JS 2015, MB102, sk. A

Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

▶ Příklad 1 [2 b.]: Najděte interpolační polynom funkce dané tabulkou a polynom upravte do základního tvaru.

x	-1	0	2	3
f(x)	5	10	2	1

Dále pomocí získaného polynomu odhadněte hodnotu funkce f v $x_0 = -1/2$.

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \arctan \frac{2 - 3x}{\sqrt{5 - 2x}} + \ln^{-2}(2x + 3).$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n \to \infty} n \left(2 - \sqrt{4 - \frac{5}{n}} \right)$$
, (b) $\lim_{x \to -\infty} \frac{\sqrt[3]{x^5 + 4} + 3^x - x^2}{\sqrt[3]{x^6 + 2} - 3^{x+1}}$, (c) $\lim_{x \to 0^+} x^x$.

(b)
$$\lim_{x \to -\infty} \frac{\sqrt[3]{x^5 + 4} + 3^x - x^2}{\sqrt[3]{x^6 + 2} - 3^{x+1}}$$

$$(c) \lim_{x \to 0^+} x^x$$

ightharpoonup Příklad 4 [1 b.]: Je dána funkce $f(x)=\sqrt[3]{x^2+3x-2}$ a bod $x_0=2$. Jaká je funkční hodnota a hodnota první derivace funkce f v bodě x_0 ?

▶ Příklad 5 [2 b.]: Těleso sjede po nakloněné rovině dlouhé 50 m za 10 s. Jaká je jeho konečná rychlost, pokud předpokládáme, že dráha je kvadratická funkce času a že počáteční rychlost je nulová?

(Nápověda: Dráhu uvažujte jako $s = at^2 + bt + c$ s neurčitými koeficienty $a, b, c \in \mathbb{R}$.)

▶ Příklad 6 [2 b.]: Určete intervaly konvexnosti a konkávnosti a najděte inflexní body funkce

$$f(x) = \frac{x}{e^{\frac{x^2}{2}}}, \qquad f'(x) = \frac{1 - x^2}{e^{\frac{x^2}{2}}}.$$

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

[▷] Druhou tabulku ponechejte prázdnou.

[▷] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

[⊳] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

JS 2015, MB102, sk. B

Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

▶ Příklad 1 [2 b.]: Najděte interpolační polynom funkce dané tabulkou a polynom upravte do základního tvaru.

x	0	1	2
f(x)	1	2	5
f'(x)	-1	_	2

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \ln(x^2 + 4x - 5) + \frac{2x^2}{\sqrt{2x + 6}}.$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n \to \infty} (\sqrt{4n^2 - 5} - 2n),$$

(a)
$$\lim_{n \to \infty} (\sqrt{4n^2 - 5} - 2n)$$
, (b) $\lim_{x \to \infty} \frac{\sqrt{4x^2 + 3} + \sqrt{5x}}{\sqrt[4]{2x^3 + 3x} - 7x}$, (c) $\lim_{x \to 0^-} \left(x e^{-\frac{1}{x}} \right)$.

$$(c) \lim_{x \to 0^-} \left(x e^{-\frac{1}{x}} \right).$$

▶ Příklad 4 [1 b.]: Je dána funkce $f(x) = \sqrt{2-5x^3}$ a bod $x_0 = -1$. Jaká je funkční hodnota a hodnota první derivace funkce f v bodě x_0 ?

▶ Příklad 5 [2 b.]: Vlak jedoucí rychlostí 90 km/h má zabrzdit tak, aby se rovnoměrně zpomaleným pohybem zastavil na vzdálenosti $1\,km$.

- (a) Za jaký čas zastaví?
- (b) Jaká bude jeho rychlost 30 s potom, co začne brzdit?

(Nápověda: Dráhu popisuje vztah $s=v_0t-\frac{1}{2}at^2$, kde v_0 je počáteční rychlost, a je zrychlení.)

▶ Příklad 6 [2 b.]: Určete všechny asymptoty funkce

$$f(x) = \frac{e^x}{x+1}.$$

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

[▷] Druhou tabulku ponechejte prázdnou.

