PSC 202 SYRACUSE UNIVERSITY

INTRODUCTION TO POLITICAL ANALYSIS

HYPOTHESIS TESTING WHEN USING SAMPLES, HYPOTHESIS TESTING WITH ONE CONFOUNDER

TODAY

- Hypothesis testing with a sample
- Hypothesis testing with one confounder

TODAY

- Hypothesis testing with a sample
- Hypothesis testing with one confounder

IDEA

- We start out thinking H₀ is true
 - No relationship between X and Y in population
- We ask: If H_0 is true, how likely is it that a random sample would produce an effect as large (or larger) than the one we have observed in our sample?
 - If less than 5% (p<0.05): we reject H_0
 - If more than 5% (p>0.05): we don't reject H_0

NOW

- How exactly do we do this hypothesis testing?
 - How do we compute a p-value, etc.?

IN OUR CASE

Job Approval Ratings of President Biden, by Subgroup				
	Approve	Disapprove	N	
	%	%		
All U.S. adults	56	39	2,937	
Gender				
Men	49	45	1,643	
Women	62	34	1,294	

- H₀: No difference between men and women in population
- The survey does find a difference of 13 percentage points
 - 62 for women vs. 49 for men
 - Instead of 13 percentage points, we use 0.13

IN OUR CASE

Job Approval Ratings of President Biden, by Subgroup			
	Approve	Disapprove	N
	%	%	
All U.S. adults	56	39	2,937
Gender			
Men	49	45	1,643
Women	62	34	1,294

- Question: If there is no difference between men and women in the population, what is the probability of getting a sample where they are at least 13 points different from each other?
 - Specifically: is it lower than 5%?

IN OUR CASE

Job Approval Ratings of President Biden, by Subgroup				
	Approve	Disapprove	N	
	%	%		
All U.S. adults	56	39	2,937	
Gender				
Men	49	45	1,643	
Women	62	34	1,294	

- Equivalent: If we reject H₀ based on this survey, what is probability of committing Type I error?
 - And is it lower than 5%?

TEST STATISTIC

Test statistic t:

$$t = \frac{H_A - H_0}{\text{Standard Error of Difference}}$$

- H_A : observed difference between samples (here: 0.13)
- H_0 : difference between samples if H_0 is true (0.00)
- Standard Error of Difference between the two samples (here 0.018)
 - I calculated this for you

TEST STATISTIC

- H_A: 0.13
- H₀: 0
- Standard Error of Difference: 0.018

$$t = \frac{H_A - H_0}{\text{Standard Error of Difference}}$$

$$t = \frac{0.13 - 0.00}{0.018} = 7.22$$

• This is called the "t-statistic" or "t-ratio"

NORMAL DISTRIBUTION

- Remember: 95% between scores of -1.96 and 1.96
- 5% of scores outside of those scores
- T-statistic is (basically) normally distributed

- We reject H_0 (no difference between men and women) if t-value is such that it is unlikely that we commit a Type I error
 - 5% chance (or less) that we falsely reject H₀
 - So if the null hypothesis is true (no effect in population), chance of seeing the effect we see in our sample is 5% or less

• We reject H₀ if t<-1.96 or t>1.96

• t-score: 7.22

Job Approval Ratings of President Biden, by Subgroup			
	Approve	Disapprove	N
	%	%	
All U.S. adults	56	39	2,937
Gender			
Men	49	45	1,643
Women	62	34	1,294

 If there is no difference between men and women in population, chance that we find 13 percentage points difference in samples is less than 5 percent

Job Approval Ratings of President Biden, by Subgroup				
	Approve	Disapprove	N	
	%	%		
All U.S. adults	56	39	2,937	
Gender				
Men	49	45	1,643	
Women	62	34	1,294	

- So we reject the null hypothesis that there is no difference between men and women in approval of Biden
- In favor of the alternative hypothesis that he has higher support among women

ANOTHER EXAMPLE

- From the class survey:
- How would you say the economy is doing?
 - Bad or very bad: 49%
 - Neither, good, very good: 51%

PARTISANSHIP AND ECONOMY

	Democrat	Republican	Total
Bad Or Very	43%	74%	49%
Bad	(32)	(14)	(46)
Neither, Good,	57%	26%	51%
Or Very Good	(42)	(5)	(47)
Total	100% (74)	100% (19)	100% (93)

• Difference: 31% (0.31)

CROSS-TABULATION

- Difference between Democrats and Republicans is 0.31 (31%)
 - Standard error of difference: 0.26

$$\frac{H_A - H_0}{\text{Standard Error of Difference}}$$

$$=\frac{0.31-0.0}{0.26}$$

$$= 1.19$$

Is this t-statistic large enough to reject H₀?

