Matematika Splošna gimnazija

ZAPISKI

30. september 2024

Pred vami so zapiski za predmet Matematika v splošnem gimnazijskem izobraževanju. Sproti bodo nastajali od šolskega leta 2024/2025 naprej. V besedilu so mogoče prisotne še kake napake. Če kakšno opazite, mi javite

Kazalo

1	Osn	nove logike
	1.1	Izjave
		1.1.1 Enostavne in sestavjene izjave
	1.2	Logične operacije
		1.2.1 Negacija
		1.2.2 Konjunkcija
		1.2.3 Disjunkcija
		1.2.4 Komutativnost konjunkcije in disjunkcije
		1.2.5 Asociativnost konjunkcije in disjunkcije
		1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo
		1.2.7 De Morganova zakona
		1.2.8 Implikacija
		1.2.9 Ekvivalenca
		1.2.10 Vrstni red operacij
		1.2.11 Tavtologija in protislovje
		1.2.12 Kvantifikatorja
	1.3	Pomen izjav v matematiki
2	Osn	nove teorije množic
	2.1	Množice
	2.2	Moč množice
	2.3	Podmnožice
	2.4	Operacije z množicami
		2.4.1 Komplement množice
		2.4.2 Unija množic
		2.4.3 Presek množic
		2.4.4 Lastnosti operacij unije in preseka
		2.4.5 Razlika množic
		2.4.6. Kartezični produkt množic

Poglavje 1

Osnove logike

1.1 Izjave

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Matematična izjava lahko zavzame dve logični vrednosti:

- izjava je **resnična/pravilna**, oznaka **R/P/1/**T;
- izjava je neresnična/nepravilna, oznaka $N/0/\bot$.

Izjave označujemo z velikimi tiskanimi črkami (A, B, C ...).

Naloga 1.1. Ali so naslednje povedi izjave?

- Danes sije sonce.
- Koliko je ura?
- Piramida je geometrijski lik.
- Daj mi jabolko.
- Število 12 deli število 3.
- Število 3 deli število 10.
- Ali si pisal matematični test odlično?
- Matematični test si pisal odlično.
- Ali je 10 dl isto kot 1 l?
- Število 41 je praštevilo.

Naloga 1.2. Spodnjim izjavam določite logične vrednosti.

- A: Najvišja gora v Evropi je Mont Blanc.
- B: Število je deljivo s 4 natanko takrat, ko je vsota števk deljiva s 4.
- C: Ostanek pri deljenju s 4 je lahko 1, 2 ali 3.
- D: Mesec februar ima 28 dni.
- E: Vsa praštevila so liha števila.
- F: Število 1 je naravno število.
- G: Praštevil je neskončno mnogo.

1.1.1 Enostavne in sestavjene izjave

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- sestavljene izjave sestavljene iz elementarnih izjav, ki jih med seboj povezujejo logične operacije (imenovane tudi izjavne povezave oziroma logična vezja).

Vrednost sestavljene izjave izračunamo glede na vrednosti elementarnih izjav in izjavnih povezav med njimi.

Pravilnost sestavljenih izjav nazorno prikazujejo resničnostne/pravilnostne tabele.

1. Osnove logike

1.2 Logične operacije

1.2.1 Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A. Oznaka: $\neg A$.

 $\neg \mathbf{A}$ **Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna. Negacija negacije izjave je potrditev izjave. $\neg(\neg A) = A$

A	$\neg A$
P	N
N	P

Naloga 1.3. Izjavam določite logično vrednost, potem jih zanikajte in določite logično vrednost negacij.

- $A: 5 \cdot 8 = 30$
- B: Število 3 je praštevilo.
- C: Največje dvomestno število je 99.
- D: Število 62 je večratnik števila 4.
- E: Praštevil je neskončno mnogo.
- $F: 7 \le 5$
- G: Naša pisava je cirilica.

1.2.2 Konjunkcija

Konjunkcija izjavA in B nastane tako, da povežemo izjaviA in B z in hkrati.

 $\mathbf{A} \wedge \mathbf{B}$ Velja izjava A in (hkrati) izjava B.

Če sta izjavi A in B pravilni, je pravilna tudi njuna konjunkcija, če je pa ena od izjav nepravilna, je nepravilna tudi njuna konjunkcija.

