Logique du premier ordre (1)

TELECOM Nancy (1A)
Mathématiques Appliquées pour l'Informatique

2019-2020

Pourquoi la logique du premier ordre?

- Possibilité de définir des variables prenant leur valeur dans des ensembles finis ou infinis, d'utiliser des quantificateurs, d'exprimer des propriétés sur des domaines infinis
- Une grande partie des mathématiques peut se formaliser en logique du premier ordre (avec égalité) (structure algébrique : groupe, anneaux, corps, théorie des ensembles)
- Logique universelle, pour aborder d'autres logiques (logiques d'ordre supérieur (où l'on peut quantifier sur les ensembles ou les fonctions), logiques modales, logiques multi-sortées ...)
- Notions générales identiques à la logique des propositions, mais plus compliquées : sémantique, systèmes formels (mise sous forme clausale, résolution, ...)

- INTRODUCTION À LA LOGIQUE (Théorie de la démonstration) René David, Karim Nour et Christophe Raffali. DUNOD
- MATHÉMATIQUES DISCRÈTES. Automates, langages, logique et décidabilité. Pierre Marchand. DUNOD
- Outils logiques pour l'INTELLIGENCE ARTIFICIELLE. J.P. Delahaye. EYROLLES. 1988.
- Symbolic Logic and Mechanical Theorem Proving. Chin-Liang Chang and Richard Char-Tung Lee. Computer Science Classics.
- Logique mathématique, tome 1 : Calcul propositionnel, algèbre de Boole, calcul des prédicats. René Cori et Daniel Lascar. Masson (collection AXIOMES)
- Elements of the Theory of Computation. Harry Lewis and Christos H. Papadimitriou. Prentice-Hall.

- Syntaxe de la logique du premier ordre
 - Alphabets d'un langage du premier ordre
 - Termes (principe d'induction)
 - Substitution, unification
 - Atomes, formules (Principe d'induction pour les formules)
 - Variables libres, variables liées, formules polies
 - Application d'une substitution à une formule (pb de capture)
 - Clôture universelle, clôture existentielle d'une formule
- Sémantique
 - Valuation
 - Interprétation des termes, atomes et formules
 - Modèles, théorèmes, déduction sémantique

Alphabets d'un langage du premier ordre

Définition (Alphabets)

Les alphabets d'un langage du premier ordre sont les ensembles suivants :

- un ensemble X de symboles de variables, $X = \{x, y, z, ...\}$
- un ensemble C de symboles de constantes, $C = \{a, b, c, \ldots\}$
- une suite d'ensembles deux à deux disjoints de symboles de fonctions $F = (\mathbb{F}_n)_{n \in \mathbb{N} \setminus \{0\}}$, chaque élément de \mathbb{F}_n est un symbole de fonction d'arité $n \in \mathbb{N} \setminus \{0\}$. Les éléments de F sont notés f, g, φ, \ldots
- une suite d'ensembles deux à deux disjoints de symboles de relations (ou symboles de prédicats), $R = (\mathbb{R}_n)_{n \in \mathbb{N}}$, chaque élément de \mathbb{R}_n est un symbole de relation d'arité n. Les éléments de R sont notés $p, q, r \dots$
- le symbole d'égalité = ; symbole de relation que l'on distingue des autres symboles de R. = est d'arité 2 que l'on utilise sous forme infixée.
- l'ensemble des connecteurs logiques $\{\neg, \lor, \land, \Rightarrow, \Leftrightarrow\}$.
- deux quantificateurs ∀ ("pour tout") et ∃ ("il existe")
- des symboles de ponctuation (et) et ,

Les connecteurs logiques, les quantificateurs et les symboles de ponctuation sont communs à tous les langages du premier ordre.

Définition (Termes)

Soient X un ensemble de symboles de variables, C un ensemble de constantes et F un ensemble de symboles de fonctions muni d'arité, l'ensemble des termes construits sur X, C et F est défini inductivement de la façon suivante :

- les variables sont des termes,
- les constantes sont des termes,
- si t_1, \ldots, t_n sont des termes et f est un symbole fonctionnel d'arité n alors $f(t_1, \ldots, t_n)$ est un terme,
- tous les termes sont générés par les 3 règles décrites précédemment.