[⊳] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

[⊳] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

JS 2015, MB102, sk. C

Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

▶ Příklad 1 [2 b.]: Najděte interpolační polynom funkce dané tabulkou a polynom upravte do základního tvaru.

x	-1	0	1	2
f(x)	3	1	0	1

Dále pomocí získaného polynomu odhadněte hodnotu funkce f v $x_0 = 1/2$.

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \arcsin \frac{x+3}{2} + \sqrt{\frac{x+4}{x-2}}.$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n \to \infty} (3n - \sqrt{9n^2 - 3}),$$

(a)
$$\lim_{n \to \infty} (3n - \sqrt{9n^2 - 3}),$$
 (b) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^3 + x} - x},$ (c) $\lim_{x \to 0^+} \left(x e^{\frac{1}{x}} \right).$

$$(c) \lim_{x \to 0^+} \left(x e^{\frac{1}{x}} \right).$$

▶ Příklad 4 [1 b.]: Je dána funkce $f(x) = \ln(x^2 - 3x - 9)$ a bod $x_0 = 5$. Jaká je funkční hodnota a hodnota první derivace funkce f v bodě x_0 ?

 \blacktriangleright Příklad 5 [2 b.]: Kámen vyhozen z výšky $h=10\,m$ kolmo vzhůru má počáteční rychlost $v_0 = 20 \, m/s$. Určete:

- (a) Jakou rychlost bude mít kámen v čase t = 1.5 s?
- (b) Za jaký čas dosáhne maximální výšky?
- (c) Jaké výšky dosáhne?

(Nápověda: Dráhu popisuje vztah $s=h+v_0t-\frac{1}{2}gt^2$, gravitační zrychlení uvažujte $g=10\,m/s^2$.)

▶ Příklad 6 [2 b.]: Určete intervaly monotonie a lokální extrémy funkce

$$f(x) = \frac{\ln \frac{1}{x}}{x}.$$

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

[▷] Druhou tabulku ponechejte prázdnou.

[⊳] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

[⊳] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

JS 2015, MB102, sk. D

Jméno a příjmení	
UČO	
Počet listů přílohy	

Příklad	1	2	3	4	5	6	Σ
Body							

▶ Příklad 1 [2 b.]: Najděte interpolační polynom funkce dané tabulkou a polynom upravte do základního tvaru.

x	-1	0	1	2
f(x)	3	1	0	1
f'(x)	_	_	-1	2

▶ Příklad 2 [1 b.]: Určete definiční obor funkce

$$f(x) = \operatorname{arccotg} \frac{x-1}{\sqrt{1-x}} + \ln^{-2}(2x+21).$$

▶ Příklad 3 [2 b.]: Určete limity

(a)
$$\lim_{n \to \infty} n \left(\sqrt{\frac{9n+1}{n}} - 3 \right)$$
, (b) $\lim_{x \to \infty} \frac{x^3 + \sqrt[3]{x^{12} + x^5} - \sqrt{x}}{\sqrt{x + 3x^8} - x}$, (c) $\lim_{x \to \frac{\pi}{2}} (1 - \sin x) \operatorname{tg} x$.

(b)
$$\lim_{x \to \infty} \frac{x^3 + \sqrt[3]{x^{12} + x^5} - \sqrt{x}}{\sqrt{x + 3x^8} - x}$$

(c)
$$\lim_{x \to \frac{\pi}{2}} (1 - \sin x) \operatorname{tg} x$$

lacktriangle Příklad 4 [1 b.]: Je dána funkce $f(x)=\sqrt[3]{x^2+10x+1}$ a bod $x_0=-1$. Jaká je funkční hodnota a hodnota první derivace funkce f v bodě x_0 ?

▶ Příklad 5 [2 b.]: Těleso se pohybuje po dráze $s = 8 + 3t + t^2 - \frac{t^3}{3}$ (v metrech). Určete:

- (a) Za jaký čas zastaví?
- (b) Jaké bude jeho zrychlení v čase t = 0.5 s?
- (c) Jakou dráhu těleso urazí od času t = 0 do zastavení?

▶ Příklad 6 [2 b.]: Určete intervaly monotonie a lokální extrémy funkce

$$f(x) = \frac{x^2}{\ln x}.$$

Do první tabulky vyplňte čitelně identifikační údaje a počet listů, které k zadání přikládáte.