A	B	$A \wedge B$
P	\overline{P}	P
P	N	N
N	P	N
N	N	N

Naloga 1.4. Določite logično vrednost konjunkcijam.

- Število 28 je večratnik števila 3 in večkratnik števila 8.
- Število 7 je praštevilo in je deljivo s številom 1.
- Vsakemu celemu številu lahko pripišemo nasprotno število in obratno celo število.
- Ostanki pri deljenju števila s 3 so lahko 0, 1 ali 2, pri deljenju s 5 pa 0, 1, 2, 3 ali 4.
- Število je deljivo s 3, če je vsota števk deljiva s 3, in je deljivo z 9, če je vsota števk deljiva z 9.

1.2.3 Disjunkcija

Disjunkcija izjav A in B nastane s povezavo ali.

 $\mathbf{A} \vee \mathbf{B}$ Velja izjava A ali izjava B (lahko tudi obe hkrati).

Disjunkcija je nepravilna, če sta nepravilni obe izjavi, ki jo sestavljata, v preostalih treh primerih je pravilna.

A	В	$A \lor B$
P	P	P
P	N	P
N	P	P
N	N	N

Naloga 1.5. Določite logično vrednost disjunkcijam.

- Število 24 je večratnik števila 3 ali 8.
- Število 35 ni večratnik števila 7 ali 6.
- Število 5 deli število 16 ali 18.
- Ploščina kvadrata s stranico a je a² ali obseg kvadrata je 4a.
- Ni res, da je vsota notranjih kotov trikotnika 160°, ali ni res, da Pitagorov izrek velja v poljubnem trikotniku.

1.2.4 Komutativnost konjunkcije in disjunkcije

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

1.2.5 Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

1.2.6 Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

1.2.7De Morganova zakona

- negacija konjunkcije je disjunkcija negacij: $\neg(A \land B) = \neg A \lor \neg B$
- negacija disjunkcije je konjunkcija negacij: $\neg(A \lor B) = \neg A \land \neg B$

Naloga 1.6. Katere od spodnjih izjav so pravilne in katere nepravilne?

- $(3 \cdot 4 = 12) \land (12 : 4 = 3)$
- $(a^3 \cdot a^5 = a^{15}) \vee (a^3 \cdot a^5 = a^8)$
- $(3|30) \wedge (3|26)$
- $(3|30) \lor (3|26)$
- $(2^3 = 9) \lor (3^2 = 9)$ $((-2)^2 = 4) \land \neg (-2^2 = 4)$

4 1. Osnove logike

1.2.8 Implikacija

Implikacija izjavA in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, **potem** velja izjava B. / **Iz** A **sledi** B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (**logična**) **posledica** izjave A.

Implikacija je nepravilna, ko je izjava A pravilna, izjava B pa nepravilna, v preostalih treh primerih je pravilna.

A	B	$A \Rightarrow B$
P	P	P
P	N	N
N	P	P
N	N	P

Naloga 1.7. Določite, ali so izjave pravilne.

- Če je število deljivo s 100, je deljivo tudi s 4.
- Če je štirikotnik pravokotnik, se diagonali razpolavljata.
- Če je štirikotnik kvadrat, se diagonali sekata pod pravim kotom.
- Če sta števili 2 in 3 lihi števili, potem je produk teh dveh števil sodo število.
- Če je število 18 deljivo z 9, potem je deljivo s 3.
- Če je 7 večkratnik števila 7, potem 7 deli število 43.
- Če je število deljivo s 4, potem je deljivo z 2.

1.2.9 Ekvivalenca

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

 $\mathbf{A} \Leftrightarrow \mathbf{B}$ Izjava A velja, **če in samo če** velja izjava B./ Izjava A velja **natanko tedaj, ko** velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Ekvivalentni/enakovredni izjavi pomenita eno in isto, lahko ju nadomestimo drugo z drugo.

A	В	$A \Leftrightarrow B$
P	\overline{P}	P
P	N	N
N	P	N
N	\overline{N}	P

Naloga 1.8. Določite, ali so naslednje izjave pravilne.