On note T(F,C,X) l'ensemble des termes construits sur X, C et F. Les termes peuvent être représentés par des arbres étiquetés par les symboles de $X \cup C \cup F$, les feuilles des arbres sont éléments de $X \cup C$, alors que les nœuds internes sont des éléments de F.

Termes (définitions, notations et exemples)

- un terme est dit clos s'il est sans variable,
- si t est un terme, V(t) est l'ensemble des variables ayant des occurrences dans t,
- $X = \{x, y, z, \ldots\}$ un ensemble de variables, $C = \{a, b, c\}$ un ensemble de constantes et $F = \{f[2], g[2], s[1]\}$ un ensemble de symboles fonctionnels dont l'arité est indiquée entre crochets [.]
 - a, x, c sont des termes, (a et c sont des termes clos), ,
 - s(y), s(c), f(a, x), g(a, c), f(y, y), g(x, z), f(a, a) sont des termes.
 - s(f(a, x)) est un terme,
 - t = f(g(a, x), f(s(z), f(x, b))) est un terme, $V(t) = \{x, z\}.$

Principe d'induction sur les termes

Proposition

Soit une propriété P dépendant d'un terme t, pour montrer que P(t) est vraie pour tout terme t, il suffit de montrer les assertions suivantes :

- les cas de base
 - pour toute variable x, P(x) est vrai
 - pour toute constante c, P(c) est vrai
- cas général (hérédité de la propriété P) pour tout terme $t_1,...,t_n$ et tout symbole f de fonction d'arité n, $P(t_1)$ et ... et $P(t_n)$ implique $P(f(t_1,...,t_n))$

Définition (Substitution)

Soient X un ensemble de variables, C un ensemble de constantes et F un ensemble de symboles fonctionnels. Une substitution est une application σ de X vers T(F,C,X) telle que $\sigma(x)=x$ sauf pour un nombre fini de variables x.

$$\sigma: X \to T(F, C, X)$$

Le domaine d'une substitution σ est l'ensemble des variables qui sont modifiées par cette substitution, on le note $dom(\sigma)$:

$$dom(\sigma) = \{x; x \in X \text{ et } \sigma(x) \neq x\}$$

Une substitution est définie par les variables de son domaine et leur image, on dénote une substitution sous la forme suivante : $\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$

Exemple

- $\sigma_1 = \{ \mathbf{x} \mapsto f(\mathbf{z}, \ b), \ \mathbf{z} \mapsto s(f(y, \ s(x))) \}$, on a donc $\sigma_1(\mathbf{x}) = f(\mathbf{z}, \ b)$ et $\sigma_1(\mathbf{z}) = s(f(y, \ s(x)))$ $dom(\sigma_1) = \{ \mathbf{x}, \ \mathbf{z} \}$ et $\sigma_1(y) = y$ car $y \notin dom(\sigma_1)$
- σ₂ = ∅ est la substitution vide (c'est-à-dire la fonction identique telle que pour toute variable x de X, σ₂(x) = x)

Applications des substitutions (extension aux termes)

Définition

On étend l'application des substitutions aux termes de la façon suivante, si σ est une substitution :

- $\sigma(x)$ est (déjà) défini si x est une variable
- $\sigma(c) = c \text{ si } c \text{ est une constante}$
- $\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n))$ (σ est un homomorphisme)

Exemple

```
Soient la substitution \sigma définie par \sigma = \{x \mapsto g(y, s(a)), z \mapsto g(f(a, b), x)), v \mapsto s(z)\} et le terme t = f(g(x, y), f(s(z), f(b, s(x)))) \sigma(t) = \sigma(f(g(x, y), f(s(z), f(b, s(x))))) = f(\sigma(g(x, y)), \sigma(f(s(z), f(b, s(x))))) = f(g(\sigma(x), \sigma(y)), f(\sigma(s(z)), \sigma(f(b, s(x))))) = f(g(\sigma(x), \sigma(y)), f(s(\sigma(z)), f(\sigma(b), \sigma(s(x))))) = f(g(\sigma(x), \sigma(y)), f(s(\sigma(z)), f(\sigma(b), s(\sigma(x))))) = f(g(g(y, s(a)), y), f(s(g(f(a, b), x)), f(b, s(g(y, s(a))))))
```

Définition (Unification)

Soient t et t' deux termes, t et t' sont unifiables si et seulement s'il existe une substitution σ telle que $\sigma(t) = \sigma(t')$; σ s'appelle un unificateur de t et t'.