[▷] Druhou tabulku ponechejte prázdnou.

[⊳] U výpočtů příkladů řádně označujte, ke kterému příkladu (a jeho části) patří.

[⊳] Každý výsledek musí být podpořen výpočtem, jakkoli je triviální.

[⊳] Všechny papíry s výpočty podepište a odevzdejte společně se zadáním.

[⊳] Není povoleno použití kalkulačky ani žádných materiálů (tabulky, vzorce, skripta, poznámky,...). Jakýkoli pokus o podvádění bude mít za následek hodnocení 0 bez možnosti opravy.

Výsledky

1) A:
$$x^3 - 4x^2 + 10$$
, $\left[\frac{71}{8}\right]$

B:
$$-\frac{x^4}{4} + \frac{x^3}{4} + 2x^2 - x + 1$$

C:
$$\frac{x^3}{6} + \frac{x^2}{2} - \frac{5x}{3} + 1$$
, $\left[\frac{5}{16}\right]$

B:
$$-\frac{x^4}{4} + \frac{x^3}{4} + 2x^2 - x + 1$$

C: $\frac{x^3}{6} + \frac{x^2}{2} - \frac{5x}{3} + 1$, $\left[\frac{5}{16}\right]$
D: $-\frac{17}{36}x^5 + \frac{11}{6}x^4 - \frac{41}{36}x^3 - \frac{4}{3}x^2 + \frac{x}{9} + 1$

2) A:
$$(-3/2, -1) \cup (-1, 5/2)$$

$$B:(1,\infty)$$

$$C: [-5, -4]$$

D:
$$(-21/2, -10) \cup (-10, 1)$$

3) A:
$$(a) 5/4, (b) -1, (c) 1$$

B:
$$(a) \ 0, (b) \ -2/7, (c) \ -\infty$$

C: (a)
$$0$$
, (b) -1 , (c) ∞

D: (a)
$$1/6$$
, (b) $1/\sqrt{3}$, (c) 0

4) A:
$$f'(x) = \frac{2x+3}{3\sqrt[3]{(x^2+3x-2)^2}}$$
, $f(2) = 2$, $f'(2) = \frac{7}{12}$

B:
$$f'(x) = \frac{15x^2}{2\sqrt{2-5}x^3}$$
, $f(-1) = \sqrt{7}$, $f'(-1) = \frac{-15}{2\sqrt{7}}$

C:
$$f'(x) = \frac{2x-3}{x^2-3x-9}$$
, $f(5) = 0$, $f'(5) = 7$

B:
$$f'(x) = \frac{-15x^2}{2\sqrt{2} - 5x^3}$$
, $f(-1) = \sqrt{7}$, $f'(-1) = \frac{-15}{2\sqrt{7}}$
C: $f'(x) = \frac{2x - 3}{x^2 - 3x - 9}$, $f(5) = 0$, $f'(5) = 7$
D: $f'(x) = \frac{2x + 10}{3\sqrt[3]{(x^2 + 10x + 1)^2}}$, $f(-1) = -2$, $f'(-1) = 2/3$

5) A:
$$s(t) = t^2/2$$
, $v(10) = 10$

B:
$$(a) 1/45h = 80s, (b) 225/4$$

D:
$$(a)$$
 3, (b) 1, (c) 9

6) A:
$$\bigcup$$
 pro $x \in [-\sqrt{3}, 0] \cup [\sqrt{3}, \infty)$, \bigcap pro $x \in (-\infty, -\sqrt{3}] \cup [0, \sqrt{3}]$, infl. body $v \in \{-\sqrt{3}, 0, \sqrt{3}\}$

B: bez sm.:
$$x = -1(-1)^+$$
, se sm.: $v + \infty$ není, $v - \infty$ je $y = 0$

C:
$$\nearrow$$
 pro $x \ge e$, \searrow pro $x \in (0, e]$, lok. min. $v = e$

D:
$$\nearrow$$
 pro $x \ge \sqrt{e}$, \searrow pro $x \in (0,1) \cup (1,\sqrt{e}]$, lok. min. $v = \sqrt{e}$