- 1. Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false. Let $G = \langle q \rangle$ have order 300.
 - \bigcirc There are exactly 80 generators of G.
 - \bigcirc G has only one element of order 3.
 - (3) G can be embedded in S_{30} .
 - $\overbrace{4}$ G has a subgroup of order 20.
 - (5) G has a totality of 18 subgroups.

Solution.

- 1 True. Since $G = \langle g \rangle$ is cyclic and since |g| = 300, it follows that the number of generators of G is the number of positive integers relatively prime to 300, which is 80.
- (2) False.

Counterexample. We have that $g^{100} \neq g^{200}$ (since |g| = 300) and

$$|g^{100}| = \frac{300}{\gcd(300, 100)} = 3 = \frac{300}{\gcd(300, 200)} = |g^{200}|.$$

(3) False.

Proof. It suffices to show that S_{30} has no element of order 300. Suppose to the contrary that $\sigma \in S_{30}$ has order 300. Then we can write σ as a product of disjoint cycles (each of length greater than 1)

$$\sigma = \alpha_1 \alpha_2 \cdots \alpha_n$$

so that $|\sigma| = \operatorname{lcm}(|\alpha_1|, |\alpha_2|, \dots, |\alpha_n|) = 300$. Now since $5^2 \mid 300$, it follows that 5^2 must divide the order of at least one of the cycles. We can assume without loss that $5^2 \mid |\alpha_1|$. Thus α_1 must be a 25-cycle. By a similar argument, it follows that 2^2 must divide the order of at least one of the cycles. Assume without loss that $2^2 \mid |\alpha_2|$. Since there are 25 elements in α_1 , there can be at most 5 elements in α_2 , so that α_2 is a 4-cycle. Thus

$$\sigma = \alpha_1 \alpha_2$$

a contradiction since $lcm(|\alpha_1|, |\alpha_2|) = 100 \neq 300$.

- (4) True. This subgroup of $G, \langle g^{15} \rangle$, has 20 elements.
- \bigcirc 5 True. Since the number of positive divisors of 300 is 18, it follows that G has exactly 18 subgroups.
- 2. Let G be an abelian group and let $a,b\in G$ be of order 120 and 72 respectively. Do the following:

- (1) Find an element of order 15.
- (2) What is the order of b^{10} ?
- (3) Find an element of as large an order as you can.

Solution.

- \bigcirc The element a^8 has order 15.
- (2) $|b^{10}| = \frac{72}{\gcd(72, 10)} = 36.$
- (3) The element a^{24} has order 5; since gcd(5,72) = 1, it follows that $a^{24}b$ has order 360.
- 3. Consider the non-abelian group of order 55 from **Homework** #4. View this group as acting on all column vectors of size 2 (with entries in \mathbb{Z}_{11}).
 - 1 Find the number of fixed points of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - (2) Find the number of fixed points of $\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$.
 - (3) Decide on the number of fixed elements each of the elements of the group has.
 - (4) Use Burnside's Lemma to count the orbits.

Solution.

① Suppose $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$ for some $a,b \in \mathbb{Z}_{11}$. Then it follows that

$$\begin{pmatrix} a+b \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix},$$

so that b = 0. Thus the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ fixes 11 elements and they are

$$\left\{ \begin{pmatrix} a \\ 0 \end{pmatrix} : a \in \mathbb{Z}_{11} \right\}.$$

② Suppose $\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$ for some $a,b \in \mathbb{Z}_{11}$. Then it follows that

$$\begin{pmatrix} 3a \\ 4b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix},$$

so that 2a = 0 and 3b = 0. Multiply the former equality by 6 and the latter by 4 to get a = b = 0. Thus the matrix $\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$ fixes only 1 element, the zero vector.

- ③ There are 44 matrices of the form $\begin{pmatrix} b & x \\ 0 & b^{-1} \end{pmatrix}$, with $b \neq 1$, and each only fixes the zero vector. The identity matrix fixes all the vectors (121 of them), while each of the remaining 10 matrices fixes exactly 11 vectors.
- 4 Let n be the number of orbits. Using our results from 3 and Burnside's Lemma, it follows that that

$$n \cdot 55 = 44 \cdot 1 + 1 \cdot 121 + 10 \cdot 11 = 275$$
,

so that n=5.

4. Let the vertices of the cube be given as follows:

$$1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, 2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, 3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, 4 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, 5 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, 6 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}, 7 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix},$$

and
$$8 = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$
.

- 1 Label the faces A, A', B, B', C, and C' (where the prime means opposite), and give each as a set of four vertices. Let A be the intersection with the plane x = 1, B with the plane y = 1 and C with z = 1.
- (2) Find 24 3 × 3 matrices of determinant 1 that are isometries of the cube, and write each as a permutation in S_8 (of the eight vertices) and also as a permutation of the faces. **Hint:** Start with the six permutation matrices of size 3.

Assume these 24 matrices form a group G. Bonus. Prove this. Assume $G \simeq S_4$. Bonus. Prove this.

- \bigcirc Find the conjugacy classes of G.
- (4) Find the number of ways to color a cube with two colors.
- (5) Find the number of ways to color a cube with three colors.

Bonus. Find the number of ways to color the cube with n colors.

Solution.

(1) We have (Right Hand Coordinate System)

$$A = \{1, 2, 3, 5\}$$

$$A' = \{4, 6, 7, 8\}$$

$$B = \{1, 2, 4, 6\}$$

$$B' = \{3, 5, 7, 8\}$$

$$C = \{1, 3, 4, 7\}$$

$$C' = \{2, 3, 5, 8\}$$

 $\widehat{(2)}$

 $\begin{array}{lll} P(faces) & = & Permutation \ of \ faces \\ P(vertices) & = & Permutation \ of \ vertices \end{array}$

ccw = counterclockwise

 \overrightarrow{ab} = line that passes through vertices a and b.