- We reject H₀ if t<-1.96 or t>1.96
- We had: t=1.19

- We reject H₀ if t<-1.96 or t>1.96
- We had: t=1.19

REJECT Ho?

- We reject H_0 if t < -1.96 or t > 1.96
- We had t = 1.19
- So we cannot reject H₀ that there is no difference between Democrats and Republicans in perceptions of economy
- It is quite likely that we see a difference as large as we observed in our sample if there is no difference in the population
 - Chance of that happening is larger than 5%

REJECT Ho?

- We found a very large difference between Republicans and Democrats
 - 74 vs. 43 percent!
- But: We have a relatively small sample, especially for Republicans
 - Makes it quite likely that, if H_0 is true, we get a sample with lots of Republicans thinking that the economy is bad

BIVARIATE RELATIONSHIPS

Independent Variable

ole		Nominal/Ordinal	Interval
ependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class
Depender	Interval	Mean Comparison	Correlation Coefficient, Linear Regression

BIVARIATE RELATIONSHIPS

Independent Variable

ole 1		Nominal/Ordinal	Interval
ependent Variable	Nominal/Ordinal	Cross-Tabulation	Not In This Class
Depende	Interval	Mean Comparison	Correlation Coefficient, Linear Regression

CROSS-TABULATION

Very similar approach as for mean comparisons

EXAMPLE

 On a typical day, how many hours do you spend studying/ revising/preparing for your classes, not counting time in class itself?

GENDER AND STUDYING

Gender	Mean Hours	Frequency	Standard Error
Female	3.29	79	0.17
Male	2.86	50	0.20
Difference	0.43	129	0.26

Do men really study less than women?

TEST STATISTIC

- H_A: 0.43
- H₀: 0
- Standard Error of Difference: 0.26

$$t = \frac{H_A - H_0}{\text{Standard Error}}$$

$$=\frac{0.43-0.0}{0.26}$$

$$= 1.65$$

• t-score: 1.65

- We cannot reject H₀
- If there is no difference in study time between men and women in population of students, it is quite likely that we see a difference of 0.43 hours (or larger) in a sample of 129 students just by chance
 - The probability of this happening is larger than 5%

BIVARIATE RELATIONSHIPS

Independent Variable

Nominal/Ordinal Interval **Dependent Variable** Not In This **Cross-Tabulation** Nominal/Ordinal Class... Correlation Mean Interval Coefficient, Linear Comparison Regression

ELON MUSK

• Thermometer Score = 8 + 0.66 * Lib/Cons

REJECT Ho?

• Can we reject H₀ that there is no relationship between lib/cons and feelings towards Musk?

FORMULA

$$t = \frac{H_A - H_0}{\text{Standard Error}}$$

- H_A: 0.66
- H₀: 0
- Here, the relevant standard error is the SE of the linear regression coefficient

REGRESSION TABLE

```
> m <- lm(therm_6 ~ libcons_1, data = data)
> summary(m)
Call:
lm(formula = therm_6 \sim libcons_1, data = data)
Residuals:
   Min 10 Median 30
                                  Max
-60.709 -12.931 -1.674 10.784 78.770
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.03561
                     4 01577 2.001
                                        0.048 *
                      0.08552 7.714 8.08e-12 ***
libcons_1 0.65972
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 21.13 on 103 degrees of freedom
 (27 observations deleted due to missingness)
Multiple R-squared: 0.3662, Adjusted R-squared: 0.36
F-statistic: 59.51 on 1 and 103 DF, p-value: 8.076e-12
```

REJECT H₀?

$$t = \frac{H_A - H_0}{\text{Standard Error}}$$

$$=\frac{0.66-0}{0.086}$$

$$= 7.67$$

SIGNIFICANCE TEST

- If how liberal/conservative people are has no effect on evaluations of Musk in population, it is quite unlikely that we would see such a large effect just by chance
 - The probability of this happening is much smaller than 5%
- So we are feel comfortable to reject H₀ and instead conclude that there is a relation between ideology and feelings towards Musk

RECAP

- We are now able to...
 - ...tell whether there is covariation between X and Y in a sample
 - ...tell whether our evidence (from a sample) is strong enough to conclude with reasonable certainty that the covariation is also present in the population

NEXT STEP

- Is there a credible causal mechanism that connects X to Y?
- Can we rule out the possibility that Y could cause X?
- Is there covariation between X and Y?
- Have we controlled for all confounding variables (Z) that might make the association between X and Y spurious?

