Dept: STCS

Email: soham.chatterjee@tifr.res.in

Course: Probability Theory Date: November 10, 2024

[All the problems I discussed with Spandan, Soumyadeep]

Problem 1

Let X, Y_1, Y_2 be three random variables with joint density f_{X,Y_1,Y_2} . For a fixed y_1 , consider two random variables $\tilde{X}, \tilde{Y_2}$ with joint distribution $g_{\tilde{X},\tilde{Y_2}}$ defined as $g_{\tilde{X},\tilde{Y_2}}(x,y_2) = f_{X,Y_2|Y_1}(x,y_2|y_1)$. Show that

$$\mathbb{E}[\tilde{X} \mid \tilde{Y} = y_2] = \mathbb{E}[X \mid Y_1 = y_1, Y_2 = y_2]$$

What is the relevance of this fact in our derivation of recursive estimation in the lecture?

Solution: We have

$$g_{\tilde{X}\mid\tilde{Y}_{2}}(x\mid y_{2}) = \frac{g_{\tilde{X},\tilde{Y}_{2}}(x,y_{2})}{g_{\tilde{Y}_{2}}(y_{2})} = \frac{f_{X,Y_{2}\mid Y_{1}}(x,y_{2}\mid y_{1})}{f_{Y_{2}\mid Y_{1}}(y_{2}\mid y_{1})} = \frac{\frac{f_{X,Y_{1},Y_{2}}(x,y_{1},y_{2})}{f_{Y_{1}}(y_{1})}}{\frac{f_{Y_{1},Y_{2}}(y_{1},y_{2})}{f_{Y_{1}}(y_{1})}} = f_{X\mid Y_{1},Y_{2}}(x\mid y_{1},y_{2})$$

Therefore $\mathbb{E}[\tilde{X} \mid \tilde{Y} = y_2] = \mathbb{E}[X \mid Y_1 = y_1, Y_2 = y_2]$. This is used to derive the iterative estimator which is used in the recurrence relation for Kalman Filter.

Problem 2

Consider the Kalman filtering problem for the scalar system:

$$X_k = \alpha X_{k-1} + W_k \qquad Y_k = hX_k + Z_k$$

as described in class (i.e., $W_k \sim N\left(0,\sigma_W^2\right)$ i.i.d, $Z_k \sim N\left(0,\sigma_Z^2\right)$, and X_1 are independent). The initial condition is $X_1 \sim N\left(0,\sigma_{X_1}^2\right)$. For the numerical exercises below you can assume $\sigma_{X_1}^2 = \sigma_Z^2 = \sigma_W^2 = h = 1$.

- (a) Plot sample paths of the process $\{X_k\}$ for different values of α . Pick a representative set of values of α to show the effect of α on how the sample paths look like. Can you explain qualitatively the effect?
- (b) Let $\hat{X}_k = E[X_k \mid Y_1, \dots, Y_k]$. For those sample paths of $\{X_k\}$ plotted in part (a), plot in the same figure the sample paths of the estimates $\{\hat{X}_k\}$. What is the qualitative effect of α on the estimation errors?
- (c) Let $\tilde{X}_k = E[X_k \mid Y_k]$. This is the state estimate based only on the current observation. For the sample paths in (a) and (b), plot the sample paths of $\{\tilde{X}_k\}$ in the same figure as well. How does the difference in the accuracy of the estimators \hat{X}_k and \tilde{X}_k depend on the value of α ? Explain qualitatively.
- (d) Let f_k be the conditional distribution of X_k give the observations up to time k. For your favorite value of α , plot f_k for several values of k to get a feel of how the distribution evolves in time. Do these distributions depend on the random outcome of the experiment? How?
- (e) What happens to the distribution of X_k as $k \to \infty$? Give a quantitative answer. Does your answer depend on α ? Does your answer depend on $\sigma_{X_1}^2$?
- (f) What happens to the MMSE estimation error σ_k^2 of \hat{X}_k as $k \to \infty$? Does it converge to zero, a finite non-zero value or infinity? How does your answer depend on α ? An answer supported by numerical evidence together with some analysis would be fine; it doesn't have to be totally rigorous.

