Корректность определения понятия мощности конечного множества. Принцип Дирихле

Теорема 1. Если $f: \{1, 2, ..., n\} \mapsto A$ и $g: \{1, 2, ..., m\} \mapsto A$ — биективные отображения, то m = n.

Доказательство. Перейдём от отображения g к его обратному $g^{-1}:A\mapsto\{1,2,\ldots,m\}$. Отображение g^{-1} является биективным. Построим композицию отображений f и g^{-1}

$$g^{-1} \circ f : \{1, 2, \dots, n\} \mapsto \{1, 2, \dots, m\}.$$

Композиция биективных отображений — биективное отображение. Значит отображение $g^{-1}\circ f$ биективно. По лемме о биективном отображении n=m.

Следствие 1. Если A — конечное непустое множество, |A| = n и |A| = m, то n = m.

Итак, мощность любого конечного непустого множества не может равняться двум разным натуральным числам.

Теорема 2 (принцип Дирихле). Пусть A и B — конечные непустые множества и |A| > |B|. Тогда любое отображение $f: A \mapsto B$ не является инъективным.

Доказательство. Так как множество A конечное и непустое, то существует биективное отображение $g:\{1,2,\ldots,n\}\mapsto A$ и |A|=n. Так как множество B конечное и непустое, то существует биективное отображение $h:\{1,2,\ldots,m\}\mapsto B$ и |B|=m. Условие на мощности множеств |A|>|B| понимается как неравенство

$$n > m. (1)$$

Доказательство теоремы проведём от противного. Допустим, что существует инъективное отображение $f:A\mapsto B.$ Рассмотрим композицию трёх отображений

$$h^{-1} \circ (f \circ g) : \{1, 2, \dots, n\} \mapsto \{1, 2, \dots, m\}.$$

Все три отображения, участвующие в композиции являются инъективными. Композиция инъективных отображений — инъективное отображение. По лемме об инъективном отображении $n \leq m$. Получили противоречие с (1).

Приведём широко используемую интерпретацию принципа Дирихле в терминах зайцев и клеток. Пусть имеется два конечных непустых множества A и B. В первом множестве n элементов, а во втором m элементов, при этом n>m. Элементы множества A — зайцы, а множества B — клетки. Зайцев больше, чем клеток. Пусть имеется произвольное отображение из множества A в множество B, т.е. отображение, которое каждому зайцу ставит в соответствие ровно одну клетку. Поместим зайцев в соответствующие клетки. Так как отображение не инъективное, то найдутся два зайца, которым соответствует одна клетка, т.е. клетка, в которой окажутся два или более зайцев. Итак, принцип Дирихле утверждает, что если зайцев больше, чем клеток, то после рассадки всех зайцев по клеткам найдётся клетка, в которой сидят хотя бы два зайца.

Приведём пример использования принципа Дирихле. Докажем следующее утверждение.

Утверждение 1. Среди любых 13 человек найдутся два человека, родившихся в один и тот же месяц.

Доказательство. Пусть A — множество, состоящее из 13 человек, |A|=13. Пусть B — множество месяцев в году, |B|=12. Изготовим отображение $f:A\mapsto B$. Поставим в соответствие каждому человеку из множества A месяц из множества B, в котором этот человек родился. Можно провести следующую аналогию. Зайцы — это люди. Есть клетки, на которых написаны месяцы. Мы помещаем каждого зайца—человека в клетку, на которой написан месяц его рождения. Так как зайцев больше чем клеток, то найдётся клетка, в которой сидят хотя бы два зайца, т.е. найдётся месяц, в который родились хотя бы два человека.

Правило суммы для множеств

Теорема 3 (правило суммы для двух множеств). Если A, B — конечные множества такие, что $A \cap B = \emptyset$, то $A \cup B$ — конечное множество и $|A \cup B| = |A| + |B|$.

 \mathcal{A} оказательство. Пусть $A=\varnothing$. Тогда |A|=0 и

 $A \cup B = B \implies A \cup B$ — конечное множество и $|A \cup B| = |B| = |A| + |B|$.

