Arrow Lake NPU Introduction and Features

Technical Training Material WW03, January 2024

Legal Disclaimer

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, OpenVINO™, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

*Other names and brands may be claimed as the property of others.

Copyright © 2024, Intel Corporation. All rights reserved.

Agenda

- Client AI and Roadmap
- What is NPU?
- What is MEP (Windows* Studio)?
- Arrow Lake (ARL) NPU POR Features
- ARL Audio Processing Object (APO)
- NPU Software Enabling and Experiences
- Q and A

Client AI and Roadmap

Transforming the PC Experience

Al Today

Enhancements

Elevated video collaboration & streaming
Enhanced Audio effects
Creator and Gaming effects

Cloud

Massive scalable compute
High Latency
Privacy Concerns
Expensive

Al Tomorrow

Everything

Al Assistants know your daily context More creative, productive, & collaborative Across everything you do

Client

Massive distributed scale
Low Latency
Improved Privacy
Lower Cost (to ISV)

Al Inflection Point

Microsoft* believes that neural processing units, like Intel's NPU, represent an inflection point in computing and will be key to delivering a whole new range of delightful experiences to Windows* users on their PCs. These experiences will transform how people use their computers and connect with others.

Launching New Client Compute Capacity at Scale

8Q Client AI Roadmap

8Q Client AI Roadmap (Cont.)

Client Al Workloads are Diverse No Single Compute Unit Meets All Key Needs

Periodic, Throughput sensitive

HW	Value	RPL	MTL	ARL	LNL MX	PTL	
CPU	SW Programmability; low latency, single inference tasks	AVX-256 VNNI H: 4-5 TOPS	AVX-256 VNNI H: ~3-6; U: ~2-3 TOPS	AVX-256 VNNI H: ~7-9.5; S: 14 TOPS	AVX-256 VNNI ~2-5 TOPS	AVX2+ TOPS - H: Up to 11; U: 5	
iGPU	Al integrated with 3D/render/ media pipelines; high batch size	DP4A H/U: up to 9 TOPS S/HX: 3 TOPS	DP4a (U, H) H: up to 19 TOPS U: up to 8 TOPS	DP4a (U, S, HX) ~9 TOPS ARL H w/X° Matrix Extensions (XMX) Up to 72 TOPS	DP4a + X ^e Matix Extensions (XMX) Up to 59 TOPS	DP4a+XMX H: Up to ~123 TOPS U: up to 41 TOPS	
iNPU	Dedicated Al Offload, Power efficiency for Battery Life	NA	NPU 2.7 TOPS - H: 11 TOPS; U: 9.5-11; ARL S, HX: 13		NPU 4.0 Up to 45 TOPS	NPU 5.0 Up to 48 TOPS	

TOPS will vary slightly based on power & frequency of each sku

The Right Frameworks for Innovation and Scale:

What is NPU?

Arrow Lake: Neural Processor Unit

Power Efficient Al

Fast, Ultra Low Power Inferencing

Improve System and App Responsiveness

Reduce Memory I/O Usage

Drivers for Windows and Linux

Performance	Up to 13 TOPs (int8)		
MAC Engine	4096 (INT8) with FP32 Accumulator		
Local Cache	4096 KB Software-Managed		
Programmable DSP	VLIW supporting Integer, FP, Transcendental		
Peak Memory Interface BW	64 GBps, Unified Memory Architecture		
Internal Data Type Support	INT8, FP16, BF16, FP32 (emulated)		
Hardware Compression	Quantized Data Type Support Fine-Grain Weight and Activation Sparsity Weight Compression		
MAC Fixed Function support	General Matrix-Matrix, Matrix-Vector Convolution, Fully Connected, Reshape		
Elementwise Fixed Function support	ReLU/PReLU Add/Mul Quantize/Dequantize Reshape		
OS Supported	Windows* OS, Chrome*, Linux*		
Runtime Framework Support	OpenVINO™ Toolkit, ONNX RT, WinML/DirectML, WebNN		

- 1. At Vmax in 15W MTL/ARL workload. Peak TOPs 13 at 1.6 GHz ResNet50, Int8, BS1, 50% sparsity
- 2. See backup for workloads and configurations. Results may vary.

Software Frameworks for Innovation and Scale

Embracing and Enabling an Open Ecosystem

Training Frameworks / Tools

Model distribution formats

Inference Frameworks

Targeted Operating Systems

OpenVINO

Underlying technology ingredient and vertical option on Windows*/Linux*.