Solution:

(a) Here we have taken the values of α to be $\{-1, 0.8, 1, 1.2\}$ in Figure 1. Here we can see that when the value of α is 1.2 then the sample value increases. And when the value of α is -1 it oscillates around 0. But for $\alpha = 0.8$ the sample values remains close to 0. Therefore the sample values converges when $|\alpha| < 1$ and otherwise diverges.

Figure 1: Plot of X_k for different $\alpha \in \{-1, 0.8, 1, 1.2\}$

(b) In the following plot we can see that the predicted values $\mathbb{E}[X \mid Y_1, \dots, Y_k]$ matches almost correctly with the sample values X_k . From the plots we conclude that as $|\alpha|$ becomes larger it has lesser effect on the estimation which we also showed in part (f) where we showed if $|\alpha|$ becomes larger then the MMSE estimation is independent of α .

Figure 2: Compared X_k and predicted $\hat{X_k}$

(c) Here we compare X_k , \hat{S}_k and $\tilde{X}_k = \mathbb{E}[X_k \mid Y_k]$ for all values of α . Now we have $Cov(X_k, Y_k) = h\rho_k^2$ and

 $Var[Y_k] = h^2 \rho_k^2 + \sigma_Z^2$. Hence we have

$$\mathbb{E}[X_k \mid Y_k] = \frac{h\rho_k^2 Y_k}{h^2 \rho_k^2 + \sigma_Z^2}$$

So we have

$$\mathbb{E}[X_k - \tilde{X}_k]^2 = \mathbb{E}\left[X_k - \frac{h\rho_k^2 Y_k}{h^2 \rho_k^2 + \sigma_Z^2}\right]^2$$

$$= \frac{1}{\left(h^2 \rho_k^2 + \sigma_Z^2\right)^2} \mathbb{E}\left[(h^2 \rho_k^2 + \sigma_Z^2) X_k - h\rho_k^2 (h X_k + Z_k)\right]^2$$

$$= \frac{1}{\left(h^2 \rho_k^2 + \sigma_Z^2\right)^2} \mathbb{E}\left[\sigma_Z^2 X_k - h\rho_k^2 Z_k\right]^2$$

$$= \frac{\sigma_Z^4 \rho_k^2 + h^2 \rho_k^4 \sigma_Z^2}{\left(h^2 \rho_k^2 + \sigma_Z^2\right)^2} = \frac{\sigma_Z^2 \rho_k^2}{h^2 \rho_k^2 + \sigma_Z^2}$$

Now this is the MMSE estimation of σ_k^2 of X_k which comparing with part (f) we can see that we obtained the same estimation value. Therefore both \hat{X}_k and \tilde{X}_k are equally good estimating sample values.

Figure 3: Compared X_k and predicted \hat{X}_k and \tilde{X}_k

(d) Here we plot f_k for values $k \in [10]$ with $\alpha = 0.8$. Now the conditional distribution $X \mid Y_1, \dots, Y_k$ approaches the distribution $N\left(0, \frac{\sigma^2}{1-\alpha^2}\right)$ for large k and also we notice from the plot that this doesn't depend on the Y_k .

Figure 4: Plot of density f_k of $X_k \mid Y_1, ..., Y_k$ for $\alpha = 0.8, k \in [10]$

(e) We will induct on k. Since X_1 , W_2 are independent and we have $X_2 = \alpha X_1 + W_2$ hence $X_2 \sim N\left(0, \alpha^2\sigma_{X_1}^2 + \sigma_W^2\right)$. Now X_{k-1} and W_k are independent and we have $X_k = \alpha X_{k-1} + W_k$. By inductive hypothesis X_{k-1} follows Gaussian Distribution. Hence X_k also follows Gaussian Distribution. Hence $\mathbb{E}[X_k] = 0$. Now we have to calculate $\text{Var}[X_k]$.