 $B(\overrightarrow{abcd})$ = line that bisects egdes ab and cd.

	Matrix	P(vertices)	P(faces)	Rotation
1	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	(1)	(A)	Identity
2	$ \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	(1 4 7 3)(2 6 8 5)	(ABA'B')	90° ccw across z-axis.
3	$ \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	(1 7)(2 8)(3 4)(5 6)	(AA')(BB')	180° ccw across z-axis.
4	$ \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	(1 3 7 4)(2 5 8 6)	(AB'A'B)	270° ccw across z-axis.
5	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$	(1 3 5 2)(4 7 8 6)	(BCB'C')	90° ccw across x -axis.
6	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} $	(1 5)(2 3)(4 8)(6 7)	(BB')(CC')	180° ccw across x -axis.
7	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} $	(1 2 5 3)(4 6 8 7)	(BC'B'C)	270° ccw across x -axis.
8	$ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} $	(1 2 6 4)(3 5 8 7)	(AC'A'C)	90° ccw across y -axis.

	Matrix	P(vertices)	P(faces)	Rotation
9	$ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} $	(1 6)(2 4)(3 8)(5 7)	(AA')(CC')	180° ccw across y -axis.
10	$ \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} $	(1 4 6 2)(3 7 8 5)	(ACA'C')	270° ccw across y-axis.
11	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$	(2 3 4)(5 7 6)	(ACB)(A'C'B')	120° ccw across $\overrightarrow{18}$.
12	$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$	$(2\ 4\ 3)(5\ 6\ 7)$	(ABC)(A'B'C')	240° ccw across $\overrightarrow{18}$.
13	$ \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} $	(1 7 6)(2 3 8)	(AB'C')(BCA')	120° ccw across $\overrightarrow{45}$.
14	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$	(1 6 7)(2 8 3)	(AC'B')(A'CB)	240° ccw across $\overrightarrow{45}$.
15	$ \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} $	(1 6 5)(3 4 8)	(ABC')(A'B'C)	120° ccw across $\overrightarrow{27}$.
16	$ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix} $	(1 5 6)(3 8 4)	(AC'B)(A'CB')	240° ccw across $\overrightarrow{27}$.

	Matrix	P(vertices)	P(faces)	Rotation
17	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$	(1 7 5)(2 4 8)	(ACB')(BA'C')	120° ccw across $\overrightarrow{36}$.
18	$ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} $	(1 5 7)(2 8 4)	(AB'C)(A'BC')	240° ccw across $\overrightarrow{36}$.
19	$ \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} $	(1 8)(2 7)(3 5)(4 6)	(AB')(BA')(CC')	180° ccw across $B(\overline{4635})$.
20	$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	(1 2)(3 6)(4 5)(7 8)	(AB)(CC')(A'B')	180° ccw across $B(\overline{1278})$.
21	$ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} $	(1 8)(2 6)(3 7)(4 5)	(AA')(BC')(B'C)	180° ccw across $B(\overline{2637})$.
22	$ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} $	(1 4)(2 7)(3 6)(5 8)	(AA')(BC)(B'C')	$180^{\circ} \text{ ccw across } B(\overline{1458}).$
23	$ \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} $	(1 8)(2 5)(3 6)(4 7)	(AC')(A'C)(BB')	180° ccw across $B(\overrightarrow{6813})$.
24	$ \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} $	(1 3)(2 7)(4 5)(6 8)	(AC)(BB')(A'C')	180° ccw across $B(\overline{7452})$.

Bonus. Show that G is a group.

Proof. The set G is associative under multiplication because matrix multiplication is associative under multiplication. The set G contains the 3×3 identity so that G has an identity. Since G is finite, we need only show that it is closed under multiplication to complete the proof. Let A and B be two matrices in G. Then A and B correspond to some permutations G and G of the vertices of the cube. Thus G corresponds to G and G which is also a permutation of the vertices of the cube. Since G and G are rotations, G or G must also be a rotation so that G is a group under multiplication.

(3) Let M_i denote the matrix on line i from our results in (1). Since $G \simeq S_4$, it follows that the conjugacy classes of G are:

$$\begin{aligned} 1+1+1+1&=\{M_1\}\\ 2+1+1&=\{M_{19},M_{20},M_{21},M_{22},M_{23},M_{24}\}\\ 3+1&=\{M_{11},M_{12},M_{13},M_{14},M_{15},M_{16},M_{17},M_{18}\}\\ 2+2&=\{M_3,M_6,M_9\}\\ 4&=\{M_2,M_4,M_5,M_7,M_8,M_{10}\} \end{aligned}$$

(4) Setting n = 3 in the equation in the Bonus below we have that there are 57 ways to color a cube with three colors.

5 Setting n=2 in the equation in the Bonus below we have that there are 10 ways to color a cube with three colors.

Bonus.

Conjugacy Class	Representative g	#g	# of elements
1 + 1 + 1 + 1	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	n^6	1
2 + 1 + 1	$ \begin{pmatrix} 0 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} $	n^3	6
3 + 1	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$	n^2	8
2 + 2	$ \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	n^4	3
4	$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	n^3	6

Thus the number of ways to color a cube with n colors is

$$\frac{n^6 + 6n^3 + 8n^2 + 3n^4 + 6n^3}{24} = \frac{n^6 + 3n^4 + 12n^3 + 8n^2}{24}.$$