Пусть $B=\varnothing$. Тогда |B|=0 и

 $A \cup B = A \implies A \cup B$ — конечное множество и $|A \cup B| = |A| = |A| + |B|$.

Пусть теперь $A \neq \varnothing$, $B \neq \varnothing$ и $A \cap B = \varnothing$. Так как A — конечное множество, то существует биективное отображение $f:\{1,2,\ldots,n\}\mapsto A$ и |A|=n. Так как B — конечное множество, то существует биективное отображение $g:\{1,2,\ldots,m\}\mapsto B$ и |B|=m. Определим отображение

$$h: \{1, 2, \dots, n, n+1, n+2, \dots, n+m\} \mapsto A \cup B$$

следующим образом

$$h(i) = egin{cases} f(i), & ext{ если } i \leq n, \\ g(i-n), & ext{ если } i > n. \end{cases}$$

Докажем, что h — биективное отображение.

Инъективность отображения h. Покажем, что h — инъективное отображение. Для этого рассмотрим два произвольных натуральных числа $p \le n + m$ и $q \le n + m$, для которых выполняется равенство

$$h(p) = h(q). (2)$$

Цель — показать, что p=q. Возможны только четыре случая, которые мы рассмотрим по отдельности.

 $\mathit{Cлучай}$ 1. Пусть $p \leq n$ и $q \leq n$. Тогда

(2)
$$\Rightarrow$$
 $f(p) = f(q) \Rightarrow p = q$.

Последний переход справедлив в силу инъективности отображения f.

 $\mathit{Cлучай}\ 2.\ \Pi$ усть $p \leq n$ и $q > n.\$ Тогда

$$(2) \Rightarrow f(p) = g(q-n).$$

Элемент $f(p) \in A$ и элемент $g(q-n) \in B$ — один и тот же элемент. Следовательно, $A \cap B \neq \varnothing$. Получаем противоречие с тем, что $A \cap B = \varnothing$. Стало быть, этот случай не реализуется.

Cлучай 3. Пусть p>n и $q\leq n$. Тогда

$$(2) \Rightarrow g(p-n) = f(q).$$

Элемент $f(q) \in A$ и элемент $g(p-n) \in B$ — один и тот же элемент. Следовательно, $A \cap B \neq \emptyset$. Получаем противоречие с тем, что $A \cap B = \emptyset$. Следовательно, этот случай невозможен.

 $\mathit{Cлучай}$ 4. Пусть p>n и q>n. Тогда

(2)
$$\Rightarrow$$
 $g(n-p) = g(n-q) \Rightarrow n-p = n-q \Rightarrow p = q.$

Mы рассмотрели все возможные случаи — два из них оказались невозможными, а в двух других случаях мы показали, что элементы p и q совпадают. Инъективность отображения h доказана.

Сюръективность отображения h. Покажем, что отображение h является сюръективным. Для этого рассмотрим произвольный элемент $y \in A \cup B$. Цель — показать, что элемент y имеет хотя бы один прообраз при отображении h. Здесь возможны только два случая, которые рассмотрим по отдельности.

Случай 1. Пусть $y \in A$. Отображение f сюръективно. Значит элемент y имеет хотя бы один прообраз при отображении f, т.е. существует элемент $i \in \{1, 2, \dots, n\}$ такой, что f(i) = y. Учитывая равенство f(i) = h(i), получаем, что i является прообразом элемента y при отображении h.

Случай 2. Пусть $y \in B$. Отображение g сюръективно. Стало быть, существует элемент $i \in \{1,2,\ldots,m\}$ такой, что g(i)=y. Учитывая соотношение h(i+n)=g(i), получаем, что элемент i+n является прообразом элемента g при отображении g.

Mы рассмотрели все возможные случаи и в каждом из них нашли прообраз элемента y при отображении h. Следовательно, h — сюръективное отображение.