Exemples

- $t=x,\ t'=y,\ \{x\mapsto y\},\ \{y\mapsto x\}$ et $\{x\mapsto z,\ y\mapsto z\}$ sont des unificateurs de t et t'
- a et b ne sont pas unifiables
- f(x, y) et g(a, x) ne sont pas unifiables
- t = f(x, g(z, s(z))), t' = f(s(b), g(a, y)), $\{x \mapsto s(b), z \mapsto a, y \mapsto s(a)\}$ est un unificateur de t et t'

Remarques

- deux termes dont les symboles fonctionnels de tête sont différents ne sont pas unifiables (exemple : f(x, s(a)) et g(s(b), y) ne sont pas unifiables)
- une variable et un terme contenant cette variable ne sont pas unifiables (exemple : x et s(x) ne sont pas unifiables)
- il existe des algorithmes d'unification permettant de déterminer si deux termes sont unifiables et si c'est le cas déterminent un unificateur de ces deux termes (voir TD)

Définition (atome)

Soient X un ensemble de variables, C un ensemble de constantes, F un ensemble de symboles de fonctions et R un ensemble de symboles de relations, un atome est de la forme $r(t_1, \ldots, t_n)$ où

- r est un symbole de relation d'arité n et
- t_1, \ldots, t_n sont des termes de T(F, C, X).

Remarques et exemples

- Dans la définition, un seul symbole de relation apparaît en tête de l'atome.
- Définition: un littéral est soit un atome (i.e. de la forme r(t₁,...,t_n)) soit la négation d'un atome (i.e. de la forme ¬r(t₁,...,t_n))
- les notions de substitution et unification peuvent être aisément étendues aux atomes
- $X = \{x, y, z, u\}, C = \{a, b, c\}, F = \{f[2], g[2], s[1]\}, R = \{p[1], q[2], r[2]\}$
 - p(a) et q(a, s(x)) sont des atomes
 - f(x, a)=s(y) est un atome (car = est un symbole de relation)
 - r(f(g(s(x), a), s(b)), g(s(x), c)) est un atome
 - r(p(a), x) n'est pas un atome car p(a) n'est pas un terme

Formules de la logique du premier ordre

Définition (Formules)

Soient les alphabets X (ensemble de variables), C (ensemble de constantes), F (ensemble de symboles de fonctions) et R (ensemble de symboles de relations), l'ensemble $\mathcal{F}or$ des formules est défini inductivement de la façon suivante :

- Les formules de base sont les atomes construits sur les alphabets X,
 C, F et R,
- les règles de constructions des formules sont :
 - si $f \in \mathcal{F}$ or alors $\neg f \in \mathcal{F}$ or
 - si $f_1 \in \mathcal{F}or$ et $f_2 \in \mathcal{F}or$ alors $f_1 \lor f_2 \in \mathcal{F}or$
 - si $f_1 \in \mathcal{F}$ or et $f_2 \in \mathcal{F}$ or alors $f_1 \wedge f_2 \in \mathcal{F}$ or
 - si $f_1 \in \mathcal{F}or$ et $f_2 \in \mathcal{F}or$ alors $f_1 \Rightarrow f_2 \in \mathcal{F}or$
 - si $f_1 \in \mathcal{F}or$ et $f_2 \in \mathcal{F}or$ alors $f_1 \Leftrightarrow f_2 \in \mathcal{F}or$
 - si $f \in \mathcal{F}or$ alors $\exists x \ f \in \mathcal{F}or$ (où x est un symbole de X, une variable)
 - si $f \in \mathcal{F}or$ alors $\forall x \ f \in \mathcal{F}or$ (où $x \in X$)

Un langage du premier ordre est constitué des alphabets X, C, F et R et des formules construites sur ces alphabets.

