Institut International de Technologie Cours Théorie des langages & automates

Les grammaires

Soufiene.Lajmi@gmail.com

Année universitaire 2020-2021

Plan

- Introduction et définitions
- Dérivation
- Mot et langage générés par une grammaire
- Classification de Chomski

Introduction

 Une grammaire est une notation pour la description de langages

Idée de base:

- utiliser des variables pour représenter des ensembles de mots (i.e., langages).
- Ces variables sont définies récursivement les uns par les autres.
- Les règles récursives ("productions") ne permettent que la concaténation.
- Les règles alternatives pour une variable permettent l'union.

Grammaire (définition)

Une grammaire de réécriture est un 4-uplet

$$G = \langle V_N, V_T, S, P \rangle$$

- V_N: vocabulaire non terminal
- V_T: vocabulaire terminal
- S∈ V_N: axiome ou symbole initial; racine de la grammaire; non terminal
- P : règles de production (ou de réécriture)
- $V_N \cap V_T = \emptyset$

Règle

 Une règle est un couple (φ, ψ) qu'on note en général :

$$\phi \rightarrow \psi$$
 où : $\phi \in (V_N \cup V_T)^* . V_N . (V_N \cup V_T)^*$ et $\psi \in (V_N \cup V_T)^*$

- on dit que φ se réécrit ψ
- φ est appelé partie gauche de la règle
- ψ est appelé partie droite de la règle

Exemple de grammaire

- $V_N = \{S, A, B\}$
- $V_T = \{0, 1\}$
- S∈ V_N: axiome
- P:

 $S \rightarrow 0A1B$

1B → 1ABB

 $1A \rightarrow A1$

1B → 11

 $0A \rightarrow 00$

Écriture simplifiée

 Pour simplifier l'écriture, l'ensemble des règles suivantes:

$$\phi \rightarrow \psi_1, \ \phi \rightarrow \psi_2, ..., \phi \rightarrow \psi_n$$

Sera noté par :

$$\phi \rightarrow \psi_1 | \psi_2 | \dots | \psi_n$$

Dérivation immédiate

 φ => ψ est dite Dérivation immédiate si et seulement si:

```
- \phi = xuy, u \neq \varepsilon

- \psi = xvy

- u \rightarrow v \in P
```

Dérivation à l'ordre k

 On dit que φ se dérive à l'ordre k en ψ et on note:

$$\phi =>^k \psi$$

• Ssi il existe $\gamma \in (V_N \cup V_T)^*$ tel que:

$$\phi = >^{k-1} \gamma$$
 et $\gamma = > \psi$

Dérivation

• On dit que φ se dérive en ψ et on note:

$$\phi =>^* \psi$$

• Ssi il existe $k \in N$ tel que: $\phi =>^k \psi$

Mot généré par une grammaire

- On dit que w∈V_T* est engendré (généré) par une grammaire si on peut l'obtenir au moyen de réécritures à partir de l'axiome.
- Un mot appartenant à (V_N∪V_T)* et dérivé de l'axiome est appelé une proto-phrase.
- ψ est une proto-phrase ssi $S = >^* \psi$.
- Un mot généré par G est une proto-phrase de G ne contenant aucun symbole non terminal.

Langage généré par une grammaire

 Le langage généré par G, noté L(G) est l'ensemble des mots générés par G.

$$L(G) = \{w \in V_T^*; S = >^* w\}$$

 Deux grammaires G1 et G2 sont équivalentes ssi

$$L(G1) = L(G2).$$

Exemples de langages générés par G

G = ({a, b}, {S, A}, S, P),
• P={S
$$\rightarrow$$
bbA; A \rightarrow aaA; A \rightarrow aa}

$$G = (\{0, 1\}, \{S\}, S, P)$$
:

• $P={S\rightarrow 1S; S\rightarrow 0S; S\rightarrow 1}$

$$G = (\{a, b\}, \{S\}, S, P)$$
:

• P={S \rightarrow aSb; S \rightarrow ϵ }

 Une dérivation dans laquelle on réécrit toujours le non terminal le plus à gauche est appelée "dérivation la plus à gauche".