- Število je deljivo z 12 natanko takrat, ko je deljivo s 3 in 4 hkrati.
- Število je deljivo s 24 natanko takrat, ko je deljivo s 4 in 6 hkrati.
- Število je praštevilo natanko takrat, ko ima natanko dva delitelja.
- Štirikotnik je kvadrat natanko tedaj, ko se diagonali sekata pod pravim kotom.
- Število je sodo natanko tedaj, ko je deljivo z 2.

1.2.10 Vrstni red operacij

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- 1. negacija,
- 2. konjunkcija,
- 3. disjunkcija,
- 4. implikacija,
- 5. ekvivalenca.

Če moramo zapored izvesti več enakih izjavnih povezav, velja pravilo združevanja od leve proti desni.

Naloga 1.9. V sestavljeni izjavi zapišite oklepaje, ki bodo predstavljali vrstni red operacij. Nato tvorite pravilnostno tabelo za sestavljeno izjavo glede na različne logične vrednosti elementarnih izjav.

- $A \lor B \Leftrightarrow \neg A \Rightarrow \neg B$
- $A \lor \neg A \Rightarrow \neg B \land (\neg A \Rightarrow B)$
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$
- $A \land \neg B \Leftrightarrow A \Rightarrow B$
- $C \Rightarrow A \lor \neg B \Leftrightarrow \neg A \land C$
- $\neg A \lor \neg B \Leftrightarrow B \land (C \Leftrightarrow \neg A)$

1.2.11 Tavtologija in protislovje

Tavtologija ali logično pravilna izjava je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

1.2.12 Kvantifikatorja

- ∀ (beri 'vsak') izjava velja za vsak element dane množice
- ∃ (beri 'obstaja' ali 'eksistira') izjava je pravilna za vsaj en element dane množice

1.3 Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

Izreki ali **teoremi** so izjave, ki so pravilne, vendar pa njihova pravilnost ni očitna. Pravilnost izreka (teorema) moramo potrditi z dokazom, ki temelji na aksiomih in na preprostejših že prej dokazanih izrekih.

Definicije so izjave, s katerimi uvajamo nove pojme. Najpreprostejših pojmov v matematiki ne opisujemo z definicijami (to so pojmi kot npr.: število, premica ipd.); vsak nadaljnji pojem pa moramo definirati, zato da se nedvoumno ve, o čem govorimo.

6 1. Osnove logike

Poglavje 2

Osnove teorije množic

2.1 Množice

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo/skupno lastnost, ki pove, kateri elementi so v množici.

Označujemo jih z velikimi črkami (A, B, C... ali A, B, C...).

Univerzalna množica ali univerzum (\mathcal{U}) je množica vseh elementov, ki v danem primeru nastopajo oziroma jih opazujemo.

Element množice je objekt v množici.

Označujemo jih z malimi črkami (a, b, c...).

Elemente množice zapisujemo v zavitem oklepaju (npr. $\mathcal{A} = \{a, b, c\}$).

Element je lahko vsebovan v množici (npr. $a \in \mathcal{A}$) ali pa v množici ni vsebovan (npr. $d \notin \mathcal{A}$).

Prazna množica $(\emptyset, \{\})$ je množica, ki ne vsebuje nobenega elementa.

2.2 Moč množice

Število elementov v množici predstavlja **moč množice**. Oznaka: $\mathbf{m}(\mathcal{A})$ ali $|\mathcal{A}|$. Množica je lahko:

- končna množica vsebuje končno mnogo elementov: $\mathbf{m}(A) = \mathbf{n}$;
- neskončna množica vsebuje neskončno mnogo elementov: $\mathbf{m}(\mathcal{A}) = \infty$.

Če ima množica toliko elementov, kot jih ima množica naravnih števil, je ta števno neskončna. Njeno moč pišemo kot: $m(A) = \aleph_0$.

Za množici, ki imata isto moč, rečemo, da sta ekvipolentni oziroma ekvipotentni.

Naloga 2.1. Naštejte elemente množice in zapišite njeno moč, če je $\mathcal{U} = \mathbb{N}$.