Principe d'induction structurelle sur les formules

Soit une propriété P dépendant d'une formule f, pour montrer que P(f) est vraie pour toute formule f de $\mathcal{F}or$, il suffit de montrer les deux assertions suivantes :

- cas de base : P(a) est vraie pour tout atome a
- cas généraux : pour toute formule f, f_1 et f_2 de $\mathcal{F}or$
 - P(f) implique $P(\neg f)$
 - $P(f_1)$ et $P(f_2)$ implique $P(f_1 \vee f_2)$
 - $P(f_1)$ et $P(f_2)$ implique $P(f_1 \wedge f_2)$
 - $P(f_1)$ et $P(f_2)$ implique $P(f_1 \Rightarrow f_2)$
 - $P(f_1)$ et $P(f_2)$ implique $P(f_1 \Leftrightarrow f_2)$
 - P(f) implique $P(\exists x \ f)$
 - P(f) implique $P(\forall x \ f)$

Convention de priorité

- les quantificateurs ∃ et ∀ sont prioritaires par rapport aux connecteurs logiques
- les connecteurs logiques sont par ordre de priorité décroissante :
 ¬, puis ∧ et ∨ et enfin ⇒ et ⇔
- on fusionne les listes de quantificateurs identiques,
 ∃x₁∃x₂∀x₃∀x₄∀x₅f peut être abrégé en ∃x₁x₂∀x₃x₄x₅f
- $f_1 = \exists x \ p(x, \ y) \lor r(x)$ et $f_2 = \exists x (p(x, \ y) \lor r(x))$ sont deux formules différentes

Variables libres

Définition (Variables libres d'une formule)

Soit f une formule de la logique du premier ordre, l'ensemble des variables libres de f, noté VL(f) est défini récursivement de la façon suivante selon la forme de la formule :

- $VL(r(t_1,\ldots,t_n))=V(t_1)\cup\ldots V(t_n)$ si $r(t_1,\ldots,t_n)$ est un atome
- $VL(t_1 = t_2) = V(t_1) \cup V(t_2)$ si t_1 et t_2 sont des termes
- $VL(\neg f) = VL(f)$ si f est une formule
- $VL(f_1 \lor f_2) = VL(f_1) \cup VL(f_2)$ si f_1 et f_2 sont des formules (idem pour $VL(f_1 \land f_2) = VL(f_1 \Rightarrow f_2) = VL(f_1) \cup VL(f_2)$)
- $VL(\exists x \ f_1) = VL(f_1) \setminus \{x\}$ si x est une variable et f_1 est une formule
- $VL(\forall x \ f_1) = VL(f_1) \setminus \{x\}$ si x est une variable et f_1 est une formule

Remarques et exemples

- une variable est libre si elle possède une occurrence qui n'est pas sous l'influence d'un quantificateur
- une formule f est dite close si et seulement si $VL(f) = \emptyset$
- lorsqu'on applique une substitution à une formule, on substitue seulement les variables libres de cette formule
- $f = \forall x (x.y = y.x), VL(f) = \{y\}$
- $g = (\forall x \exists y (x.z = z.y)) \land (x = z.z), VL(g) = \{x, z\}$
- $h = \forall x (y = 0), VL(h) = \{y\}$

Définition(Variables liées d'une formule)

L'ensemble des variables liées (ou muettes) VM(f) d'une formule f est défini récursivement selon la forme de la formule de la façon suivante :

- $VM(r(t_1,...,t_n)) = \emptyset$ si r est un symbole de relation et $t_1,...,t_n$ sont des termes (i.e. $r(t_1,...,t_n)$ est un atome), de même $VM(t_1 = t_2) = \emptyset$
- $VM(\neg f) = VM(f)$ si f est une formule
- $VM(f_1 \lor f_2) = VM(f_1) \cup VM(f_2)$ si f_1 et f_2 sont des formules, de même $VM(f_1 \land f_2) = VM(f_1 \Rightarrow f_2) = VM(f_1) \cup VM(f_2)$
- $VM(\forall x \ f) = VM(f) \cup \{x\}$ si x est une variable et f une formule
- $VM(\exists x \ f) = VM(f) \cup \{x\}$ si x est une variable et f une formule

Remarques et exemples

- les variables liées (ou muettes) sont celles qui sont sous l'influence d'un quantificateur,
- $f = \forall x (x.y = y.x), VM(f) = \{x\}$ $g = (\forall x \exists y (x.z = z.y)) \land (x = z.z), VM(g) = \{x, y\}$
- $h = \forall x (y = 0), VM(h) = \{x\}$

Formules polies

Définition (Formule polie)

Une formule f est polie si et seulement si les deux conditions suivantes sont vérifiées :

- $VL(f) \cap VM(f) = \emptyset$ (une variable n'est pas à la fois libre et liée)
- deux occurrences d'une même variable liée correspondent à la même occurence de quantificateur

