Équations différentielles

Calcul formel - TP 9

1. Une équation avec condition initiale

1. Pour obtenir une solution exacte, il suffit d'utiliser la commande desolve comme suit :

```
var('x')
y = function('y')(x)
yy = diff(y,x)
equadiff = yy == 2*y + exp(x)

desolve(equadiff, y, ivar=x)

Sage retourne:
(_C - e^(-x))*e^(2*x)
```

La famille des solutions est donc $-e^x + Ce^{2x}$, pour les constantes $C \in \mathbb{R}$.

2. **Énigme.** On commence par trouver l'unique solution vérifiant $y(\ln(7)) = 123456$:

```
x1 = ln(7)

y1 = 123456

sol=desolve(equadiff, y, ics=[x1,y1], ivar=x)

sol
```

ce qui donne la solution

$$y(x) = \frac{123463}{49}e^{2x} - e^x.$$

Puis on l'évalue en x = 0:

$$x0 = 0$$

print $sol(x=x0).full_simplify()$
Sage renvoie $\frac{123414}{49}$.

Réponse attendue : 12341449.

2. Le poulet de Newton

1. On commence par définir les variables, la fonction température et sa dérivée, les constantes correspondant aux conditions initiales, l'équation différentielle; puis on résout cette dernière :

```
# Constante de l'equation de Newton
var('c')
var('t')
          # Temps
T = function('T')(t) # T(t) : temperature du poulet
TT = diff(T,t) # sa derivee T'(t)
         # Temperature initiale du poulet
F0 = 250
         # Temperature du four
equadiff = TT == c*(F0-T)
sol = desolve(equadiff, T, ivar=t, ics=[0,T0])
sol
```

Sage renvoie 5*(50*e^(c*t) - 49)*e^(-c*t). Il ne reste plus qu'à utiliser la donnée supplémentaire sur le temps de cuisson pour déterminer c :

```
Tcuit = 200
tcuisson = 100
equac = sol(t=tcuisson) == Tcuit
find_root(equac,0,1)
```

On prend l'approximation numérique :

```
c = 0.0158923520512...
```

2. Énigme. On procède exactement de la même manière, la seule différence étant que la température du four dépend maintenant du temps :

```
var('t')
           # Temps
T = function('T')(t) # T(t) : temperature du poulet
TT = diff(T,t) # sa derivee T'(t)
F = 250 - 230*exp(-1/5*t) # Temperature du four
          # Temperature initiale du poulet
T0 = 5
c = 0.0158923520512
equadiff = TT == c*(F-T)
sol = desolve(equadiff, T, ivar=t, ics=[0,T0])
```

On obtient une solution assez compliquée. L'inconnue du problème est maintenant le temps t, l'équation se résout tout aussi facilement :

```
Tcuit = 200
equat = sol == Tcuit
find_root(equat,1,200)
Sage trouve retourne t = 104.9029783543448...
Réponse attendue : 105.
```

Sur la figure, en vert la température du four, en bleu celle du poulet, qui atteint la température souhaitée (en rouge) pour t proche de 105 minutes.

3. Balistique

1. Sans frottements.

On commence par définir comme variables l'angle de tir, la vitesse initiale et la constante de gravitation universelle, puis on en déduit les composantes de la vitesse initiale.

```
# Angle de tir
var('alpha')
# Vitesse initiale
var('v0')
# Constante de gravitation
var('g')
# Composantes de la vitesse initiale
vx0 = v0*cos(alpha)
vz0 = v0*sin(alpha)
```

On définit ensuite la variable t temporelle, la fonction x(t) et l'équation différentielle qu'elle vérifie, qu'on résout, en tenant compte des conditions initiales, à l'aide de la commande desolve :

```
# Equation differentielle en x
t = var('t')
x = function('x')(t)
xx = diff(x,t)
xxx = diff(x,t,2)
equadiffx = xxx == 0
solx = desolve(equadiffx, x, ivar=t, ics=[0,0,vx0])
solx
```