$$\operatorname{Var}[X_k] = \alpha^2 \operatorname{Var}[X_{k-1}] + \sigma_W^2 = \alpha^2 (\alpha^2 \operatorname{Var}[X_{k-2}] + \sigma_W^2) + \sigma_W^2 = \dots = \alpha^{2k-2} \sigma_{X_1}^2 + \sigma_W^2 \sum_{i=0}^{k-1} \alpha^{2i}$$

Therefore $X_k \sim N\left(0,\alpha^{2k-2}\sigma_{X_1}^2 + \sigma_W^2\sum\limits_{i=0}^{k-1}\alpha^{2i}\right)$. Hence if $|\alpha| < 1$, $\lim_{k \to \infty} \mathrm{Var}[X_k] = \frac{\sigma_W^2}{1-\alpha^2}$. Hence as $k \to \infty$, $X_k \to N\left(0,\frac{\sigma_W^2}{1-\alpha^2}\right)$. Now if $|\alpha| \ge 1$, then as $k \to \infty$, α^{2k-2} diverges. Therefore $\mathrm{Var}[X_k]$ diverges to $+\infty$.

If $|\alpha| < 1$ then $\text{Var}[X_k] = \frac{\sigma_W^2}{1-\alpha^2}$. Hence it doesn't depend on $\sigma_{X_1}^2$.

(f) Let ρ_k denote the variance of X_k . Then we have the formula

$$\rho_n = \alpha^2 \rho_{n-1}^2 + \sigma_W^2 \quad \text{for } n \ge 2$$

Hence we know the behavior of the conditional variance σ_k^2 of X_k . Hence we know the MMSE of $X_k \mid Y_1, \dots, Y_k$ as $k \to \infty$. Now we have

$$\sigma_k^2 = \frac{\rho_k^2 \sigma_Z^2}{h^2 \rho_k^2 + \sigma_Z^2} = \frac{\sigma_Z^2}{h^2 + \frac{\sigma_Z^2}{\rho_k^2}}$$

From the previous part if $|\alpha|<1$ then $\lim_{k\to\infty}\rho_k=\frac{\sigma_W^2}{1-\alpha^2}$ and if $|\alpha|\geq 1$ then as $k\to\infty$, ρ_k diverges to $+\infty$. Therefore when $|\alpha|<1$, $\lim_{k\to\infty}\sigma_k^2=\frac{\sigma_Z^2\sigma_W^2}{h^2\sigma_W^2+(1-\alpha^2)\sigma_Z^2}$ and when $|\alpha|\geq 1$ we have $\lim_{k\to\infty}\sigma_k^2=\frac{\sigma_Z^2}{h^2}$.

4

Problem 3

For the system in Problem 2 derive a recursive algorithm for computing the one-step ahead estimator: $\mathbb{E}[X_k \mid Y_1, Y_2, \dots, Y_k, Y_{k+1}]$. This means we can look ahead one step to estimate the state.

Solution: We have $Y_{k+1} = hX_{k+1} + W_{k+1}$ and $X_{k+1} = \alpha X_k + Z_k$. Therefore combining these two we have

$$Y_{k+1} = \alpha h X_k + (h W_k + Z_{k+1})$$

Now take $T_k = hW_k + Z_{k+1}$. Then $T_k \sim N(0, h^2\sigma_W^2 + \sigma_Z^2)$. Now denote $Y_1^k = (Y_1, \dots, Y_k)$ and denote $Y_1^k = (y_1, \dots, y_k)$. Then we have

$$f_{X_k \mid Y_1^{K+1}}(x \mid y_1^{k+1}) = \frac{f_{Y_{k+1} \mid X_k, Y_1^K}(y_{k+1} \mid x_k, y_1^k)}{f_{Y_{k+1} \mid Y_1^K}(y_{k+1} \mid y_1^k)} f_{X_k \mid Y_1^k}(x_k \mid y_1^k)$$

Combining this with $\alpha hX_k + (hW_k + Z_{k+1})$ we can write

$$\mathbb{E}[X_k \mid Y_1^{k+1}] = h\alpha \mathbb{E}[X_{k-1} \mid Y_1^k]$$

5