Exemples et remarques

- $\forall x \exists y \ r(x, y) \lor r(x, z)$ n'est pas polie car x est à la fois *libre* et *liée*
- (∀x r(x, y)) ∨ (∃x p(x, z)) n'est pas une formule polie, car il existe deux occurrences liées de la variable x qui ne correspondent pas à la même occurrence de quantificateur
- on peut rendre une formule polie en renommant systématiquement les variables liées par de nouvelles variables (i.e. des variables qui n'apparaissent nulle part ailleurs dans la spécification)
- il est important de mettre les formules sous forme polie, cela évite les problèmes de capture lors de l'application des substitutions
- en mathématiques on respecte en général la première condition de la définition, mais la deuxième est moins respectée

Application d'une substitution à une formule

Soit la formule

$$f = \forall x \ p(x, \ y)$$

on a $VL(f) = \{y\}$ et $VM(f) = \{x\}$.

Appliquer une substitution σ sur la formule f revient à appliquer σ aux variables libres de f. Par exemple :

- si $\sigma = \{y \mapsto a\}$ on obtient $\sigma(f) = \forall x \ p(x, a)$
- si $\sigma = \{y \mapsto s(z)\}$ on obtient $\sigma(f) = \forall x \ p(x, \ s(z))$
- si σ = {y → s(x)} on obtient σ(f) = ∀x p(x, s(x)) cette application de substitution est fausse car on a phénomène de capture, ici l'occurence x de la variable x a été capturée par le quantificateur ∀x, elle est ainsi devenue liée alors qu'elle aurait dû rester libre.

Pour pallier ce phénomène de capture, il est nécessaire de renommer auparavant la variable liée x, la formule f devient donc $\forall x_1 \ p(x_1, \ y)$ où x_1 est une nouvelle variable, n'apparaissant pas ailleurs dans les spécifications.

On peut alors appliquer la substitution $\sigma = \{y \mapsto s(x)\}$ et l'on obtient $\sigma(f) = \forall x_1 \ p(x_1, \ s(x))$.

Formule close, clôture universelle, clôture existentielle

Définitions

- Une formule **close** est une formule sans variables libres.
- Soit f une formule dont les variables libres sont x_1, \ldots, x_n . La clôture universelle de f est la formule $\forall x_1 \ldots \forall x_n f$
- Soit f une formule dont les variables libres sont x_1, \ldots, x_n . La clôture existentielle de f est la formule $\exists x_1 \ldots \exists x_n f$

Sémantique de la logique du premier ordre

Pour définir la sémantique d'une formule :

- Une interprétation définit un domaine et donne la sémantique
 - des symboles de fonction, comme application effective du domaine vers le domaine, et
 - des symboles de relation, comme application du domaine vers les booléens.
- Une valuation donne un sens aux variables libres des formules.

Exemple

Soit la formule

$$\varphi = p(x, a) \land \exists y \exists z \ p(y, z)$$

donner une sémantique à cette formule, c'est dire si elle vaut 0 (faux) ou 1 (vrai), pour cela on doit préciser :

- le domaine (ensemble) dans lequel les variables et les constantes prennent leurs valeurs
- ce que sont les symboles p, a de la formule
- les valeurs des variables libres de la formule (ici x est la seule variable libre)

Définition (Valuation)

Soient X un ensemble de variables et E un ensemble, une valuation δ des variables de X est une application de X vers $E:\delta:X\to E$.

Définition

Soient δ une application de X vers E et e un élément de E, $\delta[x:=e]$ est la valuation définie par

$$\delta[x := e](y) = \delta(y)$$
 si $y \neq x$

$$\delta[x := e](x) = e$$

Autrement dit $\delta[x:=e]$ coı̈ncide avec δ sauf en x ou elle vaut e

Exemple

Soient
$$X = \{x, y, z\}$$
, $E = \mathbb{N}$ et δ définie par $\delta(x) = 0$, $\delta(y) = 0$ et $\delta(z) = 1$.
Soit $\zeta = \delta[x := 2]$, on a $\zeta(x) = 2$, $\zeta(y) = 0$ et $\zeta(z) = 1$.

