Име и Фамилия	Ф. номер	Група	Kypc	Поток	n	m

Задача	1 a)	1 б)	1 <i>a</i>)	2	(3 a)	3 б)	3 в)	4 a)	4 6)	5	Общо
Точки тах	2	4	3	5	2	3	3	3	3	6	34
Точки											
Оценка											

Домашно №1 по Алгебра 2

спец. Компютърни науки, курс 2

Летен семестър на уч. 2014/2015г.

Срок за предаване: седмицата 20 — 24 април 2015г., по време на упражненията

За цялата страница, с "n" се бележи факултетният Ви номер, а с "m" е последната му **ненулева** цифра. Примери:

- ϕ .н. 81067 \Rightarrow n = 81067, m = 7;
- ϕ .н. 81020 \Rightarrow n = 81020, m = 2

Въведете личните си данни в таблицата най-отгоре на листа. При предаване на домашната работа нека листът с условията (напечатани двустранно) да бъде първи след защипаните. На всеки лист с решения да присъства факултетният Ви номер, записан в горения десен ъгъл. Оценката се формира по формулата $2+\frac{mov ku}{8}$.

Задача 1

- а) Да се пресметне $\varphi(2\varphi(n))$, където φ е функцията на Ойлер.
- б) Да се намерят всички цели решения на системата

в) Да се намерят последните две цифри на 49^n .

Задача 2

Зададено е подмножеството $G = \{id, A, B, C\}$ на симетричната група S_8 където

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 1 & 2 & 7 & 8 & 5 & 6 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 5 & 8 & 7 & 2 & 1 & 4 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$
 (1)

Да се докаже, че $G < S_8$ и да се направи таблица за за умножение в G. Да се докаже, че $G \cong K_4$, където K_4 е групата на Клайн.

Задача 3

B симетричната група S_9 елементът σ е представен като произведение на **зависими** $uu\kappa nu$: $\sigma = (123)(135)(235)(6m)$. Hera $\tau = (12)$.

Забележка. Ако m=6, то $\sigma=(123)(135)(235)(61)$.

- a) Да се представи σ в произведение от независими цикли и да сепресметне реда му.
- б) B цикличната подгрупа $H < S_9$, породена от σ да се намерят всички елементи, които са цикли.
- в) Да се намери в S_9 елемент от най-висок ред и да се определи броят на тези елементи. Спрегнати ли са помежду си?

Задача 4

Задача 4
$$3adadeнo\ e\ множеството\ G = \left\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} \middle| a,b \in \mathbb{Q}, a \neq 0 \right\}.$$

Да се докаже, че:

- a) G e група относно умножението на матрици. Да ce намери центърът на G.
- б) Множеството $H=\left\{\begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \middle| b\in\mathbb{Q} \right\}$ е нормална подгрупа на G и $H\simeq\mathbb{Q}.$

Задача 5

Нека G е група от ред 10. Да се докаже, че в G има елементи от ред 2 и 5.