国内市占率与全球市占率双项第一,在双面微晶、低铟无铟、电镀等领域率先布局,与硅片、电池、原材料、辅材等环节深度合作	
电池环节	捷佳伟创	实现 PERC+/TOPCon/HJT 设备全覆盖,具备 HJT 整线能力 其 TOPCon PE-poly 三合一设备有望获得更多应用	
	帝尔激光	布局 TOPCon/HJT/IBC 多种高效技术,转印技术持续突破,XBC 路线有望受益	
40 W TT #	金辰股份	具备光伏组件设备"全链条"供应能力,持续发力 HJT、TOPCon 电池核心设备,非晶 HJT 用 PECVD 设备已获晋能产线验证,微晶 HJT PECVD 设备已运抵晋能科技。	
组件环节	奥特维	成熟组件的设备,新进入硅片设备、电池片设备领域:高精度串焊技术领先,光注入设备可以修复 N 型电池效率损失,子公司松瓷机电单晶炉布局 N 型硅片	

以上就是光伏电池片行业的一个逻辑梳理,大家如果感兴趣呢,可以 更深入地去了解一下这个行业。从现阶段可行性来看,肯定是首选 topcon,所以中来、钧达这一年股价涨得特别离谱,还是市场给了 topcon 很高的预期,不过大家也得注意增速和估值是否匹配,毕竟 目前还是以P型电池为主,N型电池还没放量呢。

05 隆基、晶科、爱旭电池技术大 PK

最后,我们来简单分析一下晶科、隆基和爱旭这三家的新技术有啥区 别,有什么优劣。

萝卜读书会 圈子+社群模式 原价6000/年 特惠价2998 /年

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- 😐 导师直播聊热点
- ❷ 产业链全景图
- ※ 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图

(赠送价值1960元导师投资秘籍课程)

首先,隆基是基于 P 型硅片来制作的,采用了背接触技术,也就是 IBC,结合在一起形成的 HPBC 电池片技术,而爱旭和晶科都是基于 N 型硅片, P 型硅片有什么好处呢?节省成本, 因为隆基采用的浆料,主要是铝浆加部分银浆,总体成本比 N 型电池片节约 6%,未来还有 望采用全铝浆,成本还能更低。

項目	● B 摩証HPBC	T C 短旭ABC	• D 品科TOPCON
数据来源	维基1102发布会 +Hi MO 6组件说明书	电话会议纪要 +雪球	腦科能維宜网 Tiger Neo组件说明书
硅片	P型比N型延片低6%)	NEE	NBI
技术路线	部分perc+部分 topcon+背接触	全背接触+无根	TOPCON
宣称电池片效率	目前25%-25.3%	25.5%-26%	24.5%-26%
典型医型平均及最高功率 182-72版型功率	580-600w 600w顧高,585平均	缺具体信息 600w服高	565-585w 585w最高 平均570 (202210)
最高功率组件的组件效率	23.2%	理论23.2%+	22.65%
组件温度系数	-0.29%/°C	-0.29%/°C	-0.3%/°C
9.44	首年 < 1.5%,线性衰 减0.4%	首年1%,次年 0.35%,	首年1%,线性衰 减-0.4%
发电增益相对PERC	+10%起	+11.6%	未30
紫料	银+铝浆,发展的方向 是全铝浆	银+铜,发展的方向是 无银	M.
每GW电池产建设资	预估3亿上下	预估6-8亿 (特核实)	2-2.5(Z

爱旭的 ABC 电池片,采用的是 IBC 技术路线。他们打的旗号是浆料无银,这一点也很强,目前是银+铜,未来也是打算全部无银,节省成本。

晶科的电池片采用的是 topcon 技术,最大好处就是投资成本低,因为原有基础上改装一下就能使用,爱旭的投资成本是最高的,每 GW

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- □ 日子亦及又流□ 导师直播聊热点
- ❷ 产业链全景图
- ※ 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图

大约 6-8 亿,隆基是 3 亿,晶科只需要 2-2.5 亿。这是晶科目前的优势。

从转换效率上看,三家企业的电池片都差不多,但是组件效率上,隆 基和爱旭一样,爱旭是理论效率还没有量产数据,晶科最拉跨。

综合对比,最看好隆基的新技术 HPBC,用 p 型硅片和银铝浆干出了跟友商用 n 型硅片+银浆+各种技术才做到的效率,吃进去的是草,挤出来的是奶啊。

不过,没赶上也不要灰心,一般大的变革,在真正放量的时候还会有大行情,所以这一波没赶上可以再耐心等等。

巴菲特在 2008 年金融危机时买入比亚迪,09 年几乎腰斩依然再次大胆加仓,重仓比亚迪。持股十年不涨,最后这两三年收获了三十倍的收·益。这说明了一点,做投资,不仅要看的准,还要拿的稳。

看的准,取决于选股能力;拿的稳,取决于对未来的判断。这些都离不开对行业及公司的深度了解。

- × 24+场线上直播
- × 20+张产业链结构图

新能源汽车十年前就开始炒作了,直到近两年行业才真正迎来春天。 渗透率从 1%-10%用了十年,而从 10%到 30%仅用了三年。

现在的光伏也是一样,就类似于买入后出现的第一个翻倍行情,后面的发展过程中一定会杀估值,往下跌,然后经过行业的沉淀,迎来第二次真正的放量大爆发。

所以好的赛道,从来不缺机会。错过鱼头,不要错过鱼身。

以上分享内容不构成投资建议,投资者若以此为依据做出的投资决策与通联数据无关。

- ❷ 学习圈干货学习
- ❷ 社群深度交流
- ❷ 导师直播聊热点
- ❷ 产业链全景图
- ※ 2000+条研究速递
- × 240+场社群深度交流
- × 24+场线上直播
- × 20+张产业链结构图