Remarques

- les valuations permettent de donner des valeurs aux variables libres des formules
- une valuation s'appelle aussi affectation de valeurs aux variables ou environnement
- l'ensemble des applications de X vers E est parfois noté E^X

Définition (Interprétation)

Soit $\mathcal L$ un langage du premier ordre, une interprétation I pour $\mathcal L$, est déterminée par les données suivantes :

- un ensemble E non vide appelé le domaine de l'interprétation I, on le note aussi |I| (E = |I|)
- à chaque constante c on associe $I(c) \in E$
- à chaque symbole de fonction f d'arité n, on associe une application $I(f): E^n \to E$
- à chaque symbole de relation r d'arité n on associe une relation /(r) sur Eⁿ, c'est-à-dire une application /(r) : Eⁿ → {0, 1}
- au symbole d'égalité =, on fait correspondre l'égalité = sur E, c'est-à-dire
 = : E × E → {0, 1}

Remarques

- les variables et les constantes prennent leur valeur dans le domaine de l'interprétation I
- étant donné un symbole de fonction f d'arité n, I(f) est une fonction comportant n d'arguments. De même si r est un symbole de relation I(r) est une relation comportant le même nombre d'arguments que r.

Interprétation des termes

Définition (Interprétation d'un terme)

Soient I une interprétation de domaine E et δ une valuation, la valeur du terme t dans l'interprétation I relativement à la valuation δ est un élément de E, noté $val_I(t, \delta)$ et défini par induction sur la structure des termes :

- si t est une variable x alors $val_I(x, \delta) = \delta(x)$
- si t est une constante c alors $val_I(c, \delta) = I(c)$
- si t est de la forme $f(t_1, \ldots, t_n)$ alors $val_l(f(t_1, \ldots, t_n), \delta) = l(f)(val_l(t_1, \delta), \ldots, val_l(t_n, \delta))$

Remarques

L'interprétation I sert à évaluer les symboles de fonctions (et les constantes), alors que la valuation δ sert à évaluer les variables.

Exemple

Soit le terme $t=f(s(x),\ a)$, on considère l'interprétation I telle que $|I|=\mathbb{N}$ et $I(f)=\times$, $I(s)=u\mapsto u+1$ et I(a)=2 et la valuation δ telle que $\delta(x)=10$:

$$val_{I}(t, \delta) = val_{I}(f(s(x), a), \delta) = I(f)(val_{I}(s(x), \delta), val_{I}(a, \delta)) = I(f)(I(s)(val_{I}(x, \delta)), I(a)) = I(f)(I(s)(\delta(x)), I(a)) = (10 + 1) \times 2 = 22$$

Interprétation d'une formule du premier ordre

Définition

Soit I une interprétation de domaine E, soit δ une valuation des variables et soit ϕ une formule du premier ordre, la valeur de la formule ϕ dans l'interprétation I par rapport à la valuation δ notée $val_I(\phi,\ \delta)$ est un élément de $\mathbb{B}=\{0,\ 1\}$ défini inductivement sur la structure des formules de la façon suivante :

•
$$val_I(r(t_1,\ldots,t_n),\ \delta)=I(r)(val_I(t_1,\ \delta),\ldots,val_I(t_n,\ \delta))$$

•
$$val_I(t_1=t_2, \delta) = val_I(t_1, \delta)=val_I(t_2, \delta)$$

•
$$val_I(\neg \phi, \ \delta) = \overline{val_I(\phi, \ \delta)}$$

•
$$val_I(\phi_1 \vee \phi_2, \delta) = val_I(\phi_1, \delta) + val_I(\phi_2, \delta)$$

•
$$val_l(\phi_1 \wedge \phi_2, \ \delta) = val_l(\phi_1, \ \delta)$$
 . $val_l(\phi_2, \ \delta)$

•
$$val_I(\phi_1 \Rightarrow \phi_2, \ \delta) = \overline{val_I(\phi_1, \ \delta)} + val_I(\phi_2, \ \delta)$$

•
$$\mathit{val}_I(\forall x \phi, \ \delta) = \begin{cases} 1 \text{ si pour tout \'el\'ement e de } E \ \mathit{val}_I(\phi, \ \delta[x := e]) = 1 \\ 0 \ \mathsf{sinon} \end{cases}$$

•
$$val_I(\exists x\phi, \ \delta) = \begin{cases} 1 \text{ s'il existe un \'el\'ement } e \text{ de } E \text{ tq } val_I(\phi, \ \delta[x:=e]) = 1 \\ 0 \text{ sinon} \end{cases}$$