OpenVINO™ powers ONNX*-Runtime, Web, ChromeOS* interfaces.

Windows* ML + DirectML

ONNX-Runtime + OEM choice of EP (DirectML, MLAS, OpenVINO™)

NNAPI delegate for NPU

Consult OSV for any OEM differentiation opportunity

Native deployment support in evaluation, not on roadmap

NOT POR for GPU/NPU

NPU Value Prop

Performance

To run advanced, higher quality
Al models for Richer
Experiences

Battery Life

Deliver premium AI based experiences without sacrificing battery life

Responsiveness

Free the CPU and iGPU for greater responsiveness & productivity

Workload's Good for the NPU:

Sustained AI Workloads Offload the CPU, iGPU, dGPU for responsiveness Require High integrated TC					
Model Characteristics: small Batch Size, FP 16/Int8, Sparsity enabled models					
Image, Video, Audio					

Client AI - Todd Matsler

Resnet50 Example Based on MTL

Input 224x224

Workload (MACs operations on NPU)

Peak TOPS (pTOPS) = Peak Theoretical Max PerformancepTOPS = max frequency * (MAC/Clock) * 2

NPU is 11 pTOPS

Effective TOPS (eTOPS) = Real Performance on a given AI Workload (the efficiency of pTOPS)
 eTOPS = (fps * each frame GOPs)/1000

NPU 8.2 eTOPS = (1000 * 8.216)/1000

- We use ResNet50: a common network + a good mix of a memory and compute bound network. Is it Perfect? -> No, but it is better than pTOPS as eTOPS shows real workload measured across many HW configs
- AI Benchmark for Client: Not 1 standard Today (UL Procyon Redowa (POR)/MLPerf/GeekBenchML)

Output (frame)

 Operations per frame: constant value per network, for Resnet50 it is 8.216 GOPs

One multiply-accumulate is two operations

	pTOPS	ResNet50³ fps	eTOPS	Efficiency
		Dense: 715 ¹	5.9 ¹	53%
Intel MTL iVPU	11	Sparse: 8951	7.3 ¹	67%
		Sparse: 1000 ²	8.22	75%
QCOM 8cx Gen3	20-254	825	6.8	27-34%

¹measured on early MTL Si & SW: B0 Si, pre-beta SW 2/3/2023

 $^{^2}$ with 50% sparsity enabled, estimated target for production Si and SW is ~1000fps & ~8.2 eTOPS

³MTL RN50: RN50 1.5 Open Model Zoo; QCOM RN50 version is UL Procyon Al Inference benchmark 2.4.0

⁴QCOM reports 29 pTOPS for 8cx Gen3 full SOC (CPU/GPU/NP); NPU only pTOPS estimated by Intel, based on current Intel internal analysis of available information

NPU OpenVINO™ Plus DirectML Stack

- Unified driver architecture using Microsoft* Compute Driver Model (MCDM)
- OpenVINO™ via Level 0 interface, WindowsML/DirectML via DX12
- DX12 UMD in NPU SW stack supports WindowsML/DirectML
- OpenVINO™ tools used to quantize/lower any ONNX* model for NPU execution
- OpenVINO™ Apps compile & execute models using NPU Compiler tool chain & LO NPU driver
- DirectML use DML compiler plus NPU compiler tool chain and DX12 UMD
- The NPU Driver package includes NPU FW and Compilers to support JIT Compile

Windows* SW Stack

What is MEP (Windows® Studio)?

What is MEP?

Why Microsoft* Effect Pack?

- MEP standardized control interfaces (Camera DDIs and APIs)
- MSFT provide consistent AI Models:
 - Optimized Algorithm for NPU
 - OEM/ISV apps can apply effects to any camera

MEP DDI Interface

WinOS Behavior

User/Application Visible

App (e.g. Microsoft Teams) requests the camera to start

Windows OS starts the camera hardware/pipeline

Windows sets the Default Values of the effects based on the current camera settings in Windows Settings

Windows gives control of the camera to the app Enlightened app queries the current values. App can change on/off settings for the effects in the current camera session. OS defaults remain unchanged.