Итак, отображение h инъективно и сюръективно, а значит и биективно. Следовательно, $A \cup B$ — конечное множество и $|A \cup B| = n + m = |A| + |B|$.

Теорема 4 (правило суммы для произвольного числа множеств). *Если* A_1, A_2, \ldots, A_k — конечные множества такие, что $A_i \cap A_j = \emptyset$ для любых i, j таких, что $i \neq j$, то $A_1 \cup A_2 \cup \ldots \cup A_k$ — конечное множество и $|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \ldots + |A_k|$.

Доказательство. Докажем утверждение по индукции по числу множеств k.

 $\mathit{Baзa}\ \mathit{индукциu}.$ Если k=1, то утверждение обращается в тривиальный факт. Если k=2, то утверждение является теоремой о правиле суммы для двух множеств, которую мы уже доказали.

Пусть $k \geq 3$.

Индуктивное предположение. Если $A_1, A_2, \ldots, A_{k-1}$ — конечные множества такие, что $A_i \cap A_j = \varnothing$ для любых i,j таких, что $i \neq j$, то $A_1 \cup A_2 \cup \ldots \cup A_{k-1}$ — конечное множество и $|A_1 \cup A_2 \cup \ldots \cup A_{k-1}| = |A_1| + |A_2| + \ldots + |A_{k-1}|$.

Совершим индуктивный переход. Рассмотрим объединение k конечных попарно непересекающихся множеств A_1, A_2, \ldots, A_k

$$A_1 \cup A_2 \cup \ldots \cup A_{k-1} \cup A_k = \underbrace{(A_1 \cup A_2 \cup \ldots \cup A_{k-1})}_{A} \cup A_k = A \cup A_k.$$

По индуктивному предположению множество A конечно. Так как $A_i \cap A_k = \varnothing$ для каждого $i \in \{1,2,\ldots,k-1\}$, то $A \cap A_k = \varnothing$. По индуктивному предположению множество $A \cup A_k$ конечное и $|A \cup A_k| = |A| + |A_k|$. Остаётся сделать ещё один шаг

$$|A| + |A_k| = |A_1 \cup A_2 \cup \ldots \cup A_{k-1}| + |A_k| = (|A_1| + |A_2| + \ldots + |A_{k-1}|) + |A_k|.$$

Бесконечные множества

Напомним, что множество A называется бесконечным, если оно не является конечным, т.е. для любого натурального числа n не существует биективного отображения из множества $\{1,2,\ldots,n\}$ в множество A. Все бесконечные множества делятся на два типа: счётные и несчётные.

Определение 1. Бесконечное множество A называется счётным множеством или множеством мощности \aleph_0 , если множество натуральных чисел равномощно множеству A.

Неформально говоря, счётное множество — это множество, в котором столько элементов сколько натуральных чисел.

Равномощность множества натуральных чисел множеству A равносильна тому, что между натуральными числами и элементами множества A можно установить взаимно однозначное соответствие. Учитывая это обстоятельство, элементы счётного множества A можно обозначать одним символом с натуральными индексами $A = \{a_1, a_2, \ldots, a_n, \ldots\}$.

Примеры. Рассмотрим примеры счётных и несчётных множеств.

- 1. $A = \mathbb{N}$ счётное множество. Взаимно однозначное соответствие между натуральными числами и натуральными числами реализует тождественное отображение $id_{\mathbb{N}} : \mathbb{N} \mapsto \mathbb{N}, id_{\mathbb{N}}(n) = n.$
- 2. $A=\mathbb{N}\cup\{0\}$ счётное множество. Равномощность множества натуральных чисел множеству $\mathbb{N}\cup\{0\}$ реализует биективное отображение $f:\mathbb{N}\mapsto\mathbb{N}\cup\{0\},\ f(n)=n-1$ для любого натурального числа n.
- 3. Если A множество бесконечных последовательностей нулей и единиц, то A несчётное множество. Что такое бесконечная последовательность нулей и единиц? Это бесконечный набор, расположенных друг за другом элементов, каждый из которых является нулём или единицей. Две бесконечные последовательности нулей и единиц

