

MÁQUINAS SÍNCRONAS

• 86

MÁQUINAS SÍNCRONAS - CARACTERIZAÇÃO E APLICAÇÃO

MÁQUINAS SÍNCRONAS:

- → OPERAÇÃO NO MODO MOTOR (MOTORES DE GRANDE POTÊNCIA)
- → OPERAÇÃO NO MODO GERADOR → MODO MAIS COMUM, COMO ALTERNADOR SÍNCRONO (TRIFÁSICO)

CARACTERIZAÇÃO QUANTO À TOPOLOGIA DO CIRCUITO MAGNÉTICO - CAMPO DE APLICAÇÃO :

→ MÁQUINA SÍNCRONA DE PÓLOS SALIENTES

EM GERAL, GRANDE NÚMERO DE PÓLOS (48-96 PÓLOS) - BAIXA ROTAÇÃO (150-75 RPM) USO COM TURBINAS HIDRÁULICAS (HIDROGERADORES) EM POTÊNCIAS ELEVADAS (ATÉ 800 MW) USO COMUM TAMBÉM COMO GERADORES DE POTÊNCIA PEQUENA E MÉDIA (100 kW - 5 MW) ACIONADOS A PARTIR DE MOTORES DIESEL OU PEQUENAS TURBINAS A VAPOR - REDUZIDO Nº DE PÓLOS (4-6-8 PÓLOS) - ROTAÇÕES MÉDIAS (1800-1200-900 RPM)

→ MÁQUINA SÍNCRONA DE PÓLOS LISOS (ROTOR CILÍNDRICO)

EM GERAL, REDUZIDO NÚMERO DE PÓLOS (2 – 4 PÓLOS) – ELEVADA ROTAÇÃO (3600 – 1800 RPM)
USO COM TURBINAS A VAPOR OU A GÁS (TURBOGERADORES) EM POTÊNCIAS ELEVADAS (ATÉ 2000 MW)

ASPECTOS CONSTRUTIVOS DA MÁQUINA SÍNCRONA - COMPONENTES BÁSICOS

ESTATOR (INDUZIDO)

→ IDÊNTICO NA SUA CONCEPÇÃO, TANTO NA M.S. DE POLOS SALIENTES COMO LISOS

NÚCLEO DO ESTATOR:

Lâminas de material ferromagnético de alta permeabilidade (aço silício não orientado)

RANHURAS ESTATÓRICAS:

Ao longo de toda a superfície interna do cilíndro estatórico

BOBINAS DO ESTATOR:

Alojadas em todas as ranhuras, formando o enrolamento de armadura ou induzido (trifásico)

ASPECTOS CONSTRUTIVOS DA MÁQUINA SÍNCRONA - COMPONENTES BÁSICOS

ASPECTOS CONSTRUTIVOS DA MÁQUINA SÍNCRONA - COMPONENTES BÁSICOS

ASPECTOS CONSTRUTIVOS DAS MÁQUINAS SÍNCRONAS

MÁQUINA SÍNCRONA DE POLOS SALIENTES

ESTATOR E ROTOR DE GRANDE PORTE

MÁQUINA COMPLETA DE MÉDIO PORTE

TURBO-GERADOR SÍNCRONO DE PÓLOS LISOS (MONTAGEM)

CORRENTE CONTÍNUA DE EXCITAÇÃO INJETADA NO ROTOR $\rightarrow N.i = Fmm$

PASSO POLAR E ÂNGULOS ELÉTRICO E GEOMÉTRICO

Qualquer que seja o número de pólos da máquina, ocorre um ciclo completo de pólos magnéticos N-S em um duplo passo polar

 $\hat{A}NGULO$ ELÉTRICO = $p \times \hat{A}NGULO$ GEOMÉTRICO - $p = N^{\circ}$ de pares de pólos

EFEITO MOCIONAL

$$de = dL.(V \times B_g) \Rightarrow e = B_g.L.V$$

Estator com bobina alojada em ranhuras afastadas de 180° elétricos (τ_{P})

Rotor em movimento com velocidade angular ω_s velocidade periférica $v=\pi.D.n_s$ onde $\omega_s=2.\pi.n_s=2.\pi.f/p$

Distribuição espacial de induções no entreferro solidária ao rotor — móvel com velocidade $\boldsymbol{\omega}_{\scriptscriptstyle S}$

