School of Computing National University of Singapore CS5340: Uncertainty Modeling in AI Semester 1, AY 2020/21

Exercise 1

Question 1

a)

Fig. 1.1

Fig. 1.1 shows a mobile robot that traverses from pose X_t to X_{t+1} over time t to t+1. The robot is equipped with an 1-dimensional range sensor that returns the distances Z_t and Z_{t+1} of a landmark structure L in the environment from the poses X_t and X_{t+1} respectively. Let U_t denotes the control command given by the user to move the robot from X_t to X_{t+1} .

- (i) Taking $\{U_t, L, X_t, X_{t+1}, Z_t, Z_{t+1}\}$ as random variables, state whether each of these random variables is an observed or latent/hidden random variable. Explain your answers.
- (ii) Given the following conditional independencies:

$$L \perp U_t \mid \emptyset, \quad X_t \perp L \mid U_t, \quad X_{t+1} \perp \{L, U_t\} \mid X_t,$$

$$Z_t \perp \{U_t, X_{t+1}\} \mid \{X_t, L\}, \quad Z_{t+1} \perp \{U_t, X_t, Z_t\} \mid \{L, X_{t+1}\}.$$

Write the factorized probability and draw the Bayesian network that represents the joint distribution $p(u_t, l, x_t, x_{t+1}, z_t, z_{t+1})$ assuming the following topological ordering of the random variables:

$$\{U_t, L, X_t, X_{t+1}, Z_t, Z_{t+1}\}.$$

Show all your workings clearly.

(iii) Write the following probability distribution $p(z_t, z_{t+1} \mid l)$ in terms of the factorized probability obtained in (ii). Simplify your answer.

b)

Fig. 1.2

For each of the Bayesian networks shown in Fig. 1.2, determine the largest set of nodes X_B such that $X_1 \perp X_B \mid X_2$. Explain your answers.

Consider the graph shown in Fig. 2.1:

Fig 2.1

- a) What is the corresponding moral graph?
- b) What is the reconstituted graph from the UNDIRECTEDGRAPHELIMINATE algorithm on the moral graph with the ordering {8,7,6,5,4,3,2,1}?
- c) What is the reconstituted graph from the UNDIRECTEDGRAPHELIMINATE algorithm on the moral graph with the ordering {8,5,6,7,4,3,2,1}?
- d) Suppose you wish to calculate $p(x_1|x_8)$. Which ordering is preferable? Why?

Question 3

What is the treewidth of the graph below?

Fig 3.1

Consider the following random variables. X_1 and X_2 represent the outcomes of two independent fair coin tosses. X_3 is the indicator function of the event that the outcomes are identical.

- a) Specify a directed graphical model that describes the joint probability distribution (i.e. specify the graph and the conditional distributions).
- b) Specify an undirected graphical model that describes the joint probability distribution (i.e. give the graph and specify the clique potentials).
- c) In both cases, list all conditional independencies that are implied by the graph.
- d) In both cases, list any additional conditional dependencies that are displayed by this probability distribution but are not implied by the graph.

Question 5

Fig. 5.1

The graphical model shown above describes some relationships among variables associated with chest abnormality. Answer the following questions based on the graphical model.

- a) True or False. Justify your choice. $Smoke \perp Dyspnea \mid Bronchitis$.
- b) True or False. Justify your choice. Bronchitis $\perp X$ -ray | Cancer.
- c) True or False. Justify your choice. Smoke \(\perp \) Risky Visit \(\precedt) Dyspnea.
- d) True of False. Justify your choice. X-ray \perp Smoke | {Cancer, Bronchitis}.

Evaluate (give the distribution tables) the following probabilities:

$$p(x_1 | x_5), p(x_2 | x_4), p(x_3 | x_2), p(x_4 | x_3), p(x_5)$$

for the Bayesian network shown in Fig. 6.1, where each random variable takes a binary state, i.e. $x_i \in \{T, F\}$. Show all your workings clearly.

X_1	X_2	$p(x_4 x_1,x_2)$
T	T	0.35
T	F	0.6
F	T	0.01
F	F	0.95

X_2	X_3	$p(x_5 x_2,x_3)$
T	T	0.35
T	F	0.6
F	T	0.01
F	F	0.95

Fig. 6.1

Give the junction tree of the Bayesian network shown in Fig. 7.1 using the following elimination order: $\{X_7, X_6, X_5, X_4, X_3, X_2, X_1\}$. Show all your workings clearly.

Fig. 7.1

Question 8

Figure 8.1 shows a Bayesian network with five random variables X_1, X_2, X_3, X_4, X_5 , where $x_i \in \{0,1\}$ for i=1,2,4, and $x_i \in \{0,1,2\}$ for i=3,5.

Figure 8.1

- (a) Write down all the conditional independences given by the Bayesian network.
- (b) Write down the factorized expression of the joint probability given by the Bayesian network.

- (c) Convert the Bayesian network into a factor graph. Draw the factor graph and write down the expression of each factor clearly in your answer.
- (d) Table 8.1 gives the probability tables of the Bayesian network, find the conditional probability $p(x_1|x_3=1,x_2)$. Show all your workings clearly.

<i>X</i> ₁	X_2	X_3	$p(x_3 x_1,x_2)$
0	0	0	0.3
0	0	1	0.4
0	1	0	0.9
0	1	1	0.08
1	0	0	0.05
1	0	1	0.25
1	1	0	0.5
1	1	1	0.3

<i>X</i> ₁	$p(x_1)$	
0	0.6	

X_2	$p(x_2)$
0	0.7

X_3	X_4	$p(x_4 x_3)$
0	0	0.1
1	0	0.4
2	0	0.99

Table 8.1

Figure 9.1 shows a graphical model with six binary-state latent random variables $Z = \{Z_1, Z_2, Z_3, Z_4, Z_5, Z_6\}$, $z_i \in \{0,1\}$, and six binary-state observed random variables $X = \{X_1, X_2, X_3, X_4, X_5, X_6\}$, $x_i \in \{0,1\}$. Table 9.1 gives the pairwise potentials $\phi(z_i, z_j)$, $\forall ij \in \mathcal{E}_Z$ and conditional probability $p(x_i|z_i)$ for i = 1, ... 6, where \mathcal{E}_Z denotes all the edges between the latent random variables in the graphical model. Find the configuration of Z that maximizes the joint probability p(X, Z).

(**Hint**: convert the graphical model into a factor graph, where the respective pairwise potential and conditional probability are represented as a single factor.)

Figure 9.1

$\boldsymbol{Z_i}$	Z_{j}	$\phi(z_i,z_j)$
0	0	0
0	1	2
1	0	2
1	1	0

X_i	$\boldsymbol{Z_i}$	$p(x_i z_i)$
0	0	0.9
0	1	0.05
1	0	0.1
1	1	0.95

Table 9.1

Figure 10.1 shows a Bayesian Network with four random variables X_1, X_2, X_3 and X_4 , where $x_i \in \{0,1\}$. The respective prior and conditional probability distribution tables are also given.

Figure 10.1

Find the following marginal probabilities:

- a. $p(x_2)$
- b. $p(x_3)$
- c. $p(x_4)$
- d. $p(x_3, x_4)$