- $\mathcal{A} = \{x; x \mid 24\}$
- $\mathcal{B} = \{x; 3 < x \leq 7\}$
- $\mathcal{C} = \{x; x = 4k \land k \in \mathbb{N} \land k \leq 5\}$
- $\mathcal{D} = \{x; x = 3k + 2 \land k \in \mathbb{N} \land (4 < k \le 8)\}$

Naloga 2.2. Naj bo $\mathcal{U} = \mathbb{N}$. Zapišite množico tako, da naštejete njene elemente. Določite še njeno moč.

- Množica vseh deliteljev števila 18.
- Množica praštevil, ki so manjša od 20.

• Množica večkratnikov števila 5, ki so večji od 50 in manjši ali enaki 70.

Naloga 2.3. Zapišite množico s simboli.

- Množica vseh sodih naravnih števil.
- Množica vseh naravnih števil, ki dajo pri deljenju s 7 ostanek 5.

Naloga 2.4. Podane so množice tako, da so našteti njihovi elementi. Množice zapišite s simboli.

- $\mathcal{A} = \{1, 2, 3, 6\}$
- $\mathcal{B} = \{6, 12, 18, 24, 30\}$
- $C = \{10, 12, 14, 16, 18, 20\}$
- $\mathcal{D} = \{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024\}$
- $\mathcal{E} = \{1, 4, 9, 16, 25, 36, 49\}$

2.3 Podmnožice

Množica \mathcal{B} je **podmnožica** množice \mathcal{A} , če za vsak element iz \mathcal{B} velja, da je tudi element množice \mathcal{A} .

$$\mathcal{B} \subseteq \mathcal{A} \Leftrightarrow \forall x \in \mathcal{B} \Rightarrow x \in \mathcal{A}$$

- $\forall A : A \subseteq A$ Vsaka množica je podmnožica same sebe.
- $\forall \mathcal{A} : \emptyset \subseteq \mathcal{A}$ Prazna množica je podmnožica vsake množice.

Moč podmnožice \mathcal{B} množice \mathcal{A} je manjša ali enaka moči množice \mathcal{A} :

$$\mathcal{B} \subseteq \mathcal{A} \Rightarrow m(\mathcal{B}) \leqslant m(\mathcal{A})$$

Množici \mathcal{A} in \mathcal{B} sta **enaki**, če imata iste elemente; sta druga drugi podmnožici.

$$\mathcal{A} = \mathcal{B} \Leftrightarrow (\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{B} \subseteq \mathcal{A})$$

Podmnožica \mathcal{B} množice \mathcal{A} , ki ni enaka množici \mathcal{A} , je **prava podmnožica** množice \mathcal{A} .

Potenčna množica množice \mathcal{A} je množica vseh podmnožic množice \mathcal{A} . Oznaka: $\mathcal{P}\mathcal{A} / \mathcal{P}(\mathcal{A})$.

$$\mathcal{P}\mathcal{A} = \{\mathcal{X}; \mathcal{X} \subseteq \mathcal{A}\}$$

$$m(\mathcal{P}\mathcal{A}) = 2^{m(\mathcal{A})}$$

Potenčna množica ni nikoli prazna – vsebuje vsaj prazno množico.

Naloga 2.5. Dana je množica $A = \{2, 4, 6, 8, 10\}$. Zapišite njeno potenčno množico. Kakšna je njena moč?

Naloga 2.6. Dana je množica $A = \{a, b, c, d\}$. Zapiište njeno potenčno množico. Kakšna je njena moč?

2.4 Operacije z množicami

2.4.1 Komplement množice

Komplement množice \mathcal{A} (glede na izbrani univerzum \mathcal{U}) je množica vseh elementov, ki so v množici \mathcal{U} in niso v množici \mathcal{A} .

Oznaka: $\mathcal{A}^{\complement} / \mathcal{A}'$.

$$\mathcal{A}^{\complement} = \{x; x \in \mathcal{U} \land x \notin \mathcal{A}\}$$

$$\left(\mathcal{A}^{\complement}
ight)^{\complement}=\mathcal{A}$$

Naloga 2.7. Naj bo univerzalna množica $\mathcal{U} = \{x; x \in \mathbb{N} \land x \leq 20\}$. Zapišite komplementarno množico danih množic. Kakšna je njena mmoč?