On obtient t*v0*cos(alpha). On fait ensuite de même avec la seconde coordonnée z:

```
# Equation differentielle en z
z = function('z')(t)
zz = diff(z,t)
zzz = diff(z,t,2)
equadiffz = zzz == -g
```

```
solz = desolve(equadiffz, z, ivar=t, ics=[0,0,vz0])
solz
```

ce qui donne : -1/2*g*t^2 + t*v0*sin(alpha). On peut alors tracer les courbes paramétrées

$$(x(t), z(t)) = \left(v_0 \cos(\alpha)t, v_0 \sin(\alpha)t - \frac{1}{2}gt^2\right)$$

pour différentes valeurs de l'angle α grâce à une boucle et à la commande parametric_plot :

```
# Dessin des solutions pour differentes valeur d'angle
G = Graphics()
myg = 9.8
myv0 = 100
for myalpha in srange(0,pi/2,0.07):
    plotsolx = solx(g=myg,v0=myv0)
    plotsolz = solz(g=myg,v0=myv0)
    G = G + parametric_plot((plotsolx(alpha=myalpha),plotsolz(alpha=myalpha)),
                            (t,0,50)
G.show(aspect_ratio=1, xmin=0,xmax=1050,ymin=-50,ymax=550)
```

2. On ajoute l'équation de la parabole de sécurité, puis on trace le tout :

```
var('u')
h = v0^2/(2*g)
ploth = h(g=myg,v0=myv0)
G = G + parametric_plot((u,ploth-u^2/(4*ploth)),(u,0,1050),color='red')
G.show(aspect_ratio=1, xmin=0,xmax=1050,ymin=-50,ymax=550)
```

Voici le résultat :

3. Avec frottements.

La démarche est la même qu'à la première question. On définit les variables :

```
var('v0')
vx0 = v0*cos(alpha)
vz0 = v0*sin(alpha)
var('alpha')
var('g')
var('f')
assume(f>0)
```

```
t = var('t')
x = function('x')(t)
xx = diff(x,t)
xxx = diff(x,t,2)
equadiffx = xxx == -f*xx
solx = desolve(equadiffx, x, ivar=t, ics=[0,0,vx0])
solx
```

On obtient : $-v0*cos(alpha)*e^(-f*t)/f + v0*cos(alpha)/f$. Puis on passe à l'équation différentielle en z(t) :

```
z = function('z')(t)
zz = diff(z,t)
zzz = diff(z,t,2)
equadiffz = zzz == -g-f*zz
solz = desolve(equadiffz, z, ivar=t, ics=[0,0,vz0])
solz
```

Ce qui donne v0*sin(alpha)/f - (f*v0*sin(alpha)+g)*e^(-f*t)/f^2 - (f*g*t-g)/f^2. L'équation paramétrique est donc :

$$\left(x(t),z(t)\right) = \left(\frac{v_0}{f}\cos(\alpha) - \frac{v_0}{f}\cos(\alpha)e^{-ft}, \frac{v_0}{f}\sin(\alpha) + \frac{g}{f^2} - \frac{g}{f}t - \frac{1}{f^2}(fv_0\sin(\alpha) + g)e^{-ft}\right).$$

Enfin, on définit les courbes pour différentes valeurs d'angle :

G.show(aspect_ratio=1, xmin=0,xmax=1050,ymin=-50,ymax=550)

Sage affiche:

4. Énigme. On fait un zoom sur la zone qui nous intéresse. Il faut aussi ajuster la valeur de l'angle α de façon à avoir assez de courbes au voisinage du point d'abscisse 500 :

```
G = Graphics()
myg = 9.8
myv0 = 100
myf = 0.03
for myalpha in srange(0.9,1.0,0.001):
    plotsolx = solx(g=myg,v0=myv0,f=myf)
    plotsolz = solz(g=myg,v0=myv0,f=myf)
    G = G + parametric_plot((plotsolx(alpha=myalpha),plotsolz(alpha=myalpha)),
                            (t,0,50)
G.show(aspect_ratio=1, xmin=498,xmax=502,ymin=259,ymax=262)
```

On obtient le graphe suivant :

On constate que l'altitude critique est entre 261 et 262.