считаются разными, если существует позиция, в которой последовательности различаются. Докажем факт несчётности множества A — множества бесконечных последовательностей нулей и единиц от противного. Допустим обратное. Предположим, что все бесконечные последовательности нулей и единиц можно занумеровать натуральными числами:

$$\mathbb{N}_{2} 1: (a_{11}, a_{12}, a_{13}, \dots a_{1n}, \dots)$$
 $\mathbb{N}_{2} 2: (a_{21}, a_{22}, a_{23}, \dots a_{2n}, \dots)$
 $\dots \dots \dots \dots$
 $\mathbb{N}_{2} n: (a_{n1}, a_{n2}, a_{n3}, \dots a_{nn}, \dots)$
 $\dots \dots \dots \dots$

Здесь приведены только несколько бесконечных последовательностей нулей и единиц. Все остальные, не указанные в этом перечне, заменены многоточиями. Отметим, что каждая бесконечная последовательность нулей и единиц присутствует в этом списке и имеет свой уникальный номер. Рассмотрим следующую бесконечную последовательность нулей и единиц:

$$\alpha = ((1 - a_{11}), (1 - a_{22}), (1 - a_{33}), \dots, (1 - a_{nn}), \dots).$$

В этой последовательности на первой позиции стоит элемент $(1-a_{11})$, отличный от элемента a_{11} , стоящего на первой позиции в последовательности N_2 1. Значит последовательность α не является последовательностью \mathfrak{N} 1. На второй позиции в последовательности α находится элемент $(1-a_{22})$, отличный от элемента a_{22} , стоящего на второй позиции в последовательности \mathbb{N} 2. Значит последовательность α не является последовательностью № 2. Третью позицию в последовательности α занимает элемент $(1-a_{33})$, отличный от элемента a_{33} , стоящего на третьей позиции в последовательности № 3. Следовательно, последовательность α не есть последовательность \mathbb{N} 3. В общем случае, последовательность α не является последовательностью № n (для любого номера n), т.к. последовательность α и последовательность N_2 n различаются в позиции с номером n. Таким образом, последовательность α не имеет номера. Получаем противоречие с тем фактом, что мы занумеровали все бесконечные последовательности нулей и единиц.

Декартово произведение множеств. Правило произведения для множеств.

Пусть A, B — непустые множества. Рассмотрим $a \in A$ и $b \in B$, $a \neq b$. Из элементов a, b мы можем образовать множество $\{a, b\}$. Множество $\{a, b\}$ называется неупорядоченной парой элементов.

Если в множестве $\{a,b\}$ указано какой элемент первый, а какой второй, то мы говорим о такой паре, как об *упорядоченной паре элементов* и пишем (a,b), если a — первый элемент в паре, а b — второй, или (b,a), если b — первый элемент в паре, а a — второй. Отметим, что в упорядоченной паре элементы могут совпадать.

Две упорядоченные пары элементов равны, если соответствующие элементы этих пар совпадают:

$$(a,b) = (c,d) \Leftrightarrow a = c$$
 и $b = d$.

Соответствуенно, две упорядоченные пары не равны, если они различаются хотя бы в одной позиции.

Определение 2. Декартовым произведением множеств A и B называется множество $A \times B$ такое, что

- a) если $A=\varnothing$ или $B=\varnothing$, то $A\times B=\varnothing$;
- б) если $A \neq \emptyset$ и $B \neq \emptyset$, то $A \times B = \{(a,b) : a \in A \land b \in B\}.$

По аналогии с упорядоченной парой элементов можно ввести понятие упорядоченного набора из n элементов. Пусть A_1, A_2, \ldots, A_n — непустые множества. Рассмотрим произвольные элементы $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$. Из этих элементов мы можем составить упорядоченный набор

$$(a_1,a_2,\ldots,a_n),$$

т.е. набор из n элементов, расположенных друг за другом в таком порядке: первый элементы — a_1 , второй элемент — a_2 , ..., n-й элемент — a_n .