- $\mathcal{A} = \{x; x = 3k \land k \in \mathbb{N}\}$
- $\mathcal{B} = \{x; x \in \mathbb{N} \land x \mid 20\}$
- $\mathcal{C} = \{x; x = 2k \lor x = 3k \land k \in \mathbb{N}\}$

2.4.2 Unija množic

Unija množic
i $\mathcal A$ in $\mathcal B$ je množica vseh elementov, ki pripadajo množici
 $\mathcal A$ ali množici $\mathcal B.$ Oznaka:
 $\mathcal A\cup\mathcal B.$

$$\mathcal{A} \cup \mathcal{B} = \{x; x \in \mathcal{A} \lor x \in \mathcal{B}\}$$

$$\mathcal{A}\cup\mathcal{A}^\complement=\mathcal{U}$$

$$\mathcal{A} \cup \emptyset = \mathcal{A}$$

$$A \cup \mathcal{U} = \mathcal{U}$$

Naloga 2.8. Dani sta množici \mathcal{A} in \mathcal{B} . Zapišite množico $\mathcal{A} \cup \mathcal{B}$. Določite še njeno moč.

- $\mathcal{A} = \{1, 2, 3, 4, 5\}$ in $\mathcal{B} = \{3, 4, 5, 6, 7\}$
- $\mathcal{A} = \{4, 8, 12, 16, 20\}$ in $\mathcal{B} = \{3, 6, 9, 12, 15, 18\}$
- $\mathcal{A} = \{x; x \in \mathbb{N} \land x \mid 18\} \text{ in } \mathcal{B} = \{x; x \in \mathbb{N} \land x \mid 21\}$
- $\mathcal{A} = \{5, 10, 15, 20, \dots\}$ in $\mathcal{B} = \{10, 20, 30, 40, 50, \dots\}$
- $\mathcal{A} = \{x; x = 6k \land k \in \mathbb{N} \land k \leq 4\} \text{ in } \mathcal{B} = \{x; x \in \mathbb{N} \land x \mid 12\}$

2.4.3 Presek množic

Presek množic \mathcal{A} in \mathcal{B} je množica vseh elementov, ki hkrati pripadajo množici \mathcal{A} in množici \mathcal{B} . Oznaka: $\mathcal{A} \cap \mathcal{B}$.

$$\mathcal{A} \cap \mathcal{B} = \{x; x \in \mathcal{A} \land x \in \mathcal{B}\}$$

$$\mathcal{A}\cap\mathcal{A}^\complement=\varnothing$$

$$A \cap \emptyset = \emptyset$$

$$A \cap \mathcal{U} = A$$

Naloga 2.9. Dani sta množici A in B. Zapišite množico $A \cap B$. Določite še njeno moč.

- $\mathcal{A} = \{1, 2, 3, 4, 5\}$ in $\mathcal{B} = \{3, 4, 5, 6, 7\}$
- $\mathcal{A} = \{4, 8, 12, 16, 20\}$ in $\mathcal{B} = \{3, 6, 9, 12, 15, 18\}$
- $\mathcal{A} = \{x; x \in \mathbb{N} \land x \mid 18\} \text{ in } \mathcal{B} = \{x; x \in \mathbb{N} \land x \mid 21\}$
- $\mathcal{A} = \{5, 10, 15, 20, \dots\}$ in $\mathcal{B} = \{10, 20, 30, 40, 50, \dots\}$
- $\mathcal{A} = \{x; x = 6k \land k \in \mathbb{N} \land k \leq 4\} \text{ in } \mathcal{B} = \{x; x \in \mathbb{N} \land x \mid 12\}$

Za množici \mathcal{A} in \mathcal{B} velja:

$$m(\mathcal{A} \cup \mathcal{B}) = m(\mathcal{A}) + m(\mathcal{B}) - m(\mathcal{A} \cap \mathcal{B})$$

Množici, katerih presek je prazna množica, sta disjunktni množici.

$$\mathcal{A} \cap \mathcal{B} = \varnothing \Rightarrow m(\mathcal{A} \cap \mathcal{B}) = 0$$

$$\mathcal{A} \cap \mathcal{B} = \emptyset \Rightarrow m(\mathcal{A} \cup \mathcal{B}) = m(\mathcal{A}) + m(\mathcal{B})$$