Réponse attendue : 262.

4. Méthode d'Euler

Partie I. Méthode d'Euler classique.

1. On définit, comme nous en avons l'habitude, une fonction contenant une boucle.

```
def euler(f,x0,y0,xmax,h):
    xn = x0
    yn = y0
    courbe = [(x0,y0)]
    while xn < xmax:
        xn, yn = xn+h, yn + h*f(x=xn,y=yn)
```

```
courbe = courbe + [(xn,yn)]
return courbe
```

Notez cependant le procédé de double affectation!

2. On commence par calculer la solution exacte et par définir son graphe :

```
var('x')
y = function('y')(x)
yy = diff(y,x)
f = x*cos(x)
x0 = 0
y0 = 1
sol_sage = desolve(yy == f, y, ics=[x0,y0])
print sol_sage
G = plot(sol_sage,(x,0,3))
On obtient : x*sin(x) + cos(x). On passe ensuite à la solution approchée :
xmax = 3
h = 0.4
courbe = euler(f,x0,y0,xmax,h)
G = G + line(courbe, color='red')
G.show()
```

Sage affiche en bleu la solution exacte et en rouge la solution approchée :

3. On utilise une boucle pour faire varier la condition initiale :

```
var('y')
g = \sin(x^2*y)
x0_g = 0
xmax_g = 5
h_g = 0.1
```

```
G_g = Graphics()
for y0_g in srange(-2,3,0.1):
    courbe = euler(g,x0_g,y0_g,xmax_g,h_g)
    G_g = G_g + line(courbe, color='red')
G_g.show(aspect_ratio=1)
```


Partie II. Méthode d'Euler améliorée.

1. On définit une fonction qui améliore la méthode précédente

```
var('x,y')
def euler_ameliore(f,x0,y0,xmax,h):
    xn = x0
    yn = y0
    courbe = [(x0,y0)]
    while xn < xmax:
        xn, yn = xn+h, yn+1/2*h*(f(x=xn,y=yn)+f(x=xn+h,y=yn+h*f(x=xn,y=yn)))
        courbe = courbe + [(xn,yn)]
    return courbe
```

puis, afin de comparer les deux méthodes, on ajoute au graphe calculé précédemment la courbe représentative de la nouvelle solution approchée :

```
courbe = euler_ameliore(f,x0,y0,xmax,h)
G = G + line(courbe, color='orange')
G.show(aspect_ratio=1)
```

En bleu la solution exacte, en rouge la méthode d'Euler classique et en orange la méthode d'Euler améliorée.

Pour l'équation $y' = \sin(x^2y)$:

```
for y0_g in srange(-2,3,0.1):
    courbe = euler_ameliore(g,x0_g,y0_g,xmax_g,h_g)
    G_g = G_g + line(courbe, color='orange')
G_g.show(aspect_ratio=1)
```


2. Énigme. On utilise notre fonction améliorée :

$$f = y$$

```
x0 = 0
y0 = 1
xmax = 1
h = 1/1000
courbe = euler_ameliore(f,x0,y0,xmax,h)
xn,yn = courbe[-1]
```

L'instruction courbe [-1] permet de sélectionner le dernier élément de la liste courbe.

L'équation différentielle étant y' = y, les solutions sont les $y(x) = ke^x$. L'unique solution vérifiant y(0) = 1 est $y(x) = e^x$. Donc y(1) = e.

La méthode d'Euler améliorée fournit donc une approximation de y(1) par yn.n() (donc de e):

2.71828137575176...

alors que e = 2.71828182845905...

Nous obtenons 6 chiffres exacts après la virgule.

Réponse attendue : 6.