Example: Configurable MEP effects by Application

Intel® NPU (NPU) Running Windows* Studio (MEP)

Windows* Settings Camera Page and Inbox Camera Application

intel

New TEAMS* – Settings Page

ARL NPU POR Features

ARL NPU POR Features – MEP + APO

MEP (Windows* Studio Effects)	ARL NP	U		APO Vendor	
Background Blur	NPU			Realtek	NPU 🚦
Bokeh	NPU 👯		Waves	NPU #	
Eye Contact Correction	NPU			Elevoc	NPU 🚦
Voice Focus*	CPU		+	Dolby	NPU 🚦
Auto Framing	NPU			Fortemedia	NPU 🚦
Voice access/ Live caption	ccess/ Live NPU 👭		Intelligo	NPU 🖁	
More (TBD)	NPU	•			

Notes:

- Intel will work with Microsoft* to evaluate future capabilities for ARL and beyond
- Customers should contact Microsoft* to discuss MEP feature roadmap
- APO depends on OEM choice and optimization with Intel
- For "Voice Focus", it is CPU only for now. NPU is TBD.

ARL APO

Audio Al Offload Transitions to NPU

TGL-MTL platforms include GNA for offloading Dynamic Noise Suppression (DNS) from CPU.

- DNS and other audio AI workloads (example: ASR) will migrate to NPU
- Migration starts on MTL, completes on LNL (no GNA)
- Most SO audio processing will run on either NPU or CPU
- Post processing of audio playback runs on a DSP

APO – Audio Processing Object

- Windows* allow OEMs and third-party audio hardware manufacturers to include custom digital signal processing effects as part of their audio driver's value-added features. These effects are packaged as user-mode system effect Audio Processing Objects (APOs).
- Audio processing objects (APOs), provide software based digital signal processing for Windows* audio streams. An APO is a COM host object that contains an algorithm that is written to provide a specific Digital Signal Processing (DSP) effect.
- Examples of APOs include graphic equalizers, reverb, tremolo, Acoustic Echo Cancellation (AEC) and Automatic Gain Control (AGC). APOs are COM-based, real-time, in-process objects.

Audio Flow with Intel® NPU DNS

NPU Software Enabling and Experience

Meteor Lake ISV Al Moments

intel

NPU Software Enabling

- Microsoft* Collaboration:
 - Windows* Studio Effects, OS Accessibility, and New OS Experiences
 - 1st party App AI experiences: Office and Teams
 - Co-engineering DirectML for NPU for broader scale
 - Supports ONNX Runtime DML-EP
- Industry-standard Software Framework Support for Broad, Open ISV Application Ecosystem
- Enablement of Select OEM Proprietary Models

"Microsoft believes that neural processing units, like Intel's NPU, represent an inflection point in computing and will be key to delivering a whole new range of delightful experiences to Windows users on their PCs. These experiences will transform how people use their computers and connect with others. We are closely partnering with Intel on NPU and are excited to share more soon." - Vivek Pradeep, Partner Research Manager, Microsoft

Al Workload Briefcase

- Visit <u>Al Workload Briefcase</u>,
 - Videos Reference:
 - GIMP with Stable Diffusion
 - Adobe Lightroom Classic AI Photo Editing
 - AI Enhanced Collaboration with Windows Studio Effects
 - Wondershare Filmora: AI Video Editing
 - Workload Assets:
 - GIMP with Stable Diffusion
 - Adobe Lightroom Classic AI Photo Editing
 - XSplit VCam NPU Background Segmentation
 - <u>Etc.</u>

Enhanced Collaboration Experiences

New and improved features

New!

Improved!

Auto-framing
Eye contact
Avatar representation

Gesture recognition

Background Concealment

Dynamic Noise Suppression

CPU Workload

Advanced Blur

Generative Al Experiences

Open-source GIMP plug-in for Stable Diffusion at Performance

Text Prompt: cyborg man with a highly detailed, intricate details, carved by Michelangelo

Seeding Open-Source Projects

Realtime motion capture for Unreal Engine

Maintain/improve render performance on the GPU by offloading the AI to the NPU

Transforming the PC Experience

Al Today

Enhancements

Elevated video collaboration & streaming
Enhanced Audio effects
Creator and Gaming effects

Cloud

Massive scalable compute
High Latency
Privacy Concerns
Expensive

Al Tomorrow

Everything

Al Assistants know your daily context More creative, productive, & collaborative Across everything you do

Client

Massive distributed scale
Low Latency
Improved Privacy
Lower Cost (to ISV)