Bobinas com posições diferentes no estator sofrem tensão induzida cujos máximos ocorrem em tempos diferentes > **DEFASAGEM**

$$E_A = E_M.cos\omega t$$
 - para: $\omega t = \theta = \theta^o \Rightarrow E_A = E_M$

$$E_B = E_M$$
 - apenas quando: $\theta = \omega t = \theta_0$

$$\rightarrow E_B = E_M.cos(\omega t - \theta_0)$$

CONTEÚDO HARMÔNICO DA DISTRIBUIÇÃO ESPACIAL DE CAMPO NO ENTREFERRO DA MÁQUINA SÍNCRONA

Distribuição de induções real não é perfeitamente senoidal

$$B(\theta) = B_1 \cdot \cos \theta + B_3 \cdot \cos \theta + B_5 \cdot \cos \theta + \dots + B_h \cdot \cosh \theta$$

h: ordem da harmônica

 $\boldsymbol{B_I}$: componente fundamental

 $\boldsymbol{B_h}$: componente harmônica

CONSEQÜÊNCIA: SURGEM TENSÕES HARMÔNICAS

INDUZIDAS NO ESTATOR → DISTORÇÃO DA FORMA DE

ONDA DA TENSÃO GERADA

FILTRAGEM DE HARMÔNICOS → 1 - <u>DISTRIBUIÇÃO DO ENROLAMENTO</u>

COM Nº DE ESPIRAS N_b

0° Δ 2.Δ → ÂNGULO P/FUNDAMENTAL 0° h.Δ h.2.Δ → ÂNGULO P/ HARMÔNICA "h"

FILTRAGEM DE HARMÔNICOS → 2 - ENCURTAMENTO DE PASSO DAS BOBINAS

PASSO DA BOBINA : $C < \tau_p$

ÂNGULO DE ENCURTAMENTO : δ ($^{\circ}$ elet.)

 $\delta = n \cdot \Delta \rightarrow n \quad N^{\circ}$ inteiro

PASSO PLENO:

$$E(t) = 2 \cdot E_1 + 2 \cdot E_3$$

EFEITO DO ENCURTAMENTO:

$$E'_1 \approx E_1$$

$$E'_h << E_h$$

PASSO ENCURTADO :

(p.ex.
$$\rightarrow \delta = 60^{\circ}$$
)

$$E'(t) = E_1 + E'_1 + E_3 - E_3$$

$$E'(t) = E_1 + E'_1 < 2 \cdot E_1$$

$$f = \frac{n \cdot p}{120} \Rightarrow n = 120 \cdot \frac{f}{p}$$

$$f \Rightarrow Hz$$

$$n \Rightarrow Rpm$$

$$p \Rightarrow n^{\circ} de \ polos$$

N° de polos	f = 50 Hz	F = 60 Hz
2	3000 rpm	3600 rpm
4	1500 rpm	1800 rpm
6	1000 rpm	1200 rpm
8	750 rpm	900 rpm
10	600 rpm	720 rpm
12	500 rpm	600 rpm

FILTRAGEM DE HARMÔNICOS

EFEITOS DA DISTRIBUIÇÃO E ENCURTAMENTO:

→ PEQUENA ATENUAÇÃO DA FUNDAMENTAL → FORTE ATENUAÇÃO DAS HARMÔNICAS

EM GERAL, TODO ENROLAMENTO DE MÁQUINA SÍNCRONA É DOTADO DE DISTRIBUIÇÃO E ENCURTAMENTO

FATOR DE ATENUAÇÃO HARMÔNICA DA TENSÃO GERADA (FATOR DE ENROLAMENTO):

$$k_{Eh} = \frac{sen(q.h.\frac{\Delta}{2})}{q.sen(h.\frac{\Delta}{2})} \cdot \cos(h.\frac{\delta}{2})$$

$$k_{Eh} = \frac{1 \rightarrow k_{Eh} \approx 1}{p.sen(h.\frac{\Delta}{2})}$$

$$k_{Eh} = \frac{1 \rightarrow k_{Eh} \approx 1}{p.sen(h.\frac{\Delta}{2})}$$

CONTEÚDO HARMÔNICO DA TENSÃO GERADA NA MÁQUINA SÍNCRONA:

$$v_h = \frac{\sum_{h=3}^{\infty} E_h.k_{Eh}}{E_1} = \sum_{h=3}^{\infty} \frac{1}{h} \cdot k_{Eh}$$