TODAY

- Hypothesis testing with a sample
- Hypothesis testing with one confounder

SURVEY

 How much do you agree with the following statement: The federal government should mandate that everyone has to be vaccinated against Covid-19 (unless they have a medical or religious exemption).

BIVARIATE RELATIONSHIP

? Support for vaccine mandate

 What explains why some of you think there should be a vaccine mandate, while others disagree?

PARTISANSHIP & VACCINES

	Democrats	Not Democrats	Total
Mandate	69% (51)	30% (17)	52% (68)
No Mandate	31% (23)	70% (40)	48% (63)
Total	100% (74)	100% (57)	100% (131)

BIVARIATE RELATIONSHIP

Partisanship

Support for vaccine mandate

Zero-order effect: Democrats are 39
 percentage points more likely to support a
 vaccine mandate than Non-Democrats

CAUSALITY

- Want to know causal effect of partisanship on support for vaccine mandate:
- Attitude of person if Democrat Attitude of same person if not Democrat
 - Fundamental problem of causal inference: We can't observe alternate reality in which you identify with the other party!

CAUSALITY

- Also: Whether people identify as Democrats or not depends on certain factors
 - e.g. gender, age
- These other factors might also determine people's attitudes towards vaccine mandates

CONFOUNDER?

Gender (Z)

Partisanship (X)

Vaccine Mandate (Y)

MAYBE THIS IS GOING ON?

Gender (Z)

Partisanship (X)

Vaccine Mandate (Y)

MAYBE THIS IS GOING ON?

W more likely to be Democrats than M

Gender (Z)

W more supportive of vaccine mandate than M

Partisanship (X)

Vaccine Mandate (Y)

Partisanship by itself has no effect on vaccine mandate attitude

MAYBE THIS IS GOING ON?

How can we find out if this is what's going on?

Female			Male			
	Dem	Non- Dem	Total	Dem	Non- Dem	Total
Mandate						
No Mandate						
Total						

CONTROLLED COMPARISON TABLE

Female			Male			
	Dem	Non- Dem	Total	Dem	Non- Dem	Total
Mandate	71% (40)	35% (8)	61% (48)			
No Mandate	29% (16)	65% (15)	39% (31)			
Total	100% (56)	100% (23)	100%			

CONTROLLED COMPARISON TABLE

Female			Male			
	Dem 36	Non- Dem	Total	Dem	Non- Dem	Total
Mandate	71% (40)	35% (8)	61% (48)			
No Mandate	29% (16)	65% (15)	39% (31)			
Total	100% (56)	100% (23)	100% (79)			

PARTISANSHIP & VACCINATION

- Among women, Democrats are more likely to support a vaccine mandate than Non-Democrats
 - Democratic women 36 percentage points more likely to support

TERMINOLOGY

- Controlled effect: relationship between an independent variable (X) and a dependent variable (Y) within one value of another independent variable (Z)
 - e.g. relation between partisanship (X) and vaccine mandate support (Y) among women (one value of Z)

CONTROLLED COMPARISON TABLE

Female			Male			
	Dem 36	Non- Dem	Total	Dem	Non- Dem	Total
Mandate	71% (40)	35% (8)	61% (48)	59% (10)	28% (9)	39% (19)
No Mandate	29% (16)	65% (15)	39% (31)	41% (7)	72% (23)	61% (30)
Total	100% (56)	100% (23)	100%	100%	100% (32)	100% (49)

CONTROLLED COMPARISON TABLE

Female			Male			
Dem Non- 36% Dem		Total	Dem 31	Non- %Dem	Total	
Mandate	71%	35%	61%	59%	28%	39%
No	(40) 29%	(8) 65%	(48) 39%	(10) 41%	(9) 72%	(19) 61%
Mandate	(16)	(15)	(31)	(7)	(23)	(30)
Total	100% (56)	100% (23)	100%	100%	100% (32)	100% (49)

PARTISANSHIP & VACCINES

- Among men, Democrats are more likely to support a vaccine mandate than Non-Democrats
 - Democratic men 31 percentage points more likely to support

PARTISANSHIP & VOTING

- So even if we take gender into account, partisanship still has effect on support for vaccine mandate
 - Among both men and women, Democrats are more likely to support it