2.4.4 Lastnosti operacij unije in preseka

Komutativnost unije in preseka

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Asociativnost unije in preseka

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Distributivnostna zakona za unijo in presek

$$(\mathcal{A} \cup \mathcal{B}) \cap \mathcal{C} = (\mathcal{A} \cap \mathcal{C}) \cup (\mathcal{B} \cap \mathcal{C})$$

$$(\mathcal{A} \cap \mathcal{B}) \cup \mathcal{C} = (\mathcal{A} \cup \mathcal{C}) \cap (\mathcal{B} \cup \mathcal{C})$$

De Morganova zakona

Komplement preseka dveh množic je enak uniji komplementov obeh množic:

$$(\mathcal{A} \cap \mathcal{B})^{\complement} = \mathcal{A}^{\complement} \cup \mathcal{B}^{\complement}.$$

Komplement unije dveh množic je enak preseku komplementov obeh množic:

$$(\mathcal{A} \cup \mathcal{B})^{\complement} = \mathcal{A}^{\complement} \cap \mathcal{B}^{\complement}.$$

2.4.5 Razlika množic

Razlika množic \mathcal{A} in \mathcal{B} je množica tistih elementov, ki pripadajo množici \mathcal{A} in hkrati ne pripadajo množici \mathcal{B} .

Oznaka: $A \setminus B / A - B$.

$$\mathcal{A} \backslash \mathcal{B} = \{ x; x \in \mathcal{A} \land x \notin \mathcal{B} \}$$

$$\mathcal{A}ackslash\mathcal{B}=\mathcal{A}\cap\mathcal{B}^{\complement}$$

$$A \setminus B \neq B \setminus A$$

$$A \setminus A = \emptyset$$

Naloga 2.10. Dani sta množici A in B. Zapišite njuno razliko $A \backslash B$.

- $\mathcal{A} = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$ in $\mathcal{B} = \{x; x \in \mathbb{N} \land x > 10\}$
- $\mathcal{A} = \{x; x = 3k \land k \in \mathbb{N} \land k < 7\}$ in $\mathcal{B} = \{x; x = 6k \land k \in \mathbb{N}\}$
- $\mathcal{A} = \{x; x = 6k \land k \in \mathbb{N} \land k < 4\} \text{ in } \mathcal{B} = \{x; x = 3k \land k \in \mathbb{N}\}$

2.4.6 Kartezični produkt množic

Kartezični produkt (nepraznih) množic \mathcal{A} in \mathcal{B} je množica urejenih parov (x, y), pri čemer je $x \in \mathcal{A}$ in $y \in \mathcal{B}$.

Oznaka: $\mathcal{A} \times \mathcal{B}$.

$$\mathcal{A} \times \mathcal{B} = \{(x, y); x \in \mathcal{A} \land y \in \mathcal{B}\}$$

$$x \neq y \Rightarrow (x, y) \neq (y, x)$$

$$\mathcal{A} \neq \mathcal{B} \Rightarrow \mathcal{A} \times \mathcal{B} \neq \mathcal{B} \times \mathcal{A}$$

$$m(\mathcal{A} \times \mathcal{B}) = m(\mathcal{A}) \cdot m(\mathcal{B})$$

Kartezični produkt $\mathcal{A} \times \mathcal{B}$ za množici $\mathcal{A} = \{a, b, c, d, e, f\}$ in $\mathcal{B} = \{1, 2, 3, 4\}$:

Naloga 2.11. Dani sta množici A in B. Zapišite njun kartezični produkt $A \times B$. Narišite diagram, ki predstavlja to množico.

- $\mathcal{A} = \{2, 4, 6, 8, 10, 12\}$ in $\mathcal{B} = \{x; x \in \mathbb{N} \land x < 8\}$
- $\mathcal{A} = \{x; x = 3k \land k \in \mathbb{N} \land k < 7\}$ in $\mathcal{B} = \{x; x = 6k \land k \in \mathbb{N} \land (5 \leqslant k < 9)\}$
- $A = \{x; x = 6k \land k \in \mathbb{N} \land k < 4\} \text{ in } B = \{x; x = 3k \land k \in \mathbb{N} \land (3 < k < 11)\}$