Remarques

- l'interprétation d'un atome est analogue à celle d'un terme, mais sa valeur est un booléen (0 pour *faux* et 1 pour *vrai*)
- les connecteurs logiques ¬, ∨, ∧ et ⇒ sont interprétés pas les fonctions booléennes ¬, +, . et ⇒
- les quantificateurs ∀ et ∃ sont interprétés selon le sens courant dans le méta-langage par "pour tout" et "il existe"

Exemples d'interprétation de formules

Exemples

Soit le langage \mathcal{L} défini par $V=\{x,\ y,\ z,\ u,\ldots\},\ C=\{a\},\ F=\emptyset$ et $R=\{r[2]\}.$ Soit l'interprétation I définie par $|I|=\mathbb{N},\ I(r)=<$ et I(a)=0. Soit la valuation définie par $\delta(x)=2,\ \delta(y)=1.$ On a :

1 $\operatorname{val}_{l}(r(x, y), \delta) = 0$

6 $val_I(\exists z \forall u \ r(z, \ u), \ \delta) = 0$

2 $val_{I}(r(y, x), \delta) = 1$

 $val_I(\exists z \forall u \ r(u, z), \delta) = 0$

3 $val_l(\forall z \ r(z, y), \delta) = 0$

8 $\operatorname{val}_{l}(\forall z \exists u \ r(z, \ u), \ \delta) = 1$

4 $val_I(\exists z \ r(z, \ y), \ \delta) = 1$

Démonstration :

- 1 $val_I(r(x, y), \delta)$ est interprétée par 2 < 1 donc vaut 0.
- 2 $val_I(r(y, x), \delta)$ est interprétée par 1 < 2 donc vaut 1.
- ③ $val_l(\forall z \ r(z, y), \delta)$, est interprétée par $(\forall z \in \mathbb{N}) \ z < 1$ qui est une assertion fausse, donc $val_l(\forall z \ r(z, y), \delta) = 0$.
- **4** $val_l(\exists z \ r(z, y), \delta)$ est interprétée par $(\exists z \in \mathbb{N}) \ z < 1$ qui est une assertion vraie donc $val_l(\exists z \ r(z, y), \delta) = 1$.
- 5 suivants à faire . . .

Propriétés et remarques

Proposition

Pour I fixé $val_I(\phi, \delta)$ ne dépend de δ que par l'intermédiaire des variables libres de ϕ .

Remarques

- Si δ_1 et δ_2 coïncident sur les variables libres de ϕ alors $val_I(\phi, \delta_1) = val_I(\phi, \delta_2)$.
- Ce résultat évident peut se montrer par récurrence sur la structure de ϕ .
- Si ϕ ne possède pas de variables libres (c'est-à-dire est une formule close) $val_I(\phi, \delta)$ ne dépend d'aucune valuation δ .
- Pour les formules ϕ closes, on peut donc noter $val_I(\phi)$ la valeur de vérité de ϕ dans l'interprétation I.

Définition (Modèle)

Soient \mathcal{L} un langage du premier ordre, I une interprétation de \mathcal{L} , ϕ une formule de \mathcal{L} et \mathcal{A} un ensemble de formules de \mathcal{L} ,

- I est un modèle de ϕ ssi pour toute valuation δ , $val_I(\phi, \delta) = 1$.
- I est un modèle de A ssi I est un modèle de chacune des formules de A.
- \mathcal{A} est contradictoire ssi \mathcal{A} n'a pas de modèle.

Proposition

- I est un modèle de ϕ ssi I est un modèle de la clôture universelle de ϕ
- I est un modèle de A ssi I est un modèle des clôtures universelles des formules de A

Démonstration

On montre le résultat pour une formule ϕ comportant une seule variable libre x, soit I un modèle de ϕ , on a les équivalences suivantes :

I un modèle de ϕ ssi pour toute valuation $\delta: X \to |I|$, $val_I(\phi, \ \delta) = 1$ ssi pour toute valuation δ , pour tout élément e de |I|, $val_I(\phi, \ \delta[x:=e]) = 1$ ssi pour toute valuation δ , $val_I(\forall x \ \phi, \ \delta) = 1$ ssi I est un modèle de $\forall x \ \phi$ On peut finir la démonstration en faisant un raisonnement par récurrence sur le nombre de variables libres de la formule ϕ .