Два упорядоченных набора являются равными, если в них совпадают число элементов и соответствующие элементы

$$(a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_m) \Leftrightarrow n = m \text{ if } a_i = b_i, i = 1, 2, \dots, n.$$

Определение 3. Декартовым произведением множеств A_1, A_2, \ldots, A_n называется множество $A_1 \times A_2 \times \ldots \times A_n$ такое, что

a) если хотя бы одно из множеств A_1, A_2, \ldots, A_n пусто, то $A_1 \times A_2 \times \ldots \times A_n = \emptyset$;

б) если все множества A_1, A_2, \dots, A_n являются непустыми, то

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) : a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n\}.$$

Теорема 5 (правило произведения для двух множеств). Если $A, B - \kappa$ онечные множества, то $A \times B - \kappa$ онечное множество и $|A \times B| = |A| \cdot |B|$.

Доказательство. Пусть $A=\varnothing$. Тогда |A|=0. По определению $A\times B=\varnothing$. Следовательно, $A\times B$ — конечное множество и

$$|A \times B| = 0 = 0 \cdot |B| = |A| \cdot |B|.$$

Пусть $B=\varnothing$. Тогда |B|=0. По определению $A\times B=\varnothing$. Следовательно, $A\times B$ — конечное множество и

$$|A \times B| = 0 = |A| \cdot 0 = |A| \cdot |B|.$$

Пусть теперь $A \neq \emptyset$ и $B \neq \emptyset$. Так как A — конечное непустое множество, то существует натуральное число n и биективное отображение f: $\{1,2,\ldots,n\}\mapsto A$. Фактически, это биективное отображение нумерует элементы множества A первыми n натуральными числами $A=\{a_1,a_2,\ldots,a_n\}$. Рассмотрим множество упорядоченных пар, в которых первый элемент — элемент a_i , а второй — любой элемент множества B:

$${a_i} \times B = {(a_i, b) : b \in B},$$

где $i=1,2,\ldots,n$. Для любого $i\in\{1,2,\ldots,n\}$, множество $\{a_i\}\times B$ конечное и $|\{a_i\}\times B|=|B|$ (проверьте это с помощью построения биективного отображения из множества $\{a_i\}\times B$ в множество B).

Рассмотрим множества $\{a_1\} \times B, \{a_2\} \times B, \dots, \{a_n\} \times B$. Утверждается, что любые два из них не пересекаются:

$$(\{a_i\} \times B) \cap (\{a_j\} \times B) = \emptyset, i \neq j.$$

Почему? Потому, что элементами первого множества являются упорядоченные пары, в которых первый элемент — элемент a_i , а элементами второго множества являются упорядоченные пары, в которых первый элемент — элемент a_j . Любая пара из первого множества отличается от любой пары из второго множества в первой компоненте.

Несложно доказать, что объединение множеств $\{a_1\} \times B, \{a_2\} \times B, \ldots, \{a_n\} \times B$ представляет собой $A \times B$:

$$A \times B = (\{a_1\} \times B) \cup (\{a_2\} \times B) \cup \ldots \cup (\{a_n\} \times B).$$

Теперь остаётся применить правило суммы для множеств. Декартово про- изведение $A \times B$ — конечное множество и

$$|A \times B| = \underbrace{\lfloor \{a_1\} \times B \rfloor}_{|B|} + \underbrace{\lfloor \{a_2\} \times B \rfloor}_{|B|} + \ldots + \underbrace{\lfloor \{a_n\} \times B \rfloor}_{|B|} = n \cdot |B| = |A| \cdot |B|.$$

Теорема 6 (правило произведения для произвольного числа множеств). Если A_1, A_2, \ldots, A_n — конечные множества, то $A_1 \times A_2 \times \ldots \times A_n$ — конечное множество $u \mid A_1 \times A_2 \times \ldots \times A_n \mid = |A_1| \cdot |A_2| \cdot \ldots \cdot |A_n|$.

Доказательство этого утверждения остаётся читателю в качестве упраженения.