Omega Cross-Section

Martin Sobotzik

Mainz, March 2019

Institute for Nuclear Physics Johannes Gutenberg University of Mainz

Olis Cross Section; Dip at about $\cos(\theta) = -0.3$

Increased number of bins to 40; now there is still a dip at $\cos(\theta) = -0.3$ but also a peak at $\cos(\theta) = -0.5$

Both Cross Sections are shown.

Taking a closer Look

Bachelor Photon

$$\gamma p \rightarrow \qquad \qquad \omega \qquad p$$

Closer look at:

ω

- π⁰
 - γ

• Proton

Taking a closer Look

Bachelor Photon

$$\gamma p \rightarrow \qquad \qquad \omega \qquad p$$

Closer look at:

ω

- π⁰
 - γ

• Proton

Energy of protons for $\cos(\theta\omega) = [-0.45, -0.35]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

 θ of protons for $\cos(\theta\omega) = [-0.45, -0.35]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

Energy of protons for $\cos(\theta\omega) = [-0.35, -0.25]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

 θ of protons for $\cos(\theta\omega) = [-0.35, -0.25]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

Energy of protons for $\cos(\theta\omega)=[0.35,0.45]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

 θ of protons for $\cos(\theta\omega)=[0.35,0.45]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

 $\cos(\theta_{\mathit{fit}})$ vs. $\cos(\theta_{\mathit{gen}})$ for all protons.

 $\cos(\theta_{\it fit})$ vs. $\cos(\theta_{\it gen})$ for all ω .

Unfolding

Motivation

- \bullet μ is the *true* distribution given by nature
- detector effects are then described by the response function R. (inefficiencies, bias and smearing)
- This results in the distribution ν .

$$\nu_i = \sum_{j=1}^M R_{ij} \mu_j$$

 With infinite statistics, it would be possible to recover the original distribution by inverting the response matrix

$$\mu = R^{-1}\nu$$

Flat ω was used. MC fitted data were unfolded.

Conclusion