Exemples

Soient le langage défini par $V = \{x, y, z\}$, $C = \{a\}$, $F = \{f[2]\}$ et les formules :

$$\phi_1 : \forall x \forall y \forall z \ f(x, \ f(y, \ z)) = f(f(x, \ y), \ z)$$

$$\phi_2 : \forall x \ (f(a, \ x) = x \land f(x, \ a) = x)$$

$$\phi_3 : \forall x \exists y \ (f(x, \ y) = a \land f(y, \ x) = a)$$

Soient les interprétations suivantes :

$$I_1$$
 définie par $|I_1| = \mathbb{N}$, $I_1(a) = 0$, $I_1(f) = +$ et I_2 définie par $|I_2| = \mathbb{Z}$, $I_2(a) = 0$, $I_2(f) = +$

Soit I une interprétation,

si I est un modèle de ϕ_1 , ϕ_1 exprime que I(f) est une opération associative,

si I est un modèle de ϕ_2 , ϕ_2 exprime que I(a) est l'élément neutre de l'opération I(f),

 I_1 est un modèle des formules ϕ_1 et ϕ_2 , I_2 est un modèle des formules ϕ_1 et ϕ_2 et ϕ_3

Théorème, déduction sémantique

Définition

Soit ϕ une formule et \mathcal{A} un ensemble de formules

- on dit que ϕ se déduit sémantiquement de \mathcal{A} si et seulement si tout modèle de \mathcal{A} est un modèle de ϕ , on le note $\mathcal{A} \models \phi$.
- ϕ est un théorème (de la logique du premier ordre) si et seulement si **toute interprétation** est un modèle de ϕ , on le note $\models \phi$.
- on dit que deux formules ϕ et ψ sont équivalentes si et seulement si $\phi \Leftrightarrow \psi$ est un théorème de la logique du premier ordre, on a $\models \phi \Leftrightarrow \psi$.

Exemple

Soit \mathcal{L} le langage défini par $V=\{x,\ y,\ z,\ u,\ x',\ y'\}$, $C=\{e\}$ et $F=\{*[2]\}$

Soit la formule ϕ : $\forall x \forall y \forall z \ [(x*y)*z = x*(y*z) \land e*x = x \land x*e = x \land \exists x' \ (x'*x = e \land x*x' = e)]$

Soit ψ : $\forall u [\forall x (u * x = x \land x * u = x) \Rightarrow u = e]$

Chaque modèle de ϕ est un groupe, ψ exprime l'unicité de l'élément neutre, on a $\{\phi\} \models \psi$.

Exemples et contre-exemples de théorèmes

- Les formules suivantes sont des théorèmes :
 - $p(c) \Rightarrow \exists x \ p(x)$
 - $\exists x \forall y \ r(x, \ y) \Rightarrow \forall y \exists x \ r(x, \ y)$
 - $\forall x \forall y \ r(x, \ y) \Leftrightarrow \forall y \forall x \ r(x, \ y)$
 - $\exists x \exists y \ r(x, \ y) \Leftrightarrow \exists y \exists x \ r(x, \ y)$
 - $\forall x (p(x) \land q(x)) \Leftrightarrow (\forall x p(x)) \land (\forall x q(x))$

On mettra en évidence dans la suite des moyens pour démontrer ces théorèmes.

• Pour montrer qu'une formule ϕ n'est pas un théorème, on peut mettre en évidence une interprétation I qui n'est pas un modèle de ϕ .

 $\forall x \exists y \ r(x, \ y) \Rightarrow \exists y \forall x \ r(x, \ y)$ n'est pas un théorème.

Soit l'interprétation I telle que $|I|=\mathbb{N}$ et I(r)=< on a

- $val_I(\forall x \exists y \ r(x, \ y)) = 1$, car $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})(x < y)$ est une assertion vraie (il suffit de choisir y = x + 1).
- $val_l(\exists y \forall x \ r(x, \ y)) = 0$, car $(\exists y \in \mathbb{N})(\forall x \in \mathbb{N}) \ (x < y)$ est une assertion fausse, car il n'existe pas dans \mathbb{N} , d'élément supérieur à tous les éléments de \mathbb{N} .

donc $val_I(\forall x \exists y \ r(x, \ y)) \Rightarrow \exists y \forall x \ r(x, \ y)) = 0$, d'où I n'est pas un modèle de la formule ϕ et par conséquent ϕ n'est pas un théorème.