 De même, une dérivation dans laquelle on réécrit toujours le non terminal le plus à droite est dite "dérivation la plus à droite".

- Exemple:
 - Soit la grammaire G sur {a, b, c } dont les productions sont :
 - S → aBc | aCb | aAc
 - $A \rightarrow BC$
 - B \rightarrow aS | cS | ϵ
 - C \rightarrow aB | bB | ϵ

Dérivation la plus à gauche du mot w = acabbc :

```
- S \Rightarrow aBc  (S \rightarrow aBc)

- aBc \Rightarrow acSc(B \rightarrow cS)

- acSc \Rightarrow acaCbc  (S \rightarrow aCb)

- acaCbc \Rightarrow acabBbc  (C \rightarrow bB)

- acabBbc \Rightarrow acabbc  (B \rightarrow \epsilon)
```

Dérivation la plus à droite du mot w = acabbc :

-
$$S \Rightarrow aAc$$
 $(S \rightarrow aBc)$
- $aAc \Rightarrow aBCc$ $(A \rightarrow BC)$
- $aBCc \Rightarrow aBbBc$ $(C \rightarrow bB)$
- $aBbBc \Rightarrow aBbc$ $(B \rightarrow \epsilon)$
- $aBbc \Rightarrow acSbc$ $(B \rightarrow cS)$
- $acSbc \Rightarrow acaCbbc$ $(S \rightarrow aCb)$
- $acaCbbc \Rightarrow acabbc$ $(C \rightarrow \epsilon)$

Classification de Chomsky

- Chomsky a identifié quatre classes de grammaires:
 - Grammaire de type 0
 - Grammaire de type 1
 - Grammaire de type 2
 - Grammaire de type 3

Grammaire de type 0 (sans restriction)

- Une grammaire est dite sans restriction ou de type 0 ssi:
 - Il n'y a aucune restriction sur les règles de production

Rappel:

 Une règle est un couple (φ, ψ) qu'on note en général :

$$\phi \rightarrow \psi$$
 où : $\phi \in (V_N \cup V_T)^* . V_N . (V_N \cup V_T)^*$ et $\psi \in (V_N \cup V_T)^*$

Grammaire de type 1 (contextuelle)

- Une grammaire est dite contextuelle si et seulement si:
- Pour toute règle φ → ψ on a:

- φ=gAd et
- ψ=gBd
- avec g, d, $B \in (V_N \cup V_T)^*$ et $A \in V_N$.

Grammaire de type 2 (hors-contexte)

Une grammaire hors-contexte (ou algébrique) $G = (V_T, V_N, P, S)$ est une grammaire dont les productions sont de la forme $\alpha \rightarrow \beta$, où :

- 1. $|\alpha| = 1$ et $\alpha \in V_N$
- β est une séquence de terminaux ou de non terminaux
- Le langage L(G) généré par une grammaire horscontexte G est appelé *langage hors-contexte*.

$$G1 = (\{a,b\}, \{S\}, P1, S) \text{ avec } P1 = \{S \rightarrow aSb, S \rightarrow ab\}$$

Grammaire de type 3 (régulière)

Une Grammaire peut être_régulière à droite ou à gauche

• Grammaire Régulière à gauche:

Toutes les productions $\alpha \to \beta$ sont telles que:

1.
$$|\alpha| = 1$$
,

$$2.\beta = aB$$
, $\beta = a$ ou $\beta = \epsilon$ avec $B \in V_N$ et $a \in V_T$

• Grammaire Régulière à Droite :

1.
$$|\alpha| = 1$$
,

$$2.\beta = Ba, \ \beta = a \ ou \ \beta = \epsilon \ avec \ B \in V_N \ et \ a \in V_T$$

Le langage L(G) généré par une grammaire régulière G est appelé *langage régulier*

Hiérarchie de Chomski

Conclusion

Questions??